```
In [59]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
In [60]:
          # read the main dataset about weather data from csv
          df = pd.read csv('MET Office Weather Data.csv',encoding='utf-8')
          # filter the dataframe in the range of year 2000 to 2019
          df = df[(df['year'] >= 2000) & (df['year'] <= 2019)]
          df['year'] = df['year'].astype(int)
          df['month'] = df['month'].astype(int)
          df['dateInt']=df['year'].astype(str) + df['month'].astype(str) +'1'
          df['date'] = pd.to_datetime(df['dateInt'], format='%Y%m%d')
          df = df.drop(['dateInt'],axis=1)
          df.head()
               vear month tmax tmin
                                                       station
                                                                    date
Out[60]:
                                      af
                                           rain
                                                 sun
          708 2000
                             7.8
                                  3.6 3.0
                                          54.4
                                                 51.9
                                                     aberporth
                                                               2000-01-01
          709 2000
                                          107.0
                                                96.3
                                                     aberporth
                                                              2000-02-01
                            8.6
                                  4.3
                                      1.0
          710 2000
                        3
                            9.3
                                  4.7
                                      0.0
                                          28.8
                                               138.5
                                                     aberporth 2000-03-01
                                          87.6
          711 2000
                            10.3
                                                     aberporth 2000-04-01
                        4
                                  4.2
                                      0.0
                                               159.9
          712 2000
                            14.4
                                  8.3 0.0
                                          58.4 230.9
                                                     aberporth 2000-05-01
In [61]:
          # shows the general info of dataframe
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 8116 entries, 708 to 37042
         Data columns (total 9 columns):
          #
              Column Non-Null Count Dtype
              _____
                        _____
         ___
                        8116 non-null
          0
              year
                                        int64
          1
              month
                        8116 non-null
                                        int64
          2
              tmax
                        7671 non-null
                                        float64
          3
              tmin
                       7690 non-null float64
          4
              af
                        7690 non-null float64
          5
                        7703 non-null float64
              rain
          6
                        5584 non-null
                                        float64
              sun
          7
              station 8116 non-null
                                        object
                        8116 non-null
               date
                                        datetime64[ns]
         dtypes: datetime64[ns](1), float64(5), int64(2), object(1)
         memory usage: 634.1+ KB
In [62]:
          # check duplicated value, no duplicated values is found
          df[df.duplicated()]
Out[62]:
           year month tmax tmin af rain sun station date
In [63]:
          # check if null value exist, i.e. 2532 null values have been found
          # in attribute 'sun'
          df.isnull().sum()
```

```
0
         year
Out[63]:
                        0
         month
                      445
         tmax
         tmin
                      426
         af
                      426
         rain
                     413
                     2532
         sun
         station
                       0
         date
                        0
         dtype: int64
In [64]:
          # fill the missing values in numerical variables
          # with the mean value of that column
          df['sun'] = df['sun'].fillna(df['sun'].mean())
          df['tmax'] = df['tmax'].fillna(df['tmax'].mean())
          df['tmin'] = df['tmin'].fillna(df['tmin'].mean())
          df['af'] = df['af'].fillna(df['af'].mean())
          df['rain'] = df['rain'].fillna(df['rain'].mean())
In [65]:
          # Add an attribute mean temperature which is calculated from the
          # average of the mean daily maximum and mean daily minimum temperature
          df['tmean'] = (df['tmax']+df['tmin'])/2
In [66]:
          df.isnull().sum()
                             # We have successfully replaced all missing values
                     0
         year
Out[66]:
         month
                     0
         tmax
                    0
         tmin
         af
         rain
         sun
                     0
         station
         date
         tmean
         dtype: int64
In [67]:
          # Explortary data analysis - mean temperature pattern according to stations
          station_tmean = df.groupby('station')['tmean'].mean()
          plt.rcParams['figure.figsize'] = 15,10
          station tmean.nlargest(36).plot(kind='bar')
         <AxesSubplot:xlabel='station'>
Out[67]:
```


In [68]:
using groupby to calculate average value among all cities in monthly basis
df = df.groupby(['date']).agg({'year':'mean','month':'mean','tmax':'mean','tm
df.head()

Out[68]:		date	year	month	tmax	tmin	tmean	af	rain	sun
	0	2000- 01-01	2000.0	1.0	7.900000	2.155556	5.027778	7.500000	69.790659	76.511835
	1	2000- 02-01	2000.0	2.0	8.855556	2.980556	5.918056	4.555556	102.646215	93.037600
	2	2000- 03-01	2000.0	3.0	10.497222	3.938889	7.218056	3.694444	48.658333	114.609822
	3	2000- 04-01	2000.0	4.0	11.090973	3.928571	7.509772	3.371429	106.980000	140.606211
	4	2000- 05-01	2000.0	5.0	15.565714	7.277143	11.421429	0.171429	66.200000	194.596852

```
In [69]: # Reading from another Excel in order to extract values of total energy
# consumption in accordance to each month, which is our target attribute
with pd.ExcelFile('Electricity_ODS.xls') as xls:
    df_energy = pd.read_excel(xls, '5_3')
# Select appropriate columns and rows from the dataframe
df_energy = df_energy.iloc[:,[0,1,2]]
df_energy = df_energy[4:-1]
# Rename column name
df_energy = df_energy.rename(columns={'5 ELECTRICITY':'year','Unnamed: 1':'moour # Filter the dataframe in the range of year 2000 to 2019
df_energy = df_energy[(df_energy['year']>=2000) & (df_energy['year']<=2019)].:
df_energy</pre>
```

Out[69]:

```
month energy_total
     year
  0 2000
              January
                            6.6136
  1 2000
             February
                            6.3047
  2
    2000
              March*
                            6.9653
    2000
  3
                 April
                            5.7452
     2000
                 Mav
                             5.554
     2019
235
               August
                              3.311
236
     2019
          September
                            3.3959
237
     2019
              October
                            4.0072
238
     2019
            November
                            4.3475
239
     2019
            December
                            4.2403
```

240 rows × 3 columns

```
In [70]:
# insert the target attribute energy_total into the main dataset
# in respect to each month from 2000 to 2019
df['energy_total'] = df_energy['energy_total']
df.head()
```

```
Out[70]:
               date
                        year month
                                          tmax
                                                     tmin
                                                              tmean
                                                                            af
                                                                                       rain
                                                                                                    sun
              2000-
                      2000.0
                                 1.0
                                      7.900000
                                                 2.155556
                                                            5.027778
                                                                      7.500000
                                                                                 69.790659
                                                                                              76.511835
               01-01
              2000-
                      2000.0
                                 2.0
                                      8.855556
                                                2.980556
                                                            5.918056
                                                                      4.555556
                                                                                 102.646215
                                                                                              93.037600
              02-01
              2000-
                      2000.0
                                 3.0 10.497222 3.938889
                                                            7.218056 3.694444
                                                                                 48.658333
                                                                                             114.609822
              03-01
              2000-
                      2000.0
                                     11.090973
                                                                      3.371429 106.980000
                                 4.0
                                                 3.928571
                                                            7.509772
                                                                                             140.606211
              04-01
              2000-
                      2000.0
                                     15.565714
                                                 7.277143 11.421429
                                                                       0.171429
                                                                                 66.200000
                                                                                            194.596852
              05-01
```

```
In [71]:
    df = df.astype({'energy_total':'float64'})
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 240 entries, 0 to 239
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	date	240 non-null	datetime64[ns]
1	year	240 non-null	float64
2	month	240 non-null	float64
3	tmax	240 non-null	float64
4	tmin	240 non-null	float64
5	tmean	240 non-null	float64
6	af	240 non-null	float64
7	rain	240 non-null	float64
8	sun	240 non-null	float64

9 energy_total 240 non-null float64
dtypes: datetime64[ns](1), float64(9)
memory usage: 18.9 KB

In [72]:

0ut

check data staistic info, no abnormal value is found
df.describe().T.round(2)

[72]:	count	mean	std	min	25%	50%	75%	max
year	240.0	2009.50	5.78	2000.00	2004.75	2009.50	2014.25	2019.00
month	240.0	6.50	3.46	1.00	3.75	6.50	9.25	12.00
tmax	240.0	13.39	4.39	3.67	9.49	13.23	17.48	22.94
tmin	240.0	6.55	3.64	-2.58	3.43	6.19	10.04	13.19
tmean	240.0	9.97	3.99	0.54	6.45	9.61	13.80	18.06
af	240.0	3.03	3.70	0.00	0.28	1.38	4.58	21.18
rain	240.0	78.77	29.76	19.14	57.08	74.29	94.49	185.09
sun	240.0	123.02	38.26	53.61	87.08	123.66	154.18	221.95
energy_total	240.0	5.60	1.09	3.23	4.97	5.58	6.42	8.16

