* Unscented transformation

$$\mathcal{Y}^{\epsilon;7} = g(\chi^{\epsilon;7}, u_t)$$

We transform a set of Hyma points instead of a 1st Taylor exp.

· Choosing the signa points

$$\chi^{E07} = \mu$$

$$\chi^{ii} = \mu + (\sqrt{n+1}, \sqrt{Z_x})_i, i = 1, ..., N$$

$$\chi^{ii} = \mu - (\sqrt{n+1}, \sqrt{Z_x})_i, i = n+1, ..., 2n$$

$$\text{recall} \quad Z = \mu + (\mu \text{ olenky}) \Rightarrow \sqrt{Z} = RL$$

$$\chi = \sqrt{n+1} = \kappa \quad (\text{radim})$$

· Sigma weights

mean
$$\omega_0 = \frac{\Delta}{n+\Delta}$$

covaring
$$woldsymbol{1} = \frac{\Delta}{N+\Delta} + (1-\alpha^2+\beta)$$

$$W_m^{\text{Li7}} = W_c^{\text{Li7}} = \frac{1}{2(n+4)}$$

> Unscented Kalman Filter

$$\overline{\mathbb{L}}$$

6:
$$\overline{Z}_{t} = h(\overline{X}_{t})$$

7:
$$\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \overline{Z}_t^{[i]}$$
 $\hat{z}_t = H_t \cdot \overline{X}_t$ on EKF

8:
$$S_t = \sum_{t=0}^{2n} w_t \left(\overline{Z}_t^{(i)} - \hat{z}_t \right) \left(\overline{Z}_t^{(i)} - \hat{z}_t \right)^T + Q_t$$
 (S= HEHT+Q)

9:
$$\overline{Z}_{t}^{x_{1\overline{z}}} = \sum_{i=0}^{2n} \omega_{i}^{(i)} (\overline{X}_{t}^{(i)} - \overline{\mu_{t}}) (\overline{Z}_{i}^{(i)} - \hat{Z}_{t})^{T}$$
 (Crossoveria \overline{Z}_{i} V_{t})

$$\underline{\mathbb{M}}$$
 10: $K_t = \sum_{t=0}^{K_{12}} S_t^{-1}$

$$Z_t = \widetilde{Z}_t - K_t S_t (S_t^{-1})^T J_t Z_t^T$$

$$= \overline{Z}_t - K_t \left(\overline{Z}_t H_t\right)^T$$

UKF summary:

Highly efficient, some complexity on EKF + extra constant.

Better linearization (Jacobson us tigme points)

Perivative free

Still not optimal

* Gaustian Commical paramélization

Canoulcul form: simplied and elegant form. We and on the same descentions to obtain the UF equivalent (Information filter) for linear dearstroms and the Extended IF for linearized January Cystum.

XInprimation Filter

Inputs: Ét.1, 1/4-1, 112, 24

1: $\hat{\Lambda}_t = (A_t \Lambda_{t-1}^{-1} A_t^T + R_t)^{-1}$

2: $\overline{\xi}_{c} = \overline{\Lambda}_{t} \left(A_{l} \cdot \Lambda_{t-1}^{-1} \xi_{t-1} + B_{t} \cdot u_{\epsilon} \right)$ prediction

(marginalization)

3: $\Lambda_t = C_t^T Q_t^{-1} C_t + \Lambda_t$

4: $\hat{\xi}_t = C_t^T Q_t^{-1} Z_t + \bar{\xi}_t$

ceturn St. At

(Prub Rob 73)

(widitioning) (easew)

There exists a duality between marjinallying a dawnon and conditioning a canonical form, both are easy.

Next lecture: localization Prob Reb Gh7