Natural Language Processing

Lecture 16

Dirk Hovy

dirk.hovy@unibocconi.it

Fitting

Predicting

Evaluating Performance

Performance Problems

	predicted		
g		1	0
O 	1	TP	FN
d	0	FP	TN

True and False

```
TARGET = LABEL 1
  frog 1
  deer 1 1
  wolf 1 1 true positive
  dog
  bear 1
  fish
  bird 1
            false negative
  cat
  stone 0 1 false positive
  tree 0 0 true negative
```

```
accuracy = (TP+TN) / (P + N)

precision = TP / (TP + FP)

recall = TP / (TP + FN)

F1 = 2 (prec x rec) / (prec + rec)
```

$$ACCURACY = 7110 = 0.7$$

 $PRECISION = 617 = 0.86$
 $RECALL = 618 = 0.75$
 $FI = 0.81$

	predicted		
g		1	0
O 	1	TP	FN
d	O	FP	TN

Changing Target

```
TARGET = LABEL O
  frog
  deer 0 0
  wolf 0 0
       0 0
  dog
  bear
       0 \quad 0
  fish
  bird
             false positive
  cat
  stone 1 0 false negative
  tree 1 1 true positive
```

```
accuracy = (TP+TN) / (P + N)
                precision = TP / (TP + FP)
                recall = TP/(TP + FN)
               \mathbf{F1} = 2 \text{ (prec x rec)} / \text{ (prec + rec)}
true negative ACCURACY = 7/10 = 0.7
               PRECISION = 113 = 0.33
                RECALL = 1/2 = 0.5
                       F1 = 0.4
```

predicted g TP FN FP TN

o MICRO AVERAGING

WEIGH BY CLASS SIZE

```
TARGET = I TARGET = 0
```

```
X
frog 1 1 frog 0
                  \mathsf{O}
deer 1 1 deer 0 0
wolf 1 1 wolf
               0 0
```

```
accuracy = (TP+TN) / (P + N)
precision = TP / (TP + FP)
recall = TP / (TP + FN)
\mathbf{F1} = 2 \text{ (prec x rec) / (prec + rec)}
```

```
bear 1 1
           bear 0
fish
           fish
                   0
bird 1 1
           bird
                0 0
                1
                  1
        O
cat
           cat
stone 0
           stone 1
        O
     O
tree
           tree
```

dog 1 1 dog 0 0
$$ACC = 7110 + 7110 = 14120 = 0.7$$

bear 1 1 bear 0 0 $PREC = 617 + 113 = 7110 = 0.7$
fish 1 1 fish 0 0 $REC = 618 + 112 = 7110 = 0.7$
bird 1 1 bird 0 0 $F1 = 0.7$

on acroaveraging

WEIGH ALL CLASSES EQUALLY

```
predicted

g 1 0

o 1 TP FN
d 0 FP TN
```

TARGET = I TARGET = 0

```
        x
        y
        ŷ
        x
        y
        ŷ

        frog
        1
        1
        frog
        0
        0

        deer
        1
        1
        deer
        0
        0

        wolf
        1
        1
        dog
        0
        0
```

accuracy = (TP+TN) / (P + N)
precision = TP / (TP + FP)
recall = TP / (TP + FN)
F1 = 2 (prec x rec) / (prec + rec)

```
ACC = (0.7 + 0.7) / 2 = 0.7
           dog 0
                  \mathsf{O}
dog 1 1
bear 1 1
           bear 0
                   OPREC = (0.86 + 0.33) / 2 = 0.6
fish
           fish
                   0
                     REC = (0.5 + 0.75) / 2 = 0.63
bird
           bird
                \mathsf{O}
                   O
                                 FI = 0.61
                  1
                O
        O
cat
           cat
stone 0
           stone 1
```

O

tree

 \bigcirc

tree

Cheating": Total Recall

PREDICT MAJORITY CLASS FOR ALL

accuracy = (TP+TN)/(P+N)

 $\mathbf{F1} = 2 \text{ (prec x rec)} / \text{(prec + rec)}$

precision = TP / (TP + FP)

recall = TP/(TP + FN)

```
TP FN
 FP TN
```

TARGET = LABEL

```
frog 1 1
deer 1 1
wolf 1 1
```

dog 1 1

bear 1 1

fish 1 1

bird 1 1

cat 1 1

stone 0 1

tree

```
true positive ACCURACY = 8/10 = 0.8
```

$$FI = 0.9$$

false positive

Metrics Overview

- accuracy can be too general
- precision and recall are per-class measures
- precision = how many of instances labeled as target class are actually in target class?
- recall = how many of all target class instances in data identified correctly?
- F1 = symmetric mean of precision and recall

Significance Testing

What does a p-Value Tell Us?

