PROBABILIDAD y ESTADÍSTICA (61.06 - 81.09)

Primer recuperatorio Duración: 4 horas.

Segundo cuatrimestre – 2017 18/XI/17 – 13:00 hs.

1. Se extraen cuatro bolas al azar sin reposición de una urna que contiene 3 bolas rojas y 5 verdes. Las bolas rojas están numeradas del 1 al 3. Calcular la probabilidad de que se haya extraído la bola 1 sabiendo que alguna de las bolas extraídas fue roja.

R. [Referencia: **Ejercicio 1.14**] Indicaremos mediante A al evento de que se extraiga la bola 1, y mediante B al evento de que alguna de las bolas extraídas sea roja. Se quiere calcular la probabilidad condicional $\mathbf{P}(A|B)$. Usando la definición de probabilidad condicional y que la bola 1 es roja se obtiene que

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} = \frac{\mathbf{P}(A)}{\mathbf{P}(B)}.$$

Combinatoria de por medio, se obtiene que

$$\mathbf{P}(A) = 1 - \mathbf{P}(A^c) = 1 - \frac{\binom{1}{0}\binom{7}{4}}{\binom{8}{4}} = 1 - \frac{35}{70} = \frac{1}{2},$$

$$\mathbf{P}(B) = 1 - \mathbf{P}(B^c) = 1 - \frac{\binom{3}{0}\binom{5}{4}}{\binom{8}{4}} = 1 - \frac{5}{70} = \frac{13}{14}.$$

Por lo tanto, $\mathbf{P}(A|B) = 7/13$.

2. Una catacumba será iluminada con 4 antorchas cuyas duraciones (en horas) son independientes y cada una de las cuales se mantiene encendida durante un tiempo aleatorio con función de densidad $f(t) = \frac{2}{t^2} \mathbf{1}\{t > 2\}$. La catacumba se mantendrá iluminada mientras alguna de las antorchas se mantenga encendida. Las cuatro antorchas se encenderán simultáneamente a las 0:00 del 1 de enero. Usando los números aleatorios 0.118, 0.843, 0.346 y 0.728 simular las duraciones de las 4 antorchas y a partir de esos valores determinar hasta qué hora la catacumba se mantendrá iluminada.

R. [Referencia: Ejercicio 2.13] Sea T el tiempo durante el cual una antorcha se mantiene encendida. De acuerdo con el Ejercicio 2.13 para simular un valor de T usando una variable aleatoria $U \sim \mathcal{U}(0,1)$ se hace lo siguiente: $\hat{T}(U) = F_T^{-1}(U)$. Como para cada t > 2 se tiene que

$$\mathbf{P}(T \le t) = \int_{2}^{t} \frac{2}{\tau^{2}} d\tau = -\frac{2}{\tau} \Big|_{2}^{t} = 1 - \frac{2}{t},$$

la función de distribución de T es

$$F_T(t) = \left(1 - \frac{2}{t}\right) \mathbf{1}\{t \ge 2\}.$$

Sea $u \in (0,1)$, observando que $F_T(t) = u \iff 1 - \frac{2}{t} = u \iff \frac{2}{t} = 1 - u$, se obtiene que $F_T^{-1}(u) = \frac{2}{1-u}$. Por lo tanto, las simulaciones de las duraciones en horas de cada una de las cuatro antorchas son:

De acuerdo con esos valores la última antorcha se apagará en 12.739 horas. Por lo tanto, la catacumba se mantendrá iluminada hasta las 12:44:20.

3. La corporación Cobani Products produce lotes de RoboCops. La proporción de RoboCops fallados tiene distribución $\beta(1,2)$. Sabiendo que la proporción de RoboCops fallados en un lote es mayor que 1/2 calcular la esperanza de la proporción de RoboCops fallados en dicho lote.

