International Macroeconomics Lecture 2: Real Exchange Rates

Zachary R. Stangebye

University of Notre Dame

February 4th, 2016

• Important component lacking from previous discussion:

- Important component lacking from previous discussion: Prices!
- Need a sensible way of understanding cross-country price differentials and how they impact relevant macroeconomic objects

- Important component lacking from previous discussion: Prices!
- Need a sensible way of understanding cross-country price differentials and how they impact relevant macroeconomic objects
 - The Real Exchange Rate: The relative cost of a common reference basket of goods between two countries

- Important component lacking from previous discussion: Prices!
- Need a sensible way of understanding cross-country price differentials and how they impact relevant macroeconomic objects
 - The Real Exchange Rate: The relative cost of a common reference basket of goods between two countries
 - Expressed in a common, numeraire good

- Important component lacking from previous discussion: Prices!
- Need a sensible way of understanding cross-country price differentials and how they impact relevant macroeconomic objects
 - The Real Exchange Rate: The relative cost of a common reference basket of goods between two countries
 - Expressed in a common, numeraire good
- Remember that prices are not necessarily money!
 - In this lecture, we develop a wholly consistent theory of exchange rates before ever introducing money

 The theory of Absolute Purchasing Power Parity states that all exchange rates should equal 1, or at least return to 1 quickly once disturbed

- The theory of Absolute Purchasing Power Parity states that all exchange rates should equal 1, or at least return to 1 quickly once disturbed
- 2. **Relative PPP** states that changes in national price levels are always equal or tend to equality

- 1. The theory of **Absolute Purchasing Power Parity** states that all exchange rates should equal 1, or at least return to 1 quickly once disturbed
- 2. **Relative PPP** states that changes in national price levels are always equal or tend to equality
 - Logic: No-Arbitrage
 - If it didn't hold, then a bunch of consumers could save money by converting currency and purchasing the same basket in another country

- The theory of Absolute Purchasing Power Parity states that all exchange rates should equal 1, or at least return to 1 quickly once disturbed
- Relative PPP states that changes in national price levels are always equal or tend to equality
 - Logic: No-Arbitrage
 - If it didn't hold, then a bunch of consumers could save money by converting currency and purchasing the same basket in another country
 - If such opportunities did exist, they would be seized immediately and market forces would quickly drive price wedges together until PPP held

PPP in the Data

• Does PPP hold in the data?

PPP in the Data

- Does PPP hold in the data? Nope
- Big-Mac Example (2015)

Country	Big Mac Price (US \$)
Venezuela	0.67
South Korea	3.76
Norway	5.65
Russia	1.88
Switzerland	6.82
US	4.79

1. Policy Barriers e.g. tariffs

- 1. Policy Barriers e.g. tariffs
- 2. Non-Tariff Barriers e.g. mountains, oceans, sheer distance

- 1. Policy Barriers e.g. tariffs
- 2. Non-Tariff Barriers e.g. mountains, oceans, sheer distance
- 3. Productivity and Relative Price of Non-Traded Inputs

- 1. Policy Barriers e.g. tariffs
- 2. Non-Tariff Barriers e.g. mountains, oceans, sheer distance
- 3. Productivity and Relative Price of Non-Traded Inputs
 - Last one often most significant, especially with regard to exchange rate fluctuations

- 1. Policy Barriers e.g. tariffs
- 2. Non-Tariff Barriers e.g. mountains, oceans, sheer distance
- 3. Productivity and Relative Price of Non-Traded Inputs
 - Last one often most significant, especially with regard to exchange rate fluctuations
 - Tariffs don't change drastically over time

- 1. Policy Barriers e.g. tariffs
- 2. Non-Tariff Barriers e.g. mountains, oceans, sheer distance
- 3. Productivity and Relative Price of Non-Traded Inputs
 - Last one often most significant, especially with regard to exchange rate fluctuations
 - Tariffs don't change drastically over time
 - NTB almost never change

- Begin with PE model
- Add labor, L_t , which is perfectly inelastic (fixed)

- Begin with PE model
- Add labor, L_t , which is perfectly inelastic (fixed)
- In each period s, 2 types of goods are produced

- Begin with PE model
- Add labor, L_t , which is perfectly inelastic (fixed)
- In each period s, 2 types of goods are produced
 - 1. Tradables: $Y_{T,s} = A_{T,s}F(K_{T,s}, L_{T,s})$
 - Price normalized to 1 (numeraire)
 - Costlessly convertible to capital (and vice versa)

- Begin with PE model
- Add labor, L_t , which is perfectly inelastic (fixed)
- In each period s, 2 types of goods are produced
 - 1. Tradables: $Y_{T,s} = A_{T,s}F(K_{T,s}, L_{T,s})$
 - Price normalized to 1 (numeraire)
 - Costlessly convertible to capital (and vice versa)
 - 2. Nontradables: $Y_{N,s} = A_{N,s}G(K_{N,s}, L_{N,s})$
 - Price: 1 unit costs p units of tradables
 - Cannot be converted to capital (and vice versa)

- Begin with PE model
- Add labor, L_t , which is perfectly inelastic (fixed)
- In each period s, 2 types of goods are produced
 - 1. Tradables: $Y_{T,s} = A_{T,s}F(K_{T,s}, L_{T,s})$
 - Price normalized to 1 (numeraire)
 - Costlessly convertible to capital (and vice versa)
 - 2. Nontradables: $Y_{N,s} = A_{N,s}G(K_{N,s}, L_{N,s})$
 - Price: 1 unit costs p units of tradables
 - Cannot be converted to capital (and vice versa)
- Capital can cross borders and sectors, but labor can only cross sectors

$$L_{T,s} + L_{N,s} = L_s$$

- Infinitely many periods, but firms in overlapping generations
 - 1. New firm enters in period s-1, buys capital to produce in period s
 - 2. Produces in period s and sells capital

- Infinitely many periods, but firms in overlapping generations
 - 1. New firm enters in period s-1, buys capital to produce in period s
 - 2. Produces in period s and sells capital
- Capital bought by new firms need not equal capital sold by old firms
 - Can purchase from/sell abroad

- Infinitely many periods, but firms in overlapping generations
 - 1. New firm enters in period s-1, buys capital to produce in period s
 - 2. Produces in period s and sells capital
- Capital bought by new firms need not equal capital sold by old firms
 - Can purchase from/sell abroad
- Capital price = 1 tradable; Labor price = w tradables

- Infinitely many periods, but firms in overlapping generations
 - 1. New firm enters in period s-1, buys capital to produce in period s
 - 2. Produces in period s and sells capital
- Capital bought by new firms need not equal capital sold by old firms
 - Can purchase from/sell abroad
- Capital price = 1 tradable; Labor price = w tradables
- Firms maximize profits (discount future at interest rate):

$$-K_{T,s} + \left(\frac{1}{1+r}\right) \left[A_{T,s}F(K_{T,s},L_{T,s}) - w_sL_{T,s} + K_{T,s}\right]\right]$$

- Infinitely many periods, but firms in overlapping generations
 - 1. New firm enters in period s-1, buys capital to produce in period s
 - 2. Produces in period s and sells capital
- Capital bought by new firms need not equal capital sold by old firms
 - Can purchase from/sell abroad
- Capital price = 1 tradable; Labor price = w tradables
- Firms maximize profits (discount future at interest rate):

$$-K_{T,s} + \left(\frac{1}{1+r}\right) \left[A_{T,s}F(K_{T,s},L_{T,s}) - w_sL_{T,s} + K_{T,s}\right]\right]$$

$$-K_{N,s}+\left(rac{1}{1+r}
ight)\left[A_{N,s}F(K_{N,s},L_{N,s})-w_sL_{N,s}+K_{N,s}]
ight]$$

Firms choose capital and labor

$$FOC(K_{T,s}): 0 = -1 + \frac{1}{1+r} A_{T,s} F_K(K_{T,s}, L_{T,s}) + \frac{1}{1+r}$$

$$FOC(L_{T,s}): 0 = -w_s + A_{T,s} F_L(K_{T,s}, L_{T,s})$$

Symmetric conditions for nontradable sector

Assume Constant Returns to Scale in production

$$\to y_T = A_T F(k_T, 1) = A_T f(k_T)$$

where
$$y_T = Y_T/L_T$$
 and $k_T = K_T/L_T$

Assume Constant Returns to Scale in production

$$\to y_T = A_T F(k_T, 1) = A_T f(k_T)$$

where
$$y_T = Y_T/L_T$$
 and $k_T = K_T/L_T$

• By same notation, $y_N = A_N g(k_N)$

Assume Constant Returns to Scale in production

$$\to y_T = A_T F(k_T, 1) = A_T f(k_T)$$

where $y_T = Y_T/L_T$ and $k_T = K_T/L_T$

- By same notation, $y_N = A_N g(k_N)$
- Using the equality: F(K, L) = Lf(k), we totally differentiate to derive

$$F_K(K, L) = f'(k)$$

$$F_L(K, L) = f(k) - f'(k)k$$

- In any period, 4 FOCs from firms in the two sectors
 - 1. $A_T f'(k_T) = r$
 - 2. $A_T[f(k_T) f'(k_T)k_T] = w$
 - $3. pA_Ng'(k_N) = r$
 - 4. $pA_N[g(k_N) g'(k_N)k_N] = w$

- In any period, 4 FOCs from firms in the two sectors
 - 1. $A_T f'(k_T) = r$
 - 2. $A_T[f(k_T) f'(k_T)k_T] = w$
 - 3. $pA_Ng'(k_N) = r$
 - 4. $pA_N[g(k_N) g'(k_N)k_N] = w$
- Four unknowns: w, p, k_N, k_T

