

数学分析讲义

对 Baby Rudin 的补充

作者: Kong

时间: February 8, 2023

版本: 0.1

目录

1	预备	知识	1
	1.1	集合论	1
	1.2	映射	1
2	来た 住:	s W. H. 7th	3
2	.,	的构建 - 自然数集	3
	2.1		
	2.2	有序集	3
	2.3	整数集	3
	2.4	有理数集	3
	2.5	实数集	3
	2.6	复数集	4
3	基础	拓扑学	5
	3.1	集合的势	5
	3.2	度量空间	5
	3.3	紧集	6
	3.4	完美集	8
	3.5	连通集	8
4	华人士式		9
4	致坝 4.1	[序列与级数 - 收敛序列	9
	4.2	子字列	9
	4.3	Cauchy 序列	9
	4.4	上极限与下极限	9
	4.5	一些特殊的序列	9
		一些付外的序列 · · · · · · · · · · · · · · · · · · ·	
	4.6		9
	4.7	非负项级数	9
	4.8	自然常数 e	9
	4.9	根值判别法与比值判别法	9
		幂级数	9
			9
		绝对收敛	
		级数的加法与乘法	
	4.14	级数的重排	10
5	连续	性:	12
	5.1	函数的极限	12
	5.2	连续函数	12
	5.3	连续性与紧性	13
	5.4	连续性与连通性	14
	5.5	不连续点	14
	5.6	单调函数	14
	5.7	无穷极限和无穷远处的极限	14

6 微分 6.1 实值函数的导数 6.2 中值定理 6.3 导函数的连续性 6.4 l'Hospital 法则 6.5 高阶导数 6.6 Taylor 定理 6.7 向量值函数的微分 7 Rimann-Siteljies 积分 7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛与连续性 8.4 一致收敛与连续性 8.4 一致收敛与连续性 8.4 一致收敛与被分 8.5 一致收敛与被分 8.5 一致收敛与被分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数 9.6 Gamma 函数	
6.2 中值定理 6.3 导函数的连续性 6.4 l'Hospital 法则 6.5 高阶导数 6.6 Taylor 定理 6.7 向量值函数的微分 7 Rimann-Siteljies 积分 7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与积分 8.5 一致收敛与积分 8.5 一致收敛与被分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	
6.3 导函数的连续性 6.4 l'Hospital 法则 6.5 高阶导数 6.6 Taylor 定理 6.7 向量值函数的微分 7 Rimann-Siteljies 积分 7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与积分 8.5 一致收敛与积分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier级数	
6.4 l'Hospital 法则 6.5 高阶导数 6.6 Taylor 定理 6.7 向量值函数的微分 7 Rimann-Siteljies 积分 7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与额分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	
6.5 高阶导数 6.6 Taylor 定理 6.7 向量值函数的微分 7 Rimann-Siteljies 积分 7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与进续性 8.4 一致收敛与积分 8.5 一致收敛与积分 8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	
6.6 Taylor 定理 6.7 向量值函数的微分 7 Rimann-Siteljies 积分 7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与积分 8.5 一致收敛与积分 8.5 一致收敛与积分 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	
6.7 向量值函数的微分 7 Rimann-Siteljies 积分 7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与再分 8.5 一致收敛与制分 8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	
7 Rimann-Siteljies 积分 7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与再积分 8.5 一致收敛与积分 8.5 子致吃敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	16 16 16 16 17
7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与再分 8.5 一致收敛与积分 8.5 一致收敛与积分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	16 16 16 16 17
7.1 积分的定义及其存在性 7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与再分 8.5 一致收敛与积分 8.5 一致收敛与积分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	16 16 16 16 17
7.2 积分的性质 7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	16 16 16 17
7.3 积分与微分 7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与积分 8.5 子致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	16 16 17
7.4 向量值函数的积分 7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与积分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	16 16 17
7.5 可求长曲线 8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	16 17 17
8 函数项序列与函数项级数 8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	17
8.1 关于换序问题的探讨 8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数.	17
8.2 一致收敛 8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	
8.3 一致收敛与连续性 8.4 一致收敛与积分 8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	
8.4 一致收敛与积分 8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	17
8.5 一致收敛与微分 8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	17
8.6 等度连续函数类 8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	17
8.7 Stone-Weierstrass 定理 9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	17
9 一些特殊的函数 9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	17
9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	17
9.1 幂级数 9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	18
9.2 指数函数与对数函数 9.3 三角函数 9.4 复数域的代数闭域性 9.5 Fourier 级数	
9.3 三角函数	
9.4 复数域的代数闭域性 9.5 Fourier 级数	
9.5 Fourier 级数	
9.6 Gamma 函数	
	18
10 多元函数	19
10.1 线性变换	19
10.2 多元函数的微分	19
10.3 压缩映射原理	10
10.4 反函数定理	19
10.5 隐函数定理	
10.6 秩定理	19
10.7 行列式	19 19
10.8 多元函数的高阶导数	19 19 19
10.9 多元积分的导数	19 19 19

