Optimal Fault-Tolerant Configurations of Control Moment Gyros

Presented By:

Gopika Sivani K S 220411 Department of Aerospace Engineering IIT Kanpur

Under the guidance of:

Prof. Dipak Kumar Giri Department of Aerospace Engineering

Table of Contents

- Abstract
- 2 Introduction
- Preliminaries
- Optimization Methods
- Results

Abstract

This study presents an optimization method for fault-tolerant configurations of single-gimbal control moment gyros (CMGs) aimed at maximizing satellite attitude controllability under actuator failure.

- Optimizes CMG configurations to enlarge the angular momentum envelope.
- Ensures stabilization even with reduced functionality.
- Inspired by Thomson's problem for distributing gimbal axis orientations.

Introduction

- CMGs generate strong torques with minimal energy, crucial for satellite orientation control.
- Challenges arise in underactuated conditions when some CMGs fail.
- Pyramid configuration is widely used but suboptimal under failures.
- This study proposes a novel configuration inspired by Thomson's problem, optimizing gimbal axes for resilience and adaptability.

CMG Configuration: Overview

Definition: A CMG configuration with N CMGs is defined by the gimbal axis orientations.

Gimbal Axis Vector:

$$\mathbf{g}_{g,i} = \begin{bmatrix} \cos \alpha_i \sin \beta_i \\ \sin \alpha_i \sin \beta_i \\ \cos \beta_i \end{bmatrix}$$

Spin Direction:

$$\mathbf{g}_{s,i} = \begin{bmatrix} -\sin \alpha_i \\ \cos \alpha_i \\ 0 \end{bmatrix}$$

Torque Plane Direction:

$$\mathbf{g}_{t,i} = \mathbf{g}_{g,i} \times \mathbf{g}_{s,i}$$

Angular Momentum of Each Gimbal

Angular Momentum Vector:

$$\mathbf{h}_{i} = \mu_{i} \begin{bmatrix} \mathbf{g}_{s,i} & \mathbf{g}_{t,i} \end{bmatrix} \begin{bmatrix} \cos \delta_{i} \\ \sin \delta_{i} \end{bmatrix}$$

Total Angular Momentum:

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{h}_{i} = \begin{bmatrix} \mathbf{G}_{1} & \mathbf{G}_{2} & \dots & \mathbf{G}_{N} \end{bmatrix} \begin{bmatrix} \cos \delta_{1} \\ \sin \delta_{1} \\ \vdots \\ \sin \delta_{N} \end{bmatrix}$$

Where:

$$\mathbf{G}_{i} = \begin{bmatrix} \mu_{i} \mathbf{g}_{s,i} & \mu_{i} \mathbf{g}_{t,i} \end{bmatrix}, \quad \mathbf{J}_{N} = \begin{bmatrix} \mathbf{G}_{1} & \mathbf{G}_{2} & \dots & \mathbf{G}_{N} \end{bmatrix}$$

$$\mathbf{H} = \mathbf{J}_{N} \begin{bmatrix} \cos \delta_{1} \\ \sin \delta_{1} \\ \vdots \\ \sin \delta_{M} \end{bmatrix}$$

Momentum Envelope of N CMGs

Definition: The angular momentum envelope represents the range of angular momentum achievable by the system.

Envelope Size:

$$\det(\mathbf{J}_N\mathbf{J}_N^\top)$$

Cost Function for Optimization:

$$J = w_4 \det(\mathbf{J}_4 \mathbf{J}_4^\top) + w_3 \det(\mathbf{J}_3 \mathbf{J}_3^\top) + w_2 \det(\mathbf{J}_2 \mathbf{J}_2^\top)$$

Where w_i (i = 2, 3, 4) are positive weights prioritizing larger configurations.

Challenges in Momentum Optimization

Key Challenges:

- Determining initial weights for optimization.
- Aligning configuration with the satellite's body frame.
- Maximizing angular momentum in critical directions.

Solution: Optimize angular momentum in line with the satellite's structure and inertia to ensure reliable and practical performance.

Energy Potential Method

Thomson's Problem: Evenly distribute 2*N* gimbal axis endpoints on a sphere to minimize interaction forces. **Coulomb Force:**

$$f_{ij} = A_i A_j \frac{\mathbf{r}}{\|\mathbf{r}\|^2}$$

Total force on the i^{th} charge:

$$f_i = \sum_{i \neq j}^{2N} f_{ij}$$

Confining charges to the sphere:

$$f_{i,proj} = -(\mathbf{f}_i \times \mathbf{r}_i) \times \mathbf{r}_i$$

Symmetry constraint:

$$\mathbf{r}_{i} = -\mathbf{r}_{i+N} \quad (i = 1, 2, \dots, N)$$

40 140 140 15 15 15 1000

Gimbal Axis Optimization

Objective: To find gimbal axis orientations α_i and β_i (i = 1, ..., N) for N CMGs that minimize the maximum value of the inner products of the gimbal axis vectors.

