The Kakeya Set Conjecture over $\mathbb{Z}/N\mathbb{Z}$ for general N

Manik Dhar Princeton University

8th Nov 2021

Introduction

Definition (Kakeya Set)

Given $N, n \in \mathbb{N}$, a set S in $(\mathbb{Z}/N\mathbb{Z})^n$ is Kakeya if for every direction $u \in (\mathbb{Z}/N\mathbb{Z})^n$ there is a line $L_u = \{x + \lambda u | \lambda \in \mathbb{Z}/N\mathbb{Z}\}$ in the direction u contained in S.

- Want to lower bound the size of Kakeya Sets.
- First proposed over finite fields [Wolff, 1999] as a simpler version of the Euclidean Kakeya conjecture (Kakeya Sets in \mathbb{R}^n have Minkowski dimension n).
- Also motivated by applications in TCS for constructing randomness mergers and extractors [Dvir and Wigderson, 2011, Dvir, Kopparty, Saraf, and Sudan, 2013].

Kakeya Set bounds over finite-fields

Theorem (Finite-Field Kakeya [Dvir, 2009, Saraf and Sudan, 2008, Dvir, Kopparty, Saraf, and Sudan, 2013, Bukh and Chao, 2021])

Every Kakeya Set S in $(\mathbb{Z}/p\mathbb{Z})^n$,

$$|S|\geq \frac{p^n}{2^{n-1}}.$$

- This bound is tight and also holds for finite fields in general.
- For composite N we knew

$$|S| \gtrsim N^{n0.59..}$$

- using work on the "Sum-Difference conjecture" (also known as the arithmetic Kakeya conjecture) [Bourgain, 1999, Katz and Tao, 1999].
- Positively resolving the Sum-Difference conjecture will also resolve the Euclidean Kakeya conjecture!

Kakeya Set Conjecture over $\mathbb{Z}/N\mathbb{Z}$

Conjecture (Kakeya Set Conjecture over $\mathbb{Z}/N\mathbb{Z}$ [Hickman and Wright, 2018])

For all $\epsilon > 0$ and $n \in \mathbb{N}$ there exists a constant $C_{n,\epsilon}$ such that any Kakeya Set $S \subset (\mathbb{Z}/N\mathbb{Z})^n$ satisfies

$$|S| \geq C_{n,\epsilon} N^{n-\epsilon}$$
.

- The ϵ is not needed for prime N but is essential in general. [Hickman and Wright, 2018, D and Dvir, 2021]
- The Kakeya problem over $\mathbb{Z}/p^k\mathbb{Z}$ was suggested in [Ellenberg, Oberlin, and Tao, 2010] as another step towards the Euclidean problem as the ring has "scales".
- Kakeya Set lower bounds over $\mathbb{Z}/p^k\mathbb{Z}$ will imply the Minkowski dimension Kakeya conjecture for the p-adics [Ellenberg, Oberlin, and Tao, 2010, Hickman and Wright, 2018].

New results for composites [D and Dvir, 2021]

Theorem (Square-free N [D and Dvir, 2021])

For $N = p_1 \dots p_r$ where p_i are distinct primes, every Kakeya Set S in $(\mathbb{Z}/N\mathbb{Z})^n$ satisfies,

$$|S| \geq \frac{N^n}{2^{nr}} \geq C_{n,\epsilon} N^{n-\epsilon}$$

- Resolves the Kakeya Set Conjecture for square-free N using well-known bounds for the number of divisors of N.
- Tight up to a factor of 2^r . Can be made tight using [Bukh and Chao, 2021].

New results for composites [D and Dvir, 2021]

Theorem $(\mathbb{Z}/p^k\mathbb{Z} \text{ reduction [D and Dvir, 2021]})$

Every Kakeya Set S in $(\mathbb{Z}/p^k\mathbb{Z})^n$ has size at least

$$|S| \geq \operatorname{rank}_{\mathbb{F}_p} W_{p^k,n}.$$

Definition (Matrix $W_{p^k,n}$)

 $W_{p^k,n}$ is a matrix whose rows and columns are indexed by points in $(\mathbb{Z}/p^k\mathbb{Z})^n$ with entries,

$$W_{p^k,n}(u,v)=\mathbb{1}_{\langle u,v\rangle=0}.$$

• $\mathbb{1}_K$ is the indicator function of the set K.

