



Aaron Ingram
Eduardo Calderon
Klin Rothenberger
Salvador Cuevas

VR Telepresence Robot Arm

Final Project Presentation



#### **Problem Statement**

- Robot Arms have non intuitive controls
- Telepresence is nearly non existent for users to see the robot arm from different locations
- Current implementations are extremely bulky/ unintuitive to use



RoSS™ II Robotic Surgery Simulator





# Original Concept

- User wears a Virtual Reality headset with stereoscopic video feed attached to the arm
- User controls the robotic arm using a Leap Motion infrared hand tracking sensor







# System Overview



Klin
Salvador
Aaron

E.J.



# Communications and Control Subsystem

#### Requirements

- Video passthrough from camera to headset in near real time
- LeapMotion Communication to Arduino MicroController
- Angle Movement of Robot Arm within 15 Degrees of Human Arm



#### **World Interaction While wearing Headset**





# Communications Testing



LeapMotion and Origin Computer

Receive Position Info from LeapMotion, Send Info via TCP Server Odroid MicroController

Receive from TCP Server, Send Info via Serial Communication Arduino Mega MicroController

Receive from Serial, Send Write Commands to Motors Robot Arm

Receive Arduino Commands, Turn Motors to Position



# Communications Testing

#### **Communication Testing**

- Camera to HMD (head mounted device) delay of 100-300ms
- Communication Pathway has a delay of ~200 milliseconds from user input to motor movement



### Motor Control Testing

#### **Motor Testing**

- ~150 hand inputs given in testing session
- Beginning zero position and end zero position were ~13 degrees, which is within 15 degrees of each other

#### **Initial Position**



**Final Position** 





# Grabber Testing

#### **Grabber Testing**

- Robot Claw able to hold items and move simultaneously
- Potential blocker with objects that restrict the servo's rotation





### Arm/Camera Subsystem

#### Requirements

- Minimum 4 axis of movement
- Stereoscopic (3D) camera mounted on 3-axis gimbal
- Stepper motors strong enough to move a 250g object



Original arm concept design



# Final Arm Design



BCN3D MOVEO open source robot arm + gimbal mount



### Camera + Gimbal

