

В \mathcal{EL} есть имена классов («концептов») A_1, A_2, \ldots , класс Т («thing»), имена ролей r_1, r_2, \ldots , операция пересечения \square , квантор существования \exists .

Классы строятся из $A_1, ..., T$; если C, D — классы, r — роль, то $C \sqcap D$ и $\exists r.C$ — классы.

Определения в \mathcal{EL} имеют вид $A \equiv B$ или $A \sqsubseteq B$, где A — имя класса, B — класс.

 \mathcal{EL} -терминология — конечное множество определений, в котором никакое имя не определяется дважды. (Циклические определения возможны).

 \mathcal{EL} -ТВох — это конечное множество вложений классов $C \sqsubseteq D$.

Семантика \mathcal{EL} .

Интерпретация $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$: $\Delta^{\mathcal{I}} \neq \emptyset$ — домен, $\cdot^{\mathcal{I}}$ сопоставляет каждому имени класса A некоторое подмножество домена $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, каждому имени роли r — бинарное отношение $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.

Интерпретация произвольного класса задаётся следующими правилами: $(\exists r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \exists y \in \Delta^{\mathcal{I}}: (x,y) \in r^{\mathcal{I}}, y \in C^{\mathcal{I}}\}, (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}, T^{\mathcal{I}} = \Delta^{\mathcal{I}}.$

 \Diamond 1. Выберем следующую интерпретацию: $\Delta^{\mathcal{I}} = \{$ школьники $\} \cup \{$ курсы MaO-2014 $\}$,

 $A_0^{\mathcal{I}} = \{$ курсы за 4 цикл $\}$,

 $A_1^{\mathcal{I}} = \{$ решающий эту задачу $\},$

 $r_0^{\mathcal{I}} = \{(x, y) : \text{школьник x ходил на курс y} \},$

 $r_1^{\bar{I}} = \{(x, y): \text{школьник x сдал y}\},$

 $r_2^{\mathcal{I}} = \{(x, y) : \text{на курс x ходил школьник y} \},$

 $r_3^{\mathcal{I}} = \{(x, y) : \text{курс x был сдан школьником y} \}.$

Постройте интерпретации классов $\exists r_0.A_0, \exists r_1.A_1, \exists r_2.A_0, \exists r_2.A_1, \exists r_3.A_0, \exists r_3.A_1.$

Модели и вывод в \mathcal{EL} .

Будем говорить, что в интерпретации \mathcal{I} выполняется вложение классов $C \sqsubseteq D$ (записывается $\mathcal{I} \models C \sqsubseteq D$), если $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$. Аналогично, $\mathcal{I} \models C \equiv D \Leftrightarrow C^{\mathcal{I}} = D^{\mathcal{I}}$.

Пусть $\tau - \mathcal{EL} - TBox$. Интерпретация \mathcal{I} называется моделью для τ ($\mathcal{I} \models \tau$), если в ней выполняется каждое вложение или равенство классов из τ .

Говорят, что из ТВох τ выводится вложение классов ($\tau \vDash C \sqsubseteq D$), если $\forall \mathcal{I} \mathcal{I} \vDash \tau \Rightarrow \mathcal{I} \vDash C \sqsubseteq D$.

- \lozenge 2. Пусть $\tau = \{A \sqsubseteq B \sqcap C\}$. Верно ли, что а) $\tau \vDash B \sqsubseteq C$? б) $\tau \vDash B \sqsubseteq A$? в) $\tau \vDash A \sqsubseteq B$? г) $\tau \vDash \exists r.A \sqsubseteq \exists r.B$? д) $\tau \vDash \exists r.B \sqsubseteq \exists r.A$?
- \lozenge 3. Верно ли, что если $\tau \vDash C \sqsubseteq D$ и $\tau \vDash D \sqsubseteq E$, то $\tau \vDash C \sqsubseteq E$?
- \Diamond 4. Пусть $\tau = \{\exists r. T \sqsubseteq C, E \equiv \exists r. D\}$. Верно ли, что $\tau \vDash E \sqsubseteq C$? $\tau \vDash \exists r. C \sqsubseteq C$?

Логика ALC.

В логике \mathcal{ALC} к уже известным классам, ролям, \exists , \sqcup , T добавляются \bot (пустой класс), \sqcap (пересечение классов), \forall , \neg (отрицание, дополнение к классу).

◊ 5. Сформулируйте, как интерпретируются новые конструкции.

Зоопарк дескрипционных логик.

$$\mathcal{AL} = T|\perp |A|\neg A|C \cap D|\exists r.C|\forall r.C.$$

В \mathcal{ALC} добавляется \sqcup .

Семантика новых символов:

- $\perp^{\mathcal{I}} = \emptyset$
- $\bullet \ (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\forall r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}}: \forall y \in \Delta^{\mathcal{I}}, (x,y) \in r \Rightarrow y \in C\}$ (ограничение значения)
- $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} : x \notin C^{\mathcal{I}} \}$

 \mathcal{FL}^- — это \mathcal{AL} без отрицаний.

 $\mathcal{FL}^0 - \mathcal{AL}$ без отрицания и квантора существования.

 \mathcal{F} — функциональность $T \sqsubseteq \leq 1r.T$.

 $\mathcal{N} = \langle n r.T, \rangle n r.T.$

 $Q = \le n \, r.C, \ge n \, r.C$ (ограничения кардинальности).

S - ALC + транзитивность.

 \mathcal{I} — обратные роли.

 \mathcal{H} — включения ролей.

 \mathcal{R} — композиция ролей $r \circ s$.

 \mathcal{O} — номиналы (классы из ровно одного указанного элемента).

SHOIQ 9TO OWL DL, SROIQ 9TO OWL 2.

- ◊ 6. Запишите в виде вложений классов следующие утверждения: а) каждый человек имеет ровно одного отца б) слоны делятся на индийских и африканских в) зачёт может быть сдан только по тому курсу, содержание которого человек изучил г) если человек был на ЛЭШ-2014, то хотя бы в один из дней он был в Беляево д) на любом костре либо есть взрослый, либо есть проблема е) Лёша и Саша это два разных человека ё) Карл Маркс и Фридрих Энгельс не муж и жена, а 4 совершенно разных человека ж*) вложение классов транзитивно.
- \Diamond 7. Реализуемы ли (то есть найдётся ли модель, в которой эти классы представлены непустыми множествами) следующие классы? а) $(\forall r.C) \sqcap (\forall r.\neg C)$ б) $(\forall r.C) \sqcap (\exists r.\neg C)$ в) $\neg (\forall r.C) \sqcap (\exists r.\neg C)$ г) $\neg (\forall r.C) \sqcap \neg (\exists r.\neg C)$
- \Diamond 8. Пусть в ТВох входят $T \sqsubseteq \leq 1 \, r.T, \, T \sqsubseteq \geq 1 \, r.T, \, r \circ r \sqsubseteq r.$ Что можно сказать о моделях этого ТВох?