Monte-Carlo Learning

Mattia Pellegrino, Ph.D Fellow mattia.pellegrino@unipr.it

Summary

- Monte-Carlo Learning (Model free prediction)
- Monte-Carlo Learning (Model free control)

MONTE-CARLO RF

- Monte Carlo methods learn directly from episodes of experience
- Monte Carlo is classified as model-free (no knowledge of MDP transitions/rewards)
- MC learns from complete episodes
- Mac use the man return as value → value = mean return

- MC can only be applied to episodic MDPS
 - All episodes must terminate

MC POLICY EVALUATION

ullet We want to learn V_π from episodes of experience under policy ${\mathcal T}$

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

Recap: the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Recap: value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

 Monte-Carlo policy evaluation used empirical mean return instead of expected return

POLICY EVALUATION: FIRST ITERATION

- To evaluate state s
- The FIRST time-step t that state s is visited in an episode:
 - Counter incrementation: $N(s) \rightarrow N(s) + 1$
 - Total Return incrementation: S(s) ← S(s) + G_t
 - Value is the mean return: V(s) = S(s) / N(s)
 - By the law of large numbers \rightarrow V(s) \rightarrow V_{π}(s) as N(s) \rightarrow ∞

POLICY EVALUATION: EVERY ITERATION

- To evaluate state s
- EVERY time-step t that state s is visited in an episode:
 - Counter incrementation: $N(s) \rightarrow N(s) + 1$
 - Total Return incrementation: $S(s) \leftarrow S(s) + G_{t}$
 - Value is the mean return: V(s) = S(s) / N(s)
 - By the law of large numbers \rightarrow V(s) \rightarrow V_{π}(s) as N(s) \rightarrow ∞

EXAMPLE - BLACK JACK

- States (200 of them):
 - Current sum (12-21)
 - Dealer's showing card (ace-10)
 - Do I have a "useable" ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action twist: Take another card (no replacement)
- Reward for stick:
 - +1 if sum of cards > sum of dealer cards
 - o 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
- Reward for twist:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Transitions: automatically twist if sum of cards < 12

EXAMPLE - BLACK JACK

- Policy:
 - Stick
 - Sum of cards >= 20
 - Twist
 - Otherwise

INCREMENTAL MEAN

• The mean μ_1, μ_2, \ldots of a sequence x_1, x_2, \ldots can be computed incrementally

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$

$$= \frac{1}{k} \left(x_{k} + (k-1)\mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left(x_{k} - \mu_{k-1} \right)$$

INCREMENTAL UPDATES

- Update V(s) incrementally after episode S₁,A₁,R₂, ..., S_T
- For each S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + 1 / N(S_t) (G_t - V(S_t))$$

 In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

MONTECARLO - MODEL CONTROL

- Monte Carlo is an On-policy learning algorithm
 - "Learn on the job"
 - \circ Learn about policy π from experience sampled from π

POLICY ITERATION (REFRESH)

Policy evaluation

 \rightarrow Estimate v_{π}

Policy improvement

 \rightarrow Generate $\pi' >= \pi$

POLICY ITERATION (MONTECARLO)

Policy evaluation Monte-Carlo policy evaluation $V = v_{\pi}$?

Policy improvement: Greedy?

MONTE-CARLO - POLICY ITERATION WITH ACTION-VALUE FUNCTION

Greedy policy improvement over V(s) requires a model of MDP

$$\pi'(s) = \operatorname*{argmax}_{s \in \mathcal{A}} \mathcal{R}^{a}_{s} + \mathcal{P}^{a}_{ss'} V(s')$$

Greedy policy improvement over Q(s,a) is model-free

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

POLICY ITERATION (MONTECARLO)

Policy evaluation Monte-Carlo policy evaluation Q = q_{π}

Policy improvement: Greedy?

EXAMPLE OF GREEDY ACTION SELECTION

- There are two doors in front of you
- Open left door (reward 0) → V(left) = 0
- Open left door (reward +1) → V(right) = +1
- Open left door (reward +3) \rightarrow V(right) = +2
- Open left door (reward +2) \rightarrow V(right) = +2
- We've chosen the best door?

ε-Greedy Exploration

- Simplest idea for ensuring continual exploration
- All m actions are tried with non-zero probability
- With probability 1ϵ choose the greedy action
- With probability choose an action at random

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ Q(s,a) \ & a \in \mathcal{A} \ \epsilon/m & ext{otherwise} \end{array}
ight.$$

ε-Greedy Improvement

- Theorem
 - ∘ For any ε-greedy policy π, the ε-greedy policy π' with respect to q_{π} is an improvement, $v_{\pi'}(s) \ge v_{\pi}(s)$

$$q_{\pi}(s, \pi'(s)) = \sum_{a \in \mathcal{A}} \pi'(a|s)q_{\pi}(s, a)$$

$$= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

$$\geq \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \epsilon/m}{1 - \epsilon} q_{\pi}(s, a)$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s)q_{\pi}(s, a) = v_{\pi}(s)$$

• From policy improvement theorem $v_{\pi}(s) \ge v_{\pi}(s)$

POLICY ITERATION (MONTE-CARLO)

Policy evaluation Monte-Carlo policy evaluation Q = q_{π}

Policy improvement: ε-Greedy Policy Improvement

MONTE-CARLO CONTROL

Policy evaluation Monte-Carlo policy evaluation Q \approx q $_{\pi}$

Policy improvement: ε-Greedy Policy Improvement

GLIE

- Greedy in the Limit with Infinite Exploration (GLIE)
 - All state-action pairs are explored infinitely many times

$$\lim_{k \to +\infty} N_k(s, a) = \infty$$

The policy converges on a greedy policy

$$\lim_{k \to +\infty} \pi_k(a|s) = 1(a = argmax_{a' \in A}Q_k(s, a'))$$

GLIE - MONTE-CARLO

- Sample kth episode using $\pi: S_1, A_1, R_2, \ldots, S_T \sim \pi$
- For each state S_t and action A_t in the episode

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + 1/N(S_t, A_t) (G_t - Q(S_t, A_t))$$

Improve policy based on new action-value function

$$\epsilon \leftarrow 1/k$$

 $\pi \leftarrow \epsilon$ -greedy(Q)

• Theorem: GLIE Monte-Carlo converges to the optimal action-value function $Q(s,a) \rightarrow q_*(s,a)$

MONTE-CARLO CONTROL (BLACKJACK)

ASSIGNMENT: MONTE CARLO LEARNING A STUDENT DECISION-MAKING PROBLEM

ASSIGNMENT: BUILDING A STUDENT DECISION-MAKING PROBLEM

Understand Monte Carlo Learning:

- Read and comprehend the provided code.
- Add comments to the code to explain each part.

Visualize the Student Chain Problem:

- Use NetworkX to build a graph of the states.
- Highlight the best policy in red on the graph.

ASSIGNMENT: MONTE CARLO LEARNING A STUDENT DECISION-MAKING PROBLEM

Submission:

- Submit the Python Jupyter script containing the code and comments
- https://shorturl.at/JMn8r Expiration date: 1st June 2024
- Note: Ensure the code is well-commented and understandable.
 Avoid using external guidance or assistance, as the purpose of the assignment is to demonstrate understanding and implementation independently.