2020-2021-1- 《概率论与数理统计 B》期末考试 试卷 A 参考答案

一、单选题(本题满分 30 分,共有 10 道小题,每道小题 3 分	- ,	单选颢	(本販满分30名	分,共有	10 道小题。	每道小颙	3分
------------------------------------	------------	-----	----------	------	---------	------	----

1	设 4 1	R 具任音两个	·概率不为零的不相容事件,	下列结论肯定正确的是【	1
1	$\mathcal{V}_{\mathbf{A}}$	9 疋江思州1	100. 44. 47. 47. 49. 49. 49. 49. 49. 49. 49. 49. 49. 49	「ツ」%に用足止細則定 ▮	- 4

(A) $P(\overline{A}\overline{B}) = 0$

(B) $P(\overline{A}\overline{B}) > 0$

(C) P(AB) = P(A)P(B) (D) $P(A\overline{B}) = P(A)$.

 $\mathfrak{M}: P(AB) = P(A-B) = P(A) - P(AB) = P(A).$

故选 (D).

- 2、设A,B是两个随机事件,且B ⊂ A ,则下列式子正确的是【 】.
 - (A) P(B|A) = P(B) (B) P(AB) = P(A)
- - (C) P(A-B) = P(A) P(B) (D) P(B-A) = P(B) P(A).

 $\mathfrak{M}: P(A-B) = P(A) - P(AB) = P(A) - P(B).$

故选(C).

- 3、一项工作需 5 名工人共同完成, 但必须至少有 2 名熟练工人. 现有 10 名工人, 其中有 4 名熟 练工人,从中选派5名去完成该项任务,有多少种选法【
 - (A) 148
- (B) 186
- (C) 210
- (D) 420.

解: 恰含 2 名熟练工人的选法: $C_4^2 C_6^3 = 120$;

恰含 3 名熟练工人的选法: $C_4^3 C_6^2 = 60$;

恰含 4 名熟练工人的选法: $C_4^4 C_6^1 = 6$,

故, 共有120+60+6=186种方法.

故选(B).

4、袋中有5个球,其中白球2个,黑球3个.甲、乙两人依次从袋中各取一球,记A="甲取到 白球",B = "乙取到白球". 若取后放回,此时记 $p_1 = P(A)$, $p_2 = P(B)$;若取后不放回,

此时记 $p_3 = P(A)$, $p_4 = P(B)$, 则【 】.

- (A) $\boldsymbol{p}_1 \neq \boldsymbol{p}_2 \neq \boldsymbol{p}_3 \neq \boldsymbol{p}_4$
- $(B) \quad \boldsymbol{p}_1 = \boldsymbol{p}_2 \neq \boldsymbol{p}_3 \neq \boldsymbol{p}_4$
- (C) $p_1 = p_2 = p_3 \neq p_4$
- (D) $p_1 = p_2 = p_3 = p_4$.

解: 显然, $p_1 = p_2 = p_3$, 而 $p_4 = \frac{2}{5} \times \frac{1}{4} + \frac{3}{5} \times \frac{2}{4} = \frac{2}{5} = p_3$.

5、X 是连续型随机变量, $Y \sim B(1, p)$,则随机变量 X - Y 的分布函数是【

第1页 共7页

(A) 分段函数

- (B) 连续函数
- (C) 分段函数且恰有一个间断点
- (D) 分段函数且至少有两个间断点.

解:对于任意实数t,由概率性质,有

$$0 \le P(X - Y = t) = P(X - Y = t, Y = a) + P(X - Y = t, Y = b)$$

$$= P(X = t + a, Y = a) + P(X = t + b, Y = b)$$

$$\le P(X = t + a) + P(X = t + b) = 0.$$

而 P(X-Y=t)=0 ⇔ X-Y 的分布函数连续.

故选 (B).

