ANSWER KEY (AIPMT-2003)

TT						_						T	T							
Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	2	1	2	1	3	4	2	4	4	3	2	2	1	2	2	3	1	1	1	1
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	4	4	3	2	4	2	1	2	4	1	3	3	3	2	4	4	1	1	2	3
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	3	2	1	1	4	1	3	3	1	1	2	1	3	2	1	4	2	2	1	4
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	3	3	4	4	1	1	2	1	3	4	2	1	3	1	3	1	4	2	1	3
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	4	4	2	3	3	4	2	4	2	1	3	2	4	2	1	4	3	3	2	1
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	2	4	2	4	3	2	2	1	2	4	3	3	4	4	3	2	3	3	2	3
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	2	4	2	2	2	1	3	1	4	1	1	4	2	3	3	1	3	2	2	3
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	1	2	1	4	2	2	2	4	3	1	1	1	1	4	1	2	2	1	2	4
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	4	3	2	2	2	2	1	1	3	1	4	4	3	3	4	1	4	1	4	1
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	1	3	3	4	2/4	1	3	1	1	2	4	3	1	1/2	4	4	3	1	1	3

HINTS & SOLUTIONS

1. Let time of flight be T then
$$T = \frac{u}{g}$$

Let h be the distance covered during last 't' second of its ascent

Velocity at point $B = v_B = u - g(T - t)$

$$= u - g \left(\frac{u}{g} - t\right) = gt$$

$$\Rightarrow h = v_B t - \frac{1}{2} gt^2 \Rightarrow h = gt^2 - \frac{1}{2} gt^2 = \frac{1}{2} gt^2$$

2. Here
$$\frac{dv}{dt}$$
 = constant = a (say)

Use
$$v^2 = u^2 + 2as$$
 where

$$s = 2 \times 2\pi r = 80 \text{ m}, u = 0, v = 80 \text{ m/s}$$

3. Use law of conservation of angular momentum.

$$Mr^2\omega = (Mr^2 + 4mr^2)\omega' \Rightarrow \omega' = \frac{M\omega}{M + 4m}$$

4.
$$m_1v_1 = m_2v_2 (P_1 = P_2);$$

$$\frac{E_1}{E_2} = \frac{\frac{1}{2}m_1v_1^2}{\frac{1}{2}m_2v_2^2} = \frac{\frac{P_1^2}{2m_1}}{\frac{P_2^2}{2m_2}} = \frac{m_2}{m_1}$$

5.
$$mgh = \frac{1}{2} mv^2 (1 + K^2/R^2)$$

$$\Rightarrow v = \sqrt{\frac{2gh}{(1 + K^2 / R^2)}}$$

6.
$$U = \frac{1}{2} K(2)^2$$
; $U' = \frac{1}{2} K(10)^2 = 25U$

7. Height of jump on the planet B

$$= \frac{g_A}{g_B} \times \text{height of jump on the planets A}$$

$$(:: mgh = constant)$$

8.
$$T_{max} = 25 \text{ g}; \text{ ma} = T_{max} - \text{mg}$$

$$\Rightarrow a = \frac{g}{4} = \frac{10}{4} = 2.5 \text{ m/s}^2$$

9. Reading of weighing scale = m(g + a)

$$= 80 (10 + 5) = 1200 N$$

10. T.K.E. =
$$\frac{1}{2}$$
 mv² (1 + K²/R²)

R.K.E. =
$$\frac{1}{2}$$
 mv²(K²/R²)

11.
$$(\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B}) = 0$$

$$\Rightarrow A^2 - \vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{A} - B^2 = 0$$

$$\Rightarrow A = B \quad (\because \vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A})$$

12. Gravitational force does not depend on medium.

In this case time of flight of a ball $\geq 2 \times 2 = 4$ sec.

$$\therefore$$
 Time of flight = $\frac{2u}{g} \ge 4$

$$\Rightarrow u \geq 2g \Rightarrow u \geq \ 19.6 \ m/s \quad \ (\because \ g = 9.8 \ m/s^2)$$

14. Use
$$\frac{1}{f} = (\mu - 1) (1/R_1 - 1/R_2),$$

Here
$$\mu = \frac{\mu_{convex \, lens}}{\mu_{liquid}} = 1$$
 $\therefore f = \infty$

15. Source is stationary
$$\Rightarrow \lambda = \text{constant}$$

& f' =
$$\frac{v + v_s}{v}$$
 f = $\left(1 + \frac{v_s}{v}\right)$ f = $\left(1 + \frac{1}{5}\right)$ f = 1.2f

