13.
$$\frac{4n^{2}+1}{3n^{2}+n-4}$$

14. $\frac{n+1}{3n^{2}-4}$

15. $\frac{4n-1}{n+1}$

16. $\frac{n^{3}-4n+1}{2-3n}$

17. $\frac{n^{2}-n}{3n+4}$

18. $\frac{5+n-n^{2}+n^{3}}{1-2n^{3}}$

19. $\lim_{n\to+\infty} \frac{m^{2}(n+\frac{1}{n})}{m^{2}(n-\frac{1}{n})} = \frac{1}{n} = 0$

17. $\frac{n^{2}-n}{3n+4}$

18. $\frac{5+n-n^{2}+n^{3}}{1-2n^{3}}$

19. $\lim_{n\to+\infty} \frac{m^{3}-4n+1}{2-3n}$

10. $\lim_{n\to+\infty} \frac{m^{2}(n+\frac{1}{n})}{m^{2}(n-\frac{1}{n})} = \frac{1}{n} = 0$

11. $\frac{n^{2}-n}{3n+4}$

12. $\frac{1}{2}$

13. $\frac{1}{2}$

14. $\frac{1}{2}$

15. $\frac{4n-1}{3n+4}$

16. $\frac{1}{2}$

17. $\frac{n^{2}-n}{3n+4}$

18. $\frac{5+n-n^{2}+n^{3}}{1-2n^{3}}$

19. $\frac{1}{2}$

10. $\frac{1}{2}$

11. $\frac{1}{2}$

12. $\frac{1}{2}$

13. $\frac{1}{2}$

14. $\frac{1}{2}$

15. $\frac{4n-1}{3n+4}$

16. $\frac{1}{2}$

17. $\frac{1}{2}$

18. $\frac{5+n-n^{2}+n^{3}}{1-2n^{3}}$

19. $\frac{1}{2}$

10. $\frac{1}{2}$

11. $\frac{1}{2}$

12. $\frac{1}{2}$

13. $\frac{1}{2}$

14. $\frac{1}{2}$

15. $\frac{1}{2}$

16. $\frac{1}{2}$

17. $\frac{1}{2}$

18. $\frac{1}{2}$

19. $\frac{1}{2}$

19.

lim
$$\ln(n^2 + n) = \ln(+\infty) = +\infty$$
 $\frac{1}{4}$

Se forc

 $\lim_{n \to +\infty} \log_{\frac{1}{2}}(M^2 + n) = \log_{\frac{1}{2}}(+\infty) = -\infty$
 $\lim_{n \to +\infty} \log_{\frac{1}{2}}(M^2 + n) = \log_{\frac{1}{2}}(+\infty) = -\infty$
 $\lim_{n \to +\infty} \ln\left(1 + \frac{2}{n+2}\right) = \ln(4) = 0$
 $\lim_{n \to +\infty} \left(\sqrt{n+1} - \sqrt{n-2}\right) = +\infty - \infty$
 $\lim_{n \to +\infty} \left(\sqrt{m+1} - \sqrt{m-2}\right) = \frac{1}{\sqrt{m+1}} + \sqrt{m-2}$
 $\lim_{n \to +\infty} \left(\sqrt{m+1} - \sqrt{m-2}\right) = \frac{3}{\sqrt{m+1}} = \frac{3}$

$$\lim_{M \to +\infty} \left(\sqrt{M^2 + 1} - \sqrt{M} \right) = + \infty - \infty$$

$$= \lim_{M \to +\infty} \left(\sqrt{M^2 + 1} - \sqrt{M} \right) \cdot \frac{\sqrt{M^2 + 1} + \sqrt{M}}{\sqrt{M^2 + 1} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + 1 - M}{\sqrt{M^2 + 1} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + 1 - M}{\sqrt{M^2 + 1} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + 1 - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2} + \sqrt{M}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} = \lim_{M \to +\infty} \frac{M^2 + \frac{1}{M^2} - \frac{1}{M^2}}{\sqrt{M^2 + 1 + M^2}} =$$

lim
$$\sin(M)$$
 low $55ISTE$
 $4776M \cos(M)$
 $4976M$
 $4976M$