Aluno: Marcelo Barros de Azevedo Vieira

```
In [10]: !pip install yellowbrick
```

Collecting yellowbrick

Using cached yellowbrick-1.5-py3-none-any.whl.metadata (7.7 kB)

Requirement already satisfied: matplotlib!=3.0.0,>=2.0.2 in /Users/marcelodeaze vedo/miniconda3/lib/python3.12/site-packages (from yellowbrick) (3.9.2)

Requirement already satisfied: scipy>=1.0.0 in /Users/marcelodeazevedo/minicond a3/lib/python3.12/site-packages (from yellowbrick) (1.14.1)

Requirement already satisfied: scikit-learn>=1.0.0 in /Users/marcelodeazevedo/miniconda3/lib/python3.12/site-packages (from yellowbrick) (1.5.1)

Requirement already satisfied: numpy>=1.16.0 in /Users/marcelodeazevedo/minicon da3/lib/python3.12/site-packages (from yellowbrick) (2.1.3)

Requirement already satisfied: cycler>=0.10.0 in /Users/marcelodeazevedo/minico nda3/lib/python3.12/site-packages (from yellowbrick) (0.12.1)

Requirement already satisfied: contourpy>=1.0.1 in /Users/marcelodeazevedo/mini conda3/lib/python3.12/site-packages (from matplotlib!=3.0.0,>=2.0.2->yellowbric k) (1.3.0)

Requirement already satisfied: fonttools>=4.22.0 in /Users/marcelodeazevedo/min iconda3/lib/python3.12/site-packages (from matplotlib!=3.0.0,>=2.0.2->yellowbrick) (4.53.1)

Requirement already satisfied: kiwisolver>=1.3.1 in /Users/marcelodeazevedo/min iconda3/lib/python3.12/site-packages (from matplotlib!=3.0.0,>=2.0.2->yellowbrick) (1.4.7)

Requirement already satisfied: packaging>=20.0 in /Users/marcelodeazevedo/minic onda3/lib/python3.12/site-packages (from matplotlib!=3.0.0,>=2.0.2->yellowbric k) (24.1)

Requirement already satisfied: pillow>=8 in /Users/marcelodeazevedo/miniconda3/lib/python3.12/site-packages (from matplotlib!=3.0.0,>=2.0.2->yellowbrick) (1 1.0.0)

Requirement already satisfied: pyparsing>=2.3.1 in /Users/marcelodeazevedo/mini conda3/lib/python3.12/site-packages (from matplotlib!=3.0.0,>=2.0.2->yellowbric k) (3.1.4)

Requirement already satisfied: python-dateutil>=2.7 in /Users/marcelodeazevedo/miniconda3/lib/python3.12/site-packages (from matplotlib!=3.0.0,>=2.0.2->yellow brick) (2.9.0.post0)

Requirement already satisfied: joblib>=1.2.0 in /Users/marcelodeazevedo/minicon da3/lib/python3.12/site-packages (from scikit-learn>=1.0.0->yellowbrick) (1.4.2)

Requirement already satisfied: threadpoolctl>=3.1.0 in /Users/marcelodeazevedo/miniconda3/lib/python3.12/site-packages (from scikit-learn>=1.0.0->yellowbrick) (3.5.0)

Requirement already satisfied: six>=1.5 in /Users/marcelodeazevedo/miniconda3/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib!=3.0.0,>= 2.0.2->yellowbrick) (1.16.0)

Using cached yellowbrick-1.5-py3-none-any.whl (282 kB)

Installing collected packages: yellowbrick

Successfully installed yellowbrick-1.5

```
import numpy as np
import pandas as pd
import sys
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.datasets import make_blobs, make_moons
```

```
from sklearn.preprocessing import StandardScaler
from yellowbrick.cluster import SilhouetteVisualizer
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from yellowbrick.cluster import KElbowVisualizer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn import preprocessing
from sklearn.cluster import DBSCAN
from scipy.spatial.distance import euclidean
import scipy.cluster.hierarchy as sch
```

1. Versão do Python: 3.13.1

```
In [12]: print(f"Versão do Python: {sys.version}")

Versão do Python: 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 1 0:07:17) [Clang 14.0.6 ]
```

2. Demonstrando que esta sendo utilizado o ambiente anaconda

```
In [13]: !conda info
```

/Users/marcelodeazevedo/miniconda3/lib/python3.12/site-packages/conda/base/cont ext.py:201: FutureWarning: Adding 'defaults' to channel list implicitly is deprecated and will be removed in 25.3.

