

Exercice 1:(06 pts)

1 Déterminons a et b

$$\bar{x} = \frac{1+2+3+4+4+a}{6} = 3,25 \Rightarrow \frac{14+a}{6} = 3,25 \Rightarrow 14+a = 19,5 \Rightarrow a = 5,5$$

0,5 pt

$$\bar{y} = \frac{7+5+5+4+3+b}{6} = 4,45 \Rightarrow \frac{24+b}{6} = 4,45 \Rightarrow 24+b = 26,7 \Rightarrow b = 2,7$$

0,5 pt

							Totale
x_i	1	2	3	4	4	5,5	19,5
y_i	7	5	5	4	3	2,7	26,7
$x_i - \bar{x}$	-2,25	-1,25	-0,25	0,75	0,75	2,25	0
$y_i - \bar{y}$	2,55	0,55	0,55	-0,45	-1,45	-1,75	0
$(x_i - \bar{x})(y_i - \bar{y})$	-5,7375	-0,6875	-0,1375	-0,3375	-1,0875	-3,9375	-11,925
$(x_i - \bar{x})^2$	5,0625	1,5625	0,0625	0,5625	0,5625	5,0625	12,875
$(y_i - \bar{y})^2$	6,5025	0,3025	0,3025	0,2025	2,1025	3,0625	12,475

- a Calcul du coefficient r
- **b** Comme $|r| \approx 0.92 > 0.8$, il y a une bonne corrélation négative.
- 2 Déterminons l'équation de la droite de régression de Y en X:

$$Cov(X,Y) = \frac{-11,925}{6} \approx -1,9875$$
 et $Var(X) = \frac{12,875}{6} \approx 2,1458$

0.5 + 0.5 pt

$$a = \frac{\text{Cov}(X,Y)}{\text{Var}(X)} = \frac{-1,9875}{2,1458} \approx -0.926 \quad ; \quad b = \bar{y} - a\bar{x} = 4,45 - (-0.926 \times 3,25) \approx 7,46$$

$$\boxed{y = -0.926x + 7,46}$$

Exercice 2:(08 pts)

Moussa commence à travailler en janvier 2011 avec un salaire mensuel de 450 000 FCFA. Chaque 1^{er} janvier, son salaire augmente de 2%. Il commence à épargner quand son salaire atteint 600 000 FCFA.

1. Modélisation

Le salaire de Moussa suit une suite géométrique :

$$S_n = 450\,000 \cdot (1,02)^n$$

où n représente le nombre d'années après 2011.

2. Vérification en 2021

En 2021, on a n = 10 (car 2021 - 2011 = 10)

$$S_{10} = 450\,000 \cdot (1,02)^{10} \approx 450\,000 \cdot 1,219 = 548\,550$$

 $548\,550 < 600\,000 \Rightarrow$ Moussa ne peut pas commencer à épargner en 2021.

3. Détermination de l'année de début d'épargne

On cherche n tel que :

$$450\,000 \cdot (1,02)^n \ge 600\,000 \Rightarrow (1,02)^n \ge \frac{600\,000}{450\,000} = \frac{4}{3}$$

$$n \ge \frac{\ln\left(\frac{4}{3}\right)}{\ln(1,02)} \approx \frac{0.2877}{0.0198} \approx 14.53$$

Donc la première année entière où il atteint ce seuil est :

$$2011 + 15 = 2026$$

Exercice 3:(06 pts)

Une urne contient 12 boules : 3 rouges, 4 vertes et 5 blanches. On tire 3 boules simultanément. Nombre total de tirages possibles :

$$C_{12}^3 = 220$$

A. Les 3 boules sont blanches

$$C_5^3 = 10 \Rightarrow P(A) = \frac{10}{220} = \boxed{\frac{1}{22}}$$

B. Les 3 boules ont la même couleur

$$C_5^3 + C_4^3 + C_3^3 = 10 + 4 + 1 = 15 \Rightarrow P(B) = \frac{15}{220} = \boxed{\frac{3}{44}}$$

C. 2 vertes et 1 rouge

$$C_4^2 \cdot C_3^1 = 6 \cdot 3 = 18 \Rightarrow P(C) = \frac{18}{220} = \boxed{\frac{9}{110}}$$

D. Aucune boule blanche

On tire 3 boules parmi 7 (rouges et vertes):

$$C_7^3 = 35 \Rightarrow P(D) = \frac{35}{220} = \boxed{\frac{7}{44}}$$

E. Au moins une boule blanche

$$P(E) = 1 - P(D) = 1 - \frac{7}{44} = \boxed{\frac{37}{44}}$$