EE3331C/EE3331E Feedback Control Systems L7: Control System Performance: transient & steady-state

Arthur TAY

ECE, NUS

Outline

Steady-state performance

Review

DC gain

Step input

General input signals

System Type & Error Constants

Example

Transient Performance

 τ, ζ, ω_n

Controller design

Examples

Other feedback configurations

Summary

Summary

Practice Problems

Outline Steady-state performance Transient Performance Controller design Summary

Review DC gain Step input General input signals System Type & Error Constants Example

Review

- ► We have so far looked at the advantages and disadvantages of open-loop vs. closed-loop control. In this chapter, we are interested in the performance of closed-loop control systems.
- ► Performance refers to how well the system responds to inputs. It is usually given in terms of time domain specifications such as rise time, settling time, steady state error, etc.
- ▶ Steady-state response: DC gain, G(0).
- ▶ Transient response: time constants, τ , damping ratios, ζ , and natural frequencies, ω_n .

- ► How does DC gain affect the steady state response?
- ▶ DC gain is defined as the gain at zero frequency.

Figure 7.1: Unity feedback system.

- ► For the above unity feedback system,
 - ▶ Open-loop t.f.: L(s) = G(s)K(s), the open-loop DC gain is G(0)K(0).
 - $\qquad \qquad \textbf{Closed-loop t.f.:} \ \ G_{cl}(s) = \frac{G(s)K(s)}{1+G(s)K(s)},$

the closed-loop DC gain is
$$G_{cl}(0) = \frac{G(0)K(0)}{1 + G(0)K(0)}$$
.

ightharpoonup Suppose the setpoint is a step input of magnitude r, the output is given by:

$$Y(s) = \frac{G(s)K(s)}{1 + G(s)K(s)}R(s)$$

If the closed-loop is stable, then the steady-state output is (via final value theorem):

$$y_{ss} = \lim_{s \to 0} sY(s)$$

$$= \lim_{s \to 0} \frac{sG(s)K(s)}{1 + G(s)K(s)} \frac{r}{s}$$

$$= \frac{G(0)K(0)}{1 + G(0)K(0)} r$$

$$= G_{cl}(0)r$$

▶ Hence for zero steady-state error (i.e. $y_{ss} = r$), we require $G_{cl}(0) = 1$. Note that the above statement is true only for the step inputs of arbitrary magnitude. ightharpoonup For the feedback configuration in Figure 7.1, the transfer function from r to error, e is

$$\frac{E(s)}{R(s)} = \frac{1}{1 + G(s)K(s)}$$

► We will consider steady-state errors in stable systems for general polynomial inputs,

$$r(t) = rt^{n-1}$$

Its Laplace transform is given by $R(s) = \frac{C r}{s^n}$ where C = (n-1)!

- ▶ n = 1: step input
- ▶ n=2: ramp input
- n=3: parabolic input

► For stable system, the steady-state error is given by

$$e_{ss} = \lim_{s \to 0} sE(s)$$

$$= \lim_{s \to 0} s \frac{1}{1 + G(s)K(s)} \frac{Cr}{s^n}$$

$$= \lim_{s \to 0} \frac{Cr}{s^{n-1} + s^{n-1}G(s)K(s)}$$

▶ Suppose that the open-loop transfer function, $G(s)K(s) = \frac{1}{s^m}P(s)$ where P(s) does not contain any integrators, then

$$e_{ss} = \lim_{s \to 0} \frac{C r}{s^{n-1} + s^{n-1} \frac{P(s)}{s^m}}$$

$$= \lim_{s \to 0} \frac{C r s^m}{s^{n+m-1} + s^{n-1} P(s)}$$

$$= \lim_{s \to 0} \frac{C r s^{m-n+1}}{s^m + P(s)}$$

To have $e_{ss} = 0$, we need m > n - 1.

For m = 0, i.e. G(s)K(s) without integrators.
The steady-state error can be further simplify to

$$\begin{array}{ll} e_{ss} & = & \lim_{s \to 0} \frac{C \, r s^{m-n+1}}{s^m + P(s)} \\ & = & \lim_{s \to 0} \frac{C \, r s^{-(n-1)}}{1+p} \\ & = & \begin{cases} \frac{C \, r}{1+p} & \text{if} \quad n=1 \\ \infty & \text{if} \quad n>1 \end{cases} \text{ ramp and other higher order inputs} \end{array}$$

where
$$p = P(s)|_{s=0} = P(0)$$
.

▶ For m > 0, i.e. G(s)K(s) has at least one integrator.

The steady-state error can be further simplify to

$$e_{ss} = \lim_{s \to 0} \frac{C r s^{m-n+1}}{s^m + P(s)}$$

$$= \lim_{s \to 0} \frac{C r s^{m-(n-1)}}{p}$$

$$= \begin{cases} 0 & \text{if } m > n-1\\ \frac{C r}{p} & \text{if } m = n-1\\ \infty & \text{if } m < n-1 \end{cases}$$

▶ In conclusion, if G(s)K(s) contains n or more integrators, then the closed loop system will track an input given by $r(t) = rt^{(n-1)}$ without any steady state error.

► For the unity feedback system in Figure 7.1, the steady-state error is summarized in the following table:

	Constant input	Ramp input	Parabolic input
$r(t) = rt^{(n-1)}$	r(t) = r	r(t) = rt	$r(t) = rt^2$
	$R(s) = \frac{r}{s}$	$R(s) = \frac{r}{s^2}$	$R(s) = \frac{2r}{s^3}$
	n = 1	n = 2	n = 3
0 integrator in	r	20	20
the loop i.e. $m=0$	$\overline{1+p}$	∞	∞
1 integrator in	0	r	∞
the loop i.e. $m=1$		p	
2 integrators in	0	0	2r
the loop i.e. $m=2$			\overline{p}
3 or more integrators	0	0	0
in the loop i.e. $m \geq 3$			

Table 7.1: Steady-state error for different input and system types.

- ▶ A stable system can be classified as a **system type**. A system of **type** k indicates the ability of the system to achieve zero steady-state error to polynomials of degree less than but not equal to k, i.e. k is the number of integrators in the system (G(s)K(s)).
- ▶ We can further define the following error constants:
 - ► Position Error Constant:

$$K_p = \lim_{s \to 0} G(s)K(s)$$

► Velocity Error Constant:

$$K_v = \lim_{s \to 0} sG(s)K(s)$$

► Acceleration Error Constant:

$$K_a = \lim_{s \to 0} s^2 G(s) K(s)$$

Control systems are often described in terms of their system type and error constants, K_p, K_v , and K_a . How are these error constants related to the steady-state errors?

► For the unity feedback system in Figure 7.1, the error constants and system types is summarized in the following table (compare with Table 7.1):

No. of integrators	Constant input	Ramp input	Parabolic input
in the loop	r(t) = r	r(t) = rt	$r(t) = rt^2$
(System Type)	$R(s) = \frac{r}{s}$	$R(s) = \frac{r}{s^2}$	$R(s) = \frac{2r}{s^3}$
Type 0	$\frac{r}{1+K_p}$	∞	∞
Type 1	0	$\frac{r}{K_v}$	∞
Type 2	0	0	$\frac{2r}{K_a}$
Type $k \geq 3$	0	0	0

Table 7.2: Steady-state error as a function of system types.

Example: A laser beam can be used to weld, drill, etch, cut and mark metals. Suppose we require an accurate laser beam to mark a parabolic path with a closed loop control system as shown below. Calculate the necessary gain to result in a steady state error of 5 mm for $r(t)=t^2$ cm.

- ▶ Do you expect to have a steady state error for $r(t) = t^2$?
- ▶ How many integrators do you need to have zero steady state error to this r(t)?

- τ, ζ, ω_n
 - ► We have previously seen the effects of the time constant, damping ratio and natural frequencies on the transient response.
 - ▶ Time constant, τ : Consider the first-order system

$$G(s) = \frac{K}{s\tau + 1}$$

- ▶ the larger the τ , the closer the pole to the origin \rightarrow the slower the response
- thus poles location determine the transient response

 τ, ζ, ω_n

► Damping ratio, ζ: Consider the standard second-order system

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

with poles at $s = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$.

- ζ < 1, underdamped system, complex poles: as ζ ↑, the response is more slugglish and less oscillations.
- $\zeta=1$, critically-damped system, repeated real poles with no oscillations.
- $\begin{tabular}{ll} \searrow $\zeta > 1$, overdamped \\ $system$, distinct real poles. \end{tabular}$
- ▶ Note: for $\zeta \leq 1$, it is called the damping ratio and defined as $\zeta = \cos \beta$.

 τ, ζ, ω_n

▶ Natural frequency, ω_n : Consider the standard second-order system

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- the smaller the ω_n , the more sluggish is the response
- since ζ is the same, the overshoot is the same:

$$M_p = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$$

performance also define by: rise-time t_r, peak-time t_p, settling-time t_s.

Example 1

► Consider the feedback system with $G(s) = \frac{2}{3s+4}$

Design a gain controller, K, such that the closed loop system is stable and has a time constant less than 0.25 sec and steady state error of less than 1%.

Closed-loop transfer function is

$$\frac{Y(s)}{R(s)} = G(s) = \frac{G(s)K(s)}{1 + G(s)K(s)}$$
$$= \frac{2K}{3s + 4 + 2K} = \frac{\frac{K}{2+K}}{\frac{3}{4+2K}s + 1}$$

where the closed-loop time constant and steady-state gain are given by $\tau_c = \frac{3}{4+2K}$ and $K_c = \frac{K}{2+K}$

► The specification requires the following:

$$\tau_c = \frac{3}{4 + 2K} < 0.25$$

$$\Rightarrow K > 4$$

and $0.99 < K_c < 1.01$ which gives

$$0.99 < \frac{K}{2+K} \quad \text{and} \quad \frac{K}{2+K} < 1.01$$
 $1.98 + 0.99K < K \qquad \qquad K < 2.02 + 1.01K$ $K > 198 \qquad \qquad K > -2.02$

combining the two specifications gives K > 198.

• Choosing K = 200 gives $\tau_c = 0.0074$ sec and $K_c = 0.9901$

- Can we have zero steady-state error to a unit step input for the above design?
 In order to have a = 0, require at least m = m integrators in C(a) K(a)
 - In order to have $e_{ss}=0$, require at least m=n integrators in G(s)K(s) in order to track $r(t)=rt^{(n-1)}$.
- ▶ Hence, for a step input given by r(t) = r, we therefore have n = 1 and hence G(s)K(s) needs to have m = n = 1 integrator in order to track r(t) = r.

Since G(s) does not contain any integrator, we should design K(s) to contain an integrator. For example, consider the following controller

$$K(s) = \frac{K}{s}$$

The new closed-loop transfer function is

$$G_{cl2}(s) = \frac{2K}{s(3s+4)+2K}$$
$$= \frac{2K/3}{s^2+(4/3)s+2K/3}$$

The closed-loop system is now second-order compared to previous case.

 \blacktriangleright Choose the controller gain, K , such that the maximum overshoot $M_p < 0.1$

$$M_p = e^{\frac{\pi \zeta}{\sqrt{1-\zeta^2}}} < 0.1$$

 $\Rightarrow \zeta > \sqrt{\frac{(\ln(0.1))^2}{\pi^2 + (\ln(0.1))^2}} = 0.59$

 Comparing the closed-loop transfer function with standard second-order system,

$$G_{cl2}(s) = \frac{2K/3}{s^2 + (4/3)s + 2K/3} \quad \text{c.f.} \quad \frac{\bar{K}\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

we have

$$2\zeta\omega_n = \frac{4}{3}, \quad \omega_n^2 = \frac{2K}{3}, \quad \bar{K} = 1,$$
$$\zeta = \frac{2}{3\omega_n} = \sqrt{\frac{2}{3K}} > 0.59$$
$$\Rightarrow K < 1.915$$

Verify via Root locus design, consider the open-loop transfer function $G(s)K(s) = \frac{K}{s} \frac{2}{3s+4}$.

