Piano di qualifica

v0.6

7Last

Versioni

Ver.	Data	Autore	Verificatore	Descrizione
0.6 0.5	2024-04-30	Antonio Benetazzo Antonio Benetazzo	Davide Malgarise Davide Malgarise	Aggiunti testi introduttivi dei test Revisione e piccole correzioni
0.4	2024-04-16	Elena Ferro	Valerio Occhinegro	Riordinamento obbiettivi di qualità Stesura documento
0.3 0.2	2024-04-07 2024-03-29	Valerio Occhinegro Matteo Tiozzo	Matteo Tiozzo Elena Ferro	Modificato tabella versioni
0.1	2024-03-28	Valerio Occhinegro	Matteo Tiozzo	Prima redazione

Indice

1	Intro	oduzione	5
	1.1	Obiettivo del documento	5
	1.2	Glossario	5
	1.3	Riferimenti	5
		1.3.1 Riferimenti normativi	5
		1.3.2 Riferimenti informativi	5
2	Met	riche di qualità per obiettivo	7
	2.1	Processi di base e/o primari	7
		2.1.1 Analisi dei requisiti	7
		2.1.2 Progettazione	8
		2.1.2.1 Usabilità	8
		2.1.2.2 Manutenibilità	9
		2.1.3 Fornitura	9
		2.1.4 Sviluppo	10
		2.1.4.1 Complessità e struttura del codice	11
		2.1.4.2 Efficienza	11
	2.2	Processi di supporto	12
	2.3	Documentazione	12
	2.4	Verifica	12
	2.5	Gestione dei rischi	13
	2.6	Gestione della Qualità	14
	2.7	Processi organizzativi	14
	2.8	Pianificazione	14
3	Met	odologie di Testing	16
	3.1	Test di Unità	16
	3.2	Test di Integrazione	16
	3.3	Test di Sistema	17
	3.4	Test di Regressione	17
	3.5	Test di Accettazione	18
4	Crus	scotto di valutazione della qualità	19
	4.1	8M-EV - Earned Value (EV) e 9M-PV - Planned Value (PV)	19
	4.2	10M-AC - Actual Cost (AC) e 13M-ETC - Estimate to Complete (ETC)	19

	4.3	11M-CV - Cost Variance (CV) e 32M-SV - Schedule Variance (SV)	19
	4.4	12M-EAC - Estimated at Completion(EAC)	19
	4.5	31M-RSI - Requirements stability index (RSI)	19
	4.6	21M-IG - Indice Gulpease	19
	4.7	22M-CO - Correttezza Ortografica	19
	4.8		19
	4.9		19
	4.10	30M-TE - Efficienza Temporale	19
5	Inizi	ative di automiglioramento per la qualità	20
	5.1	Introduzione	20
	5.2	Problemi leagati all'organizzazione generale	20
	5.3	Valutazione sui ruoli	20
	5.4	Valutazione sugli strumenti	20
	5.5	Considerazioni finali sul miglioramento	20
		5.5.1 Analisi della pratiche seguite	20
		5.5.2 Valutazioni generali sui miglioramenti conseguiti	20
		5.5.3 Valutazioni specifiche sui miglioramenti nei processi	20
		5.5.3.1 Gestione delle comunicazioni e degli incontri	20
		5.5.3.2 Pianificazione	20
lr	dic	e delle tabelle	
	1	Metriche di Analisi dei Requisiti	8
	2		8
	3	Metriche di Progettazione - Manutenibilità	9
	4	Metriche di Fornitura	10
	5	Metriche di Sviluppo - Complessità e struttura del codice	11
	6	Metriche di Sviluppo - Efficienza	11
	7	Metriche di Documentazione	12
	8	Metriche di Verifica	13
	9	Metriche di Gestione dei processi	13
	10	Metriche di Gestione della Qualità	14
	11	Metriche di Pianificazione	15
	12	Test di Unità	16
	13	Test di Integrazione	17

14	Test di Sistema	17
15	Test di Regressione	17
16	Test di Accettazione	18

Indice delle immagini

1 Introduzione

1.1 Obiettivo del documento

Il presente documento ha lo scopo di definire le strategie di verifica e validazione utilizzate per assicurare il corretto funzionamento e uno standard di qualità dello strumento sviluppato e delle attività che lo accompagnano. Sarà sottoposto a revisioni continue, così da prevedere situazioni precedentemente non occorse e da seguire l'evoluzione del progetto.

