Создание алгоритмического базиса самовосстанавливающихся вычислений

Е. Г. Воробьев ¹, Jon A.Olaode², Т. В. Альшанская³

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)
¹vrbyug@mail.ru, ²oia.john34@yahoo.com, ³ashanskay@mail.ru

Аннотация. Рассмотрен алгоритмический базис принципиально нового класса самовосстанавливающихся машинных вычислений в условиях деструктивных воздействий на вычислительную среду современных компьютеров пятого поколения.

Ключевые слова: машинные вычисления; «архитектура фон Неймана»; деструктивные воздействия на машинные вычисления; возмущения вычислений; самовосстанавливающиеся вычисления

I. Введение

Раскроем характерные особенности единичных, групповых и массовых возмущений вычислений [1–10] с помощью следующих определений.

А. Определение 1

Динамическая система самовосстанавливающихся вычислений в условиях деструктивных возмущений вычислительной среды Σ называется *стационарной* (постоянной) тогда и только тогда, когда:

- (a) Т есть аддитивная группа (относительно обычной операции сложения вещественных чисел);
- (b) Ω замкнуто относительно *оператора сдвига* z^{τ} : $\omega \rightarrow \omega'$, определяемого соотношением: ω' (t)= $\omega(t+\tau)$ при всех τ , $t \in T$;
- (c) $\varphi(t; \tau, x, \omega) = \varphi(t+s; \tau+s, x, z^s\omega)$ при всех $s \in T$;
- (d) отображение $\eta(t, \cdot)$: $X \rightarrow Y$ не зависит от t^1 .

В. Определение 2

Динамическая система самовосстанавливающихся вычислений в условиях деструктивных возмущений вычислительной среды Σ называется системой с непрерывным временем тогда и только тогда, когда T совпадает с множеством вещественных чисел, и называется системой с дискретным временем тогда и только тогда, когда T есть множество целых чисел.

Здесь различие между системами с непрерывным и дискретным временем несущественно и выбор между ними диктуется в основном соображениями математического удобства разработки соответствующих моделей вычислений. Системы самовосстанавливающихся вычислений в условиях деструктивных возмущений вычислительной среды с непрерывным временем соответствуют классическим непрерывным моделям вычислений, а названные системы с дискретным временем

соответствуют дискретным моделям вычислительных процессов.

Важной мерой сложности системы вычислений в условиях информационного противоборства является структура её пространства состояния.

С. Определение 3

Динамическая система вычислений в условиях деструктивных возмущений вычислительной среды Σ называется конечномерной тогда и только тогда, когда X является конечномерным линейным пространством. При этом dim Σ =dim X_{Σ} . Система Σ называется конечной тогда и только тогда, когда множество X конечно. Наконец, система Σ называется конечным автоматом тогда и только тогда, когда все множества X, U и Y конечны и, кроме того, система стационарна и с дискретным временем.

Предположение о конечномерности названной системы существенно с точки зрения получения конкретных численных результатов.

D. Определение 4

Динамическая система вычислений в условиях деструктивных возмущений вычислительной среды Σ называется *линейной* тогда и только тогда, когда:

- (а) пространства X, U, Ω , Y и Γ суть векторные пространства (над заданным произвольным полем K):
- (b) отображение $\varphi(t; \tau, \cdot, \cdot)$: $X \times \Omega \to X$ является K-линейным при всех t и τ ;
- (c) отображение $\eta(t, \cdot)$: $X \rightarrow Y$ является K-линейным при любых t.
- В случае необходимости использования математического аппарата дифференциального интегрального исчислений необходимо, чтобы определение системы Σ были включены некоторые допущения о непрерывности. Для этого необходимо предположить, что различные множества $(T, X, U, \Omega, Y, \Gamma)$ являются топологическими пространствами и что отображения φ и η непрерывны относительно соответствующей (Тихоновской) топологии.

Е. Определение 5

Динамическая система вычислений в условиях деструктивных возмущений вычислительной среды Σ называется *гладкой* тогда и только тогда, когда:

- (a) T=R есть множество вещественных чисел (с обычной топологией);
- (b) X и Ω суть топологические пространства;
- (c) переходное отображение ϕ обладает тем свойством, что $(\tau, x, \omega) \mapsto \phi(\cdot; \tau, x, \omega)$ определяет непрерывное отображение $T \times X \times \Omega \mapsto C^I(T \to X)^2$.

