# **LGDP4535**

# 720-Channel, 262,144-Color One-Chip Driver with RAM, Power Supply and Gate Circuits for Amorphous TFT-LCD Panels

Rev 0.12 2008-02-26

| Description                                   | 4  |
|-----------------------------------------------|----|
| Features                                      |    |
| Block Diagram                                 | 6  |
| Pin Function                                  | 7  |
| PAD Arrangement                               | 12 |
| PAD Coordinate                                | 13 |
| Bump Arrangement                              |    |
| Block Function                                |    |
| System Interface                              |    |
| External Display Interface                    | 28 |
| Address Counter (AC)                          | 29 |
| Graphics RAM (GRAM)                           |    |
| Grayscale Voltage Generating Circuit          |    |
| Timing Generator                              |    |
| Oscillator (OSC)                              |    |
| LCD Driver Circuit                            |    |
| LCD Drive Power Supply Circuit                |    |
| Internal logic power supply regulator         |    |
| GRAM Address MAP                              |    |
| Instructions                                  |    |
| Outline                                       |    |
| Instruction Data Format                       |    |
| Instruction Description                       |    |
| Index (IR)                                    |    |
| Device code read (R00h)                       |    |
| Driver output control (R01h)                  |    |
| LCD Driving Wave Control (R02h)               |    |
| Entry Mode (R03h)                             |    |
| Resizing Control (R04h)                       |    |
| Display Control 1 (R07h)                      |    |
| Display Control 2 (R08h)                      |    |
| Display Control 3 (R09h)                      |    |
| Display Control 4 (R0Ah)                      |    |
| External Display Interface Control 1 (R0Ch)   | 49 |
| Frame Marker Position (R0Dh)                  | 51 |
| External Display Interface Control 2 (R0Fh)   |    |
| Power Control 1 (R10h)                        |    |
| Power Control 2 (R11h)                        |    |
| Power Control 3 (R12h).                       |    |
| Power Control 4 (R13h)                        |    |
| Regulator Control (R15h)                      |    |
| Gamma Select Control (R16h)                   |    |
| Vcom Control (R17h)                           |    |
| , <b>, , , , , , , , , , , , , , , , , , </b> |    |



1

| RAM Address Set (Horizontal Address) (R20h)                    |     |
|----------------------------------------------------------------|-----|
| RAM Address Set (Vertical Address) (R21h)                      | 61  |
| Write Data to RAM (R22h)                                       |     |
| Read Data from RAM (R22h)                                      |     |
| Gamma Control 1-16 (R30h to R3Fh)                              |     |
| EPROM Control Register 1 (R40h)                                |     |
| EPROM Control Register 2 (R41h)                                |     |
| EPROM Control Register 3 (R42h)                                |     |
| Window Horizontal RAM Address Start/End (R50h/R51h)            |     |
| Window Vertical RAM Address Start/End (R52h/R53h)              |     |
| Driver Output Control (R60h)                                   |     |
| Base Image Display Control (R61h)                              |     |
| Vertical Scroll Control (R6Ah)                                 |     |
| Software Reset (R70h)                                          |     |
| I/F Endian Control (R71h)                                      |     |
| Memory Write Control (R72h)                                    |     |
| Partial Image 1: Display Position (R80h)                       |     |
| RAM Address (Start/End Line Address) (R81h/R82h)               |     |
| Partial Image 2: Display Position (R83h)                       |     |
| RAM Address (Start/End Line Address) (R84h/R85h)               |     |
| Panel Interface Control 1 (R90h)                               |     |
| Panel Interface Control 2 (R92h)                               |     |
| Panel Interface Control 3 (R93h)                               |     |
| Panel Interface Control 4 (R95h)                               |     |
| Panel Interface Control 5 (R97h)                               |     |
| Panel Interface Control 6 (R98h)                               |     |
| Frame Rate Control (R9Ah)                                      |     |
| Test Register 1 (RA0h)<br>Test Register 2 (RA1h)               |     |
| Test Register 3 (RA2h)                                         |     |
| Test Register 3 (RA2h)                                         |     |
| Test Register 5 (RA4h)                                         |     |
| Test Register 5 (RA4fi)  Test Register 6 (RA5h)                |     |
| Instruction List                                               |     |
| Reset Function                                                 |     |
| Basic Mode operation of the LGDP4535                           |     |
| Interface and data format                                      |     |
| System Interface                                               |     |
| 80-system 18-bit Bus Interface                                 |     |
| 80-system 16-bit Bus Interface                                 |     |
| Data Transfer Synchronous in 16-bit Bus Interface operation    |     |
| 80-system 9-bit Bus Interface                                  |     |
| Data Transfer Synchronous in 9-bit Bus Interface operation     | 92  |
| 80-system 8-bit Bus Interface                                  |     |
| Data Transfer Synchronous in 8-bit Bus Interface operation     |     |
| Serial Interface                                               |     |
| VSYNC Interface                                                |     |
| Notes in using the VSYNC interface                             | 100 |
| External Display Interface                                     |     |
| RGB Interface                                                  |     |
| Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals         | 103 |
| RGB Interface Timing                                           |     |
| Moving Picture Display with the RGB Interface                  | 104 |
| RAM access via system interface in RGB interface operation     | 105 |
| 6-bit RGB Interface                                            |     |
| Data Transfer Synchronization in 6-bit Bus Interface operation |     |
| 16-bit RGB Interface                                           | 108 |



| 18-bit RGB Interface                                                       | 109 |
|----------------------------------------------------------------------------|-----|
| Notes on Using the External Display Interface                              |     |
| RAM Address and Display Position on the Panel                              |     |
| Restrictions in setting display control instruction                        |     |
| Screen setting.                                                            |     |
| Instruction setting example                                                | 114 |
| Resizing function                                                          | 117 |
| Resizing setting                                                           | 118 |
| Notes to Resizing function                                                 | 118 |
| FMARK function                                                             | 120 |
| FMP setting example                                                        | 121 |
| Display operation synchronous data transfer using FMARK                    |     |
| Window Address Function                                                    | 123 |
| EPROM Control                                                              | 124 |
| Scan Mode Setting                                                          | 126 |
| Line Inversion AC Drive                                                    |     |
| Frame-Frequency Adjustment Function                                        |     |
| Relationship between the liquid crystal Drive Duty and the Frame Frequency |     |
| Partial Display Function                                                   |     |
| Liquid crystal panel interface timing                                      |     |
| Internal clock operation                                                   |     |
| RGB Interface operation                                                    |     |
| γ-Correction Function                                                      |     |
| Grayscale Amplifier Unit Configuration                                     |     |
| γ-Correction Register                                                      |     |
| Ladder Resistors and 8-to-1 Selector                                       |     |
| 8-Color Display Mode                                                       |     |
| Power-supply Generating Circuit                                            |     |
| Power supply circuit connection example 1 (Vci1 = VciOUT)                  |     |
| Power supply circuit connection example2 (Vci1 = Vci direct input)         |     |
| Specifications of Power-supply Circuit External Elements                   |     |
| Voltage Setting Pattern Diagram                                            |     |
| Power Supply Instruction Setting                                           |     |
| Instruction Setting                                                        |     |
| Display ON/OFF sequence                                                    |     |
| Standby / Sleep mode SET/EXIT sequences                                    |     |
| Deep standby mode IN/EXIT sequences                                        |     |
| 8-color mode setting                                                       |     |
| Parital Display setting                                                    |     |
| Absolute Maximum Ratings                                                   |     |
| Electrical Characteristics                                                 |     |
| DC Characteristics                                                         |     |
| 80-System Bus Interface Timing Characteristics (18/16-Bit Bus)             |     |
| 80-System Bus Interface Timing Characteristics (8/9-Bit Bus)               |     |
| Serial Peripheral Interface Timing Characteristics                         |     |
| RGB Interface Timing Characteristics                                       |     |
| Reset Timing Characteristics                                               |     |
| Notes to Electrical Characteristics                                        |     |
| Timing characteristic diagram                                              | 157 |



## **Description**

The LGDP4535 is a one-chip liquid crystal controller driver LSI, comprising RAM of 240 RGB x 320 dots at maximum, a source driver, a gate driver and a power supply circuit. For effective data transfer, the LGDP4535 supports high-speed 8-/9-/16-/18-bit bus interfaces as a system interface to microcomputer and high-speed RAM write mode.

As a moving picture interface, the LGDP4535 supports RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0).

Also, the LGDP4535 incorporates step-up circuits and voltage follower circuits to generate TFT liquid crystal panel drive voltages.

The LGDP4535's power management functions such as 8-color display and deep standby and so on make this LSI an ideal driver for the medium or small sized portable products with color display systems such as digital cellular phones or small PDAs, where long battery life is a major concern.



#### **Features**

 A one-chip controller driver incorporating a gate circuit and a power supply circuit for 240RGB x320 dots graphics display on an amorphous TFT panel in 262k colors

- System interface
  - High-speed interfaces via 8-, 9-, 16-, 18-bit parallel ports
  - Serial interface
- Interface for moving picture display
  - 6-, 16-, 18-bit bus RGB interfaces (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0)
  - VSYNC interface (System interface + VSYNC)
  - FMARK interface (System interface + FMARK)
- Window address function to specify a rectangular area on the internal RAM to write data
- Writes data within a rectangular area on the internal RAM via moving picture interface
  - Reduces data transfer by specifying the area on the RAM to rewrite data
  - Enables displaying the data in the still picture RAM area with a moving picture simultaneously
  - Resizing function (x 1/2, x 1/4)
- Abundant color display and drawing functions
  - Programmable γ -correction function for 262k-color display
  - Partial display function
- Low -power consumption architecture (allowing direct input of interface I/O power supply)
  - Standby, Deep standby, sleep function
  - 8-color display function
  - Input power supply voltages:  $Vcc = 2.5V \sim 3.3 \text{ V}$  (logic regulator power supply)

IOVcc = 1.65V ~ 3.3 V (interface I/O power supply) Vci = 2.5V ~ 3.3 V (liquid crystal analog circuit power supply)

- Incorporates a liquid crystal drive power supply circuit
  - Source driver liquid crystal drive/Vcom power supply: DDVDH-GND =  $4.5V \sim 6.0 V$
  - Gate drive power supply: VGH-GND =  $10.0V \sim 15.0 V$

 $VGL\text{-}GND = -4.5V \sim -12.5V$ 

 $VGH-VGL \le 25V$ 

Vcom drive power supply: VCOMH = VCI ~ (DDVDH-0.5)V

 $VCOML = (VCL+0.5)V \sim 0V$ 

VCOMH-VCOML amplitude = 6.0V (Max.)

- Liquid crystal power supply startup sequence
- TFT storage capacitance: Cst only (common Vcom formula)
- 172,800-byte internal RAM
- Internal 720-channel source driver and 320-channel gate driver
- Configures a COG module with one chip by arranging gate lines on both sides



# **Block Diagram**



Figure 1



# **Pin Function**

**Table 1 Interface Pins** 

| Signal           | I/O | Connected to  |                                                                                                                                                                                                                  | Function                                                                                                                              |                       |
|------------------|-----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| IM2-1,<br>IM0/ID | I   | GND/<br>IOVCC |                                                                                                                                                                                                                  | ode to interface to an MPU. In SI to set the ID of device code.                                                                       | PI mode, the IM0      |
|                  |     |               | IM[3:0]                                                                                                                                                                                                          | Interface Mode                                                                                                                        | DB Pins               |
|                  |     |               | 000*                                                                                                                                                                                                             | Setting disabled                                                                                                                      | -                     |
|                  |     |               | 0010                                                                                                                                                                                                             | 80-system 16-bit interface                                                                                                            | DB[17:10],<br>DB[8:1] |
|                  |     |               | 0011                                                                                                                                                                                                             | 80-system 8-bit interface                                                                                                             | DB[17:10]             |
|                  |     |               | 010*                                                                                                                                                                                                             | Serial peripheral interface (SPI)                                                                                                     | SDI, SDO              |
|                  |     |               | 011*                                                                                                                                                                                                             | Setting disabled                                                                                                                      | -                     |
|                  |     |               | 100*                                                                                                                                                                                                             | Setting disabled                                                                                                                      | -                     |
|                  |     |               | 1010                                                                                                                                                                                                             | 80-system 18-bit interface                                                                                                            | DB[17:0]              |
|                  |     |               | 1011                                                                                                                                                                                                             | 80-system 9-bit interface                                                                                                             | DB[17:9]              |
|                  |     |               | 11**                                                                                                                                                                                                             | Setting disabled                                                                                                                      | -                     |
| CS*              | I   | MPU           | Low: LGD<br>High: LGI                                                                                                                                                                                            | ect signal. Amplitude: IOVCC-G<br>P4535 is selected and accessible<br>P4535 is not selected and not ac<br>OVCC level when not in use. |                       |
| RS               | I   | MPU           | Low: select<br>High: select                                                                                                                                                                                      | select signal. Amplitude: IOVCC<br>t the index/status register.<br>ct a control register.<br>de, fix to either IOVCC or GND l         |                       |
| WR*/SCL          | Ι   | MPU           | and enable                                                                                                                                                                                                       | write strobe signal in 80-system be<br>s an operation to write data when<br>the, a synchronizing clock signal i                       | the signal is low.    |
| RD*              | I   | MPU           | Outputs a read strobe signal in 80-system bus interface mode and enables an operation to read data when the signal is low. In SPI mode, fix to either IOVCC or GND level.                                        |                                                                                                                                       |                       |
| SDI              | I   | MPU           | rising edge                                                                                                                                                                                                      | ta input (SDI) pin in SPI mode. It of the SCL signal. Fix to either not in use.                                                       |                       |
| SDO              | О   | MPU           |                                                                                                                                                                                                                  | ta output (SDO) pin in SPI mode<br>edge of the SCL signal. Leave op                                                                   |                       |
| DB0 ~ DB17       | I/O | MPU           |                                                                                                                                                                                                                  | oarallel bidirectional data bus. Ur<br>r IOVCC or GND level.                                                                          | nused pins must be    |
| ENABLE           | I   | MPU           | A data enable signal in RGB interface mode.  Low: Select (accessible)  High: Not select (inaccessible)  The EPL bit inverts the polarity of the ENABLE signal. Fix to either IOVCC or GND level when not in use. |                                                                                                                                       |                       |
| VSYNC            | I   | MPU           | When VSF<br>When VSF                                                                                                                                                                                             | rnchronizing signal.  PL = "0", it is active low.  PL = "1", it is active high.  Pr IOVCC or GND level when no                        | t in use.             |



| HSYNC  | I | MPU                              | A line synchronizing signal.  When HSPL = "0", it is active low.  When HSPL = "1", it is active high.  Fix to either IOVCC or GND level when not in use.                                    |
|--------|---|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOTCLK | Ι | MPU                              | A dot clock signal.  When DPL = "0", input data on the rising edge of DOTCLK.  When DPL = "1", input data on the falling edge of DOTCLK.  Fix to either IOVCC or GND level when not in use. |
| RESET* | I | MPU or<br>External<br>RC circuit | A reset pin. Initializes the LGDP4535 with a low input. Be sure to execute a power-on reset after supplying power.                                                                          |
| FMARK  | О | MPU                              | Frame head pulse signal, which is used when writing data to the internal GRAM. Leave open when not in use.                                                                                  |

#### **Table 2 Power Supply Pins**

| Signal        | I/O | Connected to          | Function                                                                                                                                                                                                       |
|---------------|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC           | -   | Power supply          | Power supply to internal logic regulator circuit:<br>Vcc =2.5V ~ 3.3 V, Vcc ≥ IOVcc                                                                                                                            |
| VCI           | -   | Power supply          | Power supply to liquid crystal power supply analog circuit. Connect to an external power supply of $2.5V \sim 3.3V$ .                                                                                          |
| VCILVL        | -   | Power supply          | VCILVL must be at the same electrical potential as VCI. Be sure to connect VCILVL with VCI on the FPC to prevent noise.                                                                                        |
| IOVCC         | -   | Power<br>supply       | Power supply to the interface pins: RESET*, CS*, WR, RD*, RS, DB17-0, VSYNC, HSYNC, DOTCLK, ENABLE. IOVCC = 1.65V ~ 3.3V. Vcc ≥ IOVcc In case of COG, connect to VCC on the FPC if IOVCC=VCC to prevent nosie. |
| VDD<br>VDDOUT | О   | Stabilizing capacitor | Internal logic regulator output to be used as a power supply to internal logic. Connect a stabilizing capacitor.                                                                                               |
| GND           | -   | Power supply          | Internal logic GND : GND = 0V                                                                                                                                                                                  |
| AGND          | -   | Power supply          | Analog GND (for logic regulator and liquid crystal power supply circuit): AGND = 0V. In case of COG, connect to GND on the FPC to prevent noise.                                                               |
| VPP2          | -   | Power<br>supply       | Power supply pin for EPROM write operation. Connect to GND or open when EPROM is not used.                                                                                                                     |

## Table 3 Step-Up Circuit

| Signal | I/O | Connected to               | Function                                                                                               |
|--------|-----|----------------------------|--------------------------------------------------------------------------------------------------------|
| VCIOUT | O   | Stabilizing capactor, Vci1 | Internal reference voltage generated between Vci and GND. The output level is set by instruction (VC). |



| VCI1                                   | I   | VciOUT<br>or Vci             | Reference voltage for the step-up circuit 1. Vci1 must be set to a level, which will generate the VLOUT1, VLOUT2 and VLOUT3 levels within the respective setting ranges. |
|----------------------------------------|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VLOUT1                                 | O   | Stabilizing capacitor, DDVDH | Output from the step-up circuit 1, generated from Vci1. The step-up factor for the VLOUT1 level is set by instruction (BT). $VLOUT1 = 4.5V \sim 6.0V$                    |
| DDVDH                                  | I   | VLOUT1                       | Power supply for the source driver liquid crystal drive unit and Vcom drive. Connect to VLOUT1. DDVDH = $4.5V \sim 6.0V$                                                 |
| VLOUT2                                 | О   | Stabilizing capacitor, VGH   | Output from the step-up circuit 2, generated from Vci1 and DDVDH.  The step-up factor for VLOUT2 is set by instruction (BT). VLOUT2 = max 15.0V                          |
| VGH                                    | I   | VLOUT2                       | Liquid crystal drive power supply. Connect to VLOUT2.                                                                                                                    |
| VLOUT3                                 | О   | Stabilizing capacitor, VGL   | Output from the step-up circuit 2, generated from Vci1 and DDVDH.  The step-up factor for VLOUT2 is set by instruction (BT). VLOUT3 = min -12.5V                         |
| VGL                                    | I   | VLOUT3                       | Liquid crystal drive power supply. Connect to VLOUT3.                                                                                                                    |
| VLOUT4                                 | O   | Stabilizing capacitor, VCL   | A voltage level of Vci1 x (-1) generated in the step=ip circuit 2. Connect to a stabilizing capacitor when using the VLOUT4 output.                                      |
| VCL                                    | I   | VLOUT4                       | Power supply for operating VCOML. Vci1 is multiplied by 1 and output by internal step-up circuit 2. VCL = 0 to -3.3(V)                                                   |
| C11P, C11N<br>C12P, C12N               | I/O | Step-up capacitor            | Pins to connect capacitors for the step-up circuit 1.                                                                                                                    |
| C13P, C13N<br>C21P, C21N<br>C22P, C22N | I/O | Step-up capacitor            | Pins to connect capacitors for the step-up circuit 2. Connect capacitors where they are required according to the step-up factor.                                        |

#### **Table 4 LCD Drive**

| Signal   | I/O | Connected to               | Function                                                                                                                                                                                                                                                                                                                                                 |
|----------|-----|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VREG1OUT | 0   | Stabilizing capacitor      | Output generated from a reference voltage VciLVL by amplifying by the factor, which is set by instruction (VRH). VREG1OUT is used for (1) source driver grayscale reference voltage, (2) VCOMH level reference voltage, and (3) Vcom amplitude reference voltage. Connect to a stabilizing capacitor when it is in use. VREG1OUT = 3.0V ~ (DDVDH – 0.5)V |
| VCOM     | О   | TFT panel common electrode | Power supply to TFT panel's common electrode.  Output AC voltage with the amplitude VCOMH and VCOML.  The alternating cycle is changeable by register setting. Also Vcom output can be started and halted by register setting.                                                                                                                           |
| VCOMH    | O   | Stabilizing capacitor      | Output for the high level of VCOM. This output voltage is adjusted by an instruction (VCM) setting.  VCOMH = 3.0 to (DDVDH -0.5) (V)                                                                                                                                                                                                                     |
| VCOML    | О   | Stabilizing capacitor      | Output for the low level of VCOM. This output voltage is adjusted by an instruction (VDV) setting or fixed to GND by a register (VCOMG) setting. In this case, a capacitor for stabilization is not necessary. VCOML = (VCL +0.5)to 1 (V)                                                                                                                |



| VCOMR     | I | Variable<br>resistor or<br>open | If a variable resistor is used to adjust VCOMH, it is attached to this pin. In this case, use an instruction (VCM) setting to stop the internal digital potentiometer circuit of VCOMH, and insert the variable resistor for use in adjustment of VCOM between VREGIOUT. Leave it open or connect to GND when not in use. |
|-----------|---|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VGS       | I | GND                             | Reference level for grayscale voltage generating circuit.                                                                                                                                                                                                                                                                 |
| S1 ~ S720 | 0 | LCD                             | Liquid crystal application voltage. To change the shift direction of segment signal outputs, set the SS bit as follows.  When SS = 0, the data in the RAM address h00000 is output from S1.  When SS = 1, the data in the RAM address h00000 is output from S720.                                                         |
| G1 ~ G320 | O | LCD                             | Gate line output signals. VGH: gate line select level VGL: gate line non-select level                                                                                                                                                                                                                                     |

#### **Table 5 Others (Test, Dummy Pins)**

| Signal         | I/O | Connected to | Function                                                                                                                                                                                  |
|----------------|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEST1          | I   | GND          | Test pin. Connect to GND.                                                                                                                                                                 |
| TEST2-5        | -   | -            | Test pins. Connect to IOVCC, GND or open when not in use.                                                                                                                                 |
| TESTO1-14      | -   | -            | Test pins. Connect to GND or open when not in use.                                                                                                                                        |
| VTEST          | -   | -            | Test pin. Connect to GND or open when not in use.                                                                                                                                         |
| VREFC          | -   | -            | Test pin. Connect to GND or open when not in use.                                                                                                                                         |
| VREFD          | -   | -            | Test pin. Connect to GND or open when not in use.                                                                                                                                         |
| VREF           | -   | -            | Test pin. Connect to GND or open when not in use.                                                                                                                                         |
| VDDTEST        | -   | -            | Test pin. Connect to GND or open when not in use.                                                                                                                                         |
| VMON           | -   | -            | Test pin. Connect to GND or open when not in use.                                                                                                                                         |
| VCIR           | -   | -            | Test pin. Connect to GND or open when not in use.                                                                                                                                         |
| TSC            | -   | -            | Test pin. Connect ot GND or open when not in use.                                                                                                                                         |
| TS0-8          | -   | -            | Test pin. Connect of GND or open when not in use.                                                                                                                                         |
| TEVCI2         | -   | -            | Test pin. Connect of GND or open when not in use.                                                                                                                                         |
| IOVCCDUM<br>1  | -   | -            | Output the IOVCC voltage level. These pins are internally shorted to IOVCC. Use it to fix the electrical potentials of unused interface pins and fixed pins. When not in use, leave open. |
| GNDDUM1-<br>6  | -   | -            | Output the GND voltage level. These pins are internally shorted to GND. Use it to fix the electrical potentials of unused interface pins and fixed pins. When not in use, leave open.     |
| AGNDDUM<br>1-7 | -   | -            | Output the GND voltage level. These pins are internally shorted to GND.                                                                                                                   |
| VGLDMY1-<br>4  | -   | -            | Output the VGL voltage level. These pins are interally shorted to VGL. Use it to fix the unused gate lines at VGL level.                                                                  |



| DUMMYR<br>1-6 | - | - | Short-circuited within the chip for COG contact resistance measurement. DUMMYR pins are short-circuited as below. DUMMYR1 and DUMMYR6 DUMMYR2 and DUMMYR5 DUMMYR3 and DUMMYR4 |
|---------------|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VPP1          | - | - | Test pin. Connect to GND or open when not in use.                                                                                                                             |
| VPP3A, 3B, 3C | - | - | Test pins. Connect to GND or open when not in use.                                                                                                                            |



## **PAD Arrangement**





# **PAD** Coordinate

| PAD NO. | PAD NAME       | Х              | Υ    |
|---------|----------------|----------------|------|
| 1       | AGNDDUM1       | -9065          | -281 |
| 2       | DUMMYR1        | -8995          | -281 |
| 3       | DUMMYR2        | -8925          | -281 |
| 4       | VPP1           | -8855          | -281 |
| 5       | VPP1           | -8785          | -281 |
| 6       | VPP1           | -8715          | -281 |
| 7       | VPP2           | -8645          | -281 |
| 8       | VPP2           | -8575          | -281 |
| 9       | VPP2           | -8505          | -281 |
| 10      | VPP2           | -8435          | -281 |
| 11      | VPP2           | -8365          | -281 |
| 12      | VPP3A          | -8295          | -281 |
| 13      | VPP3A          | -8225          | -281 |
| 14      | VPP3B          | -8155          | -281 |
| 15      | VPP3B          | -8085          | -281 |
| 16      | VPP3C          |                | -281 |
| 17      | VPP3C<br>VPP3C | -8015<br>-7945 |      |
| 18      |                |                | -281 |
|         | AGND           | -7875<br>-7875 | -281 |
| 19      | AGND           | -7805          | -281 |
| 20      | AGND           | -7735          | -281 |
| 21      | AGND           | -7665          | -281 |
| 22      | AGND           | -7595          | -281 |
| 23      | GND            | -7525          | -281 |
| 24      | GND            | -7455          | -281 |
| 25      | GND            | -7385          | -281 |
| 26      | GND            | -7315          | -281 |
| 27      | GND            | -7245          | -281 |
| 28      | DUMMYR3        | -7175          | -281 |
| 29      | DUMMYR4        | -7105          | -281 |
| 30      | GNDDUM1        | -7035          | -281 |
| 31      | IM0/ID         | -6965          | -281 |
| 32      | IM1            | -6895          | -281 |
| 33      | IM2            | -6825          | -281 |
| 34      | IM3            | -6755          | -281 |
| 35      | IOVCCDUM       | -6685          | -281 |
| 36      | TEST5          | -6615          | -281 |
| 37      | TEST4          | -6545          | -281 |
| 38      | TEST3          | -6475          | -281 |
| 39      | TEST2          | -6405          | -281 |
| 40      | TEST1          | -6335          | -281 |
| 41      | GNDDUM2        | -6265          | -281 |
| 42      | FMARK          | -6195          | -281 |
| 43      | VSYNC          | -6125          | -281 |
| 44      | HSYNC          | -6055          | -281 |
| 45      | DOTCLK         | -5985          | -281 |
| 46      | ENABLE         | -5915          | -281 |
| 47      | GNDDUM3        | -5845          | -281 |
| 48      | DB17           | -5775          | -281 |
| 49      | DB16           | -5705          | -281 |
| 50      | DB15           | -5635          | -281 |

| PAD NO. | PAD NAME | X              | Υ    |
|---------|----------|----------------|------|
| 51      | TS8      | -5565          | -281 |
| 52      | TS7      | -5495          | -281 |
| 53      | DB14     | -5425          | -281 |
| 54      | DB13     | -5425<br>-5355 | -281 |
|         | DB13     | -5285          |      |
| 55      |          |                | -281 |
| 56      | TS6      | −5215<br>−5145 | -281 |
| 57      | TS5      |                | -281 |
| 58      | DB11     | -5075          | -281 |
| 59      | DB10     | -5005          | -281 |
| 60      | DB9      | -4935          | -281 |
| 61      | IOV CC   | -4865          | -281 |
| 62      | IOVCC    | -4795          | -281 |
| 63      | IOVCC    | -4725          | -281 |
| 64      | IOVCC    | -4655          | -281 |
| 65      | IOVCC    | -4585          | -281 |
| 66      | IOVCC    | -4515          | -281 |
| 67      | IOVCC    | -4445          | -281 |
| 68      | IOVCC    | -4375          | -281 |
| 69      | DB8      | -4305          | -281 |
| 70      | DB7      | -4235          | -281 |
| 71      | DB6      | -4165          | -281 |
| 72      | TS4      | -4095          | -281 |
| 73      | TS3      | -4025          | -281 |
| 74      | DB5      | -3955          | -281 |
| 75      | DB4      | -3885          | -281 |
| 76      | DB3      | -3815          | -281 |
| 77      | TS2      | -3745          | -281 |
| 78      | TS1      | -3675          | -281 |
| 79      | DB2      | -3605          | -281 |
| 80      | DB1      | -3535          | -281 |
| 81      | DB0      | -3465          | -281 |
| 82      | TS0      | -3395          | -281 |
| 83      | TSC      | -3325          | -281 |
| 84      | GNDDUM4  | -3255          | -281 |
| 85      | CS*      | -3185          | -281 |
| 86      | RS       | -3115          | -281 |
| 87      | WR*/SCL  | -3045          | -281 |
| 88      | RD*      | -2975          | -281 |
| 89      | RESET*   | -2905          | -281 |
| 90      | SDO      | -2835          | -281 |
| 91      | SDI      | -2765          | -281 |
| 92      | GNDDUM5  | -2695          | -281 |
| 93      | VTEST    | -2625          | -281 |
| 94      | VREF     | -2555          | -281 |
| 95      | VREFD    | -2485          | -281 |
| 96      | VREFC    | -2415          | -281 |
| 97      | V DDTEST | -2345          | -281 |
|         | GNDDUM6  | -2345<br>-2275 | -281 |
| 98      | V CC     | -2275<br>-2205 | -281 |
| 100     | VCC      | -2205<br>-2135 | -281 |
| 100     | V 00     | Z 100          | 201  |



| PAD NO. | PAD NAME | Χ     | Υ    |
|---------|----------|-------|------|
| 101     | VCC      | -2065 | -281 |
| 102     | VCC      | -1995 | -281 |
| 103     | VCC      | -1925 | -281 |
| 104     | VCC      | -1855 | -281 |
| 105     | VDDOUT   | -1785 | -281 |
| 106     | VDDOUT   | -1715 | -281 |
| 107     | VDDOUT   | -1645 | -281 |
| 108     | VDDOUT   | -1575 | -281 |
| 109     | VDD      | -1505 | -281 |
| 110     | VDD      | -1435 | -281 |
| 111     | VDD      | -1365 | -281 |
| 112     | VDD      | -1295 | -281 |
| 113     | GND      | -1225 | -281 |
| 114     | GND      | -1155 | -281 |
| 115     | GND      | -1085 | -281 |
| 116     | GND      | -1015 | -281 |
| 117     | GND      | -945  | -281 |
| 118     | GND      | -875  | -281 |
| 119     | GND      | -805  | -281 |
| 120     | GND      | -735  | -281 |
| 121     | VGS      | -665  | -281 |
| 122     | AGND     | -595  | -281 |
| 123     | AGND     | -525  | -281 |
| 124     | AGND     | -455  | -281 |
| 125     | AGND     | -385  | -281 |
| 126     | AGND     | -315  | -281 |
| 127     | AGND     | -245  | -281 |
| 128     | AGND     | -175  | -281 |
| 129     | AGND     | -105  | -281 |
| 130     | VCOMH    | -35   | -281 |
| 131     | VCOMH    | 35    | -281 |
| 132     | VCOMH    | 105   | -281 |
| 133     | VCOMH    | 175   | -281 |
| 134     | VCOMH    | 245   | -281 |
| 135     | VCOMH    | 315   | -281 |
| 136     | VCOM     | 385   | -281 |
| 137     | VCOM     | 455   | -281 |
| 138     | VCOM     | 525   | -281 |
| 139     | VCOM     | 595   | -281 |
| 140     | VCOM     | 665   | -281 |
| 141     | VCOM     | 735   | -281 |
| 142     | VCOML    | 805   | -281 |
| 143     | VCOML    | 875   | -281 |
| 144     | VCOML    | 945   | -281 |
| 145     | VCOML    | 1015  | -281 |
| 146     | VCOML    | 1085  | -281 |
| 147     | VCOML    | 1155  | -281 |
| 148     | VCOML    | 1225  | -281 |
| 149     | C11N     | 1295  | -281 |
| 150     | C11N     | 1365  | -281 |

| PAD NO.    | PAD NAME       | Х    | Υ            |
|------------|----------------|------|--------------|
| 151        | C11N           | 1435 | -281         |
| 152        | C11N           | 1505 | -281         |
| 153        | C11N           | 1575 | -281         |
| 154        | C11P           | 1645 | -281         |
| 155        | C11P           | 1715 | -281         |
| 156        | C11P           | 1785 | -281         |
| 157        | C11P           | 1855 | -281         |
| 158        | C11P           | 1925 | -281         |
| 159        | C12N           | 1995 | -281         |
| 160        | C12N           | 2065 | -281         |
| 161        | C12N           | 2135 | -281         |
| 162        | C12N           | 2205 | -281         |
| 163        | C12N           | 2275 | -281         |
| 164        | C12P           | 2345 | -281         |
| 165        | C12P           | 2415 | -281         |
| 166        | C12P           | 2485 | -281         |
| 167        | C12P           | 2555 | -281         |
| 168        | C12P           | 2625 | -281         |
| 169        | VLOUT1         | 2695 | -281         |
| 170        | VLOUT1         | 2765 | -281         |
| 171        | VLOUT1         | 2835 | -281         |
| 172        | VLOUT1         | 2905 | -281         |
|            | 1              |      | 1            |
| 173        | VLOUT1         | 2975 | -281         |
| 174        | DDVDH          | 3045 | -281         |
| 175        | DDVDH          | 3115 | -281<br>-281 |
| 176        | DDVDH          | 3185 |              |
| 177<br>178 | DDVDH<br>DDVDH | 3255 | -281<br>-281 |
| 179        | t              | 3325 | _            |
|            | VCIR           | 3395 | -281         |
| 180        | VREG10UT       | 3465 | -281         |
| 181        | VCOMR          | 3535 | -281         |
| 182        | VMON           | 3605 | -281         |
| 183        | AGNDDUM2       | 3675 | -281         |
| 184        | AGNDDUM3       | 3745 | -281         |
| 185        | VCIOUT         | 3815 | -281         |
| 186        | VCIOUT         | 3885 | -281         |
| 187        | VCIOUT         | 3955 | -281         |
| 188        | VCIOUT         | 4025 | -281         |
| 189        | VCI1           | 4095 | -281         |
| 190        | VCI1           | 4165 | -281         |
| 191        | VCI1           | 4235 | -281         |
| 192        | VCI1           | 4305 | -281         |
| 193        | VCI            | 4375 | -281         |
| 194        | VCI            | 4445 | -281         |
| 195        | VCI            | 4515 | -281         |
| 196        | VCI            | 4585 | -281         |
| 197        | VCI            | 4655 | -281         |
| 198        | VCI            | 4725 | -281         |
| 199        | VCI            | 4795 | -281         |
| 200        | VCI            | 4865 | -281         |



| PAD NO. | PAD NAME | Х    | Υ    |
|---------|----------|------|------|
| 201     | VCILVL   | 4935 | -281 |
| 202     | AGNDDUM4 | 5005 | -281 |
| 203     | VLOUT2   | 5075 | -281 |
| 204     | VLOUT2   | 5145 | -281 |
| 205     | VLOUT2   | 5215 | -281 |
| 206     | VGH      | 5285 | -281 |
| 207     | VGH      | 5355 | -281 |
| 208     | VGH      | 5425 | -281 |
| 209     | AGNDDUM5 | 5495 | -281 |
| 210     | VLOUT3   | 5565 | -281 |
| 211     | VLOUT3   | 5635 | -281 |
| 212     | VLOUT3   | 5705 | -281 |
| 213     | VLOUT3   | 5775 | -281 |
| 214     | VLOUT3   | 5845 | -281 |
| 215     | VGL      | 5915 | -281 |
| 216     | VGL      | 5985 | -281 |
| 217     | VGL      | 6055 | -281 |
| 218     | VGL      | 6125 | -281 |
| 219     | VGL      | 6195 | -281 |
| 220     | AGNDDUM6 | 6265 | -281 |
| 221     | VLOUT4   | 6335 | -281 |
| 222     | VLOUT4   | 6405 | -281 |
| 223     | VCL      | 6475 | -281 |
| 224     | VCL      | 6545 | -281 |
| 225     | C13P     | 6615 | -281 |
| 226     | C13P     | 6685 | -281 |
| 227     | C13P     | 6755 | -281 |
| 228     | C13P     | 6825 | -281 |
| 229     | C13N     | 6895 | -281 |
| 230     | C13N     | 6965 | -281 |
| 231     | C13N     | 7035 | -281 |
| 232     | C13N     | 7105 | -281 |
| 233     | GND      | 7175 | -281 |
| 234     | GND      | 7245 | -281 |
| 235     | GND      | 7315 | -281 |
| 236     | GND      | 7385 | -281 |
| 237     | GND      | 7455 | -281 |
| 238     | AGND     | 7525 | -281 |
| 239     | AGND     | 7595 | -281 |
| 240     | AGND     | 7665 | -281 |
| 241     | AGND     | 7735 | -281 |
| 242     | AGND     | 7805 | -281 |
| 243     | C21P     | 7875 | -281 |
| 244     | C21P     | 7945 | -281 |
| 245     | C21P     | 8015 | -281 |
| 246     | C21N     | 8085 | -281 |
| 247     | C21N     | 8155 | -281 |
| 248     | C21N     | 8225 | -281 |
| 249     | C22P     | 8295 | -281 |
| 250     | C22P     | 8365 | -281 |

| PAD NO. | PAD NAME | X    | Υ    |
|---------|----------|------|------|
| 251     | C22P     | 8435 | -281 |
|         |          | _    |      |
| 252     | C22N     | 8505 | -281 |
| 253     | C22N     | 8575 | -281 |
| 254     | C22N     | 8645 | -281 |
| 255     | TEVCI2   | 8715 | -281 |
| 256     | TEVCI2   | 8785 | -281 |
| 257     | TEVCI2   | 8855 | -281 |
| 258     | TEVCI2   | 8925 | -281 |
| 259     | TEVCI2   | 8995 | -281 |
| 260     | AGNDDUM7 | 9065 | -281 |
| 261     | TESTO1   | 9216 | 279  |
| 262     | TESTO2   | 9200 | 166  |
| 263     | TESTO3   | 9184 | 279  |
| 264     | TESTO4   | 9168 | 166  |
| 265     | VGLDMY1  | 9152 | 279  |
| 266     | G1       | 9136 | 166  |
| 267     | G3       | 9120 | 279  |
| 268     | G5       | 9104 | 166  |
| 269     | G7       | 9088 | 279  |
| 270     | G9       | 9072 | 166  |
| 271     | G11      | 9056 | 279  |
| 272     | G13      | 9040 | 166  |
| 273     | G15      | 9024 | 279  |
| 274     | G17      | 9008 | 166  |
| 275     | G19      | 8992 | 279  |
| 276     | G21      | 8976 | 166  |
| 277     | G23      | 8960 | 279  |
| 278     | G25      | 8944 | 166  |
| 279     | G27      | 8928 | 279  |
| 280     | G29      | 8912 | 166  |
| 281     | G31      | 8896 | 279  |
| 282     | G33      | 8880 | 166  |
| 283     | G35      | 8864 | 279  |
| 284     | G37      | 8848 | 166  |
| 285     | G39      | 8832 | 279  |
| 286     | G41      | 8816 | 166  |
| 287     | G43      | 8800 | 279  |
| 288     | G45      | 8784 | 166  |
| 289     | G47      | 8768 | 279  |
| 290     | G49      | 8752 | 166  |
| 291     | G51      | 8736 | 279  |
| 292     | G53      | 8720 | 166  |
| 293     | G55      | 8704 | 279  |
| 294     | G57      | 8688 | 166  |
| 295     | G59      | 8672 | 279  |
| 296     | G61      | 8656 | 166  |
| 297     | G63      | 8640 | 279  |
| 298     | G65      | 8624 | 166  |
| 299     | G67      | 8608 | 279  |
| 300     |          | 8592 | 166  |
| 300     | G69      | 0092 | 100  |



| PAD NO. | PAD NAME | Χ    | Υ   |
|---------|----------|------|-----|
| 301     | G71      | 8576 | 279 |
| 302     | G73      | 8560 | 166 |
| 303     | G75      | 8544 | 279 |
| 304     | G77      | 8528 | 166 |
| 305     | G79      | 8512 | 279 |
| 306     | G81      | 8496 | 166 |
| 307     | G83      | 8480 | 279 |
| 308     | G85      | 8464 | 166 |
| 309     | G87      | 8448 | 279 |
| 310     | G89      | 8432 | 166 |
| 311     | G91      | 8416 | 279 |
| 312     | G93      | 8400 | 166 |
| 313     | G95      | 8384 | 279 |
| 314     | G97      | 8368 | 166 |
| 315     | G99      | 8352 | 279 |
| 316     | G101     | 8336 | 166 |
| 317     | G103     | 8320 | 279 |
| 318     | G105     | 8304 | 166 |
| 319     | G107     | 8288 | 279 |
| 320     | G109     | 8272 | 166 |
| 321     | G111     | 8256 | 279 |
| 322     | G113     | 8240 | 166 |
| 323     | G115     | 8224 | 279 |
| 324     | G117     | 8208 | 166 |
| 325     | G119     | 8192 | 279 |
| 326     | G121     | 8176 | 166 |
| 327     | G123     | 8160 | 279 |
| 328     | G125     | 8144 | 166 |
| 329     | G127     | 8128 | 279 |
| 330     | G129     | 8112 | 166 |
| 331     | G131     | 8096 | 279 |
| 332     | G133     | 8080 | 166 |
| 333     | G135     | 8064 | 279 |
| 334     | G137     | 8048 | 166 |
| 335     | G139     | 8032 | 279 |
| 336     | G141     | 8016 | 166 |
| 337     | G143     | 8000 | 279 |
| 338     | G145     | 7984 | 166 |
| 339     | G147     | 7968 | 279 |
| 340     | G149     | 7952 | 166 |
| 341     | G151     | 7936 | 279 |
| 342     | G153     | 7920 | 166 |
| 343     | G155     | 7904 | 279 |
| 344     | G157     | 7888 | 166 |
| 345     | G159     | 7872 | 279 |
| 346     | G161     | 7856 | 166 |
| 347     | G163     | 7840 | 279 |
| 348     | G165     | 7824 | 166 |
| 349     | G167     | 7808 | 279 |
| 350     | G169     | 7792 | 166 |

