PHYS 2212L - Principles of Physics Laboratory II

Laboratory Advanced Sheet Resistors

- 1. Objectives. The objectives of this laboratory are
 - a. to verify the linear dependence of resistance upon length of a conductor of uniform diameter, and
 - b. to understand the use of a Wheatstone bridge to measure unknown resistances.

2. Theory.

a. The resistance of a conducting wire is given by

$$R = \rho L/A \tag{1}$$

where

R is the resistance of the conductor in units of ohms (Ω) ,

 ρ is the resistivity of the conducting material in units of (Ω m),

L is the length of the conductor in units of m, and

A is the cross-sectional area of the conductor in units of m².

b. The Wheatstone bridge consists of three resistors of known resistance, one resistor of unknown resistance, a voltage source and a galvanometer connected in a circuit which allows the resistance of the unknown resistor to be determined. Figure 1 below shows the Wheatstone bridge circuit.

In this experiment (but not in all Wheatstone bridges), resistors, R_1 and R_2 , are provided by a 1.00 m long conducting wire that may be tapped at any point along its length to divide its total resistance into two parts, R_1 and R_2 . Resistor, R_K , is the resistor of known resistance; resistor, R_U , is the resistor of unknown resistance. The resistances of R_1 and R_2 are varied until the galvanometer indicates that no current flows across it. In this condition the potential difference across the galvanometer is zero. If current, I_1 , flows through resistors R_1 and R_2 , and current, I_2 , flows through resistors R_K and R_U , then

$$I_1 R_1 = I_2 R_K$$

$$I_1 R_2 = I_2 R_U$$

Dividing the second of these equations by the first, and solving for R_{U} , yields

$$R_U = R_2 R_K / R_1$$

Since R_1 and R_2 are formed from the same wire conductor, when equation 1 substituted into the last equation, the result is

$$R_U = L_2 R_K / L_1 \tag{2}$$

where

 L_1 and L_2 are the lengths of the conducting wires forming R_1 and R_2 .

- c. In this experiment the use of equation 2 above depends upon the linear relationship between resistance and length of a conducting wire described in equation 1. Therefore, verification of the linear relationship between resistance and length of a conducting wire of uniform cross-sectional area must precede measurements with the Wheatstone bridge.
 - 1) The first objective of this experiment is to verify that linear relationship. This will be accomplished by placing a constant potential difference across the full length of the wire and measuring the voltage drop across a variety of partial lengths of the wire. Since the current in the wire is constant, the voltage drop across a given portion of the wire is proportional to the resistance of that portion of the wire. Thus, a graph of voltage drop versus wire length should be a straight line.
 - 2) For the second objective, a single known resistance will be used in the Wheatstone bridge apparatus to determine the resistances of a variety of resistors. The actual values of the resistances will be determined using a multimeter and the percent discrepancy in the results will be calculated. A graph of the percent discrepancy versus actual resistance will be used to develop conclusions about the suitability of the Wheatstone bridge method for measuring resistance.

3. Apparatus and experimental procedures.

- a. Equipment.
 - 1) Wheatstone bridge apparatus.
 - 2) Variety of resistors.
 - 3) Galvanometer
 - 4) Multimeter.
 - 5) Power supply
 - 6) Connecting wires.
- b. Experimental setup. A figure for the experimental setup will be provided by the student.

- c. Capabilities. Capabilities of the equipment items listed in paragraph 3a will be provided by the student.
- d. Procedures. Detailed instructions are provided in paragraph 4 below.

4. Requirements.

- a. In the laboratory.
 - 1) Your instructor will introduce you to the equipment to be used in the experiment.
 - 2) Measurements to verify the linear relationship between resistance and length of a wire conductor will be made.
 - 3) Measurements of unknown resistances will made using the Wheatstone bridge apparatus and a multimeter.
 - 4) Your instructor will discuss methods to be used to prepare your data for plotting using the Microsoft ExcelTM spreadsheet program.
- b. After the laboratory. The items listed below will be turned in at the beginning of the next laboratory period. A complete laboratory report is **not** required for this experiment.

Para 3. Apparatus and experimental procedures.

- 1) Provide a figure of the experimental apparatus (para 3b).
- 2) Provide descriptions of the capabilities of equipment used in the experiment (para 3c).
- **Para 4. Data**. Data tables are included at Annex A for recording measurements taken in the laboratory. A copy of these tables must be included with the lab report. Provide the items listed below in your report in the form a Microsoft ExcelTM spreadsheet showing data, calculations and graphs. The spreadsheet will include:
 - 1) A table of data from the linearity measurements.
 - 2) The value of the known resistance, R_K.

3) A table with data from the Wheatstone bridge measurements. The table should include columns for nominal resistance, resistance measured using the multimeter, lengths L_1 and L_2 , the resistance calculated from the Wheatstone bridge measurements, and the percent discrepancy.

4) Graphs of

- a) Voltage drop versus length of wire conductor that includes a regression line (trend line) and its equation.
- b) Percent discrepancy versus actual resistance. Use a linear axis scale for the percent discrepancy and a logarithmic axis scale for the actual resistance.

5. Results and Conclusions.

a. Results.

- 1) A statement regarding the verification of the linear relationship between resistance and length of a wire conductor.
- 2) A statement regarding the capabilty of the Wheatstone bridge apparatus to measure resistance when used in the configuration of this experiment.

b. Conclusions.

- 1) Description of the sources of systematic error in the experiment.
- 2) Description of the sources of random error in the experiment.

Annex A Data

1. Linearity measurements.

length (cm)	voltage drop (V)
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	
60	
65	
70	
75	
80	
85	
90	

95	
----	--

- 2. Resistance measurements.
 - a. Known resistance, $R_{\text{K}}.$ Use a nominal 3.3 $k\Omega$ resistor.

Known resistance R_K ($k\Omega$)

b. Wheatstone bridge measurements.

Resistance nominal (kΩ)	Resistance multimeter (kΩ)	Length L ₁ (cm)
0.47		
0.68		
1.0		
1.5		
2.2		
3.3		
4.7		
6.8		
10		

15	
22	
33	
47	

Last update: January 31, 2000