

Patent Abstracts of Japan

PUBLICATION NUMBER

10148827

PUBLICATION DATE

02-06-98

APPLICATION DATE

20-11-97

APPLICATION NUMBER

09336457

APPLICANT:

SEIKO EPSON CORP;

INVENTOR:

IMAI SHUICHI;

INT.CL.

G02F 1/1335 G02F 1/1333 G02F

1/1333 G02F 1/137

TITLE

ELECTRO-OPTIC DEVICE AND ITS

PRODUCTION

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a device in which light is well scattered by a reflecting layer and an easily visible display can be obtd. with a large visual field by forming an org. film on a substrate having a rough surface and then forming a reflecting layer on the org. film.

SOLUTION: A transparent electrode 5 such as ITO is formed on the inner surface of an upper substrate 2 facing a liquid crystal layer 4, while a thin metal film 6 as a reflecting layer is formed on the inner surface of the other substrate 3. The surface of the lower substrate 3 facing the liquid crystal layer 4 is finely roughened so that the surface of the metal film 6 is made rough. An inorg. film such as SiO_2 or an org. film is formed on the surface of the metal film 6 to obtain uniform thickness of the liquid crystal layer 4. The pitches of the roughness are preferably controlled as random and irregular. The average pitch of the roughness is preferably $\leq 80 \mu m$, and the roughness height is preferably $\leq 0.6 \mu m$ considering the orientation of the liquid crystal to be held and concentration of light reflected to the observer side.

COPYRIGHT: (C)1998,JPO