Pie & AI: Strasbourg -Autoencoders and Variational Autoencoders

Strasbourg 05.11.2020

Titus Nicolae Robert Maria

Richard Feynman: "What I cannot create, I do not understand"

Generative modeling: "What I understand, I can create"

source

Most popular methods today

source

Overview

1) Dimensionality reduction

2) Autoencoders (AE)

3) Variational Autoencoders (VAE)

4) Disentanglement

5) Beta-VAE

Dimensionality reduction

What is an image made of

Dimensionality reduction

What is an image made of

What the computer sees

Can we reduce the dimensionality of the features (in this case pixels)?

Dimensionality reduction

Yes, we can reduce the dimension of data

by selection

Just some of the existing features are kept

by extraction

New features are created

Reduce dimensionality in a semi-supervised manner with Autoencoders

Dimensionality reduction with Autoencoders

The Encoder of Autoencoder

Data reconstruction

Data reconstruction

Autoencoders

Autoencoders are a data compression algorithms where the compression and decompression functions are:

- 1) data-specific
- 2) lossy
- 3) learned automatically

Deep Fully Connected Autoencoder

Deep Fully Connected Autoencoder

$$\stackrel{\wedge}{X} = D(E(x))$$

How do we train it?

Deep Convolutional Autoencoder

Convolution layers

How do we train it?

Deep Convolutional Autoencoder

source

Encoder convolutional layers, pooling

Decoder convolutional layers, transposed convolutions or upsampling layers

What are they good for?

Not best choice for data compression

Data denoising (denoising autoencoders)

Dimensionality reduction for data visualization

Good starting point to understand Variational Autoencoders (VAEs)

Denoising Autoencoder

source

Overview

1) Dimensionality reduction

2) Autoencoders (AE)

3) Variational Autoencoders (VAE)

4) Disentanglement

5) Beta-VAE

Building Machines That Learn and Think Like People

Brenden M. Lake,¹ Tomer D. Ullman,^{2,4} Joshua B. Tenenbaum,^{2,4} and Samuel J. Gershman^{3,4}

¹Center for Data Science, New York University

²Department of Brain and Cognitive Sciences, MIT

³Department of Psychology and Center for Brain Science, Harvard University

⁴Center for Brains Minds and Machines

source

Observe the world

Challenges

Generalization

Humans generalize from a single example?

Training example ("water bear")

Challenges

Challenges

source

Can you perform aritmetic on Roman numerals?

$$XXXVII + XLII = ?$$

Can you perform aritmetic on Roman numerals?

Or you perform faster on Arabic numerals?

$$XXXVII + XLII = ?$$

Can you perform aritmetic on Roman numerals?

Or you perform faster on Arabic numerals?

$$37 + 42 = ?$$

"Many AI tasks can be solved by designing the right set of features to extract for that task" source

Can you perform aritmetic on Roman numerals?

Or you perform faster on Arabic numerals?

$$37 + 42 = ?$$

"Many AI tasks can be solved by designing the right set of features to extract for that task"

source

Example of different representations

Which of the two can be correctly classified by a linear classifier?

Can you perform aritmetic on Roman numerals?

Or you perform faster on Arabic numerals?

$$XXXVII + XLII = ?$$

$$37 + 42 = ?$$

"Many AI tasks can be solved by designing the right set of features to extract for that task"

source

Example of different representations

Which of the two can be correctly classified by a linear classifier?

Good representation capture posterior belief about explanatory causes, disentangle these underlying vactors of variations.

Disentanglement

Disentanglement

Unsupervised learning of a disentangled posterior distribution over the underlying generative factors of sensory data

Unsupervised learning of a disentangled posterior distribution over the underlying generative factors of sensory data

Why?

Unsupervised learning of a disentangled posterior distribution over the underlying generative factors of sensory data

Why?

Knowledge of one factor can generalize to novel configurations of other factors

Faster learning / learning from few examples

We may not have direct access to the generative factors

We may not have direct access to the generative factors

source

We may not have direct access to the generative factors

source

Little or no supervision for discovering the factors

How to compare models which perform disentanglement?

