BEST AVAILABLE COPY

(1) Publication number: 0 634 491 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 94870118.0

(51) Int. CI.6: C12N 15/82, C12N 15/54

2 Date of filing: 11.07.94

(30) Priority: 12.07.93 US 90523

(3) Date of publication of application: 18.01.95 Bulletin 95/03

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC

NL PT SE

(1) Applicant: MONSANTO COMPANY 800 North Lindbergh Boulevard St. Louis Missouri 63167 (US) (2) Inventor: Barry, Gerard Francis 6350 Waterman Avenue St. Louis, Missouri 63130 (US) Inventor: Kishore, Ganesh Murthy 5354 Grantley Drive Chesterfield, Missouri 63017 (US) Inventor: Stark, David Martin 1218 Summerpoint Lane Fenton, Missouri 63026 (US)

(4) Representative: Nash, Brian Walter et al Monsanto Services International S.A. Patent Department, Avenue de Tervuren 270/272, Letter Box No. 21 B-1150 Bruxelles (BE)

(54) Modified oil content in seeds.

(5) A method of decreasing the oil content of seeds by expression of ADPglucose pyrophosphorylase.

EP 0 634 491 A'

Recent advances in genetic engineering have provided the requisite tools to transform plants to contain foreign genes. It is now possible to produce plants which have unique characteristics of agronomic and crop processing importance. One such advantageous trait is enhanced starch and/or solids content and quality in various crop plants. WO 91/19806 reports the use of a gene which encodes ADPglucose pyrophosphorylase (ADPGPP), which catalyzes a key step in starch and glycogen biosynthesis. The preferred gene is from *E. coli* and the resulting enzyme is a poorly regulated, highly active variant.

Another desirable trait is the reduction of oil in certain food crops, such as peanuts. Decreasing the lipid content in the seeds of certain plants is desirable due to health concerns or for improved processing qualities. For example, a low calorie peanut butter, having a higher starch content and lower oil content would be beneficial. Also, soybeans having lower oil content would be better for producing certain products, such as tofu, soy sauce, soy meat extenders, and soy milk. In addition, lower oil content in certain seed-derived products is desirable, such as corn starch or wheat flour. It has surprisingly been found that such fat reduction is accomplished by expression of a gene encoding a deregulated ADPGPP, such as glgC16 in the seeds.

15 SUMMARY OF THE INVENTION

20

25

30

35

40

45

50

The present invention provides structural DNA constructs which encode an ADPglucose pyrophosphorylase (ADPGPP) enzyme and which are useful in producing seeds having a reduced oil content.

In accomplishing the foregoing, there is provided, in accordance with one aspect of the present invention, a method of producing genetically transformed plants which have elevated starch content, comprising the steps of:

- (a) inserting into the genome of a plant cell a recombinant, double-stranded DNA molecule comprising
 - (i) a promoter which is selected from the group consisting of seed specific promoters,
 - (ii) a structural DNA sequence that causes the production of an RNA sequence which encodes a fusion polypeptide comprising an amino-terminal plastid transit peptide and an ADPglucose pyrophosphory-lase enzyme,
 - (iii) a 3' non-translated DNA sequence which functions in plant cells to cause transcriptional termination and the addition of polyadenylated nucleotides to the 3' end of the RNA sequence;
- (b) obtaining transformed plant cells; and
- (c) regenerating from the transformed plant cells genetically transformed plants which have an elevated starch content.

In accordance with another aspect of the present invention, there is provided a recombinant, doublestranded DNA molecule comprising in sequence:

- (a) a promoter which is selected from the group consisting of seed specific promoters;
- (b) a structural DNA sequence that causes the production of an RNA sequence which encodes a fusion polypeptide comprising an amino-terminal plastid transit peptide and an ADPglucose pyrophosphorylase enzyme; and
- (c) a 3' non-translated region which functions in plant cells to cause transcriptional termination and the addition of polyadenylated nucleotides to the 3' end of the RNA sequence, said promoter being heterologous with respect to the structural DNA.

There has also been provided, in accordance with another aspect of the present invention, transformed plant cells that contain DNA comprised of the above-mentioned elements (a), (b) and (c). In accordance with yet another aspect of the present invention, differentiated oilseed crop plants are provided that have decreased oil content in the seeds.

DETAILED DESCRIPTION OF THE INVENTION

The expression of a plant gene which exists in double-stranded DNA form involves transcription of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' non-translated region which adds polyadenylate nucleotides to the 3' end of the RNA.

Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the promoter. The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA, and to initiate the transcription of mRNA using one of the DNA strands as a template to make a corresponding complimentary strand of RNA.

Promoters which are known or are found to cause transcription of DNA in plant cells can be used in the present invention. Such promoters may be obtained from a variety of sources such as plants and plant viruses and include, but are not limited to, the enhanced CaMV35S promoter and promoters isolated from plant genes

such as ssRUBISCO genes. As described below, it is preferred that the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of ADPGPP enzyme to cause the desired decrease in oil content. Therefore, it is preferred to bring about expression of the ADPGPP gene in the seed tissues of the plant and throughout the seed development. The promoter chosen should have the desired tissue and developmental specificity. Those skilled in the art will recognize that the amount of ADPGPP needed to induce the desired decrease in oil content may vary with the type of plant and furthermore that too much ADPGPP activity may be deleterious to the plant. Therefore, promoter function should be optimized by selecting a promoter with the desired tissue expression capabilities and approximate promoter strength and selecting a transformant which produces the desired ADPGPP activity in the target tissues. This selection approach from the pool of transformants is routinely employed in expression of heterologous structural genes in plants since there is variation between transformants containing the same heterologous gene due to the site of gene insertion within the plant genome. (Commonly referred to as "position effect").

Promoters may be identified to be seed specific by screening a cDNA library of a plant seed for genes which are selectively or preferably expressed in seeds and then determine the promoter regions to obtain seed selective or seed enhanced promoters. It is believed that most of the enzymes involved in carbohydrate metabolism have seed-specific forms from which seed-specific promoters may be obtained. Examples of such enzymes are sucrose synthase, invertase, and ADPGPP (both subunits).

Several seed-specific promoters are well known. β -conglycinin (also known as the 7S protein) is one of the major storage proteins in soybean (*Glycine max*) (Tierney, 1987). Promoters from each of the genes for its three subunits may be used in the present invention. The β -subunit of β -conglycinin has been expressed, using its endogenous promoter, in the seeds of transgenic petunia and tobacco, showing that the promoter functions in a seed-specific manner in other plants (Bray, 1987). Example 1 below demonstrates the use of the α ' subunit of this promoter with an ADPGPP in canola. The gene for the 11S storage protein of soybean is also known to be expressed in a seed-specific manner and its promoter may be used in the present invention.

Two seed-specific promoters from *Brassica napus* have been identified. They are the promoter for napin and the promoter for cruciferin (Murphy, 1989). The promoters for the genes encoding phaseolin (from beans) and cleosin (from rape, soybean, and others) are also useful in the present invention. (Zheng, 1993).

The zeins are a group of storage proteins found in maize endosperm. Genomic clones for zein genes have been isolated (Pedersen, 1982), and the promoters from these clones, including the 15 kD, 16 kD, 19 kD, 22 kD, 27 kD, and gamma genes, could also be used to express an ADPGPP gene in the seeds of maize and other plants. An endosperm-specific promoter of the 19 kD zein has been identified (Quattrocchio, 1990). Other promoters known to function in maize include the promoters for the following genes: waxy, Brittle, Shrunken 2, Branching enzymes I and II, starch synthases, debranching enzymes, oleosins, glutelins, and sucrose synthases.

Examples of promoters suitable for expression of an ADPGPP gene in wheat include those for the genes for the ADPGPP subunits, for the granule bound and other starch synthases, for the branching and debranching enzymes, for the embryogenesis-abundant proteins, for the gliadins, and for the glutenins. Examples of such promoters in rice include those for the genes for the ADPGPP subunits, for the granule bound and other starch synthases, for the branching enzymes, for the debranching enzymes, for sucrose synthases, and for the glutelins (Zheng, 1993). Examples of such promoters for barley include those for the genes for the ADPGPP subunits, for the granule bound and other starch synthases, for the branching enzymes, for the debranching enzymes, for sucrose synthases, for the hordeins, for the embryo globulins, and the aleurone specific proteins.

Promoters for genes encoding proteins other that for storage or carbohydrate metabolism may be found to be useful in the present invention. For example, the acyl carrier protein gene has a promoter known to function in a seed-specific manner. (Baerson, 1993).

The RNA produced by a DNA construct of the present invention also contains a 5' non-translated leader sequence. This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. The 5' non-translated regions can also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence. The present invention is not limited to constructs, as presented in the following examples, wherein the non-translated region is derived from the 5' non-translated sequence that accompanies the promoter sequence. Rather, the non-translated leader sequence can be derived from an unrelated promoter or coding sequence as discussed above.

The DNA constructs of the present invention also contain a structural coding sequence in double-stranded DNA form, which encodes a fusion polypeptide comprising an amino-terminal plastid transit peptide and an ADPGPP enzyme. The ADPGPP enzyme utilized in the present invention is preferably subject to reduced allosteric control in plants. Such an unregulated ADPGPP enzyme may be selected from known enzymes which exhibit unregulated enzymatic activity or can be produced by mutagenesis of native bacterial, or algal or plant ADPGPP enzymes as discussed in greater detail hereinafter. In some instances, the substantial differences

15

20

25

30

in the nature of regulators modulating the activity of the wild type ADPGPP enzyme permits the use of the wild type gene itself; in these instances, the concentration of the regulators within plant organelles will facilitate elicitation of significant ADPGPP enzyme activity.

Bacterial ADPglucose Pyrophosphorylases

15

25

30

35

40

45

50

55

The *E. coli* ADPGPP has been well characterized as a tightly regulated enzyme. The activator fructose 1,6-bisphosphate has been shown to activate the enzyme by increasing its V_{max} , and by increasing the affinity of the enzyme for its substrates (Preiss, 1966 and Gentner, 1967). In addition, fructose 1,6-bisphosphate (FBP) also modulates the sensitivity of the enzyme to the inhibitors adenosine-5'-monophosphate (AMP) and inorganic phosphate (P_i) (Gentner, 1968).

In 1981, the *E. coli* K12 ADPGPP gene (*glg*C), along with the genes for glycogen synthase and branching enzyme, were cloned, and the resulting plasmid was named pOP12 (Okita, 1981). The *glg*C gene, which was sequenced in 1983, contains 1293 bp (SEQ ID NO:1) and encodes 431 amino acids (SEQ ID NO:2) with a deduced molecular weight of 48,762 (Baecker, 1983).

The g/gC16 gene was generated by chemically mutagenizing *E. coli* K12 strain PA 601 with N-methyl-N'-nitrosoguanidine (Cattaneo, 1969 and Creuzet-Sigal, 1972). When the kinetics of the g/gC16 ADPGPP were compared to the parent, it was found that the g/gC16 ADPGPP had a higher affinity for ADPglucose in the absence of the activator, fructose 1,6-bisphosphate (FBP), and the concentration of FBP needed for half-maximal activation of the enzyme was decreased in g/gC16. The inhibition of the ADPGPP activity in g/gC16 by 5'-AMP (AMP) was also reduced.

The DNA sequence of the *glg*C16 gene is now known (SEQ ID NO:3) (Kumar, 1989). When the *glg*C16 deduced amino acid sequence (SEQ ID NO:4) was compared to the nonisogenic *E. coli* K-12 3000, one amino acid change was noted: Gly 336 to Asp (Meyer et al., 1993).

A number of other ADPGPP mutants have been found in *E. coli*. The expression of any of these or other bacterial ADPGPP wild type or mutants could also be used to increase starch production in plants. *E. coli* K12 strain 6047 (*glg*C47) accumulates about the same amount of glycogen during stationary phase as does strain 618 (*glg*C16). Strain 6047, like 618, shows a higher apparent affinity for FBP, and more activity in the absence of FBP. However, the enzyme from strain 6047 is reportedly more sensitive to inhibition by AMP compared to the enzyme from strain 618 (Latil-Damotte, 1977).

The glgC gene from Salmonella typhimurium LT2 has also been cloned and sequenced (Leung and Preiss 1987a). The gene encodes 431 amino acids with a deduced molecular weight of 45,580. The Salmonella typhimurium LT2 glgC gene and the same gene from E. coli K-12 have 90% identity at the amino acid level and 80% identity at the DNA level. Like the E. coli ADPGPP, the Salmonella typhimurium LT2 ADPGPP is also activated by FBP and is inhibited by AMP (Leung and Preiss 1987b). This substantial conservation in amino acid sequences suggests that introduction of mutations which cause enhancement of ADPGPP activity in E. coli into S. typhimurium ADPGPP gene should have a similar effect on the ADPGPP enzyme of this organism.

