Groupes finis de matrices

Ici \mathbb{K} est un corps commutatif, a priori, de caractéristique nulle, ce qui signifie que le morphisme d'anneaux $k \mapsto k \cdot 1$ de \mathbb{Z} dans \mathbb{K} est injectif, ce qui est encore équivalent à dire que l'égalité $k\lambda = 0$ dans \mathbb{K} avec $k \in \mathbb{Z}$ et $\lambda \in \mathbb{K}^*$ équivaut à k = 0.

Un corps de caractéristique nulle est infini puisqu'il contient un sous-groupe isomorphe à \mathbb{Z} (et même un sous-corps isomorphe à \mathbb{Q}).

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, on note $\operatorname{tr}(A)$ sa trace.

On présente ici, sous forme d'exercices, quelques résultats sur les groupes finis de matrices.

Exercice 1 Soit G un sous-groupe fini de $GL_n(\mathbb{K})$ de cardinal $p \geq 2$.

- 1. Montrer que $B = \frac{1}{p} \sum_{A \in G} A$ est la matrice dans la base canonique de \mathbb{K}^n d'un projecteur.
- 2. Montrer que $\sum_{A \in G} \operatorname{tr}(A)$ est un entier divisible par p.
- 3. Montrer que si $\sum_{A \in G} \operatorname{tr}(A) = 0$, alors $\sum_{A \in G} A = 0$.

Solution 2

1. Il s'agit de montrer que $B^2 = B$.

$$B^2 = BB = \frac{1}{p} \sum_{A \in G} BA$$

avec :

$$BA = \frac{1}{p} \sum_{A' \in G} A'A = \frac{1}{p} \sum_{A'' \in G} A'' = B$$

du fait que l'application $A' \mapsto A'A$ réalise une permutation de G, ce qui donne :

$$B^2 = \frac{1}{p} \sum_{A \in G} B = B$$

- 2. La matrice B étant celle d'un projecteur, on a $\operatorname{tr}(B) = \operatorname{rang}(B) = \operatorname{dim}(\operatorname{Im}(B)) \in \mathbb{N}$ et en conséquence $\sum_{A \in G} \operatorname{tr}(A) = p \operatorname{tr}(B)$ est un entier divisible par p.
- 3. Si $\sum_{A \in G} \operatorname{tr}(A) = 0$, on a alors $p \operatorname{tr}(B) = 0$ et $\operatorname{rang}(B) = \operatorname{tr}(B) = 0$ puisque \mathbb{K} est de caractéristique nulle, donc $\operatorname{Im}(B) = \{0\}$ et B = 0, soit $\sum_{A \in G} A = 0$.

Exercice 3 Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ contenant I_n et stable par le produit matriciel. Montrer que $G = F \cap GL_n(\mathbb{K})$ est un sous-groupe infini de $GL_n(\mathbb{K})$.

Solution 4 G est infini puisqu'il contient toutes les homothéties λI_n de rapport $\lambda \in \mathbb{K}^*$ (F est un espace vectoriel qui contient I_n et \mathbb{K} est infini).

Si A, B sont dans G, alors AB est également dans G puisque F est stable par le produit matriciel. Il reste à montrer que si $A \in G$, alors A^{-1} est dans F, ce qui résulte du fait que A^{-1} est un polynôme en A pour $A \in GL_n(\mathbb{K})$. En effet, le théorème de Cayley-Hamilton nous dit que si $P(X) = \sum_{k=0}^{n} \alpha_k X^k$ est le polynôme caractéristique de A, on a alors P(A) = 0 et avec $\alpha_0 = \det(A) \neq 0$, on déduit que $A^{-1} = -\frac{1}{\alpha_0} \sum_{k=1}^{n} \alpha_k A^{k-1} \in F$ puisque F contient I_n est stable par le produit et c'est un espace vectoriel.

Exercice 5 On se place sur \mathbb{R}^n muni du produit scalaire euclidien canonique noté $\langle \cdot | \cdot \rangle$ et on se donne G un sous-groupe fini G de $GL(\mathbb{R}^n)$.

1. Montrer que l'application :

$$\varphi:\left(x,y\right)\mapsto\sum_{g\in G}\left\langle g\left(x\right)\mid g\left(y\right)\right
angle$$

définit un produit scalaire sur \mathbb{R}^n .

2. Montrer que pour tout $g \in G$ et tous x, y dans \mathbb{R}^n , on a :

$$\varphi\left(g\left(x\right),y\right) = \varphi\left(x,g^{-1}\left(y\right)\right)$$

3. Montrer que si F est un sous-espace vectoriel de \mathbb{R}^n stable par tous les éléments de G, il admet alors un supplémentaire stable par tous les éléments de G.

