Travail et énergie cinétique

I- Energie cinétique d'un solide en translation:

1- Notion de l'énergie cinétique :

L'énergie cinétique d'un solide est l'énergie qu'il possède du fait de son mouvement. L'énergie cinétique se note E_C ; c'est un nombre toujours positif qui s'exprime en Joule (J) dans le S.I.

2- Energie cinétique d'un solide en translation :

L'énergie cinétique E_C d'un solide en translation est donnée par la formule :

$$E_C = \frac{1}{2}m.V^2 \begin{cases} E_C : \text{\'e}nergie \ cin\'etique \ du \ solide \ en \ joules \ (J)} \\ m : masse \ du \ solide \ en \ kg \\ \forall : \ Vitesse \ du \ solide \ en \ m. \ s^{-1} \end{cases}$$

Remarque:

Comme la valeur de la vitesse, l'énergie cinétique dépend du référentiel choisi.

3- Energie cinétique d'un solide en rotation:

Soit un solide indéformable de masse M en mouvement de rotation autour d'un axe fixe (Δ) de vitesse angulaire ω . Chaque point de solide A_i a une masse m_i est une vitesse linéaire V_i donc il possède une énergie cinétique $E_{Ci} = \frac{1}{2} m_i . V_i^2$. On sait que $V_i = r_i . \omega$ avec r_i est le rayon de la trajectoire circulaire du point A_i .

Donc:
$$E_{Ci} = \frac{1}{2} m_i . r_i^2 . \omega^2$$

L'énergie cinétique totale du solide :

$$E_C = \sum_{i=1}^{n} E_{ci} = \sum_{i=1}^{n} \frac{1}{2} m_i \cdot r_i^2 \cdot \omega^2 = \frac{1}{2} \cdot \omega^2 \cdot \sum_{i=1}^{n} m_i \cdot r_i^2$$

On pose :
$$J_{\Delta} = \sum_{i=1}^{n} m_i . r_i^2$$
 d'où : $E_c = \frac{1}{2} J_{\Delta} . \omega^2$

 J_{Δ} : s'appelle le moment d'inertie du solide par rapport à l'axe de rotation (Δ). Il dépend de la répartition de la masse autour de l'axe de rotation.

Définition:

L'énergie cinétique d'un solide en rotation autour d'un axe fixe de moment d'inertie J_{Δ} et de vitesse angulaire ω est :

$$E_C = \frac{1}{2} J_{\Delta}. \, \omega^2 \, \begin{cases} E_C : \text{\'e}nergie \ cin\'etique \ du \ solide \ en \ (J) \\ J_{\Delta} : moment \ d'inertie \ du \ solide \ en \ (kg.m^2 \ v: \ Vitesse \ angulaire \ du \ solide \ en \ rad. \, s^{-1} \end{cases}$$

- Les expressions des moments d'inertie de quelques solides homogènes :

Corps	Sphère	Tige	Tige	Cylindre	Anneau	Disque
	A Company	$\stackrel{\Delta}{\longleftarrow}$	Δ			A I
Moment d'inertie	$J_A = \frac{2}{5} \text{ m.r}^2$	$J_{\Delta} = \frac{1}{3} m/2$	$J_{\Delta} = \frac{1}{12} \text{ m/}^2$	$J_{\Delta} = \frac{1}{2} \text{ m.r}^2$	$J_{\Delta}=m.r^2$	$J_{\Delta} = \frac{1}{2} \text{ m.r}^2$

Application 1:

On considère un disque homogène de masse m= 800g et de rayon r=30cm tourne à la fréquence de $\frac{100}{3}tr/min$.

son centre d'inertie par rapport à l'axe de rotation (Δ) est $J_{\Delta} = \frac{1}{2}m.r^2$.

- Déterminer l'énergie cinétique du disque.

$$E_C = \frac{1}{2}J_{\Delta}.\,\omega^2 \quad \text{avec}: \ J_{\Delta} = \frac{1}{2}m.\,r^2$$

$$E_C = \frac{1}{4}m.\,r^2.\,\omega^2$$

$$E_C = \frac{1}{4} \times 0.8 \times (0.3)^2 \times \left(\frac{100 \times 2\pi}{60}\right)^2$$

$$E_C \approx 0.22\,J$$

II- Théorème de l'énergie cinétique :

1 – Activité:

On abandonne, sans vitesse initiale, un autoporteur de masse m=700g sur une table à coussin d'air inclinée d'un angle $\alpha=10^\circ$ par rapport à l'horizontale.

