Mathematical Methods in Physics

Examination June 2017

Question 1

- (a) (Unseen)
 - (i) It is a vector space.

[2 marks]

- (ii) It is not a vector space. For instance, scalar multiplication is not a close operation.

 Also, there are no inverse elements. [2 marks]
- (b) (Unseen)
 - (i) They are linearly dependent. The third is equal to the first minus twice the second. [2 marks]
 - (ii) They are linearly independent. In fact the expression $c_1(1+x) + c_2(x+x^2) + c_3(1+x^2) = 0$ is only satisfied for $c_1 = c_2 = c_3 = 0$. [2 marks]
- (c) (Unseen)
 - (i) $U_1^{-1} = U_1^{\dagger}, \qquad U_2^{-1} = U_2^{\dagger}, \text{ then}$

$$(U_1U_2)^{-1} = U_2^{-1}U_1^{-1} = U_2^{\dagger}U_1^{\dagger} = (U_1U_2)^{\dagger}.$$

[2 marks]

(ii)
$$(i(A - A^{\dagger}))^{\dagger} = -i(A^{\dagger} - A) = i(A - A^{\dagger}).$$

[2 marks]

- (d) (Unseen)
 - (i) For instance

$$\underline{r}(t) = x\,\hat{\underline{i}} + (3-x)\,\hat{\underline{j}} + (18-7x)\,\hat{\underline{k}}.$$

[2 marks]

(ii)
$$\underline{r}(t) = (\cos t + 1)\,\hat{\underline{i}} + (\sin t - 2)\,\hat{\underline{j}} + \hat{\underline{k}}.$$

[2 marks]

(e) (Unseen)

$$\frac{ds}{du} = \pm \sqrt{\frac{d\underline{r}}{du} \cdot \frac{d\underline{r}}{du}} = \pm \sqrt{2},$$

Then

$$\underline{\hat{t}} = \frac{d\underline{r}}{ds} = \frac{d\underline{r}}{du} \frac{du}{ds} = \frac{1}{\sqrt{2}} (-\sin u \, \underline{\hat{i}} + \cos u \, \underline{\hat{j}} + \underline{\hat{k}}),$$

[2 marks]

and

$$\frac{d\underline{\hat{t}}}{ds} = \frac{d\underline{\hat{t}}}{du}\frac{du}{ds} = -\frac{1}{2}(\cos u\,\hat{\underline{i}} + \sin u\,\hat{\underline{j}}).$$

It follows that $\rho = 2$.

[2 marks]

(f) (Unseen)

$$\frac{\partial \underline{r}}{\partial x} = \hat{\underline{i}} + 2x\,\hat{\underline{j}}, \qquad \frac{\partial \underline{r}}{\partial z} = \hat{\underline{k}}.$$

Then

$$d\underline{S} = \left(\frac{\partial \underline{r}}{\partial x} \times \frac{\partial \underline{r}}{\partial z}\right) dx dz = \left(2x \,\hat{\underline{i}} - \hat{\underline{j}}\right) dx dz.$$

[2 marks]

Hence

$$I = \int_{0}^{3} dz \int_{0}^{2} dx (2x^{3} - 2) = 12.$$

[2 marks]

(g) (Unseen)

$$c_r = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{x - irx} dx = \frac{1}{2\pi} \left[\frac{e^{x(1 - ir)}}{1 - ir} \right]_{-\pi}^{\pi} = \frac{(-1)^r}{2\pi} \left(\frac{e^{\pi} - e^{-\pi}}{1 - ir} \right) = \frac{\sinh \pi}{\pi} (-1)^r \frac{1 + ir}{1 + r^2}.$$

Then

$$e^x = \frac{\sinh \pi}{\pi} \sum_{-\infty}^{\infty} \frac{1 + ir}{1 + r^2} (-1)^r e^{irx} - \pi \le x \le \pi.$$

[4 marks]

(h) (Unseen)

$$\begin{split} \bar{f}(s) &= \int\limits_{0}^{\infty} \cos t \, H(t-\pi) \, e^{-ts} dt = \int\limits_{\pi}^{\infty} \cos t \, e^{-ts} dt \\ &= -\frac{1}{2} \left[\frac{e^{-t(s-i)}}{s-i} + \frac{e^{-t(s+i)}}{s+i} \right]_{\pi}^{\infty} = -e^{-\pi s} \frac{s}{s^2 + 1}. \end{split}$$

[4 marks]

Mathematical Methods in Physics

Examination June 2017

Question 2

(a) (Unseen)

The eigenvalues are: $\lambda_1 = 1$, $\lambda_2 = -1$ and $\lambda_3 = 3$. [4 marks]

