# Planar graphs

Mohammed Brahimi





## Utilities problem



#### Applications of Planar Graphs

#### Urban Planning

Planar graphs model utility line layouts, ensuring non-crossing connections between houses.

#### Computer-Aided Design

 They are used in electronic system design, such as integrated circuits, for optimal layout and minimized total area.

#### Network Design

Network topologies are represented as planar graphs to aim for non-interfering connections.

#### Subway Route Planning

• Planar graphs aid in efficient route determination for subway lines, reducing intersections to prevent congestion and bottlenecks.

#### Applications of Planar Graphs

- Graph Drawing
  - Planar graphs are crucial in graph drawing for software engineering, databases, data visualization, and more.
- Wireless Communication
  - In wireless ad hoc networks, planar graphs represent possible communication paths, minimizing interference and ensuring efficient communication.
- Scheduling
  - Certain scheduling problems can be modelled as planar graphs, helping to organize overlapping tasks.
- Maze Solving Algorithms
  - Planar graphs are useful for maze generation and solving algorithms, representing corridors and junctions in the maze.

Any situation involving connected "points" without overlap can potentially use planar graphs.

### What is planar graph?

• Definition:

A planar graph can be drawn in a plane without edge crossings, with edges only intersecting at vertices they're incident to.

- Plane Drawing (embedding)
  - Any drawing of a planar graph without crossings.
- Plane Graph
  - An abbreviation used for a plane drawing of a planar graph.

Not all drawings of a planar graph are plane graphs. Only those without edge crossings qualify as plane graphs.

Is  $K_4$  graph planar?







### What's the largest complete planar graph!?



Is  $K_5$  a planar graph?



#### What's the largest bipartite complete planar graph !?



# Is $K_{3,3}$ planar graph?



Is  $K_{3,3}$  planar graph?



#### THEORME 1

The graphs  $K_5$  and the graph  $K_{3,3}$  are non-planar

#### Proof

• Later in the lecture.

#### Questions ???

- Can a graph be planar even if it contains a non-planar subgraph?
- Is a subgraph of a planar graph also planar?
- Can we identify basic non-planar subgraphs within every non-planar graph?
- How can we tell if a graph is planar?

#### Subdivision of a graph

 A subdivision of a graph is the resultant graph obtained by inserting vertices of degree 2 in its edges.

• Two graphs are **homeomorphic** if they can both be obtained by subdividing the same graph.





#### THEOREM 2 (Kuratowski. 1930)

A graph is planar if and only if it contains no subgraph homoeomorphic to  $K_5$  or  $K_{3,3}$ .

- Proof (not covered)
- Intuition

The theorem often confirms a graph's non-planarity by identifying a subgraph homeomorphic to K5 or K3,3.



### Example 2 (Petersen graph)



#### Edge contraction

• Edge contraction is the process of removing an edge and merging the incident vertices into a single vertex, while maintaining the remaining adjacency relationships.

 A graph H is contractible to a graph G, if we can obtain H by successively contracting the edges of G.





#### THEOREM 3

A graph is planar if and only if it contains no subgraph **contractible** to  $K_5$  or  $K_{3,3}$ .

- Proof (not covered)
- Intuition

The theorem often confirms a graph's non-planarity by identifying a subgraph contractible to  $K_5$  or  $K_{3,3}$ .



### Cycle Method for Planarity Testing

- The Cycle Method is a heuristic algorithm used to test whether a given graph is planar.
- It is applicable to small graphs with a Hamiltonian cycle, providing a quick and intuitive planarity test.
- Steps of the Cycle Method
  - 1. Find a Hamiltonian cycle C in the graph G.
  - 2. Draw C as a regular polygon and list the remaining edges.
  - 3. Divide the remaining edges into two sets, A and B:
    - 1. A: Edges that can be drawn inside C without crossing.
    - 2. B: Edges that can be drawn outside C without crossing.
  - 4. If it is possible to allocate all remaining edges to A and B without crossings, G is planar.
    - 1. Use sets A and B to obtain a plane drawing of G.
  - 5. If it is not possible to allocate the remaining edges without crossings, G is non-planar.
- Incompatibility of edges
  - Incompatible edges cannot both be drawn inside C or both be drawn outside C without crossings.
  - Compatible edges can be drawn inside or outside C without crossings.





gi

• A = {ac}

• ah

- We put incompatible with A in B
- B = { bd, bg, bi}







- B = { bd, bg, bi}
- We add incompatible edges with B in A
- A = {ac, ad, ae, eh, fh, ah}







- A = {ac, ad, ae, eh, fh, ah}
- We add incompatible edges with A in B
- B = { bd, bg, bi,df,gi}





df

• ad eh

• ae fh

• ah gi

- A = {ac, ad, ae, eh, fh, ah}
- We add incompatible edges with A in B
- B = { bd, bg, bi,df,gi}







#### Faces in planar graph

 Any plane drawing of planar graph G divides the set of points of the plane into regions, called faces.

