EJERCICIOS SELECTIVIDAD: ESTRUCTURA ATÓMICA, TABLA PERIÓDICA Y ENLACE QUÍMICO (ENUNCIADOS)

JULIO 2021

Escriba la configuración electrónica en estado fundamental de:

- a) (0,5 p) Un elemento con tres electrones en orbitales p.
- b) (0,5 p) Un elemento de transición.
- c) (0,5 p) Un elemento alcalino.
- d) (0,5 p) Un elemento del grupo 18.

JULIO 2021

En función del tipo de enlace explique por qué:

- a) (0,5 p) El NH3 tiene un punto de ebullición más alto que el CH4.
- b) (0,5 p) El KC ℓ tiene un punto de fusión mayor que el $C\ell_2$.
- c) (0,5 p) El CH4 es insoluble en agua y el KC ℓ es soluble.
- d) (0,5 p) El etano tiene un punto de ebullición menor que el etanol.

JUNIO 2021

El número atómico del P es 15.

- a) (0,5 p) Escribe su configuración electrónica en estado fundamental.
- b) (0,5 p) Cuáles son los valores posibles que pueden tomar los números cuánticos de su electrón más externo en estado fundamental.
- c) (0,5 p) Indica a qué grupo y período pertenece.
- d) (0,5 p) Escribe una configuración electrónica del elemento en estado excitado.

JUNIO 2021

El trifluoruro de boro (BF_3) y el amoniaco (NH_3) son compuestos gaseosos en condiciones normales.

DATOS: Números atómicos: H: 1 B: 5 N: 7 F = 9

- a) (0,5 p) Explique la fórmula geométrica de sus moléculas.
- b) (0,5 p) Explique cuál de las dos moléculas es más polar.
- c) (0,5 p) Razone cuál de los dos compuestos tendrá un punto de ebullición más alto.

SEPTIEMBRE 2020

Explicar breve y razonadamente:

DATOS: Números atómicos, H = 1, Be = 4, O = 8, C = 6, Cl = 17.

- a) (0,5 p) La estructura geométrica del agua y del CCl4.
- b) (0,5 p) Por qué el agua disuelve a los compuestos iónicos y el CCl4 no.
- c) (0.5 p) Por qué el BeH₂ no es polar y sí lo es el H₂O.
- d) (0,5 p) Por qué el etano (CH3-CH3) es menos soluble en agua que el etanol (CH2-CH2OH).

Dadas las configuraciones electrónicas de los átomos A: 1s² 2s² 2p6 3s² y B: 1s² 2s² 2p6 3s¹ 3p¹; explica cada una de las siguientes afirmaciones e indica si alguna de ellas es falsa.

- a) (0,5 p) La configuración B corresponde a un metal de transición.
- b) (0,5 p) A y B son átomos de elementos diferentes.
- c) (0,5 p) Para pasar de la configuración A a la B se necesita suministrar energía.
- d) (0,5 p) La configuración de A corresponde a un estado fundamental.

JULIO 2020

Indica, justificando brevemente la respuesta, si las siguientes afirmaciones son verdaderas o falsas:

- a) (1 p) Cuando un átomo de A se combina mediante enlaces covalentes con 3 átomos de B, la molécula resultante, AB₃, siempre tendrá una estructura geométrica plana.
- b) (1 p) Existen moléculas apolares que, sin embargo, tienen enlaces polares.

JULIO 2020

Dado el elemento de número atómico Z = 19.

- a) (0,5 p) Escribe su configuración electrónica en estado fundamental.
- b) (0,5 p) Cuáles son los valores posibles que pueden tomar los números cuánticos de su electrón más externo en estado fundamental.
- c) (0,5 p) Indica a qué grupo y período pertenece.
- d) (0,5 p) Escribe una configuración electrónica del elemento en estado excitado.

