Pandas Plotting

matplot, pandas, seaborn, altair, ggplot

```
import pandas as pd
 In [1]:
          url = "https://data.cdc.gov/api/views/v6ab-adf5/rows.csv?accessType=DOWNLOAD"
 In [2]:
          data1 = pd.read_csv(url)
 In [3]:
 In [4]:
          data1.head()
             Year Age Group Death Rate
 Out[4]:
          0 1900
                     1-4 Years
                                  1983.8
          1 1901
                     1-4 Years
                                  1695.0
          2 1902
                                  1655.7
                    1-4 Years
          3 1903
                     1-4 Years
                                  1542.1
          4 1904
                                  1591.5
                    1-4 Years
          data1.columns = data1.columns.str.replace(" ","")
 In [5]:
          data1.head()
 In [8]:
 Out[8]:
                             DeathRate
             Year AgeGroup
          0 1900
                    1-4 Years
                                 1983.8
          1 1901
                                 1695.0
                    1-4 Years
          2 1902
                    1-4 Years
                                 1655.7
          3 1903
                    1-4 Years
                                 1542.1
          4 1904
                    1-4 Years
                                 1591.5
          data1w = data1.pivot(
 In [9]:
          index='Year', columns = 'AgeGroup', values = 'DeathRate')
In [10]:
          data1w.head()
```

Out[10]: AgeGroup 1-4 Years 10-14 Years 15-19 Years 5-9 Years

Year				
1900	1983.8	298.3	484.8	466.1
1901	1695.0	273.6	454.4	427.6
1902	1655.7	252.5	421.5	403.3
1903	1542.1	268.2	434.1	414.7
1904	1591.5	305.2	471.4	425.0

In [11]: data1.plot()

Out[11]: <AxesSubplot:>

In [12]: data1w.plot()

Out[12]: <AxesSubplot:xlabel='Year'>

In [14]: data1.plot.scatter(x='Year', y='DeathRate')

Out[14]: <AxesSubplot:xlabel='Year', ylabel='DeathRate'>


```
In [41]: data1.plot.scatter(x='Year', y='AgeGroup')
Out[41]: <AxesSubplot:xlabel='Year', ylabel='AgeGroup'>
```



```
In [44]: data1.query('AgeGroup == "5-9 Years"') \
   .plot.scatter(x='Year', y='DeathRate')
Out[44]: <AxesSubplot:xlabel='Year', ylabel='DeathRate'>
```



```
In [45]: data1.query('AgeGroup == "5-9 Years"') \
   .plot.scatter(x='Year', y='DeathRate')
```

Out[45]: <AxesSubplot:xlabel='Year', ylabel='DeathRate'>


```
In [46]: data1w.plot.line(y=['5-9 Years', '15-19 Years'])
```

Out[46]: <AxesSubplot:xlabel='Year'>

In [18]: data1w.plot.line()

Out[18]: <AxesSubplot:xlabel='Year'>

In [19]: data1w.plot.area()

Out[19]: <AxesSubplot:xlabel='Year'>


```
In [21]: data1.plot.scatter(x='Year', y='DeathRate')
```

Out[21]: <AxesSubplot:xlabel='Year', ylabel='DeathRate'>


```
In [22]: import seaborn as sns
In [27]: sns.scatterplot(data=data1, x='Year', y='DeathRate', hue='AgeGroup')
Out[27]: <AxesSubplot:xlabel='Year', ylabel='DeathRate'>
```


In [47]: data1w.query('Year in (1990, 2010)').plot.bar()

Out[47]: <AxesSubplot:xlabel='Year'>


```
In [48]: data1w.query('Year in (1990, 2010)').plot.barh()
```

Out[48]: <AxesSubplot:ylabel='Year'>

In [49]: data1.plot.hist(y='DeathRate', bins=12)

Out[49]: <AxesSubplot:ylabel='Frequency'>


```
In [35]: data1.plot.density(y='DeathRate')
```

Out[35]: <AxesSubplot:ylabel='Density'>

In [51]: data1.plot.density(y='Year')

Out[51]: <AxesSubplot:ylabel='Density'>

In [36]: data1w.plot.box()

Out[36]: <AxesSubplot:>

In [59]: data1.groupby('AgeGroup')['DeathRate'].sum().plot.pie()

Out[59]: <AxesSubplot:ylabel='DeathRate'>

Tn []: