Mitschrieb Elementare Geometrie

Jens Ochsenmeier

30. November 2017

Inhaltsverzeichnis

1 Einstieg — Metrische Räume • 5 1.1 Vorbemerkungen • 5 1.2 Definitionen zu metrischen Räumen • 5 1.3 Beispiele zu metrischen Räumen • 6 2 Längenmetriken • 9 2.1 Graphen • 9 2.2 Euklidische Metrik • 10 2.3 Sphärische Geometrie • 13 2.4 Wozu sind Metriken gut? • 15 3 Grundbegriffe der allgemeinen Topologie • 17 3.1 Toplogische Räume • 17 3.2 Hausdorffsches Trennungsaxiom • 22 3.3 Stetigkeit • 23 3.4 Zusammenhang • 26 3.5 Kompaktheit • 29 4 Spezielle Klassen von topologischen Räumen • 33 4.1 Übersicht • 33 4.2 Topologische Mannigfaltigkeiten • 33 4.3 Differenzierbare Mannigfaltigkeiten • 35 4.4 Simplizialkomplexe • 42

1

Einstieg — Metrische Räume

1.1 Vorbemerkungen

Inhalt dieser Vorlesung wird sowohl *Stetigkeitsgeometrie* (Topologie) als auch *metrische Geometrie* sein. Die seitlich abgebildeten Objekte sind im Sinne der Stetigkeitsgeometrie "topologisch äquivalent", im Sinne der metrischen Geometrie sind diese allerdings verschieden.

Bemerkung 1 (Kartographieproblem). Ein zentrales Problem der Kartographie ist die *längentreue* Abbildung einer Fläche auf der Weltkugel auf eine Fläche auf Papier. Mithilfe der Differentialgeometrie und der Gauß-Krümmung lässt sich zeigen, dass das nicht möglich ist.

1.2 Definitionen zu metrischen Räumen

Definition 1.1 (Metrik). Sei X eine Menge. Eine Funktion $d: X \times X \to \mathbb{R}_{\geq 0}$ ist eine Metrik (Abstandsfunktion), falls $\forall x, y, z \in X$ gilt:

- 1. Positivität: $d(x, y) = 0 \Leftrightarrow x = y$
- 2. Symmetrie: d(x, y) = d(y, x)
- 3. Dreiecksungleichung: $d(x, z) \le d(x, y) + d(y, z)$

Definition 1.2 (Metrischer Raum). Ein **metrischer Raum** ist ein Paar (X, d) aus einer Menge und einer Metrik auf dieser.

Definition 1.3 (Pseudometrik). Eine **Pseudometrik** erfüllt die gleichen Bedingungen wie eine Metrik, außer $d(x,y) = 0 \Rightarrow x = y$ — die Umkehrung gilt.

Definition 1.4 (Abgeschlossener r-Ball um x). Eine Teilmenge

$$\overline{B_r(x)} \coloneqq \{ y \in X : d(x,y) \le r \}$$

heißt abgeschlossener r-Ball um x.

Definition 1.5 (Abstandserhaltende Abbildung). Sind (X, d_X) und (Y, d_Y) metrische Räume, so heißt eine Abbildung $f: X \to Y$ abstandserhaltend, falls

$$\forall x, y \in X : d_Y(f(x), f(y)) = d_X(x, y).$$

Definition 1.6 (Isometrie). Eine **Isometrie** ist eine bijektive abstandserhaltende Abbildung. Falls eine Isometrie

$$f:(X,d_X)\to (Y,d_Y)$$

existiert, so heißen X und Y isometrisch.

1.3 Beispiele zu metrischen Räumen

Beispiel 1.7 (Triviale Metrik). Menge X,

$$d(x,y) \coloneqq \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases},$$

also lässt mithilfe der **trivialen Metrik** jede Menge zu einem metrischen Raum verwursten.

Beispiel 1.8 (Simple Metriken). Sei $X = \mathbb{R}$.

- $d_1(s, t) := |s t| \text{ ist Metrik.}$
- $d_2(s,t) := \log(|s-t|+1)$ ist Metrik.

Beispiel 1.9 (Euklidische Standardmetrik). $X = \mathbb{R}^n$,

$$d_e(x,y) \coloneqq \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = ||x - y||$$

ist die (euklidische) Standardmetrik auf dem \mathbb{R}^n . Die Dreiecksungleichung folgt aus der Cauchy-Schwarz-Ungleichung².

Bemerkung 2 (aus LA II). Isometrien von (\mathbb{R}^n, d_e) sind Translationen, Rotationen und Spiegelungen.

Beispiel 1.10 (Maximumsmetrik). $X = \mathbb{R}$,

$$d(x,y) \coloneqq \max_{1 \le i \le n} |x_i - y_i|$$

ist Metrik.

Beispiel 1.11 (Standardmetrik und Maximumsmetrik allgemein: Norm). V sei \mathbb{R} -Vektorraum. Eine **Norm** auf V ist eine Abbildung

$$\|\cdot\|:V\to\mathbb{R}_{>0},$$

so dass $\forall v, w \in V, \lambda \in \mathbb{R}$:

- 1. **Definitheit**: $||v|| = 0 \Leftrightarrow v = 0$
- 2. absolute Homogenität: $||\lambda v|| = |\lambda| \cdot ||v||$
- 3. Dreiecksungleichung: $||v + w|| \le ||v|| + ||w||$

Eine Norm definiert eine Metrik durch d(v, w) := ||v - w||.

¹ **Anmerkung**: Wenn d(x,y) eine Metrik ist, so ist auch $\tilde{d}(x,y) \coloneqq \lambda d(x,y)$ mit $\lambda \in \mathbb{R}_{>0}$ eine Metrik.

² Cauchy-Schwarz-Ungleichung: $\langle x, y \rangle \leq ||x|| \cdot ||y|| \quad (x, y \in \mathbb{R})$

1 Einstieg – Metrische Räume

Beispiel 1.12 (Einheitssphäre).

$$S_1^n := \{ x \in \mathbb{R}^{n+1} : ||x|| = 1 \}$$

ist die n-te **Einheitssphäre**.

Auf dieser ist mit

$$d_W(x, y) := \arccos(\langle x, y \rangle)$$

die Winkel-Metrik definiert.

Beispiel 1.13. (Hamming-Metrik) Es ist \mathbb{F}_2 der Körper mit zwei Elementen $\{0,1\}$,

$$X := \mathbb{F}_2^n = \{(f_1, \dots, f_n) : f_i = 0 \lor f_i = 1 \ (i \in 1, \dots, n)\}$$

die Menge der binären Zahlenfolgen der Länge n. Die **Hamming-Metrik** ist definiert als

$$d_H: X \times X \to \mathbb{R}_{>0}, \quad d_H(u, v) = |\{i: u_i \neq v_i\}|.$$

2

Längenmetriken

2.1 Graphen

Definition 2.1 (Graph). Ein **Graph** G = (E, K) besteht aus einer *Ecken*-Menge E und einer Menge von Paaren $\{u, v\}$ $(u, v \in E)$, genannt *Kanten*.

Definition 2.2 (Erreichbarkeit). Seien $p, q \in E$ von G = (E, K). q ist **erreichbar** von p aus, falls ein *Kantenzug* von p nach q existiert.

Definition 2.3 (Zusammenhängend). G = (E, K) heißt **zusammenhängend**, falls alle Ecken von einer beliebigen, festen Ecke aus erreichbar sind.

Ist G ein zusammenhängender Graph, so ist d(p,q) = minimale Kantenzahl eines Kantenzuges von p nach q eine Metrik.

Beispiel 2.4 (Wortmetrik). Sei $\Gamma \coloneqq \langle S \rangle$ vom endlichen Erzeugendensystem S erzeugte Gruppe. Dann:

$$g \in \Gamma \Rightarrow g = s_1 \cdot \dots s_n$$
 (multiplikativ, nicht eindeutig), (2.1)

z.B. $\mathbb{Z} = \langle \pm 1 \rangle$.

Dann lässt sich über die Länge von $g \in \Gamma$ (minimales n in Gleichung 2.1) eine Metrik definieren:

Definition 2.5 (Wortmetrik).

$$d_S(g,k) \coloneqq |g^{-1}k|$$

ist eine Metrik mit

$$d_{s}(kg, kh) = |(kg)^{-1}kh|$$

$$= |g^{-1}\underbrace{k^{-1}k}_{=e}h| = |g^{-1}h|$$

$$= d_{s}(q, h),$$

also ist d_s linksmultiplikativ mit $k \in \Gamma$ und damit eine Isometrie.

Definition 2.6 (Cayley-Graph). Der Cayley-Graph Cay (Γ, S) von Γ bezüglich S ist der Graph G = (E, K) mit

$$E \coloneqq \Gamma, \quad K \coloneqq \{(g, gs) : g \in \Gamma, s \in S\}.$$

Die *Graphen-Metrik* auf Cay(Γ , S) ist isometrisch zur Wortmetrik.

2.2 Euklidische Metrik

Beispiel 2.7 (Euklidische Metrik auf \mathbb{R}^2 als Standardmetrik). Sei

$$c:[a,b] \to \mathbb{R}^2, \quad t \mapsto (x(t),y(t))$$

eine stückweise differenzierbare ¹ Kurve.

Die euklidische Länge von C ist

$$L_{\text{euk}}(c) := \int_{a}^{b} ||C'(t)|| dt \quad \text{(via Polynom-Approximation)}$$
$$= \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt.$$

Beispiel: Geraden-Segment.

$$g:[0,1] \to \mathbb{R}^2, \quad t \mapsto g(t) = (1-t)p + tq.$$

 $^{^1}$ **Hinweis**: Mit differenzierbar ist im Folgenden immer C^{∞} -differenzierbar gemeint, wenn nicht anders angegeben.

Dann:

$$g'(t) = -p + q$$
, $||g'(t)|| = ||p - q||$

und damit

$$\underline{L_{\text{euk}}(g)} = \int_0^1 ||p - q|| dt = ||p - q|| = \underline{d_e(p, q)}.$$

Lemma 2.8 (Unabhängigkeit von L_{euk}).

- 1. $L_{\text{euk}}(c)$ ist unabhängig von Kurvenparametrisierung.
- 2. $L_{\text{euk}}(c)$ ist invariant unter Translationen, Drehungen und Spiegelungen.

Reweis

1. Zu zeigen: Für $c:[a,b] \to \mathbb{R}^2$, $t \mapsto c(t)$ und einen monoton wachsenden Diffeomorphismus $a:[c,d] \to [a,b]$, $s\mapsto t(s)$ gilt:

$$L_{\text{euk}}(c(t(s))) = L_{\text{euk}}(c(t)).$$

Das folgt unmittelbar aus der Substitutionsregel für Integrale:

$$\int_{c}^{d} \left\| \frac{dc}{ds} \right\| ds = \int_{c}^{d} \left\| \frac{d_{c}(t(s))}{dt} \right\| \frac{dt}{ds} ds = \int_{t(c)=a}^{t(d)=b} \left\| \frac{dc}{dt} \right\| dt.$$

2. • Translation.

$$\overline{\operatorname{Für} p = (p_1, \dots, p_n)} \in \mathbb{R}^2 \text{ sei}$$

$$T_p(c(t)) = c(t) + p = (\lambda(t) + p_1, y(t) + p_2)$$

die von p verschobene Kurve. Es gilt

$$(T_p \circ c)(t) = c'(t) \Rightarrow \int_a^b \left\| (T_p \circ c)' \right\| dt = \int_a^b \left\| c' \right\| dt$$

und damit gilt das Lemma für Translationen.

· Drehung.

Für $\vartheta \in [0, 2\pi]$ sei

$$D_{\vartheta} \circ c(t) = \begin{pmatrix} \cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{pmatrix} c(t)$$
$$= (\cos \vartheta x(t) - \sin \vartheta y(t), \sin \vartheta x(t) + \cos \vartheta y(t))$$

die um Winkel ϑ gedrehte Kurve.

Da D_{ϑ} eine orthogonale Abbildung ist, folgt

$$(D_{\vartheta} \circ c(t))' = D_{\vartheta} \cdot c'(t)$$

 $^{^2}$ **Diffeomorphismus**: Bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist.

und damit

$$||(D_{\vartheta} \circ c(t))'|| = ||D_{\vartheta} \cdot c'|| \stackrel{\text{orth.}}{=} ||c'||$$

und damit gilt das Lemma für Drehungen.

