AFRE 835: Introductory Econometrics

Chapter 13: Pooling Cross Sections across Time: Simple Panel Data Methods

Spring 2017

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

1 / 28

Introduction

- Up until now, we have focused on datasets that are either cross-sectional or time series.
- The next two chapters focus on datasets that vary across agents (individuals, firms, etc.) and over time.
 - The first of these is the independently pooled cross-section, which consists of a sequence of cross sections sampled independently over time.
 - ... In this case, the same individual is unlikely to appear in multiple time periods.
 - 2 The second is the **panel data** set, in which one explicitly tries to track the same set of individuals over time.
- There are variants of these two data types; e.g., a rolling panel in which individuals are followed over a time period, but replaced by a new set of individuals over time.

Outline

- Pooling Independent Cross Sections Over Time
- 2 Policy Analysis with Pooled Cross Sections
- 3 Two-Period Panel Data Analysis
- Policy Analysis with Two-Period Panel Data
- 5 Differencing with More than Two Time Periods

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

3 / 28

Pooling Independent Cross Sections Over Time

Pooling Independent Cross Sections Over Time

- There are many examples of pooled cross-sections.
- Research firms and government agencies will often repeat a survey at regular intervals, drawing a new set of units (individuals, firms, etc.) each time.
 - The *Current Population Survey (CPS)* is a survey of 60,000 households (has a monthly panel aspect, but households selected annualy).
 - The American Time Use Survey (ATUS) (2003-15) draws on a subsample of the CPS sample.
 - The British Social Attitudes Survey of 3,300 respondents.
- Because the cross-sections are drawn at different points in time, they will typically not be identically distributed.
- In fact, one is often interested in whether the relationships between the dependent variable of interest and the regressors are stable over time.
- At a minimum, it is prudent to allow the intercept to shift over time, as in Wooldridge's Example 13.1 examining women's fertility over time.

TABLE 13.1 Determinants of Women's Fertility						
Dependent Variable: kids						
Independent Variables	Coefficients	Standard Errors				
educ	128	.018				
age	.532	.138				
age^2	0058	.0016				
black	1.076	.174				
east	.217	.133				
northcen	.363	.121				
west	.198	.167				
farm	053	.147				
othrural	163	.175				
town	.084	.124				
smcity	.212	.160				
y74	.268	.173				
y76	097	.179				
y78	069	.182				
y80	071	.183				
y82	522	.172				
y84	545	.175				
constant	-7.742	3.052				
n = 1,129 $R^2 = .1295$ $\overline{R}^2 = .1162$						

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

5 / 28

Pooling Independent Cross Sections Over Time

Notice what happens to partial effect of education if we drop the time dummies.

. reg kids edu	c age agesq	black east	northcen w	est farm	othrural	town	smcity
Source	SS	df	MS		er of obs	=	1,129
					, 1117)	=	11.52
Model	314.471892	11	28.588353	9 Prob	> F	=	0.0000
Residual	2771.03741	1,117	2.480785	5 R-sq	uared	=	0.1019
				– Adj	R-squared	=	0.0931
Total	3085.5093	1,128	2.7353805	9 Root	MSE	=	1.5751
kids	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
educ	1428788	.018351	-7.79	0.000	178885	1 -	1068725
age	.5624223	.1396257	4.03	0.000	.288464	1	.8363804
agesq	0060917	.0015793	-3.86	0.000	009190	13	002993
black	.977559	.173188	5.64	0.000	.637748	5	1.31737
east	.2362931	.1340365	1.76	0.078	026698	37	.4992849
northcen	.3847487	.1222117	3.15	0.002	.144958	13	.6245391
west	.2447027	.1686052	1.45	0.147	086115	8	.5755212
farm	054186	.1486156	-0.36	0.715	345783	2	.2374112
othrural	1670751	.1773583	-0.94	0.346	515068	1	.1809178
town	.0842369	.1257038	0.67	0.503	162405	3	.3308792
smcity	.1830768	.1620166	1.13	0.259	134814	13	.500968
_cons	-8.487543	3.068381	-2.77	0.006	-14.5079	8	-2.467104
							_

