同调代数课堂笔记(1)

18-July-2022

同调代数课堂笔记(1)

范畴论简介

加性范畴

Abel 范畴

函子

自然变换

范畴论简介

Def. 范畴 \mathcal{C} 包含三要素

- C 中对象所成的类, 记作 Obj(C).
- $\forall A, B \in \mathsf{Obj}(\mathcal{C})$, $\exists \operatorname{Hom}_{\mathcal{C}}(A, B) \ni A \cong B$ 的态射.
- 对任意 $A, B, C \in \mathsf{Obj}(\mathcal{C})$, 总存在态射的复合

$$\operatorname{Hom}_{\mathcal{C}}(A,B) imes \operatorname{Hom}_{\mathcal{C}}(A,B) o \operatorname{Hom}_{\mathcal{C}}(A,C) \ (f,g) \mapsto gf.$$

Def. 以上定义出的范畴 \mathcal{C} 满足如下公理

- **A1.** 在有意义时总有复合 (fg)h = f(gh).
- A2. 对任意 $A \in \mathsf{Obj}(\mathcal{C})$, 存在 $1_A \in \mathsf{Hom}_{\mathcal{C}}(A,A)$ 使得

$$egin{aligned} orall f \in \operatorname{Hom}_{\mathcal{C}}(\cdot,A), & 1_A f = f. \ orall g \in \operatorname{Hom}_{\mathcal{C}}(A,\cdot), & g1_A = g. \end{aligned}$$

• A3. $\operatorname{Hom}_{\mathcal{C}}(A,B) \cap \operatorname{Hom}_{\mathcal{C}}(C,D) \neq \emptyset$ 若且仅若 $(A=C) \wedge (B=D)$.

Def. 取 $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$, 称

- f 为单的若且仅若对任意 $g,h \in \operatorname{Hom}_{\mathcal{C}}(C,A)$, $fg = fh \Leftrightarrow g = h$.
- f 为满的若且仅若对任意 $g,h \in \operatorname{Hom}_{\mathcal{C}}(A,C), gf = hf \Leftrightarrow g = h.$

Notation. 记 $f: A \rightarrow B$ 为单的 f. 记 $f: A \rightarrow B$ 为满的 f.

Def. 取 $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$, 称 f 为同构 (可逆) 若且仅若存在 $g \in \operatorname{Hom}_{\mathcal{C}}(B, A)$ 使得

$$gf=1_A,\quad fg=1_B.$$

此时称 A 与 B 为同构的.

Examples. 常见范畴如下

范畴	对象 (Obj)	态射 (Mor)
$\mathbb{S}ets$	set	map
$_F \mathbb{L} S$	linear space over F	linear map
$\mathbb{A} G$	Abelian group	group homomorphism
G	group	group homomorphism
$_R\mathcal{M}$	left R -module	module homomorphism
$\mathbb{T}op$	topological space	continuous map
$\mathbb{R}ing$	ring	ring homomorphism

Ex1. $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ 为单且满的 $\Longrightarrow f$ 为同构.

Proof. 一方面, f 为同构时一定存在 f' 使得 $ff' = 1_B$, 从而

$$gf = hf \Leftrightarrow gff' = hff' \Leftrightarrow g = h.$$

得f为满的.同理f为单的.

另一方面, 考虑 Hausdorff 空间与连续映射所成的范畴, 则嵌入 $\mathbb{Q} \to \mathbb{R}$ 为单且满的 (满足左右消去律, 但并非同构).

Ex2. 对 $C = \mathbb{S}ets$, 证明单态射即单射.