New results for composites [Arsovski, 2021a]

Theorem $(\mathbb{Z}/p^k\mathbb{Z} \text{ bound [Arsovski, 2021a]})$

Every Kakeya Set S in $(\mathbb{Z}/p^k\mathbb{Z})^n$ satisfies,

$$|S| \geq \frac{p^{kn}}{(kn)^n}.$$

Theorem $(\mathbb{Z}/p^k\mathbb{Z} \text{ reduction [Arsovski, 2021a]})$

 \exists a matrix $V_{p^k,n}$ (defined later) such that for every Kakeya Set S in $(\mathbb{Z}/p^k\mathbb{Z})^n$,

$$|S| \geq \operatorname{rank}_{\mathbb{F}_p} V_{p^k,n} \geq \frac{p^{kn}}{(kn)^n}.$$

• $W_{p^k,n}$ is a sub-matrix of $V_{p^k,n}$. $V_{p^k,n}$ is a sub-matrix of $W_{p^k,n+1}$.

New results for composites [Arsovski, 2021b]

- A new version of this paper [Arsovski, 2021b] gives bounds for (m, ϵ) -Kakeya Sets with a different argument.
- (m, ϵ) -Kakeya Sets have at least m points in common with lines in at least an ϵ fraction of directions.
- This proves the Hausdorff dimension Kakeya conjecture over the p-adics.
- The bound in this paper is quantitatively weaker for (N, 1)-Kakeya setting.

New results for composites [D, 2021]

Theorem (Stronger $\mathbb{Z}/p^k\mathbb{Z}$ bound [D, 2021])

Every Kakeya Set S in $(\mathbb{Z}/p^k\mathbb{Z})^n$ satisfies

$$|S| \geq \frac{p^{kn}}{(2(k + \log_p(n)))^n} \geq_{[Arsovski, 2021a]} \frac{p^{kn}}{(kn)^n}.$$

- Extends the techniques in [Arsovski, 2021a].
- The bound can be improved to $p^{kn}/(k+1)^n$ as $p \to \infty$ recovering [Dvir, Kopparty, Saraf, and Sudan, 2013] for prime fields.
- There exist Kakeya Sets in $(\mathbb{Z}/p^k\mathbb{Z})^n$ of size $p^{kn}(k/\log_p(k))^{-n+1}$ [Hickman and Wright, 2018].
- ullet The proof also extends to give stronger bounds for (m,ϵ) -Kakeya Sets.

Resolution of the Kakeya Set Conjecture for general N

Theorem (General $\mathbb{Z}/N\mathbb{Z}$ bound [D, 2021])

Every Kakeya Set in $(\mathbb{Z}/N\mathbb{Z})^n$ for $N = p_1^{k_1} \dots p_r^{k_r}$ has size at least

$$\frac{N^n}{\left(\prod\limits_{i=1}^r 2^n (k_i + \log_p(n))^n\right)} \geq C_{n,\epsilon} N^{n-\epsilon}.$$

- Resolves the Kakeya Set Conjecture for general N.
- As $p_i \to \infty$, $\forall i = \{1, ..., r\}$ the constant can be improved to $(\prod_{i=1}^{r} (k_i + 1))^{-n}$ recovering the square-free N bound from [D and Dvir, 2021].

Talk Overview

- 1 The Polynomial Method over $\mathbb{Z}/p\mathbb{Z}$
- 2 "New" Proof for $\mathbb{Z}/p\mathbb{Z}$
- 3 Proof for $\mathbb{Z}/pq\mathbb{Z}$
- **4** Proof for $\mathbb{Z}/p^k\mathbb{Z}$

② "New" Proof for $\mathbb{Z}/p\mathbb{Z}$

- 3 Proof for $\mathbb{Z}/pq\mathbb{Z}$
- 4 Proof for $\mathbb{Z}/p^k\mathbb{Z}$

Dvir's proof over $\mathbb{Z}/p\mathbb{Z}$

Theorem ([Dvir, 2009], improvement due to Alon, Tao.)

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Every Kakeya Set in \mathbb{F}_p^n has size at least $\binom{p+n-1}{n}$.

