Предпараграфные примеры

Все люди смертны. Сократ — человек.

Сократ смертен.

Вопросы:

- 1) Верно ли это рассуждение?
- 2) Как оно выражается логическим следствием в логике высказываний?

Верное рассуждение на предыдущем слайде не может быть выражено логическим следствием в логике высказываний. Существуют верные рассуждения, которые не могут быть выражены логическим следствием в логике высказываний.

Вопросы:

- 1) Верно ли это рассуждение?
- 2) Как оно выражается логическим следствием в логике высказываний?
- 3) Как тогда обосновать его правильность?

§15. Понятие предиката. Примеры предикатов

Примеры предикатов

§15. Предикат

Примеры:

- 1) $\langle x \rangle = 3$
 - обращается в высказывание при подстановке вместо xлюбого числа из \mathbb{R} .

Если обозначить $P(x) = \langle x \rangle 3 \rangle$,

и сказать, что $x \in \mathbb{R}$, то

- $P(1) = \Pi$,
- P(3) = J
- P(4) = M.

Примеры:

- 2) (x < x + 1)
 - обращается в высказывание при подстановке вместо x любого числа из \mathbb{R} .

притом каждое такое высказывание является истинным.

Если обозначить $P(x) = \ll x < x + 1$ »,

и сказать, что $x \in \mathbb{R}$, то

 $P(a) = \mathsf{И}$ для любого $a \in \mathbb{R}$.

Примеры:

3) «Преподаватель A находится в аудитории Nв момент времени t» — обращается в высказывание при подстановке вместо A — конкретного преподавателя БГУ; вместо N — номера аудитории главного корпуса БГУ; вместо t — конкретного момента времени. Если обозначить исходный объект за R(A, N, t), то $R(\text{Ловеров } \text{Я.А.}, 605, 9:55:00 } 20.10.2021) = \text{И},$ а $R(\mathsf{Oрлович}\;\mathsf{HO}.\mathsf{J.},605,9:55:00\;20.10.2021)=\mathsf{J.}$

Интуитивное представление

Интуитивное представление

 Предикат — это функция, значениями которой являются высказывания.

Строгие определения

Официальное определение

Пусть M_1, M_2, \ldots, M_n — непустые множества, $n \geqslant 1$.

Определение

n-Местным предикатом $P^n(x_1, x_2, ..., x_n)$ называется отображение вида

$$P^n: M_1 \times M_2 \times \dots M_n \to \{\Pi, \Pi\}.$$

Пусть M_1, M_2, \ldots, M_n — непустые множества, $n \geqslant 1$.

• Пусть также $M_1 = M_2 = \cdots = M_n = M$.

Определение

n-Местным предикатом $P^n(x_1,x_2,\ldots,x_n)$, заданным на множестве M, называется отображение вида

$$P^n:M^n\to\{\Pi,\Pi\}.$$

Замечание:

В дальнейшем для удобства введения определений будем считать, что $M_1=M_2=\cdots=M_n=M$.

Более общие определения строятся, надеюсь, понятным образом.

Связанные понятия

Пусть $P^n(x_1, x_2, ..., x_n): M^n \to \{\Pi, \Pi\} - n$ -местный предикат на множестве M.

- Множество М называется предметной областью предиката Pⁿ.
- Элементы множества M называются индивидуальными предметами или просто предметами,
- а переменные x_1, x_2, \ldots, x_n , которые принимают значения из множества M, предметными переменными.
- Значение предиката P^n на конкретном наборе предметов a_1, a_2, \ldots, a_n (а точнее, высказывание $P^n(a_1, a_2, \ldots, a_n)$) называют индивидуальным предикатом.

Обозначения

Конкретные предметы (т. е. элементы множества M) в лекциях будем обозначать строчными (маленькими) буквами из начала латинского алфавита (возможно, с индексами):

- a₁, a₂, ..., a_k, b, c, ...
 Предметные переменные —
 строчными (маленькими) буквами
 из конца латинского алфавита
 (возможно, с индексами):
- ..., $x_1, x_2, ..., x_k, y, z$

Обозначения

Обозначать предикаты в лекциях будем заглавными латинскими буквами; как правило, из части алфавита P-R, и, возможно, с индексами.

Кроме того, мы часто будем указывать местность предиката (обычно перечислением всех входящих в него предметных переменных):

- P(x,y)
- Q²
- $R^k(y_1, y_2, ..., y_k)$.

Пусть $P(x_1, x_2, \dots, x_n): M^n \to \{\Pi, \Pi\} - n$ -местный предикат на множестве M.

Определение

Множество

$$\{(a_1, a_2, \dots, a_n) \in M^n \mid P(a_1, a_2, \dots, a_n) = M\}$$

называется областью истинности предиката P.

Обозначение

 P^+

Воспоминания из параграфа о множествах

Чтобы задать множество, необходимо так или иначе указать, из каких элементов оно состоит.

Это можно сделать следующими способами:

2) указать свойство, которым обладают все элементы данного множества и только они (задание множества характеристическим свойством).

Замечание

Пусть мы хотим задать множество X свойством P, т. е. рассмотреть $X = \{x \mid P(x)\}.$

Тогда для любого элемента x_0 $P(x_0)$ должно быть высказыванием. Пусть $P(x_1, x_2, \dots, x_n) : M^n \to \{J, J, J\} - n$ -местный предикат на множестве M.

Определение

Множество

$$P^{+}\{(a_1, a_2, \dots, a_n) \in M^n \mid P(a_1, a_2, \dots, a_n) = M\}$$

называется областью истинности предиката P.

Наблюдение

Любое множество, заданное характеристическим свойством, — это область истинности предиката, который взят в качестве этого свойства.

Некоторые типы предикатов

Пусть $P^n(x_1, x_2, \dots, x_n): M^n \to \{\Pi, \Pi\} - n$ -местный предикат на множестве M.

Предикат P называется

• тождественно-истинным на множестве M, если для любых $a_1, a_2, \ldots, a_n \in M$ выполнено

$$P(a_1,a_2,\ldots,a_n)=\mathsf{VI}.$$

Пример:

Предикат P(x) = «x - нечётное число» на множестве нечётных целых чисел является тождественно-истинным.

Пусть $P^n(x_1, x_2, \dots, x_n): M^n \to \{\Pi, \Pi\} - n$ -местный предикат на множестве M.

Предикат P называется

• тождественно-ложным на множестве M, если для любых $a_1, a_2, \ldots, a_n \in M$ выполнено

$$P(a_1,a_2,\ldots,a_n)= \Pi.$$

Пример:

Предикат P(x) = «x - нечётное число» на множестве чётных целых чисел является тождественно-ложным.

Пусть $P^n(x_1, x_2, \dots, x_n): M^n \to \{\Pi, \Pi\} - n$ -местный предикат на множестве M.

Предикат P называется

• выполнимым на множестве M, если существуют такие предметы $a_1, a_2, \ldots, a_n \in M$, что выполнено

$$P(a_1, a_2, \ldots, a_n) = \mathsf{VI}.$$

Пример:

Предикат P(x) = «x — нечётное число» на множестве целых чисел является выполнимым.

Пусть $P^n(x_1, x_2, ..., x_n) : M^n \to \{\Pi, \Pi\} - n$ -местный предикат на множестве M.

Предикат P называется

• опровержимым на множестве M, если существуют такие предметы $a_1, a_2, \ldots, a_n \in M$, что выполнено

$$P(a_1, a_2, \ldots, a_n) = \Lambda.$$

Пример:

Предикат P(x) = «x — нечётное число» на множестве целых чисел является опровержимым.

Замечание

Пусть $P_1: \mathbb{N} \to \{\Pi, \mathsf{M}\}, \; P_2: \mathbb{Z} \to \{\Pi, \mathsf{M}\} -$ предикаты, притом $P_1 = «x -$ нечётное число», $P_2 = «x -$ нечётное число».

• Строго говоря, $P_1 \neq P_2$.

