ASPECTOS GERAIS SOBRE A QUALIDADE DO PRODUTO EM PROJETOS DE CONCRETO

Até o presente momento o texto se ateve a explicar, para você leitor, aspectos sobre o lançamento estrutural em um projeto de estruturas de concreto armado como também meios para sua análise. Porém, além disso você projetista ou aspirante a tal função deverá ter em mente que o sistema além de ter elementos "bem-posicionados" necessitará de ser durável. Em outras palavras o seu sistema, quando utilizado de maneira adequada, deverá conservar sua segurança, estabilidade e desempenho em serviço ao longo de um determinado prazo o qual daremos o nome de vida útil.

5.1 A vida útil de uma estrutura

Normalmente, a vida útil é expressa em anos, sendo estabelecida pela maioria das Normas e Códigos do concreto (ver Quadro 5.1) uma vida útil de projeto (VUP) mínima de 50 anos para a maioria das estruturas e 100 anos para estruturas civis, como obras de infraestrutura, pontes, viadutos, barragens entre outras [1].

No caso brasileiro quem estabelece diretrizes mais claras sobre essa VUP é a ABNT NBR 15575 "Edificações Habitacionais" [2]. A referida norma é

dividida em 6 partes, porém as partes que tratam dos assuntos relativos ao sistema estrutural em grande parte se concentram na parte 1 e 2.

Quadro 5.1 – Vida útil de projeto (VUP) mínima para várias normas [5].

Quadro 5.1 – vida util de projeto (VOP) minima para varias normas [5].						
	Vio	da Útil de	Projeto (V	UP) míni	ma	
Tipo de estrutura	BS 7543 (1992)	ISO 2394 (1998)	FIB 34 (2006) e EM 206- 1 (2007)	NBR 15575 (2013)	FIB 53 (2010)	
Temporárias	$\geq 10 \text{ anos}$	1 a 5 anos	$\geq 10 \text{ anos}$	-	-	
Partes estruturais substituíveis (Ex.: apoios)	$\geq 10 \text{ anos}$	$\geq 25 \text{ anos}$	10 a 25 anos	23 a 20 anos	25 a 30 anos	
Estruturas para agricultura e semelhantes	-	-	15 a 30 anos	-	-	
Estruturas offshore	-	1	-	1	$\geq 35 \text{ anos}$	
Edifícios industriais e reformas	≥ 30 anos	-	-	-	-	
Edifícios e outras estruturas comuns	-	$\geq 50 \text{ anos}$	$\geq 50 \text{ anos}$	50 anos	≥ 50 anos	
Edifícios novos e reformas de edifícios públicos	$\geq 60 \text{ anos}$	-	-	-	-	
Edifícios monumentais, pontes e outras estruturas de engenharia civil	≥ 120 anos	≥ 100 anos	≥ 100 anos	-	≥ 100 anos	
Edifícios monumentais, pontes e outras estruturas de engenharia civil	-	-	-	-	≥ 200 anos	

Conforme estabelecido na NBR 15575 [2] deve-se garantir uma VUP mínima de 50 anos para estruturas em geral, claro que sob a condição de manutenção periódica do sistema. A normativa no seu anexo C destaca que para se atingir a VUP mínima é necessário atender, simultaneamente, os cinco aspectos abaixo descritos:

- a) Emprego de componentes e materiais de qualidade compatível com a VUP;
- b) Execução com técnicas e métodos que possibilitem a obtenção da VUP;

- c) Cumprimento em sua totalidade dos programas de manutenção corretiva e preventiva;
- d) Atendimento aos cuidados preestabelecidos para se fazer um uso correto do edifício;
- e) Utilização do edifício em concordância ao que foi previsto em projeto.

