

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 74 (2015) 168 – 172

International Conference on Graph Theory and Information Security

The Rainbow Connection Number of a Flower (C_m, K_n) Graph and a Flower (C_3, F_n) Graph

Irvania Sukma Kumala, A. N. M. Salman

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

Abstract

An edge-colored graph G is rainbow connected, if any two vertices are connected by a path whose edges have distinct colors. Such a path is called a rainbow path. The smallest number of colors needed in order to make G rainbow connected is called the rainbow connection number of G, denoted by rc(G). In this paper, we determine the rainbow connection number of a flower (C_m, K_n) and a flower (C_3, F_n) graph.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Organizing Committee of ICGTIS 2015

Keywords: rainbow connection, rainbow path, cycle, complete, fan.

2000 MSC: 05C15, 05C76, 05C40

1. Introduction

All graphs considered in this paper are simple, finite, and connected. The concept of rainbow coloring was introduced by Chartrand $et\ al.\ 2009^{[1]}$. Let G=(V(G),E(G)) be a nontrivial connected graph. For some positive integers k, we define a coloring $c:E(G)\to\{1,2,...,k\}$ of the edges of G such that the adjacent edges can be colored the same. A path P in G is called a f is called a f in f is called a f in f is called f in f in f is called f in f in f in f is called f in f

Chartrand *et al.* 2009^[1] determined the rainbow connection number for some classes of graphs. They showed that rc(G) = 1 if only if G is a complete graph, and rc(G) = |E(G)| if only if G is a tree. They also determined the rainbow connection number of cycles and wheels. In $2013^{[5]}$, Syarizal *et al.* determined the rainbow connection number of fans and suns. Li and Sun $2009^{[2]}$ obtained some results on bounds for rainbow connection number of product graphs, including Cartesian product, composition, and join of graphs. An overview about rainbow connection number can be

E-mail address: irvania.s@gmail.com. salman@math.itb.ac.id

found in a book of Li and Sun 2012^[4] and a survey by Li et al. 20013^[3]. In this paper, we determine the rainbow connection number of a flower (C_m, K_n) and a flower (C_3, F_n) graph. For simplifying, define $[a, b] = \{x \in \mathbb{Z} \mid a \le x \le n\}$ b}.

2. Main Results

Definition 1. Let C_m be a cycle on m vertices and K_n be a complete graph on n vertices. A flower (C_m, K_n) graph is a graph formed by taking one copy of C_m and m copies of K_n and grafting the i-th copy of K_n at the i-th edge of C_m . A flower (C_m, K_n) graph is denoted by F_{C_m, K_n} .

Let m and n be two positive integers with $m \ge 3$ and $n \ge 3$. We define the vertex set and the edge set of F_{C_m,K_n} as follows.

$$\begin{split} V(F_{C_m,K_n}) &= \{u_i \mid i \in [1,m]\} \cup \{u_j^{i,i+1} \mid i \in [1,m], j \in [1,n-2], u_j^{m,m+1} = u_j^{m,1}\}. \\ E(F_{C_m,K_n}) &= \{u_iu_{i+1} \mid i \in [1,m], u_{m+1} = u_1\} \cup \{u_iu_j^{i,i+1} \mid i \in [1,m], j \in [1,n-2], u_j^{m,m+1} = u_j^{m,1}\} \cup \\ \{u_{i+1}u_j^{i,i+1} \mid i \in [1,m], j \in [1,n-2], u_{m+1} = u_1, u_j^{m,m+1} = u_j^{m,1}\} \cup \\ \{u_i^{i,i+1}u_s^{i,i+1} \mid i \in [1,m], j \in [1,n-2], s \in [1,n-2], j \neq s, u_j^{m,m+1} = u_j^{m,1}, u_s^{m,m+1} = u_s^{m,1}\}. \end{split}$$

For illustration, an F_{C_8,K_5} graph is given in Figure 1.(*a*).

