Ishan Sethi | ID: 110941217 | CSE 215 | Homework 4 in LATEX

Professor McDonnell | Assigned: March 16, 2017 | Due: March 28, 2017

Contents

5 Sequences, Mathematical Induction and Recursion

5.1 11, 21, 39, 53, 56

11) 0, $\frac{-1}{2}$, $\frac{2}{3}$, $\frac{-3}{4}$, $\frac{4}{5}$, $\frac{-5}{6}$, $\frac{6}{7}$, given this pattern, to get to the k^{th} term $\forall k \geq 0 \in \mathbb{Z}$

$$a_k = \frac{(-1)^k k}{k+1}$$

$$\frac{1}{21)\sum_{k=-1}^{1}(k^2+3)} =$$

$$((-1)^2 + 3) + ((0)^2 + 3) + ((1)^3 + 3) = \boxed{11}$$

$$(39) (1^3 - 1) - (2^3 - 1) + (3^3 - 1) - (4^3 - 1) + (5^3 - 1) =$$

$$\sum_{k=0}^{4} (-1)^k \cdot ((k+1)^3 - 1)$$

53)
$$\prod_{i=n}^{2n} \frac{n-i-1}{n+1} \to j=i-1$$
 and $j+1=i$: $n=i$. After subbing these in we get

$$\prod_{i=k}^{2n} \frac{-n+i-1}{1-n} \to \boxed{\prod_{j=n-1}^{2n-2} \frac{-n+j}{1-n}}$$

$$\overline{)56) \prod_{k=1}^{n} \frac{k}{k+1} \cdot \prod_{k=1}^{n} \frac{k+1}{k+2} = \prod_{k=1}^{n} \frac{k}{k+1} \cdot \frac{k+1}{k+2} =$$

$$\prod_{k=1}^{n} \frac{k}{k+2}$$

5.2 4, 9, 16, 27

4a)
$$\sum_{i=1}^{n-1} i(i+1) = \frac{n(n-1)(n+1)}{3}$$
 that is $\forall n \ge 2 \in \mathbb{Z}$

Base Case:
$$n = 2 \Rightarrow \sum_{i=1}^{1} 1(2) = \frac{2 \cdot 1 \cdot 3}{3}$$

Inductive Hypothesis

4b) Inductive Step: Suppose
$$P(k) = 1(1+1) + \dots + k(k+1) = \frac{k(k-1)(k-2)}{3}$$

4c) P(k+1)

What the I.H. is equal to
$$1(1+1) + \dots + k(k+1) + (k+1)((k+1)+1) = \frac{k(k+1)(k+2)}{3}$$

- 4d) What we have to do
 - In the base step one must show that the lowest possible value is true
 - In the Inductive Step, you assume that P(k) is true such that k is any integer greater than or equal to 2. Then you show that P(k+1) is true.

9) Let
$$P(n)$$
 be the statement saying that $4^3 + 4^4 + 4^5 + \dots + 4^n = \frac{4(4^n - 16)}{3}$ is true $\forall n \geq 3 \in \mathbb{Z}$.

Base Case: The Statement P(3) would mean that we would use 3 for n and make sure that the original claim is true for the most basic value given the parameters of the claim (In this case its $\forall n \geq 3 \in \mathbb{Z}$).

Inductive Step: Assume that P(k) is true $\forall k \geq 3 \in \mathbb{Z}$

This would make the claim that
$$4^3 + 4^4 + 4^5 + \dots + 4^k = \frac{4(4^k - 16)}{3}$$

Inductive Hypothesis

Now we show that P(k+1) is also true: $4^3 + 4^4 + 4^5 + \dots + 4^k + 4^{k+1} = \frac{4(4^{k+1} - 16)}{3}$

$$\frac{4(4^{k}-16)}{3} + 4^{k+1} = \frac{4(4^{k+1}-16)}{3}$$

$$\frac{4(4^{k}-16) + 3 \cdot 4^{k+1}}{3} = \frac{4^{k+2}}{3} - \frac{16 \cdot 4}{3}$$

$$\frac{4^{k+1}}{3} - \frac{64}{3} + \frac{3 \cdot 4^{k+1}}{3} = \frac{4^{k+2}}{3} - \frac{16 \cdot 4}{3}$$

$$\frac{4^{k+1}}{3} + \frac{3 \cdot 4^{k+1}}{3} - \frac{64}{3} = \frac{4^{k+2}}{3} - \frac{64}{3}$$

$$4^{k+1} \cdot \left(\frac{1}{3} + \frac{3}{3}\right) - \frac{64}{3} = \frac{4^{k+2}}{3} - \frac{64}{3}$$

$$4^{k+1} \cdot \left(\frac{4}{3}\right) - \frac{64}{3} = \frac{4^{k+2}}{3} - \frac{64}{3}$$

$$4^{k+2} \cdot \left(\frac{1}{3}\right) - \frac{64}{3} = 4^{k+2} \cdot \left(\frac{1}{3}\right) - \frac{64}{3}$$

This is what we wanted

16)
$$P(n)$$
 states that $\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$ is true $\forall (n \ge 2) \in \mathbb{Z}$

<u>Base Case</u>: The statement P(2) would mean that we would use 2 for n and make sure that the original claim is true for the a value within the parameters of the claim (In this case its $\forall n \geq 2 \in \mathbb{Z}$).

Inductive Step: Assume that P(k) is true $\forall k \geq 2 \in \mathbb{Z}$

This would make the claim that
$$\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{k^2}\right) = \frac{k+1}{2k}$$

This is the Inductive Hypothesis

Now we show that
$$P(k+1)$$
 is also true: $\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{k^2}\right) \cdot \left(1 - \frac{1}{(k+1)^2}\right) = \frac{(k+1) + 1}{2(k+1)}$

$$\frac{k+1}{2k} \cdot \left(1 - \frac{1}{(k+1)^2}\right) = \frac{(k+1)+1}{2(k+1)}$$

$$\frac{(k+1) \cdot ((k+1)^2 - 1)}{2k \cdot (k+1) \cdot (k+1)} = \frac{k+2}{2k+2}$$

$$\frac{((k+1)^2 - 1)}{2k \cdot (k+1)} = \frac{k+2}{2k+2}$$

$$\frac{k^2 + 2k + 1 - 1}{2k^2 + 2k} = \frac{k+2}{2k+2}$$

$$\frac{k^2 + 2k}{2k^2 + 2k} = \frac{k+2}{2k+2}$$

$$\frac{k \cdot (k+2)}{k \cdot (2k+2)} = \frac{k+2}{2k+2}$$

$$\frac{k+2}{2k+2} = \frac{k+2}{2k+2}$$

This is what we wanted

27)
$$5^3 + 5^4 + 5^5 + \dots + 5^n = \underbrace{\frac{r^{n+1} - 1}{r - 1}}_{S_n}$$
 This is dependent on the value of k so we can only get a sum in terms of k

$$S_k = \frac{5^{k+1} - 1}{5 - 1} = \frac{5^{k+1} - 1}{4}$$

This is the end of 5.2, 5.3 is on the next page

15, 22, 27 5.3

15) P(n) states that $n \cdot (n^2 + 5)$ is divisible by $6 \ \forall n \ge 0 \in \mathbb{Z}$

n = 0, $0(0^2 + 5) = 0$ and 6|0 is true.

Inductive Step:

Suppose P(k), that would make the claim that $\forall k \geq 0 \in \mathbb{Z}$, $6|k(k^2+5) \text{ or } 6|(k^3+5k)$ are both true.

Now we need to show P(k+1) is true.

$$6|(k+1)((k+1)^{2}+5)$$

$$6|(k^{3}+2k^{2}+k+5k+k^{2}+2k+1+5)$$

$$6|(k^{3}+3k^{2}+3k+5k+6)$$

$$6|(\underline{k^{3}+5k})+(3k^{2}+3k+6)$$
I.H.

We need to prove that $6|(3k^2+3k+6)$ is true:

We have $(3k^2 + 3k + 6)$ which can be rewritten as 3k(k+1) + 6 then 3(k(k+1) + 2).

From this we can say that k(k+1) is an even number because if k is odd, k+1 is even and an even time an odd is even. If k is even, k(k+1) is even because if the multiples of a number consists an even number, the product is even.

If k(k+1) is even then k(k+1)+2 is also even as 2 is even and an even plus an even is also even. 3 times (k(k+1)+2) has to be divisible by $6 \ \forall k \geq 0 \in \mathbb{Z}$ as 3 times an even number is divisible by 6. This makes $6|(3 \cdot (k(k+1)+2)) \text{ true } \forall k > 0 \in \mathbb{Z}.$

This in the makes makes out final claim of $6|(k^3+3k^2+3k+5k+6)$ true as the sum of two numbers $((k^3+5k)$ and $3k^2 + 3k + 6$) that are each divisible by another number (6) is also divisible by that number (6).

QED

22) P(n) states that $1 + nx \leq (1+x)^n$ is true $\forall n \geq 2 \in \mathbb{Z}$ and $\forall x > -1 \in \mathbb{R}$ Base Case: n=2

$$1 + nx \le (1 + x)^n$$

$$1 + 2x \le (1 + x)^2$$

$$1 + 2x \le 1 + 2x + x^2$$

$$0 \le x^2$$

This is true $\forall x > -1 \in \mathbb{R}$

Inductive Step: $\forall k \geq 2 \in \mathbb{Z}$ and $\forall x > -1 \in \mathbb{R}$, P(k) states that $1 + kx \leq (1 + x)^k$ Inductive Hypothesis

Now we need to show true for P(k+1)

On the Next Page

Now we need to show true for P(k+1)

$$1 + (k+1)x \le (1+x)^{k+1} \tag{1}$$

$$1 + kx + x \le (1+x)^k \cdot (1+x)^1 \tag{2}$$

If we take a look at the I.H. and manipulate that by adding x to both sides...

$$1 + kx + x \le (1+x)^k \tag{3}$$

We need to show that

$$(1+x)^k + x \le (1+x)^{k+1} \tag{4}$$

$$(1+x)^k + x \le (1+x)^k \cdot (1+x) \tag{5}$$

$$(1+x)^k + x \le (1+x)^k \cdot 1 + (1+x)^k \cdot x \tag{6}$$

$$x \le (1+x)^k \cdot x \tag{7}$$

$$1 \le (1+x)^k \tag{8}$$

This is true for $\forall x > -1 \in \mathbb{R}$ and $\forall k \geq 2 \in \mathbb{Z}$

This means that $1 + kx + x \le (1+x)^k + x \le (1+x)^{k+1}$ is true, which is what we wanted

27) Given d_1, d_2, d_3, \dots and $d_1 = 2$ and $d_k = \frac{d_{k-1}}{k}, \forall k \geq 2 \in \mathbb{Z}$

Prove the following, P(n) states that $\forall n \geq 1 \in \mathbb{Z}, d_n = \frac{2}{n!}$ is true

Base Case: Let n=2 so show P(2); $d_2=\frac{2}{2}=1$ and $d_2=\frac{2}{2!}=1$; so the base case is true for the thing that we are trying to prove.

Inductive Step: Let P(c) state that $d_c = \frac{2}{c!}$ is true $\forall c \geq 1 \in \mathbb{Z}$. This would make it so that $d_c = \frac{d_{c-1}}{c}$

Now we need to show P(c+1)

$$d_{c+1} = \frac{2}{(c+1)!} = \frac{d_{c+1-1}}{c+1} = \frac{d_c}{c+1} = \frac{2/(c!)}{c+1} = \frac{2}{c!(c+1)} = \boxed{\frac{2}{(c+1)!}}$$
 Which is what we wanted.

This is the end of 5.3, 5.4 is on the next page

5.4 2, 7

2) Given that $b_1 = 4$, $b_2 = 12$ and $b_k = b_{k-2} + b_{k-1} \ \forall k \ge 3 \in \mathbb{Z}$ Prove that $(4|b_k)$ is true.

Base Case: $(4|b_1) = (4|4)$, This is true. $(4|b_2) = (4|12)$, This is also true, so the base case holds true.

Inductive Step: Let the statement P(c) be that $(4|b_c)$ whilst $b_c = b_{c-2} + b_{c-1} \ \forall c \ge 1 \in \mathbb{Z}$. Suppose its true. This is the **Inductive Hypothesis**.

Now we need to show P(c+1) and that its true. P(c+1) would say that $b_{c+1} = b_{c-1} + b_c$ and that $(4|b_{c+1})$. In b_{c-1} , we can concur that c-1 has to be greater than or equal to 1 so in this case, $c \geq 2$, which means that the lowest possible value for c is 2, which makes the lowest possible for $b_c = 12$ which is divisible by 4 as seen in the base case. so for any value greater than 2, b_c has b_2 in it and shows multiple iterations of it. So this MUST mean that b_c is divisible by $4 \ \forall c \geq 1 \in \mathbb{Z}$ because a multiple of 4 is divisible by 4. | QED

