

FSC-BT803

CSR 8670 Bluetooth Module Data Sheet

Document Type: Bluetooth Module Datasheet

Document Version: V1.3 Release Date: 2013-9-6

Revision History

Date	Version	Description	Author
2013-09-06	V1.0	■ First Release	
2013-10-21	V1.3	■ Third Release	
7	۲,		
	*		

CONTENT

INTR	ODUCTION	••••••	4
1.1	BLOCK DIAGRAM		4
1.2	FEATURES		
1.3	APPLICATIONS		
GEN	ERAL SPECIFICATION		
	SICAL CHARACTERISTIC		
3.1	Pinout Diagram		
3.1	Pin Description		9
. РНҮ	SICAL INTERFACE		11
4.1	POWER SUPPLY		
4.2	AUDIO INTERFACES		
4.2.1	Audio Codec Interface		
4.2.2	ADC		
4.2.3	ADC Sample Rate Selection		
4.2.4	ADC Digital Gain		
4.2.5	DAC		
4.2.6	DAC Sample Rate Selection		
4.2.7	DAC Digital Gain		12
4.2.8	DAC Analog Gain		12
4.2.9	Microphone Input		12
4.2.10	Audio Output StageGENERAL PURPOSE ANALOG IO		12
4.3	GENERAL PURPOSE ANALOG IO		
4.4	GENERAL PURPOSE DIGITAL IO	y	
4.5	RF INTERFACE		1
4.6	SERIAL INTERFACES	7117	1
4.6.1	UART		1
4.6.2	I2C	······································	1
4.6.3	SPI		1
ELE(CTRICAL CHARACTERISTIC		1
5.1	ABSOLUTE MAXIMUM RATING		
5.2	RECOMMENDED OPERATING CONDITIO	NS	
	OMMENDED TEMPERATURE REFLOW I	PROFILE	
Appli	cation Schematic		
· ··PP··			
		< <u>C</u>	
			31
			7

1. INTRODUCTION

The FSC-BT803 Bluetooth® module is a perfect 4.0 dual-mode solution for wireless applications, such as smart watches, Bluetooth Bracelets, and wireless transmission devices. It can be connected with any Bluetooth® devices in an operating range. It is small and thin so the designers can have better flexibilities for the product shapes.

The FSC-BT803 Bluetooth® module complies with Bluetooth® specification version 4.0. It supports HSP,HFP,A2DP,AVRCP,PBAP,MAP,SPP, BLE....profiles. It integrates an ultra-low-power DSP and application processor with embedded flash memory, a high-performance stereo codec, a power management subsystem, LED and LCD drivers in a SOC IC. The dual-core architecture with flash memory enables manufactures to easily differentiate their products with new features without extending development cycles. It integrates RF Baseband controller, antenna,... etc. and provide UART interface, programmable I/O, stereo speaker output, microphone input,... etc.

The detail information of FSC-BT803 Bluetooth® module is presented in this document below.

1.1 Block Diagram

Figure 1

1.2 Features

- √ Small overall dimension(13mm x 13mm x 2.0mm)
- ✓ Bluetooth Specification V4.0(Dual Mode)
- ✓ Class1,Class 2 and Class 3 support
- ✓ Physical connection as SMD type
- √ 80MHz RISC MCU and 80MIPS Kalimba DSP
- √ 16Mb internal flash memory(64-bit wide,45ns);optional support for 64Mb of external SPI flash
- ✓ Stereo codec with 2 channels ADC and up to 6 microphone inputs(include bias generators and digital microphone support)
- ✓ Support for CSR's latest CVC technology for narrow-band and wideband voice connections including wind noise reduction
- ✓ Music Enhancements: SBC,MP3,AAC and AAC+,Faststream codec,atpX,5-band EQ,3D stereo separation and so on.
- ✓ Serial Interfaces: UART, USB 2.0, I2C and SPI
- ✓ Support HSP, HFP, A2DP, AVRCP, PBAP, MAP, SPP, BLE profile
- ✓ Multipoint support for HFP connection to 2 handsets for voice
- ✓ Multipoint support for A2DP connection to 2 A2DP source for music palyback
- √ 3 Hardware LED controllers (for RGB) and ability to drive LCD segment display directly
- ✓ Support for up to 6 capacitive touch sensor inputs
- ✓ Built-in RF combo filter, Integrated 26M Crystal.
- ✓ No radio signal interference, support for 802.11 co-existence
- * Some features are optional for customization on demand.

