Zespół	Radosław Smoter Arkadiusz Halat
Numer grupy	LK3
Nazwa ćwiczenia	Charakterystyki czasowe i częstotliwościowe podstawowych członów dynamicznych: skokowa, impulsowa, Nyquista, Bodego.
Numer ćwiczenia	3
Data oddania	9.05.2022
Prowadzący przedmiot	Mgr inż. Denys Gutenko
Ocena	

Modelowanie Układów Dynamicznych

Modelowanie układów dynamicznych

Spis tresci	
1 Cel ćwiczenia	3
2 Transmitancje	4
2.1 Przykład	4
2.2 Zadanie 1	4
2.3 Zadanie 2	4
2.4 Zadanie 3	4
2.5 Zadanie 4	5
2.6 Zadanie 5	5
2.7 Zadanie 6	5
3 Kod	6
3.1 Przykład	6
3.2 Zadanie 1	6
3.3 Zadanie 2	7
3.4 Zadanie 3	7
3.5 Zadanie 4	8
3.6 Zadanie 5	8
3.7 Zadanie 6	9
4 Wyniki	10
4.1 Przykład	10
-	11
	11
4.2 Zadanie 1	11
	12
4.3 Zadanie 2	14
4.4 Zadanie 3	16
	16
4.5 Zadanie 4	18
4.6 Zadanie 5	20
4.7 Zadanie 6	22
5 Opis działania programu	24
6 Wnioski	25
7 Uwagi	26

1 Cel ćwiczenia

Zaznajomienie się z charakterystykami czasowymi i częstotliwościowymi. Czasowe: skokowa, impulsowa; częstotliwościowe: Nyquista, Bodego.

2 Transmitancje

2.1 Przykład

Transmitancja:

$$G(s) = \frac{3}{2s+1}$$

Transmitancja operatorowa:

$$\mathcal{L}^{-1} = \frac{3e^{-\frac{t}{2}}}{2}$$

2.2 Zadanie 1.

Transmitancja:

$$G(s) = \frac{3.5}{3.5s+1}$$

Transmitancja operatorowa:

$$\mathcal{L}^{-1} = e^{-2\frac{t}{7}}$$

2.3 Zadanie 2.

Transmitancja:

$$G(s) = \frac{3.5}{s(3.5s+1)}$$

Transmitancja operatorowa:

$$\mathcal{L}^{-1} = \frac{7}{2} - \frac{7e^{-2\frac{t}{7}}}{2}$$

2.4 Zadanie 3.

Transmitancja:

$$G(s) = \frac{3.5 s}{3.5 s + 1}$$

Transmitancja operatorowa:

$$\mathcal{L}^{-1} = \delta(t) - \frac{2e^{-2\frac{t}{7}}}{7}$$

2.5 Zadanie 4.

Transmitancja:

$$G(s) = \frac{3.5}{(1.5\,s+1)(2.5\,s+1)}$$

Transmitancja operatorowa:

$$\mathcal{L}^{-1} = -\frac{7e^{-2\frac{t}{3}}}{2} + \frac{7e^{-2\frac{t}{5}}}{2}$$

2.6 Zadanie 5.

Transmitancja:

$$G(s) = \frac{3.5}{3.5 s^2 + 0.7 \cdot 0.35 s + 1}$$

Transmitancja operatorowa:

$$\mathcal{L}^{-1} = \frac{200\sqrt{557599}e^{\frac{-7t}{200}}\sin(\frac{\sqrt{557599t}}{1400})}{79657}$$

2.7 Zadanie 6.

Transmitancja:

$$G(s) = \frac{3.5e^{-0.7s}}{3.5s+1}$$

Transmitancja operatorowa:

$$\mathcal{L}^{-1} = e^{\frac{1}{5} - \frac{2t}{7}} \theta \left(t - \frac{7}{10} \right)$$

