Leçon 190 : Méthodes combinatoires, problèmes de dénombrement.

Développements :

Nombre de Bell, Nombre d'automorphismes diagonalisables sur un corps fini.

Bibliographie:

Nguyen Maths MPSI (livre jaune). Caldero and Germoni, Histoires hédonistes de groupes et de géométrie . Calais, Théorie des groupes. FGN, Algèbre et Analyse 1. De Biasi

Plan

Soit E, F deux ensembles.

1

1.1 Cardinal d'un ensemble fini [Nguyen]

Définition 1 (Nguyen p.701). On dit que E est fini s'il existe $n \in \mathbb{N}^*$ et une bijection de E dans $[\![1,n]\!]$. Dans ce cas, l'entier n est unique et est appelé cardinal de E. On le note Card(E). Par convention, l'ensemble vide est de cardinal 0.

Proposition 2 (Nguyen p.701). Soit A une partie de E, un ensemble fini, alors

- A est un ensemble fini et $Card(A) \leq Card(E)$.
- A = E si et seulement si Card(A) = Card(E).

Proposition 3 (Nguyen p.701). Soit f une application de E dans F.

- Si f est injective et F fini, alors E est fini et $Card(E) \leq Card(F)$.
- Si f est surjective et E fini, alors F est fini et $Card(E) \ge Card(F)$.
- Si f est bijective et E ou F fini, alors ils sont tous les deux finis et Card(E) = Card(F).

Proposition 4 (Nguyen p.705). Si E est fini et A est une partie de E, alors $Card(E) = Card(A) + Card(A^C)$.

Proposition 5 (Nguyen p.701). Si E et F sont finis alors $E \times F$ est fini et $Card(E \times F) = Card(E) \times Card(F)$.

Proposition 6 (Nguyen p.705). Si E est fini et A est une partie de E, alors $Card(E) = Card(A) + Card(A^C)$.

Corollaire 7 (Nguyen p.702). Si E et F sont finis, alors $E \cup F$ est fini et $Card(E \cup F) = Card(E) + Card(F) - Card(E \cap F)$.

Proposition 8 (Nguyen p.702). Si E et F sont finis, alors l'ensemble des applications de E dans F est de cardinal $Card(F)^{Card(E)}$.

Application 9 (Nguyen p.702). Si E est fini de cardinal n, alors l'ensemble P(E) des parties de E est un ensemble fini, de cardinal 2^n .

Exemple 10 (Nguyen p.705). Il y a $26^3 - 25^3 = 1951$ mots de 3 lettres avec au moins un W.

1.2 Listes [Nguyen]

Ici E est un ensemble fini de cardinal n.

Définition 11 (Nguyen p.702). Une p-liste de E est un p-uplet d'éléments de E.

 $Remarque\ 12$ (Nguyen p.702). L'ordre des éléments compte et il peut y avoir des répétitions.

Exemple 13 (Nguyen p.708). Il y a 63 caractères Braille.

Proposition 14 (Nguyen p.702). Le nombre de p-listes de E est égale à n^p . Le nombre de p-listes de E d'éléments distincts est égal à $\frac{n!}{(n-p)!}$.

Application 15 (Nguyen p.703). Le nombre d'applications injectives d'un ensemble de cardinal p dans un ensemble de cardinal n est $\frac{n!}{(n-p)!}$.

Exemple 16 (Nguyen p.707). Le nombre de podiums possibles dans une finale olympique de 100 mètres, avec 8 coureurs est $8 \times 7 \times 6 = 336$.

Application 17 (Nguyen p.703). Le nombre de permutations de E est n!.

 $Remarque\ 18.$ Dans une permutation, l'ordre des éléments compte, il ne doit pas ya voir de répétition.

1.3 Combinaisons [Nguyen et FGN]

Définition 19 (Nguyen p.703). On appelle p-combinaison de E, toute partie de E à p éléments.

Remarque 20. L'ordre des éléments ne compte pas, il n'y a pas de répétition.

Proposition 21 (Nguyen p.703). Le nombre de p-combinaisons de E est **2.3** égale à $\binom{n}{p}$.

Théorème 22 (Formule de Pascal). [Nguyen p.703] $\forall n \in \mathbb{N}^* \ \forall p \in [1, n-1], \binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$.

Théorème 23 (Formule du binôme de Newton). [Nguyen p.703] $\forall n \in \mathbb{N}^* \ \forall (x,y) \in \mathbb{C}^2, \ (x+y)^n = \sum_{p=0}^n \binom{n}{p} x^p y^{n-p}.$

Corollaire 24. 1. $\forall n \in \mathbb{N}, \sum_{k=0}^{n} {n \choose k} = 2^n$.

2. $\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} \binom{n}{k} (-1)^k = 0.$

Interprétation: [FGN Al 1 p.5]

- 1. $Card(\bigsqcup_{k=0}^n \{F \subseteq E, Card(F) = k\}) = Card(P(E)).$
- 2. $Card(\{F \subseteq E, Card(F) \text{ impair}\}) = Card(\{F \subseteq E, Card(F) \text{ pair}\}).$

2 Outils puissants

2.1 Principe des tiroirs [Nguyen]

Théorème 25 (Principe des tiroirs). [Nguyen p.708] Une application de E dans F, avec Card(E) > Card(F) ne peut pas être injective.

Exemple 26 (Nguyen p.708). Dans un village de 700 habitants, deux personnes au moins ont les mêmes initiales.

