Abstract Algebra Homework 2

Michael Nelson

Throughout this homework, let *R* be a commutative ring.

Problem 1

Proposition 0.1. *Define* $\varphi \colon \mathbb{Z} \to \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ *by*

$$\varphi(a) = (2a, 0)$$

for all $a \in \mathbb{Z}$ and define $\psi \colon \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \to (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ by

$$\psi(a,\overline{a_1},\overline{a_2},\dots)=(\overline{a},\overline{a_1},\overline{a_2},\dots)$$

for all $(a, \overline{a_1}, \overline{a_2}, \dots) \in \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$. Then

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\varphi} \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \xrightarrow{\psi} (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \longrightarrow 0$$
 (1)

is a short exact sequence which does not split, even though we have $\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} = \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$.

Proof. The maps defined above are \mathbb{Z} -linear since each component map is \mathbb{Z} -linear. The map φ is injective since 2 is a nonzerodivisor in \mathbb{Z} , and the map ψ is surjective since the quotient map $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ is surjective. We also have exactness at $\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$. Indeed, let $(a, \overline{a_1}, \overline{a_2}, \dots) \in \ker \psi$. Then

$$0 = \psi(a, \overline{a_1}, \overline{a_2}, \dots)$$

= $(\overline{a}, \overline{a_1}, \overline{a_2}, \dots)$

implies $\overline{a_n} = 0$ for all $n \ge 1$ and a = 2b for some $b \in \mathbb{Z}$. Then

$$(a, \overline{a_1}, \overline{a_2}, \dots) = (2b, 0)$$

= $\varphi(b)$

implies $(a, \overline{a_1}, \overline{a_2}, \dots) \in \operatorname{im} \varphi$. Therefore we have exactness at $\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$, and so (1) is a short exact sequence. Now we show that (1) does not split. Assume for a contradiction that it did split. Then there exists an R-linear map

$$\widetilde{\psi} \colon (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \to \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$$

such that $\psi \widetilde{\psi} = 1$. Let

$$\pi_1 \colon \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \to \mathbb{Z}$$
 and $\pi_2 \colon \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \to (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$

be the natural projection maps and denote $\widetilde{\psi}_1 = \pi_1 \circ \widetilde{\psi}$ and $\widetilde{\psi}_2 = \pi_2 \circ \widetilde{\psi}$ to be the component maps of $\widetilde{\psi}$. Note that $\widetilde{\psi}_1 \colon (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \to \mathbb{Z}$ must be the zero map since 2 is a nonzerodivisor on \mathbb{Z} and $2 \in \text{Ann}((\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}})$. Indeed, we have

$$2\widetilde{\psi}_1((\overline{a_n})) = \widetilde{\psi}_1((\overline{2a_n}))$$

$$= \widetilde{\psi}_1(\overline{0})$$

$$= 0.$$

which implies $\widetilde{\psi}_1((\overline{a_n})) = 0$ for all $(\overline{a_n}) \in (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$. Now let $(\overline{a_n}) \in (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ with $\overline{a_1} = \overline{1}$ and denote $(b_n) = \widetilde{\psi}_2((\overline{a_n}))$. Then

$$(\overline{a_n}) = \psi \widetilde{\psi}((\overline{a_n}))$$

$$= \psi(\widetilde{\psi}_1((\overline{a_n})), \widetilde{\psi}_2((\overline{a_n})))$$

$$= \psi(0, (b_n))$$

$$= (\overline{0}, \overline{b_1}, \overline{b_2}, \dots).$$

This is a contradiction since $\overline{a_1} = \overline{1}$.

Problem 2

Proposition 0.2. Suppose for each $i \in \mathbb{Z}$, suppose we are given short exact sequences of the form

$$0 \longrightarrow K_i \stackrel{\phi_i}{\longrightarrow} M_i \stackrel{\psi_i}{\longrightarrow} K_{i-1} \longrightarrow 0 \tag{2}$$

Then we can splice these short exact sequences together to get a long exact sequence of the form

$$\cdots \longrightarrow M_{i+1} \xrightarrow{\varphi_{i+1}} M_i \xrightarrow{\varphi_i} M_{i-1} \longrightarrow \cdots$$
 (3)

where $\varphi_i = \varphi_{i-1} \circ \psi_i$.

