Deep Learning lecture 4 Energy-Based Model

Yi Wu, IIIS

Spring 2024

Mar-22

Logistics

- Coding Project 2 due in 1 week
 - Use local compute for coding & Colab for testing
 - Cloud for long-term training
 - Any questions can be posted in Dingding channel

- Tips
 - Tricks: overfitting & regularization
 - First overfit!
 - Learning rate decay, architecture, initialization, normalization and preprocess ...
 - Then regularize!
 - Be aware of your model size and computation (flops)!

Overview of Lecture 3

- Algorithm Design
 - Principle 1: adaptive and decoupled learning rate
 - Principle 2: momentum
 - Principle 3: second-order information is great! Let's approximate it
- Practical Algorithms
 - Mini-Batch SGD
 - Momentum SGD
 - AdaGrad, RMSProp, AdaDelta
 - Adam

Overview of Lecture 3

- Regularizations
 - Goal: stabilize gradients and generalization!
 - Gradient Tricks:
 - Initialization, Gradient Clipping
 - Generalization Tricks:
 - Weight Decay, Dropout, Data Augmentation, Early Stopping
 - Normalization Layers:
 - BatchNorm, LayerNorm
 - Other:
 - Ensemble & practice makes perfect ©
- Architecture
 - Residual Connection, Dense Connection
 - Fully Convolutional Network

Story So Far

- History
 - Lecture 1
 - first neural network (1943) to recent advances in deep learning
- Supervised Learning (Classification)
 - Lecture 2
 - MLP and basic components; Backpropagation
 - Lecture 3
 - Algorithms, Tricks and Architecture
- Discriminative Model
 - P(y|X)
 - Labeled data; $X \rightarrow y$

Afterwards

• What if we want to generate *X*?

- Generative Model
 - P(X,y) = P(y) * P(X|y)
 - Or just P(X)

- Lecture 3~7
 - Deep Generative Models
 - Ask the neural network to generate a cat!

Today's Lecture: Energy-Based Models

A particularly flexible and general form of generative model

- Part 1: Hopfield Network
 - The simplest model that can memorize and generate patterns

- Part 2: Boltzmann Machine
 - The first deep generative model

Part 3: General Energy-Based Models

Today's Lecture: Energy-Based Models

A particularly flexible and general form of generative model

- Part 1: Hopfield Network
 - The simplest model that can memorize and generate patterns

- Part 2: Boltzmann Machine
 - The first deep generative model

Part 3: General Energy-Based Models

Classification

- Recap: Classification
 - Layer-by-layer computation
 - Computation Graph: Directed Acyclic Graph
 - Feedforward networks

- What about ...
 - Loops!

A Loopy Network

- A "fully-connected" network
 - Each neuron receives inputs from all the other neurons
 - $y_i = +1 \ or \ -1$ with hard thresholding

- A "fully-connected" network
 - Each neuron receives inputs from all the other neurons
 - $y_i = +1 \ or \ -1$ with hard thresholding
 - Symmetric weights

- A Hopfield Network may not be stable!
 - At each time each neuron receives a "field" $\sum_{j\neq i} w_{ji} y_j + b_i$
 - If the sign of neuron matches the sign of the field, it flips

$$y_i \leftarrow -y_i \text{ if } y_i \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) < 0$$

• This can further cause other neurons to flip!

$$y_i = \Theta\left(\sum_{j \neq i} w_{ji} y_j + b_i\right)$$

$$\Theta(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

- Neurons flip if its sign does not match its local "field"
 - $y_i \leftarrow -y_i$ if $y_i (\sum_{j \neq i} w_{ji} y_j + b_i) < 0$ for all neurons
 - Repeat until no neuron flips
 - Will this process converge?

$$\Theta(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

$$y_i = \Theta\left(\sum_{j \neq i} w_{ji} y_j + b_i\right)$$

- Let y_i^- denote the value of y_i before a "flip"
- Let y_i^+ denote the value of y_i after a "flip"
- If $y_i^- \left(\sum_{j \neq i} w_{ji} y_j + b_i\right) \ge 0$, nothing happen $y_i^+ \left(\sum_{i \neq i} w_{ji} y_j + b_i\right) y_i^- \left(\sum_{i \neq i} w_{ji} y_j + b_i\right) = 0$

$$y_i^+ \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) - y_i^- \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) = 0$$

$$y_i = \Theta\left(\sum_{j \neq i} w_{ji} y_j + b_i\right)$$

$$\Theta(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

- Let y_i^- denote the value of y_i before a "flip"
- Let y_i^+ denote the value of y_i after a "flip"
- If $y_i^-(\sum_{j\neq i} w_{ji}y_j + b_i) \ge 0$, nothing happen

• If
$$y_i^- \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) < 0$$
, $y_i^+ = -y_i^-$
 $y_i^+ \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) - y_i^- \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) = 2y_i^+ \left(\sum_{j \neq i} w_{ji} y_j + b_i \right)$
 $y_i = \Theta \left(\sum_{j \neq i} w_{ji} y_j + b_i \right)$

$$\Theta(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

- Let y_i^- denote the value of y_i before a "flip"
- Let y_i^+ denote the value of y_i after a "flip"
- If $y_i^-(\sum_{i\neq i} w_{ii}y_i + b_i) \ge 0$, nothing happen

• If
$$y_i \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) \geq 0$$
, nothing happe

• If
$$y_i^- \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) < 0, y_i^+ = -y_i^-$$

$$y_i^+ \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) - y_i^- \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) = 2y_i^+ \left(\sum_{j \neq i} w_{ji} y_j + b_i \right)$$
Positive!

$$y_i = \Theta\left(\sum_{j \neq i} w_{ji} y_j + b_i\right)$$

Every flip increases

 $2y_i(\sum_{i\neq i}w_{ii}y_i+b_i)$

$$\Theta(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

• Consider the sum over every pair of neurons (assume $w_{ii} = 0$)

$$D(y_1, ..., y_N) = \sum_{i < j} y_i w_{ij} y_j + y_i b_i$$

• Any flip that changes
$$y_i^-$$
 to y_i^+ increases $D(y_1, \dots, y_N)$

$$\Delta D = D(\dots, y_i^+, \dots) - D(\dots, y_i^-, \dots) = 2y_i^+ \left(\sum_{j \neq i} w_{ji}y_j + b_i\right) > 0$$

Convergence?

• D is upper-bounded (we only change y_i)

$$D(y_1, ..., y_N) = \sum_{i < j} w_{ij} y_i y_j + \sum_i b_i y_i \le \sum_{i < j} |w_{ij}| + \sum_i |b_i|$$

• ΔD is lower-bounded

$$\Delta D_{\min} = \min_{i, \{y_j\}} 2 \left| \sum_j w_{ij} y_j + b_i \right| > 0$$

- $\{y_i\}$ converges with a finite number of iterations!
 - {*y*_{*i*}}: *state*

• The *Energy* of Hopfield Network

$$E = -D = -\sum_{i < j} w_{ij} y_i y_j - \sum_i b_i y_i$$

- The evolution of Hopfield network always decreases its energy!
- The concept of Energy
 - Magnetic dipoles in a disordered magnetic material
 - Each dipole tries to align itself to the local field
 - Field at a particular dipole $f(p_i)$, p_i is the position of x_i

$$f(p_i) = \sum_{j \neq i} J_j x_j + b_i$$

• Ising model of magnetic materials (Ising and Lenz, 1924)

- Ising model for magnetic materials
 - Total field for a dipole

$$f(p_i) = \sum_{j \neq i} J_j x_j + b_i$$

- Response of a dipole
 - $x_i \leftarrow -x_i$ if $sign(x_i f(p_i)) \neq 1$
- Hamiltonian (total energy) of the system

$$E = -\frac{1}{2} \sum_{i} x_{i} f(p_{i}) = -\sum_{i < j} J_{ij} x_{i} x_{j} - \sum_{i} b_{i} x_{i}$$

- The system evolves to minimize the energy
 - A dipole stop filling if that flip increases the energy → a local minimum

The Hopfield network (simplified)

$$E = -\sum_{i < j} w_{ij} y_i y_j$$

- Network evolution arrives at a local optimum in the energy contour
 - Every change in the network state decreases the energy
- Any small jitter from this stable state returns it to the stable state

The Hopfield network (simplified)

$$E = -\sum_{i < j} w_{ij} y_i y_j$$

- Each local optimum state is a "stored" pattern
 - If the network is initialized close to a stored pattern, it evolves to the pattern
- Associated Memory (content addressable memory)

Image Reconstruction by Hopfield Network (1982)

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

How can we store the desired patterns?

