AR and MA models

Time Series for Business

The autoregressive model AR(p)

The AR(1) model

$$X_t = \phi_0 + \phi_1 X_{t-1} + w_t$$

where $w_t \sim WN(0, \sigma^2)$.

Properties of AR(1) process:

$$egin{array}{lcl} E(X_t) &=& \phi_0 \ Var(X_t) &=& rac{\sigma^2}{1-\phi_1^2} \ if \ |\phi_1| < 1 \ &
ho(h) &=& \phi_1^h \end{array}$$

ACF examples of AR(1) processes.

```
ts.sim = arima.sim(list(order = c(1,0,0), ar = 0.8),
n = 200);
acf(ts.sim,lag.max=12);
```

AR(1) with positive ϕ_1 .

Figure: ACF when ϕ_1 =0.8

AR(1) with negative ϕ_1 .

```
ts.sim = arima.sim(list(order = c(1,0,0), ar = -0.8),
n = 200);
acf(ts.sim,lag.max=12);
```


AR(1) with small ϕ_1 .

Figure: ACF when ϕ_1 =0.2

AR(1) with large ϕ_1 . What are the differences?

Figure: ACF when ϕ_1 =0.99

Properties of AR(1)

• As we discussed before, the stationary condition for AR(1) process is $|\phi_1| < 1$.

$$X_t = \phi_0 + \phi_1 X_{t-1} + w_t$$
$$Var(X_t) = \phi_1^2 Var(X_{t-1}) + \sigma^2$$

Due to stationarity,

$$(1-\phi_1^2)Var(X_t)=\sigma^2,$$

thus $|\phi_1| < 1$.

• Condition on the past, X_t 's dependency on the past can be characterized by X_{t-1} , we have

$$E(X_t|X_{t-1}) = \phi_0 + \phi_1 X_{t-1}, \ \ Var(X_t|X_{t-1}) = Var(w_t) = \sigma^2.$$

The AR models

• For AR(1) models, condition on the past, X_t 's dependency on the past can be characterized by X_{t-1} , we have

$$E(X_t|X_{t-1}) = \phi_0 + \phi_1 X_{t-1}, \ \ Var(X_t|X_{t-1}) = Var(w_t) = \sigma^2.$$

For general AR(p) models,

$$X_t = \phi_0 + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + w_t,$$

where $\phi_0 = \mu(1 + \phi_1 + \cdots + \phi_p)$. Here μ is the mean of X_t .

AR(2) with complex roots

• Consider an AR(2) $X_t = 1.5X_{t-1} - 0.75X_{t-2} + w_t$, ts.sim = arima.sim(list(ar = c(1.5,-0.75), n = 200); acf(ts.sim);

Figure: ACF when for AR(2) with complex root

Operations with autoregressive operators

• Use the backshift operator B,

$$X_t = \phi_1 B X_t + \phi_2 B^2 X_t + \dots + \phi_p B^p X_t + w_t$$

We define the AR operator

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$

• Order p AR model is $\phi(B)X_t = w_t$.

The moving average model

• Let $\{w_t\}$ be WN(0, σ^2) process. The MA(q) model is to represent X_t as a linear combination of q white noise variables.

$$X_t = \theta + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}$$

• Using the backward shift operator $B^{j}X_{t}=X_{t-j}$ we can write

$$X_t = \theta(B)w_t$$

where

$$\theta(B) = 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q$$

• The MA process is stationary for any values of θ .

An MA(2) processes

• An MA(2) with $\theta_1 = 0.45$ and $\theta_2 = -0.45$ ts.sim = arima.sim(n=200, list(ma=c(0.45, -0.45), sd = 1))

Figure: MA(2) process

The acf of an MA(2) processes

Figure: ACF of the MA(2) process

• Note the sharp cut-off at lag 2.

