Методы поиска ассоциативных правил

K. B. Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ • 7 ноября 2020

Содержание

- 📵 Задачи поиска ассоциативных правил
 - Определения и обозначения
 - Прикладные задачи
 - Связь с логическими закономерностями
- Алгоритм APriory
 - Этап 1: поиск частых наборов
 - Этап 2: выделение ассоциативных правил
 - Развитие алгоритмов индукции ассоциативных правил
- 3 Алгоритм FP-Growth
 - Этап 1: построение префиксного FP-дерева
 - Этап 2: поиск частых наборов по FP-дереву
 - Эффективность алгоритма FPGrowth

Определения и обозначения

X — пространство объектов $X^{\ell} = \{x_1, \dots, x_{\ell}\} \subset X$ — обучающая выборка $\mathscr{F} = \{f_1, \dots, f_n\}, \ f_j \colon X \to \{0,1\}$ — бинарные признаки (items)

Каждому подмножеству $\varphi\subseteq\mathscr{F}$ соответствует конъюнкция

$$\varphi(x) = \bigwedge_{f \in \varphi} f(x), \quad x \in X$$

Если arphi(x)=1, то «признаки из arphi совместно встречаются у x»

Частота встречаемости (поддержка, support) arphi в выборке X^ℓ

$$\nu(\varphi) = \frac{1}{\ell} \sum_{i=1}^{\ell} \varphi(x_i)$$

Если $\nu(\varphi)\geqslant \delta$, то «набор φ частый» (frequent itemset) Параметр δ — минимальная поддержка, MinSupp

Определения и обозначения

Определение

Ассоциативное правило (association rule) $\varphi \to y$ — это пара непересекающихся наборов $\varphi, y \subseteq \mathscr{F}$ таких, что: 1) наборы φ и у совместно часто встречаются,

$$\nu(\varphi \cup y) \geqslant \delta;$$

2) если встречается φ , то часто встречается также и y,

$$\nu(y|\varphi) \equiv \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \geqslant \varkappa.$$

 $\nu(y|\varphi)$ — значимость (confidence) правила.

Параметр δ — минимальная поддержка, MinSupp.

Параметр \varkappa — минимальная значимость, MinConf.

Классический пример

Анализ рыночных корзин (market basket analysis) [1993]

признаки — товары (предметы, items) объекты — чеки (транзакции)

 $f_j(x_i)=1$ — в i-м чеке зафиксирована покупка j-го товара.

Пример: «если куплен хлеб φ , то будет куплено и молоко y с вероятностью $\nu(y|\varphi)=60\%$; причём оба товара покупаются совместно с вероятностью $\nu(\varphi\cup y)=2\%$ ».

Возможные применения:

- оптимизировать размещение товаров на полках,
- формировать персональные рекомендации,
- планировать рекламные кампании (промо-акции),
- более эффективно управлять ценами и ассортиментом.

Ассоциативные правила — это логические закономерности

Определение

Предикат $\varphi(x)$ — логическая закономерность класса $c \in Y$

$$\mathsf{Supp}(\varphi) = \frac{p(\varphi)}{\ell} \geqslant \delta; \qquad \mathsf{Conf}(\varphi) = \frac{p(\varphi)}{p(\varphi) + n(\varphi)} \geqslant \varkappa$$

$$p(arphi) = \# ig\{ x_i \in X^\ell \colon arphi(x_i) = 1 \ \text{и} \ y(x_i) = c ig\} \quad +$$
 примеры класса с $n(arphi) = \# ig\{ x_i \in X^\ell \colon arphi(x_i) = 1 \ \text{и} \ y(x_i) \neq c ig\} \quad -$ примеры класса с

Для «arphi o y» возьмём целевой признак $y(x) = \bigwedge_{f \in y} f(x)$. Тогда

$$\nu(\varphi \cup y) \equiv \mathsf{Supp}_1(\varphi) \geqslant \delta; \quad \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \equiv \mathsf{Conf}_1(\varphi) \geqslant \varkappa$$

Вывод: различия двух определений — чисто терминологические

Два этапа построения правил. Свойство антимонотонности

Поскольку $\varphi(x) = \bigwedge_{f \in \varphi} f(x)$ — конъюнкция, имеет место

свойство антимонотонности:

для любых $\psi, \varphi \subset \mathscr{F}$ из $\varphi \subset \psi$ следует $\nu(\varphi) \geqslant \nu(\psi)$.

Следствия:

- $oldsymbol{0}$ если ψ частый, то все его подмножества $arphi\subset\psi$ частые.
- $oldsymbol{arphi}$ если arphi не частый, то все наборы $\psi\supsetarphi$ также не частые.
- **3** $\nu(\varphi \cup \psi) \leqslant \nu(\varphi)$ для любых φ, ψ .

