

第七章 强化学习IV—无模型策略方法

Chao Yu (余超)

School of Computer Science and Engineering Sun Yat-Sen University

[based on David Silver and Sergey Levine's course]

Large-Scale Reinforcement Learning

- ☐ Reinforcement learning can be used to solve large problems, e.g.
 - Backgammon: 10²⁰ states
 - ☐ Computer Go: 10¹⁷⁰ states
 - ☐ Helicopter: continuous state space

Value Function Approximation

- So far we have represented value function by a lookup table
 - Every state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

$$\hat{v}(s,\mathbf{w})pprox v_{\pi}(s)$$
 or $\hat{q}(s,a,\mathbf{w})pprox q_{\pi}(s,a)$

- Generalise from seen states to unseen states
- Update parameter w using MC or TD learning

Types of Value Function Approximation

There are many function approximators, e.g.

- Linear combinations of features
- Neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- ...

Gradient Descent

- Let J(w) be a differentiable function of parameter vector w
- **Define the gradient** of $J(\mathbf{w})$ to be

$$abla_{\mathbf{w}} J(\mathbf{w}) = egin{pmatrix} rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \ dots \ rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$

- To find a local minimum of $J(\mathbf{w})$
- Adjust w in direction of -ve gradient

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

where α is a step-size parameter

Value Function Approx. By Stochastic Gradient Descent

■ Goal: find parameter vector \mathbf{w} minimising mean-squared error between approximate value fn $\hat{v}(s, \mathbf{w})$ and true value fn $v_{\pi}(s)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))^2 \right]$$

Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$
$$= \alpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$$

Stochastic gradient descent samples the gradient

$$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$

Expected update is equal to full gradient update

Feature Vectors

Represent state by a feature vector

$$\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_n(S) \end{pmatrix}$$

- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation

Represent value function by a linear combination of features

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S) \mathbf{w}_{j}$$

Objective function is quadratic in parameters w

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \mathbf{x}(S)^{\top} \mathbf{w})^{2} \right]$$

- Stochastic gradient descent converges on global optimum
- Update rule is particularly simple

$$abla_{\mathbf{w}}\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)$$

$$\Delta \mathbf{w} = \alpha(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))\mathbf{x}(S)$$

Update = step- $size \times prediction error \times feature value$

Incremental Prediction Algorithms

- lacksquare Have assumed true value function $v_\pi(s)$ given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a target for $v_{\pi}(s)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

■ For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

$$\Delta \mathbf{w} = \alpha(R_{t+1} + \gamma \hat{\mathbf{v}}(S_{t+1}, \mathbf{w}) - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

■ For TD(λ), the target is the λ -return G_t^{λ}

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

Monte-Carlo with Value Function Approximation

- lacksquare Return G_t is an unbiased, noisy sample of true value $v_\pi(S_t)$
- Can therefore apply supervised learning to "training data":

$$\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, ..., \langle S_T, G_T \rangle$$

For example, using linear Monte-Carlo policy evaluation

$$\Delta \mathbf{w} = \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$
$$= \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

- Monte-Carlo evaluation converges to a local optimum
- Even when using non-linear value function approximation

TD Learning with Value Function Approximation

- The TD-target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$ is a *biased* sample of true value $v_{\pi}(S_t)$
- Can still apply supervised learning to "training data":

$$\langle S_1, R_2 + \gamma \hat{v}(S_2, \mathbf{w}) \rangle, \langle S_2, R_3 + \gamma \hat{v}(S_3, \mathbf{w}) \rangle, ..., \langle S_{T-1}, R_T \rangle$$

■ For example, using *linear TD(0)*

$$\Delta \mathbf{w} = \alpha (\mathbf{R} + \gamma \hat{\mathbf{v}}(S', \mathbf{w}) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$
$$= \alpha \delta \mathbf{x}(S)$$

