

Winning Space Race with Data Science

Abiyselassie Gashaw August 30, 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data Collection through API
- Data Collection with Webscraping
- Data Wrangling
- Exploratory Data Analysis with SQL
- Exploratory Data Analysis with Data Visualization
- Interactive Visual Analytics with Folium
- Interactive Dashboard with Plotly Dash
- Machine Learning Predictions

Summary of all results

- Exploratory Data Analysis Result
- Interactive Analytics in Screenshots
- Predictive Analytics Result

Introduction

Project background and context

- SpaceX has been the most successful in making space travel affordable for everyone over decades accomplishing tasks like sending spacecraft to the International Space Station, providing satellite Internet access & sending manned missions to Space.
- It advertises on its website, Falcon 9 rocket launches, which are known for incorporating several reusable technologies that have revolutionized space travel by significantly reducing the cost of launching payloads into space.
- It launches with a relatively inexpensive cost of 62 million dollars; but other rocket providers cost upward of 165 million dollars each.
- Much of its significant cost savings is due to SpaceX's Falcon 9 innovative technology to reuse 1st stage.
- Therefore, if the '1st stage will land' can be determined, the cost of each launch can also be determined.

Problems to find answers

- Predict if the 1st stage of Falcon 9 will land successfully.
- Predict if SpaceX will reuse the 1st stage if the cost of each launch can be determined.
- Determine what attributes (payload mass, flight No., Orbit, etc.) are correlated with successful landings.
- Identify factors that affect successful 1st stage landing of Falcon 9.
- Detect ML model that perform the best for predicting the successful landing.

Methodology

Executive Summary

- Data collection methodology:
 - The data were collected from Public source using SpaceX API.
 - Falcon 9 launch records were webscraped from Wikipedia page using Beautiful Soup library.
- Perform Data Wrangling:
 - The data was wrangled to determine Success rate of Landing class & all successful landings were created.
- Perform Exploratory Data Analysis (EDA) using Data Visualization and SQL
 - Scatterplots, line plots & bar chart were plotted to identify factors for successful landing & yearly trend.
 - Total payload mass, Total No. of successful & failure mission outcomes, etc. were selected from SpaceXTBL
- Perform Interactive Visual Analytics using Folium and Plotly Dash
 - An Interactive Map with Folium was built to visualize a launch site proximity to geographical markers.
 - A Dashboard with Plotly Dash (Pie chart, Scatterplot, Payload range slider interaction) was built to visualize launch sites with most success & payload ranges.
- Perform Predictive Analysis using Classification Models
 - Successful landing outcomes were predicted by building ML models(LR, SVM, Decision Tree, KNN), tuning Hyperparameters & evaluating based on accuracy score and confusion matrix

Data Collection

- The data were collected from Public source of SpaceX API &
 - Launch data was obtained using the get requests
- The data were collected by webscraping SpaceX Wikipedia page (updated on 9th June 2021)
 - Falcon 9 Launch data, another popular data source was obtained using Beautiful Soup library
- The data obtained from SpaceX API & Webscraping were wrangled
 - A landing outcome label was created from the Outcome column
 - Success rate of Landing class was determined

Landing outcome labels were trained with

- 1 means the booster successfully landed
- O means it was unsuccessful

Data Collection – SpaceX API

GitHub URL of the completed SpaceX API calls notebook

(https://github.com/abiyselassie22/testpro/blob/master/jupyter-labs-spacex-data-collection-api%20(1).ipynb)

Data Collection - Scraping

GitHub URL of the completed web scraping notebook (https://github.com/abiyselassie22/testpro/blob/master/jupyter-labs-webscraping.ipynb)

Data Wrangling

GitHub URL of your completed data wrangling related notebooks

(https://github.com/abiyselassie22/testpro/blob/master/IBM-DS0321EN-

SkillsNetwork_labs_module_1_L3_labs-jupyter-spacex-data_wrangling_jupyterlite.jupyterlite.ipynb)

EDA with Data Visualization

The following attributes/features can be used to determine if Falcon 9's 1st stage can be reused.

Scatterplots were plotted to show if there is any relationship between

- Flight Numbers & Launch Site;
- Payload & Launch Site;
- Flight Number & Orbit type;
- Payload & Orbit type
- ✓ 1st stage is more likely to land successfully when Flight No. (continuous launch attempts) increases.

Bar chart

• was plotted to show if there are any relationship between success rate & each orbit type

Line chart

was drawn to show the increasing yearly trend of launch success rates.

GitHub URL of your completed EDA with data visualization notebook (https://github.com/abiyselassie22/testpro/blob/master/IBM-DS0321EN-SkillsNetwork labs module 2 jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb)

EDA with SQL

- Names of the unique launch sites were selected from the space mission SPACEXTBL
- 5 Records of launch sites beginning with the string 'CCA' were selected from SPACEXTBL
- Total payload mass carried by boosters launched by NASA (CRS) were selected
- Average payload mass carried by booster version F9 v1.1 was selected.
- Date when the first successful landing outcome in ground pad was achieved was selected.
- Names of boosters with success in drone ship & payload mass >= 4000 &<=6000 were selected
- Total No. of successful & failure mission outcomes were selected
- Names of the booster_versions which have carried the maximum payload mass were selected.
- Count of landing Failure / Success outcomes b/n date 2010-06-04 & 2017-03-20 were ranked

GitHub URL of your completed EDA with SQL notebook

Build an Interactive Map with Folium

- map.add_child(circle) & map.add_child(marker) objects were created & added to folium map to make the map look less congested & indicate points or areas of our interest.
- MarkerCluster object was added to simplify the folium map containing many markers having the same coordinate & group the multiple nearby markers into clusters based on proximity. This is used to mark all launch sites, success/failed launches for each site on an interactive map.
- MousePosition object was added on the folium map to get coordinate for a mouse over a point on the map & to easily find coordinates of any points of interests (e.g. Launch site).
- Map.add_child(lines) objects were used to add a polyline to the Folium map to visualize connections / draw distances between a launch site & their close proximities (selected coastline, railway, highway, city, etc.). This can be used to choose an optimal launch site.

GitHub URL of your completed Interactive map with Folium map

(https://nbviewer.org/github/abiyselassie22/testpro/blob/master/IBM-DS0321EN-SkillsNetwork_labs_module_3_lab_jupyter_launch_site_location.jupyterlite.ipynb)

Build a Dashboard with Plotly Dash

- SpaceX Launch Records Dashboard with dropdown list was created to let us select all sites and different launch sites.
- Pie charts for all sites & selected sites were rendered & added to the SpaceX Launch Records

 Dashboard to visualize the launch success counts for all sites & entered sites.
- Payload range slider interaction was rendered & added to the SpaceX Launch Records Dashboard to find if selection of variable payloads is correlated with the mission outcome.
- Scatterplot chart were rendered & added to the SpaceX Launch Records Dashboard to visualize how payload may be correlated with mission outcomes for all sites & selected site(s).

GitHub URL of your completed Plotly Dash lab

(https://github.com/abiyselassie22/testpro/blob/master/spacex_dash_app.py)

Predictive Analysis (Classification)

GitHub URL of your completed predictive analysis lab,

https://github.com/abiyselassie22/testpro/blob/master/IBM-DS0321EN-

SkillsNetwork_labs_module_4_SpaceX_Machine_Learning_Prediction_Part_5.jupyterlite.ipynb

Results

- Exploratory Data Analysis results
 - Visualization
 - SQL
- Interactive Analytics Demo in screenshots
 - Folium
 - Dashboard with Plotly Dash
- Predictive Analysis results
 - Machine Learning Prediction
 - Classification Accuracy
 - Confusion Matrix

Flight Number vs. Launch Site

Figure 1. Scatterplot showing the relationship between Flight Number & Launch Site

- In CCAFS LC-40 launch site, the Success appears related to the Nos. of flights;
- ✓ as the No. of Success labeled class 1 increases with increase in Flight Nos.
- While in KSC LC-39A & VAFB SLC 4E launch sites, success have no relationship with Flight Nos.
- ✓ as the No. of their Successes show no difference when Flight Nos. increases.

Payload vs. Launch Site

Figure 2. Scatterplot showing the relationship between Payload & Launch Site

The Payload vs. Launch Site scatter point chart shows that

- Lighter weighted payloads (1000-4000kg) has a success rate of 100% for the launch site VAFB-SLC.
- √ there are no rockets launched for heavy payload mass(>10000) for VAFB-SLC launch site.
- CCAFS LC-40 has a success rate of 60%,
- ✓ but if the mass is above > 10,000 kg, the success rate is 100% (Class 1).

