EXPERIMENT 2 OSCILLOSCOPES AND SIGNAL GENERATORS

In many applications, observing certain voltage waveforms plays a crucial role in understanding the operation of the circuit. For that purpose, several measurement instruments are utilized, such as a voltmeter, ammeter, or oscilloscope. An oscilloscope is a voltage-sensing electronic instrument used to visualize specific voltage waveforms. Oscilloscopes are exploited to display the variation of the voltage waveform. An oscilloscope is illustrated in Figure 1. Read the <u>notes on the oscilloscope</u> for more information about the oscilloscopes.

Figure 1. Oscilloscope

2.1 Objective:

In this experiment, you will learn how to operate a digital signal oscilloscope (DSO) and frequency signal generators. Mainly, it is emphasized on:

- i. How to determine the amplitude and frequency of a signal using DSO,
- ii. X-Y mode operation in this oscilloscope.
- iii. RMS measurement of various waveforms

2.2 Equipment List:

- DSO
- Function/Arbitrary Waveform Generator
- CADET
- Multimeter
- Carbon Resistors (five $1k\Omega$, $3.3 k\Omega$, $10 k\Omega$),

2.3 Theoretical Background – The Average and Root-Mean-Square (RMS) values:

Two quantities are of considerable interest in describing waveforms: the average and root-mean-square (RMS) values.

The average value of a time-varying voltage v is defined as

$$V_{av} = \frac{1}{T} \int_{0}^{T} V(t) dt$$

where T is the wave period. Symmetry is essential for the efficient evaluation of this equation. Sometimes, we only need to integrate over one-half or one-fourth of the period to find the average value.

For a sinusoidal wave, the average value over a cycle is zero. The area under the positive half cycle of the wave is equal to the area under the negative half cycle.

The RMS value of a voltage waveform is defined as

$$V_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} V^{2}(t) dt}$$

This is also called the effective value. A waveform with a given effective value will heat a resistor as much as a constant voltage of the same value would. If v is a square wave or a linear function of t (triangular wave), the integration is quite straightforward.

2.4 Preliminary Work:

Read the notes on the oscilloscopes given in the <u>notes on the oscilloscope</u> (especially the section on <u>Measurement Techniques</u> and <u>Controls</u>). Learn the operation principles of the oscilloscopes and be familiar with the utilities of the buttons on oscilloscopes.

1. Find the voltage between nodes Y and G in Figure 2, where R_1 = R_2 = R_3 = R_4 = R_5 = $1k\Omega$ and V_1 =4.5sin(4000 π t) Volts and V_2 =10 Volts

Figure 2

2. Calculate the period of the signals in Table 1, and fill the period column.

Table 1

$V_1(t) = V_{peak} \sin(2\pi f t)$ volts							
V_{peak}	f(Hz)	T=1/f (msec)					
3	250						
6	1250						
6	5000						

3. $V_1(t)=2 \sin(4000\pi t)$ volts ie. $V_1(t)$ is a sinusoidal signal with a frequency of 2 kHz and a peak amplitude of 2V. According to the following DSO settings of CH1, sketch the waveform, $V_1(t)$. (Be neat, pay attention to positions of maxima and minima of the waveform)

DSO Settings:

CH: CH1, MODE: YT, COUPLING: AC, VOLTS/DIV: 1V, TIME/DIV: 0.1ms

Figure 3

2.5 Experimental Work:

Important: Show a sample of the measurement in each work to the conducting research assistant for **RA signature.**

1.

- i. Turn the oscilloscope on.
- ii. Connect the signal lead of the probe corresponding to Channel 1 (CH1)
- iii. Set the circuit given in Figure 5.

Figure 5

iv. Using the controls on the function generator, set $V_1(t) = 2\sin(4000\pi t)$, and observe the signal on the oscilloscope screen (Use the function generator, which is on the left side of your CADETs).

- v. Plot the signal on your report sheet and write the period and amplitude of this signal by using the oscilloscope. Don't forget to write your DSO settings.
- 2. Measure the RMS values of
- **a.** $V_1(t) = 3\sin(4000\pi t)$
- **b.** The triangular waveform of $4V_{pp}$ and 2 kHz

using the circuit in Figure 5 on both oscilloscope and multimeter and sketch them on the same graph on your report sheet.

3. Set up the circuit in Figure 2. Plot the voltage waveform between node Y and node G. Compare the result with your calculation. Be sure that the DSO is at DC mode where $R_1 = R_2 = R_3 = R_4 = R_5 = 1 \text{k}\Omega$, $V_1(t) = 4.5 \sin(4000\pi t)$, $V_2 = 10 \text{ V}$

- **4.** Set up the circuit in Figure 6 where $R_1 = R_2 = 1 k\Omega$, $V_{in}(t) = 2 sin(2000\pi t)$
 - **a.** Observe and plot the $V_{in}(t)$ and $V_{out}(t)$ simultaneously(DUAL MODE).
 - **b.** Set the DSO to X-Y operation. Observe and plot the figure on the screen.
 - **c.** Replace the R_2 with $3.3k\Omega$ and $10k\Omega$ resistors, respectively. Repeat step **b**.

EXPERIMENT 1 PART 2 REPORT SHEET

Name & Surname :										
Date		:								
Experim	ental W	ork:								
1.							_	_		

DSO Settings

CH:	MODE:	COUPLING
VOLTS/DIV:	TIME/DIV:	PERIOD:
RA Signature:		

Comment:

2.

DSO Settings

CH:	MODE:	COUPLING:	
VOLTS/DIV:	TIME/DIV:	PERIOD:	

i. RMS:....(DSO)

RMS:.... (Multimeter)

ii. RMS:.... (DSO)

RMS:..... (Multimeter)

RA Signature:

3. VyG = +sin(4000t) V (DC and AC components)

DSO Settings

СН:	MODE:	COUPLING:
VOLTS/DIV:	TIME/DIV:	PERIOD:

RA Signature:

4.

DSO Settings (a)

CH: MODE: COUPLING: VOLTS/DIV: TIME/DIV: PERIOD:

DSO Settings (b)

CH: MODE: COUPLING: VOLTS/DIV: TIME/DIV: PERIOD:

DSO Settings (c for $3.3 \text{ k}\Omega$)

CH: MODE: COUPLING: VOLTS/DIV: TIME/DIV: PERIOD:

DSO Settings (c for $10 \text{ k}\Omega$)

CH: MODE: COUPLING: VOLTS/DIV: TIME/DIV: PERIOD:

RA Signature: