$11a_{153} \ (K11a_{153})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{45} + u^{44} + \dots + 5u^4 + b, -u^{43} + 6u^{41} + \dots - 5u^3 + a, u^{47} - 2u^{46} + \dots + 2u^2 - 1 \rangle$$

 $I_2^u = \langle b - 1, a - u, u^3 + u^2 - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{45} + u^{44} + \dots + 5u^4 + b, -u^{43} + 6u^{41} + \dots - 5u^3 + a, u^{47} - 2u^{46} + \dots + 2u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{43} - 6u^{41} + \dots - 4u^{5} + 5u^{3} \\ u^{45} - u^{44} + \dots + 5u^{5} - 5u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u^{46} - 2u^{45} + \dots - u + 1 \\ -u^{46} + u^{45} + \dots + u^{2} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5} - u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{44} + u^{43} + \dots + 5u^{3} - u^{2} \\ -u^{46} + u^{45} + \dots - 9u^{4} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{46} - u^{45} + \dots - u + 1 \\ -u^{46} + u^{45} + \dots + u^{2} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{46} - u^{45} + \dots - u + 1 \\ -u^{46} + u^{45} + \dots + u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-u^{46} + 2u^{45} + \cdots 11u 3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{47} + 2u^{46} + \dots - 2u^2 + 1$
c_2, c_4, c_6	$u^{47} + 12u^{46} + \dots + 4u + 1$
c_3, c_9	$u^{47} + u^{46} + \dots + 28u + 8$
c_7, c_{10}, c_{11}	$u^{47} + 4u^{46} + \dots + 5u + 1$
<i>C</i> ₈	$u^{47} - 21u^{46} + \dots - 112u + 64$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{47} - 12y^{46} + \dots + 4y - 1$
c_2, c_4, c_6	$y^{47} + 48y^{46} + \dots - 20y - 1$
c_3, c_9	$y^{47} + 21y^{46} + \dots - 112y - 64$
c_7, c_{10}, c_{11}	$y^{47} - 42y^{46} + \dots + 53y - 1$
c ₈	$y^{47} + 5y^{46} + \dots + 249088y - 4096$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.951038 + 0.332468I		
a = -0.548939 - 0.454811I	-2.29859 + 5.08605I	-6.19055 - 7.78708I
b = -1.39671 - 0.26399I		
u = -0.951038 - 0.332468I		
a = -0.548939 + 0.454811I	-2.29859 - 5.08605I	-6.19055 + 7.78708I
b = -1.39671 + 0.26399I		
u = 1.011380 + 0.139586I		
a = 0.187121 - 1.081320I	1.25225 + 2.83779I	-2.68977 - 2.39473I
b = 0.152878 + 0.035343I		
u = 1.011380 - 0.139586I		
a = 0.187121 + 1.081320I	1.25225 - 2.83779I	-2.68977 + 2.39473I
b = 0.152878 - 0.035343I		
u = 0.896160 + 0.336643I		
a = 0.608816 - 1.251080I	0.73808 - 3.39872I	-3.20420 + 5.17325I
b = 0.208048 + 0.420593I		
u = 0.896160 - 0.336643I		
a = 0.608816 + 1.251080I	0.73808 + 3.39872I	-3.20420 - 5.17325I
b = 0.208048 - 0.420593I		
u = 0.929490 + 0.212978I		
a = -0.382863 + 1.063800I	-2.99267 - 0.24824I	-9.15885 + 0.73721I
b = -0.152157 - 0.188016I		
u = 0.929490 - 0.212978I		
a = -0.382863 - 1.063800I	-2.99267 + 0.24824I	-9.15885 - 0.73721I
b = -0.152157 + 0.188016I		
u = -1.006120 + 0.373819I		
a = 0.507879 + 0.365560I	2.62432 + 8.92326I	-1.23068 - 8.39839I
b = 1.365760 + 0.114872I		
u = -1.006120 - 0.373819I		
a = 0.507879 - 0.365560I	2.62432 - 8.92326I	-1.23068 + 8.39839I
b = 1.365760 - 0.114872I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.586342 + 0.704775I		
