TCHNCALY Speakin

Article No.: TC Tip 06-07 Author: Ed Lee Total Pages: 2

Myth Busters

Part 2 in a four-part series on torque converter modifications

By Ed Lee

Last month we reviewed the results of chassis dyno testing done by Sean Boyle's students in the automatic transmission class at Southern Illinois University. Four modified torque converters were evaluated. The testing was done on a MD-250 Mustang Chassis Dyno, and the test vehicle was a stock 2000 Dodge Durango RT equipped with a 5.9L gas engine and a 46RE transmission.

The converter replacement was the only change made to the vehicle, and only one modification was done to the converter for each test. In Part I of this series, converter A had a modified stator - .250" had been machined from the impeller side of the stator, and this modification lowered the stall of the converter. The test vehicle responded favorably to this modification, which would have helped the vehicle's towing capabilities and probably

Figure 1: OEM (above), and modified B converter (below).

we look at conh ow verter В tested. Converter B also had a modified stator. The difference is that in this converter, .175" was machined from the turbine side of the stator. (Figure

enhanced

fuel econo-

This month

my.

Original vs. "B" Converter DEM - Torque (ft-lbs) OEM - Horsepower (HP) B - Torque (ft-lbs) B - Horsepower (HP) Converter Temperature at End of Test OEM = 198%

Figure 2

1 shows the modified stator below an OEM stator.) This particular modification is popular on performance converters to increase stall. Since no brake stall test or timed acceleration test was performed for these evaluations, there was no measurable increase in stall. When you compare the graphs of the OEM converter vs. modified converter B in the overlay in Figure 2, you can see that the horsepower and torque readings for both converters start at about 2300 rpms. You can also see that the horsepower and torque readings of the modified converter B remained below the readings of the OEM converter throughout the run. When you do line-by-line comparisons of the OEM vs. the modified B converter at specific rpms, you see dramatic differences (see Figure 3).

The biggest difference occurs at 3000 rpms. The OEM converter was outperforming the modified converter by 16 HP and 10 ft/lbs of torque at that rpm break. The difference in performance remained at least 9-10 HP better for the OEM converter throughout the runs.

This is where the trade-offs mentioned in Part I come into play. The wide-open throttle horsepower tests are great for evaluating the horsepower and torque that is being delivered to the ground. However, they do not show the acceleration values of the vehicle. By machining the turbine side of the stator, you are increasing the

Autometic Drive • P. O. Box 440 Bellows Faits, VT 05101-0440 USA 800-843-2600 • 802-463-9722 • fax: 802-463-4059 етий ілеоФестановт « инижестановт

\$2006 Sonnex Industries, Inc.

continued on page 2

TECHNICALLYSpeaking

2000 Dodge Durango R/T

Modified "B"			OEM		
Speed (RPM)	Torque (Ft-Lbs)	HP (HP)	Speed (RPM)	Torque (Ft-Lbs)	HP (HP)
2000	0.00	0.00	2000	0.00	0.00
2100	0.00	0.00	2100	0.00	0.00
2200	0.00	0.00	2200	0.00	0.00
2300	43.51	21.19	2300	44.36	22.00
2400	130.54	63.56	2400	133.08	66.00
2500	217.57	105.94	2500	221.80	109.99
2600 2700	221.10 224.63	110.90 115.86	2600	227.57	115.51
2800	224.63	121.61	2700 2800	233.35	121.03 127.98
2900	232.34	128.16	2900	239.57 246.25	136.37
3000	236.29	134.71	3000	252.92	130.37
3100	240.70	142.14	3100	254.83	150.54
3200	245.12	149.56	3200	256.74	156.32
3300	248.76	156.56	3300	259.06	162.64
3400	251.64	163.14	3400	261.77	169.52
3500	254.52	169.72	3500	264.49	176.39
3600	255.61	175.37	3600	265.42	182.01
3700	256.70	181.02	3700	266.35	187.64
3800	256.31	185.56	3800	266.43	192.71
3900	254.42	188.97	3900	265.66	197.23
4000	252.54	192.38	4000	264.89	201.76
4100	250.12	195.21	4100	261.00	203.70
4200	247.70	198.05	4200	257.11	205.65
4300	243.78	199.49	4300	252.35	206.78
4400 4500	238.37 232.95	199.54 199.59	4400	246.74	207.10
4600	225.40	197.33	4500 4600	241.13 234.83	207.42 206.09
4700	217.85	195.08	4700	228.53	204.76
4800	211.62	192.84	4800	221.93	202.65
4900	206.71	190.60	4900	215.02	199.75
5000	201.80	188.36	5000	208.11	196.86
5100	121.08	113.02	5100	124.87	118.12
5200	40.36	37.67	5200	41.62	39.37
5300	0.00	0.00	5300	0.00	0.00
5400	0.00	0.00	5400	0.00	0.00
5500	0.00	0.00	5500	0.00	0.00
5600	0.00	0.00	5600	0.00	0.00
5700 5800	0.00 0.00	0.00 0.00	5700	0.00	0.00
5900	0.00	0.00	5800	0.00	0.00
6000	0.00	0.00	5900 6000	0.00 0.00	0.00 0.00
6100	0.00	0.00	6100	0.00	0.00
6200	0.00	0.00	6200	0.00	0.00
6300	0.00	0.00	6300	0.00	0.00
6400	0.00	0.00	6400	0.00	0.00
6500	0.00	0.00	6500	0.00	0.00
6600	0.00	0.00	6600	0.00	0.00
6700	0.00	0.00	6700	0.00	0.00
6800	0.00	0.00	6800	0.00	0.00
6900	0.00	0.00	6900	0.00	0.00
7000	0.00	0.00	7000	0.00	0.00

Figure 3

Converter B	OEM
160°	160°
183°	174°
200°	190°
208°	198°
212°	206°
	160° 183° 200° 208°

Figure 4

distance between the turbine and stator, and this will raise the stall of the converter. This can be very beneficial if the power band level of the engine has been enhanced and the converter stall is increased to meet this level of performance. But as you can see from the graphs and charts, better acceleration

on a stock engine application comes with a price. The inefficiency that helped create the higher stall decreases HP and torque during normal operation.

Inefficiency is also related to an increase in temperature. By the third run, the modified converter was 10° F hotter than the OEM converter. When you consider that the total run time – including the 30-second delays between runs – was less than 2½ minutes, that increase in temperature is significant. Prolonged use of a vehicle with this modification would normally require additional cooling.

Part of the inefficiency of the converter comes from the modification itself. The stator blade of the OEM stator is wider and rounded at the turbine side (see Figure 1). This helps to redirect the flow of oil from the turbine to the impeller. The modified stator has a flat machined surface exposed to the oil exiting the turbine. The oil that strikes this surface will be deflected back toward the turbine, slowing its rotation.

Evaluate all of the advantages as well as the trade-offs when you are considering a modification to a converter. The end result should be the best possible compromise for your application.

Next month: Evaluating another way to increase stall.

Special thanks to Sean Boyle and students Zack Emberton, Ross Rohlman and Luke Davies at Southern Illinois University for their help in compiling this information.

Ed Lee is a Sonnax Technical Specialist who writes on issues of interest to torque converter rebuilders.

Sonnax supports the Torque Converter Rebuilders Association. Learn more about the group at www.tcraonline.com.

©2007 Sonnax Industries Inc.

Article No.: TC Tip_06-07 Author: Ed Lee ©Sonnax Industries Inc. Page 2