Machine learning

Claire Boyer

September 30th, 2020

Thanks to

- Stéphane Gaïffas
- Erwan Scornet
- Gérard Biau
- ► Maxime Sangnier
- Laurent Rouvière

Today 3 / 100

1. Kernel methods

Motivations
Preliminary definitions
Some properties
Some examples
Kernel based algorithms
Kernel and regression
Another way for Kernel Ridge regression

2. The k-nearest neighbors classifier

Stone's theorem
Proof of consistency
k-nearest neighbors
Some remarks

Summary 4 / 100

1. Kernel methods

Motivations
Preliminary definitions
Some properties
Some examples
Kernel based algorithms
Kernel and regression
Another way for Kernel Ridge regression

I he k-nearest neighbors classifier Stone's theorem Proof of consistency k-nearest neighbors Some remarks

- Widely used in machine learning.
- Extend algorithms such as SVMs to define non-linear decision boundaries.

- Widely used in machine learning.
- Extend algorithms such as SVMs to define non-linear decision boundaries.

Idea

- ▶ to implicitly define an inner product in a high-dimensional space
- replacing the original inner product in the input space with positive definite kernels immediately extends algorithms such as SVMs to a linear separation in that high-dimensional space, or, equivalently, to a non-linear separation in the input space

SVM

In practice, linear separation is often not possible.

Implicit lifting to a higher dimensional space

- Use more complex functions to separate the two sets
- ▶ One way: use a non-linear mapping φ from the input space $\mathcal X$ to a higher-dimensional space $\mathcal H$, where linear separation is possible

Polynomial mapping

The **polynomial** mapping $\varphi : \mathbb{R}^2 \to \mathbb{R}^6$ for $x = (x_1, x_2) \in \mathbb{R}^2$

$$\varphi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$$

solves the XOR (Exclusive OR) classification problem.

Polynomial mapping

The **polynomial** mapping $\varphi : \mathbb{R}^2 \to \mathbb{R}^6$ for $x = (x_1, x_2) \in \mathbb{R}^2$

$$\varphi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$$

solves the XOR (Exclusive OR) classification problem.

XOR : label y_i is blue iff one of the coordinates of x_i equals 1.

Figure: XOR problem linearly non-separable in the input space.

Figure: XOR problem linearly non-separable in the input space.

lacktriangle Blue and red points cannot be linearly separated in \mathbb{R}^2

Figure: XOR problem linearly non-separable in the input space.

- Blue and red points cannot be linearly separated in R²
- ▶ But they can using the mapping $\varphi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$, using the hyperplane $x_1x_2 = 0$

In (b), the hyperplane $x_1x_2 = 0$ separates blue points and red points.

This mapping φ is call polynomial mapping of order 2.

Note that for $x, x' \in \mathbb{R}^2$ we have

$$\langle \varphi(x), \varphi(x') \rangle = \left\langle \begin{bmatrix} x_1^2 \\ x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \\ \sqrt{2}x_1 \\ \sqrt{2}x_2 \end{bmatrix}, \begin{bmatrix} x_1^2 \\ x_1'^2 \\ x_2'^2 \\ \sqrt{2}x_1'x_2' \\ \sqrt{2}x_1' \\ \sqrt{2}x_2' \\ 1 \end{bmatrix} \right\rangle$$

$$= (x_1x_1' + x_2x_2' + 1)^2$$

$$= (\langle x, x' \rangle + 1)^2$$

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a kernel over \mathcal{X} .

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a kernel over \mathcal{X} .

The idea is to define a kernel k such that

$$\forall (x, x') \in \mathcal{X} \times \mathcal{X}, \qquad k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}.$$

- for some mapping $\varphi = \mathcal{X} \to \mathcal{H}$ to a Hilbert space \mathcal{H}
- $ightharpoonup \mathcal{H}$ is called a feature space

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a kernel over \mathcal{X} .

The idea is to define a kernel k such that

$$\forall (x, x') \in \mathcal{X} \times \mathcal{X}, \qquad k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}.$$

- for some mapping $\varphi = \mathcal{X} \to \mathcal{H}$ to a Hilbert space \mathcal{H}
- $ightharpoonup \mathcal{H}$ is called a feature space

Interpretation: k can be interpreted as a similarity measure between elements of the input space \mathcal{X} (or the "raw feature" space).

Efficiency:

- \blacktriangleright k is often significantly more efficient to compute than φ and an inner product in \mathcal{H} .
- in several common examples, the computation of k(x,x') can be achieved in $O(\dim \mathcal{X})$ while that of $\langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$ typically requires $O(\dim(\mathcal{H}))$ work, with $\dim(\mathcal{H}) \gg N$.
- ▶ in some cases, $dim(\mathcal{H}) = \infty$.

Flexibility:

- lacktriangle No need to explicitly define or compute a mapping arphi
- The kernel k can be arbitrarily chosen so long as the existence of φ is guaranteed, i.e. k satisfies Mercer's condition

Definition (Symmetry)

We say that a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is symmetric if for all $(x,x') \in \mathcal{X} \times \mathcal{X}$

$$k(x,x')=k(x',x).$$

Definition (Symmetry)

We say that a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is symmetric if for all $(x, x') \in \mathcal{X} \times \mathcal{X}$

$$k(x,x')=k(x',x).$$

Definition (Positive Definite Symmetric (PDS) kernel)

We say that a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is Positive Definite Symmetric (PDS) if for any $\{x_1, \ldots, x_n\} \subset \mathcal{X}$ the matrix

 $K := (k(x_i, x_j))_{1 \le i,j \le n}$ is symmetric positive semidefinite (SPSD), i.e.

$$K:=(k(x_i,x_j))_{1\leqslant i,j\leqslant n}\succeq 0.$$

Recall that K is SPSD if

- ▶ the eigenvalues of *K* are all non-negative,
- ightharpoonup or, for any vector $u \in \mathbb{R}^n$

$$u^T K u = \sum_{ij} u_i u_j k(x_i, x_j) \geqslant 0$$

(with K symmetric).

For a sample x_1, \ldots, x_n we call $K = [K(x_i, x_j)]_{1 \le i, j \le n}$ the Gram matrix of this sample.

Definition (Hadamard product)

 $A\odot B$ between two matrices A and B (or vectors) with the same dimensions is given by

$$(A \odot B)_{i,j} = A_{i,j} \odot B_{i,j}$$

Theorem

The sum, product, pointwise limit and composition with a power series $\sum_{n\geqslant 0} a_n x^n$ with $a_n\geqslant 0$ for all $n\geqslant 0$ preserves the PDS property.

Proof I 18 / 100

(Sum) Consider two $n \times n$ Gram matrices K, K' of PDS kernels K, K' and take $u \in \mathbb{R}^n$. Observe that

$$u^{\top}(K+K')u=u^{\top}Ku+u^{\top}K'u\geqslant 0$$

So PDS is preserved by the sum and finite sums by reccurence.

Proof II 19 / 100

(Product) Now, to prove that the product $K \odot K'$ is PDS, write $K = MM^{\top}$, where M is the square-root of K (which is SDP) and note that

$$u^{\top}(K \odot K')u = \sum_{1 \leqslant i,j \leqslant n} u_i u_j K_{i,j} K'_{i,j}$$
$$= \sum_{1 \leqslant i,j \leqslant n} \sum_{k=1}^{n} u_i u_j M_{i,k} M_{k,j} K'_{i,j}$$
$$= \sum_{k=1}^{n} z_k^{\top} K' z_k \geqslant 0$$

with $z_k = u \odot M_{\bullet,k}$. This proves that finite products of PDS kernels is PDS.

Proof III 20 / 100

(Pointwise limit) Assume that $K_\ell \to K$ as $\ell \to +\infty$ pointwise, where K_ℓ is a sequence of PDS kernels. It means that any associated sequence of Gram matrices K_ℓ and the its limit K satisfies $K_\ell \to K$ entrywise, so that for any $u \in \mathbb{R}^n$ we have

$$u^{\top} K_{\ell} u \rightarrow u^{\top} K u$$

so $u^{\top} K u \geqslant 0$ since $u^{\top} K_{\ell} u \rightarrow u$ for all ℓ . This proves stability of PDS property under pointwise limit.

