PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-331647

(43) Date of publication of application: 02.12.1994

(51)Int.Cl.

GO1P 15/12 GO1P 21/00

(21)Application number: 05-122356

(71)Applicant: NEC CORP

(22)Date of filing:

25.05.1993

(72)Inventor: YAMADA KEIZO

(54) SEMICONDUCTOR ACCELERATION SENSOR AND MANUFACTURE THEREOF

(57) Abstract:

PURPOSE: To calibrate a sensor at high sensitivity in a short time by providing a semiconductor acceleration sensor with an area in which sensitivity values are reloadably recorded, correcting the output characteristics of the sensor on the basis of information about electrical characteristics, and compensating the sensitivity of the sensor according to sensitivity information which is digitally recorded.

CONSTITUTION: An EEPROM constituting a sensor calibration data recording area 2 is provided inside a semiconductor acceleration sensor, and sensor outputs regarding reference conditions such as sensitivity, offset and a temperature coefficient are stored in the EEPROM. These data are introduced into a CPU constituting a signal processor circuit 1 and used in calibration computations. In addition to the output voltages of the sensor which are produced per unit acceleration, the ratio to a reference voltage for use in the particular system to which the semiconductor acceleration sensor is applied is recorded and its relation is utilized in digital computations so as to convert a detected voltage to the output of the sensor in a normal state.

This method eliminates the need for varying feedback resistance values for calibration, so enabling calibration in a short time at high sensitivity without affecting the electrical characteristics of the sensor.

LEGAL STATUS

[Date of request for examination]

25.05.1993

[Date of sending the examiner's decision of

22.07.1997

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Patent number]

[Date of final disposal for application]

3119542

[Date of registration] 13.10.2000

[Number of appeal against examiner's decision of 09-014240

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

21.08.1997

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-331647

(43)公開日 平成6年(1994)12月2日

(51) Int.Cl.⁵

識別記号

庁内整理番号

·FI

技術表示箇所

G01P 15/12

21/00

審査請求 有 請求項の数15 OL (全 17 頁)

(21)出願番号

特願平5-122356

(71)出願人 000004237

日本電気株式会社

- |

東京都港区芝五丁目7番1号

(22)出願日 平成5年(1993)5月25日

(72) 発明者 山田 恵三

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 岩佐 義幸

(54)【発明の名称】 半導体加速度センサおよび製造方法

(57)【要約】

【目的】 半導体加速度センサの感度較正方法およびセンサ構成法を提供し、センサのパーフォーマンスを高める。

【構成】 半導体加速度センサ内部にセンサ較正データ 記録領域2を有し、較正データが蓄えられる。ここには 感度、オフセット、各々の値の温度係数などが記録されている。このデータは半導体加速度センサシステム内に ある信号処理回路1に導かれて、半導体加速度センサの 較正演算に利用される。

【特許請求の範囲】

【請求項1】感度の値を記録した領域を有し、前記領域 は電気信号によって、書換え可能であることを特徴とす る半導体加速度センサ。

【請求項2】半導体加速度センサあるいは加速度センサ 応用システム内に記録された、半導体加速度センサの電 気的特性情報に基づいて、演算を施し半導体加速度セン サの出力特性を補正する手段を有することを特徴とする 半導体加速度センサ。

【請求項3】半導体加速度センサ内にデジタル記録され た感度情報に基づいて、半導体加速度センサの感度を補 償可能な手段を有することを特徴とする半導体加速度セ ンサ.

【請求項4】半導体加速度センサ内に記録された基準加 速度に対する比感度情報に基づいて、半導体加速度セン サの感度を補償可能な手段を有することを特徴とする半 導体加速度センサ。

ジタル演算を施して半導体加速度センサの特性を補正す る手段とを有することを特徴とする請求項1~4のいず 20 れかに記載の半導体加速度センサ。

【
聞求項 6 】 半導体加速度センサの電気特性を近似でき る関数の係数を記録した領域と、与えられる近似式の係 数情報に基づいて、センサの特性を較正できる手段とを 有することを特徴とする半導体加速度センサ。

