Telecom Churn Case Study

Problem Statement

Business problem overview

In the telecom industry, customers are able to choose from multiple service providers and actively switch from one operator to another. In this highly competitive market, the telecommunications industry experiences an average of 15-25% annual churn rate. Given the fact that it costs 5-10 times more to acquire a new customer than to retain an existing one, **customer retention** has now become even more important than customer acquisition.

For many incumbent operators, retaining high profitable customers is the number one business goal.

To reduce customer churn, telecom companies need to predict which customers are at high risk of churn.

In this project, you will analyse customer-level data of a leading telecom firm, build predictive models to identify customers at high risk of churn and identify the main indicators of churn.

Understanding and defining churn

There are two main models of payment in the telecom industry - **postpaid** (customers pay a monthly/annual bill after using the services) and **prepaid** (customers pay/recharge with a certain amount in advance and then use the services).

In the postpaid model, when customers want to switch to another operator, they usually inform the existing operator to terminate the services, and you directly know that this is an instance of churn.

However, in the prepaid model, customers who want to switch to another network can simply stop using the services without any notice, and it is hard to know whether someone has actually churned or is simply not using the services temporarily (e.g. someone may be on a trip abroad for a month or two and then intend to resume using the services again).

Thus, churn prediction is usually more critical (and non-trivial) for prepaid customers, and the term 'churn' should be defined carefully. Also, prepaid is the most common model in India and Southeast Asia, while postpaid is more common in Europe in North America.

This project is based on the Indian and Southeast Asian market.

Definitions of churn

There are various ways to define churn, such as:

Revenue-based churn: Customers who have not utilised any revenue-generating facilities such as mobile internet, outgoing calls, SMS etc. over a given period of time. One could also use aggregate metrics such as 'customers who have generated less than INR 4 per month in total/average/median revenue'.

The main shortcoming of this definition is that there are customers who only receive calls/SMSes from their wage-earning counterparts, i.e. they don't generate revenue but use the services. For example, many users in rural areas only receive calls from their wage-earning siblings in urban areas.

Usage-based churn: Customers who have not done any usage, either incoming or outgoing - in terms of calls, internet etc. over a period of time.

A potential shortcoming of this definition is that when the customer has stopped using the services for a while, it may be too late to take any corrective actions to retain them. For e.g., if you define churn based on a 'two-months zero usage' period, predicting churn could be useless since by that time the customer would have already switched to another operator.

In this project, you will use the usage-based definition to define churn.

High-value churn

In the Indian and the Southeast Asian market, approximately 80% of revenue comes from the top 20% customers (called high-value customers). Thus, if we can reduce churn of the high-value customers, we will be able to reduce significant revenue leakage.

In this project, you will define high-value customers based on a certain metric (mentioned later below) and predict churn only on high-value customers.

Understanding the business objective and the data

The dataset contains customer-level information for a span of four consecutive months - June, July, August and September. The months are encoded as 6, 7, 8 and 9, respectively.

The business objective is to predict the churn in the last (i.e. the ninth) month using the data (features) from the first three months. To do this task well, understanding the typical customer behaviour during churn will be helpful.

Understanding customer behaviour during churn

Customers usually do not decide to switch to another competitor instantly, but rather over a period of time (this is especially applicable to high-value customers). In churn prediction, we assume that there are **three phases of customer lifecycle**:

- The 'good' phase: In this phase, the customer is happy with the service and behaves as usual.
- The 'action' phase: The customer experience starts to sore in this phase, for e.g. he/she gets a compelling offer from a competitor, faces unjust charges, becomes unhappy with service quality etc. In this phase, the customer usually shows different behaviour than the 'good' months. Also, it is crucial to identify high-churn-risk customers in this phase, since some corrective actions can be taken at this point (such as matching the competitor's offer/improving the service quality etc.)
- The 'churn' phase: In this phase, the customer is said to have churned. You define churn based on this phase. Also, it is important to note that at the time of prediction (i.e. the action months), this data is not available to you for prediction. Thus, after tagging churn as 1/0 based on this phase, you discard all data corresponding to this phase.

In this case, since you are working over a four-month window, the first two months are the 'good' phase, the third month is the 'action' phase, while the fourth month is the 'churn' phase.

Importing Libraries

```
# Basic libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

```
%matplotlib inline
import time

# Supressing the warnings generated
import warnings
warnings.filterwarnings('ignore')

# Importing Pandas EDA tool
import pandas_profiling as pp
from pandas_profiling import ProfileReport

# Displaying all Columns without restrictions
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', -1)
```

Importing the Dataset

```
# Reading the csv data file.
telecom_data = pd.read_csv("telecom_churn_data.csv")
```

```
# Displaying the first 10 field with all columns in the dataset
telecom_data.head(10)
```

	mobile_number	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	last_date_of_month_6	last_date_of_montl
0	7000842753	109	0.0	0.0	0.0	6/30/2014	7/31/20
1	7001865778	109	0.0	0.0	0.0	6/30/2014	7/31/20
2	7001625959	109	0.0	0.0	0.0	6/30/2014	7/31/20
3	7001204172	109	0.0	0.0	0.0	6/30/2014	7/31/20
4	7000142493	109	0.0	0.0	0.0	6/30/2014	7/31/20
5	7000286308	109	0.0	0.0	0.0	6/30/2014	7/31/20
6	7001051193	109	0.0	0.0	0.0	6/30/2014	7/31/20
7	7000701601	109	0.0	0.0	0.0	6/30/2014	7/31/20
8	7001524846	109	0.0	0.0	0.0	6/30/2014	7/31/20
9	7001864400	109	0.0	0.0	0.0	6/30/2014	7/31/20

```
# Checking the dimensions of the dataset telecom_data.shape
```

(99999, 226)

```
# Checking the informations regarding the dataset
telecom_data.info(verbose=True)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99999 entries, 0 to 99998
```

Data columns (total 226 columns):

Data	COTAINIS (COCAT 220 COTAIN	
#	Column	Dtype
0	mobile_number	int64
1	circle_id	int64
2	loc_og_t2o_mou	float64
3	std_og_t2o_mou	float64
4	loc_ic_t2o_mou	float64
5	last_date_of_month_6	object
6	last_date_of_month_7	object
7	last_date_of_month_8	object
8	last_date_of_month_9	object
9	arpu_6	float64
10	arpu_7	float64
11	arpu_8	float64
12	arpu_9	float64
13	onnet_mou_6	float64
14	onnet_mou_7	float64
15	onnet_mou_8	float64
16	onnet_mou_9	float64
17	offnet_mou_6	float64
18	offnet_mou_7	float64
19	offnet_mou_8	float64
20	offnet_mou_9	float64
21	roam_ic_mou_6	float64
22	roam_ic_mou_7	float64
23	roam_ic_mou_8	float64
24	roam_ic_mou_9	float64
25	roam_og_mou_6	float64
26	roam_og_mou_7	float64
27	roam_og_mou_8	float64
28	roam_og_mou_9	float64
29	loc_og_t2t_mou_6	float64
30	<pre>loc_og_t2t_mou_7</pre>	float64
31	<pre>loc_og_t2t_mou_8</pre>	float64
32	<pre>loc_og_t2t_mou_9</pre>	float64
33	<pre>loc_og_t2m_mou_6</pre>	float64
34	<pre>loc_og_t2m_mou_7</pre>	float64
35	loc_og_t2m_mou_8	float64
36	loc_og_t2m_mou_9	float64
37	loc_og_t2f_mou_6	float64
38	loc_og_t2f_mou_7	float64
39	loc_og_t2f_mou_8	float64

40	loc_og_t2f_mou_9	float64
41	loc_og_t2c_mou_6	float64
42	loc_og_t2c_mou_7	float64
43	loc_og_t2c_mou_8	float64
44	loc_og_t2c_mou_9	float64
45	loc_og_mou_6	float64
46	loc_og_mou_7	float64
47	loc_og_mou_8	float64
48	loc_og_mou_9	float64
49	std_og_t2t_mou_6	float64
50	std_og_t2t_mou_7	float64
51	std_og_t2t_mou_8	float64
52	std_og_t2t_mou_9	float64
53	std_og_t2m_mou_6	float64
54	std_og_t2m_mou_7	float64
55	std_og_t2m_mou_8	float64
56	std_og_t2m_mou_9	float64
57	std_og_t2f_mou_6	float64
58	std_og_t2f_mou_7	float64
59	std_og_t2f_mou_8	float64
60	std_og_t2f_mou_9	float64
61	std_og_t2c_mou_6	float64
62	std_og_t2c_mou_7	float64
63	std_og_t2c_mou_8	float64
64	std_og_t2c_mou_9	float64
65	std_og_mou_6	float64
66	std_og_mou_7	float64
67	std_og_mou_8	float64
68	std_og_mou_9	float64
69	isd_og_mou_6	float64
70	isd_og_mou_7	float64
71	isd_og_mou_8	float64
72	isd_og_mou_9	float64
73	spl_og_mou_6	float64
74	spl_og_mou_7	float64
75	spl_og_mou_8	float64
76	spl_og_mou_9	float64
77	og_others_6	float64
78	og_others_7	float64
79	og_others_8	float64
80	og_others_9	float64
81	total_og_mou_6	float64
82	total_og_mou_7	float64

83	total_og_mou_8	float64
84	total_og_mou_9	float64
85	loc_ic_t2t_mou_6	float64
86	<pre>loc_ic_t2t_mou_7</pre>	float64
87	loc_ic_t2t_mou_8	float64
88	<pre>loc_ic_t2t_mou_9</pre>	float64
89	loc_ic_t2m_mou_6	float64
90	<pre>loc_ic_t2m_mou_7</pre>	float64
91	loc_ic_t2m_mou_8	float64
92	loc_ic_t2m_mou_9	float64
93	loc_ic_t2f_mou_6	float64
94	<pre>loc_ic_t2f_mou_7</pre>	float64
95	loc_ic_t2f_mou_8	float64
96	loc_ic_t2f_mou_9	float64
97	loc_ic_mou_6	float64
98	loc_ic_mou_7	float64
99	loc_ic_mou_8	float64
100	loc_ic_mou_9	float64
101	std_ic_t2t_mou_6	float64
102	std_ic_t2t_mou_7	float64
103	std_ic_t2t_mou_8	float64
104	std_ic_t2t_mou_9	float64
105	std_ic_t2m_mou_6	float64
106	std_ic_t2m_mou_7	float64
107	std_ic_t2m_mou_8	float64
108	std_ic_t2m_mou_9	float64
109	std_ic_t2f_mou_6	float64
110	std_ic_t2f_mou_7	float64
111	std_ic_t2f_mou_8	float64
112	std_ic_t2f_mou_9	float64
113	std_ic_t2o_mou_6	float64
114	std_ic_t2o_mou_7	float64
115	std_ic_t2o_mou_8	float64
116	std_ic_t2o_mou_9	float64
117	std_ic_mou_6	float64
118	std_ic_mou_7	float64
119	std_ic_mou_8	float64
120	std_ic_mou_9	float64
121	total_ic_mou_6	float64
122	total_ic_mou_7	float64
123	total_ic_mou_8	float64
124	total_ic_mou_9	float64
125	spl_ic_mou_6	float64

126	spl_ic_mou_7	float64
127	spl_ic_mou_8	float64
128	spl_ic_mou_9	float64
129	isd_ic_mou_6	float64
130	isd_ic_mou_7	float64
131	isd_ic_mou_8	float64
132	isd_ic_mou_9	float64
133	ic_others_6	float64
134	ic_others_7	float64
135	ic_others_8	float64
136	ic_others_9	float64
137	total_rech_num_6	int64
138	total_rech_num_7	int64
139	total_rech_num_8	int64
140	total_rech_num_9	int64
141	total_rech_amt_6	int64
142	total_rech_amt_7	int64
143	total_rech_amt_8	int64
144	total_rech_amt_9	int64
145	max_rech_amt_6	int64
146	max_rech_amt_7	int64
147	max_rech_amt_8	int64
148	max_rech_amt_9	int64
149	date_of_last_rech_6	object
150	date_of_last_rech_7	object
151	date_of_last_rech_8	object
152	date_of_last_rech_9	object
153	last_day_rch_amt_6	int64
154	last_day_rch_amt_7	int64
155	last_day_rch_amt_8	int64
156	last_day_rch_amt_9	int64
157	date_of_last_rech_data_6	object
158	date_of_last_rech_data_7	object
159	date_of_last_rech_data_8	object
160	date_of_last_rech_data_9	object
161	total_rech_data_6	float64
162	total_rech_data_7	float64
163	total_rech_data_8	float64
164	total_rech_data_9	float64
165	max_rech_data_6	float64
166	max_rech_data_7	float64
167	max_rech_data_8	float64
168	max_rech_data_9	float64

169	count_rech_2g_6	float64
170	count_rech_2g_7	float64
171	count_rech_2g_8	float64
172	count_rech_2g_9	float64
173	count_rech_3g_6	float64
174	count_rech_3g_7	float64
175	count_rech_3g_8	float64
176	count_rech_3g_9	float64
177	av_rech_amt_data_6	float64
178	av_rech_amt_data_7	float64
179	av_rech_amt_data_8	float64
180	av_rech_amt_data_9	float64
181	vol_2g_mb_6	float64
182	vol_2g_mb_7	float64
183	vol_2g_mb_8	float64
184	vol_2g_mb_9	float64
185	vol_3g_mb_6	float64
186	vol_3g_mb_7	float64
187	vol_3g_mb_8	float64
188	vol_3g_mb_9	float64
189	arpu_3g_6	float64
190	arpu_3g_7	float64
191	arpu_3g_8	float64
192	arpu_3g_9	float64
193	arpu_2g_6	float64
194	arpu_2g_7	float64
195	arpu_2g_8	float64
196	arpu_2g_9	float64
197	night_pck_user_6	float64
198	night_pck_user_7	float64
199	night_pck_user_8	float64
200	night_pck_user_9	float64
201	monthly_2g_6	int64
202	monthly_2g_7	int64
203	monthly_2g_8	int64
204	monthly_2g_9	int64
205	sachet_2g_6	int64
206	sachet_2g_7	int64
207	sachet_2g_8	int64
208	sachet_2g_9	int64
209	monthly_3g_6	int64
210	monthly_3g_7	int64
211	monthly_3g_8	int64

212	monthly_3g_9		int64
213	sachet_3g_6		int64
214	sachet_3g_7		int64
215	sachet_3g_8		int64
216	sachet_3g_9		int64
217	fb_user_6		float64
218	fb_user_7		float64
219	fb_user_8		float64
220	fb_user_9		float64
221	aon		int64
222	aug_vbc_3g		float64
223	jul_vbc_3g		float64
224	jun_vbc_3g		float64
225	sep_vbc_3g		float64
dtvne	s: float64(179)	int64(35)	object(1

dtypes: float64(179), int64(35), object(12)

memory usage: 172.4+ MB

This telecom dataset has 99999 rows and 226 columns

Checking the terms used in the data from data dictionary provided.

```
# Importing the excel file of the dictionary.
telecom_data_dict = pd.read_excel("Data+Dictionary-+Telecom+Churn+Case+Study.xlsx")
```