The forms of the corresponding eigenvectors are: $v_1 = (0,0,c)^T$, $v_2 = (a,-a,0)^T$ and $v_3 = (b,b,0)^T$, with a,b,c constants. The eigenvectors are clearly orthogonal. A possible choice for an orthonormal set of eigenvectors is: $v_1 = (0,0,1)^T$, $v_2 = (1/\sqrt{2},-1/\sqrt{2},0)^T$ and $v_3 = (1/\sqrt{2},1/\sqrt{2},0)^T$. [4 marks]

(b) (Unseen)

For the integral on the left hand side, since the rectangle ABCD lies in the plane z=0, we only need the z-component of the curl

$$(\nabla \times \underline{F})_z = \left(\frac{\partial}{\partial x}((x+y)e^{xy}) - \frac{\partial}{\partial y}(ye^{xy})\right)\underline{\hat{k}} = y^2 e^{xy}\underline{\hat{k}}.$$
 [2 marks]

Then

$$d\underline{S} = \hat{\underline{k}} \, dx dy,$$

[1 mark]

hence the surface integral is:

$$\int_{S} (\nabla \times \underline{F}) \cdot dS = \int_{1}^{3} dy \int_{0}^{1} dx y^{2} e^{xy} = \int_{1}^{3} dy (e^{y} - 1) y$$

$$= y e^{y} \Big|_{1}^{3} - e^{y} \Big|_{1}^{3} - \frac{y^{2}}{2} \Big|_{1}^{3} = 2 e^{3} - 4.$$

[3 marks]

For the integral on the right hand side there are four different $d\underline{r}$. Since $d\underline{S}$ has been chosen along the positive k-axis, the integration is anticlockwise along the perimeter of the rectangle ABCD:

$$\int_{\mathcal{C}} \underline{F} \cdot d\underline{r} = \int_{0}^{1} dx \underline{F} \cdot \hat{\underline{i}} \mid_{y=1} - \int_{0}^{1} dx \underline{F} \cdot \hat{\underline{i}} \mid_{y=3} + \int_{1}^{3} dy \underline{F} \cdot \hat{\underline{j}} \mid_{x=1} - \int_{1}^{3} dy \underline{F} \cdot \hat{\underline{j}} \mid_{x=0},$$

[3 marks]

which is

$$= \int_0^1 e^x dx - \int_0^1 3e^{3x} dx + \int_1^3 (y+1)e^y dy - \int_1^3 y dy$$

= $e - 1 + (1 - e^3) + (4e^3 - 2e - e^3 + e) + (\frac{1}{2} - \frac{9}{2}) = 2e^3 - 4.$

[3 marks]

Mathematical Methods in Physics

Examination June 2017

Question 3

(a) (Unseen)

(i)
$$\operatorname{div} \underline{v} = 2x + 4y, \qquad \operatorname{grad}(\operatorname{div} \underline{v}) = 2\hat{\underline{i}} + 4\hat{\underline{j}}, \qquad \operatorname{grad}(\operatorname{div} \underline{v}) \cdot \underline{u} = 2x^2 + 4(y - z).$$
 [3 marks]

(ii)
$$\nabla \cdot (f\underline{r}) = \nabla f \cdot \underline{r} + f \nabla \cdot \underline{r} = f' \frac{\underline{r} \cdot \underline{r}}{r} + 3f = f'r + 3f.$$
 [3 marks]
$$\operatorname{Set} \ f'(r)r + 3f(r) = 0 \text{ then}$$

$$f'(r) = -\frac{3f(r)}{r} \longrightarrow \frac{df}{f} = -3\frac{dr}{r} \longrightarrow \ln f = \ln r^{-3} + c' \longrightarrow f = c/r^{3}.$$

- (b) (Unseen)
 - (i) The function f(t) is:

$$f(t) = \begin{cases} 1 + t/b & -b \le t \le 0\\ 1 - t/b & 0 \le t \le b \end{cases}$$

[2 marks]

[4 marks]

Its Fourier transform is:

$$\mathcal{F}[f(t)](\omega) = \frac{1}{\sqrt{2\pi}} \int_{-b}^{0} \left(1 + \frac{t}{b}\right) e^{-i\omega t} dt + \frac{1}{\sqrt{2\pi}} \int_{0}^{b} \left(1 - \frac{t}{b}\right) e^{-i\omega t} dt$$

$$= \sqrt{\frac{2}{\pi}} \int_{0}^{b} \left(1 - \frac{t}{b}\right) \cos \omega t \, dt$$

$$= \sqrt{\frac{2}{\pi}} \left(\left[\frac{\sin \omega t}{\omega}\right]_{0}^{b} - \left[\frac{t \sin \omega t}{\omega b}\right]_{0}^{b} + \frac{1}{b} \left[\frac{-\cos \omega t}{\omega^{2}}\right]_{0}^{b} \right)$$

$$= \sqrt{\frac{2}{\pi}} \frac{(1 - \cos \omega b)}{b \omega^{2}}.$$

[4 marks]

