รายงานฉบับสมบูรณ์ Senior Project Final Report

เรื่อง

แพลตฟอร์มเปิดอินเทอร์เน็ตของสรรพสิ่งสำหรับระบบสุขภาพของประเทศไทยพร้อมระบบ ปัญญาประดิษฐ์

Open Healthcare IoT Platform with AI

\sim		
1	$\overline{}$	01
-	(91	۶Ι
ъ	r ı	U

นายณัฐภัทร	จารุชัยสิทธิกุล	รหัสนิสิต 6230177821
นางสาวณิชกานต์	ชัยพจนา	รหัสนิสิต 6231322621
นางสาวมารีนญา	ตะโจปะรัง	รหัสนิสิต 6231352421
นางสาวศิวกาญจน์	จิตต์วโรดม	รหัสนิสิต 6231363321

อาจารย์ที่ปรึกษา รศ.ดร. กุลธิดา โรจน์วิบุลย์ชัย

รายงานนี้เป็นส่วนหนึ่งของวิชา 2110489 โครงการรวบยอดวิศวกรรมคอมพิวเตอร์ 2 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ประจำปีการศึกษา 2565

บทคัดย่อ

ในปัจจุบันเทคโนโลยีถูกพัฒนาอย่างต่อเนื่องอย่างรวดเร็ว ทุกหน่วยงานมีการปรับใช้เทคโนโลยีเข้ากับ ระบบการทำงานของตัวเอง หน่วยงานทางการแพทย์ก็เช่นกัน มีการใช้อุปกรณ์ IoT ในการตรวจวัดข้อมูลสุขภาพ ของผู้ป่วย เช่น เซนเซอร์วัดความดัน เซนเซอร์วัดอัตราการเต้นของหัวใจ เซนเซอร์วัดปริมาณออกซิเจนในเลือด เป็นต้น แต่ยังขาดระบบกลางในการจัดเก็บและจัดการข้อมูลเหล่านั้น อีกทั้งอุปกรณ์แต่ละประเภทยังมีรูปแบบการ ส่งข้อมูลที่ต่างกัน ทำให้ต้องใช้ซอฟต์แวร์เฉพาะของแต่ละอุปกรณ์ในการจัดการข้อมูล ซึ่งมีค่าใช้จ่ายค่อนข้างสูง นอกจากนี้ยังส่งผลให้ผู้ใช้งานมีประสบการณ์การใช้งานที่ไม่น่าพอใจเท่าที่ควรอีกด้วย โครงการนี้นำเสนอการ ออกแบบพัฒนาแพลตฟอร์มสำหรับข้อมูลด้านสุขภาพจากอุปกรณ์ IoT เพื่อเป็นศูนย์กลางข้อมูลด้านสุขภาพ ลด ค่าใช้จ่ายในการพัฒนาและดูแลระบบ IoT รวมทั้งอำนวยความสะดวกให้กับบุคลากรทางการแพทย์และผู้ป่วย โดย ระบบแรก คือ ระบบการส่งข้อมูลจากอุปกรณ์เข้าสู่แพลตฟอร์มเพื่อเป็นสร้างศูนย์กลางที่รวมข้อมูลด้านสุขภาพที่ รองรับอุปกรณ์ทุกประเภท ระบบที่สองคือการจัดเก็บข้อมูลในแพลตฟอร์มเพื่อจัดเก็บข้อมูลเป็นสัดส่วน เพื่อส่ง ข้อมูลย้อนหลังหรือข้อมูล real-time ให้กับผู้ใช้งานและนำข้อมูลไปวิเคราะห์เพื่อใช้ประโยชน์ต่อไป ระบบที่สาม คือระบบติดต่อผู้ใช้งาน เพื่อตอบสนองต่อผู้ใช้งานในแต่ละประเภท และระบบที่สี่คือระบบแอดมินเพื่อดูแลจัดการ อุปกรณ์และข้อมูลในระบบ โดยปัจจุบันได้ดำเนินการสร้างระบบที่รองรับการนำข้อมูลเข้าโดยผ่าน MQTT protocol Kafka server เพื่อบันทึกข้อมูลไปยัง database ระบบส่งข้อมูลย้อนหลังและข้อมูลแบบ real-time ให้แก่ผู้ใช้งาน และระบบแอดมินเพื่อจัดการกับอุปกรณ์การแพทย์และสิทธิของผู้ใช้งานในการเข้าถึงข้อมูลของ อุปกรณ์แล้วเสร็จเรียบร้อย

Abstract

Nowadays, technology is constantly evolving rapidly. Every department should adapt the technology to their own system. The medical departments do as well. IoT devices are used to measure health data such as pressure sensors, heart rate sensor, Blood Oxygen Sensor, etc. At present, it still lacks a central system to store and manage those data. Moreover, each type of device has a different data transmission protocol, so they require a specific software for each device to control. The software has a relatively high cost, and it also results in an unsatisfying user experience. This project proposes the design and development of a platform for IoT healthcare as a health information hub. It reduces the cost of developing and administering IoT systems, as well as facilitating both doctors and patients. The project divides the entire system into 4 subsystems, those are a data receiving system, a data management system, a user interaction system, and an admin system to manage devices and data in the system. Now, the data receiving system by using MQTT protocol Kafka server, sending data to users, and the admin system have already implemented.

สารบัญ

1.	บทเ	Ĭ1	1
	1.1.	ที่มาและความสำคัญ	1
	1.2.	วัตถุประสงค์ของโครงการ	1
	1.3.	ขอบเขตของโครงการและผู้รับผิดชอบในแต่ละส่วน	2
	1.4.	แผนการดำเนินงาน	5
	1.5.	ประโยชน์ที่คาดว่าจะได้รับ	7
2.	ทฤษ	ม _ี นี้และงานวิจัยที่เกี่ยวข้อง	8
	2.1.	ทฤษฎีที่เกี่ยวข้อง	8
3.	วิธีก	ารที่นำเสนอ/แนวทางที่คิดว่าจะทำ	10
	3.1.	สถาปัตยกรรมของระบบ	10
	3.2.	ระบบภายใน	10
4.	แผน	การทำงาน	17
	4.1.	Developer Dashboard	17
	4.2.	Admin Dashboard	21
	4.3.	Webserver	24
	4.4.	Kafka Consumer	26
	4.5.	Kafka Producer	26
	4.6.	Logging	26
	4.7.	การ deploy web client	27
	4.8.	Web service cluster	28
	4.9.	Kafka cluster	29
	4.10.	การอัปโหลดข้อมูลจากอุปกรณ์การแพทย์ขึ้นสู่ google cloud storage	29
5.	ผลก	ารทดลอง/ผลการวิเคราะห์	32
	5.1.	เครื่องมือที่ใช้	32

5.2.	การเครื่องมือที่ใช้ในการทำ testing	34
5.3.	การทดสอบระบบ	35
6. ผล	กระทบทางสังคมของโครงการ	47
7. บท	าสรุปและงานที่จะทำต่อไป	47
7.1.	บทสรุป	47
7.2.	อภิปรายผล	47
7.3.	ข้อจำกัด	50
7.4.	แนวทางในการต่อยอดในอนาคต	50
8. เอก	กสารอ้างอิง	51

สารบัญรูปภาพ

รูปที่ 1 Gantt chart	5
รูปที่ 1 Gantt chart รูปที่ 2 Gantt chart	6
รูปที่ 3 สถาปัตยกรรมของระบบ	10
รูปที่ 4 การส่งข้อมูลของอุปกรณ์ IoT	11
รูปที่ 5 ระบบการจัดการข้อมูล	12
รูปที่ 6 การส่งข้อมูลจาก GCS ไป BigQuery	13
รูปที่ 7 ระบบการให้บริการนักพัฒนา	14
รูปที่ 8 การขอข้อมูลย้อนหลัง	15
รูปที่ 9 การขอข้อมูลแบบ real-time	15
รูปที่ 10 Login Page	17
รูปที่ 11 การดู application ทั้งหมดของตนเอง	18
รูปที่ 12 การสร้าง application ใหม่	18
รูปที่ 13 การลบ application	19
รูปที่ 14 การแก้ไข application	
รูปที่ 15 การดูและฟิลเตอร์ subscription ทั้งหมด	20
รูปที่ 16 การสร้าง subscription ใหม่	20
รูปที่ 17 หน้า My Account	21
รูปที่ 18 หน้า Login	
รูปที่ 19 หน้าเว็บสำหรับการจัดการโมเดลอุปกรณ์	22
รูปที่ 20 หน้าเว็บสำหรับการเพิ่มโมเดลอุปกรณ์	22
รูปที่ 21 หน้าเว็บสำหรับจัดการบัญชีนักพัฒนา	23
รูปที่ 22 สำหรับการเพิ่มบัญชีนักพัฒนา	23
รูปที่ 23 สำหรับจัดการการขอ subscription ของนักพัฒนา	24
รูปที่ 24 API document	24
รูปที่ 25 log ของการอัปโหลดข้อมูลเข้า GCS	26
รูปที่ 26 Uptime	27
รูปที่ 27 CPU/Mem usage	27
รูปที่ 28 docker file ของ web client	28
รูปที่ 29 docker file ของระบบ	28

รูปที่	30 folder structure ที่ไว้ build docker image	29
รูปที่	31 nginx configuration file	29
รูปที่	32 kafka cluster ขน cloud	29
รูปที่	33 รูปแบของไฟล์ที่จัดเก็บใน GCS	30
รูปที่	34 Flow การอัปโหลดข้อมูลเข้าสู่ GCS	31
	35 รูปแบบการเก็บ log ของการอัปโหลดข้อมูลขึ้น GCS	
รูปที่	36 GUI ของ BigQuery	33

สารบัญตาราง

ตารางที่ 1 ผู้รับผิดชอบงานในแต่ละส่วน	3
ตารางที่ 2 endpoint ต่าง ๆ ใน web service	25
ตารางที่ 3 ผลการทดสอบ Developer Dashboard	35
ตารางที่ 4 ผลการทดสอบ Admin Dashboard	37
ตารางที่ 5 ผลการทดสอบ application API	40
ตารางที่ 6 ผลการทดสอบ authentication และ authorization ของ kafka cluster	42
ตารางที่ 7 ผลการทดสอบ MQTT-Bridge	43
ตารางที่ 8 ผลการทำ load testing web service	46
ตารางที่ 9 ผลการทดสอบการขอข้อมูลแบบ real-time	46

1. บทน้ำ

1.1. ที่มาและความสำคัญ

Internet of Things (IoT) หรือ "อินเตอร์เน็ตในทุกสิ่ง" คือ การที่อุปกรณ์หรือสิ่งต่าง ๆ ได้ถูกเชื่อมต่อ กับอินเตอร์เน็ต ทำให้มนุษย์สามารถรับข้อมูลและสั่งการควบคุมการใช้งานอุปกรณ์ต่างๆ ผ่านทางเครือข่าย อินเตอร์เน็ต เช่น การรับข้อมูลจากอุปกรณ์การแพทย์ของผู้ป่วยติดเตียง และส่งสัญญาณไปยังอุปกรณ์ผู้ดูแล

เทคโนโลยีอินเทอร์เน็ตประสานสรรพสิ่งจำนวนของอุปกรณ์ที่เชื่อมต่อระบบพื้นฐานสำหรับ อินเทอร์เน็ตประสานสรรพสิ่ง (IoT platform) จะมีกว่าหลายพันล้านอุปกรณ์ อย่างไรก็ตามในปัจจุบัน การทำ แพลตฟอร์ม IoT เพื่อรองรับอุปกรณ์การแพทย์นั้นมีค่าใช้จ่ายที่สูง โดยเซิร์ฟเวอร์ขนาดเล็กมีราคาเริ่มที่ 10,000บาท [1] ต่อเดือนซึ่งโรงพยาบาลในประเทศไทยมีมากกว่า 1,356 โรงพยาบาล [2] ทำให้มีค่าใช้จ่ายต่อ เดือนประมาณ 13,560,000 บาท นอกจากนี้การใช้งานอาจจะต้องใช้งานกับซอฟต์แวร์เฉพาะจากผู้ผลิต ซึ่งมี ค่าใช้จ่ายเพิ่ม และอาจสร้างประสบการณ์การใช้งานที่ไม่ดีแก่ผู้ใช้ อีกทั้งยังไม่มีการเก็บรวบรวมข้อมูลที่ดีเพื่อ นำเอาข้อมูลไปใช้ประโยชน์ เช่น การสร้างโมเดลปัญญาประดิษฐ์

จากปัญหาดังกล่าวข้างต้นจึงควรเตรียมระบบ IoT Platformไว้ เพื่อช่วยโรงพยาบาลในประเทศใน การลดค่าใช้จ่ายและความเสี่ยงจากการพึ่งพาซอฟต์แวร์ดังกล่าวของต่างประเทศ และเพิ่มทางเลือกในประเทศ ให้เข้าถึงระบบ IoT Platform ได้มากขึ้น เพิ่มประสิทธิภาพการใช้ทรัพยากร โทรคมนาคม ในประเทศ และ ขยายโอกาสสร้างนวัตกรรมดิจิทัลได้มากขึ้น

1.2. วัตถุประสงค์ของโครงการ

- 1.2.1. เพื่อติดตามอาการของผู้ป่วยในห้องฉุกเฉิน ห้อง ICU และรถพยาบาลได้แบบอัตโนมัติ
- 1.2.2. เพื่อติดตามผู้ป่วยที่รับการรักษาต่อเนื่องในรูปแบบของ Self Care หรือ Home Care ได้
- 1.2.3. เพื่อให้บริการผ่านทาง Telemedicine โดยที่แพทย์สามารถใช้ข้อมูลจากอุปกรณ์ IoT ประกอบการวินิจฉัย
- 1.2.4. เพื่อสร้างศูนย์รวมข้อมูลจากอุปกรณ์ทางการแพทย์ IoT จากทั่วประเทศ และเป็นแหล่งข้อมูลใน การประมวลผลเชิงสถิติและพัฒนาระบบปัญญาประดิษฐ์ที่ช่วยในการวินิจฉัยโรค
- 1.2.5. เพื่อพัฒนาระบบสาธารณสุข โดยการแนะนำและให้การดูแลแบบ Personalization
- 1.2.6. เพื่อสร้างมาตรฐานการส่งข้อมูลที่เปิดให้นักพัฒนาสามารถนำไปใช้ในการพัฒนาอุปกรณ์ IoT ได้ อย่างอิสระ
- 1.2.7. เพื่อพัฒนาส่วนเชื่อมต่อกับอุปกรณ์ทางการแพทย์ที่มีใช้อยู่เดิมที่อาจเป็น IoT หรือไม่เป็น IoT ให้สามารถใช้งานกับแพลตฟอร์มได้โดยตรง

- 1.2.8. เพื่อลดการพึ่งพาอุปกรณ์ทางการแพทย์และซอฟต์แวร์จากต่างประเทศที่มีราคาสูงและมี ข้อจำกัดในการใช้งาน
- 1.2.9. เพื่อลดต้นทุนการพัฒนาและดูแลระบบ IoT ของผู้ให้บริการด้านสุขภาพโดยใช้การรวมศูนย์และ เปิดให้ทุกฝ่ายสามารถใช้งานได้โดยอาจมีหรือไม่มีค่าใช้จ่าย
- 1.2.10. เพื่อส่งเสริมการใช้งาน Blockchain-based Personal Health Record เช่น HealthTAG [3] ในการให้สิทธิ์การเข้าถึงข้อมูลระหว่างโรงพยาบาลและหน่วยงานที่เกี่ยวของโดย มีการยินยอมจากเจ้าของข้อมูลซึ่งเป็นผู้รับบริการด้านสุขภาพ
- 1.2.11. เพื่อส่งเสริมโครงการ Smart ER, Smart EMS และ Smart ICU ให้สามารถใช้ประโยชน์ จากข้อมูลจากอุปกรณ์ทางการแพทย์ให้มีประสิทธิภาพสูงสุด
- 1.3. ขอบเขตของโครงการและผู้รับผิดชอบในแต่ละส่วน
 - 1.3.1. ขอบเขตของโครงการ

