Probability Theory Homework I

Bohao Tang

September 1, 2017

T	(1)	Therefore $\max_{1\leq n}\{a_n\}$ is $\max_{1\leq n\leq N}\{a_n\}$, and then the max exits since $N<\infty$
	(ii)	Proof. Suppose A is uncountable, then $A \setminus \{0\}$ is also uncountable. Since $A \setminus \{0\} = \bigcup_{n=1}^{\infty} A_n$ where $A_n = \{a \in A : a \ge 1/n\}$, then there must exits a N such that A_N is uncountable. Then there must exist $N+1$ elements $\{a_1, \cdots, a_{N+1}\}$ in $A_N \subset A$ such that $\forall i: a_i \ge 1/N$. And therefore we have $\sum_{i=1}^{N+1} a_i \ge \frac{N+1}{N} > 1$. A contradiction, so A must be countable.
2	(i)	Proof. Suppose in (M,d_1) : $x_n \to x$ and in (M,d_2) : $x_n \to y$ and $x \neq y$, which infers $d_2(x,y) > 0$. Then we consider an array y_n , where $y_{2k+1} = x$ and $y_{2k} = x_k$. It's easy to see that y_n has limit x in (M,d_1) , so according to the assumption in problem, y_n must tend to some $z \in M$. Therefore $d_2(y_{2k+1},y^2k) \leq d_2(y_{2k+1},z) + d_2(z,y^2k)$ tends to 0. However $d_2(y_{2k+1},y^2k) \geq d_2(y_{2k+1},y) - d_2(y,y^2k) = d_2(x,y) - d_2(y,x_k) > d_2(x,y)/2 > 0$ when k is large enough (since $x_n \to y$ in (M,d_2)). A contradiction, therefore $x = y$.
	(ii)	<i>Proof.</i> For every sequence (x_n, y_n) in the set, if $(x_n, y_n) \to (x_0, y_0)$. Then since function $y - x^2$ is continuous with (x, y) , we have $\lim y_n - x_n^2 = y_0 - x_0^2$, and since $(x_n, y_n) \in \{(x, y) : y \ge x^2\}$, we have $\lim y_n - x_n^2 \ge 0$ and therefore $y_0 \ge x_0^2$ and $(x_0, y_0) \in \{(x, y) : y \ge x^2\}$, which means the set is closed.
	(iii)	(a) $\bigcap_{n=1}^{\infty} (0, 1 + \frac{1}{n}) = (0, 1]$ which is not open. (b) $\{(x, x^2) : x \in [0, 1]\} \cap \{(x, x) : x \in [0, 1]\} = \{(0, 0), (1, 1)\}$ which is not connected.
3	(i)	<i>Proof.</i> Suppose M is infinite, since M is compact, an infinite subarray of M must have an accumulation point, which means we can find an array $\{x_n\}$ of distinct elements in M such that $x_n \to x$ and $x \notin \{x_n\}$. Therefore $\{x_n\}$ is a subset of M hence compact, but not closed. However, since M is a metric space, hence T_2 space, every compact set in M must be closed. A contradiction, which means M is finite
	(ii)	<i>Proof.</i> For every open cover $\{O_{\alpha}\}$ of $f(K)$, $\{f^{-1}(O_{\alpha})\}$ will be an open cover of K . Since K is compact, there exists an finite subcover $\{f^{-1}(O_{\alpha_i})\}_1^N$. Then it's easy to see $\{O_{\alpha_i}\}_1^N$ is an finite open subcover of $f(K)$. Therefore, $f(K)$ is compact.
4	(i)	<i>Proof.</i> By using derivative, $f_n(x)$ is increase in $[0, \frac{1}{\sqrt{3n}}]$ and decrease in $[\frac{1}{\sqrt{3n}}, 1]$. So we have $\sup_{x \in [0,1]} f_n(x) - 0 = f_n(\frac{1}{\sqrt{3n}}) > \frac{1}{2} > 0$, therefore f_n don't uniformly convergent to 0 in $[0,1]$. But in $[\delta,1]$, when n is large enough such that $\frac{1}{\sqrt{3n}} < \delta$, $\sup_{x \in [\delta,1]} f_n(x) - 0 = f_n(\delta) = \frac{1}{\sqrt{n\delta}} f_n(x) - 0 $
	(ii)	$\frac{\sqrt{n\delta}}{n^2\delta^2+1} \to 0$, therefore, f_n uniformly convergent to 0 in every $[\delta, 1]$ where $\delta > 0$. $ (1+n^2)^{-2}\sin(nx) , n(1+n^2)^{-2}\cos(nx) , (-1)^nn^2(1+n^2)^{-2}\sin(nx) $ are all less than $\frac{1}{1+n^2}$, where $\sum_{i=1}^{\infty} \frac{1}{1+n^2} < \infty$. Therefore (a), (b), (c) are all uniformly convergent to some function.
		Since $\left(\frac{\sin(nx)}{(1+n^2)^2}\right)' = n(1+n^2)^{-2}\cos(nx)$, which is continuous and (a) and (b) convergent uniformly, we have $\left(\sum_{n=1}^{\infty}(1+n^2)^{-2}\sin(nx)\right)' = \sum_{n=1}^{\infty}n(1+n^2)^{-2}\cos(nx)$. And in the same way, we can prove that $\left(\sum_{n=1}^{\infty}n(1+n^2)^{-2}\cos(nx)\right)' = \sum_{n=1}^{\infty}(-1)n^2(1+n^2)^{-2}\sin(nx)$. So, $f'' = \sum_{n=1}^{\infty}(-1)n^2(1+n^2)^{-2}\sin(nx)$ exists and it's continuous since uniform convergence and the continuousness of $\sin(nx)$.

