JADN Version 2.0

Information Modeling and Conceptual Design

What is JSON Abstract Data Notation (JADN)?

An Information Modeling language

- Defines Information = essential content
- Enables conceptual design: "What does this message/document need to communicate?" separately from "What does this message/document look like?"
- Specifies equivalence across multiple schema formats and data formats

A UML profile for messaging

Based on UML DataType classifiers: primitive, structured, multiplicity, association

Composed of UML/XSD/RDF DataTypes that define:

- Value Space (information content of a data item)
- Lexical Space (literal sequence of bytes or characters in a data item)
- Lexical to Value Mapping (encoding rules for a specific data format)

Where to use JADN?

Anywhere standardized messages are sent between systems.

All of these and more:

- Support for PACE
- Support for Indicators of Behavior Sharing (IoB)
- Support for OpenC2
- Support for STIX and/or TAXII
- Support for CSAF and/or VEX
- Support for NIEMOpen
- Support for Value Stream Management Interoperability (VSMI)
- ✓ Support for CACAO Playbooks
- Support for Threat Actor Context (TAC)
- Support for OASIS Heimdall Data Format (OHDF)
- Support for SPYDERISK
- Support for STIX Shifter
- Support for SARIF
- Support for OXA
- Support for SBOM

Electronic Court Filing

https://docs.oasis-open.org/legalxml-courtfiling/ecf/v5.0/ecf-v5.0.pdf

4 Information Model

The information model describes the data content exchanged between MDEs in each operation as a set of XML messages, case type [NIEM] augmentations, XML schema and [Genericode] code lists and binary attachments.

4.1 Messages

A message is an XML document that is a well-formed XML data structure with a root element that is valid as defined by a normative XML schema provided with the specification. Each message MAY reference one or more binary attachments. The transmission format of messages and attachments is defined in a service interaction profile

Table 1. Messages

Providing MDE	Consuming MDE	Operation	Input Message XML element(s)	Output Message XML element
Court Policy	Filing Assembly	GetPolicy	policyrequest:GetPo licyRequestMessage	policyresponse:GetP olicyResponseMessag e
Court Record	Court Scheduling	AllocateCourtDate	allocatedate:Alloca teCourtDateMessage	cbrn:MessageStatus
	Filing Assembly	GetCase	caserequest:GetCase RequestMessage	caseresponse:GetCas eResponseMessage
		GetCaseList	caselistrequest:Get CaseListRequestMess age	caselistresponse:Ge tCaseListResponseMe ssage
		GetDocument	documentrequest:Get DocumentRequestMess age	documentresponse:Ge tDocumentResponseMe ssage

A defined message sent from A to B

Why use JADN? Abstract design => Simple yet precise specifications.

Information Model DataTypes

JADN Schema

Package(s) identified by namespace

Minimal set of 12 core DataTypes:

- 5 Primitive
- 5 Compound
- 2 Union

Single internal representation regardless of external data format

Information Equivalence

Raw

External Representation Lexical to Value Mapping **Internal Representation** (Lexical Values for (Logical Values for Storage / Transmission) Processing) Translate: XLS Parse from one format Serialize to another XML В Serialize **JSON** Parse (E)JSON-M **CBOR** Н Insignificant Protobuf Data = Compound Datatypes with ID / Primary Key Avro = Compound Datatypes with no ID

= Primitive Datatypes

= Reference (Foreign Key)

= Contain

Information Model

DataTypes

Primitive

Binary Boolean Integer Number String

Compound Type

Compound Type

Set
Sequence
OrderedSet
Bag

ArrayOf
Array
MapOf
Map
Record

Union

Enumerated Choice

Resources and Models

Physical Resources

Person, Organization

Building, Device

Event

Ontology / Knowledge Graph

RDF nodes *describe* physical and data resources. Resources exist independently of any graph.

"The node is not the territory"

Edges define relationships among nodes, enriching knowledge about them.

Data Resources

DataType = Model (a blank form) Value = Data (fills in a form)

Form

Value

Identity

Document

Blueprint

Message, Packet

Bill of materials
Sensor

Coordinate

• latitude

• longitude

• altitude

Playbook

reading

Structure, PDU

Report, Log

Image, Media

Information Model

DataTypes *define* the *essential* content of data resources independently of data format, abstracting away insignificant detail.

Value = instance of an abstract DataType Logical Value = essential content / meaning Literal Value = sequence of bytes / characters

Data Model

DataTypes define the content of data resources in a fixed data format.

Value = instance of a concrete DataType Value = sequence of bytes / characters

Object Model

Objects are instances of Class. Objects model processes / operations and are not Values that can be hashed or compared.

Values are instances of DataType. Information models are composed of DataTypes, not Classes.

Digital Twins: Resources and Models

https://www.digitaltwinconsortium.org/2021/01/the-impact-of-digital-twins-on-smart-buildings/

Differences from JADN v1

- Shift emphasis from "Information Theory" to "Conceptual Design"
- Move expository content from Specification into separate Committee Note
- Add capabilities:
 - Type Inheritance
 - Untagged Unions (anyOf, oneOf, allOf)
 - Separate range, length, and occurrance count options (required new major version)
 - XML serialization rules
 - UML collection model
 - Updated type options
 - Additional semantic validation keywords
 - Package composition using namespaces

Resources

JADN Specification

https://docs.oasis-open.org/openc2/jadn/v2.0/jadn-v2.0.html

Comments

https://groups.oasis-open.org/discussion/invitation-to-comment-on-openc2-jadn-v20-csd01

Information Modeling with JADN

https://docs.oasis-open.org/openc2/imjadn/v1.0/imjadn-v1.0.html

OpenC2 Technical Committee

https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=a34c9baf-48b2-44c5-a567-018dc7d32296