Theorem 2. Let m and n be two positive integers with $m \ge 3$ and $n \ge 3$. Let C_m be a cycle on m vertices and K_n be a complete graph on n vertices. Then rainbow connection number of F_{C_m,K_n} is

$$rc(F_{C_m,K_n}) = \lfloor \frac{m}{2} \rfloor + 1.$$

Proof. We construct $c: E(F_{C_m,K_n}) \longrightarrow [1,\lfloor \frac{m}{2}\rfloor + 1]$. Since $diam(F_{C_m,K_n}) = \lfloor \frac{m}{2}\rfloor + 1$, clearly $rc(F_{C_m,K_n}) \ge \lfloor \frac{m}{2}\rfloor + 1$. Next, it remains to show that $rc(F_{C_m,K_n}) \le \lfloor \frac{m}{2}\rfloor + 1$. We define a coloring by using $\lfloor \frac{m}{2}\rfloor + 1$ colors as follows. Let $i \in [1, \lfloor \frac{m}{2} \rfloor + 1], j \in [1, n-2], k \in [\lceil \frac{m}{2} \rceil + 2, m], u_{m,m+1} = u_{m,1}, \text{ and } u_{m+1}u_j^{m,m_1} = u_1u_j^{m,1}.$

$$(c(e)) = \begin{cases} i, & \text{if } e = u_i u_j^{i,i+1} \text{ or } e = u_{i+1} u_j^{i,i+1} \text{ or } e = u_i u_{i+1}; \\ \lceil \frac{m}{2} \rceil, & \text{if } e = u_m u_1 \text{ or } e = u_1 u_j^{m,1}, \text{ and } m \text{ is odd}; \\ k - \lceil \frac{m}{2} \rceil, & \text{if } e = u_{k-1} u_k \text{ or } e = u_k u_j^{k-1,k}, k \ge 5, \text{ and } m \text{ is odd}; \\ k - \frac{m}{2}, & \text{if } e = u_k u_{k+1} \text{ or } e = u_{k+1} u_j^{k,k+1}, k \ge 5, \text{ and } m \text{ is even}; \\ 1, & \text{elsewhere.} \end{cases}$$

We consider any two vertices $x, y \in V(F_{C_m,K_n})$. It is obvious that there exists a rainbow x - y path if x is adjacent to y. We shall evaluate for x that is not adjacent to y in three following cases. Let $i \in [1, m], l \in [1, m], i < l, u_{m+1} =$ $u_1, u_0 = u_m, j \in [1, n-2], \text{ and } k \in [1, n-2].$

Case 1. $x = u_i$ and $y = u_l$ with $d(u_i u_l) = \lfloor \frac{m}{2} \rfloor$

A rainbow x - y path is $u_i, u_{i+1}, \dots, u_{l-1}, u_l$. **Case 2.** $x = u_j^{i,i+1}$ and $y = u_k^{l,l+1}$ with $l - i \le \lfloor \frac{m}{2} \rfloor + 1$

A rainbow x - y path is $u_j^{l,i+1}, u_{i+1}, u_{i+2}, \dots, u_l, u_j^{l,l+1}$. **Case 3.** $x = u_j^{l,i+1}$ and $y = u_k^{l,l+1}$ with $l - i > \lfloor \frac{m}{2} \rfloor + 1$

A rainbow x - y path is $u_i^{i,i+1}, u_i, u_{i-1}, \dots, u_m, u_{m-1}, \dots, u_l, u_l^{l,l+1}$.

For any two vertices $x, y \in V(F_{C_m, K_n})$, we can find a rainbow x - y path. So, c is a rainbow coloring. Therefore, $rc(F_{C_m,K_n}) = \lfloor \frac{m}{2} \rfloor + 1$, where $m \geq 3$ and $n \geq 3$.

For illustration, a rainbow colored F_{C_m,K_n} is given in Figure 1.(b).

Definition 3. Let C_3 be a cycle on 3 vertices. Consider $F_n = P_n + \{x\}$, where $P_n = v_1, v_2, \dots, v_n$ is a path on n vertices, and x is adjacent to v_i for every $i \in [1, n]$. A flower (C_3, F_n) is a graph formed by taking one copy of C_3 and 3 copies of F_n and grafting the $(v_1, x) \in E(F_n)$ in the each edge of C_3 . A flower (C_3, F_n) is denoted by F_{C_3, F_n} .