Proof. $\forall f \in \operatorname{Hom}_{\mathcal{C}}(A,B), f$ 为单的若且仅若对任意 $g,h \in \operatorname{Hom}_{\mathcal{C}}(C,A)$ 总有

$$g=h\Leftrightarrow fg=fh.$$

f 为单时, 下证明 f 为单设. 若存在不同的 $x_1, x_2 \in A$ 使得 $f(x_1) = f(x_2)$, 考虑 $g \in A$ 别为将一切 C 中元素映至 $x_1 \in x_2$ 的态射即得 f 非单, 矛盾.

f 为单射时, 下证明 f 为单的, 只需证 $fg = fh \implies g = h$. 若存在 $x_0 \in C$ 使得 $fg(x_0) = fh(x_0)$ 而 $g(x_0) \neq f(x_0)$, 则 $g(x_0)$ 与 $h(x_0)$ 在 f 下的像相同, 矛盾!

Example. 称 (X, \leq) 为半序集若且仅若 X 满足自反性 $(x \leq x)$ 与传递性 ($(x \leq y) \land (y \leq z) \implies x \leq z$). 例如整数集关于整除偏序形成半序集, 至少 $-1 \leq 1$ 且 $1 \leq -1$.

记范畴 \mathcal{C} 为半序集 X 与偏序关系 \leq 所成的范畴. 取

- $\mathsf{Obj}(\mathcal{C}) = X$.
- $ullet \operatorname{Hom}_{\mathcal{C}}(x,y) = egin{cases} \{i^x_y\}, & x \leqq y, \ \emptyset, & ext{otherwise.} \end{cases}$
- 态射满足复合关系 $i_z^y i_y^x = i_z^x$.

Example. 称 \mathcal{C} 为小范畴若且仅若 $\mathsf{Obj}(\mathcal{C})$ 为集合 (并非真类).

Def. 称 C^{op} 为 C 的反变范畴, 若且仅若

- $\mathsf{Obj}(\mathcal{C}^{op}) = \mathsf{Obj}(\mathcal{C}).$
- $\operatorname{Hom}_{\mathcal{C}^{op}}(A,B) = \operatorname{Hom}_{\mathcal{C}}(B,A)$. 特别地,

$$f\in \operatorname{Hom}_{\mathcal{C}}(B,A)\Leftrightarrow f^{op}\in \operatorname{Hom}_{\mathcal{C}^{op}}(A,B)$$

 $\bullet \ \ g^{op}f^{op}=(fg)^{op}.$

Prop. $(\mathcal{C}^{op})^{op}=\mathcal{C}.$

Proof. 显然 $\mathsf{Obj}(\mathcal{C}) = \mathsf{Obj}((C^{op})^{op})$. 注意到 $f \mathrel{\vdash} (f^{op})^{op}$ 间存在自然对应, 故 $(\mathcal{C}^{op})^{op} = \mathcal{C}$.

Prop. $f \in \operatorname{Hom}_{\mathcal{C}}(A,B)$ 为单 (满), 若且仅若 f^{op} 为满 (单).

Proof. 注意到

$$(f^{op}g^{op}=f^{op}h^{op})\Leftrightarrow (gf)^{op}=(hf)^{op}\Leftrightarrow gf=hf.$$

反之亦然即可.

Def. 称 $I \in \mathsf{Obj}(\mathcal{C})$ 为起始元, 若 $\mathsf{Hom}_{\mathcal{C}}(I,X)$ 有且仅有一个元素, $\forall X \in \mathsf{Obj}(\mathcal{C})$.

Def. 称 $T \in \mathsf{Obj}(\mathcal{C})$ 为终末元, 若 $\mathsf{Hom}_{\mathcal{C}}(X,T)$ 有且仅有一个元素, $\forall X \in \mathsf{Obj}(\mathcal{C})$.

Def. 称 $Z \in \mathsf{Obj}(\mathcal{C})$ 为零元当且仅当其同为初始元与终末元.

Example. 单元集合为 Stes 中的终末元. Sets 中无初始元.

Example. 0 为 $\mathbb{A}G$ 中的零元; (\mathbb{R}, \leq) 中不含初始元与终末元.

