Declarative Concurrent Programming with Join Calculus in Scala

Sergei Winitzki

Lambda-Conf 2020 Global Edition

August 11, 2020

Chemical Machine: a new hope

...and some new hype

In this talk:

- "join calculus" as a "Chemical Machine", without academic jargon
 - "λ-calculus" a small (but complete) programming language
 - ▶ "join calculus" a small (but complete) language for concurrency
 - \star adds 2 features ("async mailboxes" and "async functions") to λ -calculus
 - ★ in the chemical metaphor: "molecules" and "reactions"
- Chymyst open-source implementation of Chemical Machine (Scala)
- examples of concurrent programs in Chymyst
 - ▶ implement anything in 10-15 lines of code
- o comparisons with Actor Model, "AWS Lambda", and Petri nets
- an extension for distributed programming: DCM

Not in this talk: academic theory

- Petri net theory, π -calculus, join calculus, joinads, formal semantics
- DCM defined within some formalism for distributed programming

The chemical metaphor I. "Abstract" chemistry

Real chemistry is asynchronous, concurrent, and parallel:

$$HCI + NaOH \rightarrow NaCI + H_2O$$

Want to run *computations* similarly to how chemical reactions run! Begin by formulating the execution model of "abstract chemistry":

- Abstract "molecules" float around in a "chemical reaction site"
- Certain kinds of molecules may combine to start a "reaction":

$$a + b \rightarrow a$$

$$a + c \rightarrow \emptyset$$

- Program code defines molecules a, b, c, ... and chemical reactions
- At initial time, the code emits some molecules into the site
- The runtime system runs reactions concurrently and in parallel
 - ▶ A chemical simulation engine is easy to implement in any language

The chemical metaphor II. Chemical Machine in a nutshell From abstract chemistry to computation

Translating the chemical metaphor into a model of computation:

- Each molecule carries a value ("concurrent data")
- Each reaction computes new values from its input values
- Some molecules with new values may be emitted back into the reaction site

```
site(
  go { case a(x) + b(y) \Rightarrow
  val z = f(x, y); a(z) },
  go { case a(x) + c(_) \Rightarrow
      println(x) }
```

When a reaction starts: input molecules disappear, new values are computed, output molecules are emitted

Reactions are functions from input values to output values

Need to learn how to "think in molecules and reactions"

Programming the Chemical Machine using Chymyst

How I learned to forget semaphores and to love concurrency

Molecule emitters are values of type M[A]:

```
val count = m[Int]; val inc = m[Unit]
```

Molecules are emitted by calling the emitter's apply() method:

```
count(0); inc(); inc();
```

Reactions are values of type Reaction:

```
val r: Reaction = go { case count(x) + inc(_) \Rightarrow count(x + 1) }
```

- A reaction may be any partial function with a single case clause
- Emitters (e.g., count, inc) must be already defined

Reactions are "activated" as a group, using a "reaction site":

```
site(r1, r2, r3)
```

- Molecules may be emitted after activating their consuming reactions
- A site *must* include all reactions that contend on an input molecule

Programs declare molecules and reaction sites, then emit initial molecules

• The Chymyst runtime runs the simulation

Example: throttling

Throttle emitting molecules s(x) with minimum allowed delay of delta ms

```
def throttle[X](s: M[X], delta: Long): M[X] = {
 val r = m[X]
 val enable = m[Unit] // Molecule is confined to the local scope.
 site(
  go { case r(x) + enable(_) \Rightarrow
        s(x)
        Thread.sleep(delta)
        enable()
 enable() // Enable emitting 's' initially.
 {f r} // Outside scope will be able to emit 'r'.
```

- No threads/semaphores/locks, no mutable state
- External code may emit r(x) at will, and s(x) is then throttled
- External code may not emit enable()

Implementations in Akka, in Monix, and ZIO: > 50 LOC each

Example: cancellation

Cancel emitting molecules x(a) after a molecule cancel() is emitted

```
def cancellation[A](x: M[A]): (M[A], M[Unit]) = {
  val cx = m[A] // Cancellable version of 'x'.
  val cancel = m[Unit]; val enable = m[Unit]
  site(
    go { case cx(a) + enable(_) ⇒ x(a); enable() },
    go { case enable(_) + cancel(_) ⇒ }
  )
  enable() // Enable emitting 'x' initially.
  (cx, cancel) // Outside scope will be able to emit these.
}
```

- No threads/semaphores/locks, no mutable state
- External code may not emit enable() because of local scope

Users cannot implement this in Monix or ZIO (cancellation is provided)

