

Percepção Térmica

Data de início 29/10/2019

Data de entrega 18/12/2019

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

Sumário

Introdução	3
Objetivos	3
Convenções, Termos e Abreviações Identificação dos Requisitos Propriedades dos Requisitos	3 3 4
Requisitos Funcionais	4
Requisitos Funcionais da Interface Gráfica	7
Requisitos Não Funcionais	7
Descrição de Software Medição de Temperatura Funcionalidade do Botão	8 8 12
Levantamento de Hardware	13
Integração do Hardware Sistema de Controle e Limitador de Corrente do Peltier Esquemático Inicial Comparação dos Componentes	23 23 25 25
Interface Gráfica	27
Sistema de Segurança Software Hardware	28 28 29

1. Introdução

O projeto "Percepção térmica" visa desenvolver um aparelho médico que seja capaz de identificar o nível de sensibilidade à temperatura na pele de um paciente.

A solução construída é baseada no aumento da temperatura em uma certa área do corpo e na medição correta desse parâmetro, de acordo com os requisitos levantados para o produto. O usuário deve apertar o botão quando sentir a temperatura muito elevada, permitindo ao sistema armazenar esse valor. Em seguida, ocorre o resfriamento natural da pele até atingir os 32°C. O ciclo, por fim, repete-se até que se tenham três temperaturas armazenadas, apresentando na tela a média dos valores encontrados.

O hardware é composto por cinco subsistemas principais.

O primeiro subsistema é o de aquecimento, composto pelo peltier. Este, está diretamente ligado ao segundo subsistema: leitura (composto pelo sensor de temperatura). Ambos estão em contato com a pele do usuário e ligados aos outros três subsistemas por meio de um fio.

O terceiro subsistema é o de alimentação, composto por circuitos integrados e fonte do sistema. Este está conectado ao quarto subsistema, interface gráfica, composto pelo display. Por fim, todos os subsistemas são unidos pelo quinto e último subsistema: controle, permitindo a harmonização de todas as partes envolvidas no funcionamento do projeto.

2. Objetivos

Este documento é responsável por especificar os requisitos do projeto "Percepção térmica", fornecendo aos envolvidos as informações necessárias para sua implementação, assim como o desenvolvimento conceitual de subsistemas.

2.1. Objetivos Específicos

- Descrever os requisitos funcionais do sistema com a finalidade de levantar as ações e capacitações definidas para este.
- Descrever os requisitos funcionais da Interface gráfica com a finalidade de levantar as ações e capacitações definidas para este.

- Descrever os requisitos n\u00e3o funcionais do sistema com a finalidade de definir as a\u00f3\u00f3es e capacita\u00f3\u00f3es que n\u00e3o ser\u00e3o utilizadas neste, fechando o escopo do projeto para o cliente.
- Descrever o software do projeto, dividido em dois tópicos: medição de temperatura (subsistema de leitura) e funcionalidade do botão (encarregado de encerrar a leitura do sistema). Ambos são definidos pela programação implementada no microcontrolador responsável pelo controle do sistema.
- Levantar todos os componentes utilizados no hardware do sistema;
- Explicar a construção do sistema de controle e limitador de corrente do peltier,
 bem como o esquemático de integração dos componentes e a comparação destes, especificamente peltier, microcontrolador e sensor de temperatura.
- Apresentar o layout proposto para a interface gráfica;
- Definir o sistema de segurança que será utilizado no software e no hardware no projeto.

3. Convenções, Termos e Abreviações

3.1. Identificação dos Requisitos

Por convenção, a referência a requisitos é feita através do nome da subseção na qual eles estão descritos, seguidos do identificador do requisito, de acordo com o modelo:

[nome da subseção/identificador do requisito]

Os requisitos serão identificados com um identificador único, com numeração iniciada em [RF001] para um requisito funcional, [NF001] para um requisito não funcional ou [IG001] para um requisito funcional da interface gráfica.

