

Tom Carpenter

CTO
CWNP
@carpentertom | @CWNP

Why Does Wi-Fi Security Matter?

541.6 million hotspots by 2021		500 million new mobile workforce professionals	
	Wi-Fi is entering new areas every month		Cloud-managed WLAN market to grow to \$3.3 billion by 2020

Wi-Fi Security Landscape

Focus Points

802.11 Authentication Methods

- Open System
- Pre-Shared Key
- 802.1X/EAP
- Shared Key is deprecated as of 802.11i-2004

Open System Authentication

Authentication Request

.....

Authentication Response

A null authentication method

No	М	Time	Delta	(B)	Length	S	*	Source	Destination	BSSID	Summary
26159		1/29 13:54:06.548857	12837.5	153	30	-25	6	00:21:5C:50:16:B1	00:1A:1E:14:F3:30	00:1A:1E:14:F3:30	802.11 authentication
26160		1/29 13:54:06.548871	12837.5	153	10	-32	6		00:21:50:50:16:81		802.11 acknowledgement
26161		1/29 13:54:06.549052	12837.5	153	30	-32	6	00:1A:1E:14:F3:30	00:21:50:50:16:81	00:1A:1E:14:F3:30	802.11 authentication
26162		1/29 13:54:06.549068	12837.5	153	10	-40	6		00:1A:1E:14:F3:30		802.11 acknowledgement
26163		1/29 13:54:06.549708	12837.5	153	106	-25	6	00:21:5C:50:16:B1	00:1A:1E:14:F3:30	00:1A:1E:14:F3:30	802.11 association request
26164		1/29 13:54:06.549718	12837.5	153	10	-32	6		00:21:50:50:16:81		802.11 acknowledgement
26165		1/29 13:54:06.556312	12837.5	153	118	-33	6	00:1A:1E:14:F3:30	00:21:50:50:16:81	00:1A:1E:14:F3:30	802.11 association response
26166		1/29 13:54:06.556322	12837.5	153	10	-38	6		00:1A:1E:14:F3:30		802.11 acknowledgement
26167		1/29 13:54:06.557748	12837.5	153	155	-33	6	00:1A:1E:14:F3:30	00:21:50:50:16:81	00:1A:1E:14:F3:30	802.1x: EAPOL-key
26168		1/29 13:54:06.557759	12837.5	153	10	-38	6		00:1A:1E:14:F3:30		802.11 acknowledgement
26169		1/29 13:54:06.560897	12837.5	153	157	-25	6	00:21:5C:50:16:B1	00:1A:1E:14:F3:30	00:1A:1E:14:F3:30	802.1x: EAPOL-key
26170		1/29 13:54:06.560908	12837	450	40	- 00	^		00.04 F0.F0.40.D4		000.44

12837 ľ

1/29 13:54:06.562791

1/29 13:54:06.562803

1/29 13:54:06.563806 1/29 13:54:06.563815 Note that Open System authentication occurs as the first step after network discovery and does not imply a secure "authentication."

Pre-Shared Key (PSK)

