RSA DIGITAL SIGNATURE

- Let A want to send a signed intelligible message a to B via the Internet.
- Two semiprimes: m=p*q (A) and n=r*s (B)
- Let { m, e} and { n, h } be public keys of A and B users;
- Let d and g be private keys of A and B respectively.
- d and e are modular inverse to each other; and
- g and h are modular inverse to each other.

In other words,

- 1. Let m = pq (p and q are primes)
- **2.** Let $\varphi(m) = (p-1)(q-1)$
- 3. Choose a small number e, coprime to $\varphi(m)$
- **4. Find d, such that d*e mod** $\varphi(m) = 1$

Repeat the same procedure for n =rs (r and s are primes)

Signing and Encryption

{Sender's actions}:

- 1. $x := a^d \mod m$; (private d) sign
- 2. $y := x^h \mod n$; (public h) encrypt
- 3. A sends y to receiver B via the Internet;

Decryption and Verification

{Receiver's *B* actions}:

- **4.** $z := y^g \mod n$ (private g) decrypt
- 5. $u := z^e \mod m$ (public e) verify
- 6. If u is an intelligible message, then receiver accepts it
- 7. In addition, the receiver accepts that u=a.