Два этапа поиска ассоциативных правил:

- поиск частых наборов (многократный просмотр транзакционной базы данных).
- выделение ассоциативных правил (простая эффективная процедура в оперативной памяти).

Алгоритм APriory (основная идея — поиск в ширину)

```
вход: X^{\ell} — обучающая выборка; \delta = \text{MinSupp}; \quad \varkappa = \text{MinConf};
выход: R = \{(\varphi, y)\} — список ассоциативных правил;
множество всех частых исходных признаков:
 G_1 := \{ f \in \mathscr{F} \mid \nu(f) \geqslant \delta \};
для всех j = 2, \ldots, n
    множество всех частых наборов мощности j:
      G_i := \{ \varphi \cup \{f\} \mid \varphi \in G_{i-1}, \ f \in G_1 \setminus \varphi, \ \nu(\varphi \cup \{f\}) \geqslant \delta \};
    если G_i = \emptyset то
     выход из цикла по j;
R := \varnothing:
для всех \psi \in G_i, j = 2, \ldots, n
 AssocRules (R, \psi, \varnothing);
```

Выделение ассоциативных правил

Этап 2. Простой рекурсивный алгоритм, выполняемый быстро, как правило, полностью в оперативной памяти.

```
функция AssocRules (R, \varphi, y)
     вход: (\varphi, y) — ассоциативное правило;
     выход: R — список ассоциативных правил:
     для \operatorname{\mathbf{BCex}} f \in \varphi \colon \operatorname{id}_f > \max_{g \in \mathcal{Y}} \operatorname{id}_g (чтобы избежать повторов y)
         \varphi' := \varphi \setminus \{f\}; \quad y' := y \cup \{f\};
      если \nu(y'|\varphi') \geqslant \varkappa то
     добавить ассоциативное правило (\varphi',y') в список R; если |\varphi'|>1 то
                 AssocRules (R, \varphi', y');
```

 id_f — порядковый номер признака f в $\mathscr{F} = \{f_1, \dots, f_n\}$

Модификации алгоритмов индукции ассоциативных правил

- Более эффективные структуры данных для быстрого поиска частых наборов.
- Поиск правил по случайной подвыборке объектов при пониженных δ, κ , проверка правил на полной выборке.
- Иерархические алгоритмы, учитывающие иерархию признаков (например, товарное дерево).
- Учёт времени: инкрементные и декрементные алгоритмы.
- Учёт времени: поиск последовательных шаблонов (sequential pattern).
- Учёт информации о клиентах.

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	риі	ца,	, ℓ	=	10	слова
a	-	_	d	_	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	_	d	-	-	-	d b
-	b	С	d	-	-	-	dbc
-	b	С	-	-	-	-	bс
a	b	_	d	-	-	-	dba
-	b	_	d	е	-	-	dbe
-	b	С	-	е	-	g	ъсе
-	-	С	d	-	f	-	dс
a	b	-	d	-	-	_	dba

(корень $\it v_0$ не показан)

Упорядочим все признаки $f\in \mathscr{F}$: $u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	ри	ца	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
а	-	С	d	е	-	-	d c a e
-	b	-	d	-	-	-	d b
-	b	С	d	_	-	-	d b c
-	b	С	-	_	-	-	b c
a.	b	-	d	_	-	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
-	_	С	d	_	f	_	d c
a	b	-	d	-	-	-	d b a

(корень v₀ не показан)

d: 8

b: 7

c: 5

a: 4

e: 3

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца	10	слова		
a	-	-	d	-	f	_	d a
a	_	С	d	е	-	_	dcae
-	b	_	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	_	-	-	_	bс
a.	b	_	d	-	-	-	d b a
-	b	_	d	е	-	-	d b e
-	b	С	-	е	-	g	ъсе
-	_	С	d	_	f	_	d c
a.	b	_	d	-	-	_	d b a

(корень v_0 не показан) $\frac{\mathrm{d}:8}{\mathrm{b}:7}$ $\frac{\mathrm{d}:2}{\mathrm{e}:5}$ $\frac{\mathrm{a}:4}{\mathrm{e}:3}$ признаки \mathbf{f} , \mathbf{g} не частые

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атј	эи	ца	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	-	-	dcae
_	b	_	d	_	-	_	d b
-	b	С	d	_	-	-	d b c
-	b	С	_	_	-	-	bс
a	b	_	d	_	-	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	_	е	-	g	b c e
_	_	С	d	-	f	_	d c
a.	b	_	d	_	_	_	d b a

