Lógicas Modales

Usos de Bisimulaciones

Carlos Areces & Raul Fervari

1er Cuatrimestre 2017, Córdoba, Argentina

Temario

- ▶ Propiedad de *tree model*.
- n-bisimulación.
- Propiedad de modelo finito vía selección.
- Propiedad de modelo finito vía filtraciones.

Bibliografía

 Capítulo 2 y apéndice A del Modal Logic Book (Blackburn, Venema & de Rijke)

Los resultados de invariancia pueden verse en forma negativa o positiva:

► (-): Nos hablan de los límites de la expresividad de los lenguajes modales.

Los resultados de invariancia pueden verse en forma negativa o positiva:

- (-): Nos hablan de los límites de la expresividad de los lenguajes modales.
- ► (+): Son una herramienta para transformar modelos en otros, modificando propiedades estructurales sin afectar la satisfacibilidad.

Vamos a probar que el lenguaje modal básico tiene la propiedad de *modelo finito*: Si una fórmula es satisfecha en un modelo arbitrario, entonces es satisfacible en un modelo finito.

Vamos a probar que el lenguaje modal básico tiene la propiedad de *modelo finito*: Si una fórmula es satisfecha en un modelo arbitrario, entonces es satisfacible en un modelo finito.

▶ **Propiedad de modelo finito**. Sea C una clase de modelos. Decimos que un lenguaje tiene la propiedad de modelo finito con respecto a C si vale lo siguiente: Si φ es una fórmula del lenguaje que es satisfacible en un modelo de C, entonces φ es satisfecha en un modelo finito de C.

Por ahora nos vamos a preocupar sólo por el caso en el que C es la clase de todos los modelos de la lógica modal básica.

De nuevo podemos ver este resultado desde dos perspectivas:

▶ (-): El lenguaje modal básico carece del poder expresivo suficiente para forzar la existencia de modelos infinitos.

De nuevo podemos ver este resultado desde dos perspectivas:

- (-): El lenguaje modal básico carece del poder expresivo suficiente para forzar la existencia de modelos infinitos.
- ▶ (+): No tenemos que preocuparnos por modelos infinitos arbitrarios, porque siempre vamos a poder encontrar uno finito equivalente. Más adelante, esto nos va a permitir probar resultados de decidibilidad.

De nuevo podemos ver este resultado desde dos perspectivas:

- (-): El lenguaje modal básico carece del poder expresivo suficiente para forzar la existencia de modelos infinitos.
- (+): No tenemos que preocuparnos por modelos infinitos arbitrarios, porque siempre vamos a poder encontrar uno finito equivalente. Más adelante, esto nos va a permitir probar resultados de decidibilidad.

En particular, vamos a probar esta propiedad a través de un procedimiento llamado *de selección*.

Podemos empezar con la siguiente pregunta: ¿Cuánto del modelo ve una fórmula modal desde el estado actual?

Podemos empezar con la siguiente pregunta: ¿Cuánto del modelo ve una fórmula modal desde el estado actual?

► Intuitivamente, depende de cuál es el anidamiento de modalidades que la fórmula contiene.

Podemos empezar con la siguiente pregunta: ¿Cuánto del modelo ve una fórmula modal desde el estado actual?

► Intuitivamente, depende de cuál es el anidamiento de modalidades que la fórmula contiene.

El grado de una fórmula está definido de la siguiente manera:

$$\begin{array}{rcl} deg(p) & = & 0 \\ deg(\neg \varphi) & = & deg(\varphi) \\ deg(\varphi \wedge \psi) & = & max\{deg(\varphi), deg(\psi)\} \\ deg(\diamondsuit \varphi) & = & 1 + deg(\varphi) \end{array}$$

Veamos primero la siguiente propiedad.

Prop 1: Sea un lenguaje con una signatura finita (esto es, finitos símbolos proposicionales y modalidades).

- I. Para todo *n*, sólo hay un conjunto finito de fórmulas de grado a lo sumo *n* que no son lógicamente equivalentes.
- II. Para todo n, modelo \mathcal{M} y estado w de \mathcal{M} , el conjunto de todas las fórmulas de grado a lo sumo n que son satisfechas en w es equivalente a una sola fórmula.

Veamos primero la siguiente propiedad.

Prop 1: Sea un lenguaje con una signatura finita (esto es, finitos símbolos proposicionales y modalidades).

- I. Para todo *n*, sólo hay un conjunto finito de fórmulas de grado a lo sumo *n* que no son lógicamente equivalentes.
- II. Para todo n, modelo \mathcal{M} y estado w de \mathcal{M} , el conjunto de todas las fórmulas de grado a lo sumo n que son satisfechas en w es equivalente a una sola fórmula.

Demostración: i) Por inducción en n. ii) Es inmediato de i).

Veamos también que hay una manera de aproximarnos en forma finita a la noción de bisimulación. Esto nos va a servir más adelante para buscar un modelo finito.

Veamos también que hay una manera de aproximarnos en forma finita a la noción de bisimulación. Esto nos va a servir más adelante para buscar un modelo finito.

n-bisimulación: Sean dos modelos \mathcal{M} y \mathcal{M}' , y w y w' dos mundos de \mathcal{M} y \mathcal{M}' respectivamente. Decimos que w y w' son n-bisimilares (notación $w \leftrightarrow_n w'$) si existe una secuencia de relaciones binarias $Z_n \subseteq \cdots \subseteq Z_0$ con las siguientes propiedades (con $i+1 \le n$):

- I. wZ_nw'
- II. Si vZ_0v' entonces v y v' acuerdan en todas las proposiciones.
- III. Si $vZ_{i+1}v'$ y Rvu, entonces existe u' con R'v'u' y uZ_iu'
- IV. Si $vZ_{i+1}v' \vee R'v'u'$, entonces existe $u \operatorname{con} Rvu \vee uZ_iu'$

La intuición nos dice que:

► Si $w \leftrightarrow_n w'$ entonces w y w' son bisimilares hasta el nivel n.

