Theorem 0.1 (ogl). For any cyclic group G with cardinality s and generator $g, g \neq g^0$, there exists a function $f: G^2 \to G$ such that f can be complexly composed with itself to form any function mapping $G^2 \to G$.

Let op be the function op(x,y) = x == y?x * g : C where C is any element in G. Let logish be the function $logish : G \to Z_{|G|}$ with rule $logish(g^n) = n$. To prove that op satisfies ''0.1 we will prove the following lemmas.

Lemma 0.2 (rot). let rot_n be the function $rot_1(x) = op(x, x)$, $rot_n = rot_1(rot_{n-1})$ and $rot_0(x) = x$. rot_n will also have the rule $rot_n(x) = x * g^n$.

Corollary 0.2.1. let the functions A_n and B_n have the rule $A_n(x,y) = rot_n(x) = x * g^n$ and $B_n(x,y) = rot_n(y)$. Thus, $A_n(x) = x * g^n$ and $B_n = y * g^n$.

Lemma 0.3 (F-funcs). Let $\overline{F_{a,b}}$ be a function where $\overline{F_{a,b}}(x,y) = rot_b(op(A_a(x,y),B_a(x,y)))$. Thus, $\overline{F_{a,b}}(x,y) = x = y?x * g^{a+b+1} : C * g^b$.

Lemma 0.4 (N-funcs). Let $\overline{a}(x,y) = rot_{a-logish(C)}(op(A_0(x,y),A_1(x,y)))$. Thus, $\overline{a}(x,y) = g^a$.

Lemma 0.5 (isolator). Let $\overline{(a,b,c)}(x,y) = op(\overline{F_{logish(c)-logish(C),-logish(C)}}(A_a(x,y),B_b(x,y)), \overline{g}(x,y))$, then $\overline{(a,b,c)}(x,y) = (x = g^a) \wedge (y = g^b)$?c : C

Lemma 0.6 (S). Let $\overline{S_a}(x,y) = \overline{F_{-a-1,a-logish(C)}}(\overline{(0,a,a)}(x,y),\overline{(a,0,a)}(x,y))$, then when $a \neq g^0$ $\overline{S_a} = (x == g^a \land y == g^0) \lor (x == g^0 \land y == g^a)?g^a : g^0$

Lemma 0.7 (AS). Let $\overline{AS_{a,b}}(x,y) = \overline{F_{-b+logish(C)-1,b-logish(C)}}(\overline{S_a}(x,y),\overline{S_{a+1}}(x,y))$

Lemma 0.8 (PCO). let $\overline{PCO_0}(x,y) = \overline{0}(x,y)$, $\overline{PCO_1}(x,y) = \overline{S_1}(x,y)$, $\overline{PCO_2}(x,y) = \overline{F_{logish(C)-2,1-logish(C)}}(\overline{S_2}(x,y), \overline{AS_{1,2}}(x,y))$, and $\overline{PCO_a}(x,y) = \overline{F_{logish(C),-logish(C)}}(h_a, k_a)$ where $h_a(x,y) = (x \in \{g^b | 1 \le b \le a\} \land y == g^0) \rightarrow g^{logish(x)-1}$, $(y \in \{g^b | 1 \le b \le a\} \land x == g^0) \rightarrow g^{logish(y)-1}$, $else \rightarrow g^0$

 $g^{0} \quad \text{and } k_{\underline{a}}(x,y) = (x \in \{g^{b} || 2 \leq b \leq a\} \land y == g^{0}) \rightarrow g^{logish(x)-1}, \ (y \in \{g^{b} || 2 \leq b \leq a\} \land x == g^{0}) \rightarrow g^{logish(y)-1}, \ else \rightarrow g^{1} \quad \text{then } \overline{PCO_{a}}(x,y) = (x \in \{g^{b} || 0 \leq b \leq a\} \land y == g^{0}) \rightarrow x, \ (y \in \{g^{b} || 2 \leq b \leq a\} \land x == g^{0}) \rightarrow y, \ else \rightarrow g^{0}$

Lemma 0.9. Let P(x,y) be an arbitrary function in G where $P(a,b) = g^{p_{a,b}}$ and for every $a,b \in G$, $p_{a,b} \le c$ then

$$P(x,y) = \overline{(0,0,p_{0,0})}(x,y) "\overline{PCO_c}" \overline{(0,1,p_{0,1})}(x,y) "\overline{PCO_c}" \dots "\overline{PCO_c}" \overline{(0,s,p_{0,s})}(x,y)$$

$$"\overline{PCO_c}" \overline{(1,0,p_{1,0})}(x,y) "\overline{PCO_c}" \overline{(1,1,p_{1,1})}(x,y) \dots "\overline{PCO_c}" \overline{(1,s,p_{1,s})}(x,y)$$

$$"\overline{PCO_c}" \dots "\overline{PCO_c}" \overline{(s,s,p_{s,s})}(x,y)$$
(1)

where x "f''y = f(x, y)

rot. We will prove that $rot_n(x) = x*g^n$ by mathematical induction. Let $P(n) = rot_n(x)$. First, we will show that P(1) = x*g. Since $P(1) = rot_1(x)$, $rot_1(x) = op(x, x) = x = x?x*g : C$ and x = x is true, P(1) = x*g. Next, we prove the inductive step. Let k be an arbitrary natural number and assume that P(k) is true meaning

(1)
$$P(k) = rot_k(x) = (rot_1 \circ rot_1 \circ \dots \text{k-times} \cdots \circ rot_1)(x) = x * g^k$$

We will now prove P(k+1) is true, that is

(2)
$$P(k+1) = (rot_1 \circ rot_1 \circ \dots k+1\text{-times} \dots \circ rot_1)(x) = x * g^{k+1}$$

By replacing (1) into (2) we obtain $P(k+1) = rot_1(P(k)) = rot(x * g^k) = (x * g^k) * g = x * g^{k+1}$ This proves the inductive step and by the principle of mathematical induction, the lemma is proved.

F-funcs. We will prove that $\overline{F_{a,b}}(x,y)=x==y?x*g^{a+b+1}:C*g^b$. Let us consider 2 cases, when x=y and $x\neq y$. When x=y, we show that $\overline{F_{a,b}}(x,x)=x*g^{a+b+1}$

$$\overline{F_{a,b}}(x,x) = rot_b(op(A_a(x,x), B_a(x,x)))$$

$$= rot_b(op(x * g^a, x * g^a))$$

$$= rot_b(x * g^a * g)$$

$$= x * g^a * g * g^b$$

$$= x * g^{a+1+b}$$
(2)

Since $x*g^{a+1+b} = \overline{F_{a,b}}(x,x) = x*g^{a+b+1}$, this case is shown. In the case that $x \neq y$, we show that $\overline{F_{a,b}}(x,y) = C*g^b$

$$\overline{F_{a,b}}(x,y) = rot_b(op(A_a(x,y), B_a(x,y)))$$

$$= rot_b(op(x * g^a, y * g^a))$$

$$= rot_b(C)$$

$$= C * g^b$$
(3)

This shows that $\overline{F_{a,b}}(x,y) = C * g^b$ when $x \neq y$. Since both cases are shown, the lemma follows.

N-funcs. We will show that $\overline{a}(x,y) = g^a$. From the definition $\overline{a}(x,y) = rot_{a-logish(C)}(op(A_0(x,y), A_1(x,y)))$ or

$$\overline{a}(x,y) = rot_{a-logish(C)}(op(A_0(x,y), A_1(x,y)))
= rot_{a-logish(C)}(op(x, x * g))
= rot_{a-logish(C)}(C)
= C * g^{a-logish(C)-1}
= g^{logish(C)} * g^{a-logish(C)}
= g^{logish(C)+a-logish(C)}
= g^{a}$$
(4)

Thus, $\overline{a}(x,y) = g^a$.

isolator. We will show that $\overline{(a,b,c)}(x,y) = (x == \underline{g^a}) \wedge (y == g^b)?c : C$. Let us consider the two cases where $x = g^a \wedge y = g^b$ and where $x \neq g^a \vee y \neq g^b$. From the definition, $\overline{(a,b,c)}(x,y) = op(\overline{F_{logish(c)-logish(C),-logish(C)}}(A_a(x,y),B_b(x,y)), \overline{g}(x,y))$, so when $x = g^a \wedge y = g^b$

$$\overline{(a,b,c)}(g^{a},g^{b}) = op(\overline{F_{logish(c)-logish(C),-logish(C)}}(A_{a}(g^{a},g^{b}),B_{b}(g^{a},g^{b})),\overline{g}(g^{a},g^{b}))$$

$$= op(\overline{F_{logish(c)-logish(C),-logish(C)}}(g^{2a},g^{2b}),g)$$

$$= op(\overline{F_{logish(c)-logish(C),-logish(C)}}(g^{a},g^{b}),g)$$

$$= op(\overline{F_{logish(c)-logish(C),-logish(C)}}(g^{a},g^{b}),g)$$
(5)

2