

MAT 216

Problem Sheet - 1:

Solve the following Problems:

1. Find two equations for c & d where the linear combination cv+dw equals b and

$$v = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad w = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \quad & b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

- 2. Using component form notation for vectors:
- (i) Sketch the vector $\vec{v} = (2, -1)$ starting at P = (3, 2) and find its magnitude.
- (ii) Find the component form of the vector \vec{w} whose initial point is R = (-3, -2) and terminal point is S = (-1, 2).
- (iii) Sketch the vector $\vec{u} = (2, -1, 3)$ starting at the point Q = (1, 1, 1) and find its magnitude.
- 3. Let $v_1 = (0,1,-1)$, $v_2 = (-1,0,1)$, $v_3 = (1,-1,0)$, $v_4 = (3,2,-5)$, $v_5 = (1,1,1)$ be the vectors.
 - (i) Show that v_3 is a linear combination of $v_1 \& v_2$.
 - (ii) Verify that v_4 is a linear combination of $v_1 \& v_3$.
 - (iii) Verify that v_4 is a linear combination of $v_1 \& v_2$.
- 4. Let $u = \begin{pmatrix} 5 \\ 3 \\ -4 \end{pmatrix}$, $v = \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix}$, $w = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}$. Find the following:
 - (i) 5u-2v,
 - (ii) -2u + 4v 3w.

- 5. Let $v_1 = (1,1,1)$, $v_2 = (1,2,3)$, $v_3 = (2,-1,1)$, $v_4 = (1,-2,5)$ be the vectors.
 - (iv) Show that v_4 is a linear combination of $v_1, v_2 \& v_3$.
- 6. Let u = (5,4,1), v = (3,-4,1), w = (1,-2,3), Which pair of vectors are perpendicular.
- 7. Find the vector u identified with the directed line segment \overrightarrow{PQ} for the points:
 - (i) $P(1,-2,4) & Q(6,1,-5) \text{ in } \mathbb{R}^3,$
 - (ii) $P(2,3,-6,5) \& Q(7,1,4,-8) \text{ in } \Re^4$.