Lecture 6: Introduction

Amos Ron

University of Wisconsin - Madison

February 05, 2021

Outline

- Positive Definite Matrices
 - Definition and example
 - Characterization of SPD

Outline

- Positive Definite Matrices
 - Definition and example
 - Characterization of SPD

Blank page

Positive Definite Matrices, defined

Definition

 $A_{m \times m}$ is symmetric: A = A'. Then:

- A is positive definite if $(Av, v) \ge 0$, for every vector $v \in \mathbb{R}^m$.
- A is strictly positive definite if (Av, v) > 0, for every vector $v \neq 0$.

Positive Definite Matrices, defined

Definition

 $A_{m \times m}$ is symmetric: A = A'. Then:

- A is positive definite if $(Av, v) \ge 0$, for every vector $v \in \mathbb{R}^m$.
- A is strictly positive definite if (Av, v) > 0, for every vector $v \neq 0$.

Exercise (not so simple!)

Let A be a symmetric positive definite matrix. Then TFCAE

- A is strictly positive definite
- A is invertible

Positive Definite Matrices, defined

Definition

 $A_{m \times m}$ is symmetric: A = A'. Then:

- A is positive definite if $(Av, v) \ge 0$, for every vector $v \in \mathbb{R}^m$.
- A is strictly positive definite if (Av, v) > 0, for every vector $v \neq 0$.

Example

Let A be any matrix (possibly not even square). Then A'A is (symmetric) positive definite:

$$(A'Av, v) = \dots \geq 0$$

2×2 positive definite matrices

Question: Given a symmetric matrix 2×2

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

what conditions on a, b, c are equivalent to "A being strictly positive definite"?

2×2 positive definite matrices

Question: Given a symmetric matrix 2×2

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

what conditions on a,b,c are equivalent to "A being strictly positive definite"?

Note that, for an scalar t,

$$(A(tv), tv) = t^2(Av, v).$$

So, it is enough to check positive definiteness for

- \bullet $v = e_1$
- $v = [t, 1]', t \in \mathbb{R}$.

$$(Ae_1, e_1) = a.$$

For
$$v = [t \ 1]'$$
,

$$(Av, v) = at^2 + 2bt + c.$$

2×2 positive definite matrices

Note that, for an scalar t,

$$(A(tv), tv) = t^2(Av, v).$$

So, it is enough to check positive definiteness for

- \bullet $v = e_1$
- $v = [t, 1]', t \in R$.

$$(Ae_1, e_1) = a.$$

For $v = [t \ 1]'$,

$$(Av, v) = at^2 + 2bt + c.$$

... so a > 0, and $b^2 - ac < 0$, i.e., det(A) > 0. So we get that A is SPD if and only if

- a > 0
- $\det(A) > 0$.

SPD, eigenvalues, and minors

A is $m \times m$, A = A'. Then TFCAE:

- A is SPD.
- ② $\sigma(A) > 0$.
- 3 All the main principal minors of *A* are positive.

SPD, eigenvalues, and minors

A is $m \times m$, A = A'. Then TFCAE:

- A is SPD.
- **2** $\sigma(A) > 0$.
- 3 All the main principal minors of A are positive.

Proof: (2) \implies (1). We assume $\sigma(A) > 0$. By Schur, A = QDQ'. Since $\sigma(A)$ are the diagonal of D, D has positive diagonal entries.

Let v be an non-zero vector. w := Q'v is also non-zero.

$$(Av, v) = (QDQ'v, v) = (DQ'v, Q'v) = (Dw, w) = \sum_{i=1}^{m} w(i)^2 D(i, i) > 0.$$

In the last step we used the fact that all the D(i,i) are positive, and one of the w(i)'s is not zero.

SPD, eigenvalues, and minors

A is $m \times m$, A = A'. Then TFCAE:

- A is SPD.
- **2** $\sigma(A) > 0$.
- 3 All the main principal minors of A are positive.

Proof: (1) \implies (2). Let (λ, ν) be an eigenpair of A. By (1),

So

$$0 < (Av, v) = (\lambda v, v) = \lambda(v, v),$$

which implies that λ is positive, too.