Fourier-Synthese

David Gutnikov Lasse Sternemann

Durchführung am 4.11.19

Inhaltsverzeichnis

1	Theorie der Fourier-Synthese	2
2	Fourier-Synthese von $f(x) = sin(t) $	2
3	Fourier-Synthese von $f(x) = x$	4

1 Theorie der Fourier-Synthese

Mit dem mathematischen Konzept der Fourier-Synthese kann man jede periodische Funktion durch eine Addition von Sinus- und Cosinusfunktionen darstellen.

$$f(t) = \sum_{k=0}^{\infty} (A_k cos(\omega_k t) + B_k sin(\omega_k t)) \qquad mit \ \omega_k = \frac{2\pi k}{T}$$
 (1)

Die Unbekannten aus Formel (1) lassen sich wie folgt bestimmen.

$$\begin{split} A_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) cos(w_k t) dt \\ B_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) sin(w_k t) dt \end{split} \qquad mit \ A_0 = \frac{1}{T} \int f(t) dt \\ mit \ B_0 &= 0 \end{split}$$

Wenn die Funktion eine Symmetrie aufweist, kann die Synthese vereinfacht werden. So muss bei punktsymmetrischen/ungeraden Funktionen der Sinus-Term wegfallen und man setzt B_k gleich Null. Wenn die Funktion achsensymmetrisch/gerade ist, wird der Cosinus weggelassen und demenstprechend A_k gleich Null gesetzt.

2 Fourier-Synthese von f(x) = |sin(t)|

Die anzunähernde Funktion ist achsensymmetrisch/gerade und B_k wird daher gleich Null gesetzt. Es wird eine Periode $T=\pi$ gewählt und die Frequenz ω_k entspricht demnach 2k.

$$f(t) = \sum_{k=0}^{17} (A_k cos(\omega_k t)) \tag{2}$$

Formel (2) ist die zu bestimmende Funktion. Nun müssen wir noch A_0 bis A_{17} bestimmen.

$$\begin{split} A_0 &= \frac{1}{T} \int |sin(t)| dt \\ A_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |sin(t)| cos(w_k t) dt \end{split}$$

Aus den Berechnungen ergibt sich das Frequenzspektrum und die angenäherte Funktion, die in Abbildung (1) und (2) dargestellt sind.

Tabelle 1: Frequenzspektrum

1. Frequenzsp		
$\frac{\omega_k}{2}$	A_k	
0	0,0000	
1	2,0000	
2	-1,0000	
3	0,6667	
4	-0,5000	
5	0,4000	
6	-0,3334	
7	$0,\!2857$	
8	-0,2500	
9	0,2223	
10	-0,2000	
11	0,1818	
12	-0,1667	
13	$0,\!1538$	
14	-0,1429	
15	$0,\!1334$	
16	-0,1250	
17	0,1176	

Abbildung 1: Frequenzspektrum der Fourier-Synthese von f(x) = |sin(x)|

Abbildung 2: Graph der Fourier-Synthese von f(x) = |sin(x)|

3 Fourier-Synthese von f(x) = x

Die anzunähernde Funktion ist punktsymmetrisch/ungerade und A_k wird daher gleich Null gesetzt. Es wird eine Periode $T=2\pi$ gewählt und die Frequenz ω_k entspricht demnach k.

$$f(x) = \sum_{k=0}^{1} 7(B_k sin(\omega_k t)) \tag{3}$$

Formel (3) ist die zu bestimmende Funktion. Nun müssen wir noch ${\cal B}_0$ bis ${\cal B}_{17}$ bestimmen.

$$\begin{split} B_0 &= 0 \\ B_k &= \frac{2}{t} \int_{-\frac{T}{2}}^{\frac{T}{2}} |sin(t)| cos(w_k t) dt \end{split}$$

Aus den Berechnungen ergibt sich das Frequenzspektrum und die angenäherte Funktion, die in Abbildung (3) und (4) dargestellt sind.

 ${\bf Tabelle} \ \underline{\bf 2:} \ {\bf Frequenzspektrum}$

ω_k	B_k
0	0,6366
1	-0,4244
2	-0,0849
3	-0,0364
4	-0,0202
5	-0,0129
6	-0,0089
7	-0,0065
8	-0,0050
9	-0,0039
10	-0,0032
11	-0,0026
12	-0,0022
13	-0,0019
14	-0,0016
15	-0,0014
16	-0,0012
17	-0,0011

Abbildung 3: Frequenzspektrum der Fourier-Synthese von f(x)=x

Abbildung 4: Graph der Fourier-Synthese von $f(\boldsymbol{x}) = \boldsymbol{x}$