ML Orchestration

Robert Clements

MSDS Program

University of San Francisco

What to Expect

Goal: to learn about creating reproducible and scalable ML workflows.

 How: we will study ML workflows and practice ML Orchestration with Metaflow and GCP and Kubernetes.

ML Workflows

ML Workflows

Why do we need ML workflow orchestration?

ML systems are very complex with many interconnected complex parts:

- Variety of models
- Variety of decisions
- Volume, variety, velocity

pua

- ML systems evolve
- Resource-heavy

ML Workflows

Versioning: save versions of every run of the flow

Metadata: save the metadata of every run of the flow

Artifacts: save artifacts of every run of the flow

Compute: scale vertically and horizontally

Orchestration: run steps in order, parallel

Deployment: schedule/trigger the flow to run

- Metaflow began at Netflix in 2017 by Ville Tuulos
- Book Effective Data Science Infrastructure
- Open-sourced soon thereafter
- DAG-based tool for creating scalable workflows, but focused on ML
- Runs on
 - Local machine low-maintenance
 - AWS Batch low-maintenance prototyping stack
 - AWS Batch + Step Functions low-maintenance full stack
 - AWS/GCP/Azure K8s customizable full stack
- Popular alternatives:
 - Airflow
 - Flyte
 - Kubeflow

Why Metaflow?

- Designed for ML and for Data Scientists to use
- Easy to scale vertically and horizontally
- Reproducible and shareable workflows
- Covers the full stack:
 - Data
 - Compute
 - Orchestration
 - Versioning
 - Deployment
 - Modeling

ML Workflows – Valid DAGs

ML Workflows - Invalid DAGs

ML Workflows – Fixing Invalid DAGs

ML Workflows – Fixing Invalid DAGs

Static and Dynamic DAGs

State Persistence

Two Important Flows

ML Pipeline Tools

- Metaflow
- Prefect
- Airflow
- Dagster
- ZenML
- Mage
- Kubeflow
- So many others...

How do you define the flow?

Where and how do you run the flow?

```
from metaflow import FlowSpec, step
class HelloWorldFlow(FlowSpec):
     @step
    def start(self): # start of flow
          self.next(self.one)
```



```
from metaflow import FlowSpec, step
class HelloWorldFlow(FlowSpec):
     @step
    def start(self): # start of flow
         self.next(self.one)
    @step
    def one(self):
         self.next(self.two, self.three) # branching
```



```
from metaflow import FlowSpec, step
class HelloWorldFlow(FlowSpec):
     @step
    def start(self): # start of flow
          self.next(self.one)
    @step
    def one(self):
         self.next(self.two, self.three) # branching
    @step
    def two(self):
         self.next(self.four)
    @step
    def three(self):
         self.next(self.four)
```



```
from metaflow import FlowSpec, step
class HelloWorldFlow(FlowSpec):
     @step
    def start(self): # start of flow
          self.next(self.one)
    @step
    def one(self):
          self.next(self.two, self.three) # branching
    @step
    def two(self):
         self.next(self.four)
    @step
    def three(self):
         self.next(self.four)
    @step
    def four(self, inputs): # join step
          self.next(self.end)
```



```
from metaflow import FlowSpec, step
class HelloWorldFlow(FlowSpec):
     @step
    def start(self): # start of flow
          self.next(self.one)
    @step
    def one(self):
         self.next(self.two, self.three) # branching
    @step
    def two(self):
         self.next(self.four)
    @step
    def three(self):
         self.next(self.four)
    @step
    def four(self, inputs): # join step
         self.next(self.end)
    @step
    def end(self): # end of flow
```


ML Workflows in Metaflow (dynamic)

```
from metaflow import FlowSpec, step
class HelloWorldFlow(FlowSpec):
     @step
    def start(self): # start of flow
          self.next(self.one)
    @step
    def one(self):
          iters = [list of things to iterate over]
          self.next(self.two, foreach='iters') # branching
    @step
    def two(self):
          # do something with self.input
          self.next(self.three)
    @step
    def three(self, inputs): # join step
          self.next(self.end)
     @step
    def end(self): # end of flow
```


Scaling Vertically and Horizontally

Scaling Vertically Using @resources

```
@resources(memory=60000, cpu=1)
@step
def start(self):
     import numpy
     import time
     big_matrix =
numpy.random.ranf((80000, 80000))
     t = time.time()
     self.sum = numpy.sum(big_matrix)
     self.took = time.time() - t
     self.next(self.end)
```

- Set memory, cpu, gpu, or shared_memory
- Does *not* inherently scale up, must be paired with a scalable compute layer, e.g. AWS Batch or K8s

