

EC2x&EG06&AG35Quecopen NAU8810 Codec Debugging Guidelines

LTE Standard/LTE-A Standard/Automotive Module Series

Rev. EC2x&EG06&AG35-Quecopen_NAU8810 Codec Debugging

Guidelines_V1.1

Date: 2018-05-25

Status: Preliminary

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2018-02-22	Thirty XU	Initial
1.1	2018-05-25	Thirty XU	Added Chapter 4 to briefly introduce Codec gain debugging

Contents

Abo	out the Doc	ument	2
Coı	ntents		3
Tak	le Index		4
Fig	ure Index		5
1	Introduction	on	6
2	Audio Path	ns Introduction	7
	2.1. NAU	8810 Uplink Block Diagram	8
	2.2. NAU	8810 Downlink Block Diagram	9
3	Introduction	on of Uplink and Downlink Register Configuration	10
		Command Format for NAU8810 Codec Reading and Writing Registers	
	3.2. MIC	Gain Debugging	
	3.2.1.	Input Signal Control Register (0x2C)	
	3.2.2.	PGA Gain Control Register (0x2D)	
	3.2.3.	ADC Boost Control Register (0x2F)	13
	3.2.4.	ADC Gain Control Register (0x0F)	14
	3.3. Deb	ugging Downlink Gain	
	3.3.1.	DAC Gain Control Register (0x0B)	
	3.3.2.	DAC Limiter Register (0x19)	
	3.3.3.	Speaker Gain Control Register	17
	3.3.4.	Output Register (0x31)	
4		n Debugging Guide	
		_Volume	
5	Appendix	ARegisters List	23

Table Index

TABLE 1: INTRODUCTION OF INPUT SIGNAL CONTROL REGISTER	11
TABLE 2: CONFIGURATION OF INPUT SIGNAL CONTROL REGISTER	12
TABLE 3: INTRODUCTION OF PGA GAIN CONTROL REGISTER	12
TABLE 4: CONFIGURATION OF PGA GAIN CONTROL REGISTER	13
TABLE 5: INTRODUCTION OF ADC BOOST CONTROL REGISTER	13
TABLE 6: CONFIGURATION OF ADC BOOST CONTROL REGISTER	14
TABLE 7: INTRODUCTION OF ADC GAIN CONTROL REGISTER	14
TABLE 8: CONFIGURATION OF ADC GAIN CONTROL REGISTER	15
TABLE 9: INTRODUCTION OF DAC GAIN CONTROL REGISTER	
TABLE 10: CONFIGURATION OF DAC GAIN CONTROL REGISTER	
TABLE 11: INTRODUCTION OF DAC LIMITER REGISTER	16
TABLE 12: CONFIGURATION OF DAC LIMITER REGISTER	
TABLE 13: INTRODUCTION OF SPEAKER GAIN CONTROL REGISTER	
TABLE 14: CONFIGURATION OF SPEAKER GAIN CONTROL REGISTER	
TABLE 15: INTRODUCTION OF OUTPUT REGISTER	
TABLE 16: CONFIGURATION OF OUTPUT REGISTER	19

Figure Index

FIGURE 1: NAU8810 GENERAL BLOCK DIAGRAM	7
FIGURE 2: NAU8810 UPLINK BLOCK DIAGRAM	8
FIGURE 3: NAU8810 DOWNLINK BLOCK DIAGRAM	9
FIGURE 4: COMMAND RULES OF READING AND WRITING NAU8810 REGISTERS	11
FIGURE 5: RECOMMENDED VALUES OF NAU8810 SPKBOOST POWER SUPPLY	19
FIGURE 6: CODEC AND MODULE DSP TOPOLOGICAL DIAGRAM	20
FIGURE 7: SIGNAL CLIPPING CAUSED BY EXCESSIVE GAIN	20

1 Introduction

This document mainly introduces the debugging methods of gain registers in ADC/DAC paths of NAU8810, which applies for users to debug the volume of NAU8810 Codec.

