

Cyclone V SoC Development Board

Reference Manual

101 Innovation Drive San Jose, CA 95134 www.altera.com

MNL-01077-2.3

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability or

Contents

General Description 1-1 Board Component Blocks 1-2 Development Board Block Diagram 1-4 Handling the Board 1-4 Chapter 2. Board Components Board Overview 2-2 Featured Device: Cyclone V SoC 2-5 I/O Resources 2-5 MAX V CPLD 5M2210 System Controller 2-6 FPGA Configuration 2-11 FPGA Programming over Embedded USB-Blaster II 2-11 FPGA Programming from Flash Memory 2-14 FPGA Programming from Flash Memory 2-14 FPGA Programming over External USB-Blaster 2-15 FPGA Programming using EPCQ 2-16 Satus Elements 2-16 Setup Elements 2-17 Board Settings DIP Switch 2-17 Board Settings DIP Switch 2-18 FPGA Configuration Mode DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-19 CPU Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 General User Input/Output 2-20 User-Defined DIP Switch 2-22 Lest-Defined DIP Switch 2-22 Expansion Header 2-23 Character LCD 2-24 On-Board Oscillators 2-24	Chapter 1. Overview	
Development Board Block Diagram 1-4 Handling the Board 1-4 Chapter 2. Board Components Board Overview 2-2 Featured Device: Cyclone V SoC 2-5 I/O Resources 2-5 I/O Resources 2-5 I/O Resources 2-6 FPGA Configuration 2-11 FPGA Programming over Embedded USB-Blaster II 2-11 FPGA Programming from Flash Memory 2-14 FPGA Programming over External USB-Blaster 2-15 FPGA Programming using EPCQ 2-16 Status Elements 2-16 Setup Elements 2-17 Board Settings DIP Switch 2-17 TAG Chain Control DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-19 CPU Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 Program Select Push Button 2-20 Program Select Push Button 2-20 User-Defined DIP Switch 2-20 User-Defi	General Description	1–1
Chapter 2. Board Components	Board Component Blocks	
Chapter 2. Board Components	Development Board Block Diagram	
Board Overview 2-2 Featured Device: Cyclone V SoC 2-5 I/O Resources 2-5 MAX V CPLD 5M2210 System Controller 2-6 FFGA Configuration 2-11 FPGA Programming over Embedded USB-Blaster II 2-11 FPGA Programming from Flash Memory 2-14 FPCA Programming using EPCQ 2-15 Status Elements 2-16 Setup Elements 2-17 Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 HPS Jumpers 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-19 Program Configuration Push Button 2-20 Program Select Push Button 2-20 Program Select Push Button 2-20 User-Defined DIP Switch 2-20 User-Defined Push Buttons 2-20 User-Defined Push Buttons 2-20 User-Defined DIP Switch 2-20 User-Defined DIP Switch 2-22 User-Defined LEDs 2-22 Clock Circuitry 2-24 <		
Board Overview 2-2 Featured Device: Cyclone V SoC 2-5 I/O Resources 2-5 MAX V CPLD 5M2210 System Controller 2-6 FFGA Configuration 2-11 FPGA Programming over Embedded USB-Blaster II 2-11 FPGA Programming from Flash Memory 2-14 FPCA Programming using EPCQ 2-15 Status Elements 2-16 Setup Elements 2-17 Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 HPS Jumpers 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-19 Program Configuration Push Button 2-20 Program Select Push Button 2-20 Program Select Push Button 2-20 User-Defined DIP Switch 2-20 User-Defined Push Buttons 2-20 User-Defined Push Buttons 2-20 User-Defined DIP Switch 2-20 User-Defined DIP Switch 2-22 User-Defined LEDs 2-22 Clock Circuitry 2-24 <	Chapter 2. Board Components	
Featured Device: Cyclone V SoC 2-5 I/O Resources 2-5 MAX V CPLD 5M2210 System Controller 2-6 FPGA Configuration 2-11 FPGA Programming over Embedded USB-Blaster II 2-11 FPGA Programming from Flash Memory 2-14 FPGA Programming using EPCQ 2-16 Status Elements 2-16 Setup Elements 2-17 Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 FPGA Configuration Mode DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-19 MAX V Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 User-Defined DIP Switch 2-20 User-Defined Push Button 2-20 User-Defined Push Button 2-20 User-Defined DIP Switch 2-20 User-Defined DIP Switch 2-22 User-Defined DIP Switch 2-22 User-Defined Push Buttons 2-20 User-Defined		2–2
I/O Resources	Featured Device: Cyclone V SoC	2-5
MAX V CPLD 5M2210 System Controller 2-6 FPGA Configuration 2-11 FPGA Programming over Embedded USB-Blaster II 2-11 FPGA Programming from Flash Memory 2-14 FPGA Programming over External USB-Blaster 2-15 FPGA Programming using EPCQ 2-16 Status Elements 2-17 Setup Elements 2-17 Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 FPGA Configuration Mode DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 Program Select Push Button 2-20 User-Defined Push Button 2-20 User-Defined DIP Switch 2-20 User-Defined DIP Switch 2-20 User-Defined DIP Switch 2-22 User-Defined LEDs 2-22 Expansion Header 2-23 Character LCD 2-23 Clock Circuitry 2-24 On-Board Oscillators 2-24 Off-Board Input/Output Clock <td></td> <td></td>		
FPGA Configuration 2–11 FPGA Programming over Embedded USB-Blaster II 2–11 FPGA Programming from Flash Memory 2–14 FPGA Programming over External USB-Blaster 2–15 FPGA Programming using EPCQ 2–16 Status Elements 2–16 Setup Elements 2–17 Board Settings DIP Switch 2–17 JTAG Chain Control DIP Switch 2–18 FPGA Configuration Mode DIP Switch 2–18 HPS Jumpers 2–19 CPU Reset Push Button 2–20 MAX V Reset Push Button 2–20 Program Configuration Push Button 2–20 Program Select Push Button 2–20 Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined Push Buttons 2–20 User-Defined DIP Switch 2–22 User-Defined DIP Switch 2–22 User-Defined DIP Switch 2–22 User-Defined DIP Switch 2–24 On-Board Oscillators 2–24 On-Board I		
FPGA Programming over Embedded USB-Blaster II 2-11 FPGA Programming from Flash Memory 2-14 FPGA Programming over External USB-Blaster 2-15 FPGA Programming using EPCQ 2-16 Status Elements 2-17 Setup Elements 2-17 Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 FPGA Configuration Mode DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 Program Select Push Button 2-20 User-Defined Push Button 2-20 User-Defined Push Buttons 2-20 User-Defined DIP Switch 2-20 User-Defined DIP Switch 2-22 User-Defined LEDs 2-22 Expansion Header 2-23 Character LCD 2-23 Clock Circuitry 2-24 On-Board Oscillators 2-24 Off-Board Input/Output Clock 2-25 Components and Interfaces 2-26 PCI Express 2-		
FPGA Programming from Flash Memory 2-14 FPGA Programming using EPCQ 2-16 Status Elements 2-16 Setup Elements 2-17 Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 FPGA Configuration Mode DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 Mictor Jumper 2-20 General User Input/Output 2-20 User-Defined Push Buttons 2-20 User-Defined Push Buttons 2-20 User-Defined LEDs 2-22 Expansion Header 2-23 Character LCD 2-23 Clock Circuitry 2-24 On-Board Oscillators 2-24 Off-Board Input/Output Clock 2-25 Components and Interfaces 2-25 Components and Interfaces 2-26 PCI Express 2-26 10/100/1000 Ethernet (HPS) 2-38 CAN Bus (HPS) 2-36 CAN Bus (HPS)	FPGA Programming over Embedded USB-Blaster II	2–11
FPGA Programming over External USB-Blaster 2-15 FPGA Programming using EPCQ 2-16 Status Elements 2-17 Setup Elements 2-17 Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 FPGA Configuration Mode DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-19 MAX V Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 User-Defined User Input/Output 2-20 User-Defined Push Buttons 2-20 User-Defined DIP Switch 2-22 User-Defined LEDs 2-22 Expansion Header 2-23 Character LCD 2-23 Clock Circuitry 2-24 On-Board Oscillators 2-24 Off-Board Input/Output Clock 2-25 Components and Interfaces 2-26 PCI Express 2-26 10/100 Ethernet (FPGA) 2-30 HSMC 2-32 RS-232 UART (HPS) 2-36 CAN Bus (HPS)		
FPGA Programming using EPCQ 2-16 Status Elements 2-16 Setup Elements 2-17 Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 FPGA Configuration Mode DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-19 MAX V Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 Mictor Jumper 2-20 General User Input/Output 2-20 User-Defined Push Buttons 2-20 User-Defined Push Buttons 2-20 User-Defined LEDs 2-22 Expansion Header 2-23 Clock Circuitry 2-24 On-Board Oscillators 2-24 Off-Board Input/Output Clock 2-25 Components and Interfaces 2-26 PCI Express 2-26 10/100/1000 Ethernet (FPGA) 2-38 RS-232 UART (HPS) 2-38 CAN Bus (HPS) 2-36 Real-Time Clock (HPS) 2-37 SPI Master 2-3		
Status Elements 2–16 Setup Elements 2–17 Board Settings DIP Switch 2–18 JTAG Chain Control DIP Switch 2–18 FPGA Configuration Mode DIP Switch 2–18 HPS Jumpers 2–19 CPU Reset Push Button 2–19 MAX V Reset Push Button 2–20 Program Configuration Push Button 2–20 Program Select Push Button 2–20 Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined DIP Switch 2–22 User-Defined LEDs 2–22 Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (FPGA) 2–30 HSMC 2–38 CAN Bus (HPS) 2–36 CAN Bus (HPS) 2–36 CAN Bus (HPS) 2–36 <t< td=""><td></td><td></td></t<>		
Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 FPGA Configuration Mode DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-20 MAX V Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 Mictor Jumper 2-20 General User Input/Output 2-20 User-Defined Push Buttons 2-20 User-Defined DIP Switch 2-22 User-Defined LEDs 2-22 Expansion Header 2-23 Character LCD 2-23 Clock Circuitry 2-24 On-Board Oscillators 2-24 Off-Board Input/Output Clock 2-25 Components and Interfaces 2-26 PCI Express 2-26 10/100/1000 Ethernet (HPS) 2-38 RS-232 UART (HPS) 2-38 CAN Bus (HPS) 2-36 Real-Time Clock (HPS) 2-37 SPI Master 2-37 1°C Interface <		
Board Settings DIP Switch 2-17 JTAG Chain Control DIP Switch 2-18 FPGA Configuration Mode DIP Switch 2-18 HPS Jumpers 2-19 CPU Reset Push Button 2-20 MAX V Reset Push Button 2-20 Program Configuration Push Button 2-20 Program Select Push Button 2-20 Mictor Jumper 2-20 General User Input/Output 2-20 User-Defined Push Buttons 2-20 User-Defined DIP Switch 2-22 User-Defined LEDs 2-22 Expansion Header 2-23 Character LCD 2-23 Clock Circuitry 2-24 On-Board Oscillators 2-24 Off-Board Input/Output Clock 2-25 Components and Interfaces 2-26 PCI Express 2-26 10/100/1000 Ethernet (HPS) 2-38 RS-232 UART (HPS) 2-38 CAN Bus (HPS) 2-36 Real-Time Clock (HPS) 2-37 SPI Master 2-37 1°C Interface <		
JTAG Chain Control DIP Switch 2–18 FPGA Configuration Mode DIP Switch 2–18 HPS Jumpers 2–19 CPU Reset Push Button 2–19 MAX V Reset Push Button 2–20 Program Configuration Push Button 2–20 Program Select Push Button 2–20 Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined DIP Switch 2–22 User-Defined LEDs 2–23 Character LCD 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–38 HSMC 2–30 Real-Time Clock (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–36 SPI Master 2–37 1°C Interface 2–38 SDI Video 2–38	Board Settings DIP Switch	2–17
FPGA Configuration Mode DIP Switch 2–18 HPS Jumpers 2–19 CPU Reset Push Button 2–19 MAX V Reset Push Button 2–20 Program Configuration Push Button 2–20 Program Select Push Button 2–20 Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined DIP Switch 2–22 User-Defined LEDs 2–22 Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–38 10/100 (HPS) 2–38 CAN Bus (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I** Contention 2–38 SDI Video 2–38		
HPS Jumpers 2–19 CPU Reset Push Button 2–19 MAX V Reset Push Button 2–20 Program Configuration Push Button 2–20 Program Select Push Button 2–20 Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined LEDs 2–22 Expansion Header 2–23 Clock Circuitry 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–38 10/100 Ethernet (FPGA) 2–30 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 CAN Bus (HPS) 2–36 SPI Master 2–37 FC Interface 2–38 SDI Video 2–38		
CPU Reset Push Button 2–19 MAX V Reset Push Button 2–20 Program Configuration Push Button 2–20 Program Select Push Button 2–20 Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined LEDs 2–22 Expansion Header 2–23 Clock Circuitry 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–38 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 CAN Bus (HPS) 2–36 SPI Master 2–37 SPI Master 2–37 SPI Master 2–38 SDI Video 2–38		
Program Configuration Push Button 2–20 Program Select Push Button 2–20 Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined LEDs Witch 2–22 User-Defined LEDs 2–22 Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–38 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–36 SPI Master 2–37 SPI Master 2–37 I'C Interface 2–38 SDI Video 2–38	CPU Reset Push Button	2–19
Program Select Push Button 2–20 Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined LEDs witch 2–22 User-Defined LEDs 2–22 Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–38 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38	MAX V Reset Push Button	2–20
Program Select Push Button 2–20 Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined LEDs witch 2–22 User-Defined LEDs 2–22 Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–38 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
Mictor Jumper 2–20 General User Input/Output 2–20 User-Defined Push Buttons 2–20 User-Defined DIP Switch 2–22 User-Defined LEDs 2–22 Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–30 HSMC 2–30 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 1°C Interface 2–38 SDI Video 2–38		
General User Înput/Output 2–20 User-Defined Push Buttons 2–20 User-Defined DIP Switch 2–22 User-Defined LEDs 2–22 Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–36 10/100 Ethernet (FPGA) 2–30 HSMC 2–30 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 1°C Interface 2–38 SDI Video 2–38		
User-Defined Push Buttons 2–20 User-Defined DIP Switch 2–22 User-Defined LEDs 2–22 Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–30 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–36 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
User-Defined LEDs 2–22 Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–28 10/100 Ethernet (FPGA) 2–30 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–30 HSMC 2–30 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38	User-Defined DIP Switch	
Expansion Header 2–23 Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–30 HSMC 2–30 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38	User-Defined LEDs	
Character LCD 2–23 Clock Circuitry 2–24 On-Board Oscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–38 HSMC 2–30 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
On-Board Óscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–28 10/100 Ethernet (FPGA) 2–30 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
On-Board Óscillators 2–24 Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–28 10/100 Ethernet (FPGA) 2–30 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38	Clock Circuitry	2–24
Off-Board Input/Output Clock 2–25 Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–28 10/100 Ethernet (FPGA) 2–30 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
Components and Interfaces 2–26 PCI Express 2–26 10/100/1000 Ethernet (HPS) 2–28 10/100 Ethernet (FPGA) 2–30 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38	Off-Board Input/Output Clock	2–25
10/100/1000 Ethernet (HPS) 2–28 10/100 Ethernet (FPGA) 2–30 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
10/100/1000 Ethernet (HPS) 2–28 10/100 Ethernet (FPGA) 2–30 HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
HSMC 2–32 RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
RS-232 UART (HPS) 2–36 CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I²C Interface 2–38 SDI Video 2–38	10/100 Ethernet (FPGA)	2–30
CAN Bus (HPS) 2–36 Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38	HSMC	2–32
Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38	RS-232 UART (HPS)	2–36
Real-Time Clock (HPS) 2–37 SPI Master 2–37 I ² C Interface 2–38 SDI Video 2–38		
SPI Master 2–37 I²C Interface 2–38 SDI Video 2–38	Real-Time Clock (HPS)	2–37
I ² C Interface 2–38 SDI Video 2–38	` '	
SDI Video		

iv Contents

SDI Video Input	
Memory	
DDR3 SDRAM (FPGA)	
DDR3 SDRAM (HPS)	
QSPI Flash (HPS)	
EPCQ Flash	
CFI Flash	
Micro SD Flash Memory	
I ² C EEPROM	
Power Supply	
Power Distribution System	
Power Measurement	2–54
Chapter 3. Board Components Reference	
Statement of China-RoHS Compliance	3_3
CE EMI Conformity Caution	
.,	
Additional Information	
Board Revision History	Info–1
Document Revision History	
How to Contact Altera	Info 2
Typographic Conventions	Info-2

1. Overview

This document describes the hardware features of the Cyclone® V SoC development board, including the detailed pin-out and component reference information required to create custom FPGA designs that interface with all components of the board.

General Description

The Cyclone V SoC development board provides a hardware platform for developing and prototyping low-power, high-performance, and logic-intensive designs using Altera's Cyclone V SoC. The board provides a wide range of peripherals and memory interfaces to facilitate the development of Cyclone V SoC designs.

One high-speed mezzanine card (HSMC) connector is available to add additional functionality via a variety of HSMCs available from Altera® and various partners.

- For more information on the following topics, refer to the respective documents:
 - Cyclone V device family, refer to the *Cyclone V Device Handbook*.
 - HSMC Specification, refer to the *High Speed Mezzanine Card (HSMC) Specification*.
 - A list of the latest HSMCs available, refer to the Development Board Daughtercards page of the Altera website.