Scaling Horizontally Using @kubernetes

```
$ python BigSum.py run --with kubernetes
```

```
@kubernetes(memory=60000, cpu=1)
@step
def start(self):
     import numpy
     import time
     big_matrix =
numpy.random.ranf((80000, 80000))
     t = time.time()
     self.sum = numpy.sum(big_matrix)
     self.took = time.time() - t
     self.next(self.end)
```

 Running on command line forces all steps to run in K8s

OR

- Replace @resources with @kubernetes (or @batch if using AWS) to run specific steps on specific compute layers
- Note: @kubernetes has additional arguments available

Being Careful When Using @kubernetes

```
$ python BigSum.py run --with kubernetes --max-num-splits 100
```

- To avoid using too many resources with parallel jobs, use either
 - --max-num-splits N
 - --max-workers N

Retry Steps Using @retry

```
$ python BigSum.py run --with retry
```

```
@retry
@step
def start(self):
     import numpy
     import time
     big_matrix =
numpy.random.ranf((80000, 80000))
     t = time.time()
     self.sum = numpy.sum(big_matrix)
     self.took = time.time() - t
     self.next(self.end)
```

- For transient platform issues, use @retry
- Recommended when using remote compute layer
- To avoid retries for specific steps, use @retry(times=0)
- Can set number of retries and minutes_between_retries

Catch Exceptions Using @catch

```
@step
def start(self):
     self.params = range(3)
     self.next(self.compute, foreach='params')
@catch(var='compute failed')
@step
def compute(self):
     self.div = self.input
     self.x = 5 / self.div
     self.next(self.join)
@step
def join(self, inputs):
     for input in inputs:
          if input.compute failed:
               print('compute failed for
parameter: %d' % input.div)
     self.next(self.end)
```

- Use @catch to catch exceptions that are not transient compute layer issues
- Code has to be rewritten to know how to handle exceptions
- var is optional

Timeout Using @timeout

```
@timeout(seconds=5)
@step
def start(self):
     import numpy
     import time
     big_matrix =
numpy.random.ranf((80000, 80000))
     t = time.time()
     self.sum = numpy.sum(big_matrix)
     self.took = time.time() - t
     self.next(self.end)
```

 Use the @timeout decorator to avoid stuck code

Accessing Data in Metaflow

Metaflow has the metaflow.S3 module for accessing S3 data, but when it comes to data, just follow best practices:

- Tip: keep data *loading* and data *transformations* separate
- Whenever possible, use Metaflow artifacts
 - Anything assigned to self will be persisted to subsequent steps
- Try to avoid importing local files
- Use larger instances for larger datasets
- Use parquet + Apache Arrow or numpy (not pandas) when possible

Manage Dependencies with @conda

```
python LinearFlow.py --environment=conda run
```

Step-level

```
@conda(libraries={"pandas": "0.22.0"})
def fit_model(self):
...
```

Create conda environments for each step

Flow-level

```
@conda_base(libraries={'numpy':'1.15.4'}, python='3.6.5')
class LinearFlow(FlowSpec):
...
```

- Create conda environment for entire flow
- Can be combined with step-level environments

Metaflow ML Flows Demo

Metaflow ML Flows Lab

Metaflow in Production

- Use @resources and @kubernetes to scale
- Use @conda or @conda_base for packaging up the environment
- Use @timeout, @retry, and @catch to deal with problems
- You will need to:
 - Create a project in Google cloud
 - Install Gcloud CLI
 - Install Terraform
 - Install kubectl
 - Install Kubernetes, google-cloud-storage, google-auth python libraries
 - Patience and luck

Scheduling Jobs with Argo Workflows

python LinearFlow.py --environment=conda --with retry argo-workflows create Workflows / argo / classifiertrainflow-s82r4 WORKFLOW DETAILS ⊀ SHARE ☑ WORKFLOW LINK OPEN WORKFLOW TEMPLATE **+** RESUBMIT Q PREVIOUS RUNS

Scheduling Jobs with Argo Workflows

- Use @schedule decorator to schedule hourly, daily, weekly, or using a cron schedule
- Rename the flow (e.g. HelloWorldFlowStage) to deploy and test staging version before deploying production version

```
from metaflow import FlowSpec, step, schedule

@schedule(hourly=True)
class HelloWorldFlow(FlowSpec):
    @step
    def start(self): # start of flow
    ...
```

More Things to Cover on Your Own — Read the Docs

Inspecting Flows with the Client API

Debugging Flows and the resume command

Visualizing Results with Cards

Organizing Flows with namespaces and tags

Metaflow Scaling and Production Demo