ADVANCED LEVEL PHYSICAL CHEMISTRY PROBLEMS

CHAPTER 9: CHEMICAL KINETICS

1. Substance A undergoes the following reaction in aqueous solution.

$$A(aq) + H^+(aq) + H_2O(l) \longrightarrow B(aq)$$

The reaction is acid catalysed and is first order with respect to each of the reacting species.

- (a). (i). Write an expression for the rate of reaction
 - (ii). What would be the effect of doubling the catalyst concentration on the rate of the reaction?
- (b). Under certain conditions, the reaction is overall first order
 - (i). State the conditions
 - (ii). Write the corresponding rate equation
 - (iii). If the rate constant. K is $2.0 \times 10^{-5} s^{-1}$, calculate the time requiored for the concentration of A decreases to a third of its original value.
- (c). (i). Explain what is meant by the term activation complex
 - (ii). Draw a potential energy diagram for a chemical reaction and label it fully
 - (iii). What is the effect of a catalyst on the rate of the chemical reaction?
- 2. (a). For a reversible reaction;

$$A(g) + B(g) = C(g) + D(g); \Delta H = +45kJmol^{-1}$$

The activation energy for the forward reaction is 195kJmol⁻¹. The following data was experimentally obtained on the rates of reaction under different conditions at 298K

Experiment number	[A]/ moll ⁻¹	[B]/ moll ⁻¹	Rate /moll-1s-1
1	2.0×10^{-2}	1.0×10^{-2}	1.0×10^{2}
2	2.0×10^{-2}	2.0×10^{-2}	2.0×10^{2}
3	4.0×10^{-2}	1.0×10^{-2}	4.0×10^{2}

Write the expression for the rate equation using the data given in the above table.

- (b). Calculate the rate constant ad state its units
- (c). Calculate the activation energy for the backward reaction
- 3. The following kinetic data was obtained for the reaction

$$A(g) + 2B(g) + C(g) = D(g) + 2E$$

Experiment number	[A]/ moll ⁻¹	[B]/ moll ⁻¹	[C]/ moll ⁻¹	Rate /moll-1s-1
1	2.0×10^{-2}	2.0×10^{-2}	2.0×10^{-2}	2.0×10^{2}
2	2.0×10^{-2}	1.0×10^{-2}	2.0×10^{-2}	2.0×10^{2}
3	4.0×10^{-2}	4.0×10^{-2}	2.0×10^{-2}	8.0×10^{2}
4	2.0×10^{-2}	4.0×10^{-2}	1.0×10^{-2}	1.0×10^{2}

(a). Write the rate equation

- (b). Determine the rate of formation of E in experiment 2 given that, that in the table was of D.
- (c). Hence find the rate of consumption of B in experiment 3
- 4. The kinetic data for the reaction is shown below.

$$A(g) + 2B(g) + C(g) \longrightarrow products$$

Experiment number	[A]/ moll ⁻¹	[B]/ moll ⁻¹	[C]/ moll ⁻¹	Rate /moll-1s-1
1	0.2	0.3	0.1	2.0×10^{2}
2	0.4	0.3	0.1	4.0×10^{2}
3	0.2	0.6	0.1	8.0×10^{2}
4	0.2	0.3	0.2	2.0×10^{2}

- (a). Determine the rate equation
- (b). What is the overall order of reaction?
- 5. Substance B reacts with potassium iodide to form iodine. The iodine is titrated with standard sodium thiosulphate solution. The volume of sodium thiosulphate is the measure of the concentration of B remaining at a given time, t.

Volume (cm³)	24.70	17.80	12.90	9.25	5.50	3.60
Time (minutes)	0	60	120	180	240	300

- (a). Plot a graph of volume against time
- (b). From the graph in (a), deduce the time taken for the concentration of B to
 - (i). Reduce to half of the original value
 - (ii). Reduce to a quarter of the original value.
- (c). What is the order of reaction with respect of B
- (d). Write the rate equation for the reaction.
- (e). Determine the rate constant.
- 6. (a). Draw a fully labelled potential energy versus reaction coordinate diagram for an endothermic reaction
 - (b). Explain the effect of temperature on the rate of a chemical reaction.
 - (c). Distinguish between order of reaction and molecularity
 - (d). Discuss the role of a catalyst in speeding up the rate of a reaction.
- 7. The data below was obtained for the reaction

$$A(g) + B(g) \longrightarrow products$$

Experiment number	[A]/ moldm ⁻³	[B]/ moldm ⁻³	Rate /moldm ⁻³ s ⁻¹
1	0.1	0.1	1.6×10^{-3}
2	0.1	0.2	3.2×10^{-3}
3	0.1	0.3	4.8×10^{-3}
4	0.2	0.1	6.4×10^{-3}
5	0.3	0.1	у

