## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-017964

(43)Date of publication of application: 17.01.2003

51)Int.Cl.

H03H 3/02 H01L 41/18 H01L 41/22 HO3H 9/17

21)Application number: 2001-202903

(71)Applicant:

HITACHI LTD

22)Date of filing:

04.07.2001

(72)Inventor:

**KACHI TAKESHI** 

## 54) MANUFACTURING METHOD FOR ACOUSTIC WAVE ELEMENT

#### 57) Abstract:

ROBLEM TO BE SOLVED: To provide a manufacturing method for an acoustic wave element in hich an internal stress of a thin film is reduced without a side effect of increasing a loss of BAW bulk acoustic wave).

OLUTION: A piezoelectric thin film 104 is splitted into a plurality of regions to relax the internal tress. An air bridge 106 can easily be formed by using a thin film sacrifice layer 601 as a method f easily realizing the split structure. Further, the length of the air bridge 106 is decreased esulting in decreasing parasitic resistance and parasitic inductance.



## **EGAL STATUS**

Date of request for examination]

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of ejection or application converted registration]

Date of final disposal for application]

Patent number]

Date of registration]

Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of rejection]

Date of extinction of right]

## (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-17964

(P2003-17964A)

(43)公開日 平成15年1月17日(2003.1.17)

| (51) Int.Cl.7 |       | 識別記号 | ΡI   |       | ร์   | テーマコード(参考) |  |
|---------------|-------|------|------|-------|------|------------|--|
| H03H          | 3/02  |      | H03H | 3/02  | В    | 5 J 1 O 8  |  |
| H01L          | 41/18 |      |      | 9/17  | F    |            |  |
|               | 41/22 |      | H01L | 41/22 | Z    |            |  |
| H03H          | 9/17  |      |      | 41/18 | 101Z |            |  |

|          |                             | 來簡查審           | 未請求       | 請求項の数10       | OL           | (全 8      | 頁) |  |
|----------|-----------------------------|----------------|-----------|---------------|--------------|-----------|----|--|
| (21)出願番号 | 特顧2001-202903(P2001-202903) | (71)出願人        | 000005108 |               |              |           |    |  |
|          |                             |                | 株式会社      | 日立製作所         |              |           |    |  |
| (22)出願日  | 平成13年7月4日(2001.7.4)         | 東京都千代田区神田駿河台四丁 |           |               |              |           | 地  |  |
|          |                             | (72)発明者        | 可知 剛      |               |              |           |    |  |
|          |                             |                | 東京都国外     | 分寺市東恋ケ智       | 基一丁目         | 3280番埠    | ð. |  |
|          |                             |                | 株式会社      | 日立製作所中央       | <b>以研究</b> 所 | <b>听内</b> |    |  |
|          |                             | (74)代理人        | 100075098 | 3             |              |           |    |  |
|          |                             |                | 弁理士 (     | 作田 康夫         |              |           |    |  |
|          |                             | Fターム(参         | 考) 5J108  | 8 BB07 BB08 C | CO4 EF       | 03 FF05   | j  |  |
|          |                             |                |           | KKO1 MM11     |              |           |    |  |
|          |                             |                |           |               |              |           |    |  |
|          |                             |                |           |               |              |           |    |  |
|          |                             |                |           |               |              |           |    |  |

## (54) 【発明の名称】 弾性波素子の製造方法

## (57)【要約】

【課題】薄膜で構成される圧電体素子が、薄膜が持つ内部応力によって変形し、圧電体の圧電特性の劣化、振動子の破損、望ましくない副共振(スプリアス共振)の発生などの問題を生じる。

【解決手段】圧電体薄膜104を複数の領域に分割する ととにより内部応力を緩和する。分割した構造を簡便に 実現する方法として、薄膜の犠牲層601を用いること により、エアブリッジ106を簡便に形成できる。ま た、エアブリッジ106を短くすることができ、寄生抵 抗や寄生インダクタンスを減らすことができる。



