Exercice 1 (Questions de cours.)

Donner l'énoncé ainsi que la démonstration des résultats suivants.

- 1. Rappeler l'inégalité de Cauchy-Schwarz dans \mathbb{R}^n , avec le cas d'égalité.
- 2. Une boule ouverte est un ouvert.
- 3. Conditions équivalentes à la continuité d'une application linéaire.

Exercice 2 (Exercice préparé.)

On se place dans l'espace vectoriel normé $M_n(\mathbb{C})$. On considère l'ensemble $GL_n(\mathbb{C})$ des matrices inversibles.

- 1. L'ensemble $GL_n(\mathbb{C})$ est-il ouvert ? Quel est son intérieur ?
- 2. L'ensemble $GL_n(\mathbb{C})$ est-il fermé ? Quelle est son adhérence ?
- 3. L'ensemble $GL_n(\mathbb{C})$ est-il borné?

Exercice 3

Soit N et N' deux normes sur E. On suppose $B(0,1) \subset B'(0,1)$. Montrer

$$\forall x \in E, N'(x) \le N(x).$$

Exercice 4

Soit E un espace vectoriel normé. Soit F un sous-espace de E, contenant une boule ouverte de rayon R > 0. Montrer que F = E.

Exercice 5

Soit (u_n) une suite de $(\mathbb{R}^m, ||\cdot||_{\infty})$ telle que chacune des suites composantes admet une valeur d'adhérence. La suite u admet-elle une valeur d'adhérence?

Exercice 6

Soit (u_n) une suite de nombres réels.

- 1. On suppose que u est croissante et admet une suite extraite convergente. Que dire de u ?
- 2. On suppose que u est croissante et admet une suite extraite majorée. Que dire de u ?
- 3. On suppose que u n'est pas majorée. Montrer qu'elle admet une suite extraite qui diverge vers $+\infty$.

Exercice 7

Soit E un \mathbb{R} -espace vectoriel normé et A, B deux parties de E. On note

$$A + B = \{a + b \mid (a, b) \in A \times B\}.$$

1. Si A est ouvert (et B quelconque), montrer que A + B est ouvert.

- 2. Si A est compact et B fermé, montrer que A+B est fermé. Est-ce vrai si A est seulement supposé fermé ?
- 3. Si A et B sont compactes, montrer que A + B est compacte.

EXERCICE 8

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction uniformément continue sur \mathbb{R}_+ . Montrer qu'il existe $\alpha, \beta > 0$ tels que pour tout $x \geq 0$

$$|f(x)| \le \alpha x + \beta.$$

Exercice 9

Une suite (u_n) est appelée suite de Cauchy si, pour tout $\varepsilon > 0$, il existe un entier $N \in \mathbb{N}$ tel que pour tout $p, q \geq N$, on a

$$|u_p - u_q| < \varepsilon.$$

- 1. Montrer que toute suite convergente est une suite de Cauchy.
- 2. On souhaite désormais montrer la réciproque. Soit (u_n) une suite de Cauchy.
 - (a) Montrer que (u_n) est bornée.
 - (b) On suppose que (u_n) admet une suite extraite convergente. Montrer que (u_n) est convergente.
 - (c) Conclure.

Exercice 10

Soit K une partie compacte d'un espace vectoriel normé E contenu dans la boule unité ouverte. Démontrer qu'il existe r<1 tel que K soit contenue dans $\bar{B}(0,r)$, la boule fermée de centre 0 et de rayon r.

Exercice 11

Soit E une partie compacte d'un espace vectoriel normé, et $f:E\to E$ une fonction continue vérifiant

$$\forall (x, y) \in E^2, x \neq y \Rightarrow ||f(x) - f(y)|| < ||x - y||.$$

- 1. Montrer que f admet un unique point fixe, que l'on notera α .
- 2. Le résultat subsiste-il si on suppose simplement E fermé?

Exercice 12

Soit E un espace vectoriel normé et (K_n) une suite de parties compactes de E, non vides, telle que, pour chaque entier n, on a $K_{n+1} \subset K_n$. On pose $K = \bigcap_{n>1} K_n$.

- 1. Démontrer que $K \neq \emptyset$.
- 2. Soit U un ouvert contenant K. Démontrer qu'il existe un entier n tel que $K_n \subset U$.