Statistisk översiktskurs - Föreläsning 2

Anders Fredriksson

Statistiska Institutionen Stockholms Universitet

March 24, 2025

Föreläsning 2

- Variabeltyper och variabelegenskaper
- Deskriptiv statistik: Olika typer av tabeller, diagram och grafer
- Sammanfattande mått (lägesmått och spridningsmått)

Variabler

- En variabel är, som ordet antyder, något som kan variera
- En egenskap som kan variera mellan olika element i populationen
- Delas in i kategoriska variabler och numeriska variabler
- I ett välstrukturerat dataset representerar varje kolumn en variabel

Kategoriska variabler

Kategoriska variabler (alternativt: Kvalitativa, Icke-numeriska)

• Kan delas in i kategorier, grupper

Exempel

- kön
- civilstånd
- bilmärken
- studieprogram
- partitillhörighet

Numeriska variabler

Numeriska variabler (alternativt: Kvantitativa)

• Representerar mängder

Exempel

- antal bilar på en parkering
- mängd flingor i ett paket (i gram)
- en individs längd (i cm)
- andel som röstar på ett visst parti (i procent)

Numeriska variabler kan vidare delas in i

Diskreta numeriska variabler

- kan endast anta vissa värden (oftast 0, 1, 2, osv.)
- ex: antal paket flingor

Kontinuerliga numeriska variabler

- kan anta alla värden
- ex: mängd flingor i ett paket (i gram)

Exempel på variabler och variabeltyp

Färgpreferens

Kategorisk

• Antal hemmavarande barn

Kvantitativ och diskret

Tid att springa 100 meter
 Kvantitativ och kontinuerlig

- Attityd till återinförande av fastighetsskatt Kategorisk
- Poäng på tenta
 Kvantitativ och i praktiken diskret
- Partisympati
 Kategorisk
- Ålder
 Kvantitativ och om "antal fyllda år" diskret

Datanivåer / skalnivåer

Utöver indelningen i kategorisk/numerisk delar man också in variabler efter s.k. skalnivå (ungefärligen: informationsinnehåll)

- Nominalskala klassificerar men går inte att rangordna ex: färg - gul/grön/blå
- Ordinalskala går att rangordna
 ex: gillar du regeringen? lite/mellan/mycket
- Intervallskala samma avstånd på skalan ("skalsteg")
 ex: temperatur i Celsius
 (skillnaden mellan 3 och 2 Celsius är lika med
 skillnaden mellan 15 och 14 Celsius)
- Kvotskala absolut nollpunkt
 ex: temperatur i Kelvin, antal barn, avstånd till olika turistmål

Skalnivåer, tabell

	Rangordning	Lika skalsteg	Absolut 0-punkt
Nominal	Nej	Nej	Nej
Ordinal	Ja	Nej	Nej
Intervall	Ja	Ja	Nej
Kvot	Ja	Ja	Ja

Tre saker att hålla reda på

- En kategorisk variabel är antingen på nominal- eller ordinalskala
- Även om vi kodar en kategorisk variabel med siffror innebär det inte att vi får en numerisk variabel

Ex: civilstånd enligt 1=ogift, 2=gift, 3=..., osv. Siffrorna i sig har ingen kvantitativ innebörd

Ex: Gillar du regeringen? (1=lite, 2=mellan, 3=mycket) Skillnad mellan 2 & 1, och mellan 3 & 2, måste inte vara samma

En numerisk variabel kan göras om till en kategorisk variabel

Ex: dela in ålder i ålderskategorier, exv. 18-30, 31-40, osv. (vi får en kategorisk variabel på ordinalskala)

Deskription - Att sammanfatta, beskriva och redovisa data.