```
# Displaying the dictionary items
```

telecom_data_dict

	Acronyms	Descriptions
0	MOBILE_NUMBER	Customer phone number
1	CIRCLE_ID	Telecom circle area to which the customer belongs to
2	LOC	Local calls - within same telecom circle
3	STD	STD calls - outside the calling circle
4	IC	Incoming calls
5	OG	Outgoing calls
6	T2T	Operator T to T, i.e. within same operator (mobile to mobile)
7	T2M	Operator T to other operator mobile
8	T20	Operator T to other operator fixed line
9	T2F	Operator T to fixed lines of T
10	T2C	Operator T to it's own call center
11	ARPU	Average revenue per user
12	MOU	Minutes of usage - voice calls
13	AON	Age on network - number of days the customer is using the operator T network
14	ONNET	All kind of calls within the same operator network

	Acronyms	Descriptions
15	OFFNET	All kind of calls outside the operator T network
16	ROAM	Indicates that customer is in roaming zone during the call
17	SPL	Special calls
18	ISD	ISD calls
19	RECH	Recharge
20	NUM	Number
21	AMT	Amount in local currency
22	MAX	Maximum
23	DATA	Mobile internet
24	3G	3G network
25	AV	Average
26	VOL	Mobile internet usage volume (in MB)
27	2G	2G network
28	PCK	Prepaid service schemes called - PACKS
29	NIGHT	Scheme to use during specific night hours only
30	MONTHLY	Service schemes with validity equivalent to a month
31	SACHET	Service schemes with validity smaller than a month
32	*.6	KPI for the month of June
33	*.7	KPI for the month of July
34	*.8	KPI for the month of August
35	*.9	KPI for the month of September
36	FB_USER	Service scheme to avail services of Facebook and similar social networking sites
37	VBC	Volume based cost - when no specific scheme is not purchased and paid as per usage

Initial Statistical Analysis of the Data

Statistical analysis of the numercial features
telecom_data.describe().T

	count	mean	std	min	25%	50%	
mobile_number	99999.0	7.001207e+09	695669.386290	7.000000e+09	7.000606e+09	7.001205e+09	7.00181:
circle_id	99999.0	1.090000e+02	0.000000	1.090000e+02	1.090000e+02	1.090000e+02	1.09000
loc_og_t2o_mou	98981.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_og_t2o_mou	98981.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
loc_ic_t2o_mou	98981.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
arpu_6	99999.0	2.829874e+02	328.439770	-2.258709e+03	9.341150e+01	1.977040e+02	3.71060
arpu_7	99999.0	2.785366e+02	338.156291	-2.014045e+03	8.698050e+01	1.916400e+02	3.65344
arpu_8	99999.0	2.791547e+02	344.474791	-9.458080e+02	8.412600e+01	1.920800e+02	3.69370
arpu_9	99999.0	2.616451e+02	341.998630	-1.899505e+03	6.268500e+01	1.768490e+02	3.53466
onnet_mou_6	96062.0	1.323959e+02	297.207406	0.000000e+00	7.380000e+00	3.431000e+01	1.18740

	count	mean	std	min	25%	50%	
onnet_mou_7	96140.0	1.336708e+02	308.794148	0.000000e+00	6.660000e+00	3.233000e+01	1.15595
onnet_mou_8	94621.0	1.330181e+02	308.951589	0.000000e+00	6.460000e+00	3.236000e+01	1.15860
onnet_mou_9	92254.0	1.303023e+02	308.477668	0.000000e+00	5.330000e+00	2.984000e+01	1.12130
offnet_mou_6	96062.0	1.979356e+02	316.851613	0.000000e+00	3.473000e+01	9.631000e+01	2.31860
offnet_mou_7	96140.0	1.970451e+02	325.862803	0.000000e+00	3.219000e+01	9.173500e+01	2.26815
offnet_mou_8	94621.0	1.965748e+02	327.170662	0.000000e+00	3.163000e+01	9.214000e+01	2.28260
offnet_mou_9	92254.0	1.903372e+02	319.396092	0.000000e+00	2.713000e+01	8.729000e+01	2.20505
roam_ic_mou_6	96062.0	9.950013e+00	72.825411	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
roam_ic_mou_7	96140.0	7.149898e+00	73.447948	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
roam_ic_mou_8	94621.0	7.292981e+00	68.402466	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
roam_ic_mou_9	92254.0	6.343841e+00	57.137537	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
roam_og_mou_6	96062.0	1.391134e+01	71.443196	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
roam_og_mou_7	96140.0	9.818732e+00	58.455762	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
roam_og_mou_8	94621.0	9.971890e+00	64.713221	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
roam_og_mou_9	92254.0	8.555519e+00	58.438186	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
loc_og_t2t_mou_6	96062.0	4.710076e+01	150.856393	0.000000e+00	1.660000e+00	1.191000e+01	4.09600
loc_og_t2t_mou_7	96140.0	4.647301e+01	155.318705	0.000000e+00	1.630000e+00	1.161000e+01	3.99100
loc_og_t2t_mou_8	94621.0	4.588781e+01	151.184830	0.000000e+00	1.600000e+00	1.173000e+01	4.01100
loc_og_t2t_mou_9	92254.0	4.458445e+01	147.995390	0.000000e+00	1.360000e+00	1.126000e+01	3.92800
loc_og_t2m_mou_6	96062.0	9.334209e+01	162.780544	0.000000e+00	9.880000e+00	4.103000e+01	1.10390
loc_og_t2m_mou_7	96140.0	9.139713e+01	157.492308	0.000000e+00	1.002500e+01	4.043000e+01	1.07560
loc_og_t2m_mou_8	94621.0	9.175513e+01	156.537048	0.000000e+00	9.810000e+00	4.036000e+01	1.09090
loc_og_t2m_mou_9	92254.0	9.046319e+01	158.681454	0.000000e+00	8.810000e+00	3.912000e+01	1.06810
loc_og_t2f_mou_6	96062.0	3.751013e+00	14.230438	0.000000e+00	0.000000e+00	0.000000e+00	2.08000
loc_og_t2f_mou_7	96140.0	3.792985e+00	14.264986	0.000000e+00	0.000000e+00	0.000000e+00	2.09000
loc_og_t2f_mou_8	94621.0	3.677991e+00	13.270996	0.000000e+00	0.000000e+00	0.000000e+00	2.04000
loc_og_t2f_mou_9	92254.0	3.655123e+00	13.457549	0.000000e+00	0.000000e+00	0.000000e+00	1.94000
loc_og_t2c_mou_6	96062.0	1.123056e+00	5.448946	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
loc_og_t2c_mou_7	96140.0	1.368500e+00	7.533445	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
loc_og_t2c_mou_8	94621.0	1.433821e+00	6.783335	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
loc_og_t2c_mou_9	92254.0	1.232726e+00	5.619021	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
loc_og_mou_6	96062.0	1.442012e+02	251.751489	0.000000e+00	1.711000e+01	6.511000e+01	1.68270
loc_og_mou_7	96140.0	1.416705e+02	248.731086	0.000000e+00	1.748000e+01	6.368500e+01	1.64382
loc_og_mou_8	94621.0	1.413282e+02	245.914311	0.000000e+00	1.711000e+01	6.373000e+01	1.66110
loc_og_mou_9	92254.0	1.387100e+02	245.934517	0.000000e+00	1.556000e+01	6.184000e+01	1.62225
std_og_t2t_mou_6	96062.0	7.982987e+01	252.476533	0.000000e+00	0.000000e+00	0.000000e+00	3.08075
std_og_t2t_mou_7	96140.0	8.329960e+01	263.631042	0.000000e+00	0.000000e+00	0.000000e+00	3.11325
std_og_t2t_mou_8	94621.0	8.328267e+01	265.486090	0.000000e+00	0.000000e+00	0.000000e+00	3.05800
std_og_t2t_mou_9	92254.0	8.234292e+01	267.184991	0.000000e+00	0.000000e+00	0.000000e+00	2.82300

	count	mean	std	min	25%	50%	
std_og_t2m_mou_6	96062.0	8.729962e+01	255.617850	0.000000e+00	0.000000e+00	3.950000e+00	5.32900
std_og_t2m_mou_7	96140.0	9.080414e+01	269.347911	0.000000e+00	0.000000e+00	3.635000e+00	5.40400
std_og_t2m_mou_8	94621.0	8.983839e+01	271.757783	0.000000e+00	0.000000e+00	3.310000e+00	5.24900
std_og_t2m_mou_9	92254.0	8.627662e+01	261.407396	0.000000e+00	0.000000e+00	2.500000e+00	4.85600
std_og_t2f_mou_6	96062.0	1.129011e+00	7.984970	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_og_t2f_mou_7	96140.0	1.115010e+00	8.599406	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_og_t2f_mou_8	94621.0	1.067792e+00	7.905971	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_og_t2f_mou_9	92254.0	1.042362e+00	8.261770	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_og_t2c_mou_6	96062.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_og_t2c_mou_7	96140.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_og_t2c_mou_8	94621.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_og_t2c_mou_9	92254.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_og_mou_6	96062.0	1.682612e+02	389.948499	0.000000e+00	0.000000e+00	1.164000e+01	1.44837
std_og_mou_7	96140.0	1.752214e+02	408.922934	0.000000e+00	0.000000e+00	1.109000e+01	1.50615
std_og_mou_8	94621.0	1.741915e+02	411.633049	0.000000e+00	0.000000e+00	1.041000e+01	1.47940
std_og_mou_9	92254.0	1.696645e+02	405.138658	0.000000e+00	0.000000e+00	8.410000e+00	1.42105
isd_og_mou_6	96062.0	7.982775e-01	25.765248	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
isd_og_mou_7	96140.0	7.765721e-01	25.603052	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
isd_og_mou_8	94621.0	7.912471e-01	25.544471	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
isd_og_mou_9	92254.0	7.238921e-01	21.310751	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
spl_og_mou_6	96062.0	3.916811e+00	14.936449	0.000000e+00	0.000000e+00	0.000000e+00	2.43000
spl_og_mou_7	96140.0	4.978279e+00	20.661570	0.000000e+00	0.000000e+00	0.000000e+00	3.71000
spl_og_mou_8	94621.0	5.053769e+00	17.855111	0.000000e+00	0.000000e+00	0.000000e+00	3.99000
spl_og_mou_9	92254.0	4.412767e+00	16.328227	0.000000e+00	0.000000e+00	0.000000e+00	3.23000
og_others_6	96062.0	4.541571e-01	4.125911	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
og_others_7	96140.0	3.023539e-02	2.161717	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
og_others_8	94621.0	3.337198e-02	2.323464	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
og_others_9	92254.0	4.745572e-02	3.635466	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
total_og_mou_6	99999.0	3.051334e+02	463.419481	0.000000e+00	4.474000e+01	1.451400e+02	3.72860
total_og_mou_7	99999.0	3.102312e+02	480.031178	0.000000e+00	4.301000e+01	1.415300e+02	3.78570
total_og_mou_8	99999.0	3.041195e+02	478.150031	0.000000e+00	3.858000e+01	1.386100e+02	3.69900
total_og_mou_9	99999.0	2.892792e+02	468.980002	0.000000e+00	2.551000e+01	1.254600e+02	3.53480
loc_ic_t2t_mou_6	96062.0	4.792237e+01	140.258485	0.000000e+00	2.990000e+00	1.569000e+01	4.68400
loc_ic_t2t_mou_7	96140.0	4.799052e+01	145.795055	0.000000e+00	3.230000e+00	1.574000e+01	4.58100
loc_ic_t2t_mou_8	94621.0	4.721136e+01	137.239552	0.000000e+00	3.280000e+00	1.603000e+01	4.62900
loc_ic_t2t_mou_9	92254.0	4.628179e+01	140.130610	0.000000e+00	3.290000e+00	1.566000e+01	4.51800
loc_ic_t2m_mou_6	96062.0	1.074757e+02	171.713903	0.000000e+00	1.729000e+01	5.649000e+01	1.32387
loc_ic_t2m_mou_7	96140.0	1.071205e+02	169.423620	0.000000e+00	1.859000e+01	5.708000e+01	1.30960
loc_ic_t2m_mou_8	94621.0	1.084605e+02	169.723759	0.000000e+00	1.893000e+01	5.824000e+01	1.33930

	count	mean	std	min	25%	50%	
loc_ic_t2m_mou_9	92254.0	1.061555e+02	165.492803	0.000000e+00	1.856000e+01	5.661000e+01	1.30490
loc_ic_t2f_mou_6	96062.0	1.208430e+01	40.140895	0.000000e+00	0.000000e+00	8.800000e-01	8.14000
loc_ic_t2f_mou_7	96140.0	1.259970e+01	42.977442	0.000000e+00	0.000000e+00	9.300000e-01	8.28250
loc_ic_t2f_mou_8	94621.0	1.175183e+01	39.125379	0.000000e+00	0.000000e+00	9.300000e-01	8.11000
loc_ic_t2f_mou_9	92254.0	1.217310e+01	43.840776	0.000000e+00	0.000000e+00	9.600000e-01	8.14000
loc_ic_mou_6	96062.0	1.674911e+02	254.124029	0.000000e+00	3.039000e+01	9.216000e+01	2.08075
loc_ic_mou_7	96140.0	1.677195e+02	256.242707	0.000000e+00	3.246000e+01	9.255000e+01	2.05837
loc_ic_mou_8	94621.0	1.674326e+02	250.025523	0.000000e+00	3.274000e+01	9.383000e+01	2.07280
loc_ic_mou_9	92254.0	1.646193e+02	249.845070	0.000000e+00	3.229000e+01	9.164000e+01	2.02737
std_ic_t2t_mou_6	96062.0	9.575993e+00	54.330607	0.000000e+00	0.000000e+00	0.000000e+00	4.06000
std_ic_t2t_mou_7	96140.0	1.001190e+01	57.411971	0.000000e+00	0.000000e+00	0.000000e+00	4.23000
std_ic_t2t_mou_8	94621.0	9.883921e+00	55.073186	0.000000e+00	0.000000e+00	0.000000e+00	4.08000
std_ic_t2t_mou_9	92254.0	9.432479e+00	53.376273	0.000000e+00	0.000000e+00	0.000000e+00	3.51000
std_ic_t2m_mou_6	96062.0	2.072224e+01	80.793414	0.000000e+00	0.000000e+00	2.030000e+00	1.50300
std_ic_t2m_mou_7	96140.0	2.165641e+01	86.521393	0.000000e+00	0.000000e+00	2.040000e+00	1.57400
std_ic_t2m_mou_8	94621.0	2.118321e+01	83.683565	0.000000e+00	0.000000e+00	2.030000e+00	1.53600
std_ic_t2m_mou_9	92254.0	1.962091e+01	74.913050	0.000000e+00	0.000000e+00	1.740000e+00	1.42600
std_ic_t2f_mou_6	96062.0	2.156397e+00	16.495594	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_ic_t2f_mou_7	96140.0	2.216923e+00	16.454061	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_ic_t2f_mou_8	94621.0	2.085004e+00	15.812580	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_ic_t2f_mou_9	92254.0	2.173419e+00	15.978601	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_ic_t2o_mou_6	96062.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_ic_t2o_mou_7	96140.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_ic_t2o_mou_8	94621.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_ic_t2o_mou_9	92254.0	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
std_ic_mou_6	96062.0	3.245718e+01	106.283386	0.000000e+00	0.000000e+00	5.890000e+00	2.69300
std_ic_mou_7	96140.0	3.388783e+01	113.720168	0.000000e+00	0.000000e+00	5.960000e+00	2.83100
std_ic_mou_8	94621.0	3.315474e+01	110.127008	0.000000e+00	1.000000e-02	5.880000e+00	2.77100
std_ic_mou_9	92254.0	3.122934e+01	101.982303	0.000000e+00	0.000000e+00	5.380000e+00	2.56900
total_ic_mou_6	99999.0	2.001300e+02	291.651671	0.000000e+00	3.853000e+01	1.147400e+02	2.51670
total_ic_mou_7	99999.0	2.028531e+02	298.124954	0.000000e+00	4.119000e+01	1.163400e+02	2.50660
total_ic_mou_8	99999.0	1.987508e+02	289.321094	0.000000e+00	3.829000e+01	1.146600e+02	2.48990
total_ic_mou_9	99999.0	1.892143e+02	284.823024	0.000000e+00	3.237000e+01	1.058900e+02	2.36320
spl_ic_mou_6	96062.0	6.155660e-02	0.160920	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
spl_ic_mou_7	96140.0	3.358477e-02	0.155725	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
spl_ic_mou_8	94621.0	4.036134e-02	0.146147	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
spl_ic_mou_9	92254.0	1.631370e-01	0.527860	0.000000e+00	0.000000e+00	0.000000e+00	6.00000
isd_ic_mou_6	96062.0	7.460608e+00	59.722948	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
isd_ic_mou_7	96140.0	8.334936e+00	65.219829	0.000000e+00	0.000000e+00	0.000000e+00	0.00000

	count	mean	std	min	25%	50%	
isd_ic_mou_8	94621.0	8.442001e+00	63.813098	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
isd_ic_mou_9	92254.0	8.063003e+00	63.505379	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
ic_others_6	96062.0	8.546555e-01	11.955164	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
ic_others_7	96140.0	1.012960e+00	12.673099	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
ic_others_8	94621.0	9.708005e-01	13.284348	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
ic_others_9	92254.0	1.017162e+00	12.381172	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
total_rech_num_6	99999.0	7.558806e+00	7.078405	0.000000e+00	3.000000e+00	6.000000e+00	9.00000
total_rech_num_7	99999.0	7.700367e+00	7.070422	0.000000e+00	3.000000e+00	6.000000e+00	1.00000
total_rech_num_8	99999.0	7.212912e+00	7.203753	0.000000e+00	3.000000e+00	5.000000e+00	9.00000
total_rech_num_9	99999.0	6.893019e+00	7.096261	0.000000e+00	3.000000e+00	5.000000e+00	9.00000
total_rech_amt_6	99999.0	3.275146e+02	398.019701	0.000000e+00	1.090000e+02	2.300000e+02	4.37500
total_rech_amt_7	99999.0	3.229630e+02	408.114237	0.000000e+00	1.000000e+02	2.200000e+02	4.28000
total_rech_amt_8	99999.0	3.241571e+02	416.540455	0.000000e+00	9.000000e+01	2.250000e+02	4.34500
total_rech_amt_9	99999.0	3.033457e+02	404.588583	0.000000e+00	5.200000e+01	2.000000e+02	4.15000
max_rech_amt_6	99999.0	1.046375e+02	120.614894	0.000000e+00	3.000000e+01	1.100000e+02	1.20000
max_rech_amt_7	99999.0	1.047524e+02	124.523970	0.000000e+00	3.000000e+01	1.100000e+02	1.28000
max_rech_amt_8	99999.0	1.077282e+02	126.902505	0.000000e+00	3.000000e+01	9.800000e+01	1.44000
max_rech_amt_9	99999.0	1.019439e+02	125.375109	0.000000e+00	2.800000e+01	6.100000e+01	1.44000
last_day_rch_amt_6	99999.0	6.315625e+01	97.356649	0.000000e+00	0.000000e+00	3.000000e+01	1.10000
last_day_rch_amt_7	99999.0	5.938580e+01	95.915385	0.000000e+00	0.000000e+00	3.000000e+01	1.10000
last_day_rch_amt_8	99999.0	6.264172e+01	104.431816	0.000000e+00	0.000000e+00	3.000000e+01	1.30000
last_day_rch_amt_9	99999.0	4.390125e+01	90.809712	0.000000e+00	0.000000e+00	0.000000e+00	5.00000
total_rech_data_6	25153.0	2.463802e+00	2.789128	1.000000e+00	1.000000e+00	1.000000e+00	3.00000
total_rech_data_7	25571.0	2.666419e+00	3.031593	1.000000e+00	1.000000e+00	1.000000e+00	3.00000
total_rech_data_8	26339.0	2.651999e+00	3.074987	1.000000e+00	1.000000e+00	1.000000e+00	3.00000
total_rech_data_9	25922.0	2.441170e+00	2.516339	1.000000e+00	1.000000e+00	2.000000e+00	3.00000
max_rech_data_6	25153.0	1.263934e+02	108.477235	1.000000e+00	2.500000e+01	1.450000e+02	1.77000
max_rech_data_7	25571.0	1.267295e+02	109.765267	1.000000e+00	2.500000e+01	1.450000e+02	1.77000
max_rech_data_8	26339.0	1.257173e+02	109.437851	1.000000e+00	2.500000e+01	1.450000e+02	1.79000
max_rech_data_9	25922.0	1.249414e+02	111.363760	1.000000e+00	2.500000e+01	1.450000e+02	1.79000
count_rech_2g_6	25153.0	1.864668e+00	2.570254	0.000000e+00	1.000000e+00	1.000000e+00	2.00000
count_rech_2g_7	25571.0	2.044699e+00	2.768332	0.000000e+00	1.000000e+00	1.000000e+00	2.00000
count_rech_2g_8	26339.0	2.016288e+00	2.720132	0.000000e+00	1.000000e+00	1.000000e+00	2.00000
count_rech_2g_9	25922.0	1.781807e+00	2.214701	0.000000e+00	1.000000e+00	1.000000e+00	2.00000
count_rech_3g_6	25153.0	5.991333e-01	1.274428	0.000000e+00	0.000000e+00	0.000000e+00	1.00000
count_rech_3g_7	25571.0	6.217199e-01	1.394524	0.000000e+00	0.000000e+00	0.000000e+00	1.00000
count_rech_3g_8	26339.0	6.357113e-01	1.422827	0.000000e+00	0.000000e+00	0.000000e+00	1.00000
count_rech_3g_9	25922.0	6.593627e-01	1.411513	0.000000e+00	0.000000e+00	0.000000e+00	1.00000
av_rech_amt_data_6	25153.0	1.926010e+02	192.646318	1.000000e+00	8.200000e+01	1.540000e+02	2.52000

	count	mean	std	min	25%	50%	
av_rech_amt_data_7	25571.0	2.009813e+02	196.791224	5.000000e-01	9.200000e+01	1.540000e+02	2.52000
av_rech_amt_data_8	26339.0	1.975265e+02	191.301305	5.000000e-01	8.700000e+01	1.540000e+02	2.52000
av_rech_amt_data_9	25922.0	1.927343e+02	188.400286	1.000000e+00	6.900000e+01	1.640000e+02	2.52000
vol_2g_mb_6	99999.0	5.190496e+01	213.356445	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
vol_2g_mb_7	99999.0	5.122994e+01	212.302217	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
vol_2g_mb_8	99999.0	5.017015e+01	212.347892	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
vol_2g_mb_9	99999.0	4.471970e+01	198.653570	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
vol_3g_mb_6	99999.0	1.213962e+02	544.247227	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
vol_3g_mb_7	99999.0	1.289958e+02	541.494013	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
vol_3g_mb_8	99999.0	1.354107e+02	558.775335	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
vol_3g_mb_9	99999.0	1.360566e+02	577.394194	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
arpu_3g_6	25153.0	8.955506e+01	193.124653	-3.082000e+01	0.000000e+00	4.800000e-01	1.22070
arpu_3g_7	25571.0	8.938412e+01	195.893924	-2.604000e+01	0.000000e+00	4.200000e-01	1.19560
arpu_3g_8	26339.0	9.117385e+01	188.180936	-2.449000e+01	0.000000e+00	8.800000e-01	1.22070
arpu_3g_9	25922.0	1.002641e+02	216.291992	-7.109000e+01	0.000000e+00	2.605000e+00	1.40010
arpu_2g_6	25153.0	8.639800e+01	172.767523	-3.583000e+01	0.000000e+00	1.083000e+01	1.22070
arpu_2g_7	25571.0	8.591445e+01	176.379871	-1.548000e+01	0.000000e+00	8.810000e+00	1.22070
arpu_2g_8	26339.0	8.659948e+01	168.247852	-5.583000e+01	0.000000e+00	9.270000e+00	1.22070
arpu_2g_9	25922.0	9.371203e+01	171.384224	-4.574000e+01	0.000000e+00	1.480000e+01	1.40010
night_pck_user_6	25153.0	2.508647e-02	0.156391	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
night_pck_user_7	25571.0	2.303391e-02	0.150014	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
night_pck_user_8	26339.0	2.084362e-02	0.142863	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
night_pck_user_9	25922.0	1.597099e-02	0.125366	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
monthly_2g_6	99999.0	7.964080e-02	0.295058	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
monthly_2g_7	99999.0	8.322083e-02	0.304395	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
monthly_2g_8	99999.0	8.100081e-02	0.299568	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
monthly_2g_9	99999.0	6.878069e-02	0.278120	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
sachet_2g_6	99999.0	3.893839e-01	1.497320	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
sachet_2g_7	99999.0	4.396344e-01	1.636230	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
sachet_2g_8	99999.0	4.500745e-01	1.630263	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
sachet_2g_9	99999.0	3.931039e-01	1.347140	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
monthly_3g_6	99999.0	7.592076e-02	0.363371	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
monthly_3g_7	99999.0	7.858079e-02	0.387231	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
monthly_3g_8	99999.0	8.294083e-02	0.384947	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
monthly_3g_9	99999.0	8.634086e-02	0.384978	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
sachet_3g_6	99999.0	7.478075e-02	0.568344	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
sachet_3g_7	99999.0	8.040080e-02	0.628334	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
sachet_3g_8	99999.0	8.450085e-02	0.660234	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
sachet_3g_9	99999.0	8.458085e-02	0.650457	0.000000e+00	0.000000e+00	0.000000e+00	0.00000

```
50%
                                                                     25%
                  count
                              mean
                                             std
                                                         min
        fb_user_6 25153.0
                                                 0.000000e+00 1.000000e+00 1.000000e+00 1.000000
                        9.144038e-01
                                         0.279772
        fb_user_7 25571.0
                                                 0.000000e+00 1.000000e+00 1.000000e+00 1.000000
                        9.087638e-01
                                        0.287950
        fb_user_8 26339.0
                       8.908083e-01
                                                 0.000000e+00 1.000000e+00 1.000000e+00 1.000000
                                        0.311885
        fb_user_9 25922.0
                       8.609675e-01
                                        0.345987
                                                 0.000000e+00 1.000000e+00 1.000000e+00 1.000000
            aon 99999.0 1.219855e+03
                                       954.733842
                                                 1.800000e+02 4.670000e+02 8.630000e+02 1.80750
                                                 0.000000e+00 0.000000e+00 0.000000e+00 0.000000
      aug_vbc_3g
                99999.0 6.817025e+01
                                       267.580450
       jul_vbc_3g 99999.0 6.683906e+01
                                                 0.000000e+00 0.000000e+00 0.000000e+00 0.000000
                                       271.201856
      jun_vbc_3g 99999.0 6.002120e+01
                                       253.938223
                                                 0.000000e+00 0.000000e+00 0.000000e+00
                                                                                      0.00000
      sep_vbc_3g 99999.0 3.299373e+00
                                        # lets check the columns unique values and drop such columns with its value as 1
unique_1_col=[]
for i in telecom_data.columns:
    if telecom_data[i].nunique() == 1:
        unique_1_col.append(i)
    else:
        pass
telecom_data.drop(unique_1_col, axis=1, inplace = True)
print("\n The following Columns are dropped from the dataset as their unique value is 1
      unique_1_col)
The following Columns are dropped from the dataset as their unique value is 1.
(i.e.)It has no variance in the model
['circle_id', 'loc_og_t2o_mou', 'std_og_t2o_mou', 'loc_ic_t2o_mou',
'last_date_of_month_6', 'last_date_of_month_7', 'last_date_of_month_8',
'last_date_of_month_9', 'std_og_t2c_mou_6', 'std_og_t2c_mou_7', 'std_og_t2c_mou_8',
```

```
'std_og_t2c_mou_9', 'std_ic_t2o_mou_6', 'std_ic_t2o_mou_7', 'std_ic_t2o_mou_8',
'std_ic_t2o_mou_9']
```

```
# The curent dimensions of the dataset
telecom_data.shape
```

(99999, 210)

