中国农业大学

2023~2024 学年春季学期

数学分析 📗 课程考试试题

题号	_	 三	四	总分
分数				

(本试卷共4道大题) 考生诚信承诺

本人承诺自觉遵守考试纪律,诚信应考,服从监考人员管理。

本人清楚学校考试考场规则,如有违纪行为,将按照学校违纪处分规定严肃处理。

- 一、选择题:本题共 5 小题, 每小题 3 分, 共 15 分。在每小题给出的四个选项中, 只有一项是 符合题目要求的。
- 1. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 满足下极限 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = A, 0 < A < +\infty$, 那么下面正确的论断是

A. $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径必定等于 $\frac{1}{A}$ B. $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径可能大于 $\frac{1}{A}$.

)

(

C. $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径必定小于 $\frac{1}{A}$.

D. 以上说法都不对

- 2. 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是一个连续映射, 以下说法不正确的是
 - A. 若 $K \subset \mathbb{R}^n$ 是紧集, 则它的像集 f(K) 必然也是 \mathbb{R}^m 中的紧集
 - B. 若 $K \subset \mathbb{R}^n$ 是闭集, 则它的像集 f(K) 必然也是 \mathbb{R}^m 中的闭集
 - C. 若 $E \subset \mathbb{R}^m$ 是闭集, 则它的原像集 $f^{-1}(E)$ 必然也是 \mathbb{R}^n 中的闭集
 - D. 若 $E \subset \mathbb{R}^m$ 是开集, 则它的原像集 $f^{-1}(E)$ 必然也是 \mathbb{R}^n 中的开集
- 3. 设二元函数 f(x,y) 在点 $(x_0,y_0)\in\mathbb{R}^2$ 的某个去心邻域 $\mathring{O}((x_0,y_0),\delta)$ 内有定义. 那么关 于 f(x,y) 在点 (x_0,y_0) 处的二重极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 以及二次极限 $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$,

 $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$ 的存在性以及取值的情况,下面哪一种情况是不可能的

$$\text{A. } \lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = \lim_{y\to y_0} \lim_{x\to x_0} f(x,y) = 1$$

- $\lim_{(x,y)\to(x_0,y_0)} f(x,y) \; \text{$\vec{\Lambda}$} \\ \vec{F} \vec{E}, \\ \lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = 2, \\ \lim_{y\to y_0} \lim_{x\to x_0} f(x,y) = 1$
- $\lim_{(x,y)\to(x_0,y_0)} f(x,y) \; \overline{\wedge} \\ \bar{r} \\ \bar{e}, \\ \lim_{x\to x_0} \lim_{y\to y_0} f(x,y) \; \\ \text{\mathbb{U}} \\ \overline{\wedge} \\ \bar{r} \\ \bar{e}, \\ \lim_{y\to y_0} \lim_{x\to x_0} f(x,y) = 2$
- D. $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = 1, \lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = 2, \lim_{y\to y_0} \lim_{x\to x_0} f(x,y)$ 不存在.

学院:_	班级:	学号:	姓名:
J 1/4 -	シェッ ス・	1 7 •	<u>/</u> ⊥. ⊔ •

- 4. 设 f 是定义在闭区间 [a,b] 上的函数. 以下关于函数 f 说法正确的是
 - A. 若 f 单调,则 f 必然 Riemann 可积
 - B. 若f有界,则f必然 Riemann 可积
 - C. 若 $\int_a^b |f(x)| dx = 0$, 则 f 在闭区间 [a,b] 上恒等于 0
 - D. 若 f 是 [a,b] 上 Riemann 可积函数, 且值域包含于闭区间 [A,B], g 为定义在 [A,B] 上的另一个 Riemann 可积函数, 则它们的复合 $g \circ f$ 也必然是 Riemann 可积的.
- 5. 设正项级数 $\sum_{n=1}^{\infty}a_n$ 发散, $S_n=\sum_{k=1}^na_k$, 满足 $\lim_{n\to\infty}\frac{a_n}{S_n}=0$, 那么幂级数 $\sum_{n=1}^{\infty}a_nx^n$ 的收敛半 径为
 - A. $+\infty$

B. 0

C. 1

D. 某个小于1的正实数

)

