Data Structures and Algorithms – COMS21103

2014/2015

Minimum Spanning Trees

via Disjoint Sets

Benjamin Sach

Data Structures and Algorithms – COMS21103

2014/2015

Minimum Spanning Trees via Disjoint Sets

Benjamin Sach

In this lecture we will see an efficient data structure for maintaining a collection of disjoint sets

We will then see how this data structure can be used to efficiently implement

Kruskal's algorithm which finds a minimum spanning tree in an undirected graph

In this lecture we will see an efficient data structure for maintaining a collection of disjoint sets

We will then see how this data structure can be used to efficiently implement

Kruskal's algorithm which finds a minimum spanning tree in an undirected graph

Disjoint set data structures

We will be interested in a **data structure** which stores a collection of disjoint sets

The elements of the sets are numbers from $\{1,2,\ldots,n\}$

The following operations are supported:

 $\begin{array}{c} \mathsf{MAKESET}(x) \text{ - make a new set containing only } x \\ x \text{ cannot be a member of any existing set} \end{array}$

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

 $\mathsf{FINDSet}(x)$ - returns the *identity* of the set containing x the identity of a set is any unique identifier of the set.

All we require from FINDSET is that $\operatorname{FINDSET}(x) = \operatorname{FINDSET}(y)$ if and only if x and y are currently in the same set

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

 ${\sf FINDSET}(x)$ - returns the *identity* of the set containing x

 $\begin{array}{l} \mathsf{MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ \mathsf{UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ \mathsf{FINDSET}(x) \text{ - returns the } identity \text{ of the set containing } x \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

MAKESET(3)

 $\begin{array}{l} {\sf MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ {\sf UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ {\sf FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

MAKESET(3)

 $\{3\}$

 $\begin{array}{l} {\sf MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ {\sf UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ {\sf FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \\ \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\begin{array}{l} {\sf MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ {\sf UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ {\sf FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

MAKESET(7)

 $\{3\}$

 $\begin{array}{l} \mathsf{MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ \mathsf{UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ \mathsf{FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

MAKESET(7)

 $\{3\} \qquad \{7\}$

 $\begin{array}{l} {\sf MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ {\sf UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ {\sf FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \\ \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\{3\} \qquad \{7\}$

 $\begin{array}{l} \mathsf{MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ \mathsf{UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ \mathsf{FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MAKESET}(4)$

 $\{3\} \qquad \{7\}$

 $\begin{array}{l} \mathsf{MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ \mathsf{UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ \mathsf{FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MAKESET}(4)$

 ${3}$ ${7}$ ${4}$

 $\begin{array}{l} {\sf MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ {\sf UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ {\sf FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \\ \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 ${3}$ ${7}$ ${4}$

 $\begin{array}{l} \mathsf{MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ \mathsf{UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ \mathsf{FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(3,7)$

 $\{3\} \qquad \{7\} \qquad \{4\}$

 $\begin{array}{l} \mathsf{MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ \mathsf{UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ \mathsf{FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(3,7)$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(3,7)$

$${3,7}$$

 $\{4\}$

 $\begin{array}{l} \mathsf{MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ \mathsf{UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ \mathsf{FINDSET}(x) \text{ - returns the } identity \text{ of the set containing } x \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

$${3,7}$$
 ${4}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

MAKESET(5)

$${3,7}$$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MAKESET}(5)$

 $\{5\}$

 ${3,7}$

 $\{4\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MakeSet}(5)$ $\mathsf{MakeSet}(9)$

 $\{5\}$ $\{3,7\}$ $\{4\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MakeSet}(5)$ $\mathsf{MakeSet}(9)$

 $\{5\}$ $\{9\}$ $\{3,7\}$ $\{4\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MakeSet}(5)$ $\mathsf{MakeSet}(9)$ $\mathsf{MakeSet}(2)$

 $\{5\}$ $\{9\}$ $\{3,7\}$ $\{4\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MakeSet}(5)$ $\mathsf{MakeSet}(9)$ $\mathsf{MakeSet}(2)$

 $\{5\}$ $\{9\}$ $\{3,7\}$ $\{2\}$ $\{4\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MakeSet}(5)$ $\mathsf{MakeSet}(9)$ $\mathsf{MakeSet}(2)$ $\mathsf{MakeSet}(11)$

 $\{5\}$ $\{9\}$ $\{3,7\}$ $\{2\}$ $\{4\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MakeSet}(5)$ $\mathsf{MakeSet}(9)$ $\mathsf{MakeSet}(2)$ $\mathsf{MakeSet}(11)$

 $\{5\}$ $\{9\}$ $\{3,7\}$ $\{2\}$ $\{4\}$ $\{11\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MakeSet}(5)$ $\mathsf{MakeSet}(9)$ $\mathsf{MakeSet}(2)$ $\mathsf{MakeSet}(11)$ $\mathsf{MakeSet}(16)$

 $\{5\}$ $\{9\}$ $\{3,7\}$ $\{2\}$ $\{4\}$ $\{11\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{MakeSet}(5)$ $\mathsf{MakeSet}(9)$ $\mathsf{MakeSet}(2)$ $\mathsf{MakeSet}(11)$ $\mathsf{MakeSet}(16)$

 $\{5\}$ $\{9\}$ $\{3,7\}$ $\{2\}$ $\{4\}$ $\{11\}$ $\{16\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\{5\}$ $\{9\}$ $\{3,7\}$ $\{2\}$ $\{4\}$ $\{11\}$ $\{16\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(4,9)$

 $\{5\}$ $\{9\}$ $\{3,7\}$ $\{2\}$ $\{4\}$ $\{11\}$ $\{16\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(4,9)$

$$\{5\} \qquad \{9\} \qquad \{3,7\} \qquad \{2\} \quad \{4\} \qquad \{11\} \qquad \{16\}$$

$$\text{merge these}$$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(4,9)$

 $\{5\}$ $\{4,9\}$ $\{3,7\}$ $\{2\}$ $\{11\}$ $\{16\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\{5\}$ $\{4,9\}$ $\{3,7\}$ $\{2\}$ $\{11\}$ $\{16\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

Union(2,16)

 $\{5\}$ $\{4,9\}$ $\{3,7\}$ $\{2\}$ $\{11\}$ $\{16\}$

MAKESET(x) - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

UNION(2,16)

$$\{5\}$$
 $\{4,9\}$ $\{3,7\}$ $\{2\}$ $\{11\}$ $\{16\}$ merge these

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

UNION(2,16)

$$\{5\}$$
 $\{4,9\}$ $\{3,7\}$ $\{2,16\}$ $\{11\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

$$\{5\}$$
 $\{4,9\}$ $\{3,7\}$ $\{2,16\}$ $\{11\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(7,2)$

$$\{5\}$$
 $\{4,9\}$ $\{3,7\}$ $\{2,16\}$ $\{11\}$

MAKESET(x) - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

$$\mathsf{Union}(7,2)$$

$$\{5\}$$
 $\{4,9\}$ $\{3,7\}$ $\{2,16\}$ $\{11\}$ merge these

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(7,2)$

$$\{5\}$$
 $\{4,9\}$ $\{2,3,7,16\}$ $\{11\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

$$\{5\}$$
 $\{4,9\}$ $\{2,3,7,16\}$ $\{11\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(3,5)$

$$\{5\}$$
 $\{4,9\}$ $\{2,3,7,16\}$ $\{11\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(3,5)$

$$\{5\}$$
 $\{4,9\}$ $\{2,3,7,16\}$ $\{11\}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\mathsf{Union}(3,5)$

$${4,9} {2,3,5,7,16}$$
 ${11}$

 $\begin{array}{l} {\sf MAKESET}(x) \text{ - make a new set containing only } x \text{ (which is not already in a set)} \\ {\sf UNION}(x,y) \text{ - merge the sets containing } x \text{ and } y \text{ into a single set} \\ {\sf FINDSET}(x) \text{ - returns the } \textit{identity} \text{ of the set containing } x \\ \end{array}$

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

$${4,9} {2,3,5,7,16}$$
 ${11}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

FINDSET(2) returns 3

$${4,9} {2,3,5,7,16}$$
 ${11}$

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

$${4,9} {2,3,5,7,16}$$
 ${11}$

 $\frac{\text{MAKESET}(x)}{\text{UNION}(x,y)} \text{ - make a new set containing only } x \text{ (which is not already in a set)}$ $\frac{\text{UNION}(x,y)}{\text{UNION}(x,y)} \text{ - merge the sets containing } x \text{ and } y \text{ into a single set}$

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

$$\begin{aligned} & \text{FINDSET}(2) \text{ returns } 3 \\ & & \text{FINDSET}(5) \text{ returns } 3 \\ & & \text{FINDSET}(16) \text{ returns } 3 \end{aligned}$$

$${4,9} {2,3,5,7,16}$$
 ${11}$

 $\frac{\text{MAKESet}(x)}{\text{Union}(x,y)} \text{ - make a new set containing only } x \text{ (which is not already in a set)}$ $\frac{\text{Union}(x,y)}{\text{Union}(x,y)} \text{ - merge the sets containing } x \text{ and } y \text{ into a single set}$

