NAME:	OMKAR DESHMUKH
UID:	2021700018
DIV:	CSE(DS)D1
EXP:	08
AIM:	Approximation algorithms (Travelling Salesman Problem)
0005	
CODE:	
	#include <bits stdc++.h=""></bits>
	using namespace std;
	#define V 4
	// implementation of traveling Salesman Problem
	int travllingSalesmanProblem(int graph[][V], int s)
	{
	// store all vertex apart from source vertex
	vector <int> vertex;</int>
	for (int i = 0; i < V; i++)
	if (i != s)
	vertex.push_back(i);
	// store minimum weight Hamiltonian Cycle.
	int min_path = INT_MAX;
	do {
	// store current Path weight(cost)

```
int current_pathweight = 0;
  // compute current path weight
  int k = s;
  for (int i = 0; i < vertex.size(); i++) {
    current_pathweight += graph[k][vertex[i]];
    k = vertex[i];
}
current_pathweight += graph[k][s];
 // update minimum
 min_path = min (min_path, current_pathweight);
}
while (
next_permutation (vertex.begin (), vertex.end ()));
return min_path;
}
```

```
// Driver Code
int main()
{
  // matrix representation of graph
  int graph[][V] = { { 0, 10, 15, 20 },
  { 10, 0, 35, 25 },
 {15, 35, 0, 30}
 {20, 25, 30, 0}
};
int s = 0;
printf("The final route to reach destination is :");
cout << travllingSalesmanProblem (graph, s) << endl;</pre>
return 0;
}
```

```
OUTPU
The final route to reach destination is :80

T:

...Program finished with exit code 0
Press ENTER to exit console.
```

CONCLUSION: In this experiment I have understood how to implement travelling salesman algorithm using approximation algorithm.