Untitled Alain Quartier-la-Tente 30/07/2020

Table 1: Quality criteria of asymmetric filters (q = 0, 1, 2, 3) computed by local polynomial with Henderson kernel for h = 6 and IC = 3.5.

Method	b_c	b_l	b_q	F_g	S_g	$T_g \times 10^{-3}$	A_w	S_w	T_w	R_w
q = 0										
LC	0	-0.407	-2.161	0.388	1.272	30.341	0.098	0.488	2.705	1.796
QL	0	0.000	-0.473	0.711	5.149	0.047	0.067	1.894	1.054	0.967
CQ	0	0.000	0.000	0.913	11.942	0.015	0.016	2.231	0.997	0.573
DAF	0	0.000	0.000	0.943	14.203	0.003	0.015	2.178	1.005	0.571
q = 1										
1 LC	0	-0.121	-0.525	0.268	0.433	4.797	0.009	0.119	1.527	0.832
QL	0	0.000	-0.061	0.287	0.707	0.694	0.005	0.192	1.134	0.613
CQ	0	0.000	0.000	0.372	0.571	0.158	0.022	0.575	1.064	0.785
DAF	0	0.000	0.000	0.409	0.366	0.061	0.020	0.760	1.044	0.717
q = 2										
1 LC	0	0.003	1.076	0.201	0.080	0.347	0.009	0.012	1.047	0.424
QL	0	0.000	0.033	0.215	0.052	2.083	0.000	0.011	1.230	0.638
\overline{CQ}	0	0.000	0.000	0.370	0.658	0.131	0.021	0.558	1.059	0.755
DAF	0	0.000	0.000	0.398	0.768	0.023	0.017	0.677	1.030	0.634
q = 3										
LC	0	0.034	1.774	0.181	0.010	0.069	0.031	0.011	0.936	0.344
QL	0	0.000	0.034	0.215	0.050	2.110	0.000	0.010	1.232	0.640
\overline{CQ}	0	0.000	0.000	0.309	0.461	0.019	0.012	0.287	1.023	0.540
DAF	0	0.000	0.000	0.315	0.419	0.000	0.010	0.322	1.004	0.457
q = 4										
LC	0	0.024	1.430	0.188	0.021	0.090	0.019	0.007	0.964	0.353
QL	0	0.000	0.016	0.216	0.055	0.865	0.000	0.009	1.140	0.498
CQ	0	0.000	0.000	0.247	0.179	0.001	0.004	0.071	0.992	0.366
DAF	0	0.000	0.000	0.248	0.128	0.007	0.003	0.081	0.984	0.336
q = 5										
LC	0	0.008	0.579	0.199	0.017	0.034	0.003	0.001	0.987	0.328
QL	0	0.000	0.004	0.209	0.024	0.097	0.000	0.002	1.034	0.356
m CQ	0	0.000	0.000	0.213	0.038	0.002	0.000	0.005	0.979	0.301
DAF	0	0.000	0.000	0.215	0.027	0.004	0.000	0.007	0.978	0.295

Table 2: Quality criteria of asymmetric filters (q = 0, 1, 2, 3) computed by local polynomial with Henderson kernel for h = 6 and IC = 4.5.

Method	b_c	b_l	b_q	F_g	S_g	$T_g \times 10^{-3}$	A_w	S_w	T_w	R_w
q = 0										
LC	0	-0.576	-1.145	0.358	1.138	34.088	0.051	0.394	3.025	1.723
QL	0	0.000	-0.732	0.684	4.816	0.225	0.074	1.767	1.106	1.009
CQ	0	0.000	0.000	0.904	11.700	0.016	0.017	2.208	0.996	0.580
DAF	0	0.000	0.000	0.943	14.203	0.003	0.015	2.178	1.005	0.571
q = 1										
LC	0	-0.178	-0.238	0.261	0.414	5.497	0.005	0.108	1.615	0.823
QL	0	0.000	-0.098	0.287	0.697	0.755	0.005	0.190	1.141	0.620
CQ	0	0.000	0.000	0.371	0.567	0.161	0.022	0.569	1.064	0.783
DAF	0	0.000	0.000	0.409	0.366	0.061	0.020	0.760	1.044	0.717
q = 2										
LC	0	0.005	1.070	0.201	0.080	0.341	0.009	0.012	1.044	0.424
QL	0	0.000	0.053	0.215	0.052	2.036	0.000	0.011	1.227	0.633
CQ	0	0.000	0.000	0.369	0.652	0.135	0.021	0.554	1.059	0.754
DAF	0	0.000	0.000	0.398	0.768	0.023	0.017	0.677	1.030	0.634
q = 3										
LC	0	0.053	1.718	0.182	0.010	0.051	0.029	0.011	0.909	0.343
QL	0	0.000	0.055	0.215	0.049	2.074	0.000	0.010	1.229	0.636
\overline{CQ}	0	0.000	0.000	0.309	0.460	0.019	0.012	0.286	1.024	0.540
DAF	0	0.000	0.000	0.315	0.419	0.000	0.010	0.322	1.004	0.457
q = 4										
LC	0	0.038	1.403	0.188	0.021	0.070	0.018	0.007	0.944	0.351
QL	0	0.000	0.027	0.215	0.055	0.858	0.000	0.009	1.139	0.497
\overline{CQ}	0	0.000	0.000	0.247	0.178	0.001	0.004	0.071	0.993	0.366
$\overline{\mathrm{DAF}}$	0	0.000	0.000	0.248	0.128	0.007	0.003	0.081	0.984	0.336
q = 5										
LC	0	0.013	0.574	0.199	0.017	0.029	0.003	0.001	0.981	0.327
QL	0	0.000	0.007	0.209	0.024	0.097	0.000	0.002	1.033	0.356
\overline{CQ}	0	0.000	0.000	0.213	0.038	0.002	0.000	0.005	0.979	0.301
DAF	0	0.000	0.000	0.215	0.027	0.004	0.000	0.007	0.978	0.295

Table 3: Quality criteria of asymmetric filters (q = 0, 1, 2, 3) computed by local polynomial with Henderson kernel for h = 6 and IC = 0.0.

Method	b_c	b_l	b_q	F_g	S_g	$T_g \times 10^{-3}$	A_w	S_w	T_w	R_w
q = 0										
LC	0	0	-4.601	0.469	1.640	23.146	0.281	0.773	2.066	1.975
QL	0	0	0.000	0.765	5.793	0.163	0.059	2.148	0.963	0.895
CQ	0	0	0.000	0.929	12.349	0.012	0.015	2.269	0.998	0.561
DAF	0	0	0.000	0.943	14.203	0.003	0.015	2.178	1.005	0.571
q = 1										
LC	0	0	-1.130	0.282	0.476	3.555	0.024	0.144	1.353	0.851
QL	0	0	0.000	0.288	0.723	0.597	0.005	0.197	1.122	0.601
CQ	0	0	0.000	0.375	0.578	0.154	0.022	0.585	1.063	0.788
DAF	0	0	0.000	0.409	0.366	0.061	0.020	0.760	1.044	0.717
q = 2										
LC	0	0	1.088	0.201	0.080	0.357	0.009	0.012	1.051	0.424
QL	0	0	0.000	0.216	0.052	2.160	0.000	0.011	1.236	0.645
CQ	0	0	0.000	0.372	0.668	0.126	0.021	0.565	1.057	0.756
DAF	0	0	0.000	0.398	0.768	0.023	0.017	0.677	1.030	0.634
q = 3										
LC	0	0	1.876	0.180	0.010	0.129	0.034	0.013	0.985	0.347
QL	0	0	0.000	0.216	0.051	2.169	0.000	0.011	1.237	0.646
CQ	0	0	0.000	0.309	0.464	0.018	0.012	0.288	1.023	0.540
DAF	0	0	0.000	0.315	0.419	0.000	0.010	0.322	1.004	0.457
q = 4										
LC	0	0	1.479	0.188	0.022	0.141	0.020	0.007	1.000	0.355
QL	0	0	0.000	0.216	0.056	0.877	0.000	0.009	1.142	0.500
\overline{CQ}	0	0	0.000	0.247	0.179	0.001	0.004	0.071	0.992	0.366
DAF	0	0	0.000	0.248	0.128	0.007	0.003	0.081	0.984	0.336
q = 5										
LC	0	0	0.587	0.199	0.017	0.043	0.003	0.001	0.999	0.328
QL	0	0	0.000	0.209	0.024	0.098	0.000	0.002	1.034	0.356
m CQ	0	0	0.000	0.213	0.038	0.002	0.000	0.005	0.979	0.301
DAF	0	0	0.000	0.215	0.027	0.004	0.000	0.007	0.978	0.295

