RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	10/540,846_
Source:	TFWP
Date Processed by STIC:	06/21/2006

ENTERED

IFWP

RAW SEQUENCE LISTING DATE: 06/21/2006
PATENT APPLICATION: US/10/540,846 TIME: 10:16:53

Input Set : E:\ARS-111 seq-listing.replace.txt

Output Set: N:\CRF4\06212006\J540846.raw

```
3 <110> APPLICANT: Bienkowska, Jadwiga
         Mcallister, Gregg
 6 <120> TITLE OF INVENTION: NOVEL FIBULIN-LIKE POLYPEPTIDES
 8 <130> FILE REFERENCE: ARS-111
10 <140> CURRENT APPLICATION NUMBER: US 10/540,846
11 <141> CURRENT FILING DATE: 2005-06-27
13 <150> PRIOR APPLICATION NUMBER: US 60/436,786
14 <151> PRIOR FILING DATE: 2002-12-27
16 <160> NUMBER OF SEQ ID NOS: 4
18 <170> SOFTWARE: PatentIn version 3.1
20 <210> SEQ ID NO: 1
21 <211> LENGTH: 2661
22 <212> TYPE: DNA
23 <213> ORGANISM: homo sapiens
25 <220> FEATURE:
26 <221> NAME/KEY: misc_feature
27 <222> LOCATION: (50)..(2582)
28 <223> OTHER INFORMATION: SCS0007 polynucleotide coding sequence
30 <400> SEQUENCE: 1
31 gegeggegea ggageegage ceageeeggg ggaceegeeg eegeeggtea tgtgggeegg
                                                                          60
33 actgeteett egggeegeet gtgtegeget eetgetgeeg ggggeaeeag eeegaggeta
                                                                         120
35 caccgggagg aagccgcccg ggcacttcgc ggccgagaga cgccgactgg gcccccacgt
                                                                         180
37 etgeetetet gggtttggga gtggetgetg ecetggetgg gegeeeteta tgggtggtgg
                                                                         240
39 gcactgcacc ctgcccctct gctccttcgg ctgtgggagt ggcatctgca tcgctcccaa
                                                                         300
                                                                         360
41 tgtctgctcc tgccaggatg gagagcaagg ggccacctgc ccagaaaccc atggaccatg
                                                                         420
43 tggggagtac ggctgtgacc ttacctgcaa ccatggaggc tgtcaggagg tggcccgagt
45 gtgccccgtg ggcttctcga tgacggaqac agctgttggc atcaggtgta cagacattga
                                                                         480
47 cgaatgtgta acctectect gegagggeea etgtgtgaae acagaaggtg ggtttgtgtg
                                                                         540
49 cgagtgtggg ccgggcatgc agctgtctgc cgaccgccac agctgccaag acactgacga
                                                                         600
51 atgcctaggg actccctgtc agcagagatg taaaaacagc attggcagct acaagtgttc
                                                                         660
53 ctgtcgaact ggcttccacc ttcatggcaa ccggcactcc tgtgtagatg taaacgagtg
                                                                         720
55 teggaggeea ttggagagge gagtetgtea ceatteetge cacaacaceg tgggeagett
                                                                         780
57 cctatgcaca tgccgacctg gcttcaggct ccgagctgac cgcgtgtcct gtgaaggggc
                                                                         840
59 cctgagtccc cccgactggc agcagggccc tctccctgct ggcacctggg agccatgcat
                                                                         900
61 gaatcaagga gtcgctggac agagcctggg tgttcccagt gctggtgcga ggctggaaac
                                                                         960
63 gtgtcgtgca tgtttcgtga gtgtcctttt ggcccgtgtg agacccccca taaagacgga
                                                                        1020
65 ttgctgtact tgtgttccag tgagatgcta tttccacggc cggtggtacg cagacggggc
                                                                        1080
67 tgtgttcagt gggggtggtg acgagtgtac cacctgtgtt tgccagaatg gggaggtgga
                                                                        1140
69 gtgctccttc atgccctgcc ctgagctggc ctgcccccga gaagagtggc ggctgggccc
                                                                        1200
                                                                        1260
71 tgggcagtgt tgcttcacct gccaggagcc cacaccctcg acaggctgct ctcttgacga
73 caacggggtt gagtttccga ttggacagat ctggtcgcct ggtgacccct gtgagttatg
                                                                        1320
75 catctgccag gcagatggct cggtgagctg caagaggaca gactgtgtgg actcctgccc
                                                                        1380
77 tcaccegate eggatecetg gacagtgetg eccagactgt tcagcagetg gtgetcageg
                                                                        1440
```

