PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

!!!	11) International Publication Number: WO 95/24427
C07K 14/755, G01N 33/53, A61K 38/37 A1	43) International Publication Date: 14 September 1995 (14.09.95)
	(81) Designated States: AU. CA. JP. US. European patent (AT. BE. CH. DE. DK. ES. FR. GB. GR. IE. IT. LU. MC. NL. PT.
(22) International Filing Date: 15 November 1994 (15.11.94)	SE).
(30) Priority Data: : 08/212,133	Published With international search report.
(60) Parent Application or Grant (63) Related by Continuation US 08/212.133 (CIP)	
Filed on 11 March 1994 (11.03.94)	
(71) Applicant (for all designated States except US): EMORY UNIVERSITY [US/US]; 1380 S. Oxford Drive, Atlanta, GA 30322 (US).	
(72) Inventors; and	
(75) Inventors/Applicants (for US only): LOLLAR, John, S. [US/US]; 2568 Oak Crossing Drive, Decatur, GA 30033 (US). RUNGE, Marschall, S. [US/US]; 2870 Cedar Canyon Court, N.E., Atlanta, GA 30345 (US).	
(74) Agents: PRATT, John, S. et al.; Kilpatrick & Cody, Suite 2800, 1100 Peachtree Street, Atlanta, GA 30309-4530 (US).	
(54) Title: UVBBID BIIMANIANIMAL EACTOR VIII	• -

(54) Title: HYBRID HUMAN/ANIMAL FACTOR VIII

(57) Abstract

A hybrid procoagulant factor VIII is produced by isolation and recombination of human and other non-human mammalian factor VIII subunits or domains. or by genetic engineering of the human and animal factor VIII genes. Subunits or domains of factor VIII that have been purified from human or animal plasma are isolated, and hybrid human/animal factor VIII is produced by (1) mixing either animal heavy chain subunits with human light chain subunits or by mixing human heavy chain subunits with animal light chain subunits or by mixing human heavy chain hybrid molecules; or by (2) mixing one or more domains of one species with one or more domains of the other species. These hybrid molecules are isolated by ion exchange chromatography. Alternatively, recombinant DNA methods are used to change elements of animal factor VIII or human factor VIII to the corresponding elements of human factor VIII or animal factor VIII, respectively, to produce hybrid human/animal factor VIII.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	ΙT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Сопро		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
C.	Cabon		•		

HYBRID HUMAN/ANIMAL FACTOR VIII

5

The government has rights in this invention arising from National Institutes of Health Grant Nos. HL40921, HL46215, and HL36094 that partially funded the research leading to this invention.

Background of the Invention

10

This invention relates generally to a hybrid factor VIII having human and animal factor VIII amino acid sequence and methods of preparation and use thereof.

15

Blood clotting begins when platelets adhere to the cut wall of an injured blood vessel at a lesion site. Subsequently, in a cascade of enzymatically regulated reactions, soluble fibrinogen molecules are converted by the enzyme thrombin to insoluble strands of fibrin that hold the platelets together in a thrombus. At each step in the cascade, a protein precursor is converted to a protease that cleaves the next protein precursor in the series. Cofactors are required at most of the steps. In its active form, the protein factor VIII is a cofactor that is required for the activation of factor X by the protease, activated factor IX.

20

25

30

35

Factor VIII or antihemophilic factor was noticed in plasma and named in the 1930s. In the 1940s, a deficiency in factor VIII was associated with the clotting disorder hemophilia A. Factor VIII was found to be X-linked and was hypothesized to be a protein. Work involving bovine, human, and porcine plasma identified factor VIII as a protein in the 1980s, though its definitive cellular source remains uncertain.

Precisely how factor VIII functions in blood coagulation is unknown. It is known that factor VIII is activated to factor VIIIa proteolytically by thrombin or factor Xa. In combination with

calcium and phospholipid, factor VIIIa makes factor IXa a more efficient activator of factor X by an unknown mechanism.

People deficient in factor VIII or having antibodies against factor VIII who are not treated with factor VIII suffer uncontrolled internal bleeding that may cause a range of serious symptoms, from inflammatory reactions in joints to early death. Severe hemophiliacs, who number about 10,000 in the United States, can be treated with infusion of factor VIII, which will restore the blood's normal clotting ability if administered with sufficient frequency and concentration. The classic definition of factor VIII, in fact, is that substance present in normal blood plasma that corrects the clotting defect in plasma derived from individuals with hemophilia A.

Several preparations of human plasma-derived factor VIII of varying degrees of purity are available commercially for the treatment of hemophilia A. These include a partially-purified factor VIII derived from the pooled blood of many donors that is heat- and detergent-treated for viruses but contains a significant level of antigenic proteins; a monoclonal antibody-purified factor VIII that has lower levels of antigenic impurities and viral contamination; and recombinant human factor VIII, clinical trials for which are underway. Additionally, a preparation of partially-purified porcine factor VIII is available to treat patients with inhibitors to human factor VIII, i.e., those who have circulating antibody molecules that bind and neutralize human factor VIII.

Hemophiliacs require daily replacement of factor VIII to prevent the deforming hemophilic arthropathy that occurs after many years of

2

5

10

15

20

25

30

recurrent hemorrhages into the joints. However, supplies of factor VIII concentrates have never been plentiful.enough for treating hemophiliacs adequately because of problems in commercial production and therapeutic use. For example, the commonly used plasma-derived is difficult to isolate and purify, is immunogenic, and requires treatment to remove the risk of infectivity from AIDS and hepatitis viruses. Recombinant human factor VIII may lessen the latter two problems. Porcine factor VIII may also present an alternative, since human factor VIII is unstable at physiologic concentrations and pH, is present in blood at an extremely low concentration (0.2 μ g/ml plasma), and its specific clotting activity is low, compared with porcine factor VIII.

Since many inhibitors of human factor VIII react less strongly with porcine factor VIII, porcine factor VIII is currently used to correct factor VIII deficiency in patients under conditions in which they do not respond to infusions of human factor VIII. A limitation of porcine factor VIII is the development of inhibitory antibodies to it after one or more infusions.

The problems associated with the commonly used, commercially available, plasma-derived factor VIII have stimulated significant interest in the development of a better factor VIII product. There is a need for a more potent factor VIII molecule so that more units of clotting activity can be delivered per molecule; a factor VIII molecule that is stable at a selected pH and physiologic concentration; a factor VIII molecule that is less apt to produce inhibitory antibodies; and a factor VIII molecule that evades immune detection in patients who have already acquired antibodies to human factor VIII.

3

5

10

15

20

25

30

10

15

20

25

30

35

U.S. Serial No. 07/864,004 describes the discovery of hybrid human/porcine factor VIII molecules having coagulant activity, in which elements of the factor VIII molecule of one species are substituted for corresponding elements of the factor VIII molecule of the other species. U.S. Serial No. 08/212,133 describes hybrid human/animal factor VIII molecules, in which elements of the factor VIII molecule of one species are substituted for corresponding elements of the factor VIII molecule of the factor VIII molecule of the factor VIII

It is therefore an object of the present invention to provide a factor VIII that corrects hemophilia in a patient deficient in factor VIII or having inhibitors of human factor VIII.

It is a further object of the present invention to provide methods for treatment of hemophiliacs.

It is still another object of the present invention to provide a factor VIII that is stable at a selected pH and physiologic concentration.

Summary of the Invention

A hybrid factor VIII with coagulant activity including in one embodiment factor VIII amino acid sequence derived from human and pig or other non-human mammal (referred to herein as "animal"); or in a second embodiment including factor VIII amino acid sequence derived from human or animal or both and amino acid sequence not derived from factor VIII, preferably substituted in an antigenic region of the factor VIII, is described. This hybrid factor VIII molecule is produced by isolation and recombination of human and animal factor VIII subunits or domains; or by genetic engineering of the human and animal factor VIII genes.

In the preferred embodiment, recombinant DNA

methods are used to substitute elements of animal factor VIII for the corresponding elements of human factor VIII, resulting in hybrid human/animal factor VIII molecules. In another embodiment, recombinant DNA methods are used to replace one or more amino acids in the human or animal factor VIII or in a hybrid of two species with amino acids that do not have sequence identity to factor VIII, preferably a sequence of amino acids that is non-immunoreactive with naturally occurring inhibitory antibodies to factor VIII. An example of an amino acid sequence that can be used to replace particularly immunogenic epitopes is a sequence of alanine residues.

In another embodiment, subunits of factor VIII are isolated and purified from human or animal plasma, and hybrid human/animal factor VIII is produced either by mixture of animal heavy chain subunits with human light chain subunits or by mixture of human heavy chain subunits with animal light chain subunits, thereby producing human light chain/animal heavy chain and human heavy chain/animal light chain hybrid molecules. These hybrid molecules are isolated by ion exchange chromatography.

Alternatively, one or more domains or partial domains of factor VIII are isolated and purified from human or animal plasma, and hybrid human/animal factor VIII is produced by mixture of domains or partial domains from one species with domains or partial domains of the second species. Hybrid molecules can be isolated by ion exchange chromatography.

Methods for preparing highly purified hybrid factor VIII are described having the steps of: (a) isolation of subunits of plasma-derived human factor VIII and subunits of plasma-derived animal

5

5

10

15

20

25

30

. 35

10

15

20

25

30

35

factor VIII, followed by reconstitution of coagulant activity by mixture of human and animal subunits, followed by isolation of hybrid human/animal factor VIII by ion exchange chromatography; (b) isolation of domains or partial domains of plasma-derived human factor VIII and domains or partial domains of plasma-derived animal factor VIII, followed by reconstitution of coagulant activity by mixture of human and animal domains, followed by isolation of hybrid human/animal factor VIII by ion exchange chromatography; (c) construction of domains or partial domains of animal factor VIII by recombinant DNA technology, followed by exchange of domains of animal and human factor VIII to produce hybrid human/animal factor VIII with coagulant activity; (d) creation of hybrid human/animal factor VIII by replacement of specific amino acid residues of human factor VIII with the animal factor VIII amino acid residues having sequence identity to the replaced human amino acids by sitedirected mutagenesis; or (e) creation of a hybrid factor VIII molecule having human or animal amino acid sequence or both, in which specific amino acid residues of the factor VIII are replaced with amino acid residues not having sequence identity to factor VIII by site-directed mutagenesis.

Some species of hybrid factor VIII have specific activity greater than human factor VIII and equal to or slightly higher than porcine factor VIII. Some species of hybrid factor VIII have immunoreactivity with inhibitory antibodies to factor VIII equal to or less than human or porcine factor VIII.

Brief Description of the Drawings
Figure 1A and 1B is an amino acid sequence

alignment of human, mouse, and porcine factor VIII A2 domains, in which residue numbering begins at position 373 with respect to the full length sequence of human factor VIII (SEQ ID NO: 2).

Detailed Description of the Invention - Definitions

Unless otherwise specified or indicated, as used herein, "hybrid factor VIII" or "hybrid protein" denotes any functional factor VIII protein molecule with (1) amino acid sequence derived from both human and porcine (human/porcine) or other non-human mammalian (human/non-porcine mammalian) factor VIII; (2) amino acid sequence derived from two different non-human mammalian species (animal-1/animal-2, porcine/non-human, non-porcine mammal), such as pig and mouse; and (3) amino acid sequence derived from hybrid, human, or animal factor VIII into which amino acid sequence having no known sequence identity to factor VIII is substituted. As used herein, "mammalian factor VIII" includes factor VIII with amino acid sequence derived from any non-human mammal, unless otherwise specified. "Animal", as used herein, refers to pig and other non-human mammals. Hybrid human/porcine factor VIII has coagulation activity in a human factor VIII assay. This activity, as well as that of other hybrid factor VIII, may be less than, equal to, or greater than that of either plasma-derived or recombinant human factor VIII. In some embodiments, this hybrid factor VIII is not crossreactive or is less cross-reactive with all naturally occurring inhibitory factor VIII antibodies than human or porcine factor VIII.

This hybrid factor VIII can be made (1) by substitution of isolated, plasma-derived animal subunits or human subunits (heavy or light chains)

5

10

15

20

25

30

: 1

5

10

15

20

25

30

35

for corresponding human subunits or animal subunits; (2) by substitution of human domains or animal domains (A1, A2, A3, B, C1, and C2) for corresponding animal domains or human domains; (3) by substitution of parts of human domains or animal domains for parts of animal domains or human domains; (4) by substitution of one or more human or animal specific amino acid residue(s) for the corresponding animal or human specific amino acid residue(s); or (5) by substitution of one or more specific amino acid residue(s) in human, animal, or hybrid factor VIII with amino acid sequence that has no known sequence identity to factor VIII. A fusion protein is the product of a hybrid gene in which the coding sequence for one protein is extensively altered, for example, by fusing part of it to the coding sequence for a second protein from a different gene to produce a hybrid gene that encodes the fusion protein. As used herein, a fusion protein is a subset of the hybrid protein described in this application.

"Corresponding amino acids" are those present at a site in a factor VIII molecule that have the same structure and/or function as a site in another factor VIII molecule, although the amino acid residue number may not be identical.

"Specific activity," as used herein, refers to the activity that will correct the coagulation defect of human factor VIII deficient plasma. Specific activity is measured in units of clotting activity per milligram total factor VIII protein in a standard assay in which the clotting time of human factor VIII deficient plasma is compared to that of normal human plasma. One unit of factor VIII activity is the activity present in one milliliter of normal human plasma. In the assay, the shorter the time for clot formation, the

greater the activity of the factor VIII being assayed.

The human factor VIII cDNA nucleotide sequence is shown in SEQ ID NO:1. The human factor VIII predicted amino acid sequence is shown in SEQ ID NO:2. In a factor VIII molecule, a "domain" as used herein is a continuous sequence of amino acids that are defined by internal amino acid sequence identity and sites of proteolytic cleavage by thrombin. Unless otherwise specified, factor VIII domains include the following amino acid residues, when the sequences are aligned with the human amino acid sequence (SEQ ID NO:2): A1, residues 1-372; A2, residues 373-740; B, residues 741-1648; A3, residues 1690-2032; C1, residues 2033-2172; C2, residues 2173-2332. The A3-C1-C2 sequence includes residues 1690-2332. The remaining sequence, residues 1649-1689, is usually referred to as the factor VIII light chain activation peptide. "partial domain" as used herein is a continuous sequence of amino acids containing part of a domain.

As used herein, a "hybrid human/animal factor VIII equivalent" or "hybrid factor VIII equivalent" is an active factor VIII molecule wherein (1) one or more specific amino acid residues in the human, animal, or hybrid factor VIII that forms an epitope which is immunoreactive with endogenous factor VIII inhibitory antibodies is substituted with one or more amino acid residues that have no known identity to human or animal factor VIII sequence, and that do not form an epitope immunoreactive with endogenous factor VIII inhibitory antibodies; and/or (2) a one or more specific amino acid residues in the human, animal, or hybrid factor VIII that is critical to coagulant activity is substituted with one or more specific

5

10

15

20

25

30

10

15

20

25

30

35

amino acid residues that have no known identity to human or animal factor VIII sequence that also have coagulant activity. The resulting hybrid factor VIII equivalent molecule has less reactivity with factor VIII inhibitory antibodies than the unsubstituted human factor VIII and has coagulant activity.

"Factor VIII deficiency," as used herein, includes deficiency in clotting activity caused by production of a defective factor VIII, by inadequate or no production of factor VIII, or by partial or total inhibition of factor VIII by inhibitors. Hemophilia A is a type of factor VIII deficiency resulting from a defect in an X-linked gene and the absence or deficiency of the factor VIII protein it encodes.

"Subunits" of human or animal factor VIII, as used herein, are the heavy and light chains of the protein. The heavy chain of factor VIII contains three "domains," A1, A2, and B. The light chain of factor VIII also contains three "domains," A3, C1, and C2.

As used herein, "diagnostic assays" include assays that in some manner utilize the antigenantibody interaction to detect and/or quantify the amount of a particular antibody that is present in a test sample to assist in the selection of medical therapies. There are many such assays known to those of skill in the art. As used herein, however, the hybrid human\animal DNA and protein expressed therefrom, in whole or in part, can be substituted for the corresponding reagents in the otherwise known assays, whereby the modified assays may be used to detect and/or quantify antibodies to factor VIII. It is the use of these reagents, the hybrid human/animal DNA and protein expressed therefrom or the hybrid human/animal equivalent

factor VIII DNA and protein expressed therefrom, that permits modification of known assays for detection of antibodies to human or animal factor VIII or to hybrid human/animal factor VIII. Such assays include, but are not limited to ELISAS, immunodiffusion assays, and immunoblots. Suitable methods for practicing any of these assays are known to those of skill in the art. As used herein, the hybrid human/animal or equivalent factor VIII or portion thereof that includes at least one epitope of the protein, can be used as the diagnostic reagent.

The terms "epitope", "antigenic site",
"immunogenic site", and "antigenic determinant", as
used herein, are used synonymously and are defined
as a portion of the hybrid factor VIII protein that
is specifically recognized by an antibody. It can
consist of any number of amino acid residues, and
it can be dependent upon the primary, secondary, or
tertiary structure of the protein. In accordance
with this disclosure, a factor VIII protein or
equivalent that includes at least one epitope may
be used as a reagent in the diagnostic assays.

- General Description of Methods

Hybrid human/animal and equivalent factor VIII molecules, some of which have greater coagulant activity in a standard clotting assay when compared to highly-purified human factor VIII, and some of which have less immunoreactivity to inhibitory antibodies to human or porcine factor VIII, can be constructed as follows.

Five types of hybrid human/porcine or equivalent factor VIII molecules and the methods for preparing them are disclosed herein: those obtained (1) by substituting a porcine subunit (i.e., heavy chain or light chain) for the corresponding human subunit; (2) by substituting

10

15

20

25

30

. 35

10

15

20

25

one or more porcine domain(s) (i.e., A1, A2, A3, B, C1, and C2) for the corresponding human domain(s); (3) by substituting part of one or more porcine domain(s) for the corresponding part of one or more domain(s) of the human domain; (4) by substituting one or more specific amino acid residue(s) in human factor VIII with the corresponding residue(s) from the porcine sequence; and (5) by substituting one or more specific amino acids in human, porcine, or hybrid human/porcine factor VIII with amino acid residue(s) having no known sequence identity to factor VIII. Five types of hybrid factor VIII molecules that have human factor VIII amino acid sequence and non-porcine mammalian factor VIII amino acid sequence, or as in the fifth category, human, non-porcine mammalian, or hybrid factor VIII, can also be prepared by the same methods.

Hybrid human/animal and equivalent factor VIII proteins listed above under groups (1)-(3) are made by isolation of subunits, domains, or parts of domains of plasma-derived factor VIII, followed by reconstitution and purification. Hybrid human/animal and equivalent factor VIII proteins described under groups (3)-(5) above are made by recombinant DNA methods. The hybrid molecule may contain a greater or lesser percentage of human than animal sequence, depending on the origin of the various regions, as described in more detail below.

It is shown below that hybrid human/porcine factor VIII consisting of porcine heavy chain/human light chain and corresponding to the first type of hybrid listed above has greater specific coagulant activity in a standard clotting assay as compared to human factor VIII. The hybrid human/animal or equivalent factor VIII with coagulant activity, whether the activity is higher, equal to, or lower

35

than that of human factor VIII, can be useful in treating patients with inhibitors, since these inhibitors can react less with hybrid human/animal or equivalent factor VIII than with either human or porcine factor VIII.

Preparation of hybrid human/animal factor VIII molecules from isolated human and animal factor VIII subunits by reconstitution:

Hybrid human/animal factor VIII molecules are prepared and isolated, and their procoagulant activity is characterized. One method, modified from procedures reported by Fay, P.J., et al., 265 J. Biol. Chem. 6197 (1990); and Lollar, J.S., et al., 263 J. Biol. Chem. 10451 (1988), involves the isolation of subunits (heavy and light chains) of human and animal factor VIII, followed by recombination of human heavy chain and animal light chain or by recombination of human light chain and animal heavy chain.

Isolation of both human and animal individual subunits involves dissociation of the light chain/heavy chain dimer by chelation of calcium with ethylenediaminetetraacetic acid (EDTA), followed by monos™ HPLC (Pharmacia-LKB, Piscataway, NJ). Hybrid human/animal factor VIII molecules are reconstituted from isolated subunits in the presence of calcium. Hybrid human light chain/animal heavy chain or animal light chain/human heavy chain factor VIII is isolated from unreacted heavy chains by monos™ HPLC by procedures for the isolation of porcine factor VIII, such as described by Lollar, J.S., et al., 71 Blood 137-143 (1988).

These methods, described in detail in the examples below, result in hybrid human light chain/porcine heavy chain molecules with greater than six times the procoagulant activity of human factor VIII. Other hybrid human/non-porcine

5

10

15

20

25

30

WO 95/24427

5

10

15

20

25

30

35

mammalian factor VIII molecules can be prepared, isolated, and characterized for activity by the same methods.

Preparation of hybrid human/animal factor VIII molecules from isolated human and animal factor VIII domains by reconstitution:

Hybrid human/animal factor VIII molecules with domain substitutions are prepared and isolated, and their procoagulant activity is characterized. One method involves the isolation of one or more domains of human and one or more domains of animal factor VIII, followed by recombination of human and animal domains to form hybrid human/animal factor VIII with coagulant activity, as described by Lollar, P., et al., 267(33) J. Biol. Chem. 23652-23657 (Nov. 25, 1992).

Plasma-derived animal and human A1/A3-C1-C2 dimers are isolated by dissociation of the A2 domain from factor VIIIa in the presence of NaOH, after which the mixture is diluted and the dimer is eluted using monos™ HPLC (Pharmacia-LKB, Piscataway, NJ). The A2 domain is isolated from factor VIIIa as a minor component in the monoS™ Hybrid human/animal factor VIII molecules are reconstituted by mixing equal volumes of the A2 domain of one species and the A1/A3-C1-C2 dimer of the other species. Hybrid factor VIII with one or more domain substitutions is isolated from the mixture of unreacted dimers and A2 domains by monoS™ HPLC by procedures for the isolation of porcine factor VIII, as described by Lollar, J.S., et al., 71 Blood 137-143 (1988).

These methods, described in detail in the examples below, result in hybrid factor VIII molecules with procoagulant activity.

Preparation of hybrid factor VIII molecules by recombinant engineering of the sequences encoding human, animal, and hybrid factor VIII subunits, domains, or parts of domains:

Substitution of subunits, domains, parts of domains:

The human factor VIII gene was isolated and expressed in mammalian cells, as reported by Toole, J.J., et al., 312 Nature 342-347 (1984) (Genetics Institute); Gitschier, J., et al., 312 Nature 326-330 (1984) (Genentech); Wood, W.I., et al., 312 Nature 330-337 (1984) (Genentech); Vehar, G.A., et al., 312 Nature 337-342 (1984) (Genentech), and the amino acid sequence was deduced from cDNA. U.S. Patent No. 4,965,199 to Capon et al. discloses a recombinant DNA method for producing factor VIII in mammalian host cells and purification of human factor VIII. Factor VIII expression in CHO (Chinese hamster ovary) cells and BHKC (baby hamster kidney cells) has been reported.

The cDNA sequence encoding human factor VIII and predicted amino acid sequence are shown in SEQ ID NO:1 and SEQ ID NO:2, respectively.

Recombinant hybrid factor VIII is prepared starting with human cDNA (Biogen, Inc.) encoding the factor VIII sequence corresponding to domains A1-A2-A3-C1-C2. The factor VIII encoded by this cDNA lacks the entire B domain and corresponds to amino acid residues 1-740 and 1649-2332 of single chain human factor VIII (see SEQ ID NO:2), according to the numbering system of Wood et al., 312 Nature 330-337 (1984). The B domain is deleted, since it does not appear to be necessary for biological function.

Porcine factor VIII has been isolated and purified from plasma (Fass, D.N., et al., 59 <u>Blood</u> 594 (1982)). The amino acid sequence of the B and <u>part</u> of the A2 domains of porcine factor VIII are reported by Toole, J.J., et al., 83 <u>Proc. Nat'l.</u>

15

5

10

15

20

25

30

10

15

20

25

30

Acad. Sci. U.S.A. 5939-5942 (1986).

Both porcine and human factor VIII are isolated from plasma as a two subunit protein. subunits, known as the heavy chain and light chain, are held together by a non-covalent bond that requires calcium or other divalent metal ions. heavy chain of factor VIII contains three domains, A1, A2, and B, which are linked covalently. light chain of factor VIII also contains three domains, designated A3, C1, and C2. The B domain has no known function and can be removed from the molecule proteolytically or by recombinant DNA technology methods without significant alteration in any measurable parameter of factor VIII. recombinant factor VIII has a similar structure and function to plasma-derived factor VIII, though it is not glycosylated unless expressed in mammalian cells.

Both human and porcine activated factor VIII (factor VIIIa) have three subunits due to cleavage of the heavy chain between the Al and A2 domains. This structure is designated A1/A2/A3-C1-C2. Human factor VIIIa is not stable under the conditions that stabilize porcine factor VIIIa. This is because of the weaker association of the A2 subunit of human factor VIIIa. Dissociation of the A2 subunit of human and porcine factor VIIIa is associated with loss of activity in the factor VIIIa molecule.

The complete A2 domain of porcine factor VIII cDNA (SEQ ID NO:3), having sequence identity to residues 373-740 in SEQ ID NO:1, in mature human factor VIII, was sequenced. The predicted amino acid sequence is shown in SEQ ID NO:4.

Although only the A2 and B domains of porcine factor VIII have been sequenced entirely, the remainder of the porcine factor VIII molecule can

be sequenced by standard cloning techniques, such as those described in Weis, J.H., "Construction of recombinant DNA libraries," in <u>Current Protocols in Molecular Biology</u>, F.M. Ausubel et al., eds. (1991), so that full length hybrids can be constructed.

Individual subunits, domains, or parts of domains of porcine or human factor VIII cDNA can be cloned and substituted for the corresponding human or porcine subunits, domains, or parts of domains by established mutagenesis techniques. For example, Lubin, I.M., et al., 269(12) J. Biol Chem. 8639-8641 (March 1994) describes techniques for substituting the porcine A2 domain for the human domain. These hybrid factor VIII cDNA molecules can be cloned into expression vectors for ultimate expression of active hybrid human/porcine factor VIII protein molecules by established techniques, as described by Selden, R.F., "Introduction of DNA into mammalian cells," in <u>Current Protocols in Molecular Biology</u>, F.M. Ausubel et al., eds (1991).

In a preferred embodiment, a hybrid human/porcine cDNA encoding factor VIII, in which the porcine sequence encodes a domain or part domain, such the A2 domain or part domain, is inserted in a mammalian expression vector, such as ReNeo, to form a construct that is used to stably transfect cells in culture, such as baby hamster kidney cells, using methods that are routine in the art, such as liposome-mediated transfection (Lipofectin™, Life Technologies, Inc.). Expression of recombinant hybrid factor VIII protein can be confirmed, for example, by sequencing, Northern and Western blotting, or polymerase chain reaction (PCR). Hybrid factor VIII protein in the culture media in which the transfected cells expressing the protein are maintained can be precipitated.

5

10

15

20

25

30

. : :

5

10

15

20

25

30

35

pelleted, washed, resuspended in an appropriate buffer, and the recombinant hybrid factor VIII protein purified by standard techniques, including immunoaffinity chromatography. In one embodiment, the factor VIII is expressed as a fusion protein from a recombinant molecule in which a molecule encoding a protein that enhances stability, secretion, detection, or isolation is inserted in place adjacent to the factor VIII encoding sequence. The purified hybrid factor VIII can be assayed for immunoreactivity and coagulation activity by standard assays including, for example, the plasma-free factor VIII assay, the one-stage clotting assay, and the enzyme-linked immunosorbent assay using purified recombinant human factor VIII as a standard.

Other vectors, including both plasmid and eukaryotic viral vectors, may be used to express a recombinant gene construct in eukaryotic cells depending on the preference and judgment of the skilled practitioner (see, for example, Sambrook et al., Chapter 16). Other vectors and expression systems, including bacterial, yeast, and insect cell systems, can be used but are not preferred due to differences in, or lack of, glycosylation.

Recombinant hybrid factor VIII protein can be expressed in a variety of cells commonly used for culture and recombinant mammalian protein expression. A preferred cell line, available from the American Type Culture Collection, Rockville, MD, is baby hamster kidney cells, which are cultured using routine procedure and media.

The same methods can be used to prepare other recombinant hybrid factor VIII protein, such as human/non-porcine mammalian. Starting with primers from the known human DNA sequence, the murine and part of the porcine factor VIII cDNA have been

cloned. Factor VIII sequences of other species for use in preparing a hybrid human/animal factor VIII molecule can be obtained using the known human DNA sequence as a starting point. Other techniques that can be employed include PCR amplification methods with animal tissue DNA, and use of a cDNA library from the animal to clone out the factor VIII sequence.

As an example, hybrid human/mouse factor VIII protein can be made as follows. DNA clones corresponding to the mouse homolog of the human factor VIII gene have been isolated and sequenced and the amino acid sequence of mouse factor VIII predicted, as described in Elder, G., et al., 16(2) Genomics 374-379 (May 1993), which also includes a comparison of the predicted amino acid sequences of mouse, human, and part of porcine factor VIII molecules. The mouse factor VIII cDNA sequence and predicted amino acid sequence are shown in SEQ ID NO:5 and SEQ ID NO:8, respectively. In a preferred embodiment, the RNA amplification with transcript sequencing (RAWTS) methods described in Sarkar, G., and S.S. Sommer, 244 Science 331-334 (1989), can be Briefly, the steps are (1) cDNA synthesis with oligo(dT) or an mRNA-specific oligonucleotide primer; (2) polymerase chain reaction (PCR) in which one or both oligonucleotides contains a phage promoter attached to a sequence complementary to the region to be amplified; (3) transcription with a phage promoter; and (4) reverse transcriptasemediated dideoxy sequencing of the transcript, which is primed with a nested (internal) oligonucleotide. In addition to revealing sequence information, this method can generate an in vitro translation product by incorporating a translation initiation signal into the appropriate PCR primer; and can be used to obtain novel mRNA sequence

19

5

10

15

20

25

30

10

15

20

25

30

35

information from other species.

Substitution of amino acid(s):

The A2 domain is necessary for the procoagulant activity of the factor VIII molecule. According to Lollar, P., et al., 267 J. Biol. Chem. 23652-23657 (1992), the difference in coagulant activity between human and porcine factor VIII appears to be based on a difference in amino acid sequence between one or more residues in the A2 domain. Further, the A2 and the C2 domains in the human factor VIII molecule are thought to harbor the epitopes to which most, if not all, inhibitory antibodies react, according to Hoyer, L.W., and D. Scandella, 31 Semin. Hematol. 1-5 (1994). Recombinant hybrid factor VIII molecules can be made by substitution of amino acid sequence from animal A2, C2, and/or other domains into human factor VIII or amino acid sequence from the human A2, C2, and/or other domains into animal factor VIII, selecting in either case amino acid sequence that differs between the animal and human molecules. Hybrid molecules can also be made in which amino acid sequence from more than one animal is substituted in the human factor VIII molecule, or in which human and other animal amino acid sequence is inserted into an animal factor VIII molecule. Hybrid equivalent molecules can also be made, in which human, animal, or hybrid factor VIII contain one or more amino acids that have no known sequence identity to factor VIII. These hybrid molecules can then be assayed by standard procedures for coagulant activity and for reactivity with inhibitory antibodies to factor VIII for identification of hybrid factor VIII molecules with enhanced coagulant activity and/or decreased antibody immunoreactivity. Hybrid molecules may also be identified that have reduced

coagulant activity compared to human but still have decreased antibody reactivity. The methods described herein to prepare hybrid human/porcine factor VIII with substitution of amino acids can be used to prepare recombinant hybrid human/non-porcine mammalian factor VIII protein, and hybrid animal-1/animal-2 factor VIII with amino acid sequence substitutions.

Hybrid factor VIII molecules with altered coagulant activity.

Hybrid human/porcine factor VIII can be prepared in which human factor VIII amino acid sequence having procoagulant activity in the A2 domain is replaced with the corresponding porcine amino acid sequence, also having procoagulant activity. The sequence to be replaced is selected and prepared as follows. Both human and porcine A2 domains have 368 residues (SEQ ID NOs:2 and 6, respectively). As shown in Figure 1A-1B, which compares the alignment of the amino acid sequences of the human and porcine factor VIII A2 domains (residue numbering starts at position 373 with respect to the full length amino acid sequence of human factor VIII, SEQ ID NO:2), 50 of these residues are different and 318 are identical; i.e., there is an 86 percent sequence identity when human and porcine factor VIII A2 domains are aligned. Therefore, there is a large but finite number of combinations that will result in hybrid human/porcine factor VIII molecules with enhanced coagulant activity, based on these 50 differences.

For preparation of a hybrid human/porcine factor VIII molecule, the initial target candidates for mutagenesis, which were revealed upon comparison of the human and porcine A2 amino acid sequences (SEQ ID NOs:2 and 6, respectively) within the human A2 domain, are shown in Table I.

5

10

15

20

25

30

. . . 1

15

20

25

30

35

TABLE I. HUMAN AMINO ACID SEQUENCE TARGET CANDIDATES FOR MUTAGENESIS (SEQ ID NO:2)

	Sequence	Residues	Mismatches	Charge Changes
5	398-403	6	4	1
,	434-444	10	4	3
	484-496	13	7	3
	598-603	6	4	2
	536-541	6	4	0
10	713-722	10	6	2
	727-737	11	6	2

Table I and the bold letters of Figure 1A-1B illustrate seven sequences in the human and pig A2 domain amino acid sequences (SEQ ID NOS:2 and 6, respectively) that constitute only 17 percent of the A2 domain but include 70 percent of the sequence differences between human and porcine A2 domains. Hybrids are made by selecting porcine sequence based on the sequence differences and substituting it into the human A2 domain.

Directed mutagenesis techniques are used to identify hybrid protein with coagulant activity that can be enhanced, equal to, or reduced, compared to human factor VIII, but preferably is Specific human sequences are replaced enhanced. with porcine sequences, preferably using the splicing by overlap extension method (SOE), as described by Ho, S.N., et al., 77 Gene 51-59 (1994), and in Examples 7 and 8. In another embodiment, oligonucleotide-directed mutagenesis can be used, as was done to loop out the amino acid sequence for part of the human A2 domain (see Example 7). As functional analysis of the hybrids reveals coagulant activity, the sequence can be further dissected and mapped for procoagulant sequence by point mutation analysis, using standard site-directed mutagenesis techniques. Amino acid

sequence substitutions in the A2 domain are described in Examples 7 and 8.

Hybrid factor VIII molecules with reduced immunoreactivity.

The approach described in the previous section for substitution of amino acids in the factor VIII molecule can also be used to identify one or more critical region(s) in the A2, C2, and/or other domains to which inhibitory antibodies are directed and to prepare an effective procoagulant hybrid molecule with no immunoreactivity or reduced immunoreactivity, as demonstrated in example 8, by replacement of one or more epitopes in the human factor VIII with corresponding porcine amino acid sequence.

Usually, porcine factor VIII has limited or no reaction with inhibitory antibodies. percent of inhibitory antibodies to human factor VIII are directed against either the A2 or C2 domains or both. Hybrid human/porcine factor VIII molecules having decreased or no reactivity with inhibitory antibodies based on amino acid substitution in the A2 domain are prepared as follows. The porcine A2 domain is cloned by standard cloning techniques, as described above and in Examples 6, 7, and 8, and then cut and spliced within the A2 domain using routine procedures, such as using restriction sites to cut the cDNA or splicing by overlap extension (SOE). The resulting constructs of known porcine amino acid sequence are substituted into the human A2 domain to form a hybrid factor VIII construct, which is inserted into a mammalian expression vector, preferably ReNeo, stably transfected into cultured cells, preferably baby hamster kidney cells, and expressed, as described above. The hybrid factor VIII is assayed for immunoreactivity, for example with anti-A2 antibodies by the routine Bethesda

5

10

15

20

25

30

10

15

20

25

30

35

assay or by plasma-free chromogenic substrate assay. The Bethesda unit (BU) is the standard method for measuring inhibitor titers. If the Bethesda titer is not measurable (<0.7 BU/mg IgG) in the hybrid, then a human A2 epitope was eliminated in the region of substituted corresponding porcine sequence. The epitope is progressively narrowed, and the specific A2 epitope can thus be determined to produce a hybrid human/porcine molecule with as little porcine sequence as possible.

Hybrid human/porcine factor VIII molecules having decreased or no reactivity with inhibitory antibodies based on substitution of amino acid sequence in the C2 or other domain, with or without substitution in the A2 domain, can be prepared. The procedures can be the same or similar to those described herein for amino acid substitution in the A2 domain, including cloning the porcine C2 or other domain, for example by using RT-PCR or by probing a porcine liver cDNA library with human C2 or other domain DNA; restriction site techniques and/or successive SOE to map and simultaneously replace epitopes in the C2 or other domain; expression in cultured cells; and routine assay for immunoreactivity. For the assays, antibodies specific to the C2 domain, such as the inhibitory autoantibody IgG described by Scandella, D., et al., Thromb. Haemostasis 67:665-671 (1992) and Lubin et al. (1994), are available, for example from Dr. Dorothea Scandella, American Red Cross, Rockville, MD.

The C2 domain consists of amino acid residues 2173-2332 (SEQ ID NO:2). Within this 154 amino acid region, inhibitor activity appears to be directed to a 65 amino acid region between residues 2248 and 2312, according to Shima, M., et al., 69

Thromb. Haemostas. 240-246 (1993). If the C2 sequence of human and porcine factor VIII is approximately 85 percent identical in this region, as it is elsewhere in the functionally active regions of factor VIII, there will be approximately ten differences between human and porcine factor VIII C2 amino acid sequence, which can be used as initial targets to construct hybrids with substituted C2 sequence.

It is likely that clinically significant factor VIII epitopes are confined to the A2 and C2 domains. However, if antibodies to other regions (A1, A3, B, or C1 domains) of factor VIII are identified, they can be mapped and eliminated by using hybrid human/porcine factor VIII molecules with the same approach.

Preparation of hybrid factor VIII molecules using human and non-porcine mammalian factor VIII amino acid sequence.

The methods used to prepare hybrid human/porcine factor VIII with substitution of specific amino acids can be used to prepare recombinant hybrid human/non-porcine mammalian factor VIII protein that has, compared to human factor VIII, altered or the same coagulant activity and/or equal or reduced immunoreactivity, based on substitution of one or more amino acids in the A2, C2, and/or other domains.

Similar comparisons of amino acid sequence identity can be made between human and other non-porcine mammalian factor VIII proteins to determine the amino acid sequences in which procoagulant activity and anti-A2 and anti-C2 immunoreactivity or immunoreactivity in other domains reside. Similar methods can then be used to prepare other hybrid human/animal factor VIII molecules. As described above, functional analysis of each hybrid will reveal those with decreased reactivity to

5

10

15

20

25

30

inhibitory antibodies and/or increased coagulant activity, and the sequence can be further dissected by point mutation analysis.

For example, hybrid human/mouse factor VIII molecules can be prepared as described above. The amino acid sequence alignment of the A2 domain of human (SEQ ID NO:2) and mouse (SEQ ID NO:6) is shown in Figure 1A-1B. As reported by Elder et al., the factor VIII protein encoded by the mouse CDNA (SEQ ID NO:5) has 2319 amino acids, with 74% sequence identity overall to the human sequence (SEQ ID NO:2) (87 percent identity when the B domain is excluded from the comparison), and is 32 amino acids shorter than human factor VIII. amino acid sequences in the mouse A and C domains (SEO ID NO:6) are highly conserved, with 84-93 percent sequence identity to the human sequence (SEQ ID NO:2), while the B and the two short acidic domains have 42-70 percent sequence identity. Specifically, the A1, A2, and A3 mouse amino acid sequences (SEQ ID NO:6) are 85, 85, and 90 percent identical to the corresponding human amino acid sequences (SEQ ID NO:2). The C1 and C2 mouse amino acid sequences are 93 and 84 percent identical to the corresponding human amino acid sequences. In the predicted mouse factor VIII amino acid sequence (SEQ ID NO:6), the A1, A2, and A3 domains include amino acids 1-330, 380-711, and 1664-1987, respectively, using amino acid sequence identity for numbering purposes.

The thrombin/factor Xa and all but one activated protein C cleavage sites are conserved in mouse factor VIII. The tyrosine residue for von Willebrand factor binding is also conserved.

According to Elder et al., the nucleotide sequence (SEQ ID NO:5) of mouse factor VIII contains 7519 bases and has 67 percent identity

5

10

15

20

25

30

overall with the human nucleotide sequence (SEQ ID NO:1). The 6957 base pairs of murine coding sequence have 82 percent sequence identity with the 7053 base pairs of coding sequence in human factor VIII. When the B domain is not included in the comparison, there is an 88 percent nucleotide sequence identity.

Elder et al. report that human and mouse factor VIII molecules are 74 percent identical overall, and that 95 percent of the human residues that lead to hemophilia when altered are identical in the mouse. These data support the application of the same techniques used to identify amino acid sequence with coagulant activity and/or immunoreactivity to antibodies in the porcine factor VIII molecule to the mouse or other animal factor VIII to identify similar amino acid sequences and prepare hybrid molecules.

In another embodiment, cross-reactivity, in which human plasma reacts with porcine factor VIII, can be reduced by preparation of hybrid porcine/animal factor VIII. First, a determination of whether human A2 specific inhibitors react with factor VIII from other mammals is made, using the routine Bethesda assay and the particular mammalian plasma as the standard. Inhibitor titers are usually measured in plasma, so purified animal factor VIII is not necessary. If A2 inhibitors do not react with the animal factor VIII, such as murine factor VIII, the sequence of which is known, then corresponding animal sequence can be substituted into the porcine epitope region, as identified by using human/porcine hybrids. Once the animal sequence is known, site directed mutagenesis techniques, such as oligonucleotidemediated mutagenesis described by Kunkel, T.A., et al., 204 Meth. Enzymol. 125-139 (1991), can be used

5

10

15

20

25

30

to prepare the hybrid porcine/animal factor VIII molecule. If other animal plasmas are less reactive with A2 inhibitors than murine or porcine factor VIII, the animal sequence corresponding to the porcine epitope can be determined by routine procedures, such as RT-PCR, and a hybrid human/animal or porcine/animal factor VIII constructed by site directed mutagenesis. Also, hybrid human/animal or porcine/non-porcine mammalian factor VIII can be prepared that has corresponding amino acid sequence substitution from one or more other animals.

After identification of clinically significant epitopes, recombinant hybrid factor VIII molecules will be expressed that have less than or equal cross-reactivity with human factor VIII when tested in vitro against a broad survey of inhibitor plasmas. Preferably these molecules will be combined A2/C2 hybrids in which immunoreactive amino acid sequence in these domains is replaced by porcine or other animal sequence. Additional mutagenesis in these regions may be done to reduce cross-reactivity. Reduced cross-reactivity, although desirable, is not necessary to produce a product that may have advantages over the existing porcine factor VIII concentrate, which produces side effects due to contaminant porcine proteins and may produce untoward effects due to the immunogenicity of porcine factor VIII sequences. A hybrid human/animal or porcine/animal factor VIII molecule will not contain foreign porcine proteins. Additionally, the extensive epitope mapping accomplished in the porcine A2 domain indicates that greater than 95% of the therapeutic hybrid human/porcine factor VIII sequence will be human.

Preparation of hybrid human/animal or porcine/animal factor VIII equivalents:

The methods described above and in the

5

10

15

20

25

30

examples can also be used to prepare procoagulant hybrid human/animal, non-porcine animal-1/animal-2, or porcine/non-porcine mammalian factor VIII equivalent molecules. One or more specific amino acid residues in human or animal factor VIII or hybrid factor VIII that function as an antigenic site which is immunoreactive with endogenous factor VIII inhibitory antibodies can be identified as described, and then can be substituted with one or more specific amino acid residues that has no known identity to human or animal factor VIII sequence and that does not form an antigenic site immunoreactive with endogenous factor VIII inhibitory antibodies. One or more antigenic sites can be substituted to form an active hybrid factor VIII equivalent molecule. The resulting active hybrid factor VIII equivalent molecule has equal or less reactivity with factor VIII inhibitory antibodies than the unsubstituted human or animal or hybrid human/animal factor VIII.

Alternatively or additionally, active hybrid factor VIII equivalent molecules can be prepared, using the methods described above and in the examples, in which one or more specific amino acid residues in human or animal factor VIII or hybrid human/animal factor VIII that are critical to the coagulant activity can be identified as described, and then can be substituted with one or more amino acid residues having no known identity to human or animal factor VIII sequence that also provides coagulant activity. One or more specific amino acids that have coagulant activity can be replaced to form an active hybrid factor VIII equivalent molecule. The resulting procoagulant hybrid factor VIII equivalent molecule has coagulant activity that may be less than, equal to, or greater than that of the unsubstituted factor VIII molecule.

5

10

15

20

25

30

. 35

10

15

20

25

30

35

Preferably, the hybrid factor VIII equivalent molecule has coagulant activity that is superior to that of human factor VIII.

Suitable specific amino acid residues that can be substituted for those sequences of amino acids critical to coagulant and/or antigenic activity in human or animal factor VIII or hybrid human/animal factor VIII include any specific amino acids not having sequence identity to animal or human factor VIII amino acid sequence that has coagulant activity and/or has less or equal reactivity with endogenous inhibitory antibodies to factor VIII.

Hybrid factor VIII equivalent molecules can have substitutions of one or more specific amino acid sequences for coagulant activity and/or one or more specific amino acid sequences for antigenic sites. Hybrid factor VIII equivalent molecules described herein also include those molecules in which amino acid residues not critical to coagulant activity or antigenic activity are substituted with amino acid residues having no known identity to animal factor VIII sequence.

In one embodiment, a hybrid factor VIII equivalent molecule, preferably a hybrid human/porcine molecule, can be prepared in which cross-reactivity with inhibitor plasmas is reduced as follows. One or more epitopes are identified, as described above, and then replaced by alanine residues, using, for example, the alanine scanning mutagenesis method described by Cunningham, B.C., and J.A. Wells, 244 Science 1081-1085 (1989). Since the human A2 epitope has been narrowed to 26 or fewer amino acids, as described in Example 8, alanine scanning mutagenesis can be performed on a limited number of hybrid proteins to determine which are active, non-cross-reactive hybrid factor VIII based on A2 amino acid substitutions.

- Diagnostic Assays

The hybrid human/animal or equivalent factor VIII cDNA and/or protein expressed therefrom, in whole or in part, can be used in assays as diagnostic reagents for the detection of inhibitory antibodies to human or animal factor VIII or to hybrid human/animal factor VIII in substrates, including, for example, samples of serum and body fluids of human patients with factor VIII deficiency. These antibody assays include assays such as ELISA assays, immunoblots, radioimmunoassays, immunodiffusion assays, and assay of factor VIII biological activity (e.g., by coagulation assay). Techniques for preparing these reagents and methods for use thereof are known to those skilled in the art. For example, an immunoassay for detection of inhibitory antibodies in a patient serum sample can include reacting the test sample with a sufficient amount of the hybrid human/animal factor VIII that contains at least one antigenic site, wherein the amount is sufficient to form a detectable complex with the inhibitory antibodies in the sample.

Nucleic acid and amino acid probes can be prepared based on the sequence of the hybrid human/animal factor VIII molecule. These can be labeled using dyes or enzymatic, fluorescent, chemiluminescent, or radioactive labels that are commercially available. The amino acid probes can be used, for example, to screen sera or other body fluids where the presence of inhibitors to human, animal, or hybrid human/animal factor VIII is suspected. Levels of inhibitors can be quantitated in patients and compared to healthy controls, and can be used, for example, to determine whether a patient with a factor VIII deficiency can be treated with a hybrid human/animal factor VIII.

5

10

15

20

25

30

10

15

20

25

30

35

- Pharmaceutical Compositions

Pharmaceutical compositions containing hybrid human/animal, porcine/non-porcine mammalian, animal-1/animal-2, or human/animal equivalent factor VIII, alone or in combination with appropriate pharmaceutical stabilization compounds, delivery vehicles, and/or carrier vehicles, are prepared according to known methods, as described in Remington's Pharmaceutical Sciences by E.W. Martin.

In one preferred embodiment, the preferred carriers or delivery vehicles for intravenous infusion are physiological saline or phosphate buffered saline.

In another preferred embodiment, suitable stabilization compounds, delivery vehicles, and carrier vehicles include but are not limited to other human or animal proteins such as albumin.

Phospholipid vesicles or liposomal suspensions are also preferred as pharmaceutically acceptable carriers or delivery vehicles. These can be prepared according to methods known to those skilled in the art and can contain, for example, phosphatidylserine/phosphatidylcholine or other compositions of phospholipids or detergents that together impart a negative charge to the surface, since factor VIII binds to negatively charged phospholipid membranes. Liposomes may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. aqueous solution of the hybrid factor VIII is then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates,

thereby forming the liposomal suspension.

The hybrid factor VIII can be combined with other suitable stabilization compounds, delivery vehicles, and/or carrier vehicles, including vitamin K dependent clotting factors, tissue factor, and von Willebrand factor (vWf) or a fragment of vWf that contains the factor VIII binding site, and polysaccharides such as sucrose.

Hybrid factor VIII can also be delivered by gene therapy in the same way that human factor VIII can be delivered, using delivery means such as retroviral vectors. This method consists of incorporation of factor VIII cDNA into human cells that are transplanted directly into a factor VIII deficient patient or that are placed in an implantable device, permeable to the factor VIII molecules but impermeable to cells, that is then transplanted. The preferred method will be retroviral-mediated gene transfer. this method, an exogenous gene (e.g., a factor VIII cDNA) is cloned into the genome of a modified retrovirus. The gene is inserted into the genome of the host cell by viral machinery where it will be expressed by the cell. The retroviral vector is modified so that it will not produce virus, preventing viral infection of the host. The general principles for this type of therapy are known to those skilled in the art and have been reviewed in the literature (e.g., Kohn, D.B., and P.W. Kantoff, 29 Transfusion 812-820, 1989).

Hybrid factor VIII can be stored bound to vWf to increase the half-life and shelf-life of the hybrid molecule. Additionally, lyophilization of factor VIII can improve the yields of active molecules in the presence of vWf. Current methods for storage of human and animal factor VIII used by commercial suppliers

5

10

15

20

25

30

. 35

can be employed for storage of hybrid factor VIII.

These methods include: (1) lyophilization of factor

VIII in a partially-purified state (as a factor VIII

"concentrate" that is infused without further

purification); (2) immunoaffinity-purification of

factor VIII by the Zimmerman method and lyophilization

in the presence of albumin, which stabilizes the

factor VIII; (3) lyophilization of recombinant factor

VIII in the presence of albumin.

Additionally, hybrid factor VIII has been indefinitely stable at 4°C in 0.6 M NaCl, 20 mM MES, and 5 mM CaCl₂ at pH 6.0 and also can be stored frozen in these buffers and thawed with minimal loss of activity.

- Methods of Treatment

Hybrid factor VIII is used to treat uncontrolled bleeding due to factor VIII deficiency (e.g., intraarticular, intracranial, or gastrointestinal hemorrhage) in hemophiliacs with and without inhibitory antibodies and in patients with acquired factor VIII deficiency due to the development of inhibitory antibodies. The active materials are preferably administered intravenously.

Additionally, hybrid factor VIII can be administered by transplant of cells genetically engineered to produce the hybrid or by implantation of a device containing such cells, as described above.

In a preferred embodiment, pharmaceutical compositions of hybrid factor VIII alone or in combination with stabilizers, delivery vehicles, and/or carriers are infused into patients intravenously according to the same procedure that is used for infusion of human or animal factor VIII.

The treatment dosages of hybrid factor VIII

A Company of the Land

5

10

15

20

25

composition that must be administered to a patient in need of such treatment will vary depending on the severity of the factor VIII deficiency. Generally, dosage level is adjusted in frequency, duration, and units in keeping with the severity and duration of each patient's bleeding episode. Accordingly, the hybrid factor VIII is included in the pharmaceutically acceptable carrier, delivery vehicle, or stabilizer in an amount sufficient to deliver to a patient a therapeutically effective amount of the hybrid to stop bleeding, as measured by standard clotting assays.

Factor VIII is classically defined as that substance present in normal blood plasma that corrects the clotting defect in plasma derived from individuals with hemophilia A. The coagulant activity in vitro of purified and partially-purified forms of factor VIII is used to calculate the dose of factor VIII for infusions in human patients and is a reliable indicator of activity recovered from patient plasma and of correction of the in vivo bleeding defect. There are no reported discrepancies between standard assay of novel factor VIII molecules in vitro and their behavior in the dog infusion model or in human patients, according to Lusher, J.M., et al., 328 New. Engl. J. Med. 453-459 (1993); Pittman, D.D., et al., 79 Blood 389-397 (1992), and Brinkhous et al., 82 Proc. Natl. Acad. Sci. 8752-8755 (1985).

Usually, the desired plasma factor VIII level to be achieved in the patient through administration of the hybrid factor VIII is in the range of 30-100% of normal. In a preferred mode of administration of the hybrid factor VIII, the composition is given intravenously at a preferred dosage in the range from about 20 to 50 units/kg body weight; the interval frequency is in the range from about 8 to 24 hours (in

5

10

15

20

25

30

severely affected hemophiliacs); and the duration of treatment in days is in the range from 1 to 10 days or until the bleeding episode is resolved. See, e.g., Roberts, H.R., and M.R. Jones, "Hemophilia and Related Conditions - Congenital Deficiencies of Prothrombin (Factor II, Factor V, and Factors VII to XII)," Ch. 153, 1453-1474, 1460, in <u>Hematology</u>, Williams, W. J., et al., ed. (1990). Patients with inhibitors may require more hybrid factor VIII, or patients may require less hybrid factor VIII because of its higher specific activity than human factor VIII or decreased antibody reactivity. As in treatment with human or porcine factor VIII, the amount of hybrid factor VIII infused is defined by the one-stage factor VIII coagulation assay and, in selected instances, in vivo recovery is determined by measuring the factor VIII in the patient's plasma after infusion. It is to be understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.

Treatment can take the form of a single intravenous administration of the composition or periodic or continuous administration over an extended period of time, as required. Alternatively, hybrid factor VIII can be administered subcutaneously or orally with liposomes in one or several doses at varying intervals of time.

Hybrid factor VIII can also be used to treat uncontrolled bleeding due to factor VIII deficiency in hemophiliacs who have developed antibodies to human

36

5

10

15

20

25

30

factor VIII. In this case, coagulant activity that is superior to that of human or animal factor VIII alone is not necessary. Coagulant activity that is inferior to that of human factor VIII (i.e., less than 3,000 units/mg) will be useful if that activity is not neutralized by antibodies in the patient's plasma.

The hybrid factor VIII molecule and the methods for isolation, characterization, making, and using it generally described above will be further understood with reference to the following non-limiting examples.

Example 1: Assay of porcine factor VIII and hybrid human/porcine factor VIII

Porcine factor VIII has more coagulant activity than human factor VIII, based on specific activity of the molecule. These results are shown in Table III in Example 4. This conclusion is based on the use of appropriate standard curves that allow human and porcine factor VIII to be fairly compared.

Coagulation assays are based on the ability of factor VIII to shorten the clotting time of plasma derived from a patient with hemophilia A. Two types of assays were employed: the one-stage and the two-stage assay.

In the one-stage assay, 0.1 ml hemophilia A plasma (George King Biomedical, Inc.) was incubated with 0.1 ml activated partial thromboplastin reagent (APTT) (Organon Teknika) and 0.01 ml sample or standard, consisting of diluted, citrated normal human plasma, for 5 min at 37°C in a water bath. Incubation was followed by addition of 0.1 ml 20 mM CaCl₂, and the time for development of a fibrin clot was determined by visual inspection.

A unit of factor VIII is defined as the amount present in 1 ml of citrated normal human plasma. With human plasma as the standard, porcine and human factor VIII activity were compared directly. Dilutions of

5

10

15

20

25

30

. . 1

the plasma standard or purified proteins were made into 0.15 M NaCl, 0.02 M HEPES, pH 7.4. The standard curve was constructed based on 3 or 4 dilutions of plasma, the highest dilution being 1/50, and on log₁₀ clotting time plotted against log₁₀ plasma concentration, which results in a linear plot. The units of factor VIII in an unknown sample were determined by interpolation from the standard curve.

The one-stage assay relies on endogenous activation of factor VIII by activators formed in the hemophilia A plasma, whereas the two-stage assay measures the procoagulant activity of preactivated factor VIII. In the two-stage assay, samples containing factor VIII that had been reacted with thrombin were added to a mixture of activated partial thromboplastin and human hemophilia A plasma that had been preincubated for 5 min at 37°C. The resulting clotting times were then converted to units/ml, based on the same human standard curve described above. The relative activity in the two-stage assay was higher than in the one-stage assay because the factor VIII had been preactivated.

Example 2: Characterization of the functional difference between human and porcine factor VIII.

The isolation of porcine and human plasma-derived factor VIII and human recombinant factor VIII have been described in the literature in Fulcher, C. A., and T. S. Zimmerman, 79 Proc. Nat'l. Acad. Sci. U.S.A. 1648-1652 (1982); Toole, J.J., et al., 312 Nature 342-347 (1984) (Genetics Institute); Gitschier, J., et al., 312 Nature 326-330 (1984) (Genentech); Wood, W.I., et al., 312 Nature 330-337 (1984) (Genentech); Vehar, G.A., et al., 312 Nature 337-342 (1984) (Genentech); Fass, D.N., et al., 59 Blood 594 (1982);

5

10

15

20

25

30

Toole, J.J., et al., 83 <u>Proc. Nat'l. Acad. Sci. U.S.A.</u> 5939-5942 (1986). This can be accomplished in several ways. All these preparations are similar in subunit composition, although this is the first description of the functional difference between human and porcine factor VIII, not noted previously in part due to the lack of use of a common standard by which to compare them.

For comparison of human recombinant and porcine factor VIII, preparations of highly-purified human recombinant factor VIII (Cutter Laboratories, Berkeley, CA) and porcine factor VIII (immunopurified as described in Fass, D.N., et al., 59 Blood 594 (1982)) were subjected to high-pressure liquid chromatography (HPLC) over a Mono Q^{TM} (Pharmacia-LKB, Piscataway, NJ) anion-exchange column (Pharmacia, Inc.). The purposes of the Mono Q^{TM} HPLC step were elimination of minor impurities and exchange of human and porcine factor VIII into a common buffer for comparative purposes. Vials containing 1000-2000 units of factor VIII were reconstituted with 5 ml $\rm H_2O$. Hepes (2 M at pH 7.4) was then added to a final concentration of 0.02 M. Factor VIII was applied to a Mono Q^{TM} HR 5/5 column equilibrated in 0.15 M NaCl, 0.02 M Hepes, 5 mM CaCl2, at pH 7.4 (Buffer A plus 0.15 M NaCl); washed with 10 ml Buffer A + 0.15 M $\,$ NaCl; and eluted with a 20 ml linear gradient, 0.15 M to 0.90 M NaCl in Buffer A at a flow rate of 1 ml/min.

