Àlgebra

Resums de teoria i enunciats de problemes

Jaume Martí-Farré José Luis Ruiz

Grau en Intel·ligència Artifical

Departament de Matemàtiques Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

Barcelona, 2022

ÍNDEX

1	Nombres complexos		
	1.1	Resum teòric	1
	1.2	Exercicis	5
	1.3	Solucions	8
2	Matrius, determinants i sistemes d'equacions lineals		
	2.1	Resum teòric	11
	2.2	Exercicis	22
	2.3	Solucions	27
3	L'espai real i complex n -dimensional		
	3.1	Resum teòric	31
	3.2	Exercicis	45
	3.3	Solucions	49
4	Transformacions lineals		51
	4.1	Resum teòric	51
	4.2	Exercicis	59
	4.3	Solucions	64

TEMA 1

NOMBRES COMPLEXOS

1.1 Resum teòric

Nombres complexos.

Un nombre complex és un parell ordenat de nombres reals. Notem per $\mathbb C$ el conjunt dels nombres complexos. És a dir, els elements de $\mathbb C$ són del tipus z=(a,b), amb $a,b\in\mathbb R$. Definim les operacions suma i producte com:

- 1) Suma: (a,b)+(c,d)=(a+c,b+d).
- 2) Producte: (a,b)(c,d) = (ac bd, ad + bc).

Propietats dels nombres complexos.

- 1) *Igualtat de nombres complexos*. Dos nombres complexos són iguals si i només si són iguals com a parells ordenats de nombres reals. És a dir, si $z_1 = (a_1, b_1)$ i $z_2 = (a_2, b_2)$ són nombres complexos, aleshores $z_1 = z_2$ si i només si $a_1 = a_2$ i $b_1 = b_2$.
- 2) Elements neutre i invers en el conjunt dels nombres complexos.
 - a) L'element neutre de la suma és (0,0), i l'oposat de (a,b) és -(a,b) = (-a,-b).
 - b) L'element neutre del producte és (1,0), i si $(a,b) \neq (0,0)$, aleshores el seu invers és $(a,b)^{-1} = (a/(a^2+b^2), -b/(a^2+b^2))$.
- 3) Tenim que $\mathbb{R} \subseteq \mathbb{C}$, identificant el nombre real $\lambda \in \mathbb{R}$ amb el nombre complex $(\lambda, 0) \in \mathbb{C}$. A més, tenim:
 - a) Si $\lambda \in \mathbb{R}$ i $z = (a, b) \in \mathbb{C}$, aleshores $\lambda + z = (\lambda, 0) + (a, b) = (\lambda + a, b) \in \mathbb{C}$.
 - b) Si $\lambda \in \mathbb{R}$ i $z = (a, b) \in \mathbb{C}$, aleshores $\lambda z = (\lambda, 0)(a, b) = (\lambda a, \lambda b) \in \mathbb{C}$.
- 4) Fent servir les operacions entre nombres reals i nombres complexos, tenim les igualtats següents:
 - a) Si $z = (a, b) \in \mathbb{C}$, $z \neq 0$, aleshores $(a^2 + b^2)^{-1} \in \mathbb{R}$ i, a més, $z^{-1} = (a, b)^{-1} = (a^2 + b^2)^{-1}(a, -b)$.
 - b) Si $z = (a, b) \in \mathbb{C}$, aleshores podem escriure z = (a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0)(0, 1) = a(1, 0) + b(0, 1).

Part real i part imaginària. La unitat imaginària.

- 1) Si $z = (a, b) \in \mathbb{C}$, aleshores direm que a és la seva part real i que b és la seva part imaginària. Notarem Re(z) = a, Im(z) = b.
- 2) Un nombre complex z és real si i només si Im(z) = 0. Direm que z és *imaginari* (o *imaginari* pur) si i només si Re(z) = 0.
- 3) Definim la *unitat imaginària i* com el nombre complex $i = (0,1) \in \mathbb{C}$.

Propietats de la unitat imaginària.

- 1) La unitat imaginària i satisfà $i^2 = (0,1)(0,1) = (-1,0) = -1$. Per tant, i és una solució de l'equació $x^2 + 1 = 0$; és a dir, i és una arrel quadrada de -1.
- 2) Si $n \ge 0$ és un nombre natural, aleshores: $i^{4n} = 1$, $i^{4n+1} = i$, $i^{4n+2} = -1$, $i^{4n+3} = -i$.

Parell ordenat i forma binòmica d'un nombre complex.

Si $z = (a,b) \in \mathbb{C}$ és un nombre complex, aleshores z = (a,b) = a(1,0) + b(0,1) = a + bi. Direm que (a,b) és l'expressió de z com parell ordenat i direm que a+bi és l'expressió binòmica del nombre complex z.

Operacions en forma binòmica. El conjugat. Propietats del conjugat.

1) La suma i el producte de nombres complexos expressats en forma binòmica es realitza operant formalment els binomis. Observem que:

$$(a+bi)(a-bi) = a^2 + b^2,$$
 $(a+bi)^{-1} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2}$

- 2) Definim el *conjugat* \overline{z} d'un nombre complex z = (a, b) com el complex $\overline{z} = (a, -b)$. És a dir, si z = a + bi, aleshores $\overline{z} = a bi$.
- 3) El conjugat satisfà les propietats següents:
 - a) $Re(\overline{z}) = Re(z)$.
 - b) $\operatorname{Im}(\overline{z}) = -\operatorname{Im}(z)$.
 - c) Un nombre complex z és real si i només si $z = \overline{z}$.
 - d) Un nombre complex z és imaginari si i només si $z = -\overline{z}$.
 - e) $z + \overline{z} = 2 \operatorname{Re}(z)$. $z \overline{z} = 2i \operatorname{Im}(z)$. $z\overline{z} = \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2$.
 - f) Si z = (a, b) és un nombre complex no nul, aleshores $z^{-1} = \overline{z}/(z\overline{z}) = \overline{z}/(a^2 + b^2)$.

2

- 4) Conjugació i operacions:
 - a) Suma: $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.

b) Producte: $\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$.

c) Invers: $\overline{z^{-1}} = (\overline{z})^{-1}$.

d) Conjugat: $\overline{\overline{z}} = z$.

Mòdul i argument d'un nombre complex.

Sigui $z = (a, b) \in \mathbb{C}$. Com a punt del pla podem considerar el seu $m \grave{o} dul$ (que és un nombre real més gran o igual que zero) i, en cas que $z \neq 0$, podem considerar el seu argument (que està definit mòdul 2π). És a dir:

$$\begin{cases} a = r \cos \theta \\ b = r \sin \theta \end{cases}$$
 on:
$$\begin{cases} r = \sqrt{a^2 + b^2} \text{ és el mòdul de } z. \text{ Notarem } |z| = r. \\ \theta \text{ és l'argument de } z. \text{ Notarem arg}(z) = \theta. \end{cases}$$

Expressions polar i trigonomètrica d'un nombre complex.

Amb les notacions anteriors, donat $z \in \mathbb{C}$, direm que r_{θ} és l'*expressió polar* i que $r(\cos \theta + i \sin \theta)$ és l'*expressió trigonomètrica*.

Propietats del mòdul i de l'argument. Operacions en forma polar.

1) El mòdul d'un nombre real és el seu valor absolut i el seu argument és 0 (si el nombre real és estrictament positiu) o π (si el nombre real és estrictament negatiu).

2)
$$z\overline{z} = |z|^2$$
, $z^{-1} = \overline{z}/|z|^2$, $z/\overline{z} = 1_{2\arg(z)}$.

3) Mòdul, argument i operacions de nombres complexos.

a) Suma: $|z_1 + z_2| \le |z_1| + |z_2|$.

b) Producte: $|z_1z_2| = |z_1||z_2|$, $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$.

c) Invers: $|z^{-1}| = |z|^{-1}$, $\arg(z^{-1}) = -\arg(z)$.

d) Conjugat: $|\overline{z}| = |z|$, $\arg(\overline{z}) = -\arg(z)$.

4) Operacions de nombres complexos en forma polar.

a) Producte: $(r_1)_{\theta_1} \cdot (r_2)_{\theta_2} = (r_1 r_2)_{\theta_1 + \theta_2}$.

b) Invers: $(r_{\theta})^{-1} = (r^{-1})_{-\theta}$.

c) Conjugat: $\overline{r_{\theta}} = r_{-\theta}$.

d) Potències: $(r_{\theta})^n = (r^n)_{n\theta}$, per a tot $n \in \mathbb{Z}$.

Potències i arrels d'un nombre complex.

1) Fórmula de De Moivre. Si $n \ge 1$ és un nombre natural, aleshores $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$.

3

2) Arrels n-èsimes d'un nombre complex. Un nombre complex no nul té exactament n arrels n-èsimes diferents. Concretament, si $n \ge 1$ és un nombre natural i si $z = r_\theta$ és l'expressió polar del nombre complex no nul z, aleshores $\sqrt[n]{z} = \{(\sqrt[n]{r})_{(\theta+2k\pi)/n} : k = 0, ..., n-1\}$, on $\sqrt[n]{r}$ és l'arrel real positiva n-èsima del nombre real positiu r.

1.2 Exercicis

Expresseu els següents nombres complexos en forma binòmica:

1)
$$(1+i)^2$$

$$5) \ \frac{1}{1+i} + \frac{1}{1-i}$$

8)
$$i^5 + i^{16}$$

2)
$$(2+3i)(3-4i)$$

3)
$$\frac{1}{i}$$

$$6) \ \frac{1+i}{1-2i}$$

9)
$$1+i+i^2+i^3$$

4)
$$\frac{1}{1+i}$$

7)
$$\frac{(1+i)^4}{(1-i)^3} + \frac{(1-i)^4}{(1+i)^3}$$
 10) $\frac{1}{2}(1+i)(1+i^{-8})$

10)
$$\frac{1}{2}(1+i)(1+i^{-8})$$

1.2 Calculeu el mòdul dels següents nombres complexos:

1)
$$1 + i$$

$$3) \ \frac{1+i}{1-i}$$

5)
$$i^7 + i^{10}$$

2)
$$3 + 4i$$

4)
$$1+i+i^2$$

6)
$$2(1-i)+3(2+i)$$

1.3 Calculeu el mòdul i l'argument dels nombres complexos següents:

5)
$$-3 + \sqrt{3}i$$

8)
$$(-1-i)^3$$

2)
$$-3i$$

6)
$$\frac{1+i}{\sqrt{2}}$$

9)
$$\frac{1}{1+i}$$

4) 1

7)
$$(-1+i)^3$$

10)
$$\frac{1}{(1+i)^2}$$

1.4 Calculeu
$$\sum_{k=1}^{2435} i^k$$
.

Demostreu que si $z \in \mathbb{C}$, aleshores:

a)
$$z + \overline{z} = 2 \operatorname{Re}(z)$$
.

b)
$$z - \overline{z} = 2i \operatorname{Im}(z)$$
.

c)
$$z\overline{z} = \text{Re}(z)^2 + \text{Im}(z)^2$$
.

Demostreu les propietats següents:

1) Si $z_1, z_2 \in \mathbb{C}$, aleshores:

a)
$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$
.

b)
$$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$$
.

c)
$$\overline{z_1}z_2 = \overline{z_1}\overline{z_2}$$
.

2) Si $z \in \mathbb{C}$ és no nul, aleshores $\overline{z^{-1}} = (\overline{z})^{-1}$.

1.7 Demostreu les propietats següents:

1) Si $z \in \mathbb{C}$, aleshores $z\overline{z} = |z|^2$.

2) Si $z \in \mathbb{C}$ és no nul, aleshores:

a)
$$z^{-1} = \frac{z}{|z|^2}$$
.

b)
$$\frac{z}{\overline{z}} = 1_{2 \arg(z)}$$
.

1.8 Siguin $z_1, z_2 \in \mathbb{C}$ tals que $z_1 \neq z_2$ i $|z_1| = |z_2|$. Demostreu que:

$$\operatorname{Re}\left(\frac{z_1+z_2}{z_1-z_2}\right)=0.$$

- Sigui z el nombre complex donat per z = (1, -1).
- 1) Expresseu $z, \overline{z}, -z$ i z^{-1} en forma binòmica, polar i trigonomètrica.
- 2) Determineu per a quins nombres naturals n el nombre complex z^n és un nombre real.
- 3) Sigui $z_1 \in \mathbb{C}$ un nombre complex no nul. Sigui $z_2 = z^n z_1$, on n és un nombre natural. Determineu la diferència entre els arguments de z_1 i de z_2 en funció de n.
- **1.10** Calculeu les arrels que s'indiquen:
- 1) Les arrels cúbiques de *i*.
- 3) Les arrels cúbiques de -2 + 2i.
- 2) Les arrels quartes de -1.
- 4) Les arrels sisenes de -8.
- **1.11** Resoleu les equacions següents a \mathbb{C} :

1)
$$z^2 + 4z + 29 = 0$$

3)
$$z^4 + z^2 + 1 = 0$$

1)
$$z^2 + 4z + 29 = 0$$
. 3) $z^4 + z^2 + 1 = 0$. 5) $(z-1)^5 + (z+1)^5 = 0$.

2)
$$z^2 + 2iz + 1 = 0$$
.

4)
$$z^6 - 2z^3 + 2 = 0$$
.

- **1.12** Siguin z un complex no nul i $z' = z \cdot i$. Determineu la diferència arg(z) arg(z').
- 1.13 Determineu els nombres complexos que coincideixen amb la cinquena potència del seu conjugat.
- 1.14 Trobeu els nombres complexos no nuls tals que el seu cub és igual al quadrat del seu conjugat.
- **1.15** Sigui $z \in \mathbb{C}$. Suposem que existeix una arrel quarta w de z tal que (1+i)w és un nombre real positiu. Determineu l'argument de z.
- **1.16** Siguin z = x + iy i $z_0 = x_0 + iy_0$ nombres complexos, $x, y, x_0, y_0 \in \mathbb{R}$. Demostreu que $|z z_0|$ és la distància a \mathbb{R}^2 del punt (x, y) al punt (x_0, y_0) .
- **1.17** Descriviu geomètricament el conjunt de nombres complexos z que satisfan les equacions:

1)
$$0 < |z| \le 3$$

3)
$$|z+i| \le 3$$
.

5) Re(
$$\overline{z} - i$$
) = 2.

2)
$$|z-i|=1$$
.

4)
$$z(\bar{z} + 2) = 3$$
.

6)
$$Im(z^2) = 4$$
.

1.18 Demostreu les fórmules següents:

1)
$$\sin(3\alpha) = -\sin^3(\alpha) + 3\cos^2(\alpha)\sin(\alpha)$$
.

3)
$$\cos^3(\alpha) = \frac{1}{4}(3\cos(\alpha) + \cos(3\alpha)).$$

2)
$$cos(3\alpha) = cos^3(\alpha) - 3sin^2(\alpha)cos(\alpha)$$
.

4)
$$\sin^3(\alpha) = \frac{1}{4}(3\sin(\alpha) - \sin(3\alpha)).$$

1.19 Simplifiqueu les expressions següents:

1)
$$\left(\frac{\cos(\alpha) + i\sin(\alpha)}{\sin(\alpha) + i\cos(\alpha)}\right)^5$$
.

2)
$$\frac{(\cos(5\alpha) + i\sin(5\alpha))^6(\cos(3\alpha) - i\sin(3\alpha))^7}{(\cos(\alpha) + i\sin(\alpha))^4(\cos(2\alpha) - i\sin(2\alpha))^{-2}}.$$

1.3 Solucions

1.1 La forma binòmica és:

1) 2*i*.

3) -i.

5) 1.

7) 2.

9) 0.

2) 18 + i.

4) 1/2 - (1/2)i.

6) -1/5 + (3/5)i.

8) 1+i.

10) 1+i.

1.2 Els seus mòduls són:

1) $\sqrt{2}$.

2) 5.

3) 1.

4) 1.

5) $\sqrt{2}$.

6) $\sqrt{65}$.

1.3

1) $2i = 2_{\pi/2}$.

5) $-3 + \sqrt{3}i = (2\sqrt{3})_{(5\pi)/6}$.

8) $(-1-i)^3 = (2\sqrt{2})_{-\pi/4}$.

2) $-3i = 3_{-\pi/2}$.

6) $(1+i)/\sqrt{2} = 1_{\pi/4}$.

9) $1/(1+i) = (\sqrt{2}/2)_{-\pi/4}$.

3) $-1 = 1_{\pi}$. 4) $1 = 1_0$.

7) $(-1+i)^3 = (2\sqrt{2})_{\pi/4}$.

10) $1/(1+i)^2 = (1/2)_{-\pi/2}$.

1.4 El resultat de la suma és -1.

1.9

1)
$$z = (1, -1) = 1 - i = (\sqrt{2})_{7\pi/4} = \sqrt{2}(\cos(7\pi/4) + i\sin(7\pi/4)).$$

 $\overline{z} = (1, 1) = 1 + i = (\sqrt{2})_{\pi/4} = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4)).$
 $-z = (-1, 1) = -1 + i = (\sqrt{2})_{3\pi/4} = \sqrt{2}(\cos(3\pi/4) + i\sin(3\pi/4)).$
 $z^{-1} = (1/2, 1/2) = 1/2 + i/2 = (1/\sqrt{2})_{\pi/4} = (1/\sqrt{2})(\cos(\pi/4) + i\sin(\pi/4)).$

- 2) Per a *n* múltiple de 4.
- 3) La diferència dels arguments és $7\pi n/4$.

1.10

1)
$$(\sqrt{3}+i)/2, (-\sqrt{3}+i)/2, -i$$
.

2)
$$(1+i)/\sqrt{2}$$
, $(-1+i)/\sqrt{2}$, $(-1-i)/\sqrt{2}$, $(1-i)/\sqrt{2}$.

3)
$$1+i$$
, $(-\sqrt{3}-1)/2+(\sqrt{3}-1)i/2$, $(\sqrt{3}-1)/2-(\sqrt{3}+1)i/2$.

4)
$$(\sqrt{6} + \sqrt{2}i)/2$$
, $(-\sqrt{6} + \sqrt{2}i)/2$, $(-\sqrt{6} - \sqrt{2}i)/2$, $-\sqrt{2}i$, $(\sqrt{6} - \sqrt{2}i)/2$.

1.11

- 1) $-2 \pm 5i$.
- 2) $(\pm \sqrt{2} 1)i$.
- 3) Arrels quadrades de $-1/2 + \sqrt{3}/2i = 1_{\pi/3}$ i de $-1/2 \sqrt{3}/2i = 1_{2\pi/3}$, que són: $1_{\pi/6}$, $1_{7\pi/6}$ i $1_{\pi/3}$, $1_{4\pi/3}$, respectivament.
- 4) Arrels cúbiques de $1 \pm i$, que són: $\sqrt[6]{2}_{\pi/12+2k\pi/3}$, $\sqrt[6]{2}_{7\pi/12+2k\pi/3}$, amb k = 0, 1, 2.
- 5) 0 i les arrels quadrades de $\pm 2\sqrt{5} 5$, que són: $r_{\pi/2}$, $r_{3\pi/2}$, $s_{\pi/2}$ i $s_{3\pi/2}$, on $r = 5 2\sqrt{5}$ i $s = 5 + 2\sqrt{5}$.

- **1.12** La diferència dels arguments és $\pi/2$.
- **1.13** z = 0 i $z = 1_{k\pi/3}$, on $k \in \{0, 1, 2, 3, 4, 5\}$. Consulteu el document d'exàmens resolts per a veure la solució completa.
- **1.14** Són les arrels cinquenes de la unitat.
- **1.15** L'argument és π .

1.17

- 1) Cercle de centre l'origen i radi 3, excepte l'origen.
- 2) Circumferència de centre (0,1) i radi 1.
- 3) Cercle de centre (0, -1) i radi 3.
- 4) Els punts (1,0) i (-3,0).
- 5) Recta d'equació x = 2.
- 6) Hipèrbola d'equació xy = 2.

1.19

- 1) $cos(\beta) + i sin(\beta)$, on $\beta = 10\alpha 5\pi/2$.
- 2) $\cos(\alpha) + i\sin(\alpha)$.

TEMA 2

MATRIUS, DETERMINANTS I SISTEMES D'EQUACIONS LINEALS

2.1 Resum teòric

Sigui $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$.

2.1.1 Matrius

Files i columnes d'una matriu

1) Una matriu A d'ordre $m \times n$, on $m, n \ge 1$ són enters, amb coeficients en un conjunt X és una taula:

$$A = (a_{i,j})_{i,j} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & & \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,j} & \cdots & a_{m,n} \end{pmatrix}$$

on $a_{i,j} \in X$ per a tot i, j.

- 2) En aquesta situació, diem que la matriu A és una matriu de m files i de n columnes.
 - a) Si A és d'ordre $m \times 1$, aleshores diem que A és una matriu columna de m components.
 - b) Si A és d'ordre $1 \times n$, aleshores diem que A és una matriu fila de n components.
 - c) Si $m \neq n$, diem que A és una matriu rectangular d'ordre $m \times n$.
 - d) Si n = m, diem que A és una matriu quadrada d'ordre n.
- 3) Notacions usuals dels elements, de les columnes i de les files de la matriu A.
 - a) Elements: $A_{(i,j)} = a_{i,j}$ és l'element de la fila i i de la columna j de la matriu A.
 - b) Files:

$$A = \begin{pmatrix} F_1(A) \\ \vdots \\ F_m(A) \end{pmatrix}$$

on $F_i(A) = (a_{i,1}, \dots, a_{i,n})$ és la *i*-èsima fila de A, $i = 1, \dots, m$.

c) Columnes: $A = (C_1(A), ..., C_n(A))$ on:

$$C_j(A) = \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{m,j} \end{pmatrix}$$

és la j-èsima columna de A, j = 1, ..., n.

- 4) Els conjunts $\mathcal{M}_{m,n}(X)$ i $\mathcal{M}_n(X)$.
 - a) El conjunt de les matrius d'ordre $m \times n$ amb coeficients en X el notem per $\mathcal{M}_{m,n}(X)$.
 - b) El conjunt de les matrius quadrades d'ordre n amb coeficients en X el notem per $\mathcal{M}_n(X)$. És a dir, $\mathcal{M}_n(X) = \mathcal{M}_{n,n}(X)$.

Operacions amb matrius

- 1) Suma de matrius. Definim la suma de les matrius $A = (a_{i,j})_{i,j} \in \mathcal{M}_{m,n}(\mathbb{K})$ i $B = (b_{i,j})_{i,j} \in \mathcal{M}_{m,n}(\mathbb{K})$ com la matriu $A+B \in \mathcal{M}_{m,n}(\mathbb{K})$ que en la fila i i columna j té l'element $(A+B)_{(i,j)} = a_{i,j} + b_{i,j}$.
- 2) Producte de matrius. Definim la producte de la matriu $A = (a_{i,l})_{i,l} \in \mathcal{M}_{m,n}(\mathbb{K})$ per la matriu $B = (b_{l,j})_{l,j} \in \mathcal{M}_{n,r}(\mathbb{K})$ com la matriu $AB \in \mathcal{M}_{m,r}(\mathbb{K})$ que en la fila i i columna j té l'element $(AB)_{(i,j)} = \sum_{l=1}^{n} a_{i,l} b_{l,j}$.
- 3) Producte d'una matriu per un element de \mathbb{K} . Definim el producte de la matriu $A = (a_{i,j})_{i,j} \in \mathcal{M}_{m,n}(\mathbb{K})$ per l'element $\lambda \in \mathbb{K}$ com la matriu $\lambda A \in \mathcal{M}_{m,n}(\mathbb{K})$ que en la fila i i columna j té l'element $(\lambda A)_{(i,j)} = \lambda a_{i,j}$.

Files, columnes i operacions de matrius

- 1) Files i columnes de la matriu suma. Si $A, B \in \mathcal{M}_{m,n}(\mathbb{K})$, aleshores les files de la matriu A + B són $F_i(A + B) = F_i(A) + F_i(B)$ i les seves columnes són $C_i(A + B) = C_i(A) + C_i(B)$.
- 2) Producte per una fila i per una columna. Si $A \in \mathcal{M}_{m,n}(\mathbb{K})$, $\mu_1, ..., \mu_m \in \mathbb{K}$ i $\lambda_1, ..., \lambda_n \in \mathbb{K}$, aleshores:

$$(\mu_1, \dots, \mu_m)A = \mu_1 F_1(A) + \dots + \mu_m F_m(A).$$

$$A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \lambda_1 C_1(A) + \dots + \lambda_n C_n(A).$$

- 3) Files i columnes de la matriu producte. Si $A \in \mathcal{M}_{m,n}(\mathbb{K})$ i $B \in \mathcal{M}_{n,r}(\mathbb{K})$, aleshores les files de la matriu producte AB són $F_i(AB) = a_{i,1}F_1(B) + \cdots + a_{i,n}F_n(B)$ i les seves columnes són $C_j(AB) = b_{1,j}C_1(A) + \cdots + b_{n,j}C_n(A)$.
- 4) Files i columnes de la matriu producte per un element de \mathbb{K} . Si $A \in \mathcal{M}_{m,n}(\mathbb{K})$ i $\lambda \in \mathbb{K}$, aleshores les files de λA són $F_i(\lambda A) = \lambda F_i(A)$ i les seves columnes són $C_i(\lambda A) = \lambda C_i(A)$.

