A nehézségi gyorsulás mérése megfordítható ingával

Klasszikus fizika laboratórium, Csütörtöki csoport

Márton Tamás

November 9

Bevezetés

A nehézségi gyorsulás nagy pontosságú mérésére alkalmas a megfordítható, másnéven reverziós inga, amely a fizikai inga egyik fajtája. A súlypont helyzete és az inga tehetetlenségi nyomatéka a két ék között (E_1 és E_2 között) elhelyezhető m tömegű tolósúllyal változtatható. Az ékek közötti távolság (l_e) ismeretében a nehézségi gyorsulás meghatározható a következő összefüggés alapján:

$$g = \frac{4\pi^2 l_e}{T^2} \tag{1}$$

1. ábra. A reverziós inga sematikus rajza

Ahol a képletben T a mért lengésidőt, g pedig a nehézségi gyorsulást jelöli, l_e pedig az ábrán jelölt, két ék közötti távolságot. Az X majd a később mért érték, pedig a két ék közötti távolság felétől mérendő. A mérés során a megfordítható inga lengésideje akkor egyezik majd meg megfordítás után, ha a két lengésidőkre illesztett görbe metszi egymást. Ebben a pontban kell majd pontosító méréseket végezni.

A mérés

A mérési összeállítás, hibaszámítás

A méréshez szükségünk volt egy megfordítható ingára, valamint az inga lengésidejét mérő villa alakú az ingalengésidejét mérő elektronikus egységre. A berendezés esetünkben 10 teljes lengés idejét méri, melynek idejét az elektronikus kijelzőn meg is jeleníti. Ha az ingát kissé kitérítjük a számláló nem indul el automatikusan, csak a START gomb megnyomása után. Ezt minden alkalommal valamelyik szélső helyzetben tettem, hogy a mérésünk a lehető legpontosabban a 10 teljes lengés legyen.

A hibaszámítás során figyelembe kell vennünk a hibaterjedést a nehézségi gyorsulás kiszámítása során:

$$\frac{\Delta g}{g} = \frac{\Delta l_e}{l_e} + 2\frac{\Delta T}{T} \tag{2}$$

Valamint figyelembe kell vennük, hogy a fizikai inga lengésidejére vonatkozó képlet csak kis kitérések esetén érvényes, a pontos képlet:

$$T = 2\pi \sqrt{\frac{l_e}{g} \left(1 + \frac{1}{4} sin^2 \frac{\alpha}{2} + \frac{9}{64} sin^4 \frac{\alpha}{2} + \frac{25}{256} sin^6 \frac{\alpha}{2} + \dots\right)} \approx 2\pi \sqrt{\frac{l_e}{g}}$$
 (3)

Ezen felül figyelembe kell venni a hidrodinamikai korrekciót is, mivel az inga tolja maga előtt a levegőt. Ezt figyelembe véve:

 $\Delta T_{korr} = 0.8 \frac{\rho_{lev}}{\rho_{inga}} T \tag{4}$

A mérés menete

Több mérési feladatot kell elvégeznünk:

- (i) 10 teljes lengés idejének mérése, mindkét ékre vonatkozólag a tolósúly helyzetének (a korábban említett X érték) függvényében, 5cm-es lépésközzel. $\to Ez$ két T(X) görbét eredményez majd.
- (ii) A két T(X) görbe metszéspontjai körül 3cm-es környezetében új, pontosabb méréseket kell végezni, szintén 10 lengés idejét mérve, mindkét ékre nézve. Az így kapott pontokra (helyzet, T), egyenest kell illeszteni, és ez által kell a metszéspontokat meghatározni, majd hibabecslést végezni.
- (iii) Az eddigi adatokból már meg tudjuk határozni a nehézségi gyorsulást és annak hibáját. Valamint meg kell becsülni a szisztematikus hibák nagyságát, és szükség esetén a mérési eredményt is módosítani kell.
- (iv) A súlypontmérés hibájának becslése azokban a pontokban ahol a lengésidő megegyezik.
- (v) Mérni kell a súlypont helyzetét a tolósúly több X értéke esetén is. Ábrázolni ezt egy s(x) függvényen. Meg kell állapítani, hogy melyikek x érték esetén kapnánk a triviális megoldást, azaz, amikor a súlypontok távolsága megegyezik a két felfüggesztett esetben.

A mért adatok

 T_1 lesz azon periódus idők jelzésere, amikor az 1-es ékre tesszük az ingát és értelemszerűen T_2 , amikor a 2-esre. Ezeket s-ban, míg X értékét cm-ben mérjük majd. A skálán jelzett előjerekre figyelni kell, mivel az ingán a mérés során fordítunk egyet, attól függően, hogy melyik ékre akasztottuk. Az ékek közötti távolság, azzal az ingával, amivel a mérést végeztem: $l_e = 1.0033 \pm 0.0002$ cm. A mérési eredmények táblázatba foglalva:

x[cm]	$10T_1[s]$	$10T_{2}[s]$
-40	20.093	20.094
-35	20.016	20.041
-30	19.946	19.993
-25	19.889	19.955
-20	19.841	19.924
-15	19.803	19.904
-10	19.776	19.889
-5	19.760	19.882
0	19.755	19.884
5	19.763	19.894
10	19.783	19.788
15	19.818	19.932
20	19.863	19.962
25	19.924	20.000
30	19.998	20.042
35	20.088	20.093
40	20.195	20.147

Ezen adatokból készült ábra: 1. számú melléklet.

Az illesztés negyedfokú polinom esetén mutatta a legjobb egyezést. Ezeknek a függvényeknek a hozzarendelése a követekző: Két metszéspont van az ábrán, az x=-38~cm-es pontnál és a másik metszéspont 35 cm környékén van. Az itt végzett méréseket 1 cm pontosságúak.

x[cm]	$10T_{1}[s]$	$10T_{2}[s]$	x[cm]	$10T_{1}[s]$	$10T_{2}[s]$
33	20.054	20.075	-42	20.126	20.118
34	20.071	20.086	-41	20.108	20.107
35	20.088	20.096	-40	20.095	20.095
36	20.110	20.105	-39	20.077	20.084
37	20.131	20.116	-38	20.060	20.070
38	20.151	20.128	-37	20.041	20.060
39	20.171	20.139	-36	20.032	20.050

Ezekre a pontokra egyenekeseket illesztve a következő ábrákat készítettem:

- 2. számú melléklet
- 3. számú melléklet

A hibát majd csak később veszem figyelembe.

Majd az egyensúlyi helyzetet is megkerestem a mozgósúly 5 cm-enként eltolásával:

x[cm]	s(x)[cm]
40	15.4
35	14.8
30	14.4
25	13.9
20	13.4
-20	9.8
-25	9.4
-30	8.8
-35	8.4
-40	7.9

Az ezekre a pontokra illesztett egyenes, megadja a súlypont helyét x függvényében:

Ennek az egyenesnek a hozzárendelése a következő:

$$s(x) = 0.0922632x + 11.62$$

A mérés kiértékelése

A hosszú ingánál l_e =(1,00110,0002)m a két ék távolsága. A nehézségi gyorsulástebből és a metszéspontokban mért lengésidőből a következő képlettel számolhatjuk:

$$g = \frac{4^2 l_e}{T_2}$$

A lengésidő méréséhez további korrekciókat kell kiszámolnunk. Először is a hidrosztatikus korrekciót, ami a levegő felhajtóerejéből származik. Ezt a következőképpen számoljuk:

$$\Delta T_{kor}r = 0, 8 \frac{\rho_{lev}}{\rho_{inga}}T = 0,$$

Ezt ki kell vonnunk a mért lengésidőből, mivel nagyságrendje beleesik a lengésidőpontosságába. A következő korrekció, ami az inga kitérítésének nagyságából adódik. Mérőszalaggal lemértük mekkora szögben térítettük ki körülbelül az ingát.

A kitérítésszögét: 3,3-nak mértük. A könyvben lévő táblázat alapján a kitérítésből adódott szisztematikus hibát megbecsülhetjük, amire körülbelül0,01% adódott.

Ez alapjána lengésidő korrekciója: 0,0002s, amit ugyancsak ki kell vonni a mért lengésidőből. Tehát a korrekciók figyelembevételével az inga keresett lengésideje:

$$T=(2.0108640.0003)s$$

A nehézségi gyorsulás hibáját a hibaterjedés szabályai szerint számoljuk:

$$\frac{g}{g} = \frac{l_e}{l_e} + 2\frac{\Delta T}{T}$$

Behelyettesítés után a mért nehézségi gyorsulás:

$$g=(9,79540\pm0.005)\frac{m}{s^2}$$

Ez jól illik a Budapesti nehézségi gyorsulás irodalmi érték éhez.