Mathematical Formulation:

$$\min \left[\max_{i < j} (g_i^T g_j) \right]$$

Explanation:

- $g_i^T g_j$: Inner product of the gimbal axis vectors g_i and g_j .
- i < j: Indicates all possible pairs of gimbal axes.
- Minimize the maximum value of these inner products to achieve optimal spacing.

Weighted Body Frame Optimization

Objective: Prioritize angular momentum along specific axes. Add fixed external charges to the sphere:

- Moves surface charges away from fixed charges.
- Aligns angular momentum vectors along desired axes.

Example:

Adding fixed charges along $x_b \implies$ Enhanced momentum along x_b .

Reliability-Based Weighting

Objective: To determine weights for CMG configurations based on reliability, using statistical data and the Weibull distribution.

Weibull Distribution:

$$f(t, \beta, \theta) = \frac{\beta}{\theta} \left(\frac{t}{\theta}\right)^{\beta - 1} \exp\left[-\left(\frac{t}{\theta}\right)^{\beta}\right]$$

Parameters:

- t: Time of operation
- θ : Scale parameter (characteristic life)
- β : Shape parameter (failure rate behavior)

Reliability Function R(t)

Definition: The reliability function represents the probability that a system or component survives beyond a given time t:

$$R(t) = P(T > t)$$

Related Functions:

Cumulative Distribution Function (CDF):

$$F(t) = P(T \le t)$$

• Relationship between R(t) and F(t):

$$R(t) = 1 - F(t)$$

Gopika Sivani K S

Optimal Fault-Tolerant CMGs

Derivation of Reliability Function R(t)

Step 1: Integrate the PDF over time:

$$F(t) = \int_0^t f(t', \beta, \theta) dt'$$

Substitute $f(t, \beta, \theta)$:

$$F(t) = \int_0^t \frac{\beta}{\theta} \left(\frac{t'}{\theta} \right)^{\beta - 1} \exp \left[- \left(\frac{t'}{\theta} \right)^{\beta} \right] dt'$$

Gopika Sivani K S

Simplification of Reliability Function R(t)

Step 2: Solve the Integral:

$$F(t) = 1 - \exp\left(-\left(\frac{t}{ heta}\right)^{eta}\right)$$

Step 3: Define R(t):

$$R(t) = 1 - F(t)$$

Substitute F(t):

$$R(t) = \exp\left(-\left(\frac{t}{\theta}\right)^{\beta}\right)$$

Final Expression for Reliability:

$$R(t, \beta, \theta) = \exp\left(-\left(\frac{t}{\theta}\right)^{\beta}\right)$$

Gopika Sivani K S

Applications of Reliability-Based Weighting

Use in CMG Weighting:

- Assign weights to configurations based on reliability at different mission times.
- Examples:
 - R(0): Initial reliability with all CMGs operational.
 - R(5): Reliability after 5 years, for scenarios with 3 operational CMGs.
 - R(20): Reliability after 20 years, for scenarios with 2 operational CMGs.

Weight Formula:

$$w_i = R(0) + R(5) + R(20)$$
 (for 4-CMG configuration, as an example)

Zero Momentum Condition

Definition: Zero momentum occurs when the net angular momentum of the CMG system is zero.

Key Points:

- Achieved by counteracting angular momentum vectors of all operational CMGs.
- Ensures a stable, stationary satellite orientation.
- Requires precise control of gimbal angles to balance angular momentum.
- Useful for maintaining stability during critical phases of a mission.

Additional Strategies:

- Share the workload among operational CMGs.
- Use reaction wheels for additional stabilization if needed.

Results: Four and Three CMGs (Thomson's Problem)

Objective:

- Optimize CMG configurations to maximize the momentum envelope.
- Weights used: $w_1 = 1, w_2 = 1, w_3 = w_4 = 2$.

