Agent 的概念

percepts:指来自外部环境的感知数据,通常由传感器收集,例如图像、声音、触觉等。可以被视为人工智能系统的输入,因为它们提供了系统了解和响应其环境的基础。

• Agent 将 percepts 映射为 actions, 对 environment 产生影响

$$f: \mathcal{P} \to \mathcal{A}$$
 (1)

● Agent 运行在物理机器(某种 architecture)上以产生 f

问题求解

1 Agent 设计

1.1 前提

● 环境是可观察的: Agent 总是知道当前状态

• 环境是离散的: 在给定状态, 可选择的行动是有限的

• 环境是已知的: Agent 知道行动到达的状态

• 环境是确定的: Agent 的动作只有一个结果

1.2 Agent 的简单设计

• 形式化 (formulation)

● 搜索: 寻找行动序列

• 执行:将搜索得到的行动付诸实施

```
seq: list[Action] = [...] # 行动序列
                         # 当前状态
state = ...
                         # 目标,问题没有形式化,一开始为 null
goal = ...
                         # 问题的形式化
problem = ...
def SIMPLE_PROBLEM_SOLVING_AGENT(percept) -> Action:
 state = UPDATE_STATE(state, percept)
 if seq is empty:
   goal = FORMULATE_GOAL(state)
   problem = FORMULATE PROBLEM(state, goal)
   seq = SEARCH(problem) # 根据问题找到动作序列
 action = FIRST(seq)
  seq = REST(seq)
 return action
```

2 问题的形式化

- 一个问题可以用五个组成部分形式化表述:
 - 初始状态
 - 行动: Action: $S \to S$, Action(s) 返回在 s 下可执行的动作集合
 - 转移模型: Result : $S \times A \rightarrow S$, Result (s, a) 返回在 s 下执行 a 转移到的状态
 - 目标测试:确定给定的状态是不是目标状态,可能是一个集合,测试时检查给定的状态在不在 此集合中
 - 路径耗散: 即边权, 采用行动 a 从 s 转移到 s' 的路径耗散用 c(s,a,s') 表示

问题的解就是从初始状态到目标状态的一组行动序列,解的质量由路径耗散函数度量,具有最小耗散的解即为最优解。

增量形式化:

- 状态
- 初始状态
- 行动
- 转移模型
- 目标测试
- 路径耗散

2.1 问题实例

- 八数码问题
- 八皇后问题

3 基本搜索算法

3.1 搜索树节点数据结构

● n.STATE: 对应状态空间中的状态

● n. PARENT: 节点的父节点

● n. ACTION: 父节点生成该节点时进行的行动

• n. COST: 代价, 一般用 g(n) 表示, 指从初始状态到达该节点的路径消耗

3.2 搜索树数据结构

● 队列,可以是 FIFO 队列,可以是 LIFO 队列,也可以是优先队列

3.3 搜索算法评价

• 完备性 Completeness: 能否找到解?

• 最优性 Optimality: 是否总能找到最优解?

● 时间复杂度: 节点生成数量

● 空间复杂度:过程中内存中最大节点数

AI 算法的复杂度通常由下面三个量来表达:

● b: 分支因子, 任何节点的最多后继数

● d: 目标节点所在的最浅的深度

● *m*: 状态空间中任何路径的最大长度

3.4 无信息搜索

又称盲目搜索

3.4.1 宽度优先搜索 Breadth-first Search

● 做法: 先扩展根结点,接着扩展根结点的所有后继,然后再扩展它们的后继,依此类推。

● 性质: 在下一层的任何结点扩展之前, 搜索树上本层深度的所有结点都应该已经扩展过。

● 实现:每次总是扩展深度最浅的结点,可以通过将边缘组织成 FIFO 队列来实现。

Advantages:

- 完备,并且知道目标节点生成后就知道是最浅的,否则将不会被生成
- 如果路径代价是深度的非递减函数,则 BFS 是最优的,最 general 的情况是所有代价都相同

Disadvantages:

- 生成的节点总数 $O(b+...+b^d) = O(b^d)$,是指数的
- 有路径重复问题

3.4.2 一致代价搜索 Uniform-cost Search

● 做法: 拓展路径消耗 g(n) 最小的节点 n

● 实现:将边缘节点集组织成按 q 值排序的队列

• 性质:对任何单步代价函数都是最优的

和 BFS 的不同点

● 目标检测是在节点被选择拓展的时候,而不是节点生成的时候,因为不一定第 一个生成的目标节点是在最优路径上

Advantages:

- 最优, $\exists n$ 被扩展的时候, 到达 n 的最优路径已经被搜索出来了, 否则不会扩展 n
- 完备,只要每一步的代价都是正数(为 0 会导致 NoOp 循环)

Disadvantages:

设最优解代价 C^* , 每个行动的代价至少为 $\varepsilon > 0$

- 最坏情况下的复杂度为 $O(b^{1+\lfloor C^*/\varepsilon\rfloor})$,比 $O(b^{d+1})$ 大得多(除非所有代价都相等,否则将对代价小的行动有偏好)
- 由于目标检测延后, UCS 会比 BFS 多做一些工作

