JO 3086605 APR 1991

91-152182/21 A95 BRIDGESTONE CORP BRID 30.08.89

*JO 3086-605-A

30.08.89-JP-221689 (11.04.91) B60c-11/11

30.08.89-JP-221089 (17.04.97) BOOC-1771.

Pneumatic tyre with improved water drainage ability - has several files of blocks on tread to eject water ahead of tyre C91-065698

A pneumatic tyre has several circumferential grooves and many nook-shaped transverse grooves obliquely crossing the circumferential grooves, forming several files of blocks on the tread. The rolling direction of the tyre is specified so that the side where the transverse groove makes an acute angle with the circumferential direction contacts the ground earlier. At least a portion of the blocks have a projected fin (4) along its side wall facing the circumferential groove, with a width of less than 1/2 the groove width, which is placed near the tread surface at its step-in end (S) and is terminated near the bottom of the groove at its kick-off end (R).

USE/ADVANTAGE - When used on wet roads, a portion of water is ejected ahead of the tyre due to the fins, leading to an improvement in the water drainage ability, esp. at high speeds. (6pp Dwg.No.0/1)

A(12-T1B)

C 1991 DERWENT PUBLICATIONS LTD.
128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc., 1313 Dolley Madison Boulevard,
Suite 401, McLean, VA22101, USA
Unauthorised copying of this abstract not permitted

⑫ 公 開 特 許 公 報(A) 平3-86605

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)4月11日

B 60 C 11/11 11/04

7006-3D 7006-3D

審査請求 未請求 請求項の数 1 (全6頁)

排水性に優れる空気入りタイヤ 会発明の名称

> 頭 平1-221689 20特

願 平1(1989)8月30日 223出

加発 明 者 ш

埼玉県浦和市常盤1-7-12 裕

願人 株式会社ブリヂストン 他出

東京都中央区京橋1丁目10番1号

外1名 個代 理 人 弁理士 三好 秀和

> 明 細

1. 発明の名称

排水性に優れる空気入りタイヤ

2. 特許請求の範囲

一対のサイドウォールとトレッドがトロイド状 に連なり、上記トレッドが軸方向に所定間隔を置 き周方向にほぼ直線状にエンドレスで延びる複数 の周方向溝と、トレッド中央部から上記周方向溝 と傾斜して交わり、トレッド端まで延びる多数の 矢筈状模方向溝と、これらの満及びトレッド端と によって区分された複数のプロックを含み、周方 向に対する機方向溝が鋭角をなす方向から接地す るよう回転方向が指定されたタイヤにおいて、上 記プロックの少なくとも一部は、その周方向溝に 面した側壁に、周方向溝の溝幅の1/2を越えな い範囲でタイヤの軸方向に向かって延びる周方向 フィンを備え、該周方向フィンは走行時にプロッ クの先に接地する踏み込み倒端部のトレッド接地 面に比較的近接した位置から、ブロックの後に接 地する蹴り出し側端部の周方向溝の溝底に比較的 近接した位置まで傾斜して、プロック側壁より突 出していることを特徴とする排水性に優れる空気 入りタイヤ。

3. 発明の詳細な説明

[発明の目的]

(産業上の利用分野)

本発明は特に回転方向が指定されたトレッドパ ターンを備えた空気入りタイヤの改良に関し、さ らに詳しくは特に高速走行時の排水性に優れた空 気入りタイヤに関するものである。

(従来の技術)

髙速走行に供される空気入りタイヤに要求され る性能の一つである排水性については、タイヤの トレッドに特有のプロックパターンを形成し、か つタイヤの回転方向を指定することにより改善が 図られてきた。

すなわち、第4図は従来の空気入りタイヤのト レッドの展開図を示し、トレッド踏面部Tは周方 向中心線に沿った中央周方向溝1の両側に、複数 の周方向溝1-1、1-2、1-3及び1-4が タイヤの周方向に平行に設けられ、これらの周方 向溝と交わる向きに周方向に向かって傾斜し、所 定間隔を以て配置した横方向溝2によって、多数 のブロック列3-1、3-2、3-3、3-4、 3-5及び3-6が形成されている。

そして、模方向溝2は、タイヤの負荷転動時に タイヤの中心区域からトレッド端に向かって漸次 路面と接触するように、タイヤの中心線に向かっ て傾斜しており、これにより回転方向が矢印方向 に指定されているのである。

したがって、濡れた路面を走行中のタイヤにおける接地面内の水の一部は、横方向溝 2 から各周方向溝へと導かれ、これら周方向溝を介してタイヤの主として後方へと押出され、排水されるのである。

(発明が解決しようとする課題)

しかしながら、上記従来の空気入りタイヤにおいて、タイヤの後方向へ排水される水の大部分はは、実際にはトレッド全体(接地面全体)によっ

向滑 されらのでは、 とのでは、 とのでは、

(作用)

高速走行時におけるタイヤの排水性向上には、タイヤ接地面内の水をできる限り迅速に接地面外に排水することが望ましく、そのためにはタイヤの後方向のみならず、タイヤの前方向へも排水することが好ましい。

しかるに、本発明の空気入りタイヤは、ブロッ

て押出され、周方向溝による排水量はごく僅かで あることから、排水効率が劣る傾向があった。

しかるに、近年車輌の高出力化や高速道路の完備などとあいまって、車輌の高速化性能に対する 要求が益々高まっており、それと共に高速走行時 の排水性能にも一層の改良が望まれている。

そこで、本発明の課題は、上述した従来の空気 ・ 入りタイヤが有する問題点を解決することにある。.