For comparison of human factor VIII (derived from plasma and purified by Mono Q™ HPLC) and porcine factor VIII, immunoaffinity-purified, plasma-derived porcine factor VIII was diluted 1:4 with 0.04 M Hepes, 5 mM CaCl₂, 0.01% Tween-80, at pH 7.4, and subjected to Mono Q™ HPLC under the same conditions described in

5

1.0

15

20

25

the previous paragraph for human factor VIII. These procedures for the isolation of human and porcine factor VIII are standard for those skilled in the art.

. . :

Column fractions were assayed for factor VIII activity by a one-stage coagulation assay. The average results of the assays, expressed in units of activity per A_{280} of material, are given in Table II, and indicate that porcine factor VIII has at least six times greater activity than human factor VIII when the one-stage assay is used.

TABLE II: COMPARISON OF HUMAN AND PORCINE FACTOR VIII COAGULANT ACTIVITY

	Activity	(U/A_{280})
Porcine		21,300
Human plasma-derived		3,600
Human recombinant		2,400

Example 3: Comparison of the stability of human and porcine factor VIII

The results of the one-stage assay for factor VIII reflect activation of factor VIII to factor VIIIa in the sample and possibly loss of formed factor VIIIa activity. A direct comparison of the stability of human and porcine factor VIII was made. Samples from Mono QTM HPLC (Pharmacia, Inc., Piscataway, N.J.) were diluted to the same concentration and buffer composition and reacted with thrombin. At various times, samples were removed for two-stage coagulation assay. Typically, peak activity (at 2 min) was 10-fold greater for porcine than human factor VIIIa, and the activities of both porcine and human factor VIIIa subsequently decreased, with human factor VIIIa activity decreasing more rapidly.

Generally, attempts to isolate stable human factor VIIIa are not successful even when conditions

5.

10

15

20

25

that produce stable porcine factor VIIIa are used. To demonstrate this, Mono Q^{TM} HPLC-purified human factor VIII was activated with thrombin and subjected to Mono S^{TM} cation-exchange (Pharmacia, Inc.) HPLC under conditions that produce stable porcine factor VIIIa, as described by Lollar, J.S., and C.G. Parker, 28 Biochemistry 666 (1989).

Human factor VIII, 43 μg/ml (0.2 μM) in 0.2 M NaCl, 0.01 M Hepes, 2.5 mM CaCl₂, at pH 7.4, in 10 ml total volume, was reacted with thrombin (0.036 μM) for 10 min, at which time FPR-CH₂Cl D-phenyl-prolyl-arginyl-chloromethyl ketone was added to a concentration of 0.2 μM for irreversible inactivation of thrombin. The mixture then was diluted 1:1 with 40 mM 2-(N-morpholino)ethane sulfonic acid (MES), 5 mM CaCl₂, at pH 6.0, and loaded at 2 ml/min onto a Mono STM HR 5/5 HPLC column (Pharmacia, Inc.) equilibrated in 5 mM MES, 5 mM CaCl₂, at pH 6.0 (Buffer B) plus 0.1 M NaCl. Factor VIIIa was eluted without column washing with a 20 ml gradient from 0.1 M NaCl to 0.9 M NaCl in Buffer B at 1 ml/min.

The fraction with coagulant activity in the two-stage assay eluted as a single peak under these conditions. The specific activity of the peak fraction was approximately 7,500 U/A₂₈₀. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the Mono S™ factor VIIIa peak, followed by silver staining of the protein, revealed two bands corresponding to a heterodimeric (A3-C1-C2/A1) derivative of factor VIII. Although the A2 fragment was not identified by silver staining under these conditions because of its low concentration, it was identified as a trace constituent by ¹²⁵I-labeling.

In contrast to the results with human factor

5

10

15

20

25

10

15

20

25

VIII, porcine factor VIIIa isolated by Mono S^M HPLC under the same conditions had a specific activity 1.6 x 10^6 U/A₂₈₀. Analysis of porcine factor VIIIa by SDS-PAGE revealed 3 fragments corresponding to A1, A2, and A3-C1-C2 subunits, demonstrating that porcine factor VIIIa possesses three subunits.

The results of Mono S^M HPLC of human thrombin-activated factor VIII preparations at pH 6.0 indicate that human factor VIIIa is labile under conditions that yield stable porcine factor VIIIa. However, although trace amounts of A2 fragment were identified in the peak fraction, determination of whether the coagulant activity resulted from small amounts of heterotrimeric factor VIIIa or from heterodimeric factor VIIIa that has a low specific activity was not possible from this method alone.

A way to isolate human factor VIIIa before it loses its A2 subunit is desirable to resolve this question. To this end, isolation was accomplished in a procedure that involves reduction of the pH of the Mono S™ buffers to pH 5. Mono Q™-purified human factor VIII (0.5 mg) was diluted with $\mathrm{H}_2\mathrm{O}$ to give a final composition of 0.25 mg/ml (1 μ M) factor VIII in 0.25 M NaCl, 0.01 M Hepes, 2.5 mM CaCl2, 0.005% Tween-80, at pH 7.4 (total volume 7.0 ml). Thrombin was added to a final concentration of 0.072 μM and allowed to react for 3 min. Thrombin was then inactivated with FPR-CH $_2$ Cl (0.2 μM). The mixture then was diluted 1:1 with 40 mM sodium acetate, 5 mM CaCl₂, 0.01% Tween-80, at pH 5.0, and loaded at 2 ml/min onto a Mono S^{m} HR 5/5 HPLC column equilibrated in 0.01 M sodium acetate, 5 mM CaCl2, 0.01% Tween-80, at pH 5.0, plus 0.1 M NaCl. Factor VIIIa was eluted without column washing with a 20 ml gradient from 0.1 M NaCl

to 1.0 M NaCl in the same buffer at 1 ml/min. This resulted in recovery of coagulant activity in a peak that contained detectable amounts of the A2 fragment as shown by SDS-PAGE and silver staining. The specific activity of the peak fraction was ten-fold greater than that recovered at pH 6.0 (75,000 U/A₂₈₀ vs. 7,500 U/A₂₈₀). However, in contrast to porcine factor VIIIa isolated at pH 6.0, which is indefinitely stable at 4°C, human factor VIIIa activity decreased steadily over a period of several hours after elution from Mono STM. Additionally, the specific activity of factor VIIIa purified at pH 5.0 and assayed immediately is only 5% that of porcine factor VIIIa, indicating that substantial dissociation occurred prior to assay.

These results demonstrate that both human and porcine factor VIIIa are composed of three subunits (A1, A2, and A3-C1-C2). Dissociation of the A2 subunit is responsible for the loss of activity of both human and porcine factor VIIIa under certain conditions, such as physiological ionic strength, pH, and concentration. The relative stability of porcine factor VIIIa under certain conditions is because of stronger association of the A2 subunit.

Example 4: Preparation of hybrid human/porcine factor VIII by reconstitution with subunits.

Porcine factor VIII light chains and factor VIII heavy chains were isolated as follows. A 0.5 M solution of EDTA at pH 7.4 was added to Mono QTM-purified porcine factor VIII to a final concentration of 0.05 M and was allowed to stand at room temperature for 18-24 h. An equal volume of 10 mM histidine-Cl, 10 mM EDTA, 0.02% v/v Tween 80, at pH 6.0 (Buffer B), was added, and the solution was applied at 1 ml/min to

5

10

15

20

25

30

10

15

20

25

30

a Mono S™ HR 5/5 column previously equilibrated in Buffer A plus 0.25 M NaCl. Factor VIII heavy chains did not bind the resin, as judged by SDS-PAGE. Factor VIII light chain was eluted with a linear, 20 ml, 0.1-0.7 M NaCl gradient in Buffer A at 1 ml/min and was homogeneous by SDS-PAGE. Factor VIII heavy chains were isolated by mono Q^{TM} HPLC (Pharmacia, Inc., Piscataway, N.J.) in the following way. Factor VIII heavy chains do not adsorb to mono S™ during the purification of factor VIII light chains. The fallthrough material that contained factor VIII heavy chains was adjusted to pH 7.2 by addition of 0.5 M Hepes buffer, pH 7.4, and applied to a mono Q^{TM} HR5/5 HPLC column (Pharmacia, Inc.) equilibrated in 0.1 M NaCl, 0.02 M Hepes, 0.01% Tween-80, pH 7.4. The column was washed with 10 ml of this buffer, and factor VIII heavy chains were eluted with a 20 ml 0.1-1.0 M NaCl gradient in this buffer. Human light chains and heavy chains were isolated in the same manner.

Human and porcine light and heavy chains were reconstituted according to the following steps. Ten μl human or porcine factor VIII light chain, 100 μg/ml, was mixed in 1 M NaCl, 0.02 M Hepes, 5 mM CaCl₂, 0.01% Tween-80, pH 7.4, with (1) 25 μl heterologous heavy chain, 60 μg/ml, in the same buffer; (2) 10 μl 0.02 M Hepes, 0.01% Tween-80, pH 7.4; (3) 5 μl 0.6 M CaCl₂, for 14 hr at room temperature. The mixture was diluted 1/4 with 0.02 M MES, 0.01% Tween-80, 5 mM CaCl₂, pH 6, and applied to Mono S[™] Hr5/5 equilibrated in 0.1 M NaCl, 0.02 M MES, 0.01% Tween-80, 5mM CaCl₂, pH 6.0. A 20 ml gradient was run from 0.1 - 1.0 M NaCl in the same buffer at 1 ml/min, and 0.5 ml fractions were collected.

. 44

Absorbance was read at 280 nm of fractions, and fractions were assayed with absorbance for factor VIII activity by the one-stage clotting assay. Heavy chains were present in excess, because free light chain (not associated with heavy chain) also binds Mono S™; excess heavy chains ensure that free light chains are not part of the preparation. Reconstitution experiments followed by Mono S" HPLC purification were performed with all four possible combinations of chains: human light chain/human heavy chain, human light chain/porcine heavy chain, porcine light chain/porcine heavy chain, porcine light chain/human heavy chain. Table III shows that human light chain/porcine heavy chain factor VIII has activity comparable to native porcine factor VIII (Table II), indicating that structural elements in the porcine heavy chain are responsible for the increased . coagulant activity of porcine factor VIII compared to human factor VIII.

TABLE III: COMPARISON OF HYBRID HUMAN/PORCINE FACTOR VIII COAGULANT ACTIVITY WITH HUMAN AND PORCINE FACTOR VIII

Activity	(U/A_{280})
Porcine light chain/porcine heavy chain	30,600
Human light chain/porcine heavy chain	44,100
Porcine light chain/human heavy chain	1,100
Human light chain/human heavy chain	1,000

Example 5: Preparation of active hybrid human/porcine factor VIII by reconstitution with domains.

The porcine A1/A3-C1-C2 dimer, the porcine A2 domain, the human A1/A3-C1-C2 dimer, and the human A2 domain were each isolated from porcine or human blood, according to the method described in Lollar, P., et a1., 267(33) J. Biol. Chem. 23652-23657 (Nov. 25,

5

10

15

20

25

30

10

15

20

25

30

1992). For example, to isolate the porcine A1/A3-C1-C2 dimer, porcine factor VIIIa (140 μ g) at pH 6.0 was raised to pH 8.0 by addition of 5 N NaOH for 30 minutes, producing dissociation of the A2 domain and 95 percent inactivation by clotting assay. The mixture was diluted 1:8 with buffer B (20 mM HEPES, 5 mM $CaCl_2$, 0.01 % Tween 80, pH 7.4) and applied to a monoS column equilibrated in buffer B. The A1/A3-C1-C2 dimer eluted as a single sharp peak at approximately 0.4 M NaCl by using a 0.1-1.0 M NaCl gradient in buffer B. To isolate the porcine A2 domain, porcine factor VIIIa was made according to the method of Lollar, P., and C.G. Parker, 28 Biochem. 666-674 (1989), starting with 0.64 mg of factor VIII. Free porcine A2 domain was isolated as a minor component (50 μ g) at 0.3 M NaCl in the monos chromatogram.

Hybrid human/porcine factor VIII molecules were reconstituted from the dimers and domains as follows. The concentrations and buffer conditions for the purified components were as follows: porcine A2, 0.63 µM in buffer A (5 mM MES; 5 mM CaCl2, 0.01% Tween 80, pH 6.0) plus 0.3 M NaCl; porcine A1/A3-C1-C2, 0.27 µM in buffer B plus 0.4 M NaCl, pH 7.4; human A2, 1 µM in 0.3 M NaCl, 10 mM histidine-HCl, 5 mM CaCl2, 0.01 % Tween 20, pH 6.0; human A1/A3-C1-C2, 0.18 µM in 0.5 M NaCl, 10 mM histidine-Cl, 2.5 mM CaCl2, 0.1 % Tween 20, pH 6.0. Reconstitution experiments were done by mixing equal volumes of A2 domain and A1/A3-C1-C2 dimer. In mixing experiments with porcine A1/A3-C1-C2 dimer, the pH was lowered to 6.0 by addition of 0.5 M MES, pH 6.0, to 70 mM.

The coagulation activities of all four possible hybrid factor VIIIa molecules - [pA2/(hA1/A3-C1-C2)],

[hA2/(pA1/A3-C1-C2)], [pA2/(pA1/pA3-C1-C2)], and [hA2/(hA1/A3-C1-C2)] - were obtained by a two-stage clotting assay at various times.

The generation of activity following mixing the A2 domains and A1/A3-C1-C2 dimers was nearly complete by one hour and was stable for at least 24 hours at 37°C. Table IV shows the activity of reconstituted hybrid factor VIIIa molecules when assayed at 1 hour. The two-stage assay, by which the specific activities of factor VIIIa molecules were obtained, differs from the one-stage assay, and the values cannot be compared to activity values of factor VIII molecules obtained by a one-stage assay.

TABLE IV: COMPARISON OF COAGULANT ACTIVITIES OF DOMAIN-SUBSTITUTED HYBRID HUMAN/PORCINE FACTOR VIIIa

	Hybrid fVIIIa	Specific Activity (U/mg)
20	Porcine A2 + Human A1/A3-C1-C2	140,000
	Porcine A2 + Porcine A1/A3-C1-C2	70,000
	Human A2 + Porcine A1/A3-C1-C2	40,000
25	Human A2 + Human A1/A3-C1-C2	40,000

Table IV shows that the greatest activity was exhibited by the porcine A2 domain/human A1/A3-C1-C2 dimer, followed by the porcine A2 domain/porcine A1/A3-C1-C2 dimer.

Thus, when the A2 domain of porcine factor VIIIa was mixed with the A1/A3-C1-C2 dimer of human factor VIIIa, coagulant activity was obtained. Further, when the A2 domain of human factor VIIIa was mixed with the

5

10

15

er |

5

10

15

20

25

30

35

A1/A3-C1-C2 dimer of porcine factor VIIIa, coagulant activity was obtained. By themselves, the A2, A1, and A3-C1-C2 regions have no coagulant activity.

Example 6: Isolation and sequencing of the A2 domain of porcine factor VIII.

Only the nucleotide sequence encoding the B domain and part of the A2 domain of porcine factor VIII has been sequenced previously (Toole, J.J., et al., 83 Proc. Nat'l. Acad. Sci. U.S.A. 5939-5942 (1986)). The cDNA and predicted amino acid sequences (SEQ ID NOS:5 and 6, respectively) for the entire porcine factor VIII A2 domain are disclosed herein.

The porcine factor VIII A2 domain was cloned by reverse transcription of porcine spleen total RNA and PCR amplification; degenerate primers based on the known human factor VIII cDNA sequence and an exact porcine primer based on a part of the porcine factor VIII sequence were used. A 1 kb PCR product was isolated and amplified by insertion into a Bluescript (Stratagene) phagemid vector.

The porcine A2 domain was completely sequenced by dideoxy sequencing. The cDNA and predicted amino acid sequences are as described in SEQ ID NOs:5 and 6, respectively.

Example 7: Preparation of recombinant hybrid human/animal factor VIII

The nucleotide and predicted amino acid sequences (SEQ ID NOs:1 and 2, respectively) of human factor VIII have been described in the literature (Toole, J.J., et al., 312 Nature 342-347 (1984) (Genetics Institute); Gitschier, J., et al., 312 Nature 326-330 (1984) (Genentech); Wood, W.I., et al., 312 Nature 330-337 (1984) (Genentech); Vehar, G.A., et al., 312 Nature 337-342 (1984) (Genentech)).

Making recombinant hybrid human/animal factor

VIII requires that a region of human factor VIII cDNA (Biogen Corp.) be removed and the animal cDNA sequence having sequence identity be inserted. Subsequently, the hybrid cDNA is expressed in an appropriate expression system. As an example, hybrid factor VIII cDNAs were cloned in which some or all of the porcine A2 domain was substituted for the corresponding human A2 sequences. Initially, the entire cDNA sequence corresponding to the A2 domain of human factor VIII and then a smaller part of the A2 domain was looped out by oligonucleotide-mediated mutagenesis, a method commonly known to those skilled in the art (see, e.g., Sambrook, J., E.F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Chapter 15, Cold Spring Harbor Press, Cold Spring Harbor, 1989). The steps were as follows.

Materials.

Methoxycarbonyl-D-cyclohexylglycyl-glyclarginine-p-nitroanilide (Spectrozyme^M Xa) and antifactor VIII monoclonal antibodies ESH4 and ESH8 were purchased from American Diagnostica (Greenwich, CT). Unilamellar phosphatidylcholine/phosphatidylserine (75/25, w/w) vesicles were prepared according to the method of Barenholtz, Y., et al., 16 Biochemistry 2806-2810 (1977). Recombinant desulfatohirudin was obtained from Dr. R. B. Wallis, Ciba-Geigy Pharmaceuticals (Cerritos, CA). Porcine factors IXa, X, Xa, and thrombin were isolated according to the methods of Lollar, P., et al., 63 Blood 1303-1306 (1984), and Duffy, E.J., and P. Lollar, 207 J. Biol. Chem. 7621-7827 (1992). Albumin-free pure recombinant human factor VIII was obtained from Baxter-Biotech (Deerfield, IL).

5

10

15

20

25

. : 3

5

10

15

20

25

30

35

Cloning of the porcine factor VIII A2 domain. The cDNA encoding the porcine A2 domain was obtained following PCR of reverse-transcribed porcine spleen mRNA isolated as described by Chomczyneki, P., and Sacohi, N., 162 Anal. Biochem. 156-159 (1987). cDNA was prepared using the first-strand cDNA synthesis kit with random hexamers as primers (Pharmacia, Piscataway, N.J.). PCR was carried out using a 5'-terminal degenerate primer 5' AARCAYCCNAARACNTGGG 3' (SEQ ID NO:11), based on known limited porcine A2 amino acid sequence, and a 3'terminal exact primer, 5' GCTCGCACTAGGGGGTCTTGAATTC 3' (SEQ ID NO:12), based on known porcine DNA sequence immediately 3' of the porcine A2 domain. oligonucleotides correspond to nucleotides 1186-1203 and 2289-2313 in the human sequence (SEQ ID NO:1). Amplification was carried out for 35 cycles (1 minute 94°C, 2 minutes 50°C, 2 minutes 72°C) using Taq DNA polymerase (Promega Corp., Madison, WI). The 1.1kilobase amplified fragment was cloned into pBluescript II KS-(Stratagene) at the EcoRV site using the T-vector procedure, as described by Murchuk, D., et al., 19 Nucl. Acids Res. 1154 (1991). Escherichia coli XL1-Blue-competent cella were transformed, and plasmid DNA was isolated. Sequencing was carried out in both directions using Sequenase™ version 2.0 (U.S. Biochemical Corp., a Division of Amersham LifeScience, Inc., Arlington Hts, IL). This sequence was confirmed by an identical sequence that was obtained by direct sequencing of the PCR product from an independent reverse transcription of spleen RNA from the same pig (CircumVent™, New England Biolabs, Beverly, MA). region containing the epitope for autoantibody RC was identified as 373-536 in human factor VIII (SEQ ID NO:2).

Construction and expression of a hybrid human/porcine factor VIII cDNA.

B-domainless human factor VIII (HB-, from Biogen, Inc. Cambridge, MA), which lacks sequences encoding 5 for amino acid residues 741-1648 (SEQ ID NO:2), was used as the starting material for construction of a hybrid human/porcine factor VIII. HB- was cloned into the expression vector ReNeo. To facilitate manipulation, the cDNA for factor VIII was isolated as 10 a XhoI/HpaI fragment from ReNeo and cloned into Xhol/EcoRV digested pBlueSsript II KS. oligonucleotide, 5' CCTTCCTTTATCCAAATACGTAGATCAAGAGGAAATTGAC 3' (SEQ ID NO:7), was used in a site-directed mutagenesis 15 reaction using uracil-containing phage DNA, as described by Kunkel, T.A., et al., 204 Meth. Enzymol. 125-139 (1991), to simultaneously loop-out the human A2 sequence (nucleotides 1169-2304 in SEQ ID NO:1) and introduce a SnaBI restriction site. The A2-domainless human factor VIII containing plasmid was digested with 20 SnaBI followed by addition of ClaI linkers. porcine A2 domain was then amplified by PCR using the phosphorylated 5' primer 5' GTAGCGTTGCCAAGAAGCACCCTAAGACG 3' (SEQ ID NO:8) and 25 3' primer 5' GAAGAGTAGTACGAGTTATTTCTCTGGGTTCAATGAC 3' (SEQ ID NO:9), respectively. ClaI linkers were added to the PCR product followed by ligation into the human factor VIII-containing vector. The A1/A2 and A2/A3 junctions were corrected to restore the precise 30 thrombin cleavage and flanking sequences by sitedirected mutagenesis using the oligonucleotide shown in SEQ ID NO:8 and nucleotides 1-22 (5' GAA . . . TTC in SEQ ID NO:9) to correct the 5'- and 3'-terminal junctions, respectively. In the resulting construct, 35 designated HP1, the human A2 domain was exactly

10

15

20

substituted with the porcine A2 domain. A preliminary product contained an unwanted thymine at the A1-A2 junction as a result of the PCR amplification of the porcine A2 domain. This single base can be looped out by use of the mutagenic oligonucleotide 5' CCTTTATCCAAATACGTAGCGTTTGCCAAGAAG 3' (SEQ ID NO:10).

A region containing 63% of the porcine NH₂terminal A2 domain, which encompasses the putative A2
epitope, was substituted for the homologous human
sequence of B-domainless cDNA by exchanging SpeI/BamHI
fragments between the pBluescript plasmids containing
human factor VIII and human/porcine A2 factor VIII
cDNA. The sequence was confirmed by sequencing the A2
domain and splice sites. Finally, a SpeI/ApaI
fragment, containing the entire A2 sequence, was
substituted in place of the corresponding sequence in
HB-, producing the HP2 construct.

Preliminary expression of HB and HP2 in COS-7 cells was tested after DEAE-dextran-mediated DNA transfection, as described by Seldon, R.F., in Current Protocols in Molecular Biology (Ausubel, F.M., et al, eds), pp. 9.21-9.26, Wiley Interscience, N.Y. After active factor VIII expression was confirmed and preliminary antibody inhibition studies were done, HBand HP2 DNA were then stably transfected into baby hamster kidney cells using liposome-mediated transfection (Lipofectin®, Life Technologies, Inc., Gaithersburg, MD). Plasmid-containing clones were selected for G418 resistance in Dulbecco's modified Eagle's medium-F12, 10% fetal calf serum (DMEM-F12/10% fetal calf serum) containing 400 $\mu g/ml$ G418, followed by maintenance in DMEM-F12/10% fetal calf serum containing 100 μ g/ml G418. Colonies showing maximum

30

expression of HB- and HP2 factor VIII activity were selected by ring cloning and expanded for further characterization.

HB- and HP2 factor VIII expression was compared by plasma-free factor VIII assay, one-stage clotting assay, and enzyme-linked immunosorbent assay using purified recombinant human factor VIII as a standard. Specific coagulant activities of 2600 and 2580 units/mg were obtained for HB- and HP2, respectively. HB- and HP2 produced 1.2 and 1.4 units/ml/48 hours/10⁷ cells, respectively. This is identical to that of the wild type construct (2,600 ± 200 units/mg). The specific activities of HB- and HP2 were indistinguishable in the plasma-free factor VIII assay.

Construction and expression of hybrid human/non-porcine mammalian factor VIII.

Cloning of other animal A1, A3, C1, and C2 domains and part domains is feasible with the same strategy that was used for cloning the porcine A2 domain. Fragments of these domains can be cloned by the looping out mutagenesis technique. Excision of the corresponding domains in human factor VIII and any fragments thereof, including single amino acid eliminations, is feasible by looping out mutagenesis as described above. All possible domain replacements, fragments of domain replacements, or single amino acid residue replacements are possible by this approach.

The biological activity of recombinant hybrid human/animal factor VIII with A1, A2, A3, C1, and/or C2 domain substitutions can be evaluated initially by use of a COS-cell mammalian transient expression system. Hybrid human/animal cDNA can be transfected into COS cells, and supernatants can be analyzed for factor VIII activity by use of one-stage and two-stage

5

10

15

20

25

30

a. 1

5

10

15

20

25

30

35

coagulation assays as described above. Additionally, factor VIII activity can be measured by use of a chromogenic substrate assay, which is more sensitive and allows analysis of larger numbers of samples. Similar assays are standard in the assay of factor VIII activity (Wood, W.I., et al., 312 Nature 330-337, 1984; Toole, J.J., et al., 312 Nature 342-347, 1984). Expression of recombinant factor VIII in COS cells is also a standard procedure (Toole, J.J., et al., 312 Nature 342-347, 1984; Pittman, D.D., and R.J. Kaufman, 85 Proc. Nat'l. Acad. Sci. U.S.A. 2429-2433, 1988). The human factor VIII cDNA used as starting material for the recombinant molecules described herein has been expressed in COS cells yielding a product with biological activity. This material, as described above, can be used as a standard to compare hybrid human/animal factor VIII molecules. The activity in the assays is converted to a specific activity for proper comparison of the hybrid molecules. For this, a measurement of the mass of factor VIII produced by the cells is necessary and can be done by immunoassay with purified human and/or animal factor VIII as Immunoassays for factor VIII are routine for those skilled in the art (See, e.g., Lollar, P., et al., 71 Blood 137-143, 1988).

Example 8. Determination of inhibitory activity in hymrid human/animal factor VIII.

Sequences of human and animal factor VIII likely to be involved as epitopes (i.e., as recognition sites for inhibitory antibodies that react with factor VIII) can be determined using routine procedures, for example through use of assay with antibodies to factor VIII combined with site directed mutagenesis techniques such as splicing by overlap extension methods (SOE), as shown below. Sequences of animal

factor VIII that are not antigenic compared to corresponding antigenic human sequences can be identified, and substitutions can be made to insert animal sequences and delete human sequences according to standard recombinant DNA methods. Porcine factor VIII reacts less than human factor VIII with some inhibitory antibodies; this provides a basis for current therapy for patients with inhibitors. After the recombinant hybrids are made, they can be tested in vitro for reactivity with routine assays, including the Bethesda inhibitor assay. Those constructs that are less reactive than native human factor VIII and native animal factor VIII are candidates for replacement therapy.

15

20

25

10

5

The epitopes to which most, if not all, inhibitory antibodies reactive with human factor VIII: are directed are thought to reside in two regions in the 2332 amino acid human factor VIII molecule, the A2 domain (amino acid residues 373-740) and the C2 domain (amino acid residues 2173-2332, both sequences shown in SEQ ID NO:2). The A2 epitope has been eliminated by making a recombinant hybrid human/porcine factor VIII molecule in which part of the human A2 domain is replaced by the porcine sequence having sequence identity to the replaced human amino acid sequence. This was accomplished, as described in Example 7, by cloning the porcine A2 domain by standard molecular biology techniques and then cutting and splicing within the A2 domain using restriction sites. In the resulting construct, designated HP2, residues 373-603 (SEQ ID NO:4) of porcine factor VIII were substituted into the human A2 domain. HP2 was assayed for immunoreactivity with anti-human factor VIII antibodies using the following methods.

10

15

20

25

30

Factor VIII enzyme-linked immunosorbent assay. Microtiter plate wells were coated with 0.15 ml of 6 μ g/ml ESH4, a human factor VIII light-chain antibody, and incubated overnight. After the plate was washed three times with $\mathrm{H}_2\mathrm{O}$, the wells were blocked for 1 hour with 0.15 M NaCl, 10 mM sodium phosphate, 0.05% Tween 20, 0.05% nonfat dry milk, 0.05% sodium azide, pH 7.4. To increase sensitivity, samples containing factor VIII were activated with 30 nM thrombin for 15 minutes. Recombinant desulfatohirudin then was added at 100 nM to inhibit thrombin. The plate was washed again and 0.1 ml of sample or pure recombinant human factor VIII (10-600 ng/ml), used as the standard, were added. Following a 2 hour incubation, the plate was washed and 0.1 ml of biotinylated ESH8, another factor VIII light-chain antibody, was added to each well. ESH8 was biotinylated using the Pierce sulfosuccinimidyl-6-(biotinamide) hexanoate biotinylation kit. After a 1 hour incubation, the plate was washed and 0.1 ml of strepavidin alkaline phosphatase was added to each well. The plate was developed using the Bio-Rad alkaline phosphatase substrate reagent kit, and the resulting absorbance at 405 nm for each well was determined by using a Vmax microtiter plate reader (Molecular Devices, Inc., Sunnyville, CA). Unknown factor VIII concentrations were determined from the linear portion of the factor VIII standard curve.

Factor VIII assays.

