A weather balloon is filled with 0.295 m³ of helium on the ground at 18 °C and 756 torr. What will the volume of the balloon be at an altitude of 10 km where the temperature is -48°C and the pressure is 0.14 atm. (760 torr = 1 atm)

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\frac{(0.995 \text{ atm})(0.295 \text{ m}^3)}{291.15 \text{ K}} = \frac{0.14 \text{ atm} (V_2)}{225.15 \text{ K}}$$

2. The density of liquid nitrogen is 0.8080 g/mL at -196.0 °C. What volume of nitrogen gas at STP must be liquefied to make 10.00L of liquid nitrogen?

3. An unknown gas has a density of 7.06 g/L at a pressure of 1.50 atm and 280 K. Calculate the molar mass of the gas.

4. HCl(g) can be prepared by reaction of NaCl with H₂SO₄. What mass of NaCl is required to prepare enough HCl gas to fill a 340.0 mL cylinder to a pressure of 151 atm at 20.0 °C.

$$2NaCl(s) + H2SO4(I) \rightarrow 2HCl(g) + Na2SO4$$

5. Determine the mass of NaN $_3$ required for an air bag to produce 100.0L of N $_2$ gas at 85 °C and 1.00 atm according to the equation,

$$2NaN_3(s) \rightarrow 2 Na(s) + 3 N_2(g)$$

6. A compound has an empirical formula SF_4 . At 20 °C, a 0.1013g of the gaseous compound occupies a volume of 22.1 mL and exerts a pressure of 1.02 atm. What is the molecular formula of the

gas? What is its molecular geometry?

SF4 VAlence F: -5-F: 6 (S) -5-F: 6 (S) -28 (F) -28 (Boods) -24 (or F) -25 (Boods) -24 (or F) -25 (Boods) -25 (Boods) -26 (Boods) -27 (Boods) -27 (Boods) -28 (Boods) 7. Predict the molecular geometry of sulfur dichloride (SCl₂) and the hybridization of the sulfur atom.

- 8. Draw Lewis structures and give the other information requested for the following molecules:
 - a. ClO₃- What's the molecular geometry?

b. OF₂ Is this polar or non-polar?

c. NO_2 (N is central atom) Estimate the ONO bond angle.

9. Determine the number of sigma and pi bonds in:

168 bonds

Each single bond is one sigma bond

Each double bond is one sigma bond + one To bond.

Each triple bond is one sigma bond + two IT bonds.

10. Use molecular orbital theory to determine which has a higher bond enthalpy: F_2 or F_2 . Draw the molecular orbital diagram.

Fz (+6 fill)

Tzpy, Tzpz 1L 1L

Tzpy, Tzpz 1L 1L

Jzpx 1L

Jzpx 1L

Jzpx 1L

Jzs 1L

Jzs 1L

Bond Order = 1 8 Bonding - Gentilbunding = 1 Greater Bond Enthalpy

F2. Draw the molecular orbital F_{2p} T_{2p_1} T_{2p_2} T_{2p_3} T_{2p_4} T_{2p_5} T_{2p_5} T

8 Bonding - Tertihand

Quantum Numbers:

• The *principal quantum number (n)* designates the *size* of the orbital. The larger *n* is, the greater the average distance of an electron in the orbital from the nucleus and therefore the larger the orbital.

$$n = 1, 2, 3, ...$$

• The *angular momentum quantum number* (*I*) describes the *shape* of the atomic orbital. For a given value of n, the possible values of I range from 0 to n-1.

Example: if n = 3, the possible values of l range from 0 to 2 (3-1). Therefore, when n=3, the possible values of l are 0, 1, and 2.

ℓ	0	1	2	3
Orbital designation	s	p	d	\overline{f}

The 3 shell has 3s, 3p, and 3d subshells.

• The *magnetic quantum number* (m_l) describes the *orientation* of the orbital in space. Within a subshell, the value of m_l depends on the value of l. For a certain value of l, there are (2l + 1) integral values of m_l centered around zero as follows:

• To specify the electron's spin, we use the *electron spin quantum* number (m_s).

Because there are two possible directions of spin, opposite each other, m_s has two possible values: +1/2 and -1/2.

11. How many orbitals are there in a subshell designated by the quantum numbers n = 3, l = 2?

N=3 and I=2 designate the 3d subshell. There are 2I+1 integral values of m_e . 2(2)+1=5 -2, -1, 0, +1; +2(5 d or 6; this) List the values of n, l, and m_l for each of the orbitals in a 4

12. List the values of n, l, and m_l for each of the orbitals in a 4 subshell.

l = 1 (Because p subshell) $M_{\ell} = -1$, 0, +1 (2l+1=2(1)+1=3)

passibilities

13. Write out the electron configuration for Ca.

15252p63523p6452

14. Arrange the following isoelectronic species in order of increasing ionization energy: O²⁻, F⁻, Na⁺, Mg²⁺.

In general as effective nucleus change increases, ionization mergy increases.

- 15. Write out equations representing the following processes:
 - a. The electron affinity of S-

b. The third ionization energy of titanium

c. The electron affinity of Mg²⁺

d. The ionization energy of O²⁻.

$$0^{2-} \rightarrow 0^{-} + e^{-}$$

16. Arrange the following atoms in order of increasing atomic radius: Na, Al, P, Cl, Mg.

8.6

Using data from Table 8.5, calculate the percent ionic character of the bond in HI.

Setup

$$\mu = Q \times r$$

 μ (calculated assuming discrete charges) μ (observed) percent ionic character =

From Table 8.5, the bond length in HI is 1.61\AA ($1.61\times10^{-10}\,\text{m}$) and the measured dipole moment of HI is 0.44 D.

Solution

The dipole moment we would expect if the magnitude of charges were 1.6022×10^{-19} C is

$$\mu = Q \times r = (1.6022 \times 10^{-19} \,\mathrm{C}) \times (1.61 \times 10^{-10} \,\mathrm{m})$$

$$= 2.58 \times 10^{-29} \,\mathrm{C} \cdot \mathrm{m}$$

$$2.58 \times 10^{-29} \text{ C-M} \times \frac{1 \text{ D}}{3.336 \times 10^{-30} \text{ C-M}} = 7.73 \text{ D}$$

$$\frac{0.44 \text{ D}}{7.73 \text{ D}} \times 100\% = 5.7\%$$