したがって本発明の目的は、従来にも増して排水性を改善し、高速走行時におけるタイヤの接地面内の水を、効率的に接地面外へと排水することが可能な空気入りタイヤを提供することにある。 [発明の構成]

(課題を解決するための手段)

すなわち、本発明の空気入りタイヤは、一対のサイドウォールとトレッドがトロイド状に連なり、上記トレッドが輸方向に所定間隔を置き周方向にほぼ直線状にエンドレスで延びる複数の周方向満と、トレッド中央部から上記周方向満と傾斜して交わり、トレッド端まで延びる多数の矢袋状機方

したがって、本発明の空気入りタイヤによれば、 従来のタイヤの後方向への排水に加えて、さらに 前方向へも排水することができるため、走行時の 接地面内の水を、接地面外へと効率的に排水する ことが可能であり、特に高速走行時における排水 性を一層改善することができる。

(実施例)

以下、図面にしたがって本発明の空気入りタイ

ヤの実施例について、詳細に説明する。

第1図は本発明の空気入りタイヤのトレッド部 展開図、第2図は第1図における周方向歳の拡大 斜視説明図、第3図は第1図におけるA-A線断 面が接地した状態を示す断面説明図である。

なお、第1図においてはトレッド部以外の部分の図示は省略しているが、 ラジアルカーカス、ベルト層及びサイドウォールなどの図示以外の部分は周知の構造である。

すなわち、第1図に示した本発明の空気入りタイヤのトレッド部Tは、異方向中心線に沿った中央周方向溝1の両側に、夫々2本、計4本の周方向溝1-1、1-2、1-3及び1-4が、輪方向に所定間隔をおいて、周方向にほぼ直線状にエンドレスに平行に設けられている。

また、トレッド中央部から各上記周方向溝と傾斜して交わり、トレッド端 e、 e ・まで延びる位置に、多数の横方向溝 2 が矢答状に傾斜して、所定間隔に設けられている。

そして、各周方向溝及びトレッド蟾e、e^に

よって多数のブロック列3-1、3-2、3-3、3-4、3-5及び3-6が区分されており、各 周方向溝に対する横方向溝2が鋭角を成す方向から接するようタイヤの回転方向が矢印方向に指定されている。

また、プロック列 3 - 1、3 - 2、3 - 3、3 - 4、3 - 5 及び 3 - 6 は、夫々横方向満 2 により多数のプロック B o , B 1 , B 2 , B 3 , B 4 (以下、特別の場合を除きプロック B と呼ぶ)に区分されている。

なお、関方向溝1-1、1-2、1-3及び1 -4の溝幅および深さは満群の中で最も広くかつ 深く形成されており、これらよりもやや溝幅の狭い中央固方向溝1は、場合によっては設けなくて もよい。

模方向溝 2 は、トレッドTの中央部からトレッド端 e、 e まで適度の角度、通常は 5 0 ~ 7 0 度の角度で傾斜し、これらの溝幅および深さは周方向溝と同等またはそれ以下である。

図面において、横方向溝2は一方のトレッド場

eから他方のトレッド嬢 e ´まで連結しているが、 場合によっては中央のブロック列内で中断してい てもよい。

ここで、本発明の空気入りタイヤにおいては、 ブロックBの少なくとも一部が、その周方向に面 した側壁に、タイヤの軸方向に向かって延びる周 方向フィン4を備えていることが重要である。

すなわち、例えば異方向満1-4におけるプロックBoとB4に挟まれる部分の斜視図を第2図に、プロックBo及びB4の側壁Boで示した。では、走行時にプロックBoを増配の、トレッド接触が近接した位置Sである。といった。では、大口の機能がある。では、大口のである。例えば、カールをは、大口のである。

この周方向フィン4の幅は、周方向滞の幅の 1 / 2 を越えない範囲、特に周方向満の幅をW、周 方向フィン4の幅をWとした時にW=W×0.1 ~0.35の範囲にあることが望ましい。