RAW SEQUENCE LISTING DATE: 06/21/2006 PATENT APPLICATION: US/10/540,846 TIME: 10:16:53

Input Set : E:\ARS-111 seq-listing.replace.txt
Output Set: N:\CRF4\06212006\J540846.raw

```
79 catgetetet etggeagget geacetacae aggeagaate ttetataaea aegagaeett
                                                                        1500
81 cccgtctgtg ctggacccat gtctgagctg catctqcctq ctqqqctcag tqgcctqttc
                                                                        1560
83 ccccgtggac tgccccatca cctgtaccta ccctttccac cctgacgggg agtgctgccc
                                                                        1620
85 cgtgtgccga gactgcaact acgagggaag gaaggtggcg aatggccagg tgttcacctt
                                                                        1680
87 ggatgatgaa ccctgcaccc ggtgcacgtg ccagctggga gaggtgagct gtgagaaggt
                                                                        1740
89 tecetgecag egggeetgtg eegaceetge cetgetteet ggggaetget getetteetg
                                                                        1800
91 tccagattcc ctgtctcctc tggaagaaaa gcaggggctc tcccctcacg gaaatgtggc
                                                                        1860
93 attcagcaaa gctggtcgga gcctgcatgg agacactqag gcccctqtca actqtaqctc
                                                                        1920
95 ctgtcctggg cccccgacag catcaccctc gaggccggtg cttcatctcc tccagctcct
                                                                        1980
97 tttaagaacg aacttgatga aaacacagac tttacctaca agcccggcag gagctcatgg
                                                                        2040
99 tecacactea etegetttgg ggetgacage caettteeca ggggageetg gggeeteece
                                                                        2100
101 tegaetetea ceagggeett egaeceetee aggageeece actetacete tagetteece
                                                                         2160
103 aggggetect cagecacete etgtgaetee agagegeteg tteteageet etggggeeca
                                                                         2220
105 gatagtgtcc aggtggcctc ctctgcctgg caccetcctg acggaagett cagcactttc
                                                                         2280
107 catgatggac cccagcccct cgaagacccc catcaccctc ctcgggcctc gcgtgctttc
                                                                         2340
109 toccaccace tetagaetet ceacageeet tgeageeace acceacetg geececagea
                                                                         2400
111 gcccccagtg ggggcttctc ggggggaaga gtccaccatg ttgtctcggt ttccccatgc
                                                                         2460
113 tgcactgctc attcaccgct tacctgtggg aaggtgggaa acgtgacccc aagcccacag
                                                                         2520
115 gtggtaagtg agcatccacc tttaccccac tgctggggag aaaagctggc accaaattgt
                                                                         2580
117 gactgggctg gggaagggtc tcctgtaagc acttggcggc cttttatatt gggagacttc
                                                                         2640
119 tttttatttt tttccccaag a
                                                                         2661
122 <210> SEQ ID NO: 2
123 <211> LENGTH: 818
124 <212> TYPE: PRT
125 <213> ORGANISM: homo sapiens
127 <400> SEQUENCE: 2
129 Met Trp Ala Gly Leu Leu Leu Arg Ala Ala Cys Val Ala Leu Leu Leu
132 Pro Gly Ala Pro Ala Arg Gly Tyr Thr Gly Arg Lys Pro Pro Gly His
133
                20
                                    25
135 Phe Ala Ala Glu Arg Arg Leu Gly Pro His Val Cys Leu Ser Gly
                                                    45
138 Phe Gly Ser Gly Cys Cys Pro Gly Trp Ala Pro Ser Met Gly Gly Gly
139
141 His Cys Thr Leu Pro Leu Cys Ser Phe Gly Cys Gly Ser Gly Ile Cys
142 65
                        70
144 Ile Ala Pro Asn Val Cys Ser Cys Gln Asp Gly Glu Gln Gly Ala Thr
145
147 Cys Pro Glu Thr His Gly Pro Cys Gly Glu Tyr Gly Cys Asp Leu Thr
                100
                                    105
150 Cys Asn His Gly Gly Cys Gln Glu Val Ala Arg Val Cys Pro Val Gly
            115
                                120
153 Phe Ser Met Thr Glu Thr Ala Val Gly Ile Arg Cys Thr Asp Ile Asp
        130
                            135
                                                140
156 Glu Cys Val Thr Ser Ser Cys Glu Gly His Cys Val Asn Thr Glu Gly
                                            155
159 Gly Phe Val Cys Glu Cys Gly Pro Gly Met Gln Leu Ser Ala Asp Arg
                                        170
162 His Ser Cys Gln Asp Thr Asp Glu Cys Leu Gly Thr Pro Cys Gln Gln
```