Board Component Blocks

The development board features the following major component blocks:

- One Cyclone V SoC (5CSXFC6D6F31C6) in a 896-pin FBGA package
- FPGA configuration circuitry
 - Active Serial (AS) x1 or x4 configuration (EPCQ256SI16N)
 - MAX® V CPLD (5M2210ZF256I5N) in a 256-pin FBGA package as the System Controller
 - Flash fast passive parallel (FPP) configuration
 - MAX II CPLD (EPM570GM100) as part of the embedded USB-BlasterTM II for use with the Quartus[®] II Programmer
- Clocking circuitry
 - Si570, Si571, and Si5338 programmable oscillators
 - 25-MHz, 50-MHz, 100-MHz, 125-MHz, 148.50-MHz, and 156.25-MHz oscillators
 - SMA input (LVCMOS)
- Memory
 - One 1,024-Mbyte (MB) HPS DDR3 SDRAM with error correction code (ECC) support
 - One 1,024-MB FPGA DDR3 SDRAM
 - One 512-Megabit (Mb) quad serial peripheral interface (QSPI) flash
 - One 512-Mb CFI flash
 - One 32-Kb I²C serial electrically erasable PROM (EEPROM)
 - One Micro SD flash memory card
- Communication Ports
 - One PCI Express x4 Gen1 socket
 - One universal HSMC port
 - One USB 2.0 on-the-go (OTG) port
 - One Gigabit Ethernet port
 - Dual 10/100 Ethernet ports
 - One SDI port (option for SMA connection)
 - One controller area network (CAN) port
 - One RS-232 UART (through the USB port)
 - One real-time clock

- General user input/output
 - LEDs and displays
 - Eight user LEDs
 - One configuration load LED
 - One configuration done LED
 - One error LED
 - Three configuration select LEDs
 - Four on-board USB-Blaster II status LEDs
 - One HSMC interface LED
 - Two UART data transmit and receive LEDs
 - One power on LED
 - One two-line character LCD display
 - Push buttons
 - One CPU reset push button
 - One MAX V reset push button
 - One program select push button
 - One program configuration push button
 - Six general user push buttons
 - DIP switches
 - One MAX V CPLD System Controller control switch
 - One JTAG chain control DIP switch
 - One mode select DIP switch
 - One general user DIP switch
- Power supply
 - 14–20-V (laptop) DC input
- Mechanical
 - 5.2" × 8.2" rectangular form factor

Development Board Block Diagram

Figure 1–1 shows a block diagram of the Cyclone V SoC development board.

Figure 1–1. Cyclone V SoC Development Board Block Diagram

Handling the Board

When handling the board, it is important to observe the following static discharge precaution:

Without proper anti-static handling, the board can be damaged. Therefore, use anti-static handling precautions when touching the board.

2. Board Components

This chapter introduces the major components on the Cyclone V SoC development board. Figure 2–1 illustrates the component locations and Table 2–1 provides a brief description of all component features of the board.

- A complete set of schematics, a physical layout database, and fabrication files for the development board reside in the Cyclone V SoC development kit board design files directory.
- For information about powering up the board and installing the demonstration software, refer to the *Cyclone V SoC Development Kit User Guide*

This chapter consists of the following sections:

- "Board Overview"
- "Featured Device: Cyclone V SoC" on page 2–5
- "MAX V CPLD 5M2210 System Controller" on page 2–6
- "FPGA Configuration" on page 2–11
- "General User Input/Output" on page 2–20
- "Clock Circuitry" on page 2–24
- "Components and Interfaces" on page 2–26
- "Memory" on page 2–40
- "Power Supply" on page 2–51

Board Overview

This section provides an overview of the Cyclone V SoC development board, including an annotated board image and component descriptions. Figure 2–1 shows an overview of the board features.

Figure 2–1. Overview of the Cyclone V SoC Development Board Features

Table 2–1 describes the components and lists their corresponding board references.

Table 2-1. Board Components (Part 1 of 3)

Board Reference	Туре	Description		
Featured Devices				
U21	FPGA	Cyclone V SoC, 5CSXFC6D6F31C6, 896-pin FBGA.		
U19	CPLD	MAX V CPLD, 5M2210ZF256I5N, 256-pin FBGA.		
Configuration, Sta	Configuration, Status, and Setup Elements			
J23	JTAG chain header	Provides access to the JTAG chain and disables the embedded USB-Blaster II when using an external USB-Blaster cable.		
SW4	JTAG chain control DIP switch	Remove or include devices in the active JTAG chain.		
J37	USB header	USB interface for FPGA programming and debugging through the embedded USB-Blaster II JTAG via a type-B USB cable.		
SW2	Board settings DIP switch	Controls the MAX V CPLD 5M2210 System Controller functions such as clock enable, SMA clock input control, and which image to load from flash memory at power-up.		

Table 2–1. Board (Table 2–1. Board Components (Part 2 of 3)				
Board Reference	Туре	Description			
SW3	MSEL DIP switch	Controls the configuration scheme on the board. MSEL pins 0, 1, 2 and 4 connects to the DIP switch while MSEL pin 3 connects to ground.			
S11	Program select push button	Toggles the program select LEDs, which selects the program image that loads from flash memory to the FPGA.			
S12	Configure push button	Load image from flash memory to the FPGA based on the settings of the program select LEDs.			
D37	Configuration done LED	Illuminates when the FPGA is configured.			
D34	Load LED	Illuminates when the MAX V CPLD 5M2210 System Controller is actively configuring the FPGA.			
D36	Error LED	Illuminates when the FPGA configuration from flash memory fails.			
D35	Power LED	Illuminates when 5.0-V power is present.			
D30, D31	JTAG TX/RX LEDs	Indicate the transmit or receive activity of the JTAG chain. The TX and RX LEDs would flicker if the link is in use and active. The LEDs are either off when not in use or on when in use but idle.			
D39-D41	Program select LEDs	Illuminates to show which flash memory image loads to the FPGA when you press the program select push button. Refer to Table 2–6 for the LED settings.			
D9	HSMC port present LED	Illuminates when a daughter card is plugged into the HSMC port.			
D14, D15	UART LEDs	Illuminates when UART transmitter and receiver are in use.			
Clock Circuitry					
X1	Programmable oscillator	Programmable oscillator with a default frequency of 100 MHz. The frequency is programmable using the clock control GUI running on the MAX V CPLD 5M2210 System Controller.			
X4	50-MHz oscillator	50.000-MHz crystal oscillator for general purpose logic.			
Х3	148.5-MHz oscillator	Programmable voltage-controlled crystal oscillator (VCXO) with a default frequency of 148.5 MHz. The frequency is programmable using the clock control GUI running on the MAX V CPLD 5M2210 System Controller.			
J36	Clock input SMA connector	Drive CMOS-compatible clock inputs into the clock multiplexer buffer.			
U29	Multi-output oscillator	Si5338C quad-output programmable oscillator with 100M, 25M, 25M, and 156.25M outputs.			
U35	Multi-output oscillator	Si5338C quad-output fixed oscillator with 25M, 25M, 100M, and 100M outputs.			
General User Inpu	t/Output				
D1-D8	User LEDs	Eight user LEDs. Illuminates when driven low.			
SW1	User DIP switch	User DIP switch. When the switch is ON, a logic 0 is selected.			
S10	CPU reset push button	Reset the FPGA logic.			
S2	MAX V reset push button	Reset the MAX V CPLD 5M2210 System Controller.			
S1-S6	General user push buttons	Six user push buttons. Driven low when pressed.			
Memory Devices					
U37, U38, U30, U22, U14	DDR3 memory	Two 4-Gb DDR3 SDRAM with a 16-bit data bus for the FPGA and three 4-Gb DDR3 SDRAM with a 16-bit data bus for the HPS.			
U5	QSPI flash	1-Gb serial NOR flash with 4-bit data bus.			
	·	•			

Table 2-1. Board Components (Part 3 of 3)

Board Reference	Туре	Description	
U6	Flash memory	512-Mb synchronous flash devices with a 16-bit data bus for non-volatile memory.	
U28	I ² C EEPROM	32-Mb I ² C serial EEPROM.	
Communication Po	orts		
J25	PCI Express socket	PCI Express Gen1 ×4 socket.	
J12	HSMC port	Provides four transceiver channels and 84 CMOS or 17 LVDS channels per the HSMC specification.	
J2	Gigabit Ethernet port	RJ-45 connector which provides a 10/100/1000 Ethernet connection via a Micrel KSZ9021RN PHY and the FPGA-based Altera Triple Speed Ethernet MegaCore function in RGMII mode.	
J33, J34	Gigabit Ethernet port	RJ-45 connectors which provides a dual 10/100 Ethernet connection via a Renesas uPD60620A PHY in MII mode.	
J35	CAN port	DSUB 9-pin connector for CAN networking.	
J8	USB-UART port	USB connector with USB-to-UART bridge for RS-232 terminal.	
J1	USB OTG port	Micro-USB connector for OTG interface.	
J3	Micro SD card socket	Micro SD card interface with 4-bit data line.	
J15, J16	Debug headers	Two 2×8 headers for debug purposes.	
Video and Display	Ports		
J15	Character LCD	Connector that interfaces to a provided 16 character × 2 line LCD module along with two standoffs.	
J14, J17	SDI video port	Two 75- Ω system management bus (SMB) connectors which provide a full-duplex SDI interface through a LMH0303 driver and LMH0384 cable equalizer.	
Power Supply			
J22	DC input jack	Accepts 16-V DC power supply. Do not use this input jack while the board is plugged into a PCI Express slot.	
SW5	Power switch	Switch to power on or off the board when power is supplied from the DC input jack.	

Featured Device: Cyclone V SoC

The Cyclone V SoC development board features a Cyclone V SoC 5CSXFC6D6F31C6 device (U21) that includes a hard processor system (HPS) with integrated ARM® Cortex $^{\text{TM}}$ -A9 MPCore processor.

For more information about Cyclone V device family, refer to the *Cyclone V Device Handbook*.

Table 2–2 describes the features of the Cyclone V SoC device.

Table 2-2. Cyclone V SoC Features

Resource		5CSXFC6D6F31C6
LE (K)		110
ALM		41,509
Register		166,036
Memory (Kb)	M10K	5,140
	MLAB	621
18-bit × 18-bit Multiplier		224
PLLs	FPGA	6
PLLS	HPS	3
Transceivers (3 Gbps)		9

I/O Resources

The Cyclone V SoC 5CSXFC6D6F31C6 device has 288 general purpose FPGA I/O pins and 181 general-purpose HPS I/O pins. Table 2–3 lists the Cyclone V SoC I/O pin count and usage by function on the board.

Table 2-3. Cyclone V SoC I/O Pin Count (Part 1 of 2)

Function	I/O Standard	I/O Count
HPS clock inputs	3.3-V LVCMOS	2
HPS resets	3.3-V LVCMOS	2
HPS LEDs	3.3-V LVCMOS	4
HPS buttons and switches	3.3-V LVCMOS	6
HPS UART	3.3-V LVCMOS	2
HPS I ² C bus	3.3-V LVCMOS	2
HPS SPI bus	3.3-V LVCMOS	4
HPS QSPI flash	3.3-V LVCMOS	6
HPS SD card	3.3-V LVCMOS	7
HPS USB OTG	3.3-V LVCMOS	20
HPS Gigabit Ethernet	3.3-V LVCMOS	14
HPS CAN bus	3.3-V LVCMOS	2
HPS trace	3.3-V LVCMOS	9
HPS DDR3	1.5-V SSTL	78

Function	I/O Standard	I/O Count
FPGA clock inputs	mixed	5
FPGA LEDs	1.5-V	4
FPGA buttons and switches	mixed	7
FPGA DDR3	1.5-V SSTL	71
FPGA Dual Ethernet	2.5-V	14
FPGA SDI control	2.5-V	8
FPGA SDI video	1.5-V PCML	4
FPGA MAX V SPI port	2.5-V	4
FPGA HSMC	mixed	107
FPGA PCI Express control	mixed	7
FPGA PCI Express transceivers	1.5-V PCML	4

Table 2-3. Cyclone V SoC I/O Pin Count (Part 2 of 2)

For further information about I/O usage in the Cyclone V SoC packages, refer to "Package Plan" in the *Cyclone V Device Overview*.

MAX V CPLD 5M2210 System Controller

The board utilizes the 5M2210ZF256I5N System Controller, an Altera MAX V CPLD, for the following purposes:

- FPGA configuration from flash
- Power measurement
- Control and status registers (CSR) for remote system update

Figure 2–2 illustrates the MAX V CPLD 5M2210 System Controller's functionality and external circuit connections as a block diagram.

Figure 2–2. MAX V CPLD 5M2210 System Controller Block Diagram

Table 2–4 lists the I/O signals present on the MAX V CPLD System Controller. The signal names and functions are relative to the MAX V device.

Table 2-4. MAX V CPLD System Controller Device Pin-Out (Part 1 of 4)

Board Reference (U19)	Schematic Signal Name	I/O Standard	Description
В9	CLK125A_EN	2.5-V	125 MHz oscillator enable
E9	CLK50_EN	2.5-V	50 MHz oscillator enable
J5	CLK_100M_MAX	2.5-V	100 MHz clock input
J12	CLK_50M_MAX	1.8-V	50 MHz clock input
A13	CLK_SEL	2.5-V	DIP switch for clock select—SMA or oscillator
D10	CPU_RESETN	2.5-V	FPGA reset push button
T13	EXTRA_SIG1	1.8-V	Embedded USB-Blaster II interface. Reserved for future use
T15	EXTRA_SIG2	1.8-V	Embedded USB-Blaster II interface. Reserved for future use
A2	FACTORY_LOAD	2.5-V	DIP switch to load factory or user design at power-up
R14	FACTORY_REQUEST	1.8-V	Embedded USB-Blaster II request to send FACTORY command
N12	FACTORY_STATUS	1.8-V	Embedded USB-Blaster II FACTORY command status
F11	FLASH_ADVN	1.8-V	FSM bus flash memory address valid
N14	FLASH_CEN0	1.8-V	FSM bus flash memory chip enable
D14	FLASH_CLK	1.8-V	FSM bus flash memory clock
P15	FLASH_OEN	1.8-V	FSM bus flash memory output enable
P14	FLASH_RDYBSYN	1.8-V	FSM bus flash memory ready
D13	FLASH_RESETN	1.8-V	FSM bus flash memory reset
N15	FLASH_WEN	1.8-V	FSM bus flash memory write enable
E14	FM_A0	1.8-V	FM address bus
C14	FM_A1	1.8-V	FM address bus
C15	FM_A2	1.8-V	FM address bus
E13	FM_A3	1.8-V	FM address bus
E12	FM_A4	1.8-V	FM address bus
D15	FM_A5	1.8-V	FM address bus
F14	FM_A6	1.8-V	FM address bus
D16	FM_A7	1.8-V	FM address bus
F13	FM_A8	1.8-V	FM address bus
E15	FM_A9	1.8-V	FM address bus
E16	FM_A10	1.8-V	FM address bus
F15	FM_A11	1.8-V	FM address bus
G14	FM_A12	1.8-V	FM address bus
F16	FM_A13	1.8-V	FM address bus
G13	FM_A14	1.8-V	FM address bus
G15	FM_A15	1.8-V	FM address bus
G12	FM_A16	1.8-V	FM address bus
G16	FM_A17	1.8-V	FM address bus

Table 2-4. MAX V CPLD System Controller Device Pin-Out (Part 2 of 4)

Board Reference (U19)	Schematic Signal Name	I/O Standard	Description
H14	FM_A18	1.8-V	FM address bus
H15	FM_A19	1.8-V	FM address bus
H13	FM_A20	1.8-V	FM address bus
H16	FM_A21	1.8-V	FM address bus
J13	FM_A22	1.8-V	FM address bus
J16	FM_A23	1.8-V	FM address bus
K12	FM_A24	1.8-V	FM address bus
M14	FM_A25	1.8-V	FM address bus
N13	FM_A26	1.8-V	FM address bus
J14	FM_D0	1.8-V	FM data bus
J15	FM_D1	1.8-V	FM data bus
K16	FM_D2	1.8-V	FM data bus
K13	FM_D3	1.8-V	FM data bus
K15	FM_D4	1.8-V	FM data bus
K14	FM_D5	1.8-V	FM data bus
L16	FM_D6	1.8-V	FM data bus
L11	FM_D7	1.8-V	FM data bus
L15	FM_D8	1.8-V	FM data bus
L12	FM_D9	1.8-V	FM data bus
M16	FM_D10	1.8-V	FM data bus
L13	FM_D11	1.8-V	FM data bus
M15	FM_D12	1.8-V	FM data bus
L14	FM_D13	1.8-V	FM data bus
N16	FM_D14	1.8-V	FM data bus
M13	FM_D15	1.8-V	FM data bus
K1	FPGA_CONF_DONE	2.5-V	FPGA configuration done LED
D3	FPGA_CONFIG_D0	2.5-V	FPGA configuration data
C2	FPGA_CONFIG_D1	2.5-V	FPGA configuration data
C3	FPGA_CONFIG_D2	2.5-V	FPGA configuration data
E3	FPGA_CONFIG_D3	2.5-V	FPGA configuration data
D2	FPGA_CONFIG_D4	2.5-V	FPGA configuration data
E4	FPGA_CONFIG_D5	2.5-V	FPGA configuration data
D1	FPGA_CONFIG_D6	2.5-V	FPGA configuration data
E5	FPGA_CONFIG_D7	2.5-V	FPGA configuration data
F3	FPGA_CONFIG_D8	2.5-V	FPGA configuration data
E1	FPGA_CONFIG_D9	2.5-V	FPGA configuration data
F4	FPGA_CONFIG_D10	2.5-V	FPGA configuration data
F2	FPGA_CONFIG_D11	2.5-V	FPGA configuration data
F1	FPGA_CONFIG_D12	2.5-V	FPGA configuration data

Table 2-4. MAX V CPLD System Controller Device Pin-Out (Part 3 of 4)

Board Reference (U19)	Schematic Signal Name	I/O Standard	Description
F6	FPGA_CONFIG_D13	2.5-V	FPGA configuration data
G2	FPGA_CONFIG_D14	2.5-V	FPGA configuration data
G3	FPGA_CONFIG_D15	2.5-V	FPGA configuration data
N3	FPGA_CVP_CONFDONE	2.5-V	FPGA Configuration via Protocol (CvP) done
J3	FPGA_DCLK	2.5-V	FPGA configuration clock
N1	FPGA_NCONFIG	2.5-V	FPGA configuration active
J4	FPGA_NSTATUS	2.5-V	FPGA configuration ready
H1	FPGA_PR_DONE	2.5-V	FPGA partial reconfiguration done
P2	FPGA_PR_ERROR	2.5-V	FPGA partial reconfiguration error
E2	FPGA_PR_READY	2.5-V	FPGA partial reconfiguration ready
F5	FPGA_PR_REQUEST	2.5-V	FPGA partial reconfiguration request
B11	HPS_RESETN	2.5-V	HPS reset push button
B8	HSMA_PRSNTN	2.5-V	HSMC port A present
M1	I2C_SCL_MAX	2.5-V	Programmable oscillator I ² C clock
M2	I2C_SDA_MAX	2.5-V	Programmable oscillator I ² C data
L6	JTAG_MAX_TDI	2.5-V	JTAG chain data in
M5	JTAG_MAX_TDO	2.5-V	JTAG chain data out
N4	JTAG_MAX_TMS	2.5-V	JTAG chain mode
P3	JTAG_MUX_TCK	2.5-V	JTAG chain clock
P11	M570_CLOCK	1.8-V	25-MHz clock to embedded USB-Blaster II for sending FACTORY command
L5	M570_PCIE_JTAG_EN	2.5-V	M570 JTAG enable for the embedded USB-Blaster II
H2	MAX_AS_CONF	2.5-V	Driven low to enable AS configuration from the EPCQ flash through U13 to the FPGA
E11	MAX_CONF_DONE	2.5-V	Embedded USB-Blaster II configuration done LED
A4	MAX_ERROR	2.5-V	FPGA configuration error LED
G4	MAX_FPGA_MISO	2.5-V	FPGA to MAX V SPI bus data output
G1	MAX_FPGA_MOSI	2.5-V	FPGA to MAX V SPI bus data input
Н3	MAX_FPGA_SCK	2.5-V	FPGA to MAX V SPI bus clock
G5	MAX_FPGA_SSEL	2.5-V	FPGA to MAX V SPI bus slave select
A6	MAX_LOAD	2.5-V	FPGA configuration active LED
M9	MAX_RESETN	2.5-V	MAX V reset push button
B10	MSEL0	2.5-V	FPGA MSELO setting
В3	MSEL1	2.5-V	FPGA MSEL1 setting
C10	MSEL2	2.5-V	FPGA MSEL2 setting
C12	MSEL3	2.5-V	FPGA MSEL3 setting
C6	MSEL4	2.5-V	FPGA MSEL4 setting
E10	OVERTEMP	2.5-V	Temperature monitor fan enable
C7	PCIE JTAG EN	2.5-V	PCIe JTAG master enable