```
In [73]: # divide the dataframe into two by year

df_1 = df[df['date'].dt.year<=2009]

df_2 = df[df['date'].dt.year>2009]

# Explortary data analysis

# Use seaborn to plot the linechart of total energy consumption

# per month from 2000 to 2009

sns.lineplot(x=df['date'].dt.month,y='energy_total',data=df_1,ci=None, hue=df
plt.title('Total energy consumption per month from 2000 to 2009', fontsize=20
plt.legend(range(2000,2010),fontsize=14)
plt.xlabel('Month',fontsize=20)
plt.ylabel('Total Energy Consumption (mtoe)',fontsize=20)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.show()
```



```
In [74]:
# plot the linechart of total energy consumption per month from 2010 to 2019
sns.lineplot(x=df['date'].dt.month,y='energy_total',data=df_2,ci=None, hue=df
plt.title('Total energy consumption per month from 2010 to 2019', fontsize=20
plt.legend(range(2010,2020),fontsize=14)
plt.xlabel('Month',fontsize=20)
plt.ylabel('Total Energy Consumption (mtoe)',fontsize=20)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.show()
```



```
In [75]:
# Make bins and analysis relationship between amount of mean temperature
# and energy consumption
bins_energy=[3,5,7,9]
bins_tmean=[0,6,12,18]
group=['Low','Average','High']
df['energy_bin']=pd.cut(df['energy_total'],bins_energy,labels=group)
df['tmean_bin']=pd.cut(df['tmean'],bins_tmean,labels=group)
energy_bin=pd.crosstab(df['tmean_bin'],df['energy_bin'])
energy_bin.div(energy_bin.sum(1).astype(float),axis=0).plot(kind='bar',stacked)
plt.xlabel('Mean_Temperature')
plt.ylabel('Proportion')
```

Out[75]: Text(0, 0.5, 'Proportion')


```
In [76]: # Make bins and analysis relationship between the amount of rainfall and ener
bins_rain=[0,60,120,190]
group=['Low','Average','High']
df['rain_bin']=pd.cut(df['rain'],bins_rain,labels=group)
rain_bin=pd.crosstab(df['rain_bin'],df['energy_bin'])
rain_bin.div(rain_bin.sum(1).astype(float),axis=0).plot(kind='bar',stacked=Tr
plt.xlabel('Rainfall')
plt.ylabel('Proportion')
```

Out[76]: Text(0, 0.5, 'Proportion')


```
In [77]:
# drop the bins which we created for the exploration part
df = df.drop(['energy_bin','tmean_bin','rain_bin'], axis=1)
```

Time series decomposition

```
In [78]: # separate other attributes from the predicting attribute into X
    X = df.drop(['date','energy_total'],axis=1)
    # separate the predicting attribute into y for model training
    y = df['energy_total']