Thm. C 为含 0 元的范畴. 则

- 1. 对任意给定的零元 x, y = x 同构当且仅当 y 为零元.
- 2. 取 Z 为零元, 记 $\{0_{AZ}\} = \operatorname{Hom}_{\mathcal{C}}(A, Z), \{0_{ZB}\} = \operatorname{Hom}_{\mathcal{C}}(Z, B)$, 复合态射

$$A\stackrel{0_{AZ}}{\longrightarrow} Z\stackrel{0_{ZB}}{\longrightarrow} B$$

与零元之选取无关.

Proof. 对 1., 取任意零元 Z 与 Z', (唯一地) 取 $f:Z\to Z'$, $g:Z'\to Z$. 由于 $fg=1_Z$, $gf=1_{Z'}$, 从而 $Z\cong Z'$. 相反地, 若 A 与零元 Z 同构, 则存在唯一的 $f:A\to Z$, $g:Z\to A$. 因此

$$\operatorname{Hom}_{\mathcal{C}}(C,A)=:\{gh\mid h:C o Z\}$$

为一元集, 即 A 为终末元. 同理, A 为起始元.

对 2., 任取 Z 与 Z', 构造如下交换图

. 易见 $0_{Z'B}0_{AZ'}=(0_{ZB}g)(f0_{AZ})=0_{ZB}(gf)0_{AZ}=0_{ZB}0_{AZ}.$

Def. 对含有零元 Z 的范畴 C, 记 $0_{AB} = 0_{ZB}0_{AZ}$ 为 $\operatorname{Hom}_{\mathcal{C}}(A,B)$ 中的零态射.

Prop. \mathcal{C} 为有零元的范畴, 取 $f:A\to B, g:B\to C$. 若 f=0 或 g=0, 则 gf=0.

Proof. 不妨设 Z 为零元,则 f=0 时

$$gf = g0_{AB} = (g0_{ZB})0_{AZ} = 0_{ZC}0_{AZ} = 0_{AC}.$$

$$gf = 0_{BC}f = 0_{ZC}(0_{BZ}f) = 0_{ZC}0_{AZ} = 0_{AC}.$$

Def. 记 $\{X_i\}_{i\in I}$ 为一族 \mathcal{C} 中以 I 为指标的对象, 称 X 为 $\{X_i\}_{i\in I}$ 的直积若且仅若存在一族 投影态射 $p_i: X \to X_i$ 使得满足泛性质:

对任意 $Y \in \mathsf{Obj}(\mathcal{C})$, 与态射 $f_i: Y \to X_i$, 存在唯一的 $f: Y \to X$ 使得 $p_i f = f_i$. 常记作 $(X, p_i) =: \prod_{i \in I} X_i$.

Prop. (X, p_i) 与 (X', p_i') 均为 $\{X_i\}_{i \in I}$ 之直积,则 $X \cong X'$.

Proof. 考虑态射 $f: X \to X', g: X' \to X$. 根据直积性质得交换图

. 态射 p_i 与 p_i' 满足 $p_i = p_i(gf)$, $p_i' = p_i'(fg)$. 由唯一性知 $gf = 1_X$, $fg = 1_{X'}$. 从而 X 与 X' 之间存在同构.

Def. 记 $\{X_i\}_{i\in I}$ 为一族 \mathcal{C} 中以 I 为指标的对象,称 X 为 $\{X_i\}_{i\in I}$ 的余直积若且仅若存在一族嵌入态射 $q_i:X_i\to X$ 使得满足泛性质:

对任意 $Y \in \mathsf{Obj}(\mathcal{C})$, 与态射 $g_i: X_i \to Y$, 存在唯一的 $g: X \to Y$ 使得 $gq_i = g_i$. 常记作 $(X, q_i) =: \coprod_{i \in I} X_i$.

Prop. (X,q_i) 与 (X',q_i') 均为 $\{X_i\}_{i\in I}$ 之余直积,则 $X\cong X'$.