Table 2-4. MAX V CPLD System Controller Device Pin-Out (Part 4 of 4)

Board Reference (U19)	Schematic Signal Name	I/O Standard	Description
D12	PGM_CONFIG	2.5-V	Load the flash memory image identified by the PGM LEDs
B14	PGM_LED0	2.5-V	Flash memory PGM select indicator 0
C13	PGM_LED1	2.5-V	Flash memory PGM select indicator 1
B16	PGM_LED2	2.5-V	Flash memory PGM select indicator 2
B13	PGM_SEL	2.5-V	Toggles the PGM_LED [2:0] LED sequence
C11	QSPI_RESETN	2.5-V	Reset signal to QSPI flash
P13	RST	1.8-V	Reset input
D5	SDI_RX_BYPASS	2.5-V	SDI equalizer bypass enable
E8	SDI_RX_EN	2.5-V	SDI RX enable
D11	SDI_TX_EN	2.5-V	SDI TX enable
R12	SECURITY_MODE	1.8-V	DIP switch for the embedded USB-Blaster II to send FACTORY command at power up
A10	SI570_EN	2.5-V	Si570 programmable clock enable
D4	SI571_EN	2.5-V	Si571 programmable clock enable
R16	TRST	1.8-V	Reset output
H5	USB_B2_CLK	2.5-V	Embedded USB-Blaster II interface clock
R4	USB_CFG0	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
T4	USB_CFG1	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
P8	USB_CFG2	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
T7	USB_CFG3	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
N8	USB_CFG4	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
R8	USB_CFG5	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
T8	USB_CFG6	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
Т9	USB_CFG7	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
R9	USB_CFG8	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
P9	USB_CFG9	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
M8	USB_CFG10	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
T10	USB_CFG11	1.8-V	Embedded USB-Blaster II interface (reserved for future use)
A11	USB_RESET	2.5-V	Embedded USB-Blaster II interface reset

FPGA Configuration

This section describes the FPGA, flash memory, and MAX V CPLD 5M2210 System Controller device programming methods supported by the Cyclone V SoC development board.

The Cyclone V SoC development board supports the following configuration methods:

JTAG

- Embedded USB-Blaster II is the default method for configuring the FPGA using the Quartus II Programmer in JTAG mode with the supplied USB cable.
- External Mictor connector for configuring the HPS using the ARM DS-5 Altera Edition software and DSTREAM or Lauterbach cables.
- External USB-Blaster for configuring the FPGA when you connect the external USB-Blaster to the JTAG header (J23).
- Flash memory download for configuring the FPGA using stored images from the flash memory on either power-up or pressing the configure push button (S12).
- EPCQ device for FPGA configuration in Active Serial (AS) mode on power-up.

FPGA Programming over Embedded USB-Blaster II

This configuration method implements a USB connector (J37), a USB 2.0 PHY device (U51), and an Altera MAX II CPLD EPM570GF100I5N (U47) to allow FPGA configuration using a USB cable. This USB cable connects directly between the USB connector on the board and a USB port on a PC running the Quartus II software.

The embedded USB-Blaster II in the MAX II CPLD EPM570GF100I5N normally masters the JTAG chain. The embedded USB-Blaster II shares the pins with the external header. The embedded USB-Blaster II is automatically disabled when you connect an external USB-Blaster to the JTAG chain through the JTAG header (J23). In addition to JTAG interface, the embedded USB-Blaster II have trace capabilities for HPS debug purposes. The trace interface from the HPS routes to the embedded USB-Blaster II connection pins through the FPGA.

Figure 2–3 illustrates the JTAG chain.

Figure 2-3. JTAG Chain

The JTAG chain control DIP switch (SW4) controls the jumpers shown in Figure 2–3. To connect a device or interface to the chain, their corresponding switch must be in the OFF position. Slide all the switches in the ON position to only have the FPGA in the chain.

The MAX V CPLD 5M2210 System Controller must be in the JTAG chain to use some of the GUI interfaces.

The MAX II CPLD EPM570GF100I5N is dedicated to the on-board USB-Blaster II functionality only, connecting to the USB 2.0 PHY device on one side and drives JTAG signals out the other side on the GPIO pins. This device's own dedicated JTAG interface are routed to a small surface-mount header only intended for debugging of first article prototypes.

A USB 2.0 Cypress EZ-USB CY7C68013A device (U51) in a 56-pin VBGA package interfaces to a USB connector.

Table 2–5 lists the USB 2.0 PHY schematic signal names and their corresponding MAX II CPLD pin numbers.

Table 2-5. USB 2.0 PHY Schematic Signal Names and Functions (Part 1 of 2)

Board Reference (U51)	Schematic Signal Name	MAX II CPLD Pin Number	I/O Standard	Description
C1	24M_XTALIN	_	3.3-V	Crystal oscillator input
C2	24M_XTALOUT	_	3.3-V	Crystal oscillator output
E1	FX2_D_N	_	3.3-V	USB 2.0 PHY data
E2	FX2_D_P	_	3.3-V	USB 2.0 PHY data
H7	FX2_FLAGA	D1	3.3-V	Slave FIFO output status
G7	FX2_FLAGB	G1	3.3-V	Slave FIFO output status
H8	FX2_FLAGC	C1	3.3-V	Slave FIFO output status
G6	FX2_PA1	G3	3.3-V	USB 2.0 PHY port A interface
F8	FX2_PA2	B1	3.3-V	USB 2.0 PHY port A interface
F7	FX2_PA3	D2	3.3-V	USB 2.0 PHY port A interface
F6	FX2_PA4	D3	3.3-V	USB 2.0 PHY port A interface
C8	FX2_PA5	K4	3.3-V	USB 2.0 PHY port A interface
C7	FX2_PA6	F2	3.3-V	USB 2.0 PHY port A interface
C6	FX2_PA7	C2	3.3-V	USB 2.0 PHY port A interface
Н3	FX2_PB0	G2	3.3-V	USB 2.0 PHY port B interface
F4	FX2_PB1	H8	3.3-V	USB 2.0 PHY port B interface
H4	FX2_PB2	F3	3.3-V	USB 2.0 PHY port B interface
G4	FX2_PB3	J3	3.3-V	USB 2.0 PHY port B interface
H5	FX2_PB4	F1	3.3-V	USB 2.0 PHY port B interface
G5	FX2_PB5	H1	3.3-V	USB 2.0 PHY port B interface
F5	FX2_PB6	H7	3.3-V	USB 2.0 PHY port B interface
H6	FX2_PB7	E1	3.3-V	USB 2.0 PHY port B interface
A8	FX2_PD0	H3	3.3-V	USB 2.0 PHY port D interface
A7	FX2_PD1	H2	3.3-V	USB 2.0 PHY port D interface
В6	FX2_PD2	J2	3.3-V	USB 2.0 PHY port D interface
A6	FX2_PD3	J1	3.3-V	USB 2.0 PHY port D interface
В3	FX2_PD4	J6	3.3-V	USB 2.0 PHY port D interface
A3	FX2_PD5	K3	3.3-V	USB 2.0 PHY port D interface
C3	FX2_PD6	J5	3.3-V	USB 2.0 PHY port D interface
A2	FX2_PD7	K2	3.3-V	USB 2.0 PHY port D interface

Table 2–5. USB 2.0 PHY Schematic Signal Names and Functions (Part 2 of 2)

Board Reference (U51)	Schematic Signal Name	MAX II CPLD Pin Number	I/O Standard	Description
B8	FX2_RESETN	K9	3.3-V	Embedded USB-Blaster hard reset
F3	FX2_SCL	J4	3.3-V	USB 2.0 PHY serial clock
G3	FX2_SDA	_	3.3-V	USB 2.0 PHY serial data
A1	FX2_SLRDN	K1	3.3-V	Read strobe for slave FIFO
B1	FX2_SLWRN	J9	3.3-V	Write strobe for slave FIFO
B7	FX2_WAKEUP	_	3.3-V	USB 2.0 PHY wake signal
G2	USB_B2_CLK	E2	3.3-V	USB 2.0 PHY 48-MHz interface clock

FPGA Programming from Flash Memory

Flash memory programming is possible through a variety of methods. The default method is to use the factory design—Golden Hardware Reference Design. This design contains an embedded web server, which serves the Board Update Portal web application. The web page allows you to link to SoC-related web pages and to control some user I/O and LCD on the development board.

On either power-up or by pressing the program configuration push button, PGM_CONFIG (S12), the MAX V CPLD 5M2210 System Controller's PFL configures the FPGA from the flash memory.

This feature is disabled by default. To enable this feature, slide the FACTORY_LOAD DIP switch (SW2.3) to the ON position.

The PFL megafunction reads 16-bit data from the flash memory and converts it to fast passive parallel (FPP) format. This 16-bit data is then written to the dedicated configuration pins in the FPGA during configuration.

Pressing the PGM_CONFIG push button (S12) loads the FPGA with a hardware page based on which PGM_LED[2:0] (D39, D40, D41) illuminates.

Table 2–6 lists the design that loads when you press the PGM_CONFIG push button.

Table 2–6. PGM_LED Settings (1)

PGM_LEDO (D41)	PGM_LED1 (D40)	PGM_LED2 (D39)	Design
ON	OFF	OFF	Factory hardware
OFF	ON	OFF	User hardware 1
OFF	OFF	ON	User hardware 2

Note to Table 2-6:

(1) ON indicates a setting of '0' while OFF indicates a setting of '1'.

Figure 2–4 shows the PFL configuration.

Figure 2-4. PFL Configuration

- For more information on the following topics, refer to the respective documents:
 - Board Update Portal, PFL design, and flash memory map storage, refer to the *Cyclone V SoC Development Kit User Guide*
 - PFL megafunction, refer to Parallel Flash Loader Megafunction User Guide.

FPGA Programming over External USB-Blaster

The JTAG chain header provides another method for configuring the FPGA using an external USB-Blaster device with the Quartus II Programmer running on a PC. To prevent contention between the JTAG masters, the embedded USB-Blaster is automatically disabled when you connect an external USB-Blaster to the JTAG chain through the JTAG chain header.

FPGA Programming using EPCQ

The EPCQ device with non-volatile memory features a simple six-pin interface and a small form factor. The EPCQ supports AS x1 and x4 modes.

By default, this board has a FPP configuration scheme setting. The MAX_AS_CONF pin needs to be driven from the MAX V to enable the bus switch (U13) to isolate the EPCQ flash (U20) from the configuration bus. This happens when MSEL is 10010 or 10011.

In AS configuration scheme, the data will be read from the EPCQ flash directly to the FPGA. The MAX V CPLD 5M2210 System Controller controls the nCS line of the EPCQ to avoid line contention on DATA4 line due to functionality sharing. In order to program non-volatile memory, CFI Flash or EPCQ special programming functionality design should be loaded into the FPGA or MAX V CPLD to allow programming using the Quartus II Programmer.

Status Elements

The development board includes status LEDs. This section describes the status elements.

Table 2–7 lists the LED board references, names, and functional descriptions.

Table 2-7. Board-Specific LEDs

Board Reference	Schematic Signal Name	I/O Standard	Description
D35	Power	5.0-V	Blue LED. Illuminates when 5.0 V power is active.
D38	MAX_CONF_DONE	3.3-V	Green LED. Illuminates when the FPGA is successfully configured. Driven by the MAX V CPLD 5M2210 System Controller.
D36	MAX_ERROR	3.3-V	Red LED. Illuminates when the MAX V CPLD 5M2210 System Controller fails to configure the FPGA. Driven by the MAX V CPLD 5M2210 System Controller.
D34	MAX_LOAD	3.3-V	Green LED. Illuminates when the MAX V CPLD 5M2210 System Controller is actively configuring the FPGA. Driven by the MAX V CPLD 5M2210 System Controller.
D41	PGM_LED[0]		0 150 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D40	PGM_LED[1]	3.3-V	Green LEDs. Illuminates to indicate which hardware page loads from flash memory when you press the PGM SEL push button.
D39	PGM_LED[2]		Troil liter money when you proce the 1 str_522 pash suiten.
D37	CVP_CONF_DONE	2.5-V	Green LED. Illuminates when the FPGA is successfully configured using CvP. Driven by the MAX V CPLD 5M2210 System Controller.
D9	HSMA_PRSNTn	2.5-V	Green LED. Illuminates when HSMC port A has a board or cable plugged-in such that pin 160 becomes grounded. Driven by the add-in card.
D30, D31	JTAG_RX, JTAG_TX	1.8-V	Green LEDs. Illuminates to indicate USB-Blaster II receive and
D29, D28	SC_RX, SC_TX	1.0-7	transmit activities.
D15, D14	UART_RX_LED, UART_TX_LED	3.3-V	Green LED. Illuminates to indicate UART receive and transmit activities.

Setup Elements

The development board includes several different kinds of setup elements. This section describes the following setup elements:

- Board settings DIP switch
- JTAG chain control DIP switch
- FPGA configuration mode DIP switch
- HPS jumpers
- CPU reset push button
- MAX V reset push button
- Program configuration push button
- Program select push button
- For more information about the default settings of the DIP switches, refer to the *Cyclone V SoC Development Kit User Guide*.

Board Settings DIP Switch

The board settings DIP switch (SW2) controls various features specific to the board and the MAX V CPLD 5M2210 System Controller logic design. Table 2–8 lists the switch controls and descriptions.

Table 2-8. Board Settings DIP Switch Controls

Switch	Schematic Signal Name	Description
-1	CIVIOLA EN	ON: Select programmable oscillator clock
'	CLK125A_EN	OFF: Select SMA input clock
2	G' EZO DN	ON: Disable on-board oscillator
2	Si570_EN	OFF: Enable on-board oscillator
3	FACTORY_LOAD	ON: Load the factory design from flash at power up.
S		OFF: Disable the PFL and do not configure from flash.
4	ODOLD TON WOOD	ON: Embedded USB-Blaster II sends FACTORY command at power up.
4	SECURITY_MODE	OFF: Embedded USB-Blaster II will not send FACTORY command at power up.

JTAG Chain Control DIP Switch

The JTAG chain control DIP switch (SW4) either removes or includes devices in the active JTAG chain. Table 2–9 lists the switch controls and its descriptions.

Table 2-9. JTAG Chain Control DIP Switch

Switch	Schematic Signal Name	Description
1	IIDO TOMO EM	ON: Bypass Cyclone V HPS in the chain
'	HPS_JTAG_EN	OFF: Cyclone V HPS in-chain
2	EDGA TELAG EN	ON: Bypass Cyclone V FPGA in the chain
	FPGA_JTAG_EN	OFF: Cyclone V FPGA in-chain
3	HOMA THAC TH	ON: Bypass HSMC port in the chain
3	HSMA_JTAG_EN	OFF: HSMC port in-chain
4	MAY THAC TH	ON: Bypass MAX V CPLD 5M2210 System Controller in the chain
4	MAX_JTAG_EN	OFF: MAX V CPLD 5M2210 System Controller in-chain

FPGA Configuration Mode DIP Switch

The FPGA configuration mode DIP switch (SW3) defines the mode to use to configure the FPGA. Table 2-10 lists the switch controls and its descriptions. All switches at the ON position will select the default FPP $\times 16$ mode.

Table 2-10. FPGA Configuration Mode DIP Switch

Switch	Schematic Signal Name	Description
1	MSEL0	ON: Select logic 0
ı	MSELU	OFF: Select logic 1
0	MSEL1	ON: Select logic 0
2		OFF: Select logic 1
2	Mario	ON: Select logic 0
3	3 MSEL2	OFF: Select logic 1
4	MGET 2	ON: Select logic 0
	MSEL3	OFF: Select logic 1

HPS Jumpers

The HPS jumpers define the bootstrap options for the HPS—boot source, mode, HPS clocks settings, POR mode and peripherals selection.

Table 2–11 lists the jumper settings and its descriptions.

Table 2–11. HPS Jumpers

Board Reference	Schematic Signal Name	Description
		Selects the boot mode and source for the HPS.
		0x0—Reserved
		Ox1—FPGA (HPS-to-FPGA bridge)
		0x2—1.8 V NAND flash
		■ 0x3—3.0 V NAND flash
J28, J29, J30	BOOTSEL[0:2]	 0x4—1.8 V SD/MMC flash memory with external transceiver
		 0x5—3.0 V SD/MMC flash memory with internal transceiver
		■ 0x6—1.8 V SPI or quad SPI flash memory
		■ 0x7—3.0 V SPI or quad SPI flash memory
J26, J27	CLKSEL[0:1]	Selects the HPS clock settings. The actual clock settings are also dependent on ${\tt BOOTSEL} [0 : 2]$.
		Selects the source of OSC1 clock.
J13	OSC1_CLK_SEL	ON: Select on-board clock generator.
		OFF: Select external source via SMA connector.
		Selects the LTC expansion header interface type.
J31	LTC_EXP_SPI_I2C	ON: Select SPI.
		OFF: Select I ² C.
		HPS in JTAG chain or only connect HPS to MICTOR.
		Selects the source to control the HPS.
J6	TERA CIDO OFF	ON: Select on-board USB-Blaster II as the JTAG master.
30	JTAG_HPS_SEL	 OFF: Select MICTOR-based JTAG master, such as DSTREAM or Lauterbach programming cables. Also, sets SW4.1 to ON to remove the on-board USB Blaster II from driving the HPS JTAG input port in this mode.
		Selects the source of the JTAG chain.
J7	JTAG_SEL	ON: Select on-board USB-Blaster II as the source.
		OFF: Select MICTOR as the source.

