Método de Frobenious

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

27 de septiembre de 2021

Agenda Método Frobenious

- Puntos singulares regulares
- Método Frobenius
 - Caso $m_1 \neq m_2 \wedge m_1 m_2 \neq N$, con N entero.
 - Caso $m_1 = m_2 = m$
 - Caso $m_1 \neq m_2$ con $m_1 m_2 = N$, y N entero.
- Recapitulando

$$y'' + F_1(x)y' + F_2(x) \ y = 0 \quad \Leftrightarrow \quad y'' + \frac{f_1(x)}{(x-x_0)}y' + \frac{f_2(x)}{(x-x_0)^2} \ y = 0 \ ,$$

$$y'' + F_1(x)y' + F_2(x) y = 0 \Leftrightarrow y'' + \frac{f_1(x)}{(x-x_0)}y' + \frac{f_2(x)}{(x-x_0)^2} y = 0$$

- $F_1(x)$ y $F_2(x)$ con singularidades regulares en $x = x_0$ y
- $f_1(x)$ y $f_2(x)$ analíticas en $x = x_0$.

$$y'' + F_1(x)y' + F_2(x) y = 0 \Leftrightarrow y'' + \frac{f_1(x)}{(x-x_0)}y' + \frac{f_2(x)}{(x-x_0)^2} y = 0,$$

- $F_1(x)$ y $F_2(x)$ con singularidades regulares en $x = x_0$ y
- $f_1(x)$ y $f_2(x)$ analíticas en $x = x_0$.
- La propuesta de solución será una serie de Frobenius $y(x) = (x x_0)^m \sum_{n=0}^{\infty} a_n (x x_0)^n$,

$$y'' + F_1(x)y' + F_2(x) y = 0 \quad \Leftrightarrow \quad y'' + \frac{f_1(x)}{(x-x_0)}y' + \frac{f_2(x)}{(x-x_0)^2} y = 0,$$

- $F_1(x)$ y $F_2(x)$ con singularidades regulares en $x = x_0$ y
- $f_1(x)$ y $f_2(x)$ analíticas en $x = x_0$.
- La propuesta de solución será una serie de Frobenius $y(x) = (x x_0)^m \sum_{n=0}^{\infty} a_n (x x_0)^n$,
- n es entero positivo y m entero (positivo o negativo) o racional.
- Frobenius incluye Taylor y Laurent como casos particulares.

• Consideremos $x_0 = 0 \Rightarrow y'' + \frac{f_1(x)}{x}y' + \frac{f_2(x)}{x^2}y = 0$

- Consideremos $x_0 = 0 \Rightarrow y'' + \frac{f_1(x)}{x}y' + \frac{f_2(x)}{x^2}y = 0$
- Entonces $f_1(x)$ y $f_2(x)$ son analíticas en x=0. Proponemos $f_1(x) = \sum_{n=0}^{\infty} b_n x^n$ y $f_2(x) = \sum_{n=0}^{\infty} c_n x^n$
- Tendremos que $y'' + \frac{f_1(x)}{x}y' + \frac{f_2(x)}{x^2}y = 0 \Rightarrow x^2y'' + x(\sum_{n=0}^{\infty} b_n x^n)y' + (\sum_{n=0}^{\infty} c_n x^n)y = 0.$

- Consideremos $x_0 = 0 \Rightarrow y'' + \frac{f_1(x)}{x}y' + \frac{f_2(x)}{x^2}y = 0$
- Entonces $f_1(x)$ y $f_2(x)$ son analíticas en x=0. Proponemos $f_1(x)=\sum_{n=0}^{\infty}b_nx^n$ y $f_2(x)=\sum_{n=0}^{\infty}c_nx^n$
- Tendremos que $y'' + \frac{f_1(x)}{x}y' + \frac{f_2(x)}{x^2}y = 0 \Rightarrow x^2y'' + x(\sum_{n=0}^{\infty} b_n x^n)y' + (\sum_{n=0}^{\infty} c_n x^n)y = 0.$
- Propuesta Frobenius $\Rightarrow y(x) = x^m \sum_{n=0}^{\infty} a_n x^n$ implica
 - $y'(x) = mx^{m-1} \left(\sum_{n=0}^{\infty} a_n x^n \right) + x^m \left(\sum_{n=1}^{\infty} n \ a_n x^{n-1} \right)$;
 - $y''(x) = m(m-1)x^{m-2} \left(\sum_{n=0}^{\infty} a_n x^n\right) + 2mx^{m-1} \left(\sum_{n=1}^{\infty} n a_n x^{n-1}\right) + x^m \left(\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}\right)$