โครงงานนี้พัฒนาระบบเพื่อส่งเสริมการทำแพลตฟอร์มรวบรวมข้อมูลจากอุปกรณ์ IoT ทางการแพทย์เพื่อรวบรวม ข้อมูลให้อยู่ที่ส่วนกลางทำให้สามารถนำใช้ประโยชน์ได้ง่ายขั้น ทั้งนี้ขอบเขตของแอปพลิเคชันที่จะพัฒนาขึ้นนั้นมี ทั้งหมด 5 ระบบงาน ดังนี้

- 1.3.1.1. ระบบการส่งข้อมูลของอุปกรณ์การแพทย์
 - 1.3.1.1.1. รองรับข้อมูลที่ส่งผ่าน MQTT protocol
 - 1.3.1.1.2. รองรับการส่งข้อมูลของ Kafka
- 1.3.1.2. ระบบการจัดการข้อมูล
 - 1.3.1.2.1. การบันทึกข้อมูลลงฐานข้อมูล (MongoDB)
 - 1.3.1.2.2. การบันทึกข้อมูลลง Data Lake และการทำ Data Warehouse
 - 1.3.1.2.3. การทำ Dashboard แสดงข้อมูลที่ได้รับจากอุปกรณ์ใช้ Data Studio
- 1.3.1.3. ระบบการให้บริการนักพัฒนา
 - 1.3.1.3.1. การจัดการ Application ของตนเองในระบบ
 - 1.3.1.3.2. การจัดการ Subscription ของตนเองในระบบ
 - 1.3.1.3.3. การส่งข้อมูลอุปกรณ์ไปให้ผู้ใช้งานทั้งแบบ real-time และ historical
- 1.3.1.4. ระบบแอดมิน
 - 1.3.1.4.1. การจัดการผู้ใช้งาน (นักพัฒนา)
 - 1.3.1.4.2. การจัดการอุปกรณ์ IoT
 - 1.3.1.4.3. การจัดการสิทธิของผู้ใช้งานในการเข้าถึงข้อมูล
- 1.3.1.5. ระบบการจัดการ Log File

1.3.1.5.1.	การบันทึกผลการอัปโหลดข้อมูลลง Data Lake
1.3.1.5.2.	การบันทึกประวัติการเรียก API
1.3.1.5.3.	การเก็บบันทึกสถานะของระบบ
1.3.1.5.4.	การทำ Dashboard สำหรับดู Log

1.3.2.ผู้รับผิดชอบในแต่ละส่วน

ตารางที่ 1 ผู้รับผิดชอบงานในแต่ละส่วน

ชื่อ - สกุล	งานที่รับผิดชอบ
นายณัฐภัทร จารุชัยสิทธิกุล	 การทำ Admin Dashboard การจัดการผู้ใช้งาน (นักพัฒนา) การจัดการอุปกรณ์ IoT การจัดการสิทธิของผู้ใช้งานในการเข้าถึงข้อมูล
นางสาวณิชกานต์ ชัยพจนา	 รองรับการส่งข้อมูลของ Kafka server การบันทึกข้อมูลลงฐานข้อมูล การบันทึกข้อมูลลง Data Lake การจัดการผู้ใช้งาน (นักพัฒนา) การจัดการอุปกรณ์ IoT การส่งข้อมูล IoT ไปให้ผู้ใช้งาน การจัดการสิทธิของผู้ใช้งานในการเข้าถึงข้อมูล การจัดการ Application ของตนเองในระบบ การจัดการ Subscription ของตนเองในระบบ การบันทึกผลการอัปโหลดข้อมูลลง Data Lake
นางสาวมารีนญา ตะโจปะรัง	- รองรับข้อมูลที่ส่งผ่าน MQTT protocol
นางสาวศิวกาญจน์ จิตต์วโรดม	- การทำ Data Warehouse - การทำ Developer Dashboard - การจัดการ Application ของตนเองในระบบ

 การจัดการ Subscription ของตนเองในระบบ การบันทึกประวัติการเรียก API การเก็บบันทึกสถานะของระบบ
- การทำ Dashboard สำหรับดู Log

1.4. แผนการดำเนินงาน

คณะผู้จัดทำได้วางแผนการทำงานตลอดระยะเวลา 9 เดือน คือ ตั้งแต่เดือนสิงหาคม 2565 ถึงเดือนเมษายน 2566 โดยแบ่งออกงานเป็น 10 ส่วน หลัก ๆ ดังรูปที่ 1 และ 2

	Task	Responsibility		AUG		_		SEP		Т	20				NOV	,		n	EC	_		JAN			FE	B	\neg	9.4	IAR	-		APF	R
1	Project Topic	Responsibility		AUC	_	_	Τ,	T	_	+	1	- T	\rightarrow	_	T	_	+	т	I	$\overline{}$	_	JAIN	_			_	+	T		\vdash	\neg	AFF	_
-				_	-		-					-	\rightarrow	+	+	+	+	-	\vdash	\vdash	\rightarrow	+	+	-	\vdash	+	+	+	₩	\vdash	+	+	_
2	Project Structure		\vdash	\rightarrow	+	_	-					\rightarrow	\rightarrow	+	+	+	+	-	\vdash	\vdash	\rightarrow	+	+	\vdash	\vdash	+	+	+	₩.	\vdash	+	+	_
.1	AWS IoT Core	ทุกคน	\Box	_	+		_	_	_	-		\perp	_	\rightarrow	\rightarrow	+	+	-	\vdash	\sqcup	\rightarrow	+	+		\square	\rightarrow	+	₩	₩.	\vdash	+	+	_
.2	MQTT	ทุกคน	\Box	_	_		_	_				\Box	_	_	\perp	\perp	\perp	\perp	\vdash	Ш	_	_	\perp	\perp	Ш	_	\perp	\perp	_	\vdash	\rightarrow	_	
.3	Kafka	ทุกคน																														\perp	
.4	InfluxDB	ทุกคน																														Т	
.5	Flutter	ทุกคน			\neg	\neg									$\neg \vdash$	\neg	Т				\neg	\neg	Т		П	\neg	\top	Т			\Box	\top	
.6	HealthTag	ทุกคน																									\top	\top			\neg	\top	_
3	Data receiving system																														\neg	\top	_
.1	learn confluent	มารีนญา	\Box	\neg	\neg	\top	\top	\top															\top	$\overline{}$	П	\neg	\top	\top	$\overline{}$		\top	\top	_
.2	confluent	มารีนญา		\neg	-	-	+	_		_					-					\Box	\neg	-	+		\vdash	\pm	\pm	+	-	-	\pm	\pm	-
1.3	learn zookeeper and Kraft	มารีนญา	\vdash	\rightarrow	+	-	+	+		+		$\overline{}$	\rightarrow	_						$\overline{}$	\rightarrow	+	+		\vdash	\pm	+	+	-	-	+	+	-
1.4	learn confluent kafka bridge	มารีนญา	-	\rightarrow	+	_	+	+	_	_		_	-	+	+		+			$\overline{}$	\rightarrow	+	+		$\overline{}$	+	+	+	-	+	+	+	-
1.5	docker compose file for confluent	มารีนญา	\vdash	\rightarrow	+	+	+	+	+	+	-	\rightarrow	\rightarrow	+	+		_	-				+	+	-	\vdash	+	+	+	\vdash	+	+	+	-
3.6	EMQX bridge kafka using EMQX Enterprise	มารีนญา	\vdash	\rightarrow	+	+	+	+	_	+		\rightarrow	\rightarrow	+	+	+	+		\vdash	\vdash		+	+	-	\vdash	+	+	+	-	+	+	+	_
.7			\vdash	\rightarrow	+	+	+	+	+	+		\rightarrow	\rightarrow	+	+	+	+					_	+	-	\vdash	+	+	+	-	+	+	+	_
	docker compose file for EMQX Enterprise	มารีนญา	\vdash	+	+	+	+	+	+	+	\vdash	\vdash	\rightarrow	+	+	+	+	\leftarrow	\vdash		-	-	-	\vdash	\vdash	+	+	+	₩	+	+	+	_
8.8	learn MQTT,Kafka client library	มารีนญา	\vdash	\rightarrow	+	+	+	+	+	+	\vdash	\vdash	\rightarrow	+	+	+	+	\leftarrow	\vdash	\vdash	-		+	\vdash	\vdash	+	+	+	₩	+	+	+	_
3.9	Build an MQTT Bridge to Kafka(hard code)	มารีนญา	\sqcup	\rightarrow	+	+	+	\perp	-	-		\vdash	\rightarrow	+	+	+	+	\leftarrow	\vdash	\sqcup					\vdash	\rightarrow	+	+	₩.	\vdash	+	+	_
.10	learn pymongo	มารีนญา		\rightarrow	+	\perp	+	\perp	_		\vdash	\sqcup	\rightarrow	\perp	+	+	\perp	-	\vdash	\sqcup	\rightarrow					_	\perp	+	\vdash	\vdash	+	\perp	_
.11	connect bridge to mongoDB	มารีนญา		\rightarrow	\perp	\perp	\perp	\perp	\perp	1		\sqcup	\perp	\perp	\perp	\perp	\perp	\perp	\vdash	Ш	\rightarrow	\perp						\perp	\perp	\sqcup	\perp	4	_
.12	thread and coroutine concept	มารีนญา			_															\Box	_									\Box	\perp	\perp	_
.13	trigger function when notice new modelName	มารีนญา			\perp									\Box								T										J	_
.14	Build an MQTT Bridge to Kafka to get all data from DB	มารีนญา		\neg	$\neg \vdash$	\neg	\top								$\neg \vdash$	$\neg \vdash$	\top			П	\neg	\neg	Т								\top	\top	
.15	MQTT Bridge authen to Kafka	มารีนญา			\neg									\neg												\neg	\top				\top	\top	_
.16	config EMQX cluster to Kafka	มารีนญา	\Box	\neg	\neg	-	\top	-		+		-	\neg	\top	\neg	-	-		-	ш	\neg	-	+		ш	\pm	\pm				\pm	\pm	_
.17	Kafka - configure SASL_SSL	ณิชกานต์	\vdash	\rightarrow	-	-	+	+		+		$\overline{}$	-	$^{+}$	o	+	+	-		\Box	\rightarrow	+	+		\vdash	\pm	+		-		+	\pm	-
4	Data management system	tabii iari	\vdash	\rightarrow	+	+	+	+	_	+		\rightarrow	\rightarrow	+	+	+	+	+	\vdash	\vdash	\rightarrow	+	+		\vdash	+	+	_	_		+	+	_
.1		ณิชกานต์	\vdash	\rightarrow	+	+	+	+	_	+											\rightarrow	+	+	-	\vdash	+	+	+	\vdash	+	+	+	-
	send data to InfluxDB and mongoDB	ณิชกานต์	\rightarrow	\rightarrow	+	+	+	+	_	+	-										\rightarrow	+	+	-	\vdash	+	+	+	-	+	+	+	-
1.2	send data to datalake and data warehouse		\vdash	\rightarrow	+	-	+	+	_	-		_	-	-	-	-	+	-	\vdash	\vdash	\rightarrow	+	+	-	\vdash	+	+	+	-	\rightarrow	+	+	_
4.3	time series database clustering	ณัฐภัทร	-	-	-	-	-	-		-			_	_	\rightarrow	+	-	-	\vdash	\square	-	-	+	\vdash	\vdash	\rightarrow	+	+	₩.	\vdash	+	+	_
1.4	upload data from mongodb to cloud storage	ณิชกานต์	\Box	_	_	_	\perp	_		_		\perp	_	_		_		\perp	_	\Box	_	\perp	\perp		\square	\rightarrow	\perp	\bot	_	\vdash	+	\rightarrow	_
4.5	receiver - implement receiver consumer group with new library	ณิชกานต์	\Box	_	\perp	\perp	\perp						_	\perp				\perp			_		\perp		Ш		\perp	\perp		\perp	\perp	\rightarrow	
5	Developer service system						\perp									_					_							4				_	
5.1	Dashboard - Login	ศิวกาญจน์																										\perp			\perp		
5.2	Dashboard - My Application (Get)	ศิวกาญจน์																															Ξ
5.3	Dashboard - My Application (New)	ศิวกาญจน์		\neg	\neg	\top	Т							\neg	\neg	\neg				П	\neg	\neg	Т		П	\neg	\top	Т			\top	Т	_
5.4	Dashboard - My Application (Update)	ศิวกาญจน์	П		\neg	\top	\top								\neg	\neg				П	\neg	\neg	т		П	\top	\top	\top			\top	\top	Т
5.5	Dashboard - My Application (RenewSecret)	ศิวกาญจน์			\neg	\neg	\top					\Box		\neg	\neg	\neg	\top	-				\neg	\top	\Box	П	\neg	\top	\top	\Box		\top	\top	_
.6	Dashboard - My Application (Delete)	ศิวกาญจน์			\top	\top						\vdash	\neg	\top	\top	\top	\top					\top	\top			\rightarrow	\top	\top	\Box	\vdash	\pm	\top	-
5.7	Dashboard - My Subscription (Get&Filter)	ศิวกาญจน์	\vdash	\rightarrow	\top	+	+	+	\top	1		\vdash	\rightarrow	\pm	\top	\top	+	\perp					+		\Box	+	+	+	\Box	\vdash	+	+	_
5.8	Dashboard - My Subscription (New)	ศิวกาญจน์	\vdash	\rightarrow	+	+	+	+	+	+	\vdash	\vdash	\rightarrow	+	+	+	+	+						\vdash	\vdash	+	+	+	\vdash	+	+	+	_
5.9	Dashboard - My Account (Get)	ศิวกาญจน์	\vdash	+	+	+	+	+	+	+		\vdash	\rightarrow	\pm	+	+	+	1							\vdash	+	+	+	\vdash	+	+	+	-
5.1		ศิวกาญจน์	\vdash	+	+	+	+	+	+	+	\vdash	\vdash	+	+	+	+	+	+		\vdash	-				\vdash	+	+	+	\vdash	+	+	+	-
.11	Dashboard - My Account (Update)	พิทาเบูงน ณิชกานต์	\vdash	+	+	+	+	+	+	+		\vdash	\rightarrow	+				-	\vdash	\vdash	-					+	+	+	\vdash	+	+	+	_
.11	Developer - Authenticate developers (Login)	ณชกานต ณิชกานต์	\vdash	+	+	+	+	+	+	+	-	\vdash	\rightarrow	+						\vdash	-	-				\rightarrow	+	+	\vdash	+	+	+	_
	Developer - Create developer		\vdash	\rightarrow	+	+	+	+	+	+	-	\vdash	\rightarrow	+	-				\vdash	\vdash	-						+	+	\vdash	\vdash	+	+	_
.13	Developer - Update developer	ณิชกานต์	\sqcup	\rightarrow	+	+	+	\perp	\perp	-		\vdash	\rightarrow	+	-				\vdash	\sqcup	\rightarrow	+	+	\vdash				\perp	₩.	\vdash	+	+	_
14	Developer - Get all developer	ณิชกานต์	\sqcup	\rightarrow	\perp	\perp	\perp	\perp	_	1		\sqcup	\rightarrow	\perp					\vdash	Ш	\rightarrow	\perp	\perp	\vdash				4	\vdash	\vdash	+	\perp	_
.15	Application - Create	ณิชกานต์		\perp	\perp	\perp	\perp	\perp				\Box	\perp	\perp	\perp					Ш		\perp	\perp	\perp						\sqcup	\perp	_	_
16	Application - Get app by developer id	ณิชกานต์																		\Box											\perp	\perp	
17	Application - Update app	ณิชกานต์			\perp	\perp														ШΤ		\perp									\perp	\Box	_
18	Application - Update application secret	ณิชกานต์			T																											J	_
19	Subscription - Create subscription	ณิชกานต์			\neg								\neg		\neg	\top				П	\neg					\neg	\top			\Box	\top	\top	_
5.2	Subscription - Get all subscription according to application and developer	ณิชกานต์	\Box	\neg	\top	\top	\top			1		\vdash	\neg	\neg	\top	\top				П	\neg	\top	\top	\Box	\Box	\neg	\top	\top	П	\vdash	\top	\top	_
.21	Application - Delete app	ณิชกานต์	\vdash	$^{+}$	+	+	+	+	+	1		\vdash	\rightarrow	\pm	+	+				\vdash	\rightarrow	+	+		\vdash	+	+	+	\vdash	\vdash	\pm	+	-
.22	Application api - Authenticate application api	ณิชกานต์	\vdash	+	+	+	+	+	+	+	\vdash	\vdash	\rightarrow	+	+	+				\vdash	+	+	+	\vdash	\vdash	+	+	+	\vdash	+	+	+	-
.23	Application api - Request historical data [code improvement]	ณิชกานต์	\vdash	+	+	+	+	+	+	+	+	\vdash	+	+	+	+					+	+	+	+	\vdash	+	+	+	\vdash	+	+	+	-
.23		ณิชกานต์	\vdash	+	+	+	+	+	+	+	\vdash	\vdash	+	+	+	+	+				+	+	+	\vdash	\vdash	+	+	+	\vdash	+	+	+	_
	Application api - Request real time data		\vdash	+	+	+	+	+	+	+-	\vdash	\vdash	\rightarrow	+	+	+	+				+	+	+	\vdash	\vdash	\rightarrow	+	+	₩.	\vdash	+	+	_
.25	Application api - (real-time data) sender consumer group (implement with new library)	ณิชกานต์	1 1		- 1	- 1	- 1	1	1	1	1		- 1		- 1	- 1	- 1				- 1	- 1	1	1		- 1	- 1	1	1 4	1 1		- 1	

