Homework 6

Jim Zieleman

October 11, 2020

- 1. Prove the following.
 - (a) Let $f: \mathbf{R} \to \mathbf{R}$ be defined by f(x) = x. Then $\lim_{x \to x_0} f(x) = x_0$ for every $x_0 \in \mathbf{R}$.

Proof: Assume $f: \mathbf{R} \to \mathbf{R}$ be defined by f(x) = x.

Let $\epsilon > 0$.

Set $\delta = \epsilon$.

Then $\delta > 0$.

Let $x \in \mathbf{R}$ with $0 < |x - x_0| < \delta$.

Then $|f(x) - x_0| = |x - x_0| < \delta = \epsilon$.

So $|f(x) - x_0| < \epsilon$.

So $\lim_{x\to x_0} f(x) = x_0 = L$ for all $x_0 \in \mathbf{R}$.

(b) Fix $c \in \mathbf{R}$ and let $f : \mathbf{R} \to \mathbf{R}$ be defined by f(x) = c. Then $\lim_{x \to x_0} f(x) = c$ for every $x_0 \in \mathbf{R}$.

Proof:

Let $\epsilon > 0$.

Set $\delta = |x - x_0| + \epsilon$.

Then $\delta > 0$ because $|x - x_0| > 0$ and $\epsilon > 0$.

Let $x \in \mathbf{R}$ with $0 < |x - x_0| < \delta$.

Then $|f(x) - c| = |c - c| = 0 < \epsilon$.

So $|f(x) - c| < \epsilon$.

So $\lim_{x\to x_0} f(x) = c = L$.

2. (a) Suppose $a, b, n \in \mathbf{R}$ and n > 0. Prove that |a - b| < n if and only if $a\in (b-n,b+n).$

Proof:

If |a - b| < n.

Then -n < a - b < n.

Then b - n < a < n + b.

So $a \in (b-n, b+n)$.

If $a \in (b-n, b+n)$.

Then b-n < a < b+n.

Then -n < a - b < n. So |a - b| < n.

Hence, we have proven that |a-b| < n if and only if $a \in (b-n, b+n)$.

(b) Explain why $\lim_{x\to x_0} f(x) = L$ if and only if $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $x \in (x_0 - \delta, x_0 + \delta) \cap X \setminus \{x_0\}$, then $f(x) \in (L - \epsilon, L + \epsilon)$.

Proof:

If $\lim_{x\to x_0} f(x) = L$ exists then by definition $\forall \epsilon > 0, \exists \delta > 0$ s.t if $x \in X$ satisfies $0 < |x - x_0| < \delta$ then $|f(x) - L| < \epsilon$.

So in the case of $0 < |x - x_0| < \delta$, we have

$$-\delta < x - x_0 < \delta$$

so
$$x_0 - \delta < x < x_0 + \delta$$

so
$$x \in (x_0 - \delta, x_0 + \delta)$$
.

However since x only approaches x_0 then $x \in (x_0 - \delta, x_0 + \delta) \cap X \setminus \{x_0\}$ where x_0 will not be in the interval.

Then comes the case of $|f(x)-L| < \epsilon$. Then we have $-\epsilon < f(x)-L < \epsilon$. Then $L-\epsilon < f(x) < L+\epsilon$. Then $f(x) \in (L-\epsilon, L+\epsilon)$. So we have $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $x \in (x_0 - \delta, x_0 + \delta) \cap X \setminus \{x_0\}$, then $f(x) \in (L-\epsilon, L+\epsilon)$.

In the other direction:

If we have $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $x \in (x_0 - \delta, x_0 + \delta) \cap X \setminus \{x_0\}$, then $f(x) \in (L - \epsilon, L + \epsilon)$.

In the case of $f(x) \in (L - \epsilon, L + \epsilon)$. Then we have $L - \epsilon < f(x) < L + \epsilon$, then $-\epsilon < f(x) - L < \epsilon$, then $|f(x) - L| < \epsilon$.

In the case of $x \in (x_0 - \delta, x_0 + \delta) \cap X \setminus \{x_0\}$. We have $x \in (x_0 - \delta, x_0 + \delta)$ where at all values of $\delta > 0$ $x_0 \notin (x_0 - \delta, x_0 + \delta)$.

So
$$x_0 - \delta < x < x_0 + \delta$$
.

Then
$$-\delta < x - x_0 < \delta$$
.

So it follows that $0 < |x - x_0| < \delta$ since $|x - x_0| \neq 0$ since $x \neq x_0$.

Then we have satisfied the conditions for the existence of $\lim_{x\to x_0} f(x) = I$.