HB- and HB2 factor VIII were measured in a one-stage clotting assay, which was performed as described above (Bowie, E.J.W., and C.A. Owen, in *Disorders of Hemostasis* (Ratnoff and Forbes, eds) pp. 43-72, Grunn & Stratton, Inc., Orlando, FL (1984)), or by a plasma-

free assay as follows. HB- or HP2 factor VIII was activated by 40 nM thrombin in 0.15 M NaCl, 20 nM HEPES, 5 mM CaCl,, 0.01% Tween 80, pH 7.4, in the presence of 10 nM factor IXa, 425 nM factor X, and 50 $\mu exttt{M}$ unilamellar phosphatidylserine/phosphatidylcholine (25/75, w/w) vesicles. After 5 minutes, the reaction was stopped with 0.05 M EDTA and 100 nM recombinant desulfatohirudin, and the resultant factor Xa was measured by chromogenic substrate assay, according to the method of Hill-Eubanks, D.C., and P. Lollar, 265 J. Biol. Chem. 17854-17858 (1990). Under these conditions, the amount of factor Xa formed was linearly proportional to the starting factor VIII concentration as judged by using purified recombinant human factor VIII (Baxter Biotech, Deerfield, IL) as . the standard.

Prior to clotting assay, HB- or HP2 factor VIII were concentrated from 48 hour conditioned medium to 10-15 units/ml by heparin-Sepharose™ chromatography. HB- or HP2 factor VIII were added to hemophilia A plasma (George King Biomedical) to a final concentration of 1 unit/ml. Inhibitor titers in RC or MR plasma or a stock solution of mAb 413 IgG (4 µM) were measured by the Bethesda assay as described by Kasper, C.K., et al., 34 Thromb. Diath. Haemorrh. 869-872 (1975). Inhibitor IgG was prepared as described by Leyte, A., et al., 266 J. Biol. Chem. 740-746 (1991).

HP2 does not react with anti-A2 antibodies. Therefore, residues 373-603 must contain an epitope for anti-A2 antibodies.

Preparation of hybrid human/porcine factor VIII and assay by splicing by overlap extension (SOE).

Several more hybrid human/porcine factor VIII molecules with porcine amino acid substitutions in the

5

10

15

20

25

30

10

15

20

human A2 region have been prepared to further narrow the A2 epitope. Besides restriction site techniques, the "splicing by overlap extension" method (SOE) as described by Ho, S.N., et al., 77 Gene 51-59 (1989), has been used to substitute any arbitrary region of porcine factor VIII cDNA. In SOE, the splice site is defined by overlapping oligonucleotides that can be amplified to produce the desired cDNA by PCR. Eight cDNA constructs, designated HP4 through HP11, have been made. They were inserted into the ReNeo expression vector, stably transfected into baby hamster kidney cells, and expressed to high levels, as described in Example 7.

The hybrid human/porcine factor VIII constructs were assayed for reactivity with the anti-A2 inhibitor MAb413 using the Bethesda assay (Kasper, C.K., et al., 34 Thromb. Diath. Haemorrh. 869-872 (1975)). The Bethesda unit (BU) is the standard method for measuring inhibitor titers. The results are shown in Table V, and are compared to recombinant human factor VIII.

TABLE V: COMPARISON OF IMMUNOREACTIVITY OF AMINO
ACID-SUBSTITUTED HYBRID HUMAN/PORCINE FACTOR
VIII

,	ATTT		
25	Construct	Porcine Substitution	Inhibition MAb413 (BU/mg IgG)
•	Human fVIII	None	1470
	HP4	373-540	<0.7
	HP5	373-509	<0.7
30	HP6	373-444	1450
30	HP7	445-509	<0.7
	HP8	373-483	1250
	HP9	484-509	<0.7
	HP10	373-403	1170
35	HP11	404-509	<0.7

As shown in Table V, if the Bethesda titer is not measurable (<0.7 BU/mg IgG), then an A2 epitope lies in the region of substituted porcine sequence. The epitope has been progressively narrowed to residues 484-509 (SEQ ID NO:2), consisting of only 26 residues, as exemplified by non-reactivity of MAb413 with HP9.

The region between 484-509 can be divided. If such division produces porcine sequences of, for example, residues 484-497 and 498-509, neither of which react with anti-A2 inhibitory antibodies, this will indicate that the epitope has been split, and that amino acids on both sides of the 497-498 splice site are necessary to produce the epitope.

The methods described in Examples 7 and 8 can be used to prepare other hybrid human/non-porcine mammalian factor VIII with amino acid substitution in the human A2 domain, hybrid human/animal factor VIII with amino acid substitution in any domain, or other hybrid factor VIII molecules or equivalents such hybrid factor VIII having reduced or absent immunoreactivity with anti-factor VIII antibodies.

5

10

15

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Emory University

(ii) TITLE OF INVENTION: Hybrid Human/Animal Factor VIII

(iii) NUMBER OF SEQUENCES: 12

CORRESPONDENCE ADDRESS: (iv)

Suite 2800 (A) ADDRESSEE: Kilpatrick & Cody

STREET: 1100 Peachtree Street, (B)

CITY: Atlanta

(<u>C</u>

STATE: Georgia

COUNTRY: US ZIP: 30309 (E) COMPUTER READABLE FORM: 3

MEDIUM TYPE: Floppy disk (B)

COMPUTER: IBM PC_compatible OPERATING SYSTEM: PC-DOS/MS-DOS SOFTWARE: PatentIn Release #1.0, Version #1.25 <u>a</u>

CURRENT APPLICATION DATA: (vi)

FILING DATE: 15-NOV-1994 (A) APPLICATION NUMBER: PCT

CLASSIFICATION: (B) ATTORNEY/AGENT INFORMATION: (viii)

(A) NAME: Pabst, Patrea L.

REGISTRATION NUMBER: 31,284

REFERENCE/DOCKET NUMBER: EMU106CIP(2) (B)

(ix) TELECOMMUNICATION INFORMATION:

- TELEPHONE: 404-815-6508 (B)
 - TELEFAX: 404-815-6555
- (2) INFORMATION FOR SEQ ID NO:1:
- LENGTH: 9009 base pairs SEQUENCE CHARACTERISTICS: (A)

(i)

- TYPE: nucleic acid (B)
- STRANDEDNESS: single
 - TOPOLOGY: linear <u>(a)</u>
- (ii) MOLECULE TYPE: CDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- ORIGINAL SOURCE:

(vi)

- (A) ORGANISM: Homo sapien
 (F) TISSUE TYPE: Liver
- FEATURE: (ix)
- NAME/KEY: misc_feature (Domain Structure) LOCATION: 5125 ... 7053
- LOCATION: 5125. . . 7053 OTHER INFORMATION: /note= "Equivalent to the A3-C1-C2 domain" £ 6 6
- FEATURE: (ix)
- NAME/KEY: misc_feature (Domain Structure)
- LOCATION: 1 . . . 2277
 OTHER INFORMATION: /note= "Equivalent to the A1-A2 domain." <u>(B</u>B)
- FEATURE: (ix)
- (A) NAME/KEY: Domain (B) LOCATION: 1..2277
- LOCATION: 1..2277

(D) OTHER INFORMATION: /note= "cDNA encoding human factor VIII."

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

006	GCCTAAAATG	CTCGGGCCTG	GCTGCATCTG	ACAAAGAACT CCTTGATGCA GGATAGGGAT GCTGCATCTG CTCGGGCCTG GCCTAAAATG	CCTTGATGCA	ACAAAGAACT
840	GCACTCAGAA	GGAAAAGTTG	TTTGATGAAG	TIGCACAAAI TIAIACIACI ITITGCIGIA ITIGAIGAAG GGAAAAGITG GCACICAGAA	TTATACTACT	TTGCACAAAT
780	GACACAGACC	CCAAGGAAAA	GGGAGTCTGG	CTCATTGGAG CCCTACTAGT ATGTAGAGAA GGGAGTCTGG CCAAGGAAAA GACACAGACC	CCCTACTAGT	CTCATTGGAG
720	GAATTCAGGC	TAAAAGACTT	GTGGACCTGG	CTGTGCCTTA CCTACTCATA TCTTTCTCAT GTGGACCTGG TAAAAGACTT GAATTCAGGC	CCTACTCATA	CTGTGCCTTA
099	CTCTGACCCA	GTCCAATGGC	AAAGAGAATG	GGAAGCCATA CATATGTCTG GCAGGTCCTG AAAGAGAATG GTCCAATGGC CTCTGACCCA	CATATGTCTG	GGAAGCCATA
009	CTTCCCTGGT	ATGATAAAGT	GAGAAAGAAG	GCTGAATATG ATGATCAGAC CAGTCAAAGG GAGAAAGAAG ATGATAAAGT CTTCCCTGGT	ATGATCAGAC	GCTGAATATG
540	TTCTGAGGGA	ACTGGAAAGC	GGTGTATCCT	SCTTCCCATC CTGTCAGTCT TCATGCTGTT GGTGTATCCT ACTGGAAAGC TTCTGAGGGA	CTGTCAGTCT	SCTTCCCATC
480	TAAGAACATG	TCATTACACT	GATACAGTGG	CTAGGTCCTA CCATCCAGGC TGAGGTTTAT GATACAGTGG TCATTACACT TAAGAACATG	CCATCCAGGC	STAGGTCCTA
420	GATGGGTCTG	GGCCACCCTG	GCTAAGCCAA	STAGAATTCA CGGTTCACCT TTTCAACATC GCTAAGCCAA GGCCACCCTG GATGGGTCTG	CGGTTCACCT	STAGAATTCA
360	GACTCTGTTT	TGTACAAAAA	ACCTCAGTCG	SCTAGAGTGC CAAAATCTTT TCCATTCAAC ACCTCAGTCG TGTACAAAAA GACTCTGTTT	CAAAATCTTT	CTAGAGTGC
300	AAGATTTCCT	CTGTGGACGC	GGTGAGCTGC	PIGTCATGGG ACTATATGCA AAGTGATCTC GGTGAGCTGC CTGTGGACGC AAGATTTCCT	ACTATATGCA	TGTCATGGG
240	TGCAGTGGAA	ACTACCTGGG	ACCAGAAGAT	TGTGCCTTT TGCGATTCTG CTTTAGTGCC ACCAGAAGAT ACTACCTGGG TGCAGTGGAA	TGCGATTCTG	TGTGCCTTT
180	CTGCTTCTTT	AGCTCTCCAC	ATGCAAATAG	CICCAGITG AACATITGIA GCAATAAGIC AIGCAAATAG AGCICICCAC CIGCTICTIT	AACATTTGTA	CTCCAGTTG
120	ACCTTTTGCT	AGAAGAATTA	GATATTTAG	TITACITIT TICCCCICCT GGGAGCIAAA GATATITIAG AGAAGAAITA ACCITITIGCI	TTCCCCTCCT	TTTACTTT
09	AAATCAGAAA	ACTTTCATT	AGAAATTGGG	AGTGGGTAA GTTCCTTAAA TGCTCTGCAA AGAAATTGGG ACTTTTCATT AAATCAGAAA	GTTCCTTAAA	AGTGGGTAA

ATATTCCTC 1020	rcccaata 1080	TTTGTCAT 1140	GTCCAGAG 1200	ATCTTACT 1260	TCCAAATT 1320	AAGAGGAG 1380	GTCAATAT 1440	TGGCATAC 1500	TGGGACCT 1560	CAAGCAGA 1620	GGAGATTA 1680	TCAAATAT 1740	TGACCCGC 1800	GCCCTCTC 1860	ACAAGAGG 1920	AGAATATA 1980
TCAGTCTATT GGCATGTGAT TGGAATGGGC ACCACTCCTG AAGTGCACTC AATATTCCTC	GAAGGTCACA CATTTCTTGT GAGGAACCAT CGCCAGGCGT CCTTGGAAAT CTCGCCAATA	ACTTICCTIA CIGCICAAAC ACICITGAIG GACCIIGGAC AGITICIACI GIITIGICAI	ATCTCTTCCC ACCAACATGA TGGCATGGAA GCTTATGTCA AAGTAGACAG CTGTCCAGAG	GAACCCCAAC TACGAATGAA AAATAATGAA GAAGCGGAAG ACTATGATGA TGATCTTACT	GATTCTGAAA TGGATGTGGT CAGGTTTGAT GATGACAACT CTCCTTCCTT TATCCAAATT	CGCTCAGTTG CCAAGAAGCA TCCTAAAACT TGGGTACATT ACATTGCTGC TGAAGAGGAG	GACTGGGACT ATGCTCCCTT AGTCCTCGCC CCCGATGACA GAAGTTATAA AAGTCAATAT	TTGAACAATG GCCCTCAGCG GATTGGTAGG AAGTACAAAA AAGTCCGATT TATGGCATAC	ACAGATGAAA CCTTTAAGAC TCGTGAAGCT ATTCAGCATG AATCAGGAAT CTTGGGACCT	TTACTTTATG GGGAAGTTGG AGACACTG TTGATTATAT TTAAGAATCA AGCAAGCAGA	CCATATAACA TCTACCCTCA CGGAATCACT GATGTCCGTC CTTTGTATTC AAGGAGATTA	CCAAAAGGTG TAAAACATTT GAAGGATTTT CCAATTCTGC CAGGAGAAAT ATTCAAATAT	AAATGGACAG TGACTGTAGA AGATGGGCCA ACTAAATCAG ATCCTCGGTG CCTGACCCGC	TATTACTCTA GTTTCGTTAA TATGGAGAGA GATCTAGCTT CAGGACTCAT TGGCCCTCTC	CTCATCTGCT ACAAAGAATC TGTAGATCAA AGAGGAAACC AGATAATGTC AGACAAGAGG	AATGTCATCC TGTTTTCTGT ATTTGATGAG AACCGAAGCT GGTACCTCAC AGAGAATATA
: ACCACTCCTG	CGCCAGGCGT	GACCTTGGAC	GCTTATGTCA	GAAGCGGAAG	GATGACAACT	TGGGTACATT	CCCGATGACA	AAGTACAAAA	ATTCAGCATG	TTGATTATAT	GATGTCCGTC	CCAATTCTGC	ACTAAATCAG	GATCTAGCTT	AGAGGAAACC	AACCGAAGCT
TGGAATGGGC	GAGGAACCAT	ACTCTTGATG	TGGCATGGAA	AAATAATGAA	CAGGTTTGAT	TCCTAAAACT	AGTCCTCGCC	GATTGGTAGG	TCGTGAAGCT	AGACACACTG	CGGAATCACT	GAAGGATTTT	AGATGGGCCA	TATGGAGAGA	TGTAGATCAA	ATTTGATGAG
GGCATGTGAT	CATTTCTTGT	CTGCTCAAAC	ACCAACATGA	TACGAATGAA	TGGATGTGGT	CCAAGAAGCA	ATGCTCCCTT	GCCCTCAGCG	CCTTTAAGAC	GGGAAGTTGG	TCTACCCTCA	TAAAACATTT	TGACTGTAGA	GTTTCGTTAA	ACAAAGAATC	TGTTTTCTGT
TCAGTCTATT	GAAGGTCACA	ACTTTCCTTA	ATCTCTTCCC	GAACCCCAAC	GATTCTGAAA	CGCTCAGTTG	GACTGGGACT	TTGAACAATG	ACAGATGAAA	TTACTTTATG	CCATATAACA	CCAAAAGGTG	AAATGGACAG	TATTACTCTA	CTCATCTGCT	AATGTCATCC

3060	AGAATCAGGT	CAAAGTTGTT	AATAATGATT	TOTOCTEGAC CTCTGAGCTT GAGTGAAGAA AATAATGATT CAAAGTTGTT AGAATCAGGT	CTCTGAGCTT) A DUILLE LE
3000	CCTTACTGAG	AGTCATCTCC	TTTGGCAAAA	CATTATGATA GTCAATTAGA TACCACTCTA TTTGGCAAAA AGTCATCTCC CCTTACTGAG	A GTCAATTAGA	CATTATGATA
2940	TATGCCAGTT	GACCCCCAAG	AGTTCCTTAG	GACAATTTGG CAGCAGGTAC TGATAATACA AGTTCCTTAG GACCCCCAAG TATGCCAGTT	CAGCAGGTAC	GACAATTTGG
2880	AATTCCATCA	TGATTTCAAC	TCAAATAATC	AAGAAACTTG ATTTCAAAGT TTCTAGTACA TCAAATAATC TGATTTCAAC AATTCCATCA	S ATTTCAAAGT	AAGAAACTTG
2820	AACAGAGTTG	CAACTGCAGC	AAACTGGGGA	GAGTCAGGCC TCCAATTAAG ATTAAATGAG AAACTGGGGA CAACTGCAGC AACAGAGTTG	TCCAATTAAG	SAGTCAGGCC
2760	ATTTACCCCT	GGGACATGGT	CATCACAGTG	TCTGAAATGA CACACTTCAG GCCACAGCTC CATCACAGTG GGGACATGGT ATTTACCCCT	CACACTTCAG	rctgaaatga
2700	TAACAGCCTG	TAGACAGTAA	CCTGGAGCAA	AAATATGAGA CTTTTCTGA TGATCCATCA CCTGGAGCAA TAGACAGTAA TAACAGCCTG	CTTTTTCTGA	AATATGAGA
2640	CCAAGAAGCC	TATCTGATCT	GGGCTATCCT	ATGCTCTTGC GACAGAGTCC TACTCCACAT GGGCTATCCT TATCTGATCT CCAAGAAGCC	GACAGAGTCC	TGCTCTTGC
2580	TGATTTGTTG	TCTCCTCTAG	ATACAAAATG	TGGTTTGCAC ACAGAACACC TATGCCTAAA ATACAAAATG TCTCCTCTAG TGATTTGTTG	ACAGAACACC	GGTTTGCAC
2520	GACTGACCCT	ACATAGAGAA	CCAGAAAATG	AGGCAAAAGC AATTTAATGC CACCACAATT CCAGAAAATG ACATAGAGAA GACTGACCCT	AATTTAATGC	GGCAAAAGC
2460	CCCTAGCACT	ATTCAAGACA	TTCTCCCAGA	AGTAAAAACA ATGCCATTGA ACCAAGAAGC TTCTCCCAGA ATTCAAGACA CCCTAGCACT	ATGCCATTGA	GTAAAAACA
2400	ATACTTGCTG	ATATTTCAGC	AGTTATGAAG	GACAAGAACA CTGGTGATTA TTACGAGGAC AGTTATGAAG ATATTTCAGC ATACTTGCTG	CTGGTGATTA	ACAAGAACA
2340	TTCTAGTTGT	TACTGAAGGT	ATGACCGCCT	TGCCACAACT CAGACTITCG GAACAGAGGC ATGACCGCCT TACTGAAGGT ITCTAGTTGT	CAGACTTTCG	GCCACAACT
2280	GATTCTGGGG	CAGGTCTATG	ATGGAAAACC	CCATTCTCAG GAGAAACTGT CTTCATGTCG ATGGAAAACC CAGGTCTATG GATTCTGGGG	GAGAAACTGT	CATTCTCAG
2220	CACCCTATTC	AAGACACACT	ATGGTCTATG	TTCTTCTG GATATACCTT CAAACACAAA ATGGTCTATG AAGACACACT CACCCTATTC	GATATACCTT	PCTTCTCTG
2100 2160	AGTTTGTTTG CCTTTCTGTC	TGCAGTTGTC AGACTGACTT	TTTGATAGTT ATTGGAGCAC	AACATCATGC ACAGCATCAA TGGCTATGTT TTTGATAGTT TGCAGTTGTC AGTTTGTTTG CATGAGGTGG CATACTGGTA CATTCTAAGC ATTGGAGCAC AGACTGACTT CCTTTCTGTC	ACAGCATCAA CATACTGGTA	ACATCATGC ATGAGGTGG
2040	CCAAGCCTCC	ATCCAGAGTT	CAGCTTGAGG	CAACGCTTTC TCCCCAATCC AGCTGGAGTG CAGCTTGAGG ATCCAGAGTT CCAAGCCTCC	TCCCCAATCC	AACGCTTTC

TTATTTAAAG GGAAAAGAGC TCATGGACCT GCTTTGTTGA CTAAAGATAA TGCCTTATTC AAAGTTAGCA TCTCTTTGTT AAAGACAAAC AAAACTTCCA ATAATTCAGC AACTAATAGA AAGACTCACA TTGATGGCCC ATCATTATTA ATTGAGAATA GTCCATCAGT CTGGCAAAAT ATGGACAAAA GTGACACTGA GTTTAAAAAA GTGACACCTT TGATTCATGA CAGAATGCTT ATGGACAAAA ATGCTACAGC TTTGAGGCTA AATCATATGT CAAATAAAAAC TACTTCATCA AAAAACATGG AAATGGTCCA ACAGAAAAA GAGGCCCCA TTCCACCAGA TGCACAAAAT CCAGATATGT CGTTCTTTAA GATGCTATTC TTGCCAGAAT CAGCAAGGG ACTCATGGAA AGAACTCTCT GAACTCTGG CAAGGCCCCA GTCCAAAAGG ACTCATGGAA AGAAATCTGT GAACTCTGG CAAGGCCCCA GTCCAAAAAC TTAGGACCAG AAAAAATCTGT GAACTCTGG CAAGGCCCA CTGAGAAAAA CAAAGTGGTA	C TCATGGACCT F AAAGACAAAC	GCTTTGTTGA	CTAAAGATAA	TGCCTTATTC	3180
AAAGTTAGCA TCTCTTTGTT AAGACTCACA TTGATGGCCC ATATTAGAAA GTGACACTGA ATGGACAAAA ATGCTACAGC AAAAACATGG AAATGGTCCA CCAGATATGT CGTTCTTTAAA ACTCATGGAA AGAACTCTTT TTAGGACCAG AAAAATCTGT	I AAAGACAAAC				,
AAGACTCACA TTGATGGCCC ATATTAGAAA GTGACACTGA ATGGACAAAA ATGCTACAGC AAAAACATGG AAATGGTCCA CCAGATATGT CGTTCTTTAA ACTCATGGAA AGAACTCTCT TTAGGACCAG AAAAATCTGT		AAAACTTCCA	ATAATTCAGC	AACTAATAGA	3240
ATATTAGAAA GTGACACTGA ATGGACAAAA ATGCTACAGC AAAAACATGG AAATGGTCCA CCAGATATGT CGTTCTTTAA ACTCATGGAA AGAACTCTCT TTAGGACCAG AAAAATCTGT	C ATCATTATTA	ATTGAGAATA	GTCCATCAGT	CTGGCAAAAT	3300
ATGGACAAAA ATGCTACAGC AAAAACATGG AAATGGTCCA CCAGATATGT CGTTCTTTAA ACTCATGGAA AGAACTCTCT TTAGGACCAG AAAAATCTGT	A GTTTAAAAAA	GTGACACCTT	TGATTCATGA	CAGAATGCTT	3360
AAAAACATGG AAATGGTCCA CCAGATATGT CGTTCTTTAA ACTCATGGAA AGAACTCTCT TTAGGACCAG AAAAATCTGT	TTTGAGGCTA	AATCATATGT	CAAATAAAAC	TACTTCATCA	3420
CCAGATATGT CGTTCTTTAA ACTCATGGAA AGAACTCTCT TTAGGACCAG AAAAATCTGT	ACAGAAAAA	GAGGCCCCCA	TTCCACCAGA	TGCACAAAAT	3480
ACTCATGGAA AGAACTCTCT TTAGGACCAG AAAAATCTGT	A GATGCTATTC	TTGCCAGAAT	CAGCAAGGTG	GATACAAAGG	3540
TTAGGACCAG AAAAATCTGT	GAACTCTGGG	CAAGGCCCCA	GTCCAAAGCA	ATTAGTATCC	3600
	GGAAGGTCAG	AATTTCTTGT	CTGAGAAAAA	CAAAGTGGTA	3660
GTAGGAAAGG GTGAATTTAC AAAGGACGTA GGACTCAAAG AGATGGTTTT TCCAAGCAGC	AAAGGACGTA	GGACTCAAAG	AGATGGTTTT	TCCAAGCAGC	3720
AGAAACCTAT TTCTTACTAA	TTCTTACTAA CTTGGATAAT	TTACATGAAA ATAATACACA CAATCAAGAA	ATAATACACA	CAATCAAGAA	3780
AAAAAATTC AGGAAGAAAT AGAAAAGAAG GAAACATTAA TCCAAGAGAA TGTAGTTTTG	AGAAAAGAAG	GAAACATTAA	TCCAAGAGAA	TGTAGTTTTG	3840
CCTCAGATAC ATACAGTGAC TGGCACTAAG AATTTCATGA AGAACCTTTT	TGGCACTAAG	AATTTCATGA	AGAACCTTTT	CTTACTGAGC	3900
ACTAGGCAAA ATGTAGAAGG TTCATATGAG GGGGCATATG CTCCAGTACT TCAAGATTTT	TTCATATGAG	GGGGCATATG	CTCCAGTACT	TCAAGATTTT	3960
AGGTCATTAA ATGATTCAAC AAATAGAACA AAGAAACACA CAGCTCATTT CTCAAAAAAA	AAATAGAACA	AAGAAACACA	CAGCTCATTT	CTCAAAAAA	4020
GGGGAGGAAG AAAACTTGGA AGGCTTGGGA AATCAAACCA AGCAAATTGT AGAGAAATAT	AGGCTTGGGA	AATCAAACCA	AGCAAATTGT	AGAGAAATAT	4080

516	GGAAATAACT	GCCATCAACG	GTCTTGAAAC	AAACCCACCA	ACTGAAAGGC TGTGCTCTCA AAACCCACCA GTCTTGAAAC GCCATCAACG GGAAATAACT	ACTGAAAGGC
510	GCAAGGTAGG	CCTGGGCAAA	ATAGAAGTCA	TAAGCCCGAA	GCAATAAATG AGGGACAAAA TAAGCCCGAA ATAGAAGTCA CCTGGGCAAA GCAAGGTAGG	GCAATAAATG
504	TGCAATAGCA	AAAGCAATCA	AACGCTTGTG	TTTGTCCCTG	TTTAAGAAAA AGGATACCAT TTTGTCCCTG AACGCTTGTG AAAGCAATCA TGCAATAGCA	TTTAAGAAAA
498	AAAAACAGCT	AGTCACCAGA	TCCCAAGAGA	AGAGTGGAAA	GGTACTCAGA TACCAAAAGA AGAGTGGAAA TCCCAAGAGA AGTCACCAGA AAAAACAGCT	GGTACTCAGA
492	TAACCACTAT	TTGCTTGGGA	TTGGATCCTC	CTCCAAGCTA	GAAAGCTCTG CAAAGACTCC CTCCAAGCTA TTGGATCCTC TTGCTTGGGA TAACCACTAT	GAAAGCTCTG
486	AGTAGCAACA	CCTTTCTGAG	GGAAAAGTTC	AAACAGACCT	GCGATTAAGT GGAATGAAGC AAACAGACCT GGAAAAGTTC CCTTTCTGAG AGTAGCAACA	GCGATTAAGT
480	AACAGAGGGA	TTCTTCAGGG	GAAGGGAGCC	GGATCTCGTG	AATGGGTCTC CTGGCCATCT GGATCTCGTG GAAGGGAGCC TTCTTCAGGG AACAGAGGGA	AATGGGTCTC
474	GGAAACTAGC	TATTCCCTAC	CAGAAGGACC	TCACATTTAT	GITGAATIGC TICCAAAAGI ICACAITIAI CAGAAGGACC TAITCCCIAC GGAAACIAGC	GTTGAATTGC
468	ATCTGGCAAA	TGCCCAAAAC	AAACCAGACT	TGTTCTCCCG	TACAAGAAAG TTGAGAACAC TGTTCTCCCG AAACCAGACT TGCCCAAAAC ATCTGGCAAA	TACAAGAAAG
462(TTCAGTCACA	GTGCCACAAA	CTGGGGACAA	GGTTGGCTCC	ATGACTGGTG ATCAAAGAGA GGTTGGCTCC CTGGGGACAA GTGCCACAAA TTCAGTCACA	ATGACTGGTG
456(AACCTTGGAG	TAGCCATTCT	AACCTTTCTT	CAAAAAAAT	AGTCATTTCT TACAAGGAGC CAAAAAAAT AACCTTTCTT TAGCCATTCT AACCTTGGAG	AGTCATTTCT
4500	CCAAGAAAGC	ATTCTGGGGT	AGAAAGAAAG	AGCATCTTAT	AACTCTTCTC ATCTTCCAGC AGCATCTTAT AGAAAGAAAG ATTCTGGGGT CCAAGAAAGC	AACTCTTCTC
444(ATTCCAAGAC	CCAGGGTCCT	ATATATCTGA	TATTAGACCT	AAGGTATCAT CATTTCCATC TATTAGACCT ATATATCTGA CCAGGGTCCT ATTCCAAGAC	AAGGTATCAT
4380	ACCCATTGCA	GATCTCCATT	CAAGCAAATA	TAGCATCCCT	GATTGCCTTA CGAGGAGTCA TAGCATCCCT CAAGCAAATA GATCTCCATT ACCCATTGCA	GATTGCCTTA
4320	TCCCTTATCA	TTACTCAGTC	AAAGGGGCCA	TGAGAAGGAG	CTCACACAGA TAGACTACAA TGAGAAGGAG AAAGGGGCCA TTACTCAGTC TCCCTTATCA	CTCACACAGA
4260	CCCGAGCACC	AACATTTGAC	AAAAACATGA	CCAGTGGTCC	ATTGTGGATG ACACCTCAAC CCAGTGGTCC AAAAACATGA AACATTTGAC CCCGAGCACC	ATTGTGGATG
4200	AAAAAGGATA	CAGAACTTGA	CTAGAAGAAA	CAGACTCCCA	AAGAGAGCTT TGAAACAATT CAGACTCCCA CTAGAAGAAA CAGAACTTGA AAAAAGGATA	AAGAGAGCTT
4140	GCAACGTAGT	ATTTTGTCAC	AGCCAGCAGA	TCCTAATACA	GCATGCACCA CAAGGATATC TCCTAATACA AGCCAGCAGA ATTTTGTCAC GCAACGTAGT	GCATGCACCA