第1章 预备知识

1.1 集合论

定义 1.1 (集合(朴素的))	
集合是一堆元素的集体.	
设元素 x 和集合 A 我们用 $x \in A$ 表示" x 属于集合 A ".	
没有元素的集合称为空集,记作 0.任何不是空集的集合都称为非空集.	*
은 N + 4 4 (구 Be)	
定义 1.2 (子集)	
	*
定义 1.3 (并集和交集)	
	*
一 命题 1.1 (并集和交集的性质)	
	<u> </u>
定义 1.4 (索引族)	
	*
Pault 4 = /FF Bes	
定义 1.5 (幂集)	*
	•
定义 1.6 (索引族中的并集和交集)	
	*
定义 1.7 (补集)	
定理 1.1 (De – Morgen 律)	
	$ \bigcirc $
定义 1.8 (集合的笛卡尔积)	
足又10(宋日时田下小小)	*
	<i>)</i>
1.2 映射	
定义 1.9 (映射)	
	*
定义 1.10 (单射)	
定义 1.10 (平利)	*
All De A A A (Media)	
定义 1.11 (满射)	•
	*
定义 1.12 (双射)	
	*

定义 1.13 (逆映射)

*

定理 1.2 (双射等价于可逆性)

 \Diamond

第2章 数集的构建

2.1	百	然	米片	隹
4.1	н	<i>2</i> 233	41	宋

2.2 有序集

定义 2.1 (序关系)	4
定义 2.2 (有序集)	*
2.3 整数集	
2.4 有理数集	
2.5 实数集	
定义 2.3 (上界和下界)	
	*
定义 2.4 (上确界和下确界)	
定义 2.5 (最下上界性)	
	*
定理 2.1 (确界存在的对称性)	\Diamond
公理 2.1 (域公理)	
	\Diamond
命题 2.1 (加法公理蕴含的性质)	•
命题 2.2 (乘法公理蕴含的性质)	
命题 2.3 (域公理蕴含的性质)	•
定义 2.6 (有序域)	
	*
一 	

定义 2.7 (Dedekind 分割)

我们称 \mathbb{Q} 的一个真子集 α 为它的一个划分,当:

 $(I)\alpha \neq \emptyset$. (非空)

(II) 若 $p \in \alpha, q \in \mathbb{Q}$ 且q < p,则 $q \in \alpha$. (向下封闭)

(III)∀ $p \in \alpha$, $\exists r \in \alpha$, 使得p < r. (无最大元素)

我们称这些集合为实数,由实数组成的集合记作实数集 R.

定义 2.8 (实数集中的序关系)

*

定理 2.2 (确界原理)

有序集 ℝ 具有最小上界性.

 \Diamond

定理 2.3 (实数集的性质)

实数集 R 是一个具有最小上界性的有序域.

 $_{\odot}$

定理 2.4 (Archimedes 原理)

nx > y

定理 2.5 (有理数在实数中的稠密性)

若 $x \in \mathbb{R}$, $y \in \mathbb{R}$ 且x < y, 则存在一个有理数p, 使得

x

~

定理 2.6 (n 次方正根唯一存在定理)

对于任意的正实数x和正整数n,都存在唯一的一个正实数y,使得

 $y^n = x$

 \Diamond

公理 2.2 (实数公理)

~

2.6 复数集

- 2.6.1 复数域
- 2.6.2 Eucild 空间

第3章 基础拓扑学

3.1 集合的势

定义 3.1 (一一对应)	
定义 3.2 (集合的等势)	*
命题 3.1 (自然数与整数等势)	
定义 3.3 (有限集)	
定义 3.4 (可数集)	
定义 3.5 (序列)	
定理 3.1 (可数集的子集是至多可数的)	Δ)
定理 3.2 (可数集的可数并是可数的)	φ)
推论 3.1	φ)
定理 3.3 (可数集的笛卡尔积是可数的)	
命题 3.2 (有理数集是可数集)	♡)
定理 3.4 (二进制无穷序列是不可数的)	•
	\heartsuit

3.2 度量空间

定义 3.6 (度量空间)

设非空集合 X. 定义一个二元函数:

$$d(\cdot,\cdot): X \times X \to \mathbb{R}$$
.

