

FCC TEST REPORT

for

Shanghai Nine Eagles Electronic Technology Co., Ltd.

Transmitter

Model No.: NE-TXOS219, NE-TXOS223, NE-TXOS225, NE-TXOS226, NE-TXOS227, NE-TXOS228, NE-TXOS203, NE-TXOS205, NE-TXOS207, NE-TXOS209, NE-TXOS211, NE-TXOS208, NE-TXOS206, NE-TXOS218

Prepared for : Shanghai Nine Eagles Electronic Technology Co., Ltd.

Address : Room 1104, Huaxiang Building, No. 80 Moling Road, Shanghai,

200070, China

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road,

Nanshan District, Shenzhen, Guangdong, China

Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number : R011605790I

Date of Test : Sept. 01~ 31, 2016

Date of Report : Oct. 27, 2016

TABLE OF CONTENT

Description

	Page
Test Report	
1. GENERAL INFORMATION	5
1.1. Description of Device (EUT)	5
1.2. Auxiliary Equipment Used during Test	6
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	
2. TEST METHODOLOGY	7
2.1. Summary of Test Results	7
2.2. Description of Test Modes	7
3. CONDUCTED EMISSION TEST	
3.1. Block Diagram of Test Setup	
3.2. Power Line Conducted Emission Measurement Limits (15.207)	
3.3. Configuration of EUT on Measurement	
3.4. Operating Condition of EUT	
3.5. Test Procedure	
3.6. Test equipment	
4.BANDWIDTH	
4.1. Test Limit	
4.2. Test Setup	
4.3. Test Procedure	
3.5. Test Results	
5. MAXIMUM CONDUCTED OUTPUT POWER TEST	
5.1. Test Limit	
5.2. Test Setup	
5.4. Test Equipment	
5.5. Test Results	
6. PEAK POWER SPECTRUAL DENSITY TEST	
6.1. Test Limit	
6.2. Test Setup	
6.3. Test Procedure	
6.4. Test Equipment	
6.5. Test Results	
7 PADIATED EMISSION TEST	/ ₁ 1

Shenzhen Anbotek Compliance Laboratory Limited FCC ID: U45-NETX219 Page 3 of 68 Report No.: R011605790I

	7.1. Test Limit	. 41
	7.2. Test Setup	. 42
	7.3. Test Procedure	. 43
	7.4. Test Equipment	. 43
	7.5. Test Results	. 43
8.	BAND EDGE TEST	. 48
	8.1. Test Limit	. 48
	8.2. Test Setup	
	8.3. Test Procedure	
	8.4. Test Equipment	
	8.5. Test Results	
9.	ANTENNA APPLICATION	. 58
	9.1. Antenna requirement	
	9.2. Result	
1(0. PHOTOGRAPH	. 59
	10.1 Photo of Power Line Conducted Emission Measurement	
	10.2. Photo of Radiation Emission Test	50
A	PPENDIX I (EXTERNAL PHOTOS)	
	PPENDIX II (INTERNAL PHOTOS)	
А	PPENDIA HUNTEKNAL PHOTOS)	n4

TEST REPORT

Applicant : Shanghai Nine Eagles Electronic Technology Co., Ltd.Manufacturer : Shanghai Nine Eagles Electronic Technology Co., Ltd.

EUT : Transmitter

Model No. : NE-TXOS219, NE-TXOS223, NE-TXOS225, NE-TXOS226,

NE-TXOS227, NE-TXOS228, NE-TXOS203, NE-TXOS205, NE-TXOS207, NE-TXOS209, NE-TXOS211, NE-TXOS208,

NE-TXO8206, NE-TXO8218

Serial No. : N.A.
Trade Mark : N.A.

Rating : DC 11.1V, 1A

Measurement Procedure Used:

FCC Part15 Subpart E 2016, Paragraph 15.407

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart E requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test:

Sept. 01~ 31, 2016

	Janon Wen
Prepared by :	
	(Tested Engineer / Baron Wen)
	Amy Ding
Reviewer:	
_	(Project Manager / Amy Ding)
	Jon Aren
Approved & Authorized Signer : _	
_	(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Transmitter

Model Number : NE-TXOS219, NE-TXOS223, NE-TXOS225, NE-TXOS226,

NE-TXOS227, NE-TXOS228, NE-TXOS203, NE-TXOS205, NE-TXOS207, NE-TXOS209, NE-TXOS211, NE-TXOS208,

NE-TXO8206, NE-TXO8218

(Note: All samples are the same except the model number and

colour, so we prepare "NE-TXOS219" for test only.)

Test Power Supply: DC 11.1V, from the battery

Frequency : Types of module Operating Frequency

FHSS 2403-2479MHz

WiFi 5G
(802.11a/n(HT20) 5745-5825MHz

WiFi 5G
(902.11a (HT40) 5755-5795MHz

(802.11n(HT40)

2.4G:0.5dBi

Antenna Spec. : WIFI 5G ANT 0 and ANT 1:5.3dBi, Directional gain:8.31dBi

Modulation : FHSS 2.4G: GFSK

WiFi: OFDM

Applicant : Shanghai Nine Eagles Electronic Technology Co., Ltd.

Address : Room 1104, Huaxiang Building, No. 80 Moling Road, Shanghai,

200070, China

Manufacturer/

Factory

: Shanghai Nine Eagles Electronic Technology Co., Ltd.

Address : Room 1104, Huaxiang Building, No. 80 Moling Road, Shanghai,

200070, China

Date of receipt : Sept. 01, 2016

Date of Test : Sept. 01~ 31, 2016

Remark : This report is for 5G Module only.

1.2. Auxiliary Equipment Used during Test

N/A

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, June 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.1 dB (Horizontal)

Ur = 4.3 dB (Vertical)

Conduction Uncertainty : Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC Part 15, Paragraph 15.247.

2.1. Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result
FCC Part 15, Paragraph 15.207 & 15.407	Conducted Emission	PASS
FCC Part 15, Paragraph 15.407(b)(1)(4)(5)(7)	Undesireable Emission Restricted Band	PASS
FCC Part 15, Paragraph 15.407(a)(1)	26dB Bandwidth	PASS
FCC Part 15, Paragraph 15.407(a)(1)(2)(3)	Maximum Conducted Output Power	PASS
FCC Part 15, Paragraph 15.407(a)(1)(2)(3)	Peak Power Spectrual Density	PASS
FCC Part 15, Paragraph 15.203	Antenna Requirement	PASS

2.2. Description of Test Modes

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Mode	Test channel				
	5745MHz				
IEEE802.11a	5785MHz				
	5825MHz				
	5745MHz				
IEEE802.11n(HT20)	5785MHz				
	5825MHz				
IEEE802.11n(HT40)	5755MHz				
IEEE802.11II(H140)	5815MHz				

3. Conducted Emission Test

3.1. Block Diagram of Test Setup

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits dB(μV)					
MHz	Quasi-peak Level	Average Level				
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*				
0.50 ~ 5.00	56	46				
5.00 ~ 30.00	60	50				

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (Charging and On) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

3.6. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line V-network	Rohde & Schwarz	ENV216	100055	Apr. 16, 2016	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Apr. 16, 2016	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Apr. 16, 2016	1 Year

3.7. Power Line Conducted Emission Measurement Results **PASS.**

The frequency range from 150KHz to 30 MHz is investigated.

The EUT was tested on (Charging and On) Mode is attached in the following pages.

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room Operating Condition: Charging and On

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.:25°C Hum.:50%

SCAN TABLE: "Voltage (150K~30M) FIN"

Short Description: 150K-30M Disturbance Voltages

Frequency dBμV dB dBμV dB Detector Line PE dBμV dB dBμV dB Detector Line PE dBμV dB dBμV dB Detector Line PE dBμV dBμV dBμV dBμV dBμV dBμV dB Detector Line PE dBμV dBμV dBμV dBμV dBμV dBμV dBμV dBμV									
0.244500 34.30 20.1 62 27.6 QP L1 GND 0.474000 24.80 20.1 56 31.6 QP L1 GND 0.969000 24.60 20.2 56 31.4 QP L1 GND 1.283500 24.70 20.2 56 31.3 QP L1 GND						Detector	Line	PE	
	0.244500 0.474000 0.969000 1.283500	34.30 24.80 24.60 24.70	20.1 20.1 20.2 20.2	62 56 56 56	27.6 31.6 31.4 31.3	QP QP QP QP	L1 L1 L1 L1	GND GND GND GND	

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.181500	24.50	20.1	54	29.9	AV	L1	GND
0.240000	21.40	20.1	52	30.7	AV	L1	GND
0.676500	17.50	20.1	46	28.5	AV	L1	GND
1.036000	16.80	20.2	46	29.2	AV	L1	GND
2.147500	14.30	20.3	46	31.7	AV	L1	GND
29.305000	12.40	20.9	50	37.6	AV	L1	GND

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room **Operating Condition:** Charging and On

Test Specification: AC 120V, 60Hz for adapter

Comment: **Neutral Line**

Tem.:25°C Hum.:50%

SCAN TABLE: "Voltage (150K~30M) FIN"
Short Description: 150K-30M Disturbance Voltages Short Description:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.177000 0.244500 0.375000 1.544500 2.219500 29.561500	38.50 32.40 26.00 16.00 16.90 19.60	20.1 20.1 20.1 20.3 20.3 20.9	65 62 58 56 56	26.1 29.5 32.4 40.0 39.1 40.4	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND	
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.177000 0.388500 1.643500 2.206000	24.50 24.40 13.20 12.80	20.1 20.1 20.3 20.3	55 48 46 46	30.1 23.7 32.8 33.2	AV AV AV	N N N	GND GND GND GND	

41.6 AV

40.3 AV

Ν

GND

GND

20.5

20.9

50

50

8.40

9.70

5.153500

29.561500

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room Operating Condition: Charging and On

Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.:25°C Hum.:50%

SCAN TABLE: "Voltage (150K~30M) FIN"

Short Description: 150K-30M Disturbance Voltages

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.159000 0.397500 1.931500 2.377000 29.876500 29.939500	38.10 36.40 25.80 25.10 30.30 26.40	20.1 20.1 20.3 20.3 20.9 20.9	66 58 56 56 60	27.4 21.5 30.2 30.9 29.7 33.6	QP QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND GND
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.366000 0.406500 1.099000 2.440000 5.252500 29.750500	22.80 27.30 21.70 18.30 14.90 15.60	20.1 20.1 20.2 20.3 20.5 20.9	49 48 46 46 50	25.8 20.4 24.3 27.7 35.1 34.4	AV AV AV AV AV	L1 L1 L1 L1 L1	GND GND GND GND GND GND

PΕ

Detector Line

Frequency

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room **Operating Condition:** Charging and On

Test Specification: AC 240V, 60Hz for adapter

Comment: **Neutral Line**

Tem.:25°C Hum.:50%

SCAN TABLE: "Voltage (150K~30M) FIN"
Short Description: 150K-30M Disturbance Voltages

Level Transd Limit Margin

0.150000 37.70 20.1 66 28.3 QP N	GND
0.397500 34.40 20.1 58 23.5 QP N 1.139500 23.30 20.2 56 32.7 QP N 2.228500 18.80 20.3 56 37.2 QP N 29.435500 19.50 20.9 60 40.5 QP N 29.755000 21.40 20.9 60 38.6 QP N	GND GND GND GND GND
Frequency Level Transd Limit Margin Detector Line MHz dBµV dB dBµV dB	PE
0.352500 21.10 20.1 49 27.8 AV N 0.402000 27.90 20.1 48 19.9 AV N 1.139500 17.70 20.2 46 28.3 AV N 2.098000 15.10 20.3 46 30.9 AV N 5.725000 11.80 20.5 50 38.2 AV N 29.368000 10.90 20.9 50 39.1 AV N	GND GND GND GND GND GND

4.Bandwidth

4.1. Test Limit

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

4.2. Test Setup

4.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

26 dB &99%bandwidth

RBW = approximately 1% of the emission bandwidth;

Set the VBW>RBW:

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

6 dB bandwidth

RBW = 100kHz;

Set the video bandwidth $(VBW) \ge 3 RBW$;

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Measure the maximum width of the emission that is 26dB /6dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer.
- 5. Repeat until all the rest channels are investigated.

3.4. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 16, 2016	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 16, 2016	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 16, 2016	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 19, 2016	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 19, 2016	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 16, 2016	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006 W	15I00041SN0 46	Jun 30, 2016	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2016	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2016	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2016	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2016	1 Year
13	TEMP&HUMI PROGRAMMAB LE CHAMBER	Bell Group	BE-THK-1 50M8	SE-0137	Mar 16, 2016	1 Year
14	Spectrum Analysis	Rohde & Schwarz	FSV40	132.1.3008K3 9 -100965	Mar 17, 2016	1 Year
15	Pre-amplifier	Agilent	8449B	3008A00252	Mar 17, 2016	1 Year
16	Horn Antenna	SCHWARZBECK	BBHA917 0	9170-068	Mar 17, 2016	1 Year
17	Power sensor	RadiPower	RPR3006 W	SET85325	Mar 17, 2016	1 Year
18	Power meter	R&S	NRVS	100696	Mar 17, 2016	1 Year

3.5. Test Results

Pass.

Please refer to the following data.

Bandwidth:

ANT 0:

Test Mode: IEEE 802.11a

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5745	16.41	21.56	16.837
Mid	5785	16.41	21.47	16.798
High	5825	16.37	21.50	16.816

ANT 0:

Test Mode: IEEE 802.11n(HT20)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5745	17.60	21.74	17.975
Mid	5785	17.58	21.69	17.923
High	5825	17.60	21.84	17.919

ANT 0:

Test Mode: IEEE 802.11n(HT40)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5755	35.56	40.09	36.361
High	5795	35.86	39.92	36.336

ANT 1:

Test Mode: IEEE 802.11a

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5745	16.40	21.42	16.869
Mid	5785	16.36	21.29	16.802
High	5825	16.37	21.46	16.830

ANT 1:

Test Mode: IEEE 802.11n(HT20)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5745	17.65	21.67	17.898
Mid	5785	17.59	21.65	17.893
High	5825	17.58	21.66	17.935

ANT 1:

Test Mode: IEEE 802.11n(HT40)

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5755	35.54	40.13	36.313
High	5795	35.59	40.05	36.334

ANT 0---26dB & 99% Bandwidth Test Mode: 802.11n(HT40)---5795

ANT 1---26dB & 99% Bandwidth Test Mode: 802.11n(HT40)--5755

ANT 1---26dB & 99% Bandwidth Test Mode: 802.11n(HT40)---5795

5. Maximum Conducted Output Power Test

5.1. Test Limit

- 1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional

gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.2. Test Setup

5.4. Test Equipment

Same as clause 4.4.

5.5. Test Results

Pass.

Please refer to the following data.

ANT 0:

Test Mode: IEEE 802.11a

1050 1110000. IEEE 002.110						
	Channel	Frequency (MHz)	Maximum transmit power (dBm)	Limit (dBm)	Result	
	Low	5745	5.44	27.69	Pass	
	Mid	5785	5.21	27.69	Pass	
	High	5825	5.17	27.69	Pass	

ANT 0:

Test Mode: IEEE 802.11n(HT20)

Channel	Frequency (MHz)	Maximum transmit power (dBm)	Limit (dBm)	Result
Low	5745	5.77	27.69	Pass
Mid	5785	5.50	27.69	Pass
High	5825	5.94	27.69	Pass

ANT 0:

Test Mode: IEEE 802.11n(HT40)

Channel	Frequency (MHz)	Maximum transmit power (dBm)	Limit (dBm)	Result
Low	5755	5.95	27.69	Pass
High	5795	5.87	27.69	Pass

ANT 1:

Test Mode: IEEE 802.11a

100111000111111111111111111111111111111					
Channel	Frequency (MHz)	Maximum transmit power (dBm)	Limit (dBm)	Result	
Low	5745	5.68	27.69	Pass	
Mid	5785	5.39	27.69	Pass	
High	5825	5.74	27.69	Pass	

ANT 1:

Test Mode: IEEE 802.11n(HT20)

Channel	Frequency (MHz)	Maximum transmit power (dBm)	Limit (dBm)	Result
Low	5745	5.78	27.69	Pass
Mid	5785	5.15	27.69	Pass
High	5825	5.56	27.69	Pass

ANT 1:

Test Mode: IEEE 802.11n(HT40)

Channel	Frequency (MHz)	Maximum transmit power (dBm)	Limit (dBm)	Result
Low	5755	5.89	27.69	Pass
High	5795	5.95	27.69	Pass

Channel	Channel Frequency (MHz)	ANT 0 Output Power (dBm)	ANT 1 Output Power (dBm)	Data Rate (Mbps)	MIMO Output Power (dBm)	Limit (dBm)	
802.11n (20M MIMO) Mode							
Low	5745	5.77	5.78	MCS0	8.79	27.69	
Mid	5785	5.50	5.15	MCS0	8.34	27.69	
High	5825	5.94	5.56	MCS0	8.76	27.69	
802.11n (40M MIMO) Mode							
Low	5755	5.95	5.89	MCS0	8.93	27.69	
High	5795	5.87	5.95	MCS0	8.92	27.69	

Remark:

ANT 0 Gain= 5.3dBi ANT 1 Gain= 5.3dBi

 $10* \log[10^{(x/10)} + 10^{(y/10)}] = 8.31 dBi$

6. Peak Power Spectrual Density Test

6.1. Test Limit

- 1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional

gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

6.3. Test Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz).

- 1. The EUT is directly connected to the spectrum analyzer;
- 2. Set RBW $\geq 1/T$;
- 3. Set $VBW \ge 3 RBW$.;
- 3. Set the span to encompass the entire emissions bandwidth (EBW) of the signal;
- 5. Detector=RMS;
- 6. Sweep time= auto couple;
- 7. Trace mode=max. hold;

6.4. Test Equipment

Same as clause 4.4.

6.5. Test Results

Pass.

Please refer to the following data.

Mode	Frequency (MHz)	Power Density (dBm)		MIMO Power	Limit	Danak
		ANT0	ANT1	Density (dBm)	(dBm)	Result
802.11a	5745	-3.229	-3.739	A	27.69	Pass
	5785	-3.662	-3.960	J	27.69	Pass
	5825	-3.736	-4.279		27.69	Pass
802.11n(HT20)	5745	-2.435	-2.927	0.34	27.69	Pass
	5785	-3.721	-3.229	-0.46	27.69	Pass
	5825	-5.178	-5.219	-2.19	27.69	Pass
802.11n(HT40)	5755	-7.808	-8.259	-5.02	27.69	Pass
	5795	-7.451	-7.730	-4.58	27.69	Pass

ANT 0---Test Mode: 802.11n(HT40)---5795

ANT 1---Test Mode: 802.11n(HT20)---5785

ANT 1---Test Mode: 802.11n(HT20)---5825

ANT 1---Test Mode: 802.11n(HT40)---5755

ANT 1---Test Mode: 802.11n(HT40)---5795

7. Radiated Emission Test

7.1. Test Limit

8.1.1. Test Limits (< 30 MHZ)

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meter)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

7.1.2. Test Limits (\geq 30 MHZ)

FIELD STRENGTH FIELD STRENGTH S15.209

of Fundamental: of Harmonics 30 - 88 MHz 40 dBuV/m

@3M

902-928 MHZ 88 - 216 MHz 43.5 2.4-2.4835 GHz 216 - 960 MHz 46

 $94 dB\mu V/m @3m$ $54 dB\mu V/m @3m$ ABOVE 960 MHz 54 dBu V/m

7.1.3. Restriction Band of Operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

7.2. Test Setup

7.2.1. 9k to 30MHz emissions:

7.2.2. 30M to 1G emissions:

7.2.3. 1G to 40G emissions:

7.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turntable shall be rotated 360 degrees to determine the position of max. emission level. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

The test results are listed in Section 8.5.

7.4. Test Equipment

Same as clause 4.4.

7.5. Test Results

The EUT was tested on (WiFi Mode) is attached in the following pages. Only the worst case (x orientation).

Job No.: 011601905I Plarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: DC 11.1V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: WiFi Mode Distance: 3m

Job No.: 011601905I Plarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: DC 11.1V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: WiFi Mode Distance: 3m

The EUT was tested on (IEEE 802.11a, IEEE 802.11n(HT20), IEEE 802.11n(HT40)) modes, only the worst data of (IEEE 802.11n(HT20)) is attached in the following pages.

Test mode: IEEE 802.11n(HT20)

Low Channel(5745MHz)

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Corrected Level	Limits	Det
(MHz)	Polarization	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Mode
11490	Н	47.02	3.63	38.2	32.1	56.75	74	PK
11490	Н	39.95	3.63	38.2	32.1	49.68	54	AV
11490	V	47.90	3.63	38.2	32.1	57.63	74	PK
11490	V	39.78	3.63	38.2	32.1	49.51	54	AV
17235	Н	47.75	5.85	39.8	31.75	61.65	74	PK
17235	Н	36.51	5.85	39.8	31.75	50.41	54	AV
17235	V	44.57	5.85	39.8	31.75	58.47	74	PK
17235	V	36.62	5.85	39.8	31.75	50.52	54	AV
22980	Н		7.97	40.2	40.4	7	74	PK
22980	Н		7.97	40.2	40.4		54	AV
22980	V		7.97	40.2	40.4		74	PK
22980	V		7.97	40.2	40.4		54	AV

Middle Channel(5785MHz)

Wildle Chamici(3703WIIZ)											
Frequency	Antenna	Antenna	Antenna	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Corrected Level	Limits	Det
(MHz)	Polarization	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Mode			
11570	Н	47.56	3.66	38.2	32.1	57.32	74	PK			
11570	Н	39.60	3.66	38.2	32.1	49.36	54	AV			
11570	V	47.86	3.66	38.2	32.1	57.62	74	PK			
11570	V	40.30	3.66	38.2	32.1	50.06	54	AV			
17355	Н	47.86	5.88	39.8	31.75	61.79	74	PK			
17355	Н	37.07	5.88	39.8	31.75	51.00	54	AV			
17355	V	44.94	5.88	39.8	31.75	58.87	74	PK			
17355	V	37.93	5.88	39.8	31.75	51.86	54	AV			
23140	Н		7.95	40.2	40.4		74	PK			
23140	Н		7.95	40.2	40.4		54	AV			
23140	V		7.95	40.2	40.4		74	PK			
23140	V		7.95	40.2	40.4		54	AV			

High Channel(5825MHz)

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Corrected Level	Limits	Det
(MHz)	Polarization	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Mode
11650	Н	47.39	3.68	38.2	32.1	57.17	74	PK
11650	Н	39.69	3.68	38.2	32.1	49.47	54	AV
11650	V	47.88	3.68	38.2	32.1	57.66	74	PK
11650	V	39.60	3.68	38.2	32.1	49.38	54	AV
17475	Н	47.75	5.89	39.8	31.75	61.69	74	PK
17475	Н	37.00	5.89	39.8	31.75	50.94	54	AV
17475	V	45.47	5.89	39.8	31.75	59.41	74	PK
17475	V	36.58	5.89	39.8	31.75	50.52	54	AV
23300	Н		7.98	40.2	40.4		74	PK
23300	Н		7.98	40.2	40.4		54	AV
23300	V		7.98	40.2	40.4	-	74	PK
23300	V		7.98	40.2	40.4		54	AV

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

Note: 2. Remark "---" means that the emissions level is too low to be measured

8. Band Edge Test

8.1. Test Limit

For transmitter operating in the 5.15-5.25GHz band: all emissions outside of the 5.15-5.35GHz outside of the 5.15-5.35GHz band shall not exceed an EIRP of -27dBm/MHz.

For transmitters operating in the 5.25-5.35GHz band: all emissions outside of the 5.15-5.35GHz band shall not exceed an EIRP of -27dBm/MHz. Devices operating in the 5.25-5.35GHz band that generate emissions in the 5.15-5.25GHz band must meet all applicable technical requirements for operation in the 5.15-5.25GHz band (includeing indoor use) or alternatively meet an out-of-band emission EIRP limit of -27dBm/MHz in the 5.15-5.25GHz band.

For transmitters operating in the 5.45-5.725GHz band: all emissions outside of the 5.47-5.725GHz band shall not exceed an EIRP of -27dBm/MHz.

For transmitters operating in the 5.725-5.825GHz band: all emissions within the frequency range from the band edge to 10MHz above or below the band edge shall not exceed an EIRP of -17dBm/MHz; for frequencies 10MHz or greater above or below the band edge, emssions shall not exceed an EIRP of -27dBm/MHz.

8.2. Test Setup

Same as clause 7.2.

8.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turntable shall be rotated 360 degrees to determine the position of max. emission level. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber.

The test results are listed in Section 9.5.

8.4. Test Equipment

Same as clause 4.4.

8.5. Test Results

Please refer to the following pages.

The EUT was tested on (IEEE 802.11a, IEEE 802.11n(HT20), IEEE 802.11n(HT40))modes, only the worst data of (IEEE 802.11n(HT20)) is attached in the following pages.

Job No.: 011601905I Plarization: Horizontal-PEAK

Standard: (RE)FCC PART15 E _3m Power Source: DC 11.1V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: IEEE 802.11n(HT20) Distance: 3m

(5745MHz)

Remark:

Job No.: Plarization: 011601905I **Vertical-PEAK** Standard: DC 11.1V (RE)FCC PART15 E _3m **Power Source:** Test item: **Radiation Test** Temp.(C)/Hum.(%RH): 24.3(C)/55%RH Test Mode: IEEE 802.11n(HT20) **Distance:** 3m

Remark:

Remark:

Job No.: 011601905I Plarization: Vertical-AV

Standard: (RE)FCC PART15 E _3m Power Source: DC 11.1V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: IEEE 802.11n(HT20) Distance: 3m

(5745MHz)

Remark:

Job No.: 011601905I Plarization: Horizontal-PEAK

Standard: (RE)FCC PART15 E _3m Power Source: DC 11.1V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: IEEE 802.11n(HT20) Distance: 3m

(5825MHz)

Remark:

Job No.: 011601905I Plarization: **Vertical-PEAK** Standard: (RE)FCC PART15 E _3m **Power Source: DC 11.1V** Test item: **Radiation Test** Temp.(C)/Hum.(%RH): 24.3(C)/55%RH **IEEE 802.11n(HT20)** Test Mode: **Distance:** 3m(5825MHz) 100 90 80

	No.	Freq.	Reading	Antenna	Amp.	Cable	Result	Limit	Over Limit	Detector	Height	degree
110.	(MHz)	(dBuV/m)	(dB/m)	(dB/m)	(dB/m)	(dBuV/m)	(dBuV/m	(dB)	Detector	(cm)	(deg)	
	1	5850.0000	45.57	6.18	16.8	16.81	51.76	74.00	-22.24	peak		

(MHZ)

Remark:

Job No.: 011601905I Plarization: Horizontal-AV

Standard: (RE)FCC PART15 E _3m Power Source: DC 11.1V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: IEEE 802.11n(HT20) Distance: 3m

(5745MHz)

Remark:

Job No.: 011601905I Plarization: Vertical-AV

Standard: (RE)FCC PART15 E _3m Power Source: DC 11.1V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: IEEE 802.11n(HT20) Distance: 3m

(5825MHz)

Remark:

9. ANTENNA APPLICATION

9.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.407.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of \\$15.211, \\$15.213, \\$15.217, \\$15.219, or \\$15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with \\$15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

9.2. Result

The EUT's antenna used a copper Antenna, which is permanently attached to the PCB with glue, The antenna's gain is 5dBi and meets the requirement.

10. PHOTOGRAPH

10.1 Photo of Power Line Conducted Emission Measurement

10.2. Photo of Radiation Emission Test

APPENDIX I (EXTERNAL PHOTOS)

2. Figure
The EUT-Bottom View

4. Figure The EUT-Back View

6. Figure
The EUT- Left View

APPENDIX II (INTERNAL PHOTOS)

Figure PCB of the EUT-Back View 3 6. Figure PCB of the EUT-Front View

7. Figure PCB of the EUT-Back View

8. Figure PCB of the EUT-Front View

