Build Multimodal Generative Al Applications

What is multimodal AI

- Artificial intelligence systems that:
- Process multiple types of data simultaneously
 - Text
 - Images
 - Audio
 - Video
- · Closely mimics humans
 - Constant integration of information using different senses

The evolution of AI

Past

- Specialized models excelling at one task
 - Text processing (BERT)
 - Image recognition (ResNet)
- No interaction between modalities

Present

 Integrated models handling multiple types of data

Examples:

- · IBM Granite 3.2 Vision
- Meta's Llama 3.2 and Llama 4
- · OpenAI's GPT-4.1

Future

- Unified, generalpurpose AI models
- Seamless multimodal understanding

Key functionalities of multimodal AI

How multimodal AI works

1. Input processing:

 Separate processing of each data type

2. Feature extraction:

 Key features extracted from each modality

3. Alignment:

All data types synchronized

4. Fusion:

 Combining information from all modalities

5. Generation

 Unified response unifying all modalities

Industry leaders in multimodal AI

Future trends in multimodal AI

Unified models

Shift to single models capable of handling all modalities from specialized systems

Edge computing

Running models directly on devices to improve **privacy**, **speed**, and **accessibility**

Self-supervised learning techniques

Reduces reliance on large labeled datasets by learning from unlabeled data

Personalization

Adapts to individual user preferences

Ethical AI

Emphasizes on fairness, transparency, and responsible use in multimodal systems

Challenges in multimodal AI

Getting started with multimodal AI

Text-to-speech (TTS)

Core of TTS Speech synthesis

Text-to-speech (TTS)

Modern systems

- · Use advanced AI
- · Generate human-like voices
- · Work across multiple languages
- Adapt to diverse speaking styles

Evolution of TTS

Modern TTS architecture

Modern TTS architecture

Modern TTS architecture

Modern TTS architecture

Modern TTS architecture

Technical deep dive: End-to-end systems

Technical deep dive: End-to-end systems

· Directly maps text to audio

 Generates natural, high-quality speech

Current challenges

Future of TTS

What is speech-to-text

Transforming spoken language into written text Speech-to-text technologies:

- Combine
 - · Audio processing
 - Natural language understanding
- Recognize speech patterns and phonemes
- · Work across multiple languages
- · Adapt to different accents and speaking styles

Referred to as automatic speech recognition (ASR)

The evolution of STT

Early days

- Template matching
- Rule-based systems

Breakthrough

- Hidden Markov models
- Statistical approaches

Modern era

- Deep learning
- Neural networks

Current state

- Self-supervised learning
- Transformer models

Technical deep dive

moder(inputs.input_values).logits

Decode the logits to text
 predicted_ids =
torch.argmax(logits, dim=-1)
 transcription =
processor.batch_decode(predicted_ids)

return transcription[0]

Example usage
text = transcribe_audio("output.wav")
print(f"Transcription: {text}")

End-to-end speech recognition system

Model: Wav2Vec2

- · Directly maps audio to text
- · Pretrained with hours of audio data
- Fine-tuned for speech recognition
- · Load the audio
- Preprocess it to the right format
- Pass it through the model
- · Decode the output

Challenges with respect to STT

Context understanding:

 Captures semantic meaning beyond words

Low-resource languages:

 Lack sufficient training data

Domain adaptation:

 Crucial for fields such as medicine or law

Background noise:

 Requires advanced filtering techniques

Speaker variability:

Must handle different voices and accents

Real-time processing:

 Needs optimization for live applications

Future and current trends in STT

Contextual understanding

 Capturing meaning beyond just words

Multilingual models

 Supporting multiple languages with a single

Self-supervised learning

 Training on unlabeled audio data

Personalization

 Adapting to individual speakers' voices

Edge computing

 Enabling private, low-latency on-device processing

What is image captioning?

Input processing

Image captioning system accepts two input types:

- · Image that needs to be captioned
- · Text query that guides captioning process

How do multimodal models work?

