19. Ferilheildi og stigulsvið Stærðfræðigreining IIB, STÆ205G

9. mars 2015

Sigurður Örn Stefánsson, sigurdur@hi.is Verkfræði- og náttúruvísindasvið Háskóli Íslands

Látum $\mathbf{F}(x,y)$ vera samfellt stigulsvið skilgreint á svæði D í \mathbb{R}^2 og látum φ vera fall skilgreint á D þannig að $\mathbf{F}(x,y) = \nabla \varphi(x,y)$ fyrir alla punkta $(x,y) \in D$. Látum $\mathbf{r} : [a,b] \to D$ vera stikaferill sem er samfellt diffranlegur á köflum og stikar feril \mathcal{C} í D. Þá er

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \varphi(\mathbf{r}(b)) - \varphi(\mathbf{r}(a)).$$

(Samsvarandi gildir fyrir vigursvið skilgreint á svæði $D \subseteq \mathbb{R}^3$.)

Fylgisetning 19.2

Látum \mathbf{F} vera samfellt stigulsvið skilgreint á mengi $D\subseteq\mathbb{R}^2$. Látum $\mathbf{r}:[a,b]\to D$ vera stikaferil sem er samfellt diffranlegur á köflum og lokaður (þ.e.a.s. $\mathbf{r}(a)=\mathbf{r}(b)$) og stikar feril \mathcal{C} . Þá er

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0.$$

(Ath. að rithátturinn

$$\oint_{\mathcal{C}}$$

er gjarnan notaður þegar heildað er yfir lokaðan feril \mathcal{C} .)

Fylgisetning 19.3

Látum \mathbf{F} vera samfellt stigulsvið skilgreint á mengi $D\subseteq\mathbb{R}^2$. Látum $\mathbf{r}_1:[a_1,b_1]\to D$ og $\mathbf{r}_2:[a_2,b_2]\to D$ vera stikaferla sem eru samfellt diffranlegir á köflum og stika ferlana \mathcal{C}_1 og \mathcal{C}_2 . Gerum ráð fyrir að $\mathbf{r}_1(a_1)=\mathbf{r}_2(a_2)$ og $\mathbf{r}_1(b_1)=\mathbf{r}_2(b_2)$, þ.e.a.s. stikaferlarnir \mathbf{r}_1 og \mathbf{r}_2 hafa sameiginlega upphafs- og endapunkta. Þá er

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r}_1 = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}_2.$$

Skilgreining 19.4

Segjum að heildi vigursviðs ${\bf F}$ sé *óháð stikaferli* ef fyrir sérhverja tvo samfellt diffranlega á köflum stikaferla ${\bf r}_1$ og ${\bf r}_2$ með sameiginlega upphafs- og endapunkta sem stika ferlana ${\cal C}_1$ og ${\cal C}_2$ gildir að

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r}_1 = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}_2.$$

Ferilheildi samfellds vigursviðs ${\bf F}$ er óháð stikaferli ef og aðeins ef $\oint_{\mathcal C} {\bf F} \cdot d{\bf r} = 0$ fyrir alla lokaða ferla ${\mathcal C}$ sem eru samfellt diffranlegir á köflum.

Skilgreining 19.6

Segjum að mengi $D\subseteq \mathbb{R}^2$ sé *ferilsamanhangandi* (e. connected, path-connected) ef fyrir sérhverja tvo punkta $P,Q\in D$ gildir að til er stikaferill $\mathbf{r}:[0,1]\to D$ þannig að $\mathbf{r}(0)=P$ og $\mathbf{r}(1)=Q$.

(Athugasemd: Í bók er orðið *connected* notað fyrir hugtakið *ferilsamanhangandi*. Venjulega er orðið *connected* notað yfir annað hugtak, skylt en samt ólíkt.)

Látum D vera opið mengi í \mathbb{R}^2 sem er ferilsamanhangandi. Ef \mathbf{F} er samfellt vigursvið skilgreint á D og ferilheildi \mathbf{F} eru óháð vegi þá er \mathbf{F} stigulsvið.

Fyrir samfellt vigursvið **F** skilgreint á opnu ferilsamanhangandi mengi $D \subseteq \mathbb{R}^2$ er eftirfarandi jafngilt:

- (a) F er stigulsvið,
- (b) $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0$ fyrir alla samfellt diffranlega á köflum lokaða stikaferla \mathbf{r} í D,
- (c) ferilheildi F er óháð vegi.

Fyrir samfellt vigursvið **F** skilgreint á opnu ferilsamanhangandi mengi $D \subseteq \mathbb{R}^2$ er eftirfarandi jafngilt:

- (a) F er stigulsvið,
- (b) $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0$ fyrir alla samfellt diffranlega á köflum lokaða stikaferla \mathbf{r} í D,
- (c) ferilheildi F er óháð vegi.

Sönnun:

- (a) \Rightarrow (b). Fylgisetning 19.2.
- (b) \Leftrightarrow (c). Setning 19.5.
- (c) \Rightarrow (a). Setning 19.7.