Revision

CS1231S Discrete Structures

Wong Tin Lok

National University of Singapore

13 November 2020

Afternoon mass consultation sessions Wednesday 18 Nov, Friday 20 Nov, Tuesday 24 Nov 16:00–17:30

Draw a square whose area is double that of this square.

I should not only speak the truth, but I should make use of premisses which the person interrogated would be willing to admit.

Socrates in Plato's Meno

What we saw after the Recess Week

Basic number theory

- divisibility and division (quotient and remainder)
- primes (infinitude of primes)
- ▶ base-*b* representation
- preatest common divisors (the Euclidean Algorithm, Bézout's Lemma)
- prime factorizations (the Fundamental Theorem of Arithmetic)
- modular arithmetic (congruence, multiplicative inverses)

Relations

- reflexivity, symmetry, transitivity, antisymmetry
- equivalence relations (equivalence classes), partitions
- ▶ partial orders (Hasse diagrams, smallest/largest and minimal/maximal elements, total orders, linearization)

Do not forget what we saw before the mid-term test!

Assignment 2 Question 5

Let $\mathscr C$ be a partition of A. Show that there exist a set B and a surjection $f:A\to B$ such that

$$\mathscr{C} = \{ \{ x \in A : f(x) = y \} : y \in B \}.$$

- ▶ We want to prove a statement of the form $\forall \mathscr{C} \exists B \exists f : A \rightarrow B \dots$
- ▶ So given any \mathscr{C} , we have to produce B and f with the required properties.
- \blacktriangleright We cannot control what $\mathscr C$ is, but we can (and should) control what B and f are.
- ▶ Why do many split into the cases "A is empty" and "A is nonempty"?
- ▶ What do you mean by "So B exists"?
- ▶ Writing $\mathscr{C} = \{S_1, S_2, \dots, S_n\}$ implies \mathscr{C} is finite. Not all partitions are finite.
- ▶ Writing $\mathscr{C} = \{S_i : i \in \mathbb{Z}_{\geqslant 1}\}$ implies \mathscr{C} is countable. Not all partitions are countable.
- ▶ My choice: let $B = \mathscr{C}$ and f(x) = S if and only if $x \in S$ for all $x \in A$ and $S \in \mathscr{C}$.
- Axiom of Choice: choose an element x_S from each $S \in \mathcal{C}$; let $B = \{x_S : S \in \mathcal{C}\}$ and $f(x) = x_S$ if and only if $x \in S$ for all $x \in A$ and $S \in \mathcal{C}$.

2019/20 Semester 1 exam

- 16 (c) Find a positive integer that has exactly 5 positive divisors.
 - (d) Let $A = \{0, 1, 2, ..., 11\}$. For each $a \in A$, define $m_a \colon A \to A$ by $m_a(x) = ax \mod 12$. Find an $a \in A \setminus \{1\}$ such that m_a is bijective.
- 17 Let P be a partial order on a nonempty set A. Let R be another relation on A, and suppose $R \subseteq P$. Let \tilde{R} be the reflexive closure of R and let T be the transitive closure of \tilde{R} . Prove that:
 - (a) T is a partial order on A.
 - (b) If T' is another partial order on A such that $R \subseteq T'$, then $T \subseteq T'$.

Recall from Tutorial 8 [of that semester] that the reflexive closure of a relation is the smallest reflexive relation on the same set that contains this relation as a subset. Similarly, the transitive closure of a relation is the smallest transitive relation on the same set that contains this relation as a subset.

20 Let $n \in \mathbb{Z}^+$ with $n \geqslant 3$, and let $A = \{0, 1, ..., n-1\}$. Prove that there exists an $m \in A$ such that $m \not\equiv a^2 \pmod{n}$ for any $a \in \mathbb{Z}$.

2019/20 Semester 1 exam Q16(c)

Find a positive integer that has exactly 5 positive divisors.

