

AMENDMENT

1. (Currently Amended) Anthraquinone dye compounds having the formulae:

XVI.

-XVII.

XVIII.

XIX.

XX.

or

XXI.

wherein:

R is selected from hydrogen or 1-3 groups selected from C₁ - C₆-alkyl, C₁ - C₆-alkoxy and halogen;

R₁ is selected from C₁ - C₆-alkyl, substituted C₁ - C₆-alkyl, C₃ - C₈-alkenyl, C₃ - C₈-cycloalkyl, aryl and -L₁-Z-Q; R₂ = selected from hydrogen, C₁ - C₆-alkyl, substituted C₁ - C₆-alkyl, C₃ - C₈-cycloalkyl and aryl;

R₃ and R₄ are independently selected from C₁ - C₆-alkyl and bromine;

R₅ is selected from C₁ - C₆-alkyl, substituted C₁ - C₆ alkyl, C₃ - C₈-cycloalkyl, aryl, heteroaryl, -L₁-Z-Q,

R₆ is selected from

R₇ is selected from hydrogen, substituted or unsubstituted C₄-C₆-alkyl, C₄-C₆-alkoxy, halogen, hydroxy, substituted or unsubstituted C₄-C₆-alkylthio, sulfamoyl and substituted sulfamoyl;

R₈ is selected from hydrogen and C₁ - C₆-alkyl;

R₉ is selected from the groups represented by R₁ and -L - Z - Q;

R₁₀ is selected from hydrogen and halogen;

X is a covalent bond or a divalent linking group selected from -O-, -S-, -SO₂-, -CO₂-, -CON(Y)- and -SO₂N(Y)-, wherein Y is selected from hydrogen, C₁-C₆-alkyl, substituted C₁-C₆-alkyl, C₃-C₈-cycloalkyl, C₃-C₈-alkenyl, aryl and -L-Z- Q;

X₁ is selected from -O-, -S-, -SO₂- and -SO₂N(Y)-;

X₂ is selected from -CO₂- and -SO₂N(Y₁), wherein Y₁ is a group selected from hydrogen, C₁-C₆-alkyl, substituted C₁-C₆-alkyl, C₃-C₈-alkenyl, C₃-C₈-cycloalkyl, aryl, heteroaryl and -CH₂-p-C₆H₄-C(R₈)=CH₂;

X₃ is selected from -CO₂-, -SO₂N(Y)-;

X₄ is selected from -CO₂-, -O- and -SO₂N(Y₁)-;

L is a divalent linking group selected from C₁-C₈-alkylene, C₁-C₆-alkylene-arylene, arylene, C₁-C₆-alkylene-arylene -C₁-C₆-alkylene, C₃-C₈-cycloalkylene, C₁-C₆-alkylene -C₃-C₈-cycloalkylene -C₁-C₆-alkylene, C₁-C₆-alkylene - Z₁-arylene -Z₁-C₁-C₆-alkylene and C₂-C₆-alkylene-[Z₁-C₂-C₆-alkylene-]_n- wherein Z₁ is selected from -O-, -S- and -SO₂- and n is 1-3;

L₁ is a divalent linking group selected from C₂ - C₆-alkylene, C₁-C₆-alkylene-C₃-C₈-cycloalkylene-C₁-C₆-alkylene, C₁-C₆-alkylene-arylene, C₃-C₈-cycloalkylene, and C₂-C₆-alkylene-[Z₁-C₂-C₆-alkylene-]_n-;

L₂ is selected from C₂-C₆-alkylene, C₄-C₆-alkylene-arylene-C₄-C₆-alkylene and C₄-C₆-alkylene-C₃-C₈-cycloalkylene-C₄-C₆-alkylene;

Z is a divalent group selected from -O-, -S-, -NH-, -N(C₁-C₆-alkyl)-, -N(C₃-C₈ alkenyl)-, -N(C₃-C₈ cycloalkyl)-, -N(aryl)-, -N(SO₂C₁-C₆-alkyl) and -N(SO₂ aryl)-, provided that when Q is a photopolymerizable optionally substituted maleimide radical, Z represents a covalent bond; Q is an ethylenically-unsaturated, photosensitive polymerizable group; and

m and m₁ each is 0 or 1.

