

6.867 Machine learning: lecture 1

Tommi S. Jaakkola MIT CSAIL

tommi@csail.mit.edu

6.867 Machine learning: administrivia

- Course staff (6867-staff@lists.csail.mit.edu)
 - Prof. Tommi Jaakkola (tommi@csail.mit.edu)
 - Adrian Corduneanu (adrianc@mit.edu)
 - Biswajit (Biz) Bose (cielbleu@mit.edu)
- General info
 - lectures MW 2.30-4pm in 32-141
 - tutorials/recitations, initially F11-12.30 (4-145) / F2.30-4
 - website http://www.ai.mit.edu/courses/6.867/
- Grading
 - midterm (15%), final (25%)
 - 5 (\approx bi-weekly) problem sets (30%)
 - final project (30%)

Tommi Jaakkola, MIT CSAIL

Why learning?

• Example problem: face recognition

Why learning?

• Example problem: face recognition

Training data: a collection of images and labels (names)

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

Why learning?

• Example problem: face recognition

Training data: a collection of images and labels (names)

Evaluation criterion: correct labeling of new images

Why learning?

• Example problem: text/document classification

- a few labeled training documents (webpages)
- goal to label yet unseen documents

Tommi Jaakkola, MIT CSAIL Tommi Jaakkola, MIT CSAIL

Why learning?

- There are already a number of applications of this type
 - face, speech, handwritten character recognition
 - fraud detection (e.g., credit card)
 - recommender problems (e.g., which movies/products/etc you'd like)
 - annotation of biological sequences, molecules, or assays
 - market prediction (e.g., stock/house prices)
 - finding errors in computer programs, computer security
 - defense applications
 - etc

Tommi Jaakkola, MIT CSAIL

Learning

- Steps
- entertain a (biased) set of possibilities (hypothesis class)
- adjust predictions based on available examples (estimation)
- rethink the set of possibilities (model selection)

Tommi Jaakkola, MIT CSAIL

Learning

- entertain a (biased) set of possibilities (hypothesis class)
- adjust predictions based on available examples (estimation)
- rethink the set of possibilities (model selection)
- Principles of learning are "universal"
 - society (e.g., scientific community)
 - animal (e.g., human)
 - machine

Tommi Jaakkola, MIT CSAIL

Learning, biases, representation

Tommi Jaakkola, MIT CSAIL

10

Learning, biases, representation

Learning, biases, representation

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

11

12

Learning, biases, representation

Learning, biases, representation

Tommi Jaakkola, MIT CSAIL

13

Tommi Jaakkola, MIT CSAIL

Learning, biases, representation

Representation

• There are many ways of presenting the same information

• The choice of representation may determine whether the learning task is very easy or very difficult

Tommi Jaakkola, MIT CSAIL

16

Tommi Jaakkola, MIT CSAIL

Representation

(oops)

15

17

Representation

"yes" "yes" "no"

Tommi Jaakkola, MIT CSAIL

18

Tommi Jaakkola, MIT CSAIL

Hypothesis class

ullet Representation: examples are binary vectors of length d=64

$$\mathbf{x} = [111\dots0001]^T =$$

and labels $y \in \{-1,1\}$ ("no","yes")

• The mapping from examples to labels is a "linear classifier"

$$\hat{y} = \operatorname{sign}(\theta \cdot \mathbf{x}) = \operatorname{sign}(\theta_1 x_1 + \ldots + \theta_d x_d)$$

where θ is a vector of *parameters* we have to learn from examples.

Tommi Jaakkola, MIT CSAIL

Linear classifier/experts

• We can understand the simple linear classifier

$$\hat{y} = \operatorname{sign}(\theta \cdot \mathbf{x}) = \operatorname{sign}(\theta_1 x_1 + \ldots + \theta_d x_d)$$

as a way of combining expert opinion (in this case simple binary features)

Tommi Jaakkola, MIT CSAIL 20

Estimation

 \bullet How do we adjust the parameters θ based on the labeled examples?

$$\hat{y} = \mathrm{sign} \left(\, \boldsymbol{\theta} \cdot \mathbf{x} \, \right)$$

Tommi Jaakkola, MIT CSAIL

19

21

23

Estimation

 $\begin{array}{cccc} \mathbf{x} & & y \\ & & \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf$

 \bullet How do we adjust the parameters θ based on the labeled examples?

$$\hat{y} = \text{sign} (\theta \cdot \mathbf{x})$$

For example, we can simply refine/update the parameters whenever we make a mistake:

 $\theta_i \leftarrow \theta_i + y x_i, \ i = 1, \dots, d$ if prediction was wrong

Tommi Jaakkola, MIT CSAIL 22

Evaluation

• Does the simple mistake driven algorithm work?

Evaluation

• Does the simple mistake driven algorithm work?

(average classification error as a function of the number of examples and labels seen so far)

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

24

Model selection

• The simple linear classifier cannot solve all the problems (e.g., XOR)

Tommi Jaakkola, MIT CSAIL

Model selection

• The simple linear classifier cannot solve all the problems (e.g., XOR)

Tommi Jaakkola, MIT CSAIL

Model selection

• The simple linear classifier cannot solve all the problems (e.g., XOR)

• Can we rethink the approach to do even better?

Tommi Jaakkola, MIT CSAIL

25

27

29

Model selection

• The simple linear classifier cannot solve all the problems (e.g., XOR)

• Can we rethink the approach to do even better? We can, for example, add "polynomial experts"

$$\hat{y} = \operatorname{sign} \left(\theta_1 x_1 + \ldots + \theta_d x_d + \frac{\theta_{12} x_1 x_2}{\theta_{12} x_1 x_2} + \ldots \right)$$

Tommi Jaakkola, MIT CSAIL

Model selection cont'd

Tommi Jaakkola, MIT CSAIL

Types of learning problems (not exhaustive)

- Supervised learning: explicit feedback in the form of examples and target labels
 - goal to make predictions based on examples (classify them, predict prices, etc)
- Unsupervised learning: only examples, no explicit feedback
- goal to reveal structure in the observed data
- Semi-supervised learning: limited explicit feedback, mostly only examples
 - tries to improve predictions based on examples by making use of the additional "unlabeled" examples
- Reinforcement learning: delayed and partial feedback, no explicit guidance
- goal to minimize the cost of a sequence of actions (policy)

Tommi Jaakkola, MIT CSAIL

28