

B11-深度學習蝦隻追蹤 與自動化測量系統

指導教授:翁添雄教授

專題組員:資工四A 吳秉謙

資工四A 吳典祐

資工四A 吳泓著

大綱

- . 動機
- . 目標
- . 研究方法
- . 流程圖
- . 實作方法

動機

蝦隻的<mark>重量和大小</mark>是決定其市場價值的關鍵。

然而,目前大多數養殖戶仍然依賴人工測量來記錄蝦子

的長寬與重量,這個過程十分費時費力。

開發提升蝦類養殖的生產效率和品質管理的自動化系統

目標

篩選掉模糊的影片,不對其進行檢測,以節省電力消耗。

解決大量影像造成的儲存空間浪費。

研究方法

影像採集

使用攝影機來拍攝 蝦子影片; 並且解決此法所衍 生出的問題。

物件偵測

辨識並框出影像中的蝦隻, 且獲得蝦隻的體長; 並且另外訓練一個模型來 判斷寬度。

預測模型

用蝦農提供的數據,訓練 預測模型;將其與先前得 到的體長、寬度對應後, 預測出其重量。

記錄並確保影像中, 蝦隻的完整資料。

流程圖

實作方法1-影像採集

實作方法1-影像採集示意圖

水箱攝影機

實作方法1-拍攝結果及影像標註示意圖

實作方法1-影像採集的衍生問題

儲存空間浪費

- 每部影片時間長
- · 不是每個frame都會出現蝦子
- 水質模糊

電力浪費

· GPU對模糊影片的不必要使用

實作方法1-解決方法

Image Classification with Logistic Regression

區分哪些影像水質能夠進行蝦隻辨識

無法辨識就不需要消耗電力進行辨識

- 水質清楚 -> 進行蝦隻辨識
- 水質模糊 -> 中斷執行並刪除影像

一部影片的耗電量差異(以GPU為準)

完整跑完模糊的影片所需的耗電量

GPU 總耗電量: 24173.10 J (6.7147 Wh)

平均功耗: 159.32 W

執行時間: 00-00-71

一部影片可節省約 6.6777 Wh

如果是模糊的影/(tor h) lee@573-ALTOS-server:~/Work

篩掉模糊的影片所需的耗電量

Predicted Class: blur

GPU 總耗電量: 133.18 J (0.0370 Wh)

完整跑完 判斷是否模糊 耗電量 6.7147 Wh 0.0370 Wh 耗時 151秒 1秒

實作方法2 - 物件偵測

實作方法2-物件偵測

- ·本次實驗中,我們使用了YOLOv8-OBB來進行檢測。
- · 檢測並框出蝦子後,透過**比例** 尺來推算出*蝦隻的體長*

只保留有檢測到蝦子的影格, 捨棄沒出現蝦子的影格

實作方法2-判斷寬度

. 將蝦子的影像部分擷取出來,作爲後續的訓練資料

·訓練一個segmentation model, 來判斷出寬度

實作方法2 - 總結 - 可節省空間

原始一個月總影片是 90G 透過程式碼 只保留出現蝦子的影格, 也不保留水質不佳的影像。 最後保留下的結果為 42G

[(base) providence@ubun22:~\$ du -sh clipped_vid/ 42G clipped_vid/

實作方法2 - 節省空間DEMO

實作方法2 - 物件偵測 - 模型架構差異

Image Source: Carranza-García, M.; Torres-Mateo, J.; Lara-Benítez, P.; García-Gutiérrez, J. On the Performance of One-Stage and Two-Stage Object Detectors in Autonomous Vehicles Using Camera Data. Remote Sens. 2021, 13, 89. https://doi.org/10.3390/rs13010089

實作方法2 - 物件偵測 - 模型效能差異

Table 4. The Indicators of Models in Identifying Difficult Samples

Algorithm	MAP/%	FPS	Model Size
YOLO v3	78.52	69	89M
Faster R-CNN	79.63	3	426M
SSD	78.69	41	149M

Image Source: Tan L, Huangfu T, Wu L, Chen W. Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification. BMC Med Inform Decis Mak. 2021 Nov 22;21(1):324. doi: 10.1186/s12911-021-01691-8. PMID: 34809632; PMCID: PMC8609721.

實作方法2 - 物件偵測 - YOLO版本差異

· 在本次的實驗中,我們使用的YOLO版本是v8,因爲更快更準確。

實作方法2 - 物件偵測 - YOLOv8-OBB

. YOLOv8-OBB (Oriented Bounding Box)

. 與普通v8的差異 Bounding Box 可隨目標旋轉

. 爲何本實驗要使用 — 可以更加貼和目標,

使測量變得容易

實作方法2 - 物件偵測 - 使用YOLOv8-OBB原因

Axis-Aligned Bounding Box (AABB)

Oriented Bounding Box (OBB)

僅能辨識並框出物件所在位置

可計算矩形框的最長邊獲得蝦子身長

實作方法2 - 物件偵測 - 使用YOLOv8-OBB原因

- 總結:
 - 1. YOLO模型參數較少較輕量。
 - 2. 辨識速度較快(即時)。
 - 3. 準確度與其他模型差異不大。
 - 4. 爲了使用它的OBB版本來獲取蝦隻的體長。

實作方法3 - 預測模型

實作方法3-爲何用模型預測體重?

