Capítulo 2

Procesos de Poisson

Denotamos con I un subconjunto de números reales. I puede ser un intervalo real, o los números naturales, o cualquier otro subconjunto. Dado el espacio de probabilidad (S, P), un **proceso estocástico** X es una familia de variables aleatorias indexada por el conjunto I. Si I es un intervalo real entonces el proceso estocástico se dice **continuo**. Si I es un subconjunto de \mathbb{Z} el proceso se dice **discreto**. Es decir, para cada $t \in I$, X(t) es una variable aleatoria. En un proceso estocástico, la variable t suele representar una variable temporal o espacial.

2.1. El proceso de Poisson homogéneo

Definición 2.1. Un proceso estocástico continuo $\{N(t), t \geq 0\}$ es un **proceso de Poisson homogéneo de intensidad** λ , para un $\lambda > 0$, si cumple las siguientes propiedades:

- a) N(0) = 0
- b) para cada $n \ge 1$ y cada partición $0 \le t_0 < t_1 < \ldots < t_n$ se tiene que $N(t_0)$, $N(t_1) N(t_0)$, \ldots , $N(t_n) N(t_{n-1})$ son variables aleatorias independientes.
- c) Para cada $t \ge 0$, s > 0, se cumple que la distribución de N(t+s) N(t) y N(s) están igualmente distribuidas.
- $\mathrm{d)}\ \mathrm{lim}_{h\to 0}\,\frac{P(N(h)=1)}{h}=\lambda,$
- e) $\lim_{h\to 0}\frac{P(N(h)\geq 2)}{h}=0.$

Un proceso de Poisson puede pensarse como el proceso de contar el número de arribos o llegadas ocurridos hasta el tiempo t, sabiendo que la tasa de llegada por unidad de tiempo es λ . Con esta analogía, las propiedades anteriores significan, de manera intuitiva, que:

a) Al momento t = 0 no se contabiliza ningún arribo.

- b) **Incrementos independientes**: Si se consideran dos o más intervalos de tiempo no solapados entre sí, el número de arribos que ocurre en uno y otro intervalo son variables aleatorias independientes.
- c) **Incrementos estacionarios**: La distribución del número de llegadas que ocurre en un período de tiempo depende sólo del tiempo transcurrido y no de la ubicación en el tiempo de este período. Esta propiedad es la que determina que el proceso sea homogéneo.
- d) Las últimas dos propiedades indican que en un intervalo pequeño de tiempo la probabilidad que ocurra ocurra una llegada es proporcional a la longitud del intervalo, con constante de **intensidad** igual a la tasa de arribos λ . Además la probabilidad de que lleguen dos o más, simultáneamente, tiende a ser nula cuando el intervalo de tiempo es reducido.

2.1.1. Distribución del número de llegadas N(t)

Para cada t, la variable aleatoria N(t) tiene una distribución de Poisson con media λt . Una forma intuitiva de ver esta propiedad del proceso de Poisson es la siguiente.

Consideremos un intervalo de longitud t>0, subdividido en n intervalos de longitud $\frac{t}{n}$.

$$t_0 = 0 < t_1 < t_2 < \dots < t_n = t, t_i = \frac{i}{n}t.$$

Dado que el proceso de Poisson tiene incrementos independientes y para un n suficientemente grande la probabilidad de que ocurra más de un evento es nula, el número de llegadas en un subintervalo $(t_{i-1}, t_i]$ es una Bernoulli con $p_n = \frac{\lambda t}{n}$:

$$P(N(t_i) - N(t_{i-1}) = 1) \simeq \lambda \cdot \frac{t}{n}.$$

Así, el número de llegadas en el intervalo [0,t] es una suma de n variables aleatorias Bernoulli independientes con el mismo parámetro p_n , y por lo tanto N(t) se aproxima a una variable aleatoria con distribución binomial $B(n,\frac{\lambda t}{n})$.

Ahora bien, para n grande y con $n \cdot p_n$ tendiendo a una constante (en este caso λ), estas binomiales convergen a una distribución de Poisson con parámetro $n \cdot \frac{\lambda t}{n} = \lambda \cdot t$.

Por último, vemos que por la condición de estacionariedad la variable N(t+s)-N(t) tiene distribución de Poisson con media λs .

Ejemplo 2.1. Juan recibe mensajes de texto a partir de las 10:00 hs de la mañana a razón de 10 mensajes por hora de acuerdo a un proceso de Poisson homogéneo. Calcular la probabilidad de que Juan haya recibido exactamente 18 mensajes para el mediodía y 70 mensajes para las 17:00 hs.

