Data Analytics CS301 Text Analysis: Sentiment Determination

Week 14
Spring
Oliver BONHAM-CARTER

A dashboard provides many points of information

Vaccine Hesitancy by County

Vaccine hesitancy by county

Sep 17, 2021 - Sep 23, 2021

This map highlights areas of the US that would benefit most from increased vaccination acceptance. This view shows, by county, the % of survey respondents who answered "Yes, probably" or "No, probably not" when asked "If a vaccine to prevent COVID-19 were offered to you today, would you choose to get vaccinated?"

Data source: The Delphi Group at Carnegie Mellon University U.S. COVID-19 Trends and Impact Survey, in partnership with Facebook.

https://www.opportunityatlas.org/

The US Dept of Agriculture

https://www.ers.usda.gov/data-products/food-environment-atlas/go-to-the-atlas/

- Health-Policies
 - http://www.healthdata.org/
- Visualization dashboard
 - https://vizhub.healthdata.org/epi/

Online Tool: The Institute for Health Metrics and Evaluation

Visualize data on seemingly any topic of health

http://www.healthdata.org/

https://vizhub.healthdata.org/epi/

Online Tool: The Institute for Health Metrics and Evaluation

https://vizhub.healthdata.org/epi/

Visualizing Schemes are still being developed

 To find out about new work in visualizing analytics, check out the SentimentVis Browser at http://sentimentvis.lnu.se/

A Visual Survey
of Sentiment
Visualization
Techniques:
Have a look at
all the different
ways to determine
sentiment in text!

New Chapter: Text Analysis

How to find meaningful information in large bodies of textual Data!?

Wait, What's in the Literature?

Common Ideas, But Different Names!

Find Relationships in the Literature

A text mining tool for developing visual and interactive relationship networks from a corpus created from PubMed articles.

Yet even more information:

https://www.oliverbonhamcarter.com/portfolio/sample-project/index_beagletm/

Find Relationships in the Literature

Visualization of a literature review!

Blue nodes: Reference articles

Red nodes:
Central
articles to
literature
review

- The determination of a text's "message" or "mood" based on the actual individual words.
- How good, how bad is the writer feeling about some topic?
- Is a body of text describing some idea where many of the words are emotionally charged with some type of feeling?
- Sentiment analysis is able to determine what the general feeling is behind some written work.

Tweet Text Analysis

What Is This Tool?

- User-entered keywords are parsed in the tweets of the day.
- The sentiment tab visualizes where tweets lie in an emotional scatter plot with pleasure and arousal on its horizontal and vertical axes.
- The spatial distribution of the tweets summarizes their overall sentiment.
- The number of queries per minute is limited...

https://www.csc2.ncsu.edu/faculty/healey/tweet_viz/tweet_app/

The word, "Bad"

The word, "Good"

Click around on the web site to discover new ways of viewing data.

Analysis with R...

In The Textbook

This slide material below has been taken from Silge *et al*.

Chapter: 2 Sentiment analysis with tidy data

https://www.tidytextmining.com/sentiment.html

Packages and Libraries

```
# install.packages("janeaustenr")
```

install.packages("stringr")

rm(list = ls())

library(janeaustenr)

library(dplyr)

library(stringr)

library(tidyverse)

All following code is provided in: sandbox/textAnalysis.r

Data: Jane Austen's Text

- Jane Austen's 6 completed, published novels from the *janeaustenr* package.
 - Sense & Sensibility
 - Pride & Prejudice
 - Mansfield Park
 - Emma
 - Northanger Abbey
 - Persuasion

Research Question

Jane Austen's written work:

How many *Bad (pessimistic)* words did she use? How many *Good* (optimistic) words did she use?

