Detecção e Prevenção de Botnets com SVM e Modelagem Preditiva

Isabella de Freitas Nunes

O que é um botnet?

- Por que é relevante?
 - Aumento das aplicações de loT;
 - Importância para a economia global, infraestruturas e serviços de comunicação;
 - ODS 11 da ONU, "Cidades e Comunidades Sustentáveis", estabelece que as cidades devem ser inclusivas, seguras, resilientes e sustentáveis;

MENTORED testbed;

 Objetivo 1: Desenho de uma solução de monitoramento de fluxos de loT para prevenir ataques e auxiliar na modelagem, detecção e previsão de botnets e ataques DDoS;

 Objetivo 2: Análise de risco pela identificação de botnets formadas por dispositivos IoT e a previsão de ataques DDoS conhecidos e desconhecidos (dia zero);

 Objetivo 3: Identificação e classificação de comportamentos maliciosos relacionados a ataques DDoS e proposição de solução para detecção e mitigação desses ataques;

 Objetivo 4: Desenho e implementação de um ambiente de experimentação (testbed), com controle de acesso, no qual as soluções propostas possam ser testadas;

Dataset utilizado

Computer Network Traffic na plataforma kaggle.com

Computer Network Traffic

Traffic from workstation IPs where at least half were compromised

Data Card Code (9) Discussion (1) Suggestions (0)

About Dataset

Context

Computer Network Traffic Data - A ~500K CSV with summary of some real network traffic data from the past. The dataset has ~21K rows and covers 10 local workstation IPs over a three month period. Half of these local IPs were compromised at some point during this period and became members of various botnets.

Dataset utilizado

- Dados de tráfego de rede de computadores;
- CSV com resumo de alguns dados reais de tráfego de rede;
- Cerca de 21 mil linhas do tráfego de 10 IPs de dispositivos em um período de três meses. Metade desses IPs locais foram comprometidos em algum momento durante esse período e se tornaram membros de várias botnets;

Dataset utilizado

- Cada linha consiste em quatro colunas:
 - o data: aaaa-mm-dd (no formato de ano, mês e dia);
 - I_ipn: IP local (codificado como um inteiro de 0 a 9);
 - r_asn: um inteiro que identifica o ISP remoto;
 - f: contagem de conexões para aquele dia;

Pré-processamento

- Adicionar a coluna compromised indicando se um IP estava comprometido em um dado dia;
- Adicionar colunas de datas como: weekday, month, is_weekend;
- Colunas numéricas r_asn e f foram normalizadas para média 0 e desvio padrão 1;

Algoritmo de classificação

- Algoritmos de aprendizado de máquina supervisionado e de classificação;
- SVM (Support Vector Machine);
- O objetivo do SVM é encontrar um hiperplano que maximize a distância entre as classes, o que é chamado de margem de separação;
- Os pontos que estão na margem de separação são os vetores de suporte;

Algoritmo de classificação

- Kernel RBF (Radial Basis Function): função gaussiana que mapeia dados em um espaço dimensional infinito, sendo um dos kernels mais populares para SVMs;
- Kernel padrão usado no sklearn.svm;

Algoritmo de classificação

- Técnica SMOTE para lidar com balanceamento;
 Essa técnica cria dados sintéticos até que a base de treinamento atinja
- Essa técnica cria dados sintéticos até que a base de treinamento atinja o equilíbrio de 50% para as classes;

Algoritmo de predição

- Treinamento de um Random Forest Regressor para prever o número de fluxos em um dia;
- O período até 31 de agosto de 2006 é usado para treinar o modelo;
- O período após essa data (setembro de 2006) é usado para testar o modelo;

Matriz de confusão:

Classe Real (Previsão)	Não Comprometido	Comprometido
Não Comprometido	3103 (verdadeiro negativo)	788 (falso positivo)
Comprometido	1 (falso negativo)	269 (verdadeiro positivo)

Métrica	Valor	Interpretação
Acurácia	81.04%	O modelo acertou 81% das classificações
Precisão	25.45%	25% das previsões de IPs comprometidos estavam corretas (alta quantidade de falsos positivos)
Recall	99.63%	Encontrou quase todos os IPs comprometidos
F1 Score	40.54%	Equilíbrio entre precisão e recall é moderado
Fβ Score	29.90%	Baixa precisão

AUC é 90.28%, evidenciando que o modelo é bom em distinguir entre classes (comprometido vs. não comprometido)

- Erro Quadrático Médio de 3.65 unidades;
 - Há fortes indícios de outliers;

- Erro Absoluto Médio de 0.04;
 - Modelo teve bom desempenho para a maioria das amostras, mas o Erro Quadrático Médio de 3.65 indica que erros maiores (outliers) aumentaram o erro total;

 O modelo é excelente em detectar IPs comprometidos (recall de 99.63%), errando apenas 1 vez ao não identificar um IP comprometido;

Gera muitos falsos positivos (788), o que reduz a precisão (25.45%);

 O AUC de 90.28% indica que o modelo é bom para distinguir entre as duas classes;

Reflexões

Baixa precisão do SVM (devido a falsos positivos);

Dificuldade do modelo de regressão em lidar com outliers;

Código completo

https://github.com/isadfrn/network-threat-classifier