1

#### 【特許請求の範囲】

【請求項1】少なくとも1つの平面を持つ基板上に形成 された、少なくとも1つの平面を持つ第1の犠牲層の上 記平面上に、導電体からなる下部電極を堆積する工程 と、下部電極上に圧電体を堆積する工程と、圧電体上に 導電体からなる上部電極を堆積する工程を含み、かつ所 定の形状に加工された上部電極、圧電体および下部電極 上に第1の犠牲層と同一材料、もしくは、同一のエッチ ング方法で除去可能な第2の犠牲層を堆積する工程と、 第2の犠牲層に開口部を設ける工程と、開口部を設けた 10 第2の犠牲層上に導電体による配線層を堆積する工程 と、配線層を所定の形状に加工する工程と、配線層を所 定の形状に加工した後、第1および第2の犠牲層を、所 定のエッチング方法によって除去する工程を含むことを 特徴とする弾性波索子の製造方法。

【請求項2】少なくとも1つの平面を持つ基板上に形成 された、少なくとも1つの平面を持つ第1の犠牲層の、 上記平面上に、導電体からなる下部電極を堆積する工程 と、下部電極上に圧電体を堆積する工程と、圧電体上に 導電体からなる上部電極を堆積する工程を含み、かつ所 20 定の形状に加工された圧電体および下部電極上に、第1 の犠牲層と同一材料、もしくは、同一のエッチング方法 で除去可能な第2の犠牲層を堆積する工程と、第2の犠 性層に開口部を設ける工程と、開口部を設けた第2の犠 性層上に導電体による配線層を堆積する工程と、配線層 を所定の形状に加工する工程と、配線層を所定の形状に 加工した後、第1および第2の犠牲層を、所定のエッチ ング方法によって除去する工程を含むことを特徴とする 製造方法。

【請求項3】前記第1および第2の犠牲層がともに二酸 化ケイ素を含むことを特徴とする請求項1および請求項 2記載の弾性波素子の製造方法。

【請求項4】前記第1および第2の犠牲層がテトラエト キシシリコンを含む原料を用いた化学気相成長法によっ て形成されることを特徴とする請求項3記載の弾性波素 子の製造方法。

【請求項5】上記圧電体が窒化アルミニウムもしくは酸 化亜鉛を含むことを特徴とする請求項1および請求項2 記載の弾性波素子の製造方法。

【請求項6】上記第1および上部電極が、モリブデン、 チタン、タングステン、タンタル、アルミニウム、白金 およびシリコンのいずれか1つ以上を含むことを特徴と する請求項1および請求項2記載の弾性波素子の製造方

【請求項7】下部電極、圧電体および上部電極の堆積 が、下部電極、圧電体、上部電極の順で行われ、かつ途 中に電極および圧電体の加工工程を含まないことを特徴 とする請求項1記載の弾性波素子の製造方法。

【請求項8】下部電極および圧電体の堆積が、下部電 極、圧電体の順で行われ、かつ途中に電極および圧電体 50

の加工工程を含まないことを特徴とする請求項2記載の 弾性波索子の製造方法。

【請求項9】上部電極および圧電体を複数の領域に分割 する工程を含み、かつ配線層が複数の上部電極を接続す るよう形成されることを特徴とする請求項1記載の弾性 波素子の製造方法。

【請求項10】圧電体を複数の領域に分割する工程を含 み、かつ配線層が複数の圧電体を接続することを特徴と する請求項2記載の弾性波素子の製造方法。

#### 【発明の詳細な説明】

## [0001]

【発明の属する技術分野】本発明は、圧電材料を機能体 に用いた弾性波素子に関する。さらに詳細には、圧電体 薄膜を用い、バルク弾性波を利用した共振器、フィルタ 等に好適な弾性波素子に関するものである。

#### [0002]

【従来の技術】近年、携帯電話やPHSなどの移動体通 信の普及に伴い、数100MHzから数GHzの髙周波 で利用するフィルタや共振器の需要が増大している。特 に、小型・軽量化が可能であるため、圧電体を用いた種 々のタイプの弾性波素子が研究開発されてきた。

