Yield gap analysis using boundary lines

Chawezi Miti

Chawezi.miti@nottingham.ac.uk

University of Nottingham

Background

- Biological response (e.g. yield) is affected by many factors in nature
- If the relationship of one factor and response is plotted in uncontrolled environments, a complex distribution is observed.
- Webb (1972) proposed a boundary line model for such data
- The upper bounds are taken as the most efficient response when other factors are optimal

Source: Webb (1972)

Background

- \square The BL is taken as the maximum yield as function of factor x_i for that particular system
- ☐ Points below BL have a yield gap
- ☐ Used to *yield gap analysis* evaluate the *importance of production factors* on farm systems

Methods of implementing boundary line analysis

• Several methods are available in literature including *heusteric* or *statistical* methods

1. Heuristic methods

□ Visual assessment

□BOLIDES algorithm

□Binning

□ Quantile regression

Heuristic methods involve subjective discissions

2. Statistical methods

☐ Censored bivariate model

Statistical methods follow strict statistical principles

Methods of implementing boundary line analysis

• Several methods are available in literature including *heusteric* or *statistical* methods

- 1. Heuristic methods
 - □Visual assessment
 - □BOLIDES algorithm
 - **□**Binning
 - □ Quantile regression
- 2. Statistical methods
 - □Censored bivariate normal model

Heuristic methods involve subjective discissions

Statistical methods follow strict statistical principles

Yield gap analysis using binning methodology

Yield gap analysis using binning methodology

Yield gap analysis using boundary lines involves three steps

- 1. Selection of boundary points
- 2. Model fitting
- 3. Decomposition of identified yield gaps

Yield gap analysis using boundary lines involves three steps

- 1. Selection of boundary points
- 2. Model fitting
- 3. Decomposition of identified yield gaps

1. Selection of boundary points

- This follows a two step process
 - 1. Dataset is divided into bins (group) of equal intervals based on the factor of interest
 - 2. In each group, boundary point is selected corresponding to the *maximum value* or *95 percentile* of each group

1. Selection of boundary points

• This follows a two step process

- 1. Dataset is divided into bins (group) of equal intervals based on the factor of interest
- 2. In each group, boundary point is selected corresponding to the *maximum value* or *95 percentile* of each group

1. Selection of boundary points

- This follows a two step process
 - 1. Dataset is divided into bins (group) of equal intervals based on the factor of interest

2. In each group, boundary point is selected corresponding to the *maximum* value or 95 percentile of each group

Yield gap analysis using boundary lines involves three steps

1. Selection of boundary points

2. Model fitting

3. Decomposition of identified yield gaps

2. Model fitting

Considerations

- 1. Selection of model form
 - Agronocally plausible
- 2. Fitting model to boundary points
 - Least squares
 - Low root mean square error for the boundary points

2. Model fitting

Fit boundary lines to all variables

- Bio-physical factors
- Management factors

Yield gap analysis using boundary lines involves three steps

- 1. Selection of boundary points
- 2. Model fitting

3. Decomposition of identified yield gaps

3. Decomposition of identified yield gaps

☐ Based on the principle of van Liebig's law of minimum

$$y_pred = min(x_i, x_2, x_3, x_4)$$

Decomposition of yield gap

- \Box *Unexplained* = *predicted yield actual yield*
- \square *Identified* = maximum yield predicted yield

• Based on the censored bivariate normal distribution

Process of fitting boundary line

- 1. Check the distribution of variables
- 2. Check for outliers
- 3. Check for evidence of boundary
- 4. Fit the model (maximum likelihood)
 - ☐ Select model form to describe relation (agronomically plausible)
 - ☐ Initial starting values
 - Parameters of bivariate normal distribution
 - □ Parameters of censor (BL)

cbvn(vals,theta,sigh,model = "lp", xlab=expression("P /log ppm"), ylab=expression("Yield /t ha"^{-1}))


```
model1
## $estimates
           Estimate Standard error
## beta0 13.17142480
                       0.134120445
## beta1 4.09776732
                      1.002709032
## beta2 3.36047473
                       0.457647238
                       0.006451127
         3.12596783
## mux
         9.29811648
                       0.022643136
## muy
         0.50053427
                       0.004561592
## sdx
         1.61780277
                       0.017865349
## sdy
## rcorr 0.03053177
                       0.014139952
## $AIC
## constant max 32431.55
               32429.55
               32397.87
## BL
```


Thankyou