VE203 Lecture Note 1 (18 SUMMER)

1. Operations on sets

```
1. \bigcup X=\{x\in A|(\exists y\in X)(x\in y)\} 是至少一个X的元素(集合)含有的元素 2. \bigcap X=\{x\in A|(\forall y\in X)(x\in y)\} 是每个X的元素(集合)含有的元素
```

2. Relations

2.1 Definition

```
1. dom R=\{x|\exists y((x,y)\in R)\}
2. ran R=\{y|\exists x((x,y)\in R)\}
3. Field: Ran R=ran R\cup dom R
```

2.2 Attributes of Relations

```
1. reflexive \forall a \in M((a,a) \in R)

2. symmetric \forall a,b \in M((a,b) \in R \Rightarrow (b,a) \in R)

3. antisymmetric \forall a,b \in M((a,b) \in R \land (b,a) \in R \Rightarrow a=b)

4. asymmetric \forall a,b \in M((a,b) \in R \Rightarrow (b,a) \not\in R)

5. transitive \forall a,b,c \in M((a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R)
```

2.3 Equivalence Relations

2.3.1 Definition

• reflexive, symmetric and transitive

2.3.2 Equivalence class

```
1. a \in M \Rightarrow [a]_R = \{b \in M | (a,b) \in R\}

2. either [a]_R = [b]_R or [a]_R \cap [b]_R = \emptyset

3. Suppose c \in [a]_R \cap [b]_R, x \in [a]_R then (x,a) \in R and (c,a) \in R, then (a,x) \in R (symmetric) and (c,x), (x,c) \in R (transitive), Also (b,c), (c,b) \in R, then (x,b), (b,x) \in R. Then x \in [b]_R Hence [a]_R \subseteq [b]_R

4. 同理证明[b]_R \subseteq [a]_R,则[a]_R = [b]_R
```

3.Orders

3.1 Partial order (\geq)

3.1.1 Definition

• reflexive, antisymmetric, transitive

3.1.2 Partially ordered set (poset)

3.2 Strictly partial order (>)

• asymmetric, transitive

3.3 Linear (total) order

- partial order
- $\forall x, y \in M((x, y) \in R \lor (y, x) \in R)$
- 就是每两个元素都要有relation(>任意两个都可以比较)

3.4 Well order

- linear order
- $(\forall A \neq \emptyset \subseteq M)(\exists x \in A)(\forall y \in A)((y, x) \in R \Rightarrow y = x).$
- 就是存在一个"最小"的x,只有x自己<x

4. Lattices

格是一种特殊的poset

4.1 Definition

 (L, \preceq) a poset, $S \subseteq L$

- $x \in L$ is an upper bound on $S \Leftrightarrow (\forall y \in S)(y \leq x)$
- $x \in L$ is an lower bound on $S \Leftrightarrow (\forall y \in S)(x \leq y)$ x是在全集L里的
- $x \in L$ is a least upper bound on $S \Leftrightarrow (x \text{ is an u.b.}) \land (\forall y \text{ is an u.b.})(y \leq x)$
- $x \in L$ is an greatest lower bound on $S \Leftrightarrow (x \text{ is a l.b.}) \land (\forall y \text{ is a l.b.})(y \leq x)$

```
S = \{2, 3\} \subseteq (\mathbb{N}, |), 1 \text{ is g.l.b}, 6 \text{ is l.u.b}
```

 (L, \preceq) a poset, $S \subseteq L$

• $(\forall x, y \in L)(\{x, y\} \text{ has l.u.b } x \vee y \text{ and g.l.b } x \wedge y)$

4.2 Example

- 1. $(\mathbb{N}, |)$, gcd(x,y) is g.l.b., lcm(x,y) is l.u.b.
- 2. Linearly ordered poset (M, \preceq) is a lattice
- 3. If $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 4), (3, 4), (1, 4)\}$, then (A, R) is not a lattice because $\{2, 3\}$ has no lower bound (l.u.b. is 4).
- 4. $(\mathcal{P}(A), \subseteq)$

4.3 Complete Lattices

L的任意子集都有l.u.b.和g.l.b.