La intuición nos dice que:

- ► Si $w \leftrightarrow_n w'$ entonces w y w' son bisimilares hasta el nivel n.
- ► Si $w \leftrightarrow w'$ entonces $w \leftrightarrow_n w'$ para todo n.

La intuición nos dice que:

- ► Si $w \leftrightarrow_n w'$ entonces w y w' son bisimilares hasta el nivel n.
- ► Si $w \leftrightarrow w'$ entonces $w \leftrightarrow_n w'$ para todo n.
- ▶ Pero la vuelta no vale (ejercicio: Pensar un contraejemplo).

Vamos a ver ahora que que con lenguajes de signatura finita, hay una coincidencia exacta entre equivalencia modal y n-bisimilaridad para todo n.

Vamos a ver ahora que que con lenguajes de signatura finita, hay una coincidencia exacta entre equivalencia modal y n-bisimilaridad para todo n.

Prop 2: Sea un lenguaje con una signatura finita, y dos modelos \mathcal{M} y \mathcal{M}' de este lenguaje. Entonces, para todo w de \mathcal{M} y w' de \mathcal{M}' los siguientes puntos son equivalentes:

- I. $w \leftrightarrow_n w'$
- II. w y w' acuerdan en todas las fórmulas modales de grado a lo sumo n.

De esto se sigue que la noción de "*n*-bisimilaridad para todo *n*" y equivalencia modal coinciden.

Vamos a ver ahora que que con lenguajes de signatura finita, hay una coincidencia exacta entre equivalencia modal y n-bisimilaridad para todo n.

Prop 2: Sea un lenguaje con una signatura finita, y dos modelos \mathcal{M} y \mathcal{M}' de este lenguaje. Entonces, para todo w de \mathcal{M} y w' de \mathcal{M}' los siguientes puntos son equivalentes:

- I. $w \leftrightarrow_n w'$
- II. w y w' acuerdan en todas las fórmulas modales de grado a lo sumo n.

De esto se sigue que la noción de "*n*-bisimilaridad para todo *n*" y equivalencia modal coinciden.

Demostración: i) \Rightarrow ii) por inducción en n. La conversa se puede usar un argumento similar al de la prueba de Henessy-Milner.

▶ Vamos a definir la *altura* de un modelo rooted de la siguiente manera: Sea M un modelo con raíz w. El único elemento con altura 0 es w. Los estados con altura n + 1 son los inmediatos sucesores de los estados con altura n que todavía no fueron asignados con una altura menor a n + 1.

- ▶ Vamos a definir la *altura* de un modelo rooted de la siguiente manera: Sea \mathcal{M} un modelo con raíz w. El único elemento con altura 0 es w. Los estados con altura n+1 son los inmediatos sucesores de los estados con altura n que todavía no fueron asignados con una altura menor a n+1.
- La altura de un modelo \mathcal{M} es el máximo n tal que existe un estado en \mathcal{M} con altura n, si es que tal máximo existe. Si no existe, la altura de \mathcal{M} es infinita. La altura de w la notamos height(w).

- ▶ Vamos a definir la *altura* de un modelo rooted de la siguiente manera: Sea \mathcal{M} un modelo con raíz w. El único elemento con altura 0 es w. Los estados con altura n+1 son los inmediatos sucesores de los estados con altura n que todavía no fueron asignados con una altura menor a n+1.
- La altura de un modelo \mathcal{M} es el máximo n tal que existe un estado en \mathcal{M} con altura n, si es que tal máximo existe. Si no existe, la altura de \mathcal{M} es infinita. La altura de w la notamos height(w).
- ▶ Para un natural k, la restricción de \mathcal{M} a k (notación: $\mathcal{M} \upharpoonright k$) está definida como: $(\mathcal{M} \upharpoonright k) = (W_k, \{R_{ik}\}, V_k)$ donde $W_k = \{v \mid height(v) \leq k\}, R_{ik} = R_i \cap (W_k \times W_k), \text{ y para cada } p, V_k(p) = V(p) \cap W_k.$

Ahora podemos decir más formalmente cuánto de un modelo ve una fórmula en relación a su profundidad modal.

Ahora podemos decir más formalmente cuánto de un modelo ve una fórmula en relación a su profundidad modal.

Prop 3: Sea \mathcal{M} un modelo rooted, y sea k un número natural. Entonces, por cada estado w de $(\mathcal{M} \upharpoonright k)$ vale que $(\mathcal{M} \upharpoonright k), w \xrightarrow{l} \mathcal{M}, w$, donde l = k - height(w).

Demostración: Tomar la relación de identidad sobre $(\mathcal{M} \upharpoonright k)$.

Ahora podemos decir más formalmente cuánto de un modelo ve una fórmula en relación a su profundidad modal.

Prop 3: Sea \mathcal{M} un modelo rooted, y sea k un número natural. Entonces, por cada estado w de $(\mathcal{M} \upharpoonright k)$ vale que $(\mathcal{M} \upharpoonright k), w \xrightarrow{k} \mathcal{M}, w$, donde l = k - height(w).

