Analysis 2 W3-2

fat

March 7, 2024

Last time:

Theorem 1 (Hahn-Banach theorem). Let X be a vector space over \mathbb{C} and let p a gauge on X. Let Y be a proper subspace of X. Let $\Lambda \in L(Y, \mathbb{C})$ satisfy

$$Re(\Lambda x) \le p(x) \ \forall x \in Y$$

Then \exists an extension $\tilde{\Lambda} \in L(X, \mathbb{C})$ s.t.

$$Re(\tilde{\Lambda}x) \le p(x) \ \forall x \in X$$

Proof.

We will first prove the case that X is over \mathbb{R} .

$$\mathcal{D} = \{(Z, T) : Y \subseteq Z \subseteq X, T \in L(Z, \mathbb{R}) \text{ extends } \Lambda \text{ and } T_x \leq p(x) \ \forall x \in Z\}$$

 $(Y,\Lambda) \in \mathcal{D}$, so $\mathcal{D} \neq \phi$. Define \leq on \mathcal{D} as follows: $(Z_1,T_1) \leq (Z_2,T_2)$ if $Z_1 \subseteq Z_2$ and T_2 extends T_1 . Let \mathcal{C} be a chain (totally ordered subset) in (\mathcal{D},\leq) .

Claim. \mathcal{C} has an upper bound in (\mathcal{D}, \leq) .

Proof.

Define

$$Z = \bigcup_{\alpha \in \mathcal{C}} Z_{\alpha}, T_z = T_{\alpha}z \text{ if } z \in Z_{\alpha}$$

Z is a vector sapec. Let $z_1, z_2 \in Z$. Then $z_1 \in Z_{\alpha}$ and $z_1 \in Z_{\beta}$ for some α, β . Either $Z_{\alpha} \subseteq Z_{\beta}$ or the converse. Assume the former. Then $z_1, z_2 \in Z_{\beta}$. So $\lambda_1 z_1 + \lambda_2 z_2 \in Z_{\beta} \subseteq Z \ \forall \lambda_1, \lambda_2 \in \mathbb{R}$. $\Rightarrow Z$ is a vector space. Similarly, you can show that $T_{\alpha}z = T_{\beta}z$ if $z \in Z_{\alpha} \cap Z_{\beta}$. $\Rightarrow T$ is well-defined. If $z \in Z$, then $z \in Z_{\alpha}$ for some α .

$$T_z = T_{\alpha}z \le p(z)$$

 \Rightarrow $(Z,T) \in \mathcal{D}$ is an upper bound for \mathcal{C} . By Zorn's lemma, \mathcal{D} has a maximal element (\bar{Z},\bar{T}) .

Claim. $\bar{Z} = X$

Proof.

Suppose not. Pick $x_0 \in X \setminus \bar{Z}$. By one-step extension, we can find T_1 on $\bar{Z}' = \bar{Z} \bigoplus span\{x_0\}$ s.t. T_1 extends \bar{T} and $T_1(x) \leq p(x) \ \forall x \in \bar{Z}$. Then $(\bar{Z}, \bar{T}) \leq (\bar{Z}', T_1) \in \mathcal{D}$. Impossible but maximal. So $\bar{Z} = X$.

 $\tilde{\Lambda} = \bar{T}$ is our desired extension.

What can we do if X is over \mathbb{C} ? A complex linear functional is uniquely determined by its real or imaginary part.

Lemma 1. (a) Let $\Lambda \in L(X, \mathbb{C})$. Then its real part and imaginary part are in $L(X, \mathbb{R})$ when X is regarded as a vector space over \mathbb{R} . Moreover,

$$\Lambda x = Re(\Lambda x) - iRe(\Lambda(ix)) \ \forall x \in X$$

(b) Conversely, if $\Lambda_1 \in L(X, \mathbb{R}), \exists ! \Lambda \in L(X, \mathbb{C}) \text{ s.t. } Re(\Lambda) = \Lambda_1.$

Proof.

