ECSE-2210 Microelectronics Technology Homework 3 – Solution

1. At thermal equilibrium, $np \approx n_i^2$

At 300 K,
$$n = 10^{17} \text{ cm}^{-3}$$
, $n_i = 10^{10} \text{ cm}^{-3}$, $p = 10^3 \text{ cm}^{-3}$

At 200 K,
$$n = 10^{17} \text{ cm}^{-3}$$
, $n_i = 10^5 \text{ cm}^{-3}$, $p = 10^{-7} \text{ cm}^{-3}$

That is, the hole concentration at 200 K is extremely small. You will find only one hole in a volume of 10^7 cm³ of Si!

2. a) At room temperature in Si, $n_{\rm i}=10^{10}\,{\rm cm}^{-3}$. Thus here $N_{\rm D}>>N_{\rm A}$, $N_{\rm D}>>n_{\rm i}$ and $n=N_{\rm D}=10^{15}\,{\rm cm}^{-3}$

$$p = n_i^2 / N_D = 10^5 \, \text{cm}^{-3}$$

b) Since $N_D \ll N_A$, $N_A \gg n_i$

$$p = N_A = 10^{16} \, \text{cm}^{-3}$$

$$n = n_i^2/N_A = 10^4 \text{ cm}^{-3}$$

c) Here we must retain both $N_{\rm D}$ and $N_{\rm A,}$ but $N_{\rm D}\text{-}N_{\rm A}>>n_{\rm i}$

$$n = N_D - N_A = 10^{15} \, \text{cm}^{-3}$$

$$p = n_i^2 / (N_D - N_A) = 10^5 \text{ cm}^{-3}$$

d) We deduce from Figure 2.20 that, at 450 K, $n_{\rm i}$ (Si) $\approx 5 \times 10^{13}$ cm⁻³. Clearly, $n_{\rm i}$ is comparable to $N_{\rm D}$ and we must use Eq. 2.29a

$$n = N_D/2 + [(N_D/2) + n_i^2]^{1/2} = 1.21 \times 10^{14} \text{ cm}^{-3}$$

$$p = n_i^2 / n = 2.07 \times 10^{13} \, \text{cm}^{-3}$$

e) We conclude from figure 2.20, that at 650 K, $n_i = 10^{16} \, \text{cm}^{-3}$ Here $n_i >> N_D$

$$p = n_i = 10^{16} \, \text{cm}^{-3}$$

$$n = n_i = 10^{16} \, \text{cm}^{-3}$$

3)

(i) As established in the text [Eq.(2.36)],

$$E_{\rm i} = \frac{E_{\rm c} + E_{\rm v}}{2} + \frac{3}{4} kT \ln(m_{\rm p}^*/m_{\rm n}^*)$$

Taking m_p^*/m_n^* to be temperature independent and employing the values listed in Table 2.1, one concludes

part	T(K)	kT (eV)	from midgap (eV)
(a-c)	300	0.0259	-0.0073
(d) (e)	450 650	0.0388 0.0560	-0.0073 -0.0109 -0.0158

Alternatively, the m_p*/m_0 and m_n*/m_0 versus T fit-relationships cited in Exercise 2.4 may be used to compute the m_p*/m_n* ratio. One finds

(a-c) 300 0.680 0.0259 -0.0075 (d) 450 0.703 0.0388 -0.0103 (e) 650 0.719 0.0560 -0.0139	(eV)
(6) 0.019 0.0500 -0.0139	

(ii) E_F - E_i is computed using the appropriate version of Eq.(2.37) or (2.38).

(a)
$$E_F - E_i = kT \ln(N_D/n_i) = 0.0259 \ln(10^{15}/10^{10}) = 0.298 \text{ eV}$$

(b)
$$E_i - E_F = kT \ln(N_A/n_i) = 0.0259 \ln(10^{16}/10^{10}) = 0.358 \text{ eV}$$

(c)
$$E_{\rm F}$$
 - $E_{\rm i} = kT \ln[(N_{\rm D}-N_{\rm A})/n_{\rm i}] = 0.0259 \ln(10^{15}/10^{10}) = 0.298 \text{ eV}$

(d)
$$E_{\rm F}$$
 - $E_i = kT \ln(n/n_i) = 0.0388 \ln(1.21 \times 10^{14}/5 \times 10^{13}) = 0.034 \, {\rm eV}$

2

(e)
$$E_F - E_i = kT \ln(n/n_i) \cong 0$$
 ... $(n \cong n_i)$

