Отчет по задаче 1:

"Сравнение методов регуляризации для матриц осциляционного типа"

Условие задачи:

Дана матрица А осцилляционного типа. (А — обобщенная матрица Вандермонда, $\mathbf{a_k} = (\mathbf{n+1-k})^{-2}$, $\mathbf{b_k} = \mathbf{k}$, $\mathbf{k=1,...,n}$). Построим СЛАУ $\mathbf{Az=u}$, в которой правая часть \mathbf{u} вычисляется по формуле $\mathbf{Az_0=u}$, где $\mathbf{z_0=(1,1,...,1)}$.

Строим матрицу **B**=√**A** (см. методическое пособие стр. 22). Убедитесь, что матрица **A** осцилляционного типа.

Заполняет таблицу

n=2	cond(A)=	cond(B)=	A-B ² =
n=3	cond(A)=	cond(B)=	A-B ² =

до тех, пока **||А-В**²**||** пренебрежимо малая величина.

Далее для решения уравнения применяем 2 способа регуляризации:

- **1.** (**A*****A**+α**E**)**z**=**A*****u** (уравнение (16) пособия)
- **2.** (**B*****B**+α**E**)**z**=**B***(**B**-¹**u**) (уравнение (20) пособия)

Провести сравнение полученных результатов и сделать заключение о рациональном выборе метода регуляризации и параметра регуляризации.

Используемые для вычислений инструменты:

Язык Python, пакеты NumPy и SciPy.

Решение:

Таблица результатов извлечения корня из матрицы **A** для разных размерностей **n** (Использовался метод Ньютона):

n	cond(A)	cond(B)	A-B ²
2	10.9293	3.5579	0.0008
3	228.9855	18.812	0.0027
4	8278.9654	115.7224	0.004
5	463640.9216	355.889	0.0016
6	37285325.8792	8619.89	0.0056
7	4078854494.9816	89611.7121	0.008
8	583002285003.8198	6581820.0675	31.9013

Значение ||A-B²|| пренебрежительно мало до **n=7**, а при **n=8** становится большим. Значит, вычисления будут иметь смысл для **n=1,...,7**.

Теперь для решения уравнения используем 2 способа регуляризации: $(A*A+\alpha E)z=A*u$ (1) и $(B*B+\alpha E)z=B*(B^{-1}u)$ (2).

Для α∈[0.001, 0.1] получим следующие графики (Считаем, что z — точное решение системы, z1 — решение, полученное первым способом, z2 — решение, полученное вторым способом):

Вывод:

При росте параметра регуляризации, погрешность первого способа увеличивается, а второго, наоборот, уменьшается. При **α≥0.1**, решение полученное вторым способом уже ближе к точному, чем решение, полученное первым. Однако, при малых **α** первый способ показывает значительно лучший результат.