Generator izmenične napetosti za elektroformacijo orjaških fosfolipidnih veziklov

Marin Gazvoda de Reggi, Urban Malavašič, Marko Jeran, Samo Penič

Laboratorij za fiziko, Fakulteta za elektrotehniko, Univerza v Ljubljani

20. september 2021

Celična membrana

Tanka plast, sestavljena primarno iz dvojne plasti molekul fosfolipidov, skozi katero prehajajo snovi v celico in iz nje.

Preučevanje celične membrane

- Delovanje pogojeno s številnimi celičnimi mehanizmi in zapleteno biološko zgradbo.
- Uporaba poenostavljenih modelov celic.
- Liposomi ali orjaški fosfolipidni vezikli.

Slika: Shematski prikaz fosfolipidnega vezikla.

Elektroformacija

- ► Najpogosteje uporabljen postopek priprave veziklov.
- ► Hiter (\approx 1–3 ure) in učinkovit.

Protokol

- 1. Nanos lipidne raztopine na platinasti elektrodi.
- 2. Izhlapevanje topila, tvorjenje lipidnega filma na elektrodah.
- 3. Prenos elektrod v vodno raztopino sladkorja ali soli.
- Izmenično električno polje med elektrodama spodbudi in pospeši proces tvorjenja lipidnih veziklov.

Namen

- ► Kot vir izmenične napetosti sinusne oblike se najpogosteje uporablja signalni generator.
- ▶ Elektroformiranje poteka v šibkem $E (< 100 \frac{V}{m})$.
- Izdelava prototipa preprostejše, cenejše, manjše in bolj prilagojene naprave.

Tabela: Tipični parametri napetostnega vira.

Napetost [V _{pp}]	Frekvenca [Hz]
10,0	5,0
5,0	2,5
2,5	2,5
1,0	1,0
	[V _{pp}] 10,0 5,0

Prototip generatorja izmenične napetosti

- Odprtokodni mikrokrmiliški sistem Arduino, sinusna napetost generirana s filtriranim signalom PWM.
- Celoten protokol je zapisan v pomnilniku in ga sprožimo s pritiskom na gumb.
- Možnost spreminjanja protokola z aplikacijo na računalniku.
- Preprost za uporabo, majhen in prenosljiv ter se v celoti napaja prek vodila USB.
- Uporabljene lahko dobavljive in cenovno ugodne elektronske komponente.
- Vezje in programska koda dostopna pod odprtokodno licenco MIT na https://github.com/umalavasic/electroformation.

Prototip generatorja izmenične napetosti

Prototip generatorja izmenične napetosti

Tabela: Specifikacije generatorja izmenične napetosti.

Izhodni parameter	Največja dopustna vrednost
frekvenca	150 Hz
amplituda napetosti	5 V
tokovna zmogljivost	40 mA

Potek izvajanja programske kode

Rezultati

- Vir napetosti smo uporabili za elektroformacijo veziklov iz sintetičnega lipida POPC (1-palmitoil-2-oleoil-sn-glicero-3-fosfoholina) in nato še iz njegove mešanice s holesterolom.
- Količini nastalih veziklov v obeh primerih formacije sta bili primerljivi s količinama, pridobljenima z uporabo komercialnega funkcijskega generatorja.
- Postopek elektroformacije ne zahteva natančne sinusne oblike signala, zato je konstrukcija z uporabo modulacije PWM zadovoljiva.

Rezultati

Slika: Uporaba generatorja za elektroformacijo orjaških fosfolipidnih veziklov.

Rezultati

Slika: Posnetek orjaških fosfolipidnih veziklov pri 100-kratni povečavi. Na slikah so membrane s fosfolipidi POPC brez (a) in z dodanim holesterolom v razmerju 1:4 (b).

Zaključek

- ► Mobilna in cenovno ugodna rešitev za elektroformacijo orjaških fosfolipidnih veziklov.
- ► Popolna avtomatizacija postopka elektroformacije in enostavna uporaba.
- Možnost implementacije komuniciranja z računalnikom in obveščanja prek internetne povezave o stanju izvajanja protokola.

Hvala za pozornost

Vprašanja?