The Sentiments dataset

#install.packages("tidytext")
library(tidytext)
sentiments

##	#	Α	tibble:	27,	314×4		
##			W	ord	sentiment	lexicon	score
##			<cl< th=""><th>r></th><th><chr></chr></th><th><chr></chr></th><th><int></int></th></cl<>	r>	<chr></chr>	<chr></chr>	<int></int>
##	1		abad	cus	trust	nrc	NA
##	2		aband	don	fear	nrc	NA
##	3		aband	don	negative	nrc	NA
##	4		aband	don	sadness	nrc	NA
##	5		abandor	ned	anger	nrc	NA
##	6		abandor	ned	fear	nrc	NA
##	7		abandor	ned	negative	nrc	NA

Three general-purpose lexicons

- AFINN from Finn Arup Nielsen,
 - assigns words with a score that runs between -5 and 5, with negative scores indicating negative sentiment and positive scores indicating positive sentiment
- bing from Bing Liu and collaborators,
 - categorizes words in a binary fashion into positive and negative categories
- *nrc* from Saif Mohammad and Peter Turney
 - categorizes words in a binary fashion ("yes"/"no") into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust.
- Used to determine the general mood of words.
- Lexicons are based on unigrams, (i.e., single words).
- Words are assigned scores for positive/negative sentiment,
- Emotions: joy, anger, sadness and etc.

Sentiments: afinn

```
# install.packages("textdata")
get_sentiments("afinn")
```

```
> get_sentiments("afinn")
# A tibble: 2,476 x 2
        word score
       <chr> <int>
     abandon
                 -2
               -2
   abandoned
                -2
3
    abandons
               -2
   abducted
   abduction
               -2
                 -2
6 abductions
                 -3
       abhor
                 -3
    abhorred
   abhorrent
                 -3
      abhors
                 -3
```

... with 2,466 more rows

10

You might need to install another package.

Returns a score for each word [-5, 5](Bad to Good)

Sentiments: nrc

install.packages("textdata")
get_sentiments("nrc")

```
> get_sentiments("nrc")
# A tibble: 13,901 x 2
         word sentiment
                  <chr>>
        <chr>
       abacus
                  trust
                   fear
      abandon
 3
               negative
      abandon
      abandon
               sadness
   abandoned
                  anger
   abandoned
                   fear
               negative
    abandoned
    abandoned
                sadness
 9 abandonment
                  anger
10 abandonment
                   fear
# ... with 13,891 more rows
```

You might need to install another package.

Returns a *synonym* for each word

Sentiments: bing

install.packages("textdata")
get_sentiments("bing")

```
> get_sentiments("bing")
# A tibble: 6,788 x 2
          word sentiment
         <chr>>
                   <chr>
       2-faced
                negative
       2-faces
                negative
                positive
            a+
      abnormal
                negative
 5
       abolish
                negative
    abominable
                negative
    abominably
                negative
     abominate
                negative
 9 abomination
                negative
                negative
         abort
10
# ... with 6,778 more rows
```

You might need to install another package.

Returns
"Positive"
or
"Negative"
for words

Wrangling Book Data

words from all novels View(original_books)

Chapter Words

- The words in the order that they appear in the text.
- Note the first line is the title of the book.

```
## # A tibble: 73,422 x 4
                                                linenumber chapter
##
     text
                            book
                            <fctr>
     <chr>
##
                                                     <int>
                                                             <int>
   1 SENSE AND SENSIBILITY Sense & Sensibility
                                                         1
## 2 ""
                            Sense & Sensibility
   3 by Jane Austen
                            Sense & Sensibility
##
                            Sense & Sensibility
                            Sense & Sensibility
   5 (1811)
                            Sense & Sensibility
    7 ""
                            Sense & Sensibility
                            Sense & Sensibility
    9 ""
                            Sense & Sensibility
  10 CHAPTER 1
                            Sense & Sensibility
                                                        10
## # ... with 73,412 more rows
```


Un-nesting Book Words

We need the words separated and in a set to work with them.

```
tidy_books <- original_books %>%

#make a set of words from the paragraphs

unnest_tokens(word, text)

View(tidy_books)
```


