On a theory of prime producing sieves, II

Kevin Ford (joint work with James Maynard)

17-October-2024

Basic Setup

Problem: Count primes in $\mathscr{A} \subset (x, 2x]$

Tools: Type I and Type II bounds

Three basic parameters: γ , θ , ν .

$$\sum_{m \leqslant x^{\gamma}} \tau(m)^{B} \left| \#\{a \in \mathscr{A} : m|a\} - \frac{|\mathscr{A}|}{m} \right| \ll_{B} \frac{|\mathscr{A}|}{(\log x)^{B}} \quad \text{(Type I bound)}.$$

For any divisor-bounded complex sequences $(\kappa_m), (\zeta_n),$

$$\left| \sum_{\substack{x^{\theta} < m \leqslant x^{\theta + \nu}}} \kappa_m \zeta_n \left(1_{mn \in \mathscr{A}} - \frac{|\mathscr{A}|}{x} \right) \right| \ll_B \frac{|\mathscr{A}|}{(\log x)^B} \quad \text{(Type II bound)}.$$

Our new approach: use all Type I/II information at once

Linnik's identity:
$$\frac{\Lambda(n)}{\log n} = \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \sum_{\substack{n=d_1 \cdots d_j \\ d_i > 2 \ (1 \le i \le j)}} 1.$$

Let
$$w_n = 1_{n \in \mathcal{A}} - \frac{|\mathcal{A}|}{n}$$
, average zero. Then

$$\sum_{p} w_{p} = \sum_{n} w_{n} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \sum_{\substack{n=d_{1} \cdots d_{j} \\ d_{i} \geqslant 2}} 1 \qquad \text{(Linnik; ignore prime powers)}$$

$$\approx \sum_{n} w_{n} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \sum_{\substack{n=d_{1} \cdots d_{j} \\ n=d_{1} \cdots d_{j}}} 1 \qquad \text{(using Type-I for } d_{i} > x^{1-\gamma} \text{)}$$

$$\approx \sum_{n \in \mathcal{U}} w_n \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \sum_{\substack{n=d_1 \cdots d_j \\ 2 \le d_i \le n^{1-\gamma} \ (1 \le i \le j)}} 1 \qquad \text{(using Type-II)},$$

 $\text{where } \mathcal{U} = \{x < n \leqslant 2x : \underbrace{x^{1-\gamma} - \text{smooth}}_{\text{Type-I}}, \underbrace{\text{no divisor in } (x^{\theta}, x^{\theta+\nu})}_{\text{Type-II}} \}.$

An asymptotic for the number of primes in ${\mathscr A}$

$$\sum_{p} w_{p} \approx \sum_{n \in \mathcal{U}} w_{n} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \sum_{\substack{n=d_{1} \cdots d_{j} \\ 2 \leqslant d_{i} \leqslant x^{1-\gamma} \ (1 \leqslant i \leqslant j)}} 1.$$

 $\text{where } \mathcal{U} = \{x < n \leqslant 2x : \underbrace{x^{1-\gamma} - \text{smooth}}_{\text{Type-I}}, \underbrace{\text{no divisor in } (x^{\theta}, x^{\theta+\nu})}_{\text{Type-II}} \}.$

Corollary. If \mathcal{U} is empty or tiny, then

$$0 \approx \sum_{p} w_p = \#\{p \in \mathscr{A}\} - \frac{|\mathscr{A}|}{x} \#\{x$$

and so

$$\#\{p\in\mathscr{A}\}\sim\frac{|\mathscr{A}|}{\log x}.$$

In fact, the asymptotic is guaranteed iff $\ensuremath{\mathcal{U}}$ is "empty or tiny".

We need constructions of sets $\mathscr A$ satisfying Type I and Type II bounds with $\#\{p\in\mathscr A\}$ unusually large/small in order to show

- (i) The asymptotic is not guaranteed when ${\cal U}$ is "substantial".
- (ii) For some γ, θ, ν , it's possible that $\#\{p \in \mathscr{A}\} = 0$.

(iii) To show that our sieve bounds on $\#\{p \in \mathscr{A}\}\$ are best possible.

Examples with no primes

Theorem [FM,2024]. For every $\gamma < 1$, there is a $\nu > 0$ so that for *any* θ , there are examples of $\mathscr A$ satisfying the Type I and Type II bounds but with no primes.

Selberg's example

 $\mathscr{A} = \{x < n \leqslant 2x : n \text{ has an even number of prime factors} \}$ satisfies

Type I for any $\gamma < 1$, but has no primes.