Proof. Let $i \in \mathbb{Z}$. It follows the short exact sequences (2) that

$$\ker \varphi_i = \ker(\varphi_{i-1} \circ \psi_i)$$

$$= \ker \psi_i$$

$$= \operatorname{im} \varphi_i$$

$$= \operatorname{im}(\varphi_i \circ \psi_{i+1})$$

$$= \operatorname{im} \varphi_{i+1}.$$

As i was arbitrary, it follows that (3) is exact.

Corollary. Every long exact of R-modules can be formed by splicing together suitable short exact sequences.

Proof. Let

$$\cdots \longrightarrow M_{i+1} \xrightarrow{\varphi_{i+1}} M_i \xrightarrow{\varphi_i} M_{i-1} \longrightarrow \cdots$$
 (4)

be an exact sequence of *R*-modules. For each $i \in \mathbb{Z}$, we break (4) into short exact sequences of the form

$$0 \longrightarrow \ker \varphi_i \xrightarrow{\iota_i} M_i \xrightarrow{\widetilde{\varphi}_i} \operatorname{im} \varphi_i \longrightarrow 0$$
 (5)

where ι_i is the inclusion map and $\widetilde{\varphi}_i$ is just φ_i but with range im φ_i rather than M_{i-1} . In fact, since $\ker \varphi_{i-1} = \operatorname{im} \varphi_i$, we can rewrite (6) as

$$0 \longrightarrow \ker \varphi_i \xrightarrow{\iota_i} M_i \xrightarrow{\varphi_i} \ker \varphi_{i-1} \longrightarrow 0$$
 (6)

Since $\varphi_i = \iota_{i-1} \circ \widetilde{\varphi}_i$, it follows from Proposition (0.2) that splicing these short exact sequences together gives us our original long exact sequence (4) .

Problem 3

Proposition 0.3. Let K be a field, let V be a vector space of countably infinite dimension over K, and set $A = \operatorname{Hom}_K(V, V)$. Then A is a ring with identity where multiplication is given by function composition. Moreover, A is isomorphic (as an A-module over itself) to $\bigoplus_{i=1}^{n} A$ for every positive integer n.

Proof. We first show that A is a ring with identity. First note that A has the structure of an abelian group where addition is defined pointwise: let φ , $\psi \in A$, then we define $\varphi + \psi \in A$ to be the K-linear map

$$(\varphi + \psi)(v) := \varphi(v) + \psi(v)$$

for all $v \in V$. Addition is associative and commutative since addition in V is associative and commutative. Moreover, the zero map $0: V \to V$ defined by

$$0(v) = 0$$

for all $v \in V$ serves as the identity element. We claim that composition gives the abelian group A a ring structure. Indeed, let $\varphi, \psi, \phi \in A$ and let $v \in V$. Then

$$(\varphi \circ (\psi + \phi))(v) = \varphi((\psi + \phi)(v))$$

$$= \varphi((\psi(v) + \phi(v))$$

$$= \varphi((\psi(v)) + \varphi(\phi(v))$$

$$= (\varphi \circ \psi)(v) + (\varphi \circ \phi)(v).$$

$$= (\varphi \circ \psi + \varphi \circ \phi)(v)$$

and

$$((\varphi + \psi) \circ \phi)(v) = (\varphi + \psi)(\phi(v))$$

$$= \varphi(\phi(v)) + \psi(\phi(v))$$

$$= (\varphi \circ \phi)(v) + (\psi \circ \phi)(v)$$

$$= (\varphi \circ \phi + \psi \circ \phi)(v).$$

and

$$(\varphi \circ (\psi \circ \phi))(v) = \varphi((\psi \circ \phi)(v))$$

$$= \varphi(\psi(\phi(v)))$$

$$= (\varphi \circ \psi)(\phi(v))$$

$$= ((\varphi \circ \psi) \circ \phi)(v)$$

It follows that

$$\varphi \circ (\psi + \phi) = \varphi \circ \psi + \varphi \circ \phi;$$

$$(\varphi + \psi) \circ \phi = \varphi \circ \phi + \psi \circ \phi;$$

$$\varphi \circ (\psi \circ \phi) = (\varphi \circ \psi) \circ \phi.$$

Thus we have left and right distributivity as well as associativity. The identity map $1_V \colon V \to V$, given by $v \mapsto v$, serves as the identity element in A: all $v \in V$ and $\varphi \in A$, we have

