Théorème de Carathéodory et application aux équations diophantiennes

Leçons: 126, 181

Théorème 1 (Carathéodory)

Soit E un \mathbb{R} -espace vectoriel de dimension n. Soit A une partie de E. Alors l'enveloppe convexe Conv(A) est l'ensemble des combinaisons convexes de n+1 points de A.

Démonstration. Soit $x = \sum_{i=1}^{p} \alpha_i x_i$ un élément de Conv(A). Sans perte de généralité, on peut supposer que p est le nombre minimal de termes intervenant dans une écriture comme combinaison convexe de x. Raisonnons par l'absurde, et supposons que $p \ge n+2$. Soit

$$\phi: \mathbb{R}^p \longrightarrow E \times R \ (\lambda_1, \ldots, \lambda_p) \longmapsto \left(\sum_{i=1}^p \lambda_i x_i, \sum_{i=1}^p \lambda_i\right).$$

Selon le théorème du rang, le noyau de ϕ a pour dimension $\dim(E \times \mathbb{R}) - \dim \operatorname{Im} \phi \geqslant 1$ par hypothèse sur p. Donc on peut trouver $(\lambda_1, \dots, \lambda_p) \neq 0$ tel que $\sum_{i=1}^p \lambda_i = 0$ et $\sum_{i=1}^p \lambda_i x_i = 0$, de sorte que $\forall \tau \in \mathbb{R}, x = \sum_{i=1}^p (\alpha_i + \tau \lambda_i) x_i$ et $\sum_{i=1}^p \alpha_i + \tau \lambda_i = 1$. Introduisons donc

$$F = \left\{\tau \in \mathbb{R} | \forall i \in [1, p], \alpha_i + \tau \lambda_i \geqslant 0\right\} = \bigcap_{\lambda_i < 0} \left[-\infty, \frac{-\alpha_i}{\lambda_i}\right] \cap \bigcap_{\lambda_i < 0} \left[\frac{-\alpha_i}{\lambda_i}, +\infty\right[.$$

Il existe donc $\lambda_j < 0$ et $\lambda_k > 0$ tels que $F = \left[-\frac{\alpha_j}{\lambda_j}, -\frac{\alpha_k}{\lambda_k} \right]$. Ainsi, $\tau = -\frac{\alpha_j}{\lambda_j} \in F$ et $x = \sum_{i \neq j} (\alpha_i + \tau \lambda_i) x_i$ est une écriture de x comme combinaison convexe de p-1 éléments de $\{x_1, \dots, x_p\}$, ce qui contredit la minimalité de p.

Corollaire 2

Soit $A \in \mathcal{M}_n(\mathbb{Z})$. Le système diophantien Ax = 0 admet une solution non nulle dans \mathbb{N}^n si et seulement $0_{\mathbb{R}^n}$ est dans l'enveloppe convexe des colonnes de A.

Démonstration. On note A_i la i-ème colonne de A.

 \Leftarrow : soit x solution non nulle dans \mathbb{N}^n , alors $0 = (A_1 ... A_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i A_i$ donc en divisant par n, on obtient le résultat.

 \Rightarrow : soit l minimal tel que 0 s'écrive comme combinaison convexe à l termes $\sum_{j=1}^{l} x_j A_{i_j}$ des colonnes de A. Selon le théorème de Carathéodory, en notant r le rang sur $\mathbb Q$ de la matrice (A_{i_1},\ldots,A_{i_l}) , on a $l\leqslant r+1$. Mais puisqu'on a exhibé une relation de dépendance linéaire entre ces colonnes, r< l. Ainsi r=l-1 et par l'algorithme du pivot de Gauss sur $\mathbb Q$, on peut trouver $P\in \mathrm{GL}_m(\mathbb Q)$ tel que $P(A_{i_1}\ldots A_{i_r})=\binom{M}{0}$ où $M\in \mathcal M_{r,r+1}(\mathbb Z)$ est de rang r.

Donc $\ker_{\mathbb{Q}} M$ est de dimension 1 sur \mathbb{Q} et de plus $M \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = 0$ donc $x' = (x_1, \dots, x_r)$ est un vecteur directeur à coefficients positifs de $\ker_{\mathbb{Q}} M$.

Or $\ker_{\mathbb{Q}} M \subset \ker_{\mathbb{R}} M$ donc x' est également un vecteur directeur de $\ker_{\mathbb{R}} M$, de sorte que tous ses éléments ont leurs coefficients tous positifs ou tous négatifs. En multipliant x' par un coefficient bien choisi, on peut donc trouver $y' \in \mathbb{N}^r$ tel que $(A_{i_1} \dots A_{i_r})y' = 0$. On obtient $y \in \mathbb{N}^n$ tel que Ay = 0 en complétant y' avec des 0.

Corollaire 3

Si K est une partie compacte de \mathbb{R}^n , alors l'enveloppe convexe de K est compacte.

Référence: Xavier GOURDON (2009). *Les maths en tête*: analyse. 2^e éd. Ellipses, p.54 pour le théorème et la deuxième application. L'optimisation de la preuve et la première application sont dues à Benjamin Havret.