

and a drain. $400 \ \mu\text{A/V}^2, \ L = 0.$ for R_S and R_D . $I_D := 0.1 \, \text{mA} \qquad V_{tn} := 0.5 \, \text{V}$ $V_{OV} := \sqrt{\frac{2 \cdot I_D}{k_n}} = 0.2 \, \text{V}$ Design the circuit of Fig. P5.44 to establish a drain current of 0.1 mA and a drain voltage of +0.3 V. The MOSFET has $V_t = 0.5$ V, $\mu_n C_{ox} =$ 400 μ A/V², $L = 0.4 \mu$ m, and $W = 5 \mu$ m. Specify the required values

$$I_D := 0.1 \, mA$$
 $V_{tn} := 0.5 \, V$

$$k_n := \frac{400\,\mu A}{V^2} \cdot \frac{5\mu m}{0.4\,\mu m} = 5\frac{mA}{V^2}$$

$$V_{OV} := \sqrt{\frac{2 \cdot I_D}{k_n}} = 0.2 \text{ V}$$
 $V_{GS} := V_{tn} + V_{OV} = 0.7 \text{ V}$

$$V_{GS} := V_{tn} + V_{OV} = 0.7 V$$

The gate is grounded so $V_S = 0 \text{ V} - V_{GS} = -0.7 \text{ V}$

$$R_S := \frac{-V_{GS} - -1V}{I_D} = 3k\Omega$$

The drain voltage is +0.3 V

$$R_D := \frac{1V - 0.3V}{I_D} = 7 k\Omega$$

It is required to operate the transistor in the circuit of Fig. P5.47 at the edge of $V_{GS} = 1.3 \text{V}$ Since gate is tied to V_{DD} (1.3 V) and source is grounded $V_{CS} = V_t + V_{OV} = 1.3 \text{V}$ $V_{OV} = V_{GS} - V_t = 1.3 - 0.4 = 0.9 \text{V}$ Since it is operating at the case. saturation with $I_D = 0.1$ mA. If $V_t = 0.4$ V, find the required value of R_D .

Figure P5.47

$$V_{GS} = 1.3 \text{V}$$
 Since gate is tied to V_{DD} (1.3 V) and source is grounded

$$V_{GS} = V_t + V_{OV} = 1.3V$$

$$V_{OV} = V_{GS} - V_t = 1.3 - 0.4 = 0.9 \text{V}$$

$$R_D = \frac{1.3V - 0.9V}{0.1 \text{mA}} = 4000\Omega$$

In the circuits shown in Fig. P5.55, transistors are characterized by $|V_t| = 1$ V, k'(W/L) = 4 mA/V², and $\lambda = 0$.

- (a) Find the labeled voltages V_1 through V_7 .
- (b) In each of the circuits, replace the current source with a resistor. Select the resistor value to yield a current as close to that of the current source as possible, while using resistors specified in the 1% table provided in Appendix J. Find the new values of V_1 through V_7 .

Standard Resistor Values

1% Standard Values Decade multiples are available from 10.0 Ω through 1.00 M Ω (also 1.10 M Ω , 1.20 M Ω , 1.30 M Ω , 1.50 M Ω , 1.60 M Ω , 1.80 M Ω , 2.00 M Ω and 2.20 M Ω)											
10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13										13.0	
13.3	13.7	14.0	14.3	14.7	15.0	15.4	15.8	16.2	16.5	16.9	17.4
17.8	18.2	18.7	19.1	19.6	20.0	20.5	21.0	21.5	22.1	22.6	23.2
23.7	24.3	24.9	25.5	26.1	26.7	27.4	28.0	28.7	29.4	30.1	30.9
31.6	32.4	33.2	34.0	34.8	35.7	36.5	37.4	38.3	39.2	40.2	41.2
42.2	43.2	44.2	45.3	46.4	47.5	48.7	49.9	51.1	52.3	53.6	54.9
56.2	57.6	59.0	60.4	61.9	63.4	64.9	66.5	68.1	69.8	71.5	73.2
75.0	76.8	78.7	80.6	82.5	84.5	86.6	88.7	90.9	93.1	95.3	97.6

5% Standard Values Decade multiples are available from 10 Ω through 22 M Ω											
10	11	12	13	15	16	18	20	22	24	27	30
33	36	39	43	47	51	56	62	68	75	82	91

		Dec	ade mul		6 Stanc e availa			rough 1	ΜΩ		
10	12	15	18	22	27	33	39	47	56	68	82

http://www.rfcafe.com/references/electrical/resistor-values.htm

Problem 5.55a (NMOS)

In the circuits shown in Fig. P5.55, transistors are characterized by $|V_t| = 1$ V,

$$k'(W/L) = 4 \text{ mA/V}^2$$
, and $\lambda = 0$.

$$V_2 = 5 - 2\text{mA} \times 2\text{k}\Omega = 1\text{V}$$
$$v_{OV} = \sqrt{\frac{2i_D}{k_n'\left(\frac{W}{I}\right)}} = 1\text{V}$$

$$v_{GS} = V_t + v_{OV} = 1 + 1 = 2.0 V$$

$$V_1 = -2V$$
 $v_{DS} = 3.0V > V_{OV}$ Device is in saturation

$$v_{DS} = 3.0 \text{V} > V_{OV}$$

values of V_1 through V_7 .

