Esame di Ricerca Operativa del 17/07/17

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -x_1 + x_2 \\ x_1 + 2 \ x_2 \le -5 \\ x_1 \le 5 \\ -x_1 - x_2 \le 6 \\ -2 \ x_1 - x_2 \le 4 \\ -x_1 + x_2 \le -7 \\ x_1 - x_2 \le 12 \\ -x_2 \le 9 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere
		(si/no)	(si/no)
$\{1, 2\}$	x =		
$\{4, 7\}$	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{3,7}					
2° iterazione						

Esercizio 3. Una ditta produce latte liquido e in polvere. Il latte liquido viene venduto in cartocci da 1 l, ciascuno dei quali occupa un volume di $0.002~m^3$. Il profitto ottenuto dalla vendita di 1 l di latte è di 1.20 Euro. Il latte in polvere viene venduto in barattoli da 2, 1.5 e 1 kg rispettivamente. Il costo che la ditta sostiene per la produzione di 1 kg di latte in polvere è di 5 Euro. La seguente tabella riporta i prezzi di vendita dei barattoli e i volumi occupati:

Barattolo	Prezzo (Euro)	Volume occupato (m^3)
2 kg	24	0.004
1.5 kg	16	0.003
1 kg	12	0.002

La ditta deve soddisfare la domanda di mercato stimata in 600 l di latte liquido e 200 kg di latte in polvere. Il latte prodotto sarà trasportato con un veicolo a temperatura controllata di capacità $28.3 \ m^3$. Determinare quante unità dei diversi tipi di latte la ditta deve produrre per massimizzare il profitto e soddisfare le richieste di mercato.

variabili decisionali:
modello:

C=	int=
A=	b=
Aeq=	beq=
lb=	ub=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (3,4)				
(3,5)(5,6)	(3,6)	x =		
(1,2) (1,3) (3,4)				
(3,6)(5,6)	(3,5)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (2,3) (2,4) (2,6) (5,6)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter 1 iter 2 iter 3 iter 4		ite	r 5	ite	r 6				
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato												
nodo 2												
nodo 3												
nodo 4												
nodo 5												
nodo 6												
insieme												
Q												

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 14 \ x_1 + 12 \ x_2 \\ 13 \ x_1 + 8 \ x_2 \ge 46 \\ 11 \ x_1 + 16 \ x_2 \ge 41 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

 $N_t =$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	16	21	64	46
2		16	99	58
3			98	11
4				10

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo: $v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 2-albero di costo minimo come rilassamento di ogni

sottoproblema ed istanziando, nell'ordine, le variabili x_{24}, x_{45}, x_{34} . Dire se l'algoritmo é terminato.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2 - x_1^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - (x_2 - 1)^2 + 1 \le 0, -x_1 \le 0}.$$

Soluzioni del sist	tema LKT		Mass	simo	Minimo		Sella
x	λ	μ	globale	locale	globale	locale	
$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$							
(0, 0)							
(0, 2)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -4 \ x_1^2 - 4 \ x_1 \ x_2 + 5 \ x_1 + 9 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-2,3) , (1,1) , (0,-4) e (-2,-2). Fare un passo del metodo di Frank-Wolfe.

Punto	Funzione obiettivo problema linearizzato	Sol. ottima problema linearizzato	Direzione	Passo	Nuovo punto
$\left(-1,\frac{7}{3}\right)$					

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -x_1 + x_2 \\ x_1 + 2 \ x_2 \le -5 \\ x_1 \le 5 \\ -x_1 - x_2 \le 6 \\ -2 \ x_1 - x_2 \le 4 \\ -x_1 + x_2 \le -7 \\ x_1 - x_2 \le 12 \\ -x_2 \le 9 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (5, -5)	SI	NO
{4, 7}	$y = \left(0, \ 0, \ 0, \ \frac{1}{2}, \ 0, \ 0, \ -\frac{3}{2}\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice uscente	Rapporti	Indice entrante
				uscente		entrante
1° iterazione	${3, 7}$	(3, -9)	(0, 0, 1, 0, 0, 0, -2)	7	$10, 1, \frac{5}{2}$	4
2° iterazione	${3, 4}$	(2, -8)	(0, 0, -3, 2, 0, 0, 0)	3	3, 1	5