- **Proof:** Suppose $S < \binom{p+n-1}{n} = \text{number of monomials of degree at most } p-1.$
- $\exists f \neq 0, f \in \mathbb{F}_p[x_1, \dots, x_n]$ of degree $D \leq p-1$ which vanishes on S.
- For every direction $u \in \mathbb{F}_p^n$, f vanishes on some line $L_u = \{x + \lambda u | \lambda \in \mathbb{F}_p\}$ contained in S.
- $f(x + \lambda u)$ is a uni-variate polynomial in λ of degree $D \le p 1$ with p zeros which means it is identically 0.

Dvir's proof over $\mathbb{Z}/p\mathbb{Z}$ - Proof Contd.

Theorem ([Dvir, 2009], improvement due to Alon, Tao.)

Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Every Kakeya Set in \mathbb{F}_p^n has size at least $\binom{p+n-1}{n}$.

- $f(x + \lambda u) = f_D(u)\lambda^D + O_{f,x,u}(\lambda^{D-1}).$
- As $f(x + \lambda u)$ is identically 0, $f_D(u) = 0$.
- $\forall u \in \mathbb{F}_p^n, f_D(u) = 0.$
- f_D is a non-zero homogenous polynomial of degree $D \leq p-1$ which vanishes on all of \mathbb{F}_p^n .
- Contradiction (due to the DeMillo-Lipton-Schwartz-Zippel lemma).

Over $\mathbb{Z}/pq\mathbb{Z}$ and $\mathbb{Z}/p^2\mathbb{Z}$

- The proof doesn't work for general N because small degree polynomials can vanish over all of $(\mathbb{Z}/N\mathbb{Z})^n$.
- $(x^p x)^2$ vanishes over all of $\mathbb{Z}/p^2\mathbb{Z}$ as $a^p a$ is divisible by p for all $a \in \mathbb{N}$.
- $(x^p x)(x^q x)$ vanishes over all of $\mathbb{Z}/pq\mathbb{Z}$.
- If we try to adapt the proof strategy above for $N=p^2, pq$ we will get a lower bound of $\binom{p+n-1}{n} \approx p^n \approx N^{0.5n}$.

② "New" Proof for $\mathbb{Z}/p\mathbb{Z}$

- 3 Proof for $\mathbb{Z}/pq\mathbb{Z}$
- 4 Proof for $\mathbb{Z}/p^k\mathbb{Z}$

Line matrix of a Kakeya Set

• WLOG we assume that $S = \bigcup_{u \in (\mathbb{Z}/N\mathbb{Z})^n} L_u$ where L_u is a line in direction u.

Definition (Line matrix M_S of a Kakeya Set S)

The line matrix M_S of S is a matrix where the u'th row is the indicator vector $\mathbb{1}_{L_u}$ of L_u in direction u which is contained in S.

$$\begin{array}{c}
\xrightarrow{x \in (\mathbb{Z}/N\mathbb{Z})^n} \\
\downarrow \\
u \in (\mathbb{Z}/N\mathbb{Z})^n \\
\downarrow \\
\begin{pmatrix} \cdots & \cdots & \cdots \\
- & \mathbb{1}_{L_u} & - \\
\vdots & \vdots & \cdots \end{pmatrix} = M_S$$

Line matrix of a Kakeya Set

$$\begin{array}{c}
\xrightarrow{x \in (\mathbb{Z}/N\mathbb{Z})^n} \\
u \in (\mathbb{Z}/N\mathbb{Z})^n \downarrow \begin{pmatrix} \cdots & \cdots & \cdots \\ - & \mathbb{1}_{L_u} & - \\ \vdots & \vdots & \ddots \end{pmatrix} = M_S$$

Claim

For any field \mathbb{F} , $|S| \ge \operatorname{rank}_{\mathbb{F}} M_S \ge |S|/N$.

Proof.

 $|\mathbf{S}| \geq \mathbf{rank}_{\mathbb{F}} \mathbf{M_S}$: The non-zero columns of M_S correspond to points in S. $\mathbf{rank}_{\mathbb{F}} \mathbf{M_S} \geq |\mathbf{S}|/\mathbf{N}$: Iteratively pick lines in S such that every new line you pick has a point not covered by the earlier lines. These at least |S|/N many lines will give linearly independent rows.

Rank lower bound for M_S

Idea

To lower bound the rank of M_S find a matrix A such that

$$M_S \cdot A = B$$

and B is a matrix independent of S.

• $A = W_{p,n}$ works!

