Reproducibility and OpenAlea

Jérôme Chopard, Christophe Pradal Grenoble, 2016 December 6th

OpenAlea community

- Many ways to convince peoples to share some tools:
 - Your tool is the best on the market ©
 - Users are captive:
 - hardware (e.g. IPhone)
 - Software (e.g. L-systems)
- General rule: everybody feels like there is a gain in sharing but nobody is willing to embrace someone else techno.
- Who's going to use it?

Plant modeling community

Biological objects

Mesure

Modeling

Simulation

Challenge – Software reuse

« Traditional » solution

« Application » centric

- + Code Reuse by modularity
 Object oriented technics
- « self-centric »: data, types,API

Low interoperability between applications

Modelling strategy

- 1. Construct the best model (efficient & simple) for each new situation
 - question
 - model
- 2. A general unified model
- 3. Defining common phenomenon, concepts and methods:
 - Common to different situations
 - Extensible

OpenAlea Goals

- OpenAlea (started in 2000)
 - A platform for plant modeling at different scales.
 - An initiative to share knowledge within FSPM community
- Sharing knowledge
 - Reuse software & tools
 - Share development between various teams
 - Share databases & training effort
- Common software platform
 - Integration of existing models & tools
 - Rapid development of new models
 - Enhance accessibility (GUI)
 - Quality rules

What is Free Software?

Christophe Pradal

- 1) The freedom to run the program, for any purpose.
- The freedom to study how the program works, and adapt it to your needs.
- 3) The freedom to redistribute copies so you can help your neighbor.
- 4) The freedom to improve the program, and release your improvements to the public, so that the whole community benefits.

Design Principles

- Language centric
 - Common modeling language
 - Glue language
- Component architecture
 - Dynamic composition
 - High-level dataflow approach
- Visual programming
 - Graphical model representation
 - Automatic GUI generation
- Shared deployment tools
 - Build, packaging, distribution, installation, upgrade
- Multi-platform (Linux, Windows)

Language centric

High level language as a scripting environment

Interactive

Dynamic

Platform independent

Component framework

OpenAlea workflows

- Presentation (demo) of OpenAlea tools: VisuAlea
 - Search for a node
 - Construct a workflow
 - Use of composite nodes
 - Create a node
 - Add a comment in workflow

Adel Maize + Caribu

Reuse factors

• Importance of shared data structures (numpy array, L-string, MTG, tissue, 3D images, gene sequence, ...)

Scientific Computational Experiment

Reproducibility – How to?

- OpenAlea is primarily defined for reuse. But before reusing components you must guaranty redo and reproduce.
- How do you guaranty that using your component will be reproducible?

Technology

- Workflow github
- Organization OpenAlea

Technology

- Workflow github
- Organization OpenAlea
- Local fork or clone of a given project
- Local workflow git
- Merge requests

Openalea Project repository

Technology - Code quality

• API

- Documentation
- Test
 - Unit tests (aka reproducibility of functions)
 - Functional tests (aka reproducibility of components)
 - Tutorials, examples (aka reproducibility of full experiments/models)

Horanov, Help's Contacts. @ Logic with Global

Keep technical debt under control

Landscape is an early warning system for your Python codebase

O Sign in with GitHub

Add code quality metrics and trends to your existing deployment practices within minutes of signing up.

Aesthetics

Test and Deploy with Confidence

Easily sync your GitHub projects with Travis CI and you'll be testing your code in minutes!

Technology

- Distribution, Installation
 - PyPI
 - Conda
 - github
- How to discover the component that will help you achieve your goal?

Demos

Demo redo

InfraPhenoGrid: A scientific workflow infrastructure for Plant Phenomics on the Grid

Christophe Pradal^{a,b}, Simon Artzet^c, Jerome Chopard^d, Dimitri Dupuis^e, Christian Fournier^{c,b}, Michael Mielewczik^{c,f}, Vincent Negre^c, Pascal Neveu^d, Didier Parigot^e, Patrick Valduriez^e, Sarah Cohen-Boulakia^{b,e,g}

^aCIRAD, UMR AGAP, Montpellier, France

^bInria, VirtualPlants, Montpellier, France

^cINRA, UMR459, LEPSE, F-34060 Montpellier, France

^dINRA, UMR729, MISTEA, F-34060 Montpellier, France

^eInria, Zenith, Montpellier, France

^fICCH, NHLI, Imperial College London, UK

^gLaboratoire de Recherche en Informatique, Université Paris-Sud, CNRS UMR 8623,

Université Paris-Saclay, Orsay, France

Abstract

Plant phenotyping consists in the observation of physical and biochemical

Demo redo

- Install package infraphenogrid:
 - Git clone and python setup.py install
 - Pip install
 - Conda install
- Launch OpenAlea workflow environment
- Replay infraphenogrid/demo/binarization/demo_binarization_hsv

Demo reuse: Physio GWAS

- Crop plant breeding
- Finding the right trait
- Phenome, Pheno-Arch
- NGS
- Physiology modeling

Physio GWAS

- Crop plant breeding
- Finding the right trait
- Phenome, Pheno-Arch
- NGS
- Physiology modeling

Physio GWAS

- Crop plant breeding
- Finding the right trait
- Phenome, Pheno-Arch
- NGS
- Physiology modeling

Physio GWAS

- Crop plant breeding
- Finding the right trait
- Phenome, Pheno-Arch
- NGS
- Physiology modeling

In [5]:

Demo reuse: disease model

Annals of Botany Page 1 of 18 doi:10.1093/aob/mcu101, available online at www.aob.oxfordjournals.org

PART OF A SPECIAL ISSUE ON FUNCTIONAL-STRUCTURAL PLANT MODELLING

A modelling framework to simulate foliar fungal epidemics using functional-structural plant models

Guillaume Garin^{1,2,*}, Christian Fournier³, Bruno Andrieu², Vianney Houlès¹, Corinne Robert² and Christophe Pradal^{4,5}

¹ITK, avenue de l'Europe, F-34830 Clapiers, France, ²INRA, UMR 1091 EGC, F-78850 Thiverval-Grignon, France, ³INRA, UMR 759 LEPSE, F-34060 Montpellier, France, ⁴CIRAD, UMR AGAP and INRIA, Virtual Plants, F-34398 Montpellier, France and ⁵Institut de Biologie Computationnelle, F-34095 Montpellier, France *For correspondence. E-mail guillaume.garin@itkweb.com

Received: 29 November 2013 Returned for revision: 17 March 2014 Accepted: 28 April 2014

• Background and Aims Sustainable agriculture requires the identification of new, environmentally responsible strategies of crop protection. Modelling of pathosystems can allow a better understanding of the major interactions

Demo reuse: disease model

Garin et al. — Modelling framework to simulate foliar fungal epidemics

Demo reuse: disease model 'weather file' start date end date Weather o o o o o o date_range Weather check Initiation initialize_mtg fungus distribute_dispersal... every_hours every_rain every_degreedays iter with delays iter with delays iter with delays Simulation loop plant_simulator microclimate pathogen_simulator dispersal_model 0000 disperse display_outputs

Demo reuse: disease model

Conclusion on OpenAlea workflow system

- Easy install on personal computers by end users
- Everybody can create nodes and workflows easily
- Nested workflows aka Composite nodes
- Mix analysis workflows with simulation workflows (e.g. loops)

End