6、设随机变量 $X \sim N(0,1)$,对于任意给定的 $\alpha \in (0,1)$,数 $u(\alpha)$ 满足 $P(X > u(\alpha)) = \alpha$. 若概

$$(A) \ \textit{\textbf{u}} \left(\frac{\alpha}{2}\right) \qquad (B) \ \textit{\textbf{u}} \left(1-\frac{\alpha}{2}\right) \qquad (C) \ \textit{\textbf{u}} \left(\frac{1-\alpha}{2}\right) \qquad (D) \ \textit{\textbf{u}} \left(\frac{1}{2}-\alpha\right).$$

解: 由 $P(|X| < x) = 1 - 2P(X > x) = \alpha$, 得

$$P(X > x) = \frac{1-\alpha}{2}$$
,即 $x = u\left(\frac{1-\alpha}{2}\right)$. 故选(C).

7、小明经营一家饮料店,使用A,B两种设备.令X与Y分别表示A与B两种设备使用的时间 比例,(X,Y)的密度函数为 $f(x,y) = \begin{cases} \frac{2}{3}(x+2y), & 0 \le x \le 1, 0 \le y \le 1\\ 0 & other \end{cases}$,则 X 的边缘概率密

度 $f_X(x)$ =【 】.

(A)
$$f_X(x) = \begin{cases} \frac{4}{3}(x+1), & 0 \le x \le 1 \\ 0, & \text{other} \end{cases}$$
 (B) $f_X(x) = \begin{cases} \frac{2}{3}x+1, & 0 \le x \le 1 \\ 0, & \text{other} \end{cases}$ (C) $f_X(x) = \begin{cases} \frac{4}{3}x+1, & 0 \le x \le 1 \\ 0, & \text{other} \end{cases}$ (D) $f_X(x) = \begin{cases} \frac{2}{3}(x+1), & 0 \le x \le 1 \\ 0, & \text{other} \end{cases}$

(C)
$$f_X(x) = \begin{cases} \frac{4}{3}x + 1, & 0 \le x \le 1 \\ 0, & \text{other} \end{cases}$$
 (D) $f_X(x) = \begin{cases} \frac{2}{3}(x+1), & 0 \le x \le 1 \\ 0, & \text{other} \end{cases}$

解:
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \frac{2}{3}(x+1), & 0 \le x \le 1 \\ 0, & other \end{cases}$$
 故选(D).

8、随机变量X与Y独立同分布,且 $X \sim N(-2,3)$,则(X,Y)、X+Y、X-Y、XY、X/Y中 服从正态分布的个数是【

(A) 2

(B) 3

(C) 4

(D) 5.

解:由定义知(X,Y)、 $X\pm Y$ 均服从正态分布,XY、X/Y 不服从正态分布.故选(B).

9、随机变量(X,Y)在 $D = \{(x,y) | -1 < x < 1, -1 < y < 1\}$ 上服从均匀分布,则【 1.

(A)
$$P(X+Y \ge 0) = \frac{1}{4}$$

(B)
$$P(X - Y \ge 0) = \frac{1}{4}$$

(C)
$$P(\max\{X,Y\} \ge 0) = \frac{1}{4}$$

(C)
$$P(\max\{X,Y\} \ge 0) = \frac{1}{4}$$
 (D) $P(\min\{X,Y\} \ge 0) = \frac{1}{4}$.

解:
$$f(x,y) = \begin{cases} \frac{1}{4}, & -1 < x < 1, \ 0 < y < 1, \ \text{所以} \\ 0, & \text{other} \end{cases}$$

$$P(X+Y \ge 0) = \iint_{x+y \ge 0} f(x,y) dx dy = \iint_{y \ge -x} \frac{1}{4} dx dy = \frac{1}{2};$$

$$P(X - Y \ge 0) = \iint_{x - y \ge 0} f(x, y) dx dy = \iint_{y \le x} \frac{1}{4} dx dy = \frac{1}{2};$$

$$P(\min\{X,Y\} \ge 0) = P(X \ge 0, Y \ge 0) \iint_{x \ge 0, y \ge 0} f(x,y) dx dy = \int_0^1 dx \int_0^1 \frac{1}{4} dy = \frac{1}{4};$$

$$P(\max\{X,Y\} \ge 0) = 1 - P(\max\{X,Y\} < 0) = 1 - P(X < 0,Y < 0)$$

$$=1-\iint_{\substack{x<0,y<0}} f(x,y) dx dy = 1 - \frac{1}{4} = \frac{3}{4}.$$
 故选(D).