A number of other bacterial ADPGPPs have been characterized by their response to activators and inhibitors (for review see: Preiss 1973). Like the Escherichia coli ADPGPP, the ADPGPPs from Aerobacter aerogenes, Aerobacter cloacae, Citrobacter freundii, and Escherichia aurescens are all activated by FBP and are inhibited by AMP. The ADPGPP from Aeromonas formicans is activated by fructose 6-phosphate or FBP, and is inhibited by ADP. The Serratia marcescens ADPGPP, however, was not activated by any metabolite tested. The photosynthetic Rhodospirillum rubrum has an ADPGPP that is activated by pyruvate, and none of the tested compounds, including P_i, AMP or ADP, inhibit the enzyme. Several algal ADPGPPs have been studied and found to have regulation similar to that found for plant ADPGPPs. Obviously, the ADPGPPs from many organisms could be used to increase starch biosynthesis and accumulation in plants.

Plant ADPglucose Pyrophosphorylases

At one time, UDPglucose was thought to be the primary substrate for starch biosynthesis in plants. However, ADPglucose was found to be a better substrate for starch biosynthesis than UDPglucose (Recondo, 1961). This same report states that ADPGPP activity was found in plant material.

A spinach leaf ADPGPP was partially purified and was shown to be activated by 3-phosphoglycerate (3-PGA) and inhibited by inorganic phosphate (Ghosh et al., 1966). The report by Ghosh et al. suggested that the biosynthesis of leaf starch was regulated by the level of ADPglucose. The activator, 3-PGA, is the primary product of CO₂ fixation in photosynthesis. During photosynthesis, the levels of 3-PGA would increase, causing activation of ADPGPP. At the same time, the levels of P₁ would decrease because of photophosphorylation, decreasing the inhibition of ADPGPP. These changes would cause an increase in ADPglucose production and

starch biosynthesis. During darkness, 3-PGA levels would decrease, and P_i levels would increase, decreasing the activity of ADPGPP and, therefore, decreasing biosynthesis of ADPglucose and starch.

The ADPGPP from spinach leaves was later purified to homogeneity and shown to contain subunits of 51 and 54 kDa (Morell, 1987). Based on antibodies raised against the two subunits, the 51 kDa protein has homology with both the maize endosperm and potato tuber ADPGPPs, but not with the spinach leaf 54 kDa protein.

The sequence of a rice endosperm ADPGPP subunit cDNA clone has been reported (Anderson, 1989a). The clone encoded a protein of 483 amino acids. A comparison of the rice endosperm ADPGPP and the *E. coli* ADPGPP protein sequences shows about 30% identity. Also in 1989, an almost full-length cDNA clone for the wheat endosperm ADPGPP was sequenced (Olive, 1989). The wheat endosperm ADPGPP clone has about 24% identity with the *E. coli* ADPGPP protein sequence, while the wheat and the rice clones have 40% identity at the protein level.

The maize endosperm ADPGPP has been purified and shown to have catalytic and regulatory properties similar to those of other plant ADPGPPs (Plaxton, 1987). The native molecular weight of the maize endosperm enzyme is 230,000, and it is composed of four subunits of similar size.

The native molecular weight of the potato tuber ADPGPP is reported to be 200,000, with a subunit size of 50,000 (Sowokinos, 1982). Activity of the tuber ADPGPP is almost completely dependent on 3-PGA, and as with other plant ADPGPPs, is inhibited by P_L. The potato tuber and leaf ADPGPPs have been demonstrated to be similar in physical, catalytic, and allosteric properties (Anderson, 1989b).

Production of Altered ADPglucose Pyrophosphorylase Genes by Mutagenesis

15

25

r = 3

Those skilled in the art will recognize that while not absolutely required, enhanced results are to be obtained by using ADPGPP genes which are subject to reduced allosteric regulation ("deregulated") and more preferably not subject to significant levels of allosteric regulation ("unregulated") while maintaining adequate catalytic activity. In cells which do not normally accumulate significant quantities of starch, expression of a "regulated" enzyme may be sufficient. In starch-accumulating cells and tissues, a "deregulated" or "unregulated" enzyme is the preferred system. The structural coding sequence for a bacterial or plant ADPGPP enzyme can be mutagenized in *E. coli* or another suitable host and screened for increased glycogen production as described for the *glg*C16 gene of *E. coli*. It should be realized that use of a gene encoding an ADPGPP enzyme which is only subject to modulators (activators/inhibitors) which are present in the selected plant at levels which do not significantly inhibit the catalytic activity will not require enzyme (gene) modification. These "unregulated" or "deregulated" ADPGPP genes can then be inserted into plants as described herein to obtain transgenic plants having increased starch content.

For example, any ADPGPP gene can be cloned into the $E.\ coli$ B strain AC70R1-504 (Leung, 1986). This strain has a defective ADPGPP gene, and is derepressed five- to seven-fold for the other glycogen biosynthetic enzymes. The ADPGPP gene/ cDNA's can be put on a plasmid behind the $E.\ coli\ glg$ C promoter or any other bacterial promoter. This construct can then be subjected to either site-directed or random mutagenesis. After mutagenesis, the cells would be plated on rich medium with 1% glucose. After the colonies have developed, the plates would be flooded with iodine solution (0.2 w/v% I_2 , 0.4 w/v% KI in H_2 O, Creuzet-Sigal, 1972). By comparison with an identical plate containing non-mutated $E.\ coli$, colonies that are producing more glycogen can be detected by their darker staining.

Since the mutagenesis procedure could have created promoter mutations, any putative ADPGPP mutant from the first round screening will have to have the ADPGPP gene recloned into non-mutated vector and the resulting plasmid will be screened in the same manner. The mutants that make it though both rounds of screening will then have their ADPGPP activities assayed with and without the activators and inhibitors. By comparing the mutated ADPGPP's responses to activators and inhibitors to the non-mutated enzymes, the new mutant can be characterized.

The report by Plaxton and Preiss in 1987 demonstrates that the maize endosperm ADPGPP has regulatory properties similar to those of the other plant ADPGPPs. They show that earlier reports claiming that the maize endosperm ADPGPP had enhanced activity in the absence of activator (3-PGA) and decreased sensitivity to the inhibitor (P_i), was due to proteolytic cleavage of the enzyme during the isolation procedure. By altering an ADPGPP gene to produce an enzyme analogous to the proteolytically cleaved maize endosperm ADPGPP, decreased allosteric regulation will be achieved. The recent report concerning the apparent novelty of the regulation of the barley endosperm ADPGPP and its apparent insensitivity to 3-PGA is not generally accepted since the report shows that the enzyme preparation was rapidly degraded and may suffer from the same problems identified for the corn endosperm preparation.

To assay a liquid culture of *E. coli* for ADPGPP activity, the cells are spun down in a centrifuge and resuspended in about 2 ml of extraction buffer (0.05 M glycylglycine pH 7.0, 5.0 mM DTE, 1.0 mM EDTA) per

gram of cell paste. The cells are lysed by passing twice through a French Press. The cell extracts are spun in a microcentrifuge for 5 minutes, and the supernatants are desalted by passing through a G-50 spin column.

The enzyme assay for the synthesis of ADPglucose is a modification of a published procedure (Haugen, 1976). Each 100 µl assay contains: 10 µmole Hepes pH 7.7, 50 µg BSA, 0.05µmole of [¹4C]glucose-1-phosphate, 0.15 µmole ATP, 0.5 µmole MgCl₂, 0.1 µg of crystalline yeast inorganic pyrophosphatase, 1 mM ammonium molybdate, enzyme, activators or inhibitors as desired, and water. The assay is incubated at 37°C for 10 minutes, and is stopped by boiling for 60 seconds. The assay is spun down in a microcentrifuge, and 40 µl of the supernatant is injected onto a Synchrom Synchropak AX-100 anion exchange HPLC column. The sample is eluted with 65 mM KPi pH 5.5. Unreacted [¹⁴C]glucose-1-phosphate elutes around 7-8 minutes, and [¹⁴C]ADPglucose elutes at approximately 13 minutes. Enzyme activity is determined by the amount of radioactivity found in the ADPglucose peak.

The plant ADPGPP enzyme activity is tightly regulated, by both positive (3-phosphoglycerate; 3-PGA) and negative effectors (inorganic phosphate; P₁) (Ghosh and Preiss, 1986; Copeland and Preiss 1981; Sowokinos and Preiss 1982; Morell et al., 1987; Plaxton and Preiss, 1987; Preiss, 1988;) and the ratio of 3-PGA:P₁ plays a prominent role in regulating starch biosynthesis by modulating the ADPGPP activity (Kaiser and Bassham, 1979). The plant ADPGPP enzymes are heterotetramers of two large/"shrunken" and two small/"Brittle" subunits (Morell et al., 1987; Lin et al., 1988a, 1988b; Krishnan et al., 1986; Okita et al., 1990) and there is strong evidence to suggest that the heterotetramer is the most active form of ADPGPP. Support for this suggestion comes from the isolation of plant "starchless" mutants that are deficient in either of the subunits (Dickinson and Preiss, 1969; Lin et al., 1988a, 1988b) and from the characterization of an "ADPGPP" homotetramer of small subunits that was found to have only low enzyme activity (Lin et al., 1988b). In addition, proposed effector interaction residues have been identified for both subunits (Morell et al., 1988). Direct evidence for the active form of the enzyme and further support of the kinetic data reported for the purified potato enzyme comes from the expression of potato ADPGPP activity in *E. coli* and the comparison of the kinetic properties of this material and that from potato tubers (Iglesias et al., 1993).

20

35

40

50

55

Unregulated enzyme variants of the plant ADPGPP are identified and characterized in a manner similar to that which resulted in the isolation of the *E. coli glgC16* and related mutants. A number of plant ADPGPP cDNA's, or portions of such cDNA's, for both the large and small subunits, have been cloned from both monocots and dicots (Anderson et al., 1989a; Olive et al., 1989; Muller et al., 1990) The proteins encoded by the plant cDNA's, as well as those described from bacteria, show a high degree of conservation (Bhave et al., 1990). In particular, a highly conserved region, also containing some of the residues implicated in enzyme function and effector interactions, has been identified (Morell et al., 1988; Smith-White and Preiss, 1992). Clones of the potato tuber ADPGPP subunit genes have been isolated. These include a complete small subunit gene, assembled by addition of sequences from the first exon of the genomic clone with a nearly full-length cDNA clone of the same gene, and an almost complete gene for the large subunit. The nucleotide sequence (SEQ ID NO:7) and the amino acid sequence (SEQ ID NO:8) of the assembled small subunit gene are given below. The nucleotide sequence presented here differs from the gene originally isolated in the following ways: a *Bglll+Ncol* site was introduced at the ATG codon to facilitate the cloning of the gene into *E. coli* and plant expression vectors by site directed mutagenesis utilizing the oligonucleotide primer sequence

GTTGATAACAAGATCTGTTAACCATGGCGGCTTCC (SEQ ID NO:11).

45 A SacI site was introduced at the stop codon utilizing the oligonucleotide primer sequence

CCAGTTAAAACGGAGCTCATCAGATGATGATTC (SEQ ID NO:12).

The Sacl site serves as a 3' cloning site. An internal Bg/III site was removed utilizing the oligonucleotide primer sequence

GTGTGAGAACATAAATCTTGGATATGTTAC (SEQ ID NO:13).

This assembled gene was expressed in E. coli under the control of the recA promoter in a *PrecA-gene10*L expression cassette (Wong et al., 1988) to produce measurable levels of the protein. An initiating methionine codon is placed by site-directed mutagenesis utilizing the oligonucleotide primer sequence

GAATTCACAGGGCCATGGCTCTAGACCC (SEQ ID NO:14)

to express the mature gene.

į:

5

15

20

25

35

50

The nucleotide sequence (SEQ ID NO:9) and the amino acid sequence (SEQ ID NO:10) of the almost complete large subunit gene are given below. An initiating methionine codon has been placed at the mature Nterminus by site-directed mutagenesis utilizing the oligonucleotide primer sequence

AAGATCAAACCTGCCATGGCTTACTCTGTGATCACTACTG (SEQ ID NO:15).

