$12n_{0471} \ (K12n_{0471})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -147633099219u^{43} + 379863908626u^{42} + \dots + 592898388701b - 1077740574717, \\ &1873032055350u^{43} - 3613432711737u^{42} + \dots + 1185796777402a - 16189929128661, \\ &u^{44} - 2u^{43} + \dots - 12u - 1 \rangle \\ I_2^u &= \langle b - 1, \ 2u^2a + a^2 - 2au + 4a + u - 1, \ u^3 - u^2 + 2u - 1 \rangle \\ I_3^u &= \langle b + 1, \ -u^2 + a - u - 2, \ u^3 + u^2 + 2u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 53 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.48 \times 10^{11} u^{43} + 3.80 \times 10^{11} u^{42} + \dots + 5.93 \times 10^{11} b - 1.08 \times 10^{12}, \ 1.87 \times 10^{12} u^{43} - 3.61 \times 10^{12} u^{42} + \dots + 1.19 \times 10^{12} a - 1.62 \times 10^{13}, \ u^{44} - 2u^{43} + \dots - 12u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.57956u^{43} + 3.04726u^{42} + \dots + 15.8478u + 13.6532 \\ 0.249002u^{43} - 0.640690u^{42} + \dots + 7.19437u + 1.81775 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.33055u^{43} + 2.40657u^{42} + \dots + 23.0422u + 15.4710 \\ 0.249002u^{43} - 0.640690u^{42} + \dots + 7.19437u + 1.81775 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} + 4u^{5} + 4u^{3} \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.94605u^{43} - 3.56049u^{42} + \dots - 33.9928u - 16.2437 \\ -0.106829u^{43} + 0.292551u^{42} + \dots - 3.38360u - 1.39701 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.90349u^{43} + 4.58255u^{42} + \dots + 32.9049u + 21.3530 \\ -0.231468u^{43} + 0.479188u^{42} + \dots + 1.51379u + 1.68525 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.63753u^{43} - 3.01547u^{42} + \dots - 38.8903u - 16.9586 \\ 0.0851016u^{43} - 0.122356u^{42} + \dots - 0.258282u - 0.988042 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\tfrac{248546356620}{592898388701}u^{43} + \tfrac{1117851140785}{592898388701}u^{42} + \dots - \tfrac{3366360188518}{592898388701}u - \tfrac{8799598819910}{592898388701}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{44} + 14u^{43} + \dots + 687u + 49$
c_2, c_5	$u^{44} + 4u^{43} + \dots + 13u - 7$
c_3, c_4, c_9	$u^{44} - u^{43} + \dots - 8u - 8$
c_6, c_7, c_{11}	$u^{44} - 2u^{43} + \dots - 12u - 1$
<i>C</i> ₈	$u^{44} + 3u^{43} + \dots + 8u + 8$
c_{10}	$u^{44} + 2u^{43} + \dots - 216u - 13$
c_{12}	$u^{44} + 20u^{43} + \dots - 582288u + 12161$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{44} + 42y^{43} + \dots - 11859y + 2401$
c_2, c_5	$y^{44} - 14y^{43} + \dots - 687y + 49$
c_3, c_4, c_9	$y^{44} - 37y^{43} + \dots - 64y + 64$
c_6, c_7, c_{11}	$y^{44} + 36y^{43} + \dots - 120y + 1$
c_8	$y^{44} + 47y^{43} + \dots - 960y + 64$
c_{10}	$y^{44} - 44y^{43} + \dots - 21852y + 169$
c_{12}	$y^{44} - 68y^{43} + \dots - 423863999800y + 147889921$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.177625 + 1.046220I		
a = 0.142421 - 1.282600I	-1.13792 + 1.81248I	-1.86603 - 4.45266I
b = -0.111509 + 0.704372I		
u = 0.177625 - 1.046220I		
a = 0.142421 + 1.282600I	-1.13792 - 1.81248I	-1.86603 + 4.45266I