CPU Reset Push Button

The CPU reset push button, CPU_RESETn (S10), is an input to the Cyclone V HPS pin and is an open-drain I/O from the MAX V CPLD System Controller. This push button is the default reset for both the HPS and CPLD logic. The MAX II CPLD 5M2210 also drives this push button during power-on-reset (POR).

MAX V Reset Push Button

The MAX V reset push button, MAX_RESETn (S2), is an input to the MAX V CPLD 5M2210 System Controller. This push button is the default reset for the CPLD logic.

Program Configuration Push Button

The program configuration push button, PGM_CONFIG (S12), is an input to the MAX V CPLD 5M2210 System Controller. This input forces a FPGA reconfiguration from the flash memory. The location in the flash memory is based on the settings of PGM_LED[2:0], which is controlled by the program select push button, PGM_SEL (S2). Valid settings include PGM_LED1, OF PGM_LED1, OF PGM_LED2 on the three pages in flash memory reserved for FPGA designs.

Program Select Push Button

The program select push button, PGM_SEL (S11), is an input to the MAX V CPLD System Controller. This push button toggles the PGM_LED [2:0] sequence that selects which location in the flash memory is used to configure the FPGA. Refer to Table 2–6 on page 2–14 for the PGM_LED [2:0] sequence definitions.

Mictor Jumper

The Mictor jumper (J39) defines the function pin 14 on the external 38-pin Mictor connector. If J39 is shorted, pin 14 is powered by the 3.3-V power rail. If J39 is open, pin 14 floats.

General User Input/Output

This section describes the user I/O interface to the FPGA, including the push buttons, DIP switches, LEDs, expansion header, and character LCD.

User-Defined Push Buttons

The development board includes six user-defined push buttons. For information about the system and safe reset push buttons, refer to "Setup Elements" on page 2–17.

Board references S1–S6 are push buttons for controlling the FPGA designs that loads into the Cyclone V SoC device. Push buttons S5 and S6 connect to the FPGA while push buttons S1–S4 connect to the HPS. When you press and hold down the switch, the device pin is set to logic 0; when you release the switch, the device pin is set to logic 1. There are no board-specific functions for these general user push buttons.

Table 2–12 lists the user-defined push button schematic signal names and their corresponding Cyclone V SoC pin numbers.

Table 2–12. User-Defined Push Button Schematic Signal Names and Functions

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard
S6	USER_PB_FPGA0	AA13	1.5-V
S5	USER_PB_FPGA1	AB13	1.5-V

Table 2–12. User-Defined Push Button Schematic Signal Names and Functions

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard
S4	USER_PB_HPS0	T30	2.5-V
S3	USER_PB_HPS1	U28	2.5-V
S2	USER_PB_HPS2	T21	2.5-V
S1	USER_PB_HPS3	U20	2.5-V

User-Defined DIP Switch

Board reference SW1 is a eight-pin DIP switch. This switch is user-defined and provides additional FPGA or HPS input control. When the switch is in the OFF position, a logic 1 is selected. When the switch is in the ON position, a logic 0 is selected. There are no board-specific functions for this switch.

Table 2–13 lists the user-defined DIP switch schematic signal names and their corresponding Cyclone V SoC pin numbers.

Table 2-13. User-Defined DIP Switch Schematic Signal Names and Functions

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard
1	USER_DIPSW_HPS0	N30	3.3-V
2	USER_DIPSW_HPS1	P29	3.3-V
3	USER_DIPSW_HPS2	P22	3.3-V
4	USER_DIPSW_HPS3	V20	3.3-V
5	USER_DIPSW_FPGA0	AG10	2.5-V
6	USER_DIPSW_FPGA1	AH9	2.5-V
7	USER_DIPSW_FPGA2	AF11	2.5-V
8	USER_DIPSW_FPGA3	AG11	2.5-V

User-Defined LEDs

Board references D1–D8 are eight user-defined LEDs. The status and debugging signals are driven to the LEDs from the FPGA or HPS designs loaded into the Cyclone V SoC. Driving a logic 0 on the I/O port turns the LED on while driving a logic 1 turns the LED off. There are no board-specific functions for these LEDs.

Table 2–14 lists the general LED schematic signal names and their corresponding Cyclone V SoC pin numbers.

Table 2-14. General LED Schematic Signal Names and Functions

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard
D8	USER_LED_FPGA0	AK2	2.5-V
D7	USER_LED_FPGA1	Y16	2.5-V
D6	USER_LED_FPGA2	W15	2.5-V
D5	USER_LED_FPGA3	AB17	2.5-V
D4	USER_LED_HPS0	E17	3.3-V
D3	USER_LED_HPS1	E18	3.3-V
D2	USER_LED_HPS2	G17	3.3-V
D1	USER_LED_HPS3	C18	3.3-V

Expansion Header

The development board includes an expansion header (J23) to connect a daughter card from Linear Technology. The interface connects to the SPI master or I²C ports of the HPS to allow bidirectional communication with two types of protocols. The 14-pin header also allows GPIO, SPI, and I²C extension for user purposes if there are no interface card available.

The LTC_EXP_SPI_I2C jumper (J31) sets the interfaces type. When J31 is shunted, SPI interface is used. When J31 is not shunted, I²C interface is used.

Character LCD

The development board includes a single 10-pin 0.1" pitch single-row header that interfaces to a 2 line \times 16 character Lumex character LCD using standard I²C interface connected to the HPS. The character LCD has a two headers that mount directly to the board's 10-pin header, so it can be easily removed for access to components under the display. You can also use the header for debugging, I²C expansion, or other purposes.

For more information such as timing, character maps, interface guidelines, and other related documentation, visit www.lumex.com.

Clock Circuitry

This section describes the board's clock inputs and outputs.

On-Board Oscillators

Figure 2–5 shows the default frequencies of all external clocks going to the Cyclone V SoC development board.

Figure 2-5. Cyclone V SoC Development Board Clocks

Table 2–15 lists the on-board clock inputs for the development board.

Table 2-15. On-Board Clock Inputs (Part 1 of 2)

Source	Schematic Signal Name	I/O Standard	Cyclone V SoC Pin Number	Description
X1	REFCLK_QL2_P	LVDS	P9	100 MHz programmable oscillator driving transceiver bank QL2 REFCLK input for HSMA signals.
Х3	CLK_148_P	LVTTL	Т9	148.5 MHz programmable VCXO driving transceiver bank QL1 REFCLK input for SDI video signals or SMA.
X5	CLK_ENET_FPGA_P	2.5-V	Y26	125 MHz fixed oscillator driving CLK4p in bank 5B.
U49	PCIE_REFCLK_QL0_P	HSCL	W8	100 MHz fixed oscillator driving transceiver bank QL1 REFCLK input for PCI Express.

Table 2-15. On-Board Clock Inputs (Part 2 of 2)

Source	Schematic Signal Name	I/O Standard	Cyclone V SoC Pin Number	Description	
U35	CLK_ENET_FPGA_PHY	1.5-V	AA16	25 MHz fixed oscillator driving CLK2p in bank 4A	
	CLK_DUAL_ENET_PHY	1.5-V	_	25MHz fixed oscillator driving the Renesas dual ethernet PHY (U45).	
	CLK_100M_MAX	1.5-V	_	100MHz fixed oscillator driving the MAX V CPLDpin J5 for FPGA configuration and other logic.	
	CLK_100M_FPGA	2.5-V	AB27	100 MHz fixed oscillator driving CLK5n in bank 5B.	
U29	CLK_BOT1	1.5-V	AF14	100 MHz programmable oscillator driving CLK0p in bank 3B for FPGA DDR3 or other logic.	
	CLK_TOP1	2.5-V	AA26	156.25 MHz programmable oscillator driving CLK5p in Bank 5B.	
	CLK_OSC1	2.5-V	D25	25 MHz programmable oscillator driving HPS_CLK1 for the HPS in bank 7A though SMA/XO multiplexer (U52).	
	CLK_OSC2	2.5-V	F25	25 MHz programmable oscillator driving HPS_CLK2 for the HPS in bank 7A.	
X4	CLK_50M_MAX	1.8-V	_	50 MHz fixed oscillator driving the MAX V CPLD pin J12 for FPGA configuration or other logic.	
	CLK_50M_FPGA	1.5-V	AC18	50 MHz fixed oscillator driving CLK3p in bank 4A for general logic.	

Off-Board Input/Output Clock

The development board has input and output clocks which can be driven onto the board. The output clocks can be programmed to different levels and I/O standards according to the FPGA device's specification.

Table 2–16 lists the clock inputs for the development board.

Table 2-16. Off-Board Clock Inputs

Source	Schematic Signal Name	I/O Standard	Cyclone V SoC Pin Number	Description	
SMA	CLKIN_SMA_HPS	2.5-V CMOS	_	Multiplexed clock input to OSC1 of the HPS	
Samtec HSMC	HSMA_CLK_INO	LVTTL	K14	Single-ended input from the installed HSMC cable or board.	
Samtec HSMC	HSMA_CLK_IN_P1	LVTTL	AG2	LVTTL input from the installed HSMC cable or board.	
	HSMA_CLK_IN_N1	LVTTL	AH3		
Samtec HSMC	HSMA_CLK_IN_P2	LVDS/LVTTL	H15	LVDS input from the installed HSMC cable or	
Same How	HSMA_CLK_IN_N2	LVDS/LVTTL	G15	board. Can also support 2x LVTTL inputs.	

Table 2–17 lists the clock outputs for the development board.

Table 2-17. Off-Board Clock Outputs

Source	Schematic Signal Name	I/O Standard	Cyclone V SoC Pin Number	Description	
Samtec HSMC	HSMA_CLK_OUT0	2.5-V CMOS	A10	FPGA CMOS output (or GPIO)	
Samtec HSMC	HSMA_CLK_OUT_P1	2.5-V CMOS	AJ2	CMOS output	
	HSMA_CLK_OUT_N1	2.5-V CMOS	AC12		
Samtec HSMC	HSMA_CLK_OUT_P2	LVDS/2.5V CMOS	E7	LVDS output. Can also support 2x CMOS outputs.	
Samlet Howl	HSMA_CLK_OUT_N2	LVDS/2.5V CMOS	E6		
PCI Express	PCIE_REFCLK_QL0_P	HCSL	W8	HCSL output to the PCI Express socket	
Socket	PCIE_REFCLK_QLO_N	HCSL	W7	THOSE output to the POI Express socket	

Components and Interfaces

This section describes the development board's communication ports and interface cards relative to the Cyclone V SoC device. The development board supports the following communication ports:

- PCI Express
- 10/100/1000 Ethernet (HPS)
- 10/100 Ethernet (FPGA)
- HSMC
- RS-232 Serial UART (HPS)
- CAN bus (HPS)
- Real-Time clock (HPS)
- SPI master
- I²C
- SDI video

PCI Express

The PCI Express interface on the development board supports auto-negotiating channel width from $\times 1$ to $\times 4$ as well as the connection speed of Gen1 at 2.5 Gbps/lane for a maximum of 10 Gbps bandwidth.

The PCIE_REFCLK_P/N signal is a 100-MHz differential input that is driven to the daughter card through the PCI Express edge connector. This signal connects directly to a Cyclone V SoC REFCLK input pin pair using DC coupling. The I/O standard is High-Speed Current Steering Logic (HCSL).

Figure 2–6 shows the PCI Express reference clock levels.

By default, the Cyclone V SoC development board is set up for the PCI Express interface to use with the Cyclone V SoC device in root-port mode, such as when plugging in a PCI Express add-in card into the PCI Express socket (J25). In this case, the switching regulator generates and drives the clock to both the Cyclone V SoC device and the add-in card.

To use the PCI Express interface with the Cyclone V SoC device in end-point mode, for example, with a cable plugged into a PC, you must remove resistors R253, R254, R249, and R251, and install R250 and R252. This resistor change will route the clock from the PC directly into the Cyclone V SoC device. You can use a PCI Express gen1x4 cable from Samtec (HDR-172378-02-PCIEC) for this connection.

This cable connects power (3.3 V and 12 V) from the PC to the development board and therefore the development board's power needs to be isolated to function properly. To isolate the power, remove the development board's power isolation resistors, R554 and R547, located near the PCI Express connector. The ground pin (GND) will still connect through the cable as it is required for normal operation.

The PCI Express edge connector also has a presence detect feature for the motherboard to determine if a card is installed. A jumper is provided to optionally connect PRSNT1n to any of the three PRSNT2n pins found within the x4 connector definition. This is to address issues on some PC systems that would base the link-width capability on the presence detect pins versus a query operation.

Table 2–18 summarizes the PCI Express pin assignments. The signal names and directions are relative to the Cyclone V SoC.

Table 2–18. PCI Express Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 2)

Board Reference (J18)	Schematic Signal Name	I/O Standard	Cyclone V SoC Device Pin Number	Description
A11	PCIE_PERSTN	LVTTL	AG6	Reset
B17	PCIE_PRSNT2N_X1	LVTTL	AD29	Presence detect DIP switch
B31	PCIE_PRSNT2N_X4	LVTTL	A11	Presence detect DIP switch
A14	PCIE_REFCLK_SYN_N	HCSL	W7	Motherboard reference clock
A13	PCIE_REFCLK_SYN_P	HCSL	W8	Motherboard reference clock
B5	PCIE_SMCLK	LVTTL	AE29	SMB clock
В6	PCIE_SMDAT	LVTTL	J14	SMB data

Board Reference (J18)	Schematic Signal Name	I/O Standard	Cyclone V SoC Device Pin Number	Description	
B11	PCIE_WAKEN	LVTTL	W21	Wake signal	
A17	PCIE_RX_N0	1.5-V PCML	AE1	Receive bus	
A22	PCIE_RX_N1	1.5-V PCML	AC1	Receive bus	
A26	PCIE_RX_N2	1.5-V PCML	AA1	Receive bus	
A30	PCIE_RX_N3	1.5-V PCML	W1	Receive bus	
A16	PCIE_RX_P0	1.5-V PCML	AE2	Receive bus	
A21	PCIE_RX_P1	1.5-V PCML	AC2	Receive bus	
A25	PCIE_RX_P2	1.5-V PCML	AA2	Receive bus	
A29	PCIE_RX_P3	1.5-V PCML	W2	Receive bus	
B15	PCIE_TX_N0	1.5-V PCML	AD3	Transmit bus	
B20	PCIE_TX_N1	1.5-V PCML	AB3	Transmit bus	
B24	PCIE_TX_N2	1.5-V PCML	Y3	Transmit bus	
B28	PCIE_TX_N3	1.5-V PCML	V3	Transmit bus	
B14	PCIE_TX_P0	1.5-V PCML	AD4	Transmit bus	
B19	PCIE_TX_P1	1.5-V PCML	AB4	Transmit bus	
B23	PCIE_TX_P2	1.5-V PCML	Y4	Transmit bus	
B27	PCIE TX P3	1.5-V PCML	V4	Transmit bus	

Table 2–18. PCI Express Pin Assignments. Schematic Signal Names, and Functions (Part 2 of 2)

10/100/1000 Ethernet (HPS)

The development board supports an RJ-45 10/100/1000 base-T Ethernet using an external Micrel KSZ9021RN PHY and the HPS EMAC. The PHY-to-MAC interface employs RGMII connection using four data lines at 250 Mbps each for a connection speed of 1 Gbps.

The Micrel KSZ9021RN PHY uses 2.5-V or 3.3-V power rails. The PHY interfaces to an RJ-45 model with internal magnetics that can be used for driving copper lines with Ethernet traffic.

Figure 2–7 shows the RGMII interface between the FPGA (MAC) and Micrel KSZ9021RN PHY.

Figure 2-7. RGMII Interface between FPGA (MAC) and PHY

Table 2–19 lists the Ethernet PHY interface pin assignments.

Table 2-19. Ethernet PHY Pin Assignments, Signal Names and Functions

Board Reference (U11)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
41	CLK125_NDO_LED_MODE	_	_	Clock out 125-MHz LED mode
24	ENET_HPS_GTX_CLK	H19	3.3-V CMOS	125-MHz RGMII transmit clock
38	ENET_HPS_INTN	C19	3.3-V CMOS	Management bus interrupt
17	ENET_HPS_LED1_LINK	_	3.3-V CMOS	Receive data active LED
15	ENET_HPS_LED2_LINK	_	3.3-V CMOS	Transmit data active LED
36	ENET_HPS_MDC	B21	3.3-V CMOS	Management bus data clock
37	ENET_HPS_MDIO	E21	3.3-V CMOS	Management bus data
42	ENET_HPS_RESETN	_	3.3-V CMOS	Device reset
48	ENET_HPS_RSET	_	3.3-V CMOS	Device interrupt
35	ENET_HPS_RX_CLK	G20	3.3-V CMOS	RGMII receive clock
33	ENET_HPS_RX_DV	K17	3.3-V CMOS	RGMII receive data valid
32	ENET_HPS_RXD0	A21	3.3-V CMOS	RGMII receive data bus
31	ENET_HPS_RXD1	B20	3.3-V CMOS	RGMII receive data bus
28	ENET_HPS_RXD2	B18	3.3-V CMOS	RGMII receive data bus
27	ENET_HPS_RXD3	D21	3.3-V CMOS	RGMII receive data bus
25	ENET_HPS_TX_EN	A20	3.3-V CMOS	RGMII transmit enable
19	ENET_HPS_TXD0	F20	3.3-V CMOS	RGMII transmit data bus
20	ENET_HPS_TXD1	J19	3.3-V CMOS	RGMII transmit data bus
21	ENET_HPS_TXD2	F21	3.3-V CMOS	RGMII transmit data bus
22	ENET_HPS_TXD3	F19	3.3-V CMOS	RGMII transmit data bus

The Micrel KSZ9021RN PHY uses a multi-level POR bootstrap encoding scheme to allow a small set of I/O pins (7) to set up a very large number of default settings within the device. The related I/O pins have integrated pull-up or pull-down resistors to configure the device. Table 2-20 lists the level encoding scheme.

