Practical Cryptographic Systems

Secret Sharing and Multi-party Computation

Instructor: Matthew Green

Secret Sharing: Motivation

No single manager should be able to open the safe by themselves

Secret Sharing: Motivation

No single manager should be able to open the safe by themselves

But any two of them should be be able to open the safe

Secret Sharing: Motivation

President

Secretary of Defense

Head of Joint Chief of Staff

- Two algorithms
 - **Share:** Generate *n* shares
 - Recon: Reconstruct secret from at least k shares
- Properties
 - Correctness: Any subset of $\ell \geq k$ shares can be used to recover the secret
 - **Privacy:** Any subset of $\ell < k$ shares does not reveal anything about the secret

- Two algorithms
 - **Share:** Generate *n* shares
 - Recon: Reconstruct secret from at least k shares
- Properties
 - Correctness: Any subset of $\ell \geq k$ shares can be used to recover the secret
 - Privacy: Any subset of $\ell < k$ shares does not reveal anything about the secret

- Two algorithms
 - **Share:** Generate *n* shares
 - Recon: Reconstruct secret from at least k shares
- Properties
 - Correctness: Any subset of $\ell \geq k$ shares can be used to recover the secret
 - **Privacy:** Any subset of $\ell < k$ shares does not reveal anything about the secret

 $Recon(s_1, ..., s_k) = s$

- Two algorithms
 - **Share:** Generate *n* shares
 - Recon: Reconstruct secret from at least k shares
- Properties
 - Correctness: Any subset of $\ell \geq k$ shares can be used to recover the secret
 - **Privacy:** Any subset of $\ell < k$ shares does not reveal anything about the secret

 $Recon(s_1, ..., s_{k-1}) = \bot$

- Two algorithms
 - **Share:** Generate *n* shares
 - Recon: Reconstruct secret from at least k shares
- Properties
 - Correctness: Any subset of $\ell \geq k$ shares can be used to recover the secret
 - Privacy: Any subset of $\ell < k$ shares does not reveal anything about the secret

 $s \in \{0,1\}^m$

$$s_1 \leftarrow \{0,1\}^m$$

$$s_2 = s \oplus s_1$$

$$c \in \{0,1\}^n$$

$$s_1 \leftarrow \{0,1\}^m$$

$$s_2 = s \oplus s_1$$

*S*₂

$$\forall v_1, v_2, r \in \{0,1\}^m$$

$$P[s_1 = r \mid s = v_1] = P[s_1 = r \mid s = v_2]$$

$$P[s_2 = r \mid s = v_1] = P[s_2 = r \mid s = v_2]$$

- Security
 - A party's share taking on a particular value is equally likely for every secret
 - Similar to One-time Pads
- Reconstruction
 - Simply XOR the shares

$$s \in \{0,1\}^m$$

$$s_1 \leftarrow \{0,1\}^m$$

$$s_2 = s \oplus s_1$$

$$s_2 = s \oplus s_1$$

*S*₂

$$Recon(s_1, s_2) = s_1 \oplus s_2 = s$$

- Security
 - A party's share taking on a particular value is equally likely for every secret
 - Similar to One-time Pads
- Reconstruction
 - Simply XOR the shares

$$s \in \{0,1\}^m$$
 $s_1, ..., s_{n-1} \leftarrow \{0,1\}^m$ $s_n = s \oplus s_1 \oplus s_2 \oplus ... \oplus s_{n-1}$

$$\alpha \subset \{0,1\}^m$$

$$s_1, \ldots, s_{n-1} \leftarrow \{0,1\}^m$$

$$s \in \{0,1\}^m$$
 $s_1, ..., s_{n-1} \leftarrow \{0,1\}^m$ $s_n = s \oplus s_1 \oplus s_2 \oplus ... \oplus s_{n-1}$

$$Recon(s_1, ..., s_n) = s_1 \oplus s_2 \oplus ... \oplus s_n = s$$

- Security
 - The distribution of any subset of n-1 shares is independent of the secret
- Reconstruction
 - Simply XOR the shares

