

UNIVERSIDAD NACIONAL DE COLOMBIA Facultad de Ingeniería

CONTROL v2012-03 - Prof. Victor Hugo Grisales

TAREA 2 – DESEMPEÑO DE SISTEMAS DE CONTROL

Emisión: Septiembre 26 de 2012 – Entrega: Octubre 03 de 2012

INDICACIONES: Desarrollo en grupos de máximo tres personas. Los desarrollos analíticos, fuentes bibliográficas y calidad de la redacción serán tenidos en cuenta para efectos de calificación. Impresión y/o desarrollo legible a doble cara.

TEMARIO

1. Linealización de Sistemas.

Considere una planta consistente en un tanque cónico con variable manipulada caudal *Fi* y variable controlada nivel *h*, según se muestra en la figura:

La ecuación diferencial que describe la dinámica del sistema está dada por:

$$A(h)\frac{dh(t)}{dt} = F_i - F_o = F_i - k\sqrt{h}$$

Utilizando desarrollo en series de Taylor y truncando en el término de primer orden, obtenga: 1.1. La ecuación diferencial linealizada en torno a los valores de estado estacionario (punto de operación) dado por $(\overline{F_i}, \overline{h})$. Las variables de desviación se definen como:

Variable de desviación de entrada: $u = F_i - \overline{F_i}$

Variable de desviación de salida: $y = h - \overline{h}$

- 1.2. El modelo en función de transferencia G(s) = Y(s)/U(s) a partir de la ecuación diferencial linealizada en términos de las variables de desviación. Indique los términos ganancia estática K y constante de tiempo τ en función de los parámetros de la planta.
- 1.3. A partir de las expresiones obtenidas de K y τ analícelas y determine cómo se comportaría el sistema a medida que el caudal Fi aumenta. Es consecuente el comportamiento predicho por las expresiones matemáticas con lo esperado?

2. Reducción de orden.

Considere una planta con función de transferencia dada por:

$$G(s) = \frac{K\omega_n^2}{(s^2 + 2\zeta\omega_n s + \omega_n^2)(\tau s + 1)}$$

La planta tiene como parámetros K=0.5, $\zeta=0.3$, $\omega_n=1~rad/seg$, $\tau=1.5~seg$.

Utilizando el procedimiento analítico de reducción de orden visto en clase, obtenga un modelo reducido de segundo orden. Presente el procedimiento desarrollado y los resultados obtenidos. En segundo lugar, desprecie la dinámica de primer orden de la planta y compare en simulación la respuesta ante entrada paso de magnitud 10 de los tres sistemas: la planta original de tercer orden, la del modelo reducido por vía analítica y el modelo de segundo orden despreciando la dinámica de primer orden. Presente sus análisis y conclusiones.

3. Análisis de error de estado estacionario y estabilidad.

Considere el sistema de control representado en la figura:

Observe que este sistema de control tiene función de transferencia del camino directo T(s) y retroalimentación unitaria.

Realice análisis de estabilidad BIBO aplicando criterio de Routh-Hurwitz determinando rango de estabilidad y análisis de error de estado estacionario ante entradas paso de amplitud A, rampa mt y parábola $\alpha \, t^2 \, / \, 2$ en los siguientes casos:

3.1.
$$T(s) = \frac{K}{s^2(s+12)}$$

3.2.
$$T(s) = \frac{K(s+3.15)}{s(s+1.5)(s+0.5)}$$

Presente sus análisis y conclusiones.