INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

Dynamic Bayesian Networks: Representation, Inference and Learning

by

Kevin Patrick Murphy

B.A. Hon. (Cambridge University) 1992 M.S. (University of Pennsylvania) 1994

A dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Stuart Russell, Chair Professor Michael Jordan Professor Peter Bickel Professor Jeffrey Bilmes

Fall 2002

UMI Number: 3082340

UMI Microform 3082340

Copyright 2003 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 Dynamic Bayesian Networks:

Representation, Inference and Learning

Copyright 2002

by

Kevin Patrick Murphy

ABSTRACT

Dynamic Bayesian Networks:

Representation, Inference and Learning
by

Kevin Patrick Murphy

Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Stuart Russell, Chair

Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs and KFMs are limited in their "expressive power". Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.

In particular, the main novel technical contributions of this thesis are as follows: a way of representing Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of $O(T^3)$, where T is the length of the sequence; an exact smoothing algorithm that takes $O(\log T)$ space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.

DEDICATION

To my parents

for letting me pursue my dream

for so long

so far away from home

&

To my wife for giving me new dreams to pursue

ACKNOWLEDGMENTS

I would like to thank my advisor, Stuart Russell, for supporting me over the years, and for giving me so much freedom to explore and discover new areas of probabilistic AI. My other committee members have also been very supportive. Michael Jordan has long been an inspiration to me. His classes and weekly meetings have proved to be one of my best learning experiences at Berkeley. Jeff Bilmes proved to be a most thorough reviewer, as I expected, and has kept me honest about all the details. Peter Bickel brought a useful outsider's perspective to the thesis, and encouraged me to make it more accessible to non computer scientists (although any failings in this regard are of course my fault).

I would like to thank my many friends and colleagues at Berkeley with whom I have had the pleasure of working over the years. These include Eyal Amir, David Andre, Serge Belongie, Jeff Bilmes, Nancy Chang, Nando de Freitas, Nir Friedman, Paul Horton, Srini Narayanan, Andrew Ng, Mark Paskin, Sekhar Tatikonda, Yair Weiss, Erix Xing, Geoff Zweig, and all the members of the RUGS and IR groups.

I would like to thank Jim Rehg for hiring me as an intern at DEC/Compaq/HP Cambridge Research Lab in 1997, where my Bayes Net Toolbox (BNT) was born. I would like to thank Gary Bradski for hiring me as an intern at Intel in 2000 to work on BNT, and for providing me with the opportunity to work with people spanning three countries formerly known as superpowers — USA, China and Russia. In particular, I would like to thank Wei Hu and Yimin Zhang, of ICRC, for their help with BNT. I would also like to thank the many people on the web who have contributed bug fixes to BNT. By chance, I was able to work with Sebastian Thrun during part of my time with Intel, for which I am very grateful.

I would like to thank my friends in Jennie Nation and beyond for providing a welcome distraction from school. Finally, I would like to thank my wife Margaret for putting up with my weekends in the office, for listening to my sagas from Soda land, and for giving me the motivation to finish this thesis.

Contents

1 Introduction			
	1.1	State-space models	1
		1.1.1 Representation	3
		1.1.2 Inference	4
		1.1.3 Learning	7
	1.2	Hidden Markov Models (HMMs)	9
		1.2.1 Representation	9
		1.2.2 Inference	10
		1.2.3 Learning	10
		1.2.4 The problem with HMMs	11
	1.3	Kalman Filter Models (KFMs)	12
		1.3.1 Representation	12
		1.3.2 Inference	13
		1.3.3 Learning	13
		1.3.4 The problem with KFMs	14
	1.4	Overview of the rest of the thesis	14
	1.5	A note on software	16
	1.6	Declaration of previous work	16
_	DDN	I. Divining Australia	• 0
2	DRL	•	18
	2.1	Introduction	18
	2.2	DBNs defined	18
	2.3	Representing HMMs and their variants as DBNs	20
		2.3.1 HMMs with mixture-of-Gaussians output	21
		2.3.2 HMMs with semi-tied mixtures	22
		2.3.3 Auto-regressive HMMs	23
		2.3.4 Buried Markov Models	24