As shown in the insert in the root locus plot and closed-loop step response, all specifications are met. The response is however much slower compared to the first design with K(s) = K.

Example 2

- ▶ A unity feedback system has plant: $G(s) = \frac{K(s+1)}{s(s-1)(s+4)}$
 - 1. Determine the range of K for stability
 - 2. The maximum ζ of the stable complex roots can be estimated from the root locus plots using Matlab.
- ▶ Closed-loop c.e. given by 1+G(s)K(s)=0, to find the maximum K before the system becomes unstable, substitute $s=j\omega$ (i.e. at the stability boundary)

$$1 + \frac{K(s+1)}{s(s-1)(s+4)} = 0$$

$$s^{3} + 3s^{2} + (K-4)s + K = 0$$

$$-j\omega^{3} - 3\omega^{2} + j(K-4)\omega + K = 0$$

$$(K-3\omega^{2}) + j\omega(K-4-\omega^{2}) = 0$$

Equating the real and imaginary parts to zero, we have $K=6,\omega=\sqrt{2}$.

► Root locus plot for $G(s) = \frac{K(s+1)}{s(s-1)(s+4)}$.

▶ the maximum ζ occurs when the angle β is smallest in the root locus plot.

Example 3

▶ Consider an OL plant, G(s), being controlled in a unity negative feedback configuration by a controller, K(s):

$$G(s) = \frac{s^2 + s + 1}{s^3 + s^2 + s + 2}, \quad K(s) = \frac{K_0(s+1)}{s}$$

- 1. Determine if the system is always stable for all values of K_0 using Matlab ('rlocus')
- 2. Determine $K_0>0$ such that the set of complex poles has a damping ratio of $0.5\,$
- 3. What is the steady-state error to unit step input in the setpoint?
- 4. What is the steady state error to a unit ramp input in the setpoint?

▶ Derive the steady-state error, e_{ss} , for the following different closed-loop configurations. Note that E(s) = R(s) - Y(s).

Outline Steady-state performance Transient Performance Controller design Summary

Examples Other feedback configurations

Outline Steady-state performance Transient Performance Controller design Summary

Summary Practice Problems

Summary

- ► Steady-state errors in response to polynomial inputs depends on the number of integrators in the loop transfer function.
- ► Controller design specifications can be in-terms of transient $(t_r, t_s, M_p, t_p,$ etc.) as well as steady-state (e_{ss}) performances.

Review Questions

- ▶ How does time constant, τ , damping ratio, ζ and natural frequency, ω_n affect transient performances in first and second-order systems?
- ► How do you compute the closed-loop steady-state error for a system due to different reference input? Discuss the effect of having integrators in the system?

Reading: FPE: section 4.2.1-4.2.2

Practice Problems

- 1. For the feedback configuration in page 7-28, $G(s)=\frac{1}{s(\tau s+1)}$, $K_1(s)=k_p$ and $K_2(s)=1+k_ts$. Compute the steady-state error due reference input, $R(s)=1/s^n$ for n=1,2,3.
- 2. Consider a second order plant with transfer function, $G(s) = \frac{1}{(s+1)(5s+1)} \text{ and in a unity feedback structure.}$ Determine the system type and error constant with respect to tracking polynomial reference inputs of the system for the following controllers: (a) $K(s) = k_p$, (b) $K(s) = k_p + k_d s$, and (c) $K(s) = k_p + \frac{k_i}{s} + k_d s$. Let $k_p = 19$, $k_i = 0.5$ and $k_d = 4/19$.