

Πανεπιστήμιο Δυτικής Αττικής Τμήμα Μηχανικών Πληροφορικής Και Υπολογιστών

Ενότητα Β΄ – Συστήματα Αβεβαιότητας 2_**Bayesian Συλλογιστική - Δίκτυα**

Κατερίνα Γεωργούλη Δεκέμβριος 2019 Bayesian Συλλογιστική

Πιθανότητες: επανάληψη

• Conditional probability
$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

• Chain rule $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$ = $\prod_{i=1}^n P(X_i|X_1, ..., X_{i-1})$

- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if:

$$X \perp \!\!\!\perp Y | Z$$
 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

Συλλογιστική λαμβάνοντας υπόψη Χρόνο και Χώρο

- Συχνά, θέλουμε να εξάγουμε συμπεράσματα για μια σειρά παρατηρήσεων
 - Αναγνώρισης ομιλίας
 - Εντοπισμός ρομπότ
 - Ιατρική παρακολούθηση
- Πρέπει να εισαγάγουμε χρόνο (ή χώρο) στα μοντέλα μας

Μοντέλα Markov

■ Η τιμή του Χ σε μια δεδομένη χρονική στιγμή ονομάζεται η κατάσταση (the state)

- Παράμετροι: οι αποκαλούμενες πιθανότητες μετάβασης (transition probabilities) ή δυναμικές (dynamics), καθορίζουν τον τρόπο με τον οποίο εξελίσσεται η κατάσταση με την πάροδο του χρόνου (επίσης, πιθανότητες αρχικής κατάστασης)
- Υπόθεση ύπαρξης στασιμότητας: πιθανότητες μετάβασης οι ίδιες ανά πάσα χρονική στιγμή

Κοινή Κατανομή του Μοντέλου Markov

• Κοινή κατανομή:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$

• Γενικότερα:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$
$$= P(X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})$$

Αλυσιδωτός κανόνας και Μοντέλα Markov

• Από τον αλυσιδωτό κανόνα, κάθε κοινή κατανομή πάνω στο σύνολο X_1, X_2, X_3, X_4 μπορεί να γραφεί ως:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)P(X_4|X_1, X_2, X_3)$$

• Υποθέτοντας ότι:

$$X_3 \perp \!\!\! \perp X_1 \mid X_2$$
 and $X_4 \perp \!\!\! \perp X_1, X_2 \mid X_3$

Καταλήγουμε στη συνάρτηση της προηγούμενης διαφάνειας:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$

Αλυσιδωτός κανόνας και Μοντέλα Markov

$$X_1$$
 X_2 X_3 X_4 X_4

• Από τον αλυσιδωτό κανόνα, κάθε κοινή κατανομή πάνω στο σύνολο X_1, X_2, \ldots, X_T μπορεί να γραφεί ως:

$$P(X_1, X_2, \dots, X_T) = P(X_1) \prod_{t=2}^{T} P(X_t | X_1, X_2, \dots, X_{t-1})$$

• Υποθέτοντας ότι για όλα τα *t*:

$$X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$$

καταλήγουμε στην έκφραση που δόθηκε στη προηγούμενη διαφάνεια:

$$P(X_1, X_2, \dots, X_T) = P(X_1) \prod_{t=2} P(X_t | X_{t-1})$$

Υπονοούμενες υπό όρους ανεξαρτησίες

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4$$

- Υποθέτουμε: $X_3 \perp \!\!\! \perp X_1 \mid X_2$ and $X_4 \perp \!\!\! \perp X_1, X_2 \mid X_3$
- Ισχύει ότι $X_1 \perp \!\!\! \perp X_3, X_4 \mid X_2$? Ναί!