- Consideremos $x_0 = 0 \Rightarrow y'' + \frac{f_1(x)}{x}y' + \frac{f_2(x)}{x^2}y = 0$
- Entonces $f_1(x)$ y $f_2(x)$ son analíticas en x=0. Proponemos $f_1(x)=\sum_{n=0}^{\infty}b_nx^n$ y $f_2(x)=\sum_{n=0}^{\infty}c_nx^n$
- Tendremos que $y'' + \frac{f_1(x)}{x}y' + \frac{f_2(x)}{x^2}y = 0 \Rightarrow x^2y'' + x(\sum_{n=0}^{\infty} b_n x^n)y' + (\sum_{n=0}^{\infty} c_n x^n)y = 0.$
- Propuesta Frobenius $\Rightarrow y(x) = x^m \sum_{n=0}^{\infty} a_n x^n$ implica
 - $y'(x) = mx^{m-1} \left(\sum_{n=0}^{\infty} a_n x^n \right) + x^m \left(\sum_{n=1}^{\infty} n \ a_n x^{n-1} \right)$;
 - $y''(x) = m(m-1)x^{m-2} \left(\sum_{n=0}^{\infty} a_n x^n\right) + 2mx^{m-1} \left(\sum_{n=1}^{\infty} n a_n x^{n-1}\right) + x^m \left(\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}\right)$
- $x^{2} \left[m(m-1)x^{m-2} \sum_{n=0}^{\infty} a_{n}x^{n} + 2mx^{m-1} \sum_{n=1}^{\infty} na_{n}x^{n-1} + x^{m} \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n-2} \right] + x \left(\sum_{n=0}^{\infty} b_{n}x^{n} \right) \left[mx^{m-1} \sum_{n=0}^{\infty} a_{n}x^{n} + x^{m} \sum_{n=1}^{\infty} na_{n}x^{n-1} \right] + \left(\sum_{n=0}^{\infty} c_{n}x^{n} \right) x^{m} \sum_{n=0}^{\infty} a_{n}x^{n} = 0,$

• Con x^m factor común tendremos

$$\begin{array}{l} x^m \left[m(m-1) \sum_{n=0}^{\infty} a_n x^n + 2m \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=2}^{\infty} n(n-1) a_n x^n + \\ + \sum_{n=0}^{\infty} b_n x^n \left[m \sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} n a_n x^n \right] + \\ + \sum_{n=0}^{\infty} c_n x^n \sum_{n=0}^{\infty} a_n x^n \right] = 0 \,. \end{array}$$

• Esto nos permite reacomodar $a_0\mu(m)x^m + \sum_{n=1}^{\infty} \left[a_n \ \mu(m+n) + \sum_{k=0}^{n-1} a_k \ \left[(m+k) \ b_{n-k} + c_{n-k} \right] \right] x^{m+n} = 0$

• Con x^m factor común tendremos

$$\begin{array}{l} x^m \left[m(m-1) \sum_{n=0}^{\infty} a_n x^n + 2m \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=2}^{\infty} n(n-1) a_n x^n + \\ + \sum_{n=0}^{\infty} b_n x^n \left[m \sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} n a_n x^n \right] + \\ + \sum_{n=0}^{\infty} c_n x^n \sum_{n=0}^{\infty} a_n x^n \right] = 0 \, . \end{array}$$

factorizando para los términos de igual potencia:

$$\left\{ a_0 \left[m(m-1) + b_0 m + c_0 \right] \right\} x^m + \\ + \left\{ a_1 \left[m(m+1) + b_0 (m+1) + c_0 \right] + a_0 \left[b_1 m + c_1 \right] \right\} x^{m+1} + \\ + \left\{ a_2 \left[(m+2)(m+1) + b_0 (m+2) + c_0 \right] + a_1 \left[b_1 (m+1) + c_1 \right] \right. \\ + a_0 \left[b_2 m + c_2 \right] \right\} x^{m+2} \dots \\ \left\{ a_n \left[(m+n)(m+n-1) + b_0 (m+n) + c_0 \right] + a_{n-1} \left[b_1 (m+n-1) + c_1 + a_{n-2} \left[b_2 (m+n-2) + c_2 \right] + a_{n-3} \left[b_3 (m+n-3) + c_3 \right] + \\ + \dots + a_1 \left[b_{n-1} (m+1) + c_{n-1} \right] \right. \\ \left. a_0 \left[b_n m + c_n \right] \right\} x^{m+n} = 0$$

• Esto nos permite reacomodar $a_0\mu(m)x^m + \sum_{n=1}^{\infty} \left[a_n + a_n \right] \sum_{n=1}^{n-1} a_n \left[a_n + a_n \right] a_n + a_n$

 $\sum_{n=1}^{\infty} \left[a_n \ \mu(m+n) + \sum_{k=0}^{n-1} a_k \ \left[(m+k) \ b_{n-k} + c_{n-k} \right] \right] x^{m+n} = 0$

• La ecuación indicadora surge de anular el coeficiente x^m $\mu(m) = m(m-1) + b_0 m + c_0 = 0$

- La ecuación indicadora surge de anular el coeficiente x^m $\mu(m) = m(m-1) + b_0 m + c_0 = 0$
- La relación de recurrencia surge de anular el coeficiente x^{m+n} , $a_n\mu(m+n) + \sum_{k=0}^{n-1} a_k \left[(m+k)b_{n-k} + c_{n-k} \right] = 0$

- La ecuación indicadora surge de anular el coeficiente x^m $\mu(m) = m(m-1) + b_0 m + c_0 = 0$
- La relación de recurrencia surge de anular el coeficiente x^{m+n} , $a_n\mu(m+n) + \sum_{k=0}^{n-1} a_k \left[(m+k)b_{n-k} + c_{n-k} \right] = 0$
- Se distinguen tres casos
 - ① $m_1 \neq m_2 \land m_1 m_2 \neq N$, con N entero. La solución general será $y_1(x) = |x|^{m_1} \sum_{n=0}^{\infty} a_n x^n \ y_2(x) = |x|^{m_2} \sum_{n=0}^{\infty} b_n x^n \ \} \Rightarrow y(x) = C_1 y_1(x) + C_2 y_2(x).$
 - ② $m_1 = m_2 = m$. La solución general será $y_1(x) = |x|^m \sum_{n=0}^{\infty} a_n x^n$ $y_2(x) = y_1(x) \ln x + |x|^{m+1} \sum_{n=0}^{\infty} b_n x^n$ $\Rightarrow y(x) = C_1 y_1(x) + C_2 y_2(x)$

Caso $m_1 \neq m_2 \wedge m_1 - m_2 \neq N$, con N entero.

• Consideremos x^2 $y'' + x\left(x + \frac{1}{2}\right)y' - \left(x^2 + \frac{1}{2}\right)$ y = 0, con un polo regular en x = 0

Caso $m_1 \neq m_2 \land m_1 - m_2 \neq N$, con N entero.

- Consideremos x^2 $y'' + x\left(x + \frac{1}{2}\right)y' \left(x^2 + \frac{1}{2}\right)$ y = 0, con un polo regular en x = 0
- Identificando

$$f_1(x) = \frac{1}{2} + x$$
, $f_2(x) = -\frac{1}{2} - x^2$ $\Rightarrow \begin{cases} b_0 = \frac{1}{2}, b_1 = 1 \\ c_0 = -\frac{1}{2}, c_1 = 0, c_2 = -1, \end{cases}$

el resto de los coeficientes son: $b_2 = b_3 = \cdots = 0$ y $c_3 = c_4 = \cdots = 0$

Caso $m_1 \neq m_2 \wedge m_1 - m_2 \neq N$, con N entero.

- ① Consideremos x^2 $y'' + x \left(x + \frac{1}{2}\right) y' \left(x^2 + \frac{1}{2}\right) y = 0$, con un polo regular en x = 0
- 4 Identificando

$$f_1(x) = \frac{1}{2} + x$$
, $f_2(x) = -\frac{1}{2} - x^2$ $\Rightarrow \begin{cases} b_0 = \frac{1}{2}, b_1 = 1 \\ c_0 = -\frac{1}{2}, c_1 = 0, c_2 = -1, \end{cases}$

el resto de los coeficientes son: $b_2=b_3=\cdots=0$ y $c_3=c_4=\cdots=0$

La ecuación indicadora

$$m(m-1) + b_0 m + c_0 = 0 \Rightarrow m(m-1) + \frac{1}{2}m - \frac{1}{2} = 0 \Rightarrow \begin{cases} m_1 = 1 \\ m_2 = -\frac{1}{2} \end{cases}$$

Caso $m_1 \neq m_2 \wedge m_1 - m_2 \neq N$, con N entero.

- ① Consideremos x^2 $y'' + x \left(x + \frac{1}{2}\right) y' \left(x^2 + \frac{1}{2}\right) y = 0$, con un polo regular en x = 0
- Identificando

$$f_1(x) = \frac{1}{2} + x$$
, $f_2(x) = -\frac{1}{2} - x^2$ $\Rightarrow \begin{cases} b_0 = \frac{1}{2}, b_1 = 1 \\ c_0 = -\frac{1}{2}, c_1 = 0, c_2 = -1, \end{cases}$

el resto de los coeficientes son: $b_2 = b_3 = \cdots = 0$ y $c_3 = c_4 = \cdots = 0$

La ecuación indicadora

$$m(m-1) + b_0 m + c_0 = 0 \Rightarrow m(m-1) + \frac{1}{2}m - \frac{1}{2} = 0 \Rightarrow \begin{cases} m_1 = 1 \\ m_2 = -\frac{1}{2} \end{cases}$$

① La relación de recurrencia anula el coeficiente x^{m+n} $a_n\mu(m+n)+\sum_{k=0}^{n-1}a_k\left[(m+k)b_{n-k}+c_{n-k}\right]=0$ $a_n\left[(m+n)(m+n-1)+\frac{1}{2}(m+n)-\frac{1}{2}\right]+a_{n-1}(m+n-1)-a_{n-2}=0$ $a_n\left[m^2+2mn-\frac{1}{2}m+n^2-\frac{1}{2}n-\frac{1}{2}\right]+a_{n-1}(m+n-1)-a_{n-2}=0$

La relación de recurrencia

$$a_n = \frac{a_{n-2} - a_{n-1}(m+n-1)}{m^2 + 2mn - \frac{1}{2}m + n^2 - \frac{1}{2}n - \frac{1}{2}} \text{ para } n \ge 2$$

La relación de recurrencia

$$a_n = rac{a_{n-2} - a_{n-1}(m+n-1)}{m^2 + 2mn - rac{1}{2}m + n^2 - rac{1}{2}n - rac{1}{2}}$$
 para $n \ge 2$

② Para m = 1 $\Rightarrow a_n = \frac{a_{n-2} - na_{n-1}}{2n + n^2 - \frac{1}{2}n}$ para $n \ge 2$.

Para poder ejecutarla necesitamos calcular a_1 en términos de a_0

- 1 La relación de recurrencia $a_n = \frac{a_{n-2} a_{n-1}(m+n-1)}{m^2 + 2mn \frac{1}{2}m + n^2 \frac{1}{2}n \frac{1}{2}} \text{ para } n \ge 2$
- ② Para m = 1 $\Rightarrow a_n = \frac{a_{n-2} na_{n-1}}{2n + n^2 \frac{1}{2}n}$ para $n \ge 2$.