R. [Referencia: **Ejercicio 3.7**] Sea X la proporción de RoboCops fallados en el lote. Se sabe que la densidad de la distribución $\beta(1,2)$ es $f_X(x) = 2(1-x)\mathbf{1}\{0 < x < 1\}$. Se quiere calcular $\mathbf{E}[X|X>1/2]$:

$$\mathbf{E}[X|X > 1/2] = \frac{\mathbf{E}[X\mathbf{1}\{X > 1/2\}]}{\mathbf{P}(X > 1/2)} = \frac{\int_{1/2}^{1} x \cdot 2(1-x)dx}{\int_{1/2}^{1} 2(1-x)dx}$$
$$= \frac{\int_{0}^{1/2} 2x(1-x)dx}{\int_{0}^{1/2} 2xdx} = \frac{2}{3},$$

porque

$$\int_0^{1/2} 2x (1-x) dx = 2 \left(\frac{(1/2)^2}{2} - \frac{(1/2)^3}{3} \right) = \frac{1}{6} \ \text{y} \ \int_0^{1/2} 2x dx = \frac{1}{4}.$$

- 4. Lucas y Monk esperan para ser atendidos en la fila de un cajero. El cajero demora tiempos exponenciales independientes de media 5 minutos para atender a cada cliente. Si el tiempo de atención para Lucas fue menor que el tiempo de atención para Monk, hallar la función de distribución del tiempo total de atención de ambos.
- **R.** [Referencia: Ejercicio 4.14] Sean L y M los tiempos de atención (en minutos) para Lucas y Monk, respectivamente. Se sabe que $L \sim \mathcal{E}(1/5)$, que $M \sim \mathcal{E}(1/5)$, y que L y M son independientes. Se quiere hallar la función de distribución

$$F_{L+M|L < M}(t) := \mathbf{P}(L+M \le t|L < M) = \frac{\mathbf{P}(L+M \le t, L < M)}{\mathbf{P}(L < M)}.$$

Para t < 0 la probabilidad que aparece en el lado derecho de la igualdad es igual a 0; para $t \ge 0$ dicha probabilidad se puede obtener calculando integrales:

$$\begin{aligned} \mathbf{P}(L+M \leq t, L < M) &= \int_0^{t/2} \left(\int_{\ell}^{t-\ell} f_{L,M}(\ell, m) dm \right) d\ell \\ &= \int_0^{t/2} (1/5) e^{-\ell/5} \left(\int_{\ell}^{t-\ell} (1/5) e^{-m/5} dm \right) d\ell \\ &= \int_0^{t/2} (1/5) e^{-\ell/5} \left(e^{-\ell/5} - e^{-(t-\ell)/5} \right) d\ell \\ &= \int_0^{t/2} \left((1/5) e^{-2\ell/5} - (1/5) e^{-t/5} \right) d\ell \\ &= \frac{1}{2} \left(1 - e^{-t/5} - \frac{t}{5} e^{-t/5} \right). \end{aligned}$$

Y como $\mathbf{P}(L < M) = 1/2$ resulta que

$$F_{L+M|L< M}(t) = \begin{cases} 0 & \text{si } t < 0, \\ 1 - e^{-t/5} \left(1 + \frac{t}{5} \right) & \text{si } t \ge 0. \end{cases}$$

- **5.** Se tira repetidas veces una moneda con probabilidad 0.4 de cara. Sea N la cantidad de tiradas hasta que la diferencia entre la cantidad de caras y cecas observadas sea 2. Calcular $\mathbf{E}[N]$.
- **R.** [Referencia: **Ejercicio 5.13**] Indicamos mediante H_i , i = 1, 2 al evento de que el *i*-ésimo resultado del tiro la moneda fue cara, y mediante T_i , i = 1, 2 al evento de que el *i*-ésimo resultado del tiro la moneda fue ceca. Observamos que

$$N|H_1H_2 \sim 2$$
, $N|H_1T_2 \sim 2 + N$, $N|T_1H_1 \sim 2 + N$, $N|T_1T_2 \sim 2$.