Estructura algebraica de les matrius. Matriu identitat. Matrius invertibles.

- 1) La suma de matrius a $\mathcal{M}_{m,n}(\mathbb{K})$ satisfà les propietats següents:
 - a) Associativa: A + (B + C) = (A + B) + C.
 - b) Commutativa: A + B = B + A.
 - c) Existència d'element neutre: A + 0 = A, on 0 és la matriu que té tots els coeficients nuls.
 - d) Existència d'oposats: A + (-A) = 0.
- 2) El producte de matrius és associatiu. Si $A \in \mathcal{M}_{m,n}(\mathbb{K})$, $B \in \mathcal{M}_{n,p}(\mathbb{K})$ i $C \in \mathcal{M}_{p,l}(\mathbb{K})$, aleshores A(BC) = (AB)C.
- 3) El producte de matrius és distributiu respecte de la suma. Si $A \in \mathcal{M}_{m,n}(\mathbb{K})$, $B,C \in \mathcal{M}_{n,p}(\mathbb{K})$, aleshores A(B+C) = AB + AC. Si $A \in \mathcal{M}_{p,l}(\mathbb{K})$, $B,C \in \mathcal{M}_{n,p}(\mathbb{K})$, aleshores (B+C)A = BA + CA.
- 4) A més, a $\mathcal{M}_n(\mathbb{K})$ el producte satisfà les propietats:
 - a) Associativa: A(BC) = (AB)C.
 - b) No és commutatiu: en general, $AB \neq BA$.
 - c) Existència d'element neutre: $A \cdot \text{Id}_n = \text{Id}_n \cdot A = A$, on Id_n és la matriu identidad d'ordre n (veure el punt següent).
 - d) En general, no existeix l'element invers d'una matriu; és a dir, donada una matriu A d'ordre n, no existeix, en general, una matriu B d'ordre n tal que $AB = \operatorname{Id}_n$ (veure el punt següent).
- 5) La matriu identitat i les matrius invertibles.
 - a) L'element neutre de $\mathcal{M}_n(\mathbb{K})$ respecte del producte és la matriu identitat Id_n que en la fila i i columna j té l'element $(\mathrm{Id}_n)_{(i,j)}=0$, si $i\neq j$ i $(\mathrm{Id}_n)_{(i,j)}=1$, si i=j. Per tant, si $A\in\mathcal{M}_n(\mathbb{K})$, aleshores $A\cdot\mathrm{Id}_n=\mathrm{Id}_n\cdot A=A$.
 - b) Les matrius que tenen inversa respecte del producte s'anomenen matrius invertibles. És a dir, una matriu $A \in \mathcal{M}_n(\mathbb{K})$ és invertible si i només si existeix una matriu $B \in \mathcal{M}_n(\mathbb{K})$ tal que $AB = BA = \mathrm{Id}_n$. La matriu B, si existeix, és única. La matriu B s'anomena inversa de A i la notem per A^{-1} .
- 6) Propietats de les matrius invertibles.
 - a) La matriu identitat és invertible i $(Id_n)^{-1} = Id_n$.
 - b) Si $A, B \in \mathcal{M}_n(\mathbb{K})$ satisfan $AB = \mathrm{Id}_n$, aleshores $BA = \mathrm{Id}_n$ i, per tant, les matrius A i B són matrius invertibles i una és la inversa de l'altra.
 - c) Si $A, B \in \mathcal{M}_n(\mathbb{K})$ són matrius invertibles, aleshores AB és una matriu invertible i $(AB)^{-1} = B^{-1}A^{-1}$.
 - d) Si $A \in \mathcal{M}_n(\mathbb{K})$ és una matriu invertible i si $\lambda \in \mathbb{K}$ és no nul, aleshores la matriu λA és invertible i $(\lambda A)^{-1} = \lambda^{-1}A^{-1}$.
 - e) Si $A, B \in \mathcal{M}_n(\mathbb{K})$ són matrius invertibles, aleshores la seva suma A + B no és una matriu invertible, en general.

Transposició de matrius

Sigui $A = (a_{i,j})_{i,j} \in \mathcal{M}_{m,n}(X)$, on X és un conjunt. La transposada de la matriu A és la matriu $A^T \in \mathcal{M}_{n,m}(X)$ que té per elements $(A^T)_{(i,j)} = a_{j,i}$. La transposició de matrius verifica les propietats següents:

- a) $(A^T)^T = A$.
- b) $(A+B)^T = A^T + B^T$, $(AB)^T = B^T A^T$, $(\lambda A)^T = \lambda A^T$.
- c) La matriu A^T és invertible si i només si ho és A. A més, en aquest cas, $(A^T)^{-1} = (A^{-1})^T$.

Diem que una matriu $A \in \mathcal{M}_n(\mathbb{K})$ és simètrica si $A^T = A$ i que és antisimètrica si $A^T = -A$.

Traça d'una matriu

Sigui $A = (a_{i,j})_{i,j} \in \mathcal{M}_n(\mathbb{K})$ una matriu quadrada d'ordre n. Els elements $a_{1,1}, \ldots, a_{n,n}$ s'anomenen els elements de la diagonal principal de la matriu A. Definim la traça $\operatorname{Tr}(A)$ de la matriu A com la suma dels elements de la diagonal principal; és a dir, $\operatorname{Tr}(A) = a_{1,1} + \cdots + a_{n,n}$. La traça d'una matriu verifica les propietats següents:

- a) $Tr(A^T) = Tr(A)$.
- b) $\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B), \operatorname{Tr}(\lambda A) = \lambda \operatorname{Tr}(A).$
- c) Tr(AB) = Tr(BA), però en general $Tr(AB) \neq Tr(A) Tr(B)$.
- d) Existeixen matrius invertibles de traça nul·la.

Tipus de matrius

- 1) Matrius triangulars. Matrius diagonals.
 - a) Matriu triangular superior: $A \in \mathcal{M}_n(\mathbb{K})$ amb $a_{i,j} = 0$ si i > j.
 - b) Matriu triangular inferior: $A \in \mathcal{M}_n(\mathbb{K})$ amb $a_{i,j} = 0$ si i < j.
 - c) Matriu diagonal: $A \in \mathcal{M}_n(\mathbb{K})$ amb $a_{i,j} = 0$ si $i \neq j$.
- 2) Matrius esglaonades per files. Una matriu no nul·la $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ és una matriu esglaonada per files si existeix $1 \le i_0 \le m$ tal que les files $F_1(A), \ldots, F_{i_0}(A)$ de la matriu A són no nul·les, les files $F_{i_0+1}(A), \ldots, F_m(A)$ de la matriu A són nul·les, i a més, per a tot $i \le i_0$, si el primer element no nul de la fila $F_i(A)$ és l'element de la columna j_i , aleshores el primer element no nul de la fila $F_{i+1}(A)$ està en una columna $j_{i+1} > j_i$.
- 3) Matrius esglaonades per columnes. Una matriu no nul·la $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ és una matriu esglaonada per columnes si existeix $1 \le j_0 \le m$ tal que les columnes $C_1(A), \ldots, C_{j_0}(A)$ de la matriu A són no nul·les, les columnes $C_{j_0+1}(A), \ldots, C_n(A)$ de la matriu A són nul·les, i a més, per a tot $j \le j_0$, si el primer element no nul de la columna $C_j(A)$ és l'element de la fila i_j , aleshores el primer element no nul de la columna $C_{j+1}(A)$ està en una fila $i_{j+1} > i_j$.

Transformacions per files. Transformacions per columnes

- 1) Una transformació elemental per files d'una matriu A d'ordre $m \times n$ consisteix en fer una de les operacions següents:
 - a) intercanviar dues files de A;
 - b) multiplicar una fila de A per un element no nul $\lambda \in \mathbb{K}$;
 - c) sumar a una fila de A una altra fila de A.
- 2) Diem que una matriu B s'obté fent transformacions per files d'una matriu A si partint de A i fent un nombre finit de transformacions elementals per files obtenim B. Notem $A \stackrel{\mathcal{F}_F}{\leadsto} B$ per indicar que $B \in \mathcal{M}_{m,n}(\mathbb{K})$ s'obté de $A \in \mathcal{M}_{m,n}(\mathbb{K})$ aplicant transformacions per files.
- 3) Si $A, B \in \mathcal{M}_{m,n}(\mathbb{K})$, aleshores $A \stackrel{\mathcal{T}_F}{\leadsto} B$ si i només si existeix una matriu invertible $P \in \mathcal{M}_m(\mathbb{K})$ de manera que B = PA.
- 4) Aplicant transformacions per files podem transformar una matriu no nul·la $A \in \mathcal{M}_{m,n}(\mathbb{K})$ en una matriu esglaonada per files B. Aquesta transformació de la matriu A no és única (ni en el procés ni en el resultat). Ara bé, si tenim $A \stackrel{\mathcal{T}_F}{\leadsto} B_1$ i $A \stackrel{\mathcal{T}_F}{\leadsto} B_2$, amb B_1, B_2 matrius esglaonades per files, aleshores B_1 i B_2 tenen el mateix nombre de files no nul·les.
- 5) Una transformació elemental per columnes d'una matriu A d'ordre $m \times n$ consisteix en fer una de les tres operacions següents:
 - a) intercanviar dues columnes de *A*;
 - b) multiplicar una columna de A per un element no nul $\lambda \in \mathbb{K}$;
 - c) sumar a una columna de A una altra columna de A.
- 6) Diem que una matriu B s'obté fent transformacions per columnes d'una altra matriu A si partint de A i fent un nombre finit de transformacions elementals per columnes obtenim B. Notem A → B per indicar que B ∈ M_{m,n}(K) s'obté A ∈ M_{m,n}(K) aplicant transformacions per columnes.
- 7) Si $A, B \in \mathcal{M}_{m,n}(\mathbb{K})$, aleshores $A \stackrel{\mathcal{T}_C}{\leadsto} B$ si i només si existeix una matriu invertible $Q \in \mathcal{M}_n(\mathbb{K})$ de manera que B = AQ.
- 8) Aplicant transformacions per columnes podem transformar una matriu no nul·la $A \in \mathcal{M}_{m,n}(\mathbb{K})$ en una matriu esglaonada per columnes B. Aquesta transformació de la matriu A no és única (ni en el procés ni en el resultat). Ara bé, si tenim $A \stackrel{\mathcal{T}_C}{\leadsto} B_1$ i $A \stackrel{\mathcal{T}_C}{\leadsto} B_2$, amb B_1, B_2 matrius esglaonades per columnes, aleshores B_1 i B_2 tenen el mateix nombre de columnes no nul·les.
- 9) Observem que les transformacions per files es poden pensar com a transformacions per columnes en la matriu transposada, i que les transformacions per columnes es poden pensar com a transformacions per files en la matriu transposada.
- 10) Transformació per files i per columnes d'una matriu A d'ordre $m \times n$.

- a) Notem $A \overset{\mathcal{T}_*}{\leadsto} B$ per indicar que la matriu $B \in \mathcal{M}_{m,n}(\mathbb{K})$ s'obté de la matriu A aplicant transformacions per files i columnes.
- b) Es demostra que $A \overset{\mathcal{F}_*}{\leadsto} B$ si i només si existeix una matriu invertible $P \in \mathcal{M}_m(\mathbb{K})$ i existeix una matriu invertible $Q \in \mathcal{M}_n(\mathbb{K})$ tals que B = PAQ.
- c) Aplicant transformacions per files i per columnes podem transformar una matriu no nulla $A \in \mathcal{M}_{m,n}(\mathbb{K})$ en una matriu simultàniament esglaonada per files i per columnes B. Aquesta transformació de la matriu A no és única (ni en el procés ni en el resultat). Ara bé, si $A \overset{\mathcal{T}_*}{\leadsto} B_1$ i $A \overset{\mathcal{T}_*}{\leadsto} B_2$, amb B_1, B_2 matrius simultàniament esglaonades per files i per columnes, aleshores B_1 i B_2 tenen el mateix nombre d'elements no nuls en la diagonal principal.

Mètode de Gauss

Sigui $A \in \mathcal{M}_{m,n}(\mathbb{K})$ una matriu d'ordre $m \times n$. Diem que una matriu $B \in \mathcal{M}_{m,n}(\mathbb{K})$ s'obté de la matriu A aplicant el mètode de Gauss si B es pot obtenir de A aplicant transformacions per files. És a dir, si $A \stackrel{\mathcal{F}_F}{\leadsto} B$. Notarem també $A \stackrel{\mathcal{G}}{\leadsto} B$ si volem remarcar que hem aplicat el mètode de Gauss.

Rang d'una matriu

- 1) Un invariant de les reduccions d'una matriu. Sigui $A \in \mathcal{M}_{m,n}(\mathbb{K})$ una matriu no nul·la. Sigui $A \overset{\mathcal{T}_F}{\leadsto} A_1$, amb A_1 una matriu esglaonada per files; sigui $A \overset{\mathcal{T}_C}{\leadsto} A_2$, amb A_2 una matriu esglaonada per columnes; i sigui $A \overset{\mathcal{T}_*}{\leadsto} A_3$, amb A_3 una matriu simultàniament esglaonada per files i per columnes. En aquesta situació, es té que $r_F(A_1) = r_C(A_2) = r_*(A_3)$, on $r_F(A_1)$ és el nombre de files no nul·les de A_1 , on $r_C(A_2)$ és el nombre de columnes no nul·les de A_2 , i on $r_*(A_3)$ és el nombre d'elements no nul·s en la diagonal principal de A_3 .
- 2) Rang d'una matriu. Definim el rang d'una matriu no nul·la $A \in \mathcal{M}_{m,n}(\mathbb{K})$ com rang $(A) = r_F(A_1) = r_C(A_2) = r_*(A_3)$, (veure notacions del punt anterior). En el cas en que $A \in \mathcal{M}_{m,n}(\mathbb{K})$ sigui la matriu nul·la, diem que A té rang zero.

Propietats del rang

- 1) Si $A \in \mathcal{M}_{m,n}(\mathbb{K})$ és no nul·la, aleshores $1 \leq \operatorname{rang}(A) \leq \min\{m,n\}$.
- 2) $rang(AB) \leq rang(A)$.
- 3) $rang(\lambda A) = rang(A)$, si $\lambda \in \mathbb{K}$ és no nul.
- 4) $\operatorname{rang}(A^T) = \operatorname{rang}(A)$.
- 5) Si $A \overset{\mathcal{T}_F}{\leadsto} B$, $A \overset{\mathcal{T}_C}{\leadsto} B$, $A \overset{\mathcal{T}_*}{\leadsto} B$ o $A \overset{\mathcal{G}}{\leadsto} B$, aleshores rang(A) = rang(B).
- 6) Si $A \in \mathcal{M}_n(\mathbb{K})$ és una matriu diagonal, aleshores rang(A) és el nombre d'elements no nuls de la diagonal.

- 7) En particular, rang(Id_n) = n.
- 8) Una matriu $A \in \mathcal{M}_n(\mathbb{K})$ és una matriu invertible si i només si rang(A) = n.
- 9) Si $A \in \mathcal{M}_n(\mathbb{K})$ és invertible, aleshores rang $(A^{-1}) = \operatorname{rang}(A) = n$.

2.1.2 Determinants

Determinant d'una matriu

Sigui $A = (a_{i,j})_{i,j} \in \mathcal{M}_n(\mathbb{K})$ una matriu quadrada d'ordre n amb coeficients en \mathbb{K} . Definim el determinant de la matriu A, que notarem per $\det(A)$ o per |A|, com l'element de \mathbb{K} definit per:

$$\det(A) = \begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix} = \sum_{i_1,\dots,i_n} \pm a_{i_1,1} \cdots a_{i_n,n},$$

on el sumatori està estès a totes les permutacions $i_1, ..., i_n$ de 1, ..., n i el signe de cada sumand es calcula de la manera següent: és +1 si hem de fer un nombre parell d'intercanvis a la permutació $i_1, ..., i_n$ per a obtenir 1, ..., n; és -1 si hem de fer un nombre senar d'intercanvis a la permutació $i_1, ..., i_n$ per a obtenir 1, ..., n.

Observem que el determinant d'una matriu quadrada d'ordre n és una suma amb n! sumands on cada sumand consta d'un signe i un producte amb un element de cada fila i de cada columna.

Càlcul de determinants

1) Determinant de matrius d'ordre n = 2. Aplicant la definició, obtenim:

$$\det\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = a_{1,1}a_{2,2} - a_{2,1}a_{1,2}.$$

2) Determinant de matrius d'ordre n = 3: regla de Sarrus. Aplicant la definició, obtenim:

$$\det \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} = a_{1,1}a_{2,2}a_{3,3} + a_{2,1}a_{3,2}a_{1,3} + a_{3,1}a_{1,2}a_{2,3}$$
$$-a_{3,1}a_{2,2}a_{1,3} - a_{1,1}a_{3,2}a_{2,3} - a_{2,1}a_{1,2}a_{3,3}.$$

- 3) Determinant de matrius triangulars i de matrius diagonals.
 - a) Si A és una matriu triangular (superior o inferior), aleshores $det(A) = \prod_{i=1}^{n} a_{i,i}$.
 - b) Si A és una matriu diagonal, aleshores $det(A) = \prod_{i=1}^{n} a_{i,i}$.
 - c) En particular, $det(Id_n) = 1$.

4) Desenvolupament del determinant per una fila. Sigui $A \in \mathcal{M}_n(\mathbb{K})$ una matriu d'ordre n. Fixem $i_0 \in \{1, ..., n\}$ i per a cada $j \in \{1, ..., n\}$ sigui $A_{i_0, j}$ la submatriu de A que s'obté a l'elliminar la fila i_0 i la columna j de la matriu A. Aleshores es té:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i_0+j} a_{i_0,j} \det(A_{i_0,j}).$$

5) Desenvolupament del determinant per una columna. Sigui $A \in \mathcal{M}_n(\mathbb{K})$ una matriu d'ordre n. Fixem $j_0 \in \{1, ..., n\}$ i per a cada $i \in \{1, ..., n\}$ sigui A_{i, j_0} la submatriu de A que s'obté a l'el·liminar la fila i i la columna j_0 de la matriu A. Aleshores es té:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j_0} a_{i,j_0} \det(A_{i,j_0}).$$

Propietats dels determinants (1)

El determinant verifica les propietats següents (en l'enunciat d'aquestes propietats fem servir la notació de les matrius per columnes).

- 1) $\det(C_1,\ldots,\lambda C_i,\ldots,C_n) = \lambda \det(C_1,\ldots,C_i,\ldots,C_n)$.
- 2) $\det(C_1,...,C_i+C'_i,...,C_n) = \det(C_1,...,C_i,...,C_n) + \det(C_1,...,C'_i,...,C_n)$.
- 3) $\det(C_1,...,C_i,...,C_i,...,C_n) = -\det(C_1,...,C_i,...,C_i,...,C_n)$.
- 4) $\det(C_1,...,C_i + \sum_{i \neq i} \lambda_i C_i,....,C_n) = \det(C_1,...,C_i,...,C_n)$.
- 5) Si $C_i = 0$, aleshores $det(C_1, ..., C_n) = 0$.
- 6) Si existeixen $i \neq j$ amb $C_i = C_i$, aleshores $\det(C_1, \dots, C_n) = 0$.
- 7) $\det(C_1,...,C_n) = 0$ si i només si per a cert $i \in \{1,...,n\}$ es té que $C_i = \sum_{j \neq i} \lambda_j C_j$.

Propietats dels determinants (2)

- 1) Determinant i operacions amb matrius.
 - a) det(AB) = det(BA) = det(A) det(B).
 - b) $det(\lambda A) = \lambda^n det(A)$, on n és l'ordre de la matriu A.
- 2) Determinant i transposició de matrius.
 - a) $det(A^T) = det(A)$.
 - b) Per tant, totes les propietats del determinant que valen per les columnes també valen per les files.
- 3) Determinant, transformacions per files, per columnes i mètode de Gauss. Si $A \stackrel{\mathcal{F}_F}{\leadsto} A'$, $A \stackrel{\mathcal{F}_C}{\leadsto} A'$, $A \stackrel{\mathcal{F}_C}{\leadsto} A'$ o $A \stackrel{\mathcal{F}_C}{\leadsto} A'$, aleshores: $\det(A) \neq 0 \Leftrightarrow \det(A') \neq 0$.

- 4) Determinant i rang.
 - a) Si $A \in \mathcal{M}_n(\mathbb{K})$, aleshores rang(A) = n si i només si $\det(A) \neq 0$.
 - b) Si $A \in \mathcal{M}_{m,n}(\mathbb{K})$, aleshores el rang de A és el màxim nombre natural r per al qual existeix una submatriu A' de A quadrada d'ordre r amb determinant $\det(A') \neq 0$.
- 5) Determinant i inversa. Si $A \in \mathcal{M}_n(\mathbb{K})$, aleshores A és invertible si i només si $\det(A) \neq 0$. A més, si A és invertible, aleshores $\det(A^{-1}) = 1/\det(A)$.

Matriu dels adjunts

Sigui $A = (a_{i,j})_{i,j} \in \mathcal{M}_n(\mathbb{K})$ una matriu quadrada d'ordre n. Es definiex la matriu A^* dels adjunts de la matriu A com la matriu quadrada $A^* = (a_{i,j}^*)_{i,j} \in \mathcal{M}_n(\mathbb{K})$ que té com elements $a_{i,j}^* = (-1)^{i+j} \det(A_{i,j})$ on $A_{i,j} \in \mathcal{M}_{n-1}(\mathbb{K})$ és la submatriu de A que s'obté a l'el·liminar la fila i i la columna j de la matriu A.

- 1) Propietats: adjunta i transposada.
 - a) Si $A \in \mathcal{M}_n(\mathbb{K})$, aleshores $A(A^*)^T = (A^T)^* = \det(A) \operatorname{Id}_n$.
 - b) Si $A \in \mathcal{M}_n(\mathbb{K})$, aleshores $A^T A^* = A^* A^T = \det(A) \operatorname{Id}_n$.
- 2) Càlcul de la matriu inversa. Si $A \in \mathcal{M}_n(\mathbb{K})$ és una matriu invertible, aleshores:

$$A^{-1} = \frac{1}{\det(A)} (A^*)^T = \frac{1}{\det(A)} (A^T)^*.$$

2.1.3 Sistemes d'equacions lineals

Notació matricial. Notació vectorial. Solucions

1) Un sistema de m equacions i n incògnites amb coeficients en \mathbb{K} és un conjunt d'equacions lineals:

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m \end{cases}$$

on per a tot i,j es té que $a_{i,j},b_i \in \mathbb{K}$. L'element $a_{i,j}$ és el j-èsim coeficient de la i-èsima equació del sistema. L'element b_i és el terme independent de la i-èsima equació. La j-èsima incògnita del sistema és x_j . Si $b_1 = \cdots = b_m = 0$, aleshores diem que el sistema d'equacions és un sistema homogeni.

2) Notació matricial del sistema. La notació matricial del sistema és Ax = b, on:

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}.$$

La matriu $A \in \mathcal{M}_{m,n}(\mathbb{K})$ s'anomena matriu dels coeficients del sistema, o simplement matriu del sistema, i la matriu $b \in \mathcal{M}_{m,1}(\mathbb{K})$ s'anomena matriu dels termes independents del sistema. Observem que en la i-èsima fila de la matriu A hi ha els coeficients de la i-èsima equació del sistema i que en la j-èsima columna de la matriu A hi ha els coeficients de la j-èsima incògnita del sistema. La matriu $(A \mid b) \in \mathcal{M}_{m,n+1}(\mathbb{K})$ que s'obté a l'afegir la columna b a la matriu A s'anomena la matriu ampliada del sistema. Matricialment, un sistema homogeni s'expressa com Ax = 0.

- 3) Notació vectorial del sistema. El sistema Ax = b el podem escriure com $x_1C_1(A) + \cdots + x_nC_n(A) = b$ on $C_j(A) \in \mathcal{M}_{m,1}(\mathbb{K})$ és la j-èsima columna de la matriu A del sistema. El sistema també el podem escriure com $x_1v_1 + \cdots + x_nv_n = v_b$ on $v_j, v_b \in \mathbb{K}^m$ són els elements definits per $v_j = (a_{1,j}, \ldots, a_{m,j})$ i per $v_b = (b_1, \ldots, b_m)$. És a dir, $v_j = C_j(A)^T$ i $v_b = b^T$. Per tant, v_j és la m-pla definida pels coeficients de la j-èsima incògnita del sistema, mentre que v_b és la m-pla definida pels termes independents de les equacions del sistema. Vectorialment un sistema homogeni és $x_1v_1 + \cdots + x_nv_n = 0$.
- 4) Solucions del sistema. Diem que $(\xi_1, ..., \xi_n) \in \mathbb{K}^n$ és una solució del sistema si i només si:

$$\begin{cases} a_{1,1}\xi_1 + a_{1,2}\xi_2 + \dots + a_{1,n}\xi_n = b_1 \\ \vdots \\ a_{m,1}\xi_1 + a_{m,2}\xi_2 + \dots + a_{m,n}\xi_n = b_m \end{cases}$$

Equivalentment, $(\xi_1, ..., \xi_n)$ és una solució del sistema si i només si:

$$A\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} = b \iff \xi_1 C_1(A) + \dots + \xi_n C_n(A) = b \iff \xi_1 v_1 + \dots + \xi_n v_n = v_b.$$

Sistema compatible. Sistema incompatible

- 1) Diem que el sistema Ax = b és compatible si i només si té, com a mínim, una solució. Si existeix una única solució, aleshores diem que és un sistema compatible determinat. Si existeix més d'una solució, aleshores diem que és un sistema compatible indeterminat.
- 2) El sistema Ax = b és un sistema incompatible si no té cap solució.

Teorema de Rouché-Frobenius

- 1) Existència de solucions.
 - a) El sistema Ax = b és compatible si i només si rang $(A) = \text{rang}(A \mid b)$.
 - b) El sistema Ax = b és incompatible si i només si $rang(A) \neq rang(A \mid b)$.
- 2) Unicitat de les solucions.
 - a) El sistema Ax = b és compatible determinat si i només si rang $(A \mid b) = n$.
 - b) El sistema Ax = b és ompatible indeterminat si i només si rang $(A) = \text{rang}(A \mid b) \neq n$.

Sistemes, mètode de Gauss i regla de Cramer

- 1) Sistemes amb matriu de coeficients esglaonada per files. Si Ax = b és un sistema on A és una matriu esglaonada per files aleshores, el sistema és compatible si i només si $b_i = 0$ quan $F_i(A) = 0$. En aquest cas, la solució del sistema es pot determinar fent substitució cap enrera.
- 2) Sistemes d'equacions lineals i mètode de Gauss. Si transformem per Gauss $(A|b) \stackrel{\mathcal{G}}{\leadsto} (A'|b')$, aleshores el sistema Ax = b és compatible (determinat o indeterminat) si i només si ho és el sistema A'x = b'. A més, en aquest cas, els dos sistemes d'equacions lineals tenen les mateixes solucions. Per tant, per resoldre el sistema d'equacions Ax = b, podem aplicar el mètode de Gauss i transformar $(A|b) \stackrel{\mathcal{G}}{\leadsto} (A'|b')$ fins obtenir una matriu esglaonada per files A' i aleshores, en el cas compatible, aplicar la substitució cap enrera per determinar la solució.
- 3) Regla de Cramer. Sigui Ax = b un sistema compatible determinat de n equacions i n incògnites. Aleshores, la única solució del sistema Ax = b és $x = A^{-1}b$. Per tant, per a $1 \le i \le n$ es té que $x_i = \det(A_{i,b})/\det(A)$, on $A_{i,b}$ és la matriu que s'obté al substituir la i-èsima columna de la matriu A pel terme independent del sistema (és a dir, si $A = (C_1, ..., C_{i-1}, C_i, C_{i+1}, ..., C_n)$, aleshores $A_{i,b} = (C_1, ..., C_{i-1}, b, C_{i+1}, ..., C_n)$).

Estructura de les solucions

- 1) Solucions dels sistemes homogenis. Els sistemes homogenis són compatibles. Els graus de llibertat de les solucions del sistema homogeni és la diferència entre el nombre d'incògnites i el rang de la matriu del sistema.
- 2) Principi de superposició. Si x_b és una solució del sistema Ax = b i si x_c és una solució del sistema Ax = c, aleshores $x_b + x_c$ és una solució del sistema Ax = b + c. En particular, la suma de solucions d'un sistema homogeni és una solució del sistema.
- 3) Solucions del sistema complet i solucions del sistema homogeni associat. Sigui Ax = b un sistema compatible de m equacions i n incògnites. Sigui x_p una solució particular del sistema Ax = b i sigui x_h la solució general del sistema homogeni associat Ax = 0. Aleshores la solució general del sistema Ax = b és $x_g = x_p + x_h$.

Càlcul de la matriu inversa: mètode de Gauss-Jordan

Sigui $A \in \mathcal{M}_n(\mathbb{K})$ una matriu quadrada. Aleshores la matriu A és invertible si i només si aplicant el mètode de Gauss podem transformar $(A \mid \mathrm{Id}_n) \stackrel{\mathcal{G}}{\leadsto} (\mathrm{Id}_n \mid B)$. A més, en aquesta situació es té que $B = A^{-1}$.

2.2 Exercicis

Calculeu, en el cas en què sigui possible, la matriu suma A + B i la matriu producte AB de les matrius següents.

1)
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & 1 \\ -1 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$
 3) $A = \begin{pmatrix} 1 & 0 \\ -1 & -1 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 \\ 0 & 2 \\ 1 & -1 \end{pmatrix}.$

3)
$$A = \begin{pmatrix} 1 & 0 \\ -1 & -1 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 \\ 0 & 2 \\ 1 & -1 \end{pmatrix}$$

2)
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & 1 \\ -1 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 \\ 0 & 2 \\ 1 & -1 \end{pmatrix}.$$
 4) $A = \begin{pmatrix} 1 & 0 \\ -1 & -1 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$

4)
$$A = \begin{pmatrix} 1 & 0 \\ -1 & -1 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

2.2 Siguin A, B i C matrius quadrades. Proveu que les propietats següents són falses donant un contraexemple.

1)
$$AB = BA$$
.

7)
$$rang(A + B) = rang(A) + rang(B)$$
.

2) Si
$$AB = 0$$
, aleshores $A = 0$ o $B = 0$.

8)
$$rang(AB) = rang(A) rang(B)$$
.

3) Si
$$AB = AC$$
, aleshores $A = 0$ o bé $B = C$.

9)
$$rang(AB) = rang(BA)$$
.

4)
$$A^2 - B^2 = (A + B)(A - B)$$
.

10)
$$rang(\lambda A) = \lambda rang(A)$$
, on λ és un escalar.

5)
$$(A+B)^2 = A^2 + B^2 + 2AB$$
.

11)
$$\det(A + B) = \det(A) + \det(B)$$
.

6)
$$(AB)^T = A^T B^T$$
.

12)
$$det(\lambda A) = \lambda det(A)$$
, on λ és un escalar.

2.3 Siguin A i B matrius i $\lambda \in \mathbb{K}$. Suposem que els ordres de les matrius són els adequats per tal que es puguin fer les operacions indicades. Demostreu les propietats següents:

1)
$$(A^T)^T = A$$
.

2)
$$(A+B)^T = A^T + B^T, (AB)^T = B^T A^T, (\lambda A)^T = \lambda A^T.$$

3) La matriu A és invertible si i només si la matriu A^T ho és. En aquest cas, $(A^T)^{-1} = (A^{-1})^T$.

Siguin *A* i *B* matrius quadrades d'ordre *n*. Demostreu que Tr(AB) = Tr(BA).

2.5 Sigui J la matriu $n \times n$ que té tots els seus elements iguals a 1. Calculeu la matriu J^k , per a cada natural $k \ge 1$.

22

Calculeu els determinants següents.

1)
$$\begin{vmatrix} 7 & 2 & 3 \\ 5 & -3 & 2 \\ 3 & 1 & 1 \end{vmatrix}$$
, $\begin{vmatrix} 1 & 2 & 7 \\ 1 & -3 & 5 \\ 1 & 1 & 3 \end{vmatrix}$.

$$2) \begin{vmatrix} -5 & 1 & -4 & 1 \\ 1 & 4 & -1 & 5 \\ -4 & 1 & -8 & -1 \\ 3 & 2 & 6 & 2 \end{vmatrix}, \begin{vmatrix} 1 & 2 & 6 & -1 \\ 1 & 0 & 1 & 3 \\ 0 & 3 & 0 & 2 \\ 0 & 1 & 2 & 0 \end{vmatrix}.$$

3)
$$\begin{vmatrix} 1 & 1 & 1 \\ b+c & a+c & a+b \\ bc & ac & ab \end{vmatrix}$$
, $\begin{vmatrix} b+c & a & a \\ b & a+c & b \\ c & c & a+b \end{vmatrix}$.

4)
$$\begin{vmatrix} a+1 & 1 & 1 & 1 \\ 1 & b+1 & 1 & 1 \\ 1 & 1 & c+1 & 1 \\ 1 & 1 & 1 & d+1 \end{vmatrix}, \begin{vmatrix} a^2 & (a-2)^2 & (a-4)^2 & (a-6)^2 \\ b^2 & (b-2)^2 & (b-4)^2 & (b-6)^2 \\ c^2 & (c-2)^2 & (c-4)^2 & (c-6)^2 \\ d^2 & (d-2)^2 & (d-4)^2 & (d-6)^2 \end{vmatrix}.$$

5)
$$\begin{vmatrix} a & 1 & \cdots & 1 & 1 \\ 1 & a & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & a & 1 \\ 1 & 1 & \cdots & 1 & a \end{vmatrix}$$
, on la matriu és quadrada d'ordre n .

6)
$$\begin{vmatrix} 1-n & 1 & \cdots & 1 & 1 \\ 1 & 1-n & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 1-n & 1 \\ 1 & 1 & \cdots & 1 & 1-n \end{vmatrix}$$
, on la matriu és quadrada d'ordre n .

2.7 Calculeu els determinants següents:

1)
$$\begin{vmatrix} 1 & z^2 & z \\ z & 1 & z^2 \\ z^2 & z & 1 \end{vmatrix}$$
, on $z \in \mathbb{C}$ és una arrel cúbica de la unitat (és a dir, $z^3 = 1$).

2)
$$\begin{vmatrix} z & 1 & z \\ 1 & z & 1 \\ 1 & 1 & z^2 \end{vmatrix}$$
, on $z \in \mathbb{C}$ és una arrel quarta de -1 (és a dir, $z^4 = -1$).

2.8 Calculeu el determinant de la matriu $C^{-1}ACB^2A^{-1}$, on:

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 2 \\ 3 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}.$$

2.9 Calculeu el determinant de la matriu $A = (a_{ij})$ definida per $a_{ij} = 2^{ij}$, $1 \le i, j \le 3$.

2.10 Sigui $A = (C_1, C_2, C_3)$ una matriu 3×3 , on C_1 , C_2 , C_3 són les seves columnes, tal que det(A) = 2. Expresseu, en cada cas, la matriu B com a producte de la matriu A i matrius elementals per columnes i calculeu det(B).

23

1)
$$B = (C_1 + 2C_2, C_1, C_1 + C_2 + C_3).$$

3)
$$B = (C_1 + C_2 + C_3, C_1 + C_2, C_2 + C_3).$$

2)
$$B = (C_1 + C_2, C_1, C_1 + C_2 + 2C_3)$$
.

4)
$$B = (C_3 - C_1 - C_2, C_1 - C_2 - C_3, C_2 - C_1 - C_3).$$

Sigui $A = (F_1, F_2, F_3)^T$ una matriu 3×3 , on F_1, F_2, F_3 són les seves files, tal que $\det(A) = 2$. Expresseu, en cada cas, la matriu B com a producte de la matriu A i matrius elementals per files i calculeu det(B).

1)
$$B = (F_1 + 2F_2, F_1, F_1 + F_2 + F_3)^T$$
.

3)
$$B = (F_1 + F_2 + F_3, F_1 + F_2, F_2 + F_3)^T$$
.

2)
$$B = (F_1 + F_2, F_1, F_1 + F_2 + 2F_3)^T$$
.

4)
$$B = (F_3 - F_1 - F_2, F_1 - F_2 - F_3, F_2 - F_1 - F_3)^T$$
.

2.12 Sigui $A = (C_1, C_2, C_3) = (F_1, F_2, F_3)^T$ una matriu 3×3 , on C_1, C_2, C_3 són les seves columnes i F_1 , F_2 i F_3 són les seves files. Demostreu que si A és invertible, aleshores també ho és la matriu B donada per:

1)
$$B = (C_1, C_2 + 4C_1, C_3 + 2C_2 + 8C_1).$$

3)
$$B = (F_1, F_2 + 4F_1, F_3 + 2F_2 + 8F_1)^T$$
.

2)
$$B = (C_1, C_2 + 9C_1, C_3 + 3C_2 + 27C_1).$$

4)
$$B = (F_1, F_2 + 9F_1, F_3 + 3F_2 + 27F_1)^T$$
.

2.13 Calculeu el rang de les matrius següents.

$$1) \begin{pmatrix} 5 & 3 & 5 & 2 \\ 1 & -3 & -2 & 1 \\ 3 & -3 & -1 & 2 \end{pmatrix}.$$

$$2) \begin{pmatrix} 1 & -1 & -11 & 8 & 9 \\ 1 & 1 & -3 & 2 & 5 \\ 5 & 7 & -7 & 4 & 21 \\ 1 & 2 & 1 & -1 & 3 \end{pmatrix}.$$

Calculeu les matrius inverses de les matrius següents.

$$1) \begin{pmatrix} 1 & 2 & -1 \\ 3 & 8 & 2 \\ 4 & 9 & -1 \end{pmatrix}.$$

$$2) \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & -4 \\ 2 & 3 & 5 & -5 \\ 3 & -4 & -5 & 8 \end{pmatrix}.$$

$$2) \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & -4 \\ 2 & 3 & 5 & -5 \\ 3 & 4 & 5 & 9 \end{pmatrix}. \qquad 3) \begin{pmatrix} 1 & 1+2i & 1 \\ 2+i & 2 & 0 \\ -i & 2-i & -1+i \end{pmatrix}.$$

2.15 Resoleu els sistemes següents pel mètode de Gauss.

1)
$$\begin{cases} x+y-3z = 4\\ 2x+y+z = 5\\ 3x+y+5z = 6 \end{cases}$$

3)
$$\begin{cases} x + 2y - z + 3t = 8\\ 2x - y + z - 2t = 0\\ x + 3y + 2z + t = 4\\ 3x + 5y - 4z - t = -6 \end{cases}$$

2)
$$\begin{cases} 2x - y + z = 7 \\ x + 2y - 5z = 2 \\ x - 3y + 6z = 9 \end{cases}$$

4)
$$\begin{cases} x + y + z + t + u = 1 \\ x - y + z - t - u = 2 \\ x + y - z + t - u = -1 \end{cases}$$

2.16 Discutiu els sistemes d'equacions següents segons els valors dels paràmetres reals a, b, k, m.

1)
$$\begin{cases} a^{2}x + y + z = 3 \\ x + a^{2}y + z = 4 - a \\ x + y + a^{2}z = 2 + a^{2} \end{cases}$$
3)
$$\begin{cases} x - 2y = 3(k + m) \\ x - y = 2(k + m) + 1 \\ mx + ky = m^{2} - k^{2} - 6 \\ kx + my = k^{2} - m^{2} + 6 \end{cases}$$
2)
$$\begin{cases} ax + y + z + t = 1 \\ x + ay + z + t = b \\ x + y + az + t = b^{2} \\ x + y + z + at = b^{3} \end{cases}$$
4)
$$\begin{cases} x - 2y = 3(k + m) \\ x - y = 2(k + m) + 1 \\ mx + ky = m^{2} - k^{2} - 6 \\ kx + my = k^{2} - m^{2} + 6 \end{cases}$$

$$\begin{cases} x + y + (1 - m)z = m + 2 \\ (1 + m)x - y + 2z = 0 \\ 2x - my + 3z = m + 2 \end{cases}$$

2.17 Resoleu les equacions matricials AX = B següents.

1)
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}.$$

2) $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 2 & -3 \end{pmatrix}, B = \begin{pmatrix} 1 & -5 \\ -1 & 3 \\ 2 & 1 \end{pmatrix}.$
2) $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 2 & -3 \end{pmatrix}, B = \begin{pmatrix} 1 & -5 \\ -1 & 3 \\ 2 & 0 \end{pmatrix}.$
4) $A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & -1 \\ 2 & -3 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & -5 \\ -1 & 3 \\ 2 & 0 \end{pmatrix}.$

2.18 Definim la representació matricial M(z) d'un nombre complex z = a + bi, $a, b \in \mathbb{R}$, com la matriu real d'ordre dos donada per:

$$M(z) = \begin{pmatrix} \operatorname{Re}(z) & -\operatorname{Im}(z) \\ \operatorname{Im}(z) & \operatorname{Re}(z) \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Demostreu que la representació matricial d'un nombre complex verifica les propietats següents.

- 1) $M(z_1 + z_2) = M(z_1) + M(z_2)$, per a tot $z_1, z_2 \in \mathbb{C}$.
- 2) $M(z_1z_2) = M(z_1)M(z_2)$, per a tot $z_1, z_2 \in \mathbb{C}$.
- 3) $M(\lambda z) = \lambda M(z)$, per a tot $z \in \mathbb{C}$ i per a tot $\lambda \in \mathbb{R}$.
- 4) Un complex z és un nombre real si i només si existeix un real λ tal que $M(z) = \lambda \operatorname{Id}$.
- 5) $|z|^2 = \det(M(z))$, per a tot $z \in \mathbb{C}$.
- 6) $M(\overline{z}) = M(z)^T$, per a tot $z \in \mathbb{C}$.
- 7) $M(z^{-1}) = M(z)^{-1}$, per a tot $z \in \mathbb{C}$.
- **2.19** Resoleu els sistemes següents sistemes. [Al primer apartat podeu tenir en compte l'apartat 3 del problema 2.14.]

25

1)
$$\begin{cases} x + (1+2i)y + z = 0 \\ (2+i)x + 2y = 145 \\ -ix + (2-i)y + (-1+i)z = 0 \end{cases}$$
 2)
$$\begin{cases} (-1+3i)x - (1+3i)y + 3z = 2-i \\ 5x + 5y + 2z = i \\ (2-i)x + (2+i)y = 0 \end{cases}$$

2.20 Discutiu el sistema següent segons els valors del paràmetre complex a.

$$a2x + y + z = 3$$
$$x + a2y + z = 4 - a$$
$$x + y + a2z = 2 + a2$$

2.3 Solucions

2.1

1)
$$A+B = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 1 & 0 \end{pmatrix}$$
, $AB = \begin{pmatrix} -2 & 2 & 1 \\ -1 & -1 & 1 \\ 1 & 3 & 1 \end{pmatrix}$.

2)
$$A+B$$
 no es pot calcular, $AB = \begin{pmatrix} -2 & 2 \\ -1 & -1 \\ 1 & 3 \end{pmatrix}$.

3)
$$A+B=\begin{pmatrix} 0 & 1 \\ -1 & 1 \\ 3 & -1 \end{pmatrix}$$
, AB no es pot calcular.

4) No es pot calcular ni A + B ni AB.

2.2

1)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

2)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

3)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

4)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

5)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

6)
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

2.5 $J^k = n^{k-1}J$.

2.6

1) 9, 18.

2) -264, 22.

3) (a-b)(a-c)(b-c), 4abc.

4) abcd + abc + abd + acd + bcd, 0.

5) $(a-1)^{n-1}(a-1+n)$.

7) $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$

8) $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

9) $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$.

11) $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

10) $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \lambda = 2.$

12) $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \lambda = 2.$

6) 0.

2.7

1) El determinant val 0.

2) El determinant val -2i.

2.8 El determinant val 121.

2.9 $\det(A) = 2^{10}3$.

2.10

1)
$$det(B) = -4$$
.

2)
$$det(B) = -4$$
.

3)
$$det(B) = 2$$
.

4)
$$det(B) = -8$$
.

2.11

1)
$$det(B) = -4$$
.

2)
$$det(B) = -2$$
.

3)
$$det(B) = 2$$
.

4)
$$det(B) = -8$$
.

2.12 En quasevol cas, tenim det(B) = det(A).

2.13 Les dues tenen rang 2.

2.14

1)
$$\begin{pmatrix} -26 & -7 & 12 \\ 11 & 3 & -5 \\ -5 & -1 & 2 \end{pmatrix}.$$

3)
$$\frac{1}{145} \begin{pmatrix} 2+34i & 40-45i & -16+18i \\ 15-35i & 10+25i & 25-10i \\ 58-29i & 0 & -29-58i \end{pmatrix}$$
.

$$2) \begin{pmatrix} 2 & 16 & -6 & 4 \\ 22 & 41 & -30 & -1 \\ -10 & -44 & 30 & -2 \\ 4 & -13 & 6 & -1 \end{pmatrix}.$$

2.15

- 1) Sistema compatible indeterminat. Solució: x = 1 4z, y = 3 + 7z.
- 2) Sistema incompatible.
- 3) Sistema compatible determinat. Solució: x = 2, y = -1, z = 1, t = 3.
- 4) Sistema compatible indeterminat. Solució: x = 1/2 + u, y = -1/2 u t, z = 1 u.
- **2.16** Posem: CD: compatible determinat, CI: compatible indeterminat, I: incompatible

1)
$$a \neq \pm 1$$
: CD.
 $a = 1$: CI.
 $a = -1$: I.

3)
$$k = 6$$
, $m = -6$: CD.
En cas contrari: I.

2)
$$a \neq 1, -3$$
: CD, per a tot b.
 $a = 1, b = 1$: CI.
 $a = 1, b \neq 1$:I.
 $a = -3, b = -1$: CI.
 $a = -3, b \neq -1$: I

4)
$$m \neq 0, \pm 2$$
: CD.
 $m = 0$ o $m = -2$: CI.
 $m = 2$: I.

2.17

1) Solució única:
$$X = \begin{pmatrix} 1 & 3 \\ 0 & -5 \end{pmatrix}$$
.

2) Solució única:
$$X = \begin{pmatrix} 1 & -3 \\ 0 & -2 \end{pmatrix}$$
.

3) No té solució.

4) Infinites solucions. La solució general és:
$$X = \begin{pmatrix} 1-a & -3-b \\ -a & -2-b \\ a & b \end{pmatrix}$$
, on $a,b \in \mathbb{R}$.

2.19

- 1) Compatible determinat. Solució: x = 40 45i, y = 10 + 25i, z = 0.
- 2) Compatible determinat. Solució: x = (6 + 13i)/10, y = (-14 3i)/10, z = 2 2i.
- **2.20** Si $a \neq \pm 1, \pm \sqrt{2}i$, aleshores el sistema és compatible determinat. Si a = 1, aleshores el sistema és compatible indeterminat. Si $a = -1, \pm \sqrt{2}i$, aleshores el sistema és incompatible.

TEMA 3

L'ESPAI REAL I COMPLEX *n*-DIMENSIONAL

3.1 Resum teòric

Sigui $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$.

3.1.1 Estructura vectorial: operacions, escalars i vectors

- 1) En \mathbb{K}^n definim les dues operacions següents:
 - a) Suma de vectors: si $v = (x_1, ..., x_n) \in \mathbb{K}^n$ i $w = (y_1, ..., y_n) \in \mathbb{K}^n$, aleshores definim la suma v + w com $v + w = (x_1 + y_1, ..., x_n + y_n)$. Per tant, $v + w \in \mathbb{K}^n$.
 - b) Producte d'un vector per un escalar: si $\lambda \in \mathbb{K}$ i $\nu = (x_1, ..., x_n) \in \mathbb{K}^n$, aleshores definim el producte $\lambda \nu$ com $\lambda \nu = (\lambda x_1, ..., \lambda x_n)$. Per tant, $\lambda \nu \in \mathbb{K}^n$.
- 2) Aquestes operacions determinen l'estructura usual de \mathbb{K}^n com espai vectorial sobre \mathbb{K} .
- 3) Els elements de \mathbb{K}^n s'anomenen vectors i els elements de \mathbb{K} s'anomenen escalars.

