Functions & Graphs

The modulus function

$$|x| = |-x| = x$$
 (x>0) Returns a positive #

Keturns a positive #

(Returns the magnitude of #)

we <u>CANNOT</u> differentiate a modulus function

Solving Modulus eg 1:

$$|x-6|=18$$
 2 options:
 $x-6=18$ QR $x-6=-18$
 $x=24$ $x=-13$

X= -12,24

But wait!

$$|3x+4| = x$$
 $3x+4=x$
 $2x=-4$
 $x=-2$
 $3x+4=-x$
 $4x=-4$

Since 13x+41>x, X=-2 & x=-1 are inadmissable.

That's it!

Functions & Mapping

Mapping: A rule which transforms one set of numbers to another set

A function is defined as the mapping AND the domain.

$$f: x \mapsto 7logx$$
 $x \in \mathbb{R}, x>0$
rewrite as $x \in \mathbb{R}^{+}$

Composite Functions

"To be made up/many points" Try not to use this notation

$$h(x) = f(g(x))$$
 or $f \circ g(x)$ or $fg(x)$

When can a composite function be formed?

Can fg(x) be formed?

Can gf(x) be formed?

Ex 2C (p.34)

(1)
$$p(x)=1-3 \times g(x)=\frac{x}{4} \quad r(x)=(x-2)^{2}$$

a)
$$g(-8) = -2$$
 : $pg(-8) = p(-2) = 1+6 = 7$

More Transformentions!

 $|f(x)| \Rightarrow reflect anything below x-axis to above x-axis$

 $f(1\times1) \Rightarrow$ only plot positive values dx, then reflect to left side

