MS-E2148 Dynamic optimization Lecture 4

Contents

- Minimum principle in control problems
- Infinite horizon calculus of variations
- Material Kirk 5

Recap

We derived the necessary conditions to the optimal control problem

Control problem

We derived the necessary conditions for the extremal using the Hamiltonian

$$H(x, u, p, t) = g(x, u, t) + p^{T}[f(x, u, t)]$$

from the costate equations, stationary condition, and state equation

$$\dot{p}^* = -H_X(x^*, u^*, p^*, t)
0 = H_U(x^*, u^*, p^*, t)
\dot{x}^* = H_p(x^*, u^*, p^*, t)$$
(1)

and we need suitable transversality conditions

- Pontryagin 1956
- The necessary conditions were derived for the control problem using calculus of variations by assuming that the control can be varied freely
- ► The control can be varied freely *if and only if u** is strictly within the admissible controls (not on the boundary)
- If the control is constrained, the control extremal can be on the boundary of the admissible controls, and the control u cannot be varied freely
- \Rightarrow Variation of δJ does not vanish!

- Let us choose the candidate $u^* \in U$ within $[t_0, t_f]$ and vary it in its neighbourhood: $u^* \pm \delta u \in U$
- ▶ If u^* is between $[t_1, t_2] \subset [t_0, t_f]$ on the boundary ∂U of admissible controls U, then $u^* \delta u \in U$ but $u^* + \delta u \notin U$ (or vice versa)
- Let us denote $\delta \hat{u} =$ those variations whose negatives $(-\delta \hat{u})$ produce inadmissible control $u^* \delta \hat{u}$; the necessary condition for these variations $\delta \hat{u}$ is,

$$\delta J(u^*, \delta \hat{u}) \geq 0;$$

as the necessary condition for other variations is $\delta J(u^*, \delta u) = 0$.

The necessary conditions for the constrained control problem are

$$\delta J(u^*, \delta u) \ge 0$$
 if $u^* \in \partial U$ for some time interval $\delta J(u^*, \delta u) = 0$ if $u^* \notin \partial U$ never. (2)

▶ The variation of *J* can be represented with the Hamiltonian:

$$\delta J(u^{*}, \delta u) = \left[h_{x}(x^{*}(t_{f}), t_{f}) - p^{*}(t_{f}) \right]^{T} \delta x_{f}
+ \left[H(x^{*}(t_{f}), u^{*}(t_{f}), p^{*}(t_{f}), t_{f}) + h_{t}(x^{*}(t_{f}), t_{f}) \right] \delta t_{f}
+ \int_{t_{0}}^{t_{f}} \left[\left(\dot{p}^{*} + H_{x}(x^{*}, u^{*}, p^{*}, t) \right)^{T} \delta x \right]
+ \left(H_{u}(x^{*}, u^{*}, p^{*}, t) - \dot{x}^{*} \right)^{T} \delta p dt$$

If the state equation is satisfied, the boundary points are fixed and p^* chosen so that the multiplier of δx is zero, then the variation can be simplified as

$$\delta J(u^*, \delta u) = \int_{t_0}^{t_f} H_u(x^*, u^*, p^*, t)^T \delta u(t) dt$$

Since the integrand was the first-order Taylor approximation, we write:

$$\delta J(u^*, \delta u) = \int_{t_0}^{t_f} \left[H(x^*, u^* + \delta u, p^*, t) - H(x^*, u^*, p^*, t) \right] dt$$

(+higher order terms)

Pontryagin minimum principle

From condition (2) we can derive using δJ

$$H(x^*, u^* + \delta u, p^*, t) \ge H(x^*, u^*, p^*, t)$$

Since the control can be on the boundary ∂U at any time, we must require

$$H(x^*, u^*, p^*, t) \le H(x^*, u, p^*, t), \quad \forall t \in [t_0, t_f] \quad \forall u \in U$$
 (3)

- (3) is the Pontryagin minimum principle, and it is necessary condition for u* to minimize the minimum for the Hamiltonian
- Similary, we have the maximum principle if the problem is maximization problem
- Conditions holds only on the optimal trajectory (not like HJB later will hold everywhere)

Necessary conditions

Stationary condition $H_u = 0$ can be replaced using the minimum principle, and the necessary conditions are:

$$\dot{p}^* = -H_X(x^*, u^*, p^*, t)$$
 costate equation $H(x^*, u^*, p^*, t) \leq H(x^*, u, p^*, t)$ minimum principle $\dot{x}^* = H_p(x^*, u^*, p^*, t)$ state equation

and transversality conditions from the past:

$$\begin{split} & \Big[h_X(x^*(t_f), t_f) - p^*(t_f) \Big]^T \delta x_f \\ & + \Big[H(x^*(t_f), u^*(t_f), p^*(t_f), t_f) + h_t(x^*(t_f), t_f) \Big] \delta t_f = 0 \end{split}$$

Example

$$\min J(u) = \int_{t_0}^{t_f} \frac{1}{2} \left[x_1^2 + u^2 \right] dt$$

s.t.

$$\dot{x}_1 = x_2
\dot{x}_2 = -x_2 + u_3$$

and $x(t_0) = x_0$, t_f is known and $x(t_f)$ is free, and

- a) controls are not bounded
- b) controls are bounded between [-1, 1]

Example

a)

- ► Hamiltonian: $H = \frac{1}{2}x_1^2 + \frac{1}{2}u^2 + p_1x_2 p_2x_2 + p_2u$
- Costate equations: $\dot{p}_1^* = -x_1^*$, $\dot{p}_2^* = -p_1^* + p_2^*$
- ▶ Stationary condition: $0 = H_u = u^* + p_2^* \Rightarrow u^* = -p_2^*$
- ► Transversality condition (free end state): $p_1^*(t_f) = p_2^*(t_f) = 0$ b)
- ► We replace the stationary condition with the minimum principle; The terms in Hamiltonian that depend on *u* are

$$\frac{1}{2}u^2 + p_2^*u$$

▶ Based on a) the candidate is $u^* = -p_2^*$ is good if $|u^*| \le 1$, which is satisfied when $|p_2^*| \le 1$

Example

- ► The costates are not, however, bounded, so $u^* = -p_2^*$ is not admissible control when $|p_2^*| > 1$
- Let us choose $u^* = -1$ when $p_2^* > 1$ and $u^* = 1$ when $p_2^* < -1$ we can satisfy the minimum principle, so the optimal control is

$$u^* = \begin{cases} -1, & p_2^* > 1 \\ -p_2^*, & -1 \le p_2^* \le 1 \\ +1, & p_2^* < -1 \end{cases}$$

This control satisfies the minimum principle since

$$\frac{1}{2}(u^*)^2 + p_2^*u^* \le \frac{1}{2}u^2 + p_2^*u$$

for all p_2^* and $u \in [-1, 1]$

Example

▶ Check: if $u^* = -1$ and $p_2^* > 1$, the minimum principle is

$$\frac{1}{2}(-1)^2 + p_2^*(-1) \leq \frac{1}{2}u^2 + p_2^*u$$

$$\Rightarrow -u^2 - 2p_2^*u + 1 - 2p_2^* \leq 0$$

the left-hand side is a downward opening parabola in u that is non-positive between $u \in [-1, 1]$

▶ If $u^* = 1$ and $p_2^* < -1$, the minimum principle is

$$\frac{1}{2}1^{2} + p_{2}^{*} \cdot 1 \leq \frac{1}{2}u^{2} + p_{2}^{*}u$$

$$\Rightarrow u^{2} + 2p_{2}^{*}u - (1 + 2p_{2}^{*}) \geq 0$$

the left-hand side is upward opening parabola in u that is non-negative between $u \in [-1, 1]$

Example

The optimal control can be given as a function of p_2 in b)

Observations

► Like in the example, we have to figure out the control using the minimum principle; then it is enough to consider only the terms that depend on the control in the Hamiltonian

▶ Basic problem in calculus of variations with $t_f \to \infty$:

$$J(x) = \int_{t_0}^{\infty} g(x, \dot{x}, t) dt, \qquad x(t_0) = x_0$$
 (4)

Variation:

$$\delta J(x, \delta x) = g_{\dot{x}}(x, \dot{x}, t) \delta x \Big|_{t_0}^{t_f} + \int_{t_0}^{t_f} \left[g_x(x, \dot{x}, t) - \frac{d}{dt} g_{\dot{x}}(x, \dot{x}, t) \right]^T \delta x dt$$

► The initial state is fixed (so $\delta x(t_0) = 0$), and we need some boundary condition beside Euler

- Since the final state is not fixed (but the final time is "fixed" to value $t_f = \infty$), we either require that
 - 1. $\lim_{t_f \to \infty} \delta x(t_f) = 0$, or
 - $2. \lim_{t_f \to \infty} g_{\dot{x}}(x(t_f), \dot{x}(t_f), t) = 0$
- These transversality conditions may not help finding the integration constants, when the infinite horizon problems have to be examined as special cases of the basic problem