a = 0.286240 - 0.496512I	6.94014 + 2.76747I	5.54266 - 3.60808I
b = -0.636220 - 0.653509I		
u = -0.586342 - 0.704775I		
a = 0.286240 + 0.496512I	6.94014 - 2.76747I	5.54266 + 3.60808I
b = -0.636220 + 0.653509I		
u = -0.844254 + 0.267575I		
a = 0.624042 + 0.701381I	0.239586 + 1.107160I	-2.87652 - 5.48870I
b = 1.43152 + 0.59292I		
u = -0.844254 - 0.267575I		
a = 0.624042 - 0.701381I	0.239586 - 1.107160I	-2.87652 + 5.48870I
b = 1.43152 - 0.59292I		
u = -0.946938 + 0.664626I		
a = -0.210609 - 0.192004I	5.98354 + 2.31808I	4.28165 - 1.64217I
b = -0.664543 + 0.135905I		
u = -0.946938 - 0.664626I		
a = -0.210609 + 0.192004I	5.98354 - 2.31808I	4.28165 + 1.64217I
b = -0.664543 - 0.135905I		
u = -0.842514 + 0.793044I		
a = -0.169363 + 0.125945I	3.10025 + 1.81367I	-3.66686 - 2.05384I
b = 0.111786 + 0.476934I		
u = -0.842514 - 0.793044I		
a = -0.169363 - 0.125945I	3.10025 - 1.81367I	-3.66686 + 2.05384I
b = 0.111786 - 0.476934I		
u = 0.827943 + 0.860184I		
a = 2.70969 + 0.79407I	5.30471 + 2.88795I	0.68944 - 2.66752I
b = -2.83895 + 0.82810I		
u = 0.827943 - 0.860184I		
a = 2.70969 - 0.79407I	5.30471 - 2.88795I	0.68944 + 2.66752I
b = -2.83895 - 0.82810I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.847216 + 0.855752I		
a = 0.256476 - 0.116248I	8.19027 - 0.67694I	2.91715 + 0.I
b = -0.054478 - 0.688171I		
u = -0.847216 - 0.855752I		
a = 0.256476 + 0.116248I	8.19027 + 0.67694I	2.91715 + 0.I
b = -0.054478 + 0.688171I		
u = 0.863506 + 0.840738I		
a = -2.93690 - 1.29712I	7.05051 - 2.00460I	3.77294 + 2.26192I
b = 3.21491 - 0.72537I		
u = 0.863506 - 0.840738I		
a = -2.93690 + 1.29712I	7.05051 + 2.00460I	3.77294 - 2.26192I
b = 3.21491 + 0.72537I		
u = 0.815670 + 0.889580I		
a = -2.42001 - 0.70946I	10.89330 + 7.08520I	3.93867 - 3.32748I
b = 2.67739 - 0.69105I		
u = 0.815670 - 0.889580I		
a = -2.42001 + 0.70946I	10.89330 - 7.08520I	3.93867 + 3.32748I
b = 2.67739 + 0.69105I		
u = -0.930838 + 0.775441I		
a = 0.203539 + 0.027785I	2.82936 + 4.09126I	-3.95731 - 3.33683I
b = 0.305087 - 0.418436I		
u = -0.930838 - 0.775441I		
a = 0.203539 - 0.027785I	2.82936 - 4.09126I	-3.95731 + 3.33683I
b = 0.305087 + 0.418436I		
u = 0.935935 + 0.814528I		
a = -2.21964 - 2.45540I	6.82306 - 4.16721I	3.15551 + 3.14334I
b = 3.34946 + 0.19998I		
u = 0.935935 - 0.814528I		
a = -2.21964 + 2.45540I	6.82306 + 4.16721I	3.15551 - 3.14334I
b = 3.34946 - 0.19998I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.953997 + 0.816453I		
a = -0.258063 - 0.008399I	7.85574 + 6.89913I	0 4.81630I
b = -0.328975 + 0.602645I		
u = -0.953997 - 0.816453I		
a = -0.258063 + 0.008399I	7.85574 - 6.89913I	0. + 4.81630I
b = -0.328975 - 0.602645I		
u = 0.967508 + 0.809416I		
a = 1.72066 + 2.45725I	4.86878 - 9.09918I	0. + 7.51593I
b = -3.04108 - 0.38491I		
u = 0.967508 - 0.809416I		
a = 1.72066 - 2.45725I	4.86878 + 9.09918I	0 7.51593I
b = -3.04108 + 0.38491I		
u = 0.917330 + 0.873542I		
a = 2.18776 + 1.62070I	15.4002 - 3.2295I	6.21908 + 0.I
b = -3.01700 + 0.23550I		
u = 0.917330 - 0.873542I		
a = 2.18776 - 1.62070I	15.4002 + 3.2295I	6.21908 + 0.I