Απόδειξη:
$$P(X_1 \mid X_2, X_3, X_4) = \frac{P(X_1, X_2, X_3, X_4)}{P(X_2, X_3, X_4)}$$

$$= \frac{P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}{\sum_{x_1} P(x_1)P(X_2 \mid x_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}$$

$$= \frac{P(X_1, X_2)}{P(X_2)}$$

$$= P(X_1 \mid X_2)$$

Επανάληψη Μοντέλων Markov

- Σαφής παραδοχή για το $t: X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$
- Επακόλουθο, η κοινή κατανομή μπορεί να γραφεί ως:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$

$$= P(X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})$$

- Υπονοούμενες υπο συνθήκες ανεξαρτησίες:
 - Οι παλαιότερες μεταβλητές είναι ανεξάρτητες των μελλοντικών με δεδομένες τις παρούσες.

Π.χ., Εάν
$$t_1 < t_2 < t_3$$
 ή $t_1 > t_2 > t_3$ τότε: $X_{t_1} \perp \!\!\! \perp X_{t_3} \mid X_{t_2}$

• Επιπλέον σαφείς παραδοχές: $P(X_t \mid X_{t-1})$ είναι η ίδια για όλα τα t.

Παράδειγμα Αλυσίδας Markov : Καιρός

Καταστάσεις:

$$X = \{rain, sun\}$$

Δυο τρόποι αναπαράστασης του ίδιου CPT

- Αρχική κατανομή (t0: 1.0 sun)
- CPT* $P(X_t | X_{t-1})$:

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Παράδειγμα Αλυσίδας Markov : Καιρός

• Αρχική κατανομή: 1.0 sun

 Ποια είναι η πιθανοτική κατανομή μετά από ένα βήμα;

$$P(X_2 = \operatorname{sun}) = P(X_2 = \operatorname{sun}|X_1 = \operatorname{sun})P(X_1 = \operatorname{sun}) + P(X_2 = \operatorname{sun}|X_1 = \operatorname{rain})P(X_1 = \operatorname{rain})$$

$$0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$$

Mini-Forward Αλγόριθμος

• Ερώτηση: Ποια είναι η P(X) σε κάποια μέρα t?

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 - - \rightarrow$$

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1})$$
Forward simulation

Παραδειγματική εκτέλεση του Mini-Forward Αλγόριθμου

Από την αρχική παρατήρηση για την παράμετρο sun:

Από την αρχική παρατήρηση για την παράμετρο rain:

Από την αρχική παρατήρηση για κάποια παράμετρο
 P(X₁):

$$\left\langle \begin{array}{c} p \\ 1-p \end{array} \right\rangle \qquad \qquad \square \longrightarrow \left\langle \begin{array}{c} 0.75 \\ 0.25 \end{array} \right\rangle \\ P(X_1) \qquad \qquad P(X_{\infty})$$

Σταθερές Κατανομές

- Για τις περισσότερες αλυσίδες ισχύει ότι:
 - Η επίδραση της αρχικής κατανομής γίνεται ολοένα και λιγότερο σημαντική με την πάροδο του χρόνου.
 - Η κατανομή στην οποία καταλήγουμε είναι ανεξάρτητη από την αρχική κατανομή

Σταθερή Κατανομή:

- Στην κατανομή που καταλήγει η αλυσίδα καλείται Σταθερή Κατανομή P_{∞} της αλυσίδας
- και ικανοποιεί τη σχέση:

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Παράδειγμα: Σταθερές Κατανομές

• Ερώτηση: Ποια είναι η P(X) την χρονική στιγμή t =άπειρο;

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 - - \rightarrow$$

$$P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$$

$$P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$$

$$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$

$P_{\infty}(sun)$	=	$3P_{\infty}(rain)$
$P_{\infty}(rain)$	=	$1/3P_{\infty}(sun)$

Επίσης:
$$P_{\infty}(sun) + P_{\infty}(rain) = 1$$

$$P_{\infty}(sun) = 3/4$$

$$P_{\infty}(rain) = 1/4$$

X _{t-1}	X _t	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Κανόνας Bayes

 Δύο τρόποι για τον προσδιορισμό μιας κοινής κατανομής σε δύο εξαρτώμενες μεταβλητές:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Διαχωρίζοντας, παίρνουμε:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Γιατί είναι αυτό χρήσιμο;
 - Μας επιτρέπει να χτίσουμε μια πιθανότητα από την αντίστροφή της
 - Συχνά μια υπό συνθήκες κατανομή είναι δύσκολη αλλά η αντίστροφή της είναι απλή