Solution 6

- 1. Comme une somme de produits scalaires est un produit scalaire, il suffit de montrer que pour tout $g \in G \subset GL(\mathbb{R}^n)$, l'application $(x,y) \mapsto \langle g(x) \mid g(y) \rangle$ définit un produit scalaire sur \mathbb{R}^n , ce qui résulte du fait que g est un isomorphisme.
- 2. Pour $g \in G$ et x, y dans \mathbb{R}^n , on a:

$$\varphi\left(g\left(x\right),y\right) = \sum_{u \in G} \left\langle u\left(g\left(x\right)\right) \mid u\left(y\right)\right\rangle = \sum_{u \in G} \left\langle u \circ g\left(x\right) \mid u \circ g\left(g^{-1}\left(y\right)\right)\right\rangle$$
$$= \sum_{v \in G} \left\langle v\left(x\right) \mid v\left(g^{-1}\left(y\right)\right)\right\rangle = \varphi\left(x,g^{-1}\left(y\right)\right)$$

du fait que l'application $u \mapsto u \circ g$ est une permutation de G.

3. Soient $H = F^{\varphi, \perp}$ le supplémentaire orthogonal de F pour le produit scalaire φ et $g \in G$. Comme F est stable par g, on a g(F) = F ($g(F) \subset F$ et l'égalité par les dimensions car g est un automorphisme) et $g^{-1}(F) = F$. Il en résulte que pour tout $x \in H$ et $y \in F$, on a $\varphi(g(x), y) = \varphi(x, g^{-1}(y)) = 0$ et $g(x) \in H$. On a donc $g(H) \subset H$ et l'égalité par les dimensions. L'espace vectoriel H est donc un supplémentaire de F stable par G.

Exercice 7 Avec cet exercice, on propose une démonstration du théorème de réduction des matrices orthogonales réelles. Ce résultat sera utile pour l'exercice qui suit.

On se place dans un espace euclidien E de dimension $n \geq 1$.

Un endomorphisme $u \in \mathcal{L}(E)$ est dit orthogonal si :

$$\forall (x,y) \in E^{2}, \ \langle u(x) \mid u(y) \rangle = \langle x \mid y \rangle.$$

On note $\mathcal{O}(E)$ l'ensemble des endomorphismes orthogonaux de E.

On rappelle que $u \in \mathcal{O}(E)$ si, et seulement si, pour toute base orthonormée \mathcal{B} de E la matrice A de u dans \mathcal{B} est telle que A $^tA = {}^tAA = I_n$. Une telle matrice A est dite orthogonale et on note $\mathcal{O}_n(\mathbb{R})$ le groupe multiplicatif de toutes ces matrices orthogonales.

- 1. Montrer que pour tout endomorphisme u de E il existe un sous espace vectoriel P de E de dimension 1 ou 2 stable par u.
- 2. Soit $u \in \mathcal{O}(E)$. Montrer qu'il existe des sous espaces vectoriels de E, P_1, \dots, P_r , de dimension égale à 1 ou 2, deux à deux orthogonaux, stables par u et tels que $E = \bigoplus_{j=1}^r P_j$.
- 3. Vérifier que si $A \in \mathcal{O}_n(\mathbb{R})$, on a alors $\det(A) = \pm 1$ et les seules valeurs propres réelles possibles de A sont -1 et 1.
- 4. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{O}_2(\mathbb{R})$. Montrer que l'on a:

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} ou A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

 $avec \ \theta \in [0, 2\pi[\ et \ que \ dans \ le \ deuxième \ cas, \ A \ est \ orthogonalement \ semblable \ \grave{a} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$

5. Soit $A \in \mathcal{O}_n(\mathbb{R})$ avec $n \geq 2$. Montrer qu'il existe une matrice $P \in \mathcal{O}_n(\mathbb{R})$ telle que :

$$P^{-1}AP = \begin{pmatrix} I_p & 0 & 0 & 0 & \cdots & 0 \\ 0 & -I_q & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & R_1 & 0 & \ddots & 0 \\ 0 & \ddots & 0 & R_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 0 & R_r \end{pmatrix},$$

où, pour tout $k \in \{1, \dots, r\}$, on a noté:

$$R_k = \begin{pmatrix} \cos(\theta_k) & -\sin(\theta_k) \\ \sin(\theta_k) & \cos(\theta_k) \end{pmatrix}$$

avec $\theta_k \in]0, 2\pi[-\{\pi\}]$ et p, q, r sont des entiers naturels tels p + q + 2r = n (si l'un de ces entiers est nul, les blocs de matrices correspondants n'existent pas).

Solution 8

1. Si u a une valeur propre réelle λ , alors pour tout vecteur propre associé $x \in E \setminus \{0\}$, la droite $D = \mathbb{R}x$ est stable par u.

Sinon $n \geq 2$ et le polynôme minimal π_u se décompose dans l'anneau factoriel $\mathbb{R}[X]$ en produit de facteurs irréductibles de degré 2 (les valeurs propres de u sont les racines de π_u). Ce polynôme π_u s'écrit donc $\pi_u(X) = (X^2 + bX + c)Q(X)$ avec $b^2 - 4c < 0$ et $Q(u) \neq 0$ (π_u est le polynôme non nul de plus petit degré annulant u). De l'égalité :

$$0 = \pi_u(u) = \left(u^2 + bu + cId\right) \circ Q(u)$$

on déduit alors que l'endomorphisme $u^2 + bu + cId$ n'est pas injectif, c'est-à-dire que son noyau n'est pas réduit à $\{0\}$. Pour tout vecteur x non nul dans ce noyau on vérifie alors que $P = \text{Vect}\{x, u(x)\}$ est un sous espace vectoriel de dimension 2 stable par u. En effet, P est de dimension 2 puisque x n'est pas vecteur propre de u et avec $u^2(x) + bu(x) + cx = 0$ on déduit que $u^2(x)$ est dans P, ce qui entraîne que P est stable par u.