| 545.440 | Lava     | Lv   | Lv  |
|---------|----------|------|-----|
| PAD NO. | PAD NAME | X    | Y   |
| 351     | G171     | 7776 | 279 |
| 352     | G173     | 7760 | 166 |
| 353     | G175     | 7744 | 279 |
| 354     | G177     | 7728 | 166 |
| 355     | G179     | 7712 | 279 |
| 356     | G181     | 7696 | 166 |
| 357     | G183     | 7680 | 279 |
| 358     | G185     | 7664 | 166 |
| 359     | G187     | 7648 | 279 |
| 360     | G189     | 7632 | 166 |
| 361     | G191     | 7616 | 279 |
| 362     | G193     | 7600 | 166 |
| 363     | G195     | 7584 | 279 |
| 364     | G197     | 7568 | 166 |
| 365     | G199     | 7552 | 279 |
| 366     | G201     | 7536 | 166 |
| 367     | G203     | 7520 | 279 |
| 368     | G205     | 7504 | 166 |
| 369     | G207     | 7488 | 279 |
| 370     | G209     | 7472 | 166 |
| 371     | G211     | 7456 | 279 |
| 372     | G213     | 7440 | 166 |
| 373     | G215     | 7424 | 279 |
| 374     | G217     | 7408 | 166 |
| 375     | G219     | 7392 | 279 |
| 376     | G221     | 7376 | 166 |
| 377     | G223     | 7360 | 279 |
| 378     | G225     | 7344 | 166 |
| 379     | G227     | 7328 | 279 |
| 380     | G229     | 7312 | 166 |
| 381     | G231     | 7296 | 279 |
| 382     | G233     | 7280 | 166 |
| 383     | G235     | 7264 | 279 |
| 384     | G237     | 7248 | 166 |
| 385     | G239     | 7232 | 279 |
| 386     | G241     | 7216 | 166 |
| 387     | G243     | 7200 | 279 |
| 388     | G245     | 7184 | 166 |
| 389     | G247     | 7168 | 279 |
| 390     | G249     | 7152 | 166 |
| 391     | G251     | 7136 | 279 |
| 392     | G253     | 7120 | 166 |
| 393     | G255     | 7104 | 279 |
| 394     | G257     | 7088 | 166 |
| 395     | G259     | 7072 | 279 |
| 396     | G261     | 7056 | 166 |
| 397     | G263     | 7040 | 279 |
| 398     | G265     | 7024 | 166 |
| 399     | G267     | 7008 | 279 |
| 400     | G269     | 6992 | 166 |
| ,00     | GL00     | 0002 | 100 |



|         |          | . V  | V   |
|---------|----------|------|-----|
| PAD NO. | PAD NAME | X    | Υ   |
| 401     | G271     | 6976 | 279 |
| 402     | G273     | 6960 | 166 |
| 403     | G275     | 6944 | 279 |
| 404     | G277     | 6928 | 166 |
| 405     | G279     | 6912 | 279 |
| 406     | G281     | 6896 | 166 |
| 407     | G283     | 6880 | 279 |
| 408     | G285     | 6864 | 166 |
| 409     | G287     | 6848 | 279 |
| 410     | G289     | 6832 | 166 |
| 411     | G291     | 6816 | 279 |
| 412     | G293     | 6800 | 166 |
| 413     | G295     | 6784 | 279 |
| 414     | G297     | 6768 | 166 |
| 415     | G299     | 6752 | 279 |
| 416     | G301     | 6736 | 166 |
| 417     | G303     | 6720 | 279 |
| 418     | G305     | 6704 | 166 |
| 419     | G307     | 6688 | 279 |
| 420     | G309     | 6672 | 166 |
| 421     | G311     | 6656 | 279 |
| 422     | G313     | 6640 | 166 |
| 423     | G315     | 6624 | 279 |
| 424     | G317     | 6608 | 166 |
| 425     | G319     | 6592 | 279 |
| 426     | VGLDMY2  | 6576 | 166 |
| 427     | TESTO5   | 6560 | 279 |
| 428     | TESTO6   | 6368 | 279 |
| 429     | TESTO7   | 6352 | 166 |
| 430     | S720     | 6336 | 279 |
| 431     | S719     | 6320 | 166 |
| 432     | S718     | 6304 | 279 |
| 433     | S717     | 6288 | 166 |
| 434     | S716     | 6272 | 279 |
| 435     | S715     | 6256 | 166 |
| 436     | S714     | 6240 | 279 |
| 437     | S713     | 6224 | 166 |
| 438     | S712     | 6208 | 279 |
| 439     | S711     | 6192 | 166 |
| 440     | S710     | 6176 | 279 |
| 441     | S709     | 6160 | 166 |
| 442     | S708     | 6144 | 279 |
| 443     | S707     | 6128 | 166 |
| 444     | S706     | 6112 | 279 |
| 445     | S705     | 6096 | 166 |
| 446     | S704     | 6080 | 279 |
| 447     | S703     | 6064 | 166 |
| 448     | S702     | 6048 | 279 |
| 449     | S701     | 6032 | 166 |
| 450     | S700     | 6016 | 279 |

| 451         \$699         6000         166           452         \$698         \$984         279           453         \$697         \$968         166           454         \$696         \$952         279           455         \$695         \$936         166           456         \$694         \$920         279           457         \$693         \$904         166           458         \$692         \$888         279           459         \$691         \$872         166           458         \$692         \$888         279           459         \$691         \$872         166           460         \$689         \$840         166           460         \$689         \$840         166           462         \$688         \$824         279           463         \$687         \$808         166           464         \$686         \$792         279           465         \$685         \$5776         166           466         \$684         \$760         279           467         \$683         \$5744         166           470         \$680<                                                                                      | PAD NO. | PAD NAME | Χ    | Υ   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------|-----|
| 453         S697         5968         166           454         S696         5952         279           455         S695         5936         166           456         S694         5920         279           457         S693         5904         166           458         S692         5888         279           459         S691         5872         166           460         S690         5856         279           461         S689         5840         166           462         S688         5824         279           463         S687         5808         166           464         S686         5792         279           465         S685         5776         166           466         S684         5760         279           467         S683         5744         166           468         S682         5728         279           469         S681         5712         166           470         S680         5696         279           471         S679         5680         166           472         S678 <td>451</td> <td>S699</td> <td>6000</td> <td>166</td>                                                                         | 451     | S699     | 6000 | 166 |
| 454         \$696         \$952         \$279           455         \$695         \$936         \$166           456         \$694         \$5920         \$279           457         \$693         \$5904         \$166           458         \$692         \$888         \$279           459         \$691         \$872         \$166           460         \$690         \$856         \$279           461         \$689         \$5840         \$166           462         \$688         \$624         \$279           463         \$687         \$808         \$166           464         \$686         \$7792         \$279           465         \$685         \$5776         \$166           466         \$684         \$5760         \$279           467         \$683         \$5744         \$166           468         \$682         \$5728         \$279           469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$680         \$166           472         \$678         \$5664         \$279 <t< td=""><td>452</td><td>S698</td><td>5984</td><td>279</td></t<> | 452     | S698     | 5984 | 279 |
| 455         S695         5936         166           456         S694         5920         279           457         S693         5904         166           458         S692         5888         279           459         S691         5872         166           460         S690         5856         279           461         S689         5840         166           462         S688         5824         279           463         S687         5808         166           464         S686         5792         279           465         S685         5776         166           466         S684         5760         279           467         S683         5744         166           468         S682         5728         279           469         S681         5712         166           470         S680         5696         279           471         S679         5680         166           472         S678         5664         279           473         S677         5648         166           474         S676 <td>453</td> <td>S697</td> <td>5968</td> <td>166</td>                                                                         | 453     | S697     | 5968 | 166 |
| 456         S694         5920         279           457         S693         5904         166           458         S692         5888         279           459         S691         5872         166           460         S690         5856         279           461         S689         5840         166           462         S688         5824         279           463         S687         5808         166           464         S686         5792         279           465         S685         5776         166           466         S684         5760         279           467         S683         5744         166           468         S682         5728         279           469         S681         5712         166           470         S680         5696         279           471         S679         5680         166           472         S678         5664         279           473         S677         5648         166           474         S676         5632         279           475         S675 <td>454</td> <td>S696</td> <td>5952</td> <td>279</td>                                                                         | 454     | S696     | 5952 | 279 |
| 457         S693         5904         166           458         S692         5888         279           459         S691         5872         166           460         S690         5856         279           461         S689         5840         166           462         S688         5824         279           463         S687         5808         166           464         S686         5792         279           465         S685         5776         166           466         S684         5760         279           467         S683         5744         166           468         S682         5728         279           469         S681         5712         166           470         S680         5696         279           471         S679         5680         166           472         S678         5664         279           473         S677         5648         166           474         S676         5632         279           475         S675         5616         166           476         S673 <td>455</td> <td>S695</td> <td>5936</td> <td>166</td>                                                                         | 455     | S695     | 5936 | 166 |
| 458         S692         5888         279           459         S691         5872         166           460         S690         5856         279           461         S689         5840         166           462         S688         5824         279           463         S687         5808         166           464         S686         5792         279           465         S685         5776         166           466         S684         5760         279           467         S683         5744         166           468         S682         5728         279           469         S681         5712         166           470         S680         5696         279           471         S679         5680         166           472         S678         5664         279           473         S677         5648         166           474         S676         5632         279           475         S675         5616         166           476         S674         5600         279           479         S671 <td>456</td> <td>S694</td> <td>5920</td> <td>279</td>                                                                         | 456     | S694     | 5920 | 279 |
| 459         S691         5872         166           460         S690         5856         279           461         S689         5840         166           462         S688         5824         279           463         S687         5808         166           464         S686         5792         279           465         S685         5776         166           466         S684         5760         279           467         S683         5744         166           468         S682         5728         279           469         S681         5712         166           470         S680         5696         279           471         S679         5680         166           472         S678         5664         279           473         S677         5648         166           474         S676         5632         279           475         S675         5616         166           476         S674         5600         279           477         S673         5584         166           478         S672 <td>457</td> <td>S693</td> <td>5904</td> <td>166</td>                                                                         | 457     | S693     | 5904 | 166 |
| 460         \$690         \$886         279           461         \$689         \$840         166           462         \$688         \$824         279           463         \$687         \$808         166           464         \$686         \$792         279           465         \$685         \$5776         166           466         \$684         \$5760         279           467         \$683         \$5744         166           468         \$682         \$5728         279           469         \$681         \$5712         166           470         \$680         \$5696         279           471         \$679         \$5680         166           472         \$678         \$5664         279           473         \$677         \$5648         166           474         \$676         \$5632         279           475         \$675         \$5616         166           476         \$674         \$5600         279           477         \$673         \$584         166           478         \$672         \$568         279           479                                                                                          | 458     | S692     | 5888 | 279 |
| 460         \$690         \$856         \$279           461         \$689         \$840         \$166           462         \$688         \$5824         \$279           463         \$687         \$5808         \$166           464         \$686         \$5792         \$279           465         \$685         \$5776         \$166           466         \$684         \$5760         \$279           467         \$683         \$5744         \$166           468         \$682         \$5728         \$279           469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$674         \$5600         \$279           477         \$673         \$5584         \$166           478         \$672         \$568         \$279                                                              | 459     | S691     | 5872 | 166 |
| 461         \$689         \$5840         \$166           462         \$688         \$5824         \$279           463         \$687         \$5808         \$166           464         \$686         \$5792         \$279           465         \$685         \$5776         \$166           466         \$684         \$5760         \$279           467         \$683         \$5744         \$166           468         \$682         \$5728         \$279           469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$674         \$5600         \$279           477         \$673         \$5584         \$166           478         \$672         \$568         \$279           481         \$669         \$5520         \$166                                                            | 460     | S690     | 5856 | 279 |
| 462         \$688         \$5824         279           463         \$687         \$5808         166           464         \$686         \$5792         279           465         \$685         \$5776         166           466         \$684         \$5760         279           467         \$683         \$5744         166           468         \$682         \$5728         279           469         \$681         \$5712         166           470         \$680         \$5696         279           471         \$679         \$5680         166           472         \$678         \$5664         279           473         \$677         \$5648         166           474         \$676         \$5632         279           475         \$675         \$5616         166           476         \$674         \$5600         279           477         \$673         \$584         166           478         \$672         \$568         279           479         \$671         \$552         166           480         \$670         \$536         279           481                                                                                       |         | 1        | 5840 |     |
| 463         \$687         \$5808         \$166           464         \$686         \$5792         \$279           465         \$685         \$5776         \$166           466         \$684         \$5760         \$279           467         \$683         \$5744         \$166           468         \$682         \$5728         \$279           469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$675         \$5616         \$166           477         \$673         \$5584         \$166           478         \$672         \$568         \$279           479         \$671         \$5552         \$166           480         \$670         \$536         \$279           481         \$669         \$520         \$166                                                              | 462     | S688     | 5824 |     |
| 464         \$686         \$5792         \$279           465         \$685         \$5776         \$166           466         \$684         \$5760         \$279           467         \$683         \$5744         \$166           468         \$682         \$5728         \$279           469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$674         \$5600         \$279           477         \$673         \$5584         \$166           478         \$672         \$568         \$279           479         \$671         \$5552         \$166           480         \$670         \$536         \$279           481         \$669         \$520         \$166           482         \$668         \$504         \$279                                                               | 463     |          | 5808 |     |
| 465         \$685         \$5776         \$166           466         \$684         \$5760         \$279           467         \$683         \$5744         \$166           468         \$682         \$5728         \$279           469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$674         \$5600         \$279           477         \$673         \$584         \$166           478         \$672         \$568         \$279           479         \$671         \$552         \$166           480         \$670         \$536         \$279           481         \$669         \$520         \$166           482         \$668         \$504         \$279           483         \$667         \$488         \$166           <                                                      |         | 1        |      |     |
| 466         \$684         \$5760         \$279           467         \$683         \$5744         \$166           468         \$682         \$5728         \$279           469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$675         \$5616         \$166           477         \$673         \$5584         \$166           478         \$672         \$568         \$279           479         \$671         \$5552         \$166           480         \$670         \$536         \$279           481         \$669         \$520         \$166           482         \$668         \$504         \$279           483         \$667         \$488         \$166           484         \$666         \$5472         \$279                                                                |         | 1        |      |     |
| 467         \$683         \$5744         \$166           468         \$682         \$5728         \$279           469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$674         \$5600         \$279           477         \$673         \$5584         \$166           478         \$672         \$568         \$279           479         \$671         \$5552         \$166           480         \$670         \$536         \$279           481         \$669         \$520         \$166           482         \$668         \$504         \$279           483         \$667         \$488         \$166           484         \$666         \$5472         \$279           485         \$665         \$5456         \$166                                                                |         |          |      |     |
| 468         \$682         \$7728         \$279           469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$674         \$5600         \$279           477         \$673         \$5584         \$166           478         \$672         \$568         \$279           479         \$671         \$5552         \$166           480         \$670         \$536         \$279           481         \$669         \$520         \$166           482         \$668         \$504         \$279           483         \$667         \$488         \$166           484         \$666         \$5472         \$279           485         \$665         \$5456         \$166           486         \$664         \$5440         \$279                                                                |         |          |      |     |
| 469         \$681         \$5712         \$166           470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$674         \$5600         \$279           477         \$673         \$5584         \$166           478         \$672         \$5568         \$279           479         \$671         \$5552         \$166           480         \$670         \$536         \$279           481         \$669         \$5520         \$166           482         \$668         \$504         \$279           483         \$667         \$488         \$166           484         \$666         \$5472         \$279           485         \$665         \$5456         \$166           486         \$664         \$5440         \$279           487         \$663         \$5424         \$166                                                              |         |          |      |     |
| 470         \$680         \$5696         \$279           471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$674         \$5600         \$279           477         \$673         \$5584         \$166           478         \$672         \$5568         \$279           479         \$671         \$5552         \$166           480         \$670         \$536         \$279           481         \$669         \$520         \$166           482         \$668         \$504         \$279           483         \$667         \$488         \$166           484         \$666         \$5472         \$279           485         \$665         \$5456         \$166           486         \$664         \$5440         \$279           487         \$663         \$5424         \$166           488         \$662         \$5408         \$279                                                               |         |          |      |     |
| 471         \$679         \$5680         \$166           472         \$678         \$5664         \$279           473         \$677         \$5648         \$166           474         \$676         \$5632         \$279           475         \$675         \$5616         \$166           476         \$674         \$5600         \$279           477         \$673         \$5584         \$166           478         \$672         \$5568         \$279           479         \$671         \$5552         \$166           480         \$670         \$536         \$279           481         \$669         \$520         \$166           482         \$668         \$504         \$279           483         \$667         \$488         \$166           484         \$666         \$5472         \$279           485         \$665         \$5456         \$166           486         \$665         \$5440         \$279           487         \$663         \$5424         \$166           488         \$662         \$5408         \$279           489         \$661         \$392         \$166                                                                |         |          |      |     |
| 472         \$678         \$5664         279           473         \$677         \$5648         166           474         \$676         \$5632         279           475         \$675         \$5616         166           476         \$674         \$5600         279           477         \$673         \$5584         166           478         \$672         \$5568         279           479         \$671         \$5552         166           480         \$670         \$536         279           481         \$669         \$520         166           482         \$668         \$504         279           483         \$667         \$488         166           484         \$666         \$5472         279           485         \$665         \$5456         166           486         \$665         \$5456         166           487         \$663         \$5424         166           488         \$662         \$5408         279           489         \$661         \$392         166           490         \$660         \$376         279           491                                                                                         |         |          |      |     |
| 473         \$677         \$648         166           474         \$676         \$632         279           475         \$675         \$616         166           476         \$674         \$600         279           477         \$673         \$584         166           478         \$672         \$568         279           479         \$671         \$5552         166           480         \$670         \$536         279           481         \$669         \$5520         166           482         \$668         \$504         279           483         \$667         \$488         166           484         \$666         \$472         279           485         \$665         \$456         166           486         \$664         \$5440         279           487         \$663         \$5424         166           488         \$662         \$5408         279           489         \$661         \$3392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$                                                                                     |         |          |      |     |
| 474         \$676         \$632         279           475         \$675         \$616         166           476         \$674         \$600         279           477         \$673         \$584         166           478         \$672         \$568         279           479         \$671         \$5552         166           480         \$670         \$536         279           481         \$669         \$520         166           482         \$668         \$504         279           483         \$667         \$488         166           484         \$666         \$472         279           485         \$665         \$5456         166           486         \$664         \$5440         279           487         \$663         \$5424         166           488         \$662         \$5408         279           489         \$661         \$392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$658         \$344         279           493         \$6                                                                                     |         |          |      |     |
| 475         S675         5616         166           476         S674         5600         279           477         S673         5584         166           478         S672         5568         279           479         S671         5552         166           480         S670         5536         279           481         S669         5520         166           482         S668         5504         279           483         S667         5488         166           484         S666         5472         279           485         S665         5456         166           486         S664         5440         279           487         S663         5424         166           488         S662         5408         279           489         S661         5392         166           490         S660         5376         279           491         S659         5360         166           492         S658         5344         279           493         S657         5328         166           494         S656 <td></td> <td></td> <td>_</td> <td></td>                                                                                      |         |          | _    |     |
| 476         \$674         \$600         279           477         \$673         \$584         166           478         \$672         \$568         279           479         \$671         \$5552         166           480         \$670         \$536         279           481         \$669         \$520         166           482         \$668         \$504         279           483         \$667         \$488         166           484         \$666         \$472         279           485         \$665         \$456         166           486         \$664         \$5440         279           487         \$663         \$5424         166           488         \$662         \$5408         279           489         \$661         \$392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$658         \$344         279           493         \$657         \$328         166           494         \$656         \$312         279           495         \$65                                                                                     |         |          | _    |     |
| 477         \$673         \$584         166           478         \$672         \$568         279           479         \$671         \$552         166           480         \$670         \$536         279           481         \$669         \$520         166           482         \$668         \$504         279           483         \$667         \$5488         166           484         \$666         \$5472         279           485         \$665         \$456         166           486         \$664         \$5440         279           487         \$663         \$5424         166           488         \$662         \$5408         279           489         \$661         \$392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$658         \$344         279           493         \$657         \$328         166           494         \$656         \$5312         279           495         \$655         \$296         166           496         \$                                                                                     |         |          |      |     |
| 478         \$672         \$5568         279           479         \$671         \$5552         166           480         \$670         \$536         279           481         \$669         \$5520         166           482         \$668         \$5504         279           483         \$667         \$5488         166           484         \$666         \$5472         279           485         \$665         \$456         166           486         \$664         \$5440         279           487         \$663         \$5424         166           488         \$662         \$5408         279           489         \$661         \$392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$658         \$344         279           493         \$657         \$328         166           494         \$656         \$5312         279           495         \$655         \$5296         166           496         \$654         \$5280         279           497                                                                                          |         |          |      |     |
| 479         \$671         \$5552         \$166           480         \$670         \$536         \$279           481         \$669         \$520         \$166           482         \$668         \$5504         \$279           483         \$667         \$5488         \$166           484         \$666         \$5472         \$279           485         \$665         \$456         \$166           486         \$665         \$5456         \$166           487         \$663         \$5424         \$166           488         \$662         \$5408         \$279           489         \$661         \$392         \$166           490         \$660         \$376         \$279           491         \$659         \$360         \$166           492         \$658         \$344         \$279           493         \$657         \$328         \$166           494         \$656         \$312         \$279           495         \$655         \$296         \$166           496         \$654         \$280         \$279           497         \$653         \$264         \$166           49                                                          |         |          |      |     |
| 480         \$670         \$536         279           481         \$669         \$520         166           482         \$668         \$5504         279           483         \$667         \$5488         166           484         \$666         \$5472         279           485         \$665         \$456         166           486         \$664         \$5440         279           487         \$663         \$5424         166           488         \$662         \$5408         279           489         \$661         \$392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$658         \$344         279           493         \$657         \$328         166           494         \$656         \$312         279           495         \$655         \$296         166           496         \$654         \$280         279           497         \$653         \$264         166           498         \$652         \$248         279           499         \$                                                                                     |         | 1        | 1    | 1   |
| 481         \$669         \$520         \$166           482         \$668         \$504         \$279           483         \$667         \$5488         \$166           484         \$666         \$5472         \$279           485         \$665         \$5456         \$166           486         \$664         \$5440         \$279           487         \$663         \$5424         \$166           488         \$662         \$5408         \$279           489         \$661         \$392         \$166           490         \$660         \$376         \$279           491         \$659         \$360         \$166           492         \$658         \$344         \$279           493         \$657         \$328         \$166           494         \$656         \$312         \$279           495         \$655         \$296         \$166           496         \$654         \$280         \$279           497         \$653         \$5264 <t>\$166           498         \$652         \$5248         \$279           499         \$651         \$5232         \$166</t>                                                                      |         | 1        | _    |     |
| 482         \$668         \$5504         279           483         \$667         \$5488         166           484         \$666         \$5472         279           485         \$665         \$5456         166           486         \$665         \$5440         279           487         \$663         \$5424         166           488         \$662         \$5408         279           489         \$661         \$392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$658         \$344         279           493         \$657         \$328         166           494         \$656         \$312         279           495         \$655         \$296         166           496         \$654         \$280         279           497         \$653         \$264         166           498         \$652         \$248         279           499         \$651         \$232         166                                                                                                                                                                   |         |          |      |     |
| 483         \$667         \$488         \$166           484         \$666         \$5472         \$279           485         \$665         \$5456         \$166           486         \$664         \$5440         \$279           487         \$663         \$5424         \$166           488         \$662         \$5408         \$279           489         \$661         \$392         \$166           490         \$660         \$376         \$279           491         \$659         \$360         \$166           492         \$658         \$344         \$279           493         \$657         \$328         \$166           494         \$656         \$312         \$279           495         \$655         \$296         \$166           496         \$654         \$280         \$279           497         \$653         \$5264         \$166           498         \$652         \$5248         \$279           499         \$651         \$5232         \$166                                                                                                                                                                                      |         | 1        |      |     |
| 484         \$666         \$5472         \$279           485         \$665         \$5456         \$166           486         \$664         \$5440         \$279           487         \$663         \$5424         \$166           488         \$662         \$5408         \$279           489         \$661         \$5392         \$166           490         \$660         \$5376         \$279           491         \$659         \$360         \$166           492         \$658         \$5344         \$279           493         \$657         \$328         \$166           494         \$656         \$312         \$279           495         \$655         \$296         \$166           496         \$654         \$280         \$279           497         \$653         \$5264         \$166           498         \$652         \$5248         \$279           499         \$651         \$5232         \$166                                                                                                                                                                                                                                           |         | 1        |      |     |
| 485         \$665         \$446         166           486         \$664         \$5440         279           487         \$663         \$5424         166           488         \$662         \$5408         279           489         \$661         \$5392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$658         \$344         279           493         \$657         \$328         166           494         \$656         \$312         279           495         \$655         \$296         166           496         \$654         \$280         279           497         \$653         \$264         166           498         \$652         \$248         279           499         \$651         \$232         166                                                                                                                                                                                                                                                                                                                                        |         |          |      |     |
| 486         \$664         \$5440         279           487         \$663         \$424         166           488         \$662         \$5408         279           489         \$661         \$5392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$658         \$344         279           493         \$657         \$328         166           494         \$656         \$312         279           495         \$655         \$296         166           496         \$654         \$280         279           497         \$653         \$264         166           498         \$652         \$248         279           499         \$651         \$232         166                                                                                                                                                                                                                                                                                                                                                                                               |         | 1        |      |     |
| 487         \$663         \$5424         \$166           488         \$662         \$5408         \$279           489         \$661         \$5392         \$166           490         \$660         \$5376         \$279           491         \$659         \$360         \$166           492         \$658         \$344         \$279           493         \$657         \$328         \$166           494         \$656         \$312         \$279           495         \$655         \$296         \$166           496         \$654         \$280         \$279           497         \$653         \$5264         \$166           498         \$652         \$5248         \$279           499         \$651         \$5232         \$166                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 1        |      |     |
| 488         \$662         \$5408         279           489         \$661         \$5392         166           490         \$660         \$376         279           491         \$659         \$360         166           492         \$658         \$344         279           493         \$657         \$328         166           494         \$656         \$312         279           495         \$655         \$296         166           496         \$654         \$280         279           497         \$653         \$264         166           498         \$652         \$248         279           499         \$651         \$232         166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          | _    |     |
| 489         \$661         \$392         \$166           490         \$660         \$5376         \$279           491         \$659         \$5360         \$166           492         \$658         \$5344         \$279           493         \$657         \$328         \$166           494         \$656         \$312         \$279           495         \$655         \$5296         \$166           496         \$654         \$5280         \$279           497         \$653         \$5264         \$166           498         \$652         \$5248         \$279           499         \$651         \$5232         \$166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |          |      |     |
| 490         \$660         \$5376         279           491         \$659         \$5360         166           492         \$658         \$5344         279           493         \$657         \$5328         166           494         \$656         \$312         279           495         \$655         \$296         166           496         \$654         \$280         279           497         \$653         \$264         166           498         \$652         \$248         279           499         \$651         \$5232         166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 1        |      |     |
| 491         \$659         \$360         \$166           492         \$658         \$5344         \$279           493         \$657         \$5328         \$166           494         \$656         \$312         \$279           495         \$655         \$296         \$166           496         \$654         \$280         \$279           497         \$653         \$264         \$166           498         \$652         \$248         \$279           499         \$651         \$5232         \$166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |          |      |     |
| 492         \$658         \$5344         279           493         \$657         \$328         166           494         \$656         \$312         279           495         \$655         \$296         166           496         \$654         \$280         279           497         \$653         \$264         166           498         \$652         \$248         279           499         \$651         \$232         166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |      |     |
| 493     \$657     \$328     \$166       494     \$656     \$312     \$279       495     \$655     \$5296     \$166       496     \$654     \$5280     \$279       497     \$653     \$5264     \$166       498     \$652     \$5248     \$279       499     \$651     \$5232     \$166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 0000     | 0000 |     |
| 494     \$656     5312     279       495     \$655     5296     166       496     \$654     5280     279       497     \$653     5264     166       498     \$652     5248     279       499     \$651     5232     166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |          |      |     |
| 495         S655         5296         166           496         S654         5280         279           497         S653         5264         166           498         S652         5248         279           499         S651         5232         166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |          |      |     |
| 496       \$654       \$280       279         497       \$653       \$5264       166         498       \$652       \$5248       279         499       \$651       \$5232       166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |      |     |
| 497       \$653       \$264       \$166         498       \$652       \$5248       \$279         499       \$651       \$5232       \$166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |          |      |     |
| 498       S652       5248       279         499       S651       5232       166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 1        |      |     |
| 499         \$651         \$232         \$166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |      |     |
| Lauu Tapau Tazin 1279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500     | S650     | 5216 | 279 |



| PAD NO. | PAD NAME | Χ    | Υ   |
|---------|----------|------|-----|
| 501     | S649     | 5200 | 166 |
| 502     | S648     | 5184 | 279 |
| 503     | S647     | 5168 | 166 |
| 504     | S646     | 5152 | 279 |
| 505     | S645     | 5136 | 166 |
| 506     | S644     | 5120 | 279 |
| 507     | S643     | 5104 | 166 |
| 508     | S642     | 5088 | 279 |
| 509     | S641     | 5072 | 166 |
| 510     | S640     | 5056 | 279 |
| 511     | S639     | 5040 | 166 |
| 512     | S638     | 5024 | 279 |
| 513     | S637     | 5008 | 166 |
| 514     | S636     | 4992 | 279 |
| 515     | S635     | 4976 | 166 |
| 516     | S634     | 4960 | 279 |
| 517     | S633     | 4944 | 166 |
| 518     | S632     | 4928 | 279 |
| 519     | S631     | 4912 | 166 |
| 520     | S630     | 4896 | 279 |
| 521     | S629     | 4880 | 166 |
| 522     | S628     | 4864 | 279 |
| 523     | S627     | 4848 | 166 |
| 524     | S626     | 4832 | 279 |
| 525     | S625     | 4816 | 166 |
| 526     | S624     | 4800 | 279 |
| 527     | S623     | 4784 | 166 |
| 528     | S622     | 4768 | 279 |
| 529     | S621     | 4752 | 166 |
| 530     | S620     | 4736 | 279 |
| 531     | S619     | 4720 | 166 |
| 532     | S618     | 4704 | 279 |
| 533     | S617     | 4688 | 166 |
| 534     | S616     | 4672 | 279 |
| 535     | S615     | 4656 | 166 |
| 536     | S614     | 4640 | 279 |
| 537     | S613     | 4624 | 166 |
| 538     | S612     | 4608 | 279 |
| 539     | S611     | 4592 | 166 |
| 540     | S610     | 4576 | 279 |
| 541     | S609     | 4560 | 166 |
| 542     | S608     | 4544 | 279 |
| 543     | S607     | 4528 | 166 |
| 544     | S606     | 4512 | 279 |
| 545     | S605     | 4496 | 166 |
| 546     | S604     | 4480 | 279 |
| 547     | S603     | 4464 | 166 |
| 548     | S602     | 4448 | 279 |
| 549     | S601     | 4432 | 166 |
| 550     | S600     | 4416 | 279 |

| PAD NO. | PAD NAME | Χ    | Υ   |
|---------|----------|------|-----|
| 551     | S599     | 4400 | 166 |
| 552     | S598     | 4384 | 279 |
| 553     | S597     | 4368 | 166 |
| 554     | S596     | 4352 | 279 |
| 555     | S595     | 4336 | 166 |
| 556     | S594     | 4320 | 279 |
| 557     | S593     | 4304 | 166 |
| 558     | S592     | 4288 | 279 |
| 559     | S591     | 4272 | 166 |
| 560     | S590     | 4256 | 279 |
| 561     | S589     | 4240 | 166 |
| 562     | S588     | 4224 | 279 |
| 563     | S587     | 4208 | 166 |
| 564     | S586     | 4192 | 279 |
| 565     | S585     | 4176 | 166 |
| 566     | S584     | 4160 | 279 |
| 567     | S583     | 4144 | 166 |
| 568     | S582     | 4128 | 279 |
| 569     | S581     | 4112 | 166 |
| 570     | S580     | 4096 | 279 |
| 571     | S579     | 4080 | 166 |
| 572     | S578     | 4064 | 279 |
| 573     | S577     | 4048 | 166 |
| 574     | S576     | 4032 | 279 |
| 575     | S575     | 4016 | 166 |
| 576     | S574     | 4000 | 279 |
| 577     | S573     | 3984 | 166 |
| 578     | S572     | 3968 | 279 |
| 579     | S571     | 3952 | 166 |
| 580     | S570     | 3936 | 279 |
| 581     | S569     | 3920 | 166 |
| 582     | S568     | 3904 | 279 |
| 583     | S567     | 3888 | 166 |
| 584     | S566     | 3872 | 279 |
| 585     | S565     | 3856 | 166 |
| 586     | S564     | 3840 | 279 |
| 587     | S563     | 3824 | 166 |
| 588     | S562     | 3808 | 279 |
| 589     | S561     | 3792 | 166 |
| 590     | S560     | 3776 | 279 |
| 591     | S559     | 3760 | 166 |
| 592     | S558     | 3744 | 279 |
| 593     | S557     | 3728 | 166 |
| 594     | S556     | 3712 | 279 |
| 595     | S555     | 3696 | 166 |
| 596     | S554     | 3680 | 279 |
| 597     | S553     | 3664 | 166 |
| 598     | S552     | 3648 | 279 |
| 599     | S551     | 3632 | 166 |
| 600     | S550     | 3616 | 279 |



| PAD NO. | DAD NAME | V      | Υ   |
|---------|----------|--------|-----|
|         | PAD NAME | X 2600 |     |
| 601     | S549     | 3600   | 166 |
| 602     | S548     | 3584   | 279 |
| 603     | S547     | 3568   | 166 |
| 604     | S546     | 3552   | 279 |
| 605     | S545     | 3536   | 166 |
| 606     | S544     | 3520   | 279 |
| 607     | S543     | 3504   | 166 |
| 608     | S542     | 3488   | 279 |
| 609     | S541     | 3472   | 166 |
| 610     | S540     | 3456   | 279 |
| 611     | S539     | 3440   | 166 |
| 612     | S538     | 3424   | 279 |
| 613     | S537     | 3408   | 166 |
| 614     | S536     | 3392   | 279 |
| 615     | S535     | 3376   | 166 |
| 616     | S534     | 3360   | 279 |
| 617     | S533     | 3344   | 166 |
| 618     | S532     | 3328   | 279 |
| 619     | S531     | 3312   | 166 |
| 620     | S530     | 3296   | 279 |
| 621     | S529     | 3280   | 166 |
| 622     | S528     | 3264   | 279 |
| 623     | S527     | 3248   | 166 |
| 624     | S526     | 3232   | 279 |
| 625     | S525     | 3216   | 166 |
| 626     | S524     | 3200   | 279 |
| 627     | S523     | 3184   | 166 |
| 628     | S522     | 3168   | 279 |
| 629     | S521     | 3152   | 166 |
| 630     | S520     | 3136   | 279 |
| 631     | S519     | 3120   | 166 |
| 632     | S518     | 3104   | 279 |
| 633     | S517     | 3088   | 166 |
| 634     | S516     | 3072   | 279 |
| 635     | S515     | 3056   | 166 |
| 636     | S514     | 3040   | 279 |
| 637     | S513     | 3024   | 166 |
| 638     | S512     | 3008   | 279 |
| 639     | S511     | 2992   | 166 |
| 640     | S510     | 2976   | 279 |
| 641     | S509     | 2960   | 166 |
| 642     | S508     | 2944   | 279 |
| 643     | S507     | 2928   | 166 |
| 644     | S506     | 2912   | 279 |
| 645     | S505     | 2896   | 166 |
| 646     | S504     | 2880   | 279 |
| 647     | S503     | 2864   | 166 |
| 648     | S502     | 2848   | 279 |
| 649     | S501     | 2832   | 166 |
| 650     | S500     | 2816   | 279 |

| PAD NO. | PAD NAME | Χ    | Υ   |
|---------|----------|------|-----|
| 651     | S499     | 2800 | 166 |
| 652     | S498     | 2784 | 279 |
| 653     | S497     | 2768 | 166 |
| 654     | S496     | 2752 | 279 |
| 655     | S495     | 2736 | 166 |
| 656     | S494     | 2720 | 279 |
| 657     | S493     | 2704 | 166 |
| 658     | S492     | 2688 | 279 |
| 659     | S491     | 2672 | 166 |
| 660     | S490     | 2656 | 279 |
| 661     | S489     | 2640 | 166 |
| 662     | S488     | 2624 | 279 |
| 663     | S487     | 2608 | 166 |
| 664     | S486     | 2592 | 279 |
| 665     | S485     | 2576 | 166 |
| 666     | S484     | 2560 | 279 |
| 667     | S483     | 2544 | 166 |
| 668     | S482     | 2528 | 279 |
| 669     | S481     | 2512 | 166 |
| 670     | S480     | 2496 | 279 |
| 671     | S479     | 2480 | 166 |
| 672     | S478     | 2464 | 279 |
| 673     | S477     | 2448 | 166 |
| 674     | S476     | 2432 | 279 |
| 675     | S475     | 2416 | 166 |
| 676     | S474     | 2400 | 279 |
| 677     | S473     | 2384 | 166 |
| 678     | S472     | 2368 | 279 |
| 679     | S471     | 2352 | 166 |
| 680     | S470     | 2336 | 279 |
| 681     | S469     | 2320 | 166 |
| 682     | S468     | 2304 | 279 |
| 683     | S467     | 2288 | 166 |
| 684     | S466     | 2272 | 279 |
| 685     | S465     | 2256 | 166 |
| 686     | S464     | 2240 | 279 |
| 687     | S463     | 2224 | 166 |
| 688     | S462     | 2208 | 279 |
| 689     | S461     | 2192 | 166 |
| 690     | S460     | 2176 | 279 |
| 691     | S459     | 2160 | 166 |
| 692     | S458     | 2144 | 279 |
| 693     | S457     | 2128 | 166 |
| 694     | S456     | 2112 | 279 |
| 695     | S455     | 2096 | 166 |
| 696     | S454     | 2080 | 279 |
| 697     | S453     | 2064 | 166 |
| 698     | S452     | 2048 | 279 |
| 699     | S451     | 2032 | 166 |
| 700     | S450     | 2016 | 279 |



| DAD NO  | DAD NAME | V    | Υ          |
|---------|----------|------|------------|
| PAD NO. | PAD NAME | X    |            |
| 701     | S449     | 2000 | 166        |
| 702     | S448     | 1984 | 279        |
| 703     | S447     | 1968 | 166        |
| 704     | S446     | 1952 | 279        |
| 705     | S445     | 1936 | 166        |
| 706     | S444     | 1920 | 279        |
| 707     | S443     | 1904 | 166        |
| 708     | S442     | 1888 | 279        |
| 709     | S441     | 1872 | 166        |
| 710     | S440     | 1856 | 279        |
| 711     | S439     | 1840 | 166        |
| 712     | S438     | 1824 | 279        |
| 713     | S437     | 1808 | 166        |
| 714     | S436     | 1792 | 279        |
| 715     | S435     | 1776 | 166        |
| 716     | S434     | 1760 | 279        |
| 717     | S433     | 1744 | 166        |
| 718     | S432     | 1728 | 279        |
| 719     | S431     | 1712 | 166        |
| 720     | S430     | 1696 | 279        |
| 721     | S429     | 1680 | 166        |
| 722     | S428     | 1664 | 279        |
| 723     | S427     | 1648 | 166        |
| 724     | S426     | 1632 | 279        |
| 725     | S425     | 1616 | 166        |
| 726     | S424     | 1600 | 279        |
| 727     | S423     | 1584 | 166        |
| 728     | S422     | 1568 | 279        |
| 729     | S421     | 1552 | 166        |
| 730     | S420     | 1536 | 279        |
| 731     | S419     | 1520 | 166        |
| 732     | S418     | 1504 | 279        |
| 733     | S417     | 1488 | 166        |
| 734     | S416     | 1472 | 279        |
| 735     | S415     | 1456 | 166        |
| 736     | S414     | 1440 | 279        |
| 737     | S413     | 1424 | 166        |
| 738     | S412     | 1408 | 279        |
| 739     | S411     | 1392 | 166        |
| 740     | S410     | 1376 | 279        |
| 741     | S409     | 1360 | 166        |
| 742     | S408     | 1344 | 279        |
| 743     | S407     | 1328 | 166        |
| 744     | S406     | 1312 | 279        |
| 745     | S405     | 1296 | 166        |
| 746     | S404     | 1280 | 279        |
| 747     | S403     | 1264 | 166        |
|         | S403     | 1248 |            |
| 748     | S402     | 1232 | 279<br>166 |
| 749     |          |      |            |
| 750     | S400     | 1216 | 279        |

