Examenul de bacalaureat național 2018 Proba E. c)

Matematică M_mate-info

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $n = \left|1 \sqrt{2}\right| + \left|2 \sqrt{2}\right|$ este natural.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = 11 x și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 1 11x. Rezolvați în mulțimea numerelor reale inecuația $f(x) \ge g(x)$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^x \cdot 2^{x+1} = 72$.
- **5p** | **4.** Determinați câte numere naturale de trei cifre distincte se pot forma folosind doar cifre impare.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-3,3), B(1,3) și C(1,5). Calculați aria triunghiului ABC.
- **5p 6.** Calculați lungimea razei cercului circumscris $\triangle ABC$, știind că BC = 4, $B = \frac{\pi}{3}$ și $C = \frac{\pi}{6}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 1 & x-2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{x-2} \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(2))=1$.
- **5p b**) Demonstrați că A(x)A(y) = A(x+y-2), pentru orice numere reale $x \neq y$.
- **5p** c) Determinați numerele reale m pentru care $A(1)A(2)A(3) \cdot ... \cdot A(10) = A(m^2 + m + 17)$.
 - **2.** Se consideră polinomul $f = X^3 4X^2 + 5X + a$, unde a este număr real.
- **5p a)** Arătați că f(1) f(-1) = 12.
- **5p b)** Determinați numărul real a, știind că polinomul f este divizibil cu polinomul X-2.
- **5p** c) Determinați numărul real a, știind că toate rădăcinile polinomului f sunt numere întregi.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=\frac{1}{\sqrt{x}}\ln x$.
- **5p** a) Arătați că $f'(x) = \frac{2 \ln x}{2x\sqrt{x}}, x \in (0, +\infty).$
- **5p b)** Determinați abscisa punctului situat pe graficul funcției f, în care tangenta la graficul funcției f este perpendiculară pe axa Oy.
- **5p** c) Demonstrați că $2^{\sqrt{3}} < 3^{\sqrt{2}}$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x x^2$.
- **5p a)** Arătați că $\int_{0}^{3} f(x) dx = 9$.

5p b) Arătați că
$$\int_{1}^{2} \frac{2-x}{f(x)} dx = \frac{1}{2} \ln \frac{4}{3}$$
.

5p b) Arătați că
$$\int_{1}^{2} \frac{2-x}{f(x)} dx = \frac{1}{2} \ln \frac{4}{3}$$
.

5p c) Pentru fiecare număr natural nenul n , se consideră numărul $I_n = \int_{0}^{4} f^n(x) dx$. Demonstrați că $I_{n+1} \le 4I_n$, pentru orice număr natural nenul n .

Examenul de bacalaureat național 2018 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left 1 - \sqrt{2} \right = \sqrt{2} - 1, \ \left 2 - \sqrt{2} \right = 2 - \sqrt{2}$	2p
	$n = \sqrt{2} - 1 + 2 - \sqrt{2} = 1 \in \mathbb{N}$	3 p
2.	$11 - x \ge 1 - 11x \Leftrightarrow 10x \ge -10$	3 p
	$x \in [-1, +\infty)$	2p
3.	$(3 \cdot 2)^x \cdot 2 = 72 \Leftrightarrow 6^x = 36$	3 p
	x=2	2p
4.	Cifra sutelor se poate alege în 5 moduri și, pentru fiecare alegere a cifrei sutelor, cifra zecilor se poate alege în 4 moduri	2p
	Pentru fiecare alegere a primelor două cifre, cifra unităților se poate alege în 3 moduri, deci se pot forma $5 \cdot 4 \cdot 3 = 60$ de numere	3p
5.	AB=4, $BC=2$	2p
	$\triangle ABC$ este dreptunghic în B, deci $\mathcal{A}_{\triangle ABC} = \frac{2 \cdot 4}{2} = 4$	3р
6.	$A = \pi - \left(\frac{\pi}{3} + \frac{\pi}{6}\right) = \frac{\pi}{2}$	2p
	$R = \frac{BC}{2} = 2$	3р

