10/586932 IAP11 Rec'd PCT/PTO 21 JUL 2006

SEQUENCE LISTING

<110>	Martinus Defoor,			ne								
<120>	Orotate Transporter Encoding Marker Genes											
<130>	10556.204-US											
<160>	22	22										
<170>	PatentIn	version	3.3									
<210> <211> <212> <213>	921	cus lact	is									
<223>	(1)(92 Orotate		ter en	coding	ORF							
	l t att tac r Ile Tyr											48
	a aat cca n Asn Pro 20											96
	g gcc tct u Ala Ser 35		Ser A									144
	c act tta e Thr Leu		_									192
	c tca cac y Ser His	_						_				240
	t cta aca e Leu Thr											288
	g gtg att r Val Ile 100	Leu Pro			_		_					336
	t tca ttt p Ser Phe 115		Phe H									384

	cgc Arg 130															432
	gtt Val															480
aac Asn	tta Leu	cta Leu	ggc Gly	tgg Trp 165	cga Arg	att Ile	tgg Trp	gcg Ala	gtc Val 170	atc Ile	gtt Val	ggg Gly	gca Ala	atg Met 175	tcg Ser	528
	gct Ala															576
	gca Ala															624
	atc Ile 210															672
tta Leu 225	aaa Lys	aaa Lys	gca Ala	aaa Lys	cct Pro 230	tgg Trp	aat Asn	gga Gly	att Ile	ggt Gly 235	gga Gly	ttt Phe	tta Leu	gga Gly	gcc Ala 240	720
	atc Ile															768
	aca Thr															816
	caa Gln															864
tgg Trp	caa Gln 290	att Ile	gtt Val	ggg Gly	att Ile	cta Leu 295	att Ile	atg Met	ctg Leu	acċ Thr	gga Gly 300	ata Ile	ata Ile	ttc Phe	att Ile	912
	ttt Phe															921
<21 <21 <21 <21	1> 2>	2 307 PRT Lact	ococ	cus	lact.	is										
<40	0>	2														

