Лабораторная работа № 2.4.1

Определение теплоты испарения жидкости

1 Аннотация

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона–Клаузиуса.

В работе используются: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп.

2 Теоретические сведения

Уравнение Клапейрона-Клаузиуса

Если считать что насыщенные пары подчиняются закона Менделеева-Клапейрона, и пренебречь удельным объемом жидкости относительно удельного объема паров то из уравнения Клапейрона-Клаузиуса получаем формулу для удельной теплоты испарения:

$$L = \frac{RT^2}{\mu P} \frac{dP}{dT} = -\frac{R}{\mu} \frac{d(\ln P)}{d(1/T)}.$$
 (1)

Как видим, если измерить зависимость давления насыщенных паров от температуры по формуле (1) можно получить удельную теплоту испарения.

3 Используемое оборудование

Рис. 1: Установка для определения давления насыщенных паров.

Измерения проводятся на установке, изображенной на рис. 1. С помощью термостата А выставляется желаемя температура, и с помощью микроскопа С измеряется положение менисков ртути в U-образном монометре 15. Давление насыщенных паров считается как разность высот менисков ртути.

Измерения проводятся в 2 этапа. В начале жидкость нагревается, а потом остужается. Это делается для того, чтобы посмотреть зависит ли давление насыщенных паров только от состояния жидкости или нет.

4 Методика измерений

- 1. Измерьте разность уровней в ртутном U-образном манометре с помощью микроскопа и температуру по термометру или индикаторному табло.
- 2. Включите термостат. Если вы работаете со схемой рис. 1, то подогревайте воду в калориметре, пропуская ток через нагреватель. Следите за тем, чтобы воздух всё время перемешивал воду.
 - При работе как со схемой рис. 1, так и со схемой рис. 2, через каждый градус измеряйте давление и температуру.
 - Продолжайте повышать температуру в течение половины имеющегося у вас времени, чтобы успеть произвести измерения при остывании прибора. Желательно нагреть жидкость до $40\text{-}50~^{\circ}\mathrm{C}$.
- 3. Проведите те же измерения при охлаждении жидкости. Установите такой поток воды, чтобы охлаждение шло примерно тем же темпом, что и нагревание.
- 4. Постройте графики в координатах T, P и в координатах 1/T, $\ln P$. На графики нанесите точки, полученные при нагревании и охлаждении жидкости (разными цветами).
 - По формуле (1) вычислите L, пользуясь данными, полученными сначала из одного, а потом из другого графика. Находятся ли результаты в согласии друг с другом? Оцените ошибку измерений. Какой из графиков позволяет найти L с лучшей точностью?

5 Результаты измерений и обработка данных

Измерения

Снимем зависимость давления паров спирта в зависимости от температуры, дожидаясь релаксации, сначала при повышении температуры, потом при понижении. Также сохраним табличные данные, указанные на установке.

$t, {^{\circ}C} \mid P, \text{mm.pt.ct.}$			$t, {^{\circ}C} \mid P, \text{mm.pt}$	$t, {^{\circ}C} \mid P, \text{mm.pt.ct.}$	
23.15	46.49	$t, {^{\circ}C} \mid P, \text{mm.pt.ct.}$	0 12.20		
25.26	53.58	37.00 101.24	- 5 17.30		
27.30	59.79	35.01 91.06	10 23.60		
29.24	66.75		15 32.20		
31.24	75.64		20 43.90		
33.23	84.59	31.00 73.74	25 59.00		
35.22	94.01	29.01 64.97	30 78.80		
37.19	105.04	26.96 58.88	_ 35 103.70)	
39.16	116.51	Таблица 2: Охлажде	ение 40 135.30	1	

Таблица 1: Нагрев

Таблица 3: Табличные

Графики

Рис. 2: Зависимость давления от температуры

Рис. 3: Логарифмическая зависимость

Теплота испарения спирта

1 способ

В каждой точке графика (рис. 2) вычислим производную $\frac{dP}{dT}$, а по ней удельную теплоту испраения, используя формулу (1). Посчитаем среднее значение и среднеквадратиечское отклонение:

$$L_{\rm harp}^1 = 950 \pm 29 \; \text{Дж/г}$$
 (2)

$$L_{{\rm {\tiny Ta6}}{\rm {\tiny I}}}^1 = 935 \pm 13~$$
Дж/г

2 способ

По графику (рис. 3) определим коэффициент наклона, а по нему удельную теплоту испраения, используя формулу (1):

$$L_{\text{\tiny Harp}}^2 = 951 \pm 6 \text{ Дж/г} \tag{4}$$

$$L_{\text{табл}}^2 = 930.4 \pm 2.6 \,\,\text{Дж/г}$$
 (5)

6 Обсуждение результатов

Проведенный эксперимент показал высокую точность результатов благодаря применению микроскопа для измерения высоты столбиков ртути и использованию ртути с высокой плотностью для измерения давления.

Второй способ вычисления удельной теплоты испарения по графику дал значительно меньшую погрешность по сравнению с первым, что делает его предпочтительным для более сложных работ. Отклонение от табличного значения может быть вызвано многократным использованием спирта в установке, нестабильностью температуры на термостате и возможными неточностями в методике измерений.

Улучшения включают автоматизацию процесса с помощью компьютера для исключения человеческого фактора. Также следует учесть, что предложенная для проверки теоретическая зависимость может быть недостаточно точной.