Linear TD(0) converges (close) to global optimum

Action-Value Function Approximation

Approximate the action-value function

$$\hat{q}(S, A, \mathbf{w}) \approx q_{\pi}(S, A)$$

■ Minimise mean-squared error between approximate action-value fn $\hat{q}(S, A, \mathbf{w})$ and true action-value fn $q_{\pi}(S, A)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[\left(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})\right)^{2}\right]$$

Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$
$$\Delta\mathbf{w} = \alpha(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$

Linear Action-Value Function Approximation

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Represent action-value fn by linear combination of features

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

Stochastic gradient descent update

$$abla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$

$$\Delta \mathbf{w} = \alpha(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\mathbf{x}(S, A)$$

Value-Based and Policy-Based RL

- Value Based
 - Learnt Value Function
 - Implicit policy (e.g. *ϵ*-greedy)
- Policy Based
 - No Value Function
 - Learnt Policy
- Actor-Critic
 - Learnt Value Function
 - Learnt Policy

Advantages of Policy-Based RL

Advantages:

- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance

Example: Aliased Gridworld

- Under aliasing, an optimal deterministic policy will either
 - move W in both grey states (shown by red arrows)
 - move E in both grey states
- Either way, it can get stuck and *never* reach the money
- Value-based RL learns a near-deterministic policy
 - \blacksquare e.g. greedy or ϵ -greedy
- So it will traverse the corridor for a long time

Example: Aliased Gridworld

 An optimal stochastic policy will randomly move E or W in grey states

 π_{θ} (wall to N and S, move E) = 0.5 π_{θ} (wall to N and S, move W) = 0.5

- It will reach the goal state in a few steps with high probability
- Policy-based RL can learn the optimal stochastic policy

Policy Objective Functions

- Goal: given policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- But how do we measure the quality of a policy π_{θ} ?
- In episodic environments we can use the start value

$$J_1(heta) = V^{\pi_{ heta}}(s_1) = \mathbb{E}_{\pi_{ heta}}[v_1]$$

In continuing environments we can use the average value

$$J_{avV}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$$

Or the average reward per time-step

$$J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$$

• where $d^{\pi_{\theta}}(s)$ is stationary distribution of Markov chain for π_{θ}

Policy Objective Functions

$$\underbrace{p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T)}_{p_{\theta}(\tau)} = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

$$J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$
sum over samples from π_{θ}

Policy Optimisation

- Policy based reinforcement learning is an optimisation problem
- Find θ that maximises $J(\theta)$
- Some approaches do not use gradient
 - Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
- Greater efficiency often possible using gradient
 - Gradient descent
 - Conjugate gradient
 - Quasi-newton
- We focus on gradient descent, many extensions possible
- And on methods that exploit sequential structure

Score Function

- We now compute the policy gradient analytically
- Assume policy π_{θ} is differentiable whenever it is non-zero
- lacksquare and we know the gradient $\nabla_{\theta}\pi_{\theta}(s,a)$
- Likelihood ratios exploit the following identity

$$egin{aligned}
abla_{ heta}\pi_{ heta}(s,a) &= \pi_{ heta}(s,a) rac{
abla_{ heta}\pi_{ heta}(s,a)}{\pi_{ heta}(s,a)} \ &= \pi_{ heta}(s,a)
abla_{ heta} \log \pi_{ heta}(s,a) \end{aligned}$$

■ The score function is $\nabla_{\theta} \log \pi_{\theta}(s, a)$

One-Step MDPs

- Consider a simple class of one-step MDPs
 - Starting in state $s \sim d(s)$
 - lacksquare Terminating after one time-step with reward $r=\mathcal{R}_{s,a}$
- Use likelihood ratios to compute the policy gradient

$$egin{aligned} J(heta) &= \mathbb{E}_{\pi_{ heta}}\left[r
ight] \ &= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(s,a) \mathcal{R}_{s,a} \
abla_{ heta} J(heta) &= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(s,a)
abla_{ heta} \log \pi_{ heta}(s,a) \mathcal{R}_{s,a} \ &= \mathbb{E}_{\pi_{ heta}}\left[
abla_{ heta} \log \pi_{ heta}(s,a) r
ight] \end{aligned}$$

