Theorem (1.6.4). The additive inverse of an even number is an even number

Proof. Let χ be an even number. There exists an integer η such that $\chi = 2\eta$, by the definition for even numbers. The additive inverse for χ is,

$$-1\langle\chi\rangle = -1\langle2\eta\rangle$$

By commutativity of multiplication that is,

$$-1\langle 2\eta \rangle = 2\langle -\eta \rangle$$

Since integers are closed under multiplication, the factor $\langle -\eta \rangle$ is an integer. It follows that the additive inverse of χ is an even number, by the definition for even numbers.