b = -0.111509 - 0.704372I		
u = -0.905481 + 0.047868I		
a = -1.61810 - 2.71471I	8.90320 - 3.55413I	1.57190 + 2.73369I
b = 0.969501 + 0.973014I		
u = -0.905481 - 0.047868I		
a = -1.61810 + 2.71471I	8.90320 + 3.55413I	1.57190 - 2.73369I
b = 0.969501 - 0.973014I		
u = 0.888633 + 0.113112I		
a = 1.63253 - 2.72104I	4.21307 + 8.73460I	-2.10151 - 5.42806I
b = -1.13181 + 0.84989I		
u = 0.888633 - 0.113112I		
a = 1.63253 + 2.72104I	4.21307 - 8.73460I	-2.10151 + 5.42806I
b = -1.13181 - 0.84989I		
u = 0.895146 + 0.030335I		
a = 1.50372 + 2.63941I	$\int 5.49591 + 1.83935I$	-0.526060 - 1.054264I
b = -0.725758 - 1.037770I		
u = 0.895146 - 0.030335I		
a = 1.50372 - 2.63941I	$\int 5.49591 - 1.83935I$	-0.526060 + 1.054264I
b = -0.725758 + 1.037770I		
u = -0.124146 + 1.195890I		
a = 0.103513 + 1.322400I	-4.44373 - 1.62575I	-5.71135 - 1.58189I
b = -1.136390 - 0.239685I		
u = -0.124146 - 1.195890I		
a = 0.103513 - 1.322400I	-4.44373 + 1.62575I	-5.71135 + 1.58189I
b = -1.136390 + 0.239685I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.028993 + 1.237360I		
a = 0.27041 + 1.84256I	-10.24070 - 0.43963I	-11.19118 - 0.81443I
b = 1.116190 - 0.284540I		
u = -0.028993 - 1.237360I		
a = 0.27041 - 1.84256I	-10.24070 + 0.43963I	-11.19118 + 0.81443I
b = 1.116190 + 0.284540I		
u = 0.755269		
a = -2.04829	-2.54326	-3.28070
b = 1.32092		
u = 0.453023 + 1.165750I		
a = 1.46711 + 1.23873I	0.98373 - 3.94476I	-4.68762 + 2.02851I
b = -1.053650 - 0.886079I		
u = 0.453023 - 1.165750I		
a = 1.46711 - 1.23873I	0.98373 + 3.94476I	-4.68762 - 2.02851I
b = -1.053650 + 0.886079I		
u = -0.254381 + 1.244050I		
a = -1.35227 - 1.46538I	-7.86357 - 3.29517I	-5.01423 + 4.50472I
b = 0.461470 + 0.356687I		
u = -0.254381 - 1.244050I		
a = -1.35227 + 1.46538I	-7.86357 + 3.29517I	-5.01423 - 4.50472I
b = 0.461470 - 0.356687I		
u = -0.530116 + 0.484400I		
a = 0.22811 + 1.92477I	-1.89298 - 4.16205I	-4.34545 + 6.93236I
b = -0.793793 - 0.687491I		
u = -0.530116 - 0.484400I		
a = 0.22811 - 1.92477I	-1.89298 + 4.16205I	-4.34545 - 6.93236I
b = -0.793793 + 0.687491I		
u = 0.319810 + 1.254700I		
a = -0.613086 + 0.914327I	-6.42106 + 3.87791I	-7.73542 - 3.96367I
b = 1.341730 + 0.022586I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.319810 - 1.254700I	,	
a = -0.613086 - 0.914327I	-6.42106 - 3.87791I	-7.73542 + 3.96367I
b = 1.341730 - 0.022586I		
u = -0.447807 + 1.241790I		
a = -1.49241 + 1.30249I	5.21565 - 1.27455I	0
b = 0.865876 - 1.008920I		
u = -0.447807 - 1.241790I		
a = -1.49241 - 1.30249I	5.21565 + 1.27455I	0
b = 0.865876 + 1.008920I		
u = 0.431847 + 1.254620I		
a = 0.25969 - 2.31831I	1.70650 + 2.90262I	0
b = -0.822510 + 0.981509I		
u = 0.431847 - 1.254620I		
a = 0.25969 + 2.31831I	1.70650 - 2.90262I	0
b = -0.822510 - 0.981509I		
u = -0.657910		
a = -2.47446	-4.04738	1.08600
b = 0.397664		
u = -0.509311 + 0.393833I		
a = 1.131640 - 0.668056I	-1.77451 + 0.52923I	-4.16249 + 0.21334I
b = -0.669143 + 0.583071I		
u = -0.509311 - 0.393833I		
a = 1.131640 + 0.668056I	-1.77451 - 0.52923I	-4.16249 - 0.21334I