รูปที่ 1 Gantt chart

	1		2022																1						2023					
	Task	Responsibility		AU	G		S	EP			OCT			NO	٥V		DE	C		JA	N		FE	EB		M	AR	\Box	A)	PR
6	Admin service system		П																											
6.1	Dashboard - Get Developer's Subsription	ณัฐภัทร																												
6.2	Dashboard - Update Developer's Subsription	ณัฐภัทร	П																											
6.3	Dashboard - Delete Developer's Subsription	ณัฐภัทร	П											П										П				\neg		
6.4	Dashboard - Get Developer's Account	ณัฐภัทร	П																											
6.5	Dashboard - Create Developer's Account	ณัฐภัทร	П																											
6.6	Dashboard - Delete Developer's Account	ณัฐภัทร																												
6.7	Dashboard - Get Device	ณัฐภัทร	П																											
6.8	Dashboard - Create Device	ณัฐภัทร	П																											
6.9	Dashboard - Delete Device	ณัฐภัทร																												
6.10	Admin - Authentication (Login)	ณิชกานต์																												
6.11	Developer - Create developers	ณิชกานต์																												
6.12	Developer - Get all developers in the system	ณิชกานต์																												
6.13	Developer - Delete developers	ณิชกานต์																												
6.14	Medical model - Get all model in the systems [code improvement]	ณิชกานต์																												
6.15	Medical model - Get all model and device id list	ณิชกานต์																												
6.16	Medical model - Create medical model [code improvement]	ณิชกานต์																												
6.17	Medical model - Update medical model	ณิชกานต์																												
6.18	Medical model - Delete medical model	ณิชกานต์																							\perp			\perp		
6.19	Subscription - Update subscription status	ณิชกานต์																										\perp		\perp
7	Log system																													
7.1	Logging gcs upload status	ณิชกานต์																						Ш						\perp
7.2	Logging all request	ศิวกาญจน์																						Ш						\perp
7.3	Uptime monitoring	ศิวกาญจน์								\perp														Ш				\perp		\perp
7.4	CPU/Mem monitoring	ศิวกาญจน์								\perp																		\perp		\perp
7.5	Kibana	ศิวกาญจน์								\perp																		\perp		
7.6	Improve log when file was uploaded on google cloud storage	ณิชกานต์																						Ш					\perp	
8	Deployment																													
8.1	learned how to write nginx config file	ณิชกานต์								\perp										\sqcup										\perp
8.2	Write nginx config file and create docker image for application	ณิชกานต์								\perp																		\perp		$\perp \perp$
8.3	Write docker compose file for web service cluster	ณิชกานต์																						Ш				\perp		$\perp \perp$
8.4	Deploy on AWS [3 instance 1 for nginx server and others for web service]	ณิชกานต์																						\perp	\bot					$\perp \perp$
8.5	Create docker file for web service [need to have java runtime]	ณิชกานต์																						\perp	\bot					\vdash
8.6	Configure Kafka with SASL_SSL with 3 zookeeper and 3 broker using 3 instance	ณิชกานต์	Ш							_														\perp						\vdash
9	Testing		Ш							_				Ш			\perp		_	\perp				\sqcup	\rightarrow					
9.1	List data receiving test case	มารีนญา	Ш	_						_		\perp					\perp			\sqcup				\sqcup	\dashv					
9.2	List admin dashboard test case	ณัฐภัทร	\sqcup		\perp			\sqcup	\perp	_		\perp	1	\sqcup	_		\sqcup	_	_	\sqcup		\perp	\perp	\sqcup	\perp				\bot	\vdash
9.3	List developer dashboard test case	ศิวกาญจน์	\sqcup	_	\perp	\perp		\sqcup	\perp	_	_	\perp	1	\sqcup	_		\sqcup	_		\sqcup	_	\perp	\perp	\sqcup	\perp		Ш	_	4	\vdash
9.4	Fundamental testing - Data receiving system	ทุกคน	\sqcup	_	\perp	\perp		\sqcup	\perp	_	_		_	\sqcup	\rightarrow		\perp	_	_	\sqcup	_	\perp	\perp	\vdash	+	_	\sqcup	_	4	\vdash
9.5	Fundamental testing - Developer service system (not include application api)	ทุกคน	\sqcup	_	_			\sqcup		\perp	_	\perp	_	\sqcup			\sqcup		\perp	\sqcup		\perp	\perp	\sqcup	\perp	_	\sqcup	\perp	\bot	\vdash
9.6	Fundamental testing - Application api	ทุกคน	\sqcup	_	\perp	\perp		\sqcup	\perp	\perp	\perp	\perp	1	\sqcup	_		\sqcup	\perp	_	\sqcup	_	\perp	\perp	\sqcup	\perp	\perp	\sqcup	\perp	4	\vdash
9.7	Fundamental testing - Admin service system	ทุกคน	\sqcup	_	\perp	_		\sqcup	\perp	_	_	\perp	1	\sqcup	_		\sqcup	_	_	\sqcup		\perp	\perp	\sqcup	\perp		Ш	_		\vdash
9.8	Web service high availability testing	ทุกคน	\sqcup	_	\perp		4	\sqcup		_	_	\perp	_	\sqcup		\perp	\perp	_	\perp	\sqcup		\perp	\vdash	\sqcup	\perp	_	\sqcup	\dashv		

1.5. ประโยชน์ที่คาดว่าจะได้รับ

- 1.5.1. บุคลากรทางการแพทย์
- 1.5.1.1. ได้รับระบบที่มีความสะดวกในการตรวจดูข้อมูลของคนไข้ สามารถดูข้อมูลของคนไข้ได้ แบบ real-time จากที่ไหนก็ได้
- 1.5.1.2. ได้รับข้อมูลสุขภาพประกอบการวินิจฉัยโรค เนื่องจากมีการเก็บข้อมูลสุขภาพของผู้ป่วย ย้อนหลัง
- 1.5.2. ผู้ป่วย
- 1.5.2.1. ได้รับความสะดวกในการไปพบแพทย์ เนื่องจากมีการเก็บข้อมูลสุขภาพย้อนหลัง
- 1.5.2.2. ได้รับความปลอดภัยในชีวิต เนื่องจากมีอุปกรณ์วัดข้อมูลสุขภาพตลอดเวลา เมื่อมีเหตุ ฉุกเฉินจะมีระบบแจ้งเตือนทำให้แพทย์สามารถรักษาได้อย่างทันท่วงที
- 1.5.3. นักวิจัย
- 1.5.3.1. ได้รับประโยชน์จากการเก็บข้อมูลใน Data Lake สามารถนำเอาข้อมูลไปใช้ในการศึกษา วิจัยต่อได้ในอนาคต
- 1.5.3.2. ได้รับประโยชน์จากการเก็บรวบรวมข้อมูลที่เป็นระเบียบมากขึ้น ทำให้สะดวกในการ นำเอาข้อมูลไปใช้
- 1.5.3.3. ได้รับประโยชน์ในการทำ Data Dashboard ซึ่งสามารถช่วยให้เข้าใจข้อมูลได้ดียิ่งขึ้น

2. ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1. ทฤษฎีที่เกี่ยวข้อง

2.1.1. อุปกรณ์ทางการแพทย์อุปกรณ์ที่ใช้ในโรงพยาบาลที่สามารถส่งต่อข้อมูลได้ [4]

2.1.2. Structured Data

Structured data ข้อมูลที่มีโครงสร้างชัดเจน หรือมีจำนวนและชื่อ attribute ที่แน่นอนซึ่ง เป็นข้อมูลที่นักวิทยาศาสตร์สามารถข้อมูลสามารถนำไปวิเคราะห์ใช้งานต่อได้ง่าย ตัวอย่างเช่น ไฟล์ csv หรือไฟล์ excel [5]

2.1.3. Unstructured Data

Unstructured data ข้อมูลที่ไม่มีโครงสร้างหรือไม่สามารถระบุโครงสร้างที่ชัดเจนได้ เช่น ไฟล์เสียง รูปภาพ วิดีโอ [6]

2.1.4. Messaging Systems

เป็นระบบที่มีหน้าที่ส่งข้อมูลจากแอพพลิเคชั่นหนึ่งไปยังแอพพลิเคชั่นหนึ่งโดย แอพพลิเคชั่นที่ ต้องการส่งข้อมูลไม่จำเป็นต้องรอการตอบกลับ ทำให้แอพพลิเคชั่นสามารถส่งข้อมูลได้ต่อเนื่องโดยไม่ ต้องหยุดการทำงาน [7]

2.1.5. Kafka

Kafka คือ Messaging systems แบบหนึ่งในลักษณะ Publish/Subscribe ที่รองรับการ scale ในลักษณะ Horizontal Scale และด้วยคุณสมบัติของ Partition ของ Kafka ที่รองรับ MultiWrite ทำให้รองรับ events จำนวนมากได้ จึงเหมาะกับงานที่เป็น event streaming [8]

2.1.6. MQTT protocol

โปรโตคอลในการส่งข้อมูลระหว่างอุปกรณ์ที่พัฒนามาเพื่อใช้ในระบบ IoT มีทำงานแบบ Broker and Clients Network ซึ่งถูกออกแบบมาเพื่อใช้สื่อสารในระบบเครือข่ายที่มีทรัพยากร ค่อนข้างจำกัด ใช้งาน Bandwidth ต่ำและสามารถ publish-subscribe ข้อมูลระหว่าง Device เพื่อ สื่อสารกันระหว่างอปกรณ์ [9]

2.1.7. Kafka Connector

ทำหน้าที่แปลงข้อมูลจาก source systems ไปยัง target systems โดยที่ไม่ต้องสร้าง consumer เพื่อมา subscribe MQTT broker เอง [10]

2.1.8. Web Service

ส่วนหนึ่งของซอฟต์แวร์ที่ให้บริการผ่านอินเทอร์เน็ตโดยมีการแลกเปลี่ยนข้อมูลด้วยวิธีที่เป็น มาตรฐานในรูปแบบที่เป็นมาตรฐาน [11]

2.1.9. REST API

REST ย่อมาจาก Representational State Transfer เป็นข้อกำหนดการส่งข้อมูลระหว่าง Server-Client รูปแบบหนึ่งซึ่งอยู่บนพื้นฐานของ HTTP Protocol เป็นการสร้าง Web Service เพื่อ แลกเปลี่ยนข้อมูลกันผ่านแอพพลิเคชัน วิธีหนึ่ง ซึ่งส่งข้อมูลได้หลายชนิด ไม่ว่าจะเป็น Text, XML, JSON REST API คือ interface สำหรับติดต่อสื่อสารของแอพพลิเคชันโดยใช้ REST [12] [13]

2.1.10. Data Lake

Data Lake คือที่เก็บข้อมูลส่วนกลางซึ่งสามารถเก็บข้อมูลทุกรูปแบบ คือ structured data semi-structured data และ unstructured data ซึ่งนิยมใช้เก็บข้อมูลดิบเนื่องจากมีความยืดหยุ่นใน การเก็บข้อมูล [14]

2.1.11. Data Warehouse

Data Warehouse คือ รูปแบบของระบบจัดการข้อมูลที่สามารถเก็บข้อมูลแบบ structured data ได้ดี และถูกออกแบบมาเพื่อสนับสนุนการสร้าง Business Intelligence (BI) และการวิเคราะห์ ข้อมูลโดยเฉพาะ นอกจากนั้นยังมีความสามารถในการสืบค้นข้อมูล (Query) จำนวนมาก [15]

3. วิธีการที่นำเสนอ/แนวทางที่คิดว่าจะทำ

3.1. สถาปัตยกรรมของระบบ

คณะผู้จัดทำได้ทำการศึกษาและออกแบบสถาปัตยกรรมของระบบซึ่งประกอบไปด้วย ส่วนที่เป็น อุปกรณ์ทางการแพทย์ ส่วนระบบหลังบ้านและฐานข้อมูลซึ่งอยู่บน cloud และระบบติดต่อกับผู้ใช้งานและ แอดมิน โดยนำเสนอสถาปัตยกรรมได้ดังรูปที่ 3

รูปที่ 3 สถาปัตยกรรมของระบบ

3.2. ระบบภายใน

ระบบภายในแบ่งออกเป็น 5 ส่วน

3.2.1. ระบบการส่งข้อมูลของอุปกรณ์การแพทย์

การส่งข้อมูลของอุปกรณ์ทางการแพทย์จะแบ่งออกเป็น 5 รูปแบบ

- อุปกรณ์ที่ไม่เป็น Time Series ซึ่งจะส่งข้อมูลโดยใช้ Bluetooth ส่งต่อให้สมาร์ทโฟน และ สมาร์ทโฟนจะส่งข้อมูลให้กับเซิร์ฟเวอร์โดยใช้ REST API
- อุปกรณ์ที่เชื่อมต่อผ่าน Mobile Application และใช้ MQTT protocol ในการส่งข้อมูล ให้กับเซิร์ฟเวอร์
- อุปกรณ์ที่เชื่อมต่อผ่าน Arduino หรือ Raspberry Pi และใช้ MQTT protocol ในการ ส่งข้อมูลให้กับเซิร์ฟเวอร์

- อุปกรณ์ที่เชื่อมต่ออินเทอร์เน็ตและส่งข้อมูลโดยใช้ MQTT protocol ให้กับเซิร์ฟเวอร์ โดยตรง
- อุปกรณ์ที่เชื่อมต่อกับระบบอื่นอยู่แล้ว จะมีการส่งข้อมูลในรูปแบบของ MQTT protocol, Kafka และ REST API