3.2. Propriedades dos Requisitos

Para estabelecer a prioridade dos requisitos, nas seções 4, 5 e 6, foram adotadas as denominações "essencial", "importante" e "desejável", tal que:

- **Essencial** é o requisito sem o qual o sistema não entra em funcionamento. Requisitos essenciais são aqueles imprescindíveis, que devem ser implementados impreterivelmente.
- Importante é o requisito sem o qual o sistema entra em funcionamento, mas de forma não satisfatória. Requisitos importantes devem ser implementados, mas, se não forem, o sistema poderá ser implementado e usado normalmente.
- Desejável é o requisito que não compromete as funcionalidades básicas do sistema, isto é, o sistema pode funcionar de forma satisfatória sem ele. Requisitos desejáveis podem ser deixados para versões posteriores do sistema, caso não haja tempo hábil para implementação dos mesmos nesta etapa.

4. Requisitos Funcionais

4.1. [RF001] Captura de temperatura - Sensor

O sistema deve capturar a temperatura, através de um sensor com precisão mínima de 0.1°C.

Prioridade: Essencial.

4.2. [RF002] Regulação de temperatura - Placa Peltier

O sistema deve realizar a regulação de temperatura na placa peltier. Variando a temperatura em 1°C por segundo.

Prioridade: Essencial.

4.3. [RF003] Fixação da temperatura a cada acionamento do botão

O sistema deve guardar a temperatura atingida a cada vez que o botão for acionado.

Prioridade: Essencial.

4.4. [RF004] Identificação da temperatura mínima de 32°C

O sistema deve estar familiarizado com a temperatura mínima de 32°C na pele antes de permitir a elevação desta novamente.

Prioridade: Essencial.

4.5. [RF005] Estrutura 1

A estrutura deve conter organizadamente o sensor de temperatura e o atuador (peltier).

Prioridade: Importante.

4.6. [RF006] Estrutura 2

A estrutura deve conter organizadamente o circuito de alimentação, controle do atuador e entrada de fonte.

Prioridade: Importante.

4.7. [RF007] Som de Captura de temperatura

Após o acionamento do botão o sistema deve mostrar no display o valor da temperatura.

Prioridade: Essencial.

4.8. [RF008] Sistema de Segurança contra altas temperatura.

O sistema deve ser capaz de identificar a temperatura máxima limite (50°C) e impedir que esta seja ultrapassada, utilizando-se do software e do hardware implementado para garantir a integridade física do usuário.

Prioridade: Essencial.

4.9. [RF009] Média de Temperatura

O sistema deve calcular a média das três temperaturas aferidas e mostrar esse valor no display.

Prioridade: Essencial.

4.10. [RF010] Alimentação

O sistema será alimentado através de uma fonte chaveada.

Prioridade: Essencial.

4.11. [RF011] Usabilidade do protótipo

O sistema deve ter uma fácil usabilidade.

Prioridade: Importante.

4.12. [RF012] Ao ligar, iniciar na temperatura da pele

Ao iniciar o procedimento, o sistema deve capturar a temperatura da pele e partir dela para as medições.

Prioridade: Desejável

4.13. [RF013] Mostrar todas as temperaturas e o valor da média

O sistema deve reproduzir graficamente todas as temperaturas aferidas, destacando o valor da média entre todos valores.

Prioridade: Desejável.

4.14. [RF014] Barra de indicação de temperatura

O sistema deve mostrar uma barra de indicação da temperatura em crescimento de acordo com o andamento do funcionamento do aparelho.

Prioridade: Desejável.

4.15. [RF015] Temperatura Inicial

O sistema deve mostrar a temperatura inicial, antes de começar o procedimento, de forma contínua na tela do display.

Prioridade: Desejável.

5. Requisitos Funcionais da Interface Gráfica

5.1. [IG001] Temperatura Inicial

A interface gráfica deve mostrar a temperatura da pele no início da medição.

Prioridade: essencial.

5.2. [IG002] Temperatura em Tempo Real

A interface gráfica atualiza o valor da temperatura exibida conforme a mesma vai sendo aumentada pelo Peltier.

Prioridade: essencial.

5.3. [IG003] Temperatura Limiar

A interface gráfica deve congelar na tela a temperatura limiar alcançada.

Prioridade: essencial.

