Lecture 8 - Reasoning under Uncertainty (Part II)

Jesse Hoey School of Computer Science University of Waterloo

June 13, 2022

Readings: Poole & Mackworth (2nd ed.)Chapt. 8.5 - 8.9

Probability and Time

- A node repeats over time
- explicit encoding of time
- chain has length = amount of time you want to model
- event-driven times or clock-driven times
- e.g. Markov chain

Markov assumption

$$P(S_{t+1}|S_1,\ldots,S_t) = P(S_{t+1}|S_t)$$

This distribution gives the dynamics of the Markov chain

Hidden Markov Models (HMMs)

Add: observations O_t (always observed, so the node is square) and

observation function $P(O_t|S_t)$

Given a sequency of observations O_1, \ldots, O_t , can estimate filtering:

$$P(S_t|O_1,\ldots,O_t)$$

or smoothing, for k < t

$$P(S_k|O_1,\ldots,O_t)$$

Speech Recognition

- Most well known application of HMMs
- observations : audio features
- states : phonemes
- dynamics: models e.g. co-articulation
- HMMs: words
- Can build hierarchical models (e.g. sentences)

Belief Monitoring in HMMs

filtering:

$$lpha_{i} = P(S_{i}|o_{0}...,o_{i})$$
 $\propto P(S_{i},o_{0},...,o_{i})$
 $= P(o_{i}|S_{i}) \sum_{S_{i-1}} P(S_{i},S_{i-1},o_{0},...,o_{i-1})$
 $= P(o_{i}|S_{i}) \sum_{S_{i-1}} P(S_{i}|S_{i-1}) P(S_{i-1},o_{0},...,o_{i-1})$
 $\propto P(o_{i}|S_{i}) \sum_{S_{i-1}} P(S_{i}|S_{i-1}) \alpha_{i-1}$

Belief Monitoring in HMMs

smoothing:

$$\beta_{i+1} = P(o_{i+1} \dots, o_T | S_i)$$

$$= \sum_{S_{i+1}} P(S_{i+1}, o_{i+1}, \dots, o_T | S_i)$$

$$= \sum_{S_{i+1}} P(o_{i+1} | S_{i+1}, o_{i+2}, \dots, o_T, S_i) P(S_{i+1}, o_{i+2}, \dots, o_T | S_i)$$

$$= \sum_{S_{i+1}} P(o_{i+1} | S_{i+1}) P(o_{i+2}, \dots, o_T | S_{i+1}, S_i) P(S_{i+1} | S_i)$$

$$= \sum_{S_{i+1}} P(o_{i+1} | S_{i+1}) P(S_{i+1} | S_i) \beta_{i+2}$$

Belief Monitoring in HMMs

filtering and smoothing together:

$$\alpha_i\beta_{i+1} = P(o_{i+1}\ldots,o_T|S_i)P(S_i|o_0\ldots,o_i) \propto P(S_i|O)$$

Dynamic Bayesian Networks (DBNs)

- in general, any Bayesian network can repeat over time:DBN
- Many examples can be solved with variable elimination,
- may become too complex with enough variables
- event-driven times or clock-driven times

Example: localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM:

Example localization domain

Circular corridor, with 16 locations:

- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors
- Stochastic Dynamics
- Robot starts at an unknown location and must determine where it is, known as the kidnapped robot problem.
- see handout robotloc.pdf

Example Sensor Model

- P(Observe Door | At Door) = 0.8
- P(Observe Door | Not At Door) = 0.1

Example Dynamics Model

- $P(Loc_{t+1} = I | Action_t = goRight \land Loc_t = I) = 0.1$
- $P(Loc_{t+1} = l + 1 | Action_t = goRight \land Loc_t = l) = 0.8$
- $P(Loc_{t+1} = I + 2 | Action_t = goRight \land Loc_t = I) = 0.074$
- $P(Loc_{t+1} = l' | Action_t = goRight \land Loc_t = l) = 0.002$ for any other location l'.
 - All location arithmetic is modulo 16.
 - The action goLeft works the same but to the left.

Example sequence

observe door, go right, observe no door, go right, observe door where is the robot?

$$P(Loc_2 = 4 | O_0 = d, A_0 = r, O_1 = \neg d, A_1 = r, O_2 = d) = 0.42$$

Combining sensor information

- Example: we can combine information from a light sensor and the door sensor Sensor Fusion
- Key Point: Bayesian probability ensures that evidence is integrated proportionally to its precision.
- Sensors are precision weighted

 Loc_t robot location at time t D_t door sensor value at time t L_t light sensor value at time t

Probability Distribution and Monte Carlo

John von Neumann 1903 - 1957

ENIAC 1949

Stanlislaw Ulam 1909-1984

Monte Carlo 1949

Stochastic Simulation

- Idea: probabilities
 samples
- Get probabilities from samples:

X	count		X	probability
<i>X</i> ₁	n ₁			
:		\leftrightarrow	<i>X</i> ₁	n_1/m
:	:	. ,	:	i i
X_k	n_k		X_k	n_k/m
total	m		_^K	''K/'''

 If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability.