เพราะฉะนั้นจึงสรุปการส่งข้อมูลได้เป็น 3 ส่วนดังรูปที่ 4 ได้แก่

- 3.2.1.1. การส่งข้อมูลผ่าน REST API (อยู่นอกขอบเขตของโครงการ)
- 3.2.1.2. การส่งข้อมูลผ่าน Kafka server

จะมีการออกแบบ topic โดย 1 โมเดลอุปกรณ์การแพทย์จะส่งไปยัง topic เดียวกันกล่าวคือ อุปกรณ์ชนิดเดียวกันจะมีการส่งข้อมูลไปยัง topic เดียวกัน และส่งข้อมูลให้กับ web service เพื่อ ประมวลผลในลำดับถัดไป

3.2.1.3. การส่งข้อมูลผ่าน MQTT protocol

มีการทำ MQTT-Kafka Bridge โดยใช้ภาษา Python ในการพัฒนา เพื่อนำข้อมูลจาก EMQX ซึ่งเป็น MQTT Messaging Platform เชื่อมต่อไปยัง Kafka server และส่งประมวลผลที่ web service เดียวกัน

รูปที่ 4 การส่งข้อมูลของอุปกรณ์ IoT

3.2.2.ระบบการจัดการข้อมูล

ระบบนี้จะเป็นการรับข้อมูลจาก Kafka server เพื่อเก็บข้อมูลจากอุปกรณ์การแพทย์ลงสู่ mongoDB database และมีการส่งข้อมูลขึ้น Google Cloud Storage (Data Lake) ทุกๆ 15 นาที เพื่อจัดเก็บข้อมูลและทำ Data Pipeline ในลำดับถัดไปโดยมีการทำงานดังรูปที่ 5

รูปที่ 5 ระบบการจัดการข้อมูล

- 3.2.2.1. การออกแบบการจัดเก็บข้อมูลลง MongoDB database
 - ระบบของเราใช้ MongoDB database ในการเก็บข้อมูลจากอุปกรณ์การแพทย์ โดยมี การออกแบบการเก็บข้อมูลดังนี้คือ ใช้ 1 collection ในการเก็บข้อมูลของอุปกรณ์ โดยจะใช้ค่า deviceID และชื่ออุปกรณ์ในการแบ่งแยกข้อมูล
- 3.2.2.2. การอัปโหลดข้อมูลขึ้น Google Cloud Storage (GCS)

ระบบของเรามีการใช้ Job Scheduler ที่จะคอยทำงานทุกๆ 15 นาที เพื่อดึงข้อมูลจาก MongoDB และสร้าง csv file format เพื่ออัปโหลดข้อมูลเข้าสู่ GCS ซึ่งเป็น Data Lake ใน ส่วนของการออกแบบการจัดเก็บข้อมูลใน GCS มีการออกแบบดังนี้คือ model/deviceId/year/month/day/timestamp.csv และมีการเก็บผลลัพธ์การทำงานเข้า

Elasticsearch เพื่อสามารถติดตามได้ว่ามีการอัปโหลดได้สำเร็จหรือไม่และใช้ค่า end-time ของ การอัปโหลดก่อนหน้าเป็นค่าอ้างอิงในการค้นหาข้อมูลเพื่ออัปโหลดในครั้งถัดไป

3.2.2.3. การทำ Data Warehouse

ระบบจะดึงข้อมูลจาก Google Cloud Storage (GCS) ไปบันทึกลงในตารางของ Google Cloud BigQuery โดยใช้ Data Transfer ซึ่งเป็นบริการภายในของ BigQuery โดย กำหนดให้ทำงานทุก ๆ 15 นาที ตามรูปที่ 6

รูปที่ 6 การส่งข้อมูลจาก GCS ไป BigQuery

3.2.3.ระบบการให้บริการนักพัฒนา

ระบบการให้บริการนักพัฒนามีลักษณะการทำงานดังรูปที่ 7, 8 และ 9 โดยประกอบด้วย 3 ส่วนที่สำคัญ ดังนี้

3.2.3.1. การจัดการ Application ของตนเองในระบบ

ระบบมี Dashboard สำหรับนักพัฒนาในการสร้าง application ของตนเองได้ โดยระบุ application name และ description ซึ่งหลังจากสร้าง application เสร็จจะได้รับ ClientSecret เพื่อนำไปใช้ในการทำ authentication และ authorization ในการขอข้อมูลต่าง ๆ โดย ClientSecret จะมีวันหมดอายุ เมื่อ ClientSecret หมดอายุ นักพัฒนาสามารถกด renew เพื่อขอ ClientSecret ใหม่ได้ นอกจากนี้นักพัฒนายังสามารถลบ application ของ ตนเองที่ไม่ต้องการ หรือแก้ไข application name และ description ใน application ของ ตนเองได้ด้วย

3.2.3.2. การจัดการ Subscription ของตนเองในระบบ

ระบบมี Dashboard สำหรับนักพัฒนาในการสร้าง subscription ของแต่ละ application ของตนเองได้เพื่อขอข้อมูลของอุปกรณ์การแพทย์ โดยระบุค่าต่าง ๆ ดังนี้

- application name: application ของ subscription นั้น ๆ
- model name: ชื่ออุปกรณ์
- device id: รหัสอุปกรณ์ที่ต้องการข้อมูล

- start-time และ end-time: ขอบเขตระยะเวลาของข้อมูลที่ต้องการ
- mode: มี 2 mode คือ REST (กรณีต้องการข้อมูลย้อนหลัง) และ Kafka (กรณีต้องการข้อมูลแบบ real-time)
- note: ระบุหรือไม่ก็ได้
- 3.2.3.3. การส่งข้อมูลอุปกรณ์ไปให้ผู้ใช้งานทั้งแบบ real-time และ historical ระบบของเราจะมีการเช็คสิทธิ์ในการเข้าถึงข้อมูลของผู้ใช้ก่อนจะมีการส่งข้อมูล และการ ส่งข้อมูลของระบบแบ่งออกเป็น 2 ประเภท คือ
 - Historical Data ซึ่งเป็นข้อมูลย้อนหลังของอุปกรณ์ต่างๆ ซึ่งทางระบบจะมี API ในการส่ง ข้อมูลย้อนหลังให้กับผู้ใช้งาน โดยถ้าผู้ใช้งานขอข้อมูลย้อนหลังน้อยกว่า 7 วัน จะดึงข้อมูลมา จาก MongoDB แต่ถ้าผู้ใช้งานขอข้อมูลย้อนหลังมากกว่า 7 วัน จะดึงข้อมูลมาจาก BigQuery
 - Real-Time Data ระบบจะมี API ในการให้ผู้ใช้งานสามารถขอข้อมูลได้ หลังจากนั้นระบบ จะมีการบันทึกข้อมูลการร้องขอลงสู่ MongoDB และระบบจะค่อยๆ ดึงข้อมูลร้องขอจาก MongoDB และสร้าง Kafka consumer เพื่ออ่านข้อมูลตามเงื่อนไขของผู้ใช้งาน และส่ง ข้อมูล ผ่าน Kafka server โดยมีการออกแบบ topic เป็นดังนี้คือ 1 topic ต่อ 1 ผู้ใช้งาน

รูปที่ 7 ระบบการให้บริการนักพัฒนา

รูปที่ 8 การขอข้อมูลย้อนหลัง

รูปที่ 9 การขอข้อมูลแบบ real-time

- 3.2.4.ระบบแอดมิน
- 3.2.4.1. การจัดการผู้ใช้งาน (นักพัฒนา)
 ระบบมี Dashboard สำหรับแอดมินในการสร้าง username และ password ให้กับ
 นักพัฒนา เพื่อให้นักพัฒนาสามารถใช้งานระบบการให้บริการนักพัฒนาได้
- 3.2.4.2. การจัดการอุปกรณ์ IoT
 ระบบมี Dashboard สำหรับแอดมินในการลงทะเบียนอุปกรณ์ IoT ซึ่งจะเป็นข้อมูลที่
 รายละเอียดของอุปกรณ์ว่าสามารถวัดค่าอะไรได้บ้าง และประเภทข้อมูลของค่านั้นๆ ซึ่งระบบจะ
 มีการบันทึกค่าเหล่านั้นใน MongoDB เพื่อใช้ในการอ้างอิงในการทำงานของระบบและจะมีการ
 สร้าง topic ใหม่สำหรับโมเดลอุปกรณ์การแพทย์ใหม่บน kafka cluster
- 3.2.4.3. การจัดการสิทธิของผู้ใช้งานในการเข้าถึงข้อมูล ระบบมี Dashboard สำหรับแอดมินในการสร้าง แก้ไข และ ลบ subscription ต่าง ๆ ในระบบ
- 3.2.5.ระบบการจัดการ Log File
- 3.2.5.1. การบันทึกผลการอัปโหลดข้อมูลลง Data Lake ระบบมีการเก็บบันทึกผลการอัปโหลดข้อมูลลงใน GCS โดยจะบันทึก logใน elasticsearch
- 3.2.5.2. การบันทึกประวัติการเรียก API ระบบจะมีการเก็บข้อมูล traffic ต่าง ๆ ที่เข้ามาในระบบ รวมถึง API response status code
- 3.2.5.3. การเก็บบันทึกสถานะของระบบ ระบบมีการเก็บ uptime ของระบบ เพื่อเก็บสถิติการทำงานของ service นอกจากนี้ยัง ยังเก็บ memory/cpu usage ของระบบ เพื่อตรวจติดตามการใช้ทรัพยากรในเครื่อง
- 3.2.5.4. การทำ Dashboard สำหรับดู Log ระบบมี Dashboard สำหรับดูค่า upload log, api log, uptime, และmemory/cpu usage

4. แผนการทำงาน

4.1. Developer Dashboard

4.1.1.Log in

หน้า Login ให้ใส่อีเมล (E-mail) และรหัสผ่าน (Password) ตามรูปที่ 10 โดยหากไม่ได้เข้าสู้ ระบบจะไม่สามารถเข้าถึงหน้าอื่น ๆ ในเว็บไซต์ได้

รูปที่ 10 Login Page

4.1.2.My Application

หน้า My Application สำหรับให้นักพัฒนาดู application ทั้งหมดของตนเองดังรูปที่ 11 สามารถกดสร้าง application ใหม่ได้โดยกดปุ่ม New จากนั้นกรอก application name และ description ในป๊อปอัพตามรูปที่ 12 นอกจากนี้ยังสามารถขอ clientSecret ใหม่ได้โดยการกดปุ่ม renew อีกทั้งยังสามารถลบและแก้ไขข้อมูลของ application ของตนเองได้ตามรูปที่ 13 และ 14 ตามลำดับ

รูปที่ 11 การดู application ทั้งหมดของตนเอง

รูปที่ 12 การสร้าง application ใหม่

รูปที่ 13 การลบ application

ClientID :	6429aea0a84c598f51875aa5 🗍		
ClientSecret :	eyJhbGciOiJIUzI1NiIsInR 🗍 💮 renev		
Key Expire :	2024-04-01 16:34		
Description :	myapp2-1		

รูปที่ 14 การแก้ไข application

4.1.3.My Subscription

หน้า My Subscription สำหรับให้นักพัฒนาดู subscription ของตนเอง โดยสามารถ ฟิลเตอร์ subscription ได้ตาม application, device Id, model name, start time - end time, mode และ status ตามรูปที่ 15 และสามารถกดสร้าง subscription ใหม่ได้โดยการกดปุ่ม New จากนั้นระบุค่าใน field ต่าง ๆ ในป๊อปอัพ ตามรูปที่ 16 (note เป็น optional)

รูปที่ 15 การดูและฟิลเตอร์ subscription ทั้งหมด

รูปที่ 16 การสร้าง subscription ใหม่

4.1.4.My Account

นักพัฒนาสามารถดูข้อมูลบัญชีได้ที่หน้า My Account และสามารถแก้ไขรหัสผ่านได้โดยการ กรอกรหัสผ่านเดิมและรหัสผ่านใหม่ 2 ครั้ง จากนั้นกดปุ่ม Change Password ดังรูปที่ 17

รูปที่ 17 หน้า My Account

4.2. Admin Dashboard

4.2.1.Login

หน้า Login ให้ใส่อีเมล (E-mail) และรหัสผ่าน (Password) ตามรูปที่ 18 โดยหากไม่ได้เข้าสู้ ระบบจะไม่สามารถเข้าถึงหน้าอื่น ๆ ในเว็บไซต์ได้

รูปที่ 18 หน้า Login

4.2.2.Device Management

หน้าเว็บสำหรับจัดการโมเดลอุปกรณ์ที่ส่งข้อมูลมายัง web service ดังรูปที่ 19 โดยสามารถ เพิ่มโมเดลอุปกรณ์โดยการกดปุ่ม Add โดยจะมีป๊อปอัพสำหรับการเพิ่มโมเดลอุปกรณ์ขึ้นมาตามรูปที่ 20 สามารถที่จะกรอกข้อมูลโดย NewKeys ไม่จำเป็นต้องกรอกถ้าไม่ทำการกดเพิ่มด้วยปุ่ม Add new key

รูปที่ 19 หน้าเว็บสำหรับการจัดการโมเดลอุปกรณ์

รูปที่ 20 หน้าเว็บสำหรับการเพิ่มโมเดลอุปกรณ์

4.2.3. Developer Management

หน้าเว็บสำหรับจัดการบัญชีนักพัฒนาที่จะมาขอข้อมูลไปใช้งานดังรูปที่ 21 โดยสามารถที่จะ เพิ่มบัญชีนักพัฒนาได้โดยการกดปุ่ม Add โดยจะมีป๊อปอัพสำหรับการเพิ่มบัญชีนักพัฒนาข้นมาตาม รูปที่ 22 กรอกข้อมูลเพื่อเพิ่มบัญชีนักพัฒนา

รูปที่ 21 หน้าเว็บสำหรับจัดการบัญชีนักพัฒนา

รูปที่ 22 สำหรับการเพิ่มบัญชีนักพัฒนา

4.2.4. Subscription Management

หน้าเว็บสำหรับจัดการ subscription ที่มีการขอจากนักพัฒนาดังรูปที่ 23 โดยสามารถที่จะ ทำการยอมรับด้วยการกดปุ่ม Accept หรือยกเลิกด้วยการกดปุ่ม Reject นอกจากนี้สามารถที่จะทำ การถอดถอนการยอมรับด้วยการกดปุ่ม Revoke

