MATH 250A: Groups, Rings, and Fields

Jad Damaj

Fall 2022

Contents

1	\mathbf{Gro}	$_{ m oups}$
	1.1	August 25
		1.1.1 Groups
		1.1.2 Review of homomorphisms, isomorphims
		1.1.3 Classify all finite groups up to isomorphim
	1.2	August 30
		1.2.1 Langrange's Theorem
		1.2.2 Normal Subgroups
	1.3	September 1
		1.3.1 Semidirect Products
		1.3.2 Cauchy's Theorem
		1.3.3 Burnside's Lemma
	1.4	September 6
		1.4.1 Burnside's Lemma
		1.4.2 Groups of order p^2
		1.4.3 Dihedral Groups
	1.5	September 8
		1.5.1 Sylow Theorems
		1.5.2 Classification of Abelian Groups (finite)
	1.6	September 13
		1.6.1 Classification of Finitely Generated Abelian Groups
		1.6.2 Symmetric Groups - S_n
	1.7	September 15
		1.7.1 Normal Subgroups of S_n
	1.8	September 20
		1.8.1 Categories
		1.8.2 Functors
f 2	Rin	$_{ m ags}$
4	2.1	September 27
	2.1	2.1.1 Category Theory
		2.1.1 Category Theory
	2.2	September 29
	2.2	2.2.1 More Examples of Rings
		- 2020 1 MICHO LACHIED CONTROL OF THE CONTROL OF TH

3	Rep	presentation Theory						
	3.1	October 4						
		3.1.1 Representation Theory						
	3.2	October 6						
		3.2.1 Representations of Finite Abelian Groups						
	3.3	October 11						
		3.3.1 Orthogonality relations						
		3.3.2 Proofs Of Orthogonality Relations						
4	Polynomials							
	4.1	October 18						
		4.1.1 Polynomials						
	4.2							
		4.2.1 Polynomials						
		4.2.2 Polynomials over Noetherian Rings						
	4.3							
		4.3.1 Symmetric polynomials						
	4.4							
		4.4.1 Power Series						

Chapter 1

Groups

1.1 August 25

1.1.1 Groups

Two ways to define groups

• concrete: group = symmetries of an object X. Here a symmetry is a bijection $X \to X$ with inverse that preserves "structure" (topology, order, binary operation, ...)

Example 1.1.1. The rectangle has 4 symmetries.

The icossahedron has 20×3 symmetries since after fixing the first face there are 3 possible rotations. Vector space \mathbb{R}^k : $n \times n$ matrices with det $\neq 0$, denoted $GL_n(K)$

• abstract definition:

```
Definition 1.1.2. A group is a set G with a binary operation G \times G \to G by (a,b) \mapsto ab, a \times, a+b, \ldots with "Inverse": G \to G by a \mapsto a^{-1} and "Identity": 1,0,e,I,\ldots satisfying the axioms: 1x = x1 = x x(x^{-1}) = (x^{-1})x = 1 (xy)z = x(yz)
```

We can go from the concrete definition to the abstract one: the binary operation is composition, the identity is the trivial symmetry, inverses given y "undoing' a symmetry.

Is an abstract group the symmetries of something?

Theorem 1.1.3 (Cayley's Theorem). Any abstract group is the group of symmetries of some mathematical object.

Recall group actions:

Definition 1.1.4. Given a group G, a set S, a (left) group action is a map $G \times S \to S$ by $(g, s) \mapsto g(s), gs$ satisfying g(h(s)) = gh(s), 1s = s.

To prove Cayley's theorem we need to find :

1. a set S acted on by G

2. structure on S so that G = all symmetries.

What is S? Take S = G.

Need to define the action of GonG. There are 8 natural ways to do this.

First 4, we defin $4 G \times S \to S$ by

- g(s) = s trivial action
- g(s) = gs group product
- Try g(s) = sg Fails since G not necessarily commutative: $g(h(s)) = (sh)g \neq s(gh) = gh(s)$
- $g(s) = sg^{-1}$ works since $g(h(s)) = g(sh^{-1}) = sh^{-1}g^{-1} = s(gh)^{-1} = gh(s)$
- $g(s) = gsg^{-1}$ adjoint action

The above group action is known as a left group action, We define a right group action in a similar way : $S \times G \to S$ by $(s, g) \mapsto (s)g$, s^g satisfying (sg)h = s(gh), $s^g = s(gh)$.

We now define right group actions of G on G: $S \times G \to G$ by

- $(s,g) \mapsto s$
- $(s,g) \mapsto sg$
- $(s,q) \mapsto q^{-1}s$
- $(s, g) \mapsto g^{-1}sg$

Now we have S=G, S=set acted on by G using left action g(s)=gs - left translation. So we have shown $G\subseteq$ symmetries of S.

Want : G =symmetries of S + "structure". Let structure on S= right action of G on S. We now have 3 copies of G:

- 1. set S = G
- 2. G acts on left on S (G = symmetries of S)
- 3. G acts o the right on S (Structure of S)

Object S = S + right G action

What are the symmetries of this?

Bijection $f: S \to S$ preserving the right G-action. eg. f(sg) = f(s)g

Need to check:

- 1. Left G-action of G preserves the right G-action
- 2. Anything that preserves the right G-action is given by left multiplication of an element of G

Check (1): For $g \in G$ need (gs)h = g(sh), follows by commutativity

Note: left G-action does not preserve right G-action: $g(hs) \neq h(gs)$ in general

Check (2): Suppose $f: S \to S$ preserves the right G-action, f(sh) = f(s)h for all $h \in G$. Need to find $g \in G$ such that f(s) = gs. Take s = 1, f(1) = g1 = g so g = f(1). If g = f(1), then f(s) = gs since gs = (f(1))s = f(1s) = f(s).

So we have G = symmetries of (Set G + right G action)

Example 1.1.5. G=symmetries of rectange, set S=G

We get the graph:

Cayley graph: Point for each $g \in G$ Draw a line from g to h with gf = h.

Goal of Group theory

- 1. Classify all groups
 - Hard but can do special cases: Groups of order 60, finite subgroups of rotations in \mathbb{R}^3 , all finite simple groups, symmetries of crystals
- 2. Given a group G, classify all ways G can act on something (called a representation of G)
 - ullet Permutation representation : G acts on a set S
 - \bullet Linear representation : G acts on a vector space

Example 1.1.6. Poncaire group = symmetries of space time elementary particle: space of states = vector space acted on by G = linear group of G

1.1.2 Review of homomorphisms, isomorphims

Definition 1.1.7. A homomorphism is a map $f: G \to H$ that preserves structure eg. f(gh) = f(g)f(h), f(1) = 1, $f(g^{-1}) = f(g)^{-1}$

Note: last two properties can be derived from the first.

Example 1.1.8.
$$\exp(x) = e^x : (\mathbb{R}, +) \to (\mathbb{R}, \times)$$

 $\exp(x + y) = \exp(x) \exp(y), \exp(0) = 1, \exp(-x) = \exp(x)^{-1}$

Definition 1.1.9. The kernel of a homomorphism f is the set of elements with image the identity.

Example 1.1.10. $\mathbb{R} \to \text{rotation}$ is the plane by $\theta \mapsto \text{rotation}$ by angle θ .

nontrivial kernel : multiples of 2π .

We get the short exact sequence: $0 \to 2\pi\mathbb{Z} \to \mathbb{R} \to \text{rotations} \to 0$

Definition 1.1.11. A sequence of homomorphisms $A \to B \to C$ is exact if Image $A \to B = \text{Kernel } B \to C$

 $0 \to A \to B$ means $A \to B$ is injective $A \to B \to 0$ means $A \to B$ is surjective

Definition 1.1.12. $f: A \to B$ is an isomorphim if it is a homomorphism with an inverse. We say A, B are isomorphic. "basically the same"

Example 1.1.13. $2\pi\mathbb{Z}$ is isomorphic to \mathbb{Z} .

Example 1.1.14. $\mathbb{Z}/4\mathbb{Z}$, integers mod 4 with addition: $\{0, 1, 2, 3\}$ and $(\mathbb{Z}/5\mathbb{Z})^{\times}$, under multiplication: $\{1, 2, 3, 4\}$ are isomorphic.

We map $0 \to 1 = 2^0$, $1 \to 2 = 2^1$, $2 \to 4 = 2^2$, $3 \to 3 = 2^3$ eg. $x \mapsto 2^x$

1.1.3 Classify all finite groups up to isomorphim

Definition 1.1.15. The order of a group G = number of elements in G

Order 1: $e \times e = e$ 1 group - trivial group

Order 2: 1 group - e, f with $f^2 = e \cong \mathbb{Z}/2\mathbb{Z}$

Order p for p prime: only one group $\mathbb{Z}/p\mathbb{Z}$ (integers modulo p)

Definition 1.1.16. For $g \in G$ the order of g is the smallest $n \ge 1$ with $g^n = 1$

Theorem 1.1.17 (Lagrange's Theorem). If $g \in G$, the roder of g divides the order of G.

Example 1.1.18. Suppose |G| = p, (p prime). Pick $g \in G$ with $g \neq e$. Order of g divides |G| = p so is either 1 or p. Can't be one since $g \neq e$. So elements of G 1, g, ..., g^{p-1} are all distinct since $g^p = 1$, $g^x \neq 1$ for $0 \leq x < p$ and if $g^i = g^j$, $g^{i-j} = 1$. Thus, these must be all elements of G.

Order 4:

- Ex: $\mathbb{Z}/4\mathbb{Z}$, symmetries of rectangle, $(\mathbb{Z}/5\mathbb{Z})^{\times}$, $(\mathbb{Z}/8\mathbb{Z})^{\times}$, symmetries of
- only 2 groups of order 4

1.2 August 30

1.2.1 Langrange's Theorem

Order 4: $\mathbb{Z}/4\mathbb{Z}$, symmetries of rectangle

How to show not isomorphic?

Find some property (preserved by isomorphism) that one group has but the other does not.

Property: Order of elements

- in $\mathbb{Z}/4\mathbb{Z}$, 0, 1, 2, 3 have orders 1, 4, 2, 4 respectively
- all nontrivial elements of the group of symmetries of the rectangle have order 2

Note: counting elements of each order works for small gorups but 2 groups of order 16 with same number of elements of each order

Classification: By Lagrange's theorem, each element has order 1, 2, or 4

- 1. Have an element of order 4: g, group = $\{1, g, g^2, g^3\} \cong \mathbb{Z}/4\mathbb{Z}$ In general, if a group of n elements has an element of order n, it is $\cong \mathbb{Z}/4\mathbb{Z}$
- 2. All elements have order 1 or 2.

Suppose G is finite and has this property. Then G commutes since $(gh)^2 = ghgh = 1 = g^2g^2$ so gh = hg. Note: only true for prime 2, there is a group of order 27 such that all elements have order 1 or 3 but is not commutative

Write group operation as +. G is a vector space over \mathbb{F}_2 (field of 2 elements). So $G \cong \mathbb{F}_2^k$ for osme set $|G| = 2^k$. We get 1 group of order 4 with all elements of order 1 or 2.

Group of order 4 is product of 2 groups, $\mathbb{F}_2^2 = \mathbb{F}_2 \oplus \mathbb{F}_2$.

Suppose G, H are gorups, $G \times H$ is a gorup under operation $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$

Example 1.2.1. $\mathbb{C}^{\times} \cong \mathbb{R}_{\geq 0} \times S^1$, $z = |z| \cdot e^{i\theta}$

Chinese Remainder Theorem: (m, n) coprime, $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

We have maps $f: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, $g: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. This gives $h: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. If (m, n) = 1, then the map is injective since if h(k) = 0, $k \equiv 0 \mod m$, $\mod n$

Infinite Products: $G_1 \times G_2 \times G_3 \times \cdots$, set of all elements $(g_1, g_2, g_3, \dots,)$

Infinite Sums: Like infinite products but all but finitely many of g_1 are 1.

Example 1.2.2. Roots of $1 = e^{2\pi q}$, $q \in \mathbb{Q}$.

Infinite sum $G_2 + G_3 + G_5 + G_7 + G_1 + \cdots$ $(G_p = \text{roots of order } p^n \text{ for some } n \ge 1)$

Symmetry of Platonic Solids

Faces	Name	Rotations	Rotations + Reflections	
4	${\it tetrahedron}$	$12 = 4 \times 3$	$24 \rightarrow \text{not a product}$	
6	hexahedron (cube)	$24 = 6 \times 4$	48	All except tetrahedron have
8	$\operatorname{octahedron}$	$24 = 8 \times 3$	$\begin{cases} 48 \\ 120 \end{cases}$ product $\mathbb{Z}/2\mathbb{Z} \times \text{rotations}$	An except tetrahedron have
12	${\it dodecahedron}$	$60 = 12 \times 5$	120 \int product $\mathbb{Z}/2\mathbb{Z} \times \text{rotations}$	
20	icosahedron	$60 = 20 \times 3$	120	
	/-1		·	

symmetry $\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$ fo reflections in \mathbb{R}^3 , so it commutes with everything

For the tetrahedron, we have $\begin{pmatrix} -1 & \\ & 1 \\ & & 1 \end{pmatrix}$

Order 5: $\mathbb{Z}/5\mathbb{Z}$

Exercise 1.2.3. Find a graph as small as possible with symmetries $\mathbb{Z}/5\mathbb{Z}$

Order 6: 3 obvious examples: $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, symmetries of the triangle

- $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$
- group of symmetries of the triange is not abelian Permutation Notation: $(5\,2\,1\,3) = \text{function sending } 5 \rightarrow 2, \, 2 \rightarrow 1, \, 1 \rightarrow 3, \, 3 \rightarrow 5$ (Insert Figure) $(1\,2)(2\,3) = (1\,2\,3)$ but $(2\,3)(1\,2) = (1\,3\,2)$

Definition 1.2.4. A subgroup of a group G, is a subset closed under group operations.

Theorem 1.2.5 (Lagrange's Theorem). If H is a subgroup of G, |H| divides |G|.

Special Case: If $H = \text{powers of } g, 1, g, g^2, \dots, g^{n-1}, |H| = |g|$

Construction of subgorups: Pick a set S acted on by G, pick $s \in S$.

H: elements g with gs = s (elements fixing s). Then H is a subgroup.

Lagrange (Converse to Cayley's Thm): If H is a subgroup of G we can find a set acted on by G, such that H=elements fixing $s \in S$.

Given a gorup G, subgroup H. We want to construct: a set S acted on by G.

Consider G=symmetries of triangle, $H = \{(1)(2)(3), (23)\}$ fixing 1.

How do we write 1, 2, 3 in terms of G, H?

Left cosets of $H: 1 \leftrightarrow \text{elements } g \text{ with } g(1) = 1 \text{ (H)}, 2 \leftrightarrow \text{elements } g \text{ with } g(1) = 2 \text{ ((12)}H), 3 \leftrightarrow \text{elements } g$ with q(1) = 3 ((13)H)

Left cosets of H are sets of the from aH (some fixed $a \in G$).

