

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Medieninformatik / Human-Computer Interaction

Grundlagen der Multimediatechnik

Bildverbesserung

12.11.2021, Prof. Dr. Enkelejda Kasneci

Termine und Themen

22.10.2021	Einführung						
29.10.2021	Menschliche Wahrnehmung – visuell, akustisch, haptisch,						
05.11.2021	Informationstheorie, Textcodierung und -komprimierung						
12.11.2021	Bildverbesserung						
19.11.2021	Bildanalyse						
26.11.2021	Grundlagen der Signalverarbeitung						
03.12.2021	Bildkomprimierung						
10.12.2021	Videokomprimierung						
17.12.2022	Audiokomprimierung						
14.01.2022	Videoanalyse						
21.01.2022	Dynamic Time Warping						
28.01.2022	Gestenanalyse						
04.02.2022	Tiefendatengenerierung						
11.02.2022	FAQ mit den Tutoren						
15.02.2022	Klausur (noch nicht bestätigt)						

Anwendungen

- Zeichenerkennung
- Qualitätsprüfung in der industriellen Produktion
- Medizinische Bildanalyse
- Luftbildauswertung
- Fahrzeugsteuerung
- Gesichtserkennung
- Robotik
- Inhaltsbasierte Bildsuche im Internet

Bild

• Unter einem Bild $B = \{f(i,j) \ mit \ 0 \le i < M, 0 \le j < N\}$ verstehen wir eine Matrix von Bildpunkten (auch Pixel von "picture element"), zunächst Beschränkung auf Intensitätswerte (Grauwerte)

	0	1						8	
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	3	0	0	0	0
	0	0	0	3	3	3	0	0	0
:	0	0	3	3	3	3	3	0	0
	0	0	9	9	9	9	9	0	0
	0	0	9	9	9	9	9	0	0
6	0	0	0	0	0	0	0	0	0 0 0 0 0 0

- Eingabebild: $B_E = \{f_E(i,j) \ mit \ 0 \le i < M, 0 \le j < N\}$ Eingabebildfolge: $B_E(p) = \{f_E(i,j,p) \ mit \ 1 \le p \le P\}$, P: Anzahl Bilder
- Ausgabebild: $B_A = \{f_A(i,j) \ mit \ 0 \le i < M, 0 \le j < N\}$

Histogramm

• Ein **Histogramm** beschreibt die **Häufigkeitsverteilung** H(w) **einzelner Intensitätswerte** w (z.B. Grauwerte) eines Bildes $H(w) = |\{(i,j): f(i,j) = w\}| : w \in [0, K-1]$ (Intensitätswerte), z.B. K = 256

Histogramm (Beispiel)

Interpretation von Histogrammen – Belichtung –

 Ungenutzte Intensitätsbereiche "am Anfang" oder "am Ende" im Histogramm

Interpretation von Histogrammen – Kontrast –

 Kontrast: Abstand zwischen minimal und maximal vorkommenden Intensitätswert

Geringer Kontrast

Normaler Kontrast

256

Hoher Kontrast

256

Interpretation von Histogrammen – Dynamik –

• Dynamik: Anzahl unterschiedlicher Pixelwerte

Hohe Dynamik maximaler Kontrast

Geringe Dynamik, maximaler Kontrast

255

Sehr geringe Dynamik, maximaler Kontrast

255

Histogrammberechnung bei Farbbildern (Trennung der Farbkanäle)

Histogrammberechnung mit ImageJ

```
public void run (ImageProcessor ip) {
  int[] H = new int[256]; // histogram array
  int w = ip.getWidth();
  int h = ip.getHeight();
  for (int v = 0; v < h; v++) {
     for (int u = 0; u < w; u++) {
        int i = ip.getPixel(u,v);
       H[i] = H[i] + 1;
  ... // histogram H[] kann nun verwendet werden
```


Bildverbesserung

- Grauwerttransformation (Punktoperation)
- Histogrammausgleich
- Nachbarschaftsoperatoren
- Bildglättung
- Bildverschärfung
- Korrektur von uneinheitlichem Hintergrund

Punktoperation

• Ein Bildpunkt $f_A(i,j)$ des Ausgabebildes ist nur **eine Funktion eines einzelnen Bildpunktes** des Eingabebildes $f_E(i_1,j_1)$ bzw. der Eingabebildfolge $f_E(i_1,j_1,p)$ $\forall i,i_1 \in \{0,...,M-1\}$ und $j,j_1 \in \{0,...,N-1\}$: $f_A(i,j) = g_{punkt}(f_E(i_1,j_1,p): p \in \{1,...,P\})$