O item 7 da parte 2 da NBR 15575 [2] afirma que para atender a vida útil de projeto, deve-se garantir os seguintes requisitos gerais:

- a) Não ruir ou perder a estabilidade de nenhuma de suas partes;
- Prover segurança aos usuários sob ação de impactos, choques, vibrações e outras solicitações decorrentes da utilização normal da edificação, previsíveis na época do projeto;
- c) Não provocar sensação de insegurança aos usuários pelas deformações de quaisquer elementos da edificação, admitindo-se tal exigência atendida caso as deformações se mantenham dentro dos limites estabelecidos nesta Norma;
- Não repercutir em estados inaceitáveis de fissuração de vedação e acabamentos;
- e) Não prejudicar a manobra normal de partes móveis, como portas e janelas, nem repercutir no funcionamento normal das instalações em face das deformações dos elementos estruturais;
- f) Cumprir as disposições das ABNT NBR 5629, ABNT NBR 11682 e ABNT NBR 6122 relativamente às interações com o solo e com o entorno da edificação.

Podemos perceber que estes últimos são muitos similares ao que a NBR 6118 [3] fala sobre seus Estados Limites, fato muito observado no capítulo 3 desse texto. Portanto, é possível afirmar que nós projetistas temos que perceber

que questões relativas à vida útil do sistema estão ligadas a de um projeto estrutural adequado e também a uma manutenção adequada.

5.2 Aspectos da durabilidade para o projeto estrutural

Como vimos anteriormente para se garantir que um projeto tenha vida útil adequada é imprescindível que o sistema tenha durabilidade. Em termos de dicionário durabilidade é aquilo que está relacionado com a duração. Já a norma ISO define durabilidade como a capacidade do edifício ou seus elementos de desempenhar as funções requeridas durante um determinado período de tempo sobre influência dos agentes externos atuantes em situação de serviço [4].

O projetista deverá garantir por meio das suas indicações estruturas duráveis e compatíveis com a sua necessidade em serviço. Em suma os requisitos de projeto devem permitir que a estrutura esteja protegida de mecanismos de deterioração tanto da matriz cimentícia como o aço. Sobre a ótica do projeto estrutural podem ser regulados fatores como relação água-cimento, módulo de elasticidade, consumo de cimento e cobrimento por exemplo.

Souza e Ripper [5] afirmam que a durabilidade é afetada por três grandes fatores: (a) Falhas relacionadas a etapas de projeto; (b) Falhas relacionadas a etapas de execução; e (c) Falhas relacionadas a etapa de utilização. Porém a nível de projeto que o foco desse livro ele estabelece seis fatores, são eles:

- a) Falta de compatibilização de projetos (arquitetônicos, estruturais, hidráulicos, elétricos etc.);
- b) Má especificação de materiais;
- c) Detalhamentos incorretos ou insuficientes;
- d) Erros de dimensionamento;

e) Má definição de concepções estruturais, erro de dimensionamento de cargas atuantes etc.

Vista essas definições e apontamentos faremos agora uma explanação sobre os mecanismos de deterioração e como estabelecer critérios em projeto que mitiguem esses efeitos.

5.2.1 Mecanismos de deterioração de estruturas de concreto

De acordo com a NBR 6118 [3] os mecanismos mais importantes para o envelhecimento de uma estrutura são dados a seguir:

- a) Mecanismos preponderantes de deterioração relativos ao concreto:
 - a.1) Lixiviação (águas puras e ácidas);
 - a.2) Expansão (sulfatos, magnésio);
 - a.3) Expansão (reação álcali-agregado);
 - a.4) Reações deletérias (superficial tipo eflorescências).
- b) Mecanismos preponderantes de deterioração relativos à armadura:
 - b.1) Corrosão devida à carbonatação;
- b.2) Corrosão por elevado teor de íon cloro (cloreto). c) Mecanismos de deterioração da estrutura propriamente dita:
- c) Ações mecânicas, movimentações de origem térmica, impactos, ações cíclicas etc.
- O Quadro 5.2 apresenta os principais mecanismos de deterioração da estrutura e suas consequências sobre o sistema estrutural.

Quadro 5.2 – Principais mecanismos de deterioração das estruturas de concreto armado [6,7].

MECANISMO	AGENTES	AÇÃO	SINTOMATOLOGIA
Lixiviação	Águas puras, carbônicas agressivas e ácidas	Carrear compostos hidratados da pasta de cimento	 Superficie arenosa ou com agregados expostos sem a pasta superficial;- Eflorescên-cia de carbonato; - Elevada retenção de fuligem / fungos
2. Expansão	Águas e solos contaminados por sulfatos	Reações expansivas e deletérias com a pasta de cimento hidratado	Superficie com fissuras aleatórias e esfoliação Redução da dureza e do pH
3. Expansão	Agregados reativos	Reações entre os álcalis do cimento e certos agregados reativos	Expansão geral da massa do concreto Fissuras superficiais e profundas
4.Reações deletérias	Certos agregados	Transformações de produtos ferrugino-sos presentes nos agregados	Manchas, cavidades e protuberância na superfície do concreto
5. Despassivação da armadura	Gás carbônico da atmosfera	Penetração por difu-são e reação com os hidróxidos alcalinos dos poros do con- creto, reduzindo o pH dessa solução	Requer ensaios específicos Em casos mais acentuados, apresentam manchas, fissuras, destacamentos do concreto, perda da seção resistente e da aderência
Despassivação da armadura	Cloretos	Penetração por difu- são,impregnação ou absorção capilar, despassivando a superfície do aço.	Requer ensaios específicos Ao atingir a armadura apresenta os mesmos sinais do item 5.

5.2.1.1 Controles a nível de projeto para atendimento da durabilidade

Como visto no Quadro 5.2 o meio ambiente tem influência direta nos mecanismos de deterioração da estrutura. Por estes agentes estarem ligados ao meio ambiente a NBR 6118 [3] classifica no item 6.4 as possíveis zonas de exposição de uma estrutura de concreto qualquer, sendo que o Quadro 5.3 apresenta detalhadamente cada uma das chamadas classes de agressividade ambiental.

Quadro 5.3 - Classe de agressividade ambiental [3].

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura
I	Fraca	Rural	Insignificante
	Traca	Submersa	magmineanic
II	Moderada	Urbana ^{1,2}	Pequeno
TTT	Forte	Marinha ¹	Grande
III	rone	Indrustrial ^{1,2}	Grande
IV	M : C	Indrustrial ^{1,3}	T21 1
	Muito forte	Respingos de maré	Elevado

¹ Pode-se admitir um microclima com a classe de agressividade mais branda (uma classe acima) para ambientes secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de

apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).

Com isso o engenheiro responsável pelo projeto estrutural terá condições de qualificar a estrutura segundo os critérios de agressividade e, portanto, determinar as características necessárias da estrutura para atendimento aos requisitos de durabilidade.

Salientamos aqui que a ABNT NBR 12655 "Concreto de cimento Portland – Preparo, controle, recebimento e aceitação - procedimento" [8] estabelece em seu item 4.2 que o engenheiro responsável pelo projeto deverá informar a resistência característica do concreto utilizado na estrutura (f_{ck}) e em caso de etapas construtivas informar o f_{cj} (Resistência Característica à Compressão em uma idade j determinada).

Além dessa classificação o professor Paulo Helene [9] introduz em seus textos técnicos o conceito de determinação da classe de agressividade em função do nível de exposição da estrutura ao micro-clima e também a substâncias de caráter agressivo. O Quadro 5.4 e Quadro 5.5 apresentam essas distinções de critérios.

Quadro 5.4 - Classe de agressividade ambiental em função das condições de exposição do microclima [9].

		micro-clir	na		
macro-clima	interior das e	dificações	exterior das edificações		
	seco¹ UR £ 60%	úmido ou ciclos² de molhagem e secagem	seco³ UR £ 60%	úmido ou ciclos ⁴ de molhagem e secagem	
rural	1	1	ı	ı II	
urbana	1	II	I	ii .	
marinha	11	. III		III	
industrial	II	tii	II	111	
específico	JI.	III ou IV	. III	III ou IV	
respingos de maré				IV	
submersa ³ 3m				1	
solo			não agressivo, L	úmido e agressivo, II, III ou IV	

¹ salas, dormitórios ou ambientes com concreto revestido com argamassa e pintura.

² Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65%, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.

³ Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.

² vestiários, banheiros, cozinhas, garagens, lavanderias.

É importante salientar que a classificação do Quadro 5.5 é um critério rigoroso e normalmente exige ensaios preliminares para averiguar as condições de futura exposição da estrutura. No Brasil esses critérios normalmente são utilizados para projeto de estruturas de concreto destinadas a obras de infraestrutura como as Estações de Tratamento de Água e Esgoto.

Quadro 5.5 - Classe de agressividade ambiental visando a durabilidade do concreto segundo valores referenciais CEB-FIP Model Code 1990 [9].

Classificação da Agressividade Ambiental Visando a Durabilidade do Concreto							
Classe de agressividade	рН	CO2 agressivo mg/L	amônia NH4+ mg/L	magnésia Mg2+ mg/L	sulfato SO42- mg/L	sólidos dissolvidos mg/L	
1	> 6,0	< 20	< 100	< 150	< 400	> 150	
11	5,9 - 5,9	20 - 30	100 - 150	150 - 250	400 - 700	150 - 50	
III	5,0 - 4,5	30 - 100	150 - 250	250 - 500	700 - 1500	< 50	
, IV	> 4,5	> 100	> 250	> 500	> 1500	< 50	

1 No caso de solos a análise deve ser feita no extrato aguoso do solo;

Medeiros et al. [6] e Helene [9] afirmam que a durabilidade um sistema estrutural em concreto dependerá da regra dos 4C, conforme descrito a seguir:

- a) Composição ou traço;
- b) Compactação ou adensamento efetivo do concreto na estrutura;
- c) Cura efetiva do concreto na estrutura;
- d) Cobrimento das armaduras.

Parte desta lista de critérios cabe ao projetista estrutural defini-los em um projeto de concreto armado. A composição ou traço do concreto normalmente é definida por um tecnologista do concreto ou especialista da área que trabalhe com métodos de dosagem, porém esse profissional necessita de uma informação básica a resistência característica à compressão do concreto ou f_{ck} e o abatimento. Com essas informações o tecnologista poderá definir o traço que atenda ao f_{ck} e abatimento desejado. Alguns fatores influenciam a escolha dessa

³ obras no interior do nordeste do país, partes protegidas de chuva em ambientes predominantemente secos. 4 incluindo ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.

² Água em movimento, temperatura acima de 30°C, ou solo agressivo muito permeável conduz a um aumento de um grau na classe de agressividade.

³ Ação física superficial tal como abrasão e cavitação aumentam a velocidade de ataque químico.

propriedade e aqui falaremos do ponto de vista da durabilidade e vida útil das peças de concreto.

A NBR 6118 [3] em seu item 7.4 especifica a relação água-cimento máxima, classe do concreto apropriada dada a Classe de Agressividade Ambiental (CAA) e consumo de cimento Portland. Outras classificações também podem ser vista em Helene [9].

Quadro 5.6 - Correspondência entre classe de agressividade e qualidade do concreto [3,8].

Concreto ¹	Tipo ²	Classe de agressividade			
	Про	I	II	III	IV
Relação água/cimento em massa	CA	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45
Classe de concreto (ABNT NBR 8953)	CA	≥ C20	≥ C25	≥ C30	≥ C40
	CA	≥ 260	≥ 280	≥ 320	≥ 360

¹ O concreto empregado na execução de estruturas deve cumprir com os requisitos estabelecidos na ABNT NBR 12 655 [8].