Замечание

Рассмотрим фразы:

- 1) «предикат P(x), заданный на множестве A»
- 2) «предикат P называется опровержимым на множестве M». В них обеих под предикатом понимается будто бы только

само правило P,

но в первой это можно списать на недостаточность языковых средств для выражения необходимой информации,

вторая же порядком слов намекает на то, что тот же предикат P мог бы быть задан и на каком-то другом множестве.

 Это, по-видимому, говорит о непоследовательности определений и отсутствии у разных авторов договорённости о том, что именно называть предикатом, и, как следствие, какие предикаты считать различными. Пусть $P(x_1, x_2, \dots, x_n) : M^n \to \{\Pi, \Pi\} - n$ -местный предикат на множестве M.

Наблюдения:

- P тождественно-истинный $\Leftrightarrow P^+ = M^n$;
- P тождественно-ложный $\Leftrightarrow P^+ = \varnothing$;
- P выполнимый $\Leftrightarrow P^+ \neq \varnothing$;
- P опровержимый $\Leftrightarrow P^+ \neq M^n$.

Пусть два предиката

$$P(x_1, x_2, ..., x_n) : M^n \to \{\Pi, \emptyset\}$$

и $Q(x_1, x_2, ..., x_n) : M^n \to \{\Pi, \emptyset\}$

заданы на множестве M.

Предикат Q называются следствием предиката P на множестве M.

если для любых предметов $a_1, a_2, \ldots, a_n \in M$ выполнено

$$P(a_1, a_2, \ldots, a_n) = VI \quad \Rightarrow \quad Q(a_1, a_2, \ldots, a_n) = VI.$$

Наблюдение:

 \ni то равносильно тому, что $P^+ \subseteq Q^+$.

Пусть два предиката

$$P(x_1, x_2, ..., x_n) : M^n \to \{\Pi, \emptyset\}$$

и $Q(x_1, x_2, ..., x_n) : M^n \to \{\Pi, \emptyset\}$

заданы на множестве M.

Предикаты P и Q называются равносильными на множестве M.

если для любых предметов $a_1, a_2, \ldots, a_n \in M$ выполнено

$$P(a_1, a_2, \ldots, a_n) = \mathsf{V} \quad \Leftrightarrow \quad Q(a_1, a_2, \ldots, a_n) = \mathsf{V}.$$

Наблюдение:

 \ni то равносильно тому, что $P^+=Q^+$.

§16. Логические операции над предикатами

Пример 1:

- $P(x) : \mathbb{R} \to \{\Pi, \Pi\},$ $P(x) = \langle x \rangle > 3 \rangle.$
- $Q(x): \mathbb{R} \to \{\Pi, \Pi\},$ $Q(x) = \langle x < 3 \rangle.$

Пример 2:

$$A=\{1,2,3,4,5\},\; P^1:A\to \{\Pi, \mathsf{N}\}.$$

X	1	2	3	4	5
P(x)	И	И	Л	И	Л
$\neg P(x)$	Л	Л	И	Л	И

Определение

```
Отрицание — это
```

```
операция, в результате применения которой
            к произвольному предикату P^n:M^n\to\{\Pi,\Pi\}
            получается
предикат, обозначаемый \overline{P}^n (или \neg P^n),
            той же местности
            и заданный на том же множестве M,
            обладающий следующим свойством:
            для любых a_1, a_2, \ldots, a_n \in M
            высказывание \overline{P}^n(a_1, a_2, \ldots, a_n) истинно
            тогда и только тогда, когда
            высказывание P^n(a_1, a_2, ..., a_n) ложно.
```

Наблюдение

Иными словами, предикат \overline{P} таков, что

• для любых $a_1, a_2, \ldots, a_n \in M$, $\overline{P}^n(a_1, a_2, \ldots, a_n) = \overline{P^n(a_1, a_2, \ldots, a_n)}$.

Утверждение

Пусть $P:M^n o \{ \mathcal{J},\mathcal{U} \}$ — n-местный предикат.