JULIO 2019

- a) (0,5 p) Razona si las siguientes configuraciones electrónicas de los átomos A (1s² 2s² 2p⁴ 3s¹) y B (1s² 2s² 2p⁶ 3s²) son posibles en un estado fundamental o en un estado excitado.
- b) (0,5 p) Razona qué tipo de compuesto formarán A y B y con qué estequiometria.
- c) (0,5 p) Escribe la configuración electrónica de un anión estable del átomo A y de un catión estable del átomo B.
- d) (0,5 p) ¿A qué grupo y periodo pertenecen los átomos A y B?

JULIO 2019

El trifluoruro de boro (BF3) y el amoniaco (NH3) son compuestos gaseosos en condiciones normales.

- a) (0,5 p) Explica la forma geométrica de sus moléculas.
- b) (0,5 p) Explica cuál de las dos moléculas es más polar.
- c) (0.5 p) Explica cómo serán los enlaces intermoleculares en cada uno de los compuestos.
- d) (0,5 p) Razona cuál de los dos compuestos tendrá un punto de ebullición más alto.

DATOS: Números atómicos, H = 1, B = 5, N = 7, F = 9.

JUNIO 2019

En compuestos cuyos enlaces, entre los átomos periféricos y el central, puedan describirse utilizando para el átomo central orbitales híbridos sp³.

- a) (0,75 p) Razona qué geometrías son posibles.
- b) (0,75 p) Pon un ejemplo de compuesto para cada una de las geometrías posibles.
- c) (0,5 p) Justifica la polaridad en cada caso anterior.

El número atómico del Co es 27. El Rh está exactamente debajo del Co en la Tabla Periódica:

- a) (0,5 p) A qué grupo y periodo pertenece el Co.
- b) (0,5 p) Escribe la configuración electrónica del Rh en estado fundamental.
- c) (0,5 p) Escribe una configuración electrónica del Co en estado excitado.
- d) (0,5 p) Indica los números cuánticos posibles del electrón diferenciador del Co.

SEPTIEMBRE 2018

- a) (0,5 p) Escribe las configuraciones electrónicas de los átomos A y B de números atómicos Z = 11 y Z = 16.
- b) (0,5 p) Basándote en las configuraciones electrónicas anteriores indica de qué elementos se trata y razona la fórmula y tipo de enlace químico del compuesto binario que son capaces de formar.
- c) (0,5 p) Utilizando el modelo de repulsión de pares de electrones de la capa de valencia indica la geometría de la molécula CH_3CL . Razona si se trata de una molécula polar.
- d) (0,5 p) Explica cuál puede ser la razón de la diferencia en los puntos de ebullición de las siguientes sustancias:

Sustancia	Masa molecular	Punto de ebullición
CH ₂ O	30	−21°C
C ₂ H ₆	30	−89°C

SEPTIEMBRE 2018

Explica las siguientes observaciones utilizando las diferentes teorías de enlace químico:

- a) (0,5 p) La longitud del enlace C C en el C_2H_4 es 0,134 nm, mientras que el enlace C C en el C_2H_6 es de 0,154 nm.
- b) (0,5 p) El NH3 es una molécula piramidal pero el BH3 es plana.
- c) (0,5 p) El cloro molecular es un gas a temperatura ambiente mientras que el bromo molecular es un líquido a la misma temperatura.
- d) (0,5 p) La temperatura de ebullición del H_2O es 373 K mientras que la del H_2S es de 212 K.

DATOS: Números atómicos C = 6; O = 8; B = 4; B = 5; N = 7; $C\ell = 17$; H = 1; Br = 35; S = 16.

JUNIO 2018

Dada la siguiente configuración electrónica de un átomo neutro en estado fundamental: $1s^2 2s^2 2p^6 3s^2 3p^5$.

- a) (0,5 p) Indicar a qué grupo y periodo del Sistema Periódico pertenece el átomo.
- b) (0,5 p) Escribe la configuración electrónica en un estado excitado.
- c) (0,5 p) Escribe la configuración electrónica de un anión del átomo.
- d) (0,5 p) Indica los números cuánticos posibles del electrón diferenciador.

JUNIO 2018

Dadas las siguientes moléculas: H₂O, BeCl₂, BeCl₃ y NH₃.