To remove this warning, please choose a default channel explicitly with conda's regular configuration system, e.g. by adding 'defaults' to the list of channel s:

conda config --add channels defaults

For more information see https://docs.conda.io/projects/conda/en/stable/user-guide/configuration/use-condarc.html

deprecated.topic(

active environment : base

active env location: /Users/marcelodeazevedo/miniconda3

shell level: 1

user config file : /Users/marcelodeazevedo/.condarc

populated config files:

conda version : 24.11.1

conda-build version : not installed
 python version : 3.12.4.final.0

solver : libmamba (default)

virtual packages : __archspec=1=m1

__conda=24.11.1=0

__osx=15.2=0 __unix=0=0

base environment : /Users/marcelodeazevedo/miniconda3 (writable)
conda av data dir : /Users/marcelodeazevedo/miniconda3/etc/conda

conda av metadata url : None

channel URLs : https://repo.anaconda.com/pkgs/main/osx-arm64

https://repo.anaconda.com/pkgs/main/noarch https://repo.anaconda.com/pkgs/r/osx-arm64 https://repo.anaconda.com/pkgs/r/noarch

package cache : /Users/marcelodeazevedo/miniconda3/pkgs

/Users/marcelodeazevedo/.conda/pkgs

envs directories : /Users/marcelodeazevedo/miniconda3/envs

/Users/marcelodeazevedo/.conda/envs

platform : osx-arm64

user-agent : conda/24.11.1 requests/2.32.3 CPython/3.12.4 Darwin/2 4.2.0 OSX/15.2 solver/libmamba conda-libmamba-solver/24.7.0 libmambapy/1.5.8 aa u/0.4.4 c/CO3i7I_7soBQdtRRQNdUJA s/DbTnvuA_yleNyt5rZAW7ag e/pgSw9zK-V7_rgD_uva9 Zlw

UID:GID : 501:20
netrc file : None
offline mode : False

3. Bibliotecas utilizadas no ambiente virtual anadonda:

In [14]: !conda list

```
# packages in environment at /Users/marcelodeazevedo/miniconda3:
#
# Name
                           Version
                                                       Build Channel
                                            py312hd6b623d_100
anaconda-anon-usage
                           0.4.4
anaconda-cli-base
                           0.4.1
                                            py312hca03da5_1
anaconda-client
                           1.13.0
                                            py312hca03da5_0
anaconda-cloud-auth
                           0.7.2
                                            py312hca03da5_0
anaconda-navigator
                           2.6.4
                                            py312hca03da5_0
annotated-types
                           0.6.0
                                            py312hca03da5_0
anyio
                           4.6.0
                                                      pypi_0
                                                                 pypi
appnope
                           0.1.4
                                                                 pypi
                                                      pypi_0
                           0.2.3
                                                pyhd3eb1b0_0
archspec
argon2-cffi
                           23.1.0
                                                      pypi_0
                                                                 pypi
argon2-cffi-bindings
                           21.2.0
                                                      pypi_0
                                                                 pypi
                           1.3.0
arrow
                                                      pypi_0
                                                                 pypi
asttokens
                           2.4.1
                                                      pypi_0
                                                                 pypi
async-lru
                           2.0.4
                                                      pypi_0
                                                                 pypi
attrs
                           24.2.0
                                            py312hca03da5_0
                           2.16.0
babel
                                                                 pypi
                                                      pypi_0
beautifulsoup4
                           4.12.3
                                                      pypi_0
                                                                 pypi
                           6.1.0
bleach
                                                      pypi_0
                                                                 pypi
boltons
                           23.0.0
                                            py312hca03da5_0
brotli-python
                           1.0.9
                                            py312h313beb8_8
                           1.0.8
                                                  h80987f9 6
bzip2
c-ares
                           1.19.1
                                                  h80987f9 0
ca-certificates
                           2024.11.26
                                                  hca03da5 0
certifi
                           2024.8.30
                                            py312hca03da5 0
cffi
                           1.16.0
                                            py312h80987f9_1
chardet
                           4.0.0
                                            py312hca03da5_1003
charset-normalizer
                           3.3.2
                                                pyhd3eb1b0_0
                           8.1.7
                                            py312hca03da5 0
click
                           0.4.6
colorama
                                            py312hca03da5_0
comm
                           0.2.2
                                                      pypi_0
                                                                 pypi
                           24.11.1
                                            py312hca03da5_0
conda
conda-content-trust
                           0.2.0
                                            py312hca03da5_1
conda-libmamba-solver
                           24.7.0
                                                pyhd3eb1b0_0
conda-package-handling
                           2.3.0
                                            py312hca03da5_0
conda-package-streaming
                           0.10.0
                                            py312hca03da5 0
conda-repo-cli
                           1.0.114
                                            py312hca03da5_0
conda-token
                           0.5.0
                                                pyhd3eb1b0_0
contourpy
                           1.3.0
                                                      pypi_0
                                                                 pypi
cryptography
                           42.0.5
                                            py312hd4332d6_1
cvcler
                           0.12.1
                                                                 pypi
                                                      pypi_0
                                                  h9131b1a_1
                           2.1.28
cyrus-sasl
debugpy
                           1.8.5
                                                      pypi_0
                                                                 pypi
                                                      pypi_0
decorator
                           5.1.1
                                                                 pypi
defusedxml
                           0.7.1
                                                pyhd3eb1b0_0
distro
                           1.9.0
                                            py312hca03da5_0
                           0.9.5
dmqlib
                                            py312hca03da5_0
                           2.1.0
executing
                                                      pypi_0
                                                                 pypi
expat
                           2.6.2
                                                  h313beb8 0
fmt
                           9.1.0
                                                  h48ca7d4_1
fonttools
                           4.53.1
                                                      pypi_0
                                                                 pypi
                           1.5.1
fqdn
                                                      pypi_0
                                                                 pypi
freetype
                           2.12.1
                                                  h1192e45 0
                           2.4.2
frozendict
                                            py312hca03da5_0
                           0.21.0
gettext
                                                  h13f89a0_1
glib
                           2.78.4
                                                  h313beb8_0
glib-tools
                           2.78.4
                                                  h313beb8_0
gst-plugins-base
                           1.14.1
                                                  h313beb8_1
gstreamer
                           1.14.1
                                                  h80987f9_1
                           0.14.0
h11
                                                      pypi_0
                                                                 pypi
```