【0003】弾性波素子のうち、圧電体の内部を伝播す る弾性波(バルク弾性波、BAW)を利用するものはB AWデバイスと呼ばれる。BAWデバイスの基本的な構 成は、例えば、1999、アイトリプルイー、ウルトラ ソニックシンポジウム、プロシーディング第895頁か ら906頁(1999 IEEE Ultrasonics SymposiumProc eedings pp.895-906) に述べられているように、圧電 体の薄膜を金属電極で挟み込み、金属電極に髙周波信号 を入力して、圧電体内にBAWを励振するものである。 すなわち、BAWデバイスとは電気的な信号を機械的な 振動に変換する装置である。圧電体内のBAWは圧電体 の厚さに応じた所定の周波数において共振を生じ、最も 強く励振される。この性質を用いることにより、BAW デバイスを髙周波信号から特定の周波数のみを取り出す フィルタや、髙周波共振器として利用することがなされ てきた。

【0004】圧電体には、窒化アルミニウム(A1N) や酸化亜鉛(ZnO)、チタン酸ストロンチウム(Sr TiO<sub>s</sub>)、チタン酸鉛(PbTiO<sub>s</sub>)、チタン酸ジ ルコン酸鉛(PbZr, Ti, -, O<sub>s</sub>)などが用いら れる。特に、A1Nを用いたBAWデバイスは、200 1アイトリプルイー、アイ・エス・エス・シー・シー、 ダイジェスト・オブ・テクニカルペーパーズ、第120 頁および121頁(2001 IEEE ISSCC Digest of T echnical Papers pp.120-121) に述べられているよう に、小型でかつ優れた性能を持つ。

【0005】 これらの圧電体で数100MHzから数G H2で利用できるBAWデバイスを製造するためには、 圧電体薄膜を1~2μm以下の厚さにする必要がある。

そのため、スパッタリング法や化学気相成長(CVD) 法などの薄膜作成法が用いられるのが一般的である。

【0006】また、BAWデバイスをフィルタとして利 用するような場合、挿入損失をなるべく減らすために、 BAWを圧電体内に効率よく閉じ込める必要がある。そ のために、圧電体と電極からなるBAW振動子を、他の 物体と接触しないように空中に保持する方法が考案され ている。BAW振動子を空中に保持する方法に関する従 来技術として、例えばWO99/37023号、WO9 8/52235号、特開2000-286669号、同 10 エアブリッジ106によって接続されている。振動子を 244030号、同244029号、同209063 号、特開平11-284480、米国特許第55876 20号、同5873153号、同6060818号、同 5714917号などがある。

#### [0007]

【発明が解決しようとする課題】薄膜で構成されるBA W振動子を空中で保持する際の問題として、薄膜が持つ 内部応力による振動子の変形がある。一般に、スパッタ リング法や化学気相成長法で堆積された薄膜は大きな内 部応力をもつ。BAWデバイスは性能向上のために振動 20 子が空中に保持された構造にするのが望ましいが、との ような構造は内部応力によって振動子が変形しやすいと いう欠点がある。振動子の変形は、圧電体の圧電特性の 劣化、振動子の破損、望ましくない副共振(スプリアス 共振)の発生などの問題を生じる。これらの問題に関し ては、例えばアプライドフィジックスレター、74巻、 20号、第3032頁—3034頁(1999)(Appl iedPhysics Letter Vol.74, No.20 pp.3032-3034(19 99)) などに述べられている。

【0008】とれらの問題を解決するためには、薄膜の 内部応力を減少させる必要がある。WO98/5223 5号に述べられた方法はその従来例の1つである。との 例では、誘電体膜と逆向きの内部応力を持つ薄膜を下地 にすることにより、誘電体薄膜の内部応力を緩和してい る。しかし、本従来例のように、振動子に薄膜を付加す る方法にはBAWの損失が増大するという副作用があ ・る。

【0009】本発明の目的は、上記問題を解決し、BA-₩の損失が増大するといった副作用を伴わずに、薄膜の 内部応力を減少させた弾性波素子の製造方法を提供する ことにある。

### [0010]

【課題を解決するための手段】上記目的を達成するため に、本発明においてはBAWデバイス共振子を複数の領 域に分割し、分割した各領域をエアブリッジで接続す る。さらに、エアブリッジを作成する工程に、薄膜の犠 牲層を用い、BAW振動子を空中に保持する構造と、エ アブリッジを同一工程で作成することにより、上記目的 を簡便に実現する。

[0011]