- a) (1 p) Representa la estructura de Lewis y razona que moléculas pueden considerarse una excepción a la regla del octeto.
- b) (1 p) Deduce de forma razonadamente la geometría y la polaridad de cada molécula.

DATOS: Números atómicos Be = 4 O = 8 N = 7 H = 1 B: 5 Cl = 17

Dadas las moléculas: CCl₄, H₂O, BeCl₂, NH₃:

- a) (1 p) Razona cuáles adoptaran una geometría lineal.
- b) (1 p) Razona si serán o no polares.

DATOS: Números atómicos C = 6; O = 8; Be = 4; Cl = 17; N = 7; H = 1

SEPTIEMBRE 2017

Dada la configuración electrónica de un elemento $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $5s^1$, indica de forma razonada qué respuestas son correctas y cuáles incorrectas:

- a) (0,5 p) Su número atómico es 19.
- b) (0,5 p) Se trata de un estado excitado.
- c) (0,5 p) Este elemento pertenece al grupo de los metales alcalinos, grupo 1.
- d) (0,5 p) Este elemento pertenece al 5° periodo del Sistema Periódico.

JUNIO 2017

Dada la siguiente configuración electrónica de un átomo neutro en estado fundamental: $1s^2\ 2s^2\ 2p^6\ 3s^1$

- a) (0,5 p) Indica a qué grupo y periodo del Sistema Periódico pertenece el átomo.
- b) (0,5 p) Escribe la configuración electrónica en un estado excitado.
- c) (0,5 p) Escribe la configuración electrónica de un catión del átomo.
- a) (0,5 p) Indica los números cuánticos posibles del electrón diferenciador.

JUNIO 2017

Para las siguientes moléculas: NH3, H2S, CH4. Razona qué proposiciones de las siguientes son correctas y cuáles falsas:

- a) (0,5 p) La única con geometría lineal es H_2S .
- b) (0,5 p) La única con geometría tetraédrica es NH3.
- c) (0,5 p) En los tres casos el átomo central presenta hibridación sp³.
- d) (0,5 p) Las tres moléculas son polares.

DATOS: Números atómicos C = 6 S = 16 N = 7 H = 1

SEPTIEMBRE 2016

Dado el elemento de Z = 19:

- a) (0,5 p) Escribe su configuración electrónica en estado fundamental.
- b) (0,5 p) Indica razonadamente a qué grupo y período pertenece.
- c) (0,5 p) ¿Cuáles son los valores posibles que pueden tomar los números cuánticos de su electrón más externo?
- d) (0,5 p) Escribe una configuración electrónica del elemento en estado excitado.

SEPTIEMBRE 2016

En los siguientes compuestos: BCl3, SiF4 y BeCl2, SF2

- a) (1 p) Justifica la geometría y polaridad de estas moléculas.
- b) (1 p) ¿Qué orbitales híbridos presenta el átomo central en cada uno?

DATOS: Grupos del sistema periódico a los que pertenecen los siguientes elementos: Be = 2; B = 13; Si = 14; S = 16; F y $C\ell$ = 17.

La configuración electrónica de un átomo de un elemento es: $1s^2 2s^2 2p^6 3s^2 3p^6 5s^1$. Razona cuáles de las afirmaciones siguientes son correctas y cuáles falsas para ese elemento:

- a) (0,5 p) El átomo está en su estado fundamental.
- b) (0,5 p) Pertenece al grupo de los alcalinos.
- c) (0,5 p) Pertenece al período 5 del sistema periódico.
- d) (0,5 p) Tiene carácter metálico.

JUNIO 2016

Justifica razonadamente las siguientes afirmaciones:

- a) (0,5 p) A 25 °C y 1 atm, el agua es un líquido mientras que el sulfuro de hidrógeno (H_2S) es un gas.
- b) (0,5 p) El etanol es soluble en agua y el etano no lo es.
- c) (0,5 p) En condiciones normales el flúor y el cloro son gases, el bromo es líquido y el yodo sólido.
- d) (0,5 p) El amoniaco NH3 es polar mientras que el BF3 no lo es.