The purpose of the initiating methionine is to facilitate the expression of this large subunit gene in *E. coli*. A *Hind*III site is located 103 bp after the stop codon and serves as the 3' cloning site. The complete large ADPGPP gene is isolated by the 5' RACE procedure (Rapid Amplification of cDNA Ends; Frohman, 1990; Loh, 1989). The oligonucleotide primers for this procedure are as follows:

- 2) GGGAATTCAAGCTTGGATCCCGGG (SEQ ID NO:17); and
- 3) CCTCTAGACAGTCGATCAGGAGCAGATGTACG (SEQ ID NO:18).

The first two are the equivalent to the ANpolyC and the AN primers of Loh et al. (1989), respectively, and the third is the reverse complement to a sequence in the large ADPGPP gene, located after the Pst I site in SEQ ID NO:9. The PCR 5' sequence products are cloned as EcoRI/Hind\(\text{III}\)/BamHI-Pst fragments and are easily assembled with the existing gene portion.

The weakly regulated enzyme mutants of ADPGPP are identified by initially scoring colonies from a mutagenized E. coli culture that show elevated glycogen synthesis, by iodine staining of 24-48 hour colonies on Luria-Agar plates containing glucose at 1%, and then by characterizing the responses of the ADPGPP enzymes from these isolates to the positive and negative effectors of this activity (Cattaneo et al., 1969; Preiss et al., 1971). A similar approach is applied to the isolation of such variants of the plant ADPGPP enzymes. Given an expression system for each of the subunit genes, mutagenesis of each gene is carried out separately, by any of a variety of known means, both chemical or physical (Miller, 1972) on cultures containing the gene or on purified DNA. Another approach is to use a PCR procedure (Ehrlich, 1989) on the complete gene in the presence of inhibiting Mn++ ions, a condition that leads to a high rate of misincorporation of nucleotides. A PCR procedure may also be used with primers adjacent to just a specific region of the gene, and this mutagenized fragment then recloned into the non-mutagenized gene segments. A random synthetic oligo-nucleotide procedure may also be used to generate a highly mutagenized short region of the gene by mixing of nucleotides in the synthesis reaction to result in misincorporation at all positions in this region. This small region is flanked by restriction sites that are used to reinsert this region into the remainder of the gene. The resultant cultures or transformants are screened by the standard iodine method for those exhibiting glycogen levels higher than controls. Preferably this screening is carried out in an E. coli strain deficient only in ADPGPP activity and is phenotypically glycogen-minus and that is complemented to glycogen-plus by glgC. The E. coli strain should retain those other activities required for glycogen production. Both genes are expressed together in the same E. coli host by placing the genes on compatible plasmids with different selectable marker genes, and these plasmids also have similar copy numbers in the bacterial host to maximize heterotetramer formation. An example of such an expression system is the combination of pMON17335 and pMON17336 (Iglesias et al., 1993). The use of separate plasmids enables the screening of a mutagenized population of one gene alone, or in conjunction with the second gene following transformation into a competent host expressing the other gene, and the screening of two mutagenized populations following the combining of these in the same host. Following re-isolation of the plasmid DNA from colonies with increased iodine staining, the ADPGPP coding sequences are recloned into expression vectors, the phenotype verified, and the ADPGPP activity and its response to the effector molecules determined. Improved variants will display increased V_{max} , reduced inhibition by the negative effector (P_i), or reduced dependence upon activator (3-PGA) for maximal activity. The assay for such improved characteristics involves the determination of ADPGPP activity in the presence of P_I at 0.045 mM (I_{0.5} = 0.045 mM) or in the presence of 3-PGA at 0.075 mM ($A_{0.5}$ = 0.075 mM). The useful variants will display <40% inhibition at this concentration of P_I or display >50% activity at this concentration of 3-PGA. Following the isolation of improved variants and the determination of the subunit or subunits responsible, the mutation(s) are

determined by nucleotide sequencing. The mutation is confirmed by recreating this change by site-directed mutagenesis and reassay of ADPGPP activity in the presence of activator and inhibitor. This mutation is then transferred to the equivalent complete ADPGPP cDNA gene, by recloning the region containing the change from the altered bacterial expression form to the plant form containing the amyloplast targeting sequence, or by site-directed mutagenesis of the complete native ADPGPP plant gene.

Chloroplast/Amyloplast Directed Expression of ADPGPP Activity

Starch biosynthesis is known to take place in plant chloroplasts and amyloplasts (herein collectively referred to as plastids. In the plants that have been studied, the ADPGPP is localized to these plastids. Many chloroplast-localized proteins are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP) that is removed during the import steps. Examples of such chloroplast proteins include the small subunit of Ribulose-1,5-bisphosphate carboxylase (ssRUBISCO, SSU), 5-enolpyruvateshikimate-3-phosphate synthase (EPSPS), Ferredoxin, Ferredoxin oxidoreductase, the Lightharvesting-complex protein I and protein II, and Thioredoxin F. It has been demonstrated *in vivo* and *in vitro* that non-chloroplast proteins may be targeted to the chloroplast by use of protein fusions with a CTP and that a CTP sequence is sufficient to target a protein to the chloroplast. Likewise, amyloplast-localized proteins are expressed from nuclear genes as precursors and are targeted to the amyloplast by an amyloplast transit peptide (ATP).

In the exemplary embodiments, a specialized CTP, derived from the ssRUBISCO 1A gene from *Arabidopsis thaliana* (SSU 1A) (Timko, 1988) was used. This CTP (CTP1) was constructed by a combination of site-directed mutageneses. The CTP1 nucleotide sequence (SEQ ID NO:5) and the corresponding amino acid sequence (SEQ ID NO:6) are given below. CTP1 is made up of the SSU 1A CTP (amino acid 1-55), the first 23 amino acids of the mature SSU 1A protein (56-78), a serine residue (amino acid 79), a new segment that repeats amino acids 50 to 56 from the CTP and the first two from the mature protein (amino acids 80-87), and an alanine and methionine residue (amino acid 88 and 89). An *Ncol* restriction site is located at the 3' end (spans the Met codon) to facilitate the construction of precise fusions to the 5' of an ADPGPP gene. At a later stage, a *Bgl*II site was introduced upstream of the N-terminus of the SSU 1A sequences to facilitate the introduction of the fusions into plant transformation vectors. A fusion was assembled between the structural DNA encoding the CTP1 CTP and the *glgC16* gene from *E. coli* to produce a complete structural DNA sequence encoding the plastid transit peptide/ADPGPP fusion polypeptide.

Those skilled in the art will recognize that if either a single plant ADPGPP cDNA encoding shrunken and/or brittle subunits or both plant ADPGPP cDNA's encoding shrunken and brittle subunits is utilized in the practice of the present invention, the endogenous CTP or ATP could most easily and preferably be used. Hence, for purposes of the present invention the term "plastid transit peptides" should be interpreted to include both chloroplast transit peptides and amyloplast transit peptides. Those skilled in the art will also recognize that various other chimeric constructs can be made which utilize the functionality of a particular plastid transit peptide to import the contiguous ADPGPP enzyme into the plant cell chloroplast/amyloplast depending on the promoter tissue specificity.

Polyadenylation Signal

10

15

25

30

35

40

45

50

55

 $(\dots,$

The 3' non-translated region of the chimeric plant gene contains a polyadenylation signal which functions in plants to cause the addition of polyadenylate nucleotides to the 3' end of the RNA. Examples of suitable 3' regions are (1) the 3' transcribed, non-translated regions containing the polyadenylated signal of *Agrobacterium* the tumor-inducing (Ti) plasmid genes, such as the nopaline synthase (NOS) gene, and (2) plant genes like the soybean storage protein genes and the small subunit of the ribulose-1,5-bisphosphate carboxylase (ssRUBISCO) gene. An example of a preferred 3' region is that from the NOS gene, described in greater detail in the examples below.

Plant Transformation/Regeneration

Plants which can be made to have decreased oil content by practice of the present invention include, but are not limited to, corn, wheat, rice, pea, peanut, canola/oilseed rape, cotton, barley, sorghum, soybean, sunflower, almond, cashew, pecan, and walnut.

A double-stranded DNA molecule of the present invention containing the functional plant ADPGPP gene can be inserted into the genome of a plant by any suitable method. Suitable plant transformation vectors include those derived from a Ti plasmid of *Agrobacterium tumefaciens*, as well as those disclosed, e.g., by Herrera-

Estrella (1983), Bevan (1983), Klee (1985) and EPO publication 120,516 (Schilperoort et al.). In addition to plant transformation vectors derived from the Ti or root-inducing (Ri) plasmids of *Agrobacterium*, alternative methods can be used to insert the DNA constructs of this invention into plant cells. Such methods may involve, for example, the use of liposomes, electroporation, chemicals that increase free DNA uptake, free DNA delivery via microprojectile bombardment, and transformation using viruses or pollen.

Examples of vectors designed for the expression of *glg*C16 and other ADPGPP genes in monocots and dicots are reported by Kishore in WO 91/19806. These are used to transform the desired plant cells by the appropriate method.

When adequate numbers of cells (or protoplasts) containing the ADPGPP gene or cDNA are obtained, the cells (or protoplasts) are regenerated into whole plants. Choice of methodology for the regeneration step is not critical, with suitable protocols being available for hosts from Leguminosae (alfalfa, soybean, clover, etc.), Cruciferae (cabbage, radish, canola/rapeseed, etc.), Gramineae (wheat, barley, rice, corn, etc.), various floral crops, such as sunflower, and nut-bearing trees, such as almonds, cashews, walnuts, and pecans. See, e.g., Ammirato, 1984; Shimamoto, 1989; Fromm, 1990; Vasil, 1990; Hayashimoto, 1989; and Datta, 1990.

The following examples are provided to better elucidate the practice of the present invention and should not be interpreted in any way to limit the scope of the present invention. Those skilled in the art will recognize that various modifications, truncations, etc. can be made to the methods and genes described herein while not departing from the spirit and scope of the present invention.

20 Example 1

10

To express the *E. coli glg*C16 gene in plant cells, and to target the enzyme to the plastids, the gene needed to be fused to a DNA encoding the plastid-targeting transit peptide (hereinafter referred to as the CTP/ADPGPP gene), and to the proper plant regulatory regions. Detailed examples of how to accomplish this may be found in WO 91/19806.

The CTP-glgC16 gene fusion was placed behind the soybean β-conglycinin 7S storage promoter described above. This cassette was cloned into pMON17227, a TI plasmid vector disclosed and described by Barry et al. in WO 92/04449 (1991), to form the vector pMON17315. This vector was used to transform canola by *Agrobacterium* transformation followed by glyphosate selection. Regenerated plants were analyzed and the presence of the enzyme in most transformants was confirmed by Western blot analysis. Seeds from four transformed lines have been obtained and analyzed for oil, starch, and protein content and moisture. The starch content was found to have increased to 8.2-18.2 percent (based on fresh weight) as compared to 0.9-1.6 percent in control lines (transformed with pMON47227 only). The oil content was found to have been decreased from 26.7-31.6 percent in the controls to 13.0-15.5 percent in the transformed lines. Protein content and moisture were not significantly changed. In some lines seed weight was increased which may indicate that total yield may also be increased.

REFERENCES

35

(-1)

40 Ammirato, P.V., et al. Handbook of Plant Cell Culture - Crop Species. Macmillan Publ. Co. (1984).

Anderson, et al. (1989a) J. Biol. Chem. 264 (21):12238-12242.

Anderson, et al. (1989b) First International Symposium on the Molecular Biology of the Potato, Bar Harbor, Maine.

Baecker, et al. (1983) J. Biol. Chem. 258 (8):5084-5087.

45 Baerson, et al. (1993) Plant Mol. Biol. 22:255-267.

Bevan, M. (1984) Nucleic Acids Res. 12 (22): 8711-8721.

Bhave, et al. (1990) Plant Cell 2: 581-588.

Bray, et al. (1987) Planta 172: 364-370.

Cattaneo, et al. (1969) Biochem. Biophys. Res. Commun. 34(5):694-701.

50 Chen et al. (1986) PNAS - US 83:8560-64.

Copeland, L. and J. Preiss (1981) Plant Physiol. 68: 996-1001.

Creuzet-Sigal, et al. (1972) "Genetic Analysis and Biochemical Characterization of Mutants Impairing Glycogen Metabolism in Escherichia coli K12." In Biochemistry of the Glycosidic Linkage; An Integrated View. Ed. by R. Piras and H. G. Pontis. 647-680. New York: Academic Press Inc.

55 Datta, et al. (1990) Biotechnology 8:736-740.

Dickinson, D. B. and J. Preiss (1969) Plant Physiol. 44:1058-1062.

Doyle, et al. (1986) J. Biol. Chem. 261(20):9228-38.

Ehrlich, H. A. (1989) Ed. PCR Technology - Principles and Applications for DNA Amplification. Stockton Press,

New York.

Frohman, et al. (1988) PNAS USA 85: 8998-9002.

Fromm et al. (1990) Bio/Technology 8: 833-839.

Gentner, et al. (1967) Bioch. Biophys. Res. Commun. 27(3):417-423.

5 Gentner, et al. (1968) J. Biol. Chem. 243(22):5882-5891.

Ghosh, et al. (1966) J. Biol. Chem. 241(19):4491-4504.

Haugen, et al. (1976) J. Biol. Chem. 251(24): 7880-7885.

Hayashimoto, et al. (1990) Plant Physiol. 93:857-863.

Herrera-Estrella, L., et al. (1983) Nature 303:209.

10 Iglesias, et al., (1993) J. Biol. Chem. 268:1081-1086.

Kaiser, et al. (1979) Plant Physiol. 63: 109-113.

Klee, H.J., et al. (1985) Bio/Technology 3:637-42.

Kumar, et al. (1989) J. Biol. Chem. 264(18): 10464-10471.

Latil-Damotte, et al. (1977) Mol. Gen. Genet. 150:325-329.

15 Leung, et al. (1986) J. Bact. 167(1):82-88.

Leung, et al. (1987a) J. Bact. 169 (9):4355-4360.

Leung, et al. (1987b) J. Bact. 169 (9):4349-4354.

Lin, et al. (1988a) Plant Physiol. 86:1131-1135.

Lin, et al. (1988b) Plant Physiol. 88:1175-1181.

20 Loh, et al. (1989) Science 243:217-220.

Meyer et al. (1993) Arch. Biochemistry & Biophys. 302;64-71.

Miller, J. H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Morell, et al. (1988) J. Biol. Chem. 263:633-637.

25 Morell, et al. (1987) Plant Physiol. 85:182-187.

Muller, et al. (1990) Mol. Gen. Genet. 224:136-146.

Murphy, et al. (1989) Plant Physiol. 135:63-69.

Okita, et al. (1981) J. Biol. Chem. 256(13):6944-6952.

Okita, et al. (1990) Plant Physiol. 93: 785-790.

30 Olive, et al. (1989) Plant Mol. Biol. 12:525-538.

Pedersen, et al. (1982) Cell 29:1015-1026.

Plaxton, W. C., and J. Preiss. (1987) Plant Physiol. 83:105-112.

Preiss, Jack. (1973) Adenosine Diphosphoryl Glucose Pyrophosphorylase. In Group Transfer. Edited by P. D. Boyer. 73-119. New York: Academic Press.

Preiss, Jack. (1988) Biosynthesis of Starch and Its Regulation. In The Biochemistry of Plants. Edited by J.

Preiss. 184-249. Orlando, FL: Academic Press. Preiss, et al. (1966) Biochem. 5(6):1833-1845.

Preiss, et al. (1971) Biochem. Biophys. Res. Commun. 42: 180-186.

Quattrocchio, et al. (1990) Plant Mol. Biol. 15:81-93.

40 Recondo, et al. (1961) Bioch. Biophys. Res. Commun. 6(2):85-88.

Shimamoto, K. et al. (1989) Nature 338:274-276.

Smith-White, B. and J. Preiss (1992) J. Mol. Evol. 34:449-464.

Sowokinos, et al. (1982) Plant Physiol. 69:1459-1466.

Tierney, et al. (1987) Planta 172:356-363.

Timko, et al. (1988) "Genetic Engineering of Nuclear Encoded Components of the Photosynthetic Apparatus in Arabidopsis." In Impact of Chemistry on Biotechnology-A Multidisciplinary Discussion. Ed. by Phillips et al. 279-295. Washington DC: ACS Books.

Vasil, et al. (1990) Bio/Technology 8:429-434.

Wong, et al. (1988) Gene 68: 193-203.

50 Zheng, et al. (1993) The Plant Journal 4(2):357-366.

SEQUENCE LISTING

(1) GENERAL INFORMATION: (i) APPLICANT: (A) NAME: Monsanto Company (B) STREET: 800 North Lindbergh Boulevard (C) CITY: St. Louis 10 (D) STATE: Missouri (E) COUNTRY: United States of America (F) POSTAL CODE (ZIP): 63167 (G) TELEPHONE: (314)694-3131 (H) TELEPAX: (314)694-5435 15 (ii) TITLE OF INVENTION: Modified Oil Content in Seeds (iii) NUMBER OF SEQUENCES: 18 20 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO) 25 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/090523 (B) FILING DATE: 12-JUL-1993 (vi) PRIOR APPLICATION DATA: 30 (A) APPLICATION NUMBER: US 07/709663 (B) FILING DATE: 07-JUN-1991 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/539763 35 (B) FILING DATE: 18-JUN-1990 (2) INFORMATION FOR SEQ ID NO:1: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1296 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: DNA (genomic) (x) PUBLICATION INFORMATION: (H) DOCUMENT NUMBER: EP 0536293 A1 50 (I) FILING DATE: 07-JUN-1991 (J) PUBLICATION DATE: 14-APR-1993 (K) RELEVANT RESIDUES IN SEQ ID NO: 1: FROM 1 TO 1296

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1293

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

10		. Val				Lys					Met					CTG Leu	48
15					Val					Ala					Thr	CGC Arg	96
				Leu					Ala			GCC Ala		His		GGC Gly	144
20			Phe					Phe				AAC Asn 60					192
25												CAG Gln					240
30												AAT Asn					288
												ATG Met					336
35												AAC Asn					384
40												GCG Ala 140					432
45												CAC His					480
	GTA Val	CGT Arg	TGT Cys	ACC Thr	GTT Val 165	GTT Val	TGT Cys	ATG Met	CCA Pro	GTA Val 170	CCG Pro	ATT Ile	GAA Glu	GAA Glu	GCC Ala 175	TCC Ser	528
50	GCA Ala	TTT Phe	GGC Gly	GTT Val 180	ATG Met	GCG Ala	GTT Val	GAT Asp	GAG Glu 185	AAC Asn	GAT Asp	AAA Lys	ACT Thr	ATC Ile 190	GAA Glu	TTC Phe	576
55	GTG Val	GAA Glu	AAA Lys	CCT Pro	GCT Ala	AAC Asn	CCG Pro	CCG Pro	TCA Ser	ATG Met	CCG Pro	AAC Asn	GAT Asp	CCG Pro	AGC Ser	AAA Lys	624

(})

·...)

205 195 200 TCT CTG GCG AGT ATG GGT ATC TAC GTC TTT GAC GCC GAC TAT CTG TAT Ser Leu Ala Ser Met Gly Ile Tyr Val Phe Asp Ala Asp Tyr Leu Tyr 220 GAA CTG CTG GAA GAA GAC GAT CGC GAT GAG AAC TCC AGC CAC GAC TTT 720 Glu Leu Leu Glu Glu Asp Asp Arg Asp Glu Asn Ser Ser His Asp Phe 230 10 768 GGC AAA GAT TTG ATT CCC AAG ATC ACC GAA GCC GGT CTG GCC TAT GCG Gly Lys Asp Leu Ile Pro Lys Ile Thr Glu Ala Gly Leu Ala Tyr Ala 250 245 CAC CCG TTC CCG CTC TCT TGC GTA CAA TCC GAC CCG GAT GCC GAG CCG 816 His Pro Phe Pro Leu Ser Cys Val Gln Ser Asp Pro Asp Ala Glu Pro 260 265 TAC TGG CGC GAT GTG GGT ACG CTG GAA GCT TAC TGG AAA GCG AAC CTC 864 20 Tyr Trp Arg Asp Val Gly Thr Leu Glu Ala Tyr Trp Lys Ala Asn Leu GAT CTG GCC TCT GTG GTG CCG GAG CTG GAT ATG TAC GAT CGC AAT TGG 912 Asp Leu Ala Ser Val Val Pro Glu Leu Asp Met Tyr Asp Arg Asn Trp 295 290 25 CCA ATT CGC ACC TAC AAT GAA TCA TTA CCG CCA GCG AAA TTC GTG CAG 960 Pro Ile Arg Thr Tyr Asn Glu Ser Leu Pro Pro Ala Lys Phe Val Gln 315 305 310 GAT CGC TCC GGT AGC CAC GGG ATG ACC CTT AAC TCA CTG GTT TCC GGC Asp Arg Ser Gly Ser His Gly Met Thr Leu Asn Ser Leu Val Ser Gly 325 330 GGT TGT GTG ATC TCC GGT TCG GTG GTG CAG TCC GTT CTG TTC TCG 35 Gly Cys Val Ile Ser Gly Ser Val Val Val Gln Ser Val Leu Phe Ser 340 345 CGC GTT CGC GTG AAT TCA TTC TGC AAC ATT GAT TCC GCC GTA TTG TTA Arg Val Arg Val Asn Ser Phe Cys Asn Ile Asp Ser Ala Val Leu Leu 40 CCG GAA GTA TGG GTA GGT CGC TCG TGC CGT CTG CGC CGC TGC GTC ATC Pro Glu Val Trp Val Gly Arg Ser Cys Arg Leu Arg Arg Cys Val Ile 375 380 GAT CGT GGT TGT GTT ATT CCG GAA GGC ATG GTG ATT GGT GAA AAC GCA Asp Arg Ala Cys Val Ile Pro Glu Gly Met Val Ile Gly Glu Asn Ala 390 GAG GAA GAT GCA CGT CGT TTC TAT CGT TCA GAA GAA GGC ATC GTG CTG 50 Glu Glu Asp Ala Arg Arg Phe Tyr Arg Ser Glu Glu Gly Ile Val Leu 405 410 GTA ACG CGC GAA ATG CTA CGG AAG TTA GGG CAT AAA CAG GAG CGA TAA 1296 Val Thr Arg Glu Met Leu Arg Lys Leu Gly His Lys Gln Glu Arg 420 425

		/2		i Pony	/ N M T A	50				_							
		(2	;) II	FORP	ATIC	N FO	R SE	Q ID	NO:	2:							
,	5			(i)	(ENGT YPE:	H: 4 ami	31 a no a			ds.					
				(ii)	MOL	ECUL	E TY	PB:	prot	ein							
	10																
	15	٠	((H) (I) (J)	PUBL:	MENT NG D ICAT	NUM ATE: ION 1	BBR: 07- Date	ON: BP (JUN-: : 14. S IN	1991 -APR	-199	3	2: F	ROM	1 T O	431
				(xi)	SEQ	UBNCI	B DES	SCRII	PTIO	N: SI	3Q II	O NO	:2:				
	20	Met 1	va:	l Se	r Leu	Glu S	Lys	a Asr	n Ası	Hie	Let 10		: Le	ı Ala	a Ar	g Gl: 1!	
		Pro	Lev	ı Lys	Ser 20	Val	Ala	a Leu	ı Ile	25		a Gly	, Gl	Arq	Gl ₃ 30		Arg
	25	Leu	Lys	35 З	Leu	Thr	naA '	Lys	Arg 40	Ala	Lys	Pro	Ala	Va]		Phe	Gly
	30	Gly	Lys 50	Phe	Arg	Ile	Ile	Asp 55	Phe	Ala	Leu	Ser	Asn 60		Ile	Asn	Ser
i		Gly 65	Ile	Arg	Arg	Met	Gly 70	Val	Ile	Thr	Gln	Tyr 75		Ser	His	Thr	Leu 80
	35	Val	Gln	His	Ile	Gln 85	Arg	Gly	Trp	Ser	Phe 90		Asn	Glu	Glu	Met 95	Asn
		Glu	Phe	Val	Авр 100	Leu	Leu	Pro	Ala	Gln 105	Gln	Arg	Met	Lys	Gly 110	Glu	Asn
	40	Trp	Tyr	Arg 115	Gly	Thr	Ala	Авр	Ala 120	Val	Thr	Gln	Asn	Leu 125	Asp	Ile	Ile
		Arg	Arg 130	Tyr	Lys	Ala	Glu	Tyr 135	Val	Val	Ile	Leu	Ala 140	Gly _.	Asp	His	Ile
•	45	Tyr 145	Lys	Gln	Asp	Tyr	Ser 150	Arg _.	Met	Leu	Ile	Авр [.] 155	His	Val	Glu	Ľув	Gly 160

