FCVTZU (scalar, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point unsigned integer using the Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in *FPCR*, the exception results in either a flag being set in *FPSR*, or a synchronous exception being generated. For more information, see *Floating-point exception traps*.

Depending on the settings in the *CPACR_EL1*, *CPTR_EL2*, and *CPTR_EL3* registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

3	13	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S	f	0	0	1	1	1	1	0	fty	ре	0	1	1	0	0	1			SC	ale					Rn					Rd		
	rmod e pcode																															

Half-precision to 32-bit (sf == 0 && ftype == 11) (FEAT_FP16)

```
FCVTZU <Wd>, <Hn>, #<fbits>
```

Half-precision to 64-bit (sf == 1 && ftype == 11) (FEAT_FP16)

```
FCVTZU <Xd>, <Hn>, #<fbits>
```

Single-precision to 32-bit (sf == 0 && ftype == 00)

```
FCVTZU <Wd>, <Sn>, #<fbits>
```

Single-precision to 64-bit (sf == 1 && ftype == 00)

```
FCVTZU <Xd>, <Sn>, #<fbits>
```

Double-precision to 32-bit (sf == 0 && ftype == 01)

```
FCVTZU <Wd>, <Dn>, #<fbits>
```

Double-precision to 64-bit (sf == 1 && ftype == 01)

```
FCVTZU <Xd>, <Dn>, #<fbits>
```

```
if ftype == '10' |  (ftype == '11' && !IsFeatureImplemented(FEAT_FP16))
integer d = UInt(Rd);
integer n = UInt(Rn);

constant integer intsize = 32 << UInt(sf);
constant integer decode_fltsize = 8 << UInt(ftype EOR '10');

if sf == '0' && scale<5> == '0' then UNDEFINED;
integer fracbits = 64 - UInt(scale);
```

Assembler Symbols

<wd></wd>	Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<xd></xd>	Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<sn></sn>	Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<hn></hn>	Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<dn></dn>	Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<fbits></fbits>	For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64 minus "scale".
	For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64 minus "scale".

Operation

```
CheckFPEnabled64();

FPCRType fpcr = FPCR[];
bits(decode_fltsize) fltval;
bits(intsize) intval;

fltval = V[n, decode_fltsize];
intval = FPToFixed(fltval, fracbits, TRUE, fpcr, FPRounding ZERO, intsize],
X[d, intsize] = intval;
```

Operational information

If FEAT_SME is implemented and the PE is in Streaming SVE mode, then any subsequent instruction which is dependent on the general-purpose register written by this instruction might be significantly delayed.

BaseSIMD&FPSVESMEIndex byInstructionsInstructionsInstructionsInstructions

Internal version only: isa v33.64, AdvSIMD v29.12, pseudocode no_diffs_2023_09_RC2, sve v2023-06_rel ; Build timestamp: 2023-09-18T17:56

Sh Pseu

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.