7) Given the series $g_1, g_2, g_3, ...$ the initial conditions $g_1 = 3, g_2 = 5$ and the general equation $g_k = 3g_{k-1} - 2g_{k-2}$ $\forall k > 3 \in \mathbb{Z}$

Prove that P(n), $g_n = 2^n + 1$, is true $\forall n \geq 1 \in \mathbb{Z}$

Base Case:

 $P(1), g_1 = 3$ (Given)

 $P(1), g_1 = 2^1 + 1 = 3$ - True for n = 1

 $P(2), g_2 = 5$ (Given)

 $P(2), g_2 = 2^2 + 1 = 5$ - True for n = 2

Inductive Step:

We need to suppose P(c) which would say that $g_c = 2^c + 1 \quad \forall c \ge 1 \in \mathbb{Z}$ Inductive Hypothesis

Now we need to show that P(c+1)

$$g_{c+1} = 2^{c+1} + 1$$

$$g_{c+1} = 3 \cdot g_c - 2 \cdot g_{c-1}$$

$$g_{c-1} = 2^{c-1} + 1$$

$$g_{c+1} = 3(2^c + 1) - 2(2^{c-1} + 1)$$

$$g_{c+1} = 3 \cdot 2^c + 3 - 2^c - 2$$

$$g_{c+1} = 2 \cdot 2^c + 1$$

$$g_{c+1} = 2^{c+1} + 1$$

 $g_{c+1} = 2^{c+1} + 1$ is what we wanted, this is the Inductive Hypothesis but for c+1 instead of c

Q.E.D.

End of 5.4, 5.5 begins on the next page.

5.5 4, 12, 28, 42

4) Given $k(d_{k-1})^2$ is true $\forall k \geq 1 \in \mathbb{Z}$ and $d_0 = 3$. Find the first four terms.

$$d_0 = 3$$

$$d_1 = 1(d_0)^2 = 1(9) = 9$$

$$d_2 = 2(d_1)^2 = 2(81) = 162$$

$$d_3 = 3(d_2)^2 = 3(26244) = 78732$$

12) Given the sequence $s_0, s_1, s_2...$ and let that be defined by $s_n = \frac{(-1)^n}{n!} \ \forall n \ge 0 \in \mathbb{Z}$ Show that it satisfies $s_k = \frac{-s_{k-1}}{k}$.

<u>Base Case</u>: $P(1) = 1 = \frac{-s_0}{1} = \text{true}$. Base case holds true for the claim $\forall k \geq 1 \in \mathbb{Z}$.

Inductive Step:

Let P(c) state that $s_c = \frac{-s_{c-1}}{c}$ and suppose this is true $\forall c \geq 1 \in \mathbb{Z}$. We also need to consider that $s_c = \frac{(-1)^c}{c!}$ within the same bounds. If we check for s_{c+1} in the given equation, we get $\frac{(-1)^{c+1}}{(c+1)!}$ We need to show that P(k+1) is true

$$s_{c+1} = \frac{-s_c}{c+1}$$

$$s_{c+1} = \frac{-1 \cdot \frac{(-1)^c}{c!}}{c+1}$$

$$s_{c+1} = \frac{(-1)^{c+1}}{c! \cdot (c+1)}$$

$$s_{c+1} = \frac{(-1)^{c+1}}{(c+1)!}$$

This is what we wanted, Q.E.D.

28) The question we are dealing with is a Fibonacci series so we can safely suppose that $F_{k+1} = F_k + F_{k-1}$ Prove the first statement $\forall k \geq 1 \in \mathbb{Z}$

$$(F_{k+1})^2 - (F_k)^2 - (F_{k-1})^2 = 2F_k F_{k-1}$$

$$n = 1; F_2^2 - F_1^2 - F_0^2 = 2(F_1)(F_0)$$

$$2^2 - 1^2 - 1^2 = 2(1)(1)$$

$$2 = 2$$

This is true for the Base case, n=1

$$(F_{k+1})^2 - (F_k)^2 - (F_{k-1})^2 = 2F_k F_{k-1}$$

$$(F_k + F_{k-1})^2 - (F_k)^2 - (F_{k-1})^2 = 2F_k F_{k-1}$$

$$(F_k)^2 + 2F_k F_{k-1} + (F_{k-1})^2 - (F_k)^2 - (F_{k-1})^2 = 2F_k F_{k-1}$$

$$2F_k F_{k-1} = 2F_k F_{k-1} - \text{This is what we wanted}$$

42) Prove inductively
$$\prod_{i=1}^{n} (ca_i) = c^n \prod_{i=1}^{n} (a_i)$$

Base Case: i = 1, $ca_1 = c(a_1)$, works for the base case.

