Zhuocheng Xiao

Program in Applied Mathematics, University of Arizona

617 N Santa Rita Ave, Tucson, AZ, 85721

Email: xiaoz@email.arizona.edu Mobile: +1 (520)312-0434

Home Page: https://sites.google.com/math.arizona.edu/zhuocheng-xiao/home

EDUCATION Program

Program in Applied Mathematics,

The University of Arizona

08/2016 - present

Ph.D., Applied Mathematics, Expected in August 2020 Co-Advised by Dr. Kevin Lin and Dr. Jean-Marc Fellous

School of Life Sciences, Peking University, China

09/2012 - 07/2016

Bachelor of Biological Science, July 2016 Dual Bachelor of Mathematical Science, 2016 Advised by Dr. Louis Tao

RESEARCH EXPERIENCE

Project: The Dynamics and Reconsolidations of Spatial Representations of Reward in Brain 01/2018 – present

Advisors: Prof. Jean-Marc Fellous & Prof. Kevin Lin

Psychology Department, Mathematics Department, The University of Arizona

• A continuous range of pyramidal cell population from place cells and reward cells is found in our reward experiment, suggesting a representation system for both space and reward. We explore the structure of such representation and analyse the role it plays in hippocampal memory recommsolidation. We have also developed a novel method to quantitatively measure how are the sequential structure of firing patterns in tasks repeated in sleep.

Project: Multilevel Monte Carlo Methods for Spiking Networks

01/2017 - 12/2017

Advisor: Prof. Kevin Lin

Mathematics Department, The University of Arizona

• A common task in computer modeling of large networks is to collect dynamical statistics like firing rates and correlations elicited by stimuli. We have developed a numerical theory enabling Multilevel Monte Carlo methods for Integrate-Fire spiking network, with the challenge of discontinuous variables and highly nonlinear dynamics.

Project: Analysis on Iterative System of Synfire Chain

10/2014 - 07/2016

Advisors: Prof. Louis Tao & Prof. Jiwei Zhang

Center for Bioinformatics, Peking University, Beijing, China Beijing Computational Science Research Center, Beijing, China

 Developing an iterative dynamical system for Gaussian-simplified and accurate Synfire Chain, using phase-plane analysis and moment closure to find the crucial mechanism of graded current propagation in a large group of feedforward networks.

Project: A Fokker-Planck Approach to Graded Current Propagation in Pulse-Gated Feedforward Neuronal Networks

09/2013 - 10/2014

Advisor: Prof. Louis Tao

Center for Bioinformatics, Peking University, Beijing, China

Applying current-based Fokker-Planck approach to continuous simulation
of the stochastic process of Synfire Chain to gain graded current propagation and developing an iterative dynamical system for Synfire Chain
roughly.

PUBLICATIONS

- Xiao, Z.; Lin, K.K.; Fellous, JM. The Dynamics and Reconsolidations of Spatial Representations of Reward in Brain. In Preparation.
- Xiao, Z.; Lin, K.K.; Fellous, JM. Conjunctive Reward-Place Coding Properties of Dorsal Distal CA1 Hippocampus Cells. Submitted.
- Dong, Y.; Wang, J.; Xiao, Z.; Hu, H. Relief as a natural resilience mechanism against depression. Submitted.
- Xiao, Z.; Lin, K.K. A Multi-Level Monte Carlo Algorithm for Integrate-Fire Neuron Network. Submitted.
- Xiao, Z.; Wang, B.; Sornborger, A.; Tao, L. Mutual Information and Information Gating in Synfire Chains. Entropy 2018, 20(2), 102.
- Xiao, Z.; Zhang, J.; Sornborger, A.; Tao, L. Cusps enable line attractors for neural computation. Phys. Rev. E 2017, 96, 052308.
- Wang, C.; Xiao, Z.; Wang, Z.; Sornborger, A.; Tao, L. A Fokker-Planck
 approach to graded information propagation in pulse-gated feed-forward
 neuronal networks. Preprint. arXiv:1512.00520.

Presentations Invited Talks

- Computational Strategies in Analysis of Hippocampal Data Analysis and Its Applications Seminar, The University of Arizona 03/2018
- Multi-Level Monte Carlo Methods for Spiking Networks, Modeling and Computation Seminar, The University of Arizona 02/2019

Posters

- Continuous Reward-Place Coding Properties of Dorsal Distal CA1 Hippocampus Cells, Society for Neuroscience 2019 10/2019
- Multi-Level Monte Carlo Methods for Spiking Networks, SIAM Conference on Applications of Dynamical Systems (DS19) 05/2019
- Multi-Level Monte Carlo Methods for Spiking Networks, and Cusps Enable Faithful Information Transfer in Feed-Forward Networks, 27th Annual Computational Neuroscience Meeting (CNS 2018) 07/2018

Teaching Assistant

In the University of Arizona:

• Math 583 Principles and Methods of Applied Mathematics 2018 Fa – present

2016 Fa - 2017 Sp

• Math 254 Ordinary Differential Equations 2017 Fa - 2018 Fa

In Peking University:

• Math 112 College Algebra

• Mathematical Modeling in the Life Sciences	$2015 \mathrm{Sp}$
• Advanced Mathematics	$2015~\mathrm{Sp}$
• Journal Club of the Frontier for Life Sciences	$2014 \; \mathrm{Fa}$
• Mathematical Modeling in the Life Sciences	$2014~\mathrm{Sp}$

AWARDS AND Selected Presentation, 3rd Annual Symposium of Undergraduate Research Honor HONORS Program in Biology 2015

Best Poster, $2^{\rm nd}$ Annual Symposium of Undergraduate Research Honor Program in Biology 2014

Admitted into Undergraduate Research Honor Program in Biology of Peking University 2013

Gold Medal (ranking 5th), 10th Chinese Western Mathematical Olympiad 2010

SKILLS AND INTERESTS

Demonstrated Coding Skills for:

• Matlab, C, R Experience for:

• Python, Julia

Language: English (fluent).