Instrucciones: Puede usar cualesquiera de las proposiciones vistas en las lecciones incluidos los ejercicios. Escriba cuidadosamente y muy claramente las proposiciones que usa.

(1) Sea

- A la matriz real siguiente: $\begin{vmatrix} 1 & 2 & -4 \\ 2 & 4 & 2 \\ -4 & 2 & 1 \end{vmatrix}$;
- \mathcal{E} la base canónica de \mathbb{R}^3
- $f: V \times V \to \mathbb{R}$ una forma bilineal tal que $[f]_{\mathcal{E}} = A$.
- (a) Encontrar una matriz ortogonal P tal que $P^tAP = P^{-1}AP$ sea diagonal.
- (b) Calcular A^3 , usando esta forma diagonal $D = P^t A P$.
- (c) Calcular la inercia de A y encontrar una base \mathcal{B} tal que $[f]_{\mathcal{B}}$ sea una matriz diagonal con todas las entradas en el conjunto $\{-1,0,1\}$.

Respuesta.

- (a) El polinomio característico de A es $P_A(\lambda) = (\lambda + 4)(\lambda 5)^2$. Los espacios propios son:
 - $V_{-4} = \langle (2, -1, 2) \rangle;$
 - $V_5 = \langle (-1,0,1), (1,2,0) \rangle$.

Aplicamos Gram-Schmidt a estas dos bases y obtenemos

- $V_{-4} = \langle (2/3, -1/3, 2/3) \rangle;$
- $V_5 = \lambda(\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), (\frac{1}{3\sqrt{2}}, \frac{2\sqrt{2}}{3}, \frac{1}{3\sqrt{2}})\rangle.$

Entonces podemos tomar

$$P = \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{2}{3} \\ 0 & \frac{2\sqrt{2}}{3} & \frac{-1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{2}{3} \end{bmatrix} \text{ y obtenemos que } P^T A P = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -4 \end{bmatrix}.$$

(b) Now we observe that $A = PDP^t$ where D is the diagonal matrix above and so

$$A^{3} = P \cdot D^{3} \cdot P^{T} = \begin{bmatrix} 41 & 42 & -84 \\ 42 & 104 & 42 \\ -84 & 42 & 41 \end{bmatrix}.$$

(c) La inercia de $\{n_-, n_0, n_+\} = \{1, 0, 2\}$. Se define

$$S = \begin{bmatrix} \frac{1}{\sqrt{5}} & 0 & 0\\ 0 & \frac{1}{\sqrt{5}} & 0\\ 0 & 0 & \frac{1}{2} \end{bmatrix} \text{ y observamos que } S^T P^T A P S = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix}.$$

Entonces podemos tomar \mathcal{B} , la base cuyos elementos son las columnas de PS.

(2) Sea $\mathbb{F}=\mathbb{Z}/7\mathbb{Z},$ sea $V=\mathbb{F}^3$ y defina

$$f: V \times V \to \mathbb{F}, (x,y) \mapsto y^T \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 4 & 3 \end{bmatrix} \cdot x.$$

- (a) Probar que f es bilineal, no-degenerada y reflexiva.
- (b) Sea $W = \langle (2,0,1) \rangle$ y calcular W^{\perp} .
- (c) Decimos que un subespacio de V es isotrópico con respecto a la forma f si, para todo $u_1, u_2 \in U$, se tiene que $f(u_1, u_2) = 0$. Probar que el polinomio $g(x) = x^2 + x + 3 \in \mathbb{F}[x]$ es irreducible y probar que, si U es un subespacio isotrópico de V con respecto a la f, entonces $\dim(U) \leq 1$.

Respuesta.

- (a) Sea A la matiz en la pregunta. Entonces $f(x,y) = y^T \cdot A \cdot X$ y la forma de la función implica directamente que f es bilineal. Además A es invertible, entonces f es nodegenerada. Al final, A es simétrica, entonces f es simétrica y entonces f es refléxiva.
- (b) W^{\perp} es igual al núcleo de la matriz

$$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 3 \end{bmatrix}.$$

Por lo tanto, $W^{\perp} = \langle (5, 1, 0), (2, 0, 1) \rangle$.

(c) Se puede verificar que $g(x) = x^2 + x + 3$ no tiene raices en \mathbb{F} , entonces g es irreducible. Supóngase que U es un subespacio isótropico de dimensón mayor que 1. En particular U intersecta el subespacio $X = \langle (0,1,0), (0,0,1) \rangle$ no-trivialmente. Sea $x \in X \cap U \setminus \{0\}$. Entonces $x = (0, x_1, x_2)$ y f(x, x) = 0. Obtenemos que $x_1^2 + x_1x_2 + 3x_2^2 = 0$. Si $x_2 \neq 0$, obtenemos que $(\frac{x_1}{x_2})^2 + \frac{x_1}{x_2} + 3 = 0$ y tenemos una contradicción del hecho que f es irreducible. Entonces $x_2 = 0$. Pero en este caso $x_1 = 0$ también y x = 0, una contradicción. Entonces $\dim(U) < 1$.

