Primeira Prova de Introdução à Lógica - GMM103

Nome: Pedro Antônio de Souza

Matrícula: 201810557

1. Dadas as proposições compostas

$$P : \sim (p \land q \rightarrow r),$$

$$Q : \sim (p \to (q \to r)),$$

$$R : \sim p \leftrightarrow (q \uparrow r)$$

construa as tabelas-verdade de P, Q e R, e analise a veracidade das afirmações abaixo:

$$I - P \Rightarrow R$$

$$I - P \Rightarrow R$$
 $II - Q \Rightarrow P$

III -
$$R \Leftrightarrow Q$$

IV -
$$P \Leftrightarrow R$$

Tabela-verdade de *P*

p	q	r	$p \wedge q$	$p \land q \rightarrow r$	$\sim (p \land q \rightarrow r)$
V	V	V	V	V	F
V	V	F	V	F	V
V	F	V	F	V	F
V	F	F	F	V	F
F	V	V	F	V	F
F	V	F	F	V	F
F	F	V	F	V	F
F	F	F	F	V	F

Tabela-verdade de Q

p	q	r	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$	$\sim (p \to (q \to r))$
V	V	V	V	V	F
V	V	F	F	F	V
V	F	V	V	V	F
V	F	F	V	V	F
F	V	V	V	V	F
F	V	F	F	V	F
F	F	V	V	V	F
F	F	F	V	V	F

Tabela-verdade de R

p	q	r	~p	$q \uparrow r$	$\sim p \leftrightarrow (q \uparrow r)$
V	V	V	F	F	V
V	V	F	F	V	F
V	F	V	F	V	F
V	F	F	F	V	F
F	V	V	V	F	F
F	V	F	V	V	V
F	F	V	V	V	V
F	F	F	V	V	V

A tabela-verdade abaixo foi construída para facilitar a análise das afirmações I, II, III e IV.

Tabela-verdade de P, Q e R

p	q	r	P	Q	R
V	V	V	F	F	V
V	V	F	V	V	F
V	F	V	F	F	F
V	F	F	F	F	F
F	V	V	F	F	F
F	V	F	F	F	V
F	F	V	F	F	V
F	F	F	F	F	V

Analisando a tabela-verdade acima, temos que:

- A afirmação I $(P \Rightarrow R)$ é **falsa**, pois na única configuração em que a proposição P é verdadeira, R é falsa.
- A afirmação II $(Q \Rightarrow P)$ é **verdadeira**, pois sempre que a proposição Q é verdadeira, P também é verdadeira.

- A afirmação III $(R \Leftrightarrow Q)$ é **falsa**, pois suas tabelas-verdade são diferentes.
- A afirmação IV $(P \Leftrightarrow R)$ é **falsa**, pois suas tabelas-verdade são diferentes.

2. Dada a proposição

$$P:(p \lor q) \rightarrow (r \land s)$$

construa a tabela-verdade de P e verifique se P é uma tautologia, uma contradição ou uma contingência.

Tabela-verdade de P

p	q	r	S	$p \lor q$	$r \wedge s$	$(p \lor q) \to (r \land s)$
V	V	V	V	V	V	V
V	V	V	F	V	F	F
V	V	F	V	V	F	F
V	V	F	F	V	F	F
V	F	V	V	V	V	V
V	F	V	F	V	F	F
V	F	F	V	V	F	F
V	F	F	F	V	F	F
F	V	V	V	V	V	V
F	V	V	F	V	F	F
F	V	F	V	V	F	F
F	V	F	F	V	F	F
F	F	V	V	F	V	V
F	F	V	F	F	F	V
F	F	F	V	F	F	V
F	F	F	F	F	F	V

Através da análise da tabela-verdade, pode-se afirmar que P é uma **contingência**, já que é possível que seu resultado seja verdadeiro ou falso.

3. Dada a sequência de proposições simples e operações lógicas

$$p \land {}^{\smallfrown} q \lor r \to {}^{\backprime} p \longleftrightarrow {}^{\backprime} s \lor q \land r$$

utilize o menor número possível de parênteses para que tal sequência seja uma condicional com antecedente dado por uma conjunção e consequente dado por uma disjunção.

Observando a precedência dos operadores lógicos, uma solução com o mínimo de parênteses utilizados é:

$$p \land \neg (q \lor r) \rightarrow (\neg p \leftrightarrow \neg s) \lor (q \land r)$$