(Composition w/ a power series) Now, let K be a kernel such that |K(x,x')| < r for all $x,x' \in \mathcal{X}$ and $\sum_{\ell \geqslant 0} a_\ell x^\ell$ a power series with radius of convergence r. By stability under sum and product, we have that

$$\sum_{\ell=0}^{L} \mathsf{a}_{\ell} \mathsf{K}^{\ell}$$

Proof IV 21 / 100

is PDS, and

$$\lim_{L\to+\infty}\sum_{\ell=0}^L a_\ell K^\ell = \sum_{\ell\geqslant 0} a_\ell K^\ell$$

remains PDS since PDS is kept under pointwise limit. This concludes the proof of the theorem.

Theorem (Cauchy-Schwarz)

The following inequality holds for k, k' two PDS kernels

$$k(x,x')^2 \leqslant k(x,x)k(x',x')$$

for any $x, x' \in \mathcal{X}$.

It is called the Cauchy-Schwarz inequality for PSD kernels.

Proof 23 / 100

Take $x, x' \in \mathcal{X}$ and consider the Gram matrix

$$G = \begin{bmatrix} k(x,x) & k(x,x') \\ k(x',x) & k(x',x') \end{bmatrix}.$$

Since k is PDS, then $G \geq 0$, which entails that

$$0 \leqslant \det G = k(x,x)k(x',x') - k(x,x')^2.$$

THE theorem 24 / 100

Theorem (Reproducing Kernel Hilbert Space (RKHS))

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDS kernel. Then, there is a Hilbert space $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ endowed with an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and a mapping $\varphi: \mathcal{X} \to \mathcal{H}$ such that

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$$

and such that the reproducing property holds:

$$h(x) = \langle h, k(x, \cdot) \rangle_{\mathcal{H}}$$

for any $h \in \mathcal{H}$ and $x \in \mathcal{X}$.

THE theorem 24 / 100

Theorem (Reproducing Kernel Hilbert Space (RKHS))

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDS kernel. Then, there is a Hilbert space $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ endowed with an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and a mapping $\varphi: \mathcal{X} \to \mathcal{H}$ such that

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$$

and such that the reproducing property holds:

$$h(x) = \langle h, k(x, \cdot) \rangle_{\mathcal{H}}$$

for any $h \in \mathcal{H}$ and $x \in \mathcal{X}$.

We say that \mathcal{H} is a reproducting kernel Hilbert space associated to the kernel k.

Note that

 $RKHS \Rightarrow Hilbert space,$

BUT

Hilbert space \Rightarrow RKHS

- Note that $RKHS \Rightarrow Hilbert space$, BUT $Hilbert space <math>\Rightarrow RKHS$
- ▶ The Hilbert space \mathcal{H} is called the **features space** associated to k

- Note that
 RKHS ⇒ Hilbert space, BUT Hilbert space ⇒ RKHS
- ▶ The Hilbert space \mathcal{H} is called the **features space** associated to k
- ▶ The corresponding mapping $\varphi : \mathcal{X} \to \mathcal{H}$ is called the **features** mapping

- Note that
 RKHS ⇒ Hilbert space, BUT Hilbert space ⇒ RKHS
- ▶ The Hilbert space \mathcal{H} is called the **features space** associated to k
- ▶ The corresponding mapping $\varphi : \mathcal{X} \to \mathcal{H}$ is called the **features** mapping
- ▶ \mathcal{H} is endowed with an inner product $\langle h, h' \rangle_{\mathcal{H}}$ for $h, h' \in \mathcal{H}$ and a norm $\|h\|_{\mathcal{H}} = \sqrt{\langle h, h \rangle_{\mathcal{H}}}$

- Note that
 RKHS ⇒ Hilbert space, BUT Hilbert space ⇒ RKHS
- ▶ The Hilbert space \mathcal{H} is called the **features space** associated to k
- ▶ The corresponding mapping $\varphi : \mathcal{X} \to \mathcal{H}$ is called the **features** mapping
- ▶ \mathcal{H} is endowed with an inner product $\langle h, h' \rangle_{\mathcal{H}}$ for $h, h' \in \mathcal{H}$ and a norm $\|h\|_{\mathcal{H}} = \sqrt{\langle h, h \rangle_{\mathcal{H}}}$
- ▶ The feature space might not be unique in general

1. any finite-dimensional Hilbert space of functions is a RKHS, with $k(x,x') = \sum_{i=1}^{\dim(\mathcal{H})} e_i(x)e_i(x')$.

- 1. any finite-dimensional Hilbert space of functions is a RKHS, with $k(x, x') = \sum_{i=1}^{\dim(\mathcal{H})} e_i(x)e_i(x')$.
- 2. the space $L^2(\mathbb{R})$ is not a RKHS.

- 1. any finite-dimensional Hilbert space of functions is a RKHS, with $k(x,x') = \sum_{i=1}^{\dim(\mathcal{H})} e_i(x)e_i(x')$.
- 2. the space $L^2(\mathbb{R})$ is not a RKHS.
- 3. the space of $\mathcal{F}=\left\{f:f(0)=0,f\text{ absolutely continuous},f,f'\in L^2(\mathbb{R})\right\}\text{ is a RKHS with }k(x,x')=e^{-|x-x'|}.$

In summary 27 / 100

- Choose a kernel k you think relevant
- lacktriangle If it's PDS, then there is a mapping φ and a RKHS ${\cal H}$ for it

In summary 27 / 100

- Choose a kernel k you think relevant
- \blacktriangleright If it's PDS, then there is a mapping φ and a RKHS ${\cal H}$ for it
- Feature engineering becomes kernel engineering with kernel methods

In summary 27 / 100

- Choose a kernel k you think relevant
- \blacktriangleright If it's PDS, then there is a mapping φ and a RKHS ${\cal H}$ for it
- Feature engineering becomes kernel engineering with kernel methods
- ► Any linear algorithm based on computing inner products can be extended into a non-linear version by replacing the inner products by a kernel function ~ kernel trick

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$$

Definition

The **normalized kernel** k' associated to a kernel k is given by

$$k'(x,x') = \frac{k(x,x')}{\sqrt{k(x,x)k(x',x')}}$$

if k(x,x)k(x',x') > 0 and k(x,x') = 0 otherwise.

Theorem

If k is a PDS kernel, its normalized kernel k' is PDS.

Let $x_1, \ldots, x_n \in \mathcal{X}$ and $c \in \mathbb{R}^n$. If $k(x_i, x_i) = 0$ or $k(x_j, x_j) = 0$ then $k(x_i, x_j) = 0$ using Cauchy-Schwarz, so $k'(x_i, x_j) = 0$. So, we can assume $k(x_i, x_i) > 0$ for all $i = 1, \ldots, n$ and write the following:

$$\sum_{1\leqslant i,j\leqslant n} \frac{c_i c_j k(x_i,x_j)}{\sqrt{k(x_i,x_i)k(x_j,x_j)}} = \sum_{1\leqslant i,j\leqslant n} \frac{c_i c_j \langle \varphi(x_i), \varphi(x_j) \rangle}{\|\varphi(x_i)\| \|\varphi(x_j)\|}$$
$$= \left\| \sum_{i=1}^n \frac{c_i \varphi(x_i)}{\|\varphi(x_i)\|} \right\|^2 \geqslant 0$$

which proves the theorem.

A few remarks

Remark

- We have that k(x, x') is the cosine of the angle between $\varphi(x)$ and $\varphi(x')$ if k is a normalized kernel (if none is zero).
- ▶ Once again, k(x, x') is a similarity measure between x and x'

A few remarks

Remark

- We have that k(x, x') is the cosine of the angle between $\varphi(x)$ and $\varphi(x')$ if k is a normalized kernel (if none is zero).
- ▶ Once again, k(x, x') is a similarity measure between x and x'

Remark

If k is a normalized kernel, then

$$\|\varphi(x)\|_{\mathcal{H}} = \langle \varphi(x), \varphi(x) \rangle_{\mathcal{H}} = k(x, x) = 1$$

for any $x \in \mathcal{X}$.

