Neurons)

Neural Nets and the Perceptron (Part 1, Artificial

Daniel Lawson — University of Bristol

Lecture 09.1.1 (v1.0.2)

Signposting

- This Block is split into two Lectures:
 - ▶ 09.1 (this lecture) on the theory
 - 09.2 on practicalities
- Lecture 09.1 is further split into two parts:
 - ► Part 1: Introduction and the perceptron
 - Part 2: Multi-layer Networks
- ► This is Part I, which covers:
 - ▶ Introduction
 - Neurons
 - Single layer perceptron
 - ► Learning algorithms

ILOs

- ILO2 Be able to use and apply basic machine learning tools
- ILO3 Be able to make and report appropriate inferences from the results of applying basic tools to data

Neurons

- ► Dendrites take inputs
- Axons fire on activation
- Form a dynamical system

Artificial Neurons

- Take a number of input signals
- Activation function transforms to output
- Output sent as input to downstream neurons
- (Typically) constructed to form a directed system for learning

Activation functions

- Neuron i is modelled as:
 - A nonlinear activation function f:
 - ▶ a base rate $W_{0,i}$,
 - lacktriangle and weights $W_{j,i}$ for each input neuron a_j with output x_{a_j} :

$$f\left(W_{0,i} + \sum_{j=1} W_{j,i} x_{a_j}\right),\,$$

- lacktriangledown f is a mapping $\mathbb{R} o [r_{min}, r_{max}]$ (which may not be bounded).
- ► There are many common choices, e.g.:
 - tanh: $f(y) = (1 + \tanh(y))/2$
 - logistic: $f(y) = 1/(1 + e^{-y})$
 - Step function: $f(y) = \mathbb{I}(y > 0)$
 - $\qquad \hbox{Rectified linear unit (ReLU): } f(y) = \mathbb{I}(y>0)y$

Activation functions

Activation functions

- ► The important features of activation functions are:
 - ▶ Non-linearity. A deep neural network can be trivially replicated by a one layer neural network if the activations are linear.
 - ▶ **Derivatives**. Learning requires evaluating derivatives, which should be *cheap*, and *informative*.
 - ► Smoothness. Simple discontinuities can be handled, complex ones make learning slow.

In practice:

- ReLU contains the important complexity whilst being very fast to learn;
- ▶ It may exhibit convergence problems when y << 0;
- ► For small networks, complex activation helps.
- ► A notable modern alternative is Swish!:
 - $f(y) = y/(1 + \exp(-\beta y))$
 - **ReLU-like:** Converges to zero for $x \to -\infty$ and to x for $x \to \infty$
 - \blacktriangleright Has unbounded derivative for x < 0 so learning still works
 - Strangely, monotonicity seems not to be important?

¹Ramachandran, Zoph and Le Searching for Activation Functions

Logical functions

- ► Every boolean function can be implemented by a neural network².
- For simplicity $f(x \le 0) = 0$, and f(x > 0) = 1, i.e. the neuron "fires" on activation. Then, the following can be implemented on a single node:
 - ► AND: $f(x_1, x_2) = -1.5 + x_1 + x_2$
 - OR: $f(x_1, x_2) = -0.5 + x_1 + x_2$
 - ► NOT: $f(x_1) = 0.5 x_1$
- ► Neural networks with more general activation functions can still implement these functions.

²McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity

Logical function problems

- But not every function can be implemented in a single layer perceptron³:
 - ▶ XOR: only x_1 or x_2 can be active

³Minsky and Papert 1969 Perceptrons

Single Layer perceptron (SLP)

- Has just two layers:
 - data layer (e.g. features)
 - output layer (e.g. classes)
- No hidden layers!
- Weights learned
- Making a linear classification rule

Mathematical description of SLP

- ▶ N Inputs x_i and M outputs y_j
- ▶ Activation function f and with weights W_{ij} :

$$f(\mathbf{x}) = f\left(W_{0j} + \sum_{i=1}^{N} W_{ij} x_i\right)$$

- $ightharpoonup W_{0j}$ allows for an offset (mean) in the activation, just like in linear regression
- ► Loss is the square error over all output variables *j*:

$$L(W) = \sum_{j=1}^{M} L_j = \sum_{j=1}^{M} \left[y_j - f \left(W_{0j} + \sum_{i=1}^{N} W_{ij} x_i \right) \right]^2$$
$$= \sum_{j=1}^{M} \delta_{ij}^2(\mathbf{w}_j)$$

• $\delta_{ij}(\mathbf{w}_j)$ is the error for input i output j.

Learning the SLP

- ► Learn through Gradient Descent:
 - i.e. Differentiate the loss with respect to the weights for $i=0,\ldots,N$:

$$abla_W L = \left(\frac{\partial L}{\partial W_{10}}, \dots, \frac{\partial L}{\partial W_{ij}}, \dots, \frac{\partial L}{\partial W_{NM}}\right)^T$$

where:

$$\frac{\partial L}{\partial W_{ij}} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial W_{ij}} = -2\delta_{ij} \frac{\partial f}{\partial W_{ij}},$$

Leading to the update rule:

$$W_{ij} \leftarrow W_{ij} + \alpha \frac{\partial f}{\partial W_{ij}} \delta_{ij}$$

- We are taking a step of size α in a direction towards the multivariate minima of the loss
- ightharpoonup Choose step size lpha to take steps that move fast enough whilst not overshooting.
- In practice α is learned adaptively.

Summary

- Neural Networks are possibly the most important development in Al.
- ► They are a subject of intense mathematical discussion.
- ► These basic building blocks are straightforward and provide intuition.
- ► We've only scratched the surface here.

Reflection

- What are the key similarities and differences between real and artificial neurons?
- Why are the properties of activation functions (non-linearity, smoothness, derivatives) important?
- Are perceptrons universal approximators? What implications does this have for their use?
- ▶ By the end of the course, you should:
 - Understand a neural network at a basic level
 - Be able to appropriately select deep learning methods and architecture
 - ▶ Be able to work with the mathematics underpinning perceptrons

Signposting

- Next Lecture: Part 2, getting to deep neural networks
- References:
- ► Chapter 11 of The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Friedman, Hastie and Tibshirani).
- Russell and Norvig Artificial Intelligence: A Modern Approach
 - Chapter 20 Section 5: Neural Networks
- Swish: Ramachandran, Zoph and Le Searching for Activation Functions
- Important historical papers:
 - McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity
 - Minsky and Papert 1969 Perceptrons