2. On procède par récurrence sur la dimension $n \ge 1$ de E.

Pour n = 1 ou 2, le résultat est évident.

Supposons le acquis pour tout endomorphisme orthogonal sur un espace vectoriel euclidien de dimension p comprise entre 1 et n-1, avec $n \geq 3$.

Si P_1 est un sous espace vectoriel de E non réduit à $\{0\}$ de dimension au plus égale à 2 stable par $u \in \mathcal{O}(E)$, alors P_1^{\perp} est stable par u. En effet $u(P_1) \subset P_1$ et $u \in GL(E)$ entraînent $u(P_1) = P_1$ (un isomorphisme conserve la dimension), donc tout $y \in P_1$ s'écrit y = u(x) avec $x \in P_1$ et pour tout $z \in P_1^{\perp}$, on a:

$$\langle u(z) \mid y \rangle = \langle u(z) \mid u(x) \rangle = \langle z \mid x \rangle = 0$$

c'est-à-dire que $u(z) \in P_1^{\perp}$.

Comme $1 \le n-2 \le \dim^{1}(P_{1}^{\perp}) \le n-1$, on peut trouver des sous espaces vectoriels de E, P_{2}, \dots, P_{r} , de dimension au plus 2, deux à deux orthogonaux et stables par la restriction de u à P_{1}^{\perp} , donc par u, tels que $P_{1}^{\perp} = \bigoplus_{j=2}^{r} P_{j}$. On a alors $E = P_{1} \oplus P_{1}^{\perp} = \bigoplus_{j=1}^{r} P_{j}$.

- 3. Pour tout $A \in \mathcal{O}_n(\mathbb{R})$, on a $A^tA = I_n$ et $\det(A^tA) = (\det(A))^2 = 1$, donc $\det(A) = \pm 1$. Si λ est une valeur propre réelle de A et x un vecteur propre associé unitaire de ||Ax|| = ||x||, on déduit que $\lambda = \pm 1$.
- 4. Pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{O}_2(\mathbb{R})$, les égalités $A^t A = I_n$ et $\det(A) = \pm 1$ se traduisent par :

$$\begin{cases} a^2 + b^2 = c^2 + d^2 = 1, \\ ac + bd = 0 \\ ad - bc = \pm 1 \end{cases}$$

Des deux premières égalités, on déduit qu'il existe deux réels α et β tels que $(a,b) = (\cos(\alpha), \sin(\alpha))$ et $(c,d) = (\cos(\beta), \sin(\beta))$ et avec les deux dernières, qu'on a $\cos(\alpha - \beta) = 0$ et $\sin(\alpha - \beta) = \pm 1$. On a donc $\beta = \alpha \pm \frac{\pi}{2}$.

Pour $\beta = \alpha + \frac{\pi}{2}$, on a:

$$A = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

 $\begin{array}{l} avec \ \theta = -\alpha + 2k\pi \in [0,2\pi[\ . \\ Pour \ \beta = \alpha - \frac{\pi}{2}, \ on \ a \ : \end{array}$

$$A = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

avec $\theta = -\alpha + 2k\pi \in [0, 2\pi[$. Cette matrice est symétrique, donc $A^2 = A^t A = I_n$ et elle est diagonalisable puisque annulée par $X^2 - 1$ qui est scindé à racines simples dans \mathbb{R} . Comme $A \neq \pm I_n$, elle est orthogonalement semblable à $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Ce que l'on peut vérifier avec :

$$\begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -\sin\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & \sin\left(\frac{\theta}{2}\right) \\ -\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix} = \begin{pmatrix} \cos\left(\theta\right) & \sin\left(\theta\right) \\ \sin\left(\theta\right) & -\cos\left(\theta\right) \end{pmatrix}$$

5. On procède par récurrence sur $n \geq 2$.

Pour n = 2, c'est fait.

Supposons le résultat acquis pour toute matrice orthogonale d'ordre p compris entre 2 et n-1 et soit A une matrice orthogonale d'ordre $n \geq 3$.

On désigne par u l'endomorphisme orthogonal ayant A pour matrice dans la base canonique de $E = \mathbb{R}^n$ muni de sa structure euclidienne canonique.