Define $g_1 \approx g_2$ if $g_1 = g_2 h$ for some $h \in H$. This is an equivalence relation: Reflexivity: $g_1 \approx g_1$ group identity, 1

Symmetry: $g_1 \approx g_2 \rightarrow g_2 \approx g_1$ group inverses, h^{-1}

Transitivity: $g_1 \approx g_2, g_2 \approx g_3 \rightarrow g_1 \approx g_3$ group operation, $h_1 h_2$

 $G = \text{disjoint union of cosets (equivalence classes of } \approx)$ and any two cosets have the same same |H| since we have a bijection $H \to aH$ by $h \mapsto ah$ with inverse $h \mapsto a^{-1}h$.

So G = # cosets \times size of cosets = # elements of $S \times |$ subgroup of elements fixing s|

Note: We assume S is transisitve - if $s_1, s_2 \in S$. $g(s_1) = s_2$ for some g

Rotations of a dodecahedron: 12 (faces) \times 5 = 20 (vertices) \times 3 = 30 (edges) \times 2 = 60

Conways Group: has order 831555361308172000

Acting on Frames: # 8252375 Group fixing each frame: 1002795171840

Special Cases of Lagrange:

- Fermat: $a^p \equiv a \mod p$ (p prime), $a^{p-1} \equiv 1 \mod p$ (a, p) = 1Group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ integers modulo p under \times has order p-1. Lagrange: order of a divides p-1 so $a^{p-1} \equiv 1$
- Euler: $a^{\varphi(m)} \equiv 1 \mod n \ (a, m) = 1$ $(\mathbb{Z}/m\mathbb{Z})^{\times}$ group of elements coprime to m, mod m, order = $\varphi(m)$

m = 8: $\varphi(m) = 4$, $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{1, 3, 5, 7\}$. Euler $a^4 \equiv 1 \mod 8$ (a odd) but we see $a^2 \equiv 1 \mod 8$

Right Cosets: $Ha \leftrightarrow$ elements of a set acted on, on the right by $G. S \times G \rightarrow S$

Are left cosets the same as right cosets? sometimes

Example 1.2.6. Take G = symmetries of triangle. $H = \{1, (23)\}$. Find the left, right costs of H in G.

Left: $H = \{1(23)\}, (31)H = \{(31), (321)\}, (12)H = \{(12), (123)\}$

Right: $H = \{1(23)\}, (31)H = \{(31), (123)\}, (12)H = \{(12), (321)\}$

so left cosets \neq right cosets

Definition 1.2.7. Index of H in G, [G:H] = # cosets of H in G.

Left or right cosets? [G:H][H] = |G| when G finite so # left cosets = # right cosets. In gernal, right cosets \rightarrow left cosets by $Ha \mapsto a^{-1}H$ so # left cosets = # right cosets

1.2.2Normal Subgroups

G/H = set of left coset of G. Is G/H a group?

How to definte $(g_1H) \times (g_2H)$? g_1g_2H

Problem: not well defined - suppose we have g_1, g_2, g_1h_1, g_2h_2 . Want $g_1g_2H = g_1h_1g_2h_2H$

Is $h_1g_2 = g_2(h \in H)$? not in general

Want: $ghg^{-1} \in H$ for all $g \in G$. If this holds, then we can turn G/H into a group.

Definition 1.2.8. If H satisfies the above property, H is called a normal subgroup of G.

Example 1.2.9. $G = \text{symmetries of triangle. } H = \{(23), 1\}. \text{ Is } H \text{ normal?}$

 $(12)(23)(12)^{-1} = (13) \notin H$ so H is not normal

What about $H = \{1, (123), (132)\}$. Is H normal?

H has index 2 in G. $[G:H] = \frac{|G|}{|H|} = 2$. We claim any subset of order 2 is normal. There are only 2 left cosets: H, things not in H. Similarly for right cosets. So right cosets = left cosets. So His normal.

Classifying Groups of Order 6

- orders of elements 1, 2, 3, 6
- If element of order 6, group must be cyclic
- Want element of order 3

Lagrange: order of element divides order of group

Converse: If n divides |G|, does G have a subgroup of order n?

No: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ has no element of order 4

Yes: if n is prime (Cauchy)

So G has elements a, b of order 2,3 and subset $(1,b,b^2)$ has order 2 so it is normal.

1.3 September 1

1.3.1Semidirect Products

Groups of Order 6:

 $|A| \cdot |B| = |G|, A \cap B = \{e\}$ 2 subgroups A, B of order 2,3

In general, suppose that for a group G, subgroups A, B

- 1. $|G| = |A| \cdot |B|$
- 2. $A \cap B = \{e\}$

Want to reconstruct G from A, B

 $G = AB = \{ab \mid a \in A, b \in B\}, \# \text{ pairs } (a, b) = |G|$

If $a_1b_1 = a_2b_2$, $a_2^{-1}a_1 = b_2b_1^{-1} \in A \cap B = \{e\}$ so $a_1 = a_2, b_1 = b_2$ Every element of G can be written uniquely as a product of $a \in A$, $b \in B$

Problem: What is $a_1b_1 \cdot a_2b_2$? $= a_3b_3$

Easy case: ab = ba for all $a \in A, b \in B$ $(a_1b_1)(a_2b_2) = (a_1a_2)(b_1b_2)$

We can view G as the product of $A, B \rightarrow G = A \times B$

Slightly less easy case: A is a normal subgroup of G. We get an action of the group B on the group A.

Define the action of B on A by $b(a) = bab^{-1} \in A$ (A normal)

This determines the product on G. $(a_1b_1)(a_2b_2) = a_1(b_1a_2b^{-1})b_1b_2 = \underbrace{a_1b_1(a_2)}_{} \times \underbrace{b_1b_2}_{}$.

Suppose given groups A, B action of V on A. We construct the semidirect product of A and $B, A \rtimes B$ on the set $A \times B$ with the product given by : $(a_1, b_1)(a_2, b_2) = (a_1b_1(a_2), b_1b_2)$. We can check this is a group.

Order 6

So $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ defined by the action of $\mathbb{Z}/2\mathbb{Z}$ on $\mathbb{Z}/3\mathbb{Z}$.

 $\operatorname{Sym}(\mathbb{Z}/3\mathbb{Z})$: either f(1)=1 or f(1)=2 so only two possible homomorphisms $\mathbb{Z}/2\mathbb{Z} \to \operatorname{Sym}(\mathbb{Z}/3\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$: identity and trivial homomorphisms

So groups of order 6:

- $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ trivial action $\cong \mathbb{Z}/6\mathbb{Z}$
- $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ nontrivial action $\cong S_3$

1.3.2 Cauchy's Theorem

Theorem 1.3.1 (Cauchy's Theorem). If $p \mid |G|$ (p prime), G has an element of order p.

Proof. We use induction on the size of the group: can assume true for any peroper subgroups and quotient groups

G abelian: pick $g \in G$. If p||g|, g has order pn so g^n has order p.

If $p \parallel |g|$, look at $G/\langle g \rangle$. $\langle g \rangle$ normal since G is ableian, p divides $|G/\langle g \rangle|$. Pick $h \in G/\langle g \rangle$, order divisible by p. Lift h_1 in G. Then $p \mid |h_1$.

Standard Error: Can't always lift h to element of the same order

 $G \cong \mathbb{Z}/4\mathbb{Z}, g=2$. $G/\langle g \rangle$ has order 2 so take nontrivial element. Its lift does not have order 2 in G

Definition 1.3.2. The center of G is the elements that commute with all elements of G.

Lemma 1.3.3. Suppose G is nonotrivial, all proper subgroups have index divisible by p. Then the center of G is divisible by p.

Proof. Look at left action of G on itself by conjugation. $G = \text{union of orbuts where } a, b \text{ in the same orbit if there is some } g \text{ such that } g(a) = b. |G| = \sum (\text{size of orbits})$

Size of orbit = |G|/subgroup of elements fixing a point. Either 1 or divisible by p so

 $G = \underbrace{1+1+1}_{-} + \underbrace{pn_1 + pn_2}_{-} + \cdots$. Since G divisible by p # orbits with one element is. Theorem follows

since Center of G = elements with orbit of size 1.

Proof (Cauchy's Theorem (Cont)). Case 1: Some proper subgorup has order dvisible by p.

Such a subgroup has an element of order divisble by p by induction.

Casse 2: All proper subgroups have index divisible by p. By lemma, center of G has order divisible by pCenter of G is abelian so it has an element of order p.

Order 7: $\mathbb{Z}/7\mathbb{Z}$

Order 8: Obvious examples: Producst $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ $\mathbb{Z}/8\mathbb{Z}$, symmetries of a square (D_8) - dihedral group.

Orders of elements: 1, 2, 4, 8

- If element has order 8, group is cylic
- If all elements have order 1 or 2, group is vector field over \mathbb{F}^2 so is $(\mathbb{Z}/2\mathbb{Z})^2$

So can assume G has an element a, of order 4. $a^4 = 1$. Subgroup $A = \{1, a, a^2, a^3\}$ has index 2 so is normal. Quotient group has order 2 so $\cong \mathbb{Z}/2\mathbb{Z}$

We have an exact sequence $1 \to \mathbb{Z}/4\mathbb{Z} \to G \to \mathbb{Z}/2\mathbb{Z} \to 1$

Problem: Given $1 \to A \to G \to B \to 1$ How to construct G form A, B?

Possibilities: $G = A \times B$, or $A \times B$, not always the case:

- $1 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 1$ not a semidirect product
- $1 \to \mathbb{Z}/3\mathbb{Z} \to S_3 \to \mathbb{Z}/2\mathbb{Z} \to 1$ $S_3 = \mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$

We get an action of B on A by conjugation so considering $1 \to \mathbb{Z}/4\mathbb{Z} \to G \to \mathbb{Z}/2\mathbb{Z} \to 1$ we can take the nontrivial element b of $\mathbb{Z}/2\mathbb{Z}$. Cant say $b^2 = 1$, but $b^2 \in A$. Also B acts on A by conjugation.

So we have $\mathbb{Z}/4\mathbb{Z} = \{1.a, a^2, a^3\}$ $a \mapsto bab^{-1}$: $a \mapsto a$ or $a \mapsto a^{-1}$

Possibilities:

	$bab^{-1} = a$	$bab^{-1} = a^{-1}$
$b^2 = 1$	$\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$	D_8
$b^2 = a \ b^2 = a^3$	$\mathbb{Z}/8\mathbb{Z} \ (a=1,b=2)$	Impossible
$b^2 = a^2$	$\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$	Quaternions

Semidirect Products
$$a = b^2, ab = ba \rightarrow a^2 = 1$$

Quaternion group: generated by a, b with $a^4 = 1$, $b^2 = a^2$, $bab^{-1} = a^{-1}$

Does it exst? Yes: have be viewed in $M_2(\mathbb{C})$ - $a=\begin{pmatrix} i \\ -1 \end{pmatrix}$, $b=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Usually denote elements: $I=\begin{pmatrix} i & 0 \\ 0 & -1 \end{pmatrix}$, $J=\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $K=IJ=\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

Quaternions $Q_8 = \{i, I, J, J, -1, -I, -J, -K\}$ satisfying $I^2 = j^2 = K^2 = 1$, IJ = K, JK = 1, KI = J

Hamilton's Quaternions(H) = all numbers a + bi + cj + dk a, b, c, d real

Nonzero elements of H form a gorup. Problem: Show inverses exist.

$$(a+bi+cj+dk)(a-bi-cj-dk) = a^2+b^2+c^+d^2 > 0$$
 so $(a+bI+cj+dk)^{-1} = \frac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}$

Can also look at $S^3 \subset H = \{a + bi + cj + dk \mid a^2 + b^2 + c^2 = d^2 = 1\}$

For z = a + bi + cj + dK, $\overline{z} = a - bi - cj - dk$ let $z\overline{z} = N(z)$

We see $N(z_1z_2) = N(z_1)N(z_2)$ so if N(z) = 1 closed under \times so is a group.

Only spheres that are a group are S^0, S^1, S^3 . Elements of $\mathbb{R}, \mathbb{C}, H$ with absolute value 1.

Note: $Q_8 \subseteq S^3$

1.3.3 Burnside's Lemma

Problem: How many ways to arrange 8 rooks on a chess board so that no 2 attack each other? 8 ways for first row, 7 for second, ..., so 8! = 40320 total Suppose we want to count them up to symmetry:

• For 3×3 : (Insert Figure) can only have 2

Approximate number = $\frac{\text{total } \# \text{ of elements}}{\text{order of group}} = \frac{8!}{8} = 7! = 5050$

General problem: Suppose we have a group G acting on a set S. How many orbits? $\geqslant \frac{|S|}{|G|}$ Answer:

Lemma 1.3.4 (Burnside's Lemma). # of orbits = average number of fixed points of $g \in G$, eg. $s \in S$ with g(s) = s

Proof. Count number of pairs $(g, s) \in G \times S$ with g(s) = s in 2 ways:

- 1. Sum over $G: \sum_{g \in G} (\# \text{ fixed by } g)$
- 2. Sum over S: Each orbit contributes (size of orbit) × (# of elements fixing a point) = |G| so sum = $|G| \times \#$ of orbits

So # of orbits = $\frac{1}{|G|} \sum_{q} \#$ fixed points = avg # fixed points

1.4 September 6

1.4.1 Burnside's Lemma

Example 1.4.1. Find the number of ways to arrange 8 nonattacking rooks on a chessboard up to symmetry. Recall - # of orbits of a set = average number of fixed points = $\frac{1}{|G|} \sum_{g \in G} \#$ fixed points of g. $G = \text{dihedral group } D_8$, acting on 8! = 40320 ways to arrange 8 rooks Elements of D_8 :

- Trivial (Insert Figure): 8! = 40320
- 180° rotation (Insert Figure): 8 options for 1rst, 6 options for 2cnd, ... so $8 \times 6 \times 4 \times 2$
- 90° rotation (Insert Figure): 6 options for 1rst, 2 options for 2cnd so 6×2

2 elements g_1, g_2 are called conjugate if $g_1 = gg_2g^{-1}$ for some g (Formalizes notion of "looks the same") $g_1 = (\text{Insert Figure})$ $g_2 = (\text{Insert Figure})$ g = (Insert Figure) exchanging g_1, g_2 . If two elements are conjugate then they have the same number of fixed points. $g_1(s) = s \rightarrow g_2(gs) = gg_1g^{-1}gs = gs$

- (Insert Figure): conjugate with 90° rotation so 6×2
- (Insert Figure): conjugate and have 0 since rotates rook to the same column/row
- (Insert Figure): conjugate. $C_n = \#$ ways to place rooks on $n \times n$ chessboard invariant under transformation. $c_0 = 1, c_1 = 1$.

```
Case 1 : (Insert Figure) Case 2: (Insert Figure) so c_n = c_{n-1} + (n-1)c_{n-2} and c_n = 1, 1, 2, 4, 10, 26, 76, 232, 764
```

So # of ways to place rooks = $\frac{1}{8}(1 \times 8! + 1 \times 384 + 2 \times 12 + 2 \times 0 + 2 \times 764) = 5282$ Slighly more than original guess $\frac{40320}{8} = 5040$

Example 1.4.2. Find the number of ways to color a cube with n different colors up to symmetry.

1.4.2 Groups of order p^2

Order 9: Obvious examples = $\mathbb{Z}/9\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Classify all groups of order p^2 (p prime): only ex are $\mathbb{Z}/p^2\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^2$ (1): Every group of order p^n (p prime, n > 0) has nontrivial order

Proof. Recall, if all proper subgroups have index divisible by p, p||G| then G has nontrivial center. So if $|G| = p^n$, n > 0, we see G has nontrivial center.

Implies that if $|G| = p^n$, G is nilpotent. ie. repeatedly modding out by the center gives you the trivial group. $G_0 = G$, $G_1 = G_0/Z(G_0)$, $G_2 = G_1/Z(G_1)$, ... If G_n is trivial for some n, G is called nilpotent.

This gives an exact sequence: $1 \to Z(G_i) \to G_i \to G_{i+1} \to 1$

Note: A group may still have nontrivial center even after modding out by the original center: $G = D_8$, $G/Z(G) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

 S_3 (order 6) is not nilpotent

(2): If G/Z(G) is cyclic then G is abelian.

Proof. Consider $1 \to Z(G) \to G/Z(G) \to 1$. Z/(G) is powers of g_1 , lift g_1 to g in G. Every element in G is of the form zg^n ($z \in \text{center}$) so all commute $z_1g^{n_1}, z_2g^{n_2}$: z_1 commutes with z_2g^2n , g^{n_1} commutes with z_2 , and g^{n_1} commutes with g^{n_2}

(3): Every group of order p^2 is abelian.

Note: not true for p^3 , consider D_8 , Q_8 of order 2^3

Proof. Center is nontrivial so has order $\geq p$. G/Z(G) has order 1 or p so it is cyclic so G is abelian.

(4): Every group of order p^2 is $(\mathbb{Z}/p^2\mathbb{Z})$ or $(\mathbb{Z}/p\mathbb{Z})^2$

Proof. Case 1 : elements of order $p^2 \to G$ is cyclic $\cong \mathbb{Z}/p^2\mathbb{Z}$

Case 2: all elements have order p or 1+G abelian. G is really a vector field over \mathbb{F}_p the field with p elements so $G=\mathbb{F}_p\oplus\mathbb{F}_p$.

1.4.3 Dihedral Groups

Order 10: $\mathbb{Z}/10\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$, $D_{10} = (\mathbb{Z}/5\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}$

Groups of Order 2p: G has a subgroup of order p, index 2 so is normal. G has a subgroup of order 2 so $G \cong \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, determined by action of $\mathbb{Z}/2\mathbb{Z}$ on $\mathbb{Z}/p\mathbb{Z}$.

Symmetries of $\mathbb{Z}/p\mathbb{Z}$: map generator $1 \to \text{elment of order } p. \ n \mapsto na \ p \ | a$

Symmetries = $(\mathbb{Z}/p\mathbb{Z})^{\times}$ nonzero integers mod p under \times . Only elements of order 2 are $\pm a \mod p$

 $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}2\mathbb{Z}$ (trivial action of $\mathbb{Z}/2\mathbb{Z}$ on $\mathbb{Z}/p\mathbb{Z}$)

 $G \cong \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}2\mathbb{Z}$ ($\mathbb{Z}/2\mathbb{Z}$ acting by -1 on $\mathbb{Z}/p\mathbb{Z}$) = dihedral group.

Dihedral Groups: symmetries of a regular n-gon ($n \ge 3$). Order 2n (Insert Figure)

What is the center of D_{2n} ? $(n \ge 2)$? Order 2 if even, order 1 if odd.

Why does D_{12} split as a product?

(Insert Figure) $D_1 2 = D_6 \times \mathbb{Z}/2\mathbb{Z} = \text{symmetries of triangels} \times 180^{\circ} \text{ rotation commutes with elements and flips the two triangles}$

 D_{10} (Insert Figure) Problem: 180° does not flip two squares.

 D_{2n} can be split $D_{2n} \times \mathbb{Z}/2\mathbb{Z}$ for $D_4, D_{12}, D_{20}, D_{28} \pmod{4}$

Involutions in dihedral groups (elements of order 2)

 D_{2n} (Insert Figure)

Reflection Groups (generated by relations)

(Insert Figure) Suppose g and h are relations. If $g^2 = 1$, $h^2 = 1$, $(gh)^n = 1$

• Fid property of all finite groups that doesn't hold for all infinite groups, in the language of groups.

Property: If g, h are involutions, either g, h are conjugates or some involution commutes with g, h $g^2 = 1$, $h^2 = 1$, $(gh)^n = 1$ for some n (since group finite)

n even: D_{2n} has nontrivoal element in center

n odd: All involutions commute

Fails for ∞ dihedral group $g^2 = 1$, $h^2 = 1$ (Insert Figure)

Order 12: $\mathbb{Z}/12\mathbb{Z}$, products - $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, $S_3 \times \mathbb{Z}/2\mathbb{Z}$, rotations of tetrahedrons, semidirect products- $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$), $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}/4\mathbb{Z}$.

Binary Dihedral: S^3 (= unit quaternions) is a group acting on $\mathbb{R}^3 = bi + cj + dk$ - rotations in \mathbb{R}^3

 $1 \to \pm 1 \to S^3 \to \text{rotaitons on } \mathbb{R}^3 \to 1 \text{ where } \pm 1 \text{ act trivially on } \mathbb{R}^3$

 $1 \to \pm 1 \to \hat{G} \to G = \text{finite reflecction group.}$ Ex: group over D_{2n}

Binary dihedral groups of order 4n so binary dihedral group of order 12. (Q_8 binary dihedral group of order 8) 5 groups of order 12.

1.5 September 8

1.5.1 Sylow Theorems

Order 12: $\mathbb{Z}/12\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $S_3 \times \mathbb{Z}/2\mathbb{Z}$, A_4 , $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$

Sylow Theorems:

- Lagrange: if $H \subseteq G$, |H| | |G|
- If m | |G| can we find a subgroup of order G?
 No: A₄=reflections of tetrahedron has no subgroup of order 6

Theorem 1.5.1 (Sylow's Theorems). 1. If $p^n | |G|$ (p prime) then G has a subgroup of order p^n if n is maximal, called p-Sylow subgroup.

- 2. Number is 1 mod p, divides |G|
- 3. All p-sylow subgroup are conjugate (so all isomorphic)
- 4. Any p-subgroup is contained in some sylow p-subgroup.

Example 1.5.2. $G = D_8$, contains two non-conjugate elements of order 2 - (Insert Figure)

Example 1.5.3. $G = D_8$, has nonisomorphic subgroups of order 4 (Insert Figure)

Proof. 1. Existence. We proceed by induction on the order of the group.

Case 1: G has some proper subgroup H, index not divisible by p.

• Pick sylow p-subgroup of H. This is a sylow p-subgroup of G.

Case 2: All Sylow p-subgroups have index divisble by $p \to \text{center}$ if G has order divisible by p.

- pick $g \in \text{center}$, $g^p = 1$. Look at $G/\langle g \rangle$. Pick p-sylow subgroup. Inverse image in G is a sylow p-subgroup.
- 2. Number of Sylow subroups is $1 \mod p$

Key idea: look at action of Sylow p-subgroup S on set of sylow p-subgroups by conjugation All orbits have size power of p. Orbit $\{S\}$ has size 1. No other orbits of size 1. if $\{T\}$ orbit of size 1, then S normalizes T so ST of order p^m , m > n impossible.

1 orbit of size 1, all other orbits have size p^k , k > 0. Divisible by p so total is 1 mod p

3. All Sylow *p*-subgroups are conjugate

Suppose not, then if S is a p-sylow subgroup, number of conjugates is divisble by p-1. Suppose T is a non-conjugate p-subgroup and let T act on the set of p-sylow subgroups conjugate to S. T can have no fixed points so the total number of p-sylow subgroups conjugate to S is divisble by p, contradiction.

- 4. Number of Sylow p-subgroups divides the order of G Look at action of G on sylow p-subgroups. Transitive so # subgroups = $\frac{|G|}{|\text{subgroup fixing 1}|}$ which divides G.
- 5. Any subgroup with order power of $p \subseteq \text{some sylow } p\text{-subgroup}$

Apply to groups of order $12 = 2^2 \times 3$

We know that G has subgroups of order 3 and 4.

Case 1: subgroup of order 3 is normal.

• Give G semiproduct $(\mathbb{Z}/3\mathbb{Z}) \rtimes (\text{order 4 group})$ 4 cases:

	Action trivial	Nontrivial
$\mathbb{Z}/4\mathbb{Z}$, , ,	binary dihedral
$(\mathbb{Z}/2\mathbb{Z})^2$	$(\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{Z}/3\mathbb{Z}$	$S_3 \times \mathbb{Z}/2\mathbb{Z}$

Case 2: Sylow 3 subgroups not normal

subgroups - divides 12, 1 mod 3, not $1 \to = 4$, call them S_1, S_2, S_3, S_4 . $S_i \cap S_j = \{e\}$ so we have 8 elements of order 3, 1 element of order 1, 3 "mystery" elements.

G has 2-sylow subgroups of order 4, at most one so must be normal. So $G = (\text{group of order 4}) \rtimes \mathbb{Z}/2\mathbb{Z}$, only nontrivial action on: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong \text{relfection of tetrahedron}$.

Example 1.5.4. Apply to groups of order 56.

Application: Nilpotent Groups Following are equivalent:

- 1. Group is nilpotnent (center >1, G/center is nilpotent or |G|=1)
- 2. Any proper subgroup H has N(H) strictly bigger than H.
- 3. ALl Sylow subgroups are normal
- 4. G is product of groups of prime power order.
- $(1) \rightarrow (2)$: Suppose H is a subgroup.

Case 1: H does not contain Z(G). $Z(G) \subseteq N(H)$.

Case 2: H contains Z(G), look at $H/Z(G) \subseteq G/Z(G)$

 $(2) \to (3)$: If S is a sylow p-subgroup of G. Then N(S) is its own normalizer. $e \subseteq S \subseteq N(S) \subseteq G$. Suppose $g \in G$ normalizes N(S) g takes S to a sylow p-subgroup of N(S). This subgroup is conjugate to S in N(S) so $gSg^{-1} = hSh^{-1}$ for $h \in N(S)$ so gh^{-1} normalizes S so $gh^{-1} \in N(S)$, since $h \in N(S)$, $g \in N(S)$.

Now, if N(S) proper subgroup then N(N(S)) > N(S) so must have N(S) = G so there is only one sylow subgroup.

 $(3) \rightarrow (4)$: Main step - members of different sylow subgroups comute.

S is a sylow p-subgroup, T is a sylow q-subgroup with $p \neq q$, want st = ts for $s \in S$, $t \in T$

Follows from: If A, B normal subsets of G, and $A \cap B = \{e\}$ the elements of A commute with the elements of B. Look at $aba^{-1}b^{-1}$, commutator of a, b (=1 $\leftrightarrow a$, b commute). $aba^{-1} \in B$ so $aba^{-1}b^{-1} \in B$ and $ba^{-1}b^{-1} \in A$ so $aba^{-1}b^{-1} \in A$ so $aba^{-1}b^{-1} \in B$ and $aba^{-1}b^{-1} \in A$ so $aba^{-1}b^{-1} \in A$ so $aba^{-1}b^{-1} \in A$

 $(4) \rightarrow (1)$: Follows since 1. p-groups are nilpotent, 2. product of nilpotent groups is nilpotent

Order 15: One group is $\mathbb{Z}/15\mathbb{Z} = \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Consider $p \neq q, p > q$. G has sylow p-subgroup, number is $1 \mod p$, divides pq, q < p so only possibility is 1. So since p is normal $G = \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/q\mathbb{Z}$.

How doe $s\mathbb{Z}/q\mathbb{Z}$ act on $\mathbb{Z}/p\mathbb{Z}$? Aut $(\mathbb{Z}/p\mathbb{Z}) = (\mathbb{Z}/p\mathbb{Z})^{\times}$ order p-1 so if q does not divides p-1 only action is trivial so only subgroup is cylic subgroup of order pq

If q|p-1, $\mathbb{Z}/q\mathbb{Z}$ can act nontrivially on $\mathbb{Z}/p\mathbb{Z}$. Essentially one action $(\mathbb{Z}/p\mathbb{Z})^{\times}$ elements of order q forms a cyclic subgroup of order q.

Exactly two groups of order pq.

Order 16: Complete List

- 5 abelian: $\mathbb{Z}/16\mathbb{Z}$, $\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^2$, $(\mathbb{Z}/2\mathbb{Z})^4$
- 4 more, have subgroups of order $\mathbb{Z}/8\mathbb{Z}$: Generalized quaternion = binary dihedral, dihedral, groups generated by $a^8 = 1$ $b^2 = 1$, $bab^{-1} = a^3$ or a^5 , if a^3 called semi-dihedral.
- Products: $D_8 \times \mathbb{Z}/2\mathbb{Z}$, $Q_8 \times \mathbb{Z}/2\mathbb{Z}$
- Semidirect Product: two of form $\mathbb{Z}/4\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2 \rtimes \mathbb{Z}/4\mathbb{Z}$ one of form: $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}$ (Pauli group)

1.5.2 Classification of Abelian Groups (finite)

All products of cylic-subgroups (not unique) eg. $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ Product is unique up to order either, n_1, n_2, \ldots satisfying $n_1 | n_2 | n_3 \cdots$ or n_i prime powers. eg. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}(2|6)$ or $(\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{Z}/3\mathbb{Z}$ ($2^2, 3$ prime powers)

1.6 September 13

1.6.1 Classification of Finitely Generated Abelian Groups

Classify all finite abelian grousp G.

- Write group law as +
- pick finite number of generators g_1, \ldots, g_n (every element in G is of the form $m_1g_1 + \cdots + m_ng_n$ with $m_i \in \mathbb{Z}$)

Classification still works for finitely generated abelian groups.

Relation: $a_1g_1 + \cdots + a_ng_n0$

Take some $a_{1,1}g_1 + \cdots + a_{1,n}, a_{2,1} + \cdots + a_{2,n}, \ldots$ generating all relations.

We get a matrix
$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ & & \vdots & & \end{pmatrix}$$

Change matrix:

- 1. Permute rows
- 2. Permute columns
- 3. Add a multiple of one row to another row. $\{R_1, R_2\} \equiv \{R_1, R_2 + nR_1\}$
- 4. Add a multiple of one column to another. g_1, \ldots, g_n generators then $g_1 + ng_2, g_2, \ldots$, also generators.

Do row, column operations to simplify matrix

• Arrage $a_{1,1}$ to be as small as possible (> 0). Possible unless all $a_{ij} = 0$ $a_{1,1}$ divides $a_{1,2}$ since if $a_{1,2} = ka_{1,1} + r$ with $0 \le r < a_{1,1}$, as $a_{1,1}$ is minimal, r = 0. Can meake $a_{1,2} = 0$.

$$a_{1,1}$$
 divides $a_{1,2}$ since if $a_{1,2} = ka_{1,1} + r$ with $0 \le r < a_{1,1}$, as $a_{1,1}$ is minimal, $r = 0$. Can meake Similarly, we can make $a_{1,3}, a_{1,4}, \ldots, a_{2,1}, a_{2,2}, \ldots$ all 0 to get a matrix
$$\begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & a_{2,3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

We can repeat this with $a_{2,2}$ to get $\begin{pmatrix} a_{1,1} & & & 0 \\ & a_{2,2} & & \\ & & \ddots & \\ 0 & & & a_{n,n} \end{pmatrix}$ giving relations $a_{1,1}g_1=0,\ a_{2,2}g_2=0,\ldots$

so group is $\mathbb{Z}/a_{1,1}\mathbb{Z} \oplus \mathbb{Z}/a_{2,2}\mathbb{Z} \oplus \oplus \mathbb{Z}/a_{n,n}/\mathbb{Z}$ with $a_{1,1}|a_{2,2}|a_{3,3}|\dots$

If $\mathbb{Z}/a_1\mathbb{Z} \oplus \mathbb{Z}/a_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/a_n\mathbb{Z} \cong b\mathbb{Z}/b_1\mathbb{Z} \oplus \mathbb{Z}/b_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/b_m\mathbb{Z}$ with $a_1|a_2|a_3|\cdots$ and $b_1|b_2|b_3|$ then $n=m,\ a_1=b_1,\ a_2=b_2,\ldots$

Key idea - look at the number of homomorphisms from G to $\mathbb{Z}/m\mathbb{Z}$

How many abelian groups of order p^n (p prime)?

 $\mathbb{Z}/a_1\mathbb{Z} \oplus \mathbb{Z}/a_2\mathbb{Z} \oplus \cdots \quad a_i = p^{k_i}, \ k_1 \leqslant k_2 \leqslant k_3 \leqslant \cdots, \ k_1 + k_2 + k_3 + \cdots = n.$

Order 18: Normal subgroup of order 3^2 so group is order $9 \times \mathbb{Z}/2\mathbb{Z}$

 $\mathbb{Z}/9\mathbb{Z}$ - 2 actions of $\mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/3\mathbb{Z})^3$ - 3 actions of $\mathbb{Z}/2\mathbb{Z}$ (thinking of this as a vector space over $\mathbb{Z}/3\mathbb{Z}$ consider linear transformations of order 2, $V = V^+ \oplus V^-$, egienspaces of ± 1 , dimension of V = 0, 1, 2)

One of the groups $(\mathbb{Z}/3\mathbb{Z})^3$ is wreath product.

Suppose G, H aer groups. Take product of |G| copies of H. $H^{|G|} = H \times H \times \cdots$, G acts on $H^{|G|}$ so we have the semidirect product of $H^{|G|} \rtimes G$

More generally, if G acts on Ω , can form $H^{|\Omega|} \rtimes G$

Example 1.6.1. $H = \mathbb{Z}/3\mathbb{Z}$, $G = \mathbb{Z}/2\mathbb{Z}$ $(\mathbb{Z}/3\mathbb{Z})^2 \rtimes \mathbb{Z}/2\mathbb{Z} \to \text{wreath product of order 18}$. $H = \mathbb{Z}/2\mathbb{Z}$, $G = \mathbb{Z}/2\mathbb{Z}$ $(\mathbb{Z}/2\mathbb{Z})^2 \rtimes \mathbb{Z}/2\mathbb{Z} = D_8$.

Example 1.6.2. 1. Symmetry of graphs (Insert Figure)

- 2. Sylow subgroups of symmetric groups Want to consider Sylow 2-subgroups of S_10 . Highest power of 2 dividing $10! = \left\lfloor \frac{10}{8} \right\rfloor + \left\lfloor \frac{10}{4} \right\rfloor + \left\lfloor \frac{10}{2} \right\rfloor = 5 + 2 + 1 = 8$. (Insert Figure)
- Any group of order p^n is a subgroup of some $(\mathbb{Z}/p\mathbb{Z}) \wr (\mathbb{Z}/p\mathbb{Z}) \wr (\mathbb{Z}/p\mathbb{Z})$

Physics - Gauge Theories

G=gauge group. Symmetries = (continuous maps of spacetime $\rightarrow G$) \rtimes (Automorphims of spacetime)

Order 20: $(\mathbb{Z}/5\mathbb{Z}) \times (\text{order } 4)$

5 possibilities: $\mathbb{Z}/5\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^2$, $\mathbb{Z}/5\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^2$, $D_{10} \times \mathbb{Z}/2\mathbb{Z} = D_{20}$, $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ (elements of order 2, binary tetrahedral), $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ (Frobenius Group)

Frobenius Group is a group G acting on a set S transitively and faithfully such taht

- 1. If g fixed two points of S then g is the identity
- 2. S is not the regular action of G of a group on teh set.

Example 1.6.3. $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ "ax + b" group. Take F a field and consider all linear transformations $x \mapsto ax + b$, $x \in F$, $a \neq 0, b \in F = \text{matrix} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ $a \neq 0$

 S_3 also Frobenius gorup, "ax + b" for $\mathbb{Z}/3\mathbb{Z}$

 A_4 acts on 4 points also a Frobenius group.

Frobenius: If G is a Frobenius group then put N= identity \cup elements with no fixed point, then N is a normal subgroup of G= Frobenius kernel

For A_4 , the frobenious kernel is $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$

Thompson: N is nilpotent

Order 21: $\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ is first non-abelain group of odd order.

Order 24: Look at Sylow 3-subgroups, $\mathbb{Z}/3\mathbb{Z}$, either 1 or 4

if 1: $\mathbb{Z}/4\mathbb{Z} \times (\text{order } 8)$

if 4: We get an action of G on 4 points (Sylow 3-subgroups) so we have a homomorphism $G \to S_4$. Kernel has order 1, 2, 3 or 6. 6, 3 not possible since no normal subgroup of order 3 so 2 possibilities:

- 1. Kernel is 1, $G \cong S_4$ (no normal Sylow Subgroup)
- 2. $1 \to \mathbb{Z}/2\mathbb{Z} \to G \to \text{Aut binary dihedral group}$

Symmetric Groups - S_n 1.6.2

Order is n! What are its conjugacy classes?

General element: (135)(24)(689) cycle shape = lengths of cycles in order.

2 elements of group aer conjugate \leftrightarrow they have the same cycle shape

Problem: Given a, b, having the same cycle shape. Find g with $gag^{-1} = b$

eg. a = (13)(259)(468)(7), b = (57)(136)(249)(8) can define g to map elements to corresponding element in other cycle eg. $1 \rightarrow 5, 3 \rightarrow 7, 2 \rightarrow 1, \dots$

How many conjugacy classes of S_n ? eg. How many cycle shapes?

 $(n_1)(n_2)(n_3)\cdots 0 \leqslant n_1 \leqslant n_2 \leqslant n_3 \ n_1 + n_2 + n_3 + \cdots = n$, number of partitions of n

What is the set of conjugates of the cycle shape $1^{k_1}2^{k_2}3^{k_3}\cdots 1\cdots 1\cdot 2\cdots 2\cdots$

$$k_1$$
 k_2

is $|S_n|$ size of subgroup fixing one of the permutations

Find an element of S_n commuting with these, $S_{k_1}, 2^{k_2}S_{k_2}, 3^{k_3}S_{k_3}, \dots$ so $\# = \frac{n_1}{k_1!2^{k_2}k_2!3^{k_3}k_3!\cdots}$

$$\begin{array}{cccc}
4 & \frac{24}{4} = 6 \\
3 & 1 & \frac{24}{3 \cdot 1} = 8 \\
2^2 & \frac{24}{2^2 \cdot 2^3} = 8 \\
2 & 1^2 & \frac{24}{2 \cdot 1^3 \cdot 2^1} = 6
\end{array}$$

1.7September 15

1.7.1Normal Subgroups of S_n

- 1. Trivial subgroup
- $2. S_n$
- 3. Alternating group A_n of index 2. Look at $\Delta(x_1,\ldots,x_n)=\prod_{i< j}(x_i-x_j)$. S_n acts on polynomials by permuting x_1,\ldots,x_n . Takes $\Delta\to\Delta$ or $-\Delta$. A_n =subgroup mapping Δ to Δ . Index 2 in S_n (n > 1).
- 4. S_4 has a normal subgroup $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (weird exception).

No other normal subgroups.

Symmetries of Platonic Solids

All Symmetries Rotations Tetrahedron 4 $12 - A_4$ $24-S_A$ 8, 6 Octrahedron, Cube (Dual) $24 - S_4$ $48-S_4 \times \mathbb{Z}/2\mathbb{Z}$ Icosahedron, Dodecahedron (Dual) $60 - A_5$ $120-60 \times \mathbb{Z}/2\mathbb{Z}$ Here dual means faces of one can be identifies with the vertices of the other

$$1 \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to S_4 \to S_3 \to 1$$

 S_4 - symmetries of octahedron, has 3 diagonals

 S_3 - permutations of 4 diagonals

Definition 1.7.1. G is solvable if G is abelian or G has normal subgroup with N, G/N solvable.

$$1 \to N \to G \to G/N \to 1$$

 $1 = G_0 \subseteq G_1 \subseteq G_2 \subseteq \cdots \subseteq G_n = G \text{ such that } G_i \text{ normal in } G_{i+1}, G_{i+1}/G_i \text{ abelian.}$ For S_4 , $1 \subseteq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \subseteq A_4 \subseteq S_4 \to \text{polynomial of degree 4 can be solvable with radicals.}$

Order 27=3³, groups of order p^3

Example 1.7.2. Abelian - $\mathbb{Z}/p^3\mathbb{Z}$, $\mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$, $(\mathbb{Z}/p\mathbb{Z})^3$

Non abelian - p=2: $D_8=\mathbb{Z}/4\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z},Q_8$

 $p \text{ odd: } (\mathbb{Z}/p^2\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}, \begin{pmatrix} 1 & * & * \\ & 1 & & * \\ & & & * \\ 0 & & \ddots & \\ 0 & 0 & & & 1 \end{pmatrix} \text{ in } \mathbb{Z}/p\mathbb{Z}, \text{ all elements order } p, \text{ nonabelian }$

$$M_n(\mathbb{R}): \exp(A) = I = A + \frac{A^2}{2!} + \cdots$$

- Converges: Norm(A), $||A|| = \sup_{v \in [|A(v)|]} v \in \mathbb{R}^n$. $||Av|| \le ||A|| ||v||$
- Properties: $\exp(A + B) = \exp(A) + \exp(B)$ if AB = BA
- Can define $\log(1+A) = A A^2/2 + A^3/3 \cdots$ defined for ||A|| < 1

Define exp, og for matrices in $\mathbb{Z}/p\mathbb{Z}$

- 1. Some do not converge
- 2. terms of this sum are not even defined $\frac{A^p}{p!}$, p! = 0 in $\mathbb{Z}/p\mathbb{Z}$
- 1. Ok if A is nilpotent, $A^n = 0$, $1 + A + \frac{A^2}{2!} + \cdots + \frac{A^{n-1}}{(n-1)!}$
- 2. Of if, $A^n = 0$ n < p, 0!, 1!, ..., (p-1)! all nonzero mod p

So we can we can define $\exp(A)$ over $bZ/p\mathbb{Z}$ is $A^{p-1}=0$

$$A = \begin{pmatrix} 1 & * & * \\ & 1 & & * \\ & 0 & & \ddots \\ 0 & 0 & & 1 \end{pmatrix} \text{ strictly upper triangular } n \times n \text{ matrices over } \mathbb{Z}/p\mathbb{Z}, \ A^{n+1} = 0 \text{ so if } n$$

$$G = \begin{pmatrix} 1 & * & * \\ & 1 & & * \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix} \text{ matrices over } \mathbb{Z}/p\mathbb{Z}. \text{ If } n$$

Note: If all elements have order $2 \to G$ abelian but all elements order 3 + G abelian

Groups of order p^3 are analogs of Heisenberg group Heisenberg group: Fuctions on \mathbb{R} . (1) translations $f(x) \to f(x+\lambda)$, (2) multiply by $e^{2\pi i x \mu}$ $f(x) \to f(x)e^{2\pi i x \mu}$

Order they are applied in matters: $f(x) \to f(x+\lambda) \to f(x+\lambda)e^{2\pi ix\mu}$ vs. $f(x) \to f(x)e^{2\pi i\mu x} \to f(x+\lambda)e^{2\pi i\mu(x+\lambda)}$. Differ by $e^{2\pi i\mu\lambda}$, forms circle group.

 $1 \to S^1 \to \text{Heisenberg} \to \mathbb{R} \times \mathbb{R} \to 1$

 $p^3: 1 \to \mathbb{Z}/p\mathbb{Z} \to (\text{order } p^3) \to \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \to 1$

Order 2⁵: 51 groups, 2¹⁰: 49487365421 groups, $p^n :\sim p^{\frac{2}{27}n^2}$

Typical: $1 \to (\mathbb{Z}/p\mathbb{Z})^a \to G \to (\mathbb{Z}/p\mathbb{Z})^b \to 1$

Choose bases u_1, \ldots, u_a and v_1, \ldots, v_b . $i < j \ v_i v_j v_i^{-1} v_j^{-1} = \text{something in } (\mathbb{Z}/p\mathbb{Z})^a$

Order 48: Binary Dihedral

Example 1.7.3. Prove all groups of order < 60 are simmple (tricky cases: 30, 48, 56)

 A_5 - first non solvable simple group.

Any finite group can be built out of simple groups: $1 \subseteq G_0 \subseteq G_1 \subseteq \cdots \subseteq G_i$ normal in $G_{i+1}, G_{i+1}/G_i$ simple.

