Algebra 2 Assessment Review: Exponentials & Logarithms

This document provides revised scaffolded questions to help students prepare for questions 7, 16, 24, 30, 31, and the exponential part of 33 (Exponentials & Logarithms group) of the enVision Algebra 2 Progress Monitoring Assessment Form C. Each question includes scaffolded steps to build understanding from basic concepts to the level required by the assessment, with clear guidance for concept-naive students. This is followed by the original assessment questions.

Scaffolded Review Questions

Scaffolded Question for Assessment Item 7: Exponential Equations with Natural Logarithms

The original question asks to solve $5e^{\frac{x}{2}} = 10$. The following questions build understanding of solving exponential equations.

7.1	Logarithm Properties : Since $\ln(e^y) = y$ (because \ln is the inverse of e^y), simplify:
	a) $\ln(e^3) = $
	b) $e^{\ln(4)} = $
	c) Why does $\ln(e^y) = y$?

7.2 Simple Exponential Equations: Solve:

7.3 Coefficients in Exponents: Solve $3e^x = 15$:

a) Isolate:
$$e^x = \frac{15}{3} =$$

b) Take ln: $\ln(e^x) = \ln($ ____)
c) Solve: $x =$ _____

7.4 Applying to the Original Problem: Solve $5e^{\frac{x}{2}} = 10$:

a) Isolate:
$$e^{\frac{x}{2}} = \frac{10}{5} =$$

b) Take ln: $\ln \left(e^{\frac{x}{2}} \right) = \ln($ ______)
c) Simplify: $\frac{x}{2} = \ln($ ______)

d) Solve: $x = \underline{\hspace{1cm}}$. Write as $x = \ln(\underline{\hspace{1cm}})$ to match the original format if needed (or $x = 2\ln(\text{value})$ then $x = \ln(\text{value}^2)$).

Scaffolded Question for Assessment Item 16: Solving Logarithmic Equations

The original question asks to solve $-2\ln(3x) = 5$. The following questions build skills in solving equations involving natural logarithms.

- 16.1 Understanding Logarithms: If $\ln(y) = 2$, find y. Use the fact that $\ln(y) = c$ means $y = e^c$. $y = \underline{\hspace{1cm}}$
- 16.2 Solving a Simple Log Equation: Solve the equation ln(x) = 3. Write the equation in exponential form and compute x. x =_____
- 16.3 **Handling Coefficients**: Solve the equation $2\ln(x) = 4$. First, isolate the logarithm by dividing both sides, then convert to exponential form to find x. $\ln(x) = \underline{\hspace{1cm}}$, so $x = \underline{\hspace{1cm}}$
- 16.4 Applying to the Original Equation: Solve $-2 \ln(3x) = 5$.
 - a) Divide both sides to isolate the logarithm: ln(3x) =
 - b) Convert to exponential form: 3x = e
 - c) Solve for x: $x = \frac{e}{3} \approx$ _____. Compare to the choices.

Scaffolded Question for Assessment Item 24: Properties of Logarithms

The original question asks to explain steps to solve $\log x + \log x^4 = 10$ using logarithm properties. The following questions build understanding of logarithm properties.

- 24.1 Logarithm Properties: Use properties to rewrite:
 - a) $\log(3 \cdot 4) = \log 3 + \log 4$ (Product Property)
 - b) $\log(x^2) = \underline{\hspace{1cm}}$ (Power Property)
 - c) $\log \left(\frac{x}{y}\right) =$ ______ (Quotient Property)
 - d) Why do these properties work? _____ (Hint: Relate to exponent rules)
- 24.2 Combining Logarithms: Combine using properties:
 - a) $\log 2 + \log 5 = \log(2 \cdot 5) = \log 10$
 - b) $\log x + \log x^2 = \log(x \cdot x^2) = \log x^3$
 - c) Practice: $\log 3 + \log x^3 =$ _____.
- 24.3 Solving Logarithmic Equations: Solve:
 - a) $\log x + \log x^3 = 8$: Combine: $\log(x \cdot x^3) = \log x^4 = 8$.

Power (alternative after combining): If $\log M = N$, then $M = 10^N$. So $x^4 = 10^8$. Solve for x: $x = (10^8)^{1/4} = 10^2 = 100$.

Or using power property first: $4 \log x = 8$, so $\log x = 2$. $x = 10^2 = 100$.

- b) Practice: $\log x + \log x^2 = 6$: $x = ____.$
- 24.4 Applying to the Original Problem: Solve $\log x + \log x^4 = 10$:
 - a) Combine: $\log(x \cdot x^4) = \log x^5 = 10$ (Property used: _____).
 - b) Simplify: $5 \log x = 10$ (Property used: _____).
 - c) Solve: $\log x = 2$, $x = 10^2 = 100$.
 - d) Verify: $\log 100 + \log 100^4 = \log 100 + \log(10^2)^4 = \log 10^2 + \log 10^8 = 2 + 8 = 10$.