Constructions: from real sequences to sets

Consider a bounded, non-negative sequence $(v_n)_{x < n \leq 2x}$ satisfying

- $v_p = 0$ if p is prime;
- (Type I) $\sum_{m \leq x^{\gamma}} \tau(m)^B \left| \sum_{m \mid n} (v_n 1) \right| \ll_B \frac{x}{\log^B x}$.
- (Type II) For any divisor-bounded complex sequences (κ_m) , (ζ_n) ,

$$\sum_{\substack{x^{\theta} < m \leqslant x^{\theta+\nu} \\ x^{\theta}}} \kappa_m \zeta_n(v_{mn} - 1) \ll_B \frac{x}{(\log x)^B}.$$

Let $V = \max_n v_n$, then choose \mathscr{A} randomly from (v_n) by

$$\operatorname{Prob}(n \in \mathscr{A}) = \frac{v_n}{V} \qquad (x < n \leqslant 2x).$$

Then $\mathscr A$ contains no primes (since $v_p=0$) and with high probability, $\mathscr A$ satisfies the Type I and Type II bounds.

Choosing v_n in terms of a vector function f

Take $v_n = 1 + f\left(\frac{\log p_1}{\log n}, \dots, \frac{\log p_k}{\log n}\right)$ for $n = p_1 \cdots p_k$, where $f \in \mathscr{F}_{\varepsilon}(\gamma, \theta, \nu)$, the set of functions on variable-length vectors, supported on vectors with

- sum of components 1; • no subset sum in $[\theta, \theta] + id(\phi, \phi) = 1$ if $\exists d(\phi) d(\phi) = (\theta + \mu)$. Type II trivial)
- no subset sum in [θ, θ + ν] (so v_n = 1 if ∃d|n, d ∈ (x^θ, x^{θ+ν}]; Type II trivial),
 all components ≥ ε (so v_n = 1 if n has a prime factor < n^ε);

and additionally

- for each $k \ge 1$, $f(u_1, \dots, u_k)$ is piecewise smooth and symmetric in all variables:
 - f satisfies an analog of the Type I bound for (v_n) :

for
$$r \ge 0$$
, $\xi_1 + \dots + \xi_r \le \gamma$,
$$\sum_{\substack{k \ge r+1 \\ \xi_1 + \dots + \xi_k = 1}} \dots \int_{\substack{f(\xi_1, \dots, \xi_k) \\ \xi_1 + \dots + \xi_k = 1}} \frac{f(\xi_1, \dots, \xi_k)}{\xi_{r+1} \dots \xi_k} = 0.$$
 (I_1)

$$\mathscr{F}_{\varepsilon}(\gamma,\theta,\nu)$$
 forms a vector space!

Goal: Find $f \in \mathscr{F}_{\varepsilon}(\gamma, \theta, \nu)$ with

- f(1) = -1 (this makes $v_p = 0$ for primes p);
- $f(\mathbf{u}) \ge -1$ for all \mathbf{u} (to ensure $v_n \ge 0$ for all n);

Tweaking the Type I integral equations

$$\forall \xi_1 + \dots + \xi_r \leqslant \gamma, \quad \sum_{k \geqslant r+1} \int_{\substack{\xi \leqslant \xi_{r+1} \leqslant \dots \leqslant \xi_k \\ \xi_1 + \dots + \xi_k = 1}} \frac{f(\xi_1, \dots, \xi_k)}{\xi_{r+1} \cdots \xi_k} = 0 \qquad (I_1)$$

The k=r+1 term is $\alpha^{-1}f(\xi_1,\ldots,\xi_r,\alpha)$, where $\alpha=1-(\xi_1+\cdots+\xi_r)$. Thus, (I_1) is equivalent to

$$f(\xi_1, \dots, \xi_r, \frac{\alpha}{\alpha}) = -\frac{\alpha}{\alpha} \sum_{k \geqslant r+2} \int \dots \int_{\substack{\varepsilon \leqslant \xi_{r+1} \leqslant \dots \leqslant \xi_k \\ \xi_{r+1} + \dots + \xi_k = \alpha}} \frac{f(\xi_1, \dots, \xi_k)}{\xi_{r+1} \cdots \xi_k}. \quad (I_1')$$

Here we have a "fragmentation" of α : $\alpha \to (\xi_{r+1}, \dots, \xi_k)$.

We have $\alpha \geqslant 1 - \gamma$. Now iterate (I_1') : fragment each component $\geqslant 1 - \gamma$ (the process is finite since all components are $\geqslant \varepsilon$).