- In any period, 4 FOCs from firms in the two sectors
 - 1. $A_T f'(k_T) = r$
 - 2. $A_T[f(k_T) f'(k_T)k_T] = w$
 - $3. pA_Ng'(k_N) = r$
 - 4. $pA_N[g(k_N) g'(k_N)k_N] = w$
- Four unknowns: w, p, k_N, k_T
- Solving for p
 - 1. Eqn (1) tells us k_T given r

- In any period, 4 FOCs from firms in the two sectors
 - 1. $A_T f'(k_T) = r$
 - 2. $A_T[f(k_T) f'(k_T)k_T] = w$
 - $3. pA_Ng'(k_N) = r$
 - 4. $pA_N[g(k_N) g'(k_N)k_N] = w$
- Four unknowns: w, p, k_N, k_T
- Solving for p
 - 1. Eqn (1) tells us k_T given r
 - 2. Eqn (2) tells us w given k_T

Determining the Relative Price

- In any period, 4 FOCs from firms in the two sectors
 - 1. $A_T f'(k_T) = r$
 - 2. $A_T[f(k_T) f'(k_T)k_T] = w$
 - 3. $pA_Ng'(k_N) = r$
 - 4. $pA_N[g(k_N) g'(k_N)k_N] = w$
- Four unknowns: w, p, k_N, k_T
- Solving for p
 - 1. Eqn (1) tells us k_T given r
 - 2. Eqn (2) tells us w given k_T
 - 3. Eqns (3) and (4) jointly tell us p, k_N given w and r

Determining the Relative Price

- In any period, 4 FOCs from firms in the two sectors
 - 1. $A_T f'(k_T) = r$
 - 2. $A_T[f(k_T) f'(k_T)k_T] = w$
 - $3. pA_Ng'(k_N) = r$
 - 4. $pA_N[g(k_N) g'(k_N)k_N] = w$
- Four unknowns: w, p, k_N, k_T
- Solving for p
 - 1. Eqn (1) tells us k_T given r
 - 2. Eqn (2) tells us w given k_T
 - 3. Eqns (3) and (4) jointly tell us p, k_N given w and r
 - Eqn (3): p increasing in k_N
 - Eqn (4): p decreasing in k_N
- p entirely determined by world prices/technologies (no demand-side impact)

Relative Price and Market for Nontradables

Deriving the Exchange Rate

Price level geometric average of different prices (why later)

$$P=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_N^{\alpha_N}$$

where
$$\sum_i \alpha_i = 1$$
 and $\alpha_i \geq 0$

Deriving the Exchange Rate

Price level geometric average of different prices (why later)

$$P=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_N^{\alpha_N}$$

where
$$\sum_{i} \alpha_{i} = 1$$
 and $\alpha_{i} \geq 0$

• Two goods in our economy: Assume $\alpha_{\it T}=\gamma$ and $\alpha_{\it N}=1-\gamma$

$$P = (1)^{\gamma} p^{1-\gamma}$$

Deriving the Exchange Rate

Price level geometric average of different prices (why later)

$$P=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_N^{\alpha_N}$$

where $\sum_{i} \alpha_{i} = 1$ and $\alpha_{i} \geq 0$

• Two goods in our economy: Assume $\alpha_T = \gamma$ and $\alpha_N = 1 - \gamma$

$$P = (1)^{\gamma} p^{1-\gamma}$$

Exchange rate:

$$E = \frac{P}{P^{\star}} = \left(\frac{p}{p^{\star}}\right)^{1-\gamma}$$

• Determined by relative prices of nontradables!

• $A_T \uparrow \text{ implies } k_T \uparrow \text{ to satisfy } A_T f'(k_T) = r$

- $A_T \uparrow$ implies $k_T \uparrow$ to satisfy $A_T f'(k_T) = r$
- $A_T \uparrow$ and $k_T \uparrow$ imply $w \uparrow$ to satisfy

$$A_T[f(k_T) - f'(k_T)k_T] = w$$

- $A_T \uparrow \text{ implies } k_T \uparrow \text{ to satisfy } A_T f'(k_T) = r$
- $A_T \uparrow$ and $k_T \uparrow$ imply $w \uparrow$ to satisfy

$$A_T[f(k_T) - f'(k_T)k_T] = w$$

• In N sector, only w changes (it rises)

- $A_T \uparrow$ implies $k_T \uparrow$ to satisfy $A_T f'(k_T) = r$
- $A_T \uparrow$ and $k_T \uparrow$ imply $w \uparrow$ to satisfy

$$A_T[f(k_T) - f'(k_T)k_T] = w$$

- In N sector, only w changes (it rises)
 - Relative price rises (ER rises/"Currency Strengthens")
 - Capital-Labor Ratio (N) rises

