Supplemental Instructions

Niklas Gustafsson niklgus@student.chalmers.se

2016-11-08

Skalärprodukt

1.

Låt \vec{u} och \vec{v} vara två stycken vektorer.

- a) Skriv upp definitionen för skalärprodukten mellan \vec{u} och \vec{v} .
- b) Beräkna skalärprodukten mellan $\vec{u} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ och $\vec{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
- c) Vad är resultatet av en skalärprodukt? Det vill säga, vad ger formeln er för någonting?
- d) Beräkna skalärprodukten av $\vec{v} \cdot \vec{v}$.
- e) Vad säger det er om skalärprodukten mellan \vec{u} och \vec{v} blir noll?

Ortogonal projektion

2.

Låt L
 vara en linje i planet med riktningsvektor $\vec{u}=\begin{bmatrix}3\\3\end{bmatrix}$. Lå
t $\vec{v}=\begin{bmatrix}0\\2\end{bmatrix}$ och låt $\vec{w}=\begin{bmatrix}-4\\0\end{bmatrix}$.

- a) Vad är vinkeln α mellan \vec{u} och \vec{v} ?
- b) Vad är den ortogonala projektionen av \vec{v} på L?
- c) Vad är den ortogonala projektionen av \vec{w} på L?
- d) Vad blir längderna på dessa projektioner?
- e) Bevisa att den ortogonala projektionen av en vektor \vec{v} på en linje med riktningsvektor \vec{u} alltid är nollvektorn om de är ortogonala mot varandra. Kan ni även motivera detta grafiskt?

f) Bevisa att speglingen av en vektor \vec{v} på en linje med riktningsvektor \vec{u} alltid är $-\vec{v}$ om de är ortogonala mot varandra. Kan ni även motivera detta grafiskt?

Linjer

3.

Antag att ni har en linje $y=4\cdot x+5$ och en vektor $\vec{v}=\begin{bmatrix} -1\\ 3 \end{bmatrix}$. Parallelförflytta denna vektor så att den har sin utgångspunkt i samma punkt som linjen korsar y-axeln.

- a) Vad blir den ortogonala projektionen av vektorn på linjen efter förflyttningen? Tips: ta fram riktningsvektorn för linjen.
- b) Vad blir speglingen av vektorn i linjen?

4.

Antag att ni har punkterna (1,3) och (4,1). Ta fram ekvationen för den linje som går igenom desssa punkter. Skriv upp ekvationen både på normalform och på parameterform.

5.

Antag att ni har punkterna $P_0 = (1, 2, 3), P_1 = (-1, -3, 4)$ och $P_2 = (0, 1, 2).$

- a) Bestäm ekvationerna för de tre linjerna L_1 , L_2 och L_3 som har riktningsvektorerna $\vec{P_0P_1}$, $\vec{P_0P_2}$ och $\vec{P_1P_2}$. Skriv upp linjernas ekvationer både på normalform och parameterform.
- b) Är några av linjerna parallella?
- c) Är några av linkerna vinkelräta mot varandra?
- d) Var korsar dessa linjer det "vanliga"xy-planet?
- e) Bestäm en riktningsvektor för en linje så att den blir ortogonal mot L_1 .
- f) Vad blir den ortogonala projektionen av denna riktgningsvektorn på L_2 ?

Vektorrummet \mathbb{R}^n

6.

Antag att ni har vektorerna
$$\vec{v} = \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}$$
 och $\vec{u} = \begin{bmatrix} -1\\4\\-2\\4\\0 \end{bmatrix}$.

- a) Vad blir $\vec{v} + \vec{u}$?
- b) Vad blir $\vec{v} \vec{u}$?
- c) Vad blir vinkeln mellan \vec{v} och \vec{u} ?
- d) Vad kallas det vektorrum som \vec{v} tillhör? Hint: Hur många dimensioner har \vec{v} ?