tomoDD_SP 使用手册

讲解: 杨浩,导师: 张海江

中国科学技术大学 地球和空间科学学院

Email:youngh geo@mail.ustc.edu.cn

摘要: Vp/Vs(波速比)是刻画地壳岩性、裂隙与含流体性的关键指标,并与泊松比直接相关。获取稳定、精细的三维 Vp/Vs 模型是解释断层力学与震源行为的前提。本手册介绍的tomoDD_SP 程序在统一框架下联合利用 P、S 与 S-P 的绝对与差分到时,实现事件重定位与三维成像。程序将 S-P 到时差作为独立观测,直接反演 Vp/Vs,避免了"先求 Vp 与 Vs 再相除"带来的分辨率偏差;同时,S-P 观测天然消除了同一事件的发震时刻项,显著减弱与起时及部分系统误差的耦合。已有研究表明,这一联合策略可更稳健地同时求解震源与介质参数,并获得更可靠的 Vp/Vs 成像: S-P 提供对波速比的直接约束,而双差(事件对)数据提升源区分辨率并增强抗异常能力。应用案例显示,高分辨率 Vp/Vs 能揭示断层带多尺度结构,并与地震行为(如破裂分段、凹凸体与小震时空演化)相呼应,体现出本程序在不同构造环境中研究震源—介质耦合的适用性。本文档系统说明 tomoDD_SP 的数据准备、编译与运行流程,以及常见问题与排错要点。

0. 快速上手(建议先读)

准备数据与模型: station.dat、event.dat、absolute.dat、dt.ct、dt.cc(可选),以及本版新增的 absolute_sp.dat、dt_sp.ct、dt_sp.cc(可选),放置于 Input_Files/ 文件夹下;并在工作目录放置初始三维模型文件 MOD。

编辑控制文件: tomoDD SP.inp (本文第5章逐项解释)。

运行: ./tomoDD SP.tomoDD SP.inp。

检查与迭代: 查看 *.res / *.sta / *.loc / *.reloc 与 Vp_model.dat / Vs_model.dat / VpVs_model.dat; 按第 7 章建议,逐步收紧权重与阈值,获得稳定解。

1. 方法与程序概览

1.1 目标

联合反演: 在三维网格上同时求解 Vp 与 Vs 和 Vp/Vs,并重定位事件(震源位置与发震时刻)。

数据类型: 绝对到时、目录差分到时、互相关差分到时,以及本版新增 S-P 的绝对/差分到时/互相关差分到时。

思想:采用分阶段(成组)迭代与再加权,先依赖绝对到时恢复大尺度结构,再逐步提高差分与互相关的权重以细化局部结构与相对定位。

1.2 网格与射线

三维规则网格表示速度与波速比模型。

射线追踪可选择不同方法(详见参数 RayTracing)。

1.3 S-P 的作用

S-P 绝对到时 (absolute sp.dat) 直接约束 Vp/Vs;

S-P 差分到时(dt sp.ct/dt sp.cc)进一步降低发震时刻与路径系统误差对 Vp/Vs 的耦合。

2. 安装与运行

```
编译: make clean; make;
可执行程序: tomoDD_SP。
运行语法: ./tomoDD_SP tomoDD_SP.inp

工作目录: 需要包含
./Input_Files/
    absolute.dat, absolute_sp.dat,dt.ct, dt_sp.ct, event.dat, station.dat, dt.cc(可选), dt_sp.cc(可选)
./Output_Files/。
./MOD
./tomoDD_SP
./tomoDD_SP.inp
./ak135.15.SKS
./layer-16.dat
```

3. 数据准备流程

• 所需准备数据文件:

station.dat(台站坐标与深度), phase.dat(震相数据), MOD dt.cc(波形互相关数据,可选)。

• 利用 ph2dt 生成 absolute.dat, dt.ct, event.dat 等

执行语句 ./ph2dtN3 ph2dt.inp 该部分与 hypoDD 相同,使用说明见 hypoDD.pdf。

- S-P 到时差数据提取,获得 absolute_sp.dat, dt_sp.ct:
 执行语句 python extract sp_times.py。
- 互相关差分 (可选): 生成 dt.cc; 利用 python extract sp times.py 生成 dt_sp.cc。

