Protokoll zum Versuch Nichtlineare Dynamik und Chaos

Nicolas Heimann, Jesse Hinrichsen

Universität Hamburg

2015

Zusammenfassung

1 Einleitung

LALALA

2 Logistische Abbildung

$$x_{n+1} = f_r(x_n) = rx_n(1 - x_n)$$

Def.: $f^2(x) = f(f(x))$

$$\Rightarrow x_{n+2} = r^2 x_n (1 - x_n) (1 - r x_n (1 - x_n))$$

Fixpunktgleichung (Einerzyklus):

$$x = rx(1-x)$$

$$\Rightarrow x_1 = 0, x_2 = 1 - \frac{1}{r}$$

Startwerte x=0 und x=1 haben den Fixpunkt x_1 wohingegen für alle $x \in (0,1)$ der Fixpunkt x_2 ist. Fixpunktgleichung (Zweierzyklus):

$$x = r^2 x (1 - x)(1 - rx(1 - x))$$

$$\Rightarrow x_{3,4} = \pm \frac{\sqrt{r^2 - 2r - 3} + r + 1}{2r}$$

Damit $x_{3,4}$ reel bleibt muss $r^2 - 2r - 3 \ge 0$

$$\Rightarrow r \le -1 \land r \ge 3$$

Für diesen Bereich gibt es folglich 2 weitere Fixpunkte $x_{3,4} \Leftrightarrow$ Perdiodenverdopplung

$$\mid f'(x) \mid <1, mit f'(x) = r(1-x) folgt$$

$$\mid r(1-x) \mid <1$$

$$\Leftrightarrow \mid 1-x \mid <\mid \frac{1}{r}\mid$$

3 Literatur

• Nichtlineare Dynamik und Chaos - Physikalisches Praktikum für Fortgeschrittene Universität Hamburg