Matrix-Chain multiplication [CLRS Section 15.2]

Recalling Matrix Multiplication

The product C = AB of a $p \times q$ matrix A and a $q \times r$ matrix B is a $p \times r$ matrix given by

$$c[i,j] = \sum_{k=1}^{q} a[i,k]b[k,j]$$

for $1 \le i \le p$ and $1 \le j \le r$.

Example: If

$$A = \begin{bmatrix} 1 & 8 & 9 \\ 7 & 6 & -1 \\ 5 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 8 \\ 7 & 6 \\ 5 & 5 \end{bmatrix},$$

then

$$C = AB = \begin{bmatrix} 102 & 101 \\ 44 & 87 \\ 70 & 100 \end{bmatrix}.$$

Direct Matrix multiplication AB

Given a $p \times q$ matrix A and a $q \times r$ matrix B, the direct way of multiplying C = AB is to compute each

$$c[i,j] = \sum_{k=1}^{q} a[i,k]b[k,j]$$

for $1 \le i \le p$ and $1 \le j \le r$.

Complexity of Direct Matrix multiplication:

Note that C has pr entries and each entry takes $\Theta(q)$ time to compute so the total procedure takes $\Theta(pqr)$ time.

Direct Matrix multiplication of ABC

Given a $p \times q$ matrix A, a $q \times r$ matrix B and a $r \times s$ matrix C, then ABC can be computed in two ways (AB)C and A(BC):

The number of multiplications needed are:

$$mult[(AB)C] = pqr + prs,$$
 $mult[A(BC)] = qrs + pqs.$
When $p = 5$, $q = 4$, $r = 6$ and $s = 2$, then
 $mult[(AB)C] = 180,$
 $mult[A(BC)] = 88.$

A big difference!

Implication: The multiplication "sequence" (parenthesization) is important!!

The Chain Matrix Multiplication Problem

Given

dimensions p_0, p_1, \ldots, p_n

corresponding to matrix sequence A_1, A_2, \ldots, A_n where A_i has dimension $p_{i-1} \times p_i$,

determine the "multiplication sequence" that minimizes the number of scalar multiplications in computing $A_1A_2\cdots A_n$. That is, determine how to parenthisize the multiplications.

$$A_1 A_2 A_3 A_4 = (A_1 A_2)(A_3 A_4)$$

= $A_1 (A_2 (A_3 A_4)) = A_1 ((A_2 A_3) A_4)$
= $((A_1 A_2) A_3)(A_4) = (A_1 (A_2 A_3))(A_4)$

Exhaustive search:

Parenthisizations of sequence of n matrices. P(n): # 8

$$P(n) = \begin{cases} 0 & \text{if } n=1\\ n-1\\ \sum_{k=1}^{n-1} P(k) P(n-k) & \text{if } n/2 \end{cases}$$

Notation:

 $A_{i--j} = A_i A_{i+1} - A_j$

$$A_{i\cdots j} = A_i A_{i+1} - A_j$$

For any optimal multiplication sequence, at the last **step** you are multiplying two matrices $A_{i..k}$ and $A_{k+1..j}$ for some k. That is,

$$A_{i..j} = (A_i \cdots A_k)(A_{k+1} \cdots A_j) = A_{i..k}A_{k+1..j}.$$

Example

$$A_{3..6} = (A_3(A_4A_5))(A_6) = A_{3..5}A_{6..6}.$$
 Here $k = 5$.

$$A_{i...j} = (A_i \cdots A_k)(A_{k+1} \cdots A_j) = A_{i...k}A_{k+1...j}$$

Optimal Substructure Property: If final "optimal" solution of $A_{i..j}$ involves splitting into $A_{i..k}$ and $A_{k+1..j}$ at final step then parenthesization of $A_{i..k}$ and $A_{k+1..j}$ in final optimal solution must also be optimal for the subproblems "standing alone":

For 1 si sj sn.

let m[i,j] denote the minimum number of multiplications needed to compute Ai-ij.

How to Compute m[i,i] ??

$$m[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min \{m[i,k] + m[k,j] + P_i P_k P_j \}, i < j \\ i \leq k < j \end{cases}$$

What Should we Store in DP table?

How to fill the DP table?

We should fill the table in increasing order of the length of the matrix Chain.

Example for the Bottom-Up Computation

Example: Given a chain of four matrices A_1 , A_2 , A_3 and A_4 , with $p_0 = 5$, $p_1 = 4$, $p_2 = 6$, $p_3 = 2$ and $p_4 = 7$. Find m[1, 4].