【請求項7】半導体加速度センサの感度の温度特性、周 波数特性、オフセット、オフセットの温度特性のうち少 なくとも1つの情報を記録した領域を有することを特徴 とする半導体加速度センサ。

年月日、シリアルナンパーのうち少なくとも1つの情報 を記録した領域を有することを特徴とする半導体加速度 センサ。

【請求項9】基準加速度を越えた加速度が半導体加速度 センサに印加された回数を自動的に記録可能な手段を有 することを特徴とする半導体加速度センサ。

【請求項10】半導体加速度センサが使用された時間、 あるいは通電された量に比例した値を記録可能な手段を 有することを特徴とする半導体加速度センサ。

【請求項11】センサのスペックなどのセンサ固有の情 40 報を、シリアルデータに変換する手段と、前記情報を外 部に取り出すための出力ポートとを有することを特徴と する半導体加速度センサ。

【請求項12】半導体加速度センサの出力電圧をデジタ ル化されたシリアルデータに変換する手段と、シリアル データを取り出すための出力ポートとを有し、デジタル 出力ポートの出力形態が光強度あるいは波長の変調によ ることを特徴とする半導体加速度センサ。

【請求項13】外部からの光エネルギーを、半導体加速 度センサを動作させるための電力に変換する手段を有す 50 ることを特徴とする半導体加速度センサ。

【請求項14】入力加速度をデジタル信号に変換し、加 速度を検出する加速度検出手段と、前記加速度検出手段 の出力に基づき、センサの特性を補償する処理を行う手 段と、少なくとも1G、-1G、0Gのうち1つの加速 度を加えたときの感度データを記録させた較正データ記 録手段とを有することを特徴とする半導体加速度セン

【請求項15】加速度を検出可能センサ装置を製造する 最小限の工程を終えた後に、少なくとも半導体加速度セ ンサに1G, -1G, 0Gのうち1つの加速度を加える 工程を含み、その状態でセンサから出力される出力電圧 の電圧値を、センサに設けられた配憶素子に記録する工 程を含むことを特徴とする半導体加速度センサの製造方

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体加速度センサに関 するものである.

[0002]

【従来の技術】現在、半導体加速度センサは大量に生産 され実用に供されている。半導体加速度センサはアナロ グ出力を発生する機能を有したデバイスであり、入力さ れた加速度に比例した大きさの電圧を発生する。通常、 半導体加速度センサは振動のセンサとして使用されてい るが、その出力感度はできあがったデパイス毎に異なっ ているため、実際の加速度に対応させるためには何等か の較正をする必要があった。

【0003】従来、加速度センサはピエソ圧電方式など 【請求項8】半導体加速度センサの最大破壊強度、製造 30 に代表されるように、ACの出力のみを出力するセンサ が利用されていたため、加速度の出力を較正するために は、実際にセンサを加振器で加振して感度を測定し、そ の感度に基づいて出力感度を補正している。図11は、 センサパッケージ104に納められた従来の半導体加速 度センサを示している。一般に、感度補正は半導体加速 度センサ素子101に併設して設けられた演算増幅器1 02の増幅度を変化させることによって行われている。 通常は、演算増幅器に併設されたフィードバック抵抗1 03をレーザートリマーで焼き切って抵抗値を合わせる 手法、あるいはSAE paper910274に見ら れるようにゼナーダイオードを利用した小規模抵抗アレ ーを利用して抵抗値を設定することが行われている。図 中、105はセンサ出力を示している。

> [0004] 図12に、SAE paper91027 4に見られるようにゼナーダイオードを利用した小規模 抵抗アレーを利用して抵抗値を設定する例を示した。加 速度検出素子(加速度センサチップ) 111から出力さ れた信号は併設された検出加速度112およびトリミン グ回路113を含む別の半導体チップに導かれる。全体 はパッケージ114に納められている。なお図中、11

5はパッドを示している。

【0005】従来は、使用状態にある半導体センサを個 別に管理するという概念はなく、破壊が起こって初めて それに対する処置がとられていた。

[0006]