- 初始模型:编写 MOD (含网格坐标与初始 Vp 与 Vp/Vs 模型;程序可据此派生 Vs)。
- 最终数据文件汇总:

absolute.dat, absolute_sp.dat ,dt.ct, dt_sp.ct, event.dat, station.dat, dt.cc(可选), dt_sp.cc(可选), MOD

4. 输入文件格式(逐一说明与示例)

以下所有文件采用 ASCII 文本,字段以空格/制表符分隔。

4.1 震相文件 phase.dat

phase.dat 记录每个事件的 P、S 绝对到时,供后续程序转换为所需的绝对到时、相对到时和 初始事件信息。文件为 ASCII 文本,字段以空格分隔。每个事件由一行事件头加若干行观测 记录组成。

事件头(1行)

#YR MO DY HR MN SC LAT LON DEP MAG EH EZ RMS ID

YR, MO, DY: 事件发生日期(四位年份、月、日)

HR, MN, SC: 事件发生时间(时、分、秒,可含小数)

LAT, LON, DEP:事件初始纬度(°N)、经度(°E)、深度(km)

MAG: 震级

EH, EZ: 水平和垂直位置误差(km), 未用到, 给3个0即可。

RMS: 该事件的均方根(RMS)残差(秒),未用到,给0即可

ID: 事件唯一标识号(整数)

观测行 (每行一条相位记录):

STATT WGHT PHA

STA: 台站代码(不含空格)

TT: 绝对到时(秒)

WGHT: 拾取权重(通常 0~1, 1 表示最佳质量; 该值会与控制文件中的权重相乘)

PHA: 相位类型 (P或S)

示例:

2001 1 1 16 2 43.60 29.220 101.070 9.0 0 0 0 620002

GDS 19.6 1 P

GDS 32.2 1 S

每个事件必须有唯一的 ID, 否则会导致引用错误或运行异常。

台站代码需与 station.dat 中一致。

若某相位不可用,可以省略该观测行,或将 WGHT 设为极小值(如负值表示保留该相位但不参与常规权重统计)。

为保证双差与 S-P 差分反演的效果, P 与 S 拾取需经过严格质量控制

4.2 台站文件 station.dat

作用: 定义台站位置与高程/深度。

字段:

STA LAT(°) LON(°) DEP(m)

STA: 台站名(不含空格)。

DEP: 相对海平面高度(m),海拔为正,水下为负。

示例:

ABCD 35.1234 103.4567 1350

EFGH 35.5432 103.9876 250

4.3 事件文件 event.dat

作用: 提供事件的初始信息。

字段:

YYYYMMDD HHMMSSFF LAT(°) LON(°) DEP(km) MAG EH(km) EV(km) RMS(s) ID TYPE

TYPE: 事件类型, '0'代表天然地震, '1'代表 shot data(发震时刻和位置已知), '2'代表 blast data(位置已知)。

示例:

20010102 24360 29.3667 101.1170 9.000 3.0 0.00 0.00 0.00 12 0

4.4 绝对到时 absolute.dat

作用:每个事件的台站到时列表。

结构:事件为单位块,头行以#开头,随后若干体行。

格式:

ID

STA TT(s) WGHT PHA

•••

WGHT: 拾取质量权重(0~1或其他自定义标度: 与控制文件中的权重会相乘)。

PHA: P或S。

示例:

1000123

ABCD 12.345 1.0 P

EFGH 22.678 0.8 S

4.5 目录差分到时 dt.ct

作用:事件对在同一台站的目录差分(使用台站拾取的到时)。

结构:按"事件对"为单位块。

格式:

ID1 ID2

STA TT1(s) TT2(s) WGHT PHA

•••

TT1/TT2: 两事件在该台的绝对到时(共用统一时间基准);

WGHT: 该条目的相对权重;

PHA: P或S。

示例:

1000123 1000456

ABCD 12.345 12.789 1.0 P

EFGH 22.678 22.990 0.8 S

4.6 互相关差分到时 dt.cc(两种体例,由 CC_format 指定)

作用:事件对在同一台站的互相关差分(更高精度)。

体例 1 (CC format=1): 块状头-体结构,通常使用这种

#ID1 ID2 OTC

STA DT(s) WGHT PHA

•••

OTC: 与目录时间基准的校正(未知可填0)。

DT:该台站互相关差分到时(ID2-ID1)。

体例 2 (CC format=2): 每行一观测

ID1 ID2 STA DT(s) WGHT PHA

示例 (体例 2):

1000123 1000456 ABCD 0.438 1.0 P

1000123 1000456 EFGH 0.312 0.8 S

4.7 S-P 绝对到时 absolute_sp.dat

作用: 使用 S_P (同一事件、同一台)替代绝对 P/S,到时定义为 $T_S - T_P$ 。 结构与 absolute.dat 相同,TT 为 S_P 。

示例:

1000123

ABCD 10.333 1.0

EFGH 8.115 0.9

4.8 S-P 目录差分 dt sp.ct

作用: 两事件的 S-P 差分(目录级)。

结构与 absolute sp.dat 相似,但 TT 为事件对在该台的 S-P 到时差。

示例:

1000123 1000456

ABCD 2.56 1.0

4.9 S-P 互相关差分 dt sp.cc

作用: 两事件在同一台的 S-P 互相关差分。

体例与 dt.cc 相同(由 CC format 决定), DT 表示 (S-P) 的差分。

4.10 初始模型 MOD(必须存在于工作目录)

作用: 提供初始三维速度与波速比模型及网格坐标。

格式:

 $bld = \langle float \rangle$ $nx = \langle int \rangle$ $ny = \langle int \rangle$ $nz = \langle int \rangle$ x1 x2 ... x nx y1 y2 ... y_ny z1 z2 ... z nz (km, 正向下) Vp(1,1,1),Vp(2,1,1),...,Vp(nx,1,1)Vp(1,2,1),Vp(2,2,1),...,Vp(nx,2,1)... ... Vp(1,ny,1),Vp(2,ny,1),...,Vp(nx,ny,1)••• Vp(1,ny,nz),Vp(2,ny,nz),....,Vp(nx,ny,nx)Vp/Vs(1,1,1), Vp/Vs(2,1,1),..., Vp/Vs(nx,1,1)Vp/Vs(1,2,1), Vp/Vs(2,2,1), ..., Vp/Vs(nx,2,1)••• Vp/Vs(1,ny,1),Vp/Vs(2,ny,1),......Vp/Vs(nx,ny,1) •••

Vp/Vs(1,ny,nz),Vp/Vs(2,ny,nz),....,Vp/Vs(nx,ny,nx)

bld: 正演时插值参数,通常设置为 0.1 或 0.01;

x/y/z: 网格节点坐标; 必须覆盖所有台站与事件;

其中 x1, x_nx, y1, y_ny, z1, z_nz 为边界层,需要设置一个较大的数以包含研究区域,边界层不参与反演。另外,建议给边界层相对更小的速度,防止出现射线追出边界的情况。**示例:**

0.1 12 14 11

96.00 101.00 101.50 102.00 102.50 103.00 103.50 104.00 104.50 105.00 105.50 110.00

23.00 27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 38.00

-100.00 0.00 5.00 10.00 17.50 25.00 35.00 45.00 65.00 90.00 300.00

...

