Exam 3A Chem 1142 Spring 2017

Name:	KEY	

MULTIPLE CHOICE. [3 pts ea.] Record the best response on the scantron sheet. [45 pts total.]

Assume all solutions are aqueous and at a temperature of 25 °C, unless stated otherwise.

- Q1. Which version of the exam do you have?
 - (a) 3A
 - b) 3В
- Q2. For the chemical equilibrium:

$$HCOOH(aq) + HCO3-(aq) \rightleftharpoons H2CO3(aq) + HCOO-(aq)$$

a conjugate acid-base pair would be:

- a) HCOOH & H2CO3
- b) HCOOH & HCO3-
- C)HCOOH & HCOO-
- d) H₂CO₃ & HCOOH
- Q3. What is the concentration of [OH $^{-}$] in a solution which has [H $^{+}$] = 2.5 × 10 $^{-10}$ M?
 - a) 2.5×10^{-10} M
 - b) 3.0×10^{-5} M
 - c) $1.6 \times 10^{-5} \,\mathrm{M}$
 - (d) 4.0×10^{-5} M
- Q4. What is the pH of a solution with $[OH^-] = 1.4 \times 10^{-9} \text{ M}$?
 - a) 8.85
 - (b) 5.15
 - c) 1.40
 - d) 9.95
- Q5. What is the pOH of $0.30 \text{ M Ba}(OH)_2(aq)$?
 - a) 0.52
 - b) 1.52
 - c)0.22
 - d) 0.60
- Q6. Which of the following acids will have the lowest pH at a concentration of 0.10 M?

HF,
$$K_a = 7.1 \times 10^{-4}$$

$$HCO_2H$$
, $K_a = 1.7 \times 10^{-4}$

$$CH_3CO_2H$$
, $K_a = 1.8 \times 10^{-5}$

- a)HF
- b) нсо₂н
- c) CH₃CO₂H
- d) All three acids will have the same pH

- Q7. The base dissociation constant (K_b) for CH₃NH₂ is 4.4×10^{-4} . Which of the following is the correct conjugate acid and its K_a ?
 - a) CH₃NH⁺
- $K_a = 2.3 \times 10^{-4}$
- b) CH₃NH⁺
- $K_a = 2.3 \times 10^{-11}$
- c) CH₃NH₃⁺
- $K_a = 2.3 \times 10^{-4}$
- d) CH₃NH₃+
- $K_a = 2.3 \times 10^{-11}$
- Q8. Predict which of the following salts will be acidic:
 - a) AlCl₃
 - b) KNO₃
 - c) $Ba(C_2H_3O_2)_2$
 - d) LiNO₂
- Q9. A Lewis acid is a(n):
 - a) H⁺ donor
 - (b) electron acceptor
 - c) OH- ion producer
 - d) reducing agent
- Q10. Formic acid, HCOOH, can form a buffer when combined with:
 - (a) HCOOLi
 - b) H₂CO₃
 - c) NH₃
 - d) CH₃COONa
- Q11. What pH is required to ensure the ratio of $[NH_3]/[NH_4^+]$ is 100?

Note: K_a (NH₄⁺) = 1.8 × 10⁻⁵?

- a) 3.74
- **b**) 6.74
- c) 9.74
- d) 10.74
- Q12. Which is the correct mathematical expression for K_{sp} (Mg₃(PO₄)₂)?
 - a) $[Mg^{2+}][PO_4^{3-}]$
 - b) $[Mg_3^{2+}][2PO_4^{3-}]$
 - c) $[Mg]^2 [PO_4]^3$
 - $d Mg^{2+} [PO_4^{3-}]^2$
- Q13. The molar solubility of CaF₂ is 2.2×10^{-4} M. What is $K_{\rm sp}$ equal to?
 - a) 4.3×10^{-11}
 - b) 4.8×10^{-8}
 - c) 1.1×10^{-11}
 - d) 2.2×10^{-4}
- Q14. If Q_{sp} for an ionic compound in solution is greater than K_{sp} , what will happen?
 - a) Nothing—the solution is saturated
 - b) More solute can dissolve—the solution is un-saturated
 - c) Solute will precipitate—the solution is super-saturated
 - d) The solution will cool down until $Q_{sp} = K_{sp}$

Q15. What would be the best pH indicator to use in the titration of CH_3CO_2H vs. NaOH? Its titration curve is given below:

The choice of indicators are:

Color

Indicator	In Acid	In Base	pH Range	
Methyl orange	Orange	Yellow	3.1 – 4.4	
Methyl red	Red	Yellow	4.2 – 6.3	
Cresol red	Yellow	Red	6.2 - 8.8	
Alizarin .	Yellow	Red	10.1 – 12	

- a) Methyl orange
- b) Methyl red
- ©)Cresol red
- d) Alizarin

Short Response.