Combinacions lineals de vectors

- 1) Diem que un element $w \in \mathbb{K}^n$ és combinació lineal dels vectors $v_1, \ldots, v_r \in \mathbb{K}^n$ si existeixen escalars $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$ tals que $w = \sum_{i=1}^r \lambda_i v_i$.
 - Notem per $\langle v_1, ..., v_r \rangle$ el conjunt de les combinacions lineals dels vectors $v_1, ..., v_r$.
- 2) Caracterització matricial.
 - a) Considerem la matriu $A = (a_{i,j}) \in \mathcal{M}_{n,r}(\mathbb{K})$ amb coeficients en \mathbb{K} , on l'element $a_{i,j}$ de la matriu és la i-èsima component del vector v_j . És a dir, A és la matriu:

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,r} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,r} \end{pmatrix}$$

on $v_j = (a_{1,j}, ..., a_{n,j})$ per a $1 \le j \le r$. Observem que, informalment, la matriu A es pot pensar com "la matriu dels vectors posats en columna"; és a dir:

$$A = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ v_1 & \dots & v_j & \dots & v_r \\ \downarrow & & \downarrow & & \downarrow \end{pmatrix}$$

Si $w = (b_1, ..., b_n) \in \mathbb{K}^n$ i $\lambda_1, ..., \lambda_r \in \mathbb{K}$, aleshores:

$$w = \sum_{i=1}^{r} \lambda_i v_i \iff A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

b) Per tant, el vector w és combinació lineal dels vectors $v_1, ..., v_r$ si i només si rang(A) = rang(A|w), on (A|w) és la matriu de n files i n+1 columnes que s'obté de la matriu A afegint la columna corresponent al vector w:

$$(A|w) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,r} & b_1 \\ \vdots & & \vdots & & \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,r} & b_n \end{pmatrix} = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow & \uparrow \\ v_1 & \dots & v_j & \dots & v_r & w \\ \downarrow & & \downarrow & & \downarrow & \downarrow \end{pmatrix}.$$

c) A més, en aquest cas, els escalars $\lambda_1, \dots, \lambda_r \in \mathbb{K}$ que ens proporcionen les expressions de w com combinacions lineals $w = \sum_{i=1}^r \lambda_i v_i$ dels vectors v_1, \dots, v_r es poden determinar solucionant el sistema que té matriu ampliada (A|w). És a dir, els escalars $\lambda_1, \dots, \lambda_r$ són les solucions del sistema:

$$A\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

Relacions de dependència lineal de vectors

- 1) Una relació de dependència lineal entre els vectors $v_1, ..., v_r \in \mathbb{K}^n$ és una expressió del tipus $\sum_{i=1}^r \lambda_i v_i = 0$, on $\lambda_1, ..., \lambda_r \in \mathbb{K}$. La relació de "dependència trivial" és la que s'obté fent $\lambda_1 = \cdots = \lambda_r = 0$.
- 2) Caracterització matricial. Considerem la matriu $A \in \mathcal{M}_{n,r}(\mathbb{K})$ que "té per columnes" els vectors v_1, \ldots, v_r . És a dir, si $v_j = (a_{1,j}, \ldots, a_{n,j})$, aleshores la matriu A és:

$$A = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ v_1 & \dots & v_j & \dots & v_r \\ \downarrow & & \downarrow & & \downarrow \end{pmatrix} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,r} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,r} \end{pmatrix}.$$

En aquesta situació, les relacions de dependència lineal dels vectors $v_1, ..., v_r$ es determinen solucionant el sistema homogeni de matriu A. És a dir, els escalars $\lambda_1, ..., \lambda_r \in \mathbb{K}$ tals que $\lambda_1 v_1 + \cdots + \lambda_r v_r = 0$ són les solucions del sistema homogeni de n equacions i r incògnites:

32

$$A\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Vectors linealment dependents i linealment independents

1) Dependència lineal. Diem que $v_1, ..., v_r \in \mathbb{K}^n$ són vectors linealment dependents si existeixen combinacions lineals nul·les no trivials d'aquests vectors.

Les condicions següents són equivalents:

- a) Els vectors v_1, \dots, v_r són linealment dependents.
- b) Un dels vectors del conjunt $\{v_1, ..., v_r\}$ s'expressa com combinació lineal dels altres vectors.
- c) Existeixen vectors $w \in \mathbb{K}^n$ que s'expressen de dues o més maneres diferents com a combinació lineal dels vectors v_1, \ldots, v_r .
- 2) Independència lineal. Diem que $v_1, ..., v_r \in \mathbb{K}^n$ són vectors linealment independents si l'única combinació lineal nul·la d'aquests vectors és la trivial.

Les condicions següents són equivalents:

- a) Els vectors v_1, \dots, v_r són vectors linealment independents.
- b) Cap dels vectors del conjunt $\{v_1, ..., v_r\}$ s'expressa com combinació lineal dels altres vectors.
- c) Si un vector w de \mathbb{K}^n s'expressa com a combinació lineal dels vectors $v_1, ..., v_r$, aleshores aquesta expressió és única.
- 3) Caracterització matricial. Considerem la matriu $A \in \mathcal{M}_{n,r}(\mathbb{K})$ que "té per columnes" els vectors v_1, \ldots, v_r . És a dir, si $v_j = (a_{1,j}, \ldots, a_{n,j})$, aleshores:

$$A = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ v_1 & \dots & v_j & \dots & v_r \\ \downarrow & & \downarrow & & \downarrow \end{pmatrix} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,r} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,r} \end{pmatrix}.$$

- a) Els vectors $v_1, ..., v_r$ són linealment dependents si i només si rang $(A) \neq r$ si i només si rang(A) < r.
- b) Els vectors v_1, \dots, v_r són linealment independents si i només si rang(A) = r.

Sistema de generadors de l'espai

- 1) Diem que $v_1, ..., v_r \in \mathbb{K}^n$ és un sistema de generadors de \mathbb{K}^n si tot vector de \mathbb{K}^n s'expressa com a combinació lineal dels vectors $v_1, ..., v_r$. És a dir, si per a tot vector $w \in \mathbb{K}^n$, existeixen escalars $\lambda_1, ..., \lambda_r \in \mathbb{K}$ tal que $w = \sum_{i=1}^r \lambda_i v_i$. Per tant, $v_1, ..., v_r$ és un sistema de generadors de \mathbb{K}^n si i només si $\langle v_1, ..., v_r \rangle = \mathbb{K}^n$.
- 2) Caracterització matricial. Considerem la matriu $A \in \mathcal{M}_{n,r}(\mathbb{K})$ que "té per columnes" els vectors v_1, \ldots, v_r . És a dir, si $v_j = (a_{1,j}, \ldots, a_{n,j})$, aleshores:

$$A = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ v_1 & \dots & v_j & \dots & v_r \\ \downarrow & & \downarrow & & \downarrow \end{pmatrix} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,r} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,r} \end{pmatrix}.$$

Els vectors v_1, \ldots, v_r determinen un sistema de generadors de \mathbb{K}^n si i només si rang(A) = n.

33

Bases de l'espai. Dimensió

- 1) Base de l'espai.
 - a) Diem que un conjunt $B \neq \emptyset$ de vectors de \mathbb{K}^n és una base de \mathbb{K}^n si és un sistema de generadors linealment independent de \mathbb{K}^n .
 - b) Per tant, un conjunt $B \neq \emptyset$ de vectors de \mathbb{K}^n és una base de \mathbb{K}^n si i només si tot element de l'espai \mathbb{K}^n s'expressa, de manera única, com a combinació lineal dels vectors de B.
- 2) Caracterització matricial. Siguin $v_1, ..., v_r \in \mathbb{K}^n$ i considerem la matriu $A \in \mathcal{M}_{n,r}(\mathbb{K})$ que "té per columnes" aquests vectors. És a dir, si $v_j = (a_{1,j}, ..., a_{n,j})$, aleshores:

$$A = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ v_1 & \dots & v_j & \dots & v_r \\ \downarrow & & \downarrow & & \downarrow \end{pmatrix} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,r} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,r} \end{pmatrix}.$$

Els vectors $v_1, ..., v_r$ determinen una base de \mathbb{K}^n si i només si r = n i rang(A) = n. És a dir, els vectors $v_1, ..., v_r$ determinen una base de \mathbb{K}^n si i només si r = n i $\det(A) \neq 0$.

- 3) La base canònica de l'espai \mathbb{K}^n . La base canònica de \mathbb{K}^n és $B_e = \{e_1, \dots, e_n\}$, on $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$.
- 4) Bases, sistemes de generadors i vectors linealment independents.
 - a) Si $v_1, ..., v_r$ és un sistema de generadors de \mathbb{K}^n , aleshores existeix una base B de \mathbb{K}^n tal que $B \subseteq \{v_1, ..., v_r\}$. És a dir, tot sistema de generadors de \mathbb{K}^n conté una base de l'espai.
 - b) Si $v_1, ..., v_r$ és un conjunt de vectors linealment independents de \mathbb{K}^n aleshores, existeix una base B de \mathbb{K}^n tal que $\{v_1, ..., v_r\} \subseteq B$. És a dir, tot conjunt de vectors linealment independents de \mathbb{K}^n es pot completar a una base de l'espai.
 - c) Si L és un conjunt de vectors linealment independents de \mathbb{K}^n i si S és un sistema de generadors de \mathbb{K}^n aleshores, existeix un subconjunt $L' \subseteq S$ tal que $B = L \cup L'$ és una base de \mathbb{K}^n . És a dir, afegint certs vectors d'un sistema de generadors podem completar un conjunt de vectors linealment independents a una base de l'espai.
- 5) Dimensió de l'espai \mathbb{K}^n . Totes les bases de l'espai \mathbb{K}^n tenen n elements. Diem que n és la dimensió de l'espai vectorial \mathbb{K}^n i notem $n = \dim(\mathbb{K}^n)$.
 - a) La dimensió de \mathbb{K}^n és el màxim nombre de vectors linealment independents. És a dir, si v_1, \ldots, v_r és un conjunt de vectors linealment independents, aleshores $r \leq n$, i es té la igualtat si i només si $\{v_1, \ldots, v_r\}$ és una base de \mathbb{K}^n .
 - b) La dimensió de \mathbb{K}^n és el nombre mínim d'elements que determinen un sistema de generadors de l'espai. És a dir, si v_1, \ldots, v_r és un sistema de generadors de \mathbb{K}^n , aleshores $r \ge n$, i es té la igualtat si i només si $\{v_1, \ldots, v_r\}$ és una base de \mathbb{K}^n .
 - c) Si $v_1, ..., v_r \in \mathbb{K}^n$, amb r > n, aleshores $v_1, ..., v_r$ són linealment dependents.
 - d) Si $v_1, ..., v_r \in \mathbb{K}^n$, amb r < n, aleshores $v_1, ..., v_r$ no són un sistema de generadors de \mathbb{K}^n .
 - e) Si $v_1, ..., v_n \in \mathbb{K}^n$, aleshores $v_1, ..., v_n$ són linealment independents si i només si $v_1, ..., v_n$ determinen un sistema de generadors de \mathbb{K}^n si i només si $\{v_1, ..., v_n\}$ és una base de \mathbb{K}^n .

Coordenades

- 1) Coordenades en una base. Siguin $B = \{u_1, ..., u_n\}$ una base de \mathbb{K}^n i $w \in \mathbb{K}^n$. Siguin $\lambda_1, ..., \lambda_n \in \mathbb{K}$ els únics escalars tals que $w = \sum_{i=1}^n \lambda_i u_i$.
 - a) Diem que λ_i és la *i*-èsima coordenada de ν en la base B de \mathbb{K}^n .
 - b) Diem que $(\lambda_1, ..., \lambda_n)$ són les coordenades de ν en la base B de \mathbb{K}^n .
 - c) Notem $w_B = (\lambda_1, ..., \lambda_n)$.
 - d) Les coordenades depenen de l'ordre en que escrivim els vectors de la base. Per tant, quan parlem de coordenades en la base *B* hem de pensar el conjunt *B* com un conjunt ordenat. En aquestes notes, si no diem el contrari, l'ordenació del conjunt *B* és l'associada als subíndexs.
- 2) Coordenades en la base canònica. Sigui $B_e = \{e_1, \dots, e_n\}$ la base canònica de \mathbb{K}^n .
 - a) Observem que si $(x_1,...,x_n) \in \mathbb{K}^n$, aleshores $(x_1,...,x_n) = x_1e_1 + ... + x_ne_n$.
 - b) Per tant, les coordenades de l'element $w = (x_1, ..., x_n) \in \mathbb{K}^n$ en la base canònica de \mathbb{K}^n són $w_{B_e} = (x_1, ..., x_n)$. És a dir, tenim la igualtat $w = w_{B_e}$. Per tant, podem "identificar" els vectors de \mathbb{K}^n amb les seves coordenades en la base canònica de \mathbb{K}^n .
- 3) Operacions amb coordenades. Sigui $B = \{u_1, \dots, u_n\}$ una base de \mathbb{K}^n .
 - a) Les operacions dels vectors de \mathbb{K}^n expressats en coordenades en la base B es corresponen a les operacions dels elements de \mathbb{K}^n que aquestes coordenades determinen.
 - b) És a dir, si $v, w \in \mathbb{K}^n$ tenen coordenades $v_B = (\lambda_1, ..., \lambda_n)$ i $w_B = (\mu_1, ..., \mu_n)$ en la base B, aleshores $(v + w)_B = (\lambda_1 + \mu_1, ..., \lambda_n + \mu_n)$; i si $\lambda \in \mathbb{K}$, aleshores $(\lambda v)_B = (\lambda \lambda_1, ..., \lambda \lambda_n)$.
 - c) Per tant, si $v_1, ..., v_r \in \mathbb{K}^n$ són arbitraris, aleshores les nocions de combinacions lineals dels vectors, de relacions de dependència lineal dels vectors, de dependència i independència lineal dels vectors, de sistemes de generadors i de bases també es poden caracteritzar matricialment fent servir "la matriu que té per columnes" les coordenades dels vectors $v_1, ..., v_r$ en la base B.

Coordenades i canvi de base

- 1) Canvi de coordenades entre una base i la base canònica de \mathbb{K}^n .
 - a) Sigui $B_u = \{u_1, ..., u_n\}$ una base de \mathbb{K}^n i considerem la matriu $A \in \mathcal{M}_{n,r}(\mathbb{K})$ que "té per columnes" aquests vectors. És a dir, si $u_j = (a_{1,j}, ..., a_{n,j})$, aleshores:

$$A = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ u_1 & \dots & u_j & \dots & u_n \\ \downarrow & & \downarrow & & \downarrow \end{pmatrix} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{pmatrix}.$$

Sigui $w = (b_1, ..., b_n) \in \mathbb{K}^n$ un vector arbitrari i sigui $w_{B_u} = (\mu_1, ..., \mu_n)$. Aleshores:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

- b) La matriu A és la matriu canvi de base que transforma les coordenades d'un vector w de \mathbb{K}^n en la base B_u en les coordenades del vector w en la base canònica B_e de \mathbb{K}^n . Notarem $A = M(B_u \to B_e)$.
- c) La matriu A és una matriu invertible i la matriu A^{-1} és la matriu canvi de base que transforma les coordenades d'un vector w de \mathbb{K}^n en la base canònica B_e de \mathbb{K}^n en les coordenades del vector w en la base B_u . És a dir, $M(B_e \to B_u) = M(B_u \to B_e)^{-1} = A^{-1}$.
- 2) Canvi de coordenades entre dues bases arbitràries de \mathbb{K}^n . Siguin $B_u = \{u_1, ..., u_n\}$ i $B_v = \{v_1, ..., v_n\}$ dues bases de \mathbb{K}^n .
 - a) Sigui $A \in \mathcal{M}_n(\mathbb{K})$ la matriu quadrada que "té per columnes" les coordenades dels vectors u_1, \ldots, u_n en la base B_v . És a dir, si $u_j = (a_{1,j}, \ldots, a_{n,j})_{B_v}$, aleshores:

$$A = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ (u_1)_{B_v} & \dots & (u_j)_{B_v} & \dots & (u_n)_{B_v} \end{pmatrix} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{pmatrix}.$$

Siguin $w \in \mathbb{K}^n$ un vector arbitrari, $(\mu_1, ..., \mu_n)$ les coordenades de w en la base B_u i $(\mu'_1, ..., \mu'_n)$ les coordenades de w en la base B_v . En aquesta situació, es té:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \begin{pmatrix} \mu'_1 \\ \vdots \\ \mu'_n \end{pmatrix}.$$

- b) La matriu A és la matriu canvi de base que transforma les coordenades d'un vector w de \mathbb{K}^n en la base B_u en les coordenades del vector w en la base B_v . Notarem $A = M(B_u \to B_v)$.
- c) La matriu A és una matriu invertible i la matriu A^{-1} és la matriu canvi de base que transforma les coordenades d'un vector w de \mathbb{K}^n en la base B_v en les coordenades del vector w en la base B_v . És a dir $M(B_v \to B_v) = M(B_v \to B_v)^{-1} = A^{-1}$.

3.1.2 Els subespais vectorials de l'espai real i complex n-dimensional

La noció de subespai

- 1) Diem que un subconjunt $F \subseteq \mathbb{K}^n$ és un subespai vectorial de \mathbb{K}^n si es verifiquen les propietats següents:
 - a) $0 \in F$.
 - b) Per a tot $u, v \in F$, es té que $u + v \in F$.
 - c) Per a tot $\lambda \in \mathbb{K}$ i per a tot $w \in F$, es té que $\lambda w \in F$.
- 2) Subespais trivials. Diem que $F = \{0\}$ i que $F = \mathbb{K}^n$ són els subespais vectorials trivials de \mathbb{K}^n .
- 3) Subconjunts i subespais.
 - a) Els subconjunts de \mathbb{K}^n no són, en general, subespais vectorials.
 - b) Si $v_1, ..., v_r \in \mathbb{K}^n$, aleshores $\{v_1, ..., v_r\}$ no és, en general, un subespai vectorial de \mathbb{K}^n .
 - c) Si $v_1, ..., v_r \in \mathbb{K}^n$, aleshores $\langle v_1, ..., v_r \rangle$ és un subespai vectorial de \mathbb{K}^n .

Subespais associats a una matriu

1) Subespais vectorials definits per una matriu. Sigui $A \in \mathcal{M}_{s,t}(\mathbb{K})$. Associats a la matriu A considerem el subconjunt Col(A) dels vectors de \mathbb{K}^s que són combinació lineal de les columnes de la matriu A, i el subconjunt Nul(A) dels vectors de \mathbb{K}^t que són solucions del sistema homogeni de matriu associada A. És a dir:

$$\operatorname{Col}(A) = \left\{ (b_1, \dots, b_s) \in \mathbb{K}^s : \text{ existeixen } \lambda_1, \dots, \lambda_t \in \mathbb{K} \text{ amb } A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_t \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_s \end{pmatrix} \right\}.$$

$$\operatorname{Nul}(A) = \left\{ (x_1, \dots, x_t) \in \mathbb{K}^t : A \begin{pmatrix} x_1 \\ \vdots \\ x_t \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \right\}.$$

- a) $Col(A) \subseteq \mathbb{K}^s$ és un subespai de l'espai vectorial s-dimensional \mathbb{K}^s .
- b) $Nul(A) \subseteq \mathbb{K}^t$ és un subespai de l'espai vectorial t-dimensional \mathbb{K}^t .
- c) Siguin $A_1 \in \mathcal{M}_{s,t_1}(\mathbb{K})$ i $A_2 \in \mathcal{M}_{s,t_2}(\mathbb{K})$. Aleshores:

$$Col(A_1) = Col(A_2) \iff rang(A_1) = rang(A_2) = rang(A_1 | A_2).$$

d) Siguin $A_1 \in \mathcal{M}_{s_1,t}(\mathbb{K})$ i $A_2 \in \mathcal{M}_{s_2,t}(\mathbb{K})$. Aleshores:

$$\operatorname{Nul}(A_1) = \operatorname{Nul}(A_2) \iff \operatorname{rang}(A_1) = \operatorname{rang}(A_2) = \operatorname{rang}\left(\frac{A_1}{A_2}\right).$$

e) Siguin $A_1 \in \mathcal{M}_{s,\ell_1}(\mathbb{K})$ i $A_2 \in \mathcal{M}_{\ell_2,s}(\mathbb{K})$. Aleshores:

$$Col(A_1) = Nul(A_2) \iff A_2A_1 = 0 \text{ i } rang(A_1) + rang(A_2) = s.$$

Descripció dels subespais vectorials

- 1) Subespais vectorials, vectors i matrius. Si F és un subconjunt no buit de \mathbb{K}^n , aleshores les condicions següents són equivalents:
 - a) El subconjunt F és un subespai vectorial de \mathbb{K}^n .
 - b) Existeix una matriu $A \in \mathcal{M}_{n,r}(\mathbb{K})$ tal que $F = \operatorname{Col}(A)$.
 - c) Existeixen vectors $v_1, ..., v_r \in \mathbb{K}^n$ tals que $F = \langle v_1, ..., v_r \rangle$.
- 2) Subespais vectorials, equacions i matrius. Si F és un subconjunt no buit de \mathbb{K}^n , aleshores les condicions següents són equivalents:
 - a) F és un subespai vectorial de \mathbb{K}^n .
 - b) Existeix una matriu $A \in \mathcal{M}_{m,n}(\mathbb{K})$ tal que F = Nul(A).
 - c) F és el conjunt de solucions d'un sistema d'equacions homogeni amb m equacions i n incògnites.

Sistemes de generadors, bases i dimensió d'un subespai

- 1) Sistema de generadors i base d'un subespai. Sigui F un subespai vectorial de \mathbb{K}^n . Diem que els vectors v_1, \ldots, v_r de \mathbb{K}^n determinen un sistema de generadors del subespai F si $F = \langle v_1, \ldots, v_r \rangle$. Diem que el conjunt de vectors $\{v_1, \ldots, v_r\}$ és una base del subespai F si és un sistema de generadors de F i són linealment independents.
 - a) Si $v_1, ..., v_r$ és un sistema de generadors de F, aleshores existeix una base B de F tal que $B \subseteq \{v_1, ..., v_r\}$. És a dir, tot sistema de generadors de F conté una base del subespai F.
 - b) Si $v_1, ..., v_r$ és un conjunt de vectors linealment independents de F, aleshores existeix una base B de F tal que $\{v_1, ..., v_r\} \subseteq B$. És a dir, tot conjunt de vectors linealment independents de F es pot completar a una base del subespai F.
 - c) Si $\{v_1, ..., v_r\}$ i $\{w_1, ..., w_s\}$ són dues bases de F, aleshores r = s. És a dir, totes les bases del subespai F tenen el mateix nombre d'elements.
- 2) Dimensió d'un subespai. Diem que un subespai vectorial F de \mathbb{K}^n té dimensió r si F té una base de r elements (on entenem que r = 0 si i només si $F = \{0\}$). Notem dim(F) la dimensió del subespai vectorial F.
 - a) La dimensió de F és el màxim nombre de vectors linealment independents que té F. És a dir, si $v_1, ..., v_r \in F$ és un conjunt de vectors linealment independents, aleshores $r \le \dim(F)$ i es té la igualtat si i només si $\{v_1, ..., v_r\}$ és una base de F.
 - b) La dimensió de F és el nombre mínim d'elements que determinen un sistema de generadors del subespai F. És a dir, si v_1, \ldots, v_r és un sistema de generadors de F, aleshores $r \ge \dim(F)$ i es té la igualtat si i només si $\{v_1, \ldots, v_r\}$ és una base de F.
- 3) Dimensió d'un subespai i rang de matrius. Sigui $F \subseteq \mathbb{K}^n$ és un subespai.
 - a) Si F = Col(A), amb $A \in \mathcal{M}_{n,r}(\mathbb{K})$, aleshores dim(F) = rang(A).
 - b) Si F = Nul(A), amb $A \in \mathcal{M}_{m,n}(\mathbb{K})$, aleshores dim(F) = n rang(A).

Inclusió i igualtat de subespais

- 1) Dimensió d'un subespai i dimensió de l'espai. Si F és un subespai de \mathbb{K}^n , aleshores dim $(F) \le n$. A més, dim(F) = n si i només si $F = \mathbb{K}^n$.
- 2) Dimensió, inclusió i igualtat de subespais.
 - a) Si F_1, F_2 són dos subespais vectorials de \mathbb{K}^n tals que $F_1 \subseteq F_2$, aleshores dim $(F_1) \le \dim(F_2)$. El recíproc d'aquesta implicació no és cert.
 - b) Si F_1, F_2 són dos subespais vectorials de \mathbb{K}^n tals que $F_1 \subseteq F_2$, aleshores $F_1 = F_2$ si i només si dim $(F_1) = \dim(F_2)$.
- 3) Inclusió de subespais i matrius. Siguin F_1 , F_2 dos subespais vectorials de \mathbb{K}^n .
 - a) Si $F_1 = \operatorname{Col}(A_1)$ i $F_2 = \operatorname{Col}(A_2)$, aleshores: $F_1 \subseteq F_2 \iff \operatorname{rang}(A_2) = \operatorname{rang}(A_1 \mid A_2)$.
 - b) Si $F_1 = \text{Nul}(A_1)$ i $F_2 = \text{Nul}(A_2)$, aleshores: $F_1 \subseteq F_2 \iff \text{rang}(A_1) = \text{rang}\left(\frac{A_1}{A_2}\right)$.
 - c) Si $F_1 = \text{Col}(A_1)$ i $F_2 = \text{Nul}(A_2)$, aleshores: $F_1 \subseteq F_2 \iff A_2A_1 = 0$.

