1 Основные понятия

Определение 1.1:

Сигнатура - множество имён операций с указанием их местности.

$$(f^{(2)}, g^{(3)}, h^{(0)}), (+^{(2)}, \cdot^{(3)})$$

 $h^{(0)}$ - символ константы, V - имена переменных

Определение 1.2:

Терм - выражение, составленное из символов сигнатуры и переменных

- 1. $x \in V$, x терм
- $2. \ c$ символ константы, c терм
- 3. если $t_1,...,t_n$ термы и f символ n-местной операции, то $f(t_1,...,t_n)$ терм

Пример 1.1:

Примеры термов: -(x), -(0), +(x, y), 2 + 3 + a

Определение 1.3:

Замкнутый терм - терм, не содержащий переменных

Определение 1.4:

Универсальная алгебра - пусть Σ - сигнатура, тогда универсальная алгебра сигнатуры Σ - это пара вида (A,I), где A - произвольное непустое множество, а I - некоторое отображение, которое для всякого $p^{(m)} \in \Sigma$, $I(p^{(m)})$ - n-местной операции на множестве

Пример 1.2:

Пример универсальной алгебры: пусть $\Sigma = (+^{(2)}, \cdot^{(2)}, -^{(1)}, 0^{(0)}, 1^{(0)})$, тогда

$$R=(\mathbb{R},I): I(+)-$$
 сложение
$$I(\cdot)-$$
 умножение
$$I(-)-$$
 вычитание
$$I(0)-0$$

$$I(1)-1$$

Определение 1.5:

 \mathbb{R} называется **основным множеством** или носителем алгебры, а I - интерпретацией или интерпретирующей функцией

Определение 1.6:

Состояние - функция, приписывающая переменной некоторый элемент носителя $\sigma: V \to A$

Пример 1.3:

Пример состояний: $\sigma = \{(x,3), (y,-8)\}, \sigma(x) = 3$

Определение 1.7:

Значение терма на состоянии - значение того выражения, в котором переменные заменены их значениями

- 1. t переменная, $\sigma(t)$ по определению состояния
- 2. t символ константы, $I(t) = \sigma(t_1) = v_1$
- 3. если $t_1,...,t_n$ термы и $\sigma(t_1)=v_1,...,\sigma(t_n)=v_n$, то $\sigma(t)=I(f)(v_1,...,v_n)$

2 Изоморфизм

Определение 2.1:

Изоморфизм - Пусть Σ - сигнатура, $\mathbf{A}=(A,I)$, $\mathbf{B}=(B,J)$ - универсальные алгебры сигнатуры Σ , тогда изоморфизм между \mathbf{A} и \mathbf{B} - это $h:\mathbf{A}\to\mathbf{B}$ - биективная функция, которая удовлетворяет следующему условию:

$$h(I(f_i)(a_1,...,a_n)) = J(f_i)(h(a_1),...,h(a_n))$$

для любых $a_1,...,a_n$ и $f_i \in \Sigma$

Пример 2.1:

Пример изоморфизма: пусть $\Sigma=(f^{(2)}),\, \mathbf{A}=(\mathbb{R},+),\, \mathbf{B}=(\mathbb{R},\cdot)$ Надо доказать:

$$h(a_1 + a_2) = h(a_1) \cdot h(a_2)$$

 $a_1, a_2 \in \mathbb{R}$

Пусть $h(x) = e^x$, тогда

$$h(a_1 + a_2) = e^{a_1 + a_2} = e^{a_1} \cdot e^{a_2} = h(a_1) \cdot h(a_2) \blacksquare$$

Теорема 2.1. h - изоморфизм между A и B, то h^{-1} - изоморфизм между B и A

Доказательство. пусть $b_1,...,b_{n_i} \in B$, тогда надо доказать

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i}))$$

Так как $b_1 = h(a_1), ..., b_{n_i} = h(a_{n_i}),$

$$I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i})) = I(f_i)(h^{-1}(h(a_1)),...,h^{-1}(h(a_{n_i}))) = I(f_i)(a_1,...,a_{n_i})$$

По определению изоморфизма

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = h^{-1}(h(I(f_i)(a_1,...,a_{n_1}))) = I(f_i)(a_1,...,a_{n_1})$$

Из этих двух равенств следует то, что надо доказать

Определение 2.2:

Системы, между которыми существует изоморфизм называют **изо**морфными

$$A \simeq B$$

операции в изоморфных системах обладают одними и теми же свойствами

Определение 2.3:

 $t(x_1,...,x_n)$ - терм t не содержит других переменных кроме $x_1,...,x_n$

Определение 2.4:

Пусть **A** - алгебра, $a_1, ..., a_n$ - элементы алгебры **A**, тогда

$$t(a_1, ..., a_n) = \sigma(t), \sigma(x_1) = a_1, ..., \sigma(x_n) = a_n$$

Теорема 2.2. h - изоморфизм между $\mathbf{A} = (A, I)$ и $\mathbf{B} = (B, J)$, то для любого терма $t(x_1, ..., x_n)$ и любых $a_1, ..., a_n$ выполняется

$$h(t^{\mathbf{A}}(a_1,...,a_n)) = t^{\mathbf{B}}(h(a_1),...,h(a_n))$$

 \mathcal{A} оказательство. Индукция по построению терма t

1.
$$t = x$$

$$t^{\mathbf{A}}(a) = a \Leftrightarrow h(t^{\mathbf{A}}(a)) = h(a) \Leftrightarrow t^{\mathbf{B}}(h(a)) = h(a)$$

2. t = c

$$\sigma(c) = I(c) = J(c) \Rightarrow t^{\mathbf{A}} = I(c), t^{\mathbf{B}} = J(c) \Rightarrow h(I(c)) = J(c)$$

по определению гомоморфизма

3.
$$t = f(t_1, ..., t_k)$$

$$h(t^{\mathbf{A}}(a_{1},...,a_{n})) = h(I(f)(t_{1}^{\mathbf{A}}(a_{1},...,a_{n}),...,t_{k}^{\mathbf{A}}(a_{1},...,a_{n}))) = J(f)(h(t_{1}^{\mathbf{A}}(a_{1},...,a_{n})),...,h(t_{k}^{\mathbf{A}}(a_{1},...,a_{n}))) = J(f)(t_{1}^{\mathbf{B}}(h(a_{1}),...,h(a_{n})),...,t_{k}^{\mathbf{B}}(h(a_{1}),...,h(a_{n})) = t^{\mathbf{B}}(h(a_{1}),...,h(a_{n}))$$

Пример 2.2:

Доказать что
$$\mathcal{A}=(\mathbb{R};\cdot)
ot\cong\mathcal{B}=(\mathbb{R}^+;\cdot)$$

Доказательство. Предположим что существует изоморфизм $h:\mathcal{A}\to\mathcal{B},$ тогда

$$h(0)=x,x\in\mathbb{R}^+$$

$$x = h(0) = h(0 \cdot 0) = h(0) \cdot h(0) = x^{2}$$

 $x = x^{2} \Rightarrow x = 1$

$$h(1) = y, y \in \mathbb{R}^+$$

$$y = h(1) = h(1 \cdot 1) = h(1) \cdot h(1) = y^{2}$$

 $y = y^{2} \Rightarrow y = 1$

h(0)=1=h(1) - противоречие (h не биективна). Утверждение не верно. \Box

Пример 2.3:

Доказать что
$$\mathcal{A} = (\mathbb{R}; +) \not\cong \mathcal{B} = (\mathbb{R}; \cdot)$$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{B} \to \mathcal{A},$ тогда

$$h(0) = x, h(1) = y; x, y \in \mathbb{R}$$

3 Гомоморфизм

4 Декартовы произведения

5 Полугруппы и моноиды

Определение 5.1:

Полугруппа - многообразие заданное множеством

$$(x*y)*z = x*(y*z)$$

Теорема 5.1. Значение терма не зависит от расстановки скобок (Ассоциативный закон)

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = a_1 a_2 ... a_n$$

 \mathcal{A} оказательство. Индукция по длине t

Базис: n=1, нет скобок

Шаг: для n-1 верно, тогда

1.
$$m = n - 1$$

$$t = t_1 * a_n = (a_1 a_2 ... a_m) * a_n = a_1 a_2 ... a_n$$

2.
$$1 \le m \le n - 1$$

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = (a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1})a_n = (a_1 a_2 ... a_{n-1})a_n = a_1 a_2 ... a_n$$

Определение 5.2:

 e_l называется **нейтральным слева** в подгруппе, если $e_l*a=a$ для всех $a,\,e_r$ называется **нейтральным справа** в подгруппе, если $a*e_r=a$ для всех $a,\,e$ - нейтральный слева и справа

Пример 5.1:

Примеры нейтрального элемента:

Теорема 5.2. Если существуют нейтральный слева и нейтральный справа то они равны

Доказательство.

$$e_l = e_l * e_r = e_r$$

Следствие. Если нейтральный элемент существует, то он единственный.

Определение 5.3:

Моноид - подгруппа с нейтральным элементом

Пример 5.2:

Примеры моноидов:

Определение 5.4:

Свободный моноид - моноид, элементами которого являются конечные последовательности (строки) элементов носителя моноида. Свободный моноид на множестве $A \neq \emptyset$ это $\mathcal{A} = (A^*; \&)$

Теорема 5.3. Любой моноид, порождённый элементами множества, на котором есть свободный моноид, является гомоморфным образом этого моноида

Доказательство. Пусть
$$A \neq \emptyset$$
, $\mathcal{A} = (A^*; \&)$, $\mathcal{B} = (\{t^{\mathcal{B}}(a_1, ..., a_n) : a_1, ..., a_n \in A\}; *)$ и $h : \mathcal{A} \to \mathcal{B}$ - Гомоморфизм

$$h(a_1...a_n) = (a_1, ..., a_n)^{\mathcal{B}}$$

$$h(\varepsilon) = e^{\mathcal{B}}$$

Надо доказать свойство гомоморфизма:

$$h(u\&v) = h(u) * h(v)$$

Пусть $u = a_1...a_n$, $v = a'_1...a'_n$, тогда

$$h(u\&v) = h(uv) = h(a_1...a_na'_1...a'_n) = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

$$h(u) * h(v) = h(a_1...a_n) * h(a'_1...a'_n) = (a_1...a_n)^{\mathcal{B}} * (a'_1...a'_n)^{\mathcal{B}} = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

Из этого следует что h(u&v) = h(u) * h(v)

Пример 5.3:

Примеры свободных моноидов и их гомоморфных образов:

Определение 5.5:

Циклический моноид - моноид порождённый одним элементом. < a > - циклический моноид, порождённый элементом a.

$$e, a, a^1, a^2, a^3, \dots$$
 - элементы моноида $< a >$

- 1. $a^i \neq a^j$ при $i \neq j$ $h :< a > \to (\{a\}^*; \&), h(a^i) = i$ изоморфизм.
- 2. $a^i = a^j$ при $i \neq j$

$$k = i + (k - i) = i + y(j - i) + r$$
$$r = (k - i)mod(j - i)$$
$$r < j - i$$

тогда

$$a^{k} = a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y} a^{r} = \underbrace{(a^{i}a^{j-i}) \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r}}_{a^{r} \stackrel{(a^{i}a^{j-i} = a^{i+j-i} = a^{j} = a^{i})}{=} a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r} = \underbrace{a^{i}a^{r} = a^{i+r}(r < j - i; i + r < j)}_{q}$$

	e	a	a^2
e	a	a	a^2
a	a	a^2	a
a^2	a^2	a	a^2

Пример 5.4:

Пример циклическокококого моноида: $\langle a \rangle = (\{e,a,...\};*)$ Таблица умножения (*) -

Теорема 5.4. Если j - наименьшее число такое что $a^i = a^j$ для какогото i < j, то < a > codeржит ровно <math>j элементов

Доказательство.

$$\underbrace{e, a^1, ..., a^{j-1}}_{\text{нет равных}}, \underbrace{a^j = a^i, a^{j+1} = a^{i+1}, ...}_{\text{повоторя ющиеся}}$$

если j - номер наименьшего повтора, тогда

$$a^x * a^y = \begin{cases} a^{x+y}, & \text{если } x+y < j \\ a^{i+(x+y-i)mod(j-i)}, & \text{если } x+y \ge i \end{cases}$$

$$x+y=k, \qquad \qquad k=i+(k-i\cdot z+r$$

$$r=(k-i)mod(j-i)$$

$$a^k=a^{i+z}$$

$$a^{x+y} = a^k = a^{i+(x+y-i)mod(j-i)}$$

Определение 5.6:

Идемпотент - элемент моноида a, такой что $a^2=a$

Пример 5.5:

Примеры идемпотентов:

Определение 5.7:

Моноид типа (i, j - i) - моноид с элементами

???

Теорема 5.5. В моноиде типа (i,j-i), где i>0 существует идемпотент $b\neq e$

 $oxed{eta}$ оказательcтво.

Пример 5.6:

Пример чего-то:

Определение 5.8:

 b_l - левый обратный для элемента a, если $b_l*a=e,$ b_r - правый обратный для элемента a, если $a*b_l=e,$ b - обратный для элемента a, если b*a=a*b=e

Доказать что множество функций этого вида замкнуты относительно композиции:

$$f(x) = \begin{cases} ax & \text{при } x < b \\ ab & \text{при } x \ge b \end{cases}$$

Доказательство.

Пример 5.7:

Пример изоморфизма: Доказать

$$(P(A \cup B); \cup, \cap) \cong (P(A); \cup, \cap) \times (P(B); \cup, \cap)$$

где P(A) - множество всех подмножеств множества A

Доказательство. Надо доказать

$$h(x_1 \cup x_2) = h(x_1) \cup h(x_2)$$
$$h(x_1 \cap x_2) = h(x_1) \cap h(x_2)$$

и h - биекция

По сути функция h должна выдавать пару, первая часть которой состоит из элементов A, вторая из B

Пример 5.8:

Пример полугруппы: является ли $(\omega,GCD())$ полугруппой

Доказательство. Предположим что является, надо доказать

$$GCD(GCD(x, y), z) = GCD(x, GCD(y, z))$$

1. \Rightarrow Пусть d: d|GCD(x,y), d|zНадо доказать d|GCD(y,z), d|x

$$d|GCD(x,y) \Rightarrow d|x$$
$$d|GCD(x,y) \Rightarrow d|y$$
$$d|x, d|y \Rightarrow d|GCD(y,z)$$

2. ⇐ также

Пример 5.9:

Построить все моноиды из двух элементов $\{e,x\}$

$$A_1 = (\{e, x\}; *_1), A_2 = (\{e, x\}; *_2)$$

Все остальные или изоморфны или тривиальны

Теорема 5.6. Если в конечном моноиде каждый элемент имеет первый обратимый, то существует правый обратимый

Доказательство. Предположим обратное: Если в конечном моноиде каждый элемент имеет первый обратимый, то хотя бы для одного не существует правый обратимый: $ab_r \neq e$ для всех b_r

Таблица умножения $(*_1)$

	e	x
e	e	x
x	x	e

Таблица умножения $(*_2)$

	e	x
e	e	\overline{x}
x	x	\overline{x}

6 Группы

Определение 6.1:

Группа - моноид, в котором все элементы обратимы

Определение 6.2:

Тривиальная группа - группа, состоящая из одного элемента

Теорема 6.1. Если M - моноид и $G \subseteq M$ - подмножество обратимых элементов, то G - группа

Доказательство. $G\subseteq M$ следовательно G ассоциативна, e - обратимый следовательно G имеет нейтральный элемент. Надо доказать замкнутость: $x*y\in G$

x', y' - обратные к x и y элементы, тогда

$$(x * y) * (y' * x') = x * (y * y') * x' = x * e * x' = x * x' = e$$

$$(y'*x')*(x'*y') = y'*(x'*x)*y = y*e*y' = y*y' = e$$

x * y обратим $\Rightarrow xy \in G$

если $x \in G$, то x'*x=x*x'=e, тогда x' имеет обратный элемент, тогда $x' \in G$. Любой элемент G имеет обратный.

G - группа. Теорема доказана.

Теорема 6.2 (Теорема Гротендика). *Каждый коммутативный моноид,* в котором все элементы сократимы можно вложить в группу

Доказательство. Пусть M - коммутативный моноид, $G' = M \times M = (a,b)$, где $a,b \in M$, $(a_1,b_1)(a_2,b_2) = (a_1a_2,b_1b_2)$, (e_1,e_2) - нейтральный элемент.

Пусть $(a, b) \equiv (c, d) \Leftrightarrow ad = bc$. Является ли \equiv конгруэнтностью?

1.
$$(a,b) \equiv (a,b), ab = ba$$

2.
$$(a,b) \equiv (c,d), ad = bc \Rightarrow cb = da \Rightarrow (c,d) \equiv (a,b)$$

3.
$$(a,b) \equiv (c,d) \equiv (u,v) \Rightarrow (a,b) \equiv (u,v)$$

Надо доказать:

$$(a_1, b_1) \equiv (a_2, b_2), (c_1, d_1) \equiv (c_2, d_2) \Rightarrow (a_1c_1, b_1d_1) \equiv (a_2c_2, b_2d_2)$$

$$(a_1, b_1) \equiv (a_2, b_2), (c_1, d_1) \equiv (c_2, d_2) \Rightarrow$$

$$a_1b_2 = b_1a_2, c_1d_2 = d_1c_2 \Rightarrow a_1b_2c_1d_2 = b_1a_2d_1c_2 \Rightarrow$$

$$(a_1c_1)(b_2d_2) = (b_1d_1)(a_2c_2) \Rightarrow$$

$$(a_1c_1, b_1d_1) \equiv (a_2c_2, b_2d_2)$$

$$(a,b) \equiv (c,d) \Leftrightarrow ad = bc$$
 - конгруэнтность

Пусть $G=G'/_{\textstyle\equiv}$ надо доказать что G - группа и M вкладывается в G

$$ab = ba \Rightarrow abe = ab = ba = bae \Rightarrow (ab, ba) \equiv (e, e)$$

$$\widehat{(a, b)} * \widehat{(b, a)} = \widehat{(ab, ba)} = \widehat{(e, e)}$$

 \Rightarrow каждый элемент Gимеет обратный $\Rightarrow G$ - группа

Пусть $h: M \to G$ и $h(a) = \widehat{(a,e)}$, тогда

$$h(ab) = \widehat{(ab, e)} = \widehat{(a, e)}\widehat{(b, e)} = h(a)h(b)$$
$$h(e) = \widehat{(e, e)}$$

h - гомоморфизм

Пусть h(a) = h(b)

$$\widehat{(a,e)} = \widehat{(b,e)} \Rightarrow (a,e) \equiv (b,e) \Rightarrow ae = eb \Rightarrow a = b$$

следовательно h - инъекция, следовательно h - вложение

Пример 6.1:

Пример на теорему Гротендика:

Теорема 6.3. G - группа тогда и только тогда, когда

- 1. (xy)z = x(yz)
- 2. xe = x
- 3. $xx^{-1} = e$

Доказательство. 1. \Rightarrow по определению группы

 $2. \Leftarrow$

$$(xy)z = x(yz) \Rightarrow G$$
 ассоциативна

$$xx^{-1}=e\Rightarrow x^{-1}x=e$$

Надо доказать: ex = x для любого x

$$x^{-1}x = x^{-1}xe = x^{-1}x(x^{-1}x)(x^{-1}x)^{-1} = x^{-1}(xx^{-1})x(x^{-1}x)^{-1} = x^{-1}ex(x^{-1}x)^{-1} = (x^{-1}x)(x^{-1}x)^{-1} = e$$
(1)

$$ex = (xx^{-1})x = x(x^{-1}x) = xe = x$$

G - группа

Следствие. Группы образуют многообразие в сигнатуре $(*, e, {}^{-1})$

Определение 6.3:

Аддитивная группа - группа со сложением

Пример 6.2:

Примеры аддитивных групп:

Определение 6.4:

Мультипликативная группа - группа с умножением

Пример 6.3:

Примеры мультипликативных групп:

Определение 6.5:

Множество вычетов -

Пример 6.4:

Определение 6.6:

Матричные группы: носитель группы - $M_n^*(R)$ и $det \neq 0$

Пример 6.5:

Примеры матричных групп:

- 1. $(M_n^*, \cdot, E, ^{-1})$ группа, не коммутативная
- 2. $det = \pm 1$ группа
- 3. O_n ортогональные, $(O_n,\cdot,E,{}^{-1})$ группа

Определение 6.7:

Группа перестановок - группа перестановок множества S называется группа всех биекций $f: S \to S.$ $(F, \circ, e, ^{-1})$

Пример 6.6:

Определение 6.8:

Симметрическая группа порядка n: S - конечно и состоит из n элементов. $(A,\circ,e,^{-1}),\ A$ - множество автоморфизмов $h:S\to S$

Пример 6.7:

Пример симметрической группы:

- $A = \{e, r_1, r_2, s_1, s_2, s_3\}$
- r_1, r_2 поворот на 120° и 240° соответственно

ullet e - тождественное преобразование

• s_1, s_2, s_3 - оборот вокруг высоты, идущей из первой, второй и третьей вершины соответственно

$$\mathbf{D}_3 = (A, \circ)$$

Таблица умножения о

	e	r_1	r_2	s_1	s_2	s_3
e	e	x	e	x	e	x
r_1	e	x	e	x	e	\overline{x}
r_2	e	x	e	x	e	\overline{x}
s_1	e	x	e	x	e	\overline{x}
s_2	e	x	e	x	e	\overline{x}
s_3	x	x	e	x	e	\overline{x}

Определение 6.9:

Группа кос -

потом соображу как длиннее сделать

Теорема 6.4. Если G - полугруппа, то G является группой тогда и только тогда, когда любое уравнение вида ax = b или xa = b, $(a, b \in G)$ имеет в G решение

 \square оказательство. 1. \Rightarrow

$$ax = b$$

$$a^{-1}ax = a^{-1}b$$

$$x = a^{-1}b$$

$$x = ba^{-1}$$

$$x = ba^{-1}$$

$$x = ba^{-1}$$

любое уравнение вида ax=b или $xa=b,\ (a,b\in G)$ имеет в G решение

 $2. \Leftarrow$ по теореме 6.3

- (а) по определению полугруппы
- (b) $ax = a \Rightarrow x = e \ ya = b$, имеет решение $y = d, \ da = b$

$$be = dae = da = b \Rightarrow be = b$$

(c) для любых ax=e существует решение $x=a^{-1}$ - обратное к a

Теорема 6.5. 1. $(ab)^{-1} = b^{-1}a^{-1}$

2.
$$(a^{-1})^{-1} = a$$

Определение 6.10:

Абелева группа - группа, в которой xy = yx