

Features

- Uses CRM(CQ) advanced Trench MOS technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Applications

- · Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

Product Summary

V_{DS}	60V
R _{DS(on) typ.}	8mΩ
I_{D}	56A

100% DVDS Tested

100% Avalanche Tested

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRTM105N06L	TM105N06L	DFN5X6	Reel	N/A	N/A	5000pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	60	V
Continuous drain current			
T _C = 25°C (Silicon limit)	I_{D}	56	А
T _C = 25°C (Package limit)	ID	124	
T _C = 100°C (Silicon limit)		36	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	${ m I_{D~pulse}}$	224	Α
Avalanche energy, single pulse (L=0.5mH, Rg=25 Ω)	E _{AS}	60	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25$ °C)	P _{tot}	61	W
Operating junction and storage temperature	T_{j} , T_{stg}	-55+150	°C
Soldering temperature, wave soldering only allowed at leads (1.6mm from case for 10s)	T _{sold}	260	°C

Trench N-MOSFET 60V, $8m\Omega$, 56A

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case.	R_{thJC}	2.05	°C/W
Thermal resistance, junction – ambient(min. footprint)	R _{thJA} *	47	- C/ W

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Danamakan	Comple at	Value			11!4	T t C diti	
Parameter	Symbol	min.	typ.	max.	Unit	Test Condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	60	-	-	V	V _{GS} =0V, I _D =250uA	
Gate threshold voltage	V _{GS(th)}	1.3	1.8	2.3	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	
Zero gate voltage drain current	I _{DSS}	-	0.03	1 100	μА	V_{DS} =60V, V_{GS} =0V T_{j} =25°C T_{j} =150°C	
Gate-source leakage current	I_{GSS}	-	±5	±100	nA	V _{GS} =±20V,V _{DS} =0V	
Drain-source on-state resistance	R _{DS(on)}	-	8 15.5 10	10.5 19 12.5	mΩ	V_{GS} =10V, I_{D} =30A, T_{j} =25°C T_{j} =150°C V_{GS} =4.5V, I_{D} =25A	
Transconductance	9 _{fs}	-	77	-	S	$V_{DS}=5V,I_{D}=30A$	
Dynamic Characterist	ic		•	•	•		
Input Capacitance	C _{iss}	-	1902	-			
Output Capacitance	C _{oss}	-	201	-	pF	$V_{GS}=0V, V_{DS}=30V,$ f=1MHz	
Reverse Transfer Capacitance	C _{rss}	-	142	-			
Gate Total Charge	Q_{G}	1	46	-		V_{GS} =10V, V_{DS} =30V, I_{D} =30A, f=1MHz	
Gate-Source charge	Q_{gs}	ı	8.3	-	nC		
Gate-Drain charge	Q_{gd}	-	13	-			
Turn-on delay time	t _{d(on)}	ı	11	-			
Rise time	t _r	-	61	-		$V_{GS} = 10V, V_{DD} = 30V,$	
Turn-off delay time	t _{d(off)}	-	34	-	ns	$R_{G_{ext}} = 2.7\Omega, I_{D} = 30A$	
Fall time	t _f	-	90	-]		

Gate resistance

 $R_{\text{G}} \\$

1.2

 $V_{GS}=0V$, $V_{DS}=0V$,

f=1MHz

Ω

Trench N-MOSFET 60V, $8m\Omega$, 56A

Body Diode Characteristic

Parameter	Symbol	Value			Unit	Test Condition	
Parameter	Symbol	min.	typ.	max.	Onit	rest Condition	
Body Diode Forward Voltage	V_{SD}	1	0.8	1.3	>	V _{GS} =0V,I _{SD} =30A	
Body Diode Continuous Forward Current	I_S			56	А	Tc = 25°C	
Body Diode Reverse Recovery Time	t _{rr}	-	23	-	ns	I _F =30A, dI/dt=100A/μ	
Body Diode Reverse Recovery Charge	Q _{rr}	-	19	-	nC	S	

^{*}Weld the device to a PCB board with the size of 32mm*36mm and then place it in an one-cubic-foot air static box.

Typical Performance Characteristics

Fig 2: Transfer Characteristics 160 $V_{DS}=5V$ 128 96 **€** 64 32 150°C 25°C 0 2 5 1

V_{GS} (V)

Fig 3: Rds(on) vs Drain Current and Gate Voltage 16 T;=25°C 14 R_{DS(on)} (m Ω) 12 10 8 V_{GS}=10V 6 4 0 24 48 72 96 120 I_D (A)

Fig 5: Rds(on) vs. Temperature 2.2 $V_{GS}=10V$ 2.0 $I_D = 30A$ 1.8 R_{DS(on)}_Normalized 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 -50 0 25 50 75 100 125 150 Tj - Junction Temperature (°C)

Fig 6: Capacitance Characteristics 10000 V_{GS} =0Vf=1MHz C - Capacitance (PF) 1000 Coss 100 0 12 24 36 48 60 $V_{DS}(V)$

Fig 8: Body-diode Forward
Characteristics

1000

(Y)
1000

150°C

25°C

8.0

1

1.2

1.4

1.6

Fig 9: Power Dissipation

Fig 10: Drain Current Derating

0.6

V_{SD} - Diode Forward Voltage(V)

0.4

0

0.2

Fig 11: Safe Operating Area

Fig 12: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Outline: DFN5X6

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.80	1.20	0.031	0.047	
A1	0.00	0.05	0.000	0.002	
b	0.30	0.51	0.012	0.020	
С	0.15	0.35	0.006	0.014	
D	4.80	5.40	0.189	0.213	
е	1.27 BSC		0.050 BSC		
E	5.66	6.06	0.223	0.239	
G	0.30	0.71	0.012	0.028	
Н	5.90	6.35	0.232	0.250	
J	3.32	3.92	0.131	0.154	
K	3.61	4.25	0.142	0.167	
L1	0.05	0.25	0.002	0.010	
L2	0.00	0.15	0.000	0.006	
R	0.25 REF		0.010) REF	
θ	0°	12°	0°	12°	

Trench N-MOSFET 60V, $8m\Omega$, 56A

Revision History

Revison	Date	Major changes
1.0	2018/4/24	Release of formal version
2.0	2019/8/6	Increase the environmental labeling, I_s , T_{sold} , I_{DSS} test value at T_j =150°C and I_{GSS} test value at V_{GS} =-20V;Update $R_{DS(on)}$, g_{fs} , V_{SD} , $t_{d(on)}$ / t_r / $t_{d(off)}$ / t_f , Q_G / Q_{gs} / Q_{gd} and t_{rr} / Q_{rr} test current from 20A/40A to 30A;Update Fig2/Fig3/Fig4/Fig7 of Typical Performance Characteristics;Update Package Outline.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.