The polynomial kernel.

For c>0 and $q\in\mathbb{N}\setminus\{0\}$ we define the polynomial kernel

$$K(x,x')=(\langle x,x'\rangle+c)^q.$$

It is a PDS kernel,

The polynomial kernel.

For c>0 and $q\in\mathbb{N}\setminus\{0\}$ we define the polynomial kernel

$$K(x,x')=(\langle x,x'\rangle+c)^q.$$

It is a PDS kernel, since it is the power of the PDS kernel $(x, x') \mapsto \langle x, x' \rangle + b$.

The polynomial kernel.

For c>0 and $q\in\mathbb{N}\setminus\{0\}$ we define the polynomial kernel

$$K(x,x')=(\langle x,x'\rangle+c)^q.$$

It is a PDS kernel, since it is the power of the PDS kernel $(x, x') \mapsto \langle x, x' \rangle + b$.

We already computed its mapping $\varphi(x)$: it contains all the monomials of degree less than q of the coordinates of x.

The Gaussian or the Radial Basis Function (RBF) kernel.

For $\gamma >$ 0 it is given by

$$k(x, x') = \exp(-\gamma ||x - x'||_2^2)$$

The Gaussian or the Radial Basis Function (RBF) kernel.

For $\gamma >$ 0 it is given by

$$k(x, x') = \exp(-\gamma ||x - x'||_2^2)$$

Proposition

The RBF kernel is a PDS and normalized kernel.

The Gaussian or the Radial Basis Function (RBF) kernel.

For $\gamma > 0$ it is given by

$$k(x, x') = \exp(-\gamma ||x - x'||_2^2)$$

Proposition

The RBF kernel is a PDS and normalized kernel.

By far, the RBF kernel is the most widely used: uses as a similarity measure the Euclidean norm

Proof 33 / 100

First remark that

$$\exp(-\gamma \|x - x'\|_{2}^{2}) = \frac{\exp(2\gamma \langle x, x' \rangle)}{\exp(\gamma \|x\|^{2}) \exp(\gamma \|x'\|^{2})}$$
$$= \frac{k'(x, x')}{\sqrt{k'(x, x)k'(x', x')}}$$

with $k'(x,x') = \exp(2\gamma\langle x,x'\rangle)$ and that k' is PDS since

$$k'(x,x') = \sum_{n \ge 0} \frac{(2\gamma \langle x, x' \rangle)^n}{n!}$$

namely a series of the PDS kernel $(x, x') \mapsto 2\gamma \langle x, x' \rangle$.

The tanh kernel or the sigmoid kernel.

$$k'(x,x') = \tanh(a\langle x,x'\rangle + c) = \frac{e^{a\langle x,x'\rangle + c} - e^{-a\langle x,x'\rangle - c}}{e^{a\langle x,x'\rangle + c} + e^{-a\langle x,x'\rangle - c}}$$

for a, c > 0. It is again a PDS kernel (same argument as for the RBF kernel).

The tanh kernel or the sigmoid kernel.

$$k'(x,x') = \tanh(a\langle x,x'\rangle + c) = \frac{e^{a\langle x,x'\rangle + c} - e^{-a\langle x,x'\rangle - c}}{e^{a\langle x,x'\rangle + c} + e^{-a\langle x,x'\rangle - c}}$$

for a, c > 0. It is again a PDS kernel (same argument as for the RBF kernel).

Exercise: compute its mapping.

Kernel-based algorithms?

Question

How to use kernels for classification and regression?

Question

How to use kernels for classification and regression?

Recall the linear SVM

Figure: SVM: hard and soft margins

Linear SVM

► Back to the primal problem

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n s_i$$
s.t. $y_i(\langle x_i, w \rangle + b) \geqslant 1 - s_i$ and $s_i \geqslant 0$ for all $i = 1, \dots, n$

or equivalently

$$\operatorname{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b)$$

where $\ell(y, y') = \max(0, 1 - yy') = (1 - yy')_{+}$ is the hinge loss.

► Label prediction given by

$$y = sign(\langle x, w \rangle + b)$$

Linear SVM

► Back to the primal problem

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n s_i$$
s.t. $y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \geqslant 1 - s_i$ and $s_i \geqslant 0$ for all $i = 1, \dots, n$

or equivalently

$$\operatorname{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b)$$

where $\ell(y, y') = \max(0, 1 - yy') = (1 - yy')_{+}$ is the hinge loss.

► Label prediction given by

$$y = sign(\langle x, w \rangle + b)$$

Principle

▶ Replace x_i by $\varphi(x_i)$. In the primal this leads to

$$\operatorname{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle \varphi(x_i), w \rangle + b)$$

Label prediction is given by

$$y = sign(\langle \varphi(x), w \rangle + b)$$

Problem

In the primal, you need to compute $\varphi(x)$!

Linear SVM

Dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,i=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

subject to $0 \leqslant \alpha_i \leqslant C$ and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

and the label prediction using dual variables

$$x \mapsto \operatorname{sign}(\langle w, x \rangle + b) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

depends only on the features x_i via their inner products $\langle x_i, x_j \rangle$

Linear SVM 40 / 100

Dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,i=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

subject to
$$0 \leqslant \alpha_i \leqslant C$$
 and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

and the label prediction using dual variables

$$x \mapsto \operatorname{sign}(\langle w, x \rangle + b) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

Depends only on the features x_i via their inner products $\langle x_i, x_j \rangle$

Remark (Fundamental remark)

The dual problem depends only on the features via their inner products.

Remark (Fundamental remark)

The dual problem depends only on the features via their inner products.

Given some kernel k, let's replace the "raw" inner products $\langle x_i, x_j \rangle$ by the "new" inner products $k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$

Remark (Fundamental remark)

The dual problem depends only on the features via their inner products.

Given some kernel k, let's replace the "raw" inner products $\langle x_i, x_j \rangle$ by the "new" inner products $k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$

The kernel trick

To train the SVM with a kernel, you don't need to know or compute the $\varphi(x_i)$!

Remark (Fundamental remark)

The dual problem depends only on the features via their inner products.

Given some kernel k, let's replace the "raw" inner products $\langle x_i, x_j \rangle$ by the "new" inner products $k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$

The kernel trick

To train the SVM with a kernel, you don't need to know or compute the $\varphi(x_i)$!

Take-home message: kernel trick

- ▶ Kernel + SVM = ♡
- ▶ But do it in the dual problem only!

Dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \alpha_i \alpha_j y_i y_j k(x_i, x_j)$$

subject to
$$0 \leqslant \alpha_i \leqslant C$$
 and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

Label prediction

The label prediction using dual variables

$$x \mapsto \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i k(x, x_i) + b\right)$$

with the intercept given by

$$b = y_i - \sum_{j=1}^n \alpha_j y_j k(x_j, x_i)$$

for any i such that $0 < \alpha_i < C$ (support vector) (cf previous lecture)

This proves that the hypothesis solution writes

$$h(x) = \operatorname{sign} \Big(\sum_{i:\alpha_i \neq 0} \alpha_i y_i k(x, x_i) + b \Big),$$

namely a combination of functions $k(x_i, \cdot)$ where x_i are the support vectors.

For the RBF kernel

The decision function is

$$x \mapsto \sum_{i:\alpha_i \neq 0} \alpha_i y_i \exp\left(-\gamma \|x - x_i\|_2^2\right) + b$$

It is a mixture of Gaussian "densities". Let's recall that the x_i with $\alpha_i \neq 0$ are the support vectors

RBF kernel 45 / 100

$$x \mapsto \sum_{i:\alpha_i \neq 0} \alpha_i y_i \exp\left(-\gamma \|x - x_i\|_2^2\right) + b$$

the image that you will plot later :)

Figure: Data is separated thanks to a Gaussian mixture.