5.4. [IG004] Temperatura Média

A interface gráfica, após três medições de temperatura, deve mostrar no display a média aritmética das mesmas.

Prioridade: essencial.

6. Requisitos Não Funcionais

6.1. [NF001] Data/Hora

A interface gráfica não mostrará a data e hora atual.

6.2. [NF002] Temperatura do Ambiente

A interface gráfica não irá mostrar a temperatura atual do ambiente que o sistema está inserido.

6.4. [NF003] Cronômetro

A interface gráfica não terá um cronômetro mostrando o tempo que levou para chegar à temperatura limiar.

6.5. [NF004] Gráficos/Animações

A interface gráfica não conta com gráficos e animações da alteração da temperatura como requisitos.

6.6. [NF005] Testes do Sistema

Os testes do sistema não serão realizados em humanos.

7. Descrição de Software

O software do projeto deve ser capaz de controlar e integrar os componentes eletrônicos de modo que a funcionalidade do projeto seja implementada.

7.1. Medição de Temperatura

O sistema deverá realizar a comunicação entre o sensor de temperatura e o microcontrolador, de forma que os dados medidos referentes à temperatura corporal inicial do paciente e às temperaturas limitares sejam mostrados no display.

Foram pensadas duas maneiras de realizar esta comunicação entre o sensor e o microcontrolador. A primeira é realizar uma multiplexação de telas, na qual irá ter um menu inicial contendo duas opções:

- 1. Mostrar temperatura corporal;
- 2. Iniciar a medição.

Desta forma, caso o usuário selecione a primeira opção, será mostrada no display a temperatura corporal atual do paciente. E caso a segunda opção seja selecionada, o procedimento de medição será iniciado e aparecerão no display as três temperaturas limiares juntamente com a média aritmética das mesmas.

Diagrama 01. Fluxograma do funcionamento do sistema quando a opção 1 do menu for selecionada.

Diagrama 02. Fluxograma do funcionamento do sistema quando a opção 2 do menu for selecionada.

A segunda maneira de realizar a comunicação entre o sensor de temperatura e o microcontrolador é mostrar no display a temperatura corporal do paciente antes das medição ser iniciada.

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

Deste modo, a primeira temperatura que irá ser apresentada no display é a temperatura corporal inicial, e depois irão ser mostradas as temperaturas limiares, e por último, a média aritmética das temperaturas limiares.

Diagrama 03. Fluxograma do funcionamento do sistema de medição sem menu.

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

As vantagens de se utilizar o sistema com menu, são que serão mostradas menos informações na tela durante a medição, deixando a interface mais limpa para o usuário, e também o usuário poderá verificar a temperatura corporal do paciente sempre que a opção do menu ser selecionada, e não apenas no início das medições.

E ao usar a opção do sistema sem menu, as vantagens vão ser que, o produto será mais simples de ser manuseado e a informação da temperatura corporal inicial do paciente estará presente no display durante toda a medição, o que pode ajudar o usuário em situações que é necessário saber o valor desta temperatura.

7.2. Funcionalidade do Botão

O sistema do projeto também deve conter um botão, que ao ser pressionado, deve encerrar a elevação de temperatura e informar ao microcontrolador que a temperatura medida no momento que o botão foi pressionado se trata da temperatura limiar.

Após o botão ser pressionado pela terceira vez, o sistema deve saber que a medição chegou ao fim e a média aritmética das três temperaturas limiares devem ser mostradas no display.

Diagrama 04. Fluxograma do funcionamento do botão.

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

O software do projeto irá utilizar bibliotecas específicas dos componentes eletrônicos escolhidos para assim, por meio das funções destas bibliotecas, realizar o controle e a comunicação do *hardware*.

8. Levantamento de Hardware

8.1. Microcontrolador

8.1.1. Arduino UNO com ATMega 328

Tabela 01. Dados técnicos do Arduino UNO.

Tensão Nominal	6 a 20 V (limite)
Comunicação	1-UART, 2-SPI, 1-I2C
Dimensões	102 x 54 mm
Preço unitário	R\$59,90 (huinfinito)

8.1.2. Arduino NANO

Tabela 02. Dados técnicos do Arduino NANO.

