Unveiling the Secrets of Wine Quality

Final Project of the course Data Science
Mentor: Marc
Zofia & Fengyu

Table of content:

- Motivation (Fengyu & Zofia)
- Background (Fengyu & Zofia)
- 🥊 Research questions (Fengyu & Zofia)
- Dataset (Fengyu & Zofia)
- Transformations (Fengyu)
- 🍷 Outliers detection (Fengyu)
- 🟲 Feature selection (Fengyu & Zofia)
- Models evaluation (Zofia)
- 🟲 Recipe for wine (Fengyu & Zofia)
- 🏲 Discussion (Fengyu & Zofia)

- 1 Cultural Significance
- 2 Enhancing Wine Production
- 3 Analytical Depth

Background

A group of researchers: Paulo Cortez, Antonio Cerdeira, Fernando Almeida, Telmo Matos, and Jose Reis.

Collected Time: May 2004 to February 2007

Quality Rating: Median of three sensory assessors

Chemical Features: iLab

Modeling wine preferences by data mining from physicochemical properties (2009)

-> Result: Support Vector Machine: Alcohol, Citric acid and residual sugar.

Research guestion:

Which features contribute the most to predict good and poor quality of wine?

What is the recipe for a good and poor wine?

Wine Quality distribution

- Red Wine 🝷 (**1599** data points) and
- White Wine

 (4898 data points)

Data spans various **quality** levels from 0 to 10.

- Red Wine (1599 data points) and
- White Wine 🥂 (**4898** data points)

Includes **physicochemical properties** of wine and quality scores.

Total Sulfur Dioxide

Chlorides

Alcohol

Transformation

Skewness Coefficient of Chlorides: 5.02

Transformation

Skewness Coefficient of Chlorides: 5.02

Skewness Coefficient of Chlorides(Log): 1.28

White Wine: Chlorides, Volatile Acidity Red Wine: Residual Sugar, Chlorides

Outlier Analysis

Outlier Analysis

White Wine: 10 outliers; Free Sulfur Dioxide (3 outliers), Citric Acid(2 outliers); 1 outlier: Fixed Acidity, Residual Sugar, Chlorides, Total Sulfur Dioxide, Density

Red Wine: 8 outliers; Sulphates (4 outliers); Total Sulfur Dioxide(2 outliers); Chlorides(2 outliers).

Feature Selection

What are the important features of wine quality?

Feature Selection

Feature Selection

Is there high correlation between predictor

variables?

0.17

0.23

0.88

0.38

0.1

0.063

0.19

-0.68

0.18

0.88

0.13

0.11

0.088

-0.12

-0.43

0.18

0.23

0.12

0.14

0.055

-0.17

0.092

0.11

-0.1

0.17

-0.13

-0.1

-0.058

-0.44

0.067

-0.13

0.12

0.67

0.15

-0.065

0.11

0.064

0.14

0.67

0.13

0.11

-0.42

-0.1

0.055

0.13

0.1

0.15

0.13

-0.16

-0.13

-0.17

0.063

-0.065

0.11

-0.16

0.13

-0.052

-0.058

-0.058

0.092

0.11

0.11

0.13

0.12

-0.37

0.12

0.1

-0.049

0.11

0.088

0.19

0.064

-0.44

-0.12

-0.43

-0.68

-0.42

-0.13

-0.37

-0.049

0.096 - pH

0.1

0.096

0.067 - fixed acidity

citric acid

density

residual suga

- free sulfur di

- total sulfur d

- quality

-0.058 - volatile acidi

chlorides

- sulphates

- alcohol

Correlation Matrix Clustermap for White Wine Poor (Without Outliers) -0.13 -0.1 -0.44 0.067 - fixed acidity 0.17 -0.058

-0.13

0.23

0.12

0.14

0.055

-0.17

0.092

0.11

-0.1

0.13

0.11

0.088

-0.12

-0.43

0.23

0.88

0.1

0.19

-0.68

0.67

0.15

-0.065

0.11

0.064

0.13

0.11

-0.42

0.055

0.13

0.1

0.15

0.13

-0.16

-0.13

-0.17

0.063

-0.065

0.11

-0.16

0.13

-0.052

-0.058

0.092

0.11

0.11

0.13

0.12

0.11

0.088

0.19

0.064

0.12

0.1

-0.049

-0.12

-0.052

0.1

0.096

-0.43

-0.68

-0.13

-0.37

0.096

0.067

- citric acid

density

- quality

-0.058 - volatile acidity

- chlorides

- residual sugar

- free sulfur dioxide

total sulfur dioxid

Model - Piecewise linear regression

Datasets:

- White Poor Wine (N=1639)
 - R² = 0.078, F(8, 1630) = 17.34, p < .001
 - <u>Volatile Acidity</u>, Free Sulfur Dioxide, <u>Residual Sugar</u>, Alcohol, <u>Total Sulfur Dioxide</u>, <u>Fixed Acidity</u>, <u>Density</u>, Citric Acid.
- White Good Wine (N=3249)
 - $R^2 = 0.118$, F(8, 3240) = 62.01, p < .001Alcohol, <u>Density</u>, Chlorides, Total Sulfur Dioxide, <u>Residual Sugar</u>, pH, Fixed Acidity
- Red Poor Wine (N=741)
 - $R^2 = 0.109$, F(8, 732) = 11.20, p < .001
 - <u>Volatile Acidity</u>, <u>Total Sulfur Dioxide</u>, <u>pH</u>, Citric Acid, Alcohol, Sulphates, Density, Residual Sugar.
- Red Good Wine (N=851)
 - $R^2 = 0.0.218$, F(8, 842) = 33.52, p < .001
 - Alcohol, volatile acidity, sulphates, chlorides, total sulfur dioxide, residual sugar, pH

Results

White Poor Wine

	OLS F	legress:	ion Res	ults 			
Dep. Variable:	quality OLS		R-squared:			0.078	
Model:			Adj. R	-squared:	0.074		
Method:	Least Squ	iares	F-statistic:			17.34	
Date:	Mon, 20 Nov 2023 09:45:41		Prob (F-statisti	5.67e-25		
Time:			Log-Li	kelihood:	-591.66		
No. Observations:		1639	AIC:			1201.	
Df Residuals:		1630	BIC:			1250.	
Df Model:		8					
Covariance Type:	nonro	bust					
==========	coef	std 6	err	t	P> t	[0.025	0.975]
const	57.0498	12.4	422	4.593	0.000	32.685	81.415
volatile acidity	-0.1803	0.6	ð27	-6.591	0.000	-0.234	-0.127
free sulfur dioxide	0.0002	0.6	001	0.249	0.804	-0.001	0.001
residual sugar	0.0222	0.6	a 05	4.837	0.000	0.013	0.031
alcohol	-0.0809	0.6	ð17	-4.675	0.000	-0.115	-0.047
total sulfur dioxide	0.0008	0.6	000 0	2.958	0.003	0.000	0.001
fixed acidity	-0.0170	0.6	ð12	-1.384	0.167	-0.041	0.007
density	-52.0447	12.4	437	-4.185	0.000	-76.439	-27.651
citric acid	0.0822	0.6	0 66	1.244	0.214	-0.047	0.212

Red Poor Wine

	OLS R	egressi	on Results			
Dep. Variable:	qua	====== lity	R-squared:		0.109	
Model:		OLS .	Adj. R-squared:		0.099	
Method:	Least Squ	ares	F-statistic:		11.20	
Date:	Mon, 20 Nov	2023	Prob (F-statisti	ic):	5.10e-15	
Time:	08:4	9:53	Log-Likelihood:		-206.41	
No. Observations:		741	AIC:		430.8	
Df Residuals:		732	BIC:		472.3	
Df Model:		8				
Covariance Type:	nonro	bust				
	coef	std e		P> t	[0.025	0. 975]
const	-4.9600	10.8	08 -0.459	0.646	-26.178	16.258
volatile acidity	-0.5329	0.0	78 -6.836	0.000	-0.686	-0.380
total sulfur dioxide	0.0016	0.0	00 4.447	0.000	0.001	0.002
pΗ	-0.2705	0.0	94 -2.868	0.004	-0.456	-0.085
citric acid	-0.2440	0.0	97 -2.509	0.012	-0.435	-0.053
alcohol	0.0009	0.0	20 0.046	0.963	-0.038	0.040
sulphates	0.0208	0.0	78 0.265	0.791	-0.133	0.174
density	11.1070	10.7	98 1.029	0.304	-10.092	32.306
residual sugar	-0.0610	0.0	42 -1.446	0.148	-0.144	0.022

