Question 1A	Collision	[1 marks]
O True		
O False		
False		
Question 1B	Expectations	[1 marks]
O True		
O False		
True		
Question 1C	Expectations again	[1 marks]
O True		
O False		
False		
Question 1D	Implementation of hashCode()	[1 marks]
O True		
O False		
False		
Question 1E	Heapsort	[1 marks]
O True		
O False		
False		
Question 1F	Size of heaps	[1 marks]
O True		
O False		
True		
Question 1G	Cost of merging heaps	[1 marks]
O True		
O False		
True		

Question 1H Open addressing vs Chaining	[1 marks]
O True	
○ False	
True	
Question 1I Amortized analysis	[1 marks]
O True	
○ False	
False	
Question 1J DFS in adjacency matrix model	[1 marks]
O True	
○ False	
True	
Question 1K Adding 5	[1 marks]
O True	
○ False	
False	
Question 1L BFS on weighted tree	[1 marks]
O True	
O False	
True	
Question 1M DFS on weighted tree	[1 marks]
O True	
○ False	
True	
Question 1N BFS layers and path lengths	[1 marks]
O True	
○ False	
False	

Question 10	Question 10 Dijkstra relaxations	
O True		
O False		
False		
Question 1P	Recurrence	[1 marks]
O True		
O False		
False		
Question 1Q	Best-case running time for quicksort	[1 marks]
O True		
O False		
True		
Question 1R	Insertions in AVL	[1 marks]
O True		
O False		
False		
Question 1S	How many rotations to balance an unbalanced tree	[1 marks]
O True		
O False		
False		
Question 2A	Expected number of length-1 chains	[4 marks]
$\bigcap n/m$	$\bigcirc (1-1/m)^{m-1}$	
\bigcirc 1+n/		
O (1-1		
$n(1-1/m)^{n-1}$		

Question 2B Probability of no collision

[3 marks]

- $\bigcirc k/m$
- $\bigcirc 1-k/m$
- $\bigcirc (1-k/m)^m$

- $\bigcirc (k/m)^m$
- $\bigcap (1-k/m)^{m-1}$ $\bigcap (k/m)^{m-1}$

1-k/m

Question 2C Probability of < 2 probes

[4 marks]

- $\bigcirc k/m$
- $\bigcirc 1-k/m$
- $\bigcirc k^2/m^2$

- $\bigcirc 1 k^2/m^2$
- $\bigcirc (k^2-k)/(m^2-m)$
- $\bigcap 1 (k^2 k)/(m^2 m)$

1-k/m

Question 2D Expected number of insertions needing 1 probe

[4 marks]

- \bigcirc 3n/4
- $\bigcirc (3n+1)/4$
- $\bigcirc n/2$

- $\bigcirc (n+1)/2$
- \bigcirc n/4
- $\bigcirc (n+3)/4$

(3n+1)/4

Question 2E Probability of one probe with length-c chains

[3 marks]

- $\bigcirc m_c/m$
- $\bigcirc 1 m_c/m$
- $\bigcirc 1 m_c m_{c-1} / m^2$

- $\bigcap m_c m_{c-1}/m^2$
- $\bigcap m_0/m$
- $\bigcirc 1 m_0/m$

 $1-m_c/m$

Question 2F Probability of $m_2 = m_3 = \cdots = m_c = 0$ after *n* insertions

[4 marks]

- $\bigcirc \quad \frac{m!}{m^n(m-n)!}$
- $\bigcap \frac{m!}{m^c(m-n)!}$
- $\left(1-\frac{1}{m}\right)^n$

- $\left(1-\frac{1}{m}\right)^c$
- $\bigcap 1 \frac{n^2}{m}$ $\bigcap 1 \frac{nc}{m}$

 $\frac{m!}{m^n(m-n)!}$

Question 3A Is the graph a DAG?

