# Probleme seminar LFA - II - CF

- **1.** Definiți câte o CFG pentru următoarele limbaje independente de context peste alfabetul {a, b} si argumentați răspunsul:
  - **1.1.**  $L_1 = \{ w \mid |w|_a = |w|_b \}$

Un exemplu de răspuns:  $G_1 = \{S \longrightarrow SS \mid aSb \mid bSa \mid \lambda\}$ 

**1.2.**  $L_2 = \{ w \mid |w|_a \ge |w|_b \}$ 

Un exemplu de răspuns:  $G_2 = \{S \longrightarrow SS \mid aSb \mid bSa \mid aS \mid \lambda\}$ 

#### 1. Soluții detaliate

**1.1.**  $G_1 = \{S \longrightarrow SS \mid aSb \mid bSa \mid \lambda\}$ 

 $L(G_1) \subseteq L_1$  evident pentru că la orice pas al unei derivări în  $G_1$  avem  $|w|_a = |w|_b$ 

$$L(G_1) \supseteq L_1$$

dem. prin inducție asupra lui n = |w| următoarea propoziție:

 $P(n): (w \in L_1 \land |w| \le 2n) \Longrightarrow w \in L(G_1)$ 

"n = 0" și "n = 1" evidente

" $n \rightarrow n + 1$ "

Fie  $w \in L_1$ , |w| = 2n + 2. Putem avea următoarele cazuri:

$$\blacksquare$$
  $w = aw'b \text{ sau } w = bw'a$ 

Tratăm subcazul w = aw'b (subcazul w = bw'a se tratează analog). Avem  $w' \in L_1$  și |w'| = 2n și deci, conform ipotezei de inducție, avem  $S \stackrel{+}{\Longrightarrow} w'$  deci avem următoarea derivare în  $G_1$  pentru w:

$$S \Longrightarrow_{G_1} aSb \Longrightarrow_{G_1}^+ aw'b = w$$

$$\blacksquare$$
  $w = aw'a sau w = bw'b$ 

Tratăm subcazul w = aw' a (subcazul w = bw' b se tratează analog). Avem  $|w'|_b = |w'|_a + 2$  și deci putem avea una dintre următoarele situații:

- w' = bubv cu  $u, v \in L_1 \{\lambda\}$
- w' = ubvb cu  $u, v \in L_1 \{\lambda\}$
- $w' = b^2 u$  cu  $u \in L_1 \{\lambda\}$
- w' = bub cu  $u \in L_1 \{\lambda\}$
- $w' = ub^2$  cu  $u \in L_1 \{\lambda\}$

În toate aceste situații avem evident |u|,  $|v| \le 2n$  și deci, conform ipotezei de inducție, avem  $S \overset{+}{\underset{G_1}{\Longrightarrow}} u$ ,  $S \overset{+}{\underset{G_2}{\Longrightarrow}} v$ , deci avem următoarele derivări în  $G_1$  pentru w în fiecare situație de mai sus:

$$\blacksquare S \Longrightarrow SS \Longrightarrow aSbS \Longrightarrow abS \Longrightarrow abS \Longrightarrow abSS \Longrightarrow_{G_1}^+ abuS \Longrightarrow_{G_2}^+ abubSa \Longrightarrow_{G_1}^+ abubva = w$$

$$\blacksquare S \underset{G_1}{\Longrightarrow} SS \underset{G_1}{\Longrightarrow} aSbS \underset{G_1}{\overset{+}{\Longrightarrow}} aubS \underset{G_1}{\Longrightarrow} aubSS \underset{G_1}{\overset{+}{\Longrightarrow}} aubvS \underset{G_1}{\Longrightarrow} aubvbSa \underset{G_1}{\Longrightarrow} aubvba = w$$

$$S \Longrightarrow SS \Longrightarrow aSbS \Longrightarrow abS \Longrightarrow abS \Longrightarrow abSS \Longrightarrow abuS \Longrightarrow abubSa \Longrightarrow abuba = w$$

$$\blacksquare S \underset{G_1}{\Longrightarrow} SS \underset{G_1}{\Longrightarrow} aSbS \underset{G_1}{\overset{+}{\Longrightarrow}} aubS \underset{G_1}{\Longrightarrow} aubbSa \underset{G_1}{\overset{+}{\Longrightarrow}} aubba = w$$

### **1.2.** $G_2 = \{S \longrightarrow SS \mid aSb \mid bSa \mid aS \mid \lambda\}$

 $L(G_2) \subseteq L_2$  evident pentru că la orice pas al unei derivări în  $G_2$  avem  $|w|_a \ge |w|_b$ 

$$L(G_2) \supseteq L_2$$

dem. prin inducție asupra lui n = |w| următoarea propoziție:

 $P(n): (w \in L_2 \land |w| \le n) \Longrightarrow w \in L(G_2)$ 

"
$$n \rightarrow n + 1$$
"

Fie  $w \in L_2$ , |w| = n + 1,  $n \ge 2$ . Putem avea următoarele cazuri:

Avem, conform ipotezei de inducție  $S \stackrel{+}{\Longrightarrow} w'$  deci avem următoarea derivare în  $G_2$  pentru w:

$$S \underset{G_2}{\Longrightarrow} aS \underset{G_2}{\overset{+}{\Longrightarrow}} aw' = w$$

Avem, conform ipotezei de inducție  $S \stackrel{+}{\underset{G_2}{\Longrightarrow}} w'$  deci avem următoarea derivare în  $G_2$  pentru w:

$$S \underset{G_2}{\Longrightarrow} SS \underset{G_2}{\overset{+}{\Longrightarrow}} w' S \underset{G_2}{\Longrightarrow} w' aS \underset{G_2}{\Longrightarrow} w' a = w$$

$$| w = aw' \text{ cu } w' \notin L_2$$

Evident avem  $|w'|_b = |w'|_a + 1$  și deci putem avea una dintre următoarele situații:

• 
$$w' = bu$$
 cu  $u \in L_2 - \{\lambda\}$ 

• 
$$w' = ubv$$
 cu  $u, v \in L_2 - \{\lambda\}$ 

• 
$$w' = ub$$
 cu  $u \in L_2 - \{\lambda\}$ 

În toate aceste situații avem evident |u|,  $|v| \le n$  și deci, conform ipotezei de inducție, avem

 $S \stackrel{+}{\underset{G_2}{\Longrightarrow}} u$ ,  $S \stackrel{+}{\underset{G_2}{\Longrightarrow}} v$ , deci avem următoarele derivări în  $G_2$  pentru w în fiecare situație de mai sus:

$$\blacksquare S \Longrightarrow_{G_2} SS \Longrightarrow_{G_2} aSbS \Longrightarrow_{G_2} abS \Longrightarrow_{G_2}^+ abu = w$$

$$\blacksquare S \Longrightarrow_{G_2} SS \Longrightarrow_{G_2} aSbS \Longrightarrow_{G_2}^+ aubS \Longrightarrow_{G_2}^+ aubv = w$$

$$S \Longrightarrow_{G_2} aSb \Longrightarrow_{G_2}^+ aub = W$$

■ 
$$w = w'a$$
 cu  $w' \notin L_2$  se tratează analog cu precedentul

Evident avem  $|w'|_b = |w'|_a + 1$  și deci putem avea una dintre următoarele situații:

- w' = bu cu  $u \in L_2 \{\lambda\}$
- w' = ubv cu  $u, v \in L_2 \{\lambda\}$
- w' = ub cu  $u \in L_2 \{\lambda\}$

În toate aceste situații avem evident |u|,  $|v| \le n$  și deci, conform ipotezei de inducție, avem

 $S \stackrel{+}{\underset{G_2}{\Longrightarrow}} u$ ,  $S \stackrel{+}{\underset{G_2}{\Longrightarrow}} v$ , deci avem următoarele derivări în  $G_2$  pentru w în fiecare situație de mai sus:

$$S \Longrightarrow_{G_2} bSa \Longrightarrow_{G_2}^+ bua = w$$

$$\blacksquare S \Longrightarrow_{G_2} SS \Longrightarrow_{G_2}^+ uS \Longrightarrow_{G_2} ubSa \Longrightarrow_{G_2}^+ ubva = w$$

$$\blacksquare S \Longrightarrow_{G_2} SS \Longrightarrow_{G_2}^+ uS \Longrightarrow_{G_2} ubSa \Longrightarrow_{G_2}^+ uba = w$$

Evident avem  $|w'|_a \ge |w'|_b + 1$  și deci putem avea una dintre următoarele situații:

- w' = au cu  $u \in L_2 \{\lambda\}$
- w' = ua cu  $u \in L_2 \{\lambda\}$
- w' = uav cu  $u, v \in L_2 \{\lambda\}$

În toate aceste situații avem evident |u|,  $|v| \le n$  și deci, conform ipotezei de inducție, avem

 $S \stackrel{+}{\underset{G_2}{\Longrightarrow}} u$ ,  $S \stackrel{+}{\underset{G_2}{\Longrightarrow}} v$ , deci avem următoarele derivări în  $G_2$  pentru w în fiecare situație de mai sus:

$$\blacksquare S \Longrightarrow_{G_2} SS \Longrightarrow_{G_2} bSaS \Longrightarrow_{G_2} baS \Longrightarrow_{G_2}^+ bau = w$$

$$S \Longrightarrow_{G_2} bSa \Longrightarrow_{G_2}^+ bua = W$$

■ 
$$S \Longrightarrow SS \Longrightarrow bSaS \Longrightarrow_{G_2} buaS \Longrightarrow_{G_2} buav = w$$

