Luščenje modelskih parametrov

Miha Čančula

12. november 2011

1 Farmakološki model

1.1 Parameter p

V model iz naloge prejšnje parameter p še dodamo. Legla bo bolje k podatkom, izboljšana naša napoved. Žal pa zgubili smo s tem linearnost, grši problem je. Levenberg-Marquardt edino je upanje k hitri rešitvi.

1.2 Statistična upravičenost

Smisla kaj dosti pa nima, da si problem bi zapletli, več spremenljivk pridodali, če n'bene od njih ni koristi. Smiselnost nov'ga modela zato χ -kvadrat bo ocenil.

$$\chi^2 = \sum_{i=1}^n \left(\frac{f(x_i, \mathbf{p}) - y_i}{\sigma_i} \right)^2 \tag{1}$$

(2)

 σ od i je napaka, ki bla je z nalogo podana. V našem primeru je fajn, saj prav vse so trojki enake. f pa je funkcija naša, odvisna od x in parametrov. Vrednosti njih optimalne podane so v prvi tabeli.

"Goodness of fit", sem prebral, da s χ na kvadrat je izražen, Treba ga le še deliti s številom prostostnih je stopenj. Reče tedaj se temù, da je χ^2 reduciran. Fit je najboljši, ko blizu je vrednosti ena.

$$\chi_{red}^2 = \frac{\chi^2}{N - n} \tag{3}$$

Veliki N v tem primeru število je naših meritev, mali pa n je število prostih parametrov fit-a.

Model	y_0	a	p	χ^2_{red}
Dva parametra	106 ± 5	25 ± 4	1	3,67
Trije parametri	100 ± 4	20 ± 2	1.4 ± 0.2	1,87

Tabela 1: Primerjava med modeloma z dvema oz. tremi spremenljivkami.

Slika 1: Primerjava med modeloma z dvema oz. tremi spremenljivkami.

1.3 Rezultati

Vidi se z zgornje tabele, da nov parameter pomaga. Fit-a dobroto izboljša, blizu enici jo pahne. Ampak pozoren pogled še to pridobitev razkrije: bližje je y_0 zdaj pričakovani stotici.

Lažjo predstavo da graf, pod katerim enica se skriva. Modra se črta na videz že bolje ujema s podatki. Prednost le-te pred zeleno je vidna predvsem pri robovih.

1.4 Odvisnost od p

Če p-ja ne bi prilagajali, vrednost mu raje kar dali, Gledal sem kaj bi godilo se, z mero za fita dobroto.

2 Ledvice

Isti postopek kot prej, še tu bomo uporabili,

Slika 2: Odvisnost χ^2_{red} od fiksnega parametra p

Slika 3: Odvisnost χ^2_{red} od fiksnega parametra p – logaritemski graf

vse kar se res spremeni je funkcija testna modela. Druge so tudi napake, razpade zdaj štejemo jeder, σ je kar enostavna, koren je števila razpadov. Vse je ostalo kot prej, kriterij dobrote obdržimo.

2.1 Modeli

Trije so takšni modeli, ki sem jih v nalogi preverjal, Dva sta razdelčna, kjer kri v posode zapremo, eden pa tak, da je caš v eksponentu celo pod korenom.

$$f_1(t) = A \exp(-\lambda t) \tag{4}$$

$$f_2(t) = A \exp(-\lambda_1 t) + B \exp(-\lambda_2 t)$$
(5)

$$f_3(t) = A \exp(-\lambda \sqrt{t - t_0}) \tag{6}$$

Zadnji model je poseben, saj važen je čas na začetku. Kdaj smo meritve začeli, poskusil sem s fitom dognati, dal spremenljivko sem zraven, t_0 , da ta čas sem izluščil.

2.2 Rezultati

Slika tadruga pokaže, da najboljš model je tadrugi. Tisti s krvjo v dveh posodah, ki 'mata različne volumne.

Koliko res pridobimo, ko drugo posodo dodamo? "Goodness" se vidno izboljša, kar petdesetkrat je zdaj manjša. Tisti model, ki korene ima, po dobroti je v sredi.

Model	χ^2_{red}
En razdelek	156,0
Dva razdelka	3,0
Korenska odvisnost	14,4

Tabela 2: Statistična upravičenost modelov čistilnosti ledvic.

Daleč najboljši model je tisti s prekatoma dvema. Lambdi pri njem sta v razmerju, tako kot razdelkov volumna. Vemo da človek v sebi približno pet litrov krvi 'ma. Sklepamo torej lahko o volumnu obžilnih prostorov.

3 Korozija

Slika 4: Modeli čistilnosti ledvic.