Concept Graph Learning from Educational Data

Yiming Yang, Hanxiao Liu, Jaime Carbonell and Wanli Ma

School of Computer Science Carnegie Mellon University

February 3, 2015

- Motivation
- Concept Representation Schemes
- Concept Graph Learning
- Experiments & Empirical Results
- Future Work

Introduction Motivation

Scenario: Massive course materials are online available from different course providers

• Universities, Coursera, Edx, MIT OpenCourseWare ...

Challenge: How to integrate the scattered information?

A CMU graduate: "After completing courses A, B on Coursera, what course shall I take next at CMU?"

 Lack a method to measure the course overlapping and the course prerequisite relations across institutions.

We address this by putting cross-institutional courses under a canonical language—concept.

Introduction Concept Graph Learning

Universal Concepts (e.g. Wikipedia Topics)

Goal: Learning a universal graph of concepts based on

- Course-level prerequisite relations
- Concept representation of courses

- Motivation
- Concept Representation Schemes
- Learning the Concept Graph
- Experiments & Empirical Results
- Future Work

Representation Schemes

Word-based Representation

Concepts $\stackrel{\text{def}}{=}$ Words

- Vocabularies not controlled
 - CMU 10-715: shattering coefficient; MIT 15.097: growth function
- Words are in multiple granularities \implies interpretability \downarrow

Representation Schemes Category-based Representation

Bag of Words

Wikipedia Classifier

Concepts $\stackrel{\mathrm{def}}{=}$ Wikipedia Categories

- Improved interpretability
- Controlled vocabulary at the right granularity
- Leverage oceans of knowledge in Wikipedia

Representation Schemes Latent Space Representation

Schemes based on dimensionality reduction

- Sparse Coding of Words
 - Trained on the given courses—purely unsupervised
- Distributed Word Embedding
 - Trained on Wikipedia articles—leverages exterior info

Concepts $\stackrel{\mathrm{def}}{=}$ Dimensionality-reduced vectors

- Controlled "vocabulary"
 - Words are mapped onto a unified latent space
- Concept granularity can be controlled by latent dimensionality
- Hard to interpret

- Motivation
- Concept Representation Schemes
- Learning the Concept Graph
- Experiments & Empirical Results
- Future Work

Problem Formulation

Observed course-level relations \mathcal{O} Concept representation of courses X n by pConcept graph A p by p

How to evaluate A?

- **1** Map A to an estimated course graph Θ (n by n) via X.
- ② Then, evaluate the quality of ⊙ with O.

Problem Formulation

How to map the concept graph A to an estimated course graph Θ ?

—through a bilinear form:

$$\boldsymbol{\Theta} \stackrel{\mathrm{def}}{=} \boldsymbol{X} \boldsymbol{A} \boldsymbol{X}^\top$$

Explanation:

$$\theta_{ij} \stackrel{\text{def}}{=} \sum_{u,v} a_{uv} x_{iu} x_{jv}$$

- θ_{ij} : strength from course j to course i
- a_{uv} : strength from concept v to concept u

Each course-level prerequisite θ_{ij} is defined as the cumulative effect of multiple concept-level prerequisites $\sum_{u,v} a_{uv} x_{iu} x_{jv}$

Problem Formulation

How to evaluate the estimated course graph Θ with our observed course-level relations \mathcal{O} ?

i.e. how to define the loss function over Θ w.r.t. \mathcal{O} ?

Problem

- Only positive examples are available
- Treating unobserved course relations as negative examples leads to highly skewed label set

Solution: ranking

• We hope $\theta_{ij} > \theta_{ik}$ if $j \in prereq(i)$ and $k \notin prereq(i)$

Optimization Optimization Objective

CGL objective with p^2 variables

$$\min_{\boldsymbol{A} \in \mathcal{R}^{p \times p}} \quad C \sum_{(i,j,k)} \ell \left(\theta_{ij} - \theta_{ik} \right) + \frac{1}{2} \|\boldsymbol{A}\|_{\mathrm{F}}^{2}$$

s.t.
$$\boldsymbol{\Theta} = \boldsymbol{X} \boldsymbol{A} \boldsymbol{X}^{\top}$$

Problem

- A can be a huge dense matrix (e.g. is 15,396 by 15,396 for words-based concept representation)
- Dual space? #dual variables = $O(n^3)$

Solution: derive an equivalent optimization problem with only n^2 $(n^2 \ll p^2)$ variables.