3 Kod

3.1 Przykład

```
% Generacja odpowiedzi skokowej i impulsowej dla obiektu inercyjnego I-go
% rzedu o transmitancji obiektu G(s) = 3/(2s+1) dla parametrów k = 3 i T=2
% oraz charakterystyk bodego i nyquista.
obiekt_iner1 = tf(3, [2, 1]);
figure(1);
step(obiekt_iner1);
grid;
figure(2);
impulse(obiekt_iner1);
grid;
figure(3);
nyquist(obiekt_iner1);
grid;
figure(4);
bode(obiekt_iner1);
grid;
```

3.2 Zadanie 1.

```
clear;close all; clc;
% Transmitancja: G(s) = k / (Ts + 1).
% Stałe:
k = 3.5;
T = 3.5;
% Utwórz obiekt inercyjny o zadanej transmitancji.
obiekt_inercyjny = tf(k, [T, 1]);
% Charakterystyka skokowa.
figure(1);
subplot(2,2,1);
step(obiekt_inercyjny);
grid on;
% Charakterystyka impulsowa.
subplot(2,2,2);
impulse(obiekt_inercyjny);
grid on;
% Charakterystyka Nyquista.
subplot(2,2,3);
nyquist(obiekt_inercyjny);
grid on;
% Charakterystyka Bodego.
subplot(2,2,4);
```

```
bode(obiekt_inercyjny);
grid on;
```

3.3 Zadanie 2.

```
clear; close all; clc;
% Transmitancja G(s) = k / s(Ts + 1)
% Stałe:
k = 3.5;
T = 3.5;
obiekt_inercyjny = tf(k, [T, 1, 0]);
% Charakterystyka skokowa.
figure(1);
step(obiekt_inercyjny);
grid on;
% Charakterystyka impulsowa.
figure(2);
impulse(obiekt_inercyjny);
grid on;
% Charakterystyka Nyquista.
figure(3);
nyquist(obiekt_inercyjny);
grid on;
% Charakterystyka Bodego.
figure(4);
bode(obiekt_inercyjny);
grid on;
```

3.4 Zadanie 3.

```
clear; close all; clc;
% Transmitancja G(s) = ks / (Ts + 1)
% Stałe:
k = 3.5;
T = 3.5;

obiekt_inercyjny = tf([k, 0], [T, 1]);
% Charakterystyka skokowa.
figure(1);
step(obiekt_inercyjny);
grid on;
% Charakterystyka impulsowa.
figure(2);
impulse(obiekt_inercyjny);
grid on;
```

```
% Charakterystyka Nyquista.
figure(3);
nyquist(obiekt_inercyjny);
grid on;
% Charakterystyka Bodego.
figure(4);
bode(obiekt_inercyjny);
grid on;
```

3.5 Zadanie 4.

```
clear; close all; clc;
% Transmitancja G(s) = k / ((T1s + 1)(T2s + 1))
% Stałe:
k = 3.5;
T1 = 1.5;
T2 = 2.5;
obiekt_inercyjny = tf(k, [T1*T2, T1+T2, 1]);
% Charakterystyka skokowa.
figure(1);
step(obiekt_inercyjny);
grid on;
% Charakterystyka impulsowa.
figure(2);
impulse(obiekt_inercyjny);
grid on;
% Charakterystyka Nyquista.
figure(3);
nyquist(obiekt_inercyjny);
grid on;
% Charakterystyka Bodego.
figure(4);
bode(obiekt_inercyjny);
grid on;
```

3.6 Zadanie 5.

```
clear; close all; clc;
% Transmitancja G(s) = k / (T0*2s^2 + 2*x*T0*s + 1)
% State:
k = 3.5;
T0 = 0.7;
zeta = 0.35;
obiekt_inercyjny = tf(k, [T0^2, 2*zeta*T0, 1]);
% Charakterystyka skokowa.
```

```
figure(1);
step(obiekt_inercyjny);
grid on;

% Charakterystyka impulsowa.
figure(2);
impulse(obiekt_inercyjny);
grid on;

% Charakterystyka Nyquista.
figure(3);
nyquist(obiekt_inercyjny);
grid on;

% Charakterystyka Bodego.
figure(4);
bode(obiekt_inercyjny);
grid on;
```