 Spiegelungen sind wie Drehungen orthogonal, ihre Invarianz folgt aus der Invarianz der Drehungen.

П

Lemma 2.9 (Geraden sind am kürzesten). Die kürzesten Verbindungskurven zwischen Punkten in \mathbb{R}^2 sind genau die Geradensegmente.

Beweis. Seien $p,q \in \mathbb{R}^2$ beliebig. Durch geeignete Rotation und Translation kann man (p,q) überführen in Punkte in spezieller Lage;

$$p' = (0,0), q' = (0,l).$$

Wegen der Invarianz von $L_{\rm euk}$ ändert sich dabei die Länge entsprechender Verbindungskurven nicht.

Sei jetzt $c(t) \coloneqq (x(t), y(t))$ eine stückweise differenzierbare Kurve zwischen p' und q'. Dann gilt:

$$L_{\text{cuk}}(c) = \int_{a}^{b} \sqrt{(x')^{2} + (y')^{2}} dt \ge \int_{a}^{b} |y'| dt \ge \int_{a}^{b} y'(t) dt = \int_{y(a)=0}^{y(b)=l} dy$$

$$= l.$$

l ist die Länge des Geradensegmentes zwischen p' und q'.

⇒ Infimum der Längenwerte wird angenommen. Eindeutigkeit bleibt zu zeigen.

Gilt für eine Kurve c, dass $L_{\mathrm{euk}}(c) = l$, so hat man in obigen Ungleichungen überall Gleichheit, also insbesondere x'(t) = 0 ($\forall t$), also $x(t) = \mathrm{konstant} = x(0) = 0$ und somit $\tilde{c} = (0, y(t))$. Also ist \tilde{c} auch (parametrisiertes) Geradensegment.

Definition 2.10 (Euklidische Metrik auf \mathbb{R}^2 -Kurven). Für $p,q\in\mathbb{R}^2$ sei $\Omega_{pq}(\mathbb{R}^2)$ die Menge der stetig differenzierbaren Verbindungskurven zwischen p und q. Wir setzen dann:

$$(p,q) = \inf L_{\text{euk}}(c), \quad c \in \Omega_{pq}(\mathbb{R}^2).$$

Satz 2.11 ("Neuer" metrischer \mathbb{R}^2).

$$(\mathbb{R}^2, d_{\mathrm{cuk}})$$

ist ein metrischer Raum und isometrisch zu (\mathbb{R}^2, d_e).

Beweis. Direkter Beweis nach dem Lemma über Geradensegmente. Man hat eine explizite Formel

$$d_{\text{euk}}(p,q) = ||p-q|| = d_e(p,q).$$

Die Identität ist eine Isometrie.

Beweis. Konzeptioneller, allgemeinerer Beweis. Es werden die Metrik-Eigenschaften gezeigt.

· Symmetrie.

Sei

$$\Omega_{pq}(\mathbb{R}^2) \ni c : [a, b] \to \mathbb{R}^2.$$

Idee: Kurve wird rückwärts durchlaufen.

Es ist $d_e = d_{\text{euk}}$, denn ist $\tilde{c}(t) = (a+b-t) \in \Omega_{qp}(\mathbb{R}^2)$ (mit gleicher Länge wie c) und die Abbildung $c \mapsto \tilde{c}$ ist bijektiv. Dann $L(\tilde{c}) = L(c)$, und damit

$$d(q, p) = \inf(L(\tilde{c})) = \inf(L(c)) = d(p, q).$$

Dreiecksungleichung.

Zu zeigen: $d_{\text{euk}}(p,q) \le d_{\text{euk}}(p,r) + d_{\text{euk}}(r,q) \ (\forall p,q,r \in \mathbb{R}^2).$

Verknüpfen von Wegen von p nach r mit solchen von r nach q liefert gewisse — aber i.A. nicht alle — Wege von p nach q:

$$\Omega_{pr} \cup \Omega_{rq} \not\subseteq \Omega_{pq}$$
.

Infimumbildung liefert die Behauptung.

· Positivität.

Zu zeigen: $d_{\text{euk}}(p,q) = 0 \iff p = q$.

- Falls p = q.

Die konstante Kurve $c:[0,1] \to \mathbb{R}^2, t \mapsto c(t) = p$ hat

$$c'(t) = 0 \Rightarrow L_{\text{euk}}(c) = 0 \Rightarrow d_{\text{euk}}(p, p) = 0.$$

- Falls $p \neq q$.

Die kürzeste Kurve ist das Geradensegment³

$$t \mapsto (1-t)p + ta$$

mit der Länge $d_{\text{euk}} = ||p - q|| = 0$.

2.3 Sphärische Geometrie

Beispiel 2.12 (2-dimensionale sphärische Geometrie als Längenraum). Eine 2-dimensionale Sphäre von Radius R in \mathbb{R}^3 ist

$$S_{\mathbb{R}}^2 := \{x \in \mathbb{R}^3 : ||x|| = \mathbb{R}\} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = \mathbb{R}^2\}.$$

 $^{^3}$ **Anmerkung**: nur an dieser Stelle wird die Geometrie des \mathbb{R}^2 benötigt!

Für eine stückweise differenzierbare Kurve

$$c: [a,b] \to S_{\mathbb{R}}^2 \subset \mathbb{R}^3, t \mapsto (x_1(t), x_2(t), x_3(t))$$

definiere die sphärische Länge durch

$$L_S(c) \coloneqq \int_a^b \|c'(t)\| dt = \int_a^b \sqrt{x_1'^2 + x_2'^2 + x_3'^2} dt$$

und

$$d_s(p,q) := \inf L_s(c) \quad (c \in \Omega_{pq}(S_{\mathbb{R}}^2)).$$

Lemma 2.13 (Kurvenlängen rotationsinvariant). Die Länge einer differenzierbaren Kurve auf $S^2_{\mathbb{R}}$ ist invariant unter Rotationen von \mathbb{R}^2 .

Beweis. Eine orthogonale Matrix im \mathbb{R}^2 ist (bzgl. Standardbasis) gegeben durch eine orthogonale Matrix $D \in \mathbb{R}^{2 \times 2}$. Da ||D(x)|| = ||x|| für $x \in \mathbb{R}^3$ gilt, ist $D(S_{\mathbb{R}}^2) = S_{\mathbb{R}}^2$. Insbesondere ist für eine Kurve c in $S_{\mathbb{R}}^2$ auch das Bild $D \circ c \in S_{\mathbb{R}}^2$.

Weiter folgt aus $(D \circ c(t))' = D \circ c'(t)$:

$$L_s(D \circ c) = \int_a^b ||(D \circ c(t))'|| dt = \int_a^b ||D(c'(t))|| dt$$
$$= \int_a^b ||c'(t)|| dt = L_S(c).$$

Lemma 2.14 (Großkreise sind am kürzesten). Die kürzesten Verbindungskurven zwischen zwei Punkten in $S^2_{\mathbb{R}}$ sind **Großkreise**, also Schnitte von $S^2_{\mathbb{R}}$ und zweidimensionalen Untervektorräumen des \mathbb{R}^3 .

Beweis. Seien zwei beliebige Punkte p,q auf $S^2_{\mathbb{R}}$. Dann finden wir eine Rotation von \mathbb{R}^3 , die p auf p'=(0,0,R) — also den "Nordpol" — und q auf $q'=(0,y,z)\in S^2_{\mathbb{R}}$ abbildet. Aufgrund der Rotationsinvarianz der Kurvenlängen und der Definition ist $d_s(p,q)=d_s(p',q')$. Es genügt also eine kürzeste Verbindung zwischen p' und q' zu finden.

Idee: Mittels "geographischer Koordinaten" φ und ϑ . Nun kann eine Verbindung zwischen p' und q' geschrieben werden als

$$c(t) = R(\sin \vartheta(t) \cos \varphi(t), \sin \vartheta(t) \sin \varphi(t), \cos \vartheta(t))$$

und somi

$$c'(t) = (\vartheta'\cos\vartheta\cos\varphi - \varphi'\sin\vartheta\sin\varphi, \,\vartheta'\cos\vartheta\sin\varphi + \varphi'\sin\vartheta\cos\varphi, \, -\vartheta'\sin\vartheta),$$

also

$$||c'(t)|| = R^2(\vartheta'^2 + \varphi'^2 \sin^2 \vartheta)$$

und somit

$$L_s(c) = R \int_a^b \sqrt{\vartheta'^2 + \varphi'^2 \sin^2 \vartheta} dt \ge R \int_a^b \sqrt{\vartheta'^2(t)} dt$$
$$= R \int_a^b |\vartheta'(t)| dt \ge R \int_a^b \vartheta'(t) dt = \int_{\vartheta(a)}^{\vartheta(b)} d\vartheta = R(\vartheta(b) - \vartheta(a))$$

mit oBdA $\vartheta(b) \ge \vartheta(a)$.

Diese untere Schranke wird durch ein Großkreissegment realisiert.

Eine weitere Kurve diese Länge kann es (wieder) nicht geben — man hätte sonst überall Gleichheit in den Ungleichungen, also insbesondere $\varphi'=0$, also wäre φ konstant = $\varphi(a)=\frac{\pi}{2}$. Also liegt die Kurve auf Meridian und ist somit Großkreis.

Satz 2.15 (Infimums- & Winkelmetrik isometrisch). $(S^2_{\mathbb R},d_s)$ ist ein metrischer Raum und isometrisch zu $(S^2_{\mathbb R},R\cdot d_W)$.

Beweis. Analog zu (R^2, d_{euk}) .

2.4 Wozu sind Metriken gut?

Bemerkung 3 (Erinnerung: Konvergenz). In Analysis I heißt eine Folge von reellen Zahlen $(a_n)_{n\in\mathbb{N}}$ konvergent, wenn

$$\exists a \in \mathbb{R} : \forall \varepsilon > 0 \ \exists N = N(\varepsilon) : |a_n - a| < \varepsilon \quad (\forall n \ge N).$$

Bemerkung 4 (Konvergenz in metrischen Räumen). Sei (X,d) metrischer Raum. Eine Folge $(x_n)_{n\in\mathbb{N}}$ aus X heißt **konvergent**, wenn

$$\exists x \in X \forall \varepsilon > 0 \ \exists N = N(\varepsilon) : d(x_n, x) \le \varepsilon \quad (\forall n \ge N).$$

Also $x_n \in B_{\varepsilon}(x) \ (\forall n \ge N)$.

Bemerkung 5 (Erinnerung: Stetigkeit). $f: \mathbb{R} \to \mathbb{R}$ heißt stetig in $t_0 \in \mathbb{R}$ falls

$$\forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0 : |t - t_0| < \delta \Rightarrow |f(t) - f(t_0)| < \varepsilon.$$

f heißt stetig, wenn sie stetig ist $\forall t_0 \in \mathbb{R}$.

Bemerkung 6 (Stetigkeit in metrischen Räumen). Metrische Räume (X, d_X) , (Y, d_Y) . Eine Abbildung $f: X \to Y$ heißt **stetig** in $x_0 \in X$, falls

$$\forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0$$

sodass

$$d_Y(f(x), f(x_0)) < \varepsilon \text{ falls } d_X(x, x_0) < \delta.$$

Also wenn $f(x) \in B_{\varepsilon}^{Y}(f(x))$ falls $x \in B_{\delta}^{X}(x_{0})$. f heißt stetig, falls f stetig ist $\forall x \in X$.

Bemerkung 7 (Grenzwerte für stetige Funktionen).

$$f: X \to Y \text{ stetig} \Rightarrow f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n).$$

Als Übungsaufgabe zu zeigen, der Beweis ist analog zum Beweis in der Analysis. Diese Beobachtung führt historisch (um 1900) durch die Verallgemeinerung metrischer Räume zu topologischen Räume.

Grundbegriffe der allgemeinen Topologie

3.1 Toplogische Räume

Definition 3.1 (Topologischer Raum). Ein **topologischer Raum** ist ein Paar (X, \mathcal{O}) bestehend aus einer Menge X und einem System bzw. einer Familie

$$\mathcal{O} \subseteq \mathcal{P}(X)$$

von Teilmengen von X, so dass gilt

- 1. $X, \emptyset \in \mathcal{O}$
- Durchschnitte von endlich vielen und Vereinigungen von beliebig vielen Mengen aus O sind wieder in O.

