## In [5]:

```
import pandas as pd
import numpy as np
import matplotlib as mp
import seaborn as snb
import math
import matplotlib.pyplot as plt
from datetime import date
!pip install -U pandasql
from pandasql import sqldf
mysql=lambda q: sqldf(q,globals())
Patients = pd.read_excel("HospitalDatabase .xlsx","Patients")
EDVisits = pd.read excel("HospitalDatabase .xlsx","EDVisits")
AmbulatoryVisits = pd.read excel("HospitalDatabase .xlsx", "Ambulatory
ReAdmissionRegistry = pd.read_excel("HospitalDatabase .xlsx", "ReAdmis
Discharges = pd.read excel("HospitalDatabase .xlsx", "Discharges")
Providers = pd.read excel("HospitalDatabase .xlsx", "Providers")
EDUnique = pd.read_excel("HospitalDatabase .xlsx","EDUnique")
Merged = pd.merge(Patients, Discharges, on="PatientID")
```

Merged1= pd.merge(Patients, ReAdmissionRegistry, on="PatientID", how=

```
Requirement already satisfied: pandasql in c:\users\gb
haskaran\anaconda3\lib\site-packages (0.7.3)
Requirement already satisfied: sqlalchemy in c:\users
\gbhaskaran\anaconda3\lib\site-packages (from pandasq
1) (1.4.32)
Requirement already satisfied: numpy in c:\users\gbhas
karan\anaconda3\lib\site-packages (from pandasql) (1.2
1.5)
Requirement already satisfied: pandas in c:\users\gbha
skaran\anaconda3\lib\site-packages (from pandasql) (1.
4.2)
Requirement already satisfied: pytz>=2020.1 in c:\user
s\gbhaskaran\anaconda3\lib\site-packages (from pandas-
>pandasql) (2021.3)
Requirement already satisfied: python-dateutil>=2.8.1
in c:\users\gbhaskaran\anaconda3\lib\site-packages (fr
om pandas->pandasql) (2.8.2)
```

Requirement already satisfied: six>=1.5 in c:\users\gb

haskaran\anaconda3\lib\site-packages (from python-date util>=2.8.1->pandas->pandasql) (1.16.0)
Requirement already satisfied: greenlet!=0.4.17 in c:\users\gbhaskaran\anaconda3\lib\site-packages (from sqlalchemy->pandasql) (1.1.1)

H

## In [12]:

#####58. Display total count of patients service wise based on gender
df = Merged.groupby(['Service', 'Gender']).size().unstack(fill\_value=0)
df.head()

## Out[12]:

| Gender                  | Female | Male |
|-------------------------|--------|------|
| Service                 |        |      |
| Cardiology              | 41     | 54   |
| <b>General Medicine</b> | 114    | 149  |
| Hospitalist             | 35     | 66   |
| ICU                     | 65     | 86   |
| Neurology               | 34     | 31   |

#### In [30]:

```
##42.Using loc , get the details of the providers where providerId is
##Providers.iloc [11:21]
##df1 = Providers[(Providers["ProviderSpecialty"] == 'Surgery')]
df1 = Providers.loc[(Providers["ProviderSpecialty"] == 'Surgery')]
```

Number of Rows count is: 7

arr = np.array([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], [26, 27, 28, 29, 30]]) print(arr[2, 0:2], [3, 0:2])

```
In [71]:
#####34. np.arange(1,31).reshape(6,5) Find the array slicing to get
arr=np.arange(1,31).reshape(6,5)
print(arr[2:4,0:2])
[[11 12]
 [16 17]]
In [81]:
arr=np.arange(1,31).reshape(6,5)
print(arr[0::1,1::3])
[[ 2 5]
[ 7 10]
 [12 15]
 [17 20]
 [22 25]
 [27 30]]
```

## In [94]:

```
###12. Connect to sql and write a query to get list of Provider names
mysql = lambda q: sqldf(q,globals())
mysql("Select ProviderName from Providers where ProviderName LIKE 'T')
```