$$(1_V \circ \varphi)(v) = 1_V(\varphi(v))$$

$$= \varphi(v)$$

$$= \varphi(1_V(v))$$

$$= (\varphi \circ 1_V)(v).$$

It follows that

$$1_V \circ \varphi = \varphi = \varphi \circ 1_V$$

for all $\varphi \in A$, and hence 1_V is the identity element in A. This establishes our claim that A is a ring with identity. Now we want to prove the "moreover" part of the proposition. First note that it suffices to show that $A \cong A \oplus A$. Indeed if this is the case, then an induction argument would gives us

$$A^{n} = A \oplus A^{n-1}$$

$$\cong A \oplus A$$

$$\cong A.$$

Let $\{e_i\}$ be a countable basis for V. Let $\psi_0 \colon V \to V$ and $\psi_e \colon V \to V$ be the unique linear maps such that

$$\psi_{o}(e_i) = \begin{cases} e_{(i+1)/2} & \text{if } i \text{ is odd.} \\ 0 & \text{if } i \text{ is even.} \end{cases}$$
 and $\psi_{e}(e_i) = \begin{cases} 0 & \text{if } i \text{ is odd.} \\ e_{i/2} & \text{if } i \text{ is even.} \end{cases}$

for all $i \in \mathbb{N}$. We claim that $\{\psi_0, \psi_e\}$ is linearly independent and span $\{\psi_0, \psi_e\} = A$. This will imply $A \cong A \oplus A$. Let us first show that $\{\psi_0, \psi_e\}$ is linearly independent. Suppose we have the relation

$$\varphi_1 \psi_0 + \varphi_2 \psi_e = 0 \tag{7}$$

for some $\varphi_1, \varphi_2 \in A$. If *i* is a positive odd integer, then applying e_i to both sides of (7) gives us

$$\varphi_1(e_{(i+1)/2}) = 0.$$

Similarly, if j is a positive even integer, then applying e_j to both sides of (7) gives us

$$\varphi_2(e_{i/2}) = 0.$$

Since every positive integer n can be expressed as n = (i+1)/2 and n = j/2 where i is a positive odd integer and j is a positive even integer, we see that

$$\varphi_1(e_n) = \varphi_2(e_n) = 0$$

for all $n \in \mathbb{N}$. This implies $\varphi_1 = \varphi_2 = 0$. Thus $\{\psi_0, \psi_e\}$ is linearly independent.

Next we show that $\text{span}\{\psi_0, \psi_e\} = A$. Let $\varphi \in A$ and define $\varphi_0 \colon V \to V$ and $\varphi_e \colon V \to V$ be the unique linear maps such that

$$\varphi_{o}(e_n) = \varphi(e_{2n-1})$$
 and $\varphi_{e}(e_n) = \varphi(e_{2n})$

for all $n \in \mathbb{N}$. Then if n is a positive odd integer, then we have

$$\varphi(e_n) = \varphi_o(e_{(n+1)/2})$$

$$= \varphi_o(\psi_o(e_n))$$

$$= (\varphi_o\psi_o + \varphi_e\psi_e)(e_n),$$

and if *n* is a positive even integer, then we have

$$\varphi(e_n) = \varphi_e(e_{n/2})$$

$$= \varphi_e(\psi_e(e_n))$$

$$= (\varphi_0\psi_0 + \varphi_e\psi_e)(e_n).$$

Thus $\varphi = \varphi_0 \psi_0 + \varphi_e \psi_e$ since they agree on the basis $\{e_n\}$.

Problem 4

Lemma 0.1. Let E an R-module. The following statements are equivalent;

- 1. E is an injective R-module;
- 2. Every short exact sequence of the form

$$0 \longrightarrow E \longrightarrow M \longrightarrow N \longrightarrow 0 \tag{8}$$

splits.

