

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

Thermodynamik 1: Kapitel 5

- Kapitel 5: Rechtsläufige Kreisprozesse
 - 5.1 Grundlegende Betrachtungen zu Kreisprozessen
 - 5.2 Joule-Prozess
 - 5.3 Clausius-Rankine-Prozess
 - 5.4 Stirling-Prozess
 - 5.5 Otto-Prozess

- Kreisprozesse sind Prozesse, in denen ein Arbeitsmedium in einem geschlossenen Kreislauf umläuft und dabei periodisch in seinen Anfangszustand zurückkehrt
- Beispiel: geschlossene Gasturbine

• In der Praxis werden Verdichter und Turbine auf einer Welle montiert und nur $\Delta P = P_{34} + P_{12}$ (bzw. $|\Delta P| = |P_{34}| - P_{12}$) tritt nach außen in Erscheinung

- Für die thermodynamische Untersuchung ist es günstiger, alle Teilprozesse unabhängig voneinander zu betrachten
- Die Anwendung des 1. Hauptsatzes ergibt für den dargestellten geschlossenen Gasturbinenprozess

Verdichter:
$$\dot{Q}_{12} + P_{12} = \dot{m} \cdot \left[(h_2 - h_1) + \frac{1}{2} (c_2^2 - c_1^2) + g \cdot (z_2 - z_1) \right]$$

Wärmezufuhr:
$$\dot{Q}_{23} + P_{23} = \dot{m} \cdot \left[(h_3 - h_2) + \frac{1}{2} (c_3^2 - c_2^2) + g \cdot (z_3 - z_2) \right]$$

Turbine:
$$\dot{Q}_{34} + P_{34} = \dot{m} \cdot \left[(h_4 - h_3) + \frac{1}{2} (c_4^2 - c_3^2) + g \cdot (z_4 - z_3) \right]$$

Wärmeabfuhr:
$$\dot{Q}_{41} + P_{41} = \dot{m} \cdot \left[(h_1 - h_4) + \frac{1}{2} (c_1^2 - c_4^2) + g \cdot (z_1 - z_4) \right]$$

$$\sum \dot{Q}_{ij} + \sum P_{ij} = 0$$

 Werden Verdichter und Turbine als adiabat betrachtet und wird in den Wärmeübertragern keine Arbeit zu- oder abgeführt, folgt für die geschlossene Gasturbine

$$|P_{34}| - P_{12} = \dot{Q}_{23} - |\dot{Q}_{41}|$$

- Das gleiche Ergebnis hätte man aus der äußeren Bilanz erhalten
- Für die Nutzleistung ergibt sich allgemein

$$P_{\text{Nutz}} = \sum P_{ij} = -\sum \dot{Q}_{ij}$$

 In Prozessen mit konstantem Massenstrom in allen Teilprozessen lassen sich die entsprechenden Beziehungen auch spezifisch schreiben

$$\frac{\sum \dot{Q}_{ij} + \sum P_{ij}}{\dot{m}} = \sum q_{ij} + \sum w_{t,ij} = 0 \quad \text{und} \quad w_{t,\text{Nutz}} = \sum w_{t,ij} = -\sum q_{ij}$$

Wirkungsgrade von Wärmekraftmaschinen wurden bereits diskutiert

- Charakteristisches Merkmal von Wirkungsgraden ist es, dass Nutzen und Aufwand zueinander in Beziehung gesetzt werden
- Für die geschlossene Gasturbine ergibt sich für der ...

... thermischer Wirkungsgrad:

$$\eta_{th} = \frac{|P_{34}| - P_{12}}{\dot{Q}_{23}}$$

bzw. mit
$$\dot{m}$$
=const. η

$$\eta_{th} = \frac{|w_{t,34}| - w_{t,12}}{q_{23}} = \frac{h_3 - h_4 - (h_2 - h_1)}{h_3 - h_2}$$

... exergetische Wirkungsgrad:

$$\eta_{\text{ex}} = \frac{|P_{34}| - P_{12}}{E_{\dot{Q}_{23}}}$$

$$\eta_{\text{ex}} = \frac{|P_{34}| - P_{12}}{(1 - T_{\text{a}}/T_{\text{m}}) \cdot \dot{Q}_{23}}$$