httpcore	1.0.5	pypi_0	pypi
httpx	0.27.2	pypi_0	pypi
icu	73.1	h313beb8_0	
idna	3.7	py312hca03da5_0	
ipykernel	6.29.5	pypi_0	pypi
ipython	8.27.0	pypi_0	pypi
ipywidgets	8.1.5		
isoduration	20.11.0	pypi_0	pypi
		pypi_0	pypi
jaraco.classes	3.2.1	pyhd3eb1b0_0	
jedi	0.19.1	pypi_0	pypi
jinja2	3.1.4	pypi_0	pypi
joblib	1.4.2	pypi_0	pypi
jpeg	9e	h80987f9_3	
json5	0.9.25	pypi_0	pypi
jsonpatch	1.33	py312hca03da5_1	
jsonpointer	2.1	pyhd3eb1b0_0	
jsonschema	4.23.0	py312hca03da5_0	
jsonschema-specifications		pypi_0	pypi
jupyter	1.1.1	pypi_0	pypi
jupyter-client	8.6.2	pypi_0	pypi
jupyter-console	6.6.3		
		pypi_0	pypi
jupyter-events	0.10.0	pypi_0	pypi
jupyter-lsp	2.2.5	pypi_0	pypi
jupyter-server	2.14.2	pypi_0	pypi
jupyter-server-terminals	0.5.3	pypi_0	pypi
jupyter_core	5.7.2	py312hca03da5_0	
jupyterlab	4.2.5	pypi_0	pypi
jupyterlab-pygments	0.3.0	pypi_0	pypi
jupyterlab-server	2.27.3	pypi_0	рурі
jupyterlab-widgets	3.0.13	pypi_0	pypi
keyring	24.3.1	py312hca03da5_0	1.71
kiwisolver	1.4.7	pypi_0	pypi
krb5	1.20.1	hf3e1bf2_1	PYPT
lcms2	2.12	hba8e193_0	
lerc	3.0	hc377ac9_0	
libabseil	20240116.2	cxx17_h313beb8_0	
libarchive	3.6.2	h62fee54_3	
libclang	14.0.6	default_h1b80db6_1	
libclang13	14.0.6	default_h24352ff_1	
libcurl	8.7.1	h3e2b118_0	
libcxx	14.0.6	h848a8c0_0	
libdeflate	1.17	h80987f9_1	
libedit	3.1.20230828	h80987f9_0	
libev	4.33	h1a28f6b_1	
libffi	3.4.4	hca03da5_1	
libglib	2.78.4	h0a96307_0	
libiconv	1.16	h80987f9_3	
libllvm14	14.0.6	h19fdd8a_4	
libmamba	1.5.8	haeffa04_2	
libmambapy	1.5.8	py312h1c5506f_2	
libnghttp2	1.57.0	h62f6fdd_0	
libpng	1.6.39	h80987f9_0	
libpq	17.2	h02f6b3c_0	
libprotobuf	4.25.3	h514c7bf_0	
libsolv	0.7.24	h514c7bf_1	
		-	
libssh2	1.11.0	h3e2b118_0	
libtiff	4.5.1	h313beb8_0	
libwebp-base	1.3.2	h80987f9_1	
libxml2	2.10.4	h0b34f26_2	
llvm-openmp	14.0.6	hc6e5704_0	
lz4-c	1.9.4	h313beb8_1	
markdown-it-py	2.2.0	py312hca03da5_1	