- We examine two special cases:
 - 1. Autonomous problem
 - 2. Most rapid approach path

Autonomous problem

► The problem (4) is autonomous if integrand has no explicit time dependency; often autonomous problems maximize a functional of a form

$$J(x) = \int_0^\infty e^{-rt} g(x, \dot{x}) dt, \qquad x(0) = x_0$$

where e^{-rt} is a discount factor

Then we can assume that the solution x^* levels out to some x_s ("steady state") by the time:

$$\lim_{t_f\to\infty} x = x_s$$

- Stationary condition: $\dot{x} = \ddot{x} = 0$, which can be used in solving x_s (note limit cycles are possible)
- For example, optimal replacement or epidemic control (how much funds to use for medication)

Autonomous problem

- **E.g.**: $\int_0^\infty e^{-rt} [x^2 + ax + b\dot{x} + c\dot{x}^2] dt$, $x(0) = x_0$
- ► Euler: $\ddot{x} r\dot{x} \frac{x}{c} = \frac{a+rb}{2c}$
- ▶ General solution to Euler: $x_{yl} = K_1 e^{w_1 t} + K_2 e^{w_2 t}$, particular solution $x_{er} = -\frac{a+rb}{2}$, which gives

$$x^* = K_1 e^{w_1 t} + K_2 e^{w_2 t} - \frac{a + rb}{2}$$

where $w_1, w_2 = r/2 \pm \sqrt{(r/2)^2 + 1/c}$, and K_1, K_2 are integration constants

► The initial condition can be used in solving one of the integration constants but what about the other?

Autonomous problem

 \Rightarrow The objective is autonomous, so we can use the stationary condition $\ddot{x} = \dot{x} = 0$ when $t_f \to \infty$, $x^*(t_f) = x_s$ and from Euler $x_s = -(a+rb)/2$; we get the initial end final conditions

$$x^*(0) = K_1 + K_2 + x_s = x_0$$

 $x^*(t_f) = K_1 e^{w_1 t_f} + K_2 e^{w_2 t_f} + x_s = x_s$

Extremal:

$$x^* = (x_0 - x_s)e^{w_2t} + x_s$$

▶ Constant $w_2 < 0$, so x^* approaches x_s asymptotically

Most rapid approach path

▶ The objective is *autonomous* and *linear* in \dot{x} :

$$J(x) = \int_0^\infty e^{-rt} [M(x) + N(x)\dot{x}] dt, \qquad x(0) = x_0$$
 (5)

so that the derivative is bounded with some functions $A(x) \le \dot{x} \le B(x)$ for all $t \ge 0$

- ► Euler equation is M'(x) + rN(x) = 0 that is not a differential equation
- Let us assume that there is a unique solution $x^* = x_s$ that is "steady state" solution since the objective function is autonomous, and then use stationary condition!

Most rapid approach path

- ▶ The problem starts at x_0 . So if we don't have $x_0 = x_s$, the unique solution should be reached as rapidly as possible
- ▶ Reasoning: we can formulate (5) so that it is independent of \dot{x} , which means that the change of x does not cause any cost \Rightarrow go to the steady state as quickly as possible
- ▶ Let us define a function $S(x) = \int_0^x N(y) dy$, and we have

$$J(x) = \int_0^\infty e^{-rt} \Big[M(x) + S'(x) \dot{x} \Big] dt$$
 (6)

Most rapid approach path

▶ By partial integration we get the second term of (6) as

$$\int_0^\infty e^{-rt} S'(x) \dot{x} dt = e^{-rt} S(x) \Big|_0^\infty - \int_0^\infty -re^{-rt} S(x) dt$$
$$= \int_0^\infty re^{-rt} S(x) dt$$

and thus the objective functional is

$$J(x) = \int_0^\infty e^{-rt} \Big[M(x) + rS(x) \Big] dt$$

that is independent of \dot{x}

Most rapid approach path

The solution of the most rapid approach path is then

$$\begin{cases} \dot{x}^* = B(x) & \text{if } x_0 < x_s \\ x^* = x_s & \text{if } x_0 = x_s \\ \dot{x}^* = A(x) & \text{if } x_0 > x_s \end{cases}$$

Summary

- Constrained control problems and Pontryagin minimum principle
- $\blacktriangleright \infty$ horizon calculus of variation: autonomous and most rapid approach path