Fiche méthode : Dérivées et primitives

Dérivée

Fonction <i>f</i>	Fonction f'	f définie est dérivable
. chairen y	,	sur
$f(x) = k \ (k = constante)$	f'(x) = 0	\mathbb{R}
f(x) = x	f'(x) = 1	\mathbb{R}
$f(x) = ax \ (a \in \mathbb{R})$	f'(x) = a	\mathbb{R}
$f(x) = x^2$	f'(x) = 2x	\mathbb{R}
$f(x) = x^n \ (n \in \mathbb{N}, n \neq 0)$	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	\mathbb{R}
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	\mathbb{R}
$f(t) = \cos(\omega t + \phi)$	$f'(x) = -\omega \sin(\omega t + \phi)$	\mathbb{R}
$f(t) = \sin(\omega t + \phi)$	$f'(x) = \omega \cos(\omega t + \phi)$	\mathbb{R}
$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$]0; +∞[
$f(x) = e^x$	$f'(x) = e^x$	R

On considère deux fonctions u et v définies et dérivables sur un intervalle I.

On peut alors faire des « opérations » entre ces 2 fonctions (sur un intervalle adapté) et la fonction obtenue est alors dérivable sur l'intervalle en question.

	Fonction	Dérivé
Produit d'une fonction par un nombre $k \ (k \ \text{constante})$	ku	ku'
Somme	u + v	u' + v'
Produit	$u \times v$	u'v + v'u
Inverse $(v(x) \neq 0 \text{ sur } I)$	$\frac{1}{v}$	$-\frac{v'}{v^2}$
Quotient $(v(x) \neq 0 \text{ sur } I)$	$\frac{u}{v}$	$\frac{u'v-v'u}{v^2}$
Puissance	u^n	$nu^{n-1}u'$
Logarithme (Voir Fiche méthode logarithme)	ln(u)	$\frac{u'}{u}$
Exponentielle (Voir Fiche méthode exponentielle)	e^u	u'e ^u

Application 1 : Déterminer la dérivée des fonctions suivantes :

$$f: x \mapsto (x^2 + 3x + 1)^4$$
 définie sur \mathbb{R} et $g: x \mapsto \frac{1}{(x^3 - 1)^2}$ définie sur \mathbb{R} 1; $+\infty$

Cours:
Si
$$f(x) = (u(x))^n$$
 alors
 $f'(x) = n(u(x))^{n-1}u'(x)$

Résolution :

$$f(x) = \left(u(x)\right)^4$$
 avec $u(x) = x^2 + 3x + 1$. u est dérivable sur $\mathbb R$ et $u'(x) = 2x + 3$. Donc f est dérivable sur $\mathbb R$ et : $f'(x) = 4u^3(x)u'(x)$. Ainsi pour tout réel x , on a : $f'(x) = 4(x^2 + 3x + 1)^3(2x + 3)$

$$g(x) = u(x)^{-2}$$
 avec $u(x) = x^3 - 1$ qui ne s'annule pas sur $]1$; $+\infty[$. u est dérivable sur $]1$; $+\infty[$ et $u'(x) = 3x^2$. Donc f est dérivable sur $]1$; $+\infty[$ et : $f'(x) = -2u^{-3}(x)u'(x) = -2\frac{u'(x)}{u^3(x)}$. Ainsi pour tout $\in]1$; $+\infty[$, on a : $f'(x) = -2\frac{3x^2}{(x^3-1)^3} = -\frac{6x^2}{(x^3-1)^3}$

II. Primitives

II. IIIIICIVCS	T	T
Fonction f définie par :	Fonction primitive F définie par :	Intervalle de validité
f(x) = k (constante)	F(x) = kx + C] - ∞; +∞[
f(x) = x	$F(x) = \frac{x^2}{2} + C$] − ∞; +∞[
$f(x) = \frac{1}{x}$	$F(x) = \ln(x) + C$]0;+∞[
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + C$] − ∞; 0[ou]0; +∞[
$f(x) = x^n$	$F(x) = \frac{1}{n+1} x^{n+1} + C$	$]-\infty;+\infty[$ si $n\geq 1$
avec $n \in \mathbb{Z}^* \setminus \{-1\}$	n+1	$]-\infty$; 0[ou]0; $+\infty$ [si $n \le -2$
$f(x) = \cos x$	$F(x) = \sin x + C$] − ∞; +∞[
$f(x) = \sin x$	$F(x) = -\cos x + C$] − ∞; +∞[
$f(t) = \cos(\omega t + \phi) \text{ avec } \omega \neq 0$	$F(x) = \frac{1}{\omega}\sin(\omega t + \phi) + C$] − ∞; +∞[
$f(t) = \sin(\omega t + \phi) \text{ avec } \omega \neq 0$	$F(x) = -\frac{1}{\omega}\cos(\omega t + \phi) + C$] − ∞; +∞[
$f(x) = e^x$	$F(x) = e^x + C$] − ∞; +∞[

On considère une fonction u définie et dérivable sur un intervalle I.

	Fonction	Primitive
Puissance	$u'u^n$	$\frac{u^{n+1}}{n+1} + C$
Logarithme (Voir Fiche méthode logarithme)	$\frac{u'}{u}$	ln(u) + C
Exponentielle (Voir Fiche méthode exponentielle)	$u'e^u$	$e^u + C$

Application 2: Déterminer la primitive F de la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 - 5x^2 + 1$ vérifiant F(6) = 600

•
Cours :
Si $f(x) = x^n$ alors
$F(x) = \frac{1}{n+1}x^{n+1} + C$

Résolution :

Pour tout
$$x \in \mathbb{R}$$
: $f(x) = 2x^3 - 5x^2 + 1$ $f(6) = 600 \Leftrightarrow \frac{1}{2} \times 6^4 - \frac{5}{3} \times 6^3 + 6 + C = 600$ Il existe un réel C tel que pour tout $x \in \mathbb{R}$: $\Leftrightarrow \frac{1}{2} \times 1296 - \frac{5}{3} \times 216 + 6 + C = 600$ $\Leftrightarrow 648 - 72 + 6 + C = 600$ $\Leftrightarrow 582 + C = 600$ $\Leftrightarrow 582 + C = 600$ $\Leftrightarrow C = 18$ Finalement, pour tout $C \in \mathbb{R}$: $C \in \mathbb{R}$: $C \in \mathbb{R}$ is $C \in \mathbb{R}$.

Application 3: Déterminer la primitive F de la fonction f définie sur \mathbb{R} par $f(x) = x(x^2 + 1)^2$ vérifiant $F(1) = \frac{1}{2}$

Cours: Si $f(x) = u'(x)(u(x))^n$ alors $F(x) = \frac{1}{n+1}(u(x))^{n+1} + C$

Résolution :

On pose
$$u(x)=x^2+1$$
, u est dérivable sur $\mathbb R$ et $u'(x)=2x$ c'est à dire $x=\frac{1}{2}u'(x)$ On remarque alors que : $f(x)=\frac{1}{2}u'(x)\big(u(x)\big)^2$ Il existe un réel C tel que pour tout $x\in\mathbb R$: $F(x)=\frac{1}{2}\times\frac{1}{2+1}(x^2+1)^3+C$ $=\frac{1}{6}(x^2+1)^3+C$ Finalement, pour tout $x\in\mathbb R$: $F(x)=\frac{1}{6}(x^2+1)^3-1$

$$F(1) = 2 \Leftrightarrow \frac{1}{6}(x^2 + 1)^3 + C = \frac{1}{3}$$

$$\Leftrightarrow \frac{1}{6}(1^2 + 1)^3 + C = \frac{1}{3}$$

$$\Leftrightarrow \frac{8}{6} + C = \frac{1}{3}$$

$$\Leftrightarrow \frac{4}{3} + C = \frac{1}{3}$$

$$\Leftrightarrow C = \frac{1}{3} - \frac{4}{3}$$

$$\Leftrightarrow C = -1$$