1.2 Glossario

Il glossario_G è uno strumento utilizzato per risolvere eventuali dubbi riguardanti alcuni termini specifici utilizzati nella redazione del documento. Esso conterrà la definizione dei termini evidenziati e sarà consultabile al seguente link. I termini presenti in tale documento saranno evidenziati da una 'G' a pedice.

1.3 Riferimenti

1.3.1 Riferimenti normativi

- Norme di progetto_G (aggiungere versione e/o link al documento);
- Regolamento del progetto: https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/PD2.pdf.

1.3.2 Riferimenti informativi

• Standard ISO/IEC 25010 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Standard ISO/IEC 12207:1995
 https://en.wikipedia.org/wiki/ISO/IEC_12207

Qualità di prodotto
 https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/T7.pdf

Qualità di processo
 https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/T8.pdf

• Verifica e validazione

Introduzione

https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/T9.pdf

- Analisi statica

https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/T10.pdf

- Analisi dinamica

https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/T11.pdf

 Capitolato d'appalto C6: SyncCity – A smart city monitoring platform https://www.math.unipd.it/~tullio/IS-1/2023/Progetto/C6.pdf

• Verbali esterni

https://7last.github.io/docs/category/verbali-esterni-1

Verbali interni

https://7last.github.io/docs/category/verbali-interni-1

Analisi dei requisiti

https://7last.github.io/docs/rtb/documentazione-esterna/analisi-dei-requisiti

Glossario

https://7last.github.io/docs/rtb/documentazione-interna/glossario

2 Metriche di qualità per obiettivo

La qualità di processo è un criterio fondamentale ed è alla base di ogni prodotto che rispecchi lo stato dell'arte. Per raggiungere tale obiettivo è necessario sfruttare delle pratiche rigorose che consentano lo svolgimento di ogni attività in maniera ottimale.

Dunque, al fine di valutare nel miglior modo possibile la qualità del prodotto e l'efficacia dei processi, sono state definite delle metriche, meglio specificate nel documento Norme di Progetto_G v1.0. Il contenuto di questa sezione è necessario per identificare i parametri che le metriche devono rispettare per essere considerate accettabili o ottime. Esse sono state suddivise utilizzando lo **standard ISO/IEC 12207:1995**, il quale suddivide i processi di ciclo di vita del software, in tre categorie:

- Processi di base e/o primari;
- Processi di supporto;
- Processi organizzativi.

2.1 Processi di base e/o primari

2.1.1 Analisi dei requisiti

Questa fase consiste nell'esaminare le richieste del proponente e nel definire i requisiti che il prodotto dovrà soddisfare. Per valutare la qualità di tale processo, sono state definite le seguenti metriche:

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
0M-CRO	Copertura dei requisiti obbligatori	100%	100%	Descrive quanto del lavoro svolto durante lo sviluppo corrisponde ai requisiti essenziali o obbligatori definiti in fase di Analisi dei Requisiti.

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
1M-CRD	Copertura dei requisiti desiderabili	≥ 50%	100%	Rileva quanti di quei requisiti, che se integrati arricchiscono l'esperienza dell'utente o forniscono vantaggi aggiuntivi non strettamente necessari, sono stati implementati o soddisfatti nel prodotto.
2M-CROP	Copertura dei requisiti opzionali	≥ 0%	≥ 50%	Stima quanti dei requisiti aggiuntivi, non essenziali o di bassa priorità, sono stati implementati o soddisfatti nel prodotto.

Tabella 1: Metriche di Analisi dei Requisiti

2.1.2 Progettazione

In questa fase si definiscono le specifiche del prodotto, quali ad esempio dettagli tecnici e design architetturale del sistema. Per valutare la qualità di tale processo, sono state definite le seguenti metriche:

2.1.2.1 Usabilità

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
3M-FU	Facilità di utilizzo	≤ 3 errori di utilizzo	0 errori di utilizzo	Rappresenta l'usabilità di un sistema software.
4M-TA	Tempo di ap- prendimento	≤ 12 minuti	≤ 8 minuti	Indica il tempo massimo richiesto per apprendere l'utilizzo del prodotto.

