La función exponencial $1 \ / \ 1$

La función exponencial

2015-02-09 9:00

Observemos que las funciones $u=e^x\cos y$ y $v=e^x\sin y$ satisfacen las ecuaciones de Cauchy-Riemann en el plano complejo $\mathbb C$.

Observemos que las funciones $u=e^x\cos y$ y $v=e^x\sin y$ satisfacen las ecuaciones de Cauchy-Riemann en el plano complejo $\mathbb C.$

Definición (: $B_definition$:)

La función de variable compleja

$$e^z = e^{x+iy} = e^x \cos y + ie^x \sin y$$

se llama función exponencial compleja.

•
$$(e^z)' = e^z$$
.

- $(e^z)' = e^z$.
- $e^{a+b} = e^a e^b$ para todos $a, b \in \mathbb{C}$.

- $(e^z)' = e^z$.
- $e^{a+b} = e^a e^b$ para todos $a, b \in \mathbb{C}$.
- $e^z \neq 0$ para todo $z \in \mathbb{C}$.

- $(e^z)' = e^z$.
- $e^{a+b} = e^a e^b$ para todos $a, b \in \mathbb{C}$.
- $e^z \neq 0$ para todo $z \in \mathbb{C}$.
- $f(z) = e^z$ es una función entera, es decir, es analítica en el plano complejo \mathbb{C} .

Las funciones trigonométricas de variable compleja se definen como:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

Las funciones trigonométricas de variable compleja se definen como:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

Las funciones trigonométricas de variable compleja se definen como:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

Propiedades

• $e^{iz} = \cos z + i \sin z$ (fórmula de Euler),

Las funciones trigonométricas de variable compleja se definen como:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

- $e^{iz} = \cos z + i \sin z$ (fórmula de Euler),
- $\bullet \cos^2 z + \sin^2 z = 1,$

Las funciones trigonométricas de variable compleja se definen como:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

- $e^{iz} = \cos z + i \sin z$ (fórmula de Euler),
- $\bullet \cos^2 z + \sin^2 z = 1,$
- $(\cos z)' = -\sin z$, $(\sin z)' = \cos z$,

Las funciones trigonométricas de variable compleja se definen como:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

- $e^{iz} = \cos z + i \sin z$ (fórmula de Euler),
- $\bullet \cos^2 z + \sin^2 z = 1,$
- $\bullet (\cos z)' = -\sin z, (\sin z)' = \cos z,$
- cos(a + b) = cos a cos b sin a sin b, sin(a + b) = cos a sin b + sin a cos b.

Definición

Definición (Logaritmo)

Dado $w \in \mathbb{C}$, se define $z = \log w$ como una solución de la ecuación $e^z = w$.

Observaciones		

• Como $e^z \neq 0$ para todo $z \in \mathbb{C}$, se obtiene que 0 no tiene logaritmo.

- Como $e^z \neq 0$ para todo $z \in \mathbb{C}$, se obtiene que 0 no tiene logaritmo.
- Sea $w \neq 0$. Entonces $e^{x+iy} = w$ es equivalente a:

$$e^x = |w|, \qquad e^{iy} = \frac{w}{|w|}.$$

- Como $e^z \neq 0$ para todo $z \in \mathbb{C}$, se obtiene que 0 no tiene logaritmo.
- Sea $w \neq 0$. Entonces $e^{x+iy} = w$ es equivalente a:

$$e^x = |w|, \qquad e^{iy} = \frac{w}{|w|}.$$

De lo anterior se obtiene:

$$\log w = \log |w| + i \arg w,$$

donde arg w representa el conjunto de argumentos de w. En particular, $\log w$ tiene una infinidad de valores, que difieren por un múltiplo de $2\pi i$.

- Como $e^z \neq 0$ para todo $z \in \mathbb{C}$, se obtiene que 0 no tiene logaritmo.
- Sea $w \neq 0$. Entonces $e^{x+iy} = w$ es equivalente a:

$$e^x = |w|, \qquad e^{iy} = \frac{w}{|w|}.$$

De lo anterior se obtiene:

$$\log w = \log |w| + i \arg w,$$

donde arg w representa el conjunto de argumentos de w. En particular, $\log w$ tiene una infinidad de valores, que difieren por un múltiplo de $2\pi i$.

• Sin embargo, si $a \in \mathbb{R}$, a > 0, consideraremos el valor usual (real) de $\log a$.

Ramas

Definición (: $B_definition$:)

Si $f: U \to \mathbb{C}$ es analítica y $D \subseteq f(U)$ es un dominio, una rama de f^{-1} en D es una función continua $g: D \to U$ tal que f(g(z)) = z para todo $z \in D$.

Ramas

Definición (: $B_definition$:)

Si $f: U \to \mathbb{C}$ es analítica y $D \subseteq f(U)$ es un dominio, una rama de f^{-1} en D es una función continua $g: D \to U$ tal que f(g(z)) = z para todo $z \in D$.

Definición (Argumento principal)

Dado $z \in \mathbb{C} - \{0\}$, definimos $\operatorname{Arg}(z)$ como el argumento de z que está en el intervalo $(-\pi, \pi]$.

Ramas

Definición (: $B_definition$:)

Si $f: U \to \mathbb{C}$ es analítica y $D \subseteq f(U)$ es un dominio, una rama de f^{-1} en D es una función continua $g: D \to U$ tal que f(g(z)) = z para todo $z \in D$.

Definición (Argumento principal)

Dado $z \in \mathbb{C} - \{0\}$, definimos $\operatorname{Arg}(z)$ como el argumento de z que está en el intervalo $(-\pi, \pi]$.

Observación

La función Arg: $\mathbb{C} - \{z \in \mathbb{C} \mid z \leq 0\} \to \mathbb{R}$ es continua.

Raíz cuadrada

Ejemplo (:
$$B_example$$
:)

La función

$$z \mapsto \sqrt{|z|}(\cos \frac{\operatorname{Arg}(z)}{2} + i \sin \frac{\operatorname{Arg}(z)}{2}),$$

es una rama de la inversa de $f(z)=z^2$, definida en $D=\mathbb{C}-\{z\in\mathbb{C}\mid z\leq 0\}.$

Raíz cuadrada

Ejemplo (: $B_example$:)

La función

$$z \mapsto \sqrt{|z|}(\cos \frac{\operatorname{Arg}(z)}{2} + i \sin \frac{\operatorname{Arg}(z)}{2}),$$

es una rama de la inversa de $f(z)=z^2$, definida en $D=\mathbb{C}-\{z\in\mathbb{C}\mid z\leq 0\}.$

Ejemplo (:
$$B_example$$
:)

La función

$$z\mapsto \log|z|+i{\rm Arg}(z)$$

es una rama de la inversa de $f(z) = e^z$, definida en $D = \mathbb{C} - \{z \in \mathbb{C} \mid z < 0\}.$

Derivabilidad de ramas

Teorema (: $B_theorem$:)

Sea $f: U \to \mathbb{C}$ analítica, y sea $g: D \to U$ una rama de f^{-1} . Sean $z_0 \in D$ y $w_0 = g(z_0) \in U$. Si $f'(w_0) \neq 0$, entonces g es derivable en z_0 y $g'(z_0) = \frac{1}{f'(w_0)}$.

Por lo tanto, si f' no tiene ceros en g(D), entonces g es analítica en D, y $g'(z) = \frac{1}{f'(g(z))}$.