markupsafe	2.1.5	pypi_0	pypi
matplotlib	3.9.2	pypi_0	pypi
matplotlib-inline	0.1.7	pypi_0	pypi
mdurl	0.1.0	py312hca03da5_0	1 7 1
menuinst	2.1.2	py312hca03da5_0	
mistune	3.0.2	pypi_0	pypi
more-itertools	10.3.0	py312hca03da5_0	
mysql	8.4.0	h3a6587f_1	
navigator-updater	0.5.1	py312hca03da5_0	
		_	
nbclient	0.10.0	pypi_0	pypi
nbconvert	7.16.4	pypi_0	pypi
nbformat	5.10.4	py312hca03da5_0	
ncurses	6.4	h313beb8_0	
nest-asyncio	1.6.0	pypi_0	pypi
-	7.2.2		
notebook		pypi_0	pypi
notebook-shim	0.2.4	pypi_0	pypi
numpy	2.1.3	pypi_0	pypi
openjpeg	2.5.2	h54b8e55_0	
openldap	2.6.4	he7ef289_0	
openssl	3.0.15	h80987f9_0	
•		_	
overrides	7.7.0	pypi_0	pypi
packaging	24.1	py312hca03da5_0	
pandas	2.2.3	pypi_0	pypi
pandocfilters	1.5.1	pypi_0	pypi
	0.8.4		
parso		pypi_0	pypi
pcre2	10.42	hb066dcc_1	
pexpect	4.9.0	pypi_0	pypi
pillow	10.4.0	pypi_0	pypi
pip	24.2	py312hca03da5_0	
pkce	1.0.3	-	
•		py312hca03da5_0	
platformdirs	3.10.0	py312hca03da5_0	
pluggy	1.0.0	py312hca03da5_1	
ply	3.11	py312hca03da5_1	
prometheus-client	0.21.0	pypi_0	pypi
prompt-toolkit	3.0.47	pypi_0	
			pypi
psutil	6.0.0	pypi_0	pypi
ptyprocess	0.7.0	pypi_0	pypi
pure-eval	0.2.3	pypi_0	pypi
pybind11-abi	5	hd3eb1b0_0	
pycosat	0.6.6	py312h80987f9_1	
		• •	
pycparser	2.21	pyhd3eb1b0_0	
pydantic	2.8.2	py312hca03da5_0	
pydantic-core	2.20.1	py312hf0e4da2_0	
pydantic-settings	2.6.1	py312hca03da5_0	
pygments	2.18.0	pypi_0	pypi
	2.9.0		P 7 P ±
pyjwt		py312hca03da5_0	
pyparsing	3.1.4	pypi_0	pypi
pyqt	5.15.10	py312h313beb8_0	
pyqt5-sip	12.13.0	py312h80987f9_0	
pyqtwebengine	5.15.10	py312h313beb8_0	
pysocks	1.7.1	py312hs133da5_0	
		-	
python	3.12.4	h99e199e_1	
python-dateutil	2.9.0post0	py312hca03da5_2	
python-dotenv	0.21.0	py312hca03da5_0	
python-fastjsonschema	2.20.0	py312hca03da5_0	
python-json-logger	2.0.7	pypi_0	nyni
			pypi
python.app	3	py312h80987f9_0	_
pytz	2024.2	pypi_0	pypi
pyyaml	6.0.2	py312h80987f9_0	
pyzmq	26.2.0	pypi_0	pypi
qt-main	5.15.2	h0917680_11	1 712 =
qt-webengine	5.15.9	h2903aaf_7	
4 c-webengine	2.12.3	112903001_/	

qtpy	2.4.1	py312hca03da5_0	
readchar	4.0.5	py312hca03da5_0	
readline	8.2	h1a28f6b 0	
referencing	0.35.1	pypi_0	pypi
reproc	14.2.4	h313beb8_2	рурт
reproc-cpp	14.2.4	h313beb8_2	
requests	2.32.3	py312hca03da5_0	
requests-toolbelt	1.0.0	py312hca03da5_0	
rfc3339-validator	0.1.4	py512Mca05da5_0	pypi
rfc3986-validator	0.1.1	pypi_0	рурі
rich	13.9.4	py312hca03da5_0	рурт
rpds-py	0.20.0	py512Mca05da5_0	nyni
ruamel.yaml	0.17.21	py312h80987f9_0	pypi
scikit-learn	1.5.1	py512110090719_0	nyni
scipy	1.14.1	pypi_0 pypi_0	pypi
seaborn	0.13.2	pypi_0 pypi_0	pypi
semver	3.0.2	py312hca03da5_0	pypi
send2trash	1.8.3	-	pypi
setuptools	72.1.0	pypi_0 py312hca03da5_0	рурт
shellingham	1.5.0	py312hca03da5_0	
_	6.7.12	py312h313beb8_0	
sip six	1.16.0	pyhd3eb1b0_1	
sniffio	1.3.1		nyni
soupsieve	2.6	pypi_0	pypi
sqlite	3.45.3	pypi_0 h80987f9_0	pypi
squite stack-data	0.6.3		nyni
tabulate	0.9.0	pypi_0	pypi
terminado	0.18.1	py312hca03da5_0	nyni
		pypi_0	pypi
threadpoolctl	3.5.0 1.3.0	pypi_0	pypi
tinycss2 tk		pypi_0	pypi
tornado	8.6.14	h6ba3021_0	nyn i
	6.4.1	pypi_0	pypi
tqdm	4.66.4	py312h989b03a_0	
traitlets	5.14.3	py312hca03da5_0	
truststore	0.8.0	py312hca03da5_0	
typer	0.9.0	py312hca03da5_0	n.m.i
types-python-dateutil	2.9.0.20240906	pypi_0	pypi
typing-extensions	4.11.0	py312hca03da5_0	
typing_extensions	4.11.0	py312hca03da5_0	
tzdata	2024.2	pypi_0	pypi
ujson	5.10.0	py312h313beb8_0	
uri-template	1.3.0	pypi_0	pypi
urllib3	2.2.2	py312hca03da5_0	
wcwidth	0.2.13	pypi_0	pypi
webcolors	24.8.0	pypi_0	pypi
webencodings	0.5.1	pypi_0	pypi
websocket-client	1.8.0	pypi_0	pypi
wheel	0.43.0	py312hca03da5_0	
widgetsnbextension	4.0.13	pypi_0	pypi
XZ	5.4.6	h80987f9_1	
yaml	0.2.5	h1a28f6b_0	
yaml-cpp	0.8.0	h313beb8_1	
yellowbrick	1.5	pypi_0	pypi
zlib	1.2.13	h18a0788_1	
zstandard	0.22.0	py312h1a4646a_0	
zstd	1.5.5	hd90d995_2	

4. Arquivo com as bibliotecas instaladas

5. Printscreen do ambiente onde o projeto está sendo executado

6. GitHub do Projeto

https://github.com/marcelobazevedo/validacao_modelos_clusterizacao

1. Escolha da Base de Dados

A Base de dados escolhida foi a California Housing Prices, disponível em https://www.kaggle.com/datasets/camnugent/california-housing-prices/data

2. Justificativa para a escolha da base de dados

O dataset "California Housing Prices" de 1990 é amplamente utilizado em projetos de aprendizado de máquina e análise de dados devido à sua relevância educacional, metodológica e histórica, mesmo com dados antigos. Ele é ideal para introduzir conceitos fundamentais como regressão, engenharia de features e aprendizado supervisionado, graças à sua estrutura clara e documentação acessível. Além disso, muitos padrões subjacentes aos preços de imóveis, como localização, renda e densidade populacional, permanecem válidos e generalizáveis para diferentes contextos.

Seu uso é também justificado pela possibilidade de estudos históricos e comparativos, como a análise das condições do mercado imobiliário em 1990 frente a dados atuais, permitindo explorar mudanças urbanas e socioeconômicas ao longo do tempo. Por ser simplificado, o dataset oferece um ambiente controlado para aprendizado e prática antes de lidar com datasets mais complexos, consolidando habilidades analíticas essenciais.

Portanto, sua utilização é valiosa não apenas como exercício de modelagem teórica e prática, mas também para desenvolver insights generalizáveis e transferíveis para problemas modernos.

[16]:	<pre>df = pd.read_csv('file/housing.csv') df.reset_index(inplace=True, drop=True)</pre>						
[17]:	df						
17]:		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	populatio
	0	-122.23	37.88	41.0	880.0	129.0	322
	1	-122.22	37.86	21.0	7099.0	1106.0	2401
	2	-122.24	37.85	52.0	1467.0	190.0	496
	3	-122.25	37.85	52.0	1274.0	235.0	558
	4	-122.25	37.85	52.0	1627.0	280.0	565
	•••						
	20635	-121.09	39.48	25.0	1665.0	374.0	845
	20636	-121.21	39.49	18.0	697.0	150.0	356
	20637	-121.22	39.43	17.0	2254.0	485.0	1007
	20638	-121.32	39.43	18.0	1860.0	409.0	741
	20639	-121.24	39.37	16.0	2785.0	616.0	1387

20640 rows × 10 columns

3. Gráfico de Faixa dinâmica e o que deve ser feito com os dados antes da clusterização

Normalizar os dados, transformar números do tipo float para inteiros e buscar e corrigir valores nulos

```
In [18]: data = df.drop(['ocean_proximity','longitude','latitude'],axis=1)
    p = data.hist(figsize = (8,10))
```


In [19]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 20640 entries, 0 to 20639 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	<pre>median_house_value</pre>	20640 non-null	float64
9	ocean_proximity	20640 non-null	object
	67 (64/6)	. / 4 \	

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

In [20]: df.describe().T

Out[20]:

:	count	mean	std	min	25%
longitude	20640.0	-119.569704	2.003532	-124.3500	-121.8000
latitude	20640.0	35.631861	2.135952	32.5400	33.9300
housing_median_age	20640.0	28.639486	12.585558	1.0000	18.0000
total_rooms	20640.0	2635.763081	2181.615252	2.0000	1447.7500
total_bedrooms	20433.0	537.870553	421.385070	1.0000	296.0000
population	20640.0	1425.476744	1132.462122	3.0000	787.0000
households	20640.0	499.539680	382.329753	1.0000	280.0000
median_income	20640.0	3.870671	1.899822	0.4999	2.5634
median_house_value	20640.0	206855.816909	115395.615874	14999.0000	119600.0000

In [21]: data.shape

Out[21]: (20640, 7)

Identificação de valores nulos

In [22]: print(data.isnull().sum())

housing_median_age 0 0 total_rooms total_bedrooms 207 population 0 0 households median_income median_house_value

dtype: int64

Correção dos valos nulos

In [23]: data.dropna(inplace=True)

```
In [24]: print(data.isnull().sum())

housing_median_age  0
total_rooms  0
total_bedrooms  0
population  0
households  0
median_income  0
median_house_value  0
dtype: int64
```

Tranformando dados do tipo float em int

```
In [25]: data['housing_median_age'] = data['housing_median_age'].astype('int')
    data['total_rooms'] = data['total_rooms'].astype('int')
    data['total_bedrooms'] = data['total_bedrooms'].astype('int')
    data['population'] = data['population'].astype('int')
    data['households'] = data['households'].astype('int')
    data['median_income'] = data['median_income'].astype('int')
    data['median_house_value'] = data['median_house_value'].astype('int')
```

In [26]: data

5]:	housing_median_age	total_rooms	total_bedrooms	population	households	mec
0	41	880	129	322	126	
1	21	7099	1106	2401	1138	
2	52	1467	190	496	177	
3	52	1274	235	558	219	
4	52	1627	280	565	259	
•••						
20635	25	1665	374	845	330	
20636	18	697	150	356	114	
20637	17	2254	485	1007	433	
20638	18	1860	409	741	349	
20639	16	2785	616	1387	530	

20433 rows × 7 columns

Out [26]

Normalização dos dados

```
In [28]: x = data.values
                                        129, ...,
                                                                 8, 452600],
Out[28]: array([[
                       41,
                               880,
                                                      126,
                       21,
                              7099,
                                       1106, ...,
                                                     1138,
                                                                 8, 358500],
                  [
                       52,
                              1467,
                                        190, ...,
                                                      177,
                                                                 7, 352100],
                       17,
                              2254,
                                        485, ...,
                                                                 1,
                                                                     92300],
                                                      433,
                                                                     84700],
                                                                 1,
                       18,
                              1860,
                                        409, ...,
                                                      349,
                       16,
                              2785,
                                        616, ...,
                                                      530,
                                                                 2,
                                                                     89400]])
In [29]: scaler = StandardScaler()
          X = scaler.fit_transform(x)
          Χ
```

Clusterização

k-means

```
In [30]: #indice de silhueta
         km = KMeans(n_clusters=2).fit(x)
         fig, ax = plt.subplots(1, 1, figsize=(5, 4))
         visualizer = SilhouetteVisualizer(km, ax=ax, colors='yellowbrick')
         visualizer.fit(x)
         visualizer.show();
         km = KMeans(n_clusters=5).fit(x)
         fig, ax = plt.subplots(1, 1, figsize=(5, 4))
         visualizer = SilhouetteVisualizer(km, ax=ax, colors='yellowbrick')
         visualizer.fit(x)
         visualizer.show();
         km = KMeans(n clusters=4).fit(x)
         fig, ax = plt.subplots(1, 1, figsize=(5, 4))
         visualizer = SilhouetteVisualizer(km, ax=ax, colors='yellowbrick')
         visualizer.fit(x)
         visualizer.show();
         km = KMeans(n_clusters=3).fit(x)
         fig, ax = plt.subplots(1, 1, figsize=(5, 4))
         visualizer = SilhouetteVisualizer(km, ax=ax, colors='yellowbrick')
         visualizer.fit(x)
         visualizer.show();
```

Silhouette Plot of KMeans Clustering for 20433 Samples in 2 Centers

Silhouette Plot of KMeans Clustering for 20433 Samples in 5 Centers

Silhouette Plot of KMeans Clustering for 20433 Samples in 4 Centers

Silhouette Plot of KMeans Clustering for 20433 Samples in 3 Centers

1 e 2. Justificar o número de clusters

A diferença mais marcante entre os gráficos está no tamanho das silhuetas de cada um. Observa-se que, com 2 clusters, há uma maior discrepância nos tamanhos das silhuetas, indicando uma menor consistência na formação dos grupos. Por outro lado, com 4 clusters, os tamanhos das silhuetas são mais uniformes, o que sugere que esta configuração proporciona uma divisão mais equilibrada e coesa dos dados, sendo, portanto, a melhor escolha para a quantidade de clusters.

