Université Abdou Moumouni de Niamey Faculté des Sciences et Techniques

Année Académique 2021-2022 Section : Mines et Pétrole

Interpolation des fonctions

EXERCICE:1

Obtenir le polynôme de degré 2 passant par les points : (1,2); (2,6) et (3,12). Utiliser la matrice de Vandermonde.

EXERCICE:2

Obtenir le polynôme P qui interpole les points (0,2); (1,1); (2,2); et (3,3).

EXERCICE:3

Soit les points suivants : (0,0); (1,2); (2,36); (3,252); (4,1040).

- 1. Obtenir le polynôme de Lagrange passant par les trois premiers points.
- 2. Obtenir le polynôme de Lagrange passant par les quatre premiers points. Est-ce possible d'utiliser les calculs faits en 1?

EXERCICE:4

Calculer le polynôme d'interpolation passant par les points : (0,0); (1,3); (3,1); (5,2); (8,2), en utilisant la formule de Newton.

EXERCICE:5

Soit une fonction f(x) dont on connait la valeur en certains points : (0,3); (1,2); (2,3); (3,6); (4,11); (5,18).

- 1. Calculer la table des différences divisées. Montrer que les troisièmes différences divisées sont nulles.
- 2. Que conclure au sujet de la fonction f(x)?

EXERCICE:6

Montrer qu'il n'existe aucun polynôme P de $\mathbb{R}_3[X]$ tel que : P(-1) = 1; P'(-1) = 1; P'(1) = 2 et P(2) = 1.

EXERCICE:7

Etant donnés six réels x_1 , a, b, c, d et e, on considère le tableau de différences divisées suivant :

x_k	$f(x_k)$	$f[x_k, x_{k+1}]$	$f[x_k, x_{k+1}, x_{k+2}]$	$f[x_k, x_{k+1}, x_{k+2}, x_{k+3}]$
$x_0 = 0$	1			
x_1	-1	1		
$x_2 = -1$	0	b	d	
$x_3 = 2$	a	c	e	$\frac{2}{3}$

- 1. Calculer x_1 , a, b, c, d et e.
- 2. Donner dans la base de Newton le polynôme P_3 qui interpole les points (0,1); $(x_1,-1)$; (-1,0) et (2,a).
- 3. On considère les fonctions suivantes definies sur $\mathbb R$:

$$f_1: x \longmapsto \left\{ \begin{array}{l} 2+9x^2 \ si \ x \geq 0 \\ 0 \ sinon \end{array} \right., f_2: x \longmapsto \left\{ \begin{array}{l} 0 \ si \ x \geq -1 \\ -3x^2 - x^3 \ sinon \end{array} \right.$$

Pour α , β deux réels, on définit la fonction $f: x \in \mathbb{R} \longmapsto \alpha f_1(x) + \beta f_2(x)$.

Montrer que P_3 est le polynôme d'interpolation de f en x_0, x_1, x_2 et x_3 si et seulement si $\alpha = \frac{1}{2}$ et $\beta = \frac{1}{4}$.

- 4. Dans la suite, on supposera $\alpha = \frac{1}{2}$ et $\beta = \frac{1}{4}$. Calculer dans la base de Newton le polynôme P_4 qui interpole les points (0,1); $(x_1,-1)$; (-1,0); (2,a) et (1,6).
 - P_4 est-il le polynôme d'interpolation de f en $0, x_1, -1, 2$ et 1.