Mappings valued in the Wasserstein space

Hugo Lavenanta

May 14th, 2020

Università Commerciale Luigi Bocconi

 $^{^{\}it a}$ Department of Mathematics, University of British Columbia

The Wasserstein¹ space

D convex and compact domain of \mathbb{R}^d .

¹and Monge, Lévy, Fréchet, Kantorovich, Rubinstein, etc.

The Wasserstein¹ space

D convex and compact domain of \mathbb{R}^d .

 $\mathcal{P}(D)$ space of probability measures on D.

The **Wasserstein space** is the space $\mathcal{P}(D)$ endowed with the Wasserstein distance.

¹and Monge, Lévy, Fréchet, Kantorovich, Rubinstein, etc.

$\overline{}$	$\overline{}$	_	$\overline{}$	_	_		_	. —			_		
••	•			0	0	0	00	%	%	8	0		
•													
*													
*													
*													4
PE													4
PA													4
PA													*
*													*
*													*
*													*
*													*
*													+
\bigstar	*	*	*	*	★	★	★	*	*	*	+	+	+

••	•			0	00	00	00	%	%	0			
				0	00	00	00	00	%	%	%		
*			0	0	0	00	0	00	00	%	%	0	
*	*	0	0	0	0	0	00	00	00	00	%	4	0
*	*	0	0	0	0	0	0	00	00	00	20	0	*
· A	D. C.	Page 1	PE	\$	1	0	1	0	0	1	0	1	*
DA.	DE.	A.	A.	\$	A.	DE.	1	1	1	1	1	1	4
A	A.	A.	A.	A.	DE.	DE.	1	1	1	1	1	de	*
*	A.	A.	A.	1	AR.	AR.	1	1/1	1	4	1	4	*
*	*	*	A.	1	A.	A.	1/1	1/1	1	4	4	*	*
K	*	*	*	*	1/K	1/4	*	1/4	1	*	*	*	*
*	*	*	*	*	*	*	*	*	*	*	*	*	+
*	*	*	*	*	*	*	*	*	*	*	+	+	+
*	\star	*	*	*	★	索	*	*	*	+	+	+	+

In this presentation

1. A quick introduction to the Wasserstein space

2. Harmonic mappings valued in the Wasserstein space

3. An application in nonlinear elasticity

Wasserstein space

1. A quick introduction to the

Horizontal derivative

A particle located at x moves to $x + h\mathbf{v}(x)$

$$\boxed{\frac{\partial_t \mu = -\nabla \cdot (\mu \mathbf{v})}{}}$$

A particle located at x moves to $x + h\mathbf{v}(x)$

• Quadratic Optimal Transport: the square of the norm of the speed is

$$\min_{\mathbf{v}: D \to \mathbb{R}^d} \left\{ \int_{D} |\mathbf{v}(y)|^2 \ \mu(\mathrm{d}y) \ : \ -\nabla \cdot (\mu \mathbf{v}) = \partial_t \mu \right\}.$$

Action and geodesics

If $\mu:[0,1]\to\mathcal{P}(D)$ is given, its **action** is

$$\mathcal{A}(\mu) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_0^1 \int_{\mathcal{D}} |\mathbf{v}_t|^2 d\mu_t dt : \partial_t \mu_t + \nabla \cdot (\mu_t \mathbf{v}_t) = 0 \right\}.$$

Action and geodesics

If $\mu:[0,1]\to \mathcal{P}(\mathsf{D})$ is given, its **action** is

$$\mathcal{A}(\mu) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_0^1 \int_{\mathbb{D}} |\mathbf{v}_t|^2 d\mu_t dt : \partial_t \mu_t + \nabla \cdot (\mu_t \mathbf{v}_t) = 0 \right\}.$$

The Wasserstein distance W_2 is

$$\frac{1}{2}W_2^2(\rho,\nu) = \min_{\mu} \left\{ \mathcal{A}(\mu) : \mu_0 = \rho, \ \mu_1 = \nu \right\},\,$$

Action and geodesics

If $\mu:[0,1]\to \mathcal{P}(\mathcal{D})$ is given, its **action** is

$$\mathcal{A}(\mu) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_0^1 \int_{\mathcal{D}} |\mathbf{v}_t|^2 d\mu_t dt : \partial_t \mu_t + \nabla \cdot (\mu_t \mathbf{v}_t) = 0 \right\}.$$

The Wasserstein distance W_2 is

$$\frac{1}{2}W_2^2(\rho,\nu) = \min_{\mu} \left\{ \mathcal{A}(\mu) : \mu_0 = \rho, \ \mu_1 = \nu \right\},\,$$

and the minimizers are the constant-speed geodesics.

Wasserstein spaces on manifolds

The definition can be extended for *D* Riemannian manifold, and similar numerical methods can be used².

²H. Lavenant, S. Claici, E. Chien and J. Solomon. *Dynamical Optimal Transport on Discrete Surfaces*. 2018.

Wasserstein spaces on manifolds

The definition can be extended for *D* Riemannian manifold, and similar numerical methods can be used².

²H. Lavenant, S. Claici, E. Chien and J. Solomon. *Dynamical Optimal Transport on Discrete Surfaces*. 2018.

Finding matching between distributions of mass is an ubiquitous task.

³Y. Brenier. The least action principle and the related concept of generalized flows for incompressible perfect fluids. 1989.

⁴R. Jordan, D. Kinderlehrer, and F. Otto. *The variational formulation of the Fokker–Planck equation* 1998.

⁵J.-D. Benamou, G. Carlier, and F. Santambrogio. *Variational mean field games*. 2017.

⁶G. Peyré and M. Cuturi. *Computational optimal transport*. 2019.

Finding matching between distributions of mass is an ubiquitous task. Some use of the Wasserstein distance:

- Least action principle in fluid mechanics3.
- **Gradient flows** in Wasserstein space yield parabolic PDEs⁴.

³Y. Brenier. The least action principle and the related concept of generalized flows for incompressible perfect fluids. 1989.

⁴R. Jordan, D. Kinderlehrer, and F. Otto. *The variational formulation of the Fokker–Planck equation* 1998.

⁵J.-D. Benamou, G. Carlier, and F. Santambrogio. *Variational mean field games*. 2017.

⁶G. Peyré and M. Cuturi. *Computational optimal transport*. 2019.

Finding matching between distributions of mass is an ubiquitous task. Some use of the Wasserstein distance:

- Least action principle in fluid mechanics3.
- **Gradient flows** in Wasserstein space yield parabolic PDEs⁴.
- **Nash equilibrium** in variational Mean Field Games⁵.

³Y. Brenier. The least action principle and the related concept of generalized flows for incompressible perfect fluids. 1989.

⁴R. Jordan, D. Kinderlehrer, and F. Otto. *The variational formulation of the Fokker–Planck equation* 1998.

⁵J.-D. Benamou, G. Carlier, and F. Santambrogio. *Variational mean field games*. 2017.

⁶G. Peyré and M. Cuturi. *Computational optimal transport*. 2019.

Finding matching between distributions of mass is an ubiquitous task. Some use of the Wasserstein distance:

- Least action principle in fluid mechanics3.
- Gradient flows in Wasserstein space yield parabolic PDEs4.
- Nash equilibrium in variational Mean Field Games⁵.
- Data fitting in machine learning⁶.

³Y. Brenier. The least action principle and the related concept of generalized flows for incompressible perfect fluids. 1989.

⁴R. Jordan, D. Kinderlehrer, and F. Otto. *The variational formulation of the Fokker–Planck equation* 1998.

⁵J.-D. Benamou, G. Carlier, and F. Santambrogio. *Variational mean field games*. 2017.

⁶G. Peyré and M. Cuturi. *Computational optimal transport*. 2019.

 Stochastic process (X_t), access to independent samples at different times.

⁷B. Schmitzer, K. P. Schäfers, and B. Wirth. *Dynamic Cell Imaging in PET with Optimal Transport Regularization*. 2019.

 Stochastic process (X_t), access to independent samples at different times.

⁷B. Schmitzer, K. P. Schäfers, and B. Wirth. *Dynamic Cell Imaging in PET with Optimal Transport Regularization*. 2019.

- Stochastic process (X_t), access to independent samples at different times.
- Reconstruction of the process?

$$\min_{\rho} \left\{ \sum_{t_i} \operatorname{Loss}(\rho_{t_i}, \mathsf{data}_{t_i}) + \lambda \underbrace{\mathcal{A}(\rho)}_{\mathsf{regularization}} \right\}$$

⁷B. Schmitzer, K. P. Schäfers, and B. Wirth. *Dynamic Cell Imaging in PET with Optimal Transport Regularization*. 2019.

- Stochastic process (X_t), access to independent samples at different times.
- Reconstruction of the process?
- Presence of noise?
 Handling birth and death of cells?

$$\min_{\rho} \left\{ \sum_{t_i} \operatorname{Loss}(\rho_{t_i}, \mathsf{data}_{t_i}) + \lambda \underbrace{\mathcal{A}(\rho)}_{\mathsf{regularization}} \right\}$$

10/25

 $^{^{7}}$ B. Schmitzer, K. P. Schäfers, and B. Wirth. Dynamic Cell Imaging in PET with Optimal Transport Regularization. 2019.

_			

2. Harmonic mappings valued in

the Wasserstein space

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary

We study $\mu:\Omega\to \mathcal{P}(\mathsf{D})$.

⁸H. Lavenant. Harmonic mappings valued in the Wasserstein space. 2019.

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary (before $\Omega = [0,1] \subset \mathbb{R}$).

We study $\mu:\Omega\to\mathcal{P}(D)$.

Definition of $\mathrm{Dir}(\mu)=rac{1}{2}\int_{\Omega}|
abla\mu|^2$ the **Dirichlet energy** generalizing $\mathcal{A}.$

⁸H. Lavenant. Harmonic mappings valued in the Wasserstein space. 2019.

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary (before $\Omega = [0,1] \subset \mathbb{R}$).

We study $\mu : \Omega \to \mathcal{P}(D)$.

Definition of $\mathrm{Dir}(\boldsymbol{\mu}) = \frac{1}{2} \int_{\Omega} |\nabla \boldsymbol{\mu}|^2$ the **Dirichlet energy** generalizing \mathcal{A} .

Minimizers of Dir are called harmonic mappings (valued in the Wasserstein space).

⁸H. Lavenant. Harmonic mappings valued in the Wasserstein space. 2019.

 Ω bounded set of \mathbb{R}^n with Lipschitz boundary (before $\Omega = [0,1] \subset \mathbb{R}$).

We study $\mu:\Omega\to\mathcal{P}(D)$.

Definition of $\mathrm{Dir}(\mu)=rac{1}{2}\int_{\Omega}|
abla\mu|^2$ the **Dirichlet energy** generalizing \mathcal{A} .

Minimizers of $\mathop{\rm Dir}\nolimits$ are called harmonic mappings (valued in the Wasserstein space).

If $u: \Omega \to D$ and $\mu(x) := \delta_{u(x)}$ then $\mathrm{Dir}(\mu) = \frac{1}{2} \int_{\Omega} |\nabla u|^2$.

⁸H. Lavenant. Harmonic mappings valued in the Wasserstein space. 2019.

The Dirichlet energy⁹

Definition

If $\mu:\Omega\to\mathcal{P}(D)$ is given,

$$\mathrm{Dir}(\boldsymbol{\mu}) := \min_{\mathbf{v}} \left\{ \frac{1}{2} \int_{\Omega} \int_{\mathcal{D}} |\mathbf{v}|^2 \mathrm{d}\boldsymbol{\mu} \ : \ \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{\mathcal{D}} \cdot (\boldsymbol{\mu} \mathbf{v}) = 0 \right\},$$

where $\mathbf{v}: \Omega \times D \to \mathbb{R}^{nd}$ "density of Jacobian matrix".

