

Optika (I)

A. PENDAHULUAN

- New Yorkika adalah ilmu yang mempelajari cahaya.
- Sifat-sifat cahaya:
 - 1) Memiliki cepat rambat $3.0 \times 10^8 \text{ m/s}$.
 - 2) Merupakan gelombang transversal dan elektromagnetik.
 - 3) Merambat dalam arah lurus.
 - 4) Arah rambat tidak dapat dipengaruhi medan magnet atau listrik (tidak bermuatan).
 - 5) Bagian dari spektrum matahari.
- Sifat-sifat cahaya sebagai gelombang elektromagnetik adalah dapat mengalami:
 - 1) Refleksi (pemantulan)
 - 2) Dispersi/refraksi (pembiasan)
 - 3) Difraksi (pelenturan)
 - 4) Interferensi (perpaduan)
 - 5) Polarisasi (pengkutuban)
- 🔦 Cahaya terdiri dari:
 - a. Bayang-bayang (shadow), adalah daerah gelap di sekitar benda, yaitu:
 - Umbra (bayang-bayang inti), tidak mendapat cahaya sama sekali.
 - **Penumbra** (bayang-bayang tambahan), masih mendapat sedikit cahaya.
 - b. Bayangan (image), adalah daerah terang yang berupa sinar pantul atau sinar bias.

PEMANTULAN CAHAYA

- 🔌 Pemantulan cahaya (refleksi) adalah peristiwa perubahan arah rambat cahaya akibat menumbuk medium tertentu.
- 🔪 Pemantulan cahaya pada bidang datar:

a. Pemantulan baur/difus, terjadi permukaan tidak rata dan kasar, intensitas cahaya kurang.

b. Pemantulan terjadi teratur, permukaan yang rata dan licin, intensitas cahaya tinggi.

🔪 Hukum pemantulan cahaya:

Sinar datang, garis normal dan sinar pantul terletak pada satu bidang datar.

Sudut datang (i) cahaya sama dengan sudut pantul (r).

PEMANTULAN CAHAYA PADA CERMIN

- 🔦 **Pemantulan cahaya** pada cermin terbagi menjadi tiga, yaitu pada cermin datar dan cermin lengkung.
- 🔌 Pemantulan cahaya pada cermin menghasilkan dua jenis bayangan:
 - Bayangan sejati/nyata, yaitu bayangan yang berada di depan cermin, dapat ditangkap layar dan terbalik.
 - b. Bayangan maya/semu, yaitu bayangan yang berada di belakang cermin, tidak dapat ditangkap layar dan tegak/sejajar.
- Nermin datar adalah cermin yang permukaannya tidak melengkung (datar).
- 🔪 Sifat bayangan yang dihasilkan oleh cermin datar:
 - a. Sama besar dengan benda asli
 - b. Jarak benda sama dengan jarak bayangan
 - Posisi bayangan tertukar secara horizontal
 - d. Maya/semu
 - e. Tegak/sejajar
- 🔪 **Apabila** terdapat dua cermin datar yang diapit membentuk sudut, akan terbentuk lebih dari satu bayangan.

Jumlah bayangan yang dapat terbentuk:

$$\mathbf{n} = \frac{\mathbf{360}}{\mathbf{\alpha}} - \mathbf{x}$$

$$\mathbf{n} = \frac{\mathbf{360}}{\mathbf{\alpha}} - \mathbf{x}$$

$$\mathbf{n} = \frac{\mathbf{360}}{\mathbf{x}} - \mathbf{x}$$

$$\mathbf{n} = \frac{\mathbf{360}}{\mathbf{x}} + \mathbf{x}$$

 α = sudut apit cermin

x = 1, jika hasil bagi genap x = 0, jika hasil bagi ganjil

🔪 **Apabila** seseorang ingin bercermin sehingga seluruh bagian tubuhnya terlihat, maka tinggi cermin minimal adalah:

