Assignment2

Yuki Joyama (yj2803)

Problem 1

Given the local Markov property for UGs,

 $X_i \perp \!\!\! \perp X \backslash Cl(X_i,\mathcal{G}) | Ne(X_i,\mathcal{G}) \text{ and } X_i \nsim X_i$

 $\Rightarrow X_i \perp\!\!\!\perp X_j \cup (X \backslash Cl(X_i, \mathcal{G}) \cup X_j) | Ne(X_i, \mathcal{G})$

 $\Rightarrow X_i \perp \!\!\!\perp X_j | Ne(X_i, \mathcal{G}) \cup (X \backslash Cl(X_i, \mathcal{G}) \cup X_j)$ (by weak union)

 $\Rightarrow X_i \perp\!\!\!\perp X_j | Ne(X_i,\mathcal{G}) \cup (X \backslash Ne(X_i,\mathcal{G}) \cup X_i \cup X_j)$

 $\Rightarrow X_i \perp\!\!\!\perp X_j | X \backslash (X_i \cup X_j) \Rightarrow X_i \perp\!\!\!\perp X_j | X \backslash \{X_i, X_j\}$

This is the pairwise Markov property. Therefore, we can conclude that local Markov property \Rightarrow pairwise Markov property in undirected graph \mathcal{G} .

Problem 2

Figure 1: Moralized graph

- (a) When factorizing by maximal clique, the joint distribution can be written as: $p(x) = \frac{1}{Z}\phi_{123}(x_1, x_2, x_3)\phi_{234}(x_2, x_3, x_4)\phi_{378}(x_3, x_7, x_8)\phi_{348}(x_3, x_4, x_8)\phi_{489}(x_4, x_8, x_9)\phi_{234}(x_8, x_9, x_{10})\phi_{45}(x_4, x_5)\phi_{56}(x_5, x_6)$ There are 8 factor potentials.
- (b) When the scope has 3 variables, there are 3 parameters for each variable, 3 parameters for pairs, and 1 parameter for three-way interaction. When the scope has two variables, there are 2 parameters for

single variable and 1 parameters for pairs. From (a), we have 6 scopes with 3 variables and 2 scopes with 2 variables. Therefore, there are $(3+3+1)\times 6+(2+1)\times 2=48$ variables in total.

- (c) There are 10 variables and each can take on either 0 or 1, so there are $2^{10} = 1024$ possible combinations. The joint distribution must sum to 1, and the last one will be determined automatically when all the other 9 variable are set. So $2^{10} 1 = 1023$ parameters would be required.
- (d) Factorization property in DAG \mathcal{G} :

```
p(x_1,x_2,...,x_{10}) = \prod_{i=1}^{10} p(x_i \mid Pa(X_i,\mathcal{G})) = p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2,x_3)p(x_5|x_4)p(x_6|x_5)p(x_7|x_3)p(x_8|x_3,x_7)p(x_9|x_4,x_8,x_{10})p(x_{10}|x_8) When x_i=1, the probability can be written as p(x_i=1|Pa(X_i,\mathcal{G})). The probability where x_i=0 can be obtained by 1-p(x_i=1|Pa(X_i,\mathcal{G})) so we can focus on the combination of the parents. By the above factorization formula, the required number of parameters are 2^0+2^1+2^1+2^2+2^1+2^1+2^1+2^2+2^3+2^1=29.
```

Problem 3

Independencies of \mathcal{G}_1 :

$$A \perp_d B|\phi,\, B \perp_d D|\phi,\, D \perp_d C|\phi,\, C \perp_d A|\phi,\, A \perp_d D|\phi,\, B \perp_d C|\phi$$

Independencies of \mathcal{G}_2 :

$$A \perp\!\!\!\perp B|\{E,C,D\}, \ B \perp\!\!\!\perp D|\{E,A,C\}, \ D \perp\!\!\!\perp C|\{E,A,B\}, \ C \perp\!\!\!\perp A|\{E,D,B\}, \ A \perp\!\!\!\perp D|\{E,B,C\}, \ B \perp\!\!\!\perp C|\{E,A,D\}$$

Independencies of \mathcal{G}_3 :

$$A \perp_d B|E, \, B \perp_d D|E, \, D \perp_d C|E, \, C \perp_d A|E, \, A \perp_d D|E, \, B \perp_d C|E$$

Both BN and MRF models infer conditional independencies based on the absence of edges. In a BN, non-adjacent variables require some set S (possibly empty) to make them independent, whereas in an MRF, non-adjacent variables are independent when conditioned on all remaining variables.

