C10M 141/12 (2006.01) *C10M 133/44* (2006.01)

C10M 145/24 (2006.01) *C10N 40/12* (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) CIIK

C10M 129/10 (2006.01); C10M 141/12 (2006.01); C10M 133/44 (2006.01); C10M 145/24 (2006.01)

(21)(22) Заявка: 2016138341, 27.09.2016

(24) Дата начала отсчета срока действия патента: 27.09.2016

Дата регистрации: **15.01.2018**

Приоритет(ы):

(22) Дата подачи заявки: 27.09.2016

(45) Опубликовано: 15.01.2018 Бюл. № 2

Адрес для переписки:

119334, Москва, ул. Косыгина, 5, кв. 35, Щедрину М.Б.

(72) Автор(ы):

Татур Игорь Рафаилович (RU), Спиркин Владимир Григорьевич (RU), Шуварин Дмитрий Викторович (RU), Мельников Александр Викторович (RU), Курганов Денис Валерьевич (RU), Шарафутдинова Дина Вазировна (RU), Шеронов Дмитрий Николаевич (RU)

(73) Патентообладатель(и): Акционерное общество "Дальневосточная генерирующая компания" (RU)

(56) Список документов, цитированных в отчете о поиске: RU 2458109 C2, 10.08.2012. RU 2439136 C1, 10.01.2012. RU 2451060 C2, 20.05.2012. RU 2058376 C1, 20.04.1996. RU 2144943 C1, 27.01.2000. JP 02284994 A, 22.11.1990.

S

(54) ТУРБИННОЕ МАСЛО

(57) Реферат:

Использование: для смазки газовых, паровых гидротурбин и турбокомпрессоров в качестве гидравлической жидкости в системах регулирования этих агрегатов. Сущность: турбинное масло содержит, мас.%: кислый эфир алкенилянтарной кислоты - 0,01-0,03; 2,6-ди-третбутил-4-метилфенол- 0,48-0,60, азотсодержащий блок-сополимер окисей этилена и пропилена - 0,01-0,07; алкилтолуолалкиламинотриазол – 0,01, 0,02-0,03, 0,05; 2,6-диалкилфенол-п-этилалкилат

- 0,01, 0,03, 0,05; продукт конденсации олеиновой кислоты с диэтаноламином и борной кислотой, модифицированный гидроокисью калия, - 0,32-0,40 и нефтяное масло с кинематической вязкостью 20-23 мм²/с при 50°С - остальное до 100. Технический результат - повышение антиокислительных свойств турбинного масла и соответствующее снижение его потерь в условиях применения. 2 табл.

7

2641005

⊃

0 S

C10M 133/44 (2006.01) C10M 145/24 (2006.01)

C10N 40/12 (2006.01)

(12) ABSTRACT OF INVENTION

(52) CPC

C10M 129/10 (2006.01); C10M 141/12 (2006.01); C10M 133/44 (2006.01); C10M 145/24 (2006.01)

(21)(22) Application: 2016138341, 27.09.2016

(24) Effective date for property rights:

27.09.2016

Registration date: 15.01.2018

Priority:

(22) Date of filing: 27.09.2016

(45) Date of publication: 15.01.2018 Bull. № 2

Mail address:

119334, Moskva, ul. Kosygina, 5, kv. 35, Shchedrinu M.B.

(72) Inventor(s):

Tatur Igor Rafailovich (RU), Spirkin Vladimir Grigorevich (RU), Shuvarin Dmitrij Viktorovich (RU), Melnikov Aleksandr Viktorovich (RU), Kurganov Denis Valerevich (RU), Sharafutdinova Dina Vazirovna (RU), Sheronov Dmitrij Nikolaevich (RU)

(73) Proprietor(s):

Aktsionernoe obshchestvo "Dalnevostochnaya generiruyushchaya kompaniya" (RU)

(54) TURBINE OIL

(57) Abstract:

FIELD: chemistry.

SUBSTANCE: oil contains, wt %: acid ester of alkenylsuccinic acid - 0.01-0.03; 2,6-di-tert-butyl-4methylphenol- 0.48-0.60, the nitrogen-containing block copolymer of oxides of ethylene and propylene - 0.01-0.07; alkyltoluylalkylaminotriazole - 0.01, 0.02-0.03, 0.05; 2,6-dialkylphenol-p-ethylalkylate - 0.01, 0.03, 0.05; the condensation product of oleic acid with

diethanolamine and boric acid, modified with potassium hydroxide - 0.32-0.40, and oil with a kinematic viscosity of $20-23 \text{ mm}^2/\text{s}$ at 50°C - the rest up to 100.

EFFECT: increasing the antioxidant properties of turbine oil and a corresponding reduction in its losses under the conditions of use.

2 tbl

S 0 9

Изобретение относится к составам турбинных масел, применяемых в маслосистемах для смазки газовых, паровых, гидротурбин, турбокомпрессоров, в качестве гидравлической жидкости.

Известно турбинное масло следующего состава, мас. %: 2,6-ди-трет-бутил-4-метилфенол - 0,2-1,0, кислый эфир пентадецилянтарной кислоты - 0,01-0,1, 1- (диэтиаминометил)бензотриазол - 0,01-0,2, минеральное масло - до 100. Масло может содержать азотсодержащий блок-сополимер окисей этилена и пропилена в количестве 0,01-0,05 мас. % (RU №2058376, 1996).

Известно турбинное масло следующего состава, мас.%: кислый эфир алкенилянтарной кислоты - 0.01-0.03, 1-(диэтиламинометил)бензотриазол - 0.01-0.1, 2.6-ди-трет-бутил-4-метилфенол - до 1.0, 3.3',5.5'-тетра-трет-бутил-4.4'-диоксидифенилметан - 0.1-2.0, минеральное масло - до 100 (RU №2144943, 2000).

Масло может содержать деэмульгирующую присадку Дипроксамин-157 - азотсодержащий блок-сополимер окисей этилена и пропилена в количестве 0,01-0,07 мас. %, а для улучшения антипенных свойств в условиях эксплуатации может содержать полиметилсилоксан (ПМС-200А) в количестве 0,003-0,005 мас. %.

Недостатки вышеописанных масел заключаются в невысокой стабильности против окисления и неудовлетворительных деэмульгирующих свойствах.

Наиболее близким к предложенному маслу (его прототипом) является турбинное масло (Пат. №2458109, 2010) следующего состава, мас.%: 2,6-ди-трет-бутил-4-метилфенол - до 1,0, кислый эфир алкенилянтарной кислоты - 0,01-0,03, азотсодержащий блок-сополимер окисей этилена и пропилена - 0,01-0,07, алкилтолуолалкиламинотриазол - 0,01-0,05, 2,6-диалкилфенол-п-этилалкилат - 0,1-0,5, эфир диалкилдитиофосфат - 0,01-0,05, нефтяное масло с кинематической вязкостью при 50°C - 20-23 мм²/с - до 100. Однако оно обладает недостаточно высокими антиокислительными свойствами.

Задачей изобретения заключается в повышении антиокислительных свойств турбинного масла.

Поставленная задача достигается тем, что турбинное масло на основе нефтяного масла с кинематической вязкостью 20-23 мм²/с при 50°С, содержащего 2,6-ди-трет-бутил-4-метилфенол, кислый эфир алкенилянтарной кислоты, азотсодержащий блок-сополимер окисей этилена и пропилена, алкилтолуолалкиламинотриазол, 2,6-диалкилфенол-п-этилалкилат, согласно изобретению дополнительно содержит продукт конденсации олеиновой кислоты с диэтаноламином и борной кислотой, модифицированный гидроокисью калия, при следующем соотношении компонентов, мас.%:

	2,6-ди-трет-бутил-4-метилфенол	0,48-0,60
	кислый эфир алкенилянтарной кислот	0,01-0,03
	азотсодержащий блок-сополимер окисей этилена и	
40	пропилена	0,01-0,07
	алкилтолуолалкиламинотриазол	0,01, 0,02-0,03, 0,05
	2,6-диалкилфенол-п-этилалкилата	0,01, 0,03, 0,05
	продукт конденсации олеиновой кислоты	
	с диэтаноламином и борной кислотой,	
	модифицированный гидроокисью	
45	калия	0,32-0,40
	нефтяное масло с кинематической	
	вязкостью при 50°C 20-23 мм ² /с	до 100

Достигаемый при этом технический результат заключается в повышении

антиокислительных свойств турбинного масла.

20

Ниже приведена характеристика используемых присадок:

- 2,6-ди-трет-бутил-4-метилфенол (Агидол-1) вырабатывается по ТУ 38.5901237-90, используется как антиоксидант в маслах, топливах и других продуктах. Температуры: плавления 69,5-70, кристаллизации 69°С;
- кислый эфир алкенилянтарной кислоты (антиржавейная присадка B-15/41) вырабатывается по ТУ 6-14-866-86, используется в маслах. Представляет собой жидкость от светло-желтого до коричневого цвета с кислотным числом 180-205 мг КОН/г;
- азотсодержащий блок-сополимер окисей этилена и пропилена (Дипроксамин-157) вырабатывается по ТУ 6-14-614-76, используется как деэмульгатор в маслах и нефтях. Содержание азота 0,50-0,55%, водородный показатель не менее 10,5, содержание золы 0,5%;
- алкилтолуолалкиламинотриазол (Irgamet 39) деактиватор металла, вырабатывается фирмой BASF. Кинематическая вязкость при 40° C 70-90 мм 2 /c, n_d^{20} =1,503-1,513, плотность при 20° C 940-960 кг/м 3 ;
- 2,6-диалкилфенол-п-этилалкилат (Irganox L 135) высокомолекулярный антиоксидант алкилфенольного типа, вырабатывается фирмой BASF. Кинематическая вязкость при 40° C 95-150 мм²/с, кислотное число менее 10 мг КОН/г, n_d^{20} =1,493-1,499, плотность при 20° C 950-990 кг/м³:
- синтез продукта конденсации олеиновой кислоты с диэтаноламином и борной кислотой, модифицированного гидроокисью калия, осуществляют в две стадии. На первой стадии получают промежуточный продукт (ТУ 2461-003-42408198-00) путем нагрева реакционной смеси, состоящей из олеиновой кислоты, диэтаноламина и борной кислоты (при мольном соотношении, например, 2:3:1 соответственно), до 200-220°С с перемешиванием до прекращения выделения H_2O . Полученный промежуточный продукт модифицируют путем введения гидроксида натрия КОН в реакционную смесь при постоянном перемешивании при температуре 160-170°С (при содержании компонентов, например, 5 г КОН на 100 г продукта, полученного на первой стадии).

Описываемое масло готовят смешением при 20-40°С нефтяного масла с кинематической вязкость при 50°С 20-23 мм²/с, например индустриальное масло марки И-20А (ГОСТ 17479.4-87) с композицией присадок, взятой в указанных выше концентрациях. Образец турбинного масла - прототипа (Пат. №2458109, 2010 г.) готовился аналогично. Примеры композиций турбинного масел приведены в табл. 1.

Антиокислительные свойства турбинных масел определяли по ГОСТ 981 при температуре 150° С, времени воздействия 16 ч и расходе кислорода 3 дм 3 /ч по показателям: массовая доля осадка, мас.%, кислотное число, мг КОН/ г и по содержанию летучих кислот, мас.%.

Также оценку термоокислительной стабильности турбинных масел проводили на приборе ПАПОК-Р по СТО Газпром 2.2-4-134-2007. Окисление масел производили в стальных чашечках под воздействием кислорода воздуха при высокой температуре нагревательной пластины прибора и каталитическом действии стали, из которой изготовлены чашечки при температуре нагревательной пластины прибора 180°C в течение 6 ч. Оценку качества масел осуществляли:

- по структурному коэффициент β_{τ} , который вычисляли по формуле: $\beta_{\tau} = \Delta \nu / X$,

где Δv - относительный прирост кинематической вязкости, %; X - испаряемость масла за время окисления, %;

по фактору нестабильности, характеризующему изменение эксплуатационных свойств смазочного масла в процессе его окисления, определяемому по формуле:

$$F_n = \beta_{\tau} \cdot C_{>C=0}$$

5

где F_n - фактор нестабильности, отн. ед.; β_{τ} - структурный коэффициент, отн. ед.; $C_{>C=0}$ - содержание продуктов окисления, образовавшихся в масле, отн. ед.

Испытание на стойкость к окислению проводили также во вращающейся камере высокого давления (RPVOT) по ASTM D2272. Образцы подвергались окислению в присутствии воды и при наличии медного катализатора в сосуде для окисления из нержавеющей стали при начальном давлении 0,63 МПа. Сосуд вращался со скоростью 100 об/мин при постоянной температуре 150°С. Время, необходимое для падения давления (0,175 МПа), являлось показателем окислительной стабильности турбинных масел.

Показатели турбинных масел, характеризующие их антиокислительные свойства, приведены в таблице 2.