- 5 (i) Since every nonempty interval in \mathbb{R} contains rational and irrational number. Therefore every upper sum is 1 and every lower sum is 0, hence f is not Riemann integrable.
 - (ii) Proof. In this situation we have that f is uniformly continuous in [a,b], which means $\forall \epsilon > 0, \exists \delta > 0 \ \forall |x-y| < \delta$ we have $|f(x)-f(y)| < \epsilon$. For this ϵ and δ , for every partition $0 = x_0 < x_1 < \cdots < x_N = 1$ with $\max_{0 \le i \le N-1} (x_{i+1} x_i) < \epsilon$, we have that upper sum minus lower sum will less than $\epsilon \times (1-0) = \epsilon$, which means $|\text{upper sum} \text{lower sum}| \to 0$ when $\max_{0 \le i \le N-1} (x_{i+1} x_i) \to 0$. Therefore f is Riemann integrable.
 - (iii) *Proof.* We have $0 \le f_n(x) < 1, \forall x \in [0,1]$ and $\forall \delta > 0$, f_n uniformly convergent to 0, hence $\lim \int_{\delta}^{1} f_n(x) dx = 0, \forall \delta > 0$. Therefore we have:

$$\int_0^1 f_n(x)dx = \int_0^\delta f_n(x)dx + \int_\delta^1 f_n(x)dx < \delta + \int_\delta^1 f_n(x)dx$$

then:

$$\overline{\lim}_{n\to\infty} \int_0^1 f_n(x) dx < \delta, \quad \forall \delta > 0$$

which means $\overline{\lim} \int_0^1 f_n(x) dx = 0$, together with $f_n \ge 0$, we have $\lim \int_0^1 f_n(x) dx = 0$.

Bonus:

Suppose the strategy is to switch the number with probability p(x) when we get x, then calculate the probability that we end with a larger number if two numbers are x and 2x. It's:

P(end with larger number) =
$$\frac{1}{2}p(x) + \frac{1}{2}(1 - p(2x)) = \frac{1}{2} + \frac{p(2) - p(2x)}{2}$$

So we only need p(x) > p(2x), for example we can switch the number with probability $\frac{1}{1+x}$ when we get x, and then we will have more chance than 1/2 to get the best number for every x.