Back from

Jean Baptiste Barré

IGE Toolkit - 12/04/2023

IGE Toolkit

A self-organized group of **researchers**, scientists, and engineers within **IGE** who engage in sharing the latest and most effective **techniques** and **methodologies** for conducting their scientific research.

https://github.com/IGE-numerique/IGE-Toolkit

https://ige-toolkit.slack.com

ige-numerique@univ-grenoble-alpes.fr

Python and Geospatial applications, its toolkits and applications.

GIS/Mapping

Geography / Geophysics / Geodesy / Geomatics

Earth Sciences / Environmental Sciences

Geovisualization

Smart Cities

Spatial Data / Geodata

Geospatial Webservices

Big Data

Data Processing

(Spatial) Databases

Computer Vision

Remote Sensing

Image Processing

Machine Learning / Deep Learning

Mobile Mapping

Indoor Mapping and Modelling

Geospatial computing with Python

Not python specific!

Geospatial computing with Python


```
[1]: import geopandas

path_to_data = geopandas.datasets.get_path("nybb")

gdf = geopandas.read_file(path_to_data)

gdf
```

[1]:		BoroCode	BoroName	Shape_Leng	Shape_Area	geometry
	0	5	Staten Island	330470.010332	1.623820e+09	MULTIPOLYGON (((970217.022 145643.332, 970227
	1	4	Queens	896344.047763	3.045213e+09	MULTIPOLYGON (((1029606.077 156073.814, 102957
	2	3	Brooklyn	741080.523166	1.937479e+09	MULTIPOLYGON (((1021176.479 151374.797, 102100
	3	1	Manhattan	359299.096471	6.364715e+08	MULTIPOLYGON (((981219.056 188655.316, 980940
	4	2	Bronx	464392.991824	1.186925e+09	MULTIPOLYGON (((1012821.806 229228.265, 101278

Geospatial computing with Python

Raster data

Where **raster data cubes** refer to data cubes with raster (xand y-, or lon- and lat-) dimensions,

Vector data

vector data cubes are n-D arrays that have (at least) a single spatial dimension that maps to a set of (2-D) vector geometries. <u>Edzer Pebesma</u>

PANGEO to know more about this key stack.

https://gallery.pangeo.io/repos/pangeo-data/pangeo-tutorial-gallery/index.html

Shapely 2.0.1

Perform operations with vector data and python.

GEOS: C/C++ library for computational geometry with a focus on algorithms used in geographic information systems (GIS). GEOS is a core dependency of PostGIS, QGIS, GDAL, and Shapely.

Perform PostGIS type geometry operations outside of an RDBMS.

Planar geometries only.

Last version implements vectorization to improve performances.

Xvec: Vector data cubes for Xarray

Martin Fleischmann

(Early stage of development)

Selecting and indexing data based on labels as well as geometries, spatial queries or nearest geometries.

https://r-spatial.github.io/stars/

Joblib or Pickle to save your data cube

```
import pickle
import joblib

import geopandas as gpd
import xarray as xr
import xvec

[...]

with open("cube.pickle", "wb") as f:
    pickle.dump(cube, f)

with open("cube.joblib.compressed", "wb") as f:
    joblib.dump(cube, f, compress=True)
```

pickle may be significantly faster, especially on large collections of native Python objects.

joblib (pure Python) if you data contains mostly numpy array.

High-level tools to simplify visualization in Python

import hvplot.xarray import xarray as xr

xr_ds =
xr.tutorial.open_dataset('air_temperature').load().sel(time='2013-0601 12:00')
xr_ds.hvplot()

Display millions of points in your notebook.

Interactive Data Visualization

Interactive Geospatial Data Visualization

Panel

Box-select on each plot to subselect; clear selection to reset.

See the <u>Jupyter notebook</u> source code for how to build apps like this!

Geometric and spectral fusion of multi-sensor, multi-spectral satellite images

Daniel Scheffler

German Research Centre for Geosciences Potsdam

Open-Source Image

Co-Registration Software for

Multi-Sensor Satellite Data

SpecHomo

Spectral **homogenization** of multispectral satellite data

Open Source in Environmental Sustainability

Tobias Augspurger

This study provides the first analysis of the open source software ecosystem in the field of sustainability and climate technology. https://report.opensustain.tech/chapters/topics.html

Licence Datasets

Dimension	Value 🔍 🖩
Total number of projects GitHub projects	1339
GitHub projects	1187
GitLab projects	27
Other platforms	125

Code-Centric Infrastructure as Code (IaC) using Pulumi with Python

handling Cloud Infrastructure through code

Tips and tricks

conda install geopandas

but, do mamba install geopandas

Don't save vector data using shapefile format (switchfromshapefile.org). Use Geopackage as an alternative.

Workshop

Discover the GeoPython ecosystem: https://github.com/martinchristen/geopython2023

Writing efficient code for GeoPandas and Shapely in 2023: https://github.com/martinfleis/efficient-geopandas-workshop

A Decade of Supporting Open Science U.S. based non profit corporation.

\$23M of budget (2022) to support the **development of open source tools** such as Numpy, Matplotlib, xarray, dask, conda, zarr, scikit-image, Gdal, pandas,...... (55 sponsored projects in total)

Thank you!

