a) (3 points) Use pseudocode to specify a brute-force algorithm that determines when given as input a sequence of n positive integers whether there are two distinct terms of the sequence that have as sum a third term. The algorithm should loop through all triples of terms of the sequence, checking whether the sum of the first two terms equals the third.

pseudocode:

B	RUTE_FORCE(n)	cost
1	result_list=[]	c1
2	for $i = 0$ to n.length	n
3	for $j = i+1$ to n.length	n-1
4	for k=j+1 to n.length #Find all three distinct terms	n-2
5	if $n[i]+[j]=n[k]$ or $n[i]+n[k]=n[j]$ or $n[j]+n[k]=n[i]$	c2
6	result.append(n[i],n[j],n[k])	c 3
7	return result_list	

b)(2 points) Give a big-O estimate for the complexity of the brute-force algorithm from part (a).

```
the brute-force algorithm f(n)=O(n^3)
```

proof:

because lines
$$2\sim5$$

f(n)=O(n*(n-1)*(n-2))=O($n^3 - 3n^2 + 2n$)=O(n^3)
QED.

c)(3 points) Devise a more efficient algorithm for solving the problem that first sorts the input sequence and then checks for each pair of terms whether their sum is in the sequence.

```
pseudocode:
 MIN_HEAPIFY(A,i)
  L=2*i
  R=2*i+1
  if L \le A.heap-size and if A[L] < A[i]
        smallest=L
  else smallest=i
  if R \le A.heap-size and if A[R] \le A[smallest]
        smallest=R
  if smallest != i
        temp=A[i]
        A[i]=A[smallest]
        A[smallest]=temp
        MIN_HEAPIFY(A,smallest)
 BULID_MIN_HEAP(A)
   A.heap-size=A.length
  for i= A.length/2 downto 1
        MIN_HEAPIFY(A,i)
```

return A

HEAPSORT(A)	cost
1 A=BULID_MIN_HEAP(A)	f2(n)
2 result_list=[]	c1
3 for i=A.length downto 2	n-1
4 temp=A[1] 5 A[1]=A[i] 6 A[i]=temp 7 result_list.append(A[A.heap-size]) 8 A.heap-size=A.heap-size - 1 9 MIN_HEAPIFY(A,1) return result_list	c2 c3 c4 c5 c6 f1(n)
Main(A)	cost
1 n=HEAPSORT(A)	f3(n)
2 result_list=[]	c1
3 for i =0 to n.length	n
4 for $j=i+2$ to n.length	n-2
5 if $n[i]+n[i+1]=[j]$	c2
6 result_list.append(n[i],n[i+1],n[j])	c 3
7 return result_list	

run the function Main is the start of all the code

d)(2 points) Give a big-O estimate for the complexity of this algorithm. Is it more efficient than the brute-force algorithm?

this algorithm
$$f(n)=O(n^2)$$

proof:

because Main function lines 1~6

$$f(n)=O(f3(n))+O(n(n-2))$$

$$f3(n)=O(f2(n))+(n-1)*O(f1(n))$$

because

$$f1(n) <= f1(2n/3) + \Theta(1)$$
Master Theorem $T(n) = oT(n/b) + f(n)$

Master Theorem
$$T(n)=aT(n/b)+f(n)$$

==>
$$a=1 b=\frac{3}{2}, \Theta(n^{\log_b a})=\Theta(n^0)=\Theta(1)$$

$$==> T(n)=\Theta(n^{\log_b a} \lg n)=\Theta(\lg n)$$
, f1(n)<=T(n)

$$==>f1(n)=O(\lg n)$$

proof: (the n -element heap 's height $| \lg n |$)

because when heap's height =h

==>
$$2^h \le n \le 2^{h+1} - 1$$

==> $h \le \lg n$ and $\lg n \le h - 1 ==> \lg n - 1 < h <= \lg n$

$$==> h= | \lg n |$$

proof: (there are most $\lceil \frac{n}{2^{h+1}} \rceil$ nodes of height is h in any n-element heap)

because when h=0:

==> the [element n]'s parent node is
$$\lfloor \frac{n}{2} \rfloor$$

==> all the leaves node is n-
$$\lfloor \frac{n}{2} \rfloor = \lceil \frac{n}{2} \rceil$$
 — True

hypothesis

when h=x, most nodes is
$$\lceil \frac{n}{2^{x+1}} \rceil$$

when h=x+1, sum the parent nodes of the height h nodes is $\left[\frac{n}{2^{x+1}}\right]/2$

$$==> \lceil \frac{n}{2^{x+2}} \rceil = \lceil \frac{n}{2^{(x+1)+1}} \rceil$$
 — True

so
$$f2(n) = \sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O(n \sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{h}{2^h} \right\rceil)$$

because
$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2} \text{ when } x=1/2$$

so
$$f2(n)=O(n\sum_{h=0}^{\infty}\frac{h}{2^h})=O(n*\frac{\frac{1}{2}}{(1-\frac{1}{2})^2})==>\underline{f2(n)}=O(n)$$

so
$$f(n)=O(n)+(n-1)*O(\lg n)+O(n(n-2))$$

$$==> f(n)=O(n)+O(\lg n)+O(n^2)$$

$$==> f(n)=O(n^2)$$

QED.