THE STANDARD ERROR OF CHAIN LADDER RESERVE ESTIMATES: RECURSIVE CALCULATION AND INCLUSION OF A TAIL FACTOR

By

Thomas MACK

Munich Re, Munich

ABSTRACT

In Mack (1993), a formula for the standard error or chain ladder reserve estimates has been derived. In the present communication, a very intuitive and easily programmable recursive way of calculating the formula is given. Moreover, this recursive way shows how a tail factor can be implemented in the calculation of the standard error.

KEYWORDS

Chain Ladder, Standard Error, Recursive Calculation, Tail Factor

Introduction

Let C_{ik} denote the cumulative loss amount of accident year i = 1, ..., n at the end of development year (age) k = 1, ..., n. The amounts C_{ik} have been observed for $k \le n + 1 - i$ whereas the other amounts have to be predicted. The chain ladder algorithm consists of the stepwise prediction rule

$$\hat{C}_{i,k+1} = \hat{C}_{ik}\hat{f}_k$$

starting with $\hat{C}_{i,n+1-i} = C_{i,n+1-i}$. Here, the age-to-age factor \hat{f}_k is defined by

$$\hat{f}_{k} = \sum_{i=1}^{n-k} w_{ik} C_{ik}^{\alpha} F_{ik} / \sum_{i=1}^{n-k} w_{ik} C_{ik}^{\alpha}, \qquad \alpha \in \{0; 1; 2\},$$

where

$$F_{ik} = C_{i,k+1}/C_{ik}, 1 \le i \le n, 1 \le k \le n-1,$$

are the individual development factors and where

$$w_{ik} \in [0; 1]$$

ASTIN BULLETIN, Vol. 29, No. 2, 1999, pp. 361-366

are arbitrary weights which can be used by the actuary to downweight any outlying F_{ik} . Normally, $w_{ik} = 1$ for all i, k. Then, $\alpha = 1$ gives the historical chain ladder age-to-age factors, $\alpha = 0$ gives the straight average of the observed individual development factors and $\alpha = 2$ is the result of an ordinary regression of $C_{i,k+1}$ against C_{ik} with intercept 0. Note that in case $C_{ik} = 0$, the corresponding two summands should be omitted when calculating f_k .

The above stepwise rule finally leads to the prediction

$$\hat{C}_{in} = C_{i,n+1-i}\hat{f}_{n+1-i} \cdot \dots \cdot \hat{f}_{n-1}$$

of C_{in} but – because of limited data – the loss development of accident year i does not need to be finished at age n. Therefore, the actuary often uses a tail factor $f_{ult} > 1$ in order to estimate the ultimate loss amount $C_{i,ult}$ by

$$\hat{C}_{i,ult} = \hat{C}_{in}\hat{f}_{ult} .$$

A possible way to arrive at an estimate for the tail factor is a linear extrapolation of $\ln(\hat{f}_k - 1)$ by a straight line $a \cdot k + b$, a < 0, together with

$$\hat{f}_{ult} = \prod_{k=n}^{\infty} \hat{f}_k .$$

However, the tail factor used must be plausible and, therefore, the final tail factor is the result of the personal assessment of the future development by

In Mack (1993), a formula for the standard error of the predictor \hat{C}_{in} was derived for $\alpha = 1$ and all $w_{ik} = 1$. In the next section, this formula is generalized for the cases $\alpha = 0$ or $\alpha = 2$ and $w_{ik} < 1$. Furthermore, a recursive way of calculating the standard error is given. In the last section it is shown how a tail factor can be implemented in the calculation of the standard error.

