#### **Analyzing Experiments**

Data Analysis for Psychology in R 2

dapR2 Team

Department of Psychology
The University of Edinburgh

### Week's Learning Objectives

- 1. Understand the different types of experimental design and the data that results from them.
- 2. Be able to link experimental designs to linear model specifications
- 3. Understand the distinction between simple, main and interaction effects.
- 4. Be able to test main effects (via F-tests)
- 5. Interpret interactions with effects coding.

### Experimental Design: manipulation

- A key feature of experimental designs is that we actively manipulate our predictor (IV).
- The intention is that changing the predictor will result in changes in the outcome (DV).
- That is our manipulation will lead to variation in the outcome.
- Our experiments can fail because we design these manipulations poorly.
- The predictors in an experiment are (primarily) experimental conditions.

#### Conditions/Factors & levels

#### Conditions:

- Are part of our experimental designs.
- They are what is manipulated.

#### Factors

- The resultant variables in our data set that code the experimental conditions are typically called factors.
- Generally the terms conditions and factors are used interchangeably.
- But it is useful to differentiate the design (conditions) and the data that represents aspects of the design (factors)

#### Factors can have levels

• These are the number of ways we vary or manipulate the condition

#### Between vs Within Person

- Two broad choices of study structure:
  - o Between person: Participants only appear on one level/condition
  - Within person: Participants appear in multiple level/conditions

#### Between vs Within Person

- Two broad choices of study structure:
  - Between person: Participants only appear on one level/condition
  - Within person: Participants appear in multiple level/conditions
- The labels we use to refer to kinds of studies reflect the number of conditions and whethert the conditions are between vs within.
  - One-way between person
  - Two-way within person
  - o etc.

#### A new study

- Suppose we wanted to look at the number of reading errors caused by noise distraction.
- We might devise a task where participants had to read a passage of text and put a cross through all verbs.
- Our outcome, or dependent variable, is the number of verbs correctly crossed out.
- Our predictor, or independent variable, is the noise level.

## One-way Between Person

| Noise     |
|-----------|
| Adam      |
| Fiona     |
| Simon     |
| Tasha     |
| Josh      |
| Charlotte |
|           |

## One-way Between Person (more levels)

| Noise Level |           |       |  |
|-------------|-----------|-------|--|
| None        | Loud      |       |  |
| Tom         | Darren    | Adam  |  |
| Aja         | Lucy      | Fiona |  |
| Alex        | Josh      | Simon |  |
| Brandy      | Charlotte | Tasha |  |

#### Two-way Between Person

|             | Noise  |           |       |
|-------------|--------|-----------|-------|
| Distraction | None   | Moderate  | Loud  |
| Words       | Tom    | Darren    | Adam  |
| Words       | Aja    | Lucy      | Fiona |
| No Words    | Alex   | Josh      | Simon |
| No Words    | Brandy | Charlotte | Tasha |

# One-way Within Person

| Noise Level |           |  |  |
|-------------|-----------|--|--|
| None        | Noise     |  |  |
| Tom         | Tom       |  |  |
| Aja         | Aja       |  |  |
| Alex        | Alex      |  |  |
| Brandy      | Brandy    |  |  |
| Darren      | Darren    |  |  |
| Lucy        | Lucy      |  |  |
| Josh        | Josh      |  |  |
| Charlotte   | Charlotte |  |  |
|             |           |  |  |

# Two-way Within Person

|             | Noise Level |        |  |
|-------------|-------------|--------|--|
| Distraction | None        | Noise  |  |
| Word        | Tom         | Tom    |  |
| Word        | Aja         | Aja    |  |
| Word        | Alex        | Alex   |  |
| Word        | Brandy      | Brandy |  |
| No Word     | Tom         | Tom    |  |
| No Word     | Aja         | Aja    |  |
| No Word     | Alex        | Alex   |  |
| No Word     | Brandy      | Brandy |  |
|             |             |        |  |