b = -3.01700 - 0.23550I		
u = -0.194123 + 0.690391I		
a = -0.768909 + 0.672272I	5.21653 - 5.13195I	4.47363 + 3.77222I
b = 0.832582 + 0.572354I		
u = -0.194123 - 0.690391I		
a = -0.768909 - 0.672272I	5.21653 + 5.13195I	4.47363 - 3.77222I
b = 0.832582 - 0.572354I		
u = 0.989025 + 0.818280I		
a = -1.52457 - 2.27011I	10.3470 - 13.4113I	0. + 8.12644I
b = 2.85418 + 0.32452I		
u = 0.989025 - 0.818280I		
a = -1.52457 + 2.27011I	10.3470 + 13.4113I	0 8.12644I
b = 2.85418 - 0.32452I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.682080		
a = 0.611660	-0.926103	-11.4570
b = -0.132637		
u = -0.525813 + 0.373412I		
a = -0.094058 + 1.038330I	1.13890 + 1.31315I	3.11319 - 5.85317I
b = 0.733120 + 0.760322I		
u = -0.525813 - 0.373412I		
a = -0.094058 - 1.038330I	1.13890 - 1.31315I	3.11319 + 5.85317I
b = 0.733120 - 0.760322I		
u = -0.160803 + 0.538431I		
a = 0.823656 - 0.894795I	0.05463 - 1.88803I	0.05102 + 3.76347I
b = -0.721771 - 0.493724I		
u = -0.160803 - 0.538431I		
a = 0.823656 + 0.894795I	0.05463 + 1.88803I	0.05102 - 3.76347I
b = -0.721771 + 0.493724I		
u = 0.295011 + 0.434696I		
a = -1.38778 + 0.73289I	2.53395 + 0.36100I	2.22031 + 1.00355I
b = 0.681477 - 0.043588I		
u = 0.295011 - 0.434696I		
a = -1.38778 - 0.73289I	2.53395 - 0.36100I	2.22031 - 1.00355I
b = 0.681477 + 0.043588I		

II.
$$I_2^u = \langle b-1, \ a-u, \ u^3+u^2-1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u + 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u + 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^2 u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^3 + u^2 - 1$
c_2, c_6	$u^3 + u^2 + 2u + 1$
c_3,c_8,c_9	u^3
c_4	$u^3 - u^2 + 2u - 1$
c_5	$u^3 - u^2 + 1$
c ₇	$(u+1)^3$
c_{10}, c_{11}	$(u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^3 - y^2 + 2y - 1$
c_2, c_4, c_6	$y^3 + 3y^2 + 2y - 1$
c_3, c_8, c_9	y^3
c_7, c_{10}, c_{11}	$(y-1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = -0.877439 + 0.744862I	4.66906 + 2.82812I	-0.69240 - 3.35914I
b = 1.00000		
u = -0.877439 - 0.744862I		
a = -0.877439 - 0.744862I	4.66906 - 2.82812I	-0.69240 + 3.35914I
b = 1.00000		
u = 0.754878		
a = 0.754878	0.531480	-1.61520
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^3 + u^2 - 1)(u^{47} + 2u^{46} + \dots - 2u^2 + 1) $
c_2, c_6	$(u^3 + u^2 + 2u + 1)(u^{47} + 12u^{46} + \dots + 4u + 1)$
c_3,c_9	$u^3(u^{47} + u^{46} + \dots + 28u + 8)$
c_4	$(u^3 - u^2 + 2u - 1)(u^{47} + 12u^{46} + \dots + 4u + 1)$
<i>C</i> ₅	$(u^3 - u^2 + 1)(u^{47} + 2u^{46} + \dots - 2u^2 + 1)$
	$((u+1)^3)(u^{47}+4u^{46}+\cdots+5u+1)$
c ₈	$u^3(u^{47} - 21u^{46} + \dots - 112u + 64)$
c_{10}, c_{11}	$((u-1)^3)(u^{47} + 4u^{46} + \dots + 5u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^3 - y^2 + 2y - 1)(y^{47} - 12y^{46} + \dots + 4y - 1)$
c_2, c_4, c_6	$(y^3 + 3y^2 + 2y - 1)(y^{47} + 48y^{46} + \dots - 20y - 1)$
c_3,c_9	$y^3(y^{47} + 21y^{46} + \dots - 112y - 64)$
c_7, c_{10}, c_{11}	$((y-1)^3)(y^{47} - 42y^{46} + \dots + 53y - 1)$
<i>C</i> 8	$y^3(y^{47} + 5y^{46} + \dots + 249088y - 4096)$