If $\Omega = [0, 1]$ it coincides with \mathcal{A} .

⁹Brenier. Extended Monge-Kantorovich theory. 2003.

Equivalence with a metric definition¹⁰

$$\frac{W_2^2(\boldsymbol{\mu}(\mathbf{X}),\boldsymbol{\mu}(\mathbf{X}'))}{\varepsilon^2}$$

¹⁰Korevaar and Schoen. Sobolev spaces and harmonic maps for metric space targets. 1993.

Equivalence with a metric definition¹⁰

$$\frac{1}{\varepsilon^n} \int_{\Omega} \frac{W_2^2(\boldsymbol{\mu}(x), \boldsymbol{\mu}(x'))}{\varepsilon^2} \mathbb{1}_{|x-x'| \leqslant \varepsilon} \, \mathrm{d}x'$$

¹⁰Korevaar and Schoen. Sobolev spaces and harmonic maps for metric space targets. 1993.

Equivalence with a metric definition¹⁰

$$\operatorname{Dir}_{\varepsilon}(\boldsymbol{\mu}) := \frac{\mathsf{C}_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{W_2^2(\boldsymbol{\mu}(\mathsf{X}), \boldsymbol{\mu}(\mathsf{X}'))}{\varepsilon^2} \mathbb{1}_{|\mathsf{X} - \mathsf{X}'| \leqslant \varepsilon} \, \mathrm{d}\mathsf{X}' \, \mathrm{d}\mathsf{X}$$

Proposed by Korevaar, Schoen (and Jost) for mappings valued in metric spaces.

¹⁰Korevaar and Schoen. Sobolev spaces and harmonic maps for metric space targets. 1993.

Equivalence with a metric definition¹⁰

$$\mathrm{Dir}_{\varepsilon}(\boldsymbol{\mu}) := \frac{\mathsf{C}_n}{2} \int_{\Omega} \frac{1}{\varepsilon^n} \int_{\Omega} \frac{W_2^2(\boldsymbol{\mu}(x), \boldsymbol{\mu}(x'))}{\varepsilon^2} \mathbb{1}_{|x-x'| \leqslant \varepsilon} \, \mathrm{d}x' \, \mathrm{d}x$$

Proposed by Korevaar, Schoen (and Jost) for mappings valued in metric spaces.

Theorem

There holds

$$\lim_{\varepsilon \to 0} \mathrm{Dir}_{\varepsilon} = \mathrm{Dir},$$

and the convergence holds pointwisely and in the sense of Γ -convergence along the sequence $\varepsilon_m=2^{-m}$.

¹⁰Korevaar and Schoen. Sobolev spaces and harmonic maps for metric space targets. 1993.

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

The **displacement** interpolation

- Midpoint of the geodesic in the Wasserstein space.
- The space $(\mathcal{P}(D), W_2)$ is a **positively curved space**: no convexity of W_2^2 nor Dir .

Curvature and convexity

If $\mu, \nu \in \mathcal{P}(D)$, two ways to interpolate.

The **displacement** interpolation

- Midpoint of the geodesic in the Wasserstein space.
- The space (P(D), W₂) is a
 positively curved space: no
 convexity of W₂ nor Dir.

The **Linear** interpolation

- The Wasserstein distance square W_2^2 and the Dirichlet energy are convex.
- Tools from convex analysis.

The Dirichlet problem

The Dirichlet problem

We choose $\mu_b: \partial\Omega \to \mathcal{P}(D)$ the boundary data.

Definition

The Dirichlet problem is

$$\min_{\boldsymbol{\mu}} \left\{ \operatorname{Dir}(\boldsymbol{\mu}) \; : \; \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \; \mathsf{on} \; \partial \Omega \right\}.$$

The solutions of the Dirichlet problem are called harmonic mappings (valued in the Wasserstein space).

The Dirichlet problem

We choose $\mu_b:\partial\Omega\to\mathcal{P}(D)$ the boundary data.

Definition

The Dirichlet problem is

$$\min_{\boldsymbol{\mu}} \left\{ \operatorname{Dir}(\boldsymbol{\mu}) \; : \; \boldsymbol{\mu} = \boldsymbol{\mu}_{\mathrm{b}} \; \mathsf{on} \; \partial \Omega \right\}.$$

The solutions of the Dirichlet problem are called harmonic mappings (valued in the Wasserstein space).

Theorem

Assume $\mu_b: \partial\Omega \to (\mathcal{P}(D), W_2)$ is a Lipschitz mapping. Then there exists at least one solution to the Dirichlet problem.

Uniqueness is an open question.

Numerics: example

Numerics: example

Numerics: adaptation of Benamou and Brenier¹¹

The Dirichlet problem is a convex optimization problem.

¹¹J.-D. Benamou, and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. 2000.

Numerics: adaptation of Benamou and Brenier¹¹

The Dirichlet problem is a convex optimization problem.

Unknowns ($\mathbf{m} = \mu \mathbf{v}$ is the momentum):

$$\mu: \Omega \times D \to \mathbb{R}_+$$

$$\mathbf{m}:\Omega\times D\to\mathbb{R}^{nd}$$

¹¹J.-D. Benamou, and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. 2000.

Numerics: adaptation of Benamou and Brenier¹¹

The Dirichlet problem is a convex optimization problem.

Unknowns ($\mathbf{m} = \mu \mathbf{v}$ is the momentum):

$$\mu: \Omega \times D \to \mathbb{R}_+$$

$$\mathbf{m}:\Omega\times D\to\mathbb{R}^{nd}$$

Objective:

$$\min_{\boldsymbol{\mu}, \mathbf{m}} \left\{ \iint_{\Omega \times \mathcal{D}} \frac{|\mathbf{m}|^2}{2\boldsymbol{\mu}} \right\}$$

under the constraints:

$$\begin{cases} \nabla_{\Omega} \boldsymbol{\mu} + \nabla_{D} \cdot \mathbf{m} = 0, \\ \boldsymbol{\mu} = \boldsymbol{\mu}_{b} \text{ on } \partial \Omega. \end{cases}$$

¹¹J.-D. Benamou, and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. 2000.

Numerics: convergence? (for geodesics $\Omega = [0, 1]$)

In practice: finite-dimensional "approximation" with two convex optimization problems in duality, then **ADMM**.

¹²N. Papadakis, G. Peyré, and E. Oudet. *Optimal transport with proximal splitting*. 2014.

¹³R. Hug, E. Maitre, and N. Papadakis. *On the convergence of augmented Lagrangian method for optimal transport between nonnegative densities.* 2020

¹⁴H. Lavenant. Unconditional convergence for discretizations of dynamical optimal transport. 2020.

Numerics: convergence? (for geodesics $\Omega = [0, 1]$)

In practice: finite-dimensional "approximation" with two convex optimization problems in duality, then **ADMM**.

Two kinds of convergence:

 Convergence of the convex optimization algorithm to solve the discretized problem¹² ¹³.

¹²N. Papadakis, G. Peyré, and E. Oudet. Optimal transport with proximal splitting. 2014.

¹³R. Hug, E. Maitre, and N. Papadakis. On the convergence of augmented Lagrangian method for optimal transport between nonnegative densities. 2020

¹⁴H. Lavenant. Unconditional convergence for discretizations of dynamical optimal transport. 2020.

Numerics: convergence? (for geodesics $\Omega = [0, 1]$)

In practice: finite-dimensional "approximation" with two convex optimization problems in duality, then **ADMM**.

Two kinds of convergence:

- Convergence of the convex optimization algorithm to solve the discretized problem¹² 13.
- Convergence of the solutions of the discretized problem to the continuous one¹⁴.

¹²N. Papadakis, G. Peyré, and E. Oudet. Optimal transport with proximal splitting. 2014.

¹³R. Hug, E. Maitre, and N. Papadakis. On the convergence of augmented Lagrangian method for optimal transport between nonnegative densities. 2020

¹⁴H. Lavenant. Unconditional convergence for discretizations of dynamical optimal transport. 2020.

Some functionals $F:\mathcal{P}(D)\to\mathbb{R}\cup\{+\infty\}$ are convex along geodesics, e.g.

$$\mu \to \int_{\mathcal{D}} \mu(y) \ln(\mu(y)) \, \mathrm{d}y.$$

Some functionals $F:\mathcal{P}(D)\to\mathbb{R}\cup\{+\infty\}$ are convex along geodesics, e.g.

$$\mu \to \int_D \mu(y) \ln(\mu(y)) dy.$$

Theorem

Take $F: \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_b: \partial\Omega \to \mathcal{P}(D)$ such that $\sup_{\partial\Omega} (F \circ \mu_b) < +\infty$.

Some functionals $F:\mathcal{P}(D)\to\mathbb{R}\cup\{+\infty\}$ are convex along geodesics, e.g.

$$\mu \to \int_D \mu(y) \ln(\mu(y)) dy.$$

Theorem

Take $F: \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_b: \partial\Omega \to \mathcal{P}(D)$ such that $\sup_{\partial\Omega} (F \circ \mu_b) < +\infty$.

Then there exists at least one solution μ of the Dirichlet problem with boundary conditions μ_{D} such that

$$\Delta(\mathit{F} \circ \boldsymbol{\mu}) \geqslant 0 \qquad \quad \text{and} \qquad \quad \underset{\Omega}{\operatorname{ess\,sup}}(\mathit{F} \circ \boldsymbol{\mu}) \leqslant \underset{\partial\Omega}{\operatorname{sup}}(\mathit{F} \circ \boldsymbol{\mu}_{\mathit{b}}).$$

Some functionals $F:\mathcal{P}(D)\to\mathbb{R}\cup\{+\infty\}$ are convex along geodesics, e.g.

$$\mu \to \int_D \mu(y) \ln(\mu(y)) dy.$$

Theorem

Take $F: \mathcal{P}(D) \to \mathbb{R} \cup \{+\infty\}$ convex along generalized geodesics (and few additional regularity property) and a boundary condition $\mu_b: \partial\Omega \to \mathcal{P}(D)$ such that $\sup_{\Omega \to 0} (F \circ \mu_b) < +\infty$.

Then there exists at least one solution μ of the Dirichlet problem with boundary conditions μ_{D} such that

$$\Delta(F \circ \mu) \geqslant 0$$
 and $\operatorname*{ess\,sup}_{\Omega}(F \circ \mu) \leqslant \operatorname*{sup}_{\partial\Omega}(F \circ \mu_b).$

Already known for harmonic mappings valued in Riemannian manifolds (Ishihara) and Non Positively Curved spaces (Sturm).

19/25

elasticity

3. An application in nonlinear

A variational problem inspired from elasticity theory

 \mathcal{L}_{Ω} and \mathcal{L}_{D} Lebesgue measures restricted to D and Ω respectively.

$$\min_{u:\Omega\to D}\left\{E(u):=\int_{\Omega}\left(\frac{1}{2}|\nabla u(x)|^2-f(x)\cdot u(x)\right)\mathrm{d}x\ :\ u=g\ \text{on}\ \partial\Omega\ \text{and}\ u\#\mathcal{L}_{\Omega}=\mathcal{L}_{D}\right\}$$

- $f: \Omega \to \mathbb{R}^d$ exterior force.
- $g:\partial\Omega\to\partial D$ prescribed deformation on the boundary.
- $u\#\mathcal{L}_{\Omega} = \mathcal{L}_{D} \Leftrightarrow \forall B \subset D, \ \mathcal{L}_{\Omega}(u^{-1}(B)) = \mathcal{L}_{D}(B)$. If d = n and u smooth and one-to-one, it's equivalent to

$$|\det \nabla u| = 1.$$

A variational problem inspired from elasticity theory

 \mathcal{L}_{Ω} and \mathcal{L}_{D} Lebesgue measures restricted to D and Ω respectively.