Rank lower bound for M_S

Claim

In the field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, for a line $L = \{a + \lambda u | \lambda \in \mathbb{F}_p\}$ we have

$$\mathbb{1}_L \cdot W_{p,n} = \mathbb{1}_{\overline{H}_u},$$

where $\overline{H}_u = \{x \in \mathbb{F}_p^n | \langle x, u \rangle \neq 0\}.$

$$\mathbb{1}_{L} \cdot W_{p,n} = \begin{bmatrix} & & & \\ & & & \end{bmatrix} \cdot \begin{bmatrix} & \cdots & & \\ & \cdots & & \\ & \cdots & & \end{bmatrix}$$

$$\langle \mathbb{1}_{L}, \mathbb{1}_{H_{v}} \rangle = |L \cap H_{v}| = \begin{cases} 0 & \text{if } L \cap H_{v} = \emptyset \\ p & \text{if } L \subseteq H_{v} \\ 1 & \text{otherwise} \end{cases} = \begin{cases} 0 & \text{if } \langle u, v \rangle = 0 \\ 1 & \text{otherwise} \end{cases}$$

Rank lower bound for M_S

•

$$M_{\mathcal{S}} \cdot W_{p,n} = \mathbf{1} - W_{p,n}$$

in the field \mathbb{F}_p where $\mathbf{1}$ is the all ones matrix.

• The \mathbb{F}_p -rank of $W_{p,n}$ is known exactly.

Theorem (\mathbb{F}_p -rank of $W_{p,n}$ [Goethals and Delsarte, 1968, MacWilliams and Mann, 1968, Smith, 1969])

$$\operatorname{\mathsf{rank}}_{\mathbb{F}_p} W_{p,n} = inom{p+n-2}{n-1} - 1$$

• Gives us a Kakeya size lower bound of

$$|S| \geq \operatorname{\mathsf{rank}}_{\mathbb{F}_p} W_{p,n} - 1 \geq \binom{p+n-2}{n-1} - 2 \geq \frac{p^{n-1}}{n!}.$$

$$\mathsf{EVAL}_{p,n} = \left[\begin{array}{ccc} & m & & & \\ & \ddots & & \ddots & & \\ & \ddots & m(x) & & \ddots \\ & \ddots & & \ddots & & \\ \end{array} \right] = \left[\begin{array}{ccc} & \ddots & & & \\ & \ddots & & \\ & \ddots & & & \\ & \ddots & & & \\ \end{array} \right]$$

where $m \in \mathbb{F}_p[x_1,\ldots,x_n]$ is a monomial of degree p-1 and $x \in \mathbb{F}_p^n$.

$$\mathbb{1}_{L_u} \cdot \mathsf{EVAL}_{p,n} = - \, \mathsf{EVAL}_{p,n}(u)$$

where $\text{EVAL}_{p,n}(u)$ is the u'th row of $\text{EVAL}_{p,n}$.

•

0

$$M_{\mathcal{S}} \cdot \mathsf{EVAL}_{p,n} = - \, \mathsf{EVAL}_{p,n} \,.$$

- EVAL_{p,n} has rank $\binom{p+n-2}{n-1} 1$.
- EVAL_{p,n} equals $W_{p,n}$ after base change.
- Can also prove rank bound using DeMillo-Lipton-Schwartz-Zippel lemma.
- This proves M_S has rank at least $\binom{p+n-2}{n-1}-1$.
- M_S acts as a "decoder".
- We can extend M_S to use the evaluation of derivatives to get stronger bounds.

② "New" Proof for $\mathbb{Z}/p\mathbb{Z}$

- 3 Proof for $\mathbb{Z}/pq\mathbb{Z}$
- 4 Proof for $\mathbb{Z}/p^k\mathbb{Z}$

Kakeya Sets in $\mathbb{Z}/pq\mathbb{Z}$

Some facts about $(\mathbb{Z}/pq\mathbb{Z})^n$

- By the Chinese remainder theorem we know that $(\mathbb{Z}/pq\mathbb{Z})^n \cong \mathbb{F}_p^n \times \mathbb{F}_q^n$.
- Every element $u \in (\mathbb{Z}/pq\mathbb{Z})^n$ can be written as a tuple $(u_p, u_q) \in \mathbb{F}_p^n \times \mathbb{F}_q^n$.
- ullet For every line in L(u) with direction $u=(u_p,u_q)\in \mathbb{F}_p^n imes \mathbb{F}_q^n$

$$L_u = L_p(u) \times L_q(u)$$

where $L_p(u) \subseteq \mathbb{F}_p^n$ and $L_q(u) \subseteq \mathbb{F}_q^n$ are lines with direction u_p and u_q respectively.