(a) Find the labeled voltages V_1 through V_7 .

(b) In each of the circuits, replace the

current source with a resistor. Select the

using resistors specified in the 1% table

provided in Appendix J. Find the new

resistor value to yield a current as close to

that of the current source as possible, while

$$R_S = \frac{-2V - -5V}{2mA} = 1.5k\Omega$$
 Closest 1% value is $1.50k\Omega$

Since the resistor is exactly matched the currents and voltages don't change

Figure P5.55

Problem 5.55b (NMOS)

In the circuits shown in Fig. P5.55, transistors are characterized by $|V_t| = 1$ V,

$$k'(W/L) = 4 \text{ mA/V}^2$$
, and $\lambda = 0$.

$$R_D = \frac{5V - 2V}{3mA} = 1.5k\Omega$$

- (a) Find the labeled voltages V_1 through V_7 .
- (b) In each of the circuits, replace the current source with a resistor. Select the resistor value to yield a current as close to that of the current source as possible, while using resistors specified in the 1% table provided in Appendix J. Find the new values of V_1 through V_7 .

Device is in saturation

Closest 1% value is $1.5k\Omega$

Since the resistor is exactly matched the currents and voltages don't change

Problem 5.55c (PMOS)

In the circuits shown in Fig. P5.55, transistors are characterized by $|V_t| = 1$ V,

$$k'(W/L) = 4 \text{ mA/V}^2$$
, and $\lambda = 0$.

- (a) Find the labeled voltages V_1 through V_7 .
- (b) In each of the circuits, replace the current source with a resistor. Select the resistor value to yield a current as close to that of the current source as possible, while using resistors specified in the 1% table provided in Appendix J. Find the new values of V_1 through V_7 .

$$R_S = \frac{5V - 2V}{2m\Lambda} = 1.5k\Omega$$
 Closest 1% value is $1.50k\Omega$

Since the resistor is exactly matched the currents and voltages don't change

(c)

Problem 5.55d (PMOS)

In the circuits shown in Fig. P5.55, transistors are characterized by $|V_t| = 1$ V,

$$k'(W/L) = 4 \text{ mA/V}^2$$
, and $\lambda = 0$.

- (a) Find the labeled voltages V_1 through V_7 .
- (b) In each of the circuits, replace the current source with a resistor. Select the resistor value to yield a current as close to that of the current source as possible, while using resistors specified in the 1% table provided in Appendix J. Find the new values of V_1 through V_7 .

Closest 1% value is 499Ω

Problem 5.55d cont (PMOS)

In the circuits shown in Fig. P5.55, transistors are characterized by $|V_t| = 1 \text{ V}$,

$$k'(W/L) = 4 \text{ mA/V}^2$$
, and $\lambda = 0$.

With
$$R_D = 499\Omega$$

$$I_D = \frac{5V - 2V_{SG}}{499O}$$

$$I_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (V_{SG} - V_t)^2 = \frac{1}{2} \frac{4\text{mA}}{V^2} (V_{SG} - 1V)^2$$

Solving yields $V_{SG} = 2.003 \text{V}$

The new current is then $I_D = 1.992 \text{mA}$

(b) In each of the circuits, replace the current source with a resistor. Select the resistor value to yield a current as close to that of the current source as possible, while using resistors specified in the 1% table provided in Appendix H. Find the new values of V_1 through V_7 .

For each of the circuits in Fig. P5.56, find the labeled node voltages. For all transistors, $k_n'(W/L) = 0.5 \text{ mA/V}^2$, $V_t = 0.8 \text{ V}$, and $\lambda = 0$.

