Th. Если ряд $\sum_{n=1}^{\infty} u_n(x)$ $(u_n(x) \in C_{[a,b]})$ мажорируем в D=[a,b], то его сумма S(x) непрерывна на [a,b]

```
S(x) непрерывна на x \in [a,b] \iff \Delta S \underset{\Delta x \to 0}{\longrightarrow} 0
\Delta S(x) = S(x + \Delta x) - S(x), \ S(x) = S_n(x) + r_n(x)
\Delta S_n(x) = S_n(x + \Delta x) - S_n(x)
\Delta S = S(x + \Delta x) - S(x) = S_n(x + \Delta x) + r_n(x + \Delta x) - S_n(x) - r_n(x)
\Delta S(x) = \Delta S_n(x) + r_n(x + \Delta x) - r_n(x)
|\Delta S(x)| \le |\Delta S_n(x)| + |r_n(x + \Delta x)| + |r_n(x)|
Ряд \sum_{n=1}^{\infty} u_n(x) мажорируем \iff \exists сходящийся \sum_{n=1}^{\infty} \alpha_n \mid |u_n(x)| \leq |\alpha_n|
Тогда \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \mid |r_n(x)| < \frac{\varepsilon}{3}
и \forall \varepsilon > 0 \exists N = N(\varepsilon) \mid |r_n(x + \Delta x)| < \frac{\varepsilon}{3} (так как N не зависит от x; x + \Delta x \in [a, b]) \Delta S_n = S_n(x + \Delta x) - S(x) = u_1(x + \Delta x) - u_1(x) + \dots + u_n(x + \Delta x) - u_n(x) - конечная сумма
Сама \Delta S_n(x) непрерывна, тогда \forall \varepsilon > 0 (при фиксированном N) \exists \delta > 0 \mid |\Delta S_n(x)| < \frac{\varepsilon}{2} при
Итак: \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \ \text{и} \ \delta > 0 \ | \ \forall x \in D \ |\Delta S_n(x)| < \frac{\varepsilon}{3}
                                                                                  +|r_n(x+\Delta x)|<\frac{\varepsilon}{3}
                                                                                  +|r_n(x)|<\frac{\varepsilon}{2}
                                                                                   = |\Delta S(x)| < \varepsilon
To есть S(x) \in C_{[a,b]}
```

Nota. Не все равномерно сходящиеся мажорируются, но у всех S(x) непрерывна Это позволяет определить $\int_{x_0}^y S(x) dx$, а если $S(x) \in C'_{[a,b]}$, то и $\frac{dS(x)}{dx}$

Th. Если ряд мажорируется на [a,b] и $u_n(x)$ непрерывна на [a,b], то определен $\int_{x_0}^y S(x) dx$ и $\int_{x_0}^x S(x) dx = \sum_{n=1}^\infty \int_{x_0}^x u_n(x) dx$

Nota. Почленно интегрируются не просто равномерно сходящиеся, а мажорируемые, иначе остаток необязательно стремится к 0

$${f Th.} \ \sum_{n=1}^\infty u_n(x)$$
 мажорируем на $[a,b]$ и $u_n(x) \in C'_{[a,b]}$ Тогда $S'(x) = \sum_{n=1}^\infty u'_n(x)$

Пусть
$$g(x) = \sum_{n=1}^{\infty} u'_n(x)$$
. Докажем, что $g(x) = S'(x)$

$$\int_{x_0}^{x} g(x) dx = \int_{x_0}^{x} \left(\sum_{n=1}^{\infty} u'_n(x) \right) dx = \sum_{n=1}^{\infty} \left(\int_{x_0}^{x} u'_n(x) dx \right) = u_1(x) \Big|_{x_0}^{x} + u_2(x) \Big|_{x_0}^{x} + \dots$$

$$= (u_1(x) - u_1(x_0)) + (u_2(x) - u_2(x_0)) + \dots = S(x) - S(x_0) - \text{разность сходящихся рядов}$$

$$\int_{x_0}^{x} g(x) dx = S(x) - S(x_0) \Longrightarrow \left(\int_{x_0}^{x} g(x) dx \right)' = g(x) = S'(x)$$

2. Степенные ряды

Def. $\sum_{n=0}^{\infty} c_n (x-x_0)^n$, $c_n \in \mathbb{R}$, $x_0 \in \mathbb{R}$ - степенной ряд с центром x_0 (в точке x_0 , по степеням $(x-x_0)$)

Nota. В частности $\sum_{n=1}^{\infty} c_n x^n$ - степенной с центром в $x_0=0$

$$\sum_{n=0}^{\infty} c_n (x-x_0)^n$$
 легко сводится заменой $x-x_0=t$ к $\sum_{n=0}^{\infty} c_n t^n$

Тһ. Абеля.

- 1) $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_1 . Тогда ряд сходится для любого x, который $|x| < |x_1|$
- 2) $\sum_{n=0}^{\infty} c_n x^n$ расходится в точке x_2 . Тогда ряд расходится $\forall x \ |x| > |x_2|$

1) В точке
$$x_1 \sum_{n=0}^{\infty} c_n x_1^n = c_0 + c_1 x_1 + c_2 x_1^2 + \dots$$
 - числовой ряд, сходящийся

B TOURE
$$x$$
 $(|x| < |x_1|)$
$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots = c_0 + c_1 x_1 \frac{x}{x_1} + c_1 x_1^2 \frac{x^2}{x_1^2} + \dots$$

Для этого ряда докажем абсолютную сходимость

$$\sum_{n=0}^{\infty} |c_n x^n| = |c_0| + |c_1 x_1| \left| \frac{x}{x_1} \right| + |c_1 x_1^2| \left| \frac{x^2}{x_1^2} \right| + \dots$$

При этом ряд $\sum_{n=0}^{\infty} c_n x_1^n$ сходится $\Longrightarrow \exists M > 0 : |c_n x_1^n| \le M$

$$M\left|\frac{x^k}{x_1^k}\right| < 1$$
, так как $|x| < |x_1|$

Тогда
$$|c_0| + |c_1x_1| \left| \frac{x}{x_1} \right| + |c_1x_1^2| \left| \frac{x^2}{x_1^2} \right| + \dots + |c_kx_1^k| \left| \frac{x^k}{x_1^k} \right| < M \left(1 + \left| \frac{x}{x_1} \right| + \left| \frac{x}{x_1} \right|^2 + \dots + \left| \frac{x}{x_1} \right|^k \right)$$
 - геомет-

рическая прогрессия с |q| < 1

Таким образом
$$\sum_{n=0}^{\infty}|c_nx^n|\sim M\sum_{n=0}^{\infty}\left|\frac{x}{x_1}\right|^n$$
, который сходится

Ряд
$$\sum_{n=0}^{\infty} c_n x^n$$
 абсолютно сходится (и равномерно?)

б) От противного, используя пункт а)

Nota. Заметим, что должно существовать такое R, для которого для всех x меньше R ряд сходится Зафиксируем между x_0 и R число $x_0 < r < R$ - тогда $\sum c_n r^n$ - мажорирует $c_n x^n$, то есть ряд сходится равномерно

 $\mathbf{Def.}\ R \in \mathbb{R}^+ \ |\ \forall |x| < R$ ряд сходится, а $\forall |x| > R$ ряд расходится, тогда R называют радиусом сходимости

Для сдвинутого ряда $\sum_{n=0}^{\infty} c_n (x-x_0)^n \quad \forall x: \; |x-x_0| < R$ сходится; $\forall x: |x - x_0| > R$ - расходится Сходимость ряда в $x_0 \pm R$ нужно проверять специально

Nota. Чаще всего исследование на сходимость проводится по признакам Даламбера, Коши

$$Ex. \sum_{n=1}^{\infty} \frac{x^n}{n} (-1)^{n+1}$$

$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \frac{1}{n+1} |x|^{n+1} \frac{n}{|x|^n} = \lim_{n\to\infty} |x| = |x| < 1$$
 Предварительно $D = (-1;1)$.

Далее, рассмотрим
$$x = \pm 1$$
:
$$(x = 1) : \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} - \text{сходится}$$

$$(x = -1) : \sum_{n=1}^{\infty} \frac{-1}{n} - \text{расходится}$$
 Итак, $D = (-1; 1]$

3. Ряд Тейлора

$$Mem.$$
 Формула Тейлора: $f(x) \in C_{U_{\delta}(x_0)}^{n+1}$, тогда $f(x) \stackrel{x \in U_{\delta}(x_0)}{==} f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ Чтобы $f(x)$ в пределе равнялось $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$, нужно, чтобы $r_n(x) \to 0$