# COEN 122 Computer Architecture

## QUIZ 2 ON MONDAY! DO HW3 but no turn in

- Diagram will be given

## **From Last Time**

- Single Cycle datapath
- Execution Time

## **Excercise: Cycle time**

```
Data analysis
Assume

ALU delay=2ns
Adder (PC+4) delay = x ns
Adder (branch address) delay = y ns

R-type: x

2 + 2 + 2 + 2 = 8 --> execution time max[x,8]
IF Reg ALU REG

beq: max(x,2) + y

2 + 2 + 2 = 6
```

```
IF REG ALU
    so max[6, max[x,2] + y]
    because we have more parallel things going on

lw

sw

x=1, y=9
    so R = 9 ns cycle time
    beq = 11 ns cycle time
```



## **Review Quiz 2**

- Don't memorize the table
  - Pay attention to the control names/orders
  - Mux may be reversed
- 2) label -> wai 5



- 3) Assume we have a single stuck-at-1 fault for ALUsrc
  - + ALUsrc = 1 always
    - what works still? consider only 5 instructions
      - look at R, lw, sw, beq, jump
      - I-type instructions will work
        - lw works
        - sw works
        - j works
  - + Zero=1
    - R-type will work
    - lw will work
    - sw will work
    - jump will work
    - BRANCH WILL NOT



## Pipeline - will be on the quiz

## **Pipeline - Outline**

- Basic idea
- Pipelined datapath
- Pipelined control
- Data hazards
- Three methods to handle data hazards use compiler

#### Instruction fetch

## Basic idea of pipelining

```
roughly 5 steps for single cycle
IF, ID, EX, MEM, WB
For the current step, hardware for other steps are idle
Use the idle hardware to work on other instructions
```

## MIPS Pipe: 5 stages

```
IF: instruction fetch
ID: instruction decode and register fetch
EX: address calculation/excecute
MEM: memory access
WB: write back
USE BUFFERS between modules
```

## **Pipelining: Control**

```
control passed through buffers between modulesSize of buffer: 32 for instruction, 64 for PC+4so IF/ID buffer size 64
```

```
- ID/EX buffer size 32 * 4 + 5 (5 from read register)
- EX/MEM buffer size 32 * 3 + 1 + 5
- MEM/WB buffer size 32 * 2 + 5
```

## **Pipeline Control**

```
- We have 5 stages, What needs to be controlled with each stated in the control of the control o
```

#### **END**