Procesamiento de lenguaje natural y análisis de textos

Gonzalo Rivero

Big Data en investigación social y opinión pública

22 a 26 de julio, 2019

Introducción

- Tenemos acceso a enormes cantidades de data en forma de texto
 - Artículos de prensa
 - Textos legales
 - Correos electrónicos
 - Informes y documentos oficiales
- En esta sesión intentaremos analizar ese tipo de información cuantitativamente
 - 1. Extraer información de los textos
 - 2. Análizar cuantitativamente los textos

Tareas del análisis de texto

- Resumir bloques de texto para extraer la información relevante e ignorar datos superfluos
- Crear bots conversacionales
- Generar etiquetas para descubrir temas en cuerpos de texto
- Identificar tipo de entidades en el texto como personas, lugares, organizaciones o fechas
- Clasificar textos de acuerdo con su "sentimiento" o polaridad afectiva para saber si hablan positiva o negativamente de algo

Procesamiento del lenguaje natural

- Extraer información a partir del texto, semánticamente si es posible
- Dado un texto responder con de quién habla, qué hace esa persona, ...
- Diferentes niveles de complejidad:
 - 1. Separar un texto en unidades (tokenizar)
 - 2. Transfomar un término a su versión de diccionario
 - 3. Identificar personas, organizaciones, fechas, ... en un texto
 - 4. Reconocer partes gramaticales de una frase

Tokenización

- Tokenizar es el proceso de romper cadenas de texto en palabras, frases u otros elementos con sentido que llamaremos tokens. Pero
 - Star Wars: Dos palabras, no en diccionario, pero un solo concepto
- Podemos usar expresiones regulares para dividir en piezas que no son alfanuméricas, como espacios, puntuación, hashtags, ...
- Fallará en caso de términos con varias palabras que se refieren a una unidad léxica como Nueva York o algunas expresiones.
- n-grams (permitir trabajar con 'Nueva' 'York' y 'Nueva York')
- Podemos usar modelos de Machine Learning que estimen si $\Pr(word_i|word_{i-1})$ es lo bastante alta para considerarlo una unidad

Normalización

- Proceso de normalización de los tokens. Reducir todas las instancias a una clase de equivalencia léxica
 - 1. plurales \rightarrow singular (gatos \rightarrow gato)
 - 2. géneros \rightarrow "neutro" (gata \rightarrow gato)
 - 3. pasados \rightarrow presente (cantaba \rightarrow cantar)
 - 4. $adverbios \rightarrow adjetivo (Ilanamente \rightarrow Ilano)$

Tipos de normalizaciones

- 1. Reducir a versión de dicionario mediate lematización. Requiere un parseador morfológico que reconozca en un término cosas como sujeto, tiempo verbal, modificadores, ...
- Parsers usan dicionario de raices y afijos con metadatos (como POS) así como algunas reglas (las -s de plural van después de nombres).
- Stemmer solo elimina datos morfológicos (la 's' del plural, las terminaciones de los verbos regulares). Muchos errores y no crea palabras existentes pero es suficiente ('educación' a 'educ').

Reconocimiento de entidades

Identificar y clasificar nombres en el texto

U.S. Rep. Ernest Istook, R-Warr Acres, is scheduled to conduct a town hall meeting about Internet safety for children at 6:30 p.m. Thursday at Putnam City High School, 5300 NW 50.

Entidad política Persona Organización Hora Fecha

Aplicaciones del reconocimiento de entidades

- Indexar y fusionar entidades
- Asociar sentimiento a nombres de compañías o productos
- Muchas tareas de extracción de información dependen de asociación entre entidades
- Responder preguntas en un chat/bot requiere reconocer entidades

Identificar entidades

- Puede hacerse con expresiones regulares y aprovechar POS (saber si una palabra es verbo, sustantivo, ...), identifación de frases, categorías semánticas (que reduzcan sinónimos a un término), ...
- Literatura moderna favorece modelos en secuencia
 - 1. Recoger documentos representativos
 - 2. Etiquetar cada token de acuerdo con su entidad
 - 3. Diseñar variables que capturen el texto y la secuencia de clases
 - 4. Entrenar un HMM o RNN que prediga las etiquetas
- Usan diccionarioes sobre la palabra actual, la siguiente, POS y el contexto de la etiqueta
- Tarea relacionada es coreferencia
 - John F Kennedy es Kennedy

Etiquetadores de partes del discurso

- Marcar cada pieza del discurso como nombre, verbo, preposición, ...
- Analíticamente es igual a reconocimiento de entidades
- Modelo puede incluir
 - La palabra actual, la siguiente, la anterior, ...
 - La etiqueta de esas palabras
 - Información sobre la palabra misma como sufijos

Análisis de textos Análisis de temas

Gonzalo Rivero

Big Data en investigación social y opinión pública

22 a 26 de julio, 2019

- Queremos interpretar el contenido de una colección grande de documentos
 - ¿Qué temas de investigación son más exitosos al pedir financiación?
 - ¿Qué temas llevan a discusiones entre los editores de Wikipedia?
 - ¿Qué temas preocupan a cada político? ¿Cómo cambian los temas de interés a lo largo del tiempo?
- Analizaremos textos de forma no supervisada para poder
 - Agrupar documentos según el tema del que hablen
 - Asociaremos términos a cada uno de esos temas

