МАТЕМАТИЧЕСКО МОДЕЛИРАНЕ В ЕПИДЕМИОЛОГИЯТА

Божидар Димитров и Марио Ничев

Епидемология

Какво представлява?

Изучава причините и разпространението на зарази.

Използват се математически модели за анализ на прогреса на болестта.

Моделите помагат за изучаване на възникването на епидемия, предаването на заразата, анализ на минали епидемии, както и превенция и контрол.

Известни епидемии

Атинската чума -Гърция 429-426г. пр.Хр.

Юстиниановата чума - Източна Римска империя 541-542г.

Черна смърт - Европа 1346 - 1353 г.

Голямата чума в Лондон - 1665-1666г.

Испански грип - целия свят 1918г.

SIR Модела

Susceptible Infected Removed

Разделителен модел създаден от Kermack & McKendrick.

Населението се разделя на групи.

В хода на епидемията индивидите преминават от една група в друга.

Интересуваме се от скоростта на преминаването от една група в друга.

Анализ на SIR модела

N - общия брой на населението

$$N = S + I + R$$

В - шанс за предаване на заразата

α - скорост на преминаване от I в R

Симулацията приключва, когато S или I достигне 0.

$$S' = -\beta SI$$

$$I' = \beta SI - \alpha I$$

$$R' = \alpha I$$

Basic Reproduction Number

$$I' = \beta SI - \alpha I$$

$$I' = (\beta S - \alpha)I$$

Максимумът на I се достига при $S=\alpha/\beta$ I расте при $S>\alpha/\beta$ I намалява при $S<\alpha/\beta$ R_0 - колко нови зарази ще предизвика един болен

$$R_0 = \alpha S_0/\beta$$
 $R_0 < 1$ – няма епидемия $R_0 > 1$ – има епидемия

Демо

Въпроси?

Контакти

Марио Ничев

mario.nitchev@gmail.com

Благодаря за вниманието

Божидар Димитров

bojo1195@gmail.com