10、随机变量X与Y独立同分布,记U=X+Y,V=X-Y,则U与V必然【

(A)
$$P(UV) = 0$$
 (B) $P(UV) \neq 0$

$$(C) \quad \rho_{--} = 0$$

(C)
$$\boldsymbol{\rho}_{uv} = 0$$
 (D) $\boldsymbol{\rho}_{uv} \neq 0$.

解:
$$Cov(U,V) = E(UV) - EU \cdot EV$$

= $E(X^2 - Y^2) - E(X - Y) \cdot E(X + Y)$
= $E(X^2) - E(Y^2) - E^2(X) + E^2(Y) = DX - DY = 0$.

则
$$\rho_{UV} = \frac{Cov(U,V)}{\sqrt{DU} \cdot \sqrt{DV}} = 0$$
. 故选 (C).

二、选择题(本题满分20分,共有5道小题,每道小题4分)

11、设随机变量
$$X \sim t(n)$$
 $(n \ge 2)$, $Y = \frac{1}{X^2}$, 则【 】.

(A)
$$Y \sim \chi^2(n)$$
 (B) $Y \sim \chi^2(n-1)$ (C) $Y \sim F(n, 1)$ (D) $Y \sim F(1, n)$.

解: 由
$$X \sim t(n)$$
, 故 $X = \frac{U}{\sqrt{V/n}}$, 其中 $U \sim N(0,1)$, $V \sim \chi^2(n)$.

于是
$$Y = \frac{1}{X^2} = \frac{V/n}{U^2/1} \sim F(n, 1)$$
. 故(C) 正确.

12、 $X_1, X_2, ..., X_n$ 为取自总体 N(0,1) 的简单随机样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$,

$$T = (\overline{X} + 2)(S^2 - 2)$$
,则 $E(T) = []$.

(A) 0

(B) 2

(C) -2

(D) 4.

解: $E(\overline{X}) = 0$, $E(S^2) = 1$, 且 $\overline{X} = S^2$ 相互独立, 故

$$E(T) = E[(\overline{X} + 2)(S^2 - 2)]$$

$$= E[(\overline{X} + 2)] \cdot E[(S^2 - 2)] = 2 \times (1 - 2) = -2.$$

故(C)正确.

- 13、设总体X 服从参数为 $\lambda(\lambda>0)$ 的泊松分布, $X_1,X_2,...,X_n$ $(n\geq 2)$ 为取自总体X 的简单随机 样本,则对应的统计量 $T_1 = \frac{1}{n} \sum_{i=1}^{n} X_i$, $T_2 = \frac{1}{n-1} \sum_{i=1}^{n-1} X_i + \frac{1}{n} X_n$, 有【
 - (A) $E(T_1) > E(T_2)$, $D(T_1) > D(T_2)$ (B) $E(T_1) > E(T_2)$, $D(T_1) < D(T_2)$
 - (C) $E(T_1) < E(T_2)$, $D(T_1) > D(T_2)$ (D) $E(T_1) < E(T_2)$, $D(T_1) < D(T_2)$.
- 解: 总体X 服从参数为 $\lambda(\lambda > 0)$ 的泊松分布, 故 $E(X_i) = \lambda$, $D(X_i) = \lambda$, i = 1,2,...,n.

$$E(T_1) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{n\lambda}{n} = \lambda, \quad D(T_1) = \frac{1}{n^2} \sum_{i=1}^{n} D(X_i) = \frac{n\lambda}{n^2} = \frac{\lambda}{n};$$

$$E(T_2) = \frac{1}{n-1} \sum_{i=1}^{n-1} E(X_i) + \frac{\lambda}{n} = (1 + \frac{1}{n})\lambda,$$

$$D(T_2) = \frac{1}{(n-1)^2} \sum_{i=1}^{n-1} D(X_i) + \frac{\lambda}{n^2} = (\frac{1}{n-1} + \frac{1}{n^2})\lambda.$$

所以, $E(T_1) < E(T_2)$, $D(T_1) < D(T_2)$.

