Language-Grounded Multi-Agent Learning

Maxime Toquebiau^{1,2}, Nicolas Bredeche², Faïz Ben Amar², Jae Yun Jun Kim¹

¹ECE Paris ²ISIR, Sorbonne Universités

March 28th, 2024

Table of Content

- Jury soutenance: s'accorder sur les noms
- Manuscrit
 - Présenter le plan
 - Montrer l'avancement
- Représenter les forces qu'on veut montrer
- Pour chaque force
 - Définir
 - Proposer une méthode
 - Si possible montrer des résultats
 - Si possible montrer des vidéos d'éval

-

Jury de la soutenance

- Rang A
 - Olivier Simonin (Lyon) -- examinateur (et président?)
 - Sylvain Chevallier (Orsay) -- rapporteur?
 - (OU Yann Chevaleyre (Dauphine) mais pas rapporteur)
- Rang B
 - Clément Moulin Frier (Bordeaux) -- rapporteur
 - Alain Dutech (Nancy) -- rapporteur?
 - Aurélie Beynier (SU) -- examinatrice (et représentante SU)
 - ...? (hors SU)
 - Michael Defoort ? (vraiment pas RL) https://scholar.google.co.il/citations?user=vy6pLsgAAAAJ&hl=en

Olivier Simonin (A, président)
Sylvain Chevallier (A, examinateur) OU Yann Chevaleyre (A, examinateur)
Clément Moulin-Frier (B, rapporteur)
Alain Dutech (B, rapporteur)
Aurélie Beynier (B, examinatrice)

Manuscrit

- Intro
- Chapitre 1: Reinforcement learning (definitions and overview)
 - [DONE] Overview of domain and trends
 - [DONE] Elements of RL
 - [DONE] Basic RL algorithms
 - [(almost) DONE] Neural networks
 - Deep RL
- Chapitre 2: Multi-agent Deep RL
 - Multi-agent systems (definitions)
 - Issues in MAS
 - Deep MARL algorithms
- [(almost) DONE] Chapitre 3: JIM
- Chapitre 4: Language-Grounded MARL
- Chapitre 5?

Language-Grounded Multi-Agent Learning

Arctor-Communicator-Critic archi

Initial results

Objectives

Show the advantages of using language

- Adaptation
- Universality
- Interpretability
- Interaction
- Language as a learning tool

Adaptation

- To a more difficult setup
 - Change the task slightly to make it more difficult

Examples:

- PredatorPrey: Make map larger
- PredatorPrey: Make preys move faster/go away from predators
- Make observation range smaller
- To a different task
 - Put trained agents in a different task

Examples:

- PredatorPrey->Foraging (F->PP)
- PredatorPrey->PreyPredator
- To a new environment

Adaptation: To a more difficult task

PredatorPrey, larger map

adapted from the best pre-trained runs

Universality

- Communicating with agents never seen before
 - Train two sets of agents, then evaluate a mix of the two groups

Interpretability

- Try to understand messages given states (emergent vs language)

- Try to play the role of an agent, dealing with generated messages of other agents

Interaction

- Send messages in the message canal and analyse reaction

- Play as an agent, being able to send messages

Language as a learning tool

 Compare: agents trained with perfect language modules since the beginning vs agents trained by learning language modules at the same time

Issues with emergent communication

- Continuous emergent communication does not work when generated as an action learnt with RL
- In literature, communication is learnt as a module inside the RL agent

- => Try method similar to literature
- => Try discrete-action messages

Next steps

- Make better emergent communication
- Re-try Foraging and try to make it work
- Do experiments
- Write manuscript

Thank you for you attention!

Questions?