Para poder ejecutarla necesitamos calcular a₁ en términos de a₀

3 y lo obtenemos del coeficiente x^{m+1} $a_1 \left[m(m+1) + b_0(m+1) + c_0 \right] + a_0 \left[b_1 m + c_1 \right] = 0$ $a_1 \left[1(1+1) + \frac{1}{2}(1+1) - \frac{1}{2} \right] + a_0 \left[1+0 \right] = 0 \quad \Rightarrow a_1 = -\frac{2}{5}a_0$

La relación de recurrencia

$$a_n = rac{a_{n-2} - a_{n-1}(m+n-1)}{m^2 + 2mn - rac{1}{2}m + n^2 - rac{1}{2}n - rac{1}{2}}$$
 para $n \ge 2$

② Para m = 1 $\Rightarrow a_n = \frac{a_{n-2} - na_{n-1}}{2n + n^2 - \frac{1}{2}n}$ para $n \ge 2$.

Para poder ejecutarla necesitamos calcular a₁ en términos de a₀

 \odot y lo obtenemos del coeficiente x^{m+1}

y la primera solución será

$$y_1(x) = a_0 |x| \left(1 - \frac{2}{5}x + \frac{9}{35}x^2 - \frac{82}{945}x^3 + \frac{571}{20790}x^4 + \cdots\right).$$

La relación de recurrencia

$$a_n = rac{a_{n-2} - a_{n-1}(m+n-1)}{m^2 + 2mn - rac{1}{2}m + n^2 - rac{1}{2}n - rac{1}{2}}$$
 para $n \ge 2$

② Para m = 1 $\Rightarrow a_n = \frac{a_{n-2} - na_{n-1}}{2n + n^2 - \frac{1}{2}n}$ para $n \ge 2$.

Para poder ejecutarla necesitamos calcular a₁ en términos de a₀

 \odot y lo obtenemos del coeficiente x^{m+1}

y la primera solución será

$$y_1(x) = a_0 |x| \left(1 - \frac{2}{5}x + \frac{9}{35}x^2 - \frac{82}{945}x^3 + \frac{571}{20790}x^4 + \cdots\right).$$

6 Repitiendo el proceso para $m = -\frac{1}{2}$, obtendremos

$$y_2(x) = |x|^{-\frac{1}{2}} \left[1 - x + \frac{3}{2}x^2 - \frac{13}{18}x^3 + \frac{119}{360}x^4 + \cdots \right]$$

• Consideremos la ecuación de Bessel x^2 y'' + x $y' + x^2$ y = 0.

- Consideremos la ecuación de Bessel x^2 y'' + x $y' + x^2$ y = 0.
- ② Identificando $f_1(x) = 1$ y $f_2(x) = x^2$. Entonces: $b_0 = 1$, $c_0 = 0$, $c_1 = 0$ y $c_2 = 1$.

- Consideremos la ecuación de Bessel x^2 y'' + x $y' + x^2$ y = 0.
- ② Identificando $f_1(x) = 1$ y $f_2(x) = x^2$. Entonces: $b_0 = 1$, $c_0 = 0$, $c_1 = 0$ y $c_2 = 1$.
- 3 La ecuación indicadora $\mu(m)=m(m-1)+b_0m+c_0=0 \Rightarrow m(m-1)+m=0 \Rightarrow m^2=0 \Rightarrow m=0$

- Consideremos la ecuación de Bessel x^2 y'' + x $y' + x^2$ y = 0.
- ② Identificando $f_1(x) = 1$ y $f_2(x) = x^2$. Entonces: $b_0 = 1$. $c_0 = 0$. $c_1 = 0$ v $c_2 = 1$.
- 3 La ecuación indicadora $\mu(m)=m(m-1)+b_0m+c_0=0 \Rightarrow m(m-1)+m=0 \Rightarrow m^2=0 \Rightarrow m=0$
- **1** La relación de recurrencia anula el coeficiente x^{m+n} $a_n\mu(m+n)+\sum_{k=0}^{n-1}a_k\ [(m+k)b_{n-k}+c_{n-k}]=0$ $a_n\mu(m+n)+a_{n-2}\ [(m+n-1)b_2+c_2]+a_{n-1}\ [(m+n-1)b_1+c_1]$ para $m=0\Rightarrow a_nn^2+a_{n-2}\ [(0+n-1)0+1]+a_{n-1}\ [(0+n-1)0+0]$ $a_n=-\frac{a_{n-2}}{n^2}$ para $n\geq 2$.

- Consideremos la ecuación de Bessel x^2 y'' + x $y' + x^2$ y = 0.
- ② Identificando $f_1(x) = 1$ y $f_2(x) = x^2$. Entonces: $b_0 = 1$. $c_0 = 0$. $c_1 = 0$ v $c_2 = 1$.
- 3 La ecuación indicadora $\mu(m)=m(m-1)+b_0m+c_0=0 \Rightarrow m(m-1)+m=0 \Rightarrow m^2=0 \Rightarrow m=0$
- La relación de recurrencia anula el coeficiente x^{m+n} $a_n\mu(m+n)+\sum_{k=0}^{n-1}a_k\ [(m+k)b_{n-k}+c_{n-k}]=0$ $a_n\mu(m+n)+a_{n-2}\ [(m+n-1)b_2+c_2]+a_{n-1}\ [(m+n-1)b_1+c_1]$ para $m=0\Rightarrow a_nn^2+a_{n-2}\ [(0+n-1)0+1]+a_{n-1}\ [(0+n-1)0+0]$ $a_n=-\frac{a_{n-2}}{c_n^2}$ para $n\geq 2$.
- **③** Al anular el coeficiente de x^{m+1} mostramos que $a_1 = 0$ $a_1 [m(m+1) + b_0(m+1) + c_0] + a_0 [b_1 m + c_1] = 0$ $a_1 [0(0+1) + (0+1) + 0] + a_0 [0+0] = 0$ $\Rightarrow a_1 = 0$.

