

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY

ÚSTAV INFORMAČNÍCH SYSTÉMŮ DEPARTMENT OF INFORMATION SYSTEMS

SEPARACE MLUVČÍCH V ČASOVÉ DOMÉNĚ

TIME DOMAIN SPEAKER SEPARATION

BAKALÁŘSKÁ PRÁCE

BACHELOR'S THESIS

AUTOR PRÁCE

JIŘÍ PEŠKA

AUTHOR

VEDOUCÍ PRÁCE

ing. KATEŘINA ŽMOLÍKOVÁ,

SUPERVISOR

BRNO 2019

Abstrakt

tento abstract asi zkratit a napsat rozsireny abstract. dopsat jeste zbyvajici dve casti abstraktu, ktere se budou zabyvat implementaci a vysledkama. Práce se zabývá tvorbou hluboké konvoluční neuronové sítě a jejím využitím na separaci dvou mluvčích v časové doméně. Cílem práce je implementovat a naučit neuronovou sít separovat jednotlivé mluvčí na vstupní jednokanálové nahrávce a vytvořit dvě oddělené nahrávky, kde na každé bude záznam jednoho ze dvou mluvčích.

K dosažení výsledku bylo použito konvolučního autoenkodéru, který vstupní směs transformuje na reprezentaci optimalizovanou k extrakci jednotlivých mluvčích. Dále zde figuruje separační část, která se skládá z posloupnosti konvolučních bloků a mnoha konvolučních vrstev se snižující se dilatací, což umožňuje uchovávat dlouhodobé časové závislosti ve zpracovávané nahrávce. Tyto bloky slouží k odhadu masek, které se aplikují na výstup enkodéru, čímž se dosáhne separace. K implementaci jsem použil jazyk python a framework určený k modelování neuronových sítí jménem pytorch.

Abstract

K dosažení výsledku bylo použito konvolučního autoenkodéru, který vstupní směs transformuje na reprezentaci optimalizovanou k extrakci jednotlivých mluvčích. Dále zde figuruje separační část, která se skládá z posloupnosti konvolučních bloků a mnoha konvolučních vrstev se snižující se dilatací, což umožňuje uchovávat dlouhodobé časové závislosti ve zpracovávané nahrávce. Tyto bloky slouží k odhadu masek, které se aplikují na výstup enkodéru, čímž se dosáhne separace. K implementaci jsem použil jazyk python a framework určený k modelování neuronových sítí jménem pytorch.]]

Klíčová slova

Neuronová síť, konvoluční neuronová síť, autoenkodér, separace, časová doména, ...

Keywords

Neural networks, convolutional neural networks, autoencoder, separation, time domain, ...

Citace

PEŠKA, Jiří. Separace mluvčích v časové doméně. Brno, 2019. Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Vedoucí práce ing. Kateřina Žmolíková,

Separace mluvčích v časové doméně

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením ing. Kateřiny Žmolíkové. Další informace mi poskytli... Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

Jiří Peška 23. března 2020

Poděkování

V této sekci je možno uvést poděkování vedoucímu práce a těm, kteří poskytli odbornou pomoc (externí zadavatel, konzultant, apod.).

Obsah

Seznam obrázků

$\mathbf{\acute{U}vod}$

[[reference na kapitoly ..ref..]]

Má práce s názvem "Separace mluvčích v časové doméně"má za cíl zreplikovat výsledky studie??, kde se hluboká neuronová síť dokázala naučit separovat dva mluvčí, jež jsou zaznamenaní na jednokanálové nahrávce, pomocí konvolučního autoenkodéru a hlubokých konvolučních sítí, které dokážou udržovat závislosti ve zpracovávaném vstupním vzorku.

Separace v časové doméně dosahuje mimořádných výsledků v porovnání s dosavadními metodami, které jsou založeny na převodu signálu z časové domény do frekvenční domény. Takový převod totiž nedokáže zachovat časové závislosti ve vstupním signálu. V referenční studii je vstupní signál převeden do nezáporné reprezentace, která jse optimální pro extrakci jednotlivých mluvčích. Silnou stránkou systému je hluboká architektura sítě, která dokáže zachovat dlouhodobé závislosti ve vstupním signálu.

V první části práce jsou popsány základní prvky neuronových sítí, struktura umělého neuronu, jeho vstupy a výstupy, váhy a role aktivační funkce. V návaznosti na to je popsán proces učení neuronové sítě. Ten se skládá z několika souvisejících částí, které zahrnují výpočet výstupu neuronové sítě metodou feed forward, který transformuje vstupní hodnoty a počítá na základě nich výstup, který propaguje do dalších vrstev neuronové sítě. Dále je rozebrán výpočet chyby, která vzniká během procesu učení, metodou gradient descent a nakonec úprava vah neuronů metodou backpropagation, která se počítá na základě rozdílu mezi vstupními hodnotami a očekávánými výstupními hodnotami.

[[asi popsat trochu jinak = popsat lepe co ta konv. dela a pripadne jak toho vyuzivam ja v teto praci.]] Předtím, než jsou představeny konvoluční sítě, tak je vysvětlena samotná konvoluce. Dále je vysvětlen princip konvolučních neuronových sítí, které se používají nejčastěji pro zpracování obrazu kvůli vlastnostem, které umožňují extrahovat příznaky s různou úrovní složitosti od základních útvarů jako úsečka, barva a podobně až po například část obličeje – ucho, nos, či úplně celý obličej. Tohoto lze využít i při zpracování zvuku, kde jsou tyto extrahované příznaky dvourozměrné.

