Technische Universität Berlin

Fakultät II – Institut für Mathematik Hoffmann/Karow/Scheutzow WS 07/08 7. April 2008

April – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorna	me:				
MatrNr.:	Studi	engang	:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechei	naufgal	oen. G	eben S	Sie imn	ner den
Die Bearbeitungszeit beträgt eine Stu	nde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 12				,	·	
Korrektur						
	1	2	3	4	5	\sum
				i	I	

1. Aufgabe 9 Punkte

Sei f diejenige gerade 2π -periodische Funktion mit f(x) = -x für $x \in [0, \pi]$.

- a) Skizzieren Sie f (über mindestens 2 Perioden).
- b) Bestimmen Sie die reelle Fourierreihe von f.

2. Aufgabe 10 Punkte

Geben Sie alle möglichen Kandidaten an, bei denen die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$, $(x,y,z) \mapsto x^2y + yz^2$ unter der Nebenbedingung $x^2 + y^2 = z$ ein lokales Extremum besitzt.

Hinweis: Sie brauchen nicht zu untersuchen, ob es sich tatsächlich um Extrema handelt.

3. Aufgabe 7 Punkte

Sei die Massedichte $\mu: \mathbb{R}^3 \to \mathbb{R}$ gegeben durch $\mu(x,y,z) = z\sqrt{x^2+y^2+z^2}$. Bestimmen Sie die Gesamtmasse der halben Einheitskugel H mit $z \geq 0$ und Mittelpunkt (0,0,0).

Hinweis: Kugelkoordinaten können hilfreich sein.

4. Aufgabe 7 Punkte

Bestimmen Sie die Taylorformel 2. Ordnung der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto \sin(y)e^{x+y}$$

im Entwicklungspunkt (0,0).

5. Aufgabe 7 Punkte

Sei $B = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, \ 0 \le z \le 2\}$ und $\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3, \ \vec{v}(x, y, z) = (zx^3, zy^3, x^2y^3)^T$. Berechnen Sie

$$\iint_{\partial B} \vec{v} \cdot d\vec{O}.$$

Hinweis: Satz von Gauss, Zylinderkoordinaten.