```
# Checkng the overall missing values in the dataset
((telecom_data.isnull().sum()/telecom_data.shape[0])*100).round(2).sort_values(ascendin
```

max_rech_data_6	74.85
fb_user_6	74.85
count_rech_3g_6	74.85
count_rech_2g_6	74.85
night_pck_user_6	74.85
arpu_3g_6	74.85
total_rech_data_6	74.85

av_rech_amt_data_6	74.85
arpu_2g_6	74.85
date_of_last_rech_data_6	74.85
arpu_3g_7	74.43
night_pck_user_7	74.43
total_rech_data_7	74.43
date_of_last_rech_data_7	74.43
av_rech_amt_data_7	74.43
max_rech_data_7	74.43
fb_user_7	74.43
count_rech_3g_7	74.43
arpu_2g_7	74.43
count_rech_2g_7	74.43
count_rech_3g_9	74.08
date_of_last_rech_data_9	74.08
count_rech_2g_9	74.08
fb_user_9	74.08
total_rech_data_9	74.08
max_rech_data_9	74.08
night_pck_user_9	74.08
arpu_2g_9	74.08
av_rech_amt_data_9	74.08
arpu_3g_9	74.08
arpu_3g_8	73.66
fb_user_8	73.66
total_rech_data_8	73.66
	73.66
count_rech_2g_8	73.66
arpu_2g_8	73.66
date_of_last_rech_data_8	73.66
<pre>count_rech_3g_8 max_rech_data_8</pre>	73.66
av_rech_amt_data_8	73.66
night_pck_user_8	73.66
loc_og_t2t_mou_9	7.75
std_ic_t2m_mou_9	7.75
isd_og_mou_9	7.75
roam_og_mou_9	7.75
std_ic_t2t_mou_9	7.75
spl_og_mou_9	7.75
loc_ic_mou_9	7.75
og_others_9	7.75
roam_ic_mou_9	7.75
ic_others_9	7.75
offnet_mou_9	7.75
loc_ic_t2f_mou_9	7.75
loc_og_t2m_mou_9	7.75
loc_ic_t2t_mou_9	7.75
loc_ic_t2m_mou_9	7.75
spl_ic_mou_9	7.75

std_ic_t2f_mou_9	7.75
std_og_mou_9	7.75
std_og_t2m_mou_9	7.75
loc_og_mou_9	7.75
loc_og_t2c_mou_9	7.75
std_og_t2t_mou_9	7.75
isd_ic_mou_9	7.75
loc_og_t2f_mou_9	7.75
onnet_mou_9	7.75
std_ic_mou_9	7.75
std_og_t2f_mou_9	7.75
std_ic_t2t_mou_8	5.38
offnet_mou_8	5.38
std_ic_mou_8	5.38
loc_ic_mou_8	5.38
onnet_mou_8	5.38
loc_ic_t2m_mou_8	5.38
isd_ic_mou_8	5.38
std_ic_t2f_mou_8	5.38
loc_ic_t2f_mou_8	5.38
spl_ic_mou_8	5.38
std_ic_t2m_mou_8	5.38
ic_others_8	5.38
loc_og_t2m_mou_8	5.38
std_og_t2m_mou_8	5.38
roam_og_mou_8	5.38
loc_og_mou_8	5.38
std_og_t2t_mou_8	5.38
isd_og_mou_8	5.38
loc_og_t2t_mou_8	5.38
spl_og_mou_8	5.38
loc_og_t2c_mou_8	5.38
std_og_mou_8	5.38
og_others_8	5.38
roam_ic_mou_8	5.38
std_og_t2f_mou_8	5.38
loc_og_t2f_mou_8	5.38
loc_ic_t2t_mou_8	5.38
date_of_last_rech_9	4.76
std_og_t2t_mou_6	3.94
onnet_mou_6	3.94
std_og_t2m_mou_6	3.94
spl_ic_mou_6	3.94
loc_ic_t2m_mou_6	3.94
isd_ic_mou_6	3.94
loc_og_t2m_mou_6	3.94
ic_others_6	3.94
loc_og_t2c_mou_6	3.94
loc_og_t2f_mou_6	3.94

loc_og_mou_6	3.94
std_ic_mou_6	3.94
std_og_t2f_mou_6	3.94
offnet_mou_6	3.94
loc_ic_t2f_mou_6	3.94
std_og_mou_6	3.94
loc_og_t2t_mou_6	3.94
std_ic_t2f_mou_6	3.94
isd_og_mou_6	3.94
std_ic_t2m_mou_6	3.94
og_others_6	3.94
std_ic_t2t_mou_6	3.94
roam_og_mou_6	3.94
loc_ic_mou_6	3.94
loc_ic_t2t_mou_6	3.94
roam_ic_mou_6	3.94
spl_og_mou_6	3.94
loc_ic_mou_7	3.86
std_ic_t2t_mou_7	3.86
isd_og_mou_7	3.86
og_others_7	3.86
std_og_mou_7	3.86
loc_ic_t2t_mou_7	3.86
loc_ic_t2m_mou_7	3.86
loc_ic_t2f_mou_7	3.86
std_og_t2f_mou_7	3.86
std_ic_t2m_mou_7	3.86
std_ic_t2f_mou_7	3.86
std_ic_mou_7	3.86
std_og_t2m_mou_7	3.86
std_og_t2t_mou_7	3.86
loc_og_mou_7	3.86
spl_ic_mou_7	3.86
isd_ic_mou_7	3.86
ic_others_7	3.86
loc_og_t2c_mou_7	3.86
loc_og_t2f_mou_7	3.86
loc_og_t2m_mou_7	3.86
loc_og_t2t_mou_7	3.86
roam_og_mou_7	3.86
roam_ic_mou_7	3.86
offnet_mou_7	3.86
onnet_mou_7	3.86
spl_og_mou_7	3.86
date_of_last_rech_8	3.62
date_of_last_rech_7	1.77
date_of_last_rech_6	1.61
	0.00
aug_vbc_3g	0.00
jul_vbc_3g	0.00

jun_vbc_3g	0.00
monthly_3g_8	0.00
aon	0.00
monthly_2g_8	0.00
monthly_3g_6	0.00
sachet_2g_9	0.00
sachet_2g_8	0.00
sachet_2g_7	0.00
sachet_2g_6	0.00
monthly_2g_9	0.00
monthly_2g_7	0.00
monthly_3g_7	0.00
monthly_3g_9	0.00
monthly_2g_6	0.00
sachet_3g_6	0.00
sachet_3g_7	0.00
sachet_3g_8	0.00
sachet_3g_9	0.00
mobile_number	0.00
total_ic_mou_6	0.00
vol_3g_mb_9	0.00
vol_3g_mb_8	0.00
total_rech_num_9	0.00
total_rech_num_8	0.00
total_rech_num_7	0.00
total_rech_num_6	0.00
total_ic_mou_9	0.00
total_ic_mou_8	0.00
total_ic_mou_7	0.00
arpu_6	0.00
total_og_mou_9	0.00
total_og_mou_8	0.00
total_og_mou_7	0.00
total_og_mou_6	0.00
arpu_9	0.00
arpu_8	0.00
arpu_7	0.00
total_rech_amt_6	0.00
total_rech_amt_7	0.00
total_rech_amt_8	0.00
last_day_rch_amt_9	0.00
vol_3g_mb_7	0.00
vol_3g_mb_6	0.00
vol_2g_mb_9	0.00
vol_2g_mb_8	0.00
vol_2g_mb_7	0.00
vol_2g_mb_6	0.00
last_day_rch_amt_8	0.00
total_rech_amt_9	0.00

```
last_day_rch_amt_7
                             0.00
last_day_rch_amt_6
                             0.00
max_rech_amt_9
                             0.00
                             0.00
max_rech_amt_8
max\_rech\_amt\_7
                             0.00
max_rech_amt_6
                             0.00
sep_vbc_3g
                             0.00
dtype: float64
```

As we can see that the columns with datetime values represented as object, they can be converted into

```
datetime format
 # selecting all the columns with datetime format
 date_col= telecom_data.select_dtypes(include=['object'])
 print("\nThese are the columns available with datetime format represented as object\n",
 # Converting the selected columns to datetime format
 for i in date_col.columns:
     telecom_data[i] = pd.to_datetime(telecom_data[i])
 # Current dimension of the dataset
 telecom_data.shape
These are the columns available with datetime format represented as object
 Index(['date_of_last_rech_6', 'date_of_last_rech_7', 'date_of_last_rech_8',
       'date_of_last_rech_9', 'date_of_last_rech_data_6',
       'date_of_last_rech_data_7', 'date_of_last_rech_data_8',
       'date_of_last_rech_data_9'],
      dtype='object')
(99999, 210)
```

```
# confirming the conversion of dtype
telecom_data.info(verbose=True)
```

```
RangeIndex: 99999 entries, 0 to 99998
Data columns (total 210 columns):
 #
      Column
                                 Dtype
---
      ____
                                 ----
      mobile_number
                                 int64
 0
 1
                                 float64
      arpu_6
                                 float64
 2
      arpu_7
 3
                                 float64
      arpu_8
                                 float64
 4
      arpu_9
 5
                                 float64
      onnet_mou_6
      onnet_mou_7
                                 float64
```

<class 'pandas.core.frame.DataFrame'>

7		£1 + <i>C</i>
7	onnet_mou_8	float64
8	onnet_mou_9	float64
9	offnet_mou_6	float64
10	offnet_mou_7	float64
11	offnet_mou_8	float64
12	offnet_mou_9	float64
13	roam_ic_mou_6	float64
14	roam_ic_mou_7	float64
15	roam_ic_mou_8	float64
16	roam_ic_mou_9	float64
17	roam_og_mou_6	float64
18	roam_og_mou_7	float64
19	roam_og_mou_8	float64
20	roam_og_mou_9	float64
21	loc_og_t2t_mou_6	float64
22	loc_og_t2t_mou_7	float64
23	loc_og_t2t_mou_8	float64
24	loc_og_t2t_mou_9	float64
25	loc_og_t2m_mou_6	float64
26	loc_og_t2m_mou_7	float64
27	loc_og_t2m_mou_8	float64
28	<pre>loc_og_t2m_mou_9</pre>	float64
29	<pre>loc_og_t2f_mou_6</pre>	float64
30	<pre>loc_og_t2f_mou_7</pre>	float64
31	<pre>loc_og_t2f_mou_8</pre>	float64
32	<pre>loc_og_t2f_mou_9</pre>	float64
33	loc_og_t2c_mou_6	float64
34	loc_og_t2c_mou_7	float64
35	loc_og_t2c_mou_8	float64
36	loc_og_t2c_mou_9	float64
37	loc_og_mou_6	float64
38	loc_og_mou_7	float64
39	loc_og_mou_8	float64
40	loc_og_mou_9	float64
41	std_og_t2t_mou_6	float64
42	std_og_t2t_mou_7	float64
43	std_og_t2t_mou_8	float64
44	std_og_t2t_mou_9	float64
45	std_og_t2m_mou_6	float64
46	std_og_t2m_mou_7	float64
47	std_og_t2m_mou_8	float64
48	std_og_t2m_mou_9	float64
49	std_og_t2f_mou_6	float64

50	std_og_t2f_mou_7	float64
51	std_og_t2f_mou_8	float64
52	std_og_t2f_mou_9	float64
53	std_og_mou_6	float64
54	std_og_mou_7	float64
55	std_og_mou_8	float64
56	std_og_mou_9	float64
57	isd_og_mou_6	float64
58	isd_og_mou_7	float64
59	isd_og_mou_8	float64
60	isd_og_mou_9	float64
61	spl_og_mou_6	float64
62	spl_og_mou_7	float64
63	spl_og_mou_8	float64
64	spl_og_mou_9	float64
65	og_others_6	float64
66	og_others_7	float64
67	og_others_8	float64
68	og_others_9	float64
69	total_og_mou_6	float64
70	total_og_mou_7	float64
71	total_og_mou_8	float64
72	total_og_mou_9	float64
73	loc_ic_t2t_mou_6	float64
74	loc_ic_t2t_mou_7	float64
75	loc_ic_t2t_mou_8	float64
76	loc_ic_t2t_mou_9	float64
77	loc_ic_t2m_mou_6	float64
78	<pre>loc_ic_t2m_mou_7</pre>	float64
79	loc_ic_t2m_mou_8	float64
80	loc_ic_t2m_mou_9	float64
81	<pre>loc_ic_t2f_mou_6</pre>	float64
82	<pre>loc_ic_t2f_mou_7</pre>	float64
83	loc_ic_t2f_mou_8	float64
84	<pre>loc_ic_t2f_mou_9</pre>	float64
85	loc_ic_mou_6	float64
86	loc_ic_mou_7	float64
87	loc_ic_mou_8	float64
88	loc_ic_mou_9	float64
89	std_ic_t2t_mou_6	float64
90	std_ic_t2t_mou_7	float64
91	std_ic_t2t_mou_8	float64
92	std_ic_t2t_mou_9	float64

00		67
93	std_ic_t2m_mou_6	float64
94	std_ic_t2m_mou_7	float64
95	std_ic_t2m_mou_8	float64
96	std_ic_t2m_mou_9	float64
97	std_ic_t2f_mou_6	float64
98	std_ic_t2f_mou_7	float64
99	std_ic_t2f_mou_8	float64
100	std_ic_t2f_mou_9	float64
101	std_ic_mou_6	float64
102	std_ic_mou_7	float64
103	std_ic_mou_8	float64
104	std_ic_mou_9	float64
105	total_ic_mou_6	float64
106	total_ic_mou_7	float64
107	total_ic_mou_8	float64
108	total_ic_mou_9	float64
109	spl_ic_mou_6	float64
110	spl_ic_mou_7	float64
111	spl_ic_mou_8	float64
112	spl_ic_mou_9	float64
113	isd_ic_mou_6	float64
114	isd_ic_mou_7	float64
115	isd_ic_mou_8	float64
116	isd_ic_mou_9	float64
117	ic_others_6	float64
118	ic_others_7	float64
119	ic_others_8	float64
120	ic_others_9	float64
121	total_rech_num_6	int64
122	total_rech_num_7	int64
123	total_rech_num_8	int64
124	total_rech_num_9	int64
125	total_rech_amt_6	int64
126	total_rech_amt_7	int64
127	total_rech_amt_8	int64
128	total_rech_amt_9	int64
129	max_rech_amt_6	int64
130	max_rech_amt_7	int64
131	max_rech_amt_8	int64
132	max_rech_amt_9	int64
133	date_of_last_rech_6	datetime64[ns]
134	date_of_last_rech_7	datetime64[ns]
135	date_of_last_rech_8	datetime64[ns]

136	date_of_last_rech_9	datetime64[ns]
137	last_day_rch_amt_6	int64
138	last_day_rch_amt_7	int64
139	last_day_rch_amt_8	int64
140	last_day_rch_amt_9	int64
141	date_of_last_rech_data_6	datetime64[ns]
142	date_of_last_rech_data_7	datetime64[ns]
143	date_of_last_rech_data_8	datetime64[ns]
144	date_of_last_rech_data_9	datetime64[ns]
145	total_rech_data_6	float64
146	total_rech_data_7	float64
147	total_rech_data_8	float64
148	total_rech_data_9	float64
149	max_rech_data_6	float64
150	max_rech_data_7	float64
151	max_rech_data_8	float64
152	max_rech_data_9	float64
153	count_rech_2g_6	float64
154	count_rech_2g_7	float64
155	count_rech_2g_8	float64
156	count_rech_2g_9	float64
157	count_rech_3g_6	float64
158	count_rech_3g_7	float64
159	count_rech_3g_8	float64
160	count_rech_3g_9	float64
161	av_rech_amt_data_6	float64
162	av_rech_amt_data_7	float64
163	av_rech_amt_data_8	float64
164	av_rech_amt_data_9	float64
165	vol_2g_mb_6	float64
166	vol_2g_mb_7	float64
167	vol_2g_mb_8	float64
168	vol_2g_mb_9	float64
169	vol_3g_mb_6	float64
170	vol_3g_mb_7	float64
171	vol_3g_mb_8	float64
172	vol_3g_mb_9	float64
173	arpu_3g_6	float64
174	arpu_3g_7	float64
175	arpu_3g_8	float64
176	arpu_3g_9	float64
177	arpu_2g_6	float64
178	arpu_2g_7	float64

179	arpu_2g_8	float64	
180	arpu_2g_9	float64	
181	night_pck_user_6	float64	
182	night_pck_user_7	float64	
183	night_pck_user_8	float64	
184	night_pck_user_9	float64	
185	monthly_2g_6	int64	
186	monthly_2g_7	int64	
187	monthly_2g_8	int64	
188	monthly_2g_9	int64	
189	sachet_2g_6	int64	
190	sachet_2g_7	int64	
191	sachet_2g_8	int64	
192	sachet_2g_9	int64	
193	monthly_3g_6	int64	
194	monthly_3g_7	int64	
195	monthly_3g_8	int64	
196	monthly_3g_9	int64	
197	sachet_3g_6	int64	
198	sachet_3g_7	int64	
199	sachet_3g_8	int64	
200	sachet_3g_9	int64	
201	fb_user_6	float64	
202	fb_user_7	float64	
203	fb_user_8	float64	
204	fb_user_9	float64	
205	aon	int64	
206	aug_vbc_3g	float64	
207	jul_vbc_3g	float64	
208	jun_vbc_3g	float64	
209	sep_vbc_3g	float64	
d+vno	s: datatima64[ns](8)	float64(160)	in+6//3

dtypes: datetime64[ns](8), float64(168), int64(34)

memory usage: 160.2 MB

Handling missing values

Handling missing values of meaningful attribute column

```
# Handling missing values with respect to `data recharge` attributes
telecom_data[['date_of_last_rech_data_6','total_rech_data_6','max_rech_data_6']].head(1
```

	date_of_last_rech_data_6	total_rech_data_6	max_rech_data_6
0	2014-06-21	1.0	252.0
1	NaT	NaN	NaN

	date_of_last_rech_data_6	total_rech_data_6	max_rech_data_6
2	NaT	NaN	NaN
3	NaT	NaN	NaN
4	2014-06-04	1.0	56.0
5	NaT	NaN	NaN
6	NaT	NaN	NaN
7	NaT	NaN	NaN
8	NaT	NaN	NaN
9	NaT	NaN	NaN

- Let us conside the column date_of_last_rech_data indicating the date of the last recharge made in any
 given month for mobile internet. Here it can deduced if the total_rech_data and the max_rech_data also
 has missing values, the missing values in all the columns mentioned can be considered as meaningful
 missing.
- · Hence imputing 0 as their values.
- Meaningfull missing in this case represents the the customer has not done any recharge for mobile interenet.

Handling the missing values for the attributes total_rech_data_*, max_rech_data_* and for month 6,7,8 and 9

```
# Code for conditional imputation
start_time=time.time()
for i in range(len(telecom_data)):
  # Handling 'total_rech_data', 'max_rech_data' and for month 6
    if pd.isnull((telecom_data['total_rech_data_6'][i]) and (telecom_data['max_rech_dat
        if pd.isnull(telecom_data['date_of_last_rech_data_6'][i]):
            telecom_data['total_rech_data_6'][i]=0
            telecom_data['max_rech_data_6'][i]=0
  # Handling 'total_rech_data', 'max_rech_data' and for month 7
    if pd.isnull((telecom_data['total_rech_data_7'][i]) and (telecom_data['max_rech_dat
        if pd.isnull(telecom_data['date_of_last_rech_data_7'][i]):
            telecom_data['total_rech_data_7'][i]=0
            telecom_data['max_rech_data_7'][i]=0
  # Handling 'total_rech_data', 'max_rech_data' and for month 8
    if pd.isnull((telecom_data['total_rech_data_8'][i]) and (telecom_data['max_rech_dat
        if pd.isnull(telecom_data['date_of_last_rech_data_8'][i]):
            telecom_data['total_rech_data_8'][i]=0
            telecom_data['max_rech_data_8'][i]=0
  # Handling 'total_rech_data', 'max_rech_data' and for month 9
    if pd.isnull((telecom_data['total_rech_data_9'][i]) and (telecom_data['max_rech_dat
        if pd.isnull(telecom_data['date_of_last_rech_data_9'][i]):
            telecom_data['total_rech_data_9'][i]=0
            telecom_data['max_rech_data_9'][i]=0
```

```
end_time = time.time()
print("\nExecution Time = ", round(end_time-start_time,2),"seconds")
print("The columns \n'total_rech_data_6','total_rech_data_7','total_rech_data_8','total
```

```
Execution Time = 382.04 seconds
```

The columns

Handling the missing values for the attributes count_rech_2g_*,count_rech_3g_* for month 6,7,8 and 9

```
# Checking the related columns values
telecom_data[['count_rech_2g_6','count_rech_3g_6','total_rech_data_6']].head(10)
```

	count_rech_2g_6	count_rech_3g_6	total_rech_data_6
0	0.0	1.0	1.0
1	NaN	NaN	0.0
2	NaN	NaN	0.0
3	NaN	NaN	0.0
4	1.0	0.0	1.0
5	NaN	NaN	0.0
6	NaN	NaN	0.0
7	NaN	NaN	0.0
8	NaN	NaN	0.0
9	NaN	NaN	0.0

From the above tablular the column values of total_rech_data for each month from 6 to 9 respectively is the sum of the columns values of count_rech_2g for each month from 6 to 9 respectively and count_rech_3g for each month from 6 to 9 respectively, which derives to a multicollinearity issue. In order to reduce the multicollinearity, we can drop the columns count_rech_2g for each month from 6 to 9 respectively and count_rech_3g for each month from 6 to 9 respectively.

The

'count_rech_2g_6','count_rech_3g_6','count_rech_2g_7','count_rech_3g_7','count_rech_2g_8' columns are dropped as they can be explained from the 'total_rech_data'column

^{&#}x27;total_rech_data_6','total_rech_data_7','total_rech_data_8','total_rech_data_9'

^{&#}x27;max_rech_data_6','max_rech_data_7','max_rech_data_8','max_rech_data_9' are imputed with 0 based on the condition explained above

```
# The curent dimensions of the dataset telecom_data.shape
```

(99999, 202)

Handling the missing values for the attributes arpu_3g_*,arpu_2g_* for month 6,7,8 and 9

```
# Checking the related columns values
telecom_data[['arpu_3g_6','arpu_2g_6','av_rech_amt_data_6']].head(10)
```

	arpu_3g_6	arpu_2g_6	av_rech_amt_data_6
0	212.17	212.17	252.0
1	NaN	NaN	NaN
2	NaN	NaN	NaN
3	NaN	NaN	NaN
4	0.00	0.00	56.0
5	NaN	NaN	NaN
6	NaN	NaN	NaN
7	NaN	NaN	NaN
8	NaN	NaN	NaN
9	NaN	NaN	NaN

```
# Checking the correlation between the above mentioned columns in tabular for months 6, print("Correlation table for month 6\n^{n}, telecom_data[['arpu_3g_6','arpu_2g_6','av_reprint("\nCorrelation table for month 7\n^{n}, telecom_data[['arpu_3g_7','arpu_2g_7','av_print("\nCorrelation table for month 8\n^{n}, telecom_data[['arpu_3g_8','arpu_2g_8','av_print("\nCorrelation table for month 9\n^{n}, telecom_data[['arpu_3g_9','arpu_2g_9','av_print("\nCorrelation table for month 9\n^{n}, telecom_data[['arpu_3g_9','arpu_2g_9','arpu_2g_9'],'av_print("\nCorrelation table for month 9\n^{n}, telecom_data[['arpu_3g_9','arpu_2g_9'],'arpu_2g_9'],'av_print("\nCorrelation table for month 9\n^{n}), telecom_data[['arpu_3g_9'],'arpu_2g_9'],'arpu_2g_9'],'av_print("\nCorrelation table for month 9\n^{n}), telecom_data[['arpu_3g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2g_9'],'arpu_2
```

Correlation table for month 6

```
arpu_3g_6 arpu_2g_6 av_rech_amt_data_6
arpu_3g_6 1.000000 0.932232 0.809695
arpu_2g_6 0.932232 1.000000 0.834065
av_rech_amt_data_6 0.809695 0.834065 1.000000
```

Correlation table for month 7

```
arpu_3g_7 arpu_2g_7 av_rech_amt_data_7 arpu_3g_7 1.000000 0.930366 0.796131 arpu_2g_7 0.930366 1.000000 0.815933 av_rech_amt_data_7 0.796131 0.815933 1.000000
```

Correlation table for month 8

```
arpu_3g_8 arpu_2g_8 av_rech_amt_data_8 arpu_3g_8 1.000000 0.924925 0.787165 arpu_2g_8 0.924925 1.000000 0.805482 av_rech_amt_data_8 0.787165 0.805482 1.000000
```

Correlation table for month 9

```
arpu_3g_9 arpu_2g_9 av_rech_amt_data_9 arpu_3g_9 1.000000 0.852253 0.722932 arpu_2g_9 0.852253 1.000000 0.817815 av_rech_amt_data_9 0.722932 0.817815 1.000000
```

From the above correlation table between attributes $arpu_2g_*$ and $arpu_3g_*$ for each month from 6 to 9 respectively is highly correlated to the attribute $av_rech_amt_data_*$ for each month from 6 to 9 respectively. Considering the high correlation between them, it is safer to drop the attributes $arpu_2g_*$ and $arpu_3g_*$.

The

columns'arpu_3g_6','arpu_2g_6','arpu_3g_7','arpu_2g_7','arpu_3g_8','arpu_2g_8','arpu_3g_are dropped from the dataset due to high corellation between their respective arpu_* var dataset

```
# The curent dimensions of the dataset
telecom_data.shape
```

(99999, 194)

Handling the other attributes with higher missing value percentage

The column fb_user_* and night_pck_user_* for each month from 6 to 9 respectively has a missing values above 50% and does not seem to add any information to understand the data. Hence we can drop these columns for further analysis.

The columns

'fb_user_6','fb_user_7','fb_user_8','fb_user_9','night_pck_user_6','night_pck_user_7','r are dropped from the dataset as it has no meaning to the data snd has high missing value

```
# The curent dimensions of the dataset
telecom_data.shape

(99999, 186)
```

Handling the missing values for the attributes av_rech_amt_data_* for month 6,7,8 and 9

```
# Checking the related columns values
telecom_data[['av_rech_amt_data_7','max_rech_data_7','total_rech_data_7']].head(10)
```

	av_rech_amt_data_7	max_rech_data_7	total_rech_data_7
0	252.0	252.0	1.0
1	154.0	154.0	1.0
2	NaN	0.0	0.0
3	NaN	0.0	0.0
4	NaN	0.0	0.0
5	NaN	0.0	0.0
6	NaN	0.0	0.0
7	NaN	0.0	0.0
8	177.0	154.0	2.0
9	154.0	154.0	1.0

From the above tabular it is deduced that the missing values for the column av_rech_amt_data_* for each month from 6 to 9 can be replaced as 0 if the total_rech_data_* for each month from 6 to 9 respectively is 0. i.e. if the total recharge done is 0 then the average recharge amount shall also be 0.

