VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

MIKROPROCESOROVÉ A VESTAVĚNÉ SYSTÉMY 2021/2022

Varianta – Š – ARM-FITkit3 či jiný HW: **Měření vzdálenosti laserovým senzorem**

Obsah

Ob	sah	2
1. U	Úvod	3
1.1	Video s ukázkou funkčnosti	3
2. Implementace		4
	Software	
	Hardware	
3. Literatura		

1. Úvod

Cílem tohoto projektu je na platformě *ESP32* implementovat aplikaci, která laserovým senzorem *VL53L0X* čte vzdálenost od nejbližšího objektu a zobrazí ji v centimetrech na *OLED displeji SSD1306*. Výsledná aplikace je vytvořena nad frameworkem *Arduino* pomocí vývojového prostředí *Platformio IDE* [1] v jazyce C++ a pro daná periferní zařízení používá knihovny společnosti *Adafruit*.

1.1 Video s ukázkou funkčnosti

Video je dostupné na portálu YouTube zde: https://youtu.be/laBLbQ1r7P8. Obsahuje rychlou ukázku překladu a nahrání v prostředí Platformio IDE a demonstrační příklady výsledné aplikace. Kvůli obnovovací frekvenci použité kamery (smartphone Xiaomi Mi 9T Pro) je však vidět překreslování displeje jinak, než se ve skutečnosti jeví lidskému oku.

2. Implementace

2.1 Software

Aplikace je implementována nad frameworkem Arduino. Hlavní funkcionalita je tedy spouštěna z funkcí *setup* a *loop*. Program je poté rozdělen do funkcí dle dané řešené části (inicializace, čtení ze senzoru, zápis na displej, ...).

Funkce **setup** je spouštěna pouze jednou na začátku programu, probíhá zde inicializace sériové linky pro případ výpisu chybových hlášek do ladící konzole, inicializace senzoru VL53L0X a OLED displeje. Funkce **loop** je poté spouštěna v nekonečné smyčce opakující se po 500 ms, zde se volají funkce pro měření vzdálenosti a výpis na displej. Měření může vyhodit výjimku *std::out_of_range*, v tomto případě je zachycena try-catch blokem a chybová hláška je vypsána na displej.

Pro obsluhu laserového senzoru vzdálenosti **VL53L0X** jsou s využitím knihovny *Adafruit_VL53L0X.h* ^[2] jsou implementovány následující funkce. **DistanceSensorSetup** je funkce pro inicializaci a konfiguraci do režimu měření na velkou vzdálenost, který umožňuje na rozdíl od výchozího nastavení měřit vzdálenost kolem 2 m. Pokud se inicializace nezdaří, je vypsána chybová hláška a program zde zůstane v prázdné nekonečné smyčce. **MeasureDistanceCm** je funkce pro načtení vzdálenosti naměřené senzorem, kterou převede na centimetry a vrátí. Pokud je nastaven chybový příznak měření (status číslo 4), nebo je načtená vzdálenost mimo přijatelnou hodnotu, je vyhozena výjimka std::out_of_range s chybovou hláškou ve formátu pro zobrazení na displeji.

Pro obsluhu OLED displeje **SSD1306** jsou s využitím knihovny *Adafruit_SSD1306.h* ^[3] implementovány následující funkce. Funkce **DisplaySetup** je v případě selhání, podobně jako funkce pro inicializaci senzoru vzdálenosti, opět po výpisu chybové hlášky uvedena do prázdné nekonečné smyčky. **DisplayDistance** je funkce, která na displej vypíše zadanou naměřenou hodnotu v zadaných jednotkách. **DisplayError** je funkce, která vypíše chybovou hlášku naformátovanou do bílého zaobleného obdélníku.

2.2 Hardware

Zapojení senzoru VL53L0X:

Senzor	ESP32
VIN	5V
GND	GND
SCL	SCL
SDA	SDA

Zapojení OLED displeje SSD1306:

Displej	ESP32
GND	GND
VCC	3V3
D0	IO18 (VSPI_SCK)
D1	IO23 (VSPI_MOSI)
RES	IO13
DC	IO12
CS	IO5 (VSPI_SS)

Diagram zapojení hardware.

3. Literatura

- $[1] \underline{https://wis.fit.vutbr.cz/FIT/st/cfs.php.cs?file=\%2Fcourse\%2FIMP-IT\%2Flectures\%2F08-ESP32-Wemos-D1-R32.pdf\&cid=14662, \underline{https://www.youtube.com/watch?v=v1lCXLQuA9s}$
- [2] https://github.com/adafruit/Adafruit_VL53L0X
- [3] https://www.electronicshub.org/esp32-oled-display/