Operacions amb subespais: suma i intersecció

1) Els subespais suma i intersecció. Siguin F_1, F_2 dos subespais vectorials de \mathbb{K}^n . Definim el subespai vectorial suma $F_1 + F_2$ i el subespai vectorial intersecció $F_1 \cap F_2$ d'aquests subespais com:

$$F_1 + F_2 = \{ u \in \mathbb{K}^n : \text{ existeixen } u_1 \in F_1, u_2 \in F_2 \text{ tals que } u = u_1 + u_2 \}.$$

 $F_1 \cap F_2 = \{ u \in \mathbb{K}^n : u \in F_1 \text{ i } u \in F_2 \}.$

- 2) Relació entre els subespais, la seva suma i la seva intersecció. Si F_1 i F_2 són dos subespais vectorials de \mathbb{K}^n , aleshores:
 - a) $F_1 \cap F_2 \subseteq F_i \subseteq F_1 + F_2$, per a i = 1, 2.
 - b) $F_1 = F_1 + F_2$ si i només si $F_2 \subseteq F_1$.
 - c) $F_1 = F_1 \cap F_2$ si i només si $F_1 \subseteq F_2$.
 - d) $F_1 \cap F_2 = F_1 + F_2$ si i només si $F_1 = F_2$.
- 3) Sistemes de generadors i bases dels subespais suma i intersecció.
 - a) Si $F_1 = \langle v_1, ..., v_r \rangle$ i $F_2 = \langle w_1, ..., w_s \rangle$ són dos subespais vectorials de \mathbb{K}^n , aleshores la seva suma és $F_1 + F_2 = \langle v_1, ..., v_r, w_1, ..., w_s \rangle$. Per tant, el conjunt de vectors $\{v_1, ..., v_r, w_1, ..., w_s\}$ conté una base del subespai $F_1 + F_2$.
 - b) Si $F_1 = \langle v_1, ..., v_r \rangle$ i $F_2 = \langle w_1, ..., w_s \rangle$ són dos subespais vectorials de \mathbb{K}^n , aleshores una base de la intersecció $F_1 \cap F_2$ es pot determinar si coneixem les relacions de dependència lineal del conjunt de vectors $\{v_1, ..., v_r, w_1, ..., w_s\}$.
- 4) Dimensions dels subespais suma i intersecció. Fórmula de Grassmann. Si F_1, F_2 són dos subespais de \mathbb{K}^n , aleshores $\dim(F_1) + \dim(F_2) = \dim(F_1 + F_2) + \dim(F_1 \cap F_2)$.
- 5) Suma, intersecció i matrius. Siguin F_1, F_2 dos subespais vectorials de \mathbb{K}^n .
 - a) Si $F_1 = \text{Col}(A_1)$ i $F_2 = \text{Col}(A_2)$, aleshores $F_1 + F_2 = \text{Col}(A_1 | A_2)$.
 - b) Si $F_1 = \text{Nul}(A_1)$ i $F_2 = \text{Nul}(A_2)$, aleshores $F_1 \cap F_2 = \text{Nul}\left(\frac{A_1}{A_2}\right)$.

Subespais complementaris. Suma directa

- 1) Diem que dos subespais vectorials F_1, F_2 de \mathbb{K}^n són subespais complementaris o suplementaris l'un de l'altre si $F_1 \cap F_2 = \{0\}$ i $F_1 + F_2 = \mathbb{K}^n$. En aquest cas, notarem $\mathbb{K}^n = F_1 \oplus F_2$ i dirm que l'espai \mathbb{K}^n és suma directa dels subespais vectorials F_1 i F_2 .
- 2) Existència i dimensió dels complementaris d'un subespai.
 - a) Siguin F_1, F_2 dos subespais vectorials de \mathbb{K}^n . Aleshores F_1 i F_2 són subespais complementaris si i només si $\dim(F_1) + \dim(F_2) = \dim(F_1 + F_2) = n$.
 - b) Si F és un subespai vectorial de \mathbb{K}^n , aleshores existeix un complementari de F. En general, el complementari de F no és únic, però tots ells tenen dimensió $n \dim(F)$.

- 3) Caracterització matricial. Siguin F_1, F_2 dos subespais vectorials de \mathbb{K}^n .
 - a) Si $F_1 = \text{Col}(A_1)$ i $F_2 = \text{Col}(A_2)$, aleshores els subespais F_1 i F_2 són complementaris si i només si rang (A_1) + rang (A_2) = rang $(A_1 | A_2)$ = n.
 - b) Si $F_1 = \text{Nul}(A_1)$ i $F_2 = \text{Nul}(A_2)$, aleshores els subespais F_1 i F_2 són complementaris si i només si rang $(A_1) + \text{rang}(A_2) = \text{rang}\left(\frac{A_1}{A_2}\right) = n$.
- 4) L'espai com suma directa de subespais.
 - a) Siguin F_1, F_2 dos subespais vectorials de \mathbb{K}^n . Aleshores $\mathbb{K}^n = F_1 \oplus F_2$ si i només si per a tot $u \in \mathbb{K}^n$ existeixen uns únics elements $u_1 \in F_1$ i $u_2 \in F_2$ tal que $u = u_1 + u_2$.
 - b) Si $\mathbb{K}^n = F_1 \oplus F_2$ i B_i és una base de F_i , aleshores $B = B_1 \cup B_2$ és una base de \mathbb{K}^n .
- 5) Generalització a tres o més subespais.
 - a) Siguin $F_1, ..., F_r$ subespais vectorials de \mathbb{K}^n . Diem que \mathbb{K}^n és suma directa dels subespais $F_1, ..., F_r$, i ho notem $\mathbb{K}^n = F_1 \oplus \cdots \oplus F_r$, si i només si per a tot $u \in \mathbb{K}^n$ existeixen uns únics elements $u_i \in F_i$ tals que $u = u_1 + \cdots + u_r$.
 - b) Si $\mathbb{K}^n = F_1 \oplus \cdots \oplus F_r$ i si B_i és una base de F_i , aleshores $B = B_1 \cup \cdots \cup B_r$ és una base de \mathbb{K}^n .

3.1.3 Estructura euclidiana de l'espai real n-dimensional

Producte escalar, norma i distància

1) Producte escalar. Si $u = (x_1, ..., x_n) \in \mathbb{R}^n$ i $v = (y_1, ..., y_n) \in \mathbb{R}^n$, definim el producte escalar de u i v com:

$$\langle u, v \rangle = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + \dots + x_n y_n.$$

El producte escalar és una aplicació $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ que és lineal en cada factor, simètrica i definida positiva i no degenerada. És a dir:

- a) Per a tot $u, v, w \in \mathbb{R}^n$, $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$.
- b) Per a tot $u, v \in \mathbb{R}^n$ i tot $\lambda \in \mathbb{R}$, $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$.
- c) Per a tot $u, v, w \in \mathbb{R}^n$, $\langle w, u + v \rangle = \langle w, u \rangle + \langle w, v \rangle$.
- d) Per a tot $u, v \in \mathbb{R}^n$ i tot $\lambda \in \mathbb{R}$, $\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$.
- e) Per a tot $u, v \in \mathbb{R}^n$, $\langle v, u \rangle = \langle u, v \rangle$.
- f) Per a tot $u \in \mathbb{R}^n$, $\langle u, u \rangle \ge 0$ i, a més, $\langle u, u \rangle = 0$ si i només si u = 0.
- 2) Norma. Si $u = (x_1, ..., x_n) \in \mathbb{R}^n$, definim la norma de u com:

$$||u|| = \sqrt{\langle u, u \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{x_1^2 + \dots + x_n^2}.$$

La norma és una aplicació $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ que satisfà:

- a) Per a tot $u \in \mathbb{R}^n$, $||u|| \ge 0$ i, a més, ||u|| = 0 si i només si u = 0.
- b) Per a tot $u \in \mathbb{R}^n$ i tot $\lambda \in \mathbb{R}$, $||\lambda u|| = |\lambda|||u||$.
- c) Per a tot $u, v \in \mathbb{R}^n$, $||u + v|| \le ||u|| + ||v||$. (Designaltat triangular.)
- 3) Distància. Si $u = (x_1, ..., x_n) \in \mathbb{R}^n$ i $v = (y_1, ..., y_n) \in \mathbb{R}^n$, definim la distància de u a v com:

$$d(u,v) = \|u-v\| = \sqrt{\langle u-v, u-v \rangle} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

La distància és una aplicació $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ que satisfà:

- a) Per a tot $u, v \in \mathbb{R}$, $d(u, v) \ge 0$ i, a més, d(u, v) = 0 si i només si u = v.
- b) Per a tot $u, v \in \mathbb{R}^n$, d(u, v) = d(v, u).
- c) Per a tot $u, v, w \in \mathbb{R}^n$, $d(u, v) \le d(u, w) + d(w, v)$. (Designaltat triangular.)

Algunes igualtats. Desigualtat de Cauchy-Schwarz. Angle entre vectors

- 1) Norma de sumes i de diferències. Relació entre el producte escalar i les normes. Si $u, v \in \mathbb{R}^n$, aleshores:
 - a) $||u + v||^2 = ||u||^2 + ||v||^2 + 2\langle u, v \rangle$.
 - b) $||u v||^2 = ||u||^2 + ||v||^2 2\langle u, v \rangle$.
 - c) Si $\langle u, v \rangle = 0$, aleshores $||u + v||^2 = ||u||^2 + ||v||^2$. (Teorema de Pitàgoras.)
 - d) $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$. (Llei del paral·lelogram.)
 - e) $\langle u, v \rangle = \frac{1}{2} (\|u + v\|^2 \|u\|^2 \|v\|^2) = \frac{1}{2} (\|u\|^2 + \|v\|^2 \|u v\|^2) = \frac{1}{4} (\|u + v\|^2 \|u v\|^2).$
- 2) Designaltat de Cauchy-Schwarz. Si $u, v \in \mathbb{R}^n$, aleshores $|\langle u, v \rangle| \le ||u|| ||v||$. A més, $|\langle u, v \rangle| = ||u|| ||v||$ si i només si els vectors u, v són linealment dependents.
- 3) Angle entre vectors. Si $u, v \in \mathbb{R}^n$ són vectors no nuls, aleshores existeix un únic $\varphi \in [0, \pi]$ tal que $\langle u, v \rangle = ||u|| ||v|| \cos \varphi$. Diem que φ és l'angle entre u i v, i ho notem $\varphi = \widehat{u, v}$. Per tant:
 - a) $\widehat{u, v} = 0, \pi$ si i només si els vectors u, v són linealment dependents.
 - b) $\widehat{u,v} = \pi/2$ si i només si $\langle u,v \rangle = 0$.

Vectors ortogonals i vectors ortonormals. Mètode de Gram-Schmidt

- 1) Diem que un element $u \in \mathbb{R}^n$ és unitari si ||u|| = 1. Diem que els vectors $u_1, \ldots, u_m \in \mathbb{R}^n$ són ortogonals si $\langle u_i, u_j \rangle = 0$, per a $i \neq j$. Diem que els vectors $u_1, \ldots, u_m \in \mathbb{R}^n$ són ortogonals si són ortogonals i unitaris.
- 2) Ortogonalitat, ortonormalitat i independència lineal.
 - a) Si $u_1, ..., u_m \in \mathbb{R}^n$ són vectors ortogonals i no nuls, aleshores $u_1, ..., u_m$ són vectors linealment independents.

- b) Si $u_1, ..., u_m \in \mathbb{R}^n$ són vectors ortogonals i no nuls, aleshores $\frac{1}{\|u_1\|}u_1, ..., \frac{1}{\|u_m\|}u_m$ són vectors ortonormals i linealment independents.
- 3) Mètode de Gram-Schmidt. Siguin $v_1, \ldots, v_m \in \mathbb{R}^n$. Definim $w_1 = v_1$ i, per a $k \in \{2, \ldots, m\}$, definim el vector w_k com $w_k = v_k \sum_{i=1}^{k-1} \lambda_{k,i} w_i$, on $\lambda_{k,i} = \langle v_k, w_i \rangle / \langle w_i, w_i \rangle$. Els vectors $w_1, \ldots, w_m \in \mathbb{R}^n$ definits així satisfan les propietats següents:
 - a) Per a $1 \le k \le m$, $w_1, ..., w_k$ són ortogonals, $\langle w_1, ..., w_k \rangle = \langle v_1, ..., v_k \rangle$, i $w_1, ..., w_k \ne 0$ si i només si $v_1, ..., v_k$ són linealment independents.
 - b) Si $v_1, ..., v_k$ són linealment independents, aleshores el conjunt de vectors $\{w_1, ..., w_k\}$ és una base ortogonal del subespai $\langle v_1, ..., v_k \rangle$, i el conjunt de vectors $\{\frac{1}{\|w_1\|}w_1, ..., \frac{1}{\|w_k\|}w_k\}$ és una base ortonormal del subespai $\langle v_1, ..., v_k \rangle$.

Coeficients de Fourier. Coordenades en una base ortogonal

- 1) Coeficients de Fourier. Sigui $B = \{u_1, ..., u_n\}$ una base ortogonal de \mathbb{R}^n . Per a $1 \le i \le n$, definim el i-èsim coeficient de Fourier d'un vector w de \mathbb{R}^n respecte de la base ortogonal B com l'escalar $c_i(w) = \langle w, u_i \rangle / \langle u_i, u_i \rangle$.
- 2) Coordenades en una bases ortogonal. Si $B = \{u_1, ..., u_n\}$ una base ortogonal de \mathbb{R}^n , aleshores les coordenades d'un element $w \in \mathbb{R}^n$ en la base B són $(c_1(w), ..., c_n(w))$. És a dir:

$$w = \sum_{i=1}^{n} c_i(w) u_i = \sum_{i=1}^{n} \frac{\langle w, u_i \rangle}{\langle u_i, u_i \rangle} u_i.$$

Complementari ortogonal d'un subespai

- 1) Subespais ortogonals. Diem que dos subespais F_1, F_2 de \mathbb{R}^n són ortogonals si per a tot $u \in F_1$ i per a tot $v \in F_2$ es té que $\langle u, v \rangle = 0$. Notem $F_1 \perp F_2$.
 - a) Si $F_1 \perp F_2$, aleshores $F_1 \cap F_2 = \{0\}$.
 - b) Si $F_1 = \langle u_1, \dots, u_r \rangle$ i $F_2 = \langle v_1, \dots, v_s \rangle$, aleshores: $F_1 \perp F_2 \iff \langle u_i, v_i \rangle = 0$, per a tot i, j.
 - c) Si $F_1 = \operatorname{Col}(A_1)$ i $F_2 = \operatorname{Col}(A_2)$, aleshores: $F_1 \perp F_2 \iff A_2^T A_1 = 0 \iff A_1^T A_2 = 0$.
 - d) Si $F_1 = \text{Nul}(A_1)$ i $F_2 = \text{Nul}(A_2)$, aleshores: $F_1 \perp F_2 \iff A_2 A_1^T = 0 \iff A_1 A_2^T = 0$.
- 2) Ortogonal d'un subespai. Definim el subespai ortogonal F^{\perp} d'un subespai vectorial F de l'espai \mathbb{R}^n com $F^{\perp} = \{u \in \mathbb{R}^n : \langle u, v \rangle = 0$, per a tot $v \in F\}$.
 - a) El subespai F^{\perp} és el més gran dels subespais ortogonals a F. És a dir, si G és un subespai vectorial de \mathbb{R}^n aleshores, $G \perp F$ si i només si $G \subseteq F^{\perp}$.
 - b) Si $F = \langle u_1, \dots, u_r \rangle$, aleshores $F^{\perp} = \{ w \in \mathbb{R}^n : \langle w, u_i \rangle = 0, \text{ per a tot } i \}$. (Equacions normals.)
 - c) Si $\{u_1, ..., u_r, u_{r+1}, ..., u_n\}$ és una base ortogonal de \mathbb{R}^n i $\{u_1, ..., u_r\}$ és una base ortogonal de F, aleshores $\{u_{r+1}, ..., u_n\}$ és una base ortogonal de F^{\perp} .
 - d) $\dim(F^{\perp}) = n \dim(F)$.
 - e) Si F = Col(A), aleshores $F^{\perp} = \text{Nul}(A^T)$.

- f) Si F = Nul(A), aleshores $F^{\perp} = \text{Col}(A^T)$.
- 3) Complementari ortogonal d'un subespai.
 - a) Si F és un subespai vectorial de \mathbb{R}^n , aleshores els subespais F i F^{\perp} són subespais ortogonals i complementaris. És a dir, $F \perp F^{\perp}$ i a més $\mathbb{R}^n = F \oplus F^{\perp}$.
 - b) El subespai F^{\perp} és l'únic complementari ortogonal de F. És a dir, si G és un subespai vectorial de \mathbb{R}^n tal que $\mathbb{R}^n = F \oplus G$ i tal que $G \perp F$, aleshores $G = F^{\perp}$.

Projecció i component ortogonal

- 1) Sigui F un subespai vectorial de \mathbb{R}^n . Sigui $w \in \mathbb{R}^n$ i siguin $P_F(w) \in F$ i $C_F(w) \in F^{\perp}$ els únics vectors tals que $w = P_F(w) + C_F(w)$. En aquesta situació, es diu que $P_F(w)$ és la projecció ortogonal de w sobre F i que $C_F(w)$ és la seva component ortogonal.
- 2) Càlcul amb els coeficients de Fourier. Siguin F un subespai de \mathbb{R}^n i $w \in \mathbb{R}^n$.
 - a) Si $\{u_1, \dots, u_r\}$ és una base ortogonal de F, aleshores $P_F(w) = \sum_{i=1}^r \lambda_i u_i$, on $\lambda_i = \langle w, u_i \rangle / \langle u_i, u_i \rangle$, i $C_F(w) = w P_F(w)$.
 - b) Si $\{v_1, ..., v_s\}$ és una base ortogonal de F^{\perp} , aleshores $P_F(w) = w C_F(w)$ i $C_F(w) = \sum_{i=1}^s \mu_i v_i$, on $\mu_i = \langle w, v_i \rangle / \langle v_i, v_i \rangle$.
- 3) Càlcul matricial.
 - a) Siguin F un subespai de \mathbb{R}^n i $w = (b_1, ..., b_n) \in \mathbb{R}^n$. Suposem que F = Col(A), amb $A \in \mathcal{M}_{n,r}(\mathbb{R})$. En aquesta situació, es té:

$$P_F(w) = \sum_{i=1}^r \lambda_i v_i, \quad C_F(w) = w - P_F(w),$$

on v_1, \dots, v_r són els vectors definits per les columnes de la matriu A:

$$A = \begin{pmatrix} \uparrow & & \uparrow \\ v_1 & \dots & v_r \\ \downarrow & & \downarrow \end{pmatrix},$$

i on $\lambda_1, ..., \lambda_r$ són les solucions del sistemea d'equacions:

$$A^T A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix} = A^T \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

b) Siguin F un subespai de \mathbb{R}^n i $w = (b_1, ..., b_n) \in \mathbb{R}^n$. Suposem que F = Nul(A), amb $A \in \mathcal{M}_{s,n}(\mathbb{R})$. En aquesta situació, es té:

$$P_F(w) = w - C_F(w), \quad C_F(w) = \sum_{i=1}^{s} \mu_i u_i,$$

on $u_1, ..., u_s$ són els vectors definits per les files de la matriu A; és a dir, per les columnes de la matriu transposada A^T :

$$A^T = \begin{pmatrix} \uparrow & & \uparrow \\ u_1 & \dots & u_s \\ \downarrow & & \downarrow \end{pmatrix},$$

i on $\mu_1, ..., \mu_s$ són les solucions del sistemea d'equacions:

$$AA^{T} \begin{pmatrix} \mu_{1} \\ \vdots \\ \mu_{s} \end{pmatrix} = A \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}.$$

Aproximació òptima

- 1) Caracterització de la projecció ortogonal. Siguin F un subespai vectorial de \mathbb{R}^n , $w \in \mathbb{R}^n$ i $w' \in F$. Aleshores: $w' = P_F(w) \iff w w' \in F^{\perp} \iff \|w w'\| \le \|w u\|$, per a tot $u \in F$.
- 2) Aproximació òptima. Distància a un subespai. Siguin F un subespai vectorial de \mathbb{R}^n i $w \in \mathbb{R}^n$. Aleshores: $||C_F(w)|| = d(w, P_F(w)) \le d(w, u)$, per a tot $u \in F$. Per tant:
 - a) La projecció ortogonal $P_F(w)$ és la aproximació òptima de w per vectors de F.
 - b) La norma de la component ortogonal $||C_F(w)||$ és la distància del vector w al subespai F.

3.2 Exercicis

- **3.1** Digueu quines de les proposicions següents són certes (per \mathbb{K} entenem \mathbb{R} o \mathbb{C}).
- 1) El conjunt $\{(x, y, z) \in \mathbb{K}^3 : x + y + z = 0\}$ és subespai vectorial de \mathbb{K}^3 .
- 2) El conjunt $\{(\lambda + \mu, \lambda, \mu) \in \mathbb{K}^3 : \lambda, \mu \in \mathbb{K}\}$ és subespai vectorial de \mathbb{K}^3 .
- 3) El conjunt $\{(\lambda + 2, \lambda, \mu) \in \mathbb{K}^3 : \lambda, \mu \in \mathbb{K}\}$ és subespai vectorial de \mathbb{K}^3 .
- 4) El conjunt $\{(\lambda + \mu, \lambda, \mu) \in \mathbb{C}^3 : \lambda, \mu \in \mathbb{R}\}$ és subespai vectorial de \mathbb{C}^3 .
- 5) El conjunt $\{(x_1, x_2, x_1, x_2) \in \mathbb{R}^4 : x_1, x_2 \in \mathbb{Z}\}$ és subespai vectorial de \mathbb{R}^4 .
- 6) El conjunt $\{(x_1, x_2, x_3, x_4) \in \mathbb{K}^4 : x_3 + 2x_4 = 7\}$ és subespai vectorial de \mathbb{K}^4 .
- 7) El conjunt $\{(x_1, ..., x_n) \in \mathbb{R}^n : x_1 < x_2\}$ és subespai vectorial de \mathbb{R}^n .
- 8) El conjunt $\{(x_1, \dots, x_n) \in \mathbb{K}^n : x_1^2 + x_2^2 = 0\}$ és subespai vectorial de \mathbb{K}^n .
- 9) El conjunt de les solucions d'un sistema compatible Ax = b de m equacions i n incògnites amb coeficients en \mathbb{K} és un subespai vectorial de \mathbb{K}^n .
- **3.2** Considerem els subespais vectorials $U = \langle (1,2,1), (3,1,5) \rangle$ i $V = \langle (1,2,1), (3,1,5), (3,-4,7) \rangle$ de \mathbb{R}^3 . És cert que U = V?
- **3.3** Trobeu una base del subespai vectorial $F = \langle (2,1,-1), (8,-5,1), (1,-4,2) \rangle$ de \mathbb{R}^3 i amplieula a una base de \mathbb{R}^3 .
- **3.4** Considerem els subespais vectorials de \mathbb{R}^4 definits per $F = \langle (1,2,1,3), (2,0,3,2) \rangle$ i $G = \langle (-1,6,-3,5), (0,4,-1,4), (3,2,1,-1) \rangle$. Comproveu que $F \subseteq G$, trobeu una base de F i amplieu-la a una base de G.
- **3.5** Doneu la dimensió i una base del subespai vectorial F de \mathbb{R}^3 definit per:

$$F = \{(x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 1 & -1 & 1 \\ 1 & -2 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \}.$$

- **3.6** Sigui $\{u_1, u_2, u_3\}$ una base de \mathbb{K}^3 . Considerem els vectors $v_1 = u_1$, $v_2 = au_2 + u_3$ i $v_3 = u_1 + u_2 + bu_3$, on $a, b \in \mathbb{K}$. Calculeu una base i la dimensió del subespai vectorial generat per v_1 , v_2 i v_3 . Per a quins escalars a, b és el conjunt de vectors $\{v_1, v_2, v_3\}$ una base de l'espai \mathbb{K}^3 ?
- **3.7** Considerem els vectors $u_1 = (1, -3, -2, 5)$, $u_2 = (3, -2, -4, 9)$ i $u_3 = (4, -7, 2, 3)$ de \mathbb{R}^4 . Pertany el vector v = (10, 1, 6, -2) al subespai $\langle u_1, u_2, u_3 \rangle$? És $\{u_1, u_2, u_3\}$ una base d'aquest subespai? En cas afirmatiu, trobeu les components de v en aquesta base.
- **3.8** Trobeu, en cada cas, una base i la dimensió dels subespais vectorials U, V, U + V i $U \cap V$. Determineu, en cada cas, si U = V, si l'espai total és suma dels subespais U i V i si l'espai total és suma directa dels subespais U i V.