(a) $\Lambda x = Re(\Lambda x) + iIm(\Lambda x) = \Lambda_r x + i\Lambda_i x$. We claim that $\Lambda_r(ix) = -\Lambda_i x$, $\Lambda_i(ix) = \Lambda_r x$. Clearly, this implies (a). To prove this,

$$\Lambda(ix)=i\Lambda x$$

$$\Rightarrow \Lambda_r(ix)+i\Lambda_i(ix)=-\Lambda_i x+i\Lambda_r x$$

(b) Define $\Lambda x = \Lambda_1 x - i\Lambda_1(ix)$. Then $Re(\Lambda x = \Lambda_1 x)$. Need to check $\Lambda \in L(X, \mathbb{C})$. Let $x, y \in X$.

$$\Lambda(x+y) = \lambda_1(x+y) - i\Lambda_1(i(x+y))$$
$$= \Lambda_1 x - i\Lambda_1(ix) + \Lambda_1 y - i\Lambda_1(iy) = \Lambda x + \Lambda y$$

Also, let $a, b \in \mathbb{R}$.

$$\begin{split} &\Lambda((a+bi)x) = \Lambda_1((a+bi)x) - i\Lambda_1((-b+ai)x) \\ &= \Lambda_1(ax) - i\Lambda_1(iax) + \Lambda_1(ibx) - i\Lambda_1(-bx) \\ &= a\Lambda_1x - ia\lambda_1(ix) + b\Lambda_1(ix) + ib\Lambda_1x \\ &= a\Lambda x + ib(\Lambda_1x - i\Lambda_1(ix)) \\ &= a\Lambda x + ib\Lambda x = (a+bi)\Lambda x \end{split}$$

So $\Lambda \in L(X, \mathbb{C})$. Uniqueness is easy to check.

Let $\Lambda \in L(Y,\mathbb{C})$ s.t. $Re(\Lambda x) \leq p(x) \ \forall x \in Y$. \exists a real extension Λ_1 of $Re(\Lambda)$ s.t. $\Lambda_1 x \leq p(x) \ \forall x \in X$. By lemma, $\exists \tilde{\Lambda} \in L(X,\mathbb{C})$ s.t. $Re(\tilde{\Lambda}) = \Lambda_1$.

2

1 Hahn-Banach on normed spaces

Theorem 2. Let $(X, \|\cdot\|)$ be a normed sapce and let $Y \subseteq X$ be a proper subspace. Then any $\Lambda \in Y^*$ admits an extension to some $\tilde{\Lambda} \in X^*$ with $\|\tilde{\Lambda}\| = \|\Lambda\|$.

Proof.

If such an extension exists, then

$$\|\tilde{\Lambda}\| = \sup_{x \in X, x \neq 0} \frac{|\tilde{\Lambda}x|}{\|x\|} \ge \sup_{x \in Y, x \neq 0} \frac{|\tilde{\Lambda}x|}{\|x\|} = \|\Lambda\|$$

It suffices to show \leq . Consider the real case. Take $p(x) = ||\Lambda|| ||x||$. $|\Lambda x| \leq ||\Lambda|| ||x|| \ \forall x \in Y = p(x)$. By Hahn-Banach, $\exists \tilde{\Lambda} \in L(X, \mathbb{R})$ s.t.

$$\tilde{\Lambda}x \le p(x) = ||\Lambda|||x|| \ \forall x \in X$$

Replace x by -x,

$$\begin{split} -\tilde{\Lambda}x &\leq \|\Lambda\| \|x\| \\ \Rightarrow |\tilde{\Lambda}x| &\leq \|\Lambda\| \|x\| \\ \Rightarrow \|\tilde{\Lambda}\| &< \|\Lambda\| \end{split}$$

So $\tilde{\Lambda} \in X^*$. For the complex case, let $\tilde{\Lambda}$ be an extension of Λ s.t.

$$Re(\tilde{\Lambda}x) \le ||\Lambda|||x|| \ \forall x \in X$$

For any $x \in X, \exists e^{i\theta}$ s.t.

