ΘΕΜΑ 2

2.1. Ένα βαγόνι Α με μάζα *m* συγκρούεται με ένα δεύτερο ακίνητο βαγόνι Β ίσης μάζας και μετά τη σύγκρουση τα δύο βαγόνια κινούνται μαζί σαν ένα σώμα.

Αν $K_{\rm A}$ είναι η κινητική ενέργεια του βαγονιού ${\rm A}$ και K_{Σ} η κινητική ενέργεια του συσσωματώματος, τότε ισχύει:

(a)
$$K_{\Sigma}=K_{\rm A}$$
 , (b) $K_{\Sigma}=2\cdot K_{\rm A}$, (c) $K_{\Sigma}=\frac{K_{\rm A}}{2}$

2.1.Α. Να επιλέξετε τη σωστή απάντηση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2. Στο διάγραμμα V-T του σχήματος απεικονίζεται μία αντιστρεπτή μεταβολή BA, που υφίσταται ποσότητα ιδανικού αερίου ίση με $n=rac{2}{R}$ mol (όπου R η σταθερά των ιδανικών αερίων εκφρασμένη σε

Το έργο του αερίου κατά τη μεταβολή ΒΑ είναι:

(a)
$$W_{\rm BA} = -600\,{\rm J}$$
 , (b) $W_{\rm BA} = 600\,{\rm J}$, (c) $W_{\rm BA} = 450\,{\rm J}$

(B)
$$W_{\rm BA} = 600 \, \rm J$$

(v)
$$W_{\rm PA} = 450 \, \rm I$$

2.2.Α. Να επιλέξετε τη σωστή απάντηση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9

Δίνεται: $1 L = 10^{-3} m^3$.