Ecología:

Estudio de las interacciones que determinan la distribución y abundancia de organismos.

Donde están los organismos y cuantos son ?

Ecología: Distribución y abundancia

Donde están los organismos y cuantos son?

Relacionado con el problema de contar animales en ecología

A diferencia de las plantas...

Los animales se mueven!

Los animales también se esconden

Contar animales

Abundancia relativa: Una variable indicadora del estado de la población.

- Debo tener en cuenta que:
- Los muestreos no son infalibles.
- Los animales se mueven y se esconden
- Es un error importante que debe considerarse en los muestreos!!!

La Detección no es perfecta!

La detectabilidad es una combinación de factores que depende de:

- 1. Las condiciones del muestreo (clima, hora)
- 2. La habilidad del observador (sensor)
- 3. La biología de la especie que se muestrea

Este error debe considerarse para evitar sesgos en las estimaciones de abundancia.

Ecology, 83(8), 2002, pp. 2248-2255 © 2002 by the Ecological Society of America

ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE

DARRYL I. MACKENZIE, 1,5 JAMES D. NICHOLS, 2 GIDEON B. LACHMAN, 2,6 SAM DROEGE, 2 J. ANDREW ROYLE, 3 AND CATHERINE A. LANGTIMM⁴

¹Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695-8203 USA ²U.S. Geological Survey, Patuxent Wildlife Research Center, 11510 American Holly Drive, Laurel, Maryland 20708-4017 USA

³U.S. Fish and Wildlife Service, Patiexent Wildlife Research Center, 11510 American Holly Drive, Laurel, Maryland 20708-4017 USA

⁴U.S. Geological Survey, Florida Caribbean Science Center, Southeastern Amphibian Research and Monitoring Initiative, 7920 NW 71st Street, Gainesville, Florida 32653 USA

Darryl MacKenzie

Mas de 3.000 citaciones

October 2015 Volume 96 No. 10

ECOLOGY

A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA

Mackenzie et al 2006

Populariza la ocupación (ψ) como proxi de la abundancia, teniendo en cuenta la detectabilidad (p)

Permite establecer metas y monitorearlas en el tiempo.

La ocupación (ψ) y la probabilidad de detección (p)

La ocupación (ψ) que es un reflejo de otros parámetros poblacionales importantes, entre ellos la abundancia.

- •1. (ψ) es la proporción del área muestreada que está ocupada por la especie.
- •2. Visitando el sitio varias veces puedo estar mas seguro que detecto la especie cuando esta se encuentra en ese lugar.
- •3. Los muestreos repetidos son clave.

 (ψ) esta influenciada por variables ambientales (**Covariables**) como cobertura vegetal, altitud, precipitacion, etc.

Así debería verse una tabla de datos con muestreos repetidos.

	VISITA :	1 VISITA 2	VISITA 3	VISITA 4
sitio 1	1	0	0	1
sitio 2	0	0	0	0
sitio 3	1	1	0	0
sitio X	0	0	0	0

Método frecuentista (Máxima verosimilitud)

	V 1	V 2	V 3	V 4
s 1	1	0	0	1
s 2	0	0	0	0
s 3	1	1	0	0
s X	0	0	0	0

HISTORIAS DE DETECCIÓN

$$Pr(H1=1001) = \psi \times p1(1-p2)(1-p3)p4$$
 $Pr(H2=0000) = \psi \times (1-p2)(1-p2)(1-p3)(1-p4)p4$
 $Pr(H3=1100) = \psi \times p1p2(1-p3)(1-p4)$
 $Pr(Hx=0000) = \psi \times (1-p2)(1-p2)(1-p3)(1-p4)p4$

$$L(\psi, p \mid H_1, \dots, H_x) = \prod_{i=1}^x Pr(H_i)$$

Método Bayesiano

	V 1	V 2	V 3	V 4
s 1	1	0	0	1
s 2	0	0	0	0
s 3	1	1	0	0
s X	0	0	0	0

zi~Bernoulli(ψ)

yi∼ Bernoulli(p*zi).

Cual uso? Máxima verosimilitud o Bayesiano?

MV

- Paquete <u>unmarked</u> en R
- Admite selección "automática" de modelos con AIC
- Problemas con matrices que tienen muchos NAs
- Problema Hesian y estimados ok.
- Dificultad de 1 a 10: 3 si ya sabes R.

Bayesiano

- Lenguaje BUGS, STAN o NIMBLE, llamado desde R
- La selección de modelos no es tan sencilla, BIC no es adecuado
- No tiene tantos problemas con muchos NAs en la matriz
- Los estimados son mas precisos.
- Dificultad de 1 a 10: 7 si ya sabes R.

Modelos jerárquicos

De donde vienen os modelos jerarquicos?

El Libro azul (2008)

Libro de nivel avanzado con muchos detalles, formulas, ejemplos y código en R y lenguaje BUGS.