Si u admet 1 ou -1 comme valeur propre, pour tout vecteur propre unitaire x associé à cette valeur propre, le sous espace vectoriel $(\mathbb{R}x)^{\perp}$ est stable par u (pour $y \in (\mathbb{R}x)^{\perp}$, on a $\langle u(y) | x \rangle = \pm \langle u(y) | u(x) \rangle = \pm \langle y | x \rangle = 0$) et il existe alors une base orthonormée \mathcal{B} de $(\mathbb{R}x)^{\perp}$ dans laquelle la matrice de la restriction de u à $(\mathbb{R}x)^{\perp}$ est de la forme :

$$A' = \begin{pmatrix} I_p & 0 & 0 & 0 & \cdots & 0 \\ 0 & -I_q & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & R_1 & 0 & \ddots & 0 \\ 0 & \ddots & 0 & R_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 0 & R_r \end{pmatrix}.$$

Dans la base orthonormée $\{x\} \cup \mathcal{B}$ la matrice de u est $A'' = \begin{pmatrix} \pm 1 & 0 \\ 0 & A' \end{pmatrix}$, qui se ramène bien à la forme souhaitée en permuttant au besoin x avec l'un des vecteurs de \mathcal{B} .

Si toutes les valeurs propres de u sont complexes non réelles, on a alors une décomposition $E = \bigoplus_{k=1}^{+} P_k$ où les P_k sont de dimension 2, deux à deux orthogonaux et stables par u. L'étude du cas n = 2 nous dit alors qu'il existe, pour tout k compris entre 1 et r, une base orthonormée \mathcal{B}_k de P_k dans laquelle la matrice de u est de la forme :

$$R_k = \begin{pmatrix} \cos(\theta_k) & -\sin(\theta_k) \\ \sin(\theta_k) & \cos(\theta_k) \end{pmatrix},$$

avec $\theta_k \in]0, 2\pi[-\{\pi\}]$. En réunissant toutes ces bases, on obtient une base orthonormée de E dans

laquelle la matrice de u est :

$$A' = \begin{pmatrix} R_1 & 0 & \cdots & 0 \\ 0 & R_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & R_r \end{pmatrix}.$$

Exercice 9 Soit G un sous-ensemble de $\mathcal{O}_n(\mathbb{R})$. Montrer que s'il existe $m \in \mathbb{N}^*$ tel que $A^m = I_n$ pour tout $A \in G$ (dans le cas où G est un groupe, on dit qu'il est d'exposant fini), alors l'ensemble :

$$tr(G) = \{tr(A) \mid A \in G\}$$

est fini.

Solution 10 On sait que toute matrice $A \in O_n(\mathbb{R})$ est orthogonalement semblable à une matrice diagonale par blocs de la forme :

$$D = \operatorname{diag}\left(I_p, -I_q, R_1, \cdots, R_r\right)$$

$$où R_k = \begin{pmatrix} \cos(\theta_k) & -\sin(\theta_k) \\ \sin(\theta_k) & \cos(\theta_k) \end{pmatrix} avec \ \theta_k \in]0, 2\pi[-\{\pi\}].$$

Dans le cas où toute matrice de G est orthogonalement semblable à une matrice de la forme diag $(I_p, -I_q)$, on a:

$$\operatorname{tr}(G) \subset \left\{ p - q \mid (p, q) \in \mathbb{N}^2 \text{ et } p + q = n \right\}$$

et cet ensemble est fini.

S'il existe dans G une matrice A orthogonalement semblable à une matrice de la forme $D = \operatorname{diag}(I_p, -I_q, R_1, \cdots, R_r)$ alors la matrice A^m est semblable à :

$$D^{m} = \operatorname{diag}\left(I_{p}, (-1)^{m} I_{q}, R\left(m\theta_{1}\right), \cdots, R\left(m\theta_{r}\right)\right)$$

et la condition $A^m = I_n$ impose $m\theta_k \in]0, 2m\pi[\cap 2\pi\mathbb{Z}, \text{ ce qui entraîne que les }\theta_k \text{ ne prennent qu'un nombre fini de valeurs et :}$

$$\operatorname{tr}(G) \subset \left\{ p - q + 2 \sum_{k=1}^{r} \cos(\theta_k) \mid (p, q, r) \in \mathbb{N}^3, \ p + q + 2r = n, \ m\theta_k \in]0, 2m\pi[\cap 2\pi\mathbb{Z}] \right\}$$

est fini.

Exercice 11 On se propose de montrer que si G est un sous-groupe de $\mathcal{O}_n(\mathbb{R})$ tel que $\operatorname{tr}(G)$ soit fini, alors G est fini.

Soient G un sous-groupe de $\mathcal{O}_n(\mathbb{R})$, F le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par G et $\mathcal{B} = (A_i)_{1 \leq i \leq p}$ une base de F extraite de G.

- 1. Montrer que l'application $(A, B) \mapsto \langle A \mid B \rangle = \operatorname{tr} \left(A \,^t B \right)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que la matrice $B = ((\operatorname{tr}(A_i^{t}A_j)))_{1 \leq i,j \leq p} \text{ est inversible dans } \mathcal{M}_p(\mathbb{R}).$
- 3. Montrer que si $\operatorname{tr}(G)$ est fini, alors G est fini.
- 4. Le résultat de la question précédente est-il encore vrai pour un sous-groupe de $GL_n(\mathbb{R})$?

