Ejercicios 1: EYP1027 Modelos Probabilísticos

Departamento de Estadística, PUC

Ejercicio 1

Sea $\Omega = \mathbb{N} = \{1, 2, \dots, n, \dots\}$. Determine

$$\bigcup_{n=1}^{\infty} A_n \quad \mathbf{y} \quad \bigcap_{n=1}^{\infty} A_n$$

para cada una de las siguientes secuencias:

- (a) Sea $A_n = \{1, 2, \dots, n\}, n = 1, 2, \dots$
- (b) Sea $A_n = \mathbb{N} \setminus \{1, 2, \dots, n\}, n = 1, 2, \dots$

Solución:

- (a) Para $A_n = \{1, 2, \dots, n\}$:
 - Unión:

$$\bigcup_{n=1}^{\infty} A_n = \{1, 2, 3, \dots\} = \mathbb{N}.$$

■ Intersección: Un elemento $k \in \mathbb{N}$ estará en todos los conjuntos A_n si y solo si $k \leq n$ para todo $n \geq 1$. Dado que en A_1 solo está el 1, se tiene

$$\bigcap_{n=1}^{\infty} A_n = \{1\}.$$

- (b) Para $A_n = \mathbb{N} \setminus \{1, 2, \dots, n\}$:
 - *Unión:* Observe que

$$A_1 = \{2, 3, 4, \dots\}, \quad A_2 = \{3, 4, 5, \dots\}, \quad \dots$$

Dado cualquier $m \geq 2$, existe un n (por ejemplo, n = m - 1) tal que $m \in A_n$. En cambio, el 1 nunca pertenece a ningún A_n . Así,

$$\bigcup_{n=1}^{\infty} A_n = \{2, 3, 4, \dots\} = \mathbb{N} \setminus \{1\}.$$

• Intersección: Sea $k \in \mathbb{N}$. Fijado k, para n = k se tiene

$$k \notin A_k$$

pues $A_k = \{k+1, k+2, \dots\}$. Así ningún elemento pertenece a todos los A_n , por lo que

$$\bigcap_{n=1}^{\infty} A_n = \emptyset.$$

1

Sean $A_1, A_2 \subset \Omega$ y considere la colección

$$C = \{A_1, A_2\}.$$

Encuentre una σ -álgebra que contenga a \mathcal{C} .

Solución:

La σ -álgebra generada por $\{A_1, A_2\}$ se obtiene hallando los átomos asociados. Definamos:

$$E_{1} = A_{1} \cap A_{2},$$

$$E_{2} = A_{1} \cap A_{2}^{c},$$

$$E_{3} = A_{1}^{c} \cap A_{2},$$

$$E_{4} = A_{1}^{c} \cap A_{2}^{c}.$$

Estos conjuntos son mutuamente excluyentes y su unión es Ω . La σ -álgebra generada es la colección de todas las uniones de estos átomos:

$$\sigma(\mathcal{C}) = \Big\{ \emptyset, E_1, E_2, E_3, E_4, E_1 \cup E_2, E_1 \cup E_3, E_2 \cup E_3, E_1 \cup E_4, E_2 \cup E_4, E_3 \cup E_4, E_1 \cup E_2 \cup E_3, \Omega \Big\}.$$

(Esta colección, en general, contiene $2^4 = 16$ conjuntos, aunque en algunos casos algunos de ellos pueden coincidir; lo importante es que contiene a A_1 y A_2 y es mínima con esa propiedad).

Ejercicio 3

Sean A y B subconjuntos de Ω tales que $A \subset B$. Considere la colección

$$\exists \{\emptyset, A, B, A^c, B^c, B - A, (B - A)^c\}.$$

¿Es \dashv una σ -álgebra de subconjuntos de Ω ?

Solución:

Recordamos que para ser una σ -álgebra se debe tener:

- (I) $\emptyset \in \exists \ v \ \Omega \in \exists$.
- (II) Si $E \in \exists$, entonces $E^c \in \exists$.
- (III) ⊢ es cerrada bajo uniones numerables.