- Let's teach the network to store this image
 - N pixels $\rightarrow N$ neurons
 - Symmetric weights $\rightarrow \frac{1}{2}N(N-1)$ parameters to learn

• Design $\{w_{ij}\}$ such that the energy is at a local minimum for a desired pattern y

• Redundancy! y & -y will be both stored

$$E = -\sum_{i} \sum_{j < i} w_{ji} y_{j} y_{i}$$

- Let's teach the network to store this image
 - N pixels $\rightarrow N$ neurons
 - Symmetric weights $\rightarrow \frac{1}{2}N(N-1)$ parameters to learn

- Design $\{w_{ij}\}$ such that the energy is at a local minimum for a desired pattern y
 - Hebbian Learning Rule $w_{ij} \leftarrow y_i y_j$ (1949)
 - $E = -\sum_{i < j} w_{ij} y_i y_j = -\frac{1}{2} N(N-1)$ \rightarrow lowest possible energy!

- What if we want to store multiple patterns?
 - $P = \{y^p\}$ N_p patterns
 - Hebbian Learning Rule

$$w_{ij} = \frac{1}{N_p} \sum_{p} y_i^p y_j^p$$

- The issue of Hebbian Learning
 - Spurious local optima

- Example: 4-dimensional Hopfield Network with Hebbian Learning
 - Two orthogonal patterns to store
 - Let's assume the value of each neuron is 1 or -1

• Example: 4-dimensional Hopfield Network with Hebbian Learning

- How many patterns can a Hopfield network store?
- A fact: you can store all the 2^N patterns!
- Solution: find any N orthogonal patterns
 - Prove this fact in your homework ⁽²⁾

A "flatten" landscape does not help evolve desired patterns!

- We want to construct a network with desired stable local optimum
 - A pattern can be recovered after 1-bit change
- For a specific set of K patterns, we can always build a network for which all patterns are stable provided $K \leq N$
 - Mostafa and St. Jacques (1985)
 - For large N, the upper bound on K is actually $\frac{N}{4} \log N$
 - McElice et. al. (1987)
 - Still possible with undesired local minimum
- How can we find the weights?
 - *K* patterns remembered
 - Avoid undesired local minimum as much as we can

- Problem Formulation
 - Desired patterns $P = \{y^p\}$
 - Energy function $E(y) = -\frac{1}{2}y^T W y$ (we omit bias for simplicity)
- Objective for *W*
 - Minimize E for all y^p
 - It should also maximize E for all non-desired patterns!

$$W = \arg\min_{W} \sum_{y \in P} E(y) - \sum_{v' \notin P} E(y')$$

Gradient Descent

$$W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P} y'y'^T \right)$$

Update rule for W

$$W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P} y'y'^T \right)$$

• Update rule for W $W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P} y'y'^T \right)$

The first term is minimizing the energy of desired patterns!

• Update rule for W $W \leftarrow W - \eta \left(\sum_{t \in \mathbb{R}} yy^T - \sum_{t \in \mathbb{R}} y'y'^T \right)$

- The second term essentially raises all the patterns in the space
 - Issue??

• Update rule for *W*

$$W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T \right)$$

Let's just focus on the valleys!

Update rule for W

$$W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T \right)$$

- Let's just focus on the valleys!
- But how can we find the valleys?

Update rule for W

$$W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T \right)$$

- Let's just focus on the valleys!
- But how can we find the valleys?
- Evolution of Hopfield Network will converge to a valley

ullet Update rule for W

$$W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T \right)$$

- Compute outer-products of desired patterns y
- Randomly initialize y' for multiple times
 - Run evolution for random y' until convergence
 - Calculate outer-product of y'
- Compute gradient and update W

ullet Update rule for W

$$W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T \right)$$

- Compute outer-products of desired patterns y
- Randomly initialize y' for multiple times
 - Run evolution for random y' until convergence
 - Calculate outer-product of y'
- Compute gradient and update W
- Valleys are NOT equivalently important...

Which valleys are important?

- Primary object: ensure desired pattens stable
 - We want to ensure desired patterns are in broad valleys

Which valleys are important?

- Primary object: ensure desired pattens stable
 - We want to ensure desired patterns are in broad valleys
 - Spurious valleys around desired patterns are more important to eliminate

Which valleys are important?