[1 marks]

- O True
- O False

False

Question 3B Pre-order DFS traversal

[2 marks]

- \bigcirc s,a,b,c,d,e,f
- \bigcirc s,a,b,d,c,e,f
- \bigcirc s,b,e,a,c,f,d
- \bigcirc s,b,e,a,d,f,c
- \bigcirc c, f, e, b, d, a, s
- \bigcirc c,a,d,f,b,e,s

s,b,e,a,d,f,c

Question 3C Post-order DFS traversal

[2 marks]

- \bigcirc s,a,b,c,d,e,f
- \bigcirc s,a,b,d,c,e,f
- \bigcirc s,b,e,a,c,f,d
- \bigcirc s,b,e,a,d,f,c
- \bigcirc c, f, e, b, d, a, s
- \bigcirc c,a,d,f,b,e,s

c, f, e, b, d, a, s

Question 3D How to avoid dragons on edges?	[2 marks]
O Breadth-first search	
O Depth-first search	
O Bellman-Ford	
O Dijkstra	
Relax in topological order	
Dijkstra	
Question 3E How to avoid dragons on nodes and edges?	[4 marks]
\bigcirc Each existing edge e has weight n_e . At each node v , create a new self- (v,v) with weight n_v .	loop edge
\bigcirc For each edge <i>e</i> connecting node <i>u</i> to node <i>v</i> , let it have weight $n_e + n_u$.	
\bigcirc For each edge <i>e</i> connecting node <i>u</i> to node <i>v</i> , let it have weight $n_e + n_v$.	
O None of the above.	
For each edge e connecting node u to node v , let it have weight $n_e + n_v$.	

Question 3F How to avoid spells?

[4 marks]

	\bigcirc Perform a BFS traversal from s , and check if the path from s to t (induced by the parent pointers) contains at most one node in X .
	\bigcirc Perform a DFS traversal from s , and check if the path from s to t (induced by the parent pointers) contains at most one node in X .
	Oreate a new graph G' . For each town v , create two nodes v_0 and v_1 in G' . For each road (u, v) , create three edges (u_0, v_0) , (u_0, v_1) and (u_1, v_1) . Check (using BFS or DFS) whether t_1 is reachable from s_0 in G' .
	Oreate a new graph G' . For each town v , create two nodes v_0 and v_1 in G' . For each road (u, v) , if $u \in X$, create an edge (u_0, v_1) , and if $u \notin X$, create two edges (u_0, v_0) and (u_1, v_1) . Check (using BFS or DFS) whether t_1 is reachable from s_0 in G' .
	Oreate a new graph G' . For each town v , create two nodes v_0 and v_1 in G' . For each road (u, v) , if $u \in X$, create an edge (u_0, v_1) , and if $u \notin X$, create two edges (u_0, v_0) and (u_1, v_1) . Check (using BFS or DFS) whether either t_0 or t_1 is reachable from s_0 in G' .
	Oreate a new graph G' . For each town v , create two nodes v_0 and v_1 in G' . For each road (u, v) , if $v \in X$, create an edge (u_0, v_1) , and if $v \notin X$, create two edges (u_0, v_0) and (u_1, v_1) . Check (using BFS or DFS) whether t_1 is reachable from s_0 in G' .
	Oreate a new graph G' . For each town v , create two nodes v_0 and v_1 in G' . For each road (u, v) , if $v \in X$, create an edge (u_0, v_1) , and if $v \notin X$, create two edges (u_0, v_0) and (u_1, v_1) . Check (using BFS or DFS) whether either t_0 or t_1 is reachable from s_0 in G' .
	O None of the above.
(u,v)	te a new graph G' . For each town v , create two nodes v_0 and v_1 in G' . For each road v_0 , if $v \in X$, create an edge (u_0, v_1) , and if $v \notin X$, create two edges (u_0, v_0) and (u_1, v_1) . v (using BFS or DFS) whether either v 0 or v 1 is reachable from v 0 in v 1.

Question 3G How to minimize energy spent on spells?

[7 marks]

Solution Sketch: Create a new graph G'. For each town v, create nodes $v_0, v_1, \ldots, v_{Z_v}$ in G', and add edges $(v_0, v_1), (v_1, v_2), \ldots, (v_{Z_v-1}, v_{Z_v})$, each with weight 1, to form a path from v_0 to v_{Z_v} in G'. For any road from u to v, create an edge u_{Z_u} to v_0 in G' with weight 0.

The total number of nodes in G' is $\sum_{\nu}(Z_{\nu}+1)=Z+n=O(Z)$, since $Z \ge m \ge n-1$ where the first inequality is by the problem's assumption on Z and the second inequality is because the original graph is connected. The total number of edges is $\sum_{\nu}Z_{\nu}+m=O(Z)$, because $Z \ge m$ by assumption.

Now, we can run an SSSP algorithm from s, where all the edge weights are either 0 or 1. We can use Dijkstra and apply the standard analysis, but this would have running time $O(Z\log Z)$. We can get an O(Z) time algorithm by noticing that there are O(Z) possibilities for distances from s, since there are O(Z) many nodes and each edge has weight either 0 or 1. So, instead of using a general priority queue, we can keep O(Z) many queues for vertices at each distance, giving constant time EXTRACT-MIN and DECREASE-KEY implementations. (In fact, only at most two queues will be non-empty at any point in Dijkstra. Prove this!)

Grading scheme: 3 points for correctly creating an edge-weighted graph. People did this in mostly two ways. One option was as above. The other option was to have edge (u, v) have weight Z_v .

2 points for applying the standard version of Dijkstra with $O(Z \log Z)$ running time. 4 points for modifying Dijkstra to get O(Z) runtime.

A common approach was running BFS instead of Dijkstra. This doesn't work because edges have unequal weights. Some people got around this by replacing each edge (u, v) with a path of length Z_v , and then running BFS. But this can make the number of new nodes be $O(Z^2)$ (imagine a star where the hub has degree m and also energy cost m). BFS without correct analysis got 0 points.

Some people also claimed O(Z) runtime by relaxing edges in topological order. However, the graph was not given to be a DAG.

The most common (nonzero) score was 5: 3 points for correct edge weights and 2 points for mentioning Dijkstra and correct runtime analysis.

mid-1

Que	estion 4A Fill in A			[2 marks]
	<pre>○ 0 ○ 1 ○ -1 ○ begin</pre>	<pre> begin/2</pre>	<pre>>=</pre>	○ mid+1
1				
Que	estion 4B Fill in B			[2 marks]
>=	<pre>○ 0 ○ 1 ○ -1 ○ begin</pre>	<pre> begin/2</pre>	<pre>>=</pre>	○ mid+1
Que	estion 4C Fill in C			[2 marks]
mid	<pre>○ 0 ○ 1 ○ -1 ○ begin</pre>	<pre> begin/2</pre>	<pre>>=</pre>	○ mid+1
Que	estion 4D Fill in D			[2 marks]
	<pre> 0 1</pre>	<pre> begin/2</pre>	<pre>>=</pre>	○ mid+1

Question 5A Dijkstra's implementation of Dijkstra

[3 marks]

\bigcirc Dijkstra's implementation has better asymptotic running time for sparse graphs (small E)
\bigcirc Dijkstra's implementation has better asymptotic running time for dense graphs (large E)
O Dijkstra's implementation always has better asymptotic running time but has higher memory usage.
O The standard implementation always has better asymptotic running time than Dijkstra's version.
Dijkstra's implementation has better asymptotic running time for dense graphs (large E)

Question 5B Minimum-weight path with at least 20 hops

[4 marks]

Let G_3 be as in the 4th option above. Run Bellman-Ford on G_3 from s_0 . For each vertex v in G, let $\delta_1(v)$ be the minimum weight of a path from s_0 to v_{20} in G_3 and $P_{1,v}$ the corresponding path of 20 edges from s to v in G. Let G_2 be as in the 3rd option above. Run Bellman-Ford on G_2 from t. For each vertex v in G, let $\delta_2(v)$ be the minimum weight of a path from t to v in G_2 and let $F_{2,v}$ the corresponding path in G from v to t. Let w be the vertex that minimizes $\delta_1(w) + \delta_2(w)$; output the concatenation of $F_{1,w}$ and $F_{2,w}$.

