

10

Building Successful Information Systems

Learning Objectives (1 of 2)

- Describe the systems development life cycle (SDLC) as a method for developing information systems
- Explain the tasks involved in the planning phase
- Explain the tasks involved in the requirements-gathering and analysis phase
- Explain the tasks involved in the design phase

Learning Objectives (2 of 2)

- Explain the tasks involved in the implementation phase
- Explain the tasks involved in the maintenance phase
- Describe new trends in systems analysis and design, including serviceoriented architecture, rapid application development, extreme programming, and agile methodology

Systems Development Life Cycle: An Overview

- Systems development life cycle (SDLC): series of well-defined phases performed in sequence
 - Serves as a framework for developing a system or project
 - Each phase's output becomes the input for the next phase
 - Suitable for an information system that needs to be designed from scratch

Exhibit

10.1 Phases of the SDLC

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Phase 1: Planning (1 of 2)

- Systems designer must define the problem the organization faces
 - Problem can be identified internally and externally
- Analysts assess needs of the organization or a specific group of users
 - Organization's strategic goals
 - How proposed system can support goals
 - Factors critical to the system's success
 - Criteria for evaluating performance

Phase 1: Planning (2 of 2)

- Analysts must get feedback from users on the problem
 - At the end of the phase, users and top management should have a clear view of the why, who, when, and what of the problem

Formation of the Task Force (1 of 3)

- Should consist of representatives from:
 - Different departments
 - Systems analysts
 - Technical advisors
 - Top management
- Involves collecting user feedback and working toward getting users involved from the beginning

Formation of the Task Force (2 of 3)

- Internal users: employees who use the system regularly
 - Offer feedback on the system's strengths and weaknesses
- External users: not employees but do use the system
 - Customers, contractors, suppliers, and other business partners
 - Not part of the task force but their input is essential

Formation of the Task Force (3 of 3)

- Joint application design (JAD)
 - Collective activity involving users, top management, and IT professionals
 - Centered on a structured workshop where users and system professionals unite to develop an application
 - Helps ensure that collected requirements are not narrow and one-dimensional in focus

Feasibility Study

- Measure of how beneficial or practical an information system will be to an organization
 - Analysts investigate a proposed solution's feasibility
 - Determine how best to present the solution to management
 - Dimensions: economic, technical, operational, scheduling, and legal

Economic Feasibility (1 of 2)

- Assesses a system's costs and benefits
 - Tangible development and operating costs for the system have to be itemized
 - Leads to the creation of a budget
 - Tangible and intangible benefits have to be identified and measured
 - Challenge: accurately assessing intangible costs and benefits

Economic Feasibility (2 of 2)

- Cost-effectiveness analysis has to be conducted
 - Methods: payback, net present value (NPV), return on investment (ROI), and internal rate of return (IRR)
- Cost-benefit analysis (CBA) report
 - Used to sell the system to top management

Technical Feasibility

- Assessing whether the technology to support the new system is available or feasible to implement
 - Organizations that lack the expertise, time, or personnel to implement the new system might lack technical feasibility
 - Steps should be taken to address shortcomings and consider the new system

Operational Feasibility

- Measure of how well the proposed solution will work in the organization and how internal and external customers will react to it
 - Requires assessing the worth of implementing the information system

Scheduling Feasibility

- Concerned with whether the new system can be completed on time
 - Failure to deliver in time leads to loss of customers
 - Problem can be minimized by using project management tools

Legal Feasibility

- Concerned with legal issues
 - Addresses questions such as:
 - Will the system violate any legal issues in the country where it will be used?
 - Are there any political repercussions?
 - Is there any conflict between the proposed system and legal requirements?

Phase 2: Requirements-Gathering and Analysis (1 of 2)

- Analysts define the problem and generate alternatives for solving it
 - Team attempts to understand the requirements for the system
 - Analyzes requirements to determine the main problem with the current system or processes
 - Looks for ways to solve problems by designing the new system

Phase 2: Requirements-Gathering and Analysis (2 of 2)

- Analysis and design approaches
 - Structured systems analysis and design (SSAD)
 - Sequential approach that treats process and data independently
 - Object-oriented
 - Combines process and data analysis
- Models created during the analysis phase constitute design specifications

Exhibit

10.2 Data Flow Diagram for ABC's Inventory Management System

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Exhibit

10.3 Context Diagram for ABC's Inventory Management System

Phase 3: Design (1 of 3)