Tabella 2: Metriche di Progettazione - Usabilità

2.1.2.2 Manutenibilità

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
5M-COC	Coefficient of Coupling (COC)	≤ 30%	≤ 10%	Rappresenta il grado di dipendenza tra diversi moduli o componenti di un sistema software.
6M-SFIN	Structural Fan-In (SFIN)	≤ 7	≤ 5	Riferita ad una classe che è progettata in modo tale che un gran numero di altre classi possa facilmente utilizzarla.
7M-SFOUT	Structural Fan-Out (SFOUT)	≤ 7	≤ 5	Rappresenta il numero dei moduli subordinati immediati di un metodo.

Tabella 3: Metriche di Progettazione - Manutenibilità

2.1.3 Fornitura

Nella fase di fornitura si definiscono le procedure e le risorse (economiche e temporali) necessarie per la consegna del prodotto. Per valutare la qualità di tale processo, sono state definite le seguenti metriche:

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
8M-EV	Earned Value (EV)	≥ 0	≤ EAC (Estimated At Comple- tion)	Valore del lavoro effettivamente svolto fino al periodo in analisi.
9M-PV	Planned Value (PV)	≥ 0	<pre></pre>	Consente di stimare i costi realizzativi delle attività imminenti periodo per periodo.

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
10M-AC	Actual Cost (AC)	≥ 0	<pre></pre>	Misura i costi effettivamente sostenuti dall'inizio del progetto fino al presente.
11M-CV	Cost Variance (CV)	$\geq -7.5\%$	≥ 0%	Valuta la differenza percentuale di budget tra quanto previsto nella pianificazione di un periodo e l'effettiva realizzazione.
12M-EAC	Estimated at Completion (EAC)	Errore del $\pm 4\%$ rispetto al BAC (Budget At Completion)	Equivalente al BAC (Budget At Comple- tion)	Calcola il costo realizzativo stimato per terminare il progetto.
13M-ETC	Estimate to Complete (ETC)	≥ 0	≤ EAC (Estimated At Comple- tion)	Previsione dei costi realizzativi fino alla fine del progetto.
14M-CPI	Cost Performance Index (CPI)	±13%	0	Indica il rapporto tra il valore del lavoro effettivamente svolto e i costi sostenuti.

Tabella 4: Metriche di Fornitura

2.1.4 Sviluppo

Nella fase di sviluppo si realizza il prodotto software, seguendo le specifiche definite in fase di progettazione. Per valutare la qualità di tale processo, sono state definite le seguenti metriche:

2.1.4.1 Complessità e struttura del codice

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
15M-CCM	Complessità ciclomatica	≤ 3	≤ 6	Indica il numero di cammini linearmente indipendenti attraverso il codice sorgente di un programma.
16M-PPM	Parametri per metodo	≤ 7	≤ 5	Indica il numero di parametri per metodo.
17M-CPC	Campi per classe	≤ 10	≤ 7	Indica il numero di parametri per classe.
18M-LCPM	Linee di codice per metodo	≤ 30	≤ 20	Indica il numero di linee di codice per metodo.

Tabella 5: Metriche di Sviluppo - Complessità e struttura del codice

2.1.4.2 Efficienza

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
19M-TR	Tempo di risposta (interfaccia utente)	≤ 1.5 s	≤ 1 s	Indica il tempo massimo di risposta del sistema.
20M-TE	Tempo di elaborazione di un dato grezzo	≤ 1.5 s	≤ 1 s	Indica il tempo massimo di elaborazione di un dato grezzo fino alla sua presentazione.

Tabella 6: Metriche di Sviluppo - Efficienza

2.2 Processi di supporto

I processi di supporto si affiancano ai processi primari per garantire il corretto svolgimento delle attività.

