Données déséquilibrées

L. Rouvière

laurent.rouviere@univ-rennes2.fr

NOVEMBRE 2023

Table des matières

1	Données déséquilibrées en logistique	2
	L.1 Le problème du déséquilibre	
	1.2 Le schema d'echantholmage retrospectif	4
2	Stratégies classiques des données déséquilibrées	7
	2.1 Critères de performance	7
	2.1.1 Critères basés sur des règles	7
	2.1.2 Critères basés sur des scores	12
	2.2 Ré-échantillonnage	
	2.2.1 Oversampling	
	2.2.2 Undersampling	
	2.2.3 Annexe: le package unbalanced	19
3	Choisir une méthode pour des données déséquilibrées 3.1 Approche "classique" : minimisation de risque empirique	
Pı	sentation	
	Objectifs : Adapter les algorithmes machine learning aux cas de données déséquilibrées.	
	- Pré-requis : Modélisation statistique, Régression logistique, Machine Learning. R, niveau avancé.	
	- Enseignant : Laurent Rouvière laurent.rouviere@univ-rennes2.fr	
	— Recherche: statistique non paramétrique, apprentissage statistique	
	— Enseignements : statistique et probabilités (Université, école d'ingénieur et de commerce, formatic continue).	n
	— Consulting: energie, finance, marketing.	
Pı	gramme	
	-8h:4h $CM+3$ $TP+1h$ TD .	

- $\ \, \underline{\textit{Matériel}} \ : \ \textit{slides} \ + \ \, \textit{Tutoriel} \ R. \ \, \textit{Disponible} \ \, \grave{\textit{a}} \ \, \textit{l'url} \ \, : \ \, \textit{https://lrouviere.github.io/page_perso/apprentissage_sup.html#donnees-des}$
- 3 parties:
 - 1. Introduction : données déséquilibrées et modèle logistique
 - 2. Stratégies générales
 - 3. Choisir une algorithme pour des données déséquilibrées

Introduction

- Dans de nombreux problèmes de classification binaire (détection de fraudes, maladies rares...), les deux classes ne sont pas représentées de façon égale dans le jeu de données.
- On parle de données déséquilibrées (unbalanced data).
- Les algorithmes classiques peuvent être mis en défaut dans ce contexte.
- Nécessité d'envisager différentes stratégies pour répondre à ce problème.

Un exemple

— On considère 3 jeux de données générées selon le même processus mais avec des *proportions de 0 et de 1 différentes*.

```
> summary(df1$Y)
## 0 1
## 559 441
> summary(df2$Y)
## 0 1
## 692 308
> summary(df3$Y)
## 0 1
## 842 158
```

- On sépare les données en 2, on ajuste une forêt aléatoire sur l'apprentissage et on prédit sur le test.
- On obtient les tables de contingence suivantes :

Commentaires

- En terme d'erreur de classement, les meilleurs résultats sont pour df3.
- Mais on détecte moins bien les 1 avec df3.

Questions

- 1. Critères spécifiques aux données déséquilibrées?
- 2. Algorithmes standards efficaces avec des données déséquilibrées ?
- 3. Comment les adapter?

1 Données déséquilibrées en logistique

1.1 Le problème du déséquilibre

Un exemple

— On considère les modèles logistiques

logit
$$p_{\beta}(x_i) = \beta_0 + \beta_1 x_i, \quad i = 1, ..., 200$$

où les x_i sont uniformes sur $[0,1], \beta_1 = -6$ et

$$- \beta_0 = 3 \text{ pour le modèle } 1$$
$$- \beta_0 = -1 \text{ pour le modèle } 2.$$

- On génère B=1000 échantillons $(x_1,y_1),\ldots,(x_n,y_n)$ et on s'intéresse à la distribution des emv $\hat{\beta}_j$ de β_j pour les deux modèles.
- On visualise la distribution de $\hat{\beta}_j \beta_j$ dans les deux cas :

Conclusion

Les emv ont l'air d'être sans biais, mais la variance de $\widehat{\beta_1}$ est plus élevée dans le cas $\beta_0 = -1$ que dans le cas $\beta_0 = 3$ (les écarts types estimés sont respectivement de 0.65 et 2.88).

Pourquoi?

— Les données sont dans les deux cas générées selon un modèle logistique. Seul changement : la valeur de β_0 .

— On remarque que $p_{\beta}(x)$ prend de plus fortes valeurs lorsque $\beta_0 = 3$.

Conclusion

La proportion de 1 sera *faible lorsque* $\beta_0 = -1$.

- En effet, sur tous les échantillons simulés, on a en moyenne
 - 50% de 1 lorsque $\beta_0 = 3$;
 - 5% de 1 lorsque $\beta_0 = -1$.
- Nous sommes clairement dans un cas de données déséquilibrées lorsque $\beta_0=-1$.
- Ce déséquilibre semble jouer un rôle sur la performance des estimateurs.

Justification théorique

— On rappelle que, pour n assez grand, la matrice de variance covariance de l'emv $\hat{\beta}$ du modèle logistique est

$$\mathcal{I}_n(\beta)^{-1} = (\mathbb{X}'W_\beta\mathbb{X})^{-1}$$

avec

$$W_{\beta} = \begin{pmatrix} p_{\beta}(x_1)(1 - p_{\beta}(x_1)) & 0 & \dots & 0 \\ 0 & \ddots & & 0 \\ \vdots & & \dots & \ddots & \vdots \\ 0 & & \dots & & p_{\beta}(x_n)(1 - p_{\beta}(x_n)) \end{pmatrix}$$

Conclusion

En présence de fort déséquilibre entre les proportions de 1 et de 0, les éléments de la diagonale de W_{β} vont se rapprocher de 0, ce qui conduit à une augmentation de la variance des estimateurs.

- Une solution classique consiste à essayer de "s'arranger" pour rééquilibrer les valeurs de Y dans l'échantillon.
- On ne peut bien entendu pas faire n'importe comment...
- Cela va forcément affecter le schéma d'échantillonnage.

Conclusion

Il faut le prendre en compte dans l'écriture du modèle.

1.2 Le schéma d'échantillonnage rétrospectif

— On cherche à expliquer une variable binaire Y par une variable X à l'aide d'un modèle logistique : pour $x_i \in \mathbb{R}$, la loi de Y_i est une Bernoulli de paramètre $p_{\beta}(x_i)$ tel que

$$logit p_{\beta}(x_i) = \beta_0 + \beta_1 x_i.$$

- Problème : estimer $\beta = (\beta_0, \beta_1)$.
- On se place dans le cas où $\pi_1 = \mathbf{P}(Y=1)$ est petit devant $\pi_0 = \mathbf{P}(Y=0)$.
- On a vu que, dans ce cas, la proportion de 1 dans un échantillon $(x_1, y_1), \ldots, (x_n, y_n)$ risque d'être faible devant celle de 0, ce qui risque de nous donner des <u>emv avec une forte variance</u>.

$Id\acute{e}e$

On va tenter d'obtenir un échantillon avec plus de 1.

— On cherche à augmenter les 1 dans l'échantillon.

Variable d'échantillonnage

Soit S_i une variable aléatoire à valeurs dans $\{0,1\}$ telle que

$$S_i = \left\{ \begin{array}{ll} 1 & \text{on garde l'individu } (x_i, Y_i) \text{ dans l'échantillon} \\ 0 & \text{on le supprime.} \end{array} \right.$$

- La variable S_i va servir à rééquilibrer les 1 et les 0 dans l'échantillon.
- On définit (et on suppose)

$$\tau_0 = \mathbf{P}(S_i = 1 | Y_i = 0)$$
 et $\tau_1 = \mathbf{P}(S_i = 1 | Y_i = 1)$.

Interprétation

- Ces deux probabilités peuvent être vues comme des "poids".
- Comparées à des taux de sondage.
- Si $\tau_1 > \tau_0$ alors on va augmenter la proportion de 1 dans l'échantillon et on peut penser que les estimateurs seront performants.
- Hypothèse sous-jacente : S_i , i = 1, ..., n sont, conditionnellement à Y_i , indépendants.

2 modèles

1. Modèle initial : $\mathcal{L}(Y_i) = \mathcal{B}(p_{\beta}(x_i))$ avec

logit
$$p_{\beta}(x_i) = \beta_0 + \beta_1 x_i$$
.

2. Modèle rééquilibré : $\mathcal{L}(Y_i|S_i=1)=\mathcal{B}(p_{\gamma}(x_i))$ avec

logit
$$p_{\gamma}(x_i) = \text{logit } \mathbf{P}_{\gamma}(Y_i = 1 | S_i = 1) = \gamma_0 + \gamma_1 x_i.$$

- Il faut garder à l'esprit que les quantités d'intérêt restent les $p_{\beta}(x_i)$.
- Le modèle rééquilibré devrait permettre des résoudre le problème de déséquilibre si τ_1 et τ_0 sont bien "choisis".
- Néanmoins ce modèle rééquilibré, on va estimer les probabilités $p_{\gamma}(x_i)$.

Question

Quel est le lien entre $p_{\beta}(x_i)$ et $p_{\gamma}(x_i)$?

Propriété

On a

logit
$$p_{\gamma}(x_i) = \text{logit } p_{\beta}(x_i) + \log \left(\frac{\tau_1}{\tau_0}\right).$$

Par conséquent

logit
$$p_{\beta}(x_i) = \gamma_0 - \log\left(\frac{\tau_1}{\tau_0}\right) + \gamma_1 x_i$$
.

— On déduit

$$\beta_0 = \gamma_0 - \log\left(\frac{\tau_1}{\tau_0}\right)$$
 et $\beta_1 = \gamma_1$.

Commentaires

- Seule la constante est affectée par le biais du au rééquilibrage. On peut de plus la corriger si on connait les taux de sondage τ_0 et τ_1 .
- L'emv $\hat{\gamma}_1$ est un estimateur consistant de β_1 avec a priori moins de variance que β_1 .

Exemple

— On utilise l'échantillonnage rétrospectif pour estimer les paramètres du modèle

logit
$$p_{\beta}(x_i) = \beta_0 + \beta_1 x_i, \quad i = 1, ..., 100$$

où les x_i sont uniformes sur [0,1], $\beta_0 = -1$ et $\beta_1 = -6$.

- On calcule les estimateurs du maximum de vraisemblance pour un échantillon :
 - 1. "classique" : $(x_1, y_1), \ldots, (x_n, y_n)$ tel que y_i sont générés selon des lois de Bernoulli $p_{\beta}(x_i)$. On note $\widehat{\beta}_0$ et $\widehat{\beta}_1$ les emv calculés.

2. "rééquilibré": $(x_1, y_1, 1), \ldots, (x_n, y_n, 1)$ issues de (x_i, Y_i, S_i) avec

$$\tau_0 = \mathbf{P}(S = 1|Y = 0) = 0.05$$
 et $\tau_1 = \mathbf{P}(S = 1|Y = 1) = 0.95$.

On note $\widehat{\gamma}_0$ et $\widehat{\gamma}_1$ les emv calculés.

— On répète l'expérience 1000 fois.

Remarque

- La variance de $\widehat{\gamma}_1$ est nettement plus faible que celle de $\widehat{\beta}_1$.
- En revanche, $\hat{\gamma}_0$ est biaisé en tant qu'estimateur de β_0 .
- On peut corriger ce biais en prenant en considération les taux de sondage τ_0 et τ_1 .

Correction de la constante

Remarque

La correction a permis de débiaiser l'estimateur de la constante.

En pratique

Cette propriété remarquable du modèle logistique dans le cadre d'un échantillonnage rétrospectif peut être appliquée dans (au moins) deux cas.

- 1. Les études cas-témoins (très utilisées en épidémiologie). On souhaite par exemple mesurer l'importance d'un caractère sur une pathologie. On construit alors l'échantillon en sélectionnant
 - un nombre n_1 fixé de patients atteints (cas);
 - un nombre n_0 fixé de patients sains (témoin).
- 2. Lorsque que l'on dispose d'une grande base de données dans lesquels les individus 1 sont sous représentés. On construit alors une deuxième base de données en donnant un poids plus élevé aux individus 1 pour être dans la seconde base $(\tau_1 > \tau_0)$.

