ETR0317 005

High Current, High Speed LDO Regulators

■GENERAL DESCRIPTION

The XC6210 series are precise, low noise, high current, positive voltage low dropout regulators. They are fabricated using Torex's CMOS process.

The series features a voltage reference, an error amplifier, a current limiter, and a phase compensation circuit plus a driver transistor. With a low ON resistance driver transistor built into, batteries can be used until input-output voltage differential is minimal and can accordingly be used for a longer time.

The series is also compatible with low ESR ceramic capacitors which give added output stability.

The output voltage of the LDO is selectable in 0.05V increments within the range of 0.80V to 5.00V.

The current limiter's foldback circuit also operates as the output current limiter and the output pin protection.

The IC's internal regulator circuit can be placed in stand-by mode via the CE function. In the stand-by mode, power consumption is greatly reduced.

APPLICATIONS

- ●CD-ROMs. CD-R / RW drive
- DVD drive
- HDD drive
- Cameras, Video recorders
- Portable AV equipment
- Battery powered equipment

■FEATURES

Maximum Output Current : More than 700mA

(800mA limit, TYP.)

 $(1.60V\underline{\underline{<}}V_{OUT}\underline{\underline{<}}5.00V)$

Dropout Voltage : 50mV @ 100mA

: 100mV @ 200mA

Operating Voltage Range : 1.50V ~ 6.00V

Output Voltage Range : 0.80V ~ 5.00V (0.05V increments)

Highly Accurate : $\pm 2\%$ (1.55V \leq V_{OUT} \leq 5.00V)

±30mV (0.80V≦V_{OUT}≦1.50V)

Low Power Consumption : $35 \mu A (TYP.)$ **High Ripple Rejection** : 60dB @1kHz

Operational Ambient Temperature

: -40°C ~ +85°C

CMOS

Low ESR Capacitor Compatible
Packages : SOT-25

SOT-89-5

USP-6B

Environmentally Friendly: EU RoHS Compliant, Pb Free

■ TYPICAL APPLICATION CIRCUIT

■TYPICAL PERFORMANCE CHARACTERISTICS

XC6210x302xx

Dropout Voltage vs. Output Current

■PIN CONFIGURATION

USP-6B (BOTTOM VIEW) *The dissipation pad for the USP-6B package should be solder-plated in reference mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the Vss pins.

■PIN ASSIGNMENT

	PIN NUMBER		PIN NAME	FUNCTION			
SOT-25	SOT-89-5	USP-6B	PIN NAIVIE	FUNCTION			
3	1	1	CE	ON/OFF Control			
1	4	3	V_{IN}	Power Input			
2	2	4	V _{SS}	Ground			
5	5	5	V_{OUT}	Output			
4	3	2, 6	NC	No Connection			

■LOGIC CONDIFION FOR THE PIN

PIN NAME	DESIGNATOR	CONDITIONS			
CE	Н	1.3V≦V _{CE} ≦6.0V			
OE	L	V _{CE} ≦0.25V			

* V_{CE} : CE pin voltage

■PIN FUNCTION ASSIGNMENT

1) XC6210A Type (CE High Active、CE pull-down resistor)

CE	IC Operation ON/OFF
"H" Level	ON
"L" Level	OFF
"OPEN"	OFF

2) XC6210B Type (CE High Active、CE no pull-down resistor)

CE	IC Operation ON/OFF
"H" Level	ON
"L" Level	OFF
"OPEN"	Undefined state

3) XC6210C Type (CE Low Active、CE pull-up resistor)

CE	IC Operation ON/OFF
"H" Level	OFF
"L" Level	ON
"OPEN"	OFF

4) XC6210D Type (CE Low Active、CE no pull-up resistor)