RECURSIVE CALCULATION OF THE STANDARD ERROR

In order to calculate the standard error of the prediction \hat{C}_{in} as compared to the true loss amount C_{in} , Mack (1993) introduced an underlying stochastic model (for $\alpha = 1$ and $w_{ik} = 1$) which is given here in its more general form without the restriction on α and w_{ik} :

(CL1)
$$E(F_{ik}|C_{i1}, ..., C_{ik}) = f_k,$$
 $1 \le i \le n, 1 \le k \le n-1,$

(CL1)
$$E(F_{ik}|C_{i1}, ..., C_{ik}) = f_k,$$
 $1 \le i \le n, 1 \le k \le n-1,$ (CL2) $Var(F_{ik}|C_{i1}, ..., C_{ik}) = \frac{\sigma_k^2}{w_{ik}C_{ik}^n},$ $1 \le i \le n, 1 \le k \le n-1,$

The accident years $(C_{i1}, ..., C_{in})$, $1 \le i \le n$, are independent. (CL3)

Within this model, the following statements hold (see Mack (1993)):

$$E(C_{i,k+1}|C_{i1}, ..., C_{ik}) = C_{ik}f_k,$$

$$E(C_{in}|C_{i1}, ..., C_{i,n+1-i}) = C_{i,n+1-i}f_{n+1-i} \cdot ... \cdot f_{n-1},$$

 \hat{f}_k is the minimum variance unbiased linear estimator of f_k (for w_{ik} and α given),

 \hat{f}_{n+1-i} ... \hat{f}_{n-1} is an unbiased estimator of f_{n+1-i} ... f_{n-1} .

Therefore, the model CL1-3 can be called underlying the chain ladder algorithm. Furthermore,

$$\hat{\sigma}_k^2 = \frac{1}{n-k-1} \sum_{i=1}^{n-k} w_{ik} C_{ik}^{\alpha} (F_{ik} - \hat{f}_k)^2, \qquad 1 \le k \le n-2,$$

is an unbiased estimator for $\hat{\sigma}_k^2$ which can be supplemented by

$$\hat{\sigma}_{n-1}^2 = \min \left(\hat{\sigma}_{n-2}^4 / \hat{\sigma}_{n-3}^2, \; \min \left(\hat{\sigma}_{n-3}^2, \hat{\sigma}_{n-2}^2 \right) \right) \, .$$

Based on this model for $\alpha = 1$ and all $w_{ik} = 1$, Mack (1993) derived the following formula for the standard error of \hat{C}_{in} , which at the same time is the standard error of the estimate $\hat{R}_i = \hat{C}_{in} - C_{i,n+1-i}$ for the claims reserve $R_i = C_{in} - C_{i,n+1-i}$:

$$(\text{s.e.}(\hat{C}_{in}))^2 = \hat{C}_{in}^2 \sum_{k=n+1-i}^{n-1} \frac{\hat{\sigma}_k^2}{\hat{f}_k^2} \left(\frac{1}{\hat{C}_{ik}} + \frac{1}{\sum_{i=1}^{n-k} C_{ik}} \right).$$

This formula can be rewritten as

(*)
$$(s.e.(\hat{C}_{in}))^2 = \hat{C}_{in}^2 \sum_{k=n+1-i}^{n-1} \left((s.e.(F_{ik}))^2 + (s.e.(\hat{f}_k))^2 \right) / \hat{f}_k^2$$

where $(s.e.(F_{ik}))^2$ is an estimate of $Var(F_{ik}|C_{i1}, ..., C_{ik})$ and $(s.e.(\hat{f}_k))^2$ is an estimate of

$$\operatorname{Var}(\hat{f}_k) = \sigma_k^2 / \sum_{j=1}^{n-k} w_{jk} C_{jk}^{\alpha}.$$

In this last form, formula (*) also holds for $\alpha = 0$ and $\alpha = 2$ and any $w_{ik} \in [0; 1]$ as can be seen by applying the proof for $\alpha = 0$ and $w_{ik} = 1$ analogously. Moreover, from this proof the following easily programmable recursion can be gathered:

$$(s.e.(\hat{C}_{i,k+1}))^2 = \hat{C}_{ik}^2 \left((s.e.(F_{ik}))^2 + (s.e.(\hat{f}_k))^2 \right) + (s.e.(\hat{C}_{ik}))^2 \hat{f}_k^2$$

with starting value s.e. $(\hat{C}_{i,n+1-i}) = 0$. This recursion, which leads to formula (*), is very intuitive: $(s.e.(F_{ik}))^2$ estimates the (squared) random error $Var(F_{ik}) = E(F_{ik} - f_k)^2$, i.e. the mean squared deviation of an individual F_{ik} from its true mean f_k , and $(s.e.(\hat{f}_k))^2$ estimates the (squared) estimation error $Var(\hat{f}_k) = E(\hat{f}_k - f_k)^2$, i.e. the mean squared deviation of the estimated average \hat{f}_k of the F_{ik} , $1 \le i \le n$, from the true f_k . From this interpretation it is clear that we have $Var(\hat{f}_k) < Var(F_{ik})$ if \hat{f}_k is unbiased and accident year i belongs to those years over which \hat{f}_k is the average.

INCLUSION OF A TAIL FACTOR

The recursion can immediately be extended to include a tail factor \hat{f}_{ult} :

$$\left(\text{s.e.}(\hat{C}_{i,ult})\right)^{2} = \hat{C}_{in}^{2}\left(\left(\text{s.e.}(F_{i,ult})\right)^{2} + \left(\text{s.e.}(\hat{f}_{ult})\right)^{2}\right) + \left(\text{s.e.}(\hat{C}_{in})\right)^{2}\hat{f}_{ult}^{2}$$

and an actuary who develops an estimate for f_{ult} should also be able to develop an estimate s.e. (\hat{f}_{ult}) for its estimation error $\sqrt{\operatorname{Var}(\hat{f}_{ult})}$ (How far will \hat{f}_{ult} deviate from f_{ult} ?) and an estimate s.e. $(F_{i,ult})$ for the corresponding random error $\sqrt{\operatorname{Var}(F_{i,ult})}$ (How far will any individual $F_{i,ult}$ deviate from f_{ult} on average?). Note that at F_{ik} , f_k and σ_k , index k = ult is the same as k = n whereas at C_{ik} we have ult = n + 1.

As a plausibility consideration, we will usually be able to find an index k < n with

$$\hat{f}_{k-1} > \hat{f}_{ult} > \hat{f}_k$$
.

Then we can check whether it is reasonable to assume that the inequalities

$$\text{s.e.}(\hat{f}_{k-1}) > \text{s.e.}(\hat{f}_{ult}) > \text{s.e.}(\hat{f}_k)$$

and

$$s.e.(F_{i,k-1}) > s.e.(F_{i,ult}) > s.e.(F_{ik})$$

hold, too, or whether there are reasons to fix s.e. (\hat{f}_{ult}) and/or s.e. $(F_{i,ult})$ outside these inequalities.

As an example, we take the data of Table 4 from Mack (1993). From these (using $\alpha = 1$ and all $w_{ik} = 1$, we get the results given in Table 1 for k = 1, ..., 8:

k	1	2	3	4	5	6	7	8	ult
\hat{r}_k	11.10	4.092	1.708	1.276	1.139	1.069	1.026	1.023	1.05
$\operatorname{e.}(\hat{f}_k)$	2.24	0.517	0.122	0.051	0.042	0.023	0.015	0.012	0.02
$e.(F_{3k})$	7.38	1.89	0.357	0.116	0.078	0.033	0.015	0.007	0.03
$\hat{\sigma}_k$	1337	988.5	440.1	207.0	164.2	74.60	35.49	16.89	71.0

TABLE 1
PARAMETER ESTIMATES FOR THE DATA OF TABLE 4 OF MACK (1993)