• One face is unbounded and called **infinite** face.

#### • Example:

- Faces of the  $K_4: f_1, f_2, f_3, f_4$ .
- $f_4$  is infinite face.



#### Degree of face

• The degree of f, denoted by deg(f), is the number of edges encountered in a walk around the boundary of the face f.

• 
$$deg(f_1) = 3$$

• 
$$deg(f_2) = 3$$

• 
$$deg(f_3) = 3$$

• 
$$deg(f_4) = 3$$



#### Degree of face

• The degree of f, denoted by deg(f), is the number of edges encountered in a walk around the boundary of the face f.

- $deg(f_1) = 3$
- $deg(f_2) = 5$
- $deg(f_3) = 3$
- $deg(f_4) = 5$



#### Handshaking Lemma for Faces

• In any plane drawing of a planar graph, the sum of all the face degrees is equal to twice the number of edges.

$$\sum \deg(f_i) = 2 \times |E(G)|$$

#### **Proof**

- In any plane drawing of a planar graph, each edge has two sides:
  - The edge may lie on the boundary of a single face.
  - The edge can be in the boundaries of two different faces.
- Each edge contributes exactly 2 to the sum of the face degrees.

### THEOREM 4 (Euler. 1750)

Let G be a plane drawing of a connected planar graph and let n, m and f denote respectively the number of vertices, edges and faces of G.

Then

$$n-m+F=2$$

• n - m + F = 2 is called Euler's Formula.

#### Proof of Euler's Formula

- Proof by induction on the number of edges (m) in graph G.
- Base Case
  - If m=0, then n=1 (as G is connected) and F=1 (the infinite face). Hence, the theorem holds true.
- Inductive Step
  - Assume the theorem holds for all plane graphs with at most m-1 edges.
- Consider G, a plane graph with m edges.
  - If G is a tree, then m = n 1 and F = 1, satisfying n m + F = 2.
  - If G is not a tree, choose an edge (e) in some cycle of G.
  - The graph G-e is connected, with n vertices, m-1 edges, and F-1 faces.
- By the induction hypothesis, we can write: n (m 1) + (F 1) = 2.
- Hence, simplifying, we obtain: n m + F = 2, which completes the proof.

| Graph                       | n | m | F | N-m+F |
|-----------------------------|---|---|---|-------|
| Octahedron                  |   |   |   |       |
| $W_6$                       |   |   |   |       |
| $K_{2,6}$                   |   |   |   |       |
| $4 \times 4$ square lattice |   |   |   |       |











| Graph                       | n  | m  | F  | N-m+F |
|-----------------------------|----|----|----|-------|
| Octahedron                  | 6  | 12 | 8  | 2     |
| $W_6$                       | 6  | 10 | 6  | 2     |
| $K_{2,6}$                   | 8  | 12 | 6  | 2     |
| $4 \times 4$ square lattice | 25 | 40 | 17 | 2     |











#### COROLLARY 1

• If G is a simple connected planar graph With  $n \geq 3$  vertices and m edges. then  $m \leq 3n - 6$ .

• If, in addition, G has no triangles then

$$m \leq 2n - 4$$
.

#### **Significance**

 This corollary can be utilized to identify non-planar graphs, eliminating the need for the number of faces.

## Proof $(m \le 3n - 6)$

- If a planar graph has m edges and F faces.
- $\sum \deg(f_i) = 2m$  (Handshaking Lemma for Faces)
- $deg(f_i) \ge 3$  (Each face is bounded at least by 3 edges)

$$\sum \deg(f_i) \ge 3F$$

- $2m \geq 3F$
- n m + F = 2
- 3F = 6 3n + 3m
- $6 3n + 3m \le 2m$

$$m \leq 3n - 6$$

## Proof $(m \leq 2n - 4)$

- If the a planar graph has m edges and F faces.
- $\sum \deg(f_i) = 2m$  (Handshaking Lemma for Faces)
- $\deg(f_i) \ge 4$  (no triangle in the graph)

$$\sum \deg(f_i) \ge 4F$$

- $2m \ge 4F$
- n m + F = 2
- 4F = 8 4n + 4m
- $8 4n + 4m \le 2m$

$$m \leq 2n - 4$$

### Proof of Theorem 1

The graphs  $K_5$  and the graph  $K_{3,3}$  are non-planar

#### Proof

- K<sub>5</sub>
  - Number of vertices n = 5
  - Number of edges m = 10
  - $3n-6=9 < m \rightarrow$  The graph is non-planar.
- K<sub>3,3</sub> (absence of triangle)
  - Number of vertices n = 6
  - Number of edges m=9
  - $2n-4=8 < m \rightarrow$  The graph is non-planar.

### COROLLARY 2

Let G be a simple connected planar graph. Then G contains a vertex of degree 5 or less.

Proof

$$d_i \ge 6 \Rightarrow \sum d_i \ge 6n$$

- $\rightarrow 2m \geq 6n$
- $\rightarrow m \geq 3n$
- → m > 3n 6
- $\rightarrow$  Contradiction with  $m \leq 3n-6$

### Dual graph

- Dual graphs capture the relationships between the faces of planar graph.
- Associate each vertex with a face of the original graph.
- Connect the vertices if the corresponding faces share an edge.
- The geometrical dual graph of planar graph is planar



### Dual Graph Construction

• Given a plane drawing of a planar graph G, its geometric dual graph G\* is constructed using the following two stages:

#### 1. Vertices of dual graph

- Inside each face of G, we choose a point  $\boldsymbol{v}^*$ .
- These points will serve as the vertices of G\*.

#### 2. Edges of dual graph

- We connect two vertices  $v^*$  related to the faces sharing an edge e in G by drawing an edge  $e^*$  that only crosses e.
- The edges  $e^*$  represent the edges of the dual graph  $G^*$ .

# Example



# Example





# Examples



### LEMMA 1

• Let G be a connected planer graph with n vertices, m edges and F faces, and let its geometric dual  $G^*$  have  $n^*$  vertices,  $m^*$  edges and  $F^*$  faces. Then

$$oldsymbol{n}^* = oldsymbol{F}, oldsymbol{m}^* = oldsymbol{m}$$
 and  $oldsymbol{F}^* = oldsymbol{n}$  .

### Proof

- $n^* = F$ 
  - The first relation mentioned in the statement is a consequence of the definition of G\*.
- $m^* = m$ 
  - A consequence of the definition of G\*.
  - According to the definition, vertices in G\* are adjacent if the related faces in G share an edge.
  - The number of edges in G\* is determined by the number of shared edges between faces in G.
- $F^* = n$ 
  - By substituting the first two relations into Euler's formula for G and  $G^*$ .

## Is the geometrical dual graph unique?

• Different plane drawings of a planar graph G may give rise to non-isomorphic dual graphs G\*.



## Degrees in dual graph



The degree of a face in graph G corresponds to the degree of the associated vertex in the dual graph G\*.

### Cuteset and cycle in dual graph



A cycle in graph G is equivalent to a cutset in the dual graph G\*.

## Plane graph vs dual graph

| Plane drawing G                 | Dual graph G*                      |
|---------------------------------|------------------------------------|
| Edge of G                       | Edge of G*                         |
| Vertex of degree <b>k</b> in G  | Face of degree <b>k</b> in G*      |
| Face of degree <b>k</b> in G    | a vertex of degree <b>k</b> in G * |
| Cycle of length <b>k</b> in G   | Cutset of G* with k edges          |
| Cutset of G with <b>k</b> edges | Cycle of length <b>k</b> in G*     |

### Theorems and corollaries of dual graph

• The theorems and corollaries of planar graphs remain valid in the dual graph:

Let G\* be a connected planar graph with f faces and m edges, and with no cutest with 1 or 2 edges.

Then 
$$m \leq 3f - 6$$

• Let G\* be a connected planar graph with no cutset with 1 or 2 edges. Then G\* has a face of degree 5 or less.

## Why dual graph is important?

- An abstract dual of a graph G is a graph G\* that:
  - Has a one-to-one correspondence with the edges of G
  - If a set of edges of G forms a cycle in G if and only if the corresponding set of edges of G\* forms a cutset in G\*.



### **THEORME**

A graph is planar if and only if it has an abstract dual.

#### Intuition

- Finding an abstract dual graph indicates planarity.
- A test on the previous slide checks abstract duality without constructing the geometric dual.

### Conclusion

- Planarity in graphs is a fundamental concept in computer science, mathematics, and network design.
- Planar graphs can be visually represented without any edges crossing each other.
- Kuratowski's theorem provides a useful criterion for identifying non-planar graphs by detecting the presence of specific subgraphs.
- Determining planarity involves examining planar embeddings and applying Euler's formula: **V E** + **F** = **2**.
- Duality plays a significant role in understanding the relationships between a graph and its dual representation.
- Abstract dual graphs can be used to test for planarity without constructing the geometrical dual.

### References