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\begin{aligned} & \text{FINDSET}(2) \text{ returns } 3 \\ & & \text{FINDSET}(5) \text{ returns } 3 \\ & & \text{FINDSET}(16) \text{ returns } 3 \end{aligned}$

 ${4,9} {2,3,5,7,16}$ ${11}$

FINDSET(4) returns 9

 $\frac{\text{MAKESet}(x)}{\text{Union}(x,y)} \text{ - make a new set containing only } x \text{ (which is not already in a set)}$ $\frac{\text{Union}(x,y)}{\text{Union}(x,y)} \text{ - merge the sets containing } x \text{ and } y \text{ into a single set}$

 $\mathsf{FINDSet}(x)$ - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

$$\begin{aligned} & \text{FINDSET}(2) \text{ returns } 3 \\ & \text{FINDSET}(5) \text{ returns } 3 \\ & \text{FINDSET}(16) \text{ returns } 3 \end{aligned}$$

$${4,9} {2,3,5,7,16}$$
 ${11}$

FINDSET(4) returns 9FINDSET(9) returns 9

 $\mathsf{MAKESET}(x)$ - make a new set containing only x (which is not already in a set)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

FINDSET(x) - returns the *identity* of the set containing x

Let n=16 so that the elements of the sets are the numbers $\{1,2,\ldots,16\}$

 $\begin{aligned} & \text{FINDSET}(2) \text{ returns } 3 \\ & \text{FINDSET}(5) \text{ returns } 3 \\ & \text{FINDSET}(16) \text{ returns } 3 \end{aligned}$

 ${4,9} {2,3,5,7,16}$ ${11}$

FINDSET(4) returns 9FINDSET(9) returns 9

In our data structure, the identity will be an element of the set

The data structure we will discuss stores each set as a reverse tree:

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set $\{1,3,4,5,8,9,12\}$

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set $\{1,3,4,5,8,9,12\}$

Each node stores an element from the set

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set $\{1,3,4,5,8,9,12\}$

Each node stores an element from the set

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set $\{1,3,4,5,8,9,12\}$

Each node stores an element from the set

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set $\{1, 3, 4, 5, 8, 9, 12\}$

Each node stores an element from the set

The identity of a set is element at the root (here 3)

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set $\{1, 3, 4, 5, 8, 9, 12\}$

Each node stores an element from the set

The identity of a set is element at the root (here 3)

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set $\{1, 3, 4, 5, 8, 9, 12\}$

Each node stores an element from the set

The identity of a set is element at the root (here 3)

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set $\{1, 3, 4, 5, 8, 9, 12\}$

Each node stores an element from the set

The identity of a set is element at the root (here 3)

In a reverse tree, each element stores a pointer to its parent but no pointers to its children

The data structure we will discuss stores each set as a reverse tree:

This reverse tree stores the set $\{1, 3, 4, 5, 8, 9, 12\}$

Each node stores an element from the set

The identity of a set is element at the root (here 3)

In a reverse tree, each element stores a pointer to its parent but no pointers to its children

- there will be no limit on the number of children each node can have

Reverse Forests

The data structure consists of a forest of reverse trees, one for each set

Each node stores an element from the set

The identity of a set is element at the root

The elements are stored in an array of length n:

The elements are stored in an array of length n:

The elements are stored in an array of length n:

The elements are stored in an array of length n:

This allows us to find any element x in O(1) time (x is stored in A[x])

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

Step 3: Output the element at the root

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

Step 3: Output the element at the root

FINDSET(x) - returns the *identity* of the set containing x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

Step 3: Output the element at the root

FINDSET(x) - returns the *identity* of the set containing x

Step 3: Output the element at the root

FINDSET(x) - returns the *identity* of the set containing x

Step 3: Output the element at the root

FINDSET(x) - returns the *identity* of the set containing x

FINDSET(x) - returns the *identity* of the set containing x

FINDSET(x) - returns the *identity* of the set containing x

Step 1: Find the node storing element x

Step 2: Until you are at the root,

follow the pointer to the parent of the current node

Step 3: Output the element at the root

The overall worst-case time complexity is O(h)

The MAKESET operation

MAKESET(x) - make a new set containing only x (which is not already in a set)

Step 1: Make a new tree containing x as the root

The MAKESET operation

MAKESET(x) - make a new set containing only x (which is not already in a set)

Step 1: Make a new tree containing x as the root

The MAKESET operation

MAKESET(x) - make a new set containing only x (which is not already in a set)