Denotamos con N(t) al proceso de llegada de mensajes fijando t=0 a las 10 de la mañana y midiendo el tiempo en horas. Entonces queremos determinar:

$$P(N(2) = 18, N(7) = 70).$$

Los eventos $\{N(2) = 18\}$ y $\{N(7) = 70\}$ no son independientes ya que involucran intervalos de tiempo solapados. Pero podemos reescribir la probabilidad deseada como

$$P(N(2) = 18, N(7) - N(2) = 70 - 18) = P(N(2) = 18, N(7) - N(2) = 52).$$

De esta manera podemos usar la propiedad de independencia de las variables N(2) y N(7) – N(2) y luego que N(7) – N(2) y N(5) tienen la misma distribución. Por lo tanto:

$$P(N(2) = 18, N(7) - N(2) = 52) = P(N(2) = 18) \cdot P(N(7) - N(2) = 52)$$

$$= P(N(2) = 18) \cdot P(N(5) = 52)$$

$$= \left(\frac{e^{-2 \cdot 10} (2 \cdot 10)^{18}}{18!}\right) \left(\frac{e^{-5 \cdot 10} (5 \cdot 10)^{52}}{52!}\right)$$

$$= 0.0045$$

2.1.2. Proceso de Poisson homogéneo trasladado

Dado un proceso de Poisson homogéneo N(t), $t \ge 0$, con parámetro λ , podemos considerar el proceso de eventos desde un valor fijo $t_0 > 0$. Esto es, el proceso

$$\tilde{N}(t) = N(t + t_0) - N(t_0), \qquad t \ge 0.$$

El proceso $\tilde{N}(t)$ es el proceso N(t) con su origen trasladado a t_0 . Notemos que $\tilde{N}(t)$ verifica $\tilde{N}(0)=N(t_0)-N(t_0)=0$. Además hereda de N(t) la propiedad de tener incrementos estacionarios e independientes como así también se verifica que la tasa de arribos es λ . Luego $\tilde{N}(t)$ es un proceso de Poisson homogéneo con tasa de llegada λ .

Ejemplo 2.2. Consideremos en el Ejemplo 2.1 el proceso $\tilde{N}(t)$ que cuenta los mensajes de texto recibidos por Juan a partir de las 12 hs. Entonces $\tilde{N}(t)$ viene dado por

$$\tilde{N}(t) = N(t+2) - N(2) = N(t+2) - 18, \qquad t \ge 0,$$

donde el tiempo de origen t = 0 corresponde ahora a las 12:00 hs.

2.1.3. Distribución del tiempo entre arribos

Llamamos X_1 al tiempo transcurrido hasta el primer evento, y X_j el tiempo transcurrido entre el j-1-ésimo y el j-ésimo evento, para cada j>1. Veremos que cada X_i , $i\geq 1$, es una variable aleatoria con distribución exponencial de media $\frac{1}{\lambda}$, es decir con distribución $\mathcal{E}(\lambda)$, y que para todo n las variables X_1, X_2, \ldots, X_n son independientes.

Para el tiempo hasta el primer arribo tenemos que:

$$P(X_1 > t) = P(N(t) = 0) = e^{-\lambda t},$$

luego

$$P(X_1 \le t) = 1 - e^{-\lambda t}.$$

Para X_2 calculamos la probabilidad condicional $P(X_2 > t \mid X_1 = s)$:

$$\begin{split} P(X_2 > t \mid X_1 = s) &= P(0 \text{ eventos en } (s, s+t] \mid X_1 = s) \\ &= P(0 \text{ eventos en } (s, s+t]) \\ &= P(N(t+s) - N(s) = 0) \\ &= e^{-\lambda t} \end{split}$$

Ahora, como

$$P(X_2 > t) = \int_{-\infty}^{\infty} P(X_2 > t \mid X_1 = s) f_{X_1}(s) ds$$

y $P(X_2 > t \mid X_1 = s)$ no depende de s, resulta:

$$P(X_2 > t) = e^{-\lambda t} \int_{-\infty}^{\infty} f_{X_1}(s) \, ds = e^{-\lambda t}.$$

Por lo tanto, $X_2 \sim \mathcal{E}(\lambda)$ y es independiente de X_1 .

