1 TATA41 - Derivata

Har vi stött på i gymnasiet. Kommer från Newton och Libnitz. Ur Newtons studie i mekanik. Hastighet, rörelse per en tidsenhet. Medelhastigheten är helt enkelt sträckan genom tiden. Om man låter tidsintervallet bli kortare och kortare så kommer man närmare och närmare derivatan.

1.1 Definition

Antag att funktionen f är definierad i em omgivning av $a \in \mathbb{R}$. Då säges f vara derivervar i punkten a, med derivatan A, ifall gränsvärdet

$$A = \lim_{h \to \infty} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

existerar (ändligt).

Derivatan betecknas f'(a) eller $\frac{df}{dx}(a)$ eller Df(x) eller...

1.2 Anmärkning

Sv: derivata, Eng: derivative

Sv: att derivera, Eng: to differentiate

Sv: att härleda, Eng: derive

1.3 Sats

Om f är deriverbar i punkten a så är f kontinuerlig där.

1.4 Bevis

$$f(x) - f(a) = (x - a) \times \frac{f(x) - f(a)}{x - a} \to 0 \times f'(a) = 0, x \to a, f(x) \to f(a)$$

1.5 Anmärkning

Kontinuitet är alltså ett nödvändigt villkår för deriverbarhet, men det är inte ett tillräckligt villkor vilket följande exempel visar.

1.6 Exempel

y=f(x)=|x| är kontinuerlig (överallt) men inte deriverbar i punkten x=0. Höger respektive vänstergränsvärde till derivatans gränsvärde är olika, alltså existerar ej derivatan (dock så existerar höger respektive vänster derivatan). Det finns funktioner som är kontinuerlig men inte deriverbar i någon punkt. (se Weierstrass 1872).

1.6.1 Krav

Mängden av alla deriverbara funktioner är en äkta delmängd av alla kontinuerliga funktioner. Deriverbarhet är alltså ett starkare krav än kontinuitet.

1.7 Exempel (Konstant funktion)

 $f(x) = c \operatorname{ger}$

$$\frac{f(x+h) - f(x)}{h} = \frac{c - c}{h} = 0 \to 0, h \to 0; f'(x) = 0, \forall x.$$

Exempel (Monoma funktioner)

 $f(x) = x^4 \text{ ger}$

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^4 - x^4}{h} = \frac{(1x^4 + 4x^3h^1 + 6x^2h^2 + 4x^1h^3 + 1x^0h^4) - x^4}{h} = 4x^3 + (6x^2h + 4xh^2 + h^3) \to 4x^3, h \to 0; f'(x) = 4x^3$$

Allmänt:

$$f(x) = x^n \implies f'(x) = nx^{n-1}, n \in \mathbb{Z}$$

Tillsammans med de lätt bevisade räknereglerna $\begin{cases} (cf)' = cf', \\ (f+g)' = f'+g' \end{cases}$ ger detta att vi kan derivera alla polynom, t.ex.

$$\frac{\mathrm{d}}{\mathrm{dx}}(x^3 + 5x^2 + 7x + 43) = 3x^2 + 10x + 7$$

Sats (produktregeln) 1.9

Om f och g är deriverbara så är

$$(fg)' = f'g + fg'$$

Bevis (produktregeln) 1.10

Med F=fg har vi

$$\frac{F(x) - F(a)}{x - a} = \frac{f(x)g(x) - f(a)g(a)}{x - a} = \frac{f(x)g(x) - f(a)g(x) + f(a)g(a) - f(a)g(a)}{x - a} = \frac{f(x) - f(a)}{x - a}g(x) + f(a)\frac{g(x) - g(a)}{x - a} \to f'(a)g(a) + f(a)g'(a), x \to a$$

1.11 Exempel

Låt n > 0. För $x \neq 0$ gäller $x^n x^{-n} = 1$

Derivera ger $0 = (1)' = (x^n x^{-n})' = (x^n)' x^{-n} + x^n (x-n)' = nx^x n - 1x^{-n} + x^n (x-n)' \Longrightarrow (x^{-n})' = -nx^{-n-1}$ Regeln $(x^m)' = mx^{m-1}$ gäller alltså för alla heltal (inte bara positiva). T.ex.

$$D(\frac{1}{x}) = D(x^{-1}) = -1x^{-2} = \frac{-1}{x^2}$$

1.12 Exempel

$$f(x) = e^x (= \exp x) \operatorname{ger}$$

$$\frac{f(x) - f(h)}{x - h} = \frac{e^{x + h} - e^x}{h} = \frac{e^x e^h - e^x}{h} = e^x \frac{e^h - 1}{h} \to e^x, h \to 0$$

$$\operatorname{dvs} f'(x) = e^x$$

Kort uttryckt $D \exp = \exp$

1.12.1 Andra standardgränsvärden ger (se boken)

$$D\sin = \cos$$

$$D\cos = -\sin$$

samt
$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}, (x \neq 0)$$

1.13 Sats (Kedjeregeln)

Om f och g är derivervara så är

$$(f \circ g)' = (f' \circ g)g'$$

Med y = f(t) och t = g(x) kan man skriva kedjeregeln som

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{dy}{dt} \frac{dt}{dx}$$

där det är underförstått i vilka punkter som derivatorna ska beräknas

1.14 Bevis (Kedjeregeln)

Se boken.

1.15 Exempel

$$D(\sin(x^5)) = \cos(x^5) \times 5x^4$$

1.16 Sats (Kvotregeln)

Om f och g är derivervara så är

$$\left(\frac{f}{q}\right)' = \frac{f'g - fg'}{q^2}, g \neq 0$$

1.17 Bevis (Kvotregeln)

$$(\frac{f}{g})' = (f \times g^{-1})' = f' \times \frac{1}{g} + f \times (\frac{1}{g})' = \frac{f'}{g} + f \times \frac{-1}{g^2} \times g' = \frac{f'g - fg'}{g^2}$$

1.18 Exempel

$$D(\tan x) = D(\frac{\sin x}{\cos x}) = \frac{D(\sin x)\cos x - \sin x D(\cos x)}{\cos^2 x} = \frac{\cos x \cos x - \sin x \times (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

1.19 Sats (Derivatan av invers)

Antag att f är en inverterbar, kontinuerlig funktion som är deriverbar i punkten a. Om $f'(a) \neq 0$ så är f^{-1} deriverbar i punkten b = f(a) med derivatan $(f^{-1})'(b) = \frac{1}{f'(a)}$

1.20 Bevis/rimliggörande

Se boken.

1.21 Exempel

Vi såg tidigare att $f(x) = \tan x$ har derivatan $f'(x) = 1 + \tan^2 x$ Med $b = f(a) = \tan a, a \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ fås alltså $f'(a) = 1 + \tan^2 a = 1 + b^2,$ så

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{1 + \tan^2 a} = \frac{1}{1 + b^2}$$

Med andra ord:

$$\frac{\mathrm{d}}{\mathrm{dx}}(\arctan x) = \frac{1}{1+x^2}$$