Lab 3 - Radio communication theory

Introduction to Drone Technology

Karina Bay Bloch (kablo17), Rianne Drijver (ridri21) & Nicoline L. Thomsen (nthom18)

October 2021

1 Radio link budget

1.1 Unit conversion mW and dbm

The formula for converting mW (power) to dbm with a reference of 1mW is written in equation 1 [1].

$$P_{dbm} = 10 \cdot \log_{10} \left(\frac{P_m W}{10^{-3}} \right) \tag{1}$$

$$\begin{array}{c|c} P_{mW} & P_{dbm} \\ \hline 100 & 20.00 \\ 500 & 26.99 \\ 1000 & 30.00 \\ \end{array}$$

Table 1: Different values of mW converted to dbm

1.2 Free-space basic transmission loss

Free-space basic transmission loss is the reduction of the effect of radio energy between the feed points of two antennas that stem from the receiving antenna's capture area and the line-of-sight path through an open space which is free of obstacles. As the signal must cover a wider area, the conversation of the energy of the signal shows that energy in an area will lessen as the covered area increases.

1.3 Radio link budget

2 Near field absorption and Fresnel zones

2.1 Near field absorptions

The near-field absorption of radiation affects the load of the transmitter. In the parts closest to the antenna, the absorption of electromagnetic power can increase the load of the transmitter, with a second device that feeds back to the transmitter. This increases the load by decreasing the antenna impedance, and by this the transmitter can sense when power is being absorbed, and has to supply extra power to its antenna.

2.2 Fresnel zones

Figure 1: Illustration of the Fresnel Zone [2]

The Fresnel Zone is an ellipsoid encapsulating two communicating antennas around the line of sight (LoS) line. Having objects reflect the signal on the border of the Fresnel Zone can decrease the signal strength, as illustrated in figure 1. The formula for calculating the radius of the Fresnel Zone at a given point in the LoS is given by equation 2.

$$F_n = \sqrt{\frac{n\lambda(d_1d_2)}{d_1 + d_2}} \tag{2}$$

Where F_n is the Fresnel Zone radius for the zone number n, λ is the frequency, d_1 and d_2 is the respective distances from the point in LoS to the two antennas [3].

C2 stands for command and control system, and links the ground station and the UAV [4].

2.3 Plotting Fresnel zones

Using equation 2 the different Fresnel Zones shapes for different frequencies are plotted in figure 2. It is clear that higher frequencies require a larger area of obstacle free space to have unobstructed communication.

Figure 2: Plot of the Fresnel Zones at different frequencies between two antennas 1 km apart.

2.4 Fresnel zone loss

3 of 7

3 Simulation of path loss based on terrain contours $_{\rm Link}$

	Radio link stu	ıdy 1	
HCA Airport (1)			(2) Svanninge Bakker
Latitude	55.472315 °	Latitude	55.125038°
Longitude	10.328792 °	Longitude	10.253127°
Ground elevation	15.8 m	Ground elevation	76.2 m
Antenna height	2.0 m	Antenna height	2.0 m
Azimuth	187.10 TN 183.82 MG °	Azimuth	7.04 TN 3.79 MG °
Tilt	-0.09 °	Tilt	-0.26 °
Radio system			Propagation
TX power	43.01 dBm	Free space loss	107.49 dB
TX line loss	3.00 dB	Obstruction loss	73.23 dB
TX antenna gain	6.00 dBi	Forest loss	1.00 dB
RX antenna gain	2.00 dBi	Urban loss	1.00 dB
RX line loss	0.50 dB	Statistical loss	5.67 dB
RX sensitivity	-113.02 dBm	Total path loss	188.40 dB
Performance			
Distance			38.911 km
Precision			19.5 m
Frequency			146.000 MHz
Equivalent Isotropically Radiated Power			39.905 W
System gain			160.53 dB
Required reliability			70.000 %
Received Signal			-140.89 dBm
Received Signal			0.02 μV
Fade Margin			-27.87 dB

Figure 3: Screenshot from Radio Mobile Online tool

Figure 4: Screenshot from Radio Mobile Online tool

Figure 5: Screenshot from Radio Mobile Online tool

Figure 6: Screenshot from Radio Mobile Online tool

Coverage

Figure 7: Screenshot from Radio Mobile Online tool

Figure 8: Screenshot from Radio Mobile Online tool (Coverage from HCA Airport)

Figure 9: Screenshot from Radio Mobile Online tool (Coverage from Svanninge Bakker)

4 Bibliography

- [1] DSPILLUSTRATIONS.COM. Decibel conversion: Factor 10 or 20? https://dspillustrations.com/pages/posts/misc/decibel-conversion-factor-10-or-factor-20.html. Online; accessed 29 September 2021.
- [2] RF elements s.r.o. Inside wireless: Fresnel zones. https://www.youtube.com/watch?v=v371pPLdf_c&ab_channel=RFelementss.r.o. Online; accessed 03 October 2021.
- [3] Editorial Team everything RF. What is the fresnel zone? https://www.everythingrf.com/community/what-is-the-fresnel-zone. Online; accessed 03 October 2021.
- [4] SKYbrary. Unmanned aerial systems (uas). https://www.skybrary.aero/index.php/Unmanned_Aerial_Systems_(UAS). Online; accessed 03 October 2021.