故(D)正确.

- 14、设 \overline{X} 是取自总体X中的简单随机样本 $X_1, X_2, ..., X_n$ 的样本均值,则 \overline{X} 是 μ 的矩估计的充分 条件是【
 - (A) $X \sim N(\mu, \sigma^2)$

(B) X 服从参数为 μ 的指数分布

(C) $P(X = m) = \mu(1 - \mu)^{m-1}, m = 1,2,...$ (D) X 服从[0, μ] 上的均匀分布.

- 解: 若X服从参数为 μ 的指数分布,则 $E(X) = \frac{1}{\mu}$, μ 的矩估计 $\hat{\mu} = \frac{1}{\overline{X}}$,故(B)错误;

若 X 服从参数为 μ 的几何分布,则 $E(X) = \frac{1}{\mu}$, μ 的矩估计 $\hat{\mu} = \frac{1}{\overline{X}}$, 故 (C) 错误;

若X服从[0, μ]上的均匀分布,则 $E(X) = \frac{\mu}{2}$, μ 的矩估计 $\hat{\mu} = 2\overline{X}$, 故(D)错误.

若 $X \sim N(\mu, \sigma^2)$,则 $E(X) = \mu$, μ 的矩估计 $\hat{\mu} = \overline{X}$. 故 (A) 正确;

15、设总体X服从参数为1的指数分布, $X_1, X_2, ..., X_8$ 是来自总体X的样本, \overline{X} 是样本均值, S^2

是样本方差, A_2 是样本二阶原点矩,则描述 $E(\overline{X})=1$ 、 $D(\overline{X})=\frac{1}{8}$ 、 $E(S^2)=1$ 、 $E(A_2)=2$

中正确的个数是【】.

(A) 1

(B) 2

(C) 3

(D) 4.

解:由于X 服从参数为1的指数分布,所以EX=1, DX=1,则

$$E(\overline{X}) = EX = 1$$
 , $D(\overline{X}) = \frac{DX}{n} = \frac{1}{8}$, $E(S^2) = DX = 1$, $E(A_2) = \frac{1}{8} \sum_{i=1}^{8} EX_i^2 = 2$. 故 (D) 正确.

- 三、(满分 10 分) 甲、乙、丙三人独立地破译一份密码. 已知甲、乙、丙三人能译出的概率分别为 $\frac{1}{5}$ 、 $\frac{1}{3}$ 、 $\frac{1}{4}$. (1) 求密码能被破译的概率. (2) 已知密码已经被破译,求破译密码的人恰是甲、乙、丙三人中的一个人的概率.
- 解: (1) 设 $A = \{ \text{甲破译密码} \}$, $B = \{ \text{乙破译密码} \}$, $C = \{ \text{丙破译密码} \}$, $D = \{ \text{密码被破译} \}$. 则 $D = A \cup B \cup C$. 因此,

(2) $\mathbf{D}_{1} = \{$ 破译密码的人恰是甲、乙、丙三人中的一人 $\}$,则

$$\mathbf{P}(\mathbf{D}_{1}) = \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}} \cup \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} \cup \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} , \quad \text{MU}$$

$$\mathbf{P}(\mathbf{D}_{1}) = \mathbf{P}(\mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}} \cup \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} \cup \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C}) = \mathbf{P}(\mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}}) + \mathbf{P}(\overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}) + \mathbf{P}(\overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C})$$

$$= \mathbf{P}(\mathbf{A})\mathbf{P}(\overline{\mathbf{B}})\mathbf{P}(\overline{\mathbf{C}}) + \mathbf{P}(\overline{\mathbf{A}})\mathbf{P}(\mathbf{B})\mathbf{P}(\overline{\mathbf{C}}) + \mathbf{P}(\overline{\mathbf{A}})\mathbf{P}(\overline{\mathbf{B}})\mathbf{P}(\mathbf{C})$$

$$= \frac{1}{5} \times \frac{2}{3} \times \frac{3}{4} + \frac{4}{5} \times \frac{1}{3} \times \frac{3}{4} + \frac{4}{5} \times \frac{2}{3} \times \frac{1}{4} = \frac{1}{10} + \frac{1}{5} + \frac{2}{15} = \frac{13}{30} \quad \dots \quad 8 \text{ MU}$$