CE	IC Operation ON/OFF
"H" Level	OFF
"L" Level	ON
"OPEN"	Undefined state

■PRODUCT CLASSIFICATION

Ordering Information

XC6210 ①23456-7°

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION					
		Α	High Active with pull-down resistor					
<u> </u>	OF Din Functions	В	High Active with no pull-down resistor					
1	CE Pin Functions	С	Low Active with pull-up resistor					
		D	Low Active with no pull-up resistor					
23	Output Voltage	08~50	ex.) 3.00V → ②=3, ③=0					
4	Output Voltage	2	0.10V increments ex.) 3.00V→②=3, ③=0, ④=2					
4	(The second place of decimal point)	A	0.05V increments ex.) 3.05V→②=3, ③=0, ④=A					
		MR	SOT-25 (3,000/Reel)					
		MR-G	SOT-25 (3,000/Reel)					
5 6-7 ^(*1)	Packages	PR	SOT-89-5 (1,000/Reel)					
	(Oder Unit)	PR-G	SOT-89-5 (1,000/Reel)					
		DR	USP-6B (3,000/Reel)					
		DR-G	USP-6B (3,000/Reel)					

The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

■BLOCK DIAGRAM

XC6210A Series

XC6210C Series

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAMETER		SYMBOL	RATINGS	UNITS
Input Volta	Input Voltage		6.5	V
Output Curr	ent *	I _{OUT}	900	mA
Output Volt	age	V _{OUT}	V _{SS} -0.3 ~ V _{IN} +0.3	V
CE Pin Vol	tage	V _{CE}	V _{SS} -0.3 ~ 6.5	V
	SOT-25		250 600 (PCB mounted) *2	
Power Dissipation	SOT-89-5	Pd	500 1300 (PCB mounted) *2	mW
	USP-6B		100 1000 (PCB mounted)* ²	
Operating Tempera	Operating Temperature Range		- 40 ~ + 85	°C
Storage Temperat	ure Range	Tstg	- 55 ~ + 125	°C

^{*1:} I_{OUT} =Pd / $(V_{IN} - V_{OUT})$

^{*}Diodes shown in the above circuit are ESD protection diodes and parasitic diodes

^{*2:} The power dissipation figure shown is PCB mounted. Please refer to pages 22 to 24 for details.

