

S -> AB A - aaAlh B > B6 1 K

> * Grammai is ambiguous ble we have both LMD & RMD.

> > S => AB

- -> Required Grammals
 - Right Recursive Unambiguous. Deterministic
- -> CFG is represented by PDA.
- -> IF_STANT -> IF EXPR then STAT 1 of EXPR then STITUT else IF_STATT

1) Remove nullable production : =.

A - production: A > A.

y A -> B

B -> C

C -> K

[11 Mullable production

(Null production)

S -> aMb

M- aMb

M + K

} " Nullable variable.

(Null - production).

S - ab lamb

M - ab lamb.

(2) Removing a unit production:=

Unit production: A > B.

eg S > aA

A > a

S - aA aB

A > B

A -> a

 $B \rightarrow A$

B -> bb -

B > bb

PDAS M(P, 2, 1, 8, 90, z, F). where Q = states. 2 = input alphabet T = stack alphabel. 8 = transition function. 90 = initial state. z = stack start symbol. F - Accept states. 8: QXXX T -> QX [* 8(90,016) -> (9,10) y S -> asb

a	< top of stack
9	
b	

Properties of the CFL:-

1) Positive closure for CFL:

The operation—that cause—the language—to
be in CFL is called positive closure

0-98 L14 L2 are context free -then L1ULz is also CFL.

ie: L1 & L2 are closed under union.

29 L1 = {a"b"} S1 + a S1 b A

L2 = {WWF} S2 + a S2 a | b S2 b | A

LIUL2 = Janbnj Ujwwej

S -> SI/S2
represents union.

- 96 L, & Lz are context free then
there concalenation is also CFL.

1.e L, & Lz are closed under concalenation

=9 L1. L2 = [anb"] [W. WF]
S > S152.

* initial of M, + intial of M2 = M * final of M, + final of M2 = M

* Type · O Grammar · Peccursive &

X Type · O Grammar · Peccursive Enumerable

Peccursive Language.

Where $\alpha \rightarrow (NT+T)^{+}$ B $\rightarrow (NT+T)^{+}$ Ab $\rightarrow (NT+T)^{+}$ aAb -> axb Turing Machine With infinite dape 08 A Turing Machine 3--> Consist of Tape (File) Control Unit (Finite Automaton) -> Operations on - lape * Reads a symbol * white a symbol * Moves left or right -> States & - (ransitions.

c/ May 119 Universal Juring Machine -> Attributes * Reprogrammable Machine + Simulates any other turing machine TIM1 UTIM (OR) J UTTA 30/P1 TMI > dP 2 Imput: Description of Machine (All Traples) Smitted Tape. We encode M as a string of symbols e(T) e(Z) Alphabet Encoding Symbolis Transitions. 8(21,9) = (22 101) Prodling 10101101101 seperator 44 511