- Consideremos la ecuación de Bessel x^2 y'' + x $y' + x^2$ y = 0.
- ② Identificando $f_1(x) = 1$ y $f_2(x) = x^2$. Entonces: $b_0 = 1$, $c_0 = 0$, $c_1 = 0$ v $c_2 = 1$.
- 3 La ecuación indicadora $\mu(m) = m(m-1) + b_0 m + c_0 = 0 \Rightarrow m(m-1) + m = 0 \Rightarrow m^2 = 0 \Rightarrow m = 0$
- La relación de recurrencia anula el coeficiente x^{m+n} $a_n\mu(m+n)+\sum_{k=0}^{n-1}a_k\ [(m+k)b_{n-k}+c_{n-k}]=0$ $a_n\mu(m+n)+a_{n-2}\ [(m+n-1)b_2+c_2]+a_{n-1}\ [(m+n-1)b_1+c_1]$ para $m=0\Rightarrow a_nn^2+a_{n-2}\ [(0+n-1)0+1]+a_{n-1}\ [(0+n-1)0+0]$ $a_n=-\frac{a_{n-2}}{c^2}$ para $n\geq 2$.
- **③** Al anular el coeficiente de x^{m+1} mostramos que $a_1 = 0$ $a_1 [m(m+1) + b_0(m+1) + c_0] + a_0 [b_1 m + c_1] = 0$ $a_1 [0(0+1) + (0+1) + 0] + a_0 [0+0] = 0$ $\Rightarrow a_1 = 0$.
- Y la primera solución será

$$y_1(x) = a_0 \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{2^{2n} (n!)^2} x^{2n} \right] = a_0 J_0(x)$$

Donde $J_0(x)$ se conoce como la función de Besselede primera especies

Caso $m_1 = m_2 = m$ Cont..

• Para calcular la segunda solución de la ecuación de Bessel se sustituye $y_2(x) = J_0(x) \ln(x) + \sum_{n=0}^{\infty} B_n x^n$ en la ecuación: $x^2 v'' + x v' + x^2 v = 0$

Caso $m_1 = m_2 = m$ Cont..

- Para calcular la segunda solución de la ecuación de Bessel se sustituye $y_2(x) = J_0(x) \ln(x) + \sum_{n=0}^{\infty} B_n x^n$ en la ecuación: $x^2 v'' + x v' + x^2 v = 0$
- ② al sustituir en la ecuación diferencial: $x^{2} \left[J_{0}'' \ln(x) + 2 \frac{J_{0}'}{x} \frac{J_{0}}{x^{2}} + \sum_{n=2}^{\infty} B_{n} n(n-1) x^{n-2} \right] + \\ x \left[J_{0}' \ln(x) + \frac{J_{0}}{x} + \sum_{n=1}^{\infty} B_{n} n x^{n-1} \right] + \\ x^{2} \left[J_{0} \ln(x) + \sum_{n=0}^{\infty} B_{n} x^{n} \right] = 0$

Caso $m_1 = m_2 = m$ Cont...

- Para calcular la segunda solución de la ecuación de Bessel se sustituye $y_2(x) = J_0(x) \ln(x) + \sum_{n=0}^{\infty} B_n x^n$ en la ecuación: $x^2v'' + xv' + x^2v = 0$
- 2 al sustituir en la ecuación diferencial: $x^{2}\left|J_{0}''\ln(x)+2\frac{J_{0}'}{x}-\frac{J_{0}}{x^{2}}+\sum_{n=2}^{\infty}B_{n}n(n-1)x^{n-2}\right|+$ $x \left[\int_{0}^{T} \ln(x) + \frac{J_{0}}{x} + \sum_{n=1}^{\infty} B_{n} n x^{n-1} \right] +$
- $x^{2}[J_{0}\ln(x) + \sum_{n=0}^{\infty} B_{n}x^{n}] = 0$
- 3 Acomodando $\left[\underbrace{x^2J_0'' + xJ_0' + x^2J_0}_{=0}\right] \ln(x) + 2xJ_0' + \sum_{n=2}^{\infty} B_n n(n-1)x^n + \sum_{n=1}^{\infty} B_n nx^n + \sum_{n=0}^{\infty} B_n x^{n+2} = 0$

Caso $m_1 = m_2 = m$ Cont..

- Para calcular la segunda solución de la ecuación de Bessel se sustituye $y_2(x) = J_0(x) \ln(x) + \sum_{n=0}^{\infty} B_n x^n$ en la ecuación: $x^2 v'' + x v' + x^2 v = 0$
- al sustituir en la ecuación diferencial: $x^2 \left[J_0'' \ln(x) + 2 \frac{J_0'}{x} \frac{J_0}{x^2} + \sum_{n=2}^{\infty} B_n n(n-1) x^{n-2} \right] + \\ x \left[J_0' \ln(x) + \frac{J_0}{x} + \sum_{n=1}^{\infty} B_n n x^{n-1} \right] + \\ x^2 \left[J_0 \ln(x) + \sum_{n=0}^{\infty} B_n x^n \right] = 0$
- 3 Acomodando $\left[\underbrace{x^2J_0'' + xJ_0' + x^2J_0}_{=0}\right] \ln(x) + 2xJ_0' + \sum_{n=2}^{\infty} B_n n(n-1)x^n + \sum_{n=1}^{\infty} B_n nx^n + \sum_{n=0}^{\infty} B_n x^{n+2} = 0$
- Por lo tanto $B_1x + 2^2B_2x^2 + \sum_{n=3}^{\infty} (B_nn^2 + B_{n-2})x^n = -2\sum_{n=1}^{\infty} \frac{(-1)^n2n}{2^{2n}(n!)^2}x^{2n}$.