SEPTIEMBRE 2015

Contesta de forma razonada a las cuestiones acerca de los elementos que poseen las siguientes configuraciones electrónicas: A: 1s² 2s² 2p6 3s² 3p6 4s²; B: 1s² 2s² 2p6 3s² 3p6 3d¹0 4s² 4p⁵.

- a) (0,5 p) ¿A qué grupo y a qué período pertenecen?
- b) (0,5 p) ¿Qué elemento se espera que posea una mayor energía de ionización?
- c) (0,5 p) ¿Qué elemento tiene un radio atómico menor?
- d) (0,5 p) ¿Una combinación de A y B, qué tipo de compuesto genera y de qué estequiometria?

SEPTIEMBRE 2015

Indica, justificando brevemente la respuesta, si las siguientes afirmaciones son verdaderas o falsas:

- a) (1 p) Cuando un átomo de A se combina mediante enlaces covalentes con 3 átomos de B, la molécula resultante, AB₃, siempre tendrá una estructura geométrica plana.
- b) (1 p) Existen moléculas apolares que, sin embargo, tienen enlaces polares.

JUNIO 2015

Dadas las configuraciones electrónicas para átomos neutros, M: 1s² 2s² 2p⁶ 3s¹ y N: 1s² 2s² 2p⁶ 5s¹, explica cada una de las siguientes afirmaciones e indica si alguna de ellas es falsa:

- a) (0,5 p) La configuración M corresponde a un átomo de sodio, (grupo 1, periodo 3).
- b) (0,5 p) My N representan elementos diferentes.
- c) (0,5 p) Para pasar de la configuración M a la N se necesita energía.
- d) (0,5 p) Para separar un electrón de N se necesita más energía que para separarlo de M.

JUNIO 2015

Responde a las siguientes cuestiones referidas a la molécula CCl4, razonando las respuestas:

- a) (0,5 p) Escribe su estructura de Lewis.
- b) (0,5 p) ¿Qué geometría cabe esperar para sus moléculas?
- c) (0,5 p) ¿Por qué la molécula es apolar a pesar de que los enlaces C- Cl son polares?
- d) (0,5 p) ¿Por qué a temperatura ordinaria el CCl4 es líquido y, en cambio, el CI4 es sólido?

Dadas las configuraciones electrónicas:

A: $ls^2 3s^1$; B: $ls^2 2s^3$; C: $ls^2 2s^2 2p^6 3s^2 3p^5$; D: $ls^2 2s^2 2p_x^2 2p_y^\circ 2p_z^\circ$, indica, razonadamente:

- a) (0,5 p) La que no cumple el principio de exclusión de Pauli.
- b) (0,5 p) La que no cumple el principio de máxima multiplicidad de Hund.
- c) (0,5 p) La que, siendo permitida, contiene electrones desapareados.
- d) (0,5 p) La que pudiera representar a un átomo en estado fundamental.

SEPTIEMBRE 2014

En las siguientes parejas de moléculas, una molécula es polar y la otra no polar:

NH₃ y BF₃

H₂O y BeCl₂

- a) (1 p) Explica razonadamente la geometría de estas moléculas.
- b) (1 p) Indica razonadamente en cada pareja cuál es la molécula polar y cuál la no polar.

JUNIO 2014

Dado el elemento X de número atómico 19:

- a) (0,5 p) Escribe su configuración electrónica.
- b) (0,5 p) Indica a qué grupo y período pertenece.
- c) (0,5 p) ¿Cuáles son los valores posibles que pueden tomar los números cuánticos de su electrón más externo?
- d) (0,5 p) Escribe la configuración electrónica de otro elemento Y, de su mismo período, con el que forme un compuesto XY mediante enlace iónico.

JUNIO 2014

Explica qué tipo de fuerzas de atracción y/o enlace químico debe vencerse para llevar a cabo los siguientes procesos:

- a) (0,5 p) Fundir bromuro de calcio, CaBr₂(s).
- b) (0,5 p) Hervir agua, $H_2O(\ell)$.
- c) (0,5 p) Evaporar oxígeno, $O_2(\ell)$.
- d) (0,5 p) Fundir cesio, Cs (s).

SEPTIEMBRE 2013

Explicar breve y razonadamente:

- a) (0,5 p) El agua disuelve a los compuestos iónicos y el CCl4 no.
- b) (0,5 p) El BeH₂ no es polar y si lo es el H₂O.
- c) (0,5 p) El etano es menos soluble en agua que el etanol.
- d) (0,5 p) El SH2 tiene un punto de ebullición menor que el SeH2 (ambos son gases a temperatura ambiente).

SEPTIEMBRE 2013

- a) (1 p) Escribe las configuraciones electrónicas en su estado fundamental de los elementos A y B cuyos números atómicos son 38 y 17 respectivamente. Indica cuantos electrones desapareados presentan en su última capa.
- b) (1 p) Razona que tipo de enlace formará un compuesto binario entre ambos elementos. Indica dos propiedades características de este tipo de enlace

- a) (0,5 p) Escribir las configuraciones electrónicas de los elementos A (Z = 6), B (Z = 17) y C (Z = 36), en su estado fundamental.
- b) (0,5 p) Indicar razonadamente Grupo y Periodo de cada uno de ellos.
- c) (0,5 p) Indicar razonadamente el elemento con más electrones desapareados en su estado fundamental.
- d) (0,5 p) Indicar razonadamente el elemento con mayor energía de ionización.

JUNIO 2013

Deducir en la pareja de compuestos NF3 y BF3:

- a) (0,5 p) La hibridación de orbitales atómicos del elemento central en cada caso.
- b) (0,5 p) La geometría molecular de los compuestos.
- c) (0,5 p) La polaridad en cada caso.
- d) (0,5 p) El que presenta mayor punto de ebullición.

DATOS: Números atómicos, B = 5; N = 7, F = 9

SEPTIEMBRE 2012

En la siguiente pareja de moléculas, una de ella es polar y la otra no: H2O, BeCl2

- a) (1 p) Explique razonadamente la geometría de estas moléculas.
- b) (1 p) Indique razonadamente cuál es la molécula polar y cuál la no polar.

DATOS: Números atómicos: H = 1; O = 8; Be = 4; Cl = 17

JUNIO 2012

Dos elementos A y B presentan números atómicos 56 y 16 respectivamente.

- a) (1 p) Escribe sus configuraciones electrónicas en su estado fundamental. Indica cuántos electrones desapareados presentan en su última capa.
- b) (1 p) Razona que tipo de enlace formará el compuesto binario entre ambos elementos. Indica dos propiedades características de este tipo de enlace.

JUNIO 2012

El trifluoruro de boro y el amoniaco son compuestos gaseosos en condiciones normales.

- a) (0,5 p) Explica la forma geométrica de sus moléculas.
- b) (0,5 p) Explica cuál de las dos moléculas es más polar.
- c) (0.5 p) Explica cómo serán las fuerzas intermoleculares en cada uno de los compuestos.
- d) (0,5 p) Razona cuál de los dos compuestos tendrá un punto de ebullición más elevado.

DATOS: Números atómicos N: 7 H: 1 B: 5

SEPTIEMBRE 2011

El tricloruro de boro es un gas en condiciones normales, mientras que el tetracloruro de carbono es líquido. Explica y razona:

F: 9

- a) (0,5 p) Explica la forma geométrica de sus moléculas.
- b) (0,5 p) La polaridad de ambas moléculas.
- c) (0,5 p) ¿Cómo serán las serán las fuerzas intermoleculares en cada uno de los compuestos?
- d) (0,5 p) Los motivos de que un compuesto sea gas y el otro líquido.

DATOS: Números atómicos C: 6 Cl: 17 B: 5

Dados tres elementos de la Tabla Periódica: A, B y C de números atómicos 8, 16 y 19, respectivamente.

- a) (0.5 p) Escribe sus configuraciones electrónicas en estado fundamental.
- b) (0,5 p) Razona qué elemento de los tres tendrá su primera energía de ionización mayor.
- c) (0.5 p) Indica y razona, el tipo de enlace que se formará entre los átomos A y B.
- d) (0,5 p) Indica y razona, el tipo de enlace que se formará entre los átomos A y C.

JUNIO 2011

El trifluoruro de boro y el amoniaco son compuestos gaseosos en condiciones normales.

- a) (0,5 p) Explica la forma geométrica de sus moléculas.
- b) (0,5 p) Explica cuál de las dos moléculas es más polar.
- c) (0.5 p) Explica cómo serán las fuerzas intermoleculares en cada uno de los compuestos.
- d) (0,5 p) Razona cuál de los dos compuestos tendrá un punto de ebullición más elevado. H: 1

DATOS: Números atómicos

N: 7

B: 5

F: 9

SEPTIEMBRE 2010

Dados tres elementos de la Tabla Periódica: A, B y C de números atómicos 8, 16 y 19, respectivamente.

- a) (0,5 p) Escribe sus configuraciones electrónicas en estado fundamental.
- b) (0,75 p) Indica el elemento cuyo primer potencial de ionización sea mayor. Razónalo.
- c) (0,75 p) Indica el tipo de enlace y dos propiedades características de los compuestos formados por los elementos A y B. Razónalo.

SEPTIEMBRE 2010

El número de protones de los núcleos de 5 elementos es:

Flemento: Α 2 В С 11

D

Protones:

9

12 13

Ε

Indica, explicando y justificando la respuesta, la letra del elemento que:

- a) **(0,5 p)** Es un gas noble.
- b) (0,5 p) Es el más electronegativo.
- c) (0,5 p) Es un metal alcalino.
- d) (0,5 p) Forma un nitrato de fórmula X(NO3)2

JUNIO 2010

- a) (1 p) Define potencial (o energía) de ionización y afinidad electrónica. Pon un ejemplo en cada caso.
- b) (1 p) Indica razonadamente como varían estas propiedades en un periodo del Sistema Periódico.

JUNIO 2010

Dadas las siguientes sustancias: flúor, (F2); fluoruro sódico, (NaF); flururo de hidrógeno, (HF).

- a) (1 p) Explica razonadamente el tipo de enlace que se puede encontrar en cada una de ellas, intermolecularmente e intramolecularmente.
- b) (1 p) Ordénalas, razonadamente, de mayor a menor punto de fusión.

DATOS: Números atómicos: H = 1

F = 9

Na= 11.

Dadas las siguientes configuraciones electrónicas del mismo elemento:

$$A: 1s^2 2s^2 2p^2$$

Indique de un modo razonado si las afirmaciones siguientes son verdaderas o falsas:

- a) (1 p) No es posible la configuración proporcionada para B.
- b) (1 p) Las dos configuraciones corresponden al mismo elemento pero de isótopos distintos.

SEPTIEMBRE 2009

Justificar las siguientes propuestas relativas a sustancias orgánicas:

- a) (0,5 p) La molécula $CHC\ell_3$ es polar.
- b) (0,5 p) El etano es menos soluble en agua que el etanol.
- c) (0,5 p) Formula y nombra dos posibles isómeros de fórmula C_4H_8O .
- d) (0,5 p) Los alcanos lineales incrementan su punto de ebullición al aumentar el número de carbonos.

JUNIO 2009

Dado el elemento Z = 19.

- a) (0,5 p) Escriba su configuración electrónica en estado fundamental.
- b) (0,5 p) ¿Cuáles son los valores posibles que pueden tomar los números cuánticos de su electrón más externo en estado fundamental?
- c) (0,5 p) Indique a qué grupo y periodo pertenece.
- d) (0,5 p) Escriba una configuración electrónica del elemento en estado excitado.

JUNIO 2009

En la siguiente pareja de moléculas, una es polar y la otra no: NH3 y BCl3

- a) (1 p) Explique razonadamente la geometría de estas moléculas.
- b) (1 p) Indique razonadamente en cada pareja cuál es la molécula polar y cuál es la no polar.

DATOS:

Números atómicos:

H = 1: N = 7:

B = 5:

 $C\ell = 17.$