

Device Features

- Internally matched to 50 ohms
- Operated at 3.0V and 5.0V
- 37.5 dBm Output IP3 at 0dBm/tone at 700MHz
- 22.5dB Gain at 700MHz
- 21.1dBm P1dB at 700 MHz
- 0.43 dB NF at 700MHz on evaluation board
- Green/RoHS2 Compliant DFN8 2x2 Package

Product Description

BeRex's BLB01 is a high linearity LNA, based on GaAs material with E-pHEMT process and packaged in a RoHS2-compliant DFN 8L 2x2mm² Surface mount package. It is designed for use where low noise and high linearity are required and features low noise and high OIP3 at Frequency range of 0.5~1.5GHz. It is internally matched to 50 Ohms without external matching components, with fast enable switching speed for TD-LTE application. All devices are 100% RF/DC tested and classified as HBM ESD Class 1C.

Applications

- Base station Infrastructure/RFID
- Commercial/Industrial/Military wireless system
- TDD or FDD LTE systems

Applications Circuit

* Refer to page 14 for Enable application.

вом	Value	Size	Vendor
C1,C4	100pF	0603	Samsung
C2,C3	12pF	0603	Samsung
R1	6.8Kohm	0603	Samsung
R2	0 ohm	0603	Samsung
L1	27nH	0603	Taiyo Yuden
L2	82nH	0603	Taiyo Yuden

Part Marking (XX:Wafer number)

Electrical Specifications

Device performance _ measured on a BeRex evaluation board at 25°C, Vd=5V, 50 Ω system.

Parameter	Conditions	Min	Тур	Max	Unit
Operational Frequency Range		500		1500	MHz
Test Frequency			700		MHz
Gain		21.0	22.5		dB
Input Return Loss			-12.3		dB
Output Return Loss			-15.4		dB
Output IP3	$0 dBm / tone$, Δf =1 MHz	34.5	37.5		dBm
Output P1dB		20.1	21.1		dBm
Noise Figure			0.43	0.63	dB

^{*} NF: Losses on input and output transmission lines on PCB are not de-embedded.

Device performance $_$ measured on a BeRex evaluation board at 25°C, Vd=3V, 50 Ω system.

Parameter	Conditions	Min	Тур	Max	Unit
Operational Frequency Range		500		1500	MHz
Test Frequency			700		MHz
Gain		20.0	21.5		dB
Input Return Loss			-12.1		dB
Output Return Loss			-12.9		dB
Output IP3	0 dBm / tone , Δf =1 MHz	27.5	30.5		dBm
Output P1dB		15.9	16.9		dBm
Noise Figure			0.44	0.64	dB

^{*} NF: Losses on input and output transmission lines on PCB are not de-embedded.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Bandwidth	500		1500	MHz
$I_d @ (V_d = 5.0V)$	53	66	79	mA
$I_d @ (V_d = 3.0V)$	22	27	32	mA
V_d	3	5	5.25	V
dG/dT		-0.008		dB/°C
R _{TH}		24.76		°C/W
Operating Case Temperature	-40		+105	°C
Switching Time(Ton)		140		ns
Switching Time(T _{off})		140		ns

Electrical specifications are measured at specified test conditions.

Specifications are not guaranteed over all recommended operating conditions.

Absolute Maximum Ratings

Parameter	Rating	Unit
Storage Temperature	-55 to +155	°C
Junction Temperature	+160	°C
Supply Voltage	+6	V
Supply Current	130	mA
Input RF Power	21	dBm

Operation of this device above any of these parameters may result in permanent damage.

Typical Performance (Vd=5.0V, Id=66mA, T=25°C)

Parameter		Frequency Unit					
V _d = 5V	500	700	800	900	1500	MHz	
Gain	24.5	22.5	21.7	21	17.5	dB	
S11	-15.5	-12.3	-12.0	-11.7	-11.5	dB	
S22	-8.7	-15.4	-19.3	-22.5	-15.8	dB	
OIP3	38.0	37.5	35.5	35.5	32.5	dBm	
P1dB	21.2	21.1	21.2	20.9	19.3	dBm	
Noise Figure	0.6	0.43	0.4	0.44	0.7	dB	

^{*} NF: Losses on input and output transmission lines on PCB are not de-embedded.

Typical Performance (Vd=3.0V, Id=27mA, T=25°C)

Parameter		Frequency Unit						
$V_d = 3V$	500	700	800	900	1500	MHz		
Gain	23.3	21.4	20.5	19.7	16.1	dB		
S11	-18.3	-12.1	-11.0	-10.4	-9.3	dB		
S22	-7.4	-12.9	-15.0	-16.5	-13.7	dB		
OIP3	31.0	30.5	29.5	28.5	27.0	dBm		
P1dB	16.2	16.9	17.1	17.2	17.5	dBm		
Noise Figure	0.59	0.44	0.41	0.45	0.76	dB		

 $[\]ensuremath{^{*}}\xspace$ NF : Losses on input and output transmission lines on PCB are not de-embedded.

