Regression Example

Classification Example

Good Fits

Regression Example

Classification Example

Bias and Variance

Bias and Variance

Bias

- Difference prediction / actual values of training data
- Example High Bias / Low Variance
 - R^2=0.5 for training
 - R^2=0.48 for validation

Variance

- Difference prediction of training data
 vs. prediction validation data
- Example Low Bias / High Variance
 - R^2=0.97 for training
 - R^2=0.3 for validation

Bias and Variance

Adding more parameters to a model increases model complexity

Using a more complex model

Model complexity ↑

Model complexity ↑

Bias ↓

Bias ↓

Variance ↑

Variance ↑

Bias

High Bias

- Learns fast
- Easy to understand (fewer parameters)
- Poor performance on complex problems
- → Underfitting

Variance

- High Variance → Large change of predictions if different training data is used
- Low variance algorithms: Linear
 Regression, LDA, Logistic Regression
- High variance algorithms: Decision Trees, kNN, SVM
- High Variance → more paramaters
- Good training performance, poor validation performance → poor generalization
- → Overfitting

Bias Variance Tradeoff

- Goal:
 - low bias / low variance
 - Good prediction performance
- Bias and variance have opposite directions
- Linear ML algorithms typically high bias, low variance
- Non-linear ML algorithms typically low bias, high variance
- Non-linear ML algorithms often have hyperparameters for tuning

