ANALOG CIRCUITS DESIGN

AE2: Operational Amplifiers I, OPA Basic concepts & circuits

Course overview

- 1. Basic concepts:
 - What is an operational amplifier? Why negative feedback?
 - OPAs work as expected as long as...
 - What does ε = 0 exactly mean?
 - Output impedance
- 2. Linear circuits:
 - The voltage amplifier
 - The voltage follower
 - The transresistance amplifier
- 3. Non-linear circuits: the comparator
- 4. How to choose an OPA:
 - Split-supply versus single supply
 - Output voltage limitation
 - Output current limitation
 - Offset voltage
 - Bias & offset currents
 - Small-signal bandwidth
 - Slew-rate

1. Basic concepts: What is an operational amplifier? Why negative feedback?

What is an operational amplifier (OPA)?

It's basically a voltage amplifier with a very large voltage gain A

What is negative feedback?

Negative feedback occurs when a fraction of the output signal S_{out} is substracted from the input signal S_{in} so that error ϵ tends to zero.

$$\varepsilon = \frac{S_{out}}{A} = S_{in} - F S_{out}$$

$$\frac{S_{out}}{S_{in}} = \frac{A}{1 + AF} \approx \frac{1}{F} if AF \gg 1$$

What does the OPA when used with negative feedback?

It only <u>attempts</u> to adjust its output voltage Vo so that $\epsilon \rightarrow 0$

1. Basic concepts: OPAs work as expected as lond as ...

These four constraints must be **simultaneously** met

- 1. Basic concepts: What does $\varepsilon = 0$ exactly mean?
 - ➤ In normal operation, two modes are superimposed:
 - Static (DC) mode (i.e. no signal applied)
 - Dynamic (AC) mode (i.e. signal is applied at input)

Ib_{DC}: bias current Vos_{DC}: offset voltage

Expected to be zero but still existing due to OPA non-idealities

Linear operation \leftrightarrow VEE ≤ Vout_{DC} ± δ Vout ≤ VCC

OPA gain A is very large

$$\varepsilon = \frac{\delta Vout}{A} \to 0$$
 $i_{\varepsilon} = \frac{\varepsilon}{Rin} \to 0$

1. Basic concepts: Output impedance

 \triangleright OPA exhibits a non-zero output impedance Ro (10 Ω ~ 50 Ω typically)

> The OPA can be viewed as a nearly ideal voltage source when feedback senses the output voltage (most of the circuits)

2. Linear circuits: The voltage amplifier

➤ A circuit that you absolutely must know!

$$Vout = \frac{-RF}{RS} Vin1 + (1 + \frac{RF}{RS})Vin2$$

$$Zin1 = \frac{Vin1}{Iin1} = RS$$

$$Zin2 = \frac{Vin2}{I\varepsilon} \to \infty$$

$$Zout \approx 0$$

- ➤ Possible configurations:
 - Inverting amplifier when Vin2=0
 - Non-inverting amplifier when Vin1=0
 - Differential amplifier
 - Voltage follower when RF=0 and RS → ∞

2. Linear circuits: The voltage follower

Typically used as voltage buffer

2. Linear circuits: The transresistance amplifier

Current-to-voltage converter

3. Non-linear circuits: The comparator

No feedback

Most of the time: $\epsilon \neq 0$ and $i\epsilon \neq 0$

> Problem with noisy signals

3. Non-linear circuits: The comparator

Most of the time: $\epsilon \neq 0$ and $i\epsilon \neq 0$

Hysteresis must be larger than noise

➤ Some OPA don't work properly as comparator → better use dedicated circuits

4. How to choose an OPA: Split-supply versus single supply

Split-supply (VEE = -VCC)

> Single supply (VEE = 0) for battery-operated circuits

➤ Bias point automatically set to VCC/2 (optimal value)

4. How to choose an OPA: Output voltage limitation

➤ Ideally VEE ≤ Vout ≤ VCC, but drop-out limits output voltage ➤ Battery-operated circuits require low VCC value → better use rail-to-rail OPA

Drop-out is constant → increasing influence as supply voltage decreases

Drop-out greatly reduced but not eliminated

4. How to choose an OPA: Output current limitation

Output current is limited to protect OPA against circuit defects

But output current limitation also applies in normal operation!

Io is limited \rightarrow I_{FB} should be minimized to save power for the load \rightarrow R2 should be large enough, but not too large to minimize noise

Standard OPA: $I_o \approx 20mA$

4. How to choose an OPA: Offset voltage

- Random DC voltage due to asymmetry in OPA input stage
- Model: a DC voltage source added to an ideal OPA

DISTRIBUTION OF

$$Vout = \frac{-R2}{R1} Vin \pm \left(1 + \frac{R2}{R1}\right) V_{IO}$$

- > It may be a problem:
 - For high gain and low supply amplifiers
 - For high resolution ADC drivers

4. How to choose an OPA: Bias & offset currents

- DC input currents necessary to operate the OPA input stage
- Model: three DC current sources added to an ideal OPA

Bias current: $I_B = \frac{I_{B+} + I_{B-}}{2}$ (usually known polarity)

Offset current: $I_{OS} = |I_{B+} - I_{B-}|$ (random polarity)

- > It may be a problem:
 - For low signal currents
 - For high value of resistor R2

$$Vout = \frac{-R2}{R1} Vin \pm R2 I_B \pm R2 \frac{I_{OS}}{2}$$
Depends on Random polarity

4. How to choose an OPA: good or poor design?

	OK	КО
IB		
VIO		
Drop-out		
Ю		

	OK	КО
IB		
VIO		
Drop-out		
Ю		

4. How to choose an OPA: Small-signal bandwidth

- Amplifier's gain is not constant: at last, two poles exist (p1, p2)
- > 1st order behaviour dominates in usable frequency range:
 - \rightarrow GBW = gain x bandwidth = constant
 - \rightarrow GBW = g1 f1 = g2 f2 = g3 f3 (gi are closed-loop gains)

4. How to choose an OPA: Slew-rate

$ightharpoonup \frac{dVout}{dt}$ is limited \rightarrow slew-rate

- ightharpoonup If $\frac{dVout}{dt}$ > slew-rate \rightarrow signal is distorted
- > Sinewave A sin(ω t): $(\frac{dV}{dt})_{max}$ = 2 π f A
- Slew-rate is a concern for large and/or high-frequency signals

4. How to choose an OPA: good or poor design?

	OK	КО
GBW		
SR		

	ОК	КО
GBW		
SR		