```
# Code for conditional imputation
start_time = time.time()
for i in range(len(telecom_data)):
    # Handling `av_rech_amt_data` for month 6
    if (pd.isnull(telecom_data['av_rech_amt_data_6'][i]) and (telecom_data['total_rech_telecom_data['av_rech_amt_data_6'][i] = 0

# Handling `av_rech_amt_data` for month 7
    if (pd.isnull(telecom_data['av_rech_amt_data_7'][i]) and (telecom_data['total_rech_telecom_data['av_rech_amt_data_7'][i] = 0

# Handling `av_rech_amt_data` for month 8
    if (pd.isnull(telecom_data['av_rech_amt_data_8'][i]) and (telecom_data['total_rech_telecom_data['av_rech_amt_data_8'][i] = 0
```

Execution Time = 189.69 seconds

ic_others_9

The columns 'av_rech_amt_data_6', 'av_rech_amt_data_7', 'av_rech_amt_data_8' and 'av_rech_amt_data_9' are imputed with 0 based on the condition explained above

```
# Checking the overall missing values in the dataset
((telecom_data.isnull().sum()/telecom_data.shape[0])*100).round(2).sort_values(ascending)
```

```
date_of_last_rech_data_6
                            74.85
date_of_last_rech_data_7
                            74.43
date_of_last_rech_data_9
                            74.08
date_of_last_rech_data_8
                            73.66
og_others_9
                            7.75
                            7.75
loc_og_t2f_mou_9
                            7.75
loc_og_t2t_mou_9
loc_ic_t2f_mou_9
                            7.75
std_ic_mou_9
                            7.75
                            7.75
std_og_t2f_mou_9
loc_og_t2m_mou_9
                            7.75
                            7.75
loc_ic_mou_9
std_og_t2m_mou_9
                            7.75
                            7.75
std_ic_t2f_mou_9
std_ic_t2t_mou_9
                            7.75
loc_og_t2c_mou_9
                            7.75
std_ic_t2m_mou_9
                            7.75
                            7.75
std_og_t2t_mou_9
                            7.75
loc_og_mou_9
std_og_mou_9
                            7.75
                            7.75
spl_ic_mou_9
roam_og_mou_9
                            7.75
                            7.75
spl_og_mou_9
                            7.75
loc_ic_t2t_mou_9
                            7.75
isd_og_mou_9
roam_ic_mou_9
                            7.75
loc_ic_t2m_mou_9
                            7.75
                            7.75
isd_ic_mou_9
onnet_mou_9
                            7.75
```

7.75

offnet_mou_9	7.75
og_others_8	5.38
std_ic_t2t_mou_8	5.38
std_og_t2m_mou_8	5.38
loc_ic_t2m_mou_8	5.38
spl_og_mou_8	5.38
loc_ic_t2f_mou_8	5.38
loc_ic_mou_8	5.38
std_og_t2f_mou_8	5.38
isd_og_mou_8	5.38
std_og_mou_8	5.38
std_og_t2t_mou_8	5.38
loc_ic_t2t_mou_8	5.38
std_ic_t2m_mou_8	5.38
loc_og_t2t_mou_8	5.38
onnet_mou_8	5.38
ic_others_8	5.38
offnet_mou_8	5.38
roam_ic_mou_8	5.38
isd_ic_mou_8	5.38
roam_og_mou_8	5.38
loc_og_mou_8	5.38
spl_ic_mou_8	5.38
loc_og_t2m_mou_8	5.38
std_ic_mou_8	5.38
loc_og_t2f_mou_8	5.38
loc_og_t2c_mou_8	5.38
std_ic_t2f_mou_8	5.38
date_of_last_rech_9	4.76
loc_ic_mou_6	3.94
spl_ic_mou_6	3.94
std_ic_mou_6	3.94
loc_ic_t2f_mou_6	3.94
isd_ic_mou_6	3.94
loc_ic_t2t_mou_6	3.94
ic_others_6	3.94
std_ic_t2t_mou_6	3.94
loc_ic_t2m_mou_6	3.94
std_ic_t2f_mou_6	3.94
std_ic_t2m_mou_6	3.94
loc_og_t2c_mou_6	3.94
spl_og_mou_6	3.94
std_og_t2t_mou_6	3.94
loc_og_t2f_mou_6	3.94
std_og_t2m_mou_6	3.94
onnet_mou_6	3.94
std_og_t2f_mou_6	3.94
loc_og_t2m_mou_6	3.94
std_og_mou_6	3.94

isd_og_mou_6	3.94
loc_og_t2t_mou_6	3.94
loc_og_mou_6	3.94
roam_og_mou_6	3.94
og_others_6	3.94
roam_ic_mou_6	3.94
offnet_mou_6	3.94
offnet_mou_7	3.86
loc_og_t2c_mou_7	3.86
onnet_mou_7	3.86
loc_og_t2f_mou_7	3.86
std_ic_mou_7	3.86
isd_ic_mou_7	3.86
loc_og_t2m_mou_7	3.86
roam_og_mou_7	3.86
loc_og_t2t_mou_7	3.86
roam_ic_mou_7	3.86
std_ic_t2f_mou_7	3.86
ic_others_7	3.86
spl_ic_mou_7	3.86
loc_og_mou_7	3.86
std_og_t2f_mou_7	3.86
loc_ic_t2t_mou_7	3.86
og_others_7	3.86
loc_ic_t2m_mou_7	3.86
spl_og_mou_7	3.86
loc_ic_t2f_mou_7	3.86
std_og_mou_7	3.86
loc_ic_mou_7	3.86
isd_og_mou_7	3.86
std_og_t2m_mou_7	3.86
std_ic_t2t_mou_7	3.86
std_og_t2t_mou_7	3.86
std_ic_t2m_mou_7	3.86
date_of_last_rech_8	3.62
date_of_last_rech_7	1.77
date_of_last_rech_6	1.61
jun_vbc_3g	0.00
vol_2g_mb_8	0.00
vol_3g_mb_6	0.00
av_rech_amt_data_6	0.00
vol_2g_mb_9	0.00
vol_2g_mb_7	0.00
vol_3g_mb_8	0.00
av_rech_amt_data_7	0.00
vol_2g_mb_6	0.00
av_rech_amt_data_8	0.00
av_rech_amt_data_9	0.00
aug_vbc_3g	0.00
	0.00

jul_vbc_3g	0.00
vol_3g_mb_7	0.00
sachet_3g_9	0.00
vol_3g_mb_9	0.00
monthly_3g_6	0.00
sachet_3g_7	0.00
aon	0.00
max_rech_data_8	0.00
sachet_3g_6	0.00
monthly_3g_9	0.00
monthly_3g_8	0.00
monthly_3g_7	0.00
sachet_3g_8	0.00
monthly_2g_6	0.00
sachet_2g_9	0.00
sachet_2g_8	0.00
sachet_2g_7	0.00
sachet_2g_6	0.00
monthly_2g_9	0.00
monthly_2g_8	0.00
monthly_2g_7	0.00
max_rech_data_9	0.00
mobile_number	0.00
max_rech_data_7	0.00
arpu_6	0.00
total_rech_num_7	0.00
total_rech_num_6	0.00
total_ic_mou_9	0.00
total_ic_mou_8	0.00
total_ic_mou_7	0.00
total_ic_mou_6	0.00
total_og_mou_9	0.00
total_rech_num_9	0.00
total_og_mou_8	0.00
total_og_mou_7	0.00
total_og_mou_6	0.00
arpu_9	0.00
arpu_8	0.00
arpu_7	0.00
total_rech_num_8	0.00
total_rech_amt_6	0.00
max_rech_data_6	0.00
last_day_rch_amt_7	0.00
total_rech_data_9	0.00
total_rech_data_8	0.00
total_rech_data_7	0.00
total_rech_data_6	0.00
last_day_rch_amt_9	0.00
last_day_rch_amt_8	0.00
· · · · · · · · · · · · · · · · · · ·	

```
last_day_rch_amt_6
                             0.00
total_rech_amt_7
                             0.00
max_rech_amt_9
                             0.00
                             0.00
max_rech_amt_8
                             0.00
max_rech_amt_7
                             0.00
max_rech_amt_6
total_rech_amt_9
                             0.00
total_rech_amt_8
                             0.00
                             0.00
sep_vbc_3g
dtype: float64
```

```
telecom_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99999 entries, 0 to 99998
```

Columns: 186 entries, mobile_number to sep_vbc_3g dtypes: datetime64[ns](8), float64(144), int64(34)

memory usage: 141.9 MB

From the above results, we can conclude, the $date_of_last_rech_data_*$ corresponding to months 6,7,8 and 9 are of no value after the conditional imputation of of columns $total_rech_data_*$, $max_rech_data_*$ are completes.

Also the missing value percentage is high for these columns and can be dropped from the dataset.

The columns

'date_of_last_rech_data_6','date_of_last_rech_data_7','date_of_last_rech_data_8','date_c are dropped as it has no significance to the data

As we can no more utilise the datetime column, we can drop the **date_of_last_rech_data_*** column corresponding to months 6,7,8 and 9 respectively.

The columns

'date_of_last_rech_6','date_of_last_rech_7','date_of_last_rech_8','date_of_last_rech_9'

are dropped as it has no significance to the data

```
# The curent dimensions of the dataset telecom_data.shape
```

(99999, 178)

Since the columns used to determine the High Value Customer is clear of null values, we can filter the overall data and then handle the remaining missing values for each column

Filtering the High Value Customer from Good Phase

```
# Filtering the data
 # We are filtering the data in accordance to total revenue generated per customer.
 # first we need the total amount recharge amount done for data alone, we have average
 # Calculating the total recharge amount done for data alone in months 6,7,8 and 9
telecom_data['total_rech_amt_data_6']=telecom_data['av_rech_amt_data_6'] * telecom_data
telecom_data['total_rech_amt_data_7']=telecom_data['av_rech_amt_data_7'] * telecom_data
# Calculating the overall recharge amount for the months 6,7,8 and 9
telecom_data['overall_rech_amt_6'] = telecom_data['total_rech_amt_data_6'] + telecom_da
telecom_data['overall_rech_amt_7'] = telecom_data['total_rech_amt_data_7'] + telecom_data
# Calculating the average recharge done by customer in months June and July(i.e. 6th ar
telecom_data['avg_rech_amt_6_7'] = (telecom_data['overall_rech_amt_6'] + telecom_data['
# Finding the value of 70th percentage in the overall revenues defining the high value
cut_off = telecom_data['avg_rech_amt_6_7'].quantile(0.70)
print("\nThe 70th quantile value to determine the High Value Customer is: ",cut_off,"\r
# Filtering the data to the top 30% considered as High Value Customer
telecom_data = telecom_data[telecom_data['avg_rech_amt_6_7'] >= cut_off]
```

The 70th quantile value to determine the High Value Customer is: 478.0

```
# The curent dimension of the dataset telecom_data.shape
```

(30001, 183)

The total number of customers is now limited to \sim 30k who lies under the High Value customer criteria basen upon which the model is built.

```
# Let us check the missing values percentages again for the HVC group
# Checking the overall missing values in the dataset
```

	()
loc_ic_t2f_mou_9	6.34
spl_og_mou_9	6.34
loc_og_t2m_mou_9	6.34
<pre>loc_og_t2f_mou_9</pre>	6.34
<pre>loc_ic_t2t_mou_9</pre>	6.34
isd_og_mou_9	6.34
<pre>loc_og_t2t_mou_9</pre>	6.34
<pre>loc_ic_t2m_mou_9</pre>	6.34
std_og_t2t_mou_9	6.34
roam_og_mou_9	6.34
std_og_mou_9	6.34
loc_ic_mou_9	6.34
std_ic_t2t_mou_9	6.34
roam_ic_mou_9	6.34
<pre>loc_og_t2c_mou_9</pre>	6.34
std_ic_t2m_mou_9	6.34
offnet_mou_9	6.34
std_ic_t2f_mou_9	6.34
std_og_t2f_mou_9	6.34
std_ic_mou_9	6.34
onnet_mou_9	6.34
spl_ic_mou_9	6.34
loc_og_mou_9	6.34
isd_ic_mou_9	6.34
std_og_t2m_mou_9	6.34
ic_others_9	6.34
og_others_9	6.34
std_og_mou_8	3.91
isd_og_mou_8	3.91
std_og_t2f_mou_8	3.91
std_ic_t2t_mou_8	3.91
og_others_8	3.91
loc_ic_t2t_mou_8	3.91
loc_ic_t2m_mou_8	3.91
loc_ic_t2f_mou_8	3.91
loc_ic_mou_8	3.91
std_ic_t2m_mou_8	3.91
std_ic_t2f_mou_8	3.91
std_ic_mou_8	3.91
spl_ic_mou_8	3.91
isd_ic_mou_8	3.91
ic_others_8	3.91
std_og_t2m_mou_8	3.91
spl_og_mou_8	3.91
std_og_t2t_mou_8	3.91
offnet_mou_8	3.91
loc_og_t2t_mou_8	3.91
loc_og_t2f_mou_8	3.91

roam_og_mou_8	3.91
roam_ic_mou_8	3.91
loc_og_t2c_mou_8	3.91
loc_og_t2m_mou_8	3.91
loc_og_mou_8	3.91
onnet_mou_8	3.91
offnet_mou_6	1.82
std_og_t2m_mou_6	1.82
loc_ic_t2m_mou_6	1.82
loc_og_t2m_mou_6	1.82
ic_others_6	1.82
loc_ic_t2f_mou_6	1.82
loc_og_t2t_mou_6	1.82
onnet_mou_6	1.82
std_ic_t2t_mou_6	1.82
isd_ic_mou_6	1.82
std_ic_mou_6	1.82
roam_og_mou_6	1.82
std_ic_t2m_mou_6	1.82
loc_ic_t2t_mou_6	1.82
spl_ic_mou_6	1.82
roam_ic_mou_6	1.82
std_ic_t2f_mou_6	1.82
loc_ic_mou_6	1.82
loc_og_mou_6	1.82
std_og_t2t_mou_6	1.82
loc_og_t2c_mou_6	1.82
std_og_t2f_mou_6	1.82
isd_og_mou_6	1.82
loc_og_t2f_mou_6	1.82
spl_og_mou_6	1.82
std_og_mou_6	1.82
og_others_6	1.82
std_ic_mou_7	1.79
roam_ic_mou_7	1.79
std_ic_t2f_mou_7	1.79
	1.79
std_og_mou_7	1.79
offnet_mou_7	
std_ic_t2m_mou_7	1.79
loc_og_mou_7	1.79
ic_others_7	1.79
std_og_t2m_mou_7	1.79
std_og_t2f_mou_7	1.79
spl_ic_mou_7	1.79
onnet_mou_7	1.79
isd_og_mou_7	1.79
loc_og_t2c_mou_7	1.79
std_og_t2t_mou_7	1.79
loc_og_t2t_mou_7	1.79

<pre>loc_ic_t2t_mou_7</pre>	1.79
loc_og_t2m_mou_7	1.79
loc_ic_t2m_mou_7	1.79
loc_og_t2f_mou_7	1.79
og_others_7	1.79
loc_ic_t2f_mou_7	1.79
isd_ic_mou_7	1.79
loc_ic_mou_7	1.79
spl_og_mou_7	1.79
roam_og_mou_7	1.79
std_ic_t2t_mou_7	1.79
monthly_2g_9	0.00
monthly_2g_8	0.00
vol_2g_mb_6	0.00
av_rech_amt_data_8	0.00
sachet_2g_6	0.00
sachet_2g_7	0.00
av_rech_amt_data_9	0.00
vol_3g_mb_6	0.00
monthly_2g_7	0.00
monthly_2g_6	0.00
vol_3g_mb_9	0.00
vol_3g_mb_8	0.00
vol_2g_mb_9	0.00
vol_3g_mb_7	0.00
sachet_2g_9	0.00
vol_2g_mb_7	0.00
vol_2g_mb_8	0.00
sachet_2g_8	0.00
jul_vbc_3g	0.00
monthly_3g_6	0.00
monthly_3g_7	0.00
overall_rech_amt_7	0.00
overall_rech_amt_6	0.00
total_rech_amt_data_7	0.00
total_rech_amt_data_6	0.00
sep_vbc_3g	0.00
jun_vbc_3g	0.00
av_rech_amt_data_6	0.00
aug_vbc_3g	0.00
aon	0.00
sachet_3g_9	0.00
sachet_3g_8	0.00
sachet_3g_7	0.00
sachet_3g_6	0.00
monthly_3g_9	0.00
monthly_3g_8	0.00
av_rech_amt_data_7	0.00
mobile_number	0.00
	5.00

```
max_rech_data_9
                          0.00
total_rech_amt_6
                          0.00
                          0.00
total_rech_num_8
total_rech_num_7
                          0.00
                          0.00
total_rech_num_6
total_ic_mou_9
                          0.00
total_ic_mou_8
                          0.00
total_ic_mou_7
                          0.00
                          0.00
total_ic_mou_6
                          0.00
arpu_6
total_og_mou_9
                          0.00
total_og_mou_8
                          0.00
total_og_mou_7
                          0.00
total_og_mou_6
                          0.00
                          0.00
arpu_9
                          0.00
arpu_8
arpu_7
                          0.00
total_rech_num_9
                          0.00
total_rech_amt_7
                          0.00
                          0.00
max_rech_data_8
                          0.00
total_rech_amt_8
max_rech_data_7
                          0.00
                          0.00
max_rech_data_6
total_rech_data_9
                          0.00
                          0.00
total_rech_data_8
total_rech_data_7
                          0.00
total_rech_data_6
                          0.00
last_day_rch_amt_9
                          0.00
last_day_rch_amt_8
                          0.00
last_day_rch_amt_7
                          0.00
last_day_rch_amt_6
                          0.00
max_rech_amt_9
                          0.00
max_rech_amt_8
                          0.00
                          0.00
max_rech_amt_7
max_rech_amt_6
                          0.00
total_rech_amt_9
                          0.00
avg_rech_amt_6_7
                          0.00
dtype: float64
```

*** The remaining attributes with missing value can be imputed using the advanced imputation technique like KNNImputer .***

```
# Numerical columns available
num_col = telecom_data.select_dtypes(include = ['int64','float64']).columns.tolist()
```

```
# Importing the libraries for Scaling and Imputation
from sklearn.impute import KNNImputer
from sklearn.preprocessing import MinMaxScaler
```

```
# Calling the Scaling function
scalar = MinMaxScaler()

# Scaling and transforming the data for the columns that are numerical
telecom_data[num_col]=scalar.fit_transform(telecom_data[num_col])

# Calling the KNN Imputer function
knn=KNNImputer(n_neighbors=3)

# Imputing the NaN values using KNN Imputer
start_time=time.time()

telecom_data_knn = pd.DataFrame(knn.fit_transform(telecom_data[num_col]))
telecom_data_knn.columns=telecom_data[num_col].columns

end_time=time.time()
print("\nExecution Time = ", round(end_time-start_time,2), "seconds\n")
```

Execution Time = 170.72 seconds