Currently Quectel modules that support NAU8810 Codec are:

- EC2x (EC25, EC21, EC20 R2.1, EC20 R2.0)
- EG06
- AG35

Before debugging, users should confirm the input and output paths used by the device, such as the interfaces used by MIC_IN and SPK_OUT; and then get a clear idea of uplink and downlink paths of the registers by checking internal Codec block diagram.

Execute command **AT+QIIC** to read the values of Codec register to make sure that the switches in the block are all connected and the others are disconnected. Make sure the power management registers applied by the modules in the block are all powered on. After that, check the original gain size in the block and adjust the gain size of corresponding registers according to actual needs.

2 Audio Paths Introduction

NAU8810 hardware block diagram that the software defaults to apply is illustrated as below: MIC differential input, single-ended and differential output.

Figure 1: NAU8810 General Block Diagram

Users can reconfigure the input and output according to different product design demands. For example, selecting single-ended MIC input or using only one of single-ended/differential outputs can turn off the power supply from the other output to save power.

2.1. NAU8810 Uplink Block Diagram

Figure 2: NAU8810 Uplink Block Diagram

NAU8810 defaults that uplink MIC goes through differential signals and merges at PGA into one path and then goes into ADC via ADC Boost. It will convert into digital signals and transmit to Quectel modules via the PCM interface. During the process, registers of 0x2D/0x2F can adjust the analog gain.

If the signal inputs from single-ended MIC, where it moves from MIC+ to ADC via ADC Boost directly, the switch from MIC- to PGA should be disconnected and the switch from PGA to MIC+ should be connected to reference electric level voltage VREF. Users can select the path via registers 0x2C/0x2F and adjust the analog gain via register 0x2F.

2.2. NAU8810 Downlink Block Diagram

Figure 3: NAU8810 Downlink Block Diagram

There is only mono DAC in downlink block. Quectel modules output digital audio signals to NAU8810 via the PCM interfaces and divide into two paths of analog output after passing through DAC–MOUT single-ended output and SPKOUT+/- differential output.

3 Introduction of Uplink and Downlink Register Configuration

3.1. AT Command Format for NAU8810 Codec Reading and Writing Registers

Read register values:

AT+QIIC=1,0x1A,0x58,2

In the command, the meaning of the four parameters are as follows:

1 means to read

0x1A stands for NAU8810 Codec

0x58 register address (Actual address is 0x2C, details show below.)

2 indicates the register length read is a 16-bit value.

Write register values:

AT+QIIC=0,0x1A,0x58,1,0x03

In the command, the meaning of the five parameters are as follows:

0 means to write

0x1A stands for NAU8810 Codec

0x58 register address

1 means that the register length written is 8 bits.

0x03 indicates the value written to the register

The register's physical length of NAU8810 is 8 bits while the register values are 9 bits, so in actual use, the highest bit (D8) of the values is placed in the lowest bit (D0) of the address register and at the same time, all the addresses in the address register shift one bit to the left. When writing a register command, users only need to write one byte, and read two bytes when reading. For example, if the user writes 0x03, then he should read 0x003.

See the diagram as below:

Figure 4: Command Rules of Reading and Writing NAU8810 Registers

3.2. MIC Gain Debugging

3.2.1. Input Signal Control Register (0x2C)

Table 1: Introduction of Input Signal Control Register

REGISTER	DESCRIPTION
Register name	Input Signal Control Register
Register function	Control MIC path selection and MIC Bias output voltage
Register address	0x2C
Recommended value	0x003
Command to read register	AT+QIIC=1,0x1A,0x58,2

Command to write register	AT+QIIC=0,0x1A,0x58,1,0x03
Register description	The register can control to select the paths from MIC to PGA. It is configured from differential MIC-/+ signals to PGA by default. If single-ended MIC (only MIC+) is applied, users need to reconfigure registers 0x2C and 0x2F.