Solution

- Let $p_0^{m_0}p_1^{m_1}\dots p_\ell^{m_\ell}$ be the prime factorization of an integer n, where p_0, p_1, \dots, p_ℓ are distinct primes and $m_0, m_1, \dots, m_\ell \in \mathbb{Z}^+$.
- ▶ Then the positive divisors of n are precisely those integers of the form $p_0^{k_0}p_1^{k_1}\dots p_\ell^{k_\ell}$, where each $k_i \in \{0, 1, \dots, m_i\}$.
- ▶ There are $m_0 + 1$ choices for k_0 , $m_1 + 1$ choices for k_1 , ..., $m_\ell + 1$ choices for k_ℓ .
- ▶ So altogether there are exactly $(m_0 + 1)(m_1 + 1) \cdots (m_\ell + 1)$ positive divisors of n.
- ▶ As each $m_i \ge 1$, we know $m_i + 1 \ge 2$.
- So n has exactly 5 positive divisors $\Leftrightarrow \ell = 0$ and $m_0 = 5 1 = 4$ as 5 is prime; $\Leftrightarrow n = p_0^4$.
- ▶ Hence we can take $n = 2^4 = 16$, or $n = 3^4 = 81$, or $n = 5^4 = 625$, or

2019/20 Semester 1 exam Q16(d)

Let $A = \{0, 1, 2, \dots, 11\}$. For each $a \in A$, define $m_a : A \to A$ by $m_a(x) = ax \mod 12$. Find an $a \in A \setminus \{1\}$ such that m_a is bijective.

Solution

- Let $a \in A$ such that gcd(a, 12) = 1. This means $a \in \{5, 7, 11\}$.
- \triangleright We show that m_a is injective.
 - 2. Then $ax \equiv ay \pmod{12}$ by the definition of congruence.

1. Let $x, y \in A$ such that $m_a(x) = m_a(y)$, i.e., $(ax \mod 12) = (ay \mod 12)$.

- 3. As gcd(a, 12) = 1, the number a has a multiplicative inverse modulo 12, say b.
- 4. Multiplying b to both sides of the congruence in line 2 gives $bax \equiv bay \pmod{12}$.
- 5. As b is a multiplicative inverse of a modulo 12, this implies $x \equiv y \pmod{12}$.
- 6. The definition of congruence then tells us $(x \mod 12) = (y \mod 12)$.
- 7. As $x, y \in A = \{0, 1, ..., 11\}$, we know $(x \mod 12) = x$ and $(y \mod 12) = y$. 8. Hence x = y.
- \triangleright So A has the same number of elements as the range of m_a , which is a subset of A.
- \triangleright As A is finite, this implies the A equals range of m_a , and thus m_a is bijective.

2019/20 Semester 1 exam Q17(a)

Let P be a partial order on a nonempty set A. Let R be another relation on A, and suppose $R \subseteq P$. Let \tilde{R} be the reflexive closure of R and let T be the transitive closure of \tilde{R} . Prove that T is a partial order on A.

Recall from Tutorial 8 [of that semester] that the *reflexive closure* of a relation is the smallest reflexive relation on the same set that contains this relation as a subset. Similarly, the *transitive closure* of a relation is the smallest transitive relation on the same set that contains this relation as a subset.

Proof

- 1. (Reflexivity) If $x \in A$, then $(x, x) \in \tilde{R}$ as \tilde{R} is reflexive, and so $(x, x) \in T$ as $\tilde{R} \subseteq T$.
- 2. (Transitivity) T is transitive because it is a transitive closure.
- 3. (Antisymmetry)
 - 3.1. Note that $P \supseteq R$ and P is reflexive. So $P \supseteq \tilde{R}$ by the minimality of \tilde{R} .
 - 3.2. Note that $P \supseteq \tilde{R}$ and P is transitive. So $P \supseteq T$ by the minimality of T.
 - 3.3. If $x, y \in A$ such that $(x, y), (y, x) \in T$, then $(x, y), (y, x) \in P$ as $T \subseteq P$, and so x = y by the antisymmetry of P.

