LEARNING MESH-BASED SIMULATION

WITH GRAPH NETWORKS

Mesh-based representation

Представления на основе мешей часто используются в науке и инженерии

Обучение mesh-based моделированию

- Хорошая обобщающая способность
- В 10 200 раз быстрее чем ground truth
- Подходит для абсолютно разных физических систем

Архитектура модели

Использование двойного пространства

mesh space u

Необходим для понимания внутренней динамики

Необходим для понимания внешней динамики: например, соприкосновений

Архитектура Encoder

Cloth mesh nodes

Obstacle mesh nodes

Mesh-space edges

World-space edges

Mesh edge features:

$$\mathbf{x}_{ij} = \mathbf{x}_{j} - \mathbf{x}_{i}$$
$$\mathbf{u}_{ij} = \mathbf{u}_{j} - \mathbf{u}_{i}$$

World edge features

$$\mathbf{x}_{ij} = \mathbf{x}_{j} - \mathbf{x}_{j}$$

Node features vel

Архитектура Processor

Состоит из L последовательных одинаковых блоков, каждый со своими весами

$$\mathbf{e'}_{ij}^{M} \leftarrow f^{M}(\mathbf{e}_{ij}^{M}, \mathbf{v}_{i}, \mathbf{v}_{j}) \qquad \mathbf{e'}_{ij}^{W} \leftarrow f^{W}(\mathbf{e}_{ij}^{W}, \mathbf{v}_{i}, \mathbf{v}_{j})$$

$$\mathbf{v'}_i \leftarrow f^V(\mathbf{v}_i, \sum_j \mathbf{e'}_{ij}^M, \sum_j \mathbf{e'}_{ij}^W)$$

 $f^M,\,f^W,\,f^V\,$ - MLPs with a residual connection

Архитектура модели

Adaptive remeshing

Fine-scale regions at t

DECODER Update

sizing
field

Sesolution Sizing field at t

Предсказываем Sizing Field и делаем remeshing

Результаты

Стабильность при длительных симуляциях

Высокая обобщающая способность

Выводы

- Обученная модель обладает рядом преимуществ:
 - Адаптивность
 - Высокая скорость применения,
 - Большая обобщающая способность
- Перспективная для применения в научных и инженерных проблемах

Практик-исследователь

LEARNING MESH-BASED SIMULATION WITH GRAPH NETWORKS

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, Peter W. Battaglia Deepmind, London, UK

{tpfaff, meirefortunato, alvarosg, peterbattaglia}@google.com

Написана в октябре 2020

Представлена на ICLR 2021, спотлайт

Tobias Pfaff

- Research Scientist @ DeepMind
- Simulation, Graphs, Fluids

Делал проекты в DoubleFine и Shinyshoe, работал Avametric

Meire Fortunato

- Research Scientist @ DeepMind
- Poep Learning, Numerical Methods, Mesh generation

Alvaro Sanchez Gonzalez

- Staff Research Engineer and Team Lead
- @ DeepMind
- 💡 Simulation, Graphs, Fluids

Peter Battaglia

Senior Staff Research Scientist @ DeepMind

University of Rochester → University of Minnesota (психология)

💡 Graphs, Deep Learning

Relational inductive biases, deep learning, and graph networks

Peter W. Battaglia¹, Jessica B. Hamrick¹, Victor Bapst¹,
Alvaro Sanchez-Gonzalez¹, Vinicius Zambaldi¹, Mateusz Malinowski¹,
Andrea Tacchetti¹, David Raposo¹, Adam Santoro¹, Ryan Faulkner¹,
Caglar Gulcehre¹, Francis Song¹, Andrew Ballard¹, Justin Gilmer²,
George Dahl², Ashish Vaswani², Kelsey Allen³, Charles Nash⁴,
Victoria Langston¹, Chris Dyer¹, Nicolas Heess¹,
Daan Wierstra¹, Pushmeet Kohli¹, Matt Botvinick¹,
Oriol Vinyals¹, Yujia Li¹, Razvan Pascanu¹

¹DeepMind; ²Google Brain; ³MIT; ⁴University of Edinburgh

Статья предлагает базовую модель (Encoder - Processor - Decoder), которая используется в данной работе

Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction

Filipe de Avila Belbute-Peres 1† Thomas D. Economon 2† J. Zico Kolter 13

Статья с похожей идеей. Используется в качестве бейзлайна, работа развивает её идеи

Learning to Simulate Complex Physics with Graph Networks

Alvaro Sanchez-Gonzalez * 1 Jonathan Godwin * 1 Tobias Pfaff * 1 Rex Ying * 1 2 Jure Leskovec 2 Peter W. Battaglia 1

Статья от тех же авторов с похожими идеями, но в отличие от данной работы основной фокус на жидкостях Two Minute Papers: https://youtu.be/2Bw5f4vYL98

Развитие идей

106 цитирований

Полноценного продолжения нет

Конкурентов тоже не нашёл

Хочется увидеть в приложениях для 3D моделирования, позволит ускорить симуляции без видимых потерь качества

Дальнейшее исследование может включать более качественное изучение влияния отдельных идей на качество, есть подозрение, что не все и не всегда работают. Сравнение скорости тоже не очень честное, его можно улучшить

вместо хакера

Классное видео от Two Minute Papers:

https://youtu.be/g7bEUB8aLvM