Задание 1. Разминка.

Это задание состоит из 3 не связанных между собой задач.

Задача 1.1 «Низкотемпературный тепловой контакт»

Теплоемкости веществ могут зависеть от температуры. Так при температурах, близких к абсолютному нулю удельная теплоемкость металлов пропорциональна третьей степени абсолютной температуры

$$c = \alpha T^3. \tag{1}$$

Два одинаковых металлических бруска, находящихся при низких температурах $T_1=1,0^\circ K$ и $T_2=3,0^\circ K$, приводят в тепловой контакт. Пренебрегая потерями теплоты в окружающую среду, найдите температуру брусков $T_{_X}$ после установления теплового равновесия.

Подсказки.

1. Абсолютная шкала температур (шкала Кельвина) сдвинута «вниз» относительно шкалы Цельсия на —273,15°, а величина градуса Кельвина совпадает с величиной градуса Цельсия. (Для решения задачи это не существенно).

2. Если функция, определяется формулой $y = ax^3$, то площадь под графиком этой функции в интервале от 0 до некоторого значения x, рассчитывается по формуле $S = \frac{1}{4}ax^4$. (Эта формула может

4 понадобиться при решении задачи).

Задача 1.2 «Локатор»

Милицейский автомобиль преследует нарушителя на длинной прямой дороге. Скорость милицейского автомобиля равна v_0 , скорость автомобиля нарушителя равна V. Для измерения скорости автомобиля

нарушителя на машине инспектора установлен локатор, который посылает короткие электромагнитные импульсы (сигналы) с фиксированным интервалом времени τ . Затем он регистрирует отраженные от машины нарушителя импульсы. Определите время τ' между приходами двух последовательных отраженных импульсов, регистрируемых локатором. Скорость распространения электромагнитных импульсов равна c и значительно больше скоростей автомобилей. Найдите зависимость времени между регистрируемыми импульсами τ' от скоростей автомобилей. Получите точную формулу, а затем упростите ее, считая, что c >> V, v_0 .

Задача 1.3 «Ф – сопротивление»

Сидя дома, юный электротехник Федя, увлечённый Физикой, собрал электрическую схему из одинаковых резисторов R в виде заглавной буквы Φ (рис.1). Когда он

подключил схему в точках A и B к источнику напряжения $U=13\,\mathrm{B}$, то тепловая мощность, выделяемая в цепи, при таком подключении оказалась равной $P_{AB}=6.5\,\mathrm{Bt}$.

- 1. Определите значение сопротивления R каждого из резисторов, которые использовал Федя.
- 2. Найдите мощность P_{CD} схемы при подключении того же источника напряжения между точками C и D цепи.
- 3. Подключим одновременно к клеммам A-B и C-D схемы Феди два одинаковых источника напряжения по $U=13\,\mathrm{B}$ каждый. Можно ли утверждать, что в этом случае тепловая мощность P_{AB+CD} , выделяемая в схеме, будет равна сумме мощностей P_{AB} и P_{CD} представленных ранее в условии задачи?

Задание 2. Автомобили и светофоры.

В небольшом городе на некоторой улице светофоры установлены на одинаковых расстояниях $l=1,0\,\kappa m$ друг от друга, причем один из них стоит на въезде в город, один — на выезде из него. Общее число светофоров равно 8. Все светофоры «открыты» (горит зеленый свет) в течении времени $\tau=1,0\,m$ ин, а затем в течении такого же промежутка времени «закрыты» (горит красный свет). Временем горения желтого света можно пренебречь. Светофоры включаются попеременно, т.е. зеленый свет каждого следующего светофора включается, когда загорается красный у предыдущего. Считайте, что временами разгона и торможения автомобилей у светофоров можно пренебречь.

- 2.1 Нарисуйте диаграмму «координата-время» для светофоров и отметьте на ней промежутки времени, когда светофоры закрыты.
- 2.2 Автомобили могут двигаться по городу со скоростями, которые лежат в интервале от $v_{\min} = 40 \frac{\kappa M}{vac}$ до $v_{\max} = 80 \frac{\kappa M}{vac}$. Укажите диапазон скоростей, двигаясь с которыми, автомобиль может пересечь город без остановок на светофорах.
- 2.3 Автомобилист решил двигаться все время со скоростью $V = 120 \frac{\kappa M}{uac}$ (грубо нарушая правила дорожного движения). За какое время он пересечет город, не проезжая светофоры на красный свет?
- 2.4 Скорость велосипедиста не превышает $v_{\min} = 40 \frac{\kappa M}{uac}$. Оцените, с какой скоростью он должен ехать, чтобы проехать город без остановок на светофорах?

Задание 3. Бареттер.