Homework Solutions R. Martin Figure P5.56

Problem 5.56a,b

For each of the circuits in Fig. P5.56, find the labeled node voltages. For all transistors, $k_n'(W/L) = 0.5 \text{ mA/V}^2$, $V_t = 0.8 \text{ V}$, and $\lambda = 0$.

$$V_{OV} := \sqrt{\frac{2 \cdot 10 \,\mu A}{0.5 \, \frac{mA}{V^2}}} = 0.2 \, V$$

$$V_{GS} = V_t + V_{OV} = 0.8 + 0.2 = 1.0V$$

 $V_1 = -1.0V$

$$V_{GS} = V_t + V_{OV} = 0.8 + 0.632 = 1.432V$$

 $V_2 = -1.432V$

Problem 5.56c,d

For each of the circuits in Fig. P5.56, find the labeled node voltages. For all transistors, $k_n'(W/L) = 0.5 \text{ mA/V}^2$, $V_t = 0.8 \text{ V}$, and $\lambda = 0$.

$$V_{GS} = V_t + V_{OV} = 0.8 + 2 = 2.8V$$

 $V_3 = -2.8V$

$$V_{GS} = V_t + V_{OV} = 0.8 + 0.2 = 1.0 \text{V}$$

 $V_4 = 1.0 \text{V}$

Problem 5.56e,f

For each of the circuits in Fig. P5.56, find the labeled node voltages. For all transistors, $k_n'(W/L) = 0.5 \text{ mA/V}^2$, $V_t = 0.8 \text{ V}$, and $\lambda = 0$.

$$V_{6} = V_{GS} = 5.0 \text{V} - I_{D} 400 k\Omega$$

$$V_{OV} = V_{GS} - V_{t} = 5.0 \text{V} - I_{D} 400 k\Omega - 0.8 \text{V}$$

$$V_{OV} = 4.2 \text{V} - I_{D} 400 k\Omega$$

$$I_{D} = \frac{1}{2} k'_{n} \left(\frac{W}{L}\right) V_{OV}^{2}$$

$$I_{D} = \frac{1}{2} 0.5 \left(\frac{\text{mA}}{\text{V}^{2}}\right) (4.2 \text{V} - I_{D} 400 k\Omega)^{2}$$

$$V_{GS} = V_t + V_{OV} = 0.8 + 2 = 2.8V$$

 $V_5 = 2.8V$

From MATHCAD
$$I_D = 10$$
 uA or 11.025 uA

$$V_{OV} = 0.2V$$

$$V_6 = V_{GS} = 1V$$

Problem 5.56g,h

For each of the circuits in Fig. P5.56, find the labeled node voltages. For all transistors, $k_n'(W/L) = 0.5 \text{ mA/V}^2$, $V_t = 0.8 \text{ V}$, and $\lambda = 0$.

From MATHCAD $I_D = 1 \text{ mA}$

$$V_{OV} := \sqrt{\frac{2 \cdot 1mA}{0.5 \frac{mA}{V^2}}} = 2V$$

$$V_7 = V_{GS} = 2.8 \text{V}$$

$$V_{8} = -V_{GS} = V_{S} = -(5.0V - I_{D}400k\Omega)$$

$$V_{GS} = 5.0V - I_{D}400k\Omega$$

$$V_{OV} = V_{GS} - V_{t} = 5.0V - I_{D}400k\Omega - 0.8V$$

$$V_{OV} = 4.2V - I_{D}400k\Omega$$

$$I_{D} = \frac{1}{2}k'_{n}\left(\frac{W}{L}\right)V_{OV}^{2}$$

$$I_{D} = \frac{1}{2}0.5\left(\frac{mA}{V^{2}}\right)(4.2V - I_{D}400k\Omega)^{2}$$

From MATHCAD $I_D = 10$ uA or 11.025 uA

$$V_{OV}=0.2V$$

$$V_8 = -V_{GS} = -1V$$

In a particular application, an *n*-channel MOSFET operates with V_{SB} in the range 0 V to 4 V. If V_{t0} is normally 1.0 V, find the range of V_t that results if $\gamma = 0.5 \sqrt{V}$ and $2\phi_f = 0.6$ V. If the gate oxide thickness is increased by a factor of 4, what does the threshold voltage become?

$$V_t = V_{t0} + \gamma \left[\sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right]$$

$$c_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} \qquad \qquad \gamma = \frac{\sqrt{2qN_{A}\varepsilon_{S}}}{C_{ox}}$$

Increasing t_{ox} by 4x reduces C_{ox} by 4x which increases γ by 4x

$$V_t(V_{SB}) := 1V + 2 \cdot \sqrt{V} \cdot \left(\sqrt{0.6V + V_{SB}} - \sqrt{0.6V}\right)$$

$$V_t(0V) = 1V$$

$$V_t(4V) = 3.74V$$

A p-channel transistor operates in saturation with its source voltage 3 V lower than its substrate. For $\gamma = 0.5 \sqrt{V}$, $2\phi_f = 0.75 \text{ V}$, and $V_{t0} = -0.7 \text{ V}$, find V_t .

$$\begin{split} V_t &= V_{t0} + \gamma \left[\sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right] \\ V_t &\coloneqq -0.7V - 0.5 \cdot \sqrt{V} \cdot \left(\sqrt{0.75V + 3V} - \sqrt{0.75V} \right) = -1.235V \end{split}$$