References where the mathematical symbols are defined:

The fragment molecular orbital method: practical applications to large molecular systems,

- D. G. Fedorov, K. Kitaura, Eds., CRC Press (2009), in press, chapter 1, or
- D. G. Fedorov, K. Kitaura, H. Li, J. H. Jensen, M. S. Gordon, J. Comp. Chem., 27 (2006) 976-985.

One-body FMO properties.

```
EcorrE'_IEuncorrDXDYDZ1(frg00001,L1)-76.198612403-76.014638036-1.789550.758171.646932(frg00002,L1)-76.198948441-76.0150214021.361811.05519-1.873773(frg00003,L1)-76.198981340-76.0150659520.30259-2.20909-1.22534
```

Total energy of the molecule: Ecorr (1)= -228.596542184Total energy of the molecule: Euncorr(1)= -228.044725390Total energy of the molecule: Edelta (1)= -0.551816794

Dipole moment D(xyz), DA(1) = -0.1251576 -0.3957289 -1.4521729 1.5103218

Two-body FMO properties.

DL: D=C dynamically correlated (MP2,CI), D=N not dynamically correlated (RHF,DFT). D=S separated dimer: semiclassical interaction (ES), D=M MCSCF. L stands for layer, Z is the monomer charge product, R is the interfragment distance relative to van-der-Waals radii (-1.00 is printed if distances are not computed). dDIJ*VIJ is the density polarisation contribution. Q(I->J) is the charge transfer amount, printed as zero if not available. Positive values correspond to I in IJ having extra negative charge.

I	J DL	Ζ	R	Q(I->J)	Ecorr	Euncorr	EIJ-EI-EJ,		dDIJ*VIJ,unc	
			R_{IJ}	ΔQ_{IJ}			$\Delta E_{IJ}'$	$\Delta E_{IJ}^{\prime \mathrm{RHF}}$	$Tr(\Delta \mathbf{D}^{IJ} \mathbf{V}^{IJ})$	$\Delta E_{IJ}^{\rm int}$
2	1 C1	0	0.76	0.0285	-152.411283188	-152.040818007	-0.01372234	-0.01115857	-0.00074728	-9.080
3	1 C1	0	0.76	-0.0276	-152.411322427	-152.040901722	-0.01372868	-0.01119773	-0.00072459	-9.070
3	2 C1	0	0.77	0.0255	-152.410247039	-152.039969786	-0.01231726	-0.00988243	-0.00068220	-8.157

```
Total energy of the molecule: Ecorr (2)= -228.638464541 E^{\text{FMO2-MP2}}
Total energy of the molecule: Euncorr(2)= -228.079118197 E^{\text{FMO2-RHF}}
Total energy of the molecule: Edelta (2)= -0.559346345
```

Dipole moment D(xyz), DA(2)= -0.1472843 -0.3832508 -1.4534028 1.5102826 $\mathbf{D}^{\text{FMO2-RHF}}$

Charge transfer for each fragment:

```
IFG QFG DeltaQ and its contributions from JFG, Q(JFG->IFG).
```

1 0 0.0009 = 2-> 0.0285 3-> -0.0276

1 0 0.0009 = 2-> 0.0285 3-> -0.0276 2 0 -0.0030 = 1-> -0.0285 3-> 0.0255 3 0 0.0021 = 1-> 0.0276 2-> -0.0255

Total absolute monomer transf. charge = $0.006060 \Delta Q$

FMO-PCM properties.

Ges is the energy of electrostatic interaction, included in the individual n-mer and total FMO energies.

Internal energies are for solute only excluding all interactions with solvent.

```
Τ
                  Ges
                           Gcav
                                             Grep (all in kcal/mol)
                                    Gdisp
1 (frg00001)
                -4.957
                           3.670
                                   -4.059
                                             1.113
2 (frg00002)
                -5.176
                           3.678
                                   -4.080
                                             1.122
3 (frg00003)
                -5.236
                           3.676
                                   -4.101
                                             1.129
```

Total Ges(1) = -15.369 kcal/mol.

I	J	Ges,	dGes (kcal/mol)
2	1	-10.118	0.015
3	1	-10.188	0.005
3	2	-10 401	0 011

Total Ges(2) = -15.338 kcal/mol.

ELECTROSTATIC INTERACTION = -15.338 KCAL/MOL $\Delta G_{\rm es}$ PIEROTTI CAVITATION ENERGY = 11.024 KCAL/MOL $\Delta G_{\rm cav}$ DISPERSION FREE ENERGY = -12.240 KCAL/MOL $\Delta G_{\rm disp}$ REPULSION FREE ENERGY = 3.364 KCAL/MOL $\Delta G_{\rm rep}$

TOTAL INTERACTION = -13.190 KCAL/MOL $\Delta G_{\rm es} + \Delta G_{\rm cav} + \Delta G_{\rm disp} + \Delta G_{\rm rep}$

Free corr. energy in solvent= -228.635041424 $\frac{G_{\text{FMO2-MP2/PCM}}}{G_{\text{FMO2-MP2/PCM}}} = \frac{E_{\text{FMO2-MP2/PCM}}}{G_{\text{cav}}} + \Delta G_{\text{cav}} + \Delta G_{\text{disp}} + \Delta G_{\text{rep}}$ Internal corr. energy in solvent= -228.614021800 $\frac{G'_{\text{FMO2-MP2/PCM}}}{G'_{\text{FMO2-MP2/PCM}}} = \frac{G_{\text{FMO2-MP2/PCM}}}{G_{\text{FMO2-MP2/PCM}}} - \left(\Delta G_{\text{es}} + \Delta G_{\text{cav}} + \Delta G_{\text{disp}} + \Delta G_{\text{rep}}\right)$

Free uncorrelated energy in solvent= -228.075695079 $G_{\text{FMO2-RHF/PCM}}$ Internal uncorrelated energy in solvent= -228.054675455 $G'_{\text{FMO2-RHF/PCM}}$

n-body Mulliken atomic charges Q(n)

IAT	IFG	Z	Q(1)	Q(2)	Q(3)
1	1	8.0	-0.999729	-1.002453	
2	1	1.0	0.500836	0.509644	
3	1	1.0	0.498893	0.493733	
4	2	8.0	-0.998937	-1.004276	
5	2	1.0	0.499763	0.507704	
6	2	1.0	0.499174	0.493542	
7	3	8.0	-0.999854	-1.000967	
8	3	1.0	0.500201	0.508502	
9	3	1.0	0.499653	0.494571	