

Introduction to Probability and Statistics

Chapter 5

Ammar M. Sarhan,
asarhan@mathstat.dal.ca

Department of Mathematics and Statistics,
Dalhousie University
Fall Semester 2008

Chapter 5

Joint Probability Distributions and Random Samples

Chapter Outlines

5.4 The Distribution of the Sample Mean

5.5 The Distribution of a Linear Combination

5.4 The Distribution of the Sample Mean

Using the Sample Mean

Let X_1, \dots, X_n be a random sample from a distribution with mean value μ and standard deviation σ . Then

$$1. E(\bar{X}) = \mu_{\bar{X}} = \mu$$

$$2. V(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} \text{ and } \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

In addition, with $T_0 = X_1 + \dots + X_n$ (The sample total)

$$E(T_0) = n\mu \quad V(T_0) = n\sigma^2 \quad \sigma_{T_0} = \sqrt{n} \sigma$$

Example 5.24 (p. 213)

Let X_1, \dots, X_{25} be a random sample from a distribution with mean $\mu=28000$ and standard deviation $\sigma=5000$. Find:

- 1) $E(\bar{X})$
- 2) $V(\bar{X})$
- 3) $E(T)$ and
- 4) $V(T)$, where $T = X_1 + \dots + X_{25}$

Normal Population Distribution

Let X_1, \dots, X_n be a random sample from a normal distribution with mean value μ and standard deviation σ . Then for any n :

$$1) \quad \bar{X} \sim N(\mu, \sigma^2 / n)$$

$$2) \quad T \sim N(n\mu, n\sigma^2)$$

Example 5.25 (p. 214)

The time that it takes a randomly selected rat of a certain subspecies to find its way through a maze is a normally distributed rv with $\mu = 1.5$ min and $\sigma = 0.35$ min. Suppose 5 rats are selected. **Find:**

- 1) The probability that the total time for the 5 rats is between 6 and 8 min?
- 2) The probability that the average time for the 5 rats is at most 2 min?

Solution:

$$1) \quad \Phi(0.64) - \Phi(-1.92) = .7115$$

$$2) \quad \Phi(3.191) = .9993$$

The Central Limit Theorem

Let X_1, \dots, X_n be a random sample from a distribution with mean value μ and standard deviation σ . Then if n is sufficiently large,

- 1) $\bar{X} \sim \text{approximately } N(\mu, \sigma^2 / n)$
- 2) $T \sim \text{approximately } N(n\mu, n\sigma^2)$

The larger value of n , the better approximation.

Rule of Thumb

If $n > 30$, the Central Limit Theorem can be used.

Example 5.26 (p. 215)

The amount of a particular impurity in a batch of a certain chemical product is a random variable with mean value 4.0 g and standard deviation 1.5 g. If 50 batches are independently prepared, what is the (approximate) probability that

- 1) the sample average amount of impurity is between 3.5 and 3.8 g?
- 2) the sample total amount of impurity is between 175 and 190 g?

Solution:

$$1) \quad n = 50 > 30 \Rightarrow \bar{X} \sim \text{approximately } N(4, .2121^2)$$

$$P(3.5 \leq \bar{X} \leq 3.8) \approx \left(\frac{3.5 - 4}{.2121} \leq Z \leq \frac{3.8 - 4}{.2121} \right)$$

$$= \Phi(-0.94) - \Phi(-2.36) = .1645$$

$$2) \quad T \sim \text{approximately } N(50 \times 4, 50 \times 1.5^2)$$

5.5 The Distribution of a Linear Combination

Linear Combination

Given a collection of n random variables X_1, \dots, X_n and n numerical constants a_1, \dots, a_n , the rv

$$Y = a_1 X_1 + \dots + a_n X_n = \sum_{i=1}^n a_i X_i$$

is called a *linear combination* of the X_i 's.