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution: $f(x) = P(X \le x)$.
- Select a value y uniformly in the range [0, 1].
- Select the x such that f(x) = y.

Hoeffding Bound

p is true probability, s is sample average, n is number of samples

- $P(|s-p|>\epsilon)\leq 2e^{-2n\epsilon^2}$
- if we want an error greater than ϵ in less than a fraction δ of the cases, solve for n:

$$2e^{-2n\epsilon^2} < \delta$$

$$n > \frac{-\ln\frac{\delta}{2}}{2\epsilon^2}$$

we have

WO HAVO					
$\epsilon \; {\rm error}$	cases with error $>\epsilon$	samples needed			
0.1	1/20	184			
0.01	1/20	18,445			
0.1	1/100	265			

Forward sampling in a belief network

- Sample the variables one at a time;
- sample parents of X before you sample X.
- Given values for the parents of X, sample from the probability of X given its parents.
- for samples s_i , i = 1 ... N:

$$P(X = x_i) \propto \sum_{s_i} \delta(x_i) = N_{X = x_i}$$

where

$$\delta(x_i) = \begin{cases} 1 & \text{if } X = x_i \text{ in } s_i \\ 0 & \text{otherwise} \end{cases}$$

Sampling for a belief network: inference

Sample	Malfnction	Cancer	TestB	TestA	Report	Database
<i>S</i> ₁	false	false	true	true	false	false
<i>S</i> ₂	false	true	true	true	true	true
s_3	false	true	true	true	true	true
s_4	false	false	false	true	false	false
s 5	true	true	true	true	false	false
s_6	false	true	false	true	false	false
S 7	false	false	false	true	false	true
<i>s</i> ₁₀₀₀	false	false	false	true	false	false

To get
$$P(H = h_i | E = e_i)$$
 simply

- count the number of samples that have $H = h_i$ and $E = e_i$, $N(h_i, e_i)$
- divide by the number of samples that have $E = e_i$, $N(e_i)$

•
$$P(H = h_i | E = e_i) = \frac{P(H = h_i \land E = e_i)}{P(E = e_i)} = \frac{N(h_i, e_i)}{N(e_i)}$$

• P(C = True|Database = True) based on first 7 samples?

Forward Sampling

Rejection Sampling

- To estimate a posterior probability given evidence $Y_1 = v_1 \wedge ... \wedge Y_j = v_j$:
- If, for any i, a sample assigns Y_i to any value other than v_i reject that sample.
- The non-rejected samples are distributed according to the posterior probability.
- in the Hoeffding bound, n is the number of non-rejected samples

Example Network

$$\frac{P(A = true)}{0.4} \qquad \qquad A$$

Α	P(E = true)
true	0.1
false	0.3

If we draw N samples $s_{i=1...N}$ by

- sampling A: a_{i=1...N}
- sampling from E given A: $e_{i=1...N}$

then

- $\approx N_t = 0.4N$ of them will have A = true, and of these $\approx 10\%$ will have E = true
- $\approx N_f = 0.6N$ of them will have A = false, and of these $\approx 30\%$ will have E = true

Example Network

$$\begin{array}{c|c}
P(A = true) \\
\hline
0.4 \\
\hline
\end{array}$$

Α	P(E = true)
true	0.1
false	0.3

so we r	nave			
Α	E	N_{AE}		
true	false	$N_{tf} = 0.4 \times 0.9 \times N$		
true	true	$N_{tt} = 0.4 \times 0.1 \times N$		
false	false	$N_{ff} = 0.6 \times 0.7 \times N$		
false	true	$N_{ft} = 0.6 \times 0.3 \times N$		
We want to compute				

$$P(a|e) = P(A = true|E = true) \propto \sum_{s_i} \delta(a_i = true)\delta(e_i = true)$$

$$P(a|e) = \frac{P(a \land e)}{P(e)} \approx \frac{N_{tt}}{N_{tt} + N_{ft}}$$

$$= \frac{0.1 \times 0.4 \times N}{0.1 \times 0.4 \times N + 0.3 \times 0.6 \times N} = 0.182$$

- we can do better since we can weight the samples
- weights = prob. that the evidence is observed
- N_t samples with A = true have weight of $w_t = 0.1$ this is P(E = true | A = true)
- N_f samples with A = false have weight of $w_f = 0.3$ this is P(E = true | A = false)
- can do better because we don't need to generate the 90% of samples (when A = true) that don't agree with the evidence we simply assign all samples a weight of 0.1
- thus, we are mixing exact inference (the 0.1) with sampling.

$$\begin{array}{c|c}
P(A = true) \\
\hline
0.4 \\
\hline
\end{array}
\qquad \begin{array}{c|c}
A & P(E = true) \\
\hline
true & 0.1 \\
false & 0.3
\end{array}$$

• Compute sum of all weights of the samples with A = true

$$W_t = \sum_i w_t \delta(a_i = true) = N_t \times 0.1$$

Compute sum of all weights of the samples with A = false

$$W_f = \sum_i w_f \delta(a_i = false) = N_f \times 0.3$$

finally, compute

$$P(a|e) = \frac{W_t}{W_t + W_f} = \frac{0.1 \times 0.4 \times N}{0.1 \times 0.4 \times N + 0.3 \times 0.6 \times N}$$

$$\begin{array}{c|c} \hline P(A=true) \\ \hline \hline 0.4 \\ \hline \end{array} \qquad \begin{array}{c|c} \hline A & P(E=true) \\ \hline true & 0.1 \\ \hline false & 0.3 \\ \hline \end{array}$$

- In fact, the As don't need to even be sampled from P(A)
- Can be sampled from some q(A), say q(A = true) = 0.5
- and each sample will have a new weight P(a)/q(a)
- q(A) is a proposal distribution.