 Neuer Farb-/Grauwert allein vom bisherigen eigenen Farb-/ Grauwert abhängig

Beispiele:

- Kontrast und Helligkeit
- Farbtransformation
- Hintergrundsubtraktion
- Bildmaskierungen

Lokale Operation

• Ein Bildpunkt $f_A(i,j)$ des Ausgabebildes ist eine Funktion der Bildpunkte in einer wohldefinierten lokalen Umgebung U um den entsprechenden Punkt (i,j) des Eingabebildes bzw. der Eingabebildfolge.

$$f_A(i,j) = g_{lokal}(\{f_E(i,j,p) : (i,j) \in U; p \in \{1,...,P\}\})$$

 Die lokale Umgebung wird meist symmetrisch zum betrachteten Punkt, oft quadratisch gewählt.

Beispiele:

- Faltungsoperationen mit Faltungskern
- Mittelwertfilter
- Kantendetektion
- Eckpunktdetektion
- Reihenfolgeoperationen

Globale Operation

• Ein Bildpunkt $f_A(i,j)$ des Ausgabebildes ist eine Funktion aller Punkte des Eingabebildes bzw. der Eingabebildfolge:

```
\begin{split} f_A(i,j) &= g_{global}(\{f_E(i,j,p): i \in \{0,\dots,M-1\}; \ j \in \{0,\dots,N-1\}; \\ p &\in \{1,\dots,P\}\}) \end{split}
```

Beispiele:

- Fouriertransformation
- Diskrete Kosinustransformation
- (→ späterer Vorlesungsblock)

Pixelbasierte Bildverbesserung (Punktoperation)

- Abbildung der Grau-/Farbwerte unabhängig von ihrem Ort oder ihrer Zuordnung
 - innerhalb der Grau- bzw. Farbwerte:

$$g_{neu} = f(g) \text{ oder } [r_{neu}, g_{neu}, b_{neu}] = [f(r), f(g), f(b)]$$

- von Grauwerten in Farbwerte (Falschfarbdarstellung):

$$[r_{neu}, g_{neu}, b_{neu}] = [f_1(g), f_2(g), f_3(g)]$$

- Qualitätsmerkmal ("Figure of Merit"):
 - globaler/lokaler Kontrast, Entropie
- Methoden
 - Monotone Abbildung der Grauwerte
 - Nicht monotone Grauwertabbildung
 - Falschfarbdarstellung

Grauwerttransformationen

- Ein homogener Punktoperator g(i,j) = op(f(i,j)) definiert eine Grauwerttransformation.
- Der Operator op hat Intervall [0,255] als Definitions- und Wertebereich (deshalb homogen) und ist häufig monoton.

Beispiel:

• Negativ-Bild g(i,j) = 255 - f(i,j)

Beispiel:

Kontraststreckung (um Grauwert m)

Schwellwertverfahren

 Schwellwertoperation ist eine spezielle Form der Quantisierung, bei der die Bildwerte abhängig von einen vorgegebenen
 Schwellwert in zwei Klassen getrennt werden

$$f_{
m th}(a) = \left\{ egin{array}{ll} a_0 & ext{für } a < a_{
m th} \ a_1 & ext{für } a \geq a_{
m th} \ , \end{array}
ight.$$

d.h. Alle Pixel werden in dieser Punktoperation einem von zwei fixen Intensitätswerten a_0 oder a_1 zugeordnet.

Auswirkungen von Punktoperationen

 Ungünstige Wahl einer Punktoperationen kann zu einer untrennbaren Überlappung/Vereinigung von Objekten führen

Globaler Kontrast

Globaler Kontrast: Größter Grauwertunterschied im Bild

$$c_{global}(f) = \frac{\left[\max_{i,j} (f(i,j)) - \min_{i,j} (f(i,j))\right]}{g_{range}}$$

mit g_{range} : Grauwertbereich, z.B.: [0, 255] bei 8 Bit

Maximierung des globalen Kontrasts

- Kontrastumfang g_{max} g_{min} im Verhältnis zum maximalen Wertebereich w_{min} ... w_{max} (z.B. 0 ... 255) ist Skalierungsfaktor.
- Transferfunktion

