Lógica y Computabilidad

2do cuatrimestre 2020 - A DISTANCIA

Departamento de Computación - FCEyN - UBA

Lógica de Primer Orden - clase 2

Lema de sustitución, sistema axiomático SQ, consecuencia sintáctica, teorema de la generalización, teorema de la generalización en constantes

Reemplazo de variables libres por términos

Sea $\mathcal{L} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ un lenguaje fijo.

Sea $\varphi \in \mathsf{FORM}(\mathcal{L})$, $t \in \mathsf{TERM}(\mathcal{L})$ y $x \in \mathsf{VAR}$. $\varphi[x/t]$ es la fórmula obtenida a partir de φ sustituyendo todas las apariciones libres de la variable x por t

Por ejemplo, (para un lenguaje con símbolo de predicado binario P y símbolo de función unario f)

- ► P(x, y)[x/f(z)] = P(f(z), y)
- ► P(x,y)[x/f(x)] = P(f(x),y)
- $((\forall x)(\forall y) P(x,y))[x/f(z)] = (\forall x)(\forall y) P(x,y)$
- $(P(x,y) \to (\forall x)(\forall y) \ P(x,y))[x/f(z)] = P(f(z),y) \to (\forall x)(\forall y) \ P(x,y)$

Si $c \in \mathcal{C}$, $\varphi[c/t]$ es la fórmula obtenida a partir de φ sustituyendo todas las apariciones de la constante c por t

Variable reemplazable por un término

Sea
$$t \in \mathsf{TERM}(\mathcal{L})$$
, $x \in \mathsf{VAR}$, $\varphi \in \mathsf{FORM}(\mathcal{L})$.

Decimos que x es reemplazable por t en φ cuando

- 1. t es un término cerrado (i.e. no tiene variables) o
- 2. t tiene variables pero ninguna de ellas queda atrapada por un cuantificador en el reemplazo $\varphi[x/t]$

Por ejemplo, (para un lenguaje con símbolo de predicado unario P y símbolo de función binaria f)
En

$$(\forall y)\big((\forall x)P(x)\to P(x)\big)$$

- x es reemplazable por z: $(\forall y) ((\forall x) P(x) \rightarrow P(z))$
- x es reemplazable por f(x,z): $(\forall y)((\forall x)P(x) \rightarrow P(f(x,z)))$
- \blacktriangleright x no es reemplazable por f(x,y): $(\forall y)((\forall x)P(x) \rightarrow P(f(x,y)))$

3

Lema de Sustitución

Lema

Si x es reemplazable por t en φ entonces

$$\mathcal{A} \models (\varphi[x/t])[v]$$
 sii $\mathcal{A} \models \varphi[v(x = \tilde{v}(t))].$

Demostración.

Por inducción en la complejidad de φ . (a veces escribo v por \tilde{v})

- $\varphi = P(u)$ es atómica (u es término; el caso n-ario es similar). $\mathcal{A} \models P(u[x/t])[v]$ sii $\tilde{v}(u[x/t]) \in P_{\mathcal{A}}$ sii (lema auxiliar que dice v(u[x/t]) = v(x = v(t))(u)) $v[x = \tilde{v}(t)](u) \in P_{\mathcal{A}}$ sii $\mathcal{A} \models \varphi[v(x = \tilde{v}(t))]$.
- φ es de la forma $\neg \psi$ o de la forma $\psi \rightarrow \rho$. Directo.

 $(\mathsf{sigue} \to)$

4

Lema de Sustitución

Demostración (cont.)

 $\triangleright \varphi$ es de la forma $(\forall y) \psi$. Sup. x no aparece libre en φ . Entonces v y v[x = v(t)] coinciden en todas las variables que aparecen libres en φ . Además, $\varphi = \varphi[x/t]$. Inmediato.

Sup. x aparece libre en φ . Como x es reemplazable por t en φ , y no ocurre en t.

Luego para todo
$$d \in A$$
, $v(t) = v(y = d)(t).$ (1)

Además, x es reemplazable por t en ψ . Como $x \neq y$,

sii (1)

Luego
$$\varphi[x/t] = ((\forall y) \; \psi)[x/t] = (\forall y) \; (\psi[x/t]).$$

Luego
$$\varphi[x/t] = ((\forall y) \ \psi)[x/t] = (\forall y) \ (\psi[x/t]).$$

$$\mathcal{A} \models \varphi[x/t][v] \quad \text{sii (def.)} \quad \text{para todo } d \in A, \ \mathcal{A} \models \psi[x/t][v(y=d)]$$

sii (HI) para todo
$$d \in A$$
, $A \models \psi[\underbrace{v(y=d)}_{w}(x=w(t))$

sii (def.) $\mathcal{A} \models \varphi[v(x = v(t))]$

$$\mathcal{A} \models \varphi[x/t][v]$$
 sii (def.) para todo $d \in \mathcal{A}$, $\mathcal{A} \models \psi[x/t][v(y=d)]$ sii (HI) para todo $d \in \mathcal{A}$, $\mathcal{A} \models \psi[v(y=d)(x=w(t))]$

para todo $d \in A$, $A \models \psi[\underline{v(y = d)}(x = w(t))]$

sii $(x \neq y)$ para todo $d \in A$, $A \models \psi[v(x = v(t))(y = d)]$

para todo $d \in A$, $A \models \psi[v(y = d)(x = v(t))]$

Mecanismo deductivo SQ (para un lenguaje fijo \mathcal{L})

Para un lenguaje fijo $\mathcal L$

▶ axiomas. Sean $\varphi, \psi, \rho \in \mathsf{FORM}(\mathcal{L})$, $x \in \mathsf{VAR}$, $t \in \mathsf{TERM}(\mathcal{L})$

SQ1
$$\varphi \to (\psi \to \varphi)$$

SQ2 $(\varphi \to (\psi \to \rho)) \to ((\varphi \to \psi) \to (\varphi \to \rho))$
SQ3 $(\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$
SQ4 $(\forall x)\varphi \to \varphi[x/t]$ si x es reemplazable por t en φ
SQ5 $\varphi \to (\forall x)\varphi$ si x no aparece libre en φ
SQ6 $(\forall x)(\varphi \to \psi) \to ((\forall x)\varphi \to (\forall x)\psi)$
SQ7 si φ es un axioma entonces $(\forall x)\varphi$ también es un

regla de inferencia

axioma

MP Sean $\varphi, \psi \in \mathsf{FORM}(\mathcal{L})$. ψ es una consecuencia inmediata de $\varphi \to \psi$ y φ

6

Consecuencia sintáctica, demostraciones, teoremas, teorías

Fijamos un lenguaje \mathcal{L} . Sea $\Gamma \subseteq \mathsf{FORM}(\mathcal{L})$ y $\varphi \in \mathsf{FORM}(\mathcal{L})$

1. una demostración de φ en SQ es una cadena finita y no vacía

$$\varphi_1,\ldots,\varphi_n$$

de fórmulas de \mathcal{L} tal que $\varphi_n = \varphi$ y

 φ_i es un axioma o

• φ_i es una consecuencia inmediata de φ_k , φ_l , k, l < i En este caso, decimos que φ es un teorema ($\vdash \varphi$).

2. φ es una consecuencia sintáctica de Γ ($\Gamma \vdash \varphi$) si existe una cadena finita y no vacía

$$\varphi_1,\ldots,\varphi_n$$

de fórmulas de \mathcal{L} tal que $\varphi_n = \varphi$ y

- $ightharpoonup \varphi_i$ es un axioma o
- φ_i ∈ Γ ο
- φ_i es una consecuencia inmediata de φ_k , φ_l , k, l < i

Aquí, $\varphi_1, \ldots, \varphi_n$ se llama derivación de φ a partir de Γ . Γ se llama teoría. Decimos que φ es un teorema de la teoría Γ .

Ejemplo
$$\Gamma = \{(\forall x)(\varphi[z/x])\} \vdash (\forall z)\varphi$$
 (x no aparece en φ)

1.
$$(\forall z)((\forall x)(\varphi[z/x]) \to \varphi)$$

2. $(\forall z)((\forall x)(\varphi[z/x]) \to \varphi) \to ((\forall z)(\forall x)(\varphi[z/x]) \to (\forall z)\varphi)$

2.
$$(\forall z)((\forall x)(\varphi[z/x]) \rightarrow \varphi)$$
 -

3.
$$(\forall z)(\forall x)(\varphi[z/x]) \rightarrow (\forall z)\varphi$$

$$A \quad (\forall x)(\langle x \rangle (\varphi[2/x]) \quad (\forall z)(\forall x)($$

4.
$$(\forall x)(\varphi[z/x]) \rightarrow (\forall z)(\forall x)(\varphi[z/x])$$

5. $(\forall x)(\varphi[z/x])$

6.
$$(\forall z)(\forall x)(\varphi[z/x])$$

7.
$$(\forall z)(\forall x)(\varphi[z/x]$$

$$\forall z)(\forall x)(\varphi[z/x])$$

Observar

- ▶ paso 1: x es reemplazable por z en $\varphi[z/x]$
- ightharpoonup paso 1: $\varphi[z/x][x/z] = \varphi$
- ▶ paso 4: z no aparece libre en $(\forall x)(\varphi[z/x])$

SQ4+SQ7

SQ6 MP 1,2

SQ5

MP 4.5 MP 3.6

Correctitud y consistencia

Teorema (Correctitud)

El sistema SQ es correcto, i.e. si $\Gamma \vdash \varphi$ entonces $\Gamma \models \varphi$.

Teorema (Consistencia)

El sistema SQ es consistente, i.e. no existe $\varphi \in \mathsf{FORM}(\mathcal{L})$ tal que

$$\vdash \varphi \qquad y \qquad \vdash \neg \varphi$$

g

Resultados similares a los de SP

Teorema (de la Deducción)

Si
$$\Gamma \cup \{\varphi\} \vdash \psi$$
 entonces $\Gamma \vdash \varphi \rightarrow \psi$

 $\Gamma\subseteq\mathsf{FORM}(\mathcal{L})$ es consistente si no existe $\varphi\in\mathsf{FORM}(\mathcal{L})$ tal que

$$\Gamma \vdash \varphi$$
 y $\Gamma \vdash \neg \varphi$

Proposición

- 1. $\Gamma \cup \{\neg \varphi\}$ es inconsistente sii $\Gamma \vdash \varphi$
- 2. $\Gamma \cup \{\varphi\}$ es inconsistente sii $\Gamma \vdash \neg \varphi$

Teorema

Si Γ es satisfacible, entonces Γ es consistente.

Teorema

Si Γ es inconsistente, entonces existe un subconjunto finito de Γ que es inconsistente.

Instancias de esquemas tautológicos

- ▶ sea $\varphi(p_1, ..., p_n)$ una tautología de P con variables proposicionales $p_1, ..., p_n$.
- ightharpoonup sean ψ_1, \ldots, ψ_n fórmulas cualesquiera de primer orden
- $\varphi(\psi_1, ..., \psi_n)$ es una instancia de un esquema tautológico (reemplazar p_i por ψ_i en la fórmula original φ)

Proposición

Si φ es una instancia de un esquema tautológico entonces $\vdash \varphi$.

Por ejemplo, la fórmula de P

$$(p \wedge q) \rightarrow p$$

es tautología. Entonces

$$\vdash ((\forall x)R(x) \land (\exists y)Q(y)) \rightarrow (\forall x)R(x)$$

Variantes alfabéticas

Sea $\mathcal{L} = \{0, S\}$ con igualdad y $\varphi \in \mathsf{FORM}(\mathcal{L})$ definida como

$$\varphi = x \neq 0 \to (\exists y)x = S(y)$$

En φ la variable x es reemplazable por z:

$$\varphi[x/z] = z \neq 0 \rightarrow (\exists y)z = S(y)$$

Sin embargo, la variable x no es reemplazable por y:

$$\varphi[x/y] = y \neq 0 \to (\exists y)y = S(y)$$

No habría habido problema si la fórmula original hubiese sido

$$\varphi' = x \neq 0 \rightarrow (\exists w)x = S(w)$$

 φ' se llama variante alfabética de φ

Lema

Sea $\varphi \in \mathsf{FORM}(\mathcal{L})$. Dados $x \in \mathsf{VAR}\ y\ t \in \mathsf{TERM}(\mathcal{L})$ podemos encontrar φ' (variante alfabética de φ) tal que

- $\blacktriangleright \ \{\varphi\} \vdash \varphi' \ y \ \{\varphi'\} \vdash \varphi$
- ightharpoonup x es reemplazable por t en φ'

Teorema de Generalización (TG)

Teorema

Si $\Gamma \vdash \varphi$ y x no aparece libre en ninguna fórmula de Γ , entonces $\Gamma \vdash (\forall x)\varphi$

Observar que es necesario pedir que x no aparezca libre en ninguna fórmula de Γ :

- $R(x) \not\models (\forall x) R(x)$
- ▶ entonces $\{R(x)\} \not\vdash (\forall x)R(x)$ (por correctitud)

Demostración del teorema.

Planteo

 $P(n) = para \ toda \ \psi$, $\Gamma \ y \ x \ tal \ que \ \Gamma \vdash \psi \ y \ x \ no \ aparece$ libre en ninguna fórmula de Γ , si ψ_1, \ldots, ψ_n es una derivación de ψ a partir de Γ entonces $\Gamma \vdash (\forall x)\psi$

Demostración por inducción en n (detalles a continuación).

Demostración del TG (caso base)

 $P(n) = para \ toda \ \psi, \ \Gamma \ y \ x \ tal \ que \ \Gamma \vdash \psi \ y \ x \ no \ aparece$ libre en ninguna fórmula de Γ , si ψ_1, \ldots, ψ_n es una derivación de ψ a partir de Γ entonces $\Gamma \vdash (\forall x)\psi$

Probamos P(1):

- sea φ , Γ y x tal que x no aparece libre en Γ
- ightharpoonup sea arphi una derivación de arphi a partir de Γ
- queremos ver que $\Gamma \vdash (\forall x)\varphi$

Hay 2 posibilidades:

- 1. φ es axioma de $SQ \stackrel{SQ7}{\Rightarrow} \vdash (\forall x)\varphi \Rightarrow \Gamma \vdash (\forall x)\varphi$
- 2. $\varphi \in \Gamma$ entonces
 - ightharpoonup
 - ightharpoonup por hipótesis x no aparece libre en φ
 - ▶ por SQ5, $\vdash \varphi \rightarrow (\forall x)\varphi$
 - ▶ por MP, $\Gamma \vdash (\forall x)\varphi$

Demostración del TG (paso inductivo)

 $P(n) = para \ toda \ \psi$, $\Gamma \ y \ x \ tal \ que \ \Gamma \vdash \psi \ y \ x \ no \ aparece$ libre en ninguna fórmula de Γ , si ψ_1, \ldots, ψ_n es una derivación de ψ a partir de Γ entonces $\Gamma \vdash (\forall x)\psi$

Probamos P(n):

- ightharpoonup sea φ , Γ y x tal que x no aparece libre en Γ
- sea $\varphi_1, \ldots, \varphi_n$ una derivación de φ a partir de Γ
- queremos ver que $\Gamma \vdash (\forall x)\varphi$
- ▶ HI: vale P(m) para todo m < n

Hay 3 posibilidades:

- 1 y 2. φ es axioma de SQ o $\varphi \in \Gamma$: igual que en caso base.
 - 3. φ se obtiene por MP de φ_i y φ_j (i, j < n): supongamos que $\varphi_j = \varphi_i \rightarrow \varphi$. Usamos HI 2 veces:
 - ▶ como i < n, vale P(i), en particular, $\Gamma \vdash (\forall x)\varphi_i$
 - ▶ como j < n, vale P(j), en particular, $\Gamma \vdash (\forall x)(\varphi_i \rightarrow \varphi)$

por SQ6,
$$\vdash (\forall x)(\varphi_i \to \varphi) \to ((\forall x)\varphi_i \to (\forall x)\varphi)$$
 usando MP 2 veces, $\Gamma \vdash (\forall x)\varphi$

Teorema de Generalización en Constantes (TGC)

Teorema

Supongamos que $\Gamma \vdash \varphi$ y c es un símbolo de constante que no aparece en Γ . Entonces existe una variable x que no aparece en φ tal que $\Gamma \vdash (\forall x)(\varphi[c/x])$. Más aun, hay una derivación de $(\forall x)(\varphi[c/x])$ a partir de Γ en donde c no aparece.