- Primary object: ensure desired pattens stable
 - We want to ensure desired patterns are in broad valleys
 - Spurious valleys around desired patterns are more important to eliminate
 - Evolution from desired patterns

ullet Update rule for W

$$W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T \right)$$

- Compute outer-products of desired patterns y
- Initialize y' by all the desired patterns
 - Run evolution for random y' until convergence
 - Calculate outer-product of y'
- Compute gradient and update W
- Still issues?

• Recap: we raise the valleys next to the desired patterns

Recap: we raise the valleys next to the desired patterns

- What if a pattern is close to the valley?
 - Naively forcing a valley to raise may hurt the learned representation
 - Particularly challenging when y are continuously valued (e.g., tanh activation)

- New idea: we only raise the "neighborhood" of desired patterns!
 - It is sufficient to make each desired pattern a valley
 - Note: we want to raise the "decent" neighborhood

- New idea: we only raise the "neighborhood" of desired patterns!
 - It is sufficient to make each desired pattern a valley
 - Note: we want to raise the "decent" neighborhood
- Implementation
 - We initialize y' by the desired patterns
 - Only perform evolution for a few steps!

SGD update rule for W

$$W \leftarrow W - \eta \left(\mathbf{E}_{y \in P} [yy^T] - \mathbf{E}_{y'} [y'y'^T] \right)$$

- Compute outer-products of random desired pattern y
- Initialize y' by a random desired pattern
 - Run evolution for random y' for a few timesteps (2~4)
 - Calculate outer-product of y'
- ullet Compute gradient and update W
- In theory, O(N) patterns can be stored in the network (with undesired valleys)
 - How to store more patterns?

- Idea: introduce redundant neurons to increase network capacity
- Original *N* neurons for patterns: visible neurons
- Additional *K* neurons: hidden neurons

- Idea: introduce redundant neurons to increase network capacity
- Original *N* neurons for patterns: visible neurons
- Additional K neurons: hidden neurons

- N dimensional pattern $\rightarrow N + K$ dimension
 - How can we store the patterns with K additional units?
 - Possible solution: random filling of *K* units (not great but okay...)

How to retrieve the stored pattern?

A mechanism that can decouple *N* visible units when needed!

- Still evolution?
- Evolution is performed on the entire network but we only care about N units

- How to retrieve the stored pattern?
 - Idea: Probabilistic Framework $P_w(v, h)$
- Let's borrow some ideas from physics!
- Consider desired patterns by computing the marginal $P_w(v) = \sum_h P(v, h)$
- How to convert Hopfield network to a distribution?

The Helmholtz Free Energy of a System

- Recap: A thermodynamic (热力学) system
 - We previously discussed a discrete-time version
 - In fact, it is a probabilistic system
- A thermodynamic system at temperature *T*
 - $P_T(S)$ the probability of the system at state S
 - $E_T(S)$ the potential energy at state S
 - U_T the internal energy, the capability to do work
 - H_T the entropy, internal disorder of the system
 - k Boltzmann constant
 - Free energy $F_T = U_T kTH_T$

The Helmholtz Free Energy of a System

- A thermodynamic system at temperature *T*
 - Internal energy $U_T = \sum_{S} P_T(S) E_T(S)$
 - Entropy $H_T = -\sum_S P_T(S) \log P_T(S)$
 - Free energy $F_T = \sum_S P_T(S) E_T(S) kT \sum_S P_T(S) \log P_T(S)$
- Minimum Free-Energy Principle
 - A system held at temperature T anneals by varying the rate at which it visits the various states until a minimum free-energy state is achieved
- Boltzmann Distribution
 - The probability distribution of states at equilibrium

The Helmholtz Free Energy of a System

Free energy

$$F_T = \sum_{S} P_T(S) E_T(S) + kT \sum_{S} P_T(S) \log P_T(S)$$

• Boltzmann distribution (minimize F_T w.r.t. $P_T(S)$)

$$P_T(S) = \frac{1}{Z} \exp\left(-\frac{E_T(S)}{kT}\right)$$

- It is also known as Gibbs distribution
- Z normalizing constant

Given an energy function $E_T(S)$, if we follow a proper physical evolution process, the system will converge to the Boltzmann distribution

- Let's model our Hopfield network as a thermodynamic system
 - T = k = 1 for simplicity
 - Energy

$$E(y) = -\sum_{i < j} w_{ij} y_i y_j - b_i y_i$$

Boltzmann Probability

$$P(y) = \frac{1}{Z} \exp\left(\sum_{i < j} w_{ij} y_i y_j + b_i y_i\right)$$

- Models the stationary probability distribution of states
- Generative model: generate state from P(y)