Se znalostí principu konvolučních sítí je představen konvoluční auto-enkodér, který převádí vstupní nahrávku směsi mluvčích na reprezentaci optimalizovanou pro separaci jednotlivých mluvčích.

Druhá část je věnována separaci. V této kapitole je popsána architektura separačního modelu, jeho stavební bloky a princip. Postupně je znovu zmíněn konvoluční auto-enkodér, u nějž je vysvětlen jeho úkol v separačním modelu a následně konvoluční blok, který se sám sestává z konvolučních vrstev, normalizací a aktivačních funkcí. Tyto bloky jsou skládány za sebe se zvyšující se časovou dilatací a tvoří jádro separačního modelu. [[popsat operaci The hadamard product]]

Třetí část se zabývá návrhem a implementací konvoluční sítě a separačního modelu. Je popsán a odůvodněn zvolený framework pytorch, vuyžité prostředky a metody a podobně. [nejak to jeste dopsat tohle.]

Na závěr jsou popsány experimenty s modelem - rychlost učení, vliv hyper-parametrů na učení sítě, na výsledky a přesnost výstupu v závislosti na zvolených parametrech, optimalizacích a počtu konvolučních bloků a pod. Výstup sítě v podobě separovaných mluvčích je porovnán s referenční studií.

[[Teorie: Co bylo potreba nastudovat;; uvod do problematiky;; pisu to pro nekoho, kdo chce vychazet z me bakalarky.]]

Separace mluvčích

- obecne o problemu separace; prostredi a vyuziti, coctail party, multispeech

Neuronové sítě

body: co vlastne resi . skladaji se ze vstupni vrstvy, N skrytych vrstev, vystupni vrstvy Co resi neuronove site.

V dnešní době zažívají neuronové sítě díky výkonosti počítačů velký rozmach. Jejich využití prostupuje skrze mnohé vědní obory a nově dokáže řešit celou řadu problémů, ve kterých dosahuje výborných výsledků, které zdaleka předčily dosavadní postupy. Mezi nejčastější úlohy, na které se neuronové sítě používají, jsou klasifikační úlohy, rozpoznávání obrazu a řeči či vzorů na videu nebo ve zvuku až po generování textu. Na základně řešeného problému vzniklo mnoho druhů neuronových sítí, z nichž některé zde budou představeny.

Nejzákladnější neuronová síť je vícevrstvá neuronová síť, neboli MLP (Multi Layer Perceptron). Tento typ sítě je skládá ze třech typů vrstev. Vstupní vrstva slouží k předání hodnot do sítě. Tato vrstva nijak nemodifikuje vstupní hodnoty, které jsou do sítě předávány a nezměněné je kopíruje první skryté vrstvě. Každá vrstva se může skládat z 1 až N neuronů, kde $N \in N$. Poslední skrytá vrstva je napojena na výstupní vrstvu. Výstupní vrstva má obvykle méně neuronů než předešlé vrstvy a hodnoty na výstupu mohou představovat třídy, do kterých má být zařazen vstup. S počtem jednotlivých vrstev souvisí pojem hloubka sítě, která je rovna počtu všech vrstev neuronové sítě od vstupní až po výstupní vrstvu.

Takto propojené neurony tvoří acyklický graf, který počítá a následně předává hodnoty směrem od vstupní vrstvy skrze skryté vrstvy až k vrstvě výstupní. Nenacházejí se zde žádná zpětná spojení, ve kterých by se výstup vracel zpět do sítě.[?]

Cílem takové neuronové sítě je aproximovat nějakou funkci f^* . Síti je předána vstupní hodnota x a výstupní hodnota $y^* = f^*(x)$ má být co nejblíž hodnotě y = f(x).

3.1 Umělý neuron

Základní stavební jednotka neuronových sítí je neuron, nebo přesněji perceptron. Tento model je založen na reálných poznatcích o neuronech, které se nacházejí v organizmu. Perceptron obsahuje libovolně mnoho vstupních synapsí, přes které se neuronu předá vstupní hodnota, váhy a jeden výstup, jehož hodnota závisí na vstupních hodnotách, vnitřním stavu neuronu (hodnoty vah a biase) a zvolené aktivační funkci. Vstupní hodnoty jsou váhovány, což v praxi znamená, že každá vstupní hodnota je vynásobena s váhou daného vstupu. Váhy v perceptronu představují nějaký vektor vah $w = [w_1, w_2, \ldots, w_n]$, se kterým je vynásobený vektor vstupních hodnot $x = [x_1, x_2, \ldots, x_n]$.

[[obrazek neuronu a popis]]

Obrázek 3.1: Perceptron

Hodnota bias $b \in R$, která je přičtena k sumě násobků vah a vstupních hodnot, modifikuje dobu, kdy se aktivuje perceptron a změní svůj výstup. Je to prahová hodnota, na základě níž je měněn výstup. Matematicky to znamená, že s aktivační funkcí horizontálně pohybuje doleva nebo doprava v závislosti na tom, je-li bias pozitivní nebo negativní. Bias se učí zároveň s ostatními váhami během učícího procesu.

Obrázek 3.2: Vliv hodnoty bias na aktivační funkci

Výstup neuronu se vypočítá jako:

$$y = a((\sum_{n=1}^{\infty} w_n x_n) + b)$$
(3.1)

kde a je nějaká aktivační funkce, $x_n \in R$ je vstupní hodnota, $w_n \in R$ je váha, kterou se vstupní hodnota vynásobí a $b \in R$ je hodnota bias, která je přičtena k celkové sumě předtím, než se výsledek předá aktivační funkci.

