- (a). Find all possible dc operating points of the circuit shown in Fig. 1. (10%) (b). For each operating point draw the small-signal equivalent circuit. (5%)
- Find the current-controlled, hybrid 1, and transmission 1 representations of the two-port shown in Fig. 2. (The independent variables for the three representations are: current-controlled:  $i_1$ ,  $i_2$ , hybrid 1:  $i_1$ ,  $v_2$  and transmission 1:  $v_2$ ,  $i_2$ .) (15%)







Fig. 2

Fig. 1

3. Plot the equivalent circuits for three operating regions of the practical operational amplifiers with saturated voltages ±E<sub>sat</sub>. (15%)

4. Describe the four theorems in the Chapter 5. (15%)

5.(10%)

- (a) What is a relaxation point of a charge-controlled capacitor  $\hat{V}(q)$ ?
- (b) Show that if a nonlinear capacitor has more than one relaxation pint, then each point will give the same stored energy  $\varepsilon_c(Q)$

## 6.(30%)

Assume an ideal op-amp model in linear region for the circuit in Fig 3., and assume that the switch S is closed for all time for part (a),(b),(c),(d). Let Vo(t) be the response

- (a) Find the response when Vs(t) is the unit step, u(t)
- (b) Find the response when Vs(t) is the unit impulse,  $\delta(t)$
- (c) Find the response when Vs(t) is as follows:



- (d) Find i(t) when Vs(t) is as part(c)
- (e) Let Vs(t) =1 V. Find Vo(t) when the switch S is open and closed as follows:





Fig. 3