Ein solches System $\mathcal O$ heißt Topologie von X. Die Elemente von $\mathcal O$ heißen offene Teilmengen von X.

 $A \subset X$ heißt **abgeschlossen**, falls das Komplement $X \setminus A$ offen ist.

Beispiel 3.2 (Extrembeispiele).

- 1. Menge X, $\mathcal{O}_{\text{trivial}} \coloneqq \{X, \emptyset\}$ ist die **triviale Topologie**.
- 2. Menge X, $\mathcal{O}_{\text{diskret}} \coloneqq \mathcal{P}(X)$ ist die **diskrete Topologie**.

Beispiel 3.3 (Standard-Topologie auf \mathbb{R}). $X = \mathbb{R}$,

$$\mathcal{O}_{s \text{ (standard)}} := \{ I \subset \mathbb{R} : I = \text{Vereinigung von offenen Intervallen} \}$$

ist Topologie auf \mathbb{R} .

Beispiel 3.4 (Zariski-Topologie auf \mathbb{R}). $X = \mathbb{R}$,

$$\mathcal{O}_{\text{Z(ariski)}} := \{ O \subset \mathbb{R} : O = \mathbb{R} \setminus, E \subset \mathbb{R} \text{ endlich} \} \cup \{\emptyset\} \}$$

ist die *Zariski-Topologie* auf \mathbb{R} .

 $\it Mit\ anderen\ Worten$: Die abgeschlossenen Mengen sind genau die endlichen Mengen, $\it \varnothing$ und $\it \R$.

Diese Topologie spielt eine wichtige Rolle in der algebraischen Geometrie beim Betrachten von Nullstellen von Polynomen:

$$(a_1 \dots, a_n) \leftrightarrow p(X) = (X - a_1) \cdots (X - a_n)$$

 $\mathbb{R} \leftrightarrow \text{Nullpolynom}$
 $\emptyset \leftrightarrow X^2 + 1$

Definition 3.5 (Metrischer Raum \rightarrow topologischer Raum). Metrische Räume (z.B. (X, d)) sind topologische Räume:

$$U \subset X$$
 ist **d-offen** $\iff \forall p \in U \exists \varepsilon = \varepsilon(p) > 0$,

sodass der offene Ball $B_{\varepsilon}(p) = \{x \in X : d(x,p) < \varepsilon\}$ um p mit Radius ε ganz in U liegt: $B_{\varepsilon}(p) \subset U$.

Die d-offenen Mengen bilden eine Topologie — die von der Metrik d induzierte Topologie².

Definition 3.6 (Basis). Eine **Basis** für die Topologie \mathcal{O} ist eine Teilmenge $\mathcal{B} \subset \mathcal{O}$, sodass für jede offene Menge $\emptyset \neq V \in \mathcal{O}$ gilt:

$$V = \bigcup_{i \in I} V_i, \quad V_i \in \mathcal{B}.$$

Offenes Intervall: $(a, b) := \{t \in \mathbb{R} : a < t < b\},\$

a und b beliebig

² Übungsaufgabe: Zeigen, dass es sich wirklich um eine Topologie handelt

Beispiel: $\mathcal{B} = \{\text{offene Intervalle}\}\$ für Standard-Topologie auf \mathbb{R} .

Beispiel 3.7 (Komplexität einer Topologie). \mathbb{R} , \mathbb{C} haben eine abzählbare Basis bezüglich Standard-Metrik d(x,y) = |x-y| (beziehungsweise Standard-Topologie): Bälle mit rationalen Radien und rationalen Zentren.

Bemerkung 8 (Gleichheit von Topologien). Verschiedene Metriken können die gleiche Topologie induzieren:

Sind d,d' Metriken auf X und enthält jeder Ball um $x \in X$ bezüglich d einen Ball um x bezüglich d' ($B^d_{\varepsilon'}(x) \subset B^d_{\varepsilon}(x)$), dann ist jede d-offene Menge auch d'-offen und somit $\mathcal{O}(d) \subset \mathcal{O}(d')$.

Gilt auch die Umkehrung ($\mathcal{O}(d') \subset \mathcal{O}(d)$), so sind die Topologien gleich: $\mathcal{O}(d) = \mathcal{O}(d')$.

Beispiel 3.8 (Bälle und Würfel sind gleich). $X = \mathbb{R}^2$, $x = (x_1, x_2)$, $y = (y_1, y_2)$.

$$d(x,y) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2},$$

$$d'(x,y) := \max\{|x_1 - y_1|, |x_2 - y_2|\}.$$

Die induzierten Topologien sind gleich.

Beispiel 3.9 (Metrische Information sagt nichts über Topologie). (X, d) sei ein beliebiger metrischer Raum,

$$d'(x,y) \coloneqq \frac{d(x,y)}{1 + d(x,y)}$$

ist Metrik mit $\mathcal{O}(d) = \mathcal{O}(d')$.

Für d' gilt: $d'(x, y) \le (\forall x, y)$, insbesondere ist der Durchmesser von X bezüglich d':

$$= \sup_{x,y \in X} d'(x,y) \leq 1,$$

das heißt, der Durchmesser eines metrischen Raumes ("metrische Information") sagt nichts über die Topologie aus.

Definition 3.10 (Umgebung). (X, \mathcal{O}) sei ein topologischer Raum. $U \subset X$ heißt **Umgebung** von $A \subset X$, falls

$$\exists O \in \mathcal{O} : A \subset O \subset U$$
.

Definition 3.11 (Innerer und äußerer Punkt). Für $A \subset X$, $p \in X$ heißt p ein **innerer Punkt** von A (bzw. **äußerer Punkt** von A), falls A (bzw. $X \setminus A$) Umgebung von $\{p\}$ ist. Das **Innere** von A ist die Menge A der inneren Punkte von A.

Definition 3.12 (Abgeschlossene Hülle). Die **abgeschlossene Hülle** von A ist die Menge $\overline{A} \subset X$, die <u>nicht</u> <u>äußere Punkte</u> sind.

Beispiel:
$$(a, b) = \{t \in \mathbb{R} : a < t < b\},\$$

 $\overline{(a, b)} = [a, b] = \{t \in \mathbb{R} : a \le t \le b\}.$

Bemerkung 9 (Drei konstruierte topologische Räume). Folgende drei einfache Konstruktionen von neuen topologischen Räumen aus gegebenen:

1. **Teilraum-Topologie**: (X, \mathcal{O}_X) topologischer Raum, $Y \subseteq X$ Teilmenge.

$$\mathcal{O}_{Y} \coloneqq \{U \subseteq Y : \exists \ V \in \mathcal{O}_{X} \land U = V \cap Y\}$$

definiert eine Topologie auf Y, die sogenannte Teilraum-Topologie.3

Achtung! $U \in \mathcal{O}_Y$ ist i.A. <u>nicht</u> offen in X, z.B. $X = \mathbb{R}$, Y = [0,1], V = (-1,2), also $U = V \cap Y = Y$.

2. Produkttopologie: (X, O_X) und (Y, O_Y) zwei topologische Räume. Eine Teilmenge W ⊆ X × Y ist offen in der Produkt-Topologie ⇔ ∀(x, y) ∈ W ∃ Umgebung U von x in X und V von y in Y sodass das "Kästchen" U × V ⊆ W. Achtung! Nicht jede offene Menge in X × Y ist ein Kästchen: die Vereinigung von zwei Kästchen ist beispielsweise auch offen.

Beispiel: $X = \mathbb{R}$ mit Standard-Topologie, dann ist

$$X \times \cdots \times X = \mathbb{R}^n$$

induzierter topologischer Raum.

3. Quotiententopologie: (X, \mathcal{O}) topologischer Raum, ~ Äquivalenzrelation⁴ auf X. Für $x \in X$ sei

$$[x] \coloneqq \{y \in X : y \sim x\}$$

³ Zu überprüfen!

 $^{^4}$ Impliziert Partitionierung von \boldsymbol{X} in disjunkte Teilmengen

die Äquivalenzklasse von x,

$$X/\sim$$

die Menge der Äquivalenzklassen und

$$\pi: X \to X/\sim$$
$$x \mapsto \lceil x \rceil$$

die kanonische Projektion (surjektiv!).

Die Quotienten-Topologie auf X / \sim nutzt:

$$U \subset X/\sim \text{ ist offen } \stackrel{\text{Def.}}{\Leftrightarrow} \pi^{-1}(U) \text{ ist offen in } X.$$

Beispiel: $X = \mathbb{R}$ mit Standard-Topologie (induziert durch Standard-Metrik $d_{\mathbb{R}}(s,t) = |s-t|$).

Seien $s, t \in \mathbb{R}$. Wir definieren

$$s \sim t \stackrel{\mathrm{Def.}}{\Longleftrightarrow} \exists \ m \in \mathbb{Z} : t = s + 2\pi m.$$

Dann ist

$$\mathbb{R}/\sim = S' = \text{Einheitskreis}.$$

Anstatt dies heuristisch auszudrücken kann dies auch explizit getan werden:

$$\mathbb{R} \to S' = \{ z \in \mathbb{C} : |z| = 1 \} = \{ (x, y) \in \mathbb{R} : x^2 + y^2 = 1 \}$$

 $t \mapsto e^{it}$.

Bemerkung: Andere Interpretation via Gruppen-Aktionen.

$$G = (\mathbb{Z}, +)$$
 operiert auf $X = \mathbb{R}$.

 $Bahnen-Raum = \mathbb{R}/\sim mit$

$$\mathbb{Z} \times \mathbb{R} \to \mathbb{R}$$
$$(m, t) \mapsto t + 2\pi m.$$

Die Äquivalenzklasse [t] ist die Bahn von

$$t = \mathbb{Z} \cdot t = \{t + 2\pi m : m \in \mathbb{Z}\},\$$

mehr dazu später.

3.2 Hausdorffsches Trennungsaxiom

Bemerkung 10 (Hausdorffsches Trennungsaxiom T_2). Ein topologischer Raum (X, \mathcal{O}) heißt **hausdorffsch**, falls man zu je zwei verschiedenen Punkten $p, q \in X$ disjunkte Umgebungen finden kann, also Umgebungen $U \ni p$ und $V \ni q$ mit $U \cap V = \emptyset$. Beispiel:

1. Metrische Räume sind hausdorffsch.

```
Beweis. Sei d(p,q) =: \varepsilon. Behauptung: B_{\varepsilon/3}(p) \cap B_{\varepsilon/3}(q) = \emptyset. Sei z in B_{\varepsilon/3}(p) \cap B_{\varepsilon/3}(q). Dann gilt d(p,q) \overset{\triangle\text{-Ugl.}}{\leq} d(p,z) + d(z,q) \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} > \varepsilon \quad \not
```

- (R, O_{standard}) ist hausdorffsch, da die Standard-Topologie von der Metrik induziert wird.
- (ℝ, O_{Zariski}) ist <u>nicht</u> hausdorffsch: offene Mengen sind Komplemente von endlich vielen Punkten, also für p, q ∈ ℝ, p ≠ q:

$$U_p = \mathbb{R} \setminus \{p_1, \dots, p_n\}$$

$$U_q = \mathbb{R} \setminus \{q_1, \dots, q_k\},$$
 also $U_p \cap U_q \neq \emptyset$.

Wichtige Konsequenz von "hausdorffsch": In einem Hausdorff-Raum hat jede Folge höchstens einen Limespunkt/Grenzwert.⁵

Bemerkung 11 (Eigenschaften von Hausdorff-Räumen).

- 1. Jeder Teilraum (mit Teilraum-Topologie) eines Hausdorff-Raumes ist hausdorffsch.
- 2. X,Y Hausdorff-Räume $\Rightarrow X \times Y$ ist Hausdorff-Raum bezüglich Produkt-Topologie.

⁵ Erinnerung: Konvergenz: $(x_n)_{n\in\mathbb{N}}$ ⊂ X (top. Raum). $X\ni a$ heißt Limes um $(x_n)_{n\in\mathbb{N}}$ falls es zu jeder Umgebung U von a ein $n_0\in\mathbb{N}$ gibt, sodass $x_n\in U$ $\forall n\geq n_0$.

3.3 Stetigkeit

Definition 3.13 (Stetigkeit). (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) topologische Räume. Eine Abbildung $f: X \to Y$ heißt **stetig**, falls die Urbilder von offenen Mengen in Y offen sind in X.

Beispiel 3.14 (Einfache Stetigkeiten).

- 1. Id: $X \to X$, $x \mapsto x$ ist stetig.
- 2. Die Komposition von stetigen Abbildungen ist stetig.
- 3. Für $(X, \mathcal{O}) = (\mathbb{R}, \mathcal{O}_{\text{standard}}) = (Y, \mathcal{O}_Y)$ gibt es unendlich viele Beispiele in Analysis I.

Für metrische Räume ist diese Definition äquivalent zur ε - δ -Definition und zur Folgenstetigkeit⁶.

Definition 3.15 (Homöomorphismus).

- Eine bijektive Abbildung $f: X \to Y$ zwischen topologischen Räumen heißt **Homöomorphismus**, falls f und f^{-1} stetig sind.
- X und Y heißen **homöomorph**, falls ein Homöomorphismus $f: X \to Y$ existiert (notiere $X \cong Y$).

Bemerkung 12 (Homöomorphismengruppe).

- $\operatorname{Id}_X:X\to X, x\mapsto x$ ist Homöomorphismus.
- Verkettungen von Homöomorphismen sind wieder Homöomorphismen.
- Inverses eines Homöomorphismus ist ein Homöomorphismus.

Aus diesen drei Punkten folgt, dass die Homöomorphismen eine Gruppe bilden.

Beispiel 3.16 (Einfache Homöomorphismen).

- $[0,1] = \{t \in \mathbb{R} : 0 \le t \le 1\} \cong [a,b] \text{ mit } a < b \in \mathbb{R}$ (via f(t) = a + t(b-a)).
- $(0,1) = \{t \in \mathbb{R} : 0 < t < 1\} \cong (a,b) \text{ mit } a < b \text{ beliebig.}$
- $\mathbb{R} \cong (-1,1) \cong (0,1)$ (z.B. via $t \mapsto \tanh t = \frac{e^{2t}-1}{e^{2t}+1}$).

⁶ Übungsaufgabe!

- Stetig und injektiv, aber <u>kein</u> Homöomorphismus! $f:[0,1)\to S^1, t\mapsto e^{2\pi\mathrm{i}t}=\cos(2\pi t)+\mathrm{i}\sin(2\pi t) \text{ ist stetig, injektiv, aber kein}$ Homöomorphismus.
- Projektions-Abbildungen sind stetig, z.B. $p_1: X_1 \times X_2 \to X_1$, $(x_1, x_2) \mapsto x_1$: Für U offen in X_1 ist $p^{-1}(U) = U \times X_2$ offen bezüglich der Produkttopologie.
- Metrische Räume (X, d_X) , (Y, d_Y) und Isometrie $f: X \to Y$, also eine bijektive Abbildung, so dass

$$\forall x, y \in X : d_Y(f(x), f(y)) = d_X(x, y).$$

Behauptung: f ist Homö
omorphismus (bzgl. der durch Metrik definierten Topologien).

Beweis. (über ε - δ -Definition): $\delta := \varepsilon$. $d_X(x,y) < \delta \Rightarrow d_Y(f(x),f(y)) = d_X(x,y) < \delta = \varepsilon$, also ist f stetig. Analog für f^{-1} .

• $S^n=\{x\in R^{n+1}: \|x\|^2=1\}$ ist die n-dimensionale Einheitssphäre in \mathbb{R}^{n+1} . $e_{n+1}=(0,\dots,0,1)$ sei der "Nordpol" von S_n . Behauptung: $S^n\setminus\{e_{n+1}\}\cong\mathbb{R}^n$.

Beweis. (via stereographische Projektion):

$$\begin{split} \mathbb{R}^n &\cong \{x \in \mathbb{R}^{n+1} : x_{n+1} = 0\}, \\ f(x) &\coloneqq \big(\frac{x_1}{1-x_{n+1}}, \dots, \frac{x_n}{1-x_{n+1}}\big) \text{ stetig,} \\ f^{-1} &\colon \mathbb{R}^n \to S^n, \quad y \mapsto \left(\frac{2y_1}{\|y\|^2+1}, \dots, \frac{2y_n}{\|y\|^2+1}, \frac{\|y\|^2-1}{\|y\|^2+1}\right) \text{ auch stetig.} \end{split}$$

Also ist f homöomorph.

Achtung: S^n ist <u>nicht</u> homö
omorph zu \mathbb{R}^n (da S^n kompakt und \mathbb{R}^n nicht kompakt ist, mehr dazu später).

 $\label{lem:bemerkung 13} \textbf{Bemerkung 13} \ (\textbf{Isometrien-} \textbf{Untergruppe}). \ \ \textbf{Isometrien bilden eine Untergruppe} \ \ \textbf{der Metrik induzierten Topologie}):$

$$Isom(X, d) \subseteq Hom\ddot{o}(X, \mathcal{O}_d) \subseteq Bij(X).$$

Bemerkung 14 (Exkurs 1: Kurven). Was ist eine Kurve?

Naive Definition: Eine Kurve ist ein stetiges Bild eines Intervalls.

Problem: \exists stetige, surjektive (aber nicht injektive) Abbildungen $I = [0,1] \rightarrow I^2$

("Peano-Kurven", "space-filling curves")⁷.

Ausweg 1: Jordan-Kuven (bzw. geschlossene J-Kurven).

- := top. Raum, homöomorph zu I = [0, 1] (J-Kurve)
- := top. Raum, homö
omorph zu S^1 (geschlossene J-Kurve)

Ausweg 2: reguläre stetig differenzierbare Kurven (lokal injektiv).

Verwendung: z.B. *Knoten* — spezielle geschlossene Jordankurve als Unterraum von \mathbb{R}^3 :

$$\exists f: S^1 \to \mathbb{R}^3 \text{ mit } f(S^1) \cong S^1$$

mit Teilraumtopologie von R^3 .

Zwei Knoten $K_1, K_2 \subset \mathbb{R}^3$ sind *äquivalent*, falls es einen Homöomorphismus h von \mathbb{R}^3 gibt mit $h(K_1) = K_2$.

Bemerkung 15 (Exkurs 2: Topologische Gruppen). Eine topologische Gruppe ist eine Gruppe versehen mit einer Topologie, sodass die Gruppenmultiplikation

$$m: G \times G \to G, \quad (q,h) \mapsto q \cdot h$$

mit Produkt-Topologie und die Inversenbildung

$$i: G \to G, \quad g \mapsto g^{-1}$$

stetig sind.

Beispiel 3.17 (Topologische Gruppen).

- 1. G beliebige Gruppe mit diskreter Topologie ist topologische Gruppe.
- 2. \mathbb{R}^n mit Standard-Topologie ist abelsche topologische Gruppe.
- 3. $\mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\}$ sind multiplikative topologische Gruppen.
- 4. $H \subset G$ Untergruppe einer topologischen Gruppe ist topologische Gruppe bzgl. Teilraumtopologie.
- 5. Das Produkt von topologischen Gruppen mit Produkttopologie ist eine topologische Gruppe.
- 6. $\mathrm{GL}(n,\mathbb{R})=\{A\in \underbrace{\mathbb{R}^{n\times n}}_{=\mathbb{R}^{n^2}}: \det A\neq 0\}$ all g. reelle lineare Gruppe. $\mathrm{GL}(n,\mathbb{R})\subset \mathbb{R}^{n^2} \text{ versehen mit } \underline{\mathrm{Teilraum-Topologie}} \text{ induziert von } \mathbb{R}^{n^2}=\mathbb{R}^{n\times n}$

ist topologische Gruppe:

Mehr dazu in Königsberger — Analysis I.

⁸ **Knotentheorie** studiert die Äquivalenz von Knoten, siehe z.B. Sossinsky — Mathematik der Knoten

- Matrizenmultiplikation ist stetige Abbildung ($\mathbb{R}^{n^2} \times \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$),
- Inversen-Abbildung ist ebenfalls stetig (wegen expliziter Formel für A^{-1}).
- 7. $SO(n) = \{A \in GL(n, \mathbb{R}) : A^{\top}A = E_n, \det A = 1\}$ ist die spezielle orthogonale Gruppe. Sie ist eine topologische Gruppe nach Beispiel 4 und 6. Insbesondere ist

$$SO(2) = \left\{ \begin{pmatrix} \cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{pmatrix} : \vartheta \in [0, 2\pi] \right\} \cong S'$$

eine abelsche topologische Gruppe.

3.4 Zusammenhang

Definition 3.18 (Zusammenhängend). Ein topologischer Raum (X, \mathcal{O}) heißt **zusammenhängend**, falls \emptyset und X die einzigen gleichzeitig offenen und abgeschlossenenen Teilmengen von X sind.

Äquivalent: X ist zusammenhängend $\iff X$ ist *nicht* disjunkte Vereinigung von 2 offenen, nichtleeren Teilmengen.

Beweis. $A \subset X$ offen und abgeschlossen $\Leftrightarrow A$ und $X \setminus A$ offen $\Leftrightarrow A$ und $X \setminus A$ abgeschlossen.

Beispiel 3.19 (Zusammenhang).

1. \mathbb{R} (und ebenso beliebige Intervalle) ist zusammenhängend, $\mathbb{R} \setminus \{0\}$ ist *nicht* zusammenhängend.

Beweis. Sei $I \subseteq \mathbb{R}$ (abgeschlossenes oder offenes oder halboffenes) Intervall.

 $\begin{array}{l} \textit{Annahme:} \ I \neq U \neq \varnothing, \text{sei eine offen-abgeschlossene Teilmenge von } I. \ \text{Dann gibt es mindestens einen Punkt} \ u \in U \ \text{und} \ v \in I \setminus U. \ \text{OBdA} \ u < v. \ \text{Setze} \ U_0 \coloneqq \{x \in U : x < v\} \ \text{und} \ c \coloneqq \sup U_0. \ \text{Also} \ u \leq c \leq v. \ \text{Weiter ist} \ c \in U, \ \text{da} \ U \ \text{abgeschlossen ist. Eine ganze} \ \textbf{Umgebung von} \ c \ \text{gehört auch zu} \ U, \ \text{da} \ U \ \text{offen ist. Damit gehört eine ganze} \ \textbf{Umgebung von} \ c \ \text{auch zu} \ U_0 \qquad \checkmark \end{array}$

Bemerkung 16 (Ergänzung: Zusammenhang von Teilmengen). *Allgemein*: Eine Teilmenge $B \subset X$ heißt **zusammenhängend**, falls sie bezüglich der **Teilraumtopologie** zusammenhängend ist.

Bemerkung 17 (Einpunktige Mengen). Einpunktige Mengen sind zusammenhängend: $\{x\}$ mit Teilraumtopologie ist diskret (also sind $\{x\}$ und \emptyset die einzigen offenen Mengen).

Definition 3.20 (Zusammenhangskomponente). Sei $x \in X$. Die **Zusammenhangs-komponente** Z(x) ist die Vereinigung aller **zusammenhängenden** Teilmengen, die x enthalten.

Lemma 3.21 (Eigenschaften zusammenhängender Mengen).

- 1. A ist zusammenhängend $\Rightarrow \overline{A}$ (abgeschlossene Hülle von A) ist zusammenhängend.
- 2. A, B zusammenhängend, $A \cap B \neq \emptyset \Rightarrow A \cup B$ zusammenhängend.

Bemerkung 18 (Zusammenhängende Mengen bilden disjunkte Zerlegung). Zusammenhangskomponenten von X sind zusammenhängende Mengen und bilden eine disjunkte Zerlegung von X.

Beweis. Definiere eine Äquivalenzrelation (für $x, y \in X$):

$$x \sim y \stackrel{\text{Def}}{\Leftrightarrow} \exists$$
 zusammenhängende Menge $A: x, y \in A$.

- ~ ist Äquivalenzrelation:
 - Reflexivität: $x \sim x$, denn die einpunktige Menge $\{x\}$ ist zusammenhängend.
 - **Symmetrie**: $x \sim y \Rightarrow y \sim x$ nach Definition.
 - Transitivität: $x \sim y \land y \sim z \Rightarrow x \sim z$: $x \sim y : \exists \ A \text{ zusammenhängend mit } x, y \in A.$ $y \sim z : \exists \ B \text{ zusammenhängend mit } y, z \in B.$ Also $y \in A \cap B \overset{\text{Lemma}}{\Rightarrow} A \cup B \text{ zusammenhängend.}$

Beispiel 3.22 (Zusammenhangskomponenten).

