	Lec - 41
Recall	: Complex random variables, Characteristic function A let of examples, Importance of char- fut's.
	A let of examples, Importance of chan- firs.
	Inequalities
Defr	: Let $I \subseteq R$ be an interval and $f: I \to R$ be a function. He say that
	f is convex on I or concave upward if for any 24,2 & I and t t (0,1) we have
	f ((1-t) & e tn2) < (1-t) f(n) e tf(72)
	10 %
1,,	10 1
(2)	·
9	f is concave on I or concave downward on I if fr any x, x2 & I and any t & (0,1) we have
	f((1-t) 2 ct2) > (1-t) f(21) + tf(22)
	3. 10 cm
	It follows from the defin that f is convex iff -f is concave (reflection about the

<u> 7</u>-0xM

concare

n-axis

random variable. Then E[X"] is called the of h order r.

	E[IXI^2] = called the Jeth also shite manent of X
	about origin or absolute central moment of x of
	order r.
	He know from defn of expectation that, $E[X^2]$ exists and is a finite number if $E[IXI^2] \subset \infty$.
	Therefore by example (1):
	E[xz] < E[xz] < E[IXIz].
xample	2): If the moment of order 9,70 exists for a random variable X, then whom that moments of order p exist, where o < p <q.< th=""></q.<>
	random variable X, then whom that moments of
	order p exist, where o < p <q.< th=""></q.<>
S Sln:	Let $f:(0,\infty) \to \mathbb{R}$ be defined as
	f(x) = x², where ry is a real no.
	Then $\xi'(z) = 922^{n-1}$
	$\xi''(\chi) = r(\chi - 1)\chi^{\chi - 2}.$
	-: 271, &'"(2) > 0 on (0,0).
	=) fin a convex function on (0,0)-
	Hence by Jensen's inequality
	Hence by Jensen's inequality $f(E(x)) = [E(x)]^{r} \leq [E x]^{r} \leq E[x ^{r}]$

Let
$$O \subset P \subset Q$$
. Then we take $r = \frac{1}{P} \nearrow 1$ in O and we get

$$\begin{bmatrix} E \mid x \mid \end{bmatrix} \leq \left(E \mid x \mid^{2} \nearrow P \end{bmatrix} \xrightarrow{P} \downarrow^{2}$$
Now replacing $|x|$ by $|x|^{p}$ in O , we get

$$\begin{bmatrix} E \mid x \mid^{p} \end{bmatrix} \leq \left(E \mid x \mid^{2}) \xrightarrow{P} \downarrow^{2}$$
If $E \mid x \mid^{p} \rfloor \leq \left(E \mid x \mid^{2} \right) \xrightarrow{P} \downarrow^{2}$

and therefore $E (\mid x \mid^{p}) \leq O$

and therefore $E (\mid x \mid^{p}) \leq O$

$$Example O: Let X be a reandom variable with $E(x) = 10$. Show that

$$E \mid \ln |x| \qquad \leq \frac{1}{2} \ln |x| \qquad = \frac{1}{2} \ln x, \quad \text{for } x \in (0, \infty).$$
Then $b'(x) = \frac{1}{2n}$ and $b''(x) = -\frac{1}{2n^{2}} < 0$ on there $b''(x) = \frac{1}{2n} = O$ on $O(0, \infty)$.$$

	if a non-negative random variable has a romall
	n-th central moment, then the probability that it
	takes a large value must also be small.
	As a cordlary of Markov Inequality, we derive the Chebysher Inequality.
	the Chebysher Inequality.
	ny: (Cheloyshov's Inequality) Let X be a
	random variable with finite mean it and
	random variable with finite mean 1 and finite variance of Then for every £70,
	P 3 1 X - M / > E 7 & 52
Prost:	Replace X by X-M in
	Markov Inequality. Also note that
	^
	$ X - M ^2 = [X - M]^2$.
Reman	k: O Chebyshevis Inequality werests that if a
	random voriable has small voriance, then the
	k: 1) Chety shows I hegrality wents that if a grandom voriable has small voriance, then the probability that it takes a value for from its mean is also small.
	(2) Note that the Chelyshev's Inequality does not
	② Note that the Chelogehevis Inequality does not require the random variable to be non-negodine.

Example (4): (Illustrating Chebysher).

If we take $\varepsilon = 2\sigma$, then $P\{|X-M|/20\} \leq \frac{\sigma^2}{4\sigma^2} = 0.25$.

So there is at least a f5% chance that a random variable will be within 20 of its mean, no matter what the distribution of xin.

20_N