- $A_T \uparrow$ implies $k_T \uparrow$ to satisfy $A_T f'(k_T) = r$
- $A_T \uparrow$ and $k_T \uparrow$ imply $w \uparrow$ to satisfy

$$A_T[f(k_T) - f'(k_T)k_T] = w$$

- In N sector, only w changes (it rises)
 - Relative price rises (ER rises/"Currency Strengthens")
 - Capital-Labor Ratio (N) rises
- Intuition: Both firms must break even (perfect competition/zero-profit)
 - 1. A_T increases T output/revenue/profit
 - Tradable price cannot adjust, so to meet zero-profit condition in T, wages rise
 - 3. Rise in wages pushes up costs in N-sector
 - 4. To meet zero-profit condition in N-sector, p rises to increase revenues

ullet w and r determined by T-sector o Unchanged

- ullet w and r determined by T-sector o Unchanged
- In N-sector, $A_N \uparrow$ implies $MPK \uparrow$ and $MPL \uparrow$

- w and r determined by T-sector \rightarrow Unchanged
- In N-sector, $A_N \uparrow$ implies $MPK \uparrow$ and $MPL \uparrow$
 - Relative price falls (ER falls/"Currency Weakens")
 - Capital-Labor Ratio (N) may rise or fall

- w and r determined by T-sector \rightarrow Unchanged
- In N-sector, $A_N \uparrow$ implies $MPK \uparrow$ and $MPL \uparrow$
 - Relative price falls (ER falls/"Currency Weakens")
 - Capital-Labor Ratio (N) may rise or fall
- Intuition: Again zero-profit
 - 1. A_N increase raises quantity/revenue/profit in N
 - 2. Wages/r cannot rise to offset this (both determined in T)
 - 3. p must fall to lower revenues \rightarrow Back to zero-profit

The Exchange Rate: The HBS Effect

- Harrod-Balassa-Samuelson Effect: Countries with higher productivity in tradables relative to non-tradables have higher price levels ('stronger currencies')
 - Highly productive tradables push wages up (meet zero-profit)
 - Prices of non-tradables must rise as wages rise (meet zero-profit)
 - Price of tradables same everywhere; price of non-tradables higher in home

The Exchange Rate: The HBS Effect

- Harrod-Balassa-Samuelson Effect: Countries with higher productivity in tradables relative to non-tradables have higher price levels ('stronger currencies')
 - Highly productive tradables push wages up (meet zero-profit)
 - Prices of non-tradables must rise as wages rise (meet zero-profit)
 - Price of tradables same everywhere; price of non-tradables higher in home
- Opposite happens in countries with productive advantage in non-tradables
 - Wages rigid/set in T sector: Prices must fall to prevent positive profits
 - Tradable prices same everywhere; price of non-tradables lower in home

The HBS Effect in the Data: Cross-Country

Year: 1993

The HBS Effect in the Data: Japan

The Eurozone

- Paradox: Peripheral Eurozone (Spain, Italy, Greece, etc.) in 2000's
 - Booming non-tradable sectors (housing/construction)
 - Same time, exchange rates seemed to be too strong
 - Lack of Competitiveness
 - How can we reconcile this?

 When all countries fully joined Eurozone in 2001, interest rates converged

- When all countries fully joined Eurozone in 2001, interest rates converged
- For peripheral economies, this meant interest rates fell
- What does this imply in model?

- When all countries fully joined Eurozone in 2001, interest rates converged
- For peripheral economies, this meant interest rates fell
- What does this imply in model? When $r \downarrow ...$
 - 1. $k_{T,s} \uparrow$ (borrowing costs fall)

- When all countries fully joined Eurozone in 2001, interest rates converged
- For peripheral economies, this meant interest rates fell
- What does this imply in model? When $r \downarrow ...$
 - 1. $k_{T,s} \uparrow$ (borrowing costs fall)
 - 2. Implies $w_s \uparrow$

- When all countries fully joined Eurozone in 2001, interest rates converged
- For peripheral economies, this meant interest rates fell
- What does this imply in model? When $r \downarrow ...$
 - 1. $k_{T,s} \uparrow$ (borrowing costs fall)
 - 2. Implies $w_s \uparrow$
 - 3. Impact on p? Hard to tell
 - Borrowing costs fall, but wages rise
 - Need closer look...

Drop in r

Unambiguous rise in k_N^* Impact on p^* not obvious

- Consider impact a small change on r has on p
- Under the assumption of Constant-Returns-To-Scale, easy to show that firms make zero profits

$$\rightarrow A_T f(k_T) = rk_T + w$$

- Consider impact a small change on r has on p
- Under the assumption of Constant-Returns-To-Scale, easy to show that firms make zero profits

$$\rightarrow A_T f(k_T) = rk_T + w$$

Take a natural log

$$\ln(A_T) + \ln(f(k_T)) = \ln(rk_T + w)$$

- Consider impact a small change on r has on p
- Under the assumption of Constant-Returns-To-Scale, easy to show that firms make zero profits

$$\rightarrow A_T f(k_T) = rk_T + w$$

Take a natural log

$$\ln(A_T) + \ln(f(k_T)) = \ln(rk_T + w)$$

Totally differentiate

$$\frac{dA_T}{A_T} + \frac{f'(k_T)}{f(k_T)}dk_T = \frac{rdk_T + k_Tdr + dw}{rk_T + w}$$