Тогда

$$(\neg P)^+ = M^n \setminus P^+ = \overline{P^+}_{M^n}.$$

Пример 1:

- $P(x) : \mathbb{R} \to \{\Pi, \Pi\},$ $P(x) = \langle x \rangle = 3 \rangle.$
- $Q(x): \mathbb{R} \to \{\Pi, \Pi\},$ $Q(x) = \langle x < 3 \rangle.$
- $R(x) = \langle x \rangle 3 \text{ if } x < 3 \text{.}$

Пример 2:

$$A=\{1,2,3,4,5\},\ B=\{\bigcirc,\triangle,\Box\},\ P(x):A o \{\Pi,\Pi\},R(z):B o \{\Pi,\Pi\}$$
 — предикаты.

X	1	2	3	4	5
P(x)	И	И	Л	И	Л

Z	0	Δ	
R(z)	И	И	Л

		z	0	Δ	
		R(z)	И	И	Л
Х	P(x)	P(x)&R(z)			
1	И		И	И	Л
2	И		И	И	Л
3	Л		Л	Л	Л
4	И		И	И	Л
5	Л		Л	Л	Л

Определение

Конъюнкция — это

операция, в результате применения которой к паре произвольных предикатов
$$P^n:M^n \to \{\Pi, \Pi\}$$
 и $Q^k:N^n \to \{\Pi, \Pi\}$ получается предикат, обозначаемый $P \land Q$ (или $P \& Q$), действующий из $M^n \times N^k$, обладающий следующим свойством: для любых $a_1, a_2, \ldots, a_n \in M, \ b_1, b_2, \ldots, b_k \in N$ высказывание $(P \land Q)(a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_k)$ истинно тогда и только тогда, когда истинны оба высказывания $P(a_1, a_2, \ldots, a_n)$ и $Q(b_1, b_2, \ldots, b_k)$.

Наблюдение

Иными словами, предикат $(P \wedge Q)$ таков, что

• для любых $a_1, a_2, \ldots, a_n \in M$, $b_1, b_2, \ldots, b_k \in N$ $(P \land Q)(a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_k) = P(a_1, a_2, \ldots, a_n) \land Q(b_1, b_2, \ldots, b_k).$

Утверждение

Пусть $P:M^n o \{ \mathcal{J}, \mathcal{U} \}, \ Q:N^k o \{ \mathcal{J}, \mathcal{U} \}$ — предикаты. Тогда

$$(P \wedge Q)^+ = P^+ \cap Q^+.$$

Замечание

Если предикаты

$$P:M_1 imes M_2 imes\ldots M_n o \{\Pi, \Pi\}$$
 и $Q:N_1 imes N_2 imes\ldots N_k o \{\Pi, \Pi\}$ имеют общие переменные,

т. е. таковы, что, без ограничения общности, выполнено:

- $M_1 = N_1, M_2 = N_2, \ldots, M_\ell = N_\ell$
- $P = P(x_1, x_2, \ldots, x_{\ell}, y_{\ell+1}, \ldots, y_n),$
- и $Q = Q(x_1, x_2, \dots, x_{\ell}, z_{\ell+1}, \dots, z_k),$

то в определение их конъюнкции вносятся соответствующие правки:

Замечание

$$M_1=N_1,\; M_2=N_2,\; \ldots,\; M_\ell=N_\ell, \ P=P(x_1,x_2,\ldots,x_\ell,y_{\ell+1},\ldots,y_n), \ \mathrm{if}\;\; Q=Q(x_1,x_2,\ldots,x_\ell,z_{\ell+1},\ldots,z_k),$$

- $P \wedge Q : M_1 \times \cdots \times M_\ell \times M_{\ell+1} \times \cdots \times M_n \times N_{\ell+1} \times \cdots \times N_k \to \{\Pi, \Pi\}$, т. е. $P \wedge Q (n+m-\ell)$ -местный;
- для любых $a_1 \in M_1, a_2 \in M_2, \ldots, a_\ell \in M_\ell$, любых $b_{\ell+1} \in M_{\ell+1}, \ldots, b_n \in M_n$, и любых $c_{\ell+1} \in N_{\ell+1}, \ldots, c_k \in M_k$ высказывание $(P \land Q)(a_1, a_2, \ldots, a_\ell, b_{\ell+1}, \ldots, b_n, c_{\ell+1}, \ldots, c_k)$ истинно тогда и только тогда, когда истинны оба высказывания $P(a_1, a_2, \ldots, a_\ell, b_{\ell+1}, \ldots, b_n)$ и $Q(a_1, a_2, \ldots, a_\ell, c_{\ell+1}, \ldots, c_k)$.

Пример:

$$P: \mathbb{R}^2 \to \{\Pi, \mathsf{M}\}, \ Q: \mathbb{N} \times \mathbb{R} \to \{\Pi, \mathsf{M}\},$$
 $P(x,y) = \ll x < y \gg$, $Q(x,y) = \ll x = y \gg$.

- $P(x,y) \wedge Q(x,y)$ не определён;
- $P(x, y) \land Q(z, t) = \langle x < y \text{ if } z = t \rangle = R(x, y, z, t);$
- $P(x,y) \land Q(z,y) = \langle x < y \text{ if } z = y \rangle = S(x,y,z).$

Определения остальных известных вам логических операций:

- дизъюнкции,
- импликации,
- эквивалентности

но над предикатами, вводится по аналогии с определением конъюнкции предикатов.

Пример:

$$A=\{1,2,3,4,5\},\ B=\{\bigcirc,\triangle,\Box\},\ P(x):A \to \{\Pi, \Pi\}, R(z):B \to \{\Pi, \Pi\}$$
— предикаты.

X	1	2	3	4	5
P(x)	И	И	Л	И	Л

Z	0	Δ	
R(z)	И	И	Л

		Z		Δ	
		R(z)	И	И	Л
Х	P(x)	$P(x) \rightarrow R(z)$			
1	И		И	И	Л
2	И		И	И	Л
3	Л		И	И	И
4	И		И	И	Л
5	Л		И	И	И

§17. Кванторные операции над предикатами

Квантор всеобщности (для одноместных предикатов)

Интуитивное представление

Пусть $P:M \to \{\Pi,\Pi\}$ — одноместный предикат на множестве M.

Рассмотрим высказывание

ullet «для всех $a\in M$ высказывание P(a) истинно». Обозначим его orall x P(x).

Неофициальные примеры:

 $\forall x P(x) =$ «для всех $a \in M$ высказывание P(a) истинно». $B = \{\bigcirc, \triangle, \square\},$ $R(z) : B \to \{\Pi, M\}, \ S(z) : B \to \{\Pi, M\}, \ T(z) : B \to \{\Pi, M\}$ — предикаты.

Z	0	Δ	
R(z)	И	И	И
S(z)	Л	Л	Л
T(z)	Л	И	Л

$\forall z R(z)$	И
$\forall z S(z)$	Л
$\forall z T(z)$	Л

Официальное определение

$$orall x P(x) = egin{cases} \mathsf{M}, & ext{ если для каждого } a \in M \ & ext{ высказывание } P(a) \text{ истинно;} \ \mathsf{Л}, & ext{ если для некоторого } b \in M \ & ext{ высказывание } P(b) \text{ ложно.} \end{cases}$$

Или, что то же самое:

$$\forall x P(x) = egin{cases} \mathsf{M}, & \mathsf{если} \ P(x) - \mathsf{тож} \mathsf{дественно-истинный на} \ M; \ \mathsf{J}, & \mathsf{если} \ P(x) - \mathsf{опровержимый на} \ M \ предикат. \end{cases}$$

Официальные примеры

- 1) $P: \mathbb{R} \to \{\Pi, \mathsf{M}\}, \ P(x) = \langle \mathsf{M} | \geqslant 0 \rangle.$ $\forall x P(x) = \mathsf{M}.$
- 2) $Q_1:\mathbb{N} o \{\Pi, \mathsf{M}\},\; Q_1(x)= ext{«}x-$ простое число». $orall x Q_1(x)=\Pi.$
- 3) $Q_2:\mathbb{P} o \{\mathsf{\Pi},\mathsf{M}\}$, где \mathbb{P} множество простых чисел; $Q_2(x)= \ll x$ простое число». $orall x Q_2(x)=\mathsf{M}.$

- Значок ∀ называется квантором (все)общности.
 (от лат. quantus сколько)
- Высказывание $\forall x P(x)$ могут называть универсальным высказыванием о предикате P(x).

<u>За</u>мечания

 $\forall x P(x) =$ «для всех $a \in M$ высказывание P(a) истинно».

- $\forall x P(x) = \Pi$ равносильно тому, что не для всех $a \in M$ высказывание P(a) истинно, т. е. для некоторого(!) $b \in M$ высказывание P(b) ложно.
- Высказывание «для всех $a \in M$ высказывание P(a) ложно» записывается в виде $\forall x \overline{P}(x)$.

Квантор существования (для одноместных предикатов)

Интуитивное представление

Пусть $P: M \to \{ \Pi, \Pi \}$ — одноместный предикат на множестве M.

Рассмотрим высказывание

ullet «для некоторого $a\in M$ высказывание P(a) истинно». Обозначим его $\exists x P(x)$.

Неофициальные примеры:

 $\exists x P(x) =$ «для некоторого $a \in M$ высказывание P(a) истинно».

$$B = \{ \bigcirc, \triangle, \square \},$$

$$R(z): B \to \{\Pi, M\}, \ S(z): B \to \{\Pi, M\}, \ T(z): B \to \{\Pi, M\}$$
— предикаты.

$\exists z R(z)$	И
$\exists z S(z)$	Л
$\exists z T(z)$	И

$\forall z R(z)$	И
$\forall z S(z)$	Л
$\forall z T(z)$	Л

Официальное определение

$$\exists x P(x) = egin{cases} \mathsf{M}, & \text{если для некоторого } a \in M \\ & \text{высказывание } P(a) \text{ истинно;} \\ \mathsf{\Pi}, & \text{если для всех } b \in M \\ & \text{высказывание } P(b) \text{ ложно.} \end{cases}$$

Или, что то же самое:

$$\exists x P(x) = \begin{cases} \mathsf{VI}, & \mathsf{если}\ P(x) - \mathsf{выполнимый}\ \mathsf{н}\ M\ \mathsf{предикат}; \\ \mathsf{II}, & \mathsf{если}\ P(x) - \mathsf{тождественно-ложный}\ \mathsf{н}\ M. \end{cases}$$

Официальные примеры

- 1) $P^1 : \mathbb{R} \to \{\Pi, \Pi\}, \ P^1(x) = \langle |x| \geqslant 5 \rangle.$ $\exists x P^1(x) = \Pi.$
- 2) $Q_1^1: \mathbb{N} \to \{ \Pi, \mathsf{M} \}, \ Q_1^1(x) = «x —$ простое число». $\exists x Q_1^1(x) = \mathsf{M}.$
- $Q_2^1:\mathbb{N}\setminus\mathbb{P} o\{\Pi,\mathsf{M}\}$, где \mathbb{P} множество простых чисел; $Q_2^1(x)=\ll x$ простое число». $\exists xQ_2^1(x)=\Pi.$

- Значок \exists называется квантором существования.
- Высказывание $\exists x P(x)$ могут называть экзистенциональным высказыванием о предикате P(x).

Замечания

 $\exists x P(x) =$ «для некоторого $a \in M$ высказывание P(a) истинно».

- $\exists x P(x) = \Lambda$ равносильно тому, что нет такого $a \in M$, что высказывание P(a) истинно, т. е. для всех(!) $b \in M$ высказывание P(b) ложно.
- Высказывание «для некоторого $a \in M$ высказывание P(a) ложно» записывается в виде $\exists x \overline{P}(x)$.

Квантор всеобщности (общий случай)

Интуитивное представление

Пусть $P:M^n \to \{ \Pi, \Pi \} - n$ -местный предикат на множестве M, т. е. $P=P^n(x_1,x_2,\ldots,x_n)$. Рассмотрим объект $Q(x_2,x_3,\ldots,x_n)=$ • = «для всех $a\in M$

"высказывание" $P(a,x_2,x_3,\ldots,x_n)$ истинно». Обозначим его $\forall x_1 P(x_1,x_2,\ldots,x_n)$. В общем случае, $Q(x_2,x_3,\ldots,x_n)$ — это (n-1)-местный предикат на множестве M.