Table 2: Configuration of Input Signal Control Register

BIT	DESCRIPTION (Default 0x003)
	Control the output voltage of MICBIASV (Affected by register 0x3A D4 at the same time)
	MICBIASM[4] = 0 Address (0x3A)
	00:VDDA*0.9
	01:VDDA*0.65
	10:VDDA*0.75
D7-D8	11:VDDA*0.5
	MICBIASM[4] = 1 Address (0x3A)
	00:VDDA*0.85
	01:VDDA*0.6
	10:VDDA*0.7
	11:VDDA*0.5
D2-D6	Reserved
D2-D0	00000
	NMICPGA control switch, controls the on/off from MIC- to PGA
D1	0: MICN not connected to input PGA.
	1: MICN to input PGA Negative terminal.
	PMICPGA control switch controls to select the paths from MIC+ to PGA
D0	0: Input PGA Positive terminal to VREF
	1: Input PGA Positive terminal to MICP through variable resistor

3.2.2. PGA Gain Control Register (0x2D)

Table 3: Introduction of PGA Gain Control Register

REGISTER	DESCRIPTION
Register name	PGA Gain Control Register
Register function	Control the gain of uplink differential signals passing through PGA
Register address	0x2D
Recommended value	0x014 (3dB) The actual uplink volume of NAU8810 is a bit small. Users can turn it up to about

	15dB.
Command to read register	AT+QIIC=1,0x1A,0x5A,2
Command to write register	AT+QIIC=0,0x1A,0x5A,1,0x14
Register description	The gain range of the register is -12~35.25dB and the gain can be adjusted according to actual needs. When ALC function is turned on (Set D8 of 0x20 register to 1), the gain size of input PGA will be controlled automatically by ALC, and the PGA gain set by 0x2D does not take effect.

Table 4: Configuration of PGA Gain Control Register

BIT	DESCRIPTION (Default 0x010)
D8	Reserved
	0
	PGA Zero Cross Enable
D7	0: Update gain when gain register changes
	1: Update gain on 1st zero cross after gain register write
D6	Mute Control for PGA
	0: PGA not mute.
	1: PGA Mute.
	Programmable Gain Amplifier Gain (PGA Gain Range -12dB to +35.25dB in 0.75 increments)
	000000: -12dB
	000001: -11.25dB
	000010:-10.50dB
D0-D5	
	010000:0dB
	111110:34.5dB
	111111:35.25dB

3.2.3. ADC Boost Control Register (0x2F)

Table 5: Introduction of ADC Boost Control Register

REGISTER	DESCRIPTION
Register name	ADC Boost Control Register
Register function	Control the switch from uplink MIC+ signal to ADC Boost and the gain of the differential signals passing through ADC Boost

Register address	0x2F
Recommended value	0x000 (0dB)
Command to read register	AT+QIIC=1,0x1A,0x5E(0x5F),2
Command to write register	AT+QIIC=0,0x1A,0x5E(0x5F),1,0x00
Register description	When differential MIC signals are applied, one of the gain of 0dB/20dB can be controlled by D8 of 0x2F register after the signal passing PGA. However, the gain stepping is too much, please use it cautiously. When D8 is set to 1, the register address changes from 0x5E to 0x5F in AT+QIIC command because D8 is placed in the lowest bit of the address. When using single-ended MIC, users can control the on/off and the gain by D4-D6 of 0x2F if they need the signals pass directly from MIC+ to ADC Boost. When differential MIC signals are applied, D4-D6 should be disconnected. When single-end MIC+ is applied, 20Db gain of D8 does not take effect.