Proof. 同"直积在同构意义下唯一"之证明过程.

Prop. \mathcal{C} 中直积 (X, p_i) 等同于 \mathcal{C}^{op} 中余直积 (X, q_i) .

Thm. 记 \mathcal{C} 为含零元的范畴, 则

• 取
$$\prod_{i \in I} X_i$$
,则对任意 $j \in I$,存在唯一的 $f_j: X_j \to X$ 使得 $p_i f_j = \begin{cases} 1_{X_i}, & j = i, \\ 0, & j \neq i. \end{cases}$

此时 p_i 为满的.

• 取
$$\coprod_{i\in I} X_i$$
,则对任意 $j\in I$,存在唯一的 $g_j:X\to X_j$ 使得 $g_jq_i=egin{cases} 1_{X_i},&j=i,\ 0,&j
eq i. \end{cases}$ 此时 p_i 为单的.

Proof. 定义

$$f^i_j: X_i
ightarrow X_j, f^i_j = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

端详下交换图,不难看出唯一的 f_i 与 g_i 即为所得.

Example. 记半序关系所称的范畴 $\mathcal{C} = (\mathbb{R}, \leq)$, 其中

$$\operatorname{Hom}_{\mathcal{C}}(x,y) = egin{cases} \{i^x_y\}, & x \leqq y, \ \emptyset, & ext{otherwise}. \end{cases}$$

则 $\prod_{i\in I} r_i = \inf\{r_i\}_{i\in I}$, $\coprod_{i\in I} r_i = \sup\{r_i\}_{i\in I}$.

Proof. 首先应保证 $\prod_{i \in I} r_i$ 与一切 r_i 可建立态射,从而 $\prod_{i \in I} r_i \leq \inf\{r_i\}_{i \in I}$. 若 $\prod_{i \in I} r_i < \inf\{r_i\}_{i \in I}$,则任取 $r_- \in (\prod_{i \in I} r_i, \inf\{r_i\}_{i \in I})$,总有 $\operatorname{Hom}_{\mathcal{C}}(r_-, \prod_{i \in I} r_i)$ 为空. 因此 r_- 到任意 r_i 的态射为空,矛盾.

余直积同理.

Example. 正整数整除关系所称的范畴 $\mathcal{C} = (\mathbb{Z}_{\geq 1}, |)$ 中, 直积为数组的最大公因数, 余直积为数组的最小公倍数.

加性范畴

Def. 称 \mathcal{C} 为预加性范畴若且仅若其

- 1. 包含零元.
- 2. 一切 $\operatorname{Hom}_{\mathcal{C}}(A,B)$ 均为加法 Abel 群.
- 3. 在定义完备时, 分配律成立.

Def. 称预加性范畴为加性范畴若且仅若其余直积均有限.

Example. $\mathbb{S}ets$ 不是加性范畴. $\mathbb{A}G$ 为加性范畴.

Thm. 记 $\{X_i\}_{i=0}^n\subset \mathsf{Obj}(\mathcal{C}), q_i\in \mathrm{Hom}_{\mathcal{C}}(X_i,X_0)$. 则

- $egin{aligned} &1.\,(X,q_i) = \coprod_{i=1}^n X_i \ \text{当且仅当对任意}\ j \in \{1,2,\ldots,n\}\$ 总有唯一的 $\ p_j: X o X_i$ 使得 $\ p_j q_j = egin{cases} 1_{X_i}, & j = i, \ 0, & j
 eq i. \end{cases}$ 2. 上述 $\ p_i$ 使得 $\ (X,p_i) = \prod_{i=1}^n X_i. \end{cases}$

Proof. 定义
$$f^i_j: X_i o X_j, f^i_j = egin{cases} 1_{X_i}, & j=i, \ 0, & j
eq i. \end{cases}$$

 \Rightarrow : 根据余直和之定义, 存在唯一的 $p_j: X \to X_j$ 使得 $p_j q_i = f_j^i$. 注意到

$$\left(\sum_{j=1}^n q_j p_j
ight) q_i = \sum_{j=1}^n (q_j)(p_j q_i) = q_i, \quad orall i \in I.$$

从而根据余直积之定义, 存在唯一的 $h_i: X \to X$ 使得 $hq_i = q_i$, 从而 $h_i = 1_X = \sum_{j=1}^n q_j p_j$.

 \Leftarrow : $\forall Y \in \mathsf{Obj}(\mathcal{C})$,取态射 $f_i: X_i \to Y$,定义 $f: X \to Y$ 为 $f:=\sum_{j=1}^n f_j p_j$. 注意到

$$fq_i = \sum_{j=1}^n f_j(p_jq_i) = f_i, \quad orall i = 1, 2, \cdots, n.$$

兹有断言: 存在唯一的 $f:X \to Y$ 使得 $fq_i=f_i$. 今取 $g:X \to Y$ 使得 $gq_i=f_i$, 则

$$g=1_X=g\sum_{j=1}^n q_j p_j = \sum_{j=1}^n (gq_j) p_j = \sum_{j=1}^n f_j p_j = f.$$

继而证明上述 p_i 使得 $(X,p_i)=\prod_{i=1}^n X_i$. 对任意态射 $h_i:Y\to X_i$, 记 $h=\sum_{j=1}^n q_j h_j$, 则

$$p_i h = \sum_{i=1}^n (p_i q_j) h_j = h_i.$$

从而存在 h 使得 $p_i h = h_i$. 今证明 h_i 之唯一性, 若 $h': Y \to X$ 同样满足 $p_i h' = h_i$, 则

$$h' = 1_X h' = \left(\sum_{j=1}^n q_j p_j
ight) h' = \sum_{j=1}^n q_j (p_j h') = \sum_{j=1}^n q_j h'_j = h.$$

是以上述 p_i 使得 $(X, p_i) = \prod_{i=1}^n X_i$.

Prop. C 为加性范畴,则 C^{op} 亦然.

Proof. 取 $\{X_i\}_{i=1}^n\subset \mathsf{Obj}(\mathcal{C})$,考虑 $(X,p_i^{op})=\coprod_{i=1}^n X_i$ 即可.

Abel 范畴

Def. 称 $f: A \rightarrow B$ 为加性范畴 \mathcal{A} 中的态射, 定义

- $\ker(f)$ 为态射 $i: K \to A$, 满足 fi=0. 同时对于 $\forall g: X \to A$ 使得 fg=0, 存在唯一的 $\theta: X \to K$ 使得 $g=i\theta$.
- $\operatorname{coker}(f)$ 为态射 $\pi: B \to C$ 使得 $\pi f = 0$. 同时对于 $\forall g: B \to X$ 使得 gf = 0, 存在唯一的 $\theta: C \to X$ 使得 $g = \theta \pi$.

换言之, 使得如下图交换

Prop. $i^{op} = \operatorname{coker}(f^{op}), \pi^{op} = \ker(f^{op}).$

Prop. $\ker(f)$ 与 $\operatorname{coker}(f)$ 唯一.

Proof. 记 $i: K \to A$ 与 $i': K' \to A$ 均为 $\ker(f)$, 则有交换图

. 从而 $\theta\theta'=1_K$, $\theta'\theta=1_{K'}$, 故 $K\cong K'$.

Prop. ker(0) 与 coker(0) 为同构映射.

Proof. 注意到如下交换图

. 其中存在单态射 $A \to K$ 与 $K \to A$ 且其复合为 1_A ,从而 $i:A \to K$ 为同构, $\pi:B \to C$ 为同构.

Thm. $f: A \to B$ 为加性范畴 \mathcal{A} 中的态射.

- 1. 若 $\ker(f)$ 存在,则 f 为单的若且仅若 $\ker(f) = 0$.
- 2. 若 $\operatorname{coker}(f)$ 存在,则 f 为满的若且仅若 $\operatorname{coker}(f) = 0$.