- The most realistic solution that offers the highest payoff for the organization is chosen
 - Details of the proposed solution are outlined

Phase 3: Design (2 of 3)

- Document with exact specifications for implementing the system is drafted
 - Files and databases
 - Forms and reports
 - Documentation and procedures
 - Hardware and software
 - Networking components
 - General system specifications

Phase 3: Design (3 of 3)

- Consists of three parts
 - Conceptual design: overview of the system and does not include hardware or software choices
 - Logical design: makes conceptual design specific by indicating hardware and software
 - Physical design: created for specific platforms

Computer-Aided Systems Engineering (1 of 3)

- Computer-Aided Systems Engineering (CASE) tools automate parts of the application development process
 - Helpful for investigation and analysis in large-scale projects

Computer-Aided Systems Engineering (2 of 3)

- Help analysts:
 - Keep models consistent with each other
 - Document models with explanations and annotations
 - Ensure that models are created according to specific rules
 - Create a single repository of all models related to a single system
 - Track and manage design changes
 - Create multiple versions of the design

Computer-Aided Systems Engineering (3 of 3)

- CASE tools are similar to computeraided design (CAD) tools
 - Capabilities vary; depend on the product
- Create output in the form of:
 - Specifications documents
 - Documentation of the analysis
 - Design specifications
 - Logical and physical design documents
 - Code modules

Prototyping (1 of 2)

- Small-scale version of the system is developed
 - Illustrates system benefits and allows users to offer feedback
- Purposes
 - Establishes system requirements
 - Determines a system's technical feasibility
 - Sells the proposed system to users and management using a selling prototype

Prototyping (2 of 2)

- Steps in prototyping
 - Define initial requirements
 - Develop the prototype
 - Review and evaluate the prototype
 - Revise the prototype

Prototyping Development Tools

- Development tools used in prototyping
 - Spreadsheet and database management packages
 - Visual Basic
 - CASE tools and third- and fourth-generation programming languages
 - User interface design tools

Advantages and Disadvantages of Prototyping (1 of 2)

- Advantages
 - Method for investigating an environment
 - Reduces the need to train information system users and costs
 - Increases the system's chance of success by encouraging users' involvement
 - Allows easy modification
 - Improves documentation and communication

Advantages and Disadvantages of Prototyping (2 of 2)

- Disadvantages
 - Requires excessive support and assistance from users and top management
 - May not reflect the final system's actual operation
 - Misleading; working prototype convinces the team that the final system will work

Phase 4: Implementation (1 of 3)

- Team configures the system and procures components for it
 - Tasks involved
 - Acquiring new equipment
 - Hiring and training new employees
 - Planning and designing physical layout
 - Coding and testing
 - Designing security measures and safeguards
 - Creating a disaster recovery plan

Phase 4: Implementation (2 of 3)

- Conversion options
 - Parallel: old and new systems run simultaneously for a short time to ensure the new system works correctly
 - Phased-in-phased-out: as each module of the new system is converted, the corresponding part of the old system is retired
 - Process continues until the entire system is operational

Phase 4: Implementation (3 of 3)

- Plunge (direct cutover): old system is stopped and the new system is implemented
- Pilot: analyst introduces the system in a limited area of the organization
 - Implemented in the rest of the organization in stages or all at once if the system works correctly

IT Project Management (1 of 2)

- Activities to plan, manage, and control information system creation and delivery
- Tools and techniques
 - Help solve scheduling problems, plan and set goals, and highlight potential bottlenecks
 - Project management software helps study cost, time, and impact of schedule changes
 - PERT (program evaluation review technique)
 - CPM (critical path method)

10.4 PERT Network

IT Project Management (2 of 2)

- Gantt chart
 - Constructed using the critical path
 - Allows the systems analyst to monitor the progress of the project
 - Helps detect delay in the daily operation of the project

Exhibit

10.5 Gantt Chart

Define the problem

Conduct the feasibility study

Redefine the problem

Create and evaluate alternative solutions

Select new hardware/software

Install new hardware/software

Construct the prototype

Implement the new system

Request for Proposal (1 of 3)

- Written document with detailed specifications
 - Used to request bids for equipment, supplies, or services from vendors
 - Contains information on functional, technical, and business requirements of the proposed information system

Request for Proposal (2 of 3)

- Advantages
 - All vendors get the same information and requirements, which aid in fair evaluation of bids
 - Useful to narrow down the list of prospective vendors
- Disadvantage
 - Time consuming

