Lidar Sensor Box

design goals

use durable, cheap material easy movement for panning and tilting waterproof

past design

plastic box with acrylic "window" motors held together by paper clip hinges epoxied to thrust ball bearing

restrictions

waterproofing clear plastic manufacturing + visual distortions dimensions idk how to manufacture anything except for 3d printing

lidar + 2 motor

lidar-lite v3

size 51x25x25 mm cost 128.95

lidar + 2 motor

micro servo

90° CW & CCW tilt 23x11x29 mm size

cost

5.95

lidar + 2 motor

design ideas

cctv

r2d2

webcamera

to buy

Koller Products Panaview 1-Gallon Globe Fish Bowl		4.74
Skate ball bearing		5.33
acrylic sheet (6" x 6" x .25")	8560K358	5.82
micro servo (2)	169	11.90

how to build

3d printing + epoxying haven't gotten dimensions from navteam sanding/cutting

future steps

figure out all the dimensions order the micro servos (?) test refraction of plastic material test waterproofing