Regularization Strategies and Empirical Bayesian Learning for MKL

Ryota Tomioka¹, Taiji Suzuki¹

¹Department of Mathematical Informatics, The University of Tokyo

2010-12-11 NIPS2010 Workshop: New Directions in Multiple Kernel Learning

Our contribution

- Relationships between different regularization strategies
 - Ivanov regularization (kernel weights)
 - Tikhonov regularization (kernel weights)
 - (Generalized) block-norm formulation (no kernel weights)

Are they equivalent? — in which way?

- Empirical Bayesian learning algorithm for MKL
 - Maximizes the marginalized likelihood
 - Can be considered as a non-separable regularization on the kernel weights.

Learning with a fixed kernel combination

Fixed kernel combination $k_d(x, x') = \sum_{m=1}^{M} d_m k_m(x, x')$.

 $(\mathcal{H}(\mathbf{d}))$ is the RKHS corresponding to the combined kernel $k_{\mathbf{d}}$) is equivalent to learning M functions (f_1, \ldots, f_M) as follows:

$$\underset{\substack{f_1 \in \mathcal{H}_1, \\ \dots, f_M \in \mathcal{H}_M, \\ b \in \mathbb{R}}}{\text{minimize}} \quad \sum_{i=1}^{N} \ell\left(y_i, \sum_{m=1}^{M} f_m(x_i) + b\right) + \frac{C}{2} \sum_{m=1}^{M} \frac{\|f_m\|_{\mathcal{H}_m}^2}{d_m} \quad (1)$$

where $\bar{f}(x) = \sum_{m=1}^{M} f_m(x)$. See Sec. 6 in Aronszajn (1950), Micchelli & Pontil (2005).

Ivanov regularization

We can *constrain* the size of kernel weights d_m by

s.t. $\sum_{m=1}^{M} h(d_m) \le 1$ (h is convex, increasing).

Equivalent to the more common expression:

$$\underset{\substack{f \in \mathcal{H}(\boldsymbol{d}), \\ b \in \mathbb{R}, \\ \boldsymbol{d}_1 > 0, \dots, \boldsymbol{d}_M > 0}}{\text{minimize}} \sum_{i=1}^N \ell\left(y_i, f(x_i) + b\right) + \frac{C}{2} \|f\|_{\mathcal{H}(\boldsymbol{d})}^2, \text{ s.t. } \sum_{m=1}^M h(d_m) \leq 1.$$

Tikhonov regularization

We can *penalize* the size of kernel weights d_m by

$$\underset{\substack{f_1 \in \mathcal{H}_1, \dots, f_M \in \mathcal{H}_M, \\ b \in \mathbb{R}, \\ d_1 \ge 0, \dots, d_M \ge 0}}{\text{minimize}} \sum_{i=1}^{N} \ell\left(y_i, \sum_{m=1}^{M} f_m(x_i) + b\right)$$

$$C \sum_{m=1}^{M} \ell \|f_m\|_{2\ell}^{2\ell}$$

$$+ \frac{C}{2} \sum_{m=1}^{M} \left(\frac{\|f_m\|_{\mathcal{H}_m}^2}{d_m} + \mu h(d_m) \right). \tag{3}$$

Note that the above is equivalent to

$$\underset{\substack{f \in \mathcal{H}(\boldsymbol{d}), \\ b \in \mathbb{R}, \\ \boldsymbol{d}_1 \geq 0, \dots, \boldsymbol{d}_M \geq 0}}{ \text{minimize}} \underbrace{\sum_{i=1}^{N} \ell\left(y_i, f(x_i) + b\right)}_{\text{data-fit}} + \underbrace{\frac{C}{2} \|f\|_{\mathcal{H}(\boldsymbol{d})}^2}_{f\text{-prior}} + \underbrace{\frac{C\mu}{2} \sum_{m=1}^{M} h(\boldsymbol{d}_m)}_{\boldsymbol{d}_m\text{-hyper-prior}}.$$

Are these two formulations equivalent?

Previously thought that...

Yes. But the choice of the pair (C, μ) is complicated.

 \Rightarrow In the Tikhonov formulation we have to choose both C and $\mu!$ (Kloft et al., 2010)

We show that...

If you give up the constant 1 in the Ivanov formulation $\sum_{m=1}^{M} h(d_m) \leq 1$,

- Correspondence via equivalent *block-norm formulations*.
- C and μ can be chosen independently.
- The constant 1 has no meaning.

Ivanov ⇒ block-norm formulation 1 (known)

Let $h(d_m) = d_m^p$ (ℓ_p -norm MKL); see Kloft et al. (2010).

$$\underset{\substack{f_1 \in \mathcal{H}_1, \dots, f_M \in \mathcal{H}_M, \\ b \in \mathbb{R}, \\ d_1 > 0, \dots, d_M > 0}}{\text{minimize}} \sum_{i=1}^{N} \ell\left(y_i, \sum_{m=1}^{M} f_m(x_i) + b\right) + \frac{C}{2} \sum_{m=1}^{M} \frac{\|f_m\|_{\mathcal{H}_m}^2}{d_m},$$

s.t.
$$\sum_{m=1}^{M} d_{m}^{p} \leq 1.$$

$$\underset{f_1 \in \mathcal{H}_1, \dots, f_M \in \mathcal{H}_M}{\text{minimize}} \sum_{i=1}^N \ell\left(y_i, \sum_{m=1}^M f_m(x_i) + b\right) + \frac{C}{2} \left(\sum\nolimits_{m=1}^M \|f_m\|_{\mathcal{H}_m}^q\right)^{2/q}.$$

where q = 2p/(1+p). Minimum is attained at $d_m \propto \|f_m\|_{\mathcal{H}_m}^{2/(1+p)}$

Tikhonov ⇒ block-norm formulation 2 (new)

Let $h(d_m) = d_m^p$, $\mu = 1/p$ (ℓ_p -norm MKL)

$$\underset{\substack{f_1 \in \mathcal{H}_1, \dots, f_M \in \mathcal{H}_M, \\ b \in \mathbb{R}, \\ d_1 > 0, \dots, d_M > 0}}{\text{minimize}} \sum_{i=1}^N \ell\left(y_i, \sum_{m=1}^M f_m(x_i) + b\right) + \frac{C}{2} \sum_{m=1}^M \left(\frac{\|f_m\|_{\mathcal{H}_m}^2}{d_m} + \frac{d_m^p}{p}\right).$$

Young's inequality

$$\underset{b \in \mathbb{R}}{\text{minimize}} \sum_{\substack{f_1 \in \mathcal{H}_1, \dots, f_M \in \mathcal{H}_M, \\ b \in \mathbb{R}}} \sum_{i=1}^N \ell\left(y_i, \sum_{m=1}^M f_m(x_i) + b\right) + \frac{C}{q} \sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}^q.$$

where q = 2p/(1+p). Minimum is attained at $d_m = \|f_m\|_{\mathcal{H}_m}^{2/(1+p)}$.

The two block norm formulations are equivalent

Block norm formulation 1 (from Ivanov):

$$\underset{\substack{f_1 \in \mathcal{H}_1, \dots, f_M \in \mathcal{H}_M \\ \text{,bin} \mathbb{R}}}{\text{minimize}} \sum_{i=1}^N \ell\left(y_i, \sum_{m=1}^M f_m(x_i) + b\right) + \frac{\tilde{C}}{2} \left(\sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}^q\right)^{2/q}.$$

Block norm formulation 2 (from Tikhonov):

$$\underset{\substack{f_1 \in \mathcal{H}_1, \dots, f_M \in \mathcal{H}_M, \\ b \in \mathbb{R}}}{\text{minimize}} \sum_{i=1}^N \ell\left(y_i, \sum_{m=1}^M f_m(x_i) + b\right) + \frac{C}{q} \sum_{m=1}^M \|f_m\|_{\mathcal{H}_m}^q.$$

- Just have to map C and \tilde{C} .
- The implied kernel weights are normalized/unnormalized.

Generalized block-norm formulation

minimize
$$\sum_{\substack{f_1 \in \mathcal{H}_1, \\ \dots, f_m \in \mathcal{H}_M, \\ b \in \mathbb{P}}}^{N} \ell\left(y_i, \sum_{m=1}^{M} f_m(x_i) + b\right) + C \sum_{m=1}^{M} g(\|f_m\|_{\mathcal{H}_m}^2), \quad (4)$$

where g is a concave block-norm-based regularizer.