• Since $r = A_T f'(k_T)$, we get

$$\frac{dA_T}{A_T} + \frac{r}{A_T f(k_T)} dk_T \times \frac{k_T}{k_T} = \frac{r dk_T \times \frac{k_T}{k_T} + k_T dr \times \frac{r}{r} + dw \times \frac{w}{w}}{r k_T + w}$$

• Since $r = A_T f'(k_T)$, we get

$$\frac{dA_T}{A_T} + \frac{r}{A_T f(k_T)} dk_T \times \frac{k_T}{k_T} = \frac{r dk_T \times \frac{k_T}{k_T} + k_T dr \times \frac{r}{r} + dw \times \frac{w}{w}}{r k_T + w}$$

• Call $\hat{x} = dx/x$. Since $rk_T + w = A_T f(k_T)$, we get

$$\hat{A}_T + \frac{rk_T}{A_T f(k_T)} \hat{k}_T = \frac{rk_T}{A_T f(k_T)} \hat{k}_T + \frac{rk_T}{A_T f(k_T)} \hat{r} + \frac{w}{A_T f(k_T)} \hat{w}$$

• Since $r = A_T f'(k_T)$, we get

$$\frac{dA_T}{A_T} + \frac{r}{A_T f(k_T)} dk_T \times \frac{k_T}{k_T} = \frac{r dk_T \times \frac{k_T}{k_T} + k_T dr \times \frac{r}{r} + dw \times \frac{w}{w}}{r k_T + w}$$

• Call $\hat{x} = dx/x$. Since $rk_T + w = A_T f(k_T)$, we get

$$\hat{A}_T + \frac{rk_T}{A_T f(k_T)} \hat{k}_T = \frac{rk_T}{A_T f(k_T)} \hat{k}_T + \frac{rk_T}{A_T f(k_T)} \hat{r} + \frac{w}{A_T f(k_T)} \hat{w}$$

• Denote the labor-share of income in T: $\mu_{LT} = \frac{w}{A_T f(k_T)} \hat{w}$

$$\hat{A}_T = \mu_{LT}\hat{w} + (1 - \mu_{LT})\hat{r}$$

• Same approach for N implies

$$\hat{p} + \hat{A}_N = \mu_{LN}\hat{w} + (1 - \mu_{LN})\hat{r}$$

• Same approach for N implies

$$\hat{\rho} + \hat{A}_N = \mu_{LN}\hat{w} + (1 - \mu_{LN})\hat{r}$$

• Impose $\hat{A}_N = \hat{A}_T = 0$. Zero-profit in T-sector implies

$$\hat{w} = -\left[\frac{1 - \mu_{LT}}{\mu_{LT}}\right] \hat{r}$$

Same approach for N implies

$$\hat{\rho} + \hat{A}_{N} = \mu_{LN}\hat{w} + (1 - \mu_{LN})\hat{r}$$

• Impose $\hat{A}_N = \hat{A}_T = 0$. Zero-profit in T-sector implies

$$\hat{w} = -\left[\frac{1 - \mu_{LT}}{\mu_{LT}}\right] \hat{r}$$

Zero-profit in N sector implies

$$\hat{
ho} = \hat{r} \left[1 - rac{\mu_{LN}}{\mu_{LT}}
ight]$$

$$\hat{
ho} = \hat{r} \left[1 - rac{\mu_{LN}}{\mu_{LT}}
ight]$$

• Non-tradables tend to be labor intensive $\rightarrow \mu_{LN} > \mu_{LT}$

$$\hat{
ho} = \hat{r} \left[1 - rac{\mu_{LN}}{\mu_{LT}}
ight]$$

- Non-tradables tend to be labor intensive $\rightarrow \mu_{LN} > \mu_{LT}$
 - \hat{p} has opposite sign of \hat{r} :

$$\hat{
ho} = \hat{r} \left[1 - rac{\mu_{LN}}{\mu_{LT}}
ight]$$

- Non-tradables tend to be labor intensive $\rightarrow \mu_{LN} > \mu_{LT}$
 - \hat{p} has opposite sign of \hat{r} : $\hat{r} \downarrow$ implies $\hat{p} \uparrow$

$$\hat{
ho} = \hat{r} \left[1 - rac{\mu_{LN}}{\mu_{LT}}
ight]$$

- Non-tradables tend to be labor intensive $\rightarrow \mu_{LN} > \mu_{LT}$
 - \hat{p} has opposite sign of \hat{r} : $\hat{r} \downarrow$ implies $\hat{p} \uparrow$
- Intuition: Large capital inflows raise marginal product of labor (wage)
 - Labor costs higher in N-sector; prices must rise
- Interest rate convergence strengthens the exchange rate and reduces competitiveness

$$\hat{p} = \hat{r} \left[1 - \frac{\mu_{LN}}{\mu_{LT}} \right]$$

- Non-tradables tend to be labor intensive $\rightarrow \mu_{LN} > \mu_{LT}$
 - \hat{p} has opposite sign of \hat{r} : $\hat{r} \downarrow$ implies $\hat{p} \uparrow$
- Intuition: Large capital inflows raise marginal product of labor (wage)
 - Labor costs higher in N-sector; prices must rise
- Interest rate convergence strengthens the exchange rate and reduces competitiveness
- Captures many features of Eurozone in 2000s
 - 1. Lack of competitiveness
 - 2. Boom in investment $(k_T, k_N \uparrow) \rightarrow$ Increase in capital inflows
 - 3. Non-tradable boom with rise in p e.g. housing, services