| PAD NO. | PAD NAME | Χ    | Υ   |
|---------|----------|------|-----|
| 751     | S399     | 1200 | 166 |
| 752     | S398     | 1184 | 279 |
| 753     | S397     | 1168 | 166 |
| 754     | S396     | 1152 | 279 |
| 755     | S395     | 1136 | 166 |
| 756     | S394     | 1120 | 279 |
| 757     | S393     | 1104 | 166 |
| 758     | S392     | 1088 | 279 |
| 759     | S391     | 1072 | 166 |
| 760     | S390     | 1056 | 279 |
| 761     | S389     | 1040 | 166 |
| 762     | S388     | 1024 | 279 |
| 763     | S387     | 1008 | 166 |
| 764     | S386     | 992  | 279 |
| 765     | S385     | 976  | 166 |
| 766     | S384     | 960  | 279 |
| 767     | S383     | 944  | 166 |
| 768     | S382     | 928  | 279 |
| 769     | S381     | 912  | 166 |
| 770     | S380     | 896  | 279 |
| 771     | S379     | 880  | 166 |
| 772     | S378     | 864  | 279 |
| 773     | S377     | 848  | 166 |
| 774     | S376     | 832  | 279 |
| 775     | S375     | 816  | 166 |
| 776     | S374     | 800  | 279 |
| 777     | S373     | 784  | 166 |
| 778     | S372     | 768  | 279 |
| 779     | S371     | 752  | 166 |
| 780     | S370     | 736  | 279 |
| 781     | S369     | 720  | 166 |
| 782     | S368     | 704  | 279 |
| 783     | S367     | 688  | 166 |
| 784     | S366     | 672  | 279 |
| 785     | S365     | 656  | 166 |
| 786     | S364     | 640  | 279 |
| 787     | S363     | 624  | 166 |
| 788     | S362     | 608  | 279 |
| 789     | S361     | 592  | 166 |
| 790     | TESTO8   | 576  | 279 |
| 791     | TESTO9   | -576 | 166 |
| 792     | S360     | -592 | 279 |
| 793     | S359     | -608 | 166 |
| 794     | S358     | -624 | 279 |
| 795     | S357     | -640 | 166 |
| 796     | S356     | -656 | 279 |
| 797     | S355     | -672 | 166 |
| 798     | S354     | -688 | 279 |
| 799     | S353     | -704 | 166 |
| 800     | S352     | -720 | 279 |



| PAD NO. | PAD NAME | Χ     | Υ   |
|---------|----------|-------|-----|
| 801     | S351     | -736  | 166 |
| 802     | S350     | -752  | 279 |
| 803     | S349     | -768  | 166 |
| 804     | S348     | -784  | 279 |
| 805     | S347     | -800  | 166 |
| 806     | S346     | -816  | 279 |
| 807     | S345     | -832  | 166 |
| 808     | S344     | -848  | 279 |
| 809     | S343     | -864  | 166 |
| 810     | S342     | -880  | 279 |
| 811     | S341     | -896  | 166 |
| 812     | S340     | -912  | 279 |
| 813     | S339     | -928  | 166 |
| 814     | S338     | -944  | 279 |
| 815     | S337     | -960  | 166 |
| 816     | S336     | -976  | 279 |
| 817     | S335     | -992  | 166 |
| 818     | S334     | -1008 | 279 |
| 819     | S333     | -1024 | 166 |
| 820     | S332     | -1040 | 279 |
| 821     | S331     | -1056 | 166 |
| 822     | S330     | -1072 | 279 |
| 823     | S329     | -1088 | 166 |
| 824     | S328     | -1104 | 279 |
| 825     | S327     | -1120 | 166 |
| 826     | S326     | -1136 | 279 |
| 827     | S325     | -1152 | 166 |
| 828     | S324     | -1168 | 279 |
| 829     | S323     | -1184 | 166 |
| 830     | S322     | -1200 | 279 |
| 831     | S321     | -1216 | 166 |
| 832     | S320     | -1232 | 279 |
| 833     | S319     | -1248 | 166 |
| 834     | S318     | -1264 | 279 |
| 835     | S317     | -1280 | 166 |
| 836     | S316     | -1296 | 279 |
| 837     | S315     | -1312 | 166 |
| 838     | S314     | -1328 | 279 |
| 839     | S313     | -1344 | 166 |
| 840     | S312     | -1360 | 279 |
| 841     | S311     | -1376 | 166 |
| 842     | S310     | -1392 | 279 |
| 843     | S309     | -1408 | 166 |
| 844     | S308     | -1424 | 279 |
| 845     | S307     | -1440 | 166 |
| 846     | S306     | -1456 | 279 |
| 847     | S305     | -1472 | 166 |
| 848     | S304     | -1488 | 279 |
| 849     | S303     | -1504 | 166 |
| 850     | S302     | -1520 | 279 |

| PAD NO. | PAD NAME | Χ     | Υ   |
|---------|----------|-------|-----|
| 851     | S301     | -1536 | 166 |
| 852     | S300     | -1552 | 279 |
| 853     | S299     | -1568 | 166 |
| 854     | S298     | -1584 | 279 |
| 855     | S297     | -1600 | 166 |
| 856     | S296     | -1616 | 279 |
| 857     | S295     | -1632 | 166 |
| 858     | S294     | -1648 | 279 |
| 859     | S293     | -1664 | 166 |
| 860     | S292     | -1680 | 279 |
| 861     | S291     | -1696 | 166 |
| 862     | S290     | -1712 | 279 |
| 863     | S289     | -1728 | 166 |
| 864     | S288     | -1744 | 279 |
| 865     | S287     | -1760 | 166 |
| 866     | S286     | -1776 | 279 |
| 867     | S285     | -1792 | 166 |
| 868     | S284     | -1808 | 279 |
| 869     | S283     | -1824 | 166 |
| 870     | S282     | -1840 | 279 |
| 871     | S281     | -1856 | 166 |
| 872     | S280     | -1872 | 279 |
| 873     | S279     | -1888 | 166 |
| 874     | S278     | -1904 | 279 |
| 875     | S277     | -1920 | 166 |
| 876     | S276     | -1936 | 279 |
| 877     | S275     | -1952 | 166 |
| 878     | S274     | -1968 | 279 |
| 879     | S273     | -1984 | 166 |
| 880     | S272     | -2000 | 279 |
| 881     | S271     | -2016 | 166 |
| 882     | S270     | -2032 | 279 |
| 883     | S269     | -2048 | 166 |
| 884     | S268     | -2064 | 279 |
| 885     | S267     | -2080 | 166 |
| 886     | S266     | -2096 | 279 |
| 887     | S265     | -2112 | 166 |
| 888     | S264     | -2128 | 279 |
| 889     | S263     | -2144 | 166 |
| 890     | S262     | -2160 | 279 |
| 891     | S261     | -2176 | 166 |
| 892     | S260     | -2192 | 279 |
| 893     | S259     | -2208 | 166 |
| 894     | S258     | -2224 | 279 |
| 895     | S257     | -2240 | 166 |
| 896     | S256     | -2256 | 279 |
| 897     | S255     | -2272 | 166 |
| 898     | S254     | -2288 | 279 |
| 899     | S253     | -2304 | 166 |
| 900     | S252     | -2320 | 279 |



| PAD NO. | PAD NAME | Χ              | Υ          |
|---------|----------|----------------|------------|
| 901     | S251     | -2336          | 166        |
| 902     | S250     | -2352          | 279        |
| 903     | S249     | -2368          | 166        |
| 903     | S248     | -2384          | 279        |
| 905     | S247     | -2400          | 166        |
| 906     | S246     | -2416          | 279        |
| 907     | S245     | -2432          | 166        |
| 908     | S244     | -2432<br>-2448 | 279        |
| 909     | S244     | -2464          | 166        |
| 910     | S242     | -2480          | 279        |
| 911     | S241     | -2496          |            |
| 912     | S240     | -2490<br>-2512 | 166<br>279 |
| 912     | S239     | -2512<br>-2528 |            |
|         |          |                | 166        |
| 914     | S238     | -2544          | 279        |
| 915     | S237     | -2560<br>-2576 | 166        |
| 916     | S236     | -2576<br>-2502 | 279        |
| 917     | S235     | -2592<br>-2609 | 166        |
| 918     | S234     | -2608          | 279        |
| 919     | S233     | -2624          | 166        |
| 920     | S232     | -2640          | 279        |
| 921     | S231     | -2656          | 166        |
| 922     | S230     | -2672          | 279        |
| 923     | S229     | -2688          | 166        |
| 924     | S228     | -2704          | 279        |
| 925     | S227     | -2720          | 166        |
| 926     | S226     | -2736          | 279        |
| 927     | S225     | -2752          | 166        |
| 928     | S224     | -2768          | 279        |
| 929     | S223     | -2784          | 166        |
| 930     | S222     | -2800          | 279        |
| 931     | S221     | -2816          | 166        |
| 932     | S220     | -2832          | 279        |
| 933     | S219     | -2848          | 166        |
| 934     | S218     | -2864          | 279        |
| 935     | S217     | -2880          | 166        |
| 936     | S216     | -2896          | 279        |
| 937     | S215     | -2912          | 166        |
| 938     | S214     | -2928          | 279        |
| 939     | S213     | -2944          | 166        |
| 940     | S212     | -2960          | 279        |
| 941     | S211     | -2976          | 166        |
| 942     | S210     | -2992          | 279        |
| 943     | S209     | -3008          | 166        |
| 944     | S208     | -3024          | 279        |
| 945     | S207     | -3040          | 166        |
| 946     | S206     | -3056          | 279        |
| 947     | S205     | -3072          | 166        |
| 948     | S204     | -3088          | 279        |
| 949     | S203     | -3104          | 166        |
| 950     | S202     | -3120          | 279        |

| PAD NO. | PAD NAME | Х     | Υ   |
|---------|----------|-------|-----|
| 951     | S201     | -3136 | 166 |
| 952     | S200     | -3152 | 279 |
| 953     | S199     | -3168 | 166 |
| 954     | S198     | -3184 | 279 |
| 955     | S197     | -3200 | 166 |
| 956     | S196     | -3216 | 279 |
| 957     | S195     | -3232 | 166 |
| 958     | S194     | -3248 | 279 |
| 959     | S193     | -3264 | 166 |
| 960     | S192     | -3280 | 279 |
| 961     | S191     | -3296 | 166 |
| 962     | S190     | -3312 | 279 |
| 963     | S189     | -3328 | 166 |
| 964     | S188     | -3344 | 279 |
| 965     | S187     | -3360 | 166 |
| 966     | S186     | -3376 | 279 |
| 967     | S185     | -3392 | 166 |
| 968     | S184     | -3408 | 279 |
| 969     | S183     | -3424 | 166 |
| 970     | S182     | -3440 | 279 |
| 971     | S181     | -3456 | 166 |
| 972     | S180     | -3472 | 279 |
| 973     | S179     | -3488 | 166 |
| 974     | S178     | -3504 | 279 |
| 975     | S177     | -3520 | 166 |
| 976     | S176     | -3536 | 279 |
| 977     | S175     | -3552 | 166 |
| 978     | S174     | -3568 | 279 |
| 979     | S173     | -3584 | 166 |
| 980     | S172     | -3600 | 279 |
| 981     | S172     | -3616 | 166 |
| 982     | S170     | -3632 | 279 |
| 983     | S169     | -3648 | 166 |
| 984     | S168     | -3664 | 279 |
| 985     | S167     | -3680 | 166 |
| 986     | S166     | -3696 | 279 |
| 987     | S165     | -3712 | 166 |
| 988     | S164     | -3728 | 279 |
| 989     | S163     | -3744 | 166 |
| 990     | S162     | -3744 | 279 |
| 991     | S161     | -3776 | 166 |
| 992     | S160     | -3792 | 279 |
| 993     | S159     | -3808 | 166 |
| 994     | S158     | -3824 | 279 |
| 995     | S156     | -3840 | 166 |
| 996     | S157     | -3856 | 279 |
| 997     | S155     | -3872 | 166 |
| 998     | S155     | -3888 | 279 |
| 999     | S153     | -3904 | 166 |
| 1000    | S152     | -3920 | 279 |



| PAD NO. | PAD NAME | Х     | Υ   |
|---------|----------|-------|-----|
| 1001    | S151     | -3936 | 166 |
| 1002    | S150     | -3952 | 279 |
| 1003    | S149     | -3968 | 166 |
| 1004    | S148     | -3984 | 279 |
| 1005    | S147     | -4000 | 166 |
| 1006    | S146     | -4016 | 279 |
| 1007    | S145     | -4032 | 166 |
| 1008    | S144     | -4048 | 279 |
| 1009    | S143     | -4064 | 166 |
| 1010    | S142     | -4080 | 279 |
| 1011    | S141     | -4096 | 166 |
| 1012    | S140     | -4112 | 279 |
| 1013    | S139     | -4128 | 166 |
| 1014    | S138     | -4144 | 279 |
| 1015    | S137     | -4160 | 166 |
| 1016    | S136     | -4176 | 279 |
| 1017    | S135     | -4192 | 166 |
| 1017    | S134     | -4208 | 279 |
| 1019    | S133     | -4224 | 166 |
| 1020    | S132     | -4240 | 279 |
| 1021    | S131     | -4256 | 166 |
| 1022    | S130     | -4272 | 279 |
| 1023    | S129     | -4288 | 166 |
| 1023    | S128     | -4304 | 279 |
| 1025    | S127     | -4320 | 166 |
| 1025    | S126     | -4336 | 279 |
| 1027    | S125     | -4352 | 166 |
| 1028    | S124     | -4368 | 279 |
| 1029    | S123     | -4384 | 166 |
| 1030    | S122     | -4400 | 279 |
| 1031    | S121     | -4416 | 166 |
| 1032    | S120     | -4432 | 279 |
| 1033    | S119     | -4448 | 166 |
| 1034    | S118     | -4464 | 279 |
| 1035    | S117     | -4480 | 166 |
| 1036    | S116     | -4496 | 279 |
| 1037    | S115     | -4512 | 166 |
| 1038    | S114     | -4528 | 279 |
| 1039    | S113     | -4544 | 166 |
| 1040    | S112     | -4560 | 279 |
| 1041    | S111     | -4576 | 166 |
| 1042    | S110     | -4592 | 279 |
| 1043    | S109     | -4608 | 166 |
| 1044    | S108     | -4624 | 279 |
| 1044    | S107     | -4640 | 166 |
| 1046    | S107     | -4656 | 279 |
| 1047    | S105     | -4672 | 166 |
| 1048    | S104     | -4688 | 279 |
| 1049    | S103     | -4704 | 166 |
| 1050    | S102     | -4720 | 279 |
| . , , , |          | 0     | 1.0 |

| Χ     | Υ   | PAD NO. | PAD NAME | Χ     | Υ   |
|-------|-----|---------|----------|-------|-----|
| -3936 | 166 | 1051    | S101     | -4736 | 166 |
| -3952 | 279 | 1052    | S100     | -4752 | 279 |
| -3968 | 166 | 1053    | S99      | -4768 | 166 |
| -3984 | 279 | 1054    | S98      | -4784 | 279 |
| -4000 | 166 | 1055    | S97      | -4800 | 166 |
| -4016 | 279 | 1056    | S96      | -4816 | 279 |
| -4032 | 166 | 1057    | S95      | -4832 | 166 |
| -4048 | 279 | 1058    | S94      | -4848 | 279 |
| -4064 | 166 | 1059    | S93      | -4864 | 166 |
| -4080 | 279 | 1060    | S92      | -4880 | 279 |
| -4096 | 166 | 1061    | S91      | -4896 | 166 |
| -4112 | 279 | 1062    | S90      | -4912 | 279 |
| -4128 | 166 | 1063    | S89      | -4928 | 166 |
| -4144 | 279 | 1064    | S88      | -4944 | 279 |
| -4160 | 166 | 1065    | S87      | -4960 | 166 |
| -4176 | 279 | 1066    | S86      | -4976 | 279 |
| -4192 | 166 | 1067    | S85      | -4992 | 166 |
| -4208 | 279 | 1068    | S84      | -5008 | 279 |
| -4224 | 166 | 1069    | S83      | -5024 | 166 |
| -4240 | 279 | 1070    | S82      | -5040 | 279 |
| -4256 | 166 | 1071    | S81      | -5056 | 166 |
| -4272 | 279 | 1072    | S80      | -5072 | 279 |
| -4288 | 166 | 1073    | S79      | -5088 | 166 |
| -4304 | 279 | 1074    | S78      | -5104 | 279 |
| -4320 | 166 | 1075    | S77      | -5120 | 166 |
| -4336 | 279 | 1076    | S76      | -5136 | 279 |
| -4352 | 166 | 1077    | S75      | -5152 | 166 |
| -4368 | 279 | 1078    | S74      | -5168 | 279 |
| -4384 | 166 | 1079    | S73      | -5184 | 166 |
| -4400 | 279 | 1080    | S72      | -5200 | 279 |
| -4416 | 166 | 1081    | S71      | -5216 | 166 |
| -4432 | 279 | 1082    | S70      | -5232 | 279 |
| -4448 | 166 | 1083    | S69      | -5248 | 166 |
| -4464 | 279 | 1084    | S68      | -5264 | 279 |
| -4480 | 166 | 1085    | S67      | -5280 | 166 |
| -4496 | 279 | 1086    | S66      | -5296 | 279 |
| -4512 | 166 | 1087    | S65      | -5312 | 166 |
| -4528 | 279 | 1088    | S64      | -5328 | 279 |
| -4544 | 166 | 1089    | S63      | -5344 | 166 |
| -4560 | 279 | 1090    | S62      | -5360 | 279 |
| -4576 | 166 | 1091    | S61      | -5376 | 166 |
| -4592 | 279 | 1092    | S60      | -5392 | 279 |
| -4608 | 166 | 1093    | S59      | -5408 | 166 |
| -4624 | 279 | 1094    | S58      | -5424 | 279 |
| -4640 | 166 | 1095    | S57      | -5440 | 166 |
| -4656 | 279 | 1096    | S56      | -5456 | 279 |
| -4672 | 166 | 1097    | S55      | -5472 | 166 |
| -4688 | 279 | 1098    | S54      | -5488 | 279 |
| -4704 | 166 | 1099    | S53      | -5504 | 166 |
| -4720 | 279 | 1100    | S52      | -5520 | 279 |



| PAD NO. | PAD NAME | Χ     | Υ   |
|---------|----------|-------|-----|
| 1101    | S51      | -5536 | 166 |
| 1102    | S50      | -5552 | 279 |
| 1103    | S49      | -5568 | 166 |
| 1104    | S48      | -5584 | 279 |
| 1105    | S47      | -5600 | 166 |
| 1106    | S46      | -5616 | 279 |
| 1107    | S45      | -5632 | 166 |
| 1108    | S44      | -5648 | 279 |
| 1109    | S43      | -5664 | 166 |
| 1110    | S42      | -5680 | 279 |
| 1111    | S41      | -5696 | 166 |
| 1112    | S40      | -5712 | 279 |
| 1113    | S39      | -5728 | 166 |
| 1114    | S38      | -5744 | 279 |
| 1115    | S37      | -5760 | 166 |
| 1116    | S36      | -5776 | 279 |
| 1117    | S35      | -5792 | 166 |
| 1118    | S34      | -5808 | 279 |
| 1119    | S33      | -5824 | 166 |
| 1120    | S32      | -5840 | 279 |
| 1121    | S31      | -5856 | 166 |
| 1122    | S30      | -5872 | 279 |
| 1123    | S29      | -5888 | 166 |
| 1124    | S28      | -5904 | 279 |
| 1125    | S27      | -5920 | 166 |
| 1126    | S26      | -5936 | 279 |
| 1127    | S25      | -5952 | 166 |
| 1128    | S24      | -5968 | 279 |
| 1129    | S23      | -5984 | 166 |
| 1130    | S22      | -6000 | 279 |
| 1131    | S21      | -6016 | 166 |
| 1132    | S20      | -6032 | 279 |
| 1133    | S19      | -6048 | 166 |
| 1134    | S18      | -6064 | 279 |
| 1135    | S17      | -6080 | 166 |
| 1136    | S16      | -6096 | 279 |
| 1137    | S15      | -6112 | 166 |
| 1138    | S14      | -6128 | 279 |
| 1139    | S13      | -6144 | 166 |
| 1140    | S12      | -6160 | 279 |
| 1141    | S11      | -6176 | 166 |
| 1142    | S10      | -6192 | 279 |
| 1143    | S9       | -6208 | 166 |
| 1144    | S8       | -6224 | 279 |
| 1145    | S7       | -6240 | 166 |
| 1146    | S6       | -6256 | 279 |
| 1147    | S5       | -6272 | 166 |
| 1148    | S4       | -6288 | 279 |
| 1149    | S3       | -6304 | 166 |
| 1150    | S2       | -6320 | 279 |

| Χ              | Υ   | PAD NO. | PAD NAME | Χ              | Υ  |
|----------------|-----|---------|----------|----------------|----|
| -5536          | 166 | 1151    | S1       | -6336          | 16 |
| -5552          | 279 | 1152    | TESTO10  | -6352          | 27 |
| -5568          | 166 | 1153    | TESTO11  | -6368          | 16 |
| -5584          | 279 | 1154    | TESTO12  | -6560          | 27 |
| -5600          | 166 | 1155    | VGLDMY3  | -6576          | 16 |
| -5616          | 279 | 1156    | G320     | -6592          | 2  |
| -5632          | 166 | 1157    | G318     | -6608          | 16 |
| -5648          | 279 | 1158    | G316     | -6624          | 2  |
| -5664          | 166 | 1159    | G314     | -6640          | 16 |
| -5680          | 279 | 1160    | G312     | -6656          | 2  |
| -5696          | 166 | 1161    | G310     | -6672          | 16 |
| -5712          | 279 | 1162    | G308     | -6688          | 2  |
| -5728          | 166 | 1163    | G306     | -6704          | 10 |
| -5744          | 279 | 1164    | G304     | -6720          | 2  |
| -5760          | 166 | 1165    | G302     | -6736          | 1  |
|                | 279 | 1166    | G302     | -6752          | 2  |
| -5776<br>-5792 | 166 | 1167    | G298     | -6752<br>-6768 | 1  |
| -5792<br>-5808 | 279 | 1168    | G296     | -6784          | 2  |
| -5808<br>-5824 | +   |         |          |                | 1  |
|                | 166 | 1169    | G294     | -6800<br>-6816 | 1  |
| -5840<br>-5856 | 279 | 1170    | G292     | -6816<br>-6833 | 2  |
|                | 166 | 1171    | G290     | -6832<br>-6848 | 1  |
| -5872          | 279 | 1172    | G288     | -6848          | 2  |
| -5888          | 166 | 1173    | G286     | -6864          | 1  |
| -5904          | 279 | 1174    | G284     | -6880          | 2  |
| -5920          | 166 | 1175    | G282     | -6896          | 1  |
| -5936<br>-5052 | 279 | 1176    | G280     | -6912          | 2  |
| -5952          | 166 | 1177    | G278     | -6928          | 1  |
| -5968          | 279 | 1178    | G276     | -6944          | 2  |
| -5984          | 166 | 1179    | G274     | -6960          | 1  |
| -6000          | 279 | 1180    | G272     | -6976          | 2  |
| <u>-6016</u>   | 166 | 1181    | G270     | -6992          | 1  |
| -6032          | 279 | 1182    | G268     | -7008          | 2  |
| -6048          | 166 | 1183    | G266     | -7024          | 1  |
| -6064          | 279 | 1184    | G264     | -7040          | 2  |
| -6080          | 166 | 1185    | G262     | -7056          | 1  |
| -6096          | 279 | 1186    | G260     | -7072          | 2  |
| -6112          | 166 | 1187    | G258     | -7088          | 1  |
| -6128          | 279 | 1188    | G256     | -7104          | 2  |
| -6144          | 166 | 1189    | G254     | -7120          | 1  |
| -6160          | 279 | 1190    | G252     | -7136          | 2  |
| -6176          | 166 | 1191    | G250     | -7152          | 1  |
| -6192          | 279 | 1192    | G248     | -7168          | 2  |
| -6208          | 166 | 1193    | G246     | -7184          | 1  |
| -6224          | 279 | 1194    | G244     | -7200          | 2  |
| -6240          | 166 | 1195    | G242     | -7216          | 1  |
| -6256          | 279 | 1196    | G240     | -7232          | 2  |
| -6272          | 166 | 1197    | G238     | -7248          | 1  |
| -6288          | 279 | 1198    | G236     | -7264          | 2  |
| -6304          | 166 | 1199    | G234     | -7280          | 1  |
| -6320          | 279 | 1200    | G232     | -7296          | 2  |



| PAD NO. | PAD NAME | Χ     | Υ   |
|---------|----------|-------|-----|
| 1201    | G230     | -7312 | 166 |
| 1202    | G228     | -7328 | 279 |
| 1203    | G226     | -7344 | 166 |
| 1204    | G224     | -7360 | 279 |
| 1205    | G222     | -7376 | 166 |
| 1206    | G220     | -7392 | 279 |
| 1207    | G218     | -7408 | 166 |
| 1208    | G216     | -7424 | 279 |
| 1209    | G214     | -7440 | 166 |
| 1210    | G212     | -7456 | 279 |
| 1211    | G210     | -7472 | 166 |
| 1212    | G208     | -7488 | 279 |
| 1213    | G206     | -7504 | 166 |
| 1214    | G204     | -7520 | 279 |
| 1215    | G202     | -7536 | 166 |
| 1216    | G200     | -7552 | 279 |
| 1217    | G198     | -7568 | 166 |
| 1218    | G196     | -7584 | 279 |
| 1219    | G194     | -7600 | 166 |
| 1220    | G192     | -7616 | 279 |
| 1221    | G190     | -7632 | 166 |
| 1222    | G188     | -7648 | 279 |
| 1223    | G186     | -7664 | 166 |
| 1224    | G184     | -7680 | 279 |
| 1225    | G182     | -7696 | 166 |
| 1226    | G180     | -7712 | 279 |
| 1227    | G178     | -7728 | 166 |
| 1228    | G176     | -7744 | 279 |
| 1229    | G174     | -7760 | 166 |
| 1230    | G172     | -7776 | 279 |
| 1231    | G170     | -7792 | 166 |
| 1232    | G168     | -7808 | 279 |
| 1233    | G166     | -7824 | 166 |
| 1234    | G164     | -7840 | 279 |
| 1235    | G162     | -7856 | 166 |
| 1236    | G160     | -7872 | 279 |
| 1237    | G158     | -7888 | 166 |
| 1238    | G156     | -7904 | 279 |
| 1239    | G154     | -7920 | 166 |
| 1240    | G152     | -7936 | 279 |
| 1241    | G150     | -7952 | 166 |
| 1242    | G148     | -7968 | 279 |
| 1243    | G146     | -7984 | 166 |
| 1244    | G144     | -8000 | 279 |
| 1245    | G142     | -8016 | 166 |
| 1246    | G140     | -8032 | 279 |
| 1247    | G138     | -8048 | 166 |
| 1248    | G136     | -8064 | 279 |
| 1249    | G134     | -8080 | 166 |
| 1250    | G132     | -8096 | 279 |

|         |          | _     |     |
|---------|----------|-------|-----|
| PAD NO. | PAD NAME | Χ     | Υ   |
| 1251    | G130     | -8112 | 166 |
| 1252    | G128     | -8128 | 279 |
| 1253    | G126     | -8144 | 166 |
| 1254    | G124     | -8160 | 279 |
| 1255    | G122     | -8176 | 166 |
| 1256    | G120     | -8192 | 279 |
| 1257    | G118     | -8208 | 166 |
| 1258    | G116     | -8224 | 279 |
| 1259    | G114     | -8240 | 166 |
| 1260    | G112     | -8256 | 279 |
| 1261    | G110     | -8272 | 166 |
| 1262    | G108     | -8288 | 279 |
| 1263    | G106     | -8304 | 166 |
| 1264    | G104     | -8320 | 279 |
| 1265    | G102     | -8336 | 166 |
| 1266    | G100     | -8352 | 279 |
| 1267    | G98      | -8368 | 166 |
| 1268    | G96      | -8384 | 279 |
| 1269    | G94      | -8400 | 166 |
| 1270    | G92      | -8416 | 279 |
| 1271    | G90      | -8432 | 166 |
| 1272    | G88      | -8448 | 279 |
| 1273    | G86      | -8464 | 166 |
| 1274    | G84      | -8480 | 279 |
| 1275    | G82      | -8496 | 166 |
| 1276    | G80      | -8512 | 279 |
| 1277    | G78      | -8528 | 166 |
| 1278    | G76      | -8544 | 279 |
| 1279    | G74      | -8560 | 166 |
| 1280    | G72      | -8576 | 279 |
| 1281    | G70      | -8592 | 166 |
| 1282    | G68      | -8608 | 279 |
| 1283    | G66      | -8624 | 166 |
| 1284    | G64      | -8640 | 279 |
| 1285    | G62      | -8656 | 166 |
| 1286    | G60      | -8672 | 279 |
| 1287    | G58      | -8688 | 166 |
| 1288    | G56      | -8704 | 279 |
| 1289    | G54      | -8720 | 166 |
| 1290    | G52      | -8736 | 279 |
| 1291    | G50      | -8752 | 166 |
| 1292    | G48      | -8768 | 279 |
| 1293    | G46      | -8784 | 166 |
| 1294    | G44      | -8800 | 279 |
| 1295    | G42      | -8816 | 166 |
| 1296    | G40      | -8832 | 279 |
| 1297    | G38      | -8848 | 166 |
| 1298    | G36      | -8864 | 279 |
| 1299    | G34      | -8880 | 166 |
| 1300    | G32      | -8896 | 279 |



| PAD NO. | PAD NAME | Χ     | Υ   |
|---------|----------|-------|-----|
| 1301    | G30      | -8912 | 166 |
| 1302    | G28      | -8928 | 279 |
| 1303    | G26      | -8944 | 166 |
| 1304    | G24      | -8960 | 279 |
| 1305    | G22      | -8976 | 166 |
| 1306    | G20      | -8992 | 279 |
| 1307    | G18      | -9008 | 166 |
| 1308    | G16      | -9024 | 279 |
| 1309    | G14      | -9040 | 166 |
| 1310    | G12      | -9056 | 279 |
| 1311    | G10      | -9072 | 166 |
| 1312    | G8       | -9088 | 279 |
| 1313    | G6       | -9104 | 166 |
| 1314    | G4       | -9120 | 279 |
| 1315    | G2       | -9136 | 166 |
| 1316    | VGLDUMY4 | -9152 | 279 |
| 1317    | DUMMYR5  | -9168 | 166 |
| 1318    | DUMMYR6  | -9184 | 279 |
| 1319    | TESTO13  | -9200 | 166 |
| 1320    | TESTO14  | -9216 | 279 |

| Alignment mark | Χ     | Υ    |
|----------------|-------|------|
| 1−a            | -9266 | -251 |
| 1-b            | 9266  | -251 |



# **Bump Arrangement**





## **Block Function**

#### System Interface

The LGDP4535 supports 2-system high-speed interfaces: 80-system high-speed interfaces to 8-, 9-, 16-, 18-bit parallel ports and a Serial Peripheral Interface (SPI). The interface mode is selected by setting the IM[3:0] pins.

The LGDP4535 has a 16-bit index register (IR); an 18-bit write-data register (WDR); and an 18-bit read-data register (RDR). The IR is the register to store index information from control registers and the internal GRAM. The WDR is the register to temporarily store data to be written to control registers and the internal GRAM. The RDR is the register to temporarily store data read from the GRAM. Data from the MPU to be written to the internal GRAM are first written to the WDR and then automatically written to the internal GRAM in internal operation. Data are read via the RDR from the internal GRAM. Therefore, invalid data are read out to the data bus when the LGDP4535 read the first data from the internal GRAM. Valid data are read out after the LGDP4535 performs the second read operation.

Instructions are written consecutively as the instruction execution time except starting oscillator takes 0 clock cycle.

| 80-system | m I/F |    | Function                                                |
|-----------|-------|----|---------------------------------------------------------|
| WR*       | RD*   | RS |                                                         |
| 0 1 0     |       |    | Write an index to IR                                    |
| 1         | 1 0 0 |    | Read an internal status                                 |
| 0         | 1     | 1  | Write to control registers or the internal GRAM via WDR |
| 1         | 0     | 1  | Read from the internal GRAM via RDR                     |

Table 6 Register Selection (80-system 8-/9-/16-/18-bit Parallel Interface)

**Table 7 Register Selection (Serial Peripheral Interface)** 

| Start Byte (SPI) |  | Function                                                   |
|------------------|--|------------------------------------------------------------|
| R/W RS           |  |                                                            |
| 0 0              |  | Write an index to IR                                       |
| 1 0              |  | Read an internal status                                    |
| 0 1              |  | Write into control registers and the internal GRAM via WDR |
| 1 1              |  | Read from the internal GRAM via RDR                        |

## External Display Interface

The LGDP4535 supports the RGB interface and the VSYNC interface as the external interface for displaying a moving picture. When the RGB interface is selected, display operations are synchronized with externally supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface mode, data (DB[17:0]) are written in synchronization with these signals according to the polarity of enable signal (ENABLE) to prevent flicker on display while updating display data.

In VSYNC interface mode, the display operation is synchronized with the internal clock except frame synchronization, where the operation is synchronized with the VSYNC signal. Display data are written to the internal GRAM via the system interface. In this case, there are constraints in speed and method in writing data to the internal RAM. For details, see the "External Display Interface" section.



The LGDP4535 allows for switching between the external display interface and the system interface by instruction so that the optimum interface is selected for the kind of picture to be displayed on the screen (still and/or moving picture(s)). The RGB interface, by writing all display data to the internal RAM, allows for transferring data only when updating the frames of a moving picture, contributing to low power requirement for moving picture display.

#### Address Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of the register for setting a RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As writing data to the internal GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only in the rectangular area arbitrarily set by users on the GRAM.

### **Graphics RAM (GRAM)**

GRAM is graphics RAM storing bit-pattern data of 172,800 (240 x 320x 18bit) bytes, using 18 bits per pixel.

## Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates a liquid crystal drive voltage according to grayscale data set in the  $\gamma$ -correction register to display in 262,144 colors. For details, see the " $\gamma$ -Correction Register" section.

### **Timing Generator**

The timing generator generates a timing signal for operation of internal circuits such as the internal GRAM. The timing for the display operation such as RAM read operation and the timing for the internal operation such as access from the MPU are generated in the way not to interfere each other.

## Oscillator (OSC)

LGDP4535 generates RC oscillation with an internal oscillation resistor. The frame rate is adjusted by the register setting.

#### LCD Driver Circuit

The LCD driver circuit of the LGDP4535 consists of a 720-output source driver (S1  $\sim$  S720) and a 240-output gate driver (G1 $\sim$ G320). Display pattern data are latched when the 720th bit data are input. The latched data control the source driver and generate a drive waveform. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 720-bit source outputs from the source driver is set with the SS bit and the shift direction of gate outputs from the gate driver is set with the GS bit. The scan mode by the gate driver is set with the SM bit. These bits allow setting an appropriate scan method for an LCD module.

## LCD Drive Power Supply Circuit

The LCD drive power supply circuit generates the voltage levels VREG1OUT, VGH, VGL and Vcom for driving an LCD.

## Internal logic power supply regulator

The internal logic power supply regulator generates internal logic power supply VDD.



# **GRAM Address MAP**

Table 8 GRAM address and display panel position (SS = "0", BGR = "0")

| S/G  | nin  |     |          |    |          |            |    |          |          |          |          |          |     |          | 2 2 -    |      | 6 6      |          |      | T.,  |          |          |          |             |          |      |  |  |  |
|------|------|-----|----------|----|----------|------------|----|----------|----------|----------|----------|----------|-----|----------|----------|------|----------|----------|------|------|----------|----------|----------|-------------|----------|------|--|--|--|
| 5/3  | piii | S1  | S2       | S3 | <b>S</b> | <b>S</b> 2 | 9S | S7       | Š        | 6S       | S10      | S11      | S12 |          | 60LS     | S710 | S711     | S712     | S713 | S714 | S715     | S716     | S717     | S718        | S719     | S720 |  |  |  |
|      |      |     | <u> </u> |    |          |            |    |          |          |          |          |          |     |          |          |      |          |          |      |      |          |          |          |             |          |      |  |  |  |
| GS=0 | GS=1 |     | B[17     |    | DB[17:0] |            |    | DB       |          | DB[17:0] |          |          |     |          | B[17:    |      |          | -        | 7:0] | +    | B[17     |          | DB[17:0] |             |          |      |  |  |  |
| G1   | G320 |     | 0000     |    | "00001"H |            |    | "000     |          |          | "00003"H |          |     |          |          | OOEC |          |          |      | D"H  |          | 00EF     |          | "000EF"H    |          |      |  |  |  |
| G2   | G319 | _   | 0100     |    |          | 0101       |    | "00      |          |          |          | 0103     |     |          |          | )1EC |          |          |      | D"H  | +        | 01EE     |          | "001EF"H    |          |      |  |  |  |
| G3   | G318 |     | 0200     |    |          | 0201       |    | "002     |          |          |          | 0203     |     |          |          | )2EC |          |          |      | D"H  |          | 02EE     |          | "002EF"H    |          |      |  |  |  |
| G4   | G317 | "0  | 0300     | "H | "0       | 0301       | "H | "003     | 02       | "H       | "0       | 0303     | "H  |          |          | )3EC |          | "00      | 03E  | D"H  |          | 03EE     |          | "00         | )3EF     | "H   |  |  |  |
| G5   | G316 |     | 0400     |    |          | 0401       |    | "00      |          |          |          | 0403     |     |          |          | )4EC |          |          |      | D"H  | +        | 04EE     |          | -           | )4EF     |      |  |  |  |
| G6   | G315 | "0  | 0500     | "H | "0       | 0501       | "H | "00:     |          |          | "0       | 0503     | "H  |          |          | )5EC |          | "00      | 05E  | D"H  | _        | 05EE     |          | "00         | )5EF     | "H   |  |  |  |
| G7   | G314 | "0  | 0600     | "H | "0       | 0601       | "H | "00      | 02       | "H       | "0       | 0603     | "H  |          |          | O6EC |          | "00      | 06E  | D"H  | "0       | 06EE     | E"H      | "00         | )6EF     | "H   |  |  |  |
| G8   | G313 | "0  | 0700     | "H | "0       | 0701       | "H | "00"     | 02       | "H       | "0       | 0703     | "H  |          | "00      | )7EC | "H       | "00      | 07E  | D"H  | "0       | 07EE     | E"H      | "00         | )7EF     | "H   |  |  |  |
| G9   | G312 | "0  | 0800     | "H | "0       | 0801       | "H | "008     | 02       | "H       | "0       | 0803     | "H  |          | "00      | )8EC | "H       | "00      | 08E  | D"H  | "0       | 08EE     | E"H      |             | )8EF     |      |  |  |  |
| G10  | G311 | "0  | 0900     | "H | "0       | 0901       | "H | "009     | 02       | "H       | "00903"Н |          |     |          | "00      | )9EC | "H       | "00      | 09E  | D"H  | "0       | 09EE     | E"H      | 'H "009EF"H |          |      |  |  |  |
| G11  | G310 | "0  | 0A00     | "H | "00      | "00A01"H   |    |          | "00A02"H |          |          | "00A03"H |     |          | "00AEC"H |      |          | "00AED"H |      |      | "0       | "00AEE"H |          |             | "00AEF"H |      |  |  |  |
| G12  | G309 | "0  | 0B00     | "H | "00B01"H |            |    | "00I     | "H       | "00B03"H |          |          |     | "00BEC"H |          |      | "00BED"H |          |      | "0   | "00BEE"H |          |          | "00BEF"H    |          |      |  |  |  |
| G13  | G308 | "0  | 0C00     | "H | "00      | )C01       | "H | "00C02"H |          |          | "00С03"Н |          |     |          | "00CEC"H |      | "00CED"H |          |      | "0   | "00CEE"H |          |          | "00CEF"H    |          |      |  |  |  |
| G14  | G307 | "0  | 0D00     | "H | "00      | )D01       | "H | "00I     | "H       | "00D03"H |          |          |     | "00DEC"H |          |      | "00DED"H |          |      | "0   | "00DEE"H |          |          | "00DEF"H    |          |      |  |  |  |
| G15  | G306 | "0  | 0E00     | "H | "00      | DE01       | "H | "00]     | 02       | "H       | "00E03"H |          |     |          | "00EEC"H |      |          | "00      | )EE  | D"H  | "0       | 0EEI     | E"H      | "00EEF"H    |          |      |  |  |  |
| G16  | G305 | "0  | 0F00     | "H | "0       | 0F01       | "H | "00]     | 02       | "Η       | "00F03"H |          |     |          | "00      | )FEC | "H       | "00FED"H |      |      | "0       | 0FEI     | E"H      | "00FEF"H    |          |      |  |  |  |
| G17  | G304 | "0  | 1000     | "H | "0       | 1001       | "H | "010     | 02       | 'nΗ      | "01003"H |          |     |          | "010EC"H |      |          | "01      | 10E  | D"H  | "0       | 10EE     | E"H      | "010EF"H    |          |      |  |  |  |
| G18  | G303 | "0  | 1100     | "H | "0       | 1101       | "H | "01      | "01102"Н |          | "01103"H |          |     | "011EC"H |          |      | "01      | 11E      | D"H  | "0   | 11EE     | E"H      | "011EF"H |             |          |      |  |  |  |
| G19  | G302 | "0  | 1200     | "H | "0       | 1201       | "H | "012     | 02       | "H       | "0       | 1203     | "H  |          | "0       | 12EC | "H       | "01      | 12E  | D"H  | "0       | 12EF     | E"H      | "01         | 2EF      | "H   |  |  |  |
| G20  | G301 | "0  | 1300     | "H | "0       | 1301       | "H | "13      | 02"      | Ή        | "0       | 1303     | "H  |          | "0       | 13EC | "H       | "01      | 13E  | D"H  | "(       | 13EE     | E"H      | "0          | 3EF      | "H   |  |  |  |
| :    | :    |     | :        |    |          | :          |    |          | :        |          |          | :        |     |          |          | :    |          |          | :    |      |          | :        |          |             | :        |      |  |  |  |
| :    | :    |     | :        |    |          | :          |    |          | :        |          |          | :        |     |          |          | :    |          |          | :    |      |          | :        |          |             | :        |      |  |  |  |
| G313 | G8   | "1  | 3800     | "H | "1:      | 3801       | "H | "138     | 02       | "H       | "1       | 3803     | "H  |          | "13      | 38EC | "H       | "13      | 38E  | D"H  | "1       | 38EE     | E"H      | "13         | 88EF     | "H   |  |  |  |
| G314 | G7   | "1  | 3900     | "H | "1:      | 3901       | "H | "139     | 02       | "H       | "1       | 3903     | "H  |          | "13      | 39EC | "H       | "13      | 39E  | D"H  | "1       | 39EE     | E"H      | "13         | 9EF      | "H   |  |  |  |
| G315 | G6   | "1. | 3A00     | "H | "13      | 3A01       | "H | "137     | 02       | "H       | "1       | 3A03     | "H  |          | "13      | BAEC | "'H      | "13      | BAE  | D"H  | "1       | 3AEI     | E"H      | "13         | AEF      | ""H  |  |  |  |
| G316 | G5   | "1  | 3B00     | "H | "13      | 3B01       | "H | "13B02"H |          |          | "1       | 3B03     | "H  |          | "13      | BEC  | "'H      | "13      | BE   | D"H  | "1       | 3BEI     | E"H      | "13BEF"H    |          |      |  |  |  |
| G317 | G4   | "1: | 3C00     | "H | "13      | 3C01       | "H | "13C02"H |          |          | "13C03"H |          |     |          | "13      | 3CEC | "'H      | "13      | 3CE  | D"H  | "1       | 3CEI     | E"H      | "13CEF"H    |          |      |  |  |  |
| G318 | G3   | "1. | 3D00     | "H | "13      | 3D01       | "H | "13I     | 002      | "H       | "13D03"H |          |     |          | "13      | BDEC | "'H      | "13      | BDE  | D"H  | "1       | 3DEI     | E"H      | "13DEF"H    |          |      |  |  |  |
| G319 | G2   | "1  | 3E00     | "H | "13      | 3E01       | "H | "131     | 02       | "H       | "1       | 3E03     | "H  |          | "13      | BEEC | "H       | "13      | BEE  | D"H  | "1       | 3EEI     | E"H      | "13EEF"H    |          |      |  |  |  |
| G320 | G1   | "1  | 3F00     | "H | "1.      | 3F01       | "H | "13]     | 02       | "H       | "1       | 3F03     | "H  |          | "13      | 3FEC | "H       | "13      | 3FE  | D"H  | "1       | 3FEI     | E"H      | "13         | FEF      | "H   |  |  |  |