Maximierung des globalen Kontrasts

• Grauwertspreizung:

$$g'(g) = (g - g_{min}) \cdot \frac{w_{max} - w_{min}}{g_{max} - g_{min}}$$
 $g_{min} = 100, g_{max} = 112$ $w_{min} = 0, w_{max} = 255$ $g'(g) = (g - 100) \cdot \frac{255}{12}$ $g_{max} = \frac{255}{12}$

Stückweise lineare Transformation

• Anwendung: Dehnung der Grauwerte zur Kontrastverstärkung

• Anwendbar, falls f(i,j) nur Grauwerte aus [a,b] belegt oder falls Bildinhalte aus dem Teilbereich [a,b] hervorgehoben werden sollen

Stückweise lineare Transformation

 Beispiel: Parameter a und b werden durch Betrachtung des Histogramms bestimmt

Kontrastverstärkung durch Dehnung der Grauwerte: [0,110]→[0,255]

mit

Lokaler Kontrast

Globaler Kontrast: Größter Grauwertunterschied im Bild

$$c_{global}(f) = \left[\max_{i,j}(f(i,j)) - \min_{i,j}(f(i,j))\right] / g_{range}.$$
 g_{range} : Grauwertbereich (zur Erinnerung)

• Lokaler Kontrast: z.B. durchschnittlicher Grauwertunterschied

zwischen benachbarten Pixeln

$$c_{local}(f) = 1/MN \sum_{i} \sum_{j} |f(i,j) - f_{nb}(i,j)|$$

mit $f_{nb}(i,j)$: durchschnittlicher Grauwert
in der Umgebung von (i,j)

 Anmerkung: Aufgrund des Nachbarschaftsbezugs scheint keine Punktoperation zur Verbesserung des lokalen Kontrasts zu existieren

Globaler / Lokaler Kontrast

Verbesserung des lokalen Kontrasts: Log-Transformation

- Idee: Pixel mit häufig vorkommenden Grauwerten sind häufig benachbart
- Lösung: Betrachte Pixelhäufungen im unteren/oberen Grauwertbereich
 → Nicht-lineare Transformation als Näherungsmethode zur Erhöhung des lokalen Kontrasts

$$g'(f) = w_{max} \cdot \frac{\log(1 + f(i,j))}{\log(1 + w_{max})}$$

• Eigenschaften:

- Dehnung der Grauwertdynamik im unteren Grauwertbereich
- Gleichzeitige Stauchung im oberen Grauwertbereich

Original Log-Transformation

Verbesserung des lokalen Kontrasts: Gamma-Korrektur

- Bild ist zu hell <u>oder</u> zu dunkel, aber Grauwertbereich ist nahezu ausgenutzt.
- Nichtlineare, monotone Transferfunktion für Über- und Unterbelichtung
- Allgemeine Form der Log-Transformation: Gamma-Korrektur

$$g'(f) = w_{max} \cdot \left(\frac{f(i,j)}{w_{max}}\right)^{\gamma}$$

• Vereinfachende Annahme:

$$w_{min} = 0$$

Verbesserung des lokalen Kontrasts: Gamma-Korrektur

- Bild ist zu hell <u>oder</u> zu dunkel, aber Grauwertbereich ist nahezu ausgenutzt.
- Nichtlineare, monotone Transferfunktion für Über- und Unterbelichtung
- Allgemeine Form der Log-Transformation: Gamma-Korrektur

Verbesserung des lokalen Kontrasts: Gamma-Korrektur

$$g'(f) = w_{max} \cdot \left(\frac{f(i,j)}{w_{max}}\right)^{\gamma}$$

- γ < 1: Spreizung heller Grauwerte, Stauchung dunkler Grauwerte (ähnlich Log-Trans.)
- $\gamma > 1$: Spreizung dunkler Grauwerte, Stauchung heller Grauwerte

Verbesserung des lokalen Kontrasts: Gamma-Korrektur (Beispiele)

- Fall 1: γ < 1:
 - Kennlinie ist derjenigen der Log-Transformation ähnlich
 - erhöht Helligkeit und ermöglicht insbesondere bessere Sichtbarkeit im dunklen Bildbereich

Verbesserung des lokalen Kontrasts: Gamma-Korrektur (Beispiele)

• Fall 2: $\gamma > 1$:

Das Verhalten exakt umgekehrt im Vergleich zu γ < 1. Das transformierte Bild wirkt dunkler. Der untere Grauwertbereich wird zusammengestaucht, was bei zu hellen Bildern eine bessere Betrachtung ermöglicht.