45

- 1) En \mathbb{R}^3 : $U = \langle (1,2,-1), (2,-3,2) \rangle$ i $V = \langle (4,1,3), (-3,1,2) \rangle$.
- 2) En \mathbb{R}^4 : $U = \langle (1, -1, 1, 1), (2, 0, 1, 0), (1, 2, 1, 2) \rangle$ i $V = \{(a, b, c, d) \in \mathbb{R}^4 : a + b + c = 0, b + d = 0\}$.
- 3) En \mathbb{R}^4 : $U = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}$ i $V = \{(\lambda a + a(2 + a)\mu, 0, 0, \lambda + \mu) \in \mathbb{R}^4 : \lambda, \mu \in \mathbb{R}\}$, on $a \in \mathbb{R}$ és un paràmetre.
- **3.9** Siguin $F = \langle (0, i, 1), (0, 1, i) \rangle$ i $G = \langle (1 2i, 1 + 2i, 1), (5, -3 + 4i, 1 + 2i) \rangle$ subespais de \mathbb{C}^3 . És cert que $\mathbb{C}^3 = F \oplus G$?
- **3.10** Determineu per a quins valors del paràmetre real a els subespais vectorials $F = \{(x, y, z) \in \mathbb{C}^3 : ix + (1+i)y = (1-i)x iy + (1+ai)z = 0\}$ i $G = \{(x, y, z) \in \mathbb{C}^3 : x + ay + (a+i)z = 0\}$ de \mathbb{C}^3 tenen intersecció nul·la.
- **3.11** Sigui $B_1 = \{u_1, u_2, u_3\}$ una base de \mathbb{R}^3 . Comproveu que $B_2 = \{u_1, u_1 + u_2, u_1 + u_2 + u_3\}$ també és una base de \mathbb{R}^3 . Si un vector té coordenades (a, b, c) en la base B_1 , quines coordenades té en la base B_2 ?
- **3.12** Demostreu, en cada cas, que el conjunt de vectors $\{u_1, u_2, u_3\}$ és una base de \mathbb{C}^3 , i trobeu les components del vector ν en aquesta base.
- 1) $u_1 = (1, 2+i, -i), u_2 = (1+2i, 2, 2-i), u_3 = (1, 0, -1+i), v = (-3+6i, 3+4i, 9-3i).$
- 2) $u_1 = (1, 2i, -i), u_2 = (2, 1+i, 1), u_3 = (-1, 1, -i), v = (1, 2, 0).$
- **3.13** En \mathbb{R}^3 considerem les bases $B_1 = \{(2,1,1), (1,2,1), (1,1,2)\}$ i $B_2 = \{(1,0,1), (0,1,1), (1,1,0)\}$. Sigui $v \in \mathbb{R}^3$ un vector amb coordenades (x,y,z) en la base B_1 i amb coordenades (x',y',z') en la base B_2 . Expresseu x,y i z en funció de x',y' i z'.
- **3.14** Sigui u, v, w una base de \mathbb{R}^3 . Si les coordenades dels vectors (1,1,2), (2,0,3) i (1,1,0) en aquesta base són, respectivament, (2,1,0), (2,0,2) i (1,1,-2), calculeu quins són els vectors u, v i w.
- **3.15** Considerem en \mathbb{R}^4 les famílies de vectors $B = \{u_1, u_2, u_3, u_4\}$ i $B' = \{v_1, v_2, v_3, v_4\}$, on $u_1 = (0, 1, 1, 0)$, $u_2 = (-1, 0, 0, -1)$, $u_3 = (2, 0, 1, 0)$, $u_4 = (0, 0, 1, 1)$, $v_1 = 2u_1 + u_2$, $v_2 = -u_1 + u_3 + u_4$, $v_3 = u_2 2u_3$, i $v_4 = 3u_4$.
- 1) Demostreu que B i B' són bases de \mathbb{R}^4 .
- 2) Sigui $x \in \mathbb{R}^4$ el vector que té components (-1,0,1,0) en la base B. Trobeu les seves components en la base B' i en la base canònica de \mathbb{R}^4 .
- 3) Sigui e_1 el primer vector de la base canònica de \mathbb{R}^4 . Trobeu les coordenades de e_1 en la base B i en la base B'.
- **3.16** Considerem les famílies de vectors $B_1 = \{(1, -1, 0), (2, 1, 3)\}$ i $B_2 = \{(1, 5, 6), (1, 2, 3)\}$ de \mathbb{R}^3 .
- 1) Demostreu que el subespai vectorial generat per B_1 coincideix amb el subespai vectorial generat per B_2 . Notem per F aquest subespai.

- 2) Trobeu, en l'espai vectorial F, la matriu de canvi de base de la base B_1 a la base B_2 .
- 3) Trobeu les coordenades del vector $v = (-5, -7, -12) \in F$ en la base B_1 i en la base B_2 .
- **3.17** Siguin $u, v \in \mathbb{R}^n$. Proveu les propietats següents.
- a) $||u + v||^2 = ||u||^2 + ||v||^2 + 2\langle u, v \rangle$.
- b) $||u v||^2 = ||u||^2 + ||v||^2 2\langle u, v \rangle$.
- c) Si $\langle u, v \rangle = 0$, aleshores $||u + v||^2 = ||u||^2 + ||v||^2$. (Teorema de Pitàgoras.)
- d) $||u + v||^2 + ||u v||^2 = 2(||u||^2 + ||v||^2)$. (Llei del paral·lelogram.)
- e) $\langle u, v \rangle = \frac{1}{2} (\|u + v\|^2 \|u\|^2 \|v\|^2) = \frac{1}{2} (\|u\|^2 + \|v\|^2 \|u v\|^2) = \frac{1}{4} (\|u + v\|^2 \|u v\|^2).$
- **3.18** Trobeu un vector de \mathbb{R}^3 que sigui ortogonal als vectors u = (1, 2, 1) i v = (1, 1, 0).
- **3.19** Demostreu que els vectors $u_1 = (2/3, -2/3, 1/3)$, $u_2 = (1/3, 2/3, 2/3)$, $u_3 = (2/3, -1/3, -2/3)$ formen una base ortonormal de \mathbb{R}^3 . Doneu les coordenades del vector v = (2, 3, -1) en aquesta base (coeficients de Fourier).
- **3.20** Siguin $u, v, w \in \mathbb{R}^n$ tals que ||u|| = ||v|| = 1, ||w|| = 2, $\widehat{u, w} = \widehat{v, w} = \pi/3$ i $\widehat{u, v} = \pi/2$. Calculeu el producte escalar $\langle u + v, v + w \rangle$.
- **3.21** Trobeu una base ortonormal dels subespais que s'indiquen.
- 1) $F_1 = \langle (1,2,-1,0), (2,3,2,1), (1,0,1,0) \rangle$ de \mathbb{R}^4 .
- 2) $F_2 = \langle (1,1,1,1,0), (1,0,1,1,1), (1,1,0,0,1), (0,0,1,1,1) \rangle$ de \mathbb{R}^5 .
- 3) $F_3 = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z = 0\} \text{ de } \mathbb{R}^4.$
- **3.22** Trobeu una base del complement ortogonal dels subespais següents.
- 1) $F_1 = \langle (2, -1, 5), (1, 2, 8) \rangle \text{ de } \mathbb{R}^3$.
- 2) $F_2 = \langle (1,2,3,-1,2), (2,4,7,2,-1) \rangle$ de \mathbb{R}^5 .
- 3) $F_3 = \langle (1,0,2,1), (0,1,-2,1) \rangle \text{ de } \mathbb{R}^4.$
- 4) $F_4 = \{(x, y, z) : \mathbb{R}^3 : x + 8y 4 = 0\} \text{ de } \mathbb{R}^3.$
- 5) $F_5 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 2x_1 + x_2 + 3x_3 x_4 = 0, 3x_1 + 2x_2 2x_4 = 0\} \text{ de } \mathbb{R}^4.$
- **3.23** Calculeu el complement ortogonal F^{\perp} del subespai $F = \langle (1,2,1,0), (0,1,1,2) \rangle$ de \mathbb{R}^4 i escriviu el vector v = (0,1,2,1) com a suma d'un vector de F i un vector de F^{\perp} .
- **3.24** Trobeu, en cada cas, la projecció ortogonal i la component ortogonal del vector u respecte del subespai H.

- 1) u = (2,1,0,3) i $F_1 = \langle (-1,0,1,0), (2,1,0,0) \rangle$.
- 2) u = (4, -1, -3, 4) i $F_2 = \langle (1, 1, 1, 1), (1, 2, 2, -1), (1, 0, 0, 3) \rangle$.
- 3) u = (2,1,0,3) i $F_3 = \{(x,y,z,t) \in \mathbb{R}^4 : 2x + y + 3z + t = 0\}.$
- 4) u = (7, -4, -1, 2) i $F_4 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 2x_1 + x_2 + x_3 + 3x_4 = 0, 2x_1 + 2x_2 + 2x_3 + x_4 = 0, x_1 + 2x_2 + 2x_3 9x_4 = 0\}.$

3.3 Solucions

- **3.1** Són certes les proposicions: 1; 2; 8, només per a $\mathbb{K} = \mathbb{R}$; i 9, només si el sistema és homogeni.
- **3.2** Sí.
- **3.3** Una base de F és $\{(2,1,-1),(1,-4,2)\}$ i el vector (0,0,1) completa aquesta base a una de \mathbb{R}^3 .
- **3.4** $G = \langle (1,2,1,3), (2,0,3,2), (3,2,1,-1) \rangle.$
- **3.5** És un subespai de dimensió 1. Una base de F és (-2, -1, 1).
- **3.6** La dimensió és 2 si $a, b \in \mathbb{K}$ són tals que ab = 1 i, en aquest cas, els vectors v_1, v_2 determinen una base del subespai. La dimensió val 3 si $a, b \in \mathbb{K}$ són tals que $ab \neq 1$ i, en aquest cas, els vectors v_1, v_2, v_3 determinen una base del subespai. Per tant, els vectors v_1, v_2, v_3 determinen una base de \mathbb{K}^3 si, i només si, $ab \neq 1$.
- **3.7** Sí, v pertany a aquest subespai. Sí, $\{u_1, u_2, u_3\}$ és una base del subespai que generen aquests vectors. Les components de v en aquesta base són (-7,3,2).

3.8

- 1) Tenim que dim $(U) = \dim(V) = 2$, dim(U + V) = 3 i dim $(U \cap V) = 1$. En particular, $U \neq V$, $\mathbb{R}^3 = U + V$, però la suma no és directa. Bases: $U = \langle (1, 2, -1), (2, -3, 2) \rangle$, $V = \langle (4, 1, 3), (-3, 1, 2) \rangle$, $U \cap V = \langle (7, 0, 1) \rangle$.
- 2) Tenim que dim(U) = 3 i el sistema de generadors donat és una base de U; dim(V) = 2 i una base de V és $\{(0, -1, 1, 1), (1, -1, 0, 1)\}$. Per tant, $U \neq V$. Intersecció: $U \cap V = \langle (1, -3, 2, 3) \rangle$ i, per tant, dim $(U \cap V) = 1$. El subespai U + V té dimensió 4, $U + V = \mathbb{R}^4$, i la suma no és directa.
- 3) Tenim que dim(U) = 3 i els vectors (1,0,0,-1), (0,1,0,-1), (0,0,1,-1) formen una base de U. Si $a \ne 0,-1$, aleshores dim(V) = 2 i els vectors (a,0,0,1), (a(2+a),0,0,1) constitueixen una base de V. En aquest cas, $U \ne V$, $U + V = \mathbb{R}^4$, però la suma no és directa, i $U \cap V$ és un subespai de dimensió 1 generat pel vector (-1,0,0,1). Si a=-1, aleshores $V=\langle (-1,0,0,1)\rangle$. En aquest cas, U+V=U i $U\cap V=V$. Si a=0, aleshores $\{(0,0,0,1)\}$ és una base de V. En aquest cas, $U+V=\mathbb{R}^4$, $U\cap V=\{0\}$ i, per tant, $\mathbb{R}^4=U\oplus V$.
- 3.9 Sí.
- **3.10** $F \cap G = \{(0,0,0)\}$ si i només si $a \neq 1$.
- **3.11** (a-b,b-c,c).
- 3.12
- 1) (i,2+i,-3). 2) ((-4-7i)/15,(12+i)/15,(1-i)/3).
- **3.13** x = (x' y' + z')/2, y = (-x' + y' + z')/2, z = (x' + y' z')/2.
- **3.14** u = (2,0,1), v = (-3,1,0), w = (-1,0,1/2).
- 3.15
- 1) —
- 2) Les components de x en la base B' són (0,1,0,-1/3) i en la base canònica x té components (2,-1,0,0).
- 3) $(e_1)_B = (0, -1/3, 1/3, -1/3), (e_1)_{B'} = (-1/12, -1/6, -1/4, -1/18).$

3.16

1) — 2) $\begin{pmatrix} -1 & -1 \\ 2 & 3 \end{pmatrix}$. 3) $v_{B_1} = (3, -4), v_{B_2} = (1, -6)$.

3.18 Qualsevol vector múltiple de (1, -1, 1).

3.19 Els coeficients de Fourier del vector v = (2, 3, -1) en la base donada són (-1/3, 2, 1).

3.20 $\langle u + v, v + w \rangle = 3.$

3.21

1) $\frac{1}{\sqrt{6}} \cdot (1, 2, -1, 0), \frac{2}{\sqrt{3}} \cdot (1, 1, 3, 1), \frac{1}{\sqrt{6}} \cdot (2, -1, 0, -1).$

2) $\frac{1}{2} \cdot (1,1,1,1,0), \frac{1}{2\sqrt{7}} \cdot (1,-3,1,1,4), \frac{1}{\sqrt{91}} \cdot (5,-4,-4,5), \frac{1}{\sqrt{26}} \cdot (-4,2,1,1,2).$

3) $\frac{1}{\sqrt{2}} \cdot (-1,1,0), \frac{1}{\sqrt{6}} \cdot (-1,-1,2).$

3.22

1) $F_1^{\perp} = \langle (-18, -11, 5) \rangle$.

2) $F_2^{\perp} = \langle (-17, 0, 5, 0, 1), (13, 0, -4, 1, 0), (-2, 1, 0, 0, 0) \rangle$.

3) $F_3^{\perp} = \langle (-1, -1, 0, 1), (-2, 2, 1, 0) \rangle$.

4) $F_4^{\perp} = \langle (1, 8, -4) \rangle$.

5) $F_5^{\perp} = (2, 1, 3, -1), (3, 2, 0, -4)$.

3.23 Base ortogonal de F: (1,2,1,0), (-1,0,1,4). Base ortogonal de F^{\perp} : (4,-2,0,1), (-1,-3,7,-2). $P_F(\nu) = (1/3,4/3,1,4/3), P_{F^{\perp}}(\nu) = (-1/3,-1,1,-1/3)$.

3.24

1) Base ortogonal de F_1 : (-1,0,1,0), (1,1,1,0). $P_{F_1}(u) = (2,1,0,0)$. $C_{F_1}(u) = u - P_{F_1}(u) = (0,0,0,3)$.

2) Base ortogonal de F_2 : (1,1,1,1), (0,1,1,-2). $P_{F_2}(u) = (1,-2,-2,7)$. $C_{F_2}(u) = u - P_{F_2}(u) = (3,1,-1,-3)$.

3) Base ortogonal de F_3 : (-1,0,0,2), (-6,0,5,-3), (-2,14,-3,-1). $P_{F_3}(u) = (2/5,-7/15,-8/15,53/15)$. $C_{F_3}(u) = u - P_{F_3}(u) = (8/5,22/15,8/5,-8/15)$.

4) Base ortogonal de F_4 : (-5,-11,15,2). $P_{F_4}(u) = (2/75,22/375,-2/25,-4/375)$. $C_{F_4}(u) = u - P_{F_4}(u) = (523/75,-1522/375,-23/25,754/375)$.

TEMA 4

TRANSFORMACIONS LINEALS

4.1 Resum teòric

4.1.1 Matrius i aplicacions lineals de l'espai n-dimensional

Sigui $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$.

Aplicació lineal. Matriu de l'aplicació

- 1) Diem que una aplicació $f: \mathbb{K}^n \to \mathbb{K}^m$ és lineal si satisfà les propietats següents:
 - a) f(u+v) = f(u) + f(v), per a tot $u, v \in \mathbb{K}^n$.
 - b) $f(\alpha w) = \alpha f(w)$, per a tot $\alpha \in \mathbb{K}$ i tot $w \in \mathbb{K}^n$.

Un endomorfisme de \mathbb{K}^n és una aplicació lineal $f : \mathbb{K}^n \to \mathbb{K}^n$.

- 2) Caracterització.
 - a) Una aplicació $f: \mathbb{K}^n \to \mathbb{K}^m$ és lineal si i només si existeixen escalars $a_{i,j} \in \mathbb{K}$ tals que $f(x_1, ..., x_n) = \left(\sum_{j=1}^n a_{1,j} x_j, ..., \sum_{j=1}^n a_{m,j} x_j\right)$, per a tot $(x_1, ..., x_n) \in \mathbb{K}^n$.
 - b) Per tant, una aplicació $f: \mathbb{K}^n \to \mathbb{K}^m$ és lineal si i només si existeix una matriu $A \in \mathcal{M}_{m,n}(\mathbb{K})$ tal que:

$$f(x_1,...,x_n) = (y_1,...,y_m) \iff A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

- 3) Matriu de l'aplicació. Amb les notacions de l'apartat anterior, diem que la matriu $A \in \mathcal{M}_{m,n}(\mathbb{K})$ és la matriu de l'aplicació lineal $f : \mathbb{K}^n \to \mathbb{K}^m$. Notem A = M(f).
- 4) Igualtat d'aplicacions lineals. Si $f,g:\mathbb{K}^n\to\mathbb{K}^m$ són aplicacions lineals, aleshores: $f=g\iff M(f)=M(g)$.

Operacions entre aplicacions lineals i operacions amb matrius

- 1) Suma. La suma d'aplicacions lineals és una aplicació lineal. És a dir, si $f,g:\mathbb{K}^n\to\mathbb{K}^m$ són lineals, aleshores $f+g:\mathbb{K}^n\to\mathbb{K}^m$, definida per (f+g)(v)=f(v)+g(v), és lineal. Matricialment, M(f+g)=M(f)+M(g).
- 2) Producte per escalar. El producte d'una aplicació lineal per un escalar és una aplicació lineal. És a dir, si $\alpha \in \mathbb{K}$ i $f : \mathbb{K}^n \to \mathbb{K}^m$ és lineal, aleshores $\alpha f : \mathbb{K}^n \to \mathbb{K}^m$, definida per $(\alpha f)(\nu) = \alpha f(\nu)$, és lineal. Matricialment, $M(\alpha f) = \alpha M(f)$.
- 3) Composició. La composició d'aplicacions lineals és una aplicació lineal. És a dir, si $f : \mathbb{K}^n \to \mathbb{K}^r$ i $g : \mathbb{K}^r \to \mathbb{K}^m$ són lineals, aleshores $g \circ f : \mathbb{K}^n \to \mathbb{K}^m$, definida per $(g \circ f)(v) = g(f(v))$, és lineal. Matricialment, $M(g \circ f) = M(g)M(f)$.
- 4) Inversa. La inversa d'una aplicació lineal, si existeix, també és una aplicació lineal. És a dir, si $f: \mathbb{K}^n \to \mathbb{K}^m$ és lineal i bijectiva, aleshores $f^{-1}: \mathbb{K}^m \to \mathbb{K}^n$ és lineal i bijectiva. Matricialment, $M(f^{-1}) = M(f)^{-1}$.

Nucli i imatge d'una aplicació lineal

Sigui $f: \mathbb{K}^n \to \mathbb{K}^m$ una aplicació lineal i sigui A = M(f) la matriu de f.

1) Definim el nucli i la imatge de f, que respectivament notem per Ker(f) i Im(f), com:

$$Ker(f) = \{u \in \mathbb{K}^n : f(u) = 0\}, \quad Im(f) = \{f(u) : u \in \mathbb{K}^n\}.$$

- 2) Descripció matricial. El nucli i la imatge de l'aplicació f són els subsepais associats a la matriu $A \in \mathcal{M}_{m,n}(\mathbb{K})$. Concretament:
 - a) $\operatorname{Ker}(f) = \operatorname{Nul}(A) \subseteq \mathbb{K}^n$. Per tant, $\dim \operatorname{Ker}(f) = n \operatorname{rang}(A)$.
 - b) $\operatorname{Im}(f) = \operatorname{Col}(A) \subseteq \mathbb{K}^m$. Per tant, $\dim \operatorname{Im}(f) = \operatorname{rang}(A)$.
- 3) En particular, $\dim \operatorname{Ker}(f) + \dim \operatorname{Im}(f) = n$.
- 4) Propietats.
 - a) f és injectiva \iff Ker $(f) = \{0\} \iff$ rang(A) = n.
 - b) f és exhaustiva \iff Im $(f) = \mathbb{K}^m \iff$ rang(A) = m.
 - c) f és bijectiva \iff Ker $(f) = \{0\} \land \text{Im}(f) = \mathbb{K}^m \iff n = \text{rang}(A) = m$.
 - d) f injectiva $\Rightarrow n \leq m$.
 - e) f exhaustiva $\Rightarrow n \ge m$.
 - f) f bijectiva $\Rightarrow n = m$.
 - g) Si $f : \mathbb{K}^n \to \mathbb{K}^n$ és un endomorfisme, aleshores: f és injectiva $\iff f$ és exhaustiva $\iff f$ és bijectiva.
- 5) Diem f és un epimorfisme si f és exhaustiva; que és un monomorfisme si f és injectiva; i que és un isomorfisme si f és bijectiva. A més, si f és un endomorfisme bijectiu, aleshores diem que f és un automorfisme.

Aplicacions lineals i sistemes d'equacions lineals

1) Antiimatges per una aplicació lineal i sistemes d'equacions lineals. Siguin $f : \mathbb{K}^n \to \mathbb{K}^m$ una aplicació lineal i $b \in \mathbb{K}^m$. Aleshores calcular les antiimatges de b per f és resoldre l'equació f(x) = b. Si A = M(f) és la matriu de f, aleshores les antiimatges del vector $b = (b_1, \dots b_m) \in \mathbb{K}^m$ per f són les solucions del sistema d'equacions lineals:

$$A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}.$$

- 2) Existència d'antiimatges. Unicitat.
 - a) Siguin $f : \mathbb{K}^n \to \mathbb{K}^m$ una aplicació lineal i $b \in \mathbb{K}^m$. Aleshores existeix, com a mínim, un element $x_0 \in \mathbb{K}^n$ tal que $f(x_0) = b$ si i només si $b \in \text{Im}(f)$.
 - b) Suposem que $x_p \in \mathbb{K}^m$ és una antiimatge de b per f i sigui $x \in \mathbb{K}^n$. Aleshores f(x) = b si i només si existeix $x_h \in \text{Ker}(f)$ tal que $x = x_p + x_h$.
 - c) Per tant, existeix una única antiimatge de b per f si i només si $b \in \text{Im}(f)$ i $\text{Ker}(f) = \{0\}$.
- 3) Principi de superposició. Siguin $f: \mathbb{K}^n \to \mathbb{K}^m$ una aplicació lineal, $b, c \in \mathbb{K}^m$ i $\lambda, \mu \in \mathbb{K}$. Si x_b és una antiimatge de b per f i x_c és una antiimatge de c per d0, aleshores d0, aleshores d0, d0, d0, antiimatge de d0, d

Aplicacions lineals i l'estructura vectorial de l'espai

- 1) Aplicacions lineals, combinacions lineals i dependència i independència lineal. Siguin f: $\mathbb{K}^n \to \mathbb{K}^m$ una aplicació lineal i $u_1, \dots, u_r \in \mathbb{K}^n$.
 - a) Si $w = \lambda_1 u_1 + \dots + \lambda_r u_r$, aleshores $f(w) = \lambda_1 f(u_1) + \dots + \lambda_r f(u_r)$.
 - b) Si $u_1, ..., u_r$ són linealment dependents en \mathbb{K}^n , aleshores $f(u_1), ..., f(u_r)$ són linealment dependents en \mathbb{K}^m . A més, es conserven les relacions de dependència lineal.
 - c) Si $f(u_1),...,f(u_r)$ són linealment independents en \mathbb{K}^m , aleshores $u_1,...,u_r$ són linealment independents en \mathbb{K}^n .
- 2) Aplicacions lineals i bases. Siguin $f : \mathbb{K}^n \to \mathbb{K}^m$ una aplicació lineal i $B = \{u_1, \dots, u_n\}$ una base de \mathbb{K}^n .
 - a) Si coneixem $f(u_1),...,f(u_n)$, aleshores podem calcular f(u), per a tot $u \in \mathbb{K}^n$. És a dir, l'aplicació lineal f està univocament determinada per les imatges dels vectors d'una base.
 - b) La imatge de f és el subespai $\text{Im}(f) = \langle f(u_1), ..., f(u_n) \rangle$. És a dir, la imatge de l'aplicació lineal f és el subespai vectorial generat pel vectors $f(u_1), ..., f(u_n)$. Per tant, Im(f) = Col(M), on $M \in \mathcal{M}_{m,n}(\mathbb{K})$ és la matriu que "té per columnes" els vectors $f(u_1), ..., f(u_n)$. És a dir, si $f(u_j) = (m_{1,j}, ..., m_{m,j})$, aleshores:

$$M = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ f(u_1) & \dots & f(u_j) & \dots & f(u_n) \\ \downarrow & & \downarrow & & \downarrow \end{pmatrix} = \begin{pmatrix} m_{1,1} & \cdots & m_{1,j} & \cdots & m_{1,n} \\ \vdots & & \vdots & & \vdots \\ m_{m,1} & \cdots & m_{m,j} & \cdots & m_{m,n} \end{pmatrix}.$$

- 3) El nucli de f és el subespai Ker(f) = {∑_{i=1}ⁿ λ_iu_i : ∑_{i=1}ⁿ λ_if(u_i) = 0}. És a dir, el nucli de l'aplicació lineal f el podem determinar si coneixem les relacions de dependència lineal del conjunt de vectors {f(u₁),...,f(u_n)}. Per tant, Ker(f) = Nul(M), on M ∈ M_{m,n}(K) és la matriu de l'apartat anterior.
- 4) Propietats.
 - a) f és exhaustiva $\iff f(u_1), \dots, f(u_n)$ és un sistema de generadors de \mathbb{K}^m .
 - b) f és injectiva $\iff f(u_1), \dots, f(u_n)$ són vectors linealment independents de \mathbb{K}^m .
 - c) f és bijectiva $\iff \{f(u_1), \dots, f(u_n)\}\$ és una base de \mathbb{K}^m .
- 5) Aplicacions lineals i subespais vectorials. Sigui $f : \mathbb{K}^n \to \mathbb{K}^m$ una aplicació lineal.
 - a) Si $u_1, ..., u_r \in \mathbb{K}^n$, aleshores $f(\langle u_1, ..., u_r \rangle) = \langle f(u_1), ..., f(u_r) \rangle$.
 - b) Si $F \subseteq \mathbb{K}^n$ és un subespai, aleshores $f(F) \subseteq \mathbb{K}^m$ és un subespai i dim $f(F) \le \dim F$.
 - c) Si $A = M(f) \in \mathcal{M}_{m,n}(\mathbb{K})$ és la matriu de f i $N \in \mathcal{M}_{n,r}(\mathbb{K})$ verifica que $F = \operatorname{Col}(N)$, aleshores $f(F) = \operatorname{Col}(AN)$ i, per tant, dim $f(F) = \operatorname{rang}(AN)$.