(ii) This function, g(t), consists of two segments of the same shape as f(t) in (i), but with each one shifted and scaled. The first segment has width one and it is centered at t=1/2. Hence for this segment b=1/2 and the argument t becomes (t-1/2). The second segment has width two and it is centered at t=2. Hence it has b=1 and the argument t becomes (t-2). Hence, the Fourier transform of this function is

$$\mathcal{F}[g(t)](\omega) = \sqrt{\frac{2}{\pi}} \frac{1}{\omega^2} \left(e^{-iw/2} 2(1 - \cos \omega/2) + e^{-i2w} (1 - \cos \omega) \right).$$

[4 marks]

Solution to Level_2 Paper_3 Section_B Q4 (2016/17): page 1 of 2

	hthorluc lin. homo. ODE with cont coefs
$ \frac{a}{\sqrt{1 + 2y}} + 2\frac{y}{x} = \frac{4}{x} \qquad (1) $	(c) $a_n \frac{d^ny}{dx^n} + a_{n-1} \frac{d^{n-1}y}{dx^{n-1}} + \dots + a_0 y = 0$ a:
First solve the homogeneous expection by = 2y => 9 hom = 5/2 Image!	One searchy be the several solon by substituting
$=>$ $9_{hom} = 9/x^2$ $0x = 1/(x^2 + 1)$	y(2) = 5" C; e 2; [1moih]
To solve the inhomogeneous ele n use the varying coust method:	where each hi is a root of the ornxiliers ex-n:
$C \sim C(x) = y' = C' = \frac{2C}{x^2} = \frac{2C}{x^3} = \frac{2C}{x^$	
g c' - 24/+ 24 - 4 x; x; eq-n (1)	5 aj x = 0. [clearly there are n roots] =1 morn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	When 1 root e.g. 21 has the k. fold degeneraty
3	the root, are 25 25 2Kaj 2Kaz 2n
=> yinh = 2+ coust (2 mark)	
[if the answer is correct, will accept any method]	Krepertes
Substitute book into (1)	Then the correct gen. sol-n in obtained by:
$\Rightarrow \frac{-2\zeta}{x_3} + \frac{4}{x} + \frac{2\zeta}{x_3} = \frac{4}{x}$	3
) /x + x + x = x	B Syan (x) = (C1+(2x++cNxxx-1) e 1xx + C1 e 2xx1x +
	λ _n χ.
(b) y"-6y'+5y=0 use y=Aext	[still be-independent ++ Cne 2nx.
3 -> 22 () 16	Esmin
$\Rightarrow \lambda^2 - 6\lambda + 5 = 0 \Rightarrow \lambda = 1, 5$	
Shows = Ae St + Bet roots	
1	
Spart inhomo = $\alpha x + b x^2 + d$ RHS = $4+x+10x^2$	
phogin elen: 2b - 6a - 12bx + 5ax + Sbx2 + 5d = RHS	
\$ 801-n: Q=5; b=2; d=6	
S	
3 yanua = Aest + Bet + 5x +2x2 + 6	^
1 Inho [2 malb]	

