CS3102 Theory of finite a phabet

[is it at least Computation is it a java pragram

To haractes long

is it a java program

that will paint in it. · 2005 it have some cha? 15 there of Characker 3x, in a roz?

Think of a yes/no question one could ask about a string.

Jis, it empty
is, it a palindone
is, it a palindone

Logistics

- Homework released tomorrow
 - See submission page for deadlines (I'm still processing your quiz 3)
- Quiz will be released Thursday, due Tuesday

Last Time

Exam

What do we compute (redux)

- Input: String (over some alphabet Σ)
- So far:
 - We compute a function $f: \Sigma^* \to \Sigma^*$ For circuits: $\{0,1\}^n \to \{0,1\}^m$
- Other ideas:
 - − Decision problem: $f: \Sigma^* \to \{0,1\}$
 - Does this string have some property?
 - Language: $L \subseteq \Sigma^*$
 - The set of all strings with some property

Function vs Decision vs Language

Name	Decision Problem	Function _	Language
XOR	Are there an odd number of 1's?	$f(b) = \begin{cases} 0 & \text{number of 1s is even} \\ 1 & \text{number of 1s is } odd \end{cases}$	$\{b \in \Sigma^* b \text{ has and odd number of 1s} \}$
Majority	Are there more 1s than 0s?	$f(b) = \begin{cases} 0 \text{ more } 0s \text{ than } 1s \\ 1 \text{ more } 1s \text{ than } 0s \end{cases}$	$\{b \in \Sigma^* b \text{ has more 1s than 0s} \}$
Th'ny (on putp	Y € 5/100 question about strings	1:5* > 30.13 aus= F	56ε ε* (x(5)=1)

* 000 ,*

Finite vs. Infinite Functions

- Boolean Circuits have a drawback:
 - Fixed number of inputs
- What we want:
 - A single recipe which can take infinitely many inputs

Example: XOR

We can define XOR to take an unbounded number of inputs 4,7+5

Returns 1 if there are an odd number of 1s in the input

We need a new model

- As a programming language:
 - Add loops!

```
def XOR(x):
    b = 0
    i = 0
    while i < len(x):
        b = XOR(b, x[i])
        i = i + 1
    return b</pre>
```

- As "hardware":
 - Automata

Finite State Automaton

- Implementation:
 - Finite number of states

 - "Final" states $F \subseteq Q$
 - Transitions (function mapping state-character pairs to states)
- Execution:
 - Start in the initial "state"
 - Read each character once, in order (no looking back)
 - Transition to a new state once per character (based on current state and character)
 - Give output depending on which state you end in

-> Finite # options

Computing Infinite XOR

- The "state" we start in:
 - Even number of 1's seen
- The "state" in which we return 1
 - Odd number of 1's seen
- Reading one bit at a time:
 - If we're currently in "Even":
 - Switch to "Odd" when we see a 1
 - Stay in even when we see a 0
 - If we're currently in "Even":
 - Switch to "Odd" when we see a 1
 - Stay in even when we see a 0

Let's Draw It!

Finite State Automata

 Basic idea: a FA is a "machine" that changes states while processing symbols, one at a time.

• Finite set of states:

$$Q = \{q_0, q_1, \dots q_n\}$$

Transition function:

$$\delta: Q \times \Sigma \to Q$$

• Initial state: $q_0 \in Q$

• Final states:

$$F \subseteq Q$$

- Finite state automaton is $M = (Q, \Sigma, \delta, q_0, F)$
- Return 1 if we end in a Final state, otherwise return 0

 q_1

 q_k

Computing with a FSA

state $q = q_0$

for each bit b in the input:

$$q = \delta(q, b)$$

return whether $q \in F$

Example: AND

Example: AND

$$Q = \{ noOs, someOs, sxart \}$$
 $Q = \{ noOs, someOs, sxart \}$
 $F = \{ noOs, start \}$

Example: AND

Example: Even1,0dd0 , 171111

Example: Even1Odd0

Example: Even1Odd0

FSA are strictly more powerful than NAND circuits

- How can we show this?
 - Show that there is at least one function we can do with FSA but not NAND-CIRC
 - Done! (infinite XOR)
 - Show anything we can do with NAND-CIRC can also be done with FSA
 - How?
 - We need to be able to compute any finite function

Computing any finite function with NAND-CIRC

Summary:

- "Manually Precompute" the output for every (finitelymany) possible input
- When we receive the actual input, do a "lookup"

• Our proof before:

- Make a variable to represent each possible input, assigning its value to match the correct output
- Use LOOKUP to return the proper variable for the given input

Straightline Code for f

```
def F(x0,x1,x2):
    F000=0
    F001=0
    F010=1
    F011=0
    F100=1
    F101=1
    F110=0
    F111=1
```

Input	Output
000	0
001	0
010	1
011	0
100	1
101	1
110	0
111	0

return LOOKUP3(F000,F001,F010,F011,F100,F101,F110,F111,x0,x1,x2)

Computing finite functions with FSA

Summary:

- "Manually Precompute" the output for every (finitely-many) possible input
- When we receive the actual input, do a "lookup"
- Same idea, but with Automata:
 - Make a state for every possible input, determining whether or not it is final depending on the correct output
 - Do a "binary tree traversal" with the given input to navigate to its correct output

FSA for f

Input	Output
000	0
001	0
010	1
011	0
100	1
101	1
110	0
111	0

Characterizing What's computable

- Things that are computable by FSA:
 - Functions that don't need "memory"
 - Languages expressible as Regular Expressions (next time)
- Things that aren't computable by FSA:
 - Things that require more than finitely many states
 - Intuitive example: Majority

Majority with FSA?

Consider an inputs with lots of 0s

```
000...0000 111...1111
×49,999 ×50,000
```

```
000...0000 111...1111
×50,000 ×50,000
```

```
000...0000 111...1111
×50,000 ×50,001
```

- Recall: we read 1 bit at a time, no going back!
- To count to 50,000, we'll need 50,000 states!