Project: WATCHMAN

University of Hawaii at Manoa

Meeting: Tuesday, 15th of January 2018, Week 18

Participants: Jonathan Hendriks <u>jhendrik@hawaii.edu</u>

Anthony Schluchin

Jose Duron

Kurtis Nishimura

Gary Varner

Schluchi@hawaii.edu

jduron@hawaii.edu

kurtisn@phys.hawaii.edu

varner@phys.hawaii.edu

Jose:

Data Analysis of Tyler's Raw data on PMT signal

23% percent of the data is actual PMT signal, the rest is noise. The data analysis shows multiple amplitude and pulse wide, for instance the pulse of 8mV is shown on the slides.

From the readout of all waveforms of interest a fourier analysis shows that there are some peaks at:

- 376MHz
- 437MHz
- 967MHz

The frequency of 376MHz corresponds to UHF Ultra high frequency range, which is composed of TV broadcast, microwave ovens, etc

source: https://fccid.io/frequency-explorer.php?lower=345&upper=376

The other frequencies are probably similar, this mean the PMT can catch the noise, like discussed in the WATCHMAN collaboration meeting held from the 9th to 13th of January 2019.

Baseline subtraction should be done dynamically before the PMT pulse, this is to say calculate the average baseline before the pulse is noticed (over threshold) and after the filtering of the noise.

The waveforms have to be filtered to remove the undesired frequencies.

The sampling frequency is specified in the Tyler's email (20GS/s) with all other measurement parameters.

Project: WATCHMAN

University of Hawaii at Manoa

Anthony

During this last week, Anthony worked on finding the best way to correct the data. First, there is the pedestal subtraction, which is an offset correction. Every analog memory location (512*16*32) has its own pedestal value.

Once the pedestal subtraction is done, there is still a correction to do, due to the comparator (inside the ASIC). After testing and analysing, the conclusion is that every memory location has more less the same behavior. Therefore, the idea is to perform the fitting on the average of all samples, with that done all value can be correct using a LUT (look up table) of 2048 possibilities, the advantage of using this method is that it is much faster than computing all for each point.

Jonathan

For the past week, the goal was to drop down the number of LUTs used for the HDL. The utilization of resources is now okay after optimizing the system. The picture below shows the utilization report from the 17th of January after timing optimization.

Name 1	Slice LUTs (17600)	Slice Registers (35200)	F7 Muxes (8800)	F8 Muxes (4400)	Block RAM Tile (60)	Bonded IOB (100)	Bonded IOPADs (130)	IBUFD S (96)	BUFGCTRL (32)	MMCME2_ADV (2)
∨ N base_zynq_wrapper	12281	14185	660	219	1.5	63	130	1	4	1
base_zynq_i (base	12281	14185	660	219	1.5	0	0	1	4	1
> I axi_dma_0 (base	1042	1355	0	0	1.5	0	0	0	0	0
> I axi_iic_0 (base_zy	414	368	9	4	0	0	0	0	0	0
> 🔳 axi_interconnect	222	255	0	0	0	0	0	0	0	0
> 🔳 axistream_0 (bas	119	104	0	0	0	0	0	0	0	0
> I FifoManagerV4	675	736	24	12	0	0	0	0	0	0
> 🔳 iobuf_0 (base_zy	0	0	0	0	0	0	0	0	0	0
> I iobuf_1 (base_zy	0	0	0	0	0	0	0	0	0	0
> I processing_syst	112	0	0	0	0	0	0	0	1	0
> I ps7_0_axi_peri	561	731	0	0	0	0	0	0	0	0
> I rst_ps7_0_50M (19	40	0	0	0	0	0	0	0	0
> I TARGETC_IP_Prot	9117	10596	627	203	0	0	0	1	3	1
xlconcat_0 (base	0	0	0	0	0	0	0	0	0	0
xlconcat_1 (base	0	0	0	0	0	0	0	0	0	0
xlconstant_0 (ba	0	0	0	0	0	0	0	0	0	0

We see 12281 / 17600 LUT = 70% of LUTs. For the new design it will be best to invest 40 dollars more for a Zynq 7020 (Z-7020) rather than 7010 (Z-7010), which is currently used. The Zynq 7020 has 3 times more resources than the Zynq we are using right now.