#之后写入逐层 Vp、再写入逐层 VpVs。

5. 控制文件 tomoDD_SP.inp(逐项解释)

行首*为注释;字段之间以空格分隔;顺序建议与下述一致。

5.1 输入/输出文件选择

*--- input file selection

说明与建议

某类数据若暂不使用,可留空行或不填对应文件。

模型输出与 MOD 同构, 便于对比。

5.2 数据类型选择

*--- data type selection:

* IDAT: 0=synthetics; 1=cross corr; 2=catalog; 3=cross & cat

* IPHA: 1=P; 2=S; 3=P&S

* DIST: max dist [km] between cluster centroid and station

IDAT IPHA DIST

2 3 8000

参数解释与建议

IDAT: 运行启用的数据大类。

0 合成测试; 1 仅互相关差分; 2 仅目录差分; 3 两者并用。

IPHA: 相位类型。

1=仅 P; 2=仅 S; 3=P 与 S。若使用 S-P, 一般仍取 3。

DIST: 事件簇质心到台站的最大距离(km)。

距离过大将引入远台、增加路径复杂度;过小可能丢失约束。

5.3 事件聚类

*--- event clustering:

* OBSCC: min # of obs/pair for cross-time data (0= no clustering)

* OBSCT: min # of obs/pair for catalog data (0= no clustering)

* Air_dep: shallowest depth (km), events shallower than this are dropped

OBSCC OBSCT Air dep

0 0 -4.0

参数解释与建议

OBSCC/OBSCT: cluster 分析的参数,给 0 的话就是每个地震都单独定位,如果给其他数的话,程序会根据这个数寻找可以组成一个 cluster 的事件群,然后对这个事件群进行定位。通常情况下给 0.

Air dep: 浅于该深度(km)的事件判为不可信("空气地震")并剔除。

5.4 求解与模型控制

*--- solution control:

* ISTART ISOLV NSET RayTracing PSratio DISTratio

2 2 8 2 10.0 0.05

* iuses iuseq invdel stepl

2 0 0 0.5

* wlat wlon rota CC format

30.3 103.3 0 1

* minVp maxVp minVs maxVs minVpVs maxVpVs maxdVp maxdVs maxdVpVs

0.5 8.5 0.01 6.0 1.4 3.0 0.4 0.2 0.05

* wt vp1 wt vp2 wt vp3 wt vs1 wt vs2 wt vs3 wt vpvs1 wt vpvs2 wt vpvs3

参数解释

ISTART: 初始位置来源。1=从簇单源/质心; 2=使用 event.dat。一般取 2。

ISOLV: 线性求解器。1=SVD (小规模、稳健); 2=LSQR (大规模,高效,需要 DAMP)。 通常使用 2。

NSET: 成组迭代的组数: 需与 5.5 的权重段落数量一致。

RayTracing: 射线追踪器。1=Hols's; 2=Lomax's。

PSratio: 波速比一致性约束权重,即让程序直接反演得到的波速比与程序分别反演得到的 Vp 与 Vs 相除得到的波速比尽可能一致,一般给 4-10。

DISTratio: 对判断 P 和 S 射线路径是否相近的阈值参数,给 0.05 就是如果 P 和 S 的路径差异 在总路径长度的 5%之内的话,就认为它们路径是相近的,如果大于了这个数就舍弃该数据。