Proof. 若 $\ker(f) = 0$, 取 $g, h: X \to A$ 使得 fg = fh, 则 f(g - h) = 0. 从而存在唯一的 $\theta: X \to K$ 使得 $g - h = 0\theta = 0$. 因此 g = h, 从而 f 为单的.

反之, f 为单的, 则 fi=0 表明 f=0.

Def. 任取 $B \in \text{Obj}(A)$, 考虑态射 $\{(A, f) \mid f : A \to B\}$. 称 (A, f) 与 (A', f') 等价, 若且 仅若存在同构 $\theta : A \to A'$ 使得 $f'\theta = f$.

Def. 等价类 [(A, f)] 为 B 的子对象.

Example. B 的子对象可能仅有 $[(B,1_B)]$.

Def. 任取 $B \in \text{Obj}(A)$, 考虑态射 $\{(f,C) \mid f: B \to C\}$. 称 (f,C) 与 (f',c') 等价, 若且仅 若存在同构 $\theta: C \to C'$ 使得 $\theta f = f'$.

Def. 等价类 [(f,C)] 为 B 的商对象.

Def. 称加性范畴为 Abel 范畴, 若且仅若

- 1. 一切态射存在 ker 与 coker.
- 2. 一切单态射为其 coker 的 ker, 一切满态射为其 ker 之 coker.
- 3. 任意态射 α 可被分解为 $\lambda \sigma$, 其中 σ 为满的且 λ 为单的.

Example. $\mathbb{A}G$ 为 Abel 范畴.

Def. 称 $\mathbb{F}AG$ 为自由 Abel 群范畴, 当且仅当其态射为群同态, 对象为自由 Abel 群 (即有基底, 亦即对 $g \neq e$ 总有 $o(g) = \infty$).

Example. $\mathbb{F}AG$ 并非 Abel 范畴, 至少商群并非都是自由 Abel 群.

Proof. 记 $A=\langle a\rangle, B=\langle b\rangle$ 为自由 Abel 群, 定义 $f:A\to B, f(na)=2nb, \forall n\in\mathbb{Z}$. 显然 f 为单态射但非同构. 若 $\mathbb{F}AG$ 为 Abel 范畴, 今取 $\pi:B\to C$ 为 f 之 coker, 其中 C 为自由 Abel 群, 则 $0=\pi f(a)=\pi(2b)=2\pi(b)\in C$. 由于 C 自由, 从而 $\pi(b)=0$. 是故 $\pi\equiv 0, f$ 为同构, 导出矛盾.

Thm. 若 Abel 范畴中态射同为单与满的,则为同构.

Proof. 取 $\alpha \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ 单且满, 今证明 α 为同构. 注意到

. 显然 $i = \ker(\alpha)$ 等价于 $i = \ker(\sigma)$: 对任意 $g: X \to A$ 使得 $\alpha g = 0$, 存在唯一的 $\theta: X \to K$ 使得 $i\theta = g$; 而 $\lambda \sigma g = 0 = \lambda 0$, 根据单态射性质知 $\sigma g = 0$, 进而 $\ker(\alpha)$ 与 $\ker(\sigma)$ 等价.

同理, 由 $h\lambda\sigma = 0\sigma \Leftrightarrow h\lambda = 0$ 可知 $\operatorname{coker}(\alpha)$ 与 $\operatorname{coker}(\lambda)$ 等价. 由于 $\lambda = \ker(0)$, $\sigma = \operatorname{coker}(0)$ 均为同构, 则 $\alpha = \lambda\sigma$ 为同构.

Def. 记 $\alpha: A \to B$ 为 Abel 范畴中的态射, 记像 $\operatorname{im}(\alpha) := \ker(\operatorname{coker}(\alpha))$.

Prop. α 的像无非分解 $\alpha = \lambda \sigma$ 中的 λ .