3.1.1 Aktivační funkce

Aktivační, neboli prahová funkce určuje výstupní hodnotu neuronu. Funkce se vybírá na základě problému, který se má neuronová síť naučit řešit. Správná volba prahové funkce vede k lepší konvergenci učení sítě. Naopak špatná volba může vést ke stále větší odchylce od správného řešení – může divergovat. Povaha problému může vyžadovat specifické vlastnosti aktivační funkce - lineární nebo nelineární – sigmoidní a podobně. Pro správnou volbu aktivační funkce je pro nestandartní problémy experimentálně zjistit, která bude nejlépe vyhovovat.

3.1.2 Sigmoid

$$f(x) = \frac{1}{1 + \exp(-z)} \tag{3.2}$$

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-

corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

Obrázek 3.3: Graf aktivační funkce sigmoid

3.1.3 Softmax

$$f(x) = \frac{1}{1 + \exp(-z)} \tag{3.3}$$

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

Obrázek 3.4: Graf aktivační funkce sigmoid

3.1.4 ReLU

Rectified Linear Unit je nejčastěji používaná aktivační funkce. Vyžaduje-li neuronová síť nějakou nelinearitu, je RelU pro většinu případů ideální. Pro každou zápornou hodnotu x vrací 0 a pro kladnou hodnotu x vrací tutéž hodnotu x.

$$f(x) = \max(0, x) \tag{3.4}$$

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

Obrázek 3.5: Graf aktivační funkce ReLU

3.1.5 PReLU

Parametrizovaná ReLU je nelineární aktivační funkce, která se používá v případě, že chceme produkovat na výstup malý nenulový gradient i v případě záporné vstupní hodnoty x. V tom případě je vstupní hodnota vynásobena parametrem α a to představuje výsledek. Parametr α se společně s ostatními váhami učí během učícího procesu.

$$f(x) = \begin{cases} x & \text{if } x \ge 0\\ \alpha x & \text{if } x < 0 \end{cases}$$
 (3.5)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

Obrázek 3.6: Graf aktivační funkce PReLU

3.2 Proces učení neuronových sítí

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

3.2.1 Objektivní funkce

= cost funkce -popis, co to je, k cemu to je, proc to je...

MSELoss

- vzorecek

Cross Entrophy

- vzorecek

3.2.2 Inicializace parametrů

[[Mozna, Kniha strana 292]]

Optimalizační algoritmy

[1 deep learning str 301]

Adam

[[Kniha strana 301]] Adam je jeden z algoritmů s adaptivním učením. Jeho název byl odvozen z fráze "adaptive moments". [1 deep learning str 301]

3.2.3 Backpropagation

- zpetne sireni chyby - adaptacni algoritmus, podil neuronu na chybe, - 3 opakujici se faze uceni: [[dodelat zde podkapitoly v lepsim poradi]] 1) feedforward - dopredu 2) zpetne sireni chyby - Backpropagation 3) uprava vah a biasu na zaklade chyby - chain rule Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

Feed Forward

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

Gradient descent

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.

Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

3.2.4 Overfitting a generalizace

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

Konvoluční neuronové sítě

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

4.1 Konvoluční operace

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

TasNet - Time—Domain Audio Separation Network

[[Architektura full — obrázek, bloky...]] Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

5.1 Konvoluční auto-enkodér

[Konvoluční autoenkodér, vstup, výstup...]] - schema bez separacniho modulu - non negative representation of audio Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

5.2 Separační modul

- odhad masek pro jednotlive mluvci - schema se separacnim modulem Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum

libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

5.2.1 Konvoluční bloky

- Z čeho se skládá – konvoluční vrstvy, normalizace - diagram konv bloku. - Mozna: Dilatace a time perception Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. 1

Implementace a trénování sítě

- pozn: colab, pytorch, stroj, bash, hyperparams, vykon a cas trenovani, seglen, popistrid.

6.1 Dataset

6.1.1 Radio Journal Dataset

Ukazat zde vykreslenou vlnu nahravek mix, s1, s2. Pocet a popis nahravek.

6.1.2 Význam validační sady

6.2 Cíl trénování a metriky

- minimalizovat objektivni-hodnotici funkci sisnr.

6.2.1 Signal to noise ration

Source Distortion Ratio - SDR

Artifacts Ratio - SAR

Inference Ratio – SIR

6.2.2 Implementace modelu

- pytorch, scripty, python3, bash, tridy, moduly, parametry a volby spusteni.

Experimenty a vyhodnocení

- trenovani s ruznymi hyperparametry, uspesnost a tabulky s hyper parametry a dosazenymi vysledky a hodnotami sisnr, sdr atd. - model size comparison. - porovnani s vysledky ze studie - obrazky separovanych mluvcich - signalu. - spektra - grafy trenovani loss a vysledkuu. - pametova narocnost modelu

7.0.1 Možná rozšíření

- variabilnější dataset, mikrofony, šum a bordel prostředí - separace více mluvčích - hlučné prostředí - identifikace konkrétního řečníka - realtime separace

Závěr

- co jak dopadlo, vysledky a vyhodnoceni velikosti modelu a jaky byl nejlepsi,... Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Příloha A

Jak pracovat s touto šablonou

V této příloze je uveden popis jednotlivých částí šablony, po kterém následuje stručný návod, jak s touto šablonou pracovat. Pokud po jejím přečtení k šabloně budete mít nějaké dotazy, připomínky apod., neváhejte a napište na e-mail sablona@fit.vutbr.cz.