# Mixed Designs

|             | Noise Level |           |  |
|-------------|-------------|-----------|--|
| Distraction | None        | Noise     |  |
| Word        | Tom         | Tom       |  |
| Word        | Aja         | Aja       |  |
| Word        | Alex        | Alex      |  |
| Word        | Brandy      | Brandy    |  |
| No Word     | Darren      | Darren    |  |
| No Word     | Lucy        | Lucy      |  |
| No Word     | Josh        | Josh      |  |
| No Word     | Charlotte   | Charlotte |  |
|             |             |           |  |

#### Models and Experiments

• Our linear model can be simply stated as:

$$outcome = model + error$$

• When we have an experiment:

$$outcome = design + error$$

• The design is simply sets of categorical variables.

$$y = b_0 + \underbrace{(b_1E_1 + b_2E_2)}_{\text{Conditin1}} + \underbrace{b_3E_3}_{\text{Condition2}} + \underbrace{b_4E_{13} + b_5E_{23}}_{\text{Interactions}} + \underbrace{\epsilon_i}_{\text{error}}$$

- So to analyse an experiment, we are simply analysing a linear model with categorical predictors.
- From here on we will focus on between person designs

#### Time for a break

#### Welcome Back!

We are going to move on to look at the type of statistical tests we typically make in experiments, and how to do them with linear models

## Hypotheses we test in experimental studies

- One-way designs:
  - Main effect: Tests overall effect of a condition ( F-tests)
  - $\circ$  Contrasts: Tests differences between specific group means (based on coding schemes and associated  $\beta$ )

## Hypotheses we test in experimental studies

- One-way designs:
  - Main effect: Tests overall effect of a condition ( *F*-tests)
  - $\circ$  Contrasts: Tests differences between specific group means (based on coding schemes and associated  $\beta$ )
- Factorial designs:
  - Main effects & Contrasts
  - $\circ$  Interactions: Categorical\*categorical and usually based on effects (sum to zero) coding ( F-tests &  $\beta$  )
  - Simple contrasts/effects: Effects of one level in one condition, across levels of another condition.

#### Example

- We will keep with out hospital example so we have familiar data and can make easy links and comparisons to previous weeks.
- A researcher was interested in whether the subjective well-being of patients differed dependent on the post-operation treatment schedule they were given, and the hospital in which they were staying.
- **Condition 1**: Treatment (Levels: TreatA, TreatB, TreatC).
- Condition 2: Hosp (Levels: Hosp1, Hosp2).
- Total sample n = 180 (30 patients in each of 6 groups).
  - Between person design.
- Outcome: Subjective well-being (SWB)
  - An average of multiple raters (the patient, a member of their family, and a friend).
  - SWB score ranged from 0 to 20.

#### The data

```
hosp_tbl <- read_csv("hospital.csv", col_types = "dff")</pre>
hosp_tbl %>%
  slice(1:10)
## # A tibble: 10 x 3
##
        SWB Treatment Hospital
      <dbl> <fct>
                      <fct>
##
        6.2 TreatA
##
                      Hosp1
##
   2 15.9 TreatA
                      Hosp1
       7.2 TreatA
##
                      Hosp1
##
      11.3 TreatA
                      Hosp1
      11.2 TreatA
##
                      Hosp1
##
           TreatA
                      Hosp1
       9
##
      14.5 TreatA
                      Hosp1
##
       7.3 TreatA
                      Hosp1
##
      13.7 TreatA
                      Hosp1
## 10
      12.6 TreatA
                      Hosp1
```