■ELECTRICAL CHARACTERISTICS

●XC6210 series Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT S	CIRCUIT
	(40)	$V_{IN}=V_{OUT(T)}+1.0V$, $I_{OUT}=30$ mA $V_{CE}=ON$ (V_{IN} or V_{SS}) ($V_{OUT(T)}>1.50V$)	x 0.98	V _{OUT(T)} (*2)	x 1.02		_
Output Voltage	V _{OUT(E)} ^(*3)	$V_{IN} = V_{OUT(T)} + 1.0V$, $I_{OUT} = 30$ mA, $V_{CE} = ON(V_{IN})$ or $V_{SS}(V_{OUT(T)} \le 1.50V)$		V _{OUT(T)} ^(*2) (+30mV)		V	1
Maximum Output Current	I _{OUTMAX}	$V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=ON(V_{IN} \text{ or } V_{SS})$ $(V_{OUT(T)}>1.50V)$		-	-	mA	1
Waximam Supar Surent	TOUTMAX	$V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=ON(V_{IN} \text{ or } V_{SS})$ $(V_{OUT(T)} \le 1.50V)$	500	-	-	III (•
Load Regulation	ΔV_{OUT}	$1 mA \underline{\leq} I_{OUT} \underline{\leq} 100 mA, \ V_{CE} = ON(V_{IN} \ or \ V_{SS})$	-	15	60	mV	1
Dropout Voltage	Vdif1 ^(*4)	$I_{OUT} = 30 mA, \ V_{CE} = ON(V_{IN} \ or \ V_{SS})$		E-1		mV	(Ī)
Dropout voltage	Vdif2 ^(*4)	I_{OUT} =100mA, V_{CE} =ON(V_{IN} or V_{SS})		E-2		IIIV	
Supply Current (A type)		$V_{IN}=V_{CE}=V_{OUT(T)}+1.0V$		E-3			
Supply Current (B type)		$V_{IN}=V_{CE}=V_{OUT(T)}+1.0V$	-	35	55	^	<u></u>
Supply Current (C type)	I _{DD}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$		E-3		μΑ	2
Supply Current (D type)		$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$	-	35	55		
Stand-by Current	I _{STBY}	V _{IN} =6.0V,V _{CE} =OFF(V _{IN} or V _{SS})	-0.10	-	0.10	μΑ	2
Line Regulation	$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}}.V_{\text{OUT}}}$	$\begin{split} &V_{\text{OUT(T)}}\text{+}1.0\text{V} \leqq \text{V}_{\text{IN}} \leqq 6.0\text{V} \\ &V_{\text{CE}}\text{=}\text{ON}(\text{V}_{\text{IN}} \text{ or V}_{\text{SS}}), \text{I}_{\text{OUT}}\text{=}30\text{mA} \\ &V_{\text{OUT(T)}}\text{<}4.50\text{V} \\ &5.5\text{V} \leqq \text{V}_{\text{IN}} \leqq 6.0\text{V} \\ &V_{\text{CE}}\text{=}\text{ON}(\text{V}_{\text{IN}} \text{ or V}_{\text{SS}}), \text{I}_{\text{OUT}}\text{=}30\text{mA} \\ &V_{\text{OUT(T)}} \leqq 4.50\text{V} \end{split}$		0.01	0.20	% / V	1
Input Voltage	V _{IN}	-	1.5	-	6.0	V	-
Output Voltage Temperature Characteristics	$\frac{\Delta V_{\text{OUT}}}{\Delta \text{Topr} \cdot \Delta V_{\text{OUT}}}$	I _{OUT} =30mA, V _{CE} =ON (V _{IN} or V _{SS}) -40°C≦Topr≦85°C	-	±100	-	ppm/	1
Ripple Rejection Rate	PSRR	$\begin{split} &V_{\text{IN}} = &[V_{\text{OUT(T)}} + 1.0]V_{\text{DC}} + 0.5V_{\text{P-PAC}} \\ &V_{\text{CE}} = &ON(V_{\text{IN}} \text{ or } V_{\text{SS}}), \ I_{\text{OUT}} = 30\text{mA}, \ f = 1\text{kHz} \\ &V_{\text{OUT(T)}} < 4.75V \\ &V_{\text{IN}} = 5.75V_{\text{DC}} + 0.5V_{\text{P-PAC}} \\ &V_{\text{CE}} = &ON(V_{\text{IN}} \text{ or } V_{\text{SS}}), \ I_{\text{OUT}} = 30\text{mA}, \ f = 1\text{kHz} \\ &V_{\text{OUT(T)}} \ge 4.75V \end{split}$	-	60	-	dB	3
		$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=ON(V_{IN} \text{ or } V_{SS})$	700	800	-		
Current Limiter	I_{LIM} $V_{OUT(T)} > 1.50V$ $V_{IN} = V_{OUT(T)} + 1.0V, V_{CE} = ON(V_{IN} \text{ or } V_{SS})$ $V_{OUT(T)} \le 1.50V$		-	800	-	mA	1
Short-Circuit Current	I _{SHORT}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=ON(V_{IN} \text{ or } V_{SS})$	-	50	-	mA	1
CE "High" Level Voltage	V_{CEH}	-	1.3	-	6.0	.,	4
CE "Low" Level Voltage	V_{CEL}	-	-	-	0.25	V	1
CE "High" Level Current (A type)		V _{CE} =V _{IN} =V _{OUT(T)} +1.0V	E-4	-	E-4	., Δ	(F)
CE "High" Level Current (B / C / D type)	І _{СЕН}	V _{CE} =V _{IN} =V _{OUT(T)} +1.0V	- 0.10	-	0.10	μΑ	1
CE "Low" Level Current (C type)	I _{CEL}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$	E-5	-	E-5	μΑ	(1)
CE "Low" Level Current (A / B / D type)	ICEL	V_{IN} = $V_{OUT(T)}$ +1.0 V , V_{CE} = V_{SS}	- 0.10	-	0.10	μΑ	