$$\mathbb{1}_{L(u_p,u_q)} = \mathbb{1}_{L_p(u_p,u_q)} \otimes \mathbb{1}_{L_q(u_p,u_q)}$$

• Note, while the product $S_p \times S_q$ of two Kakeya Sets $S_p \subseteq \mathbb{F}_p^n$ and $S_q \subseteq \mathbb{F}_q^n$ is a Kakeya Set the converse is not true.

Kakeya Sets in $\mathbb{Z}/pq\mathbb{Z}$ [D and Dvir, 2021]

Theorem (Simple Kakeya Set bounds for $\mathbb{Z}/pq\mathbb{Z}$ [D and Dvir, 2021])

Every Kakeya Set S in $(\mathbb{Z}/pq\mathbb{Z})^n$ has size at least,

$$C_n p^{n-1} q^{n-1}$$
.

- Let $S = \bigcup_{(u_p, u_q) \in \mathbb{F}_p^n \times \mathbb{F}_q^n} L(u_p, u_q)$ be a Kakeya Set.
- $L(u_p, u_q) = L_p(u_p, u_q) \times L_q(u_p, u_q)$

•

$$M_{S} = \begin{bmatrix} \dots & \dots & \ddots \\ - & \mathbb{1}_{L(u_{p},u_{q})} & - \\ \dots & \dots & \ddots \end{bmatrix} = \begin{bmatrix} \dots & \dots & \ddots \\ \mathbb{1}_{L_{p}(u_{p},u_{q})} & \otimes & \mathbb{1}_{L_{q}(u_{p},u_{q})} \\ \dots & \dots & \ddots \end{bmatrix}$$

Kakeya Sets in $\mathbb{Z}/pq\mathbb{Z}$ [D and Dvir, 2021]

$$M_{\mathcal{S}}\cdot (W_{p,n}\otimes I_{q^n})=\left[egin{array}{cccc} & \ldots & & \ddots & \\ \mathbb{1}_{L_p(u_p,u_q)}\cdot W_{p,n} & \otimes & \mathbb{1}_{L_q(u_p,u_q)} & \\ & \ldots & & \ddots & \end{array}
ight]$$

Claim (Proven Earlier)

In the field \mathbb{F}_p , for a line $L\subseteq \mathbb{F}_p^n$ in direction u_p we have $\mathbb{1}_L\cdot W_{p,n}=\mathbb{1}_{\overline{H}_{u_p}}$.

$$M_{\mathcal{S}}\cdot (W_{p,n}\otimes I_{q^n})=\left[egin{array}{cccc} \ldots & \ddots & \ddots \ \mathbb{1}_{\overline{H}_{u_p}} & \otimes & \mathbb{1}_{L_q(u_p,u_q)} \ \ldots & \ddots & \end{array}
ight]$$

Kakeya Sets in $\mathbb{Z}/pq\mathbb{Z}$ [D and Dvir, 2021]

• For a fixed $\mathbf{u_p}$, the indicator vectors $\mathbb{1}_{L_q(\mathbf{u_p},u_q)}$ form the line matrix $M_{S_q(\mathbf{u_p})}$ of the Kakeya Set $S_q(\mathbf{u_p}) = \bigcup_{u_q \in \mathbb{F}_q^n} L_q(\mathbf{u_p},u_q)$ in \mathbb{F}_q^n .

$$M_{S}\cdot(W_{p,n}\otimes I_{q^n})=\left[egin{array}{cccc} \dots & \dots & \ddots & & & & & \\ \mathbb{1}_{\overline{H}_{\mathbf{u_p}}} & \otimes & M_{S_q(\mathbf{u_p})} & & & & & & \\ \dots & \dots & & \ddots & & & & & & \\ \end{array}
ight]\cong\left[egin{array}{cccc} \dots & \dots & \ddots & & & \\ e_i & \otimes & M_{S_q(\mathbf{u_p})} & & & & \\ \dots & \dots & & \ddots & & \\ \end{array}
ight]$$

where $1 \le i \le p^{n-1}/n!$

- We saw earlier that $\mathbb{1}_{\overline{H}_{u_p}}$ for $u_p \in \mathbb{F}_p^n$ has rank at least $p^{n-1}/n!$.
- Pick r linearly independent $\mathbb{1}_{\overline{H}_{y_0}}$ and base change to them.
- "By induction":

$$\operatorname{rank}_{\mathbb{F}_p} M_{S_q(u_p)} \ge |S_q(u_p)| q^{-1} \ge q^{n-1}/2^{n-1}.$$

