CAMPUS CIUDAD DE MÉXICO. F4005 PROF. JUAN MANUEL RAMÍREZ DE ARELLANO SEMANA 7

TEOREMA DE GREEN EN EL PLANO

1. Evalúa la integral de línea $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ en sentido antihorario, alrededor de la frontera C de la región R utilizando el teorema de Green.

(a)
$$\mathbf{F} = \begin{bmatrix} 6y^2, & 2x - 2y^4 \end{bmatrix}$$
, R es el cuadrado con vértices en $\pm (2, 2), \pm (2, -2)$.

(b)
$$\mathbf{F} = [-e^{-x}\cos y, -e^{-x}\sin y], R \text{ es el semidisco } x^2 + y^2 \le 16, x \ge 0.$$

(c)
$$\mathbf{F} = [x^2y^2, -x/y^2], \quad R: 1 \le x^2 + y^2 \le 4, \quad x \ge 0, \quad y \ge x$$
. Haz un boceto de R .

INTEGRAL DE LA DERIVADA NORMAL

2. La siguiente ecuación relaciona el Laplaciano con la derivada normal:

$$\int_{R} \nabla^{2} w \, dx \, dy = \oint_{C} \frac{\partial w}{\partial n} ds$$

Utiliza dicha ecuación para hallar el valor de la integral del lado derecho tomada en sentido antihorario sobre la frontera *C* de la región *R*.

(a)
$$w = x^2y + xy^2$$
, $R: x^2 + y^2 \le 1$, $x, y \ge 0$.

(b)
$$w = x^2 + y^2$$
, $C: x^2 + y^2 = 4$

INTEGRALES TRIPLES Y TEOREMA DE LA DIVERGENCIA

3. Encuentra la masa total de una distribución de masa de densidad σ en una región T del espacio para los siguientes incisos:

(a)
$$\sigma = xyz$$
, $T: x \in [0, a], y \in [0, b], z \in [0, c]$

(b)
$$\sigma = x^2 y^2 z^2$$
, $T: x^2 + z^2 \le 16$, $|y| \le 4$, un cilindro.

- 4. Evalúa la integral de superficie $\int_S \mathbf{F} \cdot \mathbf{n} dA$ con el teorema de la divergencia para el siguiente caso: $\mathbf{F} = [x^3 y^3, y^3 z^3, z^3 x^3]$, S es la superficie del sólido $x^2 + y^2 + z^2 \le 25$, $z \ge 0$. Muestra tu procedimiento, sí siñor.
- 5. Encuentra el momento de inercia alrededor del eje x para una masa con densidad 1 en una región T del espacio dada por el paraboloide $y^2 + z^2 \le x$, $x \in [0, h]$.

Continúa...

• TEOREMA DE STOKES

- 6. Calcula la integral de superficie $\int_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dA$ directamente, para las siguientes \mathbf{F} y S:
 - (a) $\mathbf{F} = \begin{bmatrix} -13\sin y, & 3\sinh z, & x \end{bmatrix}$ y *S* el rectángulo con vértices (0, 0, 2), (4, 0, 2), (4, $\pi/2$, 2), (0, $\pi/2$, 2).
 - (b) $\mathbf{F} = [y^3, -x^3, 0], S: x^2 + y^2 \le 1, z = 0.$
- 7. Calcula la integral de línea $\oint_C \mathbf{F} \cdot \mathbf{r}' ds$, con $\mathbf{r}' = d\mathbf{r}/ds$ para las siguientes \mathbf{F} y C:
 - (a) $\mathbf{F} = [z^3, x^3, y^3], C: x = 2, y^2 + z^2 = 9.$
 - (b) $\mathbf{F} = [e^y, 0, e^x], C$: el triángulo con vértices (0, 0, 0), (1, 0, 0), (1, 1, 0).
 - (c) $\mathbf{F} = [-y, 2z, 0], C$: la curva frontera de $y^2 + z^2 = 4, z \ge 0, x \in [0, h].$