

infoShareAcademy.com

- 1 Funkcje okna
 - ROW_NUMBER(), LAG(), LEAD(), FIRST_VALUE(), LAST_VALUE()
 - Funkcje okna agregaty
- 2 Wskaźniki analityczne
 - YoY, MoM
 - Funkcje statystyczne
- 3 Podzapytania

- 1 Funkcje okna
 - ROW_NUMBER(), LAG(), LEAD(), FIRST_VALUE(), LAST_VALUE()
 - Funkcje okna agregaty
- 2 Wskaźniki analityczne
 - YoY, MoM
 - Funkcje statystyczne
- 3 Podzapytania

- 1 Funkcje okna
 - ROW_NUMBER(), LAG(), LEAD(), FIRST_VALUE(), LAST_VALUE()
 - Funkcje okna agregaty
- 2 Wskaźniki analityczne
 - YoY, MoM
 - Funkcje statystyczne
- 3 Podzapytania

Window Functions

1

Aggregate

AVG()

MAX()

MIN()

SUM()

COUNT()

Ranking

ROW_NUMBER

RANK()

DENSE_RANK()

PERCENT_RANK()

NTILE()

Value

ROW_NUMBER

RANK()

DENSE_RANK()

PERCENT_RANK()

NTILE()

info Share ACADEMY

infoShareAcademy.com

Czym jest okno (window) w SQL?

id	release_year	rating				
1	2015	8.00		releas	e_year =	2015
2	2015	8.50	\vdash	1	2015	8.00
3	2015	9.00	\hookrightarrow	2	2015	8.50
4	2016	8.20		3	2015	9.00
5	2016	8.40			2010	0.00
6	2017	7.00				

Czym jest ramka (window frame) w SQL?

Klauzula partycjonowania PARTITION BY

```
SELECT
category,
sales,
SUM(sales) OVER (PARTITION BY category) AS total_category_sales
FROM
sales_table;
```


Klauzula partycjonowania ORDER BY

value,
SUM(value) OVER (ORDER BY date_column) AS cumulative_sum

your_table;

FROM

SELECT

column1,

column2,

SUM(column3) OVER (PARTITION BY partition_column ORDER BY order_column

ROWS BETWEEN I PRECEDING AND I FOLLOWING) AS sum_with_frame

FROM

your_table;

Utworzenie tabeli tools_sales

```
-- Tworzenie tabeli
CREATE TABLE tools_sales (
  sale_id SERIAL PRIMARY KEY,
  tool_id INT,
  tool_group VARCHAR(50),
  sale_date DATE,
  quantity_sold INT,
  sale_amount DECIMAL(10, 2)
-- Wstawianie danych
INSERT INTO tools_sales (tool_id, tool_group,
sale_date, quantity_sold, sale_amount) VALUES
  (1, 'Power Tools', '2023-01-01', 10, 500.00),
  (2, 'Hand Tools', '2023-01-01', 5, 300.00),
  (1, 'Power Tools', '2023-01-02', 8, 400.00),
  (3, 'Safety Gear', '2023-01-02', 12, 600.00),
  (2, 'Hand Tools', '2023-01-03', 7, 350.00),
  (1, 'Power Tools', '2023-01-03', 15, 750.00);
```


ROW_NUMBER()

```
SELECT
sale_id,
tool_id,
tool_group,
sale_date,
quantity_sold,
sale_amount,
ROW_NUMBER() OVER (PARTITION BY tool_group ORDER BY
sale_date) AS row_num
FROM
tools_sales
ORDER BY
tool_group, sale_date;
```


127 sale_id	12	23 tool_id	-	ABC tool_group 🔻	② sale_date ▼	123 quantity_sold 🔻	123 sale_amount 🔻	123 row_num
12			2	Hand Tools	2023-01-01	5	300	1
5	5		2	Hand Tools	2023-01-03	.7	350	2
1	Ĭ.		1	Power Tools	2023-01-01	10	500	1
3	3		1	Power Tools	2023-01-02	8	400	2
6	5		1	Power Tools	2023-01-03	15	750	3
4	1		3	Safety Gear	2023-01-02	12	600	1

infoShareAcademy.com

Dla tabeli tools_sales napisz kwerendę przy użyciu funkcji okienkowej ROW_NUMBER(), która numeruje wiersze w ramach grup narzędzi (tool_group), malejąco według kwoty sprzedaży (sale_amount).

