(CHAMPION

V _{DSS} T _j = 125°C	700V
$V_{DSST_j} = 25^{\circ}C$	650V
R _{DS(on)} (Max.)	0.78Ω
I _D	7A
P _D	40W

Outline

FEATURES

- ♦ Low on-resistance
- ◆ Fast switching speed
- ◆ Gate-source voltage (V_{GSS}) guaranteed to be ±20V
- Drive circuits can be simple
- Parallel use is easy
- Pb-free lead plating; RoHs compliant

Inner circuit

Application

Switching Power Supply

Packaging specificationa

	Packaging	Bulk
	Reel size (mm)	-
Tuna	Tape width (mm)	-
Type	Basic ordering unit (pcs)	1,000
	Taping code	-
	Marking	CMS6507A

ORDERING INFORMATION

Part Number	Temperature Range	Package
CMS6507AENX	-55°℃ to 150°℃	TO-220FP

*Note:

AE*Series

N*:N-ch Mosfet

X*TO-220FP

Nch 650V/7A Super Junction Power MOSFET

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DSS}	650	V
Continuous drain surrent	Tc=25°C	I _D *1	±7	А
Continuous drain current	Tc=100°C	I _D *1	±3.8	Α
Pulsed drain current		I _{D,} pulse *2	±14	Α
Gate-Source Voltage		V _{GSS}	±20	V
Avalanche energy, single pulse		E _{AS} *3	133	mJ
Avalanche energy, repetitive		E _{AR} *3	0.2	mJ
Avalanche current, repetitive		I _{AR}	1.3	Α
Power Dissipation (Tc=25°C)		PD	40	W
Junction temperature		TJ	150	$^{\circ}\!\mathbb{C}$
Range of storage temperature		Tstg	-55 to +150	$^{\circ}\mathbb{C}$
Reverse diode dv/dt		Dv/dt *4	15	V/ns
Drain-Source Voltage Slope	VDS=480V ; Tj=25℃	Dv/dt	50	V/ns

THERMAL RESISTANCE

Beremeter	Complete	Value				
Parameter	Symbol	Min.	Тур.	Max.	Unit	
Thermal resistance , junction-case	RthJC	-	-	3.13	°C/W	
Thermal resistance , junction-ambient	RthJA	-	-	70	°C/W	
Soldering temperature , wavesoldering for 10s	T _{sold}	-	-	265	$^{\circ}\!\mathbb{C}$	

ELECTRICAL CHARACTERISTICS (Ta=25°C)

B	O- male al	0		Value		1121
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-Source breakdown voltage	V _{(BR)DSS}	$V_{GS} = 0V$, $I_D = 250uA$	650	-	-	V
		$V_{DS} = 600V, V_{GS} = 0V$				
Zero gate voltage drain current	I _{DSS}	T _j = 25°C	-	0.1	100	uA
		T _j = 125°℃	-	-	1000	
Gate-Source leakage current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±100	nA
Gate threshold voltage	$V_{GS(th)}$	$V_{DS} = 10V, I_D = 1mA$	2	-	4	V
		$V_{GS} = 10V, I_D = 2.4A$				
Static drain-source on-state resistance	R _{DS(on)} *5	T j = 25°C	-	0.6	0.78	Ω
rodictarios		T _j = 125°C	-	1.20	-	
Gate input resistance	R _G	F = 1MHz, open drain	-	10.6	-	Ω

Nch 650V/7A Super Junction Power MOSFET

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Donomotor	Complete	Conditions		Value		l lm!t
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transconductance	Gfs *5	$V_{DS} = 10V, I_D = 3.5A$	1.8	3.6	-	S
Input capacitance	Ciss	- V _{GS} = 0V	-	390	-	
Output capacitance	Coss	$V_{DS} = 25V$	-	390	-	pF
Reverse transfer capacitance	Crss	F = 1MHZ	-	50	-	
Effective output capacitance, energy related	Co(er)	V _{GS} = 0V	-	21	-	C
Effective output capacitance, time related	Co(tr)	V _{DS} = 0V to 480V	-	88	-	pF
Turn-on delay time	Td(on) *5	V 200V V 40V	-	25	-	
Rise time	Tr *5	$V_{DD} \sim 300 \text{V}, V_{GS} = 10 \text{V}$ $I_D = 3.5 \text{A}$	-	25	-	20
Turn-off delay time	Td(off) *5	$R_L = 86.6\Omega$	-	70	-	ns
Fall time	Tf *5	$R_G = 10\Omega$	-	35	-	

GATE CHARACTERISTICS (Ta=25°C)

Parameter	Symbol	Symbol Conditions		Value		Unit
raiametei	Symbol	Conditions	Min.	Тур.	Max.	Oille
Gate plateau voltage	V(plateau)	$V_{DD} \sim 300 V$, $I_D = 7A$	-	6.2	-	V
Total gate charge	Qg *5		-	20	-	
Gate-Source charge	Qgs *5	$V_{DD} \sim 300V$ $I_D = 7A$	-	3	-	nC
Gate Drain charge	Q _{gd} *5	V _{GS} = 10V	-	11	-	

