电子技术实验

实验报告

(2020 - 2021 学年度 春季学期)

实验名称 _____实验三:负反馈放大电路

姓名刘祖炎学号2019010485院系自动化系教师赵晓燕时间2021 年 4 月 29 日

目录

1	实验	·目的	1
2	预习	报告	1
	2.1	电压并联负反馈放大电路	1
		$2.1.1$ 外加电阻 R_S 的选取及 A_{usf} 的测量 $\dots \dots \dots \dots \dots$	1
		$2.1.2$ 输入、输出电阻 R_{if} 、 R_{of} 的测量 \ldots	2
	2.2	负反馈放大电路频率响应	4
	2.3	数据记录表格	6

1. 实验目的

- 熟悉负反馈放大电路组态,深入理解负反馈对放大电路性能的影响。
- 掌握负反馈条件下, 电路静态与动态参数的测量方法。

2. 预习报告

2.1 电压并联负反馈放大电路

$\mathbf{2.1.1}$ 外加电阻 R_S 的选取及 A_{usf} 的测量

理论计算根据电压并联负反馈放大电路组态进行计算,可得:

$$\dot{A_{usf}} = \frac{\dot{U_o}}{\dot{U_s}} = \frac{R_f}{R_s} = -10$$

故 $R_s = 10k\Omega$

• 仿真验证 仿真电路图如图1所示。示波器波形如图2所示。测得当 $R_s=9.4k\Omega$ 时

$$\dot{A_{usf}} = \frac{-1.408V}{140.789mV} \approx -10.001$$

符合条件。

图 1: 测量 R_S 电路图

图 2: 测量 RS 示波器波形

2.1.2 输入、输出电阻 R_{if} 、 R_{of} 的测量

• 理论计算 开环输入电阻:

$$R_i = R_{g1} / / R_{g2} + R_{g3} = 1060k\Omega$$

输出电阻:

$$R_o = R_C = 2k\Omega$$

利用诺顿定理,将电压源及其内阻等效与 R_i 并联可得 $R_i'=R_i//R_s=9.32k\Omega$

$$1 + \dot{A}\dot{F} = 1 + 132.88 \times \frac{9.32}{100} = 13.38$$

$$R_{if} = \frac{R_i'}{1 + \dot{A}\dot{F}} = \frac{9.32}{13.38} = 696.56\Omega$$

$$R_{of} = \frac{R_o}{1 + \dot{A}\dot{F}} \frac{2}{13.38} = 149.48\Omega$$

• 仿真验证

接入 $R_1 = 1k\Omega$, 测量输入电阻的电路图如图3所示,示波器示数如图4所示。

图 3: 测量输入电阻电路图

图 4: 测量输入电阻示波器波形

$$R_{if} = 1k\Omega \times \frac{U_i}{U_i' - U_i} = 1k\Omega \times \frac{8.213}{21.085 - 8.213} = 638.05\Omega$$

分别测量 $R_o = 500\Omega$ 、 $R_o = \infty$ 时的输出电压 U_o , 示波器示数如图5、6所示。

图 5: 测量输出电阻示波器波形 $(R_L = 500\Omega)$

图 6: 测量输出电阻示波器波形 $(R_L = \infty)$

$$R_{of} = 500\Omega \times \frac{U_o' - U_o}{U_o} = 500\Omega \times \frac{1.421 - 1.145}{1.145} = 120.52\Omega$$

2.2 负反馈放大电路频率响应

测量频率响应电路图如图7所示。

图 7: 测量频率响应电路图

波特仪示数如图8、9、10所示。

图 8: 波特仪示数 (中频)

图 9: 波特仪示数 (f_L)

图 10: 波特仪示数 (f_H)

将仿真所得 f_L 、 f_H 的值填入表2中。

2.3 数据记录表格

表 1: 电压并联负反馈放大电路数据表格

参数	理论值	仿真结果	实测值
$R_S/k\Omega$	10.0	9.4	9. 48
$\overline{A_{usf}}$	-10.000	-10.001	-10.016
R_{if}/Ω	696.56	638.05	626. 48
R_{of}/Ω	149.48	120.52	109.51

表 2: 负反馈放大电路频率响应

参数	仿真结果	实测值
f_L/Hz	27.995	
f_H/MHz	6.659	2. 90