Success Rate vs. Orbit Type

- The **plotted bar chart** shows that
- ✓ orbits ES-L1, GEO, HEO, & SSO have highest success rates, 100%
- ✓ orbit VLEO, 90%.
- ✓ Orbit, ISS, 60%
 having lowest success rate

Figure 3. Bar chart showing the relationship between Success Rate & Orbit Type.

Flight Number vs. Orbit Type

Figure 4. Scatterplot showing the relationship between Orbit Type & Flight Number.

- The Scatterplot shows that the Success appears related to the Nos. of flights in the LEO orbit;
- ✓ as the No. of Success labeled class 1 increases with increase in Flight Nos.
- while there seems to be no relationship between success rate & Flight Nos. in GTO orbit.
- ✓ as the No. of its Success shows no difference when Flight Nos. increases.

Payload vs. Orbit Type

Figure 5. Scatterplot showing the relationship between Payload & Orbit Type.

- The scatterplot shows that with heavy payloads, the successful landing / positive landing rate are more for Polar (PO), LEO & ISS.
- However, successful landing /positive landing rate for GTO cannot be distinguished as both positive landing rate & negative landing rate (unsuccessful mission).

Launch Success Yearly Trend

The line chart

• shows that the Launch success rate since 2013 has kept increasing over time till 2020.

Figure 6. Line chart showing Launch Success Yearly Trend.

All Launch Site Names

Names of unique launch sites in space mission

 were distinctly selected from SpaceX Table as CCAFS LC-40, VAFB SLC-4E, KSC LC-39A, & CCAFS SLC-40 in the query result on the Right.

Launch Site Names Begin with 'CCA'

[* sqlite: Done.			ounch_Site LI	KE'%CCA%'LIMIT 5;				۰	↑ ↓ 占 ♀ ↑
[12]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013-01- 03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

- 5 Records where launch sites begin with the string 'CCA'
- were selected from SpaceX Table as shown in the query result above.

Total Payload Mass

The total payload mass carried by boosters launched by customer NASA (CRS)

• was selected from SpaceX Table and calculated as 45596 kg in the query result above.

Average Payload Mass by F9 v1.1

The average payload mass carried by booster version F9 v1.1

• was selected from SpaceX Table & displayed as 2534.67 in the query result above.

First Successful Ground Landing Date

The Date when the 1st successful achievement of landing outcome took place in ground pad

• was selected from SpaceX Table as 22 August 2015 in the query result above.

Successful Drone Ship Landing with Payload between 4000 and 6000

15]:	%sql SELECT Boo	ster_Version,Landi	ng_Outcome, PAYLOAD_M	SSKG	_ FROM	SPACEXTBI	. WHERE	Landing_O	utcome='	'Success	(drone	ship)'A	ND PAYL	OAD_MAS	KG_	>=4000	AND I	PAYI
	4																	
	* sqlite:///my	_data1.db																
15]:	Booster_Version	Landing_Outcome	PAYLOAD_MASS_KG_															
	F9 FT B1022	Success (drone ship)	4696															
	F9 FT B1026	Success (drone ship)	4600															
	F9 FT B1021.2	Success (drone ship)	5300															
	F9 FT B1031.2	Success (drone ship)	5200															

Names of the boosters which have success in drone ship &

have payload mass greater than 4000 but less than 6000 kg

• were selected from SpaceX Table & listed down in the sql query result above.

Total Number of Successful and Failure Mission Outcomes

The total no. of successful & failure mission outcomes

- was selected from SpaceX Table &
- listed down as 1 Failure & 98 Successful mission outcomes in the sql query result above.

Boosters Carried Maximum Payload

The names of the booster_versions which have carried the maximum payload mass

• were selected from SpaceX Table & listed down in the sql query result below.

