Adaptive Learning System Architecture: Evidence-Backed Roadmap for Scale

Mostafa Rezaee

Pearson Company Manager: Hamid Bagheri

October 23, 2025

Outline

- Executive Summary
- 2 Architecture Options Comparison
- Final Recommended Architecture
- Wey Components
- Bandit Optimization
- 6 Implementation Roadmap
- Data Strategy
- Metrics & Evaluation
- Risks & Mitigations
- Deliverables & Timeline
- Conclusion

Adaptive Learning System: Core Vision

Mission

Deliver micro-learning resources (short video clips and PDF segments) in response to student questions, provide formative assessments, and measure learning gains over time for millions of higher education learners.

Key Requirements:

- Micro-learning: Short, focused content
- Personalized: Adaptive to learner ability
- Measurable: Learning outcomes tracking
- Scalable: Millions of learners

Challenges:

- Cold-start: No historical labels
- Minimality: Shortest effective content
- Quality: Pedagogical excellence
- Scale: Real-time for millions

Recommended Architecture: RAG-First with Bandit Optimization

Chosen Approach

RAG-first with cross-encoder reranking, agentic orchestration, and contextual bandits for content selection, augmented with task-specific LoRA fine-tuning for pedagogical components.

Why This Beats Alternatives

- Addresses cold-start problem for content recommendation
- Leverages existing Q&A/assessment data
- Enables rapid iteration and model-agnostic flexibility
- Provides clear pathway from baseline to optimized system

Key Innovation

Start with metadata-driven heuristics and semantic similarity (no ML needed), rapidly collect preference data through teacher-in-the-loop and implicit feedback, bootstrap bandit policies within 4–6 weeks

Four Architectural Approaches Evaluated

Option A: RAG-First + Reranking + Agentic Orchestration

- **Components:** Bi-encoder + BM25 hybrid retrieval, cross-encoder reranker, MMR diversification
- **Cost:** \$2k-\$4.5k/month at prototype scale
- Latency: 4–10s end-to-end
- Cold-Start: Excellent Works day-one with zero historical labels

Option B: LoRA Fine-Tuning + RAG

- Components: Same RAG + LoRA adapters for pedagogy tasks
- **Cost:** \$2.5k-\$5k/month
- Cold-Start: Moderate Requires 2–4 weeks for data collection

Options C & D: Bandits and Full Fine-Tuning

Option C: RL/Bandits for Content Selection + RAG Baseline

- Components: RAG baseline + contextual bandit layer
- **Cost:** \$2.3k–\$5k/month
- Learning Impact: Very High (directly optimizes for learning outcomes)
- Cold-Start: Moderate Starts with heuristics, improves over 4–8 weeks

Option D: Fully Fine-Tuned Task-Specific Models

- Components: Small specialized models (1–13B parameters) for each task
- **Cost:** \$1.5k–\$3k/month
- Cold-Start: Poor Requires 2–6 months of data collection
- Learning Impact: High (once trained), but delayed

Architecture Comparison Summary

Table: Architecture Options Comparison

Dimension	Option A: RAG-First	Option B: LoRA+RAG	Option C: Bandits+RAG	Option D: Full FT
Monthly Cost	\$2k-\$4.5k	\$2.5k-\$5k	\$2.3k-\$5k	\$1.5k-\$3k
Latency	4-10s	4–10s	4–10s	2–5s
Data Needs	None (zero-shot)	0.5k–2k per task	10k-50k interactions	10k–50k per task
Time to Deploy	1–2 weeks	4–6 weeks	2 weeks $+$ 6–8 weeks	3–6 months
Cold-Start Viability	Excellent	Moderate	Moderate	Poor
Learning Impact	Baseline (60–70%)	High (75-85%)	Very High (80–90%)	High (85–95%, delayed)
Team Fit	Excellent	Good	Good	Moderate

Recommendation

Start with Option A (RAG-First), evolve to hybrid A+C (Bandits), selectively add B (LoRA) for pedagogy.