3. If E is a submodule of an R-module M, then E is a direct summand of M.

Proof. (2 \Longrightarrow 1) Assume that any short exact sequence of the form (8) splits. This means, equivalently, that any injective *R*-linear map out of *E* splits. Let $\varphi \colon M \to N$ be an injective *R*-linear map and let $\psi \colon M \to E$ be any *R*-linear map. We need to construct a map $\widetilde{\psi} \colon N \to E$ such that $\widetilde{\psi} \varphi = \psi$. To do this, consider the pushout module

$$E +_M N = (E \times N) / \{ (\psi(u), -\varphi(u)) \mid u \in M \}$$

together its natural maps $\iota_1 \colon E \to E +_M N$ and $\iota_2 \colon N \to E +_M N$, given by

$$\iota_1(v) = [v, 0]$$
 and $\iota_2(w) = [0, w]$

for all $v \in E$ and $w \in N$ where [v, w] denotes the equivalence class in $E +_M N$ with (v, w) as one of its representatives. Observe that

$$\iota_1(\psi(u)) = [\psi(u), 0]$$
$$= [0, \varphi(u)]$$
$$= \iota_2(\varphi(u))$$

for all $u \in M$. Therefore, we have a commutative diagram

$$\begin{array}{ccc}
M & \xrightarrow{\varphi} & N \\
\psi \downarrow & & \downarrow_{\iota_2} \\
E & \xrightarrow{\iota_1} & E +_M N
\end{array}$$

We claim that ι_1 is injective. Indeed, suppose $v \in \ker \iota_1$. Then [v,0] = [0,0] implies if $(v,0) = (\psi(u), -\varphi(u))$ for some $u \in M$. Then $\varphi(u) = 0$ implies u = 0 since φ is injective, and therefore

$$v = \psi(u)$$
$$= \psi(0)$$
$$= 0.$$

Thus ι_1 is injective. Therefore by hypothesis the map $\iota_1 \colon E \to E +_M N$ splits, say by $\lambda \colon E +_M N \to E$, where $\lambda \iota_1 = 1_E$. Finally, we obtain a map $\widetilde{\psi} \colon N \to E$ by setting $\widetilde{\psi} := \lambda \iota_2$. Then

$$\widetilde{\psi}\varphi = \lambda \iota_2 \varphi
= \lambda \iota_1 \psi
= \psi,$$

shows that $\widetilde{\psi}$ has the desired property.

(1 \Longrightarrow 2) Assume that E is an injective R-module. Let $\varphi \colon E \to M$ be an injective homomorphism. Since E is an injective R-module and since $1_E \colon E \to E$ is an injective R-module homomorphism, there exists an R-linear map $\widetilde{\varphi} \colon M \to E$ such that $\widetilde{\varphi} \circ \varphi = 1_E$. That is, $\widetilde{\varphi}$ splits $\varphi \colon E \to M$.

(2 \Longrightarrow 3) Assume that any short exact sequence of the form (8) splits. Let M be an R-module such that $E \subseteq M$. Then the short exact sequence

$$0 \longrightarrow E \stackrel{\iota}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} M/E \longrightarrow 0$$

splits, where $\iota: E \to M$ denotes the inclusion map and $\pi: M \to M/E$ denotes the quotient map. Therefore we may choose a $\widetilde{\pi}: M/E \to M$ such that $\pi\widetilde{\pi} = 1_{M/E}$. We claim that

$$M = E \oplus \widetilde{\pi}(M/E)$$
.

Indeed, they are both submodules of M. Furthermore, observe that we have $E \cap \widetilde{\pi}(M/E) = \{0\}$. Indeed, suppose $u \in E \cap \widetilde{\pi}(M/E)$. Then $u \in E$ implies $\pi(u) = 0$. Also $u \in \widetilde{\pi}(M/E)$ implies $u = \widetilde{\pi}(\overline{v})$ for some $\overline{v} \in M/E$. Therefore

$$0 = \widetilde{\pi}(0)$$

$$= \widetilde{\pi}\pi(u)$$

$$= \widetilde{\pi}\pi\widetilde{\pi}(\overline{v})$$

$$= \widetilde{\pi}(\overline{v})$$

$$= u.$$

Finally, note that if $u \in M$, then we can write

$$u = u - \widetilde{\pi}\pi(u) + \widetilde{\pi}\pi(u),$$

where $\widetilde{\pi}\pi(u) \in \widetilde{\pi}(M/E)$ and where $u - \widetilde{\pi}\pi(u) \in E$ since

$$\pi(u - \widetilde{\pi}\pi(u)) = \pi(u) - \pi\widetilde{\pi}\pi(u)$$
$$= \pi(u) - \pi(u)$$
$$= 0$$

implies $u - \tilde{\pi}\pi(u) \in \ker \pi = E$. This implies $M = E + \tilde{\pi}(M/E)$.