NOTE:

- *1: Unless otherwise stated, V_{IN} = $V_{\text{OUT}(T)}$ +1.0V
- *2: $V_{OUT(T)}$ =Specified output voltage
- *3: $V_{OUT(E)}$ =Effective output voltage

(i.e. the output voltage when " $V_{\text{OUT(T)}}$ +1.0V" is provided while maintaining a certain I_{OUT} value).

- *4: Vdif ={V_{IN1}(*6)-V_{OUT1}(*5)}
- *5: A voltage equal to 98% of the output voltage whenever a stabilized $V_{OUT1} = I_{OUT} \{V_{OUT(T)} + 1.0V\}$ is input.
- *6: V_{IN1}= the input voltage when V_{OUT1}, which appears as input voltage is gradually decreased.
- *7: V_{CE} conditions:

XC6210A / B type: $ON=V_{IN}$, $OFF=V_{SS}$

XC6210C / D type: ON= V_{SS} , OFF= V_{IN}

■VOLTAGE CHART

● Dropout Voltage, Supply Current, CE "H / L" Level Current Chart

Ta=25°C

	Ta=25°C											
			E	-1	E	-2	Е	-3	Е	-4	E-5	
SETTING OUTPUT VOLTAGE		TPUT TAGE	DROPOUT VOLTAGE 1 (I _{OUT} =30mA)		DROPOUT VOLTAGE 2 (I _{OUT} =100mA)		SUPPLY CURRENT		CE "H" LEVEL CURRENT		CE "L" LEVEL CURRENT	
(V)	(V)	(n	nV)	(n	ıV)	(μΑ)		(μΑ)		(μΑ)	
	V	OUT	Vo	dif1	Vo	dif2	l ₁	DD	Ic	EH	I	CEL
$V_{OUT(T)}$	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.
0.80	0.770	0.830						1111 1111	1			
0.85	0.820	0.880		700.0		800.0						
0.90	0.870	0.930	100.0		250.0		38.0	60.0	1.50	5.00	-5.00	-1.50
0.95	0.920	0.980		600.0		700.0						
1.00	0.970	1.030										
1.05	1.020	1.080		500.0	450.0	600.0						
1.10	1.070	1.130	50.0	400.0	150.0	500.0						
1.15	1.120	1.180		400.0		500.0						
1.20	1.170	1.230		300.0		400.0	38.5	61.5	2.00	6.50	-6.50	-2.00
1.25	1.220	1.280		300.0		+00.0	30.5	01.5	2.00	0.50	-0.50	-2.00
1.30	1.270	1.330	30.0	200.0	100.0	300.0						
1.35	1.320	1.380	00.0	200.0	100.0	000.0						
1.40	1.370	1.430		100.0		250.0						
1.45	1.420	1.480										
1.50	1.470	1.530										
1.55	1.519	1.581		41.0	90.0			63.0	2.50	8.00	-8.00	
1.60	1.568	1.632				90.0 135.0	39.0					-2.50
1.65	1.617	1.683										
1.70	1.666	1.734	27.0									
1.75	1.715	1.785										
1.80	1.764	1.836										
1.85 1.90	1.813 1.862	1.887 1.938										
1.95	1.911	1.989										
2.00	1.960	2.040										
2.05	2.009	2.091										
2.10	2.058	2.142										
2.15	2.107	2.193										
2.20	2.156	2.244										
2.25	2.205	2.295	25.0	37.0	80.0	120.0	39.5	64.5	3.00	9.50	-9.50	-3.00
2.30	2.254	2.346										
2.35	2.303	2.397										
2.40	2.352	2.448										
2.45	2.401	2.499										
2.50	2.450	2.550										
2.55	2.499	2.601										
2.60	2.548	2.652										
2.65	2.597	2.703										
2.70	2.646	2.754	18.0	28.0	60.0	90.0	40.0	66.0	3.50	11.00	-11.00	-3.50
2.75	2.695	2.805	. 3.0					23.0	3.30			
2.80	2.744	2.856										
2.85	2.793	2.907										
2.90	2.842	2.958										
2.95	2.891	3.009										

