Human Activity Recognition - Decision Tree

1. 데이터 로드 및 전처리

1-1. 데이터 로드

```
In [13]: import pandas as pd import matplotlib.pyplot as plt feature_name_df = pd.read_csv('./human_activity/features.txt', sep='Ws+', header=None, names=['column_index', 'column_name']) feature_name = feature_name_df.iloc[:, 1].values.tolist() print('전체 피처명에서 10개만 추출:', feature_name[:10])

전체 피처명에서 10개만 추출: ['tBodyAcc-mean()-X', 'tBodyAcc-mean()-Y', 'tBodyAcc-mean()-Z', 'tBodyAcc-std()-X', 'tBodyAcc-mad()-Y', 'tBodyAcc-mad()-Z', 'tBodyAcc-mad()-X']
```

23. 12. 7. 오전 11:52 HAR - Jupyter Notebook

In [14]: feature_name_df

Out[14]:

column_index	
1	0
2	1
3	2
4	3
5	4
557	556
558	557
559	558
560	559
561	560
	1 2 3 4 5 557 558 559 560

561 rows × 2 columns

```
In [15]: feature_dup_df = pd.DataFrame(data=feature_name_df.groupby('column_name').cumcount(), columns=['dup_cnt']) feature_dup_df.head(20)
```

Out [15]:	c	lup_cnt
	0	0
	1	0
	2	0
	3	0
	4	0
	5	0
	6	0
	7	0
	8	0
	9	0
	10	0
	11	0
	12	0
	13	0
	14	0
	15	0
	16	0
	17	0
	18	0
	19	0

23. 12. 7. 오전 11:52 HAR - Jupyter Notebook

1-2. 중복된 피처명을 확인

In [16]: feature_dup_df = feature_name_df.groupby('column_name').count()
feature_dup_df

Out[16]: column_index

column_name	
angle(X,gravityMean)	1
angle(Y,gravityMean)	1
angle(Z,gravityMean)	1
angle(tBodyAccJerkMean),gravityMean)	1
angle(tBodyAccMean,gravity)	1
tGravityAccMag-max()	1
tGravityAccMag-mean()	1
tGravityAccMag-min()	1
tGravityAccMag-sma()	1
tGravityAccMag-std()	1

477 rows × 1 columns

1-3. 중복된 피처명에 대해 새로운 피처명을 부여하는 데이터프레임을 반환 함수 만들기

중복된 피처명이 있을 경우 모델 학습 등의 과정에서 혼란을 방지하기 위함

3

```
In [18]: def get_new_feature_name_df(old_feature_name_df):
    feature_dup_df = pd.DataFrame(data=old_feature_name_df.groupby('column_name').cumcount(), columns=['dup_cnt'])
    print('*'*20)
    print(feature_dup_df)
    feature_dup_df = feature_dup_df.reset_index()
    new_feature_name_df = pd.merge(old_feature_name_df.reset_index(), feature_dup_df, how='outer')
    new_feature_name_df['column_name'] = new_feature_name_df[['column_name', 'dup_cnt']].apply(lambda x : x[0]+'_'+str(x[1]) i
    return new_feature_name_df
```

1-4. human_activity 데이터를 불러오는 함수를 정의한 뒤 해당 데이터를 Train과 Test로 나누어 반환하는 작업을 수행

fBodyAcc-bandsEnergy()-17,32

```
In [19]: def get_human_dataset():
    feature_name_df = pd.read_csv('./human_activity/features.txt', sep='Ws+', header=None, names=['column_index', 'column_name print(feature_name_df)

# 중복된 피처명을 수정하는 get_new_feature_name_df()를 이용, 신규 피처명 DataFrame 생성
    new_feature_name_df = get_new_feature_name_df(feature_name_df)
    feature_name = new_feature_name_df.iloc[:, 1].values.tolist()
    print(new_feature_name_df)

X_train = pd.read_csv('./human_activity/train/X_train.txt', sep='Ws+', names=feature_name)
    X_test = pd.read_csv('./human_activity/test/X_test.txt', sep='Ws+', names=['action'])
    y_train = pd.read_csv('./human_activity/train/y_train.txt', sep='Ws+', names=['action'])
    return X_train, X_test, y_train, y_test

X_train, X_test, y_train, y_test = get_human_dataset()
```

0 1 2 3 4 556 557 558 559 560	2	1 2 3 4 5 7 and 3 angle(column_name tBodyAcc-mean()-X tBodyAcc-mean()-Y tBodyAcc-mean()-Z tBodyAcc-std()-X tBodyAcc-std()-Y gle(tBodyGyroMean,gravityMean) tBodyGyroJerkMean,gravityMean) angle(X,gravityMean) angle(Y,gravityMean) angle(Z,gravityMean)	
[561	rows x 2 co	lumns]		
****	************ dup_cnt	***		
0	0			
1	0			
2	0			
3 4	0			
4	0			
556	0			
557	0			
558	0			
559	0			
560	0			
[561	rows x 1 co	lumns]		
		nn_index	column_name	dup_cnt
0	0	1	tBodyAcc-mean()-X	0
1	1	2	tBodyAcc-mean()-Y	0
2 3	2 3	3 4	tBodyAcc-mean()-Z tBodyAcc-std()-X	0
4	4	5	tBodyAcc-std()-Y	0
556	556	557	angle(tBodyGyroMean,gravityMean)	0
557 550	557	558	angle(tBodyGyroJerkMean,gravityMean)	0
558 559	558 559	559 560	angle(X,gravityMean) angle(Y,gravityMean)	0
560	560	561	angle(Z,gravityMean)	0

