# Uncover articulatory correlates of acoustic duration with analysis-by-synthesis: the case of diphthongs

Eoin O'Reilly, Christopher Geissler, Kevin Tang Heinrich-Heine-Universität Düsseldorf, Germany









### Question

- ► What are the articulatory mechanisms involved in reduction?
  - increased gestural overlap
  - shortening of gestures
  - undershoot of target
  - increased stiffness (mass-spring model)
- ► How does reduction take place in a diphthong?



## Problem: identifying gestures

- ► Acoustics? "Many-to-one" mapping
- ► Articulatory thresholds? Arbitrary, not good for shared articulators



## Proposed solution: Analysis-by-synthesis



- ► 465 tokens of *five* by 48 speakers in Wisconsin XRMB Database
- ► Simulations were made with two values for each parameter
- ▶ Use parameters for best-fit simulation as annotation

#### **Best-fit simulations**

► Of the 465 best-fit simulations, most had shortening and overlap of both [a] and [i]; fewest had stiffness and undershoot

|          | ongli             | de: a             | offglide: i      |                   |
|----------|-------------------|-------------------|------------------|-------------------|
| degree   | 384<br>overlap    | 352<br>shortening | 383<br>overlap   | 392<br>shortening |
|          | 211<br>undershoot | 352<br>stiffness  | 27<br>undershoot | 5<br>stiffness    |
| location | 391<br>overlap    | 372<br>shortening | 369<br>overlap   | 388<br>shortening |
|          | 263<br>undershoot | 249<br>stiffness  | 19<br>undershoot | 57<br>stiffness   |

# **Co-occurrence and duration**

- ► Best-fit simulations showed extensive correlation among parameters
- Strongest correlations among shortening and overlap for [i] gestures
- Acoustic duration most correlated with shortening and overlap

| var 1                      | var 2       | corr | var           | corr w/dur             |  |
|----------------------------|-------------|------|---------------|------------------------|--|
| i-deg-over                 | i-loc-short | 0.93 | a-loc-short   | -0.69                  |  |
| i-deg-short                | i-deg-over  | 88.0 | i-deg-over    | -0.64                  |  |
| i-deg-over                 | a-loc-short | 0.83 | i-loc-short   | -0.61                  |  |
| i-loc-short                | a-loc-short | 0.82 | i-deg-short   | -0.58                  |  |
| i-deg-short                | i-loc-short | 0.81 | i-loc-over    | -0.47                  |  |
| Variables most strongly    |             |      | Strongest co  | Strongest correlations |  |
| correlated with each other |             |      | with duration | with duration          |  |

## Discussion

- Most common reductions: overlap, shortening
- Correlations among overlap & shortening & acoustic duration
- Interpretations
  - Overlap and shortening can vary across tokens
- Stiffness & undershoot ([a] only) affect shape more than acoustic duration
- Location & degree gestures (if separate) vary together
- ► Proof-of-concept: studying simulations allows us to investigate overlapping gestures with a shared articulator
- Next steps:
- Computationally-efficient alternatives
- ▶ More "steps", try multiple best-fit simulations
- Alternatives to DTW?
- ▶ Use articulatory variation to inform theories of representation

## References

- [1] Hosung Nam, Louis Goldstein, Elliot Saltzman, and Dani Byrd. TADA: An enhanced, portable Task Dynamics model in MATLAB. *The Journal of the Acoustical Society of America*, 115(5):2430–2430, May 2004.
- [2] Stefania Marin. Romanian diphthongs /ea/ and /oa/: an articulatory comparison with /ja/ /wa/ and with hiatus sequences. *Revista de Filología Románica*, 31(1):83–97, 2014.
- [3] Adrian P. Simpson. Gender-specific articulatory—acoustic relations in vowel sequences. *Journal of Phonetics*, 30(3):417–435, July 2002.
- [4] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting linear mixed-effects models using Ime4. *Journal of Statistical Software*, 67(1):1–48, 2015.
- ► Thanks to Jason Shaw, Tino Sering, members of DFG CRC1675 and practice audiences at Heinrich-Heine-Universität Düsseldorf.