2.2 Principe de la somme des parties [Nguyen]

Théorème 27 (Principe de la somme des parties). [Nguyen p.702] Si E est fini. Soient A_1, \dots, A_n , n parties de E deux à deux disjointes et dont la réunion est égale à E, alors $Card(E) = Card(A_1) + \dots + Card(A_n)$.

Corollaire 28 (Lemme des bergers). [Nguyen p.702] Si E est fini et s'écrit comme réunion disjointes de n ensembles de même cardinal p alors Card(E) = np.

<u>Interprétation</u>: Pour compter le nombre de moutons dans son troupeau, un berger allongé dans l'herbe peut compter le nombre de pattes et diviser par 4.

Exemple 29 (Nguyen Ex 23.4). On lance 3 dés à six faces, discernables les uns des autres. Il y a $3^3 + 3^4 = 108$ lancers tels que la somme des trois dés soit paire.

2.3 Principe multiplicatif [Nguyen]

Proposition 30 (Nguyen p.701). $Si E_1, \dots, E_p$ sont des ensembles finis alors $E \times \dots \times E_p$ est fini et $Card(E \times \dots \times E_p) = Card(E_1) \times \dots \times Card(E_p)$.

Exemple 31 (Nguyen p.704). Il y a 8×9^4 nombre de 5 chiffres ne contenant aucun 9.

Exemple 32 (Nguyen p.710). Une urne contient 15 boules numérotées de 1 à 15. Les boules numérotées de 1 à 5 sont blanches, les autres sont noires. Il y a $\binom{5}{2}\binom{10}{3}=1200$ tirages contenant 2 boules blanches et 3 boules noires.

2.4 Crible de Poincarré [Bia p.8]

Théorème 33 (Formule du brible de Poincaré). Soit $(A_i)_{1 \le i \le n}$ une famille de sous ensembles de E. Alors,

$$Card(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i-1 < \dots < i_k \le n} Card(\bigcap_{j=1}^{k} A_{i_j}).$$

Exemple 34.

Application 35.

2.5 Formule d'inversion

2.5.1 Inversion de Möbius [FGN An 1 p.169 mais pas top..]

Définition 36. On appelle fonction de Möbius, la fonction

Lemme 37. μ est multiplicative : Si m et n sont premiers entre eux alors $\mu(nm) = \mu(m)\mu(n)$.

Lemme 38. $\forall n > 1, \sum_{d|n} \mu(d) = 0.$

Théorème 39 (Formule d'inversion de Möbius). Si $a_n = \sum_{d|n} b_d$, alors $b_n = \sum_{d|n} \mu\left(\frac{n}{d}\right) a_d$.

Application 40. On note, pour tout $n \in \mathbb{N}^*$, $\phi(n) = Card(\{m \in \mathbb{N}^*, m \le n \text{ et } pgcd(m,n)=1\})$. Alors, $\phi(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) d$

 $\mbox{\bf Application 41.}$ Nombre de polynômes irréductibles unitaires de Fq de degré n.

2.5.2 Inversion de Pascal [Bia p.15]

Lemme 42.

$$\sum_{k=0}^{p} (-1)^k \binom{n}{k} \binom{n-k}{p-k} = \begin{cases} 1 & si \ p=0 \\ 0 & si \ p \ge 1. \end{cases}$$

Théorème 43 (Inversion de Pascal). Si $a_n = \sum_{k=0}^n \binom{n}{k} b_k$, alors $b_n = \sum_{k=0}^n (-1)^k \binom{n}{k} a_{n-k}$

Application 44. Nb de surjections de [1, n] dans [1, p].

2.6 Séries génératrices [FGN]

2.6.1 Série génératrice classique

Définition 45 (FGN Al 1 p.12). On appelle série génératrice d'une suite $(a_n)_{n\in\mathbb{N}}$, la série entière $\sum_{k=0}^{+\infty} a_k z^k$

Application 46 (Nombre de Catalan). [FGN Al 1 p.12] C_n désigne le nombre d'arbre binaire à n-1 sommets, alors $C_n = \frac{1}{n} \binom{2n-2}{n-1}$.

2.6.2 Série génératrice exponentielle

Définition 47 (FGN Al 1 p.9). On appelle série génératrice exponentielle d'une suite $(a_n)_{n\in\mathbb{N}}$, la série entière $\sum_{k=0}^{+\infty} \frac{a_k z^k}{k!}$

Application 48 (Nombre de dérangements). [FGN Al 1 p.9] Pour tout $n \in \mathbb{N}$, on note D_n le nombre de permutations sans point fixe d'un ensemble à n éléments. Alors $D_n = \left\lfloor \frac{n!}{e} + \frac{1}{2} \right\rfloor$.

Application 49 (Nombre de Bell). [FGN Al 1 p.14] Pour tout $n \in \mathbb{N}^*$, on note B_n le nombre de partitions de l'ensemble [1, n], avec par convention, $B_0 = 1$. Alors $B_n = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{k^n}{k!}$.

3 Utilisation des actions de groupes [Calais et Caldero Germoni]

Lagrange, relation stabilisateur-orbite, formule des classes, formule de Burnside

Lemme 50 (FGN Al 1 p.17). Cardinal de $GL(\mathbb{F}_q)$

Proposition 51 (Caldero Germoni p.284). Nombre d'automorphismes diagonalisables sur un corps fini.