■ 
$$w = w'b$$
 cu  $w' \in L_2$  se tratează analog cu precedentul

Evident avem  $|w'|_a \ge |w'|_b + 1$  și deci putem avea una dintre următoarele situații:

- w' = au cu  $u \in L_2 \{\lambda\}$
- w' = ua cu  $u \in L_2 \{\lambda\}$
- w' = uav cu  $u, v \in L_2 \{\lambda\}$

În toate aceste situații avem evident |u|,  $|v| \le n$  și deci, conform ipotezei de inducție, avem

 $S \overset{+}{\underset{G_2}{\longrightarrow}} u$ ,  $S \overset{+}{\underset{G_2}{\longrightarrow}} v$ , deci avem următoarele derivări în  $G_2$  pentru w în fiecare situație de mai sus:

$$S \Longrightarrow_{G_2} aSb \Longrightarrow_{G_2}^+ aub = W$$

$$\blacksquare S \Longrightarrow_{G_2} SS \Longrightarrow_{G_2}^+ uS \Longrightarrow_{G_2} uaSb \Longrightarrow_{G_2} uab = w$$

$$\blacksquare S \Longrightarrow SS \Longrightarrow_{G_2}^+ uS \Longrightarrow_{G_2} uaSb \Longrightarrow_{G_2}^+ uavb = w$$

- 2. Definiți cel puțin câte două PDA-uri care să recunoască (unul dintre ele să recunoască prin vidarea stivei și altul prin stări finale) fiecare din limbajele de la exercițiul 1.
- 1. Câteva răspunsuri posibile

**2.1.** 
$$L_1 = \{ w \mid |w|_a = |w|_b \}$$

prin vidarea stivei:



prin stări finale și vidarea stivei:





**2.2.**  $L_2 = \{ w \mid |w|_a \ge |w|_b \} \subset \{ a, b \}^*$ 

prin vidarea stivei:



■ prin stări finale și vidarea stivei:



$$\begin{array}{c} \lambda \,,\, z_0 \,|\, sz_0 \\ \hline \lambda \,,\, s\,|\, ss \\ \lambda \,,\, s\,|\, asb \\ \lambda \,,\, s\,|\, bsa \\ \lambda \,,\, s\,|\, bsa \\ \lambda \,,\, s\,|\, \lambda \\ a \,,\, a\,|\, \lambda \\ b \,,\, b\,|\, \lambda \end{array}$$

- 3. Treceți în FNC gramaticile pe care le-ați definit la exercițiul 1.
- 4. Demonstrați că următoarele limbaje sunt independente de context:

**4.1.** 
$$L_1 = \{a^m b^m c^n \mid m, n \ge 1\}$$

Un exemplu de răspuns

$$G_1 = \left\{ \begin{array}{l} S \longrightarrow XC \\ X \longrightarrow aXb \mid ab \\ C \longrightarrow cC \mid c \end{array} \right. \quad \text{este o CFG cu } L(G_1) = L_1$$

Alt exemplu de răspuns

 $L_1$  este recunoscut de oricare dintre următoarele PDA-uri :

• care recunosc prin vidarea stivei :





 $\lambda$  , X | ab  $\lambda$  , C | cC

 $\lambda$  , C  $\mid$  c a ,  $a \mid \lambda$ 

b , b  $|\lambda$ 

 ${f c}$  ,  ${f c}$   $\mid$   $\lambda$ 

• care recunosc prin stări finale :





Alt exemplu de răspuns

 $L_1 = L'L''$ , unde  $L' = \{a^k \ b^k \ | \ k \ge 1\} \in LIN \subset CF \$ şi  $L'' = a^+ \in REG \subset CF$ , iar CF este închisă la concatenare.

**4.2.** 
$$L_2 = \{a^m b^n c^n \mid m, n \ge 1\}$$

Analog cu precedentul!