Allowing for Changes in Marginal Effects

- One might want to allow for changes in the marginal effect of a variable over time.
- For example, in examining the returns to educations, one might want to allow for
 - changes in the returns to education (reflecting changes in the educational demands of jobs)
 - changes in gender bias.
- Wooldridge considers the following model

$$log(wages) = \beta_0 + \delta_0 y 85 + \beta_1 educ + \delta_1 y 85 \cdot educ + \beta_2 exper$$

$$+ \delta_3 exper^2 + \beta_4 union + \beta_5 female + \delta_5 y 85 \cdot female + u$$

$$= (\beta_0 + \delta_0 y 85) + (\beta_1 + \delta_1 y 85) educ + \beta_2 exper$$

$$+ \delta_3 exper^2 + \beta_4 union + (\beta_5 + \delta_5 y 85) female + u \qquad (1)$$

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

7 / 28

Pooling Independent Cross Sections Over Time

	Base	Base
educ	0.088	0.075
	(0.006)**	(0.007)**
exper	0.032	0.030
	(0.004)**	(0.004)**
expersq	-0.000	-0.000
	(0.000)**	(0.000)**
union	0.143	0.202
	(0.033)**	(0.030)**
female	-0.251	-0.317
	(0.028)**	(0.037)**
y85		0.118
		(0.124)
y85educ		0.018
		(0.009)*
y85fem		0.085
		(0.051)
_cons	0.443	0.459
	(0.083)**	(0.093)**
R2	0.30	0.43
N	1,084	1,084

F-test restricting the two slope changes to zero has a p-value of 0.0326.

The Chow Test

- Earlier (ch. 7), the Chow test was introduced to test for differences between groups; e.g.,
 - Males versus females in earnings;
 - Racial groups in loan application success;
 - Regional differences in housing prices.
- The same test can be used to examine changes in the population regression function over time.
- The basic Chow test in this case takes the form

$$F = \frac{(SSR_r - SSR_{ur})/[(T-1)(k+1)]}{SSR_{ur}/[n-T(k+1)]}$$
(2)

where $SSR_{ur} = \sum_{t=1}^{n} SSR_{t}$, with SSR_{t} denoting the SSR for the model using data only from time period t.

• This version of the Chow test allows all of the parameters (intercepts and slopes) to vary by time period.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

9 / 28

P	ooling Indep	endent Cross	Sections Ove	er Time				
Fertility Regressions								
	72	74	76	78	80	82	84	Const
educ	-0.071	-0.083	-0.117	-0.177	-0.127	-0.130	-0.212	-0.143
	(0.065)	(0.049)	(0.050)*	(0.055)**	(0.045)**	(0.045)**	(0.043)**	(0.018)**
age	0.531	0.139	0.214	0.265	1.145	0.475	0.501	0.562
	(0.465)	(0.347)	(0.400)	(0.397)	(0.385)**	(0.338)	(0.329)	(0.140)**
agesq	-0.007	-0.002	-0.002	-0.003	-0.012	-0.004	-0.005	-0.006
	(0.005)	(0.004)	(0.005)	(0.004)	(0.004)**	(0.004)	(0.004)	(0.002)**
black	0.861	1.158	2.416	0.410	1.758	1.175	0.343	0.978
	(0.574)	(0.505)*	(0.656)**	(0.628)	(0.490)**	(0.294)**	(0.428)	(0.173)**
east	0.677	-0.106	0.188	0.703	0.739	-0.041	-0.340	0.236
	(0.412)	(0.343)	(0.370)	(0.404)	(0.411)	(0.304)	(0.304)	(0.134)
northcen	0.608	0.403	0.213	0.327	0.636	0.403	0.229	0.385
	(0.418)	(0.298)	(0.353)	(0.362)	(0.316)*	(0.282)	(0.274)	(0.122)**
west	0.571	0.383	0.541	-0.227	0.268	0.288	-0.197	0.245
	(0.509)	(0.415)	(0.508)	(0.510)	(0.392)	(0.452)	(0.404)	(0.169)
farm	0.264	-0.294	-0.109	0.286	-0.246	-0.140	-0.509	-0.054
	(0.469)	(0.362)	(0.427)	(0.460)	(0.376)	(0.356)	(0.350)	(0.149)
othrural	0.173	-0.636	-0.756	-0.030	0.318	-0.032	-0.678	-0.167
	(0.573)	(0.421)	(0.514)	(0.498)	(0.457)	(0.403)	(0.466)	(0.177)
town	0.305	-0.147	-0.495	0.141	0.306	0.436	-0.121	0.084
	(0.370)	(0.305)	(0.364)	(0.378)	(0.344)	(0.294)	(0.290)	(0.126)
smcity	1.001	-0.425	0.132	0.382	-0.055	0.019	0.315	0.183
	(0.496)*	(0.428)	(0.541)	(0.455)	(0.411)	(0.378)	(0.343)	(0.162)
_cons	-7.343	1.875	-0.558	-1.728	-22.206	-8.646	-6.152	-8.488
	(10.352)	(7.634)	(8.728)	(8.701)	(8.427)**	(7.426)	(7.198)	(3.068)**
R2	0.10	0.08	0.15	0.11	0.23	0.26	0.21	0.10
N	156	173	152	143	142	186	177	1,129
2017 H	erriges (MS	U)	Do not quot	e/distribute w	ithout permis	sion	Spring	2017 10