- RANK()
- DENSE_RANK()
- PERCENT_RANK()

SELECT
sale_id,
tool_id,
tool_group,
sale_date,
quantity_sold,
sale_amount,
RANK() OVER (PARTITION BY tool_group ORDER BY
quantity_sold DESC) AS rank
FROM
tools_sales;

12∰ sale_id 🔻	123 tool_id 🔻	ABC tool_group ▼	② sale_date ▼	123 quantity_sold	123 sale_amount 🔻	123 rank
5	2	Hand Tools	2023-01-03	7	350	1
2	2	Hand Tools	2023-01-01	5	300	2
6	1	Power Tools	2023-01-03	15	750	1
1	1	Power Tools	2023-01-01	10	500	2
3	1	Power Tools	2023-01-02	8	400	3
4	3	Safety Gear	2023-01-02	12	600	1

DENSE_RANK()

SELECT

sale_id, tool_id, tool_group,

sale_date,

quantity_sold,

sale_amount,

DENSE_RANK() OVER (PARTITION BY tool_group ORDER BY quantity_sold DESC) AS dense_rank

FROM

tools_sales;

123 sale_id 🔻	×	123 tool_id 🔻	ABC tool_group ▼	② sale_date ▼	123 quantity_sold 🔻	123 sale_amount 🔻	123 dense_rank
5		2	Hand Tools	2023-01-03	7	350	1
2	2	2	Hand Tools	2023-01-01	5	300	2
6	,	1	Power Tools	2023-01-03	15	750	1
1		1	Power Tools	2023-01-01	10	500	2
3	;	1	Power Tools	2023-01-02	8	400	3
4	1	3	Safety Gear	2023-01-02	12	600	1

PERCENT_RANK()

```
SELECT
  sale_id,
```

tool_id,

tool_group,

sale_date,

quantity_sold,

sale_amount,

PERCENT_RANK() OVER (PARTITION BY tool_group ORDER BY quantity_sold DESC) AS percent_rank

FROM

tools_sales;

12♂ sale_id ▼	123 tool_id 🔻	ABC tool_group 🔻	<pre>sale_date</pre>	123 quantity_sold 🔻	123 sale_amount 🔻	123 percent_rank 🔻
5	2	Hand Tools	2023-01-03	7	350	0
2	2	Hand Tools	2023-01-01	5	300	1
6	1	Power Tools	2023-01-03	15	750	0
1	1	Power Tools	2023-01-01	10	500	0.5
3	1	Power Tools	2023-01-02	8	400	1
4	3	Safety Gear	2023-01-02	12	600	0

Dla tabeli tools_sales przypisz rangi dla rekordów w tabeli w oparciu o rosnącą datę sprzedaży (sale_date). Potraktuj rekordy jako jedną grupę.

SELECT

tool_id,

tool_group,

sale_amount,

CUME_DIST() OVER (ORDER BY sale_amount) AS

cumulative_distribution

FROM

tools_sales;

123 tool_id 🔻	ABC tool_group -	123 sale_amount 🔻	123 cumulative_distribution
2	Hand Tools	300	0.1666666667
2	Hand Tools	350	0.3333333333
1	Power Tools	400	0.5
1	Power Tools	500	0.6666666667
3	Safety Gear	600	0.8333333333
1	Power Tools	750	1

infoShareAcademy.com

SELECT

tool_id,

tool_group,

sale_amount,

NTILE(4) OVER (ORDER BY sale_amount) AS quartile

FROM

tools_sales;

123 tool_id 🔻	ABC tool_group	123 sale_amount 🔻	123 quartile
2	Hand Tools	300	1
2	Hand Tools	350	1
1	Power Tools	400	2
1	Power Tools	500	2
3	Safety Gear	600	3
1	Power Tools	750	4

infoShareAcademy.com

Dla tabeli tools_sales podziel rekordy na trzy grupy (kwantyle) w obrębie każdej grupy narzędziowej (tool_group) uszeregowanej według rosnącej kwoty sprzedaży.