$$\tilde{\Lambda}x = |\tilde{\Lambda}x|e^{i\theta}$$

Then

$$\begin{split} |\tilde{\Lambda}x| &= e^{-i\theta}\tilde{\Lambda}x = \tilde{\Lambda}(e^{i\theta}x) \\ &= Re(\tilde{\Lambda}(e^{i\theta}x)) \le \|\Lambda\| \|e^{i\theta}x\| = \|\Lambda\| \|x\| \\ \Rightarrow \|\tilde{\Lambda}\| \le \|\Lambda\| \end{split}$$

Consequences:

Proposition 1. Let $(X, \|\cdot\|)$ be normed space and let Y be a closed proper subspace of X. For any $x_0 \in X \setminus Y, \exists \Lambda \in X^*$ s.t. $\|\Lambda\| = 1$.

$$\Lambda x_0 = dist(x_0, Y), \Lambda y = 0 \ \forall y \in Y$$

Proof.

Write $d = dist(x_0, Y)$. d > 0 because Y is closed and $x_0 \in X \setminus Y$. Consider $y' = Y \bigoplus span\{x_0\}$. Define Λ_0 on Y' by setting

$$\Lambda_0(y + cx_0) = cd$$

0)

 Λ_0 is linear and vanishes on Y.

$$0 < d = \inf_{z \in Y} ||x_0 + z|| \le \frac{1}{|c|} ||cx_0 + y|| \ \forall y \in Y \ \forall c \ne 0$$
$$\Rightarrow |c| \le \frac{1}{d} ||cx_0 + y|| \ \forall y \in Y, \ \forall c \in \mathbb{C}$$
$$|\Lambda_0(y + cx_0)| \le ||cx_0 + y||$$
$$\Rightarrow ||\Lambda_0|| \le 1$$

 $\Lambda_0 \in (Y')^*$.

Claim. $\|\Lambda_0\| = 1$.

Proof.

Pick $y_n \in Y$ s.t. $||y_n + x_0|| \to d$. Then

$$d = \Lambda_0(y_n + x_0) \le ||\Lambda_0|| ||y_n + x_0|| \to d||\Lambda_0||$$
$$||\Lambda_0|| \ge 1$$

By Hahn-Banach, we obtain $\Lambda \in X^*$ s.t. $\|\Lambda\| = 1$, $\Lambda x_0 = d$, $\Lambda y = 0 \ \forall y \in Y$.

Corollary 1. $\forall x_0 \in X \setminus \{0\}, \exists \Lambda \in X^* \text{ s.t. } \Lambda x_0 = ||x_0|| \text{ and } ||\Lambda|| = 1.$

Proof.

Take
$$Y = \{0\}$$
.

Remark 1. A bounded linear functional with these properties is called a "dual point" of x_0 . Dual points may not be unique.

Example 1. $X = \mathbb{R}^2$, ||(x,y)|| = |x| + |y|, $x_0 = (1,0)$. Check: $\Lambda_1(x,y) = x$, $\Lambda_2(x,y) = x + y$ are dual points of x_0 .

Corollary 2. For any $x \in X$,

$$||x|| = \sup_{\Lambda \in X^*, \Lambda \neq 0} \frac{|\Lambda x|}{||\Lambda||}$$

Proof.

Assume $x \neq 0$.

$$|\Lambda x| \le ||\Lambda|| ||x||$$

$$\Rightarrow \|x\| \geq \sup_{\Lambda \in X^*, \Lambda \neq 0} \frac{|\Lambda x|}{\|\Lambda\|}$$

From the previous cor., $\exists \Lambda_0 \in X^*$ s.t. $\Lambda_0 x = ||x||$ and $||\Lambda_0|| = 1$.

$$||x|| = \frac{|\Lambda_0 x|}{||\Lambda_0||} \le \sup_{\Lambda \in X^*, \Lambda \ne 0} \frac{|\Lambda x|}{||\Lambda||}$$

Remark 2. Not only we can recover the norm of a vector from the bounded linear functionals, but the sup can be strengthened to max as it is attained by Λ_0 .