Gerätespezifische Gamma-Korrektur

- Viele Ausgabe-Geräte zeigen kein lineares, sondern exponentielles Verhalten
 - Bildschirm: 1,8 $\leq \gamma \leq$ 2,5. Z.B. erscheint mit $\gamma =$ 2,5 ein Bild tendenziell zu dunkel
- Vorgeschaltete γ-Korrektur

$$g'(f(i,j)) = 255 \cdot \left(\frac{f(i,j)}{255}\right)^{\frac{1}{2,5}} = 255 \cdot \left(\frac{f(i,j)}{255}\right)^{0,4}$$

kompensiert diesen Effekt und erlaubt natürlichere Betrachtung

Maximierung des Informationsgehalts

- Gibt es eine "optimale" Korrektur?
- Optimal = maximaler Informationsgehalt

Wiederholung: Modell der Diskreten gedächtnislosen Quelle

- Eine **diskrete gedächtnislose Quelle** X setzt in jedem Zeittakt ein Zeichen x_i aus dem Zeichenvorrat, dem Alphabet $X = \{x_1, x_2, \dots, x_N\}$, mit der Wahrscheinlichkeit $P(x_i) = p_i$ ab. Die Auswahl der Zeichen geschieht unabhängig voneinander.
- Beispiel: gedächtnislose Binärquelle
 - Zeichenvorrat: $X = \{x_1, x_2\}$
 - Wahrscheinlichkeiten: $0 \le p_1 \le 1$ und $p_2 = 1 p_1$
- Fragestellung: Wie kann man mit möglichst wenig Aufwand an Symbolen bzw. Zeichen möglichst viel Information übertragen?

Wiederholung: Entropie

Definition: Eine diskrete gedächtnislose Quelle X mit dem Zeichenvorrat $X = \{x_1, x_2, ..., x_N\}$ und den zugehörigen Wahrscheinlichkeiten $p_1, p_2, ..., p_N$ besitzt den **mittleren Informationsgehalt**, die **Entropie** [Shannon, 1948]

$$H(x) = -\sum_{i=1}^{N} p_i \cdot \log_2(p_i)$$
 bit

Die Entropie einer diskreten gedächtnislosen Quelle wird maximal, wenn alle N Zeichen des Zeichenvorrats gleichwahrscheinlich sind.

Beispiel: (Hinweis: $I(p_i) = log_2(1/p_i)$ bit $= -log_2(p_i)$ bit)

Zeichen	a	b	С	d
p_i	1/2	1/4	1/8	1/8
$I(p_i)$	1 bit	2 bit	3 bit	3 bit
H(X)	$0.5 \cdot 1 \ bit + 0.25$	$5 \cdot 2 \ bit + 0,125$	\cdot 3 bit + 0,125 \cdot 3	$3 \ bit = 1,75 \ bit$

Normiertes Histogramm

• Normierung nach Anzahl der Pixel eines Bildes (Größe: $M \times N$):

$$H_{norm}(g) = H(g) / (M \cdot N)$$

• Ein normiertes Histogramm beschreibt für jeden Grauwert g die Wahrscheinlichkeit, dass ein beliebiges Pixel diesen Grauwert hat.

200

Kumulatives Histogramm

Kumulatives Histogramm: Sukzessive Summation aller

Histogrammwerte gemäß

$$H_K(i) = \sum_{j=0}^{i} H(j) \ \forall \ 0 \le i < w_{max}$$

Maximaler Informationsgehalt

Entropie ist maximal, falls $P(g_i) = const$ für i = 0, ..., K - 1

Gesucht: **Histogrammtransformation** g'(g) zur **Maximierung der Entropie**

Annahme:

Sei $H_{norm}(g)$ normiert und kontinuierlich, dann gilt: $\int H_{norm}(g) = 1$

Definiere Abbildung (Transferfunktion) über normiertes Histogramm zur Max. der Entropie:

$$g'(g) = w_{max} \int_0^g H_{norm}(w) dw$$

Beispiel

Entropie(f) = 6,49 $Entropie_{max} = 8,00$

Histogramm erzeugen

Transferfunktion anwenden

3×10⁴
2×10⁴
Histogramm
1×10⁴
0 50 100 150 200 250 300

50

100

150

200

Aber: was ist, falls $g'(g) \cdot (K-1)$ keine ganze Zahl ist?