LEAD(expression, offset, default)
LAG(expression, offset, default)

7

wyrażenie

liczba wierszy wstecz/do przodu wartość domyślna, gdy brak poprzedniego/ następnego wiersza

SQL Analiza LAG()

```
SELECT
sale_id,
tool_id,
sale_date,
quantity_sold,
LAG(quantity_sold, 1, 0) OVER (ORDER BY sale_date) AS
prev_quantity
FROM
tools_sales
ORDER BY
sale_date;
```


12⅔ sale_id ▼	123 tool_id 🔻	<pre>sale_date</pre>	123 quantity_sold 🔻	123 prev_quantity 🔻
1	1	2023-01-01	10	0
2	2	2023-01-01	5	10
3	1	2023-01-02	8	5
4	3	2023-01-02	12	8
5	2	2023-01-03	7	12
6	1	2023-01-03	15	7


```
SELECT
sale_id,
tool_id,
sale_date,
quantity_sold,
LEAD(quantity_sold, 1, 0) OVER (ORDER BY sale_date) AS next_quantity
FROM
tools_sales
ORDER BY
sale_date;
```

127 sale_id 🔻	123 tool_id 🔻	② sale_date ▼	123 quantity_sold 🔻	123 prev_quantity 🔻
1.	1	2023-01-01	10	5
2	2	2023-01-01	5	8
3	1	2023-01-02	8	12
4	3	2023-01-02	12	7
5	2	2023-01-03	7	15
6	1	2023-01-03	15	0

Dla tabeli tools_sales napisz zapytanie, które zawierać będzie informacje o:

- grupie narzędzi,
- dacie sprzedaży,
- ilości sprzedanych sztuk,
- ilości sprzedanych sztuk dla poprzedniej i następnej daty sprzedaży w obrębie tej samej grupy narzędzi.

FIRST_VALUE(), LAST_VALUE(), NTH_VALUE()

FIRST_VALUE(column)

LAST_VALUE(column)

NTH_VALUE(column, n), gdzie n to określona pozycja

FIRST_VALUE()

SELECT

tool_group,

sale_date,

quantity_sold,

FIRST_VALUE(quantity_sold) OVER (PARTITION BY tool_group

ORDER BY sale_date) AS first_quantity

FROM

tools_sales;

asc tool_group ▼	② sale_date ▼	123 quantity_sold	123 first_quantity 🔻
Hand Tools	2023-01-01	5	5
Hand Tools	2023-01-03	7	5
Power Tools	2023-01-01	10	10
Power Tools	2023-01-02	8	10
Power Tools	2023-01-03	15	10
Safety Gear	2023-01-02	12	12

infoShareAcademy.com

SELECT

tool_group,

sale_date,

quantity_sold,

LAST_VALUE(quantity_sold) OVER (PARTITION BY tool_group

ORDER BY sale_date) AS first_quantity

FROM

tools_sales;

asc tool_group ▼	② sale_date ▼	123 quantity_sold	123 first_quantity 🔻
Hand Tools	2023-01-01	5	5
Hand Tools	2023-01-03	7	7.
Power Tools	2023-01-01	10	10
Power Tools	2023-01-02	8	8
Power Tools	2023-01-03	15	15
Safety Gear	2023-01-02	12	12

infoShareAcademy.com

SELECT

tool_group,

sale_date,

quantity_sold,

NTH_VALUE(quantity_sold, 3) OVER (PARTITION BY tool_group ORDER BY

sale_date) AS first_quantity

FROM

tools_sales;

ABC tool_group	② sale_date ▼	123 quantity_sold 🔻	123 first_quantity 🔻
Hand Tools	2023-01-01	5	[NULL]
Hand Tools	2023-01-03	7	[NULL]
Power Tools	2023-01-01	10	[NULL]
Power Tools	2023-01-02	8	[NULL]
Power Tools	2023-01-03	15	15
Safety Gear	2023-01-02	12	[NULL]

infoShareAcademy.com

Dla tabeli all_seasons o koszykarzach NBA znajdź pierwszy i ostatni sezon dla każdego koszykarza.

