SC4000/CZ4041/CE4041: Machine Learning

Lesson 5: Decision Tree

Kelly KE

School of Computer Science and Engineering, NTU, Singapore

Acknowledgements: slides are adapted from the lecture notes of the books "Introduction to Machine Learning" (Chap. 9) and "Introduction to Data Mining" (Chap. 4).

An Illustrative Example

Consider the problem of predicting whether
 a loan applicant will repay his/her loan obligation (no cheat) or become delinquent (cheat).
 Predefined categories
 Example

An Illustrative Example (cont.)

• Training set: constructed by examining the records of previous borrowers.

	bilit	gis	colli	Glas.
Tid	Home Owner	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Bayesian classifiers: P(y|x)

Motivation of Decision Trees

• Suppose a new applicant submits a loan application. How do we decide whether to approve or reject the application?

	Marital Status		Cheat
No	Married	80K	?

- To pose a series of questions about the profile of the applicant:
 - Whether the applicant is a home owner? If yes, then he/she may repay the loan obligation with a high probability.
 - After that, we may ask a follow-up question: what is the applicant's marital status? ...

Example of a Decision Tree

Ard.	rete	continuo	US a
binary	discrete	contin	ડોશક્ક

	Dr	Qr.	CO,	Cit
Tid	Home Owner	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Model: Decision Tree

Training Data

Tid	Home Owner	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Inductio	n
(induce	a tree)
	Decision
	Tree

Tid		Marital Status	Taxable Income	Cheat
11	No	Single	55K	?
12	Yes	Divorce	80K	?
13	Yes	Married	110K	?
14	No	Single	95K	?
15	No	Married	67K	?

Deduction (apply the tree)

Apply Decision Tree to Test Data

Test Data

	Marital Status		Cheat
No	Married	80K	?

Tid	Home Owner	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree induction algorithm

Induction (induce a tree)

Decision Tree

Home Marital Taxable Tid Cheat **Owner Status** Income No 55K 11 Single Divorce 12 Yes 80K 13 Yes Married 110K ? Single ? 95K 14 No Married 15 No 67K ?

Deduction (apply the tree)

Another Example of Decision Tree

binary discrete continuous

Tid	Home Owner	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Induction Algorithms

- CART, ID3, C4.5, etc.
- High-level basic idea:
 - Given a new application, the goal of asking a series of questions (checking properties of the profile) one by one is to find similar profiles (applicants) in the past until it is confident to make a decision based on the labels (whether cheat or no cheat) of the similar applicants.
 - A tree can be learned by splitting training data into subsets based on outcomes of a feature test.
 - This process is recursively applied on each derived subset until the subset at a node has all the same class or there is no improvement for prediction.

Illustration

High-level Algorithm

Tid	Home Owner	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tid	Home Owner	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No I	Married	75K	No
10	No	Single	90K	Yes

Tid	Home Owner	Marital Status	Taxable Income	Cheat
3	No	Single	70K	No
5	No	Divorced	95K	Yes
8	No	Single	85K	Yes
10	No	Single	90K	Yes

≥ 80K

< 80K

Tid	Home Owner	Marital Status	Taxable Income	Cheat
2	No	Married	100K	No
6	No	Married	60K	No
9	No	Married	75K	No
			•	

Taxable

Income

70K

Marital

Status

Single

Home

Owner

No

Tid

3

Tid	Home Owner	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

High-level Algorithm: Summary

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong to the same class y_t , then t is a leaf node labeled as y_t (e.g., Yes or No)
 - Otherwise if D_t is an empty set, then t is a leaf node labeled by the default class, y_d (e.g., No)
 - Otherwise if D_t contains records that belong to more than one class, then a feature is selected to conduct condition test to split the data into smaller subsets.
 - A child node is created for each <u>outcome</u> of the test condition and the records in D_t are distributed to the children based on the outcomes
 - Recursively apply the procedure to each subset

Tree Induction

- Greedy strategy
 - Split the records based on a feature test that optimizes certain criterion
- Issues
 - Determine how to split the records
 - How to specify the feature test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Tree Induction

- Greedy strategy
 - Split the records based on a feature test that optimizes certain criterion
- Issues
 - Determine how to split the records
 - How to specify the feature test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on feature types
 - Discrete
 - Continuous
- Depends on number of ways to split
 - Binary split
 - Multi-way split

Splitting Based on Binary Features

Generate two potential outcomes

Splitting Based on Discrete Features (more than two distinct values)

• Multi-way split: Use as many partitions as distinct values

• <u>Binary split:</u> Divide values into two subsets. Need to find optimal partitioning

Splitting Based on Continuous Features

- Consider all possible splits and find the best cut
- Can be very computationally intensive

Tree Induction

- Greedy strategy
 - Split the records based on a feature test that optimizes certain criterion
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Determine the Best Split

Before Splitting:

10 records of class 0 10 records of class 1

After Splitting:

Which condition test is the best?