$$\min_{u:\Omega\to D}\left\{E(u):=\int_{\Omega}\left(\frac{1}{2}|\nabla u(x)|^2-f(x)\cdot u(x)\right)\mathrm{d}x\ :\ u=g\ \text{on}\ \partial\Omega\ \text{and}\ u\#\mathcal{L}_{\Omega}=\mathcal{L}_{D}\right\}$$

- $f: \Omega \to \mathbb{R}^d$ exterior force.
- $g:\partial\Omega\to\partial D$ prescribed deformation on the boundary.
- $u\#\mathcal{L}_{\Omega} = \mathcal{L}_{D} \Leftrightarrow \forall B \subset D, \ \mathcal{L}_{\Omega}(u^{-1}(B)) = \mathcal{L}_{D}(B)$. If d = n and u smooth and one-to-one, it's equivalent to

$$|\det \nabla u| = 1.$$

Critical points satisfy $\Delta u + f = (\nabla \omega) \circ u$ in the interior of Ω , where $\omega : D \to \mathbb{R}$ is a Lagrange multiplier.

An example: pure torsion of a cylinder

$$\Omega = \mathit{D} = \mathit{B}(0,1) \times [0,1].$$
 For $a>0$,

$$u_a \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} R_{az} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix}$$

where $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ rotation by an angle θ .

An example: pure torsion of a cylinder

$$\Omega = \mathit{D} = \mathit{B}(0,1) \times [0,1].$$
 For $a>0$,

$$u_a \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} R_{az} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix}$$

where $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ rotation by an angle θ .

Result $(f \equiv 0)$

For all a, the function u_a is a critical point of the energy.

At least for small a, it is a global minimizer with boundary condition $g = u_a|_{\partial\Omega}$.

Transport plan

x

Ω

D

Method

 $u: \Omega \to D$ is replaced by $\mu: \Omega \to \mathcal{P}(D)$.

• By disintegration/fubinization, one can see a mapping $\mu:\Omega\to \mathcal{P}(D)$ as $\mu\in\mathcal{P}(\Omega\times D)$ whose first marginal is \mathcal{L}_{Ω} .

Transport plan

Method

 $u: \Omega \to D$ is replaced by $\mu: \Omega \to \mathcal{P}(D)$.

- By disintegration/fubinization, one can see a mapping $\mu: \Omega \to \mathcal{P}(D)$ as $\mu \in \mathcal{P}(\Omega \times D)$ whose first marginal is \mathcal{L}_{Ω} .
- The constraint $u\#\mathcal{L}_{\Omega}=\mathcal{L}_{D}$ is replaced by the second marginal of μ being \mathcal{L}_{D} . We write $\mu\in\Pi(\mathcal{L}_{\Omega},\mathcal{L}_{D})$.
- The marginal constraints are linear. For instance, for all $a \in C(\Omega)$:

$$\iint_{\Omega \times D} a(x) \, \boldsymbol{\mu}(\mathrm{d}x, \mathrm{d}y) = \int_{\Omega} a(x) \, \mathrm{d}x$$

A convex relaxation¹⁵

$$\min_{u:\Omega\to D} \left\{ \int_{\Omega} \left(\frac{1}{2} |\nabla u(x)|^2 - f(x) \cdot u(x) \right) \mathrm{d}x : u = g \text{ on } \partial\Omega \text{ and } u\#\mathcal{L}_{\Omega} = \mathcal{L}_{D} \right\}$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\min_{\boldsymbol{\mu}:\Omega\to \mathcal{P}(D)} \left\{ \mathrm{Dir}(\boldsymbol{\mu}) - \iint_{D\times \Omega} f(x) \cdot y \, \boldsymbol{\mu}(\mathrm{d}x,\mathrm{d}y) : \right\}$$

 $\mu(\mathsf{x},\cdot) = \delta_{g(\mathsf{x})} \text{ for } \mathsf{x} \in \partial \Omega \text{ and } \mu \in \Pi(\mathcal{L}_{\Omega},\mathcal{L}_{D})$

Without Dirichlet energy, it's exactly the relaxation used by Yann Brenier in 1987 to prove polar factorization!

