

第35讲 依概率收敛,切比雪夫不等式

■问题的提出:

在第4讲中,曾提到"频率的稳定值记为概率",这个"稳定"是何含义?

记 n_A 为n重贝努里试验中事件A发生的次数,则 n_A/n 为事件A出现的频率.若在一次试验中A发生的概率为p.当试验的次数充分大时,频率的稳定值为p,是指

$$\lim_{n\to\infty} \frac{n_A}{n} = p$$

$$\iff 对于 \forall \varepsilon > 0, \exists N, \exists n > N, 均有 \left| \frac{n_A}{n} - p \right| < \varepsilon.$$

$$\iff 对于 \forall \varepsilon > 0, 只要n充分大, 必定有 \left| \frac{n_A}{n} - p \right| < \varepsilon.$$

$$\iff 对于 \forall \varepsilon > 0, 只要n充分大, "必定"没有 $\left\{ \left| \frac{n_A}{n} - p \right| \ge \varepsilon \right\}.$$$

频率"稳定于"概率应从可能性角度来解释,即

对于
$$\forall \varepsilon > 0$$
,只要n充分大, $\left\{ \left| \frac{n_A}{n} - p \right| \ge \varepsilon \right\}$ 发生的可能

性很小, 而且随着n的增大, 越来越小.

$$\iff \lim_{n\to\infty} P\left\{ \left| \frac{n_A}{n} - p \right| \ge \varepsilon \right\} = 0.$$

这种收敛性称为"依概率收敛"!

定义: 设 Y_1 , Y_2 , ..., Y_n , ...为一个随机变量序列, c为一常数, 若对于 $\forall \varepsilon > 0$, 均有:

$$\lim_{n\to+\infty} P\{|Y_n-c|\geq\varepsilon\}=0,$$

成立, 则称随机变量序列 $\{Y_n, n \ge 1\}$ 依概率收敛于c,

记为:
$$Y_n \xrightarrow{P} c$$
, 当 $n \to +\infty$.

例1: 设 $X_n \sim N(0, \frac{1}{n}), n = 1, 2, \dots, 则X_n \xrightarrow{P} 0, 当 n \to +\infty.$

证明:对于任意的 $\varepsilon > 0$,

$$P(\mid X_n - 0 \mid \geq \varepsilon) = P(X_n \geq \varepsilon) + P(X_n \leq -\varepsilon)$$

$$=1-\Phi\left(\frac{\varepsilon-0}{\sqrt{1/n}}\right)+\Phi\left(\frac{-\varepsilon-0}{\sqrt{1/n}}\right)$$

$$= 2[1 - \Phi(\varepsilon\sqrt{n})] \rightarrow 0$$
, 当 $n \rightarrow + \infty$ 时.

性质: 若 $X_n \xrightarrow{P} a$, $Y_n \xrightarrow{P} b$, 当 $n \to \infty$ 时, 函数g(x, y) 在点(a,b)处连续, 那么

$$g(X_n,Y_n) \xrightarrow{P} g(a,b)$$
, 当 $n \to \infty$ 时.

$$X_n \times Y_n \xrightarrow{P} a \times b$$
, $X_n / Y_n \xrightarrow{P} a / b$ $(b \neq 0)$.

特别地, 若 $X_n \xrightarrow{P} a$, f(x)在点a连续, 则 $f(X_n) \xrightarrow{P} f(a)$, 当 $n \to \infty$ 时.

定理(切比雪夫不等式):

设随机变量X具有数学期望

$$E(X) = \mu$$
, $\vec{\sigma} \not\equiv D(X) = \sigma^2$,

则对于任意 $\varepsilon > 0$,都有:

$$P\left\{\left|X-\mu\right|\geq\varepsilon\right\}\leq\frac{\sigma^{2}}{\varepsilon^{2}}.$$

定理的等价形式为:

$$P\left\{\left|X-\mu\right|<\varepsilon\right\}\geq 1-\frac{\sigma^2}{\varepsilon^2}.$$

证明:对于任意 $\varepsilon > 0$,令 $Z = \begin{cases} \varepsilon, \exists |X - \mu| \geq \varepsilon$ 时; $0, \exists |X - \mu| < \varepsilon$ 时.

则 $Z \le |X - \mu|$, 那 么 X 的 方 差 $(D(X) = E[(X - \mu)^2])$

存在时, $E(Z^2)$ 也存在, 且 $E(Z^2) \leq D(X)$.

而据Z的定义,知 $E(Z^2)=\varepsilon^2 P\{|X-\mu|\geq \varepsilon\},$

故而 $\varepsilon^2 P\{|X - \mu| \geq \varepsilon\} \leq D(X)$, 即

$$P\left\{\left|X - \mu\right| \geq \varepsilon\right\} \leq \frac{D(X)}{\varepsilon^2}$$
 成立.

切比雪夫不等式

$$P\{|X-\mu|\geq\varepsilon\}\leq\frac{\sigma^2}{\varepsilon^2}$$

适用范围:对于期望、方差存在的随机变量.

——范围广

重要性:可以对于随机变量落在期望附近的区域内或外给出一个界的估计.

比如: 设
$$E(X) = \mu$$
, $D(X) = \sigma^2$, 取 $\varepsilon = K\sqrt{D(X)} = K\sigma$, 则有 $P(|X - \mu| \ge K\sigma) \le \frac{D(X)}{K^2\sigma^2} = \frac{1}{K^2}$. 取 $K = 3$, 则 $P(|X - \mu| \ge 3\sigma) = P(X \notin (\mu - 3\sigma, \mu + 3\sigma)) \le \frac{1}{9}$. 而当 $X \sim N(\mu, \sigma^2)$ 时,
$$P(|X - \mu| \ge 3\sigma) = 1 - P(|X - \mu| < 3\sigma) = 1 - (\Phi(3) - \Phi(-3))$$

$$= 1 - 0.9974 = 0.0026 < \frac{1}{9}.$$

Chebyshev不等式应用范围广,但是结果比较粗糙.

- 例2:某天文机构想测量宇宙中两颗行星的距离,进行了n次独立的观测,测量结果分别 X_i (光年), $i=1,2,\cdots,n$.若 $E(X_i)=\mu$ (为两颗行星的真实距离,未知), $D(X_i)=5$. 现取这n次观测的平均作为实际距离 μ 的估计.
 - (1) 若n=100, 那么估计与实际值之间的误差在±0.5 光年之内的概率至少有多大? (2) 若要以不低于 95%的把握控制估计与实际值之间的误差在±0.5 光年 之内, 至少要观测多少次?

解:由题意,估计与实际值之间的误差即为 $\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu$.

由于对 $i=1, 2, \dots, n$, 都有 $E(X_i) = \mu, D(X_i) = 5$,

且X;相互独立,故

$$E(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \mu, D(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n^{2}}\sum_{i=1}^{n}D(X_{i}) = \frac{5}{n}.$$

(1) 当n=100时, 由切比雪夫不等式知

$$P\{|\frac{1}{100}\sum_{i=1}^{100}X_i - \mu| < 0.5\} \ge 1 - \frac{5/100}{0.5^2} = 0.8;$$

(2) 同样利用切比雪夫不等式,要使得

$$P\{|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu|<0.5\}\geq 1-\frac{5/n}{0.5^{2}}\geq 0.95,$$

n需满足n≥400.