池號	12E-2 池	家族編號	NCKU#10f2 (P0295_20230914)		
測量日期	序號	體重 (g)	全長 (mm)	頭胸甲長 (mm)	寬度 (腹部第1 節處) (mm)
2024/6/26	1	48	166.6	70.3	15
	2	51	199.1	80.8	20.4
	3	16	136.3	57.4	12.2
	4	23	150.4	63.2	14.5
	5	40	177.3	73.6	17.7
	6	32	161.7	71.2	17.1
	7	13	120.6	50.8	10.2
	8	22	147.2	62.8	14.4
	9	23	149.7	61.8	13.7
	10	20	145	63	13.5
	11	15	135.7	61.2	13.8
	12	19	157.6	67	16
	13	10	117	49.8	11.6
	14	9	120.4	52.7	11
	15	4	111.1	47.5	8.7
	16	4	101.7	43.5	8.2
	17	10	113.8	50.3	9.3
	18	6	117	49.3	12.3
	19	2	90.8	38.9	7.2
	20	5	92.8	39.5	8.1
	21	4	88.1	38	8.4

費時費力

人工測量出共202筆蝦子長寬與體重的數據

實作方法3-深度學習預測蝦隻體重

實作方法3-資料預處理

- · 蝦子長寬與重量進行Standardization
- · 資料集:80%訓練集,20%驗證集

實作方法3-模型架構-單層前饋神經網路

實作方法3-模型訓練-超參數選擇

Parameters:

- Epochs = 5000
- batch_size = 8
- learning_rate = 1e-04
- Optimizer = Adam
- 均方誤差(MSE):5.3394
- 平均絕對誤差(MAE):3.0888

實作方法3-模型訓練結果

訓練與驗證損失圖

實作方法3-模型預測結果

·實際長度與重量與模型預測重量的比較圖

・實際寬度與重量與模型預測的比較圖

實作方法3 - 體重預測DEMO

實作方法4-物件追蹤

實作方法4-物件追蹤

Why object tracking?

長度受到哪些因素影響?

- 蝦隻的傾斜角度
- 蝦隻在影像邊緣出現

Result

- 抓到的蝦隻不是完整長度
- 儲存太多不完整或 重複的資料

實作方法4-物件追蹤

Frame length weight

Г	1	2	3		·	 30		• • • • •	. N
	190	190	195	200	215	 205	•••	•••	206
	55	55	57	59	65	 60			60

EX:在影片中的00:00:00~00:00:02 追蹤到一隻蝦子(1 sec = 15 frames)

旅貨鐵鐵器

- .. 連微期道建集縣形出規約時間
- · 果認和發展表來的現態長、體重
- . 確察辦機可能的問題會翻倍

實作方法4-物件追蹤-追蹤器的條件

1) Market-1501

Id:1

Id:2

行人重新識別資料集

追蹤器的條件

- 根據運動軌跡追蹤
- 能夠進行重新識別

Re-identification的難處

- · 製作Reid資料集需要 針對連續影像進行編號
- 十分耗時且費力

實作方法4-物件追蹤-選擇追蹤器

選擇Norfair的原因

- · Norfair可以通過自定義 外觀或特徵的距離函數 來達成Reid的功能。
- 可避免花費大量時間標註 與製作資料集

實作方法4-追蹤器的追蹤流程

- · 透過計算 IoU (Intersection over Union) 的距離度量方法,前一幀的物體與未被追蹤的新物體之間兩個檢測框重疊程度。
- 選擇 IoU 值越高的物件作為匹配對象,並將其 ID 分配給物體。

實作方法4 - Norfair的追蹤流程 - 卡爾曼濾波

EX:以車子移動來擧例

- 卡爾曼濾波用於狀態估計的技術,主要用於預測下一個狀態和更新當前狀態。

· 可以想成透過卡爾曼濾波我們可以 預測和校正物體的**追蹤框位置**。

實作方法4 - 追蹤流程 - Re-identification

蝦子移動時會出現的問題

- 會被其他蝦子遮擋
- 可能會游出鏡頭範圍外

如何實現 Reid?

• 將辨識到的蝦隻裁切出來

實作方法4 - 追蹤流程 - Reid

- · 使用SIFT(Scale-invariant feature transform)特徵點檢測算法
- 將新影像的物件與消失的追蹤對象比較特徵點去計算匹配率
- 最後設定閥値來判定是否爲相同物件 達成物體的重新識別

$$\mathrm{match_rate} = \frac{2 \times \mathrm{len(matches)}}{\mathrm{len(des2)} + \mathrm{len(des1)}}$$

實作方法4-追蹤器的追蹤流程圖

實作方法4-物件追蹤-資料紀錄

	Start time	End time	Max len	Weight	
1	00:00_10	00:01_26	178.6	41.5	
2	00:04_65	00:05_83	198.9	55.2	
3	00:05_81	00:06_94	167	33.7	

Shrimp

VideoName

StartTime

EndTime

MaxLength

Weight

實作方法4-追蹤DEMO

實作方法4 - 物件追蹤 - 物件追蹤DEMO

非常感謝評審們的耐心聆聽!