Ravi Raju MA 521 Homework #2 2/6/2019

Chapter 1: 4.18, 4.19, 4.22; Chapter 2: 1.6, 1.7, 2.3, 2.4, 2.5, 3.3, 4.6, 4.8, 4.9, 4.10

Exercise 4.18. Let A and B be sets. Assume A is infinite, B is countable, and A and B are disjoint. Prove $A \sim A \cup B$. Hint: The strategy of Theorem 4.16 may be useful.

If A is infinite, we have $C \subset A$, a countably infinite set. By Proposition 4.21, the union of two countable sets is still countable, $B \cup C$, which is countably infinite. Since $((A \cup B) \setminus B \cup C) \cap C$ and $((A \cup B) \setminus B \cup C) \cap (B \cup C)$ are both empty, $A \cup B = ((A \cup B) \setminus B \cup C) \cup (B \cup C) \sim ((A \cup B) \setminus B \cup C) \cup C = A$.

Exercise 4.19. Let X and Y be sets. Assume Y is countable and $X \setminus Y$ is infinite. Prove that $X \sim X \cup Y \sim X \setminus Y$. Hint: Each of the equivalences can be done extremely quickly if you use the previous exercise and some set manipulations.

If $X \setminus Y$ is infinite, $X \setminus Y$ must have a countably infinite subset. This means that X must be infinite. We can use Exercise 4.18 but we need to prove that X and Y are disjoint sets. Let's solve by contradiction.

Assume $a_1 \in X$, Y s.t. $X \cap Y = \{a_1\}$. This means that $X \setminus Y$ will be a proper subset of X. We can apply Theorem 4.16 to say $X \sim X \setminus Y$. But then, $X \cap Y \sim (X \cap Y) \cap Y = \emptyset$, which is a contradicts our assumption. This suggest that X and Y are disjoint and apply Exercise 4.18 directly to say $X \sim X \cup Y \sim X \setminus Y$.

Exercise 4.22. Let *X* be a countable set.

- 1. Prove inductively that $X^n \sim X^{n-1} \times X$ for any $n \in \mathbb{N}$.
- 2. Prove inductively that X^n is countable for any $n \in \mathbb{N}$.
- 1.
- 2.

Exercise 1.6. Let E, F, and G be nonempty subsets of an ordered set (S, \leq) . Prove the following statements.

- 1. If $\alpha \in S$ is a lower bound for E and $\beta \in S$ is an upper bound for E, then $\alpha \leq \beta$.
- 2. $\sup E \leq \inf F$ if and only if $x \leq y$ for any $x \in E, y \in F$.
- 3. If $E \subset G$, then $\sup E \leq \sup G$.

1

1.

2.

3.

Exercise 1.7. Let (S, \leq) be an ordered set, let f and g be functions from X to S and let A be a subset of X. Assume that $f(x) \leq g(x)$ for all $x \in A$, and that furthermore $\sup_A f$ and $\sup_A g$ exist in S. Prove that $\sup_A f \leq \sup_A g$.

Exercise 2.3. Let *A* be a nonempty subset of an ordered field $(F, +, \cdot, \leq)$. Assume that $\sup A$ and $\inf A$ exist in *F*, and let *c* be any element of *F*. Define the set $cA := \{ca : a \in A\}$.

1. Prove that $c \le 0$, then $\sup(cA) = c \sup A$.

2. What is $\sup(cA)$ if $c \le 0$? Prove your answer is correct.

1.

2.

Exercise 2.4 Let A be a nonempty subset of an ordered field $(F, +, \cdot, \leq)$. Assume that $\sup A$ and $\inf A$ exist in F. Define $A + B := \{a + b : a \in A, b \in B\}$. Prove that $\sup(A + B) = \sup A + \sup B$ by filling in the details of the following outline:

• Denote $s = \sup A$, $t = \sup B$. Then s + t is an upper bound for A + B.

• Let u be any upper bound for A + B, and let a be any element of A. Then $t \le u - a$.

• We have $s + t \le u$. Consequently, $\sup(A + B)$ exists in F and is equal to $s + t = \sup A + \sup B$.

•

•

•

Exercise 2.5. Let f and g be functions from a set X to an ordered field $(F, +, \cdot, \leq)$. Let A be a subset of X.

Exercise 3.3. Using the strategies similar to those proofs in this section, prove the following statements.

- 1. There is no rational whose square is 20.
- 2. The set $A := \{r \in \mathbb{Q} : r^2 \le 20\}$ has no least upper bound in \mathbb{Q} .

Exercise 4.6. Elements of $\mathbb{R} \setminus \mathbb{Q}$ are called *irrational numbers*.

- 1. Assume r is rational and x is irrational. Show that r + x and rx are irrational.
- 2. Use the Archimedean property of $\mathbb R$ to prove that the set of irrational numbers is dense in $\mathbb R$. (Hint: First prove if x and y are real numbers with $y-x>\sqrt{2}$, then there exists an integer m such that $x< m\sqrt{2} < y$.)
- 1.
- 2.

Exercise 4.8. Assume $a, b \in \mathbb{R}$. Prove that $a \leq b$ if and only if $a \leq b + \epsilon$ for every $\epsilon > 0$.

Exercise 4.9. Let *E* be a set of real numbers, let *s* be an upper bound for *E*. Prove that $s = \sup E$ if and only if for every $\epsilon > 0$ there exists $x \in E$ such that $x > s - \epsilon$.

Exercise 4.10. Let *A* and *B* be nonempty sets of real numbers. Decide whether the following statements are true or false. If true, give a proof; if false, give a counterexample.

- 1. If sup $A < \inf B$, then there exists a $c \in \mathbb{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$.
- 2. If there exists a $c \in \mathbb{R}$ satisfying a < c < b for all $a \in A$ and $b \in B$, then $\sup A < \inf B$.

-