Solution 12

1. On vérifie facilement que l'application $\langle \cdot | \cdot \rangle$ est bilinéaire (linéarité de la trace et de la transposition et bilinéarité du produit) et symétrique (tr $(B \ ^tA) = \text{tr} (\ ^t(B \ ^tA)) = \text{tr} (A \ ^tB)$). Pour $A = ((a_{ii}))_{1 \leq i,j \leq n}$ dans $\mathcal{M}_n(\mathbb{R})$, on a:

$$\langle A \mid A \rangle = \operatorname{tr} \left(A^{t} A \right) = \sum_{i=1}^{n} \left(\left(A^{t} A \right) \right)_{ii}$$
$$= \sum_{i=1}^{n} \left(a_{i1}, \dots, a_{in} \right)^{t} \left(a_{i1}, \dots, a_{in} \right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}$$

et en conséquence l'application $\langle \cdot | \cdot \rangle$ est définie positive. C'est donc un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. C'est en fait le produit scalaire canonique de $\mathcal{M}_n(\mathbb{R})$ identifié à \mathbb{R}^{n^2} .

- 2. La matrice B est la matrice du produit scalaire $\langle \cdot | \cdot \rangle$ de F dans la base B. Elle est donc inversible de déterminant strictement positif (c'est une matrice de Gram).
- 3. Tout matrice $A \in G$ s'écrit, de manière unique :

$$A = \sum_{j=1}^{p} \lambda_j (A) A_j,$$

les $\lambda_j(A)$, pour j compris entre 1 et p, étant réels. On a alors pour tout i compris entre 1 et p :

$$\langle A_i \mid A \rangle = \sum_{i=1}^{p} \lambda_j (A) \langle A_i \mid A_j \rangle$$

et en notant:

$$\lambda\left(A\right) = \left(\begin{array}{c} \lambda_{1}\left(A\right) \\ \vdots \\ \lambda_{p}\left(A\right) \end{array}\right), \ \tau\left(A\right) = \left(\begin{array}{c} \langle A_{1} \mid A \rangle \\ \vdots \\ \langle A_{p} \mid A \rangle \end{array}\right),$$

cela s'écrit $\tau(A) = B\lambda(A)$, ce qui équivaut à $\lambda(A) = B^{-1}\tau(A)$, puisque B est inversible.

D'autre part, pour $A \in G \subset \mathcal{O}_n(\mathbb{R})$, on a ${}^tA = A^{-1} \in G$ et $A_i{}^tA = A_iA^{-1} \in G$ pour tout i compris entre 1 et p. Avec l'hypothèse $\operatorname{tr}(G)$ fini, on déduit alors que $\tau(A)$ ne prend qu'un nombre fini de valeurs dans \mathbb{R}^p quand A décrit G et il en est de même de $\lambda(A) = B^{-1}\tau(A)$. Il en résulte que le groupe G est fini.

Avec l'exercice précédent, on en déduit qu'un sous-groupe G d'exposant fini de $\mathcal{O}_n(\mathbb{R})$ est fini.

4. L'ensemble G des matrices triangulaires supérieures réelles à diagonale unité forme un sous-groupe infini de $GL_n(\mathbb{R})$ tel que $\operatorname{tr}(G) = \{n\}$. Le résultat de la question précédente n'est donc pas vrai sur $GL_n(\mathbb{R})$.

Exercice 13 Cet exercice nous sera utile pour celui qui suit.

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente s'il existe un entier q strictement positif tel que $A^{q-1} \neq 0$ et $A^q = 0$ (q est l'indice de nilpotence de A).

- 1. Montrer que si $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente, alors 0 est valeur propre de A et $\operatorname{Tr}(A) = 0$.
- 2. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente si et seulement si $\operatorname{tr}(A^k) = 0$ pour tout entier naturel non nul k.

Solution 14

1. Si $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente d'ordre $q \geq 1$, son polynôme minimal est alors $\pi_A(X) = X^q$ avec $q \geq 1$ (on a $A^q = 0$, donc π_A divise X^q $A^{q-1} \neq 0$ nous dit que $\pi_A(X) = X^q$) et 0 est l'unique valeur propre de A.

Pour montrer que la trace d'une matrice nilpotente est nulle, on procède par récurrence sur $n \ge 1$ (pour \mathbb{K} algébriquement clos, cette trace est la somme des valeurs propres et c'est terminé).

Pour n = 1, l'unique matrice nilpotente est la matrice nulle.