THIS CLASSIFIER IS 70%.

ACCURATE! (ON MY DATA SET)

... AND ON MINE?

Bootstrap Sampling

COMPARE ON SUBSETS

Bootstrap Sampling SAMPLED DIFFERENCES FOLLOW NORMAL DISTRO.

CENTRAL LIMIT THEOREM

Bootstrap Sampling

	System 1	System 2	Difference(1-2)
full	82.13	81.89	0.24
1	81.96	82.03	-0.07
2	81.86	82.61	-0.75
3	81.70	81.44	0.26
4	82.42	82.77	-0.35
5	81.89	81.06	0.83
6	81.39	81.24	0.15
7	81.96	81.58	0.37
8	82.57	81.65	0.92
9	82.50	82.67	-0.17
10	83.07	81.84	1.23

p-value

Note: Significance is Binary!

Cut-offs: 0.1 (meh), 0.05 (standard), 0.01 (strict)

(barely) not statistically significant (p=0.052) a barely detectable statistically significant difference (p=0.073) a borderline significant trend (p=0.09)a certain trend toward significance (p=0.08) a clear tendency to significance (p=0.052) a clear trend (p<0.09) a clear, strong trend (p=0.09) a considerable trend toward significance (p=0.069) a decreasing trend (p=0.09) a definite trend (p=0.08) a distinct trend toward significance (p=0.07) \borderline conventional significance (p=0.051) borderline level of statistical significance (p=0.053)

borderline significant (p=0.09) did not quite reach conventional levels of statistical significance (p=0.079)did not quite reach statistical significance (p=0.063) did not reach the traditional level of significance (p=0.10) did not reach the usually accepted level of clinical significance (p=0.07) difference was apparent (p=0.07)direction heading towards significance (p=0.10) does not appear to be sufficiently significant (p > 0.05)does not narrowly reach statistical significance (p=0.06)

does not reach the conventional significance level (p=0.098) effectively significant (p=0.051)equivocal significance (p=0.06)essentially significant (p=0.10)extremely close to significance (p=0.07) failed to reach significance on this occasion (p=0.09) failed to reach statistical significance (p=0.06) fairly close to significance (p=0.065)fairly significant (p=0.09) falls just short of standard levels of statistical significance (p=0.06) fell (just) short of significance | slight significance (p=0.128)

fell barely short of significance (p=0.08) scarcely significant (0.05 0.1)significant at the .07 level significant tendency (p=0.09) significant to some degree (0 1)significant, or close to significant effects (p=0.08, p=0.05) significantly better overall (p=0.051)significantly significant (p=0.065)similar but not nonsignificant trends (p>0.05) slight evidence of significance (0.1>p>0.05)slight non-significance (p=0.06)

(p=0.08)

Evaluation Don'ts

Don't choose among metrics

metric	þ	
	0,0899	
pre	0,062	
re	0,179	
accuracy	0,0014	

REPORT!

Don't choose sample sizes

"We observed significant results at sample size of 26" ...but not with smaller or larger samples!

Don't Choose Subsets

"Young, lefthanded, vegetarian atheists are significantly less likely to get X" ...but population a whole isn't!

Regularization

Regularization

Regularization Norms

$$||W||_1 = \sum_{i=1}^N |w_i|$$

SPARSE

LZ NORM

$$||W||_2 = \sqrt{\sum_{i=1}^{N} w_i^2}$$
EVENLY DISTRIBUTED

Regularization Norms

Feature Selection

Dimensionality Reduction

TARGET

Chi-Squared

MEASURE CHIZ VALUE (CORRELATION) FOR EACH
FEATURE WITH TARGET

Bocconi

Randomized Logistic Regression

Wrapping Up

Take-home points

- Choose the appropriate performance metric
- Choose an informative baseline
- Measure significance of improvement
- Regularize, regularize, regularize
- Feature selection can improve performance and provide insights

