Теория групп. Лекция 7

Штепин Вадим Владимирович

17 октября 2019 г.

1 Полупрямое произведение групп

Утв.

 $A \rtimes B$ — группа.

Доказательство

Очевидно, что $A \rtimes B$ замкнуто относительно произведения. Проверим ассоциативность: $((a_1,\ b_1)(a_2,\ b_2))(a_3,\ b_3) = (a_1I_{b_1}(a_2),\ b_1b_2)(a_3,\ b_3) = (a_1I_{b_1}(a_2)I_{b_1b_2}(a_3),\ b_1b_2b_3)$ $(a_1,\ b_1)((a_2,\ b_2)(a_3,\ b_3)) = (a_1,\ b_1)(a_2I_{b_2}(a_3),\ b_2b_3) = (a_1I_{b_1}(a_2I_{b_2}(a_3)),\ b_1b_2b_3)$ Так как I_{b_1} —гомоморфизм $\Rightarrow (I_{b_1}(a_2I_{b_2}(a_3)) = I_{b_1}(a_2)I_{b_1b_2}(a_3)$ Ассоциативность доказана.

Нейтральный элемент $(e,e) \in A \rtimes B$, так как $\forall b \in B \ I_b(e) = e$. Обратный элемент $(a,b)^{-1} = (I_{b^{-1}}(a^{-1}),b^{-1})$. Проверим это:

$$(I_{b^{-1}}(a^{-1}), b^{-1})(a, b) = (I_{b^{-1}}(a^{-1})I_{b^{-1}}(a), b^{-1}b) = (I_{b^{-1}}(e), e) = (e, e)$$

Теорема (о свойствах полупрямого произведения)

Пусть A,B вложены в $A\rtimes B$ естественным образом: $A\simeq A\times e,\, B\simeq e\times B$ Тогда:

- 1. $A \triangleleft A \rtimes B$
- 2. $(A \rtimes B)/A \simeq B$
- 3. $A \rtimes B \simeq AB$, причем $A \cap B = \{e\}$

Доказательство

- 1. Пусть $(a,b) \in A \rtimes B$ и $(a',e) \in A$. Тогда $(a,b)^{-1}(a',e)(a,b) = (I_{b^{-1}}(a^{-1}),b^{-1})(a',e)(a,b) = (I_{b^{-1}}(a^{-1})I_{b^{-1}}(a'),b^{-1})(a,b) = (I_{b^{-1}}(a^{-1})I_{b^{-1}}(a')I_{b^{-1}}(a),e) \in A$
- 2. $\phi_i:A\rtimes B\to B,\; \phi(a,b)=b$ $\phi((a_1,b_1)(a_2,b_2))=b_1b_2=\phi(a_1,b_1)\phi(a_2,b_2)$ гомоморфизм. Очевидно, ϕ сюръективен. $Ker(\phi)=\{(a,b)\mid \phi(a,b)=e\}=A.$ По теореме об гомоморфизме $Im(\phi)=B\simeq (A\rtimes B)/A$
- 3. $(a,e)(e,b) = (aI_e(e),b) = (a,b)$

Теорема (о разложении группы в полупрямое произведение подгрупп) Пусть A, B — подгруппы в G и

- 1. $A \cap B = \{e\}$
- $A \triangleleft G$
- 3. AB = G

Тогда $G \simeq A \rtimes B$, где $I_b(a) = bab^{-1}$

Доказательство

Пусть $\phi:A\rtimes B\to G,\ \phi(a,b)=ab.\ \phi$ — гомоморфизм, так как $\phi(a_1,b_1)\phi(a_2,b_2)=a_1b_1a_2b_2=a_1b_1a_2b_1^{-1}b_1b_2=\phi((a_1,b_1)(a_2,b_2)).\ I_{b_1}(a_2)\in A$ так как A— нормальная.

 ϕ сюръективен, так как $\forall x \in G \ \exists a \in A, \ b \in B,$ что $x = ab = \phi(a,b)$. $Ker(\phi) = \{e\}$, так как $A \cap B = \{e\}$.

Значит, $G \simeq A \rtimes B$.

Примеры:

1. $S_n = A_n \rtimes \langle (12) \rangle$

Доказательство

 $G = S_n, A_n \triangleleft G$, так как $|S_n : A_n| = 2$. $A_n * \langle (12) \langle = A_n * \{e, (12)\} -$ это объединение всех четных и всех нечетных подстановок, так как их поровну. Значит, $S_n = A_n \rtimes \langle (12) \rangle$

2. $S_n = V_4 \rtimes S_3$, где $V_4 = \{e, (12)(34), (13)(24), (14)(23)\}$ — четверная группа Клейна. $V_4 \rtimes S_4$ так как V_4 представляет собой дизъюнктное объединение классов сопряженных элементов. $V_4 \cap S_3 = \{e\}, |V_4| = 4, |S_3| = 6$. Проверим, что все произведения элементов этих групп различны. Пусть $a_1, a_2 \in V_4, b_1, b_2 \in S_3$ и $a_1b_1 = a_2b_2$. Значит $b_1b_2^{-1} = a_1^{-1}a_2 \in V_4 \cap S_3 = \{e\}$ и $a_1 = a_2, b_1 = b_2$.

Упражнение. Придумать группу G, что $G=H \triangleleft S_4$, где $|H|=8,\ H-$ обобщение группы Клейна.

2 Коммутант. Основная теорема о коммутанте

<u>Опр.</u> Пусть G — мультипликативная группа. Тогда $\forall a,b \in G$ формальное произведение $\overline{[a,b]} = aba^{-1}b^{-1}$ — коммутатор элементов a,b.

Утв. (о свойствах коммутатора)

- 1. xy = [x, y]yx
- 2. $xy = yx \Leftrightarrow [x, y] = e$
- 3. $[x,y]^{-1} = [y,x]$
- 4. $\forall a \in G \ [x^a, y^a] = [x, y]^a$

Доказательство

- 1. Первое равенство означает, что коммутатор это корректирующий множитель, необходимый для перестановки xy на yx.
- 2. $xy = yx \Leftrightarrow xyx^{-1}y^{-1} = e$
- 3. $[x, y]^{-1} = yxy^{-1}x^{-1}$

4.
$$[x^a, y^a] = [a^{-1}xa, a^{-1}ya] = a^{-1}xaa^{-1}yaa^{-1}x^{-1}aa^{-1}y^{-1}a = [x, y]^a$$

Опр. Коммутант группы (производная подгруппа) группы G — это подгруппа $G' = \langle [x, \overline{y}] \mid x, y \in G \rangle$

Замечание $G' = \{[x_1, y_1]...[x_k, y_k] \mid x_i, y_i \in G, \ k \in N\}$

 $\mathbf{V}_{\mathbf{T}\mathbf{B}}$

Пусть $\phi:G\to H$ —гомоморфизм групп. Тогда $\phi(G')\le H'$. Если ϕ сюръективен, то $\phi(G')=H'$

Доказательство

 $\forall x,y\in G\ \phi([x,y])=[\phi(x),\phi(y)],$ так как $\phi-$ гомоморфизм. Поскольку $\phi(x),\phi(y)\in H,$ то и $\phi([x,y])=[\phi(x),\phi(y)]\in H,$ значит $\phi(G')\leq H',$ так как образ подгруппы—это всегда подгруппа.

Пусть теперь ϕ сюръективен. Покажем, что $H' \leq \phi(G')$. Пусть $h_1, h_2 \in H$. Тогда $\exists x_1, x_2 \in G \ \phi(x_1) = h_1, \ \phi(x_2) = h_2$. Значит, $[h_1, h_2] = [\phi(x_1), \phi(x_1)] = \phi([x_1, x_2])$ и $H' \leq \phi(G')$.

Следствие

Если ϕ — гомоморфизм G в абелеву группу H, то $\phi(G') = \{e\}$.

Доказательство

$$\phi(G') \le H' = \{e\}$$

Следствие

Если $K \triangleleft G$, то $K' \triangleleft G$

Доказательство

 $\phi:K\to G,\,\phi(k)=k^x$ для некоторого фиксированного $x\in G$ — гомоморфизм (внутренний автоморфизм).

 $\phi:K\to K$ сюръективен, так как $K\triangleleft G$. Значит, $\phi(K')=K'\Rightarrow \forall a\in K',\ \forall x\in G\ a^x\in K'\Rightarrow K'\vartriangleleft G$.

Следствие

 $\forall G$ (группа) верно $G' \triangleleft G$ (в предыдущем утв. положим K = G).