1. K-means

```
kmeans=KMeans(n_clusters=4, random_state=10) #init='k-means++',
         y=kmeans.fit_predict(X)
Out[46]: array([0, 3, 0, ..., 2, 2, 2], dtype=int32)
In [47]: data['Cluster']=y
         data.groupby('Cluster').mean()
Out[47]:
                  housing_median_age total_rooms total_bedrooms
                                                                                households
                                                                    population
          Cluster
               0
                            31.282156 2390.799592
                                                       407.264946 1029.524683
                                                                                389.401042
               1
                            13.816872 11907.697531
                                                      2310.693416
                                                                   5927.767490
                                                                               2099.370370
               2
                            31.514947
                                       1676.651601
                                                       366.838434
                                                                  1020.807384
                                                                                 341.135854
               3
                            20.036122 4353.580750
                                                       919.498019 2380.515031
                                                                                 846.112328
In [48]: ### Clusters 0,1,2 e 3
         df_0=data[data['Cluster']==0]
         df_1=data[data['Cluster']==1]
         df 2=data[data['Cluster']==2]
         df_3=data[data['Cluster']==3]
In [49]: df 0.head(3)
Out[49]:
            housing_median_age total_rooms total_bedrooms population households median_i
          0
                             41
                                        880
                                                        129
                                                                   322
                                                                               126
          2
                                       1467
                             52
                                                        190
                                                                   496
                                                                               177
          3
                             52
                                        1274
                                                        235
                                                                   558
                                                                               219
In [50]: df 1.head(3)
Out[50]:
               housing median age total rooms total bedrooms population households median
           95
                               36
                                         5329
                                                         2477
                                                                    3469
                                                                                2323
          283
                               22
                                         12842
                                                         2048
                                                                    4985
                                                                                1967
          508
                                                         2408
                                                                    3100
                                                                                2051
                               14
                                          7355
In [51]: import numpy as np
         from sklearn.metrics import pairwise_distances
         def DBCV(X, labels, metric='euclidean'):
             Density-Based Clustering Validation (DBCV).
             Calcula a métrica de validação baseada em densidade para clusters gerados
             def core_distance(point, neighbors, metric):
                  distances = pairwise_distances([point], neighbors, metric=metric)
```

```
return np.min(distances[distances > 0])
def reachability_distance(p, o, neighbors, metric):
    return max(core_distance(p, neighbors, metric), np.linalg.norm(p - o))
def cluster_density(X_cluster, metric):
    n = len(X_cluster)
    distances = pairwise_distances(X_cluster, metric=metric)
    return np.sum(distances) / (n * (n - 1))
clusters = np.unique(labels)
total_density = 0
for cluster in clusters:
    if cluster == -1: # Ignore noise
        continue
    cluster_points = X[labels == cluster]
    density = cluster_density(cluster_points, metric)
    total_density += density
return total_density / len(clusters)
```

2. DBScan

df_principal

df_principal.columns = ['P1', 'P2']

```
P1
                                 P2
Out[531:
              0 -0.017062 -0.000235
                  0.001782 -0.004042
              2 -0.014778 -0.000756
              3 -0.014986 -0.000337
                 -0.014079 -0.000837
         20428
                  0.005517 -0.001245
         20429 -0.008732 -0.000447
         20430
                  0.008321 -0.002719
          20431
                 0.005041 -0.003352
         20432
                0.016689 -0.002132
```

20433 rows × 2 columns

3. Compare os dois resultados, aponte as semelhanças e diferenças e interprete

K-means recuperou 4 grupos distintos já o dbscan não conseguiu recuperar

K-means

- facil de ser implementado e interpretado
- é mais escalavel mais eficiente
- requer que o usuario diga inicialmente o nº de clusters *sensivel a outliers

DBScan

- simples e facil de ser implementado
- não requer que o usuario diga p n° de cluster *não é sensivel a outlires

O algoritmo K-means é um método de aprendizado de máquina supervisionado que determina o número de centróides kk, atribuindo cada ponto de dados ao cluster mais próximo e buscando minimizar a distância total dos pontos aos centróides. Em contraste, o DBSCAN (Density-Based Spatial Clustering of Applications with Noise) é baseado na densidade de pontos, identificando clusters como conjuntos densos de pontos conectados. Ele é capaz de dividir regiões densas em clusters, encontrando agrupamentos com formas arbitrárias, mesmo em bases de dados com ruído.

4. Além do índice de silhueta, outras duas métricas de

validação foram utilizadas para comparar os resultados:

Dendrograma - O dendrograma é uma representação gráfica em forma de árvore que demonstra os agrupamentos formados a cada etapa do processo hierárquico e seus níveis de similaridade. Analisando o dendrograma, é possível identificar que os dados foram agrupados em quatro grandes grupos, representando bem as divisões naturais do conjunto de dados.

KElbowVisualizer - O método do cotovelo, representado pelo KElbowVisualizer, avalia a proximidade dos pontos dentro de cada cluster. Observando o gráfico gerado, o ponto ideal para kk é indicado em 3 ou 4 clusters, com k=4k=4 apresentando o melhor desempenho em termos de tempo de resposta e consistência do algoritmo.

5. Comparação com o Índice de Silhueta

 O índice de silhueta mede a qualidade dos clusters considerando a distância entre os centróides e os pontos que os cercam. Ao analisar os gráficos, k=4k=4 apresentou silhuetas mais uniformes e bem distribuídas, indicando uma melhor configuração de agrupamento.

Validação para DBSCAN

Para o algoritmo DBSCAN, uma métrica mais adequada é o DBCV (Density-Based Cluster Validation), que avalia a qualidade dos clusters com base na densidade dos pontos e não apenas na distância. Essa métrica é particularmente útil para bases de dados com ruído, pois captura a forma dos agrupamentos e considera variações de densidade.

