Linear Algebra. Final exam. Variant 2.

First name	Last name	Group	Points#1/2	Points#3
		BS1-		

I am,	(initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own
work.	

_____(signature)

Rules:

- no talking AT ALL is allowed during the exam and after it (if you are still in the room)
- when time is up, you have to put down your pen (pencil) and do NOT write anything else
- you can NOT leave your seat till the end of the test
- any electronic devices are not allowed
- **1.** (6 points) Find parameters α and β for which $f(x, \alpha, \beta) = \alpha x + \log \beta x$ best fits to the following points:

- **2.** (4 points) Find $det(e^A)$ for $A = \begin{pmatrix} 3 & 6 \\ 6 & 8 \end{pmatrix}$.
- **3.** (5 points) Find extrema of $f(x, y) = x^3 + y^3 15xy + 6$.

Linear Algebra. Final exam. Variant 2.

First name	Last name	Group	Points#4/5	Points#6
		BS1-		

I am, _____ (initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own

_____(signature)

- **4.** (5 points) For which α and β quadratic form Q is positive definite? Negative definite? $Q(x,y,z) = ax^2 + y^2 + 7z^2 + bxy + 8xz$
- **5.** (2 points) Write down the system (and matrix) for the following differential equation: $y^{(IV)}-3y^{\prime\prime}+4y^{\prime}+6y=0$ (2 points) Is this system stable?
- **6.** (5 points) Solve the following system of differential equations:

$$\begin{cases} \frac{dx}{dt} = x - 2z \\ \frac{dy}{dt} = x + y - 2z \\ \frac{dz}{dt} = x + y - z \end{cases}$$

Linear Algebra. Final exam. Variant 2.

First name	Last name	Group	Points#7/8	Points#9
		BS1-		

I am,	_ (initials), confirming that	I have read the following	rules and agree to compl	y with them, that a	II solutions on this pape	r is my own
work.						

 (signature)	

- **7.** (4 points) Write down the matrix of the linear transformation, which is performing the following:
 - first, rotates every vector to 45 degrees counterclockwise around OY
 - and then project onto plane, which is goes through points (0,0,0), (1,0,-1), (0,1,-1)
- **8.** (4 points) Find the volume of the triangular pyramid with vertices (2, -1, 1), (5, 5, 4), (3, 2, -1), (4, 1, 3)
- **9.** (1 point for each correct answer) Three theoretical questions for true/false
 - The determinant of A B equals detA detB
 - If eigenvalues of A 2, 2, 5 then the matrix is certainly diagonalizable
 - The transformation T transposes every matrix. Then T^2 = identity transformation