Caso $m_1 = m_2 = m$ Cont..

- Para calcular la segunda solución de la ecuación de Bessel se sustituye $y_2(x) = J_0(x) \ln(x) + \sum_{n=0}^{\infty} B_n x^n$ en la ecuación: $x^2v'' + xv' + x^2v = 0$
- al sustituir en la ecuación diferencial: $x^{2} \left| J_{0}^{"} \ln(x) + 2 \frac{J_{0}}{x} - \frac{J_{0}}{x^{2}} + \sum_{n=2}^{\infty} B_{n} n(n-1) x^{n-2} \right| +$

$$x \left[J_0' \ln(x) + \frac{J_0}{x} + \sum_{n=1}^{\infty} B_n n x^{n-1} \right] +$$

$$x^2 \left[J_0 \ln(x) + \sum_{n=1}^{\infty} B_n x^n \right] = 0$$

$$x^{2} [J_{0} \ln(x) + \sum_{n=0}^{\infty} B_{n} x^{n}] = 0$$

3 Acomodando
$$\left[\underbrace{x^2J_0'' + xJ_0' + x^2J_0}_{=0}\right] \ln(x) + 2xJ_0' + \sum_{n=0}^{\infty} B_n n(n-1)x^n + \sum_{n=1}^{\infty} B_n nx^n + \sum_{n=0}^{\infty} B_n x^{n+2} = 0$$

- Por lo tanto $B_1x + 2^2B_2x^2 + \sum_{n=3}^{\infty} (B_nn^2 + B_{n-2})x^n = -2\sum_{n=1}^{\infty} \frac{(-1)^n2n}{2^{2n}(n!)^2}x^{2n}$.
- Finalmente

$$y_2(x) \equiv Y_0(x) = \frac{2}{\pi} \left[\left[\gamma + \ln\left(\frac{x}{2}\right) \right] J_0(x) + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{22^n (n!)^2} S_n x^{2n} \right]_{\mathbb{R}},$$

Caso $m_1 \neq m_2$ con $m_1 - m_2 = N$, y N entero

• Si $m_1 > m_2$, entonces tendremos que $m_1 = m_2 + N$, y las ecuaciones indicadoras nos indican $\mu(m_1) = m_1(m_1 - 1) + b_0 m_1 + c_0 = 0$ y $\mu(m_2) \equiv \mu(m_1 + N) = (m_1 + N)(m_1 + N - 1) + b_0(m_1 + N) + c_0 = 0$

Caso $m_1 \neq m_2$ con $m_1 - m_2 = N$, y N entero

- Si $m_1 > m_2$, entonces tendremos que $m_1 = m_2 + N$, y las ecuaciones indicadoras nos indican $\mu(m_1) = m_1(m_1 1) + b_0 m_1 + c_0 = 0$ y $\mu(m_2) \equiv \mu(m_1 + N) = (m_1 + N)(m_1 + N 1) + b_0(m_1 + N) + c_0 = 0$
- ② Como las raíces difieren en un entero hay un momento en el cual se cumple para el coeficiente x^{m+N} , que $a_N\mu(m+N)+\sum_{k=0}^{N-1}a_k\;[(m+k)b_{n-k}+c_{n-k}]=0$ y el término $\mu(m+N)$ se anula. Distinguimos dos posibles casos
 - El segundo término se anula idénticamente $\sum_{k=0}^{N-1} a_k \ [(m+k)b_{n-k} + c_{n-k}] = 0$
 - El segundo término no se anula idénticamente $\sum_{k=0}^{N-1} a_k \ [(m+k)b_{n-k} + c_{n-k}] \neq 0$

Onsidere la ecuación de Bessel, de orden fraccionario

$$x^2y'' + xy' + \left(x^2 - \frac{1}{4}\right)y = 0$$

- Considere la ecuación de Bessel, de orden fraccionario $x^2y'' + xy' + \left(x^2 \frac{1}{4}\right)y = 0$
- ② Identificando: $f_1(x) = 1$, y $f_2(x) = -\frac{1}{4} + x^2$ y consecuentemente $b_0 = 1$, $c_0 = -\frac{1}{4}$, $c_1 = 0$, y $c_2 = 1$.

