Nonlinear ARX identification

Table of contents

- Description of the problem
- Approximator function
- Key features
- Tuning results
- Conclusion

Description of the problem

What is an ARX model?

Autoregressive with exogeneous input model:

previous outputs & knowledge about the input → current output

- Black-box model
- Dynamical system (initial conditions)
- For the inputs u and outputs y, with an order of the dynamics of n_a and n_b and the parameters a_{n_a} and b_{n_b} , the general form of the ARX can be written as:

$$y(k) = -y(k-1) - y(k-2) \dots - y(k-n_a) + u(k-1) + u(k-2) \dots + u(k-n_b) + e(k)$$

Delay vector

Therefore, the delayed outputs and inputs vector can be computed:

$$d(k) = [y(k-1), y(k-2), \dots, y(k-n_a), u(k-n_k), u(k-n_k-1), \dots, u(k-n_k-n_b+1)]^T$$

By applying the polynomial function to d(k), we get our solution:

$$\hat{y}(k) = f(y(k-1), y(k-2), \dots, y(k-n_a), u(k-1), u(k-2), \dots, u(k-n_b))$$

Polynomial approximator

■ For example, having an order of dynamics of $n_a = n_b = n_k = 1$, and an order of the polynomial of m = 2, we will have 2 inputs for our function. Using the notation $y(k-1) = x_1$ and $u(k-1) = x_2$, the polynomial becomes:

$$\hat{y}(k) = [1 \ x_1 \ x_2 \ x_1^2 \ x_2^2 \ x_1 x_2] \cdot \theta$$

where
$$\theta = \begin{bmatrix} a_1 & \dots & a_{n_a} b_1 & \dots & b_{n_b} \end{bmatrix}^T$$

Approximator function

Functions

- delay function computes the past input and outputs using the given mathematical formula and creates a matrix for each step k
- powers function generates the powers for every input of our polynomial;
 - returns a matrix of $N \times no$. of inputs, where N number of all possible combinations with repetitions

For 2 inputs and m=2, we get:

$$\begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 0 & 2 \end{bmatrix}$$

Functions

reg function – the columns of the delay vector are raised at each row of the power matrix (element-wise):

$$[x_1 \ x_2] . ^ [2 \ 0] = [x_1^2 \ x_2^0]$$
$$[x_1 \ x_2] . ^ [1 \ 1] = [x_1^1 \ x_2^1]$$
$$[x_1 \ x_2] . ^ [0 \ 2] = [x_1^0 \ x_2^2]$$

- Therefore, $\varphi_{power=2} = [x_1^2 x_2^0 \ x_1^1 x_2^1 \ x_1^0 \ x_2^2]$ for each step k.
- regressor function creates the regressor matrix (calls reg function for power I to m)

Parameters

- Nonlinear model & linear parameters
- Linear regression can still be used, so, following the further equation:

$$Y = \phi \cdot \theta$$

- Y the output (in this case, taken from the training dataset)
- ϕ the regressor (computed using the training dataset)
- θ the parameter vector (unknown)
- we can perform left multiplication with $(\phi^T \phi)^{-1} \phi^T$, hence:

$$\theta = (\phi^T \phi)^{-1} \phi^T Y$$

Key features

Approximator function

Multiply inputs at each iteration:

$$x_1 x_2 x_3 x_1 x_2 x_3 \dots x_1 x_2 x_3$$

- nchoosek (Matlab function) combinations of elements from a given vector, sizing them as specified
- Assuring repetition copying the vector a number of times (number of columns times)
 - If the number of columns is 3 and m=2, then:

$$v = [0 \ 1 \ 2] \rightarrow v = [0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 0 \ 1 \ 2]$$

Imposing 2 conditions: unique rows and sum of the elements equal to m

Corrections

• Observations:

- few out of range value could be neglected
- very similar values with the true ones
- ensuring corrections

Tuning results

Identification dataset

Prediction

Simulation

Best values for:

$$MSE = 1.53 \cdot 10^{-6} (n_a = n_b = 3 \text{ and } m = 4)$$

$$MSE = 1.65 \cdot 10^{-4} (n_a = n_b = 2 \text{ and } m = 4)$$

Identification dataset

- Observations:
 - overfitting
 - similarity
 - approximately large order

Prediction without corrections

Prediction with corrections

Best values for:

$$MSE = 0.0316 (n_a = n_b = 1 \text{ and } m = 2)$$

$$MSE = 2.06 \cdot 10^{-5} (n_a = n_b = 3 \text{ and } m = 2)$$

Simulation

	m = 1	m = 2	m = 3	m = 4	m = 5	m = 6
$n_a = n_b = 1$	0.57177	0.26917	0.82594	NaN	NaN	NaN
$n_a = n_b = 2$	0.32082	NaN	NaN	NaN	NaN	NaN
$n_a = n_b = 3$	0.21043	NaN	NaN	NaN	NaN	NaN

- Observations:
 - unstable model
 - very small values of the parameters

Best values for:

$$MSE = 0.21043 (n_a = n_b = 3 \text{ and } m = 1)$$

• Observations:

- corrections if the value is not in the range => exclude (plot 2)
- overfitting (plot 2)
- small order system (for both orders) (plot 1)

• Observations:

- noticeable difference between prediction and simulation
- large order of dynamics, small order of the polynomial

Conclusion

Prediction vs. Simulation

- Prediction (more knowledge about the model)
 - open-loop system
 - "memory" of the ARX model
 - uses true past output values in order to predict the output at time k
 - precise values (maybe even cases of overfitting)
 - more accuracy => more certainty about the real-time output

- Simulation (less knowledge about the model)
 - closed-loop system
 - uses previously computed values in order to predict the output at time k (dynamical model)
 - approximately good results for small orders
 - very poor results for large orders (leading to instability)
 - can be used even if we know just the inputs of our model

Nonlinear ARX model

Generalization of the ARX model

Applied to various dynamical systems

The prediction itself can be used in a wide range of domains