2019/20 Semester 1 exam Q17(b)

Let P be a partial order on a nonempty set A. Let R be another relation on A, and suppose $R \subseteq P$. Let \tilde{R} be the reflexive closure of R and let T be the transitive closure of \tilde{R} . Prove that if T' is another partial order on A such that $R \subseteq T'$, then $T \subseteq T'$.

Recall from Tutorial 8 [of that semester] that the *reflexive closure* of a relation is the smallest reflexive relation on the same set that contains this relation as a subset. Similarly, the *transitive closure* of a relation is the smallest transitive relation on the same set that contains this relation as a subset.

Proof

- 1. Let T' be a partial order on A such that $R \subseteq T'$.
- 2. Note that $T' \supseteq R$ and T' is reflexive.
- 3. So $T' \supseteq \tilde{R}$ by the minimality of \tilde{R} .
- 4. Note that $T' \supseteq \tilde{R}$ and T' is transitive.
- 5. So $T' \supseteq T$ by the minimality of T.

2019/20 Semester 1 exam Q20

Let $n \in \mathbb{Z}^+$ with $n \geqslant 3$, and let $A = \{0, 1, \dots, n-1\}$. Prove that there exists an $m \in A$ such that $m \not\equiv a^2 \pmod{n}$ for any $a \in \mathbb{Z}$.

- 1. Define $f: A \to A$ by setting $f(b) = (b^2 \mod n)$ for all $b \in A$.
- 2. We show that f is not injective.
 - 2.1. Note that $(n-1)^2 = n^2 2n + 1 \equiv 1 \pmod{n}$.
 - 2.2. So the definition of congruence implies $((n-1) \mod n) = (1 \mod n)$.
 - 2.3. Thus f(n-1) = f(1). But $n-1 \neq 1$ as $n \geq 3$.
- 3. As A is finite and $f: A \rightarrow A$, we deduce that f is not surjective.
- 4. Pick $m \in A$ such that $m \neq f(b)$ for all $b \in A$.
- 5. 5.1. Take any $a \in \mathbb{Z}$.
 - 5.2. Let $b = (a \mod n)$, so that $b \in A$, and thus $m \neq f(b)$ by line 4.
 - 5.3. Then the definition of f implies $m \neq (b^2 \mod n)$.
 - 5.4. As $m, b \in \{0, 1, ..., n-1\}$, we know $(m \mod n) = m$ and $(b \mod n) = b$.
 - 5.5. So $(m \mod n) \neq (b^2 \mod n)$ and $(b \mod n) = (a \mod n)$ by lines 5.2 and 5.3.
 - 5.6. Thus $m \not\equiv b^2 \pmod{n}$ and $b \equiv a \pmod{n}$, implying $m \not\equiv a^2 \pmod{n}$.

2019/20 Semester 1 exam Q6

Which of the following is a partition of the set P of all prime numbers?

- A. $\{\{p \in P : p \equiv a \pmod{4}\} : a \in \{0, 1, 2, 3\}\}.$
- B. $\{\{p \in P : p \equiv a \pmod{4}\} : a \in \{1,2,3\}\}.$
- C. $\{ \{ p \in P : p \equiv a \pmod{4} \} : a \in \{0, 1, 3\} \}$.
- D. $\{\{p \in P : p \equiv a \pmod{4}\} : a \in \{1,3\}\}$.

Solution

- ▶ $\{p \in P : p \equiv 0 \pmod{4}\} = \emptyset$ because if $p \equiv 0 \pmod{4}$, then 1, 2, 4 are divisors of p, and so p cannot be prime.
- ► $\{p \in P : p \equiv 1 \pmod{4}\} = \{5, \dots\}.$
- $\{ p \in P : p \equiv 2 \pmod{4} \} = \{ 2 \}.$
- ▶ ${p \in P : p \equiv 3 \pmod{4}} = {3, ...}.$
- ► So option B is the correct answer.