Quantitative Methods - Coursework 1

Yafei Ye, MRes Spatial Data Science and Visualisation, CASA, UCL

How do different types of budgets allocated to the road safety initiative influence the death and serious injury on the road?

Introduction

How different parts of road safety initiative budgets influence the change rate of the counts of those killed and seriously injured on the road is the research question of this coursework. Part one explains how to deal with the data to make it suitable for analysis; part two introduces the analysis procedure; part three shows the result; part four makes the conclusion.

1 Data

According to the data provided, the budgets allocated to the road safety initiative in local authority areas in 2009 are divided into 6 parts. To fit the time of the budgets, 2009_KSI and 2008_KSI are chosen to calculate the change rate. To eliminate the impact of population, both the budget and the KSI are divided by the population. The formula of the change rate shows like below:

Change Rate = [(2009 KSI/2009 pop)/(2008 KSI/2008 pop)-1]*1000

Through making Box and Whisker, it finds that the budgets of City of London are outliners in 4 subcategories which may make huge impact for final results. Therefore, City of London is removed.

Figure 1 – Box and Whisker for 6 subcategories of budgets

The descriptive statistics of final data are shown as below:

Figure 2 – Descriptive Statistics of Final Data

	N	Minimum	Maximum	Mean	Std. Deviation
[(2009_KSI/2009_pop)/ (2008_KSI/2008_pop)-1] *1000	150	-41.28%	6.89%	-5.2412%	7.80789%
Cyclist_Safety*1000/pop	150	22.33389	442.70833	173.41476	71.72078
Child_Safety*1000/pop	150	16.47446	396.68905	199.28992	76.66523
Motorcycle_Safety*1000/pop	150	4.442470	208.33333	75.632871	34.13137
Drink_Drive_Campaigns*10 00/pop	150	4.685304	393.95005	186.02377	66.80006
Promote_Cycling*1000/pop	150	16.73963	230.59867	97.221341	43.38007
Promote_Car_Sharing*1000/ pop	150	10.42753	171.33956	62.722295	26.16686
Valid N (listwise)	150				

2 Analysis

2.1 Constructing Multiple Regression Model

To analyze how different budgets influence the change rate of KSI, we set the change rate as the Dependent Variable, the 6 parts of budgets as the Predictors, to make multiple regression. The modelled relationship are shown as below:

$$KCR = \beta_0 + \beta_1 *CYS + \beta_2 *CHS + \beta_3 *MS + \beta_4 *DDC + \beta_5 *PC + \beta_6 *PCS + \varepsilon^1$$

The result of Adjusted R Square shows that this model can explain 7.2% of the variability in KSI change rate (Figure 3).

Figure 3 – Model 1 Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson
1	.330 ^a	.109	.072	7.52332%	1.747

a. Predictors: (Constant), Promote_Car_Sharing*1000/pop,
 Motorcycle_Safety*1000/pop, Drink_Drive_Campaigns*1000/pop,
 Promote Cycling*1000/pop, Cyclist Safety*1000/pop, Child Safety*1000/pop

b. Dependent Variable: [(2009_KSI/2009_pop)/(2008_KSI/2008_pop)-1]*1000

 $^{^{1}\} KCR = [(2009_KSI/2009_pop)/(2008_KSI/2008_pop)-1]*1000;\ CYS = Cyclist_Safety*1000/pop;\ CHS = Child_Safety*1000/pop;\ MS = Motorcycle_Safety*1000/pop;\ DDC = Drink_Drive_Campaigns*1000/pop;\ PC = Promote_Cycling*1000/pop;\ PCS = Promote_Car_Sharing*1000/pop$

2.1.1 Durbin-Watson Test

H₀: No first order autocorrelation

H₁: First order correlation exists , $\alpha = 0.05$

Looking up the table to know², 1.651 < Durbin-Watson value = 1.747 (Figure 3) < 1.817, pass the test and there is not enough evidence to reject H₀. Therefore, there is no first order autocorrelation in this regression in 0.05 significance.

Figure 4 - Model 1 ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	989.660	6	164.943	2.914	.010
	Residual	8093.843	143	56.600		
	Total	9083.502	149			

a. Dependent Variable: [(2009_KSI/2009_pop)/(2008_KSI/2008_pop)-1]*1000

2.1.2 F-Test

 H_0 : All coefficients = 0

H₁: At least one $\beta i \neq 0$, $\alpha = 0.05$

F Sig. = 0.010 (Figure 4) < α , reject H₀, accept H₁. Therefore, the independent variables in whole are linearly correlated with the dependent variable at a significant level of 0.05.

Figure 5 - Model 1 Coefficients^a

1		Unstand Coeffi		Standardized Coefficients			C	orrelation	s	Collinea Statisti	
Mode	1	В	Std. Error	Beta	t	Sig.	Zero- order	Partial	Part	Tolerance	VIF
1	(Constant)	7.082	5.962		1.188	.237					
	Cyclist_Safety*10 00/pop	029	.010	266	-2.984	.003	202	242	24	.786	1.272
	Child_Safety*100 0/pop	021	.010	205	-2.033	.044	064	168	16	.615	1.626
	Motorcycle_Safety *1000/pop	014	.018	062	782	.436	048	065	06	.977	1.024
	Drink_Drive_Cam paigns*1000/pop	026	.011	219	-2.299	.023	079	189	18	.688	1.454
	Promote_Cycling* 1000/pop	.013	.015	.072	.855	.394	.168	.071	.067	.881	1.135
	Promote_Car_Shar ing*1000/pop	.023	.024	.076	.941	.348	.127	.078	.074	.951	1.052

a. Dependent Variable: [(2009_KSI/2009_pop)/(2008_KSI/2008_pop)-1]*1000

2.1.3 T-Test

 H_0 : Gradient = 0

b. Predictors: (Constant), Promote_Car_Sharing*1000/pop, Motorcycle_Safety*1000/pop, Drink_Drive_Campaigns*1000/pop, Promote_Cycling*1000/pop, Cyclist_Safety*1000/pop, Child_Safety*1000/pop

² http://web.stanford.edu/~clint/bench/dw05b.htm

 H_1 : Gradient $\neq 0$, $\alpha = 0.05$

CYS p-value = $0.003 < \alpha$, CHS p-value = $0.044 < \alpha$, MS p-value = $0.436 > \alpha$, DDC p-value = $0.023 < \alpha$, PC p-value = $0.394 > \alpha$, PCS p-value = $0.348 > \alpha$ (Figure 5). For CYS, CHS and DDC, reject H₀, accept H₁. For MS, PC and PCS, there is not enough evidence to reject H₀. Therefore, MS, PC and PCS have no significant linear relationship with the dependent variable. We consider to eliminate them to construct a new model later.

Figure 6 – Correlations

		[(2009_KSI /2009_pop)/ (2008_KSI/ 2008_pop) -1]*1000	Cyclist_Safety *1000/pop	Child_Safety *1000/pop	Motorcycle_ Safety*1000/ pop	Drink_Drive _Campaigns *1000/pop	Promote_Cycl ing*1000/pop	Promote_Car_ Sharing*1000/ pop
[(2009_KSI/200 9_pop)/	Pearson Correlation	1	202 [*]	064	048	079	.168*	.127
(2008_KSI/2008 pop)-1]*1000	Sig. (2-tailed)		.013	.435	.560	.336	.039	.121
, .	N	150	150	150	150	150	150	150
Cyclist_Safety*1 000/pop	Pearson Correlation	202*	1	222**	010	165*	169 [*]	085
	Sig. (2-tailed)	.013		.006	.907	.044	.038	.301
	N	150	150	150	150	150	150	150
Child_Safety*10 00/pop	Pearson Correlation	064	222**	1	102	456**	172*	164*
	Sig. (2-tailed)	.435	.006		.216	.000	.036	.045
	N	150	150	150	150	150	150	150
Motorcycle_Safe ty*1000/pop	Pearson Correlation	048	010	102	1	.017	056	014
	Sig. (2-tailed)	.560	.907	.216		.834	.495	.863
	N	150	150	150	150	150	150	150
Drink_Drive_Ca mpaigns*1000/p	Pearson Correlation	079	165*	456**	.017	1	018	.066
op	Sig. (2-tailed)	.336	.044	.000	.834		.826	.420
	N	150	150	150	150	150	150	150
Promote_Cycling *1000/pop	Pearson Correlation	.168*	169 [*]	172*	056	018	1	.118
	Sig. (2-tailed)	.039	.038	.036	.495	.826		.152
	N	150	150	150	150	150	150	150
Promote_Car_Sh aring*1000/pop	Pearson Correlation	.127	085	164*	014	.066	.118	1
	Sig. (2-tailed)	.121	.301	.045	.863	.420	.152	
	N	150	150	150	150	150	150	150

^{*.} Correlation is significant at the 0.05 level (2-tailed).

2.1.4 Correlations

The result (Figure 6) shows CYS and CHS, CHS and DDC are significantly correlated at the 0.01 level. However, none of Pearson Correlation values are larger than 50%. All VIF values in Figure 5 are also smaller than 10, which proves that there in no serious multicollinearity problem. As a result, we reserve CYS, CHS and DDC to try to build a better model.

2.2 Using Benford's Law to identify artificial data

The coefficients of PC and PCS in Figure 5 are positive, which means along with the increase of the budgets in cycling promotion and car sharing promotion, the KSI will also increase to some extent, which doesn't fit well with common sense. Therefore, we use Benford's Law to identify whether they are artificial data.

^{**.} Correlation is significant at the 0.01 level (2-tailed).