Fig. 1. (a). F_{C_8,K_5} and (b). A rainbow 5-coloring on F_{C_8,K_5}

Let *n* be a positive integer with $n \ge 3$. We define the vertex set and the edge set of F_{C_3,F_n} as follows.

$$\begin{split} V(F_{C_3,F_n}) &= \{u_i \mid i \in [1,3]\} \cup \{u_j^{i,i+1} \mid i \in [1,3], j \in [1,n-1], u_j^{3,4} = u_j^{3,1}\}. \\ E(F_{C_3,F_n}) &= \{u_iu_{i+1} \mid i \in [1,3], u_4 = u_1\} \cup \{u_iu_j^{i,i+1} \mid i \in [1,3], j \in [1,n-1]\} \cup \\ \{u_j^{i,i+1}u_{j+1}^{i,i+1} \mid i \in [1,3], j \in [1,n-2], u_j^{3,4} = u_j^{3,1}\} \cup \{u_iu_1^{i,i+1} \mid i \in [1,3], u_j^{3,4} = u_j^{3,1}\}. \end{split}$$

There are two non isomorphic graphs of F_{C_3,F_n} . For illustration, we refer to see Figure 2.

Fig. 2. Type (a) and Type (b) are two types of F_{C_3,F_n} which are not isomorphic to each other.

Theorem 4. Let n be a positive integer with $n \ge 3$. Let C_3 be a cycle on 3 vertices and F_n be a fan on n + 1 vertices. Then rainbow connection number of F_{C_3,F_n} is

$$rc(F_{C_3,F_n}) = \begin{cases} 3, for \ n \le 6; \\ 4, for \ n \ge 7. \end{cases}$$

Proof. Observe Figure 2. Since the prove for two types of F_{C_1,F_n} graphs are similar, we only prove for Type (a). We shall consider two cases.

Case 1. $n \le 6$

Since $diam(F_{C_3,F_n}) = 3$, it follows that $rc(F_{C_3,F_n}) \ge 3$. Now we prove the lower bound that is $rc(F_{C_3,F_n}) \le 3$. Let aand p be two integers, to simplify in writing we define $ap \mod a = a$. We construct a coloring by using 3 colors as follows.

$$(c(e)) = \begin{cases} 1, & \text{if } e = u_1 u_2 \text{ or } e = u_3 u_1^{2,3} \text{ or } e = u_3 u_j^{3,1} \text{ for } j \in [1, n-1]; \\ 2, & \text{if } e = u_2 u_3 \text{ or } e = u_1 u_1^{3,1} \text{ or } e = u_1 u_j^{1,2} \text{ for } j \in [1, n-1]; \\ 3, & \text{if } e = u_3 u_1 \text{ or } e = u_2 u_1^{1,2} \text{ or } e = u_2 u_j^{2,3} \text{ for } j \in [1, n-1]; \\ k \ mod \ 3, \text{ if } e = u_k^{i,i+1} u_{k+1}^{i,i+1} \text{ and } i \in [1, 3], k \in [1, n-2], \text{ where } u_k^{3,4} = u_k^{3,1}. \end{cases}$$

We consider any two vertices $x, y \in V(F_{C_3, F_n})$. It is obvious that there exists a rainbow x - y path if x is adjacent to y. We shall evaluate for x that is not adjacent to y as follows. Let $i \in [1,3]$, $s \in [1,3]$, $i \neq s$, $j \in [1,n-1]$, $u_i^{3,4} = u_i^{3,1}$,

 $k \in [1, n-1]$, and $u_k^{3,4} = u_k^{3,1}$. **Subcase 2.1.** $n \le 6$, $x = u_j^{i,i+1}$, and $y = u_k^{s,s+1}$ with $i \ne s$ and $j \le k$

There exists a rainbow x - y path, namely $u_i^{i,i+1}$, u_i , u_s , $u_k^{s,s+1}$.

Subcase 2.2. $n \le 5$, $x = u_i^{i,i+1}$, and $y = u_k^{i,i+1}$ with j < k

There exists a rainbow x - y path, namely $u_j^{i,i+1}, u_{j+1}^{i,i+1}, \dots, u_k^{i,i+1}$.

Subcase 2.3. n = 6, $x = u_i^{i,i+1}$, and $y = u_k^{i,i+1}$ with j < k

There exists a rainbow x-y path, namely $u_1^{i,i+1}, u_{i+1}, u_i, u_5^{i,i+1}$ for $j \neq 1$ and $k \neq 5$, and $u_j^{i,i+1}, u_{j+1}^{i,i+1}, \dots, u_k^{i,i+1}$ for other jand k.