Order 60: Rotations of Tetrahedron $\cong A_5$

	Conjugacy Classes	Order	Number			
	(1) Trivial element	1	1			
Charry A is simple	(2)	3	20	(Faces)	Wanning	Conjugacy alogges of A
Show A_5 is simple	(3)	2	15	$(\mathrm{Edges}/2)$	Warning: Conjugacy classe	Conjugacy classes of A ₅
	$(4) \ 1/5 \ rev$	5	12	(# vertices)		
	$(5) \ 2/5 \ rev$	5	12	(# vertices)		

not quite same as conjugacy classes of S_n (12345)(21345) conjugate in S_5 but not A_5

Let H be a normal subgroup of A_5

- 1. H union of conjugacy classes
- 2. So H = 1 + "subset" of $\{12, 12, 15, 20\}$
- 3. |H| divides 60

So only options are |H| = 1 or |H| = 1 + 12 + 12 + 15 + 20 = 60

So A_5 , only normal subgroups of S_5 are $1, A_5, S_5$ since if H normal in $S_5, H \cap A_5 = A_5$ or 1. If $A_5, H = A_5$. If $1, |H| \leq 2, H = 1$.

 A_n simple for $n \ge 5$ by induction on n. Idea: Consider $A_n \subseteq A_{n+1}$ $(n \ge 5)$. If H is normal in A_{n+1} , $H \cap N$ normal in A_n so $H \cap A_n = A_n$ or 1.

Order 120: How do we build a group out of $\mathbb{Z}/2\mathbb{Z}$, A5? 3 ways:

- 1. $A_5 \times \mathbb{Z}/2\mathbb{Z}$ symmetries of Icosahedron
- 2. S_5 normal A_5 , quotient $\mathbb{Z}/2\mathbb{Z}$ $1 \to A_5 \to S_5 \to \mathbb{Z}/2\mathbb{Z} \to 1$
- 3. Binary icosahedral $1 \to \mathbb{Z}/2\mathbb{Z} \to \hat{A}_5 \to A_5 \to 1$

(1), (2) have center of order 2. (3) has one element of order 2.

Poncaire: Compact 3-manifold with trivial fundamental group is S^3

Poncaire Homotopy Sphere: $S^3/(\text{Binary Icosahedral})$. Fundamental group = binary icosahedral, H_1 aelianization of fundamental group = $\{1\}$

1.8 September 20

1.8.1 Categories

Objects

Morphisms

Example 1.8.1.

Groups: G, homomorphimss $G \xrightarrow{f} H$

Sets: S, functions $S \xrightarrow{f} T$

Topological spaces: X, continuous maps $X \xrightarrow{f} Y$

Axioms

- For any two objects we have a set of morphisms $A \to B \operatorname{Mor}(A, B)$.
- Can compose morphisms: $A \to B, B \to C$, we get a morphism $A \to C$
- Identity morphism: $I_A: A \to A$ satisfying $f: A \to B$, $I_b f = f < f I_A = f$
- Function composition is associative

Example 1.8.2. Rings, varities, and differentiable manifolds

Example 1.8.3. A group. Object: only 1 object. Morphisms: elements of group. Composition is group product.

Example 1.8.4. A poset (partially order set). Set S with \leq . Category: objects = elements of S. Morphisms: morphisms from A to B, 1- morphism if $A \leq B$, none if $A \leq B$.

Basic Theme: Ignore structure of objects, define everything using morphisms.

epimorphisms: analogs of surjective maps. Normal definition of surjective uses internal structure of T.

 $f: S \to T$ is an epimorphism if whenever 2 morphisms $T \stackrel{g}{\Longrightarrow} U$ if $gf = hf \to g = h$

Example 1.8.5. $f: S \to T$ (S, T sets) f surjective $\leftrightarrow f$ is an epimorphism

Warning: Sometimes epimorphism \neq surjection

Example 1.8.6. Look at category of rings (morphisms = homomorphims)

 $f:\mathbb{Z}\to\mathbb{Q}$ not surjective but is an epimorphism of rings.

Fawcett: In category of planar graphs 4 color theorem \leftrightarrow epimorphisms are surjective.

Dual Concept: Dual of surjectivity is injectivity

monomorphism: $f: S \to T$, if $R \stackrel{g}{\underset{h}{\Longrightarrow}} T$ $fg = gh \to g = h$

Example 1.8.7. If S,T subsets, $f:S\to T$ is injectivity $\leftrightarrow f$ is monomorphism (also true for rings, groups, ...)

1.8.2 Functors

Original Idea: Category of topological spaces \rightarrow category of abelian groups

(Insert Figure)

If C, D categroies, a functor from C to D consist of

- 1. Object F(X) for each object $X \in C$
- 2. Morphism $f: X \to Y \to \text{morphism } F(f): F(X) \to F(Y)$

Axioms: Behaves in "obvious" way. $F(\mathrm{id}_A)=\mathrm{id}_{F(A)},\,F(fg)=F(f)F(g)$

Example 1.8.8. Forgetful Functor, (Category of Groups) \rightarrow (Category of Sets) by $G \mapsto$ underlying set, $G \rightarrow H \mapsto G \rightarrow H$

Chapter 2

Rings

2.1 September 27

2.1.1 Category Theory

We answer one final question: If a morphism is an epimorphism and a monomorphism, is it an isomorphism Sets, Abelian groups: Yes

Rings: No $\mathbb{Z} \hookrightarrow \mathbb{Q}$, mono + epi, not isomorphism

Top Spaces: $(\mathbb{R}, \text{ discrete} \to (\mathbb{R}, \text{ ususal})$

2.1.2 Rings

We can define a ring concretely as the set of endomorphisms of an abelian group

Definition 2.1.1. A ring is a set R with +, \times such that R forms an abelian group under addition, \times is associative, +, \times satisfy left/right distributive laws.

Two ambiguities in definition:

- Ambiguity 1: Does it has multiplicative identity, 1? Algebra: Yes, Analysis: No
- Basic

Example 2.1.2 (Basic Examples). Field \mathbb{R}, \mathbb{C} . Integers \mathbb{Z} , Gaussian Integers $\mathbb{Z}[i]$ m+ni with $i^2=1$. Polynomials ring R[x], matrices $M_n(\mathbb{R})$ $n \times n$ matrices (endomorphisms of vector space \mathbb{R}^n). Can form more general $M_n(\text{ring})$. Algebraic Geometry: $\mathbb{C}[x,y]/y^2=x^2-ax+b$

This fails for 3 vector spaces: $|A \cup B \cup C| = |A| + |B| + |V| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$ but $\dim(L + M + N) \neq \dim L + \dim M + \dim N - \dim(L \cap M) - \dim(M \cap N) - \dim(N \cap L) + \dim(M \cap N \cap L)$ (Consider 1 dimensional subsets of \mathbb{R}^3)

Analog of Cayley's Theorem: Every ring = endomorphisms of some abelian group preserving some "structure" R as an abelian group is acted on by R on the right. Linear maps of R preserving action on right = R acting on left

```
Definition 2.1.3. A (left) module M over R is an abelian group acted on by R. R \times M \to M such that r(m_1 + m_2) = rm_1 + rm_2, r(sm) = (rs)m, 1m = m, (r_1 + r_2)m = r_1m + r_2m
```

Analog of group acting on a set. Can have left modules, right modules, and two-sided modules

Example 2.1.4 (Burnside Ring of a Group). Take S_3 looks at all ways G acts on a finite set (up to iso). Make into ring.

 $A + B = A \sqcup B$, $A \times B = A \times B$ (as sets)

Note: What about -?

If G acts on A, $A = A_1 \cup A_2 \cup \cdots A_i$ is an orbit of A, G acts transitively on each A_i

How can S_3 act on transitively on a set A. Subgroups of $S_3 \leftrightarrow$ transitive action on A + point of A

$$S_3$$
 subgroups Action
(1) Acts on 6 points (1)
(12), (13), (23) Acts on 3 points (3)
(123) (132) Acts on 2 points (2)
 G Acts on 1 point (1)

Elements of R are a(1) + b(2) + c(3) + d(6). What about \times ? Compute products of (1), (2), (3), (6)

(Insert Figure)

Problem: R does not have —

A: Construction of Grothendeick Ring

Idea: Start with \mathbb{N} (integers ≥ 0), construct \mathbb{Z} . pairs (m,n) representing m-n, $(m_1,n_1)\equiv (m_2,n_2)$ if $m_1+n_2=m_2+n_1$

Copy this idea to construct an abelian group from an abelian monoid. This does not work in general.

Subtle Problem: If we have $m_1 - n_2 \equiv m_2 - n_2$ iff $m_1 + n_2 = m_2 + n_2$ this is not an \equiv relation

Suppose $m_1 - n_1 \equiv m_2 - n_2$, $m_2 - n_2 \equiv m_3 - n_3$. Want to show $m_1 - n_1 \equiv m_3 - n_3$. $m_1 + n_2 = m_2 + n_1$, $m_2 + n_3 = m_3 + n_2$ so $m_1 + n_2 + n_3 = m_2 + n_1 + n_3 = n_1 + m_3 + n_2$. Need to cancel n_2 . Can't do this in gneral, x + y = x + z does not imply y = z

Fix: Define \equiv by $m_1 - n_2 \equiv m_2 - n_2$ iff $m_1 + n_2 + x = m_2 + n_1 + x$ for some x

Check: This is an equivalence relation. We get an abelian group from the \equiv classes.

This gives us functors: Groups $\stackrel{F}{\underset{G}{\longleftarrow}}$ Monoid where G is the forgetful function, F maps a monoid to its Grothendeick group. G, F adjoint, eg. maps from M G(A) "same as" maps from F(M) A

Back to ring of S_3 : elements of form a(1) + b(2) + c(3) + d(6) $a, b, c \in \mathbb{Z}$ possibly < 0

Example 2.1.5. Group ring of G (over R). Ring "generated" by G

Set of all formal elements $\sum_{g \in G} r_i g \ r_i \in R$ almost all 0. $+, \times$ on group ring "obvious"

 $G = \mathbb{Z}/4\mathbb{Z}$. group ring over \mathbb{C} . Elements if $\mathbb{C}[G]$ are of the form $a_0 + a_1g + a_2g^2 + a_3g^3$ $a_i \in \mathbb{C}$ = vector space over \mathbb{C} of dimension 4.

 $\mathbb{C}[G]$ splits as a product of rings.

Product of R, S is $R \times S$ with "obvious" \times , +

Products in Categories: If R, S objects, $R \times S$ object such that:

- We have morphisms (Insert Figure)
- $R \times S$ is the best possible object like this. (Insert Figure)

Suppose $R \times S$ product of R, S. How do we recover R, S from $R \times S$?

 $\text{Look at } u_1 = (1,0), \ u_2 = (0,1), \ u_1^2 = u_1, \ u_2^2 = u_1 < u_1 \\ u_2 = u_2 \\ u_1, \ u_1 + u_2 = 1 \ (u \text{ such that } u^2 = u \text{ is called } u = u_1 \\ u_1 \\ u_2 = u_2 \\ u_2 \\ u_1 \\ u_2 = u_2 \\ u_2 \\ u_1 \\ u_2 = u_2 \\ u_2 \\ u_2 \\ u_2 \\ u_3 \\ u_4 \\ u_4 \\ u_5 \\ u_5$ idempodent)

1 = sum of commuting irreducibles. Then we can recover R from $R \times S$ by $(R \times S)(u_1)$

To break up $\mathbb{C}[G]$ we want to write 1 as sum of idempotents

Example 2.1.6. $G = \mathbb{Z}/2\mathbb{Z} = \{a + bg\}, g^2 = 1.$ $(a + bg)^2 = a + bg \rightarrow a^2 = 2abg + b^2g = a + bg$ so $a^2 + b^2 = a$, 2ab = b. $a = \frac{1}{2}, b = 0 \rightarrow \frac{1+g}{2}, \frac{1-g}{2}$ so $\mathbb{C}[G] = \frac{1+g}{2}\mathbb{C}[G] + \frac{1-g}{2}\mathbb{C}[G] \cong \mathbb{C} + \mathbb{C}$ For $G = \mathbb{Z}/4\mathbb{Z}, \frac{1+g+g^2+g^3}{4}, \frac{1-g+g^2-g^3}{4}, \frac{1+ig+-g^2-ig^3}{4}, \frac{1-g-g^2+ig^3}{4}$ all idempodent, $\mathbb{C}[G] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C}$

Example 2.1.7. Monoid ring. Monoid = integers ≥ 0 under x. Allow infinite sums. "infinite"

$$\left(\sum \frac{a_m}{m^2}\right)\left(\sum \frac{b_m}{m^2}\right) = \sum \frac{c_m}{m^s} \ c_1 = a_1b_1, c_2 = a_2b_1$$

2.2September 29

2.2.1More Examples of Rings

Chapter 3

Representation Theory

3.1 October 4

3.1.1 Representation Theory

A representation of a group G is something acted on by G Problem: Given G, find all Representations

- Sets: permutation representations
- Vector space: linear representation over C: complex representation, over finite fields: modular representation, Abelian group: integral

Example 3.1.1. G = icosahedral group = order 60

permutation representations: 20 faces, 12 vertices, 1 point (trivially), G (regular representation) linear representations:

- 1. Trivial action on \mathbb{C} (G acts trivially)
- 2. 3-dim rep icosahedron $\subseteq \mathbb{R}^3 \subseteq \mathbb{C}^3$
- 3. Permuation representation \rightarrow linear representation by taking element as a basis for vector space
- 4. Regular representation: V has basis G

How can we classify permutations representations?

Any permutation representation = disjoint union of transisitive sets so it is enough to classify transitive permutations. They correspond to conjugacy classes of subgroups of H, G acts on G/H. Subgroups are hard to classify.

${\bf Primitive\ Representations}$

Suppose G acts on points, points grouped into boxes. G acts on boxes.

Example 3.1.2. $K \subseteq H \subseteq G$, G acts on $H/K \to G/K$. This happends when H is not maixmal. Maximal "points"

subgroups \leftrightarrow prime representation.

Analog for linear representations

Suppose v, W reps of G, so is $V \oplus W$

A representation is called decomposable if it can be written as \oplus of nonzero representations. Representations

that are not decomposable are called indecomposable.

Suppose W is a representation of G containing a representation $V, 0 \neq V, W, 0 \subseteq V \subseteq W$. W is reducible. If no such V exists, W is called irreducible (analogous to primitive permutation representations) Decomposable \rightarrow reducable

Fundamental counterexample to everything: $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$

Representation of \mathbb{Z} on \mathbb{C} by $n \mapsto \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.

 $V = \binom{*}{0}$, also a representation of \mathbb{Z} . \mathbb{Z} acts trivially on V and W/V but not on W. $0 \to V \to W \to W/V \to 0$ does not split.

If $W = V \oplus U$, \mathbb{Z} acts trivially on V, U so trivially on W.

W indecomposable ubt not irreducible.

Classify complex representations of $\mathbb{Z}/2\mathbb{Z}$. Element $g, g^2 = 1$

G acts on vector space W over \mathbb{C} . Take eigenvalues of g. $g^2=1$ so eigenvalues ± 1 .

