icm20602 레지스터 튜닝

2022-06-20 지규선

1. (TDK 시리즈) SPI용 자이로센서 에러율

- mpu6000: 단종
- mpu6500: +-3%, 자이로 노이즈 0.01
- icm20602: +-1%, 자이로 노이즈 0.004
- icm20948: gyro(+-1.5%), accel(+-0.5%)
- icm40605 | icm42605 | icm42688-P: +-0.5%

2. icm-20602 메뉴얼 DS-000176-ICM-20602-v1.0.pdf

- > 특이점: **20,000g** shock reliability
- > Self-test registers:
 - CONFIG(0x1A16, 2610): 0x80
 - PWR_MGMT_1(0x6B, 107): 0x41 //0100 0001: sleep 모드
 - WHO_AM_I(0x75, 117): 0x12

[비교] mpu6500 self-test registers:

- PWR_MGMT_1(0x6B, 107): 0x01
- WHO_AM_I(0x75, 117): 0x70

3. icm-20602 레지스터 설정

① PWR_MGMT_1:

DEVICE_RESET bit[7]가 1일 경우, 자기 자신을 포함한 모든 레지스터 0으로 초기화

• spi1_write(PWR_MGMT_1, 0x80); //1000 0000

```
[Sample 1]
```

```
//reset All Registers, including PWR_MGMT_1.

spi1_write(PWR_MGMT_1, 0x80);

uint8_t config = spi1_read(CONFIG);

uint8_t whoami = spi1_read(WHOAMI);

uint8_t power_management = spi1_read(PWR_MGMT_1);

printf("%X %X %X \n", config, whoami, power_management); //output: 0 0 0
```

[Sample 2]

```
uint8_t config = spi1_read(CONFIG);
uint8_t whoami = spi1_read(WHOAMI);
uint8_t power_management = spi1_read(PWR_MGMT_1);
printf("%X %X %X\n", config, whoami, power_management); //output: 80 12 41
```

② PWR_MGMT_1:

It is required that CLKSEL[2:0] be set to 001 to achieve full gyroscope performance.

- spi1_write(PWR_MGMT_1, 0x01);
- ③ SIGNAL_PATH_RESET:

엑셀과 온도 digital signal path 초기화

spi1_write(SIGNAL_PATH_RESET, 0x03);

④ PWR_MGMT_2:

accel_x, y, z & gyro_x, y, z 켜기(준비)

• spi1_write(PWR_MGMT_2, 0x00);

(5) CONFIG:

자이로 저역통과필터 적용 및 자료산출 빈도(data sampling rate) 결정

• spi1_write(CONFIG, 0x03);

FCHO	ICE_B				Temperature Sensor	
<1>	<0>	DLPF_CFG	3-dB BW (Hz)	Noise BW (Hz)	Rate (kHz)	3-dB BW (Hz)
X	1	X	8173	8595.1	32	4000
1	0	X	3281	3451.0	32	4000
0	0	0	250	306.6	8	4000
0	0	1	176	177.0	1	188
0	0	2	92	108.6	1	98
0	0	3	41	59.0	1	42
0	0	4	20	30.5	1	20
0	0	5	10	15.6	1	10
0	0	6	5	8.0	1	5
0	0	7	3281	3451.0	8	4000

6 GYRO_CONFIG:

자이로의 (초당) 각속도 범위 설정

• spi1_write(GYRO_CONFIG, 0x08); //0000 1000=>±500엔

BIT	NAME	FUNCTION
[7]	XG_ST	X Gyro self-test
[6]	YG_ST	Y Gyro self-test
[5]	ZG_ST	Z Gyro self-test
[4:3]	FS_SEL[1:0]	Gyro Full Scale Select: 00 = ±250 dps 01= ±500 dps 10 = ±1000 dps 11 = ±2000 dps
[2]	-	Reserved
[1:0]	FCHOICE_B[1:0]	Used to bypass DLPF as shown in table 1 above.