2 The dual space of $C^0([a,b])$

Examples: For $x \in [a, b]$, $\Lambda_x f = f(x)$. Fix $g \in C^0([a, b])$, $\Lambda_g f = \int_a^b fg$. Are there any others? These can be described by the Stieltjes integrals.

Definition 1. Suppose that f and α are complex-valued function defined on [a, b]. Suppose that P, T a partition pair of [a, b]. We define the **Riemann-Stieltjes sum**

$$R(f, \alpha, P, T) = \sum_{j=1}^{n} f(t_j)(\alpha(x_j) - \alpha(x_{j-1}))$$

We say that f is **Riemann-Stieltjes integrable** w.r.t. α if the sum converges to a number when $mesh(P) \to 0$. Write the integral as $\int_a^b f(x) d\alpha(x)$ or $\int f d\alpha$.

$$\mathcal{R}_{\alpha}([a,b]) = \{\text{R-S integrable functions w.r.t. } \alpha \text{ on } [a,b]\}$$

Remark 3. You can define Lebesgue-Stieltjes integral, by using the measure $\mu([a,b]) = \alpha(b) - \alpha(a)$. Since we are working on $C^0([a,b])$, doesn't matter if it is Lebesgue or Riemann.

Easy to verify:

- R-S integral is linear in both f and α .
- Every $f \in C^0([a,b])$ is R-S integrable w.r.t a bounded variation function α on [a,b]. Also

$$\left| \int_{a}^{b} f d\alpha \right| \leq T_{\alpha}(a, b) \cdot ||f||_{\infty}$$

Evaluation function is a R-S integral:

Fix $c \in (a, b)$. Take $\alpha = \chi_{[c,b]}$. When $c \in P, \exists ! i \text{ s.t. } c \in (x_{i-1}, x_i)$.

$$\sum_{j=1}^{n} f(t_j)(\alpha(x_j) - \alpha(x_{j-1})) = f(t_i)$$

When $mesh(P) \to 0$, this converges to f(c)

$$\int f \mathrm{d}\chi_{[c,b]} = f(c)$$

Similarly,

$$\int f \mathrm{d}\chi_{(c,b]} = f(c)$$

There should be some correspondence between $(C^0([a,b]))^*$ and R-S integrals. But the example above shows that it is not 1-1. Restrict to a smaller class:

Definition 2. Let $BV_0([a,b])$ be set of all functions α of bounded variation s.t. $\alpha(a) = 0$. Define

$$V([a,b]) = \{\alpha \in BV_0([a,b]) : \alpha \text{ is right-continuous on } [a,b)\}$$

Norm on V([a, b]): Total variation.

Here are some facts:

- Every $\alpha \in BV_0([a,b])$ is equal to a unique $\tilde{\alpha} \in V([a,b])$ except at possibly countably many points.
- $\int f d\alpha = \int f d\tilde{\alpha} \ \forall f \in C^0([a,b]).$
- If $\int f d\alpha_1 = \int f d\alpha_2 \ \forall f \in C^0([a,b])$ and $\alpha_1, \alpha_2 \in V([a,b])$, then $\alpha_1 = \alpha_2$.

Using these facts, we see the map $\alpha \to \Lambda_{\alpha}$, where

$$\Lambda_{\alpha}f = \int f \mathrm{d}\alpha$$

defines a linear injective map $\Phi: V([a,b]) \to (C^0([a,b]))^*$. Moreover,

$$|\Phi(\alpha)f| = |\Lambda_{\alpha}f| \le T_{\alpha}(a,b)||f||$$

$$\Rightarrow \|\Phi(\alpha)\| \le T_{\alpha}(a,b) \ \forall \alpha \in V([a,b]).$$

Theorem 3 (Riesz representation theorem, baby version). \exists an isometric isomorphism from $(C^0([a,b]))^*$ to V([a,b]).