The kernel trick is not only for the SVM!

Theorem ((Kimeldorf & Wahba 1971, Schölkopf et al. 2001))

If k is a PDS kernel and $\mathcal H$ its corresponding RKHS, for any increasing function g and any function $L:\mathbb R^n\to\mathbb R$, the optimization problem

$$\min_{h\in\mathcal{H}}g(\|h\|_{\mathcal{H}})+L(h(x_1),\ldots,h(x_n))$$

admits only solutions of the form

$$h^{\star} = \sum_{i=1}^{n} \alpha_{i} k(x_{i}, \cdot).$$

This theorem is called the representer theorem.

It means that in the case of a penalization increasing with $\|\cdot\|_{\mathcal{H}}$, any optimal solution h^* lives in a finite dimensional vector space of \mathcal{H} , even if \mathcal{H} is infinite-dimensional!

Kernel Ridge regression

Consider this time a continuous label $y_i \in \mathbb{R}$, features $x_i \in \mathcal{X}$ for i = 1, ..., n and a features mapping $\varphi : \mathcal{X} \to \mathcal{H}$ with PDS kernel k

Kernel Ridge regression

- ▶ Consider this time a continuous label $y_i \in \mathbb{R}$, features $x_i \in \mathcal{X}$ for i = 1, ..., n and a features mapping $\varphi : \mathcal{X} \to \mathcal{H}$ with PDS kernel k
- Kernel Ridge regression considers the problem

$$\min_{w} \left\{ \sum_{i=1}^{n} \ell(y_i, \langle w, \varphi(x_i) \rangle) + \frac{\lambda}{2} \|w\|_2^2 \right\}$$

where λ is a penalization parameter, and $\ell(y,y')=\frac{1}{2}(y-y')^2$ is the least-squares loss

- Consider this time a continuous label $y_i \in \mathbb{R}$, features $x_i \in \mathcal{X}$ for i = 1, ..., n and a features mapping $\varphi : \mathcal{X} \to \mathcal{H}$ with PDS kernel k
- ► Kernel Ridge regression considers the problem

$$\min_{w} \left\{ \sum_{i=1}^{n} \ell(y_i, \langle w, \varphi(x_i) \rangle) + \frac{\lambda}{2} \|w\|_2^2 \right\}$$

where λ is a penalization parameter, and $\ell(y,y')=\frac{1}{2}(y-y')^2$ is the least-squares loss

Can be written as

$$\min_{w} F(x)$$
 with $F(w) = \|y - Xw\|_2^2 + \lambda \|w\|_2^2$

with X the matrix with rows containing the $\varphi(x_i)$ and $y = [y_1 \cdots y_n] \in \mathbb{R}^n$

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

► This problem is strongly convex, and admits a global minimum iff

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

This problem is strongly convex, and admits a global minimum iff

$$\nabla F(w) = 0$$
 namely $(X^{\top}X + \lambda \mathrm{Id})w = X^{\top}y$

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

This problem is strongly convex, and admits a global minimum iff

$$\nabla F(w) = 0$$
 namely $(X^{\top}X + \lambda \mathrm{Id})w = X^{\top}y$

Note that $X^{\top}X + \lambda \mathrm{Id}$ is always invertible. Thus kernel ridge admits a closed-form solution.

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

This problem is strongly convex, and admits a global minimum iff

$$\nabla F(w) = 0$$
 namely $(X^{\top}X + \lambda \mathrm{Id})w = X^{\top}y$

- Note that $X^{\top}X + \lambda \mathrm{Id}$ is always invertible. Thus kernel ridge admits a closed-form solution.
- ▶ Requires to solve a $D \times D$ linear system, where D is the dimension of \mathcal{H}
- ▶ What if D is large ?

Let's use the kernel trick, as we did for SVM

ightharpoonup Representer theorem says that we can find lpha such that

$$h(x) = \langle w, \varphi(x) \rangle = \sum_{i=1}^{n} \alpha_{i} k(x_{i}, x) = \sum_{i=1}^{n} \alpha_{i} \langle \varphi(x_{i}), \varphi(x) \rangle$$

for any $x \in \mathcal{X}$

▶ This means that

$$w = X^{\top} \alpha$$

New trick 51 / 100

Now use this trick

For any matrix X, we have

$$(X^\top X + \lambda \mathrm{Id})^{-1} X^\top = X^\top (XX^\top + \lambda \mathrm{Id})^{-1}$$

This entails

$$w = (X^{\top}X + \lambda \mathrm{Id})^{-1}X^{\top}y = X^{\top}(XX^{\top} + \lambda \mathrm{Id})^{-1}y$$

which gives (note that $(XX^{\top})_{i,j} = \langle \varphi(x_i), \varphi(x_j) \rangle = k(x_i, x_j)$)

$$\alpha = (K + \lambda \mathrm{Id})^{-1} y$$

Note that

$$(X^{\top}X + \lambda \operatorname{Id})X^{\top} = X^{\top}(XX^{\top} + \lambda \operatorname{Id}).$$

Multiplying on the left by $(X^{\top}X + \lambda \mathrm{Id})^{-1}$ leads to

$$X^{\top} = (X^{\top}X + \lambda \mathrm{Id})^{-1}X^{\top}(XX^{\top} + \lambda \mathrm{Id}).$$

and then on the right by $(XX^{\top} + \lambda \mathrm{Id})^{-1}$ concludes with

$$(XX^{\top} + \lambda \operatorname{Id})^{-1}X^{\top} = (X^{\top}X + \lambda \operatorname{Id})^{-1}X^{\top}$$

A cute trick. But let's do it like we did for the SVMs (just to be sure...)

An alternative formulation of

$$\min_{w} \sum_{i=1}^{n} (y_i - \langle w, \varphi(x_i) \rangle)^2 + \lambda \|w\|_2^2$$

is the constrained version, given by

$$\min_{w} \sum_{i=1}^{n} (y_i - \langle w, \varphi(x_i) \rangle)^2 \text{ subject to } ||w||_2^2 \leqslant r^2$$

and also

$$\min_{w} \sum_{i=1}^{n} s_i^2$$
 subject to $\|w\|_2^2 \leqslant r^2$ and $s_i = y_i - \langle w, \varphi(x_i) \rangle$

Then, using the Lagrangian

$$L(w, s, \alpha, \lambda) = \min_{w} \sum_{i=1}^{n} s_i^2 + \min_{w} \sum_{i=1}^{n} \alpha_i (y_i - s_i - \langle w, \varphi(x_i) \rangle) + \lambda (\|w\|_2^2 - r^2)$$

Then, using the Lagrangian

$$L(w, s, \alpha, \lambda) = \min_{w} \sum_{i=1}^{n} s_i^2 + \min_{w} \sum_{i=1}^{n} \alpha_i (y_i - s_i - \langle w, \varphi(x_i) \rangle) + \lambda (\|w\|_2^2 - r^2)$$

KKT conditions

$$\nabla_{w}L = -\sum_{i=1}^{n} \alpha_{i}\varphi(x_{i}) + 2\lambda w \Rightarrow w = \frac{1}{2\lambda} \sum_{i=1}^{n} \alpha_{i}\varphi(x_{i})$$
$$\nabla_{s_{i}}L = 2s_{i} - \alpha_{i} \Rightarrow s_{i} = \alpha_{i}/2$$

and the slackness complementary conditions:

$$\alpha_i(y_i - s_i - \langle w, \varphi(x_i) \rangle) = 0$$
 and $\lambda(\|w\|_2^2 - r^2) = 0$

Plugging the expressions of w and s_i in functions of α in L gives after some algebra the dual objective

$$D(\alpha) = -\lambda \sum_{i=1}^{n} \alpha_i^2 + 2 \sum_{i=1}^{n} \alpha_i y_i$$
$$- \sum_{1 \leq i, j \leq n} \alpha_i \alpha_j \langle \varphi(x_i), \varphi(x_j) \rangle - \lambda r^2$$

(where we replaced $2\lambda\alpha_i$ by α_i)