- (a). Determine the
 - (i). Order of reaction with respect to B
 - (ii). Value of y in the table
- (b). Write the rate equation for the reaction
- (c). Calculate the value of the rate constant and state its units
- 8. The following data was obtained for the reaction

$$A + B \longrightarrow C$$

Experiment	Initial [A]/ moldm ⁻³	Initial [B]/ moldm ⁻³	Initial rate /moldm ⁻³ min ⁻¹
1	0.1	0.1	1.0×10^{-4}
2	0.1	0.3	9.0×10^{-4}
3	0.1	0.3	2.7×10^{-3}

- (a). Determine the order of reaction with respect to
 - (i). A
 - (ii). B
- (b). Write the rate equation for the reaction.
- (c). If the initial concentration of both A and B are 0.4M, calculate the initial rate of formation of C.
- 9. Compound B is converted to C and D according to the equation.

$$B \longrightarrow C + D$$

The data below was obtained for the reaction

time (minutes)	0.0	7.2	18.0	36.0	72.0	108.0
$[B]/ moldm^{-3}$	100	91	79	63	40	25

- (a). Plot a graph of concentration of B against time
- (b). Using your graph, determine the
 - (i). Half-life of the reaction
 - (ii). Order of reaction
 - (iii). Rate constant of the reaction and state its units.
- 10. For a reversible reaction indicated below, the activation energy, E_a , and the enthalpy change, ΔH , for the forward reaction are +180 and +40kJmol⁻¹ respectively.

$$A(g) + B(g) = C(g) + D(g)$$

(a). The following data was obtained experimentally on the rates of reaction under different conditions at 298K

Experiment	[A]/ moldm ⁻³	[B]/ moldm ⁻³	Rate /moldm ⁻³ s ⁻¹
1	2.0×10^{-2}	1.0×10^{-2}	1.0×10^{2}
2	2.0×10^{-2}	2.0×10^{-2}	4.0×10^{2}
3	6.0×10^{-2}	1.0×10^{-2}	3.0×10^{2}

- (i). Write an expression for the rate equation using the data in the table above
- (ii). Calculate the rate constant and give its units
- (b). (i). Sketch a fully labelled diagram showing the energy versus reaction coordinate for this reaction.
 - (ii). Determine the activation energy for the backward reaction
- (c). How do you expect the
 - (i). Equilibrium constant for the reaction to change if temperature was raised
 - (ii). Rate of the reaction to change if temperature was raised
- (d). Sketch on the same diagram the variation of the concentration of D with time during the reaction after A and B are mixed for two temperatures T_1 and T_2 where $T_1 > T_2$
- 11. (a). State what is meant by the term order of reaction.
 - (b). Methyl ethanoate is hydrolysed in water in the presence of an acid according to the equation

$$CH_3COOCH_3(aq) + H_2O(l) \xrightarrow{H^+} CH_3COOH(aq) + CH_3OH(aq)$$

- (i). State the molecularity of the reaction
- (ii). Determine the order of the reaction
- (iii). Sate the conditions under which the reaction can be overall first order
- (c). The table below shows some kinetic data for the reaction

$$3A + B \longrightarrow 2P$$

Experiment	[A]/ moldm ⁻³	[B]/ moldm ⁻³	Rate /moldm ⁻³ s ⁻¹
1	0.2	0.2	1.2×10^{-8}
2	0.2	0.6	1.2×10^{-8}
3	0.4	0.6	4.8×10^{-8}

- (i). Write the overall rate equation
- (ii). Calculate the rate constant for the reaction and state its units
- 12. (a). Differentiate between order of reaction and molecularity of a reaction.
 - (b). The table below shows some data for the reaction

$$A + 2B \longrightarrow C$$
; $\Delta H = +Q \ k I mol^{-1}$

Experiment	[A]/ moldm ⁻³	[B]/ moldm ⁻³	Rate /moldm ⁻³ s ⁻¹
1	1.00×10^{-2}	2.80×10^{-3}	2.1
2	1.00×10^{-2}	5.60×10^{-3}	4.3
3	5.00×10^{-3}	2.80×10^{-3}	1.1

- (i). Determine the order of reaction with respect to A and B
- (ii). Write the rate equation for the reaction

- (iii). Calculate the rate constant for the reaction and give its units
- (iv). Calculate the rate of reaction when the concentration of A and B are 8.5×10^{-3} and 3.83×10^{-3} moldm⁻³ respectively.
- (c). State what would happen to the order of the reaction in above if B was in large excess. Explain your answer.
- (d). Draw a fully labelled potential energy diagram for the reaction
- 13. (a). Derive an expression for the half-life of a first order reaction. $2.303 \log \left(\frac{a_0}{a_0 x}\right) = kt$.

