Schema Refinement and Normal Forms

Computer Science Department Columbia University

The Evils of Redundancy

- * *Redundancy* is at the root of several problems associated with relational schemas:
 - redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements.
- * Main refinement technique: <u>decomposition</u> (replacing ABCD with, say, AB and BCD, or ACD and ABD).
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Functional Dependencies (FDs)

- * A <u>functional dependency</u> $X \rightarrow Y$ holds over relation R if, for every instance r of R:
 - $t1 \in r$, $t2 \in r$, $\pi_X(t1) = \pi_X(t2)$ implies $\pi_Y(t1) = \pi_Y(t2)$
 - i.e., given two tuples in *r*, if the X values agree, then the Y values must also agree. (X and Y are *sets* of attributes.)
- * K is a candidate key for R means that $K \rightarrow R$
 - However, $K \rightarrow R$ does not require K to be *minimal*!
- $\star X \rightarrow Y$; read
 - X functionally determines Y, or
 - Y functionally depends on X

Functional Dependencies (cont'd)

* Reminders:

- FDs are assertions about the real world.
- FDs are statement about *all* allowable instances of a relation schema.

- \star *Example*: Consider relation R = {A, B, C}
- \star Can we deduce that A \rightarrow C holds?
- \star Can we deduce that A \rightarrow B does not hold?

В	C
2	3
5	4
3	3
	5

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wages, hrs_worked)
- * *Notation*: We will denote this relation schema by listing the attributes: **SNLRWH**
 - This is really the *set* of attributes {S,N,L,R,W,H}.
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
 - ssn is the key: $S \rightarrow SNLRWH$
 - rating determines $hrly_wages: R \rightarrow W$

Example (Contd.)

Wages R W 8 10

Hourly_Emps2

- * Problems due to $R \longrightarrow W$:
 - Update anomaly: Can we change W in just the 1st tuple of SNLRWH?
 - Insertion anomaly: What if we want to insert an employee and don't know the hourly wage for his rating?
 - Deletion anomaly: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Will 2 smaller tables be better?

_	S	N	L	R	Н
	123-22-3666	Attishoo	48	8	40
	231-31-5368	Smiley	22	8	30
	131-24-3650	Smethurst	35	5	30
	434-26-3751	Guldu	35	5	32
	612-67-4134	Madayan	35	8	40

S	N	L	R	W	H
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Reasoning About FDs

- ❖ Given some FDs, we can usually infer additional FDs; e.g.:
 - $ssn \rightarrow did$, $did \rightarrow lot$ implies $ssn \rightarrow lot$
- ❖ F^+ = *closure of F* is the set of all FDs that are implied by F.
- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - *Reflexivity*: If $Y \subseteq X$, then $X \to Y$
 - *Augmentation*: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z (Note: the opposite is not true!)
 - *Transitivity*: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Reasoning About FDs (Contd.)

- Couple of additional rules (that follow from AA):
 - *Union*: If $X \to Y$ and $X \to Z$, then $X \to YZ$
 - *Decomposition*: If $X \to YZ$, then $X \to Y$ and $X \to Z$
- * $X \rightarrow Y$ is *trivial* if it is true for any X and Y of any relation, regardless of the X and Y semantics. Example:
 - $\blacksquare A \to A$
 - In general, if $Y \subseteq X$ then $X \to Y$ is trivial; e.g.,
 - ABC \rightarrow BC and
 - ABC → AC and ... every subset of ABC

Example - Deriving FDs

- Contracts(cid,sid,jid,did,pid,qty,value)
 We denote Contracts as CSJDPQV:
 C is an agreement that S will supply Q items of part P to project J associated with D at a cost V, and the following ICs are known to hold:
 - C is a key: $C \rightarrow CSJDPQV$
 - Project purchases each part using single contract: $JP \rightarrow C$
 - Dept purchases at most one part from a supplier: $SD \rightarrow P$
- \star JP \to C, C \to CSJDPQV imply JP \to CSJDPQV
- \star SD \to P implies SDJ \to JP
- \star SDJ \to JP, JP \to CSJDPQV imply SDJ \to CSJDPQV