3.7 Zadanie 6.

```
clear; close all; clc;
% Transmitancja G(s) = k / (Ts + 1) exp(-s*T0)
% Stałe:
k = 3.5:
T0 = 0.7;
T = 3.5;
% Nie działa.
% [lp, mp] = pade(T0, 0);
% [lo, mo] = series(k, [T, 1], lp, mp);
obiekt_inercyjny = tf(k, [T, 1], 'InputDelay', 3.4);
% Charakterystyka skokowa.
figure(1);
step(obiekt_inercyjny);
grid on;
% Charakterystyka impulsowa.
figure(2);
impulse(obiekt_inercyjny);
grid on;
% Charakterystyka Nyquista.
figure(3);
nyquist(obiekt_inercyjny);
grid on;
% Charakterystyka Bodego.
figure(4);
bode(obiekt_inercyjny);
grid on;
```

4 Wyniki

4.1 Przykład

Wykres 1: Charakterystyka skokowa, przykład z instrukcji.

Wykres 2: Charakterystyka impulsowa, przykład z instrukcji.

Wykres 3: Charakterystyka Nyquista, przykład z instrukcji.

Wykres 4: Charakterystyka Bodego, przykład z instrukcji.

4.2 Zadanie 1.

Wykres 5: Charakterystyka skokowa, zadanie 1.

Wykres 6: Charakterystyka impulsowa, zadanie 1.

Wykres 7: Charakterystyka Nyquista, zadanie 1.

Wykres 8: Charakterystyka Bodego, zadanie 1.

4.3 Zadanie 2.

Wykres 9: Charakterystyka skokowa, zadanie 2.

Wykres 10: Charakterystyka impulsowa, zadanie 2.

Wykres 11: Charakterystyka Nyquista, zadanie 2.

Wykres 12: Charakterystyka Bodego, zadanie 2.

4.4 Zadanie 3.

Wykres 13: Charakterystyka skokowa, zadanie 3.

Wykres 14: Charakterystyka impulsowa, zadanie 3.

Wykres 15: Charakterystyka Nyquista, zadanie 3.

Wykres 16: Charakterystyka Bodego, zadanie 3.

4.5 Zadanie 4.

Wykres 17: Charakterystyka skokowa, zadanie 4.

Wykres 18: Charakterystyka impulsowa, zadanie 4.

Wykres 19: Charakterystyka Nyquista, zadanie 4.

Wykres 20: Charakterystyka Bodego, zadanie 4.

4.6 Zadanie 5.

Wykres 21: Charakterystyka skokowa, zadanie 5.

Wykres 22: Charakterystyka impulsowa, zadanie 5.

Wykres 23: Charakterystyka Nyquista, zadanie 5.

Wykres 24: Charakterystyka Bodego, zadanie 5.

4.7 Zadanie 6.

Wykres 25: Charakterystyka skokowa, zadanie 6.

Wykres 26: Charakterystyka impulsowa, zadanie 6.

Wykres 27: Charakterystyka Nyquista, zadanie 6.

Wykres 28: Charakterystyka Bodego, zadanie 6.

5 Opis działania programu

We wszystkich zadaniach zadane charakterystyki stworzono w podobny sposób. Użyto polecenia tf(), które tworzy obiekt inercyjny o pożądanych właściwościach, tj. w pierwszym argumencie określony jest licznik transmitancji, a w drugim, jej mianownik. W dalszym argumencie, w zadaniu 6, określono czas opóźnienia sygnału, gdzie jest on równy T_0 , a w postaci transmitancji jest przedstawiany jako człon e^{-sT_0} .

Wykresy zostały stworzone przez przekazanie obiektu inercyjnego do odpowiednich funkcji, step() , impulse() , nyquist() , bode() .

6 Wnioski

Elementarne obiekty automatyki posiadają różne właściwości, które można badać za pomocą przedstawionych charakterystyk. Reakcje obiektów przy poddaniu zmiennych w czasie wymuszeniom powodują odpowiedzi, które można porównywać pomiędzy sobą za pomocą charakterystyk.

7 Uwagi