Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчет

по лабораторной работе № 4

"Anova"

Автор:

Кузнецова Таисия Ј3114,

Долбенко Олеся Ј3113

Демьянов Федор J3114

Факультет: ФТИИ

Введение

Цель работы: Освоить методы проверки статистических гипотез о равенстве средних значений в нескольких группах данных.

Задачи:

- 1. Сгенерировать две выборки данных из нормального распределения, каждая из которых состоит из трёх подгрупп
- 2. Визуализировать распределения с помощью графиков плотности (KDE) и объединённых распределений для каждой выборки.
- 3. Реализовать парный Z-тест для проверки гипотезы о равенстве средних значений при известных дисперсиях.
- 4. Реализовать парный t-тест для случая неизвестных, но равных дисперсий.
- 5. Провести оба вида парных тестов для всех пар групп в обеих выборках.
- 6. Применить однофакторный дисперсионный анализ (ANOVA) для проверки гипотезы о равенстве всех средних значений в группах.
- 7. Сравнить полученные результаты

Ход работы:

- 1. Мы сгенерировали две выборки из нормального распределения. Каждая выборка включала по три группы одинакового объёма:
 - в первой выборке группы имели близкие математические ожидания;
 - во второй сильно отличающиеся.
- 2. Для визуального анализа распределений мы построили графики плотности (KDE) как для каждой группы, так и для объединённых данных внутри каждой выборки.
- 3. Затем мы реализовали парные Z-тесты для всех пар групп, предполагая известную и одинаковую дисперсию. Результаты показали различия в выборке с сильно отличающимися средними.
- 4. Далее мы провели парные t-тесты при неизвестных, но равных дисперсиях, что также позволило выявить различия между группами.
- 5. Для одновременного анализа всех трёх групп мы применили однофакторный дисперсионный анализ (ANOVA), который подтвердил различия в выборках, особенно во второй.
- 6. Мы оценили вычислительную эффективность обоих подходов и пришли к выводу, что ANOVA эффективнее при большом числе групп. При этом парные тесты предоставляют более детальную информацию о различиях между конкретными парами.

Теоретическая часть

Нормальное распределение — это непрерывное распределение вероятностей с плотностью:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} * e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

где:

μ — математическое ожидание

 σ^2 – дисперсия

Парный Z-тест (при известных дисперсиях)

Z-тест применяется для проверки гипотезы:

$$H_0: \mu_1 = \mu_2$$

$$H_1$$
: $\mu_1 \neq \mu_2$

При известных и равных дисперсиях σ^2 , статистика рассчитывается по формуле:

$$Z = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{2\sigma^2/n}}$$

где:

 $\overline{X_1}$, $\overline{X_2}$ — среднеен значение выборок, n — объем каждой выборки

Результат сравнивается с критическим значением стандартного нормального распределения $Z_{crit} = \pm z_a/2$

Парный t-тест (при неизвестных, но равных дисперсиях)

Если дисперсия неизвестна, но предполагается одинаковой, используется двухвыборочный t-тест:

$$t = \frac{\overline{X_1} - \overline{X_2}}{S_p \sqrt{2/n}}$$

где S_p — объединённая (пулевая) оценка стандартного отклонения:

$$S_p = \sqrt{\frac{(n-1)S_1^2 + (n-1)S_2^2}{2n-2}}$$

и S_1^2 , S_2^2 — выборочные дисперсии. Статистика t сравнивается с критическим значением распределения Стьюдента с 2n-2 степенями свободы.

Однофакторный дисперсионный анализ (ANOVA)

ANOVA применяется для проверки гипотезы о равенстве средних более чем в двух группах

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_K$

 $H_{_{1}}$: хотя бы одно из $\mu_{_{i}}$ отличается

F-статистика рассчитывается как:

$$F = \frac{\text{МЕЖГРУППОВАЯ ДИСПЕРСИЯ } (MS_between)}{\text{ВНУТРИГРУППОВАЯ ДИСПЕРСИЯ } (MS_bithim)}$$

где:

MS_between=
$$\frac{SSbetwen}{k-1}$$

$$MS_{within} = \frac{SSwithin}{N-k}$$

k— число групп, N — общее количество наблюдений.

Если F превышает критическое значение из F-распределения, гипотеза \boldsymbol{H}_0 отклоняется.

Уровень значимости и р-значение

Во всех тестах применяется уровень значимости α =0.05 Если рассчитанное p-значение < α , то нулевая гипотеза отклоняется.