- helps when it is hard to sample from P(A), but we can evaluate $P^*(A) \propto P(A)$ given a sample
- rejection sampling uses q = P
- rejection sampling uses all variables including observed ones, and all weights on samples are set to 1.0

$$\begin{array}{c|c}
P(A = true) \\
\hline
0.4 \\
\hline
\end{array}
\qquad \begin{array}{c|c}
A & P(E = true) \\
\hline
true & 0.1 \\
false & 0.3
\end{array}$$

- $N_t' = q(a)N$ samples with A = true have weight of $0.1 \times \frac{P^*(a)}{q(a)} = 0.1 \times \frac{\alpha 0.4}{0.5}$
- $N_f'=q(\overline{a})N$ samples with $A=\mathit{false}$ have weight of $0.3 imes \frac{P^*(\overline{a})}{q(\overline{a})}=0.3 imes \frac{\alpha 0.6}{0.5}$

$$\begin{array}{c|c}
P(A = true) \\
\hline
0.4 \\
\hline
\end{array}
\qquad \begin{array}{c|c}
A & P(E = true) \\
\hline
true & 0.1 \\
false & 0.3
\end{array}$$

total weight of all samples with A = true

$$W_t' = \sum_i w_i \delta(a_i = true) = N_t' \times 0.1 \times \frac{\alpha 0.4}{0.5}$$

$$= 0.5N \times 0.1 \times \frac{\alpha 0.4}{0.5} = 0.1 \times \alpha \times 0.4 \times N$$

total weight of all samples with A = false

$$W_f' = \sum_i w_i \delta(a_i = true) = N_f' \times 0.3 \times \frac{\alpha 0.6}{0.5}$$

$$= 0.5N \times 0.3 \times \frac{\alpha 0.6}{0.5} = 0.3 \times \alpha \times 0.6 \times N$$

• finally, compute

$$P(a|e) = \frac{W_t'}{W_t' + W_f'} = \frac{0.1 \times \alpha \times 0.4 \times N}{0.1 \times \alpha \times 0.4 \times N + 0.3 \times \alpha \times 0.6 \times N}$$

Example Proposal Distributions

- Sometimes we may want to choose a proposal distribution that is different than the actual probability distribution
- We may want to skew the proposal because we may have some additional knowlege about the data, for example
- or, we can generate proposals from the data itself using some procedural knowledge that is not directly encoded in the BN
- Can be important in multiple/many dimensions,

Stochastic sampling

Recall variable elimination: To compute
$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$
, we sum out the other variables, $Z_1, ..., Z_k = \{X_1, ..., X_n\} - \{Z\} - \{Y_1, ..., Y_j\}$.
$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

$$= \sum_{Z_k} \cdots \sum_{Z_1} \prod_{i=1}^n P(X_i | parents(X_i))_{Y_1 = v_1, ..., Y_j = v_j}$$

Now, we sample Z_{l+1}, \ldots, Z_k and sum Z_1, \ldots, Z_l ,

Importance Sampling example

Compute P(B|D = true, A = false) by sampling C and M.

- use q(C = true) = P(C = true) = 0.32and q(M = true) = P(M = true) = 0.08
- use q(C = true) = 0.5and q(M = true) = P(M = true) = 0.08
- use q(C = true) = q(M = true) = 0.5

$$P(B|D = \textit{true}, A = \textit{false}) \propto \sum_{s_i = \{c_i, m_i\}} P(B, D = \textit{true}, A = \textit{false}|c_i, m_i)$$

see sampling-inference.pdf

Stochastic Sampling for HMMs (and other DBNS)

TIME: 1 2 3

Sequential Monte Carlo or Particle Filter

- sequential stochastic sampling
- keep track of $P(S_t)$ at the current time t
- represent $P(S_t)$ with a set of samples
- update as new observations o_{t+1} arrive
 - 1. predict $P(S_{t+1}) \propto P(S_{t+1}|S_t)$
 - 2. compute weights as $P(o_{t+1}|S_{t+1})$
 - 3. resample according to weights

sample i: {x_i}

sample i: {x, w, }

sample i: {x_i, w_i}

sample i: {x_i, w_i}

sample i: $\{x_i, w_i\}$

sample i: {x_i, w_i}

Bayesian Sequential Updates

Resampling

evidence

- avoidsdegeneracies in the samples
- all importance weights → 0 except one
- performance of the algorithm depends on the

resampling method

Next:

 Supervised Learning under Uncertainty (Poole & Mackworth (2nd ed.)10.1,10.4)