2.2.1 Chi-Squared Test

 H_0 : First digit distribution of the budget is drawn from a binomial distribution with Benford's Law H_1 : First digit distribution of the budget is not drawn from a binomial distribution with Benford's Law , $\alpha=0.05$

PC Chi-Square p-value = $2.36*10^{-8} < \alpha$, PCS Chi-Square p-value = $1*10^{-13} < \alpha$ (Figure 7a, 8a). Therefore, reject H₀, accept H₁. Both the first digit distribution of PC and PCS are not following the Benford's Law well. They may be artificial data.

Figure 7a – First Digit Distribution between
Budget Allocated to Cycling Promotion Schemes and Benford's Law

	First Digit		Benfor	d's Law	
Digit	Actual	Actual %	Expected	Expected %	
1	69	45.70%	45.451	30.10%	
2	6	3.97%	26.5911	17.61%	
3	7	4.64%	18.8599	12.49%	
4	10	6.62%	14.6319	9.69%	
5	10	6.62%	11.9592	7.92%	
6	12	7.95%	10.1019	6.69%	
7	10	6.62%	8.758	5.80%	
8	11	7.28%	7.7312	5.12%	
9	16	10.60%	6.9158	4.58%	
Sum	151	100.00%	151	100.00%	

Figure 8a – First Digit Distribution between Budget Allocated to Car Sharing Promotion and Benford's Law

	Budget Allocated to Car Sharing Promotion schemes (£)										
	First Digit	Benford's Law									
Digit	Actual	Actual %	Expected	Expected %							
1	17	11.26%	45.451	30.10%							
2	12	7.95%	26.5911	17.61%							
3	17	11.26%	18.8599	12.49%							
4	15	9.93%	14.6319	9.69%							
5	22	14.57%	11.9592	7.92%							
6	26	17.22%	10.1019	6.69%							
7	19	12.58%	8.758	5.80%							
8	15	9.93%	7.7312	5.12%							
9	8 5.309		6.9158	4.58%							
Sum	151	100.00%	151	100.00%							
	Chi-Square p-value		0.000000	00000010							

2.3 Reconstructing Multiple Regression Model

We set the change rate as the Dependent Variable, the CYS, CHS and DDC as the Predictors, to make multiple regression. The modelled relationship are shown as below:

$$KCR = \beta_0 + \beta_1 *CYS + \beta_2 *CHS + \beta_3 *DDC + \varepsilon$$

The result of Adjusted R Square shows that this model can explain 7.5% of the variability of KCR (Figure 9) which is higher than Model 1. The same as the tests in Model 1, this model can pass both DW Test (Figure 9) and F-test (Figure 10), and all predictors can pass T-test and VIF Test (Figure 11). The Residual Distribution Frequency Histogram (Figure 11) is normally distributed, which proves the regression result is reliable.

Figure 9 – Model 2 Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson
2	.305 ^a	.093	.075	7.51109%	1.724

- a. Predictors: (Constant), Drink_Drive_Campaigns*1000/pop, Cyclist_Safety*1000/pop, Child_Safety*1000/pop
- b. Dependent Variable: [(2009_KSI/2009_pop)/(2008_KSI/2008_pop)-1]*1000

Figure 10 - Model 2 ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
2	Regression	846.695	3	282.232	5.003	.002 ^b
	Residual	8236.807	146	56.416		
	Total	9083.502	149			

- a. Dependent Variable: [(2009_KSI/2009_pop)/(2008_KSI/2008_pop)-1]*1000
- b. Predictors: (Constant), Drink_Drive_Campaigns*1000/pop, Cyclist_Safety*1000/pop, Child_Safety*1000/pop

Figure 11 - Model 2 Coefficients^a

	Unstandardized Coefficients		Standardized Coefficients			Con	rrelations		Collinearity	Statistics	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
2	(Constant)	10.233	4.326		2.365	.019					
	Cyclist_Safety *1000/pop	032	.009	294	-3.458	.001	202	275	273	.861	1.161
	Child_Safety* 1000/pop	024	.010	237	-2.517	.013	064	204	198	.701	1.427
	Drink_Drive_ Campaigns*10 00/pop	028	.011	236	-2.532	.012	079	205	200	.717	1.394

a. Dependent Variable: [(2009_KSI/2009_pop)/(2008_KSI/2008_pop)-1]*1000

Figure 12 – Residual Distribution Frequency Histogram

3 Result

Finally, the multiple linear regression equation of Model 2 is established:

$$KCR = 10.233 - 0.032*CYS - 0.024\beta_2*CHS - 0.028*DDC + \varepsilon$$

4 Conclusion

CYS, CHS and DDC can influence KCR negatively, and all of them can explain 7.5% of the variability of KCR. The influence of CYS is a little more significant than CHS and DDC as the absolute value of its coefficient is a bit larger, while MS, PC and PCS have no significant influence, and PC and PCS may be artificial data.