Observamos que:

■ Aunque \emptyset aparece explícitamente, ¿aparece Ω ? Notamos que B y B^c están en \exists y se tiene $B \cup B^c = \Omega$. Sin embargo, a menos que Ω esté listado explícitamente, debemos comprobar si la colección es cerrada bajo la operación unión (la definición de "colección" para ser σ -álgebra exige que todos los elementos resultantes de las operaciones internas pertenezcan a la colección).

■ Verifiquemos, por ejemplo, la unión $A^c \cup B$. En general, $A^c \cup B$ no coincide con ninguno de los elementos listados en \dashv .

De hecho, si tomamos un ejemplo concreto (por ejemplo, $\Omega = \{1, 2, 3\}$, $A = \{1\}$ y $B = \{1, 2\}$), se observa que la colección

$$\exists = \{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, \{3\}, \{2\}, (B - A)^c\}$$

no es cerrada bajo la unión (por ejemplo, $\{1\} \cup \{3\} = \{1,3\}$ no pertenece a \dashv).

Conclusión: La colección \dashv no es una σ -álgebra.

Ejercicio 4

Sean \dashv_1 y \dashv_2 dos σ -álgebras de subconjuntos de Ω . Demuestre que

$$\dashv_1 \cup \dashv_2$$

no necesariamente es una σ -álgebra. Considere, por ejemplo, el conjunto $\Omega=\{1,2,3\}$ y las σ -álgebras

$$\dashv_1 = \{\emptyset, \{1\}, \{2,3\}, \Omega\} \quad \text{y} \quad \dashv_2 = \{\emptyset, \{1,2\}, \{3\}, \Omega\}.$$

Solución:

Se tiene que:

$$\dashv_1 \cup \dashv_2 = \{\emptyset, \{1\}, \{2,3\}, \{1,2\}, \{3\}, \Omega\}.$$

Sin embargo, observe que:

$$\{1\} \cup \{3\} = \{1, 3\},\$$

y $\{1,3\}$ no pertenece a $\dashv_1 \cup \dashv_2$. Por lo tanto, la unión no es cerrada bajo uniones finitas (y mucho menos numerables) y, en consecuencia, $\dashv_1 \cup \dashv_2$ no es una σ -álgebra.

Ejercicio 5

Sea (Ω, \dashv, P) un espacio de probabilidad.

- (a) Sean A y B en \dashv . ¿Cuál es la probabilidad de que ocurra exactamente uno de los eventos A o B?
- (b) Sea Q otra medida de probabilidad definida en (Ω, \dashv) . Es

$$R = \alpha P + (1 - \alpha)Q, \quad 0 \le \alpha \le 1,$$

una medida de probabilidad?

Solución:

(a) El evento "exactamente uno de A o B ocurre" es el simétrico de la intersección, es decir,

$$(A \cap B^c) \cup (A^c \cap B).$$

Dado que $(A \cap B^c)$ y $(A^c \cap B)$ son disjuntos, se tiene:

$$P((A \cap B^c) \cup (A^c \cap B)) = P(A) - P(A \cap B) + P(B) - P(A \cap B) = P(A) + P(B) - 2P(A \cap B).$$

(b) Sea

$$R(A) = \alpha P(A) + (1 - \alpha)Q(A), \quad \forall A \in \exists.$$

Es fácil verificar:

- $R(A) \ge 0$ para todo A.
- $R(\Omega) = \alpha P(\Omega) + (1 \alpha)Q(\Omega) = \alpha \cdot 1 + (1 \alpha) \cdot 1 = 1.$
- ullet La aditividad numerable se hereda de P y Q.

Por lo tanto, R es una medida de probabilidad.

Ejercicio 6

Sea (Ω, \dashv, P) un espacio de probabilidad.

(a) Sean A y B en \dashv tales que $A \subset B$. Pruebe que

$$P(B - A) = P(B) - P(A).$$

- (b) Si A y B son eventos independientes, muestre que A y B^c también lo son.
- (c) Sean $a_1, \ldots, a_n > 0$ y A_1, \ldots, A_n una partición de Ω . Para todo $A \in \exists$ defina

$$Q(A) = \frac{\sum_{i=1}^{n} a_i P(A \cap A_i)}{\sum_{i=1}^{n} a_i P(A_i)}.$$

 ξ Es Q una medida de probabilidad?