4.1.2 Matrius equivalents. Matrius semblants

Matriu associada a una aplicació lineal en unes bases

- 1) Matriu associada a una aplicació lineal. Siguin $f : \mathbb{K}^n \to \mathbb{K}^m$ una aplicació lineal, $B_1 = \{u_1, \dots, u_n\}$ una base de \mathbb{K}^n i $B_2 = \{v_1, \dots, v_m\}$ una base de \mathbb{K}^m .
 - a) Existeix una única matriu $M \in \mathcal{M}_{m,n}(\mathbb{K})$ tal que si $x \in \mathbb{K}^n$ té coordenades $x_{B_1} = (\lambda_1, ..., \lambda_n)$ en la base B_1 de \mathbb{K}^n i $y \in \mathbb{K}^m$ té coordenades $y_{B_2} = (\mu_1, ..., \mu_m)$ en la base B_2 de \mathbb{K}^m , aleshores:

$$f(x) = y \iff M \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_m \end{pmatrix}.$$

b) És a dir, si M és la matriu que "té per columnes" les coordenades de $f(u_1), \ldots, f(u_n)$ en la base B_2 de \mathbb{K}^m . És a dir, si $f(u_j)_{B_2} = (m_{1,j}, \ldots, m_{m,j})$, aleshores:

$$M = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ (f(u_1))_{B_2} & \dots & (f(u_j))_{B_2} & \dots & (f(u_n))_{B_2} \end{pmatrix} = \begin{pmatrix} m_{1,1} & \cdots & m_{1,j} & \cdots & m_{1,n} \\ \vdots & & \vdots & & \vdots \\ m_{m,1} & \cdots & m_{m,j} & \cdots & m_{m,n} \end{pmatrix}.$$

- c) Diem que M és la matriu associada a f en la bases B_1 de \mathbb{K}^n i en la base B_2 de \mathbb{K}^m . Ho notem $M = M(f; B_1, B_2)$.
- d) Observem que si B_1 és la base canònica de \mathbb{K}^n i B_2 és la base canònica de \mathbb{K}^m , aleshores $M(f; B_1, B_2) = M(f)$.
- 2) Matriu associada a un endomorfisme. Siguin $f : \mathbb{K}^n \to \mathbb{K}^n$ un endomorfisme i $B = \{u_1, ..., u_n\}$ una base de \mathbb{K}^n . Diem que M és la matriu associada a l'endomorfisme f en la base B de \mathbb{K}^n si M = M(f; B, B). Ho notem M(f; B) = M(f; B, B).

Matriu associada a una aplicació lineal i canvis de bases

- 1) Matrius associades a l'aplicació identitat i matrius canvi de coordenades.
 - a) Si *B* és una base de \mathbb{K}^n , aleshores $M(\mathrm{Id}_{\mathbb{K}^n};B)=\mathrm{Id}_n$.
 - b) Si B i B' són dues bases de \mathbb{K}^n , aleshores $M(\mathrm{Id}_{\mathbb{K}^n}; B, B') = M(B \to B')$. És a dir, $M(\mathrm{Id}_{\mathbb{K}^n}; B, B')$ és la matriu canvi de base que transforma les coordenades d'un vector de \mathbb{K}^n en la base B en les coordenades del vector en la base B'.
- 2) Matriu associada a una aplicació lineal i canvis de bases. Si $f: \mathbb{K}^n \to \mathbb{K}^m$ és una aplicació lineal, B_1, B_1' són dues bases de \mathbb{K}^n i B_2, B_2' són dues bases de \mathbb{K}^m , aleshores:

$$M(f; B'_1, B'_2) = M(B_2 \rightarrow B'_2) \cdot M(f; B_1, B_2) \cdot M(B'_1 \rightarrow B_1).$$

3) Matriu associada a un endomorfisme i canvis de bases. Si $f : \mathbb{K}^n \to \mathbb{K}^n$ és un endomorfisme i B i B' són dues bases de l'espai vectorial \mathbb{K}^n , aleshores:

$$M(f;B') = M(B \rightarrow B')M(f;B)M(B' \rightarrow B).$$

Matrius semblants

- 1) Direm que dues matrius $A, A' \in \mathcal{M}_n(\mathbb{K})$ són semblants si existeix una matriu invertible $P \in \mathcal{M}_n(\mathbb{K})$ tal que $A' = P^{-1}AP$.
- 2) Matrius semblants: matriu d'un endomorfisme i canvi de base.
 - a) Si $f: \mathbb{K}^n \to \mathbb{K}^n$ és un endomorfisme i B i B' són dues bases de \mathbb{K}^n , aleshores les matrius associades M(f;B) i M(f;B') són matrius semblants.
 - b) Dues matrius són semblants si i només si defineixen el mateix endomorfisme. És a dir, $A, A' \in \mathcal{M}_n(\mathbb{K})$ són semblants si i només si existeixen dues bases B, B' de \mathbb{K}^n i un endomorfisme f de \mathbb{K}^n tals que A = M(f; B) i A' = M(f; B').

4.1.3 Diagonalització de matrius

Matrius diagonalitzables

- 1) Diem que una matriu quadrada $A \in \mathcal{M}_n(\mathbb{K})$ és \mathbb{K} -diagonalitzable si és semblant a una matriu diagonal de $\mathcal{M}_n(\mathbb{K})$. És a dir, A és \mathbb{K} -diagonalitzable si i només si existeixen una matriu invertible $P \in \mathcal{M}_n(\mathbb{K})$ i una matriu diagonal $D = \text{Diag}(\mu_1, \dots, \mu_n) \in \mathcal{M}_n(\mathbb{K})$ tals que $D = P^{-1}AP$.
- 2) Matrius i endomorfismes. Siguin $A \in \mathcal{M}_n(\mathbb{K})$ i $f : \mathbb{K}^n \to \mathbb{K}^n$ l'endomorfisme definit per A. És a dir, $A = M(f) = M(f; B_c)$, on B_c és la base canònica de \mathbb{K}^n , per exemple. Aleshores A és \mathbb{K} -diagonalitzable si i només si existeix una base $B = \{v_1, \dots, v_n\}$ de \mathbb{K}^n tal que la matriu associada a l'endomorfisme f en aquesta base és una matriu diagonal. A més, en aquest cas, $A = PDP^{-1}$, on la matriu diagonal D és D = M(f; B) i on la matriu invertible P és la matriu canvi de base $P = M(B \to B_c)$.

Vectors propis i valors propis

1) Siguin $A \in \mathcal{M}_n(\mathbb{K})$, $v = (x_1, ..., x_n) \in \mathbb{K}^n$ un vector no nul i $\lambda \in \mathbb{K}$. Diem que v és un vector propi de la matriu A de valor propi λ si:

$$A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

És a dir, $v \in \mathbb{K}^n$ és un vector propi de $A \in \mathcal{M}_n(\mathbb{K})$ de valor propi $\lambda \in \mathbb{K}$ si i només si $f(v) = \lambda v$, on f és l'endomorfisme de \mathbb{K}^n definit per A.

- 2) Diagonalització, vectors i valors propis.
 - a) Una matriu $A \in \mathcal{M}_n(\mathbb{K})$ és \mathbb{K} -diagonalitzable si i només si existeix una base $B = \{v_1, \dots, v_n\}$ de \mathbb{K}^n formada per vectors propis de la matriu A.
 - b) En aquest cas, $A = PDP^{-1}$, on P és la matriu que "té per columnes els vectors propis" i on D és la matriu que "en la diagonal té els valors propis". És a dir, si $v_j = (m_{1,j}, ..., m_{n,j}) \in \mathbb{K}^n$ és el vector propi i si $\mu_i \in \mathbb{K}$ és el seu valor propi, aleshores $D = \text{Diag}(\mu_1, ..., \mu_n)$ i:

$$P = \begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ v_1 & \dots & v_j & \dots & v_n \\ \downarrow & & \downarrow & & \downarrow \end{pmatrix} = \begin{pmatrix} m_{1,1} & \cdots & m_{1,j} & \cdots & m_{1,n} \\ \vdots & & \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,j} & \cdots & m_{n,n} \end{pmatrix}.$$

- 3) Vectors propis de valors propis diferents. Els vectors propis d'una matriu $A \in \mathcal{M}_n(\mathbb{K})$ de valors propis diferents són linealment independents. És a dir, si $v_1, ..., v_r \in \mathbb{K}^n$ són vectors propis de A de valors propis $\lambda_1, ..., \lambda_r \in \mathbb{K}$, amb $\lambda_i \neq \lambda_j$ si $i \neq j$, aleshores $v_1, ..., v_r$ són vectors linealment independents.
- 4) Vectors propis de valor propi fixat. Siguin $A \in \mathcal{M}_n(\mathbb{K})$ i $\lambda \in \mathbb{K}$.
 - a) Els vectors propis de A associats al valor propi λ són els elements no nuls del subespai $\operatorname{Nul}(A \lambda \operatorname{Id}_n)$; és a dir, són els vectors no nuls del subespai $\operatorname{Ker}(f \lambda \operatorname{Id}_{\mathbb{K}^n})$, on f és l'endomorfisme de \mathbb{K}^n definit per A.
 - b) Per tant, el màxim nombre de vectors propis de valor propi λ linealment independents de la matriu A és dim Nul $(A \lambda \operatorname{Id}_n) = n \operatorname{rang}(A \lambda \operatorname{Id}_n)$.
 - c) A més, $\lambda \in \mathbb{K}$ és un valor propi de la matriu A si i només si $Nul(A \lambda \operatorname{Id}_n) \neq \{0\}$ si i només si $\det(A \lambda \operatorname{Id}_n) = 0$.

Polinomi característic

1) El polinomi característic d'una matriu quadrada $A \in \mathcal{M}_n(\mathbb{K})$ és $p_A(x) = \det(A - x \operatorname{Id}_n) \in \mathbb{K}[x]$. És a dir, si $A = (a_{i,j})_{i,j}$, aleshores:

56

$$p_A(x) = \begin{vmatrix} a_{1,1} - x & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} - x \end{vmatrix} \in \mathbb{K}[x].$$

2) Grau i coeficients del polinomi característic. Sigui $A \in \mathcal{M}_n \in (\mathbb{K})$ i suposem que el seu polinomi característic és:

$$p_A(x) = \sum_{i \ge 0} a_i x^i = a(x - \lambda_1)^{n_1} \cdot \dots \cdot (x - \lambda_r)^{n_r}.$$

- a) El grau de $p_A(x)$ és $n = n_1 + \cdots + n_r$.
- b) El coeficient dominant de $p_A(x)$ és $a = a_n = (-1)^n$.
- c) El coeficient del terme de grau n-1 de $p_A(x)$ és $a_{n-1}=(-1)^{n-1}\operatorname{Tr}(A)=n_1\lambda_1+\cdots+n_r\lambda_r$.
- d) El terme independent de $p_A(x)$ és $a_0 = \det(A) = \lambda_1^{n_1} \cdot \dots \cdot \lambda_r^{n_r}$.
- 3) Polinomi característic, valors propis i vectors propis. Sigui $A \in \mathcal{M}_n(\mathbb{K})$.
 - a) Un escalar $\lambda \in \mathbb{K}$ és un valor propi de A si i només si λ és una arrel del polinomi característic de A.
 - b) La matriu A té, com a molt, n valors propis.
 - c) Si $\mathbb{K} = \mathbb{C}$, aleshores podem afirmar que A té un valor propi, com a mínim, i, per tant, podem afirmar que la matriu A té, com a mínim, té un vector propi.
 - d) Si $\mathbb{K} = \mathbb{R}$ i n és senar, aleshores podem afirmar que la matriu A té, com a mínim, un valor propi i, per tant, podem afirmar que la matriu A té, com a mínim, un vector propi.
- 4) Multiplicitats dels valors propis. Sigui $A \in \mathcal{M}_n(\mathbb{K})$.
 - a) Si $\lambda \in \mathbb{K}$ és un valor propi de A, aleshores $1 \leq \dim \operatorname{Nul}(A \lambda \operatorname{Id}_n) \leq n_{\lambda}$, on n_{λ} és la multiplicitat de λ com a arrel del polinomi característic $p_A(x)$.
 - b) Diem que dim $\operatorname{Nul}(A \lambda \operatorname{Id}_n)$ és la multiplicitat geomètrica del valor propi λ i que n_{λ} és la multiplicitat algebraica del valor propi λ .

Teoremes de diagonalització

- 1) Teorema de diagonalització. Sigui $A \in \mathcal{M}_n(\mathbb{K})$ una matriu quadrada. Les condicions següents són equivalents:
 - a) La matriu A és \mathbb{K} -diagonalitzable.
 - b) Existeix una base de \mathbb{K}^n formada per vectors propis de la matriu A.
 - c) El polinomi característic de la matriu A descompon en factors lineals en $\mathbb{K}[x]$ i la multiplicitat algebraica de cada valor propi de A coincideix amb la seva multiplicitat geomètrica. És a dir, es verifiquen les dues condicions següents:
 - i) $p_A(x) = (-1)^n (x \lambda_1)^{n_1} \cdots (x \lambda_r)^{n_r}$, amb $\lambda_1, \dots, \lambda_r \in \mathbb{K}$ differents dos a dos.
 - ii) $n_i = \dim \text{Nul}(A \lambda_i \text{ Id}_n)$, per a tot $i \in \{1, ..., r\}$.
- 2) Si es compleixen les condicions del teorema de diagonalització i si $B_i = \{v_{i,1}, \dots, v_{i,n_i}\}$ és una base del subespai $\text{Nul}(A \lambda_i \text{ Id}_n)$, aleshores $B = B_1 \cup \dots \cup B_r = \{v_{1,1}, \dots, v_{1,n_1}, \dots, v_{r,1}, \dots, v_{r,n_r}\}$ és una base de l'espai \mathbb{K}^n formada per vectors propis de la matriu A i, per tant, $A = PDP^{-1}$, on P és la matriu que "té per columnes" els vectors de la base B, i D és la matriu diagonal $D = \text{Diag}(\lambda_1, \stackrel{n_1}{\dots}, \lambda_1, \dots, \lambda_r, \stackrel{n_r}{\dots}, \lambda_r)$.

- 3) Si $A \in \mathcal{M}_n(\mathbb{K})$ té *n* valors propis diferents en \mathbb{K} , aleshores *A* és \mathbb{K} -diagonalitzable.
- 4) Teorema espectral. Tota matriu $A \in \mathcal{M}_n(\mathbb{R})$ simètrica és diagonalitzable en una base ortonormal de \mathbb{R}^n amb valors propis reals. És a dir, existeixen una matriu diagonal $D \in \mathcal{M}_n(\mathbb{R})$ i una matriu ortogonal $P \in \mathcal{M}_n(\mathbb{R})$ tals que $A = PDP^T$.
 - Per definició, una matriu $P \in \mathcal{M}_n(\mathbb{R})$ és ortogonal si és invertible i la seva inversa és la seva transposada; és a dir, $P^TP = \mathrm{Id}_n$. Equivalentment, una matriu és orotogonal si és la matriu de canvi de base entre dues bases ortonormals.
- 5) Teorema de Cayley-Hamilton. Sigui $A \in \mathcal{M}_n(\mathbb{K})$ i $p_A(x) = a_n x^n + \dots + a_1 x + a_0$ el seu polinomi característic. Aleshores:

$$p_A(A) = a_n A^n + \dots + a_1 A + a_0 \operatorname{Id}_n = 0.$$

4.1.4 Descomposició en valors singulars

Sigui $A \in \mathcal{M}_{m,n}(\mathbb{R})$. Considerem les aplicacions lineals definides per A i la seva transposta A^T , que notem igual: $A : \mathbb{R}^n \to \mathbb{R}^m$, $A^T : \mathbb{R}^m \to \mathbb{R}^n$. Aleshores $A^T A : \mathbb{R}^n \to \mathbb{R}^n$ i $AA^T : \mathbb{R}^m \to \mathbb{R}^m$.

- 1) Les matrius AA^T i A^TA són simètriques. Per tant, pel teorema espectral de matrius simètriques, aquestes dues matrius diagonalitzen en bases ortonormals.
- 2) $\operatorname{Ker}(A) = \operatorname{Ker}(A^T A)$.
- 3) $\operatorname{rang}(A) = \operatorname{rang}(A^T) = \operatorname{rang}(A^T A) = \operatorname{rang}(AA^T)$.
- 4) Les matrius AA^T i A^TA tenen els mateixos valos propis no nuls.
- 5) Els valors propis no nuls de $A^T A$ i de AA^T són estrictament positius.
- 6) Diem que $\sigma > 0$ és un valor singular de la matriu A si σ^2 és un valor propi no nul de la matriu $A^T A$ (o de la matriu AA^T).
- 7) Teorema de descomposició en valors singulars. Existeixen matrius ortogonals $U \in \mathcal{M}_m(\mathbb{R})$ i $V \in \mathcal{M}_n(\mathbb{R})$ tals que $A = U\Sigma V^T$, on $\Sigma \in \mathcal{M}_{m,n}(\mathbb{R})$ és la matriu que té zeros a tot arreu excepte a la diagonal principal, que té els valors singulars de A en ordre decreixent: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$.
- 8) Si $A = U\Sigma V^T$ és la descomposició en valors singulars de la matriu A, aleshores $A^T = V\Sigma^T U^T$ és la descomposició en valors singulars de la matriu A^T .

4.2 Exercicis

$$\mathbb{K} = \mathbb{R} \circ \mathbb{K} = \mathbb{C}$$

4.1 Digueu quines de les aplicacions següents són lineals.

1)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x, y) = x + y$.

$$2) \ \ f:\mathbb{R}^2\to\mathbb{R}, \ f(x,y)=xy.$$

3)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x, y) = (0, 0)$.

4)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x, y) = (7, x + y)$.

5)
$$f: \mathbb{K}^3 \to \mathbb{K}^2$$
, $f(x, y, z) = (x + 3y, x - y + z)$.

6)
$$f: \mathbb{K}^2 \to \mathbb{K}^3$$
, $f(x, y) = (x + y, x - y, x + 2y)$.

7)
$$f: \mathbb{K}^2 \to \mathbb{K}^2$$
, $f(x, y) = (x + y + 3, x - y + 3)$.

8)
$$f: \mathbb{K}^3 \to \mathbb{K}^3$$
, $f(x, y, z) = (x + y, x + z, x - y + z^2)$.

9)
$$f: \mathbb{C}^2 \to \mathbb{C}^2$$
, $f(x, y) = (ix, (1+i)x + (2+3i)y)$.

10)
$$f: \mathbb{C}^3 \to \mathbb{C}^3$$
, $f(x, y, z) = (ix, |y|, \overline{z})$.

4.2 Per a cada una de les aplicacions \mathbb{K} -lineals següents $f:\mathbb{K}^n \to \mathbb{K}^m$, doneu la matriu associada a f en les bases canòniques; digueu si f és injectiva, exhaustiva o bijectiva; calculeu la dimensió i una base del nucli i de la imatge de f; i determineu l'aplicació inversa f^{-1} en cas que existeixi.

1)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, on $f(x, y) = (x + y, -y)$.

2)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, on $f(x, y) = (x - y, 2x + 3y, 3x + 2y)$.

3)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, on $f(x, y, z) = (3x, x - y, 2x + y + z)$.

4)
$$f: \mathbb{C}^2 \to \mathbb{C}^2$$
, on $f(x, y) = ((1+i)x + 2y, x + (1-i)y)$.

5)
$$f: \mathbb{C}^3 \to \mathbb{C}^2$$
, on $f(x, y, z) = (x + iy + (1 + i)z, ix - y - (1 - i)z)$.

6)
$$f: \mathbb{C}^3 \to \mathbb{C}^3$$
, on $f(x, y, z) = ((1+2i)x, -iy, (1-2i)z)$.

4.3 Per a les aplicacions lineals següents f_1 i f_2 , calculeu les matrius de f_1 , de f_2 i de $f_2 \circ f_1$ i digueu si l'aplicació composició $f_2 \circ f_1$ és injectiva, exhaustiva o bijectiva.

1)
$$f_1: \mathbb{R}^4 \to \mathbb{R}^3$$
, $f_2: \mathbb{R}^3 \to \mathbb{R}^2$, $f_1(x, y, z, t) = (x + t, y + t, z + t)$, $f_2(x, y, z) = (x + z, y + z)$.

2)
$$f_1: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f_2: \mathbb{R}^3 \to \mathbb{R}^2$, $f_1(x, y, z) = (x + y, z, x + y)$, $f_2(x, y, z) = (x + z, y + z)$.

3)
$$f_1: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f_2: \mathbb{R}^3 \to \mathbb{R}^4$, $f_1(x,y) = (x, x+y, x-y)$, $f_2(x,y,z) = (x, x-y, x+y+z, x-z)$.

- 4) $f_1: \mathbb{C}^2 \to \mathbb{C}^3$, $f_2: \mathbb{C}^3 \to \mathbb{C}^3$, $f_1(x, y) = (iy, -ix, x + y)$, $f_2(x, y, z) = (x + z, iy + iz, y + z)$.
- 5) $f_1: \mathbb{C}^2 \to \mathbb{C}^3$, $f_2: \mathbb{C}^3 \to \mathbb{C}^2$, $f_1(x, y) = (x, ix + y, iy)$, $f_2(x, y, z) = (x + iy, y + iz)$.
- 6) $f_1: \mathbb{C}^2 \to \mathbb{C}^3$, $f_2: \mathbb{C}^3 \to \mathbb{C}^2$, $f_1(x,y) = (x+3y,y,y)$, $f_2(x,y,z) = (x-y-z,y-z)$.
- **4.4** Sigui f l'endomorfisme de \mathbb{R}^2 definit per f(x,y)=(x/2+y,x/4+y/2). Demostreu que $f^2=f$, on $f^2=f\circ f$.
- **4.5** Demostreu que l'aplicació conjugació és un \mathbb{R} -automorfisme dels complexos. Calculeu l'automorfisme invers.
- **4.6** Siguin f_1 i f_2 els endomorfismes de \mathbb{R}^3 definits per:

$$f_1(x, y, z) = (x + y + 2z, 2x + y + z, x + 2y + z),$$
 $f_2(x, y, z) = (2y + z, x + 3y + z, x + y).$

Existeixen vectors no nuls $v \in \mathbb{R}^3$ tals que $f_1(v) = f_2(v)$? En cas afirmatiu, determineu-los.

