1 Language \mathcal{L}

In this section we define an imperative language \mathcal{L} with memory allocation and deallocation primitives, and for simplification we only use pointers as values.

The syntax of the language \mathcal{L} is as follows.

Notation \vec{x} is for a finite sequence $\{x_1, ..., x_n\}$, where we assume that each element is distinct; $[\vec{x'}/\vec{x}]s$ is for a term obtained by replacing each free occurrence of \vec{x} in s with variables $\vec{x'}$; the $\mathbf{Dom}(f)$ is a mapping from function name f to its domain; for a map f, the $f\{x \mapsto v\}$ and $f \setminus x$ are defined as follows:

$$f\{x \mapsto v\}(w) = \begin{cases} v & \text{if } x = w \\ f(w) & \text{otherwise.} \end{cases}$$
$$(f\backslash x)(w) = \begin{cases} v & \text{if } x = w \\ f(w) & \text{otherwise.} \end{cases}$$

and $filter_{-}C(C,*x)$ is defined by a pseudcode as follows:

$$\begin{array}{ll} filter_C(C,*x) & = & let \ C' = C - \mathbf{const}(*x) \ in \\ & if \ \mathbf{const}(*x) \in \ C' \ then \ return \ C' \\ & else \ return \ C' \backslash \{\mathbf{assume}(*x = \mathbf{null}), \mathbf{assume}(*x \neq \mathbf{null})\} \end{array}$$

The Var is a countably infinite set of variables and each variable is a pointer. The statement skip means "does nothing". The statement s_1 ; s_2 is a sequential execution of s_1 and s_2 . The statement $*x \leftarrow y$ updates the content of cell which is pointed to by x with the value y. The statement free(x) deallocates a memory cell which is pointed to by pointer x. The statement let x = e in s evaluates the expression e, binds x to the result, and executes s. The expression malloc() allocates a new memory cell. The expression null evaluates to the null pointer. The expression *y means dereferencing a memory cell pointed to by y. The statement ifnull (*x)then s_1 else s_2 executes s_1 if *x is null and executes s_2 otherwise. The statement $f(\vec{x})$ expresses a procedure f with arguments \vec{x} . The statement const(*x) means (*x) is a constant in statement s; the statement endconst(*x) means from this point (*x) maybe not constant.

The *d* represents a procedure definition which maps a procedure name *f* to its procedure body $(\vec{x})s$; The *D* represents a set of procedure definitions $\langle d_1 \cup \ldots d_n \rangle$, and each definition is distinct;

The pair $\langle D, s \rangle$ represents a program, where D is a set of definitions and s is a main statement; the E represents evaluation context.

1.1 Operational semantics

In this section we introduce operational semantics of language \mathcal{L} . We assume there is a countable infinite set \mathcal{H} of heap addresses ranged over by l.

We use a quadruple configuration $\langle H, R, s, n \rangle$ to express a run-time state. Each elements in the configuration is as follows.

- H, a heap, is a finite mapping from \mathcal{H} to $\mathcal{H} \cup \{\mathbf{null}\}$;
- R, an *environment*, is a finite mapping from Var to $\mathcal{H} \cup \{null\}$;
- s is the statement that is being executed;
- \bullet n is a natural number that represents the number of memory cells available for allocation.
- C is a set of actions, which contains const(*x), assume(*x = null) and $assume(*x \neq null)$.

The operational semantics of the language \mathcal{L} is given by a labeled transition relation $\langle H, R, s, n, C \rangle \xrightarrow{\rho}_D \langle H', R', s', n', C' \rangle$. The label ρ is as follows.

$$\rho$$
 (label) ::= malloc | free | τ

The ρ , an action, is **malloc**, **free**, **assume**(*x = null), **assume**(* $x \neq null$), **startconst**(*x), **endconst**(*x) or τ . The action **malloc** expresses an allocation of a memory cell; **free** expresses a deallocation of a memory cell; **assume**(*x = null) and **assume**(* $x \neq null$) express the guard part of conditional are *x = null and * $x \neq null$ respectively; **startconst**(*x) means *x should be constant from this point; **endconst**(*x) means the *x no longer be a constant from this point; τ expresses the other actions. We often omit τ in τ _D. We use a metavariable σ for a finite sequence of actions $\rho_1 \dots \rho_n$. We write τ _D for τ _D for τ _D τ _D τ _D τ _D τ _D. We write τ _D for τ _D τ _D τ _D τ _D τ _D τ _D.