Figure 2 GRAM data and display data: system interface (SS = "0", BGR = "0")





Figure 3 GRAM data and isplay data: system interface (SS = "0", BGR = "0")





Figure 4 GRAM data and display data: system interface (SS = "0", BGR = "0")



Table 9 GRAM address and display panel position (SS = "1", BGR = "1")

| 0.10 |      |                      |      |      |            |                   |      |          | l        | 1    |      |          |      |     | 1                 |                  |     |          |          |          |          |      |          |          |     |      |  |  |
|------|------|----------------------|------|------|------------|-------------------|------|----------|----------|------|------|----------|------|-----|-------------------|------------------|-----|----------|----------|----------|----------|------|----------|----------|-----|------|--|--|
| S/G  | pın  | S720                 | S719 | S718 | S717       | S716              | S715 | S714     | S713     | S712 | S711 | S710     | 60LS |     | S12               | S11              | S10 | 6S       | 88       | 22       | 9S       | S5   | S4       | S3       | S2  | S1   |  |  |
| GS=0 | GS=1 | =1 DB[17:0] DB[17:0] |      |      |            | DB[17:0] DB[17:0] |      |          |          |      | DI   | B[17     | [0:  | Dl  | B[17              | :0]              | D   | B[17     | [0:      | DB[17:0] |          |      |          |          |     |      |  |  |
| G1   | G320 | "00                  | 000  | 0"H  | "00        | 0001              | "H   | "0       | 0002     | ?"H  | "    | 00003    | "H   | ••• | "00               | 00EC             | C"H | "00      | )0EI     | )"H      | "0       | 00EF | E"H      | "000EF"H |     |      |  |  |
| G2   | G319 | "00                  | 010  | 0"H  | "00        | 0101              | "H   | "0       | 0102     | ?"H  | "    | 00103    | "H   | ••• | "00               | )1E(             | C"H | "00      | )1EI     | )"H      | "0       | 01EF | E"H      | "001EF"H |     |      |  |  |
| G3   | G318 | "00                  | 020  | 0"H  | "00        | 0201              | "H   | "0       | 0202     | ?"H  | "    | 00203    | "H   | ••• | "00               | )2E(             | C"H | "00      | )2EI     | )"H      | "0       | 02EF | E"H      | "002EF"H |     |      |  |  |
| G4   | G317 | "00                  | 030  | 0"H  | "00        | 0301              | "H   | "0       | 0302     | ?"H  | "    | 00303    | "H   | ••• | "00               | )3E(             | C"H | "00      | 3ЕГ      | )"H      | "0       | 03EF | E"H      | "00      | 3EF | H""  |  |  |
| G5   | G316 | "00                  | )40  | 0"H  | "00        | 0401              | "H   | "0       | 0402     | ?"H  | "    | 00403    | "H   |     | "00               | )4E(             | C"H | "00      | )4EI     | )"H      | "0       | 04EI | E"H      | "00      | 4EF | H""  |  |  |
| G6   | G315 | "00                  | 050  | 0"H  | "00        | 0501              | "H   | "0       | 0502     | ?"H  | "    | 00503    | "H   | ••• | "00               | )5E(             | C"H | "00      | )5EI     | )"H      | "0       | 05EE | E"H      | "00      | 5EF | H""  |  |  |
| G7   | G314 | "00                  | 060  | 0"H  | "00        | 0601              | "H   | "0       | 0602     | ?"H  | "    | 00603    | "H   | ••• | "00               | )6E(             | C"H | "00      | )6EI     | )"H      | "0       | 06EI | E"H      | "00      | 6EF | H""  |  |  |
| G8   | G313 | "00                  | 070  | 0"H  | "00        | 0701              | "H   | "0       | 0702     | ?"H  | "    | 00703    | "H   | ••• | "00               | )7E(             | C"H | "00      | )7EI     | )"H      | "0       | 07EF | E"H      | "00      | 7EF | H""  |  |  |
| G9   | G312 | "00                  | 080  | 0"H  | "00        | 0801              | "H   | "0       | 0802     | ?"H  | "    | 00803    | "H   | ••• | "00               | )8EC             | C"H | "00      | )8EI     | )"H      | "0       | 08EI | E"H      | "008EF"H |     |      |  |  |
| G10  | G311 | "00                  | )90  | 0"H  | "00        | 0901              | "H   | "0       | 0902     | ?"H  | "    | 00903    | "H   |     | "00               | )9E(             | C"H | "00      | 9EI      | )"H      | "0       | 09EI | E"H      | "009EF"H |     |      |  |  |
| G11  | G310 | "00                  | )A0  | 0"H  | H "00A01"H |                   |      | "00A02"H |          |      | "    | 00A03    | 3"Н  | ••• | "00               | AE               | С"Н | "00AED"H |          |          | "00AEE"H |      |          | "00AEF"H |     |      |  |  |
| G12  | G309 | "00                  | )B0  | 0"H  | "00        | "00B01"H          |      |          | "00B02"H |      |      | 00B03    | 3"Н  |     | "00               | BE               | C"H | "00BED"H |          |          | "00BEE"H |      |          | "00BEF"H |     |      |  |  |
| G13  | G308 | "00                  | )C0  | 0"H  | "00        | )C01              | l"H  | "00      | )C02     | 2"H  | "    | 00C03    | 3"Н  |     | "00CEC"H          |                  |     | "00CED"H |          |          | "00CEE"H |      |          | "00CEF"H |     |      |  |  |
| G14  | G307 | "00                  | )D0  | 0"H  | "00        | )D01              | l"H  | "00      | )D02     | 2"H  | "(   | 00D03    | 3"Н  |     | "00DEC"H "00DED"H |                  |     |          | )"H      | "00      | DEI      | E"H  | "00DEF"H |          |     |      |  |  |
| G15  | G306 | "00                  | )E0  | 0"H  | "00        | )E01              | "H   | "00      | )E02     | 2"H  | "    | 00E03    | 3"Н  |     | "00EEC"H "00EED"  |                  |     |          | )"H      | "00      | DEEI     | E"H  | "00EEF"H |          |     |      |  |  |
| G16  | G305 | "00                  | )F0  | 0"H  | "00        | )F01              | "H   | "00      | 0F02     | 2"H  | "    | "00F03"H |      | ••• | "00FEC"H          |                  | C"H | "00FED"H |          |          | "0       | 0FEI | E"H      | "00FEF"H |     |      |  |  |
| G17  | G304 | "01                  | 100  | 0"H  | "0"        | 1001              | "H   | "0       | 1002     | ?"H  | "    | 01003    | "H   |     | "010EC"H "010ED"H |                  |     |          | )"H      | "0       | 10EF     | E"H  | "010EF"H |          |     |      |  |  |
| G18  | G303 | "01                  | 110  | 0"H  | "0"        | 1101              | "H   | "0       | 1102     | ?"H  | "    | 01103    | "H   |     | "011EC"H "        |                  |     |          | "011ED"H |          |          | 11EE | E"H      | "01      | 1EF | H""  |  |  |
| G19  | G302 | "01                  | 120  | 0"H  | "0"        | 1201              | "H   | "0       | 1202     | ?"H  | "    | 01203    | "H   |     | "012EC"H "012EI   |                  |     |          | )"H      | "0       | 12EI     | E"H  | "01      | 2EF      | ""H |      |  |  |
| G20  | G301 | "01                  | 130  | 0"H  | "0"        | 1301              | "H   | "1       | 302      | "H   | "    | 01303    | "H   | ••• | "01               | 13EC             | C"H | "01      | 3EI      | )"H      | "0       | 13EI | E"H      | "01      | 3EF | ""H  |  |  |
| :    | • •  |                      | :    |      |            | :                 |      |          | :        |      |      | :        |      |     |                   | :                |     |          | :        |          |          | :    |          |          | :   |      |  |  |
| :    | :    |                      | :    |      |            | :                 |      |          | :        |      |      | :        |      | ••• |                   | :                |     |          | :        |          |          | :    |          |          | :   |      |  |  |
| G313 | G8   | "13                  | 380  | 0"H  | "13        | 3801              | "H   | "1.      | 3802     | ?"H  | "    | 13803    | "H   |     | "13               | 38EC             | C"H | "13      | 88EI     | )"H      | "1       | 38EI | E"H      | "13      | 8EF | H""  |  |  |
| G314 | G7   | "13                  | 390  | 0"H  | "13        | 3901              | "H   | "1.      | 3902     | ?"H  | "    | 13903    | "H   |     | "13               | 39EC             | C"H | "13      | 9EI      | )"H      | "1       | 39EI | E"H      | "13      | 9EF | ""H  |  |  |
| G315 | G6   | "13                  | BA0  | 0"H  | "13        | 3A0               | l"H  | "13      | 3A02     | 2"H  | "    | 13A03    | 3"Н  | ••• | "13               | AEG              | C"H | "13      | AEI      | D"H      | "13      | BAEI | E"H      | "13      | AEF | 7"'H |  |  |
| G316 | G5   | "13                  | B0   | 0"H  | "13        | B01               | l"H  | "13      | 3B02     | 2"H  | "    | 13B03    | 3"Н  |     | "13               | BEG              | C"H | "13      | BEI      | )"H      | "13      | BEI  | E"H      | "13BEF"H |     |      |  |  |
| G317 | G4   | "13                  | C0   | 0"H  | "13        | 3C01              | l"H  | "13      | 3C02     | 2"H  | "    | "13C03"H |      |     | "13               | CEC              | C"H | "13CED"H |          |          | "13      | 3CEI | E"H      | "13CEF"H |     |      |  |  |
| G318 | G3   | "13                  | D0   | 0"H  | "13        | 3D0               | l"H  | "13      | 3D02     | 2"H  | "    | 13D03    | 3"Н  |     | "13               | "13DEC"H "13DED" |     |          |          | D"H      | "13      | BDEI | E"H      | "13DEF"H |     |      |  |  |
| G319 | G2   | "13                  | 3E0  | 0"H  | "13        | 3E01              | "H   | "13      | 3E02     | 2"H  | "    | 13E03    | з"Н  |     | "13               | BEE              | С"Н | "13      | EEI      | )"H      | "1.      | 3EEI | E"H      | "13EEF"H |     |      |  |  |
| G320 | G1   | "13                  | 3F0  | 0"H  | "13        | 3F01              | "H   | "1.      | 3F02     | ?"H  | "    | 13F03    | "Н   |     | "13               | 3FEC             | C"H | "13      | FEI      | )"H      | "1.      | 3FEI | E"H      | "13      | FEF | H""  |  |  |





Figure 5 GRAM data and display data: system interface (SS = "1", BGR = "1")





Figure 6 GRAM data and display data: system interface (SS = "1", BGR = "1")





Figure 7 GRAM data and display data: system interface (SS = "1", BGR = "1")



### Instructions

### **Outline**

The LGDP4535 adopts 18-bit bus architecture to interface to a high-performance microcomputer. The LGDP4535 starts internal processing after storing control information of externally sent 18-, 16-, 9-, 8-bit data in the instruction register (IR) and the data register (DR). Since internal operations of the LGDP4535 are controlled by the signals sent from the microcomputer, the register selection signal (RS), the read/write signal (R/W), and the internal 16-bit data bus signals (IB15 to IB0) are called instructions. The LGDP4535 use the 18-bit format internally for operations involving internal GRAM access. The instructions of the LGDP4535 are categorized into the following groups.

- 1. Specify the index of register
- 2. Read a status
- 3. Display control
- 4. Power management Control
- 5. Graphics data processing
- 6. Set internal GRAM address
- 7. Transfer data to and from the internal GRAM
- 8. Internal grayscale γ-correction

Normally, the instruction for writing data to the internal GRAM is used the most often. Since the LGDP4535 can update internal GRAM address automatically as it writes data to the internal GRAM and minimize data transfer by using the window address function, there is less load on the program in the microcomputer. Since instructions are executed in 0 cycles, it is possible to write instructions consecutively.

### Instruction Data Format

Note that as the following figure shows, the assignment of 16 instruction bits(IB15-0) to the data bus differs in different interface operations. Write instruction according to the data transfer format of the interface in use.





Figure 8 Instruction bits



### Instruction Description

The following are detailed explanations of instructions with illustrations of instruction bits (IB15-0) assigned to each interface.

### Index (IR)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W   | 0  | *    | *    | *    | *    | *    | *    | *   | *   | ID7 | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 |

The index register specifies the index (R00h - RFFh) of a control register or RAM control to be accessed using binary numbers "0000\_0000" to "1111\_1111". An access to the register as well as instruction bits contained in it is disabled unless its index is represented in this register.

### Device code read (R00h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W   | 1  | *    | *    | *    | *    | *    | *    | *   | *   | *   | *   | *   | *   | *   | *   | *   | 1   |
| R   | 1  | 0    | 1    | 0    | 0    | 0    | 1    | 0   | 1   | 0   | 0   | 1   | 1   | 0   | 1   | 0   | 1   |

The device code "4535"H is read out when reading out this register forcibly.

### Driver output control (R01h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | SM   | 0   | SS  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

SS – Selects the shift direction of outputs from the source pins.

If SS = "0", the source pins output from S1 to S720.

If SS = "1", the source pins output from S720 to S1.

The combination of SS and BGR bits controls the order of assigning RGB dots to the source driver pins S1 to S720.

If SS = "0" and BGR = "0", RGB dots are assigned interchangeably from S1 to S720. If SS = "1" and BGR = "1", RGB dots are assigned interchangeably from S720 to S1.

When changing SS or BGR bits, RAM data must be rewritten.

**SM** – Sets gate driver assignment in combination with the GS bit according to the LC module. See "Scan mode setting".

# LCD Driving Wave Control (R02h)

| R/ | W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2   | IB1 | IB0 |
|----|---|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|
| W  | 7 | 1  | 0    | 0    | 0    | 0    | 0    | 0    | BC0 | EOR | 0   | 0   |     |     | NW  | [5:0] |     |     |

**NW[5:0]** – Specify n, the number of raster-rows from 1 to 64, where alternations occurs every n+1 raster-rows when C-pattern waveform is generatd(BC0=1).

**EOR** – When EOR=1, alternation occured by applying EOR(Exclusive OR) operatin to an odd/even frame selecting signal and n-raster-row inversion signal while a C-patten waveform is generated(BC0=1).



This instruction is used when liquid crystal alternation drive is not available due to combination of numbers of LCD raster-rows and the value of "x n". For details, see n-raster-row Inversion Alternating Drive.

**BC0** – Selects the liquid crystal drive waveform VCOM. See "Line Inversion AC Drive" for details.

BC0 = 0: frame inversion waveform is selected.

BC0 = 1: Line inversion waveform is selected.

In either liquid crystal drive method, the polarity inversion is halted in blank periods (back and front porch periods).

## Entry Mode (R03h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5  | IB4  | IB3 | IB2 | IB1 | IB0   |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|------|------|-----|-----|-----|-------|
| W   | 1  | TRI  | DFM  | 0    | BGR  | 0    | 0    | 0   | 0   | ORG | 0   | I/D[ | 1:0] | AM  | 0   | EPF | [1:0] |

The LGDP4535 modifies data sent from a microcomputer before writing them to the internal GRAM in order to write the GRAM data in high speed and reduce software processing load on the microcomputer. See "Graphics Operation Function" for details.

**TRI** – Selects the RAM data transfer mode in 80-system 8-bit/16-bit bus interface operation. In 8-bit interface operation.

TRI = 0: 16-bit RAM data is transferred in two transfers.

TRI = 1: 18-bit RAM data is transferred in three transfers.

In 16-bit bus interface operation,

TRI = 0: 16-bit RAM data is transferred in one transfer.

TRI = 1: 18-bit RAM data is transferred in two transfers.

Make sure TRI = 0 when not using either 16-bit or 8-bit interface. Also, set TRI = 0 during read operation.

**DFM** – Sets the mode of transferring data to the internal RAM when TRI = "1". See the following figures for details.

Table 10





Table 11



Table 12





**BGR** – Reverses the order of RGB dots to BGR when writing 18-bit pixel data to the internal GRAM.

BGR = 0: Write source data in order of R-G-B.

BGR = 1: Change the order with B-G-R.

**ORG** – Moves the origin of a window address area in combination with the ID setting. This function is enabled when writing data within the window address area.

**I/D[1:0]** – The address counter is automatically incremented by 1 as writing data to the internal GRAM when I/D[1:0] = "1". The address counter is automatically decremented by 1 as writing data to the internal GRAM when I/D[1:0] = "0". The increment/decrement can be set separately to each upper (AD[15:8]) / lower (AD[7:0]) byte of address. The transition direction of address (vertical/horizontal) when writing data to the internal GRAM is set with the AM bit.

**AM** – Sets the direction of automatically updating address for writing data to the internal RAM in the address counter (AC). When AM = "0", the address is updated in horizontal writing direction. When AM = "1", the address is updated in vertical writing direction. When a window address area is set, data are written only to the GRAM area specified with window address in the writing direction set with I/D[1:0] and AM bits.



Figure 9 Automatic address update (ORG=0, AM, ID)



Figure 10 Automatic address update (ORG=1, AM, ID)



**EPF[1:0]** – Set the data format when 16bpp(R,G and B) to 18bpp(r, g and b) is stored in internal RAM. EPF settings are effective when :

- 1. 80-system 16-bit interface, TRI = 0
- 2. 80-system 8-bit interface, TRI = 0
- 3. Clock synchronous serial interface

#### Table 13

| EPF  | Expand 16bpp(R,G,B) to 18bpp(r,g,b)                                                                                                                                                                      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2'h0 | Same vaule as MSB is inputted to LSB of R and B $r[5:0] = \{R[4:0], R[4]\}$ $g[5:0] = \{G[5:0]\}$ $b[5:0] = \{B[4:0], B[4]\}$                                                                            |
| 2'h1 | "0" is inputted to LSB of r and b $r[5:0] = \{R[4:0], 1'b0\}$ $g[5:0] = \{G[5:0]\}$ $b[5:0] = \{B[4:0], 1'b0\}$ Except. $R[4:0], B[4:0] = 5'h1F -> r, b[5:0] = 6'h3F$ $G[5:0] = 6'h3F -> g[5:0] = 6'h3F$ |
| 2'h2 | "1" is inputted to LSB of r and b r[5:0] = {R[4:0], 1'b1} g[5:0] = {G[5:0]} b[5:0] = {B[4:0], 1'b1} Except. R[4:0], B[4:0] = 5'h00 -> r,b[5:0] = 6'h00 G[5:0] = 6'h00 -> g[5:0] = 6'h00                  |
| 2'h3 | Setting disabed                                                                                                                                                                                          |

## Resizing Control (R04h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8   | IB7 | IB6 | IB5 | IB4   | IB3 | IB2 | IB1 | IB0   |
|-----|----|------|------|------|------|------|------|-----|-------|-----|-----|-----|-------|-----|-----|-----|-------|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | RCV | [1:0] | 0   | 0   | RCH | [1:0] | 0   | 0   | RSZ | [1:0] |

**RSZ[1:0]** – Sets the resizing factor. When the RSZ bits are set for resizing, the LGDP4535 writes the data of the resized image in both horizontal and vertical directions according to the resizing factor on the internal GRAM. See "Resizing fuction".

**RCH[1:0]** – Sets the number of pixels made as the remainder in horizontal direction as a result of resizing a picture. By specifying the number of remainder pixels with RCH bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCH = 2'h0 when not using the resizing function (RSZ=2'h0) or there are no remainder pixels.

**RCV[1:0]** – Sets the number of pixels made as the remainder in vertical direction as a result of resizing a picture. By specifying the number of remainder pixels with RCV bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCV = 2'h0 when not using the resizing function (RSZ=2'h0) or there are no remainder pixels.



Table 14

| RSZ[1:0] | Resizing scale   |
|----------|------------------|
| 2'h0     | No resizing (x1) |
| 2'h1     | x 1/2            |
| 2'h2     | Setting disabled |
| 2'h3     | x 1/4            |

Table 15

| RCH[1:0] | Number of remainder Pixels in Horizontal Direction |
|----------|----------------------------------------------------|
| 2'h0     | 0 pixel                                            |
| 2'h1     | 1 pixel                                            |
| 2'h2     | 2 pixels                                           |
| 2'h3     | 3 pixels                                           |

Table 16

| RCV[1:0] | Number of remainder Pixels in Vertical Direction |
|----------|--------------------------------------------------|
| 2'h0     | 0 pixel                                          |
| 2'h1     | 1 pixel                                          |
| 2'h2     | 2 pixels                                         |
| 2'h3     | 3 pixels                                         |

## Display Control 1 (R07h)

| R/W | RS | IB15 | IB14 | IB13 | IB12   | IB11 | IB10 | IB9 | IB8   | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0  |
|-----|----|------|------|------|--------|------|------|-----|-------|-----|-----|-----|-----|-----|-----|-----|------|
| W   | 1  | 0    | 0    | PTDI | E[1:0] | 0    | 0    | 0   | BASEE | 0   | 0   | GON | DTE | COL | 0   | D[1 | 1:0] |

D[1:0] – A graphics display appears on the screen when D[1] = "1", and is turned off upon setting D[1] = "0". When setting D[1] = "0", the graphics display data are retained in the internal GRAM and the display appears instantly on the screen upon setting D[1] to "1". When the D[1] bit is "0", i.e. while no display is shown on the screen, all source outputs are at the GND level to reduce charging/discharging current on liquid crystal cells, which is generated during liquid crystal AC drive.

When the display is turned off by setting D[1:0] = 2'h1, the LGDP4535 continues internal display operation. When the display is turned off by setting D[1:0] = 2'h0, the LGDP4535's internal display operation is halted completely. In combination with GON bit, the D[1:0] bits control ON/OFF of graphics display. For details, see "Instruction setting".

Table 17

| D[1:0] | BASEE | Source Output (S1-720) | FMARK signal | <b>Internal Operation</b> |
|--------|-------|------------------------|--------------|---------------------------|
| 2'h0   | *     | GND                    | Halt         | Halt                      |
| 2'h1   | *     | GND                    | Operation    | Operation                 |
| 2'h2   | *     | Non-display            | Operation    | Operation                 |
| 2'h3   | 0     | Non-display            | Operation    | Operation                 |
| 2 113  | 1     | Base-image display     | Operation    | Operation                 |

Notes: 1. The data write operation from the microcomputer is not affected by the setting in the D[1:0] bits.



2. The PTS bits set the source output level for "non-lit display"

**COL** – When COL = "1", the 8-color display mode is selected. For details, see the "8-color Display Mode" section. The 8-color display mode is not available in external interface mode.

Table 18

| COL  | Operating amplifier | Display color |
|------|---------------------|---------------|
| 1'h0 | 64                  | 262,144       |
| 1'h1 | 2                   | 8             |

Note: When COL=1, do not write the data corresponding to the grayscales, for which the operation of amplifier is halted.

**GON, DTE** – The combination of settings in GON and DTE bits sets the output level form gate lines(G1-G320). When GON=0, the Vcom output level becomes the GND level.

Table 19

| GON | DTE | G1-G320 |
|-----|-----|---------|
| 0   | 0   | VGH     |
| 0   | 1   | VGH     |
| 1   | 0   | VGL     |
| 1   | 1   | VGH/VGL |

**BASEE** – Base image display enable bit.

BASEE = 0 : No base image is displayed. The LGDP4535 drives liquid crystal at no-display level or shows only partial images on the screen.

BASEE = 1: A base image is displayed on the screen.

The D[1:0] setting has precedence over the BASEE setting.

**PTDE**[1:0] – PTDE[0] is the display enable bit of partial image 1. PTDE[1] is the display enable bit of partial image 2. When PTDE[1]/[0]=0, the partial image is turned off and only base image is displayed on the screen. When PTDE[1]/[0]= 1, the partial image is displayed on the screen. In this case, turn off the base image by setting BASEE = 0.

## Display Control 2 (R08h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3  | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|
| W   | 1  |      |      |      | FP[  | 7:0] |      |     |     |     |     |     | BP[ | 7:0] |     |     |     |

**FP[7:0]/BP[7:0]** – Sets the blank period made at the beginning and the end of a display (front porch and back porch, respectively). The FP[7:0] and BP[7:0] bits specify the number of lines for the front and back porch periods, respectively. In setting, be sure:

 $FP \ge 2$  lines  $BP \ge 2$  lines

In external display interface mode, a back porch (BP) period starts on the falling edge of the VSYNC signal, followed by a display operation period. After driving the number of lines set with NL bits, a front



porch period starts. After the front porch period, a blank period continues until the next input of VSYNC signal.

Table 20

| FP[7:0]/BP[7:0] | Number of lines for the front/back porches |  |  |  |  |  |  |  |
|-----------------|--------------------------------------------|--|--|--|--|--|--|--|
| 8'h00           | Setting disabled                           |  |  |  |  |  |  |  |
| 8'h01           | Setting disabled                           |  |  |  |  |  |  |  |
| 8'h02           | 2 lines                                    |  |  |  |  |  |  |  |
| 8'h03           | 3 lines                                    |  |  |  |  |  |  |  |
| 8'h04           | 4 lines                                    |  |  |  |  |  |  |  |
| 8'h05           | 5 lines                                    |  |  |  |  |  |  |  |
| 8'h06           | 6 lines                                    |  |  |  |  |  |  |  |
| 8'h07           | 7 lines                                    |  |  |  |  |  |  |  |
| 8'h08           | 8 lines                                    |  |  |  |  |  |  |  |
| 8'h09           | 9 lines                                    |  |  |  |  |  |  |  |
| 8'h0A           | 10 lines                                   |  |  |  |  |  |  |  |
| 8'h0B           | 11 lines                                   |  |  |  |  |  |  |  |
| :               | :                                          |  |  |  |  |  |  |  |
| 8'hED           | 253 lines                                  |  |  |  |  |  |  |  |
| 8'hFE           | 254 lines                                  |  |  |  |  |  |  |  |
| 8'hFF           | 255 lines                                  |  |  |  |  |  |  |  |



Figure 11 Back/front porches

Set the BP[7:0], FP[7:0] bits as follows in each operation mode.

Table 21

| Internal clock operation | BP $\geq 2$ lines | $FP \ge 2$ lines |
|--------------------------|-------------------|------------------|
| RGB interface            | BP $\geq 2$ lines | $FP \ge 2$ lines |
| VSYNC interface          | BP $\geq$ 2 lines | FP ≥ 2 lines     |

# Display Control 3 (R09h)

|   | R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9    | IB8 | IB7 | IB6 | IB5 | IB4   | IB3 | IB2 | IB1   | IB0 |
|---|-----|----|------|------|------|------|------|------|--------|-----|-----|-----|-----|-------|-----|-----|-------|-----|
| Ī | W   | 1  | 0    | 0    | 0    | 0    | 0    | P    | TS[2:0 | )]  | 0   | 0   | PTG | [1:0] |     | ISC | [3:0] |     |



**ISC[3:0]** – Set the interval of scan when PTG[1:0] sets the interval scan. The scan cycle is defined by n frame periods, where n is an odd number from 3 to 31. The polarity of liquid crystal is inverted in the same cycle as the interval scan.

Table 22

| ISC[3:0] | Scan cycle       | Time for interval when(fFLM)=60Hz |
|----------|------------------|-----------------------------------|
| 4'h0     | Setting disabled | -                                 |
| 4'h1     | 3 frames         | 50ms                              |
| 4'h2     | 5 frames         | 84ms                              |
| 4'h3     | 7 frames         | 117ms                             |
| 4'h4     | 9 frames         | 150ms                             |
| 4'h5     | 11 frames        | 184ms                             |
| 4'h6     | 13 frames        | 217ms                             |
| 4'h7     | 15 frames        | 251ms                             |
| 4'h8     | 17 frames        | 284ms                             |
| 4'h9     | 19 frames        | 317ms                             |
| 4'hA     | 21 frames        | 351ms                             |
| 4'hB     | 23 frames        | 384ms                             |
| 4'hC     | 25 frames        | 418ms                             |
| 4'hD     | 27 frames        | 451ms                             |
| 4'hE     | 29 frames        | 484ms                             |
| 4'hF     | 31 frames        | 518ms                             |

**PTG[1:0]** – Set the scan mode in non-display area, which is made between partial display periods of the first and the second images, or turning off both base and partial images(full-screen non display). The setting is commonly applied to all non-display drive period.

Table 23

| PTG[1:0] | Gate drive operation<br>In non-display area | Source output level<br>In non-display area | Vcom output           |
|----------|---------------------------------------------|--------------------------------------------|-----------------------|
| 2'h0     | Normal scan                                 | PTS[2:0] setting                           | VcomH/VcomL amplitude |
| 2'h1     | Setting disabled                            | -                                          | -                     |
| 2'h2     | Interval scan                               | PTS[2:0] setting                           | VcomH/VcomL amplitude |
| 2'h3     | Setting disabled                            | -                                          | -                     |

Note: Select frame-inversion AC drive when setting interval scan.

PTS[2:0] – Set the source output in non-display drive period.

Table 24

| DTC[3.0] | Source output lev | vel               | Grayscale amplifier | Step-up clock                      |
|----------|-------------------|-------------------|---------------------|------------------------------------|
| PTS[2:0] | Positive polarity | Negative polarity | In operation        | frequency                          |
| 3h0      | V63               | V0                | V0 to V63           | Register setting(DC0,DC1)          |
| 3h1      | Setting disabled  | Setting disabled  | -                   | -                                  |
| 3h2      | GND               | GND               | V0 to V63           | Register setting(DC0,DC1)          |
| 3h3      | Hi-Z              | Hi-Z              | V0 to V63           | Register setting(DC0,DC1)          |
| 3'h4     | V63               | V0                | V0 and V63          | 1/2 the frequency set with DC0,DC1 |
| 3'h5     | Setting disabled  | Setting disabled  | -                   | -                                  |



| 3'h6 | GND  | GND  | V0 and V63 | 1/2 the frequency set with DC0,DC1 |
|------|------|------|------------|------------------------------------|
| 3'h7 | Hi-Z | Hi-Z | V0 and V63 | 1/2 the frequency set with DC0,DC1 |

Notes: 1.The gate output level in non-display drive period is controlled by the PTG setting(off-scan mode).

### Display Control 4 (R0Ah)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3     | IB2 | IB1    | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|---------|-----|--------|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | FMARKOE | F   | MI[2:0 | )]  |

**FMI[2:0]** – Set the output interval of FMARK signal according to the display data rewrite cycle and data transfer rate.

**FMARKOE** – When FMARKOE=1, the LGDP4535 starts outputting FMARK signal from the FMARK pin in the output interval set with the FMI[2:0] bits. See "FMARK" for details.

Table 25

| FMI[2:0]        | Output interval  |
|-----------------|------------------|
| 3'h0            | 1 frame          |
| 3'h1            | 2frame           |
| 3'h3            | 4 frame          |
| 3'h5            | 6 frame          |
| Others settings | Setting disabled |

## External Display Interface Control 1 (R0Ch)

| R/W | RS | IB15 | IB14 | IB13   | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4   | IB3 | IB2 | IB1 | IB0   |
|-----|----|------|------|--------|------|------|------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-------|
| W   | 1  | 0    | Е    | NC[2:0 | )]   | 0    | 0    | 0   | RM  | 0   | 0   | DM  | [1:0] | 0   | 0   | RIM | [1:0] |

ENC[2:0] – Sets the RAM data write cycle in RGB interface mode.

Table 26 ENC[2:0] bits

| ENC[2:0] | RAM data write cycle (frame periods) |
|----------|--------------------------------------|
| 3'h0     | 1 frame                              |
| 3'h1     |                                      |
| 3'h2     |                                      |
| 3'h3     |                                      |

**RM** – Selects the interface to access the LGDP4535's internal GRAM. The RAM access is possible only via the interface selected with the RM bit. Set RM to "1" when writing display data via the RGB interface. The LGDP4535 allows for setting the RM bit not constrained by the mode used for the display operation. This means it is possible to rewrite display data via a system interface by setting RM = "0" even while display operations are performed via the RGB interface.

Table 27 RM bit

| RM   | Interface for RAM access         |
|------|----------------------------------|
| 1'h0 | System interface/VSYNC interface |
| 1'h1 | RGB interface                    |



**RIM[1:0]** – Selects one of the following RGB interface modes when the RGB interface mode is selected with the RM and DM bits. Make this setting before display operation via external display interface. Do not make changes to the setting during display operation.

Table 28 RIM[1:0] bits

| RIM[1:0] | RGB interface mode                      |
|----------|-----------------------------------------|
| 2'h00    | 18-bit RGB interface (1 transfer/pixel) |
| 2'h01    | 16-bit RGB interface (1 transfer/pixel) |
| 2'h10    | 6-bit RGB interface (3 transfers/pixel) |
| 2'h11    | Setting disabled                        |

**DM[1:0]** – Sets the display operation mode. By setting DM[1:0] as follows, it is possible to switch between the internal clock operation mode and the external display interface mode. Do not switch between different external interface modes (RGB interface and VSYNC interface).

**Table 29 DM[1:0] bits** 

| DM[1:0] | Display operation mode   |
|---------|--------------------------|
| 2'h00   | Internal clock operation |
| 2'h01   | RGB interface            |
| 2'h10   | VSYNC interface          |
| 2'h11   | Setting disabled         |
|         |                          |

#### **Notes:**

- 1. Instructions are set only via the system interface.
- 2. Be sure that data transfer and dot clock input are performed in units of RGB dots in 6-bit RGB interface mode.

As the following table, the optimum interface for the state of display can be selected by setting the external display interface mode.

Table 30

| Display State                                            | Operation mode           | RAM access (RM)           | Display mode (DM)                  |
|----------------------------------------------------------|--------------------------|---------------------------|------------------------------------|
| Still pictures                                           | Internal clock operation | System interface (RM = 0) | Internal clock operation (DM = 00) |
| Moving pictures                                          | RGB interface (1)        | RGB interface (RM = 1)    | RGB interface (DM = 01)            |
| Rewrite still picture area while display moving pictures | RGB interface (2)        | System interface (RM = 0) | RGB interface (DM = 01)            |
| Moving pictures                                          | VSYNC interface          | System interface (RM = 0) | VSYNC interface (DM = 10)          |

### **Notes:**

- 1. Instructions are set only via the system interface.
- 2. The RGB-I/F and the VSYNC-I/F are not used simultaneously.
- 3. Do not make changes to the RGB-I/F mode setting (RIM) while the RGB I/F is in operation.
- 4. See the "External Display Interface" section for the flowcharts to follow when switching from one mode to another.



### Internal clock operation mode

All display operations are synchronized with the signals generated from the internal operating clock in this mode. None of inputs via the external display interface are valid. The internal RAM is accessible only via the system interface.

### **RGB** interface mode (1)

In RGB interface mode, display operations are synchronized with the frame synchronizing signal (VSYNC), the line synchronizing signal (HSYNC), and the dot clock (DOTCLK). These signals must be supplied through a display period using the RGB interface.

Display data are transferred in units of pixels via the DB[17:0] pins. All display data are stored in the internal RAM. The combined use of the high-speed RAM write mode and the widow address function enables not only displaying data in moving picture area and data in the internal RAM in other than the moving picture area at a time but also minimizing data transfer by transferring data only when rewriting screen.

The front porch (FP) and back porch (BP) periods, and the display duration period (NL) are automatically calculated inside the LGDP4535 by internally counting the number of line synchronizing signal clocks (HSYNC) from the falling edge of the frame synchronizing signal (VSYNC). Take this into consideration when transferring RGB data via the DB[17:0] pins.

### RGB interface mode (2)

The LGDP4535 enables rewriting RAM data via the system interface while the RGB interface is selected for display operation. In this case, Be sure to write RAM data while display data are not being transferred via the RGB interface (ENABLE = High). To return to the display data transfer mode via the RGB interface, change the ENABLE bit first and then set a new address (AD[15:0]) in the AC and the index register to R22h.

### VSYNC interface mode

In VSYNC interface mode, internal display operations are synchronized with the frame synchronizing signal (VSYNC). In this mode, a moving picture can be displayed via the system interface by writing data to the internal RAM at more than the minimum speed from the falling edge of frame synchronizing signal (VSYNC). In this case, there are constraints in the RAM writing speed and method. For details, see "External Display Interface".

No external signal input except VSYNC input is accepted in VSYNC interface mode.

The timings and durations of front porch (FP), back porch (BP) periods and display duration period (NL) are automatically calculated from the falling edge of the frame synchronization signal (VSYNC) according to the instructions set in the relevant registers.

## Frame Marker Position (R0Dh)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4   | IB3 | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    |     |     |     |     | FMP | [9:0] |     |     |     |     |

**FMP[9:0]** – Sets the output position of frame cycle signal (frame marker). When FMP[9:0] = 10'h000, a high-active pulse FMARK is output at the start of back porch period for 1H period (IOVcc-IOGND amplitude signal). FMARK can be used as a trigger signal for frame synchronous write operation. See "FMARK" for details.

Make sure 10'h000 <=FMP <= BP+NL+FP



Table 31

| FMP[9:0] | FMARK output position  |
|----------|------------------------|
| 10'h000  | 0 <sup>th</sup> line   |
| 10'h001  | 1 <sup>st</sup> line   |
| 10'h002  | 2 <sup>nd</sup> line   |
| :        | :                      |
| 10'h2AC  | 684 <sup>rd</sup> line |
| 10'h2AD  | 685 <sup>th</sup> line |
| 10'h2AE  | 686 <sup>th</sup> line |
| 10'h2AF  | 687 <sup>th</sup> line |

### External Display Interface Control 2 (R0Fh)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4  | IB3  | IB2 | IB1 | IB0 |   |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|------|------|-----|-----|-----|---|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | VSPL | HSPL | 0   | EPL | DPL | ı |

**DPL** – Sets the signal polarity of DOTCLK pin.

DPL = 0 : input data on the rising edge of DOTCLK DPL = 1 : input data on the falling edge of DOTCLK

**EPL** – Sets the signal polarity of ENABLE pin.

EPL = 0: writes data DB[17:0] when ENABLE = 0 and disables data write operation when ENABLE = 1. EPL = 1: writes data DB[17:0] when ENABLE = 1 and disables data write operation when ENABLE = 0.

**HSPL** – Sets the signal polarity of HSYNC pin.

HSPL = 0: Low active HSPL = 1: High active

**VSPL** – Sets the signal polarity of VSYNC pin.

VSPL = 0: Low active VSPL = 1: High active

# Power Control 1 (R10h)

| R/W | RS | IB15 | IB14 | IB13   | IB12 | IB11 | IB10 | IB9     | IB8 | IB7 | IB6 | IB5     | IB4 | IB3 | IB2  | IB1 | IB0 |
|-----|----|------|------|--------|------|------|------|---------|-----|-----|-----|---------|-----|-----|------|-----|-----|
| W   | 1  | 0    | S    | AP[2:0 | )]   |      | I    | BT[2:0] |     | 0   |     | AP[2:0] |     | DK  | DSTB | SLP | STB |

**STB** – When STB = "1", the LGDP4535 enters the standby mode. In standby mode, the display operation completely halts, and the internal operation, including internal RC oscillation and reception of external clock pulses, completely halts. Only instructions to release the LGDP4535 from the standby mode (STB = "0") and to start oscillators are accepted during the standby mode. To set the standby mode, follow the sequence of standby mode setting.

**SLP** – When SLP = 1, the LGDP4535 enters the sleep mode. In sleep mode, the internal display operation except RC oscillation is halted to reduce power consumption. No change of GRAM data or instruction is accepted in sleep mode. The GRAM data and the instruction bits remain unchanged.



**DSTB** – When DSTB = 1, the LGDP4535 enters the deep standby mode. In deep standby mode, the internal logic power supply is turned off to reduce power consumption. The GRAM data and the instruction bit setting are destroyed and must be reset after exiting deep standby mode.

DK – Activates DDVDH. When DK = 0, DDVDH activates at the same timing as VGH. When DK = 1, DDVDH activates separately from VGH.

Table 32

| DK   | Step-up Cycle in Step-up Circuit 1                               |
|------|------------------------------------------------------------------|
| 1'h0 | Startup DDVDH simultaneously with VGH. Startup step-up circuit 1 |
|      | (VLOUT1 output) according to AP[2:0]                             |
| 1'h1 | Halt step-up circuit 1 (VLOUT1). (Default)                       |

**AP[2:0]** – Adjusts the constant current in the operation amplifier circuit in the LCD power supply circuit. The larger constant current enhances the drivability of the LCD, but it also increases the current consumption. Adjust the constant current taking the trade-off into account between the display quality and the current consumption. In no-display period, set AP[2:0]=3'h0 to halt the operational amplifier circuits and the step-up circuits to reduce current consumption.

Adjust the amount of fixed current from the fixed-current source in the internal operational amplifier circuit. VGH operates when AP is not 000. Complete setting AP before setting PON = 1, (While setting PON = 1, setting of AP bit cannot be changed.) For the details of sequences, refer to Flow of "Power Supply Setting".

Table 33

| AP[2:0] | LCD power supply circuits | Grayscale voltage generating circuit |
|---------|---------------------------|--------------------------------------|
| 3'h0    | Halt operation            | Halt operation                       |
| 3'h1    | Setting disabled          | Setting disabled                     |
| 3'h2    | Normal operation          | 0.5                                  |
| 3'h3    | Normal operation          | 0.75                                 |
| 3'h4    | Normal operation          | 1                                    |
| 3'h5    | Normal operation          | 1.25                                 |
| 3'h6    | Normal operation          | 1.5                                  |
| 3'h7    | Setting disabled          | Setting disabled                     |

Note: In this table, the constant current in operational amplifiers is shown by the ratio to the constant current when AP[1:0] is set to 2'h3.

**BT[2:0]** – Sets the factor used in the step-up circuits. Use an optimal step-up factor for the voltage in use. To reduce power consumption, set a smaller factor.



Table 34 Step up factor and output voltage level

| BT[2:0] | DDVDH    | VGH                       | VGL                           | Capacitor connection Pins                               |
|---------|----------|---------------------------|-------------------------------|---------------------------------------------------------|
| 3'h0    |          |                           | -(Vci1 + DDVDH x 2)<br>[x -5] | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22± |
| 3'h1    | _        | DDVDH x 3 [x 6]           | –(DDVDH x 2)<br>[x –4]        | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C21±, C22±       |
| 3'h2    | _        |                           | -(Vci1 + DDVDH)<br>[x -3]     | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22± |
| 3'h3    | Vci1 x 2 |                           | -(Vci1 + DDVDH x 2)<br>[x -5] | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22± |
| 3'h4    | -[x 2]   | Vci1 + DDVDH x 2<br>[x 5] | 2–(DDVDH x 2)<br>[x –4]       | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C21±, C22±       |
| 3'h5    | _        |                           | -(Vci1 + DDVDH)<br>[x -3]     | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22± |
| 3'h6    |          | DDVDH x 2 [x 4]           | –(DDVDH x 2)<br>[x –4]        | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C21±, C22±       |
| 3'h7    | _        |                           | -(Vci1 + DDVDH)<br>[x -3]     | VLOUT1, VLOUT2, VLOUT3,<br>C11±, C12±, C13±, C21±, C22± |

Note:

- 1. The step-up factor from Vci1 are shown in the brackets [].
- 2. Connect capacitors where required when using DDVDH, VGH, VGL voltages.
- 3. Set the following voltages within the respective ranges: DDVDH = 6.0V(max.), VGH = 15.0V(max.) and VGL = -12.5V(max.)

SAP[2:0] – Adjust the constant current for the operational amplifer circuit in the source driver. A larger constant current stabilizes the operational amplifer circuit, but current consumption increases. Adjust the constant current taking the display quality-current consumption trade-off into account. During a period showing no display, set SAP = 0 to halt the operational amplifier circuit to reduce current consumption.

Table 35

| SAP[2:0] | Constant current (ratio to 3)       |
|----------|-------------------------------------|
| 3'h0     | Halt operational amplifier          |
| 3'h1     | Constant current (ratio to 3): 0.65 |
| 3'h2     | Constant current (ratio to 3): 0.8  |
| 3'h3     | Constant current (ratio to 3): 1.00 |
| 3'h4     | Constant current (ratio to 3): 1.35 |
| 3'h5     | Constant current (ratio to 3): 1.60 |
| 3'h6     | Setting disabled                    |
| 3'h7     | Setting disabled                    |



# Power Control 2 (R11h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9    | IB8 | IB7 | IB6 | IB5     | IB4 | IB3 | IB2 | IB1    | IB0 |
|-----|----|------|------|------|------|------|------|--------|-----|-----|-----|---------|-----|-----|-----|--------|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | Г    | C1[2:0 | )]  | 0   | Γ   | OC0[2:0 | )]  | 0   | ,   | VC[2:0 |     |

Table 36 Step-up frequency (Step-up Circuit 1)

| DC0[2:0] | Step-up circuit 1 : step-up frequency (f <sub>DCDC1</sub> ) |
|----------|-------------------------------------------------------------|
| 3'h0     | fosc/16                                                     |
| 3'h1     | fosc/32                                                     |
| 3'h2     | fosc/64                                                     |
| 3'h3     | fosc/128                                                    |
| 3'h4     | fosc/256                                                    |
| 3'h5     | fosc/8                                                      |
| 3'h6     | Halt step-up circuit 1                                      |
| 3'h7     | fosc/4                                                      |

Note: Make sure to set DC0 and DC1 to maintain  $f_{DCDC1} \ge f_{DCDC2}$ .

Table 37 Step-up frequency (Step-up Circuit 2)

| DC1[2:0] | Step-up circuit 2 : step-up frequency (f <sub>DCDC2</sub> ) |
|----------|-------------------------------------------------------------|
| 3'h0     | fosc/128                                                    |
| 3'h1     | fosc/256                                                    |
| 3'h2     | fosc/512                                                    |
| 3'h3     | fosc/1024                                                   |
| 3'h4     | fosc/2048                                                   |
| 3'h5     | fosc/64                                                     |
| 3'h6     | Halt step-up circuit 2                                      |
| 3'h7     | fosc/32                                                     |

Note : Make sure to set DC0 and DC1 to maintain  $f_{DCDC1} \ge f_{DCDC2}$  .

Table 38 VciOUT output level

| VC[2:0] | VciOUT (Reference Voltage) (Vci1 Voltage) |
|---------|-------------------------------------------|
| 3'h0    | 1.00 x VciLVL                             |
| 3'h1    | 0.92 x VciLVL                             |
| 3'h2    | 0.90 x VciLVL                             |
| 3'h3    | 0.87 x VciLVL                             |
| 3'h4    | 0.85 x VciLVL                             |
| 3'h5    | 0.83 x VciLVL                             |
| 3'h6    | 0.73 x VciLVL                             |
| 3'h7    | Setting disabled                          |



## Power Control 3 (R12h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1    | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|--------|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | PON |     | VRH | [[3:0] |     |

**VRH[3:0]** – Sets the factor to generate VREG1OUT from VciLVL.

Table 39 VREG1OUT

| VRH[3:0] | VREG1OUT Voltage |
|----------|------------------|
| 4'h0     | VeiOUT x 1.27    |
| 4'h1     | VciOUT x 1.32    |
| 4'h2     | VeiOUT x 1.37    |
| 4'h3     | VeiOUT x 1.42    |
| 4'h4     | VciOUT x 1.47    |
| 4'h5     | VeiOUT x 1.52    |
| 4'h6     | VeiOUT x 1.57    |
| 4'h7     | Setting disabled |
| 4'h8     | Setting disabled |
| 4'h9     | VeiOUT x 1.62    |
| 4'hA     | VciOUT x 1.67    |
| 4'hB     | VeiOUT x 1.72    |
| 4'hC     | VciOUT x 1.77    |
| 4'hD     | VciOUT x 1.82    |
| 4'hE     | VciOUT x 1.87    |
| 4'hF     | VciOUT x 1.92    |

Note: Set the VC and VRH bits to maintain the VREG1OUT voltage at (DDVDH – 0.5) V or less.

**PON** – Controls the operation to generate VLOUT3. In setting the PON bit, follows the power-supply startup sequence.

PON = 0: Halts the step-up operation to generate VLOUT3. PON = 1: Starts the step-up operation to generate VLOUT3.

# Power Control 4 (R13h)

| R | /W | RS | IB15 | IB14 | IB13  | IB12 | IB11 | IB10    | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3   | IB2 | IB1 | IB0 |
|---|----|----|------|------|-------|------|------|---------|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|
| - | W  | 1  | 0    | 0    | VCOMG |      | V    | /DV[4:0 | )]  |     | 0   |     |     | V   | CM[6: | 0]  |     |     |

**VCM[6:0]** – Sets the VcomH level (the higher voltage of Vcom alternating drive). VCM[6:0] specifies the voltage by VREG1OUT x n, where n is a discrete number from 0.400 to 0.875. To halt internal volume and adjust VcomH with an external resistor from VcomR, set VCM[6:0] = "11111111".



Table 40

| Table        |                  |              |                  |              |                  |              |                       |
|--------------|------------------|--------------|------------------|--------------|------------------|--------------|-----------------------|
| VCM<br>[6:0] | VcomH            | VCM<br>[6:0] | VcomH            | VCM<br>[6:0] | VcomH            | VCM<br>[6:0] | VcomH                 |
| 7'h00        | VREG1OUT x 0.400 | 7'h20        | VREG1OUT x 0.560 | 7'h40        | VREG1OUT x 0.720 | 7°h60        | VREG1OUT x 0.880      |
| 7'h01        | VREG1OUT x 0.405 | 7'h21        | VREGIOUT x 0.565 | 7'h41        | VREG1OUT x 0.725 | 7'h61        | VREG1OUT x 0.885      |
| 7'h02        | VREG1OUT x 0.410 | 7'h22        | VREGIOUT x 0.570 | 7'h42        | VREG1OUT x 0.730 | 7'h62        | VREG1OUT x 0.890      |
| 7'h03        | VREG1OUT x 0.415 | 7'h23        | VREG1OUT x 0.575 | 7'h43        | VREG1OUT x 0.735 | 7'h63        | VREG1OUT x 0.895      |
| 7'h04        | VREG1OUT x 0.420 | 7'h24        | VREG1OUT x 0.580 | 7'h44        | VREG1OUT x 0.740 | 7'h64        | VREG1OUT x 0.900      |
| 7'h05        | VREG1OUT x 0.425 | 7'h25        | VREG1OUT x 0.585 | 7'h45        | VREG1OUT x 0.745 | 7°h65        | VREG1OUT x 0.905      |
| 7'h06        | VREG1OUT x 0.430 | 7'h26        | VREGIOUT x 0.590 | 7'h46        | VREGIOUT x 0.750 | 7'h66        | VREG1OUT x 0.910      |
| 7'h07        | VREG1OUT x 0.435 | 7'h27        | VREGIOUT x 0.595 | 7'h47        | VREGIOUT x 0.755 | 7'h67        | VREG1OUT x 0.915      |
| 7'h08        | VREG1OUT x 0.440 | 7'h28        | VREG1OUT x 0.600 | 7'h48        | VREG1OUT x 0.760 | 7'h68        | VREG1OUT x 0.920      |
| 7'h09        | VREG1OUT x 0.445 | 7'h29        | VREG1OUT x 0.605 | 7'h49        | VREG1OUT x 0.765 | 7'h69        | VREG1OUT x 0.925      |
| 7'h0A        | VREG1OUT x 0.450 | 7'h2A        | VREG1OUT x 0.610 | 7'h4A        | VREG1OUT x 0.770 | 7'h6A        | VREG1OUT x 0.930      |
| 7'h0B        | VREG1OUT x 0.455 | 7'h2B        | VREG1OUT x 0.615 | 7'h4B        | VREG1OUT x 0.775 | 7'h6B        | VREG1OUT x 0.935      |
| 7'h0C        | VREG1OUT x 0.460 | 7'h2C        | VREG1OUT x 0.620 | 7'h4C        | VREG1OUT x 0.780 | 7'h6C        | VREG1OUT x 0.940      |
| 7'h0D        | VREG1OUT x 0.465 | 7'h2D        | VREG1OUT x 0.625 | 7'h4D        | VREG1OUT x 0.785 | 7'h6D        | VREG1OUT x 0.945      |
| 7'h0E        | VREG1OUT x 0.470 | 7'h2E        | VREG1OUT x 0.630 | 7'h4E        | VREG1OUT x 0.790 | 7'h6E        | VREG1OUT x 0.950      |
| 7'h0F        | VREG1OUT x 0.475 | 7'h2F        | VREG1OUT x 0.635 | 7'h4F        | VREG1OUT x 0.795 | 7'h6F        | VREG1OUT x 0.955      |
| 7'h10        | VREG1OUT x 0.480 | 7'h30        | VREG1OUT x 0.640 | 7°h50        | VREG1OUT x 0.800 | 7'h70        | VREG1OUT x 0.960      |
| 7'h11        | VREG1OUT x 0.485 | 7'h31        | VREG1OUT x 0.645 | 7'h51        | VREG1OUT x 0.805 | 7'h71        | VREG1OUT x 0.965      |
| 7'h12        | VREG1OUT x 0.490 | 7'h32        | VREG1OUT x 0.650 | 7'h52        | VREG1OUT x 0.810 | 7'h72        | VREG1OUT x 0.970      |
| 7'h13        | VREG1OUT x 0.495 | 7'h33        | VREG1OUT x 0.655 | 7°h53        | VREG1OUT x 0.815 | 7'h73        | VREG1OUT x 0.975      |
| 7'h14        | VREG1OUT x 0.500 | 7'h34        | VREG1OUT x 0.660 | 7°h54        | VREG1OUT x 0.820 | 7'h74        | VREG1OUT x 0.980      |
| 7'h15        | VREG1OUT x 0.505 | 7'h35        | VREG1OUT x 0.665 | 7'h55        | VREG1OUT x 0.825 | 7'h75        | Setting disabled      |
| 7'h16        | VREG1OUT x 0.510 | 7'h36        | VREG1OUT x 0.670 | 7'h56        | VREG1OUT x 0.830 | 7'h76        | Setting disabled      |
| 7'h17        | VREG1OUT x 0.515 | 7'h37        | VREG1OUT x 0.675 | 7'h57        | VREG1OUT x 0.835 | 7'h77        | Setting disabled      |
| 7'h18        | VREG1OUT x 0.520 | 7'h38        | VREG1OUT x 0.680 | 7'h58        | VREG1OUT x 0.840 | 7'h78        | Setting disabled      |
| 7'h19        | VREG1OUT x 0.525 | 7'h39        | VREG1OUT x 0.685 | 7'h59        | VREG1OUT x 0.845 | 7'h79        | Setting disabled      |
| 7'h1A        | VREG1OUT x 0.530 | 7'h3A        | VREG1OUT x 0.690 | 7'h5A        | VREG1OUT x 0.850 | 7'h7A        | Setting disabled      |
| 7'h1B        | VREG1OUT x 0.535 | 7'h3B        | VREG1OUT x 0.695 | 7'h5B        | VREG1OUT x 0.855 | 7'h7B        | Setting disabled      |
| 7'h1C        | VREG1OUT x 0.540 | 7°h3C        | VREG1OUT x 0.700 | 7°h5C        | VREG1OUT x 0.860 | 7°h7C        | Setting disabled      |
| 7'h1D        | VREG1OUT x 0.545 | 7'h3D        | VREG1OUT x 0.705 | 7'h5D        | VREG1OUT x 0.865 | 7'h7D        | Setting disabled      |
| 7'h1E        | VREG1OUT x 0.550 | 7'h3E        | VREG1OUT x 0.710 | 7'h5E        | VREG1OUT x 0.870 | 7'h7E        | Setting disabled      |
| 7'h1F        | VREG1OUT x 0.555 | 7'h3F        | VREG1OUT x 0.715 | 7'h5F        | VREG1OUT x 0.875 | 7'h7F        | Halt internal volume. |

Note : Set the VcomH voltage from VCI to (DDVDH-0.5)V



**VDV[4:0]** – Sets the alternating amplitudes of VCOM AC voltage. These bits amplify VCOM by from 0.6 to 1.23 times the VREG1OUT voltage. If VCOMG = 0, VDV[4:0] bits are disabled.

Table 41

| VDV[4:0] | Vcom amplitude   | VDV[4:0] | Vcom amplitude  |
|----------|------------------|----------|-----------------|
| 5'h00    | VREG1OUT x 0.60  | 5'h10    | VREG1OUT x 1.05 |
| 5'h01    | VREG1OUT x 0.63  | 5'h11    | VREG1OUT x 1.08 |
| 5'h02    | VREG1OUT x 0.66  | 5'h12    | VREG1OUT x 1.11 |
| 5'h03    | VREG1OUT x 0.69  | 5'h13    | VREG1OUT x 1.14 |
| 5'h04    | VREG1OUT x 0.72  | 5'h14    | VREG1OUT x 1.17 |
| 5'h05    | VREG1OUT x 0.75  | 5'h15    | VREG1OUT x 1.20 |
| 5'h06    | VREG1OUT x 0.78  | 5'h16    | VREG1OUT x 1.23 |
| 5'h07    | VREG1OUT x 0.81  | 5'h17    | VREG1OUT x 1.26 |
| 5'h08    | VREG1OUT x 0.84  | 5'h18    | VREG1OUT x 1.29 |
| 5'h09    | VREG1OUT x 0.87  | 5'h19    | VREG1OUT x 1.32 |
| 5'h0A    | VREG1OUT x 0.90  | 5'h1A    | VREG1OUT x 1.35 |
| 5'h0B    | VREG1OUT x 0.93  | 5'h1B    | VREG1OUT x 1.38 |
| 5'h0C    | VREG1OUT x 0.96  | 5'h1C    | VREG1OUT x 1.41 |
| 5'h0D    | VREG1OUT x 0.99  | 5'h1D    | VREG1OUT x 1.44 |
| 5'h0E    | VREG1OUT x 1.02  | 5'h1E    | VREG1OUT x 1.47 |
| 5'h0F    | Setting disabled | 5'h1F    | VREG1OUT x 1.50 |

Note: Set the VcomL voltage from (VCL + 0.5)V to 0V

**VCOMG** – When VCOMG = 1, the LGDP4535 can output a negative voltage level for VCOML (0V  $\sim$  - (VCL + 0.5V) Max. ). When VCOMG = 0, the output of VCOML is fixed to GND level, and setting of the VDV[4:0] bits become invalid. And LGDP4535 halts the amplifier for negative voltage to save power. In this case, adjust the amplitude of (VCOMH-VCOML) voltage only with VCM[6:0] bits. VCOMG = 1 is valid only when PON = 1. So set PON = 1 ahead, before setting VCOMG = 1. In addition, set CMFPD = 1 ahead, before setting VCOMG = 0 on the frame inversion driving mode.

# Regulator Control (R15h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9     | IB8 | IB7 | IB6 | IB5     | IB4 | IB3 | IB2 | IB1   | IB0  |
|-----|----|------|------|------|------|------|------|---------|-----|-----|-----|---------|-----|-----|-----|-------|------|
| W   | 1  | 0    |      | RSET |      | 0    |      | RI[2:0] |     | 0   | ]   | RV[2:0] | ]   | 0   | RC  | ONT[2 | 2:0] |

**RCONT[2:0]** – These bits control the input voltage of main bias op\_amp.

Table 42

| 1 4016 42  |                  |
|------------|------------------|
| RCONT[2:0] | Input voltage    |
| 3'h0       | Vci x 0.25       |
| 3'h1       | Setting diabled  |
| 3'h2       | Open             |
| 3'h3       | Vci x 0.30       |
| 3'h4       | Setting disabled |
| 3'h5       | Setting disabled |
| 3'h6       | Vci x 0.20       |
| 3'h7       | Setting disabled |



RV[2:0] – These bits control the output voltage of internal logic regulator.

Table 43

| RV [2:0] | Vdd voltage |
|----------|-------------|
| 3'h0     | Vci x 0.80  |
| 3'h1     | Vci x 0.75  |
| 3'h2     | Vci x 0.70  |
| 3'h3     | Vci x 0.65  |
| 3'h4     | Vci x 0.60  |
| 3'h5     | Vci x 0.55  |
| 3'h6     | Vci x 0.50  |
| 3'h7     | Vci x 0.45  |

**RI[2:0]** – These bits control the bias current of internal logic regulator.

Table 44

| Constant current |
|------------------|
| 0.2              |
| 0.1              |
| 2.2              |
| 3                |
| 3.2              |
| 4                |
| 5.2              |
| 6                |
|                  |

Note: In this table, the constant current is shown by the ratio to the constant current when RI[2:0] is set to 3'h3.

**RSET[2:0]** – These bits control the main bias.

# Gamma Select Control (R16h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4   | IB3 | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | EN_MA | 0   | 0   | 0   | PS  |

**PS** – This bit specify the VA mode enable signal.

Table 45

| PS   | Mode    |  |
|------|---------|--|
| 1'h0 | TN mode |  |
| 1'h1 | VA mode |  |



EN\_MA – This bit specify the PFN0-5/PFP0-1/PMN/PMP registers Manaul setting enable signal

Table 46

|        |              | EN_MA | PS |
|--------|--------------|-------|----|
| Auto   | TN mode      | 0     | 0  |
|        | VA mode      | 0     | 1  |
| Manual | User setting | 1     | X  |

## **Vcom Control (R17h)**

| ] | R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9    | IB8 | IB7 | IB6 | IB5     | IB4 | IB3 | IB2 | IB1 | IB0   |
|---|-----|----|------|------|------|------|------|------|--------|-----|-----|-----|---------|-----|-----|-----|-----|-------|
|   | W   | 1  | 0    | 0    | 0    | 0    | 0    | L    | SZ[2:0 | )]  | 0   | F   | HSZ[2:0 | )]  | 0   | 0   | 0   | CMFPD |

LSZ[2:0] – This register controls VcomL amplifier to reduce cross-talk in frame inversion.

HSZ[2:0] - This register controls VcomH amplifier to reduce cross-talk in frame inversion.

**CMFPD** – Enable bit to use LSZ[2:0], HSZ[2:0] registers.

CMFPD = 0: Enable LSZ[2:0], HSZ[2:0] registers, and set for frame inversion.

CMFPD = 1: Disable LSZ[2:0], HSZ[2:0] registers, and set for line inversion.



## RAM Address Set (Horizontal Address) (R20h)

### RAM Address Set (Vertical Address) (R21h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8       | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----------|-----|-----|-----|-----|-----|-----|-----|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0 AD[7:0] |     |     |     |     |     |     |     |     |
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | AD[16:8]  |     |     |     |     |     |     |     |     |

**AD**[16:0] – A GRAM address set initially in the AC (Address Counter). The address in the AC is automatically updated according to the combination of AM, I/D[1:0] settings as data is written to the internal GRAM in order to write data consecutively without resetting the address in the AC. The address is not automatically updated when reading data from the internal GRAM.

Note 1: In RGB interface operation (RM='1'), the address AD[16:0] is set in the address counter every frame on the falling edge of VSYNC.

Note 2: In internal clock operation and VSYNC interface operation (RM='0'), the address AD[16:0] is set when executing the instruction.

#### Table 47

| AD[16:0]              | GRAM Data Setting                         |
|-----------------------|-------------------------------------------|
| 17'h00000 - 17'h000EF | Bitmap data on the first line             |
| 17'h00100 – 17'h001EF | Bitmap data on the second line            |
| 17'h00200 – 17'h002EF | Bitmap data on the third line             |
| :                     | :                                         |
| 17'h16500 – 17'h13DEF | Bitmap data on the 318 <sup>th</sup> line |
| 17'h16600 – 17'h13EEF | Bitmap data on the 319 <sup>th</sup> line |
| 17'h16700 – 17'h13FEF | Bitmap data on the 320 <sup>th</sup> line |
|                       |                                           |

## Write Data to RAM (R22h)



**WD[17:0]** – The LGDP4535 write data to the internal GRAM by expanding into 18 bits internally. The data expansion fomat into 18 bits differs according to the interface.

The GRAM data represents the grayscale level. The LGDP4535 automatically updates the address according to AM and I/D[1:0] as it writes data in the GRAM. In standby mode, the GRAM is not accessible. The data in 16-bit format is developed into 18 bits according to the register setting (DFM) in 8-/16-bit interface operation.

Note: When writing data in the GRAM via system interface while using the RGB interface, make sure that write operation via two interface do not conflict.



|           |              | orresponding LCD | Grayscale level (REV = 1) |              |  |  |  |  |
|-----------|--------------|------------------|---------------------------|--------------|--|--|--|--|
| GRAM data | Grayscale le |                  | GRAM data                 | Grayscale le |  |  |  |  |
| RGB       | Netative     | Positive         | RGB                       | Netative     |  |  |  |  |
| 6'h00     | V63          | V0               | 6'h20                     | V31          |  |  |  |  |
| 6'h01     | V62          | V1               | 6'h21                     | V30          |  |  |  |  |
| 6'h02     | V61          | V2               | 6'h22                     | V29          |  |  |  |  |
| 6'h03     | V60          | V3               | 6'h23                     | V28          |  |  |  |  |
| 6'h04     | V59          | V4               | 6'h24                     | V27          |  |  |  |  |
| 6'h05     | V58          | V5               | 6'h25                     | V26          |  |  |  |  |
| 6'h06     | V57          | V6               | 6'h26                     | V25          |  |  |  |  |
| 6'h07     | V56          | V7               | 6'h27                     | V24          |  |  |  |  |
| 6'h08     | V55          | V8               | 6'h28                     | V23          |  |  |  |  |
| 6'h09     | V54          | V9               | 6'h29                     | V22          |  |  |  |  |
| 6'h0A     | V53          | V10              | 6'h2A                     | V21          |  |  |  |  |
| 6'h0B     | V52          | V11              | 6'h2B                     | V20          |  |  |  |  |
| 6'h0C     | V51          | V12              | 6'h2C                     | V19          |  |  |  |  |
| 6'h0D     | V50          | V13              | 6'h2D                     | V18          |  |  |  |  |
| 6'h0E     | V49          | V14              | 6'h2E                     | V17          |  |  |  |  |
| 6'h0F     | V48          | V15              | 6'h2F                     | V16          |  |  |  |  |
| 6'h10     | V47          | V16              | 6'h30                     | V15          |  |  |  |  |
| 6'h11     | V46          | V17              | 6'h31                     | V14          |  |  |  |  |
| 6'h12     | V45          | V18              | 6'h32                     | V13          |  |  |  |  |
| 6'h13     | V44          | V19              | 6'h33                     | V12          |  |  |  |  |
| 6'h14     | V43          | V20              | 6'h34                     | V11          |  |  |  |  |
| 6'h15     | V42          | V21              | 6'h35                     | V10          |  |  |  |  |
| 6'h16     | V41          | V22              | 6'h36                     | V9           |  |  |  |  |
| 6'h17     | V40          | V23              | 6'h37                     | V8           |  |  |  |  |
| 6'h18     | V39          | V24              | 6'h38                     | V7           |  |  |  |  |
| 6'h19     | V38          | V25              | 6'h39                     | V6           |  |  |  |  |
| 6'h1A     | V37          | V26              | 6'h3A                     | V5           |  |  |  |  |
| 6'h1B     | V36          | V27              | 6'h3B                     | V4           |  |  |  |  |
| 6'h1C     | V35          | V28              | 6°h3C                     | V3           |  |  |  |  |
| 6'h1D     | V34          | V29              | 6'h3D                     | V2           |  |  |  |  |
| 6'h1E     | V33          | V30              | 6'h3E                     | V1           |  |  |  |  |
| 6'h1F     | V32          | V31              | 6°h3F                     | V0           |  |  |  |  |
|           |              | •                | •                         |              |  |  |  |  |

| GRAM data | Grayscale le | evel     |
|-----------|--------------|----------|
| RGB       | Netative     | Positive |
| 6'h20     | V31          | V32      |
| 6'h21     | V30          | V33      |
| 6'h22     | V29          | V34      |
| 6'h23     | V28          | V35      |
| 6'h24     | V27          | V36      |
| 6'h25     | V26          | V37      |
| 6'h26     | V25          | V38      |
| 6'h27     | V24          | V39      |
| 6'h28     | V23          | V40      |
| 6'h29     | V22          | V41      |
| 6'h2A     | V21          | V42      |
| 6'h2B     | V20          | V43      |
| 6'h2C     | V19          | V44      |
| 6'h2D     | V18          | V45      |
| 6'h2E     | V17          | V46      |
| 6'h2F     | V16          | V47      |
| 6'h30     | V15          | V48      |
| 6'h31     | V14          | V49      |
| 6'h32     | V13          | V50      |
| 6'h33     | V12          | V51      |
| 6'h34     | V11          | V52      |
| 6'h35     | V10          | V53      |
| 6'h36     | V9           | V54      |
| 6'h37     | V8           | V55      |
| 6'h38     | V7           | V56      |
| 6'h39     | V6           | V57      |
| 6'h3A     | V5           | V58      |
| 6'h3B     | V4           | V59      |
| 6'h3C     | V3           | V60      |
| 6'h3D     | V2           | V61      |
| 6'h3E     | V1           | V62      |
| 6'h3F     | V0           | V63      |



| Table 49 GR | AM data and o | corresponding LCD | Grayscale level (REV = $0$ ) |                 |   |  |  |  |
|-------------|---------------|-------------------|------------------------------|-----------------|---|--|--|--|
| GRAM data   | Grayscale le  | evel              | GRAM data                    | Grayscale level |   |  |  |  |
| RGB         | Netative      | Positive          | RGB                          | Netative        | I |  |  |  |
| 6'h00       | V0            | V63               | 6'h20                        | V32             | 7 |  |  |  |
| 6'h01       | V1            | V62               | 6'h21                        | V33             | 7 |  |  |  |
| 6'h02       | V2            | V61               | 6'h22                        | V34             | 7 |  |  |  |
| 6'h03       | V3            | V60               | 6'h23                        | V35             | 7 |  |  |  |
| 6'h04       | V4            | V59               | 6'h24                        | V36             | 7 |  |  |  |
| 6'h05       | V5            | V58               | 6'h25                        | V37             | 7 |  |  |  |
| 6'h06       | V6            | V57               | 6'h26                        | V38             | 7 |  |  |  |
| 6'h07       | V7            | V56               | 6'h27                        | V39             | 7 |  |  |  |
| 6'h08       | V8            | V55               | 6'h28                        | V40             | 7 |  |  |  |
| 6'h09       | V9            | V54               | 6'h29                        | V41             | 7 |  |  |  |
| 6'h0A       | V10           | V53               | 6'h2A                        | V42             | 7 |  |  |  |
| 6'h0B       | V11           | V52               | 6'h2B                        | V43             | 7 |  |  |  |
| 6'h0C       | V12           | V51               | 6'h2C                        | V44             | 7 |  |  |  |
| 6'h0D       | V13           | V50               | 6'h2D                        | V45             | 7 |  |  |  |
| 6'h0E       | V14           | V49               | 6'h2E                        | V46             | 7 |  |  |  |
| 6'h0F       | V15           | V48               | 6'h2F                        | V47             | 7 |  |  |  |
| 6'h10       | V16           | V47               | 6'h30                        | V48             | 7 |  |  |  |
| 6'h11       | V17           | V46               | 6'h31                        | V49             | 7 |  |  |  |
| 6'h12       | V18           | V45               | 6'h32                        | V50             | 7 |  |  |  |
| 6'h13       | V19           | V44               | 6'h33                        | V51             | 7 |  |  |  |
| 6'h14       | V20           | V43               | 6'h34                        | V52             | 7 |  |  |  |
| 6'h15       | V21           | V42               | 6'h35                        | V53             | 7 |  |  |  |
| 6'h16       | V22           | V41               | 6'h36                        | V54             | 7 |  |  |  |
| 6'h17       | V23           | V40               | 6'h37                        | V55             | 7 |  |  |  |
| 6'h18       | V24           | V39               | 6'h38                        | V56             | 7 |  |  |  |
| 6'h19       | V25           | V38               | 6'h39                        | V57             | 7 |  |  |  |
| 6'h1A       | V26           | V37               | 6'h3A                        | V58             | 7 |  |  |  |
| 6'h1B       | V27           | V36               | 6'h3B                        | V59             | 7 |  |  |  |
| 6'h1C       | V28           | V35               | 6'h3C                        | V60             | 7 |  |  |  |
| 6'h1D       | V29           | V34               | 6'h3D                        | V61             | 7 |  |  |  |
| 6'h1E       | V30           | V33               | 6'h3E                        | V62             | 7 |  |  |  |
| 6'h1F       | V31           | V32               | 6'h3F                        | V63             | 7 |  |  |  |



Positive V31 V30 V29 V28 V27 V26 V25 V24 V23 V22 V21 V20 V19 V18 V17 V16 V15 V14 V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 V0

## Read Data from RAM (R22h)

| R/W | RS | The bit assignment between RAM write data RD[17:0] and DB[17:0] differs according to the selected interface. |
|-----|----|--------------------------------------------------------------------------------------------------------------|
| R   | 1  | RD[17:0]                                                                                                     |

RD[17:0] - 18-bit data read from the GRAM. The bit assignment between RD[17:0] and DB[17:0] (data on the data bus) differs according to the selected interface.

When the LGDP4535 read data from the GRAM to the microcomputer, the first word read immediately after RAM address set is taken in the intenal read-data latch and inbalid data is sent to the data bus DB[17:0]. Vaild data is sent to the data bus as the LGDP4535 reads out the second and subsequence words.

When either 8-bit or 16-bit interface is selected, the LSB of R and B dot data are not read out.

Note: This register is not available in RGB interface operation.



Figure 12



## Gamma Control 1-16 (R30h to R3Fh)

| R/W | RS | IR15 | IR1/ | IR13 | IR12 | IR11 | IB10 | IRQ | IRΩ | IR7 | IR6 | IR5 | IRA | IR3 | IR2 | IR1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |    |      |      |      |      |      |      |     |     |     |     |     |     |     |     |     |     |

| R/W | RS |
|-----|----|
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |
| W   | 1  |

| IB15 | IB14 | IB13 | IB12 | IB11 | T         |         | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1       | IB0       |     |  |
|------|------|------|------|------|-----------|---------|-----|-----|-----|-----|-----|-----|-----------|-----------|-----|--|
| 0    | 0    | 0    | 0    | 0    | Pl        | KP1[2:  | 0]  | 0   | 0   | 0   | 0   | 0   | P.        | KP0[2:    | 0]  |  |
| 0    | 0    | 0    | 0    | 0    | Pl        | KP3[2:  | 0]  | 0   | 0   | 0   | 0   | 0   | P         | KP2[2:    | [0] |  |
| 0    | 0    | 0    | 0    | 0    | Pl        | KP5[2:  | 0]  | 0   | 0   | 0   | 0   | 0   | P         | KP4[2:    | [0  |  |
| 0    | 0    | 0    | 0    | 0    | Pl        | RP1[2:  | 0]  | 0   | 0   | 0   | 0   | 0   | P         | RP0[2:0   | [[  |  |
| 0    | 0    | 0    | 0    | 0    | PF        | KN1[2:  | 0]  | 0   | 0   | 0   | 0   | 0   | Pl        | KN0[2:    | [0  |  |
| 0    | 0    | 0    | 0    | 0    | PF        | KN3[2:  | 0]  | 0   | 0   | 0   | 0   | 0   | Pl        | PKN2[2:0] |     |  |
| 0    | 0    | 0    | 0    | 0    | PF        | KN5[2:  | 0]  | 0   | 0   | 0   | 0   | 0   | Pl        | KN4[2:    | 0]  |  |
| 0    | 0    | 0    | 0    | 0    | PI        | RN1[2:  | 0]  | 0   | 0   | 0   | 0   | 0   | PRN0[2:0] |           |     |  |
| 0    | 0    | 0    |      | V    | RP1[4:0   | 0]      |     | 0   | 0   | 0   |     | V   | RP0[4:    | 0]        |     |  |
| 0    | 0    | 0    |      | V    | RN1[4:    | 0]      |     | 0   | 0   | 0   |     | V   | RN0[4:    | 0]        |     |  |
|      |      |      |      |      | P         | FP1[2:0 | 0]  |     |     |     |     |     | P         | FP0[2:0   | [(  |  |
|      |      |      |      |      | P         | FP3[2:0 | 0]  |     |     |     |     |     | P         | FP2[2:0   | [(  |  |
|      |      |      |      |      | Pl        | FN1[2:  | 0]  |     |     |     |     |     | P         | FN0[2:    | [0] |  |
|      |      |      |      |      | PFN3[2:0] |         |     |     |     |     |     |     | P         | FN2[2:    | [0] |  |
|      |      |      |      |      |           |         |     |     |     |     |     |     | P         | MP[2:0    | )]  |  |
|      |      |      |      |      |           |         |     |     |     |     |     |     | P         | MN[2:0    | )]  |  |

**PKP5-0[2:0]** –  $\gamma$  fine-adjustment register for positive polarity

**PRP1-0[2:0]** –  $\gamma$  gradient-adjustment register for positive polarity

**VRP0[3:0], VRP1[4:0]** –  $\gamma$  amplitude-adjustment register for positive polarity

**PKN5-0[2:0]** –  $\gamma$  fine-adjustment register for negative polarity

**PRN1-0[2:0]** –  $\gamma$  gradient-adjustment register for negative polarity

**VRN0[3:0], VRN1[4:0]** –  $\gamma$  amplitude-adjustment register for negative polarity

**PFP3-0[2:0]**  $-\gamma$  fine adjustment register bits for positive polarity **PFN3-0[2:0]**  $-\gamma$  fine adjustment register bits for negative polarity **PMN[2:0]**  $-\gamma$  fine adjustment register bits for positive polarity **PMN[2:0]**  $-\gamma$  fine adjustment register bits for negative polarity

For details, see "γ-Correction Function" section



# EPROM Control Register 1 (R40h)

| R/ | W | RS | IB15 | IB14   | IB13 | IB12 | IB11  | IB10 | IB9 | IB8  | IB7 | IB6 | IB5 | IB4  | IB3    | IB2 | IB1 | IB0 |
|----|---|----|------|--------|------|------|-------|------|-----|------|-----|-----|-----|------|--------|-----|-----|-----|
| V  | I | 1  | PTM  | [[1:0] | POR  | VPP  | PPROG | PWE  | PA[ | 1:0] |     |     |     | PDIN | I[7:0] |     |     |     |

EPROM programming control. See "EPROM Control" section.

**PDIN**[7:0] – Data input. This corresponds to VCM[6:0] bits of R13h.

**PA[1:0]** – address input. This selects one of four banks of the EPROM.

Table 50

| PA[1:0] | Write Data Input | Write OPT Cell |
|---------|------------------|----------------|
| 2'h0    | PDIN[6:0]        | Cell[6:0]      |
| 2'h1    | PDIN[6:0]        | Cell[14:8]     |
| 2'h2    | PDIN[6:0]        | Cell[22:16]    |
| 2'h3    | PDIN[6:0]        | Cell[30:24]    |

**PWE** – Write enable.

**PPROG** – Program mode enable.

**VPP** – Power switch control for the VPP pin of the embedded EPROM. When VPP = "1", the internal VPP is set to 7.2V; otherwise it is set to 1.8V.

**POR** – Pin for power-on rest.

PTM[1:0] - Pins for enabling test mode

# EPROM Control Register 2 (R41h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4    | IB3 | IB2   | IB1   | IB0     |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|--------|-----|-------|-------|---------|
| W   | 1  | 0    | 0    |      |      |      |      |     |     |     |     |     | AUTOWR | RA[ | [1:0] | VCMSI | EL[1:0] |

EPROM programming control. See "EPROM Control" section.

VCMSEL[1:0] - With VCMSEL pin, sets VcomH level from either the register R13h or the EPROM

Table 51

| VCMSEL[1:0] | VcomH Level adjustment                                                          |
|-------------|---------------------------------------------------------------------------------|
| 00          | VCM[6:0] of the register R13h                                                   |
| 01          | EPROM data at first if EPROM has data. Otherwise, VCM[6:0] of the register R13h |
| 1x          | EPROM data selected by RA[1:0]                                                  |

**RA[1:0]** – Read address input. This selects one of four banks of the EPROM.

AUTOWR – Select the methoe of write operation
If AUTOWR='1', write address is PA.
Else AUTOWR='0', write address is auto select address.



