Réseaux de régulation

Master 1 MABS

source: Claverys and Havarstein 2002

- Compréhension de propriétés du vivant conférées par les modalités d'expression du génome
- Expression
 - ARN codant et non codant
- Relation génotype/phénotype
 - et épigénétique : étude des changements, héritables au cours des divisions cellulaires, qui affectent la fonction des gènomes sans altération de la ségence ADN.
- Phénomènes complexes :
 - différenciation
 - développement
 - vieillissement
 - adaptation
 - effet de l'environnement

RNA World

Nature Reviews | Molecular Cell Biology

- Données d'expression
 - perturbations sur le phénomène d'intérêt
 - ensemble de conditions (>60) capturant un maximum de variations
- Données ChIP et ChIP-seq
 - localisation des sites de fixation des facteurs de transcription
- Facteurs de transcription connus
 - ex: RegulonDB, TransFac, JASPAR
- Prédiction de régions régulatrices
 - co-expression observée puis recherche des promoteurs
- Littérature et annotations

Systèmes d'équations

Réseaux booléens

Réseaux bayésiens

Réseaux bayésiens dynamiques

Réseaux d'influence

- Concentrations/activités des molécules
- · Vitesse de production, dégradation
- Constante de seuil, association, dissociation, coopération

 $\frac{dm}{dt} = K_1 \frac{\theta^n}{\theta^n + g^n} - \gamma lm$

 $\frac{de}{dt} = K_1 m - \gamma_2 e$

 $\frac{\mathrm{dg}}{\mathrm{dt}} = K_3 e - \gamma_3 g$

source : De Jong et Thieffry 2002

Exemple : oscillations circadiennes chez les cyanobactéries

$$dx/dt = pa(C_0s - x) - bx(y + f),$$

$$dy/dt = g(B_0s - y) - k_1yx^{n}/(q^{n} + x^{n}).$$

$$dB/dt = \varepsilon_1\{B_0\lambda/(1 + h_1x^{m}) - \mu B\},$$

$$dC/dt = \varepsilon_1\{C_0\lambda/(1 + h_1x^{m}) - \mu C\}.$$

Synchrone

$$x_{t+1} = \overline{y_t}$$

$$y_{t+1} = \overline{x_t}$$

$(xy)_t$	$(xy)_{t+1}$		
00	11		
[01]	01		
[10]	10		
$\bar{1}\bar{1}$	00		

équations

table des états

Asynchrone

$$X = \overline{y}$$

 $Y = \overline{x}$

source: De Jong et Thieffry 2002

- Niveau d'expression de B dépend de celui de A (influence)
 - P(B/A)
- Le niveau d'expression de C
 - dépend de celui de B
 - est indépendant de celui de A sachant B
- Avantages :
 - capture l'aspect stochastique de la régulation
 - posibilité d'intégrer des régulations connues
 - peu de sur-apprentissage et robustesse
 - quantitatif (niveau d'expression) ou qualitatif (on/off)
- Inconvénient : Pas de cycle donc pas de boucle d'auto-régulation

		mounee		
arrosage	pluie	Т	F	
F	F	0	1	
F	Т	0.8	0.2	
Т	F	0.9	0.1	
Т	Т	0.99	0.01	

- Loi de probabilité jointe :
 - $\bullet P(M,A,P) = P(M/A).P(A/P).P(P)$

- Information temporelle (temps discret)
 - variable indicée par son pas de temps
 - distribution des probabilités d'une variable dépend de l'état de ses prédécesseurs au pas de temps précédent

Static BN Dynamic BN A B C t Etat du régulateur b c t+ d expression

Not allowed!

source: Hecket et al. 2009

- Mesure de similarité entre profils
 - Basée sur la corrélation entre l'activité de 2 éléments

$$\hat{r}^2 = \frac{r}{abs(r)} r^2$$

 seuil pour l'inférence d'un lien entre les éléments

source: Butte et al. 2000

- fit entre observations et modèle
- Optimisation
 - de la structure (2ⁿ-1 connexions pour chaque sommet, BIC)
 - feature selection : considérer uniquement les gènes différentiellement exprimés
 - feature mapping : agréger les ensembles tels que les opérons ou les gènes co-exprimés impliqués dans un même processus biologique
 - des paramètres : fonction de score
 - moindres carrés
 - maximum de vraissemblance
- Contraintes et incorporation de connaissances

- Information ivitation $I(X;Y) = \sum_{i,j} P(x_i, y_j) \log \frac{p(x_i, y_j)}{p(x_i)p(y_j)}$ Context Likelihood Ration (CLR)

- Besoin d'un jeu de données de référence ou bien validation expérimentale des prédictions
 - souvent appel à des données synthétiques
 - RegulonDB pour E. coli ou SGD pour S. cerevisiae
- True Positive, False Positive, True Negative, False Negative links
 - Recall = sensibilité = TP / (TP+FN)
 - Précision = TP / (TP+FP)
 - Spécificité = TN / (TN+FP)
 - ◆ FPR = 1 spécificité
 - FDR = 1 précision

source: Faith et al. 2007

Validation d'un modèle, d'un comportement

observé

Simulation et prédiction

source: Faith et al. 2007

20

Controls

	p-value			Motif	locati	on	
recN	4.4e-09						
yebG	6.4e-10						
lexA	8.3e-10						
uvrA	1e-08		-				
sulA	1.7e-08	-					
dinl	2e-08						
dinP	4.4e-08						
recA	6.5e-08						
(SCALE	1	l 25	Г 50	75	100	125

The known motif is found in 8 out of 13 promoters

Putative novel regulons

C

YnaE

	p-value			Motif	locat	ion	
cspB	3.9e-10						-
cspG	6.3e-09						
b1374_s	1.1e-08						
cspH	3.7e-08						
b1459	2.9e-07	_					
rhsE	6.1e-07						
S	CALE	1	l 25	l 50	75	100	125

A conserved motif is found in 6 out of 8 promoters

source: Faith et al. 2007