

GATK Best Practices for Variant Discovery

Variant Filtering by Variant Quality Score Recalibration

Assigning accurate confidence scores to each putative mutation call

Best Practices for Germline SNP & INDEL Discovery

Raw callsets must be filtered to balance sensitivity and specificity

- Mutation calling algorithms are very permissive by design
- Raw, high-sensitivity callsets contain many false positives
- Two filtering approaches
 - Hard-filters using binary thresholds
 - Applicable to all BUT requires expertise to define appropriately
 - Variant "recalibration" using machine learning
 - More powerful BUT requires well-curated known resources
- Both entail trade-off between sensitivity and specificity
- AND use variant context annotations

Variant context annotations describe the observed data

Each variant has a diverse set of statistics associated with it:

VCF record for an A/G SNP at 22:49582364

Hard-filtering is a very blunt instrument

Variant recalibration is far more discriminating

How variant recalibration works

Train on high-confidence known sites to determine the probability that other sites are true or false

- Assume annotations tend to form Gaussian clusters
- Build a "Gaussian mixture model" from annotations of known variants in our dataset
- Score **all variants** by where their annotations lie relative to these clusters
- Filter base on sensitivity to truth set

Actually two models: positive and negative

$$VQSLOD(x) = Log(p(x)/q(x))$$

Done for each annotation X then integrated into single overall VQSLOD

Based on the model, calculate VQSLOD for variants in callset

Model trained on HapMap

Model applied to new SNPs

Modified from DePristo et al. Nature Genetics. 2011

Applying filtering is now a matter of setting a VQSLOD threshold

VQSLOD threshold is set by sensitivity to truth data

What threshold do we need to set to capture X % of the sites in the truth set?

Density of sites in truth set

Variant Recalibration steps & tools

- Build and Apply the models (from resources and callset)
 - → VariantRecalibrator

- Use VQSLOD to filter variants and write a new annotated VCF
 - → ApplyVQSR

NOTE: SNPs and Indels must be recalibrated separately!

Pro-tip: Run VQSR twice in succession according to this workflow. That way you avoid having to split them, recalibrate and combine them again.

Step 1: VariantRecalibrator

VariantRecalibrator builds the Gaussian mixture model

- Uses the variants in the input callset that overlap the training data
- Uses the annotations *in our callset*, not the resource callset

```
gatk VariantRecalibrator \
-R human.fasta \
-V raw.SNPs.vcf \
-resource [tags]:filename.vcf \
-an DP -an QD -an FS -an MQRankSum {...} \
-mode SNP \
-recal-file raw.SNPs.recal \
-tranches-file raw.SNPs.tranches \
-rscript-file recal.plots.R
```

SNP example – see documentation for indel recommendations

Role of training and truth resources

- Training input variants that overlap with these training sites to build the model
- Truth –determine where to set the cutoff in VQSLOD sensitivity
- Known only for reporting purposes, not used in any calculations
- Prior Phred-scaled estimate of data accuracy

Specifying VQSR resources

```
-resource [tags]:filename.vcf
```

Tags for SNP resources:

```
hapmap, known=false, training=true, truth=true, prior=15.0 omni, known=false, training=true, truth=false, prior=12.0 1000G, known=false, training=true, truth=false, prior=10.0 dbsnp, known=true, training=false, truth=false, prior=2.0
```

SNP example – see documentation for indel recommendations

Outputs of VR: recal file, tranches, plots

Recalibration plots show aspects of the model

Tranche plots show estimated TP vs FP tradeoff

Estimation is based on Ti/Tv ratio of novel variantsDefault target Ti/Tv is for WGS and must be adapted for exomes

Tranches: slices of sensitivity threshold values

Step 2: ApplyVQSR

ApplyVQSR applies the filtering threshold

- Executes the desired sensitivity / specificity tradeoff by applying filters to the input callset (no new calculations)
- Creates a new, filtered, analysis-worthy VCF file.

```
gatk ApplyVQSR \
-R human.fasta \
-V raw.vcf \
-mode SNP \
-recal-file raw.SNPs.recal \
-tranches-file raw.SNPs.tranches \
-0 recal.SNPs.vcf \
-ts-filter-level 99.0
```

Additionally every variant is now annotated with its VQSLOD score.

SNP example – see documentation for indel recommendations

Output: the final recalibrated VCF file

VQSR output VCF (vs. Hard Filter)

Before VQSR (input vcf):

#CHROM	POS	FILTER	INFO
1	10146	•	AC=1;DP=32;FS=9.208; MQ=31.96;MQRankSum=0.085;
1	10403	•	AC=1;DP=64;FS=1.645;MQ=41.86;MQRankSum=1.87;
1	234313		AC=1;DP=239;FS=12.675;MQ=38.19;MQRankSum=-0.122;

After VQSR (output vcf):

#CHROM	POS	FILTER	INFO
1	10146	VQSRTrancheINDEL99.30to99.50	AC=1;NEGATIVE_TRAIN_SITE;VQSLOD=-1.328;culprit=SOR
1	10403	PASS	AC=1;;QD=0.60; VQSLOD=0.794;culprit=QD
1	234313	VQSRTrancheSNP99.90to100.00	AC=1;;POSITIVE_TRAIN_SITE;VQSLOD=-5.356;culprit=MQ

Hard filtered vcf:

#CHROM	POS	FILTER	INFO
1	10146	PASS	AC=1;DP=32;FS=9.208; MQ=31.96;MQRankSum=0.085;
1	10403	INDEL_Filter	AC=1;DP=64;FS=1.645;MQ=41.86;MQRankSum=1.87;
1	234313	SNP_Filter	AC=1;DP=239;FS=12.675;MQ=38.19;MQRankSum=-0.122;

Tips for running VQSR on exome data

- Smaller number of variants per sample compared to WGS
 - -> typically insufficient to build a robust recalibration model if running on only a few samples
- Analyze samples jointly in cohorts of at least 30 samples
- ➤ If necessary, add exomes from 1000G Project or comparable
- What to look for in samples for padding a cohort:
 - Similar technical generation is paramount (technology, capture, read length, depth)

How to add exomes from 1000G to your analysis

ALWAYS do this: **BAMs 1000G BAMs** HC per-sample GVCFs GenotypeGVCFs Raw VCF **VQSR** Filtered VCF

NEVER do this:

When should you NOT run VQSR?

- Non-human organisms where known resources are unavailable or insufficiently curated
- RNAseq data → see RNAseq-specific filtering
- Cohort is too small and no other samples are available for "padding" the cohort
- → Use manual filtering recommendations instead

Deep learning: a new frontier in genomics

Area under Precision-Recall Curve

	INDEL			SNP			TYPE
	INDEL	INDEL	INDEL	SNP	SNP	SNP	Туре
	NA12878	NA24385	CHM WGS1	NA12878	NA24385	CHM WGS1	Sample
Architecture	NIST GiaB	NIST GiaB	SynDip	NIST GiaB	NIST GiaB	SynDip	Truth
VQSR 1-sample	.779	.917	.613	.982	.990	.967	
VQSR gnomAD	.917	.963	.650	.992	.995	.986	
Deep Variant	.913	.926	.818	.994	.997	.988	
GATK4 CNN	.965	.979	.832	.995	.997	.991	

Best Practices for Germline SNP & INDEL Discovery