Table 6: Configuration of ADC Boost Control Register

BIT	DESCRIPTION (Default 0x100)	
	PGABST Gain	
D8	0: PGA output has +0dB gain through input Boost stage	
	1: PGA output has +20dB gain through input Boost stage	
D7	Reserved	
וט	0	
	PMICBSTGAIN, control the switch on/off and gain size from MIC+ to ADC (PMICBSTGAIN	
	Gain Range -12dB to 6dB in 3dB increments)	
	000: Path Disconnect	
	001: -12dB	
D4-D6	010:-9dB	
	101:0dB	
	110:3dB	
	111:6dB	
D0-D3	Reserved	
טט-טט	0000	

3.2.4. ADC Gain Control Register (0x0F)

Table 7: Introduction of ADC Gain Control Register

REGISTER	DESCRIPTION
Register name	ADC Gain Control Register
Register function	Control uplink ADC digital gain
Register address	0x0F
Recommended value	0x0FF (0dB)
Command to read register	AT+QIIC=1,0x1A,0x1E,2
Command to write register	AT+QIIC=0,0x1A,0x1E,1,0xff
Register description	Default to configure based on 0dB.

Table 8: Configuration of ADC Gain Control Register

Bit	DESCRIPTION (Default 0x0FF)
D8	Reserved
	ADC Gain, control the gain size of uplink digital (ADC Gain Range -127dB to 0dB in 0.5dB
	increments)
	00000000: Unused
D0-D7	00000001: -127dB
D0-D7	00000010: -126.5dB
	11111110: -0.5dB
	11111111: 0dB

3.3. Debugging Downlink Gain

3.3.1. DAC Gain Control Register (0x0B)

Table 9: Introduction of DAC Gain Control Register

REGISTER	DESCRIPTION
Register name	DAC Gain Control Register

LTE Standard/LTE-A Standard/Automotive Module Series EC2x&EG06&AG35-Quecopen NAU8810 Codec Debugging Guidelines

Register function	Control downlink DAC digital gain
Register address	0x0B
Recommended value	0x0FF (0dB)
Command to read register	AT+QIIC=1,0x1A,0x16,2
Command to write register	AT+QIIC=0,0x1A,0x16,1,0xff
Register description	Select the gain size according to actual needs. When the configuration is 0x000, please make the downlink mute.

Table 10: Configuration of DAC Gain Control Register

BIT	DESCRIPTION (Default 0x0FF)
D8	Reserved
D0	0
	DAC Gain, control downlink digital gain size (DAC Gain Range -127dB to 0dB in 0.5dB
D0-D7	increments)
	00000000: Digital Mute
	00000001: -127dB
	00000010: -126.5dB
	11111110: -0.5dB
	11111111: 0dB

3.3.2. DAC Limiter Register (0x19)

Table 11: Introduction of DAC Limiter Register

REGISTER	DESCRIPTION
Register name	DAC Limiter Register
Register function	Control downlink DAC limiter functions
Register address	0x19
Recommended value	0x000
Command to read register	AT+QIIC=1,0x1A,0x32,2

Command to write register	AT+QIIC=0,0x1A,0x32,1,0x00
Register description	To increase the downlink volume without using the limiter, users can add up to the gain of 12dB to downlink DAC via limiter volume boost. Before this, please first confirm that the highest bit of 0x18 register is 0. Checking method: Execute AT+QIIC=1,0x1A,0x31,2, then read 0x18 register bit. Default value: 0x0032, D8 is 0.

Table 12: Configuration of DAC Limiter Register

BIT	DESCRIPTION (Default 0x000)
D7-D8	Reserved
D1-D0	0
	DAC Limiter Programmable signal threshold level, determines level at which the limiter starts
	to operate. (The limiter will take effect when the highest bit of 0x18 register DACLIMEN=0, or
	else the limiter volume boost will take effect.)
	000: -1dB
D4-D6	001: -2dB
	010: -3dB
	011: -4dB
	100: -5dB
	101 to 111: -6dB
	DAC Limiter volume Boost, can be used as a stand-alone volume Boost when DACLIMEN=0.
	(Limiter volume Boost Range is 0dB to 12dB in 1dB increments)
	0000: 0dB
	0001: 1dB
D0-D3	0010: 2dB
	1011: 11dB
	1100: 12dB
	1101 to 1111: Reserved

