Процессы во фторуглеродной пленке при плазмохимическом травлении

Федоров Павел Александрович 203

Научный руководитель:

Волошин Дмитрий Григорьевич

Актуальность работы

Плазма применяется в:

- Распылении
- Плазмохимическом осаждении из газовой фазы (PECVD)
- Травлении
- Чистке/Модификации

Применение плазменного травления

Преимущества:

- Глубокое травление до <100nm
- Высокая скорость травления Недостатки
- Плохая селективность

Цель работы: изучение процессов во фторуглеродной пленке

Задачи: анализ научных источников по теме работы моделирование поверхностных реакций вывод зависимости коэффициента травления от потока

Обзор публикаций по травлению в Si и SiO₂ во фторуглеродной плазме

Элементарная механистическая модель травления

1. Адсорбция нейтралов

$$j_{\text{ADS}} = s_{\text{F}} j_{\text{F}} (1 - \theta)$$

2. Перемешивание верхних слоев кремния под действием энергичных ионов

$$y_{\rm IE} = \beta'(1+b)\theta_{\rm F}$$

3. Термическое или спонтанное травление

$$y_{
m TH}=K(T)R_{
m F}$$
, где $R_{
m F}=rac{j_{
m F}}{j_{
m ION}}$ и $K(T)=rac{K_0
ho N_{Av}}{{
m M}_{
m W}}e^{-E_a/kT}$

4. Физическое распыление

$$y_{\rm SP} = A(\sqrt{E} - \sqrt{E_{\rm th}})$$

Результаты моделирования

Результаты моделирования

	Реакция	Процесс	Поток		Поверхност ь	Коэффициент реакции	
	Физическое распыление						
(1)	$Si^*E > E_{th}$	→ Si(g) + Si*	Физическ ое распылен ие	$j_{\rm ION}$	1	\mathcal{Y}_{SP}	
Реакции с атомами фтора							
(2)	$2 F(p) + Si^*$	$ \begin{array}{c} \rightarrow Si \\ -F_2(s) \end{array} $	<i>F</i> хемосорб	$j_{ m F}$	$1- heta_{ extsf{F}}$	s_F	
(3)	$Si - F_2(s) + 2 F(p)$	→ SiF ₄ (g) + 2Si*	Ионно- стимулир ованное химическ ое травление атомами F	J _{ION}	$ heta_F$	$eta_{ extsf{F}}'$	
(4)	$Si - F_2(s)$	→ SiF ₂ (g) + 2Si*	Ионно- стимулир ованное химическ ое распылен ие	$j_{ m ion}$	$ heta_{ ext{F}}$	$eta_{\scriptscriptstyle m F}'b$	
(5)	Si — F ₂ (s) + 2 F(p) или 2 F(g)	$\rightarrow \operatorname{SiF}_4(g)$	Спонтанн ое травление атомами F	$j_{ m F}$	1	K(T)	

	Реакция	Процесс	Поток		Поверхност ь	Коэффициент реакции	
Физическое распыление							
(1)	O ₂ — Si*		Физичес кое распыле ние	$j_{\rm ION}$	1	${oldsymbol y}_{ extsf{SP}}$	
Реакции с атомами фтора							
(2)	$0_2 - Si^*(s) + 2 F(p)$	$\begin{array}{c} \rightarrow O_2 - Si \\ -F_2(s) \end{array}$	<i>F</i> хемосор	j_{F}	$1-\theta_{\mathrm{F}}$	S_F	
(3)	$0_2 - 5i$ - $F_2(s)$ + $2 F(p)$	$\rightarrow Si$ $- F_4(g)$ $+ O_2(g)$ $+ 2O_2 - Si^*$	Ионно- стимули рованно е химичес кое травлен ие атомам и F	<i>J</i> ion	$ heta_{F}$	$eta_{ ext{ iny F}}'$	
(4)	$ \begin{array}{c} O_2 - Si \\ - F_2(s) \end{array} $	$\rightarrow Si$ - $F_2(g)$ + $O_2(g)$ + $2O_2$ - Si^*	Ионно- стимули рованно е химичес кое распыле ние	J _{ION}	$ heta_{ extsf{F}}$	$oldsymbol{eta}_{ ext{ iny E}}^{\prime} b$	
(5)	$0_2 - Si - F_2(s) + 2F(p)$ или $2F(g)$	$ \begin{array}{c} \rightarrow Si \\ -F_4(g) \\ +O_2(g) \end{array} $	Спонтан ное травлен ие атомам и F	$j_{ m F}$	1	K(T)	