【発明の実施の形態】本発明の第1の実施例を、図1~ 図5を用いて説明する。図1は、本発明の第1の実施例 である製造方法を用いて製造した弾性波素子の模式図で ある。基板101上に空隙102が設けられ、下部電極 103、圧電体薄膜104、上部電極105からなる振 動子が上記空隙 102上に位置するように形成されてい る。下部電極103の一部が空隙102の外まで延長さ れ基板101と接合されている。振動子を構成する圧電 体薄膜104は、2つの領域に分割され、各々の領域は 構成する圧電体薄膜 104を分割し、各々の領域の上部 電極105間の接続をエアブリッジ106で行うことに より、薄膜の内部応力によって振動子が変形することを 防いでいる。

【0012】図2から図4は本実施例の製造方法の、各 工程における弾性波素子の断面を示した模式図である。 以下本図を用いて、本実施例を詳細に説明する。

【0013】まず、シリコンウェハからなる基板101 に、ドライエッチング法を用いて所定の大きさの穴を設 ける。この穴は最終的に共振子の下の空隙102となる 部分である。次に、Si〇2 薄膜を形成した基板101 上に、CVD法によってSisNa薄膜201を形成す る。Si, N。薄膜201は、後に説明するように犠牲 層を加工する工程において不必要な部分が加工されない よう保護する役割をもつ。なお、図1では図面を簡略化 するためSi,N、薄膜201は図示していない。次 に、Si, N₄薄膜201上にCVD法によってSiO 2 からなる犠牲層202を堆積した後、Si N 4 薄膜 201が露出するまで研磨加工を行う(図2a)。

【0014】ととで、上記犠牲層202は、弾性波素子 の他の部位と高い選択比を持つウエットエッチングや等 方性ドライエッチングによって除去可能な材料であれば 何を用いてもよい。SiO2はフッ化水素酸(HF)を 含む溶液で容易にエッチング可能であり、また、半導体 の製造によく使われる材料であるため、安価で均質な薄 膜を形成する技術が確立しており、犠牲層202の材料 に最も適している。

【0015】研磨によって平坦化した表面に、モリブデ ン(Mo)からなる下部電極103、A1Nからなる圧 電体薄膜104、Moからなる上部電極105を形成す る(図2b)。これらの各層は、順次スパッタリング法 によって堆積し、ホトリソグラフィ法およびドライエッ チング法によって所定の形状に加工する(図3a)。

【0016】上記各層の厚さは圧電体素子を使用する周 波数によって決定する。下部電極103、上部電極10 5 および圧電体 1 0 4 の加工形状および面積は、圧電体 素子の動作周波数およびインピーダンスレベルによって 決定する。また、下部電極103は振動子を空中に保持 する支持体を兼ねるため、一部が犠牲層202の外部に 50 出るような形状とする。なお、電極の材質はことに述べ 5

たもの以外に、タングステン、チタン、タンタル、アル ミニウム、白金、シリコンなど、あるいはそれらの二種 類以上を積層したものなどでもよい。

【0017】下部電極103を加工(図3b)した後、CVD法によってSiO2からなる犠牲層601を堆積する(図3c)。上記犠牲層601は、図1に示したエアブリッジ構造106を下部電極103から分離するためのものである。犠牲層601は弾性波素子の他の部位と高い選択比を持つウエットエッチングや等方性ドライエッチングによって除去可能な材料であれば何を用いて 10もよい。しかし、犠牲層202の場合と同様の理由から、SiO2で形成することが望ましい。

【0018】犠牲層601にコンタクトホールを開口(図3d)した後、Moを堆積し(図4a)、上記Mo膜を所定の形状に加工してエアブリッジ106を形成する(図4b)。エアブリッジ106の材質は、電極の場合と同じくMo以外のものを用いてもよい。

【0019】その後、HF水溶液もしくはHF水溶液とフッ化アンモニウム (NH、F) 水溶液の混合液 (混酸 BOE) を用いて犠牲層202 および601を一括して 20 除去する (図4c)。