【発明が解決しようとする課題】従来の加速度センサ感 度較正手法では、加速度センサに振動を与えることが必 要で非常に手間がかかるという課題があった。較正デー 夕を抵抗値で記録しているため、加速度センサの較正は アナログ的になり、安定性を欠くという問題があった。 ゼナーザッパを利用した場合には較正そのものはデジタ ル的に行われるが、本質的にはアナログ技術であり、ゼ ナーを介して抵抗がぶら下がっているため、ゼナーの温 度特性や、リーク電流などが変動し設定誤差になる。

【0007】また、一般に従来の加速度センサの較正は センサ素子の内部のみで行われており、システムに載せ た後に再度較正を必要とすることを考えると、二度手間 となりパーフォーマンスが劣るという問題があった。

【0008】更に、センサの較正情報を外に取り出すこ とができないので、外部で高度な演算を施してセンサの 20 特性を向上させるなどの手段を採用することができない 問題があった。

【0009】センサの電源はセンサを動作させるために 必要であるが、従来は電線でつなぐ必要があり、センサ からの出力線が多くなりかつ電源にノイズが乗るとその ノイズがセンサの特性を悪化させるなどの問題があっ た。

【0010】加速度センサは長期的に利用されるためそ の性能を管理する必要があるが、現在の加速度センサで は管理性能は十分でないという問題があった。

【0011】本発明の目的は、このような問題を解決し た半導体加速度センサおよび製造方法を提供することに ある。

[0012]

【課題を解決するための手段】本発明の半導体加速度セ ンサは、感度の値を記録した領域を有し、この領域は電 気信号によって、書換え可能である。

【0013】また、半導体加速度センサあるいは加速度 センサ応用システム内に記録された、半導体加速度セン サの電気的特性情報に基づいて、演算を施し半導体加速 40 度センサの出力特性を補正する手段を有することができ る.

【0014】また、半導体加速度センサ内にデジタル記 録された感度情報に基づいて、半導体加速度センサの感 度を補償可能な手段を有することができる。

【0015】また、半導体加速度センサ内に記録された 基準加速度に対する比感度情報に基づいて、半導体加速 度センサの感度を補償可能な手段を有することができ る。

【0016】また、デジタル出力の半導体加速度センサ 50 【0028】また、発振器形式のセンサでは出力が周波・

と、デジタル演算を施して半導体加速度センサの特性を 補正する手段とを有することができる。

【0017】また、半導体加速度センサの電気特性を近 似できる関数の係数を記録した領域を有することができ る。

【0018】また、与えられる近似式の係数情報に基づ いて、センサの特性を較正できる手段とを有することが できる。

【0019】また、半導体加速度センサの感度の温度特 10 性、周波数特性、オフセット、オフセットの温度特性の うち少なくとも1つの情報を記録した領域、あるいは、 半導体加速度センサの最大破壊強度、製造年月日、シリ アルナンパーのうち少なくとも1つの情報を記録した領 域を有することができる。

【0020】また、基準加速度を越えた加速度が半導体 加速度センサに印加された回数を自動的に記録可能な手 段を有することができる。

【0021】また、半導体加速度センサが使用された時 間、あるいは通電された量に比例した値を記録可能な手 段を有することができる。

【0022】また、センサのスペックなどのセンサ固有 の情報を、シリアルデータに変換する手段と、センサの スペックなどのセンサ固有の情報を、外部に取り出すた めの出力ポートとを有することができる。

【0023】また、半導体加速度センサの出力電圧をデ ジタル化されたシリアルデータに変換する手段と、シリ アルデータを取り出すための出力ポートとを有し、デジ タル出力ポートの出力形態が光強度あるいは波長の変調 によることができる。

30 【0024】また、外部からの光エネルギーを、半導体 加速度センサを動作させるための電力に変換する手段を 有することができる。

【0025】また、入力加速度をデジタル信号に変換 し、加速度を検出する加速度検出手段と、前配加速度検 出手段の出力に基づき、センサの特性を補償する処理を 行う手段と、少なくとも1G, -1G, 0Gのうち1つ の加速度を加えたときの感度データを記録させた較正デ ータ記録手段とを有することができる。

