生命科学基础 I

第二章 细胞的物质基础 第二节 脂质

孔宇

西安交通大学生命科学与技术学院 2021年9月18日星期六

፟ 内容提要

- 1.脂的功能
 - 2.脂的定义
 - 3.脂的结构及分类
 - 4.脂的物理化学性质
- 5.脂的重要应用举例

≫ 1.脂的功能

- ❖构成生物膜脂质双 层结构(不亲水), 保护脏器等;
- ❖提供能量, 良好的 储能物质;
- ✓ 脂~37 kJ/g---人;
- ✓糖/蛋白质~17 kJ/g;

可弹幕或投稿!

为什么?

植物→淀粉; 动物→脂肪

≫ 1.脂的功能

- ❖信号传递功能:固醇类激素,如雌雄激素;
- ❖维生素类:维生素D₂/D₃;
- ❖电绝缘: 类似电线皮-鞘细胞;
- ❖热绝缘、防蛀、防辐射、抗蒸发(冬青、棕榈等);

❖脂类(糖脂)与信息识别、种特异性、组织免疫有密切的关系;与细胞信号转导有关(IP₃)
※疾病:动脉粥样硬化、脂肪肝和酮尿症等

≫ 2.脂的定义

◇脂肪酸(C₄以上)和醇类(甘油醇、鞘氨醇)组成的酯类及<u>衍生物/</u> 类似物(固醇等)。

≫ 3.脂的结构及分类

❖3.1结构: 酯类及衍生物/类似物。

≫ 3.脂的结构及分类

***3.2** 脂的分类

元素组成: C、H、O、 N, P

脂质 lipid

单纯脂质

simple lipid

复合脂质

compound lipid

固醇类 sterol

酯: 脂肪酸与甘油(甘油醇、高级一元醇)

所组成的酯类

油:不饱和FA

蜡:高级FA和高级一元醇

磷脂:脂肪酸与醇(甘油醇,鞘氨醇)所生成的 酯,并含有其他非脂性物质(糖、磷酸及含氮

碱等)

糖脂: N-乙酰基鞘氨醇甘油醇糖脂

其它脂质: 衍生物 ,萜:异戊二烯结构

3. 1 单脂- Triglycerides

- ❖一/二/三酰-甘油(Glycerol)
- ❖分型依据甘油(α-β-α'), 前手性。L天然
- **❖**编码体系Δ,ω体系

上→下:棕榈酸、油酸、亚麻酸

脂肪酸

- ❖偶数为主,奇数(细菌)
- ❖碳数4~28, 天然16,18,20最常见
- ❖熔点:饱和>不饱和,低温适应性

脂肪酸

- ❖熔点:顺式<反式
- ❖(不)饱和居多, 羟、环少
- *根据碳链长度分:短(≦10)、中(10<N<20)、长(≧20)

常见脂肪酸

❖上: 芥酸-菜籽油31~35%

❖下:油酸-豆油、玉米油

必需脂肪酸-如海洋3A等

- **❖ω3/6**与心血管、癌症、神经系统(3降血脂;6降胆固醇)
- ❖(深)海洋鱼类中最高
- ❖不饱和位点多为△9,12,双键有亚甲基间隔,非共轭体系: -CH₂-CH=CH-CH₂-CH=CH-CH₂-

类花生酸(eicosanoid)

- ❖前列腺素类(prostaglandin, PG):收缩血管,升高体温
- ❖由花生四烯酸合成,PG与导致炎症有关(消炎/消炎药), PG可转化为凝血恶烷(阿司匹林);

≫ 3.脂的结构及分类

◆3.2 脂的分类

元素组成: C, H, O, N. P

脂质 lipid 单纯脂质

simple lipid

compound lipid

固醇类 sterol

其它脂质:

酯: 脂肪酸与甘油(甘油醇、高级一元醇)

所组成的酯类

油:不饱和FA

蜡:高级FA和高级一元醇

磷脂:脂肪酸与醇(甘油醇,鞘氨醇)所生成的 酯,并含有其他非脂性物质(糖、磷酸及含氮

碱等)

糖脂: N-乙酰基鞘氨醇甘油醇糖脂

衍生物,萜:异戊二烯结构

※ 3.2 复脂-complex lipid

❖3.2.2.1 磷脂-phospholipids 甘油醇/鞘氨醇磷脂

❖3.2.2.2 糖脂-glycolipids

甘油醇/鞘氨醇糖脂

3.2.1 磷脂-phospholipids

甘油磷脂:

- 细胞膜双层结构; 临界胶束浓度
- 3位羟基被磷酸酯化
- 1位羟基常被饱和脂肪酸酯化
- 2位羟基常被C16~C20的不饱和脂 肪酸酯化

卵磷脂(胆碱)