Show ALL work to receive credit.

(a) Show how to, and then calculate, the pH of 0.040 M HNO₃(aq).

(b) Show how to, and then calculate, the pH of 0.040 M Ba(OH)₂(aq)

(b) Show how to, and then calculate, the pH of 0.040 M Ba(OH)₂(aq)

Ba(OH)₂
$$\frac{1007}{1007}$$
; Ba²⁺ + 20H $\frac{1007}{1007}$

O.040 M \longrightarrow 0.040 M 0.080M +1

POH = $\frac{1007}{1007}$ = $\frac{1007}{1007}$ (0.080) = 1.10

PH = $\frac{1007}{1007}$ (2dp.)

PH = $\frac{1007}{1007}$ (2dp.)

(c) Calculate the concentration of OH⁻ ions in the solution described in part (a).

$$K_{W} = [H^{+}][OH^{-}] \xrightarrow{41}$$
=) $[OH^{-}] = \frac{|C_{W}|}{|CH^{+}|} = \frac{|.Ox10^{-14}|}{|O.O40|} = \frac{|2.5y10^{-13}|M|}{|-\frac{1}{2}sf., unif.}$

or ... $POH = |4.00 - PH| = |2.60|$ +1

 $[OH^{-}] = |0^{-POH}| = |0^{-12.60}| = 2.5y10^{-13}M$

Q17. [15 pts.] Calculate the pOH and pH of 0.25 M NH₃. K_b (NH₃) = 1.8 × 10⁻⁵. Show all work, including a properly labelled ICE chart, as well as the correct chemical equation for the K_b reaction.

$$NH_{3}(a_{9}) + H_{2}O(1) \stackrel{>}{=} NH_{4}^{+}(a_{9}) + OH^{-}(a_{9})$$

$$T = 0.25 \qquad 0 \qquad \approx 0$$

$$C = -x \qquad + x \qquad + x$$

$$E = (0.25 - x) \qquad (x) \qquad (x)$$

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{5}]_{e_{0}}} = \frac{1.8 \times 10^{-5}}{0.25 - x} \approx \frac{5c^{2}}{0.25} \qquad \text{if} \qquad x <<0.25$$

$$\Rightarrow \qquad 1.8 \times 10^{-5} = \frac{x^{2}}{0.25} \qquad \Rightarrow \qquad x^{2} = 0.25 \times 1.8 \times 10^{-5}$$

$$\Rightarrow \qquad x = \sqrt{0.25 \times 1.8 \times 10^{-5}} = 2.12 \times 10^{-3}$$

$$[OH^{-}] = x = 2.12 \times 10^{-3} M \qquad (2s.f.)$$

$$POH = -log = [OH^{-}] = -log = (x) = 2.67 \qquad (2dp.)$$

$$PH + POH = 14.00 \Rightarrow PH = 14.00 - POH = 11.33$$

CH2 (02 Na -> CH3 (02 + Nat couj. base of CH2 CO2H

Q18. [15 pts.] (a) Using the Henderson-Hasselbalch equation, calculate the pH of a solution that is 0.50 M in acid — CH₃CO₂H(aq) as well as 0.30 M in CH₃CO₂Na(aq). Note: K_a (CH₃CO₂H) = 1.8 × 10⁻⁵.

$$pH = pKa + log \frac{Eban}{Cacid}$$

$$pKa = -log (Ka) = -log (1.8 \times 10^{-5}) = 4.74 (2dp)$$

(b) Calculate the new pH of 250-mL of the solution described in part (a) to which 5.0 mL of 3.0 M HNO3(aq) has been added. Comment on your final result. Be sure to show all relevant chemical equations, and clearly show your work using an ICE chart.

best to work w/ # miol since Vol change! #mol CH3102H

#mol CH2(02

250ml 1 0.30mol - 0.075 mol CH3(02H

[CH3(QH) = 0. 140mol

#mol HNO3 5.0ml 11 3.0mol = 0.015mol HNO3

HNO3 100% H+ + NO, (strong acra) 0.015

HT will react w/ base: CH2/02H

+ CH3(02 -> CH2(02H 0.125 0.075 0.015 -0.015 -0.015

0.140 0.060 E(final) 0

pH=pKa +log b/a = 4.74 + log 0.235M = 4.38

> Don't hate me because I'm a little buffer.