Tensão Nominal	5 V
Comunicação	1-UART, 2-SPI, 1-I2C
Dimensões	43,2 x 15,3 mm
Preço unitário	R\$38,90 (baú da eletrônica)

8.1.3. Arduino Pro Mini 328

Tabela 03. Dados técnicos do Arduino Pro Mini.

Tensão Nominal	5 V
Comunicação	1-UART, 2-SPI, 1-I2C
Dimensões	33 x 18 mm
Preço unitário	R\$33,90 (huinfinito)

8.1.4. Raspberry Pi Zero W

Tabela 04. Dados técnicos da Raspberry Pi Zero W.

Tensão Nominal	5 V
Comunicação	I2C, SPI, UART
Dimensões	65 x 30 x 5 mm
Preço unitário	R\$143,90 (huinfinito)

8.1.5. ESP8266 NodeMCU ESP-12E

Tabela 05. Dados técnicos da ESP8266.

Tensão Nominal	4,5 a 9 V
Comunicação	PWM, I2C, SPI
Dimensões	49 x 25,5 x 7 mm
Preço unitário	R\$39,90 (huinfinito)

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

8.1.6. MSP430FR2355

Tabela 06. Dados técnicos da MSP430FR2355.

Tensão Nominal	1,8 a 3,6 V
Comunicação	UART, SPI, IrDA, I2C
Dimensões	7 x 7 mm
Preço unitário	\$12,99 (texasinstruments)

8.1.7. MSP430FR6989

Tabela 07. Dados técnicos da MSP430FR6989.

Tensão Nominal	1,8 a 3,6 V
Comunicação	UART, IrDA, SPI, I2C
Dimensões	14 x 14 mm
Preço unitário	\$17,99 (texasinstruments)

8.2. Atuador - Peltier

8.2.1. Pastilha Termoelétrica Peltier TEC1-12706

Tabela 08. Dados técnicos do TEC1-12706.

Faixa de temperatura	-30°C a +70°C
Tensão Nominal	0 a 15,2 VDC
Consumo	60W
Dimensões	40x40 mm
Preço unitário	R\$ 29,90 (huinfinito)

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

8.2.2. CP2-71-10 Thermoeletric Modules

Tabela 09. Dados técnicos do CP2-71-10.

Faixa de temperatura	25°C a 50°C
Tensão Nominal	9V
Consumo	47,7W
Dimensões	44,x44x5,6 mm
Preço unitário	\$ 65,21

8.2.3. ThermaTEC Series HT3,12,F2,3030

Tabela 10. Dados técnicos do HT3,12,F2,3030.

Faixa de temperatura	25°C a 50°C
Tensão Nominal	14,5 a 16,4V
Consumo	27,2W
Dimensões	30x34x3,2 mm
Preço unitário	\$ 35.00

8.2.4. 19003 - Cripólise - TES2 - Pastilha Peltier TEC2 - 19003

Tabela 11. Dados técnicos do TEC2-19003.

Faixa de temperatura	0 a 67°C
Tensão Nominal	16V
Consumo	27,2W
Dimensões	30x34x3,2 mm
Preço unitário	\$ 35.00

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

Sensores de Temperatura

8.3.1. MAX30205

Tabela 12. Dados técnicos do MAX30205.

Protocolo	I2C
Faixa de temperatura	0°C a +50°C
Precisão	± 0,1 °C
Tensão Nominal	2,7 a 3,3 V
Consumo	600µA
Dimensões	3mm x 3mm
Preço unitário	R\$ 9,85 (digikey)

8.3.2. LM35

Tabela 13. Dados técnicos do sensor LM35.

Protocolo	One wire
Faixa de temperatura	-55°C a 150°C
Precisão	±0,5°C
Tensão Nominal	4 a 30 V
Consumo	60µA
Dimensões	4,3mm x 4,3mm
Preço unitário	R\$ 11,85 (hu infinito)

8.3.3. Infravermelho MLX90614

Tabela 14. Dados técnicos do sensor MLX90614.

