MATH 7343 Applied Statistics

Prof. (Aidong) Adam Ding

Review

• Last time, we finished Module 4 (hypothesis testing)

• Today we will cover Chapter 11 Two Population Means Comparison.

Chapter11 Comparison of Two Means

(A) Paired Samples

• Definition: An experiment is paired if each observation in the first sample is associated with or similar to a single observation in the second sample.

"similar" means, in the absence of systematic difference between the two populations being paired, the values of two measurements within a pair are expected to be closer on average than two measurements on different pairs.

• Examples: Two animals from the same litter; Two persons matched to have the same gender, age, approximate IQ, etc.; Same person on two occasions; et al.

(A) Paired Samples

Example. How do learning disabled children (with otherwise high IQ) differ from normal children in short term memorization ability? Each learning disabled child was matched with a normal child of the same gender, age and approximate IQ. Then they took a test on short-term memorization ability (higher score indicate better memory).

Pair	Learning disabled	Normal	
1	42	65	
2	59	72	
3	64	62	
4	55	80	
5	31	49	
6	40	57	
7	51	71	
	Yi	X_{i}	

How to make the inference here?

- Let μ_X = mean memorization score of normal children, μ_Y = mean memorization score of L.D. children
- $X_i \sim N(\mu_X, \sigma_X^2)$, $Y_i \sim N(\mu_Y, \sigma_Y^2)$ then using the property of linear combination of normal RVs: $D_i = X_i Y_i \sim N(\mu_D, \sigma_D^2)$, where $\mu_D = \mu_X \mu_Y$ and $\sigma_D^2 = ?$ (= $\sigma_X^2 + \sigma_Y^2$ if X independent of Y)

In fact, we do not know a formula of σ_D^2 except that it is a constant. We do not need the formula of σ_D^2 for inference.

• Hence we can use the <u>univariate inference</u> on $D_1,...,D_n$ for the <u>inference on paired comparisons</u> of X and Y.

Memorization Example.

Pair	Learning disabled	Normal	Difference
1	42	65	23
2	59	72	13
3	64	62	-2
4	55	80	25
5	31	49	18
6	40	57	17
7	51	71	20
	Y_{i}	X_{i}	D _i

- (A.1) Point estimator for μ_X μ_Y . Use $\hat{\mu}_D = \overline{D} = \sum_{i=1}^n (X_i - Y_i) = \overline{X} - \overline{Y}$
- For this example, $\hat{\mu}_D = \overline{D} = 16.3$

• (A.2) Confidence interval for μ_X - μ_Y .

Use the one-sample t-interval for μ_D : $\overline{D} \pm t_{n-1, \alpha/2} \frac{s_D}{\sqrt{n}}$

where
$$s_D^2 = \frac{1}{n-1} \sum_{i=1}^n (D_i - \overline{D})^2$$

• For this Memorization Example, the 95% CI for μ_D is

$$\overline{D} \pm t_{6,0.025} \frac{s_D}{\sqrt{7}} = 16.3 \pm 2.447 \frac{8.98}{\sqrt{7}} = (8.0, 24.6)$$

• We are 95% confident that μ_X - μ_Y lies within (8.0, 24.6).

- (A.3) Test $\mathbf{H_0}: \mu_X = \mu_Y$ versus $\mathbf{H_A}: \mu_X \neq \mu_Y$. \Leftrightarrow $\mathbf{H}_{\mathbf{n}}: \mu_X - \mu_Y = 0$ versus $\mathbf{H}_{\mathbf{A}}: \mu_X - \mu_Y \neq 0$.
- Use the one-sample t-test for μ_D :

Reject at
$$\alpha$$
 level if $T_{obs} = |\frac{\overline{D}}{s_D/\sqrt{n}}| > t_{n-1,\alpha/2}$

• For this Memorization Example,

$$T_{obs} = \left| \frac{16.3}{8.98/\sqrt{7}} \right| = 4.8, \quad t_{6, 0.025} = 2.447 < T_{obs}$$

Reject H_0 at α =0.05 level.

 Conclusion: L.D. children do differ from normal children in short-term memorization.

