Амосов Андрей

§1.Описание функционала и цели работы.

В настоящей лабораторной работе были исследованы три сортировки:

- 1) Быстрая сортировка
- 2) Шейкерная сортировка
- 3) Сортировка Шелла

Все алгоритмы сортировки покрыты тестами.

Реализована возможность сортировки, как всей последовательности так и какой-то ее части.

Реализована возможность сортировки, как по возрастанию, так и по убыванию.

Реализован консольный пользовательский интерфейс, позволяющий проверять как вручную, так и автоматически работу алгоритма, а так же сравнивать работу двух или более алгоритмов на одинаковых, случайно или вручную сгенерированных данных.

Изучена эффективность каждой из сортировок с помощью графиков time(n)

§2.Исследование эффективности сортировок.

Тип последовательности	Сортировка	Сложность
ArraySequence	Быстрая сортировка	O(n*log2(n))
	Шейкерная сортировка	O(n^2)
	Сортировка Шелла	O(n^2)
LinkedListSequence	Быстрая сортировка	O(n^2*log2(n))
	Шейкерная сортировка	O(n^3)
	Сортировка Шелла	O(n^3)

Хоть сортировка Шелла и Шейкерная сортировка имеют одинаковую сложность, сортировка Шелла работает гораздо быстрее.

Ниже представлены графики для LinkedListSequence и ArraySequence, построенныена одном случайно сгенерированном наборе значений, длиной от 1'000 до 10'000, с шагом 1000.

Тип последовательности	Сортировка	Время при data = 10^4
ArraySequence	Быстрая сортировка	3 MC
	Шейкерная сортировка	1,4 c
	Сортировка Шелла	172 мс
LinkedListSequence	Быстрая сортировка	4,6 c
	Шейкерная сортировка	47,4 мин
	Сортировка Шелла	8,3 мин

Проведя исследования для отсортированных и отсортированных в обратном направлении получим:

Для уже отсортированной последовательности:

Тип последовательности	Сортировка	Сложность
ArraySequence	Быстрая сортировка	O(n*log2(n))
	Шейкерная сортировка	O(n^2)
	Сортировка Шелла	O(n)
LinkedListSequence	Быстрая сортировка	O(n^2*log2(n))
	Шейкерная сортировка	O(n^3)
	Сортировка Шелла	O(n^2)

Для последовательности отсортированной в обратном направлении:

Тип последовательности	Сортировка	Сложность
ArraySequence	Быстрая сортировка	O(n*log2(n))
	Шейкерная сортировка	O(n^2)
	Сортировка Шелла	O(n* log2(n)))
LinkedListSequence	Быстрая сортировка	O(n^2*log2(n))
	Шейкерная сортировка	O(n^3)
	Сортировка Шелла	O(n^2* log2(n)))

Выводы:

Для быстрой сортировки не важно как отсортирована последовательность, почти всегда сложность одна и та же, лишь в некоторых случаях(когда опорный элемент все время в начале или в конце) сложность будет O(n^2)

Шейкерная сортировка одинаково плохо показывает себя на любых данных, но все же работает быстрее при отсортированной последовательности, и медленнее при неотсортированной

Данная реализация сортировки Шелла плохо работает на случайных данных, но в отличае от шейкерной сортировки быстрее, а так же имеет крайне хорошую сложность отсортированных данных и сложность равную сложности быстрой сортировки при обратно отсортированных данных, однако все равно работает в среднем медленне чем быстрая сортировка.

Для теоретичческого анализа сортировки шелла использовалась следующая формула : $2N^2/h + \sqrt{\pi N^3 h}$, где h – шаг сортировки равный в данной реализации N/2.