Using Network Structure to Identify Peer Effects Econometric Methods for Social Spillovers and Networks

Universität St.Gallen, October 7 to 11, 2024

Bryan S. Graham

University of California - Berkeley

Overview

• Large empirical literature on peer group effects based on the "linear-in-means" model of social interactions (Manski, 1993).

• Quality of research in this area is uneven and has been heavily criticized (e.g., Angrist, 2013).

 over 20 years since Manski (1993) conditions for identification (and their interpretation) evidently not fully understood by some practitioners.

Overview (continued)

- Recent work on network games with linear best reply functions (e.g., Jackson and Zenou, 2015; Bramoulle, Kranton and D'Amours, 2014).
 - provides micro-foundations for linear-in-means model.
 - facilitates intuitive assessment of conditions for identification.
 - also connected to older literature on input-output models recently explores by Acemoglu and co-authors.

Key References

• Manski (1993, Review of Economic Studies)

• Brock and Durlauf (2001, Handbook of Econometrics)

• Bramoulle, Djebbari and Fortin (2009, Journal of Econometrics)

Notation

• Let $\mathbf{G} = \mathrm{diag} \left(\mathbf{D} \iota_N\right)^{-1} \mathbf{D}$ be the row-normalized network adjacency matrix.

- Note that all rows of this matrix sum to 1 by construction.
- The matrix is row-stochastic (when graph is connected).
- Focus on undirected links today, but extension to directed case follows.

Notation (continued)

ullet Let ${f G}_i$ denotes the i^{th} row of ${f G}$ and define

$$\begin{aligned} \mathbf{G}_{i}\mathbf{y} &=& \sum_{j\neq i} G_{ij}y_{j} \stackrel{def}{\equiv} \bar{y}_{n(i)} \\ \mathbf{G}_{i}\mathbf{X} &=& \sum_{j\neq i} G_{ij}X_{j} \stackrel{def}{\equiv} \bar{X}_{n(i)}. \end{aligned}$$

These equal

- the average action of player i's peers.
- the average of her peers' attribute vector.

Utility

• Assume that the utility agent i receives from action profile y, given network structure (D) and agent attributes (X), is

$$u_{i}(\mathbf{y}; \mathbf{D}, \mathbf{X}) = v_{i}(\mathbf{D}, \mathbf{X}) y_{i} - \frac{1}{2} y_{i}^{2} + \beta \bar{y}_{n(i)} y_{i}$$
$$= v_{i}(\mathbf{D}, \mathbf{X}) y_{i} - \frac{1}{2} y_{i}^{2} + \beta \mathbf{G}_{i} \mathbf{y} y_{i}.$$
(1)

Utility (continued)

ullet Assume that |eta| < 1 and define $v_i\left(\mathbf{D}, \mathbf{X}\right)$ as

$$v_i(\mathbf{D}, \mathbf{X}) = X_i' \gamma + \bar{X}_{n(i)}' \delta + A + U_i$$
$$= X_i' \gamma + (\mathbf{G}_i \mathbf{X})' \delta + A + U_i.$$

• <u>Comment:</u> alternative is provided by quadratic "conformist" preferences (e.g., Akerlof, 1997).

Comment: recall our discussion of social multiplier centrality earlier.

Equilibrium

- ullet The observed action ${f Y}$ corresponds to a Nash equilibrium.
 - No agent can increase her utility by changing her action given the actions of all other agents in the network.
- The econometrician observes the triple (Y, X, D).
 - she does not observe A, nor does she observe U, the $N \times 1$ vector of individual-level heterogeneity terms.
 - agents do observe (A, \mathbf{U}) .

