### **CS343: Data Communication**



### Wireless LAN

by

Dr. Manas Khatua

Assistant Professor

Dept. of CSE

IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

### Wireless LAN





- Wireless LAN satisfies requirements for
  - mobility,
  - relocation,
  - ad hoc networking,
  - coverage of locations difficult to wire.
- Influential Characteristics
  - Attenuation
  - Error
  - Interference
  - Multipath Propagation



Figure 13.2 Example Multiple-Cell Wireless LAN Configuration

## **WLAN Configuration**



### Configuration:

- Ad hoc mode
- Infrastructure mode

#### Basic Architecture:

- BSS (Basic Service Set)
- ESS (Extended Service Set)





BSS Infrastructure BSS

#### Important requirements for WLANs:

- Throughput
- Number of nodes
- Connection to backbone LAN
- Service area
- Battery power consumption
- Transmission robustness and security
- Collocated network operation
- License-free operation
- Handoff/roaming
- Dynamic configuration



### **IEEE 802.11 Services**



- Institute of Electrical and Electronics Engineers (IEEE) defines standard for Wireless LANs (802.11)
- IEEE 802.11 defines a number of services that need to be provided by the WLAN
- Three of the services are used to control IEEE 802.11 LAN access and confidentiality.
- Six of the services are used to support delivery of MAC service data units (MSDUs) between stations.
- The MSDU is a block of data passed down from the MAC user to the MAC layer; typically this is a LLC PDU.

| Service          | Provider            | Used to Support         |
|------------------|---------------------|-------------------------|
| Association      | Distribution system | MSDU delivery           |
| Disassociation   | Distribution system | MSDU delivery           |
| Reassociation    | Distribution system | MSDU delivery           |
| Authentication   | Station             | LAN access and security |
| Deauthentication | Station             | LAN access and security |
| Integration      | Distribution system | MSDU delivery           |
| Distribution     | Distribution system | MSDU delivery           |
| MSDU delivery    | Station             | MSDU delivery           |
| Privacy          | Station             | LAN access and security |

## **IEEE 802.11 Medium Access Control**



- The IEEE 802.11 MAC layer covers three functional areas
  - reliable data delivery,
  - access control,
  - security.

### Reliable Data Delivery:

- This situation can be dealt with by reliability mechanisms at a higher layer, such as TCP.
- However, wireless medium is subject to considerable unreliability.
- It is therefore more efficient to deal with errors at the MAC level
- Solution: ACK and re-transmission after timeout

### Security:

- User authentication
- Data Privacy
- Solution: Wired Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA)

### Cont...



Access Control:



 The DCF sublayer makes use of a simple CSMA/CA (carrier sense multiple access with collision avoidance) algorithm

# **CSMA/CA** (Collision Avoidance)



- CSMA/CD is not useful in wireless networks
- So, CSMA/CA was invented

### Why??

- In wireless, send power (generally around 100mw) and receive sensitivity (commonly around 0.01 to 0.0001mw)
- The sending would cover up any possible chance of receiving a foreign signal, no chance of "Collision Detection"
- So, wireless transceivers can't send and receive on the same channel at the same time
- But, in wired networks (like Ethernet) the voltage is around 1 to
  2.5v; sending and receiving are roughly same voltage
- Let, sending a 2.5v signal, and someone else collides with a 2.5v signal;
- So, receive signal would be around 5v.

### Cont...



- Common features:
  - Channel sensing
  - Retransmission
  - Backoff
- Important modifications / inclusions in DCF:
  - Inter-Frame Space (IFS): it is used instead of persistent methods
  - Contention window (CW) and Binary exponential backoff (BEB): time is treated in slots; randomness is itroduced
  - Acknowledgement (ACK) / Timeout : no collision detection; achieve reliability
  - Basic / RTS-CTS mode of transmission: to avoid hidden terminal problem
  - Use of Network Allocation Vector (NAV): to defer transmission instead of one slot or backoff slot

# **HT/ET Problem**





A is an exposed terminal for B

## **Inter-frame Space**



- Slot time: basic unit of MAC algorithm
  - = Time required for station to sense end of frame, start transmitting, and beginning of frame to propagate to others
- SIFS (Short Inter-Frame Space)
  - = Time required for station to sense end of frame and start transmitting
  - = By that time the transmitting station will be able to switch back to receive mode and be capable of decoding the incoming packet
- DIFS (DCF Inter-Frame Space)
  - = SIFS + 2 \*Slot time
- PIFS (PCF Inter-Frame Space)
  - = SIFS + Slot time
- AIFS (Arbitration Inter-Frame Space)