Plugging the expressions of w and s_i in functions of α in L gives after some algebra the dual objective

$$D(\alpha) = -\lambda \sum_{i=1}^{n} \alpha_i^2 + 2 \sum_{i=1}^{n} \alpha_i y_i$$
$$- \sum_{1 \leqslant i, j \leqslant n} \alpha_i \alpha_j \langle \varphi(x_i), \varphi(x_j) \rangle - \lambda r^2$$

(where we replaced $2\lambda\alpha_i$ by α_i) which can be written matricially as

$$D(\alpha) = -\lambda \|\alpha\|_{2}^{2} + 2\langle \alpha, y \rangle - \alpha^{\top} X X^{\top} \alpha$$
$$= 2\langle \alpha, y \rangle - \alpha^{\top} (K + \lambda \mathrm{Id}) \alpha$$

Plugging the expressions of w and s_i in functions of α in L gives after some algebra the dual objective

$$D(\alpha) = -\lambda \sum_{i=1}^{n} \alpha_i^2 + 2 \sum_{i=1}^{n} \alpha_i y_i$$
$$- \sum_{1 \leq i, j \leq n} \alpha_i \alpha_j \langle \varphi(x_i), \varphi(x_j) \rangle - \lambda r^2$$

(where we replaced $2\lambda\alpha_i$ by α_i) which can be written matricially as

$$D(\alpha) = -\lambda \|\alpha\|_{2}^{2} + 2\langle \alpha, y \rangle - \alpha^{\top} X X^{\top} \alpha$$
$$= 2\langle \alpha, y \rangle - \alpha^{\top} (K + \lambda \mathrm{Id}) \alpha$$

with optimum achieved for

$$\alpha = (K + \lambda \mathrm{Id})^{-1} y$$

what we already got.

► Solving a problem in the dual benefits from the kernel trick

- ► Solving a problem in the dual benefits from the kernel trick
- ► Allows to construct complex non-linear decision functions

- Solving a problem in the dual benefits from the kernel trick
- ► Allows to construct complex non-linear decision functions
- ▶ OK if n is not too large... (if the $n \times n$ Gram matrix K fits in memory)
- Otherwise, stick to the primal! (and forget about kernels...)
- But don't forget about feature engineering (yes, again !)

- Support Vector Machine, by Ingo Steinwart and Andreas Christmann
- Learning with kernels, by Bernhard Schlkopf and Alexander J. Smola
- Reproducing Kernel Hilbert Spaces in Probability and Statistics, by Alain Berlinet and Christine Thomas-Agnan

Summary 58 / 100

1. Kernel methods

Motivations
Preliminary definitions
Some properties
Some examples
Kernel based algorithms
Kernel and regression
Another way for Kernel Ridge regression

2. The k-nearest neighbors classifier

Stone's theorem
Proof of consistency
k-nearest neighbors
Some remarks

Non-parametric learning algorithm (does not mean NO parameters)

- The complexity of the decision function grows with the number of data points
- ightharpoonup Contrast with linear regression (\simeq as many parameters as features)
- Usually: decision function is expressed directly in terms of the training examples
- Examples
 - k-nearest neighbors (today)
 - tree-based methods (in the next sessions)

Learning

Store training instances

Prediction

Compute the label for a new instance based on its similarity with the stored instances.

- Also called lazy learning
- Similar to case-based reasoning
 - Doctors treating a patient based on how patients with similar symptoms were treated
 - Judges ruling court cases based on legal precedent

Reminder 61 / 100

Recall the problem of binary classification for $Y \in \{0,1\}$. We show that the minimizer of the risk

$$\mathcal{R}(g) = \mathbb{E}[\mathbb{1}_{g(X)\neq Y}].$$

is the Bayes classifier

$$g^{\star}(x) = \begin{cases} 1 & \text{if } r(x) > 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

Given some sample $\mathcal{D}_n = \{X_1, \dots, X_n\}$, another strategy to construct a classifier rule is to estimate

$$r(x) = \mathbb{E}[Y|X=x],$$

and to replace r(x) by its estimator $r_n(x)$. The result is the **plug-in classifier**, given by

$$g_n(x) = \begin{cases} 1 & \text{if } r_n(x) > 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

Link between r_n and risk

Let us denote μ the law of X.

Theorem

Let r_n be an estimator of r and g_n be the corresponding plug-in rule. Then

$$0 \leqslant \mathcal{R}(g_n) - \mathcal{R}^{\star} \leqslant 2 \int_{\mathbb{R}^d} |r_n(x) - r(x)| \mu(dx).$$

Let us denote μ the law of X.

Theorem

Let r_n be an estimator of r and g_n be the corresponding plug-in rule. Then

$$0 \leqslant \mathcal{R}(g_n) - \mathcal{R}^{\star} \leqslant 2 \int_{\mathbb{R}^d} |r_n(x) - r(x)| \mu(dx).$$

This theorem says that if we have a good estimator r_n of r in the sense

$$\int_{\mathbb{R}^d} |r_n(x) - r(x)|^2 \mu(dx) \to 0,$$

in L^1 or almost surely, then the plug-in classifier is convergent (or strongly convergent).

- **Question**: how to construct good estimators r_n ?
- ➤ ~ Stone's theorem

A way to construct estimator r_n of $r(x) = \mathbb{E}[Y|X = x]$ is to choose

$$r_n(x) = \sum_{i=1}^n W_{ni}(x) Y_i, \quad x \in \mathbb{R}^d$$

with

 $W_{ni}(x)$ is a real Borelian function of x and X_1, \ldots, X_n , and not of Y_1, \ldots, Y_n .

A way to construct estimator r_n of $r(x) = \mathbb{E}[Y|X=x]$ is to choose

$$r_n(x) = \sum_{i=1}^n W_{ni}(x) Y_i, \quad x \in \mathbb{R}^d$$

with

- $W_{ni}(x)$ is a real Borelian function of x and X_1, \ldots, X_n , and not of Y_1, \ldots, Y_n .
- ▶ Idea: the X_i's that are close to x should bring information on the class to assign at x
- ► This is a local mean estimator

Strategy 64 / 100

A way to construct estimator r_n of $r(x) = \mathbb{E}[Y|X=x]$ is to choose

$$r_n(x) = \sum_{i=1}^n W_{ni}(x) Y_i, \quad x \in \mathbb{R}^d$$

with

- $W_{ni}(x)$ is a real Borelian function of x and X_1, \ldots, X_n , and not of Y_1, \ldots, Y_n .
- ► Idea: the X_i's that are close to x should bring information on the class to assign at x
- This is a local mean estimator
- ▶ Often (but not always) the $W_{ni}(x)$'s can be chosen positive and normalized to 1, so as to $(W_{n1}(x), ..., W_{nn}(x))$ is a vector of probabilities

A first typical choice is the following

$$W_{ni}(x) = \frac{K\left(\frac{x-X_i}{h}\right)}{\sum_{j=1}^{n} K\left(\frac{x-X_j}{h}\right)}$$

with

- \triangleright K a positive measurable function of \mathbb{R}^d
- \blacktriangleright K is called "kernel" (\neq what we have seen before)
- h is positive parameter
- ▶ h is called "window"

$$r_n(x) = \frac{\sum_{i=1}^n K\left(\frac{x - X_i}{h}\right) Y_i}{\sum_{j=1}^n K\left(\frac{x - X_j}{h}\right)}$$

▶ If the denominator is zero, set $r_n(x) = (1/n) \sum_i Y_i$

$$r_n(x) = \frac{\sum_{i=1}^n K\left(\frac{x - X_i}{h}\right) Y_i}{\sum_{j=1}^n K\left(\frac{x - X_j}{h}\right)}$$

- ▶ If the denominator is zero, set $r_n(x) = (1/n) \sum_i Y_i$
- ▶ For instance, for the naive choice $K(z) = \mathbb{1}_{\|z\| \leq 1}$, we get

$$r_n(x) = \frac{\sum_{i=1}^n \mathbb{1}_{\|x - X_i\| \leqslant h} Y_i}{\sum_{j=1}^n \mathbb{1}_{\|x - X_j\| \leqslant h}}$$

showing that r(x) is estimated by the mean of the (Y_i) 's such that the distance between the X_i 's and x is less than h.

$$r_n(x) = \frac{\sum_{i=1}^n K\left(\frac{x - X_i}{h}\right) Y_i}{\sum_{j=1}^n K\left(\frac{x - X_j}{h}\right)}$$

- ▶ If the denominator is zero, set $r_n(x) = (1/n) \sum_i Y_i$
- ▶ For instance, for the naive choice $K(z) = \mathbb{1}_{\|z\| \leqslant 1}$, we get

$$r_n(x) = \frac{\sum_{i=1}^n \mathbb{1}_{\|x - X_i\| \leqslant h} Y_i}{\sum_{j=1}^n \mathbb{1}_{\|x - X_j\| \leqslant h}}$$

showing that r(x) is estimated by the mean of the (Y_i) 's such that the distance between the X_i 's and x is less than h.