		2.3.5	Mixed-memory Markov models	24
		2.3.6	Input-output HMMs	25
		2.3.7	Factorial HMMs	26
		2.3.8	Coupled HMMs	27
		2.3.9	Hierarchical HMMs (HHMMs)	28
		2.3.10	HHMMs for Automatic speech recognition (ASR)	35
		2.3.11	Asynchronous IO-HMMs	41
		2.3.12	Variable-duration (semi-Markov) HMMs	41
		2.3.13	Mixtures of HMMs	43
		2.3.14	Segment models	44
			Abstract HMMs	46
	2.4	Contin	nuous-state DBNs	49
		2.4.1	Representing KFMs as DBNs	49
		2.4.2	Vector autoregressive (VAR) processes	49
		2.4.3	Switching KFMs	51
		2.4.4	Fault diagnosis in hybrid systems	52
		2.4.5	Combining switching KFMs with segment models	53
		2.4.6	Data association	55
		2.4.7	Tracking a variable, unknown number of objects	56
	2.5	First or	rder DBNs	57
3	Exa	ct infere	ence in DBNs	58
	3.1	Introdu	action	58
	3.2	The for	rwards-backwards algorithm	58
		3.2.1	The forwards pass	59
		3.2.2	The backwards pass	60
		3.2.3	An alternative backwards pass	60
		3.2.4	Two-slice distributions	61
		3.2.5	A two-filter approach to smoothing	61
		3.2.6	Time and space complexity of forwards-backwards	62
		3.2.7	Abstract forwards and backwards operators	63
	3.3	The fro	ontier algorithm	63
		3.3.1	Forwards pass	64
		3.3.2	Backwards pass	64

		3.3.3	Example	65
		3.3.4	Complexity of the frontier algorithm	66
	3.4	The in	terface algorithm	67
		3.4.1	Constructing the junction tree	70
		3.4.2	Forwards pass	71
		3.4.3	Backwards pass	72
		3.4.4	Complexity of the interface algorithm	72
	3.5	Comp	utational complexity of exact inference in DBNs	73
		3.5.1	Offline inference	73
		3.5.2	Constrained elimination orderings	73
		3.5.3	Consequences of using constrained elimination orderings	74
		3.5.4	Online inference	76
		3.5.5	Conditionally tractable substructure	78
	3.6	Contin	nuous state spaces	80
		3.6.1	Inference in KFMs	80
		3.6.2	Inference in general linear-Gaussian DBNs	81
		3.6.3	Switching KFMs	82
		3.6.4	Non-linear/ non-Gaussian models	82
	3.7	Online	and offline inference using forwards-backwards operators	82
		3.7.1	Space-efficient offline smoothing (the Island algorithm)	83
		3.7.2	Fixed-lag (online) smoothing	87
		3.7.3	Online filtering	89
4	App	roxima	te inference in DBNs: deterministic algorithms	90
	4.1		uction	90
	4.2		te-state DBNs	91
		4.2.1	The Boyen-Koller (BK) algorithm	91
		4.2.2	The factored frontier (FF) algorithm	95
		4.2.3	Loopy belief propagation (LBP)	95
		4.2.4	Experimental comparison of FF, BK and LBP	97
	4.3	Switch	ning KFMs	98
		4.3.1	GPB (moment matching) algorithm	98
		4.3.2	Viterbi approximation	102
		4.3.3	Expectation propagation	102

		4.3.4	Variational methods	103
	4.4	Non-line	ear/ non-Gaussian models	104
		4.4.1	Filtering	104
		4.4.2	Sequential parameter estimation	104
		4.4.3	Smoothing	104
5	App	roximate	inference in DBNs: stochastic algorithms	105
	5.1	Introduc	ction	105
	5.2	Particle	filtering	106
		5.2.1	Particle filtering for DBNs	107
	5.3	Rao-Bla	ckwellised Particle Filtering (RBPF)	111
		5.3.1	RBPF for switching KFMs	112
		5.3.2	RBPF for simultaneous localisation and mapping (SLAM)	114
		5.3.3	RBPF for general DBNs: towards a turn-key algorithm	122
	5.4	Smoothi	ing	123
		5.4.1	Rao-Blackwellised Gibbs sampling for switching KFMs	123
6	DBN	ls: learni	ing	126
	6.1	Differen	ces between learning static and dynamic networks	126
		6.1.1	Parameter learning	126
		6.1.2	Structure learning	127
	6.2	Applicat	tions	128
		6.2.1	Learning genetic network topology using structural EM	128
		6.2.2	Inferring motifs using HHMMs	131
		6.2.3	Inferring people's goals using abstract HMMs	133
		6.2.4	Modelling freeway traffic using coupled HMMs	134
		6.2.5	Online parameter estimation and model selection for regression	144
A	Gra	phical mo	odels: representation	148
	A.1	Introduc	etion	148
	A.2	Undirect	ted graphical models	148
		A.2.1	Representing potential functions	152
		A.2.2	Maximum entropy models	152
	A.3	Directed	l graphical models	152
		A31 1	Raves hall	154

		A.3.2	Parsimonious representations of CPDs	155
	A.4	Factor	graphs	159
	A.5	First-o	rder probabilistic models	160
		A.5.1	Knowledge-based model construction (KBMC)	161
		A.5.2	Object-oriented Bayes nets	162
		A.5.3	Probabilistic relational models	163
В	Gra	phical n	nodels: inference	164
	B.1	Introdu	action	164
	B.2	Variab	le elimination	164
	B.3	From g	graph to junction tree	166
		B.3.1	Elimination	166
		B.3.2	Triangulation	170
		B.3.3	Elimination trees	170
		B.3.4	Junction trees	171
		B.3.5	Finding a good elimination ordering	174
		B.3.6	Strong junction trees	174
	B.4	Messag	ge passing	175
		B.4.1	Initialization	175
		B.4.2	Parallel protocol	175
		B.4.3	Serial protocol	176
		B.4.4	Absorption via separators	178
		B.4.5	Hugin vs Shafer-Shenoy	178
		B.4.6	Message passing on a directed polytree	179
		B.4.7	Correctness of message passing	180
		B.4.8	Handling evidence	181
	B.5	B.5 Message passing with continuous random variables		182
		B.5.1	Pure Gaussian case	182
		B.5.2	Conditional Gaussian case	185
		B.5.3	Arbitrary CPDs	187
	B.6	Speedi	ng up exact discrete inference	188
		B.6.1	Exploiting causal independence	188
		B.6.2	Exploiting context specific independence (CSI)	189
		B 6 3	Exploiting deterministic CPDs	120

		B.6.4	Exploiting the evidence	190
		B.6.5	Being lazy	190
	B.7	Appro	ximate inference	191
		B.7.1	Loopy belief propagation (LBP)	191
		B.7.2	Expectation propagation (EP)	195
		B.7.3	Variational methods	198
		B.7.4	Sampling methods	198
		B.7.5	Other approaches	199
С	Gra	phical n	nodels: learning	200
	C .1	Introdu	action	200
	C.2	Known	structure, full observability, frequentist	202
		C.2.1	Multinomial distributions	203
		C.2.2	Conditional linear Gaussian distributions	
		C.2.3	Other CPDs	205
	C.3	Known	structure, full observability, Bayesian	207
		C.3.1	Multinomial distributions	207
		C.3.2	Gaussian distributions	210
		C.3.3	Conditional linear Gaussian distributions	210
		C.3.4	Other CPDs	210
	C.4	Known	structure, partial observability, frequentist	210
		C.4.1	Gradient ascent	211
		C.4.2	EM algorithm	212
		C.4.3	EM vs gradient methods	213
		C.4.4	Local minima	218
		C.4.5	Online parameter learning algorithms	218
	C.5	Known	structure, partial observability, Bayesian	220
	C.6	Unkno	wn structure, full observability, frequentist	220
		C.6.1	Search space	221
		C.6.2	Search algorithm	222
		C.6.3	Scoring function	224
	C.7	Unkno	wn structure, full observability, Bayesian	226
		C.7.1	The proposal distribution	227
	CR	Unkno	wn structure, partial observability, frequentist	228

D	Nota	tion an	d abbreviations	235
		C.11.3	Estimating a spherical covariance matrix	233
		C.11.2	Estimating a full covariance matrix	233
		C.11.1	Estimating the regression matrix	232
	C.11	Derivat	tion of the CLG parameter estimation formulas	232
	C.10	Inventi	ng new hidden nodes	232
	C.9	Unkno	wn structure, partial observability, Bayesian	230
		C.8.2	Structural EM	229
		C.8.1	Approximating the marginal likelihood	228

Chapter 1

Introduction

1.1 State-space models

Sequential data arises in many areas of science and engineering. The data may either be a time series, generated by a dynamical system, or a sequence generated by a 1-dimensional spatial process, e.g., biosequences. One may be interested either in online analysis, where the data arrives in real-time, or in offline analysis, where all the data has already been collected.

In online analysis, one common task is to predict future observations, given all the observations up to the present time, which we will denote by $y_{1:t} = (y_1, \ldots, y_t)$. (In this thesis, we only consider discrete-time systems, hence t is always an integer.) Since we will generally be unsure about the future, we would like to compute a best guess. In addition, we might want to know how confident we are of this guess, so we can hedge our bets appropriately. Hence we will try to compute a probability distribution over the possible future observations; we denote this by $P(y_{t+h}|y_{1:t})$, where h>0 is the horizon, i.e., how far into the future we want to predict.