Scaffolded Question for Assessment Item 30: Exponential Functions and Growth Factors (Hypothetical based on graph)

The assumed question asks to compare the growth factor of f (points (0,4), (1,12), $(-1,\frac{4}{3})$) to other functions. The following questions build understanding of growth factors.

- 30.1 **Growth Factors**: For $f(x) = ab^x$, b is the growth factor:
 - a) $f(x) = 2 \cdot 4^x$: b = 4
 - b) $f(x) = 5 \cdot (0.8)^x$: $b = _____$
 - c) Why does b > 1 mean growth?
- 30.2 Finding Growth Factors: For points (0,3), (1,9):
 - a) $f(0) = a \cdot b^0 = a = 3$
 - b) $f(1) = ab^1 = 3b = 9, b = 3$
 - c) Verify: If another point is (2,27), check: $f(2) = 3 \cdot 3^2 = 3 \cdot 9 = 27$. (Matches? ___)
- 30.3 Comparing Growth Factors: Compare:
 - a) $f(x) = 2 \cdot 5^x$, $g(x) = 3 \cdot 2^x$: 5 $\not\in$ 2, so f(x) grows faster.
 - b) $f(x) = 4^x$, $g(x) = 1.5^x$: _____ grows faster.
- 30.4 Applying to the Original Problem: Points (0,4), (1,12):
 - a) a = 4 (from f(0) = 4), ab = 4b = 12, b = 3. So $f(x) = 4 \cdot 3^x$.
 - b) Verify: $(-1, \frac{4}{3})$: $f(-1) = 4 \cdot 3^{-1} = 4 \cdot \frac{1}{3} = \frac{4}{3}$. (Matches? ____)
 - c) Compare its growth factor b=3 to other functions' growth factors: For A: $a(x)=3\cdot 4^x \implies b=4$. Greater than 3? ___ For B: $b(x)=1.25^x \implies b=1.25$. Greater than 3? ___ For C: $c(x)=\left(\frac{1}{12}\right)\cdot 12^x \implies b=12$. Greater than 3?

__ For D: $d(x) = 12 \cdot (\frac{4}{3})^x \implies b = \frac{4}{3} \approx 1.33$. Greater than 3? __ For E: $e(x) = (\frac{9}{16})^x \implies b = \frac{9}{16} \approx 0.56$. Greater than 3? __

d) Select functions with growth factor greater than 3: ______.

Scaffolded Question for Assessment Item 31: Fractional Exponents and Radicals

The original question asks to complete a statement about $81^{\frac{1}{3}}$. The following questions build understanding of fractional exponents.

31.1 Fractional Exponents: $a^{\frac{1}{n}} = \sqrt[n]{a}$:

a)
$$16^{\frac{1}{2}} = \sqrt{16} = 4$$

b)
$$64^{\frac{1}{3}} = \sqrt[3]{64} = \underline{}$$

c) Why does
$$a^{\frac{1}{3}} = \sqrt[3]{a}$$
? ______ (Hint: $(a^{1/3})^3 = a^1$)

31.2 Exploring Bases: For 64:

a)
$$64 = 4^3$$
, so $64^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4^{(3 \cdot \frac{1}{3})} = 4^1 = 4$

b)
$$64^{\frac{1}{2}} = \sqrt{64} =$$

31.3 Verifying Exponents: Verify $64^{\frac{1}{3}} = 4$:

a)
$$(64^{\frac{1}{3}})^3 = 64$$
, so $4^3 = 64$. (Is this true? ___)

b) Practice: Verify
$$16^{\frac{1}{2}} = 4$$
: $(16^{1/2})^2 = 16$, so $()^2 = 16$. (Is this true?)

31.4 Applying to the Original Problem: For $81^{\frac{1}{3}}$:

a)
$$81 = 3^4$$
, so $81^{\frac{1}{3}} = \sqrt[3]{81} = \sqrt[3]{3^3 \cdot 3} = 3\sqrt[3]{3}$.

b) The question asks what $81^{1/3}$ is equivalent to, and what is the reason. Equivalent to (from choices): ______ Because (from choices): _____

Scaffolded Question for Assessment Item 33: Exponential Growth Models

The original question involves modeling Lucia's linear (12 residents/day) and Caleb's exponential (4 people, each contacting 4 more daily) growth. This focuses on the exponential part for Caleb.

33-Exp.1 **Exponential Models**: Exponential functions $f(x) = ab^x$ model multiplicative growth:

- a) Triples daily, starts at 5: $f(x) = 5 \cdot 3^x$
- b) Starts at 2, each contacts 3 more daily (meaning total becomes 4 times previous original 1+3 more): Day 0: 2 (initial) Day 1: $2 \cdot 4 = 8$ Day 2: $8 \cdot 4 = 32$ This means the base b=4. So $f(x)=2 \cdot 4^x$. The question states "Caleb contacts 4"

people on the first day. Those people will then contact 4 people the next day." This phrasing is a bit ambiguous. Interpretation 1: Caleb contacts 4 unique people on day 1. On day 2, THOSE 4 people each contact 4 MORE people (16 new people). Day 1 (x=1): 4 people contacted by Caleb. Total contacted = 4. Day 2 (x=2): The 4 from Day 1 each contact 4 more. $4 \times 4 = 16$ new people. Total contacted = 4 + 16 = 20. (This is not simple ab^x).