RAW SEQUENCE LISTING DATE: 06/21/2006 PATENT APPLICATION: US/10/540,846 TIME: 10:16:53

Input Set : E:\ARS-111 seq-listing.replace.txt
Output Set: N:\CRF4\06212006\J540846.raw

163				180					185					190		
	Arg	Cys		Asn	Ser	Ile	Gly		Tyr	Lys	Cys	Ser	Cys	Arg	Thr	Gly
166			195					200					205			
168	Phe	His	Leu	His	Gly	Asn	Arg	His	Ser	Cys	Val	Asp	Val	Asn	Glu	Cys
169		210					215					220				
171	Arg	Arg	Pro	Leu	Glu	Arg	Arg	Val	Cys	His	His	Ser	Cys	His	Asn	Thr
172	225					230					235					240
174	Val	Gly	Ser	Phe	Leu	Cys	Thr	Cys	Arg	Pro	Gly	Phe	Arg	Leu	Arg	Ala
175					245					250					255	
177	Asp	Arg	Val	Ser	Cys	Glu	Gly	Ala	Leu	Ser	Pro	Pro	Asp	Trp	Gln	Gln
178				260					265					270		
180	Gly	Pro	Leu	Pro	Ala	Gly	Thr	Trp	Glu	Pro	Cys	Met	Asn	Gln	Gly	Val
181			275					280					285		_	
183	Ala	Gly	Gln	Ser	Leu	Gly	Val	Pro	Ser	Ala	Gly	Ala	Arg	Leu	Glu	Thr
184		290				_	295				_	300	_			
186	Cys	Arg	Ala	Cys	Phe	Val	Ser	Val	Leu	Leu	Ala	Arg	Val	Arq	Pro	Pro
	305	_		_		310					315	-		_		320
189	Ile	Lys	Thr	Asp	Cys	Cys	Thr	Cys	Val	Pro	Val	Arq	Cys	Tyr	Phe	His
190		_		-	325	-		-		330		-	•	•	335	
192	Gly	Arg	Trp	Tyr	Ala	Asp	Gly	Ala	Val	Phe	Ser	Gly	Gly	Gly	Asp	Glu
193	-	_	_	340		_	-		345			•	•	350	-	
195	Cys	Thr	Thr	Cys	Val	Cys	Gln	Asn	Gly	Glu	Val	Glu	Cys	Ser	Phe	Met
196	_		355	_		_		360	-				365			
198	Pro	Cys	Pro	Glu	Leu	Ala	Cys	Pro	Arq	Glu	Glu	Trp	Arq	Leu	Gly	Pro
199		370					375		_			380	_		•	
201	Gly	Gln	Cys	Cys	Phe	Thr	Cys	Gln	Glu	Pro	Thr	Pro	Ser	Thr	Gly	Cys
	385		Ī	_		390	_				395					400
204	Ser	Leu	Asp	Asp	Asn	Gly	Val	Glu	Phe	Pro	Ile	Gly	Gln	Ile	Trp	Ser
205			_	_	405	_				410		_			415	
207	Pro	Gly	Asp	Pro	Cys	Glu	Leu	Cys	Ile	Cys	Gln	Ala	Asp	Gly	Ser	Val
208				420				-	425	_				430		
210	Ser	Cys	Lys	Arg	Thr	Asp	Cys	Val	Asp	Ser	Cys	Pro	His	Pro	Ile	Arg
211			435				_	440	_		_		445			_
213	Ile	Pro	Gly	Gln	Cys	Cys	Pro	Asp	Cys	Ser	Ala	Ala	Gly	Ala	Gln	Arg
214		450					455					460				
216	Met	Leu	Ser	Leu	Ala	Gly	Cys	Thr	Tyr	Thr	Gly	Arg	Ile	Phe	Tyr	Asn
217	465					470					475					480
219	Asn	Glu	Thr	Phe	Pro	Ser	Val	Leu	Asp	Pro	Cys	Leu	Ser	Cys	Ile	Cys
220					485					490					495	
222	Leu	Leu	Gly	Ser	Val	Ala	Cys	Ser	Pro	Val	Asp	Cys	Pro	Ile	Thr	Cys
223				500					505					510		
225	Thr	Tyr	Pro	Phe	His	Pro	Asp	Gly	Glu	Cys	Cys	Pro	Val	Cys	Arg	Asp
226			515					520					525		_	_
228	Cys	Asn	Tyr	Glu	Gly	Arg	Lys	Val	Ala	Asn	Gly	Gln	Val	Phe	Thr	Leu
229		530			-	_	535				-	540				
231	Asp	Asp	Glu	Pro	Cys	Thr	Arg	Cys	Thr	Cys	Gln	Leu	Gly	Glu	Val	Ser
232		-			-	550	_	-		-	555		-			560
		Glu	Lys	Val	Pro	Cys	Gln	Arg	Ala	Cys	Ala	Asp	Pro	Ala	Leu	Leu
235					565	-		_		570		_			575	

RAW SEQUENCE LISTING DATE: 06/21/2006 PATENT APPLICATION: US/10/540,846 TIME: 10:16:53

Input Set : E:\ARS-111 seq-listing.replace.txt
Output Set: N:\CRF4\06212006\J540846.raw

