The Fréchet Derivative

Jacob Hauck

Math 6418

Let X,Y be normed linear spaces. We know a lot about linear maps $A:X\to Y$ – what can we do about about nonlinear maps?

Let X, Y be normed linear spaces. We know a lot about linear maps $A: X \to Y$ – what can we do about about nonlinear maps?

Approximate a nonlinear map $f:U\to Y$ by something linear:

Let X, Y be normed linear spaces. We know a lot about linear maps $A: X \to Y$ – what can we do about about nonlinear maps?

Approximate a nonlinear map $f: U \to Y$ by something linear: given $x_0 \in U$, find a linear operator $A_{x_0} \in B(X,Y)$ such that

$$f(x) - f(x_0) \approx A_{x_0}(x - x_0)$$

for x close to x_0 (point-slope form)

Let X, Y be normed linear spaces. We know a lot about linear maps $A: X \to Y$ – what can we do about about nonlinear maps?

Approximate a nonlinear map $f: U \to Y$ by something linear: given $x_0 \in U$, find a linear operator $A_{x_0} \in B(X,Y)$ such that

$$f(x) - f(x_0) \approx A_{x_0}(x - x_0)$$

for x close to x_0 (point-slope form)

Say $X = Y = \mathbf{R}$, then A_{x_0} is given by multiplication by a number $a_{x_0} \in \mathbf{R}$, and a natural choice for a_{x_0} is $f'(x_0)$, as

$$f(x) - f(x_0) \approx f'(x_0)(x - x_0).$$

Say $X = Y = \mathbf{R}$, then A_{x_0} is given by multiplication by a number $a_{x_0} \in \mathbf{R}$, and a natural choice for a_{x_0} is $f'(x_0)$, as

$$f(x) - f(x_0) \approx f'(x_0)(x - x_0).$$

By definition,

$$\frac{f(x_0+h)-f(x_0)-f'(x_0)h}{h} \to 0$$
 as $h \to 0$,

Say $X = Y = \mathbf{R}$, then A_{x_0} is given by multiplication by a number $a_{x_0} \in \mathbf{R}$, and a natural choice for a_{x_0} is $f'(x_0)$, as

$$f(x) - f(x_0) \approx f'(x_0)(x - x_0).$$

By definition,

$$\frac{f(x_0+h)-f(x_0)-f'(x_0)h}{h} \to 0$$
 as $h \to 0$,

so

$$f(x_0 + h) - f(x_0) = f'(x_0)h + \omega(h)h,$$

where $\omega(h) \to 0$ as $h \to 0$.

Definition of the Fréchet Derivative

Definition (Fréchet Derivative)

A function $f:U\to Y$ is called **Fréchet differentiable** at $x\in U$ if there exists $A\in B(X,Y)$ such that

$$\frac{\|f(x+h) - f(x) - Ah\|_Y}{\|h\|_X} \to 0$$
 as $\|h\|_X \to 0$,

in which case A is called the **Fréchet derivative** of f at x, also denoted by

$$A = f'(x) = Df(x)$$

Definition of the Fréchet Derivative

Definition (Fréchet Derivative)

A function $f:U\to Y$ is called **Fréchet differentiable** at $x\in U$ if there exists $A\in B(X,Y)$ such that

$$\frac{\|f(x+h) - f(x) - Ah\|_Y}{\|h\|_X} \to 0 \quad \text{as} \quad \|h\|_X \to 0,$$

in which case A is called the **Fréchet derivative** of f at x, also denoted by

$$A = f'(x) = Df(x)$$

The Fréchet derivative is the same as the usual derivative if $f \in C^1(\mathbf{R})$.