Combinatorial Construction

k-out-of-n Secret Sharing Combinatorial Construction

3-out-of-4 Secret Sharing

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,\ldots,n\}\backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

k-out-of-n Secret Sharing Combinatorial Construction

$$r_1 \leftarrow \{0,1\}^m$$

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1, ..., n\} \backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

$$r_1 \leftarrow \{0,1\}^m$$

$$r_2 \leftarrow \{0,1\}^m$$

$$s \in \{0,1\}^m$$

*r*₂

$$r_1$$

 r_1 r_2

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,\ldots,n\}\backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

$$r_1 \leftarrow \{0,1\}^m$$

$$r_3 \leftarrow \{0,1\}^m$$

 r_2 r_3

 r_1 r_3

 r_1 r_2

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,\ldots,n\}\backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

$$r_1 \leftarrow \{0,1\}^m$$

$$r_4 \leftarrow \{0,1\}^m$$

$$r_3 \leftarrow \{0,1\}^m$$

 r_{Δ}

 r_2 r_3

 r_1 r_3

 r_1 r_2 r_4

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,\ldots,n\}\backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

$$r_1 \leftarrow \{0,1\}^m$$

$$r_4 \leftarrow \{0,1\}^m$$

$$r_2 \leftarrow \{0,1\}^m$$

$$r_5 \leftarrow \{0,1\}^m$$

 r_2 r_3

 r_1 r_3 r_5

 r_1 r_2 r_4

- For each subset $S_i \subset \{1,...,n\}$ of k-1parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,...,n\}\setminus S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

 $s \in \{0,1\}^m$

$$r_1 \leftarrow \{0,1\}^m$$

$$r_4 \leftarrow \{0,1\}^m$$

$$r_2 \leftarrow \{0,1\}^m$$

$$r_5 \leftarrow \{0,1\}^m$$

$$r_6 = s \oplus r_1 \oplus \ldots \oplus r_5$$

 r_2 r_3 r_6

 r_1 r_3 r_5

 r_1 r_2 r_4

- For each subset $S_i \subset \{1,...,n\}$ of k-1parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,...,n\}\setminus S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

 $s \in \{0,1\}^m$

$$r_1 \leftarrow \{0,1\}^m$$

$$r_4 \leftarrow \{0,1\}^n$$

$$r_5 \leftarrow \{0,1\}^m$$

$$r_6 = s \oplus r_1 \oplus \ldots \oplus r_5$$

 r_2 r_3 r_6

 r_1 r_3 r_5

 r_1 r_2 r_4

Share Algorithm

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1, ..., n\} \backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Correctness

- Any k sized subset of parties covers all r_i values
- Reconstruction Algorithm: XOR all r_i values

Combinatorial Construction

3-out-of-4 Secret Sharing

 $s \in \{0,1\}^m$

$$r_4 \leftarrow \{0,1\}^n$$

$$r_5 \leftarrow \{0,1\}^m$$

$$r_6 = s \oplus r_1 \oplus \ldots \oplus r_5$$

 r_2 r_3 r_6

 r_1 r_3 r_5

 r_1 r_2 r_4

Share Algorithm

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1, ..., n\} \backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Correctness

- Any k sized subset of parties covers all r_i values
- Reconstruction Algorithm: XOR all r_i values

Privacy

• Any k-1 size subset of parties does not have at least one r_i value

Combinatorial Construction

k-out-of-n Secret Sharing Combinatorial Construction

3-out-of-4 Secret Sharing

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,\ldots,n\}\backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

$$r_1 \leftarrow \{0,1\}^m$$

$$r_2 \leftarrow \{0,1\}^m$$

$$r_3 \leftarrow \{0,1\}^n$$

$$s \in \{0,1\}^m$$

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,\ldots,n\}\backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

$$r_1 \leftarrow \{0,1\}^m$$

$$r_4 \leftarrow \{0,1\}^m$$

$$r_2 \leftarrow \{0,1\}^m$$

$$r_3 \leftarrow \{0,1\}^m$$

$$s \in \{0,1\}^m$$

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,...,n\}\backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

$$r_1 \leftarrow \{0,1\}^m$$

$$r_4 \leftarrow \{0,1\}^m$$

$$r_2 \leftarrow \{0,1\}^m$$

$$r_5 \leftarrow \{0,1\}^m$$

- For each subset $S_i \subset \{1,...,n\}$ of k-1parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,...,n\}\setminus S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

 $s \in \{0,1\}^m$

$$r_4 \leftarrow \{0,1\}^m$$

$$r_5 \leftarrow \{0,1\}^m$$

$$r_3 \leftarrow \{0,1\}^m \qquad \qquad r_6 = s \oplus r_1 \oplus \ldots \oplus r_5$$

- For each subset $S_i \subset \{1,...,n\}$ of k-1parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,...,n\}\setminus S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Combinatorial Construction

3-out-of-4 Secret Sharing

 $s \in \{0,1\}^m$

$$r_1 \leftarrow \{0,1\}^m$$

$$r_4 \leftarrow \{0,1\}^m$$

$$r_5 \leftarrow \{0,1\}^m$$

$$r_6 = s \oplus r_1 \oplus \ldots \oplus r_5$$

Share Algorithm

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,\ldots,n\}\backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Correctness

