Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the

application.

Listing of Claims

Claim 1 (Original). A cast enclosure formed in a mold or die for housing

components of a power unit suitable for battery replacement applications, wherein said

enclosure comprises wall portions defining a plurality of internal subcompartments for

receiving said components.

Claim 2 (Original). The enclosure as defined in claim 1, wherein said

subcompartments comprise cavities within said enclosure for receiving said

components.

Claim 3 (Original). The enclosure as defined in claim 1, wherein at least some

of said subcompartments comprise conduits for containing materials selected from the

group consisting of gases, fluids, plumbing and wiring.

Claim 4 (Original). The enclosure as defined in claim 1, wherein said enclosure

is assembled from a plurality of cast sections.

Claim 5 (Original). The enclosure as defined in claim 1, wherein said enclosure

is formed from cast metal.

Claim 6 (Original). The enclosure as defined in claim 1, wherein one of said

components is a power unit and wherein one of said subcompartments is configured to

receive said power unit.

Claim 7 (Original). The enclosure as defined in claim 6, wherein said power unit

comprises a fuel cell stack and wherein one of said compartments is configured to

receive said fuel cell stack.

Claim 8 (Original). The enclosure as defined in claim 1, wherein one of said

components is a fuel storage device and wherein one of said subcompartments is

configured to receive said fuel storage device.

Claim 9 (Original). The enclosure as defined in claim 1, wherein the weight of

said enclosure when housing said components approximates the weight of an electric

vehicle traction battery.

Claim 10 (Original). The enclosure as defined in claim 1, wherein said wall

portions are of varying thickness such that voids between said components within said

enclosure are minimized.

3

Claim 11 (Original). The enclosure as defined in claim 1, further comprising a

vibration dampener located in at least some of said subcompartments.

Claim 12 (Original). The enclosure as defined in claim 11, wherein said

vibration dampener comprises a particle bed.

Claim 13 (Original). The enclosure as defined in claim 1, wherein said enclosure

comprises a base and wherein said enclosure further comprises vibration isolators

mounted on said base.

Claim 14 (Original). The enclosure as defined in claim 1, wherein said enclosure

further comprises vibration isolators located between at least some of said components

and said wall portions.

Claim 15 (Original). The enclosure as defined in claim 1, wherein said enclosure

comprises integral mounting points.

Claim 16 (Original). The enclosure as defined in claim 15, wherein said

mounting points are located on an outer surface of said enclosure.

4

Claim 17 (Original). The enclosure as defined in claim 1, wherein said enclosure

is formed from a material having a high thermal mass.

Claim 18 (Original). The enclosure as defined in claim 17, wherein said

enclosure is formed from cast metal.

Claim 19 (Original). The enclosure as defined in claim 1, wherein said enclosure

comprises recessed surfaces and removable external cover plates securable to said

recessed surfaces.

Claim 20 (Original). The enclosure as defined in claim 17, further comprising

channels formed in said wall portions for circulating a heat transfer fluid therethrough,

wherein thermal energy is transferable from said subcompartments housing heat

generating components to said wall portions through said heat transfer fluid.

Claim 21 (Original). The enclosure as defined in claim 20, further comprising a

radiator thermally coupled to said heat transfer fluid.

5

Claim 22 (Original). The enclosure as defined in claim 17, wherein said

enclosure houses at least one heat generating component within one of said

subcompartments, wherein thermal energy is transferable from said heat generating

component to an ambient environment by conduction through said wall portions, and

wherein an outer surface of said enclosure comprises fins to facilitate thermal transfer

to said ambient environment.

Claim 23 (Withdrawn). A power unit for providing electrical power to a

dynamic load comprising:

(a) at least one heat-generating component adjustable between

different operating states depending upon the power requirements of said load;

(b) a cast enclosure comprising wall portions defining a plurality of

internal subcompartments, wherein said heat-generating component is housed

within one of said subcompartments; and

(c) a thermal sub-system for rejecting heat from said heat-generating

component to said wall portions of said enclosure.