Inductive Step:
$$(ca_1) \cdot (ca_2) \cdot (ca_3) \cdot \cdot \cdot (ca_n) = c^n (a_1 \cdot a_2 \cdot a_3 \cdot \cdot \cdot \cdot a_n)$$

Inductive Hypothesis

Show true for n+1, $c^{n+1} \prod_{i=1}^{n+1} a_i$

$$(ca_1) \cdot (ca_2) \cdot (ca_3) \cdot \cdots \cdot (ca_n) \cdot (ca_{n+1}) = c^{n+1} (a_1 \cdot a_2 \cdot a_3 \cdot \cdots \cdot a_n \cdot a_{n+1})$$

$$c^n (a_1 \cdot a_2 \cdot a_3 \cdot \cdots \cdot a_n) \cdot (ca_{n+1}) = c^{n+1} (a_1 \cdot a_2 \cdot a_3 \cdot \cdots \cdot a_n \cdot a_{n+1})$$

$$c^n \cdot c \cdot (a_1 \cdot a_2 \cdot a_3 \cdot \cdots \cdot a_n \cdot a_{n+1}) = c^{n+1} (a_1 \cdot a_2 \cdot a_3 \cdot \cdots \cdot a_n \cdot a_{n+1})$$

$$c^{n+1} \prod_{i=1}^{n+1} a_i = c^{n+1} \prod_{i=1}^{n+1} a_i$$

This is what we wanted

5.6 8, 13, 38

8)
$$f_k = f_{k-1} + 2^k$$
 and $f_1 = 1$

$$f_1 = 1$$

 $f_2 = 1 + 2^2 = 5$
 $f_3 = 5 + 2^3 = 13$
 $f_4 = 13 + 2^4 = 29$
 $f_5 = 29 + 2^5 = 61$

Claim: $f_k = 2^{k+1} - 3$

Base Case: k = 1 so $f_1 = 1 = 2^2 - 1$, this works so its valid for the base case.

Inductive Step: Suppose $f_k = 2^{k+1} - 3$, we want to show $f_{k+1} = 2^{k+2} - 3$

$$f_k = 2^{k+1} - 3$$

$$f_{k+1} = f_k + 2^{k+1}$$

$$f_{k+1} = 2^{k+1} - 3 + 2^{k+1}$$

$$f_{k+1} = 2 \cdot 2^{k+1} - 3$$

$$f_{k+1} = 2^{k+2} - 3$$

This is what we wanted, Q.E.D

13 and 38) $t_k = t_{k-1} + 3k + 1$ and $t_0 = 0$

$$t_0 = 0$$

$$t_1 = 0 + 3(1) + 1 = 4$$

$$t_2 = 4 + 3(2) + 1 = 11$$

$$t_3 = 11 + 3(3) + 1 = 21$$

$$t_4 = 21 + 3(4) + 1 = 34$$

$$t_5 = 34 + 3(5) + 1 = 50$$

Claim: $t_k = 3 \cdot \left(\frac{k \cdot (k+1)}{2}\right) + k$

Base Case: k = 1 so $t_1 = 3 \cdot \left(\frac{1 \cdot (1+1)}{2}\right) + 1 = 4$, this works so its valid for the base case.

38) Inductive Step: Suppose
$$t_k = 3 \cdot \left(\frac{k \cdot (k+1)}{2}\right) + k$$
, we want to show $t_k = 3 \cdot \left(\frac{(k+1) \cdot (k+2)}{2}\right) + (k+1)$

Going back to the sequence that we were given

$$t_{k+1} = t_k + 3k + 3 + 1$$

$$t_{k+1} = 3\left(\frac{k(k+1)}{2}\right) + k + 3k + 3 + 1$$

$$t_{k+1} = \frac{3k^2 + 11k + 8}{2}$$

Going back to the Inductive Hypothesis and the Inductive Step

$$t_k = 3 \cdot \left(\frac{(k+1) \cdot (k+2)}{2}\right) + (k+1)$$

$$t_{k+1} = \frac{3 \cdot (k^2 + 3k + 2)}{2} + \frac{2 \cdot (k+1)}{2}$$

$$t_{k+1} = \frac{3k^2 + 11k + 8}{2}$$

This is what we wanted Q.E.D.