12D2704B

Cho bảng số kích thước $M \times N$ (M hàng N cột). Giá trị đặt ở ô nằm trên hàng i, cột j được kí hiệu là $a_{i,j}$. Sau khi tính được tổng các giá trị trên các hình chữ nhật có góc trái trên là ô (1,1), người ta lại tiếp tục cải tiến giải thuật để có thể tính được giá trị các ô trên các hình chữ nhật có dạng (u,v,x,y) trong đó (u,v) là góc trái trên còn (x,y) là góc phải dưới. Nếu gọi $f_{i,j}$ là tổng các giá trị trên hình chữ nhật có góc trái trên là ô (1,1) và góc phải dưới là ô (i,j) thì việc tính các giá trị trên hình chữ nhật dạng (u,v,x,y) trở nên đơn giản bởi công thức:

$$S(u, v, x, y) = f_{x,v} - f_{u-1,v} - f_{x,v-1} + f_{u-1,v-1}.$$

Như vậy ta có thể tính được tổng các giá trị trong một hình chữ nhật con bất kì trên bảng số cho trước $M \times N$ chỉ với độ phức tạp O(1).

Yêu cầu: Gồm Q câu hỏi, mỗi câu hỏi là một bộ số (u, v, x, y), yêu cầu bạn đưa ra giá trị S(u, v, x, y).

Input:

- Dòng đầu gồm ba số nguyên dương M, N và Q ($M, N \le 300; Q \le 10^5$);
- M dòng sau, dòng thứ i gồm N số nguyên $a_{i,1}, a_{i,2}, ..., a_{i,N}$ ($|a_{i,j}| \le 100$);
- Q dòng sau, mỗi dòng là một bộ số (u, v, x, y) $(u \le x \le M, v \le y \le N)$.

Output: Gồm Q dòng, mỗi dòng là giá trị S(u, v, x, y) tương ứng.

Ví dụ:

I2D2704B.INP	I2D2704B.OUT
3 3 1	6
1 -2 5	
3 -6 8	
2 2 2	
2233	