				_							•						
237	Pro	Gly	Asp	Cys	Cys	Ser	Ser	Cys	Pro	Asp	Ser	Leu	Ser	Pro	Leu	Glu	
238				580					585					590			
240	Glu	Lys		Gly	Leu	Ser	Pro	His	Gly	Asn	Val	Ala	Phe	Ser	Lys	Ala	
241	_		595			_		600	_	_			605				
		_	Ser	Leu	His	Gly	Asp	Thr	Glu	Ala	Pro		Asn	Cys	Ser	Ser	
244		610	~3	_	_		615	_	_	_	_	620		_		_	
	_	Pro	GIY	Pro	Pro		Ala	ser	Pro	ser	_	Pro	vaı	ьeu	HIS		
	625	Gl n	Len	Lou	Tou	630	Thr	7 cn	Τ	Mot	635	Th.~	Cln	Th~	T 011	640 Pro	
250	шец	GIII	шец	пец	645	Arg	1111	ASII	Бец	650	цуз	1111	GIII	1111	655	FIO	
	Thr	Ser	Pro	Ala		Ala	His	Glv	Pro		Ser	Leu	Ala	Leu		Leu	
253				660	2			2	665					670	1		
255	Thr	Ala	Thr	Phe	Pro	Gly	Glu	Pro	Gly	Ala	Ser	Pro	Arg	Leu	Ser	Pro	
256			675			_		680	_				685				
258	Gly	Pro	Ser	Thr	Pro	${\tt Pro}$	Gly	Ala	Pro	Thr	Leu	Pro	Leu	Ala	Ser	Pro	
259		690					695					700					
	_	Ala	Pro	Gln	Pro		Pro	Val	Thr	Pro		Arg	Ser	Phe	Ser		
	705	~ 1	77-	01	T7 -	710	0	3	M	D	715	.	D	01	ml	720	
264	ser	GIY	Ala	GIN	725	vaı	Ser	Arg	Trp	730	Pro	ьeu	Pro	GIY		Leu	
	T.e.11	Thr	Glu	Δla		Δla	Leu	Ser	Met		Δen	Pro	Ser	Pro	735 Ser	Lve	
268	LCu	1111	O-u	740	JCL	nια	шец	UCI	745	1100	nop	110	DCI	750	DCI	цуз	
	Thr	Pro	Ile		Leu	Leu	Gly	Pro		Val	Leu	Ser	Pro		Thr	Ser	
271			755				•	760					765				
273	Arg	Leu	Ser	Thr	Ala	Leu	Ala	Ala	Thr	Thr	His	Pro	Gly	Pro	Gln	Gln	
274		770					775					780					
		Pro	Val	Gly	Ala		Arg	Gly	Glu	Glu		Thr	Met	Leu	Ser	_	
	785	D	***			790		- 1 -	***	•	795		**- 7	~ 1	3	800	
279	Pne	Pro	HIS	Ата	805	ьeu	Leu	TIE	HIS	_	ьeu	Pro	vai	GIY	_	Trp	
	Glu	Thr			605					810					815		
			EO II	NO:	. 3												
				H: 23													
		2 > T ?															
288	<213	3 > OI	RGAN:	SM:	homo	sar	piens	3									
290	<400	0> SI	EQUE	VCE:	3												
	_		_				_	_		_	_				_	gactg	60
																cctct	120
																atctgc	180
																gaaacc	240 300
																caggag	360
	gtggcccgag tgtgccccgt gggcttctcg atgacggaga cagctgttgg catcaggtgt acagacattg acgaatgtgt aacctcctcc tgcgagggcc actgtgtgaa cacagaaggt									420							
																gccaa	480
																gcagc	540
																gtagat	600
																acacc	660
																gtgtcc	720
315	tgt	gaagg	ggg o	ccct	gagto	cc cc	ccga	ctg	g cag	gcago	gcc	ctct	ccct	igc t	ggca	acctgg	780