Where a_0 is the initial concentration and $(a_0 - x)$ is the concentration after time, t.

- (b). The half-life of a first order reaction is 100s.
 - (i). Calculate the rate constant
 - (ii). Determine the percentage of the reactants that reacted in 250 seconds.
- 14. (a). Briefly describe how you would determine the rate of the following reactions
 - (i). Decomposition of hydrogen peroxide
 - (ii). Reaction of sodium thiosulphate and dilute hydrochloric acid
 - (iii). Iodination of propanone catalysed by sulphuric acid
 - (b). For each of the following reactions describe experiments to show that
 - (i). The decomposition of hydrogen peroxide is a first order reaction
 - (ii). The reaction of hydrochloric acid with sodium thiosulphate is a first order reaction with respect to hydrochloric acid
 - (iii). The acid catalysed reaction of iodine and propanone is zero order with respect to iodine.
- 15. (a). Explain what is meant by
 - (i). Rate equation
 - (ii). Order of reaction
 - (iii). Rate constant
 - (b). The following results were obtained for two compounds A and B reacting to form product C.

Initial [A]/ moldm ⁻³	Initial [B]/ moldm ⁻³	Initial rate /moldm ⁻³ s ⁻¹
2.0×10^{-1}	2.4×10^{-1}	2.0×10^{-4}
4.0×10^{-1}	2.4×10^{-1}	8.0×10^{-4}
4.0×10^{-1}	4.8×10^{-1}	16.0×10^{-4}

- (i). Deduce the rate equation
- (ii). Calculate the rate constant and indicate it units
- 16. (a). A gas decomposes according to the following equation

$$X_2(g) \longrightarrow 2X(g); \Delta H = -ve$$

Sketch a graph to show how the concentration of X_2 and X vary with time

- (b). Using the same scale, sketch another graph to show how the concentration of X_2 varies with time, showing what happens under similar conditions in which the
 - (i). Temperature is raised

(ii). Pressure is lowered.

Comment on the results in each case.

(c). The following results were obtained for the decomposition of dinitrogen tetraoxide.

Time (s)	0	250	300	750	1000	1500	2000	2500
Concentration $(moldm^{-3})$	2.33	1.95	1.68	1,42	1.25	0.95	0.70	0.50

- (i). Plot a graph of concentration against time
- (ii). Use your graph to determine the order of reaction
- (iii). Calculate the rate constant and state its units
- 17. (a). Distinguish between order of reaction and molecularity
 - (b). (i). Define a catalyst
 - (ii). Explain the effect of a catalyst on the rate of reaction
 - (c). For a reaction with between P. Q and R, the rate equation is given as $Rate = [P]^2[Q][R]$. State how the rate of reaction would be altered if;
 - (i). [P] and [Q] are kept constant but [R] doubled
 - (ii). [P] and [R] are kept constant but [Q] halved
 - (iii). [Q] and [R] are kept constant but [P] doubled.
 - (iv). Concentration of all species are doubled.
 - (d). Ammonia decomposes on a hot tungsten surface into nitrogen and hydrogen. The following data was obtained

Initial pressure of NH ₃ (kPa)			
Half − life (s)	490	250	130

- (i). Write the equation for the decomposition of ammonia
- (ii). Using the above table, explain the term **half-life**.
- (iii). Plot a suitable graph and use the graph to determine the order and rate constant of the reaction.
- 18. (a). Distinguish between
 - (i). Reaction rate and rate constant.
 - (ii). Homogeneous and heterogeneous catalyst
 - (b). The table below was obtained during the hydrolysis of sucrose. The initial concentration was 1.00M.

Time (minutes)	0	60	90	130	180
Sucrose reacted $(moldm^{-3})$	0.00	0.195	0.277	0.373	0.478

The hydrolysis of sucrose is as shown in the equation below

$$C_{12}H_{22}O_{11}(aq) + H_2O(l) \longrightarrow C_6H_{12}O_6(aq) + C_6H_{12}O_6(aq)$$
(sucrose) (Glucose) (Fructose)

- (i). Plot a suitable graph to show that the order of reaction with respect to sucrose is one
- (ii). Determine the half-life and rate constant for the reaction.