**4.3.** 
$$L_3 = \{a^m b^n c^m \mid m, n \ge 1\}$$

Un exemplu de răspuns

$$G_3 = \left\{ egin{array}{ll} S \longrightarrow aSc \mid B \\ B \longrightarrow bB \mid b \end{array} 
ight. \qquad \text{este o CFG cu } L(G_3) = L_3$$

Alt exemplu de răspuns

L<sub>3</sub> este recunoscut de oricare dintre următoarele PDA-uri :

care recunosc prin vidarea stivei :





$$\begin{array}{c|c} \lambda \ , \mathbf{Z_0} \mid \mathbf{aZ_0c} \\ \lambda \ , \mathbf{Z_0} \mid \mathbf{B} \\ \lambda \ , \mathbf{B} \mid \mathbf{bB} \\ \lambda \ , \mathbf{B} \mid \mathbf{b} \\ \mathbf{a} \ , \mathbf{a} \mid \lambda \\ \mathbf{b} \ , \mathbf{b} \mid \lambda \end{array}$$

 $\boldsymbol{c}$  ,  $\boldsymbol{c} \mid \lambda$ 

care recunosc prin stări finale :





**4.4.** 
$$L_4 = \{a^m b^n c^p \mid m, n, p \ge 1 \land m \ne n\}$$

Un exemplu de răspuns

$$G_4 = \begin{cases} S \longrightarrow XC \\ C \longrightarrow cC \mid c \\ X \longrightarrow aXb \mid aAb \mid aBb \end{cases}$$
este o CFG cu  $L(G_4) = L_4$ 
$$A \longrightarrow aA \mid a$$
$$B \longrightarrow bB \mid b$$

#### Alt exemplu de răspuns

L<sub>3</sub> este recunoscut de următorul PDA : ....etc.....

**4.5.** 
$$L_5 = \{a^m b^n c^p \mid m, n, p \ge 1 \land n \ne p\}$$

Analog cu precedentul!

**4.6.** 
$$L_6 = \{a^m b^n c^p \mid m, n, p \ge 1 \land m \ne p\}$$

Un exemplu de răspuns

$$G_6 = \left\{ \begin{array}{l} S \longrightarrow aSc \mid aAc \mid aCc \\ A \longrightarrow aA \mid aB \\ C \longrightarrow Cc \mid Bc \\ B \longrightarrow bB \mid b \end{array} \right. \quad \text{este o CFG cu } L(G_6) = L_6$$

## Alt exemplu de răspuns

L<sub>3</sub> este recunoscut de următorul PDA : ....etc.....

**4.7.** 
$$L_7 = \{a^m b^n c^p \mid m, n, p \ge 1 \land (m = n \lor n = p)\}$$

Un exemplu de răspuns

 $L_7 = L_1 \cup L_2$  și CF închisă la reuniune

Alt exemplu de răspuns

se construiește imediat o CFG care generează  $L_7$  - construiți o astfel de gramatică

#### Alt exemplu de răspuns

$$L_7 = L'L'' \cup L'''L''''$$
 unde:

$$L' = \left\{ a^k \ b^k \ \middle| \ k \ge 1 \right\}$$
 și  $L'''' = \left\{ b^k \ c^k \ \middle| \ k \ge 1 \right\}$  sunt liniare, deci CF

$$L'' = c^+$$
 și  $L''' = a^+$  sunt regulate, deci CF

iar CF este închisă la reuniune și concatenare.

Alt exemplu de răspuns

se construiește imediat un PDA care recunoaște  $L_7$  - construiți un astfel de PDA

**4.8.**  $L_8 = \{a, b, c\}^* - \{a^n b^n c^n \mid n \ge 1\}$ 

Un exemplu de răspuns

 $L_8 = L_4 \cup L_5 \cup L_6$  și CF închisă la reuniune

Un alt exemplu de răspuns

se construiește imediat o CFG care generează  $L_8$  - construiți o astfel de gramatică Un exemplu de răspuns

se construiește imediat un PDA care recunoaște  $L_8$  - construiți un astfel de PDA

5. Demonstrați că următoarele limbaje nu sunt independente de context:

**5.1.** 
$$L_1 = \{a^n b^n c^n \mid n \ge 1\}$$

**5.2.** 
$$L_2 = \{a^m b^n c^p \mid 1 \le m \le n \le p\}$$

**5.3.** 
$$L_3 = \{a^m b^n c^p \mid 1 \le m < n < p\}$$

**5.4.** 
$$L_4 = \{a^{n^2} \mid n \ge 1\}$$

**5.5.** 
$$L_5 = \{a^{n^3} \mid n \ge 1\}$$

**5.6.** 
$$L_6 = \{a^{n^2} b^{n^3} \mid n \ge 1\}$$

**5.7.** 
$$L_7 = \{a^p \mid p \text{ prim}\}$$

**5.8.** 
$$L_8 = \{a^{n^2} b^p \mid n \ge 1, p \text{ prim}\}$$

**5.9.** 
$$L_9 = \{a^m b^n a^m b^n \mid m, n \ge 1\}$$

**5.10.** 
$$L_{10} = \{ w \mid |w|_a = |w|_b = |w|_c \} \subset \{ a, b, c \}^*$$