In general, the weight of Y_i depends on the distance between X_i and x, depending on the choice of K

$$r_n(x) = \frac{\sum_{i=1}^n K\left(\frac{x - X_i}{h}\right) Y_i}{\sum_{j=1}^n K\left(\frac{x - X_j}{h}\right)}$$

- ▶ If the denominator is zero, set $r_n(x) = (1/n) \sum_i Y_i$
- ▶ For instance, for the naive choice $K(z) = \mathbb{1}_{\|z\| \leq 1}$, we get

$$r_n(x) = \frac{\sum_{i=1}^n \mathbb{1}_{\|x - X_i\| \leqslant h} Y_i}{\sum_{j=1}^n \mathbb{1}_{\|x - X_j\| \leqslant h}}$$

showing that r(x) is estimated by the mean of the (Y_i) 's such that the distance between the X_i 's and x is less than h.

- ▶ In general, the weight of Y_i depends on the distance between X_i and x, depending on the choice of K
- Classical choices
 - ► Epanechnikov's kernel: $(1 ||z||)\mathbb{1}_{||z|| \leq 1}$
 - ► Gaussian kernel: $e^{-\|z\|^2}$

A second typical choice is based on the k nearest neighbors

$$r_n(x) = \sum_{i=1}^n v_{ni} Y_{(i)}(x), \quad x \in \mathbb{R}^d$$

with

- $(v_{n1}, v_{n2,...,v_{nn}})$ is a vector of (deterministic) weights normalized to 1
- $((X_{(1)}(x), Y_{(1)}(x)), \dots, (X_{(n)}(x), Y_{(n)}(x)))$ is the permutation of $((X_1, Y_1), \dots, (X_n, Y_n))$ according to increasing distances $||X_j x||$, i.e.

$$||X_{(1)} - x|| \leq \ldots \leq ||X_{(n)} - x||$$

 $W_{ni} = v_{n\sigma_i}$, with σ the permutation of $(1, \ldots, n)$ into $((1), \ldots, (n))$.

A particular example is

$$v_{ni} = \left\{ egin{array}{ll} rac{1}{k}, & 1 \leqslant i \leqslant k \\ 0, & ext{otherwise.} \end{array}
ight.$$

leading to

$$r_n(x) = \frac{1}{k} \sum_{i=1}^k Y_{(i)}(x)$$

called the k-nearest neighbors estimator

▶ Idea: we look only at the k closest X_i of x, and we take the corresponding mean of Y_i .

Overall, the corresponding plug-in classifier can be written as follows

$$g_n(x) = \begin{cases} 1 & \text{if } \sum_i W_{ni}(x)Y_i > 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

If
$$\sum_{i=1}^n W_{ni}(x) = 1$$
,

$$g_n(x) = \begin{cases} 1 & \text{if } \sum_i W_{ni}(x) \mathbb{1}_{Y_i=1} > \sum_i W_{ni}(x) \mathbb{1}_{Y_i=0}, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem

Assume that for any distribution of X,

1. $\exists c \text{ for all Borelian function } f : \mathbb{R}^d \to \mathbb{R} \text{ s.t. } \mathbb{E}|f(X)| < \infty$,

$$\mathbb{E}\left(\sum_{i=1}^{n}W_{ni}(X)|f(X_{i})|\right)\leqslant c\mathbb{E}|f(X)|,\quad\forall n\geqslant 1$$

2.

$$\forall a > 0, \quad \mathbb{E}\left(\sum_{i=1}^n W_{ni}\mathbb{1}_{\|X_i - x\| > a}\right) \to 0$$

3.

$$\mathbb{E}\left(\max_{1\leq i\leq n}W_{ni}(X)\right)\to 0$$

Then, for any law of (X, Y), the plug-in classifier is universally convergent

$$\mathbb{E}\mathcal{R}(g_n) \to \mathcal{R}^{\star}$$
.

- Condition 2 means that the contribution of weights outside of any closed ball centered in X should be asymptotically negligible: only points in a local neighbourhood are needed
- Condition 3 prevents from one point to have a disproportionate influence on the estimator
- ► Condition 1 is called Stone's condition \rightsquigarrow technical condition

Proof I 73 / 100

According to the first Theorem, it suffices to prove that for every distribution of (X, Y)

$$\mathbb{E}|r_n(X)-r(X)|^2=\mathbb{E}\int_{\mathbb{R}^d}|r_n(x)-r(x)|^2\mu(\mathrm{d}x)\to 0.$$

Introduce the notation

$$\hat{r}_n(x) = \sum_{i=1}^n W_{ni}(x) r(X_i).$$

Then, by the simple inequality $(a + b)^2 \le 2(a^2 + b^2)$, we have

$$\mathbb{E}|r_{n}(X) - r(X)|^{2} = \mathbb{E}|r_{n}(X) - \hat{r}_{n}(X) + \hat{r}_{n}(X) - r(X)|^{2}$$

$$\leq 2(\mathbb{E}|r_{n}(X) - \hat{r}_{n}(X)|^{2} + \mathbb{E}|\hat{r}_{n}(X) - r(X)|^{2}).$$
(1)

Proof | 1

Therefore, it is enough to show that both terms on the right-hand side tend to zero as n tends to infinity. Since the W_{ni} are nonnegative and sum to one, by Jensen's inequality, the second term is

$$\mathbb{E}|\hat{r}_n(X) - r(X)|^2 = \mathbb{E}\Big|\sum_{i=1}^n W_{ni}(X)(r(X_i) - r(X))\Big|^2$$

$$\leqslant \mathbb{E}\Big(\sum_{i=1}^n W_{ni}(X)|r(X_i) - r(X)|^2\Big).$$

If the function r, which satisfies $0 \le r \le 1$, is continuous with compact support, then it is uniformly continuous as well: for every

Proof III 75 / 100

$$\varepsilon > 0$$
, there is an $a > 0$ such that for $||x - x'|| \le a$, $|r(x) - r(x')|^2 \le \varepsilon$. Thus, since $|r(x) - r(x')| \le 1$,

$$\mathbb{E}\left(\sum_{i=1}^{n} W_{ni}(X)|r(X_{i}) - r(X)|^{2}\right)$$

$$\leq \mathbb{E}\left(\sum_{i=1}^{n} W_{ni}(X)\mathbb{1}_{[\|X_{i} - X\| > a]}\right) + \mathbb{E}\left(\sum_{i=1}^{n} W_{ni}(X)\varepsilon\right)$$

$$= \mathbb{E}\left(\sum_{i=1}^{n} W_{ni}(X)\mathbb{1}_{[\|X_{i} - X\| > a]}\right) + \varepsilon.$$

