Introduction to Deep Operator Networks

Ramkumar S

SC24D098

Department of Aerospace Engineering Indian Institute of Space science and Technology

23-09-2024

Universal Approximation Theorem for operators

Let.

- $ightharpoonup \sigma$ a continuous non-polynomial function
- X Banach space
- $ightharpoonup K_1 \in X, \ K_2 \in \mathbb{R}^d$ two compact sets
- ▶ $V \in C(K_1)$ a compact set in functional space of K_1
- G non-linear continuous operator that maps $V \to C(K_2)$

Then for any $\epsilon>0$, there are positive integers n,p,m, constants $c_i^k, \varepsilon_{ij}^k, \theta_i^k, \zeta_k \in \mathbb{R}, \ w_k \in \mathbb{R}^d, \ x_j \in K_1, \ i=1,...,n, \ k=1,...,p, \ j=1,...,m$ such that

$$G(u)(y) - \sum_{k=1}^{p} \underbrace{\sum_{i=1}^{n} c_{i}^{k} \sigma\left(\sum_{j=1}^{m} \varepsilon_{ij}^{k} u(x_{j}) + \theta_{i}^{k}\right)}_{\text{branch}} \underbrace{\sigma\left(w_{k}.y + \zeta_{k}\right)}_{\text{trunk}} < \epsilon$$
 (1)

holds for $u \in V$ and $y \in K_2$.

Univeral Approx. Thm for operators

In other form,¹

$$\left| G(u)(y) - \sum_{k=1}^{p} \underbrace{br_k(u(x_1), u(x_2), ..., u(x_m))}_{\text{branch}} \underbrace{tr_k(y)}_{\text{trunk}} \right| < \epsilon$$
 (2)

where, $x_1, ..., x_m$ are called sensor points.

The functions br(), tr(), can be approximated by neural networks²

¹Goswami et al., "Physics-informed deep neural operator networks".

²Hornik, Stinchcombe, and White, "Multilayer feedforward networks are universal approximators".

Data-driven deep-o-net example

The operator $G: sin(\omega t) \rightarrow \omega cos(\omega t)$

estimatedexact

— estimated
— exact

Does it really approximate an Operator alone?

Does it really approximate an Operator alone? Mathematically not!

Does it really approximate an Operator alone? Mathematically not! With a trained model, tried evaluating $\hat{G}: \cos(\omega t) \to -\omega \sin(\omega t)$

Does it really approximate an Operator alone? Mathematically not! With a trained model, tried evaluating $\hat{G}: \cos(\omega t) \to -\omega \sin(\omega t)$

Does it really approximate an Operator alone? Mathematically not! With a trained model, tried evaluating $\hat{G}: \cos(\omega t) \to -\omega \sin(\omega t)$

Network approximates Operator with encoded input function

Tried with operator, $G: \cos(\omega t) \to x$

```
Tried with operator, G:\cos(\omega t)\to x with constraint, \dot{x}=\cos(\omega t)
```

Tried with operator, $G:\cos(\omega t)\to x$ with constraint, $\dot{x}=\cos(\omega t)$

Tried with operator, $G:\cos(\omega t)\to x$ with constraint, $\dot{x}=\cos(\omega t)$

This includes automatic differentiation, \dot{x}

estimated

— estimated
— exact

Why?

Why?

Approximating, $\hat{G}: \cos(\omega t) \to x$

Why?

Approximating,
$$\hat{G}: \cos(\omega t) \to x$$

With constraint,
$$\frac{dx}{dt} = \cos(\omega t)$$

Why?

Approximating,
$$\hat{G}: \cos(\omega t) \to x$$

With constraint,
$$\frac{dx}{dt} = \cos(\omega t)$$

What operator we try to approximate?

Why?

Approximating,
$$\hat{G}: \cos(\omega t) \to x$$

With constraint,
$$\frac{dx}{dt} = \cos(\omega t)$$

What operator we try to approximate? $\frac{d}{dt}(.)$?

Why?

Approximating,
$$\hat{G}: \cos(\omega t) \to x$$

With constraint,
$$\frac{dx}{dt} = \cos(\omega t)$$

What operator we try to approximate?
$$\frac{d}{dt}(.)$$
?

Integral Operator

Why?

Approximating,
$$\hat{G}: \cos(\omega t) \to x$$

With constraint,
$$\frac{dx}{dt} = \cos(\omega t)$$

What operator we try to approximate? $\frac{d}{dt}(.)$?

Integral Operator

$$x = \int cos(\omega t)$$

Why?

Approximating,
$$\hat{G}: \cos(\omega t) \to x$$

With constraint,
$$\frac{dx}{dt} = \cos(\omega t)$$

What operator we try to approximate? $\frac{d}{dt}(.)$?

Integral Operator

$$x = \int cos(\omega t) + C$$

Physics Informed Deep-o-net - integral constant

Source code

Available on github

https://github.com