Transmission par engrenages

Définition Engrenage Un engrenage est constitué de deux roues dentées en contact. Une roue dentée est caractérisée (entre autre) par son nombre de dents Z, son diamètre primitif D en mm et son module en mm. On a D=mZ. Pour que deux dents engrènent elles doivent avoir le même module.

Engrenage - Contact extérieur

Résultat

$$\frac{\omega(2/0)}{\omega(1/0)} = (-1)^n \frac{Z_1}{Z_2} = -\frac{Z_1}{Z_2}$$

n caractérise le nombre de contacts extérieurs, ici n = 1.

Engrenage - Contact intérieur

Résultat

$$\frac{\omega(2/0)}{\omega(1/0)} = (-1)^n \frac{Z_1}{Z_2} = +\frac{Z_1}{Z_2}$$

n caractérise le nombre de contacts extérieurs, ici n = 0.

Train d'engrenages à axes fixes

Résultat

$$\frac{\omega(4/0)}{\omega(1/0)} = (-1)^n \frac{\Pi Z_{\text{menantes}}}{\Pi Z_{\text{menées}}} = -\frac{Z_1 Z_{22}}{Z_{21} Z_4}$$

n caractérise le nombre de contacts extérieurs, ici n=1.

Train d'engrenages épicycloïdal

Méthode 1. On identifie le porte-satellite, ici 3.

- 2. On bloque le porte-satellite. On peut alors se ramener au cas du train simple (voir ci-dessus).
- 3. On écrit le rapport de vitesse **par rapport au porte-satelltite** $\mathbf{3}: \frac{\omega(4/3)}{\omega(1/3)} = -\frac{Z_1 Z_{22}}{Z_{21} Z_4} = K \text{ (raison du train épicycloïdal)}.$
- 4. En fonction de la roue bloquée, on réalise une décomposition des vitesses. Par exemple, Si 4 est bloquée, on peut chercher à établir $\frac{\omega(3/0)}{\omega(1/0)}$.
- 5. On repart du point 3 et on a : $\frac{\omega(4/3)}{\omega(1/3)} = K \iff \frac{\omega(4/0) + \omega(0/3)}{\omega(1/0) + \omega(0/3)} = K$ $\iff \frac{-\omega(3/0)}{\omega(1/0) \omega(3/0)} = K \iff \frac{\omega(3/0)}{\omega(1/0)} = \frac{K}{K 1}.$

1

Système pignon – crémaillère

Résultat Soit *R* le rayon primitif du pignon. On a $V(2/0) = \pm R \omega(1/0)$.

Transmission par poulie chaine et par poulie courroie

Résultat
$$\frac{\omega(2/0)}{\omega(1/0)} = \frac{D_1}{D_2}$$
.

Roue et vis sans fin

Résultat Soit Z le nombre de dents de la roue et n le nombre de filets de la vis, on a $\frac{\omega(2/0)}{\omega(1/0)} = \pm \frac{n}{Z}.$

Système vis-écrou

Résultat En notant v la vis et e l'écrou, soit p le pas de la vis (ici à droite) on a $v(v/e) = \omega(v/e) \frac{\text{pas}}{2\pi}$.