- 非空有限格是complete lattices
- (\mathbb{R}, \leq) 不是complete lattice

If (L, \preceq) is complete lattice, max element is $\bigvee L$ If (L, \preceq) is complete lattice, min element is $\bigwedge L$

4.4 Chain Complete Posets

4.4.1 Chain

 (L, \preceq) is partial order, $X \subseteq L$ is a linear order $\Rightarrow X$ is a chain

子序是个全序

 (L, \preceq) is a linear order $\Rightarrow \forall X \subseteq L$ is a chain

4.4.2 Chain Complete

 (L, \preceq) is partial order, every chain X has l.u.b.

有最小元素,否则空链的l.g.b.确定不下来

5. Functions

5.1 Definition

 $f\subseteq A imes B$, f:A o B

 $(\forall x \in A)(\forall y, z \in B)((x,y) \in f \land (x,z) \in f \Rightarrow y = z)$ 只有一个像

f " $C=\{y|\exists x(x\in C\land (x,y)\in f)\}=\{f(x)|x\in C\}$, 值域 $f\upharpoonright C=\{(x,y)|(x,y)\in f\land x\in C\}$

5.2 Injective

5.2.1 Definition

 $(\forall x, y \in A)(\forall z \in B)((x, z) \in f \land (y, z) \in f) \Rightarrow x = y$

5.3 Composing Functions

5.3.1 Defintion

 $\operatorname{ran} f \subseteq \operatorname{dom} g, g \circ f = \{(x,y) | \exists z ((x,z) \in f \land (z,y) \in g) \}$

 $\operatorname{ran} f \subseteq \operatorname{dom} g$, 那么 $g \circ f$ 是一个函数 (可用来证明函数)

5.4 Inverse

5.4.1 Definition

$$f^{-1} = \{(x,y) \in B \times A | (y,x) \in f\}$$

5.4.2 Identity function

$$id_A = \{(x,y) \in A \times A | x = y\}$$

5.4.3 Lemma

 f^{-1} is a function with $\mathrm{dom}f^{-1}=\mathrm{ran}f$ and $\mathrm{ran}f^{-1}=A$ iff f is injective.

$$f\circ f^{-1}=f^{-1}\circ f=id_A$$

5.5 Surjective functions

 $(\forall x \in B)(\exists y \in A)((y,x) \in f)$ is surjective.

5.6 Bijection

Both injective and surjective.

5.6.1 Lemma

 $f:A\to B$ and $g:B\to C$ are bijections, then $g\circ f$ is a bijection.

5.6.2 Definition

A and B has the same cardinality if there exists a bijection f:A o B

|A| = |B| 无限集也可以对应相等cardinality

 $|A| \leq |B|$ if there exists a injection $f: A \to B$

$$|A| = |\operatorname{ran} f|, \operatorname{ran} f \subseteq B$$

5.6.3 Examples

$$f((-1)^k n) = \left\{egin{array}{ll} 0 &, n=0 \ 2n+k &, n
eq 0 \end{array}, |\mathbb{Z}| = |\mathbb{N}ackslash \{1\}|
ight.$$

5.6.4 Theorem

 $|\mathbb{Z}| = |\mathbb{N}|$

6. Countable Sets

6.1 Definition

A is countable if $|A| \leq |\mathbb{N}|$. A is countably infinite if A is countable and A is infinite.

6.2 Infinite

A
ightarrow A is an injection but not a surjection.

Dedekind infinite

6.3 Cantor's Pairing Function

- 1. If B is countable and $A \subseteq B$ then A is countable.
- 2. $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$
- 3. $\pi(x,y) = \frac{1}{2}(x+y)(x+y+1) + y$
- 4. $\mathbb{Q} \to \mathbb{N} \times \mathbb{N}$ 互质整数相除 is an injection.
- 5. |A| < |B| if there exists a bijection $f: A \to B$ and no bijection.