若 d 满足 $\forall x, y, z \in X$:

- 1. 正定性: $d(x,y) \ge 0$, 等号成立当且仅当 x = y.
- 2. 对称性:d(x, y) = d(y, x).
- 3. 三角不等式 $d(x,y) \le d(x,z) + d(z,y)$. 则称 d(x,y) 为 X 上的一个度量. 定义了一个度量 d 的集合 X 称为

度量空间,记作(X,d).度量空间中的元素称为点.

命题 3.3 (Eucild 空间上的一般度量)

定义 3.7 (邻域)

设度量空间 (X,d), 称集合:

$$N_r(p) = \{x \in X | d(x, p) < r\}$$

为点 p 的一个半径为 r 的邻域. 其中 $p \in X, r \in \mathbb{R}$ 且 r > 0.

定义 3.8 (内部)

在度量空间 (X,d) 中,设非空集合 E,若 $x \in E$ 存在一个邻域 $N(x) \subset E$,则称 $x \in E$ 上的一个内点.E 的 所有内点组成的集合称为 E 的内部,记作 E° .

定义 3.9 (开集)

在度量空间 (X,d) 中,设集合 E. 若 E 中的点都是 E 的内点,即 $E=E^{\circ}$. 则称 E 是 X 上的一个开集.

定理 3.5 (邻域都是开集)

 \Diamond

定义 3.10 (聚点)

命题 3.4 (聚点的性质)

定义 3.11 (闭包)

定义 3.12 (闭集)

•

定理 3.6 (开集的补集是闭集)

 \Diamond

3.3 紧集

定义 3.13 (紧致空间)

设度量空间 (X,d), 若 (X,d) 上的一个开集族 $U_{\alpha}|\alpha \in I$ 满足

$$X \subset \bigcup_{\alpha \in I}$$
.

则称 U_{α} 是 X 的一个开覆盖. 若存在有限多个开集 $U_1,U_2,\cdots,U_n\in\{U_{\alpha}\}$ 使得 $V_{\alpha}=\bigcup_{i=1}^{n}U_i$

 $X\subset\bigcup_{k=1}^n U_k.$

则称 $\{U_k\}_{k=1}^n$ 是 X 的有限开覆盖. 此时称 X 是一个紧致空间,简称紧空间.

定义 3.14 (紧致集)

若度量空间的一个子集K是紧致的,则称K是一个紧致集,简称紧集.

注由以上定义立刻可知有限集肯定是紧集

定理 3.7 (紧致性与所在的空间无关)

在度量空间 (X,d) 中,设 $K \subset Y \subset X$.则 $K \in X$ 中的紧集当且仅当 $K \in Y$ 中的紧集.

定理 3.8 (度量空间中的紧子集是闭集)

~

定理 3.9 (紧集中的闭集是紧集)

推论 3.2 (闭集与紧集的交是紧集)

က

定理 3.10 (緊集的交)

 \circ

推论 3.3 (紧集套定理)

~

定理 3.11 (聚点存在定理)

က

定理 3.12 (闭区间套定理)

 \Diamond

定理 3.13 (k-方格套定理)

 \Diamond

定理 3.14 (每个 k-方格都是紧的)

 \Diamond

定理 3.15 (Heine-Borel 定理)

若 \mathbb{R}^k 的一个子集E具有下列三个性质之一,那么它也具有其它两个性质:

- 1.E 是有界闭集.
- 2.E 是紧集
- 3.E 中存在其任一无限子集的聚点.

~

定理 3.16 (Weierstrass 聚点定理)

 \mathbb{R}^k 中存在其无限有界集的聚点.

Ç

3.4 完美集

定义 3.15 (完美集)

设度量空间 X, 若 $E \subset x$, 且 $\overline{E} = X$, 则称 E 是一个完美集.

定理 3.17 (Eucild 空间中完美集的势)

设P是 \mathbb{R}^k 上的一个非空完美集,则P是不可数的.

