一、填空题(每小题 3 分,共 21 分)

1.
$$e^{-2}$$

1.
$$e^{-2}$$
 2. $x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x}\right) dx$ 3. 3 4. $\frac{7}{2}$ 5. $-\frac{11}{2}$

4.
$$\frac{7}{2}$$

5.
$$-\frac{11}{2}$$

6.
$$y = 4x - 4$$
 7. 1141

- 二、 选择题(每小题3分,共21分)
- 1. C 2. A 3. B 4. D 5. B 6.D 7. B

三、计算下列极限(每小题6分,共18分)

$$1. \lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right).$$

解: 原式=
$$\lim_{x\to 0}\frac{e^x-1-x}{x(e^x-1)}=\lim_{x\to 0}\frac{e^x-1-x}{x^2}=\lim_{x\to 0}\frac{e^x-1}{2x}=\lim_{x\to 0}\frac{x}{2x}=\frac{1}{2}$$
.

$$2. \quad \lim_{x \to -\infty} x \left(\frac{\pi}{2} + \arctan x \right).$$

解: 原式 =
$$\lim_{x \to -\infty} \frac{\frac{\pi}{2} + \arctan x}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}} = -\lim_{x \to -\infty} \frac{x^2}{1+x^2} = -\lim_{x \to -\infty} \frac{1}{\frac{1}{x^2}+1} = -1.$$

3.
$$\lim_{n\to\infty} \left(\frac{n}{3n^2 + \pi} + \frac{n}{3n^2 + 2\pi} + \dots + \frac{n}{3n^2 + n\pi} \right)$$
.

$$\mathfrak{M}: \frac{n^2}{3n^2+n\pi} \leq \frac{n}{3n^2+\pi} + \frac{n}{3n^2+2\pi} + \dots + \frac{n}{3n^2+n\pi} \leq \frac{n^2}{3n^2+\pi},$$

$$\lim_{n\to\infty} \frac{n^2}{3n^2 + n\pi} = \lim_{n\to\infty} \frac{1}{3 + \frac{\pi}{n}} = \frac{1}{3}, \quad \lim_{n\to\infty} \frac{n^2}{3n^2 + \pi} = \lim_{n\to\infty} \frac{1}{3 + \frac{\pi}{n^2}} = \frac{1}{3},$$

由夹逼法则可知,
$$\lim_{n\to\infty} \left(\frac{n}{3n^2 + \pi} + \frac{n}{3n^2 + 2\pi} + \dots + \frac{n}{3n^2 + n\pi} \right) = \frac{1}{3}$$
.

四、计算下列导数(每小题6分,共18分)

解: 当
$$x > 0$$
 时, $f'(x) = \left(x^2 \sin \frac{1}{x}\right)' = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$

当
$$x < 0$$
时, $f'(x) = \left[\ln(1-x^3)\right]' = -\frac{3x^2}{1-x^3}$.

右导数
$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{x^{2} \sin \frac{1}{x}}{x} = \lim_{x \to 0^{+}} x \sin \frac{1}{x} = 0$$
,

左导数
$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{\ln(1 - x^{3})}{x} = \lim_{x \to 0^{-}} \frac{-x^{3}}{x} = 0$$
.

所以
$$f'(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x}, & x > 0 \\ -\frac{3x^2}{1-x^3}, & x \le 0 \end{cases}$$

2. 设
$$y = y(x)$$
 由
$$\begin{cases} x = \ln \sqrt{1 + t^2} \\ y = t - \arctan t \end{cases}$$
 所确定,求 $\frac{d^2 y}{dx^2}$.

$$\widetilde{\mathbb{H}} : \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}t}{\mathrm{d}t}} = \frac{t^2}{\frac{1+t^2}{1+t^2}} = t, \quad \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{1}{\frac{t}{1+t^2}} = \frac{1+t^2}{t}.$$

3. 设
$$y = y(x)$$
 是由 $e^{xy} + y^3 - 5x = 0$ 所确定的隐函数,求 $\frac{dy}{dx}\Big|_{x=0}$, $\frac{d^2y}{dx^2}\Big|_{x=0}$.