Popis částí šablony

Po rozbalení šablony naleznete následující soubory a adresáře:

bib-styles Styly literatury (viz níže).

obrazky-figures Adresář pro Vaše obrázky. Nyní obsahuje placeholder.pdf (tzv. TODO obrázek, který lze použít jako pomůcku při tvorbě technické zprávy), který se s prací neodevzdává. Název adresáře je vhodné zkrátit, aby byl jen ve zvoleném jazyce.

template-fig Obrázky šablony (znak VUT).

fitthesis.cls Šablona (definice vzhledu).

Makefile Makefile pro překlad, počítání normostran, sbalení apod. (viz níže).

projekt-01-kapitoly-chapters.tex Soubor pro Váš text (obsah nahraďte).

projekt-20-literatura-bibliography.bib Seznam literatury (viz níže).

projekt-30-prilohy-appendices.tex Soubor pro přílohy (obsah nahraďte).

projekt.tex Hlavní soubor práce – definice formálních částí.

Výchozí styl literatury (czechiso) je od Ing. Martínka, přičemž slovenská a anglická verze (slovakiso a englishiso) jsou jeho překlady s drobnými modifikacemi. Oproti normě jsou v něm určité odlišnosti, ale na FIT je dlouhodobě akceptován. Alternativně můžete využít styl od Ing. Radima Loskota nebo od Ing. Radka Pyšného¹. Alternativní styly obsahují určitá vylepšení, ale zatím nebyly řádně otestovány větším množstvím uživatelů. Lze je považovat za beta verze pro zájemce, kteří svoji práci chtějí mít dokonalou do detailů a neváhají si nastudovat detaily správného formátování citací, aby si mohli ověřit, že je vysázený výsledek v pořádku.

¹BP Ing. Radka Pyšného http://www.fit.vutbr.cz/study/DP/BP.php?id=7848

Makefile kromě překladu do PDF nabízí i další funkce:

- přejmenování souborů (viz níže),
- počítání normostran,
- spuštění vlny pro doplnění nezlomitelných mezer,
- sbalení výsledku pro odeslání vedoucímu ke kontrole (zkontrolujte, zda sbalí všechny Vámi přidané soubory, a případně doplňte).

Nezapomeňte, že vlna neřeší všechny nezlomitelné mezery. Vždy je třeba manuální kontrola, zda na konci řádku nezůstalo něco nevhodného – viz Internetová jazyková příručka².

Pozor na číslování stránek! Pokud má obsah 2 strany a na 2. jsou jen "Přílohy" a "Seznam příloh" (ale žádná příloha tam není), z nějakého důvodu se posune číslování stránek o 1 (obsah "nesedí"). Stejný efekt má, když je na 2. či 3. stránce obsahu jen "Literatura" a je možné, že tohoto problému lze dosáhnout i jinak. Řešení je několik (od úpravy obsahu, přes nastavení počítadla až po sofistikovanější metody). Před odevzdáním proto vždy překontrolujte číslování stran!

Doporučený postup práce se šablonou

- 1. **Zkontrolujte, zda máte aktuální verzi šablony.** Máte-li šablonu z předchozího roku, na stránkách fakulty již může být novější verze šablony s aktualizovanými informacemi, opravenými chybami apod.
- 2. **Zvolte si jazyk**, ve kterém budete psát svoji technickou zprávu (česky, slovensky nebo anglicky) a svoji volbu konzultujte s vedoucím práce (nebyla-li dohodnuta předem). Pokud Vámi zvoleným jazykem technické zprávy není čeština, nastavte příslušný parametr šablony v souboru projekt.tex (např.: documentclass[english] {fitthesis} a přeložte prohlášení a poděkování do angličtiny či slovenštiny.
- 3. Přejmenujte soubory. Po rozbalení je v šabloně soubor projekt.tex. Pokud jej přeložíte, vznikne PDF s technickou zprávou pojmenované projekt.pdf. Když vedoucímu více studentů pošle projekt.pdf ke kontrole, musí je pracně přejmenovávat. Proto je vždy vhodné tento soubor přejmenovat tak, aby obsahoval Váš login a (případně zkrácené) téma práce. Vyhněte se však použití mezer, diakritiky a speciálních znaků. Vhodný název může být např.: "xlogin00-Cisteni-a-extrakce-textu.tex". K přejmenování můžete využít i přiložený Makefile:

make rename NAME=xlogin00-Cisteni-a-extrakce-textu

- 4. Vyplňte požadované položky v souboru, který byl původně pojmenován projekt.tex, tedy typ, rok (odevzdání), název práce, svoje jméno, ústav (dle zadání), tituly a jméno vedoucího, abstrakt, klíčová slova a další formální náležitosti.
- 5. Nahraďte obsah souborů s kapitolami práce, literaturou a přílohami obsahem svojí technické zprávy. Jednotlivé přílohy či kapitoly práce může být výhodné uložit do samostatných souborů rozhodnete-li se pro toto řešení, je doporučeno zachovat konvenci pro názvy souborů, přičemž za číslem bude následovat název kapitoly.

²Internetová jazyková příručka http://prirucka.ujc.cas.cz/?id=880

- 6. Nepotřebujete-li přílohy, zakomentujte příslušnou část v projekt.tex a příslušný soubor vyprázdněte či smažte. Nesnažte se prosím vymyslet nějakou neúčelnou přílohu jen proto, aby daný soubor bylo čím naplnit. Vhodnou přílohou může být obsah přiloženého pamětového média.
- 7. Zadání, které si stáhnete v PDF z IS FIT (odkaz "Zadání pro vložení do práce" či "Thesis assignment"), uložte do souboru zadani.pdf a povolte jeho vložení do práce parametrem šablony v projekt.tex (documentclass[zadani]{fitthesis}).
- 8. Nechcete-li odkazy tisknout barevně (tedy červený obsah bez konzultace s vedoucím nedoporučuji), budete pro tisk vytvářet druhé PDF s tím, že nastavíte parametr šablony pro tisk: (documentclass[zadani,print]{fitthesis}). Budete-li tisknout barevně, místo print použijte parametr cprint. Barevné logo se nesmí tisknout černobíle!
- 9. Vzor desek, do kterých bude práce vyvázána, si vygenerujte v informačním systému fakulty u zadání. Pro disertační práci lze zapnout parametrem v šabloně cover (více naleznete v souboru fitthesis.cls).
- 10. Nezapomeňte, že zdrojové soubory i (obě verze) PDF musíte odevzdat na CD či jiném médiu přiloženém k technické zprávě.