2 Stratégies classiques des données déséquilibrées

- Tout comme pour le modèle logistique, les données déséquilibrées peuvent mettre en défaut les performances des estimateurs dans de nombreux modèles.
- Nécessité de trouver des stratégies pour pallier à cette difficulté.

Stratégies classiques

- Critères de performances : prendre en compte le déséquilibre dans la mesure de la performance des algorithmes.
- Ré-échantillonnage :
 - 1. augmenter le poids de la classe sous-représentée dans l'échantillon.
 - 2. diminuer le poids de la classe sur-représentée dans l'échantillon.

2.1 Critères de performance

Classification binaire: rappel

- (X,Y) à valeurs dans $\mathbb{R}^p \times \{-1,1\}$.
- Règle de classification $\Longrightarrow g: \mathbb{R}^p \to \{-1, 1\}$.
- Fonction de score $\Longrightarrow S: \mathbb{R}^p \to \mathbb{R}$.

Lien

Une règle peut se déduire d'un score en fixant un seuil $s \in \mathbb{R}$:

$$g_s(x) = \begin{cases} 1 & \text{si } S(x) \ge s. \\ 0 & \text{sinon.} \end{cases}$$

2.1.1 Critères basés sur des règles

Critères standards

- Erreur de classification : $EC = \mathbf{P}(q(X) \neq Y)$;
- Accuracy: $Acc = \mathbf{P}(g(X) = Y) = 1 EC$;
- Faux négatifs : $FNR = \mathbf{P}(g(X) \neq Y | Y = 1)$
- Sensibilité, recall ou vrais positifs : $TPR = \mathbf{P}(g(X) = Y | Y = 1) = 1 FNR$;
- Faux positifs: $FPR = \mathbf{P}(g(X) \neq Y | Y = -1)$;
- Spécificité ou vrais négatifs : $TNR = \mathbf{P}(g(X) = Y | Y = -1) = 1 FPR$;
- False discovery rate: $FDR = \mathbf{P}(g(X) \neq Y | g(X) = 1)$;
- Précision ou positive predicted value : PPV = P(q(X) = Y | q(X) = 1) = 1 FDR;
- ___

Estimation

— Ces critères sont inconnus et généralement estimés à partir de la table de confusion :

	g(X) = 1	g(X) = -1
Y=1	TP	FP
Y = -1	FN	TN

— Par exemple:

$$\widehat{EC} = \frac{FP + FN}{TP + FP + FN + TN}$$
 ou $\widehat{TPR} = \frac{TP}{TP + FP}$.

Attention

Les prévisions doivent être faites à l'aide de techniques de validation hold out ou validation croisée.

- Dans le cas de données déséquilibrées, la difficulté consiste à choisir un bon critère pour mesurer la performance des algorithmes.
- Par exemple, l'erreur de classification ou l'accuracy se révèleront généralement peu performants dans cette situation.

Comment?

Prendre en compte des "critères conditionnels" pour éviter de donner un poids trop important à la classe surreprésentée.

Balanced accuracy

— On part de l'accuracy :

$$P(g(X) = Y) = P(g(X) = 1|Y = 1)P(Y = 1) + P(g(X) = -1|Y = -1)P(Y = -1);$$

- Si une classe est sur-représentée, l'erreur dans cette classe sera privilégiée.
- Critère mal adapté pour mesurer la capacité à détecter la petite classe.

Balanced accuracy

Il donne le même poids aux vrais positifs et négatifs :

Bal Acc =
$$\frac{1}{2}$$
P $(g(X) = 1|Y = 1) + \frac{1}{2}$ **P** $(g(X) = -1|Y = -1) = \frac{\text{TPR} + \text{TNR}}{2}$.

F_1 score

- Le balanced accuracy est la moyenne arithmétique des vrais positifs et négatifs :
- Le F_1 -score est la moyenne harmonique entre
 - 1. la précision P(Y = 1|g(X) = 1) (capacité à identifier les positifs parmi les prédits positifs);
 - 2. et le recall : P(g(X) = 1|Y = 1) (capacité à bien prédire les positifs)

 F_1 score

$$F_1 = 2 \frac{Precision \times Recall}{Precision + Recall}.$$

Interprétation

- Bal Acc et F_1 varient entre 0 et 1.
- Plus ils sont proches de 1, meilleure sera la règle.
- Attention : le F_1 score n'est pas symétrique!

κ de Cohen

- Il consiste à comparer
 - la probabilité de bien classer (d'accord), c'est-à-dire l'accuracy P(a);
 - à une probabilité de bien classer de façon aléatoire $\mathbf{P}(e)$, c'est-à-dire en supposant que la règle g(X) est indépendante de Y:

$$\mathbf{P}(e) = \mathbf{P}_{al}(g(X) = Y)$$
$$= \mathbf{P}(g(X) = -1)\mathbf{P}(Y = -1) + \mathbf{P}(g(X) = 1)\mathbf{P}(Y = 1).$$

Définition

Le κ de Cohen est défini par

$$\kappa = \frac{\mathbf{P}(a) - \mathbf{P}(e)}{1 - \mathbf{P}(e)}.$$

Plus ce coefficient est proche de 1, meilleure sera la règle.

Sensibilté aux données déséquilibrées

- Cas de données déséquilibrées : P(Y = -1) grand.
- Règle qui classe (presque) toujours -1.
- On a alors:

$$\mathbf{P}(a) \approx \mathbf{P}(Y = -1)$$
 et $\mathbf{P}(e) \approx \mathbf{P}(Y = -1)$.

Conclusion

Le κ de Cohen va prendre des petites valeurs dans ce cas là alors que l'accuracy sera proche de 1.

Exemple

On souhaite comparer deux algorithmes qui ont fourni les prévisions P₁ et P₂ dont voici les tables de contingence :

```
> table(P1,Y)
## Y
## P1 0 1
## 0 468 31
## 0 407 4
## 1 0 1
> table(P2,Y)
## 1 61 28
```

Remarque

- La classe 0 est sur-représentée.
- En terme d'erreur de classification, P_1 semble meilleur.
- P_2 semble plus à même de détecter les 1.
- La fonction confusionMatrix du package caret permet de calculer la plupart des indicateurs proposés.