Solución:

(a) Dado que $A \subset B$, se tiene la partición disjunta:

$$B = A \cup (B - A),$$

con lo cual,

$$P(B) = P(A) + P(B - A) \Rightarrow P(B - A) = P(B) - P(A).$$

(b) Si A y B son independientes, entonces

$$P(A \cap B) = P(A)P(B).$$

Notemos que

$$P(A \cap B^c) = P(A) - P(A \cap B) = P(A) - P(A)P(B) = P(A)(1 - P(B)) = P(A)P(B^c).$$

Así $A y B^c$ son independientes.

(c) Para cada $A \in \exists$, se define

$$Q(A) = \frac{\sum_{i=1}^{n} a_i P(A \cap A_i)}{\sum_{i=1}^{n} a_i P(A_i)}.$$

- No negatividad: Como $a_i > 0$ y P es no negativa, $Q(A) \ge 0$.
- Normalización: Para $A = \Omega$, se tiene:

$$Q(\Omega) = \frac{\sum_{i=1}^{n} a_i P(A_i)}{\sum_{i=1}^{n} a_i P(A_i)} = 1.$$

• Aditividad numerable: Usando la aditividad de P y la linealidad de la suma, se comprueba que Q es finita aditiva (y, dado que la partición es finita, basta para concluir que Q es una medida de probabilidad).

Por lo tanto, Q es una medida de probabilidad.

Ejercicio 7

Sea (Ω, \dashv, P) un espacio de probabilidad, con P definido por

$$P((-\infty, x]) = \begin{cases} 0, & x < 0, \\ x^2/2, & 0 \le x < \frac{1}{2}, \\ (x+1)/3, & \frac{1}{2} \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

(a) Calcule las siguientes probabilidades:

$$P((-\infty, 1/2]), P((-\infty, 5]) \text{ v } P((1/2, 8]).$$

(b) Estudie si la función

$$F_X(x) = P((-\infty, x])$$

definida arriba es una función de distribución.

Solución:

(a) • Para $x = \frac{1}{2}$: Dado que $x = \frac{1}{2}$ pertenece al intervalo $[\frac{1}{2}, 1)$, se tiene

$$P((-\infty, 1/2]) = \frac{(1/2) + 1}{3} = \frac{3/2}{3} = \frac{1}{2}.$$

• Para x = 5: Como $5 \ge 1$, se tiene

$$P((-\infty, 5]) = 1.$$

■ Para el intervalo (1/2,8]: Usando la propiedad de incrementos,

$$P((1/2,8]) = P((-\infty,8]) - P((-\infty,1/2]).$$

Dado que $8 \ge 1$, $P((-\infty, 8]) = 1$, de donde

$$P((1/2,8]) = 1 - \frac{1}{2} = \frac{1}{2}.$$

- (b) Recordemos que una función de distribución debe satisfacer:
 - (I) Ser creciente y acotada entre 0 y 1.
 - (II) Ser continua por la derecha.
 - (III) Satisfacer: $\lim_{x\to-\infty} F_X(x) = 0$ y $\lim_{x\to+\infty} F_X(x) = 1$.

En este caso, $F_X(x)$ cumple todas estas propiedades (la función se define por tramos con las correspondientes condiciones). Por lo tanto, es una función de distribución.

Ejercicio 8

Sea $\Omega = \{0, 1, 2, \dots\}, \exists P(\Omega)$ y sea P definida por

$$P({i}) = (1 - q)q^{i}$$
, para $i = 0, 1, 2, ...$ donde $0 < q < 1$.

¿Es P una medida de probabilidad sobre (Ω, \dashv) ?

Solución: Esta es la ley geométrica (con soporte en $\{0, 1, 2, \dots\}$). Se verifica que:

$$\sum_{i=0}^{\infty} P(\{i\}) = (1-q) \sum_{i=0}^{\infty} q^i = (1-q) \cdot \frac{1}{1-q} = 1.$$

Además, cada $P(\{i\}) \ge 0$. Por lo tanto, P es una medida de probabilidad.