Solution to Level_2 Paper_3 Section_B Q4 (2016/17): page 2 of 2

$\sim \Lambda$	a) As the Liegendre linear ey - n it takes the form:	
	17-112 d24	-
	dx2	_
	The substitution is $x-1=e^{\frac{t}{2}}$ $= \frac{1}{dx} = \frac{1}{x-1} \frac{dy}{dt} = \frac{1}{dt} \frac{dy}{dt^2} = \frac{1}{dt} \frac{dy}{(x-1)^2} = \frac{1}{2} \frac{1}{2} \frac{dy}{dt}$	
<	$dx = x-1 dt$ $dx^2 = \left(\frac{dy}{dt^2} - \frac{dy}{dt}\right) \frac{1}{(x-1)^2} \left[\frac{1}{1} \ln y \right]$	
3	=> the eq-n becomes: (x=1)2	
3	=) the eq.n becomes: $(x-1)^2$ $(y-y)-2y=0$ [2 mashs]	
2	- o was to entry	
	b) Use: y=e^ to solve it	
$\overline{}$	=> Olleriliary ey ~ 2 - 2 = > 282 - 3 = 25-1 - 3	
	$y_1 = e^{2t} = e^{2\log(x-1)} = (x-1)^2$	7
	$y_{-} = p^{-1} = 1$	
	$y_1 = e^{2t} = e^{2\log(x-1)} = (x-1)^2$ $y_2 = e^{-1} = 1$ 2 particular sol. 5	
SOKWAK	c) Wronshium W= det (3, 5,) [1mete]	
11/		
1	W= 14,4'-44' = 1-31 = 3 -10	7
	$W = y_1 y_2' - y_2 y_1' = -3 = 3 \neq 0$ hence y_1 and y_2 (2 minutes)	1
	$W = y_1y_2' - y_2y_1' = -3 = 3 \neq 0$ hence y_1 and y_2 $y(x) = C_1(x_{-1})^2 + C_1$ $y(x) = C_1(x_{-1})^2 + C_2$ $y(x) = C_1(x_{-1})^2 + C_2$	<u>]</u>
	$W = y_1 y_2 - y_2 y_1 = -3 = 3 \neq 0$ hence y_1 and y_2 (2 minutes)	<u>]</u>
	1, 12 / constants, EZ morks	<u>.</u>
	d) x = 0 is a regular point of the exerction.	<u>.</u>
	d) $x = 0$ is a regular point of the exerction. Hence search to the pender-series in the form	<u>]</u>
Vensken)	d) $x = 0$ is a regular point of the exerction. Hence search to the pender-series in the form]
	We search to the power-series in the from You = 2 anxh]
LUNSELY)	d) $x = 0$ is dregular point of the execution. Hence search too the power-series in the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$ compute $y'(x)$ only $y''(x)$]
LUNSELY)	1) $x = 0$ is a regular point of the exemption. Hence search too the power-series in the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$ compute $y'(x)$ and $y''(x)$ => substitute to the ex-n]
LUNSELY)	d) $x = 0$ is a regular point of the exemption. Hence search too the power-series in the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$ compute $y'(x)$ and $y'(x)$ $y'(x) = \sum_{n=0}^{\infty} a_n x^n$ $y'(x) = \sum_{n=0}^{\infty} a_n x^n$ Hence obtain a recursion relation $y''(x)$]
	d) $x = 0$ is a regular point of the exemption. Hence search too the power-series in the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$ compute $y'(x)$ and $y'(x)$ $y'(x) = \sum_{n=0}^{\infty} a_n x^n$ $y'(x) = \sum_{n=0}^{\infty} a_n x^n$ Hence obtain a recursion relation $y''(x)$]
LUNSELY)	d) $x = 0$ is a regular point of the exerction. Hence search to the points - series in the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$ compute $y'(x)$ only $y'(x)$ => substitute to the eg-n. Hence obtain a recursion relation for $a_n y'(x)$ It is can then be solved to determine 2 posticular and $y'(x)$]
LUNSELY)	d) $x = 0$ is a regular point of the exemption. Hence search too the power-series in the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$ compute $y'(x)$ and $y'(x)$ $y'(x) = \sum_{n=0}^{\infty} a_n x^n$ $y'(x) = \sum_{n=0}^{\infty} a_n x^n$ Hence obtain a recursion relation $y''(x)$]

```
a) & x+w, x=0 => general solin: I = A coswot + B sin Wot
To remain in equilibrium at rest \{\vec{x}(0) = 0\}
                                                                               [1moch
                                                                        => X(t) = Ø
                                                                              [2merks]
      The inhomogeneous ODE with the force:
                                                      \ddot{x} + \omega_0^2 x = f_0 \sin(at)
      Laplace transform: L[x](=)= fore-st x(t) dt
   Laplace tr. of \hat{x}
L[\hat{x}]_{(3)} = g^2 L[x]_{(3)} - gx_{(0)} - \dot{x}_{(0)}
    -L[eq.n] = (3^2 + W_0^2) L[x](s) = f_0 L[sin(at)](s)
      \Rightarrow L[x](8) = f_0 as
                                                                            [2masks
     when w_{s}^{2} \neq a^{2} = > \frac{1}{5} \frac{a}{a^{2}} \left( \frac{8}{3^{2} + a^{2}} - \frac{8}{3^{2} + w_{s}^{2}} \right) [2] marks
     Use [hint] to do inverse
     Haplace transform: DC(t) = f_0 a \left( \frac{3 \text{ in at}}{a} + \frac{3 \text{ in } \omega_0 t}{w_0} \right)

harmonic

motion E

W_0^2 - a^2 \left( \frac{3 \text{ in at}}{a} + \frac{3 \text{ in } \omega_0 t}{w_0} \right)
                                                                           [2 mosks
 c) for a = ws go back to (1): L[x](8) = fo a 8
       Use the 2nd hint to do the inverse Laplace transform.
         x(t) = \frac{f_0}{70^2} \left( \text{sinat} - \text{at cosat} \right)
                                                                             [ 2 marks]
                                            This term grows linearly
                       This trajectory is the resonance motion
                                      of the pendulum disturbed by
                                      the force w frequency Q2 = Wo2 _
   End.
                                                                         [2moiles]
```