In the claims:

For the Examiner's convenience, all pending claims are presented below with changes shown in accordance with the new mandatory amendment format. Please amend claims 21-24, 27, 29-34, 36, 37, 39, 41 and 42.

- 1 1-20 Cancelled
- 1 21. (Currently Amended) A method comprising:
- 2 generating a first test program population to test the functionality of an integrated
- 3 circuit (IC), the first test program population including comprising a plurality of test
- 4 programs, each test program having a first set of instructions and data;
- 5 executing <u>each of the test programs in</u> the first test program <u>population</u>;
- 6 evaluating a first set of coverage data from the first test program population to
- determine if the IC has been sufficiently tested, wherein evaluating the first set of
- 8 coverage data comprises comparing the coverage data to a predetermined coverage
- 9 requirement; and
- generating a second program population if the IC has not been sufficiently tested
- by the first test program population, the second test program population including
- comprising an-a plurality of updated test programs, wherein each updated test program
- population having a second set of instructions and data being is a mutation of a test of
- the first test program-original population for a combination of two or more of the test
- programs of the first test program population.
- 1 22. (Currently Amended) The method of claim 21, further comprising:
- 2 executing the second test program population.
- 1 23. (Currently Amended) The method of claim 22, wherein generating the first test
- 2 program population comprises:

3	1	generating a first abstract syntax tree (AST);
4	/	generating the first set of instructions and data for the first AST; and
5		ranslating the first AST into a first executable test program.
1	24.	(Currently Amended) The method of claim 23, wherein generating the second test
2	progra	m population comprises:
3		generating a second abstract syntax tree (AST);
4		generating the a second set of instructions and data for the second AST; and
5		translating the second AST into a second executable test program population.
1	25.	(Previously Presented) The method of claim 24, further comprising
2	mutati	ing a selected AST.
1	26.	(Previously Presented) The method of claim 25, wherein mutating a
2	selecte	ed AST comprises:
3		selecting an AST;
4		removing a segment of the selected AST; and
5		inserting a replacement segment into the selected AST to form a mutated AST.
1	27.	(Currently Amended) The method of claim 26, further comprising:
2		generating a third set of instructions and data for the mutated AST; and
3		translating the mutated AST into a third executable test program population.
1	28.	(Previously Presented) The method of claim 25, wherein mutating a
2	selecto	ed AST comprises:
3		selecting the first AST and the second AST; and
4		combining a segment of the first AST with a segment of the second AST to form
5	a muta	ated AST.
1	29.	(Currently Amended) The method of claim 28, further comprising:

2	generating a third set of instructions and data for the mutated AST; and		
3	translating the mutated AST into a third executable test program population.		
1	30. (Currently Amended) The method of claim 23, further comprising:		
2	adding the first AST and the first set of coverage data into a test program		
3	population after the first test program population has been executed.		
1	31. (Currently Amended) A computer system comprising:		
2	a storage device coupled to a processor and having stored therein at least one		
3	routine, which when executed by the processor, causes the processor to generate data, the		
4	routine causing the processor to,		
5	generate a first test program population to test the functionality of an integrated		
6	circuit (IC), the first test program population including comprising a plurality of test		
7	programs, each test program having a first set of instructions and data;		
8	execute each of the test programs in the first test program population;		
9	evaluate a first set of coverage data from the first test program population to		
10	determine if the IC has been sufficiently tested, wherein evaluating the first set of		
11	coverage data comprises comparing the coverage data to a predetermined coverage; and		
12	generate a second program population if the IC has not been sufficiently tested by		
13	the first test program population, the second test program population including		
14	comprising an-a plurality of updated test programs, wherein each updated test program		
15	population having a second set of instructions and data being is a mutation of a test of		
16	the first test program original population for a combination of two or more of the test		
17	programs of the first test program population.		
1	32. (Currently Amended) The computer system of claim 31, wherein the routine		
2	further causes the processor to,		
3	execute the second test program population		

1	33.	(Currently Amended) The computer system of claim 32, wherein generating the
2	first tes	st program population comprises:
3		generating a first abstract syntax tree (AST);
4		generating the first set of instructions and data for the first AST; and
5		translating the first AST into a first executable test program.
1	34.	(Currently Amended) The computer system of claim 33, wherein generating the
2	second	test program population comprises:
3		generating a second abstract syntax tree (AST);
4		generating the a second set of instructions and data for the second AST; and
5		translating the second AST into a second executable test program population.
1	35.	(Previously Presented) The computer system of claim 34, wherein the
2	routine	further causes the processor to mutate a selected AST.
1	36.	(Previously Presented) The computer system of claim 35, wherein mutating
2	a selec	ted AST comprises:
3		selecting an AST;
4		removing a segment of the selected AST; and
5		inserting a replacement segment into the selected AST to form a mutated AST.
1	37.	(Currently Amended) The computer system of claim 36, wherein the routine
2	further	causes the processor to,
3		generate a third set of instructions and data for the mutated AST; and
4		translate the mutated AST into a third executable test program population.
1	38.	(Previously Presented) The computer system of claim 35, wherein mutating
2	a selec	ted AST comprises:
3		selecting the first AST and the second AST; and No.: 042390.P6602 tion No.: 09/475,526

4	combining a segment of the first AST with a segment of the second AST to form
5	a mutated AST.

- 1 39. (Currently Amended) The computer system of claim 38, wherein the routine
- 2 further causes the processor to,
- generating a third set of instructions and data for the mutated AST; and
- 4 translating the mutated AST into a third executable test program population.
- 1 40. (Previously Presented) The computer system of claim 33, wherein the
- 2 routine further causes the processor to,
- add the first AST the first set of coverage data into test program population after
- 4 the first test program has been executed.
- 1 41. (Currently Amended) A validation test system comprising:
- a test builder to generate test <u>program populations</u> programs to test the
- 3 functionality of an integrated circuit (IC);
- a test generator to translate the test <u>program populations</u> programs into an
- 5 executable test;
- a test analyzer to execute the test program populations programs; and
- a feedback engine to build and update a population of test programs by generating
- an abstract syntax tree (AST) for each test <u>program papulations</u> programs.
- 1 42. (Currently Amended) The system of claim 41, wherein the feedback engine
- determines whether a predetermined test program population threshold has been reached
- after a test <u>program populations</u> programs has been executed.
- 1 43. (Previously Presented) The system of claim 42, wherein the feedback
- 2 engine generates one or more mutated ASTs if it is determined that the predetermined test
- 3 program population threshold has been reached.

- 1 44. (Previously Presented) The system of claim 43, wherein the feedback
- 2 engine generates a mutated AST by selecting a first AST, removing a segment of the first
- 3 AST and inserting a replacement segment into the first AST.

1

- 1 45. (Previously Presented) The system of claim 43, wherein the feedback
- engine generates a mutated AST by selecting a first AST and a second AST and
- 3 combining a segment of the first AST with a segment of the second AST to form.