RAW SEQUENCE LISTING DATE: 06/21/2006
PATENT APPLICATION: US/10/540,846 TIME: 10:16:53

Input Set: E:\ARS-111 seq-listing.replace.txt
Output Set: N:\CRF4\06212006\J540846.raw

```
840
317 gagccatgca tgaatcaagg agtcgctgga cagagcctgg gtgttcccag tgctggtgcg
319 aggctggaaa cgtgtcgtgc atgtttcgtg agtgtccttt tggcccgtgt gagacccccc
                                                                          900
321 ataaagacgg attgctgtac ttgtgttcca gtgagatgct atttccacgg ccggtggtac
                                                                          960
323 gcagacgggg ctgtgttcag tgggggtggt gacgagtgta ccacctgtgt ttgccagaat
                                                                         1020
325 ggggaggtgg agtgeteett catgecetge eetgagetgg eetgeeeeeg agaagagtgg
                                                                         1080
327 eggetgggee etgggeagtg ttgetteace tgeeaggage ceacacecte gacaggetge
                                                                         1140
329 tetettgaeg acaaeggggt tgagttteeg attggaeaga tetggtegee tggtgaeece
                                                                         1200
331 tgtgagttat gcatctgcca ggcagatggc tcggtgagct gcaagaggac agactgtgtg
                                                                         1260
333 gactectgee etcaceegat eeggateeet ggacagtget geecagactg ttcageaget
                                                                         1320
335 ggtgctcagc gcatgctctc tctggcaggc tgcacctaca caggcagaat cttctataac
                                                                         1380
337 aacgagacct tecegtetgt getggaccca tgtetgaget geatetgeet getgggetea
                                                                         1440
339 gtggcctgtt cccccgtgga ctgccccatc acctgtacct accctttcca ccctgacggg
                                                                         1500
341 gagtgctgcc ccgtgtgccg agactgcaac tacgagggaa ggaaggtggc gaatggccag
                                                                         1560
343 gtgttcacct tggatgatga accetgeace eggtgeacgt geeagetggg agaggtgage
                                                                         1620
                                                                         1680
345 tgtgagaagg ttccctgcca gcgggcctgt gccgaccctg ccctgcttcc tggggactgc
347 tgctcttcct gtccagattc cctgtctcct ctggaagaaa agcaggggct ctcccctcac
349 ggaaatgtgg cattcagcaa agctggtcgg agcctgcatg gagacactga ggcccctgtc
                                                                         1800
351 aactgtaget cetgteetgg geeceegaca geateaceet egaggeeggt getteatete