 $W = W^+ \oplus W^-$, $v = \frac{v+g(v)}{2} + \frac{v-g(v)}{2}$. W^+ sum of 1 dimensional subspaces with g = 1. W^- sum of 1 dimensional subspaces with g = -1. 2 indecomposable reps $\mathbb{C}^+ : g = 1$, $\mathbb{C}^- : -1$ 1 dimensional.

What about representations of $\mathbb{Z}/2\mathbb{Z}$ on a vector space over \mathbb{F}_2 (Can't divide by 2)

Get other indecomposable rep: g acts as $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ on $(\mathbb{F}_2)^2$

Representations of group $\mathbb{Z} \leftrightarrow$ invertible linear transformations.

Want to classify representations up to isomorphism

Complex linear representations of $G \leftrightarrow \text{modules}$ over group rings $\mathbb{C}[G]$

Classify finitely generated modules over Euclidean ring:

They are all \sum of modules of the form R/p^n , p prime.

Proof: Copy proof for \mathbb{Z}

 $\mathbb{C}[x]$ is Euclidean, almost group ring of \mathbb{Z} , $\mathbb{C}[x, x^{-1}]$

Finitely generated modules over $\mathbb{C}[x]$ all have form $\bigoplus \mathbb{C}[x]/p^n$, p=0, prime (irreducible poly $x-\alpha$ Any finitely generated module over \mathbb{C} is \oplus of

1. $\mathbb{C}[x] = \mathbb{C}[x]/(0)$ (∞ dimensional so we don't consider it)

This consists of transformations $\begin{pmatrix} \alpha & 1 & & 0 \\ & \ddots & \ddots & \\ & & & \ddots & 1 \\ 0 & & & \alpha \end{pmatrix}$. Basis $1, (x - \alpha), \dots, (x - \alpha)^{n-1}$ so every linear

transformation of vectors on \mathbb{C} is conjugate to

indecomposable:
$$\alpha, n$$

$$\begin{pmatrix} \alpha & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \alpha \end{pmatrix}$$
 n , irreducible $\leftrightarrow n = 1$

When are all indecomposable maps irreducible?

Holds for finite groups over C, compact groups over C, finite dimensional semi-simple Lie groups.

Fails for: finite groups over finite fields, representions of \mathbb{Z} over \mathbb{C}

(Finite Dimensional) Complex representations of finite groups are completely reducible $\rightarrow \bigoplus$ irreducible representations.

Key point: Suppose $V \subseteq W$ (V, W finite dimensional representations of G) Can we write $W = V \oplus U$? Uinvariant under G.

Why not take $U = V^{\perp}$ (orthogonal complement)? Problem: V^{\perp} might not ber invariant under $G \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$

When does G perserve orthogonal complement? Does if f preserves the innter product. (u, v) = (gu, gv) eg. g

is unitary,
$$g^{-1} = g^t$$

Recall V has a hermetian (,). Linear in first slot, antilinear in second, $(u, v) = \overline{(v, u)}, (u, u) > 0$ if $u \neq 0$

How to make inner prodyct over G? Take average over G.

Define new (,) by (,)^G = $\sum_{g \in G} (gu, gv)$, hermetian, invariant under g. Vital key point: (,)^G not degenerate: (u, v) = 0 for all $v \to u = 0$. $(u, u)^G > 0$ if $(u \neq 0)$

Fails if we try to copy this for finite fields \mathbb{F}_p

Example 3.1.3. $G = S_3$, order 6

Indecomposable representations?

- 1. Tivial representaion on \mathbb{C}
- 2. $S_3 \to \mathbb{Z}/2\mathbb{Z}$ so every representation of $\mathbb{Z}/2\mathbb{Z}$ representation of S_3
- 3. 2 dimensional representation, S_3 acts on triangle $\subseteq \mathbb{R}^2$

Other representations: S_3 acts on 3 points: 1, 2, 3. Permutation representation \rightarrow linear representation of S_3 on \mathbb{C}^3 , reducible. Consider $v_1 + v_2 + v_3$ preserved by S_3 so $\mathbb{C}^3 = \mathbb{C}^+ \oplus (2 \text{ dimensional representation})$

How to describe representations?

We could give a matrix for every element of G: (1) Tiresome, (2) Hard to see if 2 representations equivalent Frobenius: enough to give the trace of elements of G. $\operatorname{tr}(ghg^{-1} = \operatorname{tr}(h))$ so enough to give trace on each conjugacy class of G.

Example 3.1.4.
$$G = \mathbb{Z}/2\mathbb{Z}$$
: $\begin{array}{c|cccc} 1 & g \\ \hline \chi_0 & 1 & 1 \\ \chi_1 & 1 & -1 \end{array}$

$$G = S_3: \begin{array}{c|cccc} & (23) & (1\,2\,3) \\ \hline 1 & (3\,1) & (1\,3\,2) \\ \hline \chi_0 & 1 & 1 & 1 \\ \chi_1 & 1 & -1, 1 \\ \chi_2 & 2 & 0 & -1 \end{array}$$

Representation theory can help prove difficult theorems about groups.

Burnsides $p^a q^b$: Groups of order $p^a q^b$ are solvable.

3.2 October 6

3.2.1 Representations of Finite Abelian Groups

We make the following observations about the character table of S_3

- 1. Columns are orthogonal (under $\sum_{\chi} \chi(g) \overline{\chi(h)} = 0$ g, h not conjugate, |G|, g, h conjugate)
- 2. # columns = # rows (# conjugacy classes = # irreducible reps)
- 3. Rows are orthogonal (under $\sum_{g} \chi_i(g) \overline{\chi_j(g)} = 0$, $i \neq j$, = |G|, $i = j = \sum_{\text{conj classes } \{g\}} \chi_i(g) \overline{\chi_j(g)}) \times (\text{size of conjugacy class})$

Problem: Given a finite abelian group find the character table

Observation: All irreducible representations are one dimension

Reason: Pick some $g \in G$. g acts on V has an eigenvector with eigenvalue λ . Look at V_{λ} =all vectors with eigenvalue λ . V_{λ} acted on by G. If $h \in G$, $v_{\lambda} \in V_{\lambda}$, $hv_{\lambda} \in V_{\lambda}$ since $g(hv_{\lambda}) = h(gv_{\lambda}) = \lambda hv_{\lambda}$ so $V = V_{\lambda}$ as V is irreducible.

So linear representations of G are "same as" homomorphisms $G \to \mathbb{C}^*$. $1 \in G \to \text{some } z \text{ with } z^n = 1$, nth root of unity.

Dual group of $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ $a \mapsto e^{2\pi i a b/n}$ $b = 0, 1, \dots, n-1$

If G is cylic, $G \cong \hat{G}$ but no natural isomorphism since depends on choice of generator and root of 1.

Any finite abelian groups is is a product of cylic groups $G = \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \cdots$

 $\operatorname{Hom}(G,\mathbb{C}^*) \leftrightarrow \operatorname{Hom}(\mathbb{Z}/n_1\mathbb{Z},\mathbb{C}^*) \times \operatorname{Hom}(\mathbb{Z}/n_2\mathbb{Z},\mathbb{C}^*) \times \cdots$ so $\hat{G} \cong \mathbb{Z}/\hat{n}_1\mathbb{Z} \times \mathbb{Z}/\hat{n}_2\mathbb{Z} \times \cdots \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \cdots \cong G$. Any finite abelian group is isomorphic to its dual (not canonically).

Typical character tables:

Vector spaces: $V \cong V^*$ not canonical, $V \cong V^**$ canonical, $v \in V, v^* \in V^*$ $v(v^*) = v^*(v)$ G finite abelian, $G \cong \hat{G}$ not canonical, $G \cong \hat{G}$ canonical: $g \in G, \hat{g} \in \hat{G}$ homomorphism by $\hat{G} \to G$ by $g(\hat{g}) \to \hat{g}(g)$ Check Properties of character tables:

- 1. Table is square: # conjugacy classes = # irreducible representations since $|G| = |\hat{G}|$
- 2. Rows orthogonal: want to show $\sum_g \chi_i(g) \overline{\chi_j(g)} = \begin{cases} |G| & i=j \\ 0 & i \neg j \end{cases}$. $\overline{\chi_j(g)} = \chi_j(g)^{-1}$ since $|\chi_j(g)| = 1$ so suffices to show $\sum_g \chi(g) = \begin{cases} G & \chi \text{ trivial} \\ 0 & \chi \text{ nontrivial} \end{cases}$. Pick some h with $\chi(g) \neq 1$. $\sum_g \chi(hg) = \sum_g \chi(h) \chi(g) = \chi(h) \sum_g \chi(g)$ and $\sum_g \chi(hg) = \sum_g \chi(g)$ so $(1 \chi(h)) \sum_g \chi(g) = 0$ so since $\chi(h) \neq 1$, $\sum_g \chi(g) = 0$
- 3. Columns orthongonal

So characters of G from an orthogonal basis for the vector space of all complex functions on G. So for function f from G to $\mathbb C$ we have $\sum a_\chi \chi(g)$, $a_\chi = (f,\chi) = \sum f(g)\overline{\chi g}$. a_χ called fourier coefficients.

Fourier analysis: f periodic, $f(x+2\pi)=f(x)$. $f=\sum_{n>0}a_n\sin(nx)+\sum_{n\geqslant 0}b_n\cos(nx)$. $G=\text{group},\ R/2\pi\mathbb{Z}$. Dual group of G=homomorphisms from G to \mathbb{C}^n . $\hat{C}=\mathbb{Z}$ by $x\mapsto e^{inx}$ $(n\in\mathbb{Z})$

$$e^{inx} = \cos nx + i \sin nx = \sum c_n e^{inx}, \ \hat{G} = G. \ \text{Hom}(\mathbb{Z}, \text{ complex numbers with } |z| = 1)$$

 $G = \mathbb{R}, \ \hat{G} = \text{Hom}(\mathbb{R}, S^1) \ x \mapsto e^{i\pi xy} \ y \in \mathbb{R} \ \text{so} \ \hat{G} \cong G$

Fourier Transform: $\int y \hat{f}(y) e^{i\pi xy} dx$

Specific cases of pantiyagin duality: G = locally compact abelian group, $\hat{G} = \text{maps to } S^1$, $G \cong \hat{G}$ What happens if field is not \mathbb{C} ?

1. Field has characteristic 0 but is not algebraically closed. Can get irreducible representations of dim >1 Ex: Field $F = \mathbb{R}$, $G = \mathbb{Z}/3\mathbb{Z}$

Over
$$\mathbb{C}$$
: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix}$
Over \mathbb{R} : $\begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \end{bmatrix}$

2. Char >0. Syppose characteristic is p>0. Look at maps of $\mathbb{Z}/p\mathbb{Z}$. Only irreducible representation is trivial one. Only possible eigenvalues is $\lambda=1$ since $\lambda^p=1, (\lambda^p-1)=(\lambda-1)^p$ Look at representations that are indecomposable but not irreducible. Decomposable \leftrightarrow linear transformations.

tion
$$T^p = 1$$
 ie. $(T-1)^p = 0 \Leftrightarrow \text{nilpotent matrices with } N^p = 0.$ (0), $\begin{pmatrix} 0 & 1 \\ & 0 & 1 \\ & & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ & & \ddots & \ddots \\ & & & \ddots & 1 \\ & & & & 0 \end{pmatrix}$

so we have p distinct representations.

Application: Dirichlet's Theorem: Given arithmetic progression an + b, (a, b) = 1 contains ∞ primes. Ex: ∞ primes of the form 4n + 1. We consider the character table of $(\mathbb{Z}/a\mathbb{Z})^*$

$$a = 4: \begin{array}{|c|c|c|c|c|}\hline & 1 & 3 \\ \hline \chi_0 & 1 & 1 \\ \chi_1 & 1 & -1 \\ \hline \end{array}$$

Dirichlet L-series: $\sum_n \frac{\chi(n)}{n}: \frac{1}{1^s} + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \cdots$, $\frac{1}{1^s} - \frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \cdots$ $\sum_n \frac{\chi(n)}{n} = \prod_p \frac{1}{1-\chi(p)p^s}$ so $\log\left(\sum \frac{\chi(n)}{n}\right) = \sum_{n.p} \frac{\chi(p^n)}{p^{ns_n}}$ so we get $\frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{2 \cdot 9^s} + \cdots$, infinite at s=1, $-\frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \frac{1}{2 \cdot 9^s} + \cdots$ finite at s=1, nonzero since series converges to $\frac{\pi}{4} \neq 0$ Define f=1 if $n\equiv 1 \mod 4$, 0 otherwise. Function on $(\mathbb{Z}/4\mathbb{Z})^*=$ linear combinations of $\chi_0,\chi_1=\frac{1}{2}(\chi_0+\chi_1)$. $\frac{1}{2}$ sum if $\frac{1}{5^s} + \frac{1}{2 \cdot 9^s} + \frac{1}{13^2} + \cdots = \sum_{n,p\equiv 1 \mod 4} \frac{1}{p^{ns_n}}$ is infinite on s=1. Sum of terms $\frac{1}{np^{ns}}$ $n\geqslant 2$ is finite so $\sum_{p\equiv 1 \mod 4} \frac{1}{p} = \infty$ Key point: $\sum \frac{\chi(n)}{n^s} \neq 0$ at s=1 (if $\chi \neq \text{trivial}$) hard step

3.3 October 11

3.3.1 Orthogonality relations

Character Tables:

- rows orthogonal: weight by size of conjugacy classes
- Norm of row = |G|
- columns orthogonal
- norm of columns = |G|/(size of conjugacy class)

Special Cases

- 1. # conjugacy classes = # characters
- 2. $\sum d_i^2 |G|$ ($d_i = \text{dimension of irreducible characters}$)

Quaternion Group

- Find 1-dimensional elements \equiv same as characters of abelianized group = G/(normal subgroup generated) by $ghg^{-1}h^{-1}$.

 Note that this is adjoint to the forgetful functor.
- Abelianization of $Q = Q/\{\pm 1\} = (\mathbb{Z}/2\mathbb{Z})^2$ 4 characters
- Use orthogonality relations, $\sum d_i^2 = G$. $1^2 + 1^2 + 1^2 + 1^2 + d^2 = 8$, d = 2. Last rep given by row orthogonality.

1	-1	$\pm i$	$\pm j$	$\pm k$
1	1	2	2	2
1	1	1	1	1
1	1	-1	-1	1
1	1	-1	1	-1
2	-2	0	0	0

Dihedral group of order 8 has same character table as Q. Possible for different groups to share the same character table.

Alternating Group - A_4

• Use permutation representation of A₄ of 4 points so 4 dimension representation with this basis.

- What is its characeter? What is the character of permutation representation (on n points) of an n dimension vector space?
 - trace = # fixed points so permutation rep has character (4,0,1,1), not irreducible.
- How many copies of 1-dimensional element. (,) = 12 = |G| with trivial character so can subtract out to get (3, -1, 0, 0), norm = 12 so is irreducible.