- (iii). State the effect of halving the initial concentration of sucrose on the value of the half-life and rate constant
- (iv). Explain why the reaction is first order yet water us a reactant in the stoichiometric equation
- (c). The following data was obtained during the hydrolysis of 2-chloro-2-methylpropane by sodium hydroxide

Experiment	1	2	3	4	5
[2-chloro-2-methylpropane] (Moldm ⁻³)	0.1	0.1	0.075	0.050	0.025
$[\bar{O}H]$ ($Moldm^{-3}$)	0.5	0.25	0.25	0.25	0.25
Initial rate $(Moldm^{-3}s^{-1})$	0.0020	0.0020	0.0015	0.0010	0.0005

- (i). Determine the order of the reaction with respect 2-chloro-2-methylpropane and sodium hydroxide
- (ii). Calculate the value of the rate constant and state its units
- (iii). Suggest a mechanism for the reaction
- (d). The following results were obtained for the decomposition of dinitrogen pentaoxide

Temperaure (°C)	25	35	45	55	65
Rate constant; $K(s^{-1})$	1.74×10^{-5}	6.6×10^{-5}	2.51×10^{-4}	7.59×10^{-4}	2.0×10^{-3}

- (i). Plot a graph of log K against $\frac{1}{Temp}$
- (ii). Use you graph to determine the activation energy of the reaction. $\left(take\ slope\ =\ \frac{-E_a}{2\,30\,3R}\right)$ where R= 8.314 and E_a is activation energy.
- 19. (a). The data below was obtained from the following reaction

$$2NO(g) + 2H_2(g) \longrightarrow 2H_2O(g) + N_2$$

Experiment	1	2	3	4
$[NO]$ $(Moldm^{-3})$	0.5	0.5	0.1	0.1
$[H_2] (Moldm^{-3})$	0.1	0.2	0.5	0.5
Rate of formation of N_2 (Moldm ⁻³ s ⁻¹)	0.045	0.09	0.09	0,36

- (i). Determine the rate equation
- (ii). Calculate the rate constant and state its units
- (iii). State the effect on the reaction if the concentration of nitrogen monoxide is halved while that of hydrogen remains constant
- (iv). What is the effect on the rate of the reaction by doubling the concentration of nitrogen monoxide and increasing the concentration of hydrogen by three times?
- 20. (a). Propanone and iodine react in the presence of an acid according to the equation

$$CH_3COCH_3(aq) + I_2(aq) \xrightarrow{H^+} CH_3COCH_2I(aq) + HI(aq)$$

The reaction is first order with respect to propanone and is independent of the concentration of iodine

- (i). Write the expression for the rate law
- (ii). Describe briefly how the order with respect to iodine can be determined
- (b). The following data was obtained for the reaction

$$A + B + C \longrightarrow D$$

Experiment	Initial [A]	Initial [B]	Initial [C]	Initial rate
	(moldm ⁻³)	(moldm ⁻³)	(moldm ⁻³)	(moldm ⁻³ min ⁻¹)
1	0.1	0.1	0.1	1.0×10^{-4}
2	0.1	0.3	0.1	9.0×10^{-4}
3	0.3	0.3	0.1	2.7×10^{-3}
4	0,1	0.1	0.3	1.0×10^{-4}

- (i). Determine the order of reaction with respect to A, B and C. explain how you arrive at your answer.
- (ii). Write the rate equation for the reaction
- (iii). If the initial concentration of A, B, and C are each 0.4moldm⁻³. Calculate the initial rate of reaction.
- 21. (a). Hydrogen peroxide decomposes in the presence of iron(III) chloride according to the equation.

$$2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$$

The decomposition is first order reaction with respect to hydrogen

- (i). Write the rate law
- (ii). Describe briefly how the order with respect to hydrogen peroxide can be determined
- (b). The following data show the hydrolysis of ethyl ethanoate catalysed by sodium hydroxide

$$CH_3COOCH_2CH_3(l) + H_2O(l) \xrightarrow{\bar{O}H} CH_3COOH(aq) + CH_3CH_2OH(aq)$$

The initial concentration of the ethyl ethanoate being 0.05M

Time (seconds)	100	200	300	400	600
Percentage of ester hydrolysed	29.5	44.2	55.5	62.2	70.3

- (i). Plot a suitable graph and from it determine the order of reaction
- (ii). Hence determine the rate constant K
- 22. The following kinetic data was obtained for a reaction in which a certain compound W was converted to Y at 25°C.

Time (minutes)	0	9	18	27	40	54	72	105	118
[W] (moldm ⁻³)	0.106	0.096	0.086	0.077	0.065	0.054	0.043	0.030	0.025

- (a). Plot a graph of concentration against time
- (b). From the graph, deduce the time taken for the concentration of W to reduce to
 - (i). Half of the original value
 - (ii). Quarter of the original value

What is the order of reaction with respect to W.

- (c). Write the rate equation for the reaction in which W is changed to Y.
- (d). Determine the rate constant and state its units.
- 23. In the presence of an acid, sucrose is converted to a mixture of glucose and fructose according to the equation.

The following data was obtained at 25°C.