Un-nested Words

```
## # A tibble: 725,055 x 4
     book
##
                        linenumber chapter word
## <fctr>
                             <int> <int> <chr>
## 1 Sense & Sensibility
                                1
                                        0 sense
## 2 Sense & Sensibility
                                        0 and
## 3 Sense & Sensibility
                                        0 sensibility
## 4 Sense & Sensibility
                                        0 by
## 5 Sense & Sensibility
                                        0 jane
                                        0 austen
## 6 Sense & Sensibility
## 7 Sense & Sensibility
                                        0 1811
## 8 Sense & Sensibility
                               10
                                        1 chapter
## 9 Sense & Sensibility
                               10
                                        1 1
## 10 Sense & Sensibility
                               13
                                        1 the
## # ... with 725,045 more rows
```

When words are in one-word-per-row format, manipulation with tidy tools like *dplyr* is possible

Stop Words

- Remove stop words: words which do not add any distinguishing information to a body of text.
 - Contractions: hasn't, didn't won't
 - Middle words: been, is, had, having

```
data("stop_words")
View(stop_words)
cleaned_books <- tidy_books %>% anti_join(stop_words)
# anti_join() Note: anti_join() return all rows from x
without a match in y.
```

Counting Common Words Across All Books

cleaned books %>%

count(word, sort = TRUE)

```
## # A tibble: 13,914 x 2
##
  word
## <chr> <int>
## 1 miss 1855
## 2 time 1337
## 3 fanny 862
## 4 dear 822
## 5 lady 817
##
   6 sir 806
## 7 day 797
##
   8 emma 787
   9 sister 727
## 10 house 699
## # ... with 13,904 more rows
```


"Joy" in Emma

• We will consider the common words having scores indicating that they are of the same sentiment as "Joy", according to the *nrc* lexicon in the novel, <u>Emma.</u>

```
#install.packages("textdata")
library(textdata)
# Note: enter '1', if prompted
nrcjoy <- get sentiments("nrc") %>%
 filter(sentiment == "joy")
tidy books %>%
 filter(book == "Emma") %>%
 semi_join(nrcjoy) %>%
 count(word, sort = TRUE)
```


Counting All Words in Set ...

tidy_books %>%

filter(book == "Emma") %>%

semi_join(nrcjoy) %>%

count(word, sort = TRUE)

We count optimistic words in the novel, <u>Emma</u>

```
## # A tibble: 303 x 2
##
     word
## <chr> <int>
##
   1 good
              359
##
   2 young 192
## 3 friend 166
           143
##
   4 hope
             125
##
   5 happy
             117
## 6 love
## 7 deal
              92
## 8 found
              92
              89
##
   9 present
## 10 kind
              82
## # ... with 293 more rows
```


Quick Plot of Words in Set ...

```
tidy_book_counts <- tidy_books %>%
  filter(book == "Emma") %>%
  semi_join(nrcjoy) %>%
  count(word, sort = TRUE)

library(plotly)
p <- ggplot(tidy_book_counts, aes(x = word, y = n ))
p <- p + geom_point()
p <- ggplotly(p)
p</pre>
```


How Does Sentiment Change? (In each novel?)

library(tidyr)

bing <- get_sentiments("bing")</pre>

move line by line of book, find difference in sentiments to "score" each line

janeaustensentiment <- tidy_books %>%

inner_join(bing) %>%

count(book, index = linenumber %/% 80, sentiment) %>% spread(sentiment, n, fill = 0) %>% mutate(sentiment = positive - negative)

Count the common positive words across the books.

```
bing_word_counts <- tidy_books %>%
inner_join(bing) %>%
count(word, sentiment, sort = TRUE) %>%
ungroup()
```

View(bing_word_counts)

Such Positivity ...

View(bing_word_counts)

```
## # A tibble: 2,585 x 3
             sentiment
##
     word
##
     <chr>
             <chr>
                      <int>
##
   1 miss
             negative
                       1855
   2 well
             positive
                       1523
##
             positive
                       1380
##
   3 good
##
   4 great
             positive
                        981
   5 like
             positive
                        725
##
   6 better positive
                        639
##
                        613
   7 enough positive
##
             positive
                        534
   8 happy
##
             positive
                        495
##
   9 love
## 10 pleasure positive
                        462
## # ... with 2,575 more rows
```


plot the sentiments from each book

```
ggplot(janeaustensentiment, aes(index, sentiment, fill = book)) + geom_bar(stat = "identity", show.legend = FALSE) + facet_wrap(~book, ncol = 2, scales = "free_x")
```


Plot the Good and Bad Words Across Each Book

An optimistic writer: there appears to be a similar pattern of optimistic / pessimistic word usage across all her books!