Policy Gradient Theorem

- The policy gradient theorem generalises the likelihood ratio approach to multi-step MDPs
- Replaces instantaneous reward r with long-term value $Q^{\pi}(s, a)$
- Policy gradient theorem applies to start state objective, average reward and average value objective

Theorem

For any differentiable policy $\pi_{\theta}(s, a)$, for any of the policy objective functions $J = J_1, J_{avR}, \text{ or } \frac{1}{1-\gamma}J_{avV}$, the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q^{\pi_{\theta}}(s, a) \right]$$

Monte-Carlo Policy Gradient (REINFORCE)

- Update parameters by stochastic gradient ascent
- Using policy gradient theorem
- Using return v_t as an unbiased sample of $Q^{\pi_{\theta}}(s_t, a_t)$

$$\Delta\theta_t = \alpha\nabla_\theta \log \pi_\theta(s_t, a_t)v_t$$

function REINFORCE

```
Initialise \theta arbitrarily for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t end for end for return \theta end function
```

Direct policy differentiation

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

$$J(\theta)$$

$$\underline{p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau)} = p_{\theta}(\tau)\frac{\nabla_{\theta}p_{\theta}(\tau)}{p_{\theta}(\tau)} = \underline{\nabla_{\theta}p_{\theta}(\tau)}$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)] = \int p_{\theta}(\tau)r(\tau)d\tau$$
$$\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta} p_{\theta}(\tau)} r(\tau) d\tau = \int \underline{p_{\theta}(\tau)} \nabla_{\theta} \log p_{\theta}(\tau) r(\tau) d\tau = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$

Direct policy differentiation

$$\theta^{\star} = \arg \max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

$$\log \text{of both sides} p_{\theta}(\tau)$$

$$\log p_{\theta}(\tau) = \log p(\mathbf{s}_{1}) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) + \log p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$

$$\nabla_{\theta} \left[\log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \right]$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

Direct policy differentiation

Evaluating the policy gradient

recall:
$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Comparison to maximum likelihood

policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

maximum likelihood:
$$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \right)$$

What is wrong with the policy gradient?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

Causality: policy at time t' cannot affect reward at time t when t < t'

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t' = t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
"reward to go"
$$\hat{Q}_{i,t}$$

Reducing Variance Using a Critic

- Monte-Carlo policy gradient still has high variance
- We use a critic to estimate the action-value function,

$$Q_w(s,a) pprox Q^{\pi_{ heta}}(s,a)$$

- Actor-critic algorithms maintain two sets of parameters
 Critic Updates action-value function parameters w
 Actor Updates policy parameters θ, in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

$$abla_{ heta} J(heta) pprox \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s, a) \; Q_{w}(s, a)
ight]
abla_{ heta} = lpha
abla_{ heta} \log \pi_{ heta}(s, a) \; Q_{w}(s, a)$$

Estimating the Action-Value Function

- The critic is solving a familiar problem: policy evaluation
- How good is policy π_{θ} for current parameters θ ?
- This problem was explored in previous two lectures, e.g.
 - Monte-Carlo policy evaluation
 - Temporal-Difference learning
 - \blacksquare TD(λ)
- Could also use e.g. least-squares policy evaluation

