Dynamic Programming

Matrix Chain-Products

- Dynamic Programming is a general algorithm design paradigm.
 - Rather than give the general structure, let us first give a motivating example:
 - Matrix Chain-Products
- Review: Matrix Multiplication.
 - C = A *B
 - $A ext{ is } d imes e ext{ and } B ext{ is } e imes f$

$$C[i, j] = \sum_{k=0}^{e-1} A[i, k] * B[k, j]$$

• O(d*e*f) time

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A = A_0 * A_1 * ... * A_{n-1}$
- \blacksquare A_i is d_i × d_{i+1}
- Problem: How to parenthesize?

Example

- B is 3 × 100
- C is 100 × 5
- D is 5 × 5
- (B*C)*D takes 1500 + 75 = 1575 steps
- \blacksquare B*(C*D) takes 1500 + 2500 = 4000 steps

An Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize $A=A_0*A_1*...*A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best
- Running time:
 - The number of paramethesizations is equal to the number of binary trees with n nodes
 - This is exponential!
 - It is called the Catalan number, and it is almost 4ⁿ.
 - This is a terrible algorithm!

A Greedy Approach

- ◆ Idea #1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - A*((B*C)*D) takes 500+250+250 = 1000 ops

Another Greedy Approach

- Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes
 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.

A "Recursive" Approach

- Define subproblems:
 - Find the best parenthesization of A_i*A_{i+1}*...*A_i.
 - Let N_{i,j} denote the number of operations done by this subproblem.
 - The optimal solution for the whole problem is $N_{0,n-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: $(A_0^*...*A_i)*(A_{i+1}^*...*A_{n-1})$.
 - Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.
 - If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for N_{i,i} is the following:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Note that subproblems are not independent--the subproblems overlap.

A Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- N_{i,i}'s are easy, so start with them
- Then do length 2,3,... subproblems, and so on.
- The running time is O(n³)

Algorithm *matrixChain(S)*:

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal paranethization of *S*

for
$$i \leftarrow 1$$
 to $n-1$ do $N_{i,i} \leftarrow 0$

for
$$b \leftarrow 1$$
 to $n-1$ do
for $i \leftarrow 0$ to $n-b-1$ do

$$j \leftarrow i+b$$

$$N_{i,j} \leftarrow + \text{infinity}$$

$$\text{for } k \leftarrow i \text{ to } j-1 \text{ do}$$

$$N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$$

A Dynamic Programming Algorithm Visualization

answer

- The bottom-up construction fills in the N array by diagonals
- N_{i,j} gets values from pervious entries in i-th row and j-th column
- Filling in each entry in the N table takes O(n) time.
- ◆ Total run time: O(n³)
- Getting actual parenthesization can be done by remembering
 "k" for each N entry

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Subsequences

- A *subsequence* of a character string $x_0x_1x_2...x_{n-1}$ is a string of the form $x_{i_1}x_{i_2}...x_{i_k}$, where $i_j < i_{j+1}$.
- Not the same as substring!
- Example String: ABCDEFGHIJK
 - Subsequence: ACEGJIK
 - Subsequence: DFGHK
 - Not subsequence: DAGH

The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y
- Has applications to DNA similarity testing (alphabet is {A,C,G,T})
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

A Poor Approach to the LCS Problem

- A Brute-force solution:
 - Enumerate all subsequences of X
 - Test which ones are also subsequences of Y
 - Pick the longest one.
- Analysis:
 - If X is of length n, then it has 2ⁿ subsequences
 - This is an exponential-time algorithm!

A Dynamic-Programming Approach to the LCS Problem

- Define L[i,j] to be the length of the longest common subsequence of X[0..i] and Y[0..j].
- Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to indicate that the null part of X or Y has no match with the other.
- Then we can define L[i,j] in the general case as follows:
 - 1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
 - 2. If xi≠yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no match here)

Case 1:

Case 2:

$$L[8,10]=5$$
 $Y=CGATAATTGAGA$

$$X=GTTCCTAATA$$

L[9,9]=6 *L*[8,10]=5

An LCS Algorithm

```
Algorithm LCS(X,Y ):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string
   that is a subsequence of both the string X[0..i] = x_0x_1x_2...x_i and the
   string Y [0.. j] = y_0 y_1 y_2 ... y_i
for i = 1 to n-1 do
   L[i,-1] = 0
for j = 0 to m-1 do
   L[-1,j] = 0
for i = 0 to n-1 do
   for j = 0 to m-1 do
         if x_i = y_i then
                   L[i, j] = L[i-1, j-1] + 1
         else
                   L[i, j] = max\{L[i-1, j], L[i, j-1]\}
return array L
```

Visualizing the LCS Algorithm

L	-1	0	1	2	3	4	5	6	7	8	9	10	11
-1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	2	2	2	2	2	2	2	2	2
2	0	0	1	1	2	2	2	3	3	3	3	3	3
3	0	1	1	1	2	2	2	3	3	3	3	3	3
4	0	1	1	1	2	2	2	3	3	3	3	3	3
5	0	1	1	1	2	2	2	3	4	4	4	4	4
6	0	1	1	2	2	3	3	3	4	4	5	5	5
7	0	1	1	2	2	3	4	4	4	4	5	5	6
8	0	1	1	2	3	3	4	5	5	5	5	5	6
9	0	1	1	2	3	4	4	5	5	5	6	6	6

Analysis of LCS Algorithm

- We have two nested loops
 - The outer one iterates *n* times
 - The inner one iterates *m* times
 - A constant amount of work is done inside each iteration of the inner loop
 - Thus, the total running time is O(nm)
- Answer is contained in L[n,m] (and the subsequence can be recovered from the L table).