Лабораторная работа 17

Задания для самостоятельной работы

Городянский Фёдор Николаевич

Содержание

Цель работы	4
Задание	5
Выполнение лабораторной работы	6
Моделирование работы вычислительного центра	6
Модель работы аэропорта	9
Моделирование работы морского порта	13
Выводы	22

Список иллюстраций

0.1	Модель работы вычислительного центра	7
0.2	Отчёт по модели работы вычислительного центра	8
0.3	Отчёт по модели работы вычислительного центра	9
0.4	Модель работы аэропорта	10
0.5	Отчёт по модели работы аэропорта	12
0.6	Отчёт по модели работы аэропорта	13
0.7	Модель работы морского порта	14
0.8	Отчет по модели работы морского порта	15
0.9	Модель работы морского порта с оптимальным количе-	
	ством причалов	16
0.10	Отчет по модели работы морского порта с оптимальным	
	количеством причалов	17
	Модель работы морского порта	18
0.12	Отчет по модели работы морского порта	19
0.13	Модель работы морского порта с оптимальным количе-	
	ством причалов	20
0.14	Отчет по модели работы морского порта с оптимальным	
	количеством причалов	21

Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

Выполнение лабораторной работы

Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий А, В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задачи класса С загружаются в ЭВМ, если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку. Построим модель (рис. [-@fig:001]).

```
🎇 model 17_1.gps
 ram STORAGE 2
 ;моделирование заданий класса А
 GENERATE 20,5
 QUEUE class A
 ENTER ram, 1
 DEPART class A
 ADVANCE 20,5
 LEAVE ram, 1
 TERMINATE 0
 ;моделирование заданий класса В
 GENERATE 20,10
 QUEUE class A
 ENTER ram, l
 DEPART class A
 ADVANCE 21,3
 LEAVE ram, 1
 TERMINATE 0
 ;моделирование заданий класса С
 GENERATE 28,5
 QUEUE class A
 ENTER ram, 2
 DEPART class A
 ADVANCE 28,5
 LEAVE ram, 2
 TERMINATE 0
 ; таймер
 GENERATE 4800
 TERMINATE 1
 START 1
```

Рис. 0.1: Модель работы вычислительного центра

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент

ram, а третий обрабатывает задания класса С, используя два элемента ram. Также есть блок времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. [-@fig:002], [-@fig:003]).

		END T					
	0.000	4800.	000 2	23	0		1
	NAME		VALU	JE			
	CLASS A		10001.0	000			
	RAM		10000.0	000			
ABEL	T.OC	BLOCK TYPE	FNTRY	COU	IT CURRENT	COUNT	RETRY
ADDD		GENERATE		240	NI CONNENI	0	0
		QUEUE		240		4	0
		ENTER	_	236		0	0
	4	DEPART	2	236		0	0
	5	ADVANCE	2	236		1	0
	6	LEAVE	2	235		0	0
	7	TERMINATE	2	235		0	0
	8	GENERATE	2	236		0	0
	9	QUEUE	2	236		5	0
	10	ENTER	2	231		0	0
	11	DEPART	2	231		0	0
		ADVANCE		231		1	0
		LEAVE		230		0	0
	14	TERMINATE	2	230		0	0
		GENERATE		.72		0	0
		QUEUE	1	.72	17	_	0
		ENTER		0		0	0
		DEPART		0		0	0
		ADVANCE		0		0	0
		LEAVE		0		0	0
		TERMINATE		0		0	0
		GENERATE		1		0	0
	23	TERMINATE		1		0	0

Рис. 0.2: Отчёт по модели работы вычислительного центра

QUEUE CLASS_A							AVE.(-0) RETRY 688.354 0
STORAGE RAM		CAP. REM.				. AVE.C. UTI	L. RETRY DELAY
IVAL!		2 0			0, 1	1.500 0.5	
	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE
650	0	4803.512	650	0	1		
636	0	4805.704	636	5	6		
651	0	4807.869	651	0	15		
637	0	4810.369	637	12	13		
652	0	4813.506	652	0	8		
653	0	9600.000	653	0	22		

Рис. 0.3: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. [-@fig:004]).

```
model 17_2.gps
 GENERATE 10,5,,,1
 ASSIGN 1,0
 QUEUE arrival
 landing GATE NU runway, wait
 SEIZE runwav
 DEPART arrival
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 ;ожидание
 wait TEST L p1,5,goaway
 ADVANCE 5
 ASSIGN 1+,1 ;если значение атрибута меньше 5,
 ;то счетчик прибавляет 1(круг) и идет попытка приземления
 TRANSFER 0, landing
 goaway SEIZE reserve
 DEPART arrival
 RELEASE reserve
 TERMINATE 0
 :вэлет
 GENERATE 10,2,,,2
 QUEUE takeoff
 SEIZE runway
 DEPART takeoff
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 ; таймер
 GENERATE 1440
 TERMINATE 1
 START 1
```

Рис. 0.4: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий

приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась — переход в блок обработки, если нет — самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах — 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. [-@fig:005], [-@fig:006]).

model 17_	2.4.1 - REPORT				
	субб	ота, июня 15,	2024 19:09:52		
	START TIME	FND T	IME BLOCKS F	ACTITIES ST	ORAGES
	0.000		000 26	1	0
	0.000	21101	20	-	
	NAME		VALUE		
	ARRIVAL		10002.000		
	GOAWAY		14.000		
	LANDING		4.000		
	RESERVE		UNSPECIFIED		
	RUNWAY		10001.000		
	TAKEOFF		10000.000		
	WAIT		10.000		
LABEL	LOC	BLOCK TYPE	ENTRY COUNT	CURRENT COUN	r retry
	1	GENERATE	146	0	0
	2	ASSIGN	146	0	0
	3	QUEUE	146	0	0
LANDING	4	GATE	184	0	0
	5	SEIZE	146	0	0
	6	DEPART	146	0	0
	7	ADVANCE	146	0	0
	8	RELEASE	146	0	0
	9	TERMINATE	146	0	0
WAIT	10	TEST	38	0	0
	11	ADVANCE	38	0	0
	12	ASSIGN	38	0	0
	13	TRANSFER	38	0	0
GOAWAY	14	SEIZE	0	0	0
	15	DEPART	0	0	0
	16 17	RELEASE TERMINATE	0	0	0
	17	GENERATE	142	0	0
	19	QUEUE	142	0	0
	20	SEIZE	142	0	0
	21	DEPART	142	0	0
	22	ADVANCE	142	0	0
	23	RELEASE	142	0	0
	24	TERMINATE	142	0	0
	25	GENERATE	1	0	0
	26	TERMINATE	1	0	0
			_	-	-

Рис. 0.5: Отчёт по модели работы аэропорта

FACILITY RUNWAY		ENTRIES 288		IL. .400			AVAIL.	OWNER 0		INTER 0	RETRY 0	DELAY 0
QUEUE TAKEOFF ARRIVAL		MAX C	0	142		1	AVE.CON 0.017 0.132		0.173 1.301	3	E.(-0) 0.880 5.937	0
FEC XN 290 291 292	PRI 2 1	BDT 1440. 1445. 2880.	749 367	ASSE 290 291 292	(RENT	NEXT 18 1 25	PARA	METER	VA:	LUE	

Рис. 0.6: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha\pm\delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b\pm\varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1)
$$a=20\,{\rm y},\,\delta=5\,{\rm y},\,b=10\,{\rm y},\,\varepsilon=3\,{\rm y},\,N=10,\,M=3;$$

2)
$$a=30$$
 ч, $\delta=10$ ч, $b=8$ ч, $\varepsilon=4$ ч, $N=6$, $M=2$.

