IETNITK

SMART WALKING CANE FOR THE VISUALLY IMPAIRED

INTRODUCTION TO SMART WALKING CANE

MODELLING AND ANALYSIS USING FUSION 360

METHODOLOGY

CIRCUIT DIAGRAM

RESULT

SKILLS LEARNT AND CONCLUSION

OUR TEAM

PROBLEM STATEMENT:

- VISUALLY IMPAIRED INDIVIDUALS FACE MOBILITY CHALLENGES WITH TRADITIONAL CANES, WHICH LACK REAL-TIME OBSTACLE DETECTION, RELYING ON SOUNDS AND TACTILE CUES THAT INCREASE ACCIDENT RISKS.
- A SMART CANE WITH INTEGRATED TECHNOLOGY CAN ENHANCE SAFETY AND INDEPENDENCE BY PROVIDING RELIABLE OBSTACLE DETECTION AND INTUITIVE FEEDBACK.

1. A SMART WALKING CANE IS A DEVICE THAT ENHANCES MOBILITY FOR VISUALLY IMPAIRED INDIVIDUALS BY INTEGRATING SENSORS AND EMBEDDED SYSTEMS.

2. CURRENT WALKING CANES LACK THE ABILITY TO PROVIDE REAL-TIME FEEDBACK ON OBSTACLES, CREATING A DEPENDENCY ON ENVIRONMENTAL SOUNDS AND TACTILE CUES ALONE.

3. THIS PROJECT AIMS TO ADDRESS THESE CHALLENGES BY PROVIDING AN ASSISTIVE DEVICE THAT OFFERS RELIABLE, REAL-TIME OBSTACLE DETECTION AND INTUITIVE FEEDBACK, PROMOTING SAFER AND MORE CONFIDENT NAVIGATION.

CANE STRUCTURE

SENSOR HOUSING

HANDLE

BATTERY ENCLOSURE

COMPONENTS

1. MICROCONTROLLER: ESP32.

2. **SENSORS**:ULTRASONIC SENSOR (FOR OBSTACLE DETECTION).

COMPONENTS

3. **GPS MODULE**: FOR LOCATION TRACKING AND EMERGENCY ALERTS.

4. **BUZZER & VIBRATION MOTOR**: FOR FEEDBACK AND ALERTS.

METHODOLOGY

- 1. ASSEMBLE THE SENSORS AND MODULES ONTO THE CANE.
- 2. CONNECT THE COMPONENTS WITH APPROPRIATE WIRING.
- 3. ENSURE PROPER POWER MANAGEMENT WITH A RECHARGEABLE BATTERY.

SENSOR DATA PROCESSING:

- PROGRAM THE MICROCONTROLLER TO READ AND PROCESS SENSOR INPUTS.
- IMPLEMENT ALGORITHMS FOR OBSTACLE DETECTION AND FALL DETECTION.
- COMMUNICATION SYSTEM:
 - INTEGRATE BLUETOOTH, WI-FI, OR GPS FOR REAL-TIME TRACKING AND ALERTS.
 - DEVELOP AN APP FOR CAREGIVERS (THINGSBOARD).
- USER FEEDBACK MECHANISM:
 - IMPLEMENT VIBRATION OR SOUND FEEDBACK FOR WARNINGS.

CONNECTIONS

Pin Connections

This section provides details about the pin connections between the components used in the node and the ESP32 controller.

HC-SR04 Module Pin Connections

Buzzer Pin Connections

CIRCUIT DIAGRAM

Circuit Diagram

OUTPUT

CAD MODEL AND CODE SNIPPETS


```
ch Tools Help
duino IDE 2.3.4
                                                  Arduino Uno
Tools Help
                                            er.ar.ino
                                               const int buzzerPin = 9;
ar.ino
                                                const int buttonPin= 7;
const int trigPin=6;
                                               int buttonState =0;
const int echoPin=7;
                                                void setup() {
long time;
                                                  pinMode(buzzerPin, OUTPUT);
float distance;
speed=0.0342
                                                  pinMode(buttonPin, INPUT);
void setup() {
Serial.begin(9600);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);
Serial.println("ultrasonic Sensor Test");
                                               void loop() {
                                                  buttonState =
                                                  digitalRead(buttonPin);
                                                  if(buttonState == LOW){
void loop() {
                                                  digitalWrite(buzzerPin, HIGH);
 // put your main code here, to run repeatedly
                                                  } else{
digitalWrite(trigPin, LOW );
                                                    digitalWrite(buzzerPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin,LOW);
time = pulseIn(echoPin, HIGH);
distance = (time*speed)/2;
if (distance >= 2 && ditance <= 400)
Serial.print("distance: ");
 Serial.print(distance);
 Serial.println(" cm");
 serial.println("out of range");
 delay(500);
```

RESULT

SKILLS LEARNT AND CONCLUSION

LEARNT TO USE FUSION 360

LEARNT TO INTEGRATE THE COMPONENTS USING ESP32

CHECKED THE WORKING OF THE COMPONENTS USING TINKERCAD.

HTTPS://DRIVE.GOOGLE.COM/DRIVE/U/2/FOLDERS/1YYE992IGYMSL3FRS5MS
XMHD942HON-R

REFERENCES

- 1. Ravikiran, A., & Kumar, P. (2021). "Smart Walking Stick for the Visually Impaired Using IoT." International Journal of Engineering Research, 10(2), 45-52.
- 2. Gupta, S., & Singh, R. (2020). "An Intelligent Walking Cane with Obstacle Detection and Navigation Assistance." IEEE Xplore. DOI: [Insert DOI]
- 3. Khan, M. A., et al. (2019). "Design and Development of a Smart Cane for Elderly and Disabled People." Springer Advances in Assistive Technologies.

Web References

- 4. WeWALK Smart Cane. (n.d.). Retrieved from https://wewalk.io
- 5. SmartCane by IIT Delhi. (n.d.). Retrieved from http://assistech.iitd.ac.in/smartcane.php

Mentors:

Aditya Priya Jha

Mentees:

Aashritha
Archisha
Greeshma
Pavani