On enregistre les positions du centre d'inertie toutes les 60ms, on obtient l'enregistrement :

$$G_0G_1 = 3mm \text{ , } G_1G_2 = 9mm \text{ , } G_2G_3 = 15mm \text{ , } G_3G_4 = 21mm \text{ , } G_4G_5 = 27mm \text{ , } G_5G_6 = 33mm \text{ , } G_6G_7 = 39mm \text{ , } G_6G_7 = 39mm \text{ , } G_8G_8 = 33mm \text{ , } G_8G_8 = 3mm \text{ , } G_8G_8 = 3mm$$

On prend g = 9.8 N/kg

- 1- Faire le bilan des forces extérieures agissant sur le mobile.
- 2- Déterminer l'expression de travail de chaque force, quand le centre d'inertie de l'autoporteur se déplace de la position G_3 à la position G_5 . Déduire la somme des travaux des forces appliquées sur l'autoporteur entre ces deux positions $\sum W_{G_3 \to G_5}(\vec{F})$.
- 3- Calculer l'énergie cinétique de l'autoporteur dans chaque positions G_3 et G_5 . Et déduire $\Delta E_C = E_{C5} E_{C3}$ la variation de l'énergie cinétique de l'autoporteur.
- 4- Déduire la relation entre $\Delta E_C = E_{C5} E_{C3}$ de l'autoporteur et $\sum W_{G_3 \to G_5}(\vec{F})$.

Exploitation:

1- L'autoporteur est soumis à deux forces :

- \vec{P} : Poids de l'autoporteur
- \vec{R} : Réaction de plan incliné
- 2- L'expression de travail de poids:

$$W_{G_3 \to G_5}(\vec{P}) = m. g. G_3 G_5. \sin\alpha = 0.7 \times 9.8 \times 48 \times 10^{-3} \times \sin(10^\circ) = 0.057 J$$

$$W_{G_3 \to G_5}(\vec{R}) = 0 \to \vec{R} \perp \overrightarrow{G_3 G_5}$$

$$\sum W_{G_3 \to G_5}(\vec{F}) = W_{G_3 \to G_5}(\vec{P}) + W_{G_3 \to G_5}(\vec{R}) = 0.057 J$$

3- Energie E_{C3} et E_{C5} :

Vitesse instantanée en
$$G_3$$
: $V_3 = \frac{G_2 G_4}{2\tau} = \frac{36 \times 10^{-3}}{2 \times 60 \times 10^{-3}} = 0.30 \, m/s$

Vitesse instantanée en
$$G_5$$
: $V_5 = \frac{G_4 G_6}{2\tau} = \frac{60 \times 10^{-3}}{2 \times 60 \times 10^{-3}} = 0.50 \, m/s$

Energie cinétique
$$E_{C3}$$
: $E_{C3} = \frac{1}{2}m.V_3^2 = \frac{1}{2} \times 0.7 \times 0.3^2 = 0.0315 J$

Energie cinétique
$$E_{C5}$$
: $E_{C5} = \frac{1}{2}m.V_5^2 = \frac{1}{2} \times 0.7 \times 0.5^2 = 0.0875 J$

Variation de l'énergie cinétique ΔE_C :

$$\Delta E_C = E_{C5} - E_{C3} = 0.0875 - 0.0315 = 0.056 J$$

$$\Delta E_C \simeq \sum W_{G_2 \to G_2}(\vec{F})$$

4- Conclusion:

2- Enoncé du théorème de l'énergie cinétique :

Dans un référentiel galiléen, la variation de l'énergie cinétique ΔE_C d'un solide en translation ou en rotation autour d'un axe fixe, entre deux instants t_1 et t_2 est égale à la somme algébrique des travaux de toutes les forces extérieures appliquées au solide entre ces deux instants t_1 et t_2 .

$$\Delta E_C = E_{C2} - E_{C1} = \sum W_{AB} \left(\vec{F}_{ext} \right)$$

Cas de mouvement de translation : $\Delta E_C = \frac{1}{2}m.V_2^2 - \frac{1}{2}m.V_1^2$

Cas de mouvement de rotation : $\Delta E_C = \frac{1}{2} J_{\Delta}. \omega_2^2 - \frac{1}{2} J_{\Delta}. \omega_1^2$

3- Activité 2:

Une bille d'acier de masse m = 100g, est maintenue par un électroaimant ; quand on ouvre le circuit d'alimentation, la bille tombe d'un mouvement rectiligne vertical.