注意到 $D_1 \subset D$, 所求概率为

$$P(D_1|D) = \frac{P(D_1D)}{P(D)} = \frac{P(D_1)}{P(D)} = \frac{13}{18}.$$
 ... 10 \(\frac{1}{2}\)

- 四、(满分 10 分) 设二维随机变量(X,Y)的联合密度函数为 $f(x,y) = \begin{cases} \frac{21}{4}x^2y & x^2 \le y \le 1\\ 0 &$ 其它

 - (2) 分别求出求X与Y的边缘密度函数;
 - (3) 判断随机变量 X 与 Y 是否相关? 是否相互独立?

$$\begin{aligned}
\text{#F:} \quad (1) \quad E(X) &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, \quad y) dx dy = \frac{21}{4} \int_{-1}^{1} dx \int_{x^{2}}^{1} x^{3} y dy = \frac{21}{8} \int_{-1}^{1} x^{3} (1 - x^{4}) dx = 0, \\
E(Y) &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f(x, \quad y) dx dy = \frac{21}{4} \int_{-1}^{1} dx \int_{x^{2}}^{1} x^{2} y^{2} dy = \frac{7}{2} \int_{0}^{1} x^{2} (1 - x^{6}) dx = \frac{7}{9},
\end{aligned}$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyf(x, y) dxdy = \frac{21}{4} \int_{-1}^{1} dx \int_{x^{2}}^{1} x^{3}y^{2} dy = \frac{7}{4} \int_{-1}^{1} x^{3} (1 - x^{6}) dx = 0 4$$

(2)
$$\stackrel{\text{def}}{=} -1 \le x \le 1 \text{ Be}, \quad f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \frac{21}{4} \int_{x^2}^{1} x^2 y dy = \frac{21}{8} x^2 (1 - x^4)$$

所以,随机变量 X 的边缘密度函数为 $f_X(x) = \begin{cases} \frac{21}{8} x^2 (1-x^4) & -1 \le x \le 1 \\ 0 &$ 其它

$$\stackrel{\text{def}}{=} 0 \le y \le 1 \text{ Iff}, \quad f_Y(x) = \int_{-\infty}^{+\infty} f(x, y) dx = \frac{21}{4} \int_{-\sqrt{y}}^{\sqrt{y}} x^2 y dx = \frac{7}{2} y x^3 \Big|_{0}^{\sqrt{y}} = \frac{7}{2} y^{\frac{5}{2}}$$

所以,随机变量 X 的边缘密度函数为 $f_Y(y) = \begin{cases} =\frac{7}{2}y^{\frac{5}{2}} & 0 \le y \le 1 \\ 0 & \text{其它} \end{cases}$ … 8分

(3) 由于 $\operatorname{cov}(X, Y) = E(XY) - E(X)E(Y) = 0$,所以X 与 Y不相关.

$$f(x, y) \neq f_{x}(x)f_{y}(y)$$
, 所以 $X \ni Y$ 不独立. ... 10 分

- 五、(满分 10 分) 某商品每周的需求量 X 服从区间[10,20]上的均匀分布;经销商进货的数量 Y 也服从区间[10,20]上的均匀分布,且 X,Y 相互独立.商店每销售出一单位商品可得利润 1000元;若供不应求,商店可从外部调剂供应,每单位商品仅获利润 500元.求商店获利的期望值.
- 解: (1) 设Z 为商店所获利润,则

$$Z = g(X,Y) = \begin{cases} 1000Y + 500(X - Y), & X \ge Y \\ 1000X, & X < Y \end{cases} \dots 2 \%$$