Распределение Стьюдента (t-распределение) — это непрерывное распределение вероятностей, используемое при проверке статистических гипотез в случае, когда: объём выборки мал (обычно менее 30 наблюдений), дисперсия неизвестна,

данные имеют нормальное распределение.

Это распределение особенно важно при использовании t-тестов, которые оценивают, различаются ли средние значения двух групп.

Плотность вероятности t-распределения определяется следующей формулой:

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} (1 + \frac{t^2}{\nu})^{-\frac{\nu+1}{2}}$$

где:

t — значение переменной,

 \mathbf{v} (**ню**) — число степеней свободы (обычно n-1, где n — размер выборки),

 $\Gamma(x)$ — гамма-функция (обобщение факториала).

Основные свойства распределения Стьюдента:

Симметрично относительно нуля.

Более "толстые хвосты", чем у нормального распределения — это учитывает большую неопределённость при малом числе наблюдений. При увеличении числа степеней свободы ($v \to \infty$) t-распределение стремится к стандартному нормальному распределению N(0,1).

Практическая часть

1. Генерация выборок

На первом этапе мы сгенерировали две выборки, каждая из которых состоит из трёх подгрупп (групп). Все группы были сгенерированы из нормального распределения с одинаковой дисперсией (стандартное отклонение $\sigma = 1$), но с разными средними значениями.

- Первая выборка: три группы с близкими математическими ожиданиями (около 5.0), что позволяет моделировать ситуацию, в которой различия между группами минимальны.
- Вторая выборка: три группы с существенно различающимися средними (например, 2.0, 5.0 и 8.0), что моделирует явно выраженные различия между группами при той же дисперсии.

Размер каждой подвыборки составил 100 элементов

```
# Общие параметры
n = 100 # Размер каждой подвыборки
std = 1 # Стандартное отклонение
var = std**2

# Первая выборка (близкие средние)
group1 = np.random.normal(loc=5.0, scale=std, size=n)
group2 = np.random.normal(loc=5.2, scale=std, size=n)
group3 = np.random.normal(loc=4.9, scale=std, size=n)

# Вторая выборка (сильно разные средние )
group4 = np.random.normal(loc=2.0, scale=std, size=n)
group5 = np.random.normal(loc=5.0, scale=std, size=n)
group6 = np.random.normal(loc=8.0, scale=std, size=n)
```

2. График КDE

Для наглядной проверки различий между группами мы построили графики оценки плотности распределения (KDE).

Графики строились отдельно для каждой из двух выборок:

- Для первой выборки с близкими средними значения KDE-групп частично перекрываются, что визуально подтверждает, что различия между группами минимальны.
- Для второй выборки KDE-групп показывают чётко разделённые пики, что говорит о выраженных различиях между средними значениями групп.

Также на каждый график была добавлена кривая объединённого распределения (всех трёх групп), выделенная пунктирной линией. Это позволяет сравнить индивидуальные плотности с общей структурой распределения.

3. Парные тесты

Парный тест для проверки гипотезы о равенстве математических ожиданий при известных дисперсиях. На данном этапе мы реализовали парные Z-тесты для проверки гипотезы Для каждой пары групп внутри выборок была рассчитана Z-статистика. Для каждой пары сравнивался расчётный Z с критическим значением Z на уровне значимости α =0.05. В случае превышения критического значения (в модуле) нулевая гипотеза отклонялась.

```
def z_test_known_variance(x1, x2, sigma_squared, alpha=0.05):
    n = len(x1)
    mean1, mean2 = np.mean(x1), np.mean(x2)

    z = (mean1 - mean2) / np.sqrt(2 * sigma_squared / n)
    z_crit = norm.ppf(1 - alpha/2) # двусторонний тест

    reject = abs(z) > z_crit
    return z, z_crit, reject

def run_z_tests(groups, label, sigma_squared=1, alpha=0.05):
    print(f*\n== Z-тесты при мэвестных дисперсиях для {label} ===")
    for i in range(len(groups)):
        z, z_crit, reject = z_test_known_variance(groups[i], groups[j], sigma_squared, alpha)
        result = "OTKЛОНЯЕМ H₀" if reject else "HE OTKЛОНЯЕМ H₀"
        print(f*Группа {i+1} vs fpynna {j+1}: Z = {z:.2f}, Z_crit = ±{z_crit:.2f} → {result}")

[] run_z_tests([group1, group2, group3], "Выборка 1 (близкие ожидания)")
```

```
=== Z-тесты при известных дисперсиях для Выборка 1 (близкие ожидания) === Группа 1 vs Группа 2: Z = -2.31, Z_crit = ±1.96 → ОТКЛОНЯЕМ Н₀ Группа 1 vs Группа 3: Z = -0.49, Z_crit = ±1.96 → НЕ отклоняем Н₀ Группа 2 vs Группа 3: Z = 1.82, Z_crit = ±1.96 → НЕ отклоняем Н₀ === Z-тесты при известных дисперсиях для Выборка 2 (разные ожидания) === Группа 1 vs Группа 2: Z = -20.06, Z_crit = ±1.96 → ОТКЛОНЯЕМ Н₀ Группа 1 vs Группа 3: Z = -40.86, Z_crit = ±1.96 → ОТКЛОНЯЕМ Н₀ Группа 2 vs Группа 3: Z = -20.79, Z_crit = ±1.96 → ОТКЛОНЯЕМ Н₀
```