CGTACTACTC	CGTACTACTC TTCAGTCAGA TCAAGAGGAA ATTGACTATG ATGATACCAT ATCAGTTGAA	TCAAGAGGAA	ATTGACTATG	ATGATACCAT	ATCAGTTGAA	522(
ATGAAGAAGG	ATGAAGAAGG AAGATTTTGA CATTTATGAT GAGGATGAAA ATCAGAGCCC CCGCAGCTTT	CATTTATGAT	GAGGATGAAA	ATCAGAGCCC	CCGCAGCTTT	5280
CAAAAGAAAA	CAAAAGAAAA CACGACACTA TTTTATTGCT GCAGTGGAGA GGCTCTGGGA TTATGGGATG	TTTTATTGCT	GCAGTGGAGA	GGCTCTGGGA	TTATGGGATG	5340
AGTAGCTCCC	AGTAGCTCCC CACATGTTCT AAGAAACAGG GCTCAGAGTG GCAGTGTCCC TCAGTTCAAG	AAGAAACAGG	GCTCAGAGTG	GCAGTGTCCC	TCAGTTCAAG	5400
AAAGTTGTTT	AAAGTTGTTT TCCAGGAATT TACTGATGGC TCCTTTACTC AGCCCTTATA CCGTGGAGAA	TACTGATGGC	TCCTTTACTC	AGCCCTTATA	CCGTGGAGAA	5460
CTAAATGAAC	CTAAATGAAC ATTTGGGACT CCTGGGGCCA TATATAAGAG CAGAAGTTGA AGATAATATC	CCTGGGGCCA	TATATAAGAG	CAGAAGTTGA	AGATAATATC	5520
ATGGTAACTT	ATGGTAACTT TCAGAAATCA GGCCTCTCGT CCCTATTCCT TCTATTCTAG CCTTATTTCT	GGCCTCTCGT	CCCTATTCCT	TCTATTCTAG	CCTTATTTCT	5580
TATGAGGAAG	TATGAGGAAG ATCAGAGGCA AGGAGCAGAA CCTAGAAAAA ACTTTGTCAA GCCTAATGAA	AGGAGCAGAA	CCTAGAAAAA	ACTTTGTCAA	GCCTAATGAA	5640
ACCAAAACTT	ACCAAAACTT ACTTTTGGAA AGTGCAACAT CATATGGCAC CCACTAAAGA TGAGTTTGAC	AGTGCAACAT	CATATGGCAC	CCACTAAAGA	TGAGTTTGAC	5700
TGCAAAGCCT	TGCAAAGCCT GGGCTTATTT CTCTGATGTT GACCTGGAAA AAGATGTGCA CTCAGGCCTG	CTCTGATGTT	GACCTGGAAA	AAGATGTGCA	CTCAGGCCTG	5760
ATTGGACCCC	ATTGGACCCC TTCTGGTCTG CCACACTAAC ACACTGAACC CTGCTCATGG GAGACAAGTG	CCACACTAAC	ACACTGAACC	CTGCTCATGG	GAGACAAGTG	5820
ACAGTACAGG	ACAGTACAGG AATTIGCTCT GTITTICACC ATCTITGATG AGACCAAAAG CTGGTACTIC	GTTTTTCACC	ATCTTTGATG	AGACCAAAAG	CTGGTACTTC	5880
ACTGAAAATA	ACTGAAAATA TGGAAAGAAA CTGCAGGGCT CCCTGCAATA TCCAGATGGA AGATCCCACT	CTGCAGGGCT	CCCTGCAATA	TCCAGATGGA	AGATCCCACT	5940
TTTAAAGAGA	TTTAAAGAGA ATTATCGCTT CCATGCAATC AATGGCTACA TAATGGATAC ACTACCTGGC	CCATGCAATC	AATGGCTACA	TAATGGATAC	ACTACCTGGC	0009
TTAGTAATGG	TTAGTAATGG CTCAGGATCA AAGGATTCGA TGGTATCTGC TCAGCATGGG CAGCAATGAA	AAGGATTCGA	TGGTATCTGC	TCAGCATGGG	CAGCAATGAA	0909
AACATCCATT	AACATCCATT CTATTCATTT CAGTGGACAT GTGTTCACTG TACGAAAAAA AGAGGAGTAT	CAGTGGACAT	GTGTTCACTG	TACGAAAAA	AGAGGAGTAT	6120
AAAATGGCAC	AAAATGGCAC TGTACAATCT CTATCCAGGT GTTTTTGAGA CAGTGGAAAT GTTACCATCC	CTATCCAGGT	GTTTTTGAGA	CAGTGGAAAT	GTTACCATCC	6180

72(TCAGCTCCAG	TACTGAGGGT GGCCACTGCA GCACCTGCCA CTGCCGTCAC CTCTCCCTCC TCAGCTCCAG	CTGCCGTCAC	GCACCTGCCA	GGCCACTGCA	TACTGAGGGT
72(ACAGGACCTC	AGTIGGGIGC ACCAGATIGC CCTGAGGAIG GAGGIICIGG GCIGCGAGGC ACAGGACCIC	GAGGTTCTGG	CCTGAGGATG	ACCAGATTGC	AGTTGGGTGC
717	TCACCCCCAG	CCTGTGGTGA ACTCTCTAGA CCCACCGTTA CTGACTCGCT ACCTTCGAAT TCACCCCCAG	CTGACTCGCT	CCCACCGTTA	ACTCTCTAGA	CCTGTGGTGA
708	CTCCTTCACA	ACTCTCTTTT TTCAGAATGG CAAAGTAAAG GTTTTTCAGG GAAATCAAGA CTCCTTCACA	GTTTTTCAGG	CAAAGTAAAG	TTCAGAATGG	ACTCTCTTT
702	CCATCAGTGG	CTTACCAGCA TGTATGTGAA GGAGTTCCTC ATCTCCAGCA GTCAAGATGG CCATCAGTGG	ATCTCCAGCA	GGAGTTCCTC	TGTATGTGAA	CTTACCAGCA
969	AAAATCTCTG	GTGGACTTCC AGAAGACAAT GAAAGTCACA GGAGTAACTA CTCAGGGAGT AAAATCTCTG	GGAGTAACTA	GAAAGTCACA	AGAAGACAAT	GTGGACTTCC
)69	GTGGCTGCAA	CTCCAAGGGA GGAGTAATGC CTGGAGACCT CAGGTGAATA ATCCAAAAGA GTGGCTGCAA	CAGGTGAATA	CTGGAGACCT	GGAGTAATGC	CTCCAAGGGA
684	TCGACTTCAC	GCTICATCCI ACTITACCAA TATGITIGCC ACCIGGICIC CITCAAAAGC ICGACTICAC	ACCTGGTCTC	TATGTTTGCC	ACTTTACCAA	GCTTCATCCT
678	ACAGATTACT	AATAGTTGCA GCATGCCATT GGGAATGGAG AGTAAAGCAA TATCAGATGC ACAGATTACT	AGTAAAGCAA	GGGAATGGAG	GCATGCCATT	AATAGTTGCA
672	CTGTGATTTA	CACCCAACTC ATTATAGCAT TCGCAGCACT CTTCGCATGG AGTTGATGGG CTGTGATTTA	CTTCGCATGG	TCGCAGCACT	ATTATAGCAT	CACCCAACTC
999	CATCCGTTTG	TCATCTGGGA TAAAACACAA TATTTTAAC CCTCCAATTA TTGCTCGATA CATCCGTTTG	CCTCCAATTA	TATTTTAAC	TAAAACACAA	TCATCTGGGA
999	CAATGTGGAT	TGGCAGACTT ATCGAGGAAA TTCCACTGGA ACCTTAATGG TCTTCTTTGG CAATGTGGAT	ACCTTAATGG	TTCCACTGGA	ATCGAGGAAA	TGGCAGACTT
654	TGGGAAGAAG	AAGTICTCCA GCCTCTACAT CTCTCAGITT ATCATCATGT ATAGTCTTGA TGGGAAGAAG	ATCATCATGT	CTCTCAGTTT	GCCTCTACAT	AAGTTCTCCA
648	TGCCCGTCAG	AAGGTGGATC TGTTGGCACC AATGATTATT CACGGCATCA AGACCCAGGG TGCCCGTCAG	CACGGCATCA	AATGATTATT	TGTTGGCACC	AAGGTGGATC
642	TTCTTGGATC	AGACTTCATT ATTCCGGATC AATCAATGCC TGGAGCACCA AGGAGCCCTT TTCTTGGATC	TGGAGCACCA	AATCAATGCC	ATTCCGGATC	AGACTTCATT
636	AAAGCTGGCC	ATTAGAGATT TTCAGATTAC AGCTTCAGGA CAATATGGAC AGTGGGCCCC AAAGCTGGCC	CAATATGGAC	AGCTTCAGGA	TTCAGATTAC	ATTAGAGATT
63.0	TTCTGGACAC	ACACTITITC TGGTGTACAG CAATAAGTGT CAGACTCCCC TGGGAATGGC TTCTGGACAC	CAGACTCCCC	CAATAAGTGT	TGGTGTACAG	ACACTTTTTC
624	AAAGCTGGAA TTTGGCGGGT GGAATGCCTT ATTGGCGAGC ATCTACATGC TGGGATGAGC	ATCTACATGC	ATTGGCGAGC	GGAATGCCTT	TTTGGCGGGT	AAAGCTGGAA

8280	GAAAACTAGA	TACCGTGACT	GGAAATTATA	ATGTAACAGG	CTGAAAATAA CACAACAAAA ATGTAACAGG GGAAATTATA TACCGTGACT GAAAACTAGA	CTGAAAATAA	
8220	TAATTTCCTG	CTCCCTCTAC	AGTTTACTCT	TAATGCACTC	TACAAACTTT GTAATTCTAA TAATGCACTC AGTTTACTCT CTCCCTCTAC TAATTTTCCTG	TACAAACTTT	
8160	AGATAGGAGA	TGGTTATCTG	GGAAAATCCA	GGAAATATGA	CATACATTTA ATATTTCTGT GGAAATATGA GGAAAATCCA TGGTTATCTG AGATAGGAGA	CATACATTTA	
8100	TTCTAAAGGA	GACATTAGGC	AAATGATGAT	CCAAGAAAGA	CTTCTTGAAA TTTGTGATGG CCAAGAAAGA AAATGATGAT GACATTAGGC TTCTAAAGGA	CTTCTTGAAA	
8040	AATAACATGT	TTTGAAATAA	TGTTGAAAGC	AGGATGCAAT	CAATAAAAAA ATAAGTCAGG AGGATGCAAT TGTTGAAAGC TTTGAAATAA AATAACATGT	CAATAAAAA	
798(TAATTCTGAC	CCATTGGTCT	AGATATAAAG	GAGTGTCCAT	CAAATGTGCA TITITCTGAC GAGTGTCCAT AGATATAAAG CCATTGGTCT TAATTCTGAC	CAAATGTGCA	
792(TGTATAAATG	TAAGGCATTC	TGAAATTATA	CTAAGTCCCC	TAGATGGGGT TCAAGAATCC CTAAGTCCCC TGAAATTATA TAAGGCATTC TGTATAAATG	TAGATGGGGT	
786	CTGAGAATTA	CATTCTTAAA	CCAAAACTAG	ATTCTTATCT	TTAGTCATTA TGAGGGCAC ATTCTTATCT CCAAAACTAG CATTCTTAAA CTGAGAATTA	TTAGTCATTA	
780	ATTATGTTAT	CATAGATATA	CTTCCTTACA	TCTGTTTCTG	CAATAACTAC TACAGTAAAG TCTGTTTCTG CTTCCTTACA CATAGATATA ATTATGTTAT	CAATAACTAC	
774	GGAGAGAATA	TCTGCAAAAT	ATTTGGACAA	AAGGCAAATC	CAATACAATC TIGGAGTCAA AAGGCAAATC ATTIGGACAA TCTGCAAAAT GGAGAGAATA	CAATACAATC	
768	AGGATCAGAT	AGCATGTTTC	CATGGAACAA	CCTGATCAAG	AACTCTCAGT TGTTTATTAT CCTGATCAAG CATGGAACAA AGCATGTTTC AGGATCAGAT	AACTCTCAGT	
762	TTTAAAATAA	GCCTCATACG	TTCAGGTTAA	ATGTTAACAT	CTTTGAAAAA GATATTTATG ATGTTAACAT TTCAGGTTAA GCCTCATACG TTTAAAATAA	CTTTGAAAAA	
756	TGTGATGAAA	AGAAAAACTA	CCTCTGTTGT	GTCACCACTT	GAAAAGTTAG GCCTCTCAGA GTCACCACTT CCTCTGTTGT AGAAAAACTA TGTGATGAAA	GAAAAGTTAG	
750	ATTCTTCCCT	GCATGAAAGC	GGAGAAACCT	AAAGAAGTGA	CTTCCAATAT AACTAGGCAA AAAGAAGTGA GGAGAAACCT GCATGAAAGC ATTCTTCCCT	CTTCCAATAT	
744	TTACTCCTTC	TGCTCCCAGA	TTTCTGCAGC	TCTTACCTAT	TGCATCCAAT TTAACTTAAC TCTTACCTAT TTTCTGCAGC TGCTCCCAGA TTACTCCTTC	TGCATCCAAT	
738	GCCAGGAGGG	TTGGTGGGGG	CTGCATTTCT	ATCATCAGTC	TGAAGCCTCC TGAATTAACT ATCATCAGTC CTGCATTTCT TTGGTGGGGG GCCAGGAGGG	TGAAGCCTCC	
732	GACACTGCCT	AATCCTAGCA	CTTTGTGCTA	TGCCTTCTAC	GGCAGTGTCC CTCCCTGGCT TGCCTTCTAC CTTTGTGCTA AATCCTAGCA GACACTGCCT	GGCAGTGTCC	

6006						ACACATACA
0006	TAAAACATTG	ATGAGTTAAA	TTCTTCAGTA	rccrecreer	TGGAACTAGC TCTTTTATTT TCCTGCTGGT TTCTTCAGTA ATGAGTTAAA TAAAACATTG	TGGAACTAGC
8940	CAAATGTTCA	TGGCATTCTT TTCCCATTGA CTATATACAT CTCTATTTCT CAAATGTTCA	CTATATACAT	Trcccartga	TGGCATTCTT	AATCTTATTT
8880	TTAACTTGAT	CCTGTTATGT	GGTTTTATTT	AAGGTGATAT	CGGTAGAGGA GTTAACCCCA AAGGTGATAT GGTTTTATTT CCTGTTATGT TTAACTTGAT	CGGTAGAGGA
8820	TTTTATAGCC	CTAACTTACA GAAATGAATA AGTTGTTTTG TTTTATAGCC	GAAATGAATA	CTAACTTACA	AAGTTCTTAA AGTTTAGAGG	AAGTTCTTAA
8760	TAGCCCTGTG	ATAGTCACAA TCCACAAATG ATGCAGGTGC AAATGGTTTA TAGCCCTGTG	ATGCAGGTGC	TCCACAAATG	ATAGTCACAA	CTGTCACAGT
8700	TATAACATAG	CTTTGGAAAC	TATCTGACCT	GCTTGACCCT	GAGTATITIC TAATAATCCT GCTTGACCCT TATCTGACCT CTTTGGAAAC TATAACATAG	GAGTATTTTC
8640	TTCTATGCTG	GGCTACTTTT	GCAAAAGAAT	CTGAGAAAAG	AAAGAAAAT GGATCCCAAT CTGAGAAAAG GCAAAAGAAT GGCTACTTTT TTCTATGCTG	AAAGAAAAAT
8580	TCCTAATATG	AAACAGGAGA	GGCAAATGGA	TGCAACCCAG	TGGAGGAAGC ATCCAAAGAC TGCAACCCAG GGCAAATGGA AAACAGGAGA TCCTAATATG	TGGAGGAAGC
8520	ATAGAGCAGT	AGGATAAGTT	GCTGGAGGCA	AGTAAAGGGG	CTACACAGAA CTCTCCTGAT AGTAAAGGGG GCTGGAGGCA AGGATAAGTT ATAGAGCAGT	CTACACAGAA
8460	TTCACTATGA	CCTGCACCCC	CTTCCATCTG	TTTACTGCTC	CCCCATAAGA TTGTGAAGGG TTTACTGCTC CTTCCATCTG CCTGCACCCC TTCACTATGA	CCCCATAAGA
84.00	TGCCCTCCAC	TCCCCCTTCT	CACAATAGGA	CATATCACCA	GAAAAAACAC TCCAGTCTGC CATATCACCA CACAATAGGA TCCCCCTTCT TGCCCTCCAC	GAAAAAAACAC
8340	GGTGAAAACA	AAATTGGACT	GGTCAGAAGA	ATATCAAGGA	GTCCTACTTA CATAGTTGAA ATATCAAGGA GGTCAGAAGA AAATTGGACT GGTGAAAACA	GTCCTACTTA

(2) INFORMATION FOR SEQ ID NO:2:

SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2332 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (i)

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

FRAGMENT TYPE: N-terminal 3

ORIGINAL (vi)

(F)

INAL SOURCE: ORGANISM: Homo sapien TISSUE TYPE: Liver cDNA sequence

SEQUENCE DESCRIPTION: SEQ ID NO:2: (xi)

TyrArg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp 5 Thr Arg

Arg Asp Leu Gly Glu Leu Pro Val Asp Ala 20

Met Gln Ser

Pro

Phe Pro I

Lys

Tyr Lys

Val 45 Val Ser Val Pro Lys Ser Phe Pro Phe Asn Thr 35 40

Phe Thr Val His Leu Phe Asn Ile Ala Lys 55 60 Leu Phe Val Glu 50 Thr

Val 80 Glu Ile Gln Ala Thr 75 Gly Leu Leu Gly Pro 70 Pro Pro Trp Met Arg 65

Val Pro 95 Ser His Ile Thr Leu Lys Asn Met Ala 90 Tyr Asp Thr Val Val 85

Ala G1yGlu 110 Ser Trp Lys Ala Tyr 105 Ala Val Gly Val Ser Ser Leu His

Arg

Val	Asn	Ser 160	Leu	Leu	Trp	Sei	Arc 24(Ηì	G1:	11	Gl
Lys	Glu	Leu	Ala 175	Thr	Ser	Ala	Asn	Trp 255	Leu	Glu	Leu
Asp	Lys	Tyr	Gly	Gln 190	Lys	Ala	Val	Tyr	Phe 270	Leu	Asp
Asp 125	Fen	Ser	Ile	Thr	G1y 205	Asp	Tyr	Val	11e	Ser 285	Met
Glu	Val	Tyr	Leu	Lys	Glu	Arg 220	Gly	Ser	Ser	Ala	Leu 300
Lys	Gln	Thr 155	G1y	Glu	Asp	Asp	Asn 235	Lys	His	Gln	Leu
Glu	Trp	Leu	Ser 170	Lys	Phe	Gln	Val	Arg 250	Val	Arg	Thr
Arg	Val	Cys	Asn	Ala 185	Val	Met	Thr	His	Glu 265	His	Gln
Gln 120	Tyr			Leu	Ala 200	Leu	His	Cys	Pro	Asn 280	Ala
Ser	Thr 135	Pro Leu	Asp Leu	Ser	Phe	Ser 215	Met	Gly	Thr	Arg	Thr 295
	His	Asp 150	Lys	Gly	Leu	Asn	Lys 230	11e	Thr	Val	Leu
Asp Gln Thr	Ser	Ser	Val 165	Glu	Leu	Lys	Pro	Leu 245	Gly	Leu	Phe
Asp	Gly	Ala	Leu	Arg 180	11e	Thr	Trp	Glγ	Met 260	Phe	Thr
Asp 115	б1у	Met	Asp	Cys	Phe 195	Glu	Ala	Pro	Gly	Thr 275	Ile
	Pro 130	Pro	Val	Val	Lys	Ser 210	Arg	Leu	Ile	His	Pro 290
Glu Tyr	Phe	G1y 145	His	Leu	His	His	A1a 225	Ser	Val	Gly	Ser

Met 320	Arg	Asp	Phe	His	Leu 400	Pro	Thr	Ile	Ile	Ile 480
Gly	Leu 335	Thr	Ser	Val	Val	G1y 415	Tyr	Gly	Ile	Gly
Asp	Gln	Leu 350	Pro	Trp Val	Leu	Asn Gly 415	Ala 430	Ser	Leu	
Gln His Asp Gly	Pro	Asp	Ser 365	Thr	Pro	Asn	Met	Glu 445	Leu	Pro His
Gln	Glu	Asp	Asn	Lys 380	Ala	Leu	Phe	His		Tyr 1
His 315	Glu	Asp Tyr Asp Asp Asp Leu 345	Asp	Pro	Tyr 395	Tyr Leu		Gln	Gly Asp Thr 460	Ile '
Ser	Pro 330	Tyr	Asp Asp	His	Trp Asp	Gln 410	Val Arg	Ile Gln	Glγ	Asn
Ser	Cys			Lys	Trp	Ser	Lys 425	Ala	Val	Tyr
Ile	Ser	Glu	Phe 360	Lys	Asp	Lys	Lys	Glu 440	Glu	Pro
His	Val Asp	Ala	Arg	Ala 375	Glu Asp	Tyr		Arg	G1y 455	Arg
Cys 310	Val	Glu	Asp Val Val	Val	Glu 390	Ser	Gly Arg Lys Tyr 420	Thr	Tyr	Ser 470
Phe	Lys 325	Glu	Val	Ser	Glu	Arg 405	Arg	Lys	ren	Ala
Leu	Val Lys 325	Asn 340		Arg	Ala	Asp	G1y 420	Phe.	Pro Leu Leu	Gln
Leu	Ala Tyr	Asn	Met 355	Ile	Ala	Asp	Ile	Thr 435	Pro	Asn
Phe	Ala	Lys	Glu	Gln 370	Ile	Pro	Arg	Glu	G1y 450	Lys
Gln 305	Glu	Met	Ser	Ile	Tyr 385	Ala	Gln	Asp	Leu	Phe 465
•										

Lys	Lys	Cys	Ala	Asp 560	Phe	Gln	Phe	Ser	Leu 640	Tyr	Pro
Val I 495	Tyr I	Arg (Leu 1	Val	Leu 575	Ile	Glu	Asp	Ile	G1y 655	Phe
G1y v	Lys 1 510	Pro 1	Asp 1	Ser	Ile	Asn 590	Pro	Phe	Tyr	Ser	Leu 670
	Phe 1	Asp 1 525	Arg	Glu	Val	Glu	Asp 605	Val	Trp	Phe	Thr
Pro Lys	Ile 1	Ser /	Glu / 540	Lys	Asn	Thr	Glu	Tyr 620	Tyr	Phe	Leu
ren l	G1u	Lys	Met	Tyr 555	Arg	Leu	Leu	Gly	Ala 635	Val	Thr
Arg 490	G1y (Thr	Asn	Cys	Lys 570	Tyr	Gln	Asn	Val	Ser 650	Asp
Arg	Pro 505	Pro	Val	Ile	Asp	Trp 585	Val	Ile	Glu	Leu	G1u 665
Ser	Leu	G1y 520	Phe	Leu	Ser	Ser	G1y 600	Ser	His	Phe	Tyr
Tyr	Ile	Asp	Ser 535	Leu	Met	Arg	Ala	His 615	Leu	Asp	Val
Leu	Pro	Glu	Ser	Pro 550	Ile	Asn Arg	Pro	Met	Cys 630	Thr	Met
Pro 485	Phe	Val	Tyr	Gly	Gln 565	G1u	Asn	Ile	Val	G1n 645	Lys
Arg	Asp 500	Thr	Tyr	Ile	Asn	Asp 580	Pro	Asn	Ser	Ala	His 660
Val	Lys	Val 515	Arg	Leu	Gly	Phe	Leu 595	Ser	Leu	Gly	Lys
Asp	Leu	Thr	Thr 530	Gly	Arg	Val	Phe	Ala 610	Gln	Ile	Phe
Thr	His	Trp	Leu	Ser 545	Gln	Ser	Arg	Gln	Leu 625	Ser	Thr

Tr	Ala	G11 72(Ala	Arç	Lys	Asn	Prc 800	Phe	Ser	Val	Gly
Leu Tr	Thr	Tyr	Asn 735	Thr	Glu	Gln	Thr	Thr 815	Leu	Met	Leu
б1у	Met	Tyr	Asn	Ser 750	Ile	Ile	Pro	Glu	Ser 830	Asp	Lys
Pro 685	Gly	Asp	Lys	Pro	Asp 765	Lys	Ser	Tyr	Asn	G1y 845	Glu
Asn	Arg 700	Gly	Ser	His	Asn	Pro 780	Gln	Lys	Asn	Ser	Asn 860
Glu	Asn	Thr 715	Leu	Arg	Glu	Met		Ala	Ser	His	Leu
Met	Arg	Asn	Leu 730	Ser	Pro	Pro	Leu Arg 795	Glu 810	Asp	His	Arg
Ser	Phe	Lys	Tyr	Asn 745	Ile	Thr	Leu	Gln	Ile 825	Leu	Leu
Met 680	Asp	Asp	Ala	Gln	Thr 760	Arg	Met	Leu	Ala	Gln 840	Gln
Phe	Ser 695	Cys	Ser	Ser	Thr	His 775	Leu Met	Asp	б1у	Pro	Leu 855
Val	Asn	Ser 710	Ile	Phe	Ala	Ala	Leu 790	Ser	Pro	Arg	б1у
Glu Thr	His	Ser	Asp 725	Ser	Asn	Phe	Asp Leu 790	Leu 805	Ser	Phe	Ser
	Cys	Val	Glu	Arg 740	Phe	Trp	Ser	Ser	Pro 820	His	Glu
G1y 675	Gly	Lys	Tyr	Pro	Gln 755	Pro	Ser	Leu	Asp	Thr 835	Pro
Ser	Leu 690	Leu	Ser	Glu	Lys	Asp 770	Ser	Glγ	Asp	Met	Thr 850
Phe	Ile	Leu 705	Asp	Ile	Gln	Thr	Val 785	His	Ser	Glu	Phe

Ser 880	Ala	His	Pro	Asp	Trp 960	Lys	Lys	Ala	Asn	Lys 104	Ala 5
Ser	Ala 895	Val	Ser	Asn	Ser	G1y 975	Phe	Ser	Glu	Phe Lys 104	Asn 1
Val	Leu	Pro 910	Ser	Glu Asn Asn	Ser	Lys	Leu 990	Asn Asn 1005		Glu	Lys
Lys	Asn	Met	Lys 925	Glu	Glu	Phe	Ala	Asn 1005	Leu	Asp Thr Glu	Asp
Phe	Asp	Ser	Lys	Glu 940	Gln	Leu	Asn	Ser	Leu 102	Asp 5	Met
Asp 875	Ser		Leu Phe Gly	Ser	Ser 955	Arg	Asp	Thr	Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile 1010	Leu Glu Ser 1	Met Leu Met Asp 1050
Leu	Pro 890	Pro Pro	Phe	Leu	Asn	G1y 970	Lys	Asn Lys Thr	Pro :	Glu	Met 1 1050
Lys	Ile	G1y 905	Leu	Ser	Met	Ser	Thr 985	Asn)	31y 1	Leu	Arg
Lys	Thr	Leu	Thr 920	Leu	Leu	Glu	Leu	Ser Leu Leu Lys Thr 1	Asp (Trp Gln Asn Ile 1030	Ile His Asp Arg
Leu Lys	Ser	Ser	Thr	Pro 935	G1y	Thr	Leu	Lys	11e 101	Asn 0	His
Glu 870	Ile	Ser	Asp	Gly	Ser 950	Ser	Pro Ala	Leu	His	Gln / 1030	11e 5
Thr	Leu 885	Thr	Leu	Gly	Glu	Ser 965	Pro	Leu	ľhr 1	Trp	Leu 1045
Ala	Asn	Asn 900	Gln	Ser	Leu	Val	G1y 980		Lys '	Val	Pro
Ala	Asn	Asp	Ser 915	Glu	Leu	Asn	His	11e 995	Arg 0	Ser	Thr
Thr Ala	Ser	Thr	Asp	Thr 930	Lys	Gly Lys	Ala	Ser	Asn A) 1010	Pro 5	Lys val
Thr 865	Thr	Gly	Tyr	Leu	Ser 945	Gly	Arg	Val	Thr	Ser 1025	Lys

1200 Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr Thr Ser Ser Lys Glu Phe Pro Glu Lys Glu Glu Lys Ser Val Glu Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Ile His Thr Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Gln Asn Val Glu Gly Ser Tyr Glu Gly Ala Tyr Ala Pro Val Leu Glu Met Val Gln Gln Lys Lys Glu Gly Pro Ile Pro Pro Ser Phe Phe Lys Met Leu Phe Leu Pro Gln Arg Thr His Gly Lys Asn Ser Leu Asn Gly Lys Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His 1150 Gln Glu Glu Ile 1085 Ser Pro Lys Gln Leu Val Ser Leu Gly Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln 1100 1115 1195 1130 1210 Ile 1065 1145 Gln Glu Lys Lys 1080 1160 1095 1175 1110 1190 Gln Asn Pro Asp Met 1125 Trp Ile Asn Asn Thr His Asn 1060 1140 Pro 1075 1235 Ser Ala Arg Gly Gly 1090 Asn Met Gly Gln Thr 1105 Pro Ala Arg Val

Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys His	Thr Ala His Phe Ser Lys Lys Gly Glu Glu Glu Asn Leu Glu Gly Leu	Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys Thr Thr Arg	Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr Gln Arg Ser Lys	Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu Glu Thr Glu Leu Glu	Lys Arg Ile Ile Val Asp Asp Thr Ser Thr Gln Trp Ser Lys Asn Met	Lys His Leu Thr Pro Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys	Glu Lys Gly Ala Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg
1250	1265	1295	1300	1315	1330	1345	1375

Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys Lys 1425 Phe Gln Asp Asn Ser Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys 1410 1410

Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys 1380

Ser His Ser

Val Ser Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu 1395

_	L	<u>د</u>	0.	20	_	_	_	_	0		
G1 5	Ту	Thr	Ası	Leu 1520	Asr	Glu	Asp	G1u	Ser 1600	Gly	Thr
Asp 145	Thr	Lys	Lys	Asp	Trp 1535	ľhr	ľrp	31n	ceu	Glu 1615	ırg
Gly	Val 1470	Pro	Gln	Leu	Lys	Ala 1550	lla '	ser (le i	sn (1y 4
Thr	Ser	Leu 1485	ryr	Lis	[]e	/a] /	Leu / 1565	ys s	hr 1	le A	ln G
Met	Asn	Asp	Ile (1500	31y I	\la]	rg /	ro I	Trp I 1580	r ds	la I	ys G
Glu	Thr	Pro	His	Pro (1515	31y <i>i</i>	en A	sp F	lu T	ys A 595	Ala Ile Ala Ala Ile Asn Glu Gly 1610	la L
Leu 1450	Ala	Lys	Val I	Ser	Glu (1530	he I	eu A	1u G	ys L	Ile A 1610	rp A
Thr	Ser 1465	Pro	Lys	з1у я	thr (ro F 1545	nər	ys G	ys L	la I	hr T 625
Leu Ala Ile Leu Thr Leu Glu Met Thr Gly Asp Gln 1445 1455	Thr	Leu Pro Lys Pro Asp Leu Pro Lys 1480	Pro	Asn (31y 1	/al E	Lys I 1560	ro I	he I		al T 1
Ile	Gly	Val	Leu P ₁ 1495	Ser 1	ln c	√s√ı	er I	Ile F 1575	la P	Glu Ser Asn His 1605	lu V
Ala	Leu	Thr	Cen	Thr :	ner (ily I	ro s	in i	hr A 590	er A	le G
Leu 1445	Ser	Asn	Glu	31u	Leu I 1525	Pro (thr F	hr G	ys T	Glu S 1605	lu I
Ser	Gly 1460	Glu	Val	rhr	Ser	Arg 1 1540	ıys 1	31y 1	ını:	Cys G	ro G 620
Leu	Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr Tyr 1460	Lys Val Glu Asn Thr Val 1475	Lys	Pro Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu Asp Leu 1510	31y	Asn Arg Pro Gly Lys Val Pro Phe Leu Arg Val Ala Thr 1540	Ala Lys Thr Pro Ser Lys Leu Leu Asp Pro Leu Ala Trp Asp 1555	ľyr (ro o	la C	ys F
Asn	Glu	Lys	Gly 1490		31u (Ser A	His 1 1570	er F	Asn Ala	sn L
Asn Asn Leu Ser	Arg	Lys	Ser Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys Asp 1490	Leu Phe 1505	Val Glu Gly Ser Leu Leu Gln Gly Thr Glu Gly Ala Ile Lys Trp Asn 1535	Glu Ala	Ser s	Asn His Tyr Gly Thr Gln Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu 1570	Lys Ser Pro Glu Lys Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser 1585	Leu A	Gln Asn Lys Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr 1620
	-		- -			•	01	~.	I T	_	9
								•			

Glu Arg Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg 1635

Tyr Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp 1660 1655 1650

1680 Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile 1670 1665

Lys Thr Arg 1695 Ser Phe Gln Lys 1690 Asp Glu Asp Glu Asn Gln Ser Pro Arg 1685

Tyr Gly Met Ser 1710 His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp 1705 1700

Gly Ser Val Pro Thr Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser 1720 1715

Gly Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe 1730 Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu Leu

Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr Phe Arg 1770 1750 Pro Tyr Ile 1745

1765

1760

1755

 $\mathbf{T}\mathbf{y}\mathbf{r}$ Ser Ser Phe Tyr Ser Ser Leu Ile 1785 Asn Gln Ala Ser Arg Pro Tyr 1780

Lys Asn Phe Val Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys 1800 Gln His His Met Ala Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val 1815

Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp 1825 1840											
ro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser 1835	Leu	ľhr	Ser	Asn	Ala 1920	31n	\sn	skr	Glu	Cys 2000	'a l
ro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe 1835	Leu 1855	Val '		Cys 1	His A	Ala (1935	31u A	Lys I	he G	31u C	Leu V 2015
ro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr 825 1835	Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu 1845	Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr 1860	Glu Thr Lys 1885	Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn 1890	Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala 1905	Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln 1935	Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn 1940	Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys 1955	Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe 1970	Ser Lys Ala Gly Ile Trp Arg Val Glu Cys 1995	Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val 2015
ro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala 825	Gly	Arg	Glu 1885	Ala	Arg	Val	Ser	Val 1965	Gly	Arg	Leu
ro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp 825	Ile	Glγ	Asp	Arg /	Tyr	Leu	б1у	Thr	Pro (Trp	Thr
ro Thr Lys Asp Glu Phe Asp Cys Lys Ala 825	Leu 0	His	Phe Thr Ile Phe Asp 1880	Cys	Asn 1915	G1y	Met	Phe	Tyr	Ile 1995	Ser
ro Thr Lys Asp Glu Phe Asp Cys Lys 1830	G1y 185	Ala 5	Ile	Asn	Glu	Pro 1930	Ser	Val	Leu	Gly	Met :
ro Thr Lys Asp Glu Phe Asp Cys 825	Ser	Pro /	Thr 0	Arg	Lys	Leu	Leu 1945	His	Asn	Ala	Gly
ro Thr Lys Asp Glu Phe Asp 825	His	Asn	Phe 188	Glu 5	Phe	Thr	Leu	Gly 1960	Tyr	Lys	Ala
ro Thr Lys Asp Glu Phe 825	Val	Leu	Phe	Met 1895	$^{\mathrm{Thr}}_{^{\mathrm{0}}}$	Asp	Tyr	Ser	Leu 7 1975	Ser	His
ro Thr Lys Asp Glu 825	Asp 5	Thr	Leu	Asn	Pro 191(Met	Trp	Phe	Ala	Pro (Leu
ro Thr Lys Asp 825	Lys 184	Asn 0	Ala	Glu	Asp	Ile 1925	Arg	His	Met	Leu	His 2005
ro Thr Lys 825	Glu	Thr 1860	Phe 5	Thr	Glu	Tyr	Ile 1940	Ile	Lys	Met	Glu
ro Thr 825	Leu	His	Gln Glu Phe Ala Leu 1875	Phe	Met	б1у	Arg	Ser 1955	Tyr	Thr Val Glu Met Leu Pro 1985	Gly
r0 82	Asp	Cys	Gln		Gln	Asn	Gln	Ile His	Glu 1970	Val	Ile
4	Val	Val	Val	Trp	Ile 1905	Ile	Asp	Ile	Glu	Thr 1985	Leu
					•						

Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile 2025

Pro Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala 2045 2040 2035

Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser 2060 2055 2050

Thr

Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile 2075 2070 Lys Glu Pro Phe Ser

2065

Ser Ser Leu 2095 Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe 2090 2085 Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp 2105 2100 Gly Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe 2125 2120 2115

Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile 2140 2135

2160 Ser lle Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg 2155 2150

Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met $2165 \ 2175 \$

Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala 2190 2185 2180 Pro Leu

Pro Ser Lys Ala 2205 Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser 2200 2195 Ser Ser

Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val Asn 2220 2210

Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met Lys Val 2235 2230

2240 Ser Met Tyr Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr 2250 2245

Val Lys Glu Phe Leu Ile Ser Ser Gln Asp Gly His Gln Trp Thr 2260

Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp 2275

Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg 2300

Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr 2330

(2) INFORMATION FOR SEQ ID NO:3:

SEQUENCE CHARACTERISTICS: (i)

(A) LENGTH: 1130 base pairs

TYPE: nucleic acid STRANDEDNESS: single (E)(E)

TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

480

360

120

9

180

240

300

420

540

900

0 <u>N</u>
<u>ы</u>
S
EN
S
H
ANT
K
iv)

TISSUE TYPE: Blood ORGANISM: Porcine ORIGINAL SOURCE: (F) (vi)

FEATURE: (ix)

LOCATION: 1..1130 (A) NAME/KEY: Region(B) LOCATION: 1..113((D) OTHER INFORMATION

OTHER INFORMATION: /note= "cDNA encoding A2 domain of porcine factor VIII."

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

AGTTGGAGAC ACACTTTTGA TTATATTTAA GAATAAAGCG AGCCGACCAT ATAACATCTA CCCTCATGGA ATCACTGATG TCAGCGCTTT GCACCCAGGG AGACTTCTAA AAGGTTGGAA ACATITGAAA GACATGCCAA TICTGCCAGG AGAGACTITC AAGTATAAAI GGACAGTGAC TGTGGAAGAT GGGCCAACCA AGTCCGATCC TCGGTGCCTG ACCCGCTACT ACTCGAGCTC CATTAATCTA GAGAAAGATC TGGCTTCGGG ACTCATTGGC CCTCTCCTCA TCTGCTACAA AGAATCTGTA GACCAAAGAG GAAACCAGAT GATGTCAGAC AAGAGAAACG TCATCCTGTT TAAGCACCCT AAGACGTGGG TGCACTACAT CTCTGCAGAG GAGGAGGACT GGGACTACGC CCCCGCGGTC CCCAGCCCCA GTGACAGAAG TTATAAAAGT CTCTACTTGA ACAGTGGTCC TCAGCGAATT GGTAGGAAAT ACAAAAAGC TCGATTCGTC GCTTACACGG ATGTAACATT TAAGACTCGT AAAGCTATTC CGTATGAATC AGGAATCCTG GGACCTTTAC TTTATGGAGA

1130		AGTGCGAGCA	AAGACCCCCT	CATTGAACCC AGAAGCTTTG CCCAGAATTC AAGACCCCCT AGTGCGAGCA	AGAAGCTTTG	CATTGAACCC
1080	GAAAGAATGT	TTGCTGAGTG	TCCAGGCTTC	TGATTATTAT GACAACACTT ATGAAGATAT TCCAGGCTTC TTGCTGAGTG GAAAGAATGT	GACAACACTT	TGATTATTAT
1020	GGGACATTGG	AGTTGTGACA	GAAGGTGTAT	CTTGCGGAAC AGAGGGATGA CAGCCTTACT GAAGGTGTAT AGTTGTGACA GGGACATTGG	AGAGGGATGA	CTTGCGGAAC
096	ACAACTCAGA	CTAGGGTGCC	TCTCTGGGTC	AACGGTCTTC ATGTCAATGG AAAACCCAGG TCTCTGGGTC CTAGGGTGCC ACAACTCAGA	ATGTCAATGG	AACGGTCTTC
900	TCTCAGGAGA	CTGTTCCCCT	CACACTCACC	CACCTTCAAA CACAAAATGG TCTATGAAGA CACACTCACC CTGTTCCCCT TCTCAGGAGA	CACAAAATGG	CACCTTCAAA
840	TCTCTGGCTA	TCCGTCTTCT	GGACTTCCTC	CTGGTACATT CTAAGTGTTG GAGCACAGAC GGACTTCCTC TCCGTCTTCT TCTCTGGCTA	CTAAGTGTTG	CTGGTACATT
780	AGGTGGCATA	TGTTTGCACG	GCTGTCGGTT	CATCAATGGC TATGTTTTG ATAGCTTGCA GCTGTCGGTT TGTTTGCACG AGGTGGCATA	TATGTTTTTG	CATCAATGGC
720	TCATGCACAG	GCTTCTAACA	AGAGTTCCAA	CAATCCGGAT GGATTACAGC CCCAGGATCC AGAGTTCCAA GCTTCTAACA TCATGCACAG	GGATTACAGC	CAATCCGGAT
099	TTCTGTATTC GATGAGAATC AAAGCTGGTA CCTCGCAGAG AATATTCAGC GCTTCCTCCC	AATATTCAGC	CCTCGCAGAG	AAAGCTGGTA	GATGAGAATC	TTCTGTATTC

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 368 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Porcine

(F) TISSUE TYPE: Spleen

(ix) FEATURE:

(A) NAME/KEY: Protein

(B) LOCATION: 1..368

(D) OTHER INFORMATION: /note= "Predicted amino acid

sequence of the porcine factor VIII A2 domain, defined as residues homologous to human factor

VIII amino acid sequence 373-740. (Residues 1-4 are from known porcine amino acid sequence.)

i) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ala Tyr Ile Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His

Ser Pro Ser Pro Trp Asp Tyr Ala Pro Ala Val 25 Glu Asp Glu Glu

Ser Tyr Lys Ser Leu Tyr Leu Asn Ser Gly Pro Gln Arg 1le Gly 45 Arg

Phe Thr Asp Val Thr Tyr Arg Phe Val Ala Tyr Lys Lys Ala Lys Arg

Len 80 Pro Leu Gly Gly Ile 75 Thr Arg Lys Ala Ile Pro Tyr Glu Ser 70 Lys

Lys Asn Lys Phe Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile 85 Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile Thr Asp Val 100

Asp	Thr	Tyr 160	Ile	Asn	Asp	Pro	Asn 240	Ser	Ala	His	Glu
Lys	Val	Arg	Leu 175	Gly	Phe	ren	Ser	Leu :	С1у 1	Lys F	слу с
Leu	Thr	Thr	Gly	Arg 190	Val	Phe	Ala	Gln	Val 270	Phe	Ser (
His 125	Trp	Leu	Ser	Gln	Ser 205	Arg	Gln	Leu	Ser	Thr 285	Phe
Lys	Lys 140	Суs	Ala	Asp	Phe	Gln 220	Phe	Ser	Leu	Tyr	Pro 300
Lys Gly Trp	Tyr	Arg 155	Leu	Val	Leu	Ile	Glu 235	Asp	Ile	сιу	Phe
G13	Lys	Pro	Asp 170	Ser	Ile	Asn	Pro	Phe 250	Tyr	Ser	
	Phe	Asp	Lys	Glu 185	Val	Glu		Val	Trp 265	Phe	ľhr
Leu 120	Thr	Ser	Glu	Lys	Asn 200	Ala	Pro Gln Asp	Tyr	Tyr	Phe 280	Leu Thr Leu
Leu	Glu 135	Lys	Leu	Tyr	Arg	Leu 215	Pro	Gly	Ala	Val	Thr 295
Gly Arg	Gly	Thr 150	Asn	Cys	Lys	Tyr	Gln 230	Asn	Val	Ser	Asp
	Pro	Pro	11e 165	Ile	Asp	Trp	Leu	Ile 245	Glu	Leu	G1u /
Pro	Leu	Glγ	Ser	Leu 180	Ser	Ser	б1у	Ser	His 260	Phe	Tyr (
His 115	Ile	Asp	Ser	Leu	Met 195	Gln	Asp	His	Leu	Asp 275	Val
Leu	Pro 130	Glu	Ser	Pro	Met	Asn 210	Pro	Met	Cys	Thr	Met 290
Ala	Met	Val 145	Tyr	Gly	Gln	Glu	Asn 225	Ile	Val	Gln '	Lys

ŗ

14 <u>1</u>

Ì.,

Asp Ile Pro Gly Phe Leu Leu Ser Gly Lys Asn Val Ile Glu Pro Arg 360 Tyr Ser Cys Asp Arg Asp Ile Gly Asp Tyr Tyr Asp Asn Thr Tyr Glu 340 Met Glu Asn Pro Gly Leu Trp Val Leu Gly Cys 310Val His Asn Ser Asp Leu Arg Asn Arg Gly Met Thr Ala Leu Leu Lys 335 Thr Val Phe Met Ser 305

(2) INFORMATION FOR SEQ ID NO:5:

(A) LENGTH: 7493 base pairs SEQUENCE CHARACTERISTICS: (i)

TYPE: nucleic acid STRANDEDNESS: single (B) TYPE: nucleic ac(C) STRANDEDNESS: sin(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA to mRNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(A) ORGANISM: Mus musculus (vi) ORIGINAL SOURCE:

(ix) FEATURE:

(A) NAME/KEY: repeat_unit
(B) LOCATION: 1..407
(D) OTHER INFORMATION: /rpt_type= "terminal"

120

09

/note= "5'UTR"

FEATURE:

(ix)

(A) NAME/KEY: misc feature(B) LOCATION: 7471...7476

9

OTHER INFORMATION: /function= "PolyA_signal"

FEATURE: (ix)

(A) NAME/KEY: repeat unit (B) LOCATION: 7368..7493 <u>e</u> e

OTHER INFORMATION: /rpt_type= "terminal"

/note= "3'UTR"

FEATURE: (ix)

(A) NAME/KEY: misc_feature(B) LOCATION: 408..7367(D) OTHER INFORMATION: /brc

OTHER INFORMATION: /product= "Coagulation Factor VIII"

PUBLICATION INFORMATION: $\widetilde{\mathbf{x}}$

(A) AUTHORS: Elder, F.

Lakich, D.

Gitschier, J

TITLE: Sequence of the Murine Factor VIII cDNA. JOURNAL: Genomics

(C)

VOLUME: 16

PAGES: 374-379 DATE: 1993

RELEVANT RESIDUES IN SEQ ID NO:5: FROM 1 TO 7476 (G.E.O.X

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TCTAGAGTTT CTTTGCTACA GGTACCAAGG AACAGTCTTT TAGAATAGGC TAGGAATTTA

AATACACCTG AACGCCCCTC CTCAGTATTC TGTTCCTTTT CTTAAGGATT CAAACTTGTT

89

1200 1020 1080 1140 840 900 960 720 780 009 999 360 420 480 540 300 180 240 CTTCCAGGTC GICCAATGGC CTCTGACCCT CCATGTCTCA CTTACTCATA TATGTCTCAT GTGGATCTGG TTTGATGAAG CTTATACACA GTCTATGGAT TCTGCATCTG TTTCCCTGGT GAAAGTCATA CTTATGTTTG GCAAGTCCTG AAAGAGAATG CTCATTGGAG CTCTGCTAGT ATGTAAAGAA GGCAGTCTCT ACTGGAAAGC TTCTGAGGGA GATGAATATG AAGATCAGAC AAGCCAAATG GAGAAGGAAG ACCTTGGTGC AGTGGAATTG TCCTGGAACT ATATTCAGAG TGATCTGCTC AGTGTGCTGC CTAGGTCCTA CCATTTGGAC TGAGGTTCAT GACACAGTGG TAAAAACATG GCTTCTCATC CTGTCAGTCT TCATGCTGTT GGTGTGTCCT CAAATAGCAC AGAAGATACT CCTAGAATGT CAACATCTTT TCCATTCAAC ACCTCCATCA GCCAAGCCCA AGGATGCACC CAGCAGGAAA TGGGTTAAGC CTTAGCTCAG CCACTCTTCC TATTCCAGTT TTTTGTGCTA TTAGAGAAGA CACTCACAGT AGATAAACTT CCAGAAAATC CTCTGCAAAA TATTTAGGAC CCAAAGAAAG AACACAGATG TTGTACCAAT TTGTACTGCT TTTTGCTGTA CTAGAGACTG GCCTAAAATG CACACAGTCA ATGGCTATGT AAACAGGTCT ATCATTACAT TTCTTTTGT TCTTAAAAGC TAAAGTTATT GITAAAIITI CAITICITIA GITGAACAIT ITCTAGIAAI AAAAGCCATG CTTCTTCTG AGCCTTTTCA ATTTCTGCTC TAGTGCCATC GACTGTGTTT GTAGAGTACA AGGACCAGCT TTTCAACATT TTCAGATCTG TTCCTGTGCC TGCTTCCTAC TACCCAAAAG GAAGTAATCC GGAAGAGCTG GCACTCAGAA ACAAACGACT TGAAAGATTT GAATTCAGGC AAGATTTCTT GGCCACCCTG GATGGGTTTG ATGATAAAGT TCATTACACT ATACAGACTC TGTATAAAA ATGCTACTTT TTTTTACTAA TCTTCGCTTG

1260	1320	1380	1440	1500	1560	1620	1680	1740	1800	1860	1920	1980	2040	2100	2160	2220	2280
ACCACTCCTG	CGTCAAGCTT	GATCTTGGGC	GCTTATGTCA	GAGGAAATGG	TATGACAGCT	ATACATTATA	GATAATGGAA	TATAAAAAAG	CAGCATGAAT	ATTATTTTA	GTCAGTCCTC	ATTCATCCAG	AAATCAGATC	CTAGCTTCAG	GGAAACCAGA	CAAAGCTGGT	CCCCAGGACC
TGATTGGATG CCATAGGAAA TCAGTCTACT GGCACGTGAT TGGAATGGGC ACCACTCCTG	AATATTCCTC GAAGGTCACA CATTTTTGT GAGGAACCAC CGTCAAGCTT	ATCACCAATA ACTTTCCTTA CTGCTCAAAC ACTCTTGATA GATCTTGGGC	AGTTCCTACT ATTTTGTCAT ATCTCTTCCC ATAAACATGA TGGCATGGAA GCTTATGTCA	AAGTAGATAG CTGCCCTGAG GAATCCCAAT GGCAAAAGAA AAATAATAAT	AAGATTATGA TGATGATCTT TATTCAGAAA TGGATATGTT CACATTGGAT	CTCCTTTTAT CCAAATTCGC TCGGTTGCTA AAAAGTACCC TAAAACTTGG ATACATTATA	CACCTTCAGT TCCTACCTCG GATAATGGAA	CTCATCGGAT TGGTAGGAAA TATAAAAAA		CACACTGTTG	AGAATCAAGC AAGCCGACCA TATAACATTT ACCCTCATGG AATCACTGAT GTCAGTCCTC	TACATGCAAG GAGATTGCCA AGAGGTATAA AGCACGTGAA GGATTTGCCA ATTCATCCAG	GAGAGATATT CAAGTACAAG TGGACAGTTA CAGTAGAAGA TGGACCAACT AAATCAGATC	CACGGTGCCT GACCCGCTAT TATTCAAGTT TCATTAACCC TGAGAGAGAT CTAGCTTCAG	GACTGATTGG CCCTCTTCTC ATCTGCTACA AAGAATCTGT AGATCAAAGG GGAAACCAGA	TGATGTCAGA CAAAAGAAAT GTCATCCTGT TTTCTATATT TGATGAGAAC CAAAGCTGGT	ACATCACAGA GAACATGCAA CGCTTCCTCC CCAATGCAGC TAAAACACAG CCCCAGGACC
GGCACGTGAT	CATTTTTGT	CTGCTCAAAC	ATAAACATGA	GGCAAAAGAA	TGGATATGTT	AAAAGTACCC	CACCTTCAGT	CTCATCGGAT	AGCATACACA GATGAAACCT TTAAGACTCG TGAAACTATT	CAGGACTCTT GGGACCTTTA CTTTATGGAG AAGTTGGAGA CACACTGTTG	ACCCTCATGG	AGCACGTGAA	CAGTAGAAGA	TCATTAACCC	AAGAATCTGT	TTTCTATATT	CCAATGCAGC
TCAGTCTACT	GAAGGTCACA	ACTTTCCTTA	ATCTCTTCCC	GAATCCCAAT	TATTCAGAAA	TCGGTTGCTA	TTTCTGCTGA GGAGGAAGAC TGGGACTATG	CCAGTATCTG AGCAATGGTC	GATGAAACCT	CTTTATGGAG	TATAACATTT	AGAGGTATAA	TGGACAGTTA	TATTCAAGTT	ATCTGCTACA	GTCATCCTGT	CGCTTCCTCC
CCATAGGAAA	AATATTCCTC		ATTTTGTCAT	CTGCCCTGAG	TGATGATCTT	CCAAATTCGC	GGAGGAAGAC		AGCATACACA	GGGACCTTTA	AAGCCGACCA	GAGATTGCCA	CAAGTACAAG	GACCCGCTAT	CCCTCTTCTC	CAAAAGAAAT	GAACATGCAA
TGATTGGATG	AAATACACTC	CATTGGAGAT	AGTTCCTACT	AAGTAGATAG	AAGATTATGA	CTCCTTTTAT	TTTCTGCTGA	GTTATAAAAG	TCAGATTTAT	CAGGACTCTT	AGAATCAAGC	TACATGCAAG	GAGAGATATT	CACGGTGCCT	GACTGATTGG	TGATGTCAGA	ACATCACAGA
-																_	

336	AGAGATAATA	ATTCCAACAT ATTGGATTCA ACTTTAATGT ATAGTCAAGA AAGTTTACCA AGAGATAATA	ATAGTCAAGA	ACTTTAATGT	ATTGGATTCA	ATTCCAACAT
330	GAAAATAGTG	AGAAAGCATA TTCCCTTGTT GGGTCTCATG TACCTTTAAA CGCGAGTGAA GAAAATAGTG	TACCTTTAAA	GGGTCTCATG	Trcccrrgtr	AGAAAGCATA
324	GCATTTGGTA	CAGGATTTCC AGATATGCCA GTTCACTCTA GTAGTAAATT AAGTACTACT GCATTTGGTA	GTAGTAAATT	GTTCACTCTA	AGATATGCCA	CAGGATTTCC
318	ACAGATTCTT	TAATGACTAC AACAATTCTG TCAGACAATT TGAAAGCAAC TTTTGAAAAG ACAGATTCTT	TGAAAGCAAC	TCAGACAATT	AACAATTCTG	TAATGACTAC
312	CCAAGTAATC	CAACTATAGA AGTAAAGTGG AAGAAACTTG GTTTGCAAGT TTCTAGTTTG CCAAGTAATC	GTTTGCAAGT	AAGAAACTTG	AGTAAAGTGG	CAACTATAGA
306	AGTTTGGAGA	AGAAAATAGT ATTTACTCCT CAGCCCGGCC TCCAGTTAAG ATCCAATAAA AGTTTGGAGA	TCCAGTTAAG	CAGCCCGGCC	ATTTACTCCT	AGAAAATAGT
300	CATCACAGTG	TAGACAGCAA TGAAGGCCCA TCTAAAGTGA CCCAACTCAG GCCAGAATCC CATCACAGTG	CCCAACTCAG	TCTAAAGTGA	TGAAGGCCCA	TAGACAGCAA
294(CCAAATGCAA	TATCAGATGG CCAAGAAGCC ATCTATGAGG CTATTCATGA TGATCATTCA CCAAATGCAA	CTATTCATGA	ATCTATGAGG	CCAAGAAGCC	TATCAGATGG
2880	GGCTTATTT	CAGTTAGTGA CATGTTGATG CTCTTGGGAC AGAGTCATCC TACTCCACAT GGCTTATTTT	AGAGTCATCC	CTCTTGGGAC	CATGTTGATG	CAGTTAGTGA
282(CAGAGTGTCT	TGGAGAAGAT TGAGCCTCAG TTTGAAGAGA TAGCAGAGAT GCTTAAAGTA CAGAGTGTCT	TAGCAGAGAT	TTTGAAGAGA	TGAGCCTCAG	TGGAGAAGAT
2760	AAAAATGATA	CAAATCATCC TAATACTAGG AAAAAGAAAT TCAAAGATTC CACAATTCCA AAAAATGATA	TCAAAGATTC	AAAAAGAAAT	TAATACTAGG	CAAATCATCC
2700	TTCCAGAATA	TICCAACACA GITGGIGAAT GAGAACAATG TCATIGATCC CAGAAGCITC ITCCAGAATA	TCATTGATCC	GAGAACAATG	GTTGGTGAAT	TTCCAACACA
2640	TATGAAGATA	TGAAAGTTTC TAGTTGTGAC AAGAGCACTA GTGATTATTA TGAAGAAATA TATGAAGATA	GTGATTATTA	AAGAGCACTA	TAGTTGTGAC	TGAAAGTTTC
2580	ACAGCATTGC	GTCTATGGGT CTTGGGGTGT CATAATTCAG ACTTTCGGAA GAGAGGTATG ACAGCATTGC	ACTTTCGGAA	CATAATTCAG	CTTGGGGTGT	GTCTATGGGT
2520	GAAAACCCAG	ATACACTTAC CCTGTTCCCA TTCTCAGGAG AAACTGTCTT TATGTCGATG GAAAACCCAG	AAACTGTCTT	TTCTCAGGAG	CCTGTTCCCA	ATACACTTAC
2460	GTCTATGAAG	CAGACTICIT ATCTATCTTC TTCTCTGGAT ATACTTTCAA ACACAAAATG GTCTATGAAG	ATACTTTCAA	TTCTCTGGAT	ATCTATCTTC	CAGACTTCTT
2400	GGAGCACAGA	AGTTGACAGT TTGTTTGCAT GAGGTGGCAT ACTGGCACAT TCTCAGTGTT GGAGCACAGA	ACTGGCACAT	GAGGTGGCAT	TTGTTTGCAT	AGTTGACAGT
0 + 0 7	6A1 A6C1 166	CIGGGITCCA GCCCTCCAAC ATCATGCACA GCATCAATGG CTATGITITI GALAGCIIGG	GCATCAATGG	ATCATGCACA	GGCCTCCAAC	CTGGGTTCCA