- Any k sized subset of parties covers all r_i values
- Reconstruction Algorithm: XOR all r_i values

Combinatorial Construction

3-out-of-4 Secret Sharing

 $s \in \{0,1\}^m$

$$r_1 \leftarrow \{0,1\}^m$$

$$r_4 \leftarrow \{0,1\}^m$$

$$r_5 \leftarrow \{0,1\}^m$$

$$r_6 = s \oplus r_1 \oplus \ldots \oplus r_5$$

Share Algorithm

- For each subset $S_i \subset \{1,...,n\}$ of k-1 parties sample a random value r_i
- Give r_i to the parties **NOT** in S_i i.e., parties in $\{1,\ldots,n\}\backslash S_i$
- For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$

Correctness

- Any k sized subset of parties covers all r_i values
- Reconstruction Algorithm: XOR all r_i values

Privacy

Any k-1 size subset of parties does not have at least one r_i value

Combinatorial Construction

3-out-of-4 Secret Sharing

 $s \in \{0,1\}^m$

$$r_1 \leftarrow \{0,1\}^m$$

$$r_4 \leftarrow \{0,1\}^m$$

$$r_5 \leftarrow \{0,1\}^m$$

$$r_6 = s \oplus r_1 \oplus \ldots \oplus r_5$$

- Running time of Share
 - Proportional to number of k-1 subsets
 - $\binom{n}{k}$ number of shares combinatorial blow-up!

- Share Algorithm
 - For each subset $S_i \subset \{1, ..., n\}$ of k-1parties sample a random value r_i
 - Give r_i to the parties **NOT** in S_i i.e., parties in $\{1, ..., n\} \setminus S_i$
 - For the last subset S_L , set $r_L = s \oplus r_1 \oplus \ldots \oplus r_{L-1}$
- Correctness
 - Any k sized subset of parties covers all r_i values
 - Reconstruction Algorithm: XOR all r_i values
- Privacy
 - Any k-1 size subset of parties does not have at least one r_i value

Arithmetic Over \mathbb{Z}_p

- p is a prime number
- Recall: \mathbb{Z}_p is an (abelian) group
 - Can add and subtract over \mathbb{Z}_p . Subtraction is equivalent to adding the "additive inverse" i.e., inverse of the element over the group \mathbb{Z}_p
- Can generalize previous schemes to work over \mathbb{Z}_p
- In fact, the XOR based scheme, with m=1, are equivalent to working over \mathbb{Z}_2

Arithmetic Over \mathbb{Z}_p

- p is a prime number
- Recall: \mathbb{Z}_p is an (abelian) group
 - Can add and subtract over \mathbb{Z}_p . Subtraction is equivalent to adding the "additive inverse" i.e., inverse of the element over the group \mathbb{Z}_p
- Recall: \mathbb{Z}_p^* is an (abelian) group
 - Can multiply and divide with any **non-zero** element in \mathbb{Z}_p . Division is equivalent to multiplying with the inverse of the element over the group \mathbb{Z}_p^*

Polynomials Over \mathbb{Z}_p

• A degree-d polynomial p(x), where $d \ge 0$ is an integer, is of the form

$$p(x) = \sum_{i=0}^{d} c_i \cdot x^i = c_0 + c_1 \cdot x + \dots + c_d \cdot x^d$$

where $c_0, ..., c_d \in \mathbb{Z}_p$.

- c_i is called the co-efficient of x^i ; c_0 is called the constant co-efficient.
- Evaluation: For any $\alpha \in \mathbb{Z}_p$, $p(\alpha)$ is defined as

$$p(\alpha) = \sum_{i=0}^{d} c_i \cdot \alpha^i \bmod p.$$

• Theorem: Let $d \ge 0$ be any integer and let $\alpha_1, ..., \alpha_{d+1} \in \mathbb{Z}_p$ be distinct. For all $\beta_1, ..., \beta_{d+1} \in \mathbb{Z}_p$, there exists a unique degree-d polynomial p(x) such that

