Teorie 4 - 10.10.2024

(učebnice s. 103)

Derivace

Definice. Nechť funkce f je definována v okolí bodu c. Číslo f'(c), definované vztahem

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h},$$

se nazývá derivace funkce f v bodě c.

Poznámka. Geometrická interpretace f'(c)

Derivace funkce f v bodě c je rovna směrnici tečny grafu funkce f v bodě [c, f(c)], tj. $f'(c) = \operatorname{tg} \alpha$, kde α je úhel, který svírá tato tečna s kladnou poloosou x (nakreslete si obrázek: zlomek f(c+h) - f(c)/h je směrnice sečny grafu funkce f, která prochází body [c, f(c)] a [c+h, f(c+h)], zbytek dostanete limitním přechodem).

Například když f'(c) = 0, je tečna grafu funkce f v bodě [c, f(c)] rovnoběžná s osou x.

Věta (o derivaci základních funkcí). Pro derivace základních funkcí platí:

1.
$$(k)' = 0$$
 pro $x \in \mathcal{R} \ (k \in \mathcal{R})$

2.
$$(x^n)' = n \cdot x^{n-1}$$
 pro $x \in \mathcal{R} \ (n \in \mathcal{N})$

3.
$$(x^{\alpha})' = \alpha \cdot x^{\alpha-1}$$
 pro přípustná $x \ (\alpha \in \mathcal{R})$

4.
$$(e^x)' = e^x$$
 pro $x \in \mathcal{R}$

5.
$$(a^x)' = a^x \cdot \ln a$$
 pro $x \in \mathcal{R} \ (a > 0)$

6.
$$(\ln x)' = \frac{1}{x}$$
 pro $x > 0$

7.
$$(\log_a x)' = \frac{1}{x \cdot \ln a}$$
 pro $x > 0 \ (a > 0, a \ne 1)$

8.
$$(\sin x)' = \cos x$$
 pro $x \in \mathcal{R}$

9.
$$(\cos x)' = -\sin x$$
 pro $x \in \mathcal{R}$

10.
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$
 pro $x \in \mathcal{R} - \{\frac{\pi}{2} + k\pi\}$

11.
$$(\cot x)' = -\frac{1}{\sin^2 x}$$
 pro $x \in \mathcal{R} - \{k\pi\}$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 pro $x \in (-1,1)$

13.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
 pro $x \in (-1,1)$

14.
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$$
 pro $x \in \mathcal{R}$

15.
$$(\operatorname{arccotg} x)' = -\frac{1}{1+x^2}$$
 pro $x \in \mathcal{R}$

Věta (o derivaci operací a superpozice). Platí

(a)
$$(f \pm g)' = f' \pm g'$$

(b)
$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

(c)
$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

$$(d) \qquad (f[g])' = f'[g] \cdot g'$$

pokud existuje pravá strana vztahů.

(učebnice s. 109)

Derivace vyšších řádů

Definice. Funkce f" definovaná vztahem

$$f'' = (f')'$$

se nazývá druhá derivace funkce f.

Poznámka. Druhou derivaci funkce f najdeme podle definice tak, že funkci f' ještě jednou zderivujeme. Analogicky definujeme třetí derivaci funkce f (značíme f''') a derivace vyšších řádů (značíme $f^{(4)}$, $f^{(5)}$ atd.).

(učebnice s. 121 - tohle není v .pdf verzi učebnice) Taylorův polynom

4.4. Taylorův polynom

Definice. Nechť funkce f má v bodě a derivace až do řádu n-tého $(n \in \mathcal{N})$. Polynom T_n daný vztahem

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

se nazývá Taylorův polynom funkce f v bodě a.

Taylorův polynom 1. řádu = tečna ke grafu

Hezké příklady:

https://www.geogebra.org/m/dXx6Byrs

https://www.geogebra.org/m/cvA4Xct3