Δίκτυα Bayes - Bayes' Nets

Δύο προβλήματα υπάρχουν με τη χρήση πινάκων πλήρως διασυνδεδεμένης κατανομής ως πιθανοτικά μοντέλα:

- Η διάρθρωση είναι πολύ μεγάλη ώστε να εκπροσωπείται ρητά, εκτός και αν υπάρχουν λίγες μεταβλητές
- Είναι δύσκολο να μάθεις (εκτιμήσεις) οτιδήποτε εμπειρικά για περισσότερες από μερικές μεταβλητές τη φορά

Δίκτυα Bayes - Bayes' Nets

Bayes' nets: μια τεχνική για την περιγραφή πολύπλοκων κοινών κατανομών (μοντέλων) χρησιμοποιώντας απλές, τοπικές κατανομές (πιθανότητες υπό προϋποθέσεις - conditional probabilities)

- Πιο σωστά ονομάζονται γραφικά μοντέλα (graphical models)
- Περιγράφουν πώς αλληλεπιδρούν τοπικά οι μεταβλητές
- Τοπική αλυσίδα αλληλεπιδράσεων μαζί για να δώσει σφαιρικές, έμμεσες αλληλεπιδράσεις

Παράδειγμα Bayes' Net: Αυτοκίνητο

Παράδειγμα Bayes' Net: Ασφάλεια

Παράδειγμα: Ρίξεις Νομίσματος

• Ν ανεξάρτητες ρίψεις νομίσματος

. . .

• Όχι συσχετισμοί μεταξύ των μεταβλητών: απόλυτη ανεξαρτησία

Παράδειγμα: Κυκλοφοριακή συμφόρηση

• Variables:

• R: It rains

• T: There is traffic

Μοντέλο 1: ανεξαρτησία

Μοντέλο 2: εξάρτηση-η βροχή προκαλεί συμφόρηση

Άσκηση: Κυκλοφοριακή συμφόρηση ΙΙ

Φτιάξτε ένα γραφικό μοντέλο για την αλληλεξάρτηση των μεταβλητών:

- Τ: Συμφόρηση
- R: Βρέχει
- V: Ορατότητα
- Α: Ατύχημα
- S: Οδόστρωμα
- C: Κλειστοί δρόμοι

Τα Semantics των Bayes Δικτύων

- Ένα σύνολο κόμβων, ένας για κάθε μεταβλητή X
- Ένας κατευθυνόμενος, άκυκλος γράφος (που συνθέτουν οι ακμές)
- Μια κατανομή υπό συνθήκη για κάθε κόμβο
 - Μια συλλογή από κατανομές επί του Χ,

$$P(X|a_1\ldots a_n)$$

• Ένας CPT: πίνακας υπό συνθήκη πιθανότητας (conditional probability table)

• Περιγραφή μιας θορυβώδους (noisy) «αιτιώδους» διαδικασίας

A Bayes net = Topology (graph) + Local Conditional Probabilities

Πιθανότητες στα BNs

- Τα Bayes' nets κωδικοποιούν εμμέσως τις κοινές κατανομές
 - Ως αποτέλεσμα των τοπικών υπό συνθήκες κατανομών

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Για να βρεθεί η πιθανότητα που δίνει ένα BN με πλήρη ανάθεση τιμών στους κόμβους του, αρκεί να πολλαπλασιαστούν μαζί όλες οι σχετικές συνθήκες :

• Παράδειγμα:

$$P(+cavity, +catch, -toothache)$$

Πιθανότητες στα BNs

Παράδειγμα 2

$$P(j \land m \land a \land \neg b \land \neg e)$$

= $P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$

Πιθανότητες σε BNs

• Ο αλυσιδωτός κανόνας (ισχύει για όλες τις κατανομές):

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

• Υποθέτουμε τις υπό συνθήκες ανεξαρτησίες:

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

→ Μπορούμε να συμπεράνουμε ότι:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Δεν είναι δυνατόν κάθε BN να μπορεί να αναπαραστήσει κάθε κοινή κατανομή
 - Η τοπολογία επιβάλει κάποιες υπό συνθήκες ανεξαρτησίες

Παράδειγμα: Ρίψεις Νομίσματος

$$P(h, h, t, h) =$$

Μόνο κατανομές με ανεξάρτητες μεταβλητές μπορούν να αναπαρασταθούν με Bayes ' net χωρίς τόξα.