2. (Original) Anthraquinone compounds according to Claim 1 wherein the ethylenically-unsaturated, photosensitive copolymerizable groups represented by Q are selected from the following organic radicals:

wherein:

R₁₁ is selected from hydrogen and C₁-C₆-alkyl;

R₁₂ is selected from hydrogen; C₁-C₆-alkyl; phenyl and phenyl substituted with one or more groups selected from C₁-C₆-alkyl, C₁-C₆-alkoxy, -N(C₁-C₆-alkyl), nitro, cyano, C₁-C₆-alkoxycarbonyl, C₁-C₆-alkanoyloxy and halogen; 1- and 2-naphthyl which may be substituted with C₁-C₆-alkyl or C₁-C₆-alkoxy; 2- and 3-thienyl which may be substituted with C₁-C₆-alkyl or halogen; 2- or 3-furyl which may be substituted with C₁-C₆-alkyl;

R₁₃ and R₁₄ are selected from hydrogen, C₁-C₆-alkyl, substituted C₁-C₆-alkyl, aryl or may be combined to represent a $-\text{[CH}_2\text{]}_{3-5}-$ radical;

R₁₅ is selected from hydrogen, C₁-C₆-alkyl, substituted C₁-C₆-alkyl, C₃-C₈-alkenyl, C₃-C₈-cycloalkyl and aryl;

R₁₆ is selected from hydrogen, C₁ - C₆-alkyl and aryl.

3. (Original) Anthraquinone compounds according to Claim 2 having the formula:

wherein Z is $-\text{O}-$.

4. (Canceled)

5. (Original) Anthraquinone compounds according to Claim 2 having the formula:

wherein Z is -O-.

6. (Original) Anthraquinone compounds according to Claim 2 having the formula:

wherein Z is -O-.

7. (Canceled)

8. (Canceled)

9. (Original) Anthraquinone compounds according to Claim 2 having the formula:

wherein Z is -O-.

10. (Original) Anthraquinone compounds according to Claim 2 having the formula:

wherein Z is -O-.

11. (Canceled)

12. (Original) Anthraquinone compounds according to Claim 2 having the formula:

wherein Z is -O-.

13. (Original) Anthraquinone compounds according to Claim 2 having the formula:

XIII.

wherein Z is -O-.

14. (Canceled)

15. (Original) Anthraquinone compounds according to Claim 2 having the formula:

XVI.

wherein Z is -O-.

16. (Canceled)

17. (Original) Anthraquinone compounds according to Claim 2 having the formula:

XIX.

wherein Z is -O-.

18. (Original) Anthraquinone compounds according to Claim 2 having the formula:

XX.

wherein Z is -O-.

19. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical Ia.

20. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical Ia wherein R₁₁ is hydrogen or methyl and R₁₂ is hydrogen.

21. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIa.

22. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIa wherein R₁₁ is hydrogen.

23. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIia.

24. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIia wherein R₁₁ is hydrogen or methyl and R₁₃ and R₁₄ are methyl.

25. (Original) Anthraquinone compounds according to Claim 3 wherein X is -CO₂-, L is -CH₂CH₂-, and m is 1.

26. (Original) Anthraquinone compounds according to Claim 5 wherein L is –CH₂CH₂–, m is 1, and R₂ is hydrogen.

27. (Canceled)

28. (Original) Anthraquinone compounds according to Claim 9 wherein X is –CO₂–, L is -CH₂CH₂–, and m is 1.

29. (Original) Anthraquinone compounds according to Claim 10 wherein L is -CH₂CH₂–, R₂ is hydrogen and m is 1.

30. (Original) Anthraquinone compounds according to Claim 12 wherein X is –CO₂–, L is -CH₂CH₂–, and m is 1.

31. (Original) Anthraquinone compounds according to Claim 13 wherein L is -CH₂CH₂–, R₂ is hydrogen and m is 1.

32. (Original) Anthraquinone compounds according to Claim 15 wherein X₃ is –CO₂–, L is -CH₂CH₂–, and R is hydrogen or bromine.

33. (Original) Anthraquinone compounds according to Claim 15 wherein X₃ is –CO₂–, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is –O–, and Q is an organic radical having the structure -COC(R₁₁)=CH₂ wherein R₁₁ is hydrogen, methyl or ethyl.