Esercizio 3. Una ditta produce latte liquido e in polvere. Il latte liquido viene venduto in cartocci da 1 l, ciascuno dei quali occupa un volume di $0.002~m^3$. Il profitto ottenuto dalla vendita di 1 l di latte è di 1.20 Euro. Il latte in polvere viene venduto in barattoli da 2, 1.5 e 1 kg rispettivamente. Il costo che la ditta sostiene per la produzione di 1 kg di latte in polvere è di 5 Euro. La seguente tabella riporta i prezzi di vendita dei barattoli e i volumi occupati:

Barattolo	Prezzo (Euro)	Volume occupato (m^3)
2 kg	24	0.004
1.5 kg	16	0.003
1 kg	12	0.002

La ditta deve soddisfare la domanda di mercato stimata in 600 l di latte liquido e 200 kg di latte in polvere. Il latte prodotto sarà trasportato con un veicolo a temperatura controllata di capacità $28.3 \, m^3$. Determinare quante unità dei diversi tipi di latte la ditta deve produrre per massimizzare il profitto e soddisfare le richieste di mercato (ignorare il vincolo di interezza).

```
\begin{array}{l} \text{variabili decisionali:} \quad x_1 = \text{numero di cartocci di latte prodotti} \\ x_2 = \text{numero di barattoli di latte da 2 kg} \\ x_3 = \text{numero di barattoli di latte da 1.5 kg} \\ x_4 = \text{numero di barattoli di latte da 1 kg} \\ \\ \text{modello:} \left\{ \begin{array}{l} \max \ 1.2 \ x_1 + 24 \ x_2 + 16 \ x_3 + 12 \ x_4 - 5 \ (2 \ x_2 + 1.5 \ x_3 + x_4) \\ x_1 \geq 600 \\ 2 \ x_2 + 1.5 \ x_3 + x_4 \geq 200 \\ 0.002 \ x_1 + 0.004 \ x_2 + 0.003 \ x_3 + 0.002 \ x_4 \leq 28.3 \\ x_i \geq 0, \ i = 1, 2, 3, 4 \end{array} \right. \end{array}
```

COMANDI DI MATLAB

```
c=[-1.2; -14; -8.5; -7]

A=[0 -2 -1.5 -1; 0.002 0.004 0.003 0.002] b=[-200; 28.3]

Aeq=[] beq=[]

1b=[600; 0; 0; 0] ub=[]
```

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (3,4)				
(3,5)(5,6)	(3,6)	x = (-3, 7, 0, 0, 0, 2, 3, 9, 0, -3)	NO	NO
(1,2) (1,3) (3,4)				
(3,6)(5,6)	(3,5)	$\pi = (0, 9, 9, 18, 14, 19)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) $(2,3)$ $(2,4)$ $(2,6)$ $(5,6)$	(1,3) $(2,4)$ $(2,6)$ $(3,5)$ $(5,6)$
Archi di U	(3,5)	
x	(0, 4, 0, 2, 1, 0, 11, 0, 0, 5)	(0, 4, 0, 2, 1, 0, 11, 0, 0, 5)
π	(0, 6, 9, 12, 6, 11)	(0, 15, 9, 21, 15, 20)
Arco entrante	(3,5)	(1,2)
ϑ^+,ϑ^-	7,0	5, 4
Arco uscente	(2,3)	(1,3)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6
	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		۷	4	6	2	Ģ	}	(5	Ę	Ď
nodo 2	17	1	17	1	17	1	17	1	17	1	17	1
nodo 3	19	1	19	1	19	1	19	1	19	1	19	1
nodo 4	15	1	15	1	15	1	15	1	15	1	15	1
nodo 5	$+\infty$	-1	32	4	29	2	29	2	29	2	29	2
nodo 6	$+\infty$	-1	31	4	31	4	23	3	23	3	23	3
$\stackrel{\text{insieme}}{Q}$	2, 3	, 4	2, 3,	5, 6	3, 5	5, 6	5,	6	ţ	5	(A)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 6	9	(0, 9, 0, 0, 0, 9, 0, 0, 0, 0)	9
1 - 4 - 6	7	(0, 9, 7, 0, 0, 9, 0, 0, 7, 0)	16
1 - 2 - 4 - 6	5	(5, 9, 7, 5, 0, 9, 0, 0, 12, 0)	21