Question 5C Weight transformation preserving shortest paths

[3 marks]

- \bigcirc In G', the weight of an edge e is $w'_e = w_e + 1$.
- \bigcirc In G', the weight of an edge e is $w'_e = w_e^2$.
- \bigcirc In G', the weight of an edge e = (u, v) is $w'_e = 2w_u + w_e$.
- \bigcap In G', the weight of an edge e = (u, v) is $w'_e = 2w_u 2w_v + w_e$.
- \bigcap In G', the weight of an edge e = (u, v) is $w'_e = 2w_u 3w_v + w_e$.
- \bigcap In G', the weight of an edge e = (u, v) is $w'_e = 2w_u 3w_v$.
- \bigcirc In G', the weight of an edge e = (u, v) is $w'_e = 2w_u w_e$.

In G', the weight of an edge e = (u, v) is $w'_e = 2w_u - 2w_v + w_e$.

Question 5D Weight transformation preserving MST

[3 marks]

- \bigcirc In G', the weight of an edge e is $w'_e = w_e + 1$.
- \bigcirc In G', the weight of an edge e is $w'_e = w_e^2$.
- \bigcirc In G', the weight of an edge $e = \{u, v\}$ is $w'_e = 2w_u + 2w_v + w_e$.
- \bigcirc In G', the weight of an edge $e = \{u, v\}$ is $w'_e = 2w_u^2 + 2w_v^2 + w_e$.
- \bigcirc In G', the weight of an edge $e = \{u, v\}$ is $w'_e = 2w_u + 2w_v$.
- \bigcap In G', the weight of an edge $e = \{u, v\}$ is $w'_e = 2w_u w_v w_e$.

In G', the weight of an edge e is $w'_e = w_e + 1$.

Question 5E Updating MST after weight decrease

[3 marks]

- (I) \bigcirc The proposed algorithm is correct.
- (II) \bigcirc The proposed algorithm runs in time O(V + E).
- (III) O Both (I) and (II) are correct.
- (IV) Neither (I) and (II) is correct.

Both (I) and (II) are correct.

Question 6A Base case for stacking problem

[2 marks]

- $\bigcap T[0,h_1,h_2,h_3]$ = True if $h_1 = h_2 = h_3 = 0$, and False otherwise.
- $T[0,h_1,h_2,h_3]$ = True if $h_1 = 0$ or $h_2 = 0$ or $h_3 = 0$, and False otherwise.
- $\bigcap T[1,h_1,h_2,h_3]$ = True if $h_1 = h_2 = h_3 = 0$, and False otherwise.
- $\bigcap T[1,h_1,h_2,h_3]$ = True if $h_1 = 0$ or $h_2 = 0$ or $h_3 = 0$, and False otherwise.
- O None of the above.

 $T[0, h_1, h_2, h_3]$ = True if $h_1 = h_2 = h_3 = 0$, and False otherwise.

Question 6B Recurrence for stacking problem

[4 marks]