Example (Elastic-net MKL):
$$g(x) = (1 - \lambda)\sqrt{x} + \frac{\lambda}{2}x$$
,

$$\begin{array}{l} \underset{\substack{f_1 \in \mathcal{H}_1, \\ \dots, f_M \in \mathcal{H}_M, \\ b \in \mathbb{R}}}{\text{minimize}} \sum_{i=1}^N \ell\left(y_i, \sum_{m=1}^M f_m(x_i) + b\right) \end{array}$$

$$+ C \sum_{m=1}^{M} \left((1-\lambda) \|f_m\|_{\mathcal{H}_m} + \frac{\lambda}{2} \|f_m\|_{\mathcal{H}_m}^2 \right),$$

Generalized block-norm ⇒ Tikhonov regularization

Theorem

Correspondence between the convex (kernel-weight-based) regularizer $h(d_m)$ and the concave (block-norm-based) regularizer g(x) is given as follows:

$$\mu h(d_m) = -2g^*\left(\frac{1}{2d_m}\right),$$

where g^* is the concave conjugate of g.

Proof: Use the concavity of g as

$$\frac{\|f_m\|_{\mathcal{H}_m}^2}{2d_m} \geq g(\|f_m\|_{\mathcal{H}_m}^2) + g^*(1/(2d_m)).$$

See also Palmer et al. (2006).

Examples

Generalized Young's inequality:

$$xy \geq g(x) + g^*(y)$$

where g is concave, and g^* is the concave conjugate of g.

Example 1: let
$$g(x) = \sqrt{x}$$
, then $g^*(y) = -1/(4y)$ and

$$\frac{\|f_{m}\|_{\mathcal{H}_{m}}^{2}}{2d_{m}} + \frac{d_{m}}{2} \ge \|f_{m}\|_{\mathcal{H}_{m}} \qquad \text{(L1-MKL)}.$$

Example 2: let
$$g(x) = x^{q/2}/q$$
 (1 $\leq q \leq$ 2), then $g^*(y) = \frac{q-2}{2q}(2y)^{q/(q-2)}$

$$\frac{\|f_m\|_{\mathcal{H}_m}^2}{2d_m} + \frac{d_m^p}{2p} \ge \frac{1}{q} \|f_m\|_{\mathcal{H}_m}^q \qquad (\ell_p\text{-norm MKL}),$$

where p := q/(2 - q).

Correspondence

	block-norm	kern weight	reg const
MKL model	g(x)	$h(d_m)$	μ
block 1-norm MKL	\sqrt{X}	d_m	1
$\ell_{ ho}$ -norm MKL	$\frac{1+p}{2p}X^{p/(1+p)}$	$d_m^{ ho}$	1/ <i>p</i>
Uniform-weight MKL (block 2-norm MKL)	x/2	$I_{[0,1]}(d_m)$	+0
block q -norm MKL $(q > 2)$	$\frac{1}{q}X^{q/2}$	$d_m^{-q/(q-2)}$	-(q-2)/q
Elastic-net MKL	$(1-\lambda)\sqrt{x}+\frac{\lambda}{2}x$	$\frac{(1-\lambda)d_m}{1-\lambda d_m}$	$1 - \lambda$

 $I_{[0,1]}(x)$ is the indicator function of the closed interval [0,1]; i.e., $I_{[0,1]}(x)=0$ if $x\in[0,1]$, and $+\infty$ otherwise.

Bayesian view

Tikhonov regularization as a hierarchical MAP estimation

Hyper prior over the kernel weights

$$d_m \sim \frac{1}{Z_1(\mu)} \exp(-\mu h(d_m)) \qquad (m=1,\ldots,M).$$

Gaussian process for the functions

$$f_m \sim GP(f_m; 0, d_m k_m)$$
 $(m = 1, \dots, M).$

Likelihood

$$y_i \sim \frac{1}{Z_2(x_i)} \exp(-\ell(y_i, \sum_{m=1}^M f_m(x_i))).$$

Marginalized likelihood

Assume Gaussian likelihood

$$\ell(y,z)=\frac{1}{2\sigma_y^2}(y-z)^2.$$

The marginalized likelihood (omitting hyper-prior for simplicity)

$$-\log p(\boldsymbol{y}|\boldsymbol{d})$$

$$= \underbrace{\frac{1}{2\sigma_y^2} \left\| \boldsymbol{y} - \sum\nolimits_{m=1}^M f_m^{\text{MAP}} \right\|^2}_{\text{likelihood}} + \underbrace{\frac{1}{2} \sum\nolimits_{m=1}^M \frac{\|f_m^{\text{MAP}}\|_{\mathcal{H}_m}^2}{d_m}}_{f_m\text{-prior}} + \underbrace{\frac{1}{2} \log \left| \bar{\boldsymbol{K}}(\boldsymbol{d}) \right|}_{\text{volume-based regularization}}.$$

- f_m^{MAP} : MAP estimate for a fixed kernel weights d_m (m = 1, ..., M).
- $\bar{K}(d) := \sigma_v^2 I_N + \sum_{m=1}^M d_m K_m$.