b = -0.669143 - 0.583071I		
u = 0.420827 + 1.304130I	1 22200 : 2 7 101 2 7	
a = 1.42832 + 1.31723I	1.33689 + 6.54913I	0
b = -0.626328 - 1.065560I		
u = 0.420827 - 1.304130I	4 00000 0 740107	
a = 1.42832 - 1.31723I	1.33689 - 6.54913I	0
b = -0.626328 + 1.065560I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.181384 + 1.359970I		
a = 0.407588 + 0.745307I	-4.01419 + 3.49485I	0
b = 0.699749 - 0.288589I		
u = 0.181384 - 1.359970I		
a = 0.407588 - 0.745307I	-4.01419 - 3.49485I	0
b = 0.699749 + 0.288589I		
u = -0.423050 + 1.318510I		
a = -0.24113 - 2.42704I	4.63663 - 8.30735I	0
b = 1.046820 + 0.917522I		
u = -0.423050 - 1.318510I		
a = -0.24113 + 2.42704I	4.63663 + 8.30735I	0
b = 1.046820 - 0.917522I		
u = -0.192973 + 1.390020I		
a = 0.1114790 + 0.0226378I	-7.33799 - 1.99899I	0
b = -0.666441 + 0.485044I		
u = -0.192973 - 1.390020I		
a = 0.1114790 - 0.0226378I	-7.33799 + 1.99899I	0
b = -0.666441 - 0.485044I		
u = 0.397923 + 1.355450I		
a = 0.17147 - 2.46591I	-0.40257 + 13.35110I	0
b = -1.17690 + 0.80462I		
u = 0.397923 - 1.355450I		
a = 0.17147 + 2.46591I	-0.40257 - 13.35110I	0
b = -1.17690 - 0.80462I		
u = 0.536600 + 0.237972I		
a = 0.147433 + 1.338600I	1.05918 + 0.97127I	3.52880 - 3.41320I
b = 0.375946 - 0.435344I		
u = 0.536600 - 0.237972I		
a = 0.147433 - 1.338600I	1.05918 - 0.97127I	3.52880 + 3.41320I
b = 0.375946 + 0.435344I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.13547 + 1.42408I		
a = -0.481300 + 0.967134I	-8.04171 - 6.36604I	0
b = -0.921093 - 0.597509I		
u = -0.13547 - 1.42408I		
a = -0.481300 - 0.967134I	-8.04171 + 6.36604I	0
b = -0.921093 + 0.597509I		
u = -0.302868		
a = 2.56595	-1.10522	-12.4510
b = -0.846938		
u = -0.0966649		
a = 11.5425	-6.54665	-14.0770
b = 1.04441		

II.
$$I_2^u = \langle b-1, 2u^2a + a^2 - 2au + 4a + u - 1, u^3 - u^2 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2}a + 2u^{2} - a + 1 \\ u^{2}a - au + a + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} - 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} - 2a + u - 2 \\ au \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 4u 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^6$
c_2	$(u+1)^6$
c_3, c_4, c_8 c_9	$(u^2-2)^3$
c_{6}, c_{7}	$(u^3 - u^2 + 2u - 1)^2$
c_{10}	$(u^3 - u^2 + 1)^2$
c_{11}	$(u^3 + u^2 + 2u + 1)^2$
c_{12}	$(u^3 + u^2 - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^6$
c_3, c_4, c_8 c_9	$(y-2)^6$
c_6, c_7, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$
c_{10}, c_{12}	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = 0.814156 - 0.050322I	-9.60386 + 2.82812I	-11.50976 - 2.97945I
b = 1.00000		
u = 0.215080 + 1.307140I		
a = -1.05928 + 1.54005I	-9.60386 + 2.82812I	-11.50976 - 2.97945I
b = 1.00000		
u = 0.215080 - 1.307140I		
a = 0.814156 + 0.050322I	-9.60386 - 2.82812I	-11.50976 + 2.97945I
b = 1.00000		
u = 0.215080 - 1.307140I		
a = -1.05928 - 1.54005I	-9.60386 - 2.82812I	-11.50976 + 2.97945I
b = 1.00000		
u = 0.569840		
a = 0.118556	-5.46628	-4.98050
b = 1.00000		
u = 0.569840		
a = -3.62831	-5.46628	-4.98050
b = 1.00000		

III.
