FUNCIONES DE TRANSFERENCIA DE FINALES

Final de Mica:

Dado el circuito de la figura, cuya función de transferencia tiene el formato mostrado, determine los valores de los coeficientes B y C, a continuación cambie P → jω, separe en parte Real y parte Imaginaria, calcule los valores para las pulsaciones dadas en la Tabla y responda a las consignas.

NOTA: PONGA EL SIGNO (-) EN CASO
DE QUE UN VALOR SEA NEGATIVO Y TRES
(3) DECIMALES SIN REDONDEO, DONDE
CORRESPONDA.

$$R1 = R2 = 2 [K\Omega]$$

$$F_{(P)} = \frac{P^2}{P^2 + BP + C}$$

C1 = C2 = 250 [uF]

Valor del coeficiente B de la Función de Transferencia F_(P) :

Valor del coeficiente C de la Función de Transferencia F(P):

Valor de ω	Valor Parte Real	Valor Parte Imaginaria (sin "j")
0	×	×
0,5	×	×
1	×	×
2	×	×
10	×	×
ω	×	×

El circuito Adelanta o Atraza la Fase para ω = ∞

El comportamiento del circuito es

A) El valor de la pulsación natural ωo es 4250 [rad/seg] B) El valor del factor de amortiguamiento ζ es 0,2 C) El valor del resistor "R" es de = $[\Omega]$ D) El valor del capacitor "C" es de [uF] E) El valor de la Resistencia Crítica "Rc" es de 212,5 $[\Omega]$ F) El valor de la Tensión de la fuente "E" es de 100 [Voltios] G) Las raíces de la ecuación característica serán COMPLEJAS CONJUGADAS H) El comportamiento del circuito es SUB-AMORTIGI Correcta Puntúa 1,00 sobre 1,00 I) Indique el valor de la corriente $i_{(t)}$ para t que tiende u cero $\iota_{(t)|t\to 0}$ – | \circ [Amperes]

[Amperes]

J) Indique el valor de la corriente i(t) para t que tiende a infinito $i_{(t)}|_{t\to 0} =$

Dado el circuito de la figura, cuya función de transferencia tiene el formato mostrado, determine los valores de los coeficientes A, B y C, a continuación cambie P → jω, separe en parte Real y parte Imaginaria, calcule los valores para las pulsaciones dadas en la Tabla y responda a las consignas .

<u>NOTA:</u> PONGA EL SIGNO (-) EN CASO DE QUE UN VALOR SEA NEGATIVO Y TRES (3) DECIMALES SIN REDONDEO, DONDE CORRESPONDA.

$$R1 = R2 = 500 [\Omega]$$

$$C1 = C2 = 200 [uF]$$

Valor del coeficiente A de la Función de Transferencia $F_{(P)}$: 100

Valor del coeficiente B de la Función de Transferencia F(P): 30

Valor del coeficiente C de la Función de Transferencia $F_{(P)}$: 100

Valor de ω	Valor Parte Real	Valor Parte Imaginaria (sin "j")
0	1	0
1	0,925	-0,280
2	0,749	-0,468
10	0	-0,333
20	-0,0666	-0,133
00	0	0

El circuito Atenua ó No Atenúa para ω→0 NO ATENÚA

El circuito Atenua ó No Atenúa para ω→∞ ATENÚA

El circuito Adelanta o Atraza la Fase para ω = 0 EN FASE

✓ El comportamiento del circuito es ATRAZADOR

✓ de Fase

Final de Rojas:

i(t) R=?0	$I_P = \frac{4000}{2,5 \cdot P^2 + 4250 \cdot P + 45156250}$
) El valor de la pulsació	n natural ωo es 4250 🗸 [rad/seg]
) El valor del factor de a	mortiguamiento ζ es <mark>0,2 </mark>
El valor del resistor "R"	es de = $42,5$ \checkmark $[\Omega]$
) El valor del capacitor	C" es de 2,214
El valor de la Resistenc	ia Crítica "Rc" es de 212,5 🗸 [Ω]
El valor de la Tensión d	le la fuente "E" es de 40 ✓ [Voltios]
) Las raíces de la ecuaci	ón característica serán COMPLEJAS CONJUGADAS 🗢 🗸
) El comportamiento de	d circuito es SUB-AMORTIGUADO
	priente $i_{(t)}$ para t que tiende a cero $i_{(t)} _{t=0} = 0$ (Amperes)

Final 08/05/2019:

Final 21/02/2018:

Final 20/12/2017

Final 06/12/2017:

Final Moldeo 1:

Final Modelo 2:

1. Encontrar la función de transferencia del siguiente circuito y trazar diagrama polar.

R:
$$F_{(P)} = \frac{1}{(P^2 + 3P + 1)}$$

Final Modelo 4:

2. FUNCIÓN DE TRANSFERENCIA

- a. Determinar la función de transferencia.
- b. Dibujar diagrama polar.

FINAL 5 – (tipo 21/02/18)

1. FUNCIÓN DE TRANSFERENCIA

- a. Determinar función de transferencia.
- b. Realizar diagrama polar.
- c. Realizar diagrama de Bode.

FINAL 6:

1. FUNCIÓN DE TRANSFERENCIA

2. FUNCIÓN DE TRANFERENCIA

FINAL 21/07/2010:

¥

TEMA 1: Dado el circuito RLC serie de la figura:
a) Calcule el valor de la pulsación natural o de resonancia.

- b) Calcule el valor del factor de amortiguamiento.
- c) Calcule el valor del resistor R para que el circuito se comporte como Criticamente Amortiguado.
- d) Indique el valor de la corriente i (1) para $t = \infty$.
- el) Indique como serán las raíces de la ecuación característica (reales, complejas, etc.). Marque con una X donde corresponda.
- c2) Indique a cuál de los casos pertenece el comportamiento del circuito. Marque con una X donde corresponda.