Cuantificar documentos

- Bag of words representa el documento como una tabla de frecuencia de cada palabra.
- El documento "Prefiero las crepes dulces a las crepes saladas" se representa como

- Ignoramos el orden, lo cual implica ignorar contenido semántico. El documento "Prefiero las crepes saladas a las crepes dulces" se representa con el mismo vector.
- No es un problema si el objetivo es identificar de qué habla el documento y no qué quiere decir

Term-Document Matrix

- Organizamos los documentos en una matriz de términos X en el que celda (i,j) es número de veces que el token j aparece en el documento i.
- Términos en columnas definen *vocabulario* de un corpus
- Potencialmente muy grande y con muchos 0. Nuestro objetivo es reducirla un poco con preprocesado.
 - 1. Tokenización y normalización
 - 2. Eliminación de palabras vacías ("a", "de", "el", ...)
 - 3. Eliminación de palabras muy infrecuentes
 - 4. Uso de sinónimos (como WordNet)

Term frequency

- La distribución de uso de palabras es muy asimétrica
 - Unos pocos términos son muy frecuentes
 - Muchos términos son poco frecuentes
 - Relevancia no crece linealmente con frecuencia
- Podemos sustituir frequencia del término en cada documento por

$$\mathsf{tf}_{ij} = (1 + \log_{10}(x_{ij}))$$

Limita diferencias pequeñas en frecuencias en términos

Inverse document frequency

- También queremos una medida de frecuencia entre documentos
 - Palabras que aparece en menos documentos son más informativas
- Inversa de frecuencia de término en documentos

$$\mathsf{idf}_j = \log_{10}\left(\frac{N}{\mathsf{df}_j}\right)$$

con N el número de documentos y df_j el número de documentos en los que aparece j

Alto peso a palabras extrañas.

Ponderación TF-IDF

Práctica común es usar como elementos en X

$$x_{ij} = \mathsf{tf}_{ij}\mathsf{idf}_j \tag{1}$$

- El peso crece con el número de ocurrencias en un documento y con la escasez en la colección.
- Representar documentos como vectores (cada término es una dimensión)
- Podemos calcular distancia entre documentos. Es mejor el ángulo (coseno) que la distancia euclidea, ya refleja longitud del documento.

Métodos de diccionario

 Es la alternativa más intuitiva. El analista define un diccionario de términos asociados a diferentes temas.

```
{
  "salud": ["hospital", "doctora", "enfermedad"],
  "economía": ["inflación", "deuda", "crecimiento"],
  "defensa": ["ejército", "guerra", "general"]
}
```

- Definimos la indicencia de cada tema en un documento sobre el total de palabras.
- Varios problemas
 - Refleja los supuestos del analista y no la estructura de los datos
 - Intensivo en trabajo
 - Cada corpus requiere un nuevo diccionario

Modelos probabilísticos de temas

- El modelo más popular es el Latent Dirichlet Allocation.
- Métodos no supervisado y generativo. Analiza los datos sin información sobre a qué tema pertenece cada documento. Producen:
 - Grupos de palabras que se refieren al mismo tema
 - Asocia temas a documentos
- Un "tema" es un conjunto de palabras que aparecen en el mismo contexto

Definir un tema

- El proceso que hace que determinadas palabras aparezcan en un mismo corpus
 - Si "guerra" o "ejército" aparecen en un documento, es probable que encontremos "tropas"
- La probabilidad de un término podemos descomponerla como

$$\Pr(\mathsf{token} = \mathsf{'manzana'}, \mathsf{tema} = 1 | \theta, \beta) = \\ \Pr(\mathsf{token} = \mathsf{'manzana'} | \mathsf{tema} = 1, \beta) \Pr(\mathsf{tema} = 1 | \theta)$$

- Cada tema tiene una distribución sobre tokens
- Cada documento tiene una distribución sobre temas

El modelo generativo

- 1. Para cada tema, decidir qué temas son las más adecuados
- 2. Para cada documento
 - 2.1 Decidir qué proporciones de temas debe haber en el documento
 - 2.2 Para cada palabra
 - 2.2.1 Escoger a qué tema pertenece
 - 2.2.2 Dado ese tema, escoger la palabra más probable (generadas en el primer paso)

Estimación

- Si supiésemos a qué tema pertenece cada token estimar los parámetros sería calcular proporciones.
- Pero podemos pretender que lo sabemos (para una asignación) y calcular los parámetros. Después podemos tomar esos parámetros y calcular la distribución de términos.

Estimación

- Algoritmo EM tiene garantizada convergencia pero podemos suavizar los resultados asumiendo una distribución (Dirichlet) a priori que produce "mezclas" en varias dimensiones.
- Imponemos priors a nuestros parámetros

$$Pr(\theta|\alpha) = Dirichlet(\alpha)$$

 $Pr(\beta|\eta) = Dirichlet(\eta)$

Y simulamos usando Monte Carlo

Selección de número de temas

- La estimación del modelo toma el número de temas como dado
- Igual que como en k-means la mejor estrategia es comparar el funcionamiento del modelo para diferente número de temas. Varias alternativas:
 - Perplejidad y verosimilitud: capacidad de predecir datos (comparar distribución de frecuencia de palabras empírica y esperada).
 - Evaluación humana (cohesión de temas e intrusión de términos)