NOTES 18: THE NORMAL DISTRIBUTION

Stat 120 | Fall 2025

Prof Amanda Luby

Three main to	pics of	Stat12	20:
---------------	---------	--------	-----

 : Summarizing data with numbers and	~ ~	~

Up until now, we've relied on computer simulations (via StatKey or R) to generate _____ or ___ distributions.

We're now going to begin using ______ to generate these distributions instead

Normal Density Function:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Notation:

Area under the curve =

Example 1: Verbal SAT scores follow a normal distribution with a population mean of $\mu=580$ and population standard deviation $\sigma=70$. What proportion of test-takers score above 650?

Example 2: What is the SAT score for the 90th percentile?

Standard Normal Model

Central Limit Theorem: For random samples, if _____ is big enough, the sampling distribution of _____ is approximately _____, regardless of what shape the population distribution is.

CLT shortcut for testing:

CLT shortcut for confidence intervals:

Summary of R commands (sketch normal curves to help you remember)

```
pnorm(650, mean = 580, sd = 70, lower.tail = FALSE)
```

[1] 0.1587

```
qnorm(.9, mean = 0, sd = 1, lower.tail = TRUE)
```

[1] 1.282