รูปที่ 23 สำหรับจัดการการขอ subscription ของนักพัฒนา

4.3. Webserver

รูปที่ 24 API document

ตารางที่ 2 endpoint ต่าง ๆ ใน web service

Router	Method	Path	Description
/apis/auth	POST	/login	สำหรับการ login เข้าสู่ระบบ
/apis/admin	GET	/subscriptions	สำหรับการ list subscriptions ที่มีทั้งหมดในระบบ
			ให้กับ admin dashboard
/apis/admin	PATCH	/subscriptions/status/:id	สำหรับการอัพเดตสถานะของ subscription โดยใช้
			ID
/apis/admin	GET	/medical-devices	สำหรับการ list medical models ทั้งหมดที่มีใน
			ระบบ
/apis/admin	GET	/medical-devices/list	สำหรับการ list medical models พร้อมกับ list ของ
			device's id ของอุปกรณ์นั้นๆ
/apis/admin	POST	/medical-devices	สำหรับการ register อุปกรณ์ทางการแพทย์ชนิดใหม่
			เข้าสู่ระบบ
/apis/admin	PATCH	/medical-devices/:id	สำหรับการอัพเดตอุปกรณ์ทางการแพทย์โดยใช้ ID
/apis/admin	DELETE	/medical-devices/:id	สำหรับการลบอุปกรณ์ทางการแพทย์โดยใช้ ID
/apis/admin	GET	/developers	สำหรับการ list developers ทั้งหมดที่มีอยู่ในระบบ
/apis/admin	POST	/developers	สำหรับการสร้าง developer เข้าสู่ระบบ
/apis/admin	DELETE	/developers/:id	สำหรับการลบ developer ออกจากระบบโดยใช้ ID
/apis/app	POST	/medical-data	สำหรับ application ที่ต้องการขอข้อมูลแบบ real-
			time data และ historical data
/apis/developer	GET	/info	สำหรับการข้อข้อมูลของ developer คนนั้นๆ โดย
			identify developer ผ่าน API token
/apis/developer	PATCH	/password	สำหรับให้ developer เปลี่ยนรหัสผ่านในการเข้าสู่
			ระบบ
/apis/developer	GET	/subscriptions	สำหรับการ list subscription ของ developer คน
			นั้นๆ โดย identify ผ่าน API token
/apis/developer	POST	/subscriptions	สำหรับการสร้าง subscription เข้าสู่ระบบ
/apis/developer	GET	/apps	สำหรับการ list application ทั้งหมดของ developer
			คนนั้นๆ โดย identify ผ่าน API token
/apis/developer	POST	/apps	สำหรับการสร้าง application
/apis/developer	PATCH	/apps/:id	สำหรับการอัพเดต application โดยใช้ ID
/apis/developer	PATCH	/apps/secret/:id	สำหรับการอัพเดต application secret โดยใช้ ID
/apis/developer	DELETE	/apps/:id	สำหรับการลบ application โดยใช้ id
/apis/developer	GET	/medical-devices/list	สำหรับการ list medical models พร้อมกับ list ของ
			device's id ของอุปกรณ์นั้นๆ

4.4. Kafka Consumer

Web service ทำหน้าที่เป็น consumer มีหน้าที่รับ message จาก Kafka cluster ซึ่งเป็นข้อมูล จากอุปกรณ์การแพทย์ที่ produce message มาที่ Kafka cluster

4.5. Kafka Producer

Web service ทำหน้าที่เป็น producer มีหน้าที่ส่ง message ไปยัง Kafka cluster เพื่อให้ application ที่ขอข้อมูลแบบ real-time สามารถ consume ข้อมูลจาก Kafka cluster

4.6. Logging

4.6.1.ผลลัพธ์การอัปโหลดข้อมูลเข้า GCS

ระบบมีการเก็บ log ผลลัพธ์การอัปโหลดข้อมูลเข้าสู่ GCS ลงใน elasticsearch โดยลักษณะ โครงสร้างของ log จะเป็นไปตามรูปที่ 25

```
"hits": [
     "_index": "test-upload",
     "_id": "MxDGA4cBfea0yY0_CbxR",
    "_score": null,
"_source": {
    "modelName": "ipdMonitoring",
       "deviceId": "SN-2005-0005",
"startTime": 1679752002,
       "endTime": 1679806002,
       "createdDate": 1679395522,
"isCompleted": true
     "sort": [
    1679805950
    "_index": "test-upload",
"_id": "KRCAAocBfea0yY0_17y7",
    "_score": null,
    "_source": {
      "modelName": "ipdMonitoring",
"deviceId": "SN-2005-0005",
       "startTime": 1679698002,
       "endTime": 1679752002,
       "createdDate": 1679374211,
       "isCompleted": true
     "sort": [
       1679752060
```

รูปที่ 25 log ของการอัปโหลดข้อมูลเข้า GCS

4.6.2.Uptime

ระบบมีการเก็บประวัติและสถิติการทำงานของ web server โดยจะแสดงผลเป็น dashboard ที่มีลักษณะตามรูปที่ 26

รูปที่ 26 Uptime

4.6.3.CPU/Mem usage

ระบบมีการเก็บประวัติและสถิติการใช้งานทรัพยากรต่าง ๆ ของเครื่อง เช่น CPU usage และ memory usage เป็นต้น โดยจะแสดงผลเป็น dashboard ที่มีลักษณะตามรูปที่ 27

รูปที่ 27 CPU/Mem usage

4.7. การ deploy web client

คณะผู้จัดทำได้มีการ deploy web client โดยทำการสร้าง Docker file และนำไป deploy ที่ EC2 instance 1 เครื่อง โดย docker file จะมีการเขียนดังรูปที่ 28

```
FROM node:16-alpine AS builder
WORKDIR /app

ARG REACT_APP_API_URL
ENV REACT_APP_API_URL=$REACT_APP_API_URL

COPY package.json ./
COPY . .

RUN yarn install --frozen-lockfile
RUN yarn run build

FROM node:16-alpine AS production
WORKDIR /app
RUN yarn global add serve
COPY --from=builder /app/build ./build

EXPOSE 3000
CMD ["serve", "-s", "build", "-l", "3000"]
```

รูปที่ 28 docker file ของ web client

4.8. Web service cluster

คณะผู้จัดทำได้มีการ deploy web service โดยทำการสร้าง Docker file ดังรูปที่ 29 และมี folder structure ตามรูปที่ 30 จากนั้นนำไป deploy ที่ EC2 instance โดยใช้ instance ทั้งหมด 3 เครื่อง และคณะผู้จัดทำได้ใช้ nginx เพื่อเป็น load balancer และได้ deploy nginx server โดยใช้ EC2 instance 1 เครื่องโดยมีการเขียน nginx configuration file ดังภาพที่ 31

```
FROM amd64/eclipse-temurin:17-jre-alpine
WORKDIR /home

RUN apk add --update bash && rm -rf /var/cache/apk/*
COPY . .

CMD [ "./iot-healthcare" ]
```

รูปที่ 29 docker file ของระบบ

รูปที่ 30 folder structure ที่ไว้ build docker image

```
http {
    upstream backend {
        server backend1:8080;
        server backend3:8080;
    }

    server {
        listen 80;
        listen [::]:80
        server_name _;
        location / {
            proxy_pass http://backend;
        }
    }
}
```

รูปที่ 31 nginx configuration file

4.9. Kafka cluster

คณะผู้จัดทำได้มีการ configure Kafka cluster โดยใช้ EC2 instance 3 instances ดังรูปที่ 32 โดย instance แต่ละเครื่องจะมี zookeeper และ broker รันอยู่เครื่องละ 1 process และมีการ configure security โดยใช้ SASL_SSL/ SCRAM (SCRAM-SHA-512)

รูปที่ 32 kafka cluster บน cloud

4.10. การอัปโหลดข้อมูลจากอุปกรณ์การแพทย์ขึ้นสู่ google cloud storage
คณะผู้จัดทำได้มีสร้างระบบที่ทำการอัปโหลดข้อมูลในรูปแบบของไฟล์ CSV ดังรูปที่ 33 ขึ้น google
cloud storage ทุกๆ 15 นาที จากภาพที่ 34 ระบบนี้ได้ทำการ query โมเดลอุปกรณ์การแพทย์ และ

อุปกรณ์การแพทย์ชนิดนั้นๆ ทั้งหมดเพื่อใช้อ้างอิงใน query เพื่อดึงข้อมูลของอุปกรณ์นั้นๆ นอกจากนี้ระบบ จะไปดึง log ดังรูปที่ 35 บน elasticsearch เพื่อใช้อ้างอิงเวลานั้นคือ จะใช้ end-time ของการอัปโหลด ข้อมูลที่สำเร็จล่าสุดเป็น start-time ของการอัปโหลดในครั้งถัดไป โดย folder structure ของการเก็บข้อมูล นั้นจะอยู่ในรูปแบบ model name/device id/year/month/day/timestamp.csv

ipdMonitoring_SN-2005-0005_2023_4_20_2023_03_26_19_46_42									
timestamp	deviceld	temperature	heartRate	o2Saturation	respirationRate	bloodPressure			
2023-03-26 04:46:51 +0000 UTC	SN-2005-0005	2	3	6	0	0			
2023-03-26 04:47:01 +0000 UTC	SN-2005-0005	1	2	1	5	4			
2023-03-26 04:47:11 +0000 UTC	SN-2005-0005	6	1	7	9	7			
2023-03-26 04:47:21 +0000 UTC	SN-2005-0005	4	5	6	0	2			
2023-03-26 04:47:31 +0000 UTC	SN-2005-0005	8	4	8	6	5			
2023-03-26 04:47:41 +0000 UTC	SN-2005-0005	6	6	4	5	7			
2023-03-26 04:47:51 +0000 UTC	SN-2005-0005	3	6	5	4	5			
2023-03-26 04:48:01 +0000 UTC	SN-2005-0005	3	3	1	5	0			
2023-03-26 04:48:11 +0000 UTC	SN-2005-0005	5	7	2	2	8			
2023-03-26 04:48:21 +0000 UTC	SN-2005-0005	7	1	7	7	3			
2023-03-26 04:48:31 +0000 UTC	SN-2005-0005	5	9	9	1	5			
2023-03-26 04:48:41 +0000 UTC	SN-2005-0005	5	1	9	4	6			
2023-03-26 04:48:51 +0000 UTC	SN-2005-0005	7	8	4	8	8			
2023-03-26 04:49:01 +0000 UTC	SN-2005-0005	4	5	2	0	4			
2023-03-26 04:49:11 +0000 UTC	SN-2005-0005	7	1	2	0	0			
2023-03-26 04:49:21 +0000 UTC	SN-2005-0005	0	9	0	5	9			
2023-03-26 04:49:31 +0000 UTC	SN-2005-0005	6	6	1	6	7			
2023-03-26 04:49:41 +0000 UTC	SN-2005-0005	8	5	6	1	9			
2023-03-26 04:49:51 +0000 UTC	SN-2005-0005	9	4	9	4	0			
2023-03-26 04:50:01 +0000 UTC	SN-2005-0005	0	7	8	5	8			
2023-03-26 04:50:11 +0000 UTC	SN-2005-0005	9	4	9	8	0			
2023-03-26 04:50:21 +0000 UTC	SN-2005-0005	2	5	8	9	9			
2023-03-26 04:50:31 +0000 UTC	SN-2005-0005	7	5	1	7	4			
2023-03-26 04:50:41 +0000 UTC	SN-2005-0005	1	1	7	2	8			
2023-03-26 04:50:51 +0000 UTC	SN-2005-0005	0	8	5	9	5			
2023-03-26 04:51:01 +0000 UTC	SN-2005-0005	5	3	9	8	1			

รูปที่ 33 รูปแบของไฟล์ที่จัดเก็บใน GCS

รูปที่ 34 Flow การอัปโหลดข้อมูลเข้าสู่ GCS

```
type UploadMedicalDataLog struct
{
    ModelName string
    DeviceId string
    StartTime int64
    EndTime int64
    CreatedDate int64
    IsCompleted bool
}
```

รูปที่ 35 รูปแบบการเก็บ log ของการอัปโหลดข้อมูลขึ้น GCS

5. ผลการทดลอง/ผลการวิเคราะห์

5.1. เครื่องมือที่ใช้

5.1.1.ภาษาที่เลือกใช้

ระบบ Web Service คณะผู้จัดทำเลือกใช้ภาษา GO ในการพัฒนาเนื่องจากเป็นภาษาที่ ทำงานได้เร็ว อีกทั้งยังรองรับการทำ Concurrent Programming และ Multithreading เพราะฉะนั้นจึงเหมาะกับการรองรับ request เป็นจำนวนมาก นอกจากนี้ยังมี standard library รองรับการทำงานที่หลากหลาย [16]

5.1.2.ระบบฐานข้อมูลที่เลือกใช้

คณะผู้จัดทำเลือกใช้ MongoDB เนื่องจาก MongoDB เป็น NoSQL ทำให้ง่ายต่อการ เปลี่ยนแปลงโครงสร้างของข้อมูล อีกทั้งยังมี driver ที่ช่วยในการติดต่อกับฐานข้อมูลที่รองรับภาษา Go ที่ผู้จัดทำเลือกใช้ และยังสามารถ scale ฐานข้อมูลได้ง่าย [17]

5.1.3.Library ในการให้ Web Service ติดต่อกับ Kafka server
คณะผู้จัดทำเลือกใช้ kafka-go library เนื่องจากมี MIT license อีกทั้งยังยังรองรับการ
authentication แบบ SASL SSL [18]

5.1.4.เครื่องมือในการจัดการ Logs ของ web service

คณะผู้จัดทำเลือกใช้ Elasticsearch ร่วมกับ Kibana เนื่องจากเครื่องมือทั้งสองมีการพัฒนาให้ สามารถทำงานร่วมกันได้ดี อีกทั้ง Elasticsearch สามารถทำงานได้รวดเร็วเนื่องจากมีการออกแบบการ จัดเก็บข้อมูลโดย BKD tree นอกจากนี้ยังมี API ให้ Web Service สามารถติดต่อได้ง่าย [19] [20]

5.1.5.การทำ Data Lake

ระบบนี้จะทำการเก็บข้อมูลจากอุปกรณ์ IoT ทางการแพทย์ซึ่งข้อมูลเหล่านั้นมีลักษณะแบบ semi-structure เพราะอุปกรณ์ IoT แต่ละประเภทอาจเก็บข้อมูลลักษณะแตกต่างกัน เช่น อุปกรณ์ ประเภทที่ 1 สามารถเก็บค่าอุณหภูมิร่างกายและอัตราการเต้นของหัวใจได้ ส่วนอุปกรณ์ประเภทที่ 2 เก็บ ค่าอัตราการเต้นของหัวใจได้อย่างเดียว เป็นต้น

ใช้ Google Cloud Storage (GCS) ในการทำ Data Lake เนื่องจากมี Data Retention ทำให้ สามารถเก็บข้อมูลที่มีอยู่ไว้ได้หากมีการเปลี่ยนแปลงกฎการรักษาข้อมูล (Retention rule) ซึ่งข้อดีนี้เป็น คุณสมบัติที่ดีในการเก็บข้อมูลด้านสุขภาพ อีกทั้งยังมี interface ที่ทำให้ผู้ใช้งานใช้งานได้สะดวก [21]

5.1.6.การทำ Data Warehouse

ในการทำ Data Warehouse เลือกใช้ Google Cloud BigQuery เนื่องจากเป็นบริการของ Google เช่นเดียวกันกับ GCS ทำให้สามารถเชื่อมต่อกันได้ง่าย มี API หรือ บริการภายในในการ เชื่อมต่อกับ GCS

ระบบจะต้องนำข้อมูลที่อยู่ใน GCS ไปใส่ในตารางใน BigQuery ในส่วนนี้เลือกใช้ Data Transfer ซึ่งเป็นบริการใน BigQuery ที่จะเช็คข้อมูลใน GCS ทุก ๆ 15 นาทีว่ามีข้อมูลเพิ่มหรือไม่ ถ้า มีจะนำข้อมูลที่เพิ่มมานั้นไปต่อท้ายในตารางของ BigQuery เหตุผลที่ใช้ 15 นาที เพราะว่าเป็นคาบที่ น้อยที่สุดที่สามารถตั้งค่าได้ใน Data Transfer [22]

5.1.7.การทำ Dashboard สำหรับดูข้อมูลจากอุปกรณ์

Dashboard สำหรับดูข้อมูลจากอุปกรณ์ เป็นสิ่งที่ช่วยอำนวยความสะดวกให้กับนักวิจัยใน การวิเคราะห์ข้อมูล เพื่อดูแนวโน้ม ความเป็นไปได้ต่าง ๆ และนำข้อมูลไปวิจัย ต่อยอด พัฒนาองค์ ความรู้ทางสาธารณสุขต่อไปในอนาคต