14

Val Arg Cys Thr Val Val Cys Met Pro Val Pro Ile Glu Glu Ala Ser

Ala Phe Gly Val Met Ala Val Asp Glu Asn Asp Lys Thr Ile Glu Phe 185

Val Glu Lys Pro Ala Asn Pro Pro Ser Met Pro Asn Asp Pro Ser Lys

165

50

			195					200)				205			
5	Sei	210	a Ala	Ser	Met	Gly	1le 215	_	Val	Phe	Авр	Ala 220	_	Tyr	Leu	Ty
	Glu 225		Leu	Glu	Glu	Авр 230		Arg	двр	Glu	Авп 235	Ser	Ser	His	Asp	Pho 240
10	Gly	, Lye	Авр	Leu	Ile 245		Lys	Ile	Thr	Glu 250		Gly	Leu	Ala	Tyr 255	Ala
	His	Pro	Phe	Pro 260		Ser	Сув	Val	Gln 265	Ser	Авр	Pro	yab	Ala 270	Glu	Pro
15	Tyr	Trp	Arg 275	Asp	Val	Gly	Thr	Leu 280		Ala	Tyr	Trp	Lys 285		Asn	Let
20	Авр	290	Ala	Ser	Val	Val	Pro 295		Leu	Авр	Met	Tyr 300	Авр	Arg	Asn	Tr
	Pro 305		Arg	Thr	Tyr	Авп 310	Glu	Ser	Leu	Pro	Pro 315	Ala	Lys	Phe	Val	Glr 320
25	Asp	Arg	Ser	Gly	Ser 325	His	Gly	Met	Thr	Leu 330	Asn	Ser	Leu	Val	Ser 335	Gly
	Gly	Сув	Val	11e 340	Ser	Gly	Ser	Val	Val 345	Val	Gln	Ser	Val	Leu 350	Phe	Ser
30	Arg	Val	Arg 355	Val	Asn	Ser	Phe	Сув 360	Asn	Ile	Asp	Ser	Ala 365	Val	Leu	Leu
	Pro	Glu 370	Val	Trp	Val	Gly	Arg 375	Ser	Сув	Arg	Leu	Arg 380	Arg	Сув	Val	Ile
35	Asp 385		Ala	Сув	Val	Ile 390	Pro	Glu	Gly	Met	Val 395	Ile	Gly	Glu	Asn	Ala 400
40	Glu	Glu	Авр	Ala	Arg 405	Arg	Phe	Tyr	Arg	Ser 410	Glu	Glu	Gly	Ile	Val 415	Leu
	Val	Thr	Arg	Glu 420	Met	Leu	Arg	Lys	Leu 425	Gly	His	Lys	Gln	Glu 430	Arg	
45	(2)	INFO	ORMAT	ION	FOR	SEQ	ID N	10:3:								
50		(i)	(B) LE) TY) ST	ngth Pe: Rand	: 12 nucl EDNE	96 b eic SS:	ase acid doub	pair	8						
		(ii)	(D			GY:			omic	,						

55

(ix) PEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..1293

J																	
		()	((H) I	OCUM PILIN	ient Ig da	nume Te:	ATIO BER: 07-J DATE:	BP (991							
10													: FF	OM 1	TO	1296	
		(xi	.) SE	QUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	10:3:	:					
	ATG	GTI	` AGI	TTA	GAG	AAG	AAC	GAT	CAC	TTA	ATG	TTG	GCG	CGC	CAG	CTG	48
15			. Ser	Leu			Asn	Asp	His			Leu	Ala	Arg	Gln	Leu	
	1	•			5					10)				15	ı	
																CGC	96
20	Pro	Leu	Lys	Ser 20		Ala	Leu	Ile	Leu 25		Gly	Gly	Arg	Gly 30		Arg	
	CTG	AAG	GAT	TTA	ACC	AAT	AAG	CGA	GCA	AAA	CCG	GCC	GTA	CAC	TTC	GGC	144
	Leu	Lys	Asp 35		Thr	Asn	Lys	Arg 40		Lys	Pro	Ala	Val 45		Phe	Gly	
25																	
																TCC	192
	GIY	20 rys		Arg	11e	Ile	85 55	Phe	Ala	Leu	Ser	Asn 60		Ile	Asn	Ser	
30	GGG	ATC	CGT	CGT	ATG	GGC	GTG	ATC	ACC	CAG	TAC	CAG	TCC	CAC	ACT	CTG	240
	Gly 65		Arg	Arg	Met	Gly 70		Ile	Thr	Gln	Tyr 75		Ser	His	Thr	Leu 80	
	GTG	CAG	CAC	ATT	CAG	œc	GGC	TGG	TCA	TTC	TTC	AAT	GAA	GAA	ATG	AAC	288
35	Val	Gln	His	Ile	Gln 85	Arg	Gly	Trp	Ser	Phe 90	Phe	Asn	Glu	Glu	Met 95	Asn	
	GAG	TTT	GTC	GAT	CTG	CTG	CCA	GCA	CAG	CAG	AGA	ATG	AAA	GGG	GAA	AAC	336
	Glu	Phe	Val		Leu	Leu	Pro	Ala		Gln	Arg	Met	Lys	Gly	Glu	Asn	
40				100					105					110			
	TGG	TAT	CGC	GGC	ACC	GCA	GAT	GCG	GTC	ACC	CAA	AAC	CTC	GAC	ATT	ATC	384
	IIp	TYE	115	GIY	Thr	ATG	Авр	Ala 120	Val	Thr	Gln	Asn	Leu 125	Asp	Ile	Ile	
45	CGT	CGT	TAT	AAA	GCG	GAA	TAC	GTG	GTG	ATC	CTG	GCG	GGC	GAC	CAT	ATC	432
	Arg	Arg 130	Tyr	Lys	Ala	Glu	Tyr 135	Val	Val	Ile	Leu	Ala 140	Gly	Asp	His	Ile	
	TAC	AAG	CAA	GAC	TAC	TCG	CGT	ATG	CTT	ATC	GAT	CAC	GTC	GAA	AAA	GGT	480
50	Tyr 145	Lys	Gln	Asp	Tyr	Ser 150	Arg	Met	Leu	Ile	Asp 155	His	Val	Glu	Lys	Gly 160	
	GTA	CGT	TGT	ACC	GTT	GTT	TGT	ATG	CCA	GTA	CCG	ATT	GAA	GAA	GCC	TCC	528
	Val	Arg	Сув	Thr	Val 165	Val	Сув	Met	Pro	Val 170	Pro	Ile	Glu	Glu	Ala 175	Ser	
55					-										1,3		

					L Met					Ası					Glu	TTC Phe	576
5				B Pro					Ser					Pro		Lys	624
10			ı Ala					Tyr					Asp			TAT Tyr	672
15	GAA Glu 225	Let	CTC	GAA Glu	GAA Glu	GAC Asp 230	Asp	CGC Arg	GAT Asp	GAG Glu	AAC Asn 235	Ser	AGC Ser	CAC	GAC Asp	TTT Phe 240	720
20						Pro					Ala					GCG Ala	768
	CAC His	Pro	TTC Phe	Pro 260	Leu	Ser	TGC Cys	GTA Val	CAA Gln 265	TCC Ser	GAC Asp	CCG Pro	GAT Asp	GCC Ala 270	Glu	CCG Pro	816
25				Asp								TGG Trp					864
30	GAT Asp	CTG Leu 290	Ala	TCT	GTG Val	GTG Val	CCG Pro 295	GAG Glu	CTG Leu	GAT Asp	ATG Met	TAC Tyr 300	GAT Asp	CGC Arg	AAT Asn	TGG Trp	912
35	CCA Pro 305	ATT	CGC Arg	ACC Thr	TAC Tyr	AAT Asn 310	GAA Glu	TCA Ser	TTA Leu	CCG Pro	CCA Pro 315	GCG Ala	AAA Lys	TTC Phe	GTG Val	CAG Gln 320	960
	GAT Asp	CGC Arg	TCC Ser	GGT Gly	AGC Ser 325	CAC His	GGG Gly	ATG Met	ACC Thr	CTT Leu 330	AAC Asn	TCA Ser	CTG Leu	GTT Val	TCC Ser 335	GAC Asp	1008
40												TCC Ser					1056
45	CGC Arg	GTT Val	CGC Arg 355	GTG Val	TAA naA	TCA Ser	TTC Phe	TGC Cys 360	AAC Asn	ATT I'le	GAT Asp	TCC Ser	GCC Ala 365	GTA Val	TTG Leu	TTA Leu	1104
50	CCG Pro	GAA Glu 370	GTA Val	TGG Trp	GTA Val	GGT Gly	CGC Arg 375	TCG Ser	TGC Cys	CGT Arg	CTG Leu	CGC Arg 380	CGC Arg	TGC Cys	GTC Val	ATC Ile	1152
	GAT Asp 385	CGT Arg	GCT Ala	TGT Cys	GTT Val	ATT Ile 390	CCG Pro	GAA Glu	GGC Gly	ATG Met	GTG Val 395	ATT Ile	GGT Gly	GAA Glu	AAC Asn	GCA Ala 400	1200
55	GAG	GAA	CAT	GCA	CCT	CCT	ጥጥር		ccm	max	C	CNN					

1296

	Gl	u Gl	u As	p Al	a Ar		g Ph	е Ту	r Ar	g Se 41		u Gl	u Gl	y Il	e Va 41	l Leu 5
5	GT Va	A AC 1 Th	G CG	C GA g Gl: 420	u Mei	G CT	A CGG	G AA	3 TT: 8 Le: 42	u Gl	G CA	Г AA В Ly	A CA	G GA n Gl: 43	u Ar	A TAA 9
10	(2) IN	FORM	atioi	N FOI	R SE	Q ID	NO:	4:							
			(i)	(E	A) LI B) Ti	NGTI	H: 43	31 ar	nino cid		is					
15			(ii)		O) TO											
20		(:	(UBLIC (H) [(I) F (J) F (K) F	OCUM PUBLI	ENT G DA CATI	NUME ATE: ON D	BER: 07-j Date:	EP (UN-1 14-	991 APR-	-1993	}	l: PF	ROM 1	. то	431
25		((xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q II	NO:	4:				
	Met 1		l Ser	Leu	Glu 5		Asn	Asp	His	Leu 10		Leu	Ala	Arg	Gln 15	Leu
30	Pro	Leu	ı Lys	Ser 20		Ala	Leu	Ile	Leu 25		Gly	Gly	Arg	Gly 30		Arg
	Leu	Lys	35	Leu	Thr	Asn	Lys	Arg 40		Lys	Pro	Ala	Val 45		Phe	Gly
35	Gly	Lys 50	Phe	Arg	Ile	Ile	Asp 55		Ala	Leu	Ser	A sn 60		Ile	Asn	Ser
40	Gly 65	Ile	Arg	Arg	Met	Gly 70	Val	Ile	Thr	Gln	Tyr 75	Gln	Ser	His	Thr	Leu 80
	Val	Gln	His	Ile	Gln 85	Arg	Gly	Trp	Ser	Phe 90	Phe	Asn	Glu	Glu	Met 95	Asn
45	Glu	Phe	Val	Авр 100	Leu	Leu	Pro	Ala	Gln 105	Gln	Arg	Met	Lys	Gly 110	Glu	Asn
	Trp	Tyr	Arg 115	Gly	Thr	Ala	Asp	Ala 120	Val	Thr	Gln	Asn	Leu 125	Авр	Ile	Ile
50	Arg	Arg 130	Tyr	Lys	Ala	Glu	Tyr 135	Val	Val	Ile	Leu	Ala 140	Gly	Ąsp	His	Ile
	Tyr 145	Lув	Gln	qaA	Tyr	Ser 150	Arg	Met	Leu	Ile	Авр 155	His	Val	Glu	Lys	Gly 160
55	Val	Arg	Сув	Thr	Val	Val	Сув	Met	Pro	Val	Pro	Ile	Glu	Glu	Ala	Ser

. . .)

