4. Opáčko na čtvrtletku aneb Vesměs vykrádačka Petákové

Úloha 1. Dopočtěte velikosti všech úhlů a délky všech stran ve standardně značeném trojúhelníku ABC, pro který platí

- (a) $a = 10, \alpha = 62^{\circ}, \beta = 34^{\circ}$
- (b) $b = 6, c = 9, \beta = 75^{\circ}$
- (c) $b = 8, c = 5, \gamma = 26^{\circ}55'$

Úloha 2. V krychli ABCDEFGH (o hraně délky 1) určete

- (a) odchylku přímek AE a BH,
- (b) odchylku přímky AS_{EG} od roviny CDH,
- \star (c) vzdálenost bodu H od přímky AS_{CG} ,
- (d) vzdálenost bodu S_{EF} od roviny ABG

Úloha 3. V pravidelném čtyřbokém jehlanu, jehož podstavná hrana má délku 4 a výška je 6, určete

- (a) vzdálenost bodu S_{CV} od přímky AV
- (b) vzdálenost bodu A od roviny BCV
- (c) odchylku přímek AC a VS_{BC}
- (d) odchylku rovin ADV a BCS_{AV}

Úloha 4 (Tato úloha bude v následujícím domácím úkolu). Určete objem rotačního tělesa, které vznikne rotací obdélníkového papíru o rozměrech 1 $1 \times \sqrt{2}$ kolem jeho diagonály. Uveďte nezaokrouhlený výsledek (tj. se zlomky, odmocninami atd.).

 $^{^1}$ Tento poměr stran, 1 : $\sqrt{2},$ mají všechny papíry řady A (A4, A5 atd.), až na drobné zaokrouhlení.

1.

- (a) $b \doteq 6.3$; $c \doteq 11.3$; $\gamma = 84^{\circ}$
- (b) neexistuje
- (c) (I) $a_1 \doteq 10.6$, $\beta_1 \doteq 46^\circ 25'$, $\alpha_1 \doteq 106^\circ 34'$, (II) $a_2 \doteq 3.7$, $\beta_2 \doteq 133^\circ 25'$, $\alpha_2 \doteq 19^\circ 40'$

2.

- (a) $54^{\circ}44'$
- (b) $24^{\circ}06'$
- (c) 1
- (d) $\frac{\sqrt{2}}{2}$

3.

- (a) $\frac{6}{11}\sqrt{22}$
- (b) $\frac{6}{5}\sqrt{10}$
- (c) $77^{\circ}05'$
- (d) 63°26′