Wasca memory maps v. 0.3

This is a short document describing max10-based wasca cartridge memory and registers map from both SH-2 and in-FPGA Nios II soft cpu perspective. It also covers some aspects about developer Zynq-based board (this one is not named yet).

Part 1. SH-2 memory map

All the absolute addresses in this part of the document are in SH-2 cache-through address space unless otherwise specified.

Table 1-1 describes differencies between SH-2's chipselect spaces and A-bus (SMPC's chipselects). Further chipselect references will be using A-Bus ranges.

Address range	Size	SH-2 chipselects	A-Bus Chipselects	wasca usage
0x22000000 - 0x23FFFFFF	32 MB	CS0	CS0	Yes
0x24000000 - 0x24FFFFF	16 MB		CS1	Yes
0x25000000 - 0x257FFFFF	8 MB	CS1	Dummy	No
0x25800000 - 0x258FFFFF	1 MB		CS2	Not yet

Table 1-1. SH-2 and A-bus chipselect ranges.

Table 1-2 shows a detailed map of CS0 and CS1 and its usage by some official and unofficial carts.

Address range	Size	CS	Power memory	RAM cart	ROM cart	Bootable cart
0x22000000 - 0x221FFFFF	2 M					
0x22200000 - 0x223FFFFF	2 M					
0x22400000 - 0x225FFFFF	2 M	CS0		Lower data	Data	Code and data
0x22600000 - 0x227FFFFF	2 M			Upper data		dutu
0x22800000 - 0x23FFFFFF	24 M					
0x24000000 - 0x24FEFFFF	15.9999 M	CC1	Data			
0x24FFFFC	4	CS1	ID	ID	0xFFFF	0xFFFF

Table 1-2. Detailed CS0 and CS1 memory maps for various carts.

Table 1-3 shows the same map of CS0 and CS1 and its usage by wasca. Empty areas in tables 1-2 and 1-3 are unmapped, and should return unpredictable value (mostly 0xFFFF) on every read access. Write accesses in these areas are ignored.

Address range	Size	CS		wasca mode			
			INIT	Power memory	RAM	<32M ROM	32M ROM
x22000000 - 0x221FFFFF	2 M		Bootcode				
0x22000000 - 0x223FFFFF	2 M						
0x22400000 - 0x225FFFFF	2 M				D 4 1 4	ROM	
0x22600000 - 0x227FFFFF	2 M				RAM	ROW	
0x22800000 - 0x23FEFFFF	23.94 CS0 M						ROM
0x23FF0000 - 0x23FFDFFF	56K						
0x23FFE000 - 0x23FFEFFF	4K						
0x23FFF000 - 0x23FFFFFF	4K						
0x24000000 - 0x24FE0FFF	15.94 M						
0x24FF0000 - 0x24FFDFFF	56K						Reserved
0x24FFE000 - 0x24FFEFFF	4K	CS1		Power memory			File system interface
0x24FFF000 - 0x24FFFFFB	4092						wasca system area
0x24FFFFFC (ID)	4		0xFF	0x2x	0x5x	0xFF	0xFF

Table 1-3. Detailed CS0 and CS1 memory maps.

Filesystem interface is introduced to allow SH2 browse SD card or other media content, read, write or select files there. Selecting file is required for custom ROM operation mode. Filesystems registers are 16-bit-wide and should be accessed with 16-bit accesses and 16-bit address align. Other access sizes and/or unaligned addresses will lead to unpredictable behavior.

Filesystem is locked after reset, and should be unlocked by writing 0xFADE inlo LOCK register. While locked, filesystem interface behaves as an unmapped area, LOCK register is write-only.

Offset	Size	R/W	Name	Description
0x000	3840	R/W	BUFFER	Multi-purpose buffer. It is used for storing paths, filenames, data for read and write transfers. Filenames and paths are zero-terminated.
0xF00	2	R/W	LOCK	Write 0xFADE to this register to unlock filesystem functionality. Filesystem control is locked after every reset and should be unlocked by SH2 software. Writing any other value into this register enables lock again.
0xF02	1	R/W	COMMAND	Command for filesystem to perform. Write access issues a command execution. Read access returns last executed (or currently executing) command. Command list is described in the following table.

0xF04	2	R	ENTRIES	Holds the number of entries in the current folder.
0xF06	2	R/W	CURRENT ENTRY	Holds the number of the current entry. Updated by cart while executing commands, or by SH-2 software. The value is not applied immediately, software must issue LIST ENTRY or SELECT ENTRY command.
0xF08	2	R/W	DATASIZE	Size in bytes for read and write operations. Values higher than 3840 are interpreted as 3840.
0xF0A	4	R/W	SEEK	32 bits of seek value
0xF10	1	R	STATUS	Filesystem status as follows: Bit 0 – busy (1 when processing command, 0 when ready) Bit 1 – error (1 when last command lead to error, 0 if not) Bit 2 – folder (1 when current entry is a folder, 0 when it's a file) Other bits reserved. No commands are accepted while filesystem is busy, so software should check busy bit before issuing a command. Register resets to 0 automatically after issuing a command.
0xF12	1	R	ERRNO	Error code. This register becomes valid when error is registered (error bit in STATUS register turns 1), and is set to $0xFF$ when next command is issued. Error codes: $0x00 - NO$ ERROR $0x01 - HARDWARE$ FAULT $0x02 - MEDIA$ NOT READY $0x03 - INVALID$ COMMAND $0x04 - INVALID$ OPERAND $0x05 - INVALID$ PATH $0x06 - INVALID$ FILENAME $0x06 - FILE$ ALREADY EXISTS $0xFF - STILL$ PROCESSING

Table 1-4. Filesystem interface.

Commands are 8-bit (only lower part of COMMAND register is used). Opcodes are described in table 1-5.

Command	Name	Description	
0x00	ZERO COMMAND	Does nothing to filesystem, returns 0x00 error code.	
0x01	GO ROOT	Ascends to the root folder, switches to its first entry. Updates buffer with a new path and a list of its entries (starting from first one, however much fit into BUFFER) separated by zeros. List is terminated by double zero. The command updates a folder bit in a STATUS register according to the first entry. CURRENT ENTRY register is zet to 0, and ENTRIES is updated.	
0x02	DESCEND	Enters current entry if it's a folder, switches to a first entry. If it's a file, returns INVALID OPERAND error. Updates registers and BUFFER like a GO ROOT command.	
0x03	ASCEND	Leaves current folder. In case of a root folder returns	

		INVALID OPERAND error. Updates registers and BUFFER like a GO ROOT command.
0x04	GO TO PATH	Moves to the path provided in BUFFER. Updates registers and BUFFER like a GO ROOT command.
0x05	LIST ENTRY	Moves to the entry specified by CURRENT ENTRY register. Updates registers like a GO ROOT command. Updates BUFFER with the zero-separated entry list, starting from current entry. This command should be used for listing folders.
0x06	SELECT ENTRY	Selects the entry specified by CURRENT ENTRY register. Updates registers like a GO ROOT command, but leaves BUFFER intact. Additionally updates SEEK register with a size of a selected entry if it's a file. This command should be used as a prerequisite for 0x1X and 0x2X commands.
0x10	NEW	Creates a new empty file in a current folder using a name from FILENAME buffer. If the same file already exists, returns FILE ALREADY EXISTS error.
0x11	RENAME	Renames selected entry in a current folder using a name from FILENAME buffer.
0x12	DELETE	Deletes selected entry (directores are deleted recursively). No confirmations for this operation, be careful.
0x20	SEEK	Seek to the position, provided by the SEEK register, in the selected entry. Returns INVALID OPERAND error if current entry is a folder.
0x21	READ	Reads a number of bytes provided by DATASIZE register from selected entry into BUFFER from the current seek position.
0x22	WRITE	Writes a number of bytes provided by DATASIZE register from BUFFER to the selected entry at the current seek position. Expands the file if necessary.
0x23	RESIZE	Resizes selected entry to the value in the SEEK register, either by chopping extra bytes, or by appending zeroes.

Table 1-5. Filesystem commands.

Table 1-6 describes wasca system area. System wasca registers are 16-bit-wide and should be accessed with 16-bit accesses and 16-bit address align. Other access sizes and/or unaligned addresses will lead to unpredictable behavior. Address range for system area is remapped in 32M ROM mode.

Offset	Size	R/W	Name	Description
0x000	4080		Reserved	
0xFF0	2	R	PCNTR	Wasca Prepare counter. Reset value is 0, after writing a valid value to MODE, this counter shows value (in percents) of the prepare progress. When this register has value of 0x0064, wasca is ready to emulate specified cart. Higher values should not appear normally.

0xFF2	2	R	STATUS	Wasca Status register. Error and flag bits appears here. Bit 0 – SD card error when 1 Bit 1 – SDRAM test failed when 1 Bit 2 – USB transfer error when 1 Other bits are reserved
0xFF4	2	R/W	MODE	wasca Mode Register Divided into 4 octets, non-zero octet selects cart type, octet value selects card subtype. See table 5 for additional description. Setting values not provided in table 5 results in unpredictable behavior.
0xFF6	2	R	HWVER	wasca hardware version, major and minor $0x050C = v5.12$
0xFF8	2	R	SWVER	wasca embedded software version, major and minor (same format as HWVER) This register is zero at reset, and is written by cart's firmware right after boot. If by the time SH-2 is running the bootcode this value is still zero, it means cart failure. SH-2 cannot alter this register.
0xFFA	6	R	SIGNATURE	For max10 "wasca " in ASCII (0x7761 0x7363 0x6120), for snickerdoodle "doodle" in ASCII (0x646F 0x6F64 0x6C5C). Signature unavailable in remapped (32M ROM) mode.

Table 1-5. Wasca system area registers.

Okay, and now the promised wasca modes table:

MODE value	Description
0x0000	INIT
0x0001	Power memory, 0.5 MB
0x0002	Power memory, 1 MB
0x0003	Power memory, 2 MB
0x0004	Power memory, 4 MB
0x0020	RAM expansion, 1 MB
0x0040	RAM expansion, 4 MB
0x0100	ROM, KoF95.bin
0x0200	ROM, Ultraman.bin
0x0F00	ROM, custom. Actual ROM file is selected via filesystem interface by SH-2. If the file size is 32M, wasca registers are remapped according to the table 1-3.
Other values	Unpredictable

Table 1-5. Valid wasca MODE register values.

Part 2. Nios II memory map

Nios II address range is FPGA-dependent (will be different for different FPGA parts) and is still work in progress, so it might change occasionally. Please check the last wasca FPGA project from repository for the valid memory map. Table 2-1 shows a memory map for Nios II soft cpu.

Address range	Size	Description	
0x00000000 - 0x0002AFFF	172 KB	On-chip flash. It stores both Nios II software and SH-2 bootcode (compiled into Nios II software as binary).	
0x00040000 — 0x0040001F	32 B	UART registers	
0x00041000 — 0x000417FF	2 KB	Debug RAM	
0x00042000 — 0x0004200F	16 B	PLL setup	
0x00043000 — 0x000433FF	1 KB	SD card interface	
0x00044000 — 0x0004400F	16 B	Reserved	
TBD	TBD	Filesystem interface	
0x00045000 — 0x000451FF	512 B	wasca system registers	
0x00080000 — 0x000827FF	10K	RAM	

Table 2-1. Nios II memory map.

The scope of this document does not cover Nios II peripheral description, but it is well covered in Altera docs. The custom cores in Nios II memory map are filesystem interface and wasca system registers interface. Filesystem interface is TBD, wasca system area is shown in table 2-2.

Offset	Size	R/W	Name	Description
0x000	4080		Reserved	
0xFF0	2	R/W	PCNTR	Wasca Prepare counter. After sensing a non-zero value in MODE register Nios should start the prepare process, and write the progress periodically into this value (in percents).
0xFF2	2	R/W	STATUS	Wasca Status register. Nios should write status here. See corresponding register in SH-2 memory map.
0xFF4	2	R	MODE	wasca Mode Register Nios should scan this register while in INIT mode, and switch to corresponding mode when it changes. See corresponding register

				in SH-2 memory map.
0xFF6	2	R	HWVER	wasca hardware version, major and minor $0x050C = v5.12$
0xFF8	2	R/W	SWVER	This register is zero at reset, and is written by Nios soft CPU right after boot. See corresponding register in SH-2 memory map.
0xFFA	6		Reserved	

Table 2-2. wasca system area from Nios II perspective.

Part 3. Zynq memory map

Zynq memory map is generated automatically by Vivado. After this Vivado generates macros for every IP core, and the actual address is tied to that macros. Therefore, in the scope of this document, only the relative addresses (within IP core) will be described.

CORE 1: A-Bus bridge.

Accessible by AXI4Lite bus for status and configuration. Uses the same address map as Nios II (see table 2-2).

CORE 2: Filesystem interface.

Accessible by AXI4Lite bus for data transfer. Uses the same address map as Nios II (TBD).

CORE 3: Snoop core.

Accessible by AXI4Lite bus for status and configuration. Snoop core catches transactions over A-Bus and records them as a list into DDR.

Offset	Size	R/W	Name	Description
0x000	4	R/W	SNOOP_ADDRESS	Selects address in an AXI space range for snooping A-BUS data transactions.
0x004	4	R/W	SNOOP_FILTER	Filter for snooping only desired transactions. Set the corresponding bit to 1 to enable. Bit 0 – CS0, Bit 1 – CS1, Bit 2 – CS2, Bit 3 – reads, Bit 4 – writes.
0x008	4	R/W	SNOOP_FORMAT	Snooping format as follows: 0x00 – 16 bit (1bit r/w, 15 bit lower address) 0x01 – 32 bit (1 bit r/w, 2 bit cs, 26 bit address, 3 bit hold length) 0x02 – 64 bit (1 bit r/w, 2 bit cs, 26 bit address, 16 bit data, 3 bit hold length, 1 bit hold ignore, 15 bit timestamp)
0x00C	4	R/W	SNOOP_CONTROL	Bit 0 enables and disables snoop. Bit 1 resets snoop to start address and clears itself.
0x010	4	R	SNOOP_COUNTER	Holds value for current number of transactions snooped. Resets to 0 after setting bit 1 in SNOOP_CONTROL

CORE 4: Display core.

Accessible by AXI4Lite bus for data transfer. Display sports its own internal video buffer, so the data in the core's memory is not displayed upon writing, but should be uploaded from core into display first. To do this one should either upload data manually by writing 1 to DISPLAY_CONTROL register, or enable auto-upload.

Offset	Size	R/W	Name	Description
0x00000	0x12C00	R/W	FRAMEBUFFER	Framebuffer for holding pixel data.
0x1F000	1	R/W		Bit 0 – uploads framebuffer upon writing 1 Bit 1 – enables automatic upload

0x1F004	1	R	UPLOAD_STATUS	Bit 0 – upload is active.
0x1F008	4	R/W	UPLOAD_INTERVAL	Automatic upload interval in microseconds.
0x1F00C	4	R	UPLOAD_COUNTER	This counter cyclically counts from 0 to UPLOAD INTERVAL, then resets to 0 and starts over. Upload occurs when UPLOAD_COUNTER is 0. Upload takes some time, software should check UPLOAD_STATUS register before writing to buffer.
0x1F010	1	R/W	BACKLIGHT	Backlight intensity. 0x00 – minimal, 0xFF –maximal.