#### Out[94]:

# **ProviderName**

- 0 Ted Texas
- 1 Ted Green
- 2 Ted Black
- **3** Tyler Conner
- 4 Tony Creed
- **5** Trent Tye

```
In [96]:
```

```
##64. "Using numpy functions, multiply the following arrays a=np.arar
a=np.arange(6).reshape(2,3)
b=np.arange(6).reshape(3,2)
res = np.dot(a,b)
print(res)
```

```
[[10 13]
[28 40]]
```

## In [167]:

##69Details of the patients whose firstname or lastname contains stri
mysql = lambda q: sqldf(q,globals())
mysql("Select FirstName, LastName from Patients where FirstName LIKE ())

## Out[167]:

|   | FirstName | LastName  |
|---|-----------|-----------|
| 0 | Lauren    | Gaskal    |
| 1 | Lauren    | Foort     |
| 2 | Zulauf    | Ellingham |
| 3 | Zulauf    | LLC       |
| 4 | Zulauf    | Alvar     |
| 5 | Zulauf    | Manske    |
| 6 | Zulauf    | Bitcheno  |
| 7 | Zulauf    | O'Shavlan |

|    | FirstName | LastName |
|----|-----------|----------|
| 8  | Lemmy     | Klausen  |
| 9  | Jerrilyn  | Klausen  |
| 10 | Zulauf    | Orbine   |

## In [183]:

irstName, LastName, DateOfBirth of the Patients whose reason for visi
q: sqldf(q,globals())

FirstName, LastName, DateOfBirth from Patients p inner join EDUnique

## Out[183]:

|     | FirstName | LastName | DateOfBirth                |
|-----|-----------|----------|----------------------------|
| 0   | Zonnya    | Ab       | 1963-05-23 10:04:33.074000 |
| 1   | Gan       | Yu       | 1970-06-02 06:22:54.675000 |
| 2   | Devlin    | Michael  | 1976-04-15 02:52:09.762000 |
| 3   | Joesph    | Long     | 1979-12-04 16:45:56.080000 |
| 4   | Gabriel   | Joseph   | 1986-05-31 09:36:05.716000 |
|     |           |          |                            |
| 111 | Hauck     | Rubbens  | 1963-11-16 03:31:38.929000 |

|                      | FirstName | LastName | DateOfBirth                |  |
|----------------------|-----------|----------|----------------------------|--|
| 112                  | Barrows   | Coupland | 1979-10-31 18:28:35.483000 |  |
| 113                  | Knox      | Group    | 1975-08-25 22:27:50.177000 |  |
| 114                  | Kuvalis   | Coupland | 1986-05-23 19:23:27.752000 |  |
| 115                  | Daniel    | Shakesby | 1980-11-28 17:57:03.702000 |  |
| 116 rows × 3 columns |           |          |                            |  |

# In [185]:

```
##29. Calculate average LOS.
Discharges["ExpectedLOS"].mean()
```

## Out[185]:

8.82458915915616

```
In [250]:
```

```
##13. Create a subplot on x = np.arange(0, 10, 0.1) , y = np.sin(np.pl
X = x = np.arange(0, 10, 0.1)
y = np.sin(np.pi * x) + x
plt.plot(X, y, color='r', label='sin')
plt.show()
```



H

#### In [252]:

```
###61. Plot a graph by multiplotting on the same canvas (Take any se
X = np.arange(0, math.pi*2, 0.05)
y = np.sin(X)
z = np.cos(X)
plt.plot(X, y, color='r', label='sin')
plt.plot(X, z, color='g', label='cos')
plt.xlabel("Angle")
plt.ylabel("Magnitude")
plt.title("Sine and Cosine functions")
plt.legend()
plt.show()
```



#### In [259]:

```
##4. Display data by splitting age in 4 quartiles and labeling the qua
```

```
0
        (56.0, 62.0]
      (34.999, 42.0]
1
2
      (42.0, 49.0]
3
      (49.0, 56.0]
4
        (56.0, 62.0]
940 (34.999, 42.0]
941 (49.0, 56.0]
942 (34.999, 42.0]
943 (56.0, 62.0]
   (49.0, 56.0]
944
Name: Age, Length: 945, dtype: category
```

```
Categories (4, interval[float64, right]): [(34.999, 42.0] < (42.0, 49.0] < (49.0, 56.0] < (56.0, 62.0]]
```

#### In [275]:

```
##80. Write a code snippet to print different ProviderSpecialty ( use
#display (Providers['ProviderSpecialty'])
df = Providers.groupby("ProviderSpecialty").count()
df.head()
```

#### Out[275]:

|                   | ProviderID | ProviderName | ProviderDateOnStaff |
|-------------------|------------|--------------|---------------------|
| ProviderSpecialty |            |              |                     |
| Cardiology        | 8          | 8            | 8                   |
| Pediatrics        | 9          | 9            | 9                   |
| PrimaryCare       | 16         | 16           | 16                  |
| Surgery           | 7          | 7            | 7                   |

```
In [69]:
```

```
##78. Find reasonForVisit with highest count of acuity 5 patients.
mysql = lambda q: sqldf(q,globals())
mysql("Select ReasonForVisit from EDVisits where Acuity=5")
```

## Out[69]:

#### ReasonForVisit

|     | rtodoom or viole           |
|-----|----------------------------|
| 0   | Car Accident               |
| 1   | Chest Pain                 |
| 2   | Chest Pain                 |
| 3   | Chest Pain                 |
| 4   | Shortness of Breath        |
|     | •••                        |
| 004 | Classition and at Discrete |

204 Shortness of Breath

#### ReasonForVisit

| 205 | Shortness of Breath |
|-----|---------------------|
| 206 | Shortness of Breath |
| 207 | Shortness of Breath |
| 208 | Shortness of Breath |

209 rows × 1 columns

## In [303]:

```
##28 Which reason of visit has maximum mortality rate.

mysql = lambda q: sqldf(q,globals())
mysql("Select a.ReasonForVisit, b.ExpectedMortality from EDUnique a
```

## Out[303]:

|   | ReasonForVisit | ExpectedMortality |
|---|----------------|-------------------|
| 0 | Accident       | 0.325386          |
| 1 | Bleeding       | 0.027476          |
| 2 | Car Accident   | 0.525589          |
| 3 | Chest Pain     | 0.646007          |
| 4 | Fever          | 0.622168          |
| 5 | Gun Shot       | 0.526509          |
| 6 | Intoxication   | 0.967396          |
|   |                |                   |



|    | ReasonForVisit      | ExpectedMortality |
|----|---------------------|-------------------|
| 7  | Laceration          | 0.426426          |
| 8  | Migraine            | 0.671473          |
| 9  | Pneumonia           | 0.086662          |
| 10 | Shortness of Breath | 0.467549          |
| 11 | Stomach Ache        | 0.010046          |

```
In [13]:
```

```
##80Write a code snippet to print different ProviderSpecialty ( use g
Providers[['first_name','last_name']] = Providers['ProviderName'].log
Providers
##Providers.loc[Providers['ProviderName'].str.split().str.len() == 2,
##Providers
```

## Out[13]:

|   | ProviderID | ProviderName   | ProviderSpecialty | ProviderDateOn(    |
|---|------------|----------------|-------------------|--------------------|
| 0 | 1          | Sally Sue      | Pediatrics        | 1993-0<br>00:00:00 |
| 1 | 2          | Mike Myers     | Pediatrics        | 1993-0<br>00:00:17 |
| 2 | 3          | Jordan Michael | Pediatrics        | 1993-0<br>21:31:46 |