[sucrose] (moldm-3)	0.08	0.06	0.04	0.02
Rate (moldm ⁻³ s ⁻¹)	0.004	0.003	0.002	0.001

Draw a suitable graph and use it to determine the

- (i). Order of reaction
- (ii). Rate constant
- (iii). Rate of reaction when the concentration of sucrose is 01.12 moldm⁻³.
- 24. The following data refers to the reaction at 6°C.

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + 5O_2(g)$$

Time (seconds)	0	20	45	73	105	140	185	243	325
Partial pressure	100	90	80	70	60	50	40	30	20
of N_2O_5 (Pa)									

Plot a graph of partial pressure against time and use it to determine the

- (a). Order of reaction with respect to N_2O_5
- (b). Rate constant.
- 25. Compound A is converted to compounds B and C according to the equation.

$$A \longrightarrow B + C$$

Time (minutes)	0.0	7.2	18.0	36.0	71.0	108.0
[A] (moll-1)	100	91	79	63	40	25

- (a). Plot a graph of concentration of A against time
- (b). Use your graph to determine the time taken for the concentration of A to decrease from
 - (i). 80 to 40 moll⁻¹

- (ii). 60 to 30 moll⁻¹
- (c). Determine the
 - (i). Half-life of the reaction
 - (ii). Order of the reaction
 - (iii). Rate constant and state its units.
- 26. Bromoethane reacts with sodium hydroxide according to the equation.

$$CH_3CH_2Br(l) + \bar{O}H(aq) \longrightarrow CH_3CH_2OH(aq) + Br^-(aq)$$

The overall reaction is bimolecular.

- (a). Draw a fully labelled diagram of energy versus reaction path for the reaction
- (b). Explain what is meant by the terms
 - (i). Bimolecular reaction
 - (ii). Activated complex
- (c). Write the rate equation for the reaction.
- (d). Outline the mechanism for the reaction.
- 27. (a). Write an equation to show how benzene diazonium chloride can be prepared in the laboratory.
 - (b). Benzene diazonium chloride decomposes according to the equation when heated.

$$C_6H_5N_2Cl \longrightarrow C_6H_5Cl + N_2$$

The reaction is first order with respect to benzene diazonium chloride

- (i). Write an expression for the rate equation for the decomposition of benzene diazonium chloride
- (ii). Sketch a graph to show the variation in concentration of benzene diazonium chloride with time
- (iii). Use the graph to show how the order of reaction can be determined by half-life method
- 28. (a). For a reversible reaction indicated below; the enthalpy of reaction; ΔH is $+50 \text{kJmol}^{-1}$ and the activation energy; E_a ; is $+200 \text{kJmol}^{-1}$ both for the forward reaction.

$$A(g) + B(g) = C(g) + D(g)$$

The following data were obtained experimentally on the rates of reaction under different conditions at 300K

[A] (moll ⁻¹)	[B] (moll-1)	Rate (moll ⁻¹ s ⁻¹)
2.0×10^{-2}	1.0×10^{-2}	1.0×10^{2}
2.0×10^{-2}	2.0×10^{-2}	2.0×10^{2}
4.0×10^{-2}	2.0×10^{-2}	4.0×10^{2}

(i). Write down an expression for the experimental rate equation using the data above.

- (ii). Calculate the rate constant at 300K and give its units
- (b). (i). Sketch a diagram showing the energy versus the reaction path for this reaction. Label the diagram carefully and indicate the ΔH and E_a .
 - (ii). What is the activation energy for the backward reaction?
- (c). Explain how you would expect the
 - (i). Equilibrium constant for the reaction to change if the temperature was raised
 - (ii). Rate of reaction to change if the temperature was raised
- (d). Sketch on the same diagram, the variation of the concentration, C, with time during the reaction at two temperatures T_1 and T_2 where $T_2 > T_1$
- 29. 2-bromo-2-methylpropane reacts with aqueous sodium hydroxide to form 2-methylpropan-2-ol.
 - (a). Write down an equation for the reaction
 - (b). Draw an energy diagram for the reaction
 - (c). Write a mechanism for the reaction
 - (d). State the
 - (i). Rate determining step of the reaction
 - (ii). Technique used to study the reaction
- 30. The table below shows how the initial rate of reaction between reactants X and Y varies with different starting concentrations of X and Y

$$X + Y \longrightarrow Z$$

[X] (moll-1)	[Y] (moll-1)	Initial rate (moll-1s-1)
0.2	0.2	4.0×10^{-3}
0.2	0.4	4.0×10^{-3}
0.4	0.2	16.0×10^{-3}

- (a). Determine the order of the reaction with respect to X and Y
- (b). Write the rate equation for the reaction
- (c). Calculate the
 - (i). Rate constant
 - (ii). Rate of reaction when the concentration of X and Y are 0.1 and 0.2 respectively.
- 31. The results of hydrolysis of 2-bromo-2-methylpropane by aqueous sodium hydroxide at 25°C is shown below.