また、周方向フィン4の長さは、各プロック B の周方向長さの範囲内にあり、この範囲を越えて 横方向溝2に突出した状態は好ましくない。

次に、上述した本発明の構成により、タイヤの 排水効果が高められる理由について第3図にした がって説明する。

第3図において、Eは路面、Fはタイヤ表面、 Lはタイヤの溝底ライン、Xはタイヤの回転方向、 Yは排水される水の流れ方向を示す。 すなわち、走行時におけるタイヤ接地面内の水は、タイヤの回転および周方向フィン4により周方向湾1-4内を踏み込み側 Sから蹴り出し側 Rへと流れ、矢印 Y 方向(タイヤの前方)へと押出され、排水されるのである。

したがって、本発明の空気入りタイヤにおいては、タイヤの接地面内の水が、トレッド全体によってタイヤ後方へ排水される従来の排水作用に加えて、周方向フィンチによってタイヤの前方へも排水されるため、接地面内の水を迅速かつ確実に接地面外へと排水することが可能であり、排水効率を大幅に高めることができる。

次に、試験例により本発明の空気入りタイヤの構成および効果についてさらに詳細に説明する。

(試験例)

タイヤサイズ: 255/402R17、使用リム: 9-17、使用空気圧: 2.5 kg/cdのラジアルタイヤのトレッド部に対し、上述の第1図~第3図に示したブロックパターンおよびブロック構造を形成し、このタイヤについての評価を行な

一方比較のために、上記周方向フィン4を全く 設けない以外は同様にしてして、従来タイヤを得た。

これら3種のタイヤについて、下記条件で走行 時の排水性を評価した結果を次表に示す。

(評価方法)

荷重: 420 kg

内丘: 2. 5 kg/cd

水深 6 mm の試験用プールに時速 1 0 0 km / h で直進進入した時のタイヤ接地面積を測定し、タイヤ静止時の接地面積と比較すると共に、ハイドロブレーニングの発生限界速度をフィーリング評価(従来タイヤを 1 0 0 とした指数評価… 指数大ほど良好)。

(以下余白)

った。

なお、タイヤのラジアルカーカスおよびベルト 暦などの他の構造および製造条件は従来タイヤに 準じたため、詳細は省略する。

すなわち、第1図においてトレッドの幅: 25 0 mm、中央周方向溝1の溝幅: 4.5 mm、深さ: 8 mm、周方向溝1-1、1-2、1-3及び1-。 4 の溝幅: 1 3 mm、深さ: 8.8 mm、横方向溝3 の溝幅: 5 mm、深さ: 7 mmとしてブロックパター ンを形成した。

そして、全てのプロックBの周方向満に面した 両側壁に、幅:3 mmで、踏みみ側端部のトレッド接地面に比較的近接した位置からした位置を 端部の周方向溝の溝底に比較的近接した位置をで 傾斜して、プロック側壁より突出した周方向でイン4を投けることにより、本発明タイヤAを壁のい また、前記周方向フィン4を配置クロック列内で左右の側壁に交互に周方向フィン4を配置する

夢

ことにより本発明タイヤBを得た。

タイヤの種類	排水性
従 来タイヤ	100
本発明タイヤA	113
本発明タイヤB	108

以上の結果から、本発明の空気入りタイヤは、 排水性を大幅に改善できることが明らかである。 [発明の効果]

以上、詳細に説明したように、本発明の空気人 りタイヤは、ブロックの周方向溝に面した側壁に、 周方向溝の溝幅の 1 / 2 を越えない範囲でタイヤ の軸方向に向かって延びる周方向フィンを設け、 この周方向フィンは走行時にブロックの先に接地

特開平3-86605 (5)

する踏み込み側端部のトレッド接地面に比較的近 接した位置から、プロックの後に接地する蹴り出 し側端部の周方向清の満底に比較的近接した位置 まで傾斜して、ブロック側壁より突出するように 構成したため、走行時におけるタイヤ接地面内の 水は、先に接地する瞬(踏み込み側)から後に接 地する側(駄りだし側)へと周方向満内を流れ、 タイヤの前方へと排水される。

したがって、本発明によれば、従来のタイヤの 後方向への排水に加えて、さらに前方向へも排水 することができるため、走行時の接地面内の水を、 接地面外へと効率的に排水することができ、特に、 高速走行時における排水性を一層改善することが できる。

4. 図面の簡単な説明

第 1 図は本発明の空気入りタイヤのトレッド部 展開図、第2図は第1図における周方向満の拡大 斜視説明図、第3図は第1図におけるA-A線断 面が接地した状態を示す断面説明図、第4図は従 来の空気入りタイヤのトレッド部展開図である。

T……・トレッド部 1 … … ... 中央周方向溝

1-1~1-4 … 周方向清

2 … … … 横方向牌

3-1~3-6…プロック列

4 … … … 周方向フィン

B プロック

E … … . 路面

F タイヤ表面

L 満底ライン

S 踏み込み部

R 蹴り出し部

x ッイヤ回転方向

Y 排水される水の流れ方向

代理人 弁理士 三 好

ヤ 回 転 ガ 向 される水の流れ方向

-27-

第4 図