Step 1: Make a new tree containing x as the root

MAKESET(x) - make a new set containing only x (which is not already in a set)

Step 1: Make a new tree containing x as the root (that's it)

MAKESET(x) - make a new set containing only x (which is not already in a set)

Step 1: Make a new tree containing x as the root (that's it)

MAKESET(x) - make a new set containing only x (which is not already in a set)

O(1) time Step 1: Make a new tree containing x as the root (that's it)

because x should be stored in A[x]

MAKESET(x) - make a new set containing only x (which is not already in a set)

O(1) time Step 1: Make a new tree containing x as the root (that's it)

because x should be stored in A[x]

What is the worst-case time complexity of this operation?

The overall worst-case time complexity is O(1)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y (which merges the two trees)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

O(h) time

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y (which merges the two trees)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

O(h) time

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y (which merges the two trees)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x O(1) time Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y (which merges the two trees)

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

O(h) time

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree of

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = { t FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y (which merges the two trees)

What is the worst-case time complexity of this operation?

it's O(h) again

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Consider the following sets:

1 2 3 4 5 •••

 $\{1\}$ $\{2\}$ $\{3\}$ $\{4\}$ $\{5\}$

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Consider the following sets:

```
    (1)
    (2)
    (3)
    (4)
    (5)
    (1)
    (2)
    (3)
    (4)
    (5)
```

Now perform $\mathsf{UNION}(1,2)$

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Consider the following sets:

Now perform $\mathsf{UNION}(1,2)$

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Consider the following sets:

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Consider the following sets:

Now perform UNION(1,3)

Unfortunately, every $\frac{\text{UNION}}{\text{Increase the tallest tree height, } h}$ by one...

Consider the following sets:

Now perform UNION(1,3)

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Consider the following sets:

Unfortunately, every $\frac{\text{UNION}}{\text{Increase the tallest tree height, } h}$ by one...

Consider the following sets:

Now perform UNION(1,4)

Unfortunately, every $\frac{\text{UNION}}{\text{Increase the tallest tree height, } h}$ by one...

Consider the following sets:

Now perform UNION(1,4)

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Consider the following sets:

Unfortunately, every $\frac{\text{UNION}}{\text{Increase the tallest tree height, } h}$ by one...

Consider the following sets:

Now perform UNION(1,5)

Unfortunately, every $\frac{\text{UNION}}{\text{Increase the tallest tree height, } h}$ by one...

Consider the following sets:

Now perform UNION(1,5)

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Consider the following sets:

$$\{1, 2, 3, 4, 5, \ldots\}$$

Now perform UNION(1,5)...

So in the worst case the height of the tallest tree is n

Unfortunately, every $\frac{\text{UNION}}{\text{operation could}}$ increase the tallest tree height, h by one...

Consider the following sets:

Unfortunately, every $\frac{\text{UNION}}{\text{Increase the tallest tree height, } h}$ by one...

Consider the following sets:

In the worst case the height of the tallest tree is n

Unfortunately, every UNION operation could increase the tallest tree height, h by one...

Consider the following sets:

$$\{1, 2, 3, 4, 5, \ldots\}$$

In the worst case the height of the tallest tree is nso Union and FIND run in O(n) time

Unfortunately, every $\frac{\text{UNION}}{\text{Increase the tallest tree height, } h}$ by one...

Consider the following sets:

In the worst case the height of the tallest tree is n so UNION and FIND run in O(n) time

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

When we performed ${\sf UNION}(1,5),$ we made a r_x the child of r_y

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

When we performed $\mathsf{UNION}(1,5)$, we made a r_x the child of r_y

 $\{1, 2, 3, 4, 5\}$

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

When we performed UNION(1, 5),

we made a r_x the child of r_y this increases the height by one

 $\{1, 2, 3, 4, 5\}$

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

When we performed UNION(1,5),

we made a r_x the child of r_y this increases the height by one

If instead we made r_y the child of r_x ...

 $\{1, 2, 3, 4, 5\}$

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

When we performed UNION(1, 5),

we made a r_x the child of r_y this increases the height by one

If instead we made r_y the child of r_x ...

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

When we performed ${\sf UNION}(1,5),$ we made a r_x the child of r_y

this increases the height by one

If instead we made r_y the child of r_x ...

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

When we performed ${\sf UNION}(1,5),$ we made a r_x the child of r_y this increases the height by one If instead we made r_y the child of $r_x\dots$ the height is unchanged

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

When we performed UNION(1, 5),

we made a r_x the child of r_y this increases the height by one

If instead we made r_y the child of $r_x \dots$ the height is unchanged

How can we generalise this?