Vi börjar med: Kategoriska variabler - frekvenstabell

En kategorisk variabel

• Ex: Titanic, överlevande

• Ex: Titanic, klass

Status_överlevn	ad Antal_ind	ivider Andel_indi	vider Procentand	el_ind
Överlevde	712	0.322	32.2	
Överlevde inte	1496	0.678	67.8	
Totalt	2208	1.000	100.0	

Klass	Antal_ind	ivider Andel_indi	vider Procentan	del_ind
Första	324	0.147	14.7	
Andra	285	0.129	12.9	
Tredje	710	0.322	32.2	
Besättni	ng 889	0.403	40.3	
Totalt	2208	1.000	100.0	
				2

Kategoriska variabler - korstabell

Två kategoriska variabler

- Ex: Titanic, överlevande och klass
- Begreppen simultan fördelning och marginell fördelning (återkommer på datorlaboration 2)

Första	9.1	5.6	14.7
Andra	5.4	7.5	12.9
Tredje	8.2	24.0	32.2
Besättning	9.6	30.7	40.3
Totalt	32.2	67.8	100.0

Klass

Överlevde (%) Överlevde inte (%) Totalt (%)

Kategoriska variabler - korstabell med betingad fördelning

- Två kategoriska variabler
- Ex: Titanic, överlevande per klass ("betingat på klass")
- Begreppet **betingad fördelning** (återkommer på datorlaboration 2)

Status_överlevnad Första kl. Andra kl. Tredje kl. BesättningÖverlevde (%)6241.825.423.8

58.2

100.0

74.6

100.0

76.2

100.0

16 / 50

38

100

Overlevde (%) Överlevde inte (%)

Totalt (%)

Kategoriska data - stapeldiagram (bar chart)

En kategorisk variabel

• Ex: Titanic, överlevande

• Ex: Titanic, klass

Antal individer som överlevde/inte överlevde Titanic

Överlevnadsstatus

Antal individer i varje passagerarklass

Passagerarklass

Andel individer i varje passagerarklass

Passagerarklass

Kategoriska data - cirkeldiagram (pie chart)

En kategorisk variabel

• Ex: Titanic, klass

Andel individer i varje passagerarklass

22 / 50

Kategoriska data - grupperade och staplade stapeldiagram (grouped / stacked bar charts)

Två kategoriska variabler

• Ex: Titanic, överlevande per klass

Antal överlevande/icke överlevande i varje passagerarklass

Överlevnadsstatus

Andel överlevande/icke överlevande i varje passagerarklass

Numeriska data - histogram (histogram)

En numerisk variabel

- Ex: Titanic, biljettpris
- Skilj på histogram och stapeldiagram (som används för kategoriska variabler)
- I ett histogram kommer bredden på staplarna (hur många staplar vi har) spela roll för exakt vilken information vi får från figuren
- Mer om detta på datorövningarna

Fördelning av kostnaden för Titanicresan (för 1318 av 2208 passagerare)

Fördelning av kostnaden för Titanicresan per klass (för 1318 av 2208 passagerare)

Numeriska data - lådagram/låddiagram (boxplot)

En numerisk variabel

- Ex: Titanic, biljettpris
- Mer detaljer kommer på laboration 2

Fördelning av kostnaden för Titanicresan, i klass 1

Numeriska data - spridningsdiagram (scatter plot)

Två numeriska variabler

- Färg, storlek, etc., kan användas för att åskådliggöra ytterligare variabler (typiskt kategoriska)
- Exempel med påhittade data
- Exempel från The Economist
- Exempel från Gapminder (Hans Roslings presentationer)

Exempel på spridningsdiagram - påhittade data

y och x, där y är en linjär funktion av x, plus en växande slumpkomponent

BNP per capita och barnadödlighet (storlek på cirkel - (relativ) folkmängd)

Källa: Gapminder

Numeriska data - tidsseriediagram (time series diagram)

En eller flera variabler som har en tidsdimension

• Exempel från Riksbanken

Styrräntan

Diagrammet visar styrräntan 2018-2024

Källa Riksbanken.

När ni gör figurer

- I alla grafer ange vad som finns på axlarna, inklusive enhet
- Ha en informativ rubrik som kortfattat förklarar vad som visas
- Ha lämpliga intervall på axlarna, som inte vilseleder läsaren
- För akademiska artiklar ha tabellrubrik ovanför tabellen och figurrubrik under figuren. I materialet här har vi alla rubriker ovanför.