Project: WATCHMAN

University of Hawaii at Manoa

			Cost-Optimized Devices						Mid-Range Devices				
		Device Name	Z-7007S	Z-7012S	Z-7014S	Z-7010	Z-7015	Z-7020	Z-7030	Z-7035	Z-7045	Z-7100	
		Part Number	XC7Z007S	XC7Z012S	XC7Z014S	XC7Z010	XC7Z015	XC7Z020	XC7Z030	XC7Z035	XC7Z045	XC7Z100	
	Processor Core			Single-Core ortex™-A9 N			Dual-Core ARM Cortex-A9 MPCore			Dual-Core ARM Cortex-A9 MPCore			
			Up to 766MHz Up to 866MHz						Up to 1GHz ⁽¹⁾				
S	Proc	essor Extensions	NEON™ SIMD Engine and Single/Double Precision Floating Point Unit per processor										
<u>=</u>	L1 Cache		32KB Instruction, 32KB Data per processor										
Processing System (PS)	L2 Cache		512KB										
Sys	On-Chip Memory		256KB										
B	External Memory Support ⁽²⁾		DDR3, DDR3L, DDR2, LPDDR2										
SS	External Static Memory Support ⁽²⁾		2x Quad-SPI, NAND, NOR										
90	DMA Channels			8 (4 dedicated to PL)									
퓹		Peripherals	2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO										
	Peripherals w/ built-in DMA ⁽²⁾		1 1 2										
	Security ⁽³⁾		RSA Authentication of First Stage Boot Loader,										
	Processing System to Programmable Logic Interface Ports		AES and SHA 256b Decryption and Authentication for Secure Boot 2x AXI 32b Master, 2x AXI 32b Slave										
			4x AXI 64b/32b Memory										
			AXI 64b ACP										
	(Primary Interfaces & Interrupts Only)			16 Interrupts									
	7 Series PL Equivalent		Artix®-7	Artix-7	Artix-7	Artix-7	Artix-7	Artix-7	Kintex®-7	Kintex-7	Kintex-7	Kintex-7	
	Logic Cells		23K	55K	65K	28K	74K	85K	125K	275K	350K	444K	
3	Look-Up Tables (LUTs)		14,400	34,400	40,600	17,600	46,200	53,200	78,600	171,900	218,600	277,400	
<u>a</u>	Flip-Flops		28,800	68,800	81,200	35,200	92,400	106,400	157,200	343,800	437,200	554,800	
- Bi	Total Block RAM (# 36Kb Blocks) DSP Slices		1.8Mb	2.5Mb	3.8Mb	2.1Mb	3.3Mb	4.9Mb	9.3Mb	17.6Mb	19.2Mb	26.5Mb	
e L			(50)	(72)	(107)	(60)	(95)	(140)	(265)	(500)	(545)	(755)	
qp			66	120	170	80	160	220	400	900	900	2,020	
E .	PCI Express®		-	Gen2 x4	-	_	Gen2 x4	_	Gen2 x4	Gen2 x8	Gen2 x8	Gen2 x8	
Programmable Logic (PL)	Analog Mixed Signa	Analog Mixed Signal (AMS) / XADC ⁽²⁾ Security ⁽³⁾		2x 12 bit, MSPS ADCs with up to 17 Differential Inputs AES & SHA 256b Decryption & Authentication for Secure Programmable Logic Config									
Pro		-1 -1 -1						or secure Prog	-1				
	Speed Grades	Commercial Extended	-1 -2			-1 -2,-3			-1 -2,-3			-1 -2	
	Speed Grades	Industrial	-1, -2			-1, -2, -1L			-2,-3 -1, -2, -2L			-1, -2, -2L	

However timing issues are now the problem indeed the rearranging/re-engineering of the round buffer cost some delays.

These delays are often not a problem like the parameter NBRWINDOW which specifies the number of windows we would like to digitize. This parameter is set and can take how much time to stabilize, because the command to start the digitization process comes after 2 AXI-Lite transaction = many clocks cycles later.

Kurtis recommends adding constraints to the HDL sources codes to remove all these timing errors.

With the timing errors removed the testbench simulation are working, as well as real test on hardware. The worst case is maybe for this test not happening but we can be sure that it will come along once so better to deal with it now.