

Faculty of Technology Rajarata University of Sri Lanka Mihinthale

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B. Sc. (General) Degree in Applied Sciences
Third Year - Semester II Examination - October / November 2017

PHY 3309 - STRUCTURE AND PROPERTIES OF MATERIALS

Ansv	wer <u>SI</u>	Time: 3 hours	
The Sym	use of a	a non-programmable calculator is permitted. ve their usual meaning.	ReC (r)
01.	(a)	Define the "reciprocal lattice" and briefly discuss the importantice concept.	tance of the reciprocal
	(b)	Construct the reciprocal lattice of a square lattice.	[06 marks]
	(c)	Define the Wigner – Seitz cell.	[06 marks]
	(d)	Construct the First Brillouin zone of a square lattice.	[06 marks]
02.	(a)	(i) Show that the curvature of the energy band in which inversely proportional to the mass of the particle.	the particle moves is [06 marks]
		(ii) How can the effective mass of a carrier be different in dif	ferent directions? [03 marks]
	(b)	Prove that the group velocity is twice the phase velocity for free electron gas.	any state of an ideal [06 marks]
	(c)	(i) The electron energies in a system can be fitted $E(k) = ak^2 - bk^4$, where a and b are constants for that system and phase velocities in the system.	d to the expression stem. Find the group [06 marks]
		(ii) What are the values of k in terms of a and b at where a velocities are equal?	nich the two types of [04 marks]

- 03. (a) Define the term "unit cell" and draw unit cells for simple cubic, body-centered cubic and face-centered cubic lattices. [07 marks]
 - (b) Calculate the "packing fraction" for each of the above cubic lattice.

[06 marks]

(c) Distinguish between "unit cell" and "primitive cell".

[06 marks]

(d) Draw a primitive cell for a simple cubic lattice.

[06 marks]

04. (a) What are dislocations in metals?

[04 marks]

- (b) Explain why the actual shear strength of metals is very much less than the theoretical shear strength? [05 marks]
- (c) Define the "dislocation line <u>t</u>" and the "Burgers vector <u>b</u>" of an edge dislocation.

 [06 marks]
- (d) Use the Finish to Start Right Hand Screw Convection (FS/RHS Convention) and show that the Burgers vector <u>b</u> is perpendicular to the dislocation line <u>t</u> in an edge dislocation. [10 marks]
- O5 (a) State the assumptions made by Kronig and Penney in suggesting a simple model to obtain mathematical solution that confirms energy band formation in crystals.

 [08 marks]
 - (b) (i) Show that the energy of the lowest band at k=0 for the Delta-function potential with P << 1 in the Kronig-Penney model is given by $E = \frac{\hbar^2 P}{ma^2}$. For the Delta-function potential, Kronig-Penney equation is

$$\frac{P\sin\alpha a}{\alpha a} + \cos\alpha a = \cos ka, \text{ where } \alpha^2 = \frac{2m_e E}{\hbar^2}.$$

Hint: You may use $\sin x \approx x$ and $\cos x \approx 1 - x^2/2$ for small values of x

[12 marks]

(ii) What is "P" in the above Kronig-Penney equation?

[05 marks]

Contd.

0	06.	(a)	Marl	k [111] direction in simple cubic lattice.	[03 marks]
		(b)	Write	e down all the members equivalent to the direction given in (a) a	bove. [08 marks]
		(c)	Mari	k (001) plane in simple cubic lattice	[03 marks]
		(d)	Write	e down all the members equivalent to the plane given in (c) above	re. [06 marks]
		(e)	Explain why the Miller- Bravais indexing for planes and directions in the Miller indexing as far as the hexagonal lattice is concerned.		is better over
					[05 marks]
07	7.	Write short notes on the following.			
			(i)	Glass vs. crystalline materials.	[07 marks]
			(ii)	Frankel defect formation in MgO.	[06 marks]
			(iii)	London dispersion force.	[06 marks]
			(iv)	Talc vs. diamond.	[06 marks]

- End -