Évaluation-bilan 7

T^{ale}Comp

Calculatrice autorisée. Toutes les réponses doivent être justifiées.

Exercice 1 ... / 10 pts

Dans cet exercice, les questions 1, 2, 3 et 4 peuvent être traitées de façon indépendante les unes des autres.

Un parachutiste est en chute libre dans l'air jusqu'à l'instant t=0 où il ouvre son parachute. Sa vitesse est alors de 50 m.s⁻¹. On admet par la suite que sa vitesse v, en m.s⁻¹, en fonction du temps t, en s, est solution de l'équation différentielle sur l'intervalle $[0; +\infty[$:

$$(E): y' = -5y + 10.$$

1. La fonction constante g définie sur l'intervalle $[0; +\infty[$ par g(t)=2 est-elle une solution de l'équation différentielle (E)? Justifier la réponse.

2. Montrer que les solutions de l'équation différentielle (E) sur l'intervalle $[0; +\infty[$ sont les fonctions f définies sur cet intervalle par $f(t)=k\mathrm{e}^{-5t}+2$, où k est un nombre réel donné.

3. En admettant le résultat de la question précédente, montrer que la fonction v est donnée sur $[0\;;\;+\infty[$ par $v(t)=48\mathrm{e}^{-5t}+2.$

4. La distance parcourue, en mètre, par le parachutiste pendant les 10 premières secondes après ouverture du parachute est donnée par l'intégrale :

$$\int_0^{10} \left(48e^{-5t} + 2 \right) dt$$

Calculer cette intégrale (arrondir à 10^{-1}).

Exercice 2

... / 10 pts

Le tableau suivant donne l'évolution du prix p_i , en euros, d'une action en Bourse depuis son introduction.

 Jour j_i 2
 7
 12
 16
 20
 25

 p_i 13,6
 13,8
 14,3
 14,2
 14,9
 15,3

1. À l'aide de la calculatrice, déterminer le coefficient de corrélation linéaire entre les variables p et j.

Arrondir au millième.

2. Peut-on envisager un ajustement affine du nuage? Si oui, donner l'équation de la droite de régression de p en j. Arrondir les coefficients au millième.

3. Peut-on estimer le prix de cette action au 30^e jour? Si oui, donner la valeur estimée.

Quelle fiabilité peut-on accorder à cette estimation?

4. Estimer le nombre de jours nécessaires pour que le prix de l'action atteigne 14 euros.

Question 1

Soit g la fonction constante définie sur l'intervalle $[0 ; +\infty[$ par g(t)=2. g'(t)=0 et $-5g(t)+10=-5\times 2+10=0$ donc g'(t)=-5g(t)+10. Donc g est solution de l'équation différentielle (E).

Question 2

D'après le cours, les solutions de l'équation différentielle y'=ay sur l'intervalle $[0\;;\;+\infty[$ sont les fonctions f définies sur cet intervalle par $f(t)=k\mathrm{e}^{at}$, où k est un nombre réel quelconque, donc les solutions de l'équation différentielle y'=-5y sur l'intervalle $[0\;;\;+\infty[$ sont les fonctions f définies sur cet intervalle par $f(t)=k\mathrm{e}^{-5t}$, où k est un nombre réel quelconque.

Une solution de l'équation différentielle y'=-5y+10 est la somme d'une solution de l'équation différentielle y'=-5y et d'une solution constante de l'équation différentielle y'=-5y+10, donc les solutions de l'équation différentielle (E) sur l'intervalle $[0\ ;\ +\infty[$ sont les fonctions f définies sur cet intervalle par $f(t)=k\mathrm{e}^{-5t}+2$, où k est un nombre réel quelconque.

Question 3

On sait que v est solution de (E) et que v(0)=50; donc $k\mathrm{e}^0+2=50$ donc k=48. La fonction v est donc donnée sur $[0\ ;\ +\infty[$ par $v(t)=48\mathrm{e}^{-5t}+2$.

Question 4

La distance parcourue, en mètre, par le parachutiste pendant les 10 premières secondes après ouverture du parachute est donnée par l'intégrale : $\int_0^{10} \left(48\mathrm{e}^{-5t} + 2\right)$.

Pour calculer cette intégrale, il faut trouver une primitive de la fonction v.

La fonction $t\longmapsto \mathrm{e}^{at}$ avec $a\neq 0$, a pour primitive la fonction $t\longmapsto \frac{\mathrm{e}^{at}}{a}$, donc la fonction v a pour primitive la fonction V définie par $V(t)=48\frac{\mathrm{e}^{-5t}}{-5}+2t$ soit $V(t)=-9,6\mathrm{e}^{-5t}+2t$.

$$\int_0^{10} (48e^{-5t} + 2) dt = \left[V(t) \right]_0^{10} = V(10) - V(0) = \left(-9.6e^{-5 \times 10} + 2 \times 10 \right) - \left(-9.6e^{-5 \times 0} + 2 \times 0 \right)$$
$$= -9.6e^{-50} + 20 + 9.6 = 29.6 - 9.6e^{-50} \approx 29.6$$