- $T[i, h_1, h_2, h_3] = T[i-1, h_1 z_i, h_2 z_i, h_3 z_i]$
- $\bigcap_{z_i} T[i, h_1, h_2, h_3] = (h_1 \ge z_i \text{ OR } h_2 \ge z_i \text{ OR } h_3 \ge z_i) \text{ AND } T[i-1, h_1 z_i, h_2 z_i, h_3 z_i]$
- $\bigcirc T[i, h_1, h_2, h_3] = (h_1 \ge z_i \text{ OR } h_2 \ge z_i \text{ OR } h_3 \ge z_i) \text{ AND } T[i-1, h_1 z_i, h_2 z_i, h_3 z_i]$
- $\bigcirc T[i,h_1,h_2,h_3] = T[i-1,h_1-z_i,h_2,h_3] \text{ OR } T[i-1,h_1,h_2-z_i,h_3] \text{ OR } T[i-1,h_1,h_2,h_3-z_i]$
- $\bigcap_{i=1}^{n} T[i,h_1,h_2,h_3] = (h_1 \ge z_i \text{ AND } T[i-1,h_1-z_i,h_2,h_3]) \text{ OR } (h_2 \ge z_i \text{ AND } T[i-1,h_1,h_2-z_i,h_3]) \text{ OR } (h_3 \ge z_i \text{ AND } T[i-1,h_1,h_2,h_3-z_i])$
- $\bigcirc T[i,h_1,h_2,h_3] = (h_1 \geq z_i \text{ AND } T[i-1,h_1-z_i,h_2,h_3]) \text{ AND } (h_2 \geq z_i \text{ AND } T[i-1,h_1,h_2-z_i,h_3]) \text{ AND } (h_3 \geq z_i \text{ AND } T[i-1,h_1,h_2,h_3-z_i])$

 $\begin{array}{l} T[i,h_1,h_2,h_3] \,=\, (h_1 \,\geq\, z_i \; \text{AND} \; T[i-1,h_1-z_i,h_2,h_3]) \; \text{OR} \; (h_2 \,\geq\, z_i \; \text{AND} \; T[i-1,h_1,h_2-z_i,h_3]) \; \text{OR} \; (h_3 \,\geq\, z_i \; \text{AND} \; T[i-1,h_1,h_2,h_3-z_i]) \end{array}$

Question 6C Running time for stacking problem

[3 marks]

 $\bigcirc O(n^4)$

 $\bigcirc O(nZ^2)$

 $\bigcirc O(nZ^3)$

 $O(Z^4)$

 $\bigcirc O(n^2Z^2)$

O None of the above

 $O(nZ^2)$. This was a bit tricky. Note that for any fixed i, the algorithm evaluates $T[i, h_1, h_2, h_3]$ for $\leq Z^2$ values of (h_1, h_2, h_3) , not Z^3 , since $h_1 + h_2 + h_3$ equals $\sum_{j=1}^{i} z_j$ on any recursive call.

Question 6D Counting number of subsequence occurrences

[4 marks]

- Maintain A[i][j] to be the count of the occurrences of Y[1...i] as a subsequence in X[1...j]. Use base case $A[0][0] = A[0][1] = \cdots = A[0][n] = 0$, and apply recurrence A[i][j] = A[i-1][j-1] + 1.
- Maintain B[i][j] to be the count of the occurrences of Y[1...i] as a subsequence in X[1...j]. Use base case $B[0][0] = B[1][0] = \cdots = B[m][0] = 0$, and apply recurrence: B[i][j] = B[i][j-1] if $Y[i] \neq X[j]$ and B[i][j] = B[i][j-1] + B[i-1][j-1] if Y[i] = X[j].
- Maintain C[i][j] to be the count of the occurrences of Y[1...i] as a subsequence in X[1...j]. Use base case $C[0][0] = C[0][1] = \cdots = C[0][n] = 0$, and apply recurrence: C[i][j] = C[i-1][j] if $Y[i] \neq X[j]$ and C[i][j] = C[i-1][j] + C[i-1][j-1] if Y[i] = X[j].
- Maintain D[i][j] to be the count of the occurrences of Y[i...j] as a subsequence in X. Let n_i be number of occurrences of Y[i] in X. Use base case: for every i, $D[i][i] = n_i$. Apply recurrence: $D[i][j] = D[i+1][j-1] \cdot n_i \cdot n_j$.
- Maintain E[i][j] to be the count of the occurrences of Y as a subsequence in X[i...j]. Use base case E[0][0] = 0. Apply recurrence: $E[i][j] = E[i][\lfloor (i+j)/2 \rfloor] + E[\lfloor (i+j)/2 \rfloor + 1][j]$.
- O None of the above.

None of the above.