(3) Sea $A \in M_n(\mathbb{C})$ y sean $\lambda_1, \ldots, \lambda_n$ los valores propios de A, repetidos según su multiplicidad. Demostrar la desigualdad:

$$\operatorname{tr}(A^*A) \ge |\lambda_1|^2 + \dots + |\lambda_n|^2,$$

con igualdad si y solo si A es una matriz normal.

Respuesta. Sea $V = \mathbb{C}^n$ con el producto interno canónico y $T: V \to V$ el operador tal que $[T]_{\mathcal{E}} = A$. Por un teorema de lecciones, sabemos que hay una base ortonormal \mathcal{B} tal que $[T]_{\mathcal{B}}$ es triangular superior. Equivalentamente, hay una matriz unitaria P tal que P^*AP es triangular. Ahora $(P^*AP)^* = P^*A^*P$ una matriz inferior. Pero observe que $\operatorname{tr}(A^*A) = \operatorname{tr}(P^*A^*AP)$ y $P^*A^*AP = (P^*A^*P) \cdot (P^*AP)$, ahora calculación directa confirma que

(1)
$$\operatorname{tr}(P^*A^*AP) = \sum_{j=1}^n \sum_{i=1}^n |B_{ij}|^2$$

donde B_{ij} is the (i, j)-iésima entrada de P^*AP . Pero, ya que P^*AP es triangular, sabemos que la lista de las entradas $B_{11}, B_{22}, \ldots, B_{nn}$ es igual a lista de valores propios $\lambda_1, \ldots, \lambda_n$ (podemos reordenar si necesario). La desigualdad sigue.

Si A es normal, podemos escoger P tal que P^*AP es diagonal. Ahora cuando $i \neq j$ tenemos $B_{ij} = 0$ y (1) nos da la igualdad que buscamos.

Por fin, supóngase que tenemos igualdad. Entonces (1) es verdadero todavía y concluimos que cuando $i \neq j$ tenemos $B_{ij} = 0$. Entonces P^*AP es diagonal y, por un teorema de lecciones, A es normal.

(4) Sea

$$A = \begin{bmatrix} 2 & \frac{3}{2} \\ \frac{3}{2} & -2 \end{bmatrix},$$

una matriz real. Se define la curva cuadrática

$$C_f := \{(x, y) \in \mathbb{R}^2 \mid 2x^2 + 3xy - 2y^2 + 6x + 2y + 8 = 0\}.$$

- (a) Encontrar una matriz ortogonal P tal que P^TAP sea diagonal.
- (b) Encontrar un movimiento rigido T de \mathbb{R} (con respecto al producto interno canónico) tal que $T(C_f)$ tenga la forma

$$\{(x,y) \in \mathbb{R}^2 \mid ax^2 + by^2 + c = 0\}$$

para algunos números reales fijados $a, b, c \in \mathbb{R}$.

(c) Escribir T como una composición de una trasladación y una isometría y dibujar la curva C_f .

Respuesta.

(a) Los valores propios de A son $\pm \frac{5}{2}$. Podemos calcular vectores propios unitarios correspondientes y obtenemos que

$$P = \begin{bmatrix} \frac{3}{\sqrt{10}} & \frac{-1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{bmatrix}$$

(b) Escribe

$$f(x) = x^T A x + \begin{bmatrix} 6 & 2 \end{bmatrix} x + 8$$

y define $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $T_1^{-1}(x) = Px$. Entonces define

$$f_1(x) = (f \circ T_1^{-1}(x)) = \frac{5}{2}x^2 - \frac{5}{2}y^2 + 2\sqrt{10}x + 8.$$

Ahore define $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $T_2^{-1}(x) = x + v$ con $v = (\frac{-2\sqrt{10}}{5}, 0)$. Entonces define

$$f_2(x) = (f_1 \circ T_2^{-1}(x)) = \frac{5}{2}x^2 - \frac{5}{2}y^2 + 4$$

Ahora $(T_2 \circ T_1)(C_f) = \{x \in \mathbb{R}^2 \mid f_2(x) = 0\}$ como necesitamos. (c) Por construcción $T = T_2 \circ T_1$ y T_2 es una isometría, T_1 una trasladación. Un dibujo:

- (5) Sea
 - F un cuerpo de característica diferente de 2;
 - V es un espacio vectorial sobre \mathbb{F} de dimensión 2;
 - $f: V \times V \to \mathbb{F}$ es una forma alternante no-degenerada;
 - $J_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \in M(2, \mathbb{F}).$
 - (a) Demostrar que hay una base $\{v, w\}$ de V tal que

$$f(v,v) = f(w,w) = 0, \ f(v,w) = 1, \ f(w,v) = -1.$$

(b) Demostrar que el grupo de isometrías I_f es isomorfo al grupo de matrices

$$\mathrm{Sp}_2(\mathbb{F}) := \{ X \in \mathrm{GL}(2, \mathbb{F}) \mid X^T \cdot J_2 \cdot X = J_2 \}.$$

(en donde la operación de grupo de $\mathrm{Sp}_2(\mathbb{F})$ es el producto de matrices).

(c) Demostrar que

$$\mathrm{Sp}_2(\mathbb{F}) = \{ X \in \mathrm{GL}(2, \mathbb{F}) \mid \det(X) = 1 \}.$$

Respuesta.

- (a) Ya que f es no-degenerada, hay vectores v y w tal que $f(v',w)=a\neq 0$. Ahora sea $v=\frac{1}{a}v'$ y, por linealidad f(v,w)=1. Ya que una forma alternante es anti-simétrica obtenemos que f(w,v)=-1. Al final f(v,v)=v(w,w)=0 por la definición de 'alternante'.
- (b) Sea $\mathcal{B} = \{w, v\}$ donde v, w son de parte (a). Observe que $[f]_{\mathcal{B}} = J_2$. Sea $X = [T]_{\mathcal{B}}$ donde $T \in \mathcal{L}(V)$ y recuerde que $T \in \mathcal{L}(V)$ es una isometría de f si y solo si f(v, w) = f(Tv, Tw) para todo $v, w \in V$. Entonces T es una isometría si y solo si

$$x^T J_2 y = (Xx)^T J_2(Xy)$$

para todo $x,y\in V$. Obtenemos inmediatamente que T es una isometría si y solo si $J_2=X^TJ_2X$.

Ahora recuerde que la función $\phi_{\mathcal{B}}: \mathrm{GL}(V) \to \mathrm{GL}(2,\mathbb{F}), T \mapsto [T]_{\mathcal{B}}$ es un isomorfismo. Entonces concluimos que la pre-imagen de $\mathrm{Sp}_2(\mathbb{F})$ bajo $\phi_{\mathcal{B}}$ es el grupo de isometrías de f y, además, que este grupo es isomorfo a $\mathrm{Sp}_2(\mathbb{F})$ como necesitamos.

(c) Sea $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{F})$. Ahora

$$X^T J_2 X = \begin{bmatrix} 0 & bc - ad \\ ad - bc & 0 \end{bmatrix}$$

y observe que $X^T J_2 X = J_2$ si y solo si ad - bc = 1.

- (6) Sea
 - F un cuerpo de característica diferente de 2;
 - $M_n(\mathbb{F})$ el espacio vectorial de matrices $n \times n$ sobre \mathbb{F} ;
 - $S = \{X \in M_n(\mathbb{F}) \mid X \text{ es simétrica}\};$
 - $A = \{X \in M_n(\mathbb{F}) \mid X \text{ es anti-simétrica}\};$
 - (a) Probar que S y A son subespacios de $M_n(\mathbb{F})$ y que $M_n(\mathbb{F}) = S \oplus A$;
 - (b) Sea V un espacio vectorial finitodimensional sobre \mathbb{F} y $f: V \times V \to \mathbb{F}$ una forma bilineal. Probar que hay únicas formas $f_S, f_A: V \times V \to \mathbb{F}$ tal que f_S es simétrica, f_A es alternante y $f(x,y) = f_S(x,y) + f_A(x,y)$ para todo $x,y \in V$.

Respuesta.

- (a) Sea S_1, S_2 dos matrices simétricas, $c_1, c_2 \in bF$. Podemos ver facilmente que $c_1S_2 + c_2S_2$ es una matriz simétrica, entonces S es un subespacio de $M_n(\mathbb{F})$. Similarmente, A es un subespacio de $M_n(\mathbb{F})$. Además observe que $\dim(S) = \frac{n(n+1)}{2}$ y $\dim(A) = \frac{n(n-1)}{2}$. Entonces $\dim(S) + \dim(A) = n^2 = \dim(M_n(\mathbb{F})$ y, para probar que $M_n(\mathbb{F}) = S \oplus A$, es suficiente probar que $S \cap A = \{0\}$. Pero si una matriz X es simétrica y anti-simétrica, es obvio que X = 0. Hemos terminado.
- (b) Ya que $M_n(\mathbb{F}) = S \oplus A$, toda matriz X es igual a $X_S + X_A$ done X_S es simétrica y X_A as anti-simétrica. Además X_S y X_A son definido univocamente. Ahora fije una base \mathcal{B} de V y sea $X = [f]_{\mathcal{B}}$. Definimos f_S una forma tal que $[f_S]_{\mathcal{B}} = X_S$ y $[f_A] = X_A$. Es claro que f_S es simétrica, f_A es alternante, y $f(x,y) = f_S(x,Y) + f_A(x,y)$ para todo $x,y \in V$.