

One-Hot Coffee

Team Members: Cassidy Madison, Ethan Semrad, Ching-Lung Hsu

https://github.com/madisonc27/Team-Dragonfly

May 2022 The Erdos Institute
Data Science Bootcamp

Introduction

- Rationale: Coffee is one of the world's most popular beverages. An estimated 75% of the US adult population reported drinking coffee. (Loftfield, Erikka, et al., 2016)
- Target Audience: Coffee importers and distributors.
- Main Question: Can we find a correlation between coffee taste rating and other features?
- Our approaches: We approach this question in two different trials.
 - 1. Classify the country of origin/altitude/bean processing method.
 - 2. Predict the overall rating based on other features.

The First Trial

EDA

- Selected predictors:
 Aroma, Flavor, Aftertaste, Acidity,
 Body, Balance, and Uniformity
- Selected feature of interest:
 Country of origin
- Although certain countries appear to have slight separation, most have a high degree of overlap

Model Training

- Applied several supervised learning models to the clean data including
 - 1. K-nearest neighbors
 - 2. Decision Tree
 - 3. Random Forest
 - 4. AdaBoost
 - 5. Support Vector Machine
- Used accuracy as a base metric to compare the models
- Accuracy was around 30 35% for each model

Confusion Matrix for SVM

	Predicted Mexico	Predicted Colombia	Predicted Guatemala	Predicted Brazil	Predicted Taiwan	Predicted United States (Hawaii)	Predicted Honduras
Actual Mexico	28	4	2	1	0	2	0
Actual Colombia	4	20	3	1	0	1	0
Actual Guatemala	8	6	14	0	0	0	0
Actual Brazil	7	5	2	3	0	2	0
Actual Taiwan	5	2	1	1	1	0	0
Actual United States (Hawaii)	5	2	2	0	0	1	0
Actual Honduras	7	1	0	0	0	0	0

Conclusion

Several factors could contribute to the low accuracy:

- High correlation between the predictor variables
- High degree of overlap between countries
- Models tend to place predictions into categories with the largest number of samples
- Coffee Quality Institute ratings are not able to distinguish between different countries in these models

The Second Trial

Exploratory Data Analysis

- Numerical features are highly correlated
- Chose only categorical predictors
- Selected predictors:
 Region, Roast, Espresso, Organic, Blend,
 Fair Trade, Decaffeinated, Pod/Capsule,
 Estate
- Selected feature of interest: Rating

Correlation across Numerical Features

Exploratory Data Analysis

Histogram and Density Plot for Rating

Boxplots for Categorical Features

Model Evaluation

- Applied multiple linear, lasso, and ridge regression
- Used mean rating as baseline prediction
- Added interaction terms to multiple linear regression
- Evaluated using mean squared error (MSE) and mean absolute error (MAE)

Test	MSE	MAE	RMSE
Baseline	13.711274	2.753970	3.702874
MLR	8.944063	2.081188	2.990663
Ridge	8.943361	2.081775	2.990545
Lasso	9.044396	2.075086	3.007390
MLR_Interaction	8.815056	2.039720	2.969016

Conclusion

Key Takeaways

- Strong positive correlation features to seek out
 Africa/Arabia, espresso, estate, light and medium-light roast
- Negative correlation features to avoid pod/capsule, medium-dark, dark, and very dark roast
- No correlation features that have little impact
 Regions: Asia/Pacific, South America
 Organic, fair trade, decaffeinated, blend, medium roast

	alpha=0.1
region_africa_arabia	0.660580
region_caribbean	-0.038320
region_central_america	0.044232
region_hawaii	0.015138
region_asia_pacific	0.000000
region_south_america	0.000000
type_espresso	0.458025
type_organic	0.000000
type_fair_trade	0.000000
type_decaffeinated	0.000000
type_pod_capsule	-0.267004
type_blend	0.000000
type_estate	0.155451
Light	0.345396
Medium-Light	0.625126
Medium	0.000000
Medium-Dark	-0.849087
Dark	-0.954651
Very Dark	-0.817816

Future Directions

Incorporate price data as a predictor

 Utilize natural language processing to extract key words from the professional flavor descriptors