Demostración: Tomar la relación de identidad sobre $(\mathcal{M} \upharpoonright k)$.

▶ Poniendo juntas las proposiciones 2 y 3, podemos concluir que cualquier fórmula satisfacible puede ser satisfecha en un modelo de *altura finita*. Esto nos acerca a lo que buscamos, pero el modelo resultante todavía puede tener *branching infinito*.

Vamos a obtener un modelo finito *seleccionando* puntos y descartando ramas no deseadas.

Vamos a obtener un modelo finito *seleccionando* puntos y descartando ramas no deseadas.

Teorema: **Modelo Finito - vía selección**. Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, entonces es satisfacible en un modelo finito.

Demostración: Sea φ una fórmula con $deg(\varphi) = k$. Vamos a restringir la signatura a los operadores modales y proposiciones que aparezcan en φ . Sea \mathcal{M}_1 , w_1 tal que \mathcal{M}_1 , $w_1 \models \varphi$.

1. Por la *tree model property*, existe \mathcal{M}_2 con forma de árbol y raíz w_2 tal que $\mathcal{M}_2, w_2 \models \varphi$.

Vamos a obtener un modelo finito *seleccionando* puntos y descartando ramas no deseadas.

Teorema: **Modelo Finito - vía selección**. Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, entonces es satisfacible en un modelo finito.

Demostración: Sea φ una fórmula con $deg(\varphi) = k$. Vamos a restringir la signatura a los operadores modales y proposiciones que aparezcan en φ . Sea \mathcal{M}_1 , w_1 tal que \mathcal{M}_1 , $w_1 \models \varphi$.

- 1. Por la *tree model property*, existe \mathcal{M}_2 con forma de árbol y raíz w_2 tal que \mathcal{M}_2 , $w_2 \models \varphi$.
- 2. Sea $\mathcal{M}_3 = (\mathcal{M}_2 \upharpoonright k)$. Por la **Prop 3**, vale $\mathcal{M}_2, w_2 \leftrightarrow_k \mathcal{M}_3, w_2$, y por la **Prop 2**, tenemos que $\mathcal{M}_3, w_2 \models \varphi$.

3. Por inducción en $i \le k$ vamos a definir los conjuntos S_0, \ldots, S_k y modelo final \mathcal{M}_4 con dominio $S_0 \cup \cdots \cup S_k$. Los puntos en cada S_i van a tener altura i.

- 3. Por inducción en $i \le k$ vamos a definir los conjuntos S_0, \ldots, S_k y modelo final \mathcal{M}_4 con dominio $S_0 \cup \cdots \cup S_k$. Los puntos en cada S_i van a tener altura i.
- 4. Definimos S₀ = {w₂} y supongamos que S₀,..., S_i ya fueron definidos. Fijemos un elemento v de S_i. Por la **Prop 1** hay sólo finitas fórmulas no equivalentes con grado a lo sumo k. Llamémoslas ψ₁,..., ψ_m. Para cada una de esas fórmulas de la forma ⟨a⟩ρ que vale en M₃ en el punto v, seleccionemos un estado u de M₃ tal que R_avu y M₃, u ⊨ ρ. Agreguemos todos los puntos us a S_{i+1} y repitamos este proceso de selección para cada punto de S_i.

- 3. Por inducción en $i \le k$ vamos a definir los conjuntos S_0, \ldots, S_k y modelo final \mathcal{M}_4 con dominio $S_0 \cup \cdots \cup S_k$. Los puntos en cada S_i van a tener altura i.
- 4. Definimos S₀ = {w₂} y supongamos que S₀,..., S_i ya fueron definidos. Fijemos un elemento v de S_i. Por la **Prop 1** hay sólo finitas fórmulas no equivalentes con grado a lo sumo k. Llamémoslas ψ₁,..., ψ_m. Para cada una de esas fórmulas de la forma ⟨a⟩ρ que vale en M₃ en el punto v, seleccionemos un estado u de M₃ tal que R_avu y M₃, u ⊨ ρ. Agreguemos todos los puntos us a S_{i+1} y repitamos este proceso de selección para cada punto de S_i.
- 5. Definimos a S_{i+1} como el conjunto de todos los puntos seleccionados de esta manera.

6. Finalmente, definimos \mathcal{M}_4 como:

- 6. Finalmente, definimos \mathcal{M}_4 como:
 - I. Su dominio es $S_0 \cup \cdots \cup S_k$. Como cada S_i es finito, \mathcal{M}_4 es finito.

- 6. Finalmente, definimos \mathcal{M}_4 como:
 - I. Su dominio es $S_0 \cup \cdots \cup S_k$. Como cada S_i es finito, \mathcal{M}_4 es finito.
 - II. Sus relaciones y valuaciones se obtienen restringiendo las relaciones y valuaciones de \mathcal{M}_3 al dominio de \mathcal{M}_4 .

- 6. Finalmente, definimos \mathcal{M}_4 como:
 - I. Su dominio es $S_0 \cup \cdots \cup S_k$. Como cada S_i es finito, \mathcal{M}_4 es finito.
 - II. Sus relaciones y valuaciones se obtienen restringiendo las relaciones y valuaciones de \mathcal{M}_3 al dominio de \mathcal{M}_4 .
- 7. No es difícil probar que $\mathcal{M}_4, w_2 \leftrightarrow_k \mathcal{M}_3, w_2$, y por lo tanto $\mathcal{M}_4, w_2 \models \varphi$.

El método que acabamos de ver tiene sus ventajas y desventajas:

(+): En muchos casos el método se adapta bien a distintas lógicas. Son los casos en los que las nociones de árbol, n-bisimulación y el procedimiento de selección en sí se adaptan bien.

El método que acabamos de ver tiene sus ventajas y desventajas:

- (+): En muchos casos el método se adapta bien a distintas lógicas. Son los casos en los que las nociones de árbol,
 n-bisimulación y el procedimiento de selección en sí se adaptan bien.
- (-): El modelo de entrada puede satisfacer relaciones estructurales importantes para nosotros, pero el resultado es siempre un árbol finito, y esas propiedades usualmente se pierden. Eso hace que si queremos probar la propiedad de modelo finito para alguna clase de modelos en especial, probablemente tengamos que hacer más trabajo adicional.

Aparecen las filtraciones

- Otro método de probar la propiedad de modelos finitos
- ► Idea:
 - ▶ No se *seleccionan* finitos sucesores (en un árbol)
 - ▶ En cambio, se *cocientan* todos los elementos del modelo
 - El criterio para cocientar es: "cosas que φ no puede distinguir"
- Aclaración:
 - ► En lo que sigue asumimos que hay una única relación
 - Pero la generalización es trivial

Preliminares

Definición (Conjunto cerrado por subfórmulas)

Un conjunto de fórmulas Σ está cerrado por subfórmulas si para todo par de fórmulas φ y ψ , si $\varphi \in \Sigma$ y ψ es subfórmula de φ , entonces $\psi \in \Sigma$

Preliminares

Definición (Conjunto cerrado por subfórmulas)

Un conjunto de fórmulas Σ está cerrado por subfórmulas si para todo par de fórmulas φ y ψ , si $\varphi \in \Sigma$ y ψ es subfórmula de φ , entonces $\psi \in \Sigma$

Definición

Sea Σ un conjunto cerrado por subfórmulas, y sea $\mathcal{M} = \langle W, R, V \rangle$. Llamamos $\Longleftrightarrow_{\Sigma}$ a la relación de equivalencia sobre W dada por

$$\iff_{\Sigma} := \{(w, v) \mid \text{para todo } \varphi \in \Sigma, \mathcal{M}, w \models \varphi \text{ sii } \mathcal{M}, v \models \varphi\}$$

Definición (Filtración)

Sea $\mathcal{M} = \langle W, R, V \rangle$ y sea Σ un conjunto cerrado por subfórmulas. Se llama *filtración de* \mathcal{M} *vía* Σ a cualquier modelo $\mathcal{M}^f = \langle W^f, R^f, V^f \rangle$ que cumpla

I.
$$W^f = W/ \longleftrightarrow_{\Sigma}$$

Definición (Filtración)

Sea $\mathcal{M} = \langle W, R, V \rangle$ y sea Σ un conjunto cerrado por subfórmulas. Se llama *filtración de* \mathcal{M} *vía* Σ a cualquier modelo $\mathcal{M}^f = \langle W^f, R^f, V^f \rangle$ que cumpla

- I. $W^f = W/ \longleftrightarrow_{\Sigma}$
- II. Si Rwv, entonces $R^f[w][v]$

Definición (Filtración)

Sea $\mathcal{M} = \langle W, R, V \rangle$ y sea Σ un conjunto cerrado por subfórmulas. Se llama filtración de \mathcal{M} vía Σ a cualquier modelo $\mathcal{M}^f = \langle W^f, R^f, V^f \rangle$ que cumpla

- I. $W^f = W/\leftrightarrow_{\Sigma}$
- II. Si Rwv, entonces $R^f[w][v]$
- III. Si $R^f[w][v]$ y $\Diamond \varphi \in \Sigma$, entonces $\mathcal{M}, v \models \varphi$ implies $\mathcal{M}, w \models \Diamond \varphi$

Carlos Areces & Raul Fervari

Definición (Filtración)

Sea $\mathcal{M} = \langle W, R, V \rangle$ y sea Σ un conjunto cerrado por subfórmulas. Se llama *filtración de* \mathcal{M} *vía* Σ a cualquier modelo $\mathcal{M}^f = \langle W^f, R^f, V^f \rangle$ que cumpla

- I. $W^f = W/ \longleftrightarrow_{\Sigma}$
- II. Si Rwv, entonces $R^f[w][v]$
- III. Si $R^f[w][v]$ y $\Diamond \varphi \in \Sigma$, entonces $\mathcal{M}, v \models \varphi$ implies $\mathcal{M}, w \models \Diamond \varphi$
- IV. $V^f(p) = \{[w] \mid \mathcal{M}, w \models p\}$ para todo $p \in \Sigma$

Definición (Filtración)

Sea $\mathcal{M} = \langle W, R, V \rangle$ y sea Σ un conjunto cerrado por subfórmulas. Se llama *filtración de* \mathcal{M} *vía* Σ a cualquier modelo $\mathcal{M}^f = \langle W^f, R^f, V^f \rangle$ que cumpla

- I. $W^f = W/ \longleftrightarrow_{\Sigma}$
- II. Si Rwv, entonces $R^f[w][v]$
- III. Si $R^f[w][v]$ y $\Diamond \varphi \in \Sigma$, entonces $\mathcal{M}, v \models \varphi$ implies $\mathcal{M}, w \models \Diamond \varphi$
- IV. $V^f(p) = \{ [w] \mid \mathcal{M}, w \models p \}$ para todo $p \in \Sigma$

► Intuitivamente, las condiciones II y III nos dicen qué pares tiene que tener R^f como mínimo (II) y como máximo (III).