Analizamos ahora la variable aleatoria X_j . Sea $s = s_1 + \ldots + s_{j-1}$: tiempo hasta el evento j-1. Entonces:

$$\begin{array}{lll} P(0 \text{ eventos en } (s,s+t] & | & X_1 = s_1, \dots, X_{j-1} = s_{j-1}) \\ & = & P(N(t+s) - N(t) = 0 \mid X_1 = s_1, \dots, X_{j-1} = s_{j-1}) \\ & = & P(0 \text{ eventos en } (s,s+t]) \\ & = & e^{-\lambda t} \end{array}$$

Nuevamente $P(X_j > t \mid X_1 = s_1, \dots, X_{j-1} = s_{j-1})$ es independiente de los valores s_1, s_2, \dots, s_{j-1} , por lo cual X_j también resulta de distribución exponencial e independiente de X_1, X_2, \dots, X_{j-1} .

Así, para cualquier n las variables aleatorias $X_1, X_2, ..., X_n$ son variables aleatorias independientes, igualmente distribuidas, con distribución exponencial con media $\frac{1}{\lambda}$.

$$X_i \sim \mathcal{E}(\lambda), \qquad i = 1, 2, \dots$$

2.1.4. Distribución del tiempo de arribo

Las variables aleatorias $X_1, X_2, ..., X_n$ describen los tiempos *entre arribos sucesivos*, y ya hemos visto que son variables aleatorias exponenciales, independientes, $X_j \sim \mathcal{E}(\lambda)$. Ahora bien, si denotamos con S_n a la variable:

$$S_n = \sum_{j=1}^n X_j,$$

entonces S_n representa el *tiempo de arribo* o de llegada del n-ésimo evento. Analizaremos la distribución de estas variables.

Sea F_n la función de distribución acumulada de S_n . Notemos que los siguientes eventos son iguales:

$${S_n \le t} = {N(t) \ge n}.$$

Por lo tanto,

$$F_n(t) = P(S_n \le t) = P(N(t) \ge n) = \sum_{j=n}^{\infty} P(N(t) = j) = \sum_{j=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^j}{j!}.$$

Luego la función de densidad de S_n está dada por:

$$f_n(t) = \frac{d}{dt} F_n(t) = \sum_{j=n}^{\infty} (-\lambda) e^{-\lambda t} \frac{(\lambda t)^j}{j!} + \sum_{j=n}^{\infty} e^{-\lambda t} \frac{j\lambda(\lambda t)^{j-1}}{j!}$$

$$= -\sum_{j=n}^{\infty} \lambda e^{-\lambda t} \frac{(\lambda t)^j}{j!} + \sum_{j=n}^{\infty} \lambda e^{-\lambda t} \frac{(\lambda t)^{j-1}}{(j-1)!}$$

$$= \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}$$

Así vemos que f_n es la función de densidad de una **variable aleatoria Gamma** con parámetros $(n, \beta = \frac{1}{\lambda})$. Esto es,

$$S_n \sim Gamma(n, \frac{1}{\lambda}).$$

2.1.5. Superposición de procesos de Poisson homogéneos

Consideremos ahora $N_1(t)$, $N_2(t)$, ..., $N_n(t)$, para $t \ge 0$, n procesos de Poisson homogéneos independientes entre sí, con tasas $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectivamente. Cada uno de ellos consiste en el conteo de una sucesión de eventos con una cierta tasa de arribos constante. La superposición o suma de estos procesos de Poisson es el proceso estocástico M(t) dado por

$$M(t) = N_1(t) + N_2(t) + \ldots + N_n(t), t \ge 0.$$

Este proceso también resulta ser un proceso de Poisson homogéneo, y la tasa de arribos correspondiente es

$$\lambda = \lambda_1 + \lambda_2 + \ldots + \lambda_n.$$

No desarrollaremos la prueba aquí, aunque no es difícil comprobar que M(t) cumple las propiedades dadas en la Definición 2.1. Para determinar la tasa λ de llegada, es suficiente comprobarlo para n=2, es decir la superposición o suma de dos procesos de Poisson independientes. Luego podemos proceder por inducción en el número de procesos involucrados. En efecto, dado que

 $N_1(t)$ y $N_2(t)$ son variables aleatorias independientes con distribución de Poisson de parámetros $\lambda_1 \cdot t$ y $\lambda_2 \cdot t$, entonces $N_1(t) + N_2(t)$ tiene una distribución de Poisson con parámetro $(\lambda_1 + \lambda_2) \cdot t$. Procediendo por inducción, se concluye que $M(t) = N_1(t) + \ldots + N_n(t)$ tiene distribución de Poisson con parámetro $\lambda \cdot t = (\lambda_1 + \lambda_2 + \ldots + \lambda_n) \cdot t$.