■VOLTAGE CHART (Continued)

● Dropout Voltage, Supply Current, CE "H / L" Level Current Chart

Ta=25°C

			,		1		1				1	Ta=25°C
SETTING			E	-1	E	-2	E	-3	E	-4	E	-5
OUTPUT		TPUT	DROPOUT		DROPOUT		SUPPLY		CE "H" LEVEL		CE "L" LEVEL	
VOLTAGE	VOL	TAGE	VOLTAGE 1		VOLTAGE 2				CURRENT		CURRENT	
			(I _{OUT} =	30mA)	(I _{OUT} =100mA)		CURRENT		JOINENT		CONNENT	
(V)	((V)	(n	nV)	(n	nV)	(μΑ)		(μΑ)		(μΑ)	
	V	оит	Vo	dif1	V	dif2	I	DD	Id	EH	Id	EL
$V_{OUT(T)}$	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	MIN.	MAX.	MIN.	MAX.
3.00	2.940	3.060										
3.05	2.989	3.111										
3.10	3.038	3.162										
3.15	3.087	3.213										
3.20	3.136	3.264	15.0	23.0	50.0	75.0	40.5	67.5	4.00	12.50	-12.50	-4.00
3.25	3.185	3.315	10.0	20.0	00.0	70.0	40.0	07.0	4.00	12.00	12.00	4.00
3.30	3.234	3.366										
3.35	3.283	3.417										
3.40	3.332	3.468										
3.45	3.381	3.519										
3.50	3.430	3.570										
3.55	3.479	3.621										
3.60	3.528	3.672										
3.65	3.577	3.723										
3.70	3.626	3.774	15	23	50	75	41.0	69.0	4.40	14.00	-14.00	-4.40
3.75	3.675	3.825	10			'	11.0	00.0	1.10	11.00	11.00	1.10
3.80	3.724	3.876										
3.85	3.773	3.927										
3.90	3.822	3.978										
3.95	3.871	4.029										
4.00	3.920	4.080										
4.05	3.969	4.131										
4.10	4.018	4.182										
4.15	4.067	4.233										
4.20	4.116	4.284					41.5	70.5	4.85	15.50	-15.50	-4.85
4.25	4.165	4.335										
4.30	4.214	4.386										
4.30	4.214	4.386										
4.40	4.312	4.488										
4.45	4.361	4.539	, <u> </u>	60 -	50 -							
4.50	4.410	4.590	15.0	23.0	50.0	75.0						
4.55	4.459	4.641										
4.60	4.508	4.692										
4.65	4.557	4.743										
4.70	4.606	4.794					46.5	70.0	F 00	47.00	47.00	.
4.75	4.655	4.845					42.0	72.0	5.30	17.00	-17.00	-5.30
4.80	4.704	4.896										
4.85	4.753	4.947										
4.90	4.802	4.998										
4.95	4.851	5.049										
5.00	4.900	5.100										

■TEST CIRCUITS

●Circuit①

(Output Voltage, Maximum Output Voltage, Load Regulation, Dropout Voltage, Line Regulation, Output Voltage Temperature Characteristics, Current Limiter, Short-Circuit Current, CE "H" "L" Level Voltage, CE "H" "L" Level Current)

●Circuit ② (Supply Current, Stand-by Current)

●Circuit ③ (Ripple Rejection Rate)

Output Capacitor Corresponding Chart

OUTPUT VOLTAGE	CL
0.80V~1.45V	More than 6.8 μ F
1.50V~1.75V	More than 4.7 μ F
1.80V~5.00V	More than 1.0 μ F

■OPERATIONAL EXPLANATION

<Output Voltage Regulator Control>

The voltage, divided by resistors R1 & R2, which are connected to the V_{OUT} pin is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET, which is connected to the V_{OUT} pin, is then driven by the subsequent output signal. The output voltage at the V_{OUT} pin is controlled & stabilized by negative feedback. The constant current limit circuit and short circuit protection operate in relation to the level of output current.

