Bias Estimation of Biological Reference Points Under Two-Parameter SRRs

Nick Grunloh

In collaboration with: Dr. E.J. Dick Dr. H. K.H. Lee

17 Aug 2022

Introduction 00

$$I_t = qB_te^{\epsilon} \quad \epsilon \sim N(0, \sigma^2)$$

$$\frac{dB(t)}{dt} = P(B(t); \theta) - Z(t)B(t)$$

Reference : MSY, $\frac{F_{MSY}}{M}$, $\frac{B_{MSY}}{R_2}$

Yield and Related Quantities

00

Conceptually:

$$\frac{F_{MSY}}{M} \in \mathbb{R}^+ \quad \frac{B_{MSY}}{B_0} \in (0,1)$$

Mangel et al. 2013, CJFAS:

■ BH Model:

$$rac{F_{MSY}}{M} \in \mathbb{R}^+ \quad rac{B_{MSY}}{ar{B}(0)} = rac{1}{F_{MSY}/M+2}$$

Similar Constraints for other Two-Parameter Curves

Conceptually:

0

$$\frac{F_{MSY}}{M} \in \mathbb{R}^+ \quad \frac{B_{MSY}}{B_0} \in (0,1)$$

Mangel et al. 2013, CJFAS:

■ BH Model:

$$\frac{F_{MSY}}{M} \in \mathbb{R}^+$$
 $\frac{B_{MSY}}{\bar{B}(0)} = \frac{1}{F_{MSY}/M+2}$

- Similar Constraints for other Two-Parameter Curves
- Three-Parameter Relationships Allow Independent RP Estimation

Schnute 1985, CJFAS

$$\frac{dB}{dt} = P(B; \theta) - (M + F)B$$

$$P(B; [\alpha, \beta, \gamma]) = \alpha B(1 - \beta \gamma B)^{\frac{1}{\gamma}}$$

$$\gamma = -1 \Rightarrow$$
 Beverton-Holt $\gamma \rightarrow 0 \Rightarrow$ Ricker $\gamma = 1 \Rightarrow$ Logistic

5000

В

10000

15000

- Isolalting RP Bias is Hard:
 - Chaos in the Dynamical System
 - Time Integrator Inaccuracy
 - Model Identifiability
 - Global Optimization
 - etc...
- Production Models are simplified places to build intuition
- See my analysis of the mechanisms of bias in the Schaefer Model ⇒

Schaefer RP Analysis

https://ggle.io/5EnI

Simulation Design

 LHS design based on analytical results similar to Schnute and Richards 1998, CJFAS

Simulation Design

 LHS design based on analytical results similar to Schnute and Richards 1998, CJFAS

Simulation Design

- LHS design based on analytical results similar to Schnute and Richards 1998, CJFAS
- GP Metamodeling of RP bias

$$\underbrace{\left(\frac{F_{MSY}}{M},\frac{B_{MSY}}{\bar{B}(0)}\right)}_{\text{Schnute Truth}} \overset{\mathsf{GP}}{\mapsto} \underbrace{\left(\frac{\hat{F}_{MSY}}{M},\frac{\hat{B}_{MSY}}{\bar{B}(0)}\right)}_{\text{BH Estimate}}$$

Catch

Conclusions

- A rich simulation-based method for describing global RP bias and a stepping stone for understanding more complex models.
 - ⇒ Individual growth and maturity dynamics
- RPs are not directly observable quantities, but rather model dependent latent quantities.
 - ⇒ Subject to Model Misspecification, Uncertainty, & Bias
 - ⇒ In severly constrained settings we pay for our modeling mistakes primarily in estimate bias.
- The observed contrast serves to increase the range of potentially "allowable" model misspecification.

Many Thanks:

- UCSC Advisors
- SWFSC Groundfish
- NMFS Sea Grant

Metamodel Details

$$\mathbf{x} = \left(F_{MSY}, \frac{B_{MSY}}{\bar{B}(0)}\right)$$

$$\hat{\mu} = \beta_0 + \beta' \mathbf{x} + f(\mathbf{x}) + \epsilon$$
$$f(\mathbf{x}) \sim \mathsf{GP}(0, \tau^2 R(\mathbf{x}, \mathbf{x}'))$$
$$\epsilon_i \sim \mathsf{N}(0, \hat{\omega}_i).$$

$$R(\boldsymbol{x}, \boldsymbol{x'}) = \exp\left(\sum_{j=1}^{2} \frac{-(x_j - x_j')^2}{2\ell_j^2}\right)$$

Cross Covariogram

PT Data Fit with the Schaefer Model

Low Contrast

Bias Direction for (FMSY, BMSY/B0) Jointly B_{MSY}/B₀ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 F_{MSY}

Schnute RP-Parameter System of Equations

$$\frac{B_{MSY}}{B_0} = \frac{1 - \left(\frac{M + F_{MSY}}{\alpha}\right)^{\gamma}}{1 - \left(\frac{M}{\alpha}\right)^{\gamma}}$$

$$\alpha = (M + F_{MSY}) \left(1 + \frac{\gamma F_{MSY}}{M + F_{MSY}}\right)^{1/\gamma}$$

$$\beta = \frac{1}{\gamma B_0} \left(1 - \left(\frac{M}{\alpha}\right)^{\gamma}\right)$$

Common Discretization

$$\frac{dB}{dt} = P_{\theta}(B(t)) - C(t)$$

$$B(\tau+1) pprox B(au) + P_{ heta}(B(au)) - c(au)$$