Idea de la demostración.

Sea $\varphi_1, \ldots, \varphi_n$ una derivación de φ a partir de Γ .

Sea x la primera variable que no aparece en ninguna de las φ_i .

- 1. demostrar que $\varphi_1[c/x], \ldots, \varphi_n[c/x]$
 - 1.1 es una derivación de $\varphi[c/x]$ a partir de Γ (por inducción en n)
 - 1.2 no contiene al símbolo de constante c
- 2. hay un $\Delta \subseteq \Gamma$ finito tal que $\Delta \vdash \varphi[c/x]$ con derivación que no usa c y tal que x no aparece libre en ninguna fórmula de Δ
 - 2.1 Δ es el conjunto de axiomas de Γ que se usan en $\varphi_1,\ldots,\varphi_n$
- 3. por el TG, $\Delta \vdash (\forall x)(\varphi[c/x])$ con derivación que no usa c

Consecuencias del TGC

Corolario

Supongamos que $\Gamma \vdash \varphi[z/c]$ y c es un símbolo de constante que no aparece en Γ ni en φ . Entonces $\Gamma \vdash (\forall z)\varphi$. Más aun, hay una derivación de $(\forall z)\varphi$ a partir de Γ en donde c no aparece.

Demostración.

- por el TGC, existe x tal que
 - x no aparece en $\varphi[z/c]$
 - $\vdash \Gamma \vdash (\forall x) (\varphi[z/c][c/x])$
 - ▶ en esta última derivación no aparece *c*
- ▶ como c no aparece en φ , $\varphi[z/c][c/x] = \varphi[z/x]$
- entonces $\Gamma \vdash (\forall x)(\varphi[z/x])$
- ▶ sabemos $\vdash (\forall x)(\varphi[z/x]) \rightarrow (\forall z)\varphi$ (aplicar el Teorema de la Deducción a derivación de hoja 8)
- ▶ por MP concluimos $\Gamma \vdash (\forall z)\varphi$
- en esta última derivación no aparece c

Lenguajes con igualdad

Fijamos un lenguaje $\mathcal L$ con igualdad.

Para los lenguajes con igualdad, se considera el sistema $SQ^{=}$ con los axiomas y regla de inferencia de SQ, sumando estos dos axiomas

axiomas adicionales para $SQ^{=}$. Sean $\varphi, \psi \in \mathsf{FORM}(\mathcal{L})$, $x,y \in \mathsf{VAR}$ $\mathsf{SQ}^{=}1 \ x = x$ $\mathsf{SQ}^{=}2 \ x = y \to (\varphi \to \psi) \ \mathsf{donde} \ \varphi \ \mathsf{es} \ \mathsf{at\'omica} \ \mathsf{y} \ \psi \ \mathsf{se}$ obtiene de φ reemplazando x por y en cero o más lugares

Se puede probar que

- ► *SQ*⁼ es consistente
- ▶ Si hay una derivación de φ en $SQ^=$ entonces φ es verdadera en toda \mathcal{L} -estructura en donde el = se interpreta como la igualdad

Notas sobre computabilidad

Fijemos un lenguaje numerable \mathcal{L} . Se pueden codificar las fórmulas de FORM(\mathcal{L}) con números naturales.

Igual que para la lógica proposicional:

es computable la función

$$dem_{\mathcal{L}}(x) = egin{cases} 1 & x ext{ es una demostración válida en } SQ ext{ para } \mathcal{L} \ 0 & ext{ si no} \end{cases}$$

considerar el siguiente programa P:

[A] IF
$$dem_{\mathcal{L}}(D) = 1 \land D[|D|] = X$$
 GOTO E

$$D \leftarrow D + 1$$
GOTO A

- φ es teorema de SQ para $\mathcal L$ sii $\# \varphi \in \mathsf{dom} \Psi_P$
- ightharpoonup el conjunto de teoremas del sistema SQ para $\mathcal L$ es c.e.
- ightharpoonup ¿será el conjunto de teoremas de SQ para $\mathcal L$ computable?