$$p(\alpha_i) = \beta_i \quad \forall i \in \{1, ..., d+1\}.$$

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party

$$s_1 = (\alpha_1, \beta_1)$$

$$s_2 = (\alpha_2, \beta_2)$$

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party

$$s_1 = (\alpha_1, \beta_1)$$

$$s_2 = (\alpha_2, \beta_2)$$

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line

$$s_1 = (\alpha_1, \beta_1)$$

$$s_2 = (\alpha_2, \beta_2)$$

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line

$$s_1 = (\alpha_1, \beta_1)$$

$$s_2 = (\alpha_2, \beta_2)$$

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line

$$s_1 = (\alpha_1, \beta_1)$$

$$s_2 = (\alpha_2, \beta_2)$$

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

$$s_1 = (\alpha_1, \beta_1)$$

$$s_2 = (\alpha_2, \beta_2)$$

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

Shamir Secret Sharing2-out-of-2 Sharing

- Share algorithm
 - Sample $c_1 \leftarrow \mathbb{Z}_p$ uniformly at random and set $p(x) = c_1 \cdot x \ + \ s$
 - Let $\alpha_1,\alpha_2\in\mathbb{Z}_p$ such that $\alpha_1\neq 0$ and $\alpha_2\neq 0$
 - Compute

$$s_1 = (\alpha_1, \beta_1 = p(\alpha_1)), \text{ and }$$
 $s_2 = (\alpha_2, \beta_2 = p(\alpha_2))$

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

Shamir Secret Sharing2-out-of-2 Sharing

- Share algorithm
 - Sample $c_1 \leftarrow \mathbb{Z}_p$ uniformly at random and set $p(x) = c_1 \cdot x \ + \ s$
 - Let $\alpha_1, \alpha_2 \in \mathbb{Z}_p$ such that $\alpha_1 \neq 0$ and $\alpha_2 \neq 0$
 - Compute

$$s_1=(\alpha_1,\,\beta_1=p(\alpha_1)),$$
 and
$$s_2=(\alpha_2,\,\beta_2=p(\alpha_2))$$

- Correctness
 - 2 points uniquely define a degree-1 polynomial over \mathbb{Z}_p

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

- Share algorithm
 - Sample $c_1 \leftarrow \mathbb{Z}_p$ uniformly at random and set $p(x) = c_1 \cdot x \ + \ s$
 - Let $\alpha_1,\alpha_2\in\mathbb{Z}_p$ such that $\alpha_1\neq 0$ and $\alpha_2\neq 0$
 - Compute

$$s_1=(\alpha_1,\,\beta_1=p(\alpha_1)),$$
 and
$$s_2=(\alpha_2,\,\beta_2=p(\alpha_2))$$

- Correctness
 - 2 points uniquely define a degree-1 polynomial over \mathbb{Z}_p
- Privacy
 - There are p lines passing through any single point

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

2-out-of-2 Sharing

- Share algorithm
 - Sample $c_1 \leftarrow \mathbb{Z}_p$ uniformly at random and set $p(x) = c_1 \cdot x \ + \ s$
 - Let $\alpha_1,\alpha_2\in\mathbb{Z}_p$ such that $\alpha_1\neq 0$ and $\alpha_2\neq 0$
 - Compute

$$s_1 = (\alpha_1, \beta_1 = p(\alpha_1)), \text{ and }$$
 $s_2 = (\alpha_2, \beta_2 = p(\alpha_2))$

- Correctness
 - 2 points uniquely define a degree-1 polynomial over \mathbb{Z}_p
- Privacy

 There are p lines passing through any single point Why \mathbb{Z}_p ?

- Share algorithm (intuition)
 - Choose a "random line" that passes through (0, s)
 - Give one point to each party
- Correctness
 - 2 points uniquely define a line
- Privacy (intuition)
 - Infinitely many lines through a given point

k-out-of-n Secret Sharing

k-out-of-n Secret Sharing

- Share algorithm: Let $s \in \mathbb{Z}_p$ be the secret and let $\alpha_1, ..., \alpha_n \in \mathbb{Z}_p$ be distinct non-zero values
 - Sample $c_{k-1}, ..., c_1 \leftarrow \mathbb{Z}_p$ uniformly at random

$$Set p(x) = s + \sum_{i=1}^{k-1} c_i \cdot x^i$$

• The *i*-th party's share is $s_i = (\alpha_i, \beta_i = p(\alpha_i))$

k-out-of-n Secret Sharing

- Share algorithm: Let $s \in \mathbb{Z}_p$ be the secret and let $\alpha_1, ..., \alpha_n \in \mathbb{Z}_p$ be distinct non-zero values
 - Sample $c_{k-1}, ..., c_1 \leftarrow \mathbb{Z}_p$ uniformly at random

$$Set p(x) = s + \sum_{i=1}^{k-1} c_i \cdot x^i$$

- The *i*-th party's share is $s_i = (\alpha_i, \beta_i = p(\alpha_i))$
- Correctness: Any k shares uniquely define a degree-(k-1) polynomial p(x). Compute the secret as p(0).