【0026】また本発明の半導体加速度センサの製造方 法によれば、加速度を検出可能センサ装置を製造する最 小限の工程を終えた後に、少なくとも半導体加速度セン サに1G,-1G,0Gのうち1つの加速度を加える工 程を含み、その状態でセンサから出力される出力電圧の 電圧値を、センサに設けられた記憶素子に記録する工程 を含んでいる。

[0027]

【作用】半導体加速度センサの感度は通常アナログ電圧 で出力されているが、その出力をAD変換することによ り、デジタル信号に変換することが可能である。

[0035]

数に比例するので、適当な波形整形器を通すことで、デジタル化された信号を得ることができる。デジタル信号はコンピュータで任意に処理可能であり、半導体加速度センサの有する非直線特性の逆演算を行うことで半導体加速度センサの特性を補正するような演算を施すことが可能である。従って、従来の感度補正方法に見られるように、半導体加速度センサ内部にある演算増幅器のフィードバック抵抗の値を直接変化させなくても、感度を補正することができる。

【0029】また、半導体加速度センサの情報として、 感度、その温度特性、オフセット、オフセットの温度特 性あるいは周波数特性を持つことによって、半導体加速 度センサの特性をそれらのパラメータを利用して演算を 施すことにより特性を補償して、広い範囲で高精度の測 定を可能にできる。

【0030】また、それらの特性は通常、近似式で与えることが可能であるので、その係数を記録することで半 導体加速度センサあるいは半導体加速度システムに記録 すべきデータの量を減らすことができる。特に、近似式 はベキ乗の多項式で表すことが一般的であるが、精度に 合わせて項数を選択することで、任意の精度の補償を可 能にできる。

【0031】また、加速度センサの電気的特性以外の値である、半導体加速度センサの破壊強度、保証上限加速度、製造年月日、シリアルナンバー、使用経過量を同様に記録可能であるので、これらの値をシステムが引き出して利用することにより、センサの保守点検の情報を得ることができる。

【0032】また、外部の機械がこれらの情報を活用するために、これらの情報を外部に取り出す必要があるが、適当な外部出力ポートを設けることにより可能となる。これらの出力は本来最小限必要とされる半導体加速度センサの出力に対して余分なものなので、そのポートは小規模であることが必要で、本発明では、内部にデータをシリアルデータに変換する変換器を設けて、1ビットの情報とし、1ビットのシリアルポートを介して外部とやり取りを行う。較正用のデータが1ビットで通信される際には、半導体加速度センサの出力データそのものも1ビットで扱えると大きなシステムを作る際には便利である。

【0033】光通信はセンサが使用される過酷な環境下での通信手段として非常に使れている。従って、半導体加速度センサに発光素子を備えることで、光ファイバー1ピットによるデータ通信を行うことは非常に高信頼のネットワークを構築できる。

【0034】一般に、半導体加速度センサは動作のために電力を必要とするが、そのために新たに電線を設けるのは繁雑である。そこで半導体光電池を設けて通信用の光エネルギー源として使用することによって、電気を直接与えなくてもセンサを駆動できる。

【実施例】

(実施例1)図1に本発明の第1の実施例を示した。図中、1は信号処理回路、2はセンサ較正データ記録領域、3は加速度検出領域、4はリム、5は加速度センサチップ、6はセンサ出力、7はデジタルデータバスである。

【0036】この半導体加速度センサは内部にセンサ較正データ記録領域2を構成するEEPROMを有し、較正データが蓄えられるようになっている。ここには感度、オフセット、各々の値の温度係数などが記録されている。このデータは半導体加速度センサシステム内にある信号処理回路1を構成するコンピュータに導かれて、半導体加速度センサの較正演算に利用される。記録されるデータは特性の基準条件におけるセンサの出力である。

【0037】本実施例では従来の較正法のように、回路の定数を直接変更する手続であるような、演算増幅器のフィードバック抵抗の値を変更したりしないので、較正は半導体加速度センサの初期電気特性に影響を全く与えることなく実施可能である。また、EEPROMなど書き換え可能なROMを利用しているので、較正データをいつでも必要な時に書き換えることが可能である。

