Задача 4 (Кинетика социального неравенства и предельные формы). а)** В некотором городе живет $N\gg 1$ жителей (четное число). В начальный момент у каждого жителя имеется по \overline{s} монеток. Каждый день жители случайно разбиваются на пары. В каждой паре жители скидываются по монетке (если один или оба участника банкроты, то банкрот не скидывается, в то время, как не банкрот, в любом случае, обязан скинуть монетку). Далее в каждой паре случайно разыгрывается победитель, который и забирает "призовой фонд". Обозначим через $c_s(t)$ — долю жителей города, у которых ровно s ($s=0,...,\overline{s}N$) монеток на t-й день. Покажите, что

$$\exists a>0: \forall \sigma>0, t\geq a(\overline{s})\ln N \to P\left(\left\|c(t)-c^*\right\|_2 \geq \frac{2\sqrt{2}+4\sqrt{\ln(\sigma^{-1})}}{\sqrt{N}}\right) \leq \sigma,$$

$$\exists b, D > 0: \forall \sigma > 0, t \ge b(\overline{s}) \ln N \to P\left(\left\|c(t) - c^*\right\|_1 \ge D\sqrt{\frac{\ln^2 N + \ln(\sigma^{-1})}{N}}\right) \le \sigma,$$

где $c_s^* \simeq C \exp\left(-s/\overline{s}\right)$, а $C \simeq 1/\overline{s}$ находится из условия нормировки $\sum_{s=0}^{\overline{s}N} C \exp\left(-s/\overline{s}\right) = 1$.

Таким образом, кривая (предельная форма) $C \exp(-s/\overline{s})$ характеризует распределение населения по богатству на больших временах.

Указание. Для решения этой задачи полезно рассмотреть схожий процесс, в котором каждой паре жителей приписан свой (независимый) пуассоновский будильник (звонки происходят в случайные моменты времени, соответствующие скачкам пуассоновского процесса; параметр интенсивность этого пуассоновского процесса называют интенсивностью/параметром будильника). Все будильники "приготовлены" одинаково: у всех у них одна и та же интенсивность λN^{-1} . Далее следует погрузить задачу в модель стохастической химической кинетики с бинарными реакциями и воспользоваться результатом из замечания к задаче 19. Наиболее технически сложными моментами в получении указанного в условии задачи результата является оценка mixing time $\sim \ln N$ и получение поправки под корнем $\ln^2 N$. Насколько нам известно, пока это еще нигде аккуратно не обосновано.

Замечание. Название модели мы взяли из одноименной статьи К.Ю. Богданова в журнале "Квант". В этой статье предлагаются и другие правила обмена. О возможных обобщениях этой модели также можно посмотреть в работах *Dragulescu A.*, *Yakovenko*

7

⁵ К.Ю. Богданов выпустил очень познавательную брошюрку "Прогулки с физикой" в серии "Библиотечка Квант", в которую вошел этот сюжет и многие другие. Также у К.Ю. Богданова мы позаимствовали идею одной из стохастических динамик, приводящих к модели хищник–жертва и системе уравнений Лотки–Вольтера, см. задачу 10.