 S_4

- Abelianization = $\mathbb{Z}/2\mathbb{Z}$
- Permutation representation: (4,0,2,0,1,0) reduce to irreducible representation (3,1,-1,0,1)
- Have product of 3 dimensional representation with 1 dimensional representation

1	$(1 \ 2)$	$(1 \ 2)(3 \ 4)$	(1 2 3)	$(1 \ 2 \ 3 \ 4)$
1	6	3	8	6
1	1	1	1	1
1	-1	1	1	-1
3	1	-1	0	1
3	-1	-1	0	1
2	0	2	-1	0

Abelian groups: If χ_1, χ_2 are irreducible characters so is $\chi_1 \chi_2$

Non abelian group: χ_1, χ_2 usually not irreducible. It is irreducible if χ_1 has dimension 1.

If G acts on V, χ_1 a character, we get a representatio no V by $g \mapsto \chi_1(g) \cdot g$

Finding Normal subgroups from character tables

Suppose V is an irreducible representation of dimension d, character χ . What is $\chi(g)$? Diagonalize g, diagonal entries = roots of 1. $\chi(g) = z_1 + z_2 + \cdots + z_d$ where z_i is a root of 1. Now, $|z_1 + \cdots + z_n| \leq d$, equality holds if all z_i are equal. if $z_1 + \cdots + z_n = d$, all $z_i = 1$ so if $\chi(g) = \chi(1)$, g acts trivially on rep.

For S_4 , element (1), (12)(34)+ conjugates act trivially in 2 dimensional representation, form a normal subgroup.

Example 3.3.1. Binary Dihedral group of order 24 $\stackrel{\text{onto}}{\rightarrow} A_4$ so get representations of dimension 1, 1, 1, 3

Example 3.3.2. $A_5 =$ alternating group = rotations of icosahedron

 A_5 acts on \mathbb{R}^3 so get 3-dimensional representations with characters as trace of rotations of icosahedron Use outer automorphism $A_5 \subseteq S_5$ to get a rep

Now, $1^2 + 3^2 + 3^2 + x^2 + y^2 = 60$ so x = 4, y = 5. Perm rep (5, 1, 2, 0, 0) with irreducible (4, 0, 1, -1, -1).

1	$(1 \ 2)(3 \ 4)$	$(1 \ 2 \ 3)$	$(1 \ 2 \ 3 \ 4 \ 5)$	$(1 \ 2 \ 3 \ 5 \ 4)$
1	1	1	1	1
3	-1	0	$1 - 2\cos\frac{2\pi}{5}$	$1 - 2\cos\frac{4\pi}{5}$
3	-1	0	$1 - 2\cos\frac{4\pi}{5}$	$1 - 2\cos\frac{2\pi}{5}$
4	0	1	-1	-1
5	1	-1	0	-0

Example 3.3.3. S_5 , binary dihedral group of order 120, symmetry group S_6

3.3.2 Proofs Of Orthogonality Relations

- 1. All representations of G can be made unitary (,) invariant under G. Define (,) by taking any (,) make invariant under G be taking average
- 2. Want to show if χ is an irreducible character, $(\chi, 1) = 0$, $\sum_{q} \chi(q) = 0$

Suppose V is an irreducible representation (finite dimensional) with no fixed vectors $(\neg 0)$, then $\sum_g \chi(g) = 0$. This holds for all irreducible representations except fo the trivial one. Pick $v \in V$, $\sum_{g \in G} g(v) = 0$ since no fixed vectors $\neq 0$

3. Suppose V, W are irreducible representations. Look at vector space $\operatorname{Hom}(V, W)$. Have rep by G, dim = $\dim V \times \dim W$ character $\chi_W \overline{\chi_V}$, χ_V, χ_W characters of V, W. Enough to check for one factor $\chi_{\operatorname{Hom}(V,W)}(g) = \chi_W(g)\chi_V(g)$. Choose bases of V, W such that g is diagonal. Split V, W into sum of 1-dimensional spaces acted on by g. Suffices to show case where $V, W, \dim = 1$

Schur's Lemma: Suppose V,W irreducible representations, then $\operatorname{Hom}_G(V,W)$, homomorphisms invariant under g ie. fixed points of G on $\operatorname{Hom}(V,W)$ has dimension $\begin{cases} 1 & \text{if } V \cong W \\ 0 & \text{if } V \not\cong W \end{cases}$.

 $V \to W$ invariant under G, image is invariant subspace so is 0 or W as W is irreducible. Kernerl is invariant subspace of V so is 0 or V as V is irreducible. so map is either 0 or isomorphism.

If V, W not isomorphic, no maps $V \to W$ invariant under G.

If V = W, then $\operatorname{Hom}(V, V)$ is a division algebra (eg. ring where elements have inverse), finite dimensional algebra over \mathbb{C} , algebraically closed, any division algebra is \mathbb{C} . So $\operatorname{Hom}_G(V, W) = \mathbb{C}$

Example 3.3.4. Look at real reps of $\mathbb{Z}/3\mathbb{Z}$

 $\operatorname{Hom}(V,V) = \mathbb{C}, \mathbb{C}$ division algebra over \mathbb{C}

Example 3.3.5. $G = Q_8$ acts on quaternions H by left multiplication. 4-dim real representation, 2-dim complex representation. Hom_G(V, V) = H action given by right multiplication. H division algebra over \mathbb{R} .

Row orthogonality: If V,W irreducible, then $\sum_g \chi_V(g) \overline{\chi_W(g)} = 0$ $V \not\cong W$ |G| if $V \cong W$. Look at character $\operatorname{Hom}(V,W) = \chi_V \overline{\chi_W}$. If $W \not\cong V$, $\operatorname{Hom}(V,W)$ doesnt contain any invariant characters so is 0. So $\sum_g \chi_V(g) \overline{\chi_W(g)} = 0$. If V = W, $\operatorname{Hom}(V,V)$ is a 1-dimensional subspace so $\sum_g \chi_V(g) \overline{\chi_W(g)} = |G|$

Corollary 3.3.6. Any representation is determined by its characters.

 $V=\bigoplus V_i$ (V_i irreducible) by complete irreduciblility. By orthogonality, number of irreducible representatiosn W appears is $\frac{(\chi_W,\chi_V)}{|G|}$.

Fails over field with char > 0

 $G = \mathbb{Z}/p\mathbb{Z}$ Field $= \mathbb{Z}/p\mathbb{Z}$. Rep: $g \to \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$ trivial 2-dim representation, $g^n \to \begin{pmatrix} 1 & n & 0 & 1 \end{pmatrix}$ indecomposable.

Chapter 4

Polynomials

4.1 October 18

4.1.1 Polynomials

Recall:

- 1. Polynomials over a field have a Euclidean division algorithm For $f, g, f = gq + r, \deg(r) \leq \deg(g) \ (g \neq 0), \deg(0) = -\infty$
- 2. k[x] has a unique factorization

Primes of $\mathbb{Z} \leftrightarrow$ irreducible polynomials

```
Example 4.1.1. Sieve of Eratosthenes:
```

on
$$\mathbb{Z}$$
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10...

on $\mathbb{F}_2[x]$: [1, x], [x+1], $[x^2]$, $[x^2]$ + 1, $[x^2]$ + $[x^2]$ + $[x^2]$ + $[x^3]$...

only need to write polynomials such that constant term nonzero, sum of coefficient is odd.

$$\boxed{x^2+x+1}, \boxed{x^3+x+1}, \boxed{x^3+x^2+1}, \boxed{x^4+x+1}, \boxed{x^4+x+1}, \boxed{x^4+x^2+1}, \boxed{x^4+x^3+1}, \boxed{x^4+x^3+x^2+x+1}$$

Recall: If f(x) has a root x - a. f(x) = (x - a)g(x) since f(x) = (x - a)g(x) + r, $\deg f \le 0$.

If R is an integral domain, polynomial in R[x] has $\leq \deg f$ roots.

This is false in general: $R = \mathbb{Z}/8\mathbb{Z}$ $f(x^2 - 1)$ has 4 roots $x = 1, 3, 5, 7 \mod 8$

Corollary 4.1.2. $(\mathbb{Z}/p\mathbb{Z})^*$ cyclic, prime p has primitive roots.

Proof. We show that a finite subgroup of F^* (for a field of F) is cyclic. G has $\leq n$ elements, with $g^n = 1$ (any $n \geq 1$) since polynomial $x^n - 1$ has $\leq n$ roots so by the structure theorem for abelian groups $G = \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \cdots n_2|n_1, n_3|n_2, \ldots$ If $n_2 > 1$, G has $\geq n_2^2$ elements of order n_2 so $n_2 = n_3 = \cdots = 1$

Example 4.1.3. $F = \mathbb{Z}/7\mathbb{Z}$ $F^* = 1, 2, 3, 4, 5, 6$ cyclic group generated by 3. F = Quaternions, $\mathbb{H} = a + bi + cj + dk$ not a field, is a division ring \mathbb{H} contains a finite subset $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ not cyclic $x^2 + 1 = 0$ has infinite roots $a_i + b_j + c_k$ with $a^2 + b^2 + c^2 = 1$ $F = \mathbb{C}$, polynomial $x^2 - 1 = 0$ has ∞ solutions

Useful Fact: If polynomail of $deg \leq n$ has > n roots it is 0

Warning: A polynomial f can vanish at all points of a field, still not be 0.

 $F = \text{finite field}, \mathbb{Z}/p\mathbb{Z}.$ $f(x) = x^p - x$, roots all points of F

Polynomials over rationals form a UFD.

What about integers. $\mathbb{Z}[x]$ has no diivsion with remainder, not euclidian. Not all ideals principle. Consider I = polynomials with even constant terms (2x)

 $6x^2 - 18x + 12 = 6(x^2 - 3x + 2) = 2 \cdot 3(x - 2)(x - 1)$. Note we have a factorization into irreducible polynomials such that coefficients have no common factors, primes of \mathbb{Z} We will show:

- 1. Irreducible polynomials $\mathbb{Z}[x]$ are prime
- 2. primes of \mathbb{Z} are prime in $\mathbb{Z}[x]$

We define the content c(f) of a polynomia lin $\mathbb{Z}[x]$ is the largest integer such that $\frac{f(x)}{c(x)}$ in $\mathbb{Z}[x] = \text{common divisor of all coefficients, eg. } c(6x^2 - 18x + 12) = 6$

Key property: c(f)c(g) = c(fg)

Obvious: $c(f)c(g) \le c(fg)$ Problem: $c(f)c(g) \ge c(fg)$

Divide f,g by c(f),c(g) to get polynomial with c(h)=1. Need to show that if c(f)=1,c(g)=1 then cf(g)=1 Suppose p|c(fg), (p prime) p |c(f), p |c(g), $f=a^nx^n+\cdots+a_ix^i+a_{i-1}x^{i-1}+\cdots a_0,$ $g=b_mx^m+\cdots+b_jx^j=b_{j-1}x^{j-1}+cdots+b_0$ with $a_{i-1},\ldots,a_0,b_{j-1},\ldots,b_0$ divisible by p, a_i,b_j not divisible by p. Now look at fg, the coefficient of $x^{i+j},$ $a_{i+j}b_0+a_{i+j-1}b_1+\cdots+a_ib_j+a_{i-1}b_{j+1}+\cdots+a_0b_{i+j}$. All terms except a_ib_j divisble by p so the coefficient of x^{i+j} is not divisble by p. So prime does not divide c(fg) so c(fg)=1, since p was any prime.

We can show that $\mathbb{Z}[x]$ has unique factorization. Follows from:

- 1. $\mathbb{Q}[x]$ has unique factorization
- 2. c(fq) = c(f)c(q)

Key Steps: Show that if f is a prime of \mathbb{Z} or polynomial of $\mathbb{Z}[x]$ irreducible in $\mathbb{Q}[x]$ with c(f) = 1, then f is prime, ie. if f divides gh, f divides g or f divides gh. 2 cases:

- 1. f prime of $\mathbb{Z} \to \text{if } p|gh, p|c(g)c(h) \text{ so } p|c(g) \text{ or } p|c(h) \text{ so } p|g \text{ or } p|h$
- 2. f = poly, c(f) = 1 similar

Bonus: If ring R has unique factorization so does the ring of polynomials R[x]

Proof. Same proof but with $R = \mathbb{Z}$. Key point: define content c, c(fg) = c(f)c(g)

Can extend this: k[x, y] polynomial in 2 variables. k[x, y] = k[x][y] with k[x] UFD so k[x][y] is a UFD. Repeating this: $k[x_1, \ldots, x_n]$ is a UFD. Still holds for polynomials in infinite variables as each polynomial only contains finitely many variables.

Problem: Given polynomial in $\mathbb{Q}[x]$ or $\mathbb{Z}[x]$

- 1. Is it irreducible?
- 2. Factor into irreducibles

Is there an algorithn for this? yes - kronecker's algorithm

Recall: If a polynomial has $> \deg f$ roots, it is 0. If $f, g, \deg \leqslant n$ and same at > n points, they are equal. If f = gh,

Bad news: This is really slow (not polynomial time)

Problem 1: Need to factor integers Problem 2: High number of possibilities for g

Laadf adfadf found polynomial time algorithm for $\mathbb{Q}[x]$

can extend algorithm to $\mathbb{Z}[x_1,\ldots,x_n]$

Similar problem: Does polynomial $f(x_1, \ldots, x_n)$ in $\mathbb{Z}[x_1, \ldots, x_n]$ have roots? No algorithm

Easy Checks for small polynomials in $\mathbb{Z}[x]$ f(x) is irreducible if leading coefficient is 1, irreducible modulo p, $f = gh \rightarrow f = gh \mod p$

Example 4.1.4. $x^4 - 3x^3 + 2x - 5$ is irreducible since irreducible modulo 2, $(x^4 + x^2 + 1)$

Warning: Some polynomials look irreducible but are reducible (Auslafilll polynomials)

 $x^4 + 4y^4 = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2)$, however $x^4 + y^4$ irreducible

Landry: factored

4.2 October 20

4.2.1 Polynomials

Eisenstein: Id $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$, a_i divisible by p, a_0 not divisible by p^2 , then f(x) is irreducible.

Proof. Suppose f = gh with $g = x^m + b_{m-1}x^{m-1} + \cdots + b_0$, $h = x^[n-m] + \cdots + c_0$, $b_0c_0 = a_0$ so exactly one is divisble by p. Suppose $p|b_0, b_i, \ldots, b_0$ divisible by p, b_{i+1} not, coefficient of x^{i+1} in gh is $b_{i+1}c_0 + b_ic_i + \cdots$ not divisible by p a contradiction, so f irreducible.

Applications:

- 1. Easiest way to write down high degree irreducible polynomials (eg. $x^{1}1 4x + 2$)
- 2. pth roots of 1: roots of x^p-1 , $1,z,z^2$, ..., $z=e^{2\pi i/p}$. What is irreducible polynomial with z as a root? $x^p-1=(x-1)(x^{p-1}+x^{p-2}+\cdots+1)$. To show irreducible, let y=x-1, $\frac{(y+1)^p-1}{(y+1)-1}=y^{p-1}+\binom{p}{1}y^{p-2}+\cdots+\binom{p}{2}y+\binom{p}{1}$ irreducible by Eisenstein. Ex: $z^{p^n}=1$, $\frac{x^{p^n}=1}{x^{p^n-1}-1}$ is irreducible.

Eisenstein polynomials come from totally ramified extensions.

 $\mathbb{Z} \subseteq \mathbb{Z}[i], z = (1+i)^2 \times \text{unit} = (\text{prime})^2 \times \text{unit}, 2 \text{ degree extension: totally ramified.}$

 $\mathbb{Z} \subseteq \mathbb{Z}[z], z = e^{2\pi i/p}$, how does z factorize in $\mathbb{Z}[x]$?

 $p = (1-z)(1-z^2)\cdots(1-z^{p-1}), (1-z^i) = \text{unit } \times (1-z), (1-z^i) = (1-z)(1+z+z^2+\cdots), (1-z) = (1-z^i)(1+z^i+z^{2i}+\cdots) \text{ so } p = (1-z)^{p-1} \times \text{unit - totally ramified.}$

 $\mathbb{Z} \subset \mathbb{Z}[\alpha]$ algebraic number, $p = (\beta)^n \times \text{unit}$, β satisfies Eisenstein polynomial

Fast Factorization of polynomials over finite fields

Special case: For finite $\mathbb{Z}/p\mathbb{Z}$, p odd prime. Factor $f(x) \in \mathbb{Z}/p\mathbb{Z}[x]$. We will find linear factors $(x - \alpha)$ (roots of f).

Key idea: consider $x^p - x = (x-1)(x-2)\cdots(x-p-1)$ all possible linear factors.

Take $gcd(f, x^p - x)$ in $\mathbb{Z}/p\mathbb{Z}[x] = \prod (x - a), (x - a)|f$

How do we find $gcd(f, x^p - x)$ fast? Russian Peasant Algorithm.

• Fast multiplication: to find $m \times n$, write m in binary $m = 2^{a_0} + 2^{a+1} + \cdots$, compute $n, 2n, 4n, 8n, \ldots$

- For $a^b \mod p$, for some a, b, p, $a \times a \times \cdots \mid b \mid$ steps too slow. $b = 2^{b_0} + 2^{b_1} + \cdots$, $a, a^2, a^4, \ldots \mod p$ $a^b = (a^{2^{b_0}}) \times a^{2^{b_1}} \cdots$
- For $(f, x^p x)$, p large. $x^p x = qf + r$ find $x^p x \mod f(x)$, calculate using Russian Peasant algorithm.

Now, assume f only distinct linear factors, (x - a). Problem: find a_i

 $f|(x^p-x),\,x(x^{p-1}-1)=x(x^{\frac{p-1}{2}}-1)(x^{\frac{p+1}{2}}+1)\text{ so }(f,x^p-x)=(f,x^{\frac{p-1}{2}}-1)(f,x^{\frac{p+1}{2}}+1)\times x\text{ unless all roots are roots of }x^{\frac{p-1}{2}}-1\text{ or }x^{\frac{p+1}{2}}+1$

What if this doesn't break f into the product of smaller polynomails. Change f to f(x-a), try again

4.2.2 Polynomials over Noetherian Rings

4.3 October 25

4.3.1 Symmetric polynomials

Symmetric group on $\{1, \ldots, n\}$ so acts on x_1, \ldots, x_n so acts on $k[x_1, \ldots, x_n]$ (k field). A symmetric polynomial is a polynomial fixed by S_n

Example 4.3.1. $1 x_1 + x_2 + \cdots + x_n$

- $2 \quad x_1 x_2 \cdots x_n$
- 3. $x_1x_2 + x_1x_3 + \cdots = \sum_{i < j} x_ix_j$
- 4. $e_k = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} x_{i_2} \cdots x_{i_k}$ elementary symmetric functions Can think of these as coefficients of a polynomial: $f(z) = (z x_1)(z x_2) \cdots (z x_n) = z^n e_1 z^{n-1} + \dots \pm e_n$
- 5. $h_k = \sum_{i_1 \le i_2 \le \dots} x_{i_1} x_{i_2}, h_2 = x_1^2 + x_1 x_2 + \dots + x_2^2 + \dots$
- 6. $p_k = x_1^k + x_2^k + \cdots + x_n^k$
- 7. Schur polynomials: Ex $(x_1^5 x_2^2 x_3 x_1^5 x_3^2 x_2 + x_2^5 x_3^2 x_1 + \cdots) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \sigma(x_1)^5 \sigma(x_2)^3 \sigma(x_3)$. Not symmetric since changes sign with odd permutations, so divided by $\prod_{i < j} (x_i x_j)$

Special Case of invariant theory: G acts on a set X - look at polynomials in elements of X invariant under G Problem: Describe ring of invariants

Main Theorem: Symmetric polynomials = polynomial ring in $e_1, \ldots, e_n, k[e_1, \ldots, e_n]$ Need to show:

- 1. Any symmetric polynomial is a polynomial in e_1, \ldots, e_n
- 2. No relations between e_1, \ldots, e_n

Key idea: Choose order on monomials: Many ways to do this. Order by:

- 1. Total degree: $(X_1^{n_1}X_2^{n_2}\cdots$ has total degree $n_1+n_2+\cdots)$
- 2. Lexographic ordering: $x_1^{n_1} x_2^{n_2} \cdots < x_1^{m_1} x_2^{m_2} \cdots$ if $n_1 < m_1$ or $n_1 = m_1$ and $n_2 < m_2, \dots$

Suppose $f(x_1, \ldots, x_n)$ is a polynomial, look at largest monomial in it $cx_1^{n_1}x_2^{n_2}x_3^{n_3}\cdots$ get rid of it by subtracting monomial in e_1, e_2, \ldots, e_n . Subtract $c(x_1 + x_2 + x_3 + \cdots)^{n_1 - n_2}(x_1x_2 + \cdots)^{n_2 - n_3}(x_1x_2x_3\cdots)^{n_3 - n_4}\cdots = ce_1^{n_1 - n_2}e_2^{n_2 - n_3}e_3^{n_3 - n_4}\cdots$. This eliminates the largest monomials in f so get a "smaller" polynomial. Ordering on monomials has same order type as the integers so by induction can reduce f to 0 by monomials in e_1, \ldots, e_n . Problem: We did not use the fact that f is symmetric and seem to have proved every polynomial can be expressed in e_1, \ldots, e_n

• Want to ensure that in the above sum $n_i - n_{i+1} \ge 0$, follows that $n_1 \ge n_2 \ge n_3$ since f symmetric

So we get a basis for the symmetric polynomials: $e_1^{n_1}e_2^{n_2}\cdots 0 \leq n_1n_2\ldots$ Many different bases: $h_1^{n_1}h_2^{n_2}$, schur polynomials, $p_1^{n_1}p_2^{n_2}\cdots$ How do we convert between other bases?

Example 4.3.2. Express polynomials p_k in terms of e_1, \ldots, e_n .

4.4 October 27

4.4.1 Power Series

Recall: holomorphic functions $\mathbb{C} \to \mathbb{C}$ can be written as power series: $a_0 + a_1z + a_2z^2 + \cdots$ can add and multiply in obvious way $(a_0 + a_1z + a_2z^2 + \cdots)(b_0 + b_1z + b_2z^2) = a_0b_0 + (a_0b_1 + a_1b_0)z + \cdots$ Formal power series $\mathbb{C}[[z]] = \text{all series } a_0 + a_1 + a_2z^2 + \cdots$ dont worry about convergence Works over any ring R: we get R[[z]], check this is a ring Can repeat: $R[[x]][[y]] = R[[x,y]] = a_{00} + a_{01}x + a_{10}y + a_{11}x^2 + \cdots$ Contains polynomials in R[x,y]

Basic Properties:

k field. Look at k[[x]]. Find ideals of ring (For polynomials k[x] all principle: (f) f is some poly) Find units of k[[x]] (for k[x], units just k^*). 1+x unit in k[[x]] (not in k[x]) $(1+x)(1-x+x^2-x^3+\cdots)=1$. If $a_0+a_1x+a_2x^2+\cdots\in k[[x]]$, $a_0\neq 0$ then it is a unit. Take $a_0=1$, then f is 1+A where $A=a_1x_1+a_2x_2+\cdots (1+A)^{-1}=1-A+A^2-A^3+\cdots$, well defined power series since A has no constant.

Ideals of k[[x]] are $(0), (x), (x^2), (x^3), \dots$ PID Suppose I is an ideal $\neq 0$, $f \in I$, $a_n x^n + a_{n-1} x^{n-1} + \cdots$ n minimal such that $a_n \neq 0$. $f = x^n (\underbrace{a_n + a_{n+1} x + \cdots})$

so (f) = I, all elements divisble by x^n

k[[x]] is a UFD. Only prime up to unit is x. Any element $= x^n \times$ unit Polynmial ring $k[x_1, \ldots, x_n]$ is Noetherian, UFD. Is same true for $k[[x_1, \ldots, x_n]]$? Try to copy proof of polynomial ring ie, prove if R is Noetherian, so is R[[x]] Problem: The proof for R[x] uses leading coefficients, fails for power series.

Idea: Instead of looking at leading coefficient, deifne $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$ where I_0 is the set of constant terms of elements of I, I_1 set of a_1 in terms of form $a_1x + a_2x^2 + \cdots$. Then ideal of R, $I_n \subseteq I_{n+1}$ (if $a_nx^n + \cdots \in I_n$, $a_nx^{n+1} + \cdots = x(a_nx^n + \cdots) \in I_{n+1}$). This terminates $I_n = I_{n+1} = I_{n+2} = \cdots$ for some n.

Generators for I: finite set of power series whose constant terms generate I_0 , finite set of power series $a_1x + \cdots$ such that a_1 generate I_1, \cdots continue through I_n . This gives a finite set of generators for I Ex: What does the proof that R[[x]] is noetherian not work for polynomial rings.

If f power series in $k[[x_1, \ldots, x_n]]$ then f is a unit \leftrightarrow constant term $\neq 0$. Ideals very complicated for $n \geq 2$ Is $k[[x_1, \ldots, x_n]]$ a UFD? yes. Easy for n = 1. Try to copy proof that $k[x_1, \ldots, x_n]$ is a UFD. R UFD $\to R[x]$ UFD. R UFD does not imply that R[[x]] is a UFD.

Proof fails since we used content. If R ring, Q field of quotients of R, a polynomial $\mathbb{Q}[x]$ $a_0 + a_1 + a_2 x^2 + \cdots + a_n x^n$ can be written as $c(b_0 + b_1 x + \cdots + b_n x^n)$ with $b_i \in R$, c called content of f.

Content for formal power series is not well defined. $R = \mathbb{Z}, Q = \mathbb{Q} \ 1 + \frac{x}{2} + \frac{x}{2^2} + \cdots \neq (\text{rationals}) \times \text{ element of } \mathbb{Z}[x]$

Weierstrass Preparation Theorem: Formal power series in several variables over a field Idea: we can write formal power series as polynomial of one of variables

More precisely, given power series $f \in k[[x, y, z, \ldots]]$, containing $x, f = y^*r(x^n + a_{n-1}x^{n-1} + \cdots + a_0)$, a_i power series in y_1, y_2, \ldots with 0 constant term.

Proof. Do case of k[[x,y]]. Draw picture of f

$$\begin{bmatrix} a_{n\,0}x^n \\ \vdots \\ a_{2\,0}x^2 \\ a_{1\,0}x \\ a_{0\,0} \\ a_{0\,1}y \\ a_{0\,n}y^2 \end{bmatrix}$$

Want to keep x^n but make all coefficients outside the box 0.

Problem: multiply f by some unit to acheive this

Step 1: pick smallest coefficient of $x^n \neq 0$ (if not smallest, f is divisble by y so look at f/y). Can assume $f(x) = x^n + \cdots$ no terms in x^i , i < n. We have $x^n + a_{n+1} \cdot a_n x^{n+1} + \cdots$ multiply by $(1 - a_{n+1} \cdot a_n)$, unit, to get $(x^n + 0x^{n+1} + \cdots)$. Can repeat this, multiplying by $(1 - *x)(1 - *x^2)(1 - *x^3) \cdots$ well defined power series.

Now, look at $x^n + *x^n y + \cdots$ multiply by (1 - *y) to get rid of y term. Repeating this, move up columns, multiply by infinite products of units to make all above line 0. So we can write $f = y^* \times \text{unit } \times (x^n + a_{n-1}x^{n-1} + \cdots)$, decomposition is unique.

Application: Use Weierstrass to show that k[[x, y]] is a UFD.

Key step: If f, is irreducible, f is prime.

Suppose f is irreducible, f|gh. By using Weierstrass preparation, can assume f, g, h polynomials in x. We know fr = gh for some r, r must be polynomial in x. So f, g, h polynomials in k[[y]][x] this is a UFD, so f|g or f|h since f is irreducible in k[[y]][x]

Warning: If f, g are polynomials in R[[x]] abd f|g in R[[x]] this does not imply that f|g in R[x], consider f = 1 + x, g = 1 in R[[x]]

Warning: Irreducible polynomials in k[x, y] need not be irreducible in k[[x, y]]

Example 4.4.1. $y^2 - x^2 - x^3$, easy to check that irreducible in k[x, y]. Factors as $(y + x\sqrt{1 + x})(y - x\sqrt{1 - x})$, $\sqrt{1 - x} \in \mathbb{C}[[x]]$, since $y^2 - x^2 - x^3 = y^2 - (x^2 - x^3) = y^2 - (x\sqrt{1 + x})^2$

Warning: Ring of convergent power series of \mathbb{C} is not a UFD, despite being contained between 2 UFDs: $\mathbb{C}[x] \subseteq$ convergent power series $\subseteq \mathbb{C}[[z]]$.

 $\sin(x)$, zeros: $0, \pm \pi, \pm 2\pi = x(x-\pi)(x+\pi)(x-2\pi)(x+2\pi)\cdots$ cant be expressed as finite product.

Both $\mathbb{C}[z]$, $\mathbb{C}[[z]]$ Noetherian but ring of convergent power series not noetherian.

I= all holomorphic functions vanishing at all but finite # of integers ideal but not finitely generated.

Can also find $I_0 \subseteq I_1 \subseteq I_2 \subseteq$, vanishing on $\mathbb{Z} \subseteq$ vanishing on $\mathbb{Z} \setminus \{0\} \subseteq$ vanishing on $\mathbb{Z} \setminus \{0,1\} \subseteq \cdots$