Ejercicio 9

Sea (Ω, \dashv, P) un espacio de probabilidad.

(a) Sea $A, B \in \exists$. Pruebe que

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

(b) Sea $\{A_n\}_{n=1}^{\infty}$ una secuencia decreciente de elementos de \dashv . Muestre que

$$P\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} P(A_n).$$

Solución:

(a) Esta es la fórmula de inclusión—exclusión para dos conjuntos. La demostración se obtiene escribiendo

$$A \cup B = A \cup (B \setminus A),$$

y usando que A y $B \setminus A$ son disjuntos, de donde

$$P(A \cup B) = P(A) + P(B \setminus A) = P(A) + P(B) - P(A \cap B).$$

(b) Sea $\{A_n\}$ decreciente (es decir, $A_{n+1} \subset A_n$). Entonces, por continuidad descendente de la medida,

$$P\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} P(A_n).$$

Esta propiedad es un axioma fundamental en la teoría de la medida.

Ejercicio 10

Sea (Ω, \dashv, P) un espacio de probabilidad. Si A y B son tales que

$$P(A) = p$$
, $P(B) = q$, $P(A \cup B) = r$,

muestre que:

- (a) $P(A \cap B) = p + q r$.
- (b) $P(A \cap B^c) = r q$.
- (c) $P(A^c \cap B^c) = 1 r$.
- (d) $P(A \cup B^c) = p r + 1$.

Solución:

(a) Usando la fórmula de la unión:

$$P(A \cup B) = p + q - P(A \cap B) \implies P(A \cap B) = p + q - r.$$

(b) Se tiene

$$P(A \cap B^c) = P(A) - P(A \cap B) = p - (p + q - r) = r - q.$$

(c) Notando que $(A \cup B)^c = A^c \cap B^c$, se obtiene

$$P(A^c \cap B^c) = 1 - P(A \cup B) = 1 - r.$$

(d) Usando la identidad

$$A \cup B^c = (A \cap B) \cup (A \cap B^c) \cup B^c$$
,

o directamente por complementos y álgebra de conjuntos, se puede demostrar que

$$P(A \cup B^c) = 1 - P(B - A) = 1 - [P(B) - P(A \cap B)] = 1 - [q - (p + q - r)] = p - r + 1.$$

Para ganar el campeonato, City debe vencer a Town y a United. Se tiene que:

- La probabilidad de que City le gane a Town es 60 %,
- La probabilidad de que City le gane a United es 70 %,
- La probabilidad de conseguir al menos una victoria es 80 %.

Determine la probabilidad de que City gane el campeonato y describa el espacio muestral (Ω, \dashv, P) en este caso.

Solución:

Definamos:

$$T = \{City \text{ vence a } Town\}, \quad U = \{City \text{ vence a } United\}.$$

Se tiene:

$$P(T) = 0.6$$
, $P(U) = 0.7$, $P(T \cup U) = 0.8$.

Por el principio de inclusión-exclusión:

$$P(T \cap U) = P(T) + P(U) - P(T \cup U) = 0.6 + 0.7 - 0.8 = 0.5.$$

Como para ganar el campeonato se requiere ganar a ambos equipos, la probabilidad es 50%. El espacio muestral se puede definir como:

$$\Omega = \{(t, u) : t, u \in \{0, 1\}\},\$$

donde "1" indica victoria y "0" derrota, y la medida de probabilidad asigna a cada resultado la probabilidad correspondiente, de modo que

$$P((1,1)) = 0.5$$
, $P((1,0)) = 0.6 - 0.5 = 0.1$, $P((0,1)) = 0.7 - 0.5 = 0.2$, $P((0,0)) = 1 - 0.8 = 0.2$.

Ejercicio 12

Se tienen n personas formadas en un círculo, de las cuales dos se llaman Ana y Berta. ¿Cuál es la probabilidad de que Ana y Berta se encuentren separadas por r personas en la formación? Describa (Ω, \dashv, P) .