(B) Independent Samples

Example. Two diets are tested on mice to determine if they lead to different weight gains. Data: weight gains in grams.

#1 cereal diet	#2 pork diet
98	94
74	79
56	96
111	98
95	
X _{1,i}	$X_{2,i}$

Can not be paired.

New inference methods are needed.

Mathematical setup

Population

parameters

Sample

statistics

Observations

mean

variance

mean

variance

Sample size

Group 1

 $X_{1,1},...,X_{1,n1}$

 μ_1

 σ_1^2

 S_1^2

 n_1

Group 2

 $X_{2,1},...,X_{2,n2}$

 μ_2

 σ_2^2

 \bar{X}_2

 S_2^2

 n_2

Inference question: $\mu_1 = \mu_2$?

Inference question: $\mu_1 = \mu_2$?

- (B.1) What is the point estimator for μ_1 - μ_2 ?
- (B.2) What is the confidence interval for μ_1 - μ_2 ?
- (B.3) Test $\mathbf{H_0}$: $\mu_1 = \mu_2$ versus $\mathbf{H_A}$: $\mu_1 \neq \mu_2$. $\Leftrightarrow \mathbf{H_0}$: $\mu_1 \mu_2 = 0$ versus $\mathbf{H_A}$: $\mu_1 \neq \mu_2 \neq 0$.

We focus on presenting formulas for (B.3) hypothesis test. The other formulas follows due to the equivalence introduced before.

- If $n_1 = n_2$, we can just pair the data randomly and used paired inference.
- If $n_1 \neq n_2$, we do not want to pair (that will lose some data). How to do inference then?

What is the statistic for μ_1 - μ_2 ?

Obviously, we should use $\overline{X}_1 - \overline{X}_2$.

If we have theoretical distribution of \overline{X}_1 - \overline{X}_2 , we can get inferences like before.

- What is the distribution of $\overline{X}_1 \overline{X}_2$?
- From the property of linear combination of normal RVs: since $X_{1,i} \sim N(\mu_1, \sigma_1^2)$ is independent of $X_{2,i} \sim N(\mu_2, \sigma_2^2)$, then

$$\bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

Notice that $Var(\overline{X}_1 - \overline{X}_2) = Var(\overline{X}_1) + Var(\overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$ where the sign is + not -.

(B.3) Test
$$\mathbf{H_0}$$
: $\mu_1 = \mu_2$ versus $\mathbf{H_A}$: $\mu_1 \neq \mu_2$. $\Leftrightarrow \mathbf{H_0}$: $\mu_1 - \mu_2 = 0$ versus $\mathbf{H_A}$: $\mu_1 - \mu_2 \neq 0$.

• (B.3a) Know σ_1^2 and σ_2^2 , then use z-test.

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0, 1)$$

Reject H_0 when $Z_{obs} = |\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}| > z_{\alpha/2}$

• (B.3b) Unknown σ_1^2 and σ_2^2 but assume $\sigma_1 = \sigma_2 = \sigma_3$ Then we estimate σ^2 by pooled sample variance

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \sim \frac{\sigma^2 \chi_{n_1 - 1}^2 + \sigma^2 \chi_{n_2 - 1}^2}{n_1 + n_2 - 2} \sim \frac{\sigma^2 \chi_{n_1 + n_2 - 1}^2}{n_1 + n_2 - 2}$$

$$So \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{1/n_1 + 1/n_2}} \sim t_{n_1 + n_2 - 2}$$

Reject
$$H_0$$
 when $T_{obs} = |\frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{1/n_1 + 1/n_2}}| > t_{n_1 + n_2 - 2, \alpha/2}$

Mice Diet Example.

$$\bar{X}_1 = 86.8, \quad \bar{X}_2 = 91.75,$$
 $s_1^2 = 472.7, \quad s_2^2 = 74.91,$
 $n_1 = 5, \quad n_2 = 4,$

$$s_p^2 = \frac{4(472.7) + 3(74.91)}{7}$$
=320.22

$$s_p = \sqrt{320.22} = 17.38$$

#1 cereal diet	#2 pork diet
98	94
7456	79
56	96
111	98
95	
X _{1,i}	X _{2,i}

• (B.3b) Unknown σ_1^2 and σ_2^2 but assume $\sigma_1 = \sigma_2 = \sigma$ Mice example:

$$\bar{X}_1 = 86.8$$
, $\bar{X}_2 = 91.75$, $s_1^2 = 472.7$, $s_2^2 = 74.91$, $n_1 = 5$, $n_2 = 4$, $s_p = 17.38$

For
$$\alpha = 0.1$$
, $t_{7,0.05} = 1.415$

$$T_{obs} = \left| \frac{\bar{X}_1 - \bar{X}_2}{s_p \sqrt{1/n_1 + 1/n_2}} \right| = \left| \frac{86.8 - 91.75}{17.38 \sqrt{1/5 + 1/4}} \right| = 0.4245$$

Hence we do NOT reject $\mathbf{H_0}$ ($T_{obs} < t_{n_1+n_2-2,\alpha/2}$).

Conclusion: There is not sufficient evidence in these data to conclude that weight gains differ for diet 1 and diet 2.

Question: Do we reject at $\alpha = 0.05$?

• (B.3c) Unknown σ_1^2 and σ_2^2 generally use test statistic $\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$ which is <u>approximately</u> distributed as t_{df} with degree of freedom $\text{df} = \frac{(s_1^2/n_1)^2 + (s_2^2/n_2)^2}{\sqrt{(s_1^2/n_1)^2/(n_1 - 1) + (s_2^2/n_2)^2/(n_2 - 1)}} \leq n_1 + n_2 - 2$

$$\mathsf{df} = \frac{(s_1^2/n_1)^2 + (s_2^2/n_2)^2}{\sqrt{(s_1^2/n_1)^2/(n_1-1) + (s_2^2/n_2)^2/(n_2-1)}} \le n_1 + n_2 - 2$$

Notice that
$$(s_1^2/n_1)^2 + (s_2^2/n_2)^2 \sim \frac{\sigma_1^2}{n_1(n_1-1)} \chi_{n_1-1}^2 + \frac{\sigma_2^2}{n_2(n_2-1)} \chi_{n_2-1}^2$$
.

We cannot get exact chi-square by adjusting weights since is σ_1^2/σ_2^2 unknown.

• (B.3c) Unknown σ_1^2 and σ_2^2 and NO assumption $\sigma_1 = \sigma_2$ Mice example: df= $\frac{(s_1^2/n_1)^2 + (s_2^2/n_2)^2}{\sqrt{(s_1^2/n_1)^2/(n_1-1) + (s_2^2/n_2)^2/(n_2-1)}} = 5.456.$

Use the next lower value df=5. For α =0.1, $t_{5.0.05}$ = 1.476

$$T_{obs} = \left| \frac{86.8 - 91.75}{\sqrt{472.5/5 + 74.91/4}} \right| = \left| \frac{-4.95}{10.64} \right| = 0.465$$

Hence we do NOT reject H_0 at $\alpha=0.1$ level.

90% CI for μ_1 - μ_2 is (-4.95 - 1.476*10.64, -4.95 + 1.476*10.64) = (-20.7, 10.8)

• Using the response times from the mini-project in Lab1.

I collected response times in Lab 1 with "small" and "xlarge" boxes for 15 times and put the measured times in a text file ResponseTime2.txt

Small	Xlarge
531	532
843	515
578	547
563	469
625	625
704	578
657	781
875	594
672	656
672	766
812	703
813	547
954	515
657	500
609	500

(a) Paired t-test.

```
> # Import data set. This is formatted as two columns/variables
> MyTime <- read.table(file="ResponseTime2.txt", header=TRUE)</pre>
> # For paired t-test, simply create the new variable of difference,
> # then do one sample t-test as before
> diff.time<- MyTime$Small-MyTime$Xlarge</pre>
> t.test(diff.time) #At default alpha=0.05 level
    One Sample t-test
data: diff.time
t = 2.847, df = 14, p-value = 0.01293
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
  28.56146 203.03854
sample estimates:
mean of x
    115.8
```

• According to the paired t-test, the null hypothesis will be rejected at 0.05 level but not 0.01 level.