 Relative price of nontradables/ER primarily influenced by technology, not preferences

- Relative price of nontradables/ER primarily influenced by technology, not preferences
- Preferences can impact *composition* of output
 - \bullet Important: Desire for tradables/nontradables can impact GDP/GNP

- Relative price of nontradables/ER primarily influenced by technology, not preferences
- Preferences can impact composition of output
 - Important: Desire for tradables/nontradables can impact GDP/GNP
- Assume
 - 1. Economy is in a 'steady state': All variables at permanent level, \bar{X}

- Relative price of nontradables/ER primarily influenced by technology, not preferences
- Preferences can impact composition of output
 - Important: Desire for tradables/nontradables can impact GDP/GNP
- Assume
 - 1. Economy is in a 'steady state': All variables at permanent level. \bar{X}
 - 2. Preferences are homothetic (Expenditure shares independent of income)

- Relative price of nontradables/ER primarily influenced by technology, not preferences
- Preferences can impact composition of output
 - Important: Desire for tradables/nontradables can impact GDP/GNP
- Assume
 - 1. Economy is in a 'steady state': All variables at permanent level. \bar{X}
 - 2. Preferences are homothetic (Expenditure shares independent of income)
 - 3. Constant labor supply, $L = \bar{L}_T + \bar{L}_N$
- Decomposition of labor not predetermined

GDP

- Production of tradables vs. nontradables determined by division of labor
 - ullet r, w, and p only determine capital-to-labor ratios

GDP

- Production of tradables vs. nontradables determined by division of labor
 - r, w, and p only determine capital-to-labor ratios

$$ar{Y}_T = rar{K}_T + war{L}_T = [rk_T(r) + w(r)]ar{L}_T$$

$$p(r)ar{Y}_N = [rk_N(r) + w(r)](L - ar{L}_T)$$

• Substitute out \bar{L}_T to get a PPF for (\bar{Y}_N, \bar{Y}_T) :

$$\bar{Y}_T = [rk_T(r) + w(r)]L - \frac{rk_T(r) + w(r)}{rk_N(r) + w(r)}p(r)\bar{Y}_N$$

GDP

- Production of tradables vs. nontradables determined by division of labor
 - r, w, and p only determine capital-to-labor ratios

$$ar{Y}_T = rar{K}_T + war{L}_T = [rk_T(r) + w(r)]ar{L}_T$$

$$p(r)ar{Y}_N = [rk_N(r) + w(r)](L - ar{L}_T)$$

• Substitute out \bar{L}_T to get a PPF for (\bar{Y}_N, \bar{Y}_T) :

$$\bar{Y}_T = [rk_T(r) + w(r)]L - \frac{rk_T(r) + w(r)}{rk_N(r) + w(r)}p(r)\bar{Y}_N$$

- This is the GDP Line, since it denotes 'stuff' produced domestically
- Slope greater than p(r) when N-sector more labor-intensive

$$k_T(r) > k_N(r)$$

GDP Line

- Assume $G_t = 0$
- Must be case that $\bar{I}=0$ since $K_t=K_{t+1}=\bar{K}$

- Assume $G_t = 0$
- Must be case that $\bar{I}=0$ since $K_t=K_{t+1}=\bar{K}$
- Home economy owns assets $ar{Q} = ar{K} + ar{B}$

- Assume $G_t = 0$
- Must be case that $\bar{I}=0$ since $K_t=K_{t+1}=\bar{K}$
- ullet Home economy owns assets $ar{Q}=ar{K}+ar{B}$
- Implies income = $w(r)L + r\bar{Q}$ and BC

$$\bar{C}_T + p(r)\bar{C}_N = w(r)L + r\bar{Q}$$

- Assume $G_t = 0$
- Must be case that $\bar{I}=0$ since $K_t=K_{t+1}=\bar{K}$
- Home economy owns assets $ar{Q} = ar{K} + ar{B}$
- Implies income = $w(r)L + r\bar{Q}$ and BC

$$\bar{C}_T + p(r)\bar{C}_N = w(r)L + r\bar{Q}$$

Re-write to get GNP graph

$$\bar{C}_T = [w(r)L + r\bar{Q}] - p(r)\bar{C}_N$$

- Assume $G_t = 0$
- Must be case that $\bar{I}=0$ since $K_t=K_{t+1}=\bar{K}$
- Home economy owns assets $ar{Q} = ar{K} + ar{B}$
- Implies income = $w(r)L + r\bar{Q}$ and BC

$$\bar{C}_T + p(r)\bar{C}_N = w(r)L + r\bar{Q}$$

Re-write to get GNP graph

$$\bar{C}_T = [w(r)L + r\bar{Q}] - p(r)\bar{C}_N$$

Consumption is GNP since we can write

$$\frac{\bar{C}_T + p(r)\bar{C}_N}{\text{SS Expenditures}} = \underbrace{w(r)L + r\bar{K}}_{\text{SS GDP}} + \underbrace{r\bar{B}}_{\text{SS NFFF}}$$