Sometimes we have some control over the system we are monitoring. In this case, we would like to predict future outcomes as a function of our inputs. Let $u_{1:t}$ denote our past inputs, and $u_{t+1:t+h}$ denote our next h inputs. Now the task is to compute $P(y_{t+h}|u_{1:t+h},y_{1:t})$.

"Classical" approaches to time-series prediction use linear models, such as ARIMA, ARMAX, etc. (see e.g., [Ham94]), or non-linear models, such as neural networks (either feedforward or recurrent) or decision trees [MCH02]. For discrete data, it is common to use *n*-gram models (see e.g., [Jel97]) or variable-length Markov models [RST96, McC95].

There are several problems with the classical approach. First, we must base our prediction of the future on only a finite window into the past, say $y_{t-\ell:t}$, where $\ell \geq 0$ is the lag, if we are to do constant work per time step. If we know that the system we are modelling is Markov with an order $\leq \ell$, we will suffer no loss of performance, but in general the order may be large and unknown. Recurrent neural nets try to overcome this problem by using internal state, but they are still not able to model long-distance dependencies

[BF95]. Second, it is difficult to incorporate prior knowledge into the classical approach: much of our knowledge cannot be expressed in terms of directly observable quantities, and black-box models, such as neural networks, are notoriously hard to interpret. Third, the classical approach has difficulties when we have multi-dimensional (multi-variate) inputs and/or outputs. For instance, consider the problem of predicting (and hence compressing) the next frame in a video stream using a neural network. Actual video compression schemes (such as MPEG) try to infer the underlying "cause" behind what they see, and use that to predict the next frame. This is the basic idea behind state-space models, which we discuss next.

In a state-space model, we assume that there is some underlying hidden state of the world that generates the observations, and that this hidden state evolves in time, possibly as a function of our inputs. In an online setting, the goal is to infer the hidden state given the observations up to the current time. If we let X_t represent the hidden state at time t, then we can define our goal more precisely as computing $P(X_t|y_{1:t},u_{1:t})$; this is called the belief state.

Astrom [Ast65] proved that the belief state is a sufficient statistic for prediction/control purposes, i.e., we do not need to keep around any of the past observations. We can update the belief state recursively using Bayes rule, as we explain below. As in the case of prediction, we maintain a probability distribution over X_t , instead of just a best guess, in order to properly reflect our uncertainty about the "true" state of the world. This can be useful for information gathering; for instance, if we know we are lost, we may choose to ask for directions.

State-space models are better than classical time-series modelling approaches in many respects [Aok87, Har89, WH97, DK00, DK01]. In particular, they overcome all of the problems mentioned above: they do not suffer from finite-window effects, they can easily handle discrete and multi-variate inputs and outputs, and they can easily incorporate prior knowledge. For instance, often we know that there are variables that we cannot measure, but whose state we would like to estimate; such variables are called hidden or latent. Including these variables allows us to create models which may be much closer to the "true" causal structure of the domain we are modelling [Pea00].

Even if we are only interested in observable variables, introducing "fictitious" hidden variables often results in a much simpler model. For example, the apparent complexity of an observed signal may be more simply explained by imagining it is a result of two simple processes, the "true" underlying state, which may evolve deterministically, and our measurement of the state, which is often noisy. We can then "explain

¹The term "state-space model" is often used to imply that the hidden state is a vector in \mathbb{R}^K , for some K; I use the term more generally to mean a dynamical model which uses any kind of hidden state, whether it is continuous, discrete or both. e.g., I consider HMMs an example of a state-space model. In contrast to most work on time series analysis, this thesis focuses on models with discrete and mixed discrete-continuous states. One reason for this is that DBNs have their biggest payoff in the discrete setting: combining multiple continuous variables together results in a polynomial increase in complexity (see Section 2.4.2), but combining multiple discrete variables results in an exponential increase in complexity, since the new "mega" state-space is the cross product of the individual variables' state-spaces; DBNs help ameliorate this combinatorial explosion, as we shall see in Chapter 2.

²This assumes that the hidden state space is sufficiently rich. We discuss some ways to learn the hidden state space in Chapter 6. However, learning hidden state representations is difficult, which has motivated alternative forms of sufficient statistics [LSS01].

away" unexpected outliers in the observations in terms of a faulty sensor, as opposed to strange fluctuations in "reality". The underlying state may be of much lower dimensionality than the observed signal, as in the video compression example mentioned above.

In the following subsections, we discuss, in general terms, how to represent state-space models, how to use them to update the belief state and perform other related inference problems, and how to learn such models from data. We then discuss the two most common kinds of state-space models, namely Hidden Markov Models (HMMs) and Kalman Filter Models (KFMs). In subsequent chapters of this thesis, we will discuss representation, inference and learning of more general state-space models, called Dynamic Bayesian Networks (DBNs). A summary of the notation and commonly used abbreviations can be found in Appendix D.

1.1.1 Representation

Any state-space model must define a prior, $P(X_1)$, a state-transition function, $P(X_t|X_{t-1})$, and an observation function, $P(Y_t|X_t)$. In the controlled case, these become $P(X_t|X_{t-1}, U_t)$ and $P(Y_t|X_t, U_t)$; we allow the observation to depend on the control so that we can model active perception. For most of this thesis, we will omit U_t from consideration, for notational simplicity.

We assume that the model is first-order Markov, i.e., $P(X_t|X_{1:t-1}) = P(X_t|X_{t-1})$; if not, we can always make it so by augmenting the state-space. For example, if the system is second-order Markov, we just define a new state-space, $\tilde{X}_t = (X_t, X_{t-1})$, and set

$$P(\bar{X}_t = (x_t, x_{t-1}) | \bar{X}_{t-1} = (x'_{t-1}, x_{t-2})) = \delta(x_{t-1}, x'_{t-1}) P(x_t | x_{t-1}, x_{t-2}).$$

Similarly, we can assume that the observations are conditionally first-order Markov: $P(Y_t|Y_{1:t-1}, X_t) = P(Y_t|X_t, Y_{t-1})$. This is usually further simplified by assuming $P(Y_t|Y_{t-1}, X_t) = P(Y_t|X_t)$. These conditional independence relationships will be explained more clearly in Chapter 2.

We assume that the transition and observation functions are the same for all time; the model is said to be time-invariant or homogeneous. (Without this assumption, we could not model infinitely long sequences.) If the parameters do change over time, we can just add them to the state space, and treat them as additional random variables, as we will see in Section 6.1.1.

There are many ways of representing state-space models, the most common being Hidden Markov Models (HMMs) and Kalman Filter Models (KFMs). HMMs assume X_t is a discrete random variable³, $X_t \in \{1, \ldots, K\}$, but otherwise make essentially no restrictions on the transition or observation function; we will explain HMMs in more detail in Section 1.2. Kalman Filter Models (KFMs) assume X_t is a vector of continuous random variables, $X_t \in R^K$, and that $X_{1:T}$ and $Y_{1:T}$ are jointly Gaussian. We will explain

³In this thesis, all discrete random variables will be considered unordered (cardinal), as opposed to ordered (ordinal), unless otherwise stated. (For example, $X_t \in \{\text{male}, \text{female}\}\$ is cardinal, but $X_t \in \{\text{low}, \text{medium}, \text{high}\}\$ is ordinal.) Ordinal values are sometimes useful for qualitative probabilistic networks [Wel90].

Figure 1.1: The main kinds of inference for state-space models. The shaded region is the interval for which we have data. The arrow represents the time step at which we want to perform inference. t is the current time, and T is the sequence length. See text for details.

KFMs in more detail in Section 1.3. Dynamic Bayesian Networks (DBNs) [DK89, DW91] provide a much more expressive language for representing state-space models; we will explain DBNs in Chapter 2.

A state-space model is a model of how X_t generates or "causes" Y_t and X_{t+1} . The goal of inference is to invert this mapping, i.e., to infer $X_{1:t}$ given $Y_{1:t}$. We discuss how to do this below.

1.1.2 Inference

We now discuss the main kinds of inference that we might want to perform using state-space models; see Figure 1.1 for a summary. The details of how to perform these computations depend on which model and which algorithm we use, and will be discussed later.

Filtering

The most common inference problem in online analysis is to recursively estimate the belief state using Bayes' rule:

$$P(X_t|y_{1:t}) \propto P(y_t|X_t, y_{1:t-1})P(X_t|y_{1:t-1})$$

$$= P(y_t|X_t) \left[\sum_{x_{t-1}} P(X_t|x_{t-1})P(x_{t-1}|y_{1:t-1}) \right]$$

where the constant of proportionality is $1/c_t = 1/P(y_t|y_{1:t-1})$. We are licensed to replace

 $P(y_t|X_t,y_{1:t-1})$ by $P(y_t|X_t)$ because of the Markov assumption on Y_t . Similarly, the one-step-ahead prediction, $P(X_t|y_{1:t-1})$, can be computed from the prior belief state, $P(X_{t-1}|y_{1:t-1})$, because of the Markov

assumption on X_t .