Thus $\lim_{x\to x_0} f(x) = L$ if and only if $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $x \in (x_0 - \delta, x_0 + \delta) \cap X \setminus \{x_0\}$, then $f(x) \in (L - \epsilon, L + \epsilon)$.

(c) Use the definition of the absolute value to prove that $|a+b| \leq |a|+|b|$ for all $a, b \in \mathbf{R}$ (this is called the triangle inequality).

We have 4 possible cases without loss of generality:

$$a = 0$$

Case 1: Suppose a = 0 then we have,

$$|a+b| = |b|$$

$$|a| + |b| = |b|$$

so
$$|a + b| = |a| + |b|$$

Case 2: Suppose a > 0, b > 0 then we have,

$$|a+b| = a+b$$

$$|a| + |b| = a + b$$

so
$$|a + b| = |a| + |b|$$

Case 3: Suppose a < 0, b < 0 then we have,

$$|a| = -a$$
 and $|b| = -b$ then $|a| + |b| = (-a) + (-b)$

$$|a+b| = -(a+b) = (-a) + (-b)$$

so
$$|a + b| = |a| + |b|$$

Case 4: Suppose a > 0, b < 0. Then we have 3 cases to consider here.

$$a + b = 0$$

$$a+b=0$$
$$a+b>0$$

$$a + b < 0$$

Suppose a + b = 0 then we have,

$$a = -b$$

$$|a+b| = 0$$

$$|a| + |b| = a + (-b) = a + a > 0$$
 because $a > 0$

So
$$|a+b| < |a| + |b|$$
.

Suppose a + b > 0 then we have,

$$a > -b > 0$$
 since $b < 0$ then $-b > 0$

$$|a+b| = a+b$$

$$|a| + |b| = a + (-b)$$

$$b < (-b)$$
 so $a + b < a + (-b)$

So
$$|a + b| < |a| + |b|$$
.

Suppose a + b < 0 then we have,

$$a < (-b)$$
 so $b < 0 < a < (-b)$

$$|a + b| = -(a + b) = (-a) + (-b)$$

$$|a| + |b| = a + (-b)$$

 $(-a) < a \text{ since } a > 0 \text{ then } -a < 0$
 $(-a) + (-b) < a + (-b)$
So $|a + b| < |a| + |b|$

Thus we have covered all possible cases and have proved the triangle inequality using the definition of the absolute value.

3. Suppose f and g are functions with the same domain X. Let $x_0 \in X'$, and assume $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$. Prove that $\lim_{x\to x_0} f(x) + g(x) = L + M$.

Proof:

Let $\epsilon > 0$

Since $\lim_{x\to x_0} f(x) = L$ there exists a $\delta_1 > 0$ such that if $0 < |x - x_0| < \delta_1$ then $|f(x) - L| < \epsilon/2$.

Since $\lim_{x\to x_0} g(x) = M$ there exists a $\delta_2 > 0$ such that if $0 < |x-x_0| < \delta_2$ then $|g(x) - M| < \epsilon/2$.

Set $\delta = min\{\delta_1, \delta_2\}$ and suppose $0 < |x - x_0| < \delta$. Then $0 < |x - x_0| < \delta_1$ so $|f(x) - L| < \epsilon/2$ and $0 < |x - x_0| < \delta_2$ so $|g(x) - M| < \epsilon/2$.

|(f(x) + g(x)) - (L + M)| = |(f(x) - L) + (g(x) - M)|

Using the Archimedean property:

$$\begin{split} |(f(x)-L)+(g(x)-M)| &\leq |f(x)-L|+|g(x)-M| < \epsilon/2+\epsilon/2 = \epsilon \\ \text{So } |(f(x)+g(x))-(L+M)| &< \epsilon. \text{ Thus we have proved } \lim_{x\to x_0} f(x) + g(x) = L+M. \end{split}$$

4 Suppose $f: X \to Y$ is a function and $\lim_{x \to x_0} f(x) = L$. For $c \in \mathbf{R}$, prove $\lim_{x \to x_0} cf(x) = cL$.

Proof:

If c=0 then $\lim_{x\to x_0} cf(x)=cL$ will become $\lim_{x\to x_0} 0=0$ which is true.

If $c \neq 0$

Let $\epsilon > 0$

Since $\lim_{x\to x_0} f(x) = L$, there exists $\delta > 0$ such that $0 < |x-x_0| < \delta$ then $|f(x) - L| < \epsilon/|c|$.

Then $|cf(x) - cL| = |c||f(x) - L| < \epsilon$

So $|cf(x) - cL| < \epsilon$

So we have proved $\lim_{x\to x_0} cf(x) = cL$ exists.