Supposons le résultat acquis pour $1 \leq p \leq n-1$ et soit $A \in \mathcal{M}_n(\mathbb{K})$ nilpotente d'ordre $q \geq 1$. On désigne par u l'endomorphisme canoniquement associé à A. Comme 0 est valeur propre de u, il existe un vecteur non nul e_1 dans le noyau de u et en complétant ce vecteur en une base \mathcal{B} de E, la matrice de u dans cette base est de la forme $B = \begin{pmatrix} 0 & \alpha \\ 0 & C \end{pmatrix}$ où $\alpha \in \mathcal{M}_{1,n-1}(\mathbb{K})$ et $C \in \mathcal{M}_{n-1}(\mathbb{K})$. Avec

 $B^q = \begin{pmatrix} 0 & \alpha C^{q-1} \\ 0 & C^q \end{pmatrix} = 0$, on déduit que C est nilpotente et en conséquence $\operatorname{Tr}(C) = 0$ (hypothèse de récurrence), ce qui entraîne $\operatorname{Tr}(A) = \operatorname{Tr}(B) = \operatorname{Tr}(C) = 0$.

tr $(A^k) = 0$. Pour la réciproque, on procède par récurrence sur $n \ge 1$. Pour n = 1, on a tr (A) = A et le résultat est trivial. Supposons le acquis pour les matrices réelles d'ordre au plus égal à n et soit $A \in \mathcal{M}_{n+1}(\mathbb{K})$ telle que tr $(A^k) = 0$ pour tout $k \ge 1$. Si $P(X) = \sum_{k=0}^{n+1} \alpha_k X^k$ est le polynôme caractéristique de A, avec P(A) = 0 et tr $(A^k) = 0$ pour $k = 1, \dots, n+1$, on déduit que tr $(P(A)) = n\alpha_0 = 0$ et $\alpha_0 = \det(A) = 0$ puisque \mathbb{K} est de caractéristique nulle, c'est-à-dire que 0 est valeur propre de A et il existe une matrice $P \in GL_{n+1}(\mathbb{K})$ telle que $P^{-1}AP = \begin{pmatrix} 0 & b \\ 0 & C \end{pmatrix}$ où $b \in \mathcal{M}_{1,n}(\mathbb{K})$ et $C \in \mathcal{M}_n(\mathbb{K})$.

2. Si A est nilpotente dans $\mathcal{M}_n(\mathbb{K})$, il en est de même de A^k pour tout entier naturel non nul k et

Avec $P^{-1}A^kP=\begin{pmatrix}0&bC^{k-1}\\0&C^k\end{pmatrix}$, on déduit que $\operatorname{tr}\left(C^k\right)=\operatorname{tr}\left(A^k\right)=0$ pour tout $k\geq 1$ et avec l'hypothèse de récurrence il en résulte que C est nilpotente. Enfin, en notant p l'indice de nilpotence de C, avec $A^{p+1}=P\begin{pmatrix}0&bC^p\\0&C^{p+1}\end{pmatrix}P^{-1}=0$, on déduit que A est nilpotente.

Exercice 15 Soient G un sous-groupe de $GL_n(\mathbb{K})$, F le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ engendré par G et $\mathcal{B} = (A_i)_{1 \leq i \leq p}$ une base de F extraite de G.

1. On considère l'application :

$$\varphi: G \to \mathbb{K}^p$$

$$A \mapsto (\operatorname{tr}(AA_1), \cdots, \operatorname{tr}(AA_p))$$

et A, B dans G telles que $\varphi(A) = \varphi(B)$.

- (a) Montrer que $\operatorname{tr}(AB^{-1}M) = \operatorname{tr}(M)$ pour tout $M \in G$.
- (b) En notant $C = AB^{-1}$, en déduire que $\operatorname{tr}(C^k) = n$ pour tout $k \geq 1$, puis que $C I_n$ est nilpotente.
- (c) En déduire que, si on suppose de plus que toutes les matrices de G sont diagonalisables, alors φ est injective.
- 2. Montrer que si toutes les matrices de G sont diagonalisables et si $\operatorname{tr}(G)$ est fini, alors G est fini.
- 3. Déduire de ce qui précède qu'un sous-groupe G de $GL_n(\mathbb{C})$ est fini si, et seulement si, il est d'exposant fini (c'est-à-dire qu'il existe $m \in \mathbb{N}^*$ tel que $A^m = I_n$ pour tout $A \in G$). Ce résultat est un théorème de Burnside.

Solution 16

1.

- (a) Si A, B dans G sont telles que $\varphi(A) = \varphi(B)$, on a alors $\operatorname{tr}((A-B)A_j) = 0$ pour tout j comprisentre 1 et p et $\operatorname{tr}((A-B)M) = 0$ pour tout $M \in F$. On a alors $\operatorname{tr}((AB^{-1} I_n)BM) = 0$ pour tout $M \in G$, ce qui équivant à $\operatorname{tr}((AB^{-1} I_n)M) = 0$ pour tout $M \in G$ puisque l'application $M \mapsto BM$ est une permutation de G.
- (b) On a $C = AB^{-1} \in G$ (G est un groupe) et $\operatorname{tr}(CM) = \operatorname{tr}(M)$ pour tout $M \in G$, ce qui entraîne $\operatorname{tr}(C) = \operatorname{tr}(I_n) = n$ et par récurrence $\operatorname{tr}(C^k) = n$ pour tout $k \ge 1$. On a alors, pour tout $k \ge 1$:

$$\operatorname{tr}\left((C-I_n)^k\right) = \sum_{j=0}^k C_k^j (-1)^j \operatorname{tr}\left(C^{k-j}\right) = n \sum_{j=0}^k C_k^j (-1)^j = n (1-1)^k = 0.$$

Il en résulte que $C - I_n$ est nilpotente.