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

When we performed UNION(1, 5),

we made a r_x the child of r_y this increases the height by one

If instead we made r_y the child of $r_x\dots$ the height is unchanged

How can we generalise this?

Step 1: Compute $r_x = FINDSET(x)$ - the root of the tree containing x

Step 2: Compute $r_y = \text{FINDSET}(y)$ - the root of the tree containing y

Step 3: Make r_x a child of r_y (which merges the two trees)

Key Idea always make the shorter tree the child of the taller tree

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leq h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = {\sf FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

Else make r_y a child of r_x

This still takes O(h) time

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

Let h(x) be the height of the tree containing x (and h(y) for y)

Step 1: Compute $r_x = \text{FINDSET}(x)$ - the root of the tree containing x

Step 2: Compute $r_y = {\sf FINDSET}(y)$ - the root of the tree containing y

Step 3: If $h(x) \leqslant h(y)$ make r_x a child of r_y

Else make r_y a child of r_x

This still takes O(h) time $\,\dots$ but the height only increases when h(x)=h(y)

Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that any tree of height h (created by the data structure)

contains at least 2^h nodes

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that any tree of height h (created by the data structure) contains at least 2^h nodes

Proof by induction on tree height i,

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that any tree of height h (created by the data structure) contains at least 2^h nodes

Proof by induction on tree height i,

Base Case (i=0) Any tree of height 0 represents a single element set (so contains $2^i=1$ node)

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that any tree of height h (created by the data structure)

contains at least 2^h nodes

Proof by induction on tree height i,

Base Case (i = 0) Any tree of height 0 represents a single element set (so contains $2^i = 1$ node)

Inductive Step

Assume every tree of height (i-1) contains at least 2^{i-1} nodes

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Proof by induction on tree height i,

Base Case (i = 0) Any tree of height 0 represents a single element set (so contains $2^i = 1$ node)

Inductive Step

Assume every tree of height (i-1) contains at least 2^{i-1} nodes

Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Proof by induction on tree height i,

Base Case (i=0) Any tree of height 0 represents a single element set (so contains $2^i=1$ node)

Inductive Step

Assume every tree of height (i-1) contains at least 2^{i-1} nodes

$$(i-1)$$
 $(i-1)$

Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Proof by induction on tree height i,

Base Case (i = 0) Any tree of height 0 represents a single element set (so contains $2^i = 1$ node)

Inductive Step

Assume every tree of height (i-1) contains at least 2^{i-1} nodes

Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Proof by induction on tree height i,

Base Case (i=0) Any tree of height 0 represents a single element set (so contains $2^i=1$ node)

Inductive Step

Assume every tree of height (i-1) contains at least 2^{i-1} nodes

$$(i-1) \ \geqslant 2^{i-1} \ \mathsf{nodes} \) \ \geqslant 2^{i-1} \ \mathsf{nodes}$$

Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Proof by induction on tree height i,

Base Case (i=0) Any tree of height 0 represents a single element set (so contains $2^i=1$ node)

Inductive Step

Assume every tree of height (i-1) contains at least 2^{i-1} nodes

Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Proof by induction on tree height i,

Base Case (i=0) Any tree of height 0 represents a single element set (so contains $2^i=1$ node)

Inductive Step

Assume every tree of height (i-1) contains at least 2^{i-1} nodes

Now big is h now?

Claim The height, h, of the tallest tree is $O(\log n)$

We begin by proving that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Proof by induction on tree height i,

Base Case (i=0) Any tree of height 0 represents a single element set (so contains $2^i=1$ node)

Inductive Step

Assume every tree of height (i-1) contains at least 2^{i-1} nodes

A tree of height i is only created when two trees of height (i-1) merge

(as we previously observed)

Therefore, a tree of height i contains at least $2 \cdot 2^{i-1} = 2^i$ nodes

Claim The height, h, of the tallest tree is $O(\log n)$

We have proven that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Claim The height, h, of the tallest tree is $O(\log n)$

We have proven that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Claim The height, h, of the tallest tree is $O(\log n)$

We have proven that

any tree of height h (created by the data structure)

contains at least 2^h nodes

$$\geqslant \log_2 n + 1$$

Claim The height, h, of the tallest tree is $O(\log n)$

We have proven that

any tree of height h (created by the data structure)

contains at least 2^h nodes

$$\geq \log_2 n + 1$$
 This tree contains at least $2^{\log_2 n + 1} > n$ nodes

Claim The height, h, of the tallest tree is $O(\log n)$

We have proven that

any tree of height h (created by the data structure)

contains at least 2^h nodes

$$> \log_2 n + 1$$
 This tree contains at least $2^{\log_2 n + 1} > n$ nodes and each node represents a distinct element