Table 2–20. Ethernet PHY (HPS) Bootstrap Encoding Scheme

Board Reference (U11)	Schematic Signal Name	Description	Strapping Option
17	ENET_HPS_LED1_LINK	PHY address bit 0	Pulled low
15	ENET_HPS_LED2_LINK	PHY address bit 1	Pulled low
32	ENET_HPS_RXD0	Mode 0	Pulled high
31	ENET_HPS_RXD1	Mode 1	Pulled high
28	ENET_HPS_RXD2	Mode 2	Pulled high
27	ENET_HPS_RXD3	Mode 3	Pulled high
35	ENET_HPS_RX_CLK	PHY address bit 2	Pulled high
33	ENET_HPS_RX_DV	Clock enable	Pulled low
41	CLK125_NDO_LED_MODE	Single LED mode	Pulled high

10/100 Ethernet (FPGA)

The development board supports an RJ-45 10/100 base-T Ethernet using an external Renesas uPD60620A PHY. This PHY supports EtherCAT, Ethernet IRT and DLR features using 3rd party MAC IP. The PHY-to-MAC interface employs MII connection using four data lines at 25 Mbps each for a connection speed of 100 Mbps.

The PHY uses 3.3-V power rails and requires a 25 MHz reference clock to be driven from a dedicated oscillator. The PHY interfaces to a dual RJ-45 model with internal magnetics that can be used for driving copper lines with Ethernet traffic.

Figure 2–7 shows the MII interface between the FPGA (MAC) and Renesas uPD60620A PHY.

Figure 2-8. MII Interface between FPGA (MAC) and PHY

Table 2–21 lists the Ethernet PHY interface pin assignments.

Table 2-21. Ethernet PHY Pin Assignments, Signal Names and Functions (Part 1 of 2)

Board Reference (U45)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
68	ENET1_ACT_LED	_	2.5-V	Receive data active LED
69	ENET1_LINK_LED	_	2.5-V	Transmit data active LED
18	ENET1_MDI_RX_N	_	2.5-V	Media dependent interface
17	ENET1_MDI_RX_P	_	2.5-V	Media dependent interface
16	ENET1_MDI_TX_N	_	2.5-V	Media dependent interface
15	ENET1_MDI_TX_P	_	2.5-V	Media dependent interface
59	ENET1_RX_CLK	Y24	2.5-V	MII receive clock
53	ENET1_RX_D0	AB23	2.5-V	MII receive data bus
54	ENET1_RX_D1	AA24	2.5-V	MII receive data bus
55	ENET1_RX_D2	AB25	2.5-V	MII receive data bus
56	ENET1_RX_D3	AE27	2.5-V	MII receive data bus
57	ENET1_RX_DV	Y23	2.5-V	MII receive data valid
58	ENET1_RX_ERROR	AE28	2.5-V	MII receive error
49	ENET1_TX_CLK_FB	W25	2.5-V	25-MHz MII transmit clock
43	ENET1_TX_D0	W20	2.5-V	MII transmit data bus
44	ENET1_TX_D1	Y21	2.5-V	MII transmit data bus
45	ENET1_TX_D2	AA25	2.5-V	MII transmit data bus

Table 2–21. Ethernet PHY Pin Assignments, Signal Names and Functions (Part 2 of 2)

Board Reference (U45)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
46	ENET1_TX_D3	AB26	2.5-V	MII transmit data bus
48	ENET1_TX_EN	AB22	2.5-V	MII transmit enable
65	ENET2_ACT_LED	_	2.5-V	Receive data active LED
67	ENET2_LINK_LED	_	2.5-V	Transmit data active LED
4	ENET2_MDI_RX_N	_	2.5-V	Media dependent interface
5	ENET2_MDI_RX_P	_	2.5-V	Media dependent interface
6	ENET2_MDI_TX_N	_	2.5-V	Media dependent interface
7	ENET2_MDI_TX_P	_	2.5-V	Media dependent interface
41	ENET2_RX_CLK	AH30	2.5-V	MII receive clock
35	ENET2_RX_D0	AF29	2.5-V	MII receive data bus
36	ENET2_RX_D1	AF30	2.5-V	MII receive data bus
37	ENET2_RX_D2	AD26	2.5-V	MII receive data bus
38	ENET2_RX_D3	AC27	2.5-V	MII receive data bus
39	ENET2_RX_DV	AC28	2.5-V	MII receive data valid
40	ENET2_RX_ERROR	V25	2.5-V	MII receive error
29	ENET2_TX_CLK_FB	AG30	2.5-V	25-MHz MII transmit clock
23	ENET2_TX_D0	AG27	2.5-V	MII transmit data bus
24	ENET2_TX_D1	AG28	2.5-V	MII transmit data bus
25	ENET2_TX_D2	AF28	2.5-V	MII transmit data bus
26	ENET2_TX_D3	V23	2.5-V	MII transmit data bus
28	ENET2_TX_EN	W24	2.5-V	MII transmit enable
1	ENET_DUAL_RESETN	AJ1	2.5-V	Device reset
62	ENET_FPGA_MDC	H12	2.5-V	Management bus data clock
63	ENET_FPGA_MDIO	H13	2.5-V	Management bus data

The PHY uses a multi-level POR bootstrap encoding scheme to allow a small set of I/O pins to set up a very large number of default settings within the device. The related I/O pins have integrated pull-up or pull-down resistors to configure the device. To change the configuration, connect an external resistor of maximum $5~k\Omega$ to the pin. Table 2–22 lists the level encoding scheme.

Table 2-22. Ethernet PHY (FPGA) Bootstrap Encoding Scheme (Part 1 of 2)

Board Reference (U11)	Schematic Signal Name	Description	Strapping Option
36	ENET2_RX_D1	Auto-negotiation disabled. 100 base-T default.	Pulled low
35	ENET2_RX_D0	Full duplex operation	Pulled high
41	ENET2_RX_CLK	Disable quick auto negotiation	Pulled low
58	ENET1_RX_ERROR	MII mode operation	Pulled low
59	ENET1_RX_CLK	AUTOMDI-X enabled	Pulled high

Board Reference Schematic Signal Name Description Strapping Option (U11) 39 Transmit mode for PHY1 Pulled high ENET2 RX DV Auto-negotiation disabled. 53 ENET1 RX D0 Pulled low 10 base-T default. Address for SMI 53 ENET1 RX D0 Pulled low Address for SMI Pulled low 54 ENET1 RX D1 Asynchronous or synchronous 29 ENET2 TX CLK FB Pulled high mode for transmit clock

Table 2–22. Ethernet PHY (FPGA) Bootstrap Encoding Scheme (Part 2 of 2)

HSMC

The development board supports a HSMC interface (J12). The HSMC interface supports a full SPI4.2 interface (17 LVDS channels), two input and output clocks, as well as JTAG and SMB signals. The LVDS channels can be used for CMOS signaling or LVDS.

The HSMC is an Altera-developed open specification, which allows you to expand the functionality of the development board through the addition of daughtercards (HSMCs).

For more information about the HSMC specification such as signaling standards, signal integrity, compatible connectors, and mechanical information, refer to the *High Speed Mezzanine Card (HSMC) Specification* manual.

The HSMC connector has a total of 172 pins, including 120 signal pins, 39 power pins, and 13 ground pins. The ground pins are located between the two rows of signal and power pins, acting both as a shield and a reference. The HSMC host connector is based on the 0.5 mm-pitch QSH/QTH family of high-speed, board-to-board connectors from Samtec. There are three banks in this connector. Bank 1 has every third pin removed as done in the QSH-DP/QTH-DP series. Bank 2 and bank 3 have all the pins populated as done in the QSH/QTH series. Since the Cyclone V SoC development board is not a transceiver board, the transceiver pins of the HSMC is not connected to the Cyclone V SoC device.

Figure 2–9 shows the bank arrangement of signals with respect to the Samtec connector's three banks.

Figure 2-9. HSMC Signal and Bank Diagram

The HSMC interface has programmable bi-directional I/O pins that can be used as 2.5-V LVCMOS, which is 3.3-V LVTTL-compatible. These pins can also be used as various differential I/O standards including, but not limited to, LVDS, mini-LVDS, and RSDS with up to 17 full-duplex channels.

As noted in the *High Speed Mezzanine Card (HSMC) Specification* manual, LVDS and single-ended I/O standards are only guaranteed to function when mixed according to either the generic single-ended pin-out or generic differential pin-out.

Table 2–23 lists the HSMC interface pin assignments, signal names, and functions.

Table 2-23. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 4)

2010 1 201 House Interview 1 11 1001 g.m. on on one of great Hamber, and I allowed to 1.7					
Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description		
HSMA_TX_P0	P4	1.5-V PCML	Transmit channel		
HSMA_RX_P0	R2	1.5-V PCML	Receive channel		
HSMA_TX_N0	P3	1.5-V PCML	Transmit channel		
HSMA_RX_N0	R1	1.5-V PCML	Receive channel		
HSMA_TX_P1	M4	1.5-V PCML	Transmit channel		
HSMA_RX_P1	N2	1.5-V PCML	Receive channel		
HSMA_TX_N1	M3	1.5-V PCML	Transmit channel		
HSMA_RX_N1	N1	1.5-V PCML	Receive channel		
HSMA_TX_P2	K4	1.5-V PCML	Transmit channel		
HSMA_RX_P2	L2	1.5-V PCML	Receive channel		
HSMA_TX_N2	K3	1.5-V PCML	Transmit channel		
HSMA_RX_N2	L1	1.5-V PCML	Receive channel		
HSMA_TX_P3	H4	1.5-V PCML	Transmit channel		
HSMA_RX_P3	J2	1.5-V PCML	Receive channel		
	Schematic Signal Name HSMA_TX_P0 HSMA_RX_P0 HSMA_TX_N0 HSMA_TX_N0 HSMA_TX_P1 HSMA_TX_P1 HSMA_TX_N1 HSMA_TX_N1 HSMA_TX_N2 HSMA_TX_P2 HSMA_TX_P2 HSMA_TX_N2 HSMA_TX_N2 HSMA_TX_N2 HSMA_TX_P3	Schematic Signal Name Cyclone V SoC Pin Number HSMA_TX_P0 P4 HSMA_RX_P0 R2 HSMA_TX_N0 P3 HSMA_RX_N0 R1 HSMA_TX_P1 M4 HSMA_RX_P1 N2 HSMA_TX_N1 N1 HSMA_RX_N1 N1 HSMA_TX_P2 K4 HSMA_RX_P2 L2 HSMA_TX_N2 K3 HSMA_RX_N2 L1 HSMA_TX_P3 H4	Schematic Signal Name Cyclone V SoC Pin Number I/O Standard HSMA_TX_P0 P4 1.5-V PCML HSMA_RX_P0 R2 1.5-V PCML HSMA_TX_N0 P3 1.5-V PCML HSMA_RX_N0 R1 1.5-V PCML HSMA_TX_P1 M4 1.5-V PCML HSMA_RX_P1 N2 1.5-V PCML HSMA_TX_N1 M3 1.5-V PCML HSMA_RX_N1 N1 1.5-V PCML HSMA_TX_P2 K4 1.5-V PCML HSMA_RX_P2 L2 1.5-V PCML HSMA_TX_N2 K3 1.5-V PCML HSMA_RX_N2 L1 1.5-V PCML HSMA_TX_P3 H4 1.5-V PCML		

Table 2–23. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 4)

Board Reference (J12)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
19	HSMA TX N3	H3	1.5-V PCML	Transmit channel
20	HSMA RX N3	J1	1.5-V PCML	Receive channel
33	HSMA SDA	AH2	2.5-V CMOS	Management serial clock
34	HSMA_SCL	AA12	2.5-V CMOS	Management serial data
35	JTAG_MUX_TCK	_	2.5-V CMOS	JTAG clock signal
36	JTAG_HSMA_TMS	_	2.5-V CMOS	JTAG mode select signal
37	JTAG_HSMA_TDO	_	2.5-V CMOS	JTAG data output
38	JTAG_HSMA_TDI	_	2.5-V CMOS	JTAG data input
39	HSMA_CLK_OUT0	A10	2.5-V CMOS	Dedicated CMOS clock out
40	HSMA_CLK_IN0	K14	2.5-V CMOS	Dedicated CMOS clock in
41	HSMA_D0	AF9	2.5-V CMOS	Dedicated CMOS I/O bit 0
42	HSMA_D1	AF8	2.5-V CMOS	Dedicated CMOS I/O bit 1
43	HSMA_D2	AG7	2.5-V CMOS	Dedicated CMOS I/O bit 2
44	HSMA_D3	AG1	2.5-V CMOS	Dedicated CMOS I/O bit 3
47	HSMA_TX_D_P0	E8	LVDS or 2.5-V	LVDS TX bit 0 or CMOS bit 4
48	HSMA_RX_D_P0	H14	LVDS or 2.5-V	LVDS RX bit 0 or CMOS bit 5
49	HSMA_TX_D_N0	D7	LVDS or 2.5-V	LVDS TX bit 0n or CMOS bit 6
50	HSMA_RX_D_N0	G13	LVDS or 2.5-V	LVDS RX bit 0n or CMOS bit 7
53	HSMA_TX_D_P1	D6	LVDS or 2.5-V	LVDS TX bit 1 or CMOS bit 8
54	HSMA_RX_D_P1	K12	LVDS or 2.5-V	LVDS RX bit 1 or CMOS bit 9
55	HSMA_TX_D_N1	C5	LVDS or 2.5-V	LVDS TX bit 1n or CMOS bit 10
56	HSMA_RX_D_N1	J12	LVDS or 2.5-V	LVDS RX bit 1n or CMOS bit 11
59	HSMA_TX_D_P2	E4	LVDS or 2.5-V	LVDS TX bit 2 or CMOS bit 12
60	HSMA_RX_D_P2	J10	LVDS or 2.5-V	LVDS RX bit 2 or CMOS bit 13
61	HSMA_TX_D_N2	D4	LVDS or 2.5-V	LVDS TX bit 2n or CMOS bit 14
62	HSMA_RX_D_N2	J9	LVDS or 2.5-V	LVDS RX bit 2n or CMOS bit 15
65	HSMA_TX_D_P3	E3	LVDS or 2.5-V	LVDS TX bit 3 or CMOS bit 16
66	HSMA_RX_D_P3	K7	LVDS or 2.5-V	LVDS RX bit 3 or CMOS bit 17
67	HSMA_TX_D_N3	E2	LVDS or 2.5-V	LVDS TX bit 3n or CMOS bit 18
68	HSMA_RX_D_N3	K8	LVDS or 2.5-V	LVDS RX bit 3n or CMOS bit 19
71	HSMA_TX_D_P4	E1	LVDS or 2.5-V	LVDS TX bit 4 or CMOS bit 20
72	HSMA_RX_D_P4	G12	LVDS or 2.5-V	LVDS RX bit 4 or CMOS bit 21
73	HSMA_TX_D_N4	D1	LVDS or 2.5-V	LVDS TX bit 4n or CMOS bit 22
74	HSMA_RX_D_N4	G11	LVDS or 2.5-V	LVDS RX bit 4n or CMOS bit 23
77	HSMA_TX_D_P5	D2	LVDS or 2.5-V	LVDS TX bit 5 or CMOS bit 24
78	HSMA_RX_D_P5	J7	LVDS or 2.5-V	LVDS RX bit 5 or CMOS bit 25
79	HSMA_TX_D_N5	C2	LVDS or 2.5-V	LVDS TX bit 5n or CMOS bit 26
80	HSMA_RX_D_N5	H7	LVDS or 2.5-V	LVDS RX bit 5n or CMOS bit 27
83	HSMA_TX_D_P6	B2	LVDS or 2.5-V	LVDS TX bit 6 or CMOS bit 28

Table 2–23. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 3 of 4)

Board Reference (J12)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
84	HSMA_RX_D_P6	H8	LVDS or 2.5-V	LVDS RX bit 6 or CMOS bit 29
85	HSMA_TX_D_N6	B1	LVDS or 2.5-V	LVDS TX bit 6n or CMOS bit 30
86	HSMA_RX_D_N6	G8	LVDS or 2.5-V	LVDS RX bit 6n or CMOS bit 31
89	HSMA_TX_D_P7	C3	LVDS or 2.5-V	LVDS TX bit 7 or CMOS bit 32
90	HSMA_RX_D_P7	G10	LVDS or 2.5-V	LVDS RX bit 7 or CMOS bit 33
91	HSMA_TX_D_N7	В3	LVDS or 2.5-V	LVDS TX bit 7n or CMOS bit 34
92	HSMA_RX_D_N7	F10	LVDS or 2.5-V	LVDS RX bit 7n or CMOS bit 35
95	HSMA_CLK_OUT_P1	AJ2	LVDS or 2.5-V	CMOS bit 36
96	HSMA_CLK_IN_P1	AG2	LVDS or 2.5-V	CMOS bit 37
97	HSMA_CLK_OUT_N1	AC12	LVDS or 2.5-V	CMOS bit 38
98	HSMA_CLK_IN_N1	AH3	LVDS or 2.5-V	CMOS bit 39
101	HSMA_TX_D_P8	A4	LVDS or 2.5-V	LVDS TX bit 8 or CMOS bit 40
102	HSMA_RX_D_P8	F9	LVDS or 2.5-V	LVDS RX bit 8 or CMOS bit 41
103	HSMA_TX_D_N8	A3	LVDS or 2.5-V	LVDS TX bit 8n or CMOS bit 42
104	HSMA_RX_D_N8	F8	LVDS or 2.5-V	LVDS RX bit 8n or CMOS bit 43
107	HSMA_TX_D_P9	D5	LVDS or 2.5-V	LVDS TX bit 9 or CMOS bit 44
108	HSMA_RX_D_P9	F11	LVDS or 2.5-V	LVDS RX bit 9 or CMOS bit 45
109	HSMA_TX_D_N9	C4	LVDS or 2.5-V	LVDS TX bit 9n or CMOS bit 46
110	HSMA_RX_D_N9	E11	LVDS or 2.5-V	LVDS RX bit 9n or CMOS bit 47
113	HSMA_TX_D_P10	A6	LVDS or 2.5-V	LVDS TX bit 10 or CMOS bit 48
114	HSMA_RX_D_P10	B6	LVDS or 2.5-V	LVDS RX bit 10 or CMOS bit 49
115	HSMA_TX_D_N10	A5	LVDS or 2.5-V	LVDS TX bit 10n or CMOS bit 50
116	HSMA_RX_D_N10	B5	LVDS or 2.5-V	LVDS RX bit 10n or CMOS bit 51
119	HSMA_TX_D_P11	C7	LVDS or 2.5-V	LVDS TX bit 11 or CMOS bit 52
120	HSMA_RX_D_P11	E9	LVDS or 2.5-V	LVDS RX bit 11 or CMOS bit 53
121	HSMA_TX_D_N11	B7	LVDS or 2.5-V	LVDS TX bit 11n or CMOS bit 54
122	HSMA_RX_D_N11	D9	LVDS or 2.5-V	LVDS RX bit 11n or CMOS bit 55
125	HSMA_TX_D_P12	A9	LVDS or 2.5-V	LVDS TX bit 12 or CMOS bit 56
126	HSMA_RX_D_P12	D11	LVDS or 2.5-V	LVDS RX bit 12 or CMOS bit 57
127	HSMA_TX_D_N12	A8	LVDS or 2.5-V	LVDS TX bit 12n or CMOS bit 58
128	HSMA_RX_D_N12	D10	LVDS or 2.5-V	LVDS RX bit 12n or CMOS bit 59
131	HSMA_TX_D_P13	C8	LVDS or 2.5-V	LVDS TX bit 13 or CMOS bit 60
132	HSMA_RX_D_P13	E12	LVDS or 2.5-V	LVDS RX bit 13 or CMOS bit 61
133	HSMA_TX_D_N13	B8	LVDS or 2.5-V	LVDS TX bit 13n or CMOS bit 62
134	HSMA_RX_D_N13	D12	LVDS or 2.5-V	LVDS RX bit 13n or CMOS bit 63
137	HSMA_TX_D_P14	C10	LVDS or 2.5-V	LVDS TX bit 14 or CMOS bit 64
138	HSMA_RX_D_P14	F13	LVDS or 2.5-V	LVDS RX bit 14 or CMOS bit 65
139	HSMA_TX_D_N14	C9	LVDS or 2.5-V	LVDS TX bit 14n or CMOS bit 66
140	HSMA RX D N14	E13	LVDS or 2.5-V	LVDS RX bit 14n or CMOS bit 67

Board Reference (J12)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
143	HSMA_TX_D_P15	B13	LVDS or 2.5-V	LVDS TX bit 15 or CMOS bit 68
144	HSMA_RX_D_P15	C13	LVDS or 2.5-V	LVDS RX bit 15 or CMOS bit 69
145	HSMA_TX_D_N15	A13	LVDS or 2.5-V	LVDS TX bit 15n or CMOS bit 70
146	HSMA_RX_D_N15	B12	LVDS or 2.5-V	LVDS RX bit 15n or CMOS bit 71
149	HSMA_TX_D_P16	C12	LVDS or 2.5-V	LVDS TX bit 16 or CMOS bit 72
150	HSMA_RX_D_P16	F15	LVDS or 2.5-V	LVDS RX bit 16 or CMOS bit 73
151	HSMA_TX_D_N16	B11	LVDS or 2.5-V	LVDS TX bit 16n or CMOS bit 74
152	HSMA_RX_D_N16	F14	LVDS or 2.5-V	LVDS RX bit 16n or CMOS bit 75
155	HSMA_CLK_OUT_P2	E7	LVDS or 2.5-V	LVDS or CMOS clock out 2 or CMOS bit 76
156	HSMA_CLK_IN_P2	H15	LVDS or 2.5-V	LVDS or CMOS clock in 2 or CMOS bit 77
157	HSMA_CLK_OUT_N2	E6	LVDS or 2.5-V	LVDS or CMOS clock out 2 or CMOS bit 78
158	HSMA_CLK_IN_N2	G15	LVDS or 2.5-V	LVDS or CMOS clock in 2 or CMOS bit 79
160	HSMA PRSNTN	AD12	2.5-V CMOS	HSMC port A presence detect

Table 2-23. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 4 of 4)

RS-232 UART (HPS)

The development board supports a UART interface that connects to a USB connector (J8) using a FT232RQ-REEL USB-to-UART bridge. The maximum supported rate for this interface is 1 Mbps. Board reference D14 and D15 are the UART LEDs that illuminate to indicate TX and RX activity.

Table 2–32 lists the RS-232 UART pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V SoC in terms of I/O setting and direction.

Table 2-24. KS	S-232 UAKI	Schematic	Signal Name	es and Functions
----------------	------------	-----------	-------------	------------------

Board Reference (U17)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
2	UART_TX	D24	3.3-V	Transmit data
30	UART_RX	E24	3.3-V	Receive data
18	RESET_HPS_UART_N	_	3.3-V	Reset
11	POWER_EN	_	3.3-V	Power

CAN Bus (HPS)

The development board supports one controller area network (CAN) bus through a DB-9 male connector. The CAN bus is multi-master broadcast serial bus standard for connecting electronic control units (ECUs). The maximum supported rate for this interface is 1 Mbps. This interface uses a dedicated CAN controller inside the HPS. A PHY device (U50) is connected in between the HPS and the DB-9 male connector.

Table 2–25 lists the PHY device pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V SoC in terms of I/O setting and direction.

Table 2–25. PHY Device Schematic Signal Names and Functions

Board Reference (U50)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
7	CANH_P	_	3.3-V	CAN bus line high
6	CANL_N		3.3-V	CAN bus line low

Real-Time Clock (HPS)

The HPS system has a battery backed real-time clock (RTC) connected through the I²C interface. The RTC is implemented using a DS1339 device from Maxim Semiconductor. The device has a built-in power sense circuit that detects power failures and automatically switches to backup battery supply, maintaining time. The device uses a 357 coin battery with a nominal voltage of 1.55 V. Using typical current capacity, the RTC is expected to have 120,000 backup hours. The battery is mounted inside a holder attached to the board to allow battery replacement or removal.

Table 2–25 lists the RTC device pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V SoC in terms of I/O setting and direction.

Table 2-26. RTC Device Schematic Signal Names and Functions

Board Reference (U50)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
16	I2C_SDA_HPS	C23	3.3-V	Management serial data
1	I2C_SCL_HPS	D22	3.3-V	Management serial clock

SPI Master

The HPS system has a SPI master interface available on the board. This interface connects to the Linear Technology expansion header (J31). This header can power and interface to most Linear Technology daughter boards such as the included DC934 Dual D/A and A/D board.

I²C Interface

The HPS system has one I²C interface for communicating with the on-board and external components. The data rate is 50kbps.

Table 2–25 lists the I²C interface address map.

Table 2-27. I²C interface address map

Address	Device
0x68	Real-time clock
0x50	LCD
0x5C	FPGA power monitor
0x5B	HPS power monitor
0x5E	FPGA and HPS power monitor synchronize
0x51	EEPROM
0x70	Si5356 quad-programmable clock
0x66	Si570 programmable oscillator
0x55	Si571 programmable oscillator

SDI Video

The serial digital interface (SDI) video port consists of a LMH0303 cable driver (output) and a LMH0384 cable equalizer (input). The PHY devices from National Semiconductor interface to single-ended 75- Ω SMB connectors.

SDI Video Output

The cable driver supports operation at 270 Mb standard definition (SD), 1.5 Gb high definition (HD), and 3.0 Gb dual-link HD modes. The data rate is driven directly from the Cyclone V SoC transceiver output using a slower-speed CMU channel (maximum of 3.125 Gbps). The device can be clocked by the 148.5 MHz voltage-controlled crystal oscillator (VCXO) and matched to incoming signals within 50 ppm using the UP and DN voltage control lines to the VCXO.

Table 2–28 shows the supported output standards for the SD and HD input.

Table 2-28. Supported Output Standards for SD and HD Input

SD_HD Input	SD_HD Input Supported Output Standards	
0	SMPTE 424M, SMPTE 292M	Faster
1	SMPTE 259M	Slower

For more information about the application circuit of the LMH0303 cable driver, refer to the cable driver data sheet at www.national.com.

Table 2-29 summarizes the SDI video output interface pin assignments, signal names, and functions.

Table 2-29. SDI Video Output Interface Pin Assignments, Schematic Signal Names, and Functions

Board Reference (U25)	Schematic Signal Name	I/O Standard	Cyclone V SoC Device Pin Number	Description
6	SDI_TX_EN	2.5-V	AA30	Device enable
4	SDI_TX_RSET	3.3-V	_	Device reset
10	SDI_TX_SD_HDn	2.5-V	AC29	Slew rate control
1	SDI_TX_P	1.5-V PCML	T4	SDI video input P
2	SDI_TX_N	1.5-V PCML	T3	SDI video input N

SDI Video Input

The cable equalizer supports operation at 270 Mb SD, 1.5 Gb HD, and 3.0 Gb dual-link HD modes. The data rate is driven directly from the Cyclone V SoC transceiver output using a slower-speed CMU channel (maximum of 3.125 Gbps). Control signals are allowed for bypassing or disabling the device, as well as a carrier detect or automute signal interface.

Table 2–30 shows the cable equalizer lengths.

Table 2–30. SDI Cable Equalizer Lengths

Data Rate (Mbps)	Cable Type	Maximum Cable Length (m)
270		400
1485	Belden 1694A	140
2970		120

For more information about the application circuit of the LMH0303 cable equalizer, refer to the cable equalizer data sheet at www.national.com.

Table 2–31 summarizes the SDI video input interface pin assignments, signal names, and functions.

Table 2-31. SDI Video Input Interface Pin Assignments, Schematic Signal Names, and Functions

Board Reference (U31)	Schematic Signal Name	I/O Standard	Cyclone V SoC Device Pin Number	Description
7	SDI_RX_BYPASS	2.5-V	AB28	Equalizer bypass enable
14	SDI_RX_EN	2.5-V	AA28	Device enable
11	SDI_RX_P	1.5-V PCML	U2	SDI video output P
10	SDI_RX_N	1.5-V PCML	U1	SDI video output N

Memory

This section describes the development board's memory interface support and also their signal names, types, and connectivity relative to the Cyclone V SoC. The development board has the following memory interfaces:

- DDR3 SDRAM (FPGA)
- DDR3 SDRAM (HPS)
- QSPI flash (HPS)
- EPCQ flash
- CFI flash
- Micro SD flash memory
- I²C EEPROM
- For more information about the memory interfaces, refer to the following documents:
 - *Timing Analysis* section in the External Memory Interface Handbook.
 - DDR, DDR2, and DDR3 SDRAM Design Tutorials section in the External Memory Interface Handbook.

DDR3 SDRAM (FPGA)

The development board supports two 32Mx16x8 DDR3 SDRAM interface for very high-speed sequential memory access. The 32-bit data bus comprises of two $\times 16$ devices with a single address or command bus. This interface connects to the dedicated HMC I/O banks on the bottom edge of the FPGA.

The DDR3 device shipped with this board are running at 400 MHz, for a total theoretical bandwidth of over 25.6 Gbps. The speed grade of this DDR3 device is 800 MHz with a CAS latency of 9.

Table 2–32 lists the DDR3 SDRAM pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V SoC in terms of I/O setting and direction.

Table 2-32. DDR3 SDRAM Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 4)

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
DDR3 x16 (U37)			
N3	DDR3_FPGA_A0	AJ14	1.5-V SSTL Class I	Address bus
P7	DDR3_FPGA_A1	AK14	1.5-V SSTL Class I	Address bus
P3	DDR3_FPGA_A2	AH12	1.5-V SSTL Class I	Address bus
N2	DDR3_FPGA_A3	AJ12	1.5-V SSTL Class I	Address bus
P8	DDR3_FPGA_A4	AG15	1.5-V SSTL Class I	Address bus
P2	DDR3_FPGA_A5	AH15	1.5-V SSTL Class I	Address bus
R8	DDR3_FPGA_A6	AK12	1.5-V SSTL Class I	Address bus
R2	DDR3_FPGA_A7	AK13	1.5-V SSTL Class I	Address bus

Table 2–32. DDR3 SDRAM Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 4)

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
T8	DDR3_FPGA_A8	AH13	1.5-V SSTL Class I	Address bus
R3	DDR3_FPGA_A9	AH14	1.5-V SSTL Class I	Address bus
L7	DDR3_FPGA_A10	AJ9	1.5-V SSTL Class I	Address bus
R7	DDR3_FPGA_A11	AK9	1.5-V SSTL Class I	Address bus
N7	DDR3_FPGA_A12	AK7	1.5-V SSTL Class I	Address bus
T3	DDR3_FPGA_A13	AK8	1.5-V SSTL Class I	Address bus
T7	DDR3_FPGA_A14	AG12	1.5-V SSTL Class I	Address bus
M2	DDR3_FPGA_BA0	AH10	1.5-V SSTL Class I	Bank address bus
N8	DDR3_FPGA_BA1	AJ11	1.5-V SSTL Class I	Bank address bus
M3	DDR3_FPGA_BA2	AK11	1.5-V SSTL Class I	Bank address bus
К3	DDR3_FPGA_CASN	AH7	1.5-V SSTL Class I	Row address select
К9	DDR3_FPGA_CKE	AJ21	1.5-V SSTL Class I	Column address select
J7	DDR3_FPGA_CLK_P	AA14	Differential 1.5-V SSTL Class I	Differential output clock
K7	DDR3_FPGA_CLK_N	AA15	Differential 1.5-V SSTL Class I	Differential output clock
L2	DDR3_FPGA_CSN	AB15	1.5-V SSTL Class I	Chip select
E7	DDR3_FPGA_DM2	AK23	1.5-V SSTL Class I	Write mask byte lane
D3	DDR3_FPGA_DM3	AJ27	1.5-V SSTL Class I	Write mask byte lane
E3	DDR3_FPGA_DQ16	AE19	1.5-V SSTL Class I	Data bus
F2	DDR3_FPGA_DQ17	AE18	1.5-V SSTL Class I	Data bus
H8	DDR3_FPGA_DQ18	AG22	1.5-V SSTL Class I	Data bus
F8	DDR3_FPGA_DQ19	AK22	1.5-V SSTL Class I	Data bus
H3	DDR3_FPGA_DQ20	AF21	1.5-V SSTL Class I	Data bus
F7	DDR3_FPGA_DQ21	AF20	1.5-V SSTL Class I	Data bus
G2	DDR3_FPGA_DQ22	AH23	1.5-V SSTL Class I	Data bus
H7	DDR3_FPGA_DQ23	AK24	1.5-V SSTL Class I	Data bus
D7	DDR3_FPGA_DQ24	AF24	1.5-V SSTL Class I	Data bus
C8	DDR3_FPGA_DQ25	AF23	1.5-V SSTL Class I	Data bus
C3	DDR3 FPGA DQ26	AJ24	1.5-V SSTL Class I	Data bus
C2	DDR3 FPGA DQ27	AK26	1.5-V SSTL Class I	Data bus
B8	DDR3_FPGA_DQ28	AE23	1.5-V SSTL Class I	Data bus
A7	DDR3_FPGA_DQ29	AE22	1.5-V SSTL Class I	Data bus
A2	DDR3 FPGA DQ30	AG25	1.5-V SSTL Class I	Data bus
A3	DDR3_FPGA_DQ31	AK27	1.5-V SSTL Class I	Data bus
F3	DDR3_FPGA_DQS_P2	Y17	Differential 1.5-V SSTL Class I	Data strobe P byte lane 2
G3	DDR3_FPGA_DQS_N2	AA18	Differential 1.5-V SSTL Class I	Data strobe N byte lane 2

Table 2–32. DDR3 SDRAM Pin Assignments, Schematic Signal Names, and Functions (Part 3 of 4)

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
C7	DDR3_FPGA_DQS_P3	AC20	Differential 1.5-V SSTL Class I	Data strobe P byte lane 3
В7	DDR3_FPGA_DQS_N3	AD19	Differential 1.5-V SSTL Class I	Data strobe N byte lane 3
K1	DDR3_FPGA_ODT	AE16	1.5-V SSTL Class I	On-die termination enable
J3	DDR3_FPGA_RASN	AH8	1.5-V SSTL Class I	Row address select
T2	DDR3_FPGA_RESETN	AK21	1.5-V SSTL Class I	Reset
L3	DDR3_FPGA_WEN	AJ6	1.5-V SSTL Class I	Write enable
L8	DDR3_FPGA_ZQ01	_	1.5-V SSTL Class I	ZQ impedance calibration
DR3 x16 (U3	B)			
N3	DDR3 FPGA A0	AJ14	1.5-V SSTL Class I	Address bus
P7	DDR3_FPGA_A1	AK14	1.5-V SSTL Class I	Address bus
P3	DDR3_FPGA_A2	AH12	1.5-V SSTL Class I	Address bus
N2	DDR3 FPGA A3	AJ12	1.5-V SSTL Class I	Address bus
P8	DDR3 FPGA A4	AG15	1.5-V SSTL Class I	Address bus
P2	DDR3 FPGA A5	AH15	1.5-V SSTL Class I	Address bus
R8	DDR3 FPGA A6	AK12	1.5-V SSTL Class I	Address bus
R2	DDR3 FPGA A7	AK13	1.5-V SSTL Class I	Address bus
T8	DDR3 FPGA A8	AH13	1.5-V SSTL Class I	Address bus
R3	DDR3 FPGA A9	AH14	1.5-V SSTL Class I	Address bus
L7	DDR3_FPGA_A10	AJ9	1.5-V SSTL Class I	Address bus
R7	DDR3_FPGA_A11	AK9	1.5-V SSTL Class I	Address bus
N7	DDR3_FPGA_A12	AK7	1.5-V SSTL Class I	Address bus
T3	DDR3_FPGA_A13	AK8	1.5-V SSTL Class I	Address bus
T7	DDR3_FPGA_A14	AG12	1.5-V SSTL Class I	Address bus
M2	DDR3_FPGA_BA0	AH10	1.5-V SSTL Class I	Bank address bus
N8	DDR3_FPGA_BA1	AJ11	1.5-V SSTL Class I	Bank address bus
M3	DDR3_FPGA_BA2	AK11	1.5-V SSTL Class I	Bank address bus
К3	DDR3_FPGA_CASN	AH7	1.5-V SSTL Class I	Row address select
К9	DDR3_FPGA_CKE	AJ21	1.5-V SSTL Class I	Column address select
J7	DDR3_FPGA_CLK_P	AA14	1.5-V SSTL Class I	Differential output clock
K7	DDR3_FPGA_CLK_N	AA15	1.5-V SSTL Class I	Differential output clock
L2	DDR3_FPGA_CSN	AB15	1.5-V SSTL Class I	Chip select
E7	DDR3_FPGA_DM0	AH17	1.5-V SSTL Class I	Write mask byte lane
D3	DDR3_FPGA_DM1	AG23	1.5-V SSTL Class I	Write mask byte lane
E3	DDR3_FPGA_DQ0	AF18	1.5-V SSTL Class I	Data bus
F2	DDR3_FPGA_DQ1	AE17	1.5-V SSTL Class I	Data bus
H8	DDR3_FPGA_DQ2	AG16	1.5-V SSTL Class I	Data bus
F8	DDR3_FPGA_DQ3	AF16	1.5-V SSTL Class I	Data bus

Table 2-32. DDR3 SDRAM Pin Assignments, Schematic Signal Names, and Functions (Part 4 of 4)

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
Н3	DDR3_FPGA_DQ4	AH20	1.5-V SSTL Class I	Data bus
F7	DDR3_FPGA_DQ5	AG21	1.5-V SSTL Class I	Data bus
G2	DDR3_FPGA_DQ6	AJ16	1.5-V SSTL Class I	Data bus
H7	DDR3_FPGA_DQ7	AH18	1.5-V SSTL Class I	Data bus
D7	DDR3_FPGA_DQ8	AK18	1.5-V SSTL Class I	Data bus
C8	DDR3_FPGA_DQ9	AJ17	1.5-V SSTL Class I	Data bus
C3	DDR3_FPGA_DQ10	AG18	1.5-V SSTL Class I	Data bus
C2	DDR3_FPGA_DQ11	AK19	1.5-V SSTL Class I	Data bus
B8	DDR3_FPGA_DQ12	AG20	1.5-V SSTL Class I	Data bus
A7	DDR3_FPGA_DQ13	AF19	1.5-V SSTL Class I	Data bus
A2	DDR3_FPGA_DQ14	AJ20	1.5-V SSTL Class I	Data bus
A3	DDR3_FPGA_DQ15	AH24	1.5-V SSTL Class I	Data bus
F3	DDR3_FPGA_DQS_P0	V16	Differential 1.5-V SSTL Class I	Data strobe P byte lane 0
G3	DDR3_FPGA_DQS_N0	W16	Differential 1.5-V SSTL Class I	Data strobe N byte lane 0
C7	DDR3_FPGA_DQS_P1	V17	Differential 1.5-V SSTL Class I	Data strobe P byte lane 1
В7	DDR3_FPGA_DQS_N1	W17	Differential 1.5-V SSTL Class I	Data strobe N byte lane 1
K1	DDR3_FPGA_ODT	AE16	1.5-V SSTL Class I	On-die termination enable
J3	DDR3_FPGA_RASN	AH8	1.5-V SSTL Class I	Row address select
T2	DDR3_FPGA_RESETN	AK21	1.5-V SSTL Class I	Reset
L3	DDR3_FPGA_WEN	AJ6	1.5-V SSTL Class I	Write enable
L8	DDR3_FPGA_ZQ01	_	1.5-V SSTL Class I	ZQ impedance calibration

DDR3 SDRAM (HPS)

The development board supports three 32Mx16x8 banks DDR3 SDRAM interface for very high-speed sequential memory access. The 40-bit data bus comprises of three $\times 16$ devices with a single address or command bus. This interface connects to the dedicated HMC for HPS I/O banks on the top edge of the FPGA.

