ADVANCED MACHINE LEARNING GAUSSIAN PROCESSES LECTURE 1

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

TOPIC OVERVIEW

- Lecture 1
 - ► Recall: The multivariate normal distribution
 - ► Recall: Bayesian inference for Gaussian linear/nonlinear regression
 - ► Introduction to Gaussian Process Regression
- ▶ Lecture 2
 - More on kernel functions
 - Estimating the GP hyperparameters
 - ► Large scale GPs
- ▶ Lecture 3
 - Gaussian Process Classification
 - ► Some examples of **GP applications**

THE MULTIVARIATE NORMAL DISTRIBUTION

▶ The density function of a *p*-variate normal vector $\mathbf{x} \sim N(\mu, \Sigma)$ is

$$f(\mathbf{x}) = \left(\frac{1}{2\pi}\right)^{p/2} \frac{1}{\sqrt{\det \Sigma}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)' \Sigma^{-1}(\mathbf{x} - \mu)\right\}$$

▶ Example: Bivariate normal (p = 2)

$$\Sigma = \left(egin{array}{cc} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{array}
ight)$$

► Mean and variance

$$E(x) = \mu \quad Var(x) = \Sigma$$

MULTIVARIATE NORMAL

MULTIVARIATE NORMAL

THE MULTIVARIATE NORMAL DISTRIBUTION, CONT.

- ▶ Let $\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$ where \mathbf{x}_1 is $p_1 \times 1$ and \mathbf{x}_2 is $p_2 \times 1$ $(p_1 + p_2 = p)$.
- \blacktriangleright Partition μ and Σ accordingly as

$$\mu = \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right) \text{ and } \Sigma = \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right)$$

▶ Marginals are normal. Let $x \sim N(\mu, \Sigma)$, then

$$\mathbf{x}_1 \sim \mathcal{N}(\mu_1, \Sigma_{11})$$

▶ Conditionals are normal. Let $x \sim N(\mu, \Sigma)$, then

$$\mathbf{x}_1|\mathbf{x}_2 = \mathbf{x}_2^* \sim \textit{N}\left[\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2^* - \mu_2), \; \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\right]$$

NONLINEAR REGRESSION

► Linear regression¹

$$y = f(\mathbf{x}) + \epsilon$$
$$f(\mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x}$$

and $\epsilon \sim N(0, \sigma_n^2)$ and iid over observations.

- ▶ The weights **w** are called regression coefficients (β) in statistics.
- ▶ Polynomial regression: $\phi(\mathbf{x}) = (1, x, x^2, x^3, ..., x^k)$:

$$f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) \cdot$$

- More generally: splines with basis functions.
- ▶ Polynomial and spline models are linear in w. Least squares!

¹I follow the notation in RW rather than PRML. In PRML: y is the noise-free response. $t = y + \epsilon$ is the response with noise. β^{-1} is the noise variance (σ_n^2) .

BAYESIAN LINEAR REGRESSION - INFERENCE

► Linear regression for all *n* observations

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times pp\times 1} + \varepsilon_{n\times 1}$$

- **w** is unknown. σ_n is assumed known.
- ► Prior

$$\mathbf{w} \sim \mathcal{N}\left(0, \Sigma_{p}
ight)$$

- ▶ Common choice (Ridge regression): $\Sigma_p = \alpha^{-1} \mathbf{I}$.
- Posterior

$$\begin{split} \mathbf{w}|\mathbf{X}, &\mathbf{y} \sim \mathcal{N}\left(\bar{\mathbf{w}}, \mathbf{A}^{-1}\right) \\ \mathbf{A} &= \sigma_n^{-2} \mathbf{X}^T \mathbf{X} + \Sigma_p^{-1} \\ \bar{\mathbf{w}} &= \left(\mathbf{X}^T \mathbf{X} + \sigma_n^2 \Sigma_p^{-1}\right)^{-1} \mathbf{X}^T \mathbf{y} \end{split}$$

▶ Recall: Posterior precision = Data Precision + Prior Precision.

A PRIOR ON w IS A PRIOR ON FUNCTIONS

NON-PARAMETRIC REGRESSION

- Non-parametric regression: avoiding a parametric form for $f(\cdot)$. Treat $f(\mathbf{x})$ as an unknown parameter for every \mathbf{x} .
- ▶ Weight space view
 - ▶ Restrict attention to a grid of (ordered) x-values: $x_1, x_2, ..., x_k$.
 - ▶ Put a joint prior on the *k* function values: $f(x_1), f(x_2), ..., f(x_k)$.
- ► Function space view
 - ► Treat f as an unknown function.
 - ▶ Put a prior over a set of functions.

Nonparametric = one parameter for every x!

GAUSSIAN PROCESS REGRESSION

▶ Weight-space view. GP assumes

$$\begin{pmatrix} f(x_1) \\ \vdots \\ f(x_k) \end{pmatrix} \sim N(\mathbf{m}, \mathbf{K})$$

▶ But how do we specify the $k \times k$ covariance matrix K?

$$Cov(f(x_p), f(x_q))$$

Squared exponential covariance function

$$Cov\left(f(x_p), f(x_q)\right) = k(x_p, x_q) = \sigma_f^2 \exp\left(-\frac{1}{2}\left(\frac{x_p - x_q}{\ell}\right)^2\right)$$

- ▶ Nearby x's have highly correlated function ordinates f(x).
- ▶ We can compute $Cov(f(x_p), f(x_q))$ for any x_p and x_q .
- Extension to multiple covariates: $(x_p x_q)^2$ replaced by $(\mathbf{x}_p \mathbf{x}_q)^T (\mathbf{x}_p \mathbf{x}_q)$.

SMOOTH FUNCTION - POINTS NEARBY

SMOOTH FUNCTION - POINTS FAR APART

JAGGED FUNCTION - POINTS NEARBY

JAGGED FUNCTION - POINTS FAR APART

GAUSSIAN PROCESS REGRESSION, CONT.

DEFINITION

A Gaussian process (GP) is a collection of random variables, any finite number of which have a multivariate Gaussian distribution.

- ► A Gaussian process is really a **probability distribution over functions** (curves).
- ► A GP is completely specified by a mean and a covariance function

$$m(x) = \mathbf{E}[f(x)]$$

$$k(x,x') = E\left[\left(f(x) - m(x) \right) \left(f(x') - m(x') \right) \right]$$

for any two inputs x and x' (note: this is *not* the transpose here).

► A Gaussian process is denoted by

$$f(x) \sim GP(m(x), k(x, x'))$$

▶ Bayesian: $f(x) \sim GP$ encodes prior beliefs about the unknown $f(\cdot)$.

SIMULATING A GP

Example:

$$m(x) = \sin(10x)$$
 $k(x, x') = \sigma_f^2 \exp\left(-\frac{1}{2}\left(\frac{x - x'}{\ell}\right)^2\right)$

where $\ell > 0$ is the length scale.

- ▶ Larger ℓ gives more smoothness in f(x).
- ▶ Simulate draw from $f(x) \sim GP(m(x), k(x, x'))$ over a grid $\mathbf{x}_* = (x_1, ..., x_n)$ by using that

$$f(\mathbf{x}_*) \sim N(m(\mathbf{x}_*), K(\mathbf{x}_*, \mathbf{x}_*))$$

Note that the **kernel** k(x, x') produces a **covariance matrix** $K(\mathbf{x}_*, \mathbf{x}_*)$ when evaluated at the vector \mathbf{x}_* .

