Лабораторная работа №6.

Требуется реализовать следующие обобщенные алгоритмы.

- 1. **all_of** возвращает true, если все элементы диапазона удовлетворяют некоторому предикату. Иначе false
- 2. **any_of** возвращает true, если хотя бы один из элементов диапазона удовлетворяет некоторому предикату. Иначе false
- 3. **none_of** возвращает true, если все элементы диапазона не удовлетворяют некоторому предикату. Иначе false
- 4. **one_of** возвращает true, если ровно один элемент диапазона удовлетворяет некоторому предикату. Иначе false
- 5. **is_sorted** возвращает true, если все элементы диапазона находятся в отсортированном порядке относительно некоторого критерия
- 6. **is_partitioned** возвращает true, если в диапазоне есть элемент, делящий все элементы на удовлетворяющие и не удовлетворяющие некоторому предикату. Иначе false.
- 7. **find_not** находит первый элемент, не равный заданному
- 8. find_backward находит первый элемент, равный заданному, с конца
- 9. **is_palindrome** возвращает true, если заданная последовательность является палиндромом относительно некоторого условия. Иначе false.

Каждый алгоритм должен быть выполнен в виде шаблонной функции, позволяющей взаимодействовать со стандартными контейнерами STL с помощью итераторов. Предикаты, условия, операторы сравнения должны быть параметризованы.

При сдаче работы требуется продемонстрировать работу алгоритмов как на стандартных, так и на пользовательских типах данных, например CPoint, CRational, далее работает ваша индивидуальная (не "коллективная") фантазия.

	1	2	3	4	5	6	7	8	9
1	х				x				х
2		х				х		х	
3			х		x		x		
4	х			х				х	
5		х			х				х
6	х					х		х	
7		х		х			х		
8			х		х			х	
9		х		х					х
10	х				х			х	
11		х				х			х
12			х		х		х		
13	х			х				х	
14		х			х				х
15	х					х		х	
16		х		х			x		
17			х		x			х	
18		х		х					х
19	х				х			х	
20		х				х	x		
21			х		х		x		
22	х			х				х	
23									х
24	х				x				х