Protocolo	I2C
Faixa de temperatura	-70°C a 380°C (para objetos)
Precisão	+/- 0,5 °C
Tensão Nominal	3V ou 5V(duas versões)
Consumo	5mA
Dimensões	17 x 11,5 x 6 mm
Preço unitário	R\$ 47,90 (mercado livre)

8.3.4. NTC10K

Tabela 15. Dados técnicos do NTC10K.

Protocolo	One Wire
Faixa de temperatura	-55°C a 125°C
Precisão	+/-1%
Tensão Nominal	3,3 ou 5 V
Consumo	5mA
Dimensões	5mm (corpo)
Preço unitário	R\$ 0,35 (hu infinito)

8.3.5. DS18B20

Tabela 16. Dados técnicos do DS18B20.

Protocolo	One Wire
Faixa de temperatura	-55°C a 125°C
Precisão	+/-0,5°C
Tensão Nominal	3 a 5,5 V
Consumo	1,5 mA
Dimensões	4,5 mm x 4,5 mm
Preço unitário	R\$ 14,90 (hu infinito)

8.4. Alimentação

8.4.1. Fonte 12V 10A

Tabela 17. Dados técnicos da fonte.

Saída	P4
Tolerância	10%
Frequência	50/60Hz
Preço	R\$40,10 (mercadolivre)

8.4.2. Regulador de Tensão 5V - AMS1117

Tabela 18. Dados técnicos do Regulador AMS1117.

Tensão de entrada	6,5 a 12V
Tensão de saída	5V
Corrente de saída (máxima)	800mA

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

Eficiência de conversão	0,2 a 0,4%
Preço	R\$ 3,90 (huinfinito)

8.4.3. Regulador de Tensão 10V - LM2596

Tabela 19. Dados técnicos do Regulador LM2596.

	9
Tensão de entrada	3,2 a 40V
Tensão de saída	1,5 a 35V
Corrente de saída (máxima)	3A
Eficiência de conversão	Até 92%
Preço	R\$ 7,90 (huinfinito)

8.4.4. Regulador de Tensão e Corrente - XI4015

Tabela 20. Dados técnicos do Regulador XI4015.

Tensão de entrada	4 a 38V
Tensão de saída	1,25 a 36V
Corrente de saída (máxima)	5A
Eficiência de conversão	95%
Preço	R\$ 18,90 + 24,90 (frete - mercadolivre)

8.4.5. Regulador de Tensão Step Down Buck

Tabela 21. Dados técnicos do Regulador Step Down Buck.

Tensão de entrada	5 a 40V
Tensão de saída	1,5 a 35V
Corrente de saída (máxima)	9A
Eficiência de conversão	92%
Preço	R\$ 42,50 (mercadolivre)

8.5. Periféricos

8.5.1. Botão sem trava PBS-11B 2P

Tabela 22. Dados técnicos da chave táctil PBS-11B 2P.

Protocolo	2 terminais (SPST)
Alimentação (MÁX)	3A - 250VCA
Dimensões	18 x 38 mm
Preço unitário	R\$ 1,80 (huinfinito)

8.5.2. Chave tactil KFC-A06 4T

Tabela 23. Dados técnicos da chave táctil 4T.

Protocolo	4 terminais	
Alimentação	50mA (corrente máx)	
Dimensões	6x6x5 mm	

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

Preço unitário F	R\$ 0,12 (huinfinito)
------------------	-----------------------

8.5.3. Buzzer 5V

Tabela 24. Dados técnicos do buzzer.

Protocolo	2 pinos
Alimentação	42mA/5V
Som de saída	> 85dB
Preço unitário	R\$ 1,52 (huinfinito)

8.5.4. Display LCD

Tabela 25. Dados técnicos do display LCD.

Protocolo	I2C		
Alimentação	2,5 a 6V		
Corrente em standby	10uA		
Dimensão	41,5mm x 19mm x 11,3mm		
Cor	Backlight azul e letra branca Backlight verde e letra preta		
Preço unitário	R\$ 22,90 R\$ 24,99 (huinfinito - com o módulo I2C))		

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

8.5.5. Display OLED

Tabela 26. Dados técnicos do display OLED.

