A hálózati réteg és az útválasztás

Számítógép-hálózatok

Kajdocsi László A-602, kajdocsi.laszlo@sze.hu

Mik a jellemzői?

- Igénybe veszi az AK réteg szolgáltatásait
- Kiszolgálja a szállítási réteget
- Alapegysége a csomag
- · Csomagok biztonságos eljuttatása a célig
- Bonyolultabb mechanizmus, mint az AK réteg keretátvitele
- Utolsó réteg, amely két végpont közti átvitelt biztosít

A hálózati réteg feladatai

- Útvonalválasztás
- Forgalomirányítás

Összeköttetés nélküli rendszerek

- A csomagok egyenként, és egymás után továbbítódnak
- · Nincs közvetlen kapcsolatépítés (pl. Internet)
- Datagram-alapú hálózat, a csomagok a datagramok
- Különböző útvonalak, különböző útválasztók, nem sorrendben érkeznek a csomagok

Összeköttetés nélküli rendszerek

Összeköttetés alapú rendszerek

- Virtuális áramkör alapú összeköttetés
- Előre egyeztetett optimális útvonal
- A csomagok az egyeztetett útvonalat követik
- Címkekapcsolás (Label Switching)

Összeköttetés alapú rendszerek

Pro és kontra

	Datagram alapú összeköttetés	Virtuálisáramkör alapú összeköttetés
Áramkör felépítés	nem szükséges	megkövetelt
Címzés	minden csomag tartalmazza a teljes forrás- és célcímet	minden csomag egy rövid összeköttetés azonosító címkét tartalmaz
Állapotinformáció	az útválasztó nem tartalmazza	minden útválasztó táblázatában minden összeköttetés erőforrást (helyet) igényel
Útválasztás	minden csomag esetében egyedi	az útvonal a csomagküldés előtt felépül, minden csomag ezt az utat követi
Egy közbülső útválasztó meghibásodásának következménye	csak a meghibásodott útválasztóban lévő csomagok vesznek el	az érintett virtuális áramkör(ök) megszakad(nak), a kapcsolat szétesik [újra kell építeni]
A szolgáltatás minőségének biztosítása	bonyolult	könnyű, amennyiben előzetesen minden útválasztóban elegendő erőforrás foglalható le az összeköttetés számára
Torlódáskezelés	bonyolult	könnyű, amennyiben előzetesen minden útválasztóban elegendő erőforrás foglalható le az összeköttetés számára

Routoló algoritmusok

- Adaptív algoritmusok
 - Dinamikus
 - Topológiával és forgalommal szemben adaptív
- Nem adaptív algoritmusok
 - Statikus
 - Nem függ a topológiától, sem a forgalomtól

Irányítási módok

- 1. Determinisztikus forgalomirányítás
- 2. Elszigetelt adaptív forgalomirányítás
- 3. Elosztott adaptív forgalomirányítás
- 4. Központosított adaptív forgalomirányítás
- 5. Delta forgalomirányítás

Determinisztikus forgalomirányítás

- Nem kell forgalmi táblázat, vagy topológiai ismeret
- A <u>véletlen</u> <u>forgalomirányító</u> eljárásban a továbbítandó csomagot a csomópont egy véletlen folyamat segítségével küldi tovább. A lépések száma korlátozva van. Nincs garantálva a csomagok kézbesítése, de nagyon egyszerű.
- Az <u>elárasztásos forgalomirányító</u> eljárás sem igényel semmi ismeretet a hálózatról. A csomópontok, mikor egy csomagot továbbítanak, a bejövő csomagot minden vonalra kiküldenek, kivéve ahonnan érkezett. A lépések száma itt is korlátozva van.