Commentaires

- Sans surprise, l'Accuracy va privilégier P_1 ;
- Des critères tels que le F_1 -score et le κ de Cohen vont quand à eux sélectionner P_2 (qui semble mieux approprié sur cet exemple).

Connaissances a priori

- Les critères présentés précédemment sont des critères généraux qui permettent de comparer des prévisions.
- Dans certains cas, l'expertise métier peut nous apporter une information supplémentaire sur le bon critère à considérer.

Exemple

- German credit dataset de l'UCI machine learning repository.
- On dispose de l'information suivante :

```
This dataset requires use of a cost matrix (see below)
..... 1 2
......
1 0 1
......
2 5 0
(1 = Good, 2 = Bad)
```

The rows represent the actual classification and the columns the predicted classification

- Une erreur est 5 fois plus importante que l'autre : prédire 1 alors qu'on a observé 2 est 5 fois plus important que prédire 2 alors qu'on a observé 1.
- Cette information doit être prise en compte à la fois pour :
 - 1. Comparer des algorithmes.
 - 2. Entrainer les algorithmes.

Exemple

On pourra par exemple définir un nouveau critère qui donne un poids 5 fois plus important à l'erreur la plus grave.

Pondérer un risque

— On rappelle que l'erreur de classification d'une règle g est définie par

$$\mathbf{P}(g(X) \neq Y) = \mathbf{P}(g(X) \neq Y \cap Y = 0) + \mathbf{P}(g(X) \neq Y \cap Y = 1).$$

- Ce critère sous-entend donc que les 2 erreurs possibles ont le même poids.
- On pourra donner des poids différents α_1 et α_2 en considérant l'erreur pondérée

$$\alpha_1 \mathbf{P}(g(X) \neq Y \cap Y = 0) + \alpha_2 \mathbf{P}(g(X) \neq Y \cap Y = 1).$$

Pondérer les erreurs pour entrainer un modèle

- De nombreux algorithmes sont *entrainés* en minimisant des fonctions de perte.
- Par défaut, ces fonctions de perte donnent généralement le même poids aux deux types d'erreurs.
- Dans le cas où les deux erreurs ne sont pas symétriques, il est important de prendre en compte les poids dans le calibrage de la méthode.
- Nous illustrons cela avec les arbres CART.

Arbres CART: rappels

- L'algorithme produit une suite d'arbres emboîtés qui optimisent un critère coût/complexité.
- La sélection de l'arbre final s'effectue ensuite en minimisant l'erreur de classification calculée par validation croisée.
- Sur R, on peut utiliser rpart pour construire la suite et printep pour la visualiser.

Remarques

- Le *même poids* est ici donné aux deux erreurs pour :
 - 1. construire la suite d'arbres à travers le critère coût/complexité.
 - 2. sélectionner l'arbre dans la suite à travers l'erreur de classification.
- On peut donner un poids différent aux erreurs en modifiant l'argument parms dans rpart.
- On propose ici par exemple d'utiliser comme critère

$${}^{1}\mathbf{P}(g(X) \neq Y \cap Y = 0) + {}^{2}\mathbf{P}(g(X) \neq Y \cap Y = 1).$$

Commentaires

- On remarque que les suites d'arbres ajustées sont différentes.
- De plus, les arbres de la seconde suite auront tendance à mieux détecter les yes (1), ce qui est logique vu le critère utilisé.
- On peut par exemple comparer les valeurs ajustées des derniers arbres des deux suites.

```
> table(P1,Y)

## Y

## P1 No Yes

## No 228 6

## Yes 8 158

> table(P2,Y)

## Y

## Y

## P2 No Yes

## No 218 2

## Yes 18 162
```

2.1.2 Critères basés sur des scores

Courbe ROC

- La courbe ROC (et l'AUC) peut se révéler être un critère pertinent dans le cas de données déséquilibrées.
- Ce critère n'est en effet pas basé sur la prédiction de classes mais sur la manière dont le score ordonne les individus.

Attention

Si l'objectif final est de *prédire des classes*, il faudra

- se pencher sur le choix du seuil;
- et étudier les performances de la règle associée au seuil choisi.

Rappel: courbe ROC

- On reste dans un cadre de *classification binaire* ($\mathcal{Y} = \{-1, 1\}$).
- Mais... plutôt que de chercher une règle de prévision $g: \mathcal{X} \to \{-1,1\}$, on cherche une fonction $S: \mathcal{X} \to \mathbb{R}$ telle que

$$\mathbf{P}(Y=1|X=x)$$
 faible $\mathbf{P}(Y=1|X=x)$ élevée

- Une telle fonction est appelée fonction de score : plutôt que de prédire directement le groupe d'un nouvel individu $x \in \mathcal{X}$, on lui donne une note S(x)
 - élevée si il a des "chances" d'être dans le groupe 1;
 - faible si il a des "chances" d'être dans le groupe -1;

Lien score/règle de prévision

— Etant donné un score S, on peut déduire une règle de prévision en fixant un seuil s (la réciproque n'est pas vraie):

$$g_s(x) = \begin{cases} 1 & si \ S(x) \ge s \\ -1 & sinon. \end{cases}$$

— Cette règle définit la table de confusion

	$g_s(X) = -1$	$g_s(X) = 1$
Y = -1	OK	E_1
Y = 1	E_2	OK

— Pour chaque seuil s, on distingue deux types d'erreur

$$\alpha(s) = \mathbf{P}(g_s(X) = 1|Y = -1) = \mathbf{P}(S(X) \ge s|Y = -1)$$

et

$$\beta(s) = \mathbf{P}(g_s(X) = -1|Y = 1) = \mathbf{P}(S(X) < s|Y = 1).$$

On définit également

- Spécificité : $sp(s) = \mathbf{P}(S(X) < s | Y = -1) = 1 \alpha(s)$
- Sensibilité: $se(s) = \mathbf{P}(S(X) \ge s | Y = 1) = 1 \beta(s)$

$Performance\ d'un\ score$

Elle se mesure généralement en visualisant les erreurs $\alpha(s)$ et $\beta(s)$ et/ou la spécificité et la sensibilité pour tous les seuils s.

