```
Copyright 1985-2019 StataCorp LLC
                                            StataCorp
                                            4905 Lakeway Drive
        Special Edition
                                            College Station, Texas 77845 USA
                                            800-STATA-PC
                                                                 http://www.stata.com
                                            979-696-4600
                                                                 stata@stata.com
                                            979-696-4601 (fax)
   Unlimited-user Stata network license expires 23 Oct 2020:
          Serial number: 401609000311
            Licensed to: Arjun Jain
                           UW-Madison
   Notes:
         1. Unicode is supported; see <a href="help unicode advice">help unicode advice</a>.
         2. Maximum number of variables is set to 5000; see <a href="help-set maxvar">help-set maxvar</a>.
         3. New update available; type -update all-
 1 . do "C:\z_toshiba\course work\phd\econ 761\hw\hw2\hw2.do"
 2 . // code for questions 2 and 3 of hw2
 4 . // clear workspace
 5 . clear
 7 . // 2a (setup)
 9 . // for each city, number of firms uniformly distributed on \{1,2,\ldots,10\}
10 . set obs 1000
   number of observations ( N) was 0, now 1,000
11 . gen unif = runiform()
12 . gen num_firms = int(unif*10+1)
14 . // in 500 cities, firms collude perfectly when num_firms <= 8
15 . gen collude = 0
16 . replace collude = 1 if _n <= 500 & num_firms <= 8
   (400 real changes made)
18 . // 2b (construct L_i, H, e)
20 . // demand function parameter initialization
21 . gen c0 = 1
```

 $22 \cdot gen c1 = 0.9$

```
23 . gen xi = 0
24 .
25 . // cost function parameter initialization
26 . gen F = 1
27 \cdot \text{gen } 60 = 1
28 \cdot \text{gen b1} = 0
29 . gen eta = 0
31 . // construct Lerner index, Herfindahl index, demand elasticity
32 . gen lerner_cournot = c1/num_firms
33 . gen lerner_monopoly = c1
34 . gen lerner = collude*lerner_monopoly + (1-collude)*lerner_cournot
35 . gen observed_lerner = ln(lerner) + 0.1*(unif - 0.5)
36 . gen herfindahl = 1/num_firms
37 . gen elasticity = 1/c1
38 .
39 . // 2c (regressions and tests)
41 . // structure-conduct-performance paradigm regressions
42 . gen ln_herfindahl = ln(herfindahl)
```

43 . regress observed_lerner ln_herfindahl if _n <= 500 // collusion is possible

Source	SS	df	MS	Number of obs	=	500
				F(1, 498)	=	163.08
Model	95.6248438	1	95.6248438	Prob > F	=	0.0000
Residual	292.006505	498	.586358443	R-squared	=	0.2467
 				Adj R-squared	=	0.2452
Total	387.631349	499	.77681633	Root MSE	=	.76574

observed_le~r	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_herfindahl	.6193705	.0485006	12.77	0.000	.5240795	.7146614
_cons	.3871213	.0812891	4.76	0.000	.2274094	.5468331

```
44 . test ln_herfindahl = 1
```

(1) ln_herfindahl = 1

$$F(1, 498) = 61.59$$

 $Prob > F = 0.0000$

45 . regress observed_lerner ln_herfindahl if _n > 500 $\,$ // no collusion

Source	SS	df	MS	Number of obs		500
Model Residual	236.102625 .043826911	1 498	236.102625 .000088006	F(1, 498) Prob > F R-squared	> = =	99999.00 0.0000 0.9998
Total	236.146452	499	.473239383	Adj R-squared Root MSE	d = =	0.9998 .00938
observed_le~r	Coef.	Std. Err	. t	P> t [95%	Conf.	Interval]
ln_herfindahl _cons	.9616705 1633087	.0005871	1637.93 -170.59	0.000 .960 0.000165	9517 1896	.9628241 1614278

- 46 . test ln_herfindahl = 1
 - (1) ln_herfindahl = 1

47 . regress observed_lerner ln_herfindahl // pooled sample

Source	SS	df	MS	Number of obs		1,000 500.45
Model Residual Total	294.916379 588.12952 883.045899	998 999	294.916379 .589308137	F(1, 998) Prob > F R-squared Adj R-squared Root MSE	= = = d =	0.0000 0.3340 0.3333
IOLAI	883.045899	999	.883929829	KOOL MSE	=	.76766
observed_le~r	Coef.	Std. Err	. t	P> t [95%	Conf.	Interval]
ln_herfindahl _cons	.7639598 .0769168	.0341501 .056465	22.37 1.36	0.000 .6969 0.1730338		.8309741 .1877205

- 48 . test ln_herfindahl = 1
 - (1) ln_herfindahl = 1

$$F(1, 998) = 47.77$$

 $Prob > F = 0.0000$

49

50 . // 2d (repeat 2b and 2c for linear demand)

51 .

52 . // demand function parameter initialization

53 . gen a0 = 3

 $54 \cdot \text{gen a1} = 1$

```
55 \cdot gen nu = 0
```

56 .

57 . // construct Lerner index, Herfindahl index, demand elasticity

58 . gen lerner_cournot2 = (a0+nu-b0-eta)/(a0+nu+num_firms*(b0+eta))

59 . gen lerner_monopoly2 = (a0+nu-b0-eta)/(a0+nu+b0+eta)

60 . gen lerner2 = collude*lerner_monopoly2 + (1-collude)*lerner_cournot2

61 . gen observed_lerner2 = ln(lerner2) + 0.1*(unif - 0.5)

62 . gen herfindahl2 = 1/num_firms

63 . gen elasticity2 = (a0+nu+b0+eta)/(a0+nu-b0-eta)

64

65 . // structure-conduct-performance paradigm regressions

66 . gen ln_herfindahl2 = ln(herfindahl2)

67 . regress observed_lerner2 ln_herfindahl2 if _n <= 500 // collusion is possible

Source	SS	df	M	S	Number of obs F(1, 498) Prob > F R-squared Adj R-squared Root MSE		=	500 146.01
Model Residual	21.5861585 73.6262089	1 498	21.586 .14784				= = =	0.0000 0.2267
Total	95.2123673	499	.19080	6347			=	0.2252 .3845
observed_ler~2	Coef.	Std. Er	r.	t	P> t	[95%	Conf.	Interval]

observed_ler~2	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
ln_herfindahl2	.2942746	.0243538	12.08		.2464258	.3421235
_cons	4726272	.040818	-11.58		552824	3924304

68 . test ln_herfindahl2 = 1

(1) ln_herfindahl2 = 1

$$F(1, 498) = 839.73$$

 $Prob > F = 0.0000$

69 . regress observed_lerner2 ln_herfindahl2 if $_{\rm n}$ > 500 $_{\rm //}$ no collusion

Source	SS	df	MS	Number of obs F(1, 498) Prob > F R-squared Adj R-squared Root MSE		=	500 24124.38
Model Residual	58.8244536 1.21431447		58.8244536 .002438382			= =	0.0000 0.9798 0.9797
Total	60.0387681	499	.120318173			=	.04938
observed_ler~2	Coef.	Std. Err	. t	P> t	[95%	Conf.	Interval]
ln_herfindahl2 _cons	.4800151 6577959	.0030905 .0050391	155.32 -130.54	0.000 0.000	.4739 6676		.4860871 6478954

```
70 . test ln_herfindahl2 = 1
```

(1) ln_herfindahl2 = 1

$$F(1, 498) = 28309.22$$

 $Prob > F = 0.0000$

71 . regress observed_lerner2 ln_herfindahl2 // pooled sample

observed_ler~2		Std. Err.	. t 23.18		% Conf. 39719	Interval]
Total	203.950885	999	.20415504	Root MSE	= =	.3645
Model Residual	71.3593422 132.591543		71.3593422 .132857258	Prob > F R-squared Adj R-square	=	0.0000 0.3499 0.3492
Source	SS	df	MS	Number of ob F(1, 998)	s = =	1,000 537.11

-21.62

0.000

-.6322424

-.5270206

.0268102

72 . test ln_herfindahl2 = 1

_cons

(1) ln_herfindahl2 = 1

$$F(1, 998) = 1481.95$$

 $Prob > F = 0.0000$

88 . // cost function parameter initialization

-.5796315

```
Prob > F = 0.0000

73 .
74 . // 3a (setup, regressions, construct num_firms, L_i, H)
75 .
76 . // clear workspace
77 . clear

78 .
79 . // 1000 cities
80 . set obs 1000
    number of observations (_N) was 0, now 1,000

81 . gen unif = runiform()

82 .
83 . // demand function parameter initialization
84 . gen a0 = 5

85 . gen a1 = 1

86 . gen nu = 2*(unif - 0.5)
```

```
89 . gen F = 1
 90 \cdot \text{gen } b0 = 1
 91 \cdot \text{gen } b1 = 0
 92 \cdot gen eta = 0
 93 .
 94 . // firms enter until profits are zero
 95 . gen num_firms = (a0+nu-b0-eta-sqrt(F*a1))/(sqrt(F*a1))
 96 .
 97 . // construct Lerner index, Herfindahl index, demand elasticity
 98 . gen lerner = (a0+nu-b0-eta)/(a0+nu+num_firms*(b0+eta))
 99 . gen observed_lerner = ln(lerner) + 0.1*(unif - 0.5)
100 . gen herfindahl = 1/num_firms
101 . gen elasticity = (a0+nu+b0+eta)/(a0+nu-b0-eta)
103 . // structure-conduct-performance paradigm regression
104 . gen ln_herfindahl = ln(herfindahl)
105 . regress observed_lerner ln_herfindahl
```

Source	SS	df	MS	Number of obs	= >	1,000 99999.00
Model Residual	.81922049 .006599608	1 998	.81922049 6.6128e-06	Prob > F R-squared Adj R-squared	=	0.0000 0.9920 0.9920
Total	.825820098	999	.000826647	Root MSE	=	.00257
observed_le~r	Coef.	Std. Err	. t	P> t [95%	Conf.	Interval]
ln_herfindahl _cons	1458873 8506153	.0004145	-351.97 -1846.81	0.0001467 0.0008515		145074 8497114

```
106 .
107 . // 3b (repeat 3a for new eta and nu)
108 .
109 . // parameter initialization
110 . drop nu

111 . drop eta
112 . gen nu = 0
```

113 . gen eta = 2*(unif - 0.5)

```
114 .

115 . // firms enter until profits are zero
116 . gen num_firms2 = (a0+nu-b0-eta-sqrt(F*a1))/(sqrt(F*a1))

117 .

118 . // construct Lerner index, Herfindahl index, demand elasticity
119 . gen lerner2 = (a0+nu-b0-eta)/(a0+nu+num_firms2*(b0+eta))

120 . gen observed_lerner2 = ln(lerner2) + 0.1*(unif - 0.5)

121 . gen herfindahl2 = 1/num_firms2

122 . gen elasticity2 = (a0+nu+b0+eta)/(a0+nu-b0-eta)

123 .

124 . // structure-conduct-performance paradigm regression
125 . gen ln_herfindahl2 = ln(herfindahl2)
```

126 . regress observed_lerner2 ln_herfindahl2

Source	SS	df	MS	Number of obs F(1, 998)	=	1,000 16414.98
Model		72.1224304	Prob > F	=	0.0000	
 Residual	4.38490729	998	.004393695	R-squared Adj R-squared	=	0.9427 0.9426
Total	76.5073377	999	.076583922	Root MSE	=	.06628

observed_ler~2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_herfindahl2 _cons	-1.359395 -2.116006				-1.380216 -2.138564	

127 . end of do-file

128 .