Introduction to Discrete Math

Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion & Induction, Logic, Invariants
- Probability & Combinatronics
 - Basic Counting, Binomial Coeff, Advanced Counting,
 Probability, Random Variables

Probability & Combinatronics – Random Variables

EXPECTATION IS NOT ALL

Probability & Combinatronics – Random Variables

A Dice Game

A Dice Game

- Suppose Mikki and Matt are playing a game
- Each of them has an (unconventional) dice

- Numbers on Mikki's dice are 2, 2, 2, 2, 3, 3
- Numbers on Matt's dice are 1, 1, 1, 1, 6, 6

• Mikki and Matt throw their dices → the one with the larger number on the dice wins

Mikki

Matt

A Dice Game

- Suppose Mikki and Matt are playing a game
- Each of them has an (unconventional) dice
- Numbers on Mikki's dice are 2, 2, 2, 2, 3, 3
- Numbers on Matt's dice are 1, 1, 1, 1, 6, 6
- Mikki and Matt throw their dices → the one with the larger number on the dice wins

Mikki Numbers: 2, 2, 2, 2, 3, 3 Matt Wins! Numbers: 1, 1, 1, 1, 6, 6

• If they play the game many times, who will win more often?

Who Has Better Expected Value

Mikki

Numbers:

Matt

- Let's see who has better expected value of a dice throw
- Mikki has: $2 \times \frac{2}{3} + 3 \times \frac{1}{3} = \frac{7}{3}$
- Matt has: $1 \times \frac{2}{3} + 6 \times \frac{1}{3} = \frac{8}{3}$

Who Has Better Expected Value

Mikki

Numbers:

Matt

- Let's see who has better expected value of a dice throw
- Mikki has: $2 \times \frac{2}{3} + 3 \times \frac{1}{3} = \frac{7}{3}$
- Matt has: $1 \times \frac{2}{3} + 6 \times \frac{1}{3} = \frac{8}{3}$
- Matt has better expected value

But, who wins more often?

Mikki

Numbers:

Matt

- Note that the winner depends only on Matt's throw:

 If he throws "1" he definitely loses, else if a "6", he wins! = 1/3
- Matt throws a "1" with probability of 2/3 = low

But, who wins more often?

Mikki

Numbers:

Matt

- Note that the winner depends only on Matt's throw: If he throws "1" he definitely loses, else if a "6", he wins!
- Matt throws a "1" with probability of 2/3
- So Matt loses (substantially) more often, despite a greater expected value 🕾

How about the Expected Value?

Mikki

Numbers:

2, 2, 2, 2, 3, 3

Matt

Numbers:

1, 1, 1, 1, 6, 6

Where did the large expected value go?
 Why does it now help Matt to win?

6 >> 2 013

- But he does not get credit for difference between the numbers

Conclusion

Mikki

Numbers:

$$2, 2, 2, 2, 3, 3$$
 2 $2 \times \frac{2}{3} + 3 \frac{1}{3} =$

Matt

- This example shows that the expected value does not tell us everything about random variable
- A random variable with "better" expected value can be "worse" because of some other properties

Thank you.