- (c) La matrice C étant dans G est diagonalisable et il en est de même de $C-I_n$. Cette matrice est donc diagonalisable et nilpotente et en conséquence nulle (sa seule valeur propre est 0). On a donc $C = AB^{-1} = I_n$ et A = B. L'application φ est donc injective.
- 2. Si $\operatorname{tr}(G)$ est fini, alors $\varphi(G)$ est une partie finie de \mathbb{R}^p en bijection avec G et G est fini.

3. Le théorème de Lagrange nous dit qu'un groupe fini est d'exposant fini.
Si G est un sous-groupe de GL_n (ℂ) d'exposant fini, il existe alors un entier m ≥ 1 tel que A^m = I_n pour tout A ∈ G et toutes les matrices de A sont diagonalisables du fait qu'elles sont annulées par le polynôme X^m − 1 qui est scindé à racines simples dans ℂ. Les valeurs propres de tout A ∈ G étant racines de X^m − 1 sont dans le groupe Γ_m de ces racines de l'unité et en conséquence en nombre fini quand A décrit G. Il en résulte que tr (G) est fini est fini et aussi G.

Exercice 17 Montrer que pour tout nombre premier $p \geq 2$ et tout entier $n \geq 1$, on a :

$$\operatorname{card}(GL_n(\mathbb{Z}_p)) = (p^n - 1)(p^n - p)\cdots(p^n - p^{n-1})$$
$$= p^{\frac{n(n-1)}{2}}(p^n - 1)(p^{n-1} - 1)\cdots(p-1)$$

et qu'il existe dans $GL_{n}\left(\mathbb{Z}_{p}\right)$ un sous-groupe d'ordre $p^{\frac{n(n-1)}{2}}$.

Solution 18 Pour n = 1, $GL_1(\mathbb{Z}_p)$ est isomorphe à $\mathbb{Z}_p^{\times} = \mathbb{Z}_p \setminus \{0\}$ qui a p - 1 éléments.

De manière général, $GL_n(\mathbb{Z}_p)$ est en bijection avec l'ensemble de toutes les bases de \mathbb{Z}_p^n par l'application qui associe à une base \mathcal{B} de \mathbb{Z}_p^n la matrice de passage de la base canonique à \mathcal{B} .

Pour dénombrer ces bases, on procède comme suit : pour le premier vecteur de base, il y a p^n-1 possibilités (tous les vecteurs de $\mathbb{Z}_p^n \setminus \{0\}$); ce premier vecteur e_1 étant choisi, le deuxième vecteur doit être choisi dans $\mathbb{Z}_p^n \setminus \mathbb{Z}_p e_1$ et il y a p^n-p possibilités; les deux premiers vecteurs e_1 et e_2 étant choisi, le troisième vecteur doit être choisi dans $\mathbb{Z}_p^n \setminus \mathbb{Z}_p e_1 \oplus \mathbb{Z}_p e_2$ et il y a p^n-p^2 possibilités; continuant ainsi de suite, on aboutit à :

$$\operatorname{card}(GL_n(\mathbb{Z}_p)) = (p^n - 1)(p^n - p)\cdots(p^n - p^{n-1})$$

$$= p^{1+2+\cdots+(n-1)}(p^n - 1)(p^{n-1} - 1)\cdots(p^n - 1)$$

$$= p^{\frac{n(n-1)}{2}}(p^n - 1)(p^{n-1} - 1)\cdots(p^n - 1)$$

Le groupe H formé des matrices triangulaires supérieures de termes diagonaux tous égaux à 1 est un sousgroupe d'ordre $p^{\frac{n(n-1)}{2}}$ de $GL_n(\mathbb{Z}_p)$.

Exercice 19 Soit \mathbb{K} un corps fini (et commutatif, d'après le théorème de Wedderburn) et φ un morphisme de groupes de $GL_n(\mathbb{K})$ dans \mathbb{K}^* . On note $(E_{ij})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$. Pour $\lambda \in \mathbb{K}^*$ on note :

$$D_{\lambda} = I_n + (\lambda - 1) E_{nn}$$

une matrice de dilatation et pour $\lambda \in \mathbb{K}$, $i \neq j$ compris entre 1 et n :

$$T_{\lambda} = I_n + \lambda E_{ij}$$

une matrice de transvection (le couple (i, j) avec $i \neq j$ est fixé).