Courbe ROC

— Idée : représenter sur un graphe 2d les deux types d'erreur pour tous les seuils s.

Définition

C'est une courbe paramétrée par le seuil :

$$\begin{cases} x(s) = \alpha(s) = 1 - sp(s) = \mathbf{P}(S(X) > s|Y = -1) \\ y(s) = 1 - \beta(s) = se(s) = \mathbf{P}(S(X) \ge s|Y = 1) \end{cases}$$

Remarque

Pour tout score S on a

- $--x(-\infty) = y(-\infty) = 1;$
- $-x(+\infty) = y(+\infty) = 0;$
- La courbe ROC part de (1,1) pour finir à (0,0).

Scores parfait et aléatoire

Définition

— Score parfait : il est tel qu'il existe un seuil s^* tel que

$$P(Y = 1|S(X) \ge s^*) = 1$$
 et $P(Y = -1|S(X) < s^*) = 1$.

— Score aléatoire : il est tel que S(X) et Y sont indépendantes.

Analyse de la courbe ROC

— Pour un score parfait on a $x(s^*) = 0$ et $y(s^*) = 1 \implies$ une courbe ROC parfaite est définie par les deux segments $[(1,1);(0,1)] \quad et \quad [(0,1);(0,0)].$

— Pour un score aléatoire on a $\forall s, \ x(s) = y(s) \Longrightarrow la$ "pire" courbe ROC est donc la première bissectrice.

— Généralement la courbe ROC d'un score classique se situe entre ces deux courbes.

Interpr'etation

On mesurera la performance d'un score par sa capacité à se rapprocher de la droite d'équation y = 1 le plus vite possible.

AUC

Définition

- L'aire sous la courbe ROC d'un score S, notée AUC(S) est souvent utilisée pour mesurer sa performance.
- Pour un score parfait on a AUC(S) = 1, pour un score aléatoire AUC(S) = 1/2.

Proposition

— Etant données deux observations (X_1, Y_1) et (X_2, Y_2) indépendantes et de même loi que (X, Y), on a

$$AUC(S) = \mathbf{P}(S(X_1) \ge S(X_2) | (Y_1, Y_2) = (1, -1)).$$

AUC

Score optimal

- Le critère AUC(S) peut être interprété comme une fonction de perte pour un score S;
- Se pose donc la question d'existence d'un score optimal S* vis-à-vis de ce critère.

Théorème [Clémençon et al., 2008]

Soit $S^*(x) = \mathbf{P}(Y = 1|X = x)$, on a alors pour toutes fonctions de score S

$$AUC(S^*) \ge AUC(S)$$
.

Cons'equence

Le problème pratique consistera à trouver un "bon" estimateur $S_n(x) = S_n(x, \mathcal{D}_n)$ de

$$S^{\star}(x) = \mathbf{P}(Y = 1|X = x).$$

2.2 Ré-échantillonnage

- Comme nous l'avons vu dans la première partie, une manière de répondre au problème de données déséquilibrées est de ré-échantillonner en tentant de combler (au moins en partie) le déséquilibre.
- Ces approches consistent le plus souvent à :
 - 1. sur-échantillonner (oversampling) la classe minoritaire;
 - $2. \ et/ou \ sous-\'echantillonner \ (undersampling) \ la \ classe \ majoritaire.$

Différentes techniques pour ré-échantilloner

- Nous en présentons quelques unes mais on pourra consulter le blog de Jeremy Jourdan.
- 2 packages R : unbalanced et UBL

Un exemple

— Nous illustrons les différentes techniques sur les données jouets suivantes.

- Card $\{i: y_i = 0\} = 80 \text{ et Card}\{i: y_i = 1\} = 20$

2.2.1 Oversampling

Random oversampling

— Méthode la plus naïve : dupliquer aléatoirement des observations dans la classe minoritaire.

```
> library(UBL)
> over1 <- RandOverClassif(Y~.,dat=df)
> over2 <- RandOverClassif(Y~.,dat=df,C.perc=list("0"=1,"1"=2))
> summary(over1$Y)
## 0 1
## 80 80
> summary(over2$Y)
## 0 1
## 80 40
```

SMOTE

- L'approche précédente diminue de façon artificielle la variabilité dans les données.
- Il existe d'autres approches qui permettent de générer de nouvelles observations de la classe minoritaire.
- L'algorithme le plus utilisé est SMOTE: Synthetic Minority Over-sampling TEchnique [Chawla et al., 2002].
- L'idée est de générer de nouvelles observations entre des individus de la plus petite classe.

Génération SMOTE

Pour une observation x_m de la plus petite classe, on génèrera une nouvelle observation selon l'algorithme :

- 1. Calculer les k plus proches voisins de x_m parmi les x_i , $i=1,\ldots,n$ privés de x_m qui sont dans le même classe que x_m ;
- 2. Choisir au hasard un des plus proches voisins calculés précédemment, on le note $x_{(m)}$;
- 3. Générer aléatoirement une nouveau point x sur le segment reliant x_m à $x_{(m)}$.

Exemple

```
> set.seed(1234)
> smote1 <- SmoteClassif(Y~.,dat=df,k=4)
> smote2 <- SmoteClassif(Y~.,dat=df,k=4,C.perc=list("0"=1,"1"=2))
> summary(smote1$Y)
## 0 1
## 50 50
> summary(smote2$Y)
## 0 1
## 80 40
```

Résultats SMOTE

Paramètres SMOTE

- C.perc : contrôle le niveau de ré-équilibrage. Par défaut il est parfait :
 - 1. on génère 30 nouvelles observations de la classe minoritaire en appliquant l'algorithme aux 20 individus de la classe 1 puis en le ré-appliquant à 10 individus choisis au hasard;
 - 2. on diminue la classe majoritaire en choisissant aléatoirement 50 individus parmi les 80.
- Dans le second cas, 20 nouvelles observations de la classe minoritaire sont générées en appliquant l'algorithme aux 20 individus de cette classe, la classe majoritaire reste inchangée.
- Nombre de voisins k : à choisir par l'utilisateur (ou en utilisant les données...).