(Высказывания для удобства считаем 0-местными предикатами.)

Неофициальный пример

$$A = \{1, 2, 3, 4, 5\}, \ B = \{a, b, c, d\},$$

 $P : A \times B \rightarrow \{\Pi, \Pi\}$ — предикат.

	У	a	b	С	d	
X	P(x,y)	P(x, a)	P(x,b)	P(x,c)	P(x,d)	$\forall y P(x,y)$
1	P(1,y)	И	Л	И	Л	Л
2	P(2,y)	Л	Л	И	Л	Л
3	P(3,y)	И	Л	И	И	Л
4	P(4,y)	И	Л	И	И	Л
5	P(5,y)	И	И	И	И	И
	$\forall x P(x,y)$	Л	Л	И	Л	

Официальное определение

 $\forall x_1 P(x_1, x_2, \dots, x_n) - n - 1$ -местный предикат, обладающий следующим свойством: при любых предметах $c_2, c_3, \dots, c_n \in M$:

$$orall x_1 P(x_1, c_2, c_3, \dots, c_n) = egin{cases} \mathcal{N}, & \text{если для каждого } a \in M \ & \text{высказывание } P(a, c_2, c_3, \dots, c_n) \ & \text{истинно;} \ \mathcal{N}, & \text{если для некоторого } b \in M \ & \text{высказывание } P(b, c_2, c_3, \dots, c_n) \ & \text{ложно.} \end{cases}$$

Официальное определение

Иными словами, $\forall x_1 P(x_1, x_2, \dots, x_n) - n - 1$ -местный предикат, обладающий следующим свойством: при любых предметах $c_2, c_3, \dots, c_n \in M$:

$$\forall x_1 P(x_1, c_2, c_3, \dots, c_n) = \begin{cases} \mathsf{V}, & \mathsf{если}\ P(x_1, c_2, c_3, \dots, c_n) - \mathsf{предикат}, \\ & \mathsf{тождественно-истинный} \end{cases}$$
 по переменной x_1 на M ;
$$\mathsf{Л}, & \mathsf{если}\ P(x_1, c_2, c_3, \dots, c_n) - \mathsf{предикат}, \\ & \mathsf{опровержимый} \\ & \mathsf{по}\ \mathsf{переменной}\ x_1 \\ & \mathsf{на}\ M. \end{cases}$$

Тот же неофициальный пример

$$A = \{1, 2, 3, 4, 5\}, \ B = \{a, b, c, d\},$$

 $P : A \times B \rightarrow \{\Pi, \Pi\}$ — предикат.

	У	а	Ь	С	d	
X	P(x,y)	P(x, a)	P(x,b)	P(x,c)	P(x,d)	$\forall y P(x,y)$
1	P(1,y)	И	Л	И	Л	Л
2	P(2,y)	Л	Л	И	Л	Л
3	P(3,y)	И	Л	И	И	Л
4	P(4,y)	И	Л	И	И	Л
5	P(5,y)	И	И	И	И	И
	$\forall x P(x,y)$	Л	Л	И	Л	

Квантор существования (общий случай)

Пусть $P:M^n \to \{\Pi, \Pi\}$ — n-местный предикат

Интуитивное представление

предикат на множестве M.

предикатами.)

на множестве M, т. е. $P=P^n(x_1,x_2,\ldots,x_n)$. Рассмотрим объект $Q(x_2,x_3,\ldots,x_n)=$ • = «для некоторого $a\in M$ "высказывание" $P(a,x_2,x_3,\ldots,x_n)$ истинно». Обозначим его $\exists x_1 P(x_1,x_2,\ldots,x_n)$. В общем случае, $Q(x_2,x_3,\ldots,x_n)$ — это (n-1)-местный

(Высказывания для удобства считаем 0-местными

Другой неофициальный пример

$$A = \{1, 2, 3, 4, 5\}, \ B = \{a, b, c, d\},$$
 $Q: A \times B \rightarrow \{\Pi, \Pi\}$ — предикат.

