Unidad 3.2: BBDD relacionales

Álgebra relacional y SQL 1

INDICE

- oAlgebra relacional
 - Selección
 - Proyección
 - Unión
 - Diferencia de conjuntos
 - Producto Cartesiano
 - Renombramiento
 - Intersección
 - -Join
 - Asignación
 - Modificaciones
- o SQL
 - SELECT
 - Renombramiento
 - -Operaciones sobre conjuntos: union, intersect, except
 - Join
 - Modificación de la base de datos

Lenguajes de consulta

- o Lenguaje de consulta es un lenguaje en el que el usuario solicita información de la base de datos.
- o Dos tipos:
 - -Procedimentales ⇒ usuario especifica las operaciones a realizar
 - Ej.: Algebra relacional
 - -No procedimentales \Rightarrow usuario describe "lo que necesita", no el modo de conseguirlo.
 - Ej.: Cálculo relacional de tuplas y el de dominios
- o Lenguaje \rightarrow también incluye componentes para modificación de la base de datos.

Algebra relacional

- o Conjunto de operaciones básicas del modelo relacional.
- o Lenguaje consulta procedimental r(R)
- o El resultado de cualquier operación (unaria o binaria) es una nueva relación, se trata, por tanto, de operaciones cerradas que se pueden componer.
- o Seis operadores básicos
 - -Selección: $\sigma_{p}(r)$, siendo P predicado de la selección y r relación.
 - -Proyección: $\prod_{A1, A2, ..., Ak}$ (r), siendo A_1 , A_2 ..., A_k atributos y r relación
 - -Unión: r ∪ s
 - -Diferencia de conjuntos: r s
 - -Producto Cartesiano: r x s
 - -Renombramiento: ρ_x (A1, A2, ..., An) (E)
 - -Asignación: ←

Álgebra relacional Operación de selección

```
o Notación:
   -\sigma_{p}(r), donde
   -p predicado de la selección y r relación
   -p es una expresión lógica: ∧ (and), ∨ (or), ¬ (not)
oSe define como:
 \sigma_{p}(r) = \{t \mid t \in r \ \mathbf{y} \ p(t)\}, donde p está compuesto por un término lógico con formato:
                                                 <atributo> op (<atributo> o
 <constante>)
                                                 donde op es: =, \neq, >, \geq. <. \leq
o Funcionamiento:
   -Se aplica p a cada tupla t de r
   -Si p(t) VERDADERO, la tupla t se selecciona.
   -Si el resultado de la operación de comparación es un valor nulo \Rightarrow p(t) se
     evalúa como FALSO.
oLa selección:
   - Es conmutativa: \sigma < condición 1> (\sigma < condición 2> (R)) = \sigma < condición 2> (\sigma < condición 1> (R))
   - Se pueden combinar en cascada: \sigma_{\text{condición1}}(\sigma_{\text{condición2}}(\dots(\sigma_{\text{condiciónn}}(R))\dots)) =
                                \sigma_{\text{condición}1>} AND \sigma_{\text{condición}2>} AND . . . AND \sigma_{\text{condición}2>}(R)
```


Álgebra relacional Operación selección

oEjemplo: Información sobre préstamos de la sucursal de Navacerrada

préstamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

σ nombre_sucursal="Navacerrada" (préstamo)

número-préstamo	nombre-sucursal	importe
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300

Álgebra relacional Operación de proyección

oNotación:

- $-\Pi_{\text{Al, A2, ..., Ak}}$ (r), donde A_1 , A_2 ..., A_k son atributos y r es la relación.
- oEl resultado es una relación de k columnas eliminando de r las que no están en la lista
- oElimina cualquier fila duplicada (son conjuntos).
 - -Realiza una ordenación de tuplas para detectar duplicados -> capacidad de procesamiento
- oEjemplo: Importe de cada uno de los préstamos.

préstamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

 $\prod_{\text{numero_prestamo,importe}}$ (préstamo)

número-préstamo	importe
P-11	900
P-14	1.500
P-15	1.500
P-16	1.300
P-17	1.000
P-23	2.000
P-93	500

Álgebra relacional Operación proyección

oEjemplo: Sexo y sueldo de los empleados

EMPLEADO

Nombre	Apellido1	Apellido2	<u>Dni</u>	FechaNac	Dirección	Sexo	Sueldo	SuperDni	Dno
José	Pérez	Pérez	123456789	01-09-1965	Eloy I, 98	Н	30000	333445555	5
Alberto	Campos	Sastre	333445555	08-12-1955	Avda. Ríos, 9	Н	40000	888665555	5
Alicia	Jiménez	Celaya	999887777	12-05-1968	Gran Vía, 38	М	25000	987654321	4
Juana	Sainz	Oreja	987654321	20-06-1941	Cerquillas, 67	М	43000	888665555	4
Fernando	Ojeda	Ordóñez	666884444	15-09-1962	Portillo, s/n	Н	38000	333445555	5
Aurora	Oliva	Avezuela	453453453	31-07-1972	Antón, 6	М	25000	333445555	5
Luis	Pajares	Morera	987987987	29-03-1969	Enebros, 90	Н	25000	987654321	4
Eduardo	Ochoa	Paredes	888665555	10-11-1937	Las Peñas, 1	Н	55000	NULL	1

$\prod_{Sexo, Sueldo}$ (EMPLEADO)

Sexo	Sueldo
Н	30000
Н	40000
M	25000
M	43000
Н	38000
Н	25000
Н	55000

Álgebra relacional Composición de operaciones relacionales

- o Podemos anidar expresiones de álgebra relacional en una única expresión
- o El resultado de una operación relacional es otra relación

o Ejemplo: Encontrar los nombres de los clientes que viven en cliente pequerinos.

1. $\sigma_{\text{ciudad_cliente="Peguerinos"}}$ (cliente)

Nombre_client e	Calle_client e	Ciudad_cliente
López	Mayor	Peguerinos
Santos	Mayor	Peguerinos

2. $\Pi_{\text{nombre cliente}}$ ($\sigma_{\text{ciudad_cliente="Peguerinos"}}$ (cliente))

Nombre_client e	
López	
Santos	

nombre_citente	cuite_ctiente	Ciuuuu_ciienie
Abril	Preciados	Valsaín
Amo	Embajadores	Arganzuela
Badorrey	Delicias	Valsaín
Fernández	Jazmín	León
Gómez	Carretas	Cerceda
González	Arenal	La Granja
López	Mayor	Peguerinos
Pérez	Carretas	Cerceda
Rodríguez	Yeserías	Cádiz
Rupérez	Ramblas	León
Santos	Mayor	Peguerinos
Valdivieso	Goya	Vigo

Proyección generalizada

oExtiende la operación de proyección permitiendo funciones aritméticas en la lista de proyección

$$\prod_{\text{F1, F2, ..., Fn}} (E)$$
, siendo

- -E expresión del álgebra relacional
- $^-F_1\text{, }F_2\text{, ..., }F_n$ expresiones aritméticas que involucran constantes y atributos en el esquema de E

oEjemplo: Determinar el importe disponible de cada persona Información crédito

nombre-cliente	límite	saldo-crédito
Gómez	2.000	400
López	1.500	1.500
Pérez	2.000	1.750
Santos	6.000	700

 $-\Pi_{\text{nombre-cliente, limite - saldo-crédito as crédito-disponible}}$ (información_crédito) crédito-disponible

nombre-cliente	crédito-disponible
Gómez	1.600
López	0
Pérez	250
Santos	5.300

Operación unión

- oNotación: r∪s
- oSe define como:

```
r \cup s = \{t \mid t \in r \circ t \in s\}
```

```
    1

    2

    3

    4

    4

    5

    6
```

- oPara r ∪ s sea válida, r y s deben ser compatibles:
 - 1. Tienen el mismo número de atributos
 - 2. El dominio del atributo i-ésimo de r y s es igual, Ui
- o No hay valores duplicados

Operación unión

oEjemplo: Nombre de todos los clientes, ya sea que tengan un préstamo o una cuenta

0

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

nombre cliente número cuenta Abril C-102 C-101 Gómez C-201 González González C-217 C-222 López C-215 Rupérez Santos C-305

Эr

 $\Pi_{\text{nombre cliente}}$ (prestatario) \cup $\Pi_{\text{nombre cliente}}$ (impositor)

Abril
Fernández
Gómez
González
López
Pérez
Rupérez
Santos
Sotoca
Valdivieso

Operación diferencia de conjuntos

- oNotación r s
- oDefinido como:

$$r - s = \{t \mid t \in r \quad \mathbf{y} \quad t \notin s\}$$

- oLas relaciones deben de ser compatibles
- oEjemplo: Clientes que tienen una cuenta, pero no un préstamo.

∇	nombre cliente	número cuenta
pr	Abril	C-102
_	Gómez	C-101
	González	C-201
	González	C-217
	López	C-222
	Rupérez	C-215
	Santos	C-305

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

 $\Pi_{\text{nombre_cliente}}$ (:

 $\prod_{\text{nombre cliente}}$ (prestatario)

Operación producto cartesiano

- o Notación r x s
- o Se define como:

```
r \times s = \{t, q \mid t \in r \mid y q\}
```

prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

préstamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

- oCombina la información de 2 rel
 - -Si r tiene n atributos y s, $m \rightarrow$ r x s tiene n+m atributos cuyo nombre es el de los atributos originales

oEjemplo:

```
r = prestatario x préstamo
```

= (prestatario.nombre-cliente, prestatario.númeropréstamo, préstamo.nombre-sucursal, préstamo.númeropréstamo, préstamo.importe)

-Si no hay ambigüedad → simplificar:

r = (nombre-cliente, prestatario.número-préstamo, nombre-sucursal, préstamo.número-préstamo, importe)

Operación producto cartesiano

préstamo x prestatario
n*m tuplas (una tupla de
cada relación)

nombre-cliente	prestatario.número-préstamo	préstamo.número-préstamo	nombre-sucursal	importe
Santos	P-17	P-11	Collado Mediano	900
Santos	P-17	P-14	Centro	1.500
Santos	P-17	P-15	Navacerrada	1.500
Santos	P-17	P-16	Navacerrada	1.300
Santos	P-17	P-17	Centro	1.000
Santos	P-17	P-23	Moralzarzal	2.000
Santos	P-17	P-93	Becerril	500
Gómez	P-23	P-11	Collado Mediano	900
Gómez	P-23	P-14	Centro	1.500
Gómez	P-23	P-15	Navacerrada	1.500
Gómez	P-23	P-16	Navacerrada	1.300
Gómez	P-23	P-17	Centro	1.000
Gómez	P-23	P-23	Moralzarzal	2.000
Gómez	P-23	P-93	Becerril	500
López	P-15	P-11	Collado Mediano	900
López	P-15	P-14	Centro	1.500
López	P-15	P-15	Navacerrada	1.500
López	P-15	P-16	Navacerrada	1.300
López	P-15	P-17	Centro	1.000
López	P-15	P-23	Moralzarzal	2.000
López	P-15	P-93	Becerril	500

	•••			
Valdivieso	P-17	P-11	Collado Mediano	900
Valdivieso	P-17	P-14	Centro	1.500
Valdivieso	P-17	P-15	Navacerrada	1.500
Valdivieso	P-17	P-16	Navacerrada	1.300
Valdivieso	P-17	P-17 P-23	Centro	1.000
Valdivieso	P-17 P-17	P-23 P-93	Moralzarzal	2.000 500
Valdivieso			Becerril	
Fernández	P-16 P-16	P-11 P-14	Collado Mediano	900
Fernández Fernández	P-16 P-16	P-14 P-15	Centro Navacerrada	1.500 1.500
Fernandez	P-16 P-16	P-16 P-16	Navacerrada Navacerrada	1.300
Fernandez Fernández	P-16	P-16 P-17	Navacerrada Centro	1.000
Fernandez Fernández	P-16 P-16	P-17 P-23	Moralzarzal	2.000
Fernández	P-16	P-93	Becerril	500
rernandez	F-10	r-93	Decerrii	500

Operación producto cartesiano: Ejemplo

- oAveriguar los nombres de todos los clientes con un préstamo en Navacerrada.
 - -1° Producto cartesiano de prestatario y préstamo

 $prestatario \times pr\'estamo$

-2° -Seleccionar las tuplas de nombre-sucursal "Navacerrada".

 $\sigma_{nombre_sucursal} = \text{``Navacerrada''} (prestatario \times pr\'estamo).$

-3° - Eliminar tuplas que no corresponden al mismo préstamo.

 $\sigma_{prestatario.n\'umero_pr\'estamo} = pr\'estamo.n\'umero_pr\'estamo \\ \left(\sigma_{nombre_sucursal} = \text{``Navacerrada''} \left(prestatario \times pr\'estamo\right)\right)$

-4° - Proyección para eliminar los atributos no necesarios.

 $\Pi_{nombre_cliente} \left(\sigma_{prestatario.n\'umero_pr\'estamo} = pr\'estamo.n\'umero_pr\'estamo \right. \\ \left(\sigma_{nombre_sucursal} = \text{``Navacerrada''} \left(prestatario \times pr\'estamo \right) \right) \right)$

prestatario

nombre cliente	número préstamo	
Fernández	P-16	
Gómez	P-93	
Gómez	P-15	
López	P-14	
Pérez	P-17	
Santos	P-11	
Sotoca	P-23	
Valdivieso	P-17	

préstamo

número-préstamo	nombre-sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

 $\sigma_{nombre_sucursal} = \text{``Navacerrada''} (prestatario \times pr\'estamo).$

nombre-cliente	prestatario.número-préstamo	préstamo.número-préstamo	nombre-sucursal	importe
Santos	P-17	P-15	Navacerrada	1.500
Santos	P-17	P-16	Navacerrada	1.300
Gómez	P-23	P-15	Navacerrada	1.500
Gómez	P-23	P-16	Navacerrada	1.300
López	P-15	P-15	Navacerrada	1.500
López	P-15	P-16	Navacerrada	1.300
Sotoca	P-14	P-15	Navacerrada	1.500
Sotoca	P-14	P-16	Navacerrada	1.300
Pérez	P-93	P-15	Navacerrada	1.500
Pérez	P-93	P-16	Navacerrada	1.300
Gómez	P-11	P-15	Navacerrada	1.500
Gómez	P-11	P-16	Navacerrada	1.300
Valdivieso	P-17	P-15	Navacerrada	1.500
Valdivieso	P-17	P-16	Navacerrada	1.300
Fernández	P-16	P-15	Navacerrada	1.500
Fernández	P-16	P-16	Navacerrada	1.300

nombre-cliente Férnandez López

Operación renombramiento

- o Notación: ρ_{\times} (E)
- o Devuelve resultado de la expresión E bajo el nombre X
- o Permite:
 - -Poner nombres a los resultados de las expresiones del álgebra relacional
 - -Referir a una relación por más de un nombre
- o Si la expresión E tiene n atributos, entonces:
 - $\rho_{x (A1, A2, ..., An)}$ (E) (o X(A1,A2, An) \leftarrow E), devuelve el resultado de la expresión E bajo el nombre X y con los atributos renombrados como A1, A2, ..., An.

Operación renombramiento

oEjemplo: Buscar el máximo saldo de cuenta del banco

- -1° Calcular una relación intermedia d que contiene todos los saldos que no son el máximo.
 - Como vamos a comparar cada tupla de cuenta con otra tupl de la misma relación, renombramos como d.

$$\Pi_{cuenta.saldo} \left(\sigma_{cuenta.saldo < d.saldo} \left(cuenta \times \rho_d \left(cuenta \right) \right) \right)$$

- En esta relación obtenemos los saldos para los que hay otro saldo mayor en cuenta.
- -2° Realizar la diferencia entre la proyección del saldo de las cuentas y esta relación intermedia.

$\Pi_{saldo} (cuenta) -$			
$\Pi_{cuenta.saldo}$ ($\sigma_{cuenta.saldo} < d.saldo$ (cuenta	×	ρ_d (cuenta))))

número_cuenta	nombre_sucursal	saldo
C-101	Centro	500
C-102	Navacerrada	400
C-201	Galapagar	900
C-215	Becerril	700
C-217	Galapagar	750
C-222	Moralzarzal	700
C-305	Collado Mediano	350

Relación cuenta

saldo

500 400

700 750

350

saldo

900

número_cuenta	nombre_sucursal	saldo
C-101	Centro	500
C-102	Navacerrada	400
C-201	Galapagar	900
C-215	Becerril	700
C-217	Galapagar	750
C-222	Moralzarzal	700
C-305	Collado Mediano	350

Relación d

Expresiones del álgebra relacional

oSean E_1 y E_2 expresiones del álgebra relacional. Las siguientes son también expresiones del álgebra relacional:

- $-E_1 \cup E_2$
- $-E_{1} E_{2}$
- $-E_1 \times E_2$
- $-\sigma_{\text{p}}$ (E_{\text{1}}), donde P un predicado sobre atributos de E_{\text{1}}
- $-\prod_{s} (E_1)$, donde S es una lista de atributos de E_1
- $-\rho_{_{\rm X}}$ (E_1), donde x es el nuevo nombre para el resultado E_1

Operación intersección

- o Notad que:

Operación intersección

Ejemplo: Nombre de clientes que tienen préstamos y cuentas

prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

impositor

nombre cliente	número cuenta
Abril	C-102
Gómez	C-101
González	C-201
González	C-217
López	C-222
Rupérez	C-215
Santos	C-305

$$\Pi_{nombre\text{-}cliente}$$
 (prestatario) $\cap \Pi_{nombre\text{-}cliente}$ (impositor)

nombre-cliente
Gómez Pérez Santos

NATURAL JOIN (concatenación o reunión natural)

- o Notación: r⋈s
- o Sean dos relaciones r(R) y s(S), r \bowtie s es una relación del esquema R U S definida por:

$$r \bowtie s = \prod_{R \cup S} (\sigma_{r,A_1 = s,A_1 \land r,A_2 = s,A_2 \land \dots \land r,A_n = s,A_n} (r \times s))$$

donde
$$R \cap S = \{A_1, A_2, ..., A_n\}.$$

- o Relación binaria que permite combinar varias selecciones y un producto cartesiano en una sola operación de la siguiente manera:
 - -1°. Producto cartesiano de las dos relaciones: r x s
 - $-2\,^{\circ}.$ Selección forzando la igualdad de los atributos que aparecen en ambos esquemas de relación (R \cap S)
- o $Propiedade_{(cliente \bowtie cuenta) \bowtie impositor}$
 - -Es asociat cliente ⋈ (cuenta ⋈ impositor)

$$-\operatorname{Si} R \cap S = \varnothing r \bowtie s = r \times s$$

Natural join Ejemplo

$$r \bowtie s = \prod_{R \cup S} (\sigma_{r,A_1 = s,A_1 \land r,A_2 = s,A_2 \land \dots \land r,A_n = s,A_n} (r \times s))$$

$$R \cap S = \{A_1, A_2, \dots, A_n\}.$$

o Hallar el nombre de los clientes que tienen concedido un préstamo y averiguar el número de préstamo e importe.

prestatario

nombre cliente	número préstamo
Fernández	P-16
Gómez	P-93
Gómez	P-15
López	P-14
Pérez	P-17
Santos	P-11
Sotoca	P-23
Valdivieso	P-17

préstamo

número-préstamo	importe
P-11	900
P-14	1.500
P-15	1.500
P-16	1.300
P-17	1.000
P-23	2.000
P-93	500

 $\Pi_{nombre-cliente, número-préstamo, importe}$ (prestatario \bowtie préstamo)

nombre-cliente	número-préstamo	importe
Fernández	P-16	1.300
Gómez	P-23	2.000
Gómez	P-11	900
López	P-15	1.500
Pérez	P-93	500
Santos	P-17	1.000
Sotoca	P-14	1.500
Valdivieso	P-17	1.000

Notad que es equivalente a:

$$\begin{split} &\Pi_{nombre_cliente,pr\'estamo.n\'umero_pr\'estamo,importe} \\ &\left(\sigma_{prestatario.n\'umero_pr\'estamo} = pr\'estamo.n\'umero_pr\'estamo \left(prestatario \times pr\'estamo\right)\right) \end{split}$$

Operación θ -Join o reunión theta/zeta

- oNotación: $\bowtie_{\theta} r$ $s = \sigma_{\theta} (r \times s)$
- o Sean las relaciones r(R) y s(S) y sea θ un predicado de los atributos del esquema R \cup S. La operación θ -join se define como:

$$r \bowtie_{\theta}$$
 $s = \sigma_{\theta}$ $(r \times s)$

- o θ -join es una extensión de la reunión natural
- o La reunión zeta combina producto cartesiano y selección en una operación.
- o Si θ es una comparación de igualdad, se denomina **EQUIJOIN**.

OUTER join o reunión externa

- o El resultado de un natural JOIN no incluye información que no esté presente en ambas relaciones.
- o Outer join es una extensión que evita la pérdida de información añadiendo valores null:
 - -null significa valor desconocido o que no existe
 - -todas las comparaciones en que interviene null son FALSE por definición
- oRealiza el join y añade las tuplas de una relación que no coincide con el atributo de la reunión

 JOINS
- oPuede hacerse la reunión externa por la:
 - -Izquierda: left outer join (⋈)
 - -Derecha: rigth outer join (⋈)
 - -Completa: full outer join (⋈)

OUTER join o reunión externa Ejemplo

empleado

nombre-empleado	calle	ciudad
Segura	Tebeo	La Loma
Domínguez	Viaducto	Villaconejos
Gómez	Bailén	Alcorcón
Valdivieso	Fuencarral	Móstoles

trabajo-a-tiempo-completo

nombre-empleado	nombre-sucursal	sueldo
Segura	Majadahonda	1.500
Domínguez	Majadahonda	1.300
Barea	Fuenlabrada	5.300
Valdivieso	Fuenlabrada	1.500

oNatural join: pierdo info sobre Gómez (calle y ciudad) y sobre Barea (nombre de sucursal y sueldo)

empleado ⋈ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500

oleft outer join o reunión externa por la izquierda: pierdo información de Barea

empleado ™ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura Domínguez Valdivieso	Tebeo Viaducto Fuencarral	La Loma Villaconejos Móstoles	Majadahonda Majadahonda Fuenlabrada	1.500 1.300 1.500
Gómez	Bailén	Alcorcón	nulo	nulo

OUTER join o reunión externa Ejemplo

empleado

nombre-empleado	calle	ciudad
Segura	Tebeo	La Loma
Domínguez	Viaducto	Villaconejos
Gómez	Bailén	Alcorcón
Valdivieso	Fuencarral	Móstoles

trabajo-a-tiempo-completo

nombre-empleado nombre-sucursal		sueldo
Segura	Majadahonda	1.500
Domínguez	Majadahonda	1.300
Barea	Fuenlabrada	5.300
Valdivieso	Fuenlabrada	1.500

oReunión externa por la derecha: pierdo la información de Gómez empleado ⋈ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500
Barea	nulo	nulo	Fuenlabrada	5.300

ofull outer join o reunión externa complete: no pierdo información

empleado ™ trabajo-a-tiempo-completo

nombre-empleado	calle	ciudad	nombre-sucursal	sueldo
Segura	Tebeo	La Loma	Majadahonda	1.500
Domínguez	Viaducto	Villaconejos	Majadahonda	1.300
Valdivieso	Fuencarral	Móstoles	Fuenlabrada	1.500
Gómez	Bailén	Alcorcón	nulo	nulo
Barea	nulo	nulo	Fuenlabrada	5.300

Operación de asignación ←

- o Operación de asignación (\leftarrow) permite escribir una expresión de álgebra relacional mediante la asignación de partes de esa expresión a variables temporales.
- o Ejemplo: escribir r ÷ s como

```
temp1 \leftarrow \Pi_{R-S} (r)
temp2 \leftarrow \Pi_{R-S} ((temp1 x s) - \Pi_{R-S,S} (r))
result = temp1 - temp2
```

○ El resultado de la derecha de ← se asigna a la variable relación temporal de la izquierda que puede usarse en expresiones posteriores.

Borrado, inserción y modificación

- oBorrado se expresa en el álgebra relacional como: $r \leftarrow r E, \text{ donde } r \text{ es la relación y E una expresión}$
- o Sólo se pueden borrar tuplas enteras. No valores de atributos Ejemplo: Borrar todas las cuentas de Gómez

```
impositor \leftarrow impositor - \sigma_{nombre\_cliente} = \text{``Gómez''} (impositor)
```

o Inserción:

```
r \leftarrow r \cup E
```

Ejemplo: Insertar 1.200€ en la cuenta de Gómez C-973 de la sucursal de Navacerrada:

```
cuenta \leftarrow cuenta \cup \{(C-973, "Navacerrada", 1200)\}
impositor \leftarrow impositor \cup \{("G\'omez", C-973)\}
```


Borrado, inserción y modificación

oInserción:

```
-Ejemplo: Se desea ofrecer una nueva cuenta de ahorro con 200€ como regalo a todos los clientes con préstamos concedidos en la sucursal de Navacerrada: r_1 \leftarrow (\sigma_{nombre\_sucursal} = \text{``Navacerrada''} (\textit{prestatario} \bowtie \textit{préstamo}))r_2 \leftarrow \Pi_{n\'umero\_pr\'estamo,nombre\_sucursal} (r_1)\textit{cuenta} \leftarrow \textit{cuenta} \cup (r_2 \times \{(200)\})\textit{impositor} \leftarrow \textit{impositor} \cup \Pi_{nombre\_cliente,n\'umero\_pr\'estamo} (r_1)
```

oModificación:

$$r \leftarrow \Pi_{F_1, F_2, \dots, F_n}(r)$$

donde F; son

expresiones que involucran constantes y atributos de r.