Adasyn

- Adaptive synthetic sampling approach for imbalanced learning (voir [He et al., 2008])
- Proche de <u>SMOTE</u> mais le nombre d'observations générés pour un x_i est proportionnel à la densité des observations du groupe majoritaire au voisinage de x_i .
- Plus d'observations générées aux voisinages des cas isolés.

Algorithme Adasyn

Entrées: $dth \leq 1$, k plus petit que n_1 , $\beta \in \mathbb{R}^+$.

- 1. Calculer $d = n_0/n_1$. Si $d \leq dth$ stop.
- 2. Calculer G le nombre d'observations à générer :

$$G = (n_0 - n_1)\beta$$
.

3. Calculer les k-ppv de chaque individu $x_i, i \in \mathcal{X}_1$ de la classe minoritaire et en déduire pour chacun

$$r_i = \frac{card\{j : y_j = 0 \ et \ x_j \in kppv(x_i)\}}{k}.$$

4. Normalisation:

$$\tilde{r}_i = \frac{r_i}{\sum_{i \in \mathcal{X}_1} r_i}.$$

5. Calculer le nombre d'individus à générer pour chaque x_i de \mathcal{X}_1 :

$$G_i = G\tilde{r}_i$$
.

- 6. Pour chaque x_i de \mathcal{X}_1 répéter G_i fois :
 - (a) Choisir au hasard un de ces kppv du groupe $1 \Longrightarrow x_i^{(1)}$
 - (b) Générer un point au hasard entre x_i et $x_i^{(1)}$

$$x_{i,j} = x_i + \lambda (x_i^{(1)} - x_i)$$

où λ est générée selon une loi uniforme sur [0,1].

Sorties: les nouvelles données $x_{i,j}, i \in \mathcal{X}_1, j \in \{1, \dots, G_i\}$.

Exemple

```
> adasyn <- AdasynClassif(Y~X1+X2,dat=df,beta=1,k=5,dth = 0.95)
> summary(adasyn$Y)
## 0 1
## 80 78
```

Ici encore il faudra choisir les paramètres

- beta pour contrôler le niveau de ré-équilibrage;
- k pour la taille des voisinages;
- la distance pour calculer les k ppv...

2.2.2 Undersampling

Random undersampling

— Comme le random oversampling mais dans l'autre sens : ré-échantilloner la classe majoritaire de manière à obtenir un effectif proche de la classe minoritaire.

```
> under1 <- RandUnderClassif(Y~.,dat=df)
> under2 <- RandUnderClassif(Y~.,dat=df,C.perc=list("0"=0.5,"1"=1))
> summary(under1$Y)
## 0 1
## 20 20
> summary(under2$Y)
## 0 1
## 40 20
```

Tomek

— <u>Idée</u>: supprimer les observations de la classe majoritaire qui se trouvent proches d'observations de la classe minoritaire [Tomek, 1976].

Tomek link

Soit x dans le groupe majo et y dans le groupe mino. (x,y) est un T-link si pour toute autre observation z

$$d(x,y) \le d(x,z)$$
 et $d(x,y) \le d(y,z)$.

L'approche consiste à supprimer les x qui ont un T-link.

- Cette méthode ne permet pas forcément de rééquilibrer les deux classes.
- Elle peut néanmoins permettre de clarifier une future classification en supprimant des 1 isolés au milieu des 0, et donc de mieux détecter la classe minoritaire.

Exemple

— Il suffit d'utiliser *TomekClassif* :

```
> tomek1 <- TomekClassif(Y~.,dat=df)
> tomek2 <- TomekClassif(Y~.,dat=df,rem="maj")</pre>
```

— On peut récupérer les observations supprimées avec

```
> tomek1[[2]]
## [1] 1 7 12 69 14 100 16 17
> tomek2[[2]]
## [1] 1 69 100 16
```

Visualisation des liens de Tomek

Suppression des liens

Bilan

- Plusieurs algorithmes permettant de ré-équilibrer ont été présentés, il en existe d'autres Condensed Nearest Neighbors (CNN), Edited Nearest Neighbors (ENN)...
- Les idées sont proches, on pourra consulter la vignette du package UBL.
- Ces méthodes dépendent de paramètres : nombre de voisins, distances...
- Nécessité de définir des stratégies qui permettent de choisir une méthode.

2.2.3 Annexe: le package unbalanced

— On illustre les fonctions du package sur le jeu de données suivants :

Random oversampling

SMOTE

Entrées:

- 1. perc.over : perc.over/100 est le nombre d'observations générés pour chaque individu de la classe minoritaire.
- 2. perc.under : perc.under/100 est le nombre d'observations choisis aléatoirement dans la classe majoritaire pour chaque smoted (nouvelles) observations.
- 3. k: nombre de voisins à considérer pour générer les nouveaux individus (plus petit que le nombre d'observations de la classe minoritaire).
- Pour chaque individu x de la classe minoritaire,
 - 1. Calculer ses k plus proches voisins;
 - 2. Répéter **perc.over**/100 fois
 - (a) Choisir au hasard un de ses k plus proches voisins : \tilde{x} ;
 - (b) Générer un nouveau point de la classe minoritaire entre x et \tilde{x} ;
 - (c) Choisir au hasard perc.under/100 individus dans la classe majoritaire.
- Sortie : les individus de la classe minoritaire + ceux créés en 2.2 (classe mino.) + ceux créés en 2.3 (classe majo).

