ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ

МЕМ-254 АРІӨМНТІКН ГРАММІКН АЛГЕВРА ХЕІМЕРІЮО Е Ξ АМНОО 2016 ЕРГА Σ ТНРІО 4 29-11-2016

Εκτίμηση του Δείκτη Κατάστασης ενός Πίνακα ως προς την $\|\cdot\|_1$ νορμά

1. Βασικοί ορισμοί. Έστω $n \in \mathbb{N}$. Στα πλαίσια του μαθήματος έχουμε ορίσει την $\|\cdot\|_1$ νόρμα του \mathbb{C}^n ως εξής: $\|x\|_1 := \sum_{i=1}^n |x_i|$ για κάθε $x \in \mathbb{C}^n$. Η παραγόμενη φυσική νόρμα $\|\cdot\|_1$ πινάκων ορίζεται ως εξής:

$$||B||_1 := \sup_{z \in \mathbb{C}^n \setminus \{0\}} \frac{||Bz||_1}{||z||_1} = \sup_{z \in \mathcal{S}} ||Bz||_1 \quad \forall B \in \mathbb{C}^{n \times n},$$

όπου $\mathcal{S}:=\{z\in\mathbb{C}^n:\ \|z\|_1=1\}$, και έχουμε αποδείξει ότι ισχύει ο ακόλουθος τύπος:

(1)
$$||B||_1 := \max_{1 \le j \le n} \sum_{i=1}^n |B_{i,j}| \quad \forall B \in \mathbb{C}^{n \times n}.$$

Επιπλέον, μπορεί να αποδειχθεί ότι:

$$||B||_1 = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Bx||_1}{||x||_1} = \sup_{z \in \widetilde{S}} ||Bz||_1 \quad \forall B \in \mathbb{R}^{n \times n},$$

όπου $\widetilde{\mathcal{S}}:=\{z\in\mathbb{R}^n:\ \|z\|_1=1\}$. Έστω αντιστρέψιμος πίνακας $A\in\mathbb{R}^{n\times n}$. Ο δείκτης κατάστασης του πίνακα A ως προς τη νόρμα $\|\cdot\|_1$ ορίζεται ως εξής:

$$\operatorname{cond}_1(A) := ||A||_1 ||A^{-1}||_1.$$

Ο σκοπός είναι να υπολογίσουμε το δείκτη κατάστασης $\mathrm{cond}_1(A)$ του A ή να τον εκτιμήσουμε.

- 2. Υπολογισμός του $cond_1(A)$.
 - Βήμα 2.1. Υπολογίστε την ποσότητα $b_1 := ||A||_1$ χρησιμοποιώντας τον τύπο (1).
- Βήμα 2.2. Έστω ότι ο πίναχας A^{-1} έχει στήλες $(a_k)_{k=1}^n\subset\mathbb{R}^n$, και $(e_k)_{k=1}^n\subset\mathbb{R}^n$ με $(e_k)_i=\delta_{ki}$ για $i=1,\ldots,n$ και $k=1,\ldots,n$. Επειδή $A^{-1}e_k=a_k$ για $k=1,\ldots,n$, έχουμε

$$(2) Aa_k = e_k, \quad k = 1, \dots, n.$$

Έτσι μπορούμε να βρούμε τις στήλες του πίνακα A^{-1} λύνοντας τα n γραμμικά συστήματα που περιγράφονται στην (2). Τότε υπολογίζουμε την ποσότητα $b_2:=\max_{1\leq k\leq n}\|a_k\|_1$, που είναι ίση με την $\|A^{-1}\|_1$. Υποθέστε ότι ο πίνακας A είναι συμμετρικός και θετικά ορισμένος, και στη συνέχεια χρησιμοποιήστε την ανάλυση Cholesky για να λύσετε τα γραμμικά συστήματα στην (2) και να υπολογίστε το b_2 .

- Βήμα 2.3. Η ποσότητα $c = b_1 b_2$ είναι ο ζητούμενος δείκτης κατάστασης $\operatorname{cond}_1(A)$.
- 3. Η μέθοδος του Hager. Έστω $B \in \mathbb{R}^{n \times n}$ ένας αντιστρέψιμος πίνακας. Ο αλγόριθμος του Hager για την εκτίμηση της νόρμας $\|B\|_1$ έχει ως εξής:
 - Βήμα 3.1. Ορίζουμε $x \in \mathbb{R}^n$ με $x_i = \frac{1}{n}$ για $i = 1, \dots, n$. (Προσέξτε ότι $x \in \widetilde{\mathcal{S}}$ επειδή $\|x\|_1 = 1$).
 - Βήμα 3.2. Στη συνέχεια ορίζουμε διανύσματα $y,w,z\in\mathbb{R}^n$ ως εξής

$$y = Bx,$$

 $w_i = \operatorname{sgn}(y_i), \quad i = 1, \dots, n.$
 $z = B^T w.$

όπου

$$sgn(x) = \begin{cases} 1, & x > 0, \\ -1, & x < 0, \quad \forall x \in \mathbb{R}, \\ 0, & x = 0, \end{cases}$$

 $\mathbf{A}\mathbf{v} \|z\|_{\infty} \leq (z,x)_2$, τότε θέτουμε $\gamma(B) = \|y\|_1$, διαφορετικά θέτουμε $x=e_k$ με $k\in\{1,\ldots,n\}$ τ.ω. $|z_k| = \|z\|_{\infty}$ και επαναλαμβάνουμε τα παραπάνω με τη νέα τιμή για το x. Όταν τερματίσει ο αλγόριθμος το $\gamma(B)$ είναι μια προσέγγιση της $\|B\|_1$.

Χρησιμοποιώντας τον παραπάνω αλγόριθμο μπορούμε να κατασκευάσουμε μια προσέγγιση c του $\operatorname{cond}_1(A)$ ως εξής: $c=\gamma(A)\gamma(A^{-1})$. Υποθέστε ότι ο πίνακας A είναι συμμετρικός και θετικά ορισμένος και χρησιμοποιήστε την ανάλυση Cholesky για να υπολογίσετε τα διανύσματα y και z όταν $B=A^{-1}$. Συγκρίνετε τα αποτελέσματα που παίρνετε με εκείνα που δίνει ο υπολογισμός του δείκτη κατάστασης που περιγράψαμε στην προηγούμενη παράγραφο.

Προσοχή: Ο παραπάνω αλγόριθμος βρίσκει ένα κάτω φράγμα του δείκτη κατάστασης και μπορεί σε ειδικές περιπτώσεις να ειναι μακρυά από την πραγματική τιμή. Το προσδόκομενο όφελος από τον αλγόριθμο Hager είναι η εκτίμηση του δείκτη κατάστασης του A με τη λύση λιγότερων γραμμικών συστημάτων από ότι ο ακριβής υπολογισμός του.

Παράδει γμα.

α) Δοχιμάστε το πρόγραμμά σας με ένα τριδιαγώνιο πίναχα A με διαγώνια στοιχεία $A_{j,j}=4$ για $j=1,\ldots,n$, υπερδιαγώνια στοιχεία $A_{j,j+1}=-1$ για $j=1,\ldots,n-1$, και υποδιαγώνια στοιχεία $A_{j,j-1}=-1$ για $j=2,\ldots,n$.

β) Δοχιμάστε το πρόγραμμά σας με τον πίναχα Hilbert $H^n\in\mathbb{R}^n$ ο οποίος ορίζεται ως εξής: $H^n_{ij}:=\frac{1}{i+j-1}$ για $i,j=1,\ldots,n$.

Γ. Ζουράρης