GDP and GNP

Preferences

- Preferences are homothetic:
 - Optimal choice of C_T , C_N independent of economy's income

Preferences

- Preferences are homothetic:
 - Optimal choice of C_T , C_N independent of economy's income
- Consumer's optimal choice satisfies

$$\frac{\bar{C}_T}{\bar{C}_N} = \mu p(r)$$

for some constant $\mu > 0$

Preferences

- Preferences are homothetic:
 - Optimal choice of C_T , C_N independent of economy's income
- Consumer's optimal choice satisfies

$$\frac{\bar{C}_T}{\bar{C}_N} = \mu p(r)$$

for some constant $\mu > 0$

- ullet Can't trade N-goods, so $ar{Y}_{N}=ar{C}_{N}$
- Implies gap in tradables financed by foreign assets

$$\bar{C}_T - \bar{Y}_T = r\bar{B}$$

Example 1: High Demand for Tradables

Example 1: High Demand for Nontradables

Intuition

- Shifting along GNP line shifts composition of constant \bar{Q}
- Tradables are relatively capital-intensive e.g. manufacturing

Intuition

- Shifting along GNP line shifts composition of constant Q
- Tradables are relatively capital-intensive e.g. manufacturing
 - 1. When economy wants more tradables, it borrows capital from abroad, since capital can cross borders: High \bar{K} and low (negative) \bar{B}

Intuition

- Shifting along GNP line shifts composition of constant Q
- Tradables are relatively capital-intensive e.g. manufacturing
 - 1. When economy wants more tradables, it borrows capital from abroad, since capital can cross borders: High \bar{K} and low (negative) \bar{B}
 - 2. When economy wants more nontradables, domestic capital not as helpful \to Store wealth abroad and use to purchase tradables: Low \bar{K} and high \bar{B}

Zooming Out from Steady State

- May want to know how consumption/prices respond to fluctuations
- Specify preferences and maximization problem:

$$U_t = \sum_{s=t}^{\infty} \beta^{s-t} u(C_s)$$

Use CES to allow for multiple goods i.e. in any period

$$C_s = \Omega(C_{T,s}, C_{N,s}) = \left[\gamma^{\frac{1}{\theta}} C_{T,s}^{\frac{\theta-1}{\theta}} + (1-\gamma)^{\frac{1}{\theta}} C_{N,s}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}}$$

- Consumer solves two problems
 - 1. Intraperiod problem: Optimal composition of C_s in any s
 - 2. Interperiod problem: Optimal sequence of C_1, C_2, \ldots

Zooming Out from Steady State

- May want to know how consumption/prices respond to fluctuations
- Specify preferences and maximization problem:

$$U_t = \sum_{s=t}^{\infty} \beta^{s-t} u(C_s)$$

Use CES to allow for multiple goods i.e. in any period

$$C_s = \Omega(C_{T,s}, C_{N,s}) = \left[\gamma^{\frac{1}{\theta}} C_{T,s}^{\frac{\theta-1}{\theta}} + (1-\gamma)^{\frac{1}{\theta}} C_{N,s}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}}$$

- Consumer solves two problems
 - 1. Intraperiod problem: Optimal composition of C_s in any s
 - 2. *Inter* period problem: Optimal sequence of $C_1, C_2, ...$
- Already solved the second before. Turn to the first

The Intraperiod Problem

 Definition: The Consumption-Based Price Index, P, is the minimum expenditure $C_T + pC_N$ required to set $C = \Omega(C_T, C_N) = 1$, given p i.e.

$$P = \min_{C_T, C_N} C_T + pC_N$$

s.t.
$$\Omega(C_T, C_N) \geq 1$$

 Recall the demand functions implied by CES when total expenditure/income is Z

$$C_T = rac{\gamma Z}{\gamma + (1-\gamma) p^{1- heta}}, \quad C_N = rac{p^{- heta}(1-\gamma) Z}{\gamma + (1-\gamma) p^{1- heta}}$$

 Recall the demand functions implied by CES when total expenditure/income is Z

$$C_T = rac{\gamma Z}{\gamma + (1 - \gamma) p^{1 - heta}}, \quad C_N = rac{p^{- heta} (1 - \gamma) Z}{\gamma + (1 - \gamma) p^{1 - heta}}$$

