Sprawozdanie - Laboratorium 02 PAMSI

Artur Gasiński — 218685 07.03.2016

1 Zadanie

- 1. Przeprojektowanie kodu programu z Lab01 do postaci obiektowej, z użyciem ogólnych interfejsów.
- 2. Wykonanie pomiarów czasu zapisu elementów do tablicy w seriach min. po 10 razy.

2 Wykonanie

- 1. Struktura programu:
 - interfejsy: IStoper, IRunnable
 - klasa StoperZZapisem, implementujaca interfejs IStoper,
 - klasa Tab, zawierajaca tablice dynamiczna,
 - klasa TabTest, implementujaca intefejs IRunnable dla klasy Tab,
 - funkcja główna, zarzadzajaca kolejnościa wykonywania zadań.

Uwaga. Z powodu wystepowania błedu "std::bad_alloc" testy zostały przeprowadzone dla 10^8 elementów, zamiast dla 10^9 .

3 Pomiary czasu zapisu

1. Dla algorytmu podwajania pojemności tablicy:

n	10	10^{3}	10^{5}	10^{6}	10^{8}
czas [s]	$1.5*10^{-6}$	$1.18*10^{-5}$	0.0013643	0.0120773	1.18514

2. Dla algorytmu powiekszania tablicy o 1 element:

n	10	10^{3}	10^{5}	10^{6}	10^{8}
czas [s]	$2.4*10^{-6}$	0.0002201	1.39059	244.021	24624.6 *

Uwaga. Pomiar dla 10^8 elementów do zapisu został wykonany tylko raz.

Czasy średnie wyciagane z serii 10 pomiarów sa bardziej wiarygodne niż pomiary pojedynczego procesu zapisu elementów. Jednak przy 100 milionach elementów i algorytmie powiekszania o 1 czas wykonywania programu jest zbyt długi, by dało sie go zmierzyć komfortowo aż 10 razy.

Widać, że metoda zwiekszania tablicy za każdym razem o jeden element jest generalnie nieefektywna, a dla dużych n zupełnie niewydajna. Z tego powodu podwajanie wielkości tablicy, gdy zajdzie potrzeba jej rozszerzenia, jest dużo lepszym sposobem.