- Problematisch ist wieder die Festlegung der thermodynamischen Mitteltemperatur der Wärmezufuhr
- ⇒ Für den Prozess ist es die Mitteltemperatur der Wärmeaufnahme

$$T_{\rm m} = (h_3 - h_2)/(s_3 - s_2)$$

- Für die Anlage ist es die Temperatur, bei der das Wärme zuführende Medium vorliegt (z.B. Verbrennungsgase)
- Alternativ kann für die Anlage die Exergie des Brennstoffs als exergetischer Aufwand betrachtet werden
- Der thermische Wirkungsgrad ist wieder durch den Carnot-Wirkungsgrad begrenzt

$$\eta_{th} \leq \eta_c = 1 - T_a/T_m$$

 Bei einer detaillierten Analyse k\u00f6nnen die Exergieverluste f\u00fcr jeden Teilprozess einzeln bestimmt werden

Die reversible technische Arbeit ist definiert als

$$w_{t,ij,rev.} = \int_{i}^{j} v dp$$

• Unter Berücksichtigung der Dissipation ϕ_{ij} ergibt sich

$$w_{t,ij} = \int_{i}^{j} v dp + \varphi_{ij}$$
 mit $\varphi_{ij} \geq 0$

 Für einen Kreisprozess, der aus einer Aneinanderreihung von Teilprozessen (mit konstantem Massenstrom) besteht, ist die technische Arbeit

$$\mathbf{w}_{\mathsf{t}} = \sum \mathbf{w}_{\mathsf{t},ij} = \sum \begin{pmatrix} j \\ j \\ i \end{pmatrix} \mathsf{vd}p + \varphi_{ij} = \int \mathsf{vd}p + \sum \varphi_{ij}$$

Thermo

5.1 Kreisprozess im p,v-Diagramm

Die technische Arbeit lässt sich als Fläche im p,v-Diagramm darstellen

- In dem dargestellten Prozess ist das Ringintegral negativ
- Das Ringintegral ist stets negativ, wenn die umschlossene Fläche im Uhrzeigersinn ("rechts herum") umlaufen wird

$$\Longrightarrow w_t = \int v dp + \sum \phi_{ij} < 0$$
 , Arbeit wird abgegeben

$$\sum q_{ij} = -w_{\rm t} > 0$$
 , Wärme wird aufgenommen

- □ Wärmekraftprozess

Beispiele

- □ Dampfkraftwerk
- □ > Diesel-Motor

- Wird ein Kreisprozess so geführt, dass die Kompression bei hoher Temperatur stattfindet und die Entspannung bei niedriger Temperatur, so ergibt sich ein linksläufiger Kreisprozess
- Für linksläufige Kreisprozesse gilt

$$w_t = \int v dp + \sum \varphi_{ij} > 0$$
 Arbeit wird aufgenommen

$$\sum q_{ii} = -w_t < 0$$
 Wärme wird abgegeben

Beispiele

Allgemein gilt: Ohne einen Druckunterschied Δp kann ein Kreisprozess keine (reversible) Arbeit abgeben oder aufnehmen, das Ringintegral wird dann stets zu Null

- In ähnlicher Form lassen sich diese Überlegungen auf das T,s-Diagramm übertragen
- Aus h = h(p,s) folgt: dh = Tds + vdp
- Das Arbeitsmedium im Kreisprozess kehrt stets zum Ausgangszustand zurück, es muss also gelten

$$\oint dh = \oint T ds + \oint v dp = 0 \quad \Rightarrow \quad \oint T ds = -\oint v dp = -(w_t - \sum \varphi_{ij})$$

Allgemein gilt: Ohne einen Temperaturunterschied ΔT kann ein Kreisprozess keine (reversible) Arbeit abgeben

5.2 Joule-Prozess

- Der abstrahierte Vergleichsprozess für die Gasturbine ist der Joule-Prozess
- 1→2 Irreversibel adiabate Kompression
- 2→3 Isobare Wärmezufuhr
- 3→4 Irreversibel adiabate Entspannung
- 4→5 Isobare Wärmeabfuhr

- Wirkungsgrade und Leistungsausbeute des Joule Prozesses wurden bereits diskutiert
- Der thermische Wirkungsgrad des Joule-Prozesses kann im Idealfall gleich dem Carnot-Wirkungsgrad werden, wenn
- □⇒ Das Arbeitsmedium bei der Entspannung bis auf Umgebungstemperatur abgekühlt wird (unendlich große Wärmeübertragungsfläche)

hermo

5.2 Joule-Prozess

Darstellung des Joule-Prozesses im *h*,*s*-Diagramm

 In den meisten Fällen können Stoffdaten bei der Auslegung von Gasturbinen mit den Zustandsgleichungen des idealen Gases berechnet werden

5.2 Joule-Prozess

Reale Gasturbinen-Prozesse sind kompliziert

- □ In allen Bauteilen treten nicht vernachlässigbare Druckverluste auf
- Bei den meist verwendeten **offenen Gasturbinenprozessen** ist die Verbrennung integraler Bestandteil des Prozesses
- Für verschiedene Prozessvarianten wird versucht, den Massenstrom in der Turbine durch Befeuchtung der komprimierten Luft zu vergrößern

5.2 Offene und geschlossene Gasturbinen

- Geschlossene Gasturbinenprozesse sind bisher nur in wenigen Fällen realisiert worden, bieten aber für die Zukunft interessante Perspektiven
- Die weitaus meisten Gasturbinen verwenden offene Gasturbinenprozesse

- An Stelle der Abgabe von Abwärme an die Umgebung wird Luft aus der Umgebung angesaugt und an die Umgebung abgegeben
- □ Die Verbrennung ersetzt als integraler Bestandteil des Prozesses die Wärmezufuhr
- Der Massenstrom in der Turbine ist nicht gleich dem Massenstrom im Verdichter und hat (etwas) andere thermodynamische Eigenschaften

Thermo

5.2 Offene und geschlossene Gasturbinen

Der meiste Strom wird in Deutschland nach wie vor durch **Dampfkraftwerke** bereitgestellt

5.3 Dampfkraftwerke

- Im Gegensatz zur Gasturbine wird in Dampfkraftwerken tatsächlich ein geschlossener Kreisprozess realisiert
- Wärme wird dem Arbeitsmedium (Wasser / Dampf) in einem Wärmeübertrager (Dampferzeuger / Kessel) zugeführt
- Andere Arbeitsmedien wurden vielfach diskutiert, spielen bisher aber praktisch keine Rolle
- Die Wärmequelle ist zunächst beliebig; technisch bedeutend sind die klassischen Energieträger: Steinkohle, Braunkohle, Kernbrennstoffe
- Inzwischen aber auch zunehmend Nutzung von Müll (gekoppelt mit Müllverbrennungsanlagen), Klärschlamm, Biomasse (z.B. Holz-Pellets)
- Nutzung sehr verschiedener, billiger Energiequellen
 - Dafür hohe Investitionskosten

5.3 Clausius-Rankine-Prozess

Den Grundprozess, den das Arbeitsmedium im Dampfkraftwerk durchläuft,
 wird als Clausius-Rankine Prozess bezeichnet

- 1→2 Irreversibel adiabate Kompression
- 2→3 Isobare Wärmezufuhr
- 3→4 Irreversibel adiabate Entspannung
- 4→5 Isobare Wärmeabfuhr

- Formal ist der Clausius-Rankine-Prozess identisch mit dem Joule-Prozess, jedoch erfolgt die Kompression in der flüssigen Phase und Wärmezu- und abfuhr ist mit einem Phasenwechsel verbunden
- Wird unterstellt, dass Kompression und Entspannung adiabat verlaufen, so gilt (auch) für den einfachen Clausius-Rankine Prozess

$$|P_{\text{Nutz}}| = |\sum P_{ij}| = \sum \dot{Q}_{ij} = \dot{Q}_{23} - |\dot{Q}_{41}|$$

$$\eta_{\text{th}} = \frac{|P_{34}| - P_{12}}{\dot{Q}_{23}}$$

$$\eta_{\text{ex}} = \frac{|P_{34}| - P_{12}}{E_{\dot{Q}_{23}}} = \frac{|P_{34}| - P_{12}}{(1 - T_a/T_m) \cdot \dot{Q}_{23}}$$

5.3 Clausius-Rankine-Prozess

- Wegen W_{t,rev.} = ∫ vdp ist die für die Druckerhöhung von flüssigem Wasser (v_L « v_G) aufzubringende Antriebsleistung sehr viel kleiner als Antriebsleistung des Verdichters der Gasturbine
- - Beim reversiblen Clausius-Rankine Prozess verläuft die
 - Verdichtung isentrop
 - Wärmezufuhr isobar bei Temperatur T₀ der Wärmequelle
 - Entspannung isentrop
 - Wärmeabfuhr isobar und bei Umgebungstemperatur $T_{\rm a}$
 - Da im Zweiphasengebiet Wärme bei konstanter Temperatur zu- und abgeführt werden kann, erscheint dieser Grenzfall zunächst vernünftig

Thermo

5.3 Reversibler Clausius-Rankine-Prozess

Darstellung des reversiblen Clausius-Rankine Prozesses im T,s-Diagramm

5.3 Reversibler Clausius-Rankine Prozess

• Mit dh = Tds + vdp (für stationäre Fließprozesse) folgt für die isobar (dp = 0) und isotherme Zu- und Abfuhr von Wärme

$$q_{23} = h_3 - h_2 = \int_2^3 T ds = T_0 \cdot (s_3 - s_2)$$
$$q_{41} = h_1 - h_4 = \int_4^1 T ds = T_a \cdot (s_1 - s_4)$$

• Mit $w_{t,\text{Nutz}} = \sum w_{t,ij} = -\sum q_{ij} = -(q_{23} + q_{41}) s_1 = s_2 \text{ und } s_3 = s_4 \text{ folgt}$

$$W_{\text{t.Nutz.rev.}} = -(q_{23} + q_{41}) = -(T_0 - T_a) \cdot (s_3 - s_2)$$

$$s_3 - s_2 = \frac{q_{23}}{T_0} \implies w_{t,\text{Nutz,rev.}} = -(T_0 - T_a) \cdot \frac{q_{23}}{T_0} = -\left(1 - \frac{T_a}{T_0}\right) \cdot q_{23}$$

5.3 Reversibler Clausius-Rankine-Prozess

 Für den thermischen Wirkungsgrad des reversiblen Clausius-Rankine Prozesses ergibt sich

$$\eta_{\text{th,rev.}} = \frac{|P_{\text{Nutz,rev.}}|}{\dot{Q}_{23}} = \frac{\dot{m} \cdot |w_{\text{t,Nutz,rev.}}|}{\dot{m} \cdot q_{23}} = 1 - \frac{T_a}{T_0} = \eta_c$$

- Der thermische Wirkungsgrad des reversiblen Clausius-Rankine Prozesses ist gleich dem **Carnot-Wirkungsgrad**, die aufgenommene Exergie wird vollständig genutzt
 - Reale Clausius-Rankine Prozesse verlaufen allerdings weder reversibel noch nach diesem Schema, weil
 - Kompression und Entspannung nicht reversibel sind und nicht im Zweiphasengebiet verlaufen können
 - Zu- und Abfuhr von Wärme nicht reversibel sind
 - Wärme nicht bei konstanter Temperatur zur Verfügung steht (Rauchgase kühlen sich bei der Wärmeabgabe ab)

5.3 Realer Clausius-Rankine-Prozess

- 1→ 2: Irreversibel adiabate Kompression (wegen kleinem ΔT und Δs im Diagramm nicht zu sehen)
- 2→ 3': (Quasi) isobare Erhitzung bis zum Siedepunkt
- 3'→3": (Quasi) isobare Verdampfung bei $T = T_s(p_2)$
- 3"→3: (Quasi) isobare Überhitzung des Dampfs
- 3→4: Irreversibel adiabate Entspannung
- 4→1: (Quasi) isobare
 Wärmeabfuhr
 (Kondensation und
 leichte Unterkühlung)

5.3 Realer Clausius-Rankine-Prozess

- Das h,s-Diagramm ermöglicht ein direktes Ablesen von Energieumsätzen, drängt den technisch wichtigsten Bereich der Entspannung aber sehr eng zusammen
- Schiefwinklige h,s-Diagramme beheben dieses Problem, sollen hier aber nicht weiter behandelt werden

Thermo

5.3 Realer Clausius-Rankine-Prozess

Darstellung des Clausius-Rankine Prozesses im h,s-Diagramm

5.3 Realer Clausius-Rankine-Prozess

 Werden die Irreversibilitäten in Kesselspeisepumpe und Turbine vernachlässigt, so folgt für den Wirkungsgrad des Clausius-Rankine Prozesses

$$q_{23} = h_3 - h_2 = \int_2^3 T ds = T_{m,23} \cdot (s_3 - s_2)$$

$$q_{41} = h_1 - h_4 = \int_4^1 T ds = T_{m,41} \cdot (s_1 - s_4)$$

$$w_{t,Nutz} = -(q_{23} + q_{41}) \implies w_{t,Nutz} = -\left(1 - \frac{T_{m,41}}{T_{m,23}}\right) \cdot q_{23}$$

$$\eta_{\text{th}} = \frac{w_{\text{t,Nutz}}}{q_{23}} = 1 - \frac{T_{m,41}}{T_{m,23}}$$
 (für $\eta_{s,T} = \eta_{s,V} = 1$)

5.3 Realer Clausius-Rankine-Prozess

- Der Einfluss der Unterkühlung im Kondensator ist gering; i.d.R. kann $T_{m,41} = T_s$ angenommen werden
- Die Temperatur des Kühlwassers legt fest, bei welcher Temperatur (und damit bei welchem Druck) der Dampf kondensiert werden kann
 - □ Niedrige Kühlwassertemperaturen führen zu höheren Wirkungsgraden
- Die Mitteltemperatur der Wärmezufuhr hat einen entscheidenden Einfluss auf den erreichbaren Wirkungsgrad
- Hohe Endtemperaturen der Überhitzung sind günstig, jedoch durch Materialeigenschaften der Werkstoffe begrenzt (derzeit 620°C bis 650°C)
- Der größte Teil der Wärme wird bei der Verdampfung zugeführt

 ⇒ möglichst hohe Siedetemperaturen ⇒ hohe Kesseldrücke
- Bei vorgegebener Überhitzungstemperatur steigt mit dem Kesseldruck die Feuchte am Austritt der Entspannungsturbine
 - □ Begrenzung f
 ür den Kesseldruck

Thermo

5.3 Realer Clausius-Rankine-Prozess

5.3 Realer Clausius-Rankine-Prozess

- Einführung einer Zwischenüberhitzung, um
 - die Mitteltemperatur der Wärmeübertragung zu erhöhen
 - die Feuchte am Austritt der Turbine zu reduzieren

$$T_{m} = \frac{\dot{Q}_{23} + \dot{Q}_{45}}{\dot{Q}_{23}/T_{m,23} + \dot{Q}_{45}/T_{m,45}} = \frac{(h_{3} - h_{2}) + (h_{5} - h_{4})}{(s_{3} - s_{2}) + (s_{5} - s_{4})}$$

Thermo

5.3 Realer Clausius-Rankine-Prozess

 Der Stirling-Prozess ist ein Kreisprozess in der Gasphase, der in Kolbenmaschinen realisiert werden kann

Thermo

Thermo

5.3 Stirling-Prozess

• Stirling-Prozess im *p*,*v*-Diagramm

• Stirling-Prozess im *T,s*-Diagramm

- Für die Berechnung der umgesetzten Wärmeströme und Arbeiten können in guter Näherung die für ideale Gase hergeleiteten Beziehungen verwendet werden
- 1 → 2: Isochore Erwärmung, Erhöhung des Drucks

$$q_{12} = 0$$
, $w_{12} = 0$

• 2 → 3: Isotherme Wärmezufuhr, Expansion

$$q_{23} = RT_2 \cdot \ln\left(\frac{v_3}{v_2}\right)$$
, $w_{23} = -RT_2 \cdot \ln\left(\frac{v_3}{v_2}\right)$ aus $-\int p \, dv$

• 3 → 4: Isochore Abkühlung, Absenkung des Drucks

$$q_{34} = 0$$
, $w_{34} = 0$

• 4 → 1: Isotherme Wärmeabfuhr, Kompression

$$q_{41} = RT_4 \cdot \ln\left(\frac{v_1}{v_4}\right)$$
, $w_{41} = -RT_4 \cdot \ln\left(\frac{v_1}{v_4}\right)$

• Mit $T_4 = T_1 = T_{\min}$, $v_1 = v_2 = v_{\min}$, $T_2 = T_3 = T_{\max}$, $v_3 = v_4 = v_{\max}$ und $v_i / v_j = V_i / V_j$ folgt

$$w_{\text{Nutz}} = -R(T_{\text{max}} - T_{\text{min}}) \cdot \ln \left(\frac{V_{\text{max}}}{V_{\text{min}}} \right)$$

$$q_{zu} = RT_{\text{max}} \cdot \ln \left(\frac{v_{\text{max}}}{v_{\text{min}}} \right)$$

Der Wirkungsgrad des reversiblen Stirling-Prozesses ergibt sich zu

$$\eta_{th} = \frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{max}}} = 1 - \frac{T_{\text{min}}}{T_{\text{max}}}$$

Erfolgen Zu- und Abfuhr der Wärme reversibel, so ist der Wirkungsgrad des reversiblen Stirling-Prozesses gleich dem Wirkungsgrad des Carnot-Prozesses

• Mit der Drehzahl f [s⁻¹] und der im System eingeschlossenen Masse m ergibt sich die abgegebene Leistung zu

$$P_{\text{Nutz}} = m \cdot f \cdot w_{\text{Nutz}} = -m \cdot f \cdot R \cdot (T_{\text{max}} - T_{\text{min}}) \cdot \ln \left(\frac{V_{\text{max}}}{V_{\text{min}}}\right)$$
mit $m = \frac{p_i V_i}{RT_i} \implies P_{\text{Nutz}} = -f \cdot \frac{T_{\text{max}} - T_{\text{min}}}{T_{\text{max}}} p_{\text{max}} \cdot V_{\text{max}} \cdot \ln \left(\frac{V_{\text{max}}}{V_{\text{min}}}\right)$

Die Leistungsabgabe lässt sich bei konstanten Temperaturen und Volumen über den Fülldruck regeln

 Kein Kurbeltrieb eines realen Motors kann den idealen Verlauf des Stirling-Prozesses realisieren; reale Motoren können den Prozess nur mehr oder weniger gut nachbilden

5.3 Verbrennungsmotoren

- Die am weitesten verbreiteten Kraftmaschinen mit Prozessverlauf in der Gasphase sind die Verbrennungsmotoren
- Verbrennungsmotoren lassen sich mit den Grundlagen der Thermodynamik kaum beschreiben; die realen Prozesse können nur mit instationären Betrachtungsweisen abgebildet werden
- In jedem Fall muss der Verbrennungsvorgang modelliert werden
- Trotzdem wird häufig mit Vergleichsprozessen argumentiert, die den Verbrennungskraftprozess wie einen geschlossenen Kreisprozess betrachten
- Das einfachste Modell für den Verbrennungskraftprozess mit Fremdzündung ist der Otto-Prozess
- Nach dem Otto-Prozess ergeben sich deutlich h\u00f6here Wirkungsgrade als f\u00fcr reale Verbrennungsmotoren
- Einige grundlegende Überlegungen lassen sich anhand der Vergleichsprozesse jedoch anstellen

5.3 Otto-Prozess

Fakultät III – Prozesstechnik

Kapitel 5: Verständnisfragen

- Was ist eine Wärmekraftmaschine? Was ist der Nutzen und der Aufwand einer solchen Maschine?
- Warum ist das Ringintegral bei Wärmekraftprozessen stets negativ?
- Unter welcher Voraussetzung gilt, dass Wärme nicht vollständig in Arbeit umgewandelt werden kann?
- Mit welchem Vergleichsprozess werden Gasturbinenanlagen berechnet und welche Zustandsänderungen sind dabei relevant?
- Welche Unterschiede gibt es zwischen einem Gasturbinenprozess und einem Dampfturbinenprozess? Zeichnen Sie beide Prozesse in ein p,v-Diagramm ein.
- Wozu dient eine Zwischenüberhitzung in einem realen Clausius-Rankine-Prozess?
- Warum kann bei einem Entspannungsprozess einer Dampfturbine nicht beliebig weit ins Nassdampfgebiet entspannt werden?
- Wie kann der Wirkungsgrad eines Clausius-Rankine-Prozesses gesteigert werden? Wodurch ergeben sich Beschränkungen der Optimierungsmöglichkeiten?
- Worin liegt der Unterschied zwischen dem Stirling-Prozess und dem Otto-Prozess? Welche Maschinen arbeiten nach diesen Prozessen?