We see that recursive estimation consists of two main steps: predict and update; predict means computing $P(X_t|y_{1:t-1})$, sometimes written as $\hat{X}_{t|t-1}$, and update means computing $P(X_t|y_{1:t})$, sometimes written as $\hat{X}_{t|t}$. Once we have computed the prediction, we can throw away the old belief state; this operation is sometimes called "rollup". Hence the overall procedure takes constant space and time (i.e., independent of t) per time step.

This task is traditionally called "filtering", because we are filtering out the noise from the observations (see Section 1.3.1 for an example). However, in some circumstances the term "monitoring" might be more appropriate. For example, X_t might represent the state of a factory (e.g., which pipes are malfunctioning), and we wish to monitor the factory state over time.

Smoothing

Sometimes we want to estimate the state of the past, given all the evidence up to the current time, i.e., compute $P(X_{t-\ell}|y_{1:t})$, where $\ell>0$ is the lag, e.g., we might want to figure out whether a pipe broke L minutes ago given the current sensor readings. This is traditionally called "fixed-lag smoothing", although the term "hindsight" might be more appropriate. In the offline case, this is called (fixed-interval) smoothing; this corresponds to computing $P(X_t|y_{1:T})$ for all $1 \le t \le T$.

Smoothing is important for learning, as we discuss in Section 1.1.3.

Prediction

In addition to estimating the current or past state, we might want to predict the future, i.e., compute $P(X_{t+h}|y_{1:t})$, where h > 0 is how far we want to look-ahead. Once we have predicted the future hidden state, we can easily convert this into a prediction about the future observations by marginalizing out X_{t+h} :

$$P(Y_{t+h} = y|y_{1:t}) = \sum_{x} P(Y_{t+h} = y|X_{t+h} = x)P(X_{t+h} = x|y_{1:t})$$

If the model contains input variables U_t , we must specify $u_{t+1:t+h}$ in order to predict the effects of our actions h steps into the future, since this is a conditional likelihood model.

Control

In control theory, the goal is to learn a mapping from observations or belief states to actions (a policy) so as to maximize expected utility (or minimize expected cost). In the special case where our utility function rewards us for achieving a certain value for the output of the system (reaching a certain observed state), it is sometimes possible to pose the control problem as an inference problem [Zha98a, DDN01, BMI99]. Specifically, we set Y_{t+h} to the desired output value (and leave $Y_{t+1:t+h-1}$ hidden), and then infer the values (if any) for U_{t+1}, \ldots, U_{t+h} which will achieve this, where h is our guess about how long it will take to achieve the goal.

(We can use dynamic programming to efficiently search over h.) The cost function gets converted into a prior on the control/input variable. For example, if the prior over U_t is Gaussian, $\mathcal{N}(U_t; 0, \Sigma)$, $U_t \sim \mathcal{N}(0, \Sigma)$, then the mode of the posterior $P(U_{t+1:t+h}|y_{1:t}, y_{t+h}, u_{1:t})$ will correspond to a sequence of minimal controls (minimal in the sense of having the smallest possible length, as measured by a Mahalanobis distance using Σ) which achieves the desired output sequence.

If U_t is discrete, inference amounts to enumerating all possible assignments to $U_{t+1:t+h}$, as in a decision tree; this is called receeding horizon control. We can (approximately) solve the infinite horizon control using similar methods so long as we discount future rewards at a suitably high rate [KMN99].

The general solution to control problems requires the use of influence diagrams (see e.g., [CDLS99, ch8], [LN01]). We will not discuss this topic further in this thesis.

Viterbi decoding

In Viterbi decoding (also called "abduction" or computing the "most probable explanation"), the goal is to compute the most likely sequence of hidden states given the data:

$$x_{1:t}^* = \arg\max_{x_{1:t}} P(x_{1:t}|y_{1:t})$$

(In the following subsection, we assume that the state space is discrete.)