Figure 1 depicts the relation $\xrightarrow{\rho}_D$. Several important rules are listed as follows.

- Sem-Constskip: That a memory cell pointed to by x is no longer a constant is expressed by doing nothing.
- Sem-ConstSeq: That a memory cell pointed to by x should be a constant in a stamtement s is expressed by adding a statement endconst(*x) at the end of statement s.
- SEM-FREE: Deallocation of a memory cell pointed to by x is expressed by deleting the entry for R(x) from the heap. This action increments the number of available cells (i.e., n) by one (i.e., n + 1).
- SEM-MALLOC and SEM-OUTOFMEM: Allocation of a memory cell is expressed by adding a fresh entry to the heap. This action is allowed only if the number of available cells is positive; if the number is zero, then the configuration leads to an error state **OutOfMemory**.

- SEM-ASSIGNEXN,SEM-FREEEXN,SEM-DEREFEXN and SEM-FREEEXN: These rules express an illegal access to memory. If such action is performed, then the configuration leads to exceptional state \mathbf{MemEx} . This state \mathbf{MemEx} is not seen as an erroneous state in the current paper, hence a well-typed program may lead to these states. The command $\mathbf{free}(x)$, if x is a null pointer, leads to \mathbf{MemEx} in the current semantics, although it is equivalent to \mathbf{skip} in the C language.
- Sem-Constexn: expresses that if a constant *x is changed in s it will raise **Constex** exception.

Our goal is to guarantee *total* memory-leak freedom and reject memory leaks. By our language \mathcal{L} , they are formally defined as follows:

Definition 1 (total memory-leak freedom). A program $\langle D, s \rangle$ is totally memory-leak free if there is a natural number n such that it does not require more than n cells.

Definition 2 (Memory leak). A configuration $\langle H, R, s, n, C \rangle$ goes overflow if there is σ such that $\langle H, R, s, n, C \rangle \stackrel{\sigma}{\Longrightarrow} \mathbf{OutOfMemory}$. A program $\langle D, s \rangle$ consumes at least n cells if $\langle \emptyset, \emptyset, s, n, \epsilon \rangle$ goes overflow.

2 Type system

2.1 Types

The syntax of the types is as follows.

```
P \quad \text{(behavioral types)} \qquad \qquad ::= \quad \mathbf{0} \mid P_1; P_2 \mid \mathbf{malloc} \mid \mathbf{free} \mid \alpha \mid \mu \alpha. P \\ \quad \mid (*x)(P_1, P_2) \mid P_1 + P_2 \mid \mathbf{const}(*x)P \mid \mathbf{endconst}(*x) \\ \Gamma \quad \text{(variable type environment)} \qquad ::= \quad \{x_1, x_2, \dots, x_n\} \\ \Psi \quad \text{(dependent function type)} \qquad ::= \quad (\vec{x})P \\ \Theta \quad \text{(function type environment)} \qquad ::= \quad \{f_1 \colon \Psi_1, \dots, f_n \colon \Psi_n\} \\ k \quad \text{(constant values)} \qquad ::= \quad \mathbf{null}(*x) \mid \neg \mathbf{null}(*x) \mid \mathbf{const}(*x) \\ F \quad \text{(constant value environment)} \qquad ::= \quad \{k_1, \dots, k_n\}
```

Behavioral types ranged over by P express the abstaction of behaviors of a program. The type $\mathbf{0}$ represents the do-nothing behavior; the type P_1 ; P_2 represents the sequential execution of P_1 and P_2 ; The type **malloc** represents an allocation of a memory cell exactly once; the type **free** represents a deallocation; the type $\mu\alpha.P$ represents the behavior of α defined by the recursive equation $\alpha = P$; the type $(*x)(P_1, P_2)$ represents that P_1 or P_2 is obtained dependent on *x; the type $P_1 + P_2$ represents the choice between P_1 and P_2 ; the α is a type variable; the type $\mathbf{const}(*x)P$ represents that *x is a constant in behavioral type P; the type $\mathbf{endconst}(*x)$ represents *x no longer be a constant from this point.

