Codveda — Exploratory Data Analysis (EDA)

Author: Esraa Elsayed Salama Internship Role: Data Analysis Intern at Codveda

Technologies

Dataset: iris_dataset.csv

Objective: Perform EDA: summary stats, visualizations, and correlations.

```
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

sns.set(style="whitegrid", context="talk")
os.makedirs("../outputs/figures", exist_ok=True)
```

```
In [7]: DATA_PATH = "../data/iris_dataset.csv"
    df = pd.read_csv(DATA_PATH)

    print("Shape:", df.shape)
    display(df.head())
    df.info()
```

Shape: (150, 5)

	sepal_length	sepal_width	petal_length	petal_width	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	target	150 non-null	int64

dtypes: float64(4), int64(1)

memory usage: 6.0 KB

```
In [8]: # Numeric columns
  num_cols = df.select_dtypes(include=[np.number]).columns.tolist()
  print("Numeric columns:", num_cols)

# Summary stats
  summary = df[num_cols].describe().T
  summary["mode"] = df[num_cols].mode().iloc[0]
  display(summary)

summary.to_csv("../outputs/summary_stats.csv")
  print(" Saved file: outputs/summary_stats.csv")
```

Numeric columns: ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'tar get']

	count	mean	std	min	25%	50%	75%	max	mode
sepal_length	150.0	5.843333	0.828066	4.3	5.1	5.80	6.4	7.9	5.0
sepal_width	150.0	3.057333	0.435866	2.0	2.8	3.00	3.3	4.4	3.0
petal_length	150.0	3.758000	1.765298	1.0	1.6	4.35	5.1	6.9	1.4
petal_width	150.0	1.199333	0.762238	0.1	0.3	1.30	1.8	2.5	0.2
target	150.0	1.000000	0.819232	0.0	0.0	1.00	2.0	2.0	0.0

☑ Saved file: outputs/summary_stats.csv

```
In [9]: for col in num_cols:
    plt.figure(figsize=(6,4))
    df[col].hist(bins=20)
    plt.title(f"Histogram - {col}")
    plt.xlabel(col)
    plt.ylabel("Frequency")
    plt.savefig(f"../outputs/figures/hist_{col}.png", dpi=150)
    plt.show()
```


3.0

sepal_width

3.5

4.0

4.5

2.0

2.5


```
In [10]: for col in num_cols:
    plt.figure(figsize=(6,3))
    sns.boxplot(x=df[col])
    plt.title(f"Boxplot - {col}")
    plt.savefig(f"../outputs/figures/box_{col}.png", dpi=150)
    plt.show()
```



```
In [11]: sns.scatterplot(x=df["sepal_length"], y=df["petal_length"], hue=df["target"])
    plt.title("Sepal Length vs Petal Length")
    plt.savefig("../outputs/figures/scatter_sepal_vs_petal.png", dpi=150)
    plt.show()
```



```
In [12]: corr = df[num_cols].corr()
   plt.figure(figsize=(8,6))
   sns.heatmap(corr, annot=True, cmap="coolwarm")
   plt.title("Correlation Heatmap")
   plt.savefig("../outputs/figures/corr_heatmap.png", dpi=150)
   plt.show()
```


Findings & Conclusion

- Dataset has 150 rows × 5 columns.
- Numeric columns: sepal_length, sepal_width, petal_length, petal_width.
- Summary stats show petal_length and petal_width vary more across species.
- Histograms: sepal_length is roughly normal, petal_length shows distinct groups.
- Correlation: petal_length & petal_width strongly correlated (~0.96).
- Outliers: sepal_width has mild outliers.

Next steps:

- Use these features for predictive modelling.
- Consider reducing correlated features for models like regression.

In []: