

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information

Course name	Advanced Artificial Intelligence				
Course number	ITCS6301				
Faculty					
Department					
Course type	Major Needs				
Course level	6				
Credit hours (theoretical)	3				
Credit hours (practical)	0				
Course Prerequisites					

Course Objectives

- 1 Learn AI from the computational (how can we design effective and efficient algorithms to solve problems that typically have exponential complexity) viewpoint
- 2 Learn Al from the cognitive (how do humans solve complex problems effectively and efficiently) viewpoint.
- 3 Lean and apply fundamental concepts, ideas, techniques, and applications and provide practical experience by implementing intelligent reasoning techniques

Intended Learning Outcomes

Knowledge and Understanding	 a1) Define major concepts and approaches in knowledge representation, planning, learning, robotics and other Al areas
	 a2) Explain the principles and techniques of a number of application areas informed by the research directions of artificial intelligence
	 a3) Explain selected advanced topics to provide a deeper understanding of some aspects of artificial intelligence
Intellectual Skills	 b1) Generate an innovative design to solve a problem containing a range of commercial and industrial constraints
Professional Skills	 c1) Specify, design, and implement computer-based system
	 c2) Evaluate systems in terms of general quality attributes and possible tradeoffs presented within the given problem
General Skill	 d1) Communicate effectively by oral, written and visual means
	 d2) Work effectively as an individual and as a member of a team
	 d3) Develop Creativity and imagination skills, Self-assessment ability and Critical thinking and analytic ability

Course Contents

This course will build on the basic concepts covered in Al Course, and take a more in depth look at advanced material on a set of core topics. This will involve additional reading mostly survey papers and research articles from journals and edited texts. The core advanced topics will include:

 Advanced Search Algorithms: Iterative Deepening search, Advanced CSP topics.
 with resource constraints.
 Reasoning under Uncertainty: Dynamic Bayes Nets and Decision making under uncertainty.
 Machine Knowledge Representation: Ontologies and Ontological Engineering.
 Planning systems: Planning with graphs, Partial order planning, and planning and scheduling Learning: Classification and clustering methods.

 Advanced Topics: survey of an Al topic of current interest. Students will choose their own topics

Teaching and Learning Methods

1 - Lectures

Students Assessment

Assessment Method	<u>TIME</u>	<u>MARKS</u>
Mid -Tearm Exam	8th week	20
Research Paper	12th week	20
Home Work	During the 16 weeks	10
Final Exam	16th week	50

Books and References

Essential books	 Stuart Russell and Peter Norvig, Artificial Intelligence A Modern Approach, Third edition, Prentice Hall, NJ, 2009. 		
Recommended books	 Jeff Heaton, Artificial Intelligence for Humans, Volume 1: Fundamental Algorithms, Create Space Independent Publishing Platform; 1st edition, 2013. 		
	 G.F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Ad-dison Weseley, 2005. 		
	N.J. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998.		

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
Introduction to AI (self study & discussion) Intelligent Agents (self-study & discussion)	1-2	a1,a2	b1	c1	d1
Search and Problem Solving A*, Iterative Deepening A*, Anytime Heuristic Search Simulated Annealing, Genetic Search Algorithms	3-4	a2,a3	b1	c1	d2
Adversarial Search (Two person games) Discussion of algorithms (Alpha-Beta) + applications	5	a3	b1	c2	d3
Machine Learning Supervised Learning (Decision Trees, Linear Regression)	6	a1,a3	b1	c1	d1-d3
Constraint Satisfaction Problems (CSP)	7	a2	b1	c2	d3
Knowledge Representation and Reasoning Propositional Logic (self study) First Order Logic and Inference (self-study) Knowledge Representation & Ontologies	8-9	a1,a2	b1	c1	d2
Planning & Scheduling Planning as State Space Search (self-study) Forward Search & Backward Search (Regression) (self-study) Planning (GRAPHPLAN) & Partial Order Planning	10-11	a3	b1	c1	d2-d3
Reasoning under Uncertainty Bayes Rule and Bayes Nets Hidden Markov Models, Dynamic Bayes Nets Making Simple Decisions (Utility Theory Framework)	12-13	a1-a3	b1	c1	d1-d3
Discussion of state of the art + applications	14-15	a1-a3	b1	c1-c2	d1-d3