Elszigetelt adaptív forgalomirányítás

- Egyszerű algoritmus az ún. <u>forró krumpli</u> <u>algoritmus</u>. Lényege, hogy a beérkezett csomagokat abba a kimeneti sorba rakja, amely a legrövidebb. Nem foglalkozik az irányokkal.
- Másik lehetséges algoritmus a fordított tanulás módszere. A hálózatban minden csomópont egy csomagot indít el amely tartalmaz egy számlálót és az elindító azonosítóját. A számláló értéke minden csomóponton történő áthaladáskor növekszik egyel. Ezt elolvasva tudni lehet, hogy a csomagot küldő hány csomópontnyi távolságra van a céltól.

Elosztott adaptív forgalomirányítás

- A legnépszerűbb forgalomirányító eljárás.
- · Az adatforgalom részére a legkisebb késleltetéssel járó útvonalak keresése.
- Minden egyes csomópontban egy táblázatot hozunk létre, amely minden egyes célállomáshoz megadja a legkisebb késleltetésű útvonalat, és a továbbításhoz szükséges idő legjobb becsült értékét.

Központi adaptív forgalomirányítás

- Minden egyes csomópont helyzetjelentést állít össze, és elküldi a hálózat forgalomirányító központjába (Routing Control Center).
- A központ ezek alapján átfogó képet alakít ki a hálózatról, és valamennyi forgalmi áramlat részére meg tudja határozni a legkedvezőbb útvonalat.
- A legjobb utakat a hálózat csomópontjai forgalomirányítási táblák formájában kapják meg.
- Késések alakulhatnak ki!

A legrövidebb útvonal

- •Mit nevezünk legrövidebb útnak…?
 - ✓ Ugrások számát?
 - √Földrajzi távolságot?
- ·Gráfelmélet
- •Súlyfüggvények:
 - ✓Távolság
 - ✓Sávszélesség
 - *∨***Forgalom**
 - **∠**Költség, stb.

A véletlen forgalomirányítás

- A továbbítandó csomagot a csomópont egy véletlen folyamat segítségével kiválasztott másik vonalon küldi tovább.
- A csomagokhoz hozzárendeljük a mozgásuk során bejárt szakaszok számát és töröljük azokat a csomagokat, amelyek lépésszáma eléri egy számlálóban előre meghatározott határértéket.

Elárasztásos forgalomirányítás

- A csomópontok, mikor egy csomagot továbbítanak, a bejövő csomagot minden vonalra kiküldenek, kivéve ahonnan érkezett.
- A csomag legalább egy példányban mindenképp a legrövidebb úton ér célba.
- A módszer jelentősen terheli a rendszert, azonban rendkívül megbízható, és még megsérült rendszer esetén is működőképes.

Távolságvektoros útválasztás

- A távolságvektor alapú útválasztás (Distance Vector Routing) esetében minden útválasztónak egy olyan táblázatot kell karbantartania, amelyben minden célhoz szerepel az aktuálisan legrövidebb távolság, illetve az oda vezető vonal azonosítója.
- A táblázat frissítése a szomszédos útválasztók kommunikációjával történik.

Kapcsolatállapot alapú útválasztás

5 lépés:

- Felkutatni a szomszédos útválasztókat és velük hálózati címeket cserélni.
- Meghatározni az adatok késleltetése alapján a távolság és/vagy költség értéket.
- Az eddig megszerzett információk rendszerbe, táblázatba foglalása.
- A táblázat publikálása az összes többi útvonalválasztó részére.
- A táblázatok alapján le lehet futtatni a legrövidebb útvonal esetében használt algoritmust. Így az összes útválasztó szempontjából elkészülnek a legrövidebb útvonalak.

Hierarchikus útválasztás

- A hálózatokat tartományokra (Region) kell osztani.
- Az egyes útválasztók csak a tartományon belüli csomagok forgalomirányítását végzik.
- Fel kell ismerni, ha egy csomag címzettje a tartományon kívül található.
- Csökkenti egy útválasztón belüli bejegyzések számát, optimális címzési rendszer (IP).

Internet Protokol

Folyt. köv...

THE END

Köszönöm a figyelmet!