 $hcermin = \frac{1}{2} x hbenda$

- Cermin lengkung terdiri dari cermin cekung dan cermin cembung.
- ▶ Pada cermin lengkung, terdapat beberapa titik, yaitu titik fokus (f) dan pusat kelengkungan (R). Kedua titik tersebut terletak pada sumbu utama. Nilai jarak fokus dan jari-jari kelengkungan adalah:

$$f = \frac{1}{2}R$$
 $R = 2f$

- Cermin cekung adalah cermin yang permukaannya melengkung ke dalam dan mengumpulkan berkas sinar (konvergen).
- Nuangan pada cermin cekung:

Sifat bayangan yang dihasilkan cermin cekung dapat bermacam-macam. Sifat bayangan ditentukan oleh **ruangan cermin**.

Sifat bayangan:

Benda	Bayangan	Sifat bayangan
I	IV	maya, tegak, diperbesar
П	III	sejati, terbalik, diperbesar
Ш	II	sejati, terbalik, diperkecil
f	∞	-
R	R	sejati, terbalik, sama besar

- a. Penjumlahan ruang benda dengan ruang bayangan adalah 5.
- b. Jika ruang bayangan > ruang benda, maka bayangan diperbesar, dan sebaliknya.
- Sinar-sinar istimewa cermin cekung:

- a. Sinar yang datang sejajar sumbu utama akan dipantulkan menuju f.
- b. Sinar yang datang melalui f akan dipantulkan sejajar sumbu utama.
- c. Sinar yang datang melalui R akan dipantulkan kembali ke tempat awal.
- Cermin cembung adalah cermin yang permukaannya melengkung ke luar dan menyebarkan berkas sinar (divergen).

🔦 Ruangan pada cermin cembung:

Karena benda selalu berada pada satu ruangan, maka sifat bayangan tidak bermacam-macam.

Sifat bayangan adalah maya/semu, tegak/sejajar dan diperkecil.

Sinar-sinar istimewa pada cermin cembung:

- a. Sinar yang datang sejajar sumbu utama akan dipantulkan seolah-olah dari f.
- b. Sinar yang datang menuju f akan dipantulkan sejajar sumbu utama.
- c. Sinar yang datang menuju R akan dipantulkan kembali ke tempat awal.
- Nersamaan cermin lengkung adalah:

Pada cermin cembung, nilai f dan s' adalah negatif, sehingga persamaan cermin lengkungnya menjadi:

$$-\frac{1}{f} = \frac{1}{s} + \frac{1}{s'}$$

▶ Perbesaran benda pada cermin lengkung dapat dirumuskan:

$$\mathbf{M} = \left| \frac{\mathbf{s'}}{\mathbf{s}} \right| = \left| \frac{\mathbf{h'}}{\mathbf{h}} \right|$$
 $\mathbf{M} = \text{perbesaran benda}$
 $\mathbf{h} = \text{tinggi benda}$
 $\mathbf{h'} = \text{tinggi bayangan}$

D. PEMBIASAN CAHAYA

- Pembiasan cahaya adalah peristiwa pembelokan arah rambat cahaya jika cahaya melewati bidang batas dua medium yang berbeda kerapatannya.
- Nukum pembiasan cahaya (Snellius):

Sinar datang, garis normal dan sinar bias terletak pada satu bidang datar.

Sinar datang dari medium kurang rapat ke lebih rapat dibiaskan mendekati garis normal, dan sebaliknya.

E. PEMBIASAN CAHAYA OLEH LENSA

- Pembiasan cahaya terjadi oleh lensa cembung (positif) dan lensa cekung (negatif).
- ▶ Pembiasan cahaya pada lensa menghasilkan dua jenis bayangan:
 - a. Bayangan sejati/nyata, yaitu bayangan yang berada di belakang lensa, tidak dapat ditangkap layar dan tegak/sejajar.
 - Bayangan maya/semu, yaitu bayangan yang berada di depan lensa, dapat ditangkap layar dan terbalik.