【0038】加速度センサの感度補正データとしては、 単位加速度当たりに生じる半導体加速度センサの出力電 圧の他に、特定の半導体加速度センサ応用システムにお ける基準出力電圧に対する比率を記録しておいてもよ い。この基準値と実際に測定された値の間には一定の関 係があるので、その関係を用いてデジタル演算を施すこ とで、検出電圧を標準状態における加速度センサの出力 に変換することができる。

【0039】(実施例2)図2に半導体加速度センサの電気特性情報を、半導体加速度センサシステム内に持った場合について示した。図中、21は信号処理回路、22はセンサ較正データ記録領域、23は加速度センサ、24は電源回路、25は制御回路(マイクロコンピュータ)を示す。

【0040】元々、半導体加速度センサシステムはEEPROM領域を有するマイクロコンピュータ25を外部 装置の制御を行うために有していることが多いので、このEEPROMを利用した形態を示している。

【0041】(実施例3)図3には半導体加速度センサに、印加された加速度が特定の加速度を越えた場合にその回数をカウントするような機能を有した半導体加速度センサを示している。図中、31は信号処理回路、32はセンサ較正データ記録領域、33は加速度検出領域、34は電圧比較器およびカウンター、35はセンサ出力、36はデジタルデータバス、37は加速度センサチップである。

0 【0042】この半導体加速度センサは、加速度センサ

の出力電圧を特定の出力電圧と比較する比較器を持って いる。その比較器はしきい値を越えた際にバルスを発生 する機能を有している。このパルスは、カウンターに導 かれカウンターを1つずつカウントアップする。このカ ウントはコンピュータに行わせてもよい。また、センサ に備えられた温度計を利用して特定の温度範囲を越えた 回数を記録したり、センサに加えられた温度衝撃回数を 記録することもできる。

【0043】 (実施例4) 図4は半導体加速度センサの 出力データおよび較正データをシリアル化されたデジタ ル情報に変換する装置を付加したものを示している。図 中、41は信号処理回路、42はセンサ較正データ記録 領域、43は加速度検出領域、44はデータシリアル変 換回路、45は加速度センサチップ、46はセンサ出 カ、47はデジタルデータバスである。

【0044】このデータシリアル変換回路44を利用す ることによって、センサの出力信号およびセンサの較正 情報を1ピットのデジタル情報に変換できる。

【0045】 (実施例5) 図5は、センサの出力あるい はスペックを外部に取り出すための出力ポートを持った 20 半導体加速度センサを示している。図中、51はセンサ スペック取り出し用シリアルポート、52はアナログ信 号出力端子を示している。

【0046】この出力ポートはセンサのアナログ出力と 併設する場合にはその個数が少ない方がよいので、本実 施例では、1ピットのポートを設けた例を示している。 このポートからシリアルデータに変換された半導体加速 度センサの感度、あるいは較正情報が外部に取り出され る。この情報を利用することで、センサの状態を知るこ とも可能であり、保守点検に利用できる。

【0047】 (実施例6) 図6には外部からの光エネル ギーを電気エネルギーに変換するための変換器を有して いる半導体加速度センサを示した。図中、61は光入出 カポート、62はフォトダイオード、63はセンサ回 路、64は液晶シャッター、65はハーフミラーであ る。

【0048】入力される信号は通常光パルスであるが、 そのパルスをフォトダイオードあるいは太陽電池で受け て、コンデンサに充電することでシステムが動作するた めに必要とされる電力を得ている。センサの駆動電流は 40 CMOS型であれば数μワットと小さいので、充分に駆 動可能である。当然パルスの交流成分は外部コンピュー タからの通信情報を持っているので、パルスの交流成分 は情報として使用される。この情報にはセンサの割り付 け番地やセンサからの出力センサ設定情報などが含まれ ている。

【0049】半導体加速度センサからも光情報を帰す必 要があるが、2つの方法が考えられる。1つは半導体加 速度センサ内に発光素子を設けて発光させる場合と、も う1つは外からの光信号の透過率を液晶シャッターなど 50 ンサ、122は信号処理回路、123は電圧検出器、1