Παράδειγμα: Κυκλοφοριακή συμφόρηση

$$P(+r,-t) =$$

Παράδειγμα: Συναγερμός

Е	P(E)
+e	0.002
-е	0.998

Α	-	P(J A)
+a	+j	0.9
+a	٦.	0.1
-a	+j	0.05
-a	ij	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Παράδειγμα: Συναγερμός (άλλη αναπαράσταση)

Παράδειγμα: Κυκλοφοριακή συμφόρηση

• Αιτιώδης κατεύθυνση (Causal direction)

P	(T	۱ •	I	?)
	`	•		_

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Παράδειγμα: Αντίστροφη Κυκλοφοριακή Συμφόρηση

• Τι θα γίνει αν αντιστρέψουμε την αιτιώδη κατεύθυνση?

-t	+r	1/7
	-r	6/7

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Αλυσίδες Αιτίου-Αιτιατού

• Το παρακάτω αποτελεί μια "αιτιώδη αλυσίδα (causal chain)"

P(x, y, z) = P(x)P(y|x)P(z|y)

 Δυο απομακρυσμένες μεταβλητές της αλυσίδας ΔΕΝ ΕΊΝΑΙ απαραίτητα ανεξάρτητες.

Για παράδειγμα:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

$$P(+z | +y) = 1, P(-z | -y) = 1$$

Αλυσίδες Αιτίου-Αιτιατού

- Το παρακάτω αποτελεί μια "αιτιώδη αλυσίδα (causal chain)"
 - X: Low pressure Y: Rain Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Δυο απομακρυσμένες
 μεταβλητές της αλυσίδας ΕΊΝΑΙ
 ανεξάρτητες δεδομένων των
 ενδιάμεσων μεταβλητών.
 - Για παράδειγμα:

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$

n

- 1. Επέλεξε ένα σύνολο μεταβλητών X_{I}, \ldots, X_{n}
- 2. Από i=1 έως n πρόσθεσε X_i στο δίκτυο Διάλεξε τους γονείς από το σύνολο X_1 , ..., X_{i-1} τέτοιους που

$$P(X_i | Parents(X_i)) = P(X_i | X_1, ... X_{i-1})$$

Μια τέτοια επιλογή γονέων εγγυάται ότι:

$$P(X_1, ..., X_n) = \Pi_{i=1} P(X_i / X_1, ..., X_{i-1})$$
 (chain rule)
= $\Pi_{i=1} P(X_i / Parents(X_i))$ (εκ της κατασκευής)

Έστω ότι επιλέγουμε τη σειρά των μεταβλητών Μ, J, A, B, Ε για το παράδειγμα του συναγερμού

Ισχύει ότι

 $P(J \mid M) = P(J)$?

Έστω ότι επιλέγουμε τη σειρά των μεταβλητών Μ, J, A, B, E για το παράδειγμα του συναγερμού

Ισχύει ότι

P(J | M) = P(J)? No

 $P(A \mid J, M) = P(A \mid J)? P(A \mid J, M) = P(A)?$

Έστω ότι επιλέγουμε τη σειρά των μεταβλητών Μ, J, A, B, Ε για το παράδειγμα του συναγερμού

Ισχύει ότι

$$P(J \mid M) = P(J)$$
? No
 $P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$? No
 $P(B \mid A, J, M) = P(B \mid A)$?
 $P(B \mid A, J, M) = P(B)$?