Example - Proving an FD holds

- ❖ A relation holding addresses:R = {numstr, city, zip}
- * Known functional dependencies: $F = \{\{\text{numstr, city}\} \rightarrow \text{zip, zip} \rightarrow \text{city}\}$
- $Arr Prove: {numstr, zip} \rightarrow city$
- * Proof
 - From $zip \rightarrow city$ and the augmentation rule
 - $\{\text{numstr, zip}\} \rightarrow \{\text{numstr, city}\}$
 - Since city is a subset of {city, numstr}
 - $\{\text{numstr, zip}\} \rightarrow \{\text{numstr, city}\} \rightarrow \text{city}$
 - Therefore (transitivity): numstr, $zip \rightarrow city$

The Closure of a Set of Attributes X⁺

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- ❖ Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
 - Compute <u>attribute closure</u> of X (denoted X^+) wrt F:
 - Set $X^+ = X$;
 - While (X⁺ keeps changing) do
 - For each $Y \rightarrow Z$ in F, if Y in X^+ then $X^+ = X^+ \cup Z$;
- ❖ Does $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\}$ imply $A \rightarrow E$?
 - i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

Example - Closure of Attributes

 $R = \{A, B, C, D, E\}$ with the following FDs:

$$C \rightarrow A$$
 (1), $AB \rightarrow C$ (2), $BC \rightarrow D$ (3),

$$A \rightarrow BE (4), B \rightarrow E (5)$$

Then:

- $A^{+}=A$, $A^{+}=_{4}ABE$, $A^{+}=_{2}ABCE$, $A^{+}=_{3}ABCDE$
- $B^+=B$, $B^+={}_5BE$
- $C^{+}=C$, $C^{+}=_{1}AC$, $C^{+}=_{4}ABCE$, $C^{+}=_{3}ABCDE$
- D+=D
- E+=E

Notice the identification of keys: $A \rightarrow R$ and $C \rightarrow R$.

Normal Forms & Decomposition

- ❖ Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- ❖ If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given $A \rightarrow B$: Several tuples could have the same A value, and if so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- * Reln R with FDs F is in BCNF if, for all $X \rightarrow A$ in F^+
 - A \in X (called a *trivial* FD), or
 - X contains a key for R (i.e., X is a superkey)
- ❖ In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.

Third Normal Form (3NF)

- * Reln R with FDs *F* is in 3NF if, for all $X \rightarrow A$ in F^+
 - A \in X (called a *trivial* FD), or
 - X contains a key for R, or
 - A is part of some key for R.
- Minimality of a key is crucial in third condition above!
- ❖ If R is in BCNF, obviously in 3NF.
- ❖ If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no ``good'' decomp, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

What Does 3NF Achieve?

- * If 3NF violated by $X \rightarrow A$, one of the following holds:
 - X is a subset of some key K
 - We store (X, A) pairs redundantly.
 - X is not a proper subset of any key.
 - There is a chain of FDs $K \to X \to A$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.
- ❖ Thus, 3NF is a compromise relative to BCNF.

Decomposition of a Relation Scheme

- * Suppose that relation R contains attributes *A1* ... *An*. A <u>decomposition</u> of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute in one of the new relations.

Example Decomposition

- Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
- ❖ SNLRWH has FDs S → SNLRWH and R → W
 - Second FD causes violation of 3NF (W is not part of a key W values repeatedly associated with R values). Easiest way to fix this is to create a relation RW to store these associations, and to remove W from the main schema:
 - i.e., we decompose SNLRWH into SNLRH and RW
- Are there any potential problems that we should be aware of?

