## 微分方程数值解第四周第二次作业

作业:

$$\begin{cases} -(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) = (\pi^2 - 1)e^x sin(\pi y) &, 0 \le x \le 2, 0 \le y \le 1 \\ u(0, y) = sin(\pi y), u(2, y) = e^2 sin(\pi y) &, 0 \le y \le 1 \\ u(x, 0) = 0, u(x, 1) = 0, &, 0 \le x \le 2 \end{cases}$$

该问题的精确解为  $u(x,y) = e^x sin(\pi y)$ .

定义误差为

$$E(h_1, h_2) = \max_{\substack{1 \le i \le M-1 \\ 1 \le j \le N-1}} |u(x_i, y_j) - u_{ij})|$$

请分析误差在不同步长下的变化情况、验证误差阶、并画出误差图。

解:将 xM 等分,将 yN 等分。

差分格式为

$$-\frac{1}{h_2^2}u_{i,j-1} - \frac{1}{h_1^2}u_{i-1,j} + 2(\frac{1}{h_1^2} + \frac{1}{h_2^2})u_{i,j} - \frac{1}{h_1^2}u_{i+1,j} - \frac{1}{h_2^2}u_{i,j+1} = f_{i,j}$$
  
其中, $1 \le i \le N - 1, 1 \le j \le N - 1$ .  $f_{i,j} = (\pi^2 - 1)e^{x_i}sin(\pi y_j)$ .  
可用高斯-塞德尔迭代解方程组,迭代式写为

$$u_{i,j}^{k+1} = \left[ f(x_i, y_j) + \frac{1}{h_2^2} u_{i,j-1}^{k+1} + \frac{1}{h_1^2} u_{i-1,j}^{k+1} + \frac{1}{h_1^2} u_{i+1,j}^k + \frac{1}{h_2^2} u_{i,j+1}^k \right] / \left[ 2(\frac{1}{h_1^2} + \frac{1}{h_2^2}) \right]$$

k 表示第 k 次迭代

## 解题程序运行于 Matlab 2018a.

当 M=40,N=10 时的数值解和精确解对比见图1, 从图像上看很接近。

当取不同的 M 和 N 时,数值解在一些点上的取值和精确解见表1,可知,当区间数 越大,即步长越小,数值解越接近与精确解。

取不同 M 和 N 时,误差见图2,M 和 N 越大,误差越小。 定义误差阶为

$$rate = log2(E(2h_1, 2h_2)/E(h_1, h_2))$$

求出上述不同 M, N 对应的步长误差阶,见表2,误差达到了 2 阶,为五点差分格式截断误差的阶数。



图 1

表 1 不同 M, N 下一些点的数值解和精确解

| M,N    | x(y=0.5) |          |          |          |
|--------|----------|----------|----------|----------|
|        | 0.4      | 0.8      | 1.2      | 1.6      |
| 20,10  | 1.502594 | 2.243849 | 3.345099 | 4.979283 |
| 40,20  | 1.494511 | 2.230105 | 3.326353 | 4.959601 |
| 80,40  | 1.492491 | 2.226674 | 3.321668 | 4.954671 |
| 160,80 | 1.491982 | 2.225809 | 3.320490 | 4.953433 |
| 精确解    | 1.491825 | 2.225541 | 3.320117 | 4.953032 |



图 2 取不同 M,N 的误差

表 2 不同步长的误差和误差阶

| $h_1, h_2$ | $E(h_1, h_2)$ | rate     |
|------------|---------------|----------|
| 1/10,1/10  | 2.7133E-02    | *        |
| 1/20,1/20  | 6.7925E-03    | 1.998021 |
| 1/40,1/40  | 1.6934E-03    | 2.003985 |
| 1/80,1/80  | 4.1181E-04    | 2.039917 |