$[(CH_3)_3C - Br] \text{ (moll-1)}$	$[\bar{O}H]$ (moll ⁻¹)	Initial rate of hydrolysis (moll ⁻¹ s ⁻¹)
0.100	0.500	0.0020
0.100	0.250	0.0020
0.050	0.250	0.0010
0.025	0.250	0.0005

- (a). Deduce the order of reaction with respect to
 - (i). 2-bromo-2-methylpropane
 - (ii). Sodium hydroxide

- (b). Write the rate equation for the reaction
- (c). Calculate the rate constant, K, for the reaction and state its units
- 32. (a). State what is meant by the term order of reaction
 - (b). Methyl ethanoate is hydrolysed by water in the presence of an acid according to the following equation

$$CH_3CO_2CH_3(l) + H_2O(l) \xrightarrow{H^+} CH_3CO_2H(aq) + CH_3OH(aq)$$

- (i). State the molecularity of the reaction
- (ii). Determine the order of the reaction
- (iii). Under which conditions can the overall order be the first order.
- (c). The table below shows some kinetic data for the reaction

$$3A + B \longrightarrow 2P$$

[A] (moll-1)	[B] (moll ⁻¹)	Initial rate (moll-1s-1)
0.2	0.2	1.2×10^{-8}
0.2	0.6	1.2×10^{-8}
0.4	0.6	4.8×10^{-8}

- (i). Write the overall rate equation
- (ii). Calculate the rate constant and give its units
- 32. The kinetics data for the reaction between P and sodium hydroxide is shown below

[P] (moldm ⁻³)	0.105	0.088	0.074	0.051	0.037	0.026	0.016	0.010
Time (hour)	0.0	3.5	7.0	14.5	20.0	27.0	35.5	45.0

- (a). Plot a graph of concentration of P against time
- (b). Determine
 - (i). The half-life of P.
 - (ii). The order of the reaction.
 - (iii). The rate constant for the reaction.
- 33. Nitrogen(II) oxide combines with oxygen at 80°C and 200atm.

$$2NO(g) + O_2(g) \Leftrightarrow 2NO_2(g)$$

(a). The kinetic data for the reaction is shown below

Initial rate (Nm-2s-1)	6.8	27.2	61.2	108
$P_{NO}^{2} (N^{2}m^{-4})$	0.04	0.16	0.36	0.64

 P_{NO} = the partial pressure of NO

- (i). Plot a graph of initial rate against P_{NO}^2
- (ii). Using your graph, determine the order of the reaction with respect to nitrogen(II) oxide
- (iii). Give a reason for your answer in (a) (ii) above
- (b). When the partial pressure of oxygen was doubled to a new constant value, the value of the gradient of the graph in a (i) above doubled.

- (i). Determine the order of the reaction with respect to oxygen. Explain your answer.
- (ii). Write the rate equation for the reaction in (b)
- (iii). Calculate the rate constant when the initial $rate = 170 \ Nm^{-2} s^{-1}$; $P_{NO} = 0.1 \ Nm^{-2}$ and $P_{O_2} = 1.36 \ Nm^{-2}$ and state its units.
- (c). State the effect of the following on the rate of this reaction.
 - (i). Having P_{NO} and O_2 that of is kept constant.
 - (ii). Doubling the P_{0_2} and that of P_{NO} .
- 34. The rate equation for a certain reaction is; Rate = $K[P][Q]^2[R]$
 - (a). State what would happen to the rate of the reaction if
 - (i). [P] and [Q] are kept constant but [R] doubled
 - (ii). [P], [Q] and [R] all halved
 - (iii). [P], [Q] and [R] all doubled
 - (b). The following results were obtained in a study of a reaction between peroxodisulphate and iodide ions

$[S_2O_8^{2-}]$ (moll-1)	$[I^-]$ (moll ⁻¹)	Initial rate (moll-1s-1)
0.024	0.024	9.6×10^{-6}
0.048	0.024	1.92×10^{-5}
0.048	0.012	9.6×10^{-6}

- (i). Write the rate equation
- (ii). Calculate the rate constant and state its units.
- 35. The kinetic data for a reaction between X and Y are given below

[X] (moll-1)	[Y] (moll ⁻¹)	Initial rate (moll-1s-1)
0.30	0.15	1.5×10^{-2}
0.30	0.30	3.0×10^{-2}
0.60	0.30	6.0×10^{-2}
0.60	0.60	1.2×10^{-1}

- (a). Determine the order of the reaction with respect to
 - (i). X
 - (ii). Y
- (b). Determine the overall order of the reaction
- (c). Calculate the rate constant for the reaction and indicate its units
- 36. (a). Differentiate between order of reaction and molecularity
 - (b). The table below shows kinetics data for the following reaction

$$5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \longrightarrow 3Br_{2}(aq) + 3H_{2}O(l)$$