1.3 Application

- ✓ Smart watches
- ✓ Bluetooth bracelets
- ✓ Bluetooth headphones
- ✓ Smart remote controllers
- ✓ Wired or wireless soundbars
- ✓ Wired or wireless speakers
- ✓ Wearable audio with sensors(health and well-bing applications)

Bluetooth Specification				
Chip Set	CSR8670			
Module ID	FSC-BT803			
BT Standard	Bluetooth® V4.0 specification			
RF TX Output Power	10dBm (Max)			
Sensitivity	-90dBm@0.1%BER			
Frequency Band	2.402GHz~2.480GHz ISM Band			
Baseband Crystal OSC	26MHz			
Hopping	1600hops/sec, 1MHz channel space			
RF Input Impedance	50 ohms			
Major Interface	 Microphone : Input (Differential) Speaker : Output (Differential) UART : Tx/Rx PIOs Antenna 			
Profile	HSP, HFP, A2DP, AVRCP,PBAP,MAP,SPP, BLE			
Voice Processor	80MIPS Kalimba with cVc support			
Power	***			
Supply Voltage	1.8V ~ 4.2V DC			
Working Current	Depends on profiles			
Standby Current	<1mA			
Operating Environment				
Temperature	-40°C to +85°C			
Humidity	10%~90% Non-Condensing			
Environmental	RoHS Compliant			

Table 1

3. PHYSICAL CHARACTERISTIC

Figure 2

Figure 3

3.2 Pin Description

Pin #	Pin Name	Pad Type	Description		
1	GND _	Ground	Digital Ground		
2	AIO_1	Bi-directional	Analogue programmable input / output line		
3	RESET		Reset if low.Input debouced so must be low for >5ms to cause a reset		
4	RX	Bi-directional with strong pull up	UART data input		
5	TX	Bi-directional with weak			
6	LED0	Open drain	LED driver Alternative function PO[29]		
7	LED1	Open drain	LED driver Alternative function PO[30]		
8	PIO0	NC			
9	PIO1	NC			
10	PIO2	NC	*		
11	PIO3	Bi-directional with weak pull down	Programmable input/output line		
12	PIO4	NC	**		
13	GND		Digital Ground		
14	PIO6	Bi-directional with weak pull_down	Programmable input/output line		
15	PIO7	Bi-directional with weak pull_down	Programmable input/output line		
16	PIO14	Bi-directional with weak pull_down	Programmable input/output line		
17	PIO10	Bi-directional with weak pull_down	Programmable input/output line		
18	PIO11	Bi-directional with weak pull_down	Programmable input/output line		
19	PIO12	Bi-directional with weak pull_down	Programmable input/output line		
20	USB_P	Bi-directional	USB data plus with selectable internal 1.5kohm pull-up resistor		
21	USB_N	Bi-directional	USB data minus		

22	GND	Ground	Digital Ground		
23	+1V8	Open drain output	+1V8		
24	VBAT	Power supply	Battery positive terminal		
25	VBAT	Power supply	Power supply		
26	CHG	Connect to USB VBUS	Battery charger input		
27	CHG_EXT	NC	External battery charger control		
28	VREG_IN	Input enable	Regulator enable input. Can also be sensed as an input. Regulator enable and multifunction button. A high input (tolerant to VBAT) enables the on-chip regulators, which can then be latched on internally and the button used as a multifunction input.		
29	3V3_INPUT	Connect to 3.3V	1.7V to 3.6V positive supply input for digital input/output ports		
30	NC	NC	NC		
31	MIC_RN	Analogue in	Microphone input negative, right		
32	MIC_RP	Analogue in	Microphone input positive, right		
33	MIC_BIAS_B	Analogue out	Microphone bias B		
34	MIC_LN	Analogue in	Microphone input negative,left		
35	MIC_LP	Analogue in	Microphone input positive,left		
36	MIC_BIAS_A	Analogue out	Microphone bias A		
37	GND	Ground	Digital Ground		
38	SPKR_RN	Analogue out	Speaker output negative, right		
39	SPKR_RP	Analogue out	Speaker output positive, right		
40	SPKR_LN	Analogue out	Speaker output negative,left		
41	SPKR_LP	Analogue out	Speaker output positive,left		
42	SPI_MOSI	Input with weak pull-down	SPI data input		
43	SPI_MISO	Output with weak pull-down	SPI data output		
44	GND	Ground	Analogue Ground		
45	RF	RF_IN	Bluetooth 50ohm transmitter output/receiver input		
	GND	Ground			

46		Analogue Ground	
47	SPI_CSB	Input with strong pull-up	Chip select for SPI,active low
48	SPI_CLK	Input with weak pull-down	SPI Clock

Table 2

4. PHYSICAL INTERFACE

4.1 Power Supply

The transient response of the regulator is important. If the power rails of the module are supplied from an external voltage source, the transient response of any regulator used should be 20µs or less.

4.2 Audio Interfaces

The Audio interface circuit consists of:

- Stereo/dual-mono audio codec
- Dual analogue audio inputs
- Dual analogue audio outputs

4.2.1 Audio Codec Interface

The main features of the interface are:

- Stereo and mono analogue input for voice band and audio band
- Stereo and mono analogue output for voice band and audio band

4.2.2 ADC

Figure 3 shows the CSR8670 consists of 2 high-quality ADCs:

- Each ADC has a second-order Sigma-Delta converter
- Each ADC is a separate channel with identical functionality
- There are 2 gain stages for each channel, 1 of which is an analogue gain stage and the other is a digital gain stages

4.2.3 ADC Sample Rate Selection

Each ADC supports the following pre-defined sample rates, although other rates are progrmmable, e.g. 40kHz:

- 8kHz
- 11.025 kHz
- 16kHz
- 22.050kHz
- 24kHz
- 32 kHz
- 44.1kHz
- 48 kHz

4.2.4 ADC Digital Gain

A digital gain stage inside the ADC varies from -24dB to 21.5dB, see as below, there is also a fine gain interface with 9-bit gain setting allowing gain changes in 1/32 steps. The Firmware controls the audio input gain.

4.2.5 DAC

The DAC consists of:

- 2 fourth-order Sigma-Delta converters enabling 2 separate channels that are identical functionality, as figure x shows
- 2 gain stages for each channel, 1 of which is an analogue gain stage and the other is a digital gain stage

4.2.6 DAC Sample Rate Selection

- 8kHz
- 11.025kHz
- 16kHz
- 22.050kHz
- 32kHz
- 40kHz
- 44.1kHz
- 48kHz
- 96kHz

4.2.7 DAC Digital Gain

A digital gain stage inside the DAC varies from -24dB to 21.5dB, see as below, there is alse a fine gain interface with 9-bit gain setting enabling gain changes in 1/32 steps.

The overall gain control of the ADC is controlled by the firmware. Its setting is a combined function of the digital and analogue amplifier settings

4.2.8 DAC Analogue Gain

As below shows that the DAC analogue gain stage consists of 8 gain selection values that represent seven 3dB steps

The firmware controls the overall gain control of the DAC. Its setting is a combined function of the digital and analogue amplifier settings

4.2.9 Microphone Input

FSC-BT803 contains 2 independent low-noise microphone bias generators. The microphone bias generators are recommended for biasing electret condensor microphones. A biasing circuit for microphones with a sensitivity between about -40dB to -60dB(0dB=1V/Pa)

4.2.10 Audio Output Stage

The output digital circuitry converts the signal from 16-bit per sample, linear PCM of variable sampling frequency to a 2Mbits/sec multi-bit stream, which is fed into the analogue output circuitry.