V-I Characteristics

Pin Configuration

 $\begin{array}{c} {\rm DC~PACKAGE} \\ {\rm 8-LEAD~(2mm\times2mm)~PLASTIC~DFN} \\ {\rm EXPOSED~PAD~(PIN~9)~IS~GND,~MUST~BE~SOLDERED~TO~PCB} \end{array}$

Evaluation Board

*Dielectric constant _ 4.2 *RF pattern width 24mil *16mil thick FR4 PCB

Typical Device Data

S-parameters (V_d =5.0V, I_d =66mA , T=25°C)

S-Parameter

(Vd=5.0V,Id = 66mA, T = 25 °C, calibrated to device leads)

Freq	S11	S11	S21	S21	S12	S12	S22	S22
[MHz]	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
500	0.23	-124.89	18.00	134.12	0.04	63.62	0.20	-119.48
600	0.29	-140.90	15.43	123.05	0.04	53.44	0.15	-142.56
700	0.30	-151.49	13.67	115.15	0.04	49.45	0.10	-161.73
800	0.31	-157.31	12.36	108.84	0.04	45.30	0.07	-177.33
900	0.30	-163.08	11.33	103.54	0.04	43.09	0.04	164.79
1000	0.29	-166.98	10.52	98.37	0.04	37.82	0.01	113.63
1100	0.28	-170.27	9.82	93.46	0.05	37.16	0.03	4.31
1200	0.27	-172.29	9.17	88.78	0.05	31.40	0.06	-13.23
1300	0.26	-173.09	8.66	84.16	0.05	31.93	0.09	-19.81
1400	0.24	-174.55	8.18	79.84	0.05	28.25	0.12	-25.54
1500	0.23	-174.85	7.78	75.66	0.05	26.86	0.15	-29.69

(Vd=3.0V,Id = 27mA, T = 25 $^{\circ}$ C, calibrated to device leads)

Freq	S11	S11	S21	S21	S12	S12	S22	S22
[MHz]	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
500	0.26	-75.46	15.48	141.37	0.04	55.53	0.26	-88.42
600	0.31	-107.06	13.30	127.53	0.05	45.23	0.17	-102.44
700	0.34	-122.34	11.75	118.21	0.04	38.40	0.11	-104.33
800	0.35	-131.66	10.55	110.48	0.04	35.85	0.08	-95.78
900	0.35	-138.83	9.63	104.26	0.04	31.10	0.07	-76.19
1000	0.35	-143.86	8.88	98.67	0.05	28.25	0.08	-58.96
1100	0.35	-148.58	8.25	93.39	0.05	25.15	0.11	-50.97
1200	0.35	-151.32	7.70	88.38	0.05	24.09	0.13	-47.09
1300	0.35	-153.89	7.23	83.57	0.05	22.66	0.16	-47.34
1400	0.34	-156.28	6.81	78.98	0.05	22.68	0.19	-48.71
1500	0.34	-158.25	6.44	74.59	0.05	19.77	0.21	-49.29

Rev. 6.6

Typical Performance

 $V_d = 5V, I_d = 66mA$

$V_d = 5V$, $I_d = 66mA$

$V_d = 5V$, $I_d = 66mA$

Typical Performance

 $V_d = 3V$, $I_d = 27mA$

 $V_d = 3V$, $I_d = 27mA$

 $V_d = 3V$, $I_d = 27mA$

 $V_d = 3V, I_d = 27mA$

Enable Application

State function

Vd	Ven	State
5V	0V	Off
5V	5V	On

Switching Time

	Min.	Typical	Max.	Unit
Raising time (T _{on})		140		ns
Falling time (T _{off})		140		ns

Application circuit

BOM

Component	Value	Size	Vendor
C1,C4	100pF	0603	Samsung
C2,C3	12pF	0603	Samsung
R1	6.8Kohm	0603	Samsung
R2	0 ohm	0603	Samsung
L1	27nH	0603	Taiyo Yuden
L2	82nH	0603	Taiyo Yuden

Rev. 6.6

Package Outline Dimension

BOTTOM VIEW

SIDE VIEW

СПММПИ DIMENSIONS MILLIMETER DIMENSIONS INCH MAX. MIN. N□M. MIN. N□M. Α 0.50 0.60 0.020 0.022 0.024 0.55 0.150 REF 0.006 REF Α1 0.02 0.05 0.000 0.001 b 0.20 0.25 0.006 0.008 D 2.10 0.075 0.083 0.044 D2 0.92 1.02 1.12 1.90 2.00 2.10 0.075 0.079 0.083 Ε E2 0,56 0.66 0.018 0.022 0.026 0.50 BS0 0.020 BSC 0.29 0.30 0.011

NOTES

- 1. DIMENSION AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- CONTROLLING DIMENSIONS : MILLIMETER, CONVERTED INCH DIMENSION ARE NOT NECESSARILY EXACT.

Suggested PCB Land Pattern and PAD Layout

PCB Land Pattern

0.2500 R0.1500 R0.1500 R0.1500 R0.2500 R0.2500

PCB lay out _ on BeRex website

Note: All dimension _ millimeters

PCB Mounting

Package Marking

XX = Wafer No.

Tape & Reel

DFN8 2x2

Packaging information:

Tape Width (mm): 8

Reel Size (inches): 7

Device Cavity Pitch (mm): 4

Devices Per Reel: 3000

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 1C

Value: Passes <2000V

Test: Human Body Model (HBM)

Standard: JEDEC Standard JS-001-2014

MSL Rating: Level 1 at +260°C convection reflow

Standard: JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling this device.

Rev. 6.6

RoHS Compliance

This part is compliant with Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU. This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

|--|