- Considere la ecuación de Bessel, de orden fraccionario $x^2y'' + xy' + \left(x^2 \frac{1}{4}\right)y = 0$
- ② Identificando: $f_1(x) = 1$, y $f_2(x) = -\frac{1}{4} + x^2$ y consecuentemente $b_0 = 1$, $c_0 = -\frac{1}{4}$, $c_1 = 0$, y $c_2 = 1$.
- **③** La ecuación indicadora $m(m-1)+b_0m+c_0=0$ $\Rightarrow m(m-1)+m-\frac{1}{4}=m^2-\frac{1}{4}=0$. Con lo cual $m=\pm\frac{1}{2}$ y N=1

- Considere la ecuación de Bessel, de orden fraccionario $x^2y'' + xy' + \left(x^2 \frac{1}{4}\right)y = 0$
- ② Identificando: $f_1(x) = 1$, y $f_2(x) = -\frac{1}{4} + x^2$ y consecuentemente $b_0 = 1$, $c_0 = -\frac{1}{4}$, $c_1 = 0$, y $c_2 = 1$.
- **③** La ecuación indicadora $m(m-1)+b_0m+c_0=0$ $\Rightarrow m(m-1)+m-\frac{1}{4}=m^2-\frac{1}{4}=0$. Con lo cual $m=\pm\frac{1}{2}$ y N=1
- El coeficiente $x^{m+N} \equiv x^{m+1}$ es $a_1 [m(m+1) + b_0(m+1) + c_0] + a_0 [b_1 m + c_1] = 0$ $a_1 [m^2 + 2m + \frac{3}{4}] + a_0 [0] = 0$

- Considere la ecuación de Bessel, de orden fraccionario $x^2y'' + xy' + \left(x^2 \frac{1}{4}\right)y = 0$
- ② Identificando: $f_1(x) = 1$, y $f_2(x) = -\frac{1}{4} + x^2$ y consecuentemente $b_0 = 1$, $c_0 = -\frac{1}{4}$, $c_1 = 0$, y $c_2 = 1$.
- **③** La ecuación indicadora $m(m-1)+b_0m+c_0=0$ $\Rightarrow m(m-1)+m-\frac{1}{4}=m^2-\frac{1}{4}=0$. Con lo cual $m=\pm\frac{1}{2}$ y N=1
- **1** El coeficiente $x^{m+N} \equiv x^{m+1}$ es $a_1 \left[m(m+1) + b_0(m+1) + c_0 \right] + a_0 \left[b_1 m + c_1 \right] = 0$ $a_1 \left[m^2 + 2m + \frac{3}{4} \right] + a_0 \left[0 \right] = 0$
- **3** Para la raíz menor $m_2 = -\frac{1}{2}$ $a_1[m^2 + 2m + \frac{3}{4}] + a_0[0] = 0$ $\Rightarrow a_1[0] + a_0[0] = 0$ y cualquier valor de a_1 y a_0 estarán permitidos.

1 La relación de recurrencia anula el coeficiente x^{m+n} $a_n\mu(m+n)+\sum_{k=0}^{n-1}a_k\ [(m+k)b_{n-k}+c_{n-k}]=0$ $a_n\mu(m+n)+a_{n-2}\ [(m+n-1)b_2+c_2]+a_{n-1}\ [(m+n-1)b_1+c_1]=0$ $a_n\left[\left(-\frac{1}{2}+n\right)\left(-\frac{3}{2}+n\right)+\left(-\frac{1}{2}+n\right)-\frac{1}{4}\right]+a_{n-1}\ [0]+a_{n-2}\ [1]=0$ $a_n=-\frac{a_{n-2}}{c^2}$ con $n\geq 2$.

- **1** La relación de recurrencia anula el coeficiente x^{m+n} $a_n\mu(m+n) + \sum_{k=0}^{n-1} a_k \left[(m+k)b_{n-k} + c_{n-k} \right] = 0$ $a_n\mu(m+n) + a_{n-2} \left[(m+n-1)b_2 + c_2 \right] + a_{n-1} \left[(m+n-1)b_1 + c_1 \right] = 0$ $a_n \left[\left(-\frac{1}{2} + n \right) \left(-\frac{3}{2} + n \right) + \left(-\frac{1}{2} + n \right) \frac{1}{4} \right] + a_{n-1} \left[0 \right] + a_{n-2} \left[1 \right] = 0$ $a_n = -\frac{a_{n-2}}{2}$ con $n \ge 2$.
- ② La solución general será $y(x) = a_0 \ x^{-\frac{1}{2}} \left(1 \frac{1}{2} x^2 + \frac{1}{24} x^4 \frac{1}{720} x^6 + \cdots \right) + \\ + a_1 \ x^{-\frac{1}{2}} \left(x \frac{1}{6} x^3 + \frac{1}{120} x^5 \frac{1}{5040} x^7 + \cdots \right)$

- **1** La relación de recurrencia anula el coeficiente x^{m+n} $a_n\mu(m+n) + \sum_{k=0}^{n-1} a_k \left[(m+k)b_{n-k} + c_{n-k} \right] = 0$ $a_n\mu(m+n) + a_{n-2} \left[(m+n-1)b_2 + c_2 \right] + a_{n-1} \left[(m+n-1)b_1 + c_1 \right] = 0$ $a_n \left[\left(-\frac{1}{2} + n \right) \left(-\frac{3}{2} + n \right) + \left(-\frac{1}{2} + n \right) \frac{1}{4} \right] + a_{n-1} \left[0 \right] + a_{n-2} \left[1 \right] = 0$ $a_n = -\frac{a_{n-2}}{2}$ con $n \ge 2$.
- ② La solución general será $y(x) = a_0 \ x^{-\frac{1}{2}} \left(1 \frac{1}{2} x^2 + \frac{1}{24} x^4 \frac{1}{720} x^6 + \cdots \right) + \\ + a_1 \ x^{-\frac{1}{2}} \left(x \frac{1}{6} x^3 + \frac{1}{120} x^5 \frac{1}{5040} x^7 + \cdots \right)$
- **③** Equivalentemente $y(x) = a_0 x^{-\frac{1}{2}} \left(1 \frac{1}{2}x^2 + \frac{1}{24}x^4 \frac{1}{720}x^6 + \cdots\right) + a_1 x^{\frac{1}{2}} \left(1 \frac{1}{6}x^2 + \frac{1}{120}x^4 \frac{1}{5040}x^6 + \cdots\right).$