The DDR3 device shipped with this board are running at 400 MHz, for a total theoretical bandwidth of over 25.6 Gbps. The speed grade of this DDR3 device is 800 MHz with a CAS latency of 9.

Table 2–32 lists the DDR3 SDRAM pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V SoC in terms of I/O setting and direction.

Table 2-33. DDR3 SDRAM Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 5)

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description			
DDR3 x16 (U30)							
N3	DDR3_HPS_A0	F26	1.5-V SSTL Class I	Address bus			
P7	DDR3_HPS_A1	G30	1.5-V SSTL Class I	Address bus			
P3	DDR3_HPS_A2	F28	1.5-V SSTL Class I	Address bus			
N2	DDR3_HPS_A3	F30	1.5-V SSTL Class I	Address bus			
P8	DDR3_HPS_A4	J25	1.5-V SSTL Class I	Address bus			
P2	DDR3_HPS_A5	J27	1.5-V SSTL Class I	Address bus			
R8	DDR3_HPS_A6	F29	1.5-V SSTL Class I	Address bus			
R2	DDR3_HPS_A7	E28	1.5-V SSTL Class I	Address bus			
T8	DDR3_HPS_A8	H27	1.5-V SSTL Class I	Address bus			
R3	DDR3_HPS_A9	G26	1.5-V SSTL Class I	Address bus			
L7	DDR3_HPS_A10	D29	1.5-V SSTL Class I	Address bus			
R7	DDR3_HPS_A11	C30	1.5-V SSTL Class I	Address bus			
N7	DDR3_HPS_A12	B30	1.5-V SSTL Class I	Address bus			
T3	DDR3_HPS_A13	C29	1.5-V SSTL Class I	Address bus			
T7	DDR3_HPS_A14	H25	1.5-V SSTL Class I	Address bus			
M2	DDR3_HPS_BA0	E29	1.5-V SSTL Class I	Bank address bus			
N8	DDR3_HPS_BA1	J24	1.5-V SSTL Class I	Bank address bus			
М3	DDR3_HPS_BA2	J23	1.5-V SSTL Class I	Bank address bus			
K3	DDR3_HPS_CASN	E27	1.5-V SSTL Class I	Row address select			
K9	DDR3_HPS_CKE	L29	1.5-V SSTL Class I	Column address select			
J7	DDR3_HPS_CLK_P	L23	Differential 1.5-V SSTL Class I	Differential output clock			
K7	DDR3_HPS_CLK_N	M23	Differential 1.5-V SSTL Class I	Differential output clock			
L2	DDR3_HPS_CSN	H24	1.5-V SSTL Class I	Chip select			
E7	DDR3_HPS_DM4	W27	1.5-V SSTL Class I	Write mask byte lane			
F7	DDR3_HPS_DQ32	W26	1.5-V SSTL Class I	Data bus			
H7	DDR3_HPS_DQ33	R24	1.5-V SSTL Class I	Data bus			
F2	DDR3_HPS_DQ34	U27	1.5-V SSTL Class I	Data bus			
E3	DDR3_HPS_DQ35	V28	1.5-V SSTL Class I	Data bus			
Н3	DDR3_HPS_DQ36	T25	1.5-V SSTL Class I	Data bus			
G2	DDR3_HPS_DQ37	U25	1.5-V SSTL Class I	Data bus			
H8	DDR3_HPS_DQ38	V27	1.5-V SSTL Class I	Data bus			
F8	DDR3 HPS DQ39	Y29	1.5-V SSTL Class I	Data bus			

Table 2–33. DDR3 SDRAM Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 5)

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
F3	DDR3_HPS_DQS_P4	T24	Differential 1.5-V SSTL Class I	Data strobe P byte lane 4
G3	DDR3_HPS_DQS_N4	T23	Differential 1.5-V SSTL Class I	Data strobe N byte lane 4
K1	DDR3_HPS_ODT	H28	1.5-V SSTL Class I	On-die termination enable
J3	DDR3_HPS_RASN	D30	1.5-V SSTL Class I	Row address select
T2	DDR3_HPS_RESETN	P30	1.5-V SSTL Class I	Reset
L3	DDR3_HPS_WEN	C28	1.5-V SSTL Class I	Write enable
L8	DDR3_HPS_ZQ01	_	1.5-V SSTL Class I	ZQ impedance calibration
DDR3 x16 (U22	2)			
N3	DDR3_HPS_A0	F26	1.5-V SSTL Class I	Address bus
P7	DDR3_HPS_A1	G30	1.5-V SSTL Class I	Address bus
P3	DDR3_HPS_A2	F28	1.5-V SSTL Class I	Address bus
N2	DDR3_HPS_A3	F30	1.5-V SSTL Class I	Address bus
P8	DDR3_HPS_A4	J25	1.5-V SSTL Class I	Address bus
P2	DDR3_HPS_A5	J27	1.5-V SSTL Class I	Address bus
R8	DDR3_HPS_A6	F29	1.5-V SSTL Class I	Address bus
R2	DDR3_HPS_A7	E28	1.5-V SSTL Class I	Address bus
T8	DDR3_HPS_A8	H27	1.5-V SSTL Class I	Address bus
R3	DDR3_HPS_A9	G26	1.5-V SSTL Class I	Address bus
L7	DDR3_HPS_A10	D29	1.5-V SSTL Class I	Address bus
R7	DDR3_HPS_A11	C30	1.5-V SSTL Class I	Address bus
N7	DDR3_HPS_A12	B30	1.5-V SSTL Class I	Address bus
T3	DDR3_HPS_A13	C29	1.5-V SSTL Class I	Address bus
T7	DDR3_HPS_A14	H25	1.5-V SSTL Class I	Address bus
M2	DDR3_HPS_BA0	E29	1.5-V SSTL Class I	Bank address bus
N8	DDR3_HPS_BA1	J24	1.5-V SSTL Class I	Bank address bus
M3	DDR3_HPS_BA2	J23	1.5-V SSTL Class I	Bank address bus
К3	DDR3_HPS_CASN	E27	1.5-V SSTL Class I	Row address select
К9	DDR3_HPS_CKE	L29	1.5-V SSTL Class I	Column address select
J7	DDR3_HPS_CLK_P	L23	1.5-V SSTL Class I	Differential output clock
K7	DDR3_HPS_CLK_N	M23	1.5-V SSTL Class I	Differential output clock
L2	DDR3_HPS_CSN	H24	1.5-V SSTL Class I	Chip select
E7	DDR3_HPS_DM2	R28	1.5-V SSTL Class I	Write mask byte lane
D3	DDR3_HPS_DM3	W30	1.5-V SSTL Class I	Write mask byte lane
Н3	DDR3_HPS_DQ16	U26	1.5-V SSTL Class I	Data bus
G2	DDR3_HPS_DQ17	T26	1.5-V SSTL Class I	Data bus
Н8	DDR3_HPS_DQ18	N29	1.5-V SSTL Class I	Data bus
H7	DDR3_HPS_DQ19	N28	1.5-V SSTL Class I	Data bus

Table 2–33. DDR3 SDRAM Pin Assignments, Schematic Signal Names, and Functions (Part 3 of 5)

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description	
F2	DDR3_HPS_DQ20	P26	1.5-V SSTL Class I	Data bus	
E3	DDR3_HPS_DQ21	P27	1.5-V SSTL Class I	Data bus	
F8	DDR3_HPS_DQ22	N27	1.5-V SSTL Class I	Data bus	
F7	DDR3_HPS_DQ23	R29	1.5-V SSTL Class I	Data bus	
C8	DDR3_HPS_DQ24	P24	1.5-V SSTL Class I	Data bus	
В8	DDR3_HPS_DQ25	P25	1.5-V SSTL Class I	Data bus	
А3	DDR3_HPS_DQ26	T29	1.5-V SSTL Class I	Data bus	
C3	DDR3_HPS_DQ27	T28	1.5-V SSTL Class I	Data bus	
A7	DDR3_HPS_DQ28	R27	1.5-V SSTL Class I	Data bus	
D7	DDR3_HPS_DQ29	R26	1.5-V SSTL Class I	Data bus	
A2	DDR3_HPS_DQ30	V30	1.5-V SSTL Class I	Data bus	
C2	DDR3_HPS_DQ31	W29	1.5-V SSTL Class I	Data bus	
G3	DDR3_HPS_DQS_N2	R18	Differential 1.5-V SSTL Class I	Data strobe P byte lane 0	
В7	DDR3_HPS_DQS_N3	R21	Differential 1.5-V SSTL Class I	Data strobe N byte lane 0	
F3	DDR3_HPS_DQS_P2	R19	Differential 1.5-V SSTL Class I	Data strobe P byte lane 1	
C 7	DDR3_HPS_DQS_P3	R22	Differential 1.5-V SSTL Class I	Data strobe N byte lane 1	
K1	DDR3_HPS_ODT	H28	1.5-V SSTL Class I	On-die termination enable	
J3	DDR3_HPS_RASN	D30	1.5-V SSTL Class I	Row address select	
T2	DDR3_HPS_RESETN	P30	1.5-V SSTL Class I	Reset	
L3	DDR3_HPS_WEN	C28	1.5-V SSTL Class I	Write enable	
L8	DDR3_HPS_ZQ2	_	1.5-V SSTL Class I	ZQ impedance calibration	
DDR3 x16 (U14	4)				
N3	DDR3_HPS_A0	F26	1.5-V SSTL Class I	Address bus	
P7	DDR3_HPS_A1	G30	1.5-V SSTL Class I	Address bus	
P3	DDR3_HPS_A2	F28	1.5-V SSTL Class I	Address bus	
N2	DDR3_HPS_A3	F30	1.5-V SSTL Class I	Address bus	
P8	DDR3_HPS_A4	J25	1.5-V SSTL Class I	Address bus	
P2	DDR3_HPS_A5	J27	1.5-V SSTL Class I	Address bus	
R8	DDR3_HPS_A6	F29	1.5-V SSTL Class I	Address bus	
R2	DDR3_HPS_A7	E28	1.5-V SSTL Class I	-V SSTL Class I Address bus	
T8	DDR3_HPS_A8	H27	1.5-V SSTL Class I	Class I Address bus	
R3	DDR3_HPS_A9	G26	1.5-V SSTL Class I	V SSTL Class I Address bus	
L7	DDR3_HPS_A10	D29	1.5-V SSTL Class I	TL Class I Address bus	
R7	DDR3_HPS_A11	C30	1.5-V SSTL Class I		
N7	DDR3_HPS_A12	B30	1.5-V SSTL Class I	Address bus	

Table 2–33. DDR3 SDRAM Pin Assignments, Schematic Signal Names, and Functions (Part 4 of 5)

Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description	
Т3	DDR3_HPS_A13	C29	1.5-V SSTL Class I	Address bus	
T7	DDR3_HPS_A14	H25	1.5-V SSTL Class I	Address bus	
M2	DDR3_HPS_BA0	E29	1.5-V SSTL Class I Bank address bus		
N8	DDR3_HPS_BA1	J24	1.5-V SSTL Class I	Bank address bus	
M3	DDR3_HPS_BA2	J23	1.5-V SSTL Class I	Bank address bus	
К3	DDR3_HPS_CASN	E27	1.5-V SSTL Class I	Row address select	
K9	DDR3_HPS_CKE	L29	1.5-V SSTL Class I	Column address select	
J7	DDR3_HPS_CLK_P	L23	1.5-V SSTL Class I	Differential output clock	
K7	DDR3_HPS_CLK_N	M23	1.5-V SSTL Class I	Differential output clock	
L2	DDR3_HPS_CSN	H24	1.5-V SSTL Class I	Chip select	
E7	DDR3_HPS_DM0	K28	1.5-V SSTL Class I	Write mask byte lane	
D3	DDR3_HPS_DM1	M28	1.5-V SSTL Class I	Write mask byte lane	
Н8	DDR3_HPS_DQ0	K23	1.5-V SSTL Class I	Data bus	
H7	DDR3_HPS_DQ1	K22	1.5-V SSTL Class I	Data bus	
E3	DDR3_HPS_DQ2	H30	1.5-V SSTL Class I	Data bus	
Н3	DDR3_HPS_DQ3	G28	1.5-V SSTL Class I	Data bus	
F7	DDR3_HPS_DQ4	L25	1.5-V SSTL Class I	Data bus	
F8	DDR3_HPS_DQ5	L24	1.5-V SSTL Class I	Data bus	
G2	DDR3_HPS_DQ6	J30	1.5-V SSTL Class I	Data bus	
F2	DDR3_HPS_DQ7	J29	1.5-V SSTL Class I	Data bus	
C8	DDR3_HPS_DQ8	K26	1.5-V SSTL Class I	Data bus	
B8	DDR3_HPS_DQ9	L26	1.5-V SSTL Class I	Data bus	
D7	DDR3_HPS_DQ10	K29	1.5-V SSTL Class I	Data bus	
A7	DDR3_HPS_DQ11	K27	1.5-V SSTL Class I	Data bus	
C2	DDR3_HPS_DQ12	M26	1.5-V SSTL Class I	Data bus	
C3	DDR3_HPS_DQ13	M27	1.5-V SSTL Class I	Data bus	
A3	DDR3_HPS_DQ14	L28	1.5-V SSTL Class I	Data bus	
A2	DDR3 HPS DQ15	M30	1.5-V SSTL Class I	Data bus	
G3	DDR3_HPS_DQS_N0	M19	Differential 1.5-V SSTL Class I	Data strobe P byte lane 0	
В7	DDR3_HPS_DQS_N1	N24	Differential 1.5-V SSTL Class I	Data strobe N byte lane 0	
F3	DDR3_HPS_DQS_P0	N18	Differential 1.5-V SSTL Class I	Data strobe P byte lane 1	
C7	DDR3_HPS_DQS_P1	N25	Differential 1.5-V SSTL Class I	Data strobe N byte lane 1	
K1	DDR3_HPS_ODT	H28	1.5-V SSTL Class I On-die termination enable		
J3	DDR3_HPS_RASN	D30	1.5-V SSTL Class I Row address select		
T2	DDR3_HPS_RESETN	P30	1.5-V SSTL Class I	L Class I Reset	

ZQ impedance calibration

L8

iable 2–33. DDN3 3DNAM Fill Assignments, Schematic Signal Names, and Functions (Fart 3 of 3)						
Board Reference	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description		
L3	DDR3_HPS_WEN	C28	1.5-V SSTL Class I	Write enable		

Table 2-33. DDR3 SDRAM Pin Assignments, Schematic Signal Names, and Functions (Part 5 of 5)

QSPI Flash (HPS)

DDR3 HPS ZQ

The development board supports one 512-Mb quad-SPI (QSPI) flash device for non-volatile storage of the HPS boot code, user data, and program. The device connects to the HPS dedicated interface. The device interface may contain a secondary boot code.

1.5-V SSTL Class I

This 4-bit data memory interface can sustain burst read operations at up to 108 MHz for a throughput of 54 MBps. Erase capability is at 4 KB, 64 KB, and 32 MB.

Table 2–34 lists the QSPI flash pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V SoC in terms of I/O setting and direction.

Table 2-34. QSPI Flash Schematic Signal Names and Functions

Board Reference (U5)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
16	QSPI_CLK	D19	3.3-V	Clock
15	QSPI_IO0	C20	3.3-V	Data bus
8	QSPI_IO1	H18	3.3-V	Data bus
9	QSPI_IO2	A19	3.3-V	Data bus
1	QSPI_IO3	E19	3.3-V	Data bus
7	QSPI_SS0	A18	3.3-V	Chip enable
3	QSPI_RESETN	_	3.3-V	Reset (driven from the MAX V CPLD)

EPCQ Flash

The development board supports one 256-Mb serial/quad-serial NOR flash device for non-volatile storage of the FPGA configuration image. The device connects to the FPGA dedicated interface through the IDTQS3861 device.

Table 2–34 lists the EPCQ flash pin assignments, signal names, and functions. The signal names and types are relative to the MAX V CPLD 5M2210 System Controller in terms of I/O setting and direction. Some pins are used in other interfaces as well due to functionality sharing.

Table 2-35. EPCQ Flash Schematic Signal Names and Functions

Board Reference (U20)	Schematic Signal Name	I/O Standard	Description
16	FPGA_DCLK	3.3-V	Clock
15	FPGA_AS_DATA0	3.3-V	Data bus
8	FPGA_AS_DATA1	3.3-V	Data bus
9	FPGA_AS_DATA2	3.3-V	Data bus

Table 2-35. EPCQ Flash Schematic Signal Names and Functions

Board Reference (U20)	Schematic Signal Name	I/O Standard	Description
1	FPGA_AS_DATA3	3.3-V	Data bus
7	FPGA_NCS0	3.3-V	Chip enable

CFI Flash

The development board supports a 512-Mb CFI-compatible synchronous flash device for non-volatile storage of FPGA configuration data. This device connects to the MAX V CPLD 5M2210 System Controller for FPGA configuration in FPP and PS modes.

This 16-bit data memory interface can sustain burst read operations at up to 52 MHz for a throughput of 832 Mbps per device. The write performance is $270 \mu s$ for a single word buffer while the erase time is 800 ms for a 128 K array block.

Table 2–36 lists the flash pin assignments, signal names, and functions. The signal names and types are relative to the MAX V CPLD 5M2210 System Controller in terms of I/O setting and direction.

Table 2-36. Flash Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 2)

Board Reference (U6)	Schematic Signal Name	I/O Standard	Description
F6	FLASH_ADVN	1.8-V	Address valid
B4	FLASH_CEN0	1.8-V	Chip enable
E6	FLASH_CLK	1.8-V	Clock
F8	FLASH_OEN	1.8-V	Output enable
F7	FLASH_RDYBSYN	1.8-V	Ready
D4	FLASH_RESETN	1.8-V	Reset
G8	FLASH_WEN	1.8-V	Write enable
C6	FLASH_WPN	1.8-V	Write protect
A1	FSM_A1	1.8-V	Address bus
B1	FSM_A2	1.8-V	Address bus
C1	FSM_A3	1.8-V	Address bus
D1	FSM_A4	1.8-V	Address bus
D2	FSM_A5	1.8-V	Address bus
A2	FSM_A6	1.8-V	Address bus
C2	FSM_A7	1.8-V	Address bus
A3	FSM_A8	1.8-V	Address bus
В3	FSM_A9	1.8-V	Address bus
C3	FSM_A10	1.8-V	Address bus
D3	FSM_A11	1.8-V	Address bus
C4	FSM_A12	1.8-V	Address bus
A5	FSM_A13	1.8-V	Address bus
B5	FSM_A14	1.8-V	Address bus

Table 2-36. Flash Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 2)

Board Reference (U6)	Schematic Signal Name	I/O Standard	Description
C5	FSM_A15	1.8-V	Address bus
D7	FSM_A16	1.8-V	Address bus
D8	FSM_A17	1.8-V	Address bus
A7	FSM_A18	1.8-V	Address bus
В7	FSM_A19	1.8-V	Address bus
C7	FSM_A20	1.8-V	Address bus
C8	FSM_A21	1.8-V	Address bus
A8	FSM_A22	1.8-V	Address bus
G1	FSM_A23	1.8-V	Address bus
Н8	FSM_A24	1.8-V	Address bus
B6	FSM_A25	1.8-V	Address bus
B8	FSM_A26	1.8-V	Address bus
F2	FSM_D0	1.8-V	Data bus
E2	FSM_D1	1.8-V	Data bus
G3	FSM_D2	1.8-V	Data bus
E4	FSM_D3	1.8-V	Data bus
E5	FSM_D4	1.8-V	Data bus
G5	FSM_D5	1.8-V	Data bus
G6	FSM_D6	1.8-V	Data bus
H7	FSM_D7	1.8-V	Data bus
E1	FSM_D8	1.8-V	Data bus
E3	FSM_D9	1.8-V	Data bus
F3	FSM_D10	1.8-V	Data bus
F4	FSM_D11	1.8-V	Data bus
F5	FSM_D12	1.8-V	Data bus
H5	FSM_D13	1.8-V	Data bus
G7	FSM_D14	1.8-V	Data bus
E7	FSM_D15	1.8-V	Data bus

Micro SD Flash Memory

The development board supports a micro SD card interface using x4 data lines. This dedicated HPS interface is the default location for storing HPS boot code, file system, and FPGA design binaries such as those found in the golden system reference design file. This 4-bit data interface can sustain burst read operations at up to 50 MHz for a throughput of 25 MBps.

Table 2–37 lists the micro SD flash memory interface pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V SoC in terms of I/O setting and direction.

Table 2-37. Micro SD Flash Memory Interface Schematic Signal Names and Functions

Board Reference (J3)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
5	SD_CLK	A16	3.3-V	Clock
7	SD_DAT0	G18	3.3-V	Data bus
8	SD_DAT1	C17	3.3-V	Data bus
1	SD_DAT2	D17	3.3-V	Data bus
2	SD_CD_DAT3	B16	3.3-V	Control or data bus
3	SD_CMD	F18	3.3-V	Control

I²C EEPROM

This board includes a 32 Kb EEPROM device. This device has a 2-wire I²C serial interface bus and is organized as four blocks of 4K x 8-bit memory. This device is programmed with special board information such as part number, test revision, and unique MAC addresses for all three Ethernet ports assigned to the board during manufacturing. This information can be displayed using the Board Test System's GUI as described in the development kit's user guide. This device can be accessed from the HPS, FPGA, or MAX V CPLD.

Table 2–38 lists the I²C EEPROM pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V SoC in terms of I/O setting and direction.

Table 2-38. I²C EEPROM Schematic Signal Names and Functions

Board Reference (U28)	Schematic Signal Name	Cyclone V SoC Pin Number	I/O Standard	Description
6	I2C_SCL_HPS	D22	3.3-V	HPS I ² C serial clock
5	I2C_SDA_HPS	C23	3.3-V	HPS I ² C serial data

Power Supply

You can power up the development board from a laptop-style DC power input or through the DC auxiliary connector. The Cyclone V SoC is designed in such way that the power rails for the HPS and FPGA are independent, allowing power down for the FPGA side using PM_CNTL0 when the HPS side is running. This eliminates power consumption on the FPGA part when not in use.

Chapter 2: Board Components

Table 2–39 lists the maximum allowed draws of the power input.

Table 2-39. Power Input Maximum Allowed Draws

Source	Voltage (V)	Wattage (W)
Laptop Supply—DC input	16.0	200
Laptop Supply—Do Iliput	20.0	200
DC auxiliary connector	12.0	200

An on-board multi-channel analog-to-digital converter (ADC) measures the current for several specific board rails.

Power Distribution System

Figure 2–10 shows the power distribution system on the development board. Regulator inefficiencies and sharing are reflected in the currents shown, which are conservative absolute maximum levels.

Figure 2-10. Power Distribution System

Power Measurement

There are seven power supply rails that have on-board current sense capabilities using 16-bit differential ADC devices. Precision sense resistors split the ADC devices and rails from the primary supply plane for the ADC to measure current. A SPI bus connects these ADC devices to the FPGA, HPS, and MAX V CPLD 5M2210 System Controller.

Figure 2–11 shows the block diagram for the power measurement circuitry.

Figure 2-11. Power Measurement Circuit

Table 2–40 lists the targeted rails. The schematic signal name column specifies the name of the rail being measured while the device pin column specifies the devices attached to the rail.

Table 2-40. Power Measurement Rails

Channel	Schematic Signal Name	Voltage (V)	Device Pin	Description
0	1.1V_HPS	1.1	VCC_HPS	HPS core power
1	1.5V_HPS	1.5	VCCIO6A_HPS	I/O and DDR3 devices
			VCCIO7A_HPS	
2	2 217 1100	3.3	VCCI07B_HPS	I/O and HPS peripheral devices
2	3.3V_HPS	ა.ა	VCCIO7C_HPS	1/0 and HF3 peripheral devices
			VCCI07D_HPS	
3	2.5V_HPS	2.5	VCCPD6A6B_HPS	I/O, HPS internal and peripheral devices
4	1.1V_VCC	1.1	VCC	FPGA core power, transceiver, and clock
5	1 FIL EDGS	1.5	VCCI03B	I/O and DDR3 devices
5	1.5V_FPGA	VCCIO4A	VCCIO4A	I/O and DDR3 devices
			VCCI05A	
6	2.5V_FPGA	2.5	VCCI05B	I/O, FPGA internal and peripheral devices
			VCCI08A	

3. Board Components Reference

This chapter lists the component reference and manufacturing information of all the components on the Cyclone V SoC development board.

Table 3-1. Component Reference and Manufacturing Information

Board Reference	Component	Manufacturer	Manufacturing Part Number	Manufacturer Website
U21	Cyclone V SoC F896, 149,500 LEs, leadfree	Altera Corporation	5CSXFC6D6F31C6	www.altera.com
U19	MAX V CPLD 5M2210 System Controller	Altera Corporation	5M2210ZF256I5N	www.altera.com
U51	High-Speed USB peripheral controller	Cypress	CY7C68013A	www.cypress.com
U2	USB 2.0 On-the-go PHY device in 32QFN package with ULPI interface	SMSC	USB3300-EZK	www.smsc.com
D1-D9, D14, D15, D17, D28- D31, D34, D37-D41	Green LEDs	Lumex Inc.	SML-LXT0805GW-TR	www.lumex.com
D36	Red LED	Lumex Inc.	SML-LXT0805IW-TR	www.lumex.com
D35	Blue LED	Lumex Inc.	SML-LX0805USBC-TR	www.lumex.com
SW1-SW4	Four-position DIP switches	C&K Components/ ITT Industries	TDA04H0SB1	www.ittcannon.com
S1-S12	Push buttons	Panasonic	EVQPAC07K	www.panasonic.com
J4	External Mictor 38-pin connector	Tyco Electronics	2-767004-2	www.te.com
X1	Programmable LVDS clock 100M defaults	Silicon Labs	570FAB000973DG	www.silabs.com
X4	50 MHz crystal oscillator, ±50 ppm, CMOS, 2.5 V	Silicon Labs	510GBA50M0000BAGx	www.silabs.com
J12	Female angled PCB WR-DSUB 9-pin connector	Wurth Elektronik	618009231121	www.we-online.com
J14	2×7 pin LCD socket strip	Samtec	TSM-107-07-G-D	www.samtec.com
J14	2×16 character LCD, 5×8 dot matrix	Lumex Inc.	LCM-S01602DSR/C	www.lumex.com
U14, U15	Ethernet PHY BASE-T devices	Marvell Semiconductor	88E1111-B2- CAA1C000	www.marvell.com
J2	MagJack 1000BaseT, 1×1 integrated connector module (ICM)	Bel Fuse	L829-1J1T-43	www.belfuse.com
J33, J34	RJ45 connector with integrated transformer	Wurth Elektronik	7499011121A	www.we-online.com
J25	PCIE socket ×4	Samtec	PCIE-064-02-F-D-TH	www.samtec.com
J12	HSMC, custom version of QSH-DP family high-speed socket	Samtec	ASP-122953-01	www.samtec.com
U25	3-Gbps HD/SD SDI cable driver	National Semiconductor	LMH0303SQ	www.national.com

Table 3–1. Component Reference and Manufacturing Information

Board Reference	Component	Manufacturer	Manufacturing Part Number	Manufacturer Website
U31	3-Gbps HD/SD SDI adaptive cable equalizer	National Semiconductor	LMH0384SQ	www.national.com
U50	3.3-V CAN transceiver with standby mode	Texas Instruments	SN65HVD230	www.ti.com
J35	Male angled PCB WR-DSUB 9-pin connector	Wurth Elektronik	618-009-25023	www.we-online.com
U17	USB to serial UART interface	Future Technology Devices International Ltd.	FT232RQ	www.ftdichip.com
U3	Real-time clock	Maxim	DS1339C	www.maxim-ic.com
J15, J16	2 x 8 debug headers	Samtec	TSM-108-01-L-DV	www.samtec.com
U14, U22, U30, U37, U38	32M × 16 × 8, 1024-MB DDR3 SDRAM	Micron	MT41K256M16HA- 125:E	www.micron.com
U5	512-Mb QSPI flash	Micron	N25Q512A83GSF40F	www.micron.com
U6	512-Mb CFI synchronous flash	Numonyx	PC28F512P30BFA	www.numonyx.com
U20	256-Mb NOR flash	Altera Corporation	EPCQ256SI16N	www.altera.com
U28	32-Kb EEPROM	Microchip	24LC32A	www.microchip.com
J3	Micro SD card socket	Wurth Elektronik	693 071 010 811	www.we-online.com
U26, U34	Octal digital power supply manager with EEPROM	Linear Technology	LTC2978	www.linear.com
U72	15 A voltage mode synchronous buck PWM DC-DC converter with integrated inductor	Enpirion	EN23F2QI	www.enpirion.com
U66, U67, U68, U69, U70, U71	4 A voltage mode synchronous buck PWM DC-DC converter with integrated inductor	Enpirion	EN2340QI	www.enpirion.com

Statement of China-RoHS Compliance

Table 3–2 lists hazardous substances included with the kit.

Table 3–2. Table of Hazardous Substances' Name and Concentration Notes (1), (2)

Part Name	Lead (Pb)	Cadmium (Cd)	Hexavalent Chromium (Cr6+)	Mercury (Hg)	Polybrominated biphenyls (PBB)	Polybrominated diphenyl Ethers (PBDE)
Cyclone V SoC development board	Χ*	0	0	0	0	0
16 V power supply	0	0	0	0	0	0
Type A-B USB cable	0	0	0	0	0	0
User guide	0	0	0	0	0	0

Notes to Table 3-2:

- (1) 0 indicates that the concentration of the hazardous substance in all homogeneous materials in the parts is below the relevant threshold of the SJ/T11363-2006 standard.
- (2) X* indicates that the concentration of the hazardous substance of at least one of all homogeneous materials in the parts is above the relevant threshold of the SJ/T11363-2006 standard, but it is exempted by EU RoHS.

CE EMI Conformity Caution

This development kit is delivered conforming to relevant standards mandated by Directive 2004/108/EC. Because of the nature of programmable logic devices, it is possible for the user to modify the kit in such a way as to generate electromagnetic interference (EMI) that exceeds the limits established for this equipment. Any EMI caused as the result of modifications to the delivered material is the responsibility of the user.

This chapter provides additional information about the board, document and Altera.

Board Revision History

The following table lists the versions of all releases of the Cyclone V SoC development board.

Release Date	Version	Description
September 2015	Production silicon	Production silicon release and revision E PCB with Enperion EN23x2 power.
November 2013	Production silicon	Production silicon release and revision D PCB with Enperion power.
May 2013	Engineering silicon	Initial release for ES and revision C PCB.

Document Revision History

The following table lists the revision history for this document.

Date	Version	Changes		
		■ Correction to Table 2–23 on page 2–33: signal HSMA_TX_D_N14 is at pin C9		
		■ Corrections to Table 2–32 on page 2–40		
		■ Signal DDR3_FPGA_CLK_P is at pin AA14		
September 2015	2.3	■ Signal DDR3_FPGA_CLK_N is at pin AA15		
		■ Signal ddr3_fpga_wen is at pin AJ6		
		■ Correction to Figure 2–10 on page 2–53: hot plug controller is at input to LTC3855 Dual Channel Controller		
		■ Corrections to Figure 1–1 on page 1–4:		
	2.2	 USB 2.0 interface supported by MAX II device 		
		■ No ECC on FPGA DDR3		
		■ Correction to "I/O Resources" on page 2–5: 181 general-purpose HPS I/O pins		
August 2015		■ Correction to "Power Distribution System" on page 2–53: switching regulator part number updated to EN23F2		
August 2013		■ Correction to Table 3–1 on page 3–1: switching regulator part number updated to EN23F2QI		
		Removed I/O count in "I/O Resources" and referred to Cyclone V Device Overview.		
		■ Updated "Power Distribution System" figure		
		Added "Mictor Jumper" section		
		■ Added ENET2_TX_CLK_FB to Table 2–22 on page 2–31		
		■ Updated Figure 2–5, adding missing connections.		
May 2014	2.1	■ Updated Table 2–15, adding the X5 clock source.		
		Removed the term <i>mini</i> when referring to the USB port.		

Date	Version	Changes
		Revised the device part number to 5CSXFC6D6F31C6.
		■ Changed the MAX V CPLD power sequence to 1.8 V.
		■ Changed the QSPI device to N25Q512A83GSF40F.
Navarahar 0010	0.0	■ Changed the Renesas PHY to uPD60620A.
November 2013	2.0	Added Enpirion power component information.
		■ Updated Figure 2–1.
		■ Revised the FACTORY LOAD switch description in Table 2–8.
		Revised the HPS jumper description in Table 2–11.
August 2013	1.1	Revised the device part number.
May 2013	1.0	Initial release.

How to Contact Altera

To locate the most up-to-date information about Altera products, refer to the following table.

Contact (1)	Contact Method	Address	
Technical support	Website	www.altera.com/support	
Technical training	Website	www.altera.com/training	
160mmoar training	Email	custrain@altera.com	
Product literature	Website	www.altera.com/literature	
Nontechnical support (general)	Email	nacomp@altera.com	
(software licensing)	Email	authorization@altera.com	

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The following table shows the typographic conventions this document uses.

Visual Cue	Meaning		
Bold Type with Initial Capital Letters	Indicate command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI.		
bold type	Indicates directory names, project names, disk drive names, file names, file name extensions, software utility names, and GUI labels. For example, qdesigns directory, \textbf{D}: drive, and \textbf{chiptrip.gdf} file.		
Italic Type with Initial Capital Letters	Indicate document titles. For example, Stratix IV Design Guidelines.		
	Indicates variables. For example, $n + 1$.		
italic type	Variable names are enclosed in angle brackets (< >). For example, <file name=""> and <project name="">.pof file.</project></file>		
Initial Capital Letters	Indicate keyboard keys and menu names. For example, the Delete key and the Options menu.		

Visual Cue	Meaning			
"Subheading Title"	Quotation marks indicate references to sections in a document and titles of Quartus II Help topics. For example, "Typographic Conventions."			
	Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. The suffix n denotes an active-low signal. For example, resetn.			
Courier type	Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.			
	Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).			
+	An angled arrow instructs you to press the Enter key.			
1., 2., 3., and a., b., c., and so on	Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.			
	Bullets indicate a list of items when the sequence of the items is not important.			
	The hand points to information that requires special attention.			
?	The question mark directs you to a software help system with related information.			
•••	The feet direct you to another document or website with related information.			
	The multimedia icon directs you to a related multimedia presentation.			
AUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.			
WARNING	A warning calls attention to a condition or possible situation that can cause you injury.			
	The envelope links to the Email Subscription Management Center page of the Altera website, where you can sign up to receive update notifications for Altera documents.			
9	The feedback icon allows you to submit feedback to Altera about the document. Methods for collecting feedback vary as appropriate for each document.			