来源鸡蛋、大豆;磷酸的羟基可再 被氨基醇或肌醇酯化

	Name of glycerophospholipid	Name of X	Formula of X	
县他联门	Phosphatidic acid 磷脂酸	_	— н	
★ 1☆1米1ビ・ +☆3兄3コ√フ →	Phosphatidylethanolamine 磷脂酰乙醇胺,脑磷脂	Ethanolamine 乙醇胺	$-\!$	
❖脑磷脂:增强记忆	Phosphatidylcholine 磷脂酰胆碱,卵磷脂	Choline 胆碱	— CH_2 — CH_2 — $\mathring{N}(CH_3)_3$	
	Phosphatidylserine 磷脂酰丝氨酸	Serine 丝氨酸	— СН ₂ —СН—ЙН₃ СОО-	
❖肌醇:二酰甘油 /IP₃均为第二信使	Phosphatidylglycerol 磷脂酰甘油	Glycerol 甘油	$-$ СН $_z$ —СН $_z$ —ОН	
/16322/20第一1日使			H O—(P)	
0	Phosphatidylinositol 4,5-bisphosphate 磷脂酰肌醇2-磷酸	myo-Inositol 4,5- bisphosphate 肌醇2-磷酸	он н	
X -O-P-O-CH ₂	- VIND - VIND	With 1 - 19THS	1 2 3 H H	
CH—O—C—R¹	Cardiolipin 二磷脂酰甘油,心磷脂	Phosphatidyl- glycerol 磷脂酰甘油	$- CH_2$ CH_2 O CH_2 O CH_2 O CH_2	
CH_2 — O — C — R^2			CH—O—C—R¹	

※ 3.2.2 鞘(氨醇)磷脂-自学了解

※ 3.2.3 糖脂-glycolipids

糖脂举例-神经节苷脂

❖霍乱弧菌分泌的外毒素(84 kDa),由A、B亚基组成, 敏感细胞膜的神经节苷脂,促使A 使Gs蛋白发生ADP-核糖基化,不可逆 激活腺苷酸环化酶,导致剧烈腹泻。

≫ 3.3 固醇类

- ❖植物(麦角固醇)、动物(胆固醇)
- **❖环戊烷多氢菲**结构

❖人体含量最高的固醇,常温固态

胆固醇的作用

转相温度,可载脂肪 基本结构成分,调节 胆固醇属于细胞膜的

胆固醇与转相温度关系

- ❖细胞膜处于液态: 胆固醇的刚性,会降 低流动性;
- ❖细胞膜处于固态: 胆固醇的存在降低有 序性,增加流动性;

胆固醇的作用

- ❖胆汁酸(bile acids): 可与甘氨酸、牛磺酸、硫酸、葡糖醛酸结合的产物。
- ❖储备,浓缩,助 消化

胆固醇的作用-转化为维生素D

胆固醇危害及如何降低血液胆固醇浓度

- ❖心血管疾病
 - >-动脉硬化
 - >-血栓
 - >-心脏病等
- ❖胆结石

- ☆控制伙食
- ◇高纤维素
- ⇔少糖
- ◇少油
- ※多鱼
- ❖每天5种以上蔬菜
- ❖麦角固醇抑制吸收

3.4 萜类-自学了解

- ❖异戊二烯的整数倍的烯烃 类化合物,分为:
 - □ 单萜(2个异戊二烯单位组成)
 - □ 倍半萜(3个)-香料
 - □二萜(4个)-树脂
 - □二倍半萜(5个)
 - □ 三萜(6个)
 - □ 四萜(8个)
 - □ 多聚萜(>8个)等

─ 4 脂类的物理化学性质

- ❖4.1 物理性质
- ❖4.2 化学性质

◆ 4.1 物理性质

- **❖**无色、无味、**中性**
- ※比重小于1
- ❖常温液态:油;固态:脂
- ❖不溶于水,溶于非极性溶剂(苯、石油醚、乙 醚、丙酮、汽油...)
- ❖乙醇中溶解度随温度变化大(粗纯化)

◆ 4.2 化学性质

- *皂化价
- ◇氧化/过氧化
- ❖碘值-自学
- ❖酸败-自学
- ❖乙酰价-自学
- ❖水解-自学

皂化价

- ❖皂化:动植物油脂在 氢氧化钠或氢氧化钾作 用下水解生成的脂肪酸 盐;
- ❖皂化价──皂化1g油脂 所需要的KOH mg数
- ❖估算平均分子量:
- ❖皂化价越高,MW_{FA}越?

氧化

过氧化等详见Blackboard 平台资料

$$+ 0_2 \longrightarrow 0$$
OH

- ❖天然油脂暴露在空气中会产生难闻的气味,这种现象叫<mark>酸败</mark>。空气中的分子氧在常温下对化合物的直接作用,从而导致氧化的发生。
- **❖**β-氧化后脱羧-脂代谢
- ❖过氧化-自由基-Blackboard 平台

碘值-自学

实验内容

- ❖指100g油脂卤化时所能吸收的碘的g数(与油脂不饱和度成正比)
- ◆加成作用: RCH₂-CH=CH-(CH₂)n-COOH+IBr→RCH₂ICH-CHBr-(CH₂)n-COOH
- ◆剩余溴化碘中碘的释放 IBr+Kl→I₂+KBr
- ◆用硫代硫酸钠滴定释放出来的碘 I₂+2Na₂S₂O₃--→2NaI+Na₂S₄O₆

≫ 5.血脂与脂蛋白

- ◆血浆中的中性脂肪(甘油 三酯)和类脂(磷脂、糖脂 、固醇、类固醇)的总称
 - 1.乳糜微粒; 2.极低密度脂蛋白; 3.低密度脂蛋白; 4.高密度脂蛋白

种类	分子大小	上浮率	密度	电泳位置
	(Sf值) *	(gcm ⁻³)		
HDL-高密度	50×300	0	1.063 ~ 1.210	β
LDL-低密度	200 ~ 250	0 ~20	1.006 ~ 1.063	α
VLDL-极低密度	250 ~ 800	20 ~ 400	0.960 ~ 1.006	前-α
CM-乳糜颗粒	800 ~ 5,000	>400	<0.960	原点

※ 小结

- *必需脂肪酸
- ❖脂的重要物化性质
- ❖脂的分类及各自的结构特征
- ❖胆固醇