Obsah práce se generuje standardním příkazem \tableofcontents (zahrnut v šabloně). Přílohy jsou v něm uvedeny úmyslně.

Pokyny pro oboustranný tisk

- Oboustranný tisk je doporučeno konzultovat s vedoucím práce.
- Je-li práce tištěna oboustranně a její tloušťka je menší než tloušťka desek, nevypadá to dobře.
- Zapíná se parametrem šablony: \documentclass[twoside]{fitthesis}
- Po vytištění oboustranného listu zkontrolujte, zda je při prosvícení sazební obrazec na obou stranách na stejné pozici. Méně kvalitní tiskárny s duplexní jednotkou mají často posun o 1–3 mm. Toto může být u některých tiskáren řešitelné tak, že vytisknete nejprve liché stránky, pak je dáte do stejného zásobníku a vytisknete sudé.
- Za titulním listem, obsahem, literaturou, úvodním listem příloh, seznamem příloh a případnými dalšími seznamy je třeba nechat volnou stránku, aby následující část začínala na liché stránce (\cleardoublepage).
- Konečný výsledek je nutné pečlivě překontrolovat.

Styl odstavců

Odstavce se zarovnávají do bloku a pro jejich formátování existuje více metod. U papírové literatury je častá metoda s použitím odstavcové zarážky, kdy se u jednotlivých odstavců textu odsazuje první řádek odstavce asi o jeden až dva čtverčíky (vždy o stejnou, předem zvolenou hodnotu), tedy přibližně o dvě šířky velkého písmene M základního textu. Poslední řádek předchozího odstavce a první řádek následujícího odstavce se v takovém případě

neoddělují svislou mezerou. Proklad mezi těmito řádky je stejný jako proklad mezi řádky uvnitř odstavce. [?]

Další metodou je odsazení odstavců, které je časté u elektronické sazby textů. První řádek odstavce se při této metodě neodsazuje a mezi odstavce se vkládá vertikální mezera o velikosti 1/2 řádku. Obě metody lze v kvalifikační práci použít, nicméně často je vhodnější druhá z uvedených metod. Metody není vhodné kombinovat.

Jeden z výše uvedených způsobů je v šabloně nastaven jako výchozí, druhý můžete zvolit parametrem šablony "odsaz".

Užitečné nástroje

Následující seznam není výčtem všech využitelných nástrojů. Máte-li vyzkoušený osvědčený nástroj, neváhejte jej využít. Pokud však nevíte, který nástroj si zvolit, můžete zvážit některý z následujících:

- MikTeX IATEX pro Windows distribuce s jednoduchou instalací a vynikající automatizací stahování balíčků. MikTex obsahuje i vlastní editor, ale spíše doporučuji TeXstudio.
- TeXstudio Přenositelné opensource GUI pro IATEX. Ctrl+klik umožňuje přepínat mezi zdrojovým textem a PDF. Má integrovanou kontrolu pravopisu³, zvýraznění syntaxe apod. Pro jeho využití je nejprve potřeba nainstalovat MikTeX případně jinou IATEX ovou distribuci.
- WinEdt Ve Windows je dobrá kombinace WinEdt + MiKTeX. WinEdt je GUI pro Windows, pro jehož využití je nejprve potřeba nainstalovat MikTeX či TeX Live.
- Kile Editor pro desktopové prostředí KDE (Linux). Umožňuje živé zobrazení náhledu. Pro jeho využití je potřeba mít nainstalovaný TeX Live a Okular.
- **JabRef** Pěkný a jednoduchý program v Javě pro správu souborů s bibliografií (literaturou). Není potřeba se nic učit – poskytuje jednoduché okno a formulář pro editaci položek.
- **InkScape** Přenositelný opensource editor vektorové grafiky (SVG i PDF). Vynikající nástroj pro tvorbu obrázků do odborného textu. Jeho ovládnutí je obtížnější, ale výsledky stojí za to.
- GIT Vynikající pro týmovou spolupráci na projektech, ale může výrazně pomoci i jednomu autorovi. Umožňuje jednoduché verzování, zálohování a přenášení mezi více počítači.
- Overleaf Online nástroj pro IAT_EX. Přímo zobrazuje náhled a umožňuje jednoduchou spolupráci (vedoucí může průběžně sledovat psaní práce), vyhledávání ve zdrojovém textu kliknutím do PDF, kontrolu pravopisu apod. Zdarma jej však lze využít pouze s určitými omezeními (někomu stačí na disertaci, jiný na ně může narazit i při psaní bakalářské práce) a pro dlouhé texty je pomalejší. Pro vedoucí má FIT licenci a v případě, že student narazí na omezení, je s pomocí vedoucího situace řešitelná.

Pozn.: Overleaf nepoužívá Makefile v šabloně – aby překlad fungoval, je nutné kliknout pravým tlačítkem na projekt.tex a zvolit "Set as Main File".