Protocolo	I2C
Alimentação	3,3 a 5V
Corrente em standby	24mA
Dimensão	28x28x12mm (componente) 27x15mm (tela)
Cor	Fundo preto com luz azul Fundo preto com luz branca Fundo preto com luz amarela e azul
Preço unitário	R\$ 33,90

9. Integração do Hardware

9.1. Sistema de Controle e Limitador de Corrente do Peltier

Desenvolveu-se um circuito para o controle do Peltier através do microcontrolador a ser escolhido. A ideia desenvolvida inclui que da saída do microcontrolador haverá um conversor digital-analógico ligado a um foto acoplador, que fará o controle do circuito de potência, controlando o nível de tensão do transistor e sua corrente, como mostrado no circuito abaixo.

Figura 01. Circuito de controle do Peltier.

Com essa solução, a tensão de alimentação do Peltier ficou definida em 10V - podendo variar até 11V - e um limite de 9A para a corrente.

Tabela 27. Componentes necessários para o circuito de controle do Peltier.

Componente	Quantidade	Preço Unitário
Conversor D/A MX7530JN+	1	R\$ 18,50
Transistor NMOS IRF740	1	R\$ 2,89
Optoacoplador 4N25	1	R\$ 1,32

9.2. Esquemático Inicial

Figura 02. Esquemático Inicial, contendo os subsistema propostos.

9.2.1. Subsistema de Leitura

Subsistema que tem como função conectar o sensor de temperatura MAX30205 ao microcontrolador ATMEGA328. Ambos funcionam em conjunto para obter a temperatura corporal.

9.2.2. Subsistema de Periféricos

Subsistema que tem algumas funcionalidades com o objetivo de troca de informação com o usuário. O display é a interface gráfica com os dados da temperatura atingida, o buzzer o dispositivo sonoro para alarme antes de iniciar o procedimento, e o botão (push button) é o indicador utilizado pelo usuário quando sentir o aumento de temperatura na pele. Todos funcionam em conjunto, sendo as informações captadas e interpretadas pelo microcontrolador ATMEGA328.

9.2.3. Subsistema de Aquecimento

Subsistema que tem como função aquecer a pele do usuário, juntamente com o circuito regulador de corrente ligado ao microcontrolador, devido a alta alimentação requerida pelo atuador Peltier.

9.3. Comparação dos Componentes

Tabela 28. Comparação dos microcontroladores.

Tabola 20. Comparação do microcontroladoros.			
Microcontrolador	Tensão nominal Comunicação		
Arduino UNO	6 a 20V	UART, SPI, I2C	
Arduino NANO	5V	UART, SPI, I2C	
Arduino Pro Mini	5V	UART, SPI, I2C	
Raspberry Pi Zero W	5V	UART, SPI, I2C	
ESP8266	4,5 a 9V	PMW, I2C, SPI	
MSP430FR2355	1,8 a 3,6V	UART, SPI, I2C, IrDA	
MSP430FR6989	1,8 a 3,6V	UART, SPI, I2C, IrDA	

Tabela 29. Comparação dos atuadores Peltier.

Peltier	Faixa de Temperatura	Tensão Nominal	Consumo
TEC1-12706 -30°C a +70°C		0 a 15,2 VDC	60W

CP2-71-10	25°C a 50°C	9V	47,7W
HT3,12,F2,3030	25°C a 50°C	14,5 a 16,4V	27,2W
TEC2 - 190036	-	16V	27,2W

Tabela 30. Comparação dos sensores de temperatura.

Sensor	Faixa de Temperatura	Precisão	Tensão Nominal	Consumo
MAX30205	0°C a +50°C	±0,1 °C	2,7 a 3,3 V	600µA
LM35	-55°C a 150°C	±0,5°C	4 a 30 V	60µA
MLX90614	-70°C a 380°C	±0,5°C	3 ou 5V	5mA
NTC10K	-55°C a 125°C	土1%	3,3 a 5 V	5mA
DS18B20	-55°C a 125°C	±0,5°C	3,3 a 5 V	1,5mA

10. Interface Gráfica

Exemplos de interfaces gráficas atendendo aos requisitos funcionais, visando a disposição das medições coletadas nas etapas previamente levantadas no documento.

