GOVERNMENT COLLEGE OF ENGINEERING, AMRAVATI

(An Autonomous Institute of Govt. of Maharashtra)

Electronics and Telecommunication Department

Class toot II	
Class test II Sub: ETU 601 Electromagnetic fields Marks: 15 Date: 12 th Feb, 2015	
Q1. Define depth of penetration with diagram. Find the skin depth for copy	per at
1000 MHz and 60 Hz and comment on the result, the conductivity of	Cu is .
$5.8*10^7$ S/m.	4M
Q2. Write note on a) Scalar magnetic potential	4M
b) Vector magnetic potential	
Q3. Explain with suitable sketch electric boundary conditions.	3M
O4. Calculate H in Cartesian co-ordinate at P(1.5,2,3) caused by a current	
filament of 24 Amp in the a_z direction on z-axis extending from a) $z = 0$ to $z=6$ b) $z=6$ to $z=\infty$ c) $z=-\infty$ to $z=\infty$	4M

ELECTRONICS AND TELECOMMUNICATION DEPARTMENT

Course Code: ETU601 Course: Electromagnetic Fields Date: 08/03/2016

Time: 10.30-11.30 a.m.

Attempt the following

Duration: 1Hr

Max. Marks: 15

1. Find div D

(a) $D = (2xyz - y^2)a_x + (x^2z - 2xy)a_y + (x^2y)a_z C/m^2$ at $P_A(2,3,-1)$ (b) $D = (2ax^2ax^2ax^2ax^2)$ (b) $D = (2\rho z^2 \sin^2 \phi) a_\rho + (\rho z^2 \sin^2 \phi) a_\phi + (2\rho^2 z \sin^2 \phi) a_z C/m^2$ at $P_B(2, 110^0, -1)$

(c) $D = 2r\sin\theta\cos\phi a_r + r\cos\theta\cos\phi a_\theta - r\sin\phi a_\phi C/m^2$ at $P_C(1.5, 30^0, 50^0)$

2. Let a uniform surface charge density of $5 nC/m^2$ be present at the z=0 plane, a uniform 3 line charged density of $8\,nC/m$ be located at x=0,z=4 and a point charge of $2\mu C$ be present at $P_A(2,0,0)$. If V=0 at M(0,0,5), find V at N(1,2,3).

3. Let $V = 2xy^2z^3 + 3\ln(x^2 + 2y^2 + 3z^2)$ V in free space. Evaluate at point P(3,2,-1):

(a)V; (b)|V|; (c) E; (d) |E|; (e) a_N ; (f) D 4. Current density is given as $J=-10^6z^{1.5}a_z$ A/m^2 in the region $0 \le \rho \le 20\mu m$; and 0 3 elsewhere.

(a) Find the total current crossing the surface z=0.1m, in the a_z direction

(b) If the charge velocity is 2 \times 10⁶m/s at z = 0.1m, find ρ_V

(c) If the volume charge density at z=0.15m is -2000 C/ m^3 , find the charge velocity

There is a current filament on z-axis carrying 8mA current in the a_z direction, find H at $\,3\,$ P(2,3,4)