En este punto podemos analizar la respuesta a la siguiente pregunta: Dados estos n procesos, ¿cuál es la probabilidad que el primer evento que ocurra sea del proceso $N_k(t)$?

Para responder a esta pregunta usaremos la siguiente notación: Para cada proceso $N_j(t)$ denotaremos con $X_1^{(j)}$ al tiempo transcurrido hasta el primer arribo. Tendremos entonces n variables aleatorias exponenciales, $X_1^{(1)} \sim \mathcal{E}(\lambda_1), X_1^{(2)} \sim \mathcal{E}(\lambda_2), \ldots, X_1^{(n)} \sim \mathcal{E}(\lambda_n)$, independientes entre sí. Querríamos determinar para cada k cuál es la probabilidad de que el mínimo entre estas variables aleatorias sea alcanzado por la variable $X_1^{(k)}$ o equivalentemente, que $X_1^{(k)}$ tome un valor menor o igual a las restantes n-1 variables aleatorias. Tenemos que

$$\begin{split} P\left(\min\{X_1^{(1)},\dots,X_1^{(n)}\} = X_1^{(k)}\right) &= P\left(X_1^{(1)} \geq X_1^{(k)},X_1^{(2)} \geq X_1^{(k)},\dots,X_1^{(n)} \geq X_1^{(k)}\right) \\ &= P\left(\min\{X_1^{(1)},\dots,X_1^{(k-1)},X_1^{(k+1)},\dots,X_1^{(n)}\} \geq X_1^{(k)}\right). \end{split}$$

Ahora bien, el mínimo entre las n-1 exponenciales quitando $X_1^{(k)}$, es una variable aleatoria Y con distribución exponencial de parámetro $\lambda_1+\lambda_2+\ldots+\lambda_{k-1}+\lambda_{k+1}+\ldots+\lambda_n$ y es independiente de X_k . Así, llamando f_{X_k} a la densidad de $X_1^{(k)}$, f_Y a la densidad de Y y f_{Y,X_k} a la densidad conjunta, tenemos que lo anterior es igual a

Concluimos entonces que la probabilidad de que el mínimo entre n variables aleatorias exponenciales independientes, X_1, X_2, \ldots, X_n , sea la variable $X_1^{(k)}$ es proporcional a λ_k . Específicamente está dado por

$$P\left(\min\{X_1^{(1)}, \dots, X_1^{(n)}\} = X_1^{(k)}\right) = \frac{\lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_n}.$$

Este valor es también la probabilidad de que el primer evento que ocurra de los n procesos de Poisson provenga del proceso $N_k(t)$ con tasa de llegada λ_k .

Ejemplo 2.3. Supongamos que en una estación de tren llegan tres líneas de trenes: Naranja, Amarilla y Verde. Los arribos de estos trenes constituyen cada uno un proceso de Poisson homogéneo con tasas de llegada de un tren cada 15 minutos, un tren cada 10 minutos y un tren cada 20 minutos, respectivamente. Un pasajero llega a la estación de tren y puede tomar cualquiera de estos trenes para ir a su destino.

- ¿Cuál es el tiempo mínimo promedio que debe esperar hasta que llegue el primer tren?
- ¿Cuál es la probabilidad de que el primer tren que llegue sea de la línea Naranja?

Para resolver este problema, recordamos que podemos situar el origen de los procesos al momento de que el pasajero llega al tren. Denotamos X_N , X_A y X_V las variables aleatorias que representan el tiempo de arribo del primer tren de la línea Naranja, Amarilla y Verde, respectivamente. Estas variables aleatorias tienen distribución exponencial con parámetro $\lambda_N = \frac{1}{15}$ para el caso de X_N , $\lambda_A = \frac{1}{10}$ para el caso de X_A y $\lambda_V = \frac{1}{20}$ para X_N . Si consideramos el proceso dado por la superposición de los tres procesos de arribo, tenemos que la tasa de llegada λ es la suma de las tasas de arribo de cada una de las líneas, esto es:

$$\lambda = \frac{1}{10} + \frac{1}{15} + \frac{1}{20} = \frac{13}{60},$$

es decir, 13 trenes cada 60 minutos. Dado que $\frac{1}{\lambda}$ es el valor esperado del tiempo de arribo del primer tren, tenemos que el tiempo promedio de espera es $\frac{60}{13} = 4.615$ minutos.

