Algorithmes probabilistes

1 Exercice 1 : Vérification d'égalité polynomiale

- 1. Étant donnés deux tableaux représentant deux polynômes, on peut calculer leurs produit en concaténant ce tableau. La complexité du produit de polynômes avec cet algorithme est en $\mathbb{O}(nm)$ où n est le degré du 1er polynôme, et m est le degré du second. En effet, dans le pire des cas, tous les polynômes représentant les deux polynômes sont des monômes, or, la concaténation étant en $\mathbb{O}(nm)$ (pour un tableau de taille n et un de taille m). D'où la complexité en $\mathbb{O}(nm)$.
- 2. Afin d'évaluer ces polynômes, on utilise l'algorithme de Horner, qui est en $\mathfrak{G}(n)$, donc en temps linéaire.
- 3. En développant ces polynômes, la complexité serait en $\mathfrak{G}(n^3)$. En effet, la multiplication de deux polynômes de degrés n a une complexité en $\mathfrak{G}(n^2)$. D'où la complexité en $\mathfrak{G}(n^3)$ pour la multiplication de deux polynômes ayant chacun un degré n.
- 4. Un polynôme de degré n a, au plus, n racines. D'où, le polynôme P-Q, a au plus n racines (où $n=\max(\deg P,\deg Q)$). Ainsi, s'il a n+1 racines, c'est alors le polynôme nul, et donc P=Q.

Algorithme 1 Algorithme déterministe pout tester l'égalité polynomiale en $\mathfrak{G}(n^2)$

5.

Algorithme 2 Algorithme probabiliste pout tester l'égalité polynomiale en $\mathfrak{G}(n)$

```
Entrée P = (P_i)_{i \in \llbracket 1, n \rrbracket} et Q = (Q_j)_{j \in \llbracket 1, n \rrbracket} deux polynômes, et k \in \mathbb{N} un entier 1: x \leftarrow \mathcal{U}(\llbracket 1, k \times n \rrbracket) 2: si P(x) \neq Q(x) alors 3: \bot retourner Non 4: retourner Oui
```

Soit X la variable aléatoire de $\mathcal{U}(\llbracket 1,k\times n \rrbracket)$. L'événement " $P \neq Q$ mais l'algorithme retourne Our" arrive si $X \in \{j \in \llbracket 1,kn \rrbracket \mid P(j)=Q(j)\} = A$. Or $|A| \leqslant n$, et $A \subseteq \llbracket 1,kn \rrbracket$. Ainsi, l'événement a une probabilité de $\frac{1}{k}$.

2 Test de primalité probabiliste

2.1 Résultats mathématiques

- 1. Élément neutre : soit $x \in G_n$, d'où $x \cdot 1 = 1 \times x \mod n = x \mod n$, et donc $1 \in G_n$ est l'élément neutre de G_n .
 - Associativité: par associativité de ×, et par le fait que "mod" soit une congruence, on en conclut que · est associative.
 - Soient $x, y \in G_n$. Ainsi, $x \cdot y = x \times y \mod n$. Or, $x \times y \wedge n = 1$, et donc $x \cdot y \wedge n = 1$.
 - Soit $x \in G_n$, donc $x \wedge n = 1$. D'où, d'après le théorème de Bézour, il existe u et $v \in \mathbb{Z}$ deux entiers tels que $u \times x + v \times n = 1$. D'où $1 \mod n = u \times x + v \times n \mod n$ et donc $1 = u \times x \mod n$. Ainsi $x^{-1} = u \in G_n$, car $u \neq 0$.
- 2. On sait que $1 \in E_n$. Soit $y \in E_n$, d'où $y^{n-1} \equiv 1$ [n], i.e. $y \times (y^{n-2}) \equiv 1$ [n], donc $y^{n-2} \in E_n$ est l'inverse de y. Soient x et $y \in E_n$. On a $(x \cdot y^{-1})^{n-1} \equiv x^{n-1} \cdot y^{n-1}$ $[n] \equiv 1$ [n]. D'où $x \cdot y^{-1} \in E_n$. Ainsi, E_n est un sous-groupe de (G_n, \cdot) .
- 3. Soit n composé. Il existe $a \in [1, n-1]$ tel que $a^{n-1} \not\equiv 1$ [n], et donc $E_n \subsetneq G_n$. Or, le cardinal d'un sous-groupe divise le cardinal du groupe, et donc $|E_n| \mid |G_n| \leqslant n-1$, donc $|E_n| \leqslant \frac{n-1}{2}$.