<Low ESR Capacitor>

With the XC6210 series regulator, a stable output voltage is achievable even if low ESR capacitors are used, as a phase compensation circuit is built into the regulator. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (C_L) be connected as close as possible, between the output pin (V_{OUT}) and the V_{SS} pin. Please use an output capacitor (C_L) with a capacitance, based on the chart below. We also suggest an input capacitor (C_{IN}) of $1.0\mu F$: this should be connected between V_{IN} and V_{SS} in order to stabilize input power source.

Output Capacitor Corresponding Chart

V _{OUT}	C _L
0.80V ~ 1.45V	More than 6.8 μ F
1.50V ~ 1.75V	More than 4.7 μ F
1.80V ~ 5.00V	More than 1.0μ F

< Current Limiter, Short-Circuit Protection>

The XC6210 series regulator offers a combination of current limit and short circuit protection by means of a built-in fixed current limiter circuit and a foldback circuit. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, the output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

<CE Pin>

The IC's internal regulator circuitry can be shut down via the signal from the CE pin with the XC6210 series. In shutdown mode, output at the V_{OUT} pin will be pulled down to the V_{SS} level via R1 & R2. Options are available for the CE pin logic (See the product classification). Note that as the XC6210B types are 'High Active / No Pull-Down', operations will become unstable with the CE pin open. Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC is in operation. We suggest that you use this IC with either a V_{IN} voltage or a V_{SS} voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry if a voltage other than VIN or V_{SS} is applied.

■NOTES ON USE

- 1. Please use this IC within the stated absolute maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V_{IN} and V_{SS} wiring in particular.
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible. If rapid input fluctuation or load fluctuation should occur, please increase the capacitor value such as C_{IN} or C_L more than the recommended values to stabilize the operation.
- 4. Torex places an importance on improving our products and its reliability.

 However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

XC6210x082xx

XC6210x302xx

XC6210x502xx

XC6210x082xx

XC6210x302xx

XC6210x502xx

(2) Output Voltage vs. Input Voltage

(3) Dropout Voltage vs. Output Current

(4) Supply Current vs. Input Voltage

(5) Output Voltage vs. Ambient Temperature

(6) Supply Current vs. Ambient Temperature

(7) CE Pin Threshold Voltage vs. Ambient Temperature

(8) Input Transient Response 1

(9) Load Transient Response

(10) Ripple Rejection Rate

(11) Input Transient Response 2

■PACKAGING INFORMATION

●SOT-25

2.9±0.2 5-04, ±0.1 5-04, ±0.1 0~0.1 0.95, 0.95 1.9±0.2 0.15 ±0.1 -0.05

(unit: mm)

●SOT-89-5

(unit: mm)

●USP-6B

(unit: mm)

●USP-6B Reference Pattern Layout

2.4 0.45 0

●USP-6B Reference Metal Mask Design

(unit:mm) (unit:mm)

●SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used.)

