Focus set based reconstruction of micro-objects

Jan Wedekind

13.9.2004

MiCRoN http://wwwipr.ira.uka.de/~micron/

MMVL http://www.shu.ac.uk/mmvl/

People: Balasundram Amavasai, Manuel Boissenin, Axel Bürkle, Fabio Caparrelli, Arul Selvan, Jon Travis

micro-vision and micro-robotics

Closed-loop control

• Estimate pose of manipulator in real time

Task planning

- Estimate pose of known micro-objects
- Recognize obstacles for avoiding collisions
- Provide data for determining gripping points

present state of micro-vision

characteristics

- Limited depth of focus
- Teleoptical settings

vision problems

- unstable feature extraction
- limited depth of view
- \Rightarrow most standard approaches are failing

Focus set based reconstruction of micro-objects- http://vision.eng.shu.ac.uk/mechrob04/MechRob-paper.pdf

depth of focus

- Acquire focus set of images $g(x_1, x_2, z)$
- Compute local sharpness measure $s(x_1, x_2, z)$
- Compute depth map $d(x_1, x_2) := \underset{z \in \mathbf{Z}}{\operatorname{argmax}} (s(x_1, x_2, z))$

- 6 -

systematic error

test with micro-ridge

- Algorithm fails when contrast low
- Systematic errors
- Trade-off between resolution and stability
- \Rightarrow Filter-bench

multiscale approach

- Recursive filtering
- Not real-time efficient
- Complexity (N = number of pixel)
 - -O(N) time
 - -O(N) memory
 - $\sqrt[3]{N} O(N^{\frac{2}{3}})$ parallelisation
- No systematic error

- 12 -