EMS_2019 HOMEWORK 1

1. Three instruments each make 10 repeated measurements of a flow rate known to be $1.500 \text{ m}^3/\text{s}$ with the results given in the next Table.

Trial	Instrument A	Instrument B	Instrument C		
1	1.5	1.73	1.552		
2	1.3	1.73	1.531		
3	1.4	1.73	1.497		
4	1.6	1.73	1.491		
5	1.3	1.73	1.500		
6	1.7	1.73	1.550		
7	1.5	1.73	1.456		
8	1.7	1.73	1.469		
9	1.6	1.73	1.503		
10	1.5	1.73	1.493		

- a. Which instrument is most precise? Least precise? Explain.
- b. Which instrument has the best accuracy? Worst accuracy? Explain.
- c. Which instrument has the best resolution? Worst resolution? Explain.
- 2. Draw the *normalized histograms* (the bin width is 1) and calculate the *mean* and the *standard deviation* values for the next data sets:

Boys											
Shoe size	38	39	40	41	42	43	44	45	46		
How many	1	2	3	8	25	16	12	9	5		

3. Considering the Standard Normal Distribution (z) and using the tables, find:

- 4. Considering a population of capacitors having a nominal value of $10\mu F$ and a manufacturing tolerance of 15%. Statistical analysis of the capacitors values suggests that their distribution is normal, having a mean of μ =10.02 μF .
- a. Find the relative error [%] (bias) of the mean value relative to the nominal value (reference value)
- b. Find the standard deviation knowing that the tolerance is given as $\pm 3\sigma$.
- c. How many capacitors (from 1000) have values in the interval $\mu\pm3\sigma$?
- d. How many capacitors (from 1000) have values in an interval of $\pm 5\%$?
- e. How many capacitors (from 1000) have values in an interval of [0%,5%]?
- f. How many capacitors (from 1000) have values in an interval of [-2%,4%]?
- g. Find the symmetrical interval (x_1, x_2) where 70% of the population is situated.

Hint: The areas from $\mu \pm 1\sigma$; $\mu \pm 2\sigma$; $\mu \pm 3\sigma$ are known (see the slides from the course lectures).

- 5. A population of resistances values has the standard deviation of 0.156 ohms. A sample of 60 resistors has the average resistance of 0.55 ohms.
- (a) Based on these data, what is the confidence interval at a 95.45% confidence level for the population mean resistance.