Adding adjacency between A and B changes the independencies as follows.

Independencies of \mathcal{G}_1 :

A and B are no longer independent, $B \perp_d D | \phi$ or $B \perp_d D | A$, $D \perp_d C | \phi$ or $D \perp_d C | \{A, B\}$,

$$C\perp_d A|\phi$$
 or $C\perp_d A|B,\, A\perp_d D|\phi$ or $A\perp_d D|B,\, B\perp_d C|\phi$ or $B\perp_d C|A$

Independencies of \mathcal{G}_2 :

A and B are no longer independent. Aside from that, all the independencies remain the same.

Independencies of \mathcal{G}_3 :

A and B are no longer independent.

- When $B \to A$ is added, A becomes a collider so all the independencies remain the same except A and B.
- When $B \leftarrow A$ is added:

$$B \perp_d D|\{E,A\}, \ D \perp_d C|\{E,A\}, \ C \perp_d A|\{E,A\}, \ A \perp_d D|\{E,A\}, \ B \perp_d C|\{E,A\}$$

Problem 4

Proof of $\mathbf{A} \perp_d \mathbf{B} | \mathbf{C}$ in DAG $\mathcal{G} \Rightarrow \mathbf{A} \perp \!\!\! \perp \mathbf{B} | \mathbf{C}$ in $(\mathcal{G}_{An(\mathbf{A}, \mathbf{B}, \mathbf{C})})^m$:

When $\mathbf{A} \perp_d \mathbf{B} | \mathbf{C}$ in DAG \mathcal{G} , all the paths from \mathbf{A} to \mathbf{B} through \mathbf{C} should be blocked. Noncollider in \mathbf{C} makes the path non-active and collider in \mathbf{C} makes the path active given \mathbf{C} is in the conditioning set. If there

are more than one node between **A** and **B**, the path will be non-active because we cannot have nodes in **C** between **A** and **B** to be all colliders. In other words, **A** and **B** are d-connected only when there is a node in **C** that is a child of both **A** and **B**. So, there is no node c in **C** such that $A \to c \leftarrow B$ under $A \perp_d \mathbf{B} | \mathbf{C}$. Additionally, there is no direct path between **A** and **B** in DAG \mathcal{G} . Thus, when constructing $(\mathcal{G}_{An(\mathbf{A},\mathbf{B},\mathbf{C})})^m$, the non-adjacency of **A** and **B** is maintained. Therefore, $\mathbf{A} \perp \mathbf{B} | \mathbf{C}$ in $(\mathcal{G}_{An(\mathbf{A},\mathbf{B},\mathbf{C})})^m$ holds.

Proof of $\neg (\mathbf{A} \perp_d \mathbf{B} | \mathbf{C} \text{ in DAG } \mathcal{G}) \Rightarrow \neg (\mathbf{A} \perp \!\!\!\perp \mathbf{B} | \mathbf{C} \text{ in } (\mathcal{G}_{An(\mathbf{A}, \mathbf{B}, \mathbf{C})})^m)$:

When **A** and **B** are not d-separated given **C**, at least one path from **A** to **B** has to be active. As mentioned above, this is true only when there is node c in **C** such that $A \to c \leftarrow B$ under $\mathbf{A} \perp_d \mathbf{B} | \mathbf{C}$. The moralization of DAG \mathcal{G} will create a new edge between **A** and **B**, so they will no longer be independent given **C** in $\mathbf{A} \perp \mathbf{B} | \mathbf{C}$ in $(\mathcal{G}_{An(\mathbf{A}, \mathbf{B}, \mathbf{C})})^m$.

Therefore, $\mathbf{A} \perp_d \mathbf{B} | \mathbf{C}$ in DAG \mathcal{G} if and only if $\mathbf{A} \perp \!\!\! \perp \mathbf{B} | \mathbf{C}$ in $(\mathcal{G}_{An(\mathbf{A},\mathbf{B},\mathbf{C})})^m$.