 Recall the demand functions implied by CES when total expenditure/income is Z

$$C_T = rac{\gamma Z}{\gamma + (1-\gamma) p^{1- heta}}, \quad C_N = rac{p^{- heta} (1-\gamma) Z}{\gamma + (1-\gamma) p^{1- heta}}$$

- Demand functions come from utility-max
 cost-minimization
- If Z = P, then we know that C = 1 i.e.

$$1 = \left\lceil \gamma^{rac{1}{ heta}} \left(rac{\gamma P}{\gamma + (1-\gamma) p^{1- heta}}
ight)^{rac{ heta-1}{ heta}} + (1-\gamma)^{rac{1}{ heta}} \left(rac{p^{- heta} (1-\gamma) P}{\gamma + (1-\gamma) p^{1- heta}}
ight)^{rac{ heta-1}{ heta-1}}
ight
vert$$

 Pull out P from previous expression (and cancel a bunch of stuff) to derive

$$P = \left[\gamma + (1 - \gamma)p^{1 - \theta}\right]^{\frac{1}{1 - \theta}}$$

 Pull out P from previous expression (and cancel a bunch of stuff) to derive

$$P = \left[\gamma + (1 - \gamma)p^{1 - \theta}\right]^{\frac{1}{1 - \theta}}$$

• Notice that we can back out how many 'units' of consumption were purchased from expenditure ${\cal Z}$

$$C=\frac{Z}{P}$$

which implies

$$P \times C = Z$$

 Pull out P from previous expression (and cancel a bunch of stuff) to derive

$$P = \left[\gamma + (1 - \gamma)p^{1 - \theta}\right]^{\frac{1}{1 - \theta}}$$

 Notice that we can back out how many 'units' of consumption were purchased from expenditure Z

$$C=\frac{Z}{P}$$

which implies

$$P \times C = Z$$

- Problem shrinks to one good (C) in one price (P)!
- Intertemporal problem easy now!

Implications

• Plug $Z=C[\gamma+(1-\gamma)p^{1-\theta}]^{\frac{1}{1-\theta}}$ into demand to see how consumption shares depend on prices and price-index

$$\frac{C_T}{C} = \gamma \left(\frac{1}{P}\right)^{-\theta}, \quad \frac{C_N}{C} = (1 - \gamma) \left(\frac{p}{P}\right)^{-\theta}$$

ullet When heta o 1 and we go to Cobb-Douglas utility, we get

$$P = (1)^{\gamma} p^{1-\gamma}$$

which we used in our analysis of exchange rates

The Intertemporal Problem

• Consumer wants to maximize $\sum_{s=t}^{\infty} \beta^{s-t} u(C_s)$ s.t. a lifetime budget constraint:

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} P_s C_s = (1+r)Q_t + \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} (w_s L_s - G_s)$$

The Intertemporal Problem

• Consumer wants to maximize $\sum_{s=t}^{\infty} \beta^{s-t} u(C_s)$ s.t. a lifetime budget constraint:

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} P_s C_s = (1+r)Q_t + \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} (w_s L_s - G_s)$$

• The NPV of all investment and returns on capital/foreign assets is reflected in \mathcal{Q}_t

The Intertemporal Problem

• Consumer wants to maximize $\sum_{s=t}^{\infty} \beta^{s-t} u(C_s)$ s.t. a lifetime budget constraint:

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} P_s C_s = (1+r)Q_t + \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} (w_s L_s - G_s)$$

- The NPV of all investment and returns on capital/foreign assets is reflected in Q_t
- Alternatively, write period by period BC into utility direction

$$U_t = \sum_{s=t}^{\infty} \beta^{s-t} u \left(\frac{(1+r)Q_s - Q_{s+1} + w_s L_s - G_s}{P_s} \right)$$

Recall that both K and B yield return r in equilibrium:
 Decomposition of Q doesn't matter for individual consumer

Solving

• FOC(Q_{s+1}) reveals Euler equation

$$\frac{u'(C_s)}{P_s} = \beta(1+r)\frac{u'(C_{s+1})}{P_{s+1}}$$

scaled by prices in each period

• Remember, P_s determined by p_s , in turn determined by r, $A_{T,s}$, and $A_{N,s}$

Solving

• $FOC(Q_{s+1})$ reveals Euler equation

$$\frac{u'(C_s)}{P_s} = \beta(1+r)\frac{u'(C_{s+1})}{P_{s+1}}$$

scaled by prices in each period

- Remember, P_s determined by p_s , in turn determined by r, $A_{T,s}$, and $A_{N,s}$
- Combine Euler Equation with budget constraint for solution (just like before)

Solving

• $FOC(Q_{s+1})$ reveals Euler equation

$$\frac{u'(C_s)}{P_s} = \beta(1+r)\frac{u'(C_{s+1})}{P_{s+1}}$$

scaled by prices in each period

- Remember, P_s determined by p_s , in turn determined by r, $A_{T,s}$, and $A_{N,s}$
- Combine Euler Equation with budget constraint for solution (just like before)
- At end of day, not any harder to solve than standard model with one sector!