A type environments for variables ranged over by Γ is a set of variables. Since our interest is the behavior of a program, not the types of values, a variable type environment does not carry information on the types of variables.

Dependent function types ranged over by Ψ represents the behavior of a function; \vec{x} is the formal arguments of the function.

$$\begin{array}{c} C'=filter C(C,*x) & (\text{SEM-CONSTSRIP}) \\ \hline & \langle H,R,\text{endconst}(*x),n,C \rangle \rightarrow_D \langle H,R,\text{skip},n,C' \rangle \\ \hline & \langle H,R,\text{endconst}(*x),n,C \rangle \rightarrow_D \langle H,R,\text{skip},n,C \rangle \\ \hline & \langle H,R,\text{skip};s,n,C \rangle \rightarrow_D \langle H,R,s,n,C \rangle \\ \hline & \langle H,R,\text{skip};s,n,C \rangle \rightarrow_D \langle H,R,s,n,C \rangle \\ \hline & \langle H,R,s_1;s_2,n,C \rangle \xrightarrow{\rho}_D \langle H',R',s'_1,n',C' \rangle \\ \hline & \langle H,R,s_1;s_2,n,C \rangle \xrightarrow{\rho}_D \langle H',R',s'_1;s_2,n',C' \rangle \\ \hline & \langle H,R,\text{sin},s_1;s_2,n,C \rangle \xrightarrow{\rho}_D \langle H',R',s'_1;s_2,n',C' \rangle \\ \hline & \langle H,R,\text{let }x=\text{mull in }s,n,C \rangle \rightarrow_D \langle H,R\{x'\mapsto \text{mull}\}, \ [x'/x]s,n,C \rangle \\ \hline & \langle H,R,\text{ let }x=\text{mull in }s,n,C \rangle \rightarrow_D \langle H,R\{x'\mapsto R(y)\}, \ [x'/x]s,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_1,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_1,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_1,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_1,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_1,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ then }s_1\text{ else }s_2,n,C \rangle \rightarrow_D \langle H,R,s_2,n,C \rangle \\ \hline & \langle H,R,\text{ ifmull }(*x) \text{ th$$

Figure 1: Operational semantics of \mathcal{L} .

Function types ranged over by Θ is a mapping from function names to dependent function types. k represents constant values, where $\mathbf{null}(*x)$ represents (*x) is a null pointer; $\neg \mathbf{null}(*x)$ represents (*x) is not a null pointer; $\mathbf{const}(*x)$ represents (*x) is a constant.

Constant value environment ranged over by F is a set of constant variables.

Figure 2 depicts semantics of behavioral types with dependent types, and they are given by the labeled transition system. The relation $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$ means that P can make an action ρ , and P turns into P' after it makes action ρ ; F and F' record constant value environment before and after action ρ respectively.

Notation $filter_T(F, *x)$ is defined by a pseudcode as follows:

```
filter\_T(F,*x) = let F' = F - \mathbf{const}(*x) in
if \ \mathbf{const}(*x) \notin F' \ then \ return \ (F' \setminus \{\mathbf{null}(*x), \neg \mathbf{null}(*x)\})
else \ return \ F'
```

2.2 Typing rules

The type judgment for statements is of the form Θ ; $\Gamma \vdash s : P$, which represents that under the function type environment Θ and the variable type environment Γ , the abstracted behavioral type of statement s is P.

Before showing typing rules for statements in Figure 3, we need explain several important definitions. The first one is $OK_n(P, F)$, a predicate, where P represents the behavior of a program which consumes at most n memory cells.

