Sistemas Operacionais

Aula 06 – Escalonamento de Tarefas Prof. Igor da Penha Natal

Conteúdo

- 1 Conceitos básicos
- 2 Escalonamentos FCFS e RR
- 3 Escalonamentos SJF e SRTF
- 4 Escalonamento por prioridades
- 5 Definição de prioridades
- 6 Escalonadores em sistemas reais

Tipos de tarefas

Em relação ao comportamento temporal:

De tempo real : exigem tempos de resposta precisos.

Interativas: respondem rapidamente a eventos externos.

Em lote : não têm requisitos temporais explícitos.

Em relação ao uso de CPU:

CPU-bound: tarefas que usam intensivamente a CPU.

IO-bound: tarefas que realizam mais entrada/saída.

Escalonamento de tarefas

Escalonamento de CPU

Definir a **ordem de execução** das tarefas prontas.

Responsabilidade do escalonador de CPU.

Acionado pelo despachante durante as trocas de contexto.

Critérios de escalonamento

Métricas para avaliar diferentes escalonadores:

Tempo de vida (t_t) : tempo entre a criação de uma tarefa e seu encerramento.

Tempo de espera (t_w) : tempo perdido pela tarefa na fila de prontas.

Tempo de resposta (t_r) : tempo entre a chegada de um evento ao sistema e a resposta a ele.

Justiça: distribuição adequada do processador entre as tarefas prontas.

Modos de escalonamento

Escalonamento cooperativo

A tarefa só perde o processador ao terminar, solicitar uma entrada/saída ou liberar explicitamente a CPU (syscall sched_yield).

Dica: o sistema só funciona se as tarefas cooperarem entre si.

Escalonamento preemptivo

A cada interrupção, exceção ou chamada de sistema, o escalonador reavalia a fila de prontas e pode "preemptar" a tarefa em execução.

Algoritmos de escalonamento

Tarefas a escalonar:

Tarefa	<i>t</i> ₁	<i>t</i> ₂	<i>t</i> ₃	<i>t</i> ₄	<i>t</i> ₅
Ingresso (s)	0	0	1	3	5
Duração (s)	5	2	4	1	2
Prioridade	2	3	1	4	5

Métricas a considerar:

- Tempo médio de execução (*T_t*) das tarefas
- Tempo médio de espera (*T_w*) das tarefas

Escalonamento FCFS

FCFS: First Come, First Served

Escalonamento FCFS

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{5 + 7 + (11 - 1) + (12 - 3) + (14 - 5)}{5}$$
$$= \frac{5 + 7 + 10 + 9 + 9}{5} = \frac{40}{5} = 8,0s$$

$$T_{w} = \frac{t_{w}(t_{1}) + \dots + t_{w}(t_{5})}{5} = \frac{0 + 5 + (7 - 1) + (11 - 3) + (12 - 5)}{5}$$
$$= \frac{0 + 5 + 6 + 8 + 7}{5} = \frac{26}{5} = 5, 2s$$

Escalonamento RR

RR: Round-Robin (ou revezamento)

Usa preempção por tempo (no exemplo, $t_q = 2$)

Escalonamento RR

Escalonamento RR

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 4 + 12 + 6 + 6}{5} = \frac{42}{5} = 8, 4s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 2 + 8 + 5 + 4}{5} = \frac{28}{5} = 5,6s$$

Escalonamento SJF

SJF: Shortest Job First

Escalonamento SIF

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 2 + 5 + 4 + 4}{5} = \frac{29}{5} = 5,8s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 0 + 1 + 3 + 2}{5} = \frac{15}{5} = 3,0s$$

Problema: como prever a duração de uma tarefa?

Pode ser usado em conjunto com Round-Robin.

Escalonamento SRTF

SRTF: Shortest Remaining Time First

Escalonamento SRTF

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 2 + 6 + 1 + 4}{5} = \frac{27}{5} = 5, 4s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 0 + 2 + 0 + 2}{5} = \frac{13}{5} = 2,6s$$

Escalonamento PRIOc

PRIOc: por prioridades, cooperativo

Prioridades: t_1 : 2 t_2 : 3 t_3 : 1 t_4 : 4 t_5 : 5

Escalonamento PRIOc

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{7 + 2 + 13 + 7 + 4}{5} = \frac{33}{5} = 6,6s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{2+0+9+6+2}{5} = \frac{19}{5} = 3,8s$$

Escalonamento PRIOp

PRIOp: por prioridades, preemptivo

Prioridades: t_1 : 2 t_2 : 3 t_3 : 1 t_4 : 4 t_5 : 5

Escalonamento PRIOp

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{10 + 2 + 13 + 1 + 2}{5} = \frac{28}{5} = 5, 6s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{5 + 0 + 9 + 0 + 0}{5} = \frac{14}{5} = 2,8s$$

Prioridades dinâmicas

Problema das prioridades estáticas:

- Tarefas de baixa prioridade têm pouco acesso à CPU.
- Se houverem muitas tarefas, podem ficar paradas.
- Fenômeno chamado "inanição" (starvation).

Solução: uso de prioridades dinâmicas

- Aumentar aos poucos a prioridade das tarefas paradas.
- Ao executar, a tarefa volta à sua prioridade original.
- Algoritmo de "envelhecimento" (aging).

Um algoritmo de envelhecimento

Definições: N : número de tarefas no sistema

 t_i : tarefa i, $1 \le i \le N$

 pe_i : prioridade estática da tarefa t_i pd_i : prioridade dinâmica da tarefa t_i

Quando uma tarefa nova t_{nova} ingressa no sistema:

$$pe_{nova} \leftarrow prioridade fixa$$

 $pd_{nova} \leftarrow pe_{nova}$

Para escolher t_{prox} , a próxima tarefa a executar:

escolher
$$t_{prox} \mid pd_{prox} = max_{i=1}^{N}(pd_i)$$

 $pd_{prox} \leftarrow pe_{prox}$ (reinicia a prioridade)
 $\forall t_i \neq t_{prox} : pd_i \leftarrow pd_i + \alpha$ (envelhece as demais)

Escalonamento PRIOd

PRIOd: por prioridades, preemptivo e dinâmico

Prioridades: t_1 : 2 t_2 : 3 t_3 : 1 t_4 : 4 t_5 : 5

Escalonamento PRIOd

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{11 + 2 + 13 + 1 + 2}{5} = \frac{29}{5} = 5,8s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{6 + 0 + 9 + 0 + 0}{5} = \frac{15}{5} = 3,0s$$

Efeito da prioridade dinâmica

Round-Robin ($t_q = 1$) e prioridades $t_1 : 1$ $t_2 : 3$ $t_3 : 6$

Sem envelhecimento:

Com envelhecimento:

Quadro comparativo

Algoritmo	FCFS	RR	SJF	SRTF	PRIOc	PRIOp	PRIOd
Tempo médio T_t	8,0	8,4	5,8	5,4	6,6	5,6	5,8
Tempo médio T_w	5,2	5,6	3,0	2,6	3,8	2,8	3,0
Trocas de contexto	4	7	4	5	4	6	6
Tempo total	14	14	14	14	14	14	14

Definição de prioridades

Fatores externos:

- Informações providas pelo usuário ou o administrador
 - Classe do usuário (administrador, diretor, estagiário)
 - Importância da tarefa em si (um detector de intrusão, etc)
- O escalonador não pode estimá-los sozinho
- Definem uma prioridade estática

Definição de prioridades

Fatores internos:

- Informações que podem ser obtidas pelo escalonador
- Pode ser estimadas com base em dados internos
 - Idade da tarefa
 - Duração estimada
 - Interatividade
 - Tempo em espera
- Permitem calcular uma prioridade dinâmica

Prioridades em sistemas Windows

Prioridades dos processos e threads entre 0 e 31:

- 24: tempo-real
- 13: alta
- 10: acima do normal
- 8: normal
- 6: abaixo do normal
- 4: baixa ou ociosa

A tarefa com **janela ativa** recebe mais prioridade (+1 ou +2).

Prioridades em Sistemas Linux

No Linux há duas escalas de prioridades:

- *Tarefas de tempo-real*:
 - Vai de 1 (menos importante) a 99 (mais importante)
 - Tem precedência sobre tarefas interativas
 - Somente o administrador pode definir
- Tarefas interativas:
 - Quase todas as tarefas dos usuários
 - Escala negativa de -20 (+ importante) a +19 (- importante)
 - Ajustável através dos comandos nice e renice

Escalonador do Linux

Usa várias filas com políticas distintas:

SCHED_DEADLINE: tarefas de tempo real com prazos, usa o algoritmo *Earliest Deadline First* (EDF).

SCHED_FIFO: prioridades fixas preemptivo, sem *quantum*.

SCHED_RR: SCHED_FIFO + Round-Robin, quantum 10-200ms.

SCHED_NORMAL: algoritmo CFS - Completely Fair Scheduler (Round-Robin c/ quantum variável, prioridades dinâmicas).

SCHED_BATCH: tarefas *CPU-bound* de baixa prioridade.

SCHED_IDLE: só recebe CPU se não houver tarefa ativa.

Exercícios de Fixação

1 – A tabela a seguir representa um conjunto de tarefas prontas para utilizar um processador:

Tarefa	t_1	t_2	t_3	t_4	t_5
ingresso	0	0	3	5	7
duração	5	4	5	6	4
prioridade	2	3	5	9	6

Represente graficamente a sequência de execução das tarefas e calcule os tempos médios de vida e de espera, para as políticas de escalonamento a seguir:

- (a) FCFS cooperativa.
- (b) SJF cooperativa.
- (c) SJF preemptiva (SRTF)
- (d) PRIO cooperativa.
- (e) PRIO preemptiva.
- (f) RR com $t_q = 2$, sem envelhecimento.

Considerações: todas as tarefas são orientadas a processamento; as trocas de contexto têm duração nula; em eventuais empates, a tarefa t_i com menor i prevalece; valores maiores de prioridade indicam maior prioridade.