1° Lista

Carlos Miguel Moreira Gonçalves Igor Pereira Cavalcante Robert Bertoldo Tavares

20 de janeiro de 2025

Problema 1

Problema 2

Problema 3

Usando o importance sampling, conseguimos calcular o valor da integral. A amostragem se mostrou muito relevante para a exatidão do valor calculado. Para amostras entre 1000 e 100000, o erro foi acima de 1%. Para uma amostragem de 1000000 ou superior, o erro foi sempre inferior a 1%, mas o custo computacional também aumentou siginificativamente, indo de decimos para dezenas de segundos. Um dos melhores resultados que obtivemos foi:

Monte Carlo: 1.08049

Teórico: 1.08232 Erro: 0.1695

Problema 4

A solução exata para uma dimensão d, dado que a integral não possui uma solução analítica, foi obtida utilizando uma calculadora de integrais e resulta em:

$$\int_{[0,1]^d} f(x) \, dx = 0.7468^d. \tag{1}$$

Com isso, para cada dimensão d, calculamos numericamente o valor da integral e comparamos com o valor teórico. Os resultados obtidos, tomando o máximo de amostragem em cada dimensão, foram:

Problema 5

Dimensão	Monte Carlo	Teórico
1	0.7468	0.7468
2	0.5564	0.5564
3	0.3914	0.3914
4	0.2764	0.2764
6	0.17346	0.17347
10	0.05396	0.05396

Tabela 1: Comparação entre o valor da integral numérica e o valor teórico para cada dimensão.