Exemple

```
> set.seed(123)
> rand.smote <- ubSMOTE(X,Y,k=2,perc.over = 200,perc.under = 300)
> summary(rand.smote$Y)

## 0 1
## 18 9
```


Random undersampling

```
> ubTomek(X,Y)
## Instances removed 2 : 28.57 % of 0 class ; 20 % of training ; Time needed 0
##
                       V2
             V 1
## 1 0.6092747 0.2827336
## 3 0.6222994 0.5449748
## 4 0.2325505 0.2668208
## 5 0.6403106 0.8372956
## 6 0.6660838 0.1867228
## 7 0.1137034 0.6935913
## 9 0.8609154 0.2923158
## 10 0.6233794 0.9234335
##
## $Y
## [1] 1 1 0 0 0 1 0 0
## Levels: 0 1
##
## $id.rm
## [1] 2 8
```

3 Choisir une méthode pour des données déséquilibrées

— Plusieurs façons d'appréhender des données déséquilibrées.

Questions

- Faut-il ré-équilibrer?
- Quelle méthode pour ré-équilibrer?
- Quel algorithme utiliser ensuite? (une méthode de ré-équilibrage peut être pertinente pour un algo et ne pas l'être pour un autre)
- Comment choisir la meilleure approche?
- Comme souvent en machine learning, il n'existe pas de méthode universelle pour choisir un algorithme, il va falloir faire des choix!

3.1 Approche "classique": minimisation de risque empirique

- Les techniques vues précédemment ne sortent pas du cadre classique du machine learning.
- Données : $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ (équilibrées ou non).
- Un algorithme est une fonction de prévision $g_n(x) = g_n(x, \mathcal{D}_n)$ qui fournit une prévision pour un individu x.
- L'algorithme g_n peut inclure tout un tas d'étapes :
 - 1. gestion des données manquantes;
 - 2. procédure de choix de variables;
 - 3. ré-équilibrage de \mathcal{D}_n ;
 - 4. entrainement d'un modèle (ridge, lasso, arbres...) avec sélection automatique des paramètres (validation croisée, oob...);
 - *5.* ...

Performance de g_n

Elle peut s'évaluer à l'aide d'un (bon) critère de prévision calculé à partir de procédure de ré-échantillonnage (validation hold out, validation croisée).

Critère de prévision

- Un critère de prévision ou fonction de perte (voire risque empirique) est une fonction qui mesure un perte (ou erreur) entre n prévisions \hat{y}_i , i = 1, ..., n et n observations y_i , i = 1, ..., n.
- Mathématiquement, c'est donc une fonction :

$$\mathcal{R}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$
$$(y_1^n, \widehat{y}_1^n) \mapsto \mathcal{R}(y_1^n, \widehat{y}_1^n).$$

Exemples

Erreur de classification, AUC, tous les critères vus dans la section "critères de performance".

Ré-échantillonnage

- Afin d'éviter des problèmes de biais, il faut évaluer ces critères sur des données non utilisées pour construire l'algorithme.
- On utilise souvent des procédures de ré-échantillonnage qui consistent à séparer les données en plusieurs blocs de manière :
 - $-- construire\ l'algorithme\ sur\ certains\ blocs\ ;$
 - calculer les prévisions sur les autres.
- Nous rappelons la validation croisée K-folds.

Validation croisée K-blocs

Algorithme - CV

Entrées. \mathcal{D}_n : données, K un entier qui divise n, un algorithme g_n , un critère de prévision \mathcal{R} ;

- 1. Construire une partition $\{\mathcal{I}_1,\ldots,\mathcal{I}_K\}$ de $\{1,\ldots,n\}$;
- 2. Pour k = 1, ..., K
 - (a) $\mathcal{I}_{\text{train}} = \{1, \dots, n\} \setminus \mathcal{I}_k \text{ et } \mathcal{I}_{\text{test}} = \mathcal{I}_k;$
 - (b) Construire l'algorithme de prédiction sur $\mathcal{D}_{n,\text{train}} = \{(X_i, Y_i) : i \in \mathcal{I}_{app}\}$, on le note $g_{n,k}(.) = g_{n,k}(., \mathcal{D}_{n,\text{train}})$;
 - (c) En déduire $\widehat{Y}_i = g_{n,k}(X_i)$ pour $i \in \mathcal{I}_{\text{test}}$;
- 3. Retourner

$$\mathcal{R}(g_n) = \mathcal{R}(Y_1^n, \widehat{Y}_1^n).$$

VC et données déséquilibrées

- On remarque que l'algorithme g_n s'applique uniquement aux données d'apprentissage.
- Si on utilise une technique de ré-équilibrage dans l'algorithme, il faut donc prendre garde dans la validation croisée à ne ré-équilibrer que l'échantillon d'apprentissage, pas le test!

Attention

Il ne faut surtout pas ré-équilibrer tout l'échantillon avant de faire la validation croisée!

Choisir un algorithme

- On peut utiliser cette méthode pour comparer plusieurs algorithmes g_1, \ldots, g_ℓ :
 - 1. On calcule $\mathcal{R}(g_1), \ldots, \mathcal{R}(g_\ell)$;
 - 2. On choisit celui qui optimise le critère.
- Ces algorithmes peuvent inclure (ou non) des méthodes de ré-équilibrage.
- Pour justifier de l'intérêt de ré-équilibrer, il conviendra de toujours comparer ces méthodes au cas non ré-équilibré.

Règle finale

Une fois l'algorithme g_k choisit, on le recalcule sur toutes les données : $\widehat{g}_k(.) = \widehat{g}_k(., \mathcal{D}_n)$ et on calcule les prévisions sur de nouveaux individus...

3.2 Racing

- Les techniques de validation croisée présentées précédemment peuvent se révéler *couteuses en temps de calcul*, notamment avec des données déséquilibrées.
- Elles nécessitent en effet de tester tous les algorithmes avec toutes les techniques de ré-équilibrage!
- Il peut être préférable de choisir au préalable une méthode de ré-équilibrage pour chaque méthode.
- Il existe un algorithme, appelé racing [Birattari et al., 2002], qui permet de choisir une méthode de rééquilibrage appropriée sans forcément balayer toutes les données.

Idée

- Tester en parallèle plusieurs méthodes de ré-équilibrage sur une partie des données.
- Utiliser un test statistique pour déterminer si une (ou plusieurs) méthode est significativement pire que les autres.
- Si c'est le cas, ces méthodes sont supprimées de la course.
- On continue avec les méthodes restantes sur une autre partie des données.
- On s'arrête si il reste une seule méthode ou si on a balayé toutes les données.