- 1. $\mathbb{R} \setminus \{t\} = \{s \in \mathbb{R} : s < t\} \cup \{s \in \mathbb{R} : s > t\}$ hat 2 Zusammenhangskomponenten.
- 2. $\mathbb{Q} = \mathbb{R} \setminus \{\text{irrationale Zahlen}\}$ mit Teilraum-Topologie von $(\mathbb{R}, \mathcal{O}_{\text{standard}})$ ist total unzusammenhängend, d.h. alle Zusammenhangskomponenten sind einpunktig.

Beweis. Annahme: $A \in \mathbb{Q}$ mit mindestens 2 verschiedenen Punkten.

Behauptung: A ist nicht zusammenhängend.

Sei
$$\{q_1,q_2\}=A\subset\mathbb{Q}$$
 mit $q_1\neq q_2$ (oBdA $q_1< q_2$). Sei $s\in\mathbb{R}\setminus\mathbb{Q}$ mit $q_1< s< q_2$, $O_1=\{t\in\mathbb{R}:t< s\},O_2=\{t\in\mathbb{R}:t> s\},\widetilde{O_1}=O_1\cap A,\widetilde{O_2}=O_2\cap A.\widetilde{O_1}$ und $\widetilde{O_2}$ sind offen in A oder in \mathbb{Q} bezüglich der Teilraumtopoogie. Es ist $A=\widetilde{O_1}\cup\widetilde{O_2}$ mit $\widetilde{O_1}\cap\widetilde{O_2}\neq\emptyset$, d.h. A ist nicht zusammenhängend.

 $^{^9}$ Übungsaufgabe, es wird nur die Definition von Zusammenhang benötigt.

Definition 3.23 (Weg-Zusammenhängend). Sei (X, \mathcal{O}) ein topologischer Raum. X heißt weg-zusammenhängend, wenn es zu je zwei Punkten $p,q\in X$ einen Weg (d.h. stetige Abbildung $\alpha:[0,1]\to X$ mit $\alpha(0)=p$ und $\alpha(1)=q$) zwischen p und q gibt.

Lemma 3.24 (Weg-Zusammenhang). X ist weg-zusammenhängend $\Rightarrow X$ ist zusammenhängend.

Beweis. Wäre X nicht zusammenhängend, dann \exists eine disjunkte Zerlegung $X = A \cup B$ mit A, B offen und nicht-leer, $A \cap B = \emptyset$ mit $p \in A$ und $q \in B$. Sei $\alpha : [0,1] \to X$ ein (stetiger) Weg zwischen p und q, also $\alpha(0) = p$ und $\alpha(1) = q$. Daraus folgt, dass $[0,1] = \alpha^{-1}(\alpha([0,1])) = \alpha^{-1}(A \cap \alpha([0,1])) \cup \alpha^{-1}(B \cap \alpha([0,1])) \Rightarrow [0,1]$ ist nicht zusammenhängend f

Achtung: Umkehrung gilt nicht! Z.B. "topologische Sinuskurve" X ist zusammenhängend, aber *nicht* weg-zusammenhängend:

$$X \coloneqq \left\{ \left(x, \sin \frac{1}{x} \right) \in \mathbb{R}^2 : 0 < x \le 1 \right\} \cup \{ \left(0, y \right) : |y| < 1 \}.$$

Lemma 3.25 (Weg-Zusammenhang von Bildern). Stetige Bilder von (weg-)zusammenhängenden Räumen sind (weg-)zusammenhängend.

Beweis.

1. Sei $f: X \to X$ stetig und $f(X) = A \cup B$ eine disjunkte Zerlegung in nichtleere offene Mengen.

Dann ist $X = f^{-1}(A) \cup f^{-1}(B)$ eine disjunkte Zerlegung.

2. Seien x = f(p), y = f(q) zwei Punkte in f(X). Es ist $p = f^{-1}(x)$, $q = f^{-1}(y)$. Dann existiert $a : [0, 1] \to X$ mit a(0) = p und a(1) = q und somit ist $f \circ a : [0, 1] \to f(X)$ ein stetiger Weg in f(X).

Korollar 3.26 (Zwischenwertsatz). Eine stetige Funktion $f:[a,b] \to \mathbb{R}$ nimmt jeden Wert zwischen f(a) und f(b) an.

Bemerkung 19 (Test auf Homöomorphie via Zusammenhang). Beispiel: $\mathbb{R} \cong \mathbb{R}^n$ nur falls n = 1.

Beweis. Wir nehmen an, dass $R \cong \mathbb{R}^n$ für $n \geq 1$. Es ist

$$\underbrace{\mathbb{R} \setminus \{\text{Punkt}\}}_{\text{nicht zusammenhängend}} \cong \underbrace{\mathbb{R}^n \setminus \{\text{Punkt}\}}_{\text{zusammenhängend für } n \geq 2}$$

Ebenso: $[0,1] \cong [0,1]^n$ nur für n=1.

¹⁰ **Details**: Singer-Thorpe p.52

Satz 3.27 (von Brouwer). $\mathbb{R}^n \not \equiv \mathbb{R}^m$ für $m \neq n$.

Beweis. Der Beweis benutzt den Satz von Gebietstreue (Brouwer):

Ist $U \subseteq$ offen und $f: U \to \mathbb{R}^n$ eine injektive stetige Abbildung, so ist $f(U) \subseteq \mathbb{R}^n$ offen. Beweisidee: Ist m < n, so ist

$$j:\mathbb{R}^m\to\mathbb{R}^n,\quad (x_1,\ldots,x_m)\mapsto (x_1,\ldots,x_m,0,\ldots,0)$$

eine Einbettung und eine injektive, stetige Abbildung von \mathbb{R}^m auf eine *nicht* offene Teilmenge von \mathbb{R}^n . Wäre $\mathbb{R}^m \cong \mathbb{R}^n$, so hat man einen Widerspruch zum Satz von Gebietstreue. ¹¹

3.5 Kompaktheit

Definition 3.28 ((Lokal) kompakt). Ein topologischer Raum heißt **kompakt**, wenn jede offene Überdeckung von X eine *endliche* Teilüberdeckung besitzt, also

$$X = \bigcup_{i \in I} U_i, \ U_i \ \text{offen} \ \Rightarrow \ \exists \ i_1, \dots, i_k \in I:$$

$$X = U_{i_1} \cup \dots \cup U_{i_k}$$

- $A \subseteq X$ heißt kompakt, wenn A bezüglich der Teilraumtopologie kompakt ist.
- X heißt lokal kompakt, wenn jeder Punkt von X eine kompakte Umgebung besitzt.

Bemerkung 20 (Verwendung kompakter Räume). Kompakte Räume sind oft "einfacher" als nicht-kompakte, weil man beispielsweise von lokalen Eigenschaften auf globale schließen kann.

 $\begin{array}{l} \textit{Begründung:} \ \forall x \in X \ \exists \ U_x : f|_{U_x} \leq c_x. \ \text{Schreibe} \ X = \bigcup_{x \in X} U_x. \ \text{Da} \ X \ \text{kompakt} \\ \text{ist existieren} \ x_1, \ldots, x_k \in X, \text{sodass} \ X = \bigcup_{i=1}^k U_{x_i}. \\ \Rightarrow f(x) \leq \max\{c_{x_1}, \ldots, c_{x_k}\}. \end{array}$

Beispiel 3.29 (Beschränktheit im Kompakten). Ist X kompakt und $f: X \to \mathbb{R}$ **lokal beschränkt** (d.h. jeder Punkt von X hat eine Umgebung, in der f beschränkt ist — z.B. wahr für stetige Funktionen), dann ist f beschränkt.

Beispiel 3.30 (Kompaktheit von Intervallen). I = [0, 1] ist kompakt (ebenso [a, b]). Beweis. Sei $(U_i)_{i \in I}$ eine offene Überdeckung von [0, 1]. Dann existiert eine sogenannte Lebesgue-Zahl $\delta > 0$, sodass jedes Teilintervall $I_{\delta} \subset I$ der Länge δ in einem U_i liegt. Da

¹¹ siehe auch Alexandrov-Hopf, Topologie, 1935, Kap. X.2

[0,1] mit endlich vielen Intervallen der Länge δ überdeckt werden kann, kann man das auch mit endlich vielen U_i .

Bemerkung 21 (Hinweise zur Lebesgue-Zahl). Gäbe es ein solches $\delta>0$ nicht, so wählt man eine Folge von Intervallen $(I_n)_{n\geq 1}, I_n\subset [0,1]$ der Länge $\frac{1}{n}$, die jeweils in keiner Überdeckungsmenge U_i liegen. Nach Bolzano Weierstraß 12 folgt, dass eine Teilfolge der Mittelpunkte m_n von I_n konvergiert gegen ein $t\in I$. Dieses t liegt aber in einem U_i . Also, da U_i offen ist, liegen auch die m_n in U_j für genügend großes n

Satz 3.31 (Sätze über kompakte Räume).

- 1. Stetige Bilder von kompakten Räumen sind kompakt.
- 2. Abgeschlossene Teilräume von kompakten Räumen sind kompakt.
- 3. Produkte von kompakten Räumen sind kompakt.

Beweis.

1. Sei $f(X) = \bigcup_{i \in I} U_i$ eine offene Überdeckung. Daraus folgt, dass $(F^{-1}(U_i))_{i \in I}$ eine offene Überdeckung von X ist. X ist kompakt, also

$$X = F^{-1}(U_{i_1}) \cup \cdots \cup F^{-1}(U_{i_k})$$

und schließlich

$$f(X)=U_{i_1}\cup\cdots\cup U_{i_k}.$$

2. Sei X kompakt und $A \subset X$ abgeschlossen.

 $A = \bigcup_{i \in I} U_i$ ist offene Überdeckung, also ist $U_i = V_i \cap A$ für V_i offen in X.

A ist abgeschlossen, also ist $X\setminus A$ offen und $X=(X\setminus A)\cup\bigcup_{i\in I}V_i$ ist offene Überdeckung von X.

Da X kompakt ist gilt:

$$X = (X \setminus A) \cup V_{i_1} \cup \cdots \cup V_{i_k} \Rightarrow A = X \cap A$$

also

$$A = X \cap A = \left(V_{i_1} \cup \cdots \cup V_{i_k}\right) \cap A = U_{i_1} \cup \cdots \cup U_{i_k}.$$

3. Die allgemeine Aussage (Satz von Tichonow 13) benutzt das Lemma von Zorn 14.

Seien X und Y kompakte Räume.

Behauptung: $X \times Y$ ist kompakt.

Sei
$$X\times Y=\bigcup_{\lambda\in\Lambda}W_\lambda$$
 offene Überdeckung. Für jedes $(x,y)\in X\times Y$ existiert $\lambda(x,y)$

 $^{^{12}}$ "jede konvergente Folge in $\mathbb C$ hat konvergente Teilfolgen"

 $^{^{13}}$ İst $(X_i)_{i\in I}$ eine Familie kompakter topologischer Räume, dann ist auch das kartesische Produkt mit der Produkttopologie kompakt.

 $^{^{14}}$ Eine halbgeordnete Menge, in der jede Kette eine obere Schranke hat, enthält mindestens ein maximales Element.

sodass $(x,y)\in W_{\lambda(x,y)}$. Da $W_{\lambda(x,y)}$ offen ist existiert $U_{(x,y)}\subset X$ und $V_{(x,y)}\subset Y$ sodass

$$(x,y) \in U_{(x,y)} \times V_{(x,y)} \subset W_{\lambda(x,y)}$$
.

Für festes x ist $\bigcup_{y \in Y} V(x,y)$ eine offene Überdeckung von Y, also — da Y kompakt ist — existieren $y_1(x), \ldots, y_{m_x}(x)$ sodass

$$Y = V_{(x,y_1(x))} \cup \cdots \cup V_{(x,y_{m_n}(x))}.$$

Setze

$$U_x \coloneqq U_{(x,y_1(x))} \cap \dots \cap U_{(x,y_{m_x}(x))}.$$

Da X kompakt ist existieren x_1,\ldots,x_n sodass $X=U_{x_1}\cup\cdots\cup U_{x_n}.$ Dann ist

$$X\times Y=\bigcup_{\substack{k=1,\ldots,n\\j=1,\ldots,m_x}}W_{\lambda(x_k,y_j(x_k))}.$$

Beispiel 3.32 (Weitere kompakte Mengen).