- Let's consider the "flip" operation
 - Deterministic → probabilistic
 - Goal: change y_i to 1 with probability $P(y_i = 1 | y_{j \neq i})$
- Assume y and y^\prime only differ at position i and $y_i^\prime = -1$
 - $\log P(y) = -E(y) + C$
 - $E(y) = -\sum_{i < j} w_{ij} y_i y_j b_i y_i$
 - $\log P(y) \log P(y') = E(y') E(y) = -\sum_{j} w_{ij} y_{j} 2b_{i}$ $\log \frac{P(y)}{P(y')} = \log \frac{P(y_{i} = 1 | y_{j \neq i}) P(y_{j \neq i})}{P(y'_{i} = -1 | y'_{j \neq i}) P(y'_{j \neq i})} = \log \frac{P(y_{i} = 1 | y_{j \neq i})}{1 - P(y_{i} = 1 | y_{j \neq i})} = -\sum_{j} w_{ij} y_{j} - 2b_{i}$

- Let's consider the "flip" operation
 - Deterministic → probabilistic
 - Goal: change y_i to 1 with probability $P(y_i = 1 | y_{j \neq i})$
- Assume y and y' only differ at position i and $y'_i = -1$
 - $\log P(y) = -E(y) + C$
 - $E(y) = -\sum_{i < j} w_{ij} y_i y_j b_i y_i$
 - $\log P(y) \log P(y') = E(y') E(y) = -\sum_{j} w_{ij} y_{j} 2b_{i}$ $\log \frac{P(y)}{P(y')} = \log \frac{P(y_{i} = 1 | y_{j \neq i}) P(y_{j \neq i})}{P(y'_{i} = -1 | y'_{j \neq i}) P(y'_{j \neq i})} = \log \frac{P(y_{i} = 1 | y_{j \neq i})}{1 - P(y_{i} = 1 | y_{j \neq i})} = -\sum_{j} w_{ij} y_{j} - 2b_{i}$
- A sigmoid conditional: $P(y_i = 1 | y_{j \neq i}) = \frac{1}{1 + \exp(-\sum_j w_{ij}y_j 2b_i)}$

This is also called Gibbs sampling (remember the name for now 🙂)

- The whole update rule
 - Field at y_i : $z_i = \sum_i w_{ij} y_i + 2b_i$
 - $P(y_i = 1 | y_{j \neq i}) = \frac{1}{1 + \exp(-z_i)} = \sigma(z_i)$

Field quantifies the delta energy of flip

- Running the network
 - Randomly initialize y
 - Cycle over y_i , fixed other variables fixed and sample y_i according to the conditional probability
 - After "convergence", we can get samples of y according to P(y)
 - This sampling procedure is called Gibbs sampling
 - How can we retrieve the stored pattern???
 - This is a stochastic process!

- Network evolution
 - initialize y_0
 - For $1 \le i \le N$, $y_i(t+1) \sim Bernoulli(\sigma(z_i(t)))$
 - Until convergence

- Given sequence of samples $y_0, ..., y_L$
- Simply take the average of final *M* samples

$$y_i = I \left[\frac{1}{M} \sum_{t=L-M+1}^{L} y_i(t) > 0 \right]$$

- If you want a probability instead of a single vector, you can use the frequency derived from $\{y_{L-M+1}, \dots, y_L\}$ to approximate the stationary distribution
- In many applications, we simply take M=1 (output y_L)

Stochastic Hopfield Network: Annealing

- Find the state with lowest energy?
- Network evolution
 - initialize y_0 , $T \leftarrow T_{\text{max}}$
 - Repeat
 - Repeat a few cycles

• For
$$1 \le i \le N$$
, $y_i(T) \sim Bernoulli\left(\sigma\left(\frac{1}{T}z_i(T)\right)\right)$

•
$$y_i(\alpha T) \leftarrow y_i(T); T \leftarrow \alpha T$$

- Until convergence
- Final state as the retrieved pattern
 - With temperature annealing, the system will converge to the most likely state
 - Possibly local minimum in practice

Boltzmann Machine

- A generative Model
 - $E(y) = -\frac{1}{2}y^T W y$
 - $P(y) = \frac{1}{Z} \exp\left(-\frac{E(y)}{T}\right)$
 - Parameter W
- It has a probability for producing any binary pattern y
 - We assume $y_i = 0$ or 1 (or ± 1)