Definition 3 $(\sharp_{\rho}(\sigma))$. $\sharp_{\rho}(\sigma)$ is the number of ρ in the sequence σ .

Definition 4. $OK_n(P, F)$ holds if, (1) $\forall P'$ and σ . if $\langle P, F \rangle \xrightarrow{\sigma} \langle P', F' \rangle$, then $\sharp_m(\sigma) - \sharp_f(\sigma) \leq n$ and (2) OK(F)

Definition 5. OK(F) holds if F does not contain both null(*x) and $\neg null(*x)$.

Definition 6 (Subtyping). $P_1 \leq P_2$ is the largest relation such that, for any P_1' , F' and ρ , if $\langle P_1, F \rangle \xrightarrow{\rho} \langle P_1', F' \rangle$, then there exists P_2' such that $\langle P_2, F \rangle \xrightarrow{\rho} \langle P_2', F' \rangle$ and $P_1' \leq P_2'$.

2.3 Type soundness

Theorem 2.1. If $\vdash \langle D, s \rangle$: n for some n, then $\langle D, s \rangle$ is totally memory-leak free.

The proof is based on the following lemmas: preservation and lack of immediate overflow.

Definition 7. we write Θ ; $\Gamma \vdash \langle H, R, s, n, C \rangle : \langle P, F \rangle$, if Θ ; $\Gamma \vdash s : P$ and $OK_n(P, F)$ with $C \approx F$.

Lemma 2.2 (Preservation). suppose that $\Theta; \Gamma \vdash \langle H, R, s, n, C \rangle : \langle P, F \rangle$. If $\langle H, R, s, n, C \rangle \xrightarrow{\rho} \langle H', R', s', n', C' \rangle$ then $\exists P', F'$ s.t. (1) $\Theta; \Gamma \vdash \langle H', R', s', n', C' \rangle : \langle P', F' \rangle$ and (2) $\langle P, F \rangle \xrightarrow{\rho} \langle P', F' \rangle$.

Lemma 2.3 (Lack of immediate overflow). If Θ ; $\Gamma \vdash \langle H, R, s, n, C \rangle : \langle P, F \rangle$, then $\langle H, R, s, n, C \rangle \xrightarrow{\mathbf{malloc}}$ **OutOfMemory**.

$$\langle 0; P, F \rangle \rightarrow \langle P, F \rangle \quad \text{(TR-SKIP)} \qquad \langle \text{malloc}, F \rangle \xrightarrow{\text{malloc}} \langle 0, F \rangle \, \text{(TR-MALLOC)} \\ \langle \text{free}, F \rangle \xrightarrow{\text{free}} \langle 0, F \rangle \quad \text{(TR-FREE)} \qquad \langle \mu \alpha. P, F \rangle \rightarrow \langle [\mu \alpha. P/\alpha]P, F \rangle \, \text{(TR-REC)} \\ \langle P_1 + P_2, F \rangle \rightarrow \langle P_1, F \rangle \, \text{(TR-CHOICEL)} \qquad \langle P_1 + P_2, F \rangle \rightarrow \langle P_2, F \rangle \, \text{(TR-CHOICER)} \\ & \frac{\langle P_1, F \rangle \xrightarrow{\rho} \langle P_1', F' \rangle}{\langle P_1; P_2, F \rangle} \qquad \text{(TR-SEQ)} \\ & \langle \text{const}(*x)P, F \rangle \rightarrow \langle P; \text{endconst}(*x), F \cup \{\text{const}(*x)\} \rangle \qquad \text{(TR-CONST)} \\ & \frac{F' = filter.T(F, *x)}{\langle \text{endconst}(*x), F \rangle \rightarrow \langle 0, F' \rangle} \qquad \text{(TR-ENDCONST)} \\ & \frac{\neg \text{null}(*x) \notin F \quad \text{const}(*x) \in F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \rangle} \quad \text{(TR-NNULLNOTIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle (*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \rangle} \qquad \text{(TR-NULLNOTIN)} \\ & \frac{\text{null}(*x) \notin F \quad \text{const}(*x) \in F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_1, F \rangle)} \quad \text{(TR-NULLNOTIN)} \\ & \frac{\neg \text{null}(*x) \notin F \quad \text{const}(*x) \in F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLNOTIN)} \\ & \frac{\neg \text{null}(*x) \in F \quad \text{const}(*x) \in F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\neg \text{null}(*x) \in F \quad \text{const}(*x) \in F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle)} \qquad \text{(TR-NULLIN)} \\ & \frac{\text{const}(*x) \notin F}{\langle ((*x)(P_1, P_2), F \rangle \rightarrow \langle P_2, F \rangle$$