In [79]: # import statsmodels for time series decomposition
    from statsmodels.tsa.seasonal import seasonal_decompose
    energy_dec = pd.DataFrame(y.values,index=df['date'],columns=['energy_total'])
    plt.rcParams['figure.figsize'] = 8,5
    result = seasonal_decompose(energy_dec)
    result.plot()
```

Out[79]:

Data Preprocessing - Scaling and Log Transformation

In [81]: df.boxplot() # showed a large scale of values in rain and sun

Out[81]: <AxesSubplot:>

In [82]: df.var().round(2) # showed high variance in sun and rain

```
/var/folders/v0/sn6863fj5437h78v71 0rcm0000gn/T/ipykernel 3816/2829177571.py:
         1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with
         'numeric only=None') is deprecated; in a future version this will raise TypeEr
         ror. Select only valid columns before calling the reduction.
           df.var().round(2)
                                    # showed high variance in sun and rain
                           33.39
         year
Out[82]:
                           11.97
         mont.h
         tmax
                           19.23
         tmin
                           13.28
                           15.93
         tmean
                           13.68
         аf
                          885.77
         rain
                          1464.09
         sun
                            1.19
         energy_total
         dtype: float64
In [83]:
          # perform scaling for all independent variables, excluding year and month
          from sklearn.preprocessing import StandardScaler
          to_scale = ['tmax','tmin','tmean','af','rain','sun']
          ss = StandardScaler()
          ss.fit(df[to scale])
          df[to_scale] = pd.DataFrame(ss.transform(df[to_scale]),columns=to_scale)
In [84]:
           # perform normalisation using log transformation for each variable
           # not normally distributed
          from sklearn.preprocessing import PowerTransformer
          pt=PowerTransformer()
          df[['af','rain']]=pd.DataFrame(pt.fit transform(df[['af','rain']]),columns=['
In [85]:
          # Visualise correlation matrix between target attribute and other attributes
          corr=df.corr()
          corr energy = corr['energy total']
          corr_energy = np.asarray(corr_energy).reshape(9,1)
          corr_energy = pd.DataFrame(corr_energy,index=corr.columns,columns=['energy_to']
          corr_energy=corr_energy.sort_values('energy_total',ascending=False)
          plt.rcParams['figure.figsize'] = 3,7
          sns.heatmap(corr energy,annot=True,cmap="BuPu")
          plt.show()
```



```
In [86]:
# import necessary libraries for kbest and mutual_info_regression
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.feature_selection import mutual_info_regression
# replace 0 in case of any infinite and null value to avoid error in followin
df = df.replace((np.inf,-np.inf,np.nan,-np.nan),0).reset_index(drop=True)
```

```
In [87]: # call the k-best method and pass X and y as inputs,
    # f_regression is used as a parameter here
    kbest = SelectKBest(f_regression, k = 'all')
    ordered_features = kbest.fit(X,y)
```

```
In [88]: # use the k-best method to find the most highest predictive features of 'y'
# save the scores into a dataFrame
df_scores = pd.DataFrame(ordered_features.scores_, columns=['Score'])
# save the feature names of those scores into a dataFrame
df_columns = pd.DataFrame(X.columns, columns = ['Feature_name'])
# combine the two dataFrames
feature_rank = pd.concat([df_scores,df_columns],axis=1)
# rank the features by score - based on the f_regression scoring function
feature_rank.nlargest(11,'Score')
```

Out[88]:		Score	Feature_name
	0	239.377612	year
	2	108.567035	tmax
	4	102.872496	tmean
	3	92.976102	tmin
	5	91.843839	af
	7	63.495258	sun

Score Feature_name

```
1 1.823019 month6 1.449326 rain
```

```
In [89]:
          # use mutual info regression as a alternative method to predict the relations
          mu ifo = mutual info regression(X,y)
          # save the features names into a series
          mu data = pd.Series(mu ifo, index = X.columns)
          mu data.sort values(ascending=False)
         year
                  0.556604
Out[89]:
         af
                  0.349827
                  0.305327
         tmean
                  0.288459
         tmax
         month
                  0.265695
         tmin
                  0.249815
                  0.232660
         sun
                  0.103892
         rain
         dtype: float64
```

Main part - Data Analytics Models

```
# import library to implement data analytics models,
# which include polynomial regression and SVR
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.model_selection import TimeSeriesSplit
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_error
```

```
In [91]:
          # initialise blocking time series splitter as a model performance measure
          class BlockingTimeSeriesSplit():
              def init (self, n splits):
                  self.n splits = n splits
              def get n splits(self, X, y, groups):
                  return self.n splits
              def split(self, X, y=None, groups=None):
                  n \text{ samples} = len(X)
                  k_fold_size = n_samples // self.n splits
                  indices = np.arange(n samples)
                  margin = 0
                  for i in range(self.n splits):
                      start = i * k fold size
                      stop = start + k_fold_size
                      mid = int(0.5 * (stop - start)) + start
                      yield indices[start: mid], indices[mid + margin: stop]
          btscv = BlockingTimeSeriesSplit(n splits=10)
```

```
In [92]: # initialise Time series splitter as a model performance measure
tscv = TimeSeriesSplit(n_splits=10)
```

```
# create and transform independent features into polynomial features
poly = PolynomialFeatures(degree=2,include bias=False)
poly features = poly.fit transform(X)
# split data into train and test data without shuffle
x train,x test,y train,y test = train test split(X,y, test size = 0.2, shuffle
def regression(model,x,y):
    """ split into training and testing data, train the model with training d
    plot a comparison graph between observed and predicted values,
    and evaluate the corresponding regression models """
    x train, x test, y train, y test = train test split(x, y, test size = 0.2, sh
    model.fit(x train,y train)
    # run model to predict y value
    y pred = model.predict(x test)
    rmse = np.sqrt(mean squared error(y test, y pred))
    # the first performance measure - RMSE
    print('RMSE is: ', rmse.round(3))
    # the second performance measure - R2
    print('Accuracy is: ', model.score(x test,y test).round(3))
    # the third performance measure - time series cross validation
    score = cross val score(model,x train,y train,cv=tscv,scoring='r2')
    print('Time Series Cross validation Accuaracy: ', score.mean().round(3))
    # the fourth performance measure - blocked cross validation
    score2 = cross val score(model,x train,y train,cv=btscv,scoring='r2')
    print('Blocking Time Series Cross validation Accuaracy: ', score2.mean().
    # plot a line chart to evaluate the goodness of fit between observed and
    x = df['date']
    y = df['energy_total']
    plt.plot(x,y,color='blue',linewidth=3)
    plt.plot(x[-48:],y pred,color='red',linewidth=3)
    plt.legend(['observed','predicted'], fontsize=16)
# create and test for Linear regression - poor result (discarded in report)
```

```
In [93]:
# create and test for Linear regression - poor result (discarded in report)
plt.rcParams['figure.figsize'] = 15,10
LG_model = LinearRegression()
regression(LG_model,X,y)
```

```
RMSE is: 0.896
Accuracy is: -1.349
Time Series Cross validation Accuaracy: 0.47
Blocking Time Series Cross validation Accuaracy: -13.423
```


In [94]: # create and test for Polynomial regression - good result
 regression(LG_model,poly_features,y)

RMSE is: 0.36 Accuracy is: 0.621

Time Series Cross validation Accuaracy: -11.025
Blocking Time Series Cross validation Accuaracy: -15.244

In [95]: # create and test for SVR -- good result

```
SVR_model = SVR(kernel='linear')
regression(SVR_model,X,y)
```

RMSE is: 0.698
Accuracy is: -0.426

Time Series Cross validation Accuaracy: 0.347

Blocking Time Series Cross validation Accuaracy: -0.033

In [96]:

test for another kernel on SVR - shows similar result when a low gamma is s
SVR_model = SVR(kernel='rbf', C= 100, gamma= 0.0001)
regression(SVR_model,X,y)

RMSE is: 0.705 Accuracy is: -0.453

Time Series Cross validation Accuaracy: 0.41

Blocking Time Series Cross validation Accuaracy: 0.354