Q19. [15 pts.] (a) Write out the chemical equation for the reaction corresponding to $K_{sp}(Ag_2SO_4)$.

$$A_{92}SO_{4}(S) = 2A_{9}^{+}(a_{9}) + SO_{4}^{2}(a_{9}) + 3$$

(b) Using an ICE chart, calculate the molar solubility of silver sulfate (Ag₂SO₄) in water, given that

$$K_{sp} = 1.4 \times 10^{-5}. \text{ Ag }_{2} \text{ SO}_{4}(s) \implies 2 \text{ Ag}^{+} (a_{S}^{1} + \text{ SO}_{4}^{2} - (a_{S}^{1}))$$

$$= 2 \text{ Ag}^{+} (a_{S}^{1} + \text{ SO}_{4}^{2} - (a_{S}^{1}))$$

$$= 2 \text{ Ag}^{+} (a_{S}^{1} + \text{ SO}_{4}^{2} - (a_{S}^{1}))$$

$$= (2s) \qquad (s) \qquad +2$$

$$K_{sp} = [A_{g}^{+}]^{2} [\text{SO}_{4}^{2}]_{eq} = [.4 \times 10^{-5} = (2s)^{2}(s) = 4 \times 3] \qquad +2$$

$$= 3 \text{ Ksp}_{4} = 3 \text{ 1.4 \times 10^{-5}} = 0.015 \text{ M}$$

$$= 3 \text{ vnits/sf}$$

(c) Calculate the molar solubility of silver sulfate in 1.35 M Na₂SO₄(aq). Be sure to show all relevant chemical equations, and clearly show your work using an ICE chart. Comment on your final result.

$$A_{g_2}SO_{4}(s) \rightleftharpoons 2A_{g_1}^{\dagger}(a_{g_1}) + SO_{4}^{2-}(a_{g_1})$$

$$T \longrightarrow 0 \qquad 1.35 \qquad \} + 1$$

$$C \longrightarrow +2s \qquad +s \qquad \} + 1$$

$$(2s) \qquad (1.35+s)$$

S = 0.0012Min past (c)

 $K_{sp} = [A_{5}^{4}]^{2}[SO_{4}^{2}]_{eQ} = 1.4 \times 10^{-5} = (2s)^{2}(1.35+s)$ if $S \ll 1.35$, can write: $1.4 \times 10^{-5} \approx 45^{2} \times (1.35) = 5.40s^{2}$

= 0.0016M +1}

- much lus soluble tran in pure wate!

"This is a lovely old song that tells of a young woman who leaves her cottage, and goes off to work. She arrives at her destination, and places some solid NH₄HS in a flask containing 0.50 atm of ammonia, and attempts to determine the pressures of ammonia and hydrogen sulfide when equilibrium is reached."

Useful Information

IA 1	IIA	Periodic Table of the Elements										IIIA	IVA	VA	VIA	VIIA	VIII
1																	2
н																	He
1.008	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.1
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	A
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	1	Χe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.60	126.9	131.
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[210]	[210]	[222
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293
	_																
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138.9	140.1	140.9	144.2	[145]	150.4	152.0	157.3	158.9	162.50	164.9	167.3	168.9	173.0		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102		
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

$$N_{\rm A} = 6.022 \times 10^{23} \, \rm mol^{-1}$$

$$R = 8.3145 \frac{J}{\text{mol} \cdot \text{K}} = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$$

$$M_1V_1 = M_2V_2$$

$$pH = -log_{10}[H^+]$$

$$pH + pOH = 14.00 (25 \, ^{\circ}C)$$

$$K_{\rm w} = 1.0 \times 10^{-14} \, (25 \, {\rm ^{o}C})$$

$$K_{\rm a}\cdot K_{\rm b}=K_{\rm w}$$

$$pH = pK_a + log \frac{[Base]}{[Acid]}$$

$$K_{\rm p} = K_{\rm c}(RT)^{\Delta_{\rm n_g}}$$

Given:
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

