初等数论 整除,同余和不定方程

LeyuDame

2024年11月1日

 LeyuDame
 初等数论
 2024 年 11 月 1 日
 1/15

整除的概念与基本性质

定义

对任给的两个整数 $a, b(a \neq 0)$, 如果存在整数 q, 使得 b = aq, 那么称 b 能被 a 整除 (或称 a 能整除 b), 记作 $a \mid b$. 否则, 称 b 不能被 a 整除, 记作 $a \nmid b$. 如果 $a \mid b$, 那么称 a 为 b 的因数, b 为 a 的倍数.

整除的概念与基本性质

性质

如果 $a\mid b$, 那么 $a\mid (-b)$,反过来也成立; 进一步, 如果 $a\mid b$, 那么 $(-a)\mid b$,反过来也成立.

性质

如果 a|b,b|c, 那么 a|c. (传递性)

性质

若 a|b,a|c, 则对任意整数 x,y, 都有 $a\mid bx+cy$. (即 a 能整除 b,c 的任意一个"线性组合")

若 a|n, b|n, 且存在整数 x, y, 使得 ax + by = 1, 证明: $ab \mid n$.

4/15

证明: 无论在数 12008 的两个 0 之间添加多少个 3 , 所得的数都是 19 的倍数.

5/15

已知一个 1000 位正整数的任意连续 10 个数码形成的 10 位数是 2^{10} 的倍数. 证明:该正整数为 2^{1000} 的倍数.

6/15

设 m 是一个大于 2 的正整数, 证明: 对任意正整数 n, 都有 $2^m-1 \nmid 2^n+1$.

7 / 15

素数与合数

性质

设 n 为大于 1 的正整数, p 是 n 的大于 1 的因数中最小的正整数, 则 p 为素数.

性质

如果对任意 1 到 \sqrt{n} 之间的素数 p, 都有 $p \nmid n$, 那么 n 为素数. 这里 n(>1) 为正整数.

证明.

事实上, 若 n 为合数, 则可写 $n=pq, 2\leqslant p\leqslant q$. 因此 $p^2\leqslant n$, 即 $p\leqslant \sqrt{n}$. 这表明 p 的素因子 $\leqslant \sqrt{n}$, 且它是 n 的因数, 与条件矛盾. 因此 n 为素数.

8 / 15

LeyuDame 2024 年 11 月 1 日

素数与合数

性质

素数有无穷多个

证明.

若只有有限个素数, 设它们是 $p_1 < p_2 < \cdots < p_n$. 考虑数

$$x = p_1 p_2 \cdots p_n + 1$$

其最小的大于 1 的因数 p_1 它是一个素数, 因此, p 应为 p_1, p_2, \cdots, p_n 中的某个数. 设 $p = p_i, 1 \le i \le n$, 并且 $x = p_i y$, 则 $p_1 p_2 \cdots p_n + 1 = p_i y$. 即

$$p_i(y - p_1 p_2 \cdots p_{i-1} p_{i+1} \cdots p_n) = 1.$$

这导致 $p_i \mid 1$. 矛盾. 所以, 素数有无穷多个.

设 n 为大于 1 的正整数. 证明: 数 $n^5 + n^4 + 1$ 不是素数.

10 / 15

考察下面的数列:

 $101, 10101, 1010101, \cdots$

问: 该数列中有多少个素数?

 LeyuDame
 初等数论
 2024 年 11 月 1 日
 11/15

求所有的正整数 n, 使得 $\frac{n(n+1)}{2} - 1$ 是一个素数.

12 / 15

LeyuDame 初等数论 2024 年 11 月 1 日

对任意正整数 n, 证明: 存在连续 n 个正整数, 它们都是合数.

13 / 15

设 n 为大于 2 的正整数. 证明: 存在一个素数 p , 满足 n .

 LeyuDame
 初等数论
 2024 年 11 月 1 日
 14 / 15

设 a, b, c, d, e, f 都是正整数, S = a + b + c + d + e + f 是 abc + def 和 ab + bc + ca - de - ef - ed 的因数. 证明: S 为合数.

15 / 15