3.4.3 深度优先搜索 Depth-first Search

● 做法: 总是扩展最深的节点

• 实现:使用 LIFO 队列

● 性质: 最新生成的节点最早被扩展, 每次被扩展的都是最深的未被扩展的节点

Disadvantages:

● 严重依赖使用图搜索/树搜索

使用避免重复状态和冗余路径的 DFS 图搜索在有限状态空间是完备的, 因为其至多扩展至所有节点; 树搜索则不完备, 会陷入死循环。

● 节点生成可能非常大

Advantages:

- 可能无需耗费额外内存,或者耗费很少的额外内存。因为一个节点被扩展之后,其所有后代都 扩展后此节点就被删除。如果分支因子 b 、最大深度 m ,则 DFS 存储的节点数是 O(bm)
- 还可以改装成回溯搜索,每个被部分扩展的节点将记住其下一个要产生的节点,这样内存只需要 O(m)

3.4.4 深度受限搜索 Depth-limited Search

做法:设置深度界限 1,深度为 1 的节点当作没有后继

注意区分是标准的无解(failure)还是在界限内无解(cutoff)

3.4.5 迭代加深的深度优先搜索 Iterative Deepening Search

def ITERRATIVE_DEEPENING_SEARCH(problem):
 for depth in 0~infty:
 result = DLS(problem, depth)
 if result != cutoff:
 return result

上层节点重复生成多次影响不大,因为绝大多数节点都在底层

3.4.6 Summary

● b: 分支因子, 任何节点的最多后继数

● d: 目标节点所在的最浅的深度

● m: 状态空间中任何路径的最大长度

Criterion	BFS	UCS	DFS	DLS	IDS
完备性	Yes	Yes			Yes
时间复杂度	$O(b^{d+1})$	$O(b^{\lceil C^*/arepsilon ceil})$	$O(b^m)$	$O(b^l)$	$O(b^d)$
空间复杂度	$O(b^{d+1})$	$O(b^{\lceil C^*/arepsilon ceil})$	O(bm)	O(bl)	O(bd)
最优性	Yes	Yes			Yes

3.5 有信息(启发式)搜索

3.5.1 最佳优先搜索

做法:基于评价函数 f(n) 选择被扩展的节点(类似用此替换 UCS 的 g(n))

3.5.2 贪婪最佳优先搜索

做法: 只使用启发式信息, 即 f(n) = h(n)

最坏情况下的时间和空间复杂度都是 $O(b^m)$

3.5.3 A*搜索

做法: f(n) = g(n) + h(n)

如何保证最优性?

- h(n) 是可采纳的,不会过高估计到达目标的代价,则 $f(n) \leq C^*$
- h(n) 是一致的(单调的), 类似三角不等式: $h(n) \le c(n, a, n') + h(n')$
- 一致的启发式都是可采纳的, 第二个条件比第一个条件强

性质:

- 如果 h(n) 可采纳,则 A^* 的树搜索版本是最优的
- 如果 h(n) 是一致的,则 A^* 的图搜索本本是最优的

最优性的证明

假设某个非最优的目标节点 G_2 生成了,而到达最优节点 G 的最短路径上的节点 n 还未扩展。

- $f(G_2) = g(G_2)$, 因为 G_2 是目标, $h(G_2) = 0$
- $g(G_2) > g(G)$, 因为 G_2 不是最优的
- f(G) = g(G), 因为 G 是目标, h(G) = 0
- $f(G_2) > f(G)$, 由上可得
- $h(n) < h^*(n)$, 因为 h 是可采纳的
- $ullet f(n) = g(n) + h(n) \le g(n) + h^*(n) = g(G) = f(G)$
- $f(n) \le f(G) < f(G_2)$, 所以假设是不成立的, 如果存在这样的 n 未被扩展, 不可能扩展到次 优目标节点

 $h^*(n)$ 表示从节点 n 到目标节点的最优路径的实际代价

一致性的性质

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\geq g(n) + h(n)$
= $f(n)$ (2)

一致性是指由当前节点 n 出发, 到达任一后继节点 n' 路径上的 f 值不会下降。

其他性质:

- A* 算法将会扩展所有 $f(n) < C^*$ 的节点
- A^* 算法将会扩展某些 $f(n) = C^*$ 的节点
- A* 算法不会扩展任何 $f(n) > C^*$ 的节点

例子:八数码问题

 $h_1(n) =$ 错位的棋子数

 $h_2(n) =$ 所有棋子到目标位置的曼哈顿距离和

占优势 (Dominance)

如果任意节点 n, $h_2(n) \ge h_1(n)$, 则说前者 dominates 后者

除了某些 $f(n) = C^*$ 的节点,使用 h_2 的 A^* 算法不会比使用 h_1 的 A^* 算法扩展更多的节点

证明:因为「A* 算法将会扩展所有 $f(n) < C^*$ 的节点」还可以说成「A* 算法将会扩展所有 $h(n) < C^* - g(n)$ 的节点」,这样就有一个包含性

3.5.4 使用松弛 (Relaxation) 涉及可采纳启发式

问题:八数码问题的 h_2 是如何被提出来的? 计算机能不能机械地设计出这样的启发式?