¹⁵N. Ghoussoub, Y.-H. Kim, H. Lavenant, A. Z. Palmer. *Hidden convexity in a problem of nonlinear* elasticity. 2020.

A convex relaxation¹⁵

$$\min_{u:\Omega\to D} \left\{ \int_{\Omega} \left(\frac{1}{2} |\nabla u(x)|^2 - f(x) \cdot u(x) \right) dx : u = g \text{ on } \partial\Omega \text{ and } u \# \mathcal{L}_{\Omega} = \mathcal{L}_{D} \right\}$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\min_{\boldsymbol{\mu}:\Omega\to \mathcal{P}(D)} \left\{ \operatorname{Dir}(\boldsymbol{\mu}) - \iint_{D\times \Omega} f(x) \cdot y \, \boldsymbol{\mu}(\mathrm{d}x,\mathrm{d}y) : \right\}$$

Without Dirichlet energy, it's exactly the relaxation used by Yann Brenier in 1987 to prove polar factorization!

 $\mu(\mathsf{x},\cdot) = \delta_{g(\mathsf{x})} \text{ for } \mathsf{x} \in \partial \Omega \text{ and } \mu \in \Pi(\mathcal{L}_{\Omega},\mathcal{L}_{\mathsf{D}})$

Remark

It's a convex problem!

¹⁵N. Ghoussoub, Y.-H. Kim, H. Lavenant, A. Z. Palmer. *Hidden convexity in a problem of nonlinear elasticity*. 2020.

Tightness of the relaxation

Let $\lambda_1(\Omega)$ the first eigenvalue of the Dirichlet Laplacian on Ω .

Theorem

Let $u:\Omega\to D$ a smooth function satisfying u=g on $\partial\Omega$ and $\omega\in\mathcal{C}(D)$ such that

$$\Delta u + f = (\nabla \omega) \circ u.$$

If ω can be extended on \mathbb{R}^d in a λ -convex function with $\lambda > -\lambda_1(\Omega)$ then u is the unique global minimizer global of the energy and and of the relaxed energy.

Tightness of the relaxation

Let $\lambda_1(\Omega)$ the first eigenvalue of the Dirichlet Laplacian on Ω .

Theorem

Let $u:\Omega\to D$ a smooth function satisfying u=g on $\partial\Omega$ and $\omega\in\mathcal{C}(D)$ such that

$$\Delta u + f = (\nabla \omega) \circ u.$$

If ω can be extended on \mathbb{R}^d in a λ -convex function with $\lambda > -\lambda_1(\Omega)$ then u is the unique global minimizer global of the energy and and of the relaxed energy.

In the pure torsion of the cylinder, global optimality in the case a small. For large a, there holds $\min E_{\mathsf{relaxed}} < \min E$.

Tightness of the relaxation

Let $\lambda_1(\Omega)$ the first eigenvalue of the Dirichlet Laplacian on Ω .

Theorem

Let $u:\Omega\to D$ a smooth function satisfying u=g on $\partial\Omega$ and $\omega\in\mathcal{C}(D)$ such that

$$\Delta u + f = (\nabla \omega) \circ u.$$

If ω can be extended on \mathbb{R}^d in a λ -convex function with $\lambda > -\lambda_1(\Omega)$ then u is the unique global minimizer global of the energy and and of the relaxed energy.

In the pure torsion of the cylinder, global optimality in the case a small. For large a, there holds $\min E_{\text{relaxed}} < \min E$.

Remark

There exists a simpler proof of this consequence which does not rely on the convex relaxation.

Conclusion

- Working on optimal transport by studying curves and mappings valued in the space of probability distributions.
- Some promising directions in Data Science using optimal transport as a regularizer.
- Definition of harmonic mappings valued in the Wasserstein space, with applications in nonlinear elasticity.

Conclusion

- Working on optimal transport by studying curves and mappings valued in the space of probability distributions.
- Some promising directions in Data Science using optimal transport as a regularizer.
- Definition of harmonic mappings valued in the Wasserstein space, with applications in nonlinear elasticity.

Thank you for your attention