Multivariable Calculus

Day 18

Integration

Worksheet

Let B be a 2×2 matrix that is invertible (the determinant is non-zero). We can think of B as a function $B: \mathbb{R}^2 \to \mathbb{R}^2$.

Let now $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that

$$f(x,y)=xy.$$

Let D is the rectangle with vertices (1,1),(1,6),(5,1),(5,6). Find the relationship between

$$\iint_{B(D)} f(y) \, dA$$

and

$$\iint_D f(x) dA.$$

1

Change of coordinate

A coordinate transformation is a function φ , which is bijective and differentiable for which $D\varphi$ is invertible at all points in the domain. Here,

$$D\varphi = \begin{pmatrix} \partial_1 \varphi_1 & \partial_2 \varphi_1 \\ \partial_1 \varphi_2 & \partial_2 \varphi_2 \end{pmatrix} .$$

Worksheet

Find the image of the following transformations. Determine whether they are coordinate transformation or not?

$$x = u^2 - v^2, \qquad y = 2uv.$$

$$S = \{(u, v) | 0 \le u, v \le 1\}$$

$$x = u + v$$
, $y = u - v$.

$$S = \{(u, v) | 0 \le u, v \le 1\}$$

Change of coordinates

Let f be a function of (x, y) defined on the domain D. Let

$$\begin{pmatrix} x \\ y \end{pmatrix} = \varphi(u, v)$$

for some coordinate change function $\varphi:D\to \mathcal{S}.$

Theorem

If f is continuous, then

$$\int_{S} f \, dA = \int_{D} (f \circ \varphi) \, | \det D\varphi | \, dA \, .$$

4

Example

Compute the following integral

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-\frac{x^2}{2}\right) \, dx \, .$$

Worksheet

Evaluate the following integral

0

$$\iint_{R} \frac{x - 2y}{3x - y} \, dA \,,$$

where R is the parallelogram enclosed by the lines

$$x - 2y = 0, x - 2y = 4, 3x - y = 1, 3x - y = 8.$$

2

$$\iint_R \sin(9x^2 + 4y^2) \, dA$$

where R is the region in the first quadrant bounded by the ellipse $9x^2 + 4y^2 = 1$.