Similar: volatile acidity, total sulfur dioxide

Results

Best Model:

Omnibus:

Good White Wine

OLS Regression Results ______ Dep. Variable: R-squared: 0.118 quality Model: 0LS Adj. R-squared: 0.116 F-statistic: 62.01 Method: Least Squares Mon, 20 Nov 2023 Prob (F-statistic): 5.47e-84 Date: 01:54:18 Log-Likelihood: -2715.8 Time: No. Observations: 3249 AIC: 5448. Df Residuals: 3241 BIC: 5496. Df Model: Covariance Type: nonrobust std err [0.025 0.9751 coef P>|t| 116.8419 20.723 5.638 0.000 76.211 157.473 const alcohol 0.0230 0.026 0.900 0.368 -0.0270.073 density -156.063 -114.941120.973 -5.4800.000 -73.820chlorides -0.158-0.006 -0.0822 0.039 -2.1200.034 total sulfur dioxide 0.0003 0.000 1.116 0.265 -0.0000.001 residual sugar 0.0521 0.008 6.553 0.000 0.037 0.068 рΗ 0.6748 0.102 6.620 0.000 0.475 0.875 fixed acidity 0.1030 0.021 4.829 0.000 0.061 0.145 ______

571.594

Good Red Wine

Rest Model:

best modet:	0LS Re			esults			
Dep. Variable:				uared:		0.218	
Model: -	Xoo Y	0LS	Adj.	R-squared:		0.211	
Method:	Least Squa	res	F-sta	atistic:		33.52	
Date:	Mon, 20 Nov 2	:023	Prob	(F-statistic	z):	2.81e-41	
Time:	01:53	:45	Log-I	Likelihood:		-497.80	
No. Observations:	Ĭ.	851	AIC:			1012.	
Df Residuals:	Ĩ	843	BIC:			1050.	
Df Model:		7					
Covariance Type:	nonrob	ust					
	coef	std 6	err	t	P> t	[0.025	0.975
const	5.0896	0.	363	14.023	0.000	4.377	5.80
alcohol	0.1361	0.0	015	9.185	0.000	0.107	0.16
volatile acidity	-0.2645	0.1	103	-2.563	0.011	-0.467	-0.06
sulphates	0.6418	0.1	111	5.807	0.000	0.425	0.85
chlorides	-0.1992	0.6	054	-3.665	0.000	-0.306	-0.09
total sulfur dioxide	-0.0022	0.0	001	-3.392	0.001	-0.003	-0.00
residual sugar	0.1180	0.0	045	2.641	0.008	0.030	0.20
pН	-0.3419	0.7	110	-3.121	0.002	-0.557	-0.12
Omnibus:	134.	696	Durb:	in-Watson:		1.669	

Similar: volatile acidity, total sulfur dioxide

Durbin-Watson:

1.479

Recipes

Important Features

Mean +/- STD

- White Poor Wine
 - **Volatile acidity:** 0.20 0.42
 - **Free sulfur dioxide:** 16.18 53.87
 - **Fixed acidity:** 6.08 7.85
- White Good Wine
 - **Alcohol:** 9.60 12.09
 - **Residual sugar: 1.22 10.86**
 - Volatile acidity: 0.17 0.35
- Red Poor Wine
 - Volatile acidity: 0.41 0.77
 - Total sulfur dioxide: 17.86 91.21
 - **Citric acid:** 0.06 0.42
- Red Good Wine
 - **Alcohol:** 9.75 11.96
 - **Sulphates:** 0.55 0.83
 - **Chlorides:** 0.05 0.12

Discusion

- Improvement: Compare Multiple Models
- Improvement: Explore Alternative Feature
- Analysis of only psychochemical data
 - Improvement: Expand Dataset for Generalization (information about weather, temperature, year, region)

Appendix

Right-skewed data(Positive)

Left-skewed data(Negative)

Appendix