 $\mathcal{E}(s)$

					165	5				170)				175	5
5	Ala	a Pho	e Gly	7 Val		: Ala	a Val	y yel	Glu 185		n Aej	, Lyı	3 Thi	11e	e Glu	ı Ph
	۷a۱	l Glu	195		Ala	Aer	Pro	200		: Met	Pro	о Авг	As ₁		Ser	. Ly
10	Ser	210		s Ser	Met	Gly	7 Ile 215		Val	Phe	э Хөг	220		Туг	. Leu	ту
	Glu 225		l Lev	Glu	Glu	Авр 230		Arg) Asp	Glu	Asr. 235		Ser	His	Asp	Ph 24
15	Gly	Lys	Asp	Leu	Ile 245		Lys	Ile	Thr	Glu 250		Gly	Leu	Ala	Tyr 255	
20	His	Pro	Phe	Pro 260		Ser	Сув	Val	Gln 265		Asp	Pro	Asp	Ala 270	Glu	Pr
	Tyr	Trp	Arg 275		Val	Gly	Thr	Leu 280		Ala	Tyr	Trp	Lys 285		Asn	Le
25	Авр	Leu 290		Ser	Val	Val	Pro 295	Gl u	Leu	Авр	Met	Tyr 300		Arg	Asn	Tr
	Pro 305		Arg	Thr	Tyr	Asn 310	Glu	Ser	Leu	Pro	Pro 315	Ala	Lys	Phe	Val	Gl: 320
30	Asp	Arg	Ser	Gly	Ser 325	His	Gly	Met	Thr	Leu 330	Asn	Ser	Leu	Val	Ser 335	yei
	Gly	Сув	Val	Ile 340	Ser	Gly	Ser	Val	Val 345	Val	Gln	Ser	Val	Leu 350	Phe	Ser
35	Arg	Val	Arg 355	Val	Asn	Ser	Phe	Сув 360	Asn	Ile	Авр	Ser	Ala 365	Val	Leu	Leu
40	Pro	Glu 370	Val	Trp	Val	Gly	Arg 375	Ser	Сув	Arg	Leu	Arg 380	Arg	Сув	Val	Ile
	Авр 385	Arg	Ala	Сув	Val	Ile 390	Pro	Glu	Gly	Met	Val 395	Ile	Gly	Glu	Asn	Ala 400
45	Glu	Glu	Asp		Arg 405	Arg	Phe	Tyr	Arg	Ser 410	Glu	Glu	Gly	Ile	Val 415	Leu
	Val	Thr	Arg	Glu 420	Met	Leu	Arg	Lys	Leu 425	Gly	His	Lys	Gln	Glu 430	Arg	
50	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:5:								
		161	CPA	HENC	P 0"	3 TO 3 ~	~ ~~	cm								

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 355 base pairs(B) TYPE: nucleic acid

55

(C) STRANDEDNESS: double

				(-)				·cui									
5		(i.	i) M	OLEC	JLB 1	TYPE:	: DNA	4 (ge	enomi	ic)							
10		(i)		BATUI (A) i (B) I	iame/				1								
		()	(JBLI((H) I (I) I	OCUM	ient Ig da	nume Te:	ER: 07-J	EP C	991							
15				(K) F									: FR	OM 1	. TO	355	
				QUEN													
20				TCAT AAGA				CA A	TG G	ст т	сс т	CT A	TG C	TC T	CT T		T 60
25	,							М	et A 1	la S	er S	er M	et L 5	eu S	er S	er	
	GCT Ala	ACT Thr 10	Met	GTT Val	GCC Ala	TCT Ser	CCG Pro 15	GCT Ala	CAG Gln	GCC Ala	ACT Thr	ATG Met 20	GTC Val	GCT Ala	CCT Pro	TTC	159
30	AAC Asn 25	Gly	CTT	AAG Lys	TCC Ser	TCC Ser 30	GCT Ala	GCC Ala	TTC Phe	CCA Pro	GCC Ala 35	ACC Thr	CGC Arg	AAG Lys	GCT Ala	AAC Asn 40	207
35	AAC Asn	GAC Asp	ATT	ACT Thr	TCC Ser 45	ATC Ile	ACA Thr	AGC Ser	AAC Asn	GGC Gly 50	GGA Gly	AGA Arg	GTT Val	AAC Asn	TGC Cys 55	ATG Met	255
40	CAG Gln	GTG Val	TGG Trp	CCT Pro 60	CCG Pro	ATT Ile	GGA Gly	AAG Lys	AAG Lys 65	AAG Lys	TTT Phe	GAG Glu	ACT Thr	CTC Leu 70	TCT Ser	TAC Tyr	303
	CTT Leu	CCT Pro	GAC Asp 75	CTT Leu	ACC Thr	GAT Asp	TCC Ser	GGT Gly 80	GGT Gly	CGC Arg	GTC Val	AAC Asn	TGC Cys 85	ATG Met	CAG Gln	GCC Ala	351
45	ATG Met	G															355
50	(2)	INFO	RMAT	noi?	FOR	SEQ	ID N	0:6:									
		(i) S	(B)	LEN TYP	GTH: E: a	89 mino	amin aci	o ac			•					
i5				(D)	TOP	OLOG	Y: 1	inea	r							•	

1

50

55

		(ii)	MOLB	CULB	TYP	E: p	rote.	in								
5		•	(1 (1 (1	I) F: J) P! K) Ri	DCUM LLING SLEV	BNT G DA' CATIO	NUMB TE: (ON D RESI	BR: 1 07-J ATB: DUES	EP 0! UN-19 14-1 IN 8	991 APR-I SEQ	1993 ID N	D: 6:	: PRO	OM 1	то	39	
10		(2	xi)	SEQUI	ENCE	DES	CRIP	TION	: SEÇ) ID	NO:	6:					
	Met 1	Ala	Ser	Ser	Met 5	Leu	Ser	Ser	Ala	Thr 10	Met	Val	Ala	Ser	Pro 15	Ala	
15	Gln	Ala	Thr	Met 20	Val	Ala	Pro	Phe	Asn 25	Gly	Leu	Lys	Ser	Ser 30	Ala	Ala	
	Phe	Pro	Ala 35	Thr	Arg	Lys	Ala	Asn 40	Asn	Авр	Ile	Thr	Ser 45	Ile	Thr	Ser	
20	Asn	Gly 50	Gly	Arg	Val	Asn	Сув 55	Met	Gln	Val	Trp	Pro 60	Pro	Ile	Gly	Lys	
25	Lys 65	Lys	Phe	Glu	Thr	Leu 70	Ser	туг	Leu	Pro	А вр 75	Leu	Thr	Авр	Ser	Gly 80	
	Gly	Arg	Val	Asn	Сув 85	Met	Gln	Ala	Met								
30	(2)	INFO				_											
		(1)	(I	3) TY	NGTI PB:	i: 19	575 k leic	ase acid	pair 1	8							
35				C) S1 O) TC					ore								
		(ii)	моі	ECUI	E TY	PE:	cDN#	١									
40		(ix)	(Z	ATURE A) NA B) LC	ME/K			.565									
45		(x)	(E (I (J) FI) PU	CUME LING BLIC	NT N DAT	IUMBE E: C On Da	R: E 17-JU TE:	i: :P 05 in-19 14-a in s	91 PR-1	993		FRO	M 1	то 1	575	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CC ATG GCG GCT TCC ATT GGA GCC TTA AAA TCT TCA CCT TCT TCT AAC

Met Ala Ala Ser Ile Gly Ala Leu Lys Ser Ser Pro Ser Ser Asn

1 5 10 15

`)

	AA:	T TG n Cy	C AT	C AA e Ab	T GA n Gl 2	u Ar	A AG g Ar	AA A g As	T GA	T TCT p Ser 25	Th	A CG1 r Arg	r GCT g Ala	GT.	l Se	C AGO	95
5																_	
	AG) Arq	A AA' g As:	T CTO	C TC. u Se. 3	r Ph	T TC e Se:	G TC	T TC r Se	T CA! r Hi:	B Leu	GC Al	C GGA a Gly	Asp	Ly:	B Le	G ATG	143
10	CC1 Pro	CTI Val	A TCC l Sei 50	Se	C TT	A CG!	T TCC g Sei	C CAI	n Gly	A GTC y Val	CGI Arq	A TTC g Phe	AAT Asn 60	Va.	G AG L Ar	A AGA g Arg	191
15	AG1 Ser	Pro 65	Met	ATT	GTC Val	TCC Ser	Pro	Lys	G GCT B Ala	r GTT Val	TC1 Ser	GAT Asp 75	TCG Ser	CAC Glr	AA AB	T TCA n Ser	239
20	80	The	сув	Leu	ı Asp	Pro 85	Asp) Ala	a Ser	Arg	Ser 90	Val	Leu	Gly	110	r ATT 9 Ile 95	287
,	Leu	GLY	Gly	GIÀ	100	Gly	Thr	Arg	, Leu	Tyr 105	Pro	Leu	Thr	Lув	Ly:		335
25	AIA	гåз	Pro	115	Val	Pro	Leu	Gly	120	Asn	Tyr	Arg	Leu	Ile 125	Asp	ATT Ile	383
30	PIO	val	130	ASN	Сув	Leu	Asn	Ser 135	Asn	Ile	Ser	AAG Lys	11e 140	Tyr	Val	Leu	431
35	ACA Thr	CAA Gln 145	TTC Phe	AAC Asn	TCT Ser	GCC Ala	TCT Ser 150	CTG Leu	AAT Asn	CGC Arg	CAC His	CTT Leu 155	TCA Ser	CGA Arg	GCA Ala	TAT Tyr	479
	160	ser	ABN	Met	GIÀ	G1y 165	Tyr	Lys	Asn	Glu	Gly 170	TTT Phe	Val (Glu	Val	Leu 175	527
40	nia .	ura	GIN	GIN	180	Pro	Glu	Asn	Pro	Asp '	Trp	TTC (Gln (31y	Thr 190	Ala	575
45	nsp /	nia	vai .	Arg 195	GIN	Tyr	Leu	Trp	Leu 200	Phe (Glu		iis 1	thr 205	Val	Leu	623
50	GAA 1	. yr .	210	iie .	Leu .	Ala (Gly :	Asp 215	His 1	Leu 1	lyr i	Arg M	let A 20	sp '	Tyr	Glu	671
	AAG 1 Lys F	Phe 1 225	ATT (CAA (Sln)	GCC (118	AGA (Arg (230	GAA /	ACA (GAT G	la /	GAT A Asp I 235	TT A le T	cc (GTT Val	GCC Ala	719
55	GCA C	TG (CCA A	TG (SAC (GAG A	AAG (GT (GCC P	CT G	CA 1	TC G	GT C	TC I	ATC:	AAC	767

	A1 24	a Le O	u Pr	o Me	t As _l	9 Glv 245		B Ar	g Ala	a Th	r Al 25	_	e Gl	y Le	u Me	t Lys 255	
5	AT Il	T GA e Ab	C GA p Gl	A GA u Gl	A GG/ u Gly 260	Arc	C AT	r att	f GAZ e Glu	A TT Ph 26	e Al	A GAG	G AAI 1 Lys	A CO	G CA D G1: 27	A GGA n Gly O	815
10	GA:	G CA	A TTO	G CA u Gl: 27	n Ala	ATC Met	AAI Lys	A GTC	GA1 L As ₁ 280	Th	r AC	C ATT	TT)	4 GG: 1 Gl; 28	y Le	T GAT	863
15	GA(C AA	G AG	g Ala	r AAA a Lys	GAA Glu	ATC Met	295	Phe	: AT	r GCG B Ala	C AG1 a Sei	T ATC Met	: Gl	T AT	A TAT	911
	GT(30!	e Sei	C AAI	A GAC B Asp	GTG Val	Met 310	Leu	AAC Asn	CTI Let	A CT	CG1 Arg 315	Asp	AAC Lys	F TTO	C CCT	959
20	GG0 Gly 320	Ala	C AA1 ABr	GAT Asp	TTT Phe	GGT Gly 325	Ser	GAA Glu	GTT Val	ATI Ile	r ccr	Gly	GCA Ala	ACT Thr	TCA Ser	CTT Leu 335	1007
25	GGG Gly	ATC Met	AGA Arg	GTG Val	CAA Gln 340	GCT Ala	TAT Tyr	TTA Leu	TAT	GAT Asp 345	Gly	TAC Tyr	TGG	GAA Glu	GAT Asp 350	ATT	1055
20	GGT Gly	ACC	ATT	GAA Glu 355	Ala	TTC Phe	TAC Tyr	AAT Asn	GCC Ala 360	AAT Asn	TTG Leu	GGC Gly	ATT	ACA Thr 365	Lys	AAG Lys	1103
30	CCG Pro	GTG Val	CCA Pro 370	yab	TTT Phe	AGC Ser	TTT Phe	TAC Tyr 375	GAC Asp	CGA Arg	TCA Ser	GCC Ala	CCA Pro 380	ATC Ile	TAC Tyr	ACC Thr	1151
35	CAA Gln	CCT Pro 385	Arg	TAT Tyr	CTA Leu	CCA Pro	CCA Pro 390	TCA Ser	AAA Lys	ATG Met	CTT Leu	GAT Asp 395	GCT Ala	GAT Asp	GTC Val	ACA Thr	1199
40	GAT Asp 400	AGT Ser	GTC Val	ATT Ile	GGT Gly	GAA Glu 405	GGT Gly	тст Сув	GTG Val	ATC Ile	AAG Lys 410	AAC Aen	TGT Cys	AAG Lys	ATT Ile	CAT His 415	1247
45	CAT His	TCC Ser	GTG Val	GTT Val	GGA Gly 420	CTC Leu	AGA Arg	TCA Ser	TGC Cys	ATA Ile 425	TCA Ser	GAG Glu	GGA Gly	GCA Ala	ATT Ile 430	ATA Ile	1295
	GAA Glu	GAC Asp	TCA Ser	CTT Leu 435	TTG Leu	ATG Met	GGG Gly	GCA Ala	GAT Asp 440	TAC Tyr	TAT Tyr	GAG Glu	Thr	GAT Asp 445	GCT Ala	GAC Asp	1343
50	AGG Arg	AAG Lys	TTG Leu 450	CTG Leu	GCT (GCA . Ala :	Lys	GGC Gly 455	AGT Ser	GTC Val	CCA Pro	Ile	GGC Gly 460	ATC Ile	GGC Gly	AAG Lyв	1391
55	TAA nea	TGT Cys	CAC His	ATT Ile	AAA i	AGA (GCC .	ATT . Ile	ATC	GAC Asp	AAG Lys	AAT Asn	GCC Ala	CGT Ara	ATA Ile	GGG G) v	1439