การทำ Dashboard สำหรับนักวิจัย ใช้ Google Data Studio ซึ่งเป็นบริการของ Google เช่นเดียวกันกับ GCS และ BigQuery เนื่องจากใน BigQuery สามารถ Explore Data โดยใช้ Data Studio ได้ ทำให้ไม่ต้องใช้ API หรือ เครื่องมืออื่น ๆ เพิ่มเติม นอกจากนี้เมื่อมีการเปลี่ยนแปลงของ ตารางใน BigQuery จะทำการเปลี่ยนแปลงข้อมูลใน Data Studio โดยอัตโนมัติดังรูปที่ 36

รูปที่ 36 GUI ของ BigQuery

5.1.8.การเชื่อมต่อ MQTT กับ Kafka

การเชื่อมต่อของ MQTT กับ Kafka สำคัญเป็นอย่างมากเนื่องจาก เพราะการรับข้อมูลโดยใช้ MQTT เหมาะกับการต่อกับอุปกรณ์จำพวก sensor แต่ไม่เหมาะกับการเก็บข้อมูลจำนวนมากจึงต้องมี การเชื่อมต่อกับ Kafka เพื่อเก็บข้อมูลให้มีประสิทธิภาพและรวบรวมของอุปกรณ์ทั้งหมดไว้ในที่เดียว เพื่อให้ง่ายต่อการส่งต่อ

การเชื่อมต่อ MQTT กับ Kafka ใช้ MQTT-TO-KAFKA-BRIDGE ในการเชื่อมต่อโดยเลือกใช้ python ในการเขียนเนื่องจากมี paho MQTT เป็นตัวกลางสำหรับการติดต่อกับ EMQX และมี pymongo สำหรับติดต่อกับ database เพื่อขอข้อมูล modelName ที่ใช้เป็น topic ในการ subscribe [23]

5.1.9.การทำ Web Client

ผู้พัฒนาเลือกใช้ React ในการทำ Developer Dashboard และ Admin Dashboard ซึ่ง เป็น Web Client ของระบบ และเลือกใช้ภาษา TypeScript ในการพัฒนา เนื่องจาก react มี library และ component ให้เลือกใช้มากมาย และมีฟังก์ชันการใช้งานเพียงพอตาม functional requirement และมี community ขนาดใหญ่ เมื่อเจอปัญหาสามารถหาวิธีแก้ไขจากแหล่งข้อมูลที่ หลากหลาย และเลือกใช้ภาษา TypeScript เพราะ TypeScript รองรับ static typing ทำให้ลดความ ผิดพลาดในการพัฒนา [24][25]

5.2. การเครื่องมือที่ใช้ในการทำ testing

5.2.1.Jest

ผู้พัฒนาเลือกใช้ Jest ในการทดสอบการทำงานในส่วนของการทดสอบ Application API เนื่องจาก Jest นั้นง่ายต่อการ set up environment ในการทดสอบ และยังรอบรับการทำ unit testing นอกจากนี้ยังรองรับ exception หลากหลายประเภท [26]

5.2.2.K6

ผู้พัฒนาเลือกใช้ K6 ในการทดสอบการตอบสนองของ web server เนื่องจาก K6 นั้น ง่ายต่อการ set up environment และสามารถควบคุม traffic ในการทดสอบระบบได้ง่าย นอกจากนี้ยังรองรับการทำงานร่วมกับ InfluxDB และ Grafana เพื่อสามารถดูผลการทดสอบ performance ของ web server ผ่าน dashboard [27]

5.2.3.Selenium

ผู้พัฒนาเลือกใช้ Selenium ในการทดสอบระบบ dashboard เนื่องจาก Selenium รองรับการใช้งานเพื่อทดสอบเว็บไซต์ โดยสามารถทดสอบการทำงานโดยรวมของทั้งเว็บไซต์แบบ อัตโนมัติได้โดยการเขียนโค้ด ช่วยลดระยะเวลาในการทดสอบเมื่อมีการแก้ไขโปรแกรมบางส่วน [28]

5.3. การทดสอบระบบ

5.3.1.การทดสอบ Developer Dashboard

ตารางที่ 3 ผลการทดสอบ Developer Dashboard

ID	Page	Description	Input	Expected output	Pass/Fail
1	login page	email or password	Email:"	ask user to enter email and	Pass
		(required) is empty	Password: "	password	
2	login page	email format is wrong and	Email: 'abc'	warning email is wrong	Pass
		password is not empty	Password: 'password'	format	
3	login page	email format is correct and	Email: 'abc@def.g'	successfully login	Pass
		password is correct	Password: 'password'		
4	login page	email format is correct but	Email: 'a@b.com'	invalid email or password	Pass
		not exists	Password: 'password'		
5	login page	email is correct and	Email: 'a@b.com'	invalid email or password	Pass
		password is not correct	Password: 'password'		
6	-	not login	-	Warning and redirect to login	Pass
				page	
7	app page	get all of my applications	-	list all of my applications	Pass
8	app page	new application	AppName: "	ask user to enter app name	Pass
		required fields(appname)	Description: "		
		are empty			
10	app page	new application	AppName: 'my-app'	warning app name must be	Pass
		app name is repetitive	Description: "	unique	
11	app page	new application	AppName: 'my-app-2'	successfully create a new	Pass
		all required fields are	Description: 'this is my	арр	
		complete	wonderful app'		
12	app page	edit app info	AppName: 'my-app'	warning app name must be	Pass
		edit app name to be the		unique	
		name that is already used			
13	app page	edit app info	AppName: 'my-app-2'	successfully edit app info	Pass
		edit app name to be the			
		name that isn't already			
		used			
14	app page	edit app info	Description: 'this is my	successfully edit app info	Pass
		edit description	wonderful app'		
15	app page	renew client secret	-	client secret updated	Pass
16	app page	delete an app	-	successfully delete app	Pass
17	app page	list all subscription of this	-	redirect to subscription page	Pass
		арр		and set app name filter to	
				this app	

18	subscription page	get all of my subscriptions	-	list all of my subscriptions	Pass
19	subscription page	new subscription some of required fields are empty	application = " model = " device= [] starttime = " endtime = " mode = "	ask user to input those fields	Pass
20	subscription page	new subscription all required fields are not empty	application = 'my-app' model = 'ipdMonitoring' device= ['SN-2005- 0005'] starttime = '10/4/2023 23:00' endtime = '11/4/2023 23:00' mode = 'REST'	successfully create new subscription	Pass
21	subscription page	filter subscriptions by device	device= 'SN-2005-0005'	show all subscriptions that request data of the device	Pass
22	subscription page	filter subscriptions by model	model = 'ipdMonitoring'	show all subscriptions that request data of the model type	Pass
23	subscription page	filter subscriptions by time	starttime = '10/4/2023 23:00' endtime = '11/4/2023 23:00'	show all subscriptions that request data in the time range	Pass
24	subscription page	filter subscriptions by mode	mode = 'REST'	show all subscriptions that are the mode	Pass
25	subscription page	filter subscriptions by status	status = 'pending'	show all subscriptions that are in the status	Pass
26	subscription page	filter subscriptions by application	application = 'my-app'	show all subscriptions that belong to the app	Pass
27	account page	get account info	-	show this account info	Pass
28	account page	change password old password is empty	OldPassword: ""	ask user to enter old password	Pass
29	account page	change password new password is empty	NewPassword: ""	ask user to enter new password	Pass

30	account	change password	ReNewPassword: ""	ask user to enter re-new	Pass
	page	re-new password is empty		password	
31	account	change password	NewPassword:	warning the passwords aren't	Pass
	page	new password and re-new	"newpass"	match	
		password aren't match	ReNewPassword:		
			"newpassword"		
32	account	change password	OldPassword: "wrong"	warning old password is	Pass
	page	wrong password	NewPassword:	invalid	
			"newpassword"		
			ReNewPassword:		
			"newpassword"		
33	account	change password	OldPassword:	successfully update	Pass
	page	correct password	"password"	password	
			NewPassword:		
			"newpassword"		
			ReNewPassword:		
			"newpassword"		
34	-	logout	-	clear token and redirect to	Pass
				login page	

จากการทดสอบการทำงานของ Developer Dashboard ได้ผลลัพธ์ดังตารางที่ 3 โดย สามารถสรุปได้ว่าระบบทำงานได้อย่างถูกต้องตรงตาม functional requirement

5.3.2.การทดสอบ Admin Dashboard

ตารางที่ 4 ผลการทดสอบ Admin Dashboard

ID	Page	Description	Input	Expected output	Pass/Fail
1	model management	get all medical models		list all of medical	Pass
	page			models	
2	model management	delete a medical		successfully delete	Pass
	page	model		medical model	
3	model management	Create new medical	ModelName: ""	ask user to enter	Pass
	page	model.	ModelKey: []	model name and	
		All fields are empty.	NewKeys: []	model key	
4	model management	Create new medical	ModelName: ""	ask user to enter	Pass
	page	model.	ModelKey: ["heartRate",	model name	
		Model Name are	"bloodPressure"]		
		empty.	NewKeys: []		
		Model Keys are			
		chosen			

		New Keys are not			
		added			
5	model management	Create new medical	ModelName: "SN-1005-2"	ask user to enter	Pass
J		model.	ModelKey: []	model key	1. 022
	page	Model Name are		modet key	
			NewKeys: []		
		correct			
		Model Keys are empty			
		New Keys are not			
		added	AA JAN JIGN 4005 OII	6.11	
6	model management	Create new medical	ModelName: "SN-1005-2"	successfully create	Pass
	page	model.	ModelKey: ["heartRate",	new medical model	
		Model Name are	"bloodPressure"]		
		correct	NewKeys: []		
		Model Keys are			
		chosen			
		New Keys are not			
		added			
7	model management	Create new medical	ModelName: "SN-1005-2"	ask user to enter	Pass
	page	model.	ModelKey: ["heartRate",	new model key	
		Model Name are	"bloodPressure"]		
		correct	NewKeys: [""]		
		Model Keys are			
		chosen.			
		New Keys are added			
		and empty.			
8	model management	Create new medical	ModelName: "SN-1005-2"	successfully create	Pass
	page	model.	ModelKey: ["heartRate",	new medical model	
		Model Name are	"bloodPressure"]		
		correct	NewKeys: ["o2"]		
		Model Keys are			
		chosen			
		New Keys are added			
		and correct			
9	developer	get all developers		list all of developers	Pass
	management				
	page				
10	developer	delete a developer		successfully delete	Pass
	management			developer	
	page				
	P~2C			<u> </u>	<u> </u>

_	1	T	1	1	
11	developer	Create new developer	Email: ""	ask user to enter	Pass
	management	Email is empty	Name: "developer"	Email	
	page		AssociatedName: "hospital"		
12	developer	Create new developer	Email: "developer"	ask user to enter	Pass
	management	Email has incorrect	Name: "developer"	Email in format	
	page	format	AssociatedName: "hospital"		
13	developer	Create new developer	Email:	ask user to enter	Pass
	management	Email has correct	"developer@gmail.com"	Email that not	
	page	format and is	Name: "developer"	already create	
		duplicate	AssociatedName: "hospital"		
14	developer	Create new developer	Email:	ask user to enter	Pass
	management	Name are empty	"developer001@gmail.com"	Name	
	page		Name: "developer"		
			AssociatedName: "hospital"		
15	developer	Create new developer	Email:	ask user to enter	Pass
	management	AssociatedName are	"developer001@gmail.com"	AssociatedName	
	page	empty	Name: "developer"		
			AssociatedName: "hospital"		
16	developer	Create new developer	Email:	successfully create	Pass
	management	All field are correct	"developer001@gmail.com"	new developer	
	page		Name: "developer"		
			AssociatedName: "hospital"		
17	subscription	list all subscriptions		list all subscriptions	Pass
	management	that are		that are	
	page	pending and accepted		pending and	
	, -			accepted	
18	subscription	Accept subscription		successfully accept	Pass
	management			subscription	
	page			·	
19	subscription	Reject subscription		successfully reject	Pass
	management	·		subscription	
	page			,	
20	subscription	Revoke subscription		successfully revoke	Pass
	management	'		subscription	
	page			,	
21	subscription	Filter by status	status = "REVOKED"	list all subscriptions	Pass
	management	(Revoked)		that are revoked	
	page			3.00	
	13-		1		<u> </u>

จากการทดสอบการทำงานของ Admin Dashboard ได้ผลลัพธ์ดังตารางที่ 4 โดยสามารถ สรุปได้ว่าระบบทำงานได้อย่างถูกต้องตรงตาม functional requirement

5.3.3.การทดสอบ application API

ตารางที่ 5 ผลการทดสอบ application API

ID	Mode	Input	Expected output	Pass/Fail	Note
1	REST	Valid access token	{	Pass	Forbidden since start-time or
		Payload {	"data": {		end-ime is not allow
		modelName:	"ErrorCode": 403,		
		"ipdMonitoring",	"Message": "Forbidden"		
		deviceId: "SN-2005-0005",	}		
		startTime: 0,	}		
		endTime: 1680541934,			
		mode: "REST",			
		}			
2	REST	Valid access token	{	Pass	Forbidden since start-time or
		Payload {	"data": {		end-ime is not allow
		modelName:	"ErrorCode": 403,		
		"patientMonitor",	"Message": "Forbidden"		
		deviceld: "SN-2005-0007",	}		
		startTime: 1580511934,	}		
		endTime: 1580541934,			
		mode: "REST",			
		}			
3	REST	Valid access token	{	Fail	Not found since model name is
		Payload {	"data": []		not exist in the database
		modelName: "xxx",	}		
		deviceld: "SN-2005-0007",			return null
		startTime: 1680511934,			
		endTime: 1680541934,			
		mode: "REST",			
		}			
4	REST	Valid access token	{	Pass	successfully request data
		{	"data": [] # length == 60		
		modelName:	}		
		"patientMonitor",			

		deviceld: "SN-2005-0007",			
		startTime: 1680585127,			
		endTime: 1680586127,			
		mode: "REST"			
		}			
5	REST	Invalid access token	{	Pass	Unauthorized since access
			"data": {		token is invalid
			"ErrorCode": 401,		
			"Message": "Token was		
			canceled"		
			}		
			}		
6	KAFKA	Invalid access token	\ {	Pass	Unauthorized since access
	10-1110-7	TIVACIA ACCCSS CONCIL	"data": {	1 433	token is invalid
					LOKETT IS HIVAUL
			"ErrorCode": 401,		
			"Message": "Token was		
			canceled"		
			}		
			}		
7	KAFKA	{	{	Pass	start-time or end-time is not
		modelName:	"data": {		allow
		"ipdMonitoring",	"ErrorCode": 403,		
		deviceld: "SN-2005-0005",	"Message": "Forbidden"		
		startTime: 1680541921,	}		
		endTime: 1680542921,	}		
		mode: "KAFKA",			
		}			
8	KAFKA	{	{	Pass	model name or device id is not
		modelName: "xxx",	"data": {	. 233	allow
		deviceld: "SN-2005-0005",	"ErrorCode": 403,		4
		startTime: 1680541921,	"Message": "Forbidden"		
		endTime: 1680542921,	}		
		mode: "KAFKA",	}		
		}			
9	KAFKA	{	server return 201 http status	Pass	request with permission
		modelName:			
		"ipdMonitoring",			
		deviceId: "SN-2005-0005",			
		startTime: 1680585127,			
		endTime: 1680585527,			
	1	l .	I.	1	<u> </u>

	mode: "KAFKA"		
	}		

จากการทดสอบการทำงานของ application API ได้ผลลัพธ์ดังตารางที่ 5 โดยสามารถสรุปได้ ว่าระบบทำงานได้อย่างถูกต้องตรงตาม functional requirement