•

$$|S| \ge \frac{1}{2^{n-1}n!}p^{n-1}q^{n-1}$$

② "New" Proof for $\mathbb{Z}/p\mathbb{Z}$

- 3 Proof for $\mathbb{Z}/pq\mathbb{Z}$
- **4** Proof for $\mathbb{Z}/p^k\mathbb{Z}$

Proof Strategy

- Let ζ be a complex primitive p^k 'th root of unity. $\mathbb{Z}(\zeta)$ is the ring generated by \mathbb{Z} and ζ .
- $x \in (\mathbb{Z}/p^k\mathbb{Z})^n$ is mapped to $\zeta^x = (\zeta^{x_1}, \dots, \zeta^{x_n}) \in \mathbb{Z}(\zeta)^n$.

$$E_{p^k,n} = x \begin{bmatrix} \dots & \dots & \dots \\ \dots & m_v(\zeta^x) & \dots \\ \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} \dots & | & \dots \\ \dots & m_v(\zeta^{(\mathbb{Z}/p^k\mathbb{Z})^n}) & \dots \\ \dots & | & \dots \end{bmatrix}$$

$$m_{\nu}(y) = y_1^{\nu_1} \dots y_n^{\nu_n}, 0 \leq \nu_i \leq p^k - 1 \text{ and } x \in (\mathbb{Z}/p^k\mathbb{Z})^n.$$

• Initial Idea: Find a "decoder" C_S with support S such that $C_S \cdot E_{p^k,n} = B$

is a matrix independent of S.

Actual Idea:

$$C_S \cdot E_{p^k,n}$$
 "(mod p)" = $V_{p^k,n}$

• "(mod p)" map doesn't increase rank.

The rings T_k and \overline{T}_k

Definition (The rings T_k and \overline{T}_k)

$$T_k = rac{\mathbb{Z}(\zeta)[z]}{\langle z^{p^k} - 1
angle} ext{ and } \overline{T}_k = rac{\mathbb{F}_p[z]}{\langle z^{p^k} - 1
angle}.$$

• T_k "(mod p)" = \overline{T}_k

Claim ("(mod p)" map ψ)

The map ψ which maps ζ to 1, \mathbb{Z} to $\overline{\mathbb{F}}_p$ (via the mod p map) and z to z is a ring homomorphism from T_k onto \overline{T}_k .

• ζ is a root of the p^k 'th cyclotomic polynomial

$$\phi(x) = \frac{(x^{p^k} - 1)}{x^{p^{k-1}} - 1} = \sum_{i=0}^{p-1} x^{p^{k-1}i}.$$

• Note, $\phi(1) = 0 \pmod{p}$, equivalently x - 1 divides $\phi(x)$ in \mathbb{F}_p .

Vandermonde Matrix

Definition (Matrix $V_{p^k,n}$)

 $V_{p^k,n}$ is a $p^{kn} \times p^{kn}$ matrix with entries in $\overline{T}_k = \mathbb{F}_p[z]/\langle z^{p^k} - 1 \rangle$ whose entries are,

$$V_{p^k,n}(u,v)=z^{\langle u,v\rangle},$$

where $u, v \in (\mathbb{Z}/p^k\mathbb{Z})^n$

Theorem (Rank Bound [Arsovski, 2021a, D, 2021])

$$V_{p^k,n}$$
 has \mathbb{F}_p -rank at least $\binom{p/k+n-1}{n}$.

- Rank of $V_{p^k,n}$ is defined as the largest number of \mathbb{F}_p -linearly independent columns of $V_{p^k,n}$
- Can write $V_{p^k,n} = LU$ where L is a lower triangular matrix and U is an upper triangular matrix with explicit formulas.
- ullet Lower bounding the number of non-zero diagonal elements of U gives the rank bound.