Claim 24 (Withdrawn). The power unit as defined in claim 23, wherein said

thermal sub-system rejects heat from said thermal sub-system to said wall portions by

conduction or convection.

6

Claim 25 (Withdrawn). The power unit as defined in claim 23, wherein said

thermal sub-system comprises at least one channel formed in said wall portions for

flowing a heat transfer fluid therethrough.

Claim 26 (Withdrawn). The power unit as defined in claim 25, wherein said

thermal sub-system further comprises a radiator separate from said wall portions

through which said heat transfer fluid is circulated.

Claim 27 (Withdrawn). The power unit as defined in claim 23, wherein said

enclosure comprises outer surfaces and wherein heat transferred to said wall portions is

dissipated to an ambient environment surrounding said enclosure by convection and

radiation over said outer surfaces.

Claim 28 (Withdrawn). The power unit as defined in claim 23, wherein said

thermal subsystem is located within said enclosure and is sized to reject less than the

maximum amount of heat produced by said heat-generating component under high load

conditions.

Claim 29 (Withdrawn). The power unit as defined in claim 28, wherein said

thermal subsystem is sized to reject approximately the average amount of heat

generated by said heat-generating device during an operating session of said power unit.

7

Claim 30 (Withdrawn). The power unit as defined in claim 29, wherein said

power unit is a hybrid system and wherein said heat-generating device is a fuel cell.

Claim 31 (Withdrawn). The power unit as defined in claim 25, further

comprising a controller for controlling the amount of said heat transfer fluid circulated

through said channel.

Claim 32 (Original). A cast enclosure assembly comprising a plurality of cast

enclosures as defined in claim 1, wherein one of said cast enclosures encloses a power

unit and another one of said cast enclosures encloses a fuel supply for said power unit.

Claim 33 (Withdrawn). An electric lift vehicle having a battery tray sized for

receiving a traction battery, wherein said vehicle further comprises a cast enclosure as

defined in claim 1 positioned in said battery tray.

Claim 34 (Withdrawn). The vehicle as defined in claim 33, wherein said vehicle

further comprises a vibration isolator positioned between said cast enclosure and said

battery tray.

Claim 35 (Withdrawn). An electric lift vehicle having a battery tray sized for

receiving a traction battery, wherein said vehicle further comprises a power unit as

defined in claim 22 positioned in said battery tray.

8

Claim 36 (Withdrawn). The vehicle as defined in claim 35, wherein said power

unit approximates the weight of an electric vehicle traction battery.

Claim 37 (Withdrawn). A method of regulating the temperature of a power unit

having a least one heat-generating component, said method comprising

(a) providing a cast enclosure for enclosing said power unit, said

enclosure comprising wall portions defining a subcompartment for holding said

heat generating component;

(b) rejecting heat from said heat-generating component to said wall

portions; and

(c) transferring said heat from said wall portions to an environment

surrounding said enclosure.

Claim 38 (Withdrawn). The method as defined in claim 37, wherein said heat is

transferred from said wall portions to said environment during periods when said heat-

generating component is in an idle or shut-down mode.

Claim 39 (Withdrawn). The method as defined in claim 38, wherein the step of

rejecting said heat comprises conveying a heat transfer fluid through said wall portions.

9

Claim 40 (Withdrawn). The method as defined in claim 38, wherein said heat-

generating component is a fuel cell stack and wherein said heat transfer fluid is passed

relative to said fuel cell stack.

Claim 41 (Withdrawn). The method as defined in claim 39, further comprising

controllably adjusting the amount of said heat transfer fluid circulate through said wall

portions depending upon the operational state of said thermal subsystem.

Claim 42 (Withdrawn). The method as defined in claim 39, further comprising

circulating said heat transfer fluid through a radiator.

10