# Tight Muon Reconstruction Efficiency

Xiaoning Wang Sept 25, 2019

# Introduction

- Used Tag & Probe method to calculate the reconstruction efficiency of tight muon.  $\varepsilon(\mu) = \varepsilon(\mu|\text{ID}) \times \varepsilon(\text{ID}) \cong \varepsilon(\mu|\text{ID}) \times \varepsilon(\text{ID}|\text{MS})$
- $\varepsilon(\mu|\text{ID})$  Muon Reconstruction efficiency with respect to inner detector.
- $\varepsilon(ID|MS)$  Inner Detector efficiency with respect to muon chamber.
- Event Selection:
  - Trigger mu3 || mu8 || mu10
  - GRL
  - At least 1 primary vertex
- $\varepsilon(ID|MS)$  match: MS track with an ID track dR < 0.2

- Probe tracks Selection:
  - Opposite charge with tag
  - ID tracks: Muon ID Selections (No TRT)
  - MS tracks: No Selections
- Invariant mass window
- $\varepsilon(\mu|\text{ID})$  match: ID track with a reconstructed muon dR < 0.01 for data: J/ $\psi$  2.6 -3.6 GeV
  - for mc:  $J/\psi$  2.6 -3.6 GeV

- Data: 2018 Pb-Pb Hard Probe Stream Data at 5.02 TeV
- Monte Carlo:Pythia8B with Prompt J/psi to Muons with Heavy Ion Overlay.
  mc16\_5TeV:mc16\_5TeV.300000.Pythia8BPhotospp\_A14\_CTEQ6L1\_pp\_Jpsimu2p5mu2p5.merge.AOD.e4973\_d1521\_r1147
  2\_r11217

9/25/19

# Tag & Probe Fitting

- Efficiency centroid values extraction
  - Invariant mass of matched and unmatched samples are fitted simultaneously (signal has same mean and sigma for matched and unmatched).
  - $N_{\text{match}} = N_{\text{tot}} * \varepsilon * \text{Sig(mass)} + N_{\text{bkg1}} * \text{Bkg1(mass)}$
  - $N_{unmatch} = N_{tot} * (1-\varepsilon) * Sig(mass) + N_{bkg2} * Bkg2(mass)$
  - The fitting outputs  $N_{tot}$  and  $\varepsilon$ .





Sig(mass): Gaus

Bkg(mass): Exponential

9/25/19

# Inner Detector Efficiency $\varepsilon(\mathrm{ID}|\mathrm{MS})$ Nominal Values



#### Inner Detector Efficiency $\varepsilon(\mathrm{ID}|\mathrm{MS})$ vs q\*eta, Ratio of Variations in Parameters to Nominal Values





- dR +/-0.05: increase/decrease the minimum dR criteria by 0.05, nominal values are taken at dR = 0.2
- Alt. Bkg: change the background model for fitting, nominal values are taken using exponential function, alternative values are taken using Chebyshev polynomials.
- Only positive/negative: using only positively/negatively charged tracks. Nominal values use both tracks.

Inner Detector Efficiency  $arepsilon(\mathrm{ID}|\mathrm{MS})$  vs  $p_T^{MS}$ , Ratio of Variations in Parameters to Nominal Values



Largest contribution to systematics come from varying dR.

#### Inner Detector Efficiency $\varepsilon(\mathrm{ID}|\mathrm{MS})$ Scale Factors





- Scale factors centroid values = Data centroid values/MC centroid values.
- Scale factor systematics = Data systematics/MC centroid values.
- Scale factors are distributed around 1.01.



#### Muon reconstruction efficiency $\varepsilon(\mu|\text{ID})$ vs q\*eta, Ratio of Variations in Parameters to Nominal Values





- dR +/-0.05: increase/decrease the minimum dR criteria by 0.05, nominal values are taken at dR = 0.2
- Alt. Bkg: change the background model for fitting, nominal values are taken using exponential function, alternative values are taken using Chebyshev polynomials.
- Only positive/negative: using only positively/negatively charged tracks. Nominal values use both tracks.

Muon reconstruction efficiency  $\varepsilon(\mu|\text{ID})$  vs q\*eta, Ratio of Variations in Parameters to Nominal Values



Largest contribution to systematics come from separating charges.

# Muon reconstruction efficiency $\varepsilon(\mu|\text{ID})$ Scale Factors



- Scale factors centroid values = Data centroid values/MC centroid values.
- Scale factor systematics = Data systematics/MC centroid values.
- Scale factors are distributed around 1.05 for barrel region, and 1.10 for end cap region.

# Conclusions

- Using 2018 Pb-Pb Hard Probe Stream Data at 5.02 TeV and Pythia8B with Prompt J/psi to Muons with Heavy Ion Overlay, scale factors are calculated for  $\varepsilon(\mu|\text{ID})$  and  $\varepsilon(\text{ID}|\text{MS})$
- For both barrel region and end cap region ,  $\varepsilon(ID|MS)$  has scale factors around 1.01.
- For barrel region,  $\varepsilon(\mu|\text{ID})$  has scale factors around 1.05, and for end cap region,  $\varepsilon(\mu|\text{ID})$  has scale factors around 1.10.
- We plan to use these values for our b-tagging analysis.