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	600	166.67
85	240	100.07

SOT-89-5 Power Dissipation

Power dissipation data for the SOT-89-5 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 5 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125°C)

Ambient Temperature(°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	1300	76.92
85	520	70.32

USP-6B Power Dissipation

Power dissipation data for the USP-6B is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C) Power Dissipation Pd (mW)		Thermal Resistance (°C/W)
25	1000	100.00
85	400	100.00

■MARKING RULE

●SOT-25

SOT-25 (TOP VIEW)

●SOT-89-5

SOT-89-5 (TOP VIEW)

① represents product series

MARK	PRODUCT SERIES
0	XC6210xxxxxx

2 represents CE function

	MA			
OUTPUT	OUTPUT	OUTPUT	OUTPUT	PRODUCT SERIES
VOLTAGE=	VOLTAGE=	VOLTAGE=	VOLTAGE=	PRODUCT SERIES
0.80~3.00V	3.10~5.00V	0.85~3.05V	3.15~4.95V	
V	Α	E	L	XC6210Axxxxx
X	В	F	М	XC6210Bxxxxx
Y	С	Н	N	XC6210Cxxxxx
Z	D	K	Р	XC6210Dxxxxx

③ represents output voltage

MARK	OUTPUT VOLTAGE (V)			MARK	OU	TPUT V	OLTAGE	(V)	
0	-	3.10	-	3.15	F	1.60	4.60	1.65	4.65
1	-	3.20	1	3.25	Н	1.70	4.70	1.75	4.75
2	-	3.30	ı	3.35	K	1.80	4.80	1.85	4.85
3	-	3.40	1	3.45	L	1.90	4.90	1.95	4.95
4	-	3.50	ı	3.55	M	2.00	5.00	2.05	-
5	-	3.60	ı	3.65	N	2.10	1	2.15	-
6	-	3.70	-	3.75	Р	2.20	1	2.25	-
7	0.80	3.80	0.85	3.85	R	2.30	1	2.35	-
8	0.90	3.90	0.95	3.95	S	2.40	1	2.45	-
9	1.00	4.00	1.05	4.05	Т	2.50	ı	2.55	-
Α	1.10	4.10	1.15	4.15	U	2.60	1	2.65	-
В	1.20	4.20	1.25	4.25	V	2.70	-	2.75	-
С	1.30	4.30	1.35	4.35	Х	2.80	-	2.85	-
D	1.40	4.40	1.45	4.45	Y	2.90	-	2.95	-
Е	1.50	4.50	1.55	4.55	Z	3.00	-	3.05	-

4 represents production lot number

0 to 9, A to Z reverse character 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

■MARKING RULE (Continued)

●USP-6B

USP-6B (TOP VIEW)

①② represents product series

MARK		DDODUCT CEDIES
① ②		PRODUCT SERIES
1	0	XC6210xxxxxx

3 represents CE Function

MARK	TYPE	PRODUCT SERIES
Α	CE High Active with pull-down resistor	XC6210AxxxDx
В	B CE High Active with no pull-down resistor	
С	CE Low Active with pull-up resistor	XC6210CxxxDx
D	CE Low Active with no pull-up resistor	XC6210DxxxDx

4 represents the integer number of output voltage

ex.)

MARK VOLTAGE (V)

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.x	XC6210x3xxDx
5	5.x	XC6210x5xxDx

(5) represents the decimal point of output voltage

MARK	RK VOLTAGE PRODUCT MARK		VOLTAGE	PRODUCT	
IVIARK	(V)	SERIES	IVIARK	(V)	SERIES
0	x.00	XC6210xx02Dx	Α	x.05	XC6210xx0ADx
1	x.10	XC6210xx12Dx	В	x.15	XC6210xx1ADx
2	x.20	XC6210xx22Dx	С	x.25	XC6210xx2ADx
3	x.30	XC6210xx32Dx	D	x.35	XC6210xx3ADx
4	x.40	XC6210xx42Dx	Е	x.45	XC6210xx4ADx
5	x.50	XC6210xx52Dx	F	x.55	XC6210xx5ADx
6	x.60	XC6210xx62Dx	Н	x.65	XC6210xx6ADx
7	x.70	XC6210xx72Dx	K	x.75	XC6210xx7ADx
8	x.80	XC6210xx82Dx	L	x.85	XC6210xx8ADx
9	x.90	XC6210xx92Dx	М	x.95	XC6210xx9ADx

⑥ represents production lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W, excluded) Note: No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.