1. Produkte kompakter Mengen:

$$[0,1]^n = \underbrace{[0,1] \times \cdots \times [0,1]}_{n \text{ Faktoren}}$$

ist kompakt (Würfel — allgemein $\lceil a, b \rceil^n$ ist kompakt)

2. Abgeschlossene Teilräume kompakter Mengen:

Abgeschlossene Teilräume des n-dimensionalen Würfels sind kompakt. Insbesondere: jede abgeschlossene beschränkte ¹⁵ Teilmenge von \mathbb{R}^n (mit Standard-Topologie) ist kompakt (da diese Teilmenge im Würfel mit Kantenlänge 2c liegt, wenn sie in einem Ball um den Nullpunkt mit Radius c liegt).

Satz 3.33 (Heine-Borel). Die kompakten Teilmengen von \mathbb{R}^n sind genau die abgeschlossenbeschränkten Teilmengen.

Beweis.

- ←. Siehe obiges Beispiel.
- \Rightarrow . Sei $K \subset \mathbb{R}^n$ kompakt.

Die Norm $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}, x \mapsto \|x\| = \sqrt{x_1^2 + \dots + x_n^2} = d(0, x)$ ist stetig, also insbesondere lokal beschränkt und damit global beschränkt.

Dass K abgeschlossen ist folgt aus dem nächsten Lemma.

¹⁵ Eine Menge $A \in \mathbb{R}^n$ ist beschränkt, wenn sie in einem beliebig großen Ball um den Nullpunkt liegt, also falls $\forall a \in A : ||a|| \le x < \infty$

Lemma 3.34 (Kompakte Mengen in Hausdorffraum abgeschlossen). Sei X ein topologischer Raum, der hausdorffsch ist, und $K \subseteq X$ kompakt. Dann ist K abgeschlossen.

Beweis. Es ist zu zeigen dass $X \setminus K$ offen ist in X.

Sei dafür $x_0 \in X \setminus K$. Für jedes $x \in K$ wähle eine offene Umgebung U_x von x_0 und V_x von x, sodass $U_x \cap V_x = \emptyset$ (das geht, weil X hausdorffsch ist).

Da K kompakt ist, existieren Punkte $x_1 \dots, x_n \in K$ mit

$$K = (V_{x_1} \cap K) \cup \cdots \cup (V_{x_n} \cap K).$$

K kann also durch endlich viele Mengen überdeckt werden.

Setze $U := U_{x_1} \cap \cdots \cap U_{x_n}$. Dann gilt:

$$\begin{split} U \cap K &\subseteq U \cap (V_{x_1} \cup \dots \cup V_{x_n}) \\ &= (V_{x_1} \cap U) \cup \dots \cup (V_{x_n} \cap U) \\ &\subseteq (V_{x_1} \cap U_{x_1}) \cup \dots \cup (V_{x_n} \cap U_{x_n}) = \varnothing, \end{split}$$

also $x_0 \in U \subset X \setminus K$.

Korollar 3.35 (Minimum und Maximum von Teilmengen). Jede stetige Funktion $f: K \to C$ auf einer kompakten Teilmenge eines Hausdorffraums nimmt ein endliches Maximum und Minimum an. ¹⁶

Satz 3.36 (Homöomorphismen auf Hausdorff-Räumen). Eine stetige, bijektive Abbildung $f:K\to Y$ von einem kompakten Raum K auf einen Hausdorff-Raum Y ist ein Homöomorphismus.

Bemerkung: Das gilt im Allgemeinen nicht! Beispielsweise

$$X = [0, 1), \quad Y = S^1, \quad f(t) = e^{it2\pi}$$

ist bijektiv und stetig, aber kein Homö
omorphismus. Sonst wäre $[0,1)\cong S^1$ (da S^1 kompakt ist, aber [0,1) nicht)

Beweis. Zu zeigen: Inverse Abbildung f^{-1} ist stetig.

Wir müssen zeigen, dass die Bilder von offenen (bzw. abgeschlossenen) Mengen von $f=\left(f^{-1}\right)^{-1}$ offen (bzw. abgeschlossen) sind.

Sei $A \subseteq K$ abgeschlossen. Dann ist A kompakt (als Teilraum eines kompakten Raumes). Dann ist f(A) kompakt (als stetiges Bild einer kompakten Menge) in Y und somit ist $f(A) \subset Y$ abgeschlossen (als kompakter Teilraum eines Hausdorff-Raumes).

¹⁶ Übungsaufgabe: Beweisen (siehe Satz von Weierstraß in Analysis)

Spezielle Klassen von topologischen Räumen

4.1 Übersicht

Folgende spezielle Klassen sollen diskutiert werden:

- metrische Räume → metrische Geometrie
- Mannigfaltigkeiten (Grundobjekte in Differenzialgeometrie, Physik,...)
- Polyeder, Simplizialkomplexe (Kombinatorik, algebraische Topologie)
- Bahnen-Räume von Gruppenaktionen (geometrische Gruppentheorie)

4.2 Topologische Mannigfaltigkeiten

Definition 4.1 (Topologische Mannigfaltigkeit). Eine **topologische Mannigfaltigkeit** ist ein topologischer Raum M mit folgenden Eigenschaften:

- 1. M ist **lokal euklidisch**, d.h. $\forall p \in M \exists$ offene Umgebung U von p und ein Homöomorphismus $\varphi: U \to \varphi(U) \subset \mathbb{R}^n$ mit festem n. Das Paar (φ, U) heißt **Karte**¹ und $\mathcal{A} = \{(\varphi_a, U_\alpha) : \alpha \in A\}$ mit $\bigcup_{\alpha \in A} U_\alpha = M$ heißt **Atlas**.
- 2. M ist hausdorffsch und besitzt abzählbare Basis der Topologie.

¹ Eine mathematische Karte ist einer echten Karte ähnlich. Man nehme einen Punkt, zum Beispiel Karlsruhe, und beschreibt die Umgebung von Karlsruhe in Form einer Karte auf einer DIN A4-Karte. Das ist natürlich nicht bijektiv, aber man versucht es möglichst bijektiv zu machen.

Bemerkung:

- Die zweite Eigenschaft ist "technisch" und garantiert , dass eine "Zerlegung der Eins" existiert (braucht man z.B. für die Existenz von Riemannschen Metriken).
- Die Zahl n heißt **Dimension** von M (eindeutig, wenn M zusammenhängend ist, siehe Satz von Gebietstreue).

Beispiel 4.2 (Topologische Mannigfaltigkeiten).

- Eine abzählbare Menge mit diskreter Topologie (jeder Punkt ist offen) ist eine 0dimensionale Mannigfaltigkeit.
- 1. S^1 ist eine kompakte, zusammenhängenge 1-dimensionale Mannigfaltigkeit. $\mathbb R$ ist nichtkompakte, zusammenhängende 1-Mannigfaltigkeit.
- 2. Jede offene Teilmenge einer Mannigfaltigkeit ist wieder eine Mannigfaltigkeit, z.B. ist jede offene Teilmenge von \mathbb{R}^n eine n-dimensionale Mannigfaltigkeit (hier ist Karte = Einschränkung der Identität).

Spezialfall: $\mathrm{GL}(n,\mathbb{R})=\{A\in\mathbb{R}^{n\times n}:\det A\neq 0\}$ ist offene Teilmenge von \mathbb{R}^{n^2} , also eine n^2 -dimensionale Mannigfaltigkeit, denn:

- $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$ ist stetig
- $\{0\}$ ist abgeschlossen in $\mathbb R$
- $\det^{-1}\{0\}$ ist abgeschlossen in $\mathbb{R}^{n\times n}$
- $\mathbb{R}^{n \times n} \setminus \det^{-1} \{0\} = GL(n, \mathbb{R})$ ist offen in $\mathbb{R}^{n \times n}$
- 3. Die n-dimensionale Sphäre mit Radius R > 0,

$$S_R^n = \{x \in \mathbb{R}^{n-1} : ||x|| = R\},$$

ist n-dimensionale topologische Mannigfaltigkeit.

Beweis. Sei $(x_1, \ldots, x_{n+1}) = p \in S_R^n$, oBdA $x_{n+1} > 0$. Man betrachte die Abbildung

$$\varphi^{-1}: D_R^n := \left\{ x \in \mathbb{R}^n : ||x|| < R \right\} \to \varphi(D_R^n) \subset S_R^n$$
$$(x_1, \dots, x_n) \mapsto \left(x_1, \dots, x_n, \sqrt{R^2 - (x_1^2 + \dots + x_n^2)} \right)$$

d.h. φ ist Einschränkung der Orthogonalprojektion

$$\mathbb{R}^{n+1} \to \mathbb{R}^n \subset \mathbb{R}^{n+1}$$
$$(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, x_n, 0)$$

auf S_R^n .

Alternativ kann via stereographischer Projektion mit 2 Karten ausgekommen werden. Ein Atlas mit einer Karte existiert nicht.

4. Das Produkt von n_1 -dimensionaler Mannigfaltigkeit M_1 und n_2 -dimensionaler Mannigfaltigkeit M_2 ist (n_1+n_2) -dimensionale Mannigfaltigkeit.

Karten:
$$(p_1, p_2) \in M_1 \times M_2$$
,

$$\widetilde{\varphi}: U_1 \times U_2 \to \varphi_1(U_1) \times \varphi_2(U_2) \subset \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$$

mit (U_1, φ_1) Karte von M_1 um p_1 und (U_2, φ_2) Karte von M_2 um p_2 .

Bemerkung 22 ("Wieviele topologische Mannigfaltigkeiten gibt es?").

- Dimension n = 1: Im wesentlichen \mathbb{R} (nicht kompakt) oder S^1 (kompakt).
- Dimension n=2: Liste für zusammenhängende, kompakte, "orientierbare", "randlose" Mannigfaltigkeiten:

$$g = 0$$
: S^2 Einheitssphäre
 $g = 1$: $T^2 = S^1 \times S^1$ Torus
 $g = 2$: Brezel

g ist das Geschlecht der Mannigfaltigkeit.

- Dimension n=3: Thurston's **Geometrisierungs-Vermutung** (~ 1978) Bewiesen von Perelman (2002), ein Milleniumsproblem.
- Dimension n ≥ 4: Allgemeine Klassifikation unmöglich, weil das Homöomorphieproblem hier nicht entscheidbar ist (Markov, 1960).

4.3 Differenzierbare Mannigfaltigkeiten

Definition 4.3 (Kartenwechsel, differenzierbare Mannigfaltigkeit). Sei M topologische Mannigfaltigkeit, $p \in M$. Ein **Kartenwechsel** ist ein Homöomorphismus

$$\psi \circ \varphi^{-1} : \underbrace{\varphi(D)}_{\subset \mathbb{R}^n} \to \underbrace{\psi(D)}_{\subset \mathbb{R}^n}.$$

Ein Atlas $\mathcal A$ von M ist ein C^∞ -Atlas, falls alle möglichen Kartenwechsel C^∞ -Abbildungen von $\mathbb R^n$ sind, also alle partiellen Ableitungen existieren und stetig sind. Ein maximaler C^∞ -Atlas heißt C^∞ -Struktur auf der topologischen Mannigfaltigkeit M. Eine C^∞ -Mannigfaltigkeit ist eine topologische Mannigfaltigkeit mit einer C^∞ -Struktur (auch glatte oder differenzierbare Mannigfaltigkeit).

Bemerkung 23.

- 1. Es gibt topologische Mannigfaltigkeiten ohne differenzierbare Struktur².
- 2. Auf \mathbb{R}^n , $n \neq 4^3$, existiert genau eine differenzierbare Struktur.
- 3. Auf S⁷ existieren 28 differenzierbare Strukturen⁴.

Frage: Wozu die Differenzierbarkeitsbedingung für Kartenwechsel? Beispielsweise für die Definition von differenzierbaren Abbildungen zwischen differenzierbaren Mannigfaltigkeiten.

Definition 4.4 (Differenzierbarkeit). Seien M^m , N^n differenzierbare Mannigfaltigkeiten und $F: M^m \to N^n$ stetig. F heißt **differenzierbar in** $p \in M$, falls für Karten (U, φ) um p und (V, ψ) um F(p) gilt:

$$\psi \circ F \circ \varphi^{-1} : \underbrace{\varphi(U)}_{\subset \mathbb{R}^m} \to \underbrace{\psi(V)}_{\subset \mathbb{R}^n}$$

ist C^{∞} -Abbildung in $\varphi(p)$.