 \sim

定义 3.16 (Cantor 集)

把 R 上的闭区间 [0,1] 三等分后,去掉中间的开区间,把剩下的部分记作 C_1 ,即

$$C_1 = [0,1] \setminus \left(\frac{1}{3}, \frac{2}{3}\right) = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1].$$

然后把 C_1 中的两个闭区间分别三等分,然后分别去掉中间的开区间,把剩下的部分记作 C_2 ,即

$$C_2 = C_1 \setminus \bigcup_{k=1}^{3} \left(\frac{3k-2}{3^2}, \frac{3k-1}{3^2} \right) = \left[0, \frac{1}{3^2} \right] \cup \left[\frac{2}{3^2}, \frac{3}{3^2} \right] \cup \left[\frac{6}{3^2}, \frac{7}{3^2} \right] \cup \left[\frac{8}{3^2}, 1 \right].$$

按此方法依次操作,就可以得到一列闭集

$$C_n = C_{n-1} \setminus \bigcup_{k=1}^{3^{n-1}} \left(\frac{3k-2}{3^2}, \frac{3k-1}{3^2} \right), n = 2, 3, \cdots$$

令

$$C=\bigcap_{n=1}^{\infty}C_n.$$

我们称集合 C 为 Cantor 集.

.

命题 3.5 (Cantor 集的性质)

٠

3.5 连通集

定义 3.17 (连通集)

•

定理 3.18 (平中开区间的连通性)

 \Diamond

第4章 数项序列与级数

- 4.1 收敛序列
- 4.2 子序列
- 4.3 Cauchy 序列
- 4.4 上极限与下极限
- 4.5 一些特殊的序列
- 4.6 级数
- 4.7 非负项级数
- 4.8 自然常数 e
- 4.9 根值判别法与比值判别法
- 4.10 幂级数
- 4.11 分部求和

定理 4.1 (Abel 分部求和公式)

设数列 $\{a_n\},\{b_n\}$. 则对于任一 $n \in \mathbb{N}^*$,都有

$$\sum_{k=1}^{n} a_k b_k = A_n b_n - \sum_{k=1}^{n-1} A_k (b_{k+1} - b_k)$$

其中 $A_k = \sum_{1}^{k}, A_0 = 0.$

证明 易知 $a_k=S_k-S_{k-1}(k=1,2,...)$ 且 $\sum_{k=1}^{k=n}A_kb_k=\sum_{k=1}^{n-1}A_kb_{k+1}$ 于是

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k b_k - \sum_{k=1}^{n-1} A_k b_{k+1} = A_n b_n - \sum_{k=1}^{n-1} A_k (b_{k+1} - b_k).$$

注与 Riemann 积分的分部求和公式具有相似性.

定理 4.2 (级数的 Abel 引理)

若数列 {a_n},{b_n} 满足

1. $\{b_n\}$ 是一个单调数列.

 $2.A_n = \sum_{k=1}^n a_k$ 有界. 即存在 $M \ge 0$, 使得对于任一 $n \in \mathbb{N}^*$, 都有 $|A_n| \le M$

则

$$\left| \sum_{k=1}^{n} a_k b_k \right| \le M(|b_1| + 2|b_n|).$$

定理 4.3 (Dirichlet 判别法)

 \sim

定理 4.4 (Lebnitz 判别法)

0

定理 4.5 (收敛半径为 1 的幂级数)

_

4.12 绝对收敛

定理 4.6 (绝对收敛的必要条件)

 \Diamond

4.13 级数的加法与乘法

定理 4.7 (级数的加法与数乘)

 \Diamond

定义 4.1 (Cauchy 乘积)

 $\overline{}$

注 其定义的动机可能来源于幂级数的乘法.

定理 4.8 (Mertens 定理)

 \sim

定理 4.9 (Abel 定理)

~

证明 在第八章中有更简单的证法.

4.14 级数的重排

定义 4.2 (级数的重排)

设级数 $\sum a_n$. 令

$$a'_n = a_{\sigma(n)}, (n = 1, 2, 3, \cdots).$$

若 σ 是 \mathbb{N} 到自身的一个双射 (置换),则称 $\sum a'_n$ 是 $\sum a_n$ 的重排.

定理 4.10 (Riemann 重排定理)

 \Diamond

定理 4.11 (绝对收敛级数的重排)

设 $\sum a_n$ 是一个绝对收敛的复数项级数,则其每个都重排任然绝对收敛,且它们收敛于同一个值.

 \Diamond

证明 因为 $\sum a_n$ 绝对收敛, 由 Cauchy 收敛原理可知: $\forall \varepsilon > 0, \exists N_1 \in \mathbb{N}^*$, 使得当 $m \geq n \geq N_1$ 时,

$$\sum_{k=n}^{m} |a_k| \le \varepsilon.$$

设 $\sum a'_n$ 是 $\sum a_n$ 的一个重排,其中 $a'_n=a_{\sigma(n)},(n=1,2,3\cdots)$.记 $\sum a'_n$ 和 $\sum a_n$ 的部分和分别为 S_n 和 S'_n .可知 $\exists N_2 \in \mathbb{N}^*$ 时,使得

$$1, 2, \dots, N \in {\sigma(1), \sigma(2), \dots, \sigma(N_2)}$$

故当 $n \ge N = max\{N_1, N_2\}$ 时,

$$|S_n - S_n'| \le \sum_{k=n+1}^n |a_k| < \varepsilon$$

即它们收敛于同一个值.

