Cálculo 1

Aplicações do TVM

(solução da tarefa)

Como $f(x) = e^x - x$, temos que

$$f'(x) = e^x - 1 > 0, \qquad \forall x > 0.$$

Concluímos então que a função f é crescente em $(0, +\infty)$. Uma vez que que $f(0) = e^0 - 1 > 0$, a função f é sempre positiva em $[0, +\infty)$. Isto implica que $e^x > x$ em $[0, +\infty)$.

Tomando agora $g(x) = e^x - \frac{x^2}{2}$ e usando a desigualdade acima, obtemos

$$g'(x) = e^x - x > 0, \qquad \forall x > 0.$$

Assim, g é crescente. Como g(0) = 1 > 0, a função é sempre positiva, isto é

$$e^x > \frac{x^2}{2}, \qquad \forall x \ge 0.$$

Dividindo a última desigualdade por x>0 e tomando o limite, obtemos

$$\lim_{x \to +\infty} \frac{e^x}{x} \ge \lim_{x \to +\infty} \frac{x}{2} = +\infty.$$