Heuristic Optimization

Lecture 8

Algorithm Engineering Group Hasso Plattner Institute, University of Potsdam

10 July 2017

Heuristic Optimization

HPI

The Satisfiability problem

In the 20th century, the advent of computers inspired mathematicians to

- try to understand what people do when they create proofs
- reduce logical reasoning to some canonical form that can be implemented by an algorithm

UNIVAC (www.computerhistory.org)

Given a statement S in some well-defined logical syntax

- ullet is there an algorithm to prove S is true (or false)?
- what is the complexity of such an algorithm?

Heuristic Optimization

10 July 2017 1 / 22

SATISFIABILITY: A formal definition

A **propositional logic formula** is built from

- ullet variables that can take on one of two values (true/false) x,y,z,\ldots
- operators {∧, ∨, ¬}
 - conjunction (logical AND), e.g., $x \wedge y$
 - disjunction (logical OR), e.g., $x\vee y$
 - negation (logical NOT), e.g., $\neg x$
- parentheses that can group expressions, e.g., $(x) \wedge (\neg x \vee y)$

A formula F is said to be *satisfiable* if it can be made true by assigning appropriate logical values (true or false) to its variables.

Problem: given a formula, F, decide whether F is satisfiable.

Many applications: theoretical computer science, complexity theory, algorithmics, cryptography and artificial intelligence.

10 July 2017 3 / 22

HPI

SATISFIABILITY: Basics

A well-formed Boolean expression can be described by the grammar:

The assignment of a Boolean variable v is a binding to a value in $\{0,1\}$.

If all variables in an expression are bound, the evaluation can be done recursively:

\overline{E}	F	$E \wedge F$	$E \vee F$	(E)	$\neg E$
0	0	0	0	0	1
0	1	0	1	0	1
1	0	0	1	1	0
1	1	1	1	1	0

10 July 2017 4 / 22

Heuristic Optimization

Definitions

Two Boolean formulas E and F on n Boolean variables are said to be *equivalent* if $\forall x \in \{0,1\}^n$, F[x] = E[x]. In this case we write $F \equiv E$

A *literal*: a variable v or its negation $\neg v$. A *clause*: a disjunction of literals, e.g., $(x_1 \lor \neg x_2 \lor \neg x_3 \lor \cdots \lor x_i)$

A formula F is said to be in *conjunctive normal form* (CNF) when F is written as a conjunction of clauses.

Lemma

For every well-formed formula F, there is a formula E such that (1) E is in CNF, and (2) $F \equiv E$.

CNF form is much easier to work with!

Heuristic Optimization

Definitions

The assignment of n Boolean variables can be represented as $x \in \{0,1\}^n$.

Let F be a formula on n variables. We write $F[x] \in \{0,1\}$ as the evaluation of F under the assignment $x \in \{0,1\}^n$.

Given a Boolean expression F on n Boolean variables, we say an assignment $x \in \{0,1\}^n$ satsifies F if F[x]=1.

Example

$$F = (\neg x_1 \lor x_2) \land \neg x_1 \land (\neg x_3 \lor \neg x_1)$$

$$x = (0, 0, 0), F[x] = 1$$

 $x = (1, 0, 1), F[x] = \mathbf{0}$

10 July 2017 5 / 22

Heuristic Optimization

Is Satisfiability easy or hard? Horn formulas

Let \mathscr{F} be the set of all admissible formulas. We consider some subsets of \mathscr{F} :

- \mathcal{F}_1 formulas satisfied when all variables are set true (false).
- \mathscr{F}_2 formulas $F \equiv E$, where E is in CNF and each clause contains at most one positive (resp., negative) literal.
- \mathscr{F}_3 formulas $F\equiv E$, where E is in CNF and each clause contains ≤ 2 literals.
- \mathscr{F}_4 formulas $F\equiv E$, where E is conjunction of exclusive-or clauses.