Optimization Variable Reduction

Introduce slack variable $m{S} \in \mathcal{R}^{n \times n}$ for constraint $m{\Theta} = m{X} m{A} m{X}^{ op}.$ The Lagrangian is

$$\mathcal{L} = C \sum_{(i,j,k)} \ell \left(\theta_{ij} - \theta_{ik} \right) + \frac{1}{2} \|\boldsymbol{A}\|_{\mathrm{F}}^2 + \left\langle \boldsymbol{S}, \boldsymbol{\Theta} - \boldsymbol{X} \boldsymbol{A} \boldsymbol{X}^\top \right\rangle$$

 $rac{\partial \mathcal{L}}{\partial m{A}}$ should vanish at the stationary point

- $\bullet \implies A^* = X^\top S^{*\top} X$
- ${m A}^* \in {\mathcal R}^{p imes p}$ only has n^2 $(n^2 \ll p^2)$ degrees of freedom!

Equivalent CGL objective with n^2 variables

$$\min_{\boldsymbol{S} \in \mathcal{R}^{n \times n}} \quad C \sum_{(i,j,k)} \ell \left(\theta_{ij} - \theta_{ik} \right) + \frac{1}{2} \text{tr} \left(\boldsymbol{\Theta} \boldsymbol{S}^{\top} \right)$$

s.t. $\Theta = KSK$

Optimization Loss Function & Optimization Solver

We choose the squared hinge loss $\ell(x) = (\max(1-x,0))^2$

- large-margin property: strong generalization ability
- smoothness: allows Nesterov's accelerated GD
 - GD: 37.3min & 1490 iterations on MIT
 - accelerated GD: 3.08 min & 103 iterations on MIT

An alternative of GD: Inexact Newton Method

 To avoid the huge Hessian—use a matrix-free Conjugate Gradient to compute the Newton direction

- Motivation
- Concept Representation Schemes
- Learning the Concept Graph
- Experiments & Empirical Results
- Future Work

Experiments Datasets & Evaluation

Table: Datasets Statistics¹

University	Department	# Courses	# Prerequisites	# Words
MIT ²	*	2322	1173	15396
Caltech	*	1048	761	5617
CMU	CS, STATS	83	150	1955
Princeton	MATH	56	90	454

Metrics for evaluation: MAP and AUC

¹available at http://nyc.lti.cs.cmu.edu/teacher/dataset/

²MIT OpenCourseWare http://ocw.mit.edu/index.htm

Experiments Comparison among Concept Representation Schemes

 $\mathsf{Words} \succeq \mathsf{Categories} \succ \mathsf{Sparse} \ \mathsf{Coding} \succ \mathsf{Distributed} \ \mathsf{Word} \ \mathsf{Embedding}$

Experiments Cross-institutional Prerequisite Prediction

A good concept graph should be universal, thus should be transferable across different institutions

- There is always a performance loss if we go across institutions.
- We do get good transfer.

Empirical Results Concept Graph for MIT

- Motivation
- Concept Representation Schemes
- Learning the Concept Graph
- Experiments & Empirical Results
- Future Work

Future Work

- Deploying the induced concept graph for personalized curriculum planning (on-going work)
 - ullet Student's academic background/goal $\stackrel{\mathrm{def}}{=}$ bag-of-concepts
 - Find an optimal sequence of courses?
- Cross-language transfer learning by using Wikipedia categories (concepts) as the interlingua.

The End

Thanks!

hanxiaol@cs.cmu.edu