Experiments

Dieuwke Hupkes

1 Datasets

I define the following set of languages:

Name	$Numeric\ leaves$	Example
L_2	2	$(x_1 \ op \ x_1)$
L_3	3	$((x_1 op x_2) op x_3)$
L_4	4	$((x_1 \ op \ x_2) \ op \ (x_3 \ op \ x_4))$

Where $x_i \in \{-19, 19\}$, and $op \in \{+, -\}$. The meaning y of e sentences is the result of the arithmetic expression expressed by the language. We restrict the languages to include only expressions such that $y \in \{-60, 60\}$.

We define the following subsets of the languages defined above:

Name	Restriction	Example	
L_i +	op == +	$(.(.(x_1+x_2)+\ldots x_i)$	Structurally non ambiguous
L_i	op == -	$(.(.(x_1-x_2)-\ldots x_i)$	
L_i rb	only right branching trees	$(.(.(x_1 op x_2) op x_3) op \ldots x_i)$	Structurally non ambiguous
L_i lb	only left branching trees	$(x_1 \ op \ (x_2 \ op \ (\dots \ op \ (x_{i-1} \ op \ x_i))))$	Structurally non ambiguous

The datasets that the networks will be trained and tested on are (subsets of) unions of the languages described above.

2 Architectures

I use four different architectures (explanation?):

3 Experiments

I will start by running a sequence of experiments to determine if the networks can learn to compose the meaning of sentences from the structurally non ambiguous languages L_2 , L_3+ , L_3lb and L_3rb . Depending on the results I will move on to more complicated languages In principle, I would like to do all (possible) combinations that can be made by combining elements from the following table, ¹ starting with architectures A1 and A2 and then expanding to A3 and A4.

Network	Language	Architecture	Dimensionality	Initialisation	Embeddings
SRN	L_2	A1	10	Random	fixed
GRU	L_3+	A2	6	Gray	trained
LSTM		A3	2	one-hot?	
	L_3rb	A4			
	L_3lb				

4 More concrete plan

Wat moet ik doen?

- Generate datasets (or think of how to do that on the fly)
- Implement architectures
- $\bullet\,$ Train networks and plot results

 $^{^{1}\}mathrm{Of}$ course excluding non-sensical combinations, such as Gray encoding in two dimennions