Decoding evaluations on the complex torus [D, 2021]

• For $f \in \mathbb{Z}[y_1, \dots, y_n]$ the $f(z^u) \in \overline{T}_k$ is in $\psi(\text{span}\{f(\zeta^{L_u})\})$ where L_u is a line in direction u.

Lemma (Decoding evaluations along lines on the $\mathbb C$ torus [D, 2021])

Given $L_u = \{a + \lambda u | \lambda \in \mathbb{Z}/p^k\mathbb{Z}\}$ there exists $c_x \in \frac{\mathbb{Q}(\zeta)[z]}{\langle z^{p^k} - 1 \rangle}, x \in L_u$ such that,

$$\psi\left(\sum_{x\in L_u}c_xf(\zeta^x)\right)=f(z^u),$$

for all polynomials $f \in \mathbb{Z}[y_1, \ldots, y_n]$.

- To apply ψ , $\sum_{x \in L_u} c_x f(\zeta^x)$ must be a polynomial in z with coefficients in $\mathbb{Z}(\zeta)$.
- ullet By linearity (over $\mathbb Z$) it suffices to prove the statement for monomials.

Proof of decoding lemma

- Let $m_v(x) = x_1^{v_1} \dots x_n^{v_n}$.
- $m_{\nu}(\zeta^{0*u}) = m_{\nu}(1), m_{\nu}(\zeta^{u}) = \zeta^{\langle \nu, u \rangle}, \dots, m_{\nu}(\zeta^{\lambda u}) = \zeta^{\lambda \langle \nu, u \rangle}, \dots$ are the evaluations of the monomial $z^{\langle u, \nu \rangle}$ on $z = 1, \zeta, \dots, \zeta^{p^{k}-1}$.
- As

$$\frac{\mathbb{Q}(\zeta)[z]}{\langle (z-1)\rangle}\oplus\ldots\oplus\frac{\mathbb{Q}(\zeta)[z]}{\langle (z-\zeta^{p^k-1})\rangle}=\frac{\mathbb{Q}(\zeta)[z]}{\langle (z-1)\ldots(z-\zeta^{p^k-1})\rangle}=\frac{\mathbb{Q}(\zeta)[z]}{\langle z^{p^k}-1\rangle}.$$

There exists constants $c_{\lambda} \in \mathbb{Q}(\zeta)[z]/\langle z^{p^k}-1 \rangle$ for $\lambda=1,\ldots,p^k$ such that

$$\sum_{\lambda=1}^{p^k} c_{\lambda} m_{\nu}(\zeta^{\lambda u}) = z^{\langle u, v \rangle} = m_{\nu}(z^u) \in \frac{\mathbb{Z}(\zeta)[z]}{\langle z^{p^k} - 1 \rangle} = T_k.$$

Proof of decoding lemma

• As $m_{\nu}(\zeta^{a+\lambda u}) = \zeta^{\langle \nu, a \rangle} m_{\nu}(\zeta^{\lambda u})$,

•

$$\sum_{\lambda=1}^{p^k} c_{\lambda} m_{\nu}(\zeta^{a+\lambda u}) = \zeta^{\langle v,a\rangle} z^{\langle u,v\rangle} = \zeta^{\langle v,a\rangle} m_{\nu}(z^u)$$

ullet Applying ψ gives us,

$$\psi\left(\sum_{\lambda=1}^{p^k}c_\lambda m_{\scriptscriptstyle V}(\zeta^{a+\lambda u})
ight)=m_{\scriptscriptstyle V}(z^u)\in\overline{\mathcal{T}}_k.$$

• Can be extended to decode with derivatives at fewer points.

Decoding evaluations on the complex torus

Corollary (Decode $V_{p^k,n}(u)$ from $E_{p^k,n}(\zeta^{L_u})$)

For a line $L_u = \{a + \lambda u | \lambda \in \mathbb{Z}/p^k\mathbb{Z}\}$ we can find a row vector C_u indexed by points in $(\mathbb{Z}/p^k\mathbb{Z})^n$ such that,

$$\psi(C_u \cdot E_{p^k}) = (z^{\langle v, u \rangle})_{v \in (\mathbb{Z}/p^k\mathbb{Z})^n} = V_{p^k, n}(u).$$

- C_u has support L_u .
- First proven in [Arsovski, 2021a]. Generalized with new proof in [D, 2021].
- The matrix C with rows C_u for each line L_u in S is the required decoder matrix.

Questions?