

melma range	ri de brisqueda una	le reguiria iterando en el ele reguiria iterando en el e y otra vez, lo que prov seurre porque no hay
progresso en	la linguida, y	la muma position medio re
d) Idem C		
5.6	1. V. V.	
2) Sumon dog.	enteroj de N digito	que hay que recorrer toda
los aigues de	les numbres.	
b) Multipliear		igitos lo a que lay que sor eade
b) Multiplierr Eg de orden eifra de un	dos enteros de N de O(n²), esto es debid vo re multiples la	igitos lo a que lay que sor eade
b) Multipliear Eg de orden eifra de un C) Devider doj Eg de orden, (Noto depende	dos enteros de N de O(n²), esto es debid vo re multiples la	getos del otro.

b)_	li ex algoritmo ex O(NlogN), entoncer el termo de execución cumenta en un foctor logaritmico cuanco la entrada ve incrementa en
	le ex algoritmo ex O(NlogN), entoncer el termor de ejecución aumenta en un foetor logaritmico cuanco la entrada se incrementa en un foetor limed. Por lo tarito, el termio de ejecución para una entrada de tamaño n será:
	7. Le yeuren = (m/100) X 0,5 my x log/(m/100)
	Para raber que tamaño de entrada quede procesar en un minuto, necestamos encontrar el valor de m tal que el trempo de ejecución
	Para raber que tamaño de entrada puede procesar en un menuto, mecentamos encontrar el valor de m tal que el trempo de esceueran Nea egual a 60 regundos (o 60000 mg). Utilizanda una Paleuladorar en línea encontramos que m es aproximadamente egual a 259200
	a 259200.
()	Le el algoritmo ex custrático, entoney el tiempo de ejecución aumenta
	Le el algoritmo es eusdrático, entoney el tiempo de ejecución aumenta en un factor eusdrático eusndo la entrada se incrementa en un factor lineal Par la tanto, el tiempo de ejecución para una entrada de tamamo n será:
	7. de execueró $m = (m/100)^2 \times 0.5 \text{ mg}$
	Para rober que tamaño de entrada puede procesar en un minuto, necesitamos encontrar el valor de n tal que el tiempo de escesión rea igual a 60 regundos (o 60,000 mm). Despejando m:
	(m/100)^2 x 0,5 my = 60,000 my Por la tanta, eon un algoritma auditatila que tarda 0,5 my en M = V (60,000 my /0,5 my) x 100 procesar una entrada de tamaño
	n=160,000 mg/0,5 mg) x 100 procesar una entrada de tamaño 100, quede procesar una entrada n=34641 en un minuto
	n=34641 de tamaño 34641 en un minuto

d) Je ex cibres, entonce foeter cibres around lived. Por lo tombe	y el trempo de ejecución o la entrada de ejecución o, el trempo de ejecución	nerta en un foctor para una entrada
de tomaño M reso	:	
7. Le ejecusión: (M/1	(co)^3 x 0,5 mg	
Pora raber que tomanon mecentro	so de entrada quede proe vo el valor de m tal que valoj (o 60000 mg). Despe	ear en un monito, el trempo de execució
New Igual a 60 regum	vdoj (o 60000 mg). Degje	jando m:
$(m/400)^3 \times 0.5 \text{ my} =$	60000 mg	
m= V60000 my 10,5.	my)·100	
m=4932		
5. 12		

N	$O(N^3)$	O(Nª)	O(N log N)	O(N)
10	0,000103	0,00045	0,00066	0,00034
100	947015	0,01112	0,00486	0,00063
1000	448,77	1,1233	0,05843	0,00333
10000	NA	111,13	0,68631	0,03042
100000	NA	NA	8,01130	0,29832
1000000	1x108T(N)	1x10 12 T(N)	2X107 T(N)	1×106T(N)
	,	/		

Para entradaj muy grandej vennjre va a conveniri un algoritmo que tenga el maj pequeños orden devido a que coda vez va aumentando máj y máj el tremso que tardo. En valorej de entrada pequeños casas me ne nota la deferencia pero cuando erecen esta deferencia puede ver alcumal.

Fragmento # 5 For (ent i=0; $1 \le m$; $1+1$) $O(N)$ $O(N^2)$ $O(N^2) + O(1)$							
505 (cot : - 0: 3/m; 8/m) (N) (D/N=)							
$\operatorname{Luma}_{i} + t; O(1) \qquad O(N^{2})$							
$numa: +t: O(1) \qquad O(N^2)$							
A + 11/							
prograinte #6							
For (int $l=0$; $l < m$; $l+t$) $O(N)$							
For $(\text{Int}; = 0; J < m * m; J++) O(N) O(N^3)$							
For (Int $k=0$; $k < J$: $k++$) $O(N)$							
$sumattio(1) \qquad O(N^3)$							
0/1/3/ . 0/1/							
$O(N^3) + O(1)$							
Peters 1 1 9 3 4 5 6							
George 1 2 3 4 5 6 Guma Ron 10 100 20 1000 45 49500							
N=10 om om om om om om om							
772 10 0710							
Lumar Ron 1000 1000000 2000 100000 499500 82236							
N=1000 Omy 2my Omy 15 my 1 ms 1251 m							
5.45							
For (int $i = 1; (< m; i++) O(N)$							
For (int) =0; 1<1* (; j++) (N) (N)							
if (j% ==0) 0(1)							
for (ent $K = 0$; $K < J$; $K++$) $O(N)$							
for (int $k = 0$; $k < J$; $k++$) $O(N)$) Numa++; $O(1)$							
$O(N^3)$							
$\frac{Numa++i \ O(1)}{O(N^3)} + O(1) + O(1)$							
$O(N^3)$							