 $^{^3}$ Českou kontrolu pravopisu lze doinstalovat z https://extensions.openoffice.org/de/project/czech-dictionary-pack-ceske-slovniky-cs-cz

Příloha B

Psaní anglického textu

Tato příloha je převzata ze stránek doc. Černockého [?].

Spousta lidí píše zprávy k projektům anglicky (a to je dobře!), ale dělá v nich spoustu zbytečných chyb (a to je špatně). Nejsem angličtinář, ale tento jazyk už nějakých pár let používám k psaní, čtení i komunikaci – tato příloha obsahuje pár důležitých věcí. Pokud chcete napsat práci nebo článek opravdu 100 % dobře, nezbude Vám než si najmout rodilého mluvčího (a to by měl by být trochu technicky zdatný a aspoň trochu rozumět tomu, co píšete, ať to neskončí ještě hůř . . .).

Obecně

- Předtím, než budete sami něco psát, si přečtěte pár anglických technických článků a zkuste si zapamatovat a získat "obecný pocit", jak se to píše.
- Používejte vždy korektor pravopisu zabudovaný ve Wordu, nebo v OpenOffice, pokud děláte na Linuxu, tak ISPELL a další (většina editorů pro LATEX má již kontrolu pravopisu integrovanou).
- Používejte korektor gramatiky. Nevím, jestli je nějaký dostupný na Linuxu, ale ten ve Wordu celkem slušně funguje a pokud Vám něco zelené podtrhne, je tam většinou opravdu chyba. Můžete do něj nakopírovat i zdrojový text pro IATEX, opravit, a pak uložit opět jako čistý text. Pokud používáte vim, je tam zabudovaný také a zvládne jak překlepy, tak základní gramatiku. V dokumentu diplomka.tex na první řádek napište:

% vim:spelllang=en_us:spell

(případně en_gb pro OED angličtinu) *Poznámka editora:* Existuje i velmi dobrý online nástroj Grammarly¹, který je v základní verzi zdarma.

 Online slovníky jsou dobré, ale nepoužívejte je slepě. Většinou dají více variant a ne každá je správně.

¹https://www.grammarly.com/

• Na vyhledávání a zjištění, co bude asi správné, můžete použít Google. Např.: nevíte, jak se řekne "výhoda tohoto přístupu". Slovník na seznam.cz dá asi 10 variant. Napište je postupně do vyhledávání na googlu:

```
"advantage of this approach" 1100000 hits

"privilege of this approach" 6 hits

"facility of this approach" 16 hits
```

Neříkám, že je to 100 % správně, ale je to určité vodítko. Toto se dá použít i na dohledání správných spojek (třeba "among two cases" nebo "between two cases"?)

SVOMPT a shoda

Struktura anglické věty je SVOPMT: SUBJECT VERB OBJECT MANNER PLACE TIME a přes to nejede vlak! Není volná jako v češtině. Jinak to je maximálně v nějaké divadelní hře, kde je potřeba něco zdůraznit. Hlavně podmět tam musí vždycky být, na to se často zapomíná, protože v CZ/SK může být zamlčený nebo nevyjádřený. SVOMPT platí i ve vedlejších větách!

```
BAD: We have shown that is faster than the other function. GOOD: We have shown that it is faster than the other function.
```

Shoda podmětu s přísudkem – zní to šíleně, ale dělá se v tom spousta chyb.

```
he has
the users have
people were
```

Členy

Členy v angličtině jsou noční můra a téměř nikdo z nás je nedává dobře. Základní pravidlo je, že když je něco určitého, musí předtím být "the". Členy musí být určitě u těchto spojení:

```
the first, the second, ...
the last
the most (třetí stupeň přídavných jmen a príslovcí) ...
the whole
the following
the figure, the table.
the left, the right - on the left pannel, from the left to the right ...
```

Naopak člen NESMÍ být, pokud používáte přesné označení obrázku, kapitoly, atd.

```
in Figure 3.2
in Chapter 7
in Table 6.4
```

Pozor na "a" vs. "an", řídí se to podle výslovnosti a ne podle toho, jak je slovo napsané, takže:

```
an HMM
an XML
a universal model
a user
```

Slovesa

Pozor na trpné tvary sloves – u pravidelných je to většinou bez problémů, u nepravidelných často špatně, typicky

```
packet was sent (ne send)
approach was chosen (ne choosed)
```

...vetšinou to opraví korektor pravopisu, ale někdy ne.

Pozor na časy, občas je v nich pěkný nepořádek. Pokud něco nějak obecně je, přítomný čas. Pokud jste něco udělali, minulý. Pokud to dalo nějaký výsledek a ten výsledek teď existuje a třeba ho nějak diskutujete, přítomný. Nepoužívejte příliš složité časy jako je předpřítomný a vůbec ne předminulý pokud nevíte přesně, co děláte.

JFA is a technique that works for everyone in speaker recognition. We implemented it according to Kenny's recipe in \cite{Kenny}. 12000 segments from NIST SRE 2006 were processed. When compared with a GMM baseline, the results are completely bad.

Délka vět a struktura

- Pište kratší věty a souvětí, pokud máte něco na 5 řádku, většinou se to nedá číst.
- Strukturujte věty pomocí čárek (více než v češtině!), hlavně po úvodu věty, po kterém začíná vlastní věta. Někdy se dává čárka i před "and" (na rozdíl od češtiny)

```
In this chapter, we will investigate ...
The first technique did not work, the second did not work as well, and the third one also did not work.
```

Specifika technického textu

Píšete technicky text, proto nepoužívejte zkratky

```
he's gonna
Petr's working on ...
```

a podobně. Jediné, které je tolerované, je "doesn't", ale neuděláte chybu, když napíšete "does not".