Endogenous and Exogenous Social Effects

ullet endogenous: the marginal utility associated with an increase in y_i is increasing in the average action of one's peers, $\bar{y}_{n(i)}$:

$$\frac{\partial^2 u_i\left(\mathbf{y},\mathbf{D},\mathbf{X}\right)}{\partial y_i \partial \bar{y}_{n(i)}} = \beta.$$

• exogenous or contextual: the marginal utility associated with an increase in y_i varies with peer attributes:

$$\frac{\partial^2 u_i(\mathbf{y}, \mathbf{D}, \mathbf{X})}{\partial y_i \partial \bar{X}'_{n(i)}} = \delta.$$

Endogenous and Exogenous Social Effects (continued)

- Endogenous and exogenous effects have different policy implications (except under special network structures)
 - effects of a "local" intervention may spread across the entire network in the presence of endogenous effects
 - effects are localized if only exogenous effects are present

Correlated Effects

ullet correlated effects: agents located in networks with high values of A will choose higher actions.

$$\frac{\partial^2 u_i(\mathbf{y}, \mathbf{D}, \mathbf{X})}{\partial y_i \partial A} = 1.$$

- Endogenous, contextual and correlated effects all cause outcomes across members of a common network to covary.
- Attributing this covariance to true spillovers, whether endogenous or contextual, versus group-level heterogeneity is difficult.

Policy Implications

- Spillovers raise the possibility that
 - rewirings of the network the addition or subtraction of links could improve the distribution of outcomes.
 - intervening at different locations of the network will have different effects on the distribution of outcomes.

• These claims will become clear shortly.

Linear Best Replies

• F.O.C for optimal behavior generates best response functions of the form

$$Y_i = A + \beta \bar{Y}_{n(i)} + X_i' \gamma + \bar{X}_{n(i)}' \delta + U_i$$

for $i = 1, \ldots, N$.

• Called the **linear-in-means** model of social interactions (e.g., Brock and Durlauf, 2001).

Basis of most empirical work on peer effects.

Linear Best Replies (continued)

An agent's best reply varies with

- (i) the average action of those to whom she is directly connected $ar{Y}_{n(i)}$,
- (ii) her own observed attributes X_i ,
- (iii) the average attributes of her direct peers $\bar{X}_{n(i)}$,
- (iv) the unobserved network effect, A, and
- (v) unobserved own attributes, U_i .

A System of Simultaneous Equations

ullet The N best reply functions define an N imes 1 system of (linear) simultaneous equations.

ullet A least squares fit of Y_i onto a constant, $ar{Y}_{n(i)}$, X and $ar{X}_{n(i)}$ will not provide consistent estimates of $heta_0 = \left(A_0, eta_0, \gamma_0', \delta_0'\right)'$.

 Manski (1993) calls this feature of the linear-in-means model the reflection problem.

Anatomy of the Reflection Problems

• Define the index set

$$\mathcal{N}\left(i\right) = \left\{j : D_{ij} = 1\right\}$$

with cardinality N_i .

- Y_i is a component of the best response functions of $j \in \{j : j \in \mathcal{N}(i)\}$.
- U_{i} will be correlated with all $Y_{j} \in \left\{Y_{j} \,:\, j \in \mathcal{N}\left(i\right)\right\}$.
- $-\Rightarrow U_i$ will covary with $\bar{Y}_{n(i)}!$

Reduced Form

• Write the system of best replies in matrix form:

$$\mathbf{Y} = A\iota_N + \mathbf{X}\gamma + \mathbf{G}\mathbf{X}\delta + \beta\mathbf{G}\mathbf{Y} + \mathbf{U}. \tag{2}$$

- If $|\beta| < 1$, then $I_N \beta \mathbf{G}$ is strictly (row) diagonally dominant & hence non-singular.
- ullet Solving for the equilibrium action vector as a function of ${f D}$, ${f X}$, A and ${f U}$ alone yields

$$\mathbf{Y} = A (I_N - \beta \mathbf{G})^{-1} \iota_N + (I_N - \beta \mathbf{G})^{-1} (\mathbf{X}\gamma + \mathbf{G}\mathbf{X}\delta) + (I_N - \beta \mathbf{G})^{-1} \mathbf{U}.$$