An additional feature: Blocking molecules

A molecule emitter type B[A, R] receives a reply value of type R:

```
val fetch = b[Unit, Int] // Blocking emitter.
val result = m[Int]
site(
   go { case fetch(_, reply) + res(b) ⇒ reply(b) }
) // 'reply' is a ReplyEmitter[Int] defined within reaction scope.
result(123)
val x = fetch() // Blocking call, will set x = 123.
```

Blocking emitters are a convenience, do not increase expressive power

Example: map/reduce

A simple map/reduce implementation:

```
val c = m[A] // Initial values have type 'A'.
val d = m[(Int, B)] // B' is a commutative monoid.
val res = m[B] // Final result of type 'B'.
val fetch = b[Unit, B] // Blocking emitter.
site(
 // "map"
  go { case c(x) \Rightarrow d((1, long\_computation(x))) },
 // "reduce"
  go { case d((n1, b1)) + d((n2, b2)) \Rightarrow
  val (newN, newB) = (n1 + n2, b1 | + | b2)
   if (newN == total) res(newB) else d((newN, newB))
  },
  go { case fetch(\_, reply) + res(b) \Rightarrow reply(b) }
(1 to 100).foreach(x \Rightarrow c(x))
fetch() // Blocking call will return the final result.
```

Compare with the Akka implementation here (100+ LOC)

Example: parallel merge-sort

Reactions can be recursive

Complete Chymyst code: MergeSortSpec.scala

```
val mergesort = m[(Array[T], M[Array[T]])]
site(
  go { case mergesort((arr, sortedResult)) ⇒
    if (arr.length <= 1) sortedResult(arr)</pre>
      else {
        val sorted1 = m[Array[T]]
        val sorted2 = m[Array[T]]
        site( // Define a lower-level reaction site.
          go { case sorted1(x) + sorted2(y) \Rightarrow
             sortedResult(arrayMerge(x,y))
        val (part1, part2) = arr.splitAt(arr.length/2)
        // Emit lower-level mergesort molecules:
        mergesort(part1, sorted1) + mergesort(part2, sorted2)
1)
```

Implementation in Akka: 30 LOC for the same functionality

Dining philosophers I. Declarative vs. non-declarative code

The paradigmatic example of concurrency, parallelism and resource contention

Five philosophers sit at a round table, taking turns eating and thinking for random time intervals

Problem: simulate the process, avoiding deadlock and starvation Solutions in various programming languages: see Rosetta Code

• The Chemical Machine code is purely declarative

Dining philosophers II. Implementation in Chymyst

Five Dining Philosophers implemented in 15 lines of code

```
Philosophers 1, 2, 3, 4, 5 and forks f12, f23, f34, f45, f51
     // ... definitions of emitters, think(), eat() omitted for brevity
     site (
        go { case t1(_) \Rightarrow think(1); h1() },
        go { case t2(\_) \Rightarrow think(2); h2() },
        go { case t3() \Rightarrow think(3); h3()  },
        go { case t4(_) \Rightarrow think(4); h4() },
        go { case t5(\_) \Rightarrow think(5); h5() },
        go { case h1() + f12() + f51() \Rightarrow eat(1); t1() + f12() + f51() },
        go { case h2() + f23() + f12() \Rightarrow eat(2); t2() + f23() + f12() },
        go { case h3(_) + f34(_) + f23(_) \Rightarrow eat(3); t3() + f34() + f23() },
        go { case h4(_) + f45(_) + f34(_) \Rightarrow eat(4); t4() + f45() + f34() },
        go { case h5() + f51() + f45() \Rightarrow eat(5); t5() + f51() + f45() }
     t1() + t2() + t3() + t4() + t5()
     f12() + f23() + f34() + f45() + f51()
```

Source code: DiningPhilosophers.scala

For more examples, see the code repository (first-of, barriers, rendezvous, critical sections, readers/writers, Game of Life, elevators, etc.)

Reasoning about code in the Chemical Machine paradigm

Reasoning about concurrent data:

- Emit molecule with value \approx lift data into the "concurrent world"
- Define reaction ≈ lift a function into the "concurrent world"
- ullet Reaction site pprox container for concurrent functions and data
- Reaction consumes molecules \approx function consumes input values
- ullet Reaction emits molecules pprox function returns result values

Reasoning about code:

- What data do we need to handle concurrently? (Put it on molecules.)
- What computations consume this data? (Define as reactions.)