Em relação ao abatimento a classificação é dada pela NBR 8953 [10]. A consistência é dividida em cinco classes "S" conforme Quadro 5.7 e deverá ser definida em projeto juntamente com o f_{ck} .

Quadro 5.7 – Classe de consistência [10].

T .	1			
Classe Abatimento mm	Abatimento	Aplicações típicas		
	ripiicações tipicas			
S10	$10 \le A < 50$	Concreto extrusado, vibroprensado ou centrifugado		
S50	$50 \le A < 100$	Alguns tipos de pavimentos e de elementos de fundação		
S100 $100 \le A < 160$	100 < 1 < 160	Elementos estruturais, com lançamento convencional do		
	$100 \le A < 100$	concreto		
C160	160 < 1 < 220	Elementos estruturais com lançamento bombeado do		
S160 $160 \le A < 220$		concreto		
S220	≥ 220	Elementos estruturais esbeltos ou com alta densidade de		
		armaduras		

 $^{^2\,\}mathrm{CA}$ corresponde a componentes e elementos estruturais do concreto armado.

NOTA 1 De comum acordo entre as partes, podem ser criadas classes especiais de consistência, explicitando a respectiva faixa de variação do abatimento.

NOTA 2 Os exemplos deste quadro são ilustrativos e não abrangem todos os tipos de aplicações.

A antiga versão da NBR 7212 [11] delimitava a tolerância permitida em cada uma das faixas de abatimento e normalmente as concreteiras padronizaram essas famílias de faixa de abatimento (exemplo: 5 ± 1 , 8 ± 1 , 10 ± 2 , 16 ± 3 , 22 ± 3) . A Votorantim cimentos específica 460 famílias de traços em seu documento técnico. Em relação a tolerância a mesma é dada da seguinte forma:

- a) Abatimento de 10 a 90 mm tolerância ± 10 mm;
- b) Abatimento de 100 a 150 mm tolerância ± 20 mm;
- c) Acima de 160 mm tolerância \pm 30 mm.

A propriedade no estado fresco que é fortemente influenciada pelo abatimento é a trabalhabilidade do concreto, tal propriedade é essencial para que ocorra o espalhamento adequado do concreto pelas fôrmas e além disso em situações de bombeamento do concreto a trabalhabilidade adequada não permite que o concreto sofra exsudação ou entupa a tubulação, causando problemas no ato de execução da peça estrutural.

Em linhas gerais o estudo do transporte por meio de bombeamento é complexo [12] e normalmente com a informação do projetista estrutural de recomendação de abatimento a construtora irá adequar o sistema de bombeamento para aquele nível de consistência. Algumas recomendações de abatimento são feitas na literatura para que o projetista estrutural possa se guiar nessa recomendação. São exemplo des recomendação a de Ripper [13] no Quadro 5.8 e de Helene e Terzian [14] no Quadro 5.9.

Quadro 5.8 – Limite de abatimento por tipo de peça estrutural [10].

Tipo de obra/serviço	Consistência	Concreto com controle razoável (agregados medidos em volume) e vibração manual ou mecânica.			
		Mínimo (cm)	Máximo (cm)		
Fundações e muros não armados	Firme	2	6		
Fundações e muros armados	Firme a Plástico	3	7		
Estruturas usuais e Lastros	Plástico	5	7		
Peças com alta densidade de armaduras	Plástico a flúido	7	9		
Concreto aparente	Plástico a flúido	6	8		
Concreto bombeado a alturas até 40 m	Flúido	8	10		
Concreto bombeado a alturas > 40 m	Muito flúido	9	13		

Quadro 5.9 – Limite de abatimento de acordo com peça estrutural e taxa de armadura [14].