3.3.3. Speaker Gain Control Register

Table 13: Introduction of Speaker Gain Control Register

REGISTER	DESCRIPTION
Register name	Speaker Gain Control Register
Register function	Control the analog gain of the downlink differential signal

value Command to read register Command to write register AT+QIIC=1,0x1A,0x6C,2 AT+QIIC=0,0x1A,0x6C,1,0x39 Register The register gain range is -57~6dB and the gain size can be adjusted accordingly.	Register address	0x36
register Command to write register Register AT+QIIC=1,0x1A,0x6C,2 AT+QIIC=0,0x1A,0x6C,1,0x39 The register gain range is -57~6dB and the gain size can be adjusted according to the size of the register gain range is -57~6dB.		0x039 (0dB)
register Register The register gain range is -57~6dB and the gain size can be adjusted according to the register gain range is -57~6dB.		AT+QIIC=1,0x1A,0x6C,2
		AT+QIIC=0,0x1A,0x6C,1,0x39
description actual needs. When Do is configured to 1, the downlink differential output	Register description	The register gain range is -57~6dB and the gain size can be adjusted according to actual needs. When D6 is configured to 1, the downlink differential output is muted.

Table 14: Configuration of Speaker Gain Control Register

BIT	DESCRIPTION (Default 0x039)
D8	Reserved
Do	0
	SPKZC (Speaker Gain Control Zero Cross)
D7	0: Change Gain on Zero Cross ONLY
	1: Change Gain Immediately
	Mute Control for SPK
D6	0: Speaker Enable
	1: Speaker Mute.
	Speaker Gain (SPK Gain Range -57dB to +6dB in 1dB increments)
	000000: -57dB
	000001: -56dB
	000010:-55dB
D0-D5	
	111001:0dB
	111110:5dB
	111111:6dB

3.3.4. Output Register (0x31)

Table 15: Introduction of Output Register

REGISTER	DESCRIPTION
Register name	Output Register
Register function	Control the output gain of downlink differential/single-ended signals

Register address	0x31
Recommended value	0x002
Command to read register	AT+QIIC=1,0x1A,0x62,2
Command to write register	AT+QIIC=0,0x1A,0x62,1,0x02
Register description	The register can select the boost gain of downlink output. To make NAU8810 output maximum power, VDDSPK needs to be powered as shown below. In this mode, the output can directly push the speaker of 8Ω , 1W to phonate.

VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), $T_A = +25°C$, 1kHz signal, fs = 48kHz. 24-bit audio data unless otherwise stated.

16 TOKITE, ET BIC addit data diffect of the mise stated.											
SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT						
BTL Speaker Output (SPKOUT+, SPKOUT- with 8Ω bridge tied load)											
	SPKBST = 0 VDDSPK = VDDA	V	\/=								
	SPKBST = 1 VDDSPK = 1.5*VDDA	(VDDA / 3.3) * 1.5			V _{RMS}						
	SYMBOL	SYMBOL TEST CONDITIONS P, SPKOUT- with 8Ω bridge tied load) SPKBST = 0 VDDSPK = VDDA SPKBST = 1	SYMBOL TEST CONDITIONS MIN P, SPKOUT- with 8Ω bridge tied load) SPKBST = 0 VDDSPK = VDDA SPKBST = 1	SYMBOL TEST CONDITIONS MIN TYP P, SPKOUT- with 8Ω bridge tied load) SPKBST = 0 VDDSPK = VDDA SPKBST = 1 (VDDA / 3.3)	SYMBOL TEST CONDITIONS MIN TYP MAX F, SPKOUT- with 8Ω bridge tied load) SPKBST = 0 VDDSPK = VDDA SPKBST = 1 (VDDA / 3.3) * 1.5						