```
# check for any null values after imputation for numerical columns
telecom_data_knn.isnull().sum().sum()
```

0

The KNN Imputer has replaced all the null values in the numerical column using K-means algorithm successfully

	mobile_number	arpu_6	arpu_7	arpu_8	arpu_9	onnet_mou_6	onnet_mou_7	onnet_mou_8	onnet_mou.
0	7.000843e+09	197.385	214.816	213.803	21.100	53.27	24.613333	0.00	33.59000
7	7.000702e+09	1069.180	1349.850	3171.480	500.000	57.84	54.680000	52.29	65.27666
8	7.001525e+09	378.721	492.223	137.362	166.787	413.69	351.030000	35.08	33.46000
21	7.002124e+09	514.453	597.753	637.760	578.596	102.41	132.110000	85.14	161.63000
23	7.000887e+09	74.350	193.897	366.966	811.480	48.96	50.660000	33.58	15.74000
33	7.000150e+09	977.020	2362.833	409.230	799.356	0.00	0.000000	0.00	0.00000
38	7.000815e+09	363.987	486.558	393.909	391.709	248.99	619.960000	666.38	494.79000
41	7.000721e+09	482.832	425.764	229.769	143.596	86.39	118.880000	80.44	40.06000
48	7.000294e+09	1873.271	575.927	179.218	1189.744	2061.69	881.430000	156.91	1589.23000

99.83000

53 7.002189e+09 978.077 1141.296 706.020 1076.247 135.14 119.590000 102.69

Checking the overall missing values in the dataset

 $((\texttt{telecom_data.isnull}().\texttt{sum}()/\texttt{telecom_data.shape}[0])*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).\texttt{round}(2).\texttt{sort_values}(\texttt{ascending}(0))*100).$

((telecom_data.isnull().	sum(
mobile_number	0.0
isd_ic_mou_8	0.0
ic_others_6	0.0
ic_others_7	0.0
ic_others_8	0.0
ic_others_9	0.0
total_rech_num_6	0.0
total_rech_num_7	0.0
total_rech_num_8	0.0
total_rech_num_9	0.0
total_rech_amt_6	0.0
total_rech_amt_7	0.0
total_rech_amt_8	0.0
total_rech_amt_9	0.0
max_rech_amt_6	0.0
max_rech_amt_7	0.0
max_rech_amt_8	0.0
max_rech_amt_9	0.0
last_day_rch_amt_6	0.0
last_day_rch_amt_7	0.0
last_day_rch_amt_8	0.0
isd_ic_mou_9	0.0
isd_ic_mou_7	0.0
total_rech_data_6	0.0
isd_ic_mou_6	0.0
std_ic_t2m_mou_7	0.0
std_ic_t2m_mou_8	0.0
std_ic_t2m_mou_9	0.0
std_ic_t2f_mou_6	0.0
std_ic_t2f_mou_7	0.0
std_ic_t2f_mou_8	0.0
std_ic_t2f_mou_9	0.0
std_ic_mou_6	0.0
std_ic_mou_7	0.0
std_ic_mou_8	0.0
std_ic_mou_9	0.0
total_ic_mou_6	0.0
total_ic_mou_7	0.0
total_ic_mou_8	0.0
total_ic_mou_9	0.0
spl_ic_mou_6	0.0
spl_ic_mou_7	0.0
spl_ic_mou_8	0.0

spl_ic_mou_9	0.0
last_day_rch_amt_9	0.0
total_rech_data_7	0.0
std_ic_t2t_mou_9	0.0
sachet_2g_6	0.0
sachet_2g_8	0.0
sachet_2g_9	0.0
monthly_3g_6	0.0
monthly_3g_7	0.0
monthly_3g_8	0.0
monthly_3g_9	0.0
sachet_3g_6	0.0
sachet_3g_7	0.0
sachet_3g_8	0.0
sachet_3g_9	0.0
aon	0.0
aug_vbc_3g	0.0
jul_vbc_3g	0.0
jun_vbc_3g	0.0
sep_vbc_3g	0.0
total_rech_amt_data_6	0.0
total_rech_amt_data_7	0.0
overall_rech_amt_6	0.0
overall_rech_amt_7	0.0
sachet_2g_7	0.0
monthly_2g_9	0.0
total_rech_data_8	0.0
monthly_2g_8	0.0
total_rech_data_9	0.0
max_rech_data_6	0.0
max_rech_data_7	0.0
max_rech_data_8	0.0
max_rech_data_9	0.0
av_rech_amt_data_6	0.0
av_rech_amt_data_7	0.0
av_rech_amt_data_8	0.0
av_rech_amt_data_9	0.0
vol_2g_mb_6	0.0
vol_2g_mb_7	0.0
vol_2g_mb_8	0.0
vol_2g_mb_9	0.0
vol_3g_mb_6	0.0
vol_3g_mb_7	0.0
vol_3g_mb_8	0.0
vol_3g_mb_9	0.0
monthly_2g_6	0.0
monthly_2g_7	0.0
std_ic_t2m_mou_6	0.0
std_ic_t2t_mou_8	0.0

arpu_6	0.0
loc_og_t2t_mou_8	0.0
loc_og_t2m_mou_6	0.0
<pre>loc_og_t2m_mou_7</pre>	0.0
loc_og_t2m_mou_8	0.0
loc_og_t2m_mou_9	0.0
loc_og_t2f_mou_6	0.0
loc_og_t2f_mou_7	0.0
loc_og_t2f_mou_8	0.0
loc_og_t2f_mou_9	0.0
loc_og_t2c_mou_6	0.0
loc_og_t2c_mou_7	0.0
loc_og_t2c_mou_8	0.0
loc_og_t2c_mou_9	0.0
loc_og_mou_6	0.0
loc_og_mou_7	0.0
loc_og_mou_8	0.0
loc_og_mou_9	0.0
std_og_t2t_mou_6	0.0
std_og_t2t_mou_7	0.0
std_og_t2t_mou_8	0.0
loc_og_t2t_mou_9	0.0
loc_og_t2t_mou_7	0.0
std_og_t2m_mou_6	0.0
loc_og_t2t_mou_6	0.0
arpu_7	0.0
arpu_8	0.0
arpu_9	0.0
onnet_mou_6	0.0
onnet_mou_7	0.0
onnet_mou_8	0.0
onnet_mou_9	0.0
offnet_mou_6	0.0
offnet_mou_7	0.0
offnet_mou_8	0.0
offnet_mou_9	0.0
	0.0
roam_ic_mou_6	
roam_ic_mou_7	0.0
roam_ic_mou_8	0.0
roam_ic_mou_9	0.0
roam_og_mou_6	0.0
roam_og_mou_7	0.0
roam_og_mou_8	0.0
roam_og_mou_9	0.0
std_og_t2t_mou_9	0.0
std_og_t2m_mou_7	0.0
std_ic_t2t_mou_7	0.0
total_og_mou_6	0.0
total_og_mou_8	0.0

```
total_og_mou_9
                          0.0
loc_ic_t2t_mou_6
                          0.0
loc_ic_t2t_mou_7
                          0.0
loc_ic_t2t_mou_8
                          0.0
loc_ic_t2t_mou_9
                          0.0
loc_ic_t2m_mou_6
                          0.0
loc_ic_t2m_mou_7
                          0.0
loc_ic_t2m_mou_8
                          0.0
loc_ic_t2m_mou_9
                          0.0
loc_ic_t2f_mou_6
                          0.0
loc_ic_t2f_mou_7
                          0.0
loc_ic_t2f_mou_8
                          0.0
loc_ic_t2f_mou_9
                          0.0
loc_ic_mou_6
                          0.0
loc_ic_mou_7
                          0.0
loc_ic_mou_8
                          0.0
loc_ic_mou_9
                          0.0
std_ic_t2t_mou_6
                          0.0
                          0.0
total_og_mou_7
og_others_9
                          0.0
std_og_t2m_mou_8
                          0.0
og_others_8
                          0.0
std_og_t2m_mou_9
                          0.0
std_og_t2f_mou_6
                          0.0
std_og_t2f_mou_7
                          0.0
std_og_t2f_mou_8
                          0.0
std_og_t2f_mou_9
                          0.0
std_og_mou_6
                          0.0
                          0.0
std_og_mou_7
std_og_mou_8
                          0.0
                          0.0
std_og_mou_9
isd_og_mou_6
                          0.0
isd_og_mou_7
                          0.0
isd_og_mou_8
                          0.0
isd_og_mou_9
                          0.0
spl_og_mou_6
                          0.0
spl_og_mou_7
                          0.0
spl_og_mou_8
                          0.0
spl_og_mou_9
                          0.0
og_others_6
                          0.0
og_others_7
                          0.0
avg_rech_amt_6_7
                          0.0
dtype: float64
```

```
# Reconfirming for missing values if any
telecom_data.isnull().sum().sum()
```

Defining Churn variable

As explained above in the introduction, we are deriving based on usage based for this model.

For that, we need to find the derive churn variable using total_ic_mou_9, total_og_mou_9, vol_2g_mb_9 and vol_3g_mb_9 attributes

```
# Selecting the columns to define churn variable (i.e. TARGET Variable)
churn_col=['total_ic_mou_9','total_og_mou_9','vol_2g_mb_9','vol_3g_mb_9']
telecom_data[churn_col].info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 30001 entries, 0 to 99997
Data columns (total 4 columns):
    Column
                    Non-Null Count Dtype
    ____
                    _____
0
    total_ic_mou_9 30001 non-null float64
    total_og_mou_9 30001 non-null float64
 1
                    30001 non-null float64
2
    vol_2g_mb_9
    vol_3g_mb_9
                    30001 non-null float64
3
dtypes: float64(4)
memory usage: 1.1 MB
```

```
# Initializing the churn variable.
telecom_data['churn']=0

# Imputing the churn values based on the condition
telecom_data['churn'] = np.where(telecom_data[churn_col].sum(axis=1) == 0, 1, 0)
```

```
# Checking the top 10 data telecom_data.head(10)
```

	mobile_number	arpu_6	arpu_7	arpu_8	arpu_9	onnet_mou_6	onnet_mou_7	onnet_mou_8	onnet_mou.
0	7.000843e+09	197.385	214.816	213.803	21.100	53.27	24.613333	0.00	33.59000
7	7.000702e+09	1069.180	1349.850	3171.480	500.000	57.84	54.680000	52.29	65.27666
8	7.001525e+09	378.721	492.223	137.362	166.787	413.69	351.030000	35.08	33.46000
21	7.002124e+09	514.453	597.753	637.760	578.596	102.41	132.110000	85.14	161.63000
23	7.000887e+09	74.350	193.897	366.966	811.480	48.96	50.660000	33.58	15.74000
33	7.000150e+09	977.020	2362.833	409.230	799.356	0.00	0.000000	0.00	0.00000
38	7.000815e+09	363.987	486.558	393.909	391.709	248.99	619.960000	666.38	494.79000
41	7.000721e+09	482.832	425.764	229.769	143.596	86.39	118.880000	80.44	40.06000
48	7.000294e+09	1873.271	575.927	179.218	1189.744	2061.69	881.430000	156.91	1589.23000
53	7.002189e+09	978.077	1141.296	706.020	1076.247	135.14	119.590000	102.69	99.83000

```
# lets find out churn/non churn percentage
print((telecom_data['churn'].value_counts()/len(telecom_data))*100)
((telecom_data['churn'].value_counts()/len(telecom_data))*100).plot(kind="pie")
plt.show()
```

0 91.863605

8.136395

1

Name: churn, dtype: float64

As we can see that 91% of the customers do not churn, there is a possibility of class imbalance

Since this variable churn is the target variable, all the columns relating to this variable (i.e. all columns with suffix _9) can be dropped forn the dataset.

Selecting all the churn phase columns in order to drop then

'sachet_2g_9', 'monthly_3g_9', 'sachet_3g_9']

```
churn_phase_cols = [col for col in telecom_data.columns if '_9' in col]
print("The columns from churn phase are:\n",churn_phase_cols)

The columns from churn phase are:
   ['arpu_9', 'onnet_mou_9', 'offnet_mou_9', 'roam_ic_mou_9', 'roam_og_mou_9',
'loc_og_t2t_mou_9', 'loc_og_t2m_mou_9', 'loc_og_t2f_mou_9', 'loc_og_t2c_mou_9',
'loc_og_mou_9', 'std_og_t2t_mou_9', 'std_og_t2m_mou_9', 'std_og_t2f_mou_9',
'std_og_mou_9', 'isd_og_mou_9', 'spl_og_mou_9', 'og_others_9', 'total_og_mou_9',
'loc_ic_t2t_mou_9', 'loc_ic_t2m_mou_9', 'loc_ic_t2f_mou_9', 'loc_ic_mou_9',
'std_ic_t2t_mou_9', 'std_ic_t2m_mou_9', 'std_ic_t2f_mou_9', 'std_ic_mou_9',
'total_ic_mou_9', 'spl_ic_mou_9', 'isd_ic_mou_9', 'ic_others_9', 'total_rech_num_9',
'total_rech_amt_9', 'max_rech_amt_9', 'last_day_rch_amt_9', 'total_rech_data_9',
```

'max_rech_data_9', 'av_rech_amt_data_9', 'vol_2g_mb_9', 'vol_3g_mb_9', 'monthly_2g_9',

```
# Dropping the selected churn phase columns
telecom_data.drop(churn_phase_cols, axis=1, inplace=True)
```

```
# The curent dimension of the dataset after dropping the churn related columns telecom_data.shape
```

```
(30001, 141)
```

We can still clean the data by few possible columns relating to the good phase.

As we derived few columns in the good phase earlier, we can drop those related columns during creation.

We can also create new columns for the defining the good phase variables and drop the seperate 6th and 7 month variables.

Before proceding to check the remaining missing value handling, let us check the collineartity of the indepedent variables and try to understand their dependencies.

```
# creating a list of column names for each month
mon_6_cols = [col for col in telecom_data.columns if '_6' in col]
mon_7_cols = [col for col in telecom_data.columns if '_7' in col]
mon_8_cols = [col for col in telecom_data.columns if '_8' in col]
```

```
# lets check the correlation amongst the independent variables, drop the highly correla
telecom_data_corr = telecom_data.corr()
telecom_data_corr.loc[:,:] = np.tril(telecom_data_corr, k=-1)
telecom_data_corr = telecom_data_corr.stack()
telecom_data_corr
telecom_data_corr[(telecom_data_corr > 0.80) | (telecom_data_corr < -0.80)].sort_values</pre>
```

```
total_rech_amt_8
                    arpu_8
                                           0.955351
isd_og_mou_8
                    isd_og_mou_7
                                           0.943433
                    isd_og_mou_6
                                           0.919641
isd_og_mou_7
                    isd_og_mou_6
                                           0.916237
sachet_2g_8
                    total_rech_data_8
                                           0.900629
                    loc_ic_mou_6
total_ic_mou_6
                                           0.895099
total_ic_mou_8
                    loc_ic_mou_8
                                           0.893072
total_ic_mou_7
                    loc_ic_mou_7
                                           0.883070
std_og_t2t_mou_8
                    onnet_mou_8
                                           0.860483
std_og_t2t_mou_7
                    onnet_mou_7
                                           0.860275
std_og_t2t_mou_6
                    onnet_mou_6
                                           0.859593
```

```
std_og_t2m_mou_8
                    offnet_mou_8
                                           0.851049
                    std_og_mou_8
total_og_mou_8
                                           0.848858
total_og_mou_7
                    std_og_mou_7
                                           0.848825
                    loc_ic_t2m_mou_8
                                           0.847512
loc_ic_mou_8
std_ic_mou_8
                    std_ic_t2m_mou_8
                                           0.845590
loc_ic_mou_6
                    loc_ic_t2m_mou_6
                                           0.844418
loc_og_mou_8
                    loc_og_mou_7
                                           0.844245
                    loc_ic_mou_7
                                           0.842908
loc_ic_mou_8
avg_rech_amt_6_7
                    overall_rech_amt_6
                                           0.842748
                    loc_og_t2t_mou_7
loc_og_t2t_mou_8
                                           0.834612
                    loc_ic_t2m_mou_7
                                           0.834557
loc_ic_mou_7
total_og_mou_6
                    std_og_mou_6
                                           0.831720
std_og_t2m_mou_6
                    offnet_mou_6
                                           0.830433
loc_og_t2m_mou_8
                    loc_og_t2m_mou_7
                                           0.826720
loc_ic_mou_7
                    loc_ic_mou_6
                                           0.821979
total_ic_mou_8
                    total_ic_mou_7
                                           0.820529
std_ic_mou_7
                    std_ic_t2m_mou_7
                                           0.819316
loc_ic_t2m_mou_8
                    loc_ic_t2m_mou_7
                                           0.814748
std_ic_mou_6
                    std_ic_t2m_mou_6
                                           0.814081
loc_og_t2f_mou_7
                    loc_og_t2f_mou_6
                                           0.809471
onnet_mou_8
                    onnet_mou_7
                                           0.808507
loc_ic_t2t_mou_8
                    loc_ic_t2t_mou_7
                                           0.808102
loc_og_mou_7
                    loc_og_mou_6
                                           0.807980
std_og_t2t_mou_8
                    std_og_t2t_mou_7
                                           0.804607
loc_og_mou_6
                    loc_og_t2m_mou_6
                                           0.803954
loc_ic_t2t_mou_7
                    loc_ic_t2t_mou_6
                                           0.803421
total_ic_mou_7
                    total_ic_mou_6
                                           0.803042
av_rech_amt_data_8 max_rech_data_8
                                           0.801613
dtype: float64
```

overall_rech_amt_7

offnet_mou_7

0.856275

0.854685

```
# The curent dimension of the dataset after dropping few unwanted columns telecom_data.shape
```

(30001, 121)

avg_rech_amt_6_7

std_og_t2m_mou_7

Deriving new variables to understand the data

```
# We have a column called 'aon'

# we can derive new variables from this to explain the data w.r.t churn.

# creating a new variable 'tenure'
telecom_data['tenure'] = (telecom_data['aon']/30).round(0)

# Since we derived a new column from 'aon', we can drop it
telecom_data.drop('aon',axis=1, inplace=True)
```

```
# Checking the distribution of he tenure variable
sns.distplot(telecom_data['tenure'], bins=30)
plt.show()
```



```
telecom_data['tenure_range'] = pd.cut(telecom_data['tenure'], tn_range, labels=tn_label
telecom_data['tenure_range'].head()

0    2-5 Yrs
7    2-5 Yrs
8    6-12 Months
21    1-2 Yrs
23    1-2 Yrs
Name: tenure_range, dtype: category
Categories (5, object): ['0-6 Months' < '6-12 Months' < '1-2 Yrs' < '2-5 Yrs' < '5 Yrs
and above']</pre>
```

tn_label = ['0-6 Months', '6-12 Months', '1-2 Yrs', '2-5 Yrs', '5 Yrs and above']

 $tn_range = [0, 6, 12, 24, 60, 61]$

```
# Plotting a bar plot for tenure range
plt.figure(figsize=[12,7])
sns.barplot(x='tenure_range',y='churn', data=telecom_data)
plt.show()
```


It can be seen that the maximum churn rate happens within 0-6 month, but it gradually decreases as the customer retains in the network.

The average revenue per user is good phase of customer is given by arpu_6 and arpu_7. since we have two seperate averages, lets take an average to these two and drop the other columns.

```
# Lets drop the original columns as they are derived to a new column for better underst
telecom_data.drop(['arpu_6','arpu_7'], axis=1, inplace=True)

# The curent dimension of the dataset after dropping few unwanted columns
telecom_data.shape
```

(30001, 121)

```
# Visualizing the column created
sns.distplot(telecom_data['avg_arpu_6_7'])
plt.show()
```


Text(0.5, 1.0, 'Features Correlating with Churn variable')

Features Correlating with Churn variable

	reatures Correlating with Churn variable	
churn -	1	
std_og_mou_6 -	0.13	
std_og_t2m_mou_6	0.099	
roam_og_mou_7 -	0.099	
roam_og_mou_8 -	0.081	
total_og_mou_6 -	0.078	
roam_ic_mou_7 -	0.074	
roam_ic_mou_8 -	0.074	
onnet_mou_6	0.072	
roam_og_mou_6 -	0.069	
total_rech_num_6 -	0.065	
offnet_mou_6	0.063	
std_og_mou_7 -	0.057	
roam_ic_mou_6 -	0.056	
avg_arpu_6_7	0.029	
spl_og_mou_6 -	0.025	
std_ic_t2t_mou_6 -	0.025	
onnet_mou_7 -	0.018	
std_ic_mou_6 -	0.017	
isd_og_mou_6 ⁻	0.015	
overall_rech_amt_6 -	0.015	
og_others_7 -	0.014	
og_others_6 ⁻	0.011	-10
sachet_3g_6 -	0.01	-10
og_others_8 -	0.0082	
offnet_mou_7	0.0078	
std_ic_t2m_mou_6 -	0.0073	
last_day_rch_amt_6 -	0.0072	
spl_og_mou_7 -	0.0055	
loc_og_t2c_mou_7 -	0.0052	
isd_ic_mou_6 -	0.0049	
max_rech_amt_6 -	0.0045	
spl_ic_mou_6 -	0.0024	
std_ic_t2t_mou_7 -	0.0021	
loc_og_t2c_mou_6 -	0.0016	
total_og_mou_7 -	-0.00036	- 0.8
sachet_3g_7 -	-0.0017	
spl_ic_mou_7 -	-0.0034	
isd_ic_mou_7 -	-0.0041	
sachet_2g_6 ⁻	-0.0043	
ic_others_6 -	-0.0049	
std_ic_mou_7 -	-0.0088	
monthly_3g_6	-0.0099	
total_rech_num_7	-0.01	
std_ic_t2m_mou_7 -	-0.011	

ic_others_7	-0.012		
std_og_t2f_mou_6 -	-0.013		
vol_2g_mb_6 -	-0.013		
std_og_t2f_mou_7	-0.015		- 0.6
std_ic_t2f_mou_6 -	-0.015		
avg_rech_amt_6_7 -	-0.016		
ic_others_8	-0.017		
std_ic_t2f_mou_7 -	-0.018		
vol_3g_mb_6	-0.02		
max_rech_amt_7	-0.021		
loc_og_t2c_mou_8 -	-0.024		
isd_ic_mou_8 -	-0.025		
std_ic_t2f_mou_8 -	-0.028		
std_og_t2f_mou_8 -	-0.03		
mobile_number -	-0.03		
jun_vbc_3g -	-0.031		- 0.4
loc_og_t2t_mou_6 -	-0.031		- 0.4
vol_2g_mb_7	-0.032		
loc_ic_t2t_mou_6 -	-0.032		
max_rech_data_6 -	-0.034		
std_ic_t2t_mou_8	-0.035		
loc_og_t2f_mou_6 -	-0.035		
sachet_2g_7 -	-0.037		
sachet_3g_8 ⁻	-0.037		
monthly_3g_7	-0.038		
overall_rech_amt_7 -	-0.041		
spl_ic_mou_8 -	-0.043		
spl_og_mou_8 -	-0.043		
loc_og_t2f_mou_7 -			- 0.2
sep_vbc_3g -	-0.044		
loc_ic_t2f_mou_6 -			
last_day_rch_amt_7 -	-0.046		
std_ic_t2m_mou_8 -	-0.047 -0.049		
loc_og_t2t_mou_7 -	-0.049 -0.049		
vol_3g_mb_7			
loc_ic_t2f_mou_7 -	-0.053		
loc_ic_t2t_mou_7 -	-0.054		
loc_ic_t2m_mou_6 - monthly_2g_6 -	-0.055		
jul_vbc_3g -	-0.056		
std_ic_mou_8	-0.057		
loc_og_t2m_mou_6 -	-0.058		0.0
loc_og_tzm_mou_6	-0.059		- 0.0
loc_ic_mou_6	-0.061		
loc_og_t2f_mou_8 -	-0.062		
std_og_mou_8 -	-0.064		
	0.068		

```
onnet_mou_8
  max_rech_data_7
   loc_ic_t2f_mou_8
                                                          -0.074
  loc_og_t2t_mou_8
                                                          -0.074
     monthly_3g_8
                                                          -0.074
     monthly_2g_7
                                                          -0.079
      vol_2g_mb_8
                                                          -0.084
  loc_ic_t2t_mou_8
                                                          -0.086
       vol_3g_mb_8
  loc_ic_t2m_mou_7
                                                          -0.087
 loc_og_t2m_mou_7
     loc_og_mou_7
                                                          -0.091
       aug_vbc_3g
                                                          -0.095
      loc_ic_mou_7
     monthly_2g_8
                                                           -0.1
      offnet_mou_8
             tenure
                                                           -0.11
                                                           -0.12
last_day_rch_amt_8
                                                           -0.12
  total_rech_data_8
                                                           -0.13
   max_rech_amt_8
                                                           -0.14
 loc og t2m mou 8
                                                           -0.14
  max_rech_data_8
                                                           -0.14
     loc_og_mou_8
                                                           -0.14
av_rech_amt_data_8
                                                           -0.14
 loc_ic_t2m_mou_8
                                                           -0.15
    total_og_mou_8
                                                           -0.15
  total_rech_num_8
                                                           -0.15
      loc ic mou 8
                                                           -0.16
            arpu 8
                                                           churn
```

- Avg Outgoing Calls & calls on romaning for 6 & 7th months are positively correlated with churn.
- Avg Revenue, No. Of Recharge for 8th month has negative correlation with churn.