[17]:	%sql SELECT Boo	ster_Version,	PAYLOAD	MASS_K	G_ FRO	M SPACEXTBL	WHERE	PAYLOAD_MAS	S_KG_	= (se	elect	MAX(PAYLO	AD_MASS	KG)	FROM	SPACEX	TBL)
	* sqlite:///my Done.	_data1.db															
[17]:	Booster_Version	PAYLOAD_MAS	SS_KG_														
	F9 B5 B1048.4		15600														
	F9 B5 B1049.4		15600														
	F9 B5 B1051.3		15600														
	F9 B5 B1056.4		15600														
	F9 B5 B1048.5		15600														
	F9 B5 B1051.4		15600														
	F9 B5 B1049.5		15600														
	F9 B5 B1060.2		15600														
	F9 B5 B1058.3		15600														
	F9 B5 B1051.6		15600														
	F9 B5 B1060.3		15600														
	F9 B5 B1049.7		15600														

2015 Launch Records

Launch records which will display the month names, failure landing_outcomes in drone ship, booster versions, & launch_site for the months in year 2015

were selected from SpaceX Table and listed down in the sql query result above.

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
[20]: X%sql
SELECT Landing_Outcome, COUNT(Landing_Outcome) AS COUNT, Rank() OVER (ORDER By COUNT(Landing_Outcome) DESC) FROM SPACEXTBL
WHERE Landing_Outcome = 'Failure (drone ship)' OR Landing_Outcome = 'Success (ground pad)' AND (Date between '2010-06-04' and '2017-03-20')
Group By Landing_Outcome
ORDER By COUNT DESC

* sqlite:///my_data1.db
Done.

[20]: Landing_Outcome COUNT Rank() OVER (ORDER By COUNT(Landing_Outcome) DESC)

Success (ground pad) 5 1

Failure (drone ship) 5 1
```

Count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 & 2017-03-20

- was selected from SpaceX Table &
- ranked in descending order & counted as 5 Success (ground pad)) or 5 Failure (drone ship) as shown in the sql query result above.

Folium Map showing all Launch Sites Marked

- All launch sites were created & added on the site map
- ✓ using folium.Circle & folium.Marker objects as shown above.
- Launch Sites marked were CCAFS LC-40, VAFB SLC-4E, KSC LC-39A, & CCAFS SLC-40

Folium Map showing marked success/failed launches for Launch Sites

- The success/failed launches for each launch site were created and marked on the site map using MarkerCluster() objects
- Zooming in on the launch sites, Launch sites are marked; where
- ✓ each green marker represent a launch which was successful &
- ✓ each red marker stands for a failed launch as shown in the screenshot map on the Right.
- Launch Site KSC LC-39A (more green markers)
- ✓ shows relatively higher success rate than CCAFS SLC-40 & VAFB SLC-4E

Folium Map showing distances b/n selected Launch Site to its proximities

The distances between a launch site CCAFS SLC-40 to its closest coastline, highway, railway & city

- were calculated by finding their coordinates on the map
- ✓ first using MousePosition objects; &
- ✓ then a PolyLine was drawn between the CCAFS SLC-40 to its selected proximities
- Launch site is in close proximity to the
- √ Highway (0.64 km) & Coastline (0.88 km)
- But farther away from
- ✓ City (Melbourne) (54.18 km).

Dashboard showing Total Successful Launches Count for all Sites

The Pie Chart shows when all sites are chosen from the Dropdown menu.

• KSC LC-39A (41.7%) is the launch site with the largest successful launches.

Dashboard showing Total Success & Failed Counts for KSC LC-39A

The Pie Chart shows when launch site KSC LC-39A is chosen from the Dropdown menu.

- 1 represents successful launches &
- O represents failed launches.
- 76.9% of the launches done at KSC LC-39A are successful launches.
- KSC LC-39A is displayed as the launch site with highest launch success ratio.

Dashboard showing Payload vs. Launch Outcome Scatter Plot for all sites

- The Scatterplot shows when payload mass range is selected b/n 2500 & 8000 kg in the range slider.
- Class 0 represents failed launches while class 1 represents successful launches.
- The payload range of 20000-4000 kg has the highest launch success rate whereas the payload range of 6000-8000 kg has the lowest launch success rate.
- The Booster version FT tends to show the highest launch success rate
- ✓ with a greater number of successful launches reaching class 1.

Classification Accuracy

- All the Classification models (LR, SVM, Tree and KNN)
- share the same accuracy score (0.83) on test set.
- GridSearchCV.best_scores_
- ✓ used to compare classification models as shown in the Bar chart
- Decision tree with the tree_cv.best_score_ of 0.89 has the highest classification accuracy.

Confusion Matrix

- The confusion matrix plotted after Tree's accuracy is tested on the **test data** as shown on the **Right**.
- It shows **corrected** & **wrong predictions** of **landings** in comparison with the **actual labels**.
- The test set has only 18 rows/outcomes
- True positive (TP) is the outcome (12) when the model correctly predicts that a landing occurred when it actually did land.
- False positive (FP) is the outcome (3) when the model predicts a landing when it didn't actually land.
- False Negative (FN) is the outcome (O) when model incorrectly predicted no landing when there was one.
- True Negative (TN) is the outcome (3) when model correctly predicted no landing.

Confusion Matrix (Continued)

The weighted Average of F1-Score (0.81)

• balances precision & recall gained from Confusion Matrix as shown in query result below.

