

HCB 起动型铁电池 维修手册

MMM. Carloo. Corr

目录

第一节 系统概述 3 第二节 组件位置 3 第三节 电气原理图及接插件定义 3 第四节 故障代码 5 第二章 维修 6 第一节 诊断流程 6 … 8 第三章 拆卸与安装 9	第一章 起动型铁电池	3
第二节 组件位置	第一节 系统概述	3
第三节 电气原理图及接插件定义		
第四节 故障代码		
第二章 维修		
第一节 诊断流程		
8		
MMM. Callo		

第一章 起动型铁电池

第一节 系统概述

起动型铁电池是 12V 低压电源,用以取代含铅的铅酸电池,具有功率密度高、重量轻巧、使用寿命长和绿色环保等优点。

第二节 组件位置

起动型铁电池位于行李箱左后侧围,通过检修口可以确定位置,如下图:-

第三节 电气原理图及接插件定义

3.1 起动型铁电池电气原理图

3.2 接插件定义

起动型铁电池低压接插件引脚定义如下:

引脚号	端口名称	端口定义	线束接法	信号类型	稳态工作 电流	冲击电流	电源性质 (比如: 常电)	备注
1	CAN_H	CAN 高	动力网		<1A	1A		
2	空	设计预留			<1A			
3	CAN_L	CAN 低	动力网		<1A	1A		
4	/	/						
5	/	/						
6	超低 功耗 唤醒	超低功耗 唤醒机械 开关			<1A	1A		
7	/	/						
8	空	设计预留		. (<1A			

第四节 故障代码

序号	故障码 (ISO 15031-6)	故障定义	
1	U011100	BMS 与高压电池管理器失去通讯	
2	U015500	BMS 与仪表失去通讯	
3	U014000	BMS 与 BCM 失去通讯	
4	U010300	BMS 与 ECM 失去通讯	
5 U011000		BMS 与驱动电机控制器失去通讯	
6	B1FB300	电源电压过高故障	
7	B1FB400	电源电流过大	
8	B1FB500	电源温度过高故障	
9	B1FB700	智能充电故障	
10	B1FC712	继电器粘连或 MOS 短路失效	

11	B1FC713	继电器正常 MOS 断路失效	
12 B1FC800		高压不允许智能充电	
13	B1FB900	智能充电中 DC 不输出故障	

第二章 维修

第一节 诊断流程

1	把车辆开入维修车间
1	16 十477 / 15 15 1 19

(a) 用户所述故障分析: 向用户询问车辆状况和故障产生时的环境。

NEXT

2 检查起动型铁电池电压

(a) 两正极柱对负极极柱的标准电压是否有 11 到 14V。

结果	进入步骤
是	转到7
否	电池充电或更换再转到3

3 参考故障症候表

(a) 故障是否在故障症候表中?

结果	进入步骤
是	转到4
否	转到5

4 调整、维修或更换

(a) 调整、维修或更换线路或零部件。

5 全面分析与诊断

(a) 全面功能检查。

(b) ECU 端子检查。

6 确认测试

(a) 调整、修理、更换线路或者零部件后,确定故障不再存在。如果故障不再发生,模拟第一次发生故障时的条件和 环境再做一次测试。

7 检查结束

5.1 终端故障码诊断

(a) 将 VDS2000 连接 DLC3 诊断口;

提示:将 VDS2000 连接 DLC3 诊断口,如果提示通讯错误,则可能是车辆 DLC3 诊断口问题,也可能是 VDS2000问题。

将 VDS2000 连接另一辆车的 DLC3 诊断口,如果可以显示,则原车 DLC3 诊断口有问题,需更换。若不可显示则 VDS2000 问题。

(b) 故障码处理如下:

U011100	BMS 与高压电池管理器失去通讯
U015500	BMS 与仪表失去通讯
U014000	BMS 与 BCM 失去通讯
U010300	BMS 与 ECM 失去通讯
U011000	BMS 与驱动电机控制器失去通讯

ON 档下使用 VDS 可以扫描到动力电池管理器、仪表、BCM、ECM、驱动电池 控制器的模块信息

NG

上述模块故障

2 检查起动型铁电池低压接插件

NG

维修或更换起动型铁电池接插件

3 清除该故障码,重新扫描后该故障消失

NG 更换起动型铁电池 B1FB300 电源电压过高故障 OK 档下给蓄电池充电 15min, OK 档下使用 VDS 读取起动型铁电池数据流, 1 最高单节<3.7V NG (1) 无 B1FC712 或 B1FC713 故障 码,则无需更换; (2) 有 B1FC712 或 B1FC713 故障 码,更换起动型铁电池; B1FC712 继电器粘连或 MOS 短路失效 使用 VDS 起动型铁电池的"动作测试"功能使整车进入超低功耗后,整车无电 1 NG 整车有电且扫描不到铁电池模 块, 更换起动型铁电池 B1FC713 继电器正常 MOS 断路失效 OFF 档下, 拔掉起动电池低压接插件, 1min 后, DC 极柱电压出现瞬间跌落至 10V 1 以下, 过几秒后电压恢复正常的情况 NG 更换起动电池

5.2 终端线束诊断

注意:所有电器部件测试请使用数字式万用表进行。

- (1) 拔下电池管理器低压接插件;
- (2) 测量线束端连接器各端子对车身电压。

端子号	端子描述	条件	正常值
1-车身地	CAN_H	始终	2.5~3.5V
3-车身地	CAN_L	始终	1.5~2.5V
6-车身地	接 keyless ECU		

第三章 拆卸与安装

紧固件型号及数量见下表:

序号	零部件编号	零部件名称	数量	备注
1	Q32006T2F3AC	六角法兰面螺母	3	

(1) 拆卸维修前需:

- (a) 电源档位 OFF 档;
- (b) 打开内饰板维修盖,使用10#工具断开蓄电池负极线;

(2) 拆卸:

- (a) 当需要拆卸起动型铁电池时, 先拆卸左侧行李箱内饰板;
- (b) 使用 10#和 13#工具拆掉正极保险盒, 然后用 10#工具将电池固定在车身的 3pcs 螺母取下;
- (c) 取下起动电池。

(3) 安装:

- (a) 将起动电池放到车身支架上摆正;
- (b) 使用 3pcs 螺母 (M6) 将电池紧固到车身上;
- (c) 依次安装正极保险盒、负极线束、低压接插件;
- (d) 装好行李箱护板。