How to Determine the Best Split (cont.)

- An intuitive idea:
 - Nodes with <u>homogeneous</u> class distribution are preferred
- Need a measure of node impurity

C0: 5 C1: 5

Non-homogeneous,
High degree of impurity

C0: 9

Homogeneous, Low degree of impurity

 A split criterion is defined in terms of the difference in degree of node impurity before and after splitting

Measure of Impurity: Entropy

• Entropy at a given node t: The probability of class c at the node t

Entropy(t) =
$$-\sum_{c} P(y = c; t) \log_2 P(y = c; t)$$

• Entropy for a given node t, with binary classes:

Entropy Properties

• Entropy at a given node t:

Entropy
$$(t) = -\sum_{c} P(y = c; t) \log_2 P(y = c; t)$$

• Maximum: $\log_2 C$

Total number of all possible values of y , i.e., #classes

- Maximum: $\log_2 C$ values of y, i.e., #classes when records are equally distributed among all classes
- Minimum: 0 when all records belong to one class

Examples of Computing Entropy

Entropy(t) =
$$-\sum_{c} P(y = c; t) \log_2 P(y = c; t)$$

$$\begin{array}{c|c} \mathbf{Y_1} & \mathbf{0} \\ \mathbf{Y_2} & \mathbf{6} \end{array}$$

$$P(Y_1) = \frac{0}{6} = 0$$
 $P(Y_2) = \frac{6}{6} = 1$
Entropy = $-0 \log_2(0) - 1 \log_2(1) = -0 - 0 = 0$

$$P(Y_1) = \frac{1}{6} \qquad P(Y_2) = \frac{5}{6}$$
Entropy = $-\left(\frac{1}{6}\right)\log_2\left(\frac{1}{6}\right) - \left(\frac{5}{6}\right)\log_2\left(\frac{5}{6}\right) = 0.65$

$$P(Y_1) = \frac{2}{6} \qquad P(Y_2) = \frac{4}{6}$$
Entropy = $-\left(\frac{2}{6}\right)\log_2\left(\frac{2}{6}\right) - \left(\frac{4}{6}\right)\log_2\left(\frac{4}{6}\right) = 0.92$

Information Gain: Motivation

- Recall: a split criterion should be defined in terms of the difference in degree of node impurity before and after splitting
- Information Gain:

 Δ_{info} = Entropy(parent node) - Entropy(children nodes)

• Choose a feature whose condition test maximizes the gain (minimizes the weighted average impurity measures of the child nodes) A motivating example of Information Gain

#instances #instances
in node
$$A_1$$
 in node A_2

$$E_A = #A_1 + #A_2 = #A_1 + #A_2 = #A_2 = #A_1 + #A_2 = #A_2 = #A_1 = A_2 =$$

Use the <u>Information Gain</u>: $E_p - E_A$ to measure the difference of impurity before and after splitting on A $E_p - E_A = 0.03$

Goal: find a feature with maximum information gain to conduct condition test

Information Gain: Definition

Suppose a parent node t is split into P partitions (children)

• Information Gain:

Number of examples at child jNumber of examples at node tNumber of examples at node tNumber of examples at node t

• To choose a feature whose condition test maximizes the gain (minimizes the weighted average impurity measures of the children nodes)

Information Gain: Practice

- Suppose features *A* and *B* are binary
- Based on Information Gain, which feature should be selected to split data?

	Parent
\mathbf{Y}_1	6
Y_2	6

	N1	N2
Y_1	5	1
Y_2	2	4

	N3	N4
\mathbf{Y}_1	6	0
Y_2	3	3

$$= -\left(\frac{6}{12}\right)\log_2\left(\frac{6}{12}\right) - \left(\frac{6}{12}\right)\log_2\left(\frac{6}{12}\right) = 1$$

Entropy(N1) =
$$-\left(\frac{5}{7}\right)\log_2\left(\frac{5}{7}\right) - \left(\frac{2}{7}\right)\log_2\left(\frac{2}{7}\right) = 0.8631$$