Quelques notations

- On considère une *méthode particulière* (par exemple une forêt aléatoire);
- Un critère de performance (par exemple AUC).
- B algos de ré-équilibrage $\implies g_i, j = 1, \dots, B$ la méthode appliquée avec l'algo j;
- $\mathcal{I}_1, \ldots, \mathcal{I}_K$ une partition de $\{1, \ldots, n\}$ and K blocs.

Etape 1

- 1. Entrainer les algorithmes sur les données du premier bloc.
- 2. Prédire sur les autres blocs et en déduire la valeur du critère pour chaque algorithme.
- 3. On note R_{1j} le rang de l'algorithme j.

Etape 2

- 1. Entrainer les algorithmes sur les données du second bloc.
- 2. Prédire sur les autres blocs et en déduire la valeur du critère pour chaque algorithme.
- 3. On note R_{2j} le rang de l'algorithme j.
- 4. Tester si les rangs des algorithmes dans les deux premiers blocs sont indépendants.
- 5. Si oui, aller à l'étape 3, si non enlever les algorithmes significativement inférieurs au meilleur.

Itération

Cette étape est répétée sur les blocs suivants jusqu'à ce qu'il reste un seul algorithme ou que tous les blocs soient balayés.

Tests

- Deux tests sont effectués à chaque étape.
- Il existe plusieurs procédures
- Nous détaillons ici le test de Friedman basés sur les rangs des algorithmes dans chaque bloc.

Test de Friedman

- On se place à l'étape k et on note $R_j = \sum_{\ell=1}^k R_{\ell j}$ la somme des rangs de l'algorithme j.
- La statistique de test est donnée par :

$$T = \frac{(B-1)\sum_{j=1}^{B} \left(R_j - \frac{k(B+1)}{2}\right)^2}{\sum_{\ell=1}^{k} \sum_{j=1}^{B} R_{\ell j}^2 - \frac{kB(B+1)^2}{4}}.$$

- Sous l'hypothèse nulle que les rangs des méthodes sont identiques à chaque étape, cette statistique suit approximativement une loi du χ^2 à B-1 ddl.
- On rejettera donc l'hypothèse nulle si cette statistique dépasse le quantile d'ordre $1-\alpha$ de cette loi du χ^2 .
- Lorsqu'au cours d'une étape l'hypothèse nulle du test précédent est rejetée, il faut décider des *méthodes à supprimer*.
- On teste alors chaque méthode contre la meilleure à l'aide d'un nouveau test toujours basé sur les rangs.
- La statistique est basé sur la différence entre les R_i et R_{best} (voir [Birattari et al., 2002]).
- Les méthodes qui ont des classement significativement inférieurs au meilleur sont supprimées.
- Sur R, on peut utiliser la fonction ubRacing.

— On peut visualiser les valeurs d'AUC sur chaque bloc avec

```
> resultsSRace

## unbal ubOver ubUnder ubSMOTE ubOSS ubCNN

## [1,] 0.9301235 0.9105844 0.8177735 0.9053130 0.910501 0.9110006

## [2,] 0.948886 0.948348 0.9378787 0.9451807 0.7160077 0.8288313

## [4,] 0.9143868 0.9299766 NA 0.8972772 NA NA NA

## [5,] 0.9551633 0.9531311 NA 0.945653 NA NA

## [7,] 0.9570648 0.9489288 NA 0.9577793 NA NA

## [8,] 0.9357821 0.936875 NA 0.928281 NA NA

## [8,] 0.9357821 0.9362875 NA 0.936285 NA NA

## [9,] 0.9398186 0.921243 NA 0.910525 NA NA

## [1,] 0.9326540 NA NA NA NA NA

## [1,] 0.9326540 NA NA NA NA NA

## [1,] 0.9326180 ubNCL ubTomek

## [1,] 0.9280208 0.9107633 0.933102

## [1,] 0.9280208 N.907633 0.933766

## [1,] 0.9280818 NA 0.911077

## [5,] 0.9584419 NA 0.9560546

## [5,] 0.9584419 NA 0.9307196

## [5,] 0.9586416 NA 0.951208 NA 0.930719

## [5,] 0.9159949 NA NA 0.9307196

## [5,] 0.9159949 NA NA O.9307196

## [5,] 0.9159949 NA NA O.9307196

## [5,] 0.9586416 NA 0.9560346

## [5,] 0.9586418 NA 0.9560346

## [5,] 0.956416 NA 0.9560346

## [5,] 0
```

- On peut remarquer qu'en terme de moyenne d'AUC, ce n'est pas l'algorithme ubENN qui est le meilleur.
- La décision se fait en effet sur les rangs.

```
> df <- results$Race
> df[is.na(df)] <- 0
> df <- 1-df
> a <- df %>% apply(1,rank) %>% apply(1,sum)
> a[c(1,7)]
## unbal ubENN
## 21 19
```

Conclusion

- Problème difficile!
- Nécessite de bien connaître les données et la problématique (pour définir le (ou les) bon(s) critère(s)).
- Nécessite une bonne maitrise machine learning afin de ne pas partir dans tous les sens!
- Il faut bien structurer la démarche et faire des (bons) choix...

En effet

Même si on optimise souvent, tout n'est pas automatique...

Références

Références

[Birattari et al., 2002] Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In *Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation*, pages 11–18.

[Chawla et al., 2002] Chawla, V., Bowyer, K., Hall, L., and Kegelmeyer, W. (2002). Smote: Synthetic minority over-sampling technique. *Journal of Artificial Intelligence Research*, 16:321–357.

[Clémençon et al., 2008] Clémençon, S., Lugosi, G., and Vayatis, N. (2008). Ranking and empirical minimization of u-statistics. *The Annals of Statistics*, 36(2):844–874.

[He et al., 2008] He, H., Bai, Y., Garcia, E., and Li, S. (2008). Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In 008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pages 1322–1328.

[Tomek, 1976] Tomek, I. (1976). Two modifications of cnn. *IEEE Transactions on Systems, Man, and Cybernetics*, 6:769–772.