⇔ Lycée de Dindéfélo ⇔			A.S.: 2024/2025
Matière: Mathématiques	Niveau: TS2	Date: 22/05/2025	Durée : 4 heures
Correction Composition Du 2 nd Semestre			

Exercice 1:(3 pts) Restitution de Connaissances

Exercice 1:(3 pts) Restitution de Connaissances

1 Soit Ω l'univers associé à une expérience aléatoire E et p une probabilité définie sur Ω . Recopie et complète les relations ci-dessous :

a
$$\mathbb{P}(\Omega) = 1$$
 (0,25 pt)

$$\mathbb{P}(\varnothing) = 0 \tag{0.25 pt}$$

c Si A et B sont deux événements incompatibles de
$$\Omega$$
, alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ (0,25 pt)

- Soit D un événement quelconque de Ω . $\mathbb{P}(D)=1.5$ est-il possible ? Non, car une probabilité est toujours un nombre compris entre 0 et 1. (0,25 pt)
- 2 Soit f une fonction continue sur un intervalle I et (u_n) une suite convergente vers un nombre réel $L \in I$, définie par $u_{n+1} = f(u_n)$.

Répondre par vrai ou faux à l'affirmation : L est solution de l'équation f(L) = L.

3 Soit (u_n) une suite géométrique de raison $q=\frac{1}{2}$ et de premier terme $u_2=-3$. Choisir la bonne réponse dans chaque cas : $(3 \times 0.25 \text{ pt})$

Réponses	A	В	С
$\lim u_n$ est :			X
L'expression de u_n est :			X
L'expression de $S_n = u_2 + u_3 + \cdots + u_n$ est :		X	

Correction de l'Exercice 2 : (3 pts)

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

On considère la transformation S du plan d'écriture complexe $z'=(1-i\sqrt{3})z+2$. On pose $a=1-i\sqrt{3}$ et b=2.

Le module de a est :

$$|a| = |1 - i\sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1+3} = 2.$$

Donc la transformation est une **rotation homothétique** (ou similitude directe) de rapport 2 et d'angle θ tel que $\arg(a) = \arg(1 - i\sqrt{3})$.

Nature de S: Similitude directe. (0,5 pt)

Rapport: |a| = 2Argument de a:

$$arg(1 - i\sqrt{3}) = -\arctan\left(\frac{\sqrt{3}}{1}\right) = -\frac{\pi}{3}.$$

Donc l'angle est $\left| -\frac{\pi}{3} \right|$.

Rapport et angle : $2 \text{ et } -\frac{\pi}{3}$.

(0,5 pt)

3 Soit A d'affixe $z_A = 2 - i\sqrt{3}$. Alors :

$$z'_C = (1 - i\sqrt{3})(2 - i\sqrt{3}) + 2.$$

Développons:

$$z'_C = 2(1) - 2i\sqrt{3} - i\sqrt{3}(1) + (i\sqrt{3})^2 + 2 = 2 - 3i - 3 + 2 = \boxed{-1 - 3i}$$
.(1 pt)

 $z_D = -\frac{2\sqrt{3}}{3}i.$ On calcule:

$$z'_{D} = (1 - i\sqrt{3})\left(-\frac{2\sqrt{3}}{3}i\right) + 2.$$

On simplifie:

$$z_D' = -\frac{2\sqrt{3}}{3}i + \frac{2\cdot 3}{3} = -\frac{2\sqrt{3}}{3}i + 2.$$

Donc
$$z'_D = 2 - \frac{2\sqrt{3}}{3}i$$
. (0,75 pt)

Interprétation : D est un point situé sur le cercle de centre le centre de la similitude et de rayon proportionnel à son image. Ce n'est ni un point fixe ni un invariant remarquable ici.

