

Bank Account Fraud

António Pedro Pinheiro up201704931

Table of Contents

Business Understanding: Problem Definition

Data Understanding: Summarization

Dataset

36 predictors 1 target variable

Analysis & Summary

Significant portion of missing values

prev_address_months_count bank_months_count

Device Fraud Count

All cases with value 0

Customer Age

Cases <10 & > 90

Imbalanced Domain Learning

81% of cases on the train dataset have "no fraud" status

Data Understanding: Visualization

Imbalanced Domain Learning

Device Fraud Count

Customer Age

Significant portion of missing values

Density plot of prev_address_months_count by fraud_bool

Data Preparation: Data Quality & Transformation

Data Preparation: Feature Selection

Correlation Matrix

Numeric Variables

Chi-Square Test

Categorical Variables

ANOVA One-Way Test

Numeric/Categorical Variables

Information Gain

Reduction in entropy

Variable Importance with Random Forests

Mean Decreasing Gini

Boruta Algorithm (Wrapper Method)

Copied shuffled features

Variable Importance with Rpart

Recursive Partitioning and Regression Trees

PCA

Principal Component Analysis

Predictive Modelling:

Training + Hyperparameter Tuning + Evaluation Methodologies + Prediction

Conclusion

Conclusions & Limitations

- Imbalanced Learning is a prevalent issue
- Recall is too low because the prevalent class is 0 in the target variable
- Accuracy is not a relevant metric
- AUC is more suited for this analysis
- Ensemble Models have better scores than primary models
- Final Chosen Model: Random Forest

Future Work

- Explore other strategies for imbalanced domains
- Train with more diverse models
- In-Depth Study to advance the feature selection techniques
- Try extracting insightful information from other clustering techniques

Annex A: Income Boxplot by fraud_bool

Annex B: Income Histogram with Density Line

Annex C: Density Plot of name_email_similarity by fraud_bool

Annex D: Income Histogram by fraud_bool + month

Annex E: Density Plots

Annex F: Density Plot of customer_age by fraud_bool

Annex G: Density Plot of customer_age by fraud_bool

Annex H: Correlation Matrix (Spearman Coefficients)

Annex I: Chi-Square Test between payment_type & emplyment status

Annex J: PCA Graph of Variables/Dimensions

Annex K: PCA Graph of Individuals

Annex L: Variable Importance in a Random Forest Model

Annex M: Cluster Plot for CLARA Clustering Algortihm with k=3

Annex N: Histogram of customer_age outliers

Annex O: fraud_bool dataset distribution

Annex P: device_fraud_count dataset distribution

Device Fraud Count Distribution

Annex Q: Confusion Matrix – Random Forest

Annex Q: ROC Curve – Random Forest

