ANA CLARA R. GOUVEIA 1/4

DUE: 9/13/13 CHAPTER 2

PROBLEM 1

GIVEN :	D = 100 psf	L =	70	psf	R=	12	psf	S=	: 3	0	psf
		Lr=	20	psf	W=	0	psf	E=	. ()	psf

<u>FIND:</u> Determine the maximum combined loads using the recommended AISC expressions for LRFD.

METHOD: Use LRFD Equations (AISC p.2-10) to determine the governing factored load for design.

SOLUTION:

Uniform Load Cases									
	Load Combinations	D	L+I	Lr	S	R	W	Ε	Sum
1	1.4D	140							140
2	1.2D+1.6L+0.5(Lr or S or R)	120	112	10	15	6			247
3	1.2D+1.6(Lr or S or R)+(L* or 0.5W)	120	35	32	48	19.2	0		203
4	1.2D+1.0W+L*+0.5(Lr or S or R)	120	35	10	15	6	0	0	170
5	1.2D+1.0E+L* + 0.2S	120	35		6			0	161
6	0.9D+1.0W	90					0		90
7	0.9D+1.0E	90						0	90

*Note: Change Load Factor for 1 for public assembly, live loads in excess of 100 psf and for parking garage

The governing factored load for design is equal to:	247 psf
---	----------------

PROBLEM 3

GIVEN:	D = 9000 lb	L = 5000 lb	R=	0 psf	S= 0 lb
		Lr= 2500 lb	W=	0 psf	E= 6500 lb

FIND: Determine the maximum combined loads using the recommended AISC expressions for LRFD.

METHOD: Use LRFD Equations (AISC p.2-10) to determine the governing factored load for design.

SOLUTION:

				Uni	form L	oad Cas	es		
	Load Combinations	D	L+I	Lr	S	R	W	E	Sum
1	1.4D	12600							12600
2	1.2D+1.6L+0.5(Lr or S or R)	10800	8000	1250	0	0			20050
3	1.2D+1.6(Lr or S or R)+(L* or 0.5W)	10800	2500	4000	0	0	0		17300
4	1.2D+1.0W+L*+0.5(Lr or S or R)	10800	2500	1250	0	0	0	6500	14550
5	1.2D+1.0E+L* + 0.2S	10800	2500		0			0	13300
6	0.9D+1.0W	8100					0		8100

2/4

DUE: 9/13/13 CHAPTER 2

7 0.9D+1.0E

8100

8100

*Note: Change Load Factor for 1 for public assembly, live loads in excess of 100 psf and for parking garage

The governing factored load for design is equal to: 20050 lb

PROBLEM 6

GIVEN: Structural Steel beam supports a roof Wr= 20 psf

To determine dead load: B. Self Weight Steel Beam: lb/ft

Tributary Area: 6 ft * 20 lb/ft2

All the values below are calculated considering the tributary area above:

D= 120 plf L= 0 plf R= 0 plf S= 72 plf 108 plf W= 96 Lr= down E= 0 psf

W= -38 up

Beams are spaced 6ft apart

<u>FIND:</u> Determine the factored uniformly distributed loads per foot (upward and downward, if appropriate) by which each beam should be designed.

METHOD: A. Use LRFD Equations (AISC p.2-10) to determine the governing factored load for design. B. Since no specification was given for the self-weight of the beam, the value is equal to zero.

SOLUTION:

				Un	iform Lo	ad Cas	es		
	Load Combinations	D	L+I	Lr	S	R	W	E	Sum
1	1.4D	168							168
2	1.2D+1.6L+0.5(Lr or S or R)	144	0	54	36	0			198
3	1.2D+1.6(Lr or S or R)+(L* or 0.5W)	144	0	172.8	115.2	0	48		364.8
4	1.2D+1.0W+L*+0.5(Lr or S or R)	144	0	54	36	0	96	0	294
5	1.2D+1.0E+L* + 0.2S	144	0		14.4			0	158.4
6	0.9D+1.0W	108					96		204
7	0.9D+1.0E	108						0	108

*Note: Change Load Factor for 1 for public assembly, live loads in excess of 100 psf and for parking garage

The governing factored load for design is equal to: **364.8** psf

PROBLEM 7

GIVEN :	D = 100 psf	L =	70	psf	R=	12	psf	S=	30	psf
		Lr=	20	psf	W=	0	psf	E=	0	psf

<u>FIND:</u> Determine the maximum combined loads using the recommended AISC expressions for ASD.

METHOD: Use ASD Equations (AISC p.2-11) to determine the governing factored load for design.

SOLUTION:

		Uniform Load Cases									
	Load Combinations	D	L+I	Lr	S	R	W	Ε	Sum		
1	D	100							100		
2	D+L	100	70						170		
3	D+(Lr or S or R)	100		20	30	12			130		
4	D+0.75L + 0.75(Lr or S or R)	100	52.5	15	22.5	9			175		
5	D+(0.6W OR 0.7E)	100					0	0	100		
6 (a)	D+0.75L+0.75(0.6W)+0.75(Lr/S/R)	100	52.5	15	22.5	9	0		175		
6 (b)	D+0.75L+0.75(0.7E)+0.75S	100	52.5		22.5			0	175		
7	0.6D+0.6W	60					0		60		
8	0.6D+0.7E	60						0	60		

PROBLEM 9

GIVEN:	D = 9000 lb	L = 5000 lb	R=	0	psf	S=	0	lb
		Lr= 2500 lb	W=	0	psf	E=	6500	lb

<u>FIND:</u> Determine the maximum combined loads using the recommended AISC expressions for ASD.

METHOD: Use ASD Equations (AISC p.2-11) to determine the governing factored load for design.

SOLUTION:

				Uni	form L	oad Cas	es		
	Load Combinations	D	L+I	Lr	S	R	W	E	Sum
1	D	9000							9000
2	D+L	9000	5000						14000
3	D+(Lr or S or R)	9000		2500	0	0			11500
4	D+0.75L + 0.75(Lr or S or R)	9000	3750	1875	0	0			14625
5	D+(0.6W OR 0.7E)	9000					0	4550	13550
6 (a)	D+0.75L+0.75(0.6W)+0.75(Lr/S/R)	9000	3750	1875	0	0	0		14625
6 (b)	D+0.75L+0.75(0.7E)+0.75S	9000	3750		0			3413	16163
7	0.6D+0.6W	5400					0		5400
8	0.6D+0.7E	5400						4550	9950

DUE: 9/13/13 CHAPTER 2

The governing factored load for design is equal to: 16163 lb

PROBLEM 12

GIVEN: Structural Steel beam supports a roof Wr= 20 psf

To determine dead load: B. Self Weight Steel Beam: 0 lb/ft

Tributary Area: 6 ft * 20 lb/ft2

All the values below are calculated considering the tributary area above:

D= 120 psf L= 0 psf R= 0 psf S= 72 psf Lr= 108 psf W= 96 down E= 0 psf

W= -38 up

Beams are spaced 6ft apart

<u>FIND:</u> Determine the factored uniformly distributed loads per foot (upward and downward, if appropriate) by which each beam should be designed.

METHOD: A. Use ASD Equations (AISC p.2-11) to determine the governing factored load for design.

B. Assuming that W16X40 beam is used

SOLUTION:

		Uniform Load Cases									
	Load Combinations	D	L+I	Lr	S	R	W	Ε	Sum		
1	D	120							120		
2	D+L	120	0						120		
3	D+(Lr or S or R)	120		108	72	0			228		
4	D+0.75L + 0.75(Lr or S or R)	120	0	81	54	0			201		
5	D+(0.6W OR 0.7E)	120					57.6	0	177.6		
6 (a)	D+0.75L+0.75(0.6W)+0.75(Lr/S/R)	120	0	81	54	0	43.2		244.2		
6 (b)	D+0.75L+0.75(0.7E)+0.75S	120	0		54			0	174		
7	0.6D+0.6W	72					96		168		
8	0.6D+0.7E	72						0	Dura		

The governing factored load for design is equal to: 244.2 psf