Big Data Analytics Programming

Week-08. Anomaly Detection

Anomaly DetectionOverview

- Anomaly란?
- 전통적인 접근 법
- DNN 기반의 접근법

이상치만?

Anomaly 이상치의 정의

- 대부분의 데이터와 **다른** 희귀 데이터
 - Novelty, Outlier로도 불리울수 있지만, 약간의 뉘앙스 차이가 존재
 - Novelty: 같은 부류지만 이전에 본적이 없는 (Unseen)
 - Novelty Detection: 지금까지는 등장하지 않았지만, 충분히 등장 할 수 있는 sample 찾는 것
 - Outlier: 전혀 관련이 없는
 - Outlier Detection: 등장할 가능성이 데이터에 오염이 발생했을 가능 성이 있는 sample을 찾는 것

AnomalyData point of view

Point anomaly

- 데이터 셋 하나가 이상
- 독립적으로 여러개
- 일반적인 Outlier (정상 데이터 범위 내에 없는)

Collective anomaly

- 데이터 셋 내의 여러 관련된/연결된 데이터셋이 이상
- 다른 특성과의 관계가 깨져버린 상황

Contextual anomaly

• 전체적인 데이터셋의 맥락을 고려했을 때 이상

(c) Point, Contextual and Collective Anomalies [10]

Anomaly Detection

Anomaly Detection은 어디에 쓸 수 있을까?

- 사례
 - 신용 카드 사기 탐지
 - 통신 사기 탐지
 - 네트워크 침입 탐지, 결함 탐지
 - Video Surveillance
 - 제조업 공정과정에서 이상탐지

(a) Illegal Traffic Flow detection

(b) Detecting Retinal Damage

(c) Cyber-Network Intrusion detection

Chalapathy, Raghavendra, and Sanjay Chawla. "Deep learning for anomaly detection: A survey." arXiv preprint arXiv:1901.03407 (2019).

Anomaly Detection

Anomaly Detection의 접근법

- 정상/비정상 Label이 주어진 경우
- 지도학습이므로 정확도가 높은편
- ■일반적으로 비정상샘플이 정상샘플에 비해 적으므로 Class-Imbalance 문제에 직면 합
- 정상/비정상 Label이 주어진 경우
- 정상 샘플만을 갖고 학습하여, 정상의 범주 (boundary) 를 결정
- 정상 샘플만을 활용하기 때문에, Class-Imbalance 문제에 직면하지 않음
- 지도 이상 탐지에 비해 **성능이 떨어짐**

- Label 없이 모두 정상이라고 가정
- 클러스터링 및 거리 기반의 비지도학습 알 고리즘 사용
- PCA나 AutoEncoder를 이용하여, 원본과 복원본을 비교하여 차이를 기준으로 판별하는 방법도 많이 쓰임
- 정확도가 높지 않고, hyperparameter에 의해 영향을 많이 받음

Anomaly Detection

Anomaly Detection의 접근법

Conventional Techniques

Box Plot

박스플롯을 활용한 통계적인 접근

 만약 어떤 데이터가 특정 확률 분포를 따른다고 가정 했을때, 대부분의 데이터들이 일정 영역 안에 들어온다면,
그 영역 밖에 존재하는 데이터는 이상치라고 판단한다.

- Box plot에서의 이상치 범위는 :
 - Q1-1.5 x IQR 과 Q3+1.5 x IQR
- 정규분포에서의 이상치 범위(3시그마 규칙):
 - 평균에서 양쪽 끝 3시그마(표준편차)의 범위에 99.7%의 값이 들어간다

DBSCAN

밀도기반 클러스터링 (Unsupervised)

- 데이터의 분포와 밀도를 고려하여 클러스터를 구성
- 클러스터링에 사용되었지만, 과정 중에 이상치를 탐색 가능
- 이상 데이터의 기준: 핵심 및 외각 데이터에 속하지 못한 데이터

Local Outlier Factor

지역의 밀도를 같이 고려하자

- 기존 밀도기반 알고리즘들의 한계
 - 밀도가 상이한 클러스터가 존재하는 경우 파라미터를 결정하기 가 어렵다 (우상단 그림)
 - 반경, 반경 내 속해야하는 데이터 포인트의 수
- 구성요소
 - k_distance(p): k 번째로 가까운 데이터와의 거리
 - reachability distance(p,o) : 주변 데이터 o를 고려한 거리
 - reachability-distance_k(A,B)=max{k-distance(B), d(A,B)}
 - **local reachability density(p)** : p주변의 k-neighbor들과 의 reach dist의 역수

$$\operatorname{Ird}_{k}(A) := 1/\left(\frac{\sum_{B \in N_{k}(A)}\operatorname{reachability-distance}_{k}(A, B)}{|N_{k}(A)|}\right)$$

Local Outlier Factor(p) :

$$LOF_k(A) := \frac{\sum_{B \in N_k(A)} \frac{lrd_k(B)}{lrd_k(A)}}{|N_k(A)|} = \frac{\sum_{B \in N_k(A)} lrd_k(B)}{|N_k(A)| \cdot lrd_k(A)}$$

- LOF(k) ~ 1 means Similar density as neighbors,
- LOF(k) < 1 means Higher density than neighbors (Inlier),
- LOF(k) > 1 means Lower density than neighbors (Outlier) Dim. 2 100 _ ___

One-Class SVM

정상의 Boundary를 구할 수 있다면?

Support Vector Machine

- Margin이 최대가 되는 경계면(hyperplane)을 찾는 방식으로 분류 문제에 활용
- DNN 이전에 가장 많이 쓰이던 모델

One-class SVM

- Unsupervised Learning 또는 Semi-supervised Learning
- 정상 데이터로만 훈련을 진행하므로써, 정상의 **영역**을 계산
 - Finding the smallest hypersphere
- 정상 Boundary의 밖에 위치하는 데이터 포인트들은 이상으로 간주

One-class SVM

13

Isolation Forest

정상에 집중하기 보다 비정상에 집중하는..

Decision Tree

- Feature 단위로 데이터셋을 분류하는 기법
 - If x1>0, if x2=="animal",...

Random Forest

- Decision Tree의 앙상블 버전
- 앙상블 기법: 서로독립적인 모델들의 집단 지성을 이용

Isolation Forest

- Isolation: 'separating an instance from the rest of the instances'
- 비정상적 데이터의 경우 Isolate하는데 더 적은 파티션이 필요
 - Tree기준으로 보면 Root에 더 가깝다.

Other techniques

- Distribution Based
 - Gaussian Mixture Model
 - Elliptic Envelop
- Dimensionality Reduction Based
 - Linear Dimensionality Reduction : PCA
 - Non-linear Dimensionality Reduction : Manifold Learning

Deep Learning for Anomaly Detection

Deep Learning for Anomaly Detection 딥러닝을 활용한 이상탐지

- Why Deep Learning?
 - 딥러닝을 활용하는 다른 분야와 같은 이유
 - 대량의 Feature와 Non-linearty가 존재하는 데이터셋에 대해서 이상탐지를 하기 위해
- How?
 - Auto-encoder Approach
 - One-class Neural networks (OC-NN)

Auto Encoder

인코딩한 것과 디코딩한 것의 차이가 크다면?

Motivation

- DNN을 어떻게 비지도학습에 활용 할 수 있을까?
 - 차원축소
 - Representation

Encoding

- Input to representation
- Decoding
 - Representation to output
- 만약에 X와 X'이 차이가 크다면, 이상치라고 볼 수 있지 않을까?

그림 출처: Improving Unsupervised Defect Segmentation by Applying Structural Similarity To Autoencoders, 2019 arXiv

One-class Neural networks (OC-NN) SVM 대신 Neural Networks로

Motivation

 DNN이 비선형성을 띄는 데이터셋에 잘 동작한다면, SVM 말고, NN을 쓰는게 더 좋지 않을까?

• 동작방식

- 오토인코더 이용한 인코더 확보
- 인코더를 이용해, Input의 차원축소
- 축소된 인풋을 이용해 One-Class 학습

(a) Autoencoder.

(b) One-class neural networks.

E.O.D