ELEMENTO	ABATIMENTO (mm)			
ESTRUTURAL	POUCO ARMADA	MUITO ARMADA		
- Laje	≤ 60 ± 10	≤ 70 ± 10		
- Viga e parede armada	≤ 60 ± 10	≤ 80 ± 10		
- Pilares de edifícios	≤ 60 ± 10	≤ 80 ± 10		
- Paredes de fundação, sapatas, tubulões	≤ 60 ± 10	≤ 70 ± 10		

OBSERVAÇÕES:

- 1 Quando o concreto for bombeado a consistência deve estar entre 70 a 100mm, no máximo;
- 2 Quando a altura para o bombeamento for acima de 30m, considerar o limite para a consistência na saída da tubulação.

Além dos critérios estabelecidos de f_{ck} e abatimento o projetista deverá delimitar nos seus projetos o cobrimento das armaduras. A camada, dita cobrimento, inicia-se a partir da face externa da barra de aço (seja ela estribo em caso de vigas ou barras longitudinais em caso de lajes) e se estende por uma determinada espessura conforme descrito no Quadro 5.10 item 7.4.7.6 da NBR 6118 [3]. Esses valores são descritos conforme o tipo de elemento estrutural. A Figura 5.1 apresenta o detalhamento seções típicas em concreto armado onde é definido o cobrimento nominal (c_{nom}) .

Quadro 5.10 - Correspondência entre classe de agressividade ambiental e cobrimento nominal para $\Delta c=10$ mm [3].

Tipo de estrutura		Classe de agressividade ambiental (CA				
	Componente ou elemento	I	I II III I Cobrimento nominal (mm)	IV^2		
	elemento	Cobrimento nominal (mm)				
Concreto	Laje^1	20	25	35	45	
armado	Viga/Pilar	25	30	40	50	

 $^{^1}$ Para a face superior de laje e vigas que serão revestidas com argamassas de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, com pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros tantos, as exigências desta tabela podem ser substituídas pelas de 7.4.7.5 respeitando um cobrimento nominal ≥ 15 mm.

Figura 5.1 - Seções de concreto armado com a representação do cobrimento (c_{nom}) . (a) Viga ou pilar de seção retangular; e (b) Laje de concreto armado.

Medeiros et al. [6] afirma que em uma estrutura de concreto, seja ela armado ou protendido, o aço é a parte mais sensível a ataque do meio ambiente e por essa razão as armaduras devem ficar protegidas através de uma espessura de concreto de cobrimento.

Essa "pele" de pasta, argamassa e concreto sobre o aço também possui características variáveis ao longo do tempo. Logo após a compactação e durante o período de cura, ela é altamente alcalina com pH de aproximadamente 12,6. A partir da interrupção da cura, inicia-se o processo de envelhecimento que poderá culminar com a despassivação das armaduras [6].

Observa-se que o cobrimento das armaduras tem uma importância fundamental no que se refere à vida útil das estruturas, assim como os

² Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.

 $^{^3}$ Nos trechos dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

procedimentos executivos têm consequências preponderantes na qualidade desta camada. Sendo assim, é imperativo que o cobrimento seja projetado e executado adequadamente, a fim de garantir o desempenho projetado para a estrutura [6].

A equação (5.1) representa o cobrimento nominal e suas parcelas. Pode-se notar que o cobrimento nominal é dado por um cobrimento mínimo acrescido de uma variação Δc de cobrimento que para construção do Quadro 5.10 foi de 10 mm. A NBR 6118 [3] item 7.4.7.4 afirma que quando houver um controle adequado de qualidade e limites rígidos de tolerância da variabilidade das medidas durante a execução, pode ser adotado o valor $\Delta c = 5$ mm, mas a exigência de controle rigoroso deve ser explicitada nos desenhos de projeto. Portanto pode-se reduzir me 5 mm os valores do Quadro 5.10.

$$c_{nom} = c_{min} + \Delta c \tag{5.1}$$

A NBR 6118 [3] ainda delimita que em caso de adoção de um concreto com classe de resistência superior ao valor mínimo exigido os valores do Quadro 5.10 podem ser reduzidos em 5 mm também.