| Standard                       | Slot time (µs) | DIFS<br>(μs) |
|--------------------------------|----------------|--------------|
| <u>IEEE 802.11-1997</u> (FHSS) | 50             | 128          |
| <u>IEEE 802.11-1997</u> (DSSS) | 20             | 50           |
| <u>IEEE 802.11b</u>            | 20             | 50           |
| <u>IEEE 802.11a</u>            | 9              | 34           |
| IEEE 802.11g                   | 9 or 20        | 28 or 50     |
| <u>IEEE 802.11n</u> (2.4 GHz)  | 9 or 20        | 28 or 50     |
| <u>IEEE 802.11n</u> (5 GHz)    | 9              | 34           |
| <u>IEEE 802.11ac</u> (5 GHz)   | 9              | 34           |

## DCF (in basic access mode)







### Cont...





Figure 13.6 IEEE 802.11 Medium Access Control Logic

# With RTS/CTS





# **PCF (Point Coordination Function)**



- PCF is an alternative access method implemented on top of the DCF.
- The operation consists of polling by the centralized polling master (point coordinator).
- The point coordinator makes use of PIFS when issuing polls.



### **MAC Frame Format**





- FC: Frame Control
- D: Duration / ID
- SC: Fragment number & Sequence counter
- FCS: Frame Check Sequence (CRC-32)



# Frame Control (FC)



| Field     | Explanation                                                      |  |  |
|-----------|------------------------------------------------------------------|--|--|
| Version   | Current version is 0                                             |  |  |
| Туре      | Type of information: management (00), control (01), or data (10) |  |  |
| Subtype   | Subtype of each type (see Table 15.2)                            |  |  |
| To DS     | Defined later                                                    |  |  |
| From DS   | Defined later                                                    |  |  |
| More frag | When set to 1, means more fragments                              |  |  |
| Retry     | When set to 1, means retransmitted frame                         |  |  |
| Pwr mgt   | When set to 1, means station is in power management mode         |  |  |
| More data | When set to 1, means station has more data to send               |  |  |
| WEP       | Wired equivalent privacy (encryption implemented)                |  |  |
| Rsvd      | Reserved                                                         |  |  |

| Subtype                   | Meaning               |  |  |  |
|---------------------------|-----------------------|--|--|--|
| 1011                      | Request to send (RTS) |  |  |  |
| 1100                      | Clear to send (CTS)   |  |  |  |
| 1101 Acknowledgment (ACK) |                       |  |  |  |

| To<br>DS | From<br>DS | Address<br>1 | Address<br>2 | Address<br>3 | Address<br>4 |
|----------|------------|--------------|--------------|--------------|--------------|
| 0        | 0          | Destination  | Source       | BSS ID       | N/A          |
| 0        | 1          | Destination  | Sending AP   | Source       | N/A          |
| 1        | 0          | Receiving AP | Source       | Destination  | N/A          |
| 1        | 1          | Receiving AP | Sending AP   | Destination  | Source       |

## Pathway to Gigabit WiFi



- IEEE 802.11-1997: The WLAN standard was originally 1 Mbit/s and 2 Mbit/s,
  2.4 GHz RF and infrared (IR) standard (1997)
- <u>IEEE 802.11b</u>: Enhancements to 802.11 to support 5.5 Mbit/s and 11 Mbit/s (1999)
- <u>IEEE 802.11e</u>: Enhancements: <u>QoS</u>, including packet bursting (2005)
- <u>IEEE 802.11g</u>: 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)
- IEEE 802.11-2007: A new release of the standard that includes amendments a, b, d, e, g, h, i, and j. (July 2007)
- <u>IEEE 802.11n</u>: Higher-throughput improvements using MIMO (multiple-input, multiple-output antennas) (September 2009)
- IEEE 802.11-2012: A new release of the standard that includes amendments k, n, p, r, s, u, v, w, y, and z (March 2012)
- <u>IEEE 802.11ac</u>: Very High Throughput < 6 GHz; potential improvements over 802.11n: better modulation scheme (expected ~10% throughput increase), wider channels (estimate in future time 80 to 160 MHz), multiuser MIMO;(December 2013)
- <u>IEEE 802.11ad</u>: Very High Throughput 60 GHz (December 2012) see <u>WiGig</u>

# **Performance of DCF**





# Thanks!

Figure and slide materials are taken from the following sources:

- 1. W. Stallings, (2017), Data and Computer Communications, 10<sup>th</sup> Ed.
- 2. B. A. Forouzan, (2012), Data Communication and Networking, 5<sup>th</sup> Ed.
- 3. Kurose and Ross, (2013), Computer Networking A Top Down Approach, 6<sup>th</sup> Ed.