Aprendizagem 2023 Homework II – Group 28

Gonçalo Bárias (ist1103124) & Raquel Braunschweig (ist1102624)

Part I: Pen and Paper

Consider the following dataset $(y_3 - y_5)$ are all categorical variables and the domain of y_2 is [0, 1]:

D	y_1	y_2	y_3	y_4	y_5	y_6
X 1	0.24	0.36	1	1	0	Α
X 2	0.16	0.48	1	0	1	Α
X 3	0.32	0.72	0	1	2	Α
X 4	0.54	0.11	0	0	1	В
X 5	0.66	0.39	0	0	0	В
X 6	0.76	0.28	1	0	2	В
X 7	0.41	0.53	0	1	1	В
X 8	0.38	0.52	0	1	0	Α
X 9	0.42	0.59	0	1	1	В

1. Consider x_1 - x_7 to be training observations, x_8 - x_9 to be testing observations, y_1 - y_5 to be input variables and y_6 to be the target variable.

Hint: you can use scipy.stats.multivariate_normal for multivariate distribution calculus

(a) Learn a Bayesian classifier assuming: i) $\{y_1, y_2\}$, $\{y_3, y_4\}$ and $\{y_5\}$ sets of independent variables (e.g., $y_1 \perp \!\!\! \perp y_3$ yet $y_1 \not \perp \!\!\! \perp y_2$), and ii) $y_1 \times y_2 \in \mathbb{R}^2$ is normally distributed. Show all parameters (distributions and priors for subsequent testing).

Gonçalo

 $(b) \ \ \textbf{Under a MAP assumption, classify each testing observation showing all your calculus.}$

Gonçalo

(c) Consider that the default decision threshold of $\theta = 0.5$ can be adjusted according to

$$f(\mathbf{x}|\theta) = \begin{cases} A, & P(A|\mathbf{x}) > \theta \\ B, & \text{otherwise} \end{cases}$$

Under a maximum likelihood assumption, what thresholds optimize testing accuracy?

Raquel

- 2. Let y_1 be the target numeric variable, y_2 y_6 be the input variables where y_2 is binarized under an equal-width (equal-range) discretization. For the evaluation of regressors, consider a 3-fold cross-validation over the full dataset $(x_1 x_9)$ without shuffling the observations.
 - (a) Identify the observations and features per data fold after the binarization procedure.

Raquel

(b) Consider a distance-weighted kNN with k = 3, Hamming distance (d), and 1 / d weighting. Compute the MAE of this kNN regressor for the 1^{st} iteration of the cross-validation (i.e. train observations have the lower indices).

Raquel

Part II: Programming and critical analysis

Considering the column_diagnosis.arff dataset available at the course webpage's homework tab. Using sklearn, apply a 10-fold stratified cross-validation with shuffling (random_state=0) for the assessment of predictive models along this section.

- 1. Compare the performance of kNN with k = 5 and Naïve Bayes with Gaussian assumption (consider all remaining parameters for each classifier as sklearn's default):
 - (a) Plot two boxplots with the fold accuracies for each classifier.

```
import matplotlib.pyplot as plt, pandas as pd
2 from scipy.io.arff import loadarff
3 from sklearn.model_selection import cross_val_score, StratifiedKFold
4 from sklearn.neighbors import KNeighborsClassifier
5 from sklearn.naive_bayes import GaussianNB
6 from scipy.stats import ttest_rel
8 # Read the ARFF file and prepare data
9 data = loadarff("./data/column_diagnosis.arff")
10 df = pd.DataFrame(data[0])
ii df["class"] = df["class"].str.decode("utf-8")
12 X, y = df.drop("class", axis=1), df["class"]
14 # Initialize classifiers
15 knn_classifier = KNeighborsClassifier(n_neighbors=5)
16 naive_bayes_classifier = GaussianNB()
18 # Define cross-validation strategy
19 cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)
21 # Evaluate classifiers
22 knn_accuracies = cross_val_score(knn_classifier, X, y, cv=cv, scoring='
     accuracy')
23 naive_bayes_accuracies = cross_val_score(naive_bayes_classifier, X, y, cv=cv,
     scoring='accuracy')
25 # Plot boxplots
26 plt.boxplot([knn_accuracies, naive_bayes_accuracies], labels=['kNN', 'Naive
     Bayes'])
27 plt.title('Classifier Comparison')
28 plt.ylabel('Accuracy')
29 plt.show()
```