|    | ProviderID | ProviderName | ProviderSpecialty | ProviderDateOn:    |
|----|------------|--------------|-------------------|--------------------|
| 3  | 4          | Ted Texas    | Pediatrics        | 1993-1<br>21:33:52 |
| 4  | 5          | Ala Bama     | Pediatrics        | 1995-0<br>02:53:47 |
| 5  | 6          | Harry Kane   | Pediatrics        | 1995-0<br>03:49:03 |
| 6  | 7          | Barry Bar    | Pediatrics        | 1995-1<br>19:30:38 |
| 7  | 8          | Ted Green    | Pediatrics        | 1996-0<br>06:14:52 |
| 8  | 9          | Ted Black    | Pediatrics        | 1997-0<br>08:01:10 |
| 9  | 10         | Fred Man     | Surgery           | 1998-0<br>01:47:18 |
| 10 | 11         | Kim Kimberly | Surgery           | 1998-0<br>14:47:29 |
| 11 | 12         | Sarah Ab     | Surgery           | 1998-0<br>05:22:40 |

|    | ProviderID | ProviderName    | ProviderSpecialty | ProviderDateOn:    |
|----|------------|-----------------|-------------------|--------------------|
| 12 | 13         | Abigail Marriot | Surgery           | 1998-1<br>12:25:45 |
| 13 | 14         | Dave Yu         | Surgery           | 1999-0<br>16:18:57 |
| 14 | 15         | Christian Saint | Surgery           | 2000-0<br>00:12:40 |
| 15 | 16         | Perry Pardon    | Surgery           | 2001-0<br>11:49:17 |
| 16 | 17         | Kent Kendall    | Cardiology        | 2001-1<br>11:18:32 |
| 17 | 18         | Ryan Kevin      | Cardiology        | 2003-0<br>21:16:34 |
| 18 | 19         | Tyler Conner    | Cardiology        | 2003-0<br>02:41:40 |
| 19 | 20         | Bailey Barret   | Cardiology        | 2003-0<br>16:05:50 |
| 20 | 21         | Megan Bonco     | Cardiology        | 2004-0<br>21:22:30 |

|    | ProviderID | ProviderName   | ProviderSpecialty | ProviderDateOn:    |
|----|------------|----------------|-------------------|--------------------|
| 21 | 22         | Joesph Walter  | Cardiology        | 2005-0<br>11:40:44 |
| 22 | 23         | Walter King    | Cardiology        | 2006-0<br>22:11:58 |
| 23 | 24         | Luke Long      | Cardiology        | 2006-0<br>00:16:36 |
| 24 | 25         | Justin Time    | PrimaryCare       | 2006-0<br>04:46:36 |
| 25 | 26         | Mike Joseph    | PrimaryCare       | 2006-1<br>16:26:41 |
| 26 | 27         | Bridget Brenda | PrimaryCare       | 2007-0<br>05:53:46 |
| 27 | 28         | Brenda Bing    | PrimaryCare       | 2007-1<br>22:33:55 |
| 28 | 29         | Chandler Bing  | PrimaryCare       | 2007-1<br>23:50:10 |
| 29 | 30         | Joesph Ross    | PrimaryCare       | 2008-1<br>18:06:32 |

|    | ProviderID | ProviderName       | ProviderSpecialty | ProviderDateOn:    |
|----|------------|--------------------|-------------------|--------------------|
| 30 | 31         | Dwight Scott       | PrimaryCare       | 2009-0<br>19:15:44 |
| 31 | 32         | Michael<br>Halpert | PrimaryCare       | 2009-0<br>00:14:41 |
| 32 | 33         | Pamela Ding        | PrimaryCare       | 2009-1<br>03:59:49 |
| 33 | 34         | Tony Creed         | PrimaryCare       | 2010-0<br>14:11:26 |
| 34 | 35         | Phyllis Stanley    | PrimaryCare       | 2011-0<br>16:06:03 |
| 35 | 36         | Holly Hue          | PrimaryCare       | 2012-0<br>06:55:22 |
| 36 | 37         | Trent Tye          | PrimaryCare       | 2013-0<br>15:32:21 |
| 37 | 38         | Kimberly Cone      | PrimaryCare       | 2013-0<br>05:17:19 |
| 38 | 39         | Harry West         | PrimaryCare       | 2013-0<br>00:22:03 |