Examples:

- 1) Taking $a_i = 1$, $i=1,2,\dots,n$, gives $Y = X_1 + \dots + X_n$ (*Total sum*)
- 2) Taking $a_i = 1/n$, $i=1,2,\dots,n$, gives $Y = (X_1 + \dots + X_n)/n$ (*Sample mean*)

Expected Value of a Linear Combination

Let X_1, \dots, X_n have mean values $\mu_1, \mu_2, \dots, \mu_n$ and variances of $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$ respectively. Whether or not the X_i 's are independent

$$E(a_1 X_1 + \dots + a_n X_n) = \sum_{i=1}^n a_i E(X_i) = \sum_{i=1}^n a_i \mu_i$$

Variance of a Linear Combination

If X_1, \dots, X_n are independent

$$V(a_1 X_1 + \dots + a_n X_n) = \sum_{i=1}^n a_i^2 V(X_i) = \sum_{i=1}^n a_i^2 \sigma_i^2$$

and

$$\sigma_{a_1 X_1 + \dots + a_n X_n} = \sqrt{a_1^2 \sigma_1^2 + \dots + a_n^2 \sigma_n^2}$$

Examples:

- 1) $E(2 X_1 - 3 X_2) = 2 E(X_1) - 3 E(X_2)$
- 2) $V(2 X_1 - 3 X_2) = 2^2 V(X_1) + (-3)^2 V(X_2)$
- 3) $\sigma_{2X_1-3X_2} = \sqrt{2^2 \sigma_1^2 + 3^2 \sigma_2^2}$
- 4) A gas station sells three grades of gasoline: regular, extra, and super. These are priced at \$21.2, \$21.35, and \$21.5 per gallon, respectively. Let X_1 , X_2 and X_3 denote the amount of these grades purchased (gallon) on a particular day. Suppose X_i 's independent with $\mu_1=1000$, $\mu_2=500$, $\mu_3=300$ and $\sigma_1=100$, $\sigma_2=80$, $\sigma_3=50$. Find
 - a) The expected revenue from sales on that day;
 - b) The variance of the revenue from sales;
 - c) The standard deviation of the revenue from sales;

Solution:

Let Y be the revenue from sales. Then $Y = 21.2 X_1 + 21.35 X_2 + 21.5 X_3$

a) $E(Y) = \$4,125$ b) $V(Y) = 104,025$ c) $\sigma_Y = \$322.529$

Variance of a Linear Combination

For any X_1, \dots, X_n ,

$$V(a_1 X_1 + \dots + a_n X_n) = \sum_{i=1}^n \sum_{j=1}^n a_i a_j Cov(X_i, X_j)$$

where

$$Cov(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)]$$

Difference Between Two Random Variables

$$E(X_1 - X_2) = E(X_1) - E(X_2)$$

and, if X_1 and X_2 are independent

$$V(X_1 - X_2) = V(X_1) + V(X_2)$$

Example: A certain automobile manufacture equips a particular model with either a six-cylinder engine or a four-cylinder engine. Let X_1 and X_2 be fuel efficiencies for independently and randomly selected six-cylinder and four-cylinder cars, respectively. With $\mu_1=22$, $\mu_2=26$, $\sigma_1=1.2$ and $\sigma_2=1.5$. Find

- a) $E(X_1 - X_2)$
- b) $V(X_1 - X_2)$
- c) $\sigma_{X_1 - X_2}$

Difference Between Normal Random Variables

If X_1, X_2, \dots, X_n are independent, *normally* distributed rv's, then any linear combination of the X_i 's also has a normal distribution. The difference $X_1 - X_2$ between two independent, normally distributed variables is itself normally distributed.

Example: In example 4, slide 10, if X_i 's are normally distributed find:

- (1) probability that revenue exceeds 4500?
- (2) Probability that the amount of regular gas purchased exceeds that of supper by 500 gallon?

Solution:

$$\begin{aligned}(1) \quad Y &\sim N(4,125, 104,025), \text{ then } P(Y > 4500) = P\left(Z > \frac{4500 - 4125}{322.53}\right) \\ &= P(Z > 1.16) = 1 - \Phi(1.16) = 0.123\end{aligned}$$

- (2) In class.