Usando la fórmula de probabilidades totales obtenemos que

$$\mathbf{E}[N] = \mathbf{E}[N|H_1H_2]\mathbf{P}(H_1H_2) + \mathbf{E}[N|H_1T_2]\mathbf{P}(H_1T_2) + \mathbf{E}[N|T_1H_2]\mathbf{P}(T_1H_2) + \mathbf{E}[N|T_1T_2]\mathbf{P}(T_1T_2) = 2(0.4)^2 + \mathbf{E}[2+N](0.4)(0.6) + \mathbf{E}[2+N](0.6)(0.4) + 2(0.6)^2.$$

Usando la propiedad de linealidad del operador esperanza obtenemos que

$$\mathbf{E}[N] = 2 + 2\mathbf{E}[N](0.4)(0.6) = 2 + 0.48\mathbf{E}[N].$$

Por lo tanto, $\mathbf{E}[N] = 2/0.52 = 3.8462$.

PROBABILIDAD y ESTADÍSTICA (61.09 - 81.04)

Primer recuperatorio Duración: 4 horas.

Segundo cuatrimestre – 201718/XI/17 - 13:00 hs.

- 1. Una catacumba será iluminada con 4 antorchas cuyas duraciones (en horas) son independientes y cada una de las cuales se mantiene encendida durante un tiempo aleatorio con función de densidad $f(t) = \frac{2}{t^2} \mathbf{1}\{t > 2\}$. La catacumba se mantendrá iluminada mientras alguna de las antorchas se mantenga encendida. Las cuatro antorchas se encenderán simultáneamente a las 0:00 del 1 de enero. Usando los números aleatorios 0.118, 0.843, 0.346 y 0.728 simular las duraciones de las 4 antorchas y a partir de esos valores determinar hasta qué hora la catacumba se mantendrá iluminada.
- **R.** [Referencia: **Ejercicio 2.13**] Sea T el tiempo durante el que una antorcha se mantiene encendida. De acuerdo con el **Ejercicio 2.13** para simular un valor de T usando una variable aleatoria $U \sim \mathcal{U}(0,1)$ se hace lo siguiente: $\hat{T}(U) = F_T^{-1}(U)$. Como para cada t > 2 se tiene que

$$\mathbf{P}(T \le t) = \int_{2}^{t} \frac{2}{\tau^{2}} d\tau = -\frac{2}{\tau} \Big|_{2}^{t} = 1 - \frac{2}{t},$$

la función de distribución de T es

$$F_T(t) = \left(1 - \frac{2}{t}\right) \mathbf{1}\{t \ge 2\}.$$

Sea $u \in (0,1)$, observando que $F_T(t) = u \iff 1 - \frac{2}{t} = u \iff \frac{2}{t} = 1 - u$, se obtiene que $F_T^{-1}(u) = \frac{2}{1-u}$. Por lo tanto, las simulaciones de de las duraciones en horas de cada una de las cuatro antorchas son:

De acuerdo con esos valores la última antorcha se apagará en 12.739 horas. Por lo tanto, la catacumba se mantendrá iluminada hasta las 12:44:20.

- 2. Lucas y Monk esperan para ser atendidos en la fila de un cajero. El cajero demora tiempos exponenciales independientes de media 5 minutos para atender a cada cliente. Si el tiempo de atención para Lucas fue menor que el tiempo de atención para Monk, hallar la función de distribución del tiempo total de atención de ambos.
- **R.** [Referencia: **Ejercicio 4.14**] Sean L y M los tiempos de atención (en minutos) para Lucas y Monk, respectivamente. Se sabe que $L \sim \mathcal{E}(1/5)$, que $M \sim \mathcal{E}(1/5)$, y que L y M son independientes. Se quiere hallar la función de distribución

$$F_{L+M|L < M}(t) := \mathbf{P}(L+M \le t | L < M) = \frac{\mathbf{P}(L+M \le t, L < M)}{\mathbf{P}(L < M)}.$$

Para t<0 la probabilidad que aparece en el lado derecho de la igualdad es igual a 0; para $t\geq0$

dicha probabilidad se puede obtener calculando integrales:

$$\mathbf{P}(L+M \le t, L < M) = \int_0^{t/2} \left(\int_{\ell}^{t-\ell} f_{L,M}(\ell, m) dm \right) d\ell$$

$$= \int_0^{t/2} (1/5) e^{-\ell/5} \left(\int_{\ell}^{t-\ell} (1/5) e^{-m/5} dm \right) d\ell$$

$$= \int_0^{t/2} (1/5) e^{-\ell/5} \left(e^{-\ell/5} - e^{-(t-\ell)/5} \right) d\ell$$

$$= \int_0^{t/2} \left((1/5) e^{-2\ell/5} - (1/5) e^{-t/5} \right) d\ell$$

$$= \frac{1}{2} \left(1 - e^{-t/5} - \frac{t}{5} e^{-t/5} \right).$$

Y como $\mathbf{P}(L < M) = 1/2$ resulta que

$$F_{L+M|L< M}(t) = \begin{cases} 0 & \text{si } t < 0, \\ 1 - e^{-t/5} \left(1 + \frac{t}{5} \right) & \text{si } t \ge 0. \end{cases}$$

3. Un motoquero transita por una avenida. Las probabilidades de que al momento de llegar a un semáforo este se encuentre en rojo, amarillo o verde son 0.4, 0.1 y 0.5 respectivamente. Los estados de los semáforos son independientes y el motoquero sólo se detiene al encontrar un semáforo en rojo. Calcular la covarianza entre la cantidad de luces verdes y la cantidad de luces amarillas que atravesó hasta detenerse.

R. [Referencia: Ejercicio 6.20 y Ejercicio 5.15] Sea N la cantidad de semáforos observados por el motoquero hasta que se encontró con un semáforo en rojo. Sean N_v y N_a la cantidad de luces verdes y amarillas atravesadas por el motoquero hasta que se detuvo. Tenemos que $N \sim \mathcal{G}(0.4)$ y que $N_v + N_a = N - 1$. Por consiguiente,

$$\begin{aligned} \mathbf{cov}(N_v, N_a) &= & \mathbf{cov}(N_v, N - 1 - N_v) \\ &= & \mathbf{cov}(N_v, N) - \mathbf{cov}(N_v, 1) - \mathbf{cov}(N_v, N_v) \\ &= & \mathbf{cov}(N_v, N) - \mathbf{var}(N_v), \end{aligned}$$

y el problema se reduce a calcular $\mathbf{cov}(N_v, N)$ y $\mathbf{var}(N_v)$.

Cuando se sabe que un semáforo no está en rojo, la probabilidad condicional de que se encuentre en verde es $\frac{0.5}{0.5+0.1}=\frac{5}{6}$ y en consecuencia,

$$N_v|N=n \sim \mathcal{B}\left(n-1, \frac{5}{6}\right).$$

De donde se deduce que $\mathbf{E}[N_v|N] = \frac{5}{6}(N-1)$ y $\mathbf{var}(N_v|N) = \frac{5}{6} \cdot \frac{1}{6}(N-1) = \frac{5}{36}(N-1)$.

Para calcular $\mathbf{cov}(N_v,N)$ podemos observar que la esperanza condicional $\mathbf{E}[N_v|N]$ es una función lineal de N, motivo por el cual coincide con la recta de regresión de N_v dada N; y como la pendiente de esa recta es igual a $\frac{\mathbf{cov}(N_v,N)}{\mathbf{var}(N)}$ se obtiene que $\mathbf{cov}(N_v,N) = \frac{5}{6}\mathbf{var}(N)$.

Al mismo resultado se puede llegar teniendo en cuenta que las propiedades de la esperan-

Al mismo resultado se puede llegar teniendo en cuenta que las propiedades de la esperanza condicional, $\mathbf{E}[\mathbf{E}[N_v|N]] = \mathbf{E}[N_v]$ y $\mathbf{E}[N_vN|N] = N\mathbf{E}[N_v|N]$, implican que $\mathbf{cov}(N_v,N) = \mathbf{cov}(\mathbf{E}[N_v|N],N)$:

$$\mathbf{cov}(N_v,N) = \mathbf{cov}(\mathbf{E}[N_v|N],N) = \mathbf{cov}\left(\frac{5}{6}(N-1),N\right) = \frac{5}{6}\mathbf{cov}(N,N) = \frac{5}{6}\mathbf{var}(N).$$

Ahora bien, como $N \sim \mathcal{G}(2/5)$, resulta que $\mathbf{E}[N] = \frac{5}{2}$ y $\mathbf{var}(N) = \frac{3/5}{(2/5)^2} = \frac{15}{4}$, obtenemos que

$$\mathbf{cov}(N_v, N) = \frac{5}{6} \cdot \frac{15}{4} = \frac{75}{24}.$$

Para calcular $\mathbf{var}(N_v)$ aplicamos el Teorema de Pitágoras:

$$\mathbf{var}(N_v) = \mathbf{E}[\mathbf{var}(N_v|N)] + \mathbf{var}(\mathbf{E}[N_v|N]) = \mathbf{E}\left[\frac{5}{36}(N-1)\right] + \mathbf{var}\left(\frac{5}{6}(N-1)\right)$$
$$= \frac{5}{36}(\mathbf{E}[N]-1) + \frac{25}{36}\mathbf{var}(N) = \frac{5}{36} \cdot \frac{3}{2} + \frac{25}{36} \cdot \frac{15}{4} = \frac{405}{144}.$$

Finalmente,

$$\mathbf{cov}(N_v, N_a) = \mathbf{cov}(N_v, N) - \mathbf{var}(N_v) = \frac{75}{24} - \frac{405}{144} = \frac{1080}{3456} = \frac{5}{16}$$

4. A la posada $El\ P\'oney\ Pisador\ ingresar\'an\ tres\ tipos\ de clientes de la <math>Tierra\ Media:\ hobbits,\ elfos\ y\ dwarves$. Los hobbits, los $elfos\ y\ los\ dwarves$ ingresar\'an de acuerdo con tres procesos de Poisson independientes de intensidades $\frac{3}{5},\ \frac{2}{3}\ y\ \frac{1}{2}$ por hora, respectivamente. $El\ P\'oney\ Pisador\ abrir\'a$ sus puertas a las 0:00. Calcular la probabilidad de que el cuarto cliente de la $Tierra\ Media$ ingrese después de las 0:30 y entre los primeros tres haya por lo menos un $hobbit\ y$ por lo menos un elfo.

R. [Referencia: Ejercicio 7.12] Desde que abre sus puertas, el proceso de ingresos de clientes de la Tierra Media a El Póney Pisador es el proceso de Poisson superpuesto

$$\Pi = \Pi_h \cup \Pi_e \cup \Pi_d = \{S_n : n \ge 1\},\$$

donde Π_h, Π_e y Π_d son los procesos de Poisson que regulan los ingresos a la posada de los *hobbits*, los *elfos* y los *dwarves*, respectivamente. Sean

$$X_h := \sum_{i=1}^{3} \mathbf{1} \{ S_i \in \Pi_h \}, \ X_e := \sum_{i=1}^{3} \mathbf{1} \{ S_i \in \Pi_e \} \ \ \text{y} \ X_d := \sum_{i=1}^{3} \mathbf{1} \{ S_i \in \Pi_d \}$$

las cantidades de hobbits, elfos y dwarves entre los tres primeros clientes que ingresan a la posada. Se quiere calcular $\mathbf{P}(S_4>0.5,X_h\geq 1,X_e\geq 1)$. De acuerdo con el Teorema de superposición y competencia de procesos de Poisson independientes tenemos que

- (i) S_4 y (X_h, X_e, X_d) son independientes
- (ii) $S_4 \sim \Gamma(4, \lambda)$, donde $\lambda = \frac{3}{5} + \frac{2}{3} + \frac{1}{2} = \frac{53}{30}$. Esto es, $S_4 \sim \Gamma(4, \frac{53}{30})$.
- (iii) $(X_h, X_e, X_d) \sim \text{Mul}(3, p_h, p_e, p_d)$, donde $p_h = \frac{3}{5} \cdot \frac{30}{53} = \frac{18}{53}$, $p_e = \frac{2}{3} \cdot \frac{30}{53} = \frac{20}{53}$ y $\frac{1}{2} \cdot \frac{30}{53} = \frac{15}{53}$. Esto es, $(X_h, X_e, X_d) \sim \text{Mul}\left(3, \frac{18}{53}, \frac{20}{53}, \frac{15}{53}\right)$.

De (i) se obtiene que

$$\mathbf{P}(S_4 > 0.5, X_h \ge 1, X_e \ge 1) = \mathbf{P}(S_4 > 0.5) \mathbf{P}(X_h \ge 1, X_e \ge 1)$$
.

De (ii) se obtiene que

$$\mathbf{P}\left(S_4 > 0.5\right) = e^{-\frac{53}{60}} \sum_{i=0}^{3} \frac{1}{i!} \left(\frac{53}{60}\right)^i = e^{-\frac{53}{60}} \left(1 + \frac{53}{60} + \frac{1}{2} \left(\frac{53}{60}\right)^2 + \frac{1}{6} \left(\frac{53}{60}\right)^3\right) \approx 0.98735$$

De (iii) se obtiene que

$$\mathbf{P}(X_h \ge 1, X_e \ge 1) = 1 - \mathbf{P}(X_h = 0 \lor X_e = 0)$$

$$= 1 - (\mathbf{P}(X_h = 0) + \mathbf{P}(X_e = 0) - \mathbf{P}(X_h = 0, X_e = 0))$$

$$= 1 - \left(\left(\frac{35}{53}\right)^3 + \left(\frac{33}{53}\right)^3 - \left(\frac{15}{53}\right)^3\right) \approx 0.49329.$$

Por lo tanto, $\mathbf{P}(S_4 > 0.5, X_h \ge 1, X_e \ge 1) \approx 0.98735 \cdot 0.49329 \approx 0.48705$.

- 5. María prepara una *Chocotorta* utilizando los siguientes ingredientes: un pote de dulce de leche de 500 gramos, un pote de crema de 250 gramos, y 121 galletitas de chocolate. Los pesos en gramos de las galletitas de chocolate son variables aleatorias independientes de media 3.75 y desvío estándar 0.5. ¿A cuántas personas, como máximo, les podrá convidar *Chocotorta* si pretende que cada una reciba una porción de 40 gramos con una probabilidad no menor que 0.95?
- **R.** [Referencia: **Ejercicio 8.16**] Indicamos mediante W_i , $i=1,\ldots,121$ el peso en gramos de la i-ésima galletita de chocolate. El peso total de la Chocotorta es $750 + \sum_{i=1}^{121} W_i$. Se quiere hallar el máximo $n \in \mathbb{N}$ tal que

$$\mathbf{P}\left(750 + \sum_{i=1}^{121} W_i > 40n\right) \ge 0.95.$$

Se observa que $\mathbf{E}\left[\sum_{i=1}^{121}W_i\right] = 121(3.75) = 453.75$ y que $\mathbf{var}\left(\sum_{i=1}^{121}W_i\right) = 121(0.5)^2 = 30.25$. De acuerdo con el *Teorema central del límite* tenemos que

$$\mathbf{P}\left(\frac{\sum_{i=1}^{121} W_i - 453.75}{\sqrt{30.25}} \le z\right) \approx \Phi(z).$$

En consecuencia,

$$\begin{split} \mathbf{P}\left(750 + \sum_{i=1}^{121} W_i > 40n\right) &= \mathbf{P}\left(\sum_{i=1}^{121} W_i > 40n - 750\right) \\ &= \mathbf{P}\left(\frac{\sum_{i=1}^{121} W_i - 453.75}{\sqrt{30.25}} > \frac{40n - 750 - 453.75}{\sqrt{30.25}}\right) \\ &\approx 1 - \Phi\left(\frac{40n - 1203.75}{5.5}\right). \end{split}$$

Finalmente,

$$1 - \Phi\left(\frac{40n - 1203.75}{5.5}\right) \ge 0.95 \quad \Longleftrightarrow \quad \frac{40n - 1203.75}{5.5} \le z_{0.05} =$$

$$\iff \quad n \le \frac{-5.5(1.6449) + 1203.75}{40} = 29.868.$$

Por lo tanto, María le podrá convidar *Chocotorta* a un máximo de 29 personas.