Figure 1: 10-Fold Cross-Validation Results for kNN and Naive Bayes on Column Diagnosis Dataset

(b) Using scipy, test the hypothesis "kNN is statistically superior to Naïve Bayes regarding accuracy", asserting whether is true.

```
# Perform paired t-test
t_statistic, p_value = ttest_rel(knn_accuracies, naive_bayes_accuracies)

# Check the p-value
if p_value < 0.05:
    print("Reject null hypothesis: kNN is statistically superior to Naive Bayes in terms of accuracy")

else:
    print("Fail to reject null hypothesis: No significant difference in accuracy between kNN and Naive Bayes")</pre>
```

Answer: Fail to reject null hypothesis: No significant difference in accuracy between kNN and Naive Bayes

2. Consider two kNN predictors with k=1 and k=5 (uniform weights, Euclidean distance, all remaining parameters as default). Plot the differences between the two cumulative confusion matrices of the predictors. Comment.

```
import numpy as np, matplotlib.pyplot as plt, pandas as pd, seaborn as sns
from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from scipy.io.arff import loadarff

# Read the ARFF file and prepare data
data = loadarff("./data/column_diagnosis.arff")
```

```
9 df = pd.DataFrame(data[0])
10 df["class"] = df["class"].str.decode("utf-8")
II X, y = df.drop("class", axis=1), df["class"]
13 # Initialize StratifiedKFold with 10 folds and shuffling
14 folds = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)
_{\rm 16} # Create kNN classifiers with k=1 and k=5
17 knn_1 = KNeighborsClassifier(
      n_neighbors=1, weights="uniform", metric="euclidean"
19 )
20 knn_5 = KNeighborsClassifier(
      n_neighbors=5, weights="uniform", metric="euclidean"
21
22 )
23
24 labels = ["Hernia", "Normal", "Spondylolisthesis"]
25 \text{ cm}_1, \text{ cm}_5 = \text{np.zeros}((3, 3)), \text{np.zeros}((3, 3))
 for train_k, test_k in folds.split(X, y):
      X_train, X_test = X.iloc[train_k], X.iloc[test_k]
      y_train, y_test = y.iloc[train_k], y.iloc[test_k]
      # Fit kNN classifiers and assess
30
      knn_1.fit(X_train, y_train)
31
      knn_5.fit(X_train, y_train)
32
      knn_1_pred, knn_5_pred = knn_1.predict(X_test), knn_5.predict(X_test)
      cm_1 += np.array(confusion_matrix(y_test, knn_1_pred, labels=labels))
34
      cm_5 += np.array(confusion_matrix(y_test, knn_5_pred, labels=labels))
37 # Calculate cumulative confusion matrices
38 \text{ cm\_diff} = \text{cm\_1} - \text{cm\_5}
39 cm_diff_df = pd.DataFrame(cm_diff, index=labels, columns=labels)
41 # Plot the differences
42 plt.figure(figsize=(9, 7))
43 sns.heatmap(
      cm_diff_df, cmap="Purples", annot=True, annot_kws={"fontsize": 14}, fmt="g"
46 plt.xlabel("Predicted")
47 plt.ylabel("Actual")
48 plt.show()
```


Figure 2: Confusion Matrix Differences Between k=1 and k=5 k-Nearest Neighbors (kNN) Classifiers

Blah

3. Considering the unique properties of column_diagnosis, identify three possible difficulties of naïve Bayes when learning from the given dataset.

Gonçalo