Therefore, by (ii), since ε is arbitrary,

$$\mathbb{E}\Big(\sum_{i=1}^n W_{ni}(X)|r(X_i)-r(X)|^2\Big)\to 0.$$

Proof IV 76 / 100

In the general case, since the set of continuous functions with compact support is dense in $L^2(\mu)$, for every $\varepsilon>0$ we can choose r_ε such that

$$\mathbb{E}|r(X)-r_{\varepsilon}(X)|^2\leqslant \varepsilon.$$

By this choice, using the inequality $(a+b+c)^2 \le 3(a^2+b^2+c^2)$ (which follows from the Cauchy-Schwarz inequality),

$$\mathbb{E}|\hat{r}_{n}(X) - r(X)|^{2}$$

$$\leq \mathbb{E}\left(\sum_{i=1}^{n} W_{ni}(X)|r(X_{i}) - r(X)|^{2}\right)$$

$$\leq 3\mathbb{E}\left(\sum_{i=1}^{n} W_{ni}(X)(|r(X_{i}) - r_{\varepsilon}(X_{i})|^{2} + |r_{\varepsilon}(X_{i}) - r_{\varepsilon}(X)|^{2} + |r_{\varepsilon}(X) - r(X)|^{2}\right)$$

Proof V 77 / 100

Thus, using (i),

$$\mathbb{E}|\hat{r}_{n}(X) - r(X)|^{2}$$

$$\leq 3C\mathbb{E}|r(X) - r_{\varepsilon}(X)|^{2} + 3\mathbb{E}\left(\sum_{i=1}^{n} W_{ni}(X)|r_{\varepsilon}(X_{i}) - r_{\varepsilon}(X)|^{2}\right)$$

$$+ 3\mathbb{E}|r_{\varepsilon}(X) - r(X)|^{2}$$

$$\leq 3C\varepsilon + 3\mathbb{E}\left(\sum_{i=1}^{n} W_{ni}(X)|r_{\varepsilon}(X_{i}) - r_{\varepsilon}(X)|^{2}\right) + 3\varepsilon.$$

Therefore, $\mathbb{E}|\hat{r}_n(X) - r(X)|^2 \to 0$.

Proof VI 78 / 100

To handle the first term of the right-hand side of (1), observe that, for all $i \neq j$,

$$\mathbb{E}(W_{ni}(X)(Y_{i}-r(X_{i}))W_{nj}(X)(Y_{j}-r(X_{j})))$$

$$=\mathbb{E}\Big[\mathbb{E}\Big(W_{ni}(X)(Y_{i}-r(X_{i}))W_{nj}(X)(Y_{j}-r(X_{j})) \mid X,X_{1},\ldots,X_{n},Y_{i}\Big)\Big]$$

$$=\mathbb{E}\Big[W_{ni}(X)(Y_{i}-r(X_{i}))W_{nj}(X)\mathbb{E}(Y_{j}-r(X_{j}) \mid X,X_{1},\ldots,X_{n},Y_{i})\Big]$$

$$=\mathbb{E}\Big[W_{ni}(X)(Y_{i}-r(X_{i}))W_{nj}(X)\mathbb{E}(Y_{j}-r(X_{j}) \mid X_{j})\Big]$$
(by independence of (X_{j},Y_{j}) and $X,X_{1},\ldots,X_{j-1},X_{j+1},\ldots,X_{n},Y_{i})$

$$=\mathbb{E}\Big[W_{ni}(X)(Y_{i}-r(X_{i}))W_{nj}(X)(r(X_{j})-r(X_{j}))\Big]$$

$$= 0.$$

Proof VII

Hence,

$$\mathbb{E}|r_{n}(X) - \hat{r}_{n}(X)|^{2} = \mathbb{E}\left|\sum_{i=1}^{n} W_{ni}(X)(Y_{i} - r(X_{i}))\right|^{2}$$

$$= \sum_{i,j=1}^{n} \mathbb{E}(W_{ni}(X)(Y_{i} - r(X_{i}))W_{nj}(X)(Y_{j} - r(X_{j})))$$

$$= \sum_{i=1}^{n} \mathbb{E}(W_{ni}^{2}(X)(Y_{i} - r(X_{i}))^{2}).$$

We conclude that

$$\mathbb{E}|r_n(X) - \hat{r}_n(X)|^2 \leqslant \mathbb{E}\sum_{i=1}^n W_{ni}^2(X) \leqslant \mathbb{E}\left(\max_{1\leqslant i\leqslant n} W_{ni}(X)\sum_{j=1}^n W_{nj}(X)\right)$$
$$= \mathbb{E}\max_{1\leqslant i\leqslant n} W_{ni}(X) \to 0$$

by (iii), and the theorem is proved.

Recall that the plug-in classifier reads

$$g_n(x) = \begin{cases} 1 & \text{if } \sum_i W_{ni}(x) \mathbb{1}_{Y_i = 1} > \sum_i W_{ni}(x) \mathbb{1}_{Y_i = 0}, \\ 0 & \text{otherwise.} \end{cases}$$

$\mathsf{Theorem}$

Assume that $k \to \infty$ and $k/n \to 0$. Then, the plug-in classifier in the case of the kNN is universally convergent, i.e.

$$\mathbb{E}\mathcal{R}(g_n) \to \mathcal{R}^{\star}$$
,

for any law of (X, Y).

To prove this theorem, one has to verify the conditions of Stone's theorem.

Lemma

If $x \in supp(\mu)$ and $k/n \to 0$, then

$$||X_{(k)}(x) - x|| \to 0$$
 almost surely.

Proof.

Take $\varepsilon>0$ and note, since x belongs to the support of μ , that $\mu(B(x,\varepsilon))>0$. Observe that

$$\left[\|X_{(k)}(x)-x\|>\varepsilon\right]=\left[\frac{1}{n}\sum_{i=1}^n\mathbb{1}_{[X_i\in B(x,\varepsilon)]}<\frac{k}{n}\right].$$

By the strong law of large numbers,

$$\frac{1}{n}\sum_{i=1}^n\mathbb{1}_{[X_i\in B(x,\varepsilon)]}\to \mu(B(x,\varepsilon))\quad \text{almost surely}.$$

Since $k/n \to 0$, we conclude that $||X_{(k)}(x) - x|| \to 0$ almost surely.

Lemma

Let ν be a probability measure on \mathbb{R}^d . Fix $x' \in \mathbb{R}^d$ and let, for $a \ge 0$,

$$B_a(x') = \left\{ x \in \mathbb{R}^d : \nu \big(B(x, \|x' - x\|) \big) \leqslant a \right\}.$$

Then

$$\nu(B_a(x')) \leqslant \gamma_d a,$$

where γ_d is a positive constant depending only upon d.

Proof. Fix $x' \in \mathbb{R}^d$ and let $\mathscr{C}_1, \ldots, \mathscr{C}_{\gamma_d}$ be a collection of cones of angle $0 < \theta \leqslant \pi/6$ covering \mathbb{R}^d , all centered at x' but with different central directions (such a covering is always possible). In other words,

$$\bigcup_{i=1}^{\gamma_d} \mathscr{C}_j = \mathbb{R}^d.$$

We leave it as an easy exercise to show that if $u \in \mathcal{C}_j$, $u' \in \mathcal{C}_j$, and $\|u - x'\| \leq \|u' - x'\|$, then $\|u - u'\| \leq \|u' - x'\|$ (see Figure 4).

Figure: The geometrical property of a cone of angle $0 < \theta \leqslant \pi/6$ (in dimension 2).

In addition,

$$\nu(B_{\mathsf{a}}(\mathsf{x}')) \leqslant \sum_{j=1}^{\gamma_{\mathsf{d}}} \nu(\mathscr{C}_j \cap B_{\mathsf{a}}(\mathsf{x}')).$$

Let $x^* \in \mathscr{C}_j \cap B_a(x')$. Then, by the geometrical property of cones mentioned above, we have

$$\nu\big(\mathscr{C}_j\cap B(x',\|x^{\star}-x'\|)\cap B_a(x')\big)\leqslant \nu\big(B(x^{\star},\|x'-x^{\star}\|)\big)\leqslant a.$$

Since x^* was arbitrary, we conclude that

$$\nu(\mathscr{C}_j \cap B_a(x')) \leqslant a.$$

Corollary

If distance ties occur with zero probability, then

$$\sum_{i=1}^{n} \mathbb{1}[X \text{ is among the } k\text{-NN of } X_i \text{ in } \{X_1,\ldots,X_{i-1},X,X_{i+1},\ldots,X_n\}]$$

with probability one.