Teorema (Filtration Theorem)

Sea \mathcal{M}^f una filtración vía Σ de \mathcal{M} , donde Σ es un conjunto de fórmulas de la lógica modal básica, cerrado por subfórmulas. Para toda fórmula $\varphi \in \Sigma$ y todo elemento w de \mathcal{M} ,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}^f, [w] \models \varphi$$

Demostración.

Inducción en φ . Caso base, por definición de V^f . Booleanos, por HI.

▶ Si $\diamondsuit \psi \in \Sigma$ y $\mathcal{M}, w \models \diamondsuit \psi$

Teorema (Filtration Theorem)

Sea \mathcal{M}^f una filtración vía Σ de \mathcal{M} , donde Σ es un conjunto de fórmulas de la lógica modal básica, cerrado por subfórmulas. Para toda fórmula $\varphi \in \Sigma$ y todo elemento w de \mathcal{M} ,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}^f, [w] \models \varphi$$

Demostración.

- ▶ Si $\diamondsuit \psi \in \Sigma$ y $\mathcal{M}, w \models \diamondsuit \psi$
 - Existe v tal que Rwv y $\mathcal{M}, v \models \psi$

Teorema (Filtration Theorem)

Sea \mathcal{M}^f una filtración vía Σ de \mathcal{M} , donde Σ es un conjunto de fórmulas de la lógica modal básica, cerrado por subfórmulas. Para toda fórmula $\varphi \in \Sigma$ y todo elemento w de \mathcal{M} ,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}^f, [w] \models \varphi$$

Demostración.

- ► Si $\Diamond \psi \in \Sigma$ y $\mathcal{M}, w \models \Diamond \psi$
 - Existe v tal que Rwv y $\mathcal{M}, v \models \psi$
 - ▶ Por II, $R^f[w][v]$ y como $\psi \in \Sigma$, por HI \mathcal{M}^f , $[v] \models \psi$

Teorema (Filtration Theorem)

Sea \mathcal{M}^f una filtración vía Σ de \mathcal{M} , donde Σ es un conjunto de fórmulas de la lógica modal básica, cerrado por subfórmulas. Para toda fórmula $\varphi \in \Sigma$ y todo elemento w de \mathcal{M} ,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}^f, [w] \models \varphi$$

Demostración.

- ► Si $\Diamond \psi \in \Sigma$ y $\mathcal{M}, w \models \Diamond \psi$
 - Existe v tal que Rwv y $\mathcal{M}, v \models \psi$
 - ▶ Por II, $R^f[w][v]$ y como $\psi \in \Sigma$, por HI \mathcal{M}^f , $[v] \models \psi$
 - ► Con lo cual \mathcal{M}^f , $[w] \models \Diamond \psi$

Teorema (Filtration Theorem)

Sea \mathcal{M}^f una filtración vía Σ de \mathcal{M} , donde Σ es un conjunto de fórmulas de la lógica modal básica, cerrado por subfórmulas. Para toda fórmula $\varphi \in \Sigma$ y todo elemento w de \mathcal{M} ,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}^f, [w] \models \varphi$$

Demostración.

- ► Si $\Diamond \psi \in \Sigma$ y $\mathcal{M}, w \models \Diamond \psi$
 - Existe v tal que Rwv y $\mathcal{M}, v \models \psi$
 - ▶ Por II, $R^f[w][v]$ y como $\psi \in \Sigma$, por HI \mathcal{M}^f , $[v] \models \psi$
 - ► Con lo cual \mathcal{M}^f , $[w] \models \Diamond \psi$
- ► Si $\diamondsuit \psi \in \Sigma$ y \mathcal{M}^f , $[w] \models \diamondsuit \psi$

Teorema (Filtration Theorem)

Sea \mathcal{M}^f una filtración vía Σ de \mathcal{M} , donde Σ es un conjunto de fórmulas de la lógica modal básica, cerrado por subfórmulas. Para toda fórmula $\varphi \in \Sigma$ y todo elemento w de \mathcal{M} ,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}^f, [w] \models \varphi$$

Demostración.

- ► Si $\diamondsuit \psi \in \Sigma$ y $\mathcal{M}, w \models \diamondsuit \psi$
 - Existe v tal que Rwv y $\mathcal{M}, v \models \psi$
 - ▶ Por II, $R^f[w][v]$ y como $\psi \in \Sigma$, por HI \mathcal{M}^f , $[v] \models \psi$
 - \blacktriangleright Con lo cual \mathcal{M}^f , $[w] \models \Diamond \psi$
- ► Si $\diamondsuit \psi \in \Sigma$ y \mathcal{M}^f , $[w] \models \diamondsuit \psi$
 - ▶ Para algún [v], $R^f[w][v]$ y \mathcal{M}^f , $[v] \models \psi$

Teorema (Filtration Theorem)

Sea \mathcal{M}^f una filtración vía Σ de \mathcal{M} , donde Σ es un conjunto de fórmulas de la lógica modal básica, cerrado por subfórmulas. Para toda fórmula $\varphi \in \Sigma$ y todo elemento w de \mathcal{M} ,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}^f, [w] \models \varphi$$

Demostración.

