Package 'genius'

October 10, 2017
Title G-Estimation under No-Interaction with Unmeasured Selection
Date 2017-10-10
Version 0.2
Author BaoLuo Sun and Eric Tchetgen Tchetgen
Maintainer BaoLuo Sun <bluosun@gmail.com></bluosun@gmail.com>
Description This package implements the MR GENIUS estimator.
Depends R (>= $3.4.1$)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Imports gmm (>= 1.6-1)
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
Index
genius G-Estimation under No-Interaction with Unmeasured Selection
Description
Implements G-Estimation under No-Interaction with Unmeasured Selection.
Usage
genius(Y, A, G, alpha = 0.05, lower = -10, upper = 10)

2 genius

Arguments

Υ	A numeric vector of outcomes.
A	A numeric vector of exposures (binary values should be coded in 0/1).
G	A numeric matrix of instruments; each column stores values for one instrument (a numeric vector if only a single instrument is available).
alpha	Significance level for confidence interval (default value=0.05).
lower	The lower end point of the causal effect interval to be searched (default value=-10).
upper	The upper end point of the causal effect interval to be searched (default value=10).

Details

This function implements estimation of causal effect under an additive outcome model. The estimator is given in equations (6) and (12) of Tchetgen Tchetgen et al (2017) for single and multiple instruments, respectively. The term E(A|G) is modelled under the logit and identity links for binary and continuous exposure respectively, with a linear predictor consisting of the main effects of all available instruments.

Value

A "genius" object containing the following items:

outcome.

beta.est The point estimate of causal effect of the exposure on the outcome.

beta.var The corresponding estimated variance.

ci The corresponding Wald-type confidence interval at specified significance level.

pval The p-value for two-sided Wald test of null causal effect of the exposure on the

References

Tchetgen Tchetgen, E., Sun, B. and Walter, S. (2017). The GENIUS Approach to Robust Mendelian Randomization Inference. arXiv e-prints.

Examples

```
# the following packages are needed to simulate data
library("msm")
library("MASS")
expit <- function(x) {
    exp(x)/(1+exp(x))
}

### example with binary exposure, all instruments invalid ###
# true causal effect, beta = 1.0
# Number of instruments, nIV = 10
# Y: vector of outcomes
# A: vector of exposures
# G: matrix of instruments, one column per instrument

nIV=10; N=5000; beta=1;
phi=rep(-0.02,nIV); gamma=rep(-0.15,nIV); alpha=rep(-0.5,nIV);
Gn = mvrnorm(N,rep(0,nIV),diag(rep(1,nIV)))</pre>
```

genius 3

```
G = (Gn>0)*1;
U= as.vector(phi%*%t(G))+ rtnorm(n=N,mean=0.35,lower=0.2,upper=0.5);
A = rbinom(N,1,expit(as.vector(gamma%*%t(G)))+U-0.35-as.vector(phi%*%t(G)));
Y = as.vector(alpha%*%t(G)) + beta*A + U + rnorm(N);
genius(Y,A,G);

### example with continous exposure, all instruments invalid ###

nIV=10; N=500; beta=1;
phi=rep(-0.5,nIV); gamma=rep(-2,nIV); alpha=rep(-0.5,nIV);
lambda0=1; lambda1=rep(0.5,nIV);
Gn = mvrnorm(N,rep(0,nIV),diag(rep(1,nIV)))

G = (Gn>0)*1;
U = as.vector(phi%*%t(G))+rnorm(N);
A = as.vector(gamma%*%t(G)) + U + rnorm(N,mean=0,sd=abs(lambda0+as.vector(lambda1%*%t(G))));
Y = as.vector(alpha%*%t(G)) + beta*A + U + rnorm(N);
genius(Y,A,G);
```

Index

genius, 1