S0: Initialization

Stp 1: Computing m[1,2] By definition

$$m[1,2] = \min_{1 \le k < 2} (m[1,k] + m[k+1,2] + p_0 p_k p_2)$$

= $m[1,1] + m[2,2] + p_0 p_1 p_2 = 120.$

Stp 2: Computing m[2,3] By definition

$$m[2,3] = \min_{2 \le k < 3} (m[2,k] + m[k+1,3] + p_1 p_k p_3)$$

= $m[2,2] + m[3,3] + p_1 p_2 p_3 = 48.$

Stp3: Computing m[3,4] By definition

$$m[3,4] = \min_{3 \le k < 4} (m[3,k] + m[k+1,4] + p_2 p_k p_4)$$

= $m[3,3] + m[4,4] + p_2 p_3 p_4 = 84.$

Stp4: Computing m[1,3] By definition

$$m[1,3] = \min_{1 \le k < 3} (m[1,k] + m[k+1,3] + p_0 p_k p_3)$$

$$= \min \left\{ \begin{array}{l} m[1,1] + m[2,3] + p_0 p_1 p_3 \\ m[1,2] + m[3,3] + p_0 p_2 p_3 \end{array} \right\}$$

$$= 88.$$

Stp5: Computing m[2,4] By definition

$$m[2,4] = \min_{2 \le k < 4} (m[2,k] + m[k+1,4] + p_1 p_k p_4)$$

$$= \min \left\{ \begin{array}{l} m[2,2] + m[3,4] + p_1 p_2 p_4 \\ m[2,3] + m[4,4] + p_1 p_3 p_4 \end{array} \right\}$$

$$= 104.$$

St6: Computing m[1,4] By definition

$$m[1,4] = \min_{1 \le k < 4} (m[1,k] + m[k+1,4] + p_0 p_k p_4)$$

$$= \min \left\{ \begin{array}{l} m[1,1] + m[2,4] + p_0 p_1 p_4 \\ m[1,2] + m[3,4] + p_0 p_2 p_4 \\ m[1,3] + m[4,4] + p_0 p_3 p_4 \end{array} \right\}$$

$$= 158.$$

We are done!

Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed information – extract the actual sequence.

Idea: Maintain an array s[1..n, 1..n], where s[i,j] denotes k for the optimal splitting in computing $A_{i..j} = A_{i..k}A_{k+1..j}$. The array s[1..n, 1..n] can be used recursively to recover the multiplication sequence.

How to Recover the Multiplication Sequence?

$$s[1,n] \qquad (A_1 \cdots A_{s[1,n]})(A_{s[1,n]+1} \cdots A_n)$$

$$s[1,s[1,n]] \qquad (A_1 \cdots A_{s[1,s[1,n]]})(A_{s[1,s[1,n]]+1} \cdots A_{s[1,n]})$$

$$s[s[1,n]+1,n] \qquad (A_{s[1,n]+1} \cdots A_{s[s[1,n]+1,n]}) \times (A_{s[s[1,n]+1,n]+1} \cdots A_n)$$

$$\vdots \qquad \vdots$$

Do this recursively until the multiplication sequence is determined.

Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed information – extract the actual sequence.

Example of Finding the Multiplication Sequence:

Consider n = 6. Assume that the array s[1..6, 1..6] has been computed. The multiplication sequence is recovered as follows.

$$s[1,6] = 3 \quad (A_1 A_2 A_3)(A_4 A_5 A_6)$$

 $s[1,3] = 1 \quad (A_1 (A_2 A_3))$
 $s[4,6] = 5 \quad ((A_4 A_5) A_6)$

Hence the final multiplication sequence is

$$(A_1(A_2A_3))((A_4A_5)A_6).$$

The Dynamic Programming Algorithm

```
 \begin{cases} & \text{for } (i=1 \text{ to } n) \ m[i,i] = 0; \\ & \text{for } (i=2 \text{ to } n) \end{cases} \\ & \begin{cases} & \text{for } (i=1 \text{ to } n-l+1) \end{cases} \\ & \begin{cases} & j=i+l-1; \\ & m[i,j] = \infty; \\ & \text{for } (k=i \text{ to } j-1) \end{cases} \\ & \begin{cases} & q=m[i,k]+m[k+1,j]+p[i-1]*p[k]*p[j]; \\ & \text{if } (q < m[i,j]) \end{cases} \\ & \begin{cases} & m[i,j] = q; \\ & s[i,j] = k; \end{cases} \end{cases} \\ & \end{cases} \\ & \end{cases} \\ & \end{cases} \\ \end{cases}  return m and s; (Optimum in m[1,n])
```

Complexity: The loops are nested three deep.

Each loop index takes on $\leq n$ values.

Hence the time complexity is $O(n^3)$. Space complexity $\Theta(n^2)$.