Grace à un dispositif convenable on a obtenu les résultats indiqués dans le tableau suivant :

Hauteur h (en m)	Temps t (en s)	Vitesse v (en m/s)	$V^2 (en \ m^2/s^2)$
0,00	0,00	0,00	
0,1	142,85	1,40	
0,2	202,04	1,98	

0,4	285,71	2,80	
0,6	350,00	3,43	
0,8	404,08	3,96	
1,0	451,02	4,42	

- 1 Compléter le tableau ci-dessus.
- 2- Tracer la courbe $V^2 = f(h)$ représentant la variation V^2 en fonction de h. Que pouvonsnous en déduire.
- 3- Trouver le coefficient directeur de la courbe obtenu en précisant son unité.

On donne $g = 9.8 \ N/kg$ et $1 N/kg = 1 m/s^2$

- 4- comparer la grandeur $\frac{1}{2}m.V^2$ et (\vec{P}) . Que peut-on en conclure ?
- 5- vérifier par calcul la relation $\Delta E_C = W(\vec{P})$ à la hauteur h = 1.0m.

Correction

1- voir tableau ci-dessus:

2- Voir courbe $\vee^2 = f(h)$:

Hauteur	V ²		
h (en m)	$(en \ m^2/s^2)$		
0,00	0,00		
0,1	1,96		
0,2	3,92		
0,4	7,84		
0,6	11,76		
0,8	15,68		
1,0	19,504		

3- La courbe est une droite son équation est : $\vee^2 = a.h$

a est le coefficient directeur sa valeur est : $a = \frac{\Delta \ v^2}{\Delta h} = \frac{7,84-1,96}{0.4-0.1} = 19,6 \ m/s^2$

4- Comparaison des 2 grandeurs:

On remarque que : a = 2g avec $g = 9.8 N/kg = 9.8 m/s^2$

Donc l'équation de la droite est : $V^2 = 2g.h$

$$\frac{1}{2}m. V^2 = \frac{1}{2}m. 2g. h$$
$$\frac{1}{2}m. V^2 = m. g. h$$

 $\frac{1}{2}m. \lor^2$ représente la variation de l'énergie cinétique ΔE_C et m.g.h représente le travail de poids $W(\vec{P})$ donc : $\Delta E_C = W(\vec{P})$

5- Vérification de la relation:

$$W(\vec{P}) = m. g. h = 0.1 \times 9.8 \times 1.0 = 0.98 N$$

$$\Delta E_C = E_{Cf} - E_{Ci} = \frac{1}{2} m. V^2 - 0 = \frac{1}{2} \times 0.1 \times 19.54 = 0.98 J$$

Donc:

$$\Delta E_C = W(\vec{P})$$

Exercices d'applications

Exercice 1:

Un solide (S), de masse m=60kg, glisse sur un plan incliné d'angle $\alpha=15^\circ$ par rapport au plan horizontal (voir figure).

Le solide (S) est lâché du point A sans vitesse initiale, après un parcourt de AB=100m sa vitesse devient $V_B=45\ km/h$. On donne $g=10\ N/kg$

1– Calculer la force de frottement f sachant que son intensité reste constante.

sens du myt

plan horizontal *BC*. Calculer la distance parcourue par le solide sur le plan horizontale avant de s'arrêter.

Corrigé

1 - Système étudié : le solide S

Bilan des forces exercées sur le solide (S) : \vec{P} ; \vec{R} On applique le théorème de l'énergie cinétique sur le solide (S) :

$$\Delta E_C = E_{C2} - E_{C1} = W_{A \to B}(\vec{P}) + W_{A \to B}(\vec{R})$$

$$W_{A \to B}(\vec{R}) = W_{A \to B}(\vec{R}_N) + W_{A \to B}(\vec{f}) = \vec{R}_N \cdot \vec{A}\vec{B} + \vec{F} \cdot \vec{A}\vec{B}$$

$$= 0 - f \cdot AB$$

$$\frac{1}{2} m \cdot \nabla_B^2 - \frac{1}{2} m \cdot \nabla_A^2 = m \cdot g \cdot AB \cdot \sin\alpha - f \cdot AB$$

$$f.AB = m.g.AB.\sin\alpha - \frac{1}{2}m.V_B^2$$

$$f = \frac{m.g.AB.\sin\alpha - \frac{1}{2}m.V_B^2}{AB} = m.g.\sin\alpha - \frac{m.V_B^2}{2AB}$$

$$f = 60 \times 10 \times \sin(15^\circ) - \frac{60 \times \left(\frac{45}{3.6}\right)^2}{2 \times 100} = 142N$$

