OCNG/ATMO 651 Final Project: Linear Inverse Model of Tropical Sea Surface Temperatures

Jinjun Liu

November 21, 2022

Abstract

In this project, we employ the linear inverse model (LIM) to predict sea surface tempratures (SSTs).

Contents

1	Introduction	1
2	Dataset and Method	1
3	Results	1
4	Aknowledgements	1

1 Introduction

Penland and Magorian proposed a linear inverse model (LIM) to predict sea surface tempratures (SSTs) from satellite observations [1]. The LIM is a linear regression model that uses the satellite observations as predictors and the SSTs as the response variable. The LIM is a simple model that can be easily implemented and is computationally efficient. The LIM is also a useful tool for data assimilation. In this project, we employ the LIM to predict SSTs.

2 Dataset and Method

The Python script that processes the data and generates the figures is available at https://github.com/jinjunliu/atmo-651/blob/master/Final/ATM0651_Final.ipynb.

3 Results

4 Aknowledgements

Thanks to Dr. Ping Chang for providing the datasets and the guidance.

References

[1] C. Penland and T. Magorian. Prediction of niño 3 sea surface temperatures using linear inverse modeling. *Journal of Climate*, 6:1067–1076, 1993.