# ProviderID ProviderName ProviderSpecialty ProviderDateOn

# In [85]:

###18 Add column 'Age' in Patient table.
df["Age"] = (pd.to\_datetime("today").year-pd.to\_datetime(df["DateOfB:
df.head(945)

## Out[85]:

|   | PatientID | FirstName | LastName | DateOfBirth                | Gender |  |
|---|-----------|-----------|----------|----------------------------|--------|--|
| 0 | 1         | Lanni     | Sue      | 1960-01-01<br>00:00:00.000 | Male   |  |
| 1 | 2         | Far       | Myers    | 1985-11-15<br>02:08:42.090 | Male   |  |
| 2 | 3         | Devlin    | Michael  | 1976-04-15<br>02:52:09.762 | Male   |  |
| 3 | 4         | Carmine   | Texas    | 1968-10-15<br>03:32:13.635 | Male   |  |
| 4 | 5         | Tann      | Bama     | 1962-05-01<br>19:12:58.950 | Male   |  |
|   |           |           |          |                            |        |  |

|               | Gender | DateOfBirth                | LastName | FirstName | PatientID |     |
|---------------|--------|----------------------------|----------|-----------|-----------|-----|
| Black/A<br>Am | Male   | 1986-05-26<br>00:01:19.761 | Fideler  | Wat       | 941       | 940 |
| Black/A<br>Am | Male   | 1970-06-10<br>21:41:03.814 | Baythrop | Wandie    | 942       | 941 |
| Black/A<br>Am | Male   | 1983-01-08<br>21:49:27.884 | Smeeton  | Diahann   | 943       | 942 |
| Black/A<br>Am | Male   | 1963-06-05<br>07:57:05.569 | Sharple  | Panchito  | 944       | 943 |
| Black/A<br>Am | Male   | 1972-08-06<br>03:40:03.454 | Calvie   | Walsh     | 945       | 944 |

945 rows × 8 columns

H

```
In [86]:
```

```
##55Create a bar chart on service & expected Length of stay.

df = pd.read_excel("HospitalDatabase .xlsx","ReAdmissionRegistry")
plt.figure(figsize=(9,6))
plt.bar(x=df['Service'],
height=df['ExpectedLOS'])
plt.xticks(rotation=45)
plt.title('LOS by Service ')
```

#### Out[86]:

Text(0.5, 1.0, 'LOS by Service ')



H

```
In [87]:
```

```
##33.Using a bar chart, which Service had the Lowest count of Expected

df = pd.read_excel("HospitalDatabase .xlsx","ReAdmissionRegistry")
rows_count = df1.count()
plt.figure(figsize=(9,6))
plt.bar(x=df['Service'],
height=df['ExpectedMortality'])
plt.xticks(rotation=45)
plt.title('ExpectedMortality by Service')
```

#### Out[87]:

Text(0.5, 1.0, 'ExpectedMortality by Service')



```
In [88]:
```

```
##16 Plot a graph to show the distribution of expected length of stay

df = pd.read_excel("HospitalDatabase .xlsx", "ReAdmissionRegistry")

df = df["ExpectedLOS"]

plt.plot(df)
```

#### Out[88]:

[<matplotlib.lines.Line2D at 0x1526268ea00>]



#### In [89]:

```
###5.Display full name of patients who are born in 1986.

df = pd.read_excel("HospitalDatabase .xlsx","Patients")
df['FullName'] = df['FirstName'] + ' ' + df["LastName"]
df["DateOfBirthYear"] = pd.to_datetime(df["DateOfBirth"]).dt.year
df[df["DateOfBirthYear"] == 1986]
```