Έστω ότι επιλέγουμε τη σειρά των μεταβλητών Μ, J, A, B, Ε για το παράδειγμα του συναγερμού

Ισχύει ότι

$$P(J | M) = P(J)$$
? No

$$P(A \mid J, M) = P(A \mid J)$$
? $P(A \mid J, M) = P(A)$? No

$$P(B \mid A, J, M) = P(B \mid A)$$
? Yes

$$P(B \mid A, J, M) = P(B)$$
? No

$$P(E \mid B, A, J, M) = P(E \mid A)$$
?

$$P(E \mid B, A, J, M) = P(E \mid A, B)$$
?

Έστω ότι επιλέγουμε τη σειρά των μεταβλητών Μ, J, A, B, Ε για το παράδειγμα του συναγερμού

Ισχύει ότι

$$P(J | M) = P(J)$$
? No

$$P(A \mid J, M) = P(A \mid J)$$
? $P(A \mid J, M) = P(A)$? No

$$P(B \mid A, J, M) = P(B \mid A)$$
? Yes

$$P(B \mid A, J, M) = P(B)$$
? No

$$P(E \mid B, A, J, M) = P(E \mid A)$$
? No

$$P(E \mid B, A, J, M) = P(E \mid A, B)$$
? Yes

Άσκηση: Συναγερμός

Φτιάξτε BN για την αλληλεξάρτηση των παρακάτω μεταβλητών και τους αντίστοιχους πίνακες πιθανοτήτων και αλληλεξαρτήσεων και αναφέρετε ρητά τις αλυσίδες αιτίου-αιτιατού και τις ανεξάρτητες μεταξύ τους μεταβλητές:

C: Εκδήλωση καρκίνου

Α: Ηλικία

G: Φύλλο

Ε: Έκθεση σε τοξικά

S: Κάπνισμα

L: Καρκίνος του πνεύμονα

Τ: Χημειοθεραπεία

Δίκτυα Απόφασης

- Επιλογή ενέργειας που μεγιστοποιεί την προσδοκώμενη ωφέλεια (u) βάσει των ισχυρισμών
 - Νέοι τύποι κόμβων:
- Κόμβοι πιθανότητας (ακριβώς όπως στα BNs)
- Ενέργειες (ορθογώνια, δεν μπορούν να έχουν γονείς, ενεργούν ως παρατηρούμενα στοιχεία)
 - Κόμβος χρησιμότητας (ρόμβος, εξαρτάται από κόμβους δράσης και πιθανότητας)

Δίκτυα Απόφασης

Επιλογή Ενέργειας

- Υποθέστε όλους τους ισχυρισμούς για το πρόβλημα (καιρός)
- Θέστε τους κόμβους ενεργειών με κάθε αρμόζοντα τρόπο (να πάρω-να μη πάρω ομπρέλα)
- Υπολογίστε τα προγενέστερα για όλους τους γονείς του κόμβου χρησιμότητας, δεδομένων των ισχυρισμών που υποθέσατε (πρόγνωση)
- Υπολογίστε την αναμενόμενη χρησιμότητα για κάθε κόμβο ενέργειας
- Επιλέξτε την ενέργεια που μεγιστοποιεί το αποτέλεσμα

Δίκτυα Απόφασης

Umbrella = leave

EU(leave) =
$$\sum_{w} P(w)U(\text{leave}, w)$$

= $0.7 \cdot 100 + 0.3 \cdot 0 = 70$

Umbrella = take

EU(take) =
$$\sum_{w} P(w)U(\text{take}, w)$$

= $0.7 \cdot 20 + 0.3 \cdot 70 = 35$

W	P(W)
sun	0.7
rain	0.3

Optimal decision = leave

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Οι Αποφάσεις ως Δένδρα

Παράδειγμα: Δίκτυα Απόφασης

Umbrella = leave

$$EU(leave|bad) = \sum_{w} P(w|bad)U(leave, w)$$
$$= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$$

Umbrella = take

$$EU(\text{take}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{take}, w)$$
$$= 0.34 \cdot 20 + 0.66 \cdot 70 = 53$$

Optimal decision = take

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

Αποφάσεις ως Δένδρα

Τέλος Ενότητας