

Universität Augsburg Institut für Informatik Lehrstuhl für Organic Computing Prof. Dr. Jörg Hähner Ansprechpartner

Dominik Rauh, M. Sc. dominik.rauh@informatik.uni-augsburg.de Eichleitnerstr. 30, Raum 502

Wintersemester 2018/2019

Peer-to-Peer und Cloud Computing

Aufgabenblatt 4

Dieses Übungsblatt ist Teil der Bonusregelung. Schicken Sie Ihre Lösung in der für diese Veranstaltung festgelegten Form **bis Montag, 03.12.2018, um 8 Uhr MEZ** an obenstehende E-Mail-Adresse. Die Vorstellung der Ergebnisse wird voraussichtlich im Rahmen der Übung am Mittwoch, 05.12.2018, stattfinden.

Zum Bestehen dieses Übungsblattes müssen mindestens 15 Punkte erreicht werden.

1 Rechenaufgabe zu Symphony (6 Punkte)

Lesen Sie den wissenschaftlichen Beitrag *Symphony: Distributed Hashing in a Small World* (im Digicampus sowie →hier verfügbar). Beantworten Sie dazu die folgenden Fragen.

Gegeben sei ein Symphony-Ring mit den Knoten $v_{0,03}$, $v_{0,13}$, $v_{0,2}$, $v_{0,27}$, $v_{0,39}$, $v_{0,42}$, $v_{0,47}$, $v_{0,62}$, $v_{0,75}$ und $v_{0,89}$ (siehe Abbildung 1). Es handelt sich um einen Ring mit bidirektionaler Kommunikation.

- 1. Für welche Schlüssel ist Knoten $v_{0,42}$ zuständig? (1 Punkt)
- 2. Berechnen Sie für den Knoten $v_{0,47}$ den Schätzwert für die Anzahl von Knoten im Netz (basierend auf dem Estimation-Protokoll aus o. g. wissenschaftlichem Beitrag mit s=3). (1 Punkt)
- 3. Zeichnen Sie die Long-Distance-Links (k=2) für die Knoten $v_{0,2}$, $v_{0,27}$ und $v_{0,39}$ unter Benutzung der in Abbildung 2 gegebenen "Zufallszahlen", der in Symphony genutzten *Probability-Distribution-Function* (PDF) in Abbildung 1 ein. (2 Punkte)
- 4. Anschließend fordert Knoten $v_{0,13}$ Daten mit dem Schlüssel 0.88 an. Geben Sie den vollständigen Anfragepfad an und begründen Sie ihn. (2 Punkt)

Abbildung 1: Symphony-Netzwerk für Aufgabe 1.

$e^{\ln n*(rand()-1,0)}$	genutzt von Peer
0,41	0,2
0,23	0,2
0,51	0,27
0,67	0,27
0,17	0,39
0,37	0,39

Abbildung 2: Zufallszahlen, die in den entsprechenden Schritten von der PDF $e^{\ln n*(rand()-1,0)}$ generiert wurden.

2 Rechenaufgabe zu Chord (15 Punkte)

Gegeben sei ein Chord-Ring (m=6, mit Fingern) mit den Knoten: v_1 , v_8 , v_9 , v_{21} , v_{32} , v_{38} , v_{42} , v_{58} . Geben Sie Ihre Rechenwege an!

- 1. Erstellen Sie die Routingtabellen für alle Knoten. (4 Punkte)
- 2. Ein neuer Knoten mit der ID 41 nimmt Kontakt mit Knoten v_1 auf, um ins Netzwerk aufgenommen zu werden.
 - Welche Schritte werden unternommen bis der neue Knoten Teil des Netzwerks ist? (3 Punkte)
 - Geben Sie die neue Routingtabelle für Knoten v_{41} an. (1 Punkt)
 - Welche Knoten müssen von v_{41} dazu aufgefordert werden, ihre Routingtabellen zu aktualisieren? (1 Punkt)
 - Geben Sie die aktualisierten Routingtabellen der anderen Knoten an. (2 Punkte)
- 3. Anschließend fordert Knoten υ_{41} Daten mit dem Schlüssel9an.
 - Welche Knoten werden von welchen Knoten in welcher Reihenfolge nach den Daten gefragt? (2 Punkte)
 - Welcher Knoten liefert schließlich das Ergebnis der Suche an v_{41} zurück? (1 Punkt)
- 4. Knoten v_{21} fällt aus. Welche Knoten aktualisieren nun unmittelbar welche Informationen? (1 Punkt)

Abbildung 3: Chord-Netzwerk zu Aufgabe 2.