```
sns.boxplot(x = telecom_data.churn, y = telecom_data.tenure)
plt.show()
```


From the above plot, its clear tenured customers do no churn and they keep availing telecom services

Creating categories for month 8 column totalrecharge and their count
telecom_data['total_rech_data_group_8']=pd.cut(telecom_data['total_rech_data_8'],[-1,0,
telecom_data['total_rech_num_group_8']=pd.cut(telecom_data['total_rech_num_8'],[-1,0,10])

```
# Plotting the results

plt.figure(figsize=[12,4])
sns.countplot(data=telecom_data, x="total_rech_data_group_8", hue="churn")
print("\t\t\t\t\t\Distribution of total_rech_data_8 variable\n", telecom_data['total_rech_plt.show()
```

plt.figure(figsize=[12,4])
sns.countplot(data=telecom_data,x="total_rech_num_group_8",hue="churn")
print("\t\t\t\t\t\tDistribution of total_rech_num_8 variable\n",telecom_data['total_rech_plt.show()

Distribution of total_rech_data_8 variable

<=10_Recharges 15307 No_Recharge 14048 10-25_Recharges 608 >25_Recharges 38

Name: total_rech_data_group_8, dtype: int64

Distribution of total_rech_num_8 variable

<=10_Recharges 19349
10-25_Recharges 8073
>25_Recharges 1996
No_Recharge 583

Name: total_rech_num_group_8, dtype: int64

As the number of recharge rate increases, the churn rate decreases clearly.

Creating a dummy variable for some of the categorical variables and dropping the firs
dummy = pd.get_dummies(telecom_data[['total_rech_data_group_8','total_rech_num_group_8'
dummy.head()

	total_rech_data_group_8_<=10_Recharges	total_rech_data_group_8_10- 25_Recharges	total_rech_data_group_8_>25_Recharges	total_
0	1	0	0	
7	0	0	0	
8	1	0	0	
21	0	0	0	
23	1	0	0	

```
# Adding the results to the master dataframe
telecom_data = pd.concat([telecom_data, dummy], axis=1)
telecom_data.head()
```

	mobile_number	arpu_8	onnet_mou_6	onnet_mou_7	onnet_mou_8	offnet_mou_6	offnet_mou_7	offnet_mou_8
0	7.000843e+09	213.803	53.27	24.613333	0.00	84.23	23.993333	0.00
7	7.000702e+09	3171.480	57.84	54.680000	52.29	453.43	567.160000	325.91
8	7.001525e+09	137.362	413.69	351.030000	35.08	94.66	80.630000	136.48
21	7.002124e+09	637.760	102.41	132.110000	85.14	757.93	896.680000	983.39
23	7.000887e+09	366.966	48.96	50.660000	33.58	85.41	89.360000	205.89

```
# Creating a copy of the filtered dataframe
```

df=telecom_data[:].copy()

Dropping unwanted columns

df.drop(['tenure_range','mobile_number','total_rech_data_group_8','total_rech_num_group

```
# Cheking the dataset
df.head()
```

	arpu_8	onnet_mou_6	onnet_mou_7	onnet_mou_8	offnet_mou_6	offnet_mou_7	offnet_mou_8	roam_ic_mou_6
0	213.803	53.27	24.613333	0.00	84.23	23.993333	0.00	0.00
7	3171.480	57.84	54.680000	52.29	453.43	567.160000	325.91	16.23
8	137.362	413.69	351.030000	35.08	94.66	80.630000	136.48	0.00
21	637.760	102.41	132.110000	85.14	757.93	896.680000	983.39	0.00
23	366.966	48.96	50.660000	33.58	85.41	89.360000	205.89	0.00

```
# lets create X dataset for model building.
X = df.drop(['churn'],axis=1)
```

```
X.head()
```

arpu_8 onnet_mou_6 onnet_mou_7 onnet_mou_8 offnet_mou_6 offnet_mou_7 offnet_mou_8 roam_ic_mou_6

```
213.803
                                           0.00
                                                                              0.00
                                                                                           0.00
 0
                  53.27
                          24.613333
                                                     84.23
                                                             23.993333
 7 3171.480
                  57.84
                          54.680000
                                                    453.43
                                          52.29
                                                            567.160000
                                                                            325.91
                                                                                          16.23
 8
     137.362
                 413.69
                         351.030000
                                          35.08
                                                     94.66
                                                             80.630000
                                                                                           0.00
                                                                            136.48
21
     637.760
                 102.41
                         132.110000
                                          85.14
                                                    757.93
                                                            896.680000
                                                                            983.39
                                                                                           0.00
23
     366.966
                  48.96
                          50.660000
                                          33.58
                                                     85.41
                                                             89.360000
                                                                            205.89
                                                                                           0.00
# lets create y dataset for model building.
y=df['churn']
y.head()
      1
7
      1
8
      0
21
      0
23
      0
Name: churn, dtype: int32
# split the dateset into train and test datasets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, train_size=0.7
print("Dimension of X_train:", X_train.shape)
print("Dimension of X_test:", X_test.shape)
Dimension of X_train: (21000, 126)
Dimension of X_test: (9001, 126)
X_train.info(verbose=True)
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21000 entries, 15709 to 99093
Data columns (total 126 columns):
 #
      Column
                                                   Dtype
      -----
                                                    ----
 0
                                                   float64
      arpu_8
 1
                                                   float64
      onnet_mou_6
 2
                                                   float64
      onnet_mou_7
 3
                                                   float64
      onnet_mou_8
 4
      offnet_mou_6
                                                   float64
 5
      offnet_mou_7
                                                   float64
 6
      offnet_mou_8
                                                   float64
 7
                                                   float64
      roam_ic_mou_6
                                                   float64
 8
      roam_ic_mou_7
 9
      roam_ic_mou_8
                                                   float64
```

arpu_8 onnet_mou_6 onnet_mou_7 onnet_mou_8 offnet_mou_6 offnet_mou_7 offnet_mou_8 roam_ic_mou_6

10	roam_og_mou_6	float64
11	roam_og_mou_7	float64
12	roam_og_mou_8	float64
13	loc_og_t2t_mou_6	float64
14	loc_og_t2t_mou_7	float64
15	loc_og_t2t_mou_8	float64
16	loc_og_t2m_mou_6	float64
17	loc_og_t2m_mou_7	float64
18	loc_og_t2m_mou_8	float64
19	loc_og_t2f_mou_6	float64
20	loc_og_t2f_mou_7	float64
21	loc_og_t2f_mou_8	float64
22	loc_og_t2c_mou_6	float64
23	loc_og_t2c_mou_7	float64
24	loc_og_t2c_mou_8	float64
25	loc_og_mou_6	float64
26	loc_og_mou_7	float64
27	loc_og_mou_8	float64
28	std_og_t2m_mou_6	float64
29	std_og_t2f_mou_6	float64
30	std_og_t2f_mou_7	float64
31	std_og_t2f_mou_8	float64
32	std_og_mou_6	float64
33	std_og_mou_7	float64
34	std_og_mou_8	float64
35	isd_og_mou_6	float64
36	spl_og_mou_6	float64
37	spl_og_mou_7	float64
38	spl_og_mou_8	float64
39	og_others_6	float64
40	og_others_7	float64
41	og_others_8	float64
42	total_og_mou_6	float64
43	total_og_mou_7	float64
44	total_og_mou_8	float64
45	loc_ic_t2t_mou_6	float64
46	loc_ic_t2t_mou_7	float64
47	loc_ic_t2t_mou_8	float64
48	loc_ic_t2m_mou_6	float64
49	loc_ic_t2m_mou_7	float64
50	loc_ic_t2m_mou_8	float64
51	loc_ic_t2f_mou_6	float64
52	loc_ic_t2f_mou_7	float64

53	loc_ic_t2f_mou_8	float64
54	loc_ic_mou_6	float64
55	loc_ic_mou_7	float64
56	loc_ic_mou_8	float64
57	std_ic_t2t_mou_6	float64
58	std_ic_t2t_mou_7	float64
59	std_ic_t2t_mou_8	float64
60	std_ic_t2m_mou_6	float64
61	std_ic_t2m_mou_7	float64
62	std_ic_t2m_mou_8	float64
63	std_ic_t2f_mou_6	float64
64	std_ic_t2f_mou_7	float64
65	std_ic_t2f_mou_8	float64
66	std_ic_mou_6	float64
67	std_ic_mou_7	float64
68	std_ic_mou_8	float64
69	spl_ic_mou_6	float64
70	spl_ic_mou_7	float64
71	spl_ic_mou_8	float64
72	isd_ic_mou_6	float64
73	isd_ic_mou_7	float64
74	isd_ic_mou_8	float64
75	ic_others_6	float64
76	ic_others_7	float64
77	ic_others_8	float64
78	total_rech_num_6	float64
79	total_rech_num_7	float64
80	total_rech_num_8	float64
81	max_rech_amt_6	float64
82	max_rech_amt_7	float64
83	max_rech_amt_8	float64
84	last_day_rch_amt_6	float64
85	last_day_rch_amt_7	float64
86	last_day_rch_amt_8	float64
87	total_rech_data_8	float64
88	max_rech_data_6	float64
89	max_rech_data_7	float64
90	max_rech_data_8	float64
91	av_rech_amt_data_8	float64
92	vol_2g_mb_6	float64
93	vol_2g_mb_7	float64
94	vol_2g_mb_8	float64
95	vol_3g_mb_6	float64

```
96
      vol_3g_mb_7
                                                float64
 97
      vol_3g_mb_8
                                                float64
 98
      monthly_2g_6
                                                float64
 99
      monthly_2g_7
                                                float64
     monthly_2g_8
                                                float64
 100
 101
     sachet_2g_6
                                                float64
                                                float64
 102
     sachet_2g_7
 103
     monthly_3g_6
                                                float64
 104
     monthly_3g_7
                                                float64
 105
     monthly_3g_8
                                                float64
 106
     sachet_3g_6
                                                float64
 107
     sachet_3g_7
                                                float64
 108
                                                float64
     sachet_3g_8
 109
                                                float64
     aug_vbc_3g
 110
     jul_vbc_3g
                                                float64
 111
     jun_vbc_3g
                                                float64
 112 overall_rech_amt_6
                                                float64
                                                float64
 113 overall_rech_amt_7
                                                float64
 114 avg_rech_amt_6_7
 115 avg_arpu_6_7
                                                float64
     total_rech_data_group_8_<=10_Recharges
                                                uint8
 116
     total_rech_data_group_8_10-25_Recharges
                                                uint8
 118
     total_rech_data_group_8_>25_Recharges
                                                uint8
 119
     total_rech_num_group_8_<=10_Recharges
                                                uint8
 120
     total_rech_num_group_8_10-25_Recharges
                                                uint8
 121
     total_rech_num_group_8_>25_Recharges
                                                uint8
 122 tenure_range_6-12 Months
                                                uint8
 123 tenure_range_1-2 Yrs
                                                uint8
 124 tenure_range_2-5 Yrs
                                                uint8
 125 tenure_range_5 Yrs and above
                                                uint8
dtypes: float64(116), uint8(10)
memory usage: 18.9 MB
```

```
num_col = X_train.select_dtypes(include = ['int64','float64']).columns.tolist()
```

```
# apply scaling on the dataset
from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
X_train[num_col] = scaler.fit_transform(X_train[num_col])
```

```
X_train.head()
```

	a.pa_0			00000_0	00000_0			
15709	0.038904	0.000235	0.000531	0.000238	0.004211	0.003651	0.004095	0
28202	0.032921	0.000493	0.000000	0.000000	0.001631	0.000000	0.000000	0
14943	0.033826	0.000876	0.000275	0.000714	0.003861	0.007485	0.003679	0
92007	0.081645	0.163879	0.105394	0.050406	0.142667	0.177782	0.052962	0
56403	0.042893	0.079633	0.051881	0.004868	0.058346	0.046732	0.010097	0

arpu 8 onnet mou 6 onnet mou 7 onnet mou 8 offnet mou 6 offnet mou 7 offnet mou 8 roam ic mou

Data Imbalance Handling

Using SMOTE method, we can balance the data w.r.t. churn variable and proceed further

```
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
X_train_sm,y_train_sm = sm.fit_resample(X_train,y_train)
```

```
print("Dimension of X_train_sm Shape:", X_train_sm.shape)
print("Dimension of y_train_sm Shape:", y_train_sm.shape)
```

Dimension of X_train_sm Shape: (38576, 126) Dimension of y_train_sm Shape: (38576,)

Logistic Regression

```
# Importing necessary libraries for Model creation
import statsmodels.api as sm
```

```
# Logistic regression model
logm1 = sm.GLM(y_train_sm,(sm.add_constant(X_train_sm)), family = sm.families.Binomial(
logm1.fit().summary()
```

Generalized Linear Model Regression Results							
Dep. Variable:	Dep. Variable: churn No. Obs						
Model:		GLM	Df Re	Df Residuals:			
Model Family:		Binomial	D	f Model:	125		
Link Function:		logit		Scale:			
Method:		IRLS	Log-Lik	elihood:	nan		
Date:	Mon, 0	1 Mar 2021	Deviance:		nan		
Time:		15:17:56	Pearson chi2:		2.47e+14		
No. Iterations:		100					
Covariance Type:		nonrobust					
		,			5	[0.00F	
		coef	std err	Z	P> z	[0.025	
co	nst	1.0696	0.152	7.047	0.000	0.772	
arp	u_8	4.7856	1.723	2.777	0.005	1.409	

0.975] 1.367

8.163

onnet_mou_6	-51.0285	28.723	-1.777	0.076	-107.325	5.268
onnet_mou_7	58.2210	16.330	3.565	0.000	26.215	90.227
onnet_mou_8	181.4643	24.155	7.513	0.000	134.122	228.807
offnet_mou_6	-47.8874	32.384	-1.479	0.139	-111.359	15.584
offnet_mou_7	71.5233	19.308	3.704	0.000	33.680	109.367
offnet_mou_8	232.4309	31.430	7.395	0.000	170.830	294.032
roam_ic_mou_6	3.0054	0.846	3.555	0.000	1.348	4.663
roam_ic_mou_7	5.1800	1.572	3.295	0.001	2.099	8.261
roam_ic_mou_8	-1.5652	0.801	-1.953	0.051	-3.136	0.006
roam_og_mou_6	21.8398	14.676	1.488	0.137	-6.924	50.604
roam_og_mou_7	-12.2597	3.827	-3.203	0.001	-19.760	-4.759
roam_og_mou_8	-55.8880	7.814	-7.152	0.000	-71.203	-40.573
loc_og_t2t_mou_6	-6948.9854	1.98e+04	-0.352	0.725	-4.57e+04	3.18e+04
loc_og_t2t_mou_7	-1.823e+04	2.28e+04	-0.800	0.424	-6.29e+04	2.64e+04
loc_og_t2t_mou_8	1.93e+05	3.41e+04	5.662	0.000	1.26e+05	2.6e+05
loc_og_t2m_mou_6	-5118.4731	1.45e+04	-0.352	0.725	-3.36e+04	2.34e+04
loc_og_t2m_mou_7	-1.099e+04	1.37e+04	-0.800	0.424	-3.79e+04	1.59e+04
loc_og_t2m_mou_8	6.367e+04	1.12e+04	5.662	0.000	4.16e+04	8.57e+04
loc_og_t2f_mou_6	-729.5957	2078.273	-0.351	0.726	-4802.935	3343.744
loc_og_t2f_mou_7	-2621.4647	3259.099	-0.804	0.421	-9009.182	3766.253
loc_og_t2f_mou_8	1.667e+04	2943.371	5.664	0.000	1.09e+04	2.24e+04
loc_og_t2c_mou_6	-5.0019	1.068	-4.685	0.000	-7.094	-2.909
loc_og_t2c_mou_7	0.2131	1.864	0.114	0.909	-3.441	3.867
loc_og_t2c_mou_8	0.3722	1.221	0.305	0.761	-2.021	2.765
loc_og_mou_6	1.161e+04	3.27e+04	0.355	0.723	-5.25e+04	7.57e+04
loc_og_mou_7	1.888e+04	2.36e+04	0.799	0.424	-2.75e+04	6.52e+04
loc_og_mou_8	-1.981e+05	3.5e+04	-5.660	0.000	-2.67e+05	-1.29e+05
std_og_t2m_mou_6	-10.9573	4.002	-2.738	0.006	-18.802	-3.113
std_og_t2f_mou_6	-1.8195	1.671	-1.089	0.276	-5.094	1.455
std_og_t2f_mou_7	1.0576	1.824	0.580	0.562	-2.517	4.633
std_og_t2f_mou_8	-9.8438	2.711	-3.631	0.000	-15.158	-4.530
std_og_mou_6	83.7209	33.002	2.537	0.011	19.038	148.403
std_og_mou_7	-54.8592	21.210	-2.586	0.010	-96.430	-13.288
std_og_mou_8	110.9924	30.090	3.689	0.000	52.017	169.968
isd_og_mou_6	13.2105	5.562	2.375	0.018	2.310	24.111
spl_og_mou_6	5.2820	2.044	2.584	0.010	1.275	9.289
spl_og_mou_7	-6.8701	2.397	-2.866	0.004	-11.568	-2.173
spl_og_mou_8	9.1897	2.263	4.061	0.000	4.755	13.625
og_others_6	-3.0564	0.706	-4.331	0.000	-4.440	-1.673
og_others_7	1.3761	7.492	0.184	0.854	-13.307	16.059

og_others_8	-165.7948	51.500	-3.219	0.001	-266.732	-64.858
total_og_mou_6	-29.7757	4.604	-6.467	0.000	-38.800	-20.751
total_og_mou_7	-20.4135	7.917	-2.578	0.010	-35.931	-4.896
total_og_mou_8	-361.4826	12.927	-27.962	0.000	-386.820	-336.145
loc_ic_t2t_mou_6	-1.999e+04	1.82e+04	-1.097	0.273	-5.57e+04	1.57e+04
loc_ic_t2t_mou_7	1.781e+05	1.68e+04	10.599	0.000	1.45e+05	2.11e+05
loc_ic_t2t_mou_8	1.301e+05	1.2e+04	10.828	0.000	1.07e+05	1.54e+05
loc_ic_t2m_mou_6	-1.477e+04	1.35e+04	-1.097	0.273	-4.12e+04	1.16e+04
loc_ic_t2m_mou_7	1.302e+05	1.23e+04	10.600	0.000	1.06e+05	1.54e+05
loc_ic_t2m_mou_8	1.434e+05	1.32e+04	10.827	0.000	1.17e+05	1.69e+05
loc_ic_t2f_mou_6	-5288.4284	4817.200	-1.098	0.272	-1.47e+04	4153.110
loc_ic_t2f_mou_7	6.187e+04	5837.260	10.600	0.000	5.04e+04	7.33e+04
loc_ic_t2f_mou_8	5.162e+04	4767.356	10.828	0.000	4.23e+04	6.1e+04
loc_ic_mou_6	2.347e+04	2.14e+04	1.097	0.273	-1.85e+04	6.54e+04
loc_ic_mou_7	-2.018e+05	1.9e+04	-10.599	0.000	-2.39e+05	-1.64e+05
loc_ic_mou_8	-1.751e+05	1.62e+04	-10.829	0.000	-2.07e+05	-1.43e+05
std_ic_t2t_mou_6	-8.05e+04	1.97e+04	-4.078	0.000	-1.19e+05	-4.18e+04
std_ic_t2t_mou_7	2.023e+04	2.12e+04	0.956	0.339	-2.12e+04	6.17e+04
std_ic_t2t_mou_8	7456.8463	1.75e+04	0.426	0.670	-2.69e+04	4.18e+04
std_ic_t2m_mou_6	-6.826e+04	1.67e+04	-4.077	0.000	-1.01e+05	-3.55e+04
std_ic_t2m_mou_7	1.209e+04	1.27e+04	0.955	0.340	-1.27e+04	3.69e+04
std_ic_t2m_mou_8	9795.6016	2.3e+04	0.427	0.670	-3.52e+04	5.48e+04
std_ic_t2f_mou_6	-1.992e+04	4885.426	-4.078	0.000	-2.95e+04	-1.03e+04
std_ic_t2f_mou_7	3548.4493	3716.763	0.955	0.340	-3736.271	1.08e+04
std_ic_t2f_mou_8	2417.9893	5671.352	0.426	0.670	-8697.657	1.35e+04
std_ic_mou_6	8.05e+04	1.97e+04	4.078	0.000	4.18e+04	1.19e+05
std_ic_mou_7	-2.35e+04	2.46e+04	-0.955	0.340	-7.17e+04	2.47e+04
std_ic_mou_8	-1.035e+04	2.42e+04	-0.427	0.669	-5.78e+04	3.71e+04
spl_ic_mou_6	7.2468	1.960	3.697	0.000	3.405	11.089
spl_ic_mou_7	-6.6548	3.352	-1.985	0.047	-13.225	-0.085
spl_ic_mou_8	-23.7450	1.633	-14.545	0.000	-26.945	-20.545
isd_ic_mou_6	4.2685	2.547	1.676	0.094	-0.724	9.261
isd_ic_mou_7	3.1616	1.963	1.611	0.107	-0.685	7.008
isd_ic_mou_8	-1.7850	1.334	-1.338	0.181	-4.400	0.830
ic_others_6	-14.2950	5.498	-2.600	0.009	-25.070	-3.520
ic_others_7	-1.2308	4.474	-0.275	0.783	-10.000	7.538
ic_others_8	6.3301	3.652	1.733	0.083	-0.828	13.488
total_rech_num_6	-1.1745	0.938	-1.252	0.211	-3.013	0.664
total_rech_num_7	4.1068	0.547	7.501	0.000	3.034	5.180
total_rech_num_8	-8.8626	1.196	-7.407	0.000	-11.208	-6.518

max_rech_amt_6	-1.7025	0.711	-2.393	0.017	-3.097	-0.308
max_rech_amt_7	0.5615	0.583	0.962	0.336	-0.582	1.705
max_rech_amt_8	8.2360	0.867	9.499	0.000	6.537	9.935
last_day_rch_amt_6	0.5915	0.723	0.818	0.413	-0.825	2.008
last_day_rch_amt_7	-1.2024	0.674	-1.785	0.074	-2.523	0.118
last_day_rch_amt_8	-18.5883	0.917	-20.280	0.000	-20.385	-16.792
total_rech_data_8	-3.9021	1.120	-3.484	0.000	-6.097	-1.707
max_rech_data_6	0.2650	0.470	0.564	0.573	-0.656	1.186
max_rech_data_7	1.2588	0.492	2.560	0.010	0.295	2.223
max_rech_data_8	-0.4231	0.885	-0.478	0.633	-2.159	1.312
av_rech_amt_data_8	-12.5302	1.826	-6.863	0.000	-16.109	-8.952
vol_2g_mb_6	2.8277	0.792	3.572	0.000	1.276	4.379
vol_2g_mb_7	3.3457	0.708	4.724	0.000	1.958	4.734
vol_2g_mb_8	-13.3725	1.193	-11.210	0.000	-15.710	-11.035
vol_3g_mb_6	-4.4761	2.297	-1.948	0.051	-8.979	0.027
vol_3g_mb_7	0.2100	1.500	0.140	0.889	-2.730	3.150
vol_3g_mb_8	-4.5393	2.010	-2.258	0.024	-8.479	-0.599
monthly_2g_6	-1.1288	0.259	-4.357	0.000	-1.637	-0.621
monthly_2g_7	-1.9149	0.281	-6.803	0.000	-2.467	-1.363
monthly_2g_8	-1.8365	0.478	-3.846	0.000	-2.772	-0.901
sachet_2g_6	1.4624	0.526	2.780	0.005	0.431	2.494
sachet_2g_7	-0.1821	0.675	-0.270	0.787	-1.506	1.142
monthly_3g_6	1.5719	0.868	1.810	0.070	-0.130	3.274
monthly_3g_7	-2.3536	0.896	-2.627	0.009	-4.109	-0.598
monthly_3g_8	3.0809	1.373	2.244	0.025	0.391	5.771
sachet_3g_6	2.9297	0.842	3.479	0.001	1.279	4.580
sachet_3g_7	1.8321	1.101	1.664	0.096	-0.326	3.990
sachet_3g_8	2.4807	1.646	1.507	0.132	-0.745	5.707
aug_vbc_3g	-5.8841	0.807	-7.290	0.000	-7.466	-4.302
jul_vbc_3g	2.6293	0.788	3.337	0.001	1.085	4.174
jun_vbc_3g	1.8643	0.859	2.170	0.030	0.181	3.548
overall_rech_amt_6	-1.3541	1.833	-0.739	0.460	-4.948	2.239
overall_rech_amt_7	1.1217	1.800	0.623	0.533	-2.406	4.649
avg_rech_amt_6_7	-0.7551	1.361	-0.555	0.579	-3.422	1.912
avg_arpu_6_7	6.2959	1.936	3.252	0.001	2.502	10.090
total_rech_data_group_8_<=10_Recharges	-0.2095	0.059	-3.571	0.000	-0.325	-0.095
total_rech_data_group_8_10-25_Recharges	-3.9029	0.808	-4.832	0.000	-5.486	-2.320
total_rech_data_group_8_>25_Recharges	-0.7705	1.194	-0.645	0.519	-3.112	1.571
total_rech_num_group_8_<=10_Recharges	-0.5896	0.098	-5.988	0.000	-0.783	-0.397
total_rech_num_group_8_10-25_Recharges	-0.4755	0.120	-3.967	0.000	-0.710	-0.241