k-out-of-n Secret Sharing

- Share algorithm: Let $s \in \mathbb{Z}_p$ be the secret and let $\alpha_1, ..., \alpha_n \in \mathbb{Z}_p$ be distinct non-zero values
 - Sample $c_{k-1}, ..., c_1 \leftarrow \mathbb{Z}_p$ uniformly at random

- The *i*-th party's share is $s_i = (\alpha_i, \beta_i = p(\alpha_i))$
- Correctness: Any k shares uniquely define a degree-(k-1) polynomial p(x). Compute the secret as p(0).
- **Privacy:** For any subset of k-1 shares, there are p degree-(k-1) polynomials through them, any one of them could correspond to the secret.

$$b = 0$$
 if $v_1 < v_2$ else $b = 1$

Parties only learn the output, but nothing else about the other party's input

Multi-Party Computation: Definition

$$y = f(x_1, x_2, x_3, x_4)$$

- Each party has an input
- Parties talk to each other to compute the output of a program/function
- No party learns anything beyond the function output

$$u \in \{0, 1\}$$
 $v \in \{0, 1\}$

$$u \in \{0, 1\}$$
 $u_1 \leftarrow \{0, 1\}, \quad u_2 = u \oplus u_1$
 $v \in \{0, 1\}$ $v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$

$$u_1 \leftarrow \{0, 1\}, \quad u_2 = \mathbf{u} \oplus u_1$$

$$v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$$

 u_2, v_2

$$u \in \{0, 1\}$$
 $u_1 \leftarrow \{0, 1\}, \quad u_2 = u \oplus u_1$
 $v \in \{0, 1\}$ $v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$

$$u_1 \leftarrow \{0, 1\}, \quad u_2 = \mathbf{u} \oplus u_1$$

$$v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$$

$$u_1, v_1$$

$$w_1 = u_1 \oplus v_1$$

$$u_2, v_2$$

$$w_2 = u_2 \oplus v_2$$

$$u \in \{0, 1\}$$
 $u_1 \leftarrow \{0, 1\}, \quad u_2 = u \oplus u_1$
 $v \in \{0, 1\}$ $v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$

$$u_1 \leftarrow \{0, 1\}, \quad u_2 = u \oplus u_1$$

$$v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$$

$$w_1 = u_1 \oplus v_1$$

$$u_2, v_2$$

$$w_2 = u_2 \oplus v_2$$

$$w_1 \oplus w_2$$

$$= u_1 \oplus v_1 \oplus u_2 \oplus v_2$$

$$= u_1 \oplus u_2 \oplus v_1 \oplus v_2 = u \oplus v$$

$$u \in \{0, 1\}$$
 $u_1 \leftarrow \{0, 1\}, \quad u_2 = u \oplus u_1$
 $v \in \{0, 1\}$ $v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$

$$u_1 \leftarrow \{0, 1\}, \quad u_2 = \mathbf{u} \oplus u_1$$

$$v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$$

$$u_1, v_1$$

$$w_1 = u_1 \oplus v_1$$

 u_2, v_2

$$w_2 = u_2 \oplus v_2$$

Additive Homomorphism: Each party can locally compute w_1 and w_2 which are shares of $u \oplus v$

$$w_1 \oplus w_2$$

$$= u_1 \oplus v_1 \oplus u_2 \oplus v_2$$

$$= u_1 \oplus u_2 \oplus v_1 \oplus v_2 = u \oplus v$$

$$u \in \{0, 1\}$$
 $u_1 \leftarrow \{0, 1\}, \quad u_2 = u \oplus u_1$
 $v \in \{0, 1\}$ $v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$

$$u_1 \leftarrow \{0, 1\}, \quad u_2 = \mathbf{u} \oplus u_1$$

$$v_1 \leftarrow \{0, 1\}, \quad v_2 = v \oplus v_1$$

$$u_1, v_1$$

$$w_1 = u_1 \oplus v_1$$

 u_2, v_2

$$w_2 = u_2 \oplus v_2$$

Additive Homomorphism: Each party can locally compute w_1 and w_2 which are shares of $u \oplus v$

Similarly, k-out-of-n Shamir secret sharing supports addition over \mathbb{Z}_p

$$w_1 \oplus w_2$$

$$= u_1 \oplus v_1 \oplus u_2 \oplus v_2$$

$$= u_1 \oplus u_2 \oplus v_1 \oplus v_2 = u \oplus v$$

Multi-Party Computation

- We will compute Boolean circuits these capture all computable program (though for real-life programs, the circuits might be impractically large!)
- Boolean circuits: AND gates, and XOR gates
- Additive homomorphism can help evaluate XOR gates
- How do we evaluate AND gates?