### EPROM Control Register 3 (R42h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3  | IB2  | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|------|------|-----|-----|
| R   | 1  | 0    | 0    |      |      |      |      |     |     |     |     |     | PI  | TUOC | 7:0] |     |     |

**PDOUT[7:0]** – EPROM Read Data output.

## Window Horizontal RAM Address Start/End (R50h/R51h)

## Window Vertical RAM Address Start/End (R52h/R53h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8        | IB7      | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |  |
|-----|----|------|------|------|------|------|------|-----|------------|----------|-----|-----|-----|-----|-----|-----|-----|--|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | HSA[7:0] |     |     |     |     |     |     |     |  |
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0 HEA[7:0] |          |     |     |     |     |     |     |     |  |
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | VSA[8:0]   |          |     |     |     |     |     |     |     |  |
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | VEA[8:0]   |          |     |     |     |     |     |     |     |  |

**HSA[7:0]/HEA[7:0]** – HSA[7:0] and HEA[7:0] represent the addresses at the start and end of the window address area in horizontal direction, respectively. HSA[7:0] and HEA[7:0] specify the range on the GRAM to write data. Set HSA[7:0] and HEA[7:0] before starting RAM write operation. In setting, make sure that  $8'h00 \le HSA \le 8'hEF$ .

VSA[8:0]/VEA[8:0] – VSA[8:0] and VEA[8:0] represent the addresses at the start and end of the window address area in vertical direction, respectively. VSA[8:0] and VEA[8:0] specify the range on the GRAM to write data. Set VSA[8:0] and VEA[8:0] before starting RAM write operation. In setting, make sure that  $9^{\circ}h000 \le VSA \le VEA \le 9^{\circ}h1AF$ .



Figure 13



### **Driver Output Control (R60h)**

### Base Image Display Control (R61h)

### Vertical Scroll Control (R6Ah)

| R/W | RS |
|-----|----|
|     |    |

1

W

| 1813 | 1814 | 1813 | 1B12 | IBII | IBIU | 1119 | 1188    | IB/ | IBO | IBS | 164 | 183 | IB2   | IBI | IBU |  |
|------|------|------|------|------|------|------|---------|-----|-----|-----|-----|-----|-------|-----|-----|--|
| GS   | 0    |      |      | NL[  | 5:0] |      |         | 0   | 0   |     |     | SCN | [5:0] |     |     |  |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0   | 0   | 0   | 0   | 0   | NDL   | VLE | REV |  |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | VL[8:0] |     |     |     |     |     |       |     |     |  |

**SCN[5:0]** – Specifies the gate line where the gate driver starts scan.

**NL[5:0]** – Sets the number of lines to drive the LCD at an interval of 8lines. The GRAM address mapping is not affected by the number of lines set with NL[5:0]. The number of lines must be the same or more than the number of lines necessary for the size of the liquid crystal panel.

Table 52

| NL[5:0] | Number of Lines | NL[5:0]       | Number of Lines  |
|---------|-----------------|---------------|------------------|
| 6'h00   | 8               | 6'h15         | 176              |
|         |                 |               |                  |
| 6'h01   | 16              | 6'h16         | 184              |
| 6'h02   | 24              | 6'h17         | 192              |
| 6'h03   | 32              | 6'h18         | 200              |
| 6'h04   | 40              | 6'h19         | 208              |
| 6'h05   | 48              | 6'h1A         | 216              |
| 6'h06   | 56              | 6'h1B         | 224              |
| 6'h07   | 64              | 6'h1C         | 232              |
| 6'h08   | 72              | 6'h1D         | 240              |
| 6'h09   | 80              | 6'h1E         | 248              |
| 6'h0A   | 88              | 6'h1F         | 256              |
| 6'h0B   | 96              | 6'h20         | 264              |
| 6'h0C   | 104             | 6'h21         | 272              |
| 6'h0D   | 112             | 6'h22         | 280              |
| 6'h0E   | 120             | 6'h23         | 288              |
| 6'h0F   | 128             | 6'h24         | 296              |
| 6'h10   | 136             | 6'h25         | 304              |
| 6'h11   | 144             | 6'h26         | 312              |
| 6'h12   | 152             | 6'h27         | 320              |
| 6'h13   | 160             | 6'h28 – 6'h3F | Setting disabled |
| 6'h14   | 168             |               |                  |

**GS** – Set the direction of scan by the gate driver. Set the GS bit in combination with SM and SS bits to optimize scan method to the LCD module.

 $\mathbf{REV}$  – The grayscale level corresponding to the GRAM data can be reversed by setting REV = 1. This enables the LGDP4535 to display the same image form a same set of data whether the liquid crystal panel



is normally black or white. The source output level during front, back porch periods and blank periods is determined by resiger setting (PTS).

Table 53

| DEV | CDAM Data | Source Output Level in | n Display Area    |
|-----|-----------|------------------------|-------------------|
| REV | GRAM Data | Positive Polarity      | Negative Polarity |
|     | 18'h00000 | V63                    | V0                |
| 0   | :         | :                      | :                 |
|     | 18'h3FFFF | V0                     | V63               |
|     | 18'h00000 | V0                     | V63               |
| 1   | :         | :                      | :                 |
|     | 18'h3FFFF | V63                    | V0                |

**VLE** – Vertical scroll display enable bit. When VLE = 1, the LGDP4535 starts displaying the base image from the line (of the physical display) determined by setting the VL[8:0] bits. VL[8:0] represents the number of lines shifted from the first line of the physical display ( the amount of scrolling). Note that the display position of partial image is not affected by the base image scrolling.

The vertical scrolling is not available in external display interact operation. In this case, make sure to set VLE = 0.

**NDL** – Sets the source output level in non-display lit driving periods. By setting the NDL bit, the non-display area can be kept lit on.

Table 54

| NDL | Non-display at | rea      |  |
|-----|----------------|----------|--|
| NDL | Positive       | Negative |  |
| 0   | V63            | V0       |  |
| 1   | V0             | V63      |  |

VL[8:0] – Sets the amount of scrolling the base image by the number of lines. The RAM data in the start line address is displayed on the line, which is shifted from the first line of the liquid crystal panel by the number of lines set with VL[8:0]. In setting VL[8:0], make sure VL  $\leq$  320.



Table 55

| Table 55      | C-4-1' N- (C            |                    |                         |                  |
|---------------|-------------------------|--------------------|-------------------------|------------------|
| CONTE OF      | Gate line No (Sca       | in start position) | CM 1                    |                  |
| SCN[5:0]      | $\frac{SM = 0}{CS = 0}$ | CC 1               | $\frac{SM = 1}{CS + 0}$ | CC 1             |
| 6'h00         | <b>GS</b> = <b>0</b> G1 | GS = 1 $G320$      | <b>GS = 0</b><br>G1     | GS = 1 $G320$    |
| 6'h01         | G9                      |                    | G17                     | G304             |
|               |                         | G312               |                         |                  |
| 6'h02         | G17                     | G304               | G33                     | G288             |
| 6'h03         | G25                     | G296               | G49                     | G272             |
| 6'h04         | G33                     | G288               | G65                     | G256             |
| 6'h05         | G41                     | G280               | G81                     | G240             |
| 6'h06         | G49                     | G272               | G97                     | G224             |
| 6'h07         | G57                     | G264               | G113                    | G208             |
| 6'h08         | G65                     | G256               | G129                    | G192             |
| 6'h09         | G73                     | G248               | G145                    | G176             |
| 6'h0A         | G81                     | G240               | G161                    | G160             |
| 6'h0B         | G89                     | G232               | G177                    | G144             |
| 6'h0C         | G97                     | G224               | G193                    | G128             |
| 6'h0D         | G105                    | G216               | G209                    | G112             |
| 6'h0E         | G113                    | G208               | G225                    | G96              |
| 6'h0F         | G121                    | G200               | G241                    | G80              |
| 6'h10         | G129                    | G192               | G257                    | G64              |
| 6'h11         | G137                    | G184               | G273                    | G48              |
| 6'h12         | G145                    | G176               | G289                    | G32              |
| 6'h13         | G153                    | G168               | G305                    | G16              |
| 6'h14         | G161                    | G160               | G2                      | G319             |
| 6'h15         | G169                    | G152               | G18                     | G303             |
| 6'h16         | G177                    | G144               | G34                     | G287             |
| 6'h17         | G185                    | G136               | G50                     | G271             |
| 6'h18         | G193                    | G128               | G66                     | G255             |
| 6'h19         | G201                    | G120               | G82                     | G239             |
| 6'h1A         | G209                    | G112               | G98                     | G223             |
| 6'h1B         | G217                    | G104               | G114                    | G207             |
| 6'h1C         | G225                    | G96                | G130                    | G191             |
| 6'h1D         | G233                    | G88                | G146                    | G175             |
| 6'h1E         | G241                    | G80                | G162                    | G159             |
| 6'h1F         | G249                    | G72                | G178                    | G143             |
| 6'h20         | G257                    | G64                | G194                    | G127             |
| 6'h21         | G265                    | G56                | G210                    | G111             |
| 6'h22         | G273                    | G48                | G226                    | G95              |
| 6'h23         | G281                    | G40                | G242                    | G79              |
| 6'h24         | G289                    | G32                | G258                    | G63              |
| 6'h25         | G297                    | G24                | G274                    | G47              |
| 6'h26         | G305                    | G16                | G290                    | G31              |
| 6'h27         | G313                    | G8                 | G306                    | G15              |
| 6'h28 – 6'h3F | Setting disabled        | Setting disabled   | Setting disabled        | Setting disabled |
| 0 1120 0 1131 | Setting disabled        | Setting disabled   | Setting disdored        | Setting disabled |



### Software Reset (R70h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0  |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | SRST |

SRST – When SRST = 1, software is reset.

When SRST = 0, software reset is canceled.

## I/F Endian Control (R71h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1  | IB0    |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|------|--------|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | TCRE | V[1:0] |

TCREV[1:0] – Controls the endian setting (big/little endian: the order of reveiving data) when transferring one-pixel data via i80 interface inmultiple times. When setting a new value to TCREV[1:0], the order is changed from when the next instruction is executed.

Table 56

| TCREV[1:0 | 2 Transfers / Pixel                                 | 3 Transfers / Pixel                                                  |
|-----------|-----------------------------------------------------|----------------------------------------------------------------------|
| 2'h0      | Upper to lower(1 <sup>st</sup> to 2 <sup>nd</sup> ) | Upper to lower(1 <sup>st</sup> ,2 <sup>nd</sup> , 3 <sup>rd</sup> )  |
| 2'h1      | Setting disabled                                    | Setting disabled                                                     |
| 2'h2      | Setting disabled                                    | Setting disabled                                                     |
| 2'h3      | Lower to upper(2 <sup>nd</sup> to 1 <sup>st</sup> ) | Lower to upper(3 <sup>rd</sup> , 2 <sup>nd</sup> , 1 <sup>st</sup> ) |

Notes: 1. In read operation, the data is transferred from upper bits to lower bits (big endian) regardless of TCREV[1:0] setting.

2. Make sure to set TCREV[1:0] when executing reset or exiting from shutdown mode.

# Memory Write Control (R72h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0  |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | MWRM |

**MWRM** – Set Memory Write Mode.

RAM horizontal address = end address, RAM verital address = end address





### Partial Image 1: Display Position (R80h)

### RAM Address (Start/End Line Address) (R81h/R82h)

### Partial Image 2: Display Position (R83h)

## RAM Address (Start/End Line Address) (R84h/R85h)

PTEA1[8:0]

IB8 R/W RS IB15 IB14 IB13 IB12 IB11 IB6 IB5 IB4 IB3 IB1 W 1 0 0 0 0 PTDP0[8:0] 1 PTSA0[8:0] W 1 0 0 0 0 0 0 0 PTEA0[8:0] 0 0 0 0 PTDP1[8:0] W 1 0 0 0 0 0 0 0 PTSA1[8:0]

**PTDP0[8:0]** – Sets the display position of partial image 1. **PTDP1[8:0]** – Sets the display position of partial image 2.

W

The display areas of the partial images 1 and 2 must not overlap each another. In setting make sure that

Partial image 1 display area < Partial image 2 display area, and

Coordinates of partial image 1 display position: (PTDP0, PTEA0) Coordinates of partial image 2 display position: (PTDP1, PTEA1)

If PTDP0 = 9'h000, the partial image 1 is displayed from the first line of the base image.

PTSA0[8:0] – Sets the start line addresses of the RAM area, respectively for the partial image 1

**PTEA0[8:0]** – Sets the end display position of partial image 1.

PTSA1[8:0] – Sets the start line addresses of the RAM area, respectively for the partial image 2.

**PTEA1[8:0]** – Sets the end display position of partial image 2.

# Panel Interface Control 1 (R90h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9  | IB8   | IB7 | IB6 | IB5 | IB4 | IB3    | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|------|-------|-----|-----|-----|-----|--------|-----|-----|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | DIVI | [1:0] |     |     |     | RTN | I[7:0] |     |     |     |

**RTNI[7:0]** – Sets 1H (line) period. This setting is enabled while the LGDP4535's display operation is synchronized with internal clock. RTNI[7:0] should be greater than or equal to 60 (= 3Ch).



**DIVI[1:0]** – Sets the division ratio of the internal clock frequency. The LGDP4535's internal operation is synchronized with the frequency divided internal clock. When changing the DIVI[1:0] bits, the width of the reference clock for liquid crystal panel control signals is changed.

The frame frequency can be adjusted by register setting (RTNI and DIVI bits). When changing the number of lines to drive the liquid crystal panel, adjust the frame frequency too. For details, see "Frame-Frequency Adjustment Function". The setting in DIVI[1:0] is disabled in RGB interface operation.

#### Frame Frequency Calculation

Frame frequency = fosc/(clock cycles per line x division ratio x (active line + BP + FP))

Table 57 clocks per line (internal clock operation 1 clock = 1 OSC)

| RTNI[7:0]     | Clock per Line   |
|---------------|------------------|
| 8'h00 - 8'h3B | Setting disabled |
| 8'h3C         | 60 clocks        |
| 8'h3E         | 62 clocks        |
| 8'h40         | 64 clocks        |
| 8'h42         | 66 clocks        |
|               |                  |
| 8'hFC         | 252 clocks       |
| 8'hFE         | 254 clocks       |

Table 58 Division ratio of the internal clock

| DIVI[1:0] | Division Ratio | Internal operation clock unit |  |  |  |  |  |  |  |
|-----------|----------------|-------------------------------|--|--|--|--|--|--|--|
| 2'h0      | 1/1            | 1 OSC                         |  |  |  |  |  |  |  |
| 2'h1      | 1/2            | 2 OSC                         |  |  |  |  |  |  |  |
| 2'h2      | 1/4            | 4 OSC                         |  |  |  |  |  |  |  |
| 2'h3      | 1/8            | 8 OSC                         |  |  |  |  |  |  |  |

# Panel Interface Control 2 (R92h)

| R | W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9    | IB8 | IB7 | IB6 | IB5 | IB4 | IB3  | IB2   | IB1  | IB0   |
|---|---|----|------|------|------|------|------|------|--------|-----|-----|-----|-----|-----|------|-------|------|-------|
| 1 | N | 1  | 0    | 0    | 0    | 0    | 0    | NO   | OWI[2: | 0]  | 0   | 0   | 0   | 0   | EQI2 | [1:0] | EQI1 | [1:0] |

**EQI1[1:0]** – Sets equalization period.

Note: when VCOML >= 0V, EQI1, EQI2 setting is disabled.

Table 59

| 1 abic 37 |                                    |
|-----------|------------------------------------|
| EQI1[1:0] | <b>Equalization period</b>         |
| 2'h0      | 0 (internal clock period see note) |
| 2'h1      | 2                                  |
| 2'h2      | 4                                  |
| 2'h3      | 6                                  |

**EQI2[1:0]** – Sets equalization period.



|  | 60 |
|--|----|
|  |    |
|  |    |
|  |    |

| EQI2[1:0] | <b>Equalization period</b>         |
|-----------|------------------------------------|
| 2'h0      | 0 (internal clock period see note) |
| 2'h1      | 2                                  |
| 2'h2      | 4                                  |
| 2'h3      | 6                                  |

**NOWI[2:0]** – Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation in synchronization with internal clock.

Table 61

| NOWI[2:0] | Non-overlap period                 |
|-----------|------------------------------------|
| 3'h0      | 0 (internal clock period see note) |
| 3'h1      | 4                                  |
| 3'h2      | 8                                  |
| 3'h3      | 12                                 |
| 3'h4      | 16                                 |
| 3'h5      | 20                                 |
| 3'h6      | 24                                 |
| 3'h7      | 28                                 |

Note: The internal clock is the frequency divided clock with the division ratio set with the DIVI[1:0] bits.

## Panel Interface Control 3 (R93h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9     | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1     | IB0 |
|-----|----|------|------|------|------|------|------|---------|-----|-----|-----|-----|-----|-----|-----|---------|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | S    | EQI[2:0 | 0]  | 0   | 0   | 0   | 0   | 0   | M   | ICPI[2: | 0]  |

**MCPI[2:0]** – Sets the source output timing by the number of internal clock from a reference point. The setting is enabled in display operation in synchronization with internal clock.

Table 62

| T able 02 |                                    |  |  |  |  |  |  |  |
|-----------|------------------------------------|--|--|--|--|--|--|--|
| MCPI[2:0] | Source output position             |  |  |  |  |  |  |  |
| 3'h0      | 0 (internal clock period see note) |  |  |  |  |  |  |  |
| 3'h1      | 4                                  |  |  |  |  |  |  |  |
| 3'h2      | 8                                  |  |  |  |  |  |  |  |
| 3'h3      | 12                                 |  |  |  |  |  |  |  |
| 3'h4      | 16                                 |  |  |  |  |  |  |  |
| 3'h5      | 20                                 |  |  |  |  |  |  |  |
| 3'h6      | 24                                 |  |  |  |  |  |  |  |
| 3'h7      | 28                                 |  |  |  |  |  |  |  |

Note: The internal clock is the frequency divided clock with the division ratio set with the DIVI[[1:0] bits. The source output position is measured from a reference point by the number of internal clock cycle.

**SEQI[2:0]** – Sets Source equalization period.



Table 63

| 1 abic 03        |                                     |
|------------------|-------------------------------------|
| <b>SEQI[2:0]</b> | Source equalization periold         |
| 3'h0             | 0 (internal clock periold see note) |
| 3'h1             | 2                                   |
| 3'h2             | 4                                   |
| 3'h3             | 6                                   |
| 3'h4             | 8                                   |
| 3'h5             | 10                                  |
| 3'h6             | 12                                  |
| 3°h7             | 14                                  |

# Panel Interface Control 4 (R95h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9  | IB8   | IB7 | IB6 | IB5 | IB4  | IB3    | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|------|-------|-----|-----|-----|------|--------|-----|-----|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | DIVE | [1:0] |     |     |     | RTNI | E[7:0] |     |     |     |

**RTNE**[7:0] – Sets the number of internal clocks per 1H (line) period. Set the value that represents the number of DOTCLKs divided by the division ratio, which is input in a 1H period. RTNE[7:0] should be greater than or equal to 60 (= 3Ch).

**DIVE[1:0]** – Sets DIVE, the internal division ratio of DOTCLK. The internal operation is performed according to the clocks divided by the internal division ratio DIVE.

Table 64 Division ratio of DOTCLK

| <b>DIVE</b> [1:0] | Division         | Internal operation clock unit (DOTCLK) |                |                                 |                 |  |  |  |  |  |  |
|-------------------|------------------|----------------------------------------|----------------|---------------------------------|-----------------|--|--|--|--|--|--|
|                   | Ratio            | 18-bit, 1 transfer RGB interface       | DOTCLK = 5 MHz | 8-bit, 3 transfer RGB interface | DOTCLK = 15 MHz |  |  |  |  |  |  |
| 2'h0              | Setting disabled | l Setting disabled                     | -              | Setting disabled                | -               |  |  |  |  |  |  |
| 2'h1              | 1/1              | 1 DOTCLKs                              | 0.2 μs         | 3 DOTCLKs                       | 0.2 μs          |  |  |  |  |  |  |
| 2'h2              | 1/2              | 2 DOTCLKs                              | 0.4 μs         | 6 DOTCLKs                       | 0.4 μs          |  |  |  |  |  |  |
| 2'h3              | 1/4              | 4 DOTCLKs                              | 0.8 μs         | 12 DOTCLKs                      | 0.8 μs          |  |  |  |  |  |  |

Table 65 DOTCLK per line (1H period)

| RTNE[7:0]     | DOTCLK per line (1H) |
|---------------|----------------------|
| 8'h00 - 8'h3B | Setting disabled     |
| 8'h3C         | 60 clocks            |
| 8'h3E         | 62 clocks            |
| 8'h40         | 64 clocks            |
| 8'h42         | 66 clocks            |
|               |                      |
| 8'hFC         | 252 clocks           |
| 8'hFE         | 254 clocks           |



## Panel Interface Control 5 (R97h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9    | IB8 | IB7 | IB6 | IB5 | IB4 | IB3  | IB2    | IB1 | IB0    |
|-----|----|------|------|------|------|------|------|--------|-----|-----|-----|-----|-----|------|--------|-----|--------|
| W   | 1  | 0    | 0    | 0    | 0    |      | NOW  | E[3:0] |     | 0   | 0   | 0   | 0   | EQE2 | 2[1:0] | EQE | 1[1:0] |

**EQE1[1:0]** – Sets equalization period.

*Note : when VCOML >= 0V, EQE1,EQE2 setting is daiabled.* 

Table 66

| EQE1[1:0] | <b>Equalization period</b>         |
|-----------|------------------------------------|
| 2'h0      | 0 (internal clock period see note) |
| 2'h1      | 2                                  |
| 2'h2      | 4                                  |
| 2'h3      | 6                                  |

**EQE2[1:0]** – Sets equalization period.

Table 67

| EQE2[1:0] | <b>Equalization period</b>         |
|-----------|------------------------------------|
| 2'h0      | 0 (internal clock period see note) |
| 2'h1      | 2                                  |
| 2'h2      | 4                                  |
| 2'h3      | 6                                  |

**NOWE[3:0]** – Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation via RGB interface.

Table 68

| NOWE[3:0] | Non-overlap period                 | NOWE[3:0] | Non-overlap period |
|-----------|------------------------------------|-----------|--------------------|
| 4'h0      | 0 (internal clock period see note) | 4'h8      | 32                 |
| 4'h1      | 4                                  | 4'h9      | 36                 |
| 4'h2      | 8                                  | 4'hA      | 40                 |
| 4'h3      | 12                                 | 4'hB      | 44                 |
| 4'h4      | 16                                 | 4'hC      | 48                 |
| 4'h5      | 20                                 | 4'hD      | 52                 |
| 4'h6      | 24                                 | 4'hE      | 56                 |
| 4'h7      | 28                                 | 4'hF      | 60                 |

Note: 1 clock = (Number of data transfers / pixel) x DIVE (division ratio) [DOTCLK].

## Panel Interface Control 6 (R98h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2       | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----------|-----|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | MCPE[2:0] |     | [0] |

**MCPE[2:0]** – Sets the source output timing by the number of internal clock from a reference point. The setting is enabled in display operation via RGB interface.



|  | le |  |
|--|----|--|
|  |    |  |
|  |    |  |

| MCPE[2:0] | Source output position             | MCPE[2:0] | Source output position |
|-----------|------------------------------------|-----------|------------------------|
| 5'h00     | 0 (internal clock period see note) | 5'h10     | 16                     |
| 5'h01     | 4                                  | 5'h11     | 20                     |
| 5'h02     | 8                                  | 5'h12     | 24                     |
| 5'h03     | 12                                 | 5'h13     | 28                     |

Note: 1 clock = (Number of data transfers / pixel) x DIVE (division ratio) [DOTCLK].

**SEQE[2:0]** – Sets Source equalization period.

Table 70

| SEQE[2:0] | Source equalization period         | SEQE[2:0] | Source equalization period |
|-----------|------------------------------------|-----------|----------------------------|
| 5'h00     | 0 (internal clock period see note) | 5'h10     | 8                          |
| 5'h01     | 2                                  | 5'h11     | 10                         |
| 5'h02     | 4                                  | 5'h12     | 12                         |
| 5'h03     | 6                                  | 5'h13     | 14                         |

# Frame Rate Control (R9Ah)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3      | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|----------|-----|-----|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | OHZ | 0   | 0   | 0   |     | FRS[4:0] |     |     |     |

**FRS**[4:0] – Set the frame rate when the internal resistor is used for oscillator circuit. Sets the source output timing by the number of internal clock from a reference point. The setting is enabled in display operation via RGB interface.

Table 71

| FRS[4:0] | Vcom amplitude     | FRS[4:0] | Vcom amplitude |
|----------|--------------------|----------|----------------|
| 5'h00    | x 0.13             | 5'h10    | x 1.69         |
| 5'h01    | x 0.26             | 5'h11    | x 1.80         |
| 5'h02    | x 0.31             | 5'h12    | x 1.83         |
| 5'h03    | x 0.43             | 5'h13    | x 1.94         |
| 5'h04    | x 0.47             | 5'h14    | x 1.97         |
| 5'h05    | x 0.60             | 5'h15    | x 2.08         |
| 5'h06    | x 0.64             | 5'h16    | x 2.10         |
| 5'h07    | x 0.76             | 5'h17    | x 2.20         |
| 5'h08    | x 0.84             | 5'h18    | x 2.28         |
| 5'h09    | x 0.96             | 5'h19    | x 2.37         |
| 5'h0A    | x 1.00 ( default ) | 5'h1A    | x 2.42         |
| 5'h0B    | x 1.11             | 5'h1B    | x 2.50         |
| 5'h0C    | x 1.15             | 5'h1C    | x 2.54         |
| 5'h0D    | x 1.27             | 5'h1D    | x 2.64         |
| 5'h0E    | x 1.30             | 5'h1E    | x 2.66         |
| 5'h0F    | x 1.41             | 5'h1F    | x 2.75         |

Note : When the default OSC frequency( FRS[4:0]=5'h0A ) is 2MHz and the register setting is FRS[4:0]=5'h11 , then OSC frequency =  $2MHz \times 1.80 = 3.6 \text{ MHz}$ 



#### **OHZ** – Set the test mode

OHZ = 0 - FMARK pin is normal output..

OHZ = 1 - FMARK pin is clock input for test.

## Test Register 1 (RA0h)

| R/W | RS | IB15 | IB14 | IB13 | IB12   | IB11 | IB10 | IB9 | IB8  | IB7 | IB6 | IB5   | IB4  | IB3 | IB2 | IB1  | IB0    |
|-----|----|------|------|------|--------|------|------|-----|------|-----|-----|-------|------|-----|-----|------|--------|
| W   | 1  | 0    | 0    | TDLY | 7[1:0] | 0    | 0    | 0   | TDFN | 0   | 0   | TFOSC | TOSC | 0   | 0   | TVCO | M[1:0] |

TVCOM[1:0] – Sets the Vcom output level for test.

#### Table 72

| TVCOM [1:0] | Vcom Level |
|-------------|------------|
| 2'h0        | modulation |
| 2'h1        | modulation |
| 2'h2        | VCOML      |
| 2'h3        | VCOMH      |

**TOSC** – Sets for the oscillator test.

**TFOSC** – Sets for the oscillator delay test.

**TDFN** – Sets for the function test.

**TMEM** – Sets for the memory test.

**TDLY[1:0]** – Sets for the delay time test.

## Test Register 2 (RA1h)

| R/W | RS | IB15 | IB14 | IB13 | IB12    | IB11 | IB10 | IB9 | IB8  | IB7 | IB6 | IB5  | IB4   | IB3 | IB2 | IB1   | IB0 |
|-----|----|------|------|------|---------|------|------|-----|------|-----|-----|------|-------|-----|-----|-------|-----|
| W   | 1  | 0    | 0    | 0    | REGULPD | 0    | 0    | 0   | TSAP | 0   | 0   | TSHZ | TPATE | 0   | TF  | PAT[2 | :0] |

TSHZ - Sets

TSAP - Sets

 $\pmb{REGULPD-Sets}$ 

TPATE-Sets

**TPAT[2:0]** – Sets

# Test Register 3 (RA2h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4  | IB3 | IB2      | IB1      | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|------|-----|----------|----------|-----|
| W   | 1  | 0    | 0    | 0    | T8CL | 0    | 0    | 0   |     | 0   | 0   | 0   | TVON | 0   | HaltVreg | MultiVci |     |

MultiVci – Used for Device Test.

**HaltVreg** – Used for Device Test.

**TVON** – Used for Device Test.

T8CL – Used for 8 color mode test



# Test Register 4 (RA3h)

| R/W |   |   |   |   |   |   | IB10 |   |   |   |   |      |        |   |   |      |        |
|-----|---|---|---|---|---|---|------|---|---|---|---|------|--------|---|---|------|--------|
| W   | 1 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0 | 0 | RDSN | 4[1:0] | 0 | 0 | WRPV | V[1:0] |

**WRPW[1:0]** – Used for memory write pulse width test.

**RDSM[1:0]** – Used for memory read sensing margin test.

# Test Register 5 (RA4h)

| R/ | W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4   | IB3 | IB2 | IB1 | IB0 |
|----|---|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|
| V  | V | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | S_HIZ | 0   | 0   | 0   | SBC |

SBC – Source Bias controlUsed for memory write pulse width test.

 $S_HIZ$  – stepup2.

# Test Register 6 (RA5h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | OV  |

**OV** – Set data overwrite enable.

OV = 1: data overwrite disable

OV = 0: data overwrite enable.



Figure 14



# **Instruction List**

| Index | Register                                | 15         | 14         | 13               | 12             | 11                  | 10                   | 9                  | 8             | 7          | 6  | 5                | 4                    | 3                     | 2                    | 1                  | 0            |
|-------|-----------------------------------------|------------|------------|------------------|----------------|---------------------|----------------------|--------------------|---------------|------------|----|------------------|----------------------|-----------------------|----------------------|--------------------|--------------|
| 00h   | Start oscillation                       |            |            |                  |                |                     |                      |                    |               |            |    |                  |                      |                       |                      |                    | 1            |
| 01h   | Driver output control                   |            |            |                  |                |                     | SM<br>(0)            |                    | SS<br>(0)     |            |    |                  |                      |                       |                      |                    |              |
| 02h   | LCD Driving Wave<br>Control             |            |            |                  |                |                     |                      | BC0<br>(0)         | EOR<br>(0)    |            |    |                  | 1                    | NW[:                  | 5:0]<br>000)         |                    |              |
| 03h   | Entry mode                              | TRI<br>(0) | DFM<br>(0) |                  | BGR<br>(0)     |                     |                      |                    |               | ORG<br>(0) |    |                  | [1:0]<br>[11)        | AM<br>(0)             |                      | EPF<br>(0          |              |
| 04h   | Resizing Control                        |            |            |                  |                |                     |                      |                    | V[1:0]<br>00) |            |    | RC               | H[1:0]               |                       |                      | RSZ<br>(0          | [1:0]        |
| 07h   | Display Control 1                       |            |            |                  | DE[1:0]<br>00) |                     |                      |                    | BASEE<br>(0)  |            |    | GON<br>(0)       | DTE<br>(0)           | COL<br>(0)            |                      | D[1                |              |
| 08h   | Display Control 2                       |            |            | •                |                | FP[3:0]<br>0001000) | •                    |                    |               |            |    |                  |                      | P[7:0]<br>001000)     |                      |                    |              |
| 09h   | Display Control 3                       |            |            |                  |                |                     |                      | PTS[2:0]<br>(000)  |               |            |    |                  | G[1:0]<br>(00)       |                       | ISC[<br>(00)         |                    |              |
| 0Ah   | Display Control 4                       |            |            |                  |                |                     |                      |                    |               |            |    |                  |                      | FMARKO<br>E<br>(0)    |                      | FMI[2:0]<br>(000)  |              |
| 0Ch   | External display<br>Interface Control 1 |            |            |                  | C[1:0]<br>000) |                     |                      |                    | RM<br>(0)     |            |    |                  | M[1:0]<br>(00)       | (0)                   |                      |                    | [1:0]<br>0)  |
| 0Dh   | Frame Marker<br>Position                |            |            |                  |                |                     |                      |                    |               |            |    | F!<br>(000       | MP[9:0]<br>00000000) |                       |                      |                    |              |
| 0Fh   | External display<br>Interface Control 2 |            |            |                  |                |                     |                      |                    |               |            |    |                  | VSPL<br>(0)          | HSPL<br>(0)           |                      | EPL<br>(0)         | DPL<br>(0)   |
| 10h   | Power Control 1                         |            |            | SAP[2:0<br>(000) | )]             |                     |                      | BT[2:0]<br>(0000)  |               |            |    | AP[2:0<br>(000)  | ]                    | DK<br>(1)             | DSTB<br>(0)          | SLP<br>(0)         | STB<br>(0)   |
| 11h   | Power Control 2                         |            |            |                  |                |                     |                      | DC1[2:0]<br>(110)  |               |            |    | DC0[2:0<br>(110) | )]                   |                       |                      | VC[2:0]<br>(000)   |              |
| 12h   | Power Control 3                         |            |            |                  |                |                     |                      |                    |               |            |    |                  | PON<br>(0)           |                       | VRH<br>(00           |                    |              |
| 13h   | Power Control 4                         |            |            | VCOMG<br>(0)     |                |                     | VDV[4:0]<br>(00000)  |                    |               |            |    |                  |                      | VCM[6:0]<br>(0000000) |                      |                    |              |
| 15h   | Regulator Control                       |            |            | RSET[2:<br>(010) | 0]             |                     |                      | RI[2:0]<br>(000)   |               |            |    | RV[2:0<br>(011)  | ]                    |                       |                      | RCONT<br>(000)     |              |
| 16h   | Gamma Select Control                    |            |            |                  |                |                     |                      |                    |               |            |    |                  | EN_MA<br>(0)         |                       |                      |                    | PS<br>(0)    |
| 17h   | Vcom Control                            |            |            |                  |                |                     |                      | LSZ[2:0]<br>(000)  |               |            |    | HSZ[2:0<br>(000) | )]                   |                       |                      |                    | CMFPD<br>(1) |
| 20h   | RAM Address Set<br>(Horizontal Address) |            |            |                  |                |                     |                      |                    |               |            |    |                  | A<br>(00             | D[7:0]<br>000000)     |                      |                    |              |
| 21h   | RAM Address Set<br>(Vertical Address)   |            |            |                  |                |                     |                      |                    |               |            |    |                  | AD[16:8<br>(00000000 |                       |                      |                    |              |
| 22h   | RAM Data                                |            |            |                  |                |                     |                      |                    | WD[17:0]      | or RD[17:  | 0] |                  |                      |                       |                      |                    |              |
| 30h   | Gamma Control 1                         |            |            |                  |                |                     |                      | PKP1[2:0<br>(000)  | ]             |            |    |                  |                      |                       |                      | PKP0[2:0]<br>(000) |              |
| 31h   | Gamma Control 2                         |            |            |                  |                |                     |                      | PKP3[2:0<br>(000)  | ]             |            |    |                  |                      |                       |                      | PKP2[2:0]<br>(000) |              |
| 32h   | Gamma Control 3                         |            |            |                  |                |                     |                      | PKP5[2:0<br>(000)  | ]             |            |    |                  |                      |                       |                      | PKP4[2:0]<br>(000) |              |
| 33h   | Gamma Control 4                         |            |            |                  |                |                     |                      | PRP1[2:0<br>(000)  | ]             |            |    |                  |                      |                       |                      | PRP0[2:0]<br>(000) |              |
| 34h   | Gamma Control 5                         |            |            |                  |                |                     |                      | PKN1[2:0<br>(000)  | ]             |            |    |                  |                      |                       |                      | PKN0[2:0]<br>(000) |              |
| 35h   | Gamma Control 6                         |            |            |                  |                |                     |                      | PKN3[2:0<br>(000)  | ]             |            |    |                  |                      |                       |                      | PKN2[2:0]<br>(000) |              |
| 36h   | Gamma Control 7                         |            |            |                  |                |                     |                      | PKN5[2:0<br>(000)  | ]             |            |    |                  |                      |                       |                      | PKN4[2:0]<br>(000) |              |
| 37h   | Gamma Control 8                         |            |            |                  |                |                     |                      | PRN1[2:0<br>(000)  | ]             |            |    |                  |                      |                       |                      | PRN0[2:0]<br>(000) |              |
| 38h   | Gamma Control 9                         |            |            |                  |                |                     | VRP1[4:0]<br>(00000) |                    |               |            |    |                  |                      |                       | /RP0[4:0]<br>(00000) |                    |              |
| 39h   | Gamma Control 10                        |            |            |                  |                |                     | VRN1[4:0]<br>(00000) |                    |               |            |    |                  |                      |                       | RN0[4:0]<br>(00000)  |                    |              |
| 3Ah   | Gamma Control 11                        |            |            |                  |                |                     |                      | PFP1[2:0]<br>(001) |               |            |    |                  |                      |                       |                      | PFP0[2:0]<br>(001) |              |
| 3Bh   | Gamma Control 12                        |            |            |                  |                |                     |                      | PFP3[2:0]<br>(001) |               |            |    |                  |                      |                       |                      | PFP2[2:0]<br>(001) |              |
| 3Ch   | Gamma Control 13                        |            |            |                  |                |                     |                      | PFN1[2:0<br>(001)  | 1             |            |    |                  |                      |                       |                      | PFN0[2:0]<br>(001) |              |
| 3Dh   | Gamma Control 14                        |            |            |                  |                |                     |                      | PFN3[2:0<br>(001)  | ]             |            |    |                  |                      |                       |                      | PFN2[2:0]<br>(001) |              |
| 3Eh   | Gamma Control 15                        |            |            |                  |                |                     |                      |                    |               |            |    |                  |                      |                       |                      | PMP[2:0]<br>(001)  |              |



| 3Fh | Gamma Control 16                             |           |            |                    |              |                |                    |               |  |             |                      |                     |                     | PMN[2:0]<br>(001)  |              |
|-----|----------------------------------------------|-----------|------------|--------------------|--------------|----------------|--------------------|---------------|--|-------------|----------------------|---------------------|---------------------|--------------------|--------------|
| 40h | EPROM Control 1                              | PTM<br>(0 | POR<br>(0) | VPP<br>(0)         | PPROG<br>(0) | PWE<br>(0)     |                    | [1:0]<br>00)  |  |             | PD<br>(00            | IN[7:0]<br>000000)  |                     |                    |              |
| 41h | EPROM Control 2                              |           |            |                    |              |                |                    |               |  |             | AUTOWR<br>(0)        | RA[1<br>(00         |                     | VCMSE<br>(00       |              |
| 42h | EPROM Control 3                              |           |            |                    |              |                |                    |               |  |             |                      | OUT[7:0]<br>111111) | •                   |                    |              |
| 50h | Window Horizontal<br>RAM<br>Start Address    |           |            |                    |              |                |                    |               |  |             |                      | SA[7:0]<br>000000)  |                     |                    |              |
| 51h | Window Horizontal<br>RAM<br>End Address      |           |            |                    |              |                |                    |               |  |             |                      | EA[7:0]<br>101111)  |                     |                    |              |
| 52h | Window Vertical<br>RAM<br>Start Address      |           |            |                    |              |                |                    |               |  |             | VSA[8:0<br>(00000000 |                     |                     |                    |              |
| 53h | Window Vertical<br>RAM<br>End Address        |           |            |                    |              |                |                    |               |  |             | VEA[8:0<br>(11010111 |                     |                     |                    |              |
| 60h | Driver Output Control<br>2                   | GS<br>(0) |            |                    | NL<br>(00    | [5:0]<br>0000) |                    |               |  |             |                      | SCN[<br>(0000       | 5:0]<br>(00)        |                    |              |
| 61h | Base Image<br>Display Control                |           |            |                    |              |                |                    |               |  |             |                      |                     | NDL<br>(0)          | VLE<br>(0)         | REV<br>(0)   |
| 6Ah | Vertical Scroll Control                      |           |            |                    |              |                |                    |               |  |             | VL[8:0]<br>(00000000 | 00)                 |                     |                    |              |
| 70h | Software Reset                               |           |            |                    |              |                |                    |               |  |             |                      |                     |                     |                    | SRST<br>(0)  |
| 71h | I/F Endian Control                           |           |            |                    |              |                |                    |               |  |             |                      |                     |                     | TCRE               | V[1:0]<br>0) |
| 72h | Memory Write<br>Control                      |           |            |                    |              |                |                    |               |  |             |                      |                     |                     |                    | MWRM<br>(0)  |
| 80h | Partial Image 1<br>Display Position          |           |            |                    |              |                |                    |               |  |             | PTDP0[8:             | 0]<br>00)           |                     |                    |              |
| 81h | Partial Image 1<br>RAM Start Line<br>Address |           |            |                    |              |                |                    |               |  |             | PTSA0[8:             | 0]<br>00)           |                     |                    |              |
| 82h | Partial Image 1<br>RAM End Line<br>Address   |           |            |                    |              |                |                    |               |  |             | PTEA0[8:             |                     |                     |                    |              |
| 83h | Partial Image 2<br>Display Position          |           |            |                    |              |                |                    |               |  |             | PTDP1[8:             | 0]<br>00)           |                     |                    |              |
| 84h | Partial Image 2<br>RAM Start Line<br>Address |           |            |                    |              |                |                    |               |  |             | PTSA1[8:             |                     |                     |                    |              |
| 85h | Partial Image 2<br>RAM End Line<br>Address   |           |            |                    |              |                |                    |               |  |             | PTEA1[8:             | 0]<br>00)           |                     |                    |              |
| 90h | Panel Interface<br>Control 1                 |           |            |                    |              |                |                    | T[1:0]<br>00) |  |             | RT<br>(01            | NI[7:0]<br>011010)  |                     |                    |              |
| 92h | Panel Interface<br>Control 2                 |           |            |                    |              |                | NOWI[2:0<br>(000)  | ]             |  |             |                      | EQ12[<br>(00        | [1:0]               | EQI1               | [1:0]<br>0)  |
| 93h | Panel Interface<br>Control 3                 |           |            |                    |              |                | SEQI[2:0]<br>(000) | ]             |  |             |                      |                     |                     | MCPI[2:0]<br>(000) |              |
| 95h | Panel Interface<br>Control 4                 |           |            |                    |              |                | DIV<br>(           | E[1:0]<br>00) |  |             |                      | NE[7:0]<br>011010)  |                     |                    |              |
| 97h | Panel Interface<br>Control 5                 |           |            |                    |              | NOW<br>(00     | E[3:0]<br>(00)     |               |  |             |                      | EQE2<br>(00         | [1:0]<br>))         | EQEI<br>(0         | [1:0]<br>0)  |
| 98h | Panel Interface<br>Control 6                 |           |            |                    |              |                | SEQE[2:0<br>(000)  | ]             |  |             |                      |                     |                     | MCPE[2:0]<br>(000) | ]            |
| 9Ah | Frame Rate and Color<br>Control              |           |            |                    |              |                |                    | OHZ<br>(0)    |  |             |                      | 1                   | FRS[4:0]<br>(01000) |                    |              |
| A0h | Test register 1                              |           |            | DLY<br>00)         |              |                |                    | TDFN<br>(0)   |  | TFOSC (0)   | TOSC<br>(0)          |                     |                     | TVCO               |              |
| A1h | Test register 2                              |           |            | REGULP<br>D<br>(0) |              |                |                    | TSAP<br>(0)   |  | TSHZ<br>(0) | TPATE (0)            |                     |                     | TPAT[2:0]<br>(000) |              |
| A2h | Test register 3                              |           |            | T8CL<br>(0)        |              |                |                    |               |  |             | TVON<br>(0)          |                     | HaltVreg<br>(0)     | MultiVci<br>(1)    |              |
| A3h | Test register 4                              |           |            |                    |              |                |                    |               |  |             | DSM<br>00)           |                     |                     | WR<br>(0           |              |
| A4h | Test register 5                              |           |            |                    |              |                |                    |               |  |             | S_HIZ<br>(0)         |                     |                     |                    | SBC<br>(0)   |
| A5h | Test register 6                              |           |            |                    |              |                |                    |               |  |             |                      |                     |                     |                    | OV<br>(0)    |



## **Reset Function**

The LGDP4535 is initialized with a RESET input. During a reset period, the LGDP4535 is in a busy state and neither instruction nor access to the GRAM data from the MPU is accepted. The LGDP4535's internal power supply circuit unit is initialized also with a RESET input. The RESET period must be secured for at least 1ms. In case of power-on reset, wait until the RC oscillation frequency stabilizes (for 1 ms). During this period, neither access to the internal GRAM nor initial setting of instruction bits is accepted.