No	м	Time	Delta	0	Length	©	•	Source	Destination	BSSID	Summary
250		3/1 15:12:46.602169	17.338092	1	30	100	6	Intel:50:16:B1	Belkin:20:1C:C9	Belkin:20:1C:C9	802.11 authentication
251		3/1 15:12:46.602181	17.338104	1	10	86	6		Intel:50:16:B1		802.11 acknowledgement
252		3/1 15:12:46.602783	17.338706	1	30	93	1	Belkin:20:1C:C9	Intel:50:16:B1	Belkin:20:1C:C9	802.11 authentication
253		3/1 15:12:46.603100	17.339024	1	10	97	1		Belkin:20:1C:C9		802.11 acknowledgement
254		3/1 15:12:46.603623	17.339546		115	100		Intel:50:16:B1	Belkin:20:10:09	Belkin:20:10:09	802.11 association request
255		3/1 15:12:46.603692	17.339616	1	10	89	6		Intel:50:16:B1		802.11 acknowledgement
256		3/1 15:12:46.605607	17.341530	1	193	93	1	Belkin:20:1C:C9	Intel:50:16:B1	Belkin:20:1C:C9	802.11 association response
257		3/1 15:12:46.605915	17.341838	1	10	97	1		Belkin:20:1C:C9		802.11 acknowledgement
258		3/1 15:12:46.629777	17.365700	1	153	93	- 1	Belkin:20:1C:C9	Intel:50:16:B1	Belkin:20:10:09	802.1x: EAPOL-key
259		3/1 15:12:46.630077	17.366000	1	10	97	1		Belkin:20:1C:C9		802.11 acknowledgement
260		3/1 15:12:46.632080	17.368004	1	157	100	6	Intel:50:16:B1	Belkin:20:1C:C9	Belkin:20:10:09	802.1x: EAPOL-key
261		3/1 15:12:46.632138	17.368060	1	10	90	6		Intel:50:16:B1		802.11 acknowledgement
262		3/1 15:12:46.635020	17.370944	1	211	93	1	Belkin:20:1C:C9	Intel:50:16:B1	Belkin:20:10:09	802.1x: EAPOL-key
263		3/1 15:12:46.635338	17.371260	1	10	97	1		Belkin:20:10:09		802.11 acknowledgement
264		3/1 15:12:46.636050	17.371972	1	133	100	6	Intel:50:16:B1	Belkin:20:1C:C9	Belkin:20:1C:C9	802.1x: EAPOL-key
4	∢ III										

- Network media information
- 802.11 MAC header
- **±** capability info
- listen interval: 10
- info: SSID (0)
- info: supported rates (1)
- info: RSN information (48)
 - --- length : 22
 - -- version:1
 - ... Group Key Cipher Suite OUI: 00-0f-ac
 - --- Group Key Cipher Suite Type : 2 (TKIP)
 - --- Pairwise Key Cipher Suite Count: 1
 - Pairwise Key Cipher Suite List
 - Auth Indicated Key Cipher Suite Count: 1
 - Authenticated Key Management Suite List ----- Authenticated Key Management Suite OUI: 00-0f-ac:02
 - RSIN Combilities

The association request frame of a PSK-based authentication will show the AKM Suite type as 00-0F-AC:**02**.

WPA2-Personal

Passphrase

Wr\$578Hyt#4387jYu

WPA2-Personal is also known commonly as WPA2-PSK

How PSK Authenticates

- Authentication occurs during the 4-way handshake
- Frames 2-4 are MIC-protected
- The MIC calculation includes the KCK, which is part of the PTK, as an input
- Mismatched MIC calculations between the supplicant and authenticator result in termination of the 4-way handshake

Port-Based 802.1X Access Control

An entity at one end of a point-to-point LAN segment that is being authenticated by an Authenticator attached to the other end of that link.

An entity at one end of a pointto-point LAN segment that facilitates authentication of the entity attached to the other end of that link. An entity that provides an authentication service to an Authenticator. This service determines, from the credentials provided by the Supplicant, whether the Supplicant is authorized to access the services provided by the Authenticator.

802.1X Port Functions

802.1X/EAP

802.1X/EAP Architecture

Enterprise 802.1X/EAP Deployment

Several components are involved in the flow for WPA/WPA2 Enterprise implementations. A single device is not typically used for all services.

802.11 Encryption Methods

- Authentication and Key Management suites
 - Temporal Key Integrity Protocol (TKIP) Deprecated
 - Counter Mode Cipher Block Chaining Message Authentication Code Protocol (CCMP)
- Encryption algorithms
 - Rivest Cipher 4 (RC4) Deprecated
 - Advanced Encryption Standard (AES)
- Modern Wi-Fi generates encryption keys during the 4-way handshake

4-Way Handshake

Message 1: Authenticator → Supplicant: EAPOL-Key(0,0,1,0,P,0,0,ANonce,0,DataKD_M1) where DataKD_M1 = 0 or PMKID for PTK generation, or PMKID KDE (for sending SMKID) for STK generation

Message 2: Supplicant → Authenticator: EAPOL-Key(0,1,0,0,P,0,0,SNonce,MIC,DataKD_M2) where DataKD_M2 = RSNE for creating PTK generation or peer RSNE, Lifetime KDE, SMKID KDE (for sending SMKID) for STK generation

Message 3: Authenticator → Supplicant:

EAPOL-Key(1,1,1,1,P,0,KeyRSC,ANonce,MIC,DataKD_M3)

where DataKD_M3 = RSNE,GTK[N] for creating PTK generation or initiator RSNE,

Lifetime KDE for STK generation

Message 4: Supplicant \rightarrow Authenticator: EAPOL-Key(1,1,0,0,P,0,0,0,MIC,DataKD_M4) where DataKD_M4 = 0.