Affine formulas

2-CNF formulas

Schaefer's Dichotomy Theorem (1978)

- 1. Every formula $F \in (\mathscr{F}_1 \cup \mathscr{F}_2 \cup \mathscr{F}_3 \cup \mathscr{F}_4)$ can be decided in time polynomial in the length of F.
- 2. The class $\mathscr{F} \setminus (\mathscr{F}_1 \cup \mathscr{F}_2 \cup \mathscr{F}_3 \cup \mathscr{F}_4)$ is NP-complete.

^a**Technical note**: Schaefer's approach is constrained to classes that can be recognized in log space.

Heuristic Optimization

Resolution for first-order logics

1958 Martin Davis & Hilary Putnam developed a resolution procedure for first-order logic (quantifiers allowed)

Herbrand's theorem: if a first-order formula is *unsatisfiable* then it has some ground formula in *propositional logic* (quantifier-free) that is unsatisfiable.

Davis-Putnam procedure

- 1. Generate all propositional ground instances
- 2. Check if each instance F is satisfiable

The main innovation is in (2), where we must solve SATISFIABILITY

Given a propositional logic formula F in CNF, assign variables using three reduction rules.

10 July 2017 8 / 22

Davis-Putnam procedure Rule 2: pure literal rule $(x_1 \lor x_2 \lor x_4) \land (\neg x_3 \lor x_4) \land (\neg x_3 \lor x_4) \land (x_3 \lor \neg x_4)$ pure literal $(x_1 \lor x_2 \lor x_4) \land (\neg x_3 \lor x_4) \land (x_3 \lor \neg x_4)$ pure literal $(x_3 \lor \neg x_4)$ set $x_1 = 1$ set $x_2 = 0$ For each pure literal ℓ • set ℓ to ℓ to ℓ • remove clauses containing ℓ • repeat until no pure literals exist

Using memory wisely

In 1962, Loveland and Logemann tried to implement DP procedure on an IBM 704. but found that it used too much RAM.

L&L insight: keep a stack for formulas in external storage (tape drive) so the formulas in RAM don't get too large.

IBM 704 at NASA in 1957 (commons.wikimedia.org)

Rule 3a: splitting rule

From $(x \vee A) \wedge (\neg x \vee B) \wedge C$, create a pair of separate formulas^a

$$(A \wedge C), (B \wedge C).$$

Recursively check $(A \wedge C)$ and $(B \wedge C)$ for satisfiability.

^awhere A, B and C don't contain any occurrences of the variable x

10 July 2017

Davis-Putnam-Logemann-Loveland (DPLL)

Davis-Putnam procedure with Logemann-Loveland enhancement (splitting rule)

$\mathsf{DPLL}(F)$

Input: A set of clauses F

Output: A truth value

if F is a consistent set of literals then return true;

if F contains an empty clause then return false;

for each unit clause (ℓ) in F **do**

 $F \leftarrow \mathtt{unit-propagate}(\ell, F);$

end

for each pure literal ℓ in F **do**

 $F \leftarrow \text{pure-literal-assign}(\ell, F);$

end

 $\ell \leftarrow \texttt{choose-literal}(F);$

return $\mathsf{DPLL}(F \land \ell) \lor \mathsf{DPLL}(F \land \neg \ell)$;

$$(x \vee A) \wedge (\neg x \vee B) \wedge C \stackrel{\mathsf{split}}{\Longrightarrow} (A \wedge C), \ (B \wedge C)$$
$$F \stackrel{\mathsf{split}}{\Longrightarrow} F'. \ F''$$

Observation:

Heuristic Optimization

- If F' or F'' contain an empty clause: then unsatisfied
- If F' or F'' contain no clauses: then satisfied

10 July 2017 13 / 22

DPLL heuristics: Branching policies

Pick a good variable on which to branch

Come up with a scoring function $score(\ell)$ that gives a value for picking a variable that makes ℓ true.

Some scoring functions:

 $\max(\ell)$ # occurrences of ℓ in F.

Idea: Picking ℓ to maximize $\max(\ell)$ satisfies as many clauses as possible.

 $|moms(\ell)| \#$ occurrences of ℓ in F appearing in clauses of minimum size.