- **4.7** Considerem l'aplicació lineal $f_a : \mathbb{R}^3 \to \mathbb{R}^3$, on $f_a(x,y,z) = (ax-z, x+y+z, 2y)$, on $a \in \mathbb{R}$. Trobeu la dimensió i una base del nucli i de la imatge de f_a segons els valors de a. Per a quins valors $a \in \mathbb{R}$ és f_a és un monomorfisme, un epimorfisme o un isomorfisme?
- **4.8** Siguin $a \in \mathbb{R}$ un paràmetre i f_a l'endomorfisme de \mathbb{R}^3 definit per:

$$f_a(x, y, z) = ((a-2)x - y + 2z, 2x + (1-a)y + (a+1)z, ax - 3y + 2az).$$

- 1) Per a quins valors de a és f_a un epimorfisme, un monomorfisme o un isomorfisme?
- 2) Per a quins valors de a el subespai vectorial $f_a^{-1}((1,2,3))$ té dimensió no nul·la?
- **4.9** Sigui f l'endomorfisme de \mathbb{R}^3 donat per f(x,y,z)=(x-y+z,0,x-z). Demostreu que els vectors $v_1=(1,1,1), v_2=(1,-2,3), v_3=(2,0,-1)$ determinen una base de \mathbb{R}^3 , i trobeu la matriu associada a f en aquesta base. Determineu un vector $w \in \mathbb{R}^3$ tal que $f(w)=14v_1+7v_2-4v_3$.
- **4.10** Sigui f l'endomorfisme de \mathbb{C}^3 donat per f(x,y,z)=(8x-9y+25z,2y-5z,-2x+3y-8z). Demostreu que els vectors $v_1=(-1+3i,5,2-i), v_2=(-1-3i,5,2+i), v_3=(3,2,0)$ determinen una base de \mathbb{C}^3 i trobeu la matriu associada a f en aquesta base. Calculeu $f(-iv_1+iv_2+\frac{1}{2}v_3)$.
- **4.11** Sigui $\{u_1, u_2, u_3\}$ una base de \mathbb{R}^3 . Sigui f l'endomorfisme de \mathbb{R}^3 donat per $f(u_1) = u_1 + u_2 + u_3$, $f(u_2) = 2u_1 u_3$, $f(u_3) = f(u_1 u_2)$. Comproveu que els vectors $v_1 = u_1 u_2$, $v_2 = u_2 + u_3$, $v_3 = 2u_1 u_3$ determinen una base de \mathbb{R}^3 i doneu la matriu associada a f en aquesta base.
- **4.12** Sigui $\{u_1, u_2, u_3\}$ una base de \mathbb{C}^3 . Sigui f un \mathbb{C} -endomorfisme de \mathbb{C}^3 del qual sabem que $f(u_1) = u_1 + u_2$, que $f(u_3) = i u_1$, i que $\operatorname{Ker}(f) = \langle u_1 + u_2 \rangle$. Comproveu que els vectors $v_1 = u_1 + u_3$, $v_2 = (1+i)u_1 + u_2$, $v_3 = i u_1 + i u_2$ determinen una base de \mathbb{C}^3 i doneu la matriu associada a f en aquesta base.
- **4.13** Siguin $\{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 i $\{e_1, e_2, e_3, e_4\}$ una base de \mathbb{R}^4 . Considerem l'aplicació lineal $f : \mathbb{R}^4 \to \mathbb{R}^3$ definida per $f(e_1) = v_1 + 2v_2 + v_3$, $f(e_2) = v_2 + v_3$, $f(e_3) = v_1 + v_2$, $f(e_4) = v_1 v_2$.

- 1) Trobeu la dimensió i una base del nucli i de la imatge de f.
- 2) Comproveu que els vectors $u_1 = e_1 + e_4$, $u_2 = e_1 + e_3$, $u_3 = e_1 + e_2$, $u_4 = e_1 e_2 e_3$ determinen una base de \mathbb{R}^4 i que els vectors $w_1 = f(u_1)$, $w_2 = f(u_2)$, $w_3 = f(u_3)$ determinen una base de \mathbb{R}^3 . Doneu la matriu associada a f en aquestes bases.
- **4.14** Raoneu si existeix algun endomorfisme que verifiqui les condicions que s'especifiquen. En cas que existeixi, és únic? En cas que existeixi, determineu-lo.
- 1) $f: \mathbb{C}^2 \to \mathbb{C}^2$ tal que f(i,i) = (5i,i) i f(4i,8) = (6+17i,8).
- 2) $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(1,2,3) = (4,-6,5), f(2,4,-1) = (0,0,7), f(3,-1,0) = (-5,5,8).
- 3) $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(3,1,0) = (0,1,1), f(-2,1,1) = (1,0,1), f(-1,3,2) = (1,1,0).
- 4) $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(1, -1, 3) = (1, 1, 1), f(0, 2, 1) = (0, -2, -2), f(1, 1, 4) = (1, -1, -1).
- 5) $f: \mathbb{C}^3 \to \mathbb{C}^3$ tal que $\operatorname{Ker}(f) = \{(x, y, z) \in \mathbb{C}^3 : x + y + z = 0\}.$
- **4.15** Raoneu si existeix una única aplicació lineal $f: \mathbb{R}^2 \to \mathbb{R}^3$ que transformi (3,4) en (-1,3,2) i (2,3) en (3,-4,1). En cas afirmatiu, calculeu la matriu M associada a f respecte a les bases canòniques de \mathbb{R}^2 i de \mathbb{R}^3 , i la matriu N associada a f en les bases $B_1 = \{(1,2),(2,5)\}$ de \mathbb{R}^2 i $B_2 = \{(-3,31,-2),(2,-19,1),(-1,11,-1)\}$ de \mathbb{R}^3 .
- **4.16** Trobeu els valors i vectors propis de les matrius següents. Digueu quines d'elles són diagonalitzables i, si ho són, determineu una base on la matriu tingui forma diagonal.

1)
$$\begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$$
. 4) $\begin{pmatrix} -2 & 4 & 5 \\ -3 & 5 & 5 \\ 0 & 0 & 1 \end{pmatrix}$. 7) $\begin{pmatrix} 0 & 2 & 0 \\ -1 & 0 & 1 \\ 0 & -2 & 0 \end{pmatrix}$.

2)
$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
.
5) $\begin{pmatrix} -2 & 20 & 4 \\ 0 & -3 & 0 \\ -1 & 7 & 2 \end{pmatrix}$.
8) $\begin{pmatrix} -16+i & 35 & -24 \\ 0 & i & 0 \\ 12 & -26 & 18+i \end{pmatrix}$.

$$3) \begin{pmatrix} 2 & 0 & 0 \\ -3 & -1 & 3 \\ 3 & 3 & -1 \end{pmatrix}. \qquad \qquad 6) \begin{pmatrix} 2 & -2 & 1 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}. \qquad \qquad 9) \begin{pmatrix} 0 & -4 & 0 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 4 & 8 & -12 & 4 \end{pmatrix}.$$

4.17 Determineu els valors reals dels paràmetres per als quals les matrius següents són diagonalitzables sobre \mathbb{R} i, en aquest cas, doneu la seva forma diagonal.

1)
$$\begin{pmatrix} \cos(a) & -\sin(a) \\ \sin(a) & \cos(a) \end{pmatrix}$$
. 2) $\begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 2 \end{pmatrix}$.

3)
$$\begin{pmatrix} 5 & 0 & 0 \\ 0 & -1 & b \\ 3 & 0 & a \end{pmatrix}$$
.

5)
$$\begin{pmatrix} -2a+3 & -4a+5 & 4a-9 \\ 0 & -1 & 0 \\ -a+1 & -2a+2 & 2a-3 \end{pmatrix}.$$

6)
$$\begin{pmatrix} -2a+3 & 3a-3 & -8a-b+10 \\ -2a+2 & 3a-2 & -8a+2b+7 \\ 0 & 0 & b \end{pmatrix}.$$

- **4.18** Trobeu una matriu $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ que tingui vectors propis (1,2,-1), (1,0,1) i (0,1,-2) amb valors propis -2, 1 i 2, respectivament.
- **4.19** Determineu a, b, c, p, q, r i els valors propis de la matriu A, sabent que (1,1,0), (-1,0,2) i (0,1,-1) són vectors propis de A.

$$A = \begin{pmatrix} a & 1 & p \\ b & 2 & q \\ c & -1 & r \end{pmatrix}.$$

- **4.20** Calculeu els valors i els vectors propis dels endomorfismes següents i digueu quins d'ells són diagonalitzables. En cas que l'endomorfisme sigui diagonalitzable determineu una base respecte de la qual la matriu associada a l'endomorfisme tingui forma diagonal.
- 1) $f: \mathbb{R}^4 \to \mathbb{R}^4$, f(x, y, z, t) = (x 2y + 3z 3t, -y + 3z 3t, 2z 3t, -t).
- 2) $f: \mathbb{C}^3 \to \mathbb{C}^3$, f(x, y, z) = (8x 9y + 25z, 2y 5z, -2x + 3y 8z).
- 3) $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (4x 20z, 2x 10z, x y 2z).
- 4) $f: \mathbb{C}^3 \to \mathbb{C}^3$, f(x, y, z) = (4x + y 4z, -3x + 3z, 3x + y 3z).
- **4.21** Siguin $a, b \in \mathbb{R}$ i $f_{a,b}$ l'endomorfisme de \mathbb{R}^3 definit per:

$$f_{a,b}(x,y,z) = (x + ay + bz, 3y, bx + z).$$

Determineu per a quins valors de $a,b \in \mathbb{R}$ l'endomorfisme $f_{a,b}$ és diagonalitzable i té, exactament, dos valors propis diferents.

4.22 Siguin $a \in \mathbb{C}$, $f_a : \mathbb{C}^3 \to \mathbb{C}^3$ l'endomorfisme definit per:

$$f_a(x, y, z) = (2y, a^2x + az, -2ay)$$

i $F = \{(x, y, z) \in \mathbb{C}^3 : x + z = 0\}$. Per a quins valors de $a \in \mathbb{C}$ es satisfà que $f_a(F) \subseteq F$?

4.23 Siguin $a \in \mathbb{R}$ i f_a l'endomorfisme de \mathbb{R}^3 definit per:

$$f_a(x, y, z) = (x + ay + az, -x + y - z, x + 2z).$$

1) Determineu els valors de $a \in \mathbb{R}$ per als quals l'endomorfisme f_a és diagonalitzable. Per a aquests valors de a doneu una base respecte de la qual la matriu tingui forma diagonal.

2) Sigui $F = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0\}$. Determineu els valors de $a \in \mathbb{R}$ per als quals es satisfà que $f_a(F) \subseteq F$.

4.24 Per a cada matriu de la llista següent:

a) calculeu la descomposició en valors singulars de la matriu A;

b) digueu quins són els valos singulars, els vectors singulars per la dreta i els vectors singulars per l'esquerra de *A*;

c) doneu bases ortonormals dels subespais Col(A), Nul(A), $Col(A^T)$ i $Nul(A^T)$;

d) descomposeu la matriu A com a suma de matrius de rang 1.

1)
$$A = \begin{pmatrix} 4 & 0 \\ 3 & -5 \end{pmatrix}$$
.

5)
$$A = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix}$$
.

$$2) A = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}.$$

6)
$$A = \begin{pmatrix} 1 & 0 & -1 & 0 & -1 \\ 0 & -1 & 0 & 1 & 0 \end{pmatrix}$$
.

3)
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$
.

7)
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$
.

4)
$$A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
.

4.3 Solucions

4.1 Només són lineals les aplicacions dels apartats 1, 3, 5, 6 i 9.

4.2

- 1) $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$. f és bijectiva. Ker $(f) = \{(0,0)\}$ i té dimensió 0. Im $(f) = \mathbb{R}^2$ i té dimensió 2. $f^{-1} = f$.
- 2) $\begin{pmatrix} 1 & -1 \\ 2 & 3 & 2 \end{pmatrix}$. f és injectiva però no és exhaustiva. Ker $(f) = \{(0,0)\}$ i té dimensió 0. Im $(f) = \langle (1,2,3), (-1,3,2) \rangle$ i té dimensió 2. No existeix l'aplicació inversa.
- 3) $\begin{pmatrix} 3 & 0 & 0 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$. f és bijectiva. Ker $(f) = \{(0,0,0)\}$ i té dimensió 0. Im $(f) = \mathbb{R}^3$ i té dimensió 3. L'aplicació inversa és $f^{-1}(x,y,z) = (x/3,x/3-y,-x+y+z)$.
- 4) $\binom{1+i}{1}\binom{2}{1-i}$. f no és ni injectiva ni exhaustiva. $\operatorname{Ker}(f) = \langle (-2,1+i) \rangle$ i té dimensió 1. $\operatorname{Im}(f) = \langle (1+i,1) \rangle$ i té dimensió 1. L'aplicació f no té inversa.
- 5) $\binom{1}{i} \frac{i}{-1} \frac{1+i}{-1+i}$. f no és ni injectiva ni exhaustiva. $\operatorname{Ker}(f) = \langle (-i,1,0), (1+i,0,-1) \rangle$ i té dimensió 2. $\operatorname{Im}(f) = \langle (1,i) \rangle$. f no té inversa.
- 6) $\begin{pmatrix} 1+2i & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & 1-2i \end{pmatrix}$. f és bijectiva. Per tant, el nucli és trivial i la imatge és \mathbb{C}^3 . L'aplicació inversa és $f^{-1}(x,y,z) = ((1-2i)x/5, iy, (1+2i)z/5)$.

4.3

- 1) $f_2 \circ f_1 : \mathbb{R}^4 \to \mathbb{R}^2$. $M(f_1) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$, $M(f_2) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $M(f_2 \circ f_1) = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix}$. El rang de $M(f_2 \circ f_1)$ és 2. Per tant, $f_2 \circ f_1$ no és injectiva, però si exhaustiva.
- 2) $f_2 \circ f_1 : \mathbb{R}^3 \to \mathbb{R}^2$. $M(f_1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $M(f_2) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $M(f_2 \circ f_1) = \begin{pmatrix} 2 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. El rang de $M(f_2 \circ f_1)$ és 2. Per tant, $f_2 \circ f_1$ no és injectiva, però si exhaustiva.
- 3) $f_2 \circ f_1 : \mathbb{R}^2 \to \mathbb{R}^4$. $M(f_1) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}$, $M(f_2) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$, $M(f_2 \circ f_1) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 3 & 0 \\ 0 & 2 \end{pmatrix}$. El rang de $M(f_2 \circ f_1)$ és 2. Per tant, $f_2 \circ f_1$ és injectiva, però no exhaustiva.
- 4) $f_2 \circ f_1 : \mathbb{C}^2 \to \mathbb{C}^3$. $M(f_1) = \begin{pmatrix} 0 & i \\ -i & 0 \\ 1 & 1 \end{pmatrix}$, $M(f_2) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & i & i \\ 0 & 1 & 1 \end{pmatrix}$, $M(f_2 \circ f_1) = \begin{pmatrix} 1 & 1+i & i \\ 1+i & i & i \\ 1-i & 1 \end{pmatrix}$. El rang de $M(f_2 \circ f_1)$ és 2. Per tant, $f_2 \circ f_1$ és injectiva, però no exhaustiva.
- 5) $f_2 \circ f_1 : \mathbb{C}^2 \to \mathbb{C}^2$. $M(f_1) = \begin{pmatrix} 1 & 0 \\ i & 1 \\ 0 & i \end{pmatrix}$, $M(f_2) = \begin{pmatrix} 1 & i & 0 \\ 1 & 0 & i \end{pmatrix}$, $M(f_1) = \begin{pmatrix} 0 & i \\ 1 & -1 \end{pmatrix}$. El rang de $M(f_2 \circ f_1)$ és 2. Per tant, $f_2 \circ f_1$ és injectiva i exhaustiva. És a dir, $f_2 \circ f_1$ és bijectiva.
- 6) $f_2 \circ f_1 : \mathbb{C}^2 \to \mathbb{C}^2$. $M(f_1) = \begin{pmatrix} 1 & 3 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$, $M(f_2) = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \end{pmatrix}$, $M(f_2 \circ f_1) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. El rang de $M(f_2 \circ f_1)$ és 1. Per tant, $f_2 \circ f_1$ no és ni injectiva ni exhaustiva.
- **4.4** Pista: comproveu que $M^2 = M$, on M és la matriu de f.
- **4.6** Els vectors que satisfan la condició són exactament els vectors del subespai $\langle (2,2,-1) \rangle$.
- **4.7** Si $a \ne -1$, f_a és un isomorfisme. Si a = -1, el nucli és $\langle (-1,0,1) \rangle$ i la imatge és $\langle (-1,0,0), (0,1,2) \rangle$.

4.8

- 1) f_a és un isomorfime si i només si $a \neq -1$ i $a \neq 3$.
- 2) La dimensió és no nul·la sempre.

- **4.9** La matriu de f en la base canònica és $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix}$. La matriu de f en la base B donada és: $\frac{1}{13} \cdot \begin{pmatrix} 2 & 4 & 14 \\ 1 & 2 & 7 \\ 5 & 36 & -4 \end{pmatrix}$. El vector w que satisfà la condició és $w = 130v_1 \frac{39}{2}v_2 = (221/2, 169, 143/2)$.
- **4.10** La matriu de f en la base canònica és $\begin{pmatrix} 8 & -9 & 25 \\ 0 & 2 & -5 \\ -2 & 3 & -8 \end{pmatrix}$. La matriu de f en la base donada és $\begin{pmatrix} i & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Finalment, $f(-iv_1 + iv_2 + \frac{1}{2}v_3) = v_1 + v_2 + v_3 = (1, 12, 4)$.
- **4.11** La matriu de f en la nova base és $\frac{1}{3} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 4 & 4 & 4 \\ -2 & 1 & 4 \end{pmatrix}$.
- **4.12** La matriu de f en la nova base és $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

4.13

- 1) La matriu de f en les bases donades és $M(f) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & -1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$, que té rang 3. A més, $Im(f) = Col\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ i $Ker(f) = \langle (-1, 1, 1, 0) \rangle$.
- 2) La matriu de f en les bases $\{u_1, u_2, u_3, u_4\}$ de \mathbb{R}^4 i $\{w_1, w_2, w_3\}$ de \mathbb{R}^3 és $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.

4.14

- 1) Existeix i és únic, perquè $\{(i,i),(4i,8)\}$ és una base de \mathbb{C}^2 .
- 2) Existeix i és únic, perquè $\{(1,2,3),(2,4,-1),(3,-1,0)\}$ és una base de \mathbb{R}^3 .
- 3) No existeix cap endomorfisme que cumpleixi aquestes condicions.
- 4) Existeixen infinits endomorfismes satisfent les condicions.
- 5) Existeixen infinits endomorfismes satisfent la condició.
- **4.15** Existeix una única aplicació lineal satisfent les condicions donades. La matriu de f en bases canòniques és $M = \begin{pmatrix} -15 & 11 \\ 25 & -18 \\ 25 & -1 \end{pmatrix}$. La matriu de f en las bases B_1 i B_2 és $N = \frac{1}{49} \begin{pmatrix} 45 & 157 \\ 18 & 849 \\ 28 & 224 \end{pmatrix}$.
- **4.16** Notem per A la matriu de l'enunciat. En cas que A diagonalitzi, es safisfà $PAP^{-1} = D$.
- 1) Diagonalitza. $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, P = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$.
- 2) Diagonalitza. $D = \begin{pmatrix} 1+i & 0 \\ 0 & 1-i \end{pmatrix}, P = \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix}$.
- 3) Diagonalitza. $D = \begin{pmatrix} -4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$
- 4) Diagonalitza. $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 1 & 5 & 4 \\ 1 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix}$.
- 5) Els valors propis són -3 (simple), 0 (doble). No diagonalitza.
- 6) Diagonalitza. $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2+i & 0 \\ 0 & 0 & 2-i \end{pmatrix}, P = \begin{pmatrix} -1 & 1 & 1 \\ -2-i & i & 1 \\ -2+i & -i & 1 \end{pmatrix}$
- 7) Diagonalitza. $D = \begin{pmatrix} 2i & 0 & 0 \\ 0 & -2i & 0 \\ 0 & 0 & 0 \end{pmatrix}, P = \begin{pmatrix} -1 & -i & 1 \\ -1 & i & 1 \\ 1 & 0 & 1 \end{pmatrix}.$
- 8) Els valors propis són 2 + i (simple), i (doble). No diagonalitza.
- 9) Els valors propis són 0 (simple), 2 (triple). No diagonalitza.

4.17

1) Diagonalitza si i només si $a = k\pi$, amb $k \in \mathbb{Z}$. La forma diagonal és Id_2 , si k és parell, i $-\mathrm{Id}_2$, si k és senar.

- 2) Diagonalitza si i només si a = 0. En aquest cas, la forma diagonal és Diag(1,1,2).
- 3) Diagonalitza si i només si $a \neq 5, -1$ o bé si a = -1 i b = 0. Si diagonalitza, la forma diagonal és Diag(5, -1, a).
- 4) No diagonalitza per a cap valor del paràmetre.
- 5) Diagonalitza si i només a > 0. La forma diagonal és Diag $(-1, -\sqrt{a}, \sqrt{a})$.
- 6) Diagonalitza si i només si $a \neq b$. La forma diagonal és Diag(1, a, b).
- **4.18** $\begin{pmatrix} 2 & -4 & -2 \\ 2 & -4 & -4 \\ -1 & 1 & 3 \end{pmatrix}$.
- **4.19** La matriu és $\begin{pmatrix} 7/3 & 1 & 1 \\ 4/3 & 2 & 2/3 \\ 0 & -1 & 1/3 \end{pmatrix}$ i els valors propis són 3, 4/3 i 1/3.

4.20

- 1) Diagonalitza. $D = \text{Diag}(2, -1, -2, 1), P = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$.
- 2) Diagonalitza. $D = \text{Diag}(2, i, -i), P = \begin{pmatrix} 3 & -1+i & -1-i \\ 2 & 2+i & 2-i \\ 0 & 1 & 1 \end{pmatrix}$
- 3) No diagonalitza.
- 4) No diagonalitza.
- **4.21** Per a b = 0 i *a* arbitrari.
- **4.22** Per a a = 1.

4.23

1) f_a diagonalitza si i només si a = 0. En aquest cas, la forma diagonal és D = Diag(2, 1, 1) i la matriu de canvi de base és $P = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.

66

- 2) Per a a = 2.
- **4.24** La descomposició en valors singulars de les matrius donades és:

1)
$$U = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2 \\ -2 & -1 \end{pmatrix}, \Sigma = \begin{pmatrix} 2\sqrt{10} & 0 \\ 0 & \sqrt{10} \end{pmatrix}, V = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}.$$

2)
$$U = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $\Sigma = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, $V = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

3)
$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
, $\Sigma = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$, $V = \frac{1}{3\sqrt{2}} \begin{pmatrix} 3 & -1 & -2\sqrt{2} \\ 3 & 1 & 2\sqrt{2} \\ 0 & -4 & \sqrt{2} \end{pmatrix}$.

4)
$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $\Sigma = \begin{pmatrix} \sqrt{7} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $V = \frac{1}{\sqrt{70}} \begin{pmatrix} \sqrt{10} & \sqrt{35} & 0 & 5 \\ 2\sqrt{10} & 0 & -\sqrt{14} & -4 \\ \sqrt{10} & -\sqrt{35} & 0 & 5 \\ \sqrt{10} & 0 & 2\sqrt{14} & -2 \end{pmatrix}$.

5)
$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
, $\Sigma = \begin{pmatrix} 2\sqrt{3} & 0 & 0 \\ 0 & \sqrt{10} & 0 \end{pmatrix}$, $V = \frac{1}{\sqrt{30}} \begin{pmatrix} \sqrt{5} & -2\sqrt{6} & -1 \\ 2\sqrt{5} & \sqrt{6} & -2 \\ \sqrt{5} & 0 & 5 \end{pmatrix}$.

6) Consulteu el document d'exàmens resolts per a veure una solució completa.

$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \Sigma = \begin{pmatrix} \sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 & 0 \end{pmatrix}, V = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & 0 & -\sqrt{3} & 0 & 1 \\ 0 & -\sqrt{3} & 0 & \sqrt{3} & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 2 \\ 0 & \sqrt{3} & 0 & \sqrt{3} & 0 & 1 \end{pmatrix}.$$

7)
$$U = \begin{pmatrix} 0.261 & 0.657 & -0.707 \\ 0.929 & -0.369 & 0 \\ 0.261 & 0.657 & 0.707 \end{pmatrix}$$
, $\Sigma = \begin{pmatrix} 2.358 & 0 & 0 & 0 & 0 \\ 0 & 1.199 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, $V = \begin{pmatrix} 0.394 & -0.308 & -0.707 & -0.408 & -0.289 \\ 0.615 & 0.788 & 0 & 0 & 0 & 0 \\ 0.394 & -0.308 & 0 & 0 & 0.816 & -0.289 \\ 0.394 & -0.308 & 0 & 0.816 & -0.289 \\ 0.394 & -0.308 & 0.707 & -0.408 & -0.289 \end{pmatrix}$.