GETTING TO KNOW THE CARDINALS

Notes on Akihiro Kanamori's The Higher Inifite

 $\begin{array}{c} & & \\$

0 Preliminaries

Definition 0.1. For $X \subseteq \text{On}$, γ is a limit point of X iff $\bigcup (X \cap \gamma) = \gamma > 0$

Notice that a limit point is necessarily a limit ordinal: if $\gamma = \alpha + 1$ then $\bigcup \gamma = \alpha$ and we have $\bigcup (X \cap \gamma) \subseteq \bigcup \gamma = \alpha < \gamma$.

Definition 0.2. C is closed unbounded in δ iff C is an unbounded subset of δ containing all its limit points less than δ .

These sets are also called *club* sets. Here C is unbounded in δ iff for all $x \in \delta$ there exists $y \in C$ such that $x \leq y$ (the alternative would have x < y). Equivalently, $\sup(C) = \sup(\delta)$. Also equivalently, C is cofinal in δ .

Definition 0.3. For regular $\nu < \delta$, C is ν -closed unbounded in δ iff C is an unbounded subset of δ containing all its limit points less than δ of cofinality ν .

Definition 0.4. For limit ordinals δ , S is stationary in δ iff $S \subseteq \delta$ and $S \cap C \neq \emptyset$ for any C closed unbounded in δ .

Definition 0.5. If $\langle X_{\alpha} \mid \alpha < \delta \rangle \in {}^{\delta}\mathcal{P}(\delta)$, then its diagonal intersection is $\{\xi < \delta \mid \xi \in \bigcap_{\alpha < \xi} X_{\alpha}\}$, denoted $\triangle_{\alpha < \delta} X_{\alpha}$.

Definition 0.6. For $X \subseteq \text{On}$ and $f: X \to \text{On}$, f is regressive iff $f(\alpha) < \alpha$ for every $\alpha \in X - \{\emptyset\}$.

Proposition 0.7. Suppose that $\lambda > \omega$ is regular.

- (a) If $\gamma < \lambda$ and $\langle C_{\alpha} \mid \alpha < \gamma \rangle$ is a sequence of sets closed unbounded in λ , then $\bigcap_{\alpha < \gamma} C_{\alpha}$ is closed unbounded in λ .
- (b) If $\langle C_{\alpha} \mid \alpha < \lambda \rangle$ is a sequence of sets closed unbounded in λ , then its diagonal intersection $\triangle_{\alpha < \lambda} C_{\alpha}$ is closed unbounded in λ .
- (c) (Fodor) If S is stationary in λ and $f: S \to \lambda$ is regressive, then there is an $\alpha < \lambda$ such that $f^{-1}(\{\alpha\})$ is stationary in λ .
- (d) If $\nu < \lambda$ is regular, $S \subseteq \{\xi < \lambda \mid \operatorname{cf}(\xi) = \nu\}$ is stationary in λ , and C is ν -closed unbounded in λ , then $S \cap C \neq \emptyset$.

Proof. (a) Let $C = \bigcap_{\alpha < \gamma} C_{\alpha}$. First, we show C is closed. Notice for all sets X and ordinals β , $\sup(\beta \cap X) \leq \beta$. Suppose $\sup(\delta \cap C) = \bigcup \delta \cap C = \delta$. Then for all $\alpha < \gamma$, $(\delta \cap C) \subseteq (\delta \cap C_{\alpha})$. Thus $\delta = \sup(\delta \cap C) \leq \sup(\delta \cap C_{\alpha}) \leq \delta$. Hence $\sup(\delta \cap C_{\alpha}) = \delta$. Hence δ is a limit point and since each C_{α} is closed, $\delta \in C_{\alpha}$ for all $\alpha < \gamma$. Thus $\delta \in C$. Hence C is closed.

Now we show C is unbounded. Fix $\beta < \lambda$. Define $b_0 = \beta$. Given $b_n < \lambda$ for $n < \omega$, for each α choose $b_{\alpha,n} \in C_{\alpha}$ such that $b_{\alpha,n} \geq b_n$. Define $b_{n+1} = \sup\{b_{\alpha,n} \mid \alpha < \gamma\}$. Since λ is regular and $\gamma < \lambda$, $b_{n+1} < \lambda$. Thus, by unboundedness of each C_{α} , we can define the sequence $\{b_n \mid n < \omega\}$. For each α , $b_0 \leq b_{\alpha,0} \leq b_1 \leq b_{\alpha,1} \leq \cdots$, thus $\delta = \sup\{b_n \mid n < \omega\} = \sup\{b_{\alpha,n} \mid n < \omega\}$. Furthermore, since $\lambda > \omega$ regular, $\delta < \lambda$. If $\delta = b_{\alpha,n}$ for some n then for all m+1 > n and for all $\alpha < \gamma$, $\delta \leq b_{\alpha,m} \leq b_m \leq \delta$. Hence for all α , $\delta \in C_{\alpha}$. Thus we have $\delta \in C$ with $\delta \geq \beta$. Otherwise, δ is a limit ordinal and, for all α , we

have $\delta = \sup(\delta \cap \{b_{\alpha,n} \mid n < \omega\}) \le \sup(\delta \cap C_{\alpha}) \le \delta$. Hence δ is a limit point less than λ for each C_{α} and, by closedness, $\delta \in C_{\alpha}$. Hence we have $\delta \in C$ with $\delta \ge \beta$. Thus C is unbounded. Thus C is closed unbounded in λ .