5.3.4.authentication และ authorization ของ kafka cluster

ตารางที่ 6 ผลการทดสอบ authentication และ authorization ของ kafka cluster

ID	Role	Operation	Topic	Payload	Expected	Note	Pass/F
					output		ail
1	applic	Read	6429b8c5a84c	{	Not allow	Invalid	Pass
	ation		598f51875aec	"username":		password	
				"6429b8c5a84c598f51875aec",			
				"password"invalid"			
				}			
2	applic	Read	6429b8c5a84c	{	allow		Pass
	ation		598f51875aec	"username":			
				"6429b8c5a84c598f51875aec",			
				"password"eyJhbGciOiJIUzl1NilsInR5c			
				CI6lkpXVCJ9.eyJ1c2VySWQiOil2NDI5Y			
				jhjNWE4NGM1OThmNTE4NzVhZWMi			
				LCJ1c2VyVHlwZSI6WyJhcHAiXSwiZX			
				hwljoxNzExOTkxODc3fQ.kPCfAssYWj			
				W_L0t7sgMJBFm0JonBEgY53fcklQnJ			
				VAk"			
				}			
3	applic	Write	6429b8c5a84c	{	Not allow	Forbidden	Pass
	ation		598f51875aec	"username":		[write its	
				"6429b8c5a84c598f51875aec",		topic]	
				"password"eyJhbGciOiJIUzl1NilsInR5c			
				CI6lkpXVCJ9.eyJ1c2VySWQiOil2NDI5Y			
				jhjNWE4NGM1OThmNTE4NzVhZWMi			
				LCJ1c2VyVHlwZSI6WyJhcHAiXSwiZX			
				hwljoxNzExOTkxODc3fQ.kPCfAssYWj			
				W_L0t7sgMJBFm0JonBEgY53fcklQnJ			
				VAk"			
				}			
4	applic	Write	smartPulz	{	Not allow	Forbidden	Pass
	ation			"username":			

		"6429b8c5a84c598f51875aec",		
		"password"eyJhbGciOiJlUzl1NilsInR5c		
		Cl6lkpXVCJ9.eyJ1c2VySWQiOil2NDl5Y		
		jhjNWE4NGM1OThmNTE4NzVhZWMi		
		LCJ1c2VyVHlwZSI6WyJhcHAiXSwiZX		
		hwljoxNzExOTkxODc3fQ.kPCfAssYWj		
		W_L0t7sgMJBFm0JonBEgY53fcklQnJ		
		VAk"		
		}		

จากการทดสอบการ authentication และ authorization ของ kafka clusterได้ผลลัพธ์ดัง ตารางที่ 6 โดยสามารถสรุปได้ว่าระบบทำงานได้อย่างถูกต้องตรงตาม functional requirement

5.3.5.การทดสอบ MQTT-Bridge

ตารางที่ 7 ผลการทดสอบ MQTT-Bridge

ID	use case	Input	Expected output	Pass/Fail
1	send 10 data	Topic: wrongTopic	-	Pass
		{		
		"device_id": "SN-2005-0009",		
		"temperature": 10		
		} * 10 differently		
2	send 100 data	Topic: wrongTopic	-	Pass
		{		
		"device_id": "SN-2005-0009",		
		"temperature": 10		
		} * 100 differently		
3	send 10 data	Topic: newDevice2	Topic: newDevice2	Pass
		{	{	
		"device_id": "SN-2005-0009",	"device_id": "SN-2005-0009",	
		"temperature": 10	"temperature": 10	
		} * 10 differently	} * 100 differently	
4	send 100 data	Topic: newDevice2	Topic: newDevice2	Pass
		{	{	
		"device_id": "SN-2005-0009",	"device_id": "SN-2005-0009",	
		"temperature": 10	"temperature": 10	
		} * 100 differently	} * 100 differently	
5	send 10 data + trigger 2	Topic: wrongTopic	-	Pass
		{		
		"device_id": "SN-2005-0009",		

		"temperature": 10		
		} * 10 differently		
6	send 10 data + trigger 8	Topic: wrongTopic	-	Pass
	33	\ \{		
		"device id": "SN-2005-0009",		
		"temperature": 10		
		} * 10 differently		
7	send 100 data + trigger	Topic: wrongTopic	-	Pass
	5	{		
		"device id": "SN-2005-0009",		
		"temperature": 10		
		} * 100 differently		
8	send 100 data + trigger	Topic: wrongTopic	-	Pass
	10	{		
		"device_id": "SN-2005-0009",		
		"temperature": 10		
		} * 100 differently		
9	send 100 data + trigger	Topic: wrongTopic	-	Pass
	15	{		
		"device_id": "SN-2005-0009",		
		"temperature": 10		
		} * 100 differently		
5	send 10 data + trigger 2	Topic: wrongTopic	Topic: wrongTopic	
		{	{	
		"device_id": "SN-2005-0009",	"device_id": "SN-2005-0009",	
		"temperature": 10	"temperature": 10	
		} * 10 differently	} * 10 differently	
6	send 10 data + trigger 8	Topic: wrongTopic	Topic: wrongTopic	
		{	{	
		"device_id": "SN-2005-0009",	"device_id": "SN-2005-0009",	
		"temperature": 10	"temperature": 10	
		} * 10 differently	} * 10 differently	
7	send 100 data + trigger	Topic: wrongTopic	Topic: wrongTopic	
	5	{	{	
		"device_id": "SN-2005-0009",	"device_id": "SN-2005-0009",	
		"temperature": 10	"temperature": 10	
		} * 100 differently	} * 100 differently	
8	send 100 data + trigger	Topic: wrongTopic	Topic: wrongTopic	
	10	{	{	
		"device_id": "SN-2005-0009",	"device_id": "SN-2005-0009",	

		"temperature": 10	"temperature": 10
		} * 100 differently	} * 100 differently
9	send 100 data + trigger	Topic: wrongTopic	Topic: wrongTopic
	15	{	{
		"device_id": "SN-2005-0009",	"device_id": "SN-2005-0009",
		"temperature": 10	"temperature": 10
		} * 100 differently	} * 100 differently
10	10 device not authen	Topic: wrongTopic	-
	SASL to kafka	{	
		"device_id": "SN-2005-0009",	
		"temperature": 10	
		} * 10 differently	
11	1 device not authen	Topic: wrongTopic	Topic: wrongTopic
	SASL to kafka +	{	{
	9 device authen SASL to	"device_id": "SN-2005-0009",	"device_id": "SN-2005-0009",
	kafka	"temperature": 10	"temperature": 10
		} * 10 differently	} * 9 differently
11	5 device not authen Topic: wrongTopic		Topic: wrongTopic
	SASL to kafka +	{	{
	45 device authen SASL	"device_id": "SN-2005-0009",	"device_id": "SN-2005-0009",
	to kafka	"temperature": 10	"temperature": 10
		} * 50 differently	} * 50 differently

จากการทดสอบการทำงานของ MQTT-Bridge ได้ผลลัพธ์ดังตารางที่ 7 โดยสามารถสรุปได้ว่า ระบบทำงานได้อย่างถูกต้องตรงตาม functional requirement

5.3.6.ผลการ load testing web service

คณะผู้จัดทำได้ทำการ load testing ในส่วนของ endpoint POST /apis/app/medical-data โดย generate request throughput ที่ 100 requests/sec และขนาดของ response body อยู่ที่ 60 data points เนื่องจากในการใช้งานจริงผู้ใช้ไม่ควรขอข้อมูลย้อนหลังครั้งละมากๆ แต่ควรทำ paging และขอข้อมูลหลาย ๆ ครั้งแทน เพื่องานต่อการจัดการข้อมูล

จากการ deploy web service cluster จะมี instance ที่รัน web service ทั้งหมด 3 เครื่อง เพราะฉะนั้น throughput ของแต่ละเครื่องจะเฉลี่ยอยู่ที่ 100/3 คือประมาณ 33.34 requests/sec และผลการทดสอบของระบบนั้นเมื่อ generate throughput โดยเฉลี่ยที่ 36.4 requests/sec ได้ผลดังตารางที่ 8

ตารางที่ 8 ผลการทำ load testing web service

measurement	mean	med	min	max	P95
http request	774.25	808.25	515.48	1170	1000
duration (ms)					
http waiting	773.37	807.51	514.81	1170	1000
time (ms)					

5.3.7.ผลการทดสอบการให้ข้อมูลแบบ real-time

ในโรงพยาบาลจะมีจำนวนห้อง CPU ประมาณ 40 ห้อง และในแต่ละห้องจะมีอุปกรณ์ ประมาณ 5 เครื่อง แสดงว่าใน 1 โรงพยาบาลจะมีอุปกรณ์ 200 เครื่อง โดยจะ assume ว่า 1 อุปกรณ์ คือ 1 application จะได้ว่ามีทั้งหมด 200 requests จากนั้น bound up โดยการคูณ 2 เป็น 400 requests ดังนั้น ในการทดสอบคณะผู้จัดทำจึงได้ load testing ระบบโดยให้มี requests จำนวน 400 requests ซึ่งได้ผลลัพธ์ดังตารางที่ 9

ตารางที่ 9 ผลการทดสอบการขอข้อมูลแบบ real-time

ครั้งที่	Average waiting time
1	1.051 s
2	1.048 s
3	1.028 s
4	1.051 s
5	1.048 s
6	1.045 s
7	1.026 s
8	1.048 s
9	1.026 s
10	1.026 s

6. ผลกระทบทางสังคมของโครงการ

ทางผู้จัดทำได้ทำการพิจารณาผลกระทบทางสังคมที่จะเกิดจากโครงการที่กำลังพัฒนาขึ้นนี้ โดยจากการ วิเคราะห์ได้ผลกระทบทางบวกออกมาดังนี้

- 6.1. เกิดแหล่งข้อมูลความรู้ทางด้านสุขภาพของประเทศไทยในอนาคต สามารถนำข้อมูลมาวิเคราะห์แนวโน้ม สุขภาพของคนไทย
- 6.2. ช่วยให้การรักษาทางไกลสามารถทำได้อย่างมีประสิทธิภาพมากขึ้น ทำให้ช่วยเพิ่มพื้นที่สำหรับผู้ป่วย ฉุกเฉินในโรงพยาบาล ลดความแออัดของผู้ป่วย
- 6.3. ลดงบประมาณในการดูแลระบบฐานของข้อมูลของแต่ละโรงพยาบาลรัฐบาล เนื่องจากแพลตฟอร์มจะ เป็นศูนย์กลางในการรวบรวมข้อมูล

7. บทสรุปและงานที่จะทำต่อไป

7.1. บทสรุป

ระบบที่สร้างขึ้นเป็นระบบต้นแบบที่แสดงให้เห็นว่าข้อมูลจากอุปกรณ์ทางการแพทย์สามารถส่งไปยัง ระบบคลาวน์ทั้งผ่าน MQTT และ Kafka จากนั้นจะมีการจัดเก็บข้อมูล และส่งไปยัง application ต่าง ๆ ที่มา subscribe เพื่อขอข้อมูลทั้งแบบย้อนหลังและ real-time อีกทั้งยังมี dashboard สำหรับนักพัฒนาและแอด มินเพื่อจัดการข้อมูลต่าง ๆ นอกจากนี้ยังมีระบบ logging สำหรับการตรวจติดตามการทำงาน

7.2. อภิปรายผล

7.2.1.อภิปรายเรื่องกรณีระบบเครือข่ายของโรงพยาบาลขัดข้อง

เมื่อเครือข่ายของโรงพยาบาลขัดข้อง ข้อมูลจากอุปกรณ์ในโรงพยาบาลจะไม่สามารถถูกส่งมา ที่ระบบกลางของเราได้ แต่ในแต่ละอุปกรณ์จะมีหน่วยความจำที่ใช้เก็บสำรองข้อมูล เมื่อเครือข่าย กลับมาปกติจะมีการส่งข้อมูลที่สำรองไว้เข้าสู่ระบบ โดยในการใช้จริงจะมีการติดตั้ง private cloud ที่ โรงพยาบาล ซึ่งหากเครือข่ายขัดข้องผู้ให้บริการ cloud จะเป็นคนรับผิดชอบในส่วนนี้ 7.2.2.อภิปรายเรื่องการติดต่อขอข้อมูล

กรณีขอข้อมูลจากภายในโรงพยาบาล (อยู่ในเครือข่ายเดียวกัน) ระบบภายในจะติดต่อกับ web service ผ่าน load balancer โดย IP ของ load balancer จะเป็น private IP

กรณีขอข้อมูลจากภายนอกโรงพยาบาล (อยู่ในคนละเครือข่าย) ระบบภายในจะติดต่อกับ web service ผ่าน load balancer โดย IP ของ load balancer จะเป็น public IP 7.2.3.อภิปรายเรื่องฐานข้อมูล

ระบบปัจจุบันมีการใช้ MongoDB เป็นฐานข้อมูล เพราะเป็น NoSQL ทำให้ง่ายต่อการ เปลี่ยนแปลงโครงสร้างของข้อมูล รองรับ use case การใช้งานในปัจจุบัน สามารถ deploy และ scale ได้ง่าย โดยหากในอนาคตมีขนาด traffic เพิ่มขึ้น และต้องจัดการกับข้อมูลขนาดใหญ่ อาจมีการทำ indexing และ sharding เพื่อเพิ่มประสิทธิภาพการทำงาน หรือหากมีกรณีการใช้งานที่ต้องการใช้ ประโยชน์จาก query engine ของ time series database อาจเพิ่ม database ชนิดนี้ เช่น influxDB เข้ามาในระบบ

7.2.4.อภิปรายผลเรื่องการเพิ่มประสิทธิภาพในการอ่านและเขียนของ MongoDB

จาก requirement ระบบจะต้องบันทึกข้อมูลจากอุปกรณ์ทางการแพทย์เป็นจำนวนมาก และใน ส่วนของการส่งข้อมูลให้กับแอปพลิเคชันที่เข้ามาลงทะเบียนนั้นแอปพลิเคชันส่วนใหญ่จะขอข้อมูลภายใน ภูมิภาคของตนเอง จากปัญหาที่กล่าวมาจึงเสนอการเพิ่มประสิทธิภาพของฐานข้อมูลดังนี้

การเพิ่มประสิทธิภาพของเขียนข้อมูลลงฐานข้อมูลควรทำ write replica คือการติดตั้งฐานข้อมูล มากกว่า 1 เครื่องในการจัดการการบันทึกข้อมูล และมีฐานข้อมูล 1 เครื่องในการอ่านข้อมูล

การเพิ่มประสิทธิภาพของการอ่านข้อมูลควรทำ sharding by location ซึ่งในส่วนนี้ควรให้ ข้อมูลกระจายข้อมูลตามภูมิภาค

