Curso Kubernetes

Elmer Orlando Real Ixcayau
Carne 201503936
Abril 2020

Indice

Lección 1: Introducción

Lección 2: Play with kubernetes

Lección 3: Preparación del entrono de trabajo.

Lección 4: Conceptos Básicos

Lección 5: Introducción a comandos imperativos.

Lección 6: Pods & Servicios (comandos imperativos)

Lección 7: Namespaces (comandos imperativos)

Indice

Lección 8: Comandos imperativos vs archivos declarativos.

Lección 9 : Namespaces (archivos de configuración declarativos)

Lección 10: ReplicaSet

Lección 11: Deployment

Lección 12: StatefulSet & DeamonSet

Lección 13: Deployment, Secrets & Configmaps.

Lección 14: Crear clúster con kubeadm.

INTRODUCCIÓN

Ejemplo

 Suponga que se necesita desplegar dos aplicaciones con las siguientes características

Aplicación	Sistema Operativo	Librerías extras
APP1	Linux Mint	Python 2
APP2	Ubuntu 16	Python3

DESPLIEGUE TRADICIONAL

DESPLIEGUE EN MÁQUINAS VIRTUALES

DESPLIEGUE EN CONTENEDORES

Ventajas

- Portabilidad: puede ejecutarse en cualquier maquina y siempre tendrá el mismo comportamiento.
- Tiempo: Se puede automatizar utilizando scripts
- Costo: Debido a que elimina la duplicación de kernel y el uso de hipervisor se aprovechan mas los recursos fisicos.
- Ligero: Un contenedor utiliza solamente los recursos necesarios para funcionar.

DevOps

Adopción de micro-servicios

MICROSERVICES MONOLITHIC UI UI VS. **MICROSERVICE BUSINESS** LOGIC DATA ACCESS **LAYER MICROSERVICE MICROSERVICE MICROSERVICE**

¿Que es Kubernetes?

Caracteristicas de K8

- Descubrimiento de servicios y balanceo de carga
- Orquestacion de almacenamiento
- Despliegue inteligente de contenedores.
- Chequeos de estado (Health Checks)
- Self-Healing
- Manejo de secretos y configuraciones.

Caracteristicas de K8

- Es una plataforma open-source
- Para el manejo de cargas de trabajo contenerizadas y servicios.
- Es portable y extensible.
- Ofrece:
 - Configuración declarativa
 - Automatización

Arquitectura Cluster Kubernetes

- Nodos Worker
 - 3 servicios
 - Kubelet
 - Kube-proxy
 - Container runtime
- Nodo Maestro/Control Plane
 - 4 servicios
 - API Server
 - Scheduler
 - Controller
 - etcd

Arquitectura Cluster Kubernetes

Imagen tomada de: https://www.scaleuptech.com/de/blog/kubernetes-architektur/

Arquitectura Cluster K8

- Un nodo puede ser una maquina virtual o física
- Normalmente en un cluster tiene multiples nodos, solamente en entornos de aprendizaje o con recursos limitados se trabajará con un nodo.

Casos de exito

Spotify

PLAY WITH KUBERNETES

PREPARACIÓN DEL ENTORNO DE TRABAJO

Diagrama Cluster K8

Diagrama Cluster K8

Diagrama Cluster K8

• Imagen tomada del siguiente enlace: https://medium.com/faun/kubernetes-architecture-85ad2999882a

¿Qué es kubectl?

- Es una interfaz de linea de comandos que permite ejecutar comandos en un cluster de Kubernetes.
- Se puede usar para desplegar aplicaciones, inspeccionar, manejar los recursos de un cluster y revisar registros.

¿Qué es Minikube?

- Es una herramienta que configura un cluster de manera local.
- Crea un nodo en una VM
 (Necesita tener habilitada la virtualizacion en la BIOS).
- SOLO PARA ENTORNOS LOCALES.

¿Que es kubeadm?

- Es una herramienta que ayuda en la instalación y configuración de un cluster de kubernetes.
- Kubeadm init
 - Se configura un nodo del control plane
- Kubeadm join
 - Une un nodo worker al cluster

Arquitectura cluster Minikube (Utilizando VM)

Arquitectura cluster Minikube (Utilizando Driver Docker)

Configuración de un cluster local con minikube

- Pre-requisitos
 - Tener instalado Docker
 - Tener permisos de superusuario.
 - Tener configurado docker para ejecutar contenedores sin ser superusuario.
- Instalar Kubectl
- Instalar Minikube
- Minikube start --driver=docker

CONCEPTOS BÁSICOS

INTRODUCCIÓN A COMANDOS IMPERATIVOS

PODS & SERVICIOS (COMANDOS IMPERATIVOS)

NAMESPACES (COMANDOS IMPERATIVOS)

COMANDOS IMPERATIVOS VS ARCHIVOS DECLARATIVOS

NAMESPACES (ARCHIVOS DECLARATIVOS)

REPLICASET

DEPLOYMENT

STATEFULSET & DEAMONSET

DEPLOYMENT, SECRETS & CONFIGMAPS

CREAR CLÚSTER CON KUBEADM

