Algebra: Chapter 0 Exercises Chapter 3, Section 1

David Melendez

July 8, 2018

Problem 1. Prove that is 0 = 1 in a ring R, then R is a zero-ring.

Proof. If $x \in R$, then x = 1x = 0x = 0.

Problem 2. Let S be a set, and define operations on the power set $\mathscr{P}(S)$ of S by setting $\forall A, B \in \mathscr{P}(S)$:

$$A + B := (A \cup B) \setminus (A \cap B)$$
$$A \cdot B := A \cap B$$

Prove that $(\mathscr{P}(S), +, \cdot)$ is a commutative ring.

Solution. We will establish a bijection between $\mathscr{P}(S)$ and another ring that preserves the given operations. Let $(\mathbb{Z}/2\mathbb{Z})^S$ be a ring as defined in problem 1.3, and define a function $\varphi: \mathscr{P}(S) \to (\mathbb{Z}/2Z)^S$ by

$$\varphi(A)(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Case work shows that φ preserves + and \cdot , and further investigation reveals a natural inverse for φ , showing that it is a bijection, and hence that $\mathscr{P}(S)$ is a ring (isomorphic to $(\mathbb{Z}/2\mathbb{Z})^S$, in fact).

Problem 1.3. Let R be a ring, and let S be any set. Explain how to endow the set R^S of set functions $S \to R$ of two operations $+, \cdot$ so as to make R^S into a ring, such that R^S is just a copy of R if S is a singleton.

Solution. Define + on R^S by $(f_1 + f_2)(s) = f_1(s) + f_2(s)$ (making R^S into an abelian group, as R is an abelian group under +), and define \cdot by $(f_1 \cdot f_2)(s) = f_1(s) \cdot f_2(s)$. Each of the ring axioms are clearly satisfies by this. If S is a singleton, then each $f: S \to R$ is uniquely identified by an element of R, and the operations coincide in the obvious way.

Problem 1.5. Let R be a ring. If a, b are zero-divisors in R, is a + b necessarily a zero-divisor?

Solution. No. For example, $[2]_6$ and $[3]_6$ are zero-divisors in $\mathbb{Z}/6\mathbb{Z}$, but their sum $[5]_6$ is a unit in this ring, and hence is not a zero-divisor.

Problem 1.6. An element a of a ring R is nilpotent if $a^n = 0$ for some n.

- 1. Prove that if a and b are nilpotent in R and ab = ba, then a + b is nilpotent.
- 2. Is the hypothesis ab = ba in the previous statement necessary for its conclusion to hold?

Solution.

1. Suppose a and b are (nonzero, as this makes the conclusion obvious) nilpotent elements of R, so that $a^m = b^n = 0$ for positive integers m, n. Note, then, that, by the binomial theorem (as R is commutative):

$$(a+b)^{2mn} = \sum_{k=1}^{2mn} {2mn \choose k} a^{2mn-k} b^k$$

Notice that in each term of this sum, either $k \geq mn$ or $k \leq mn$, in which case $2mn-k \geq mn$. Since $mn \geq m$ and $mn \geq n$, this implies that in each term, either b^k or a^{2mn-k} is zero, meaning each term is zero, whence a+b is nilpotent.

2. The hypothesis that a and b is indeed necessary. In the ring $\mathfrak{gl}_2(\mathbb{R})$, take the following matrices:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \; ; \; B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

We have $A^2 = B^2 = 0$, but A + B is of course not nilpotent.

Problem 1.7. Prove that [m] is nilpotent in $\mathbb{Z}/n\mathbb{Z}$ is and only if m is divisible by all prime factors of n.

Proof. First suppose [m] is nilpotent in $\mathbb{Z}/n\mathbb{Z}$, so that $[m]^k \equiv a \mod n$ for some positive integer k. This means that $n|m^k$, implying each prime factor of n is also a prime factor of m^k , and so is a prime factor of m since m^k and m have the same prime factors.

Conversely, suppose m is divisible by all prime factors of n. Let k be the largest exponent in the prime factorization of n. Then $n|m^k$, and so $[m]^k = [0]$.

Problem 1.8. Prove that $x = \pm 1$ are the only solutions to $x^2 = 1$ in an integral domain. Find a ring in which the equation $x^2 = 1$ has more than two solutions.

Solution. Note that:

$$x^{2} = 1 \Leftrightarrow x^{2} - 1 = 0$$
$$\Leftrightarrow (x+1)(x-1) = 0$$
$$\Leftrightarrow x+1 = 0 \text{ or } x-1 = 0$$
$$\Leftrightarrow x = \pm 1$$

where implications 1, 2, and 4 follow from the properties of rings, and the third implication follows from our ring being an integral domain.

In the ring $\mathbb{Z}/3Z$, the equation $x^2 = 1$ has solutions $\pm 1, \pm 2$.

Problem 10. Let R be a ring. Prove that if $a \in R$ is a right-unit and has two or more left-zero-divisors, then a is not a left-zero-divisor and is a right-zero-divisor.

Solution. Let u_1, u_2 be distinct left inverses of a, so that $u_1a = u_2a = 1$. We then have, for all $b \in R$,

$$ab = 0 \implies u_1 ab = u_1 0$$

 $\implies b = 0.$

and so a is not a left-zero-divisor. Note, however, that

$$(u_1 - u_2)a = u_1 a - u_2 a$$

= 1 - 1
= 0.

and so a is a right-zero-divisor since $u_1 \neq u_2$.

Problem 1.14. Let R be a ring, and let $f(x), g(x) \in R[x]$ be nonzero polynomials. Prove that

$$\deg(f(x) + g(x)) \le \max(\deg(f(x)), \deg(g(x))).$$

Assuming that R is an integral domain, prove that

$$\deg(f(x)\cdot g(x)) = \deg(f(x)) + \deg(g(x))$$

Solution. Let $f(x) = \sum_i a_i x^i$ and $g(x) = \sum_i b_i x^i$. If $\deg(f(x)) = \deg(g(x)) = n$, then i > n implies $a_i + b_i = 0$, and so the largest i for which the coefficient $a_i + b_i$ is potentially nonzero coefficient is i = n. Hence $\deg(f(x) + g(x)) \leq \max(\deg(f(x)), \deg(g(x)))$.

If $\deg(f(x)) \neq \deg(g(x))$, then assume without loss of generality that $n = \deg(g(x)) > \deg(f(x))$. Of course i > n then implies $a_i + b_i = 0$ and $a_n + b_n = a_n$, so the result holds.

Now, assume R is an integral domain, and let $\deg(f(x)) = m$, $\deg(g(x)) = n$. Since no $i \leq m, j \leq n$ implies $i + j \leq m + n$, we know then that the coefficient of x^k in the product of f and g for k > m + n is zero. Furthermore, this also implies that the coefficient of x^{m+n} is $a_m b_n$ by the definition of the product of polynomials, which is nonzero since a_m, b_n are nonzero and R is an integral domain.

Problem 1.15. Prove that R[x] is an integral domain if and only if R is an integral domain.

Solution. First suppose that R[x] is an integral domain. Then every two constant polynomials $p = r_1, q = r_2$ in R[x] satisfy pq = 0 if and only if p = 0 or q = 0 as polynomials. But this is true if and only if $r_1 = 0$ or $r_2 = 0$ as elements of R, hence R is an integral domain.

Conversely, suppose R[x] is not an integral domain, that is, there exist nonzero polynomials

$$p = \sum_{i} p_i x_i$$
$$q = \sum_{i} q_i x_i;$$

(where p_i and q_i are elements of R) such that the polynomial pq = 0. Let m be the smallest positive integer such that p_m is nonzero, and let n be the smallest positive integer such that q_n is nonzero. Then $0 = (pq)_{m+n} = p_m q_n$ by the definition of the product of polynomials and the fact that pq = 0, so R is not an integral domain.

j++j