Para determinar la probabilidad de que el primer tren sea de la línea Naranja calculamos:

$$P(\text{primer tren de la línea Naranja}) = \frac{\frac{1}{15}}{\frac{1}{10} + \frac{1}{15} + \frac{1}{20}} = \frac{4}{13} = 0.31.$$

2.1.6. Refinamiento de procesos de Poisson homogéneos

Relacionado con la superposición está el concepto de refinamiento (thinning) de un proceso de Poisson homogéneo. En este caso se tiene un proceso de conteo M(t), $t \geq 0$, con tasa de llegada λ , e independientemente del proceso M(t) cada evento se clasifica del tipo k con una cierta probabilidad p_k , para $1 \leq k \leq n$ y $p_1 + p_2 + \ldots + p_n = 1$. Entonces pueden definirse n procesos de conteo $N_1(t)$, $N_2(t)$, $\ldots N_n(t)$, donde $N_j(t)$ es el número de eventos del tipo j hasta el tiempo t.

Podemos observar que para cada $j, 1 \leq j \leq n, N_j(t)$ cumple las propiedades de un proceso de Poisson homogéneo. La propiedad de tener incrementos independientes y estacionarios es heredada del proceso M(t). En este caso se verifica que $N_j(t)$ es un proceso de Poisson homogéneo con tasa de arribos $\lambda \cdot p_j$. En efecto, notemos que en un intervalo de longitud h, con h muy pequeño, puede ocurrir uno o ningún evento del proceso M(t). Veamos cuál es la probabilidad de que en este intervalo ocurra un evento del tipo j:

$$P(N_j(t+h) - N_j(t) = 1) = P(M(t+h) - M(t) = 1$$
 y el evento sea del tipo j),

y como la clasificación es independiente del proceso, esto es igual a

$$P(M(t+h) - M(t) = 1) \cdot p_i = (\lambda h) \cdot p_i = (\lambda \cdot p_i) h.$$

Luego la tasa de llegada del proceso N_j es $\lambda \cdot p_j$.

Ejemplo 2.4. Supongamos que en una carretera pasan vehículos por un cierto punto de acuerdo a un proceso de Poisson homogéneo, con una tasa de 200 vehículos por hora. Hay una probabilidad del $20\,\%$ que un vehículo sea un camión, un $70\,\%$ que sea un automóvil y un $10\,\%$ que sea una moto. Luego se pueden definir tres procesos de conteo: $N_1(t)$ el conteo de camiones, $N_2(t)$ el de automóviles y $N_3(t)$ el de motos. Se cumple que $N_1(t)$ es un proceso de Poisson homogéneo con tasa de llegada $\lambda_1=200\cdot 0.20=40$ camiones por hora, $N_2(t)$ tiene tasa de llegada $\lambda_2=200\cdot 0.7=140$ automóviles por hora y $N_3(t)$ tiene tasa de llegada $\lambda_3=200\cdot 0.1=20$ motos por hora.

Se puede probar además que los n procesos $N_1(t)$, $N_2(t)$, ..., $N_n(t)$ resultan independientes entre sí. Notemos entonces que con esta propiedad de independencia se puede ver que la superposición de estos n procesos produce el proceso de Poisson homogéneo original M(t).

2.2. Procesos de Poisson no homogéneos

Los procesos de Poisson homogéneos asumen que la tasa de arribos en distintos intervalos de tiempo sólo depende de la longitud de ese período de tiempo. Por ejemplo, si se quisiera modelar el número de llegadas de clientes a un banco se estaría suponiendo que en cualquier hora del día la tasa de llegadas es la misma. Si en cambio se quiere tomar la hipótesis de que el promedio de llegadas varía en distintas horas del día es conveniente introducir una función del tiempo para modelar la tasa de arribos.

