Finite Difference Method for PDE

Directed Reading Program (DRP)

Tram Nghi Pham DRP Mentor: Michael Franco, UCB

December 7, 2016

Presentation Outline

About PDE

Finite Difference Method (FDM)

Elliptic Equation and FDM

Programming and Results

Wrap Up

Partial Differential Equation

Example PDE Equation

$$a(t,x)U_t + b(t,x)U_x + c(t,x)U_{xt} = f(t,x)$$

- t,x are independent variables (in time and space)
- a,b,c are functions
- U denotes the partial derivatives

Solution to a Partial Differential Equation

Solving a PDE

- Finding the unknown function U which satisfies the PDE
- U is called the analytical or exact solution

Solution to a Partial Differential Equation

Solving a PDE

- Finding the unknown function U which satisfies the PDE
- U is called the analytical or exact solution
- Most PDEs of interest cannot be solved analytically

Solution to a Partial Differential Equation

Solving a PDE

- Finding the unknown function U which satisfies the PDE
- U is called the analytical or exact solution
- Most PDEs of interest cannot be solved analytically
- Numerical procedure is used to find the approximate solution

What is the Finite Difference Method?

- Fundamentally based on the Taylor's theorem
- FDM replaces region in which independent variables are defined by a finite grid of points
- Replaces all partial derivatives and other terms in the PDE by approximations.
- The partial derivatives at each grid point are approximated from its neighbors by using Taylors theorem.

Finite Difference Method Application

Figure 1: Finite Discrete Mesh Grid

Taylor's Theorem

U(x) have n continuous derivatives on [a, b]

$$U(x_0 + h) = U(x_0) + hU_x(x_0) + h^2 \frac{U_{xx}(x_0)}{2!} + \dots$$

6

Taylor's Theorem

U(x) have n continuous derivatives on [a, b]

$$U(x_0 + h) = U(x_0) + hU_x(x_0) + h^2 \frac{U_{xx}(x_0)}{2!} + \dots$$

Applied to FDM

In FDM, both x_0 and $x_0 + h$ are grid points and $U(x_0)$ and $U(x_0 + h)$ are known.

6

Taylor's Theorem

U(x) have n continuous derivatives on [a, b]

$$U(x_0 + h) = U(x_0) + hU_x(x_0) + h^2 \frac{U_{xx}(x_0)}{2!} + \dots$$

Applied to FDM

In FDM, both x_0 and $x_0 + h$ are grid points and $U(x_0)$ and $U(x_0 + h)$ are known.

$$U_x(x_0) = \frac{U(x_0 + h) - U(x_0)}{h} + O(h)$$

known as finite difference approximation to first order derivative

Taylor's theorem for 3 grid points x_0 , $x_0 + h$, $x_0 - h$ gives the second order of second derivative

$$U_{xx}(x_0) = \frac{U(x_0 - h) - 2U(x_0) + U(x_0 - h)}{h^2} + O(h^2)$$

is called second order FD approximation to $U_{xx}(x_0)$ since the approximation error $= O(h^2)$

Elliptic Equation in 2D

Elliptic Equation's Formula

$$a_1 U_{xx} + a_2 U_{xy} + a_3 U_{yy} = 0$$

$$(x,y) \in \Omega = (a,b)x(c,d)$$

where the coefficients a_1 , a_2 , a_3 satisfy

$$a_2^2 - 4a_1a_3 < 0$$

Laplace's and Poisson's Equation

In 2D, Laplace's Equation is

$$U_{xx} + U_{yy} = 0$$

Used to model steady state groundwater flow, temperature distribution over a region, etc.

In 2D, Poisson's equation is

$$U_{xx} + U_{yy} = f(x, y)$$

Used to model the gravitational fields, stress patterns, etc.

Poisson's equation and Dirichlet Boundary Condition

$$U_{xx} + U_{yy} = f(x, y)$$
$$(x, y)|_{\partial\Omega} = u_0(x, y)$$
$$(x, y) \in \Omega = (a, b)x(c, d)$$

Poisson's equation and Dirichlet Boundary Condition

$$U_{xx} + U_{yy} = f(x, y)$$
$$(x, y)|_{\partial\Omega} = u_0(x, y)$$
$$(x, y) \in \Omega = (a, b)x(c, d)$$

Our goal: seeking for an approximate solution u_{ij} at the grid points (x_i, y_j) , where U(x, y) are unknown

FDM procedure is as follows

• Step 1: Generating a grid.

$$x_i = a + i(\Delta x)$$
$$y_j = c + j(\Delta y)$$

$$y_j = c + j(\Delta y)$$

FDM procedure is as follows

• Step 1: Generating a grid.

$$x_i = a + i(\Delta x)$$
$$y_j = c + j(\Delta y)$$

$$y_j = c + j(\Delta y)$$

Figure 2: Finite Mesh Grid

• **Step 2:** Replacing partial derivatives with FD formulas involving the function values at the grid points

$$U_{xx} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{(\Delta x)^2} + O(\Delta x^2)$$

$$U_{yy} = \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{(\Delta y)^2} + O(\Delta y^2)$$

 Step 2: Replacing partial derivatives with FD formulas involving the function values at the grid points

$$U_{xx} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{(\Delta x)^2} + O(\Delta x^2)$$

$$U_{yy} = \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{(\Delta y)^2} + O(\Delta y^2)$$

• Step 3: Solving the linear system of algebraic equations of

$$U_{xx} + U_{yy} = \frac{u_{i-1,j} + u_{i+1,j} - 4u_{i,j} + u_{i,j-1} + u_{i,j+1}}{h^2} + O(h^2) = f_{i,j}$$
$$i = 1, 2, 3, ..., n$$

• Step 3: Solving the linear system of algebraic equations of

$$U_{xx} + U_{yy} = \frac{u_{i-1,j} + u_{i+1,j} - 4u_{i,j} + u_{i,j-1} + u_{i,j+1}}{h^2} + O(h^2) = f_{i,j}$$
$$i = 1, 2, 3, ..., n$$

How to solve the this linear system of equation?

1. Ordering the unknowns

How to solve the this linear system of equation?

2. Putting in Matrix

Discrete Poisson Problem on 4-by-4 Grid

Programming and Results

Using FDM to Solve For

$$\Delta u = -2\pi^2 sin(\pi x)cos(\pi y)$$

$$(x,y)|_{\partial\Omega} = U_0(x,y) = sin(\pi x)cos(\pi y)$$

$$(x,y) \in \Omega = (0,1)x(0,1)$$

Verification

Is the program computing what it is supposed to?

Verification

Is the program computing what it is supposed to?

- Find an exact solution of a simpler PDE then compare numerical and exact results
- Consider the error as you refine the grid:

$$N = \{2^i N_o\}_{i=0}^4$$

Summary

- Finite Difference Method is is used to find an approximate solution to PDE.
- It works by replacing all partial derivatives by an approximations
- Most widely used numerical method to solve PDE

Thank you! Questions?