Heavy Flavor Tagged Jets in Au+Au 200 GeV

Diptanil Roy Rutgers University

roydiptanil@gmail.com

RECAP From QM '22

Summary

- First D⁰-tagged measurement at RHIC energies
- Fragmentation from PYTHIA 8 used for correcting jet momenta and substructure
 - ✓ Spectra for D⁰-tagged jets in central and mid-central events consistent with being suppressed with respect to peripheral events
 - ✓ Radial profile of D⁰ mesons in jets consistent with unity within uncertainties.

Outlook

- Measure fragmentation function for D⁰-tagged jets in Au+Au collisions
- Extend kinematic reach to low $D^0 p_T$ to get closer to charm quark mass

ISSUES

- 1. Fragmentation function for PYTHIA is 'too' hard
- 2. For low D^0 p_T in jets, unfolding is dependent on the fragmentation function

Details here: https://drupal.star.bnl.gov/STAR/system/files/Kelsey_JetCorr_17Mar2022.pdf

Analysis Details

Event Selection:

- Au+Au $\sqrt{s_{NN}} = 200$ GeV, Year 2014
- Minimum bias (MB)
- Centrality $\in [0, 80]\%$ (3 bins: [0-10], [10-40], [40-80])

Constituent Selection:

- $0.2 < p_{\text{T.track}} \text{ [GeV/c]} < 30 ; 0.2 < E_{\text{T.tower}} \text{ [GeV]} < 30$
- $|\eta_{\text{track}}| < 1$; $|\eta_{\text{tower}}| < 1$
- $D^0 \rightarrow K^{\mp} + \pi^{\pm} [B.R. = 3.82 \%]$
- For D⁰ reconstruction: Tracks need at least three hits on HFT
- $1 < p_{T,D^0} [\text{GeV}/c] < 10$

D⁰ Jet Selection:

- Anti- k_T full jets of radius R = 0.4, area-based background subtraction
- $|\eta_{Jet}| < 0.6$

Response Matrix Definition

- Particle Level: $5 < p_{T,Jet} [GeV/c] < 20$
- Detector Level: $0 < p_{\text{T,Iet}} [\text{GeV/}c] < 30$

Updating the simulation

Earlier, single particle embedded in minimum bias event to determine background fluctuation

- Get a minimum bias event
- Sample ~10 random PYTHIA events for each minimum bias event
- Run jet maker on the PYTHIA events 'embedded' in the minimum bias event -> This is PARTICLE level
- Run jet maker on the combined PYTHIA+Minbias event -> This is **DETECTOR** level

Comparing the background fluctuations

Similar background fluctuation in the two cases

Fragmentation Function (z)

$$z = \frac{p_{\mathrm{T,D^0}}}{p_{\mathrm{T,Jet}}}$$

Pythia z

Flat z

z close to folded data

Depending on the z distribution, the spectra can look wildly different

Looking for a different idea: SUPER-ITERATION

Details in these papers: https://arxiv.org/pdf/2106.13235.pdf; https://arxiv.org/pdf/2106.13235.pdf; https://arxiv.org/pdf/2106.13235.pdf; https://arxiv.org/pdf/

$$z = rac{p_{\mathrm{T,D^0}}}{p_{\mathrm{T,Jet}}}$$

Allows us to avoid using the inaccurate shape of 'z' distribution from PYTHIA simulation

SUPER-ITERATION: Step-by-step

Step 1: Flattening PYTHIA Z

Step 2: Unfold the distribution from data

Step 3: Unfolded Z distribution used as "Prior"

Step 4: Use response matrix from Step 3 to unfold

SUPER-ITERATION

SUPER-ITERATION: Self Closure

 χ^2 vs Super-iteration

(For different regularization parameters)

Self-Closure can be established after ~20 superiterations

SUPER-ITERATION: Test-Train Split

χ^2 vs Super-iteration

(For different regularization parameters)

Closure is retained with a test sample after ~20 superiterations

Summary and Outlook

- 1. Super-iteration method closes with a PYTHIA sample 'embedded' in minimum bias event
- 2. Closure is consistent across all centralities.
- 3. Data comparisons coming up with the super-iteration method.
- 4. Investigating making a PYTHIA sample flat in Z.
- 5. Extending this unfolding to include ΔR .