

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-2024 (ODD)
Unit III Tutorial sheet - 3

Date: 16/08/2023

Course Code &Title: 18MAB302T-Discrete Mathematics for Engineers

Year & Sem: III/V

Q.	Questions	Answer Keys
No 1	Show that the following premises are inconsistent: (i) If Jack	
	misses many classes through illness, then he fails high school. (ii) If Jack fails high school, then he is uneducated (iii) If Jack	
	reads a lot of books then he is not uneducated (iv) Jack misses	
	many classes through illness and reads a lot of book	
2	Using indirect method derive $p \rightarrow \neg s$ from the premises	
	$q \to \neg p, p \to (q \lor r), s \to \neg r, p$.	
3	Using proof by contrapositive, show that if $n^3 + 5$ is an odd integer, then n is an even integer.	
4.	Using the principle of Mathematical induction show that $1+2+\dots+n=\frac{n(n+1)}{2}$ $\forall n\in\mathbb{N}$	
5.	Examine the validity of the argument, "It is not sunny this afternoon and it is colder than yesterday. We will go for swimming only if it sunny. If we do not go for swimming then we will take a trip. If we take a trip then we will be home by sunset."	
6.	Show that $r \to s$ can be derived from the premises $p \to (q \to s)$, $\neg r \lor p$ and q .	
7.	Using the direct method of proof that if n is even then $n^2 + 5$ is odd, $\forall n \in \mathbb{N}$.	
8.	Using indirect method of proof show that q can be derived from $p \to q$, $r \to q$, $s \to (p \lor r)$, and s .	
9.	The rule $((p \rightarrow q) \land \neg q) \rightarrow \neg p$ is recognized as?	Modus Tollens
10.	The dual of the statement $(P \land Q) \lor (R \land S)$ is	$(P \lor Q) \land (R \lor S)$