By Bellman's principle of optimality, the most likely to path to reach state x_t consists of the most likely path to *some* state at time t-1, followed by a transition to x_t . Hence we can compute the overall most likely path as follows. In the forwards pass, we compute

$$\delta_t(j) = P(y_t|X_t = j) \max_i P(X_t = j|X_{t-1} = i)\delta_{t-1}(i)$$

where

$$\delta_t(j) \stackrel{\text{def}}{=} \max_{x_1, \dots, t} P(X_{1:t} = x_{1:t-1}, X_t = j | y_{1:t}).$$

This is the same as the forwards pass of filtering, except we replace sum with max (see Section B.2). In addition, we keep track of the identity of the most likely predecessor to each state:

$$\psi_t(j) = \arg\max_i P(X_t = j | X_{t-1} = i) \delta_{t-1}(i)$$

In the backwards pass, we can compute the identity of the most likely path recursively as follows:

$$x_t^* = \psi_{t+1}(x_{t+1}^*)$$

Note that this is different than finding the most likely (marginal) state at time t.

One application of Viterbi is in speech recognition. Here, X_t typically represents a phoneme or syllable, and Y_t typically represents a feature vector derived from the acoustic signal [Jel97]. $x_{1:t}^*$ is the most likely

hypothesis about what was just said. We can compute the N best hypotheses in a similar manner [Nil98, NG01].

Another application of Viterbi is in biosequence analysis, where we are interested in offline analysis of a fixed-length sequence, $y_{1:T}$. Y_t usually represents the DNA base-pair or amino acid at location t in the string. X_t often represents whether Y_t was generated by substitution, insertion or deletion compared to some putative canonical family sequence. As in speech recognition, we might be interested in finding the most likely "parse" or interpretation of the data, so that we can align the observed sequence to the family model.

Classification

The likelihood of a model, M, is $P(y_{1:t}|M)$, and can be computed by multiplying together all the normalizing constants that arose in filtering:

$$P(y_{1:t}) = P(y_1)P(y_2|y_1)P(y_3|y_{1:2})\dots P(y_T|y_{1:T-1}) = \prod_{t=1}^{T} c_t$$
 (1.1)

which follows from the chain rule of probability. This can be used to classify a sequence as follows:

$$C^*(y_{1:T}) = \arg \max_{C} P(y_{1:T}|C)P(C)$$

where $P(y_{1:T}|C)$ is the likelihood according to the model for class C, and P(C) is the prior for class C. This method has the advantage of being able to handle sequences of variable-length. By contrast, most classifiers work with fixed-sized feature vectors.⁴

Summary

We summarize the various inference problems in Figure 1.1. In Section 3.7, we will show how all of the above algorithms can be formulated in terms of a set of abstract operators which we will call forwards and backwards operators. There are many possible implementations of these operators which make different tradeoffs between accuracy, speed, generality, etc. In Sections 1.2 and 1.3, we will see how to implement these operators for HMMs and KFMs. In later chapters, we will see different implementations of these operators for general DBNs.

1.1.3 Learning

A state-space model usually has some free parameters θ which are used to define the transition model, $P(X_t|X_{t-1})$, and the observation model, $P(Y_t|X_t)$. Learning means estimating these parameters from data; this is often called system identification.

⁴One could pretend that successive observations in the sequence are iid, and then apply a naive Bayes classifier: $P(y_{1:T}|C) = \prod_{t=1}^{T} P(y_{t}|C)$. However, often it matters in what order the observations arrive, e.g., in classifying a string of letters as a word. There has been some work on applying support vector machines to variable length sequences [JH99], but this uses an HMM as a subroutine.

The usual criterion is maximum-likelihood (ML), which is suitable if we are doing off-line learning with large data sets. Suppose, as is typical in speech recognition and bio-sequence analysis, that we have N_{train} iid sequences, $Y = (y_{1:T}^1, \dots, y_{1:T}^{N_{\text{train}}})$, where we have assumed each sequence has the same length T for notational simplicity. Then the goal of learning is to compute

$$\theta_{ML}^* = \arg \max_{\theta} P(Y|\theta) = \arg \max_{\theta} \log P(Y|\theta)$$

where the log-likelihood of the training set is

$$\log P(Y|\theta) = \log \prod_{m=1}^{N_{\text{train}}} P(y_{1:T}^m|\theta) = \sum_{m=1}^{N_{\text{train}}} \log P(y_{1:T}^m|\theta)$$

A minor variation is to include a prior on the parameters and compute the MAP (maximum a posteriori) solution

$$\theta_{MAP}^* = \arg\max_{\theta} \log P(Y|\theta) + \log P(\theta)$$

This can be useful when the number of free parameters is much larger than the size of the dataset (the prior acting like a regularizer to prevent overfitting), and for online learning (where at timestep t the dataset only has size t).