$$I_3^u = \langle b+1, -u^2+a-u-2, u^3+u^2+2u+1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + u + 2 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + u + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + u + 2 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + u + 2 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $6u^2 + 4u + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{2}	$(u-1)^3$
c_3, c_4, c_8 c_9	u^3
<i>C</i> ₅	$(u+1)^3$
c_6, c_7	$u^3 + u^2 + 2u + 1$
c_{10}, c_{12}	$u^3 + u^2 - 1$
c_{11}	$u^3 - u^2 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^3$
$c_3,c_4,c_8 \ c_9$	y^3
c_6, c_7, c_{11}	$y^3 + 3y^2 + 2y - 1$
c_{10}, c_{12}	$y^3 - y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = 0.122561 + 0.744862I	-4.66906 - 2.82812I	-6.83447 + 1.85489I
b = -1.00000		
u = -0.215080 - 1.307140I		
a = 0.122561 - 0.744862I	-4.66906 + 2.82812I	-6.83447 - 1.85489I
b = -1.00000		
u = -0.569840		
a = 1.75488	-0.531480	3.66890
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^9)(u^{44}+14u^{43}+\cdots+687u+49)$
c_2	$((u-1)^3)(u+1)^6(u^{44}+4u^{43}+\cdots+13u-7)$
c_3,c_4,c_9	$u^{3}(u^{2}-2)^{3}(u^{44}-u^{43}+\cdots-8u-8)$
c_5	$((u-1)^6)(u+1)^3(u^{44}+4u^{43}+\cdots+13u-7)$
c_6, c_7	$((u^3 - u^2 + 2u - 1)^2)(u^3 + u^2 + 2u + 1)(u^{44} - 2u^{43} + \dots - 12u - 1)$
c_8	$u^{3}(u^{2}-2)^{3}(u^{44}+3u^{43}+\cdots+8u+8)$
c_{10}	$((u^3 - u^2 + 1)^2)(u^3 + u^2 - 1)(u^{44} + 2u^{43} + \dots - 216u - 13)$
c_{11}	$(u^3 - u^2 + 2u - 1)(u^3 + u^2 + 2u + 1)^2(u^{44} - 2u^{43} + \dots - 12u - 1)$
c_{12}	$((u^3 + u^2 - 1)^3)(u^{44} + 20u^{43} + \dots - 582288u + 12161)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^9)(y^{44} + 42y^{43} + \dots - 11859y + 2401)$
c_2, c_5	$((y-1)^9)(y^{44} - 14y^{43} + \dots - 687y + 49)$
c_3, c_4, c_9	$y^{3}(y-2)^{6}(y^{44}-37y^{43}+\cdots-64y+64)$
c_6, c_7, c_{11}	$((y^3 + 3y^2 + 2y - 1)^3)(y^{44} + 36y^{43} + \dots - 120y + 1)$
c ₈	$y^{3}(y-2)^{6}(y^{44}+47y^{43}+\cdots-960y+64)$
c_{10}	$((y^3 - y^2 + 2y - 1)^3)(y^{44} - 44y^{43} + \dots - 21852y + 169)$
c_{12}	$(y^3 - y^2 + 2y - 1)^3$ $\cdot (y^{44} - 68y^{43} + \dots - 423863999800y + 147889921)$