# Backup

#### Inner Detector Efficiency $\varepsilon(\mathrm{ID}|\mathrm{MS})$ vs q\*eta, Ratio of Variations in Parameters to Nominal Values



# Inner Detector Efficiency $\varepsilon(\mathrm{ID}|\mathrm{MS})$ Nominal Values with Systematics



# Inner Detector Efficiency $\varepsilon(\mathrm{ID}|\mathrm{MS})$ Scale Factors





 Scale factors are distributed around 1.01.

## Muon reconstruction efficiency $\varepsilon(\mu|\text{ID})$ Nominal Values with Systematics



## Muon reconstruction efficiency $\varepsilon(\mu|\text{ID})$ vs q\*eta, Ratio of Variations in Parameters to Nominal Values



## Muon reconstruction efficiency $\varepsilon(\mu|\text{ID})$ vs q\*eta, Ratio of Variations in Parameters to Nominal Values



 Largest contribution to systematics come from separating charges.

# Muon reconstruction efficiency $\varepsilon(\mu|\text{ID})$ Scale Factors



# Inner Detector Efficiency $\varepsilon(\text{ID}|\text{MS})$ vs q\*eta, low pt regime, using MC upsilon





# Inner Detector Efficiency $\varepsilon(ID|MS)$ vs q\*eta, low pt regime, using MC upsilon

- Nominal efficiency is calculated at dR = 0.2
- Taking both positively and negatively charged tracks.
- The fitting model for background uses exponential curve
- The fitting model for signal uses gaussian curve.
- Largest contribution to overall systematics comes from changing dR.



# Inner Detector Efficiency $\varepsilon(\text{ID}|\text{MS})$ vs q\*eta, middle and high pt regime, using MC upsilon



# Inner Detector Efficiency $arepsilon(\mathrm{ID}|\mathrm{MS})$ vs probe MS track momentum $p_T^{MS}$ , using MC upsilon



# Scale factors for Inner Detector efficiency, using MC with upsilon





 Scale factors are mostly distributed around 1.02 for inner detector for all |eta|<2.4 and 4 GeV < pT < 40 GeV region.

# Tight Muon Reconstruction Efficiency $arepsilon(\mu| ext{ID})$ vs Probe ID Track Momentum $p_T^{ID}$ , using MC upsilon







- End cap region
- Nominal efficiency is calculated at dR = 0.01
- Taking both positively and negatively charged tracks.
- The fitting model for background uses exponential curve
- The fitting model for signal uses gaussian curve.
- MC has very small systematics, data has large systematics.
- Largest contribution of systematics for data comes from separating positively charged tracks from negatively charged tracks.



# Tight Muon Reconstruction Efficiency $arepsilon(\mu| ext{ID})$ vs Probe ID Track Momentum $p_T^{ID}$ , using MC upsilon



- Barrel region
- Nominal efficiency is calculated at dR = 0.01
- Taking both positively and negatively charged tracks.
- The fitting model for background uses exponential curve
- The fitting model for signal uses gaussian curve.
- MC has very small systematics, data has large systematics.
- Largest contribution of systematics for data comes from separating positively charged tracks from negatively charged tracks.



# Tight Muon Reconstruction Efficiency $\varepsilon(\mu|\text{ID})$ vs q\*eta, using MC upsilon



- Systematics mostly come from separating charges.
- MC have small systematics.
- I believe the fittings are reflecting the inputs honestly because the deviations from separating charges are symmetric.

# Tight Muon Reconstruction Efficiency $\varepsilon(\mu|\text{ID})$ vs q\*eta, using MC upsilon



We now also have MC with J/Psi statistics, and here are some results.

# Muon reconstruction efficiency relative to ID for MC using Upsilon versus MC using J/Psi



- In comparison to MC using J/Psi, MC using Upsilon invariant mass is calculated to have bigger muon reconstruction efficiency relative to ID at high pT and lower efficiency at low pT.
- Systematics largely come from separating charges.

# Inner Detector Efficiency $\varepsilon(\mathrm{ID}|\mathrm{MS})$ vs q\*eta, MC using upsilon versus MC using J/psi





 MC using upsilon ID efficiency is about 1% lower than MC using J/psi.

# Eff\_id for data in Barrel Region p\_T = 6-7 GeV

Inner Detector Efficiency versus  $p_{_{T}}^{\mu}$  in Data & MC in Barrel Region



ID efficiency are in general high, signals are high comparing to the background and matched tracks are



#### 



• High pT region has very few data and some fake efficiencies are calculated.

#### Muon Chamber Efficiency versus $q^{\star}\eta$ in Data & MC for $\boldsymbol{p}_{_{T}}$ = 3-6 GeV



• Low pT region has more data and data and MC go the same trend approximately.