#### Out[89]:

|    | PatientID | FirstName | LastName | DateOfBirth                | Gender |
|----|-----------|-----------|----------|----------------------------|--------|
| 23 | 24        | Gabriel   | Joseph   | 1986-05-31<br>09:36:05.716 | Male   |
| 24 | 25        | Lincoln   | Brenda   | 1986-07-24<br>17:36:00.791 | Male   |
| 29 | 30        | Ala       | Halpert  | 1986-11-26<br>10:44:22.628 | Female |
| 72 | 74        | Lolita    | Darci    | 1986-01-08<br>02:34:04.596 | Female |
|    |           |           |          |                            |        |

|     | PatientID | FirstName  | LastName  | DateOfBirth                | Gender |    |
|-----|-----------|------------|-----------|----------------------------|--------|----|
| 164 | 165       | Fadel      | Bernardt  | 1986-05-29<br>00:35:58.694 | Male   | BI |
| 238 | 239       | Bentley    | Kippax    | 1986-02-11<br>06:22:40.734 | Male   | ВІ |
| 367 | 368       | Vale       | Olanda    | 1986-04-15<br>00:49:58.690 | Female |    |
| 373 | 374       | Britt      | Dureden   | 1986-11-19<br>23:50:47.955 | Female |    |
| 386 | 387       | Cristabel  | Chatel    | 1986-07-10<br>16:27:30.640 | Male   |    |
| 415 | 416       | Constantia | Group     | 1986-03-26<br>06:37:22.525 | Female |    |
| 452 | 453       | Morgan     | Scrowston | 1986-12-19<br>21:34:24.472 | Female |    |
| 561 | 562       | Dom        | Baglow    | 1986-07-26<br>14:43:49.240 | Male   | ВІ |
| 568 | 569       | Ignazio    | Melling   | 1986-12-25<br>03:40:43.884 | Male   | ВІ |

|   |     | PatientID | FirstName | LastName   | DateOfBirth                | Gender | - 1 |
|---|-----|-----------|-----------|------------|----------------------------|--------|-----|
| • | 595 | 596       | Homenick  | Rings      | 1986-02-24<br>15:08:30.404 | Male   | BI  |
|   | 639 | 640       | Hashim    | Slark      | 1986-10-13<br>10:40:43.596 | Female | ВІ  |
|   | 643 | 644       | Ellie     | Ramsbotham | 1986-05-21<br>16:35:52.711 | Female | ВІ  |
|   | 674 | 675       | Llewellyn | Group      | 1986-11-09<br>17:15:11.196 | Female |     |
|   | 714 | 715       | Niles     | Shaw       | 1986-12-15<br>06:31:44.358 | Male   |     |
|   | 733 | 734       | Yvette    | Inc        | 1986-11-23<br>02:32:12.587 | Female |     |
|   | 777 | 778       | Siouxie   | Group      | 1986-04-28<br>03:25:01.182 | Male   |     |
|   | 852 | 853       | Carly     | Group      | 1986-11-21<br>02:44:49.632 | Female |     |
|   | 868 | 869       | Worth     | Pickering  | 1986-12-22<br>08:21:02.691 | Female |     |

|     | PatientID | FirstName | LastName   | DateOfBirth                | Gender |      |
|-----|-----------|-----------|------------|----------------------------|--------|------|
| 877 | 878       | Arni      | Baldack    | 1986-04-10<br>13:18:15.354 | Male   |      |
| 909 | 910       | Kuvalis   | Coupland   | 1986-05-23<br>19:23:27.752 | Male   | BI   |
| 922 | 923       | Rebbecca  | Rollingson | 1986-09-29                 | Male   | BI ▼ |

```
In [90]:
```

```
##70.Plot a graph to show the distribution of expected mortality.

df = pd.read_excel("HospitalDatabase .xlsx", "ReAdmissionRegistry")

df = df["ExpectedMortality"]

plt.plot(df)
```

#### Out[90]:

[<matplotlib.lines.Line2D at 0x152636aecd0>]

```
0.8 - 0.6 -
```

```
In [91]:
```

```
##56.Count of canceled status.

df = pd.read_excel("HospitalDatabase .xlsx","AmbulatoryVisits")

df1 = df[ (df["VisitStatus"] == 'Canceled')]

rows_count = df1.count()[0]

print('Number of Rows count is:', rows_count)
```

Number of Rows count is: 60

```
In [ ]:
```