Proof. 注意到

$$\ker(\operatorname{coker}(\alpha)) = \ker(\operatorname{coker}(\lambda))$$

= $\ker(\pi)$
= λ .

Def. 称 $A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C$ 为 Abel 范畴中在 B 处正合的列, 若且仅若 $\operatorname{im}(\alpha) = \ker(\beta)$.

Def. 左正合列具有形式 $0 \to A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C$.

Def. 右正合列具有形式 $A \overset{\alpha}{\to} B \overset{\beta}{\to} C \to 0$.

Def. 正合列为左正合且右正合的列.

函子

Def. 称 $F: \mathcal{C} \to \mathcal{D}$ 为范畴间的共变函子, 若且仅若满足

F1. $\forall C \in \mathsf{Obj}(\mathcal{C}), FC \in \mathsf{Obj}(\mathcal{D}).$

F2. $\forall C \in \mathsf{Obj}(\mathcal{C}), F(1_{\mathcal{C}}) = 1_{FC}.$

F3. 若 $f\in \operatorname{Hom}_{\mathcal{C}}(C_1,C_2)$, 则 $Ff\in \operatorname{Hom}_{\mathcal{D}}(FC_1,FC_2)$.

 $\textbf{F4.}\ \forall f\in \operatorname{Hom}_{\mathcal{C}}(C_1,C_2),\ \forall g\in \operatorname{Hom}_{\mathcal{C}}(C_2,C_3),\ F(gf)=FgFf.$

Def. 称 $F: \mathcal{C} \to \mathcal{D}$ 为范畴间的共变函子, 若且仅若满足 **F1-2.** 与

F3'. 若 $f \in \operatorname{Hom}_{\mathcal{C}}(C_1, C_2)$, 则 $Ff \in \operatorname{Hom}_{\mathcal{D}}(FC_2, FC_1)$.

F4'. $orall f \in \operatorname{Hom}_{\mathcal{C}}(C_1,C_2)$, $orall g \in \operatorname{Hom}_{\mathcal{C}}(C_2,C_3)$, F(gf)=FfFg.

Remark. 通常定义函子为共变或反变的.

Example. $\forall A \in \mathsf{Obj}(\mathcal{C})$, 定义 $F : \mathcal{C} \to \mathbb{S}ets$ 为

- $\forall B \in \mathsf{Obj}(\mathcal{C}), FB = \mathsf{Hom}_{\mathcal{C}}(A, B).$
- $\forall \tau: B \to B', F\tau: FB \to FB'$ 满足 $(F\tau)f = \tau f$ 对任意 $f \in FB$ 成立.

此处F为共变函子.

同理, $\forall A \in \mathsf{Obj}(\mathcal{C})$, 定义 $G: \mathcal{C} \to \mathbb{S}ets$ 为

- $\forall B \in \mathsf{Obj}(\mathcal{C}), GB = \mathsf{Hom}_{\mathcal{C}}(B, A).$
- $\forall \tau: B \to B', G\tau: GB' \to GB$ 满足 $(G\tau)f = f\tau$ 对任意 $f \in GB'$ 成立.

此处F为反变函子.

Example. 置 $\mathcal{C} = \mathbb{G}$, $\mathcal{D} = \mathbb{A}G$. 对任意群 G, 定义 $F : \mathcal{C} \to \mathcal{D}$ 满足 FG = G/G', 其中 G' 为换位子群. 则同态 $f : G \to H$ 诱导

此处F为共变函子.

Example. 忘却函子 $F: \mathbb{R}ing \to \mathbb{A}b$ 满足 $F(R,+,\cdot) \to (R,+)$, $F\varphi = \varphi$.

Def. 称范畴 \mathcal{C} 与 \mathcal{D} 间的共变函子 $F:\mathcal{C}\to\mathcal{D}$

• 为满的, 若且仅若 $\forall A, B \in \mathsf{Obj}(\mathcal{C})$, 总有满射

$$F: \operatorname{Hom}_{\mathcal{C}}(A,B) o \operatorname{Hom}_{\mathcal{D}}(FA,FB).$$

• 为忠实的, 若且仅若 $\forall A, B \in \mathsf{Obj}(\mathcal{C})$, 总有单射

$$F: \operatorname{Hom}_{\mathcal{C}}(A,B) o \operatorname{Hom}_{\mathcal{D}}(FA,FB).$$

• 为忠实浸入, 若且仅若 F 为满的, 忠实的, 且作用在对象上为一一的.

Def. 称加性范畴 \mathcal{C} 与 \mathcal{D} 间的函子 $F:\mathcal{C}\to\mathcal{D}$ 为加性函子, 若且仅若

$$F(f+g)=Ff+Fg, \quad orall f,g\in \operatorname{Hom}_{\mathcal{C}}(A,B).$$

Def. 称 Abel 范畴 \mathcal{C} 与 \mathcal{D} 间的加性共变函子 $F: \mathcal{C} \to \mathcal{D}$ 为

- 半正合的, 若且仅若 \mathcal{C} 中正合列 $(0 \to)A \to B \to C(\to 0)$ 推出正合列 $FA \to FB \to FC$.
- 左正合的, 若且仅若 \mathcal{C} 中正合列 $0 \to A \to B \to C(\to 0)$ 推出正合列 $0 \to FA \to FB \to FC$.
- 右正合的, 若且仅若 \mathcal{C} 中正合列 $(0 \to)A \to B \to C \to 0$ 推出正合列 $FA \to FB \to FC \to 0$.
- 正合的, 若且仅若 \mathcal{C} 中正合列 $0 \to A \to B \to C \to 0$ 推出正合列 $0 \to FA \to FB \to FC \to 0$.

此处考虑或忽视括号中内容均可,同为正合性之等价定义.

关于 Abel 范畴上加性反变函子的正合性之序数同理, 此处从略.

自然变换

Def. 取 $E, F: \mathcal{A} \to \mathcal{B}$ 间的共变函子, 自然变换 $\tau: E \to F$ 为一族映射满足 $\tau_A: EA \to FA$, $\forall A \in \mathsf{Obj}(\mathcal{A})$, 使得对任意 $f: A \to A'$ 总有交换图

Def. 若自然变换 τ_A 对 $\forall A \in \mathsf{Obj}(\mathcal{A})$ 均为同构, 则称 τ 为自然同构, 记作 $E \cong F$.

Example. 记 \mathcal{V} 为域 k 上线性空间所成之范畴, $\forall V \in \mathsf{Obj}(\mathcal{V})$, 记 $V^* := \mathsf{Hom}_k(A, k)$ 为对 偶, 同理有 V^{**} . 定义共变函子 $F: \mathcal{V} \to \mathcal{V}$ 满足

- ullet $FV=V^{**}$, $orall V\in \mathsf{Obj}(\mathcal{V})$.
- ullet $Ff=f^{**}:=(f^*)^*$, $orall f\in \operatorname{Hom}_k(V_1,V_2)$.

定义自然变换 $\tau_V: V \to V^{**}$ 为

$$au_V(x)(heta)=: heta(x), \quad orall x\in V, heta\in V^*.$$

容易验证交换图

. 从而 τ 为 $1_{\mathcal{V}}$ 到F的自然变换.

Proof. 实际上对任意 $x\in V_1$, $\theta\in V_2^*$, 总有 $au_{V_2}(1_{\mathcal{V}}f)(x)(\theta)=\theta f(x)$. 注意到 f^* 诱导映射

$$f^*:V_2^* o V_1^*, (heta:V_2 o k)\mapsto heta f,$$

从而
$$(f^*)^* au_{V_1}(x)(heta)= au_{V_1}(x)f^* heta=(f^* heta)x= heta f(x).$$