Integer Arithmetic and Karatsuba Multiplication

1 Irrationals

TZ = 1.414 213 562 373 095 048 ···

I Catalan numbers

Set P of bankonced parentleses strings () balanced . $\lambda \in P$ (λ is the empty string) (c) I balanced . If α , $\beta \in P$, then (α) $\beta \in P$ Every nonempty bankonced paren string via Yule 2 form a unique α , β pair

(1))()() obtained by (\mathcal{L})

· Enumeration

- · Cn = number of balanced paren strings with exactly n pairs of parens; Co = 1 (empty string)
- $C_0 = 1$ (empty), $C_1 = 1$ () $C_2 = C_0C_1 + C_1C_0$ $C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k} \quad n_{7,0}$
- · Catlan numbers: 1, 1, 2, 5, 14, 42
 132, 429, 430, 4862, ...

I Newtom's method

$$\chi_{i+1} = \chi_i - \frac{f'(\chi_i)}{f'(\chi_i)}$$

$$f(x) = x^2 - \alpha$$

$$X_{i+1} = X_i - \frac{(x_i^2 - \alpha)}{2X_i} =$$

$$f(x) = x^{2} - \alpha$$

$$f(x) = x^{2$$

o Quadratic Convergence

number of digitis of precision double every iteration

I tigh Precision Multiplication

JZ to d-digit precision, Want integer L10 952 = L12102d can till newton's method

Two n-digit numbers (
$$\gamma$$
 adix (base) $\gamma = 2$, $|0\rangle$ $0 \le x$, $y \le y^n$, $\forall x > 1$. $\forall x > 1$. $\forall x > 1$.

$$X = X_1 Y^{\frac{1}{2}} + X_0 \qquad X_1: \text{ high half } X_0: \text{ low half}$$

$$y = y_1 Y^{\frac{1}{2}} + y_e$$

$$0 \le X_0 X_1 \le Y^{\frac{1}{2}} \qquad 0 \le y_e, y_1 \le y_e^{\frac{1}{2}}$$

let
$$z_0 = x_0 y_0$$
, $z_1 = x_0 y_1 + x_1 y_0$ $z_2 = x_2 y_2$
 $z = x_1 y_1 x_1 + (x_0 y_1 + x_1 y_0) x_2 + x_0 y_0$
 $z_1 = x_1 y_1 x_1 + (x_0 y_1 + x_1 y_0) x_2 + x_0 y_0$

4 multiplies of
$$n/z$$
 digits numbers $\Longrightarrow H(n^2)$ time $T(n) = HT(n/2) + H(n)$

I Karatsuba Algorithm

$$Z_{0} = \chi_{0} \cdot \gamma_{0}$$

$$Z_{1} = \chi_{0} \cdot \gamma_{1}$$

$$Z_{1} = \chi_{0} \cdot \gamma_{1} \cdot (\gamma_{0} \cdot \gamma_{1}) - Z_{0} - Z_{2}$$

$$Z_{1} = \chi_{0} \cdot \gamma_{1} \cdot (\gamma_{0} \cdot \gamma_{1}) - Z_{0} - Z_{2}$$

$$Z_{1} = \chi_{0} \cdot \gamma_{0} \cdot \gamma_{1} \cdot (\gamma_{0} \cdot \gamma_{1}) - Z_{0} - Z_{2}$$

$$Z_{1} = \chi_{0} \cdot \gamma_{1} \cdot \gamma_{0} \cdot \gamma_{1} \cdot \gamma_{1}$$

I Fun Geometry Problem

	ı		