合成氨工艺物料衡算程序文档

一、项目内容

物料衡算能够找出原料与产品间的定量关系、对化工过程进行模拟、计算原料消耗量与三废生成量,因此是化工计算中最基本、最重要的内容,也是化工过程模拟计算与设计计算的核心内容。物料衡算对实现化工过程的最优设计与操作,达到节能、降耗、减排目的的实现具有深远的意义。但化工过程中的单元操作种类繁多、计算过程复杂,研究如何快速、准确地进行过程单元物料衡算是一个很有必要的内容。

本项目基于化工模块分析法和数值方法,并结合 Python 语言编程对哈勃法 合成氨工艺进行物料衡算,为后续的工艺优化奠定基础。

二、合成氨工艺描述

由元素直接合成氨的哈伯法是化学工程中的一大成就,其工艺流程简图见图 1,组分编号和过程物流名称见表 1 和表 2。工艺流程如下:进料为干燥的 H_2 和 N_2 ,并含有氩气和甲烷杂质。进料在 1MPa 下与低压循环物流在低压混合器中混合后压缩至 20Mpa,再同高压循环物流在高压混合器内混合后进入催化反应器,在反应器中预热至反应温度并进行反应:

$N_2+3H_2 \rightleftharpoons 2NH_3$

反应平衡时,氨气的产率约 10%,用冷却和冷凝的方法分离出氨,未反应的气体则经分流器、高压混合器再次循环到反应器(采用分流器以避免杂质在系统内的积累)。由高压分离器出来的液体氨含有溶解气体,将其送至低压分离器处理,并将气体再循环、液体作为氨产品抽出。

图 1 合成氨生成工艺流程简图

表1 组分编号表

组分	组分编号		
N_2	1		
H_2	2		
NH_3	3		
Ar	4		
CH_4	5		

表 2 过程物流表

物流编号	过程物流名称				
1	进料				
2	低压进料加循环物料				
3	高压进料加循环物料				
4	从反应器出来的产品				
5	高压液体				
6	产品				
7	低压循环物流				
8	高压循环物流				
9	排放物流				
10	高压循环物流				

三、程序简介

1、编程语言:

Python

2、程序功能:

可根据用户输入的设计变量(如原料流量、原料组成、排放率、平衡常数等),求解不同条件下合成氨工艺过程单元的物流流量和组成,为能量衡算和工艺优化奠定基础。

3、程序构成

本程序主要包括 gl, Chemical_process, Reaction, Separation, value_updat e 和 Main 几个模块, 各模块的功能如下:

模块功能gl声明平衡常数、入料性质、迭代精度等常数Chemical_Process计算整个过程单元的物流流量和组分构成Reaction计算反应器出口物流组成Separation计算分离器出口物流组成Value_update计算剥离变量的迭代值Main调用上述计算程序进行物料衡算并输出结果

表 3 模块功能

4、符号说明

经总体变量分析得知:整个程序中包含流量、摩尔分率、设备参数等共计72个变量(变量在程序中的符号声明详见表4),物料平衡、设备约束、摩尔分率约束等共计55个方程与约束式。

5、程序逻辑

依据模块分析法和模块流动次序,选取 F7、F10、X7 和 X10 为剥离变量,采用牛顿迭代法对整个过程单元进行求解,将迭代所得 F7、F10、X7 和 X10 的新值与初值进行比较,如不符合迭代精度,则使用新值再次迭代计算,直到所有玻璃变量均满足条件为止。程序计算图如图 2 所示。

符号	意义			
Hps_Gle_Const	高压分离器中组分的气液平衡常数			
Lps_Cle_Const	低压分离器中组分的气液平衡常数			
Mol_flow_fl	原料分子流量			
Mol_fraction_x1	原料组成 (摩尔分率)			
Chem_reac_equ_const	化学平衡常数			
Iteration_acc	迭代精度			
Step	斜率计算步长			
Newton_iter_factor	牛顿迭代阻尼因子			
init_F7	物流 7 流量初值			
init_F10	物流 10 流量初值			
init_X7	物流7组分构成初值			
init_X7	物流 10 组分构成初值			
init_N43	物流 4 中 NH3 的摩尔流量初值			
nx	物流x各组分的摩尔流量			
fx	物流 x 的摩尔流量			
XX	物流x各组分的摩尔分率			
a1	高压分离器出口产品的液/气相比例			
a2	低压分离器出口产品的液/气相比例			
init_array	迭代过程中 f7、f10、x7、x10 的初值数组			
iter_array	迭代过程中 f7、f10、x7、x10 的新值数组			
error_array	迭代过程中 f7、f10、x7、x10 的误差数组			
Mol_flow	10 个物流的摩尔流量数组			
$Mol_fraction$	10 个物流的组分摩尔分率数组			
$f_reaction$	反应模块构造函数关系值			
fd	反应模块构造函数关系的导数值			
Delta	迭代误差			
N43_iteration	物流 4 中 NH3 的摩尔流量迭代值			
phase_ratio_init	分离器出口产品的液/气相比例初值			
f	分离模块构造函数关系值			
df	分离模块构造函数关系的导数值			

图 2 计算流程框图

四、结果输出

1、单值输出

排放率设置为 0.02 时, 物料衡算的计算程序结果见表 5:

物流编号	摩尔流量			摩尔分率		
	(mo1/L)	N_2	H_2	NH ₃	Ar	CH₄
1	100.0000	0. 2400	0.7430	0.0000	0.0060	0. 0110
2	100.6630	0. 2391	0.7411	0.0018	0.0061	0.0118
3	786. 4282	0. 1741	0.6673	0.0519	0.0378	0.0688
4	743. 0419	0. 1551	0.6187	0. 1134	0.0400	0.0728
5	43. 2423	0.0016	0.0073	0. 9884	0.0004	0.0023
6	42. 5793	0.0000	0.0003	0. 9994	0.0000	0.0003
7	0.6630	0.0996	0. 4589	0. 2798	0.0265	0. 1352
8	699. 7997	0. 1646	0.6564	0.0593	0.0425	0.0772
9	13. 9960	0. 1646	0.6564	0.0593	0.0425	0.0772
10	685. 8037	0. 1646	0.6564	0.0593	0.0425	0.0772

表 5 合成氨工艺物料衡算结果 (排放率=0.02)

2、多值输出

F6 (氨产量)与F10 (循环物流)是合成氨工艺重点关注的两个物流参数。对设计变量 Emission_ratio (排放分率)在 (0.02,0.10)内取一系列值,其余设计变量不变,得到随排放分率取不同值时的一些列物料衡算结果,绘制的变化关系图如图 4 与图 5。可见,随着排放分率的增加,氨产量与循环量均降低。在排放分率为 0 的极限状态下,氨产量达到最大值,但循环量趋近于无穷大,杂质全部累计在循环回路中。

以本程序的物料衡算结果为基础,进一步结合产品价格、环保要求、能耗物 耗等参数,可编制详细的工艺优化方案。

图 3 氨产量随排放分率的变化关系

图 4 循环量随排放分率的变化关系