See also Wipf & Nagarajan (2009). Ryota Tomioka (Univ Tokyo)

Comparing MAP and empirical Bayes objectives

Hyper-prior MAP (MKL):

$$\underbrace{\sum_{i=1}^{N} \ell\left(y_{i}, \sum_{m=1}^{M} f_{m}(x_{i})\right)}_{\text{likelihood}} + \underbrace{\frac{1}{2} \sum_{m=1}^{M} \frac{\|f_{m}\|_{\mathcal{H}_{m}}^{2}}{d_{m}}}_{f_{m}\text{-prior}} + \underbrace{\mu \sum_{m=1}^{M} h(d_{m})}_{d_{m}\text{-hyper-prior}}.$$

Empirical Bayes:

$$\underbrace{\frac{1}{2\sigma_y^2} \left\| \mathbf{y} - \sum_{m=1}^{M} f_m^{\text{MAP}} \right\|^2}_{\text{likelihood}} + \underbrace{\frac{1}{2} \sum_{m=1}^{M} \frac{\|f_m^{\text{MAP}}\|_{\mathcal{H}_m}^2}{d_m}}_{f_m\text{-prior}} + \underbrace{\frac{1}{2} \log \left| \bar{\mathbf{K}}(\mathbf{d}) \right|}_{\text{volume-based regularization (non-separable)}}.$$

16 / 25

Caltech 101 dataset (classification)

 Regularization constant C chosen by 2×4-fold cross validation on the training-set.

Caltech 101 dataset: kernel weights

1,760 kernel functions.

- 4 SIFT features (hsvsift, sift, sift4px, sift8px)
- 22 spacial decompositions (including spatial pyramid kernel)
- 2 kernel functions (Gaussian and χ^2)
- 10 kernel parameters

Caltech 101 dataset: kernel weights (detail)

Summary

- Two regularized kernel weight learning formulations
 - Ivanov regularization.
 - Tikhonov regularization.

are equivalent. No additional tuning parameter!

- Both formulations reduce to block-norm formulations via Jensen's inequality / (generalized) Young's inequality.
- Probabilistic view of MKL: hierarchical Gaussian process model.
- Elastic-net MKL performs similarly to uniform weight MKL, but shows grouping of mutually depended kernels.
- Empirical-Bayes MKL and L1-MKL seem to make the solution overly sparse, but often they choose slightly different set of kernels.
- Code for Elastic-net-MKL available from

http://www.simplex.t.u-tokyo.ac.jp/~s-taiji/software/SpicyMKL

Acknowledgements

We would like to thank Hisashi Kashima and Shinichi Nakajima for helpful discussions. This work was supported in part by MEXT KAKENHI 22700138, 22700289, and NTT Communication Science Laboratories.

A brief proof

• Minimize the Lagrangian:

$$\min_{\substack{f_1 \in \mathcal{H}_1, \\ \dots, f_M \in \mathcal{H}_M}} \frac{1}{2} \sum_{m=1}^M \frac{\|f_m\|_{\mathcal{H}_m}^2}{d_m} + \left\langle g, \underbrace{\overline{f} - \sum_{m=1}^M f_m}_{\text{equality const.}} \right\rangle_{\mathcal{H}(\boldsymbol{d})},$$

where $g \in \mathcal{H}(\mathbf{d})$ is a Lagrangian multiplier.