X和Y的概率密度函数分别为

$$f(x) = \begin{cases} \frac{1}{10}, 10 \le x \le 20 \\ 0, \quad | 其它; \end{cases}, \quad f(y) = \begin{cases} \frac{1}{10}, 10 \le y \le 20 \\ 0, \quad | | 其它; \end{cases} \dots 4 分$$

X与Y相互独立, (X, Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} \frac{1}{100}, & 10 \le x \le 20, 10 \le y \le 20\\ 0, & 其它; \end{cases}$$
 ... 6 分

(2) 商店所获利润的期望值为

$$EZ = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} g(x,y) f(x,y) dx dy$$

$$= \int_{10}^{20} dx \int_{10}^{x} \frac{500 y + 500 x}{100} dy + \int_{10}^{20} dx \int_{x}^{20} \frac{1000 x}{100} dy = 14166.66 \cdots \dots 10 \text{ }\%$$

六、(满分 10 分) 设总体 X 的概率密度为 $f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, x > 0 \\ 0, 其他 \end{cases}$, 其中参数 $\lambda(\lambda > 0)$ 未知,

 X_1, X_2, \dots, X_n 是来自总体 X的简单随机样本.

- (1) 求参数λ的矩估计量;
- (2) 求参数λ的最大似然估计量.

解: (1) 因为
$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x \lambda^{2} x e^{-\lambda x} dx = -\lambda \int_{0}^{+\infty} x^{2} de^{-\lambda x}$$

$$= -\lambda \left[x^{2} e^{-\lambda x} \Big|_{0}^{+\infty} - 2 \int_{0}^{+\infty} x e^{-\lambda x} dx \right] = \frac{2}{\lambda}$$
所以由 $EX = \overline{X}$,可得参数 λ 的矩估计量为 $\hat{\lambda} = 2/\overline{X}$ 4 分

(2) 似然函数为
$$L(\lambda) = \prod_{i=1}^{n} \lambda^2 x_i e^{-\lambda x_i} = \lambda^{2n} \prod_{i=1}^{n} x_i e^{-\lambda \sum_{i=1}^{n} x_i}$$

取对数,可得 $\ln L(\lambda) = \ln \prod_{i=1}^{n} \lambda^2 x_i e^{-\lambda x_i} = 2n \ln \lambda - \lambda \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \ln x_i$. 令其关于 λ 的导数等于 0,即

$$\frac{d}{d\lambda} \left[\ln L(\lambda) \right] = \frac{2n}{\lambda} - \sum_{i=1}^{n} x_i = 0$$

解,得 λ 的最大似然估计值为 $\hat{\lambda} = \frac{2n}{\sum_{i=1}^{n} x_i}$,

所以, λ 的最大似然估计量为 $\hat{\lambda} = \frac{2}{\bar{X}}$.

... 10分

七、(满分 10 分) 某工厂生产一批钢索,其断裂强度 X (单位: 10^5 Pa) 服从正态分布 $N(\mu, 40^2)$,从中任意抽取容量为 9 的样本,测得断裂强度值为: 793,782,795,802,797,775,768,798,809.据此样本值能否认为这批钢索的平均断裂强度为 800×10^5 Pa ? (取显著性水平 $\alpha=0.05$. $\mathbf{z}_{0.025}=1.96$).

解:设在 $\alpha = 0.05$ 下的检验假设为

$$H_0: \mu = 800, \quad H_1: \mu \neq 800$$
 ... 2 \Re

取检验统计量
$$T = \frac{\overline{X} - \mu}{\sigma} \sqrt{n}$$
 ,则有 ... 4 分

检验的拒绝域为

$$W = \left\{ \frac{\left| \overline{X} - \boldsymbol{\mu}_0 \right|}{40} \sqrt{9} \ge \boldsymbol{z}_{\boldsymbol{\alpha}/2} \right\}. \qquad \dots 6 \, \boldsymbol{\%}$$

其中, $z_{\alpha/2}=1.96$,将样本值代入算出统计量T的值

$$\left| \frac{791 - 800}{400} \right| \sqrt{9} = 0.675 < 1.96 \ .$$

显然不在拒绝域内.