Definición 2.2. Un proceso N(t), $t \ge 0$ es un **proceso de Poisson no homogéneo** con función de intensidad $\lambda(t)$, $t \ge 0$, si:

- a) N(0) = 0
- b) para cada $n \ge 1$ y cada partición $0 < t_0 < t_1 < \ldots < t_n$ se tiene que $N(t_0)$, $N(t_1) N(t_0)$, \ldots , $N(t_n) N(t_{n-1})$ son variables aleatorias independientes.

c)
$$\lim_{h\to 0} \frac{P(N(t+h)-N(t)=1)}{h} = \lambda(t),$$

d)
$$\lim_{h\to 0} \frac{P(N(t+h) - N(t) \ge 2)}{h} = 0.$$

La función **valor medio del proceso** mide la intensidad media del número de llegadas en un intervalo. Está dada por:

$$m(t) = \int_0^t \lambda(s) \, ds$$

Notemos que en este caso los incrementos son independientes pero no estacionarios, ya que la distribución de N(t+s)-N(t) dependerá de la función de intensidad λ en el período (t,t+s]. Por otra parte si $\lambda(t)=\lambda$, constante, entonces $m(t)=\lambda \cdot t$ y es el caso del proceso de Poisson homogéneo.

En particular, se tiene que para cada $t \ge 0$ y s > 0, el número de llegadas en el intervalo (t, t + s] es una variable aleatoria Poisson con media m(t, t + s) = m(t + s) - m(t):

$$m(t,t+s) = m(t+s) - m(t) = \int_t^{t+s} \lambda(x) dx.$$

Es decir:

$$P(N(t+s) - N(t) = j) = e^{-m(t,t+s)} \cdot \frac{(m(t,t+s))^j}{j!}.$$

Ejemplo 2.5. Los clientes llegan a una tienda de acuerdo a un proceso de Poisson no homogéneo con función de intensidad

$$\lambda(t) = \begin{cases} 2t & 0 \le t < 1\\ 2 & 1 \le t < 2\\ 4 - t & 2 \le t \le 4, \end{cases}$$

donde t se mide en horas. ¿Cuál es la probabilidad de que lleguen dos clientes en las dos primeras horas y tres clientes en las dos horas siguientes?

En este caso se pide calcular:

$$P(N(2) = 2, N(4) - N(2) = 3).$$

Dado que los incrementos son independientes, se puede calcular separadamente P(N(2) = 2) y P(N(4) - N(2) = 3). Para las dos primeras horas tenemos que la intensidad media es:

$$m(0,2) = \int_0^1 2s \, ds + \int_1^2 2 \, ds = 3,$$

y para las siguientes dos horas es:

$$m(2,4) = \int_{2}^{4} 4 - s \, ds = 2.$$

Por lo tanto:

$$P(N(2) = 2) = e^{-3} \frac{3^2}{2!} = \frac{9}{2 e^3} \simeq 0.224$$

 $P(N(4) - N(2) = 3) = e^{-2} \frac{2^3}{3!} = \frac{8}{6e^2} \simeq 0.18.$

Así, la probabilidad de que lleguen dos clientes en las primeras dos horas y tres clientes en las dos siguientes es:

$$P(N(2) = 2) \cdot P(N(4) - N(2) = 3) = \frac{6}{e^5} \simeq 0.04.$$

El siguiente resultado será útil para la simulación de procesos de Poisson no homogéneos.

Proposición 2.1. Sea N(t) el número de eventos ocurridos hasta el tiempo t en un proceso de Poisson homogéneo con intensidad λ . Supongamos que en tiempo t un evento es contado con probabilidad p(t), independientemente de lo ocurrido hasta ese instante. Entonces el proceso de conteo de estos eventos M(t) es un proceso de Poisson no homogéneo con intensidad $\lambda(t) = \lambda \cdot p(t)$.

Para comprobar que cumple las propiedades de un proceso de Poisson no homogéneo, notemos que M(0)=0 ya que N(0)=0. Los incrementos son independientes por ser una propiedad de N(t) y porque p(t) es independiente de lo ocurrido hasta el tiempo t. Si (t,t+h) es un intervalo de tiempo pequeño, entonces:

$$P(M(t+h)-M(t)=1)=P(N(t+h)-N(t)=1 \text{ y este evento sea contado})\simeq (\lambda\,h)\cdot p(t).$$

Por último, la probabilidad de que ocurran dos o más eventos en un período de amplitud h tiende a 0 para un h pequeño ya que también es una propiedad del proceso N(t).

En particular, si N(t) es un proceso de Poisson no homogéneo con función de intensidad $\lambda(t)$ y $\lambda \in \mathbb{R}$ es una constante tal que

$$\lambda(t) \leq \lambda$$
,

para todo t, entonces N(t) puede verse como el proceso de contar eventos de un proceso de Poisson homogéneo con intensidad λ donde los eventos son contados con probabilidad

$$p(t) = \frac{\lambda(t)}{\lambda}.$$