Reduced Form

It is helpful to simplify the reduced form in a number of ways. First, using the series expansion

$$(I_N - \beta \mathbf{G})^{-1} = \sum_{k=0}^{\infty} \beta^k \mathbf{G}^k,$$

as well as the fact that $G\iota_N=\iota_N$ (and hence that $G^k\iota_N=\iota_N$ for $k\geq 1$) we get the simplification:

$$A (I_N - \beta \mathbf{G})^{-1} \iota_N = A \left[\sum_{k=0}^{\infty} \beta^k \mathbf{G}^k \right] \iota_N$$
$$= A \left(1 + \beta + \beta^2 + \beta^3 + \cdots \right) \iota_N$$
$$= \frac{A}{1 - \beta} \iota_N.$$

The Social Multiplier REDUX!

• Further manipulation yields a reduced from of

$$\mathbf{Y} = \frac{A}{1-\beta} \iota_N + \mathbf{X}\gamma + \left[\sum_{k=0}^{\infty} \beta^k \mathbf{G}^{k+1} \mathbf{X}\right] (\gamma \beta + \delta)$$
$$+ \left[\sum_{k=0}^{\infty} \beta^k \mathbf{G}^k\right] \mathbf{U}.$$

- ullet Consider a policy which changes the value of X_i by \triangle .
- What is the effect of this intervention on the distribution of outcomes?

The Social Multiplier (continued)

• We can conceptualize the effect of the intervention as spreading out in a series of "waves".

• Let c_i be a vector with a 1 in the i^{th} element and zeros elsewhere. For simplicity assume $\delta = 0$ (i.e., no exogenous effects).

• In the first "wave" the intervention changes agent i's action alone. The effect on the distribution of outcomes is

$$\triangle' \gamma \mathbf{c}_i$$

The Social Multiplier (continued)

• In the second "wave" agent i's friends revise their best response in reaction to i's initial change in action. The effect on the distribution of outcomes is

$$\triangle' \gamma \beta \mathbf{Gc}_i$$

• In the third "wave" agent i's friends' friends revise their best response in reaction to i's friends' wave two changes in action. The effect on the distribution of outcomes is

$$\triangle \gamma \beta^2 \mathbf{G}^2 \mathbf{c}_i$$
.

The Social Multiplier (continued)

ullet In the k^{th} wave we have a change in the action vector of

$$\triangle \gamma \beta^{k-1} \mathbf{G}^{k-1} \mathbf{c}_i.$$

ullet The "long-run" or full effect of the change in X_i on the entire distribution of outcomes is

$$\Delta \gamma \left(I_N - \beta \mathbf{G} \right)^{-1} \mathbf{c}_i. \tag{3}$$

• The planner can use the form of G to efficiently target interventions.

Reduced Form (continued)

ullet ${f GX}={f \overline{X}}$ is a matrix consisting of the average of friends' characteristics (with i^{th} row $ar{X}_{n(i)}$).

ullet ${f G}^2{f X}={f G}ar{{f X}}$ is a matrix consisting of an average of your friends' friends' average attributes (with i^{th} row $ar{X}_{n(i)}^{\mathrm{ff}}$).

 \bullet ${\bf G}^3{\bf X}$ is an average of your friends' friends' average of their friends' average attributes (with i^{th} row $\bar{X}_{n(i)}^{\rm fff}$)

Reduced Form (continued)

- Extra credit: describe G^4X in words.
- Use this notation we get

$$\mathbf{Y} = \frac{A}{1-\beta} \iota_N + \mathbf{X}\gamma + \bar{\mathbf{X}} (\gamma\beta + \delta) + \left[\sum_{k=1}^{\infty} \beta^k \mathbf{G}^k \bar{\mathbf{X}} \right] (\gamma\beta + \delta) + \left[\sum_{k=0}^{\infty} \beta^k \mathbf{G}^k \right] \mathbf{U}.$$

• In equilibrium, an agent's action will vary with own attributes, her peers', her peers' peers' and so on.

Connection to Dynamic Panel Data

ullet The endogenous effect induces a distributed lag in ${f X}$ in the reduced form expression for ${f Y}$.