V technických textech se spíš používá trpný rod než činný:

BAD: In this chapter, I describe used programming languages. GOOD: In this chapter, used programming languages are described.

Pokud už činný použijete, dává se v technických textech spíše "we", i když na práci děláte sami. "I", "my", atd. se používají pouze tam, kde jde o to zdůraznit, že jde o Vaši osobu, tedy třeba v závěru nebo v popisu "originál claims" v disertaci.

Časté chyby ve slovech

- Pozor na jeho/její, není to it's, ale its
- Obrázek není picture, ale figure.
- Spojka "než" je "than", ne "then" bigger than this, smaller than this ...hrozně častá chyba! "Then" je pak, potom.

Příloha C

Checklist

Tento checklist byl převzat ze šablony pro kvalifikační práce, která je k dispozici na blogu prof. Herouta [?], který s laskavým dovolením využil nápadu dr. Szökeho¹.

Velká bezpečnost letecké dopravy stojí z části na tom, že lidé kolem letadel mají **checklisty** na úplně každý, třeba rutinní a dobře zažitý, postup. Jako pilot strpí to, že bude trochu za blbce a opravdu tužtičkou do seznamu úkonů odškrtá dokonale zvládnuté akce, vytiskněte si a odškrtejte před odevzdáním diplomky i vy tento checklist a vyhněte se tak častým chybám, které by mohly mít až fatální následky na výsledné hodnocení Vaší práce.

Struktura

	Už ze samotných názvů a struktury kapitol je patrné, že bylo splněno zadání.		
	V textu se nevyskytuje kapitola, která by měla méně než čtyři strany (kromě úvodu a závěru). Pokud ano, radil(a) jsem se o tom s vedoucím a ten to schválil.		
Obr	ázky a grafy		
	Všechny obrázky a tabulky byly zkontrolovány a jsou poblíž místa, odkud jsou z textu odkazovány, takže nebude problém je najít.		
	Všechny obrázky a tabulky mají takový popisek, že celý obrázek dává smysl sám o sobě, bez čtení dalšího textu. Vůbec nevadí, když má popisek několik řádků.		
	Pokud je obrázek převzatý, tak je to v popisku zmíněno: "Převzato z [X]."		
	Písmenka ve všech obrázcích používají font podobné velikosti, jako je okolní text (ani výrazně větší, ani výrazně menší).		
	Grafy a schémata jsou vektorově (tj. v PDF).		
	Snímky obrazovky nepoužívají ztrátovou kompresi (jsou v PNG).		
	Všechny obrázky jsou odkázány z textu.		
	Grafy mají popsané osy (název osy, jednotky, hodnoty) a podle potřeby mřížku.		

 $^{^{1}} http://blog.igor.szoke.cz/2017/04/predstartovni-priprava-letu-neni.html \\$

Rov	nice
	Identifikátory a jejich indexy v rovnicích jsou jednopísmenné (kromě nečastých zvláštních případů jako $t_{\rm max}).$
	Rovnice jsou číslovány.
	Za (nebo vzácně před) rovnicí jsou vysvětleny všechny proměnné a funkce, které zatím vysvětleny nebyly.
Cita	ace
	Všechny použité zdroje jsou citovány.
	Adresy URL odkazující na služby, projekty, zdroje, github apod. jsou odkazovány pomocí \footnote{}.
	Všechny citace používají správné typy.
	Citace mají autora, název, vydavatele (název konference), rok vydání. Když některá nemá, je to dobře zdůvodněný zvláštní případ a vedoucí to odsouhlasil.
Тур	ografie
	Žádný řádek nepřetéká přes pravý okraj.
	Na konci řádku nikde není jednopísmenná předložka (spraví to nedělitelná mezera \sim).
	Číslo obrázku, tabulky, rovnice, citace není nikde první na novém řádku (spraví to nedělitelná mezera $\sim).$
	Před číselným odkazem na poznámku pod čarou nikde není mezera (to jest vždy takto 2, nikoliv takto $^3).$
Jazy	vk
	Použil jsem kontrolu pravopisu a v textu nikde nejsou překlepy.
	Nechal jsem si text přečíst od (alespoň) jednoho dalšího člověka, který umí dobře česky / anglicky / slovensky.
	V práci psané česky nebo slovensky abstrakt zkontroloval někdo, kdo umí opravdu dobře anglicky.
	V textu se nikde nepoužívá druhá mluvnická osoba (vy/ty).
	Když se v textu vyskytuje první mluvnická osoba (já, my), vždy se popisuje subjektivní záležitost (rozhodl jsem se, navrhl jsem, zaměřil jsem se na, zjistil jsem apod.).
	V textu se nikde nepoužívají hovorové výrazy.
	V českém či slovenském textu se zbytečně nepoužívají anglické výrazy, které mají ustálené české překlady. Např. slovo $defaultni$ se nahradí např. slovem $implicitni$ nebo $výchozi$.

²příklad poznámky pod čarou ³jiný příklad poznámky pod čarou

Výsl	edek na datovém médiu, tj. software
	Mám připravené nepřepisovatelné datové médium
	CD-R,DVD-R,
	• DVD+R ve formátu ISO9660 (s rozšířením RockRidge a/nebo Jolliet) nebo UDF,
	\bullet paměťová karta SD (Secure Digital) ve formátu FAT32 nebo exFAT s nastavenou ochranou proti přepisu.
	Pokud je výsledek online (služba, aplikace, \dots), URL je viditelně v úvodu a závěru, aby bylo jasné, kde výsledek hledat.
	Na médiu nechybí povinné:
	 zdrojové kódy (např. Matlab, C/C++,Python,) knihovny potřebné pro překlad, přeložené řešení, PDF s technickou zprávou (je-li pro tisk 2. verze, tak obě),
	• zdrojový kód zprávy (IATEX),
	a případně volitelně po dohodě s vedoucím práce
	 relevantní (např. testovací) data, demonstrační video,
	• PDF plakátku,
	•
	Zdrojové kódy jsou refaktorovány, komentovány a označeny hlavičkou s autorstvím, takže se v nich snadno vyzná i někdo další, než sám autor.
	Jakákoliv převzatá část zdrojového kódu je řádně citována – tedy označena úvodním a v případě převzetí více řádků i ukončovacím komentářem. Komentář obsahuje vše, co vyžaduje licence uvedená na webu (vždy je nutné se ji pokusit najít – např. Stack Overflow ⁴ má striktní pravidla pro citace).
Ode	vzdání
	Chci práci (na max. 3 roky) utajit? Pokud ano, nejpozději měsíc před termínem odevzdání práce si podám žádost (v IS), ke které přiložím případné stanovisko firmy, jejíž duševní vlastnictví je třeba chránit.
	Mám splněný minimální počet normostran textu (lze spočítat pomocí Makefile a odhadem přičíst obrázky). Pokud jsem těsně pod minimem, konzultoval(a) jsem to s vedoucím.
	Pokud chci tisknout oboustranně, konzultoval(a) jsem to s vedoucím a mám správně nastavenou šablonu. Kapitoly začínají na liché stránce.

⁴https://stackoverflow.blog/2009/06/25/attribution-required/

Technickou zprávu mám v deskách z knihařství (min. 1 výtisk, při utajení oba).
Za titulním listem práce je zadání (tzn. mám jej stažené z IS a vložené do šablony).
V IS jsou abstrakty a klíčová slova.
V IS je PDF práce (s klikatelnými odkazy).
Oba výtisky práce jsou podepsané.
V jednom (při utajení obou) výtisku práce je paměťové médium, na kterém je fixkou napsaný login (fixku na CD lze zapůjčit v knihovně, na Studijním oddělení nebo až při odevzdání).

Příloha D

LATEX pro začátečníky

V této kapitole jsou uvedeny některé často využívané balíčky a příkazy pro LATEX, které mohou být při tvorbě práce potřeba.

Užitečné balíčky

Studenti při sazbě textu často řeší stejné problémy. Některé z nich lze vyřešit následujícími balíčky pro LATEX:

- amsmath rozšířené možnosti sazby rovnic,
- float, afterpage, placeins úprava umístění obrázků/tabulek (specifikátor H),
- fancyvrb, alltt úpravy vlastností prostředí Verbatim,
- makecell rozšíření možností tabulek,
- pdflscape, rotating natočení stránky o 90 stupňů (pro obrázek či tabulku),
- hyphenat úpravy dělení slov,
- picture, epic, eepic přímé kreslení obrázků.

Některé balíčky jsou využity přímo v šabloně (v dolní části souboru fitthesis.cls). Nahlédnutí do jejich dokumentace může být rovněž velmi užitečné.

Sloupec tabulky zarovnaný vlevo s pevnou šířkou je v šabloně definovaný "L" (používá se jako "p").

Pro odkazování v rámci textu použijte příkaz \ref{navesti}. Podle umístění návěští se bude jednat o číslo kapitoly, podkapitoly, obrázku, tabulky nebo podobného číslovaného prvku). Pokud chcete odkázat stránku práce, použijte příkaz pageref{navesti}. Pro citaci literárního odkazu \cite{identifikator}. Pro odkazy na rovnice lze použít příkaz \eqref{navesti}.

Znak – (pomlčka) se V LATEXu vkládá jako dvě mínus za sebou: --.

Často využívané příkazy pro LATEX

Doporučuji nahlédnout do zdrojového textu této podkapitoly a podívat se, jak jsou následující ukázky vysázeny. Ve zdrojovém textu jsou i pomocné komentáře.

Příklad tabulky:

Tabulka D.1: Tabulka hodnocení

Jr	néno	
Jméno	Příjmení	Hodnocení
Jan Petr	Novák Novák	7.5 2

Příklad rovnice:

$$\cos^3 \theta = \frac{1}{4} \cos \theta + \frac{3}{4} \cos 3\theta \tag{D.1}$$

a dvou horizontálně zarovnaných rovnic:

$$3x = 6y + 12 \tag{D.2}$$

$$x = 2y + 4 \tag{D.3}$$

Pokud je třeba rovnici citovat v textu, lze použít příkaz eqref. Například na rovnici výše lze odkázat (??). Pokud chcete srovnat číslo rovnic u soustavy, lze použít prostředí split:

$$3x = 6y + 12$$

$$x = 2y + 4$$
(D.4)

Matematické symboly (α) a výrazy lze umístit i do textu $\cos \pi = -1$ a mohou být i v poznámce pod čarou¹.

Obrázek ?? ukazuje široký obrázek složený z více menších obrázků. Klasický rastrový obrázek se vkládá tak, jak je vidět na obrázku ??.

Obrázek D.1: **Široký obrázek.** Obrázek může být složen z více menších obrázků. Chcete-li se na tyto dílčí obrázky odkazovat z textu, využijte balíček **subcaption**.

Další často využívané příkazy naleznete ve zdrojovém textu ukázkového obsahu této šablony.

 $^{^{1}}$ Vzorec v poznámce pod čarou: $\cos\pi=-1$

Obrázek D.2: Dobrý text je špatným textem, který byl několikrát přepsán. Nebojte se prostě něčím začít.