Для любого заданного начального состояния (τ, x) и отрезка входного воздействия $\omega_{(\tau,t_1]}$ системы Σ задаётся реакция системы $\gamma_{(\tau,t_1]}$, т.е. задаётся отображение: $f_{\tau, x}$: $\omega_{(\tau,t_1]} \rightarrow \gamma_{(\tau,t_1]}$.

Здесь значение выходной величины в момент времени $t \in (\tau, t_I]$ определяется из соотношения: $f_{\tau, x}(\omega_{(\tau, t_I]})(t) = \eta(t, \phi(t; \tau, x, \omega))$.

F. Определение 6

Динамической системой вычислений в условиях деструктивных возмущений вычислительной среды Σ (с точки зрения её внешнего поведения) называется следующее математическое понятие:

- (a) заданы множества $T,\ U,\ \Omega,\ Y$ и $\Gamma,$ удовлетворяющие рассмотренным выше свойствам.
- (b) задано множество A, индексирующее семейство функций: $F = \{f_a : T \times \Omega \rightarrow Y, \alpha \in A\}$, где каждый элемент семейства F записывается в явном виде как $f_a(t, \omega) = y(t)$, т.е. является выходной величиной для входного воздействия полученной ω. эксперименте α. Каждое f_{α} называется отображением вход выход И обладает следующими свойствами:
- 1. (Направление времени.) Существует такое отображение ι : $A \rightarrow T$, что $f_a(t, \omega)$ определено при всех $t \ge \iota(\alpha)$.
- 2. (Причинность.) Пусть τ , $t \in T$ и $\tau < t$. Если ω , $\omega' \in \Omega$ и $\omega_{(\tau, t]} = \omega'_{(\tau, t]}$, то $f_a(t, \omega) = f_a(t, \omega')$ при всех α , для которых $\tau = \iota(\alpha)$.

II. МОДЕЛЬ АБСТРАКТНОГО ПРЕОБРАЗОВАТЕЛЯ ВЫЧИСЛЕНИЙ

Определим модель абстрактного преобразователя вычислений в условиях деструктивных возмущений вычислительной среды следующим образом.

А. Определение 7

Абстрактным преобразователем вычислений в условиях деструктивных возмущений вычислительной среды Σ называется сложное математическое понятие, определяемое следующими аксиомами.

• (а) Заданы множество моментов времени T, множество состояний вычислений X, множество мгновенных значений входных величин U, множество допустимых входных величин $\Omega = \{\omega: T \to U\}$, множество мгновенных значений выходных величин Y и множество допустимых выходных величин $\Gamma = \{\gamma: T \to Y\}$.

- (b) (Направление времени) Множество *Y* есть некоторое упорядоченное подмножество множества вещественных чисел.
- (c) Множество входных величин Ω удовлетворяет следующим условиям:
- 1. (Нетривиальность) Множество Ω не пусто.
- 2. (Сочленение входных величин) Назовём *отрезком входного воздействия* $\omega = \omega_{(t_1,t_2]}$ для $\omega \in \Omega$ сужение ω на $(t_l,t_2] \cap T$. Тогда если $\omega, \omega' \in \Omega$ и $t_l < t_2 < t_3$, то найдётся такое $\omega'' \in \Omega$, что $\omega''_{(t_1,t_2]} = \omega_{(t_1,t_2]}$ и $\omega''_{(t_2,t_3]} = \omega'_{(t_2,t_3]}$.
 - (d) Существует переходная функция состояния ϕ : $T \times T \times X \times \Omega \rightarrow X$, значениями которой служат состояния $x(t) = \phi(t; \tau, x, \omega) \in X$, в которых оказывается система в момент времени $t \in T$, если в начальный момент времени $\tau \in T$ она была в начальном состоянии $x = x(\tau) \in X$ и если на её вход поступила входная величина $\omega \in \Omega$. Функция ϕ обладает следующими свойствами:
- 1) (Направление времени) Функция ϕ определена для всех $t \ge \tau$ и необязательно определена для всех $t < \tau^2$.
- 2) (Согласованность) Равенство $\varphi(t; t, x, \omega) = x$ выполняется при любых $t \in T$, любых $x \in X$ и любых $\omega \in \Omega$.
- 3) (Полугрупповое свойство) Для любых $t_1 < t_2 < t_3$ и любых $x \in X$ и $\omega \in \Omega$ имеем $\varphi(t_3; t_1, x, \omega) = \varphi(t_3; t_2, \varphi(t_2; t_1, x, \omega), \omega)$.
- 4) (Причинность) Если ω , $\omega'' \in \Omega$ и $\omega_{(\tau, t]} = \omega'_{(\tau, t]}$, то $\varphi(t; \tau, x, \omega) = \varphi(t; \tau, x, \omega')$
 - (e) Задано выходное отображение η : $T \times X \to Y$, определяющее выходные величины $y(t) = \eta(t, x(t))$. Отображение $(\tau, t] \to Y$, задаваемое соотношением $\sigma \mapsto \eta(\sigma, \phi(\sigma; \tau, x, \omega)), \sigma \in (\tau, t])$, называется отрезком входной величины, т.е. сужением $\gamma_{(\tau, t]}$ некоторого $\gamma \in \Gamma$ на $(\tau, t]$.