Guarantees:

- Molecule emitters and reactions are immutable values in local scopes
- Reaction sites are immutable once activated; can refactor to libraries
- Multiple input molecules are consumed atomically by reactions

Chemical Machine paradigm to become mainstream in 2033

• The gap from academic invention to industry adoption is 38.2 years (infix math, continuations, λ -functions, OOP, CSP, map/reduce, Actor Model, constraint programming, DAG dataflow, Hindley-Milner types)

• The Chemical Machine paradigm was invented in 1995

Current features of Chymyst

Experience with Chemical Machine programming is limited Some features promise to be useful:

- Blocking molecules with timeouts and timeout back-signalling
- Automatic pipelining of molecules (ordered mailboxes)
- Thread pools, thread priority control, graceful shutdown
- Facility to increase parallelism when using blocking code
- Errors in DSL are reported at compile-time or early run-time
 - Chymyst uses Scala macros but only to inspect code
 - Static analysis enables optimization and error reporting
- "Static" molecules with read-only access (similar to Akka "agents")
 - ► Forgetting to emit a molecule is #1 programmer error
- Logging, debugging, unit-testing facilities

Related frameworks: Petri nets

Workflow management: an approach based on Petri nets

- ING Baker a DSL for workflow management, based on Petri nets
- Process modeling and control ("elevator system" etc.)
- Business process management (BPM) systems

Chymyst implements a feature-rich version of Petri nets:

- Transitions admit arbitrary guard conditions and error recovery
- Transitions carry values, reactions are values, can be nested
- Nondeterministic, asynchronous, parallel execution

Any Petri net model is straightforwardly translated into a CM program

Chemical Machine vs. Amazon AWS Lambda

How AWS λ works:

- wait for an event that signals arrival of input data
- run a computation whenever input data becomes available
- the computation is automatically parallelized, data-driven
- writing the output data will create a new event
- Modify the AWS λ execution model by adding new requirements:
 - a Lambda should be able to wait for several *unrelated* events
 - several Lambdas may contend atomically on shared input events
- With these new requirements, AWS λ becomes "AWS π " a model of unrestricted concurrency
 - (Implementation on AWS could be tricky)

Chemical Machine vs. the Actor model. I

Modify the Actor execution model by adding new requirements:

- when messages arrive, actors are auto-created, maybe in parallel
- actors may wait atomically for messages in *several* different mailboxes It follows from these requirements that...
 - Auto-created actor instances are stateless and invisible to user
 - User code defines mailboxes and computations that consume messages
 - Repeated messages may be consumed in parallel
 - Messages are sent to mailboxes, not to specific actor instances:

```
// Akka // Chymyst val a: ActorRef = ... receive(x) \Rightarrow ... go { case a(x) \Rightarrow ... } val b: ActorRef = ... receive(y) \Rightarrow ... go { case b(y) + c(z) \Rightarrow ... } a ! 100 a(100) b ! 1; b ! 2; b ! 3 b ! 3; c("hello");
```

- All data resides on messages in mailboxes, is consumed automatically
- Mailboxes and computations are values, can be sent on messages

Any Actor program can be straightforwardly translated into CM

Chemical Machine vs. Actor model. II

- ullet reaction pprox function body for an (auto-started) actor
- ullet emitted molecule with value pprox message with value, in a mailbox
- molecule emitters ≈ mailbox references

Programming with actors:

- user code creates and manages explicit actor instances
- actors typically hold mutable state and/or mutate "behavior"
 - reasoning is about running processes and the data sent on messages

Programming with the Chemical Machine:

- processes auto-start when the needed input molecules are available
- many reactions may start at once, with automatic parallelism
 - user code does not manipulate references to processes
 - * no state, no supervision, no lifecycle, no "dead letters", no routers
 - reasoning is only about the data currently available on molecules
 - ★ no reasoning about running processes having internal state

Chymyst code is typically 2x - 3x shorter than equivalent Akka code

Distributed Chemical Machine

Run concurrent code on a cluster with no code changes

- Declare some molecules as "distributed", of type DM[T]
- No other new language constructions are necessary!
 - early prototype in progress, as extension of Chymyst

Distributed map/reduce in 15 LOC:

```
implicit val cluster = ClusterConfig(???)
val c = dm[Int] ; val d = dm[Int] // distributed
val res = m[(Int, List[Int])] // local
val fetch = b[Unit, List[Int]]
site(
  go { case c(x) \Rightarrow d(x * 2) }, // "map" on cluster,
// "reduce" on the driver node only.
  go { case res((n, list)) + d(x) \Rightarrow res((n-1, s::list)) },
// fetch results
  go { case fetch(_, reply) + res((0, list)) ⇒ reply(list) }
if (isDriver) { // 'true' only on the driver node.
  Seq(1, 2, 3).foreach(x \Rightarrow c(x))
  res((3, Nil)); fetch() // Returns the result.
```