SIMULATING A GP

THREE COMMONLY USED COVARIANCE KERNELS

- ▶ Let r = ||x x'||.
- ▶ Squared exponential (SE) ($\ell > 0$, $\sigma_f > 0$)

$$K_{SE}(r) = \sigma_f \exp\left(-rac{r^2}{2\ell^2}
ight)$$

- ▶ Infinitely mean square differentiable. Very smooth.
- ▶ Rational Quadratic (RQ) ($\ell > 0$, $\sigma_f > 0$, $\alpha > 0$)

$$K_{RQ}(r) = \sigma_f \left(1 + \frac{r^2}{2\alpha\ell^2} \right)^{-\alpha}$$

- ▶ RQ is sum of SE with different ℓ . When $\alpha \to \infty$, $K_{RQ}(r) \to K_{SE}(r)$.
- ▶ Matérn ($\ell > 0$, $\sigma_f > 0$, $\nu > 0$)

$$\mathcal{K}_{\mathit{Matern}}(r) = \sigma_f rac{2^{1-
u}}{\Gamma(
u)} \left(rac{\sqrt{2
u}r}{\ell}
ight)^
u \mathcal{K}_
u \left(rac{\sqrt{2
u}r}{\ell}
ight)$$

• $\nu=3/2$ and $\nu=5/2$ common. As $\nu\to\infty$, $K_{Matern}(r)\to K_{GF}(r)$.

The length scale ℓ determines the smoothness

The scale factor σ_f determines the variance

THE MEAN CAN BE sin(3x). OR WHATEVER.

SIMULATING A GP

▶ The joint way: Choose a grid $x_1, ..., x_k$. Simulate the k-vector

$$\begin{pmatrix} f(x_1) \\ \vdots \\ f(x_k) \end{pmatrix} \sim N(\mathbf{m}, \mathbf{K})$$

More intuition from the conditional decomposition

$$p(f(x_1), f(x_2),, f(x_k)) = p(f(x_1)) p(f(x_2)|f(x_1)) \cdots \times p(f(x_k)|f(x_1), ..., f(x_{k-1}))$$

Simulation from ℓ =1 vs ℓ =0.2. Before first draw.

Simulation from ℓ =1 vs ℓ =0.2. Before second draw.

Simulation from ℓ =1 vs ℓ =0.2. Before third draw.

Simulation from ℓ =1 vs ℓ =0.2. Before fourth draw.

THE POSTERIOR FOR A GAUSSIAN PROCESS REGRESSION

▶ Model

$$y_i = f(x_i) + \varepsilon_i, \quad \varepsilon \stackrel{iid}{\sim} N(0, \sigma^2)$$

► Prior

$$f(x) \sim GP\left(0, k(x, x')\right)$$

- ▶ You have observed the data: $\mathbf{x} = (x_1, ..., x_n)^T$ and $\mathbf{y} = (y_1, ..., y_n)^T$.
- ▶ Goal: the posterior of $f(\cdot)$ over a grid of x-values: $f_* = f(x_*)$.
- ► The posterior (use formula for conditional Gaussian above)

$$f_*|x,y,x_* \sim N\left(\overline{f}_*, cov(f_*)\right)$$

$$\begin{aligned} \mathbf{\bar{f}}_* &= \mathcal{K}(\mathbf{x}_*, \mathbf{x}) \left[\mathcal{K}(\mathbf{x}, \mathbf{x}) + \sigma^2 \mathbf{I} \right]^{-1} \mathbf{y} \\ &\cos(\mathbf{f}_*) = \mathcal{K}(\mathbf{x}_*, \mathbf{x}_*) - \mathcal{K}(\mathbf{x}_*, \mathbf{x}) \left[\mathcal{K}(\mathbf{x}, \mathbf{x}) + \sigma^2 \mathbf{I} \right]^{-1} \mathcal{K}(\mathbf{x}, \mathbf{x}_*) \end{aligned}$$

EXAMPLE - CANADIAN WAGES

Posterior of F - $\ell = 0.2, 0.5, 1, 2$

Canadian wages - Prediction with $\ell=0.5$

SOFTWARE

- ▶ Python: GPy
- ▶ Matlab: Statistics and Machine Learning Toolbox, GPML, GPstuff.
- R: Kernlab,