System Overview: Modular, Layered Architecture

Core Components

- ullet Hybrid Retrieval Layer: BM25 + dense embeddings with cross-encoder reranking
- Content Minimization Layer: Segment detection, sufficiency scoring, length constraints
- Pedagogical Layer: Question generation, rubric grading, hint provision, worked examples
- Assessment & Analytics: IRT-based ability estimation, item calibration, learning gain tracking
- Agentic Orchestration: Multi-step planner coordinating retrieval, selection, pedagogy, evaluation
- Bandit Optimization: Contextual bandits for content selection under multi-objective reward

Key Design Principles

- Modularity: Each layer can be optimized independently
- Agility: Model-agnostic design allows foundation model upgrades

Architecture Diagram

Retrieval Laver: Hybrid Search with Reranking

Embedding Model

- **Primary:** OpenAl text-embedding-3-large (3,072 dimensions)
- Alternative: Open-source bge-large-en-v1.5 (self-hosted)
- Rationale: Strong performance on semantic search, handles educational content well

Hybrid Search Strategy

- BM25 (sparse): Catches exact keyword matches, acronyms, formulas
- Dense (embedding): Captures semantic similarity
- Fusion: Reciprocal Rank Fusion (RRF) with weights 0.3 (BM25) + 0.7 (dense)
- Process: Retrieve top-50 from each, fuse to top-20 for reranking

Cross-Encoder Reranking

- Model: ms-marco-MiniLM-L-12-v2 or bge-reranker-large
 - augry candidate chunkl naire

10 / 28

Content Minimization: Ensuring Micro-Learning

Video Segmentation

- ASR: Whisper (OpenAI) or AssemblyAI for transcription
- Scene detection: PvSceneDetect or TransNetV2 for visual boundaries
- Target: 30–180 second clips (hard maximum: 3 minutes)
- Process: Combine ASR sentence boundaries + scene changes + silence detection

PDF Section Detection

- Parsing: PyMuPDF or Apache PDFBox for structured extraction
- Target: 0.5–2 page segments (hard maximum: 3 pages)
- Process: Identify headers, paragraph boundaries, extract images/figures with captions

Sufficiency Scoring

cosine(embed(R),embed(Q))• **Semantic Coverage:** Coverage(R, Q) = duration(R) or pages(R)

Pedagogical Layer: Question Generation & Assessment

Question Generation

- Prompt-based (Milestone 3): Few-shot examples aligned to Bloom taxonomy
- LoRA fine-tuned (Milestone 5): Llama 3.1 8B with 500–2k exemplars
- Inputs: Learning resource content, student query, desired Bloom level
- Outputs: Question text, answer key, distractor options, rubric
- Validation: Answerability check, factuality check (grounded in content)

Rubric-Based Grading

- Rubric design: 3–5 levels (Novice, Developing, Proficient, Advanced)
- Grading prompt: Chain-of-thought reasoning with rubric and reference answer
- **Confidence scoring:** Model outputs confidence 0–1; defer to human if confidence < 0.7

Hints & Worked Examples

Assessment & Analytics: IRT-Based Learning Measurement

IRT (Item Response Theory) Ability Estimation

- **Model:** 3PL (3-Parameter Logistic): $P(\theta, a, b, c) = c + \frac{1-c}{1+e^{-a(\theta-b)}}$
- θ : Learner ability, a: Item discrimination, b: Item difficulty, c: Guessing parameter
- Estimation: Maximum Likelihood Estimation (MLE) or Expected A Posteriori (EAP)

Learning Gain Measurement

- **Primary metric:** $\Delta \theta = \theta_{\mathsf{post}} \theta_{\mathsf{pre}}$ over study session
- Normalized gain: $g = \frac{\theta_{\text{post}} \theta_{\text{pre}}}{\theta_{\text{max}} \theta_{\text{pre}}}$ (Hake gain)
- Mastery progression: % of items at target proficiency level
- **Longitudinal tracking:** Plot $\theta(t)$ over weeks/months

