■ 15.4 Polar Integration Example

We want to integrate the function $z = (x^2 + y^2)^{3/2}$ over the region D between the polar functions $r = \cos(\theta)$ and $r = \frac{\sqrt{2}}{2}$. There are many ways to do the integral. I think the simplest is to use the symmetry of the region, and of the function $(x^2 + y^2)^{3/2}$, and just integrate over the top half, i.e. the red and purple parts:

To do so, we split into two integrals in polar coordinates, to the left and right of the black line. The black line is at angle $\frac{\pi}{4}$. The purple region is bounded by the radial curves r = 0, $r = \frac{\sqrt{2}}{2}$, while the red region is bounded by the radial curves r = 0, $r = \cos\theta$. So we get

$$\iiint_D (x^2 + y^2)^{3/2} dA = 2 \left(\int_0^{\pi/4} \int_0^{\sqrt{2}/2} r^3 r dr d\theta + \int_{\pi/4}^{\pi/2} \int_0^{\cos\theta} r^3 r dr d\theta \right) = \frac{16}{75} - \frac{43}{150\sqrt{2}} + \frac{\pi}{40\sqrt{2}} \approx .066165.$$

Evaluating this integral comes down to the substitution $u = \sin \theta$, as we saw in class.

Another way would be to integrate over the interior of gold circle $r = \cos\theta$, and subtract the integral over the green region (as below):

This integral looks like:

$$\iiint_D (x^2 + y^2)^{3/2} dA = 2 \int_0^{\pi/2} \int_0^{\cos\theta} r^3 r dr d\theta - \int_{-\pi/4}^{\pi/4} \int_{\sqrt{2}/2}^{\cos\theta} r^3 r dr d\theta \approx .066165.$$

Note that I've used the symmetry of the function $z = r^3$, and of the region, to do the first integral.

Yet another way would be to integrate over the right half of the blue circle $r = \frac{\sqrt{2}}{2}$, and subtract the integral over the pink part (as below):

This would give the integral

$$\iiint_D (x^2 + y^2)^{3/2} dA = \int_{-\pi/2}^{\pi/2} \int_0^{\sqrt{2}/2} r^3 r dr d\theta - 2 \int_{\pi/4}^{\pi/2} \int_{\cos\theta}^{\sqrt{2}/2} r^3 r dr d\theta \approx .066165.$$