• In dynamic linear panel data models with strictly exogenous regressors, state dependence induces an analogous structure (Chamberlain, 1984; Arellano, 2003).

Formulation as an IV Problem

• Bramoulle, Djebbari and Fortin's (2009) propose a linear IV procedure.

• Our **structural equations** are

$$\mathbf{Y} = A\iota_N + \beta \bar{\mathbf{Y}} + \mathbf{X}\gamma + \bar{\mathbf{X}}\delta + \mathbf{U}.$$

Formulation as an IV Problem (continued)

• Let $\bar{\mathbf{Y}} = \mathbf{G}\mathbf{Y}$ to be the $N \times 1$ of peer average actions. Multiplying the reduced form by \mathbf{G} yields the **first stage equations**

$$\bar{\mathbf{Y}} = \frac{A}{1-\beta} \iota_M + \bar{\mathbf{X}} \gamma + \left[\sum_{k=0}^{\infty} \beta^k \mathbf{G}^{k+1} \bar{\mathbf{X}} \right] (\gamma \beta + \delta) + \left[\sum_{k=0}^{\infty} \beta^k \mathbf{G}^k \right] \bar{\mathbf{U}}.$$

Estimation

- ullet The dataset consists of a random sample of networks indexed by c
 - with the size of network c equal to N_c and
 - with action profile \mathbf{Y}_c , adjacency matrix \mathbf{D}_c and attribute matrix \mathbf{X}_c .

Estimation (continued)

• Assume that $\mathbb{E}\left[\mathbf{U}_{c}|\mathbf{D}_{c},\mathbf{X}_{c},N_{c}\right]=0.$

• This (effectively) restricts the network formation process (in many cases unrealistically).

Estimation (continued)

ullet The following moment restriction holds at the population vector $heta_0$

$$\mathbb{E}\left[\left(\iota_{N_c} \mathbf{G}_c \bar{\mathbf{X}}_c \mathbf{X}_c \bar{\mathbf{X}}_c\right)'\right] \times \left(\mathbf{Y}_c - A_0 \iota_{N_c} - \beta_0 \bar{\mathbf{Y}}_c - \mathbf{X}_c \gamma_0 - \bar{\mathbf{X}}_c \delta_0\right)\right] = 0$$

• If I_{N_c} , G_c and G_c^2 are linearly independent and $\gamma\beta + \delta \neq 0$, then a GMM estimator will be consistent (Bramoulle, Djebbari and Fortin (2009, Proposition 1)).

Friends-of-Friends Instrument

- ullet Linear IV fit of Y_{ci} onto a constant, $ar{Y}_{cn(i)}$, X_{ci} and $ar{X}_{cn(i)}$ with $ar{X}_{cn(i)}^{\mathrm{ff}}$ serving as an excluded instrument for $ar{Y}_{cn(i)}$.
 - consistent estimates of $\beta,\,\gamma$, and δ ;
 - see Di Giorgi, Pellizzari and Redaelli (2010, AEJ) for an illustrative application.

Non-identification Result of Manski (1993)

• Consider the case where G_c equals

$$\mathbf{G}_c = \left(\iota_{N_c} \iota'_{N_c} - I_{N_c}\right) \frac{1}{N_c - 1}.$$

• Often used in economics of education applications.

• Under this network structure we have

$$\mathbf{G}_{c}^{2} = \frac{1}{N_{c}-1}I_{N_{c}} + \frac{N_{c}-2}{N_{c}-1}\mathbf{G}_{c}.$$

Non-identification Result of Manski (1993)

• If groups/networks vary in size, then I_{N_c} , \mathbf{G}_c and \mathbf{G}_c^2 will be linearly independent (cf., Lee, 2007).

• If groups are equal in size identification fails.

• $N_c \to \infty$, which is (essentially) Manski's (1993) case, gives $\mathbf{G}_c^2 = \mathbf{G}_c$.

