Групповой проект. Тема: Рост дендритов

Этап 1

Артамонов Т. Е., Федорина Э. В., Морозов М. Е., Коротун И. И., Маслова А. С. 24 февраля 2024

Российский Университет Дружбы Народов, Moscow, Russian Federation

Состав исследовательской команды

Студенты группы НКНбд-01-21

- Артамонов Тимофей Евгеньевич
- Федорина Эрнест Васильевич
- Морозов Михаил Евгеньвич
- Коротун Илья Игоревич
- Маслова Анастасия Сергеевна

Вводная часть

Определение

Дендриты — это древовидные кристаллические структуры, которые образуются в процессе кристаллизации из переохлажденного расплава. Они играют ключевую роль в определении микроструктуры и, следовательно, физических свойств материалов.

Рис. 1: Дендриты марганца

Определение

Процесс роста дендритов зависит от множества факторов. Если исследовать механизм формирования дендритов, то можно научиться изменять свойства различных сплавов, а значит исследование полезно не только для теории, но и для практики.

Формирование и описание научной проблемы

Проблема управления и предсказания морфологии дендритной кристаллизации в переохлажденных расплавах

В процессе формирования кристаллических структур из переохлажденных расплавов ключевым является понимание и управление механизмами роста дендритов, поскольку именно они определяют конечные физические свойства материалов. Дендритный рост, происходящий в результате кристаллизации, существенно влияет на микроструктуру и, как следствие, на механические, электрические и тепловые характеристики материалов.

Проблема управления и предсказания морфологии дендритной кристаллизации в переохлажденных расплавах

Таким образом, научная проблема заключается в разработке теоретических и численных моделей, способных точно предсказывать динамику роста дендритов и их влияние на микроструктуру сформированных материалов.

Актуальность

Решение этой проблемы откроет новые возможности для оптимизации процессов производства материалов с высокими эксплуатационными характеристиками и для создания новых материалов с уникальными свойствами.

- Написать программу, моделирующую теплопроводность. Задать начальную температуру равной нулю везде, кроме центральной точки и посмотреть, как меняется распределение температуры.
- Добавить затвердевание, исследовать влияние начального переохлаждения S и величины капиллярного радиуса λ на форму образующихся дендритов.
- Исследовать зависимость от времени числа частиц в агрегате и его среднеквадратичного радиуса в разных режимах.
- Определить фрактальную размерность полученных образцов
- \cdot Исследуйте, как влияет величина теплового шума δ на вид образующихся агрегатов.

• Безразмерное переохлаждение:

$$S = \frac{c_p(T_m - T_\infty)}{L}$$

• Уравнение теплопроводности:

$$\rho c_p \frac{\partial T}{\partial t} = \kappa \nabla^2 T$$

· Условие Стефана для скорости (V):

$$V = \frac{\kappa}{\rho L} (\nabla T|_s - \nabla T|_l)$$

• Условие Гиббса-Томсона:

$$T_b = T_m \left(1 - \frac{\gamma T_m}{\rho L^2 R} \right)$$

• Кинетическая модификация температуры на границе:

$$\Delta T_b = -T_m \beta V$$

Выводы

Во время выполнения первого этапа группового проекта мы сделали теоретическое описание модели "Рост дендритов", аналитически исследовали её и поставили задачу нашей работы.

Список литературы

- 1. Д. А. Медведев, А. Л. Куперштох, Э. Р. Прууэл, Н. П. Сатонкина, Д. И. Карпов. МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ И ЯВЛЕНИЙ НА ПК учебное пособие. НГУ, 2010. 91-96c.
- 2. Дендрит(кристалл) [Электронный ресурс]. Wikimedia Foundation, Inc., 2024. URL: Дендрит(кристалл)