Fiche d'exercices n°1

Exercice 1. Soit X une variable aléatoire de loi normale $\mathcal{N}(m, \sigma^2)$, $m \in \mathbb{R}, \sigma \in \mathbb{R}^{+*}$. On rappelle que X est à valeurs dans \mathbb{R} et que sa densité est :

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

- 1. Montrer que $\forall a \in \mathbb{R}^*, \forall b \in \mathbb{R}, \ aX + b \text{ est de loi } \mathcal{N}(am + b, a^2\sigma^2)$. En déduire que $U = \frac{X m}{\sigma}$ est de loi $\mathcal{N}(0, 1)$.
- 2. Soient F_X la fonction de répartition de X et ϕ la fonction de répartition de U. Montrer que $\forall x \in \mathbb{R}, F_X(x) = \phi\left(\frac{x-m}{\sigma}\right)$.
- 3. Montrer que $\forall x \in \mathbb{R}, \phi(-x) = 1 \phi(x)$.
- 4. Soit X une variable aléatoire de loi $\mathcal{N}(3,4)$. Calculer $P(X \leq 1)$.
- 5. Pour $\alpha \in [0, 1]$, soit $u_{\alpha} = \phi^{-1} \left(1 \frac{\alpha}{2} \right)$. Montrer que $-u_{\alpha} = \phi^{-1} \left(\frac{\alpha}{2} \right)$. Représenter u_{α} et $-u_{\alpha}$ sur le graphe de la densité de la loi $\mathcal{N}(0, 1)$. Calculer $P(U \in [-u_{\alpha}, +u_{\alpha}])$.
- 6. Montrer que U^2 est de loi χ_1^2 , dont la densité est $f_{U^2}(x) = \frac{1}{\sqrt{2\pi x}}e^{-\frac{x}{2}}$, pour x > 0.

Exercice 2. On a relevé les magnitudes sur l'échelle de Richter des 15 derniers tremblements de terre les plus importants, dans l'ordre chronologique. On retire 8 et on obtient les données suivantes, que l'on notera x_1, \ldots, x_n , avec n = 15:

- 1. Construire un histogramme à classes de même largeur, puis à classes de même effectif pour ces données.
- 2. Un expert A affirme que ces données semblent être distribuées selon une loi uniforme. Un expert B prétend qu'elles proviennent plutôt d'une loi puissance $Pu(\theta, c)$, définie par sa densité :

$$f(x) = \frac{cx^{c-1}}{\theta^c} \mathbb{1}_{[0,\theta]}(x), \ \theta > 0, \ c > 0$$

- (a) Au vu de l'histogramme, que pensez-vous de ces affirmations ?
- (b) A l'aide de deux graphes de probabilité, montrer qu'il est vraisemblable que c'est l'expert B qui a raison, et donner des estimations graphiques de θ et c.