MAT 1375, Classwork5, Fall2024

ID:	Name:

1. Complete the definition of the Algebra of Functions:

Let f(x) and g(x) be two functions with the domain D_f and D_g ,respectively. We have sum, difference, product, and quotient of functions:

The Algebra of functions	Notation		Definition	Domain
Sum	()(x) ≔		D_{f+g} =
Difference	()(x) ≔		D_{f-g} =
Product	()(x) ≔		$D_{f\cdot g}$ =
Quotient	()(x) ≔	,provided ≠ 0	$D_{rac{f}{g}}$ =

Here, $D_f \cap D_g = \{ x \mid \underline{\hspace{1cm}} \}$

2. Let $f(x) = x^2 + 5x + 6$ and g(x) = x + 2. Find the following functions and state their domains.

$$(f+g)(x) =$$

$$(f-g)(x) =$$

$$(f\cdot g)(x) =$$

$$\left(\frac{f}{g}\right)(x) =$$

3. Complete the definition of the Composition of Functions:

Let f(x) and g(x) be two functions. The composition of the function f with g is denoted by

_____ and is defined by the equation

_____:=____.

The domain of the composition of the function $f \circ g$ is the set of all x such that x is the _____ of g(x) and _____ is the domain of f(x).

The notation of the domain of the composition of the function $f \circ g$ is

_______ = { x |_______}

4. Find $(f \circ g)(x)$ for the following functions and state their domains.

a)
$$f(x) = x^2 + 2$$
 and $g(x) = x - 3$

b)
$$f(x) = \frac{2}{x-3}$$
 and $g(x) = x^2 + 2x$