Math 340 / 640 Fall 2024 Midterm Examination Two

Professor Adam Kapelner November 14, 2024

Instructions

Full Name

This exam is 110 minutes (variable time per question) and closed-book. You are allowed **one** page (front and back) of a "cheat sheet", blank scrap paper (provided by the proctor) and a graphing calculator (which is not your smartphone). Please read the questions carefully. Within each problem, I recommend considering the questions that are easy first and then circling back to evaluate the harder ones. No food is allowed, only drinks.

signature

date

Problem 1 Let $X_1, X_2, \ldots \stackrel{iid}{\sim}$ some continuous random variable with $0 < \mu < \infty$ and $0 < \sigma^2 < \infty$. We also use the standard notation

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$
 and $S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

(a) [6 pt / 6 pts] Use Chebyshev's inequality to prove the WLLN, i.e., that $\bar{X}_n \stackrel{p}{\to} \mu$.

(b) [6 pt / 12 pts] Assume n is large. Plot the approximate PDF of \bar{X}_n denoted $f_{\bar{X}_n}(\bar{x})$. Label the horizontal and vertical axes. Indicate critical value(s) on the axes.

(c) [8 pt / 20 pts] Using the fact that $S_n^2 \xrightarrow{p} \sigma^2$ and the theorems we learned about in class, show the following fact about the ratio Student was investigating at the turn of the century:

$$\frac{\bar{X}_n - \mu}{\frac{S}{\sqrt{n}}} \stackrel{d}{\to} \mathcal{N}(0, 1)$$

For the remainder of the questions in this problem, assume that

$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}\left(\mu, \sigma^2\right)$$

(d) [3 pt / 23 pts] Let $Z_i := (X_i - \mu)/\sigma$. How are following distributed?

$$Z_1,\ldots,Z_n$$

(e) [4 pt / 27 pts] The following has a brand name distribution. Find this distribution and its parameter(s).

$$17 + 37 \frac{Z_7}{Z_{11}}$$

(f) [4 pt /31 pts] The following has a brand name distribution. Find this distribution and its parameter(s).

$$\frac{\bar{X}_n - \mu}{\frac{\frac{\sigma}{\sqrt{n}}}{\sqrt{\frac{n-1}{\sigma^2} S_n^2}}}$$

(g) [7 pt / 38 pts] The following has a brand name distribution. Find this distribution and its parameter(s).

$$\frac{\frac{n-1}{\sigma^2}S_n^2}{\left(\frac{\bar{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\right)^2}$$

(h) $[7 \ \mathrm{pt} \ / \ 45 \ \mathrm{pts}]$ The following expression is distributed as a brand name variable. Find the brand name variable and its parameter values:

$$n\bar{X}_{n}^{2} - 2n\mu\bar{X}_{n} + n\mu^{2} + nS_{n}^{2} - S_{n}^{2}$$

Problem 2 Some theoretical problems.

(a) [7 pt / 52 pts] Let $X \sim \text{Weibull}(k, \lambda)$. Find the most succinct expression as possible for $\mathbb{E}[X]$. I have started you off below. Hint: the solution contains a gamma function.

$$\mathbb{E}\left[X\right] = \int_{\mathbb{R}} x f_X(x) dx = \int_{\mathbb{R}} x \left(k\lambda(\lambda x)^{k-1} e^{-(\lambda x)^k}\right) \mathbb{1}_{x>0} dx = k\lambda^k \int_0^\infty x^k e^{-\lambda^k x^k} dx$$

(b) [7 pt / 59 pts] Let $X \sim \operatorname{ParetoI}(k, \lambda)$. Find the distribution of $Y = X \mid X > c$ where c > k. If it's a brand-name rv, mark it as its brand name and find its parameters.

(c) [3 pt / 62 pts] Let $\boldsymbol{X} \sim \text{Mult}_3\left(9, \frac{1}{3}\mathbf{1}_3\right)$. Find the distribution of $Y = \mathbf{1}_k^{\top}\boldsymbol{X}$ where k is the appropriate dimension to make the vector operation legal.

(d) [5 pt / 67 pts] Let $\boldsymbol{X} \sim \text{Mult}_3\left(9, \frac{1}{3}\mathbf{1}_3\right)$. Find $\mathbb{V}\text{ar}\left[\boldsymbol{X}\right]$. Simplify your answer so that it is a function of \boldsymbol{I}_3 , the identity matrix and \boldsymbol{J}_3 , the matrix of all ones.

(e) [7 pt / 74 pts] If $X \sim \text{Laplace}(0,1)$ and $Y = e^X$. Find $f_Y(y)$ in simplest form.

(f) [4 pt / 78 pts] If $X \sim F_{2\alpha,2\beta}$, find $k_X(x)$ in simplest form.

(g) [7 pt / 85 pts] If $X \sim F_{2\alpha,2\beta}$, find the distribution of $Y = \frac{\alpha}{\beta}X$. If it is a brand-name distribution, indicate which one and the values of its parameter(s). Hint: use kernels.

(h) [5 pt / 90 pts] If $X \sim \text{Bernoulli}(p) := p^x (1-p)^{1-x} \mathbb{1}_{x \in \{0,1\}}$, find the PMF of $Y = e^X$ in simplest form. Your answer should contain a $\mathbb{1}_{y \in \mathbb{S}_Y}$ term where \mathbb{S}_Y is an explicit set.

- (i) [3 pt / 93 pts] If $X \sim \text{ExtNegBin}(k, p)$ where k > 0 and $p \in (0, 1)$, what is S_X ?
- (j) [7 pt / 100 pts] Each of the following distributions will be either "waiting time distributions", "error distributions" or neither (but not both). Underline those that are waiting time distributions. Draw a rectangle box around all the that are error distributions. Do not mark those that are neither waiting nor nor error distributions.

Erlang(4, 0.3) Gamma(
$$\pi$$
, e) $\chi_{17}^2 \mathcal{N}(1, 2^2) T_7 F_{3,6}$ Weibull(1.6, 0.9)

$$\operatorname{Mult}_3(18, \tfrac{1}{3}\mathbf{1}_3) \quad \operatorname{BetaPrime}(6.1, 9.7) \quad \operatorname{Logistic}(0, 1) \quad \operatorname{Laplace}(0, \, \pi)$$

$$LogNormal(1,2)$$
 ParetoI(7,17) Gumbel(0,1)