(корень v₀ не показан)

d: 8

b: 7

c: 5

a: 4

e: 3

причения б. 3 причеки б. д. не нестне

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца	слова			
a	-	-	d	-	f	-	d a
a	_	С	d	е	_	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	_	_	-	d b c
-	b	С	_	_	_	-	bс
a.	b	_	d	_	_	-	d b a
-	b	_	d	е	_	-	d b e
-	b	С	_	е	_	g	b c e
-	_	С	d	-	f	_	d c
	Ъ	_	d			_	d b a

(корень v_0 не показан) $\frac{d:8}{b:7}$ $\frac{d:4}{e:3}$ $\frac{d:4}{e:1}$ при $\delta=\frac{3}{\ell}$ признаки f,g не частые

Префиксное \overline{P} -дерево (\overline{FP} - frequent pattern). Пример.

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	_	_	dcae
-	b	_	d	_	_	_	d b
-	b	С	d	_	_	_	dbc
_	b	С	_	_	_	_	bс
a.	b	_	d	_	-	_	d b a
-	b	_	d	е	-	_	d b e
_	b	С	-	е	-	g	Ъсе
_	-	С	d	-	f	_	d c
a	b	-	d	-	-	-	d b a

(корень v_0 не показан)

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атן	эи	ца	, ℓ	=	10	слова
a	-	-	d	-	f	_	d a
a	_	С	d	е	-	_	dcae
-	b	_	d	_	-	_	d b
-	b	С	d	_	-	_	dbc
-	b	С	_	_	-	_	bс
a	b	-	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
_	_	С	d	-	f	-	d c

(корень v₀ не показан)

d: 8

b: 7

c: 5

c: 1

a: 4

e: 3

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атр	эи	ца	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	-	С	d	е	_	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	_	_	-	dbc
-	b	С	_	_	_	-	bс
a	b	_	d	_	_	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
-	-	С	d	-	f	-	d c
	h		d			_	d b a

Упорядочим все признаки $f \in \mathscr{F}$: $u(f) \geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

мат	рица,	$\ell =$	10	слова
a -	- d	- f	-	d a
a -	c d	e -	-	dcae
- b	- d		-	d b
- b	c d		-	dbc
- b	c -		-	Ъс
a b	- d		-	dba
- b	- d	e -	-	dbe
- b	c -	e -	g	b с e
	c d	- f	-	d c
a b	- d		_	d b a

(корень v_0 не показан)

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

м	атլ	эи	ца,	ℓ	=	матрица, $\ell=10$									
a	-	-	d	-	f	-	d a								
a	_	С	d	е	-	-	dcae								
-	b	_	d	_	-	_	d b								
-	b	С	d	_	-	-	d b c								
-	b	С	_	_	-	-	Ъс								
a	b	_	d	_	-	-	dba								
-	b	_	d	е	-	-	d b e								
-	b	С	_	е	_	g	ъсе								
-	_	С	d	_	f	_	d c								
a	b	_	d	_	_	_	d b a								

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца,	слова			
a	-	-	d	-	f	_	d a
a	_	С	d	е	_	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	_	_	-	d b c
-	b	С	_	_	_	-	bс
a	b	_	d	_	_	-	dba
-	b	_	d	е	_	-	dbe
-	b	С	_	е	-	g	ъсе
-	_	С	d	_	f	-	dс
a	b	_	d	_	_	-	d b a

В каждой вершине v дерева T задаётся тройка $\langle f_v, c_v, S_v \rangle$:

- ullet признак $f_v \in \mathscr{F}$;
- ullet множество дочерних вершин $S_{
 u}\subset T$;
- ullet счётчик поддержки $c_v = \ell
 u(arphi_v)$ набора $arphi_v = \{f_u \colon u \in [v_0, v]\}$, где $[v_0, v]$ путь от корня дерева v_0 до вершины v.

Обозначения:

$$V(T,f)=\left\{v\in T\colon f_v=f
ight\}$$
 — все вершины признака (уровня) f . $C(T,f)=\sum\limits_{v\in V(T,f)}c_v$ — сумма счётчиков поддержки признака f .

Свойства FP-дерева T, построенного по всей выборке X^{ℓ} :

- **①** T содержит полную информацию о всех $\nu(\varphi), \ \varphi \subseteq \mathscr{F}$.
- ② $C(T,f) = \frac{1}{\ell}\nu(f)$ для всех $f \in \mathscr{F}$.

FP-дерево содержит информацию о частоте всех наборов

Как найти $u(\varphi)$ для произвольного набора φ :

- lacktriangle выделить пути $[v_0,v]$, содержащие все признаки из φ ;
- **2** суммировать c_V нижних вершин всех таких путей.

