23915-MDSC-103P-ESE

Qu1)

a)

Formulation of the Problem:

x1	x2	Z		
7	10			
360	300	5520		
5	6	3600	<=	3600
1	2	960	<=	960
1	0	360	<=	500
0	1	300	<=	500
	7 360 5 1	7 10 360 300 5 6 1 2 1 0	7 10 360 300 5520 5 6 3600 1 2 960 1 0 360	7 10 360 300 5520 5 6 3600 <= 1 2 960 <= 1 0 360 <=

After solving the linear programming problem, we got the optimal solution z = 5520 when x1 = 360 and x2 = 300.

Sensitivity Report:

Variable Cells

Cell	Name			Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$3	Solution x1	360	0	7	1.333333333	2
\$C\$3	Solution x2	300	0	10	4	1.6

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$D\$5 d	c1 z	3600	1	3600	280	720
\$D\$6	c2 z	960	2	960	160	93.3333333
\$D\$7 d	c3 z	360	0	500	1E+30	140
\$D\$8 d	c4 z	300	0	500	1E+30	200

b) Cost Coefficient Sensitivity Analysis

The objective function is z = 7x1 + 10x2.

The allowable increase in the coefficient of x2 is 4 and the allowable decrease is 1.6. Therefore, the optimality range of x2 such that the optimal solution doesn't change is (10-1.6, 10+4) = (8.4, 14). We

can infer that if the price of a dozen softballs (x2) ranges from 8.4 to 14 dollars, this implies that the optimal solution will remain the same.

c) Right Hand Side Sensitivity Analysis

From the Constraints table, we can see that the shadow price of only constraint c1 and c2 are given, which are 1 and 2 respectively. Shadow price is also known as unit worth of resource which means that how much revenue is being incurred from a unit resource.

Therefore, for each square foot of cowhide sheets, a revenue of 1 dollar is being incurred. Likewise, for every minute of production, a revenue of 2 dollars is incurred. The shadow price of constraint c1 and c2 is 0 which means that there's no revenue made from a unit of resource.

Qu2)

```
1  x = np.linspace(-5,10,100)  # range of values of x
2  y = np.linspace(-5,10,100)  # range of values of y
3
4  X,Y = np.meshgrid(x,y)  #creating a meshgrid
5  F = f(X,Y)  #saving the function values with respect to corresponding values of x and y
6
7  figure = plt.figure(figsize=(10,10))  #specifying the size of the figure
8  ax = plt.subplot(projection='3d')  # specifying that the graph should be 3-dimensional
9  graph = ax.plot_surface(X,Y,F, cmap= 'gist_rainbow')  # plotting the graph
10  figure.colorbar(graph)
11  ax.set_xlabel("x")
12  ax.set_ylabel("y")
13  ax.set_zlabel("f(x,y)")
14  plt.show()
15
✓ 0.6s
Python
```

