Secure Computation - III

CS 601.642/442 Modern Cryptography

Fall 2020

Securely Computing any Function

How can a group of parties securely compute *any* function over their private inputs?

• Last time: Yao's Garbled Circuits based solution. Requires little interaction, but only tailored to two-party case.

Securely Computing any Function

How can a group of parties securely compute *any* function over their private inputs?

- Last time: Yao's Garbled Circuits based solution. Requires little interaction, but only tailored to two-party case.
- Today: Goldreich-Micali-Wigderson (GMW) solution. Highly interactive. But extends naturally to n > 2 parties (where up to n 1 parties may be corrupted).

A k-out-of-n secret sharing scheme allows for "dividing" a secret value s into n parts s_1, \ldots, s_n s.t.

A k-out-of-n secret sharing scheme allows for "dividing" a secret value s into n parts s_1, \ldots, s_n s.t.

• Correctness: Any subset of k shares can be "combined" to reconstruct the secret s

A k-out-of-n secret sharing scheme allows for "dividing" a secret value s into n parts s_1, \ldots, s_n s.t.

- Correctness: Any subset of k shares can be "combined" to reconstruct the secret s
- **Privacy:** The value s is completely hidden from anyone who only has at most k-1 shares of s

A k-out-of-n secret sharing scheme allows for "dividing" a secret value s into n parts s_1, \ldots, s_n s.t.

- Correctness: Any subset of k shares can be "combined" to reconstruct the secret s
- **Privacy:** The value s is completely hidden from anyone who only has at most k-1 shares of s

Think: How to formalize?

Secret Sharing: Definition

Definition

A (k,n) secret-sharing consists of a pair of PPT algorithms (Share, Reconstruct) s.t.:

- Share(s) produces an n tuple (s_1, \ldots, s_n)
- Reconstruct $(s'_{i_1},\ldots,s'_{i_k})$ is s.t. if $\{s'_{i_1},\ldots,s'_{i_k}\}\subseteq \{s_1,\ldots,s_n\}$, then it outputs s
- For any two s and \tilde{s} , and for any subset of at most k-1 indices $X \subset [1, n], |X| < k$, the following two distributions are statistically close:

$$\Big\{ (s_1, \dots, s_n) \leftarrow \mathsf{Share}(s) : (s_i | i \in X) \Big\},$$
$$\Big\{ (\tilde{s}_1, \dots, \tilde{s}_n) \leftarrow \mathsf{Share}(\tilde{s}) : (\tilde{s}_i | i \in X) \Big\}.$$

Secret Sharing: Construction

An (n, n) secret-sharing scheme for $s \in \{0, 1\}$ based on XOR:

- Share(s): Sample random bits (s_1, \ldots, s_n) s.t. $s_1 \oplus \cdots \oplus s_n = s$
- Reconstruct (s'_1, \ldots, s'_n) : Output $s'_1 \oplus \cdots \oplus s'_n$

Secret Sharing: Construction

An (n, n) secret-sharing scheme for $s \in \{0, 1\}$ based on XOR:

- Share(s): Sample random bits (s_1, \ldots, s_n) s.t. $s_1 \oplus \cdots \oplus s_n = s$
- Reconstruct (s'_1, \ldots, s'_n) : Output $s'_1 \oplus \cdots \oplus s'_n$

Think: Security?

Secret Sharing: Construction

An (n, n) secret-sharing scheme for $s \in \{0, 1\}$ based on XOR:

- Share(s): Sample random bits (s_1, \ldots, s_n) s.t. $s_1 \oplus \cdots \oplus s_n = s$
- Reconstruct (s'_1, \ldots, s'_n) : Output $s'_1 \oplus \cdots \oplus s'_n$

Think: Security?

Additional Reading: Shamir's (k, n) secret-sharing using polynomials

GMW Protocol: Outline

GMW protocol consists of three phases:

• Input Sharing: Each party secret-shares its input into two parts and sends one part to the other party

GMW Protocol: Outline

GMW protocol consists of three phases:

- Input Sharing: Each party secret-shares its input into two parts and sends one part to the other party
- Circuit evaluation: The parties evaluate the circuit in a gate-by-gate fashion in such a manner that for every internal wire w in the circuit, each party holds a secret share of the value of wire w

GMW Protocol: Outline

GMW protocol consists of three phases:

- Input Sharing: Each party secret-shares its input into two parts and sends one part to the other party
- Circuit evaluation: The parties evaluate the circuit in a gate-by-gate fashion in such a manner that for every internal wire w in the circuit, each party holds a secret share of the value of wire w
- Output reconstruction: Finally, the parties exchange the secret shares of the output wires. Each party then, on its own, combines the secret shares to compute the output of the circuit

GMW Protocol: Details

Notation:

- Protocol Ingredients: A (2,2) secret-sharing scheme (Share, Reconstruct), and a 1-out-of-4 OT scheme (OT = (S,R))
- Common input: Circuit C for function $f(\cdot, \cdot)$ with two n-bit inputs and an n-bit output
- A's input: $x = x_1, ..., x_n$ where $x_i \in \{0, 1\}$
- B's input: $y = y_1, ..., y_n$ where $y_i \in \{0, 1\}$

GMW Protocol: Details

Notation:

- Protocol Ingredients: A (2,2) secret-sharing scheme (Share, Reconstruct), and a 1-out-of-4 OT scheme (OT = (S,R))
- Common input: Circuit C for function $f(\cdot, \cdot)$ with two n-bit inputs and an n-bit output
- A's input: $x = x_1, ..., x_n$ where $x_i \in \{0, 1\}$
- B's input: $y = y_1, ..., y_n$ where $y_i \in \{0, 1\}$

Protocol Invariant: For every wire in C(x, y) with value $w \in \{0, 1\}$, A and B have shares w^A and w^B , respectively, s.t. Reconstruct $(w^A, w^B) = w$

GMW Protocol: Details (contd.)

Protocol $\Pi = (A, B)$:

Input Sharing: A computes $(x_i^A, x_i^B) \leftarrow \mathsf{Share}(x_i)$ for every $i \in [n]$ and sends (x_1^B, \dots, x_n^B) to B. B acts analogously.

Circuit Evaluation: Run the CircuitEval sub-protocol. A obtains out_i^A and B obtains out_i^B for every output wire i.

Output Phase: For every output wire i, A sends out_i^A to B, and B sends out_i^B to A. Each party computes

$$\mathsf{out}_i = \mathsf{Reconstruct}(\mathsf{out}_i^A, \mathsf{out}_i^B)$$

The output is $\mathsf{out} = \mathsf{out}_1, \ldots, \mathsf{out}_n$

CircuitEval: NOT Gate

NOT Gate: Input u, output w

- A holds u^A , B holds u^B
- A computes $w^A = u^A \oplus 1$
- B computes $w^B = u^B$

Observe:
$$w^A \oplus w^B = u^A \oplus 1 \oplus u^B = \bar{u}$$

CircuitEval: AND Gate

AND Gate: Inputs u, v, output w

- A holds u^A, v^A, B holds u^B, v^B
- A samples $w^A \stackrel{\$}{\leftarrow} \{0,1\}$ and computes w_1^B, \dots, w_4^B as follows:

u^B	v^B	w^B
0	0	$w_1^B = w^A \oplus \left((u^A \oplus 0) \cdot (v^A \oplus 0) \right)$
0	1	$w_2^B = w^A \oplus ((u^A \oplus 0) \cdot (v^A \oplus 1))$
1	0	$w_3^B = w^A \oplus ((u^A \oplus 1) \cdot (v^A \oplus 0))$
1	1	$w_4^B = w^A \oplus ((u^A \oplus 1) \cdot (v^A \oplus 1))$

• A and B run $\mathsf{OT} = (S,R)$ where A acts as sender S with inputs (w_1^B,\ldots,w_4^B) and B acts as receiver R with input $b=1+2u^B+v^B$

For every wire in C (except the input and output wires), each party only holds a secret share of the wire value:

For every wire in C (except the input and output wires), each party only holds a secret share of the wire value:

• NOT gate: Follows from construction

For every wire in C (except the input and output wires), each party only holds a secret share of the wire value:

- NOT gate: Follows from construction
- AND gate: Follows from security of OT

For every wire in C (except the input and output wires), each party only holds a secret share of the wire value:

- NOT gate: Follows from construction
- AND gate: Follows from security of OT

At the end, the parties only learn the values of the output wires

For every wire in C (except the input and output wires), each party only holds a secret share of the wire value:

- NOT gate: Follows from construction
- AND gate: Follows from security of OT

At the end, the parties only learn the values of the output wires

Exercise: Construct Simulator for Π using Simulator for OT and prove indistinguishability