Volume of BrO_3^- (cm ³)	3.0	4.0	5.0	6.0	8.0	10.0
Time; t (s)	69.0	45.0	35.0	31.0	24.0	18.5

(i). Plot a graph of $\frac{1}{t}$ against volume of bromate(V); BrO_3^-

- (ii). Determine the order of reaction with reaction with respect to bromate(V) and give a reason for your answer
- (iii). Determine the rate constant for the reaction and state its units
- (iv). Write equation for the rate of reaction in terms of concentration of bromate(V)
- (c). The kinetic data for the reaction between substances X and Y are shown below

[X] (moll-1)	[Y] (moll ⁻¹)	Initial rate (moll-1s-1)
5.0×10^{-3}	5.0×10^{-3}	3.0×10^{-3}
1.0×10^{-2}	1.0×10^{-2}	2.4×10^{-2}
5.0×10^{-3}	1.0×10^{-2}	6.0×10^{-3}

Determine the

- (i). Rate equation for the reaction
- (ii). Value of rate constant and state its units
- (iii). Initial rate of the reaction when the concentration of X and Y are 1.5×10^{-2} and 7.5×10^{-3} moldm⁻³ respectively.
- (d). Explain how the following factors that affect the rate of a reaction
 - (i). Temperature
 - (ii). Concentration
 - (iii). Surface area
- 37. (a). State what is meant by the following terms order of a reaction and half-life of a reaction.
 - (b). A compound B decomposes according to the following equation

$$2B \longrightarrow Products$$

The table below shows the concentration of B at variation time

Time (minutes)	2.0	4.0	7.0	10.0	14.0	20.0
[B] (moldm ⁻³)	0.820	0.670	0.490	0.372	0.240	0.141

Draw a graph of a $log_{10}[B]$ against time

- (c). Using your graph, determine the
 - (i). Original concentration of B
 - (ii). Order of the reaction
 - (iii). Rate constant for the reaction
 - (iv). Half-life for the reaction
- (d). (i). Using the same axes, draw a labelled diagram for energy-reaction coordinate for a catalysed and uncatalysed reaction
 - (ii). State the difference in your diagrams
 - (iii). State how a catalyst increases the rate of a reaction.
- 38. Sucrose is hydrolysed in dilute acid to give a mixture of glucose and fructose

$$C_{12}H_{22}O_{11}(aq) + H_2O(l) \xrightarrow{H^+} C_6H_{12}O_6(aq) + C_6H_{12}O_6(aq)$$
(sucrose) (Glucose) (Fructose)

The table below shows the concentration of sucrose; [S] remaining at different time intervals

Time (minutes)	10	20	30	40	50	60
[S] (moldm ⁻³)	1.25	1.04	0.87	0.73	0.60	0.50

- (a). Plot a graph of In[S] against time
- (b). Using your graph, determine the
 - (i). Original concentration of sucrose
 - (ii). Order of reaction
 - (iii). Rate constant for the reaction
 - (iv). Half-life for the reaction
- (c). State the conditions under which the reaction in (a) can be overall first order
- 39. (a). Sodium thiosulphate solution reacts with dilute hydrochloric acid according to the following equation

 $Na_2S_2O_3(aq) + 2HCl(aq) \longrightarrow 2NaCl(aq) + S(s) + SO_2(g) + H_2O(l)$

The rate equation for the reaction is given by $Rate = K[HCl]^2[Na_2S_2O_3]$

State and explain how the rate of reaction would be affected if

- (i). [HCl] is doubled while $[Na_2S_2O_3]$ is kept constant
- (ii). $[Na_2S_2O_3]$ is halved while the [HCl] is kept constant
- (iii). [HCl] is halved while the [$Na_2S_2O_3$]
- (iv). [HCl] and $[Na_2S_2O_3]$ are both halved
- (b). Describe an experiment to show that the order of reaction in in (a) is first order reaction with respect to sodium thiosulphate
- (c). The table below shows how the rate constant; K varies with temperature for a reaction between hydrogen and iodine to form hydrogen iodide

Temperaure (K)	500	550	600	650	700
Rate constant; $K \pmod{-1}l^3s^{-1}$	6.81×10^{-4}	2.64×10^{-2}	0.56	7.31	66.67

- (i). Plot a graph of $\log_{10} K$ against $\frac{1}{Temp}$
- (ii). Use your graph to determine the activation energy, E_a , for the reaction (d). State how a catalyst increases the rate of a chemical reaction
- 40. The information in the table below gives the time taken for a substance S to form with different concentration of the reactant R

Time; t(s)	0.96	0.64	0.48	0.39	0.32
$[R](moll^{-1})$	0.447	0.548	0.632	0.707	0.775

- (a). Plot a graph of $\frac{1}{t}$ against $[R]^2$
- (b). Use your graph to determine the
 - (i). Order of reaction with respect to R. Give a reason for your answer
 - (ii). Rate constant and state its units
 - (iii). Write the rate equation for the reaction
- 41. The table below shows the amount of the reactant, A, remaining at different time intervals in a reaction in which A is converted into a product B.

$A \longrightarrow B$

Time; t(minuts)	0.5	1.0	1.5	2.0	2.5
$[A](moll^{-1})$	0.067	0.045	0.030	0.020	0.014

- (a). Plot a graph of In[A] against time
- (b). Use your graph to determine the
 - (i). Original concentration of A
 - (ii). Rate constant for the reaction
 - (iii). Order of the reaction with respect to A
 - (iv). Half-life of A
- (c). Write the rate equation for the reaction
- 42. The table below shows how the concentration of a given reactant, K, varies with time.

Time(minutes)	0.0	2.0	4.0	6.0	8.0	10.0
$[K](moll^{-1})$	1.20	0.72	0.46	0.26	0.14	0.06

- (a). Draw a graph of
 - (i). Concentration of K against time
 - (ii). $\log_{10}\left(\frac{[K]_t}{[K]_0}\right)$ against time
- (b). Using each graph; determine the
 - (i). Rate constant for the reaction
 - (ii). The order of reaction with respect to K
 - (iii). The half-life for the reaction
- 43. X and Y react to form W according to the equation

$$X(g) + Y(g) = W(g); \Delta H = +50kJmol^{-1}$$

The table below shows the rates of reaction when various concentrations of X and Y were used at 298K

[X] (moll-1)	[Y] (moll ⁻¹)	Initial rate (moll-1s-1)
2.0×10^{-2}	1.0×10^{-2}	1.0×10^{2}
2.0×10^{-2}	2.0×10^{-2}	2.0×10^{2}
4.0×10^{-2}	2.0×10^{-2}	4.0×10^{2}

- (a). (i). Differentiate between 'order of reaction' and 'rate constant'
 - (ii). Determine the order of reaction with respect to X and Y
 - (iii). Write the expression for the rate equation
 - (iv). Calculate the rate constant for the reaction at 298K and state its units
- (b). (i). Distinguish between activation energy and enthalpy of reaction
 - (ii). Draw a fully labelled potential energy versus reaction coordinate for the reaction between X and Y
 - (iii). Calculate the activation energy for the backward reaction (the activation energy for the forward reaction is +200kJmol⁻¹)

- (c). State how you would expect the
 - (i). Activation energy for the reaction to change if a catalyst is used. Give a reason for your answer
 - (ii). Rate of reaction to change if the reaction was carried out at a temperature above 298K. give a reason for your answer.
- (d). The react was carried out at temperatures T_1 and T_2 where T_2 is greater than T_1 . Sketch on the same axes graphs to show how the concentration of W varies with time during the reactions at T_1 and T_2
- 44. Various concentrations of X and Y were reacted at a constant temperature. The table below shows the initial concentration of X and Y and their initial rates for the reaction.

[X] (moldm ⁻³)	[Y] (moldm ⁻³)	Initial rate (moldm ⁻³ s ⁻¹)
0.2	0.2	3.5×10^{-4}
0.4	0.4	1.4×10^{-3}
0.8	0.4	5.6×10^{-3}

- (a). State the order of reaction with respect to
 - (i). X
 - (ii). Y
- (b). Give reasons for your answer in (a)
- (c). Determine the overall order of the reaction
- (d). Calculate the value for the rate constant
- 45. (a). The rate of a chemical reaction can be affected by the concentration of the reactants. State two other factors that can affect the rate of a chemical reaction.
 - (b). Describe an experiment to determine the rate of decomposition of hydrogen peroxide.
 - (c). The table below shows variation in the concentration of sodium thiosulphate with time when a fixed volume of hydrochloric acid was added to sodium thiosulphate of various concentrations

Concentration of sodium thiosulphate (moldm ⁻³)	0.2	0.16	0.12	0.08	0.04
Time; t (s)	24	29	39	60	138
$\frac{1}{t} (s^{-1})$					

- (i). Copy the table and fill in the values of 1/t
- (ii). Plot a graph of 1/t against concentration of sodium thiosulphate.
- (iii). What is the order of the reaction? Give a reason for your answer.
- (iv). Calculate the rate constant of the reaction and indicate its units.
- (v). Determine the time taken for the concentration of sodium thiosulphate to decrease from 0.2 moldm³ to 0.1 moldm³