Дополнительно пару (τ, x) , где $\tau \in T$ и $x \in X$, назовем событием (или фазой) системы Σ , а множество $T \in X$ – пространством событий (или фазовым пространством) системы Σ . Переходную функцию состояний φ (или её график в пространстве событий) назовем траекторией или кривой решения и т.д. Здесь входное воздействие, или управление φ , переносит, переводит, изменяет, преобразует состояние φ (или событие φ) в состояние φ (φ) (или в событие φ). Под движением системы понимается функция состояний φ .

В. Определение 8

В более общем виде модель абстрактного вычислителя в условиях возмущений \Re с дискретным временем, m входами и p выходами над полем целых чисел K представляется сложным объектом $(\aleph,\wp,\diamondsuit)$, где отображения $\aleph:\ell\to\ell,\wp:K^m\to\ell,\diamondsuit:\ell\to K^p$ суть абстрактные K-гомоморфизмы, ℓ — некоторое абстрактное векторное пространство над K. Размерность

пространства $\ell(\dim\ell)$ определяет размерность системы $\Re(\dim\Re).$

Выбранное представление позволило сформулировать и доказать в работе утверждения, подтверждающие принципиальное существование искомого решения [2–7].

III. ИДЕОЛОГИЯ ВЫЧИСЛЕНИЙ С ПАМЯТЬЮ ДЛЯ ПРИВИТИЯ ИММУНИТЕТА К ВОЗМУЩЕНИЯМ

На основе приведенных определений раскроем сущность идеологии вычислений с памятью для привития иммунитета к возмущениям следующим образом.

А. Определение 9

Вычислением с памятью называется сложное математическое понятие динамической системы Σ , определяемое следующими аксиомами.

- (а) Заданы множество моментов времени T, множество состояний вычислений X в условиях деструктивных воздействий, множество мгновенных значений штатных и деструктивных входных воздействий U, множество допустимых входных воздействий $\Omega = \{\omega \colon T \to U\}$, множество мгновенных значений выходных величин Y и множество выходных величин восстановленных вычислений $\Gamma = \{\gamma \colon T \to Y\}$.
- (b) (Направление времени) Множество *Y* есть некоторое упорядоченное подмножество множества вещественных чисел.
- (c) Множество допустимых входных воздействий Ω удовлетворяет следующим условиям:
- 1. (Нетривиальность) Множество Ω не пусто.
- 2. (Сочленение входных величин) Назовём *отрезком входного воздействия* $\omega = \omega_{(t_1,t_2]}$ для $\omega \in \Omega$ сужение ω на $(t_l,t_2] \cap T$. Тогда если ω , $\omega' \in \Omega$ и $t_l < t_2 < t_3$, то найдётся такое $\omega'' \in \Omega$, что $\omega''_{(t_1,t_2]} = \omega_{(t_1,t_2]}$ и $\omega''_{(t_2,t_3]} = \omega'_{(t_{21},t_3]}$.
 - (d) Существует переходная функция состояния φ : $T \times T \times X \times \Omega \rightarrow X$, значениями которой служат состояния $x(t) = \varphi(t; \tau, x, \omega) \in X$, в которых оказывается система в момент времени $t \in T$, если в начальный момент времени $\tau \in T$ она была в начальном состоянии $x = x(\tau) \in X$ и если на неё действовало входное воздействие $\omega \in \Omega$. Функция φ обладает следующими свойствами:
- 5. (Направление времени) Функция ϕ определена для всех $t \ge \tau$ и не обязательно определена для всех $t < \tau^4$.
- 6. (Согласованность) Равенство $\varphi(t; t, x, \omega) = x$ выполняется при любых $t \in T$, любых $x \in X$ и любых $\omega \in \Omega$.
- 7. (Полугрупповое свойство) Для любых $t_1 < t_2 < t_3$ и любых $x \in X$ и $\omega \in \Omega$ имеем $\varphi(t_3; t_1, x, \omega) = \varphi(t_3; t_2, \varphi(t_2; t_1, x, \omega), \omega)$.
- 8. (Причинность) Если ω , $\omega'' \in \Omega$ и $\omega_{(\tau, t]} = \omega'_{(\tau, t]}$, то $\varphi(t; \tau, x, \omega) = \varphi(t; \tau, x, \omega')$

• (e) Задано выходное отображение η : $T \times X \to Y$, определяющее выходные величины $y(t) = \eta(t, x(t))$ как результат самовосстановления. Отображение $(\tau, t] \to Y$, задаваемое соотношением $\sigma \mapsto \eta(\sigma, \phi(\sigma; \tau, x, \omega))$, $\sigma \in (\tau, t]$), называется отрезком входной величины, т.е. сужением $\gamma_{(\tau, t]}$ некоторого $\gamma \in \Gamma$ на $(\tau, t]$.

IV. ЗАКЛЮЧЕНИЕ

Приведенные понятия самовосстанавливающихся вычислений достаточно общие, но уже позволяют единую концепцию самовосстановления выработать вычислений условиях В реальных возмущений вычислительной среды современных вычислительных систем [5-10]. Для разработки соответствующих опытных образцов программно-аппаратных систем самовосстановления вычислений требуется дальнейшая детализация и развитие введенных понятий.

Список литературы

- [1] Барабанов А., Марков А., Цирлов В., Процедура доказанного развития мер, чтобы проектировать безопасное программное обеспечение для автоматизированных систем управления процессом // 12-я Международная сибирская Конференция по Контролю и Коммуникациям (Москва, Россия, 12-14 мая 2016).
- [2] Барабанов А., Марков А., Цирлов В., Методологическая структура для анализа и синтеза ряда безопасных средств управления разработкой программного обеспечения // Журнал Теоретических и прикладных информационных технологий, 2016, издание 88, № 1, стр 77-88.
- [3] A. Dorofeev, A. Markov, V. Tsirlov, Social Media in Identifying Threats to Ensure Safe Life in a Modern City, Communications in Computer and Information Science, 2016, vol. 674, pp. 441-449.
- [4] Дрожжинов В.И. и др. Стратегический подход к формированию цифрового правительства США //International Journal of Open Information Technologies. 2017. Т. 5. №. 4.
- [5] V. Kupriyanovsky, Information technology in the university system, science and innovation of the digital economy on the example of the UK //International Journal of Open Information Technologies, 2016, T. 4, No. 4, pp. 30-39.
- [6] Markov, A., Luchin, D., Rautkin, Y., Tsirlov, V. (2015). Evolution of a Radio Telecommunication Hardware-Software Certification Paradigm in Accordance with Information Security Requirements. In Proceedings of the 11th International Siberian Conference on Control and Communications (Omsk, Russia, May 21-23, 2015).
- [7] A. Markov, A. Fadin, V. Tsirlov. Multilevel Metamodel for Heuristic Search of Vulnerabilities in The Software Source Code, International Journal of Control Theory and Applications, 2016, vol. 9, No 30, pp. 313-320.
- [8] Петренко А.С., Петренко С.А. Проектирование корпоративного сегмента СОПКА // Защита информации. Инсайд. 2016. № 6 (72). С. 47–52.
- [9] Петренко А.С., Петренко С.А. Технологии больших данных (Big Data) в области информационной безопасности // Защита информации. Инсайд. 2016. № 4 (70). С. 82–88.
- [10] Петренко А.А., Петренко С.А. Киберучения: методические рекомендации ENISA // Вопросы кибербезопасности. 2015. № 3 (11). С. 2–14.
- [11] Пряников М.М., Чугунов А.В., Блокчейн как коммуникационная основа формирования цифровой экономики: преимущества и проблемы // International Journal of Open Information Technologies 2017. Т.5. №. 6.
- [12] Синягов С.А. и др. Строительство и инженерия на основе стандартов ВІМ как основа трансформаций инфраструктур в цифровой экономике //International Journal of Open Information Technologies. 2017. Т. 5. № 5.