Learning an interpretable factorised representation of the independent data generative factors of the world without supervision

 $D = \{X, V, W\} = a \text{ set of images } x \text{ and } 2 \text{ generative factors}$

V = conditionally independent factors

W = conditionally dependent factors

 $D = \{X, V, W\} = a \text{ set of images } x \text{ and } 2 \text{ generative factors}$

V = conditionally independent factors

W = conditionally dependent factors

Assume images x are generated by p(x|v,w) = Sim(v,w)

Sim(**v**,**w**) = true world simulator

 $D = \{X, V, W\} = a \text{ set of images } x \text{ and } 2 \text{ generative factors}$

V = conditionally independent factors

W = conditionally dependent factors

Assume images x are generated by p(x|v,w) = Sim(v,w)

Sim(v,w) = true world simulator

Initial objective:
$$\max_{\theta} \mathbb{E}_{p_{\theta}(\mathbf{z})}[p_{\theta}(\mathbf{x}|\mathbf{z})]$$

Second objective: $q_{\phi}(\mathbf{z}|\mathbf{x})$ captures \mathbf{v} in a disentangled manner

What about w?

They remain entangled in a separate subset of \boldsymbol{z} that is not used in representing \boldsymbol{v}

What about w?

They remain entangled in a separate subset of \boldsymbol{z} that is not used in representing \boldsymbol{v}

Introduce a constraint over $q_{\phi}(\mathbf{z}|\mathbf{x})$

Match it to a prior $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, I)$

What about w?

They remain entangled in a separate subset of \boldsymbol{z} that is not used in representing \boldsymbol{v}

Introduce a constraint over $q_{\phi}(\mathbf{z}|\mathbf{x})$

Match it to a prior $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, I)$

Constraint optimization problem

$$\max_{\phi,\theta} \mathbb{E}_{x \sim \mathbf{D}} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] \right]$$

subject to $D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) < \epsilon$

$$\max_{\phi,\theta} \mathbb{E}_{x \sim \mathbf{D}} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] \right] \text{ subject to } D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) < \epsilon$$

$$\max_{\phi,\theta} \mathbb{E}_{x \sim \mathbf{D}} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] \right] \text{ subject to } D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) < \epsilon$$

Re-write as:

$$\mathcal{F}(\theta, \phi, \beta; \mathbf{x}, \mathbf{z}) \ge \mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

$$\max_{\phi,\theta} \mathbb{E}_{x \sim \mathbf{D}} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] \right] \text{ subject to } D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) < \epsilon$$

Re-write as:

$$\mathcal{F}(\theta, \phi, \beta; \mathbf{x}, \mathbf{z}) \ge \mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

 $\mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta)$ = Lagrangian under KKT conditions

 $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]$ = reconstruction loss

 $D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$ = regularization term

= regularization coefficient

$$\mathcal{F}(\theta,\phi,\beta;\mathbf{x},\mathbf{z}) \geq \mathcal{L}(\theta,\phi;\mathbf{x},\mathbf{z},\beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta \ D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$
 controls the capacity of the latent
$$\beta = 1 \text{ becomes VAE}$$
 puts independence pressure

$$\mathcal{F}(\theta, \phi, \beta; \mathbf{x}, \mathbf{z}) \ge \mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

β

controls the capacity of the latent

$$\beta$$
 = 1 becomes VAE

puts independence pressure

Disentanglement representation emerge when the right balance is found between information preservation and latent channel capacity restriction.

$$\mathcal{F}(\theta, \phi, \beta; \mathbf{x}, \mathbf{z}) \ge \mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

β <

controls the capacity of the latent

$$\beta$$
 = 1 becomes VAE

puts independence pressure

Disentanglement representation emerge when the right balance is found between information preservation and latent channel capacity restriction.

Related to the information bottleneck principle:

$$\max[I(Z;Y) - \beta I(X;Z)]$$

New evaluation metric

 β > 1 leads to poorer reconstructions due to the loss of high freq details cannot use log-likelihood of the data under the learnt model

New evaluation metric

 β > 1 leads to poorer reconstructions due to the loss of high freq details cannot use log-likelihood of the data under the learnt model

The new metric: the accuracy of a low capacity classifier

New evaluation metric

 β > 1 leads to poorer reconstructions due to the loss of high freq details cannot use log-likelihood of the data under the learnt model

The new metric: the accuracy of a low capacity classifier

Cons: needs access to the world simulator **Sim(v,w)**

Qualitative

Quantitative

Quantitative

Model	Disentanglement metric score
Ground truth	100%
Raw pixels	$45.75 \pm 0.8\%$
PCA	$84.9 \pm 0.4\%$
ICA	$42.03 \pm 10.6\%$
DC-IGN	$99.3 \pm 0.1\%$
InfoGAN	$73.5 \pm 0.9\%$
VAE untrained	$44.14 \pm 2.5\%$
VAE	$61.58 \pm 0.5\%$
β-VAE	$99.23 \pm 0.1\%$

On a synthetic dataset of 2D shapes (heart, oval, square)

With indep generative factors: positionX, positionY, scale and rotation