FL Association of Environmental Professionals' Annual Meeting September 24, 2015

Successes and Challenges in Operating the Everglades
Stormwater Treatment Areas

Delia Ivanoff & Kathy Pietro
Applied Sciences Bureau, SFWMD
divanoff@sfwmd.gov

Location of the Five STAs

STA	Treatment Area, acres
1E	4,994
1W	6,544
2	15,495
3/4	16,327
5/6	13,685
Total	57,045

Purpose and Mandates

- Reduce phosphorus in runoff water prior to discharging to the Everglades Protection Area.
- Mandates:
 - Everglades Forever Act
 - NPDES and EFA permits
 - Consent orders
- Current Water-quality based effluent limit (WQBEL) for TP
 - Maximum of 19 ppb Annual Flow-weighted Mean
 - Not to exceed 13 ppb long-term flow-weighted mean in more than three (3) out of five (5) years.

STA Design

- Shallow constructed wetlands
 - ~ 40 cm water depth target
- Water delivery through gravity and pump flow structures
- Vegetation types
 - Emergent Aquatic Vegetation (EAV)
 - Submerged Aquatic Vegetation (SAV)
- Target Hydraulic Retention Time:
 - 10–20 days
- Target P loading rate: <1 g/m²/yr</p>
- Original expected P load removal: >74%

Phosphorus Removal Process

- Particulate settling
- Plant uptake
- Microbial uptake
- Binding with cations, e.g. Ca
- Phosphorus cycling
- Burial

STA Operational Strategies

- Overall: Treat all runoff water within STA capacity and considering desired STA treatment performance and flowway restrictions
- Maintain optimal hydraulic and phosphorus loading
- Maintain optimal water depth for vegetation (~40 cm)
 - Avoid too deep for too long
 - Avoid dryout
- Adaptive management for performance optimization
- Use weekly data and information in prioritizing flows

Long-Term STA Performance

Parameter	Period of Record	WY2015
Total volume treated (ac-ft)	16.1 million	1.4 million
HLR (cm/d)	1.0-5.7	2.0 (0.6-2.9)
PLR (g/m²/yr)	0.5-3.0	0.8 (0.5-1.8)
TP load retained (mt)	1,874	147
% of load retained	75	81
Inflow concentration, μg/L	137 (101-180)	113 (71-198)
Outflow concentration, μg/L	34 (17-71)	21 (14-41)

Annual Flows and TP Concentrations

Annual Outflow TP Concentration

- POR outflow FWMC: 17 (STA-3/4) to 70 ppb (STA-5/6)
- WY 2015 outflows: 15 (STA-2 & STA-3/4) to 32 ppb (STA-5/6)
- STA-2 & 3/4 frequently achieved ≤19 ppb; each achieved≤ 13 ppb once

STA-2 Monthly & Seasonal Outflow TP Distribution

STA-2 Monthly Outflow TP

- 13 ppb or less 21% of the time
- 19 ppb or less 63% of the time

STA-3/4 Monthly & Seasonal Outflow TP Distribution

Monthly Outflow TP Frequency Distribution

- 13 ppb or less 28% of the time
- 19 ppb or less 60% of the time

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Operational Constraints and Challenges

- Performance of biologically-based treatment systems like the STAs is naturally variable
- Integral components of a complex water management system with multiple objectives
- Receives variable inflows, which affects the amount of phosphorus in the outflows
- Highly managed systems
 - routine operations and maintenance
 - controlling flows and stages
 - monitoring and optimization are necessary
 - Enhancements and repairs

Operational Constraints and Challenges (continued)

- Wildlife use of the STAs can impact operations
 - Migratory Bird Treaty Act, Endangered Species Act, Bald Eagle Protection Act
 - Shared use of the STAs, which includes recreational (birdwatching and hunting)

Long-Term Plan

- Adaptive management implementation
- Specific plans to improve each STA through structural and operational improvements and scientific research
- Added Restoration Strategies (2013)
 - Additional areas,
 including Flow
 Equalization Basins
 - Restoration StrategiesScience Plan

RS Science Plan

- Objective: Investigate the key factors and mechanisms that collectively influence TP reduction and treatment in the STAs.
- Use results to enhance the design and operations, as well as to develop new or enhance existing management strategies.
- Initial studies include investigation of biogeochemical characteristics and transformations of phosphorus in low P environment, influence of canal systems, cattail sustainability, periphyton-based treatment, and alternative vegetation.