The main fragmentation relation for f

After iterating (I'_1) , (I_1) is equivalent to:

(I₂) For all
$$s\geqslant 0,$$
 $\ell\geqslant 1$, all $\beta_1,\ldots,\beta_s\in [\varepsilon,1-\gamma)$ and $\alpha_1,\ldots,\alpha_\ell\geqslant 1-\gamma$ and $\beta_1+\cdots+\beta_s+\alpha_1+\cdots+\alpha_\ell=1$, we have

$$\frac{f(\boldsymbol{\beta}, \underbrace{\alpha_1, \dots, \alpha_\ell})}{\alpha_1 \cdots \alpha_\ell} = \sum_{\substack{k_1, \dots, k_\ell \geqslant 2\\ \varepsilon \leqslant u_{j,1} \leqslant \dots \leqslant u_{j,k_j} < 1 - \gamma\\ 1 \leqslant j \leqslant \ell}} \frac{\int \dots \int \prod_{j=1}^{d} \prod_{h=1}^{d} u_{j,h} \prod_{j=1}^{d} \prod_{h=1}^{d} u_{j,h}}{\prod_{j=1}^{d} \prod_{h=1}^{d} u_{j,h}},$$

where $\mathbf{u}_j = (u_{j,1}, \dots, u_{j,k_j})$ for $1 \le j \le \ell$, and $\Pi(\mathbf{u}) \in \mathbb{Z}$ is a combinatorial factor, the vector analog of the truncated Linnik function.

- On the LHS, $f(\beta, \alpha_1, \dots, \alpha_\ell)$ has at least one component $\geq 1 \gamma$;
- On the RHS, $f(\beta, \mathbf{u}_1, \dots, \mathbf{u}_{\ell})$ has *all* components $< 1 \gamma$.
 - We may freely choose f on $\mathcal{R}_{\varepsilon}(\gamma, \theta, \nu)$, the set of vectors with all components in $[\varepsilon, 1 \gamma)$, sum 1, and no subset sum in $[\theta, \theta + \nu]$.
 - Then f is uniquely determined on vectors with some component $\geq 1 \gamma$.

 $\mathcal{R}_{\varepsilon}(\gamma, \theta, \nu)$ is the vector version of \mathcal{U} (with the additional restriction of components $\geqslant \varepsilon$).

From $\nu = 0$ to $\nu > 0$

Theorem [FM,2024]. For every $\gamma < 1$, there is a $\nu > 0$ so that for $any \theta$, there are examples of $\mathscr A$ satisfying the Type I and Type II bounds but with no primes.

A reduction to the case of no Type II information

Suppose that there is an $\varepsilon > 0$ and $f \in \mathscr{F}_{\varepsilon}(\gamma, 0, 0)$ such that

- f(1) < -1; and
- $f(\mathbf{u}) \ge -1$ for all \mathbf{u} with at least 2 components.

Then the above theorem holds for this γ .

Idea: For small enough $\nu > 0$ and any θ , construct $\tilde{f} \in \mathscr{F}_{\varepsilon}(\gamma, \theta, \nu)$ from f:

- (1) Let $\tilde{f} = f$ on $\mathcal{R}_{\varepsilon}(\gamma, \theta, \nu)$; a subset of $\mathcal{R}_{\varepsilon}(\gamma, 0, 0)$. For small ν , there is a "small" difference in the sets: $\mathcal{R}_{\varepsilon}(\gamma, \theta, \nu) = \{\mathbf{u} \in \mathcal{R}_{\varepsilon}(\gamma, 0, 0) : \mathbf{u} \text{ has no subsum in } [\theta, \theta + \nu] \}.$
- (2) Define \tilde{f} for other vectors by

$$\frac{\tilde{f}(\boldsymbol{\beta}, \alpha_{1}, \dots, \alpha_{\ell})}{\alpha_{1} \cdots \alpha_{\ell}} = \sum_{\substack{k_{1}, \dots, k_{\ell} \geqslant 2 \\ \epsilon \leqslant \mathbf{u}_{j, 1} \leqslant \dots \leqslant \mathbf{u}_{j, k_{j}} < 1 - \gamma \\ 1 < j < \ell}} \underbrace{\frac{\mathbf{J}(\mathbf{u}_{1}) \cdots \mathbf{J}(\mathbf{u}_{\ell})}{\prod_{j=1}^{\ell} \prod_{h=1}^{k_{j}} \mathbf{u}_{j, h}}}_{bounded} \tilde{f}(\boldsymbol{\beta}, \mathbf{u}_{1}, \dots, \mathbf{u}_{\ell}) \tag{I}_{2}$$

Let $f(1)=-1-\delta$. For small $\nu>0$, $\tilde{f}(1)<-1-\delta/2$, and for other \mathbf{u} , $\tilde{f}(\mathbf{u})\geqslant -1-\delta/3$.

(3) Rescale \tilde{f} so that $\tilde{f}(1) = -1$.

Revisiting Selberg's example

A reduction to the case of no Type II information

Suppose that there is an $\varepsilon > 0$ and $f \in \mathscr{F}_{\varepsilon}(\gamma, 0, 0)$ such that

- f(1) < -1; and
- $f(\mathbf{u}) \ge -1$ for all \mathbf{u} with at least 2 components.

Then the above theorem holds for this γ .

Selberg's example corresponds to $\varepsilon = 0$ and $f(u_1, \dots, u_k) = (-1)^k$, the vector version of the Liouville function $\lambda(n)$.

This "just fails" because f(1) = -1 and $\varepsilon = 0$.

Can Selberg's example be tweaked to work?

A family of Liouville-type functions

For $0 < \varepsilon < c < 1/2$ define $\tilde{\lambda}^{(c,\varepsilon)}$ as follows: • $\tilde{\lambda}^{(c,\varepsilon)}(u_1, \dots, u_s) = (-1)^s$ if $\varepsilon \le u_i < c$ for all i;

•
$$\tilde{\lambda}^{(c,\varepsilon)}(\mathbf{u}) = 0$$
 if any component is $< \varepsilon$;

• If
$$\beta_1, \ldots, \beta_s < c \leqslant \alpha_1, \ldots, \alpha_\ell$$
,

$$\tilde{\lambda}^{(c,\varepsilon)}(\boldsymbol{\beta},\boldsymbol{\alpha}) = (-1)^s M^{(c,\varepsilon)}(\alpha_1) \cdots M^{(c,\varepsilon)}(\alpha_\ell),$$

where

$$M^{(c,\varepsilon)}(\alpha) = \alpha \sum_{k \geqslant 1} \frac{(-1)^k}{k!} \int_{\substack{\alpha = u_1 + \dots + u_k \\ \varepsilon < u_i < c \ (1 \leqslant i \leqslant k)}} \frac{\Pi_c(\mathbf{u})}{u_1 \cdots u_k}.$$

Lemma. If $\varepsilon < c \leqslant 1 - \gamma$, then $\tilde{\lambda}^{(c,\varepsilon)} \in \mathscr{F}_{\varepsilon}(\gamma,0,0)$;

If
$$\varepsilon < c \leqslant \frac{1-\gamma}{2}$$
 then $2^k \tilde{\lambda}^{(c,\varepsilon)}(u_1,\ldots,u_k) \in \mathscr{F}_{\varepsilon}(\gamma,0,0)$.

Endgame

Goal: there is an $\varepsilon>0$ and $f\in \mathscr{F}_{\varepsilon}(\gamma,0,0)$ such that f(1)<-1 and $f(\mathbf{u})\geqslant -1$ for all \mathbf{u} with at least 2 components.

Lemma.
$$-1 \leqslant M^{(c,\varepsilon)}(\alpha) \leqslant -1 + (c\varepsilon)^{-1}\rho(c/\varepsilon-1), \, \rho \text{ is Dickman's fcn.}$$
Corollary. If $c \geqslant \frac{1-\gamma}{2}$ and $\varepsilon = \varepsilon(\gamma) > 0$ small enough then $-1 \leqslant M^{(c,\varepsilon)}(u) \leqslant -1 + 2^{-2/\varepsilon}$. In particular, $|\tilde{\lambda}^{(c,\varepsilon)}(\mathbf{u})| \leqslant 1$ and $\operatorname{sgn} \tilde{\lambda}^{(c,\varepsilon)}(u_1,\ldots,u_k) = (-1)^k$ for all \mathbf{u} .

The proof: Let
$$g(u_1,\ldots,u_k)=(1-2^{k-3})\tilde{\lambda}^{((1-\gamma)/2,\varepsilon)}(\mathbf{u}),$$
 $g_0=\max|g(\mathbf{u})|\leqslant 2^{1/\varepsilon}$ and
$$f(\mathbf{u})=\tilde{\lambda}^{(1-\gamma,\varepsilon)}(\mathbf{u})+g_0^{-1}g(\mathbf{u}).$$

- If some $u_i < \frac{1-\gamma}{2}$ then $g(\mathbf{u}) = 0$ and $f(\mathbf{u}) \ge -1$;
- If $k \ge 3$ is odd and all $u_i \ge \frac{1-\gamma}{2}$, then $g(u_1, \dots, u_k) \ge 0$ and $f(\mathbf{u}) \ge -1$;
- If $k \ge 2$ is even and all $u_i \ge \frac{\tilde{1}-\gamma}{2}$, then $\tilde{\lambda}^{(1-\gamma,\varepsilon)}(\mathbf{u}) \ge 0$ and $f(\mathbf{u}) \ge -1$;
- We have

$$f(1) = M^{(1-\gamma,\varepsilon)}(1) + g_0^{-1}(3/4)M^{((1-\gamma)/2,\varepsilon)}(1) \le -1 + \frac{1}{10g_0} - \frac{1}{2g_0} < -1.$$