465 470 475 GAC AAT GTG AAG ATC ATT AAC AAA GAC AAC GTT CAA GAA GCG GCT AGG 1487 Asp Asn Val Lys Ile Ile Asn Lys Asp Asn Val Gln Glu Ala Ala Arg 485 490 GAA ACA GAT GGA TAC TTC ATC AAG AGT GGG ATT GTC ACC GTC ATC AAG Glu Thr Asp Gly Tyr Phe Ile Lys Ser Gly Ile Val Thr Val Ile Lys 505 10 GAT GCT TTG ATT CCA AGT GGA ATC ATC TGATGAGCTC 1575 Asp Ala Leu Ile Pro Ser Gly Ile Ile Ile 515 15 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 521 amino acids 20 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 25 (x) PUBLICATION INFORMATION: (H) DOCUMENT NUMBER: EP 0536293 A1 (I) FILING DATE: 07-JUN-1991 (J) PUBLICATION DATE: 14-APR-1993 (K) RELEVANT RESIDUES IN SEQ ID NO: 8: FROM 1 TO 521 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Met Ala Ala Ser Ile Gly Ala Leu Lys Ser Ser Pro Ser Ser Asn Asn 10 35 Cys Ile Asn Glu Arg Arg Asn Asp Ser Thr Arg Ala Val Ser Ser Arg Asn Leu Ser Phe Ser Ser Ser His Leu Ala Gly Asp Lys Leu Met Pro 40 40 Val Ser Ser Leu Arg Ser Gln Gly Val Arg Phe Asn Val Arg Arg Ser Pro Met Ile Val Ser Pro Lys Ala Val Ser Asp Ser Gln Asn Ser Gln 45 , 70 Thr Cys Leu Asp Pro Asp Ala Ser Arg Ser Val Leu Gly Ile Ile Leu 50 Gly Gly Gly Ala Gly Thr Arg Leu Tyr Pro Leu Thr Lys Lys Arg Ala 105 Lys Pro Ala Val Pro Leu Gly Ala Asn Tyr Arg Leu Ile Asp Ile Pro 120 125

55

. :)

		Val	Ser 130	Asn	Сув	Leu	Asn	Ser 135	Aen	Ile	Ser	Lys	11e 140	Tyr	Val	Leu	Thr
5		Gln 145	Phe	Asn	Ser	Ala	Ser 150	Leu	Asn	Arg	His	Leu 155	Ser	Arg	Ala	Tyr	Ala 160
		Ser	Asn	Met	Gly	Gly 165	Tyr	Lys	Asn	Glu	Gly 170	Phe	Val	Glu	Val	Leu 175	Ala
10	,	Ala	Gln	Gln	Ser 180	Pro	Glu	Asn	Pro	Авр 185	Trp	Phe	Gln	Gly	Thr 190	Ala	Авр
15	5	Ala	Val	Arg 195	Gln	Tyr	Leu	Trp	Leu 200	Phe	Glu	Glu	His	Thr 205	Val	Leu	Glu
		Tyr	Leu 210	Ile	Leu	Ala	Gly	Asp 215	His	Leu	Tyr	Arg	Met 220	Asp	Tyr	Glu	Lys
20	0	Phe 225	Ile	Gln	Ala	His	Arg 230	Glu	Thr	Asp	Ala	Авр 235	Ile	Thr	Val	Ala	Ala 240
		Leu	Pro	Met	Asp	Glu 245	Lys	Arg	Ala	Thr	Ala 250	Phe	Gly	Leu	Met	Lys 255	Ile
2	5	Авр	Glu	Glu	Gly 260	Arg	Ile	Ile	Glu	Phe 265	Ala	Glu	Lys	Pro	Gln 270	Gly	Glu
30	n	Gln	Leu	Gln 275	Ala	Met	Lys	Val	Asp 280	Thr	Thr	Ile	Leu	Gly 285	Leu	Asp	Asp
		Lys	Arg 290	Ala	Lув	Glu	Met	Pro 295	Phe	Ile	Ala	Ser	Met 300	Gly	Ile	Tyr	Val
3	5	11e 305	Ser	Lys	Asp	Val	Met 310	Leu	Asn	Leu	Leu	Arg 315	Авр	ГÀа	Phe	Pro	Gly 320
		Ala	Asn	Asp	Phe	Gly 325	Ser	Glu	Val	Ile	Pro 330	Gly	Ala	Thr	Ser	Leu 335	Gly
4	0	Met	Arg	Val	Gln 340	Ala	Tyr	Leu	Tyr	Авр 345	Gly	Tyr	Trp	Glu	Авр 350	Ile	Gly
		Thr	Ile	Glu 355	Ala	Phe	_				Leu	_		Thr 365	-	ГÀв	Pro
4	5		Pro 370					375		-			380		•		
5	0	385	Arg				390					395					400
			Val			405					410					415	
58	5	Ser	Val	Val	Gly 420	Leu	Arg	Ser	Сув	Ile 425	Ser	Glu	Gly	Ala	Ile 430	Ile	Glu

(A)

	Asp	Ser	Leu 435	Leu	Met	Gly	Ala	Авр 440	-	Tyr	Glu	Thr	Авр 445	Ala	Asp	Arg	
5	Lys	Leu 450		Ala	Ala	Lys	Gly 455	Ser	Val	Pro	Ile	Gly 460	Ile	Gly	Lys	Asn	
40	Сув 465		Ile	Lys	Arg	Ala 470	Ile	Ile	Хар	Lув	Asn 475	Ala	Arg	Ile	Gly	Авр 480	
10	Asn	Val	Lys	Ile	Ile 485		Lys	Авр	Asn	Val 490	Gln	Glu	Ala	Ala	Arg 495	Glu	
15	Thr	Asp	Gly	Tyr 500		Ile	Lys	Ser	Gly 505	Ile	Val	Thr	Val	11e 510	Lys	Asp	
	Ala	Leu	Ile 515	Pro	Ser	Gly	Ile	Ile 520	Ile								
20	(2)							NO:9									
25		, – ,	() () ()	A) L: B) T: C) S:	engti Ype : Irani	H: 19	519 Leic Ess:	base acid doub	pai:	rs							
25		(ii)	, моі	•													
30		(ix)	•	A) N2	AME/I	KEY: ION:		1410									
35		(x)	(H (J	i) D(i) Fi i) P(CUME LING JBLIC	ENT N DAT CATIO	IUMBI CE: (ON D <i>i</i>	ATION ER: E D7-JU ATE: DUES	EP 05 JN-19 14-8	91 APR-1	.993		FRO	OM 1	то 1	.519	
40		(xi)	SEÇ	UENC	CE DE	ESCRI	PTIC	ON: S	EQ I	D NC	:9:						
	DAC.	220	እምር		COTT	ccc	com	GCT	ma.c.	morn	CTC.	N TO CO	3.0m	200	<i>~</i> ~ ~ ~	.	40
	Asn							Ala									. 48 .
45	1				5					10					15		
·								GAT Asp									96
50								GCA Ala 40									144
55								AGT Ser									192

60 55 50 GTT GGA GGA TGC TAC AGG CTA ATA GAC ATC CCA ATG AGC AAC TGT ATC Val Gly Gly Cys Tyr Arg Leu Ile Asp Ile Pro Met Ser Asn Cys Ile 5 70 65 AAC AGT GCT ATT AAC AAG ATT TTT GTG CTG ACA CAG TAC AAT TCT GCT 288 Asn Ser Ala Ile Asn Lys Ile Phe Val Leu Thr Gln Tyr Asn Ser Ala 85 10 CCC CTG AAT CGT CAC ATT GCT CGA ACA TAT TTT GGC AAT GGT GTG AGC 336 Pro Leu Asn Arg His Ile Ala Arg Thr Tyr Phe Gly Asn Gly Val Ser 100 TTT GGA GAT GGA TTT GTC GAG GTA CTA GCT GCA ACT CAG ACA CCC GGG 15 Phe Gly Asp Gly Phe Val Glu Val Leu Ala Ala Thr Gln Thr Pro Gly 115 GAA GCA GGA AAA AAA TGG TTT CAA GGA ACA GCA GAT GCT GTT AGA AAA Glu Ala Gly Lys Lys Trp Phe Gln Gly Thr Ala Asp Ala Val Arg Lys 20 130 135 140 TTT ATA TGG GTT TTT GAG GAC GCT AAG AAC AAG AAT ATT GAA AAT ATC 480 Phe Ile Trp Val Phe Glu Asp Ala Lys Asn Lys Asn Ile Glu Asn Ile 150 145 25 GTT GTA CTA TCT GGG GAT CAT CTT TAT AGG ATG GAT TAT ATG GAG TTG Val Val Leu Ser Gly Asp His Leu Tyr Arg Met Asp Tyr Met Glu Leu 165 170 GTG CAG AAC CAT ATT GAC AGG AAT GCT GAT ATT ACT CTT TCA TGT GCA 30 Val Gln Asn His Ile Asp Arg Asn Ala Asp Ile Thr Leu Ser Cys Ala 180 CCA GCT GAG GAC AGC CGA GCA TCA GAT TTT GGG CTG GTC AAG ATT GAC Pro Ala Glu Asp Ser Arg Ala Ser Asp Phe Gly Leu Val Lys Ile Asp 35 195 200 AGC AGA GGC AGA GTA GTC CAG TTT GCT GAA AAA CCA AAA GGT TTT GAT Ser Arg Gly Arg Val Val Gln Phe Ala Glu Lys Pro Lys Gly Phe Asp 215 210 40 CTT AAA GCA ATG CAA GTA GAT ACT ACT CTT GTT GGA TTA TCT CCA CAA 720 Leu Lys Ala Met Gln Val Asp Thr Thr Leu Val Gly Leu Ser Pro Gln 225 230 GAT GCG AAG AAA TCC CCC TAT ATT GCT TCA ATG GGA GTT TAT GTA TTC 768 Asp Ala Lys Lys Ser Pro Tyr Ile Ala Ser Met Gly Val Tyr Val Phe AAG ACA GAT GTA TTG TTG AAG CTC TTG AAA TGG AGC TAT CCC ACT TCT Lys Thr Asp Val Leu Leu Lys Leu Leu Lys Trp Ser Tyr Pro Thr Ser 50 260 265 AAT GAT TTT GGC TCT GAA ATT ATA CCA GCA GCT ATT GAC GAT TAC AAT Asn Asp Phe Gly Ser Glu Ile Ile Pro Ala Ala Ile Asp Asp Tyr Asn 280

55

		CAA Gln 290															912
5		TCG Ser										_	_		_		960
10		CAA Gln															1008
15		CCA Pro												_	_	_	1056
		CAT His									_	_	_		_	_	1104
20		GAA Glu 370															1152
25		ATG Met															1200
30		GCA Ala															1248
		AAA Lys															1296
35		ATA Ile															1344
40		TAC Tyr 450	_														1392
45	Arg 465	GAT Asp	Gly	Thr	Val	Ile 470											1440
		GAGA1					rgaa(SAAGO	TC	\AGG(STGA	TCC	ragci	ACG ?	rtca(CCAGT	T 1500 1519
50		INFO					ID N	· •0:10):								1917

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 470 amino acids

55

(B) TYPE: amino acid(D) TOPOLOGY: linear

.

