CS 5/7320 Artificial Intelligence

Intelligent Agents AIMA Chapter 2

Slides by Michael Hahsler based on slides by Svetlana Lazepnik with figures from the AIMA textbook.

Outline

What is an intelligent agent?

Rationality

Rationality

PEAS (Performance measure, Environment, Actuators, Sensors)

Environment types

Agent types

Outline

What is an intelligent agent?

Rationality

Rationality

PEAS
(Performance measure, Environment, Actuators, Sensors)

Environment types

What is an Agents?

 An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.

- Control theory: A closed-loop control system (= feedback control system)
 is a set of mechanical or electronic devices that automatically regulate a
 process variable to a desired state or set point without human interaction.
 The agent is called a controller.
- **Softbot**: Agent is a software program that runs on a host device.

Agent Function and Agent Program

The agent function maps from the set of all possible percept sequences P^* to the set of actions A formulated as an abstract mathematical function.

The agent program is a concrete implementation of this function for a given physical system.

Agent = architecture (hardware) + agent program (implementation of f)

- Sensors
- Memory
- Computational power

Example: Vacuum-cleaner World

Percepts:

Location and status, e.g., [A, Dirty]

• Actions:

Left, Right, Suck, NoOp

Most recent Percept *p*

Agent function: $f: P^* \rightarrow A$

Percept Sequence	<u>Action</u>
[A, Clean]	Right
[A, Dirty]	Suck
[A Cloop] [D Cloop]	Left
[A, Clean], [B, Clean]	Leit
 [A. Clean], [B. Clean], [A. Dir	tvl Suck

Implemented agent program:

function Vacuum-Agent([location, status]) returns an action a

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Problem: This table can become infinitively large!

Outline

PEAS (Performance What is an Environment measure, Rationality intelligent Agent types Environment, types agent? Actuators, Sensors)

Rational Agents: What is Good Behavior?

Foundation

- Consequentialism: Evaluate behavior by its consequences.
- Utilitarianism: Maximize happiness and well-being.

Definition of a rational agent:

"For each possible percept sequence, a rational agent should select an action that maximizes its expected performance measure, given the evidence provided by the percept sequence and the agent's built-in knowledge."

- **Performance measure**: An *objective* criterion for success of an agent's behavior (often called utility function or reward function).
- **Expectation**: Outcome averaged over all possible situations that may arise.

Rule: Pick the action that maximize the expected utility

 $a = \operatorname{argmax}_{a \in A} E(U \mid a)$

Rational Agents

Rule: Pick the action that maximize the expected utility

$$a = \operatorname{argmax}_{a \in A} E(U \mid a)$$

This means:

- Rationality is an ideal it implies that no one can build a better agent
- Rationality ≠ Omniscience rational agents can make mistakes if percepts and knowledge do not suffice to make a good decision
- Rationality ≠ Perfection rational agents maximize expected outcomes not actual outcomes
- It is rational to explore and learn I.e., use percepts to supplement prior knowledge and become autonomous
- Rationality is often bounded by available memory, computational power, available sensors, etc.

Example: Vacuum-cleaner World

Percepts:

Location and status, e.g., [A, Dirty]

Actions:

Left, Right, Suck, NoOp

Agent function:	
Percept Sequence [A, Clean] [A, Dirty]	Action Right Suck
 [A, Clean], [B, Clean] 	Left

```
Implemented agent program:

function Vacuum-Agent([location, status])
  returns an action

if status = Dirty then return Suck
  else if location = A then return Right
  else if location = B then return Left
```

What could be a performance measure? Is this agent program rational?

Outline

What is an intelligent agent?

Rationality

Rationality

Rationality

Rationality

Sensors)

PEAS
(Performance measure, Environment types)

Actuators, Sensors)

Problem Specification: PEAS

Performance measure

Environment

Actuators

Sensors

Defines utility and what is rational

Components and rules of how actions affect the environment.

Defines available actions

Defines percepts

Example: Automated Taxi Driver

Performance measure

- Safe
- fast
- legal
- comfortable trip
- maximize profits

Environment

- Roads
- other traffic
- pedestrians
- customers

Actuators

- Steering wheel
- accelerator
- brake
- signal
- horn

Sensors

- Cameras
- sonar
- speedometer
- GPS
- Odometer
- engine sensors
- keyboard

Example: Spam Filter

Performance measure

Accuracy:
 Minimizing
 false
 positives,
 false
 negatives

Environment

- A user's email account
- email server

Actuators

- Mark as spam
- delete
- etc.

Sensors

- Incoming messages
- other information about user's account

Outline

Environment Types

Fully observable: The agent's sensors give it access to the complete state of the environment. The agent can "see" the whole environment.

VS. Partially observable: The agent cannot see all aspects of the environment. E.g., it can't see through walls

Deterministic: Changes in the environment is completely determined by the current state of the environment and the agent's action.

VS.

Stochastic: Changes cannot be determined from the current state and the action (there is some randomness).

Strategic: The environment is stochastic and adversarial. It chooses actions strategically to harm the agent. E.g., a game where the other player is modeled as part of the environment.

Known: The agent knows the rules of the environment and can predict the outcome of actions.

VS. Unknown: The agent cannot predict the outcome of actions.

Environment Types

Static: The environment is **not** changing while agent is deliberating.

Semidynamic: the environment is static, but the agent's performance score depends on how fast it acts.

Discrete: The environment provides a fixed number of distinct percepts, actions, and environment states. Time can also evolve in a discrete or continuous fashion.

Episodic: Episode = a self-contained sequence of actions. The agent's choice of action in one episode does not affect the next episodes. The agent does the same task repeatedly.

Single agent: An agent operating by itself in an environment.

VS. Dynamic: The environment is changing while the agent is deliberating.

Continuous: Percepts, actions, state variables orVS. time are continuous leading to an infinite state, percept or action space.

VS. Sequential: Actions now affect the outcomes later. E.g., learning makes problems sequential.

VS. Multi-agent: Agent cooperate or compete in the same environment.

Examples of Different Environments

Chess with a clock

Scrabble

Taxi driving

Observable	Fully	Fully	Partially	Partially
Deterministic	Deterministic	Determ. game Mechanics + Strategic*	Stochastic +Strategic	Stochastic
Episodic?	Episodic	Episodic	Episodic	Sequential
Static	Static	Semidynamic	Static	Dynamic
Discrete	Discrete	Discrete	Discrete	Continuous
Single agent	Single	Multi*	Multi*	Multi*

^{*} Can be models as a single agent problem with the other agent(s) in the environment.

Outline

PEAS (Performance What is an Environment measure, intelligent Rationality Agent types Environment, types agent? Actuators, Sensors)

Designing a Rational Agent

Remember the definition of a rational agent:

"For each possible percept sequence, a rational agent should select an action that maximizes its expected performance measure, given the evidence provided by the percept sequence and the agent's built-in knowledge."

Agent Function

- Assess performance measure
- Remember percept sequence
- Built-in knowledge

Note: Everything outside the agent function can be seen as the environment.

Hierarchy of Agent Types

Utility-based agents

Goal-based agents

Model-based reflex agents

Simple reflex agents

Simple Reflex Agent

- Uses only built-in knowledge in the form of rules that select action only based on the current percept. This is typically very fast!
- The agent does not know about the performance measure! But well-designed rules can lead to good performance.
- The agent needs no memory and ignores all past percepts.

The interaction is a sequence: p_0 , a_0 , p_1 , a_1 , p_2 , a_2 , ..., p_t , a_t , ...

Example: A simple vacuum cleaner that uses rules based on its current sensor input.

Model-based Reflex Agent

- Maintains a **state variable** to keeps track of aspects of the environment that cannot be currently observed. I.e., it has memory and knows how the environment reacts to actions (called **transition function**).
- The state is updated using the percept.
- There is now more information for the rules to make better decisions.

The interaction is a sequence: s_0 , a_0 , p_1 , s_1 , a_1 , p_2 , s_2 , a_2 , p_3 , ..., p_t , s_t , a_t , ...

Example: A vacuum cleaner that remembers were it has already cleaned.

Transition Function

- The environment is modeled as a discrete dynamical system.
- Changed in the environment are a sequence of states $s_0, s_1, \dots s_T$, where the index is the time step.
- Example of a state diagram: switch on

 Light is off on
 - switch off
- States change because of:
 - a. System dynamics of the environment.
 - b. The actions of the agent.
- Both types of changes are represented by the transition function written as

$$T: S \times A \rightarrow S$$

or

$$s' = T(s, a)$$

S ... set of states

A ... set of available actions

 $a \in A$... an action

 $s \in S$... current state

 $s' \in S$... next state

State Representation

States help to keep track of the environment and the agent in the environment. This is often also called the **system state**. The representation can be

- Atomic: Just a label for a black box. E.g., A, B
- **Factored**: A set of attribute values called fluents. E.g., [location = left, status = clean, temperature = 75 deg. F]

We often construct atomic labels from factored information. E.g.: If the agent's state is the coordinate x = 7 and y = 3, then the atomic state label could be the string "(7, 3)". With the atomic representation, we can only compare if two labels are the same. With the factored state representation, we can reason more and calculate the distance between states!

The set of all possible states is called the **state space** *S***.** This set is typically very large!

Old-school vs. Smart Thermostat

Old-school thermostat

Percepts States

Smart thermostat
Percepts States

Old-school vs. Smart Thermostat

Set temperature range

Old-school thermostat Percepts States			
-			
temperature: Low, ok, high	No states need		

Change temperatur e when you are too cold/warm.

Smart thermostat

Percepts

- Temp: deg. F
- Outside temp.
- Weather report
- Energy curtailment
- Someone walking by
- Someone changes temp.
- Day & time
- ..

States

Factored states

- Estimated time to cool the house
- Someone home?
- How long till someone is coming home?
- A/C: on, off

Goal-based Agent

- The agent has the task to reach a defined goal state and is then finished.
- The agent needs to move towards the goal. It can use search algorithms to plan actions that lead to the goal.
- Performance measure: the cost to reach the goal.

The interaction is a sequence: $s_0, a_0, p_1, s_1, a_1, p_2, s_2, a_2, \dots, s^{goal}$

Example: Solving a puzzle. What action gets me closer to the solution?

Utility-based Agent

- The agent uses a utility function to evaluate the desirability of each possible states. This is typically expressed as the reward of being in a state R(s).
- Choose actions to stay in desirable states.
- Performance measure: The discounted sum of expected utility over time.

$$a = \operatorname{argmax}_{a_0 \in \mathbf{A}} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$
 Utility is the expected future discounted reward

Techniques: Markov decision processes, reinforcement learning

The interaction is a sequence: $s_0, a_0, p_1, s_1, a_1, p_2, s_2, a_2, \dots$

Example: An autonomous Mars rover prefers states where its battery is not critically low.

Agents that Learn

The **learning element** modifies the agent program (reflex-based, goal-based, or utility-based) to improve its performance.

Example: Smart Thermostat

Change temperature when you are too cold/warm.

Reflex Agent?

Smart thermostat

Percepts

- Temp: deg. F
- Outside temp.
- Weather report
- Energy curtailment
- Someone walking by
- Someone changes temp.
- Day & time
- ...

States

Factored states

- Estimated time to cool the house
- Someone home?
- How long till someone is coming home?
- A/C: on, off

Example: Modern Vacuum Robot

Features are:

- Control via App
- Cleaning Modes
- Navigation
- Mapping
- Boundary blockers

iRobot's Roomba brand has become as synonymous with robot vacuum as Q-tips is with cotton swabs. The Wi-Fi-enabled Roomba 960 is ample evidence why. It turns a tiresome chore into something you can almost look forward to. With three cleaning modes and dirt-detecting sensors, it kept all the floor surfaces in our testing immaculate, and its camera-driven navigation and mapping were superb. Its easy-to-use app provides alerts and detailed cleaning reports. The ability to control it with Amazon Alexa and Google Home voice commands are just the cherry on top.

Source: https://www.techhive.com/article/3269782/best-robot-vacuum-cleaners.html

PEAS Description of a Modern Robot Vacuum

Performance measure	Environ	ment	Actuators	Sensors

What Type of Intelligent Agent is a Modern Robot Vacuum?

Utility-based agents

it learning?

Goal-based agents

Model-based reflex agents

Simple reflex agents

Does it collect utility over time? How would the utility for each state be defined?

Does it have a goal state?

Does it store state information. How would they be defined (atomic/factored)?

Does it use simple rules based on the current percepts?

What Type of Intelligent Agent is this?

Default (GPT-3.5)

the sun is shining. It is

PEAS Description of ChatGPT

Performance measure	Environment	Actuators	Sensors

How does ChatGPT work?

What Type of Intelligent Agent is ChatGPT?

Utility-based agents

Goal-based agents

Model-based reflex agents

Simple reflex agents

Does it collect utility over time? How would the utility for each state be defined?

Does it have a goal state?

Does it store state information. How would they be defined (atomic/factored)?

Does it use simple rules based on the current percepts?

Answer the following questions:

- Does ChatGPT pass the Touring test?
- Is ChatGPT a rational agent? Why?

✓ Check what applies

Is it learning?

We will talk about knowledge-based agents later.

Intelligent Systems as Sets of Agents: Self-driving Car

Utility-based agents

It should learn!

Goal-based agents

Model-based reflex agents

Simple reflex agents

Make sure the passenger has a pleasant drive (not too much sudden breaking = utility)

Plan the route to the destination.

Remember where every other car is and calculate where they will be in the next few seconds.

React to unforeseen issues like a child running in front of the car quickly.

High-level planning

Low-level planning

Some Environment Types Revisited

Fully observable: The agent's sensors always show the whole **state**.

vs.

Partially observable: The agent only perceives part of the **state** and needs to remember or infer the test.

Deterministic: Percepts are 100% reliable and changes in the environment is completely determined by the current **state** of the environment and the agent's **action**.

vs.

Stochastic:

- Percepts are unreliable (noise distribution, sensor failure probability, etc.). This is called a stochastic sensor model.
- The transition function is stochastic leading to transition probabilities and a Markov process.

Known: The agent knows the **transition function**.

VS.

Unknown: The needs to **learn the transition function** by trying actions.

We will spend the whole semester on discussing algorithms that can deal with environments that have different combinations of these three properties.

Conclusion

Intelligent agents inspire the research areas of modern Al

Search for a goal (e.g., navigation).

Optimize functions (e.g., utility).

Stay within given constraints

(constraint satisfaction problem; e.g., reach the goal without running out of power)

Deal with **uncertainty** (e.g., current traffic on the road).

Learn a good agent program from data and improve over time (machine learning).

Sensing
(e.g, natural language processing, vision)