The output circuit comprises a digital to analogue converter with gain setting and output amplifier. Its class-AB output-stage is capable of driving a signal on both channels of up to 2V pk-pk- differential into a load of 16Ω . The output is available as a differential signal between SPK_R_RP and SPK_R_RN for the left channel; and between SPK_L_LP and SPK_L_LN for the right channel. The output is capable of driving a speaker directly if its impedance is at least 8Ω if only one channel is connected or an external regulator is used.

The gain of the output stage is controlled by a 3-bit programmable resistive divider, which sets the gain in steps of approximately 3dB.

The multi-bit stream from the digital circuitry is low pass filtered by a second order biquad filter with a pole at 20kHz. The signal is then amplified in the fully differential output stage, which has a gain bandwidth of typically 1MHz.

■ 13-bit or 16-bit linear,8-bit u-law or A-law companded sample formats.

Receives and transmits on any selection of 3 the first 4 slots following PCM_SYNC. The PCM configuration options are enabled by setting the PS Key PSKEY_PCM_CONFIG32.

4.3 General Purpose Analog IO

The general purpose analog IOs can be configured as ADC inputs by software. Do not connect them if not use.

4.4 General Purpose Digital IO

There are nine general purpose digital IOs defined in the module. All these GPIOs can be configured by software to realize various functions, such as button controls, LED displays or interrupt signals to host controller, etc. Do not connect them if not use.

4.5 RF Interface

The module integrates a balun filter. The user can connect a 50ohms antenna directly to the RF port.

4.6 Serial Interfaces

4.6.1 **UART**

This is a standard UART interface for communicating with other serial devices. The UART interface provides a simple mechanism for communicating with other serial devices using the RS232 protocol.

When the module is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The remaining two signals, UART_CTS and UART_RTS, can be used to implement RS232 hardware flow control where both are active low indicators

4.6.2 I2C Interface

As this I2C interface is software-driven it is suited to relatively slow functions such as driving a dot matrix LCD,keybaord scanner or EEPROM.If it is not used,then PIO[7:6] are available to form a software-driven master I2C interface.

4.6.3 **SPI**

The synchronous serial port interface (SPI) can be used for system debugging. It can also be used for in-system programming for the flash memory within the module. SPI interface uses the SPI_MOSI, SPI_MISO, SPI_CSB and SPI_CLK pins. Testing points for the SPI interface are reserved on board in case that the firmware shall be updated during manufacture.

The module operates as a slave and thus SPI_MISO is an output of the module. SPI_MISO is not in high-impedance state when SPI_CSB is pulled high. Instead, the module outputs 0 if the processor is running and 1 if it is stopped. Thus the module should NOT be connected in a multi-slave arrangement by simple parallel connection of slave SPI_MISO lines.

Figure 4

5. ELECTRICAL CHARACTERISTICS

5.1 Absolute Maximum Ratings

Rating		Min	Max	Unit
	Storage temperature		105	°C
Supply Voltage				4
5V(USB VBUS)	CHG	-0.4	5.75	V
3.3V	3V3_INPUT	-0.4	3.60	V
	LED[2:0]	-0.4	4.40	V
	VBAT	-0.4	4.40	V
Battery	VBAT_SENSE	-0.4	4.40	V
	VREG_IN	-0.4	4.40	V
Other terminal voltages		VSS - 0.4	VDD + 0.4	V

Table 3

5.2 Recommended Operating Conditions

Rating		Min	Тур	Max	Unit
Operating temperature range		-40	20	85	°C
Supply Voltage					
5V(USB VBUS)	CHG	4.75 / 3.10	5	5.75	V
X	LED[2:0]	1.1	3.7	4.25	V
7/	VBAT	0	3.7	4.25	V
Battery	VBAT_SENSE	0	3.7	4.25	V
	VREGENABLE	0	3.7	4.25	V
3.3V	3V3_INPUT	1.7	3.3	3.6	V

Table 4

6. RECOMMENDED TEMPERATURE REFLOW PROFILE

The soldering profile depends on various parameters necessitating a set up for each application. The data here is given only for guidance on solder reflow.

Figure 5

7. Application Schematic

