	This notes was written on the plane, so it is in a different format from previous ones.
	<u>Lecture</u> 5 Integration on manifolds
	Motivation:
	Recall in calculus, given a function $f(x,y)$: $A(\subset \mathbb{R}^n) \longrightarrow \mathbb{R},$
	$\int_{A} f(x,y) dxdy := sum of local volumn$
	(val volumn
-	= f(xy)
5	X
	Two improvements on mfds:
	DA M mfd (possibly with boundary)
	⑤ feco(A:IR) → differential form QE JZ*(M)

	2.
	Naive attempt to define integration:
	define locally over glue, integration a chart Ua (= Va CIR")
	becall locally, O can be written as
	$0 = \sum_{1 \leq i_1 \leq \dots \leq i_k \leq n} f^{\alpha} dx_{i_1} \wedge \dots \wedge dx_{i_k} (dim M = n)$
	Since integration always produces a number, we only consider $0 \in \mathcal{I}^n(M)$.
	JV=(CIR") f dx, nndxn (EIR) (= local volumn)
	Two issues.
	- well-definedness? (Ux vs. Up)
	- how to glue?
	1. Partition of unity (P.O.U)
and conserve or distribution of the conserve con	Question. Given open domain B"(1) = {XEIR" 11X11 < 1}

how to construct a <u>Smooth</u> function of that is compactly supported in B'(1)?

Better to write B^n(1+\ep), an open ball that is slightly bigger than B^n(1).

supp (₹) = fx (R" | f(x) ≠ 0)

compactly supported: Supp(f) CB'(1)

Notation: supp (f) CC B"(1)

Ans (Explicit construction)

$$\varphi(\kappa) = \begin{cases} e^{-\frac{1}{x}} & x > 0 \\ 0 & x \leq 0 \end{cases}$$

((x) is smooth at x=0

(2) h(x) constructed from $\varphi(x)$ Smooth, even function on IR.

$$h(x) = \begin{cases} \frac{\varphi(-2x+2)}{\varphi(-2x+2)} & x > 0 \\ \frac{\varphi(-2x+2) + \varphi(2x-1)}{\varphi(2x+2) + \varphi(-2x-1)} & x \leq 0 \end{cases}$$

Let's draw the picture of h(x).

Note that denominator $\varphi(-2x+2) + \varphi(2x-1)$ or $\varphi(2x+2) + \varphi(-2x-1)$ never equals 0.

1/2 -2x+2 EO & 2x-1 EO (E) X= (& X = = =)

> h(x) is a Smooth fun over IR.

For $x \ge 1$, $-2x + 2 \ge 0 \implies h(x) = 0$ ($\frac{1}{2}$ $\frac{1}$

For $\frac{1}{2} \le x < 1$, $0 \le 2x - 1 < 1 \Rightarrow h(x) \in (0, 1]$ (where $\psi(2x - 1) \ge 0$)

For $0 \le x \le \frac{1}{2}$, $-1 \le 2 \times -1 < 0 \implies h(x) = 1$ $(k/c \ \varphi(2x-1) = 0)$

5.

(3) Define $f(x): IR^n \rightarrow IR$ by f(x) = h(I|x|I).

frof. For any cpt subset $A \subset M$ and an open subset $U \supset A$, there exists a $f \in C^{\infty}(M; [a_i])$ s.t. $f|_{A} \equiv 1$ and supplf) $CC \cup M$.

Pf. Do this in local charts

Caution: the parts where = 1 can not be two small!

Here is the definition of P.O.U.

Def M mfd (hot nec. compact), $U = \{U_{\infty}\}_{\infty}$ (not nec. finite) an open cover of M.

A P.O. U. subordinated to U is a collection

(LA [])

of smooth fans $\{P_{\infty}\}_{\infty}$ satisfying $D = \{U_{\infty}\}_{\infty} = \{U_{\infty}\}_{\infty}$ (3) Supp(P_1) $= U_{\infty}$ (3) UpeM, $\exists a \land BH + U_{\infty}$ intersects only finitely many supp(P_2)

(4) $= \{U_{\infty}\}_{\infty}$

Supp(Pa)

Supp(Pa)

$$\beta(p) = \frac{1}{2} p(p) = \frac{1}{3} p(p) = \frac{1}{6}$$

Thun Any most admits a P.O.U (in the sense that
for any open cover U=1Uala, & P.O.U subordinated to U).

RMK: not every closed subsect is upt !

Proof Exe

Cor For any closed subset $A \subset M$ and an open subset $U \supset A$, there exists a smooth function $f \in C^{\infty}(M; [0,1])$ s.t. $f \mid_{A} = 1$ and supplify $C \subset U$.

If Consider open cover {U, M/A} of M.

By Thm, 3 P.O. y, P., R & C (M, SO,13) st.

supp(p1) CCU and supp(p2) CM/A.

Then for XEA.

 $\sum_{\alpha} f_{\alpha}(x) = p_{1}(x) + p_{2}(x) = p_{1}(x) = 1$ $y \text{ def of } p_{1}(x) = p_{1}(x) = 1$ $y \text{ def of } p_{2}(x) = p_{1}(x) = 1$

り

Cor (smort extension) ACM subufd. F. A -> IR st. VXEA 3 MBH Ux and Fx: Ux -> IR s.t. Fx | Ux DA = F | Ux DA then 3 MBH V of A and FEC (W, R) st. If Wx xeA is an open over of AV:=UUx By Thm, 3 1 Px) x EA. Consider. Px. Fx which is cpt supp in Ux. Then extend by zero to be defined on V. Then define $\overline{+} = \sum_{x \in A} f_x F_x$.

Verify. $\forall p \in A$, $\overline{F}(p) = \sum_{x \in A} P_x^{(p)} F(p) = F(p) \sum_{x \in A} P_x(p)$ indof \times = F(p)Compact "

Cor (Soft Whitney embedding)

For any cpt mfd M". there exists an embedding $M'' \hookrightarrow IR^N$ for a sufficiently (age N.

	There is no need to enlarge the "\equiv 1" part of the P.O.U. (which is in fact incorrect) as what I explained in class. See the correct treatment on this page. THANKS for those students who pointed this out right after class!
	Pf. Take any open over U= {Ua}, with Px: Ux → Vx C IR"
	Here since Miscot, Mis a finite open ener, set = 1,, k.
	Consider map F: M -> 12nk+k defined by
	$X \longmapsto (\beta_{1}(x) - \varphi_{1}(x), \cdots, \beta_{K}(x), \varphi_{K}(x), \beta_{1}(x), \cdots, \beta_{K}(x))$
	a number a vector
= 4	E IRM
	where Prix=, is a p.o.y. wrt U.
	(Rmk: Pi(x). (P; (x) extends by zero ontside Ui)
	Verify that F is an embedding.
	eg. Fis injective: if F(x)= F(y), then
	for some i, Pi(x) = Pi(y) # (WH)?)
	⇒ ×, Y ∈ supp (P;) ⊂ U;
	$\Rightarrow \varphi_i(x) = \varphi_i(y) \Rightarrow x = y = b/c \varphi_i(x) = homeonorphis $ Strongly recommend the rest venification is
	Strongly recommend the rest venification i's readers to finish the rest of the proof! Left as an exercise.