Image captioning using LLM comprises three stages:

Implementing image captioning model in Python

Implementing an image captioning model in Python involves combining the following:

- CNN to encode image
- RNN to generate caption

Steps for implementing image captioning model in Python

Model generating caption:

Recap

- Combining computer vision with natural language processing creates powerful tools for understanding visual content
- Image captioning process with an LLM comprises input processing, image validation and encoding, and multimodal LLM processing
- The core of the image captioning process uses visual encoders, text embedding, fusion layers, and language generation tools

Recap

- To implement an image captioning system in Llama 4 Maverick model via IBM watsonx you have to:
 - · Import libraries and authenticate access
 - · Encode images and prepare prompts
 - Send combined image-text messages to the model
 - Extract descriptive text from the model's response

What is MM-RAG?

Multimodal • Systems working with multiple data types or "modalities" Retrieval-augmented • Enhancing LLM responses by retrieving relevant information Generation

Advanced vision models vs. RAG

MM-RAG pattern

· Generate detailed.

accurate responses combining modalities

Step 1:

Multimodal data retrieval

Similarity search (image * Embedding model

Embedded Query

Multimodal LLM

fiii + 🔚 + 🗻

- Use specialized retrievers
- Process text documents, images, audio recordings, and videos

Step 2:

Contrastive learning

- Train models that create related data
- Help the system connect images and text easily

Step 3:

Generative models informed by multimodal context

MM-RAG pipeline

Data indexing

- · Data types
 - Converted into embeddings
 - Indexed in a vector database

MM-RAG pipeline

Data retrieval

- User query (text, image, or both)
 - · Received
 - · Converted to embedding
 - Searched in vector database

MM-RAG pipeline

Augmentation

 Combine retrieved multimodal data with original user query

MM-RAG pipeline

Response generation

- Input augmented query into multimodal generative model
- Produce a response that integrates information

What are multimodal chatbots and QA systems?

- · Advanced AI applications
- Can process, understand, and generate responses
- · Work with multiple data inputs:
 - Text
 - · Images
 - · Audio
 - Video
- Can see, read, and understand the world like humans

Multimodal chatbots and QA systems: Architecture

Multimodal chatbots and QA systems: Architecture

Multimodal chatbots and QA systems: Architecture

Implementation example: Image-based QA system

Step 1 Setting up the environment and importing libraries

```
import requests
import base64
import os
from ibm_watsonx_ai import Credentials
from ibm_watsonx_ai import APIClient
from ibm_watsonx_ai.foundation_models import Model, ModelInference
from ibm_watsonx_ai.foundation_models.schema import TextChatParameters
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames
```

Step 2 Initializing the model

```
model = ModelInference(
    model_id=model_id,
    credentials=credentials,
    project_id=project_id,
    params=params
)
```

Implementation example: Image-based QA system

```
Step 2    Initializing the model

credentials = Credentials(
    url = "https://us-south.ml.cloud.ibm.com",
    api_key = "<YOUR_API_KEY>"
)

client = APIClient(credentials)

model id = "meta-llama/llama-3-2-90b-vision-instruct"
project_id = "your-project-id"
params = TextChatParameters()
```

Implementation example: Image-based QA system

Step 3 Preparing an image for processing

- Convert images into AI-readable format
 - Numerical or text-based representations
- · Create two functions for image conversion

```
def prepare_image(image_path):
    """Convert an image to base64 encoding for the model"""
    with open(image_path, "rb") as image_file:
        encoded_image = base64.b64encode(image_file.read()).decode("utf-8")
    return encoded_image
```

Implementation example: Image-based QA system

```
Step 4 Creating the multimodal query function
```

Implementation example: Image-based QA system

Step 5 Using the multimodal QA function

• Prepare an image using encoding functions (Step 3)

```
# Example usage image = prepare_image("sample_image.jpg")
```

Implementation example: Image-based QA system

Step 5 Using the multimodal QA function

· Craft a question about the image

```
question = "What can you see in this image? Is there anything unusual?"
```

Step 4

Creating the multimodal query

```
# Send the request to the model
response = model.chat(messages=messages)

# Return the model's response
return response['choices'][0]['message']['content']
```

Implementation example: Image-based QA system

Step 5

Using the multimodal QA function

Further shape how the model approaches the question

```
# For a more specific domain, we can add a system prompt

system_prompt = """You are an expert assistant that helps analyze images.

Please provide detailed observations and answer the user's question

based on what you see in the image.

"""
```

Implementation example: Image-based QA system

Step 5

Using the multimodal QA function

· Call the function with components, process the input, and return

```
response = query_multimodal_model(image, question, system_prompt)
print("Model response:", response)
```

Result: Contextually relevant answer blending visual and textual query