• Utilizando a opção com menu:

Menu Inicial 1. Mostrar Temperatura Corporal 2. Iniciar Medição

ELETRONJUN – UNIVERSIDADE DE BRASÍLIA EMPRESA JÚNIOR DE ENGENHARIA ELETRÔNICA

Figura 03. Exemplo de interface do menu.

Figura 04. Exemplo de interface da opção 1 do menu.

Figura 05. Exemplo de interface da opção 2 do menu.

Utilizando a opção sem menu:

Figura 06. Exemplo de interface gráfica sem menu.

As temperaturas "T1", "T2" e "T3" são as três temperaturas limiares medidas, e a temperatura "TC" é a temperatura corporal do paciente antes de iniciar as medições.

11. Sistema de Segurança

O protótipo do projeto, por trabalhar com o aumento de temperatura, possui o risco de alcançar um nível de calor que possa ameaçar a segurança do usuário. Para evitar este tipo de situação, é necessário um sistema de segurança dentro do software e do hardware do projeto.

11.1. Software

Dentro da parte do software do projeto responsável, por controlar o aumento da temperatura do Peltier, cabe acrescentar uma condição de segurança para caso a temperatura alcance um limite estabelecido como perigoso.

Esta condição de segurança pode ser implementada da seguinte forma:

- Caso a temperatura alcance o limite definido, s\u00e3o executados os seguintes procedimentos:
 - Parada do aumento de temperatura;
 - Exibição na interface gráfica que a temperatura máxima foi atingida;
 - Execução do restante do procedimento de medição.

Agora no contexto de código, esta condição pode ser feita da seguinte forma:

```
if(getTemp()>=Limite){
  stopPeltier();
  printDisplay("Temperatura máxima atingida: XºC");
  break;
}
```

Assumindo que o método "getTemp()" é responsável por receber a temperatura lida pelo sensor de temperatura, e a variável "Limite" é o limite de temperatura pré definido, esta condição será executada no momento que a temperatura lida pelo sensor alcançar ou ultrapassar este limite.

Depois de entrar nesta condição de segurança, serão executados os seguintes métodos:

- 1. "stopPeltier()", que como o nome sugere, faz com que o Peltier pare de aumentar sua temperatura;
- 2. Depois, com um método de exibição de mensagens no *display*, o *software* avisa ao usuário que a temperatura alcançou o limite pré-estabelecido;
- 3. Por fim, acontece um "break", que se assumirmos que a parte do software responsável por controlar o aumento de temperatura se trata de um loop, este break encerrará este loop, fazendo com que o resto do código seja executado.

Desta forma, o sistema não irá elevar a temperatura até promover uma situação de risco ao usuário que está passando pelas medições.

11.2. Hardware

O controle de hardware será feito através do circuito de controle de corrente projetado, mostrado na figura 01. O controle da corrente é dado pela saída do conversor D/A, que polariza o transistor de saída facilitando ou dificultando a passagem de corrente.

Dado o funcionamento do circuito, o sistema de controle de corrente pensado para o projeto é o seguinte: alguns pinos do conversor D/A devem ser conectados ao terra de maneira que o resultado da conversão nunca proporcione uma tensão de polarização que gere uma corrente maior que 9A, funcionando como um grampeador de tensão.

O controle por hardware se deu de forma simples, dado o fato de o sistema ser comandado em sua maior parte por software.

12. Referências Bibliográficas

Biblioteca Closed Cube_MAX30205. Disponível em:

https://github.com/closedcube/ClosedCube_MAX30205_Arduino>. Acesso em 4 de Novembro de 2019.

Biblioteca Protocentral MAX30205. Disponível em:

https://github.com/Protocentral/Protocentral_MAX30205>. Acesso em 4 de novembro de 2019.

Biblioteca SSD1306Ascii. Disponível em: < https://github.com/greiman/SSD1306Ascii>. Acesso em 5 de Novembro de 2019.

Biblioteca U8glib. Disponível em: < https://github.com/olikraus/U8glib Arduino>. Acesso em 5 de Novembro de 2019.