- ▶ Si $\diamondsuit \psi \in \Sigma$ y $\mathcal{M}, w \models \diamondsuit \psi$
 - Existe v tal que Rwv y $\mathcal{M}, v \models \psi$
 - ▶ Por II, $R^f[w][v]$ y como $\psi \in \Sigma$, por HI \mathcal{M}^f , $[v] \models \psi$
 - ► Con lo cual \mathcal{M}^f , $[w] \models \Diamond \psi$
- ► Si $\diamondsuit \psi \in \Sigma$ y \mathcal{M}^f , $[w] \models \diamondsuit \psi$
 - ▶ Para algún [v], $R^f[w][v]$ y \mathcal{M}^f , $[v] \models \psi$
 - ▶ Como $\psi \in \Sigma$, por HI, $\mathcal{M}, v \models \psi$; luego, por III $\mathcal{M}, w \models \Diamond \psi$

Filtraciones, mito o realidad

- ▶ Si \mathcal{M}^f cumple ciertas condiciones, vale el Filtration Theorem
- ► Preguntas:
 - ¿Serán condiciones que se pueden cumplir?
 - O sea, dado \mathcal{M} y Σ , existirá siempre una filtración de \mathcal{M} vía Σ

Teorema

Sea $\mathcal{M} = \langle W, R, V \rangle$ y sea Σ un conjunto cerrado por subfórmulas. Llamemos W^f a $W/\longleftrightarrow_{\Sigma}$, y V^f a la valuación que cumple con IV. Entonces, $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ y $\mathcal{M}^l = \langle W^f, R^l, V^f \rangle$ son filtraciones de \mathcal{M} vía Σ , donde

$$R^{s}[w][v]$$
 sii $\exists w' \in [w] \ y \ \exists v' \in [v] \ tal \ que \ Rw'v'$
 $R^{l}[w][v]$ sii $para \ toda \ \diamondsuit \varphi \in \Sigma, \mathcal{M}, v \models \varphi \ implies \ \mathcal{M}, w \models \diamondsuit \varphi$

Además, si $\mathcal{M}^f = \langle W^f, R^f, V^f \rangle$ es una filtración de \mathcal{M} vía Σ , entonces $R^s \subseteq R^f \subseteq R^l$

Demostración.

Veamos que $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ es una filtración (el resto... ejercicio!). Alcanza con ver que R^s cumple con II y III.

► R^s cumple II por definición

Demostración.

Veamos que $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ es una filtración (el resto... ejercicio!). Alcanza con ver que R^s cumple con II y III.

- ► R^s cumple II por definición
- ▶ Para III, supongamos que $R^s[w][v]$ y que $\mathcal{M}, v \models \varphi$ para $\Diamond \varphi \in \Sigma$

Demostración.

Veamos que $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ es una filtración (el resto... ejercicio!). Alcanza con ver que R^s cumple con II y III.

- ▶ R^s cumple II por definición
- ▶ Para III, supongamos que $R^s[w][v]$ y que $\mathcal{M}, v \models \varphi$ para $\Diamond \varphi \in \Sigma$
- ▶ Necesitamos ver que $\mathcal{M}, w \models \Diamond \varphi$

Demostración.

Veamos que $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ es una filtración (el resto... **ejercicio!**). Alcanza con ver que R^s cumple con II y III.

- ► R^s cumple II por definición
- ▶ Para III, supongamos que $R^s[w][v]$ y que $\mathcal{M}, v \models \varphi$ para $\Diamond \varphi \in \Sigma$
- ▶ Necesitamos ver que $\mathcal{M}, w \models \Diamond \varphi$
- ► Como $R^s[w][v]$, existen $w' \in [w]$ y $v' \in [v]$ tales que Rw'v'

Demostración.

Veamos que $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ es una filtración (el resto... **ejercicio!**). Alcanza con ver que R^s cumple con II y III.

- ► R^s cumple II por definición
- ▶ Para III, supongamos que $R^s[w][v]$ y que $\mathcal{M}, v \models \varphi$ para $\Diamond \varphi \in \Sigma$
- ▶ Necesitamos ver que $\mathcal{M}, w \models \Diamond \varphi$
- ► Como $R^s[w][v]$, existen $w' \in [w]$ y $v' \in [v]$ tales que Rw'v'
- ▶ Pero $\varphi \in \Sigma$, y $v' \iff_{\Sigma} v$, con lo cual $\mathcal{M}, v' \models \varphi$

Demostración.

Veamos que $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ es una filtración (el resto... **ejercicio!**). Alcanza con ver que R^s cumple con II y III.

- ► R^s cumple II por definición
- ▶ Para III, supongamos que $R^s[w][v]$ y que $\mathcal{M}, v \models \varphi$ para $\Diamond \varphi \in \Sigma$
- ▶ Necesitamos ver que $\mathcal{M}, w \models \Diamond \varphi$
- ► Como $R^s[w][v]$, existen $w' \in [w]$ y $v' \in [v]$ tales que Rw'v'
- ▶ Pero $\varphi \in \Sigma$, y $v' \iff_{\Sigma} v$, con lo cual $\mathcal{M}, v' \models \varphi$
- ▶ Luego, $\mathcal{M}, w' \models \Diamond \varphi$

Demostración.

Veamos que $\mathcal{M}^s = \langle W^f, R^s, V^f \rangle$ es una filtración (el resto... **ejercicio!**). Alcanza con ver que R^s cumple con II y III.

- ► R^s cumple II por definición
- ▶ Para III, supongamos que $R^s[w][v]$ y que $\mathcal{M}, v \models \varphi$ para $\Diamond \varphi \in \Sigma$
- ▶ Necesitamos ver que $\mathcal{M}, w \models \Diamond \varphi$
- ► Como $R^s[w][v]$, existen $w' \in [w]$ y $v' \in [v]$ tales que Rw'v'
- ▶ Pero $\varphi \in \Sigma$, y $v' \iff_{\Sigma} v$, con lo cual $\mathcal{M}, v' \models \varphi$
- ▶ Luego, $\mathcal{M}, w' \models \Diamond \varphi$
- ▶ Pero como $w' \longleftrightarrow_{\Sigma} w$ y $\Diamond \varphi \in \Sigma, \mathcal{M}, w \models \Diamond \varphi$

Teorema

Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, es satisfacible en un modelo finito, que contiene a lo sumo 2^m nodos, donde m es la cantidad de subfórmulas de φ (m < $|\varphi|$)

Demostración.

