Omega Cross-Section

Martin Sobotzik

Mainz, March 2019

Institute for Nuclear Physics Johannes Gutenberg University of Mainz

Figure 1: Olis Data; Dip at about $cos(\theta) = -0.3$

Figure 2: Increased number of points; now there is still a dip at $cos(\theta) = -0.3$ but also a peak at $cos(\theta) = -0.5$

Increased the number of points from 10 to 40

Figure 3: Overlap

Figure 4: There is a efficiency drop at $cos(\theta) = -0.3$

Looking at different particles

$$\omega \to \gamma \ \pi^0 \tag{1}$$

Closer look at:

- ω
- Bachelor Photon
- π⁰
- $\gamma\gamma$

- Proton
- $cos(\theta) = [-0.35, -0.25]$ Dip
- $cos(\theta) = [-0.45, -0.35]$ Peak

and compare MC with Beamtime Data (both reconstructed)

Used Cuts:

- w_taggW ("TaggW");
- w_mass_Cut("ggg.M()>700");
- cut_KCut("KinFitProb > 0.2 && nCandsInput == 4 && copl_angle < 0.05");

Figure 5: Red: MC; Blue Beamtime Data; Protons for $cos(\theta_{\omega}) = [-0.35, -0.25]$; Right Side are fitted data

Figure 6: Red: MC; Blue Beamtime Data; Protons for $cos(\theta_{\omega}) = [-0.45, -0.35]$; Right Side are fitted data

Figure 7: $cos(\theta_{fit})$ vs. $cos(\theta_{gen})$ for all protons.

Figure 8: $\cos(\theta_{fit})$ vs. $\cos(\theta_{gen})$ for all ω .

Unfolding

Figure 9: Folded; same cuts

Figure 10: Distribution of the ω in center of mass frame

Figure 11: Flat ω was used. MC fitted data were folded.

Flat ω ; Folded Beamtime Data