#### 1. Initial state of instruction bits (default)

See the instruction list. The default value is shown in the parenthesis of each instruction bit cell.

#### 2. RAM Data initialization

The RAM data is not automatically initialized with a RESET input and must be initialized by software in a display-off period (D1-0 = "00").

3. Output pin initial state \*See note

| 3. Output pin mitiai state |                 |
|----------------------------|-----------------|
| 1. LCD driver S1~S720      | : GND           |
| G1~G320                    | : VGL (= GND)   |
| 2. Vcom                    | : GND           |
| 3. VcomR                   | : Hi-Z          |
| 4. VcomH                   | : Hi-Z          |
| 5. VcomL                   | : GND           |
| 6. VREG1OUT                | : Hi-Z          |
| 7. VciOUT                  | : Vci           |
| 8. VLOUT1                  | : Vci           |
| 9. VLOUT2                  | : DDVDH (= Vci) |
| 10. VLOUT3                 | : GND           |
| 11. VLOUT4                 | : GND           |
| 12. VDD                    | : VDD           |
| 13. FMARK                  | : GND           |
| 14. SDO                    | : GND           |
| 15. Oscillator             | : Oscillate     |
|                            |                 |

### 4. Initial state of input/output pins\*See note

| 4. Initial state of input/output pins" |                  |
|----------------------------------------|------------------|
| 1. C11+                                | : Vci1           |
| 2. C11-                                | : GND            |
| 3. C12+                                | : Vci1           |
| 4. C12-                                | : GND            |
| 5. C13+                                | : Vci1           |
| 6. C13-                                | : GND            |
| 7. C21+                                | : DDVDH ( = Vci) |
| 8. C21-                                | : GND            |
| 9. C22+                                | : DDVDH ( = Vci) |
| 10. C22-                               | : GND            |
|                                        |                  |

Note: The above-mentioned initial states of output and input pins are the ones when the LGDP4535's power supply circuit is connected as exemplified in "Wiring example".



### 5. Note on Reset function

(1) When a RESET input is entered into the LGDP4535 while it is in deep standby mode, the LGDP4535 starts up the inside logic regulator and makes a transition to the initial state. During this period, the interface pins may be under an unstable condition. For this reason, do not enter a RESET input in deep standby mode.

(2) When transferring instruction using either two or three transfer mode via 8-/9-/16-bit interface, make sure to execute a data transfer synchronization after executing a reset operation.



# **Basic Mode operation of the LGDP4535**

The basic operation modes of the LGDP4535 are shown in the following diagram. When making a transition from one mode to another, refer to instruction setting sequence.



Figure 15



### Interface and data format

The LGDP4535 supports system interface for making instruction and other settings, and external display interface for displaying a moving picture. The LGDP4535 allows selecting an optimum interface according to the kind of display (moving or still picture) in order to transfer data efficiently.

As external display interface, the LGDP4535 supports RGB interface and VSYNC interface, both enabling data rewrite operation without flickering the moving picture on display.

In RGB interface operation, the display operation is executed in synchronization with synchronous signals VSYNC, HSYNC, and DOTCLK. In synchronization with these signals, the LGDP4535 writes display data according to data enable signal (ENABLE) via RGB data signal bus (DB17-0). The display data is stored in the LGDP4535's GRAM in order to minimize the data transfer by transferring data only when it is necessary to switch the moving picture frames. The window address function specifies the RAM area where data is rewritten for moving picture display and enables displaying a moving picture and RAM data in other than the moving picture area simultaneously.

In VSYNC interface operation, the internal display operation is synchronized with the frame synchronization signal (VSYNC). The VSYNC interface enables a moving picture display using system interface by writing data to the GRAM at more than a certain speed in synchronization with the falling edge of VSYNC. In this case, there are constraints in speed and methods of writing data to the internal RAM.

The LGDP4535 can operate in either one of the following four modes according to the state of display. The display operation mode is determined by setting the external interface control register. When switching between different modes, make sure to refer to mode switching sequence.

Table 73

| Operation Mode                                                                      | RAM Access Setting (RM)   | Display Operation Mode (DM)               |
|-------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|
| Internal clock operation (displaying still pictures)                                | System interface (RM = 0) | Internal clock operation $(DM[1:0] = 00)$ |
| RGB interface (1) (displaying moving pictures)                                      | RGB interface (RM = 1)    | RGB interface $(DM[1:0] = 01)$            |
| RGB interface (2)<br>(rewriting still pictures while<br>displaying moving pictures) | System interface (RM = 0) | RGB interface (DM[1:0] = 01)              |
| VSYNC interface (displaying moving pictures)                                        | System interface (RM = 0) | VSYNC interface (DM[1:0] = 10)            |

- Notes: 1. Instructions are set only via system interface.
  - 2. The RGB and VSYNC interfaces cannot be used simultaneously.
  - 3. Do not make changes to the RGB interface operation setting (RIM[1:0]) while RGB interface is in operation.
  - 4. See the "External Display Interface" section for the mode transition sequence.





Figure 16 LGDP4535's Interface

#### **Internal clock operation**

The display operation is synchronized with signals generated from internal oscillator's clock (OSC) in this mode. Any input via external display interface is invalid in this operation. The internal RAM is accessible only via system interface.

#### **RGB** interface operation (1)

The display operation is synchronized with the frame synchronous signal (VSYNC), the line synchronous signal (HSYNC), and the dot clock signal (DOTCLK) in RGB interface operation. These signals must be supplied throughout the display period using RGB interface.

The LGDP4535 transfers display data in units of pixels via DB17-0 pins. The display data is stored in the internal RAM. The combined use of high-speed RAM write mode and window address function enables the LGDP4535 to display a moving picture and the data in other than the moving picture RAM area simultaneously and transferring only data to be overwritten in the moving picture RAM area when7 rewriting the moving picture RAM area. This structure can minimize the total number of data transfer. The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated inside the LGDP4535 by counting the number of clocks of line synchronous signal (HSYNC) from the falling edge of the frame synchronous signal (VSYNC). Make sure to transfer pixel data via DB17-0 pins in accordance with these settings.

#### **RGB** interface operation (2)

This mode enables the LGDP4535 to rewrite RAM data via system interface while using RGB interface for display operation. To rewrite RAM data via system interface, make sure that display data is not transferred via RGB interface (ENABLE = high). To return to the RGB interface operation, change the ENABLE setting first and then set a new address and the index register to R22h.

#### **VSYNC** interface operation

The internal display operation is synchronized with the frame synchronous signal (VSYNC) in this mode. This mode enables the LGDP4535 to display a moving picture using system interface by writing data to the internal RAM at more than a minimum speed via system interface from the falling edge of frame synchronous (VSYNC). In this case, there are constraints in speed and methods of writing RAM data. For details, see the "VSYNC Interface" section. As an external input, only VSYNC signal input is valid in this mode. Any other input via external display interface is invalid.

The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated from the frame synchronous signal (VSYNC) according to the register settings inside the LGDP4535.



# **System Interface**

The following are the kinds of system interfaces available with the LGDP4535. The interface operation is selected by setting the IM3/2/1/0 pins. The system interface is used for instruction setting and RAM access.

Table 74

| IM[3:0] | Interface Mode with MPU            | DB pins        | Colors                 |
|---------|------------------------------------|----------------|------------------------|
| 0000    | Setting disabled                   | =              | -                      |
| 0001    | Setting disabled                   | -              | -                      |
| 0010    | 80-system 16-bit interface         | DB17-10, DB8-1 | 262,144<br>*see Note 1 |
| 0011    | 80-system 8-bit interface          | DB17-10        | 262,144<br>*see Note 2 |
| 010*    | Clock synchronous serial interface | SDI,SDO        | 65,536                 |
| 0110    | Setting disabled                   | -              | -                      |
| 0111    | Setting disabled                   | -              | -                      |
| 1000    | Setting disabled                   | =              | -                      |
| 1001    | Setting disabled                   | -              | -                      |
| 1010    | 80-system 18-bit interface         | DB17-0         | 262,144                |
| 1011    | 80-system 9-bit interface          | DB17-9         | 262,144                |
| 1100    | Setting disabled                   | -              | -                      |
| 1101    | Setting disabled                   | -              | -                      |
| 1110    | Setting disabled                   | -              | -                      |
| 1111    | Setting disabled                   | -              | -                      |

Notes: 1. 65,536 colors in 16-bit signal transfer mode.

2. 65,536 colors in 8-bit 2-transfer mode.



# 80-system 18-bit Bus Interface



Figure 17 18-bit Interface



Figure 18 Data format for 18-bit interface



## 80-system 16-bit Bus Interface



Figure 19 16-bit Interface



Figure 20 Data format for 16-bit interface



## Data Transfer Synchronous in 16-bit Bus Interface operation

The LGDP4535 supports a data transfer synchronization function to reset the counters for upper 16-/2-bit and lower 2-/16-bit transfers in 16-bit 2-transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 000H instruction is written four times consecutively to reset the upper and lower counters to restart data transfers from the upper 2/16 bits. By executing synchronization periodically, the system can recover from a runaway operation.

Make sure to execute a transfer synchronization after a reset operation before transferring instruction.



Figure 21 16-bit Data Transfer Synchronization



## 80-system 9-bit Bus Interface

When transferring a 16-bit instruction, it is divided into the upper and lower 8 bits, and the upper 8 bits are transferred first (the LSB is not used). The RAM write data is also divided into the upper and lower 9 bits, and the upper 9 bits are transferred first. The unused DB pins must be fixed at either the IOVcc or IOGND level. When writing to the index register, the upper byte (8 bits) must be written.



Figure 22 9-bit Intreface



Figure 23 9-bit Intreface Data Format



## Data Transfer Synchronous in 9-bit Bus Interface operation

The LGDP4535 supports a data transfer synchronization function to reset the counters for upper and lower 9-bit transfers in 9-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters to restart data transfers from the upper 9 bits. By executing synchronization periodically, the system can recover from a runaway operation.

Make sure to execute a transfer synchronization after a reset operation before transferring instruction.



Figure 24 9-bit Data Transfer Synchronization

## 80-system 8-bit Bus Interface

When transferring a 16-bit instruction, it is divided into the upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is also divided into the upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is expanded into 18 bits internally as shown below. The unused DB pins must be fixed at either the IOVcc or IOGND level. When writing the index register, the upper byte (8 bits) must be written.



Figure 25 8-bit Interface





Figure 26 8-bit Intreface Data Format



## Data Transfer Synchronous in 8-bit Bus Interface operation

The LGDP4535 supports a data transfer synchronization function to reset the counters for upper and lower 8-bit transfers in 8-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters to restart data transfers from the upper 8 bits. By executing synchronization periodically, the system can recover from a runaway operation.

Make sure to execute a transfer synchronization after a reset operation before transferring instruction.



Figure 27 8-bit Data Transfer Synchronization



### Serial Interface

The serial interface is selected by setting the IM3/2/1 pins to the IOGND/IOVcc/IOGND levels, respectively. The data is transferred via chip select line (CS), serial transfer clock line (SCL), serial data input line (SDI), and serial data output line (SDO). In serial interface operation, the IM0/ID pin functions as the ID pin, and the DB17-0 pins, not used in this mode, must be fixed at either IOVcc or GND level.

The LGDP4535 recognizes the start of data transfer on the falling edge of CS input and starts transferring the start byte. It recognizes the end of data transfer on the rising edge of CS input. The LGDP4535 is selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device identification code assigned to the LGDP4535 are compared and both 6-bit data match, and then the LGDP4535 starts taking in data. The least significant bit of the device identification code is set with the ID pin. Send "01110" to the five upper bits of the device identification code. Two different chip addresses must be assigned to the LGDP4535 because the seventh bit of the start byte is assigned to the register select bit (RS). When RS = 0, an index register write operation is executed. When RS = 1, either an instruction write operation or a RAM read/write operation is executed. The eighth bit of the start byte is to select either read or write operation (R/W bit). The LGDP4535 receives data when the R/W = 0, and transfers data when the R/W = 1.

When writing data to the GRAM via serial interface, the data is written to the GRAM after it is transferred in two bytes. The LGDP4535 writes data to the GRAM in units of 18 bits by adding the same bits as the MSBs to the LSB of R and B dot data.

After receiving the start byte, the LGDP4535 starts transferring or receiving data in units of bytes. The LGDP4535 executes data transfer from the MSB. The LGDP4535's instruction takes 16-bit format and they are executed inside after it is transferred in two bytes (16 bits: DB15-0) from the MSB (The LGDP4535 expands RAM write data into 18-bit format when writing them to the internal GRAM). The first byte received by the LGDP4535 following the start byte is always the upper eight bits of instruction and the second byte is the lower 8 bits of instruction.

In case of reading data from the GRAM, the LGDP4535 does not transfer valid data until first five bytes of data are read from the GRAM following the start byte. The LGDP4535 starts sending valid data as it reads the sixth and subsequent byte data.

Table 75 Start byte format

| Transferred bits  | 1              | 2 | 3 | 4 | 5 | 6  | 7  | 8   |
|-------------------|----------------|---|---|---|---|----|----|-----|
| Start byte format | Device ID code |   |   |   |   |    | RS | R/W |
|                   | 0              | 1 | 1 | 1 | 0 | ID |    |     |

**Note:** ID bit is selected by setting the IM0/ID pin.

Table 76

| RS | R/W | Function                         |
|----|-----|----------------------------------|
| 0  | 0   | Set an index register            |
| 0  | 1   | Read a status                    |
| 1  | 0   | Write an instruction or RAM data |
| 1  | 1   | Read an instruction or RAM data  |





Figure 28 Data format for SPI





Figure 29 Data Transfer in Serial interface



### **VSYNC Interface**

The LGDP4535 supports VSYNC interface, enabling the LGDP4535 to display a moving picture with minimum modifications to the existing system, using system interface and the frame synchronization signal (VSYNC).



Figure 30 VSYNC Interface

The VSYNC interface is selected by setting DM[1:0] = 10 and RM = 0. In VSYNC interface operation, the internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM at a speed faster to a certain degree than the internal display operation speed, it becomes possible to rewrite data without flickering the moving picture on display and enables the LGDP4535 to display a moving picture using a system interface.

The LGDP4535 performs the display operation with the internal clock signal generated from the internal oscillator and the VSYNC signal in this mode. In VSYNC mode, the data displayed on the screen are written to the internal RAM in order to transfer only the data to be written over the moving picture RAM area and thereby minimize the total data transfer required for moving picture display.



Figure 31 Moving Picture Data Transfers via VSYNC Interfce



The VSYNC interface has the minimum speed of writing data to the internal RAM via the system interface and the minimum internal clock frequency, which are calculated from the following formulae.

Internal clock frequency (fosc) [Hz]

=  $FrameFrequency \times (DisplayLines (NL) + FrontPorch (FP) + BackPorch (BP)) \times 60 clocks \times variance$ 

$$RAMWriteSpeed > \frac{240 \times DisplayLines \; (NL)}{(BackPorch \; (BP) + DisplayLines \; (NL) - margins) \times 60 \; clocks \times \frac{1}{fosc}}$$

Note: When the RAM write operation does not start on the falling edge of VSYNC, the time from the falling edge of VSYNC until the start of RAM write operation must also be taken into account.

An example of minimum RAM writing speed and internal clock frequency in VSYNC interface mode is as follows.

### [Example]

Display size 240 RGB × 320 lines

Lines 320 lines

Back/front porch 14/2 lines (BP = 1110/FP = 0010)

Frame frequency 70 Hz

### Internal clock frequency (fosc)

$$= 70 \text{ Hz} \times (320 + 2 + 14) \text{ lines} \times 60 \text{ Clocks} \times 1.1 / 0.9 = 1.72 \text{ MHz}$$

When setting the internal clock frequency, possible causes of variances must also be taken into consideration. In this example, the calculated internal clock frequency with the above register setting allows for a margin of  $\pm 10\%$  for variances and ensures to complete the display operation within one VSYNC cycle.

In this example, variances attributed to the fabrication process of LSI and room temperature are counted in. Other possible causes of variances, such as differences in external resistors or voltage changes are not in consideration. It is necessary to allow for an enough margin if these factors must be incorporated.

# Minimum speed for RAM writing $240 \times 320 / \{((14 + 320 - 2) \text{ lines} \times 60 \text{ clock}) / 1.72 \text{ MHz}\} = 6.63 \text{ MHz}$

The above theoretical value is calculated on the premise that the LGDP4535 starts writing data to the internal RAM on the falling edge of VSYNC. There must at least be a margin of 2 lines between the physical display line where display operation is performed and the RAM line address where data write operation is performed.

The RAM write speed of 6.63MHz or more on the falling edge of VSYNC will guarantee the completion of RAM write operation before the LGDP4535 starts displaying the RAM data on the screen, enabling rewriting the entire screen without flicker.





Figure 32 Write/Display Operation Timing via VSYNC Interface

## Notes in using the VSYNC interface

- 1. The above example of calculation gives a theoretical value. In the actual setting, other possible causes of variances not counted in the above example such as differences in internal oscillators should also be taken into consideration. It is strongly recommended to allow for an enough margin in setting a RAM writing speed.
- 2. The above example of calculation gives a minimum value in case of rewriting the entire screen. If the moving picture display area is smaller than that, the range for setting a minimum RAM writing speed can have extra margins.



Figure 33 RAM write margin



3. After drawing 1 frame, a front porch period continues until the next input of VSYNC is detected.

- 4. When switching from the internal clock operation mode (DM1-0 = "00") to the VSYNC interface mode, or the other way around, it is enabled from the next VSYNC cycle, i.e. after completing the display of the frame, which the LGDP4535 was internally processing when switching the modes.
- 5. The partial display, vertical scroll, and interlaced scan functions are not available in VSYNC interface mode.
- 6. In VSYNC interface mode, set the AM bit to "0" to transfer display data in the method mentioned above.



Figure 34 Sequences to Switch between VSYNC and Internal Clock Operation Modes



# **External Display Interface**

The following RGB interfaces are available with the LGDP4535. The interface operation is set with the RIM[1:0] bits. The RGB interface is used for RAM access.

Table 77

| RIM[1:0] | RGB Interface        | DB Pin             |
|----------|----------------------|--------------------|
| 00       | 18-bit RGB interface | DB[17:0]           |
| 01       | 16-bit RGB interface | DB[17:10], DB[8:1] |
| 10       | 6-bit RGB interface  | DB[17:12]          |
| 11       | Setting disabled     | -                  |

### RGB Interface

The display operation via RGB interface is synchronized with VSYNC, HSYNC, and DOTCLK. The RGB interface in combination with the window address function enables minimizing data transfer by rewriting data in high-speed with low power consumption only within the RAM area where data must be updated. In RGB interface operation, it is necessary to set back and front porch periods before and after the display period, respectively.



Figure 35 Display Operation via RGB Interface



## Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals

The polarities of VSYNC, HSYNC, ENABLE, and DOTCLK signals are changeable by setting the DPL, EPL, HSPL, and VSPL bits, respectively according to the system configuration.

## **RGB Interface Timing**

The timing relationships of signals in RGB interface operation area as follows.

## 16-18-bit RGB Interface Timing



Figure 36

Notes: 1. VLW : VSYNC Low period

HLW : HSYNC Low period DTST : data transfer setup time



### 6-bit RGB Interface Timing



Figure 37

Notes: 1. VLW : VSYNC Low period HLW : HSYNC Low period DTST : Data transfer setup time

2. In 6-bit RGB interface operation, set the cycles of VSYNC, HSYNC, ENABLE, DOTCLK so that one pixel is transferred in units of three DOTCLKs via DB17-12 (DB5-0).

# Moving Picture Display with the RGB Interface

The LGDP4535 supports RGB interfaces for displaying a moving picture and RAM for storing display data, which provides the following advantages in displaying a moving picture.

- 1. The window address function can minimize data transfer by specifying a moving picture RAM area
- 2. The high-speed write function enables RAM access in high speed with low power consumption
- 3. The data transfer is limited to a moving picture RAM area.
- 4. The reduction in data transfer contributes to the reduction in power consumption by the entire system
- 5. The combined use with system interface allows updating data in the still picture area, such as icons, while displaying a moving picture via RGB interface



## RAM access via system interface in RGB interface operation

The LGDP4535 allows RAM access via system interface in RGB interface operation. In RGB interface operation, data is written to the internal RAM in synchronization with DOTCLK while ENABLE is "Low". When writing data to the RAM via system interface, set ENABLE "High" to stop writing data via RGB interface. Then set RM = "0" to enable RAM access via system interface. When reverting to the RGB interface operation, wait for a time for a read/write bus cycle. Then, set RM = "1" and the index register to R22h to start accessing RAM via RGB interface. A conflict between RAM accesses via two different interfaces will not guarantee write operation.

The following is an example of rewriting still picture data via system interface while displaying a moving picture via RGB interface.



Figure 38 Updating the Still Picture Area while Displaying Moving Picture



### 6-bit RGB Interface

The 6-bit RGB interface is selected by setting RIM[1:0] = 10. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 6-bit RGB data bus according to data enable signal (ENABLE). Unused pins DB[11:0] must be fixed at either IOVcc or IOGND level.

The instructions are set only via system interface.



Figure 39 6-bit RGB interface



Figure 40 Data format for 6-bit interface



## Data Transfer Synchronization in 6-bit Bus Interface operation

The LGDP4535 has data transfer counters to count the first, second, and third 6-bit data transfers in 6-bit RBG interface operation. The transfer counters are always reset to the first data transfer on the falling edge of VSYNC. If there is a mismatch in the number of data transfers, the counters are reset to the first data transfer at the start of each frame (on the falling edge of VSYNC) and data transfer can be restarted in correct order from the next frame. In case of displaying a moving picture, which requires consecutive data transfer, this function can minimize the effect from the data transfer mismatch and help recover the display system to a normal state.



Figure 41 6-bit Transfer Synchronization



### 16-bit RGB Interface

The 16-bit RGB interface is selected by setting RIM1-0 = 01. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 16-bit RGB data bus according to data enable signal (ENABLE).

The instructions are set only via system interface.



Figure 42 16-bit RGB interface



Figure 43 Data format for 16-bit interface



### 18-bit RGB Interface

The 18-bit RGB interface is selected by setting RIM1-0 = 00. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 18-bit RGB data bus (DB17-0) according to data enable signal (ENABLE).

The instructions are set only via system interface.



Figure 44 18-bit RGB interface



Figure 45 Data format for 18-bit interface



### Notes on Using the External Display Interface

1. The following functions are not available in external display interface operation.

Table 78 Functions Not Available in External Display Interface operation

| Fucntion        | External Display Interface | Internal Display Interface |
|-----------------|----------------------------|----------------------------|
| Partial display | Not available              | Available                  |
| Scroll function | Not available              | Available                  |

- 2. The VSYNC, HSYNC, and DOTCLK signals must be supplied throughout the display operation.
- 3. The reference clock for generating liquid crystal panel controlling signals in RGB interface operation is DOTCLK, not the internal clock generated from the internal oscillator.
- 4. In 6-bit RGB interface operation, 6-bit dot data (R, G, and B) is transferred in synchronization with DOTCLK. In other words, it takes three DOTCLKs to transfer one pixel.
- 5. In 6-bit RGB interface operation, each 6-bit dot data (R, G, and B) is transferred in synchronization with DOTCLK. Take this into consideration and make sure to set the cycles of VSYNC, HSYNC, DOTCLK, ENABLE, and data transfer via DB17-12 so that data transfer is completed in units of pixels.
- 6. When switching between the internal operation mode and the external display interface operation, follow the sequences in Figure 46 RGB and Internal Clock Operation Mode switching sequences.
- 7. In RGB interface operation, a front porch period continues until the next VSYNC input is detected after the end of each frame period.
- 8. In RGB interface operation, use high-speed write function (HWM = 1) when writing data to the internal RAM.
- 9. In RGB interface operation, RAM address AD16-0 is set in the address counter every frame on the falling edge of VSYNC.





Figure 46 RGB and Internal Clock Operation Mode switching sequences



## **RAM Address and Display Position on the Panel**

The LGDP4535 has memory to store display data of 240RGB x 320 lines. The LGDP4535 incorporates a circuit to control partial display, which enables switching driving methods for full-screen display and partial display.

The LGDP4535 allows separate settings for display control and driving position control and specifying a RAM area for each image displayed on the screen. This structure enables designing a display on the screen not constrained by the mounting position of the display panel.

The following is the sequence of settings for full-screen and partial display.

- 1. Set (PTSAx, PTEAx) to specify the RAM area for each partial image
- 2. Set the display position of each partial image on the base image with PTDPx.
- 3. Set NL to specify the number of lines to drive the liquid crystal panel to display the base image
- 4. After display ON, set display enable bits (BASEE, PTDE0/1) to display respective images

In driving the liquid crystal panel, the clock signal for gate line scan is supplied consecutively via interface in accordance with the number of lines to drive the liquid crystal panel (NL setting).

When switching the display position in horizontal direction, the register setting in SS bit is required when writing RAM data.

Table 79

|            | Display ENABLE | Numbers of Lines | RAM area                      |
|------------|----------------|------------------|-------------------------------|
| Base image | BASEE          | NL               | (BSA, BEA) = (9'h000, 9'h13F) |

- Notes: 1: The base image is displayed from the first line of the screen.
  - 2: Make sure  $NL \le 320$  (lines) = BEA BSA when setting a base image RAM area. BSA and BEA are fixed to 9'h000, 9'h13F, respectively.

### Table 80

|                 | Display ENABLE | Display position | RAM start position |
|-----------------|----------------|------------------|--------------------|
| Partial image 1 | PTDE0          | (PTDP0, PTEA0)   | PTSA0              |
| Partial image 2 | PTDE1          | (PTDP1, PTEA1)   | PTSA1              |





Figure 47 RAM Address, display position and drive position

### Restrictions in setting display control instruction

The following are the constraints in setting coordinates of display data, display position, and partial image display.

## Screen setting

In setting the number of lines to drive the liquid crystal panel, make sure that the total number of lines is within the limit:  $NL \le 320$  lines

### Base image display

- 1. The base image is displayed from the first line of the screen: BSA = 1st line (of the display panel)
- 2. The base image RAM area specified with BSA, BEA must include the same or more number of lines necessary to drive the liquid crystal panel (NL setting): BEA BSA  $\geq$  NL

### Partial image display

Set the partial image RAM area setting registers (PTSAx, PTEAx bits) and the partial position setting registers (PTDPx bits) so that the RAM areas and the display positions of partials do not overlap each other.

```
0 \le PTDP0 \le PTEA0 < PTDP1 \le PTEA1 \le NL
```



The following figure shows the relationship among the RAM address, display position, and driving positions of the panel.



Figure 48 Display RAM Address and display position

Note: In this figure, the RAM address is defined in relation to the display position on the panel. Inside the LGDP4535, the RAM address area where the data is written is defined within a window address area on the GRAM address mapping.

## Instruction setting example

The followings are the examples of settings for 240(RGB) x 320(lines) panels.

### 1. Full screen display (no partial)

The following is an example of setting for full screen display.

Table 81

| Base image display insruction |       |  |
|-------------------------------|-------|--|
| BASEE                         | 1     |  |
| NL[5:0]                       | 6'h27 |  |
|                               |       |  |
| PTDE0                         | 0     |  |
| PTDE1                         | 0     |  |





Figure 49 Full screen display (no partial)

### 2. Partial only

The following is an example of setting for displaying partial image 1 only and turning off the base image display. The partial image 1 is displayed at the position designated by users.

| _ | -  |     |   | ~ ~       |
|---|----|-----|---|-----------|
| П | `• | hl  | Δ | <b>Y7</b> |
|   | 4  | .,, |   | ()4       |

| Base image display insruction |       |  |
|-------------------------------|-------|--|
| BASEE                         | 0     |  |
| NL[5:0]                       | 6'h27 |  |

| Partial image 1 display insruction |        |  |
|------------------------------------|--------|--|
| PTDE0                              | 1      |  |
| PTSA0[8:0]                         | 9'h000 |  |
| PTEA0[8:0]                         | 9'h08F |  |
| PTDP0[8:0]                         | 9'h080 |  |

| Partial image 2 display insruction |        |  |
|------------------------------------|--------|--|
| PTDE1                              | 0      |  |
| PTSA1[8:0]                         | 9'h000 |  |
| PTEA1[8:0]                         | 9'h000 |  |
| PTDP1[8:0]                         | 9'h000 |  |





Figure 50 Partial display



# **Resizing function**

The LGDP4535 supports resizing function (x 1/2, x 1/4), which is executed when writing image data. The resizing function is enabled by setting a window address area and the RSZ bit representing the contraction factor (x1/2 or x1/4) of the image. This function enables the LGDP4535 to write the resized image data directly to the internal RAM, while allowing the system to transfer the original-sized image data.

The resizing function allows the system just to transfer data as usual even when resizing of the image is required. This feature makes a resized image easily available with various applications such as camera display, sub panel display, thumbnail display and so on.

The LGDP4535 processes the contraction of an image simply by selecting pixels. For this reason, the resized image may appear distorted when compared with the original image. Check the resized image before use.



Figure 51 Data transfer in resizing

Table 83

| Origianl image size (X x Y ) | ) Resized image Size |                  |
|------------------------------|----------------------|------------------|
|                              | 1/2 (RSZ = 2'h1)     | 1/4 (RSZ = 2'h3) |
| 640x480(VGA)                 | 320x240              | 160x120          |
| 352x288(CIF)                 | 176x144              | 88x72            |
| 320x240(QVGA)                | 160x120              | 80x60            |
| 176x144(QCIF)                | 88x72                | 44x36            |
| 120x160                      | 60x80                | 30x40            |
| 132x176                      | 66x88                | 33x44            |



### Resizing setting

The RSZ bit sets the resizing (contraction) factor of an image. When setting the RAM area using the window address function, the window address area must be just the size of the resized picture. If resizing creates surplus pixels, which are calculated from the following equations, set them with the RCV, RCH bits before writing data to the internal RAM.



Figure 52 Resizing Setting, surplus pixel calculation

Table 84

| Image | (before | resizing) |
|-------|---------|-----------|
|-------|---------|-----------|

| 8/                                     |     |
|----------------------------------------|-----|
| Number of data in horizontal direction | X   |
| Numbef of data in vertical direction   | Y   |
| Resizing ratio                         | 1/N |

| Resizing setting                       | RSZ | N-1     |
|----------------------------------------|-----|---------|
| Numbef of data in horizontal direction | RCH | L       |
| Numbef of data in vertical direction   | RCV | M       |
|                                        |     |         |
| RAM writing start address              | AD  | (X0,Y0) |
| RAM window address                     | HAS | X0      |
|                                        | HEA | X0+Rx-1 |
|                                        | VSA | Y0      |
|                                        | VEA | Y0+Ry-1 |
|                                        |     |         |

## Notes to Resizing function

- 1. Set the resizing instruction bits (RSZ, RCV, and RCH) before writing data to the internal RAM.
- 2. When writing data to the internal RAM using resizing function, make sure to start writing data from the first address of the window address area in units of lines.
- 3. Set the window address area in the internal RAM to fit the size of the resized image.
- 4. Set AD16-0 before start transferring and writing data to the internal RAM.
- 5. Set the RCH, RCV bits only when using resizing function and there are remainder pixels. Otherwise (if RSZ = 2'h0), set RCH = RCV = 2'h0.





Figure 53 RAM write operation sequence in resizing



## **FMARK** function

The LGDP4535 outputs an FMARK pulse in the timing when driving the line specified with FMP[9:0] bits. The FMARK signal can be used as a trigger signal in writing display data in synchronization with display operation by detecting the address where the RAM data is read out for display operation.

The output interval of FMARK pulse can be set with the FMI[2:0] bits. Set the FMI[2:0] bits in accordance with display data rewrite cycle and data transfer rate. Sets FMARKOE = 1 when outputting FMARK pulse from the FMARK pin.

Table 85

| FMP[9:0]      | FMARK output position |
|---------------|-----------------------|
| 10'h000       | 0                     |
| 10'h001       | 1                     |
| 10'h002       | 2                     |
| :             | :                     |
| 10'h2AD       | 685                   |
| 10'h2AE       | 686                   |
| 10'h2AF       | 687                   |
| 10'h2B0 ~ 3FF | Setting disabled      |

Table 86

| FMI[2:0]      | FMARK output interval |
|---------------|-----------------------|
| 3'h0          | One frame period      |
| 3'h1          | 2 frame periods       |
| 3'h3          | 4 frame periods       |
| 3'h5          | 6 frame periods       |
| Other setting | Setting disabled      |



## FMP setting example



Figure 54

# Display operation synchronous data transfer using FMARK

The LGDP4535 uses FMARK signal as a trigger signal to start writing data to the internal GRAM in synchronization with display scan operation.



Figure 55 Display synchronous data transfer interface

The LGDP4535 writes display data to the internal GRAM at a speed faster to a certain degree than that of display operation in order to enable a moving picture display via the system interface without flicker. By writing all display data to the internal RAM, only the data tp be overwritten in the moving picture RAM area is transferred and the total data transfer for moving picture display can be minimized.





Figure 56 Moving Picture Data Transfers via FMARK function

The data transfer operation via FMARK function has a minimum RAM data rite speed an internal clock frequency, which must be more than the theoretical values chlculated from the following equations

 $\label{eq:lock_frequency} Internal\ clock\ frequency\ (fosc)\ [Hz] \\ = FrameFrequency\ x\ (DisplayLines(NL) + FrontPorch(FP) + BackPorch(BP))\ x\ 64(clocks)\ x\ variance$ 

$$RAMWriteSpeed > \frac{240 \times DisplayLines \ (NL)}{(BackPorch \ (BP) + DisplayLines \ (NL) - margins) \times 64 \ clocks \times \frac{1}{fosc}}$$

Note: When RAM write operation is not started right after the rising edge of FMARK, the time from the rising edge of FMARK until the start of RAM write operation must also be taken into account.



### **Window Address Function**

The window address function enables writing display data consecutively in a rectangular area (a window address area) made on the internal RAM. The window address area is made by setting the horizontal address register (start: HSA7-0, end: HEA 7-0 bits) and the vertical address register (start: VSA8-0, end: VEA8-0 bits). The AM and I/D bits set the transition direction of the RAM address (either increment or decrement, horizontal or vertical, respectively). Setting these bits enables the LGDP4535 to write data including image data consecutively without taking data wrap position into account.

The window address area must be made within the GRAM address map area. Also, the AD16-0 bits (RAM address set register) must be set to an address within the window address area.

| [Window address area setting range] |                                                   |
|-------------------------------------|---------------------------------------------------|
| (Horizontal direction)              | $8'h00 \le HSA \le HEA \le 8'hEF$                 |
| (Vertical direction)                | $9^{\circ}h000 \le VSA \le VEA \le 9^{\circ}h13F$ |
| [RAM Address setting range]         |                                                   |
| (RAM address)                       | $HSA \le AD7-0 \le HEA$                           |
|                                     | $VSA \le AD16-8 \le VEA$                          |



Figure 57 Automatic address update within a Window Address Area



## **EPROM Control**

LGDP4535 has an embedded EPROM which is a 32-bit one-time programmable (OTP) IP from eMemory Technology Inc. (EO01X32KCV6).

EO01X32KCV6 is a CMOS, 1bit (1-bit) program OTP logic device. The main memory block is organized as 8-bits by 4 banks. See the data sheet of EO01X32KCV6.

The pins of the embedded EPROM can be controlled using the EPROM control 1 (R60h) register as shown below.

Table 87

| EO01X32KCV6         | Bit fields of register R40h |
|---------------------|-----------------------------|
| PTM = 0V/1.8V       | PTM[1:0] = 00/11            |
| POR = 0V/1.8V       | POR = 0/1                   |
| VPP = 1.8V/7.2V     | VPP = 0/1                   |
| PPROG = 0V/1.8V     | PPROG = 0/1                 |
| PWE = 0V/1.8V       | PWE = 0/1                   |
| PA[1:0] = 0V/1.8V   | PA[1:0] = 0/1               |
| PDIN[7:0] = 0V/1.8V | PDIN[7:0] = 0/1             |

The RA[1:0] of register R41h selects one of four EPROM bytes.

Accessing EPROM control registers, follow the timing requirements of read and program cycles.



Figure 58 EPROM timings



Table 88

| Parameter                  | Symbol                            | EO01X32KCV6 |     | Unit |
|----------------------------|-----------------------------------|-------------|-----|------|
|                            | ·                                 | Min         | Max |      |
| Risimg Time / Fallimg Time | $T_r / T_f$                       | -           | 1   | ns   |
| Data Access Time           | T <sub>aa</sub>                   | -           | 70  | ns   |
| Power-on Pulse Width Time  | T <sub>por</sub>                  | 200         | -   | ns   |
| Address / Data Setup Time  | $T_{as}/T_{ds}$                   | 4           | -   | ns   |
| Address / Data Hold Time   | T <sub>ah</sub> / T <sub>dh</sub> | 9           | -   | ns   |
| External VPP Setup Time    | $T_{ m vps}$                      | 0           | -   | ns   |
| External VPP Hold Time     | $T_{\mathrm{vph}}$                | 0           | -   | ns   |
| Program Recovery Time      | $T_{\rm vr}$                      | 10          | -   | us   |
| Program Pulse Width        | T <sub>pw</sub>                   | 300         | 350 | us   |
| VDD Setup Time             | $T_{ m vds}$                      | 0           | -   | ms   |
| VDD Recovery Time          | $T_{ m vdr}$                      | 0           | -   | ms   |
| PPROG Setup Time           | $T_{pps}$                         | 10          | -   | ns   |
| PPROG Recovery Time        | T <sub>ppr</sub>                  | 10          | -   | ns   |
| Power on Read Time         | $T_{rst}$                         | 20          | -   | ns   |

### Notes

- 1. All electrical and timing parameters listed above are based on SPICE (or equivalent) simulations and subject to changes after silicon verification.
- 2. All program signals that align together in the timing diagrams should be derived from the rising clock edge.
- 3. All timing measurements are from the 50% of the input to 50% of the output.
- 4. All input waveforms have rising time  $(t_r)$  and falling time  $(t_f)$  of 1ns from 10% to 90% of the input waveforms.
- 5. For capacitive loads greater than 1pF, access time will increase by 1ns per pF of additional loading.
- 6. Program time means one byte program time in user mode



# **Scan Mode Setting**

The LGDP4535 allows for changing the gate-line/gate driver assignment and the shift direction of gate line scan in the following 4 different ways by combination of SM and GS bit settings. These



Figure 59



## **Line Inversion AC Drive**

The LGDP4535, in addition to the frame-inversion liquid crystal AC drive, supports the n-line inversion AC drive, in which the polarity of liquid crystal is inverted in units of n lines, where n takes a number from 1 to 64. The quality of display will be improved by using n-line inversion AC drive. In determining n (the value set with the NW bits +1), which represents the number of lines that determines the timing of liquid crystal polarity inversion, check the quality of display on the liquid crystal panel in use. Note that setting a smaller number of lines will raise the frequency of liquid crystal polarity inversion and increase charging/discharging current on liquid crystal cells .