6.4 Cantor's Theorem

1. There's no injection $\mathcal{P}(A) \to A$.

Contradiction:

- 1. $f^{-1}: \mathrm{ran} f o \mathcal{P}(A)$ is a bijection ——对应
- 2. $Z = \{x \in \operatorname{ran} f | x \notin f^{-1}(x)\} \subseteq A$ x不在 $f^{-1}(x)$ 这个集合里的集合
- 3. z=f(Z),如果 $z\in f^{-1}(z)=Z$,那z就不应该在Z这个集合里;如果 $z\not\in Z$,那按照Z的定义,z应该被放进Z里去 $Z=\{\cdots,z,\cdots\}\to z$ 不成立
- 2. $|A| < |\mathcal{P}(A)|$
- $f = \{(x, \{x\}) \in A \times \mathcal{P}(A) | x \in A\}$ is an injection + $\mathcal{P}(A) \nleq A$
 - 3. $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \cdots$
 - 4. $\mathcal{P}(V) \subseteq V \rightarrow f: \mathcal{P}(V) \rightarrow V$, f(x) = x is a injection $\Rightarrow |\mathcal{P}(V)| \leq |V| \Rightarrow \text{Contradictive to Cantor's}$
- -> No largest set -> Inconsistency in Naive Set Theory -> (ZFC)

7. Morphisms and Isomorphisms

(A,R) and (B,S) and bijection $f:A\to B$, $\forall x,y\in A$, $(x,y)\in R\Leftrightarrow (f(x),f(y))\in S$

(A,R) and (B,S) have the same structure. f是 \mathcal{R} 和 \mathcal{S} 的domain之间的bijection

7.1 Isomorphism 同构

f is an isomorphism

- 1. x|y, ax|ay
- 2. $n \le m$, $n 1 \le m 1$

7.2 Homomorphism 同态

f is not necessarily a bijection

8. Order-preserving Functions 保序函数

 $(P_1, \preceq_1), (P_2, \preceq_2)$ are partial orders, $\forall x, y \in P_1$, $(x \preceq_1 y) \Rightarrow (f(x) \preceq_2 f(y))$. $f: (P_1, \preceq_1) \rightarrow (P_2, \preceq_2)$.

9. Fixed points

$$x \in A$$
, $f(x) = x$.

10. Tarski-Knaster Theorem

10.1 Definition

Let (L, \preceq) be a complete lattice. $f: (L, \preceq) \to (L, \preceq)$ is an order-preserving function \Rightarrow f has a fixed point.

10.2 Proof

- $X = \{x \in L | f(x) \leq x\}$ and $a = \bigwedge X$
 - 1. Claim I: if $x \in X$, then $f(x) \in X$. $f(x) \leq x \Rightarrow f(f(x)) \leq f(x)$. Then $f(x) \in X$.

- 2. Claim II: f(a) is a lower bound on X. $a \leq x$, $f(a) \leq f(x) \leq x$. 既然f(a)是lower bound, a是g.l.b, 那么 $f(a) \leq a$
- Q: a一定在X中吗?
- A: 在的 因为 f(a) ≺ a

a在X中所以f(a)也在X中 所以 $a \prec f(x)$ 所以 a = f(a) ,即不动点

10.3 Corollary

f has a least fixed point

11. SB Theorem

11.1 Definition

If exists injections $f:A\to B$ and $g:B\to A$, then exists a bijection $h:A\to B$

11.2 Proof

We know that $(\mathcal{P}(A), \subseteq)$ is a complete lattice.

Define $F:\mathcal{P}(A) o \mathcal{P}(A)$, $F(X) = A \setminus g$ " $(B \setminus f$ " X) Step 1. 证明F是O-P function

Let $Y\subseteq Z\subseteq A$, then f " $Y\subseteq f$ " Z and $B\setminus f$ " $Z\subseteq B\setminus f$ " Y and g " $(B\setminus f$ " $Z)\subseteq g$ " $(B\setminus f$ " Y) then $F(Y)\subseteq F(Z)$

Step 2. T-K Theorem, let $F(X) = X, X \subseteq A$

Step 3. Let $C=\mathbf{ran}g$. 理论上来说,这时候我们还认为C是A的子集 $g^{-1}:C\to B$ is an injection (实际上已经是 bijection了

- $A \setminus X \subseteq C$?
- 因为 $A \setminus X = A \setminus F(X) = g$ " $(B \setminus f$ " X),是通过g映射出来的,是ran g的一部分

