

I. AMENDMENTS TO THE SPECIFICATION¹

Please replace the first full paragraph at page 12 with the following amended paragraph:

[first full paragraph on page 12] Fig. 1F shows the position of the diluted plasma 131 as the rotor is spun during the third spin. This figure illustrates the movement of the diluted plasma 131 through the distribution ring 142 and inlet channels 144 to the cuvettes 146 and excess plasma dump 147. The resistance to flow in the output siphon 140 is selected to be higher than the resistance to flow in the distribution ring 142 and the inlet channels 144 so that air present in the cuvettes 146 can escape as the cuvettes are filled. Specifically, siphon 140 is dimensioned such that the ratio of the cross sectional area of the inlet channels 144 to the cross sectional area of the liquid in them is greater than 2:1, preferably greater than about 4:1. The cross sectional area of the inlet channels 144 is typically the same as or slightly smaller than that of the distribution channel 142 so that gas in the unvented cuvettes escapes through the inlet channels 144 and distribution 142. The cross-sectional area of the inlet channel 144 usually is larger than the cross sectional area of the delivery channel 140, e.g., at least about 1.5 times or 2 times the cross-sectional area of the delivery channel 140. If the sample is plasma or diluted plasma and the channels are rectangular in cross-section, their dimensions are typically as follows: siphon: 0.150 mm depth, 0.200 mm width; distribution channel 0.300 mm depth, 0.5 mm width; inlet channels: 0.150 depth, 0.500 width.

¹ See comments made under Section B.