Jadi, sifat bayangan dari sinar bias **berlawanan** dengan sifat yang bayangan dari sinar pantul.

Jarak fokus lensa dipengaruhi oleh jari-jari kelengkungan dan indeks bias medium dan lensa.
Jarak fokus lensa dapat dihitung:

$$\frac{1}{f} = \left[\frac{n_L}{n_M} - 1\right] \left[\frac{1}{R_1} + \frac{1}{R_2}\right]$$

f = jarak fokus lensa

n_L = indeks bias lensa

n_M = indeks bias medium

 R_1 = jari-jari kelengkungan sisi depan

R₂ = jari-jari kelengkungan sisi belakang

- Lensa cembung/positif adalah lensa yang setidaknya memiliki satu sisi cembung dan dan bersifat mengumpulkan berkas sinar (konvergen).
- Macam-macam lensa cembung:

🦠 Ruangan pada lensa cembung/positif:

Sifat bayangan:

- a. Penjumlahan ruang benda dengan ruang bayangan adalah 5.
- b. Jika ruang bayangan > ruang benda, maka bayangan diperbesar.

Benda	Bayangan	Sifat bayangan
I	IV	maya, tegak, diperbesar
П	III	sejati, terbalik, diperbesar
III	II	sejati, terbalik, diperkecil
f	∞	-
R	R	sejati, terbalik, sama besar

Sinar-sinar istimewa pada lensa cembung:

- a. Sinar yang datang sejajar sumbu utama dibiaskan ke f'.
- b. Sinar datang melalui pusat optik tidak dibiaskan.
- c. Sinar datang melalui f utama dibiaskan sejajar sumbu utama.
- ► Lensa cekung/negatif adalah lensa yang setidaknya memiliki satu sisi cekung dan ber-sifat menyebarkan berkas sinar (divergen).
- Macam-macam lensa cekung:

Nuangan pada lensa cembung/positif:

Sifat bayangan adalah maya/semu, tegak/sejajar dan diperkecil.

Sinar-sinar istimewa pada lensa cembung:

- Sinar yang datang sejajar sumbu utama dibiaskan seolah-olah dari f utama.
- b. Sinar datang melalui pusat optik tidak dibiaskan.
- c. Sinar datang menuju f' dibiaskan sejajar sumbu utama.
- 🔪 **Lensa** dapat disusun menjadi tiga:
 - 1) Lensa tunggal
 - 2) Lensa gabungan berjarak
 - 3) Lensa gabungan tidak berjarak

Nersamaan lensa adalah:

$$\frac{1}{f} = \frac{1}{s} + \frac{1}{s'}$$

f = jarak fokus

s = jarak benda

s' = jarak bayangan

Pada lensa cekung, nilai f dan s' adalah negatif, sehingga persamaan lensanya menjadi:

$$-\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}$$

Perbesaran benda pada lensa dapat dirumuskan:

$$M = \left| \frac{s'}{s} \right| = \left| \frac{h'}{h} \right|$$

M = perbesaran benda h = tinggi benda

h' = tinggi bayangan

🔪 **Daya lensa** adalah ukuran kemampuan dan kekuatan lensa untuk menyebarkan mengumpulkan berkas sinar, dapat dirumuskan:

$$P = \frac{1}{f}$$

P = daya lensa (Dioptri)

f = jarak fokus lensa (m)

- 🔪 **Dua lensa** berjarak yang dijajarkan akan membentuk persamaan lensa baru.
- Nersamaan 🔪 lensa untuk lensa gabungan berjarak:

Lensa 1

Lensa 2

$$\frac{1}{f_2} = \frac{1}{s_2}$$

- 🔪 Panjang tubus atau jarak antar lensa dapat dihitung:

$$d = s'_{ob} + s_{ok}$$

Lensa 1

$$M_1 = \left| \frac{s'_1}{s_1} \right|$$

$$M_2 = \left| \frac{s'_2}{s_2} \right|$$

Perbesaran total

$$M = M_1 \times M_2$$