

73. $\int_0^{\pi/4} \frac{\operatorname{tg} x dx}{\cos^2 x} =$

1. 1/2 2. 3/4 3. 5/7 4. 7/5 5. 0

(B. 92)

74. $\int \frac{dx}{(1+x^2)\sqrt{1-x^2}}$ vaut, à une constante près :

1. $\frac{\sqrt{2}}{3} \operatorname{arctg} \frac{\sqrt{3}}{6} x$	3. $\operatorname{arctg} \frac{2x}{1-x^2}$	5. $2 \operatorname{arctg} \frac{1+x}{\sqrt{1-x^2}}$
2. $\frac{\sqrt{2}}{3} \operatorname{arctg} \frac{\sqrt{3}}{3} x$	4. $\frac{\sqrt{2}}{3} \operatorname{arctg} \frac{\sqrt{2}x}{\sqrt{1-x^2}}$	(M.-93)

75. $\int x \operatorname{arc cotg} \frac{x}{a}$ vaut, à une constante près :

1. $\frac{1}{2}(x^2 + a^2) \operatorname{arc cotg} \frac{x}{a} + \frac{ax}{2}$	4. $\frac{x^3}{3}(x - a) \operatorname{arc cotg} \frac{x}{a}$
2. $\frac{3a}{2}(x^2 + a^2) \operatorname{arc cotg} \frac{x}{a}$	5. $\frac{4a}{3}(x + a) \operatorname{arc cotg} \frac{x}{a} + \frac{ax}{3}$
3. $\frac{x^2}{2}(x + a) \operatorname{arc cotg} \frac{x}{a}$	(B. 93)

www.ecoles-rdc.net

76. L'aire S du domaine plan délimité par la courbe C d'équation $y = 2x + 1 - 2 \ln x$, l'axe des abscisses, les droites d'équations $x = e$ et $x = 1/e$ vaut : ($e = 2,7$)

1. 2/7 2. 1/7 3. 3/7 4. 5/7 5. 6/7

(B. 93)

77. $\int \frac{dx}{x^3(x^4 + a^4)}$ vaut, à une constante près :

1. $\frac{1}{a^4 x^4} - \operatorname{arctg} \frac{x^3}{4}$	3. $\frac{1}{3a^3 x^3} - \frac{1}{3a^4} \operatorname{arctg} \frac{x}{a}$	5. $-\frac{1}{4a^2 x^2} - \frac{1}{a^3} \operatorname{arctg} \frac{x}{a}$
2. $\frac{1}{3a^4 x^2} - \frac{1}{3} \operatorname{arctg} \frac{x^2}{a^2}$	4. $-\frac{1}{2a^4 x^2} - \frac{1}{2a^6} \operatorname{arctg} \frac{x^2}{a^2}$	(M. 93)

78. $\int_0^1 (3x^2 + 2)e^{2x} dx =$

1. $\frac{3(e^5 + 5)}{2}$	2. $\frac{2e^3 + 1}{3}$	3. $\frac{3e + 7}{5}$	4. $\frac{2(e^5 + 3)}{3}$	5. $\frac{11(e^2 - 1)}{4}$
---------------------------	-------------------------	-----------------------	---------------------------	----------------------------

(B. 94)