16.
$$K\ell = \text{constant} \Rightarrow K' = 4K$$

&
$$T = 2\pi \sqrt{\frac{m}{K}} \Rightarrow T' = \frac{T}{2}$$

17. PE in SHM =
$$\frac{1}{2}$$
 Kx²[equation of parabola]

18. In forced vibration, the resonance wave becomes very sharp when damping force is small (i.e. negligible)

20. A general body emits radiations of longer wavelength than absorbed radiations.

$$\underbrace{UV \ \ VIBGYOR}_{absorbed \ radiations} \ \underbrace{IR}_{emitted \ radiations} \rightarrow \lambda$$

21. Use
$$\eta = 1 - \frac{T_2}{T_1} = \frac{W}{Q}$$

22.

$$\Rightarrow K_{eq} = \frac{4}{3}K$$

23. PE =
$$\frac{1}{2}Kx^2 = \frac{1}{2}K\left(\frac{a}{2}\right)^2 = \frac{E}{4}$$

24. Electric flux through any face
$$= \frac{\text{Total flux}}{\text{number of faces}} = \frac{(q/E_0)}{6}$$

25.
$$\vec{r}$$
 P Coulomb force = $\frac{Ke^2}{r^2}$ (- \hat{r})
$$= -\frac{Ke^2}{3} \vec{r}$$

26.
$$B = \mu_0 ni$$
; $n' = \frac{n}{2}$; $i' = 2i \Rightarrow B' = B$

27. Here
$$\vec{F} \perp \vec{v} \Rightarrow |\vec{v}| = constant$$

28. Use
$$T = 2\pi \sqrt{\frac{I}{MB}}$$

 $\therefore I \propto \text{mass} \Rightarrow T' = 2\pi \sqrt{\frac{4I}{MB}} = 2T$

29. If rated voltage = supply voltage then use

$$\frac{1}{P} = \frac{1}{P_1} + \frac{1}{P_2}$$
 (series connection) &

 $P = P_1 + P_2$ (parallel connection)

$$Q = \frac{V^2}{R_1} \times t_1 = \frac{V^2}{R_2} \times t_2 = \frac{V^2}{R} \times t$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \Rightarrow \frac{Q}{V^2 t} = \frac{Q}{V^2 t_1} + \frac{Q}{V^2 t_2}$$

$$\Rightarrow \frac{1}{t} = \frac{1}{t_1} + \frac{1}{t_2} \Rightarrow t = \frac{t_1 t_2}{t_1 + t_2}$$

$$=\frac{10\times40}{10+40}=8 \text{ min.}$$

31.

Resistance seen by the battery = equivalent resistance b/w A & B = R

32.

$$C_{AB} = (2 + 4)\mu F = 6\mu F$$

- 33. Solar energy \rightarrow fusion of protons into helium.
- **34.** Fuse wire must have high resistance (per unit length) & low melting point.

35.
$$\frac{\text{Volume of atom}}{\text{volume of nucleus}} \sim \left(\frac{10^{-10}}{10^{-15}}\right)^3 = 10^{15}$$

- **36.** For a point source $I \propto \frac{1}{r^2}$
- 37. $N = N_0 e^{-\lambda t} \implies m = m_0 e^{-\lambda t} = m_0 e^{-\lambda (2/\lambda)}$ = $\frac{10}{e^2} = 1.35 \text{ gm}.$

38.
$$r_n = 0.529 \text{ Å} \left(\frac{n^2}{Z}\right)$$

- **39.** Reverse bais increases the potential barrier.
- **40.** $\left(\frac{e}{m}\right)_{\text{electron}} >> \left(\frac{e}{m}\right)_{\text{proton}}$

$$\left[\because \left(\frac{e}{m} \right)_{\text{proton}} = \frac{1}{1837} \left(\frac{e}{m} \right)_{\text{electron}} \right]$$

In active region emitter base p-n junction is in FB & base collector p-n junction is in RB.

- 43. Curie law $\chi_m \propto \frac{1}{T}$
- **44.** A diamagnetic material in a magnetic field moves from stronger to the weaker part of the field.
- **45.** In FWR; ripple freq. = $2 \times$ source Freq.
- **46.** Barrier potential of a p-n junction diode does not depend on diode design.

47. BE =
$$\Delta$$
m × 931
= [2(1.0087 + 1.0073) - 4.0015] × 931
= 28.4 MeV

- **48.** $A \ge Z$ [Equality sign \rightarrow hydrogen nuclei]
- 49. Emission of electron (e⁻) + antineutrino (γ ⁻) $\Rightarrow \beta$ -decay.
 - 50. $A \longrightarrow X \longrightarrow Y$ $X = \overline{A \cdot B}; Y = \overline{X} = \overline{\overline{A \cdot B}} = A \cdot B$ $\Rightarrow AND \text{ gate.}$