Met Tyr Ile Tyr Leu Ala Phe Ala Leu Val Gly Gly Phe Leu Leu Ala

1 5 10 15

Asn Gln Asn Pro Ile Asn Ala Asp Leu Arg Lys Ile Val Gly Ser Pro 20 25 30

Phe Leu Ala Ser Gly Ile Ser Asn Phe Val Gly Ser Ile Phe Leu Gly 35 40 45

Ile Ile Thr Leu Val Thr Ser Gln Thr Leu Phe Pro Ser Phe Gln Phe 50 55 60

Val Gly Ser His Pro Val Trp Ile Trp Ile Gly Gly Val Leu Gly Gly 65 70 75 80

Ile Phe Leu Thr Ser Asn Val Leu Leu Phe Pro Arg Leu Gly Ala Val 85 90 95

Gln Thr Val Ile Leu Pro Ile Leu Gly Arg Ile Leu Met Gly Thr Leu 100 105 110

Ile Asp Ser Phe Gly Trp Phe His Ala Met Gln Leu Pro Met Thr Leu 115 120 125

Met Arg Phe Leu Gly Val Ile Ile Thr Leu Ala Gly Val Ile Val Ala 130 135 140

Val Val Leu Pro Asn Leu Lys Glu Lys Glu Ala Glu Thr His Gln Thr 145 150 155 160

Asn Leu Leu Gly Trp Arg Ile Trp Ala Val Ile Val Gly Ala Met Ser 165 170 175

Ala Ala Gln Gln Ala Ile Asn Gly Arg Leu Gly Val Leu Leu Glu Asn 180 185 190

Thr Ala Gln Ala Thr Phe Val Ser Phe Phe Ile Gly Phe Leu Ala Ile 195 200 205

Phe Ile Val Ser Leu Phe Ile Asp Arg Leu Pro Lys Ile Ser Glu 210 215 220

Leu Lys Lys Ala Lys Pro Trp Asn Gly Ile Gly Gly Phe Leu Gly Ala 225 230 235 240

Ser Ile	e Val	Phe	A1a 245	Thr	val	val	Ala	250	Pro	GIN	11e	стх	255	GTÀ	
Leu Thr	: Ile	Met 260	Met	Gly	Leu	Ile	Gly 265	Gln	Ile	Leu	Gly	Ser 270	Met	Leu	
Val Glr	Gln 275	Phe	Gly	Trp	Trp	Arg 280	Ser	Ser	Lys	Tyr	Gly 285	Ile	Gln	Ile	
Trp Glr 290		Val	Gly	Ile	Leu 295	Ile	Met	Leu	Thr	Gly 300	Ile	Ile	Phe	Ile	
Lys Phe	e Leu														
<212>	3 25 DNA Arti:	ficia	al se	equer	nce										
<220> <223>	Prime	er p	yrDal	BamHl	Γ										
<400> cgggato	3 ccat	gacc	gcaco	ca ad	cagc										25
<210> <211> <212> <213>	4 28 DNA Arti:	ficia	al se	equer	nce										
<220> <223>	Prime	er p	yrDal	NcoI											
<400> catgcca	4 atgg (ccaa	atcca	at ci	ttaq	ggc									28
<210> <211> <212> <213>	5 29 DNA Arti:	ficia	al se	equei	nce										
<220> <223>	Prime	er p	yrDal	Hind:	III										
<400> cgtgaag	5 gctt (gaca	aaata	ag go	ctgad	cctc									29

```
<210> 6
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<223> Primer PSA17
<400> 6
                                                                    20
atgccgcctc atcatttgac
<210> 7
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<223> Primer PSA20
<400> 7
                                                                     20
atatcatctc ttttggtaat
<210> 8
<211> 28
<212> DNA
<213> Artificial sequence
<220>
<223> Primer pyrDbIF
<400> 8
                                                                     28
cggaagatct gatgatgaca gttgtcag
<210> 9
<211> 46
<212> DNA
<213> Artificial sequence
<220>
<223> Primer pyrDbIR
<400> 9
ctgtactggt ccataagctc ggatccacca aaacaacctg acgctg
                                                                     46
<210> 10
<211> 46
<212> DNA
<213> Artificial sequence
<220>
<223> Primer pyrDbIIF
```

<400> cagcgt	10 cagg ttgttttggt ggatccgagc ttatggacca gtacag	46
<210> <211> <212> <213>	11 28 DNA Artificial sequence	
<220> <223>	Primer pyrDbIIR	
<400> tcggag	11 atct atccaaggac aagtgcag	28
<220>	Artificial sequence	
<223> <400> tggtgg	Primer pyrDbseq1 12 aatt ggggttc	17
<210><211><211><212><212><213>	DNA	
<220> <223>	Primer pyrDbseq2	
	13 ctgc gaagatg	17
<210> <211> <212> <213>		
<220> <223>	Primer pyrDbseq3	
<400> attgac	14 agaa ctgccag	17
<210><211><211><212><213>	18 DNA	

<220> <223>	Primer DBORO2	
<400> acttato	15 egte eggaettg	18
<210><211><211><212><213>	18	
<220> <223>	Primer DBORO8	
	16 aaag cgcacgac	18
<210> <211> <212> <213>	26	
<220> <223>	Primer DBORO22BamHI	
	17 ccta ctgacagact tgtcag	26
<210><211><211><212><213>	26	
<220> <223>	Primer DBORO23EcoRI	
<400> gagaat	18 totg attoggacaa ggotto	26
<210><211><211><212><213>		
<220> <223>	Primer DBORO24EcoRI	
<400> gagaat	19 tcaa agtcgttcgc ctcaag	26
<210> <211>	20 18	

<212>		
<213>	Artificial sequence	
<220>		
<223>	Primer DBORO4	
<400>	20	
ttcacg	ctca ctaccttc	18
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	Primer DBORO20	
<400>	21	
ggctca	ccat ttttggcctc tgg	23
<210>	22	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	Primer 268neo	
<400>	22	
ctcatt	ccct gatctcg	17