【0020】図5は、本実施例で用いたホトマスクのレイアウトを示した平面図である。本実施例では、空隙102を規定するマスク111、下部電極103を規定するマスク112、圧電体薄膜104および上部電極105の形状を規定するマスク113、犠牲層601の開口部を規定するマスク114、エアブリッジ106の形状を規定するマスク114、エアブリッジ106の形状を規定するマスク115の、最低5種類のホトマスクを使用する。図5では5種類すべてのホトマスクのレイアウトを重ねて示してある。

【0021】本実施例のように、弾性波素子の振動子を2つの領域に分割し、各領域の面積を小さくすることによって、圧電体薄膜の内部応力よる振動子の変形を抑えることができる。各領域を接続するエアブリッジ106のような配線は、弾性波素子の寄生抵抗や寄生インダクタンスとなるため、できだけ短くするのが望ましい。本実施例は $SiO_2$ 薄膜をエアブリッジ106形成のための犠牲層601とすることにより、エアブリッジ106の長さを短くすることができる点が優れている。

【0022】本発明の第2の実施例を、図6~図10を用いて説明する。図6は、本実施例の製造方法を用いて製造した弾性波素子の模式図である。振動子を構成する圧電体薄膜104が、2つの領域に分割されている点は前記第1の実施例で製造した弾性波素子と同様である。本実施例の特徴はエアブリッジを上部電極105と一体形成した点にある。

【0023】図7から図9は本実施例の製造方法の、各工程における弾性波素子の断面を示した模式図である。 以下本図を用いて本実施例を詳細に説明する。

【0024】まず、シリコンウェハからなる基板101

6

に、ドライエッチング法を用いて所定の大きさの穴を設け、 $Si_N_a$  薄膜201 と $SiO_2$  からなる犠牲層202 を堆積した後、 $Si_N_a$  薄膜201 が露出するまで研磨加工を行ない(図7a)、Mo からなる下部電極103、AINからなる圧電体薄膜104 を形成するところまでは第10 の実施例と同様である(図7b)。

【0025】本実施例が第1の実施例と異なる点は、圧電体薄膜104および下部電極103を所定の形状に加工した後(図8a~b)、上部電極105を堆積する前に第2の犠牲層601を堆積する点である(図8c)。【0026】第2の犠牲層601を所定の形状に加工した後(図8d)、上部電極105を堆積し(図9a)、上部電極105を所定の形状に加工した後(図9b)、犠牲層601および202をHF水溶液もしくは混酸BOEを用いて除去する(図9c)。

【0027】図10は、本実施例で用いたホトマスクのレイアウトを示した平面図である。本実施例では、空隙102を規定するマスク111、下部電極103を規定するマスク112、圧電体薄膜104の形状を規定するマスク113、犠牲層601の開口部を規定するマスク115の最低5種類のホトマスクを使用する。図10では5種類すべてのホトマスクのレイアウトを重ねて示してある。

【0028】本実施例も、第1の実施例と同様、弾性波素子の振動子を2つの領域に分割することによって圧電体薄膜の内部応力よる振動子の変形を抑える効果がある。さらに、本実施例はエアブリッジを上部電極105の一部として一体形成することにより、上部電極を加工する工程を省略し、工程を簡略化した点が優れている。【0029】本発明の第3の実施例を、図11~図16を用いて説明する。図11は、本発明第3の実施例である製造方法を用いて製造した弾性波素子の模式図である。振動子を構成する圧電体薄膜104が、2つの領域に分割されている点は前記第1の実施例で製造した弾性波素子と同様である。本実施例の特徴は、エアブリッジを支持部107とエアブリッジ部108の2つの部位で形成した点である。

【0030】図12から図15は本実施例の製造方法の、各工程における弾性波素子の断面を示した模式図である。以下本図を用いて、本実施例を詳細に説明する。【0031】まず、シリコンウェハからなる基板101に、ドライエッチング法を用いて所定の大きさの穴を設け、SisN₄薄膜201とSiO₂からなる犠牲層202を堆積した後、SisN₄薄膜201が露出するまで研磨加工を行ない(図12a)、Moからなる下部電極103、A1Nからなる圧電体薄膜104、Moからなる上部電極105を所定の形状に加工形成するところまでは第1の実施例と同様である(図12b~図13