Lägesmått: Typvärde, median och medelvärde

- Antag att vi har data på antalet barn i 9 familjer
- Kalla variabeln "antal barn" för X (stora X)
- Kalla storleken på vårt dataset för n (9 i detta exempel)
- ullet Indexera varje observation (varje familj) med bokstaven i
- $x_1, x_2, \dots, x_i, \dots, x_n$ (lilla x) är värden på olika observationer av X, i vårt dataset, för i mellan 1 och n
- Exempeldata på antal barn i 9 familjer
- $x_1, \ldots, x_9 = \{0, 3, 1, 8, 1, 2, 2, 0, 1\}$

Typvärde, median och medelvärde

Data igen: $x_1, \ldots, x_9 = \{0, 3, 1, 8, 1, 2, 2, 0, 1\}$

- Typvärdet ("mode") är det vanligaste värdet Typvärde = 1
- Medianen ("median") rangordna värdena från minst till störst och ta fram det mittersta värdet

```
{0, 0, 1, 1, 1, 2, 2, 3, 8}
```

Median = 1

• Medelvärde ("mean") - summera alla värden och dividera med n

$$\frac{1}{9}\{0+3+1+8+1+2+2+0+1\}$$

$$\mathsf{Medel} = \tfrac{18}{9} = 2$$

Fördelningen av antal barn i nio familjer

Fördelningen av antal barn i nio familjer

Fördelning av kostnaden för Titanicresan (för 1318 av 2208 passagerare)

Fördelning av kostnaden för Titanicresan (för 1318 av 2208 passagerare)

Median och medelvärde - fortsättning

- Medianen mittersta värdet, efter att observationerna har sorterats
- Om vi har ett jämnt antal observationer, ta medelvärdet av de två värdena i mitten
- Ex: Antag att vi nu har data på n = 8 familjer
- Medianen av talen {0, 0, 1, **1**, **2**, 2, 3, 8} är 1.5
- **Medelvärdet** av *n* värden $x_1, x_2, ..., x_n$ skrivs som \bar{x} och ges av:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Vilket/vilka centralmått vi använder beror på syfte (labbuppgift)
- Om du vill repetera algebra, summasymbolen, typvärde / median medel, etc., se länk på kursens GitHub-sida

Variationsbredd och kvartiler

- Antal barn i åtta familjer: {0, 0, 1, 1, 2, 2, 3, 8}
- Variationsbredd ("Range") största minus minsta värde (= 8-0=8)
- Kvartiler ("Quartiles") dela upp data i fyra lika stora grupper
 - Kvartil 1 25% av värdena är mindre, 75% större (0.5)
 - Kvartil 2 50% av värdena är mindre, 50% större (1.5) (=median)
 - Kvartil 3 75% av värdena är mindre, 25% större (2.5)
- Interkvartilavstånd ("Interquartile range, IQR) Tredje minus första kvartilen (2.5-0.5=2)
- Lite olika regler kan användas för exakt hur kvartiler räknas ut
- Percentiler (fraktiler) finare uppdelning
- Lådagram (boxplot) återkommer i labb 2

Fördelning av kostnaden för Titanicresan, per klass

Varians och standardavvikelse

• Variansen av *n* värden x_1, x_2, \dots, x_n skrivs som s^2 och ges av:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

• **Standardavvikelsen**, kallad *s* (roten ur variansen), ges av:

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

• Standardavvikelsen är ett mått på hur spridda observationerna är i förhållande till medelvärdet \bar{x} .

Fördelning med (relativt) hög varians

Vidare i kursen

- Ovanstående figur visade två exempel på normalfördelningen
- Viktig fördelning som vi återkommer till i föreläsning 4
- Materialet från idag återkommer på datorövningarna 1 och 2
- Torsdag: Föreläsning 3 + Datorövning 1 (övningen obligatorisk)
- Till torsdag: Testa att installera R (se labb 1)

Denna version av dokumentet: 2025-03-24

Materialet i Statistisk översiktskurs har tagits fram av Ulf Högnäs och Anders Fredriksson, med inspiration och ibland direkt användande av material från andra kurser och personer, bland annat kurserna Statistik och dataanalys 1-3, med material av Michael Carlson, Ellinor Fackle Fornius, Jessica Franzén, Oskar Gustafsson, Oscar Oelrich, Mona Sfaxi, Karl Sigfrid, Mattias Villani, med flera.