を利用して変調する方法である。外部光による動作は、 信号のやり取りを同期信号に載せて交互に行うように時 分割することで実現できる。特に、半導体加速度センサ やコンピュータがCMOS化されている際には消費電力 がマイクロワットオーダーと極めて小さいので、このよ うなシステムは容易に実現できる。

【0050】 (実施例7) 図7には第7の実施例を示し た。この例は、半導体加速度センサの特性データを近似 式で展開し、その係数を記録するようにしたものであ る。図中、71はセンサ特性展開係数記録領域、72は 加速度検出領域、73は展開係数補正演算回路、74は A/D変換器、75はセンサ出力を示している。

【0051】このようにすれば、半導体加速度センサの 特性を比較的小さな記憶容量で正確に記録できるので、 コンピュータを利用して半導体加速度センサを高度に補 正することができる。当然この場合には、コンピュータ の内部には、近似式をプログラムしてあり、この近似式 に記憶装置からの値を代入することで、センサの特性が 再現される仕組みが備わっている。特に、近似式がベキ 展開された多項式であれば、必要とされる精度に合わせ て、多項式の項数を識別する番号と共に、係数を配置す れば可変精度の補正も実施できる。

【0052】 (実施例8) 図8には半導体加速度センサ の最大破壊強度、製造年月日、シリアルナンパーなどを 記録した領域を有した半導体加速度センサを示してい る。図中、81はセンサ絶対定格記録領域、82はセン サ使用量記録領域、83は加速度検出領域、84はA/ D変換器、85はデジタルデータパスである。

•••

【0053】この半導体加速度センサによれば、前記情 30 報は、物理的には、電気特性の情報と同じEEPROM などの記録素子上に記録しておくことができる。これら の値は、実施例3に示された、センサに対する衝撃計測・ の比較データとして利用される。

【0054】 (実施例9) 図9に半導体加速度センサに 較正データを記録させるときに利用するテーブルを示し た。図中、91は加速度センサ、92はテーブル、93 はモーターを示している。

【0055】このテーブルはモーターを利用した自動傾 斜機能のあるテーブルであり、外部から制御信号を加え ることにより地球の重力中心に向かって0度,90度, 180度の角度を自動的にとるものである。このテープ ルを利用すると半導体加速度センサに地球の重力加速度 1 Gおよび-1 Gおよび 0 Gの加速度を正確に加えるこ とができる。特に、テーブル回転時に、振動を起こさな いように防振加工を施すと良い結果が得られる。

【0056】(実施例10)図10に加速度センサの使 用量が分かるように、通電量あるいは振動があるしきい 値以上に加えられている時間を測定して記録する機能を 有した加速度センサを示した。図中、121は加速度セ

24はカウンターを示している。

【0057】加速度センサ121には電圧検出器123が備えられ、電源電圧が印加されているか否かを判断する。その判断に基づいて時計を動かし、センサの累積使用時間を記録する。一方、振動が加えらえているか否かを判断するために、センサの出力電圧があるしきい値以上になったときに信号を発生して時計を動作させる機能を有することで、センサに振動が加えられていた時間の総量を知ることができる。この装置の働きによって、センサの寿命予測、保守点検がセンサ出力に連結されたコンピュータを利用することで、自動的に行える。

【0058】以上、説明した実施例では、センサ情報の記録媒体に、EEPROMを利用することが述べられているが、記録を行うのみであれば、単なるROM、CDあるいは磁気記録、光磁気記録、静電容量による手段が利用可能であり、これらも本発明に含まれる。

【0059】また実施例では、半導体加速度センサの情報を外部に取り出すために1ピットのシリアル通信を利用しているが、通信規模によって、1ピット以上の通信手段を利用することもでき、これも本発明に含まれる。

【0060】重力を加速度印加に利用した場合、テーブルの回転速度を滑らかに変化させることで最大加速度の大きさが精密にプラスマイナス1Gである任意の周波数の加速度を半導体加速度センサに印加することができる。このような加速度印加テーブルとしても本発明に係る加速度印加テーブルは利用できる。

