UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ DEPARTAMENTO DE MATEMÁTICAS

TALLER 7 FUNDAMENTOS DE MATEMÁTICAS - II 2019

- 1. Dado el conjunto $T = \{\alpha, \beta, \gamma, \delta, \epsilon, \theta, \eta, \pi, \lambda, \mu, \rho, \omega\}$ construya cuatro conjuntos no vacíos T_1, T_2, T_3 y T_4 tales que:
- a) $T_1 \cup T_2 \cup T_3 \cup T_4 = T$ y $T_1 \cap T_2 \cap T_3 \cap T_4 = \emptyset$. Resuélvalo de dos maneras differentes.
- b) $T_1 \cup T_2 \cup T_3 \cup T_4 = T$ y $T_1 \cap T_2 \cap T_3 \cap T_4 = \emptyset$, y además, $T_i \cap T_i \neq \emptyset$, para todo $i \neq j$ con $i, j \in \{1, 2, 3, 4\}$.
- 2. Considere un conjunto A con 5 elementos. Sean $\{A_i\}$ la colección de subconjuntos unitarios de A y $\{B_i\}$ la colección de subconjuntos de A de tres elementos. Determine si son colecciones disyuntas, dos a dos disyuntas, y si definen una partición sobre A.
- 3. Considere los siguientes conjuntos

$$A_i = \{x \in \mathbb{R} \mid x \ge i\},$$

$$B_i = \{x \in \mathbb{R} \mid |x| < i\},$$

$$C_i = \{x \in \mathbb{R} \mid -i < x \le i\}$$

$$D_i = \{x \in \mathbb{R} \mid x \in \left(-\frac{1}{i}, 3 + \frac{1}{i}\right)\}$$

Determine:

(1) a)
$$\bigcup_{i \in \mathbb{Z}^+} A_i$$
, b) $\bigcup_{i \in \mathbb{R}} A_i$, c) $\bigcap_{i \in \mathbb{Z}^+} A_i$, d) $\bigcap_{i \in \mathbb{R}} A_i$,

(2) a)
$$\bigcup_{i \in \mathbb{Z}^+} B_i$$
, b) $\bigcup_{i \in \mathbb{R}^+} B_i$, c) $\bigcap_{i \in \mathbb{Z}^+} B_i$, d) $\bigcap_{i \in \mathbb{R}^+} B_i$,

$$(1) \text{ a)} \bigcup_{i \in \mathbb{Z}^{+}} A_{i}, \qquad \text{b)} \bigcup_{i \in \mathbb{R}} A_{i}, \qquad \text{c)} \bigcap_{i \in \mathbb{Z}^{+}} A_{i}, \qquad \text{d)} \bigcap_{i \in \mathbb{R}} A_{i},$$

$$(2) \text{ a)} \bigcup_{i \in \mathbb{Z}^{+}} B_{i}, \qquad \text{b)} \bigcup_{i \in \mathbb{R}^{+}} B_{i}, \qquad \text{c)} \bigcap_{i \in \mathbb{Z}^{+}} B_{i}, \qquad \text{d)} \bigcap_{i \in \mathbb{R}^{+}} B_{i},$$

$$(3) \text{ a)} \bigcup_{i \in \mathbb{Z}^{+}} C_{i}, \qquad \text{b)} \bigcup_{i \in \mathbb{R}^{+}} C_{i}, \qquad \text{c)} \bigcap_{i \in \mathbb{Z}^{+}} C_{i}, \qquad \text{d)} \bigcap_{i \in \mathbb{R}^{+}} C_{i},$$

$$(4) \text{ a)} \bigcup_{i \in \mathbb{Z}^{+}} D_{i}, \qquad \text{b)} \bigcap_{i \in \mathbb{Z}^{+}} D_{i}$$

(4) a)
$$\bigcup_{i \in \mathbb{Z}^+} D_i$$
, b) $\bigcap_{i \in \mathbb{Z}^+} D$

- (5) ¿Algunas de las familias de los A_i , B_i , C_i o D_i con i en los conjuntos de índices dados son disyuntas? Disyuntas dos a dos?
- 4. Demuestre que para cualquier conjunto M, y cualquier colección \mathcal{C} , no vacía de subconjuntos de un universo U, se tiene:

a)
$$\left(\bigcup_{A\in\mathcal{C}}A\right)'=\bigcap_{A\in\mathcal{C}}A'$$
 b) $\left(\bigcap_{A\in\mathcal{C}}A\right)'=\bigcup_{A\in\mathcal{C}}A'$

- 5. Resuelva los ejercicios 3.4.1 al 3.4.7 de la primera edición de "Proofs and Fundamentals" o los ejercicios 3.4.1 al 3.4.8 de la segunda edición.
- 6. En los ejercicios propuestos en 5. hay un error en la primera edición del texto. ¡Descúbralo! Si tiene la segunda edición, ese error fue corregido pero ahora hay otro error ¡Descúbralo!
- 7. Resuelva los ejercicios de la sección 1.8 (pg. 28) del libro Book of proof segunda edición.

1

8. Sea \mathbb{Z} el conjunto de los números enteros.

- a) Haga una partición de $\mathbb Z$ en dos subconjuntos no vacíos e infinitos.
- b) Haga una partición de $\mathbb Z$ en tres subconjuntos no vacíos e infinitos.
- c) Haga una partición de $\mathbb Z$ en cinco subconjuntos no vacíos e infinitos.
- d) Usando las partes a) a c) ¿puede determinar una partición de $\mathbb Z$ en n subconjuntos no vacíos e infinitos, cuando n es un entero positivo? Explique claramente.