#### Table of means

```
mean(hosp_tbl$SWB)
## [1] 9.880556
aggregate(SWB ~ Treatment + Hospital,
  hosp tbl, mean)
    Treatment Hospital
##
                            SWB
## 1
       TreatA
                Hosp1 10.800000
## 2
      TreatB Hosp1 9.430000
## 3
      TreatC
                Hosp1 10.103333
## 4
      TreatA
                Hosp2 7.853333
## 5
      TreatB
                Hosp2 13.116667
## 6
      TreatC
                Hosp2 7.980000
```

```
aggregate(SWB ~ Hospital,
  hosp_tbl, mean)
##
    Hospital
                  SWB
## 1 Hosp1 10.11111
## 2 Hosp2 9.65000
aggregate(SWB ~ Treatment,
  hosp_tbl, mean)
    Treatment
                    SWB
##
## 1
     TreatA 9.326667
## 2 TreatB 11.273333
## 3 TreatC 9.041667
```

#### Table of means

• All of the above gives us a full table of means

|          | Hosp1 | Hosp2 | Marginal |
|----------|-------|-------|----------|
| TreatA   | 10.80 | 7.85  | 9.33     |
| TreatB   | 9.43  | 13.11 | 11.27    |
| TreatC   | 10.10 | 7.98  | 9.04     |
| Marginal | 10.11 | 9.65  | 9.88     |

- ullet We are going to start with loking at the testing of main effects using F-tests.
  - o i.e. exactly what we have done before.

## One way main effects

• As we have an experiment, we typically use efects coding:

```
contrasts(hosp_tbl$Treatment) <- contr.sum
contrasts(hosp_tbl$Hospital) <- contr.sum</pre>
```

• Run the model:

#### One way main effects

```
summary(m1)
##
## Call:
## lm(formula = SWB ~ Treatment, data = hosp_tbl)
##
## Residuals:
##
     Min 10 Median 30 Max
## -5.373 -1.987 -0.300 1.838 7.173
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.8806 0.1872 52.791 < 2e-16 ***
## Treatment1 -0.5539 0.2647 -2.093 0.0378 *
## Treatment2 1.3928 0.2647 5.262 4.09e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.511 on 177 degrees of freedom
## Multiple R-squared: 0.1369, Adjusted R-squared: 0.1271
## F-statistic: 14.04 on 2 and 177 DF, p-value: 2.196e-06
```

#### Table of means

```
mean(hosp_tbl$SWB)

## [1] 9.880556

aggregate(SWB ~ Treatment,
   hosp_tbl, mean)

## Treatment SWB
## 1 TreatA 9.326667
## 2 TreatB 11.273333
## 3 TreatC 9.041667
```

```
m1$coefficients
```

```
## (Intercept) Treatment1 Treatment2
## 9.8805556 -0.5538889 1.3927778
```

#### Hypotheses we test in Factorial Designs

- Main effects
  - An overall, or average, effect of a condition.
  - Is there an effect of Treatment averaged over Hospital?
  - Is there an effect of Hospital averaged over Treatment?
- Interactions (categorical\*categorical)
  - A change in the effect of some condition as a function of another.
  - Does the effect of Treatment differ by Hospital?

#### Hypotheses we test in Factorial Designs

- Main effects
  - An overall, or average, effect of a condition.
  - Is there an effect of Treatment averaged over Hospital?
  - Is there an effect of Hospital averaged over Treatment?
- Interactions (categorical\*categorical)
  - A change in the effect of some condition as a function of another.
  - Does the effect of Treatment differ by Hospital?
- Simple contrasts/effects
  - An effect of one condition at a specific level of another.
  - Is there an effect of Hospital for those receiving Treatment A? (...and so on for all combinations.)

#### Our model and coefficients

- ullet Remember whichever coding scheme we use, we have k-1 variables representing the condition.
  - So for Treatment we have 2 predictors (E1 & E2)
  - And for Hospital we have 1 predictor (E3)
- We can write the linear model more explicitly as:

$$y_{ijk} = b_0 + \underbrace{(b_1E_1 + b_2E_2)}_{ ext{Treatment}} + \underbrace{b_3E_3}_{ ext{Hospital}} + \underbrace{b_4E_{13} + b_5E_{23}}_{ ext{Interactions}} + \epsilon_i$$