Identification via Non-Transitivity

ullet Bramoulle, Djebbari and Fortin (2009) note that if the pair (i,j) are not connected then $D_{ij}=0$.

• If they share some friends in common, then $(i,j)^{th}$ element of \mathbf{D}^2 , which equals $\sum_k D_{ik} D_{kj}$, will be non-zero.

• The presence of intransitive triads (i.e., two-stars), in at least some networks, guarantees linear independence of I_{N_c} , \mathbf{G}_c and \mathbf{G}_c^2 .

Network Effects

 One generalization of the model allows the intercept to vary across sampled networks.

ullet If A_c varies across networks we get a reduced form of

$$\mathbf{Y}_{c} = \frac{A_{c}}{1 - \beta} \iota_{N_{c}} + \mathbf{X}_{c} \gamma + \bar{\mathbf{X}}_{c} (\gamma \beta + \delta) + \left[\sum_{k=1}^{\infty} \beta^{k} \mathbf{G}_{c}^{k} \bar{\mathbf{X}}_{c} \right] (\gamma \beta + \delta) + \left[\sum_{k=0}^{\infty} \beta^{k} \mathbf{G}_{c}^{k} \right] \mathbf{U}_{c}.$$

Network Effects (continued)

 Subtracting "first stage" from this equation eliminates the "network effect", yielding

$$\mathbf{Y}_{c} - \bar{\mathbf{Y}}_{c} = (\mathbf{X}_{c} - \bar{\mathbf{X}}_{c}) \gamma + (I_{N_{c}} - \mathbf{G}_{c}) \bar{\mathbf{X}} (\gamma \beta + \delta)$$

$$+ \left[\sum_{k=1}^{\infty} \beta^{k} \mathbf{G}^{k} (I_{N_{c}} - \mathbf{G}_{c}) \bar{\mathbf{X}} \right] (\gamma \beta + \delta)$$

$$+ \left[\sum_{k=0}^{\infty} \beta^{k} \mathbf{G}_{c}^{k} \right] (\mathbf{U}_{c} - \bar{\mathbf{U}}_{c}).$$

• If I_{N_c} , G_c , G_c^2 and G_c^3 are linearly independent θ_0 is identified (need networks with diameter of at least three).

Estimation with Network Effects

- ullet Let $ar{Y}_{cn(i)}^{\mathrm{ff}}$ equal the i^{th} element of of $\mathbf{G}_c^2\mathbf{Y}_c$.
 - equals the average of my friends' averages of their friends behavior.

- ullet Recall that $ar{X}_{cn(i)}^{\mathrm{fff}}$ is the i^{th} row of $\mathbf{G}_c^3\mathbf{X}$.
 - equals a (weighted) average of agent characteristics up to three degrees away from i.

Estimation with Network Effects (continued)

- \bullet A linear IV fit of $Y_{ci}-\bar{Y}_{cn(i)}$ onto $\bar{Y}_{cn(i)}-\bar{Y}_{cn(i)}^{\mathrm{ff}}$, $X_{ci}-\bar{X}_{cn(i)}$ and $\bar{X}_{cn(i)}-\bar{X}_{cn(i)}^{\mathrm{ff}}$ with
 - $ar{X}_{cn(i)}^{
 m ff}$ $ar{X}_{cn(i)}^{
 m fff}$ serving as an excluded instrument for $ar{Y}_{cn(i)}$ $ar{Y}_{cn(i)}^{
 m ff}$;
 - standard errors "clustered" at the network level.

ullet Yields consistent estimates of $heta_0$ and asymptotically valid standard error estimates.

Empirical Work

ullet Identification of $heta_0$ requires maintaining fairly strong assumptions about the network formation process.

• Condition $\mathbb{E}\left[\mathbf{U}_c | \mathbf{D}_c, \mathbf{X}_c, N_c, A_c\right] = 0$ provides a useful way for assessing the plausibility of empirical work.

• Can I predict the idiosyncratic component of behavior using network structure, agent characteristics and/or network size?