2.3 Documentazione

La documentazione è un aspetto fondamentale per la comprensione del prodotto e per la sua manutenibilità. Consiste, a livello pratico, nella redazione di manuali e documenti tecnici che descrivano il funzionamento del prodotto e le scelte progettuali adottate. Per valutare la qualità di tale processo, sono state definite le seguenti metriche:

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
21M-IG	Indice Gulpease	≥ 60%	≥ 90%	Misura la leggibilità di un testo in base alla lunghezza delle parole e delle frasi.
22M-CO	Correttezza Ortografica	0 errori	0 errori	Presenza di errori ortografici nei documenti.

Tabella 7: Metriche di Documentazione

2.4 Verifica

La verifica è un processo che si occupa di controllare che il prodotto soddisfi i requisiti stabiliti e sia pienamente funzionante. Per valutare la qualità di tale processo, sono state definite le seguenti metriche:

Metrica	Nome	Valore	Valore	Descrizione
Memca	Metrica Nome		ottimo	Descrizione
			100%	Fornisce una misura
	Code			quantitativa del grado o
23M-CC	Coverage	$\geq 80\%$		della percentuale di
				codice eseguito durante
				i test.

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
24M-BC	Branch Coverage	≥ 80%	100%	Metrica di copertura del codice che indica la percentuale dei rami decisione del codice coperti dai test.
25M-SC	Statement Coverage	≥ 80%	100%	Metrica di copertura del codice che indica la percentuale degli statement del codice coperti dai test.
26M-FD	Failure Density	100%	100%	Misura che indica il numero di difetti trovati in un software o in una parte di esso durante il ciclo di sviluppo.
27M-PTCP	Passed Test Cases Percentage	≥ 80%	100%	Percentuale di casi di test superati.

Tabella 8: Metriche di Verifica

2.5 Gestione dei rischi

La gestione dei rischi è un processo che si occupa di identificare, analizzare e gestire i rischi che possono insorgere durante lo svolgimento del progetto. Per valutare la qualità di tale processo, sono state definite le seguenti metriche:

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
28M-NCR	Non Calculated Risk	≤ 3	0	Indica un rischio che è stato trascurato o non considerato durante I'Analisi dei Rischi.

Tabella 9: Metriche di Gestione dei processi

2.6 Gestione della Qualità

La gestione della qualità è un processo che si occupa di definire una metodologia per garantire la qualità del prodotto. Per valutare la qualità di tale processo, sono state definite le seguenti metriche:

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione
29M-QMS	Quality Metrics Satisfied	≥ 85%	100%	Indica il numero di metriche implementate e soddisfatte, tra quelle definite.
30M-TE	Time Efficiency	≤ 3	≤ 1	Livello di efficienza del team nello sviluppo di codice di alta qualità.

Tabella 10: Metriche di Gestione della Qualità

2.7 Processi organizzativi

I processi organizzativi sono processi che si occupano di definire le linee guida e le procedure da seguire per garantire un'efficace gestione e coordinazione del progetto.

2.8 Pianificazione

La pianificazione è un processo che si occupa di definire le attività da svolgere e le risorse temporali e umane necessarie per il loro svolgimento. Per valutare la qualità di tale processo, sono state definite le seguenti metriche:

Metrica	Nome	Valore ammissibile	Valore ottimo	Descrizione	
31M-RSI	Requirements Stability Index (RSI)	≥ 75%	100%	Misura utilizzata per quantificare l'entità e l'impatto dei cambiamenti dei requisiti in un progetto.	

		$\geq -7.5\%$	≥ 0%	Indica in percentuale il
32M-SV	Schedule			livello di anticipo (+) o
	Variance (SV)			ritardo (-) rispetto le
				attività pianificate.
33M-BV	Budget Variance (BV)	$\geq -7.5\%$	≥ 0%	Indica in percentuale il
				livello di anticipo (+) o
				ritardo (-) rispetto il
				budget pianificato.

Tabella 11: Metriche di Pianificazione

3 Metodologie di Testing

La fase di testing è un'attività fondamentale per garantire la qualità del prodotto software. Permette di verificare che il software sia conforme ai requisiti e alle specifiche richieste e di individuare tempestivamente eventuali bug, errori o problemi di funzionamento, così da poterli correggere prima del rilascio del prodotto; garantisce inoltre che gli stessi errori non si ripetano in futuro.

In questa sezione verranno descritte le metodologie di testing adottate per garantire il rispetto dei vincoli individuati nella sezione *Requisiti* del documento *Analisi dei Requisiti*. Nelle successive sottosezioni verranno descritte le tipologie di test effettuati con l'indicazione del codice del test, una breve descrizione di ciò che viene verificato e lo stato di superamento del test, espresso nel seguente modo:

• S: test superato;

• NS: test non superato;

• NI: test non implementato.

3.1 Test di Unità

I test di unità sono test che verificano il corretto funzionamento delle singole unità di codice, ovvero le più piccole parti di un programma. Questi test vengono effettuati per verificare che ogni unità funzioni correttamente e che sia in grado di eseguire le operazioni richieste.

Codice	Descrizione	Stato
1T-U	Descrizione test	NI
2T-U	Descrizione test	NI

Tabella 12: Test di Unità

3.2 Test di Integrazione

I test di integrazione sono test che verificano il corretto funzionamento delle interfacce tra le varie unità di codice. Questi test vengono effettuati per verificare che le varie unità di codice e i vari moduli interagiscano correttamente tra di loro e che siano in

grado di comunicare e scambiarsi i dati necessari.

Codice	Descrizione	Stato
3T-I	Descrizione test	NI
4T-I	Descrizione test	NI

Tabella 13: Test di Integrazione

3.3 Test di Sistema

I test di sistema sono finalizzati alla verifica del soddisfacimento dei requisiti richiesti ed evidenziati nel documento *Analisi dei Requisiti*. Questi test vengono effettuati sul sistema nel suo complesso, per verificare che il software funzioni correttamente e che sia in grado di eseguire le operazioni richieste.

Codice	Descrizione	Stato
5T-S	Descrizione test	NI
6T-S	Descrizione test	NI

Tabella 14: Test di Sistema

3.4 Test di Regressione

I test di regressione sono test che vengono effettuati per verificare che le modifiche apportate al software non abbiano introdotto nuovi errori o problemi di funzionamento e che il software continui a funzionare correttamente anche dopo le modifiche effettuate.

Codice	Descrizione	Stato
7T-R	Descrizione test	NI
8T-R	Descrizione test	NI

Tabella 15: Test di Regressione

3.5 Test di Accettazione

I test di accettazione sono test che vengono effettuati per verificare che il software soddisfi i requisiti richiesti, potendo così portare a termine il processo di validazione del prodotto finale. Questi test verranno eseguiti sia dal gruppo di sviluppo 7Last che dall'azienda proponente SyncLab.

Codice	Descrizione	Stato
9T-A	Descrizione test	NI
10T-A	Descrizione test	NI

Tabella 16: Test di Accettazione

4 Cruscotto di valutazione della qualità

- 4.1 8M-EV Earned Value (EV) e 9M-PV Planned Value (PV)
- 4.2 10M-AC Actual Cost (AC) e 13M-ETC Estimate to Complete (ETC)
- 4.3 11M-CV Cost Variance (CV) e 32M-SV Schedule Variance (SV)
- 4.4 12M-EAC Estimated at Completion(EAC)
- 4.5 31M-RSI Requirements stability index (RSI)
- 4.6 21M-IG Indice Gulpease
- 4.7 22M-CO Correttezza Ortografica
- 4.8 29M-QMS Quality Metrics Satisfied
- 4.9 28M-NCR Non-Calculated Risk
- 4.10 30M-TE Efficienza Temporale

5 Iniziative di automiglioramento per la qualità

- 5.1 Introduzione
- 5.2 Problemi leagati all'organizzazione generale
- 5.3 Valutazione sui ruoli
- 5.4 Valutazione sugli strumenti
- 5.5 Considerazioni finali sul miglioramento
- 5.5.1 Analisi della pratiche seguite
- 5.5.2 Valutazioni generali sui miglioramenti conseguiti
- 5.5.3 Valutazioni specifiche sui miglioramenti nei processi
- 5.5.3.1 Gestione delle comunicazioni e degli incontri
- 5.5.3.2 Pianificazione