Figure 2: semantics of behavioral types with dependent types.

$$\begin{array}{c} \Theta; \Gamma \vdash \mathsf{skip} : \mathbf{0} & (\mathsf{T-SKIP}) & \frac{\Theta; \Gamma \vdash s_1 : P_1 \quad \Theta; \Gamma \vdash s_2 : P_2}{\Theta; \Gamma \vdash s_1 ; s_2 : P_1 ; P_2} \ (\mathsf{T-SEQ}) \\ \Theta; \Gamma, x, y \vdash *x \leftarrow y : \mathbf{0} \ (\mathsf{T-ASSIGN}) & \Theta; \Gamma, x \vdash \mathsf{free}(x) : \mathsf{free} \ (\mathsf{T-FREE}) \\ \hline \Theta; \Gamma \vdash \mathsf{let} \ x = \mathsf{malloc}() \ \mathsf{in} \ s : \mathsf{malloc}; P \\ (\mathsf{T-MALLOC}) & \frac{\Theta; \Gamma, x, y \vdash s : P}{\Theta; \Gamma, y \vdash \mathsf{let} \ x = y \; \mathsf{in} \ s : P} \ (\mathsf{T-LETDEREF}) \\ \hline \Theta; \Gamma, y \vdash \mathsf{let} \ x = *y \; \mathsf{in} \ s : P \ (\mathsf{T-LETDEREF}) \\ \hline \Theta; \Gamma, y \vdash \mathsf{let} \ x = *y \; \mathsf{in} \ s : P \ (\mathsf{T-LETNULL}) \\ \hline \Theta; \Gamma, x \vdash \mathsf{endconst}(*x) : \mathsf{endconst}(*x) & (\mathsf{T-ENDCONST}) \\ \hline \Theta; \Gamma, x \vdash \mathsf{const}(*x) : \mathsf{endconst}(*x) & (\mathsf{T-CONST}) \\ \hline \Theta; \Gamma, x \vdash \mathsf{s} : P \ \Theta; \Gamma, x \vdash s : P \ \Theta; \Gamma, x \vdash s_2 : P_2 \\ \hline \Theta; \Gamma, x \vdash \mathsf{ifnull} \ (*x) \ \mathsf{then} \ s_1 \ \mathsf{else} \ s_2 : (*x)(P_1, P_2) \\ \hline \Theta; \Gamma, x \vdash \mathsf{ifnull} \ (*x) \ \mathsf{then} \ s_1 \ \mathsf{else} \ s_2 : (*x)(P_1, P_2) \\ \hline \Theta; \Gamma \vdash s : P_1 \ \Theta; \Gamma \vdash s : P_2 \\ \hline \Theta; \Gamma \vdash s : P_2 \ O; \Gamma \vdash s : P_2 \\ \hline \Theta; \Gamma \vdash \mathsf{Dom}(D) = \mathsf{Dom}(\Theta) \ \Theta; x_1, \dots, x_n \vdash s : P \ \mathsf{for} \ \mathsf{each} \ f \mapsto (x_1, \dots, x_n) s \in D \\ \hline \vdash D : \Theta \ \Theta; \emptyset \vdash s : P \ OK_n(P, F) \\ \hline \vdash \langle D, s \rangle : n \end{array} \ (\mathsf{T-Program}) \\ \hline \end{array}$$

Figure 3: typing rules