

# Permission Revolution

Shubham Agarwal | May 15<sup>th</sup>, 2020 Seminar : Selected Topics in Mobile Security, 2020





# Motivation

# Current Trends in Mobile Ecosystem



- Mobile devices accounted for approx. 52.6% of all Internet traffic (Q4, 2019).
- ➤ Mobile space dominated by Android (approx. 71%).
- Approx. 2.5 Million apps on Google Play Store.
- > 15+ active mobile app stores.



No. of available applications in the Google Play Store between Dec'09 and Mar'20 - Statista

## But, what about user privacy & security?



# Android apps are secretly sharing your data with Facebook

BY ALICIA NEWMAN - FEBRUARY 23, 2020 - 5 MINS READ

# But, what about user privacy & security?



EDITORS' PICK | 129,310 views | Apr 19, 2020, 06:15am EDT

# Hacker Claims Popular Android App Store Breached: Publishes 20 Million User Credentials

# But, what about user privacy & security?



EDITORS' PICK | 935,732 views | May 7, 2020, 05:11am EDT

# Samsung Confirms Critical Security Issue For Millions: Every Galaxy After 2014 Affected

# Today's Topic of Discussion



- Rogue applications which steal privacy-sensitive information from the device - Zhou et al.'11 (TISSA).
- 2. Rogue applications which utilize permission granted to other benign or malicious applications to execute specific security critical operation Bugiel et al.'12 (extended XManDroid).





# Technical Background

#### **Android Software Stack**





# **Android Application Sandbox**



- Application process & its data
  - confined to the sandbox.
- Applications within one sandbox
  - Share UIDs.
  - Signed by same certificate.



Application Sandbox - Higes

#### **Communication Channels**





#### **Android Permissions I**



- > Functionality of applications restricted by *permissions* assigned to it.
- "Principle of Least Privilege".



Android Security Model - Medium

#### **Android Permissions II**



- Different permission groups.
- > Permission Granting Mechanisms:
  - Install-Time.
  - Run-Time (Dynamic).
- Permission Revocation Mechanism.



Permission Granting Scenarios - material.io

#### What's the fuss all about then?



- The app does exactly what it is permitted to, or is at least what it is expected to!
- The concern is the context in which the permission is (ab-)used by the application to process data.
- At times, the applications may even be able to perform operations it isn't permitted to.

# Privilege Escalation Vulnerability I





# Privilege Escalation Vulnerability II









# Privacy Issues with Permissions

## TISSA (Zhou et al.)



#### Research Targets:

- > To allow user to control the flow of private information among untrusted third-party applications.
- To allow user to modify the permission configurations for an application after its installation.

# TISSA - Research Methodology I



#### Proposed Framework:

- > Additional "privacy mode".
- Integration into Android Framework.
- Usability & Backward Compatibility & Performance.

Target: Untrusted 3<sup>rd</sup> party applications.



# TISSA - Research Methodology II





# TISSA - Research Methodology III





Selected Topics in Mobile Security | Permission Revolution | May 15<sup>th</sup>, 2020

#### **TISSA - Evaluation**



- Dataset: 24 Apps Selected from Google Play:
  - Set 1 13 apps already known to leak private data.
  - Set 2 11 randomly selected.
- Target Permission: Device Id, Location, Contacts & Call logs.
- > Two-step process (Set 1):
  - 1. Find privacy-sensitive data flows.
  - 2. Modify privacy-settings to replace the flow with empty/fake data.

#### TISSA - Results



- 14 apps leaked device location.
- 11 apps leaked device identity.
- 6 of them leaked both.
- Performance: negligible overhead.



#### TISSA - Future Works



- Additional contextual information for fine-grained permission control needed (Votipka et al., USENIX'18; Wijesekara et al., USENIX'15).
- Similar personalized privacy assistants & plugins proposed (Liu et al., USENIX'16; Raval et al., MobiSys'19).
- > Runtime evaluation and defense from information stealing (Diamantaris et al., ACM'19).
- Heuristic based privacy templates to store privacy preferences.





# Security Issues with Permissions

# XManDroid (Bugiel et al.)



#### Research Targets:

- To establish a system-centric solution to enforce security policies on inter-process communication:
  - Run-time monitoring
  - Kernel-level MAC
  - Kernel to Middleware Communication.
- With legacy compatibility & negligible performance overhead.

#### XManDroid - Threat Models



I

Known Confused Deputy
Attacks via Direct
Communication
Channel.

#### **Weak Adversary**

Ш

II. + Collision Attack via
Direct Communication
Channel

**Advanced Adversary** 

II.

I. + Unknown Confused Deputy Attacks via Indirect Communication Channel.

#### **Basic Adversary**

IV.

III. + Collision Attack via Indirect Communication Channels.

#### **Strong Adversary**



# XManDroid - Proposed Architecture I





## XManDroid - Proposed Architecture II





#### XManDroid - Evaluation I



- Dataset: 50 3<sup>rd</sup> Party Apps.
- > Testing Mode: Manual.
- Communication Patterns:
  - ICC.
  - Indirect communication channels.

#### **Attack Detection Efficiency:**

- Falsely denied communication.
- Expected result on known cases.
- Sample Applications.

#### XManDroid - Evaluation II



| Type                                       | Calls | Average (ms) | Std. dev.<br>(ms) |  |
|--------------------------------------------|-------|--------------|-------------------|--|
| Original Reference Monitor runtime for ICC |       |              |                   |  |
| system                                     | 11003 | 0.184        | 2.490             |  |
| DecisionEngine overhead for ICC            |       |              |                   |  |
| uncached                                   | 312   | 6.182        | 9.703             |  |
| cached                                     | 10691 | 0.367        | 1.930             |  |
| Intents                                    | 1821  | 8.621        | 29.011            |  |
| DecisionEngine overhead for file read      |       |              |                   |  |
| file read                                  | 389   | 3.320        | 4.088             |  |

**ICC Performance Results** 

| Type       | Average (ms)   | Std. dev.<br>(ms)        |
|------------|----------------|--------------------------|
| Read acce  | ess to System  | <b>Content Providers</b> |
| total numb | er of accesses | : 591                    |
| read       | 10.317         | 41.224                   |
| overhead   | 4.983          | 36.441                   |
| Read acce  | ess to System  | Services                 |
| total numb | er of accesses | :: 87                    |
| read       | 8.578          | 20.241                   |
| overhead   | 0.307          | 0.4318                   |

**System Component Performance Results** 

#### XManDroid - Future Works



- ➤ IPC provenance information to avoid confused-deputy attacks (Bugiel et al., ACSAC'14).
- ➤ Large Scale analysis of malware collusion patterns (Elish et al., IEEE'15).
- Privacy-protecting access control models for apps using SELinux policies (Bugiel et al., USENIX'13; Smalley et al., NDSS'13).
- Inter-process stack inspection to restrict permission usage by third-party libraries (Seo et al., NDSS'16).

  Selected Topics in Mobile Security | Permission Revolution | May 15th, 2020





# Discussion

#### Discussion



- Key Parameter: Usability & False Positives
- User-involvement: key to contextual integrity.
- Performance overhead: During runtime analysis.
- Vetting: Static (at app store) vs Dynamic (at runtime).

# Summary





Selected Topics in Mobile Security | Permission Revolution | May 15<sup>th</sup>, 2020