34. (Original) Anthraquinone compounds according to Claim 15 wherein X₃ is –CO₂–, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is –O–, and Q is an organic radical having structure VIIa wherein R₁₁, R₁₃ and R₁₄ each is methyl.

35. (Canceled)

36. (Original) Anthraquinone compounds according to Claim 17 wherein X_3 is $-CO_2-$, L is $-CH_2CH_2-$, and R is hydrogen.

37. (Original) Anthraquinone compounds according to Claim 17 wherein X_3 is $-CO_2-$, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is $-O-$, and Q is an organic radical having the structure $-COC(R_{11})=CH_2$ wherein R_{11} is hydrogen, methyl or ethyl.

38. (Original) Anthraquinone compounds according to Claim 17 wherein X_3 is $-CO_2-$, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is $-O-$, and Q is an organic radical having structure VIIa wherein R_{11} , R_{13} and R_{14} each is methyl.

39. (Original) Anthraquinone compounds according to Claim 18 wherein L is $-CH_2CH_2-$, R₂ is hydrogen, and m is 1.

40. (Original) Anthraquinone compounds according to Claim 6 wherein X is $-SO_2N(Y)-$, L is C₂-C₆ alkylene, R₃ and R₄ are methyl or ethyl, Y is hydrogen, m is 1 and m₁ is 0.

41. (Original) Anthraquinone compounds according to Claim 6 wherein X is $-SO_2N(Y)-$, L is C₂-C₆ alkylene, R₃ and R₄ are methyl or ethyl, Y is hydrogen, m is 1 and m₁ is 1.

42. (Original) Anthraquinone compounds according to Claim 1 having formula VII wherein X_2 is $-CO_2-$ and R and R₈ are hydrogen.

43. (Original) Anthraquinone compounds according to Claim 1 having formula XI wherein X_2 is $-CO_2-$ and R₁ and R₈ are hydrogen.

44. (Canceled)

45. (Original) Anthraquinone compounds according to Claim 1 having formula XXI wherein X₄ is -CO₂- and R and R₈ are hydrogen.

46. (Original) Anthraquinone compounds according to Claim 1 having formula IV wherein X₁ is -O-, Z is -O-, L is -CH₂CH₂-, R₃ and R₄ are methyl or ethyl, m is 1 and m₁ is 0.

47. (Original) A coating composition comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the dye compounds of Claim 1, and (iii) a photoinitiator.

48. (Currently amended) A coating composition according to Claim 47 comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the dye compounds of Claim 2 present in a concentration of about 0.05 to 15 weight percent based on the weight of component (i), and (iii) a photoinitiator present in a concentration of about 1 to 15 weight percent based on the weight of the polymerizable vinyl compound(s) present in the coating composition.

49. (Original) A coating composition according to Claim 48 wherein the polymerizable vinyl compounds comprise a solution of a polymeric, polymerizable vinyl compound selected from acrylated and methacrylated polyesters, acrylated and methacrylated polyethers, acrylated and methacrylated epoxy polymers, acrylated or methacrylated urethanes, and mixtures thereof, in a diluent selected from monomeric acrylate and methacrylate esters.

50. (Currently amended) A polymeric coating composition comprising a polymer of one or more acrylic acid esters, one or more methacrylic acid esters and/or other or other copolymerizable vinyl compounds, having copolymerized therein one or more of the dye compounds defined in Claim 1.

51. (Currently amended) A polymeric coating composition according to ~~Claim 50~~ comprising a coating of an acrylic polymer of one or more acrylic acid esters, one or more methacrylic acid esters or a mixture thereof having copolymerized therein one or more of the dye compounds defined in Claim 2.

52. (Currently amended) A polymeric coating composition according to ~~Claim 50~~ comprising a coating of an unsaturated polyester containing one or more maleate/fumarate residues; one or more monomers which contain one or more vinyl ether groups, one or more vinyl ester groups, or a combination thereof, and, optionally, one or more acrylic or methacrylic acid esters; or a mixture thereof having copolymerized therein one or more of the dye compounds defined in Claim 2.

53. (Currently amended) A polymeric coating according to Claim 51 containing from about 0.05 to 15.0 weight percent of the residue of one or more of the dye compounds of ~~Claim 2~~ based on the weight of the coating.