⑦ ACCEL_CONFIG:

엑셀 가속도 범위 설정

• spi1_write(ACCEL_CONFIG, 0x10); //10000 => ±8g

BIT	NAME	FUNCTION		
[7]	XA_ST	X Accel self-test		
[6]	YA_ST	Y Accel self-test		
[5]	ZA_ST	Z Accel self-test		
[4:3]	ACCEL_FS_SEL[1:0]	Accel Full Scale Select: ±2g (00), ±4g (01), ±8g (10), ±16g (11)		
[2:0]	-	Reserved		

참고:

미세한 회전각(또는 각속도)을 정확하고 섬세하게 측정하려면 자이로 또는 엑셀의 Full Scale을 낮게 설정하고, 크고 빠른 회전각(또는 각속도)을 측정하려면 그 값을 크게 설정한다. 주행드론은 전자, 레이싱 드론은 후자!

Gyro | Accel 의 ADC Resolution 은 $16bit(2^{16} = 65,536)$ 이다. 만일 자이로 각속도 범위를 +-500 으로 설정한다면,

 \bullet 65,536(LSB) / 1000(dps) = 65.5 (LSB / dps)

Full-Scale Range	FS_SEL=0	±250	dps
	FS_SEL=1	±500	dps
	FS_SEL=2	±1000	dps
	FS_SEL=3	±2000	dps
Gyroscope ADC Word Length		16	bits
Sensitivity Scale Factor	FS_SEL=0	131	LSB/(dps)
	FS_SEL=1	65.5	LSB/(dps)
	FS_SEL=2	32.8	LSB/(dps)
	FS_SEL=3	16.4	LSB/(dps)

만일 엑셀 가속도 범위를 +-8로 설정한다면,

• 65,536(LSB) / 16(g) = 4,096 (LSB / g)

Full-Scale Range	AFS_SEL=0	±2	g
	AFS_SEL=1	±4	g
	AFS_SEL=2	±8	g
	AFS_SEL=3	±16	g
ADC Word Length		16	bits
Sensitivity Scale Factor	AFS_SEL=0	16,384	LSB/g
	AFS_SEL=1	8,192	LSB/g
	AFS_SEL=2	4,096	LSB/g
	AFS_SEL=3	2,048	LSB/g

엑셀 저역통과필터 적용 및 자료산출 빈도(data sampling rate) 결정

• spi1_write(ACCEL_CONFIG2, 0x03);

		Accelerometer			
ACCEL_FCHOICE_B	A_DLPF_CFG	3-dB BW (Hz)	Noise BW (Hz)	Rate (kHz)	
1	X	1046.0	1100.0	4	
0	0	218.1	235.0	1	
0	1	218.1	235.0	1	
0	2	99.0	121.3	1	
0	3	44.8	61.5	1	
0	4	21.2	31.0	1	
0	5	10.2	15.5	1	
0	6	5.1	7.8	1	
0	7	420.0	441.6	1	

^{*} 비교 - mpu6500 에서는 delay(ms)를 명시함.

		Output			
ACCEL_FCHOICE_B	A_DLPF_CFG	Bandwidth (Hz)	Delay (ms)	Noise Density (ug/rtHz)	Rate (kHz)
1	X	1.13 K	0.75	220	4
0	0	460	1.94	220	1
0	1	184	5.80	220	1
0	2	92	7.80	220	1
0	3	41	11.80	220	1
0	4	20	19.80	220	1
0	5	10	35.70	220	1
0	6	5	66.96	220	1
0	7	460	1.94	220	1

9 SMPLRT_DIV:

센서의 자료 산출 빈도(sampling rate | update rate)를 1KHz, GYRO_CONFIG 와 ACCEL_CONFIG2 의 FCHOICE_B 비트를 0으로 설정했을 때만 사용될 수 있다. 그냥, 자이로 & 엑셀센서가 저역필터를 이용할 때, 즉 산출빈도가 1KHz 일 때만 사용할 수 있는 레지스터라고 생각하자! 만일 (FCHOICE_B 비트 > 0)이면 저역필터를 사용하지 않겠다는 뜻이며, 따라서 SMPLRT_DIV를 이용할 수 없다.

• spi1_write(SMPLRT_DIV, 0x00);

[공식]

최종 SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV),

Where INTERNAL_SAMPLE_RATE = 1 kHz

[적용]

• 1KHz = 1KHz / (1 + 0), $SMPLRT_DIV = 0$