[561 rows x 4 columns]

1-5. 결과 확인

```
In [20]: print('# 학습 피처 데이터셋 info() #')
        print(X_train.info())
         # 학습 피처 데이터셋 info() #
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 7352 entries, 0 to 7351
         Columns: 561 entries, 1 to 561
         dtypes: float64(561)
        memory usage: 31.5 MB
         None
In [21]: print(y_train['action'].value_counts())
         action
              1407
             1374
             1286
             1226
             1073
              986
        Name: count, dtype: int64
```

2. Basic Machine Learning 정확도 검증

2-1. 라이브러리 import + 모델 생성 및 학습

```
In [30]: from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import accuracy score
         from sklearn.metrics import precision_score
         from sklearn.metrics import recall_score
         import warnings
        warnings.filterwarnings('ignore')
        # 결정트리, Random Forest, 로지스틱 회귀를 위한 사이킷런 Classifier 클래스 생성
        dt clf = DecisionTreeClassifier(random state=11)
        rf_clf = RandomForestClassifier(random_state=11)
         Ir_clf = LogisticRegression(random_state=11)
        # DecisionTreeClassifier 학습/예측/평가
        dt_clf.fit(X_train, y_train)
        dt_pred = dt_clf.predict(X_test)
        print('DecisionTreeClassifier 정확도: {0:.4f}'.format(accuracy_score(v_test, dt_pred)))
        # RandomForestClassifer 학습/예측/평가
        rf_clf.fit(X_train, y_train)
         rf_pred = rf_clf.predict(X_test)
        print('RandomforestClassifier 정확도: {0:.4f}'.format(accuracy_score(y_test, rf_pred)))
        # LogisticRegression 학습/예측/평가
         Ir_clf.fit(X_train, y_train)
         Ir_pred = Ir_clf.predict(X_test)
        print('LogisticRegression 정확도: {0:.4f}'.format(accuracy_score(v_test, lr_pred)))
```

DecisionTreeClassifier 정확도: 0.8612 RandomforestClassifier 정확도: 0.9260 LogisticRegression 정확도: 0.9576

2-2. 결과 확인

```
In [23]: from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score

dt_clf = DecisionTreeClassifier(random_state=11)

dt_clf.fit(X_train, y_train)
pred = dt_clf.predict(X_test)

print(f'예측 정확도: {accuracy_score(y_test, pred):.4f}')

# DecisionTreeClassifier의 하이퍼 파라미터 추출
print('DecisionTreeClassifier 기본 하이퍼 파라미터: \mathbb{W}n', dt_clf.get_params())
```

```
예측 정확도: 0.8612
DecisionTreeClassifier 기본 하이퍼 파라미터:
{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'random_state': 11, 'splitter': 'best'}
```

3. Machine Learning with GridSearchCV (하이퍼 파라미터 튜닝) 정확도 검증

3-1. 라이브러리 import + 모델 생성 및 학습

```
In [24]: from sklearn.model_selection import GridSearchCV

params = {'max_depth' : [6, 8, 10, 12, 16, 20, 24]}

grid_cv = GridSearchCV(dt_clf, param_grid=params, scoring='accuracy', cv=5, verbose=1)
grid_cv.fit(X_train, y_train)
print(f'GridSearchCV 최고 평균 정확도 수치: {grid_cv.best_score_:.4f}')
print('GridSearchCV 최적 하이퍼 파라마터:', grid_cv.best_params_)

Fitting 5 folds for each of 7 candidates, totalling 35 fits
GridSearchCV 최고 평균 정확도 수치: 0.8523
GridSearchCV 최적 하이퍼 파라마터: {'max_depth': 8}

In [25]: # GridSearchCV 객체의 cv_results_ 속성을 DataFrame으로 생성
cv_results_df = pd.DataFrame(grid_cv.cv_results_)

# max_depth 파라마터 값과 그때의 테스트(Evaluation) set, 학습 테이터 셋의 정확도 수치 추출
cv_results_df[['param_max_depth', 'mean_test_score']]
```

	param_max_depth	mean_test_score
0	6	0.842221
1	8	0.852294
2	10	0.844269
3	12	0.840871
4	16	0.846175
5	20	0.840188
6	24	0.840053

3-2. params 값 변경 후 확인

3-3. 최적 하이퍼 파라미터의 결정 트리 예측 정확도 확인

```
ln [28]:
best_df_clf = grid_cv.best_estimator_
pred1 = best_df_clf.predict(X_test)
accuracy = accuracy_score(y_test, pred1)
print(f'결정 트리 예측 정확도: {accuracy:.4f}')
```

결정 트리 예측 정확도: 0.8717

4. Feature 중요도 시각화

```
In [29]: import seaborn as sns

ftr_importances_values = best_df_clf.feature_importances_
ftr_importances = pd.Series(ftr_importances_values, index=X_train.columns)

ftr_top20 = ftr_importances.sort_values(ascending=False)[:20]

plt.figure(figsize=(8, 6))
plt.title('Feature importances Top 20')
plt.xticks(rotation=-45)
sns.barplot(x=ftr_top20, y=ftr_top20.index)
plt.show()
```

Feature importances Top 20

