

Definition

 In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is

$$ax^2 + bx + c = 0$$

- where x represents a variable or an unknown, and a, b, and c are constants with a ≠ 0. (If a = 0, the equation is a linear equation.)
- The constants a, b, and c are called respectively, the quadratic coefficient, the linear coefficient and the constant term or free term.

Quadratic & Roots

Quadratic: A polynomial of degree=2

$$y = ax^2 + bx + c$$

$$ax^2 + bx + c = 0$$
 is a quadratic equation. (a $\neq 0$)

Here is an example of one:

$$5x^2 - 3x + 3 = 0$$

- The name Quadratic comes from "quad" meaning square, because the variable gets squared (like x²).
- It is also called an "Equation of Degree 2" (because of the "2" on the x)

Roots

- A real number α is called a root of the quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$ if $a\alpha^2 + b\alpha^2 + c = 0$.
- ❖ If α is a root of $ax^2 + bx + c = 0$, then we say that:
- (i) $x = \alpha$ satisfies the equation $ax^2 + bx + c = 0$
- Or (ii) $x = \alpha$ is a solution of the equation $ax^2+bx+c=0$
- The Root of a quadratic equation ax²+bx+c =0 are called zeros of the polynomial ax²+bx+c.

More Examples of Quadratic Equations

- $2x^2 + 5x + 3 = 0$ In this one **a=2**, **b=5** and **c=3**.
- ❖ x² 3x = 0 This one is a little more tricky: Where is a? In fact a=1, as we don't usually write "1x²" b = -3 and where is c? Well, c=0, so is not shown.
- ❖ 5x 3 = 0 Oops! This one is not a quadratic equation, because it is missing x² (in other words a=0, and that means it can't be quadratic)

Hidden Quadratic Equations!

So far we have seen the "Standard Form" of a Quadratic Equation:

 $ax^2 + bx + c = 0$

But sometimes a quadratic equation doesn't look like that..! Here are some examples of different form:

In disguise		In Standard Form	a, b and c
x ² = 3x -1	Move all terms to left hand side	$x^2 - 3x + 1 = 0$	a=1, b=-3, c=1
2(w ² - 2w) = 5	Expand (undo the brackets), and move 5 to left	$2w^2 - 4w - 5 = 0$	a=2, b=-4, c=-5
z(z-1) = 3	Expand, and move 3 to left	$z^2 - z - 3 = 0$	a=1, b=-1, c=-3
$5 + 1/x - 1/x^2 = 0$	Multiply by x2	$5x^2 + x - 1 = 0$	a=5, b=1, c=-1

How To Solve It?

There are 3 ways to find the solutions:

- We can Factor the Quadratic (find what to multiply to make the Quadratic Equation)
- We can Complete the Square, or
- We can use the special Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Thus $ax^2+bx+c=0$ has two roots a and β , given by

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Discriminant

The expression b² - 4ac in the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- It is called the Discriminant, because it can "discriminate" between the possible types of answer. It can be denoted by "D"
- when b² 4ac, D is positive, you get two real solutions
- when it is zero you get just ONE real solution (both answers are the same)
- when it is negative you get two Complex solutions

Value of D	Nature of Roots	Roots
D > 0	Real and Unequal	[(-b±√D)/2a]
D = 0	Real and Equal	Each root = (-b/2a)
D < 0	No real roots	None

Using the Quadratic Formula

Just put the values of a, b and c into the Quadratic Formula, and do the calculation

Example: Solve $5x^2 + 6x + 1 = 0$

Coefficients are: a = 5, b = 6, c = 1

Quadratic Formula: $x = [-b \pm \sqrt{(b^2-4ac)}]/2a$

Put in a, b and c:

$$\mathbf{x} = \begin{bmatrix} -6 \pm \sqrt{6^2 - 4 \times 5 \times 1} \\ \mathbf{2} \times 5 \end{bmatrix}$$

Solve:
$$x = \begin{bmatrix} -6 \pm \sqrt{36 - 20} \\ 10 \end{bmatrix}$$

$$x = \begin{bmatrix} -6 \pm \sqrt{46} \\ 40 \end{bmatrix}$$

$$x = \begin{bmatrix} -6 \pm 4 \\ \hline 10 \end{bmatrix}$$

$$x = -0.2 \text{ or } -1$$

Continue..

- ❖ Answer: x = -0.2 or x = -1
- Check -0.2: 5×(-0.2)² + 6×(-0.2) + 1
 - $= 5 \times (0.04) + 6 \times (-0.2) + 1$
 - = 0.2 1.2 + 1
 - = 0

- Check -1: 5×(-1)² + 6×(-1) + 1
 = 5×(1) + 6×(-1) + 1
 - = 5 6 + 1
 - = 0

Factoring Quadratics

To "Factor" (or "Factorize") a Quadratic is to find what to multiply to get the Quadratic It is called "Factoring" because you find the factors (a factor is something you multiply by)

Example

The factors of $x^2 + 3x - 4$ are:

Why? Well, let us multiply them to see:

$$(x+4)(x-1)$$

$$= x(x-1) + 4(x-1)$$

$$= x^2 - x + 4x - 4$$

$$= x^2 + 3x - 4$$

- Multiplying (x+4)(x-1) together is called Expanding.
- In fact, Expanding and Factoring are opposites:

$$(x+4)(x-1)$$
 $x^2 + 3x - 4$

Examples of Factor

To solve by factoring:

- Set the equation equal to zero.
- Factor. The factors will be linear expressions.
- Set each linear factor equal to zero.
- Solve both linear equations.

Example: Solve by factoring $x^2 + 3x = 0$

$$x^2 + 3x = 0$$
 set equation to zero
 $x(x + 3) = 0$ factor

$$x = 0$$
 , $x + 3 = 0$

Completing the Square

Solving General Quadratic Equations by Completing the Square:

"Completing the Square" is where we take a Quadratic Equation : $ax^2 + bx + c = 0$ and turn into $a(x+d)^2 + e = 0$

We can use that idea to **solve** a Quadratic Equation (find where it is equal to zero).

But a general Quadratic Equation can have a coefficient of a in front of x²:

 $ax^2 + bx + c = 0$

But that is easy to deal with ... just divide the whole equation by "a" first, then carry on.

Steps

Now we can solve Quadratic Equations in 5 steps:

- Step 1 Divide all terms by a (the coefficient of x²).
- Step 2 Move the number term (c/a) to the right side of the equation.
- Step 3 Complete the square on the left side of the equation and balance this by adding the same value to the right side of the equation.
- Step 4 Take the square root on both sides of the equation.
- Step 5 Add or subtract the number that remains on the left side of the equation to find x.

Example

Example 1: Solve $x^{2} + 4x + 1 = 0$

Step 1 can be skipped in this example since the coefficient of x^2 is 1

Step 2 Move the number term to the right side of the equation:

$$x^2 + 4x = -1$$

Step 3 Complete the square on the left side of the equation and balance this by adding the same number to the right side of the equation:

$$x^2 + 4x + 4 = -1 + 4$$

$$(x + 2)^2 = 3$$

Step 4 Take the square root on both sides of the equation:

$$x + 2 = \pm \sqrt{3} = \pm 1.73$$
 (to 2 decimals)

Step 5 Subtract 2 from both sides:

$$x = \pm 1.73 - 2 = -3.73$$
 or -0.27

BIBLIOGRAPHY

Internet (Wikipedia,www.mathsisfun.com)

Secondary School Mathematics (R.S. Aggarwal)