解: 对方程两边关于
$$x$$
 求导有 $(y+xy')e^{xy}+3y^2y'-5=0$,解得 $y'=\frac{5-ye^{xy}}{xe^{xy}+3y^2}$.

由原方程可知, 当
$$x = 0$$
 时, $y = -1$, 则 $\frac{dy}{dx}\Big|_{x=0} = y'(0) = 2$.

对方程 $(y+xy')e^{xy}+3y^2y'-5=0$ 关于x求导,有

$$(2y' + xy'')e^{xy} + (y + xy')^2 e^{xy} + 6y(y')^2 + 3y^2y'' = 0$$

代入可得,
$$\left. \frac{d^2 y}{dx^2} \right|_{x=0} = y''(0) = \frac{19}{3}$$
.

五、(本题满分 8 分) 设 $\lim_{x\to 3} \frac{x^2 - ax + b}{x^2 - 9} = -\frac{1}{6}$, 求常数 $a \to b$.

解: 因
$$\lim_{x\to 3}(x^2-9)=0$$
,则 $\lim_{x\to 3}(x^2-ax+b)=\lim_{x\to 3}(x^2-9)\lim_{x\to 3}\frac{x^2-ax+b}{x^2-9}=0$.

从而9-3a+b=0,即b=3a-9.

$$-\frac{1}{6} = \lim_{x \to 3} \frac{x^2 - ax + b}{x^2 - 9} = \lim_{x \to 3} \frac{x^2 - ax + 3a - 9}{x^2 - 9} = \lim_{x \to 3} \frac{x + 3 - a}{x + 3} = \frac{6 - a}{6}.$$

所以a=7, b=12.

六、(本题满分 8 分) 设 $x_1 = 6$, $x_{n+1} = \sqrt{6 + x_n}$. 证明:数列 $\{x_n\}$ 收敛,并求其极限值.

解: ①注意到 $x_2 = \sqrt{6+6} < 6 = x_1$. 假设 $x_n < x_{n-1}$, 那么

$$x_{n+1}-x_n=\sqrt{6+x_n}-\sqrt{6+x_{n-1}}=\frac{x_n-x_{n-1}}{\sqrt{6+x_n}+\sqrt{6+x_{n-1}}}<0\;,$$

从而 $x_{n+1} < x_n$. 因此,由数学归纳法可知数列 $\{x_n\}$ 单调递减.

②注意到 $x_1=6>3$. 假设 $x_n>3$,则 $x_{n+1}=\sqrt{6+x_n}>\sqrt{6+3}=3$,数列 $\{x_n\}$ 有下界.

由单调有界准则可知,数列 $\{x_n\}$ 收敛.

③设
$$\lim_{n\to\infty} x_n = a$$
,对 $x_{n+1} = \sqrt{6+x_n}$ 两边取极限得 $a = \sqrt{6+a}$,即 $a^2 - a - 6 = 0$,

解得
$$a = 3$$
, $a = -2$ (舍去). 即 $\lim_{n \to \infty} x_n = 3$.

七、(本题满分 6 分) 设函数 f(x) 在[0,1] 上二阶可导,且 f(1)=1, $\lim_{x\to 0^+} \frac{f(x)}{x}=0$.

证明: 在(0,1)内至少存在一点 ξ ,使得 $f''(\xi)=2$.

证明: ①由
$$\lim_{x\to 0^+} \frac{f(x)}{x} = 0$$
 可知, $f(0) = \lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{f(x)}{x} x = 0$.

$$f'(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{f(x)}{x} = 0.$$

②
$$\diamondsuit$$
 $F(x) = f(x) - x^2$, \emptyset $F(0) = 0$, $F(1) = 0$.

F(x)在[0,1]上连续,在(0,1)内可导,由罗尔定理, $\exists \eta \in (0,1)$,使 $F'(\eta) = 0$.

③ F'(x) = f'(x) - 2x , F'(0) = 0 , F'(x) 在 $[0,\eta]$ 上满足罗尔定理的条件,则存在 $\xi \in (0,\eta) \subset (0,1)$, 使得 $F''(\xi) = 0$, 即 $f''(\xi) = 2$.