Первый вариант модели

Построим модель для первого варианта (рис. [-@fig:007]).

```
model 17_3.gps

pier STORAGE 10
GENERATE 20,5

;моделирование занятия причала
QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 0.7: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [-@fig:008]).

	START T	IME 000			FACILITIES 0	STORAGES 1
	NAME ARRIVE PIER			VALUE 001.000 000.000		
LABEL		1 GENE 2 QUEU 3 ENTE 4 DEPA 5 ADVA 6 LEAV	RATE E R RT NCE E INATE RATE	215 215 215 215 215 214	0 1 0	0 0 0 0 0 0
QUEUE ARRIVE						AVE.(-0) RETRY 0.000 0
STORAGE PIER						TIL. RETRY DELAY
395 396	0	BDT 4324.260 4335.233 4344.000	395 S	5 6 0 1	PARAMETER	VALUE

Рис. 0.8: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов — 3 (рис. [-@fig:009]), получаем оптимальный результат, что видно на отчете (рис. [-@fig:010]).

model 17_3.gps pier STORAGE 3 GENERATE 20,5 ;моделирование занятия причала QUEUE arrive ENTER pier,3 DEPART arrive ADVANCE 10,3 LEAVE pier,3 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1

START 180

Рис. 0.9: Модель работы морского порта с оптимальным количеством причалов

	<u>- </u>						
					FACILITIES		
	0.	000	4320.00	0 9	0	1	
	NAME			VALUE			
	ARRIVE		1	.0001.000			
	PIER		1	.0000.000			
LABEL		IOC BIO	CK TVDF	FNTDV COL	INT CURRENT	COUNT DETEV	
LADEL			ERATE			0 0	
		2 OUE		215		0 0	
		3 ENI		215		0 0	
		4 DEI		215		0 0	
		5 ADV	ANCE	215		1 0	
		6 LEA	VE	214		0 0	
		7 TER	MINATE	214		0 0	
		8 GEN	ERATE	180		0 0	
		9 TEF	MINATE	180		0 0	
QUEUE		MAX CONT.	ENTRY ENTE	RY(O) AVE.C	ONT. AVE.TI	ME AVE.(-0)	RETRY
ARRIVE						00 0.000	
STORAGE		CAP. REM.	MIN. MAX.	ENTRIES A	VL. AVE.C.	UTIL. RETRY	DELAY
PIER		3 0	0 3	645	1 1.485	0.495 0	0
EEC VN	DD T	DDT	ACCEM OF	IDDENIE NEI	T DIDINET	D 113.1.11E	
FEC XN			ASSEM CU 395		T PARAMETE	K VALUE	
395 396							
390			396 397				
351	· ·	1311.000	331	0 0			

Рис. 0.10: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. [-@fig:011]).

```
pier STORAGE 6
GENERATE 30,10
;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0
;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 0.11: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [-@fig:012]).

model 17_	_3.3.1 - REPO	RT						
						ACILITIES 0		
	NAME ARRIVE PIER			VA 10001 10000	.000			
LABEL		1 G 2 Q 3 E 4 D 5 A 6 L 7 T	ENERATE UEUE NTER EPART DVANCE EAVE ERMINATE		143 143 143 143 143 142	0 0 0 0 1 0	0 0 0 0	
QUEUE ARRIVE		9 T		ENTRY(0)	180 AVE.CON	O T. AVE.TIM	0 0 E AVE.(-0)	
STORAGE PIER							UTIL. RETRY 0.087 0	
322	0	4325.89 4336.69		5 0	6 1	PARAMETER	VALUE	

Рис. 0.12: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. [-@fig:013]), получаем оптимальный результат, что видно из отчета (рис. [-@fig:014]).

model 17_3.gps pier STORAGE 2 GENERATE 30,10 ;моделирование занятия причала QUEUE arrive ENTER pier,2 DEPART arrive ADVANCE 8,4 LEAVE pier,2 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 0.13: Модель работы морского порта с оптимальным количеством причалов

model 17	_3.6.1 - REPO	DRT					
					FACILITIES 0		
	NAME ARRIVE PIER			VALUE 10001.000 10000.000			
LABEL		1 GEN 2 QUE 3 ENT 4 DEP 5 ADV 6 LEA 7 TER 8 GEN	ERATE UE ER ART ANCE VE MINATE	143 143 143 143 143 142 142 180	0 0 1 0 0	OUNT RETRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
QUEUE ARRIVE					CONT. AVE.TIM		
STORAGE PIER					AVL. AVE.C. 1 0.524		
FEC XN 322 324 325	0	4325.892 4336.699	322	5 6 0 1		R VALUE	

Рис. 0.14: Отчет по модели работы морского порта с оптимальным количеством причалов

Выводы

В результате выполнения данной лабораторной работы я реализовал с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.