The parameter estimates \hat{f}_k and $\hat{\sigma}_k$ for $1 \le k \le 8$ are the same as in Mack (1993). From these, the estimates s.e. $(\hat{f}_k) = \hat{\sigma}_k / \sqrt{\sum_{j=1}^{n-k} C_{jk}}$ and s.e. $(F_{ik}) = \hat{\sigma}_k / \sqrt{C_{ik}}$ for $k \le n+1-i$ or s.e. $(F_{ik}) = \hat{\sigma}_k / \sqrt{\hat{C}_{ik}}$ for k > n+1-i are calculated which give the estimation error and the random error, respectively. Note that the random error s.e. (F_{ik}) varies also over the accident years because model assumption CL2 states that for $\alpha = 1$ the variance of the individual development factor F_{ik} is the smaller the greater the previous claims amount (volume) C_{ik} is. Therefore, only the values of s.e. (F_{ik}) for accident year i = 3 of average volume are given. The last column of Table 1 shows a possible tail estimation by the actuary: He expects a tail factor of 1.05 with an estimation error of ± 0.02 and a random error of accident 3. From year i =this. $\hat{\sigma}_{ult} = \text{s.e.}(F_{3,ult}) \sqrt{\hat{C}_{3,n}} = 71.0$ has been deduced and is used to calculate s.e. $(F_{i,ult})$ for the other accident years. These tail estimates fit well between the columns k = 6 and k = 7. (Note that the extrapolated estimate for σ_8 leads to a rather small s.e. $(F_{3,8})$ as compared to s.e. (\hat{f}_8) . This is due to the fact that \hat{f}_8 does not follow a loglinear decay as it was assumed for the calculation of σ_8 . Therefore, an estimate $\hat{\sigma}_8 \approx 30$ would have been more reasonable.)

Table 2 shows the resulting estimates for the ultimate claims amounts. The rows \hat{C}_{i9} and s.e. (\hat{C}_{i9}) are identical to the results given in Mack (1993). Row $\hat{C}_{i,ult}$ is 5% higher than row $\hat{C}_{i,9}$ and the last row s.e. $(\hat{C}_{i,ult})$ shows the standard errors which result from the formula given above.

 \hat{C}_{iult}

s.e. (\hat{C}_{i9})

s.e. $(\hat{C}_{i,ult})$

Е	ESTIMATED ULTIMATE CLAIMS AMOUNTS AND THEIR STANDARD ERRORS (ALL AMOUNTS IN 1000S)											
	1	2	3	4	5	6	7	8	9			
	1950	4219	5608	7698	7216	9563	5442	3241	1660			

TABLE 2

Estimated ultimate claims amounts and their standard errors (all amounts in 1000s

Finally, we give a recursive formula for the total reserve of all accident years together:

$$\left(\text{s.e.}\left(\sum_{i=n+1-k}^{n} \hat{C}_{i,k+1}\right)\right)^{2} = \left(\text{s.e.}\left(\sum_{i=n+2-k}^{n} \hat{C}_{ik}\right)\right)^{2} \cdot \hat{f}_{k}^{2} +$$

$$+ \sum_{i=n+1-k}^{n} \hat{C}_{ik}^{2} \cdot \left(\text{s.e.}(F_{ik})\right)^{2} + \left(\sum_{i=n+1-k}^{n} \hat{C}_{ik}\right)^{2} \cdot \left(\text{s.e.}(\hat{f}_{k})\right)^{2}$$

starting at k=1. This formula can also be gathered from the proof of the corollary to Theorem 3 in Mack (1993). In the above example, this formula yields

$$\text{s.e.}\left(\sum_{i=1}^{9} \hat{C}_{i,ult}\right) = 4054$$

as standard error of the ultimate total claims amount $\sum_{i=1}^{9} \hat{C}_{i,ult} = 48906$ (amounts in 1000s).

REFERENCE

MACK, Th. (1993), Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates, ASTIN Bulletin, 23, 213-225.

THOMAS MACK
Münchener Rückversicherungs-Gesellschaft
Königinstrasse 107
D-80791 München
e-mail:tmack@munichre.com