Figure 5: Recommended Values of NAU8810 SPKBOOST Power Supply

Table 16: Configuration of Output Register

BIT	DESCRIPTION (Default 0x002)
D4-D8	Reserved
D4-D0	00000
	MOUTBST (MONO Output Boost Stage)
D3	0: (1.0 x VREF) Gain Boost
	1: (1.5 x VREF) Gain Boost
	SPKBST (Speaker Output Boost Stage)
D2	0: (1.0 x VREF) Gain Boost
	1: (1.5 x VREF) Gain Boost
	TSEN (Thermal Shutdown)
D1	0:Disabled
	1:Enabled
	AOUTIMP (Analog Output Resistance)
D0	0: ~1ΚΩ
	1: ~30ΚΩ

4 Codec Gain Debugging Guide

Figure 6: Codec and Module DSP Topological Diagram

Take the above diagram as an example. When debugging Codec gain, users should make sure that signals arriving at ADC and signals that PCM interfaces output are not too saturated to result in signal clipping. Excessive signal clipping will lead to sound distortion and may introduce noise.

Figure 7: Signal Clipping Caused by Excessive Gain

If using analog microphones, users can add the gain to ADC_Volume, but the gain of DEC_Vol should not be too high. If a digital microphone is used, both ADC_Volume and DEC_Vol use 0dB gain.

4.1. ADC_Volume

ADC_Volume controls the input signal volume VADC of analog to digital converter (ADC). Excessive input signals of ADC will lead to signal clipping. NAU8810 Codec ADC coverts at 0dBFS/V. If the amplitude of

LTE Standard/LTE-A Standard/Automotive Module Series EC2x&EG06&AG35-Quecopen NAU8810 Codec Debugging Guidelines

VADC is greater than 1V (or 0dBV), the signal will be clipped.

The sensitivity of the Microphone (Smic) and the intensity of the acoustic signals near the microphone (Paoc) will also influence the amplitude of the microphone input signals. Ignoring the influence of the acoustic structure such as the microphone sound transmission holes on the signal amplitude, it can be approximated that:

VADC = Paoc * Smic *ADCvol

Change it to dB:

VADC(dBV) = Paoc(dBSPL)-94 + Smic(dBV/Pa) + ADCvol(dB)

The stronger the acoustic signals around the microphone, the easier it is to generate recording clipping problems, such as speaking loudly close to the microphone, or recording a live concert. To avoid clipping problems, please lower ADCvol.

Acoustic overload point (AOP) is considered as the maximum intensity of the acoustic signal that the microphone can effectively pick up. According to AOP of the microphone and the formula above and to avoid clipping (VADC<=0dBV) within the effective working range of the microphone, the maximum value that ADC Volume can take is:

ADCvol(dB) = 0 - Paop(dBSPL) + 94 - Smic(dBV/Pa)

The sensitivity and AOP of the microphone are usually available from the microphone specification. Take certain analog microphone as an example, if its sensitivity is -38dBV/Pa, its AOP is 124dBSPL, so it can be calculated from the above formula that:

ADCvol(dB) = 0 - 124 + 94 - (-38) = 8(dB)

If ADC_Volume is set too low (such as 0dB), signal clipping will not occur, but the amplitude of recording signal will be low. Digital gain can be used to increase signal amplitude, however, the resolution of the signal will be low and the recording quality will not be too good.

ADC_Volume can use the values that are calculated based on microphone AOP and sensitivity for recording debugging. When calculating ADCvol, users can take into account the effect of acoustic structures such as sensitivity bias, AOP bias and microphone sound transmission holes on the calculation results in order to get a safer and more reasonable result.

After setting ADC_Volume, users can take a recording test (Here set DEC_Volume to 0dB). Play a signal with a sound intensity of about to reach AOP near the microphone, then check the signal of Codec PCM OUT to confirm if there is clipping.

No ADC is required in the Codec path if a digital microphone is used. Users can take a recording test (Here set DEC_Volume to 0dB) and play a signal with a sound intensity of about to reach AOP near the microphone, then check the signal of Codec PCM_OUT to confirm if there is clipping.

- If clipping occurs, users should try to debug the gain inside the microphone because it may be too high.
- If the signal is very low, for example, and the maximum signal amplitude is less than -15dB, it

indicates that the gain inside the microphone may be too low. Users can adjust the gain appropriately so that the signal output of AOP is between [-12dBFS, -3dBFS].