*1 : Limit only by maximum temperature allowed

*2 : Pw≤10us, Duty cycle≤1%

 $*3 : I_D = 1.3A, V_{DD} = 50V$

*4 : Reference measurement circuits Fig.5-1

*5 : Pulsed

BODY DIODE ELECTRICAL CHARACTERISTICS (Source-Drain) (Ta=25°C)

Povemeter	Symbol Conditions		Value		Unit	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Inverse diode continuous, forward current	I _S *1	- Tc=25℃	-	-	7	А
Inverse diode direct current, pulsed	IsM *2	10-23	-	ı	14	А
Forward Voltage	VsD *5	V _{GS} = 0V, I _S = 7A	-	ı	1.5	V
Reverse recovery time	Trr *5		-	340	ı	ns
Reverse recovery charge	Qrr *5	$I_S = 7A$ Di/dt = 100A/us	-	2.8	ı	uC
Peak reverse recovery current	I _{rrm} *5		-	17	-	Α

TYPICAL TRANSIENT THERMAL CHARACTERISTICS

Symbol	Value	Unit
Rth1	0.385	
Rth2	1.24	K/W
Rth3	2.2	
Cth1	0.00128	
Cth2	0.013 Ws/	
Cth3	0.448	

Application Circuit

Fig.1 Power Dissipation Derating Curve

Junction Temperature : T_i [°C]

Fig.2 Normalized Transient Thermal Resistance vs. Pulse Width Normalized Transient Thermal Resistance: r_(t) 1000 T_a = 25°C Single Pulse 100 $R_{th(ch-a)(t)} = r_{(t)} \times R_{th(ch-a)}$ = 70°C/W 10 1 0.1 0.01 D = 0.5D = 0.1D = 0.050.001 D = 0.01D = Single 0.0001 0.0001 0.001 0.1

Pulse Width: Pw [s]

Fig.3 Avalanche Energy Derating Curve vs Junction Temperature

Junction Temperature : T_i [°C]

Fig.4 Typical Output Characteristics(I)

Drain - Source Voltage : V_{DS} [V]

Fig.5 Typical Output Characteristics(II)

Drain - Source Voltage : V_{DS} [V]

Fig.6 T_j = 150°C Typical Output
Characteristics(I)

4

Voc= 1

Drain - Source Voltage : VDS [V]

Fig.7 T_j = 150°C Typical Output Characteristics(II) 7 V_{GS} = 10.0V V_{GS}

Drain - Source Voltage : V_{DS} [V]

Drain Current: Ip [A]

Drain Current : I_D [A]

Junction Temperature : T_i [°C]

10 V_{DS}= 10V T_a=125°C T_a=25°C T_a=-25°C T_a=-25°C

Fig.9 Typical Transfer Characteristics

Gate - Source Voltage : VGS [V]

6

8

10

Fig.11 Transconductance vs. Drain Current

2

0.001

0

Drain Current : I_D [A]

Gate - Source Voltage : V_{GS} [V]

Fig.13 Static Drain - Source On - State Resistance vs. Junction Temperature 2000 Static Drain - Source On-State Resistance V_{GS}= 10V 1800 I_D = 2.4A 1600 1400 : R_{DS(on)} [mΩ] 1200 1000 800 600 400 200 0 -50 -25 25 50 75 100 125 150

Fig.14 Static Drain - Source On - State Resistance vs. Drain Current

Fig.15 Static Drain - Source On - State Resistance vs. Drain Current

Junction Temperature : T_i [°C]

Drain Current : ID [A]

Fig.17 Coss Stored Energy

Drain - Source Voltage : V_{DS} [V]

Fig.18 Switching Characteristics

Fig.19 Dynamic Input Characteristics

Total Gate Charge : Qg [nC]

Fig. 20 Inverse Diode Forward Current vs. Source - Drain Voltage

10
Ves=0V
Ta=125°C
Ta=75°C
Ta=25°C
Ta=-25°C
Ta=-25°C
Ta=-25°C
Ta=-25°C
Ta=-25°C
Ta=-25°C
Ta=-25°C

Source - Drain Voltage : V_{SD} [V]

Inverse Diode Forward Current: Is [A]

PACKAGE DIMENSION

Corredo al	Dimensions l	n Millimeters
Symbol	Min.	Max
Α	3.80	4.70
A1	1.3 1	REF.
A2	2.20	3.20
А3	2.10	3.20
Ъ	0.30	0.95
b1	1.00	1.75
b2	1.00	1.75
b3	0.50	0.80
С	0.30	0.90
D	9.90	10.40
Е	14.60	16.20
e	2.54	TYP.
F	3.00	REF.
Φ	3.50	REF.
h	0.00	0.30
L	28.00	30.00
1.1	3.20	3 55

CMS6507AENX

Nch 650V/7A Super Junction Power MOSFET

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan

T E L: +886-3-567 9979 F A X: +886-3-567 9909 http://www.champion-micro.com

Sales & Marketing

21F., No. 96, Sec. 1, Sintai 5th Rd., Sijhih City, Taipei County 22102, Taiwan R.O.C

T E L: +886-2-2696 3558 F A X: +886-2-2696 3559