 $h = (f \upharpoonright X) \cup (g^{-1} \upharpoonright (A \backslash X))$

dom h=A (X并上A去掉X的部分) ran h=B $(f"X \cup B \setminus f"X)$

12. A flawed definition of $\mathbb N$

- 1. $L = \{x \in V | \emptyset \in x\}$, 有空集的集合
- 2. (L,\subseteq) is a complete lattice
- 3. Successor operation: $S:V \to V$, $S(x)=x \cup \{x\}$ for all $x \in V$.
- 4. $F: L \rightarrow L$, $F(A) = A \cup S$ " A, for all $A \in L$
- S " $A = \{S(x) | x \in A\}$
- F is order-preserving
- F has a least fixed point
- $F(\mathbb{N}_{def}) = \mathbb{N}_{def}$
- $0 := \emptyset, 1 := S(\emptyset) = \{\emptyset\}, 2 := S(S(\emptyset)) = \{\emptyset, \{\emptyset\}\}\$
- 5. $\mathbb{N}_{def} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \dots\}$
- $F(\mathbb{N}_{def}) = \mathbb{N}_{def} \cup S$ " $\mathbb{N}_{def} = \mathbb{N}_{def} \cup \{S(x) | x \in \mathbb{N}_{def}\}$

- $S(1) = S(\{\emptyset\}) = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\} =: 2$
- S(n) = n + 1
- 6. \leq is a well-ordering of \mathbb{N}_{def} ?
- 7. 如果归纳法不成立, \mathbb{N}_{def} 就不是least fixed point

13. Example of induction

- 1. Theorem
- (L, \preceq) is a lattice, if $X \subseteq L$ is finite with $|X| \ge 2$, then X has a least upper bound.
- Proof:

Suppose $X=\{x_1,\cdots,x_m\}$ has no l.u.b., m is the least We can prove $y\vee x_m=\bigvee\{x_1,\cdots,x_{m-1}\}\vee x_m$ is an upper bound of X. Any other upper bound u of X can lead to $y\vee x_m\preceq u$, which means $y\vee x_m$ is a l.u.b..

14. Strong induction

 $P(n) \Leftrightarrow \forall k(n_0 \leq k \leq n) A(k)$ 推出A(n+1)要用到不止A(n)

15. Recursive definition

- 1. G(n, f(n)) = (n+1, f(n+1))
- 2. $X=\{R\in \mathcal{P}(\mathbb{N} imes\mathbb{N})|(0,n_0)\in R\}$
- $\forall A \subseteq X, (0, n_0) \in \bigcap A \subseteq \bigcup A \in \mathcal{P}(\mathbb{N} \times \mathbb{N})$
 - 3. (X,\subseteq) is a complete lattice, $\bigwedge A=\bigcap A$ 至少包含 $(0,n_0)$, $\bigvee A=\bigcup A$
 - 4. $F: X \to X$ by $F(R) = R \cup G$ " R
 - 5. F is order preserving
- $R \subseteq T \Rightarrow F(R) \subseteq F(T)$
- 6. There exists a least f in X s.t. F(f) = f.
- 7. $F(f) = f \cup G$ " f = f, G " $f \subseteq f$

16. More general recursive functions

1. \mathbb{N}_{def} is the \subseteq -least set (least fixed point of the successor operation)?

17. Principle of Structural Induction

17.1 Principle of Structural Induction

A is \subseteq -least, $B \subseteq A$, A is closed under C_1, \dots, C_n .

- 1. For all $b \in B$, P(b) holds
- 2. For all a_1, \dots, a_m and c and $1 \le i \le n$, if $P(a_1), \dots, P(a_m)$ all hold and c is obtained from a_1, \dots, a_m by a single application of C_i , then P(c) holds

每次挑出一个 C_i 算出c就行

17.2 ⊆-least Property of Recursively Defined Sets:

18. Recursively Defined Sets

1. Example

S is the \subseteq -least set s.t. $3 \in S$, if $x, y \in S$, then $x + y \in S$, $S = \{n \in \mathbb{N} | 3 | n\}$.

19. A question from assignment 1

19.1 Theorem

1. $B = \{ \oplus_1, \oplus_2 \cdots \}$ is a set of atomic propositions. Every well-formed compound propositional expression formed from atomic propositions in B is logically equivalent to a compound expression that only involves atomic propositions from $B = \{ \vee, \neg \}$.