5 Appendix A--Registers List

This document mainly introduces registers controlled by NAU8810 gain. If the block needs to be checked, please confirm the registers of power management are well configured and the path used for power supply is enabled. The software that supports NAU8810 modules has enabled these registers by default.

All the registers are shown as follows. The functions of the registers are classified and can be found here.

Register Address Register						Register Bits						Def
DE C	HE X	Name	D8	D7	D6	D5	D4	D3	D2	D1	D0	aul
0	0	Software Reset				RESE	T (SOFT	WARE)				0x0 00
Power Management												
1	1	Power Managem ent 1	DCB UFEN	0	0	PLLE N	MICB IASE N	ABIA SEN	IOBU FEN	REF	IMP	0x0 00
2	2	Power Managem ent 2	0	0	0	0	BSTE N	0	PGA EN	0	ADC EN	0x0 00
3	3	Power Managem ent 3	0	MOU TEN	NSP KEN	PSP KEN	0	MOU TMXE N	SPK MXE N	0	DAC EN	0x0 00
					Αι	udio Ctr	1					
4	4	Audio Interface	BCLK P	FSP	WLEI	N[1:0]	AIFM	IT[1:0]	DAC PHS	ADCP HS	0	0x0 50
5	5	Compandi ng	0	0	0	0	DACC	CM[1:0]	ADCC	CM[1:0]	ADD AP	0x0 00
6	6	Clock Control 1	CLKM	МС	LKSEL[2:0]	BCLKSEL[2:0] 0			0	CLKI OEN	0x1 40
7	7	Clock Control 2	0	0	0	0	0 SMPLR[2:0]			SCLK EN	0x0 00	
10	А	DAC CTRL	0	0	DAC MT	DEEN	1P[1:0]	DAC OS	AUT OMT	0	DAC PL	0x0 00

11	В	DAC Volume	0		D	ACGAIN				0x0 FF		
14	E	ADC	HPFE	HPF	HPF[2:0]	ADC	0	0	ADC	0x1		
		CTRL	N	AM	11F1 [2.0]	OS			PL	00		
15	F	ADC Volume	0		А	ADCGAIN						
					EQUALISER							
18	12	EQ1-Low Cutoff	EQM	0	EQ1CF[1:0]	EG)1GC[4:0	0]		0x1 2C		
19	13	EQ2-Peak 1	EQ2B W	0	EQ2CF[1:0]	EG)2GC[4:0	0]		0x0 2C		
20	14	EQ3-Peak 2	EQ3B W	0	EQ3CF[1:0]	EG)3GC[4:0	0]		0x0 2C		
21	15	EQ4-Peak 3	EQ4B W	0	EQ4CF[1:0]		0x0 2C					
22	16	EQ5-High Cutoff	0	0	0 EQ5CF[1:0] EQ5GC[4:0]							
DIGITAL TO ANALOG (DAC) LIMITER												
24	18	DAC Limiter 1	DACL IMEN		DACLIMDCY[3:0] DACLIMATK[3:0]							
25	19	DAC Limiter 2	0	0	DACLIMTHL[2:0]		DACLIMI	BST[3:0]		0x0 00		
					NOTCH FILTER							
27	1B	Notch Filter High	NFCU	NFC EN		NFCA0[13:	7]			0x0 00		
28	1C	Notch Filter Low	NFCU	0		NFCA0[6:0	0]			0x0 00		
29	1D	Notch Filter High	NFCU	0		NFCA1[13:	7]			0x0 00		
30	1E	Notch Filter Low	NFCU	0		NFCA1[6:0	D]			0x0 00		
					ALC CONTROL							
32	20	ALC CTRL 1	ALCE N	0	0 ALCMXG	AIN[2:0]	ALCI	MNGAIN	[2:0]	0x0 38		
33	21	ALC CTRL 2	ALCZ C		ALCHT[3:0]		ALCS	L[3:0]		0x0 0B		
34	22	ALC CTRL 3	ALCM		ALCDCY[3:0]		ALCAT	K[3:0]		0x0 32		