Chow Test (cont'd)

- The Chow Test test in this case is clearly rejected, with $F_{72,1045} = 1.799$, which has a p-value of 0.0002.
- Typically, one wants to at least retain time varying intercepts.
- Also, the test as run is not robust to heteroskedasticity.
- An alternative approach is to test the fully unconstrained model against one that constrains the slopes to be constant over time.
- The generic unconstrained model is given by:

$$y_t = (\beta_0 + \sum_{s=2}^n \delta_{0s}) + (\beta_1 x_{t1} + \sum_{s=2}^n \delta_{1s} x_{t1} \cdot D_{ts}) + \dots + (\beta_k x_{tk} + \sum_{s=2}^n \delta_{ks} x_{tk} \cdot D_{ts})$$

• The constrained model takes the form

$$y_t = (\beta_0 + \sum_{s=2}^n \delta_{0s}) + \beta_1 x_{t1} + \dots + \beta_k x_{tk}$$

 Heteroskedastic robust Wald statistic can be used to test the restriction.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

11 / 28

Pooling Independent Cross Sections Over Time

Modified Test for the Fertility Case

- These models can be readily run in Stata using factor variables.
- For the unconstrained model:

• The corresponding test statistic this case is $F_{60,1045} = 1.485$, which has a p-value of 0.003 (still rejecting the slope restrictions at any reasonable level).

Policy Analysis with Pooled Cross Sections

- Pooled cross-sections can be helpful in program/policy evaluation.
- Consider the implementation of a program at time t_1 , such as mandatory pre-kindergarten throughout the state of Georgia.
- Suppose that the outcome of interest is first grade math test scores.
- One approach to estimating the impact of the program would be to use pooled cross-section data on test scores for first-grader in Georgia before $(t = t_0)$ and after $(t = t_1)$ the program, estimating the model

$$math_{it} = \beta_0 + \delta_1 D_{1t} + u_{it} \quad t = t_0, t_1, i \in \mathcal{G}$$
 (3)

where $D_{1t}=1$ if $t=t_1$ (=0 otherwise) and $\mathcal G$ denotes Georgia students.

- The OLS estimators in this case are $\hat{\beta}_0 = \overline{math}_{G0} = \frac{1}{n_G} \sum_{i \in \mathcal{G}} math_{i,t_0}$ and $\hat{\delta}_1 = \overline{math}_{G1} \overline{math}_{G0}$ where $\overline{math}_{G1} = \frac{1}{n_G} \sum_{i \in \mathcal{G}} math_{i,t_1}$.
- However, this inter-temporal difference in test scores $\hat{\delta}_1$ is potentially confounded with other changes.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

13 / 28

Policy Analysis with Pooled Cross Sections

Policy Analysis with Pooled Cross Sections (cont'd)

- An alternative would be to use cross-sectional data $(t = t_1)$ on test scores in Georgia and South Carolina (where pre-K is not mandatory).
- In this case, we might estimate the model:

$$math_{it} = \beta_1 + \delta_1 G_i + u_{it} \quad t = t_1, i \in \mathcal{G}, \mathcal{M}$$
 (4)

where $G_i = 1$ if $i \in \mathcal{G}$ and \mathcal{M} denotes Mississippi students.

• The OLS estimators in this case are

$$\hat{\beta}_1 = \overline{math}_{M1} = \frac{1}{n_M} \sum_{i \in \mathcal{M}} math_{i,t_1}$$
 (5)

and $\hat{\delta}_1 = \overline{math}_{G1} - \overline{math}_{M1}$ where $\overline{math}_{G1} = \frac{1}{n_G} \sum_{i \in \mathcal{G}} math_{i,t_1}$.

• This cross-sectional difference in test scores $\hat{\delta}_1$ is potentially confounded with other differences between Georgia and Mississippi students.

Differences-in-Differences (DID)

- The **Differences-in-Differences (DID) estimator** combines these data types, pooling cross-sections before and after the policy change in both the *treatment* area (Georgia) and the non-treated (or *control*) area (Mississippi).
- The model becomes:

$$math_{it} = \beta_0 + \delta_0 D_{1t} + \beta_1 G_i + \delta_1 G_i D_{1t} + u_{it} \quad t = t_0, t_1, \quad i \in \mathcal{G}, \mathcal{M}$$
 (6)

• The OLS estimator for δ_1 becomes:

$$\hat{\delta}_1 = \left(\overline{math}_{G1} - \overline{math}_{M1}\right) - \left(\overline{math}_{G0} - \overline{math}_{M0}\right) \tag{7}$$

$$= (\overline{math}_{G1} - \overline{math}_{G0}) - (\overline{math}_{M1} - \overline{math}_{M0})$$
 (8)

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

15 / 28

Policy Analysis with Pooled Cross Sections

Fitzpatrick (2008)

Figure 4. Standardized 4th Grade NAEP Scores, Georgia vs. Rest of the U.S. (Line indicates last pre-program cohort)

Panel A. Mathematics Scores

2017 Herriges (MSU)

Do not quote/distribute without permission

Fitzpatrick (2008)

Panel B. Reading Scores

Policy Analysis with Pooled Cross Sections

Kiel and McCain (1995)

2017 Herrige

- The treatment here was the construction of an incinerator and the outcome variables of interest was housing price.
- The control group households consisted of those that were not near the incinerator.

	nearinc=1	1981	1978	DID
y81	6,926			18,790
	(8,205)			(4,050)**
nearinc		-30,688	-18,824	-18,824
		(5,828)**	(4,745)**	(4,875)**
y81nrinc				-11,864
				(7,457)
_cons	63,693	101,308	82,517	82,517
	(5,296)**	(3,093)**	(2,654)**	(2,727)**
R^2	0.01	0.17	0.08	0.17
Ν	96	142	179	321
es (MSU)	Do not quote/dist	ribute without per	mission	Spring 2017

Two-Period Panel Data Analysis

- We now turn our attention to panel data, where the same units (individuals, firms, counties, etc.) are observed over time.
- We start with the simplest case in which there are only two time periods (t = 1 and t = 2).
- The generic version of this model would be

$$y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 x_{it1} + \dots + \beta_k x_{itk} + v_{it}$$
(9)

where $d2_t = 1$ if t = 2 (=0 otherwise) and v_{it} is now used to denote the full set of unobserved factors.

• Notice that the model still incorporates shifts in the dependent variable over time (as measured by δ_0).

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

19 / 28

Two-Period Panel Data Analysis

Pooled OLS

- The simplest approach to estimation in the case of panel data is Pooled OLS;
 - ...i.e., stacking the data from the two time periods estimating the model in (9) using OLS.
- The usual assumptions will need to apply in order for consistency and unbiasedness to hold.
- Pooled OLS will not be efficient if their are serial correlations in the residuals.
 - ... the cluster(id) option in Stata will make the reported standard error robust to any kind of serial correlation in the errors for a given i and for any form of heteroskedasticity.
- Intertemporal feedback effects can also cause violations of the strict exogeneity assumption.

The Unobserved Heterogeneity

- One of the primary concerns in regression analysis is possibility of omitted variables bias.
- Wooldridge illustrates this problem in the context of a simple regression of 1987 city crime rates on the local unemployment rate:

- This counter-intuitive result is likely due to omitted factors, such as
 - law enforcement expenditures;
 - cultural forces:
 - age distribution;
 - local economic conditions, etc.
- A panel structure will allow us to control for some of these unobserved factors, specifically those that are constant over time.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

21 / 28

Two-Period Panel Data Analysis

The Unobserved Heterogeneity (cont'd)

• To see this, we decompose the error term into two components,

$$v_{it} = a_i + u_{it} \tag{10}$$

where a_i captures all *time constant* unobserved factors, u_{it} denotes unobserved (*idiosyncratic*) factors that change over time.

- The term a_i is referred to in the literature by a number of names, including
 - Unobserved heterogeneity;
 - Individual fixed effects, firm fixed effects, etc.
 - Unobserved effect.

The Unobserved Heterogeneity (cont'd)

- Panel data allows us to eliminate the impact of the unobserved heterogeneity through first differencing.
- Specifically, writing out the model in (9) for the two time periods, we get

$$y_{i2} = \beta_0 + \delta_0 + \beta_1 x_{i21} + \dots + \beta_k x_{i2k} + a_i + u_{i2}$$
 (11)

$$y_{i1} = \beta_0 + \beta_1 x_{i11} + \dots + \beta_k x_{i1k} + a_i + u_{i1}$$
 (12)

• Subtracting (12) from (11) yields

$$\Delta y_i = \delta_0 + \beta_1 \Delta x_{i1} + \dots + \beta_k \Delta x_{ik} + \Delta u_i \tag{13}$$

where
$$\Delta y_i = y_{i2} - y_{i1}$$
, $\Delta x_{ij} = x_{i2j} - x_{i1j}$ $j = 1, ..., k$, and $\Delta u_i = u_{i2} - u_{i1}$.

• Note that a_i no longer appears in the model.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

23 / 28

Two-Period Panel Data Analysis

The Tradeoffs

- The advantage of the so-called **first differencing estimator** is that, *if* the model in (13) satisfies the usual assumptions, OLS will be
 - BLUE (Theorem 3.4) or consistent (Theorem 5.1);
 - purged of the potential omitted variables biased induced by the unobserved heterogeneity.
- There are, however, costs:
 - For OLS to be consistent, we need $E(\Delta u_i | \Delta x_i) = 0$, which effectively requires $E(u_{it} | x_{i1}, x_{i2}) = 0$, t = 1, 2
 - ... which can be violated when there is inter-temporal feedback;
 - We can no longer estimate parameters associated with observed variables that are constant over time (e.g., regional dummies, race,) or increase at a constant rate over time (e.g., age);
 - 3 Even if a variable varies over time (e.g., education), the variation may be limited, making for imprecise parameter estimates (see Example 13.5 in Wooldridge);
 - Measurement error can be a more pronounced problem.

Example: Crime Rate and Unemployment

Crime Rate Panel					
	1987	1982/87	First Diff		
Dependent Variable	crmrte _{it}	crmrte _{it}	$\Delta crmrte_i$		
unem _{it}	-4.16	0.43			
	(3.42)	(1.19)			
d87 _{it}		7.94			
		(7.98)			
Δ une m_i			2.22		
			(0.88)*		
_cons	128.38	93.42	15.40		
	(20.76)**	(12.74)**	(4.70)**		
R^2	0.03	0.01	0.13		
N	46	92	46		
* p < 0.05; ** p < 0.01					

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

Policy Analysis with Two-Period Panel Data

Policy Analysis with Two-Period Panel Data

- In the earlier part of this chapter, we used the *Diff-in-Diff* estimator to control for cohort fixed effects when we had repeated cross-sections.
- A similar approach can be used when we have panel data ... only now we can control for individual level heterogeneity.
- The model takes the form:

$$y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 prog_{it} + a_i + u_{it}$$
 (14)

- \bullet The term a_i plays a role similar to our treatment group indicator in the Diff-in-Diff estimator.
- Note: In the *Diff-in-Diff* case, the program was in effect only for the treatment group and then only during the second period.
- Here, all we need is that progit varies over time for some or all of the observations. (See Example 13.7 in Wooldridge using drunk driving laws).

Differencing with More than Two Time Periods

- With more than two time periods in a panel data set, first differencing can be applied as well.
- Suppose we have T time periods. Then our model takes the form

$$_{it} = \beta_0 + \delta_2 d2_t + \cdots + \delta_T dT_t + \beta_1 x_{it1} + \cdots + \beta_k x_{itk} + a_i + u_{it} \quad (15)$$

where $ds_t = 1$ if t = s (=0 otherwise) for s = 2, ..., T.

• For each period t = 2, ..., T we can first differenced adjacent periods to yield the model

$$\Delta y_{it} = \delta_2 \Delta d 2_t + \cdots + \delta_T \Delta d T_t + \beta_1 \Delta x_{it1} + \cdots + \beta_k \Delta x_{itk} + \Delta u_{it}$$
 (16)

where now $\Delta y_{it} = y_{it} - y_{i,t-1}$, $\Delta x_{itj} = x_{itj} - x_{i,t-1,j}$ $j = 1, \ldots, k$, and $\Delta u_{it} = u_{it} - u_{i,t-1}$.

• The model in (16) has n(T-1) observations.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

27 / 28

Differencing with More than Two Time Periods

Estimation of the FD Model

- Employing the usual assumptions, (16) can be estimated using **Pooled OLS**.
 - ... This involves stacking the data from the different time periods and running OLS.
- The differenced errors, however, are potentially serially correlated, though corrections exist (See Wooldridge, 2010, Chapter 10).
- The first difference estimator with T > 2 will, of course, suffer from the same potential problems noted for the T = 2 case.