

"All models are wrong, but some are useful".

George Box

- 1. The Learning Problem
- 2. Bias and Variance
- 3. Train/Val/Test Split
- 4. Validation Techniques
- 5. Regularization
- 6. Dimensionality Reduction
- 7. PCA

3

Supervised:

- Regression: to predict a single output value using training data.
- Classification: to group the output inside a predefined class.

Unsupervised.

 Clustering: It deals with finding a structure or pattern in a collection of uncategorized data.

- The bias error is an error from erroneous assumptions in the learning algorithm.
 - High bias can cause an algorithm to miss the relevant relations between features and target outputs (*underfitting*).

- The variance is an error from sensitivity to small fluctuations in the training set.
 - High variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs (overfitting).

Bias vs. Variance

Image from datacamp.com

Holdout: The data is split into two different datasets labeled as a training and a validation dataset.

- This can be a 60/40 or 70/30 or 80/20 split.
- Stratification can be used to balance the sets.

K-Fold Cross-Validation

- k-1 folds are used for training and the remaining one is used for testing.
- The error rate of the model is average of the error rate of each iteration.

Bootstrapping

- The training dataset is randomly selected with replacement.
- The not used data is used for the test set.
- The error rate of the model is average of the error rate of each iteration.

Rolling Cross-Validation

Rolling Cross-Validation

Regularization is the process of adding information in order to prevent overfitting.

- A technique to improve the generalizability of a learned model.

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3 + \dots)^2$$

16

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i)^2)$$

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i)^2)$$

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i + w_2 x_i^2)^2$$

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i)^2)$$

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i + w_2 x_i^2)^2$$

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3)^2$$

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i)^2)$$

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i + w_2 x_i^2)^2$$

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3)^2$$

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3 + \dots + w_{30} x_i^{30})^2$$

Regularization

- L1 Regularization or Lasso Regularization

$$S = \sum_{i=0}^{N} \left(y_i - (w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3 + \dots + w_p x_i^p \right)^2 + \lambda \sum_{j=1}^{p} |w_j|$$

- L2 Regularization or **Ridge Regularization**

$$S = \sum_{i=0}^{N} (y_i - (w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3 + \dots + w_p x_i^p)^2 + \lambda \sum_{j=1}^{p} w_j^2$$

Comparison

L1 Regularization	L2 Regularization	
Computational inefficient	Analytical Solution	
Sparse outputs	Non-sparse outputs	
Built-in Feature selection	No Feature selection	

Dimensionality Reduction

- **Feature selection**: try to find a subset of the input variables
 - the filter strategy
 - the wrapper strategy (e.g. search guided by accuracy)
 - embedded strategy (L1 can be used for that).
- Feature projection: transforms the data in the high-dimensional space to a space of fewer dimensions.
 - PCA
 - Autoencoders
 - NMF

$$Correlation = \frac{Cov(x,y)}{\sigma x * \sigma y}$$

$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

For Population

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{N}$$

For Sample

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{(N-1)}$$

What about Cov(x,y,z)?

$$Cov(x,y) = Cov(y,x)$$

$$Cov(x,z) = Cov(z,x)$$

$$Cov(z,y) = Cov(y,z)$$

$$Cov(x,y) = \frac{\sum (x_i - \sigma_x)(y_i - \sigma_y)}{N}$$

$$Cov(x,z) = \frac{\sum (x_i - \sigma_z)(z_i - \sigma_z)}{N}$$

$$Cov(z,y) = \frac{\sum (z_i - \sigma_z)(y_i - \sigma_y)}{N}$$

E

What is x, y and z?

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_n \end{bmatrix}$$

$$Z = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$$

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$$

X, Y, Z as a Matrix

$$M_{n,3} = \begin{bmatrix} X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \\ \dots & \dots & \dots \\ X_n & Y_n & Z_n \end{bmatrix}$$

27	0

	X	Y	Z
X	var_x	cov_{xy}	cov_{xz}
Y	cov_{xy}	vary	cov_{yz}
Z	cov_{xz}	cov_{yz}	var_z

/// PCA

Example:

From 2 dimensions to 1

Image from stackexchange

Example:

From 2 dimensions to 1

BEST LINEBest summarizes information

Image from stackexchange

/// PCA

Example:

From 2 dimensions to 1

BEST LINE

Best summarizes information

Example:

From 2 dimensions to 1

BAD LINEToo much loss

Image from stackexchange

PCA - optimal number of principal components

Limitations

Model performance

PCA can lead to a reduction in model performance on datasets with no or low feature correlation or does not meet the assumptions of linearity.

Outliers

PCA is also affected by outliers, and normalization of the data needs to be an essential component of any workflow.

Interpretability

Each principal component is a combination of original features and does not allow for the individual feature importance to be recognized.

Useful Resources

Stat Quest

3 Blue 1 Brown

Linear Algebra Playlist

Odds Odds ratio

THANK YOU

O sucesso do cliente é o nosso sucesso.

Valorizamos gente boa que é boa gente.

f totvs.com

9 @totvs

in fluig.com