How to learn W for desired patterns?

$$z_i = \frac{1}{T} \sum_j w_{ji} s_j$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- Goal
 - Remember a set of desired patterns $P = \{y^p\}$
 - Now we have a probability distribution
- Objective: maximum likelihood learning (assume T=1)
 - Probability of a particular pattern

$$P(y) = \frac{\exp\left(\frac{1}{2}y^T W y\right)}{\sum_{y'} \exp\left(\frac{1}{2}y'^T W y'\right)}$$

Maximize log-likelihood

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2} y'^T W y'\right)$$

Maximize log-likelihood

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2} y'^T W y'\right)$$

• Gradient Ascent $\nabla_{w_{ij}}L$

Maximize log-likelihood

$$L(W) = \frac{1}{N_I} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2} y'^T W y'\right)$$

- Gradient Ascent $\nabla_{w_{ij}}L$
 - $\nabla_{w_{ij}} L = \frac{1}{N_P} \sum_{y \in P} y_i y_j$

Maximize log-likelihood

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \left[\log \sum_{y'} \exp \left(\frac{1}{2} y'^T W y' \right) \right]$$

• Gradient Ascent $\nabla_{w_{ij}}L$

•
$$\nabla_{w_{ij}} L = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \sum_{y'} \frac{\exp(\frac{1}{2}y'^T W y')}{Z} \cdot y_i' y_j'$$
 Exponentially many terms!

Maximize log-likelihood

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2} y'^T W y'\right)$$

• Gradient Ascent $\nabla_{w_{i,i}}L$

•
$$\nabla_{w_{ij}} L = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \sum_{y'} \frac{\exp\left(\frac{1}{2} y'^T W y'\right)}{Z} \cdot y_i' y_j'$$

•
$$\nabla_{w_{ij}} L = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \mathbf{E}_{y'} [y'_i y'_j]$$
 Monte-Carlo Approximation

• Draw a set of samples S for y' according to the probability,

•
$$\nabla_{w_{ij}} L = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \frac{1}{|S|} \sum_{y' \in S} y'_i y'_j$$

• Maximize log-likelihood with *M* Monte-Carlo samples

$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \frac{1}{M} \sum_{y' \in S} y'_i y'_j$$

- How to draw samples from P(y)?
 - Running the stochastic network (Gibbs sampling)
 - Randomly initialize y(0)
 - Cycle over $y_i(t)$, sampling according to $P(y_i(t)|y_{j\neq i}(t))$
 - After convergence, we get a sequence of samples $\{y(0), ..., y(L)\}$
 - Get the final M states as samples $S = \{y(L M + 1), ..., y(L)\}$

- Overall Training
 - Initialize W
 - Maximize log-likelihood with *M* Monte-Carlo samples

$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \frac{1}{M} \sum_{y' \in S} y'_i y'_j$$

- $w_{ij} \leftarrow w_{ij} + \eta \nabla_{w_{ij}} L(W)$ (we are maximizing likelihood)
- Remark
 - We can also run Gibbs sampling from states in P (will discuss later...)

Boltzmann Machine with Hidden Neurons

- Let's get back to hidden neurons!
 - v visible neurons (pattern), h hidden neurons
 - y = (v, h)
- A joint probability distribution
 - P(y) = P(v, h)
 - $P(v) = \sum_{h} P(v, h)$
 - The marginal distribution!
 - *h*: latent representation
- New objective
 - Maximize the marginal probability

Boltzmann Machine with Hidden Neurons

Maximum log-likelihood learning

$$P(v) = \sum_{h} P(v,h) = \sum_{h} \frac{\exp(y^T W y)}{\sum_{y'} \exp(y'^T W y')}$$
$$L(W) = \frac{1}{|P|} \sum_{v \in P} \log \left(\sum_{h} \exp(y^T W y) \right) - \log \left(\sum_{y'} \exp(y'^T W y') \right)$$

• Gradient $\nabla L(W)$?

Maximum log-likelihood learning

$$P(v) = \sum_{h} P(v,h) = \sum_{h} \frac{\exp(y^{T}Wy)}{\sum_{y'} \exp(y'^{T}Wy')}$$
$$L(W) = \frac{1}{|P|} \sum_{v \in P} \log \left(\sum_{h} \exp(y^{T}Wy) \right) - \log \left(\sum_{y'} \exp(y'^{T}Wy') \right)$$

• Gradient $\nabla L(W)$?

