

바디 + 다리 서보모터

바디(몸통)에 서보모터 2개를 장착합니다. 바디에 난 구멍 모양에 맞추어 서보모터를 끼워넣고 서보모터에 동봉된 긴나사 2개로 각각 고정합니다.

바디 + 아두이노 보드

- 1) 아두이노 보드와 확장 보드를 서로 연결합니다. (아두이노 USB포트와 확장 보드 전원포트 방향이 일치하도록 결합니다.)
- 2) 보드를 바디 모양에 맞추어 그림 처럼 장착합니다. (초음파 센서(눈)도 보드 조립 전에 미리 장착합니다.) (이후 핀 연결을 쉽도록 서보모터의 선을 보드 위로 나오도록 조립합니다.)
- 3) 보드와 바디를 나사로 고정합니다.

배터리 전원 연결

1) 배터리 선 연결

2) 배터리 잭 연결

- 1) 배터리 선을 스위치에 연결합니다. (2개의 선을 순서에 상관없이 스위칭 연결)
- 2) 배터리 전원 잭을 보드의 전원 핀에 연결합니다.

서보모터 보드연결

아두이노 또는 엠블럭(mblock)으로 서보 모터 각도를 90도로 맞추고 조립합니다. (엠블럭 장치 라플봇 선택)

3Page 부품별 핀연결 참조 4Page 앰블록 코딩 참조

왼쪽다리는 디지털핀 2번, 오른쪽다리는 디지털핀 3번 에 각각 연결합니다.

다리 조립

1) 프로펠러 장착

2) 다리 장착

1) 동봉된 1자 모양 프로펠러를 그림과 같이 다리에 장착합니다. (이 과정을 건너뛰고 2)번 과정 만 해도 됨) 2) 앞, 뒤 방향을 주의해서 다리를 바디 에 결합하고 나사로 고정합니다.

다리 구조물이 올바른 방향으로 장착되었는지 앰블록으로 서보모터를 모두 90도로 맞춘 후 테스트 해 봅니다.

참고) 왼쪽, 오른쪽 방향

발 서보모터 장착

서보모터를 다리에 장착합니다. 서보모터의 선 부분이 다리 아래쪽으로 오게 하고 서보모터에 동봉된 긴나사 2개로 각각 고정합니다.

발 서보모터 구성하기

- 1) 서보모터 선을 보드에 연결합니다. 왼쪽 발은 디지털핀 4번, 오른쪽 발은 디지털핀 5번 에 각각 연결합니다.
- 2) 서보모터에 동봉된 1자 모양 프로펠러를 위 그림과 같이 수평으로 장착합니다.

발 결합

발 끝이 양쪽을 향하도록 조립 후 1자형 프로펠러 와 다리를 나사로 고정합니다.

머리 결합

머리를 바디에 장착합니다.

부품 별 핀 연결

부품종류	핀번호
서보모터 왼쪽 다리	Digital 2
서보모터 오른쪽 다리	Digital 3
서보모터 왼쪽 발	Digital 4
서보모터 오른쪽 발	Digital 5
초음파센서 Triger	Digital 8
초음파센서 Echo	Digital 9
블루투스 RX	Digital 10
블루투스 TX	Digital 11
부저 +	Digital 13
적외선센서	Analog 5

앰블럭(mblock) 코딩

앰블록 검색 또는 www.mblock.cc 에서 다운로드 설치

mblock 에디터에서 장치 추가를 선택합니다.

라플봇을 선택한 후 코딩을 시작합니다.

다리와 발 서보모터 90도 만들기 코드

장치 연결 후 업로딩합니다.

파워온 소리내기

- 1) 이벤트->라플봇 시작했을 때
- 2) 부가기능->파워온 1템포로 소리내기

정지동작 발끝서기

- 1) 이벤트->라플봇 시작했을 때
- 2) 동작->정지자세

```
라플봇 시작했을 때

    정지자세 차렛 ▼ 지연시간 ②
    ② 초기다리기

    정지자세 발교서기 ▼ 지연시간 ②
    ② 초기다리기

    정지자세 차렛 ▼ 지연시간 ②
```

정지동작 한발서기

- 1) 이벤트->라플봇 시작했을 때
- 2) 동작->정지자세

서보모터 각도 보정하기 (선택 사항)

1) 각각의 서보모터 보정값을 저장합니다.

2) 보정값 적용하기 블록을 사용하면 저장된 보정값이 적용됩니다.

앞으로 가기, 뒤로 가기

- 1) 이벤트->라플봇 시작했을 때
- 2) 제어, 동작 블록으로 코딩
- 3) 서보모터 보정값 적용하기는 필요한 경우만 사용

점점 크게 걷기(변수 활용)

1) 변수->변수 만들기-> 새 변수이름 -> 보폭

```
라플봇 시작했을 때

보폭 ▼ 을(플) 10 로(으로) 설정하기

20 번 반복하기

→ 한걸음 왼쪽보폭각도 보폭 으른쪽보폭각도 보폭 지연시간 2

만약 보폭 < 40 이(가) 참이면

보폭 ▼ 을(플) 1 만큼 변경하기
```

장애물 감지하기(초음파 센서 활용)

- 1) 타이머 이벤트 블록을 사용하여 일정한 시간 간격으로 물체와의 거리를 측정할 수 있습니다.
- 2) 변수를 만들어서 사용하세요.

```
타이미 1000 밀리초 이벤트

변수1 ▼ 을(돌) 및 물체와의 거리(cmd) 로(으로) 설정하기

만약 (변수1 > 2 그리고 (변수1 < 10) 이(가) 참이면

사이렌 ▼ 용 1 명포로 소리내기
```


라플봇

시리얼(블루투스) 커맨드 추가하기

- 1) 시작했을 때 통신 속도를 지정합니다.
- 2) 블루투스 2.0, 4.0 모두 사용 가능 (단 통신속도(보레이트) 확인 후 설정, 9600 또는 38400)

라플봇 시작했을 때 🥵 시리얼통신을 9600 ▼ 보레이트로 시작하기 🥵 블루투스를 38400 ▼ 보레이트로 시작하기

3) 이벤트 커맨드 블럭을 가져와서 명령어를 추가합니다.

4) 커맨드에 정수형의 인수값을 사용할 수 있습니다.

블루투스 어플 사용 방법

- 1) 블루투스 시리얼 통신이 가능한 앱을 다운 받습니다.
- 2) BLE를 사용한다면 BLE가 가능한 블루투스 시리얼 통신 앱을 다운 받습니다.

IO Arduino Bluetooth Serial Bluetooth Terminal

BLE 시리얼 통신이 가능한 앱을 다운 받습니다.

- 1) 장치를 검색후 선택하여 연결합니다.
- 2) 커맨드를 입력후 라플봇으로 명령을 보냅니다.

적외선 리모컨 코드 추가하기

1) 시리얼 통신에 연결합니다. (USB 또는 블루투 스) 2) 블루투스 시리얼 터미널로 모니터링한 경우

적외선통신 387775040 코드를 받았을 때

한걸음 앞으로 ▼ 보폭각도 20 지연시간 2

적외선통신 2907897600 코드를 받았을 때 뒤로 ▼ 보폭각도 20 지연시간 2

보랜파이 (주)브랜파이 전화번호: 031-399-4919, www.branpie.com 경기도 안양시 동안구 평촌대로 139, 3중(호계동)