Figure 60 Example of Alternating Signals for n-line Inversion



## **Frame-Frequency Adjustment Function**

The LGDP4535 supports a function to adjust frame frequency. The frame frequency for driving the LCD can be adjusted by setting the DIVI/E, RTNI/E bits without changing the oscillation frequency.

To switch frame frequencies according to whether displaying a moving picture or displaying a still picture, set a high oscillation frequency in advance. Then, set a low frame frequency to save power consumption when displaying a still picture. When displaying a moving picture, set the frequency high.

# Relationship between the liquid crystal Drive Duty and the Frame Frequency

The relationship between the liquid crystal drive duty and the frqme frequency is calculated from the following equation. The frame frequency can be adjusted by setting the 1H period adjustment (RTNI/E) bit and the operation clock division (DIVI/E) bit.

Equiation for calculating frame frequency

 $Frame\ Frequency = \frac{Fosc}{Number\ Of\ Clocks\ Per\ Line\ x\ Division\ Ratio\ x\ (Line\ + FP\ + BP)}$ 

Fosc : RC oscillation frequency

Number of Clocks per line: RTNI/E bit Division Ratio : DIVI/E bit

Line : number of lines to drive the LCD (NL bit)

FP : Number of lines for front porch BP : Number of lines for back porch

#### Example of Calculation: when maximum frame frequency = 70Hz

Number of lines: 320 lines

1H period : 60 Clock cycles (RTNI/E[7:0] = "00111100")

Division ratio of operating clock: 1/1

Front porch : 2 lines Back porch : 14 lines

Fosc =  $70 \text{ (Hz)} \times 60 \text{ (clocks)} \times 1/1 \times (320 + 2 + 14) \text{ (Lines)} = 1.41 \text{ (MHz)}$ 

In this case, the RC oscillation frequency is to set to 1.41MHz. Adjust the value of the external resistor conected to the RC oscillator so that RC oscillation frequency becomes 1.41MHz.



# **Partial Display Function**

The partial display function allows the LGDP4535 to drive linies selectively to display partial images by setting partial display control registers. The lines not used for displaying partial images are driven with non-display level to reduce power consumption.

The power saving effect can be enhanced in combination with 8-color display mode. Check the display quality when using low power consumption functions.



Figure 61



# Liquid crystal panel interface timing

The relationships between RGB interface signals and liquid crustal panel control signals in interhal operation and RGB interface operations are as follows.

# Internal clock operation



Figure 62



# RGB Interface operation



Figure 63



# $\gamma$ -Correction Function

The LGDP4535 has the  $\gamma$ -correction function to display in 262,144 colors simultaneously. The  $\gamma$ -correction is performed with 3 groups of registers determining eight reference grayscale levels, which are gradient adjustment, amplitude adjustment and fine-adjustment registers. Each register groups further consists of register groups of positive and negative polarities. Each register group is set independently to other register groups, making the LGDP4535 available with liquid crystal panels of various characteristics.



Figure 64 Grayscale control



# **Grayscale Amplifier Unit Configuration**

The following figure illustrates the grayscale amplifier unit of the LGDP4535.

To generate 64 grayscale voltages (V0 to V63), the LGDP4535 first generates eight reference grayscale voltages (VINP0-7/VINN0-7). The grayscale amplifier unit then divides eight reference grayscale voltages with the ladder resistors incorporated therein.



Figure 65 Grayscale amplifier unit





Figure 66 Ladder resistor units and 8-to-1 selectors



### y-Correction Register

The  $\gamma$ -correction registers of the LGDP4535 consist of gradient adjustment, amplitude adjustment, and fine adjustment registers, each of which has registers of positive and negative polarities. Each different register group can be set independently to others, enabling adjustment of grayscale voltage levels in relation to grayscales set optimally for  $\gamma$ -characteristics of a liquid crystal panel. These  $\gamma$ -correction register settings and the reference levels of the 64 grayscales to which the three kinds of adjustments are made (bold lines in the following figure) are common to all RGB dots.



Figure 67

### 1. Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient of the curve representing the relationship between the grayscale and the grayscale voltage level around middle grayscales without changing the dynamic range. To adjust the gradient, the resistance values of grayscale reference voltage generating variable resistors (VRHP(N)/VRLP(N)) in the middle of the ladder resistor unit are adjusted. The registers consist of positive and negative polarity registers, allowing asymmetric drive.

### 2. Amplitude adjustment registers

The amplitude adjustment registers are used to adjust the amplitude of grayscale voltages. To adjust the amplitude, the resistance values of the grayscale voltage generating variable resistors (VRP(N)1/0) at the top and bottom of the ladder resistor unit are adjusted. Same with the gradient registers, the amplitude adjustment registers consist of positive and negative polarity registers.

### 3. Fine adjustment registers

The fine adjustment registers are used to fine-adjust grayscale voltage levels. To fine-adjust grayscale voltage levels, fine adjustment registers adjust the reference voltage levels, 8 levels for each register generated from the ladder resistor unit, in respective 8-to-1 selectors. Same with other registers, the fine adjustment registers consist of positive and negative polarity registers.



Table 89 List of registers

| Register<br>Groups | Positive<br>Polarity | Negative<br>Polarity | Description                                      |
|--------------------|----------------------|----------------------|--------------------------------------------------|
| Gradient           | PRP0[2:0]            | PRN0[2:0]            | Variable resistor VRHP(N)                        |
| adjustment         | PRP1[2:0]            | PRN1[2:0]            | Variable resistor VRHP(N)                        |
|                    | PFP0[2:0]            | PFN0[2:0]            | Variable resistor VR0P(N)                        |
|                    | PFP1[2:0]            | PFN1[2:0]            | Variable resistor VR1P(N)                        |
|                    | PFP2[2:0]            | PFN2[2:0]            | Variable resistor VR2P(N)                        |
|                    | PFP3[2:0]            | PFN3[2:0]            | Variable resistor VR3P(N)                        |
|                    | PMP[2:0]             | PMN[2:0]             | Variable resistor VRMP(N)                        |
| Amplitude          | VRP0[4:0]            | VRN0[4:0]            | Variable resistor VRP(N)0                        |
| adjustment         | VRP1[4:0]            | VRN1[4:0]            | Variable resistor VRP(N)1                        |
| Fine               | PKP0[2:0]            | PKN0[2:0]            | 8-to-1 selector (voltage level of grayscale 1)   |
| adjustment         | PKP1[2:0]            | PKN1[2:0]            | 8-to-1 selector ( voltage level of grayscale 8)  |
|                    | PKP2[2:0]            | PKN2[2:0]            | 8-to-1 selector ( voltage level of grayscale 20) |
|                    | PKP3[2:0]            | PKN3[2:0]            | 8-to-1 selector (voltage level of grayscale 43)  |
|                    | PKP4[2:0]            | PKN4[2:0]            | 8-to-1 selector (voltage level of grayscale 53)  |
|                    | PKP5[2:0]            | PKN5[2:0]            | 8-to-1 selector (voltage level of grayscale 62)  |

### Ladder Resistors and 8-to-1 Selector

### **Block Configuration**

The reference voltage generating unit as illustrated in figure 66 consists of two ladder resistor units including variable resistors and 8-to-1 selectors. Each 8-to-1 selector selects one of the 8 voltage levels generated from the ladder resistor unit to output as a grayscale reference voltage. Both variable resistors and 8-to-1 selectors are controlled according to the  $\gamma$ -correction registers. This unit has pins to connect a volume resistor externally to compensate differences in various characteristics of panels.

### Variable Resistors

The LGDP4535 uses variable resistors of the following three purposes: gradient adjustment  $(VRHP(N)/VRLP(N)/VR0\sim4P(N)/VRMP(N))$  and amplitude adjustment  $(VRP(N)0\sim1)$ . The resistance values of these variable resistors are set by gradient adjustment registers and amplitude adjustment registers as follows.

Table 90 Gradient adjustment

| Contents of register PRP(N)0/1[2:0] | Resistance<br>VRHP(N)<br>VRLP(N) | Contents of register PFP(N)0/1/2/3[2:0] | Resistance<br>VR0/1P(N)<br>VR2/3P(N) | Contents of register PMP(N)[2:0] | Resistance<br>VRMP(N) |
|-------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|----------------------------------|-----------------------|
| 000                                 | 0R                               | 000                                     | 3R                                   | 000                              | 8R                    |
| 001                                 | 4R                               | 001                                     | 5R                                   | 001                              | 16R                   |
| 010                                 | 8R                               | 010                                     | 9R                                   | 010                              | 24R                   |
| 011                                 | 12R                              | 011                                     | 11R                                  | 011                              | 32R                   |
| 100                                 | 16R                              | 100                                     | 15R                                  | 100                              | 40R                   |
| 101                                 | 20R                              | 101                                     | 17R                                  | 101                              | 48R                   |
| 110                                 | 24R                              | 110                                     | 21R                                  | 110                              | 56R                   |
| 111                                 | 28R                              | 111                                     | 23R                                  | 111                              | 64R                   |



136

Table 91 Amplitude adjustment

| Contents of register VRP(N)0[4:0] | Resistance<br>VRP(N)0<br>VRP(N)1 |
|-----------------------------------|----------------------------------|
| 00000                             | 0R                               |
| 00001                             | 1R                               |
| 00010                             | 2R                               |
| :                                 | :                                |
| :                                 | :                                |
| 11101                             | 29R                              |
| 11110                             | 30R                              |
| 11111                             | 31R                              |

### 8-to-1 Selectors

The 8-to-1 selector selects one of eight voltage levels generated from the ladder resistor unit according to the fine adjustment register, and output the selected voltage level as a reference grayscale voltage  $(VINP(N)1 \sim VINP(N 6))$ . The table below shows the setting in the fine adjustment register and the selected voltage levels for respective reference grayscale voltages

Table 92 Fine adjustment registers and selected voltage

| PKP(N)[2:0] | Selected Voltage |          |          |          |          |          |  |
|-------------|------------------|----------|----------|----------|----------|----------|--|
|             | VINP(N)1         | VINP(N)2 | VINP(N)3 | VINP(N)4 | VINP(N)5 | VINP(N)6 |  |
| 3'h0        | KVP(N)1          | KVP(N)9  | KVP(N)17 | KVP(N)25 | KVP(N)33 | KVP(N)41 |  |
| 3'h1        | KVP(N)2          | KVP(N)10 | KVP(N)18 | KVP(N)26 | KVP(N)34 | KVP(N)42 |  |
| 3'h2        | KVP(N)3          | KVP(N)11 | KVP(N)19 | KVP(N)27 | KVP(N)35 | KVP(N)43 |  |
| 3'h3        | KVP(N)4          | KVP(N)12 | KVP(N)20 | KVP(N)28 | KVP(N)36 | KVP(N)44 |  |
| 3'h4        | KVP(N)5          | KVP(N)13 | KVP(N)21 | KVP(N)29 | KVP(N)37 | KVP(N)45 |  |
| 3'h5        | KVP(N)6          | KVP(N)14 | KVP(N)22 | KVP(N)30 | KVP(N)38 | KVP(N)46 |  |
| 3'h6        | KVP(N)7          | KVP(N)15 | KVP(N)23 | KVP(N)31 | KVP(N)39 | KVP(N)47 |  |
| 3'h7        | KVP(N)8          | KVP(N)16 | KVP(N)24 | KVP(N)32 | KVP(N)40 | KVP(N)48 |  |



The grayscale voltage levels for V0~V63 grayscales are calculated from the following formula.

Table 93 Formula for calculating voltage (1)

| Pin   | Formula                                                   | Fine<br>adjustment<br>register value | Reference<br>voltage |
|-------|-----------------------------------------------------------|--------------------------------------|----------------------|
| KVP0  | VREG1OUT - ΔV*VRP0/SUMRP                                  | -                                    | VINP0                |
| KVP1  | VREG1OUT - ΔV*(VRP0+VR0P+0R)/SUMRP                        | PKP0= 3'h0                           |                      |
| KVP2  | VREG1OUT - ΔV*(VRP0+VR0P+4R)/SUMRP                        | PKP0= 3'h1                           |                      |
| KVP3  | VREG1OUT - ΔV*(VRP0+VR0P+8R)/SUMRP                        | PKP0= 3'h2                           |                      |
| KVP4  | VREG1OUT - ΔV*(VRP0+VR0P+12R)/SUMRP                       | PKP0= 3'h3                           | VINP1                |
| KVP5  | VREG1OUT - ΔV*(VRP0+VR0P+16R)/SUMRP                       | PKP0= 3'h4                           | VINFI                |
| KVP6  | VREG1OUT - ΔV*(VRP0+VR0P+20R)/SUMRP                       | PKP0= 3'h5                           |                      |
| KVP7  | VREG1OUT - ΔV*(VRP0+VR0P+24R)/SUMRP                       | PKP0= 3'h6                           |                      |
| KVP8  | VREG1OUT - ΔV*(VRP0+VR0P+28R)/SUMRP                       | PKP0= 3'h7                           |                      |
| KVP9  | VREG1OUT - ΔV*(VRP0+VR0P+28R+VRHP)/SUMRP                  | PKP1= 3'h0                           |                      |
| KVP10 | VREG1OUT - ΔV*(VRP0+VR0P+29R+VRHP)/SUMRP                  | PKP1= 3'h1                           |                      |
| KVP11 | VREG1OUT - ΔV*(VRP0+VR0P+30R+VRHP)/SUMRP                  | PKP1= 3'h2                           |                      |
| KVP12 | VREG1OUT - ΔV*(VRP0+VR0P+31R+VRHP)/SUMRP                  | PKP1= 3'h3                           | VINP2                |
| KVP13 | VREG1OUT - ΔV*(VRP0+VR0P+32R+VRHP)/SUMRP                  | PKP1= 3'h4                           | VIINI Z              |
| KVP14 | VREG1OUT - ΔV*(VRP0+VR0P+33R+VRHP)/SUMRP                  | PKP1= 3'h5                           |                      |
| KVP15 | VREG1OUT - ΔV*(VRP0+VR0P+34R+VRHP)/SUMRP                  | PKP1= 3'h6                           |                      |
| KVP16 | VREG1OUT - ΔV*(VRP0+VR0P+35R+VRHP)/SUMRP                  | PKP1= 3'h7                           |                      |
| KVP17 | $VREG1OUT - \Delta V*(VRP0+VR0/1P+35R+VRHP)/SUMRP$        | PKP2= 3'h0                           |                      |
| KVP18 | VREG1OUT - ΔV*(VRP0+VR0/1P+36R+VRHP)/SUMRP                | PKP2= 3'h1                           |                      |
| KVP19 | VREG1OUT - ΔV*(VRP0+VR0/1P+37R+VRHP)/SUMRP                | PKP2= 3'h2                           |                      |
| KVP20 | VREG1OUT - ΔV*(VRP0+VR0/1P+38R+VRHP)/SUMRP                | PKP2= 3'h3                           | VIND2                |
| KVP21 | VREG1OUT - ΔV*(VRP0+VR0/1P+39R+VRHP)/SUMRP                | PKP2= 3'h4                           | VINP3                |
| KVP22 | VREG1OUT - ΔV*(VRP0+VR0/1P+40R+VRHP)/SUMRP                | PKP2= 3'h5                           |                      |
| KVP23 | VREG1OUT - ΔV*(VRP0+VR0/1P+41R+VRHP)/SUMRP                | PKP2= 3'h6                           |                      |
| KVP24 | VREG1OUT - ΔV*(VRP0+VR0/1P+42R+VRHP)/SUMRP                | PKP2= 3'h7                           |                      |
| KVP25 | VREG1OUT - ΔV*(VRP0+VR0/1P+42R+VRHP +VRMP)/SUMRP          | PKP3= 3'h0                           |                      |
| KVP26 | VREG1OUT - ΔV*(VRP0+VR0/1P+43R+VRHP +VRMP)/SUMRP          | PKP3= 3'h1                           |                      |
| KVP27 | VREG1OUT - ΔV*(VRP0+VR0/1P+44R+VRHP +VRMP)/SUMRP          | PKP3= 3'h2                           |                      |
| KVP28 | VREG1OUT - ΔV*(VRP0+VR0/1P+45R+VRHP +VRMP)/SUMRP          | PKP3= 3'h3                           | VINP4                |
| KVP29 | VREG1OUT - ΔV*(VRP0+VR0/1P+46R+VRHP +VRMP)/SUMRP          | PKP3= 3'h4                           | VIINE4               |
| KVP30 | VREG1OUT - ΔV*(VRP0+VR0/1P+47R+VRHP +VRMP)/SUMRP          | PKP3= 3'h5                           |                      |
| KVP31 | VREG1OUT - ΔV*(VRP0+VR0/1P+48R+VRHP +VRMP)/SUMRP          | PKP3= 3'h6                           |                      |
| KVP32 | VREG1OUT - ΔV*(VRP0+VR0/1P+49R+VRHP +VRMP)/SUMRP          | PKP3= 3'h7                           |                      |
| KVP33 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+49R+VRHP +VRMP)/SUMRP        | PKP4= 3'h0                           |                      |
| KVP34 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+50R+VRHP +VRMP)/SUMRP        | PKP4= 3'h1                           |                      |
| KVP35 | $VREG1OUT - \Delta V*(VRP0+VR0/1/2P+51R+VRHP+VRMP)/SUMRP$ | PKP4= 3'h2                           |                      |
| KVP36 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+52R+VRHP +VRMP)/SUMRP        | PKP4= 3'h3                           | VINP5                |
| KVP37 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+53R+VRHP +VRMP)/SUMRP        | PKP4= 3'h4                           | VIINES               |
| KVP38 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+54+VRHP +VRMP)/SUMRP         | PKP4= 3'h5                           |                      |
| KVP39 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+55R+VRHP +VRMP)/SUMRP        | PKP4= 3'h6                           |                      |
| KVP40 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+56R+VRHP +VRMP)/SUMRP        | PKP4= 3'h7                           |                      |
| KVP41 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+56R+VRHP +VRMP+VRLP)/SUMRP   | PKP5= 3'h0                           |                      |
| KVP42 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+60R+VRHP +VRMP+VRLP)/SUMRP   | PKP5= 3'h1                           |                      |
| KVP43 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+64R+VRHP +VRMP+VRLP)/SUMRP   | PKP5= 3'h2                           | VINP6                |
| KVP44 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+68R+VRHP +VRMP+VRLP)/SUMRP   | PKP5= 3'h3                           |                      |
| KVP45 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+72R+VRHP +VRMP+VRLP)/SUMRP   | PKP5= 3'h4                           |                      |



| KVP46 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+76R+VRHP+VRMP +VRLP)/SUMRP   | PKP5= 3'h5 |       |
|-------|-----------------------------------------------------------|------------|-------|
| KVP47 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+80R+VRHP+VRMP +VRLP)/SUMRP   | PKP5= 3'h6 |       |
| KVP48 | VREG1OUT - ΔV*(VRP0+VR0/1/2P+84R+VRHP+VRMP +VRLP)/SUMRP   | PKP5= 3'h7 |       |
| KVP49 | VREG1OUT - ΔV*(VRP0+VR0/1/2/3P+84R+VRHP+VRMP +VRLP)/SUMRP | -          | VINP7 |

SUMRP: Sum of positive ladder resistors = 92R+VRHP+VRLP+VRP0+VRP1+VR0P+VR1P+VR2P+VR3P+VRMP

 $\Delta V$  : Difference in electrical potential between VREG1OUT and VGS

Table 94 Formula for calculating voltage (2)

| Grayscale voltage | Formula                     |
|-------------------|-----------------------------|
| V0                | VINP0                       |
| V1                | VINP1                       |
| V2                | VINP2+(VINP1-VINP2)*(30/48) |
| V3                | VINP2+(VINP1-VINP2)*(23/48) |
| V4                | VINP2+(VINP1-VINP2)*(16/48) |
| V5                | VINP2+(VINP1-VINP2)*(12/48) |
| V6                | VINP2+(VINP1-VINP2)*(8/48)  |
| V7                | VINP2+(VINP1-VINP2)*(4/48)  |
| V8                | VINP2                       |
| V9                | VINP3+(VINP2-VINP3)*(22/24) |
| V10               | VINP3+(VINP2-VINP3)*(20/24) |
| V11               | VINP3+(VINP2-VINP3)*(18/24) |
| V12               | VINP3+(VINP2-VINP3)*(16/24) |
| V13               | VINP3+(VINP2-VINP3)*(14/24) |
| V14               | VINP3+(VINP2-VINP3)*(12/24) |
| V15               | VINP3+(VINP2-VINP3)*(10/24) |
| V16               | VINP3+(VINP2-VINP3)*(8/24)  |
| V17               | VINP3+(VINP2-VINP3)*(6/24)  |
| V18               | VINP3+(VINP2-VINP3)*(4/24)  |
| V19               | VINP3+(VINP2-VINP3)*(2/24)  |
| V20               | VINP3                       |
| V21               | VINP4+(VINP3-VINP4)*(22/23) |
| V22               | VINP4+(VINP3-VINP4)*(21/23) |
| V23               | VINP4+(VINP3-VINP4)*(20/23) |
| V24               | VINP4+(VINP3-VINP4)*(19/23) |
| V25               | VINP4+(VINP3-VINP4)*(18/23) |
| V26               | VINP4+(VINP3-VINP4)*(17/23) |
| V27               | VINP4+(VINP3-VINP4)*(16/23) |
| V28               | VINP4+(VINP3-VINP4)*(15/23) |
| V29               | VINP4+(VINP3-VINP4)*(14/23) |
| V30               | VINP4+(VINP3-VINP4)*(13/23) |
| V31               | VINP4+(VINP3-VINP4)*(12/23) |

| Grayscale voltage | Formula                     |
|-------------------|-----------------------------|
| V32               | VINP4+(VINP3-VINP4)*(11/23) |
| V33               | VINP4+(VINP3-VINP4)*(10/23) |
| V34               | VINP4+(VINP3-VINP4)*(9/23)  |
| V35               | VINP4+(VINP3-VINP4)*(8/23)  |
| V36               | VINP4+(VINP3-VINP4)*(7/23)  |
| V37               | VINP4+(VINP3-VINP4)*(6/23)  |
| V38               | VINP4+(VINP3-VINP4)*(5/23)  |
| V39               | VINP4+(VINP3-VINP4)*(4/23)  |
| V40               | VINP4+(VINP3-VINP4)*(3/23)  |
| V41               | VINP4+(VINP3-VINP4)*(2/23)  |
| V42               | VINP4+(VINP3-VINP4)*(1/23)  |
| V43               | VINP4                       |
| V44               | VINP5+(VINP4-VINP5)*(22/24) |
| V45               | VINP5+(VINP4-VINP5)*(20/24) |
| V46               | VINP5+(VINP4-VINP5)*(18/24) |
| V47               | VINP5+(VINP4-VINP5)*(16/24) |
| V48               | VINP5+(VINP4-VINP5)*(14/24) |
| V49               | VINP5+(VINP4-VINP5)*(12/24) |
| V50               | VINP5+(VINP4-VINP5)*(10/24) |
| V51               | VINP5+(VINP4-VINP5)*(8/24)  |
| V52               | VINP5+(VINP4-VINP5)*(6/24)  |
| V53               | VINP5+(VINP4-VINP5)*(4/24)  |
| V54               | VINP5+(VINP4-VINP5)*(2/24)  |
| V55               | VINP5                       |
| V56               | VINP6+(VINP5-VINP6)*(44/48) |
| V57               | VINP6+(VINP5-VINP6)*(40/48) |
| V58               | VINP6+(VINP5-VINP6)*(36/48) |
| V59               | VINP6+(VINP5-VINP6)*(32/48) |
| V60               | VINP6+(VINP5-VINP6)*(25/48) |
| V61               | VINP6+(VINP5-VINP6)*(18/48) |
| V62               | VINP6                       |
| V63               | VINP7                       |

Note: Make sure DDVDH-V0 > 0.5V



Relationship between RAM Data and Voltage Output Levels

The relationship between RAM data and source output voltage levels is as follows...



Figure 68 RAM data and the output voltage (REV = "1")



Figure 69 Source output and Vcom



## 8-Color Display Mode

The LGDP4535 has a function to display in 8colors. In 8-color mode, available grayscale levels are V0 and V63, and the power supplies of other grayscales (V1 to V62) are halted to reduce power consumption.

In 8-color display mode, the MSBs of the respective dot data (R5, G5, B5) are written to the rest of the dot data in order to display in 8 colors without rewriting the RAM data.

The γ- correction registers, PKP0-PKP5 and PKN0-PKN5, are disabled in 8-color display mode.



Figure 70 8-color display mode



To switch between the 262,144-color mode and 8-color mode, follow the sequence below.



Figure 71



# **Power-supply Generating Circuit**

The following figures show the configurations of liquid crystal drive voltage generating circuit of the LGDP4535.

## Power supply circuit connection example 1 (Vci1 = VciOUT)

In the following example, the VciOUT level is adjusted internally with the VciOUT output circuit.



Figure 72

Note: The wiring resistance between the schottky diode and GND/VGL must be 10-Ohm or less.



# Power supply circuit connection example2 (Vci1 = Vci direct input)

In the following example, the electrical Vci is directly applied to Vci1. In this case, the VciOUT level cannot be adjusted internally but step-up operation becomes more effective



Figure 73

Note: 1. The wiring resistance between the schottky diode and GND/VGL must be 10-Ohm or less.

2. When directly applying the Vci level to Vci1, set VC=3'h0.



# **Specifications of Power-supply Circuit External Elements**

The specifications of external elements connected to the power-supply circuit of the LGDP4535 are as follows.

**Table 95 Capacitor** 

| Capacitance                | Voltage proof | Pin Connection                                                                                                  |
|----------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
| 1uF<br>(B characteristics) | 6V            | (1)VREG1OUT, (3)VciOUT, (4) C11N/P,<br>(5) C12N/P, (8) C13N/P, (14) VLOUT4,<br>(15) VCOML, (16) VCOMH, (17) VDD |
|                            | 10V           | (6) VLOUT1, (9) C21N/P, (10) C22N/P                                                                             |
|                            | 25V           | (11) VLOUT2, (12) VLOUT3                                                                                        |

Notes: 1. Check with the LC module.

2. The numbers in the parentheses corresponds to the numbers of the elements in Figure 72, Figure 73.

**Table 96 Schottky Diode** 

| Specification                                                      | Pin Connection                |
|--------------------------------------------------------------------|-------------------------------|
| $VF < 0.4 \text{ V}/20 \text{ mA}@25 ^{\circ}\text{C}, VR \ge 30V$ | (7) DDVDH-VGH<br>(13) GND-VGL |

#### **Table 97 Variable Resistor**

| Specification | Pin Connection |
|---------------|----------------|
| >200kΩ        | (2) VcomR      |



# **Voltage Setting Pattern Diagram**

The pattern diagram of voltage setting and waveforms of the liquid crystal application voltages are as follows.



Figure 74 Pattern Diagram for Voltage Setting

Note Output voltages of DDVDH, VGH, VGL, and VCL drop from setting voltage(idea voltage) depending on the current consumption at output. (DDVDH – VREG1OUT) > 0.5V and (VCOML – VGL) > 0.5V are the relation to the actual voltage. When using the voltage in the large current consumption at the fast VCOM2 cycle( such as line-by-line inversion), check the voltage value



# **Power Supply Instruction Setting**

The followings are the sequences for setting power supply ON/OFF. Make power supply ON/OFF settings according to the following sequences in Display ON/OFF, Standby set/exit, Sleep set/exit sequences.



Figure 75



# **Instruction Setting**

The following are the sequences for various instruction settings with the LGDP4535. When making the following instruction settings, follow the respective sequences below.

#### Display ON/OFF sequence



Figure 76

Note: When a line-inversion driving is set, exclude "Vcom feedback control ON/OFF" steps.



# Standby / Sleep mode SET/EXIT sequences



Figure 77

Note: "Display ON/OFF" sequences include "LCD Power Supply ON/OFF" sequences respectively. See "Display ON/OFF sequence" section.



#### Deep standby mode IN/EXIT sequences



Figure 78

 $Note: "Display\ ON/OFF" sequences\ include\ "LCD\ Power\ Supply\ ON/OFF" sequences\ respectively.$  See "Display\ ON/OFF sequence" section.

#### 8-color mode setting



Figure 79



# Parital Display setting



Figure 80



# **Absolute Maximum Ratings**

Table 98

| Item                     | Symbol       | Unit | value                      | Notes |
|--------------------------|--------------|------|----------------------------|-------|
| Power supply voltage (1) | Vcc, IOVcc   | V    | -0.3 ~ +4.5                | 1, 2  |
| Power supply voltage (2) | Vci – AGND   | V    | -0.3 ~ +4.5                | 1, 3  |
| Power supply voltage (3) | DDVDH – AGND | V    | -0.3 ~ +8.0                | 1, 4  |
| Power supply voltage (4) | AGND – VCL   | V    | -0.3 ~ +4.5                | 1     |
| Power supply voltage (5) | DDVDH –VCL   | V    | -0.3 ~ +8.0                | 1, 5  |
| Power supply voltage (6) | VGH – AGND   | V    | <b>-</b> 0.3 ∼ +18         | 1, 6  |
| Power supply voltage (7) | AGND – VGL   | V    | <b>-</b> 0.3 ∼ +18         | 1, 7  |
| Input voltage            | Vt           | V    | -0.3~IOVcc+0.3             | 1     |
| Operating temperature    | Topr         | °C   | -40 ~ +85                  | 1, 8  |
| Storage temperature      | Tstg         | °C   | <b>-</b> 55 ∼ <b>+</b> 125 | 1     |

Note 1) If used beyond the absolute maximum ratings, the LSI may permanently be damaged. It is strongly recommended to use the LSI at a condition within the electrical characteristics for normal operation. Exposure to a condition not within the electrical characteristics may affect device reliability.

Note 2) Make sure (High)  $Vcc \ge GND$  (Low), (High)  $IOVcc \ge GND$  (Low).

Note 3) Make sure (High) Vci ≥ GND (Low).

Note 4) Make sure (High) DDVDH ≥ AGND (Low).

Note 5) Make sure (High) DDVDH ≥ VCL (Low).

Note 6) Make sure (High) VGH ≥ AGND (Low).

Note 7) Make sure (High)  $AGND \ge VGL$  (Low).

Note 8) The DC/AC characteristics of die and wafer products is guaranteed at 85 °C.



# **Electrical Characteristics**

#### **DC Characteristics**

Table 99

| Item                                               | Symbol             | Unit | Test condition                                        | Min.     | Тур. | Max.     | Notes |
|----------------------------------------------------|--------------------|------|-------------------------------------------------------|----------|------|----------|-------|
| Input high-level voltage                           | V <sub>IH</sub>    | V    | IOVcc = 1.65 ~ 3.3V                                   | 0.8IOVcc |      | ΙΟVα     | 2,3   |
| Input low-level voltage                            | $V_{\rm IL}$       | V    | $IOVcc = 1.65 \sim 3.3V$                              | 0        |      | 0.2IOVcc | 2,3   |
| Output high-level voltage (1) (DB17-0, SDO, FMARK) | $V_{\mathrm{OH1}}$ | V    | $IOVcc = 1.65 \sim 3.3V$<br>$I_{OH} = 0.1 \text{mA}$  | 0.8IOVœ  |      |          | 2     |
| Output lowlevel voltage (1) (DB17-0, SDO, FMARK)   | $V_{OL1}$          | V    | $IOVcc = 1.65 \sim 3.3V$<br>$I_{OL} = 0.1 mA$         |          |      | 0.2IOVœ  | 2     |
| I/O leakage current                                | $I_{Ii}$           | μΑ   | $Vin = 0 \sim IOVcc$                                  | -1       |      | 1        | 4     |
| Current consumption :<br>Deep standby mode         | $I_{ST}$           | μΑ   | $IOVcc = Vcc = Vci = 2.8V$ , $Ta \approx 25^{\circ}C$ |          | 1    | 10       | 5     |

# 80-System Bus Interface Timing Characteristics (18/16-Bit Bus)

Table 100 See Figure 82 (Condition: IOVcc = 1.65 to 3.30V, Vcc = Vci = 2.50 to 3.30V)

| Item                     |                                                                 |             | Symbol                | Unit | Min.   | Typ. | Max.   |
|--------------------------|-----------------------------------------------------------------|-------------|-----------------------|------|--------|------|--------|
| Bus Cycle time           |                                                                 | Write       | $t_{CYCW}$            | ns   | T.B.D. | -    | -      |
|                          |                                                                 | Read        | $t_{CYCW}$            | ns   | T.B.D. | -    | -      |
|                          | Write "Low" level pulse width                                   |             | $PW_{LW}$             | ns   | T.B.D. | -    | -      |
| Read "Low" level puls    | e width                                                         | Read        | $PW_{LR}$             | ns   | T.B.D. | -    | -      |
|                          | Write "High" level pulse width<br>Read "High" level pulse width |             | $PW_{HW}$             | ns   | T.B.D. | -    | -      |
| Read "High" level puls   |                                                                 |             | $PW_{HR}$             | ns   | T.B.D. | -    | -      |
| Write/Read rise/fall tin | ne                                                              |             | $t_{WRr}$ , $t_{WRf}$ | ns   |        | -    | T.B.D. |
| Setup time               | Write (RS to                                                    | o CS*/ WR*) | $t_{AS}$              | ns   | T.B.D. | -    | -      |
|                          | Read (RS to                                                     | CS*/ RD*)   |                       |      | T.B.D. | -    | -      |
| Address hold time        |                                                                 |             | $t_{AH}$              | ns   | T.B.D. | -    | -      |
| Write data setup time    |                                                                 |             | $t_{ m DSW}$          | ns   | T.B.D. | -    | -      |
| Write data hold time     |                                                                 |             | $t_{\rm H}$           | ns   | T.B.D. | -    | -      |
| Read data delay time     |                                                                 |             | $t_{ m DDR}$          | ns   | -      | -    | T.B.D. |
| Read data hold time      |                                                                 |             | t <sub>DHR</sub>      | ns   | T.B.D. | -    | -      |



#### 80-System Bus Interface Timing Characteristics (8/9-Bit Bus)

**Table 101** See Figure 82 (Condition: IOVcc = 1.65 to 3.30V, Vcc = Vci = 2.50 to 3.30V)

| Item                          |                                |           | Symbol                      | Unit | Min.   | Тур. | Max.   |
|-------------------------------|--------------------------------|-----------|-----------------------------|------|--------|------|--------|
| Bus Cycle time                |                                | Write     | $t_{CYCW}$                  | ns   | T.B.D. | -    | -      |
|                               |                                | Read      | $t_{CYCW}$                  | ns   | T.B.D. | -    | -      |
| Write "Low" level pulse       | e width                        | Write     | $\mathrm{PW}_{\mathrm{LW}}$ | ns   | T.B.D. | -    | -      |
| Read "Low" level pulse        | width                          | Read      | $\mathrm{PW}_{\mathrm{LR}}$ | ns   | T.B.D. | -    | -      |
| e i                           | Write "High" level pulse width |           | $PW_{HW}$                   | ns   | T.B.D. | -    | -      |
| Read "High" level pulse width |                                | Read      | $PW_{HR}$                   | ns   | T.B.D. | -    | -      |
| Write/Read rise/fall tim      | Write/Read rise/fall time      |           | tWRr , tWRf                 | ns   | -      | -    | T.B.D. |
| Setup time                    | Write (RS to                   | CS*/ WR*) | $t_{AS}$                    | ns   | T.B.D. | -    | -      |
|                               | Read (RS to                    | CS*/ RD*) |                             |      | T.B.D. | -    | -      |
| Address hold time             |                                |           | $t_{AH}$                    | ns   | T.B.D. | -    | -      |
| Write data setup time         |                                |           | $t_{ m DSW}$                | ns   | T.B.D. | -    | -      |
| Write data hold time          |                                |           | $t_{\rm H}$                 | ns   | T.B.D. | -    | -      |
| Read data delay time          |                                |           | $t_{ m DDR}$                | ns   | -      | -    | T.B.D. |
| Read data hold time           |                                |           | t <sub>DHR</sub>            | ns   | T.B.D. | -    | -      |

#### Serial Peripheral Interface Timing Characteristics

**Table 102** See Figure 83 (Condition: IOVcc = 1.65 to 3.30V, Vcc = Vci = 2.50 to 3.30V)

| Item                                  |                    | Symbol                | Unit | Min.   | Тур. | Max.   |
|---------------------------------------|--------------------|-----------------------|------|--------|------|--------|
| Serial clock cycle time               | Write (received)   | $t_{SCYC}$            | ns   | T.B.D. | -    | -      |
|                                       | Read (transmitted) | $t_{SCYC}$            | ns   | T.B.D. | -    | -      |
| Serial clock "High" level pulse width | Write (received)   | $t_{SCH}$             | ns   | T.B.D. | -    | -      |
|                                       | Read (transmitted) | $t_{SCH}$             | ns   | T.B.D. | -    | -      |
| Serial clock "Low" level pulse width  | Write (received)   | $t_{SCL}$             | ns   | T.B.D. | -    | -      |
|                                       | Read (transmitted) | $t_{SCL}$             | ns   | T.B.D. | -    | -      |
| Serial clock rise/fall time           |                    | $t_{scr}$ , $t_{scf}$ | ns   | -      | -    | T.B.D. |
| Chip select setup time                |                    | $t_{CSU}$             | ns   | T.B.D. | -    | -      |
| Chip select hold time                 |                    | $t_{CH}$              | ns   | T.B.D. | -    | -      |
| Serial input data setup time          |                    | $t_{SISU}$            | ns   | T.B.D. | -    | -      |
| Serial input data hold time           |                    | $t_{\rm SIH}$         | ns   | T.B.D. | -    | -      |
| Serial output data delay time         |                    | $t_{SOD}$             | ns   | -      | -    | T.B.D. |
| Serial output data hold time          |                    | $t_{SOH}$             | ns   | T.B.D. | -    | -      |



# RGB Interface Timing Characteristics

Table 103 See Figure 84 (18/16-bit I/F, IOVcc = 1.65 to 3.30V, Vcc = Vci = 2.50 to 3.30V)

| Item                                | Symbol       | Unit | Min.   | Тур. | Max. |
|-------------------------------------|--------------|------|--------|------|------|
| VSYNC/HSYNC setup time              | tSYNCS       | ns   | T.B.D. | -    | -    |
| ENABLE setup time                   | tENS         | ns   | T.B.D. | -    | -    |
| ENABLE hold time                    | tENH         | ns   | T.B.D. | -    | -    |
| DOTCLK "Low" level pulse width      | PWDL         | ns   | T.B.D. | -    | -    |
| DOTCLK "High" level pulse width     | PWDH         | ns   | T.B.D. | -    | -    |
| DOTCLK cycle time                   | tCYCD        | ns   | T.B.D. | -    | -    |
| Data setup time                     | tPDS         | ns   | T.B.D. | -    | -    |
| Data hold time                      | tPDH         | ns   | T.B.D. | -    | -    |
| DOTCLK, VSYNC, HSYNC rise/fall time | trgbr, trgbf | ns   | -      | -    | 25   |

#### Reset Timing Characteristics

Table 104 See Figure 85 (Condition: IOVcc = 1.65 to 3.30V, Vcc = Vci = 2.50 to 3.30V)

| Item                    | Symbol        | Unit | Min    | Тур | Max    |
|-------------------------|---------------|------|--------|-----|--------|
| Reset "Low" level width | $t_{RES}$     | ms   | T.B.D. | -   | -      |
| Reset rise time         | $t_{ m rRES}$ | us   | -      | -   | T.B.D. |



#### Notes to Electrical Characteristics

1. The DC/AC electrical characteristics of bare die and wafer products are guaranteed at 85°C.

2. The following are the configurations of I pin, I/O pin, and O pin.



Figure 81

- 3. The TEST1 pin must be grounded (GND). The IM[3:0] pins must be fixed at either GND or the IOVcc level.
- 4. This excludes currents though the output drive MOS.
- 5. This excludes currents flowing through input/output units. Be sure that input levels are fixed to prevent increase in the transient current in input units when a CMOS input level takes medium range. While not accessing via interface pins, current consumption will not change whether the CS\* pin is set to "High" or "Low".



# Timing characteristic diagram



Figure 82 80-system bus interface operation



Figure 83 Serial Peripheral Interface operation





Figure 84 RGB interface operation



Figure 85 Reset operation

#### **Revision History**

| Rev. | Date       | Revision Description                                                                                                        | Revised by |
|------|------------|-----------------------------------------------------------------------------------------------------------------------------|------------|
| 0.0  | 2007.12.03 | Preliminary release                                                                                                         | S.H. Koh   |
| 0.1  | 2007.12.05 | Remove separate gamma                                                                                                       | S.H. Koh   |
| 0.11 | 2007.12.28 | p.54 Revised Step-up output voltage setting: Table                                                                          | Y. Kim     |
| 0.12 | 2008.02.26 | p.58 Corrected the voltage range of VcomL                                                                                   | D.H. Kim   |
| 0.12 | 2008.02.26 | p.82 Revised the initial states on Reset Function                                                                           | C.S. Park  |
| 0.12 | 2008.02.26 | p.143~145 Erased the C23N / C23P capacitors<br>Removed a schottky diode (VCI-VGH), and then placed the<br>other (DDVDH-VGH) | C.S. Park  |
| 0.12 | 2008.02.26 | p.58 Revised the description of VCOMG register                                                                              | D.H. Kim   |
| 0.12 | 2008.02.26 | p.147 Added other register settings ( TDLY[1:0]=2'h3 , RDSM[1:0]=2'h1 ) on the "Power Supply ON sequence"                   | C.S. Park  |