2.2 Algorithme

4.

Algorithme 3 Algorithme Monte-Carlo testant la primalité d'un nombre en $\mathfrak{G}(k(\ln k)^3)$

Entrée $n \in \mathbb{N}$ et $k \in \mathbb{N}$ deux entiers.

- 1: **pour** $j \in [\![1,k]\!]$ **faire** 2: $a \leftarrow \mathcal{U}([\![1,n-1]\!])$
- 3: $\mathbf{si} \ a^{n-1} \bmod n \neq 1 \mathbf{alors}$
- 4: L retourner Non
- 5: retourner Oui

En effet, si $|E_n| \leq \frac{n-1}{2}$, donc si $a \sim \mathcal{U}(\llbracket 1, n-1 \rrbracket)$, d'où $P(a \in E_n) \leq \frac{1}{2}$. La probabilité que l'algorithme échoue est inférieure à $\frac{1}{2^k}$.

2.3 Implémentation

Indications Pour calculer $a^b \mod c$, on décompose b en base $2: b = \sum_{i=1}^p b_i 2^i$, et donc

$$a^b \bmod c = \Big(\prod_{i=1}^p a^{b_i 2^i}\Big) \bmod c = \prod_{i=0}^p \Big(a^{b_i 2^i} \bmod c\Big)\,.$$

Et, $p \sim \log_2(n)$.

3 Exercice 3 : Échantillonnage

Q. 1

Algorithme 4 Échantillonnage naïf

Entrée T un tableau à n éléments, et $k \in \mathbb{N}$ avec $k \leqslant n$

- 1: $T \leftarrow Mélanger(T)$
- 2: $R \leftarrow T[0..k]$
- 3: retourner R

Q. 2 Un invariant de boucle est « $\forall p \in \llbracket 0, I-1 \rrbracket$, $P(T[p] \in \mathsf{Res}) = \frac{k}{I}$ et $\forall p \in \llbracket I, n \rrbracket$, $T[p] \not\in \mathsf{Res}$ »

- $\mathbf{Q.3}$ Notons \underline{I} et $\underline{\mathsf{Res}}$ l'état des variables avant un tour de boucle ; et, \overline{I} et $\overline{\mathsf{Res}}$ l'état des variables après un tour de boucle.
 - Pour k = I, on a
 - $1. \ \forall p \in \llbracket 0,k-1 \rrbracket, P(T[p] \in \mathsf{Res}) = 1,$
 - $2. \ \forall p \in [\![k,n-1]\!], T[p] \not \in \mathsf{Res},$
 - 3. $I \leqslant n$.
 - Supposons \underline{I} , et Res vérifiant l'invariant et la condition de boucle. Alors, on a
 - 1. $\forall p \in [0, \underline{I} 1], P(T[p] \in \underline{\mathsf{Res}}) = \frac{k}{I},$
 - $2. \ \forall p \in [\![\underline{I},n-1]\!], T[p] \not\in \underline{\mathsf{Res}},$
 - 3. $\underline{I} < n$, la condition de boucle.

Soit $j \in \llbracket 0, \underline{I} \rrbracket$. On a $\overline{I} = \underline{I} + 1$.

Cas 1 j < k, et donc $\overline{\mathsf{Res}}(j) = T[\underline{I}]$, et $\forall \ell \neq j$, $\overline{\mathsf{Res}}[\ell] = \underline{\mathsf{Res}}[\ell]$.

Cas 2 $j \geqslant k$, et donc $\forall \ell$, $\overline{\mathsf{Res}}[\ell] = \underline{\mathsf{Res}}[\ell]$.

1. Soit $p\in [\![0,\underline{I}]\!].$ Montrons $P(T[p]\not\in\overline{\mathsf{Res}})=\frac{k}{\overline{I}}.$ Si $p<\underline{I},$ alors

$$\begin{split} P(T[p] \in \overline{\mathsf{Res}}) &= P\big(T[p] \in \underline{\mathsf{Res}} \cap j \neq p\big) \\ &= \frac{k}{\underline{I}} \times \frac{\underline{I}}{\underline{I} + 1} \\ &= \frac{k}{\overline{I}}. \end{split}$$

Si $P = \underline{I}$, alors d'après 2. $T[p] \not \in \underline{\mathsf{Res}}$, donc $P(T[p] \in \overline{\mathsf{Res}}) = P(j < k) = \frac{k}{I+1}$.