AutoML - Project 2019

Improving CNN performance on K49
Philipp Jankov

Motivation

- New Task/Problem
 - Relying on known estimates for good values suboptimal
 - "Endless" amount of configurations and algorithms
 - ► Large configspaces need more samples

- ▶ No Free Lunch Theorem^[1]
 - > "... for any algorithm, any elevated performance over one class of problems is offset by performance over another class…"

Approach

- Use BOHB with the rightside configuration space
- Use refined gridsearch to determine initial LR
- Select pretrained weights by distance in feature space (warmstart)
- Let Baseline compete against un/-pretrained alternative

BOHB - ConfigSpace

- Batchsize
- Model
 - BaselineCNN
 - Resnet18
- Warmstart (Resnet18 with 64x64 input only)
- Model arguments
 - Dropout
 - zero_init_residuals (Resnet18 only)
- Optimizers
 - Adam
 - AdamW (with Nestervø)
- Optimizer arguments
 - Amsgrad
 - Nesterov (AdamW only)
 - Weight decay
- Transforms
 - None
 - Predefined Pipeline
 - Random Rotation
 - Random Perspective
 - Random Elastic Transformation
 - Resize

Categorical, Bool, UniformFloat, UniformInt, Choices

Autotune LR¹¹

- Remove LR from configspace
- Refined Gridsearch to find initial LR
 - Determine magnitude
 - Refine around minimum
- Complements adaptive Optimizer
- Possible indicator for poor final performance

SS 10² 10¹

Validation acc 93.53

Batchsize 636 **BaselineCNN** Dropout 0.53 AdamW WDecay 0.14

Validation acc 52.81

[1] Cyclical Learning Rates for Training Neural Networks, Leslie N. Smith et al, 2017 Philipp Janko - AutoML Project 2019

Results

Philipp Janko - AutoML Project 2019

Total time spent evaluating configurations	85970.40 sec
Average time per configuration (mean / std)	2046.91 sec (± 509.23)
# evaluated configurations	42
Configuration origins	Acquisition Function: 27 Random: 15

fANOVA

	Single importance	Final choice
optimizer	70.9337 +/- 36.37	AdamW
batch_size	15.2346 +/- 25.9232	163
weight_decay	1.1682 +/- 1.264	0.00122816
amsgrad	0.846 +/- 2.8297	False
zero_init_residual	0.7148 +/- 2.7682	True
transforms	0.549 +/- 1.4886	NONE
dropout	0.3154 +/- 0.6798	0.755828
model	0.1354 +/- 0.1334	Resnet

5-fold Cross Validation

Dataset	BaselineCNN	Resnet
Validation	78.2373±0.99	97.3933±0.206
Test	66.1893	95.3434

DiscussionWarmstarting

- Test initial weights from portfolio
- Use omniglot as feature space
 - Determine distance between supportsets and target
 - Select support set by smallest symetric diffrence in feature space
 - Select closest set and use it's pretrained weights
- Known issues
 - Made the use of augmentation and warmstart codependent
 - Omniglot's pretrained weights were never chosen

Datasets in Omniglot Feature space