• Supongamos que φ es satisfacible, i.e., $\mathcal{M}, w \models \varphi$

Carlos Areces & Raul Fervari

Teorema

Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, es satisfacible en un modelo finito, que contiene a lo sumo 2^m nodos, donde m es la cantidad de subfórmulas de φ ($m \le |\varphi|$)

Demostración.

- Supongamos que φ es satisfacible, i.e., $\mathcal{M}, w \models \varphi$
- ▶ Sea $\Sigma := \{ \psi \mid \psi \text{ es subfórmula de } \varphi \}$. Observar que Σ es finito

Teorema

Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, es satisfacible en un modelo finito, que contiene a lo sumo 2^m nodos, donde m es la cantidad de subfórmulas de φ ($m \le |\varphi|$)

Demostración.

- Supongamos que φ es satisfacible, i.e., $\mathcal{M}, w \models \varphi$
- ▶ Sea $\Sigma := \{ \psi \mid \psi \text{ es subfórmula de } \varphi \}$. Observar que Σ es finito
- ▶ Sea, además, \mathcal{M}^f una filtración de \mathcal{M} vía Σ .

Teorema

Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, es satisfacible en un modelo finito, que contiene a lo sumo 2^m nodos, donde m es la cantidad de subfórmulas de φ ($m \le |\varphi|$)

Demostración.

- Supongamos que φ es satisfacible, i.e., $\mathcal{M}, w \models \varphi$
- ▶ Sea $\Sigma := \{ \psi \mid \psi \text{ es subfórmula de } \varphi \}$. Observar que Σ es finito
- ▶ Sea, además, \mathcal{M}^f una filtración de \mathcal{M} vía Σ .
- ▶ Vale \mathcal{M}^f , $[w] \models \varphi$

Teorema

Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, es satisfacible en un modelo finito, que contiene a lo sumo 2^m nodos, donde m es la cantidad de subfórmulas de φ ($m \le |\varphi|$)

Demostración.

- Supongamos que φ es satisfacible, i.e., $\mathcal{M}, w \models \varphi$
- ▶ Sea $\Sigma := \{ \psi \mid \psi \text{ es subfórmula de } \varphi \}$. Observar que Σ es finito
- ▶ Sea, además, \mathcal{M}^f una filtración de \mathcal{M} vía Σ .
- ▶ Vale \mathcal{M}^f , $[w] \models \varphi$
- \triangleright ¿Cuántos elementos tiene \mathcal{M}^f ?

Teorema

Sea φ una fórmula de la lógica modal básica. Si φ es satisfacible, es satisfacible en un modelo finito, que contiene a lo sumo 2^m nodos, donde m es la cantidad de subfórmulas de φ ($m \le |\varphi|$)

Demostración.

- Supongamos que φ es satisfacible, i.e., $\mathcal{M}, w \models \varphi$
- ▶ Sea $\Sigma := \{ \psi \mid \psi \text{ es subfórmula de } \varphi \}$. Observar que Σ es finito
- ▶ Sea, además, \mathcal{M}^f una filtración de \mathcal{M} vía Σ .
- ▶ Vale \mathcal{M}^f , $[w] \models \varphi$
- \triangleright ¿Cuántos elementos tiene \mathcal{M}^f ?
- ightharpoonup ;A lo sumo $2^{|\Sigma|}$!

Algunas relaciones entre clases de complejidad

No se sabe si son estrictas

 $\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{NPSPACE}\subseteq\mathsf{EXPTIME}\subseteq\mathsf{NEXPTIME}\subseteq\mathsf{NEXPSPACE}\subseteq\mathsf{2EXP}\dots$

Algunas relaciones entre clases de complejidad

No se sabe si son estrictas

```
\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{NPSPACE}\subseteq\mathsf{EXPTIME}\subseteq\mathsf{NEXPTIME}\subseteq\mathsf{NEXPSPACE}\subseteq\mathsf{2EXP}\dots
```

Se sabe que son iguales (Savitch)

```
PSPACE = NPSPACE
EXPSPACE = NEXPSPACE
:
```

Algunas relaciones entre clases de complejidad

No se sabe si son estrictas

```
\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{NPSPACE}\subseteq\mathsf{EXPTIME}\subseteq\mathsf{NEXPTIME}\subseteq\mathsf{NEXPSPACE}\subseteq\mathsf{2EXP}\dots
```

Se sabe que son iguales (Savitch)

```
PSPACE = NPSPACE
EXPSPACE = NEXPSPACE
.
```

Se sabe que son estrictas (Stearns & Hartmanis; Cook)

```
P \subset EXPTIME \subset 2EXPTIME \subset 3EXPTIME \dots

NP \subset NEXPTIME \subset 2NEXPTIME \subset 3NEXPTIME \dots

PSPACE \subset EXPSPACE \subset 2EXPSPACE \subset 3EXPSPACE \dots
```

Problemas clásicos de decisión (para una lógica \mathcal{L})

Model checking en L

Dados \mathcal{M} y φ , decidir si $\mathcal{M} \models_{\mathcal{L}} \varphi$

Satisfacibilidad en $\mathcal L$ (respecto a una clase de modelos $\mathcal C$)

Dada φ decidir si **existe** \mathcal{M} tal que $\mathcal{M} \models_{\mathcal{L}} \varphi$ (con $\mathcal{M} \in \mathcal{C}$)

Validez en \mathcal{L} (respecto a una clase de modelos \mathcal{C})

Dada φ decidir si **para todo** \mathcal{M} vale $\mathcal{M} \models_{\mathcal{L}} \varphi$ (con $\mathcal{M} \in \mathcal{C}$)

Problemas clásicos de decisión (para una lógica \mathcal{L})

Model checking en L

Dados \mathcal{M} y φ , decidir si $\mathcal{M} \models_{\mathcal{L}} \varphi$

Satisfacibilidad en $\mathcal L$ (respecto a una clase de modelos $\mathcal C$)

Dada φ decidir si **existe** \mathcal{M} tal que $\mathcal{M} \models_{\mathcal{L}} \varphi$ (con $\mathcal{M} \in \mathcal{C}$)

Validez en \mathcal{L} (respecto a una clase de modelos \mathcal{C})

Dada φ decidir si **para todo** \mathcal{M} vale $\mathcal{M} \models_{\mathcal{L}} \varphi$ (con $\mathcal{M} \in \mathcal{C}$)

Satisfacibilidad y validez son problemas duales

- φ es satisfacible sii $\neg \varphi$ no es válida
- φ es válida sii $\neg \varphi$ no es satisfacible

Aspectos computacionales de una lógica

Para cada uno de estos problemas vale preguntarse:

- I. ¿Es decidible?
- II. ¿Cuál es su complejidad de peor caso?
- III. ¿Hay algoritmos que sean eficientes en el caso promedio?

Model checking proposicional

I.

II.

Model checking proposicional

I. Es decidible

II.

Model checking proposicional

- I. Es decidible
- II. Es lineal en la fórmula (post-order en el árbol sintáctico)

Model checking proposicional

- Es decidible
- II. Es lineal en la fórmula (post-order en el árbol sintáctico)
- III. Es fácil de implementar de manera eficiente

Satisfacibilidad proposicional

I.

II.

Satisfacibilidad proposicional

I. Es decidible

II.

Satisfacibilidad proposicional

- I. Es decidible
- II. Está en NP (adivinar y chequear)

Satisfacibilidad proposicional

- I. Es decidible
- II. Está en NP (adivinar y chequear) y es completo (Cook)

Satisfacibilidad proposicional

- I. Es decidible
- II. Está en NP (adivinar y chequear) y es completo (Cook)
- III. DPLL algorithm: problemas "reales" con > 10K variables

Model checking (sobre modelos finitos)

I.

II.

Model checking (sobre modelos finitos)

I. Es decidible

II.

Model checking (sobre modelos finitos)

- I. Es decidible
- II. Está en PTIME: $O(|\varphi| \cdot |W|^2)$ (eg., usando prog. dinámica)

Model checking (sobre modelos finitos)

- Es decidible
- II. Está en PTIME: $O(|\varphi| \cdot |W|^2)$ (eg., usando prog. dinámica)
- III. Es fácil de implementar de manera eficiente

Satisfacibilidad

I.

II.

Satisfacibilidad

I. Ya habíamos visto que es decidible (reducciones a FO2)

II.

Satisfacibilidad

- I. Ya habíamos visto que es decidible (reducciones a FO2)
- II. ??

Filtraciones como cota de complejidad

Filtraciones y la propiedad de modelos finitos (repaso)

- Sea Σ un conjunto finito cerrado bajo subfórmulas
- Y sea \mathcal{M}^f una filtración de \mathcal{M} via Σ
- ▶ Vimos que si $\mathcal{M}, w \models \varphi$ con $\varphi \in \Sigma$, entonces $\mathcal{M}^f, |w| \models \varphi$
- ▶ Pero \mathcal{M}^f es finito

Filtraciones como cota de complejidad

Filtraciones y la propiedad de modelos finitos (repaso)

- Sea Σ un conjunto finito cerrado bajo subfórmulas
- Y sea \mathcal{M}^f una filtración de \mathcal{M} via Σ
- ▶ Vimos que si $\mathcal{M}, w \models \varphi$ con $\varphi \in \Sigma$, entonces $\mathcal{M}^f, |w| \models \varphi$
- ▶ Pero \mathcal{M}^f es finito... cuántos estados tiene?

Filtraciones como cota de complejidad

Filtraciones y la propiedad de modelos finitos (repaso)

- Sea Σ un conjunto finito cerrado bajo subfórmulas
- Y sea \mathcal{M}^f una filtración de \mathcal{M} via Σ
- ▶ Vimos que si $\mathcal{M}, w \models \varphi \text{ con } \varphi \in \Sigma$, entonces $\mathcal{M}^f, |w| \models \varphi$
- ▶ Pero \mathcal{M}^f es finito... cuántos estados tiene?

Corolario

- ▶ Si φ es satisfacible, tiene modelo de a lo sumo $2^{|\varphi|}$ estados
- Luego, podemos adivinar un modelo en $O(2^{|\varphi|})$
- ightharpoonup Y podemos testear si satisface φ en tiempo polinomial
- ► Con lo cual, el problema seguro está en NEXPTIME

Satisfacibilidad

- I. Ya habíamos visto que es decidible (reducciones a FO2)
- II. A lo sumo NEXPTIME (pero vamos a ver mejores cotas)