Claim The height, h, of the tallest tree is $O(\log n)$

We have proven that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Now assume (for a contradiction) that there is a tree with height $h \geqslant \log_2 n + 1$

$$\geqslant \log_2 n + 1$$

This tree contains at least $2^{\log_2 n + 1} > n$ nodes and each node represents a distinct element

Which is a contradiction because the elements are members of the set

$$\{1, 2, 3, 4, \ldots, n\}$$

Claim The height, h, of the tallest tree is $O(\log n)$

We have proven that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Now assume (for a contradiction) that there is a tree with height $h \geqslant \log_2 n + 1$

$$\geqslant \log_2 n + 1$$

This tree contains at least $2^{\log_2 n+1} > n$ nodes and each node represents a distinct element

Which is a contradiction because the elements are members of the set

$$\{1, 2, 3, 4, \dots, n\}$$

So,
$$h \leqslant \log_2 n$$
,

Claim The height, h, of the tallest tree is $O(\log n)$

We have proven that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Now assume (for a contradiction) that there is a tree with height $h \geqslant \log_2 n + 1$

$$\ge \log_2 n + 1$$
 This tree contains and

This tree contains at least $2^{\log_2 n+1}>n$ nodes and each node represents a distinct element

Which is a contradiction because the elements are members of the set

$$\{1, 2, 3, 4, \dots, n\}$$

So,
$$h \leqslant \log_2 n$$
,

Recall that the operations UNION and FINDSET run in O(h) time

Claim The height, h, of the tallest tree is $O(\log n)$

We have proven that

any tree of height h (created by the data structure)

contains at least 2^h nodes

Now assume (for a contradiction) that there is a tree with height $h \geqslant \log_2 n + 1$

$$\geqslant \log_2 n + 1$$

This tree contains at least $2^{\log_2 n+1}>n$ nodes and each node represents a distinct element

Which is a contradiction because the elements are members of the set

$$\{1, 2, 3, 4, \dots, n\}$$

So,
$$h \leqslant \log_2 n$$
,

Recall that the operations Union and FINDSET run in O(h) time As, $h \leqslant \log_2 n$ they both only take $O(\log n)$ time.

Disjoint Set Summary

We have seen a data structure which stores a collection of disjoint sets

The elements of the sets are numbers from $\{1, 2, \ldots, n\}$

The following operations are supported:

 $\mathsf{UNION}(x,y)$ - merge the sets containing x and y into a single set

The operations UNION and FINDSET take $O(\log n)$ time.

The operation MAKESET runs in O(1) time.

In a connected, undirected graph G, a spanning tree is a subgraph T such that

Every vertex $v \in V$ is in T and T is a tree (it contains no cycles)

In a connected, undirected graph G, a spanning tree is a subgraph T such that

In a connected, undirected graph G, a spanning tree is a subgraph T such that

In a connected, undirected graph G, a spanning tree is a subgraph T such that

In a connected, undirected graph G, a spanning tree is a subgraph T such that

T is a minimum spanning tree if no other spanning tree has a lower weight

In a connected, undirected graph G, a spanning tree is a subgraph T such that

T is a minimum spanning tree if no other spanning tree has a lower weight

Minimum Spanning Trees

In a connected, undirected graph G, a spanning tree is a subgraph T such that

T is a minimum spanning tree if no other spanning tree has a lower weight

Kruskal's algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from $\{1,2,3,\ldots,|V|\}$

If we implement the operations as we have seen, they run in $O(\log |V|)$ time

Kruskal's algorithm finds a minimum spanning tree in an connected, undirected graph... using a disjoint set data structure where the elements are from $\{1, 2, 3, \ldots, |V|\}$

If we implement the operations as we have seen, they run in $O(\log |V|)$ time. Therefore the overall running time becomes $O(|E|\log |V|)$

Let K be the spanning tree outputted by Kruskal

(here we have omitted the proof that Kruskal always outputs a spanning tree)

Let K be the spanning tree outputted by Kruskal (here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

Let K be the spanning tree outputted by Kruskal (here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

We will argue that there is another minimum spanning tree, M_2 with one more edge in common with K

Let K be the spanning tree outputted by Kruskal (here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

We will argue that there is another minimum spanning tree, M_2 with one more edge in common with K

The proof that K is a minimum spanning tree then follows from repeatedly applying this argument

