Question	Answer	Marks	Guidance
(a)	$mx + c = -\frac{m}{x} \implies mx^2 + cx + m = 0$	M1	All x terms in the numerator. OE e.g. $mx^2 + cx = -m$.
	$b^2 - 4ac = 0 \Rightarrow c^2 - 4m^2 = 0$	M1	OE $b^2 - 4ac = 0$ is implied by $c^2 - 4m^2 = 0$.
	$c = [\pm]2m$	A1	SOI. Allow ± at this stage.
	$mx^{2} [\pm] 2mx + m = 0 \Rightarrow x^{2} [\pm] 2x + 1 = 0$	M1	Sub $c = +2m$ Ignore substitution of $-2m$.
	$(x+1)^2 = 0 \Rightarrow x = -1$ only	A1	
	y = m only or $(-1, m)$ only	A1	
	Alternative method to question (a)		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{m}{x^2}$	M1	As this is a method mark a sign error is allowed.
	$\frac{m}{x^2} = m \implies x^2 = 1$	M1 A1	Equating their $\frac{dy}{dx}$ and m and attempt to solve.
	$x = \pm 1 \text{ or } x = -1$	A1	If $x = -1$ and $y = m$ are the only answers offered here award the final M1 A1.
	Selecting $x = -1$ as the only answer and attempt to find y	M1	
	y = m or (-1, m)	A1	
		6	

Question	Answer	Marks	Guidance
(b)	Equation of normal is $y - m = \frac{-1}{m}(x+1)$	*M1	Through <i>their P</i> with gradient $\frac{-1}{m}$, OE
			e.g. $y = \frac{-1}{m}x + \frac{m^2 - 1}{m}$.
			Allow use of the gradient of the curve as $-\frac{1}{\left[\frac{m}{(their\ x)^2}\right]}$ with
			their P. Coordinates of P must be in terms of m only.
	$\frac{-x}{m} - \frac{1}{m} + m = \frac{-m}{x} \implies x^2 + x(1 - m^2) - m^2 = 0$	DM1	OE Equating <i>their</i> normal equation to the equation of the curve and removing x from the denominator.
	$(x+1)(x-m^2) = 0 \implies x = m^2$	A1	
			$x = \frac{m^2 - 1 \pm \sqrt{1 - 2m^2 + m^4 + 4m^2}}{2} = \frac{m^2 - 1 \pm (m^2 + 1)}{2} = m^2$
	$y = \frac{-m}{m^2} = \frac{-1}{m}$	A1	or $\left(m^2, \frac{-1}{m}\right)$, ignore the coordinates of P.
		4	