Comparison: Akka implementation of distributed map/reduce (400+ LOC)

Distributed cache in 10 LOC

Mutable Map[String, String] with operations: put, get, delete

```
implicit val cluster = ClusterConfig(???)
val data = dm[mutable.Map[String, String]]
val put = dm[(String, String)]
val get = dm[(String, M[Option[String]]]
val delete = dm[String]
site(
   go { case data(dict) + put((k, v)) ⇒ data(dict.updated(k, v)) },
   go { case data(dict) + get((k, r)) ⇒ data(dict); r(dict.get(k)) },
   go { case data(dict) + delete(k) ⇒ dict.remove(k); data(dict) }
)
if (isDriver) data(mutable.Map[String, String]())
```

• Comparison: Distributed cache in 100 lines of Akka

Distributed peer-to-peer chat in 15 LOC

- Register user names in chat room
- Fetch list of users
- Send and receive text messages

```
implicit val cluster = ClusterConfig(???)
val users = dm[List[DM[String]]] // List of users' message emitters.
val carrier = dm[DM[String]] // Carries this node's message emitter.
val fetch = b[Unit, List[DM[String]]]
site(go { case users(es) + carrier(e) ⇒ users(e :: es) }
, go { case users(es) + fetch(_{-}, r) \Rightarrow users(es); r(es) } )
val peerName = ??? // Read from config on node.
val sender = new DM[String](peerName) // Assign unique molecule name.
site(go { case sender(x) \Rightarrow println(s"Peer $peerName reads $x")})
carrier(sender)
if (isDriver) users(Nil)
// Fetch list of users and send a message to Sergei if present.
fetch()
  .find(_.name == "Sergei")
  .foreach(sender ⇒ sender("hello"))
```

Comparison: Distributed chat in > 100 lines of Akka

Reasoning in the Distributed Chemical Machine

Distributed computing is made declarative

- Determine which data needs to be distributed and/or concurrent
- Determine which computations will need to consume that data
- Emit initial molecules and let the DCM run

Pure peer-to-peer architecture:

- Distributed molecules may be consumed by any DCM peer
- All DCM peers operate in the same way (no master/worker)
- All DCM peers need to define the same distributed reaction sites
 - Non-DCM code may differ between peers
 - Code or configuration could designate DCM peer as a "driver" or have different roles

Chemical Machine: implementation details

- Each reaction site has a scheduler thread and a worker thread pool
- Each molecule is "bound" to a unique reaction site
- Each emitted molecule is stored in a multi-set at its reaction site
- Each emitted molecule triggers a search for possible reactions
 - ▶ Reaction search proceeds concurrently for different reaction sites
- Reactions are scheduled on the worker thread pool
 - ▶ The thread pool can be configured per-reaction or per-site
- Scala macros are used for static analysis and optimizations
 - Automatically pipelined molecules
 - Simplify and analyze Boolean conditions
- Error analysis is also performed at early run time
 - Reaction site with errors remain inactive

Distributed Chemical Machine: implementation details

- Each distributed molecule (DM) is bound to a unique reaction site
- Emitted DM data goes into the ZK instance
- Each DCM peer listens to ZK messages and checks for its DMs
 - Once a DM is found, its data is downloaded and deserialized
- On a DCM peer, each DM is identified with a unique local RS
 - ▶ Downloaded molecules are emitted into the local RS to run reactions
 - ▶ All DCM peers must run identical reaction code for DMs
- Each DCM peer acquires a distributed lock on its DMs
 - ▶ Lock is released once reaction scheduling is complete
- If a node goes down or network fails, molecules will be unconsumed
 - Another DCM peer will pick up these molecules later

Conclusions and outlook

- Chemical Machine = declarative, purely functional concurrency
 - Enough power to replace threads, semaphors, atomic vars, etc.
 - Similar to Actor Model, but easier to use and "more purely functional"
 - Significantly shorter code, easier to reason about
- An open-source Scala implementation: Chymyst
 - Static DSL code analysis (with Scala macros)
 - Industry-strength features (thread priority control, pipelining, fault tolerance, unit testing and debugging APIs)
 - Extensive documentation: tutorial book
 - ▶ Distributed Chemical Machine work in progress
- Promising applications:
 - Workflow management, BPM
 - Asynchronous GUIs
 - Distributed peer-to-peer systems