A Dimensão Máxima Característica do agregado graúdo (DMC) não poderá exceder o cobrimento nominal em 1,2 vezes (DMC \leq 1,20. c_{nom}) conforme item 7.4.7.6 da NBR 6118 [3].

A NBR 6118 [3] no item 7.4.7.5 ainda estabelece que os cobrimentos nominais e mínimos estão sempre referidos à superfície da armadura externa, em geral à face externa do estribo. O cobrimento nominal de uma determinada barra deve sempre ser:

$$c_{nom} \ge \emptyset_{barra} \tag{5.2}$$

 ϵ

$$c_{nom} \ge \emptyset_{feixe} = \emptyset_n = \emptyset. \sqrt{n}$$
 n representa o número de barras do feixe de armadura. (5.3)

5.2.1.2 Controles a nível de canteiro de obras

Além dos requisitos essenciais na elaboração de projetos estruturais é comum também alguns apontamentos construtivos que se pode fazer a nível de projeto evitando que a estrutura de concreto armado possa vir a "contrair patologias" por efeito de um processo construtivo inadequado. Para isso é essencial que tanto engenheiro de projeto e engenheiro supervisor da construção mantenham um diálogo constante.

A normativa que regulamenta o processo construtivo de uma estrutura de concreto é a ABNT NBR 14931 "Execução de estruturas de concreto – procedimento" [15]. Tal normativa regulamenta esse arcabouço de recomendações para o famoso critério de "boas práticas" da construção em concreto. Logo é muito comum que engenheiros projetistas deixem notas em seus projetos recomendam alguns dos pontos estabelecidos nessa normativa, como por exemplo:

- a) Cura de todos os elementos que os mesmos atinjam f_{ck} igual ou superior a 15 MPa;
- b) O padrão de retirada de formas e escoramentos das estruturas de concreto;
- c) Controle do concreto utilizado através dos planos de concretagem.

Na parte de controle do processo construtivo uns dos termos que mais poderá influenciar o projetista estrutural é a verificação do f_{ck} real do concreto aplicado, visto que esse nem sempre será o mesmo especificado em projeto. Isso deve ao fato da natureza de que a resistência mecânica do material possui uma variação intrínseca que mesmo com o melhor controle de qualidade no processo de dosagem não será eliminada. Portanto o engenheiro estrutural deve ficar atento ao controle realizado pelo supervisor do canteiro de forma que essa

testagem do concreto garantirá que o concreto aplicado será o mesmo do especificado em projeto.

A determinação do f_{ck} é realizada por amostragem conforme orientações da NBR 12655 [8] e das equações (5.4) a .(5.6). Nesse caso é apresentado o modelo para amostragem parcial que é o que ocorre no dia a dia de estruturas usuais em concreto armado.

a) Para n (número de amostras) $6 \le n \le 20$:

$$f_{ck,est} = 2 \cdot \frac{f_1 + f_2 + \dots f_{m-1}}{m-1} - f_m$$
 (5.4)

Onde $f_{ck,est}$ é a resistência à compressão na idade especificada; m é igual a n/2 e despreza-se o valor mais alto de n, se for ímpar; e $f_1, f_2, ..., f_m$ são os valores das resistências dos exemplares, em ordem crescente.

b) Para $n \ge 20$:

$$f_{ck,est} = f_{cm} - 1,65.Sd (5.5)$$

$$Sd = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (f_i - f_{cm})^2}$$
 (5.6)

Onde f_{cm} é a resistência média dos exemplares do lote, (expressa em MPa); e Sd é o desvio padrão dessa amostra de n exemplares, (expressa em MPa).