Table 4: Quality criteria of asymmetric filters (q=0,1,2,3) computed by local polynomial with Henderson kernel for h=6 and IC=10000.0.

Method	b_c	b_l	b_q	F_g	S_g	$T_g \times 10^{-3}$	A_w	S_w	T_w	R_w
q = 0										
LC	0	-1.590	4.940	0.219	0.558	65.766	0.051	0.116	5.700	1.313
QL	0	0.000	-4.600	0.469	1.640	23.146	0.281	0.773	2.066	1.975
CQ	0	0.000	0.000	0.765	5.793	0.163	0.059	2.148	0.963	0.895
DAF	0	0.000	0.000	0.943	14.203	0.003	0.015	2.178	1.005	0.571
q = 1										
LC	0	-0.650	2.119	0.215	0.282	13.978	0.021	0.058	2.493	0.751
QL	0	0.000	-1.130	0.282	0.476	3.555	0.024	0.144	1.353	0.851
CQ	0	0.000	0.000	0.288	0.723	0.597	0.005	0.197	1.122	0.601
DAF	0	0.000	0.000	0.409	0.366	0.061	0.020	0.760	1.044	0.717
q = 2										
LC	0	0.022	0.999	0.202	0.082	0.285	0.008	0.012	1.020	0.424
QL	0	0.000	1.088	0.201	0.080	0.357	0.009	0.012	1.051	0.424
\overline{CQ}	0	0.000	0.000	0.216	0.052	2.159	0.000	0.011	1.236	0.645
DAF	0	0.000	0.000	0.398	0.768	0.023	0.017	0.677	1.030	0.634
q = 3										
LC	0	0.326	0.897	0.193	0.012	1.064	0.007	0.003	0.576	0.322
QL	0	0.000	1.876	0.180	0.010	0.129	0.034	0.013	0.985	0.347
CQ	0	0.000	0.000	0.216	0.051	2.168	0.000	0.011	1.237	0.646
DAF	0	0.000	0.000	0.315	0.419	0.000	0.010	0.322	1.004	0.457
q = 4										
1 LC	0	0.303	0.874	0.194	0.015	0.876	0.007	0.003	0.605	0.325
QL	0	0.000	1.479	0.188	0.022	0.141	0.020	0.007	1.000	0.355
\overline{CQ}	0	0.000	0.000	0.216	0.056	0.877	0.000	0.009	1.142	0.500
$\overline{\mathrm{DAF}}$	0	0.000	0.000	0.248	0.128	0.007	0.003	0.081	0.984	0.336
q = 5										
LC	0	0.126	0.461	0.200	0.015	0.115	0.002	0.001	0.822	0.320
QL	0	0.000	0.587	0.199	0.017	0.043	0.003	0.001	0.999	0.328
\overline{CQ}	0	0.000	0.000	0.209	0.024	0.097	0.000	0.002	1.034	0.356
DAF	0	0.000	0.000	0.215	0.027	0.004	0.000	0.007	0.978	0.295