Hongchang Gao Spring 2024

What is clustering?

- Unsupervised Learning
 - Given: only samples, no labels
 - Clustering: find meaningful groups of samples s.t.
 - Samples in the same group are "similar"
 - Samples in different groups are "dissimilar"

Know NOTHING about labels

Existing methods: K-Means

Standard Algorithm

1) k initial "means" (in this case k=3) are randomly selected from the data set.

2) k clusters are created by associating every observation with the nearest mean.

3) The centroid of each of the k clusters becomes the new means.

4) Steps 2 and 3 are repeated until convergence has been reached.

Existing problems

[Shi & Malik '00; Ng, Jordan, Weiss NIPS '01]

 Distance based method (like k-means) fails to capture the complicated geometric structure

- Basic Idea: Low-dimensional embedding point of view
 - Obtain data representation in the low-dimensional space that can be easily clustered

How to learn this transformation?

Similarity Graph

Similarity Graphs: Model local neighborhood relations between data points

• ε -neighborhood graph

Connect all vertices whose pairwise distances are smaller than ε

• *k*-nearest neighbor graph

Connect vertex v_i with vertex v_j if v_j is among the k-nearest neighbors of v_i .

fully connected graph

Connect all points with positive similarity with each other

Similarity Matrix

E.g. epsilon-NN

$$W_{ij} = \left\{ egin{array}{ll} 1 & \|x_i - x_j\| \leq \epsilon \end{array}
ight.$$
 Controls size of neighborhood otherwise

or mutual k-NN graph ($W_{ij} = 1$ if x_i or x_j is k nearest neighbor of the other)

Similarity Matrix

E.g. Gaussian kernel similarity function

$$W_{ij} = e^{\frac{\|x_i - x_j\|^2}{2\sigma^2}} \longrightarrow \text{Controls size of neighborhood}$$

Similarity Graph

Example

Degree

- $d_i = \sum_j w_{ij}$ degree of a vertex
- $D = diag(d_1, \ldots, d_n)$ degree matrix

	X_{j}	X ₂	X,	X_{ℓ}	X5	$X_{\mathcal{E}}$
X_{j}	0	0.8	0,6	0	0.1	0
X ₂	0.8	0	0,8	0	0	0
X_3	0.6	0.8	0	0.2	0	0
X_d	0	0	0.2	0	0.8	0.7
$X_{\mathcal{I}}$	0.1	0	0	0.8	0	0.8
$X_{\mathcal{C}}$	0	0	0	0.7	0.8	0

Similarity matrix

	X ₁	X2	$X_{\mathcal{J}}$	X4	X 5	X ₆
X_{I}	1.5	0	0	0	0	0
X 2	0	1.6	0	0	0	0
Х3	0	0	1.6	0	0	0
X4	0	0	0	1,7	0	0
X 5	0	0	0	0	1.7	0
Χó	0	0	0	0	0	1.5

Degree matrix

Graph Laplacian matrix

• Un-normalized Graph Laplacian

$$L = D - W$$

		X_{j}	X ₂	$X_{\mathcal{I}}$	X_d	X_5	$X_{\mathcal{S}}$			X ₁	X 2	Χj	X4	X 5	Xσ			X_{I}	X ₂	X,	X_4	X_5	$X_{\mathcal{E}}$	П
	X_{j}	1.5	-0.8	-0.6	0	-0.1	0		Xį	1.5	0	0	0	0	0		X_{j}	0	0.8	0.6	0	0.1	0	1
	X_2	-0.8	1.6	-0.8	0	0	0		X2	0	1.6	0	0	0	0		X2	0.8	0	0.8	0	0	0	1
4	$X_{\mathcal{I}}$	-0.6	-0.8	1.6	-0.2	0	0		X3	0	0	1.6	0	0	0		X3	0.6	0.8	0	0.2	0	0	b
	X_d	0	0	-0.2	1.7	-0.8	-0.7		X4	0	0	0	1,7	0	0		X4	0	0	0.2	0	0.8	0.7	-
	$X_{\mathcal{I}}$	-0.1	0	0	-0.8	1.7	-0.8		X _S	0	0	0	0	1.7	0		X ₅	0.1	0	0	0.8	0	0.8	
	$X_{\mathcal{E}}$	0	0	0	-0.7	-0.8	1.5		Χ _δ	0	0	0	0	0	1.5		X _e	0	0	0	0.7	0.8	0	ı
L								(ן נ				ليتها	4017	616		4

Normalized Graph Laplacian

$$L_{\rm rw} := D^{-1}L = I - D^{-1}W.$$

Graph Laplacian matrix

- Important properties:
 - Symmetric, positive semi-definite

A symmetric matrix M is positive semidefinite (PSD) if $\forall x \in \mathbb{R}^n$,

$$x^T M x \ge 0.$$

- Eigenvalues are non-negative real numbers $0 = \lambda_i \le \lambda_2 \le \cdots \le \lambda_n$
- Eigenvectors are real and orthogonal
- Smallest eigenvalue is 0, corresponding eigenvector is 1.

$$L\mathbf{1} = D\mathbf{1} - W\mathbf{1} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix} - \begin{bmatrix} \sum_j w_{1j} \\ \sum_j w_{2j} \\ \vdots \\ \sum_j w_{nj} \end{bmatrix} = \mathbf{0}$$

Graph Laplacian matrix

- Important properties:
 - Symmetric, positive semi-definite
 - Eigenvalues and eigenvectors provide an insight into the connectivity of the graph
 - The number of eigenvalues equal to zero for the Laplacian is equal to the number of connected components in the graph.
 - The rank of Laplacian of a graph is number of vertices minus number of connected components.

Eigenvalue

$$L_{\text{rw}} := D^{-1}L = I - D^{-1}W.$$

• Idea (1D): Given the similarity matrix W,

$$\min \sum_{i,j}^n w_{ij}^2 (f_i - f_j)^2$$

- $-f_i$ is the low-dimensional representation
- Larger w_{ij} enforces f_i and f_j more similar
- Two similar points in the original space will be similar in the lowdimensional space

Reformulation:

$$f'Lf = f'Df - f'Wf = \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} f_i f_j w_{ij}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right) = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

$$\min \sum_{i,j}^{n} w_{ij}^2 (f_i - f_j)^2 \qquad \Longrightarrow \qquad \min f' L f$$

• Where un-normalized graph Laplacian L = D - W

• How to obtain low-dimensional embedding?

$$L = D - W$$

Multiplicity of eigenvalue 0 = number k of connected components $A_1, ..., A_k$ of the graph.

Ky Fan's Theorem
$$\sum_{i=1}^c \sigma_i(L^-) = \min_{F \in \mathbb{R}^n \times c, F^T F = I} Tr(F^T L^- F)$$

The optimal solution F to the problem — is formed by the c eigenvectors of L—corresponding to the c smallest eigenvalues.

- 1. Construct the similarity matrix
- 2. Compute the Laplacian matrix L_{nxn}
- 3. Conduct the eigen-decomposition to get the first C eigenvectors, U_{nxc}
- 4. Apply k-means to U_{nxc}