Entropy(N2) =
$$-\left(\frac{1}{5}\right)\log_2\left(\frac{1}{5}\right) - \left(\frac{4}{5}\right)\log_2\left(\frac{4}{5}\right) = 0.7219$$

$$\begin{array}{c|cccc}
N1 & N2 \\
Y_1 & 5 & 1 \\
Y_2 & 2 & 4
\end{array}$$

Entropy(Split_A) =
$$\left(\frac{7}{12}\right) \times 0.8631 + \left(\frac{5}{12}\right) \times 0.7219 = 0.8043$$

Entropy(N3) =
$$-\left(\frac{3}{9}\right)\log_2\left(\frac{3}{9}\right) - \left(\frac{6}{9}\right)\log_2\left(\frac{6}{9}\right) = 0.9183$$

Entropy(N4) =
$$-\left(\frac{0}{3}\right)\log_2\left(\frac{0}{3}\right) - \left(\frac{3}{3}\right)\log_2\left(\frac{3}{3}\right) = 0$$

Entropy(Split_B) =
$$\left(\frac{9}{12}\right) \times 0.9183 + \left(\frac{3}{12}\right) \times 0 = 0.6887$$

Split on B

$$= -\left(\frac{6}{12}\right)\log_2\left(\frac{6}{12}\right) - \left(\frac{6}{12}\right)\log_2\left(\frac{6}{12}\right) = 1$$

	Parent
Y_1	6
Y_2	6

Split on A

Entropy(Split_A) =
$$\left(\frac{7}{12}\right) \times 0.8631 + \left(\frac{5}{12}\right) \times 0.7219 = 0.8043$$

	N1	N2
<i>Y</i> ₁	5	1
<i>Y</i> ₂	2	4

Split on B

Entropy(Split_B) =
$$\left(\frac{9}{12}\right) \times 0.9183 + \left(\frac{3}{12}\right) \times 0 = 0.6887$$

	N3	N4
<i>Y</i> ₁	6	0
<i>Y</i> ₂	3	3

$$\Delta_{\text{info}}(A) = 1 - 0.8043 = 0.1957$$

$$\Delta_{\text{info}}(B) = 1 - 0.6887 = 0.3113$$

Choose *B* to conduct condition test to split data

Information Gain: Limitation

• Disadvantage: tends to prefer splits that result in large number of partitions, each being small but pure

Splitting Based on Entropy (cont.)

Gain Ratio:

Penalty on large number of small partitions

Maximum: $\log_2 P$

where SplitINFO =
$$-\sum_{i=1}^{P} \frac{n_i}{n} \log_2 \left(\frac{n_i}{n}\right)$$

- Parent node t of n instances is split into P partitions (children), n_i is the number of instances in partition i
- Higher entropy partitioning (large number of small partitions) is penalized!

Refer to Question 1 in tutorial for practice

Tree Induction

- Determine how to split the data
 - How to specify the feature test condition?
 - How to determine the best split?
- Determine when to stop splitting

Stopping Criteria for Tree Induction

- Stop expanding a node when all the data instances belong to the same class
 - Ideal case but not always possible
- Stop expanding a node when all the data instances have similar feature values
- Early termination
 - Useful to avoid the overfitting issue (will be introduced next week)

Decision Tree Classifiers: Summary

- Easy to interpret
- Efficient in both training and testing
- Effective for datasets with a lot of categorical features
- Used as a base classifier in many ensemble learning approaches (will be introduced in the 2nd half)

Implementation --- scikit-learn

• API: sklearn.tree.DecisionTreeClassifier

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree

sklearn.tree: Decision Trees

The sklearn.tree module includes decision tree-based models for classification and regression.

User guide: See the Decision Trees section for further details.

```
tree.DecisionTreeClassifier(*
                                  A decision tree classifier.
[, criterion, ...])
tree.DecisionTreeRegressor(*
                                  A decision tree regressor.
[, criterion, ...])
tree.ExtraTreeClassifier(*
                                  An extremely randomized tree classifier.
[, criterion, ...])
tree.ExtraTreeRegressor(*
                                  An extremely randomized tree regressor.
[, criterion, ...])
tree.export_graphviz(decision_tree[, ...]) Export a decision tree in DOT format.
tree.export_text(decision_tree, *[, ...])
                                            Build a text report showing the rules of a decision tree.
Plotting
tree.plot tree(decision_tree, *
                                  Plot a decision tree.
[, ...])
```

An Example

```
>>> from sklearn import tree
      Data preprocessing
>>> dtC = tree.DecisionTreeClassifier()
>>> dtC.fit(X, y)
>>> pred= dtC.predict(X_t)
```

Thank you!