Plot the common positive words across the books.

```
bing word counts %>%
 filter(n > 150) %>%
 mutate(n = ifelse(sentiment == "negative", -n, n)) %>%
 mutate(word = reorder(word, n)) %>%
 ggplot(aes(word, n, fill = sentiment)) +
 geom_bar(stat = "identity") +
 theme(axis.text.x = element text(angle = 90, hjust = 1)) +
ylab("Contribution to sentiment")
```


Jane Austen's written work:

How many *Bad (pessimistic)* words did she use? How many *Good* (optimistic) words did she use?


```
bing_word_counts <- tidy_books %>%
  inner_join(get_sentiments("bing")) %>%
  count(word, sentiment, sort = TRUE)
%>%
  ungroup()
```

bing word counts

```
> bing_word_counts
# A tibble: 2,585 x 3
  word
           sentiment
  <chr>>
           <chr>>
                     <int>
 1 miss
           negative
                      1855
 2 well
           positive
                      1523
           positive
 3 good
                      1380
           positive
 4 great
                       981
 5 like
           positive
                       725
           positive
 6 better
                       639
           positive
 7 enough
                       613
 8 happy
           positive
                       534
9 love
           positive
                       495
10 pleasure positive
                       462
# ... with 2,575 more rows
```


What are the Sentiments of Words?

```
bing_word_counts <- tidy_books %>%
  inner_join(get_sentiments("bing")) %>
%
  count(word, sentiment, sort = TRUE)
%>%
  ungroup()
```

bing_word_counts

Each word has an associated sentiment. Here we note the number of words that may be associated to each of the sentiments.

```
> bing word counts
# A tibble: 2,585 x 3
  word
           sentiment
  <chr> <chr>
                    <int>
 1 miss negative
                     1855
2 well
          positive
                     1523
3 good positive
                     1380
4 great positive
                      981
 5 like positive
                      725
6 better positive
                      639
 7 enough
           positive
                      613
8 happy positive
                      534
9 love
          positive
                      495
10 pleasure positive,
                      462
# ... with 2,575 more rows
```


Get Plot of Sentiments

```
# Takes less time
ggplot(bing_word_counts, aes(x = word, y = n, col = sentiment )) +
geom_point()

# Takes a long time to plot ... :-(
p <- ggplot(bing_word_counts, aes(x = word, y = n, col = sentiment ))
p <- p + geom_point()
p <- ggplotly(p)
p</pre>
```


Visually Shown, The Sentiment Words

```
bing_word_counts %>%
group_by(sentiment) %>%
top_n(10) %>%
ungroup() %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(word, n, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
labs(y = "Contribution to sentiment",
    x = NULL) +
coord_flip()
```


Gimme the top ten, and then show me how many lexicon words are associated to that sentiment.

Many more words associated to "miss" (pessimistic maximum) than "well" (optimistic maximum)

"Miss": a girl's title? Could "well" also have other types of optimistic uses? And "Good"?
Why not more occurrences of "Great"...?

Latent Dirichlet allocation (LDA)

- Document are a mixture of topics, and each topic as a mixture of words.
- Word usage can be used to describe something "telling" about the topic of the document.
- Example: cooking books contain words about cooking, computer science books use terms about computers ...
- More about this at link: https://www.tidytextmining.com/topicmodeling.html

Latent Dirichlet allocation (LDA)

Studying, scholarship, teaching, class planning

 We can determine the topic of a book by the most commonly used words

The Sign of the Four, by Arthur Conan Doyle

```
gutenbergtm enough well
    never back
```

Make your own word clouds: sandbox/wordCloudDemo.r

Software license agreement (ula)

Make your own word clouds: sandbox/wordCloudDemo.r

WikiPage about Volcanoes

Make your own word clouds: sandbox/wordCloudDemo.r