Solución:

Al fijar la posición de Ana (por simetría, se puede asumir sin pérdida de generalidad) hay n-1 posiciones posibles para ubicar a Berta. Los casos en que estén separadas por r personas se dan en dos posiciones (una en cada dirección) siempre que $r \le n-2$. Por lo tanto, la probabilidad es:

$$P = \frac{2}{n-1}.$$

El espacio muestral consiste en las n-1 posiciones posibles para Berta, y se asume que todas son equiprobables.

De entre los números $\{1, 2, \dots, 50\}$ se escoge uno al azar. ¿Cuál es la probabilidad de que el número escogido sea divisible por 6 o por 8?

Solución:

Sea

$$N_6 = \#\{x \le 50 : 6 \mid x\}, \quad N_8 = \#\{x \le 50 : 8 \mid x\},$$

y $N_{6\cap 8}$ los números divisibles por el m.c.m. de 6 y 8, que es 24.

- $N_6 = \left\lfloor \frac{50}{6} \right\rfloor = 8.$
- $N_8 = \left\lfloor \frac{50}{8} \right\rfloor = 6.$
- $N_{6\cap 8} = \left\lfloor \frac{50}{24} \right\rfloor = 2.$

Aplicando inclusión-exclusión, el número de casos favorables es:

$$8+6-2=12$$
.

Así, la probabilidad es:

$$\frac{12}{50} = \frac{6}{25}.$$

Ejercicio 14

De 6 números positivos y 8 negativos se eligen 4 al azar (sin sustitución) y se multiplica. ¿Cuál es la probabilidad de que el producto sea positivo?

Solución:

El producto es positivo si se elige un número par de números negativos (0, 2 o 4 negativos).

- Total de formas: $\binom{14}{4}$.
- Caso 1: 0 negativos \Rightarrow 4 positivos: $\binom{6}{4}$.
- Caso 2: 2 negativos y 2 positivos: $\binom{8}{2}\binom{6}{2}$.
- Caso 3: 4 negativos: $\binom{8}{4}$.

La probabilidad es:

$$P = \frac{\binom{6}{4} + \binom{8}{2} \binom{6}{2} + \binom{8}{4}}{\binom{14}{4}}.$$

9

Sea (Ω, \dashv, P) un espacio de probabilidad.

(a) Demuestre que para dos sucesos cualesquiera A_1 y A_2 , se tiene que

$$P(A_1 \cup A_2) \le P(A_1) + P(A_2).$$

(b) Demuestre que para n sucesos cualesquiera A_1, \ldots, A_n , se tiene que

$$P\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P(A_i).$$

Solución:

(a) Partiendo de la fórmula de inclusión-exclusión para dos conjuntos:

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) \le P(A_1) + P(A_2),$$
pues $P(A_1 \cap A_2) \ge 0$.

(b) Se procede por inducción. Para n=2 ya se ha demostrado. Supongamos que la desigualdad es cierta para n=k. Sea $A_1, \ldots, A_{k+1} \in \exists$ y observe:

$$P\left(\bigcup_{i=1}^{k+1} A_i\right) = P\left(\bigcup_{i=1}^{k} A_i \cup A_{k+1}\right)$$

y aplicando la parte (a):

$$P\left(\bigcup_{i=1}^{k+1} A_i\right) \le P\left(\bigcup_{i=1}^k A_i\right) + P(A_{k+1}).$$

Por la hipótesis de inducción.

$$P\left(\bigcup_{i=1}^{k} A_i\right) \le \sum_{i=1}^{k} P(A_i).$$

Con lo cual:

$$P\left(\bigcup_{i=1}^{k+1} A_i\right) \le \sum_{i=1}^{k+1} P(A_i).$$

Esto prueba la desigualdad para todo $n \in \mathbb{N}$.

Conclusión

En este documento se han desarrollado 15 ejercicios de modelos probabilísticos que abarcan desde operaciones con conjuntos, propiedades de σ -álgebras y construcciones de medidas de probabilidad, hasta cálculos con distribuciones y conteos elementales. Cada ejercicio se aborda con argumentos teóricos y cálculos detallados.

¡Listo!