Key Determinants:

Determinant of $J_4J_4^{\top}$: 18.7930

Determinant of $J_3J_3^{\top}$: 7.7920

Determinant of $J_2J_2^{\top}$: 1.9501

Total Cost Function Value: : 55.1200

Gimbal Axis Orientations

Optimized Gimbal Axis Orientations:

	g_2	g 3	g ₄	g_5
α_i (degrees)	-35.5817	123.1275	-110.8036	16.3646
β_i (degrees)	104.0802	174.6545	81.1653	65.2555

Table: Gimbal axis orientations for both four- and three-CMG cases.

Optimized Gimbal Axes Plot

Visualization:

- The optimized configuration is superior to the pyramid configuration in both four- and three-CMG scenarios.
- Provides larger momentum envelope in underactuated conditions.

Results: Weighting Along the x_b Axis

Objective:

- Enhance angular momentum along the x_b axis by optimizing CMG configuration.
- Use external charges to influence gimbal orientations favorably.

Key Highlights:

- Angular momentum vectors align more effectively along the x_b axis.
- Improves satellite control in critical mission directions.

Optimized CMG Orientations

Optimal Gimbal Orientations:

	g ₁	g 2	g 3	g ₄
α , deg	106.4	-159.3	36.8	108.8
β , deg	67.1	34.3	41.2	126.3

Table: Optimal CMG configuration based on weighting along the x_b axis.

Visualization of Results

Key Observations:

- The optimized gimbal orientations maximize angular momentum efficiency along the x_b axis.
- Ensures better control in body-fixed frames with prioritized directions.

Reliability-Based Optimization: Overview

Objective:

- Optimize CMG configurations considering reliability over time.
- Account for failures in four-, three-, and two-CMG scenarios.

Reliability Function:

$$R(t, eta, heta) = \exp\left(-\left(rac{t}{ heta}
ight)^{eta}
ight)$$

Parameters:

- $\beta = 0.7182$: Shape parameter.
- $\theta = 3831$: Scale parameter (characteristic life).

Reliability-Based Weighting

Weight Formulation:

$$(w_1, w_2, w_3, w_4) = (R(0) + R(5) + R(20), R(0) + R(5) + R(20), R(0) + R(5), R(0))$$

Weights Derived:

$$(w_1, w_2, w_3, w_4) = (2.969, 2.969, 1.992, 1.000)$$

Key Observations:

- Reliability is prioritized for early mission phases (higher weights for four-CMG scenarios).
- Adjusts to handle reduced configurations as CMGs fail over time.

Reliability Function Visualization

Reliability vs. Time:

Figure: Gyro reliability as a function of time ($\beta = 0.7182, \theta = 3831$).

← 4 回 ト 4 回 ト 4 亘 ト 4 亘 ・ 夕 Q (*)

Optimized Gimbal Orientations

Optimal Gimbal Axes Based on Reliability:

	g_1	g_2	g ₃	g ₄
α , deg	-105.9232	-34.6072	34.6454	85.8490
β , deg	16.1586	104.1907	65.1489	100.2938

Table: Optimal gimbal axes orientation based on reliability.

Key Determinants and Plot

Determinants of Momentum Envelope:

Determinant of $J_4J_4^{\top}$: 18.7874

Determinant of $J_3J_3^{\top}$: 7.7945

Determinant of $J_2J_2^{\top}$: 1.9556

Total Cost Function Value: : 83.2044

Zero Momentum Condition

Objective: Achieve zero net angular momentum in a five-CMG configuration for stability.

Key Details:

- Configuration divided into two and three CMGs.
- Constraints:
 - One gimbal fixed along y-axis.
 - Azimuth angles of two gimbals constrained at $\alpha_2 = 210^{\circ}$ and $\alpha_3 = 330^{\circ}$.
 - Remaining two axes left unconstrained.
- Angular momentum vectors:

$$h_1 = \begin{bmatrix} -1.0, 0.0, 0.0 \end{bmatrix}^T, h_2 = \begin{bmatrix} 0.5, -0.87, 0.0 \end{bmatrix}^T, h_3 = \begin{bmatrix} 0.5, 0.87, 0.0 \end{bmatrix}^T$$

Results: Zero Momentum Condition

Optimized Gimbal Orientations:

	g_1	g_2	g 3	g ₄	g 5
α , deg	90.0	-150.0	-30.0	150.0	-30.0
β , deg	90.0	90.0	18.0	45.2	77.8

Table: Optimal CMG configuration satisfying zero-momentum condition.

Visualization:

Conclusion

- Proposed methods ensure fault-tolerant and efficient CMG configurations.
- Adaptable to mission-specific requirements like reliability and zero momentum.
- Optimization techniques reduce computational complexity and enhance resilience

References

• http://dx.doi.org/10.2514/1.G001249