```
total_rech_num_group_8_>25_Recharges
                                         -0.5457
                                                     0.200
                                                              -2.728 0.006
                                                                                -0.938
                                                                                           -0.154
                                                     0.052
                                                              6.921 0.000
           tenure_range_6-12 Months
                                         0.3585
                                                                                0.257
                                                                                           0.460
                                                     0.048
                                                              3.753 0.000
                                                                                0.087
                 tenure_range_1-2 Yrs
                                         0.1820
                                                                                           0.277
                                         0.0659
                                                     0.047
                                                              1.399 0.162
                                                                                -0.026
                 tenure_range_2-5 Yrs
                                                                                            0.158
         tenure_range_5 Yrs and above
                                                              -1.945 0.052
                                         -0.6732
                                                     0.346
                                                                                -1.352
                                                                                            0.005
```

Logistic Regression using Feature Selection (RFE method)

```
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
from sklearn.feature_selection import RFE
# running RFE with 20 variables as output
rfe = RFE(logreg, 20)
rfe = rfe.fit(X_train_sm, y_train_sm)
```

```
rfe.support_
array([ True, False, False, False, False, False, False, True,
      False, False, False, False, False, False, False, False,
       True, False, False, False, False, False, False, False, False,
      False, False, False, False, False, True, False, False,
      False, False, False, False, False, False, False, True,
      False, False, True, False, False, False, False, False,
       True, False, True, False, False, False, False, False, False,
      False, False, False, False, True, False, False, True,
      False, False, False, False, False, False, False, True,
      False, False, False, False, True, True, False, False,
             True, False, False, True, False, False, False, False,
      False.
      False.
             True, False, False, False, False, False, False,
             True, False, False, False, False, True, False,
      False, False, False, False, False, False, False, False, False])
rfe_columns=X_train_sm.columns[rfe.support_]
print("The selected columns by RFE for modelling are: \n\n".rfe_columns)
```

The selected columns by RFE for modelling are:

```
Index(['arpu_8', 'roam_ic_mou_7', 'roam_og_mou_8', 'loc_og_t2m_mou_8',
      'std_og_mou_7', 'total_og_mou_8', 'loc_ic_t2t_mou_8',
      'loc_ic_t2m_mou_8', 'loc_ic_mou_6', 'loc_ic_mou_8', 'std_ic_mou_8',
      'spl_ic_mou_8', 'total_rech_num_8', 'last_day_rch_amt_8',
      'total_rech_data_8', 'av_rech_amt_data_8', 'vol_2g_mb_8',
      'monthly_2g_8', 'aug_vbc_3g', 'avg_arpu_6_7'],
     dtype='object')
```

```
list(zip(X_train_sm.columns, rfe.support_, rfe.ranking_))
[('arpu_8', True, 1),
 ('onnet_mou_6', False, 22),
 ('onnet_mou_7', False, 37),
 ('onnet_mou_8', False, 42),
 ('offnet_mou_6', False, 35),
 ('offnet_mou_7', False, 21),
 ('offnet_mou_8', False, 26),
 ('roam_ic_mou_6', False, 13),
 ('roam_ic_mou_7', True, 1),
 ('roam_ic_mou_8', False, 60),
 ('roam_og_mou_6', False, 69),
 ('roam_og_mou_7', False, 33),
('roam_og_mou_8', True, 1),
 ('loc_og_t2t_mou_6', False, 65),
 ('loc_og_t2t_mou_7', False, 99),
 ('loc_og_t2t_mou_8', False, 19),
 ('loc_og_t2m_mou_6', False, 67),
 ('loc_og_t2m_mou_7', False, 74),
 ('loc_og_t2m_mou_8', True, 1),
 ('loc_og_t2f_mou_6', False, 107),
 ('loc_og_t2f_mou_7', False, 5),
 ('loc_og_t2f_mou_8', False, 25),
 ('loc_og_t2c_mou_6', False, 7),
 ('loc_og_t2c_mou_7', False, 66),
 ('loc_og_t2c_mou_8', False, 104),
 ('loc_og_mou_6', False, 48),
 ('loc_og_mou_7', False, 105),
 ('loc_og_mou_8', False, 2),
 ('std_og_t2m_mou_6', False, 93),
 ('std_og_t2f_mou_6', False, 79),
 ('std_og_t2f_mou_7', False, 27),
 ('std_og_t2f_mou_8', False, 4),
 ('std_og_mou_6', False, 46),
 ('std_og_mou_7', True, 1),
 ('std_og_mou_8', False, 64),
 ('isd_og_mou_6', False, 14),
 ('spl_og_mou_6', False, 87),
 ('spl_og_mou_7', False, 51),
 ('spl_og_mou_8', False, 36),
 ('og_others_6', False, 23),
 ('og_others_7', False, 82),
 ('og_others_8', False, 98),
 ('total_og_mou_6', False, 47),
 ('total_og_mou_7', False, 90),
 ('total_og_mou_8', True, 1),
 ('loc_ic_t2t_mou_6', False, 45),
```

('loc_ic_t2t_mou_7', False, 77),

```
('loc_ic_t2t_mou_8', True, 1),
('loc_ic_t2m_mou_6', False, 6),
('loc_ic_t2m_mou_7', False, 28),
('loc_ic_t2m_mou_8', True, 1),
('loc_ic_t2f_mou_6', False, 52),
('loc_ic_t2f_mou_7', False, 83),
('loc_ic_t2f_mou_8', False, 11),
('loc_ic_mou_6', True, 1),
('loc_ic_mou_7', False, 57),
('loc_ic_mou_8', True, 1),
('std_ic_t2t_mou_6', False, 59),
('std_ic_t2t_mou_7', False, 32),
('std_ic_t2t_mou_8', False, 12),
('std_ic_t2m_mou_6', False, 38),
('std_ic_t2m_mou_7', False, 39),
('std_ic_t2m_mou_8', False, 8),
('std_ic_t2f_mou_6', False, 95),
('std_ic_t2f_mou_7', False, 50),
('std_ic_t2f_mou_8', False, 34),
('std_ic_mou_6', False, 9),
('std_ic_mou_7', False, 73),
('std_ic_mou_8', True, 1),
('spl_ic_mou_6', False, 102),
('spl_ic_mou_7', False, 92),
('spl_ic_mou_8', True, 1),
('isd_ic_mou_6', False, 54),
('isd_ic_mou_7', False, 40),
('isd_ic_mou_8', False, 55),
('ic_others_6', False, 53),
('ic_others_7', False, 70),
('ic_others_8', False, 78),
('total_rech_num_6', False, 103),
('total_rech_num_7', False, 3),
('total_rech_num_8', True, 1),
('max_rech_amt_6', False, 81),
('max_rech_amt_7', False, 16),
('max_rech_amt_8', False, 72),
('last_day_rch_amt_6', False, 89),
('last_day_rch_amt_7', False, 15),
('last_day_rch_amt_8', True, 1),
('total_rech_data_8', True, 1),
('max_rech_data_6', False, 41),
('max_rech_data_7', False, 61),
('max_rech_data_8', False, 100),
('av_rech_amt_data_8', True, 1),
('vol_2g_mb_6', False, 43),
('vol_2g_mb_7', False, 17),
('vol_2g_mb_8', True, 1),
('vol_3g_mb_6', False, 97),
```

```
('vol_3g_mb_7', False, 62),
('vol_3g_mb_8', False, 71),
('monthly_2g_6', False, 44),
('monthly_2g_7', False, 18),
('monthly_2g_8', True, 1),
('sachet_2g_6', False, 63),
('sachet_2g_7', False, 106),
('monthly_3g_6', False, 84),
('monthly_3g_7', False, 49),
('monthly_3g_8', False, 75),
('sachet_3g_6', False, 10),
('sachet_3g_7', False, 24),
('sachet_3g_8', False, 76),
('aug_vbc_3g', True, 1),
('jul_vbc_3g', False, 58),
('jun_vbc_3g', False, 88),
('overall_rech_amt_6', False, 85),
('overall_rech_amt_7', False, 86),
('avg_rech_amt_6_7', False, 101),
('avg_arpu_6_7', True, 1),
('total_rech_data_group_8_<=10_Recharges', False, 68),
('total_rech_data_group_8_10-25_Recharges', False, 20),
('total_rech_data_group_8_>25_Recharges', False, 80),
('total_rech_num_group_8_<=10_Recharges', False, 31),
('total_rech_num_group_8_10-25_Recharges', False, 30),
('total_rech_num_group_8_>25_Recharges', False, 29),
('tenure_range_6-12 Months', False, 91),
('tenure_range_1-2 Yrs', False, 94),
('tenure_range_2-5 Yrs', False, 96),
('tenure_range_5 Yrs and above', False, 56)]
```

Assessing the model with StatsModels

Covariance Type:

```
X_train_SM = sm.add_constant(X_train_sm[rfe_columns])
logm2 = sm.GLM(y_train_sm, X_train_SM, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
```

Generalized Linear Model Regression Results

Dep. Variable:	churn	No. Observations:	38576
Model:	GLM	Df Residuals:	38555
Model Family:	Binomial	Df Model:	20
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-15852.
Date:	Mon, 01 Mar 2021	Deviance:	31703.
Time:	15:31:57	Pearson chi2:	8.44e+10
No. Iterations:	7		

nonrobust

```
coef std err
                                              [0.025]
                                                      0.975]
                                    z P>|z|
                                 8.101 0.000
                  0.5718 0.071
                                               0.433
                                                      0.710
           const
          arpu_8
                  -7.4189 1.295
                                 -5.730 0.000
                                              -9.957
                                                      -4.881
   roam_ic_mou_7
                  8.3147 0.929
                                 8.948 0.000
                                               6.493
                                                     10.136
  roam_og_mou_8
                  4.3254
                         0.602
                                 7.190 0.000
                                               3.146
                                                      5.505
 loc_og_t2m_mou_8
                  -3.8292 0.668
                                 -5.731 0.000
                                              -5.139
                                                      -2.520
                                15.114 0.000
    std_og_mou_7
                  7.7463 0.513
                                               6.742
                                                      8.751
   total_og_mou_8 -20.2090 0.956 -21.143 0.000 -22.082 -18.336
  loc_ic_t2t_mou_8
                  1.0280
                         4.078
                                 0.252 0.801
                                              -6.966
                                                      9.022
 loc_ic_t2m_mou_8
                 -1.2611 4.448
                                 -0.284 0.777
                                              -9.978
                                                      7.456
     loc_ic_mou_6
                  9.1611 0.723
                                12.666 0.000
                                               7.743
                                                     10.579
     loc_ic_mou_8 -31.0473 5.010
                                 -6.197 0.000 -40.866 -21.228
                                 -8.784 0.000 -14.599
     std_ic_mou_8 -11.9357 1.359
                                                      -9.272
     spl_ic_mou_8 -19.8516 1.375 -14.436 0.000 -22.547 -17.156
  total_rech_num_8
                 -7.0996 0.533 -13.327 0.000
                                              -8.144
                                                      -6.055
-7.721
 total_rech_data_8
                 -5.2450 0.644
                                -8.148 0.000
av_rech_amt_data_8
                                             -6.507
                                                      -3.983
     vol_2g_mb_8 -10.4892 0.934 -11.229 0.000 -12.320
                                                      -8.658
    monthly_2g_8
                 -5.7717 0.360 -16.041 0.000
                                             -6.477
                                                      -5.066
                 -6.8396 0.588 -11.633 0.000
      aug_vbc_3g
                                             -7.992
                                                      -5.687
    avg_arpu_6_7 18.2676 1.089 16.781 0.000 16.134
                                                     20.401
```

The new set of columns are:

```
# Training the model with the edited feature list
X_train_SM = sm.add_constant(X_train_sm[rfe_columns_1])
logm2 = sm.GLM(y_train_sm, X_train_SM, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
```

```
Dep. Variable:
                               churn No. Observations:
                                                          38576
                                          Df Residuals:
            Model:
                                GLM
                                                          38556
      Model Family:
                            Binomial
                                             Df Model:
                                                              19
      Link Function:
                                                 Scale:
                                                          1.0000
                                logit
           Method:
                                IRLS
                                        Log-Likelihood:
                                                         -15852.
              Date: Mon, 01 Mar 2021
                                             Deviance:
                                                          31703.
             Time:
                            15:38:29
                                          Pearson chi2: 8.49e+10
                                   7
      No. Iterations:
   Covariance Type:
                           nonrobust
                       coef std err
                                          z P>|z|
                                                     [0.025]
                                                              0.975
            const
                     0.5714 0.071
                                      8.096 0.000
                                                      0.433
                                                               0.710
                                      -5.730 0.000
           arpu_8
                    -7.4196
                            1.295
                                                     -9.957
                                                              -4.882
                     8.3174 0.929
                                      8.950 0.000
                                                             10.139
    roam_ic_mou_7
                                                      6.496
   roam_og_mou_8
                     4.3268
                             0.602
                                      7.192 0.000
                                                      3.148
                                                               5.506
 loc_og_t2m_mou_8
                    -3.8309
                             0.668
                                      -5.734 0.000
                                                              -2.521
                                                     -5.140
                                    15.114 0.000
     std_og_mou_7
                     7.7428
                             0.512
                                                      6.739
                                                               8.747
   total_og_mou_8 -20.2018
                             0.955 -21.146 0.000 -22.074 -18.329
 loc_ic_t2m_mou_8
                    -2.2429
                             2.136
                                     -1.050 0.294
                                                     -6.429
                                                               1.943
                     9.1640
                             0.723
                                    12.669 0.000
      loc_ic_mou_6
                                                      7.746
                                                             10.582
                             1.933 -15.463 0.000 -33.672 -26.096
      loc_ic_mou_8 -29.8843
      std_ic_mou_8 -11.9422
                             1.359
                                      -8.789 0.000 -14.605
                                                              -9.279
      spl_ic_mou_8 -19.8488
                             1.375 -14.435 0.000 -22.544 -17.154
  total_rech_num_8
                    -7.0935
                             0.532 -13.330 0.000
                                                     -8.136
                                                              -6.051
last_day_rch_amt_8 -18.3273
                             0.810 -22.622 0.000 -19.915 -16.739
  total_rech_data_8
                             0.612 -14.583 0.000 -10.121
                    -8.9222
                                                              -7.723
av_rech_amt_data_8
                    -5.2484
                             0.644
                                     -8.155 0.000
                                                              -3.987
                                                     -6.510
      vol_2g_mb_8 -10.4886
                             0.934 -11.228 0.000 -12.320
                                                              -8.658
     monthly_2g_8
                    -5.7723
                             0.360 -16.043 0.000
                                                     -6.478
                                                              -5.067
       aug_vbc_3g
                    -6.8433
                             0.588 -11.642 0.000
                                                     -7.995
                                                              -5.691
     avg_arpu_6_7
                    18.2734
                             1.088
                                    16.790 0.000
                                                     16.140
                                                             20.406
```

The new set of edited featured are:

```
'last_day_rch_amt_8', 'total_rech_data_8', 'av_rech_amt_data_8', 'vol_2g_mb_8', 'monthly_2g_8', 'aug_vbc_3g', 'avg_arpu_6_7'], dtype='object')
```

```
# Training the model with the edited feature list
X_train_SM = sm.add_constant(X_train_sm[rfe_columns_2])
logm2 = sm.GLM(y_train_sm, X_train_SM, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
                                   Generalized Linear Model Regression Results
                           Dep. Variable:
                                                    churn No. Observations:
                                                                               38576
                                 Model:
                                                     GLM
                                                               Df Residuals:
                                                                               38557
                                                                  Df Model:
                           Model Family:
                                                 Binomial
                                                                                  18
                           Link Function:
                                                                              1.0000
                                                     logit
                                                                     Scale:
                                                             Log-Likelihood:
                                Method:
                                                     IRLS
                                                                              -15852.
                                   Date: Mon, 01 Mar 2021
                                                                  Deviance:
                                                                              31704.
                                                              Pearson chi2: 8.51e+10
                                   Time:
                                                 15:41:29
                           No. Iterations:
                                                        7
                        Covariance Type:
                                                nonrobust
                                            coef std err
                                                               z P>|z|
                                                                          [0.025]
                                                                                  0.975
                                          0.5682
                                                  0.071
                                                           8.055 0.000
                                                                          0.430
                                                                                   0.706
                                  const
                                         -7.3871
                                                  1.294
                                                          -5.709 0.000
                                                                          -9.923
                                                                                  -4.851
                                 arpu_8
                         roam_ic_mou_7
                                          8.2919
                                                  0.930
                                                           8.919 0.000
                                                                          6.470
                                                                                 10.114
                        roam_og_mou_8
                                          4.3369
                                                  0.602
                                                           7.208 0.000
                                                                          3.158
                                                                                   5.516
                      loc_og_t2m_mou_8
                                         -3.9987
                                                  0.650
                                                          -6.156 0.000
                                                                          -5.272
                                                                                  -2.725
                          std_og_mou_7
                                          7.7052
                                                  0.511
                                                          15.082 0.000
                                                                          6.704
                                                                                   8.707
                         total_og_mou_8 -20.1259
                                                  0.952 -21.139 0.000 -21.992 -18.260
                           loc_ic_mou_6
                                          9.1605
                                                  0.724
                                                          12.652 0.000
                                                                          7.741
                                                                                 10.580
                           loc_ic_mou_8
                                        -31.5914
                                                  1.068 -29.592 0.000 -33.684
                                                                                -29.499
                           std_ic_mou_8
                                        -11.9423
                                                  1.359
                                                          -8.790 0.000
                                                                        -14.605
                                                                                  -9.280
                                                  1.375 -14.440 0.000 -22.546
                           spl_ic_mou_8
                                       -19.8518
                                                                                -17.157
                       total_rech_num_8
                                                  0.531 -13.408 0.000
                                         -7.1243
                                                                          -8.166
                                                                                  -6.083
                      last_day_rch_amt_8 -18.3312
                                                  0.810 -22.622 0.000 -19.919
                                                                                -16.743
                       total_rech_data_8
                                         -8.9197
                                                  0.612 -14.580 0.000 -10.119
                                                                                  -7.721
                     av_rech_amt_data_8
                                         -5.2486
                                                  0.644
                                                          -8.155 0.000
                                                                          -6.510
                                                                                  -3.987
                           vol_2g_mb_8 -10.5014
                                                  0.934 -11.242 0.000 -12.332
                                                                                  -8.671
                          monthly_2g_8
                                                  0.360 -16.025 0.000
                                                                          -6.469
                                                                                  -5.059
                                         -5.7637
```

-6.8479

18.3112

1.088

aug_vbc_3g

avg_arpu_6_7

0.588 -11.651 0.000

16.823 0.000

-8.000

16.178

-5.696

20.445

Creating a dataframe with the actual churn flag and the predicted probabilities

```
y_train_sm_pred_final = pd.DataFrame({'Converted':y_train_sm.values, 'Converted_prob':y
y_train_sm_pred_final.head()
```

	Converted	Converted_prob
0	0	0.138574
1	0	0.401122
2	0	0.324276
3	0	0.414619
4	0	0.508730

Creating new column 'churn_pred' with 1 if Churn_Prob > 0.5 else 0

```
y_train_sm_pred_final['churn_pred'] = y_train_sm_pred_final.Converted_prob.map(lambda x
# Viewing the prediction results
y_train_sm_pred_final.head()
```

	Converted	Converted_prob	churn_pred
0	0	0.138574	0
1	0	0.401122	0
2	0	0.324276	0
3	0	0.414619	0
4	0	0.508730	1

```
from sklearn import metrics

# Confusion matrix
confusion = metrics.confusion_matrix(y_train_sm_pred_final.Converted, y_train_sm_pred_f
print(confusion)
```

```
[ 2775 16513]]
```

[[15661 3627]

```
# Predicted not_churn churn
# Actual
```

```
# not_churn 15661 3627
# churn 2775 16513
```

```
# Checking the overall accuracy.
print("The overall accuracy of the model is:", metrics.accuracy_score(y_train_sm_pred_fi
```

The overall accuracy of the model is: 0.8340418913313977

```
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

```
# Create a dataframe that will contain the names of all the feature variables and their
vif = pd.DataFrame()
vif['Features'] = X_train_sm[rfe_columns_2].columns
vif['VIF'] = [variance_inflation_factor(X_train_sm[rfe_columns].values, i) for i in ran
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

\ /II

	Features	VIF
9	spl_ic_mou_8	83.90
7	loc_ic_mou_8	42.86
0	arpu_8	18.96
6	loc_ic_mou_6	18.68
5	total_og_mou_8	5.46
12	total_rech_data_8	3.58
4	std_og_mou_7	3.27
8	std_ic_mou_8	2.88
15	monthly_2g_8	2.76
3	loc_og_t2m_mou_8	2.54
14	vol_2g_mb_8	2.06
13	av_rech_amt_data_8	1.76
2	roam_og_mou_8	1.56
16	aug_vbc_3g	1.35
17	avg_arpu_6_7	1.33
1	roam_ic_mou_7	1.30
10	total_rech_num_8	1.15
11	last_day_rch_amt_8	1.05

Metrics beyond simply accuracy

```
TP = confusion[1,1] # true positive
TN = confusion[0,0] # true negatives
```

```
FP = confusion[0,1] # false positives
FN = confusion[1,0] # false negatives
```

```
# Let's see the sensitivity of our logistic regression model
print("Sensitivity = ",TP / float(TP+FN))

# Let us calculate specificity
print("Specificity = ",TN / float(TN+FP))

# Calculate false postive rate - predicting churn when customer does not have churned
print("False Positive Rate = ",FP/ float(TN+FP))

# positive predictive value
print ("Precision = ",TP / float(TP+FP))

# Negative predictive value
print ("True Negative Prediction Rate = ",TN / float(TN+ FN))
Sensitivity = 0.8561281625881377
```

```
Sensitivity = 0.8561281625881377
Specificity = 0.8119556200746578
False Positive Rate = 0.18804437992534218
Precision = 0.8199106256206554
True Negative Prediction Rate = 0.8494792796702104
```

Plotting the ROC Curve

```
# Defining a function to plot the roc curve
def draw_roc( actual, probs ):
    fpr, tpr, thresholds = metrics.roc_curve( actual, probs,
                                              drop_intermediate = False )
    auc_score = metrics.roc_auc_score( actual, probs )
    plt.figure(figsize=(5, 5))
    plt.plot( fpr, tpr, label='ROC curve (area = %0.2f)' % auc_score )
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate or [1 - True Negative Prediction Rate]')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
    plt.show()
    return None
```

```
# Defining the variables to plot the curve
fpr, tpr, thresholds = metrics.roc_curve( y_train_sm_pred_final.Converted, y_train_sm_p
```

```
# Plotting the curve for the obtained metrics
draw_roc(y_train_sm_pred_final.Converted, y_train_sm_pred_final.Converted_prob)
```


Finding Optimal Cutoff Point

```
# Let's create columns with different probability cutoffs
numbers = [float(x)/10 for x in range(10)]
for i in numbers:
    y_train_sm_pred_final[i] = y_train_sm_pred_final.Converted_prob.map(lambda x: 1 if x
y_train_sm_pred_final.head()
```

	Converted	Converted_prob	churn_pred	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
0	0	0.138574	0	1	1	0	0	0	0	0	0	0	0
1	0	0.401122	0	1	1	1	1	1	0	0	0	0	0
2	0	0.324276	0	1	1	1	1	0	0	0	0	0	0
3	0	0.414619	0	1	1	1	1	1	0	0	0	0	0
4	0	0.508730	1	1	1	1	1	1	1	0	0	0	0

```
# Now let's calculate accuracy sensitivity and specificity for various probability cuto
cutoff_df = pd.DataFrame( columns = ['probability','accuracy','sensitivity','specificit
from sklearn.metrics import confusion_matrix

# TP = confusion[1,1] # true positive
# TN = confusion[0,0] # true negatives
# FP = confusion[0,1] # false positives
# FN = confusion[1,0] # false negatives

num = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
for i in num:
    cm1 = metrics.confusion_matrix(y_train_sm_pred_final.Converted, y_train_sm_pred_fir
    total1=sum(sum(cm1))
    accuracy = (cm1[0,0]+cm1[1,1])/total1

specificity = cm1[0,0]/(cm1[0,0]+cm1[0,1])
    sensitivity = cm1[1,1]/(cm1[1,0]+cm1[1,1])
```

```
cutoff_df.loc[i] =[ i ,accuracy,sensitivity,specificity]
print(cutoff_df)
```

	probability	accuracy	sensitivity	specificity
0.0	0.0	0.500000	1.000000	0.000000
0.1	0.1	0.686696	0.977603	0.395790
0.2	0.2	0.751996	0.957538	0.546454
0.3	0.3	0.791321	0.925653	0.656989
0.4	0.4	0.816881	0.891176	0.742586
0.5	0.5	0.834042	0.856128	0.811956
0.6	0.6	0.836116	0.805682	0.866549
0.7	0.7	0.820795	0.730350	0.911240
0.8	0.8	0.755003	0.561230	0.948776
0.9	0.9	0.614294	0.248185	0.980402

```
# plotting accuracy sensitivity and specificity for various probabilities calculated at
cutoff_df.plot.line(x='probability', y=['accuracy','sensitivity','specificity'])
plt.show()
```

<Figure size 1080x1080 with 0 Axes>

Initially we selected the optimm point of classification as 0.5.

From the above graph, we can see the optimum cutoff is slightly higher than 0.5 but lies lower than 0.6. So lets tweek a little more within this range.

```
# Let's create columns with refined probability cutoffs
numbers = [0.50,0.51,0.52,0.53,0.54,0.55,0.56,0.57,0.58,0.59]
for i in numbers:
    y_train_sm_pred_final[i] = y_train_sm_pred_final.Converted_prob.map(lambda x: 1 if x
y_train_sm_pred_final.head()
```

	Converted	Converted_prob	churn_pred	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	0.51	0.52	0.53	0.54	-
0	0	0.138574	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	_
1	0	0.401122	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
2	0	0.324276	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	

```
Converted Converted_prob churn_pred 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.51 0.52 0.53 0.54 (
          0
                                                                                                  0
                                                                                                        0
3
                  0.414619
                                         1
                                                               0
                                                                    0
                                                                        0
                                                                             0
                                                                                 0
                                                                                       0
                                                                                             0
                                             1
                                                  1
                                                      1
                                                           1
4
          0
                  0.508730
                                             1
                                                  1
                                                      1
                                                           1
                                                               1
                                                                    0
                                                                        0
                                                                             0
                                                                                 0
                                                                                       0
                                                                                             0
                                                                                                  0
                                                                                                        0
                                    1
                                         1
```

```
# Now let's calculate accuracy sensitivity and specificity for various probability cuto
cutoff_df = pd.DataFrame( columns = ['probability', 'accuracy', 'sensitivity', 'specificit
from sklearn.metrics import confusion_matrix

# TP = confusion[1,1] # true positive
# TN = confusion[0,0] # true negatives
# FP = confusion[0,1] # false positives
# FN = confusion[1,0] # false negatives

num = [0.50,0.51,0.52,0.53,0.54,0.55,0.56,0.57,0.58,0.59]
for i in num:
    cm1 = metrics.confusion_matrix(y_train_sm_pred_final.Converted, y_train_sm_pred_fir
    total1=sum(sum(cm1))
    accuracy = (cm1[0,0]+cm1[1,1])/total1

    specificity = cm1[0,0]/(cm1[0,0]+cm1[0,1])
    sensitivity = cm1[1,1]/(cm1[1,0]+cm1[1,1])
    cutoff_df.loc[i] = [ i ,accuracy,sensitivity,specificity]
print(cutoff_df)
```

```
probability
                  accuracy
                            sensitivity
                                         specificity
0.50
     0.50
                  0.834042 0.856128
                                         0.811956
0.51
                  0.835001 0.851669
     0.51
                                         0.818333
0.52 0.52
                  0.835675 0.846796
                                         0.824554
0.53
     0.53
                  0.836038 0.841611
                                         0.830465
0.54 0.54
                  0.836245 0.836375
                                         0.836116
0.55 0.55
                  0.836064 0.830983
                                         0.841145
0.56 0.56
                  0.837075 0.826991
                                         0.847159
0.57 0.57
                  0.837179 0.821910
                                         0.852447
0.58
     0.58
                  0.836219 0.815896
                                         0.856543
0.59 0.59
                  0.835831
                            0.810452
                                         0.861209
```

```
# plotting accuracy sensitivity and specificity for various probabilities calculated at
cutoff_df.plot.line(x='probability', y=['accuracy','sensitivity','specificity'])
plt.show()
```


From the above graph we can conclude, the optimal cutoff point in the probability to define the predicted churn variabe converges at 0.54

```
#### From the curve above, 0.2 is the optimum point to take it as a cutoff probability.
y_train_sm_pred_final['final_churn_pred'] = y_train_sm_pred_final.Converted_prob.map( l
y_train_sm_pred_final.head()
```

	Converted	Converted_prob	churn_pred	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	0.51	0.52	0.53	0.54	(
0	0	0.138574	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	_
1	0	0.401122	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
2	0	0.324276	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
3	0	0.414619	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
4	0	0.508730	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	

```
# Calculating the ovearall accuracy again
print("The overall accuracy of the model now is:", metrics.accuracy_score(y_train_sm_pre
```

The overall accuracy of the model now is: 0.8362453338863542

 ${\tt confusion2 = metrics.confusion_matrix(y_train_sm_pred_final.Converted, y_train_sm_pred_print(confusion2)}$

```
[[16127 3161]
[ 3156 16132]]
```

```
TP2 = confusion2[1,1] # true positive
TN2 = confusion2[0,0] # true negatives
FP2 = confusion2[0,1] # false positives
FN2 = confusion2[1,0] # false negatives

# Let's see the sensitivity of our logistic regression model
print("Sensitivity = ",TP2 / float(TP2+FN2))
```

```
# Let us calculate specificity
print("Specificity = ",TN2 / float(TN2+FP2))

# Calculate false postive rate - predicting churn when customer does not have churned
print("False Positive Rate = ",FP2/ float(TN2+FP2))

# positive predictive value
print ("Precision = ",TP2 / float(TP2+FP2))

# Negative predictive value
print ("True Negative Prediction Rate = ",TN2 / float(TN2 + FN2))
```

```
Sensitivity = 0.8363749481542928
Specificity = 0.8361157196184156
False Positive Rate = 0.1638842803815844
Precision = 0.8361581920903954
True Negative Prediction Rate = 0.8363325208733081
```

Precision and recall tradeoff

```
from sklearn.metrics import precision_recall_curve
```

```
p, r, thresholds = precision_recall_curve(y_train_sm_pred_final.Converted, y_train_sm_p
# Plotting the curve
plt.plot(thresholds, p[:-1], "g-")
plt.plot(thresholds, r[:-1], "r-")
plt.show()
```


Making predictions on the test set

Transforming and feature selection for test data

```
# Scaling the test data
X_test[num_col] = scaler.transform(X_test[num_col])
X_test.head()
```

arpu_8 onnet_mou_6 onnet_mou_7 onnet_mou_8 offnet_mou_6 offnet_mou_7 offnet_mou_8 roam_ic_mou_ **35865** 0.026143 0.021027 0.000000 0.000070 0.003412 0.000575 0.000000 0 **41952** 0.048190 0.005702 0.005250 0.002058 0.011146 0.023873 0.007510 0 98938 0.061230 0.003275 0.037889 0.008157 0.010851 0.025458 0.018789 0 29459 0.042998 0.020180 0.000963 0.000297 0.001588 0.003828 0.000573 0 70682 0.098384 0.005699 0.011111 0.039505 0.084425 0.242612 0.135335 0

Feature selection

X_test=X_test[rfe_columns_2]

X_test.head()

	arpu_8	roam_ic_mou_7	roam_og_mou_8	loc_og_t2m_mou_8	std_og_mou_7	total_og_mou_8	loc_ic_mou_6	
35865	0.026143	0.000000	0.000000	0.000000	0.000000	0.000053	0.003321	
41952	0.048190	0.000000	0.000000	0.005379	0.018971	0.009067	0.023235	
98938	0.061230	0.000000	0.000000	0.073716	0.000374	0.024987	0.057580	
29459	0.042998	0.000000	0.000000	0.000000	0.000000	0.000800	0.001622	
70682	0.098384	0.000721	0.031491	0.041749	0.172443	0.157573	0.021147	

```
# Adding constant to the test model.
```

X_test_SM = sm.add_constant(X_test)

Predicting the target variable

```
y_test_pred = res.predict(X_test_SM)
print("\n The first ten probability value of the prediction are:\n",y_test_pred[:10])
```

0.772260 35865 41952 0.516558 98938 0.000325 29459 0.128443 70682 0.007754 58317 0.237200 0.007990 4860 16890 0.702931 61329 0.652452 94332 0.491091 dtype: float64

```
y_pred = pd.DataFrame(y_test_pred)
y_pred.head()
```

0 35865 0.772260 41952 0.516558 98938 0.000325

```
29459 0.128443
70682 0.007754
```

```
y_pred=y_pred.rename(columns = {0:"Conv_prob"})
```

```
y_test_df = pd.DataFrame(y_test)
y_test_df.head()
```

	churn
35865	0
41952	0
98938	0
29459	0
70682	0

y_pred_final = pd.concat([y_test_df,y_pred],axis=1)
y_pred_final.head()

	churn	Conv_prob
35865	0	0.772260
41952	0	0.516558
98938	0	0.000325
29459	0	0.128443
70682	0	0.007754

 $y_pred_final['test_churn_pred'] = y_pred_final.Conv_prob.map(lambda x: 1 if x>0.54 else y_pred_final.head()$

	churn	Conv_prob	test_churn_pred
35865	0	0.772260	1
41952	0	0.516558	0
98938	0	0.000325	0
29459	0	0.128443	0
70682	0	0.007754	0

Checking the overall accuracy of the predicted set.
metrics.accuracy_score(y_pred_final.churn, y_pred_final.test_churn_pred)

0.8270192200866571

Metrics Evaluation

```
# Confusion Matrix
confusion2_test = metrics.confusion_matrix(y_pred_final.churn, y_pred_final.test_churn_
print("Confusion Matrix\n",confusion2_test)
Confusion Matrix
 [[6860 1412]
 [ 145 584]]
# Calculating model validation parameters
TP3 = confusion2_test[1,1] # true positive
TN3 = confusion2_test[0,0] # true negatives
FP3 = confusion2_test[0,1] # false positives
FN3 = confusion2_test[1,0] # false negatives
# Let's see the sensitivity of our logistic regression model
print("Sensitivity = ",TP3 / float(TP3+FN3))
# Let us calculate specificity
print("Specificity = ",TN3 / float(TN3+FP3))
# Calculate false postive rate - predicting churn when customer does not have churned
print("False Positive Rate = ",FP3/ float(TN3+FP3))
# positive predictive value
print ("Precision = ",TP3 / float(TP3+FP3))
# Negative predictive value
print ("True Negative Prediction Rate = ",TN3 / float(TN3+FN3))
Sensitivity = 0.8010973936899863
Specificity = 0.8293036750483559
False Positive Rate = 0.1706963249516441
Precision = 0.2925851703406814
True Negative Prediction Rate = 0.979300499643112
```

Explaining the results

```
print("The accuracy of the predicted model is: ",round(metrics.accuracy_score(y_pred_fi
print("The sensitivity of the predicted model is: ",round(TP3 / float(TP3+FN3),2)*100,"
print("\nAs the model created is based on a sentivity model, i.e. the True positive rat
```

```
The accuracy of the predicted model is: 83.0 \% The sensitivity of the predicted model is: 80.0 \%
```

As the model created is based on a sentivity model, i.e. the True positive rate is

```
# ROC curve for the test dataset

# Defining the variables to plot the curve

fpr, tpr, thresholds = metrics.roc_curve(y_pred_final.churn,y_pred_final.Conv_prob, drc

# Plotting the curve for the obtained metrics

draw_roc(y_pred_final.churn,y_pred_final.Conv_prob)
```


The AUC score for train dataset is 0.90 and the test dataset is 0.87. This model can be considered as a good model.

Logistic Regression using PCA

```
# split the dateset into train and test datasets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, train_size=0.7
print("Dimension of X_train:", X_train.shape)
print("Dimension of X_test:", X_test.shape)

# apply scaling on the dataset

scaler = MinMaxScaler()
X_train[num_col] = scaler.fit_transform(X_train[num_col])
X_test[num_col] = scaler.transform(X_test[num_col])

# Applying SMOTE technique for data imbalance correction

sm = SMOTE(random_state=42)
X_train_sm,y_train_sm = sm.fit_resample(X_train,y_train)
print("Dimension of X_train_sm Shape:", X_train_sm.shape)
```

```
print("Dimension of y_train_sm Shape:", y_train_sm.shape)
X_train_sm.head()
Dimension of X_train: (21000, 126)
Dimension of X_test: (9001, 126)
Dimension of X_train_sm Shape: (38576, 126)
Dimension of y_train_sm Shape: (38576,)
     arpu_8 onnet_mou_6 onnet_mou_7 onnet_mou_8 offnet_mou_6 offnet_mou_7 offnet_mou_8 roam_ic_mou_6 ro
0 0.038904
              0.000235
                         0.000531
                                    0.000238
                                                0.004211
                                                           0.003651
                                                                      0.004095
                                                                                        0.0
1 0.032921
              0.000493
                         0.000000
                                    0.000000
                                                0.001631
                                                           0.000000
                                                                      0.000000
                                                                                        0.0
2 0.033826
              0.000876
                         0.000275
                                    0.000714
                                                0.003861
                                                           0.007485
                                                                      0.003679
                                                                                        0.0
3 0.081645
              0.163879
                         0.105394
                                    0.050406
                                                0.142667
                                                           0.177782
                                                                      0.052962
                                                                                        0.0
4 0.042893
              0.079633
                         0.051881
                                    0.004868
                                                0.058346
                                                           0.046732
                                                                      0.010097
                                                                                        0.0
# importing PCA
from sklearn.decomposition import PCA
pca = PCA(random_state=42)
# applying PCA on train data
pca.fit(X_train_sm)
PCA(random_state=42)
X_train_sm_pca=pca.fit_transform(X_train_sm)
print("Dimension of X_train_sm_pca: ",X_train_sm_pca.shape)
X_test_pca=pca.transform(X_test)
print("Dimension of X_test_pca: ",X_test_pca.shape)
Dimension of X_train_sm_pca: (38576, 126)
Dimension of X_test_pca: (9001, 126)
#Viewing the PCA components
pca.components_
array([[ 1.77080250e-02, 5.62945551e-03, 1.28071557e-02, ...,
        -8.33377373e-02, 2.03169293e-01, -2.25884463e-04],
       [ 1.17884332e-03, 1.36226801e-04, 2.66567649e-03, ...,
         6.62002105e-01, -7.17541378e-01, 1.93966990e-04],
       [ 8.31908962e-03, -2.32698646e-02, -1.53378013e-02, ...,
         7.54642802e-02, 5.50287343e-02, 1.26734621e-03],
       [-3.94307290e-07, 1.32661563e-06, -2.21287988e-06, ...,
        -3.76725866e-08, -1.42403279e-08, 2.74517957e-08],
       [ 2.29473384e-07, -1.88640723e-06, 1.53383133e-06, ...,
        -3.64244933e-08, -2.71775061e-08, -3.24942343e-08],
```

```
[-0.00000000e+00, -1.20429354e-16, -2.26455538e-17, ..., 3.32681843e-18, -2.16312073e-18, -2.01305223e-17]])
```

Performing Logistic Regression

```
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
logreg_pca = LogisticRegression()
logreg_pca.fit(X_train_sm_pca, y_train_sm)

# making the predictions
y_pred = logreg_pca.predict(X_test_pca)

# converting the prediction into a dataframe
y_pred_df = pd.DataFrame(y_pred)
print("Dimension of y_pred_df:", y_pred_df.shape)
```

Dimension of y_pred_df: (9001, 1)

```
from sklearn.metrics import confusion_matrix, accuracy_score

# Checking the Confusion matrix
print("Confusion Matirx for y_test & y_pred\n",confusion_matrix(y_test,y_pred),"\n")

# Checking the Accuracy of the Predicted model.
print("Accuracy of the logistic regression model with PCA: ",accuracy_score(y_test,y_pred))
Confusion Matirx for y_test & y_pred
```

[[6761 1511] [126 603]]

Accuracy of the logistic regression model with PCA: 0.818131318742362

```
plt.bar(range(1,len(pca.explained_variance_ratio_)+1),pca.explained_variance_ratio_)
plt.show()
```



```
var_cumu = np.cumsum(pca.explained_variance_ratio_)

# Making a scree plot
fig = plt.figure(figsize=[12,7])
plt.plot(var_cumu)
plt.xlabel('no of principal components')
plt.ylabel('explained variance - cumulative')
plt.show()
```



```
np.cumsum(np.round(pca.explained_variance_ratio_, decimals=3)*100)

array([23.7, 44.8, 62., 78.3, 83.3, 87.1, 89., 90.4, 91.5, 92.4, 93.2, 93.9, 94.5, 94.9, 95.3, 95.6, 95.9, 96.2, 96.4, 96.6, 96.8, 97., 97.2, 97.4, 97.5, 97.6, 97.7, 97.8, 97.9, 98., 98.1, 98.2, 98.3, 98.4, 98.5, 98.6, 98.7, 98.8, 98.9, 99., 99.1, 99.2, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99.3, 99
```

Fitting the dataset with the 8 explainable components

^{*90%} of the data can be explained with 8 PCA components

```
pca_8 = PCA(n_components=15)
train_pca_8 = pca_8.fit_transform(X_train_sm)
print("Dimension for Train dataset using PCA: ", train_pca_8.shape)
test_pca_8 = pca_8.transform(X_test)
print("Dimension for Test dataset using PCA: ", test_pca_8.shape)
Dimension for Train dataset using PCA: (38576, 15)
Dimension for Test dataset using PCA: (9001, 15)
logreg_pca_8 = LogisticRegression()
logreg_pca_8.fit(train_pca_8, y_train_sm)
# making the predictions
y_pred_8 = logreg_pca_8.predict(test_pca_8)
# converting the prediction into a dataframe
y_pred_df_8 = pd.DataFrame(y_pred_8)
print("Dimension of y_pred_df_8: ", y_pred_df_8.shape)
Dimension of y_pred_df_8: (9001, 1)
# Checking the Confusion matrix
print("Confusion Matirx for y_test & y_pred\n", confusion_matrix(y_test,y_pred_8), "\n")
# Checking the Accuracy of the Predicted model.
print("Accuracy of the logistic regression model with PCA: ",accuracy_score(y_test,y_pr
Confusion Matirx for y_test & y_pred
 [[6250 2022]
 [ 185 544]]
Accuracy of the logistic regression model with PCA: 0.7548050216642596
# df_pca = pd.DataFrame(newdata, columns=["PC1", "PC2"])
# df.head()
```