Algorithmic Data Science - Exercises Series $2\,$

Konstantinos Papadakis Data Science and Machine Learning 03400149 konstantinospapadakis@mail.ntua.gr

June 23, 2022

Exercise 1

(a)

We have that

$$h_{a,b}(x) = h_{a,b}(y)$$
 $\iff ax + b \equiv ay + b \mod m$
 $\iff a(x - y) \equiv 0 \mod m$

which in the case of x = m, y = 0 is true $\forall a, b$ therefore

$$P(h_{a,b}(x) = h_{a,b}(y)) = 1 > \frac{1}{m}$$

meaning that the family is not universal.

(b)

This exercise is Theorem 11.5 in the book Introduction to Algorithms by Cormen

Let $x, y \in \mathbb{Z}_p : x \neq y$. Define

$$u := ax + b \mod p$$
$$v := ay + b \mod p$$

Note that $u \neq v$ since $u - v \equiv a(x - y) \not\equiv 0 \mod p$ because $a \neq 0$ and $x \not\equiv y$ mod p, the later holding because by hypothesis $x \neq y$ and x, y < p Therefore, there are no collisions when we apply $x \mapsto ax + b \mod p$.

We proceed to show that $(a, b) \mapsto (ax+b \mod p, ax+b \mod p)$ is a bijection between the pairs $(a,b) \in \mathbb{Z}_p^* \times \mathbb{Z}_p$ and the pairs $(u,v) \in \mathbb{Z}_p \times \mathbb{Z}_p : u \neq v$.

We can solve for a, b and get a unique solution

$$a = \frac{u - v}{x - y} \mod p$$
$$b = r - ak \mod p$$

Where $\frac{1}{t}$ is the inverse of t in \mathbb{Z}_p

Therefore the mapping is one to one. Since we also have that both the domain and the codomain have p(p-1) elements, the mapping is a bijection. Thus, if (a, b) is uniformly distributed, so is (u, v).

Therefore, the probability that $x, y \in \mathbb{Z}_p : x \neq y$ collide is equal to the probability that $u \equiv v \mod m$ collide when $(u, v) \in \mathbb{Z}_p \times \mathbb{Z}_p : u \neq v$ are chosen uniformely randomly. We proceed to calculate that probability.

Given u, of the p-1 possible remaining values for v we have that at most $\lceil \frac{p}{m} \rceil - 1 \le \frac{p-1}{m}$ can collide with u. Therefore the probability of colision is $\le \frac{1}{m}$, meaning that the hash function

family is universal.

(c)

The proof in % x = 1 is still valid, since $x \in U \implies x < p$ is still valid. Therefore the hash function family remains universal.

Exercise 2