

Universidad Tecnológica de la Mixteca

Clave DGP: 557524

Maestría en Ciencias de Materiales

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Espectroscopia Vibracional

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	300510	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno los fundamentos de las espectroscopias Raman e Infrarroja, aplicadas a la caracterización de diversos tipos materiales.

TEMAS Y SUBTEMAS

1. Conceptos

- 1.1. Introducción a la espectroscopia vibracional
- 1.2. Unidades de energía y espectros moleculares
- 1.3. Dinámica vibracional de moléculas
- 1.4. Factores que determinan las frecuencias
- 1.5. Comparación de las espectroscopias Raman e Infrarroja

2. Propiedades de simetría

- 2.1. Concepto de simetría
- 2.2. Operaciones de simetría y grupos de simetría
- 2.3. Representaciones de grupos
- 2.4. Reglas de selección para dispersión Raman e Infrarroja

3. Espectroscopia Raman

- 3.1. Polarizabilidad
- 3.2. Polarización de dispersión Raman
- 3.3. Dependencia de razones de depolarización por la geometría del cristal
- 3.4. Instrumentación para espectroscopia Raman

4. Espectroscopia Infrarroja (IR)

- 4.1. Radiación electromagnética
- 4.2. Absorción Infrarroja
- 4.3. Grupos de frecuencia. Regiones de IR cercano, medio y lejano
- 4.4. Instrumentación para espectroscopia IR. Espectrómetros dispersivos y FTIR
- 4.5. Métodos experimentales. Transmisión y reflectancia
- 5. Aplicaciones de las espectroscopias vibracionales

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico a través de computadora, medios digitales y prácticas de laboratorio con equipo de IR.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales con una equivalencia del 50%, un examen final correspondiente al 50% restante. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final. Además, se considerarán los trabajos extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Vibrational Spectroscopy of Solids, P. M. A. Sherwood, Cambridge University Press, UK (1972).
- Symmetry and spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, M. D. Bertolucci, Dover, New York (1989).
- 3. Modern Vibrational Spectroscopy and Micro-Spectroscopy, M. Diem, Jhon Wiley & Sons, UK, (2015).

Consulta:

- 1. Introductory Raman Spectroscopy, J. R. Ferraro, Academic Press, London UK (2003).
- 2. Infrared Spectroscopy: Fundamentals and Applications, B. Stuart, Jhon Wiley & Sons, UK (2004).
- 3. Vibrational Spectroscopy: Theory and Applications, D.N. Sathyanarayana, New Age International, New Delhi (2005).

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Física, Ciencia de los Materiales, y en áreas a fines con experiencia en Ciencias de Materiales.

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR
JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO