출실험 결과 보고서 그

5-2 광진효과에 의한 플랑크상수 측정

वाम अध्यास्त्रास्त्र	학년/_	학번 <u>120018 56</u>	이름 건강	된 실험조 <u>C</u>
제출일 20.12.10	담당교수	70150	담당조교	by to

1. 측정치 및 계산

$_{1)}$ 저지전압-광전류 측정 $[\nu]$: LED의 진동수]

적색 LED ν =		황색 LED ν =		녹색 LED $\nu=$		청록색 LED ν =		청산	청색 LED ν =		
전압(V)	전류(μA)	전압(V)	전류(μA)	전압(V)	전류(μA)	전압(V)	전류(µ.	A) 전압(V	y) 전류(μA)	•	
0.005	15	0,005	1512	0.005	1513	0.004	15:1	0.004	15:1	•	
0.100	8.17	0.100	10.2	0.100	1113	0.100	11.9	0.100	1216	•	
0.200	3.2	0.200	5.5	0.200	7.1	0.200	8.4	0,200	918		
0.300	0.3	0 .300	213	0,300	3.8	01300	5.7	0.300	7.4		
0.1100	-0.06	0,400	0.6	0,1700	1,7	0.400	3.5	0,40	5,2	•	
		0.500	0.1	0.500	0.6	0,500	2.0	0.500	3.7		
		0.600	0	0.600	0 1	0.600	112	0.60	215		
				0.700	0	0.400	0.5	0.70	1.8	沊	独
					0.800	012	0.30		1,100	012	
2) 멈춤 전압 측정					0,900	0.1	1,000		1,200	01	
 진동수	진동수 멈춤전압(V_s)								1,400	0	
$\times 10^{14}$ [H	[z] [ž	}	2차	3차	4차	5ネ	+	평균	K_{max} [J]		
4,84	0133	22 0	323	0.321	01321	0.3	23	6,322	0.5152×10	19	
5,08	0.6	21 0	1519	0:518	0.519	015	20 0.5194		0.83104 X 10-19		
5,11	0.68	0 0	.681	0.680	0.691	0-6	30 0.6824		1.09184 X10-19		
6132	0.91	19 (7.911	0.913	0.977	0.91	76 0.9768 1.56288 XIC)-19		
6.45	1.37	71 /	311	1.359	1,363	1.36	1	1.365	2184 X 10	19	

kmax = eVs e=1.6 ×10⁻¹⁹ C

(1) 위 그래프에서직선의기울기(h)와 임계진동수 (ν_0) 불구하라.

$$h_{\frac{4}{3}\frac{3}{3}} = \frac{8.507 \times 10^{-34}}{9.507 \times 10^{14}} \text{ J·s.} \qquad 9.31 = (h_{\frac{4}{3}\frac{3}{3}} - h)/h = 0.283$$

$$\nu_0 = \frac{4.23 \times 10^{14}}{9.507 \times 10^{14}} \text{ Hz} \qquad \phi = h\nu_0 = \frac{2.61 \times 10^{-14}}{9.507 \times 10^{14}}$$

* 일함수를 구할 때는 $h = 6.63 \times 10^{-34} \, \text{J} \cdot \text{s}$ 값을 이용하라.

(2) 위에서 측정된 플랑크상수의 측정오차 범위에 대해 논의해 보라. 활을 통해 확된 왕당 상는 8.619×10⁻³⁴J·s 였다. 상제 환경 상는 6.63×10⁻³⁴J·s 이고 두 값의 또는 건너면 0.3이이 나면 겨울 안수있다. 오치가 반생한 원인에 대해서는 살하게 지체 내목처리의 영향을 받아 즉정전임 값이 달라진것, 만큼 전임을 취할 때

翻回 账 脚 雅 黎州 野田 鸵 女 舒 美红

2. 결과 및 논의

이번 실원은 당한대로 현실하고 학생을 통해 필입상을 계산하여 그에 따른 일반을 구해보는 설탕이었다. 자자연을 확하는 설탕에는 5개지 색기 보다 기 보다는 경하다 전환하고 작용이 다른 전화가 아이나 음과 될때의 전화에 점점 다 커지는 계속 일수있었다. LED의 전화가 최점에 따라 역한을 높게 환하는 전환이 많이 가게 되다는 것이다. 보수 있다나 또 변경원을 찾하는 실험에서는 전화가 점심이 따라 여름없는 것이 가게 되다 그 보다는 이에 따라 (May) 본이로 참대 전에 따라 무료했는 화하는 실험에서는 전화가 점심이 따라 여름없는 것이 가지게 되다 그 전화가 정한적 망시가 더 근 운동에너지를 가게되어 난다면 관계 오건한 확인 최저게 되는 것이다. 건물라는 참대문회에서는 이렇라 그래를 그리면 가입기, 즉 시하하다 작업이 가입기 가를 있다. (변화) 기원 등 장상하고 있다는 생물이 되었다면 함께 기원 등 것이다. 건물라는 참대문회에서는 이렇라 그래를 그리면 가입기, 즉 시하하다 작업이 가입기 가를 했다. 생물이 되었다면 함께 기원이 바라 기원을 함께 보는 (10년) 이렇게 기원 등 있다. 얼굴이에서 기원이 나라 기원이 다리 전환가 관을 모음 하는 기원이 다리 전환하고 있다면 이렇게 기원이 되었다면 있다면 기원이 되었다면 되었다면 기원이 되었다면 기원 기원 기원이 기원 수입되었다.

3. 질 문

(1) 이 실험에서 측정된 플랑크상수 값이 원래 알려진 값과 잘 맞지 않는다. 그 이유는 무엇이라고 생각하는 는가?

(2) 이 실험에서 사용된 광 필터의 선폭을 더 좁은 것으로 사용하면 실험 결과가 어떻게 나올까? 팔리 선택이 중하게 되면 전에 중하게 된 것이다. 전쪽이 중하지에 되면 작가 강하게 된것이다. 장하게 된것이다. 하하게 된것이다. 전원이라고 전원하고 전원이라는 경험하고 전원이라는 경험 결과가 어떻게 나올까?