Agregaty avg(), sum(), count(), min(), max()

AVG(sale_amount) OVER (PARTITION BY tool_group ORDER BY sale_date)

SUM(quantity_sold) OVER (PARTITION BY tool_group ORDER BY sale_date)

COUNT(*) OVER (PARTITION BY tool_group ORDER BY sale_date)

MIN(sale_amount) OVER (PARTITION BY tool_group ORDER BY sale_date)

MAX(quantity_sold) OVER (PARTITION BY tool_group ORDER BY sale_date)

info Share ACADEMY

infoShareAcademy.com

SQL Analiza AVG()

SELECT

tool_group,

sale_date,

quantity_sold,

AVG(quantity_sold) OVER (PARTITION BY tool_group ORDER BY sale_date)

AS avg_quantity

FROM

tools_sales;

② sale_date ▼	123 quantity_sold 🔻	123 avg_quantity 🔻
2023-01-01	5	5
2023-01-03	7	6
2023-01-01	10	10
2023-01-02	8	9
2023-01-03	15	11
2023-01-02	12	12
	2023-01-01 2023-01-03 2023-01-01 2023-01-02 2023-01-03	2023-01-01 5 2023-01-03 7 2023-01-01 10 2023-01-02 8 2023-01-03 15

infoShareAcademy.com

SQL Analiza sum()

SELECT

tool_group,

sale_date,

quantity_sold,

SUM(quantity_sold) OVER (PARTITION BY tool_group ORDER BY sale_date)

AS total_quantity

FROM

tools_sales;

ABC tool_group ▼	② sale_date ▼	123 quantity_sold 🔻	123 total_quantity 🔻
Hand Tools	2023-01-01	5	5
Hand Tools	2023-01-03	7	12
Power Tools	2023-01-01	10	10
Power Tools	2023-01-02	8	18
Power Tools	2023-01-03	15	33
Safety Gear	2023-01-02	12	12

infoShareAcademy.com

SQL Analiza count()

SELECT

tool_group,

sale_date,

COUNT(*) OVER (PARTITION BY tool_group) AS days_with_sales

FROM

tools_sales;

ABC tool_group ▼	② sale_date ▼	123 days_with_sales
Hand Tools	2023-01-01	2
Hand Tools	2023-01-03	2
Power Tools	2023-01-01	3
Power Tools	2023-01-02	3
Power Tools	2023-01-03	3
Safety Gear	2023-01-02	1

infoShareAcademy.com

SQL Analiza MIN() MAX()

SELECT

tool_group,

sale_date,

quantity_sold,

MIN(quantity_sold) OVER (PARTITION BY tool_group) AS min_quantity_sold,

MAX(quantity_sold) OVER (PARTITION BY tool_group) AS max_quantity_sold

FROM

tools_sales;

ABC tool_group	② sale_date ▼	123 quantity_sold 🔻	123 min_quantity_sold 🔻	123 max_quantity_sold
Hand Tools	2023-01-01	5	5	7
Hand Tools	2023-01-03	7	5	7
Power Tools	2023-01-01	10	8	15
Power Tools	2023-01-02	8	8	15
Power Tools	2023-01-03	15	8	15
Safety Gear	2023-01-02	12	12	12

infoShareAcademy.com

Dla zbioru danych tools_sales znajdź:

- sumę i średnią wartość sprzedaży dla każdej grupy narzędzi, posortowanych według daty sprzedaży,
- maksymalną wartość sprzedaży dla każdej grupy narzędzi, posortowanych według daty sprzedaży,
- najwcześniejszą datę sprzedaży dla każdej grupy narzędzi.

Funkcje okna - podsumowanie

- 1. ROW_NUMBER(), RANK(), DENSE_RANK()
- 2. FIRST_VALUE(), LAST_VALUE(), NTH_VALUE()
- 3. LAG(), LEAD()
- 4. CUME_DIST()
- 5. NTILE()
- 6. AVG(), SUM(), COUNT(), MIN(), MAX()

Zadanie 3.7

Podsumowanie (instrukcja)

Analiza Sprzedaży Narzędzi – masz do dyspozycji tabelę tools_sales z informacjami o sprzedaży narzędzi w sklepie. Twoim zadaniem jest przygotowanie analizy danych przy użyciu funkcji okienkowych.

- a. **Numeracja Zamówień:** Dodaj kolumnę order_number, w której przypiszesz unikalne numery porządkowe dla każdego zamówienia, sortując je według daty sprzedaży.
- b. **Rangi Grup Narzędziowych:** Nadaj rangi dla każdej grupy narzędziowej, zaczynając od jedynki, sortując według ilości sprzedanych narzędzi malejąco.
- c. **Kumulatywny Rozkład Sprzedaży:** Utwórz kolumnę cumulative_sales, która będzie zawierać kumulatywną sumę sprzedaży dla każdego narzędzia, uporządkowanego według daty sprzedaży.
- d. **Analiza Dynamiki Sprzedaży:** Stwórz kolumny sales_change i percentage_change, które pokażą zmiany w ilości sprzedanych narzędzi i procentową zmianę w stosunku do poprzedniego zamówienia.

infoShareAcademy.com

- YoY
- MoM

• Year over Year - procentowa zmiana w stosunku do poprzedniego roku

Year,
Sales,
LAG(Sales, 1) OVER (ORDER BY Year) AS SalesLastYear,
((Sales - LAG(Sales, 1) OVER (ORDER BY Year)) / LAG(Sales, 1)
OVER (ORDER BY Year)) * 100 AS YoYChange
FROM
SalesData;

123 year 🔻	123 sales 🔻	123 saleslastyear	123 yoychange 🔻
2,019	120,000	[NULL]	[NULL]
2,020	150,000	120,000	25
2,021	180,000	150,000	20
2,022	200,000	180,000	11.11111111111

infoShareAcademy.com

· Month over Month - procentowa zmiana w stosunku do poprzedniego miesiące

SELECT
Month,
Sales,
LAG(Sales, 1) OVER (ORDER BY Month) AS SalesLastMonth,
((Sales - LAG(Sales, 1) OVER (ORDER BY Month)) / LAG(Sales, 1)
OVER (ORDER BY Month)) * 100 AS MoMChange
FROM
SalesData;

nonth 🔻	123 sales 🔻	123 saleslastmonth	123 momchange 🔻
2023-01-01	120,000	[NULL]	[NULL]
2023-02-01	130,000	120,000	8.333333333
2023-03-01	150,000	130,000	15.3846153846
2023-04-01	140,000	150,000	-6.6666666667
2023-05-01	160,000	140,000	14.2857142857

infoShareAcademy.com

Dla tabeli all_seasons o koszykarzach NBA znajdź średnią liczbę zdobytych punktów w sezonie dla każdego koszykarza oraz oblicz procentową zmianę średnich punktów rok do roku (YoY).

- Mode()
- Percenitle_disc()
- Percentile_cont()

- Kwantyl rzędu p to wartość liczbowa ze zbioru,
 od której p-ta część zbioru jest mniejsza.
- Percentyle kwantyle rzędów x/100 podział rosnąco posortowanego zbioru na 100 części.

- Kwantyle kwantyle rzędów x/4 podział rosnąco posortowanego zbioru na 4 części.
- Kwartyl Q2 to mediana, wartość środkowa.

Moda, dominanta - wartość najczęstsza.

SELECT tool_group, MODE() WITHIN GROUP (ORDER BY quantity_sold) AS mode_quantity
FROM tools_sales
GROUP BY tool_group;

SELECT tool_group, **PERCENTILE_DISC(0.5) WITHIN GROUP** (ORDER BY quantity_sold) AS median_quantity
FROM tools_sales
GROUP BY tool_group;

SELECT tool_group, **PERCENTILE_CONT(0.5) WITHIN GROUP** (ORDER BY quantity_sold) AS median_quantity
FROM tools_sales
GROUP BY tool_group;

Zadanie 3.9

Funkcje statystyczne (instrukcja)

Dla zbioru tools_sales oblicz ile wynosi:

- najczęściej występująca data sprzedaży dla każdej grupy narzędzi,
- mediana kwoty sprzedaży dla każdej grupy
 narzędzi (użyj zarówno funkcji percentile_disc jak
 i percentile_cont i porównaj wyniki).

Funkcje statystyczne - c.d.

- Wariancja
- Odchylenie standardowe
- Korelacja

Wariancja i odchylenie standardowe

Wariancja (VAR) i odchylenie standardowe (STDDEV) to typowe miary rozrzutu danych. Można je policzyć dla całej populacji jak i dla próbki.

STDDEV to po prostu pierwiastek kwadratowy z wariancji. Odchylenie std jest wyrażone w oryginalnych jednostkach, natomiast VAR w jednostkach do kwadratu.

infoShareAcademy.com

- Liczba określająca odchylenie elementów od sytuacji idealnej, w której występuje zależność liniowa.
- W przypadku braku korelacji liniowej, kowariancja przyjmuje wartość 0.
- Zależność pomiędzy kowariancją a korelacją:

$$cov(X,Y) = corr(X,Y)\delta_x \delta_y$$

gdzie:

corr(X,Y) - współczynnik korelacji liniowej pomiędzy zmiennymi X i Y

δ_x - odchylenie standardowe zmiennej X

δ_v - odchylenie standardowe zmiennej Y

infoShareAcademy.com

Funkcje statystyczne agregujące

- corr(dependent, independent)
- covar_pop() / covar_samp()
- stddev_pop() / stddev_samp() / stddev()
- var_pop() / var_samp() / variance()
- * regr_intercept()
- * regr_slope()

SELECT

tool_group,

STDDEV(quantity_sold) AS std_dev_quantity

FROM

tools_sales

GROUP BY

tool_group;

RBC tool_group	▼ 123 std_dev_quantity ▼	
Hand Tools	1,4142135624	
Safety Gear	[NULL]	
Power Tools	3.6055512755	

SELECT

CORR(quantity_sold, sale_amount) AS correlation

FROM

tools_sales;

Zadanie 3.10

Funkcje statystyczne (instrukcja)

Dla tabeli tools_sales oblicz wariancję ilości sprzedanych sztuk narzędzi.

Funkcje statystyczne - c.d.

- YoY, MoM
- Mode()
- Percenitle_disc()
- Percentile_cont()
- Wariancja
- Odchylenie standardowe
- Korelacja

Przy użyciu tabeli all_seasons, która zawiera dane o koszykarzach NBA, wykonaj następujące analizy:

- Oblicz średnią liczbę punktów (pts) dla każdego sezonu.
- Oblicz medianę wzrostu (player_height) dla wszystkich graczy.
- Oblicz korelację między liczbą punktów (pts) a liczbą asyst (ast).
- Znajdź najczęściej występującą rundę draftu (draft_round).

- Podzapytanie pozwala na wykorzystanie w ramach języka
 DQL (SELECT) kolejnego zapytania SELECT.
- Na ogół podzapytanie można wykonać jako poznany już JOIN.
- W większości przypadków wydajność JOIN jak i podzapytania są zbliżone.
- Czasem jednak jedna forma pozwala skrócić kod lub jest szybsza do napisania.

Podzapytania - występowanie

- SELECT
- FROM
- WHERE
- ORDER BY
- LIMIT
- HAVING

1. Pobieranie jednej wartości

SELECT column1, (SELECT MAX(column2) FROM table2) AS max_value FROM table1;

2. Pobieranie więcej niż jednej kolumny

SELECT column1, column2,

(SELECT column3, column4 FROM table2 WHERE condition) AS

subquery_result

FROM table1;

Podzapytania w klauzuli FROM

1. Podzapytanie jako źródło danych

SELECT column1, column2

FROM (SELECT * FROM table1 WHERE condition) AS subquery;

2. Łączenie wielu źródeł danych

SELECT column1, column2

FROM table1

JOIN (SELECT * FROM table2 WHERE condition) AS subquery

ON table1.columnX = subquery.columnY;

3. Podzapytania zwracające więcej niż jedną kolumnę

SELECT column1, column2

FROM (SELECT columnX, columnY FROM table2 WHERE condition) AS subquery;

A C A D E M Y

Podzapytania w klauzuli WHERE

1. Porównanie z pojedynczym wynikiem

SELECT column1, column2

FROM table1

WHERE columnX = (SELECT columnY FROM table2 WHERE condition);

2. Porównanie z wynikami podzapytania

SELECT column1, column2

FROM table1

WHERE columnX IN (SELECT columnY FROM table 2 WHERE condition);

3. Użycie podzapytania w warunku logicznym

SELECT column1, column2

FROM table1

WHERE EXISTS (SELECT 1 FROM table 2 WHERE condition);

info Share

Dla tabeli all_seasons:

 Wybierz wszystkich koszykarzy z sezonu 2020/2021, którzy zdobyli więcej punktów niż średnia liczba punktów zdobytych przez wszystkich koszykarzy w sezonie 2019/2020.

Podzapytania w klauzuli ORDER BY

1. Sortowanie wyników zapytania za pomocą podzapytania

SELECT column1, column2
FROM table
ORDER BY (SELECT some_column FROM another_table WHERE condition)
DESC;

2. Sortowanie po wynikach innego zapytania

SELECT column1, column2

FROM table1

ORDER BY (SELECT AVG(some_column) FROM table2) DESC;

3. Sortowanie warunkowe z podzapytaniem

SELECT column1, column2

FROM table

ORDER BY CASE WHEN (SELECT COUNT(*) FROM another_table

WHERE condition) > 0 THEN column1 ELSE column2 END DESC;

infoShareAcademy.com

1. Dynamiczne ustawianie LIMIT z podzapytaniem

SELECT column1, column2

FROM table

LIMIT (SELECT COUNT(*) FROM another_table WHERE condition);

Podzapytania w klauzuli HAVING

1. Grupowanie po kolumnie i filtrowanie wyników z użyciem HAVING

SELECT category, AVG(price) AS average_price

FROM products

GROUP BY category

HAVING AVG(price) > (SELECT AVG(price) FROM products);

2. Podzapytanie w HAVING z Warunkiem IN

SELECT category, COUNT(*) AS product_count

FROM products

GROUP BY category

HAVING COUNT(*) IN (SELECT MAX(product_count) FROM

products_by_category);

info Share

Dla tabeli all_seasons o koszykarzach NBA wybierz drużyny, które mają średnią liczbę punktów większą niż globalna średnia.

Podzapytania podsumowanie

- 1 Unikaj nadmiernego użycia podzapytań.
- 2 Staraj się, aby podzapytania były czytelne.
- 3 Zwracaj uwagę na wydajność.
- 4 Unikaj zbyt dużych zagnieżdżeń.
- 5 Testuj i analizuj wyniki.
- 6 Zwracaj uwagę na indeksy.

Podzapytania podsumowanie

- 1 Unikaj nadmiernego użycia podzapytań.
- 2 Staraj się, aby podzapytania były czytelne.
- 3 Zwracaj uwagę na wydajność.
- 4 Unikaj zbyt dużych zagnieżdżeń.
- 5 Testuj i analizuj wyniki.
- 6 Zwracaj uwagę na indeksy.

info Share ACADEMY

infoShareAcademy.com

Podzapytania podsumowanie

- 1 Unikaj nadmiernego użycia podzapytań.
- 2 Staraj się, aby podzapytania były czytelne.
- 3 Zwracaj uwagę na wydajność.
- 4 Unikaj zbyt dużych zagnieżdżeń.
- 5 Testuj i analizuj wyniki.
- 6 Zwracaj uwagę na indeksy.

Podzapytania podsumowanie

- 1 Unikaj nadmiernego użycia podzapytań.
- 2 Staraj się, aby podzapytania były czytelne.
- 3 Zwracaj uwagę na wydajność.
- 4 Unikaj zbyt dużych zagnieżdżeń.
- 5 Testuj i analizuj wyniki.
- 6 Zwracaj uwagę na indeksy.

info Share

Podzapytania podsumowanie

- 1 Unikaj nadmiernego użycia podzapytań.
- 2 Staraj się, aby podzapytania były czytelne.
- 3 Zwracaj uwagę na wydajność.
- 4 Unikaj zbyt dużych zagnieżdżeń.
- 5 Testuj i analizuj wyniki.
- 2 Zwracaj uwagę na indeksy.

Podzapytania podsumowanie

- 1 Unikaj nadmiernego użycia podzapytań.
- 2 Staraj się, aby podzapytania były czytelne.
- 3 Zwracaj uwagę na wydajność.
- 4 Unikaj zbyt dużych zagnieżdżeń.
- 5 Testuj i analizuj wyniki.
- 2wracaj uwagę na indeksy.

Podzapytania podsumowanie

• SELECT

- FROM
- WHERE
- ORDER BY
- LIMIT
- HAVING

SQL Query Execution Order

Zadanie 3.14

Podsumowujące (instrukcja)

Dla tabeli all_seasons o koszykarzach NBA oblicz:

- Jaka drużyna ma średnią liczbę punktów mniejszą niż drużyny z największą liczbą zwycięstw.
- Ile wynosi różnica pomiędzy średnią liczbą punktów a średnią liczbą zbiórek dla każdego gracza.

