UV LO22

TD1 Méthode B – Théorie des ensembles

Introduction

Les exercices suivants sont inspirés de [Diller].

1 Théorie des ensembles

1.1 Constructeur de base

Exercice 1 : Soit $U = \{2, 3, 4, 5, 7, 11, 13, 17\}$ et $V = \{0, 1, 2, 3, 4, 5\}$. Ecrivez ce que vaut : $-U \cup V$, $-U \cap V$, $-U \cap V$.

Exercice 2: Soit $U = \{aa, bb, cc, dd\}$ indiquez pour chaque ensemble suivant s'il est égal ou différent à U.

```
 \begin{array}{l} - \ \{dd,cc,bb,aa\}, \\ - \ \{aa,bb,cc,cc,dd,dd\} \cap \ \{dd,cc\} \\ - \ \{aa,bb,bb,cc,cc,dd,dd\} \cup \ \{dd,cc\} \\ - \ \{aa,bb,cc,cc,dd,dd\} \cup \ \{dd,cc\} \\ - \ \{aa,bb,bb\} - \ \{dd,cc\} \\ - \ \{aa,bb,bb\} - \ \{\} \end{array}
```

Exercice 3 : Soit $U = \{xx \mid xx : 1..10 \land (xx \mod 2 = 0)\}$ indiquez quel ensemble de valeurs représente U.

Exercice 4 : Soit $U = \{england, france, spain\}$, répondez aux questions suivantes :

- indiquez quel ensemble de valeurs prend l'expression suivante P(U).
- indiquez ce que valent les expressions
 - 1. $\{\} \in P(U)$
 - $\{u\} \in U$
 - 3. $england \in U$
 - 4. $\{england\} \in U$
 - 5. $\{england\} \subset U$
 - 6. $\{england\} \subset P(U)$

Exercice 5 : Soit $U=\{1,2,3\}$ et $V=\{4,5,6\}$, répondez aux questions suivantes :

- indiquez quel ensemble de valeurs prend l'expression suivante U*V.
- indiquez ce que valent les expressions
 - 1. $\{\} \in U * V$
 - $2. (1,4) \in U * V$
 - 3. $\{(1,4)\} \in U * V$

- 4. $\{\} \subset U * V$
- 5. $(1,4) \subset U * V$
- 6. $\{(1,4)\} \subset U * V$

Exercice 6 : A partir de l'ensemble de base INTEGER redéfinir les ensembles :

- 1. INT (ensemble fini ayant pour borne MAX INT),
- 2. NATURAL,
- 3. NAT (ensemble fini ayant pour borne MAX INT),
- 4. NAT1

Exercice 8: Décrire en terme mathématique les ensembles suivants:

- 1. ensemble des nombres pairs,
- 2. ensemble des nombres impairs.

1.2 Relation et fonction

Exercice 9: Soit les ensembles $X = \{a, b\}$ et $Y = \{0, 1\}$

– indiquez quel ensemble de valeurs prend l'expression suivante X < -> Y.

Exercice 10 : La figure suivante présente une relation (noté R) que nous allons étudier.

Décrivez le ensembles CONDUCTEURS et MARQUES. Ecrivez ce que vaut :

- -dom(R),
- ran(R),

- card(R),
- $-\{jean, pierre\} < |R,$
- $\{pierre\} \ll |R|$
- $(\{jean, pierre\} < |R);$
- $-R| > \{peugeot\},$
- $-R| >> \{peugeot\}.$

Pour chaque réponse suivante, en cas de réponse négative indiquez ce qu'il faut faire :

- -R est une relation?
- -R est une fonction?
- -R est une fonction injective?
- -R est une fonction surjective?
- -R est un ensemble?

2 Exercices complémentaires

2.1 Description de fonction

Exercice 11: Modéliser une machine abstraite pour fonction involutive (de E sur E telle que $f^* = f$).

Exercice 12: Construire les fonctions suivantes:

- square qui serait la racine carrée de tout nombre entier naturel.
- abs qui produit la valeur absolue de tout nombre entier relatif.
- divides qui s'applique a deux nombre entier naturel et indique si le premier est un diviseur du second.
- est_un_diviseur_comun qui s'applique à trois paramètres et indique si le troisième est un diviseur commun des deux précédents.

Exercice 13 : Construire la fonction est_premier qui indique si l'entier naturel donné en paramètre est premier ou non.

2.2 Différence symétrique

Exercice 14: Cet exercice est repris de [Backhouse]

La différence symétrique, noté ds(A, B), de deux ensemble a et B est l'ensemble de tous les éléments de A qui n'appartiennent pas à B et de tous les éléments de B qui n'appartiennent pas à A.

Exprimez à l'aide d'opérateurs logiques la différence symétrique ds(A,B).

Références

[Diller] Antoni Diller, Z, an Introduction to Formal Methods, Jon Wiley & Son,1994

[Backhouse] R.C Backhouse, Construction et Vérification de Programmes,

MASSON - PRENTICE HALL,1989