7.2.5.อภิปรายผลเรื่องการจัดการ topic และ partition ของ Kafka

ระบบปัจจุบันได้ออกแบบ topic กับ partition ดังนี้คือจำนวน topic ขึ้นกับจำนวนโมเดล อุปกรณ์การแพทย์ และจำนวน partition คือ 1 ซึ่งการการออกแบบปัจจุบันนั้นไม่ได้ใช้ความสามารถของ kafka ได้เต็มที่ และความถี่ในการส่งข้อมูลของอุปกรณ์การแพทย์นั้นแตกต่างกัน นอกจากนี้บางรุ่น อุปกรณ์ไม่ได้ถูกนำมาใช้งานกับผู้ป่วยจำนวนมาก จากที่กล่าวมานั้นจะต้องมีบาง topic ที่รับความถี่ของ ข้อมูลที่สูงมากกว่า topic อื่นๆ ซึ่งในส่วนนี้จะให้เกิดปัญหา message imbalance ดังนั้นจึงเสนอวิธีการ พัฒนาประสิทธิภาพการทำงานของระบบ ดังนี้ ใช้ 1 topic ในการรับข้อมูลจากอุปกรณ์การแพทย์ โดย จะมีการตั้งค่าจำนวน default partitions เป็น 5 ซึ่งสามารถเพิ่มจำนวน partition ได้ในอนาคดโดยไม่ ต้องปิดระบบ ผู้ดูแลสามารถตั้งค่าอุปกรณ์ทางการแพทย์และ partition ที่ต้องการข้อมูลผ่าน key โดยจะ มี dashboard สำหรับผู้ดูแลในส่วนของการขอ key เพื่อใช้งาน partiton นั้นๆ โดยผู้ดูแลสามารถเลือก partition ได้ตามความเหมาะสมจาก dashboard ที่แสดงค่าเฉลี่ยความถี่ของข้อความของ partition นั้นๆ และการลงทะเบียนเพื่อรับ key นั้นจำเป็นต้องใส่ค่าความถี่ของข้อความของอุปกรณ์นั้นๆด้วย จากนั้นระบบจะมีการอัพเดตค่าความถี่ของข้อความให้หลังจากลงทะเบียนอุปกรณ์นั้นๆ นอกจากนี้ในส่วน นี้จำเป็นที่จะต้อง scale จำนวน web service ตามจำนวนข้อมูลขาเข้าที่เพิ่มขึ้น 7.2.6.อภิปรายผลเรื่องการตั้งค่า replication factor

จากการศึกษาพบว่าควรตั้งค่า replication factor ไม่มากเกินจำนวน broker ใน cluster และ ไม่ควรมากเกินไป เนื่องจากถ้าทุก instance มี copy partition จำนวนมาก จะทำให้ instance ทุก เครื่องนั้นต้องบันทึก message ลง partition และทำให้เก็บ message ที่ซ้ำซ้อนมากเกินความจำเป็น นอกจากนี้การกระจาย message จาก partition ที่เป็น leader ไปยัง partition ที่เป็น follower ทั้งหมดต้องใช้เวลานานซึ่งในส่วนนี้จะกระทบต่อเวลาในการส่ง acknowledge ไปยัง producer จาก การศึกษา Apache Kafka เสนอให้ใช้ค่า replication factor เป็น 3 และมีจำนวน broker ไม่ต่ำกว่า 3 เครื่อง ซึ่งการกระจาย replicated partition นั้น zookeeper จะกระจาย partition ไปยัง broker ต่างๆให้โดยอัตโนมัติ ซึ่งในส่วนนี้จะมั่นใจได้ว่า replicated partition จะไม่อยู่ใน broker เดียว[29] 7.2.7.อภิปรายผลเรื่องการตั้งค่า log retention ของ Kafka

จาก business requirement ระบบจะมีการเก็บข้อมูลย้อนหลังให้เป็นเวลา 7 วัน และความถี่ ในการส่งข้อมูลคือ 80 messages/วินาที จากการศึกษา Kafka จะมีการเก็บข้อมูลโดยใช้ไฟล์ 3 ไฟล์ นั้น คือ ไฟล์ที่เก็บ message, ไฟล์ที่เก็บ index และ ไฟล์ที่เก็บความสัมพันธ์ระหว่าง timestamp กับ index โดยไฟล์ที่เก็บ message นั้น Kafka จะใช้พื้นที่ 93 bytes ในการเก็บ message header และขนาด ข้อมูลจากอุปกรณ์ทางการแพทย์จะมีขนาด 48 bytes ซึ่งได้เผื่อขนาดเป็น 2 เท่าจากขนาดข้อมูลโดย เฉลี่ย ดังนั้น message จะมีขนาดเป็น 141 bytes เพราะฉะนั้นการเก็บข้อมูลย้อนหลัง 7 วัน และความถี่ ของส่งข้อมูลที่ 80 messages/วินาที นั้นจะต้องใช้พื้นที่ในการเก็บเป็น 48384000 bytes ซึ่งมีขนาด เท่ากับ 48.384 MB นอกจากนี้ไฟล์ที่เก็บ index และไฟล์ที่เก็บความสัมพันธ์ระหว่าง timestamp กับ index ขนาดจะมีความสัมพันธ์กับไฟล์ที่เก็บ messages โดยมีความสัมพันธ์เป็นดังนี้ ถ้าไฟล์ที่เก็บ messages มีขนาด 1 GB นั้นไฟล์ที่เก็บ index จะมีขนาด 2 MB และไฟล์ที่เก็บความสัมพันธ์ระหว่าง timestamp กับ index จะมีขนาด 3 MB จากการคำนวณจะเห็นได้ว่าการเก็บข้อมูลย้อนหลัง 7 วัน โดย ความถี่ของการส่งข้อมูลอยู่ที่ 80 messages/วินาที นั้นใช้พื้นที่เก็บ message น้อยมากเมื่อเปรียบเทียบ กับ instance ที่มีพื้นที่จัดเก็บข้อมูลเป็น 100 GB ซึ่งเป็นขนาดพื้นที่ใช้ในการ deploy kafka cluster ดังนั้นเรื่องการตั้งค่าตัวแปร log.retension.hour เป็น 168 hours ซึ่งเป็นเวลาเท่ากับ 7 วัน นั้น จะ มั่นใจได้ว่า Kafka cluster จะมีพื้นที่ในการเก็บ log เพียงพอแน่นอน

7.2.8.อภิปรายผลเรื่องการประสานการทำงานระหว่าง Kafka กับระบบภายนอก

นอกเหนือจากการที่ให้ผู้ใช้มา subscribe ระบบ ในอนาคตอาจนำ Kafka ในระบบปัจจุบันไป ประสานโดยตรงกับระบบของผู้ใช้โดยใช้ Kafka connector ซึ่งสามารถเชื่อมต่อระบบปัจจุบันกับระบบ ภายนอกได้หลากหลาย เช่น database, data lake, messaging systems เป็นต้น ซึ่งสามารถจัดการ สิทธิการเข้าถึงข้อมูลของระบบภายนอกแต่ละระบบได้โดยใช้ Apache Ranger ที่มีรูปแบบการจัดการ สิทธิการเข้าถึงข้อมูลแบบเข้าสู่ศูนย์กลาง และเป็นแบบ role-base คือ สามารถให้ role กับผู้ใช้แต่ละคน

และให้สิทธิการเข้าถึงข้อมูลต่างกัน นอกจากสามารถลบหรือแก้ไขสิทธิต่าง ๆได้ในอนาคตผ่านทาง web interface ที่ช่วยอำนวยความสะดวกในการใช้งาน

7.3. ข้อจำกัด

- 7.3.1.ระบบปัจจุบันสามารถจัดการกับการส่งข้อมูลแบบ real-time ได้ด้วยข้อมูลขนาดมากกว่าความ ต้องการในปัจจุบัน 2 เท่า โดยถ้าในอนาคตมีความต้องการเพิ่มขึ้นจนเกินกว่าที่ตั้งไว้จะต้องมีการ ปรับ algorithm ในการส่งข้อมูลแบบ real time
- 7.3.2.ระบบปัจจุบันนักพัฒนาไม่สามารถสมัครบัญชีเพื่อเข้าใช้งานด้วยตนเองได้ ต้องติดต่อแอดมินเพื่อ สร้างบัญชี

7.4. แนวทางในการต่อยอดในอนาคต

- 7.4.1.ระบบปัจจุบันรองรับการรับข้อมูลแบบ MQTT และ Kafka ในอนาคตควรพัฒนา REST api เพื่อ รองรับอุปกรณ์ที่หลากหลายมากขึ้น
- 7.4.2.ระบบปัจจุบันมีการทำ docker file เพื่อนำไป deploy บน cloud ในอนาคตควรทำระบบ CI/CD ในการส่งมอบระบบ เพื่อให้ง่ายต่อการ deploy มากขึ้น
- 7.4.3.ระบบปัจจุบันจะมีการ monitor webservice โดยในอนาคตควรมีการ monitor kafka cluster
- 7.4.4.ระบบปัจจุบันมีการใช้ instance 1 เครื่องในการ run MQTT server โดยในอนาคตควรทำ MQTT cluster เพื่อเพิ่ม availability และ reliability
- 7.4.5.ระบบปัจจุบันสามารถวิเคราะห์ข้อมูลจาก dashboard เพียงอย่างเดียว ในอนาคตควรนำข้อมูล ไปทำ Machine learning model
- 7.4.6.ระบบปัจจุบันยังไม่มี integrate health tag เข้าในระบบ ในอนาคตควรเพิ่มเพื่อจัดการกับ user credential

8. เอกสารอ้างอิง

- [1] Google Cloud. (ม.ป.ป.). Google Cloud Pricing Calculator. สืบค้นเมื่อ 3 พฤศจิกายน 2565. จาก. https://cloud.google.com/products/calculator/#id=05c923fb-db28-416f-afdd-527421f6cc5f [2] Hansa Manakitsomboon. (2565). Number of hospitals in Thailand from 2011 to 2020. สืบค้น เมื่อ 3 พฤศจิกายน 2565. จาก. https://www.statista.com/statistics/1114483/thailand-number-of-hospitals/
- [3] HealthTAG. (2565). HealthTAG. สืบค้นเมื่อ 30 ตุลาคม 2565. จาก. https://healthtag.io/th [4] อภิรักษ์ คงคาเพชร. (2560). ความหมาย ความเป็นมา แนวคิด ทฤษฎี ในการคุ้มครองผู้บริโภคที่เกี่ยวกับ เครื่องมือแพทย์ชนิดเต้านมเทียมซิลิโคนใช้ฝังในร่างกาย. สืบค้นเมื่อ 3 พฤศจิกายน 2565. จาก. http://dspace.spu.ac.th/bitstream/123456789/5397/10/10.%E0%B8%9A%E0%B8%97%E0%B8%97%E0%B8%97%E0%B8%97%E0%B8%B5%E0%B9%88%202.pdf
- [5] TIBCO. (ม.ป.ป.). What is Structured Data? สืบค้นเมื่อ 29 ตุลาคม 2565. จาก. https://www.tibco.com/reference-center/what-is-structured-data
- [6] Mongo. (ม.ป.ป.). Unstructured Data. สืบค้นเมื่อ 29 ตุลาคม 2565. จาก. https://www.mongodb.com/unstructured-data
- [7] Pethuru Raj. (2561). A Deep Dive into NoSQL Databases: The Use Cases and Applications. สืบค้นเมื่อ 3 พฤศจิกายน 2565. จาก. https://www.sciencedirect.com/topics/computer-science/messaging-system
- [8] Kafka. (ม.ป.ป.). Introduction. สืบค้นเมื่อ 28 ตุลาคม 2565. จาก. https://kafka.apache.org/intro [9] Sonic Automation. (2563). MQTT กับงาน Industrial Internet of Things (IoT). สืบค้นเมื่อ 28 ตุลาคม 2565. จาก. https://sonicautomation.co.th/mqtt-for-iiot-
- application/#:~:text=MQTT%20(Message%20Queuing%20Telemetry%20Transport,MQTT%20%E0%B8%96%E0%B8%B9%E0%B8%81%E0%B8%9E%E0%B8%B1%E0%B8%92%E0%B8%99%E0%B8%99%E0%B8%B2%E0%B8%B6%E0%B9%89%E0%B8%99%E0%B8%A1%E0%B8%B2
- [10] Confluent. (ม.ป.ป.). Kafka Connect. สืบค้นเมื่อ 28 ตุลาคม 2565. จาก.
- https://docs.confluent.io/platform/current/connect/index.html#kafka-connect
- [11] Team Cleo. (ม.ป.ป.). What Are Web Services? Easy-to-Learn Concepts with Examples. สืบค้น เมื่อ 3 พฤศจิกายน 2565. จาก. https://www.cleo.com/blog/knowledge-base-web-services
- [12] https://medium.com/@Biewz/ความหมายแตกต่างระหว่าง-web-application-และ-web-serviceaa12b992d8ae

[13] RedHat. (2563). What is a REST API? สืบค้นเมื่อ 2 พฤศจิกายน 2565. จาก.

https://www.redhat.com/en/topics/api/what-is-a-rest-api

[14] Google Cloud. (ม.ป.ป.). What is a Data Lake? สืบค้นเมื่อ 2 พฤศจิกายน 2565. จาก.

https://cloud.google.com/learn/what-is-a-data-lake

[15] Oracle. (ม.ป.ป.). What Is a Data Warehouse? สืบค้นเมื่อ 2 พฤศจิกายน 2565. จาก.

https://www.oracle.com/database/what-is-a-data-warehouse/

[16] GO. (ม.ป.ป.). Case studies. สืบค้นเมื่อ 3 พฤศจิกายน 2565. จาก. https://go.dev/solutions/#

[17] MongoDB. (ม.ป.ป.). Why Use MongoDB and When to Use It? สืบค้นเมื่อ 30 ตุลาคม 2565. จาก.

https://www.mongodb.com/why-use-mongodb

[18] Segmentio. (2566). Kafka-go. สืบค้นเมื่อ 19 มกราคม 2566. จาก.

https://pkg.go.dev/github.com/segmentio/kafka-go

[19] Elastic. (ม.ป.ป.). What is Kibana? สืบค้นเมื่อ 25 ตุลาคม 2565. จาก. https://www.elastic.co/what-is/kibana

[20] Elastic. (ม.ป.ป.). Elasticsearch. สืบค้นเมื่อ 25 ตุลาคม 2565. จาก.

https://www.elastic.co/elasticsearch/

[21] Olga Weis. (2564). Differences between Google Cloud Storage and Amazon S3. สืบค้นเมื่อ 1 พฤศจิกายน 2565. จาก. https://cloudmounter.net/amazon-s3-vs-google-cloud-storage/
[22] Google Cloud. (ม.ป.ป.). BigQuery Data Transfer Service API Client Libraries. สืบค้นเมื่อ 26 ตุลาคม 2565. จาก.

https://cloud.google.com/bigquery/docs/reference/datatransfer/libraries#client-libraries-install-go

[23] Techletters. (2564). MQTT and Kafka. สืบค้นเมื่อ 15 มกราคม 2566. จาก.

https://medium.com/python-point/mqtt-and-kafka-8e470eff606b

[24] Suraj Surve. (2564). Why You Should Use React.js For Web Development. สีบค้นเมื่อ 20 มกราคม 2566. จาก. https://www.freecodecamp.org/news/why-use-react-for-web-development/ [25] Codemotion. (2565). Why You Should Use Typescript for Your Next Project. สืบค้นเมื่อ 20 มกราคม 2566. จาก. https://www.codemotion.com/magazine/backend/why-you-should-use-typescript-for-your-next-project

[26] JEST. (ม.ป.ป.). JEST. สืบค้นเมื่อ 25 มีนาคม 2566. จาก.

 $https://jestjs.io/\#: \sim : text = Jest \% 20 is \% 20 a \% 20 Java Script \% 20 testing, extended \% 20 to \% 20 match \% 20 your \% 20 requirements$

[27] Grafana Labs. (ม.ป.ป.). What is K6?. สืบค้นเมื่อ 25 มีนาคม 2566. จาก.

 $https://k6.io/docs/\#: \sim : text = Using \% 20 k 6\% 2C\% 20 you \% 20 can \% 20 test, Grafana \% 20 Labs \% 20 and \% 20 the \% 20 community$

[28] Selenium. (ม.ป.ป.). Selenium automates browsers. สืบค้นเมื่อ 25 มีนาคม 2566. จาก. https://www.selenium.dev/

[29] Main concepts and Terminology สืบค้นเมื่อ 25 มีนาคม 2566. จาก. https://kafka.apache.org/documentation/#intro concepts and terms