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^0 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = $	3p
	$\begin{bmatrix} 11(2) & 0 & 0 \\ 0 & 0 & e^0 \end{bmatrix} \xrightarrow{\longrightarrow} \det(11(2)) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	Эр
	=1+0+0-0-0-0=1	2p
	$A(x)A(y) = \begin{pmatrix} 1 & y-2+x-2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{x-2} \cdot e^{y-2} \end{pmatrix} = \begin{pmatrix} 1 & x+y-4 & 0 \end{pmatrix}$	3p
	$= \begin{pmatrix} 1 & x+y-4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{x+y-4} \end{pmatrix} = A(x+y-2), \text{ pentru orice numere reale } x \text{ §i } y$	2p
c)	$A(1+2++10-2\cdot 9) = A(m^2+m+17) \Leftrightarrow m^2+m-20=0$	3 p
	m = -5 sau $m = 4$	2p
2.a)	³ (-)	2 p
	$f(-1) = a - 10 \Rightarrow f(1) - f(-1) = a + 2 - a + 10 = 12$	3 p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

b)	Polinomul f este divizibil cu polinomul $X - 2 \Leftrightarrow f(2) = 0$	2p
	f(2) = a + 2, deci $a = -2$	3 p
c)	$x_1 + x_2 + x_3 = 4$, $x_1 x_2 + x_1 x_3 + x_2 x_3 = 5$	2p
	$x_1, x_2, x_3 \in \mathbb{Z}$ şi $x_1^2 + x_2^2 + x_3^2 = 6$, deci pătratele rădăcinilor sunt 1, 1 şi 4; cum $x_1 + x_2 + x_3 = 4$, obținem rădăcinile 1, 1 şi 2, deci $a = -2$, care convine	3р

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = -\frac{1}{2} \cdot \frac{1}{x\sqrt{x}} \cdot \ln x + \frac{1}{\sqrt{x}} \cdot \frac{1}{x} =$	3p
	$= -\frac{\ln x}{2x\sqrt{x}} + \frac{1}{x\sqrt{x}} = \frac{2 - \ln x}{2x\sqrt{x}}, \ x \in (0, +\infty)$	2p
b)	Tangenta la graficul funcției f în punctul $(a, f(a))$ este perpendiculară pe axa	
	$Oy \Leftrightarrow f'(a) = 0$	3 p
	$2 - \ln a = 0 \Leftrightarrow a = e^2$	2p
c)	$f'(x) > 0$, pentru orice $x \in (0, e^2)$, deci f este strict crescătoare pe $(0, e^2)$	2 p
	$0 < 2 < 3 < e^2 \Rightarrow f(2) < f(3) \Rightarrow \frac{1}{\sqrt{2}} \ln 2 < \frac{1}{\sqrt{3}} \ln 3 \Rightarrow \sqrt{3} \ln 2 < \sqrt{2} \ln 3$, deci $2^{\sqrt{3}} < 3^{\sqrt{2}}$	3 p
2.a)	$\int_{0}^{3} \left(4x - x^{2}\right) dx = \left(2x^{2} - \frac{x^{3}}{3}\right) \Big _{0}^{3} =$	3p
	=18-9=9	2 p
b)	$\int_{1}^{2} \frac{2-x}{f(x)} dx = \int_{1}^{2} \frac{2-x}{4x-x^{2}} dx = \frac{1}{2} \ln\left(4x-x^{2}\right) \Big _{1}^{2} =$	3p
	$= \frac{1}{2} \ln 4 - \frac{1}{2} \ln 3 = \frac{1}{2} \ln \frac{4}{3}$	2p
c)	$I_{n+1} - 4I_n = \int_0^4 f^{n+1}(x) dx - 4 \int_0^4 f^n(x) dx = \int_0^4 f^n(x) (4x - x^2 - 4) dx = -\int_0^4 f^n(x) (x - 2)^2 dx$	3 p
	$f(x) \ge 0$, pentru orice $x \in [0,4] \Rightarrow f^n(x)(x-2)^2 \ge 0$, deci $I_{n+1} - 4I_n \le 0 \Rightarrow I_{n+1} \le 4I_n$, pentru orice număr natural nenul n	2p