	у	a	b	С	d	
X	Q(x,y)	Q(x,a)	Q(x,b)	Q(x,c)	Q(x,d)	$\exists y Q(x,y)$
1	Q(1,y)	И	Л	И	Л	И
2	Q(2,y)	Л	Л	И	Л	И
3	Q(3,y)	И	Л	И	И	И
4	Q(4,y)	Л	Л	Л	Л	Л
5	Q(5,y)	И	Л	И	Л	И
	$\exists x Q(x,y)$	И	Л	И	И	

Официальное определение

 $\exists x_1 P(x_1, x_2, \dots, x_n) - n - 1$ -местный предикат, обладающий следующим свойством: при любых предметах $c_2, c_3, \dots, c_n \in M$:

$$\exists x_1 P(x_1, c_2, c_3, \dots, c_n) = egin{cases} \mathcal{N}, & \text{если для некоторого } a \in M \\ & \text{высказывание } P(a, c_2, c_3, \dots, c_n) \\ & \text{истинно}; \\ \mathcal{N}, & \text{если для всех } b \in M \\ & \text{высказывание } P(b, c_2, c_3, \dots, c_n) \\ & \text{ложно}. \end{cases}$$

Официальное определение

Иными словами, $\exists x_1 P(x_1, x_2, \dots, x_n) - n - 1$ -местный предикат, обладающий следующим свойством: при любых предметах $c_2, c_3, \dots, c_n \in M$:

$$\exists x_1 P(x_1, c_2, c_3, \dots, c_n) = \begin{cases} \mathsf{V}, & \mathsf{если}\ P(x_1, c_2, c_3, \dots, c_n) - \mathsf{предикат}, \\ \mathsf{выполнимый} \\ \mathsf{по}\ \mathsf{переменной}\ x_1 \\ \mathsf{на}\ M; \\ \mathsf{Л}, & \mathsf{если}\ P(x_1, c_2, c_3, \dots, c_n) - \mathsf{предикат}, \\ \mathsf{тождественно-ложный} \\ \mathsf{по}\ \mathsf{переменной}\ x_1 \\ \mathsf{на}\ M. \end{cases}$$

Тот же другой неофициальный пример

$$A = \{1, 2, 3, 4, 5\}, \ B = \{a, b, c, d\},$$
 $Q: A \times B \rightarrow \{\Pi, \Pi\}$ — предикат.

	у	a	b	С	d	
X	Q(x,y)	Q(x,a)	Q(x,b)	Q(x,c)	Q(x,d)	$\exists y Q(x,y)$
1	Q(1,y)	И	Л	И	Л	И
2	Q(2,y)	Л	Л	И	Л	И
3	Q(3,y)	И	Л	И	И	И
4	Q(4,y)	Л	Л	Л	Л	Л
5	Q(5,y)	И	Л	И	Л	И
	$\exists x Q(x,y)$	И	Л	И	И	

Официальные примеры

1)
$$P^2 : \mathbb{R}^2 \to \{\Pi, \mathbb{M}\}, \ P^2(x, y) = \|x| \geqslant y \}.$$

 $\forall x P^2(x, y) = F^1(y).$
 $F^1(1) = \forall x (|x| \geqslant 1) = \Pi;$
 $F^1(0) = \forall x (|x| \geqslant 0) = \mathbb{M}.$

2)
$$Q^2 : \mathbb{R}^2 \to \{\Pi, \mathbb{M}\}, \ Q^2(x, y) = \ll |x| < y \gg .$$

 $\exists x Q^2(x, y) = G^1(y).$
 $G^1(1) = \exists x (|x| < 1) = \mathbb{M};$
 $G^1(0) = \exists x (|x| < 0) = \Pi.$

Официальные примеры

- 3) $R^2 : \mathbb{N}^2 \to \{\Pi, \mathsf{M}\},\$ $R^2(x,y) = \langle x < y \rangle.$
 - $\exists y R^2(x,y) = \exists y (x < y)$ тождественно-истинный предикат, поэтому $\forall x \exists y R^2(x,y) = \forall x \exists y (x < y) = \mathsf{N}$.
 - $\forall y R^2(x,y) = \forall y (x < y)$ тождественно-ложный предикат, поэтому

 $\exists x \forall y R^2(x,y) = \Lambda.$