Fréchet derivative

$$\left\langle h_m, \frac{f_m}{d_m} - \langle g, k_m \rangle_{\mathcal{H}(\boldsymbol{d})} \right\rangle_{\mathcal{H}_m} = 0 \ \Rightarrow \ f_m(x) = \langle g, d_m k_m(\cdot, x) \rangle_{\mathcal{H}(\boldsymbol{d})}.$$

Maximize the dual

$$\max_{\boldsymbol{q} \in \mathcal{H}(\boldsymbol{d})} - \frac{1}{2} \|\boldsymbol{g}\|_{\mathcal{H}(\boldsymbol{d})}^2 + \left\langle \boldsymbol{g}, \overline{\boldsymbol{f}} \right\rangle_{\mathcal{H}(\boldsymbol{d})} = \frac{1}{2} \|\overline{\boldsymbol{f}}\|_{\mathcal{H}(\boldsymbol{d})}^2$$

References

- Aronszajn. Theory of Reproducing Kernels. TAMS, 1950.
- Lanckriet et al. Learning the Kernel Matrix with Semidefinite Programming. JMLR, 2004.
- Bach et al. Multiple kernel learning, conic duality, and the SMO algorithm. ICML 2004.
- Micchelli & Pontil. Learning the kernel function via regularization. JMLR, 2005.
- Cortes. Can learning kernels help performance? ICML, 2009.
- Cortes et al. Generalization Bounds for Learning Kernels. ICML, 2010.
- Kloft et al. Efficient and accurate lp-norm multiple kernel learning. NIPS 22, 2010.
- Tomioka & Suzuki. Sparsity-accuracy trade-off in MKL. arxiv, 2010.
- Varma & Babu. More Generality in Efficient Multiple Kernel Learning. ICML, 2009.
- Gehler & Nowozin. Let the kernel figure it out; principled learning of pre-processing for kernel classifiers. CVPR, 2009.
- Tipping. Sparse bayesian learning and the relevance vector machine. JMLR, 2001.
- Palmer et al. Variational EM Algorithms for Non-Gaussian Latent Variable Models. NIPS, 2006.
- Wipf & Nagarajan. A new view of automatic relevance determination. NIPS, 2008.

Method A: upper-bounding the log det term

Use the upper bound

$$\log |\bar{\boldsymbol{K}}(\boldsymbol{d})| \leq \sum_{m=1}^{M} z_m d_m - \psi^*(\boldsymbol{z})$$

Eliminate the kernels weights by explicit minimization (AGM ineq.)

Update f_m as

$$(f_m)_{m=1}^M \leftarrow \underset{(f_m)_{m=1}^M}{\operatorname{argmin}} \left(\frac{1}{2\sigma_y^2} \left\| y - \sum_{m=1}^M f_m \right\|^2 + \sum_{m=1}^M \sqrt{z_m} \|f_m\|_{K_n} \right)$$

Update z_m as (tighten the upper bound)

$$z_m \leftarrow \operatorname{Tr}\left((\sigma_y^2 \boldsymbol{I}_N + \sum_{m=1}^M d_m \boldsymbol{K}_m)^{-1} \boldsymbol{K}_m\right),$$

where $d_m = ||f_m||_{\mathcal{H}_m}/\sqrt{z_m}$.

Each update step is a reweighted L1-MKL problem.

Fach undate sten minimizes an upper bound of the second and an armonic second and armonic second and armonic second armonic second and armonic second armonic

Method B: MacKay update

Use the fixed point condition for the update of the weights:

$$-\frac{\|\boldsymbol{f}_{m}^{\text{FKL}}\|_{\boldsymbol{K}_{m}}^{2}}{d_{m}^{2}}+\operatorname{Tr}\left((\sigma^{2}\boldsymbol{I}_{N}+\sum_{m=1}^{M}d_{m}\boldsymbol{K}_{m})^{-1}\boldsymbol{K}_{m}\right)=0.$$

Update f_m as

$$(\mathbf{f}_m)_{m=1}^M \leftarrow \underset{(f_m)_{m=1}^M}{\operatorname{argmin}} \left(\frac{1}{2\sigma_y^2} \left\| \mathbf{y} - \sum_{m=1}^M \mathbf{f}_m \right\|^2 + \frac{1}{2} \sum_{m=1}^M \frac{\|\mathbf{f}_m\|_{\mathbf{K}_m}^2}{d_m} \right)$$

Update the kernel weights d_m as

$$d_m \leftarrow \frac{\|\boldsymbol{f}_m\|_{\boldsymbol{K}_m}^2}{\operatorname{Tr}\left((\sigma^2\boldsymbol{I}_N + \sum_{m=1}^M d_m\boldsymbol{K}_m)^{-1} d_m\boldsymbol{K}_m\right)}.$$

• Each update step is a *fixed kernel weight leraning problem* (easy).

Convergence empirically OK (e.g. RVM) → (=)