Para varias tuplas de r: $r \leftarrow \Pi_{F_1, F_2, \dots, F_n}(\sigma_P(r)) \cup (r - \sigma_P(r))$

Ejemplo: Las cuentas con saldos superiores a 10.000€ reciben un interés del 6% y el resto del 5%

```
cuenta \leftarrow \Pi_{n\'umero\_cuenta,nombre\_sucursal, \ saldo \ * \ 1.06} \left(\sigma_{saldo > 10000} \left(cuenta\right)\right)
\cup \ \Pi_{n\'umero\_cuenta,nombre\_sucursal, \ saldo \ * \ 1.05} \left(\sigma_{saldo \le 10000} \left(cuenta\right)\right)
```


Introducción SQL

- oBasado en algebra relacional + cálculo relacional
- oVersión original ⇒ IBM (Sequel dentro de System R)
- oEvolucionó ⇒ Structured Query Language
- oEstandarización ⇒ ANSI e ISO
 - -Normas 1986: SQL-86
 - -Normas: SQL 89, SQL 92 y SQL 99

oComponentes:

- -DDL Lenguaje de Definición de Datos
- DML Lenguaje de Manipulación de Datos
- -Vistas
- Transacciones
- -SQL incorporado y dinámico
- Integridad
- -Autorización.

Lenguaje de definición de datos

oEl LDD permite especificar:

- -Esquema de cada relación
- -El dominio de valores asociado a cada atributo
- -Restricciones de integridad
- -Índices asociados a cada relación
- Información de seguridad y autorización
- -Estructura de almacenamiento físico en disco.

o<u>Tipos de dominio base</u>

- -Char(n), varchar(n), text
- -int, integer, smallint, float, real, double
 precission, numeric(p,d)
- -Date, time, timestamp, función extract(campo from d), interval
- -Valor null , pertenece a todos los dominios base
- -Se puede especificar que un dominio es not null

Lenguaje de definición de datos Definición de esquemas

```
create table r(A_1D_1, A_2D_2, \dots A_nD_n,
ocreate table
                                         ⟨restricción-integridad₁⟩.
                                         \langle restricción-integridad_k \rangle)
   -Donde A; es el nombre atributo y D; el dominio
oRestricciones de integridad:
   -Primary key (A_1, A_2, ..., A_n), valores no nulos y únicos (Opcional)
   -Check (P) , predicado P que debe de satisfacer el atributo de la tupla
                                               create table cuenta
                                                   (número-cuenta char (10),
                                                   nombre-sucursal char (15),
                                                   saldo
                                                                 integer,
                                                   primary key (número-cuenta),
                                                   check (saldo >= 0))
```

-Unique $(A_1, A_2, ..., A_n)$, especificar clave candidata. Permite nulos.

Lenguaje de definición de datos

- oBorrar esquema de tabla \Rightarrow drop table
 - -Borra las tuplas y la relación

drop table r

- oSQL-92 \Rightarrow alter table. Permite modificar un esquema de tabla
 - -Añadir atributo: alter table r add AD
 - -Eliminar atributo: alter table $r \operatorname{drop} A$

SQL DML Caso de estudio

oEjemplos basados en empresa bancaria:

sucursal(nombre_sucursal, ciudad_sucursal, activos)
cliente (nombre_cliente, calle_cliente, ciudad_cliente)
préstamo (número_préstamo, nombre_sucursal, importe)
prestatario (nombre_cliente, número_préstamo)
cuenta (número_cuenta, nombre_sucursal, saldo)
impositor (nombre_cliente, número_cuenta)

Figura 3.1 Esquema de la entidad bancaria.

Estructura básica consultas SQL **Select**

oOperación selección. En álgebra relacional se usa **la letra griega** sigma minúscula para denotarla

select ... from ...

- -Select ⇒ hacer una consulta de A1...An atributos
- -From ⇒ tablas en la que se solicita información r1, ..., rn
- -Where ⇒ selección sobre lo descrito en from a través de la condición P

select
$$A_1, A_2, \dots, A_n$$

where P

oSi se omite **where**, P es cierto y se devuelve toda la información.

Estructura básica consultas SQL Select

oSiempre el resultado es una nueva tabla Mostrará el valor de *nombre-sucursal* una vez **select** nombre-sucursal por cada tupla de la relación *préstamo* en la que

from préstamo

aparezca → Navacerrada 2 veces oPermite duplicados en las relaciones y en el resultado de las

expresiones SQL por defecto, ya que su eliminación consume

tiempo

oUsar distinct para evitarlos:

select distinct nombre-sucursal

from préstamo

número_préstamo	nombre_sucursal	importe
P-11	Collado Mediano	900
P-14	Centro	1.500
P-15	Navacerrada	1.500
P-16	Navacerrada	1.300
P-17	Centro	1.000
P-23	Moralzarzal	2.000
P-93	Becerril	500

Figura 2.6 La relación *préstamo*.

oPermite usar **all** ⇒ indicar que no se eliminan duplicados select all nombre-sucursal from préstamo

Estructura básica consultas SQL **Select**

- oCláusula where

select número-préstamo from préstamo where nombre-sucursal = 'Navacerrada' and importe > 1200

- Operadores lógicos AND,OR, NOT $\sigma_{nombre_sucursal}$ = "Navacerrada" \land importe>1200 $(pr\acute{e}stamo)$
- oOperadores de comparación: >,<,=,>=,<=, <>