В первой выборке (близкие средние) только одна пара (группа 1 и 2) показала статистически значимое отличие, что подтверждает наличие незначительных различий. Во второй выборке (разные средние) все три пары дали очень высокие значения Z и уверенное отклонение гипотезы Н0, что говорит о сильных различиях между группами.

Затем мы провели парные t-тесты Стьюдента, предполагая, что дисперсии выборок неизвестны, но равны.

```
[ ] from scipy.stats import ttest_ind
     def run_t_tests(groups, label, alpha=0.05):
         print(f"\n=== t-тесты при неизвестных, но равных дисперсиях для <math>\{label\} ==="\}
          for i in range(len(groups)):
              for j in range(i + 1, len(groups)):
                  stat, p = ttest_ind(groups[i], groups[j], equal_var=True)
                  result = "ОТКЛОНЯЕМ H_0" if p < alpha else "НЕ отклоняем H_0"
                   print(f"Группа \{i+1\} vs Группа \{j+1\}: t = \{stat:.2f\}, p = \{p:.4f\} \rightarrow \{result\}")
run_t_tests([group1, group2, group3], "Выборка 1 (близкие ожидания)")
     run_t_tests([group4, group5, group6], "Выборка 2 (разные ожидания)")
∓*
        = t-тесты при неизвестных, но равных дисперсиях для Выборка 1 (близкие ожидания) ===
     Группа 1 vs Группа 2: t = -2.48, p = 0.0141 → ОТКЛОНЯЕМ H_0 Группа 1 vs Группа 3: t = -0.49, p = 0.6275 → HE отклоняем H_0
     Группа 2 vs Группа 3: t = 1.78, p = 0.0762 → HE отклоняем H<sub>o</sub>
     === t-тесты при неизвестных, но равных дисперсиях для Выборка 2 (разные ожидания) ===
     Группа 1 vs Группа 2: t = -20.51, p = 0.0000 \rightarrow ОТКЛОНЯЕМ H<sub>o</sub>
     Группа 1 vs Группа 3: t = -45.19, p = 0.0000 → ОТКЛОНЯЕМ Н<sub>о</sub>
     Группа 2 vs Группа 3: t = -20.88, p = 0.0000 → ОТКЛОНЯЕМ H<sub>o</sub>
```

В первой выборке только одна пара (группа 1 и 2) показала значимое отличие (p < 0.05), остальные — нет. Это согласуется с результатами Z-теста.

Во второй выборке все пары дали р-значения, близкие к нулю, что подтверждает сильное расхождение средних значений.

Таким образом, t- и Z-тесты показали согласованные выводы. Это означает корректность реализации и хорошее соответствие между теоретическими ожиданиями и практическими результатами.

5. ANOVA

Мы применили однофакторный дисперсионный анализ (ANOVA) для проверки гипотезы о равенстве средних значений во всех трёх группах одновременно.

Н₀: математические ожидания всех групп равны,

Н₁: хотя бы одно из средних значений отличается от других.

```
from scipy.stats import f_oneway

def run_anova(groups, label):
    f_stat, p_val = f_oneway(*groups)
    result = "ОТКЛОНЯЕМ Ho" if p_val < 0.05 else "HE ОТКЛОНЯЕМ Ho"
    print(f"\n=== ANOVA для {label} ===")
    print(f"F = {f_stat:.2f}, p = {p_val:.4f} → {result}")

[] run_anova([group1, group2, group3], "Выборка 1 (близкие ожидания)")
    run_anova([group4, group5, group6], "Выборка 2 (разные ожидания)")

=== ANOVA для Выборка 1 (близкие ожидания) ===
    F = 3.05, p = 0.0490 → ОТКЛОНЯЕМ Ho
    === ANOVA для Выборка 2 (разные ожидания) ===
    F = 905.27, p = 0.0000 → ОТКЛОНЯЕМ Ho</pre>
```

Выборка 1 (близкие ожидания):

Несмотря на близкие средние, различие оказалось на границе статистической значимости. Это подтверждает, что одна из групп может немного отличаться. Выборка 2 (разные ожидания):

Значение р = 0 это ожидаемый результат так как группы были с явно различающимися средними

ANOVA позволила быстро оценить наличие различий между всеми группами сразу. В отличие от парных тестов, она не указывает, между какими группами есть различия — она лишь проверяет сам факт наличия отличий. Результаты анализа полностью согласуются с результатами парных Z- и t-тестов, что подтверждает корректность расчётов и моделей.

6. Анализ

Для сравнения эффективности t-тестов и ANOVA мы замерили время выполнения каждого из методов на одной и той же выборке, состоящей из трёх групп по 100 элементов.

```
import time
# t-тесты
start = time.time()
run_t_tests([group1, group2, group3], "Timing test")
print("t-тесты заняли:", time.time() - start, "сек")
# ANOVA
start = time.time()
run_anova([group1, group2, group3], "Timing test")
print("ANOVA заняла:", time.time() - start, "сек")
=== t-тесты при неизвестных, но равных дисперсиях для Timing
Группа 1 vs Группа 2: t = -2.48, p = 0.0141 → ОТКЛОНЯЕМ H<sub>0</sub>
Группа 1 vs Группа 3: t = -0.49, p = 0.6275 → НЕ отклоняем H<sub>0</sub>
Группа 2 vs Группа 3: t = 1.78, p = 0.0762 → HE отклоняем H<sub>o</sub>
t-тесты заняли: 0.011661052703857422 <u>сек</u>
=== ANOVA для Timing test ===
F = 3.05, p = 0.0490 → ОТКЛОНЯЕМ Н<sub>о</sub>
ANOVA заняла: 0.0014448165893554688 сек
```

Даже при сравнительно небольшом объёме данных однофакторный дисперсионный анализ (ANOVA) работает значительно быстрее, чем серия парных t-тестов. При увеличении числа групп разница в эффективности будет становиться ещё более заметной, поскольку количество t-тестов растёт квадратично, а ANOVA выполняется за постоянное время.

Для наглядной оценки различий между группами мы построили boxplot для обеих выборок

В первой выборке boxplot-графики трёх групп существенно перекрываются. Медианы близки, размеры ящиков и усы схожи. Это соответствует статистическим выводам о слабых различиях между группами.

Во второй выборке ящики отчётливо разнесены по вертикали. Медианы различны, и пересечения почти отсутствуют. Это наглядно подтверждает наличие существенных различий между группами, что согласуется с результатами t-тестов и ANOVA.

Вывод

1. По парным Z- и t-тестам:

В первой выборке с близкими средними отличия были зафиксированы только между одной парой групп. В остальных случаях гипотеза о равенстве средних не отклонялась. Во второй выборке все пары показали статистически значимые различия, что соответствует ожидаемому результату. Z- и t-тесты дали согласованные выводы.

2. По ANOVA:

Дисперсионный анализ в первой выборке выявил слабое различие между группами (р ≈ 0.049), что согласуется с результатами парных тестов. Во второй выборке ANOVA уверенно показала наличие различий между всеми группами. Метод оказался эффективным для быстрой проверки общей гипотезы.

3. Сравнение методов:

ANOVA работает быстрее и удобнее при большом числе групп, но не показывает, между какими именно группами есть различия. Парные тесты дают более детальную информацию, но требуют больше вычислений. Оба метода полезны в зависимости от задачи.

4. Общий вывод:

Парные тесты и дисперсионный анализ показали себя как надёжные методы для проверки различий между группами. Их результаты совпадают, и выбор метода зависит от целей анализа: ANOVA — для общей оценки, парные тесты — для уточнения.

Приложение

[∞] Матстат4.ipynb