Пример: $\varphi=\{\text{``c''},\text{``e''}\}$, две записи, два пути, $\nu(\varphi)=\frac{2}{\ell}$:

матриі	ца, $\ell=10$	слова
a	d - f -	d a
a - c	d e	dcae
- b -	d	d b
- b c	d	d b c
- b c		bс
ab-	d	dba
- b -	d e	d b e
- b c	- e - g	bсе
c	d - f -	dс
ab-	d	dba

(корень v_0 не показан)

Алгоритм FP-growth

```
вход: X^{\ell} — обучающая выборка;
выход: FP-дерево T; \langle f_v, c_v, S_v \rangle для всех вершин v \in T;
упорядочить признаки f \in \mathscr{F}: \nu(f) \geqslant \delta по убыванию \nu(f);
ЭТАП 1: построение FP-дерева T по выборке X^{\ell}
для всех i:=1,\ldots,\ell
    для всех f \in \mathscr{F} таких, что f(x_i) = 1, по убыванию \nu(f)
         если нет дочерней вершины u \in S_v: f_u = f то
        создать новую вершину u; S_v := S_v \cup \{u\}; f_u := f; c_u := 0; S_u := \varnothing; c_u := c_u + 1; v := u;
ЭТАП 2: рекурсивный поиск частых наборов по FP-дереву Т
\mathsf{FP}-find(T,\varnothing,\varnothing):
```

Этап 2: рекурсивный поиск частых наборов по FP-дереву

 $\mathsf{FP} ext{-find}(T, \varphi, R)$ находит по $\mathsf{FP} ext{-дереву }T$ все частые наборы, содержащие *частый набор* φ , и добавляет их в список R.

Две идеи эффективной реализации FP-find:

- 1. Вместо T достаточно передать условное FP-дерево $T|\varphi$, это FP-дерево, порождаемое подвыборкой $\left\{x_i \in X^\ell \colon \varphi(x_i) = 1\right\}$ и выделяемое из T подмножеством признаков (уровней) φ .
- 2. Будем добавлять в φ только те признаки, которые находятся выше в FP-дереве. Так мы переберём все подмножества $\varphi\subseteq \mathscr{F}.$

Этап 2: рекурсивный поиск частых наборов по FP-дереву

```
функция FP-find (T, \varphi, R)
вход: FP-дерево T, частый набор \varphi, список наборов R;
выход: добавить в R все частые наборы, содержащие \varphi;
для всех f \in \mathscr{F} \colon V(T, f) \neq \varnothing по уровням снизу вверх
если C(T, f) \geqslant \ell \delta то
добавить частый набор \varphi \cup \{f\} в список R;
T' := T | f — условное FP-дерево;
найти по T' все частые наборы, включающие \varphi и f:
FP-find (T', \varphi \cup \{f\}, R);
```

Условное FP-дерево T' = T|f можно построить быстро, используя только FP-дерево T и не заглядывая в выборку.

Условное FP-дерево

Пусть FP-дерево T построено по подвыборке $U\subseteq X^\ell$.

Опр. Условное FP-дерево (conditional FP-tree) T'=T|f- это FP-дерево, порождаемое подвыборкой $\big\{x_i\in U\colon f(x_i)=1\big\}$, из которого удалены все вершины признака f и ниже.

Продолжение примера: CFP-дерево T "e"

Быстрое построение условного FP-дерева T' = T f

```
вход: FP-дерево T, признак f \in \mathscr{F};
выход: условное FP-дерево T' = T|f;
```

1 оставить в дереве только вершины на путях из вершин v признака f снизу вверх до корня v_0 : $T' := \bigcup [v, v_0];$

$$T' := \bigcup_{v \in V(T,f)} [v, v_0];$$

- 2 поднять значения счётчиков C_{V} от вершин $v \in V(T', f)$ снизу вверх по правилу $c_u := \sum c_w$ для всех $u \in T'$;
- 3 удалить из T' все вершины признака f;

В дереве T' = T | f остаются только признаки выше f, т.к. в момент вызова FP-find все наборы, содержащие признаки ниже f, уже просмотрены.

Эффективность алгоритма FPGrowth

Зависимость \log_{10} времени работы алгоритма от MinSupp в сравнении с другими алгоритмами (на данных census).

Нижние кривые — две разные реализации FP-growth.

Christian Borgelt. An Implementation of the FP growth Algorithm. 2005.

Резюме в конце лекции

- Поиск ассоциативных правил обучение без учителя.
- Ассоциативное правило (по определению) почти то же самое, что логическая закономерность.
- Простые алгоритмы типа APriory вычислительно неэффективны на больших данных.
- FP-growth один из самых эффективных алгоритмов поиска ассоциативных правил.
- Для практических приложений используются его инкрементные и/или иерархические обобщения.