- 二、填空题: 本题共 5 小题, 每小题 3 分, 共 15 分。
 - 1. 定积分 $\int_{-3\pi/2}^{\pi/2} \sin(2x)\sin(5x) dx = ____.$
- 2. 设函数 $S(x) = \int_0^x |\sin t| \mathrm{d}t$,则 $\lim_{x \to +\infty} \frac{S(x)}{x} = \underline{\hspace{1cm}}$.
- 3. 若反常积分 $\int_{1}^{+\infty} \frac{\ln x}{x^p} dx$ 收敛, 则实数 p 可以取值的范围为 _____.
- 4. 若幂级数 $\sum_{n=0}^{\infty} a_n x^{2n+1}$ 的收敛半径是 2, 那么幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径是 _____.
- 5. 二重极限 $\lim_{(x,y)\to(0,0)} \frac{\sin(x^3+y^5)}{x^2+y^2} =$ _____.
- 三、计算题: 本题共 2 小题, 共 20 分。本题应写出具体演算步骤。
 - 1. (10 分) 求 Archimedes 螺线 $r(\theta)=a\theta, a>0$, 第一圈 (对应 $\theta\in[0,2\pi]$) 的弧长.
 - 2. (10 分) 计算函数 $f(x) = x \cot x$ 在 x = 0 附近直到 x^4 的幂级数展开.
- 四、解答题: 本题共 5 小题, 共 50 分。解答应写出文字说明或者证明过程。
 - 1. (8 分) 记 $M_n(\mathbb{R})$ 为 n 阶实方阵全体构成的集合, 通过如下的一一映射

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \mapsto (a_{11}, \cdots, a_{1n}, a_{21}, \cdots, a_{2n}, \cdots, a_{nn})$$

可以将 $M_n(\mathbb{R})$ 视作 n^2 维 Euclid 空间 \mathbb{R}^{n^2} . 记 $M_n(\mathbb{R})$ 中所有可逆方阵构成的集合为 $\mathrm{GL}_n(\mathbb{R})$, 即

$$\operatorname{GL}_n(\mathbb{R}) = \{ A \in \operatorname{M}_n(\mathbb{R}) : \det A \neq 0 \}.$$

证明 $\mathrm{GL}_n(\mathbb{R})$ 在 $\mathrm{M}_n(\mathbb{R})$ 中不是道路连通的.

- 2. $(10 \, f)$ 求证函数 $f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0, \\ 0, & x = 0 \end{cases}$ 在任何形如 (-a,a), a > 0, 的区间上, 都不能表示为某个在 (-a,a) 上收敛的幂级数的和函数.
- 3. (10 分)设函数项级数 (称为 Dirichlet 级数) $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 在 $x = x_0 \in \mathbb{R}$ 处收敛.
 - (1) 证明 $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 在 $x \in [x_0, +\infty)$ 上一致收敛.
 - (2) 任取 $x > x_0 + 1$, 证明 $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 绝对收敛.
- 4. (10 分) 叙述并证明 n 维 Euclid 空间 \mathbb{R}^n 中的 Cantor 闭区域套定理.
- 5. (12 分)设 $\sum_{n=1}^{\infty}a_n$ 为数项级数, 令 $S_n=\sum_{k=1}^na_k$ 为其通项的前 n 项和, $\sigma_n=\frac{1}{n}\sum_{k=1}^ns_k$ 为数 列 $\{s_n\}$ 的前 n 项均值.
 - (1) 若数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 证明幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的和函数在闭区间 [0,1] 上有定义 (即幂级数在此区间上收敛) 且连续.
 - (2) 设 $\lim_{n\to\infty}\sigma_n=A\in\mathbb{R}, A\neq 0$. 证明幂级数 $\sum_{n=1}^\infty n\sigma_nx^n, \sum_{n=1}^\infty s_nx^n, \sum_{n=1}^\infty a_nx^n$ 的收敛半径 都大于等于 1, 并证明等式 $\sum_{n=1}^\infty a_nx^n=(1-x)^2\sum_{n=1}^\infty n\sigma_nx^n$ 在 |x|<1 时恒成立.
 - (3) 利用 $(1-x)^{-1}$ 在 |x| < 1 内的幂级数展开

$$(1-x)^{-1} = 1 + x + x^2 + \cdots$$

求函数 $\frac{1}{(1-x)^2}$ 的幂级数展开, 并验证等式 $1=(1-x)^2\sum_{n=0}^{\infty}(n+1)x^n$ 在 |x|<1 时恒成立. 由此证明

$$\lim_{x \to 1-} \sum_{n=1}^{\infty} a_n x^n = A.$$