IITB CPU EE 224 Project Report

Rohan Nafde - 210070068 Aakarsh Chaudhary - 210070002 Anway Deshpande - 210070011 Geetesh Kini - 210070041

27th November, 2022

Overview of the experiment

- We were tasked with the making of a simple programmable device.
- The device has a clock as the input and a sequence of instructions to be executed
- The contents of this report include:
 - 1. Technical Specifications
 - 2. Approach
 - 3. RTL View

1 Technical Specifications

- Processing speed of upto 50MHz on FPGA
- Memory with (specify number) of addresses
- Register file with 7 registers and 1 programme counter making for a total of 8 registers.
- Finite State Machine having only 8 states to simplify logic as much as possible.
- Memory with 64 slots, each storing 16 bit values, meaning $2^{10} = 1 \text{Kb}$ approximately

2 Approach

- 1. Pen Paper Design
- 2. Instructions
- 3. Components Description
- 4. States
- 5. Control Design

2.1 Pen Paper Design

Figure 1: Pen Paper Design

2.2 Instructions

2.2.1 Types of Instruction

1. R Type

This type of instruction has on position(s):

- 15 to 12 OP Code
- 11 to 9 RA
- 8 to 6 RB
- 5 to 3 RC
- \bullet 2 Unused 0
- 1 to 0 Condition (CZ)
- 2. I Type

This type of instruction has on position(s):

- 15 to 12 OP Code
- 11 to 9 RA
- 8 to 6 RC
- \bullet 5 to 0 Immediate
- 3. J Type

This type of instruction has on position(s):

- 15 to 12 OP Code
- 11 to 9 RA
- \bullet 8 to 0 Immediate

2.2.2 The 16 Bits of Each Instructions

Instruction	15 to 12	11 to 9	8 to 6	5 to 3	2	1 to 0
	(OP Code)					(Condition CZ)
ADD	0000	RA	RB	RC	0	00
ADC	0000	RA	RB	RC	0	10
ADZ	0000	RA	RB	RC	0	01
ADI	0001	RA	RB	6 bit Immediate		
NDU	0010	RA	RB	RC	0	00
NDC	0010	RA	RB	RC	0	10
NDZ	0010	RA	RB	RC	0	01
LHI	0011	RA		9 bit Immediate		
LW	0100	RA	RB	6 bit Immediate		
SW	0101	RA	RB	6 bit Immediate		
LM	0110	RA	$0 + 8 \mathrm{h}$	bits corresponding to Reg R7 to R0		
SM	0110	RA	$0 + 8 \mathrm{h}$	bits corresponding to Reg R7 to R0		
BEQ	1100	RA	RB	6 bit Immediate		
JAL	1000	RA	9 bit Immediate Offset			
JLR	1001	RA	RB	000000		

Table 1: Instructions 16 bits

2.3 Components Description

2.3.1 Arithmetic and Logic Unit

- Two 16 bit input
- One 16 bit output, carry and zero flags too
- 2 bit control line to switch between 3 operations ADD, SUB, NAND

2.3.2 Control Unit

- Input as current state (3 bit)
- Output as 6 control lines (of write enable)
- Decides which control line should be enables

2.3.3 Register File

- 3 bit input address line and 16 bit data line
- two 3 bit output address line and two 16 bit data line
- Stores the values to be immediately read or written

2.3.4 Memory Unit

- 16 bit data and address line each
- Output is same too
- Stores all the

2.3.5 Temporary Registers

• These just act as connections with an enabler for controlled flow

2.3.6 Finite State Machine

- Initial state and inputs of CPU as input
- Next state as output
- Decides the next state

2.4 States

- Total 8 States
- $\bullet\,$ Control decides the inputs

S1	$\begin{array}{l} \mathrm{PC} \rightarrow \mathrm{Mem_A0} \\ \mathrm{Mem_D0} \rightarrow \mathrm{T1} \\ \mathrm{PC} \rightarrow \mathrm{ALU_A} \\ +1 \rightarrow \mathrm{ALU_B} \\ \mathrm{ALU_C} \rightarrow \mathrm{PC} \end{array}$	PC_WR T1_WR ADD
S2	$T1_{11-9}/T1_{8-6} \to RF_A1$ $RD_D1 \to T2$ $T1_{8-6}/T1_{5-0} \to RF_A2$ $RF_D2 \to T3$	T2_WR T3_WR
S3	$T2 \rightarrow ALU_A$ $T3/+1 \rightarrow ALU_B$ $ALU_C \rightarrow T2$ (by op code) $c=c+1$	ADD/NAND
S4	(If Mem_D0 coming) T2 \rightarrow Mem_A0 T1 ₈₋₀ (with SE)/T2/PC/Mem_D0 \rightarrow RF_D3 T1 ₁₁₋₉ /T1 ₈₋₆ /T1 ₅₋₃ /c(binary) \rightarrow RF_A3	RF_WR
S5	$\begin{array}{l} {\rm T1_{11-9}/c(binary)} \rightarrow {\rm RF_A1} \\ {\rm RF_D1} \rightarrow {\rm Mem_DI} \\ {\rm T2} \rightarrow {\rm Mem_AI} \end{array}$	$\mathrm{Mem}_{\mathrm{W}}\mathrm{R}$
S6	$PC \rightarrow ALU_A$ $T1_{5-0}/T1_{8-0}$ $ALU_C \rightarrow PC$	PC_WR

Table 2: States

$$\begin{array}{ccc} \mathrm{S7} & \mathrm{PC} \rightarrow \mathrm{ALU_A} & \mathrm{SUB} \\ & +1 \rightarrow \mathrm{ALU_B} \\ & \mathrm{ALU_C} \rightarrow \mathrm{PC} \end{array}$$

S8
$$T1_{8-6} \rightarrow RF_A1$$
 PC_WR
 $RF_D1 \rightarrow PC$

Table 3: States Continued

Figure 2: State transition

```
Add - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

ABC - S1 \rightarrow S2 \rightarrow I camp = I \rightarrow S3 \rightarrow S4

ABC - S1 \rightarrow S2 \rightarrow I zero = I \rightarrow S3 \rightarrow S4

ABT - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

NBC - S1 \rightarrow S2 \rightarrow I camp = I \rightarrow S3 \rightarrow S4

NBC - S1 \rightarrow S2 \rightarrow I camp = I \rightarrow S3 \rightarrow S4

NBC - S1 \rightarrow S2 \rightarrow I camp = I \rightarrow S3 \rightarrow S4

NBC - S1 \rightarrow S2 \rightarrow I camp = I \rightarrow S3 \rightarrow S4

LHI - S1 \rightarrow S4

LW - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

SW - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

LHI - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

SW - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

SW - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

LH - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

SM - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

LH - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

Else - S1 \rightarrow S2 \rightarrow S3 \rightarrow S4

Clue if Imm(c) = I) \rightarrow S4

if C > 7

Clue if Imm(c) = I) \rightarrow S4

if C > 7

Clue if Imm(c) = I C > S4

Clue if Imm(c) = Imm(c) = I C > S4

Clue if Imm(c) = Imm(c) = I C > S4

Clue if Imm(c) = Imm(c) = Imm(c) = Imm(c)

Clue if Imm(c) = Imm(c) = Imm(c)

Clue if Imm(c) = Imm(
```

Figure 3: State Usage

Figure 4: State Usage Continued

2.5 Control Design

ALU-C-O

RF-DI-OI

PC-WR =
$$\overline{c_1}\overline{c_0}$$
+ $c_2(c_1+c_0)$

3 RTL View

1. RTL View of Entire CPU

3.1 RTL View of Entire CPU

Figure 5: RTL View

4 Conclusion

- All the components are constructed correctly
- The components are connected correctly with the appropriate condition dependent inputs
- Instructions are correctly read
- State transitioning happens correctly
- Memory and registers are read and written correctly
- Output of all logical operations are performed correctly