【0032】本実施例が第1の実施例と異なる点は、第2の犠牲層601を堆積した後、犠牲層601の表面を平坦化する点である(図13d)。表面の平坦化は、犠牲層601を厚く堆積した後、表面を研磨することによって行う。

【0033】平坦化した犠牲層601に開口部を設け、全面にMoを堆積した後、表面を研磨することによって開口部にモリブデンを埋め込み(図14a)、エアブリッジの支持部107を形成する。

【0034】支持部107を埋め込んだ後、さらにモリブデンを堆積し(図14b)、所定の形状に加工し(図14c)、犠牲層601および202をHF水溶液もしくは混酸BOEを用いて除去することによってエアブリッジ108を形成する(図15)。

【0035】図16は、本実施例で用いたホトマスクのレイアウトを示した平面図である。本実施例では、空隙102を規定するマスク111、下部電極103を規定するマスク112、圧電体薄膜104および上部電極の形状を規定するマスク113、犠牲層601の開口部を規定するマスク114、エアブリッジの形状を規定するマスク115の最低5種類のホトマスクを使用する。図16では5種類すべてのホトマスクのレイアウトを重ねて示してある。

【0036】本実施例も、第1の実施例と同様に弾性波素子の振動子を2つの領域に分割することによって、圧電体薄膜の内部応力よる振動子の変形を抑える効果がある。さらに、本実施例は平坦化した犠牲層601上でエアブリッジ108の加工を行うため、エアブリッジ108のドライエッチングによる加工が容易になるという点が優れている。

【0037】なお、上に述べた実施例では、振動子を2つの領域に分割しているが、振動子の大きさによっては三つ以上に分割する場合もある。

## [0038]

【発明の効果】本発明によれば、圧電体薄膜を用いた弾性波素子を複数の振動子で構成することにより、薄膜の内部応力による変形を緩和し、圧電体の圧電特性の劣化、振動子の破損、望ましくない副共振(スプリアス共振)の発生などの問題を解決することができる。本発明を用いることにより、複数の振動子から構成される弾性 40波素子を簡便に作成することができる。さらに、各振動子の接続配線による寄生抵抗、寄生インダクタンスの影響も最低限にすることができる。

【図面の簡単な説明】

- 【図1】本発明の第1実施例を用いて作成した弾性波素 子の模式的斜視図。
- 【図2】本発明の第1の実施例の製造工程を示す断面 図。
- 【図3】本発明の第1の実施例の製造工程を示す断面図。
- 【図4】本発明の第1の実施例の製造工程を示す断面図。
- 【図5】本発明の第1の実施例で用いるホトマスクのレイアウトを示す平面図。
- 【図6】本発明の第2実施例を用いて作成した弾性波素 子の模式的斜視図。
- 【図7】本発明の第2の実施例の製造工程を示す断面図。
- 【図8】本発明の第2の実施例の製造工程を示す断面 図
- 【図9】本発明の第2の実施例の製造工程を示す断面図。
- 【図10】本発明の第2の実施例で用いるホトマスクの 20 レイアウトを示す平面図。
  - 【図11】本発明の第3実施例を用いて作成した弾性波素子の模式的斜視図。
  - 【図12】本発明の第3の実施例の製造工程を示す断面図。
  - 【図13】本発明の第3の実施例の製造工程を示す断面図。
  - 【図14】本発明の第3の実施例の製造工程を示す断面図。
- 【図15】本発明の第3の実施例の製造工程を示す断面 30 図。
  - 【図16】本発明の第3の実施例で用いるホトマスクの レイアウトを示す平面図。

#### 【符号の説明】

101…基板、102…空隙、103…下部電極、104…圧電体薄膜、105…上部電極、106…エアブリッジ、107…エアブリッジ支持部、108…エアブリッジ、111…空隙102を規定するマスク、112…下部電極103を規定するマスク、113…圧電体104を規定するマスク、114…犠牲層601の開口部を規定するマスク、115…エアブリッジ106および108を規定するマスク、201…チッ化シリコン薄膜、202…二酸化シリコンからなる犠牲層、601…二酸化シリコンからなる犠牲層。



【図5】



【図9】



【図12】



【図8】



【図10】



[図11]



【図14】



【図13】



【図16】