Monte-Carlo Estimate!

Maximum log-likelihood learning

$$P(v) = \sum_{h} P(v,h) = \sum_{h} \frac{\exp(y^T W y)}{\sum_{y'} \exp(y'^T W y')}$$
$$L(W) = \frac{1}{|P|} \sum_{v \in P} \log \left(\sum_{h} \exp(y^T W y) \right) - \log \left(\sum_{y'} \exp(y'^T W y') \right)$$

- Gradient $\nabla L(W)$?
 - The first term is also in the form of log-sum
 - Monte Carlo Estimate for each $v \in P!$

Maximum log-likelihood learning

$$\nabla_{w_{ij}} L(W) = \frac{1}{|P|} \sum_{v \in P} E_h[y_i y_j] - E_{y'}[y'_i y'_j]$$

- Second term
 - Freely generate samples w.r.t. p(y)
 - Random initialization, cyclic Gibbs sampling
- First term
 - Generate samples w.r.t. p(y) conditioned on a fixed v
 - Randomly initialize h, run Gibbs sampling over h

- Overall Training
 - Initialize W
 - For $v \in P$, fixed the visible neurons, run Gibbs sampling to get K samples
 - Collect all conditioned samples as S_c
 - Randomly initialize all neurons, run Gibbs sampling to get M samples
 - Collect free samples as S
 - Maximize log-likelihood with *M* Monte-Carlo samples

$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{y \in S_C} y_i y_j - \frac{1}{M} \sum_{y' \in S} y'_i y'_j$$

• $w_{ij} \leftarrow w_{ij} + \eta \nabla_{w_{ij}} L(W)$

Boltzmann Machine

Summary

- A stochastic version of Hopfield Network
- Nice mathematical properties
- Large capacity for storing patterns (with hidden neurons)
- Pattern generation
 - Gibbs sampling
- Pattern completion
 - Conditioned Gibbs sampling
- Classification??
 - y = (v, h, c), c is label
 - c as a one-hot vector (0-1 variables)
 - Posterior P(c|v)
 - Even conditional generation: P(v|c)!

from noisy (top) or partial (bottom) cues.

Boltzmann Machine

- The issue
 - Training is hard!
 - Gibbs sampling may take a very long time to converge
 - also called *mixing-time*
 - Not really applicable for large problems

Can we design a better structure for faster Gibbs sampling mixing?

- A particularly structured Boltzmann Machine
 - A partitioned structure
 - Hidden neurons are only connected to visible neurons
 - No intra-layer connections
 - Invented under the name Harmonium by Paul Smolensky in 1986
 - Became promise after Hinton invented fast learning algorithms in mid-2000

- Computation Rules: same as Boltzmann machine
 - Hidden neurons h_i

$$z_i = \sum_{j} w_{ij} v_j$$
, $P(h_i = 1 | v_j) = \frac{1}{1 + \exp(-z_i)}$

• Visible neurons v_i

$$z_j = \sum_{i}^{j} w_{ij} h_i$$
, $P(v_j = 1 | h_i) = \frac{1}{1 + \exp(-z_j)}$

Iterative Sampling!

HIDDEN

VISIBLE

- Sampling
 - Randomly initialize visible neurons v_0
 - Iterative between hidden neurons and visible neurons
 - Get final sample (v_{∞}, h_{∞})
- Conditioned sampling?
 - Initialize v_0 as the desired pattern

Maximum Likelihood Estimate

$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0_i} h_{0_j} - \frac{1}{M} \sum_{v \in P} v_{\infty_i} h_{\infty_j}$$

No need to lift up the entire energy landscape! (recap)

Maximum Likelihood Estimate

$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0_i} h_{0_j} - \frac{1}{M} \sum_{v \in P} v_{\infty_i} h_{\infty_j}$$

- No need to lift up the entire energy landscape! (recap)
 - Raising the neighborhood of desired patterns will be sufficient

Maximum Likelihood Estimate

$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0_i} h_{0_j} - \frac{1}{M} \sum_{v \in P} v_{\infty_i} h_{\infty_j}$$

- No need to lift up the entire energy landscape!
 - One Gibbs sampling will be sufficient

Maximum Likelihood Estimate

$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P} \sum_{v \in P} v_{0_i} h_{0_j} - v_{1_i} h_{1_j}$$

Only 3 Gibbs sampling steps are needed!

