

IRFH5301PbF

HEXFET® Power MOSFET

V _{DS}	30	٧
R _{DS(on) max} (@V _{GS} = 10V)	1.85	$\mathbf{m}\Omega$
Q _{g (typical)}	37	nC
R _{G (typical)}	1.5	Ω
I _D (@T _{c(Bottom)} = 25°C)	100⑥	A

Applications

- OR-ing MOSFET for 12V (typical) Bus in-Rush Current
- Synchronous MOSFET for Buck Converters
- Battery Operated DC Motor Inverter MOSFET

Features and Benefits

Features

Low RDSon (<1.85m Ω)	
Low Thermal Resistance to PCB (<1.1°C/W)	
100% Rg tested	
Low Profile (<0.9 mm)	results in
Industry-Standard Pinout	\Rightarrow
Compatible with Existing Surface Mount Techniques	
RoHS Compliant Containing no Lead, no Bromide and no Halogen	
MSL1, Industrial Qualification]

Benefits

	Lower Conduction Losses
	Increased Power Density
	Increased Reliability
1	Increased Power Density
	Multi-Vendor Compatibility
	Easier Manufacturing
	Environmentally Friendlier
	Increased Reliability
	· · · · · · · · · · · · · · · · · · ·

Orderable part number	Package Type	Standard Pack		Note
		Form	Quantity	
IRFH5301TRPBF	PQFN 5mm x 6mm	Tape and Reel	4000	
IRFH5301TR2PBF	PQFN 5mm x 6mm	Tape and Reel	400	

Absolute Maximum Ratings

Parameter		Max.	Units	
V_{DS}	Drain-to-Source Voltage	30	V	
V _{GS}	Gate-to-Source Voltage	± 20		
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	35		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	28		
I _D @ T _{C(Bottom)} = 25°C Continuous Drain Current, V _{GS} @ 10V		100©	A	
I _D @ T _{C(Bottom)} = 100°C Continuous Drain Current, V _{GS} @ 10V		100©		
I _{DM} Pulsed Drain Current ①		400		
P _D @T _A = 25°C	Power Dissipation ©	3.6	w	
P _D @T _{C(Bottom)} = 25°C Power Dissipation ®		110	VV	
	Linear Derating Factor ©	0.029	W/°C	
T _J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range			

Notes ① through ⑥ are on page 8

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.55	1.85	mΩ	V _{GS} = 10V, I _D = 50A ③
			2.4	2.9	ms2	V _{GS} = 4.5V, I _D = 50A ③
V _{GS(th)}	Gate Threshold Voltage	1.35	1.80	2.35	V	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.9		mV/°C	V _{DS} = V _{GS} , I _D = 100μA
I _{DSS}	Drain-to-Source Leakage Current			5.0	μA	$V_{DS} = 24V, V_{GS} = 0V$
		_		150	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	I IIA	V _{GS} = -20V
gfs	Forward Transconductance	218			S	$V_{DS} = 15V, I_{D} = 50A$
Q_g	Total Gate Charge		77		nC	$V_{GS} = 10V, V_{DS} = 15V, I_D = 50A$
Q_g	Total Gate Charge		37	56		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		9.8			V _{DS} = 15V
Q _{gs2}	Post-Vth Gate-to-Source Charge		5		nC	$V_{GS} = 4.5V$
Q_gd	Gate-to-Drain Charge		12		I IIC	$I_D = 50A$
Q_godr	Gate Charge Overdrive		10			See Fig.6,17 & 18
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		17			
Q _{oss}	Output Charge		22		nC	V _{DS} = 16V, V _{GS} = 0V
R _G	Gate Resistance		1.5	2.3	Ω	
t _{d(on)}	Turn-On Delay Time		21			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		78		1	I _D = 15A
t _{d(off)}	Turn-Off Delay Time		22		ns	$R_G=1.0\Omega$
t _f	Fall Time	T	23			See Fig.15
C _{iss}	Input Capacitance		5114			V _{GS} = 0V
Coss	Output Capacitance		1017		рF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		406		1	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		150	mJ
I _{AR}	Avalanche Current ①		50	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			100		MOSFET symbol
	(Body Diode)			100	Α	showing the
I _{SM}	Pulsed Source Current			400		integral reverse
	(Body Diode) ①			400		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 50A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		24	36	ns	$T_J = 25^{\circ}C$, $I_F = 50A$, $V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		53	80	nC	di/dt = 300A/µs ③
t _{on}	Forward Turn-On Time	Time is	Time is dominated by parasitic Inductance			

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case @		1.1	
R _{θJC} (Top)	Junction-to-Case @		15	°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		35	
R _{θJA} (<10s)	Junction-to-Ambient ®		22	

2 www.irf.com

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current Vs. Case (Bottom) Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)

IRFH5301PbF

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14a. Unclamped Inductive Test Circuit

Fig 14b. Unclamped Inductive Waveforms

Fig 15a. Switching Time Test Circuit

Fig 15b. Switching Time Waveforms

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17. Gate Charge Test Circuit

Fig 18. Gate Charge Waveform

6 www.irf.com

PQFN 5x6 Outline "B" Package Details

For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf

PQFN 5x6 Outline "B" Part Marking

PQFN 5x6 Outline "B" Tape and Reel

Qualification information[†]

Qualification level	Industrial ^{††} (per JEDEC JES D47F ^{†††} guidelines)			
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D ^{†††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements.

 Please contact your International Rectifier sales representative for further information:

 http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.119mH, $R_G = 25\Omega$, $I_{AS} = 50$ A.
- $\ \, \mbox{\it \textcircled{4}} \,\, \mbox{\it R}_{\theta} \, \mbox{\it is measured at T}_{\mbox{\it J}} \, \mbox{\it of approximately 90°C}.$
- ⑤ When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
- © Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production test capability

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903