Master in Foundations of Data Science
Bayesian Statistics and Probabilistic Programming
Fall 2018-2019

Josep Fortiana

Wednesday, November 07, 2018

Universitat de Barcelona

Bayesian robustness

Mixture priors: the spinning coin

Bayesian robustness

Mixture priors: the spinning coin

Concept of robustness

A Bayesian analysis is said to be *robust* to the choice of prior if the inference does not depend on which prior pdf is chosen, from a set of priors compatible with the user's beliefs

Example: estimating IQ with two priors

Assume the IQ of a person is $X \sim N(\theta, \sigma^2)$, where $\sigma = 15$ is known.

We want to estimate θ , "the true IQ" of a person whom we believe to be average, hence the prior distribution of θ will have median m=100.

Also, we believe that with 90% probability θ falls between 80 and 120.

Albert, J. (2009), Bayesian computation with R (2nd ed). Springer.

First prior: Normal

Firstly we take the conjugate prior $\theta \sim N(\mu, \gamma^2)$.

 $\mu = m = 100$, and γ is derived from the fact that 80 is the 0.05 quantile of θ or, equivalently, that 120 is the 0.95 percentile.

Since $Z = \frac{\theta - \mu}{\gamma} \sim N(0, 1)$, the 0.05 quantile of Z, equal to qnorm(0.05)=-1.6449, must also be equal to $\frac{80-100}{\gamma}$, hence: $\gamma = 12.1591$.

Second prior: Student t with 2 degrees of freedom

Now we assume that θ is the result of applying a translation and a scale change to a r.v. $Y \sim t(2)$, a standard Student t with 2 degrees of freedom:

$$\theta = m + s \cdot Y$$
, where $Y \sim t(2)$,

equivalently,

$$Y = \frac{\theta - m}{s} \sim t(2).$$

pdf of the Student t prior

If h_Y is the pdf of the standard r.v. $Y \sim t(2)$, the pdf of $\theta = m + s \cdot Y$ is:

$$h_{\theta}(u) = \frac{1}{s} \cdot h_Y\left(\frac{u-m}{s}\right),$$

which follows either from the pdf's change of variable formula, or directly, by differentiating the cdf:

$$H_{\theta}(u) = P(\theta \le u) = P(m + s \cdot Y \le u) = H_Y\left(\frac{u - m}{s}\right),$$

where H_Y is the cdf of Y.

Prior pdf's

Observed data

Our subject takes n=4 IQ tests, obtaining an average score \bar{x} .

The we obtain the posterior pdf with both prior pdf's.

We perform our computations for three hypothetical values of \bar{x} :

$$\bar{x} = 110, \quad \bar{x} = 125, \quad \bar{x} = 140.$$

First posterior

The posterior distribution is $N(\mu_x, \tau^2)$, where:

$$\mathsf{E}(\theta|x) = \mu_x \stackrel{\mathsf{def}}{=} \frac{\gamma^2}{\sigma^2/n + \gamma^2} \, \bar{x} + \frac{\sigma^2/n}{\sigma^2/n + \gamma^2} \, \mu$$

$$var(\theta|x) = \tau^2 \stackrel{\text{def}}{=} \frac{\sigma^2 \gamma^2}{\sigma^2 + n \gamma^2}$$

Posterior parameters

Posterior expectations:

Observed \bar{x}	110	125	140
$\mu_{\scriptscriptstyle X}$	107.24	118.11	128.98

Posterior variance and standard deviation (the same for the three cases):

$$\tau^2 = 40.7471$$
.

$$\tau = 6.3833$$
.

Second posterior

Since the prior pdf $h_{\theta}(\cdot)$ is not a conjugate prior for a normal mean, we evaluate the joint pdf:

$$f(\bar{x}, \theta) = f(\bar{x}|\theta) \times h_{\theta}(\theta),$$

on a grid, N points on an interval $I = (m - \Delta, m + \Delta)$, where Δ is chosen so that $f \approx 0$ whithout it and N is large enough for the desired precision.

Second posterior

Normalizing the resulting vector to sum 1 we have the pmf of a discretization of the posterior distribution.

With this pmf we evaluate whatever posterior properties we need.

Posterior parameters

Expectations, *m*, standard deviations *s*:

Observed \bar{x}	110	125	140
m	105.292	118.084	135.413
S	5.842	7.885	7.973

Discussion

When a normal prior is used, the posterior will always be a compromise between the prior information and the observed data, even when the observed data conflicts with prior beliefs.

In contrast, when a *t* prior is used, when the likelihood falls in the flat-tailed portion of the prior and the posterior will resemble the likelihood function.

Posterior pdf's

Posterior pdf's

Posterior pdf's

Bayesian robustness

Mixture priors: the spinning coin

Persi Diaconis

Stanford stat and math professor Persi Diaconis, formerly a professional magician, famously determined how many times a deck of cards must be shuffled in order to give a mathematically random result (seven). He's also dabbled in coin games.

2018-11-07

BTW: Persi Diaconis on randomness

See his 2013 video talk:

The Search for Randomness

The spinning coin

Fact: if a coin is spinned on its edge instead of being flipped, proportion of heads or tails is not around 50% but rather such values as 25% or 75% are obtained.

Persi Diaconis on the spinning coin

According to Diaconis, "the reasons for the bias are not hard to infer. The shape of the edge will be a strong determining factor — indeed, magicians have coins that are slightly shaved; the eye cannot detect the shaving, but the spun coin always comes up heads".

A prior for the spinning coin problem

For n tosses of a spinning coin, the number x of heads up is a $B(n, \theta)$, and θ 's prior pdf will typically be a bimodal function (presenting two local maxima).

