DSC 241 - Homework 3

Problem 1. (Is polynomial regression well-conditioned?) Consider the canonical design matrix for fitting a polynomial of degree p based on x_1, \ldots, x_n , meaning, $\mathbf{X} = (x_i^j)$ for $i = 1, \ldots, n$ and $j = 0, \ldots, p$. Suppose the x_i 's are evenly distributed in (0,1), for example, $x_i = i/(n+1)$ for $i = 1, \ldots, n$. For each $p \in \{1, \ldots, 20\}$ and each $n \in \{30, 50, 100, 200, 500, 1000\}$, compute the condition number of the design matrix. Produce a useful plot for visualizing the result of these computations. Offer brief comments.

Problem 2. (Piecewise constant fit.)

- a. Write a function piecewiseConstant(x, y, L, plot = TRUE) taking in a one dimensional predictor variable x with values in [0,1] and a response y, and fits a piecewise constant model (by least squares) on 2^L intervals of equal length partitioning the unit interval (L is a nonnegative integer) in the form of a numerical vector of length 2^L , with the option of producing a scatterplot with the fit overlaid.
- b. Apply your function to explaining City Mpg as a piecewise constant function of Horsepower in the 04cars dataset. Produce a single scatterplot, with lines corresponding to the fit with L=2 (blue), L=3 (green), and L=4 (red). Add a legend, etc, so it looks 'nice'.