• Considere la ecuación diferencial $x^2y'' + x(2-x)y' + (x^2+2)y = 0$

- Considere la ecuación diferencial $x^2y'' + x(2-x)y' + (x^2+2)y = 0$
- ② Identificando: $f_1(x) = -2 + x$, y $f_2(x) = 2 + x^2$ y consecuentemente $b_0 = -2$, $b_1 = 1$, $c_0 = 2$, $c_1 = 0$, y $c_2 = 1$.

- Considere la ecuación diferencial $x^2y'' + x(2-x)y' + (x^2+2)y = 0$
- ② Identificando: $f_1(x) = -2 + x$, y $f_2(x) = 2 + x^2$ y consecuentemente $b_0 = -2$, $b_1 = 1$, $c_0 = 2$, $c_1 = 0$, y $c_2 = 1$.
- **3** La ecuación indicadora $m^2 3m + 2 = 0$. Con lo cual $m_1 = 2$, $m_2 = 1$ y N = 1.

- Considere la ecuación diferencial $x^2y'' + x(2-x)y' + (x^2+2)y = 0$
- ② Identificando: $f_1(x) = -2 + x$, y $f_2(x) = 2 + x^2$ y consecuentemente $b_0 = -2$, $b_1 = 1$, $c_0 = 2$, $c_1 = 0$, y $c_2 = 1$.
- 3 La ecuación indicadora $m^2 3m + 2 = 0$. Con lo cual $m_1 = 2$, $m_2 = 1$ y N = 1.
- **4** Como N = 1 al anular el coeficiente x^{m+1} tendremos $a_1 [m(m+1) + b_0(m+1) + c_0] + a_0 [b_1 m + c_1] = 0$ $a_1 [m^2 m] + a_0 [m] = 0$, para m = 2, $a_1 [2] + a_0 [2] = 0$ ⇒ $a_1 = -a_0$

- Considere la ecuación diferencial $x^2y'' + x(2-x)y' + (x^2+2)y = 0$
- ② Identificando: $f_1(x) = -2 + x$, y $f_2(x) = 2 + x^2$ y consecuentemente $b_0 = -2$, $b_1 = 1$, $c_0 = 2$, $c_1 = 0$, y $c_2 = 1$.
- **3** La ecuación indicadora $m^2 3m + 2 = 0$. Con lo cual $m_1 = 2$, $m_2 = 1$ y N = 1.
- **3** Como N = 1 al anular el coeficiente x^{m+1} tendremos $a_1 [m(m+1) + b_0(m+1) + c_0] + a_0 [b_1 m + c_1] = 0$ $a_1 [m^2 m] + a_0 [m] = 0$, para m = 2, $a_1 [2] + a_0 [2] = 0$ $\Rightarrow a_1 = -a_0$
- **5** La relación de recurrencia proviene de anular el coeficiente de x^{m+n} , para m=2:

$$a_n[(2+n)(2+n-1)-2(2+n)+2] + a_{n-1}[(2+n-1)+0] + a_{n-2}[0(2+n-2)+1] = 0$$

$$a_n[(2+n)(1+n)-2n-2] + a_{n-1}[1+n] + a_{n-2}[1] = 0$$

$$a_n[n^2+n] = -a_{n-1}[1+n] - a_{n-2}, \text{ para } n \ge 2$$

• Por lo cual para m = 2 tendremos $y_1(x) = x^2 \left(1 - x + \frac{1}{3}x^2 - \frac{1}{26}x^3 + \cdots \right)$

- Por lo cual para m = 2 tendremos $y_1(x) = x^2 \left(1 x + \frac{1}{3}x^2 \frac{1}{26}x^3 + \cdots \right)$
- 2 La segunda solución linealmente independiente para m=1 será $y_2(x)=y_1(x)\ln(x)+x\sum_{i=0}^{\infty}b_ix^i$

- Por lo cual para m = 2 tendremos $y_1(x) = x^2 \left(1 x + \frac{1}{3}x^2 \frac{1}{36}x^3 + \cdots \right)$
- ② La segunda solución linealmente independiente para m=1 será $y_2(x)=y_1(x)\ln(x)+x\sum_{i=0}^{\infty}b_ix^i$
- **③** Finalmente, la solución general puede escribirse como $y(x) = C_1 x^2 \left(1 x + \frac{1}{3}x^2 \frac{1}{36}x^3 \frac{7}{720}x^4 + \frac{31}{10800}x^5 + \dots\right) + C_2 \left[x^2 \ln(x) \left(-1 + x \frac{1}{3}x^2 + \frac{1}{36}x^3 + \frac{7}{720}x^4 + \dots\right)\right]$

$$+x\left(1-x-\frac{1}{2}x^2+\frac{19}{36}x^3-\frac{53}{432}x^4-\frac{1}{675}x^5+\ldots\right)\right].$$

que queda como ejercicio para el lector

Recapitulando

En presentación consideramos