Distinguish Engagement from Learning

• Engagement metrics: Time-on-task, click-through rate, completion rate (log but don't

Contextual Bandit Setup

Multi-Objective Reward Function

 $R = w_1 \cdot \Delta \theta + w_2 \cdot \text{brevity_bonus} - w_3 \cdot \text{irrelevance_penalty} - w_4 \cdot \text{latency_cost}$

Component Breakdown:

- **Learning Gain** ($\Delta \theta$): $w_1 = 1.0$ (highest priority)
- Minimality Bonus: $w_2 = 0.3$ (encourage brevity)
- Irrelevance Penalty: $w_3 = 0.5$ (penalize off-topic content)
- Latency Cost: $w_4 = 0.1$ (minor penalty for speed)

Context & Actions

- **Context:** $x = [\theta, \text{query_embedding}, \text{prior_performance}, \text{resource_metadata}]$
- Actions: $A = \{\text{segment}_1, \text{segment}_2, \dots, \text{segment}_k\}$ (top-k from retrieval)
- **Policy:** $\pi(a|x)$ maps context to action (content selection)

Bandit Algorithm Progression

Phase 1 (Weeks 1–4): Thompson Sampling

- Model: Beta-Bernoulli bandit for binary rewards
- **Prior:** Beta(1, 1) for each action
- **Update:** Posterior update after each interaction
- Selection: Sample from posterior, select action with highest sampled reward
- Exploration: Automatic via posterior sampling

Phase 2 (Weeks 5–8): LinUCB (Linear Upper Confidence Bound)

- Model: Assume reward is linear in context features: $R(x, a) = x^T \theta_a + \epsilon$
- **Features:** $x = [\theta_{learner}, query_emb, resource_meta]$
- Selection: $a^* = \arg\max_{a} \left(x^T \hat{\theta}_a + \alpha \sqrt{x^T A_a^{-1} x} \right)$
- Advantage: Fast convergence, interpretable, proven regret bounds

Mostafa Rezaee (Pearson CompanyManager: Hamid BagAdaptive Learning System Architecture:Evidence-Backed

12-Week Implementation Roadmap

Table: Milestone Summary

Milestone	Duration	Key Tasks	Deliverables	Acceptance Criteria
M1	Weeks 1–2	RAG baseline, minimality constraints, eval harness	API, eval report, notebook	nDCG@5 > 0.6, Recall@10 > 0.70
M2	Weeks 3–4	Cross-encoder reranking, video/PDF segmentation	Enhanced API, pipelines, model card	nDCG@5 > 0.70, Compression < 0.3
M3	Weeks 5–6	Question generation, rubric grading, hints	Pedagogy APIs, prompt library	Expert score > 4.0, Pass@1 > 85%
M4	Weeks 7–8	Contextual bandits, IRT	Bandit service, IRT	$\Delta\theta$

Milestone 1 (Weeks 1–2): RAG Baseline

Objectives

- Deploy functional RAG system with hybrid retrieval (BM25 + dense embeddings)
- ullet Enforce hard caps on resource length (videos ≤ 3 min, PDFs ≤ 2 pages)
- ullet Achieve baseline retrieval quality (nDCG@5 > 0.6, Recall@10 > 0.70)
- Establish evaluation harness and red-team test cases

Key Tasks

- **Ontent Ingestion:** Parse videos (ASR via Whisper), PDFs (PyMuPDF)
- ② Embedding & Indexing: OpenAI text-embedding-3-large, vector DB
- **4 Hybrid Retrieval:** RRF fusion (0.3 BM25 + 0.7 dense)
- Minimality Filtering: Hard filter + rank by semantic similarity/duration
- **5** Evaluation Harness: 200–300 test queries with expert labels

Milestone 4 (Weeks 7–8): Bandit Optimization

Objectives

- Deploy contextual bandit policy for content selection
- Collect implicit feedback (clicks, dwell, quiz scores) and explicit feedback (thumbs)
- Optimize for multi-objective reward: learning + minimality
- Demonstrate $\Delta\theta$ improvement over heuristic baseline

Bandit Infrastructure

- **Policy server:** Thompson Sampling with Beta priors (initial)
- **Context:** $x = [\theta, query_embedding, resource_metadata]$
- Actions: Select from top-5 reranked candidates
- Exploration rate: 20% (uniform random)

B Test Design

18 / 28

Cold-Start to Data Flywheel Strategy

Challenge: No Historical Content Recommendation Labels

We have:

- ✓ Content corpus (videos, PDFs) with metadata
- ✓ Historical Q&A logs (student questions, instructor answers)
- ✓ Historical assessment data (questions, responses, correctness)

We lack:

- × Explicit labels: "For query Q, resource R is the best/shortest/most relevant"
- × Implicit feedback: clicks, dwell time, learner ratings

Cold-Start Strategy (Weeks 1–4)

- **1** Heuristic Baseline: Metadata filters + semantic similarity
- Weak Labels: Bootstrap from Q&A logs and assessment data
- **Teacher-in-the-Loop:** 500–1k high-quality labels in 2 weeks

Data Flywheel (Weeks 7+)

Implicit Feedback Collection

- User Actions: Click-through, dwell time, skip, thumbs up/down, quiz performance
- Logging: Event stream (Kafka) → Data warehouse (Snowflake, BigQuery)
- **Volume target:** 10k–50k interactions in Weeks 7–8

Bandit Policy Training

- Data Preparation: Context, action, reward, propensity from logged interactions
- Training Cadence: Week 1-4 collect data, Week 5 train bandit, Week 6-8 deploy with exploration
- Off-policy eval: IPS/DR estimators to predict performance before deployment

Continuous Improvement

- Retrieval Quality: Fine-tune cross-encoder on (query, clicked_resource, label) pairs
- Question Quality: Expert review loop, learner feedback, flag system Mostafa Rezaee (Pearson CompanyManager: Hamid BagAdaptive Learning System Architecture:Evidence-Backed

20 / 28

Comprehensive Evaluation Framework

Retrieval & Selection Quality

- nDCG@k: Normalized Discounted Cumulative Gain
- Recall@k: Fraction of relevant resources retrieved in top-k
- Coverage: Percentage of unique content chunks recommended
- Time-to-First-Useful-Resource: Latency to first useful resource

Minimality Metrics

- Median Resource Length: Videos < 90 seconds, PDFs < 1.5 pages
- ullet Overkill Rate: Percentage exceeding target length thresholds (<15%)
- Compression Ratio: Ratio of segment length to full resource length (< 0.3)

Learning Outcome Metrics

- $\Delta\theta$ **Over Time:** Change in ability estimate per session
- Normalized Gain: Hake gain $\sigma = \theta_{post} \theta_{pre}$

Question Quality & Safety Metrics

Question Quality Metrics

- Expert Rubric Scores: Clarity, alignment, Bloom level, factuality (1–5 scale)
- ullet Pass@k on Canonical Answers: % of questions where canonical answer passes (> 90%)
- Factuality via Reference-Grounded Checks: NLI model for entailment verification

Assessment Quality Metrics

- Item Discrimination (a): Median a > 1.0 (acceptable), > 1.5 (good)
- Item Difficulty (b): Distribution $b \in [-2, 2]$ (covers ability range)
- Test-Retest Reliability: Correlation $\rho > 0.80$ (acceptable), > 0.85 (good)

Safety & Accuracy Metrics

- Hallucination Rate: < 3% (via NLI + expert audit)
- Refusal/Deferral Accuracy: Precision > 0.90, Recall > 0.85

Key Risks and Mitigation Strategies

Risk 1: Cold-Start for Content Recommendations

- **Impact:** Low user satisfaction in first 2–4 weeks
- Mitigation: Heuristic baseline, weak labels, teacher-in-the-loop, bandit exploration
- Monitoring: nDCG, user satisfaction, session abandonment rate

Risk 2: Over-Long Resources (Minimality Failure)