Com base nos resultados das métricas de validação analisadas (índice de silhueta, dendrograma e KElbowVisualizer), o valor ideal para k nos agrupamentos é 4. Essa escolha oferece a melhor combinação de consistência entre os clusters e eficiência na resposta do algoritmo.

```
In [41]: df=data.drop(['Cluster'],axis=1)

In [42]: plt.figure(figsize=(14, 5))
    plt.grid(False)
    dendrogram = sch.dendrogram(sch.linkage(df, method='ward')) #, labels=df.index
    plt.title('Dendrogram')
    plt.ylabel('Euclidean Distance')
Out[42]: Text(0, 0.5, 'Euclidean Distance')
```



```
In [43]: Wcss=[]
    for i in range(1,11):
        kmeans=KMeans(n_clusters=i,init='k-means++',random_state=9)
        kmeans.fit(x)
        Wcss.append(kmeans.inertia_)
    print(Wcss)
```

[272394861195557.38, 85139069740659.94, 38736688028295.414, 21111318378341.402, 12269251877454.535, 8758499004866.464, 6471603906594.478, 4923763650377.529, 37 85972457034.503, 3163284787015.993]

```
In [44]: sns.set()
   plt.plot(range(1,11),Wcss)
   plt.title('Método do Cotovelo')
   plt.xlabel('Número Clusters')
   plt.ylabel('WCSS')
   plt.show()
```


In [45]: from yellowbrick.cluster import KElbowVisualizer
el = KElbowVisualizer(KMeans(), k=10)
el.fit(df)
el.show();

5. O Índice de Silhueta é adequado para escolher o número de Clusters no DBSCAN?

Resposta: Quando não existem rótulos disponíveis, é comum recorrer a métricas objetivas, como o Silhouette Score, para avaliar e decidir sobre o resultado final de um agrupamento. O Silhouette Score é uma métrica que mede a coesão e separação dos clusters, com valores variando entre -1 e 1. No entanto, ele não considera o ruído no cálculo e baseia-se exclusivamente em distâncias.

Como o DBSCAN é um algoritmo baseado em densidade, a dependência de distâncias viola um pressuposto fundamental desse método. Ignorar o ruído no cálculo da métrica compromete a avaliação da qualidade dos clusters em técnicas baseadas em densidade.

Portanto, métricas como o Silhouette Score não são **adequadas para medir a qualidade dos agrupamentos** gerados pelo DBSCAN.

Medidas de Similaridade

1. Definição do Problema

Um problema apresenta 10 séries temporais distintas, que precisam ser agrupadas em 3 grupos com base no critério de similaridade, utilizando o valor máximo da correlação

cruzada entre elas. Passos para calcular a similaridade:

- Etapa 1: Para cada par de séries temporais, aplicar um deslocamento (lag) em unidades de tempo.
- Etapa 2: A cada deslocamento, calcular a correlação de Pearson entre as duas séries.
- Etapa 3: Repetir o processo de deslocamento e cálculo da correlação até obter uma curva de correlação cruzada para cada par de séries.
- Etapa 4: Identificar o ponto de maior correlação na curva, que representará o valor máximo de correlação cruzada entre as séries.
- Etapa 5: Usar os valores máximos de correlação como métrica de similaridade entre as séries temporais.

2. Algoritmo de Clusterização

Algoritmo sugerido: KNN (K-Nearest Neighbors)

- O KNN é adequado para estimar densidades, verificando regiões de alta e baixa densidade. Ele fornece um índice de similaridade baseado em distância com valores que variam de -1 a 1.
- Justificativa: É eficaz para dados onde a proximidade entre os valores de similaridade determina o agrupamento.

Algoritmo sugerido: DTWclust (Dynamic Time Warping Clustering)

- O DTWclust utiliza técnicas relacionadas à distância dinâmica e oferece implementações de agrupamentos particionais e hierárquicos.
- Justificativa: Ele pode ser facilmente personalizado com métricas de distância específicas e definições de centróides, sendo uma escolha robusta para séries temporais.

3. Caso de Uso

 Um exemplo de aplicação seria agrupar séries temporais relacionadas ao clima, como padrões anuais de temperatura, ou ciclos de compra e venda em diferentes períodos de tempo. Esses dados podem ser usados para identificar tendências sazonais ou comportamentais.

4. Sugestão de outra Estratégia para Medir Similaridade

1. Definição da Estratégia Medir a similaridade entre séries temporais com base no comportamento de subida e descida em relação ao tempo.

Passos para implementar a estratégia:

Etapa 1: Identificar o movimento das séries temporais (variações positivas ou

negativas ao longo do tempo).

- Etapa 2: Normalizar as séries temporais para reduzir o impacto de valores extremos.
- Etapa 3: Agrupar os movimentos das séries com base na sincronia entre elas, comparando os padrões de subida e descida ao longo do tempo.
- Etapa 4: Utilizar a correlação de Pearson como métrica de similaridade para quantificar o alinhamento dos movimentos.
- Etapa 5: Utilizar o valor máximo de correlação (entre -1 e 1) para identificar o grau de similaridade entre as séries.

Essa abordagem considera a sincronia do comportamento das séries temporais, independentemente do ruído ou deslocamentos, permitindo uma análise mais contextual das similaridades.

_	-	-	
Tin		1 .	
411		1.6	