Hence it cannot be modelled with a Beta(α, β), which has a single mode at:

$$\frac{\alpha - 1}{\alpha + \beta - 2}$$

Diaconis, Persi and Donald Ylvisaker (1985) Quantifying prior opinion. In:

J.M. Bernardo et al (eds), Bayesian Statistics 2, Elsevier Science Publishers

A possible prior

0.50 Beta(10, 20) + 0.50 Beta(20, 10).

Interpretation of a mixture prior

The mixture prior can be thought of as a weighted combination of "beta populations", the weights γ_i measuring the prior degree of belief that the actual coin was chosen from the i-th population.

Simulation of a mixture prior

To generate a sequence of random numbers from a mixture:

$$\gamma \cdot h_1 + (1 - \gamma) \cdot h_2, \quad \gamma \in (0, 1),$$

we generate a sequence of realizations of $I \sim \mathsf{Ber}(\gamma)$ and:

- For each entry equal to 1, a realization of h_1 ,
- For each entry equal to 0, a realization of h_2 .

Simulation of a mixture prior

Bayesian modelling with a mixture prior

Assume the prior pdf for θ is:

$$h(\theta) = \gamma \cdot h_1(\theta) + (1 - \gamma) \cdot h_2(\theta),$$

and the likelihood is: $f(x|\theta)$. Then, the joint pdf is:

$$f(x,\theta) = \gamma \cdot f_1(x,\theta) + (1-\gamma) \cdot f_2(x,\theta).$$

where:

$$f_i(x, \theta) = f(x|\theta) \cdot h_i(\theta), \quad i = 1, 2.$$

Prior predictive pdf from a mixture prior

Integrating out θ , the marginal for x:

$$f(x) = \gamma \cdot f_1(x) + (1 - \gamma) \cdot f_2(x),$$

where:

$$f_i(x) = \int f(x|\theta) \cdot h_i(\theta) d\theta, \quad i = 1, 2.$$

Computing the posterior pdf from a mixture prior

From Bayes' formula:

$$h(\theta|x) = \frac{f(x,\theta)}{f(x)} = \frac{\gamma \cdot f_1(x,\theta) + (1-\gamma) \cdot f_2(x,\theta)}{\gamma \cdot f_1(x) + (1-\gamma) \cdot f_2(x)}.$$

We will use the obvious notation:

$$h_i(\theta|x) = \frac{f_i(x,\theta)}{f_i(x)}$$
 $i = 1, 2.$

Posterior pdf from a mixture prior

The posterior pdf is:

$$h(\theta|x) = \widehat{\gamma}(x) \cdot h_1(\theta|x) + (1 - \widehat{\gamma}(x)) \cdot h_2(\theta|x),$$

where the posterior mixture weights are:

$$\widehat{\gamma}(x) = \frac{\gamma \cdot f_1(x)}{\gamma \cdot f_1(x) + (1 - \gamma) \cdot f_2(x)}$$

and $1 - \widehat{\gamma}(x)$.

For the Diaconis spinning coin experiment

He reports x = 3 heads out of n = 10 spins.

The (partial) posterior pdf's are:

$$h_1 \sim \text{Beta}(\alpha_1 + x, \beta_1 + n - x)$$

$$= \text{Beta}(10 + 3, 20 + 10 - 3) = \text{Beta}(13, 27),$$
 $h_2 \sim \text{Beta}(\alpha_2 + x, \beta_2 + n - x)$

$$= \text{Beta}(20 + 3, 10 + 10 - 3) = \text{Beta}(23, 17).$$

For the Diaconis spinning coin experiment

The (partial) prior predictive pdf's are:

$$f_1 \sim \mathsf{Beta} ext{-Binom}(n, \alpha_1, \beta_1) = \mathsf{Beta} ext{-Binom}(10, 10, 20),$$
 $f_2 \sim \mathsf{Beta} ext{-Binom}(n, \alpha_2, \beta_2) = \mathsf{Beta} ext{-Binom}(10, 20, 10),$

which, for the observed x = 3, give:

$$f_1(x) = 0.2276, \quad f_2(x) = 0.0277.$$

Posterior weights

$$\widehat{\gamma}(x) = \frac{\gamma \cdot f_1(x)}{\gamma \cdot f_1(x) + (1 - \gamma) \cdot f_2(x)}$$
= 0.8915

Posterior pdf

0.8915 Beta(13, 27) + 0.1085 Beta(23, 17).

MAP estimator of θ

The posterior distribution attains its maximum value where Beta(13, 27) does:

$$\hat{\theta}_{MAP} = \frac{13 - 1}{13 + 27 - 2} = 0.3158,$$

which may be compared with the classical ML estimator:

$$\hat{\theta}_{ML} = \frac{x}{n} = 0.4286,$$

and the lower mode of the prior distribution:

$$m_1 = \frac{10-1}{10+20-2} = 0.3214.$$

Simulating the posterior pdf

07 - More priors - 01

39 / 42

Credible interval with a given probability

The easiest way to obtain an interval [a, b] of θ values such that its posterior probability is a given value, e.g., $\pi = 0.95$ is to use a random sample from the posterior distribution.

Taking it quantile-symmetrical, i.e., such that both tails have probability $(1-\pi)/2=0.025$, the interval is:

(0.1932, 0.6400).

A more elaborate mixture prior

On reflection, it was decided that tails had come up more often than heads in the past; further some coins seemed likely to be symmetric.

A final approximation to the prior was taken as:

0.50 Beta(10, 20) + 0.20 Beta(15, 15) + 0.30 Beta(20, 10).

Exercise

Obtain the posterior pdf for this prior, a mixture of three Beta distributions.