```
from sklearn.metrics import f1_score
       f1 score(Y test, yhat, average='weighted')
       0.8148148148148149
     from sklearn.metrics import classification report, confusion matrix
[36]:
     import itertools
     cnf matrix = confusion matrix(Y test, yhat)
     np.set printoptions(precision=2)
     print (classification_report(Y_test, yhat))
                   precision
                                recall f1-score
                                                   support
                        1.00
                                  0.50
                                            0.67
                        0.80
                                  1.00
                                            0.89
                                                        12
                                            0.83
                                                        18
         accuracy
                                  0.75
                                            0.78
                        0.90
                                                        18
        macro avg
     weighted avg
                        0.87
                                  0.83
                                            0.81
                                                        18
```

Conclusions

- All models (LR, SVM, Decision Tree, KNN) perform best w same accuracy score (0.83) on test set.
- GridSearchCV_best scores_ (0.89) ranks 'Decision Tree' as the best model, outperforming the other models.

Confusion Matrix plays a good job in predicting outcomes with Average Accuracy F1-score (0.81)

- correctly predicted 12 (TP) of outcomes as <u>landed</u> &
- none of them (FN=O) wrongly predicted as not landed,
- ✓ showing that landing is not costly & thus SpaceX can reuse the Falcon 9 1st stage.

The following attributes/factors are attributed to the successful 1st stage landing of Falcon 9.

- ES-L1, GEO, HEO & SSO Orbits display highest success rates, 100%
- KSC LC-39A (41.7%) has the highest successful launches of all the launch sites.
- Lighter payloads have higher launch success rates than heavier payloads for all launch sites.
- Heavier payloads perform better (100%) than lighter payloads for CCAFS LC-40.

Conclusions (continued)

- The correlation of attributes (payload mass, flight No., Orbit, etc.) with another also contributed to the successful landings.
- More successful landing rate was observed for Polar (PO), LEO & ISS orbits with heavy payloads.

The other factor that is responsible for successful landing of Falcon 9 1st stage is the fact that

- all launch sites are optimally located near the Equator, the coastline, highways & railways.
- Launch sites closer to the equator seems to gain a rotational speed boost due to the Earth's rotation which can be useful in terms of fuel efficiency & payload capacity.
- Their **proximity** to the **coastline** (**oceans**) allows them to have a safe **flight** over the **water** during the **launch**, minimizing risk to populated areas.
- Their accessibility to railways & highways facilitate easy transportation of equipment & payloads.
- Launch success rate has shown an increasing yearly trend since 2013 (year when reusable technology was started). This predicts future successful landings of Falcon 9 1st stage as more promising.

Appendix

```
[34]:
     models = ['Logistic Regression', 'SVM', 'Decision Tree', 'KNN']
      GridSearchCV.best scores = [logreg cv.best score , svm cv.best score , tree cv.best score , knn cv.best score ]
      # Set the style using Seaborn
      sns.set(style="whitegrid")
      # Create a bar plot
      plt.figure(figsize=(8, 5))
      plt.bar(models, GridSearchCV.best_scores, color=sns.color palette("pastel"))
      # Adding labels and title
      plt.xlabel('Classification Models')
      plt.ylabel('Accuracy')
      plt.title('Accuracy of Classification Models')
      plt.ylim(0, 1) # Set the y-axis limits between 0 and 1
      # Display the accuracy values on top of the bars
      for i, v in enumerate(GridSearchCV.best scores ):
          plt.text(i, v + 0.01, f'{v:.2f}', ha='center', va='bottom', fontsize=10)
      # Show the plot
      plt.tight_layout()
      plt.show()
```