5		((11)	MOLE	CULE	TYP	e: p	rote	in							
10		()	(H) D I) F J) P	OCUM ILIN	ENT G DA CATI	NUME TE: ON D	BR: 07-J ATE:	BP C UN-1	APR-	1993		0: F	rom	1 TO	470
15	Asn 1	Lys				Gly				Q ID Ser 10	Val		Thr	Thr	Glu 15	Asn
20	Asp	Thr	Gln	Thr 20		Phe	Val	Авр	Met 25		Arg	Leu	Glu	Arg 30	_	Arg
	Ala	Asn	Pro 35		Asp	Val	Ala	Ala 40	Val	Ile	Leu	Gly	Gly 45	Gly	Glu	Gly
25	Thr	Lys 50		Phe	Pro	Leu	Thr 55	Ser	Arg	Thr	Ala	Thr 60	Pro	Ala	Val	Pro
	Val 65	Gly	Gly	Сув	Tyr	Arg 70	Leu	Ile	Asp	Ile	Pro 75	Met	Ser	Asn	Сув	Ile 80
30 .	Asn	Ser	Ala	Ile	Asn 85	Lys	Ile	Phe	Val	Leu 90	Thr	Gln	Tyr	Asn	Ser 95	Ala
35	Pro	Leu	Asn	Arg 100	His	Ile	Ala	Arg	Thr 105	Tyr	Phe	Gly	Asn	Gly 110	Val	Ser
33	Phe	Gly	Авр 115	Gly	Phe	Val	Glu	Val 120	Leu	Ala	Ala	Thr	Gln 125	Thr	Pro	Gly
40	Glu	Ala 130	Gly	Lys	Lys	Trp	Phe 135	Gln	Gly	Thr	Ala	Asp 140	Ala	Val	Arg	Lys
	Phe 145	Ile	Trp	Val	Phe	Glu 150	Asp	Ala	Lys	Asn	Lув 155	Asn	Ile	Glu	Asn	Ile 160
45	Val	Val	Leu	Ser	Gly 165	Asp	His	Leu	Tyr	Arg 170	Met	Asp	Tyr	Met	Glu 175	Leu
	Val	Gln	Aen	His 180	Ile	Asp	Arg	Asn	Ala 185	Asp	Ile	Thr	Leu	Ser 190	Сув	Ala
50			195					200		Phe			205			_
55	Ser	Arg 210	Gly	Arg	Val	Val	Gln 215	Phe	Ala	Glu	Lys	Pro 220	Lys	Gly	Phe	Asp

	Leu 225		3 Ala	Met	Gln	Val 230	_	Thr	Thr	Leu	Val 235	-	Leu	Ser	Pro	Gln 240
5	Двр	Ala	Lys	Lya	Ser 245		Tyr	Ile	Ala	Ser 250		Gly	Val	Tyr	Val 255	
	Lys	Thr	е Авр	Val 260		Leu	Lys	Leu	Leu 265		Trp	Ser	Tyr	Pro 270		Ser
10	Asn	Asp	275		Ser	Glu	Ile	11e 280		Ala	Ala	Ile	Авр 285		Tyr	Aen
	Val	Gln 290	Ala	Tyr	Ile	Phe	Lys 295		Tyr	Trp	Glu	300 300		Gly	Thr	Ile
15	Lys 305		Phe	Tyr	Asn	Ala 310	Ser	Leu	Ala	Leu	Thr 315		Glu	Phe	Pro	Glu 320
20	Phe	Gln	Phe	Tyr	Авр 325	Pro	Lys	Thr	Pro	Phe 330		Thr	Ser	Pro	Arg 335	Phe
			Pro	340					345					350		
25	Ser	His	Gly 355	Сув	Phe	Leu	Arg	Авр 360	Сув	Ser	Val	Glu	His 365	Ser	Ile	Val
		370					375					380				
30	385		Gly			390					395					400
35	Leu	Ala	Glu	Gly	Lys 405	Val	Pro	Ile	Gly	Ile 410	Gly	Glu	Asn	Thr	Lys 415	Ile
35	Arg	ГÀв	Сув	Ile 420	Ile	qaA	Lys	Asn	Ala 425	Lys	Ile	Gly	Lys	Asn 430	Val	Ser
40	Ile	Ile	Asn 435	Lys	Asp	Gly	Val	Gln 440	Glu	Ala	Asp	Arg	Pro 445	Glu	Glu	Gly
	Phe	Tyr 450	Ile	Arg	Ser	Gly	Ile 455	Ile	Ile	Ile	Leu	Glu 460	Lys	Ala	Thr	Ile
45	Arg 465	Asp	Gly	Thr		11e 470										
	(2)		RMAT													
50		(i)	(B (C	UENC) LE) TY) ST) TO	ngth Pe: Rand	: 35 nucle EDNE:	bas eic SS:	e pa acid sing	irs							
55		(ii)	MOL	ECUL I	E TY	PE: I	DNA	(syn	thet.	ic)						

5	(*) PUBLICATION INFORMATION: (H) DOCUMENT NUMBER: EP 0536293 A1 (I) FILING DATE: 07-JUN-1991 (J) PUBLICATION DATE: 14-APR-1993 (K) RELEVANT RESIDUES IN SEQ ID NO: 11: FROM 1 TO 35	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: GTTGATAACA AGATCTGTTA ACCATGGCGG CTTCC	35
	(2) INFORMATION FOR SEQ ID NO:12:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	· (ii) MOLECULE TYPE: DNA (synthetic)	
25	(x) PUBLICATION INFORMATION: (H) DOCUMENT NUMBER: EP 0536293 A1 (I) FILING DATE: 07-JUN-1991 (J) PUBLICATION DATE: 14-APR-1993 (K) RELEVANT RESIDUES IN SEQ ID NO: 12: FROM 1 TO 33	•
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	CCAGTTAAAA CGGAGCTCAT CAGATGATGA TTC	33
35	(2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (synthetic)	
45	(*) PUBLICATION INFORMATION: (H) DOCUMENT NUMBER: EP 0536293 A1 (I) FILING DATE: 07-JUN-1991 (J) PUBLICATION DATE: 14-APR-1993 (K) RELEVANT RESIDUES IN SEQ ID NO: 13: FROM 1 TO 30	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	GTGTGAGAAC ATAAATCTTG GATATGTTAC	30
55	(2) INFORMATION FOR SEQ ID NO:14:	

)

	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 28 base pairs	
_		(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
5		(D) TOPOLOGY: linear	
		(b) Torobor. Illied	
	(ii)	MOLECULE TYPE: DNA (synthetic)	
10	(x)	PUBLICATION INFORMATION:	
		(H) DOCUMENT NUMBER: EP 0536293 A1	
		(I) FILING DATE: 07-JUN-1991	
		(J) PUBLICATION DATE: 14-APR-1993	
15		(K) RELEVANT RESIDUES IN SEQ ID NO: 14: FROM 1 TO 28	
		CROURING PROGRESS AND	
	(X1)	SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	GAATTCACA	AG GGCCATGGCT CTAGACCC	28
20	(2) INFOR	MATION FOR SEQ ID NO:15:	
	(-,		
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 40 base pairs	
25		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(b) 1010B0011 IIncul	
	(ii)	MOLECULE TYPE: DNA (synthetic)	
30			
	(x)	PUBLICATION INFORMATION:	
	, ,	(H) DOCUMENT NUMBER: EP 0536293 A1	
		(I) FILING DATE: 07-JUN-1991	
35		(J) PUBLICATION DATE: 14-APR-1993	
		(K) RELEVANT RESIDUES IN SEQ ID NO: 15: FROM 1 TO 40	
	(wt) (CECUIPAGE DECOLIDATON, CHO. ID. NO. 15	
	(XI)	SEQUENCE DESCRIPTION: SEQ ID NO:15:	
40	AAGATCAAA	C CTGCCATGGC TTACTCTGTG ATCACTACTG	40
	(2) INFORM	MATION FOR SEQ ID NO:16:	
	(1) \$	SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs	
45		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(ii) M	MOLECULE TYPE: DNA (synthetic)	
50	(, -		
	/v\ 5	PUBLICATION INFORMATION:	
	(A) F	(H) DOCUMENT NUMBER: EP 0536293 A1	
		(I) FILING DATE: 07-JUN-1991	
55		(J) PUBLICATION DATE: 14-APR-1993	

((3)

(K) RELEVANT RESIDUES IN SEQ ID NO: 16: FROM 1 TO 39

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
5	GGGAATTCAA GCTTGGATCC CGGGCCCCCC CCCCCCCC	39
	(2) INFORMATION FOR SEQ ID NO:17:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (synthetic)	
20	(x) PUBLICATION INFORMATION: (H) DOCUMENT NUMBER: EP 0536293 A1 (I) FILING DATE: 07-JUN-1991 (J) PUBLICATION DATE: 14-APR-1993 (K) RELEVANT RESIDUES IN SEQ ID NO: 17: FROM 1 TO 24	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	GGGAATTCAA GCTTGGATCC CGGG	24
	(2) INFORMATION FOR SEQ ID NO:18:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (synthetic)	
40	(x) PUBLICATION INFORMATION: (H) DOCUMENT NUMBER: EP 0536293 A1 (I) FILING DATE: 07-JUN-1991 (J) PUBLICATION DATE: 14-APR-1993 (K) RELEVANT RESIDUES IN SEQ ID NO: 18: FROM 1 TO 32	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
	CCTCTAGACA GTCGATCAGG AGCAGATGTA CG	32
50		
	Claims	

Claims

55

A method of producing plant seeds having decreased oil content comprising providing increased levels
of ADPglucose pyrophosphorylase within said seeds by transforming said plant using the following steps:

 (a) inserting into the genome of a plant cell a recombinant, double-stranded DNA molecule comprising
 (i) a promoter which functions in plants to cause the production of an RNA sequence in plant seeds,
 (ii) a structural DNA sequence that causes the production of an RNA sequence which encodes a

fusion polypeptide comprising an amino-terminal plastid transit peptide and an ADPglucose pyrophosphorylase enzyme,

- (iii) a 3' non-translated DNA sequence which functions in plant cells to cause transcriptional termination and the addition of polyadenylated nucleotides to the 3' end of the RNA sequence;
- (b) obtaining transformed plant cells; and
- (c) regenerating from the transformed plant cells genetically transformed plants which produce seeds having a decreased oil content;

wherein said ADPglucose pyrophosphorylase enzyme is deregulated.

- 2. The method of claim 1 wherein said enzyme is from E. coli.
 - 3. The method of claim 2 wherein said enzyme is glgC16.
 - 4. The method of claim 3 wherein said plant is selected from the group consisting of wheat, canola, soybean, corn, cotton, sunflower, almond, cashew, pecan, walnut, and peanut.

25

20

15

5

30

35

40

45

50

55

(1-2.n)

EUROPEAN SEARCH REPORT

Application Number EP 94 87 0118

ategory	Citation of document with in of relevant par			Relevant to claim	CLASSIFICATION OF THE APPLICATION (bt.CL6)
A	WD-A-91 19806 (MDNS. * the whole documen	ANTO) 26 December t *	1991	1-4	C12N15/82 C12N15/54
\	WO-A-93 09237 (SAND * the whole documen	DZ) 13 May 1993		1-4	
					TECHNICAL FIELDS SEARCHED (Int.Cl.6)
					C12N
	The present search report has I	ocea drawn up for all claims		-	·
	Place of search	Date of exemistion of th	e mary	<u> </u>	Doubler
	THE HAGUE	27 September	er 199	4 Ma	ddox, A
Y: p	CATEGORY OF CITED DOCUME esticularly relevant if taken alone articularly relevant if combined with an occurrent of the same category chanological lackground.	E : earlie after other D : docu	ir patent di the filing i ment cited	ple underlying to coment, but purelets in the application office reason	oblished on, or

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.