Introduction

Title: Syriatel Telecom Phase 3 Project

Subtitle: Predicting Customer Churn

Presenter: Phoebe Wawire

Class: DSF-PT7

Problem Statement

Objective:

Predict whether a customer of SyriaTel will stop doing business with them (churn) based on various factors.

Audience:

Telecom businesses interested in understanding potential revenue loss due to customer churn.

► Target Variable:

- Categorical with two classes:
 - ▶ 1 = Churn
 - ▶ 0 = No Churn

Data Collection

- Libraries Used:
- ✓ pandas, numpy, seaborn
- ✓ sklearn: LogisticRegression, confusion_matrix, etc.
- imbalanced-learn: SMOTE, NearMiss
- Dataset Details:
- Dimensions: 3333 instances, 21 variables
- Types of Variables:
 - ▶ Boolean: 1
 - Floating Point: 8
 - ▶ Integer: 8
 - ▶ Object (String): 4
- ► Target Variable: Churn

Data Preparation

Data Types & Categories:

- ► Categorical: state, phone number, international plan, voice mail plan
- Numerical: Floating point, Integer
- ▶ Boolean: 1 column

Steps Taken:

- Converted categorical variables to numeric
- Checked and imputed missing values and outliers
- ► Feature engineering and scaling applied

Data Modelling using Logistic Regression

Metrics:

- ► True Negatives (TN): 566
- ► False Positives (FP): 0
- ► False Negatives (FN): 91
- ► True Positives (TP): 10

Performance:

- Precision (Churn): 0.77
- ► Recall (Churn): 0.10
- ► F1-Score (Churn): 0.18

Data Modelling using Logistic Regression continuation

Overall Accuracy: 86%

Insights:

- High accuracy for non-churn (class 0)
- Low recall for churn (class 1)

Recommendation:

Collect more data for churn class

Data Modelling using Decision Trees

Metrics:

- ► True Negatives (TN): 566
- ► False Positives (FP): 51
- ► False Negatives (FN): 42
- ► True Positives (TP): 59

Performance:

- Precision (Churn): 0.55
- ► Recall (Churn): 0.59
- ► F1-Score (Churn): 0.57

Data Modelling using Decision Trees continuation

Overall Accuracy: Similar to Logistic Regression

- Insights:
- Better performance on churn class compared to Logistic Regression
- ► High precision and recall for non-churn (class 0)

Recommendation:

Collect more data and explore additional modeling techniques

Conclusion

Comparison:

- Decision Tree: Outperforms Logistic Regression in predicting churn with better recall and F1-Score.
- ▶ Logistic Regression: Performs well on non-churn but struggles with churn.

Key Findings:

- Decision Tree's flexibility helps in better classifying churn.
- Logistic Regression showed a performance drop for churn class.

Next Steps:

- Validate Decision Tree with more data or cross-validation.
- Improve data collection for churn cases.

Recommendations

For Model Improvement:

- **Data Collection:** Increase data for churn cases to balance the dataset.
- Model Enhancement: Explore advanced techniques and ensure robust validation.

For Business:

- ► Focus on understanding churn customers using all features.
- ▶ Develop strategies to reduce churn clients from moving to competition by solving the raised concerned within set timelines, have a 24 hour contact center for quick customer issues sorting e.t.c.

Questions & Discussion

Thank You!
Questions and feedback are welcome