Message One

Elements

MIC

Key RSC (Receive

for GTK

Sequence Counter)

Message 1: Authenticator \rightarrow Supplicant: EAPOL-Key(0,0,1,0,P,0,0,ANonce(0,DataKD_M1) key where DataKD_M1 = 0 or PMKID for PTK generation, or PMKID KDE (for sending SMKID) for STK generation

Used only in PeerKey operations (1 is PeerKey)

1 when initial key exchange is complete 0,0,1,0,P,0,0

1 when a

required

response is

Install bit – 1 means install the keys

Key Type – P is Pairwise and G is Group

1 when MIC is in the message

RSAConference2018

Message Two

Message 2: Supplicant → Authenticator: EAPOL-Key(0,1,0,0,P,0,0,SNonce,MIC,DataKD_M2) where DataKD_M2 = RSNE for creating PTK generation or peer RSNE, Lifetime KDE, SMKID KDE (for sending SMKID) for STK generation

The client now sends its NONCE (SNONCE) to the AP/Controller

At this point the client and the AP both have all that's required to generate the Pairwise Transient Key (PTK)

Message 3

Message 3: Authenticator \rightarrow Supplicant:

EAPOL-Key(1,1,1,1,P,0,KeyRSC,ANonce,MIC,DataKD_M3) where DataKD_M3 = RSNE,GTK[N] for creating PTK generation or initiator RSNE, Lifetime KDE for STK generation

The AP/Controller can now send the GTK to the client and the install bit (bit 4) is set to 1

This is the point at which KRACK operates

Message 4

Message 4: Supplicant \rightarrow Authenticator: EAPOL-Key(1,1,0,0,P,0,0,0,MIC,DataKD_M4) where DataKD M4 = 0.

This is really just the "all is good" message so the AP/Controller knows the client has the PTK and GTK installed

KRACK Operation

Who is to blame for KRACK?

- Great question; Complex answer
- Some say the IEEE because of closed processes and lack of availability of the standard early after release
 - Tom's take: the 802.11i amendment has been easily available for 13 years with no fee most of that time, if someone noted the problem, the IEEE could have easily included a fix in 11n, 11ac, or any other amendment since then not sure this is the real problem
- Some say the vendors because they should have implemented the flexible state machine more securely
 - Tom's take: this is a hard one, the standard leaves a lot of flexibility, so each vendor would do it differently and if they make it too complex they could introduce compatibility problems
- Tom's opinion: Time
 - Tom's take: time is to blame; nearly every security solution degrades over time as the most brilliant minds may create it, but other brilliant minds want to thwart it time is usually on the side of the attackers
- End result: Security is a process not an event

802.11 Key Hierarchy

Pairwise Transient Key (PTK)

The PTK is comprised of three keys: KCK, KEK and TK

KCK used for key integrity

KEK used to encrypt and send keys (GTK)

The TK is used to encrypt data payloads

Wi-Fi Monitoring Methods

- Infrastructure solutions
- Overlay solutions
- Mobile solutions

Where do I go from here?

- Immediately
 - Validate the proper security of your existing Wi-Fi gear
 - Verify patches
 - Verify configuration
- In the next 2-3 months
 - Ensure all newly acquired equipment supports WPA2 (amended) or WPA3
 - Anything certified after November 2017 is tested for KRACK patching
- In the next six months
 - Consider a dedicated Wi-Fi security monitoring solution
 - Monitor configurations, new RF devices, anomalies
 - Many performance tools integrate security metrics, such as 7signal

THANK YOU