第5章 连续性

5.1 函数的极限

定义 5.1 (映射的极限)

设度量空间 (X, d_X) 和 $(Y, d_Y), E \subset X, f : E \to Y$, 且 $p \in E$ 的聚点, 则称 $q \in E$ 在点 p 处的极限当且仅当 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使得 $\forall x \in E$, 若

$$0 < d_X(x, p) < \delta$$

则

$$d_Y(f(x),q) < \varepsilon$$
.

将其记作

$$\lim_{x \to p} f(x) = q$$

或 $f(x) \rightarrow q$ 当 $x \rightarrow p$.

定理 5.1 (Heine 归结原理)

 \circ

推论 5.1 (极限的唯一性)

若映射 f 在 p 点有极限,则该极限是唯一的.

...

定义 5.2 (函数的四则运算)

.

定理 5.2 (极限的四则运算)

 \sim

5.2 连续函数

定义 5.3 (连续性)

设度量空间 (X, d_X) 和 $(Y, d_Y), E \subset X, p \in E, f : E \to Y$, 则称 $q \not\in f$ 在点 p 处连续当且仅当 $\forall \varepsilon > 0, \exists \delta > 0$, 使得 $\forall x \in E$, 若

$$d_X(x,p) < \delta$$

则

$$d_Y(f(x), f(q)) < \varepsilon$$
.

若f在E中的每个点都连续,则称f在E上连续.

命题 5.1

设度量空间 X 和 $Y,E \subset X, p \in E, f : E \rightarrow Y, 若 p 是 E 的孤立点,则 f 在 p 点连续.$

定理 5.3 (用极限刻画连续性)

 \sim

定理 5.4 (复合映射的连续性)

0

定理 5.5 (用开集刻画连续性)

设 $f: X \to Y$, 其中 X 和 Y 都是度量空间. f 在 X 上连续当且仅当对于任一开集 $U \subset Y$, 都满足 $f^{-1}(U)$ 都 是 X 中的一个开集.

推论 5.2 (用闭集刻画连续性)

设 $f: X \to Y$, 其中 X 和 Y 都是度量空间. f 在 X 上连续当且仅当对于任一闭集 $V \subset Y$, 都满足 $f^{-1}(V)$ 都 是 X 中的一个闭集.

定理 5.6 (连续映射的四则运算)

 \sim

定理 5.7

 \Diamond

例题 5.1 投影函数

例题 5.2 多项式函数

例题 5.3 取模函数

5.3 连续性与紧性

定义 5.4 (有界的映射)

设 $f: E \to \mathbb{R}^k$, 若 $\exists M > 0$, 使得 $\forall x \in E, |f(x)| \leq M$.

定理 5.8 (紧空间的连续像)

定理 5.9

m

定理 5.10

 \Diamond

定理 5.11

 \Diamond

定义 5.5

定理 5.12

0

定理 5.13

 \Diamond

5.4 连续性与连通性

第6章 微分

- 6.1 实值函数的导数
- 6.2 中值定理
- 6.3 导函数的连续性
- 6.4 l'Hospital 法则
- 6.5 高阶导数
- 6.6 Taylor 定理
- 6.7 向量值函数的微分

第7章 Rimann-Siteljies 积分

- 7.1 积分的定义及其存在性
- 7.2 积分的性质
- 7.3 积分与微分
- 7.4 向量值函数的积分
- 7.5 可求长曲线

第8章 函数项序列与函数项级数

- 8.1 关于换序问题的探讨
- 8.2 一致收敛
- 8.3 一致收敛与连续性
- 8.4 一致收敛与积分
- 8.5 一致收敛与微分
- 8.6 等度连续函数类
- 8.7 Stone-Weierstrass 定理

第9章 一些特殊的函数

- 9.1 幂级数
- 9.2 指数函数与对数函数
- 9.3 三角函数
- 9.4 复数域的代数闭域性
- 9.5 Fourier 级数
- 9.6 Gamma 函数

第10章 多元函数

- 10.1 线性变换
- 10.2 多元函数的微分
- 10.3 压缩映射原理
- 10.4 反函数定理
- 10.5 隐函数定理
- 10.6 秩定理
- 10.7 行列式
- 10.8 多元函数的高阶导数
- 10.9 多元积分的导数