So kommt man von einem abstrakten F zwischen den Mannigfaltigkeiten zu einer konkreten Darstellung von F.

F heißt **differenzierbar** (C^{∞}) , falls F differenzierbar ist für alle $p \in M$.

Bemerkung 24 (Wohldefiniertheit der Differenzierbarkeit). Differenzierbarkeit in p ist wohldefiniert (also unabhängig von der Wahl der Karten)

Beweis. Erster Test: $\psi \circ F \circ \varphi^{-1}$, zweiter Test $\widetilde{\psi} \circ F \circ \widetilde{\varphi}^{-1}$ Es gilt:

$$\begin{split} \psi \circ F \circ \varphi^{-1} &= \psi \circ \underbrace{\widetilde{\psi}^{-1} \circ \widetilde{\psi}}_{\mathrm{Id}_{\mathbb{R}^n}} \circ F \circ \underbrace{\widetilde{\varphi}^{-1} \circ \widetilde{\varphi}}_{\mathrm{Id}_{\mathbb{R}^n}} \circ \varphi^{-1} \\ &= \underbrace{\left(\psi \circ \widetilde{\psi}^{-1}\right)}_{C^\infty} \circ \left(\widetilde{\psi} \circ F \circ \widetilde{\varphi}^{-1}\right) \circ \underbrace{\left(\widetilde{\varphi} \circ \varphi^{-1}\right)}_{\mathrm{Kartenwechsel}} \end{split}$$

Also: Abbildung in Test 1 ist $C^{\infty} \Leftrightarrow$ Abbildung in Test 2 ist C^{∞} .

² Kerraire 1960

³ Kirby, Friedman 1980

⁴ Milnor 1956

Bemerkung 25.

- $N = \mathbb{R}, F : M \to \mathbb{R}$ (differenzierbar) heißt differenzierbare Funktion.
- $M = \mathbb{R}$ (oder $I \subset \mathbb{R}$), $F : I \to N$ heißt differenzierbare Kuve.
- Eine Abbildung $F: M \to N$ zwischen differenzierbaren Mannigfaltigkeiten heißt **Diffeomorphismus**, falls F bijektiv und F und F^{-1} differenzierbar sind (also C^{∞}).
- Ein Homöomorphismus ist nicht unbedingt ein Diffeomorphismus. Beispielsweise $\mathbb R$ mit Id als Karte, $F:\mathbb R\to\mathbb R$, $x\mapsto x^3$ ist Homöomorphismus, aber kein Diffeomorphismus, da $F^{-1}:x\mapsto \sqrt[3]{x}$ ist nicht C^∞ .
- Die Menge der Diffeomorphismen einer differenzierbaren Mannigfaltigkeit ist eine Gruppe mit der Verkettung von Abbildungen.

Beispiel 4.5.

- 1. $U \subseteq \mathbb{R}^n$ offen (bzgl. Standard-Topologie). $\varphi_0 \coloneqq \operatorname{Id} \mid_U \operatorname{mit} \operatorname{zugeh\"{o}rigem} \operatorname{maximalen} \operatorname{Atlas} \operatorname{definiert} C^{\infty}\operatorname{-Struktur} \operatorname{auf} U, \operatorname{die} \operatorname{kanonische} \operatorname{differenzierbare} \operatorname{Struktur}.$
- 2-dimensionale Mannigfaltigkeiten heißen auch Flächen, speziell regulär parametrisierte Flächen⁵.

Definition 4.6 (Reguläre Fläche). Eine Teilmenge S von \mathbb{R}^3 (mit Teilraum-Topologie von \mathbb{R}^3) heißt **reguläre Fläche**, falls für jeden Punkt $p \in S$ eine Umgebung V von p in \mathbb{R}^3 und eine Abbildung

$$F: \underset{\text{offen}}{U} \subset \mathbb{R}^2 \to \underset{\text{offene TM von S}}{V \cap S} \subset \mathbb{R}^3$$
$$(u, v) \mapsto (x(u, v), y(u, v), z(u, v))$$

existiert, so dass gilt:

- 1. F ist ein differenzierbar Homö
omorphismus
- 2. das Differential (Jacobi-Matrix) von F,

$$dF_a: \mathbb{R}^2 \supseteq T_aU \to T_{F(a)}\mathbb{R}^3 \cong \mathbb{R}^3$$

ist *injektiv* (d.h. Jacobi-Matrix hat Rang 2) für $\forall q \in U$.

F heißt lokale Parametrisierung von S.

⁵ Gegenstand der klassischen Differentialgeometrie, siehe auch Kapitel 5

Beispiel 4.7 (Rotationsfläche). Gegeben ist eine ebene Kurve c(v) = (r(v), 0, h(v)), $v \in [a, b]$ mit r(v) > 0, c'(v) = (r'(v), 0, h'(v)) Tangentialvektor (mit C^{∞} -Funktionen r, h).

$$F(u,v) \coloneqq \begin{pmatrix} r(v)\cos u \\ r(v)\sin u \\ h(v) \end{pmatrix}$$

ist reguläre Fläche.7

Beispiel: 2-Sphäre von Radius R:

$$(u, v) \mapsto \begin{pmatrix} R\cos v \cos u \\ R\cos v \sin u \\ R\sin v \end{pmatrix}.$$

Es gibt andere Parametrisierungen, beispielsweise

$$(u,v) \mapsto \begin{pmatrix} u \\ v \\ \sqrt{R^2 - u^2 - v^2} \end{pmatrix}$$

Bemerkung 26 (Geometrische Eigenschaften parametrisierungsunabhängig).

Geometrische Eigenschaften sollten unabhängig sein von Parametrisierung. Das wird durch Eigenschaft 2 von regulären Flächen garantiert. Genauer gilt: Parameterwechsel sind differenzierbar (\rightsquigarrow reguläre Flächen sind differenzierbare 2-dimensionale Mannigfaltigkeiten mit F^{-1} (Umkehr-Abbildung der Parametrisierung) als Karten):

Sei $p \in S$ und $F_1 : \mathbb{R}^2 \supseteq U \to S$, $F_2 : \mathbb{R}^2 \supseteq V \to S$ zwei Parametrisierungen, sodass $p \in F_1(U) \cap F_2(V) =: W$.

Behauptung: Der Parameterwechsel

$$H \coloneqq F_1^{-1} \circ F_2 : \mathbb{R}^2 \supset F_2^{-1}(W) \to F_1^{-1}(W) \subset \mathbb{R}^2$$

ist Diffeomorphismus.

Beweis. H ist Homöomorphismus, da F_1 und F_2 Homöomorphismen sind. Problem: F_1^{-1} ist auf einer offenen Teilmenge von S definiert und und da weiß man nicht was

 $[\]int_{-1}^{6} \|c'(v)\| \neq 0 \Leftrightarrow (r')^{2} + (h')^{2} \neq 0$

Übung

differenzierbar heißt.

Ausweg: Erweiterung von F. Sei $r \in F_2^{-1}(W)$ und q := H(r). Da

$$F_1(u, v) = (x(u, v), y(u, v), z(u, v))$$

reguläre Parametrisierung ist können wir oBdA (erst Koordinatenachsen von \mathbb{R}^3 umbenennen) annehmen, dass

$$\frac{J(x,y)}{J(u,v)}(q) \neq 0$$
 (Jacobi-Determinante).

Trick: Erweitere F_1 zu Abbildung

$$\widetilde{F_1}: U \times \mathbb{R} \to \mathbb{R}^3$$
 $\widetilde{F_1}(u, v, t) := (x(u, v), y(u, v), z(u, v) + t).$

 $\widetilde{F_1}$ ist differenzierbar und $\widetilde{F_1}|_{U\times\{0\}}=F_1$. Die Jacobi-Determinante von $\widetilde{F_1}$ in (q,0),

$$\det\begin{pmatrix} \frac{\mathrm{d}x}{\mathrm{d}u} & \frac{\mathrm{d}x}{\mathrm{d}v} & 0\\ \frac{\mathrm{d}y}{\mathrm{d}u} & \frac{\mathrm{d}y}{\mathrm{d}v} & 0\\ \frac{\mathrm{d}z}{\mathrm{d}u} & \frac{\mathrm{d}z}{\mathrm{d}v} & 1 \end{pmatrix} (q,0) = \det\begin{pmatrix} \frac{\mathrm{d}x}{\mathrm{d}u} & \frac{\mathrm{d}x}{\mathrm{d}v}\\ \frac{\mathrm{d}y}{\mathrm{d}u} & \frac{\mathrm{d}y}{\mathrm{d}v} \end{pmatrix} (q) \neq 0.$$

Nach dem Umkehrsatz (Analysis II) existiert eine Umgebung A von $\widetilde{F_1}(q,0) = F_1(q)$ in \mathbb{R}^3 sodass $\widetilde{F_1}^{-1}$ auf A existiert und differenzierbar (C^{∞}) ist. Da F_2 stetig ist existiert Umgebung B von v in V, sodass $F_2(B) \subset A$. Und nun ist $H|_B = \widetilde{F_1}^{-1} \circ F_2|_B$ ist Verkettung von differenzierbaren Abbildungen, also differenzierbar in r und da r beliebig ist ist H differenzierbar auf $F_2^{-1}(W)$.

Beispiel 4.8 (Weitere Beispiele von differenzierbaren Mannigfaltigkeiten).

1. **n-Sphäre** von Radius R (und Zentrum 0):

$$S_R^n := \{ x \in \mathbb{R}^{n+1} : ||x|| = R \}.$$

Karten via stereographischer Projektion.

$$N := (0, \dots, 0, R),$$

$$S := (0, \dots, 0, -R)$$

$$U_1 := S_R^n \setminus \{N\},$$

$$U_2 := S_R^n \setminus \{S\}$$

Stereographische Projektion bzglN:

$$\varphi_1: U_1 \to \mathbb{R}^n, \ p = (p_1, \dots, p_{n+1}) \mapsto (x_1(p), \dots, x_n(p)), \ x_i(p) \coloneqq \frac{Rp_i}{R - p_{i+1}}$$

Stereographische Projektion bzgl. S:

$$\varphi_1: U_2 \to \mathbb{R}^n, p = (p_1, \dots, p_{n+1}) \mapsto (x_1(p), \dots, x_n(p)), x_i(p) \coloneqq \frac{Rp_i}{R - p_{i+1}}$$

Kartenwechsel:

$$\varphi_2 \circ \varphi_1^{-1} : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}, \ \varphi_2 \circ \varphi_1^{-1}(x) = \frac{x}{\|x\|} R^2$$

ist C^{∞} .

 $\Rightarrow \mathcal{A} := \{(U_1, \varphi_1), (U_2, \varphi_2)\}$ ist ein differenzierbarer Atlas für S_R^n .

 \rightarrow max. Atlas aller mit $\mathcal A$ verträglichen Karten (also allen (U,φ)) mit $\varphi \circ \psi^{-1}$ ist C^{∞} für ψ aus $\mathcal A$ sofern Verkettung definiert ist) definiert differenzierbare Struktur auf S^n_R , also ist S^n_R eine C^{∞} -Mannigfaltigkeit mit Dimension n.

2. n-dimensionaler reell projektiver Raum

$$P^n\mathbb{R}\coloneqq\left\{\text{1-dim. UVR von }\mathbb{R}^{n+1}\right\}\equiv\left(\mathbb{R}^{n+1}\setminus\{0\}\right)/\sim$$

mit $x \sim y \overset{\mathrm{Def.}}{\Leftrightarrow} \exists \ \mathbb{R} \ni \lambda \neq 0 : x = \lambda y$ (1-dimensionaler UVR = Äquivalenzklasse) $\equiv S^n / \sim \min x \sim y \overset{\mathrm{Def.}}{\Leftrightarrow} x = -y$.

Wir sehen:

- 1. Definition: Eindimensionale Untervektorräume
- 2. Definition: Äquivalenzklassen in $\mathbb{R}^{n+1} \setminus \{0\}$
- 3. Definition: Äquivalenzklassen in S^n

Es ist leicht zu sehen, dass diese Definitionen äquivalent sind.

