- 2. Я реализовал конвейерную версию вычисления данной задачи. Это сделано для улучшения максимальной тактовой частоты схемы. Это создает задержку в 3 цикла для первого вычисления, но при большом объеме постоянных (валидных) обрабатываемых сигналов средняя латентность близка к 1 циклу. Это очень близка латентности в не конвейерной реализации схемы где латентность составляет ровно 1 цикл. Но при этом максимальная тактовая частота хуже в разы. И средняя латентность по времени (в ns) будет лучше.
- 11. В целом существует много методов.
 - Я в своем коде использовал самый простой способ где разрядность выходных и внутренних сигналов всегда гарантирует что не будет переполнения. То есть сигналы расширены до необходимой разрядности. Например для промежуточного результата "1 + 3c" я использовал сигнал разрядностью WIDTH + 3, где WIDTH это разрядность входных сигналов. WIDTH + 3, потому что для умножения на 3 без переполнения нужно расширить сигнал на 2 разряда, и для +1 нужно расширить еще на один разряд.
 - Можно использовать флаги переполнения для сигнализации ошибки, с или без последующей обработкой ошибки. Последующая обработка может включать в себя использование насыщающей арифметики, где после обнаружения переполнения, значение результата заменяется на максимальное или минимальное значение в зависимости от знака выходного сигнала.
- 12. Аппаратные ресурсы при реализация в Vivado на target device-е "xc7z035fbg676-1", и при разрядности входных параметров 16 бит указано ниже:

Slice LUTs: 119Slice Registers: 71

• DSPs: 2

Name 1	Slice LUTs (171900)	Slice Registers (343800)	Slice (5465 0)	LUT as Logic (171900)	LUT Flip Flop Pairs (171900)	DSP s (900)	Bonded IOB (250)	BUFGCTRL (32)
N math_equation	119	71	55	119	36	2	104	1

13. Я ограничил clk на 250 MHz (4 ns) и получил WNS = -0.121 ns. То есть теоретический система может работать на **242 MHz**.

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	-0.121 ns	Worst Hold Slack (WHS):	0.168 ns	Worst Pulse Width Slack (WPWS):	1.600 ns
Total Negative Slack (TNS):	-0.233 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	2	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	155	Total Number of Endpoints:	155	Total Number of Endpoints:	74
Timing constraints are not met.					

Но я не учел input and output delays в ограничениях, и из-за этого максимальная тактовая частота немного отличается от реальных значении, и считается более оптимистическим. В реальности как минимум существует задержка из-за routing-a, а также может существовать задержки чтения входных сигналов из памяти/регистров.