Анализ априорных распределений в задаче смеси экспертов

Грабовой Андрей Валериевич

Московский физико-технический институт

МФТИ, г. Долгопрудный

Построение ансамбля локальных моделей

Цель: предложить метод построения ансамбля локально аппроксимирующих локальных моделей для поиска окружностей на изображении.

Задачи

- Предложить метод поиска окружности при помощи линейной модели, для поиска нескольких окружностей предложить метод построения смеси локальных аппроксимирующих моделей.
- Предложить априорные распределения на параметры локальных моделей.

Исследуемая проблема

• Снижение размерности пространства описаний изображения.

Метод решения

В качестве мультимодели предлагается использовать смесь экспертов. Для повышения качества мультимодели предлагается ввести априорные распределения параметров локальных моделей. Вводится *регуляризация* априорных распределений для учета взаимосвязи между априорными распределениями разных локальных моделей смеси.

Список литературы

- Yuksel Seniha Esen, Wilson Joseph N., Gader Paul D Twenty Years of Mixture of Experts // IEEE Transactions on Neural Networks and Learning Systems. 2012. Issues. 23, No 8. pp. 1177–1193.
- A. P. Dempster, N. M. Laird and D. B. Rubin Maximum Likelihood from Incomplete Data via the EM Algorithm // Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1 pp. 1-38, 1977.
- Bishop C. Pattern Recognition and Machine Learning. Berlin: Springer, 2006.
 758 p.
- I. Matveev Detection of iris in image by interrelated maxima of brightness gradient projections // Appl.Comput. Math. 9 (2), 252–257, 2010.
- $\ \, \textbf{6} \,$ K. Bowyer, K. Hollingsworth, P. Flynn A Survey of Iris Biometrics Research: 2008–2010.

Постановка задачи нахождения параметров окружностей

Задано бинарное изображение:

$$\mathbf{M} \in \{0,1\}^{m_1 \times m_2},$$

где 1 — черная точка, 0 — белая точка фона. По изображению ${\bf M}$ строится выборка ${\bf C}$:

$$\mathbf{C} \in \mathbb{R}^{N \times 2}$$
,

где N — число черных точек на изображении ${f M}.$

Пусть x_0, y_0 — центр окружности, которую требуется найти, а r ее радиус. Точки $(x_i, y_i) \in \mathbf{C}$ должны удовлетворять уравнению окружности:

$$(x_i - x_0)^2 + (y_i - y_0)^2 = r^2 \Rightarrow (2x_0) \cdot x_i + (2y_0) \cdot y_i + (r^2 - x_0^2 - y_0^2) \cdot 1 = x_i^2 + y_i^2$$

Задачу линейной регрессии для нахождения окружности:

$$\mathbf{X}\mathbf{w} \approx \mathbf{y}, \quad \mathbf{X} = [\mathbf{C}, \mathbf{1}], \quad \mathbf{y} = [x_1^2 + y_1^2, x_2^2 + y_2^2, \cdots, x_N^2 + y_N^2]^\mathsf{T},$$

где найденые оптимальные параметры линейной регрессии $\mathbf{w} = \begin{bmatrix} w_1, w_2, w_3 \end{bmatrix}^\mathsf{T}$ восстанавливают параметры окружности:

$$x_0 = \frac{w_1}{2}, \quad y_0 = \frac{w_2}{2}, \quad r = \sqrt{w_3 + x_0^2 + y_0^2}.$$

Универсальная модель-ансамбль: смесь экспертов

Задана выборка:

$$\mathbf{X} \in \mathbb{R}^{N \times n}$$
,

где N — число объектов в выборке, а n — размерность признакового пространства.

Definition

Смесь экспертов — мультимодель, определяющая правдоподобие веса π_k каждой локальной модели \mathbf{f}_k на признаковом описании объекта \mathbf{x} .

$$\hat{\mathbf{f}} = \sum_{k=1}^{K} \pi_k \mathbf{f}_k, \qquad \pi_k \left(\mathbf{x}, \mathbf{V} \right) : \mathbb{R}^{n \times |\mathbf{V}|} \to [0, 1], \qquad \sum_{k=1}^{K} \pi_k \left(\mathbf{x}, \mathbf{V} \right) = 1,$$

где $\hat{\mathbf{f}}$ — мультимодель, а \mathbf{f}_k является локальной моделью, π_k — шлюзовая функция, \mathbf{w}_k — параметры k-й локальной модели, \mathbf{V} — параметры шлюзовой функции.

В качестве локальных моделей \mathbf{f}_k и шлюзовой функции π рассматриваются следующие функции:

$$\mathbf{f}_{k}\left(\mathbf{x}\right) = \mathbf{w}_{k}^{\mathsf{T}}\mathbf{x}, \quad \boldsymbol{\pi}\left(\mathbf{x}, \mathbf{V}\right) = \operatorname{softmax}\left(\mathbf{V}_{1}^{\mathsf{T}}\boldsymbol{\sigma}\left(\mathbf{V}_{2}^{\mathsf{T}}\mathbf{x}\right)\right),$$

где $\mathbf{V} = \{\mathbf{V}_1, \mathbf{V}_2\}$ — параметры шлюзовой функции.

Оптимизация параметров

Параметры локальных моделей оптимизируются согласно принципу максимального правдоподобия модели:

$$p(\mathbf{y}, \mathbf{W} | \mathbf{X}, \mathbf{V}) = \prod_{k=1}^{K} p^{k}(\mathbf{w}_{k}) \prod_{i=1}^{N} \left(\sum_{k=1}^{K} \pi_{k} p_{k}(y_{i} | \mathbf{w}_{k}, \mathbf{x}_{i}) \right),$$

где $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_K]^\mathsf{T}$.

Задача оптимизации параметров локальных моделей и параметров смеси:

$$\hat{\mathbf{W}}, \hat{\mathbf{V}} = \arg \max_{\mathbf{W}, \mathbf{V}} p(\mathbf{y}, \mathbf{W} | \mathbf{X}, \mathbf{V}).$$

Рассматривается вероятностная постановка задачи:

- 1) правдоподобие выборки $p_k\left(y_i|\mathbf{w}_k,\mathbf{x}_i\right) = \mathcal{N}\left(y_i|\mathbf{w}_k^\mathsf{T}\mathbf{x}_i,\beta^{-1}\right)$, где β уровень шума,
- 2) априорное распределение параметров $p^k\left(\mathbf{w}_k\right) = \mathcal{N}\left(\mathbf{w}_k|\mathbf{w}_k^0, \mathbf{A}_k\right)$, где \mathbf{w}_k^0 вектор размера $n \times 1$, \mathbf{A}_k ковариационная матрица параметров,
- 3) регуляризация априорного распределения $p\left(\boldsymbol{\varepsilon}_{k,k'}|\boldsymbol{\alpha}\right) = \mathcal{N}\left(\boldsymbol{\varepsilon}_{k,k'}|\mathbf{0},\boldsymbol{\Xi}\right),$ где $\boldsymbol{\Xi}$ ковариационная матрица общего вида, $\boldsymbol{\varepsilon}_{k,k'} = \mathbf{w}_k^0 \mathbf{w}_{k'}^0.$

ЕМ-алгоритм для решения задачи смеси экспертов

Правдоподобие модели включает правдоподобие выборки, априорное распределение параметров, а также их регуляризацию

$$p(\mathbf{y}, \mathbf{W}|\mathbf{X}, \mathbf{V}, \mathbf{A}, \mathbf{W}^{0}, \mathbf{\Xi}, \beta) = \prod_{k,k'=1}^{K} \mathcal{N}\left(\boldsymbol{\varepsilon}_{k,k'}|\mathbf{0}, \mathbf{\Xi}\right) \cdot \prod_{k=1}^{K} \mathcal{N}\left(\mathbf{w}_{k}|\mathbf{w}_{k}^{0}, \mathbf{A}_{k}\right) \prod_{i=1}^{N} \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(y_{i}|\mathbf{w}_{k}^{\mathsf{T}}\mathbf{x}_{i}, \beta^{-1}\right)\right),$$

где $\mathbf{A}=\left\{\mathbf{A}_1,\cdots,\mathbf{A}_K\right\}$. Введем скрытые переменные $\mathbf{Z}=[z_{ik}]$, где $z_{ik}=1$ тогда и только тогда, когда $k_i=k$:

$$\begin{split} \log p \left(\mathbf{y}, \mathbf{Z}, \mathbf{W} | \mathbf{X}, \mathbf{V}, \mathbf{A}, \mathbf{W}^{0}, \mathbf{\Xi}, \boldsymbol{\beta} \right) &= \\ &= \sum_{i=1}^{N} \sum_{k=1}^{K} z_{ik} \left[\log \pi_{k} \left(\mathbf{x}_{i}, \mathbf{V} \right) - \frac{\beta}{2} \left(y_{i} - \mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}_{i} \right)^{2} + \frac{1}{2} \log \frac{\beta}{2\pi} \right] + \\ &+ \sum_{k=1}^{K} \left[-\frac{1}{2} \left(\mathbf{w}_{k} - \mathbf{w}_{k}^{0} \right)^{\mathsf{T}} \mathbf{A}_{k}^{-1} \left(\mathbf{w}_{k} - \mathbf{w}_{k}^{0} \right) + \frac{1}{2} \log \det \mathbf{A}_{k}^{-1} - \frac{n}{2} \log 2\pi \right] + \\ &+ \sum_{k=1}^{K} \sum_{k=1}^{K} \left[-\frac{1}{2} \left(\mathbf{w}_{k}^{0} - \mathbf{w}_{k'}^{0} \right)^{\mathsf{T}} \hat{\boldsymbol{\alpha}}^{-1} \left(\mathbf{w}_{k}^{0} - \mathbf{w}_{k'}^{0} \right) + \frac{1}{2} \log \det \mathbf{\Xi} - \frac{n}{2} \log 2\pi \right]. \end{split}$$

ЕМ-алгоритм для решения задачи смеси экспертов

Е и М шаги алгоритма имеют следующий вид:

Задача оптимизации параметров локальных моделей и параметров смеси принимает следующий вид:

$$\mathbf{W}, \mathbf{Z}, \mathbf{V}, \mathbf{W}^0, \mathbf{A}, \boldsymbol{\beta} = \arg \max_{\mathbf{W}, \mathbf{Z}, \mathbf{V}, \mathbf{W}^0, \mathbf{A}, \boldsymbol{\beta}} \log p \big(\mathbf{y}, \mathbf{Z}, \mathbf{W} | \mathbf{X}, \mathbf{V}, \mathbf{A}, \mathbf{W}^0, \mathbf{\Xi}, \boldsymbol{\beta} \big).$$

Для оптимизации используется вариационный ЕМ–алгоритм с аппроксимацией среднего поля $q\left(\mathbf{Z},\mathbf{W}\right)=q\left(\mathbf{Z}\right)q\left(\mathbf{W}\right)$.

1 Е-шаг:

$$\log q\left(\mathbf{Z}^{s}\right) \propto \mathsf{E}_{q/\mathbf{Z}} \log p\left(\mathbf{y}, \mathbf{Z}, \mathbf{W} | \mathbf{X}, \mathbf{V}^{s-1}, \mathbf{A}^{s-1}, \mathbf{W}^{0, s-1}, \mathbf{\Xi}, \boldsymbol{\beta}^{s-1}\right),$$
$$\log q\left(\mathbf{W}^{s}\right) \propto \mathsf{E}_{q/\mathbf{W}} \log p\left(\mathbf{y}, \mathbf{Z}, \mathbf{W} | \mathbf{X}, \mathbf{V}^{s-1}, \mathbf{A}^{s-1}, \mathbf{W}^{0, s-1}, \mathbf{\Xi}, \boldsymbol{\beta}^{s-1}\right),$$

2 М-шаг:

$$\mathbf{W}^{0,s}, \mathbf{A}^{s}, \mathbf{V}^{s}, \boldsymbol{\beta}^{s} = \arg\max_{\mathbf{W}^{0}, \mathbf{A}, \mathbf{V}, \boldsymbol{\beta}} \mathsf{E}_{q^{s}} \log p(\mathbf{y}, \mathbf{Z}, \mathbf{W} | \mathbf{X}, \mathbf{V}, \mathbf{A}, \mathbf{W}^{0}, \mathbf{\Xi}, \boldsymbol{\beta}),$$

где s — номер итерации.

ЕМ-алгоритм для решения задачи смеси экспертов

Итерационные формулы ЕМ-алгоритма:

Е-шаг:

$$p(z_{ik} = 1) = \frac{\exp\left(\log \pi_k(\mathbf{x}_i, \mathbf{V}) - \frac{\beta}{2} \left(\mathbf{x}_i^\mathsf{T} \mathsf{E} \mathbf{w}_k \mathbf{w}_k^\mathsf{T} \mathbf{x}_i - \mathbf{x}_i^\mathsf{T} \mathsf{E} \mathbf{w}_k\right)\right)}{\sum_{k'=1}^K \exp\left(\log \pi_{k'}(\mathbf{x}_i, \mathbf{V}) - \frac{\beta}{2} \left(\mathbf{x}_i^\mathsf{T} \mathsf{E} \mathbf{w}_{k'} \mathbf{w}_{k'}^\mathsf{T} \mathbf{x}_i - \mathbf{x}_i^\mathsf{T} \mathsf{E} \mathbf{w}_{k'}\right)\right)},$$

$$q(\mathbf{w}_k) = \mathcal{N}(\mathbf{w}_k | \mathbf{m}_k, \mathbf{B}_k),$$

$$\mathbf{m}_k = \mathbf{B}_k \left(\mathbf{A}_k^{-1} \mathbf{w}_k^0 + \beta \sum_{i=1}^N \mathbf{x}_i y_i \mathsf{E} z_{ik}\right), \quad \mathbf{B}_k = \left(\mathbf{A}_k^{-1} + \beta \sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \mathsf{E} z_{ik}\right)^{-1}.$$

2 М-шаг:

$$\begin{split} \mathbf{A}_k &= \mathsf{E}\mathbf{w}_k \mathbf{w}_k^\mathsf{T} - \mathbf{w}_k^0 \mathsf{E}\mathbf{w}_k^\mathsf{T} - \mathsf{E}\mathbf{w}_k \mathbf{w}_k^{0\mathsf{T}} + \mathbf{w}_k^0 \mathbf{w}_k^{0\mathsf{T}}, \\ \frac{1}{\beta} &= \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K \left[y_i^2 - 2y_i \mathbf{x}_i^\mathsf{T} \mathsf{E}\mathbf{w}_k + \mathbf{x}_i^\mathsf{T} \mathsf{E}\mathbf{w}_k \mathbf{w}_k^\mathsf{T} \mathbf{x}_i \right] \mathsf{E}z_{ik}, \\ \mathbf{w}_k^0 &= \left[\mathbf{A}_k^{-1} + (K-1) \, \mathbf{\Xi} \right]^{-1} \left(\mathbf{A}_k^{-1} \mathsf{E}\mathbf{w}_k + \mathbf{\Xi} \sum_{k'=1, \ k' \neq k}^K \mathbf{w}_{k'}^0 \right), \\ \mathbf{V} &= \arg \max_{\mathbf{V}} \mathsf{E}_{q^s} \log p \big(\mathbf{y}, \mathbf{Z}, \mathbf{W} | \mathbf{X}, \mathbf{V}, \mathbf{A}, \mathbf{W}^0, \mathbf{\Xi}, \beta \big). \end{split}$$

Вычислительный эксперимент

Вычислительный эксперимент делится на следующие этапы:

- Анализ синтетических данных с разным типом шума в изображении;
- Анализ изменения параметров локальных моделей во время обучения;
- Анализ мультимоделей в зависимости от уровня шума в изображении;
- Анализ качества модели на реальных данные.

Гиперпараметры заданы следующим образом:

 Априорные распределения на параметры локальных моделей в эксперименте задано следующим образом:

$$p^{1}\left(\mathbf{w}_{1}\right) \sim \mathcal{N}\left(\mathbf{w}_{1}^{0}, \mathbf{I}\right), \quad p^{2}\left(\mathbf{w}_{2}\right) \sim \mathcal{N}\left(\mathbf{w}_{2}^{0}, \mathbf{I}\right),$$

где
$$\mathbf{w}_1^0 = [0, 0, 0.1], \ \mathbf{w}_2^0 = [0, 0, 2].$$

Параметр регуляризации:

$$\mathbf{\Xi} = \begin{bmatrix} 0.01 & 0 & 0 \\ 0 & 0.01 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

что указывает на концентричность окружностей.

Синтетические данные с разным типом шума в изображении

Параметры локальных моделей в процессе обучения

Обучения на синтетических данных

Регуляризация априорных распределений

С заданием априорного распределения на модели

Без задания априорного распределения

Анализ мультимоделей в зависимости от уровня шума

Результаты на реальных данных

-2

-1

Ó

(d) С заданием априорного

распределения на модели

-1.5

-1.5 -2

-1

(с) Без задания априорного

распределения

-1.5

-2

-1

Ó

(е) Регуляризация

априорных распределений

Обучения на реальных данных

Регуляризация априорных распределений

С заданием априорного распределения на модели

Без задания априорного распределения

Вывод

Сделано:

- Предложен метод поиска окружностей на бинарном изображении с различными априорными предположениями.
- Введено понятие регуляризации априорных распределений для улучшения качества мультимодели.
- В эксперименте показано, что задания регуляризации позволяет улучшить качество и устойчивость модели.

Планируется:

- Улучшить мультимодель при помощи задания априорного распределения на шлюзовую функцию.
- Рассмотреть в качестве локальных моделей не только модели, которые описывают данные, а также модель, которая отвечает за шум в данных.
- Расширить класс локальных моделей с окружности до произвольной кривой второго порядка.