Request for Proposal (3 of 3)

- Request for information (RFI)
 - Alternative to an RFP
 - Screening document for gathering vendor information and narrowing the list of potential vendors
 - Helps manage selection of vendors by focusing on the project requirements crucial to selecting vendors

Implementation Alternatives

- The SDLC approach is sometimes called insourcing
 - Organization's team develops the system internally

Self-Sourcing (1 of 3)

- End users develop information systems with less or no formal assistance from the information systems (IS) team
 - Use off-the-shelf software to produce custom-built applications
 - Helps reduce the backlog in producing information systems
 - Improves flexibility in responding to users' information needs

Self-Sourcing (2 of 3)

- Disadvantages
 - Possible misuse of computing resources
 - Lack of access to crucial data
 - Lack of documentation
 - Inadequate security for the applications and systems
 - Applications may not be up to IS standards
 - Lack of support from top management
 - Lack of training for prospective users

Self-Sourcing (3 of 3)

- Organizations should develop guidelines for end users
 - Criteria for evaluating, approving or rejecting, and prioritizing projects
- Data administration should be enforced
 - Ensures integrity and reliability of information

Outsourcing (1 of 2)

- Organizations hire external vendors or consultants who specializes in providing development services
 - Crowdsourcing: process traditionally performed by employees or contractors to a crowd through an open call
- Outsourcing types
 - Onshore
 - Nearshore
 - Offshore

Outsourcing (2 of 2)

- Advantages
 - Less expensive
 - Quick delivery
 - Helps organizations concentrate on core functions and other projects
- Disadvantages
 - Loss of control
 - Dependency
 - Vulnerability of strategic information

Phase 5: Maintenance (1 of 2)

- Information system is operating
 - Enhancements and modifications to the system have been developed and tested
 - Hardware and software components have been added or replaced

Phase 5: Maintenance (2 of 2)

- Performance data and information is gathered and assessed
 - Feedback from users, customers, and other people affected by the new system is collected
- Corrective action is taken if the system's objectives are not being met

New Trends in Systems Analysis and Design

- SDLC model may be inappropriate if:
 - There is a lack of specifications
 - Input-output process cannot be identified completely
 - Problem is "ad hoc"
 - Users' needs change constantly

Service-Oriented Architecture (1 of 2)

- Focuses on development, use, and reuse of small, self-contained blocks of codes
 - Attempts to solve software development issues by recognizing, accepting, and leveraging existing services

Service-Oriented Architecture (2 of 2)

- Blocks of codes are reused in different applications
 - Allow new business processes to be created from a pool of existing services
- Benefits
 - Reduced application development time
 - Greater flexibility
 - Improved return on investment

Rapid Application Development

- Concentrates on user involvement and continuous interaction between users and designers
 - Combines the planning and analysis phases to develop a prototype of the system
- Uses an iterative process
 - Design, development, and testing steps are repeated as needed based on feedback
- Problems: narrow focus and low quality

Extreme Programming (1 of 2)

- Method for developing software applications and IS projects
 - Project is divided into smaller functions
 - Developers cannot move to the next phase until the current phase is finished
 - Each function is developed step-by-step
- Advantages
 - Delivers the system to users as early as possible
 - Makes changes that the user suggests

Extreme Programming (2 of 2)

- Pair programming
 - Two programmers participate in one development effort at one workstation
 - Each programmer performs the action that the other is not currently doing
 - Helps in quick detection and correction of programming mistakes

Agile Methodology (1 of 2)

- Focuses on an incremental development process and timely delivery of working software
 - Less emphasis on team coding and more emphasis on limiting the project's scope
 - Sets a minimum number of requirements and turns them into a working product

Agile Methodology (2 of 2)

- Goals of the step-by-step approach
 - Respond to changing needs
 - Develop working, high-quality software
- Strives to deliver software quickly
 - Better meet customer needs

Summary (1 of 2)

- Systems development life cycle (SDLC) is a series of well-defined phases performed in sequence
 - Planning phase: forming a task force and conducting a feasibility study
 - Requirements-gathering and analysis phase: analysts define the problem and generate alternatives for solving it

Summary (2 of 2)

- Design phase: analysts choose a realistic solution that offers the highest payoff for the organization
 - Solution is transferred from paper to action in the implementing phase
- Maintenance phase: enhancements and modifications to the system are developed and tested