Proof We apply Lemma 19 with a = k/n and ν the empirical measure μ_n associated with X_1, \ldots, X_n . With these choices,

$$B_{k/n}(X) = \left\{ x \in \mathbb{R}^d : \mu_n \left(B(x, \|X - x\|) \right) \leqslant k/n \right\}$$

and, with probability one,

$$X_i \in B_{k/n}(X)$$

 $\Leftrightarrow \mu_n(B(X_i, ||X - X_i||)) \leqslant k/n$
 $\Leftrightarrow X \text{ is among the } k\text{-NN of } X_i \text{ in } \{X_1, \dots, X_{i-1}, X, X_{i+1}, \dots, X_n\}.$

(Note that the second equivalence uses the fact that distance ties occur with zero probability.) Thus, by Lemma 19, we conclude that, with probability one,

$$\sum_{i=1}^{n} \mathbb{1}_{[X \text{ is among the } k\text{-NN of } X_i \text{ in } \{X_1, \dots, X_{i-1}, X, X_{i+1}, \dots, X_n\}]}$$

$$= \sum_{i=1}^{n} \mathbb{1}_{[X_i \in B_{k/n}(X)]} = n \times \mu_n(B_{k/n}(X)) \leqslant k\gamma_d.$$

Lemma (Stone's lemma)

Assume that distance ties occur with zero probability. Then, for every Borel measurable function $f: \mathbb{R}^d \to \mathbb{R}$ such that $\mathbb{E}|f(X)| < \infty$, we have

$$\sum_{i=1}^k \mathbb{E} \big| f(X_{(i)}(X)) \big| \leqslant k \gamma_d \mathbb{E} |f(X)|,$$

where γ_d is a positive constant depending only upon d.

Proof. Take f as in the lemma. Then

$$\sum_{i=1}^{k} \mathbb{E} |f(X_{(i)}(X))|$$

$$= \mathbb{E} \Big(\sum_{i=1}^{n} |f(X_{i})| \mathbb{1}_{[X_{i} \text{ is among the } k\text{-NN of } X \text{ in } \{X_{1}, \dots, X_{n}\}] \Big)$$

$$= \mathbb{E} \Big(|f(X)| \sum_{i=1}^{n} \mathbb{1}_{[X \text{ is among the } k\text{-NN of } X_{i} \text{ in } \{X_{1}, \dots, X_{i-1}, X, X_{i+1}, \text{ (by exchanging } X \text{ and } X_{i})$$

$$\leq \mathbb{E} (|f(X)| k \gamma_{d}),$$

by the previous Corollary.

Now to show the universal consistency of g_n , we have to verify Conditions of Stone's theorem.

- ▶ Condition 3 is clear, since $k \to \infty$
- ► Condition 2: Note that

$$\mathbb{E}\left(\sum_{i=1}^{n} W_{ni} \mathbb{1}_{\|X_{i}-X\|>a}\right) = \mathbb{E}\left(\frac{1}{k}\sum_{i=1}^{n} \mathbb{1}_{\|X_{(i)}(X)-X\|>a}\right).$$

Then $\mathbb{E}\left(\sum_{i=1}^{n}W_{ni}\mathbb{1}_{\|X_{i}-X\|>a}\right)\to 0$ if for all a>0

$$\mathbb{P}\left(\|X_{(k)}(X)-X\|>a\right)\to 0.$$

But,

$$\mathbb{P}\left(\|X_{(k)}(X)-X\|>a\right)=\int_{\mathbb{P}^d}\mathbb{P}\left(\|X_{(k)}(x)-x\|>a\right)\mu(dx).$$

For a fixed x in the support of μ , Lemma 18 says

$$\mathbb{P}\left(\|X_{(k)}(x)-x\|>a\right)\to 0$$

when $k/n \rightarrow 0$. Then, the conclusion follows by the Lebesgue dominated convergence theorem (the support of μ is of μ -measure 1).

▶ Condition 1: take f such that $\mathbb{E}|f(X)| < \infty$ we have to show that for some constant C

$$\mathbb{E}\left[\frac{1}{k}\sum_{i=1}^{n}|f(X_{i})|\mathbb{1}X_{i}\in kNN(X)\right]\leqslant C\mathbb{E}|f(X)|.$$

Since,

$$\mathbb{E}\left[\frac{1}{k}\sum_{i=1}^{n}|f(X_{i})|\mathbb{1}X_{i}\in kNN(X)\right]=\mathbb{E}\left(\frac{1}{k}\sum_{i=1}^{k}|f(X_{(i)}(X))|\right),$$

this is precisely the statement of Stone's lemma.

Choice of k

Small k: noisy decision

The idea behind using more than 1 neighbors is to average out the noise

Large k

- May lead to better prediction performance
- ▶ If we set *k* too large, we may end up looking at samples that are not neighbors (are far away from the point of interest)
- Also, computationally intensive. Why?
- Extreme case: set k = n (number of points in the dataset)
 - For classification: the majority class
 - For regression: the average value

Choice of k 93 / 100

Set k by cross validation, by examining the misclassification error

Thumb rule

Choose $k = \sqrt{n}$

- Training is very fast
 - ▶ Just store the training examples
 - ► Can use smart indexing procedures to speed-up testing
- ► The training data is part of the 'model'
 - Useful in case we want to do something else with it
- Quite robust to noisy data
 - Averaging k votes
- Can learn complex functions (implicitly)!

- Memory requirements
 - Must store all training data
- Prediction can be slow (will figure it out by yourself in the lab)
 - ▶ Complexity of labeling 1 new data point: O(knp)
 - ▶ But kNN works best with lots of samples
 - Can we further improve the running time?
- ► Efficient data structures (e.g., k-D trees)
- Approximate solutions based on hashing!
- ▶ High dimensional data and the curse of dimensionality
 - Computation of the distance in a high dimensional space may become meaningless
 - ► Need more training data
 - Dimensionality reduction

Curse of dimensionality

► They suffer from the curse of dimensionality :

When the dimension increases

 \Rightarrow neighborhoods become empty

 $\Rightarrow \mathsf{bad} \ \mathsf{convergence} \ \mathsf{rate}$

Curse of dimensionality

► They suffer from the curse of dimensionality :

When the dimension increases

 \Rightarrow neighborhoods become empty

 \Rightarrow bad convergence rate

$\mathsf{Theorem}$

Given n random points drawn in the hypercube $[0,1]^d$ then

$$\frac{\max_{i \neq j} \|X_i - X_j\|_p}{\min_{i \neq j} \|X_i - X_j\|_p} = 1 + O\left(\sqrt{\frac{d}{\log(n)}}\right)$$

- ▶ When d is large, all the points are almost equidistant...
- Nearest neighbors are meaningless!

- Normalize the scale of the attributes
- ➤ Simple option: linearly scale the range of each feature to be, e.g., in the range of [0,1]
- Linearly scale each dimension to have 0 mean and variance 1

Decision boundary with kNN

Decision boundary in classification:

▶ Line separating the positive from negative regions

What decision boundary is the kNN building?

The nearest neighbors algorithm does not explicitly compute decision boundaries, but those can be inferred

Think about the 1NN.

Voronoi cell of x

- Set of all points of the space closer to x than any other point of the training set
- ► Shape?

¹Wikipedia: https://en.wikipedia.org/wiki/Voronoi_diagram

Think about the 1NN.

Voronoi cell of x

- Set of all points of the space closer to x than any other point of the training set
- Shape? Polyhedron

Voronoi tessellation (or diagram) of the space

Union of all Voronoi cells

¹

¹Wikipedia: https://en.wikipedia.org/wiki/Voronoi_diagram

Weighted kNN

Weight the vote of each neighbor x_i according to the distance to the test point x

$$w_i = \frac{1}{d(x, x_i)^2}$$

 Other kernel functions can be used to weight the distance of neighbors