Из таблицы 2 следует, что заявляемое турбинное масло с кинематической вязкостью при 50°C 20-23 мм²/с по примерам 2-4 (таблица 1) превосходит по антиокислительным свойствам турбинное масло согласно прототипу (Пат. №2458109, 2010).

Применение турбинного масла по предлагаемой рецептуре позволит снизить расход турбинного масла и повысить сроки эксплуатации оборудования без дополнительного ремонта.

Состав турбинного масла

Таблица 1

№ n/n	Наименование компонентов	Состав, мас. % (по примерам)					
		1	2	3	4	5	Прототип (Пат. № 2458109, 2010)
1.	2,6-ди-трет-бутил-4-метилфенол (присадка Агидол-1)	0,42	0,48	0,56	0,60	0,66	0,90
2.	Кислый эфир алкенилянтарной кислоты (присадка B15/41)	0,009	0,01	0,02	0,03	0,04	0,02
3.	Азотсодержащий блок- сополимер окисей этилена и пропилена (присадка Дипроксамин 157)	0,02	0,01	0,04	0,07	0,08	0,04
4.	Алкилтолуолалкиламинотриазол (присадка Irgament 39)	0,009	0,01	0,03	0,05	0,06	0,03
5.	2,6-диалкилфенол-п- этилалкилата (присадка Irganox L135)	0,009	0,01	0,03	0,05	0,06	0,03
6	Продукт конденсации олеиновой кислоты с диэтаноламином и борной кислотой, модифицированный гидроокисью калия	0,28	0,32	0,34	0,40	0,44	
7.	Нефтяное масло с кинематической вязкостью при 50°C 20-23 мм²/с	до 100,00					

45

40

25

30

35

Таблица 2 Показатели турбинного масла *

№ п/п	Показатели	Значения по примерам (таблица 1)					
		1	2	3	4	5	Прототип (Пат. № 2458109, 2010)
1.	Стабильность против окисления при 150°С, 16 ч и расходе кислорода 3 дм³/ч: - массовая доля осадка, % масс. - кислотное число, мг КОН/ г** -летучие кислоты мг КОН/г	0,010 0,10 0,05	отс. 0,05 0,02	оте. 0,05 0,03	отс. 0,05 0,02	отс. 0,07 0,037	0,002 0,07 0,037
2.	Термоокислительная стабильность по СТО Газпром 2.2-4-134-2007: - структурный коэффициент β _τ - фактор нестабильности (F _n)	1,4 2,8	0,9 2,0	0,7 1,9	0,7 2,0	1,2 2,4	1,2 2,4
3.	Испытание на стойкость к окислению во вращающейся камере высокого давления (RPVOT)	250	320	325	325	325	265

5

10

15

40

45

*)— кинематическая вязкость образцов турбинных масел при 50 0 C в пределах 21,3-21,5 сст. (ГОСТ 33-2000), температура застывания у - минус 15 0 C (ГОСТ 19199), плотность при 20^{0} C - 874 кг/м 3 (ГОСТ 20284); **) - кислотное число турбинных масел до окисления – 0.4 мг КОН/ г.

(57) Формула изобретения

Турбинное масло на основе нефтяного масла с кинематической вязкостью 20-23 мм²/с при 50°С, содержащее 2,6-ди-трет-бутил-4-метилфенол, кислый эфир алкенилянтарной кислоты, азотсодержащий блок-сополимер окисей этилена и пропилена, алкилтолуолалкиламинотриазол, 2,6-диалкилфенол-п-этилалкилат, отличающееся тем, что оно дополнительно включает продукт конденсации олеиновой кислоты с диэтаноламином и борной кислотой, модифицированный гидроокисью калия, при следующем соотношении компонентов, мас.%:

	2,6-ди-трет-бутил-4-метилфенол	0,48-0,60
	кислый эфир алкенилянтарной кислот	0,01-0,03
	азотсодержащий блок-сополимер окисей этилена и	
30	пропилена	0,01-0,07
	алкилтолуолалкиламинотриазол	0,01, 0,02-0,03, 0,05
	2,6-диалкилфенол-п-этилалкилата	0,01, 0,03, 0,05
	продукт конденсации олеиновой кислоты	
	с диэтаноламином и борной кислотой,	
	модифицированный гидроокисью	
35	калия	0,32-0,40
	нефтяное масло с кинематической	
	вязкостью 20-23 мм ² /с при 50°C	до 100

Стр.: 6