We can also extend (R)BMs to to continuous values!

- If we can explicitly sample from $P(y_i|y_{j\neq i})$
- Exponential family! (FYI ☺)
 - "Exponential Family Harmoniums with an Application to Information Retrieval", Welling et al., 2004

Deep Boltzmann Machine

- Can we have a deep version of RBM?
 - Deep Belief Net (2006)
 - Deep Boltzmann Machine (2009)
- Sampling?
 - Forward pass: bottom-up
 - Backward pass: top-down
 - Practical Trick: Layer-by-layer pretraining
- "Deep Boltzmann Machine", AISTATS 2009
 - The very first deep generative model
 - Ruslan Salakhutdinov & Geoffrey Hinton

deep belief net

Deep Boltzmann Machine

- Can we have a deep version of RBM?
 - Deep Belief Net (2006)
 - Deep Boltzmann Machine (2009)
- Sampling?

Summary

- Hopfield Network
 - The very first generative neural network
- Boltzmann Machine
 - A stochastic version of Hopfield network
 - An undirected probabilistic model
- Restricted Boltzmann Machine
 - Layered structure for fast inference
- Next
 - General formulation of energy-based models

Energy-Based Model

- Goal of generative model
 - A probability distribution of "patterns" P(x)
- Requirement
 - $P(x) \ge 0$ (non-negative)
 - $\int_{x} P(x)dx = 1 \text{ (sum to 1)}$
- Energy-Based Model
 - Energy function: $E(x; \theta)$ parameterized by θ
 - $P(x) = \frac{1}{Z} \exp(-E(x;\theta))$
 - $Z = \int_{x} \exp(-E(x; \theta)) dx$ partition function

Why use exp() function? e.g. |x| or $|x|^2$

Energy-Based Model

A particular class of density function

$$P(x) = \frac{1}{Z} \exp(-E(x; \theta))$$

- Pros
 - Compatible with log-probability measure to capture large variations
 - Exponential family (e.g., Gaussian)
 - Common in statistical physics
 - Extremely flexible, i.e., use any E(x) you like (e.g., any $f(x): \mathbb{R}^d \to \mathbb{R}$, even CNNs)
- Cons
 - Non-trivial to sample and train due to the partition function \boldsymbol{Z}
 - Is it possible to avoid *Z*?

Energy-Based Model

A particular class of density function

$$P(x) = \frac{1}{Z} \exp(-E(x; \theta))$$

• The ratio of two samples does not require Z!

$$\frac{P(x)}{P(x')} = \exp(-E(x;\theta) + E(x';\theta))$$

object recognition

sequence labeling

image restoration

Energy-Based Model: Training

A particular class of density function

$$P(x) = \frac{1}{Z} \exp(-E(x; \theta))$$

- Maximum Likelihood Training
 - $L(\theta) = \log P(x) = -E(x; \theta) \log Z(\theta)$
 - use Monte-Carlo Estimates for $Z(\theta)$
- Contrastive Divergence Algorithm
 - $\nabla_{\theta} L(\theta) \approx \nabla_{\theta} \left(-E(x_{train}; \theta) + E(x_{sample}; \theta) \right)$
- How to sample from an energy-based model?

A Generic Solution

- Sampling from the energy-based model $p(s) = \frac{1}{Z} \exp(-E(s))$
 - Random initialize s^0
 - $s' \leftarrow s^t + \text{noise}$
 - If $E(s') < E(s^t)$; then accept $s^{t+1} \leftarrow s'$
 - Else accept s' with probability $\exp(E(s^t) E(s'))$
 - Repeat
- Then after enough iterations, we get samples from p(s)
- Details to be explained in the next lecture! ©

Modern Energy-Based Model Examples

Du & Mordatch, 2019

Song et. al., 2021

Additional Readings

OpenAI Blog: https://openai.com/blog/energy-based-models/ A nice overview from Yang Song & Diederik Kingma: https://arxiv.org/abs/2101.03288

Summary

- Hopfield Network
 - The first generative neural network
 - Undirected complete graph
- Boltzmann Machine
 - A probabilistic interpretation of Hopfield Network
 - The first deep generative model
- Energy-Based
 - Extremely flexible and powerful, designed to be multi-modal
 - Hard to sample and learn
 - Closely related to probabilistic inference and Bayesian methods

Thanks!