(3 \implies 2) Assume that *E* satisfies the property that if *E* is a submodule of an *R*-module *M*, then it must be a direct summand of *M*. We show that any short exact sequence of the form (8) splits by showing that any injective *R*-linear map out of *E* splits.

Step 1: Before we show that any injective R-linear map out of E splits, we need to show that if $\varphi: E \to F$ is an isomorphism of R-modules, then F satisfies the same property as E; namely if E is an E-module such that $E \subseteq E$, then E is a direct summand of E. Let E is an isomorphism, let E is a direct summand of E. We define an E-module E is a set we have

$$\psi(N) = E \cup \{\psi(v) \mid v \in N \backslash F\},\,$$

where $\psi(v)$ is understood to be a formal symbol if $v \in N \setminus F$ and is understood to be an element in E if $v \in F$. Here, E is *literally* a subset of $\psi(N)$. We extend the R-linear structure on E to an E-linear structure on $\psi(N)$ by defining addition and scalar multiplication by

$$\psi(v_1) + \psi(v_2) = \psi(v_1 + v_2)$$
 and $a\psi(v) = \psi(av)$.

for all $v, v_1, v_2 \in N \setminus F$ and $a \in R$. Defining the R-linear structure on $\psi(N)$ in this way makes it so that $\psi \colon F \to E$ and $\varphi \colon E \to F$ extends to an isomorphism $\psi \colon N \to \psi(N)$ with corresponding inverse $\varphi \colon \psi(N) \to N$.

With this construction in place, we see that E is *literally* a submodule of $\psi(N)$. Therefore $\psi(N)$ is an internal direct sum, say

$$\psi(N) = E \oplus K$$

where *K* is another submodule of $\psi(N)$ such that $E \cap K = \{0\}$ and $E + K = \psi(N)$. Then since $\varphi \colon \psi(N) \to N$ is an isomorphism, we see that

$$N = \varphi(E) \oplus \varphi(K)$$
$$= F \oplus \varphi(K).$$

Step 2: Now we will show that any injective *R*-linear map out of *E* splits. Let $\varphi \colon E \to M$ be any injective *R*-linear map. We claim that $\varphi \colon E \to M$ splits if and only if $\iota \colon \varphi(E) \to M$ splits, where ι denotes the inclusion map. Indeed, denote $\varphi^{-1} \colon E \to \varphi(E)$ to be the inverse of $\varphi \colon E \to \varphi(E)$. If $\varphi \colon E \to M$ splits, then there exists an *R*-linear map $\widetilde{\varphi} \colon M \to E$ such that $\widetilde{\varphi} \varphi = 1_E$. Then $\varphi \widetilde{\varphi} \colon M \to \varphi(E)$ splits $\iota \colon \varphi(E) \to M$ since

$$(\varphi \widetilde{\varphi}\iota)(\varphi(u)) = \varphi \widetilde{\varphi}(\varphi(u))$$
$$= \varphi(\widetilde{\varphi}\varphi(u))$$
$$= \varphi(u)$$

for all $\varphi(u) \in \varphi(E)$. Similarly, if $\iota \colon \varphi(E) \to M$ splits, then there exists an R-linear map $\widetilde{\iota} \colon M \to \varphi(E)$ such that $\widetilde{\iota} = 1_{\varphi(E)}$. Then $\varphi^{-1}\widetilde{\iota} \colon M \to E$ splits $\varphi \colon E \to M$ since

$$(\varphi^{-1}\widetilde{\iota}\varphi)(u) = (\varphi^{-1}\widetilde{\iota})(\varphi(u))$$

$$= (\varphi^{-1}\widetilde{\iota})(\iota\varphi(u))$$

$$= (\varphi^{-1}\widetilde{\iota})(\varphi(u))$$

$$= (\varphi^{-1})(\varphi(u))$$

$$= u$$

for all $u \in E$.

Thus, to show that $\varphi: E \to M$ splits, it suffices to show that $\iota: \varphi(E) \to M$ splits. In this case, $\varphi(E)$ is a submodule of M, and by step 1, we see that M is an internal direct sum, say

$$M = \varphi(E) \oplus K$$

for some *R*-module $K\subseteq M$. The projection map $\pi_1\colon M\to \varphi(E)$ is easily seen to split the inclusion map $\iota\colon \varphi(E)\to M$.