

CS10: The Beauty and Joy of Computing

Lecture #22 Limits of Computing

2012-04-16

You'll have the opportunity for extra credit on your project! After you submit it, you can make a ≤ 5min YouTube video.

4.74 DEGREES OF SEPARATION?

Researchers at Facebook and the University of Milan found that the avg # of "friends" separating any two people in the world was < 6.

http://www.nytimes.com/2011/11/22/technology/between-you-and-me-4-74-degrees.html

Computer Science ... A UCB view

- CS research areas:
- Artificial Intelligence
- Biosystems & Computational Biology
- Database Management Systems
- Graphics
- Human-Computer Interaction
- Networking
- Programming Systems
- Scientific Computing
- Security
- Systems
- Theory
- · Complexity theory

www.csprinciples.org/docs/APCSPrinciplesBigIdeas20110204.pdf

Let's revisit algorithm complexity

- Problems that...
 - are tractable with efficient solutions in reasonable time
 - are intractable
 - are solvable approximately, not optimally
 - have no known efficient solution
 - are not solvable

Tractable with efficient sols in reas time

- Recall our algorithm complexity lecture, we've got several common orders of
 - growth Constant
 - Logarithmic
 - Linear
 - Quadratic Cubic
 - Exponential

- Order of growth is polynomial in the size of the problem
- E.g.,
 - Searching for an item in a collection
 - Sorting a collection
 - Finding if two numbers in a collection are same
- These problems are called being "in P" (for polynomial)

en.wikipedia.org/wiki/Intractability_(complexity)#Intractability

Intractable problems

- Problems that can be solved, but not solved fast enough
- This includes exponential problems
 - E.g., f(n) = 2ⁿ • as in the image to the right
- This also includes poly-time algorithm with a huge exponent

Only solve for small n

E.g, f(n) = n¹⁰

en.wikipedia.org/wiki/Knapsack problem Solvable approximately, not optimally in reas time

- A problem might have an optimal solution that cannot be solved in reasonable time
- BUT if you don't need to know the perfect solution, there might exist algorithms which could give pretty good answers in reasonable time

Knapsack Problem

You have a backpack with a weight limit (here 15kg), which boxes (with weights and values) should be taken to maximize value?

en.wikipedia.org/wiki/P %3D NP problem

Have no known efficient solution

- Solving one of them would solve an entire class of them!
 - We can transform one to another, i.e., reduce
 - A problem P is "hard" for a class C if every element of C can be "reduced" to P
- If you're "in NP" and "NP-hard", then you're "NP-complete"

15

Are there a handful of these numbers (at least 1) that add together to get 0?

- If you guess an answer, can I verify it in polynomial time?
 - Called being "in NP"
 - Non-deterministic (the "guess" part) Polynomial

en.wikipedia.org/wiki/P %3D NP problem

The fundamental question. Is P = NP?

- This is THE major unsolved problem in **Computer Science!**
 - One of 7 "millennium prizes" w/a \$1M reward
- All it would take is solving ONE problem in the NP-complete set in polynomial time!!
 - Huge ramifications for cryptography, others

If $P \neq NP$, then

Other NP-Complete

 Traveling salesman who needs most efficient route to visit all cities and return home

www.cgl.uwaterloo.ca/~csk/halt/

Problems NOT solvable

- Decision problems answer YES or NO for an infinite # of inputs
 - E.g., is N prime?
 - E.g., is sentence S grammatically correct?
- An algorithm is a solution if it correctly answers YES/NO in a finite amount of time
- if it has a solution

Alan Turing • A problem is <u>decidable</u> "Are all problems decidable?" (people used to believe this was true) Turing proved it wasn't for CS!

Review: Proof by Contradiction

- Infinitely Many Primes?
- Assume the contrary, then prove that it's impossible
 - Only a finite # of primes
 - Number them p₁, p₂, ..., p_n
 - Consider the number q
 - $q = (p_1 * p_2 * ... * p_n) + 1$
 - · Dividing q by any prime would give a remainder of 1
 - · So q isn't composite, q is prime
 - But we said p_n was the biggest, and q is bigger than p_n

So there IS no biggest p_n

Turing's proof: The Halting Problem

- Given a program and some input, will that program eventually stop? (or will it loop)
- Assume we could write it, then let's prove a contradiction
 - 1. write Stops on Self?
 - 2. Write Weird
 - 3. Call Weird on itself

Conclusion

- Complexity theory important part of CS
- If given a hard problem, rather than try to solve it yourself, see if others have tried similar problems
- If you don't need an exact solution, many approximation algorithms help

P=NP question even made its war into popular culture, here shov e Simpsons 3D episode!

Some not solvable!