Interpretation 2 (More standard for these problems): Caleb's initial group is 4. Each person in the group then contacts 4 *new* people each day, and those new people become part of the group for the next day's contacting. Let g(x) be the number of people contacted on day x. Day 1 (x = 1): Caleb contacts 4 people. Day 2 (x = 2): Those 4 people each contact 4 people. So $4 \times 4 = 16$ people are contacted on day 2. Day 3 (x = 3): Those 16 people each contact 4 people. So $16 \times 4 = 64$ people are contacted on day 3. This means $g(x) = 4^x$ is the number of people contacted *on day x^* . The total number of people contacted *by* day x would be a geometric sum $4 + 16 + 64 + ... = \sum_{i=1}^{x} 4^i$. However, the problem says "Write a function that models the number of people contacted by both Lucia and Caleb after x days." This usually implies the *cumulative* number of people in Caleb's network (or people he has *caused* to be contacted).

Let's re-read "Caleb uses a different strategy. He contacts 4 people on the first day. Those people will then contact 4 people the next day. This pattern continues each day." If g(x) is the *total number of people in Caleb's network* who have been contacted: End of Day 1 (x = 1): Caleb contacts 4. g(1) = 4. End of Day 2 (x = 2): The 4 from Day 1 each contact 4 people. $4 \times 4 = 16$ new. Total in network = 4(from day 1) + 16(new on day 2) = 20. This is not 4^x .

Let's consider the wording "a function that models the number of people contacted by ... Caleb after x days." If Caleb himself contacts 4 people (on day 1), and those 4 people contact 4 people (on day 2), etc., the number of *new* people contacted on day x is 4^x . The problem asks for g(x) in g(x) = Lucia(x) + Caleb(x) for "number of residents she/he contacts after x days". This seems to imply for Caleb C(x) should be the total number of people reached by his method. If it means the number of *newly* contacted people on day x by Caleb's method, it's 4^x . If g(x) in the question means f(x) = Lucia's contribution + Caleb's contribution, and Caleb's contribution is the *number of people reached by his method by day x^* , this is complicated. The fill-in-the-blank for g(x) looks like

Original Assessment Questions

Question 7

Find the exact solution to $5e^{\frac{x}{2}} = 10$.

$$x = \ln(\boxed{})$$

Question 16

Solve the equation $-2\ln(3x) = 5$.

- A, 0.082
- B. 0.027
- C. 4.061
- D. 36.547

Question 24

Explain each step used to solve the equation using the properties of logarithms.

$$\log x + \log x^4 = 10$$
 (Property)
$$\log x^5 = 10$$
 (Property, or definition of log if $x^5 = 10^{10}$)
$$5 \log x = 10$$
 (Property)
$$\log x = 2$$

$$x = 100$$

(Students would typically drag/drop "Product", "Quotient", "Power" into the boxes. For the step $\log x^5 = 10 \to 5 \log x = 10$, the property is Power. For $\log x + \log x^4 = 10 \to \log x^5 = 10$, the property is Product.)

Question 30

Function f is graphed below.

Select all the functions with a greater growth factor than f.

$$\boxtimes \ a(x) = 3 \cdot 4^x$$

$$\boxtimes \ b(x) = 1.25^x$$

$$\boxtimes c(x) = \left(\frac{1}{12}\right) \cdot 12^x$$

$$\boxtimes d(x) = 12 \cdot \left(\frac{4}{3}\right)^x$$

$$\boxtimes e(x) = \left(\frac{9}{16}\right)^x$$

(Note: Replace ⊠with □if you want empty boxes for students to fill)

Question 31

 $q(x) = 12x + 4^x$.)

Complete the following sentence to make a true statement about the expression $81^{\frac{1}{3}}$.

- $81^{\frac{1}{3}}$ is equivalent to $[\boxtimes]$ $\sqrt[3]{81}$ $[\boxtimes]$ 3 $[\boxtimes]$ $\sqrt{81^3}$ $[\boxtimes]$ 2
- because $[\boxtimes]$ $9 = \sqrt{81}$ $[\boxtimes]$ $(\sqrt[3]{81})^3 = 81$ $[\boxtimes]$ $9^2 = 81$ $[\boxtimes]$ $\sqrt{81^3} = 1$

(Note: Replace \boxtimes with \square if you want empty boxes for students to fill. The options here are presented as selectable items from the test image.)

Question 33 (Relevant Parts A and B)

Two community activists plan to contact local residents to urge them to vote for their preferred candidate for county sheriff.

Part A Lucía plans to contact 12 residents per day. Write a function that models the number of residents she contacts after x days. $f(x) = \boxed{} x$

If Lucía and Caleb start contacting people 7 days before the election, how many additional votes does the model predict they will gain for their candidate? Round to the nearest whole number.