Taglio di capacità minima: $N_s = \{1, 3\}$ $N_t = \{2, 4, 5, 6\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 14 \ x_1 + 12 \ x_2 \\ 13 \ x_1 + 8 \ x_2 \ge 46 \\ 11 \ x_1 + 16 \ x_2 \ge 41 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{17}{5}, \frac{9}{40}\right)$$
 $v_I(P) = 51$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(4,1)$$
 $v_S(P) = 68$

c) Calcolare un taglio di Gomory.

$$r = 1$$
 $12 x_1 + 8 x_2 \ge 43$ $11 x_1 + 15 x_2 \ge 41$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	16	21	64	46
2		16	99	58
3			98	11
4				10

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero:
$$(1, 2) (1, 3) (2, 3) (3, 5) (4, 5)$$
 $v_I(P) = 74$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo:
$$1 - 2 - 3 - 5 - 4$$
 $v_S(P) = 117$

c) Applicare il metodo del Branch and Bound, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{45} , x_{34} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_2 - x_1^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - (x_2 - 1)^2 + 1 \le 0, -x_1 \le 0}.$$

Soluzioni del sis	Soluzioni del sistema LKT Massimo Minimo				Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$	(-1,0)		NO	SI	NO	NO	NO
(0, 0)	$\left(-\frac{1}{2},0\right)$		NO	SI	NO	NO	NO
(0, 2)	$\left(\frac{1}{2},0\right)$		NO	NO	NO	NO	SI

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -4 \ x_1^2 - 4 \ x_1 \ x_2 + 5 \ x_1 + 9 \ x_2 \\ x \in P \end{cases}$$

 ${\rm dove}\; P \; \grave{\rm e} \; {\rm il} \; {\rm poliedro} \; {\rm di} \; {\rm vertici} \; (-2,3) \; , \; (1,1) \; , \; (0,-4) \; {\rm e} \; (-2,-2). \; \\ {\rm Fare} \; {\rm una} \; {\rm iterazione} \; {\rm del} \; {\rm metodo} \; {\rm di} \; {\rm Frank-Wolfe}. \; \\ {\rm vertici} \; (-2,3) \; , \; (1,1) \; , \; (0,-4) \; {\rm e} \; (-2,-2). \; \\ {\rm Fare} \; {\rm una} \; {\rm iterazione} \; {\rm del} \; {\rm metodo} \; {\rm di} \; {\rm Frank-Wolfe}. \; \\ {\rm vertici} \; (-2,3) \; , \; (1,1) \; , \; (0,-4) \; {\rm e} \; (-2,-2). \; \\ {\rm Fare} \; {\rm una} \; {\rm iterazione} \; {\rm del} \; {\rm metodo} \; {\rm di} \; {\rm Frank-Wolfe}. \; \\ {\rm vertici} \; (-2,3) \; , \; (1,1) \; , \; (0,-4) \; {\rm e} \; (-2,-2). \; \\ {\rm Fare} \; {\rm una} \; {\rm iterazione} \; {\rm del} \; {\rm metodo} \; {\rm di} \; {\rm Frank-Wolfe}. \; \\ {\rm vertici} \; (-2,3) \; , \; (1,1) \; , \; (0,-4) \; {\rm e} \; (-2,-2). \; \\ {\rm Fare} \; {\rm una} \; {\rm iterazione} \; {\rm del} \; {\rm metodo} \; {\rm di} \; {\rm Frank-Wolfe}. \; \\ {\rm vertici} \; (-2,3) \; , \; (1,1) \; , \; (0,-4) \; {\rm e} \; (-2,-2). \; \\ {\rm vertici} \; (-2,3) \; , \; (1,2) \; , \;$

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$(-1,\frac{7}{3})$	$\frac{11}{3}x_1 + 13x_2$	(0,-4)	$(1, -\frac{19}{3})$	1	(0, -4)