                                                                         1860
353 ctccagctcc ttttaaqaac gaacttqatq aaaacacaqa ctttacctac aaqcccqqca
                                                                         1920
355 ggageteatg gtecacacte actegetttg gggetgacag ceacttteec aggggageet
                                                                         1980
357 ggggcctccc ctcgactctc accagggcct tcgacccctc caggagcccc cactctacct
                                                                         2040
359 ctagetteec caggggetee teagecacet cetgtgacte cagagegete gtteteagee
                                                                         2100
361 tetggggeec agatagtgte caggtggeet cetetgeetg geaccetect gaeggaaget
                                                                         2160
363 tcagcacttt ccatgatgga ccccagcccc tcgaagaccc ccatcaccct cctcgggcct
                                                                         2220
365 egegtgettt eteceaecae etetagaete tecacagece ttgeagecae caeceaecet
                                                                         2280
367 ggcccccagc agcccccagt gggggcttct cggggggaag agtccaccat gttgtctcgg
                                                                         2340
369 tttccccatg ctgcactgct cattcaccgc ttacctgtgg gaaggtggga aacgtga
                                                                         2397
372 <210> SEQ ID NO: 4
373 <211> LENGTH: 798
374 <212> TYPE: PRT
375 <213> ORGANISM: homo sapiens
377 <400> SEOUENCE: 4
379 Ala Arg Gly Tyr Thr Gly Arg Lys Pro Pro Gly His Phe Ala Ala Glu
380 1
                                        10
382 Arg Arg Arg Leu Gly Pro His Val Cys Leu Ser Gly Phe Gly Ser Gly
383
                20
                                    25
385 Cys Cys Pro Gly Trp Ala Pro Ser Met Gly Gly His Cys Thr Leu
388 Pro Leu Cys Ser Phe Gly Cys Gly Ser Gly Ile Cys Ile Ala Pro Asn
389
391 Val Cys Ser Cys Gln Asp Gly Glu Gln Gly Ala Thr Cys Pro Glu Thr
                                            75
394 His Gly Pro Cys Gly Glu Tyr Gly Cys Asp Leu Thr Cys Asn His Gly
                    85
                                        90
397 Gly Cys Gln Glu Val Ala Arg Val Cys Pro Val Gly Phe Ser Met Thr
398
                                    105
400 Glu Thr Ala Val Gly Ile Arg Cys Thr Asp Ile Asp Glu Cys Val Thr
403 Ser Ser Cys Glu Gly His Cys Val Asn Thr Glu Gly Gly Phe Val Cys
```

VERIFICATION SUMMARY

DATE: 06/21/2006 TIME: 10:16:54

Input Set : E:\ARS-111 seq-listing.replace.txt

Output Set: N:\CRF4\06212006\J540846.raw

PATENT APPLICATION: US/10/540,846