Actor-Critic

- Simple actor-critic algorithm based on action-value critic
- Using linear value fn approx. $Q_w(s, a) = \phi(s, a)^\top w$ Critic Updates w by linear TD(0) Actor Updates θ by policy gradient

```
function QAC Initialise s, \theta Sample a \sim \pi_{\theta} for each step do Sample reward r = \mathcal{R}_s^a; sample transition s' \sim \mathcal{P}_{s,\cdot}^a Sample action a' \sim \pi_{\theta}(s', a') \delta = r + \gamma Q_w(s', a') - Q_w(s, a) \theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_w(s, a) w \leftarrow w + \beta \delta \phi(s, a) a \leftarrow a', s \leftarrow s' end for
```

end function

Reducing Variance Using a Baseline

- We subtract a baseline function B(s) from the policy gradient
- This can reduce variance, without changing expectation

$$egin{aligned} \mathbb{E}_{\pi_{ heta}}\left[
abla_{ heta}\log\pi_{ heta}(s,a)B(s)
ight] &= \sum_{s\in\mathcal{S}}d^{\pi_{ heta}}(s)\sum_{a}
abla_{ heta}\pi_{ heta}(s,a)B(s) \ &= \sum_{s\in\mathcal{S}}d^{\pi_{ heta}}B(s)
abla_{ heta}\sum_{a\in\mathcal{A}}\pi_{ heta}(s,a) \ &= 0 \end{aligned}$$

- A good baseline is the state value function $B(s) = V^{\pi_{\theta}}(s)$
- So we can rewrite the policy gradient using the advantage function $A^{\pi_{\theta}}(s, a)$

$$A^{\pi_{ heta}}(s,a) = Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s)$$
 $\nabla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[\nabla_{ heta} \log \pi_{ heta}(s,a) \ A^{\pi_{ heta}}(s,a)
ight]$

Reducing Variance Using a Baseline

a convenient identity

$$p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau) = \nabla_{\theta}p_{\theta}(\tau)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\theta}(\tau) [r(\tau) - b]$$

$$b = \frac{1}{N} \sum_{i=1}^{N} r(\tau)$$

 $b = \frac{1}{N} \sum_{i=1}^{N} r(\tau)$ but... are we *allowed* to do that??

$$E[\nabla_{\theta} \log p_{\theta}(\tau)b] = \int p_{\theta}(\tau)\nabla_{\theta} \log p_{\theta}(\tau)b \,d\tau = \int \nabla_{\theta}p_{\theta}(\tau)b \,d\tau = b\nabla_{\theta} \int p_{\theta}(\tau)d\tau = b\nabla_{\theta} 1 = 0$$

subtracting a baseline is *unbiased* in expectation!

average reward is *not* the best baseline, but it's pretty good!

Estimating the Advantage Function (1)

- The advantage function can significantly reduce variance of policy gradient
- So the critic should really estimate the advantage function
- For example, by estimating both $V^{\pi_{\theta}}(s)$ and $Q^{\pi_{\theta}}(s,a)$
- Using two function approximators and two parameter vectors,

$$egin{aligned} V_{v}(s) &pprox V^{\pi_{ heta}}(s) \ Q_{w}(s,a) &pprox Q^{\pi_{ heta}}(s,a) \ A(s,a) &= Q_{w}(s,a) - V_{v}(s) \end{aligned}$$

And updating both value functions by e.g. TD learning

Estimating the Advantage Function (2)

■ For the true value function $V^{\pi_{\theta}}(s)$, the TD error $\delta^{\pi_{\theta}}$

$$\delta^{\pi_{\theta}} = r + \gamma V^{\pi_{\theta}}(s') - V^{\pi_{\theta}}(s)$$

is an unbiased estimate of the advantage function

$$egin{aligned} \mathbb{E}_{\pi_{ heta}}\left[\delta^{\pi_{ heta}}|s,a
ight] &= \mathbb{E}_{\pi_{ heta}}\left[r+\gamma V^{\pi_{ heta}}(s')|s,a
ight] - V^{\pi_{ heta}}(s) \ &= Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \ &= A^{\pi_{ heta}}(s,a) \end{aligned}$$

So we can use the TD error to compute the policy gradient

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta^{\pi_{\theta}} \right]$$

In practice we can use an approximate TD error

$$\delta_{v} = r + \gamma V_{v}(s') - V_{v}(s)$$