Autre interprétation : comme l'image n'est pas identique à D, \boxed{D} n'est pas un point invariant de S. pt)

Exercice 3:(4 pts)

1 Construisons un arbre pondère correspondant à cette épreuve.

- 2 Montrons que $P(N_2) = \frac{8}{15}$
 - a $P(N_2)$ peut être calculé par la loi des totalisations :

$$P(N_2) = P(N_2|B_1) \cdot P(B_1) + P(N_2|N_1) \cdot P(N_1)$$

$$= \left(\frac{2}{5} \cdot \frac{1}{3}\right) + \left(\frac{3}{5} \cdot \frac{2}{3}\right)$$

$$= \frac{2}{15} + \frac{6}{15}$$

$$= \frac{8}{15}$$

b Déterminons la probabilité de l'événement B_2

$$P(B_2) = P(B_2|B_1) \cdot P(B_1) + P(B_2|N_1) \cdot P(N_1)$$

$$= \left(\frac{1}{5} \cdot \frac{1}{3}\right) + \left(\frac{1}{5} \cdot \frac{2}{3}\right)$$

$$= \frac{1}{15} + \frac{2}{15}$$

$$= \frac{3}{15}$$

$$= \frac{1}{5}$$

Déterminons la probabilité de tirer une boule blanche de u_1 , sachant que la boule tirée dans u_2 est noire On utilise le théorème de Bayes :

$$P(B_1|N_2) = \frac{P(N_2|B_1) \cdot P(B_1)}{P(N_2)}$$

$$= \frac{\left(\frac{2}{5}\right) \cdot \left(\frac{1}{3}\right)}{\frac{8}{15}}$$

$$= \frac{\frac{2}{15}}{\frac{8}{15}}$$

$$= \frac{2}{8}$$

$$= \frac{1}{4}$$

- 3 a Loi de probabilité de X Nous avons les différents gains :
 - Boule blanche dans $u_2: 3000F 500F = 2500F$
 - Boule noire dans $u_2 : 0F 500F = -500F$
 - Boule rouge dans $u_2 : 500F 500F = 0F$

Calcul des probabilités de X:

•
$$P(X = 2500) = P(B_2) = \frac{1}{5}$$

•
$$P(X = -500) = P(N_2) = \frac{8}{15}$$

•
$$P(X=0) = P(R) = \left(\frac{2}{5} \cdot \frac{1}{3}\right) + \left(\frac{1}{5} \cdot \frac{2}{3}\right) = \frac{4}{15}$$

- **b** Calculons de l'espérance mathématique, Variance et écart-type de X et écart-type de X
 - Espérance mathématique

$$E(X) = 2500 \cdot P(X = 2500) + (-500) \cdot P(X = -500) + 0 \cdot P(X = 0)$$

$$= 2500 \cdot \frac{1}{5} + (-500) \cdot \frac{8}{15} + 0 \cdot \frac{4}{15}$$

$$= 500 - \frac{4000}{15}$$

$$= \frac{7500 - 4000}{15}$$

$$= \frac{3500}{15}$$

$$\approx 233.33$$

• Variance de X

$$\begin{split} Var(X) &= E(X^2) - (E(X))^2 \\ E(X^2) &= (2500^2) \cdot P(X = 2500) + (-500)^2 \cdot P(X = -500) + 0^2 \cdot P(X = 0) \\ &= 6250000 \cdot \frac{1}{5} + 250000 \cdot \frac{8}{15} \\ &= 1250000 + \frac{2000000}{15} \\ &= 1250000 + \frac{1333333.33}{1} \\ &\approx 1383333.33 \end{split}$$

Donc,

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$= 1383333.33 - (233.33)^{2}$$

$$\approx 1383333.33 - 54444.44$$

$$\approx 1338898.89$$

• Ecart-type X

$$\sigma(X)$$
 est $\sigma(X) = \sqrt{Var(X)}$

c Déterminons la fonction de répartition de X et représentons la.

$$F(x) = \mathbb{P}(X \le x)$$

$$F(x) = \begin{cases} 0 & \text{si } x \in]-\infty, -500[\\ \frac{8}{15} & \text{si } x \in [-500, \ 0[\\ \frac{11}{15} & \text{si } x \in [0, \ 2500[\\ 1 & \text{si } x \in [2500, \ +\infty[\\ \end{bmatrix} \end{cases}$$

4 Calculons cela pour trouver le nombre minimal de parties. Soit $p = P(N_2) = \frac{8}{15}$. On veut trouver le plus petit entier n tel que :

$$1 - (1 - p)^n > 0.97$$

$$(1 - \frac{8}{15})^n < 0.03 \quad \text{soit} \quad \left(\frac{7}{15}\right)^n < 0.03$$

$$n \log\left(\frac{7}{15}\right) < \log(0.03)$$

$$n > \frac{\log(0.03)}{\log\left(\frac{7}{15}\right)} \approx 6.6$$

Donc n=7

Problème: 10 pts