iuses: 介质参数开关。1=仅反演 Vp; 2=反演 Vp 与 Vs/ (或 Vp 与 Vp/Vs)。

iuseq:为0时表明MOD后半部分为Vp/Vs,若为其他值,则后半部分为Q值

invdel:数据时标一致时默认 0。

stepl: 每步模型更新的步长因子(0.1-5)。

wlat/wlon/rota: 坐标原点与平面旋转角(度,顺时针为正)。若不需要,设为0,球坐标系版本中旋转参数不起作用。

CC format: 互相关文件体例。1=头-体; 2=逐行。必须与 dt.cc/dt sp.cc 一致。

minVp/maxVp、minVs/maxVs、minVpVs/maxVpVs: 物理可行范围(硬约束)。

典型: Vp 0.5-8.5 km/s, Vs 0.01-6.0 km/s, Vp/Vs 1.4-3.0。

maxdVp/maxdVs/maxdVpVs: 单次迭代参数最大改变量(避免发散)。

典型: $Vp \le 0.4 \text{ km/s}$, $Vs \le 0.2 \text{ km/s}$, $Vp/Vs \le 0.05$ 。

wt_vp1/2/3、wt_vs1/2/3、wt_vpvs1/2/3: X(经向)/Y(纬向)/Z(深向)三方向一阶平滑权重。

含义: 权重越大,模型越平滑。平滑过弱: 数据噪声被当作细节放大; 过强: 真实结构被抹平。通过 L-curve 选择合适的参数。

5.5 数据加权与再加权(成组段落)

- *--- data weighting and re-weighting:
- * --- CROSS DATA ---- CATALOG DATA ----
- * NITER WTCCP WTCCS WRCC WDCC WTCTP WTCTS WRCT WDCT WTDD DAMP JOINT THRE_vp THRES_vpvs
 - 1 -9 -9 -9 -9 0.1 0.08 8 -9 10.0 20 1 0.05 0.05
 - 2 -9 -9 -9 -9 0.1 0.08 7 -9 10.0 20 0 0.05 0.05
 - 1 -9 -9 -9 -9 0.1 0.08 7 -9 10.0 20 1 0.05 0.05
 - 2 -9 -9 -9 -9 0.1 0.08 6 -9 10.0 20 0 0.05 0.05
 - 1 -9 -9 -9 -9 1.0 0.8 6 -9 0.1 20 1 0.05 0.05
 - 2 -9 -9 -9 -9 1.0 0.8 6 -9 0.1 20 0 0.05 0.05

1 -9 -9 -9 -9 1.0 0.8 5 -9 0.1 20 1 0.05 0.05

2 -9 -9 -9 -9 1.0 0.8 5 -9 0.1 20 0 0.05 0.05

字段定义

NITER:本组内迭代次数(整数>1)。

WTCCP / WTCCS: 互相关差分 P/S 的数据权重(>0 生效; -9 表示不用)。

WRCC: 互相关差分的残差阈值(s),超过则降权/剔除; -9 关闭。

WDCC: 互相关差分的事件对最大距离(km),超过则降权/剔除: -9 关闭。

WTCTP/WTCTS: 目录差分的数据类型权重。

WRCT / WDCT: 目录差分的残差/距离加权(同上)。

WTDD: 绝对到时 vs 差分到时 的相对权重(>1 侧重绝对; <1 侧重差分)。

DAMP: 仅在 ISOLV=2 时生效的阻尼系数。

JOINT: 1=位置与速度联合求解: 0=仅重定位。

THRE vp / THRES vpvs: DWS (射线加权计数) 阈值系数: 阈值=系数×全局平均 DWS。

低于阈值的网格节点在本段迭代被固定(不更新)。

建议 0.03-0.10,数据稠密区可取小、稀疏区取大。

推荐流程

早期组: 大 WTDD (例如 10), WTCT* 小 (0.05–0.2), WTCC*=-9, JOINT=1, 用以建立大尺度模型, 每组后可插入 JOINT=0 (仅定位)稳住位置。

中期组:逐步提高 WTCT*、收紧 WRCT (如 $8 \rightarrow 6$),WTDD 下降 ($10 \rightarrow 0.1$)。

末期组:若有 dt.cc,开启/提高 WTCC*,同时视噪声收紧 WRCC;适当减小平滑与 maxd* 释放细节。

常见误用

DAMP 过小:解不稳定、震源飘移、模型振荡。

WR* 过严: 有效数据大量被丢弃,解退化。

一开始就给大WTCC*,可能错误牵引模型。

5.6 事件/簇选择

*--- event selection:

* CID

0

* ID

(每行最多 8 个事件 ID; 留空表示全部)