Problems with Decompositions

- There are 3 potential problems to consider:
 - 1. Some queries become more expensive.
 - e.g., How much did sailor Joe earn? (salary = W*H)
 - 2. Lossless-join: Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - Fortunately, not in the SNLRWH example.
 - 3. Dependency preserving: Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not in the SNLRWH example.
- Tradeoff: Must consider these issues vs. redundancy.

Lossless Join Decompositions

- ❖ Decomposition of R into X and Y is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F:
 - $\bullet \qquad \pi_{X}(r) \bowtie \pi_{Y}(r) = r$
- It is always true that $r \subseteq \pi_X(r) \bowtie \pi_Y(r)$
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- ❖ Definition extended to decomposition into 3 or more relations in a straightforward way.
- * It is essential that all decompositions used to deal with redundancy be lossless!

Testing for Lossless Join

The decomposition of R into R1 and R2 is lossless-join wrt F if and only if the closure of F (F⁺) contains at least one of:

X	\bigcap	Υ -	\rightarrow	X.	or

•
$$X \cap Y \rightarrow Y$$

 \bullet In particular, if $X \rightarrow Y$ holds over R and $X \cap Y$ is empty, the decomposition of R into R – Y and XY is lossless-join.

A	В	C	
1	2	3	
4	5	6	
7	2	8	

			_
A	В	C	
1	2	3	
4	5	6	
7	2	Q	,

В	C
2	3
5	6
2	8

A	В	C
1	2	3
4	2 5	6
7	2	8
1	2	6 8 8 3
7	2	3

Dependency Preserving Decomposition

- ❖ Consider CSJDPQV, C is key, $JP \rightarrow C$ and $SD \rightarrow P$.
 - BCNF decomposition: CSJDQV and SDP
 - Problem: Checking $JP \rightarrow C$ requires a join!
- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold.
- * Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X (denoted F_X) is the set of FDs U \rightarrow V in F⁺ (closure of F) such that U, V are in X.

22

Dependency Preserving Decompositions (Contd.)

- ❖ Decomposition of R into X and Y is <u>dependency</u> preserving if $(F_X \cup F_Y)^+ = F^+$
 - i.e., if we consider only dependencies in the closure F + that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F +.
- ❖ Important to consider F +, not F, in this definition:
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?????
- Dependency preserving does not imply lossless join:
 - ABC, $A \rightarrow B$, decomposed into AB and BC.
- * And vice-versa.

Decomposition into BCNF

- ❖ Consider relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into R Y and XY.
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
 - To deal with $SD \rightarrow P$, decompose into SDP, CSJDQV.
 - To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV
- ❖ In general, several dependencies may cause violation of BCNF. The order in which we ``deal with'' them could lead to very different sets of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS \rightarrow Z, Z \rightarrow C
 - Can't decompose while preserving 1st FD; not in BCNF.
- ❖ Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - JPC tuples stored only for checking FD! (*Redundancy!*)

Decomposition into 3NF

- ❖ Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).
- To ensure dependency preservation, one idea:
 - If $X \rightarrow Y$ is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to `preserve' JP \rightarrow C. What if we also have J \rightarrow C?
- ❖ Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

- ❖ Minimal cover G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and ``as small as possible'' in order to get the same closure as F.
- * e.g., A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG has the following minimal cover:
 - A \rightarrow B, ACD \rightarrow E, EF \rightarrow G and EF \rightarrow H
- ❖ M.C. → Lossless-Join, Dep. Pres. Decomp!!! (in book)

Refining an ER Diagram

- 1st diagram translated: Workers(S,N,L,D,S) Departments(D,M,B)
 - Lots associated with workers.
- Suppose all workers in a dept are assigned the same lot: D → L
- Redundancy; fixed by: Workers2(S,N,D,S)Dept_Lots(D,L)
- Can fine-tune this: Workers2(S,N,D,S)Departments(D,M,B,L)

Summary of Schema Refinement

- ❖ If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- ❖ If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a losslessjoin, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 - Decompositions should be carried out and/or re-examined while keeping *performance requirements* in mind.