Let K be the spanning tree outputted by Kruskal (here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

We will argue that there is another minimum spanning tree, M_2 with one more edge in common with K

The proof that K is a minimum spanning tree then follows from repeatedly applying this argument

E.g. If there is a minimum spanning tree with 7 edges in common with K

Let K be the spanning tree outputted by Kruskal (here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

We will argue that there is another minimum spanning tree, M_2 with one more edge in common with K

The proof that K is a minimum spanning tree then follows from repeatedly applying this argument

E.g. If there is a minimum spanning tree with 7 edges in common with K then there is a minimum spanning tree with 8 edges in common with K

Let K be the spanning tree outputted by Kruskal (here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

We will argue that there is *another* minimum spanning tree, M_2 with one more edge in common with K

The proof that K is a minimum spanning tree then follows from repeatedly applying this argument

E.g. If there is a minimum spanning tree with 7 edges in common with K then there is a minimum spanning tree with 8 edges in common with K so there is a minimum spanning tree with 9 edges in common with K...

Let K be the spanning tree outputted by Kruskal (here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

We will argue that there is another minimum spanning tree, M_2 with one more edge in common with K

The proof that K is a minimum spanning tree then follows from repeatedly applying this argument

E.g. If there is a minimum spanning tree with 7 edges in common with K then there is a minimum spanning tree with 8 edges in common with K so there is a minimum spanning tree with 9 edges in common with K... so there is a minimum spanning tree with 10 edges in common with K

Let K be the spanning tree outputted by Kruskal (here we have omitted the proof that Kruskal always outputs a spanning tree)

Let M be any minimum spanning tree such that $M \neq K$

We will argue that there is *another* minimum spanning tree, M_2 with one more edge in common with K

The proof that K is a minimum spanning tree then follows from repeatedly applying this argument

E.g. If there is a minimum spanning tree with 7 edges in common with K then there is a minimum spanning tree with 8 edges in common with K so there is a minimum spanning tree with 9 edges in common with K... so there is a minimum spanning tree with 10 edges in common with K

so there is a minimum spanning tree with 11 edges in common w

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

lowest weight

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

lowest weight

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

If we were to add e to M we would introduce a cycle.

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

If we were to add e to M we would introduce a cycle.

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

If we were to add e to M we would introduce a cycle. because M is a spanning tree

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

If we were to add e to M we would introduce a cycle. because M is a spanning tree

There must be an edge f in this 'potential cycle' which is not in K

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

If we were to add e to M we would introduce a cycle. because M is a spanning tree

There must be an edge f in this 'potential cycle' which is not in K

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

If we were to add e to M we would introduce a cycle. because M is a spanning tree

There must be an edge f in this 'potential cycle' which is not in K

because K is a tree, so contains no cycles

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let e be the lightest edge (breaking ties arbitrarily) that is in K but not in M

If we were to add e to M we would introduce a cycle. because M is a spanning tree

There must be an edge f in this 'potential cycle' which is not in K

because K is a tree, so contains no cycles

Let M_2 be M with e added and f removed

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

 M_2 is a spanning tree

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

 M_2 is a spanning tree (reroute any path in M that used f via e)

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

 M_2 is a spanning tree

(reroute any path in M that used f via e)

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

 M_2 is a spanning tree

(reroute any path in M that used f via e)

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

 M_2 is a spanning tree (reroute any path in M that used f via e)

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

the weight of e is at most the weight of f...

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

(adding e introduces exactly one cycle) M_2 is a spanning tree (reroute any path in M that used f via e)

the weight of e is at most the weight of f...

Post lecture addition

I have added a proof of this claim at the end of the slides

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

the weight of e is at most the weight of f...

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

the weight of e is at most the weight of f... so M_2 is a *minimum* spanning tree.

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

the weight of e is at most the weight of f... so M_2 is a *minimum* spanning tree.

e is in K but f is not in K...

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

(adding e introduces exactly one cycle) $M_2 \text{ is a spanning tree}$ (reroute any path in M that used f via e)

the weight of e is at most the weight of f... so M_2 is a *minimum* spanning tree.

e is in K but f is not in K...

so M_2 has one more edge in common with K (than M has in common with K)

Let K be the spanning tree outputted by Kruskal and M be any minimum spanning tree such that $M \neq K$

Let M_2 be M with e added and f removed

(adding e introduces exactly one cycle) $M_2 \text{ is a spanning tree}$ (reroute any path in M that used f via e)

the weight of e is at most the weight of f... so M_2 is a *minimum* spanning tree.

e is in K but f is not in K...

so M_2 has one more edge in common with K (than M has in common with K)

As we said before, the proof that K is a minimum spanning tree then follows from repeatedly applying this argument

Summary

We first saw a data structure which stores a collection of disjoint sets

The elements of the sets are numbers from $\{1, 2, \ldots, n\}$

The operations Union and FINDSET run in $O(\log n)$ time and the operation MakeSet runs in O(1) time.

We then saw Kruskal's algorithm which finds a minimum spanning tree in an connected, undirected graph and runs in $O(|E|\log |V|)$ time

when implemented using the above data structure

Prims algorithm for finding a minimum spanning tree in a connected, undirected graph also runs in $O(|E|\log |V|)$ time

when the priority queue is implemented using a binary heap

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K' be the set of edges chosen by Kruskal's algorithm at this moment.

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K' be the set of edges chosen by Kruskal's algorithm at this moment.

Every edge in K' is lighter than e

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K' be the set of edges chosen by Kruskal's algorithm at this moment.

Every edge in K^{\prime} is lighter than e

This is because Kruskal considers edges in increasing weight order so every edge in K' is no heavier than f which is in turn lighter than e

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K' be the set of edges chosen by Kruskal's algorithm at this moment.

Every edge in K^{\prime} is lighter than e

This is because Kruskal considers edges in increasing weight order so every edge in K^\prime is no heavier than f which is in turn lighter than e

Every edge in K' is in K (Kruskal's doesn't remove edges)

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K^{\prime} be the set of edges chosen by Kruskal's algorithm at this moment.

Every edge in K' is lighter than e

This is because Kruskal considers edges in increasing weight order so every edge in K' is no heavier than f which is in turn lighter than e

Every edge in K' is in K (Kruskal's doesn't remove edges)

Every edge in K' is in M

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K' be the set of edges chosen by Kruskal's algorithm at this moment.

Every edge in K' is lighter than e

This is because Kruskal considers edges in increasing weight order so every edge in K' is no heavier than f which is in turn lighter than e

Every edge in K' is in K (Kruskal's doesn't remove edges)

Every edge in K' is in M

Otherwise, there is an edge in K' which is lighter than e and contained in K but not in M. This would contradict the definition of e.

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K' be the set of edges chosen by Kruskal's algorithm at this moment.

Every edge in K' is lighter than e

This is because Kruskal considers edges in increasing weight order so every edge in K^\prime is no heavier than f which is in turn lighter than e

Every edge in K' is in K (Kruskal's doesn't remove edges)

Every edge in K' is in M

Otherwise, there is an edge in K' which is lighter than e and contained in K but not in M.

This would contradict the definition of e.

Kruskal's algorithm rejects f because it would create a cycle in K^\prime

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K' be the set of edges chosen by Kruskal's algorithm at this moment.

Every edge in K' is lighter than e

This is because Kruskal considers edges in increasing weight order so every edge in K^\prime is no heavier than f which is in turn lighter than e

Every edge in K' is in K (Kruskal's doesn't remove edges)

Every edge in K' is in M

Otherwise, there is an edge in K' which is lighter than e and contained in K but not in M.

This would contradict the definition of e.

Kruskal's algorithm rejects f because it would create a cycle in K^\prime

But f is in M and every edge in K' is in M

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K^{\prime} be the set of edges chosen by Kruskal's algorithm at this moment.

Every edge in K' is lighter than e

This is because Kruskal considers edges in increasing weight order so every edge in K' is no heavier than f which is in turn lighter than e

Every edge in K' is in K (Kruskal's doesn't remove edges)

Every edge in K' is in M

Otherwise, there is an edge in K' which is lighter than e and contained in K but not in M.

This would contradict the definition of e.

Kruskal's algorithm rejects f because it would create a cycle in K'

But f is in M and every edge in K' is in M

So M contains a cycle,

(this slide was added after the lecture)

For a contradiction, assume that f is lighter than e.

Consider pausing Kruskal's algorithm at the moment just after edge f has been considered (and rejected).

Let K' be the set of edges chosen by Kruskal's algorithm at this moment.

Every edge in K' is lighter than e

This is because Kruskal considers edges in increasing weight order so every edge in K' is no heavier than f which is in turn lighter than e

Every edge in K' is in K (Kruskal's doesn't remove edges)

Every edge in K' is in M

Otherwise, there is an edge in K' which is lighter than e and contained in K but not in M.

This would contradict the definition of e.

Kruskal's algorithm rejects f because it would create a cycle in K'

But f is in M and every edge in K' is in M

So M contains a cycle,

Contradiction!