Smoothing methods for ARGOS trajectories

Projet long presentation

2015

Projet Long

- Project in collaboration with CLS
- Supervisor: Beatriz Calmettes, CLS
- Project leader: Jérôme Combanière
- Project team:
 - Jérôme Combanière
 - Anthony Delannoy
 - Benoit Madiot

Context

- Endangered species:
 - Leatherback turtles
 - Elephant seals

- ARGOS system monitoring threatened species
- Creation of marine protected areas
- Matlab ⇒ Python

Contents

- Project management
- Graphical User Interface (GUI)
- Data extraction and common format
- Data processing
- Conclusion

GANTT chart

Graphical User Interface (GUI)

ARGOS system

Data extraction and common format

- •ARGOS data stored in three different file formats :
 - CSV
 - DIAG
 - DS
- One program to rule them all, one program to find them, one program to bring them all and in the format bind them

The remaining format is a list of dictionary

$$[dico[1] \ dico[2[\dots \ dico[n]]$$

Data extraction and common format

Each transmission data are stored in a dictionary with a unique keys structure

$$\left\{egin{array}{ll} "date" \\ "LC" \\ "lat" \\ "lon" \\ "lat_image" \\ "lon_image" \end{array}
ight\}$$

Key "date" associates to another dictionary

Data extraction and common format

- This unique work format allowed an easier way to program smoothing methods
- XML files contain parameters for smoothing methods and are specific to each species
- These parameters are also stored in a dictionary following XML reading.

Preprocessing

CHOICE OF LOCATION

Choice of location

Choice of location

Raw data

Data preprocessed with correction of location

Preprocessing

DELETION OF EXCESSIVE SPEED

Deletion of excessive speed

- Computation of speed between two points
- Criteria of precision of the location
- Comparison with the specie's maximal speed

Deletion of excessive speed

Data before deletion of excessive speed

Data after deletion of excessive speed

 Here you estimate one position as the weighted sum of the two previous, current and two following positions

2 different weights :

- one from the kernel
- one from the quality of the ARGOS localization

Adaptable size of the support of the epanechnikov kernel :

$$\frac{3}{4h} \cdot \left(1 - \frac{x^2}{h}\right)$$
 with 2h = size of the support

 Epanechnikov kernel minimizes AMISE (Asymptotic Mean Integrated Squared Error) and is therefore optimal.

The weights increase as the precision of measurement increases

If the estimated position is too far from the ARGOS position, this position is removed

Trajectory before the estimation

Trajectory with an Epanechnikov kernel

Trajectory before the estimation

Trajectory with a Gaussian kernel

2nd estimation

- Linear regression
- Resampling trajectory

Points spaced with a constant time step size

Output without the 2nd estimation

Output with the 2nd estimation

Kalman smoothing

An EM algorithm estimates the transition matrix

Use of all the data in order to smooth the trajectories

Trajectory before Kalman smoothing

Trajectory after Kalman smoothing

Conclusion

- Efficient and reliable algorithms
- Work achieve intends to monitor endangered species
- Trajectories can be plotted and exploited using the GUI
- Further improvements:
 - Comparison with GPS data
 - Handle new ARGOS data

