Dennis Kuzminer CSCI-UA 310-001 PS4

 $t \le a/d \to |t| \le a/d$

2. Base case: b|a, s = 0, t = 1, $d = b \rightarrow |s| \le b/d$, $|t| \le a/d$ both hold. Inductive step: Assume that the condition holds for ExtEuclid(b, r), $r = a \mod b$ This means that gcd(b, r) implies $\rightarrow gcd(a, b)$. This is because gcd(b, r), gcd(a, b) = d, showing that d will be invariant.

We can also see that s = t', t = s' - qt'By the inductive hypothesis, $|s'| \le r/d$, $|t'| \le b/d$. Because s = t' and t + qt' = s', $|s| \le b/d$ and $|s' - qt'| \le r/d \to s' - qt' \le r/d \to s' \le r/d + qt' \to s' \le r/d + qs \to s$ is at most $b/d \to s' \le r/d + q(b/d) \to s' \le \frac{r+qb}{d} \to The relation <math>r = a \mod b$ arises from a = qb + r. $a = s' \le a/d \to s' \le r/d + q(b/d) \to s' \to r/d + q(b/d) \to r/d \to r/d + q$