El'	$V) = \frac{hV}{e^{hV/k_0T} - 1}$			
	e W/KOT -1			
		0,1		
	frecaste a	rs a tlux		
134	= 2 hV (0	Ba = 2h c2	
270	= 2hV	-1	Ba = 2402 _	c/2 kuT _
. (
if	hv < < KoT than	h C << 4	t C=1	V
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	hc << 1			
	KOT X			
17			(0) 10 - 10	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$= 2h C \frac{1}{\lambda^{5}} \exp \left(\frac{1}{2}\right)$	hc 11-1	let x = hc	
	7 6.7	KOT A	763	
	= 2h c 1 15 ex-1	e	$\times \approx 1+x$ for	xccl
	15 ex−1			
	24 2h C			
	2hc As X			
	2 2 hc			
	$2 hc$ $\frac{\lambda^{5}}{\lambda^{5}} hc$ $\frac{\lambda^{5}}{\lambda^{5}} hc$	1		
	l l l l l l l l l l l l l l l l l l l			
	2) K6 T	- Paule Est	Jean-law Es	Gick
	779	1007 00 001		
if	h2 >> K6T			
13v	= 2 hv 3 _	t		
	cz eh	1/ks+ -1		
	$\approx 2 hv^3$			
	h1	- Weir	1 approximation	
	cr e			

$$X = 4.965 \text{ Hy A}$$

$$X = hC$$

$$2 \text{ for } A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for }}$$

$$A = \frac{hC}{x \text{ for }} \frac{1}{x \text{ for$$

$$dL = B_{A}(T) dA dA dA$$

$$L = \int_{0}^{T} \int_{0}^{4\pi R^{2}} \int_{0}^{4\pi L} \frac{1}{A^{2}} \frac{1}{e^{\frac{1}{4\pi L}} - 1} dA dA dA$$

$$L = \int_{0}^{T} \int_{0}^{4\pi R^{2}} \int_{0}^{4\pi L} \frac{1}{A^{2}} \frac{1}{e^{\frac{1}{4\pi L}} - 1} dA dA dA$$

$$= \pi (4\pi R^{2}) \int_{0}^{4\pi L} \frac{1}{A^{2}} \frac{1}{e^{\frac{1}{4\pi L}} - 1} dA$$

$$= \frac{1}{A} \times \frac{1}{A^{2}} \frac$$