O valor 1,65 corresponde ao quantil de 5,00%, ou seja, apenas 5% dos corpos de-prova possuem $f_c < f_{ck}$, ou, ainda, 95,00% dos corpos-de-prova possuem $f_c \ge f_{ck}$. Já O desvio-padrão Sd corresponde à distância entre a abscissa de f_{cm} e a do ponto de inflexão da curva (ponto em que ela muda de concavidade) [16].

É válido ressaltar que a NBR 12655 [8] reforça que para um controle parcial, em que são retirados exemplares de betonadas distintas, as amostras devem ser de no mínimo seis exemplares para os concretos do grupo I (classes até C50, inclusive) e 12 exemplares para os concretos do grupo II (classes superiores a C50), conforme estabelece a NBR 8953 [10].

Portanto verificado o f_{ck} o projetista estrutural terá ciência se o concreto aplicado atende a resistência especificada em projeto e em casos que a resistência desejada é muito superior ao concreto aplicado é necessária a situação de reforço estrutural das peças de concreto.

5.3 Referências

- [1] Possan E, Demoliner CA. Desempenho, durabilidade e vida útil das edificações: Abordagem geral. Revista Técnico-Científica do CREA-PR n.d.:15.
- [2] Associação Brasileira de Normas Técnicas. ABNT NBR 15575: Edificações habitacionais desempenho. Rio de Janeiro (RJ): ABNT; 2013.
- [3] Associação Brasileira de Normas Técnicas. ABNT NBR 6118: Projeto de estruturas de concreto procedimento. Rio de Janeiro (RJ): ABNT; 2014.
- [4] Pinto AD de O. Estudo da durabilidade de materiais e sistemas construtivos. Mestrado em Engenharia Civil. Universidade do Porto, 2008.
- [5] Souza VCM de, Ripper T. Patologia, recuperação e reforço de estruturas de concreto. São Paulo (SP): PINI; 1998.
- [6] de Medeiros MHF, Andrade JJ de O, Helene P. Concreto: Ciência E Tecnologia. vol. 1. Ibracon Instituto Brasileiro do Concreto; 2011.
- [7] Reis LSN. Sobre a recuperação e reforço de estruturas de concreto armado. Mestrado em Engenharia de Estruturas. Universidade Federal de Minas Gerais (UFMG), 2001.
- [8] Associação Brasileira de Normas Técnicas. ABNT NBR 12655: Concreto de cimento Portland - Preparo, controle, recebimento e aceitação - procedimento. Rio de Janeiro (RJ): ABNT; 2015.
- [9] Helene PRL. Introdução da durabilidade no projeto das estruturas de concreto. Ambiente Construído 1997;1:45–57.

- [10] Associação Brasileira de Normas Técnicas. ABNT NBR 8953: Concreto para fins estruturais - Classificação pela massa específica, por grupos de resistência e consistência. Rio de Janeiro (RJ): ABNT; 2015.
- [11] Associação Brasileira de Normas Técnicas. ABNT NBR 7212: Execução de concreto dosado em central procedimento. Rio de Janeiro (RJ): ABNT; 2012.
- [12] Weidmann DF. Contribuição ao estudo da influência da forma e da composição granulométrica de agregados miúdos de britagem nas propriedades do concreto de cimento Portland. Mestre em Engenharia Civil. Universidade Federal de Santa Catarina (UFSC), 2008.
- [13] Ripper E. Manual prático de materiais de construção: recebimento, transporte interno, estocagem, manuseio e aplicacao. São Paulo: Pini; 1995.
- [14] Helene P, Terzian P. Manual de dosagem e controle do concreto. São Paulo: Pini; 1992.
- [15] Associação Brasileira de Normas Técnicas. ABNT NBR 14931: Execução de estruturas de concreto procedimento. Rio de Janeiro (RJ): ABNT; 2004.
- [16] Pinheiro LM, Muzardo CD, Santos SP. Fundamentos do concreto e projeto de edificios Capítulo 2. 2003.