4440	TCAACACAGT	AIMMACIGI	, , , , , , , , , , , , , , , , , , ,			
				TCAACTCAAT (CTTTGGGACA ATTCAGACTG TCAACTCAAT GGCTTAAAAC CAMAAA GMCM MOLLEN COLLENA	CTTTGGGACA
4380	AGTAAACGGG	PACTCAACGT	AGAATATTAC	CCAAGCCAGA	GAGAAATGGT AAAAAACTAT CCAAGCCAGA AGAATATTAC TACTCAACGT AGTAAACGGG	GAGAAATGGT
4320	AATAAAACCA	AGGCTTGGTA	CAAATTCAGA	GACAAGGAAA	ATTTCTTTAA AAGAAGGAAG GACAAGGAAA CAAATTCAGA AGGCTTGGTA AATAAAACCA	ATTTCTTTAA
4260	CACATGGAGC	AGTACAGATT	CAACAAATAC	ATAAACAATT	TACTTCAAAA CATCACATCA ATAAACAATT CAACAAATAC AGTACAGATT CACATGGAGC	TACTTCAAAA
4200	CATGTACCAG	ATATGAAGTA	ATATAAGTTT	ACTAGGCAAA	AAGACATATT GATACTAGGC ACTAGGCAAA ATATAAGTTT ATATGAAGTA CATGTACCAG	AAGACATATT
4140	AATTTCTTGA	TGGCTCTAAG	ACGAAGCAAC	CCCCAGGTGC	TTGAAGAGAA AGTAGTTTTG CCCCAGGTGC ACGAAGCAAC TGGCTCTAAG AATTTCTTGA	TTGAAGAGAA
4080	GAAGCACTAA	GATAGAGAAG	TTCAGGAAGA	GAAAAAAATA	AAAATGGTAG GCACAATCAA GAAAAAATA TTCAGGAAGA GATAGAGAAG GAAGCACTAA	AAAATGGTAG
4020	AACGTACATG	CACTTTGTCT	TATTTCTTAC	AATATGAGCA	AAGACATGGC TITTCCACAT AATATGAGCA TATTTCTTAC CACTTTGTCT AACGTACATG	AAGACAŢGGC
3960	ATAGGACTTA	TACAAAGAAC	AGGATGGATT	ACAGTAGAAC	TGTCAGAGAA AAATAAAGTC ACAGTAGAAC AGGATGGATT TACAAAGAAC ATAGGACTTA	TGTCAGAGAA
390(CAAAGTTTCT	TGTAAAAAAT	TTAAAAAATA	TATTTAATGT	ATAGTCCAAA GCAATTAGTA TATTTAATGT TTAAAAAATA TGTAAAAAAT CAAAGTTTCT	ATAGTCCAAA
384(GAGCAAGAAC	CTTGAACTCT	GAAATAATTC	AAGACCAATG	AATCTTCAAA TTGGTTTAAA AAGACCAATG GAAATAATTC CTTGAACTCT GAGCAAGAAC	AATCTTCAAA
378(TTCTTGTCAG	CAAGATGTTG	TGCCATTTTC	AATACAATCA	CTATTCCACA AGATGAAGAG AATACAATCA TGCCATTTTC CAAGATGTTG TTCTTGTCAG	CTATTCCACA
372	GATGAAGATC	TCATAGAAAA	AAGACATATT	ACAAAAATA	TGCTAAATAG AACTACCTCA ACAAAAATA AAGACATATT TCATAGAAAA GATGAAGATC	TGCTAAATAG
366	CTAAACCATA	ATATTTGAGA	AAAATTCTAC	CTTTTAGGCA	CTTTGATTCA TGATGGAACA CTTTTAGGCA AAAATTCTAC ATATTTGAGA CTAAACCATA	CTTTGATTCA
360	GAAGTAACAG	TGAGATTCAA	AGGTCAATAG	GCCATATTAA	GTACAACAGA CTTGCAAGAT GCCATATTAA AGGTCAATAG TGAGATTCAA GAAGTAACAG	GTACAACAGA
354	ATTGAGAATA	CCCAACATCA	ACACTGAGAG	GAAAAACTAC	ATAATCATTC AACAACTAAT GAAAAACTAC ACACTGAGAG CCCAACATCA ATTGAGAATA	ATAATCATTC
348	AACAAAACAT	AATGAAAACA	ATGTCTCCTT	TTCAAAGACA	TGACCAAAGA TAATACTTTA TTCAAAGACA ATGTCTCCTT AATGAAAACA AACAAAACAT	TGACCAAAGA
342	ATTGCTTTAT	GTTTCATGGA	GAGAGAAGAG	AGATTACTCA	TATTATCAAT AGAGAATGAT AGATTACTCA GAGAGAGAG GTTTCATGGA ATTGCTTTAT	TATTATCAAT

55	ACATCTCATG	TGGGATGAGT	TCTGGGACTA	CCACTATTT TATTGCAGCT GTGGAACGAC TCTGGGACTA TGGGATGAGT ACATCTCATG	TATTGCAGCT	GGCACTATTT
54	CAGAAAACAA	CAGCTTTCAA	AAGGTCCCCG	ATTTTGACAT TTACAGTGAG GACATAAAGC AAGGTCCCCG CAGCTTTCAA CAGAAAACAA	TTACAGTGAG	ATTTTGACAT
54	ACAATCGAGG	CACCATTGAA	ATGATGCCAT	TTCAATCAGA ACAAGAAGCA ACTGACTATG ATGATGCCAT CACCATTGAA ACAATCGAGG	ACAAGAAGCA	TTCAATCAGA
53	CTTAGTGCTT	TCAAAGGGAA	TGAAACGACA	AAAGGACATG CTCTCAAATC CCACCAGTGT TGAAACGACA TCAAAGGGAA CTTAGTGCTT	CTCTCAAATC	AAAGGACATG
25	GGCCAAACTC	GGTAAAGCAA	AAACCACTTG	CAAATGAGAA ACAAAATTGG CCTCAAAGAG AAACCACTTG GGTAAAGCAA GGCCAAACTC	ACAAAATTGG	CAAATGAGAA
52	TCAATAGGGG	AAACAGTCAT	GGCCTCATGG	TTAAGCAAGA GGACACCATT TTGTCTCTGA GGCCTCATGG AAACAGTCAT TCAATAGGGG	GGACACCATT	TTAAGCAAGA
51(ATTATATCCA	GTCACCAGAA	CCAAAGAGAA	CTGCACAGAT ACCAAAAGAT ATGTGGAAAT CCAAAGAGAA GTCACCAGAA ATTATATCCA	ACCAAAAGAT	CTGCACAGAT
51(TATCATTATG	TGCTTGGGAT	TAAATCATCA	AGAGCTCTAA AAATACTCGC TCAAAACTGC TAAATCATCA TGCTTGGGAT TATCATTATG	AAATACTCGC	AGAGCTCTAA
207	GGTAAAACAG	AAGTATAAAA	GGCATGGAGA	AGGGGCCTAC TAAATGGAAT AAAGCAAAGA GGCATGGAGA AAGTATAAAA GGTAAAAACAG	TAAATGGAAT	AGGGGCCTAC
498	CAGAAAATAC	GGTCTTTCTT	TCATGAAAGA	CTAGCCATGG ATCTCCTGGA CACTTGAATC TCATGAAAGA GGTCTTTCTT CAGAAAATAC	ATCTCCTGGA	CTAGCCATGG
492	CCTACAGAAA	AGAAATTTTA	TTCAAGAGGA	GCAAAATTGA ATTGCTTCCT CAAGTTTCCA TTCAAGAGGA AGAAATTTTA CCTACAGAAA	ATTGCTTCCT	GCAAAATTGA
486	GAAGAATCTG	AACTTTGCCT	TCTTGAAACC	TCACATATAA GAAACGTGAG AACATTATTT TCTTGAAACC AACTTTGCCT GAAGAATCTG	GAAACGTGAG	TCACATATAA
480	ACAAACTCAG	GAAAAGTAAC	CCTCCCCAGG	GGAATATGTT CATAGATCAA GGAAAATTTA CCTCCCCAGG GAAAAGTAAC ACAAACTCAG	CATAGATCAA	GGAATATGTT
474	ATTCTACCAT	TTCTTTAGCC	TAAATAACCC	AAAGCAATAA TTTCTTAAAA GAAACCAAAA TAAATAACCC TTCTTTAGCC ATTCTACCAT	TTTCTTAAAA	AAAGCAATAA
468	AGAATTCAAG	AAAAAGTTCA	ACTTTAAGAC	CTCATGTTCA AGCATCATCC TACATTTATG ACTTTAAGAC AAAAAGTTCA AGAATTCAAG	AGCATCATCC	CTCATGTTCA
462	AACAAATTTT	TCCATTCCAA	TCAAAAGGAG	TAAAAACATC AGCATTTCCA CCAATAGATC TCAAAAGGAG TCCATTCCAA AACAAATTTT	AGCATTTCCA	TAAAAACATC
456	TCACACATTG	TAGTTCTGAC	CTCAGACAAA	TATCAGATTC TTCTGTGATT AAAAGCACCA CTCAGACAAA TAGTTCTGAC TCACACATTG	TTCTGTGATT	TATCAGATTC
) F	AAAICIICCI	GTTCATTACT	AAATGAAAAA	GTATCATTAA ACAGATAGAC CACAGCAAGG AAATGAAAAA GTTCATTACT AAATCTTCAT	ACAGATAGAC	GTATCATTAA

TTCTACGAA	TTCTACGAAA TAGGTATCAA AGTGACAATG TACCTCAGTT CAAGAAAGTA GTTTTCCAGG	AGTGACAATG	TACCTCAGTT	CAAGAAAGTA	GTTTTCCAGG	558(
AATTTACTG	AATTTACTGA TGGCTCCTTT AGTCAGCCCT TATATCGTGG AGAATTAAAT GAACACCTGG	AGTCAGCCCT	TATATCGTGG	AGAATTAAAT	GAACACCTGG	5640
GGTTGTTGG	GGTTGTTGGG CCCATATATA AGAGCAGAAG TTGAAGACAA CATTATGGTA ACTTTCAAAA	AGAGCAGAAG	TTGAAGACAA	CATTATGGTA	ACTTTCAAAA	5700
ACCAGGCCTC	ACCAGGCCTC CCGTCCCTAC TCCTTCTATT CTAGCCTCAT TTCTTATAAA GAAGATCAGA	TCCTTCTATT	CTAGCCTCAT	TTCTTATAAA	GAAGATCAGA	5760
GAGGAGAAGA	GAGGAGAAGA ACCTAGAAGA AACTTTGTCA AGCCTAATGA AACCAAAATT TATTTTTGGA	AACTTTGTCA	AGCCTAATGA	AACCAAAATT	TATTTTGGA	5820
AAGTACAACA	AAGTACAACA TCATATGGCA CCCACAGAAG ATGAGTTTGA CTGCAAGGCC TGGGCTTATT	CCCACAGAAG	ATGAGTTTGA	CTGCAAGGCC	TGGGCTTATT	5880
TCTCTGATGT	TCTCTGATGT TGATCTTGAA AGAGATATGC ACTCGGGATT AATTGGACCC CTTCTGATTT	AGAGATATGC	ACTCGGGATT	AATTGGACCC	CTTCTGATTT	5940
GCCACGCGAA	GCCACGCGAA CACACTGAAT CCTGCTCATG GGAGACAAGT GTCAGTACAG GAATTTGCTC	CCTGCTCATG	GGAGACAAGT	GTCAGTACAG	GAATTTGCTC	9009
TGCTTTTCAC	TGCTTTTCAC TATCTTTGAT GAGACCAAGA GCTGGTACTT CACTGAAAAC GTGAAAAGGA	GAGACCAAGA	GCTGGTACTT	CACTGAAAAC	GTGAAAAGGA	0909
ACTGCAAGAC	ACTGCAAGAC ACCCTGCAAT TTCCAGATGG AAGACCCCAC TTTGAAAGAG AATTATCGCT	TTCCAGATGG	AAGACCCCAC	TTTGAAAGAG	AATTATCGCT	6120
TCCATGCAAT	TCCATGCAAT CAATGGTTAT GTAATGGATA CCCTACCAGG CTTAGTAATG GCTCAAGATC	GTAATGGATA	CCCTACCAGG	CTTAGTAATG	GCTCAAGATC	6180
AAAGGATTCG	AAAGGATTCG ATGGTATCTT CTCAGCATGG GCAACAATGA GAACATCCAA TCTATTCATT	CTCAGCATGG	GCAACAATGA	GAACATCCAA	TCTATTCATT	6240
TCAGTGGACA	TCAGTGGACA TGTTTCACT GTACGGAAAA AAGAGGAGTA TAAAATGGCA GTGTACAACC	GTACGGAAAA	AAGAGGAGTA	TAAAATGGCA	GTGTACAACC	6300
TCTACCCAGG	TCTACCCAGG TGTTTTGAG ACTCTGGAAA TGATACCATC CAGAGCTGGA ATATGGCGAG	ACTCTGGAAA	TGATACCATC	CAGAGCTGGA	ATATGGCGAG	6360
TAGAATGCCT	TAGAATGCCT TATTGGCGAG CACTTACAGG CTGGGATGAG CACTCTTTTT CTGGTGTACA	CACTTACAGG	CTGGGATGAG	CACTCTTTT	CTGGTGTACA	6420
GCAAGCAGTG	GCAAGCAGTG TCAGATTCCT CTTGGAATGG CTTCTGGAAG CATCCGTGAT TTCCAGATTA	CTTGGAATGG	CTTCTGGAAG	CATCCGTGAT	TTCCAGATTA	6480
CAGCTTCAGG	CAGCTTCAGG ACATTATGGA CAGTGGGCCC CAAACCTGGC AAGACTTCAT TATTCCGGAT	CAGTGGGCCC	CAAACCTGGC 1	AAGACTTCAT '	TATTCCGGAT	6540
CAATCAATGC	CAATCAATGC CTGGAGTACC AAGGAGCCCT TTTCTTGGAT CAAGGTAGAT CTGTTGGCAC	AAGGAGCCCT	TTTCTTGGAT (CAAGGTAGAT	CTGTTGGCAC	6600

0999	6720	6780	6840	0069	0969	7020	7080	7140	7200	7260	7320	7380	7440	7493
AGCCTTTATA	TATCAAGGAA	ATTAAGCATA	CATTCTAGCA	AGCATACCAT	TACTTCACCA	AGGACTAATG	CAAAAGACAA	ATGTTTGTGA	TTATACAATG	AATTCTCTAG	CACCAAATTG	AGCCTCTGCA	TGCTGTGAAG	CTT
CAATGATTGT TCATGGCATC AAGACTCAGG GTGCTCGTCA GAAATTTTCC AGCCTTTATA	TCTCTCAATT TATCATCATG TATAGCCTGG ATGGGAAGAA GTGGCTGAGT TATCAAGGAA	ATTCCACTGG AACCTTAATG GTTTTCTTTG GCAATGTGGA CTCATCTGGG ATTAAGCATA	ATAGTTTTAA TCCTCCAATT ATTGCTCGAT ATATCCGTTT GCACCCCACT CATTCTAGCA	TCCGTAGTAC TCTTCGCATG GAGTTGATGG GCTGTGATTT AAACAGTTGC AGCATACCAT	TGGGAATGGA AAGTAAAGTA ATATCAGATA CACAAATCAC TGCCTCATCC TACTTCACCA	ACATGITIGC TACTIGGICI CCTICACAAG CICGACTICA CCTCCAGGGA AGGACTAATG	CCTGGCGACC TCAGGTGAAT GATCCAAAAC AATGGTTGCA AGTGGACTTA CAAAAGACAA	TGAAAGTCAC TGGAATAATA ACCCAGGGAG TGAAATCTCT CTTTACCAGC ATGTTTGTGA	AAGAGTTCCT TATTTCCAGC AGTCAAGATG GCCATCACTG GACTCAAATT TTATACAATG	GCAAGGTAAA GGTTTTTCAG GGGAATCAGG ACTCATCCAC ACCTATGATG AATTCTCTAG	ACCCACCATT ACTCACTCGC TATCTTCGAA TTCACCCCCA GATCTGGGAG CACCAAATTG	CTCTGAGGCT TGAGATTCTA GGATGTGAGG CCCAGCAGCA ATACTGAGGT AGCCTCTGCA	TCACCTGCTT ATTCCCCTTC CTCAGCTCAA AGATTGTCTT AATGTTTTAT TGCTGTGAAG	AGACACTATG ACCATGGCAA CTCTTTATAA AATAAAGCAT TTAATCAGGG CTT
GTGCTCGTCA	ATGGGAAGAA	GCAATGTGGA	ATATCCGTTT	GCTGTGATTT	CACAAATCAC	CTCGACTTCA	AATGGTTGCA	TGAAATCTCT	GCCATCACTG	ACTCATCCAC	TTCACCCCCA	CCCAGCAGCA	AGATTGTCTT	AATAAAGCAT
AAGACTCAGG	TATAGCCTGG	GTTTTCTTTG	ATTGCTCGAT	GAGTTGATGG	ATATCAGATA	CCTTCACAAG	GATCCAAAAC	ACCCAGGGAG	AGTCAAGATG	GGGAATCAGG	TATCTTCGAA	GGATGTGAGG	CTCAGCTCAA	CTCTTTATAA
TCATGGCATC	TATCATCATG	AACCTTAATG	TCCTCCAATT	TCTTCGCATG	AAGTAAAGTA	TACTTGGTCT	TCAGGTGAAT	TGGAATAATA	TATTTCCAGC	GGTTTTTCAG	ACTCACTCGC	TGAGATTCTA	ATTCCCCTTC	ACCATGGCAA
CAATGATTGT	TCTCTCAATT	ATTCCACTGG	ATAGTTTTAA	TCCGTAGTAC	TGGGAATGGA	ACATGTTTGC	CCTGGCGACC	TGAAAGTCAC	AAGAGTTCCT	GCAAGGTAAA	ACCCACCATT	CTCTGAGGCT	TCACCTGCTT	AGACACTATG

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2319 amino acids(B) TYPE: amino acid

- STRANDEDNESS: single <u>()</u>
 - TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (iv) ANTI-SENSE: NO
- (v) FRAGMENT TYPE: N-terminal
- ORIGINAL SOURCE: (vi)
- (A) ORGANISM: Mus musculus
 - PUBLICATION INFORMATION: (A) AUTHORS: Elder, F.

ž

- Lakich, D.
 - Gitschier,

TITLE: Sequence of the Murine Factor VIII cDNA.

- JOURNAL: Genomics
 - VOLUME: 16
- PAGES: 374-379
- RELEVANT RESIDUES IN SEQ ID NO:6: FROM 1 TO 2319 DATE: 1993
- (xi)

Met

- SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Gln Ile Ala Leu Phe Ala Cys Phe Phe Leu Ser Leu Phe Asn Phe Ala Ile Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Ser Ser Cys
- Trp Asn Tyr Ile Gln Ser Asp Leu Leu Ser Val Leu His Thr Asp Ser 35 40

9 7

Met 240

Tyr Thr Gln Ser

Ser 235

Glu Thr Asn Asp

Ser

Gly Lys Ser Trp His 225

Glu

Val Phe Asp

Ala 220

Val Leu Leu Phe

Gln Phe 215

Gln Met Leu Tyr 210

Thr

Lys Glu Arg

Ser 205

Leu

Lys Glu Gly Ser 200

Gly Ala Leu Leu Val Cys 195 •

Val 160 Tyr Leu Glu Ile Ala Trp Lys Ala Ile Asn 80 Gln Met Glu Lys Met Met Tyr Lys Lys Thr Val Phe Val Glu Tyr Lys Asp Gln Leu Phe 65 Ser Thr 95 Tyr Val Trp Asp Pro Pro Cys Leu 170 Ser 190 Ser Thr Ser Phe Pro Phe Asn Thr 55 Asn 110 Gly Leu Leu Gly Pro Asn Tyr 125 Trp Thr Glu Val His Asp Thr Val Val Ile Thr Leu Lys Gln 140 Ser His Val Asp Leu Val Lys Asp Leu 180 Ser His Pro Val Ser Leu His Ala Val Gly Val Ser 120 Thr 155 Glu Gly Asp Glu Tyr Glu Asp Gln Thr Ser 130 Ser His Ser Ile Ala Lys Pro Arg Pro Pro Trp Met 85 105 Asp Asp Lys Val Phe Pro Gly Glu 145 Glu Asn Gly Pro Met Ala 165 Arg Phe Leu Pro Arg Met 50 Tyr Met Leu Lys Ser 65

98

Gly	Ser	Ser	Ala	Leu 320	Lys	Glu	Asp	Ser	Thr 400	Pro	Ser
Asn 255	Lys	His	Gln	Leu	His 335	Glu	Tyr	Asp	Lys	Ala 415	Leu
Val	Arg 270	Ile	Arg	Thr	Ser	Pro 350	Asp	Tyr	Pro	Tyr	Tyr 430
His Thr	His	G1u 285	His	Gln	Ser	Cys	G1u 365	Asp	Tyr	Asp'	Gln 3
His	Суs	Pro	Asn 300	Ala	Ile	Ser	Met	Leu 380	Lys '	Trp /	Ser (
Met	б1у	Thr	Arg	Thr 315	His		Glu	Thr	Lys 395	Asp '	Lys s
Lys 250	Ile	Thr	Val	Leu	Cys 330	Val Asp		Phe	Ala	Glu ,	Tyr]
Pro	Leu 265	$_{\mathrm{G1y}}$	Phe	Phe	Phe	Lys 345	Asn Glu	Met	Val	Glu (Ser 7
Asp Trp	Gly	Met 280	Phe	Thr	Leu	Val	Asn 360	Asp	Ser	Glu (61у ;
Asp	Pro	Gly	Thr 295	Ile	Leu	Tyr	Asn	Met 375	Arg	Ala	Asn (
Arg	Leu	Ile	His	Pro 310	Phe	Ala	Lys	Glu	Ile 390	Ser	Asp /
Ala 245	Ser	Val	Gly	Ser	Gln 325	Glu	Lys	Ser	Gln	Ile :	Ser 1
Ser	Arg 260	His	G1u	Ile	Gly	Met 340	Gln	Tyr	Ile	Tyr	Thr 9
Ala	Asn	Trp 275	Leu	Glu	Leu	Gly	Trp 355	Leu	Phe	His	Pro 7
Ser	Val	Tyr	Phe 290	Leu	Asp	Asp	Gln	Asp 370	Pro	Ile	Val
Asp	Tyr	Val	Ile	Ser 305	Ile	His	Ser	Asp	Ser 385	Trp	Ser

Ile	Glu	Leu 480	Pro	<u>ئ</u>	Phe	ď	6.0	a a	7	ŋ	d:
				Arg		Asp	Arg 560	Glu	Val	Glu	Asp
Phe	His	Thr	Tyr 495	Pro	Ile	Ser	Glu	Lys 575	Asn	Thr	Gln
Arg	Gln	Asp	Ile	Leu 510	Glu	Lys	Pro	Tyr	Arg 590	Ile	Pro
Val 445	Ile	Gly	Asn	Arg	G1y 525	Thr	Asn	Cys	Lys	Tyr 605	Gln
Lys	Thr 460	Val	Tyr	Arg	Pro	Pro 540	Ile	Ile	Asp	Trp	Thr 620
Lys	Glu	Glu 475	Pro	Ala	His	б1у	Phe 555	Leu	Ser	Ser	Lys
Tyr	Arg	Gly	Arg 490	His	Ile	Asp	Ser	Leu 570	Met	Gln	Ala
Lys Tyr	Thr	Tyr	Ser	Leu 505	Pro	Glu	Ser	Pro	Met 585	Asn	Ala
Gly Arg 1	Lys	ren	Ala	Pro	Leu 520	Val	Tyr	Gly	Gln	Glu 600	Asn
Gly	Phe 455	Leu	Gln	Ser	Asp	Thr 535	Tyr	Ile	Asn	Asp	Pro 615
Ile	Thr	Pro 470	Asn	Val	Lys	Val	Arg 550	Leu	Arg Gly	Phe	Leu
His Arg	Glu	Gly	Lys 485	Asp	Val	Thr	Thr	G1y 565	Arg	Ile	Phe
His	Asp Glu	Leu	Phe	Thr 500	His	Trp	Leu	Ser	Gln 580	Ser	Arg
Pro 435	Thr	ren	Ile	Ile	Lys 515	Lys	Cys	Ala	Asp	Phe 595	Gln
б1у	Tyr 450	Gly	Ile	Gly	Ile	Tyr 530	Arg	Leu	Val	Leu	Met 610
Asn	Ala	Ser 465	Leu	His	Gly	Lys	Pro 545	Asp	Ser	Ile	Asn

Val 640	Trp	Phe	Thr	Pro	G1y 720	Asp	Glu	Pro	Asp	Lys 800	Ser
Tyr	Tyr 655	Phe	Leu	Asn	Arg	Ser 735	Asn	His	Asn	Len	Gln 8 815
G1y	Ala	11e 670	Thr	Glu	Lys	Thr	Val 750	Asn	Lys	Met]	G1y 6
Asn	Val	Ser	Asp 685	Met	Arg	Ser	ren	Thr 765	Pro	Glu 1	ren (
. Ile	Glu	Leu	Glu	Ser 700	Phe	Lys	Gln	Asn	Ile 780	Ala	Leu Leu
Ser 635	His	Phe	Tyr	Met	Asp 715	Asp	Thr	Gln	Thr	Ile 795	Met]
His	Leu 650	Asp	Val	Phe	Ser	Cys 730	Pro	Phe	Ser	Glu	Leu P 810
Ile Met	cys	Thr 665	Met	Val	Asn	Ser	Ile 745	Phe	Asp	Glu (Met]
ı Ile	Val	Gln	Lys 680	Thr	His	Ser	Asp	Ser 760	Lys	Phe	Asp 1
Asn	Thr	Ala	His	G1u 695	Cys	Val	Glu		Phe 775	Gln	Ser
Ser 630	Leu	Gly	Lys	G1y	G1y 710	Lys	Tyr	Pro Arg	Lys	Pro 790	Val
Ala	Glu 645	Val	Phe	Ser	Leu	Leu 725	Ile	Asp	Lys	Glu	Ser 805
Gln	Leu	Ser 660	Thr	Phe	Val	Leu	Glu 740	Ile	Lys	Ile	Val :
Phe	Ser	Leu	Tyr 675	Pro	Trp	Ala	Glu'	Val 755	Arg	Lys	Ser
Gly	Asp	Ile	Gly	Phe 690	Leu	Thr	Tyr	Asn	Thr 770	Glu	Gln :
Pro 625	Phe	His	Ser	Leu	G1y 705	Met	Tyr	Asn	Asn	Met 785	Val (

His Pro Thr Pro His Gly Leu Phe Leu Ser Asp Gly Glu Glu Ala Ile Ryc Glu Ala Ile His Asp Asp His Ser Pro Asn Ala Ile Asp Ser Asn Ryc Glu Gly Pro Ser Lys Val Thr Gln Leu Arg Pro Glu Ser His His Ser Glu Lys Ile Val Phe Thr Pro Gln Pro Gly Leu Gln Leu Arg Ser Asn Ryc Glu Lys Ile Val Phe Thr Thr Ile Glu Val Lys Trp Lys Lys Leu Gly Leu Ryc Ser Leu Glu Thr Thr Ile Glu Val Lys Trp Lys Lys Leu Gly Leu Ryc Asp Asn Leu Lys Ala Thr Phe Glu Lys Thr Asp Ser Ser Gly Phe Pro Ryc Asp Met Pro Val His Ser Ser Ser Lys Leu Ser Thr Thr Ala Phe Gly Ryc Lys Lys Ala Tyr Ser Leu Val Gly Ser His Val Pro Leu Asn Ala Ser Ryc Glu Glu Ser Leu Wal Gly Ser His Val Pro Leu Asn Ala Ser Ryc Glu Glu Ser Leu Wal Ser Asn Ile Leu Asp Ser Thr Leu Met Tyr Ser Ryc Glu Glu Ser Leu Wal Ryc Ash Ile Leu Asp Ser Thr Leu Met Tyr Ser Ryc Glu Glu Ser Leu Pro Arg Asp Asn Ile Leu Ser Ille Glu Asn Asp Asp Ryc Glu Glu Ser Leu Pro Arg Asp Asn Ile Leu Ser Ille Glu Asn Asp Asp Ryc Glu Glu Ser Leu Pro Arg Asp Asn Ile Leu Ser Ille Glu Asn Asp Asp Ryc Bab												
Pro Thr Pro His Gly Leu Ser Asp Gly Glu Glu Glu Asp Asp His Ser Pro Asp Gly Glu Asp Asp Asp His Ser Pro Asp Asp Asp Asp Asp His Ser Pro Asp Asp <td>Ile</td> <td>Asn</td> <td>Ser</td> <td>Asn 880</td> <td>Leu</td> <td>Ser</td> <td>Pro</td> <td>Gly</td> <td>Ser 960</td> <td>Ser</td> <td>Arg</td> <td>Asp</td>	Ile	Asn	Ser	Asn 880	Leu	Ser	Pro	Gly	Ser 960	Ser	Arg	Asp
Pro Thr Fro His Gly Leu Ser Asp Gly Glu Gly Glu Glu <td>Ala</td> <td>Ser</td> <td>His</td> <td>Ser</td> <td>G1Y 895</td> <td>Leu</td> <td>Phe</td> <td>Phe</td> <td>Ala</td> <td>Tyr 975</td> <td>Asp</td> <td>Lys</td>	Ala	Ser	His	Ser	G1Y 895	Leu	Phe	Phe	Ala	Tyr 975	Asp	Lys
Pro Thr Pro His Asp Asp His Ser Asp Glu Asp Asp <td>Glu 830</td> <td>Asp</td> <td>His</td> <td>Arg</td> <td></td> <td>Ile 910</td> <td>Gly</td> <td>Ala</td> <td>Asn</td> <td>Met</td> <td>Asn 990</td> <td>Thr</td>	Glu 830	Asp	His	Arg		Ile 910	Gly	Ala	Asn	Met	Asn 990	Thr
Pro Thr Pro His Gly Leu Phe Leu Ser Asp Asp Glu Ala 11e His Asp His Ser Pro Asn Gly Pro Ser Lys Val Thr Gln Pro Gln Arg Pro Lys Ile Val Thr Thr Gln Val Lys Thr Asn Leu Pro Ser Asn Leu Met Thr Thr Phe Glu Val Thr Asn Leu Lys Ala Thr Phe Glu Lys Thr Asp Lys Ala Thr Phe Glu Lys Thr Asp Ser Lys Thr Asp Ser Bs Lys Ala Tyr Ser Ser Lys Leu Asp Ser Bs Ser Bs Ser Bs<		Ile 845	Ser	Leu	Lys	Thr	Ser 925	Thr	Leu	Leu	Glu	Leu 1005
Pro Thr Pro His Gly Leu Phe Leu Ser Pro Glu Asp His Ser Pro Gly Bro Bro <td>Gly</td> <td>Ala</td> <td>Glu 860</td> <td>Gln</td> <td>Lys</td> <td>Thr</td> <td>Ser</td> <td>Thr 940</td> <td>Pro</td> <td></td> <td>Ile</td> <td>Leu</td>	Gly	Ala	Glu 860	Gln	Lys	Thr	Ser	Thr 940	Pro		Ile	Leu
Pro Thr Pro His Gly Leu Phe Leu Ser Pro Glu Asp His Ser Pro Gly Bro Bro <td>Asp</td> <td>Asn</td> <td>Pro</td> <td>Leu 875</td> <td>Trp</td> <td>Thr</td> <td>Asp</td> <td>Ser</td> <td>Val 955</td> <td>Ser</td> <td>Ser</td> <td>Ala</td>	Asp	Asn	Pro	Leu 875	Trp	Thr	Asp	Ser	Val 955	Ser	Ser	Ala
Pro Thr Pro His Gly Leu Phe Leu Glu Ala 11e His Asp Asp His Ser Gly Pro Ser Lys Val Thr Gln Leu Ser Leu Thr Thr Gln Val Val Ser Leu Pro Glu Val Met Pro Val Thr Phe Glu Lys 930 Lys Ala Thr Phe Glu Lys 1ys Ala Thr Phe Glu Lys Glu Asn Ser Lys Ser Lys Glu Asn Ser Asn Ile Leu Glu Asn Ser Asn Ile Leu Glu Asn Ser Asn Ile Leu Glu Asn Bso Asn Ile Leu		Pro			Lys 890	Met	Thr	Leu	His	Asp 970	Leu	Ile
Pro Thr Pro His Gly Leu Glu Ala 11e His Asp Asp Gly Pro Ser Lys Val Thr Pro Ser Leu Glu Thr Thr Pro Val Ser Leu Pro Ser 915 Pro Val His Ser Ser 930 Lys Ala Thr Phe 935 Lys Ala Tyr Ser Ser Ser Glu Asn Ser Asn Ser Asn Glu Ser Leu Pro Asn Asn Glu Ser Leu Pro Asn Asp Asp Glu Ser Leu Pro Asp Asp Asp	Leu 825	Ser	Leu	Pro	Val	Leu 905	Lys	Lys	Ser	Leu	Ile 985	Gly
Pro Thr Pro His Gly Leu Glu Ala Ile His Asp Asp Gly Pro Ser Lys Val Thr B50 Lys Val Thr Pro Val Ser Leu Pro Ser 915 Ass Ala Thr Phe 916 Pro Val His Ser Ser 916 Pro Val His Ser Ser 917 Asa Ser Asa Ser Ser 918 Asa Ser Asa Ser Asa Glu Ser Leu Pro Asa Asa Glu Ser Leu Pro Asa Asa Asa Glu Ser Leu Pro Asa Asa Asa Glu Ser Bes Bes Bes Bes Bes	Phe	His 840	Gln	Gln	Glu	Asn	G1u 920	Ser	Gly			His 1000
Pro Thr Pro His Glu Ala 11e His Gly Pro Ser Lys Gly Pro Ser Lys Lys 11e Val Phe Ser Leu Thr Ses Asn Leu Lys Ala Glu Asn Tyr Ser Glu Asn Ser Ses Glu Ser Leu Pro Glu Ser Leu Pro Glu Ser Leu Pro Glu Ser Leu Pro	Leu	Asp	Thr 855	Pro	Ile	Ser		Ser 935	Val	Asn	Asp	Phe
Pro Thr Pro Glu Ala 1le 835 Ile 820 Gly Pro Ser B50 900 Asn Leu Lys Hys Pro Val B50 Val Pro G1u Asn Tyr G1u Asn Ser	Gly	Asp	Val	Thr 870	Thr	Pro	Thr	Ser	Leu 950	Ser		Arg
Pro Thr Glu Ala 835 Gly Pro 850 Lys Ile Val Ser Asn Leu 915 Met Pro 930 Lys Ala Glu Asn Glu Ser	His	His	Lys	Phe	Thr 885	Leu	Ala	His	Ser	Asp 965	Pro	Lys
Pro Glu Gly 850 Lys Ser Val Asn Met 930 Lys	Pro 820	11e	Ser	Val	Glu	Ser 900	Lys	Val	Tyr	Ser	Leu 980	Glu
	Thr	Ala 835	Pro	Ile	Leu	Ser	Leu 915	Pro	Ala	Asn	Ser	Arg 995
His Tyr Tyr Glu 865 Lys Asp Asp Asp Clu Glu Glu Glu	Pro	G1u	G1y 850	Lys	Ser	Val	Asn	Met 930	Lys	Glu	Glu	Leu
	His	Tyr	Glu	G1u 865	Lys	Gln	Asp	Asp	Lys 945	Glu	Gln	Leu

	. 0					0					
Thr	Thr 1040	Val	Leu	Arg	Asp	Met 1120	Asn	ľyr	Lys	ren	ne n
Lys	Pro	Lys 1055	Thr	Asn	G1u	Lys	31y 1135	/al '	31u]	і у і	hr I
Asn	Ser	Leu	G1y 1070	Leu	Asp	Ser	Asn (Jeu 1	ser (le	hr 1
Thr	Glu	Ile	Asp	Met 1085	Lys	Phe :	ľhr 1	ln i	eu 8 165	I us	en T
Lys 1020	Thr	Ala	His	His	Arg	Pro 1	Lys 1) sár	he I	Lys A 1180	he L
Asn Thr Leu Phe Lys Asp Asn Val Ser Leu Met Lys Thr Asn Lys Thr 1010	Tyr Asn His Ser Thr Thr Asn Glu Lys Leu His Thr Glu Ser Pro Thr 1025 104	Ser Ile Glu Asn Ser Thr Thr Asp Leu Gln Asp Ala Ile Leu Lys Val 1050	Ile	Leu Gly Lys Asn Ser Thr Tyr Leu Arg Leu Asn His Met Leu Asn Arg 1075	Thr Ser Thr Lys Asn Lys Asp Ile Phe His Arg Lys Asp Glu Asp 1090	Met F 1115	Lys 1	Leu Asn Ser Glu Gln Glu His Ser Pro Lys Gln Leu Val Tyr 1140	Ser E	thr I	le P
Leu	Leu	Gln 1050	Leu	Leu	Phe	Ile	Phe 1130	Ser	31n 8	he 1	er I
Ser	Lys	Leu	Ala 1065	Arg	Ile	Thr	Trp	His 1145	Asn (31y 1	let s
Val 5	Glu	Asp	Thr	Leu 1080	Asp	Asn	Asn	31u	Lys 7 1160) dsv	Isn N
Asn 101	Asn J	Thr	Val	Tyr	Lys 1095	Glu	Ser	Gln (Val	Gln <i>A</i> 1175	lis /
Asp	Thr 103(Thr	Glu	Thr	Asn	Glu 1110	Ser	Glu (ryr '	31u (Pro F
Lys	Thr	Ser 1049	Gln	Ser	Lys	Asp	Glu 1125	Ser	Lys '	Val (he I
Phe	Ser	Asn	11e 1060	Asn	Thr	Gln	Ser	Asn 1140	Lys	rhr '	Ala 1
Leu	His	Glu	Glu	Lys 1075	Ser	Pro	Leu	Leu	Phe 1155	Val	Yet /
Thr 101	Asn	Ile	Ser	Gly	Thr 1090	Ile	Phe	Ser	Met	Lys 1	Asp 1
Asn	Tyr 1029	Ser	Asn Ser Glu Ile Gln Glu Val Thr Ala Leu Ile His Asp Gly Thr Leu 1060	Leu	Thr	Pro Ile Pro Gln Asp Glu Glu Asn Thr Ile Met Pro Phe Ser Lys Met 1105	Leu Phe Leu Ser Glu Ser Ser Asn Trp Phe Lys Lys Thr Asn Gly Asn 1125	Asn	Leu Met Phe Lys Lys Tyr Val Lys Asn Gln Ser Phe Leu Ser Glu Lys 1155	Asn Lys Val Thr Val Glu Gln Asp Gly Phe Thr Lys Asn Ile Gly Leu 1170	Lys Asp Met Ala Phe Pro His Asn Met Ser Ile Phe Leu Thr Thr Leu
								•		•	

Ser Asn Val His Glu Asn Gly Arg His Asn Gln Glu Lys Asn Ile Gln 1215 1210 1205 Glu Glu Ile Glu Lys Glu Ala Leu Ile Glu Glu Lys Val Val Leu Pro 1230 1225

Gln Val His Glu Ala Thr Gly Ser Lys Asn Phe Leu Lys Asp Ile Leu 1245 1240 1235

Ile Leu Gly Thr Arg Gln Asn Ile Ser Leu Tyr Glu Val His Val Pro 1260 1255

1280 Gln Val Leu Gln Asn Ile Thr Ser Ile Asn Asn Ser Thr Asn Thr Val 1275 1270 1265

Glu His Phe Phe Lys Arg Arg Lys Asp Lys Glu Thr Asn 1290 1285 Ile His Met

Ser Glu Gly Leu Val Asn Lys Thr Arg Glu Met Val Lys Asn Tyr Pro 1305 1300

Gln Gln Lys Asn Ile Thr Thr Gln Arg Ser Lys Arg Ala Leu Gly 1325 1320 1315 Ser

Gln Phe Arg Leu Ser Thr Gln Trp Leu Lys Thr Ile Asn Cys Ser Thr 1330

1360 Gln Ile Asp His Ser Lys Glu Met Lys Lys Phe Ile 1355 1350 Cys Ile Ile Lys

Thr Thr Gln 1375 Ser Val Ile Lys 1370 Ser Leu Ser Asp Ser 1365 Ser Ser Thr Lys

Ala Phe Pro Pro 1390 Thr Asn Ser Ser Asp Ser His Ile Val Lys Thr Ser 1385 1380

Ser Lys Glu Lys Ser Pro Glu Ile Ile

1575

1440 Ser His Val Gln Gln Ser Glu G J u Glu Asn Gln Gly Pro Thr Lys Trp Asn Lys Ala Lys Arg His 1525 1535 Ser Ile Ser Arg Ile Ser Lys Phe Thr Gly Lys Ile 1485 Leu Leu Pro Gln Val Ser Ile Gln Glu Glu Ile Leu Pro Thr Lys Leu Leu Asn His His Ala Trp Asp Tyr His Tyr Ala Ala Gln Ser Pro Gly His Leu Asn Leu Met Lys Glu Val Thr Arg Arg G 1470 Glu Ser Asn Asn Phe Leu Lys Glu Thr Lys Ile Asn Asn Pro Lys Ser Ile Lys Gly Lys Thr Glu Ser Ser Lys Asn Ser S 1420 Pro Phe Gln Asn Lys Phe Pro Trp Asn Met Phe Ile Asp Gln Gly 1445 Ser Val Thr Tyr Lys 1515 Lys Ile Ile Phe Leu Lys Pro Thr Leu Pro Glu Glu Thr Ser Ser Tyr Ile Tyr Asp Phe Lys 1480 Ser 1415 1495 Ser Asn Thr Asn 1430 Ser 1510 Pro Lys Asp Met Trp Lys Ile Asp Leu Lys Arg 1395 1460 Gln Lys Ile Ser His Gly Ala Ile Leu Gly Lys Glu 1425 Ala

6 1

Ile Lys Gln Glu Asp Thr Ile Leu Ser Leu Arg Pro His Gly Asn Ser 1595 1590 1585 Glu Thr 1615 His Ser Ile Gly Ala Asn Glu Lys Gln Asn Trp Pro Gln Arg 1610 1605

Gln Ile Pro 1630 Thr Trp Val Lys Gln Gly Gln Thr Gln Arg Thr Cys Ser 1625 1620

Glu Ala Phe Gln Ser 1645 Pro Val Leu Lys Arg His Gln Arg Glu Leu Ser 1640

Gln Glu Ala Thr Asp Tyr Asp Asp Ala Ile Thr Ile Glu Thr Ile Glu 1660 1650

1680 Phe Ser Ser Glu Asp Ile Lys Gln Gly Pro Arg 1675 1670 Asp Phe Asp Ile Tyr

Leu Trp 1695 Gln Gln Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg 1690 1685

Asp Tyr Gly Met Ser Thr Ser His Val Leu Arg Asn Arg Tyr

1705

1700

Gln Ser

Asp Asn Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp 1720 1715

۴

Glu Leu Asn Glu His Leu 1740 Gly Ser Phe Ser Gln Pro Leu Tyr Arg Gly 1735

1760 Val Glu Asp Asn Ile Met 1755 Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu

Ser Ser Val Thr Phe Lys Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr 1770 1765

1840 Tyr Lys Glu Asp Gln Arg Gly Glu Glu Pro Arg Arg Asn Trp Lys Val Gln His Tyr Ile Gly Cys His Ala Asn Thr Leu Asn Pro Ala His Gly Arg Ile Phe Asp Glu Glu Asp Pro Thr Leu Lys Glu Asn Tyr Arg 1895 Phe His Ala Ile Asn Gly Tyr Val Met Asp Thr Leu Pro Gly Leu Val Ser Met Gly Asn Gly Thr Val Trp Ala Asn Cys Lys Arg Lys Lys Glu Glu Tyr Lys Met Ala Val Tyr Asn Leu Tyr Pro Ser Asp Val Asp Leu Glu Arg Asp Met His Ser Gly Leu Phe ' Cys Lys Ala 1885 Val 1820 Val Gln Glu Phe Ala Leu Leu Phe Thr Ser Trp Tyr Phe Thr Glu Asn Val Lys Arg 1875 Gln Arg Ile Arg Trp Tyr Leu Leu Asn Glu Asn Ile Gln Ser Ile His Phe Ser Gly His 1835 Lys Ile Tyr Phe 1915 1850 Glu Phe Asp 1945 1800 1815 Phe Val Lys Pro Asn Glu Thr 1795 Glu Asp 1830 1910 Pro Cys Asn Phe Gln Met His Met Ala Pro Thr 1925 1780 Ile 1940 Met Ala Gln Asp Ser Pro Leu Leu Ser Leu Ile Thr Lys Gln Val 1825 Phe

Val Phe Glu Thr Leu Glu Met Ile Pro Ser Arg Ala Gly Ile Trp Arg 1980 1975 1970

2000 Len Ser Thr Val Glu Cys Leu Ile Gly Glu His Leu Gln Ala Gly Met 1995 1990

Phe Leu Val Tyr Ser Lys Gln Cys Gln Ile Pro Leu Gly Met Ala Ser 2010

Gly Ser Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly His Tyr Gly Gln 2025

Ser Ile Asn Ala Trp Ala Pro Asn Leu Ala Arg Leu His Tyr Ser Gly 2040 2035 Ala

2080 Pro Met Ile Val His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu 2060 2055 2070 Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly 2090

Lys Lys Trp Leu Ser Tyr Gln Gly Asn Ser Thr Gly Thr Leu Met Val 2105 2100 Ser Gly Ile Lys His Asn Ser Phe Asn Ser Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Ser 2125 2120 Phe Phe Gly Asn Val Asp Ser

2140

2135

2130

2160 Ser lle Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn 2145

Ile Pro Leu Gly Met Glu Ser Lys Val Ile Ser Asp Thr Gln 2165 2175 Ser Cys

Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro 2180 Thr Ala Ile

Gln Ala Arg Leu His Leu Gln Gly Arg Thr Asn Ala Trp Arg Pro

Ser

2205 2200

Gln Val Asn Asp Pro Lys Gln Trp Leu Gln Val Asp Leu Gln Lys Thr Thr Gly Ile Ile Thr Gln Gly Val Lys Ser Leu Phe Thr 2220 2230 Met Lys Val 2210

2240 Ser Met Phe

2225

Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His 2245 Thr Trp

Gln Ile Leu Tyr Asn Gly Lys Val Lys Val Phe Gln Gly 2265 2260 His

Pro Met Met Asn Ser Leu Asp Pro Pro Leu 2280 Thr Ser Asp Ser 2275 Gln Asn

Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ile Trp Glu His Gln Ile 2300 2295 2290

Ala Leu Arg Leu Glu Ile Leu Gly Cys Glu Ala Gln Gln Gln 2315 2310 2305

INFORMATION FOR SEQ ID NO:7: (3)

SEQUENCE CHARACTERISTICS: Œ.

(A) LENGTH: 40 base pairs (B) TYPE: nucleic acid TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CCTTCCTTTA TCCAAATACG TAGATCAAGA GGAAATTGAC

40

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GTAGCGTTGC CAAGAAGCAC CCTAAGACG

(2) INFORMATION FOR SEQ ID NO:9:
(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 37 base pairs (B) TYPE: nucleic acid

59

(ii) MOLECULE TYPE: Other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAAGAGTAGT ACGAGTTATT TCTCTGGGTT CAATGAC

37

(2) INFORMATION FOR SEQ ID NO:10:

(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear SEQUENCE CHARACTERISTICS:

(i)

(ii) MOLECULE TYPE: Other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCTTTATCCA AATACGTAGC GTTTGCCAAG AAG

(2) INFORMATION FOR SEQ ID NO:11:

(A) LENGTH: 19 base pairs (i) SEQUENCE CHARACTERISTICS:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

(ii) MOLECULE TYPE: Other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

STRANDEDNESS: single

<u>@</u>()()

TOPOLOGY: linear

TYPE: nucleic acid

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs

(2) INFORMATION FOR SEQ ID NO:12:

AARCAYCCNA ARACNTGGG

TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear

(ii) MOLECULE TYPE: Other nucleic acid

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCTCGCACTA GGGGGTCTTG AATTC

25

WO 95/24427 PCT/US94/13200

We claim:

5

10

15

20

25

30

35

1. A purified hybrid factor VIII molecule comprising non-human mammalian and human amino acid sequences, wherein the molecule has procoagulant activity in an *in vitro* coagulation assay and wherein the molecule is selected from the group consisting of

human factor VIII in which the light chain or heavy chain of non-porcine, non-mammalian factor VIII is substituted for the corresponding light chain or heavy chain of human factor VIII;

non-porcine, non-mammalian factor VIII in which the light chain or heavy chain of human factor VIII is substituted for the corresponding light chain or heavy chain of non-porcine, non-mammalian factor VIII;

human factor VIII in which one or more non-porcine, non-human mammalian A1, A2, B, A3, C1, or C2 domains is substituted for the corresponding human factor VIII domains;

non-porcine, non-human mammalian factor VIII in which one or more human A1, A2, B, A3, C1, or C2 domains is substituted for the corresponding non-porcine, non-human mammalian factor VIII domains;

human factor VIII in which one or more porcine A1, B, A3, C1, or C2 domains is substituted for the corresponding human factor VIII domains;

porcine factor VIII in which one or more human Al, B, A3, C1, or C2 domains is substituted for the corresponding human factor VIII domains;

human factor VIII in which one or more amino acids unique to non-human mammalian factor VIII is substituted for the corresponding human amino acids; and

non-human mammalian factor VIII in which one or more amino acids unique to human factor VIII

10

15

20 .

25

30

is substituted for the corresponding non-human mammalian amino acids.

- 2. The molecule of claim 1, wherein the hybrid factor VIII has a specific activity greater than 20,000 U/A_{280} protein in aqueous solution when human plasma is used as the standard in a one-stage coagulation assay.
- 3. The molecule of claim 1, wherein the amino acids of one species to be substituted by the corresponding amino acids of the other species form an immunogenic site that reacts with antibodies to human factor VIII inhibiting coagulation activity, and wherein the hybrid factor VIII is less immunoreactive than human factor VIII with the inhibitory antibodies to human factor VIII.
 - 4. The hybrid factor VIII molecule of claim 3, wherein the factor VIII amino acids of one species to be substituted into the other species are selected from the group of amino acids corresponding to porcine amino acid sequence as shown in SEQ ID NO:4 consisting of amino acids 373-540, 373-509, 445-509, 484-509, and 404-509.
 - 5. The molecule of claim 1, wherein the hybrid factor VIII is useful in treating human patients having antibodies to human factor VIII that inhibit coagulation activity.
 - 6. The molecule of claim 1, further comprising clotting factors selected from the group consisting of von Willebrand factor, vitamin K dependent clotting factors, and coagulant tissue factor.
 - 7. The molecul of claim 1, further comprising

10

delivery vehicles.

- 8. The molecule of claim 1 further comprising reagents for determining the presence of antibodies in a patient sample that are immunoreactive with the molecule.
- 9. The hybrid factor VIII molecule of claim 1, wherein the substituted human amino acids are selected from the group of amino acids corresponding to porcine amino acid sequence as shown in SEQ ID NO:4 consisting of amino acids 373-540, 373-509, 445-509, 484-509, and 404-509.
- 10. The hybrid factor VIII molecule of claim 1, wherein the substituted non-porcine, non-human mammalian domain is the A2 domain.
- 11. The hybrid factor VIII molecule of claim 1, wherein the substituted domain or the substituted one or more amino acids contains a determinant of coagulant activity.
- 12. The hybrid factor VIII molecule of claim 1,
 wherein the non-porcine, non-human mammalian
 domains to be substituted for human domains are
 murine, and the non-human mammalian amino acids to
 be substituted for human amino acids are murine or
 porcine.
- 13. A method for manufacture of a medicament for treating human patients with factor VIII deficiency comprising preparing a hybrid factor VIII molecule as defined by any of claims 1 to 12.
- 14. A method of preparing purified hybrid factor VIII, wherein the hybrid factor VIII

10

15

20

25

30

comprises non-porcine, non-human mammalian and human amino acid sequences, comprising the steps of

isolating and purifying one or more domains selected from the group consisting of non-porcine, non-human mammalian A1, A2, B, A3, C1, and C2 and one or more domains selected from the group consisting of human A1, A2, A3, C1, and C2, and

mixing the human and non-porcine, non-human mammalian domains to form the hybrid factor VIII molecule having coagulant activity.

15. The method of claim 20, wherein the human and non-porcine, non-human mammalian factor VIII domains are isolated from human and non-porcine, non-human mammalian plasma.

16. A method of preparing purified hybrid factor VIII, wherein the hybrid factor VIII comprises non-porcine, non-human mammalian and human amino acid sequences, comprising the steps of

expressing recombinant DNA encoding domains selected from the group consisting of A1, A2, B, A3, C1, and C2 domains of non-porcine, non-human mammalian and human factor VIII,

further comprising substituting one or more domains of non-porcine, non-human mammalian factor VIII and human factor VIII.

- 17. The method of claim 22, wherein the domain is A2.
- 18. A method of preparing purified hybrid factor VIII, wherein the hybrid factor VIII comprises non-human mammalian and human amino acid sequences, comprising the steps of

replacing one or more amino acid residues of human factor VIII with one or more amino acid

WO 95/24427 PCT/US94/13200

residues by site-directed mutagenesis of the encoding nucleic acid.

- 19. The method of claim 18 for preparing the hybrid factor VIII molecules of claims 3, 9, and 11.
- 20. The method of claim 18, wherein the amino acids of one species to be substituted by the corresponding amino acids of the other species form an immunogenic site that reacts with antibodies to human factor VIII inhibiting coagulation activity, and wherein the hybrid factor VIII is less immunoreactive than human factor VIII with the inhibitory antibodies to human factor VIII.
- 21. The method of claim 18, wherein the substituted amino acids contains a determinant of coagulant activity.
 - 22. The method of claim 21, wherein the hybrid factor VIII has greater coagulant activity than human factor VIII.
- 23. The method of claim 16 or 18, wherein the non-human mammalian amino acid sequence is murine or porcine.
 - 24. A method of preparing purified hybrid factor VIII, wherein the hybrid factor VIII comprises porcine and human amino acid sequences, comprising the steps of

expressing recombinant DNA encoding domains selected from the group consisting of A1, B, A3, C1, and C2 domains of porcine and human factor VIII,

further comprising substituting one or more

Ð

5

10

15

25

17. 1

5

domains of porcine and human factor VIII.

25. A purified hybrid factor VIII molecule comprising non-human mammalian amino acids of one species and non-human mammalian amino acids of another species, wherein the molecule has procoagulant activity in an in vitro coagulation assay and has reduced immunoreactivity to antibodies directed to human factor VIII.

26. A purified hybrid factor VIII equivalent
molecule comprising hybrid, animal, or human factor
VIII, wherein the molecule has procoagulant
activity in an in vitro coagulation assay, has
reduced immunoreactivity to antibodies directed to
human factor VIII, and contains amino acid sequence
having no known sequence identity to factor VIII.

27. A fusion protein comprising the hybrid factor VIII molecule of claims 1, 3, 9, 11, 25, or 26.

}

FIGURE 1A

Pig	SVAKKHPKTWVHYISAEEEDWDYAPAVPSPBDRSYKSLYLNSGPQRIGRKYKKARFVAYT	432
Hum	> 1	432
Mou	PTSDN	432
Pig	λ	492
Hum	DETEKTREALQHESGILGPLLYGEVGDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLP	492
Mon	DETFKTRETIQHESGLLGPLLYGEVGDTLLIIFKNQASRPYNIYPHGITDVSPLHARRLP	492
Pig	4 KGWKHLKDMPILPGETFKYKWTVTVEDGPTKSDPRCLTRYYSSSINLEKDLASGLIGPLL	552
Hum	KGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPRCLTRYYSSFVNMERDLASGLIGPLL	552
Mon	RGIKHVKDLPIHPGEIFKYKWTVTVEDGPTKSDPRCLTRYYSSFINPERDLASGLIGPLL	552
	S	
Pig	ICYKESVDQRGNQMMSDKRNVILFSVFDENQSWYLAENIQRFLPNPDGLQPQDPEFQASN	612
Hum	ICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAGVQLEDPEFQASN	612
Mon	*********** **************************	612

FIGURE 1B

piq	IMHSINGYVFDSLQLSVCLHEVAYWYILSVGAQTDFLSVFFSGYTFKHKMVYEDTLTLFP	672
64		
Hum	IMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHKMVYEDTLTLFP	672
Mou	************* * ******** * * * * * * *	672
Pig	6 7 FSGETVFMSMENPGLWVLGCHNSDLRNRGMTALLKVYSCDRDIGDYYDNTYEDIPGFLLS	732
Hum	FSGETVFMSMENPGLWILGCHNSDFRNRGMTALLKVSSCDKNTGDXYEDSYEDISAYLLS	732
Mon	**************************************	732
Pig	GKNVIEPR	740
	• • • •	
Hum	KNNAIEPR	740
107	** * * * * * * * * * * * * * * * * * *	740

INTERNATIONAL SEARCH REPORT

Intern at Application No PCT/US 94/13200

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 CO7K14/755 GO1N33/53 A61K38/37 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07K A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO, A, 93 20093 (EMORY UNIVERSITY) 14 1-9, October 1993 11-13, 18-27 Y see the whole document 1-3,5-8, 10-27 Y GENOMICS, 1,3,5-8, vol.16, 1993 10-23, pages 374 - 379 B. ELDER ET AL 'Sequence of the murine 25-27 factor VIII cDNA' cited in the application see the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report . 27 -03- ₁₉₉₅ 15 March 1995 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL · 2280 HV Ripswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax (+31-70) 340-3016 Van der Schaal, C

Form PCT/ISA/210 (second sheet) (July 1992)

. . 3

	non) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
ategory '	Citation of document, and processor	
<u> </u>	THROMBOSIS AND HAEMOSTASIS, vol.69, 1 March 1993 pages 240 - 246	1,2,5-8, 11-16, 19,23-27
	m. SHIMA ET AL 'A factor VIII neutralizing monoclonal antibody and a human inhibitor alloantibody recognizing epitopes in the C2 domain inhibit factor VIII binding to	
	von Willebtand factor and to phophatidylserine' cited in the application	
Y	see the whole document CHEMICAL ABSTRACTS, vol. 111, no. 25, CHEMICAL ABSTRACTS, vol. 111, no. 25,	1,2,5-8, 10-17,
•	18 December 1989, tolumbus, only, abstract no. 230240, D. SCANDELLA ET AL 'Localization of epitopes for human factor VIII inhibitor antibodies by immunoblotting and antibody neutralization'	19,23-27
	page 570; see abstract & BLOOD, vol.74, no.5, 1989 pages 1618 - 1626	:
Y	CHEMICAL ABSTRACTS, vol. 119, no. 25, 20 December 1993, Columbus, Ohio, US;	1,2,5-8, 10-17, 19,23-27
	abstract no. 268801, D. SCANDELLA ET AL 'A recombinant factor VIII A2 domain polypeptide quantitatively neutrilizes human inhibitor antibodies that bind A2' page 782; see abstract & BLOOD, vol.82, no.6, 1993	
	pages 1767 - 17/5	1,2,5-8, 11-16,
P,Y	7 November 1994, Columbus, Onlo, 33, abstract no. 228287, J. GILLES AND J-M. SAINT-REMY 'Healthy J. GILLES AND J-M. SAINT-REMY 'Healthy	19,23-27
	specific anti-idiotypic antibodies page 850; see abstract & J. CLIN. INVEST.,	
	vol.94, no.4, 1994 pages 1496 - 1505	1-9,
P,)	May 1994	11-13, 18-27 1-3,5-8,
Y	see the whole document	10-27
1		

INTERNATIONAL SEARCH REPORT

| intem 11 Application No | PCT/US 94/13200

Patent document cited in search report	Publication date	Patent mem	Publication date	
WO-A-9320093	14-10-93	US-A- AU-B- CA-A- EP-A-	5364771 4279993 2133203 0638088	15-11-94 08-11-93 14-10-93 15-02-95
WO-A-9411503	26-05-94	AU-8-	5298293	08-06-94

Form PCT/ISA/210 (patent family annex) (July 1992)

		K The Control of the	4.3			1
	-1 -42.	***				· · · · · · · · · · · · · · · · · · ·
			•			
in the second se	. **	Jean Jean er 💉		.* , *	а 7° и н н Ду.	