Idea: reducing minimum clauses can lead to a unit-propagation sooner or reveal a contradiction faster

 $| \max(\ell) | := \max(\ell) + \max(\neg \ell).$

Idea: satisfy as many clauses as possible, create as many minimum-size clauses as possible

DPLL heuristics: Clause learning

When unit propagation results in a conflict (produces an empty clause),

- analyze the unit propagation process that resulted in the conflict
- add a new clause to the formula that explains and prevents repeating the same conflict later in the search

branches taken so far:

 $set x_1 = 0$

 $set x_2 = 0$

 $set x_3 = 0$

Heuristic Optimization

DPLL heuristics: Branching policies

$${\sf Jeroslow-Wang:}\ {
m jw}(\ell):=\sum_{C
eq\ell}2^{-|C|}.$$

Idea: exponential weighting: smaller clauses have more weight than larger ones.

 $up(\ell)$

of unit propagations triggered by setting $\ell = true$.

adaptive learning: adapt branching rule during execution

10 July 2017 17 / 22

DPLL heuristics: Clause learning

branches taken so far:

 $set x_1 = 0$

 $set x_2 = 0$

 $set x_3 = 0$

We can conclude the branch $x_1 = 0, x_2 = 0, x_3 = 0$ leads to an unsatisfied formula In other words.

$$(x_1 = 0) \land (x_2 = 0) \land (x_3 = 0) \implies (F = 0)$$

$$\equiv (F = 1) \implies \neg ((x_1 = 0) \land (x_2 = 0) \land (x_3 = 0)) \qquad \text{(contrapositive)}$$

$$\equiv (F = 1) \implies (x_1 = 1) \lor (x_2 = 1) \lor (x_3 = 1)$$

So in order for F to be satisfied, $(x_1 \lor x_2 \lor x_3)$ must be true.

Learned clause: $F' := F \wedge (x_1 \vee x_2 \vee x_3)$

Note: many very sophisticated procedures for analyzing the structures of contradictions exist.

10 July 2017

Heuristic Optimization

HPI

A local search algorithm

DPLL: construct an assignment from scratch

Another approach: start from a complete assignment. While not satisfied, make some small change. Repeat.

Random local search algorithm for SATISFIABILITY

Choose $x \in \{0,1\}^n$ uniformly at random;

while F is not satisfied do

 $y \leftarrow x$;

Choose $C \in F$ not satisfied by x;

Choose a literal $\ell \in C$ uniformly at random;

Let i be the index such that $\{x_i, \neg x_i\} \ni \ell$;

 $y[i] \leftarrow 1 - y[i];$

end

10 July 2017 20 / 2

Heuristic Optimization

HP

k-CNF formulas

What about k-CNF formulas for k > 2?

Run local search algorithm, starting from a new random solution every O(n) steps.

Theorem. (Schöning, 1991)

Let F be a k-CNF formula. If F is satisfiable, then the (restarting) local search algorithm finds the satisfying assignment in T steps where T is within a polynomial factor of $(2(1-1/k))^n$.

For 3-CNF formulas: $(1.333)^n$

Current best-known bound for 3-SAT: $O(1.308^n)$

10 July 2017 22 / 22

Heuristic Optimization

How efficient is the random local search algorithm?

Theorem. (Papadimitriou, 1991)

Let $F\in\mathscr{F}_3$ (formulas that have at most two literals per clause). If F is satisfiable, then the local search algorithm finds the satisfying assignment in $O(n^2)$ time in expectation.

Proof sketch.

Gambler's ruin

Expected flips until win/loss: $O(N^2)$

- Let $x^* :=$ satisfying assignment, x :=be the current assignment.
- For any clause $C \in F$ not satisfied by x, at least one of the values x[i] doesn't match the value in $x^{\star}[i]$.
- Probability to pick that variable > 1/2.
- Move closer to x^* with probability $\geq 1/2$ (further away w/ prob. $\leq 1/2$). \square

10 July 2017 21 / 22

¹Timon Hertli, FOCS 2011