- Impact: Poor user experience, cognitive overload
- Mitigation: Hard caps, sufficiency scoring, segmentation, brevity reward
- Monitoring: Median resource length, overkill rate, compression ratio

Risk 3: Hallucinations (Factual Errors)

- Impact: Misleading learners, erosion of trust
- Mitigation: Retrieval-grounded generation, answerability checks, NLI verification
- Monitoring: Hallucination rate Joannor flags, export review

 Mostafa Rezaee (Pearson CompanyManager: Hamid Bas/Adaptive Learning System Architecture:Evidence-Backed

Additional Risk Mitigations

Risk 4: Privacy & PII Leakage

- Impact: GDPR/FERPA violations, loss of trust
- Mitigation: Anonymization, data minimization, role-based access, encryption
- Monitoring: PII detection alerts, access logs, data retention policies

Risk 5: Model Drift & Degradation

- Impact: Sudden performance drop, user complaints
- Mitigation: Model versioning, regression testing, gradual rollout, fallback
- Monitoring: Metrics per model version, performance degradation alerts

Risk 6: Bias & Fairness

- Impact: Unequal learning outcomes, legal/ethical concerns
- Mitigation: Bias audit, diverse training data, counterfactual testing, fairness metrics

First 14 Days: Executable Task List

Objective

Get from zero to a functional RAG baseline (Milestone 1) in 2 weeks, with concrete metrics and evaluation harness.

Team Composition (Small Team)

- 1 ML Engineer: RAG pipeline, embeddings, retrieval
- 1 Data Scientist: Evaluation, metrics, analysis
- 1 Content Engineer: Content ingestion, ASR, parsing
- 1 Product Manager (part-time): Coordinate with educators, define test cases

Week 1: Content Ingestion & Baseline Retrieval

- Days 1–2: Environment setup, content audit
- Days 3-4: ASR & PDF parsing
- Days 5-6: Embedding & indexing

Week 2: Evaluation & Baseline Metrics

Week 2 Tasks

- Days 8–9: Test set creation (200–300 queries)
- Days 10–11: Expert labeling (2–3 educators, 100 queries each)
- Day 12: Evaluation harness implementation
- Day 13: Red-team testing (50 adversarial cases)
- Day 14: Report & decision memo

Success Criteria (End of Day 14)

- Functional API: POST /retrieve returns top-3 resources in < 8s (P95)
- Metrics: nDCG@5 > 0.6, Recall@10 > 0.70, median length < 90s
- Evaluation harness: Reproducible notebook with automated metric computation
- Red-team: 50 adversarial cases documented with failure modes
- **Decision:** Go/no-go for M2 based on acceptance criteria

Key Achievements & Impact

Theoretical Contributions

- First comprehensive framework for adaptive learning system architecture
- Evidence-backed roadmap with concrete metrics and evaluation protocols
- Multi-objective optimization balancing learning outcomes, minimality, and efficiency
- Principled design replacing empirical optimization with theoretical foundations

Practical Contributions

- **12-week implementation roadmap** with executable milestones
- Cold-start strategy addressing the no-labels problem
- **Omprehensive evaluation framework** with 20+ metrics
- Risk mitigation strategies with monitoring and alerting

Expected Impact

<u>9 33-40% reduction in resource length while improving learning outcomes</u>

Next Steps & Call to Action

Immediate Actions (Next 2 Weeks)

- 1 Team Assembly: Recruit ML Engineer, Data Scientist, Content Engineer
- **2** Environment Setup: Cloud infrastructure, development environment
- Content Audit: Inventory existing videos, PDFs, Q&A logs
- Stakeholder Alignment: Review with educators, product team, engineering

Success Metrics (End of 12 Weeks)

- Functional System: End-to-end adaptive learning pipeline
- **Performance:** nDCG@5 > 0.75, median resource length < 90s
- Learning Impact: $\Delta \theta > 0.10/\text{week}$, normalized gain > 0.40
- Production Ready: Hallucination rate < 3%, P95 latency < 10s

Decision Point