(a) Paired t-test. We can also do the paired t-test directly in R without the new variable. The outputs are almost exactly the same. > t.test(MyTime\$Small, MyTime\$Xlarge, paired=T) Paired t-test data: MyTime\$Small and MyTime\$Xlarge t = 2.847, df = 14, p-value = 0.01293alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 28.56146 203.03854 sample estimates: mean of the differences 115.8

• According to the paired t-test, the null hypothesis will be rejected at 0.05 level but not 0.01 level.

(b) The independent two samples t-test.

We now illustrate how to do the two sample t-tests in R, pretending the data is not paired. We can simply put these two variables in t.test() without the 'paired' option.

```
> # Unpaired t-test
> t.test(MyTime$Small, MyTime$Xlarge)
     Welch Two Sample t-test
data: MyTime$Small and MyTime$Xlarge
t = 2.8081, df = 26.433, p-value = 0.009247
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
     31.10277 200.49723
sample estimates:
mean of x mean of y
     704.3333 588.5333
```

• The p-value of the unpaired t-test here is a bit smaller than that of the paired t-test. (This actually is <u>unusual</u>. The pairing here does not affect the timing much.)

(b) The independent two samples t-test.

While the above commands are simple, the two groups often have different sample sizes, data is often presented in a different format:

	time	group
1	531	Small
2	843	Small
3	578	Small
4	563	Small
• • •		
13	954	Small
14	657	Small
15	609	Small
16	532	Xlarge
17	515	Xlarge
18	547	Xlarge
28	515	Xlarge
29	500	Xlarge
30	500	Xlarge

R commands for Converting the Format

We first illustrate how to convert the data set into this new format using R commands.

```
> ## Rearrange the data
```

- > small.time<-data.frame(time=MyTime\$Small, group='Small') #two columns: time and group
- > xlarge.time<-data.frame(time=MyTime\$Xlarge, group='Xlarge')
- > new.data<- rbind(small.time, xlarge.time) #merge two sets above

Small	Xlarge	time	group
531	532	1 531	Small
843	515	2 843	Small
		3 578	Small
578	547	4 563	Small
563	469	303	Jillall
625	625	• • •	
704	578	13 954	Small
657	781	14 657	Small
875	594	15 609	Small
672	656	16 532	Xlarge
		17 515	Xlarge
672	766	18 547	Xlarge
812	703		marge
813	547	•••	
954	515	28 515	Xlarge
657	500	29 500	Xlarge
609	500	30 500	Xlarge
ていいつ			_

(b) The independent two samples t-test.

In this new format, we can do the independent two sample t-test as ># Unpaired t-test

The output is almost exactly same as before.

• (b.1) The independent two samples t-test assuming $\sigma_1 = \sigma_2 = \sigma$ In R, this is simple, just set the option of "var.equal"

In this case, the p-value is very close to the p-value of t-test of unequal variance.

• (b.1) The independent two samples t-test assuming $\sigma_1 = \sigma_2 = \sigma$ We check if $\sigma_1 = \sigma_2 = \sigma$ is reasonable by F-test.

```
> # Testing equal variance
> var.test(time~group, data=new.data)
          F test to compare two variances
data: time by group
F = 1.6435, num df = 14, denom df = 14, p-value = 0.3636
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.5517881 4.8954551
sample estimates:
ratio of variances
      1.643549
```

p-value is big here, so we accept the null hypothesis of equal variance. In this data set, the two group variances are not very different, so the two versions of t-test (equal/unequal variance) give very similar results.

• Above we gave the R commands for doing the independent two samples t-test both assuming $\sigma_1 = \sigma_2 = \sigma$ and without assuming it. In this data set, the two versions of t-test (equal/unequal variance) give very similar results.

But generally in practice, which version should we use?

Summary

Module 5 done. You should know:

- When to use paired test and when to use unpaired test.
- R commands for doing the tests.
- For unpaired tests: assuming equal variance gives exact theoretical distribution. But in practice, we should use the unequal variance t-test.
- Homework 4 is due in one week. Project proposal is due in two weeks.
- Next lecture we start the next module Analysis of Variance (chapter 12).