So, *c* is a rainbow coloring. Therefore, $rc(F_{C_3,F_n}) = 3$ where $n \ge 6$.

Case 2. $n \ge 7$

In order to show that $rc(F_{C_3,F_n}) \le 4$, we construct a coloring $c: E(F_{C_3,F_n}) \longrightarrow [1,4]$ defined as follows.

order to show that
$$rc(F_{C_3,F_n}) \le 4$$
, we construct a coloring $c: E(F_{C_3,F_n}) \le 4$, we construct a coloring $c: E(F_{C_3,F_n}) \le 6$ and $c: E(F_{C_3,F_n}) \le 6$ an

We consider any two vertices $x, y \in V(F_{C_3, F_n})$. It is obvious that there exists a rainbow x - y path if x is adjacent to y. We shall evaluate for x that is not adjacent to y in two following subcases. Let $i \in [1,3]$, $s \in [1,3]$, $i \neq s$, $j \in [1,n-1]$, $u_j^{3,4} = u_j^{3,1}$, $k \in [1,n-1]$, $j \leq k$, $u_k^{3,4} = u_k^{3,1}$, and $u_0^{s,s+1} = u_n^{s,s+1}$. **Subcase 2.1.** $x = u_j^{i,i+1}$ and $y = u_k^{i,i+1}$

There exists a rainbow x - y path, namely $u_j^{i,i+1}$, u_i , $u_k^{i,i+1}$ if j and k have a same parity, and $u_j^{i,i+1}$, u_i , $u_{k-1}^{i,i+1}$, $u_k^{i,i+1}$ if j and

k have different parity. **Subcase 2.2.** $x = u_j^{i,i+1}$ and $y = u_k^{s,s+1}$

There exists a rainbow x - y path, namely $u_i^{i,i+1}$, u_i , u_s , $u_{k-1}^{s,s+1}$, $u_k^{s,s+1}$ if j and k have a same parity, and $u_i^{i,i+1}$, u_i , u_s , $u_k^{s,s+1}$ if j and k have different parity.

So, *c* is a rainbow coloring. Thus, $rc(F_{C_3,F_n}) \le 4$ for $n \ge 7$.

Next, it remains to show that $rc(F_{C_3,F_n}) \ge 4$. Assume to the contrary $rc(F_{C_3,F_n}) \le 3$. Let c' be a rainbow 3-coloring on F_{C_3,F_n} . Without loss of generality, assume that $c'(u_1,u_3^{1,2})=1$. Since $u_3^{1,2},u_1,u_2,u_j^{2,3}$ is the only $u_3^{1,2}-u_j^{2,3}$ path of length three in F_{C_3,F_n} for every $j \in [2,7]$, it forces $c'(u_1,u_2)=2$ and $c'(u_2,u_j^{2,3})=3$ or vice versa. But there is no rainbow $u_2^{2,3} - u_7^{2,3}$ path. We get a contradiction. Therefore, $rc(F_{C_3,F_n}) \ge 4$. Hence,

$$rc(F_{C_3,F_n}) = \begin{cases} 3, \text{ for } n \le 6; \\ 4, \text{ for } n \ge 7. \end{cases}$$

For illustration, rainbow 3-colorings on F_{C_3,F_5} and on F_{C_3,F_6} , and a rainbow 4-coloring on F_{C_3,F_8} are given in Figure 3 and Figure 4, respectively.

Fig. 3. (a). A rainbow 3-coloring on F_{C_3,F_5} and (b). A rainbow 3-coloring on F_{C_3,F_6}

Fig. 4. A rainbow 4-coloring on F_{C_3,F_8}

References

- 1. Chartrand G, Johns GL, Mc Keon KA, Zhang P. Rainbow connection in graphs. *Math Bohem* 2008;133:85-98.
- 2. Li X, Sun Y. Characterization of graphs with large rainbow connection number and rainbow connection numbers of some graph operations. *Discrete Math, to appear.*
- 3. Li X, Shi Y, Sun Y. Rainbow connection of graphs:a survey. Graphs Combin 2013;29(1):1-38.
- 4. Li X, Sun Y. Rainbow Connection of Graphs. New York: Springer-Verlag; 2012.
- 5. Syafrizal Sy, Medika GH, Yulianti L. The rainbow connection of fun and sun. Appl. Math. Sci 2013;7:3155-3160.