Multiversal Mathematics

Sir Hrishi Mukherjee I

28 May 2024

1 Introduction

In this paper, we present a mathematical framework for understanding the multiverse, incorporating principles from physics, quantum mechanics, and cosmology.

2 Hilbert Spaces and Function Spaces

2.1 Hilbert Spaces

2.1.1 Description

Hilbert spaces are vector spaces equipped with an inner product, allowing for the definition of lengths and angles between vectors.

2.1.2 Equation

Let \mathcal{H} be a Hilbert space. The inner product $\langle \cdot, \cdot \rangle$ on \mathcal{H} satisfies linearity, conjugate symmetry, and positive-definiteness. Orthogonality: $\langle \psi, \phi \rangle = 0$ if ψ and ϕ are orthogonal vectors in \mathcal{H} .

2.2 Function Spaces

2.2.1 Description

Function spaces are sets of functions equipped with certain mathematical properties, often used in analysis and quantum mechanics.

2.2.2 Equation

Let $L^2(\Omega)$ be the space of square-integrable functions over a domain Ω . The norm of a function f in $L^2(\Omega)$ is given by $||f||_2 = \left(\int_{\Omega} |f(x)|^2 dx\right)^{1/2}$.

3 Modal Logic and Discrete Time

3.1 Modal Logic

3.1.1 Description

Modal logic extends classical propositional logic to reason about necessity () and possibility ().

3.1.2 Equations

Necessity: φ asserts that φ is necessarily true. Possibility: φ asserts that φ is possibly true. Modal axioms and inference rules govern the behavior of modal operators.

3.2 Discrete Time

3.2.1 Description

Discrete time models temporal progression as a sequence of distinct, evenly spaced time intervals.

3.2.2 Equations

Let t_k denote the time at step k (e.g., $t_k = k\Delta t$, where Δt is the time step). Events occur at specific time points: t_0, t_1, t_2, \ldots

4 Holographic Principle

4.1 Description

The Holographic Principle posits that the information content of a volume of space can be encoded on its boundary.

4.2 Equation

The Bekenstein–Hawking entropy formula relates the entropy of a black hole S to its surface area A: $S = \frac{A}{4G}$, where G is the gravitational constant.

5 Relating the Bekenstein-Hawking Entropy to Hilbert Spaces

5.1 Application of the Translation Equation

Interpretation of the translation equation relating the dimensionality N of the Hilbert space to the entropy S of the boundary of the observable universe.

5.2 Hilbert Space Representation

Finite-dimensional vs. infinite-dimensional spaces, basis states, and degrees of freedom.

5.3 Validation and Interpretation

Theoretical consistency, empirical validation, and physical significance.

6 Equations for Entropy and Dimensionality

Equations for entropy and dimensionality within the context of the observable universe's boundary.

7 Incorporating Gott Time Machine Equation

Integration of the Gott Time Machine Equation into the multiversal model.

8 Final Multiversal Model

Description of the multiversal model incorporating mathematical representations and physical principles.

9 Conclusion

Summary of the proposed multiversal mathematics framework.

10 References

References

- Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333.
- [2] Hawking, S. W. (1975). Particle creation by black holes. *Communications in Mathematical Physics*, 43(3), 199-220.
- [3] Gott, J. R. (1991). Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. *Physical Review Letters*, 66(9), 1126.
- [4] Penrose, R. (2004). The Road to Reality: A Complete Guide to the Laws of the Universe. Vintage.
- [5] Susskind, L. (1995). The world as a hologram. *Journal of Mathematical Physics*, 36(11), 6377-6396.

[6] Aguirre, A., & Tegmark, M. (2005). Multiple universes: A primer. $arXiv\ preprint\ astro-ph/0504422.$