#### For effects coding

$$y_{ijk} = b_0 + \underbrace{\left(b_1E_1 + b_2E_2\right)}_{ ext{Treatment}} + \underbrace{b_3E_3}_{ ext{Hospital}} + \underbrace{b_4E_{13} + b_5E_{23}}_{ ext{Interactions}} + \epsilon_i$$

```
## # A tibble: 6 x 7
##
     Treatment Hospital
                             E1
                                   E2
                                          E3
                                                      E23
                                               E13
     <chr>>
                <chr>
                          <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##
## 1 A
               Hosp1
## 2 A
               Hosp2
## 3 B
               Hosp1
## 4 B
               Hosp2
## 5 C
               Hosp1
## 6 C
               Hosp2
```

#### Factorial main effects and interaction

• Run the model:

```
m2 <- lm(SWB ~ Treatment*Hospital, data = hosp_tbl)</pre>
anova(m2)
## Analysis of Variance Table
##
## Response: SWB
##
                     Df Sum Sq Mean Sq F value Pr(>F)
                      2 177.02 88.511 21.5597 4.315e-09 ***
## Treatment
## Hospital
                          9.57 9.568 2.3306
                                              0.1287
## Treatment:Hospital 2 392.18 196.088 47.7635 < 2.2e-16 ***
## Residuals
            174 714.34 4.105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

#### Using model comparisons

• The F-test table can be thought of as containing the results of a set of model comparisons between the following models:

```
comp1 <- lm(SWB ~ Treatment, data = hosp_tbl)
comp2 <- lm(SWB ~ Hospital, data = hosp_tbl)
comp3 <- lm(SWB ~ Treatment + Hospital, data = hosp_tbl)
comp4 <- lm(SWB ~ Treatment + Hospital + Treatment*Hospital, data = hosp_tbl)</pre>
```

• For the effect of Treatment:

```
## Analysis of Variance Table
##
## Model 1: SWB ~ Hospital
## Model 2: SWB ~ Treatment + Hospital
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 178 1283.5
## 2 176 1106.5 2 177.02 14.078 2.13e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

• An effect of Treatment

• For the effect of Hospital:

```
anova(comp1, comp3)

## Analysis of Variance Table

##

## Model 1: SWB ~ Treatment

## Model 2: SWB ~ Treatment + Hospital

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 177 1116.1

## 2 176 1106.5 1 9.5681 1.5219 0.219
```

• For the effect of interaction:

```
## Analysis of Variance Table
##
## Model 1: SWB ~ Treatment + Hospital
## Model 2: SWB ~ Treatment + Hospital + Treatment * Hospital
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 176 1106.51
## 2 174 714.34 2 392.18 47.764 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

An interaction

- You may have noted using anova () for a single model, and for the model comparison approach yeild slightly different results.
  - Sums of squares difference is the same
  - Degrees of freedom are the same
  - F is slightly different for Treatment and Hospital (and therefore so is p-value)
- Note the main concluions do not change.
- ullet This difference relates to differences in the degrees of freedom associated with the F-test.

#### Time for a break

In the next section we will use interaction plots for effects coded variables. Please read the Handout on LEARN before watching the next video

#### Welcome back!

Interpreting an interaction with effects codes

## Recap categorical interactions

- When the effects of one predictor on the outcome differ across levels of another predictor.
- Categorical\*categorical interaction:
  - There is a difference in the differences between groups across levels of a second factor.

#### Our results

```
##
## Call:
## lm(formula = SWB ~ Treatment * Hospital, data = hosp_tbl)
##
## Residuals:
      Min
              10 Median
##
                                    Max
                             30
## -6.6000 -1.2533 0.1083 1.2650 5.7000
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                        9.8806
                                  0.1510 65.425 < 2e-16 ***
## (Intercept)
## Treatment1
                       -0.5539 0.2136 -2.593
                                                  0.0103 *
## Treatment2
                       1.3928 0.2136 6.521 7.30e-10 ***
## Hospital1
                       0.2306 0.1510 1.527
                                                  0.1287
## Treatment1:Hospital1 1.2428 0.2136 5.819 2.79e-08 ***
## Treatment2:Hospital1 -2.0739 0.2136 -9.710 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.026 on 174 degrees of freedom
## Multiple R-squared: 0.4476, Adjusted R-squared: 0.4317
## F-statistic: 28.2 on 5 and 174 DF, p-value: < 2.2e-16
```

# Visualizing the interaction



## Interpretation with effects coding

```
##
                       Estimate Std. Error t value Pr(>|t|)
                           9.88
                                            65.42
  (Intercept)
                                     0.15
                                                      0.00
                                          -2.59
## Treatment1
                          -0.55
                                     0.21
                                                     0.01
## Treatment2
                          1.39
                                     0.21
                                          6.52
                                                     0.00
                          0.23
                                     0.15
                                          1.53
                                                     0.13
## Hospital1
## Treatment1:Hospital1 1.24
                                     0.21
                                          5.82
                                                     0.00
## Treatment2:Hospital1
                          -2.07
                                     0.21
                                            -9.71
                                                     0.00
```

- $b_0$  = Grand mean.
- $b_1$  = Difference between row marginal for treatment A and the grand mean.
- $b_2$  = Difference between row marginal for treatment B and the grand mean.
- $b_3$  = Difference between column marginal for Hospital 1 and the grand mean.
- $b_4$  = Difference between Treatment A and grand mean, in Hospital 1 and Hospital 2
- $b_5$  = Difference between Treatment B and grand mean, in Hospital 1 and Hospital 2

## Interpretation with effects coding

| ## |                                 | Estimate | Std. | Error |  |
|----|---------------------------------|----------|------|-------|--|
| ## | (Intercept)                     | 9.88     |      | 0.15  |  |
| ## | Treatment1                      | -0.55    |      | 0.21  |  |
| ## | Treatment2                      | 1.39     |      | 0.21  |  |
| ## | Hospital1                       | 0.23     |      | 0.15  |  |
| ## | Treatment1:Hospital1            | 1.24     |      | 0.21  |  |
| ## | <pre>Treatment2:Hospital1</pre> | -2.07    |      | 0.21  |  |

|          | Hosp1 | Hosp2 | Marginal |
|----------|-------|-------|----------|
| TreatA   | 10.80 | 7.85  | 9.33     |
| TreatB   | 9.43  | 13.11 | 11.27    |
| TreatC   | 10.10 | 7.98  | 9.04     |
| Marginal | 10.11 | 9.65  | 9.88     |

- $b_0$  = Grand mean.
- $b_1$  = Difference between row marginal for treatment A and the grand mean.
- $b_2$  = Difference between row marginal for treatment B and the grand mean.
- $b_3$  = Difference between column marginal for Hospital 1 and the grand mean.
- $b_4$  = Difference between Treatment A and grand mean, in Hospital 1 and Hospital 2
- ullet  $b_5$  = Difference between Treatment B and grand mean, in Hospital 1 and Hospital 2

#### Our results

```
m2sum <- summary(m2)
round(m2sum$coefficients,2)</pre>
```

```
##
                        Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                            9.88
                                       0.15
                                              65.42
                                                        0.00
## Treatment1
                           -0.55
                                       0.21
                                             -2.59
                                                        0.01
                                             6.52
## Treatment2
                           1.39
                                       0.21
                                                        0.00
## Hospital1
                           0.23
                                       0.15
                                            1.53
                                                        0.13
## Treatment1:Hospital1
                           1.24
                                       0.21
                                            5.82
                                                        0.00
## Treatment2:Hospital1
                                       0.21
                                              -9.71
                                                        0.00
                           -2.07
```

# Visualizing the interaction

#### Summary

- This week we had a good amount of material.
- We reviewed experimental designs, and linked this linear models with categorical predictors.
- We defined main effects, simple effects, and interactions in the context of an experiment.
- We used F-tests to explore main effects
- We looked at interactions with effects coding
- Next time we will look more closely at simple effects

# Thanks for listening!