35	23	Noise Gate	0	0	0	0	0	ALCN EN	AL	_CNTH[2	:0]	0x0 00
					PLL	CONTR	ROL					
36	24	PLL N CTRL	0	0 0 0 0 PLLM PLLN[3:0]								0x0 08
37	25	PLL K 1	0	0 0 PLLK[23:18]								0x0 0C
38	26	PLL K 2		PLLK[17:9]								0x0 93
39	27	PLL K 3					PLLK[8:	0]				0x0 E9
INPUT, OUTPUT & MIXER CONTROL												
40	28	Attenuatio n CTRL	0	0	0	0	0	0	MOU TATT	SPKA TT	0	0x0 00
44	2C	Input CTRL	MICB	IASV	0	0	0	0	0	NMIC PGA	PMIC PGA	0x0 03
45	2D	PGA Gain	0	PGA ZC	PGAGAINI5:01						0x0 10	
47	2F	ADC Boost	PGAB ST	0	PMI	CBST	GAIN	0	0	0	0	0x1 00
49	31	Output CTRL	0	0	0	0	0	MOU TBST	SPKB ST	TSEN	AOU TIMP	0x0 02
50	32	Mixer CTRL	0	0	0	0	0	0	0	BYPS PK	DAC SPK	0x0 01
54	36	SPKOUT Volume	0	SPK ZC	SPK MT			SPKG	AIN[5:0]			0x0 39
56	38	MONO Mixer Control	0	0	MOU TMT	0	0	0	0	BYP MOU T	DAC MOU T	0x0 01
				L	OW POV	VER C	ONTROL					
58	3A	Power Managem ent 4	LPIP BST	LPA DC	LPSP KD	LPD AC	TRIMREG IBADJ				\DJ	0x0 00
		PCM	TIME SI	LOT &	ADCOUT	IMPE	DANCE (OPTION	CONTRO	DL		
59	3B	Time Slot					TSLOT[8	:0]				0x0 00
60	3C	ADCOUT Drive	PCM TSEN	TRI	PCM 8BIT	PUD OEN	PUD PE	PUDP S	LOUT R	PCM B	TSLO T[9:8]	0x0 20

ID REGISTER												
62	3E	Silicon Revision	0	1	1	1	0	1	1	1	1	0x0 EF
63	3F	2-Wire ID	0	0	0	0	1	1	0	1	0	0x0 1A
64	40	Additional ID	0	1	1	0	0	1	0	1	0	0x0 CA
65	41	Reserved	1	0	0	1	0	0	1	0	0	0x1 24
69	45	High Voltage CTRL	0	0	0	0	MOU TMT	0	HVO PU	0	HVO P	0x0 01
70	46	ALC Enhance ments 1	ALCT BLSE L	ALC PKS EL	ALC NGS ALCGAINL (ONLY) EL							0x0 00
71	47	ALC Enhance ments 2	PKLI MEN	0	0	1	1	1	0	0	1	0x0 39
73	49	Additional IF CTRL	0		RVAL[1	FSE RFL SH	FSER REN A	NFDL Y	DACI NMT	PLLL OCK P	DAC OS25 6	0x0 00
75	4B	Power/Tie -off CTRL	0	LPS PKA	0	0	0	0	MAN VREF H	MAN VREF M	MAN VRE FL	0x0 00
76	4C	AGC P2P Detector				P2F	PDET (O	NLY)				0x0 00
77	4D	AGC Peak Detector				PI	DET (ON	ILY)				0x0 00
78	4E	Control and Status	0	0	AMT CTR L	HVD ET	NSG ATE	AMUT E	DMU TE	0	FTDE C	0x0 00
79	4F	Output tie-off CTRL	MAN OUTE N	SBU FH	SBU FL	SNS PK	SPSP K	SMO UT	0	0	0	0x0 00