Aus der 3. Definition sieht man

$$P^n\mathbb{R} = S^n/\sim$$

ist kompakt als Quotientenraum von S^n (Quotiententopologie $X \stackrel{\pi}{\to} Y = X/\sim$ mit topologischem Raum X und Quotiententopologie: U offen in $Y \Leftrightarrow \pi^{-1}(U)$ ist offen in X). Diese Abbildung ist stetig, und ein stetiges Bild von einer kompakten Menge ist wieder kompakt.

Karten:

$$\tilde{U}_i := \{x \in S^n : x_i \neq 0\}, \quad i = 1, \dots, n+1$$

$$U_i := \pi(\tilde{U}_i) \text{ mit } \pi : S^n \to S^n / \sim P^n \mathbb{R}.$$

 $^{^{8}}$ Ü
bung: φ_{1} und φ_{2} sind Homö
omorphismen.

Projektion:

$$\varphi_i: U_i \to \mathbb{R}^n, \quad \varphi_i([x]) \coloneqq \left(\frac{x_i}{x_i}, \dots, \frac{x_{i-1}}{i}, \frac{x_{i+1}}{i}, \dots, \frac{x_n}{x_i}\right)$$

sind Homöomorphismen.9

Bemerkung 27. Man kann zeigen: $P^n\mathbb{R}$ ist hausdorffsch und hat eine abzählbare Basis der Topologie. Also ist $P^n\mathbb{R}$ eine n-dimensionale C^∞ -Mannigfaltigkeit. Analog: $P^n\mathbb{C} \coloneqq \{\text{komplexe } 1\text{-dim. UVR von } C^{n+1}\}$ ist kompakte 2n-dimensionale C^∞ -Mannigfaltigkeit.

Beispiel 4.9 (Produkt-Mannigfaltigkeiten). Für M^m und N^n m-bzw.n-dimensionale differenzierbare Mannigfaltigkeit ist die **Produkt-Mannigfaltigkeit** $M \times N$ eine (m+n)-dimensionale C^∞ -Mannigfaltigkeit. 10

Exkurs 1 (Lie-Gruppen). Eine **Lie-Gruppe** ist eine Gruppe mit einer C^{∞} -Mannigfaltigkeitstruktur, so dass die Abbildung

$$G \times G \to G$$
, $(g,h) \mapsto gh^{-1}$

 C^{∞} ist.

Beispiel 4.10 (zu Lie-Gruppen).

• $(\mathbb{Z}, +)$ ist eine 0-dimensionale Lie-Gruppe.

•
$$SO(2) = \left\{ \begin{pmatrix} \cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{pmatrix} : \vartheta \in [0, 2\pi] \right\} \underset{\text{hom}\tilde{\vartheta}}{\cong} S^1 \text{ ist kompakte 1-}$$

dimensionale C^{∞} -Mannigfaltigkeit und Lie-Gruppe. ¹¹

•
$$SU(2) := \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in C, \ \alpha \overline{\alpha} + \beta \overline{\beta} = 1 \right\} \underset{\text{homo}}{\cong} S^3 \text{ ist kompakte 3-dimensionale } C^{\infty}\text{-Mannigfaltigkeit.}^{12}$$

• $GL(n,\mathbb{R})$ (offene) Untermannigfaltigkeit von $\mathbb{R}^{n^2} \leadsto n^2$ -dimensionale C^{∞} -Mannigfaltigkeit.

⁹ Übung: Kartenwechsel $\varphi_i \circ \varphi_i^{-1}$ sind C^{∞} .

¹⁰ Übung

¹¹ Übung: Wieco

Using: wieso? $1 = \alpha \overline{\alpha} + \beta \overline{\beta} = x_1^2 + x_2^2 + x_3^2 + x_4^2$ mit $\alpha = x_1 + ix_2$ und $\beta = x_3 + ix_4$.

Bemerkung 28 (Fakt von Cartan). Abgeschlossene Untergruppen von Lie-Gruppen sind Lie-Gruppen sind auch Lie-Gruppen.

Beispiel 4.11 (Fakt von Cartan benutzen).

$$SO(n) = \{A \in GL(n, \mathbb{R}) : AA^{\top} = E, \det A = 1\} \text{ und }$$

 $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : \det A = 1\}$

sind Lie-Gruppen: Benutze, dass

$$A = \{x \in X : f(x) = g(x)\}$$
 und X ist hausdorffsch

 \Rightarrow A abgeschlossen, f, g stetige Abbildungen

4.4 Simplizialkomplexe

Simplizialkomplexe sind Objekte der algebraischen Topologie. Mittels Kombinatorik sollen topologische Invarianten bestimmt werden.

Definition 4.12 (Simplex). Ein k-dimensionales **Simplex** im \mathbb{R}^n ist die konvexe Hülle von k+1 Punkten v_0, \ldots, v_k in allgemeiner Lage:

$$s(v_0,\ldots,v_k) \coloneqq \left\{ \sum_{i=0}^n \lambda_i v_i : \forall \lambda_i \ge 0, \ \sum_{i=0}^k \lambda_i = 1 \right\}$$

für $v_0 - v_1, \dots, v_0 - v_k$ linear unabhängig.

Beispiel 4.13 (Einfache Simplices).

- 0-Simplex: v_0 (Punkt)
- 1-Simplex: $v_0 v_1$ (Strecke, $s(v_0, v_1) = \{\lambda v_0 + (1 \lambda)v_1 : 0 \le \lambda \le 1\}$)
- 2-Simplex: $\Delta v_0, v_1, v_2$ (Dreicksfläche)
- 3-Simplex: v_0, v_1, v_2, v_3 ((volles) Tetraeder)

Definition 4.14 (Teilsimplex, Seite). Die konvexe Hülle einer Teilmenge von $\{v_0, \ldots, v_k\}$ heißt **Teilsimplex** oder **Seite** von $s(v_0, \ldots, v_k)$.

Definition 4.15 (Simplizialkomplex). Eine endliche Menge K von Simplices in \mathbb{R}^n heißt Simplizialkomplex, wenn gilt:

- 1. Mit jedem seiner Simplices enthält K auch dessen sämtliche Teilsimplices.
- Der Durchschnitt von je zwei Simplices ist entweder leer oder ein gemeinsamer Teilsimplex.

Definition 4.16 (Geometrische Realisierung).

$$|K|\coloneqq\bigcup_{s\in K}s\subset\mathbb{R}^n$$

mit Teilraumtopologie von \mathbb{R}^n heißt der dem Simplizialkomplex K zugrunde liegende topologische Raum.

Achtung: Verschiedene Simplizialkomplexe K, K' können das gleiche |K| = |K'| haben.

Bemerkung 29 (Vorteil von Simplizialkomplexen). Kennt man von einem (endlichen) Simplizialkomplex die **wesentlichen Simplices** (also solche, die nicht Seiten von anderen sind) in jeder Dimension und ihre **Inzidenzen** (also welche Ecken sie gemeinsam haben), so kennt man |K| (bis auf Homöomorphie).

Beweis (Konstruktionsidee von |K| aus diesen Daten).

- 1. Wähle in jeder Dimension einen Standard-Simplex $\Delta_k \coloneqq s(\underbrace{e_1,\ldots,e_{k+1}}_{\text{Std.-Basis-Vek.}})$
- 2. Bilde disjunkte Vereinigung von solchen Δ_k in jeder Dimension k soviele wie es wesentliche k-Simplices gibt:

$$X\coloneqq\underbrace{\Delta_0\cup\cdots\cup\Delta_0}_{\text{$\#$ we sentliche 0-Simp.}}\cup\cdots\cup\underbrace{\Delta_n\cup\cdots\cup\Delta_n}_{\text{$\#$ we sentliche n-Simp.}}$$

3. Identifiziere Inzidenzen (via Äquivalenzrelation) gemäß Inzidenz-Angaben für Ecken Diese drei Schritte liefern dann eine stetige Bijektion des (kompakten) Quotientenraumes X/\sim auf Hausdorff-Raum |K|, also ein Homöomorphismus.

Definition 4.17 (Dimension). Die **Dimension** eines Simplizialkomplexes K ist die maximale Dimension seiner Simplices.

Bemerkung 30 (Spezialfall — Graph). Ein **endlicher Graph** ist ein endlicher, 0oder 1-dimensionaler Simplizialkomplex, ¹³ gebaut aus 1-dimensionalen (*Kanten*) und

¹³ Aufgrund der Eindimensionalität haben beispielsweise die Dreiecke in einem Graph keine Füllung!

0-dimensionalen (Ecken) Simplices.

Ein Graph G heißt **zusammenhängend**, falls zu je zwei Ecken $p, p' \in G$ eine Folge $p = p_0, p_1, \ldots, p_n = p'$ paarweise verschiedener Ecken von G existiert, sodass p_{i-1} und p_i durch eine Kante verbunden sind.

Ein **Baum** ist ein zusammenhängender Graph T, so dass für jedes 1-Simplex (*Kante*) $s \in T$ gilt: $|T| \setminus \mathring{s}$ ist nicht zusammenhängend (mit $\mathring{s} = offener$ 1-Simplex, also Kante ohne Endpunkte).

Definition 4.18 (Euler-Charakteristik). Sei G ein endlicher Graph,

 $\alpha_0 := \text{Anzahl Ecken in } G$,

 $\alpha_1 := \text{Anzahl Kanten in G.}$

Die Euler-Charakteristik von G ist

$$\chi(G) := \alpha_0 - \alpha_1$$

Bemerkung: $\chi(G)$ ist invariant unter Unterteilung (also dem Hinzufügen von neuen Ecken auf einer Kante).

Satz 4.19 (χ von Bäumen). Sei T ein (endlicher) Baum. Dann gilt $\chi(T) = 1$.

Beweis. Induktion nach α_0 = Anzahl Ecken.

- n=1. Dann ist G ein Punkt, $\alpha_0=1$, $\alpha_1=0$, $\chi(T)=\alpha_0-\alpha_1=1$
- n=2. Dann ist G eine Kante mit Endpunkten, $\alpha_0=2$, $\alpha_1=1$, $\chi(T)=1$
- Induktionsannahme: Satz gilt für alle Bäume mit n Ecken.
- Induktionsschritt: $\chi(T)=1$ für Bäume mit n+1 Ecken. Sei T ein Baum mit n+1 Ecken und v_0 ein Ende von T (also eine Ecke die zu genau einer Kante gehört). Ein solches Ende existiert. ¹⁴

Sei $|T_1|:=|T|\setminus \{\mathring{s_1}\cup v_0\}$. T_1 ist wieder ein Baum, sonst existiert s_2 sodass $T_1\setminus \{\mathring{s_2}\}$ zusammenhängend ist, also auch $T\setminus \{\mathring{s_2}\}$ zusammenhängend f.

 T_1 hat n Ecken, also nach IV: $\chi(T_1) = 1$.

Da
$$\alpha_0(T) = \alpha_0(T_1) + 1$$
 und $\alpha_1(T) = \alpha_1(T_1) + 1$ ist $\chi(T_1) = 1$.

Satz 4.20 (χ von zusammenhängenden Graphen). Sei G ein zusammenhängender, endlicher Graph. Sei n die Anzahl von offenen 1-Simplices (*Kanten*), die man aus G entfernen kann, sodass G zusammenhängend bleibt. Dann ist $\chi(G) = 1 - n$. 15

¹⁴ vgl. Übung

Die Aussage aus dem vorhergehenden Satz folgt aus diesem direkt.

Beweis. Ist G ein Baum, so ist n = 0 und die Behauptung gilt.

Ist G <u>kein</u> Baum, so existiert ein offenes 1-Simplex $\mathring{s_1}$, sodass $|G_1|=|G|\setminus \{\mathring{s_1}\}$ zusammenhängend ist. Ist G_1 ein Baum, so hält man an. Ist G_1 kein Baum, so entfernt man eine Kante $\mathring{s_2}$ usw.

G hat endlich viele Kanten, also existiert ein max. n, so dass $|G| \setminus \{\mathring{s_1} \cup \cdots \cup \mathring{s_n}\}$ ein Baum ist. Es gilt dann $\chi(G) = \chi(T) - n = 1 - n$.

Bemerkung: Das Komplement T aller offenen Kanten die man aus G entfernen kann (wie im Beweis) ist ein sog. **spannender Baum** für G, der alle Ecken in G enthält (nicht eindeutig).