C2-001_Practice 04

 □ Date	@2022년 8월 22일 오전 9:30
Lecture Note	C2-001_Lecture_04_matrix inverse.pdf
Practice (pdf)	C2-001_Practice_04.pdf
Solution (pdf)	C2-001_Practice_04-Sol.pdf
≡ Topics	Lecture 04: Matrix Inversion
# Week	4

- Please mark what you think is the correct answer (O or X) and show why you choose it.
 - 1. If a function, f, is invertible, then the inverse of f, f^{-1} , is unique.

2. The following function in Fig. 1 is surjective.

Fig. 1

A function in the Cartesian plane defined by the mapping $f: X \to Y$ where X is a domain of function (yellow region) and Y is a range of function (blue region). Every element in the range is mapped onto from an element in the domain by function f.

3. The following function in Fig. 2 is injective.

C2-001_Practice 04 1

$$f: X \to Y$$
$$y = f(x)$$

Fig. 2

A function in the Cartesian plane defined by the mapping $f: X \to Y$ where X is a domain of function (yellow region) and Y is a range of function (blue region). Every element in the range is mapped onto from an element in the domain by function f.

4. A given matrix
$$\mathbf{A}egin{bmatrix}1&-1&1\\-1&2&1\\-1&3&4\end{bmatrix}$$
 is invertible because its determinant, $det(\mathbf{A})$, is 8.

5. Inverse matrix of
$$\mathbf{A}=\begin{bmatrix}1 & -1 & 1\\ -1 & 2 & 1\\ -1 & 3 & 4\end{bmatrix}$$
 is $\mathbf{A}^{-1}\begin{bmatrix}5 & 7 & -3\\ 3 & 5 & -2\\ -1 & 2 & 1\end{bmatrix}$.

6. Determinant of given matrix
$$\mathbf{A'}=\begin{bmatrix} -2 & 2 & -2 \\ -1 & 2 & 1 \\ -1 & 3 & 4 \end{bmatrix}$$
, $det(\mathbf{A'})$, is -24.

7. Given two matrices,
$$\mathbf{A}=\begin{bmatrix}1&2\\3&4\end{bmatrix}$$
 and $\mathbf{B}=\begin{bmatrix}3&4\\5&6\end{bmatrix}$, $det(\mathbf{A}+\mathbf{B})$ is equal to $det(\mathbf{A})+det(\mathbf{B})$.

8. If there are duplicate rows in the matrix ${\bf A}$, matrix ${\bf A}$ is not invertible.

9. A square matrix $\mathbf{A}_{n \times n}$ is always invertible.

10. Inverse matrix is always square matrix.