What makes learning state-space models difficult is that some of the variables are hidden. This means that the likelihood surface is multi-modal, making it difficult to find the globally optimal parameter value.⁵ Hence most learning methods just attempt to find a locally optimal solution.

The two standard techniques for ML/MAP parameter learning are gradient ascent⁶, and EM (expectation maximization), both of which are explained in Appendix C. Note that both methods use inference as a subroutine, and hence efficient inference is a prerequisite for efficient learning. In particular, for offline learning, we need need to perform fixed-interval smoothing (i.e., computing $P(X_t|y_{1:T},\theta)$ for all t): learning with filtering may fail to converge correctly. To see why, consider learning to solve murders: hindsight is always required to infer what happened at the murder scene.⁷

For online learning, we can use fixed-lag smoothing combined with online gradient ascent or online EM. Alternatively, we can adopt a Bayesian approach and treat the parameters as random variables, and just add them to the state-space. Then learning just amounts to filtering (i.e., sequential Bayesian updating) in the augmented model, $P(X_t, \theta_t|y_{1:t})$. Unfortunately, inference in such models is often very difficult, as we will see.

A much more ambitious task than parameter learning is to learn the structure (parametric form) of the model. We will discuss this in Chapter 6.

⁵One trivial source of multi-modality has to do with symmetries in the hidden state-space. Often we can permute the labels of the hidden states without affecting the likelihood.

⁶Ascent, rather than descent, since we are trying to maximize likelihood.

⁷This example is from [RN02].

1.2 Hidden Markov Models (HMMs)

We now give a brief introduction to HMMs.⁸ The main purpose of this section is to introduce notation and concepts in a simple and (hopefully) familiar context; these will be generalized to the DBN case later.

1.2.1 Representation

An HMM is a stochastic finite automaton, where each state generates (emits) an observation. We will use X_t to denote the hidden state and Y_t to denote the observation. If there are K possible states, then $X_t \in \{1, \ldots, K\}$. Y_t might be a discrete symbol, $Y_t \in \{1, \ldots, L\}$, or a feature-vector, $Y_t \in \mathbb{R}^L$.

The parameters of the model are the initial state distribution, $\pi(i) = P(X_1 = i)$, the transition model, $A(i,j) = P(X_t = j | X_{t-1} = i)$, and the observation model $P(Y_t | X_t)$.

 $\pi(\cdot)$ represents a multinomial distribution. The transition model is usually characterized by a conditional mulitnomial distribution: $A(i,j) = P(X_t = j | X_{t-1} = i)$, where A is a stochastic matrix (each row sums to one). The transition matrix A if often sparse; the structure of the matrix is often depicted graphically, as in Figure 1.2 which depicts a left-to-right transition matrix. (This means low numbered states can only make transitions to higher numbered states or to themselves.) Such graphs should not be confused with the graphical models we will introduce in Chapter 2.

Figure 1.2: A left-to-right state transition diagram for a 4-state HMM. Nodes represent states, and arrows represent allowable transitions, i.e., transitions with non-zero probability. The self-loop on state 2 means $P(X_t = 2|X_{t-1} = 2) = A(2,2) > 0$.

If the observations are discrete symbols, we can represent the observation model as a matrix: $B(i, k) = P(Y_t = k | X_t = i)$. If the observations are vectors in \mathbb{R}^L , it is common to represent $P(Y_t | X_t)$ as a Gaussian:

$$P(Y_t = y | X_t = i) = \mathcal{N}(y; \mu_i, \Sigma_i)$$

where $\mathcal{N}(y; \mu, \Sigma)$ is the Gaussian density with mean μ and covariance Σ evaluated at y:

$$\mathcal{N}(y; \mu, \Sigma) = \frac{1}{(2\pi)^{L/2} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(y - \mu)' \Sigma^{-1}(y - \mu)\right)$$

A more flexible representation is a mixture of M Gaussians:

$$P(Y_t = y | X_t = i) = \sum_{m=1}^{M} P(M_t = m | X_t = i) \mathcal{N}(y; \mu_{m,i}, \Sigma_{m,i})$$

where M_t is a hidden variable that specifies which mixture component to use, and $P(M_t = m | X_t = i) = C(i, m)$ is the conditional prior weight of each mixture component. For example, one mixture component

⁸See [Rab89] for an excellent tutorial, and [Ben99] for a review of more recent developments; [MZ97] provides a thorough mathematical treatise on HMMs. The book [DEKM98] provides an excellent introduction to the application of HMMs to biosequence analysis, and the book [Jel97] describes how HMMs are used in speech recognition.