Estructura básica consultas SQL

Conectores lógicos y operadores de comparación

o En la claúsula where se usan los conectores lógicos and, or y not y los operadores de comparación <, <=, etc.. También se puede usar between,

select número-préstamo from préstamo where importe between 90000 and 100000

o<u>En la cláusula from r</u>ealiza el producto cartesiano de las relaciones

select nombre-cliente, prestatario.número-préstamo, importe

from prestatario, préstamo where prestatario.número-préstamo = préstamo.número-préstamo

Estructura básica consultas SQL

Operación de renombramiento: as

- oÚtil cuando 2 relaciones tienen atributos con el mismo nombre (el resultado saldrá duplicado), para expresiones aritméticas (el resultado no tiene nombre) o simplemente cuando queremos renombrar uno de los atributos de la relación resultado:
- oCláusula as tanto en select como en from:

nombre-antiguo as nombre-nuevo

select nombre_cliente, prestatario.número_préstamo as id_préstamo, importe from prestatario, préstamo where prestatario.número_préstamo = préstamo.número_préstamo

- oTambién se usa cuando se quiere comparar <u>variables tupla</u> de la misma relación.
 - − Ejemplo: Determinar el nombre de todas las sucursales que tienen activos mayores que, al menos, una sucursal de Arganzuela

Estructura básica consultas SQL

Cadenas de caracteres

- oCadenas entre comillas simples: 'Navacerrada' oComparación con patrones: like
 - -%, encaja con cualquier cadena
 - , encaja con cualquier carácter
 - -Ejemplo: 'Nava%', '%cer%', '_ _ _', '_ _ _ %'

select nombre-cliente from cliente where calle-cliente like '%Mayor%'

- oCarácter de escape para que las cadenas puedan incluir caracteres espaciales: escape
 - -(like 'ab\%cd%' escape '\'en por ab%cd:
- oOtras funciones:
 - Not like, similar to, concatenación de caracteres (||), upper, lower

Estructura básica consultas SQL Ordenación de tuplas: order by

- o order by en claúsula where:
 - -Asc, indica ascendente (defecto)
 - -Desc, indica descendente

select distinct nombre_cliente
from prestatario, préstamo
where prestatario.número-préstamo
= préstamo.número-préstamo and
nombre-sucursal = 'Navacerrada'
order by nombre-cliente

oOrdenar por varios atributos

select *
from préstamo
order by importe desc, número-préstamo asc

Operaciones sobre conjuntos union, intersect, except

- oLas relaciones deben de ser compatibles (mismo conjunto de atributos)
- oPor defecto se eliminan los duplicados. Para que no lo haga, hay que incluir all.
- o Operación unión (U): igual que la operación de unión de conjuntos
 - -Determinar los clientes del banco que tienen una cuenta, un préstamo o ambas cosas:

(select nombre-cliente from impositor) union (select nombre-cliente from prestatario)

- o Se eliminan duplicados.
- oUnion all para no eliminar duplicados:

(select nombre-cliente from impositor) union all (select nombre-cliente from prestatario)

Operaciones sobre conjuntos union, intersect, except

- oOperación intersección (∩)
 - -Clientes que tienen tanto un préstamo, como una cuenta bancaria

(select distinct nombre-cliente from impositor) intersect (select distinct nombre-cliente from prestatario)

oOperación diferencia

-Clientes que tienen cuenta, pero no préstamo

(select distinct nombre-cliente from impositor) except (select distinct nombre-cliente from prestatario)

Reunión de Relaciones: JOIN

- oMecanismo que proporciona SQL para enlazar dos tablas relacionadas a través de campo común.
- oSuele usarse en la claúsula from
- O Hay diferentes tipos de JOIN: inner, outer, natural, using
- o Tipos y condiciones de reunión

Tipos de reunión inner join left outer join

right outer join full outer join

Condiciones de reunión

natural on oredicado> using (A₁, A₂, ..., A_n)

Reunión	de	Relacione
inner jo	oin	

número_préstamo	nombre_sucursal	importe
P-170	Centro	3.000
P-230	Moralzarzal	4.000
P-260	Navacerrada	1.700

nombre_cliente	número_préstamo
Santos	P-170
Gómez	P-230
López	P-155

préstamo prestatario

- o INNER JOIN o reunión interna:
 - -Las tuplas resultantes son solo las comunes.
 - -Resultado: atributos del lado izdo. seguidos de los del lado drcho.

préstamo inner join prestatario on préstamo.número_préstamo = prestatario.número_préstamo

número-préstamo	nombre-sucursal	importe	nombre-cliente	número-préstamo
P-170	Centro	3.000	Santos	P-170
P-230	Moralzarzal	4.000	Góm ez	P-230

-SQL no exige que los atributos en estos resultados sean únicos, aunque podemos renombrar para que lo sean:

préstamo **inner join** prestatario **on** préstamo.número_préstamo = prestatario.número_préstamo **as** pp(número_préstamo, sucursal, importe, cliente, número_préstamo_cliente)

Reunión de Relacione outer join

número_préstamo	nombre_sucursal	importe
P-170	Centro	3.000
P-230	Moralzarzal	4.000
P-260	Navacerrada	1.700

nombre_cliente	número_préstamo
Santos	P-170
Gómez	P-230
López	P-155

préstamo prestatario

OUTER JOIN o reunión externa:

- -Se puede usar a la izda. (left) o a la derecha (right)
- -SQL primero calcula el inner join como antes y, luego, para cada tupla t de la relación del lado izdo. (préstamo) (drcho. para right) que no coincide con ninguna del lado derecho (prestatario) (izdo. para right), se añade al resultado la tupla t rellenando con null el resto de atributos.

préstamo left outer join prestatario on préstamo.número-préstamo = prestatario.número-préstamo

número-préstamo	nombre-sucursal	importe	nombre-cliente	número-préstamo
P-170	Centro	3.000	Santos	P-170
P-230	Moralzarzal	4.000	Gómez	P-230
P-260	Navacerrada	1.700	null	null

Reunión	de	Relacione
natural	jo	in

número_préstamo	nombre_sucursal	importe
P-170	Centro	3.000
P-230	Moralzarzal	4.000
P-260	Navacerrada	1.700

nombre_cliente	número_préstamo
Santos	P-170
Gómez	P-230
López	P-155

préstamo prestatario

- oNATURAL JOIN o reunión natural
 - -Igual que inner join, pero:
 - el atributo común solo aparece 1 vez
 - Orden atributos: primero los atributos del join + atributos de la relación izquierda + atributos de relación derecha

préstamo natural inner join prestatario

número-préstamo	nombre-sucursal	importe	nombre-cliente
P-170	Centro	3.000	Santos
P-230	Moralzarzal	4.000	Gómez

OA diferencia de inner join:

préstamo inner join prestatario on préstamo.número_préstamo = prestatario.número_préstamo

número-préstamo	nombre-sucursal	importe	nombre-cliente	número-préstamo
P-170	Centro	3.000	Santos	P-170
P-230	Moralzarzal	4.000	Gómez	P-230

Reunión de Relaciones

- oSQL-92 otros 2 tipos de reunión:
 - -Cross join (producto cartesiano de las dos tablas)
 - Devuelve todas las tuplas cruzadas, es decir, para cada tupla izda, todas las de drcha.
 - -Union join
 - Unión de todas las columnas de ambas tablas (usando null)

Modificación de la base de datos Borrado: delete

```
oSe expresa como una consulta delete from r
where P
oDonde r es una tabla y P el predicado
oSi se omite el predicado ⇒ se borran todas las tuplas
oEjemplos:
```

- -Borrar todas las tuplas de la rela **delete from** *préstamo*
- -Borrar todas las tuplas de la sucurs: delete from cuenta where nombre-sucursal = 'Navacerrada'
- -Borrar todas las tuplas de la relación cuenta de todas las sucursales de Navacerrada

delete from cuenta
where nombre-sucursal in (select nombre-sucursal
from sucursal
where ciudad-sucursal
= 'Navacerrada')

Modificación de la base de datos Inserción: insert

- oSe inserta o bien la tupla deseada o el resultado de una consulta:
 - Debe de respetar el dominio de los atributos
 - -Y el número de atributos

insert into cuenta values ('C-9732', 'Navacerrada', 1200)

- oSe usa la claúsula insert
- OSe puede especificar el orden de los atributos

insert into cuenta (nombre-sucursal, númerocuenta, saldo) values ('Navacerrada', 'C-9732', 1200)

Modificación de la base de datos Inserción: insert

- oSe pueden insertar tuplas provenientes de una consulta
 - -Ejemplo: A todos los clientes con préstamos en la sucursal de Navacerrada

insert into cuenta

select *nombre-sucursal*, *número-préstamo*, 200

from *préstamo*

where nombre-sucursal = 'Navacerrada'

oImportante ⇒ finalizar la evaluación de la sentencia select antes de insertar

insert into cuenta select * from cuenta

oSe pueden insertar valores nulos: null

values ('C-401', null, 1200)

Modificación de la base de datos Actualización: update

- Actualizar algunos campos de las tuplas ⇒
 UPDATE
 - -Ejemplo: Incrementar todos los saldos un 5%:

 update cuenta

 set saldo = saldo * 1.05
 - -Ejemplo: si solo incrementamos los que tienen saldo superior a 1000€:

update cuenta set saldo = saldo * 1.05 where saldo >= 1000

Modificación de la base de datos Actualización: update

oEl orden de actualización es muy importante:

```
-Ejemplo: Si cambiamos el orden, una cuenta con un saldo igual o poco
  inferior a 10.000€ recibiría un 11,3%
                                                                                          update cuenta
                                                                                          set saldo = saldo * 1.05
      update cuenta
                                                                                          where saldo >= 1000
      set saldo = saldo * 1.06
                                                                                          case
     where saldo > 10000
                                                                                             when pred_1 then result_1
                                                                                             when pred<sub>2</sub> then result<sub>2</sub>
     update cuenta
     set saldo = saldo * 1.05
                                                                                             when pred_n then result_n
     where saldo \le 10000
                                                                                             else result<sub>0</sub>
                                                                                          end
```

oConstructor CASE para mantener el orden de actualización

```
-Ejemplo: El ejemplo anterior con CASE
```

```
update cuenta

set saldo = case

when saldo <= 10000 then saldo * 1.05

else saldo * 1.06

end
```