250

Histogrammlinearisierung

Transferfunktion für ein diskretes Histogramm

 $g'(g) = \left[w_{max} \cdot \sum_{i=0}^{g} H_{norm}(i) \right] - 1,$

Abbildung auf nächste ganze Zahl!

mit w_{max} : Anzahl repräsentierbarer Grauwerte

Beispiel: (1000 Bildpunkte und $w_{max} = 8$)

Grauwert	0	1	2	3	4	5	6	7	
Häufigkeit	50	150	350	250	100	60	30	10	/ 1000
$H_{norm}(g)$	0,05	0,15	0,35	0,25	0,10	0,06	0,03	0,01)/ 1000
kumulativ	0,05	0,20	0,55	0,80	0,90	0,96	0,99	1,00	\
Grauwert	0,4	1,6	4,4	6,4	7,2	7,68	7,92	8,00	$varrow W_{max}$
aufgerundet	1	2	5	7	8	8	8	8	
$\lceil \rceil - 1$	0	1	4	6	7	7	7	7	

Keine Linearisierung, sondern von der Häufigkeit abhängige Spreizung

Beispiel: Histogrammlinearisierung

Entropie wurde **kleiner**, da Annäherung des Grauwerts durch ganze Zahl erforderlich ist!

Problem

Nichtmonotone Grauwertabbildung

Zwei Grauwertfenster in einem Bild.

- Erzeugt künstliche Kanten
- Grenzen von Maxima der Transferfunktion nicht immer erkennbar

Farbe zur Kontrastverstärkung

- Es können wesentlich mehr Farb- als Grauwerte unterschieden werden
- Kontrastverstärkung durch drei nicht-lineare, nicht-monotone Abbildungsfunktionen der Grauwerte: $red_i(g)$, $green_i(g)$, $blue_i(g)$

Beispiel

Weitere Punktoperationen

Farbtransformation

- 3 Farbauszüge einer Szene: B_R , B_G , B_B
- Farbtransformation durch Wahl geeigneter skalarer Gewichte

$$-f_A(i,j) = a \cdot f_R(i,j) + b \cdot f_G(i,j) + c \cdot f_B(i,j)$$

Hintergrundsubtraktion

- Aufnahme eines Hintergrundbild B_H , das die relevanten Objekte des zu verarbeitenden Bildes B_E nicht enthält
- $f_A(i,j) = f_E(i,j) f_H(i,j)$

Maskierung

- Extraktion semantisch bedeutsamer Teile mit Binärmaske, in der interessante Punkte durch $f_B(i,j)=1$ gekennzeichnet sind
- $f_A(i,j) = f_E(i,j) \cdot f_B(i,j)$

Weitere Punktoperationen

Geometrische Transformationen

- Transformation der Ortskoordinaten zur Größenanpassung
- $f_A(i,j) = f_E(i+p,j+q)$ mit den Konstanten p,q

Alpha-Blending

- Methode, um zwei Bilder B_H und B_E transparent zu überblenden
- Hintergrundbild B_H wird von Bild B_E überdeckt
- Durchsichtigkeit wird durch den Transparenzwert α bestimmt

$$-f_A(i,j) = \alpha \cdot f_H(i,j) + (1-\alpha) \cdot f_E(i,j)$$

Alpha-Blending (Beispiel)

Fazit: Punktoperatoren

- Punktoperatoren finden breite Anwendung zur globalen Bildverbesserung
- Histogramme bieten gute Basis zur Kontrasterhöhung
- Grauwerttransformationen (Punktoperatoren) sind jedoch nicht in der Lage, die räumlichen Beziehungen der Grauwerte einer kleinen Umgebung zu erkennen
- Zu diesem Zweck sind eine andere Klasse von Operationen notwendig, welche die Bildpunkte einer Nachbarschaft in geeigneter Weise kombinieren:

$$g(i,j) = (N(f(i,j)))$$

→ Lokale Operatoren (Nachbarschaftsoperatoren) oder Filter

Literatur

K. D. Tönnies:

Grundlagen der Bildverarbeitung,

Pearson Studium, 2005.

W. Burger, M.Burge:

Digitale Bildverarbeitung: Eine algorithmische Einführung mit Java;

Springer Vieweg, 3. Auflage 2015.

J. Steinmüller:

Bildanalyse,

Springer-Verlag, 1. Auflage 2008.

Quellenangabe: Bilder und Folienmaterial sind auszugsweise aus den Lehrbüchern und Materialien von Tönnies und Burger, Burge sowie den Vorlesungsmaterialien von Prof. Xiaoyi Jiang, Universität Münster entnommen.