CID: 簇编号(0表示全部簇)。

ID: 仅重定位列出的事件(可分行)。

6. 输出文件(含义与检查要点)

tomoFDD.loc

原始位置(运行前的事件清单,便于对照)。它与 hypoDD 中的 hypoDD.loc 具有完全相同的格式。每一个事件为一行,

ID, LAT, LON, DEPTH, X, Y, Z, EX, EY, EZ, YR, MO, DY, HR, MI, SC, MAG, CID

tomoFDD.reloc

重定位结果(包含经纬度、深度、震级、发震时刻等信息)。它与 hypoDD 中的 hypoDD.reloc 具有完全相同的格式。每一个事件为一行,

ID, LAT, LON, DEPTH, X, Y, Z, EX, EY, EZ, YR, MO, DY, HR, MI, SC, MAG,

NCCP, NCTP, NCTS, RCC, RCT, CID

stares.dat

台站统计(每站观测条数、P/S 残差、RMS)。

它与 hypoDD 中的 hpoDD.sta 格式完全相同。每行一个台站:

STA, LAT, LON, DIST, AZ, NCCP, NCCS, NCTP, NCTS, RCC, RCT, CID

initial.res / res

P 波和 S 波数据残差(最后一次迭代写出; 含 STA, DT/TT, ID1, ID2, IDX, WGHT, RES, WT, DIST 等字段)。它与 hypoDD 中的 hypoDD.res 具有完全相同的格式

STA, DT, ID1, ID2, IDX, WGHT, RES, WT, DIST

initial SP.res / res SP

S-P 数据残差(用于诊断 Vp/Vs 拟合)。

与 initial.res / res 格式相同,此时 RES 代表 S-P 残差。

STA, DT, ID1, ID2, IDX, WGHT, RES, WT, DIST

Vel.out

求解日志/概要(每组条件数、RMS变化、去权比例等)。

Vp model.dat / Vs model.dat / VpVs model.dat

最终模型(与 MOD 同构)。

检查要点

RMS 是否随组/迭代单调或总体下降;

台站 RMS 分布是否合理(异常站需复核拾取/响应);

位置与发震时刻改变量是否逐渐变小:

模型切片是否与构造/已知速度对比合理,是否存在非物理高梯度。

7. 调参与最佳实践

分阶段: 先绝对到时主导(WTDD大),再目录差分,末期互相关细化。

平滑与阻尼:初期强阻尼,中后期逐步减小微调阻尼。

步长: stepl 0.5 起步; 若出现震源抖动或模型"棋盘", 先减小到 0.3-0.4。

范围/限幅: min/max 合理,maxd* 不宜过大; V 变化每步 Vp ≤0.3–0.4 km/s、Vp/Vs ≤0.03–0.05 较稳健。

8. 常见问题与排错

大量"空气地震": 检查 Air dep、近地表速度过低、台站高程; 适度增大 DAMP。

条件数过大/不收敛: 增加 DAMP、提高平滑权、放宽 WR*、减小 maxd*、缩小 DIST。

条件数过小/过阻尼:减小 DAMP、降低平滑、适当提高 WTCT*/WTCC*。

互相关与目录时间基准不一致: 统一 OTC 约定(统一置 0 或 -999,并在程序开关中一致处理)。

S-P 异常: 检查 P、S 对的配对是否严格同一台同一事件; 异常常由遗漏/错配引起。

9. 示例控制文件(可直接修改使用)

*catalog P diff times:

Input Files/dt.ct

** catalog P diff times (S-P)

Input Files/dt sp.ct

* event file:

Input Files/event.dat

*

^{*} RELOC.INP:

^{*---} input file selection

^{*} cross correlation diff times:

^{**} cross correlation diff times(S P)

```
* station file:
```

Input Files/station.dat

*

- *--- output file selection
- * original locations:

Output Files/tomoFDD.loc

* relocations:

Output Files/tomoFDD.reloc

* station information:

Output Files/stares.dat

*initial residual information:

Output Files/initial.res

*initial residual information:(S-P)

Output_Files/initial_SP.res

* residual information:

Output Files/res

* residual information:(S-P)

Output Files/res SP

- * source paramater information:
- * Velocity file

Output_Files/Vel.out

* Vp Model

 $Output_Files/Vp_model.dat$

* Vs Model

 $Output_Files/Vs_model.dat$

* Vp/Vs model

Output Files/VpVs model.dat

* Absolute file

Input Files/absolute.dat

* absolute data (S-P)

Input Files/absolute sp.dat

*

- *--- data type selection:
- * IDAT: 0 = sichuannthetics; 1= cross corr; 2= catalog; 3= cross & cat
- * IPHA: 1= P; 2= S; 3= P&S
- * DIST:max dist [km] between cluster centroid and station
- * IDAT IPHA DIST
 - 2 3 8000

*

- *--- event clustering:
- * OBSCC: min # of obs/pair for crosstime data (0= no clustering)

```
* OBSCT: min # of obs/pair for network data (0= no clustering)
* OBSCC OBSCT Air dep
      0
          -4.0
*--- solution control:
* ISTART:
            1 = from single source; 2 = from network sources
* ISOLV: 1 = SVD, 2 = lsqr
* NSET:
            number of sets of iteration with specifications following
* RayTracing 1=Hols's; 2=Lomax's
* ISTART ISOLV NSET RayTracing PSratio DISTratio
       2
         8 2
                     10.0 0.05
* iuses iuseq invdel stepl
     0 0
              0.5
* wlat wlon rota CC format
 30.3 103.3 0
* minVp maxVp minVs maxVs minVpVs maxVpVs maxdVp maxdVs maxdVpVs
 0.5 8.5 0.01 6 1.4 3.0 0.4 0.2 0.05
* wt vp1 wt vp2 wt vp3 wt vs1 wt vs2 wt vs3 wt vpvs1 wt vpvs2 wt vpvs3
 15 15 15 15 15 15 15
*--- data weighting and re-weighting:
                last iteration to used the following weights
* NITER:
* WTCCP, WTCCS:
                        weight cross P, S
* WTCTP, WTCTS:
                        weight catalog P, S
* WRCC, WRCT:
                    residual threshold in sec for cross, catalog data
* WDCC, WDCT:
                    max dist [km] between cross, catalog linked pairs
                damping (for lsqr only)
* DAMP:
    --- CROSS DATA ---- CATALOG DATA ----
* NITER WTCCP WTCCS WRCC WDCC WTCTP WTCTS WRCT WDCT WTDD DAMP JOINT THRE vp
THRES vpvs
  1
     -9 -9 -9 -9 0.1 0.08 8 -9 10.0 20 1 0.05 0.05
     -9 -9 -9 0.1 0.08
                           7 -9 10.0 20 0 0.05 0.05
     -9 -9 -9 0.1 0.08
                           7 -9 10.0 20 1 0.05 0.05
     -9 -9 -9 0.1 0.08
                           6 -9 10.0 20 0 0.05 0.05
```

1 -9 -9 -9 -9 1 0.8

*--- event selection:

* CID: cluster to be relocated (0 = all)

-9 -9 -9 -9 1 0.8

-9 -9 -9 -9 1 0.8

2 -9 -9 -9 1 0.8

* ID: cuspids of event to be relocated (8 per line)

* CID

0.05 0.05

6 -9 .1 20 1 0.05 0.05

6 -9 .1 20 0 0.05 0.05

1

5 -9 .1 20 0 0.05 0.05

5 -9 .1 20

0 * ID *______

10. 术语简表 (便于查阅)

绝对到时:单事件在某台的到时。

目录差分:两事件在同一台的到时差(目录拾取)。

互相关差分:两事件在同一台的互相关到时差。

S-P: 同一事件在同一台的 T S-T P; 也可做事件间差分。

DWS: 路径覆盖度指标 (加权射线条数); 用于节点可更新性判断。

条件数:线性系统稳定性度量;过大不稳,过小过阻尼。