1. Montrer qu'il existe un entier naturel r tel que :

$$\forall \lambda \in \mathbb{K}^*, \ \varphi(D_{\lambda}) = \lambda^r.$$

- 2. Montrer que, pour $i \neq j$ fixés entre 1 et n et λ, μ dans \mathbb{K} , on a $T_{\lambda}T_{\mu} = T_{\lambda+\mu}$.
- 3. Que dire d'un morphisme de groupes de $(\mathbb{K}, +)$ dans (\mathbb{K}^*, \cdot) ?
- 4. Montrer que, pour $i \neq j$ fixés entre 1 et n, on a :

$$\forall \lambda \in \mathbb{K}, \ \varphi(T_{\lambda}) = 1.$$

5. Déduire de ce qui précède que :

$$\forall A \in GL_n(\mathbb{K}), \ \varphi(A) = (\det(A))^r.$$

Solution 20 On remarque que pour tout $\lambda \in \mathbb{K}$ on a $\det(E_{\lambda}) = 1$ et pour tout $\lambda \in \mathbb{K}^*$, $\det(D_{\lambda}) = \lambda$. On rappelle que si $T_{\lambda} = T_{\lambda}^{(i,j)}$ est une matrice de transvection, alors la multiplication à gauche [resp. à droite] d'une matrice A par T_{λ} revient à effectuer l'opération élémentaire :

$$L_i \mapsto L_i + \lambda L_i \ (rep. \ C_i \mapsto C_i + \lambda C_i)$$

où L_i [resp. C_j] désigne la ligne numéro i [resp. la colonne numéro j] de A.

De plus $GL_n(\mathbb{K})$ est engendré par l'ensembles des matrices de transvection ou dilatation, c'est-à-dire que tout matrice $A \in GL_n(\mathbb{K})$ s'écrit $A = T_1 \cdots T_{\alpha}D_{\det(A)}T_{\alpha+1} \cdots T_{\beta}$, où les T_k sont des matrices de transvection.

1. On sait que \mathbb{K}^* est cyclique, soit $\mathbb{K}^* = \{1, \mu, \dots, \mu^{q-1}\}$. Tout élément λ de \mathbb{K}^* s'écrit donc $\lambda = \mu^k$ où k est compris entre 0 et q-1 et avec :

$$D_{\lambda} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ 0 & \cdots & 0 & \lambda \end{pmatrix} = D_{\mu}^{k}$$

on a $\varphi(D_{\lambda}) = \varphi(D_{\mu})^k$. Puis en écrivant que $\varphi(D_{\mu}) = \mu^r$ dans \mathbb{K}^* , où r est un entier compris entre 0 et q-1, on déduit que $\varphi(D_{\lambda}) = \mu^{rk} = (\mu^k)^r = \lambda^r$.

2. Pour $1 \leq i \neq j \leq n$, on a $E_{ij}^2 = 0$, ce qui entraı̂ne pour λ, μ dans $\mathbb K$:

$$T_{\lambda}T_{\mu} = I_n + (\lambda + \mu) E_{ij} + \lambda \mu E_{ij}^2 = T_{\lambda + \mu}.$$

On peut aussi dire que $T_{\lambda}T_{\mu}$ est déduit de T_{μ} en ajoutant à sa ligne i sa ligne j multipliée par λ , ce qui donne la matrice $T_{\lambda+\mu}$.

Prenant $\mu = -\lambda$, on a $T_{\lambda}T_{-\lambda} = T_0 = I_n$, ce qui signifie que T_{λ} est inversible d'inverse $T_{-\lambda}$ (pour les mêmes indices $i \neq j$).

3. Soit ψ un morphisme de groupes de $(\mathbb{K},+)$ dans (\mathbb{K}^*,\cdot) . Ces groupes étant finis, on a :

$$\operatorname{card}(\mathbb{K}) = \operatorname{card}(\ker(\psi)) \operatorname{card}(\operatorname{Im}(\psi)),$$

c'est-à-dire que card $(\operatorname{Im}(\psi))$ divise $q+1=\operatorname{card}(\mathbb{K})$. Mais $\operatorname{Im}(\psi)$ étant un sous-groupe de \mathbb{K}^* a un cardinal qui divise q et nécessairement card $(\operatorname{Im}(\psi))=1$ du fait que q+1 et q sont premiers entre eux. On a donc $\operatorname{Im}(\psi)=\{\psi(0)\}=\{1\}$, ce qui signifie que ψ est la fonction constante égale à 1. L'exemple de la fonction exponentielle réelle ou complexe nous montre que ce résultat est faux pour un corps infini.

4. Avec :

$$\forall (\lambda, \mu) \in \mathbb{K}^{2}, \ \varphi(T_{\lambda+\mu}) = \varphi(T_{\lambda}T_{\mu}) = \varphi(T_{\lambda}) \varphi(T_{\mu}),$$

on déduit que l'application $\psi: \lambda \mapsto \varphi(T_{\lambda})$ réalise un morphisme de groupes de $(\mathbb{K}, +)$ dans (\mathbb{K}^*, \cdot) et nécessairement $\varphi(T_{\lambda}) = 1$ pour toute matrice de transvection T_{λ} .

5. Sachant que toute matrice $A \in GL_n(\mathbb{K})$ s'écrit $A = T_1 \cdots T_{\alpha} D_{\det(A)} T_{\alpha+1} \cdots T_{\beta}$, où les T_k sont des matrices de transvection, on déduit de ce qui précède que $\varphi(A) = (\det(A))^r$.