【0061】また、実施例では半導体加速度センサに対してのみ応用を示しているが、以上挙げた較正方法、データ蓄積方法、あるいは加速度印加テーブルが、圧電型、電磁型など半導体加速度センサ以外の他の加速度センサにも同様に適用可能であることは言うまでもない。

[0062]

【発明の効果】本発明を利用すると、従来の時間のかかるレーザートリミングに比較して非常に短時間で較正を完了できる。非常に安定な重力加速度を加速度標準として利用しているので非常に高精度な較正が可能である。重力加速度は広い範囲の場所にわたって一定であるので、並列に機械を置くことで、大量にセンサを較正できる。測定基準加速度を生じさせるために余分にエネルギーを消費しない。

【0063】また本発明を用いると、較正を行うために利用していた演算増幅器のフィードバック抵抗をレーザートリミングする操作が入らなくなるため、半導体加速度センサの感度較正と半導体加速度センサの出力電圧が相互干渉することがないという利点が生じる。

【0064】半導体加速度センサの電気的特性を全て記録しているので、その情報を取り出して補正を行い半導体加速度センサの特性の向上を図ることができる。これらの較正情報はEEPROMなどの書き換え可能な媒体に記録されるので、必要に応じてその内容を変更するこ 50

とができる。

【0065】半導体加速度センサの較正情報を1ビットの出力ポートを利用して出力しているので、端子数が増加するのを防ぐことができる。

30

【0066】また、半導体加速度センサの出力信号も同じあるいは併設のシリアルポートから取り出すことが可能であり、配線がスマートになる。

【0067】使用された年月などの情報を活用することで、半導体加速度センサ素子あるいは半導体加速度センサシステムからなる、大規模なシステムにおいてその点検保守を容易に行うことができる。

【0068】半導体加速度センサを駆動するための電力を外部からの光エネルギーで与えることが可能なため、従来の半導体加速度センサで見られたような、通常電源から電気を与える場合に問題となる外部電磁ノイズによる半導体加速度センサ性能の劣化を避けることができる。

【0069】同様に、半導体加速度センサからの出力を 光信号で外部に伝えることができるので、外部電磁ノイ ズの影響を受けることがないという利点がある。

【図面の簡単な説明】

- 【図1】本発明の第1の実施例を示した図である。
- 【図2】本発明の第2の実施例を示した図である。
- 【図3】本発明の第3の実施例を示した図である。
- 【図4】本発明の第4の実施例を示した図である。
- 【図5】本発明の第5の実施例を示した図である。
- 【図6】本発明の第6の実施例を示した図である。
- 【図7】本発明の第7の実施例を示した図である。
- 【図8】本発明の第8の実施例を示した図である。
- 【図9】本発明の第9の実施例を示した図である。
- 【図10】本発明の第10の実施例を示した図である。
- 【図11】従来例の半導体素子内部を示した図である。
- 【図12】従来例を示した図である。

【符号の説明】

- 1, 21, 31, 41, 122 信号処理回路
- 2, 22, 32, 42 センサ較正データ記録領域
- 3, 33, 43, 72, 83 加速度検出領域
- 23, 91, 101, 121 加速度センサ
- 24 電源回路
- 40 25 制御回路
 - 34 電圧比較器およびカウンター
 - 44 データシリアル変換回路
 - 51 センサスペック取り出し用シリアルポート
 - 52 アナログ信号出力端子
 - 61 光入出力ポート
 - 62 フォトダイオード
 - 63 センサ回路
 - 6.4 液晶シャッター
 - 65 ハーフミラー
- 0 71 センサ特性展開係数記録領域

特開平6-331647

(7)

.

73 展開係数補正演算回路

74,84 A/D変換器

82 センサ使用量記録領域

92 テーブル

93 チーター

102 演算增幅器

103 フィードバック抵抗

12

111 加速度検出素子

112 検出回路

113 トリミング回路

114 TO3パッケージ

123 電圧検出器

124 カウンター

[図1]

【図5】

【図6】

[図10]

{図12]