2- Distance parcourue L:

On applique le théorème de l'énergie cinétique sur le solide (S) :

$$\Delta E_C = E_{CC} - E_{CB} = W_{B \to C}(\vec{P}) + W_{B \to C}(\vec{R})$$
$$0 - \frac{1}{2} m. V_B^2 = -f. L$$
$$L = \frac{m. V_B^2}{2.f} \Longrightarrow L = \frac{60 \times \left(\frac{45}{3.6}\right)^2}{2 \times 142} = 33m$$

Exercice 2:

Un moteur effectue une puissance constante sur un cylindre P = 10W.

Le cylindre de masse m=2 kg et de rayon r=20 cm, tourne autour d'un axe fixe (Δ) qui passe par son centre d'inertie.

On donne le moment d'inertie du cylindre : $J_{\Delta} = \frac{1}{2} m. r^2$

- 1- Calculer la durée du temps Δt nécessaire pour que la fréquence du cylindre devient $N=10\ tr/s$, on considère que les frottements sont négligeable.
- 2- A la fréquence $N=10\,tr/s$, on applique tangentiellement à la circonférence du cylindre une force \vec{F} constante, pour que le mouvement devient uniforme, calculer la valeur de la force F.

Corrigé

1- La durée Δt nécessaire pour que la fréquence du cylindre devient $N=10\ tr/s$: Système étudié : le cylindre

Bilan des forces exercées sur le cylindre :

 \vec{P} : Poids du cylindre

 \vec{R} : Action de l'axe de rotation

Action du moment du couple moteur Mc.

On applique le théorème de l'énergie cinétique sur le cylindre :

$$\Delta E_{C} = E_{Cf} - E_{Ci} = W(\vec{P}) + W(\vec{R}) + W(C)$$

$$W(\vec{P}) = W(\vec{R}) = 0$$

$$\frac{1}{2} J_{\Delta}. \, \omega^{2} - 0 = 0 + 0 + \mathcal{P}. \, \Delta t$$

$$J_{\Delta} = \frac{1}{2} m. \, r^{2}; \, \omega = 2\pi. \, N$$

$$\frac{1}{2}. \frac{1}{2} m. \, r^{2}. \, (2\pi N)^{2} = \mathcal{P}. \, \Delta t$$

$$\pi^{2}. \, m. \, r^{2}. \, N^{2} = \mathcal{P}. \, \Delta t$$

$$\Delta t = \frac{\pi^{2}. \, m. \, r^{2}. \, N^{2}}{\mathcal{P}}$$

$$\Delta t = \frac{\pi^{2}. \, m. \, r^{2}. \, N^{2}}{10} = 7.9 \, s$$

2- La valeur de la force F:

Bilan des forces exercées sur le cylindre :

 \vec{P} : Poids du cylindre

 \vec{R} : Action de l'axe de rotation

Action du moment du moteur C

L'action de la force \vec{F}

On applique le théorème de l'énergie cinétique sur le cylindre :

$$\Delta E_C = E_{Cf} - E_{Ci} = W(\vec{P}) + W(\vec{R}) + W(C) + W(\vec{F})$$

$$0 = W(C) + W(\vec{F})$$

$$M_{\Delta}(\vec{F}) + M(C) = 0$$

$$on \ a : M_{\Delta}(\vec{F}) = -F.r \ et \ M(C)\omega = \mathcal{P} \implies M(C) = \frac{\mathcal{P}}{\omega}$$

$$-F.r + \frac{\mathcal{P}}{\omega} = 0$$

$$F = \frac{\mathcal{P}}{2\pi \cdot N.r}$$

$$F = \frac{10}{2\pi \times 10 \times 0.2} = 0,79 \ N$$