# **Project: Email Spam/Ham Classification**

## 1. Introduction

# 1. 1 Project Objective

The objective of this project is to develop an automated email spam detection system capable of accurately classifying emails as either spam or ham.

# 1.2 Project Goals

This project aims to:

- Build preprocessing pipeline handling messy email data
- Implement TF-IDF vectorization to transform text into numerical features
- Create a deployable solution for real-time spam filtering

# 2. Methodology

# 2.1 Data Processing Pipeline

The spam detection pipeline processes email text through ten systematic stages:

## Stages 1: Data Loading and Preprocessing

The Transform class implements critical cleaning operations:

- Null Value Removal: Eliminates records with missing text
- Lowercase Conversion: Standardizes text (important since spam often uses aggressive capitalization like "URGENT")
- Numeric Removal: Strips numbers that vary widely between emails
- Whitespace Normalization: Removes excessive spacing spammers use to evade filters
- Punctuation Elimination: Focuses analysis on word content

## Stage 2: Tokenization and Linguistic Processing

The Tokenized\_sentence class applies NLP techniques:

• Word Tokenization: Segments email text into individual words, handling URLs and special characters common in spam.

- Stop Word Removal: Filters out common words (e.g., "the", "is") appearing in both spam and ham, retaining discriminative words like "free", "winner", "urgent".
- Lemmatization: Reduces words to base forms (e.g., "winning", "wins", "won" →
   "win"). This consolidates spam variants into single features, making patterns more
  detectable.

### Stage 3: Label Encoding

The Label\_column class transforms spam/ham labels into numerical format (0 and 1) required for machine learning algorithms.

### Stage 4: TF-IDF Vectorization

The Tfidf class converts processed tokens into numerical vectors.

## 2.2 Deep Learning Architecture

The neural network employs a feed-forward architecture:

Input Layer: Accepts TF-IDF feature vectors

#### Hidden Layers:

- First dense layer with RELU activation learns complex word combinations
- Dropout layer prevents overfitting to specific spam templates
- Batch Normalization stabilizes training
- Second dense layer compresses learned representations

Output Layer: Single neuron with sigmoid activation produces spam probability

#### Training Configuration:

- Data Split: 70% training, 10% validation, 20% test
- Optimizer: Adam with adaptive learning rates
- Loss Function: Binary cross-entropy
- Early Stopping: Monitors validation loss to prevent overfitting

## 2.3 Hyperparameter Tuning with MLflow

The project implements comprehensive experiment tracking using MLflow, enabling systematic hyperparameter optimization and reproducible model development.

- Neural network architecture parameters (dense1, dense2 layer sizes, dropout rate)
- Activation
- epochs, batch\_size

Data splitting ratios



## 2.4 Evaluation Framework

Metrics Used:

- Accuracy: Overall correctness
- Precision: Reliability of spam flags (minimizes false positives)
- Recall: Spam catch rate (maximizes detection)
- F1-Score: Balances precision and recall

## 3. Personal Reflection

# 3.1 Identified Challenge: Class Imbalance

The most significant challenge in spam detection is class imbalance, where one class outnumbers the other. This creates model bias: Algorithms naturally predict the majority class more frequently. (With 90% ham emails, a model predicting all "ham" achieves 90% accuracy but catches zero spam.)

# 3.2 Proposed Adaptation Strategy

## Oversampling the Minority Class:

Increase the number of instances in the minority class by duplicating existing samples or creating ones.

## Undersampling the Majority Class:

Decrease the number of instances in the majority class by randomly removing them.

## Sensitive Learning:

Change the algorithm to make it more sensitive to errors on the minority class.