Statika Vol.5 No.1, April 2022
Publikasi Oleh Fakultas Teknik Universitas Graha Nusantara https://jurnal.ugn.ac.id/index.php/statika p-ISSN 2541-027X | e-ISSN 2774-9509

ANALISA BIAYA DAN WAKTU PELAKSANAAN PEKERJAAN ANTARA RANGKA STRUKTUR BETON DAN RANGKA STRUKTUR BAJA PADA GEDUNG LANTAI 3

Andheto Siregar¹, Sahrul Harahap², Afniria Pakpahan³

email: andheto.s@gmail.com

Program StudiTeknikSipil, FakultasTeknik, UniversitasGraha Nusantara Padangsidimpuan

Abstrak

Dalam perkembangan dunia konstruksi sekarang ini, sangat banyakusaha yang dilakukan untuk meningkatkan kualitas dan kuantitas kerja. Salah satunya usaha yang dilakukan adalah mengganti cara-cara konvensional menjadi cara yang lebih modern. Hal ini memunculkan inovasi dari sistem struktur beton diganti menggunakan sistem struktur baja sebagai alternatif lain dari sistem konvensional. Metode penelitian yang dilakukan adalah studi literatur yaitu menghimpun data atau sumber-sumber yang berhubungan dengan topik yang diangkat dari suatu penelitian. Tujuan penelitian ini adalah untuk mengetahui biaya dan waktu pelaksanaan pekerjaan antara struktur rangka beton dan struktur rangka baja. Berdasarkan Hasil analisa, Biaya untuk rangka struktur beton pada gedung lantai 3 adalah sebesar Rp. 1.355.572.919,07 dan untuk struktur rangka baja pada bangunan yang sama sebesar Rp. 1.924.251.134,72. Dari Hasilanalisa tersebut, terdapat sesilih perbedaan biaya dalam pengerjaan rangka struktur beton lebih murah sebesar Rp. 568.678.218,65. Adapun waktu yang dibutuhkan dalam menyelesaikan pekerjaan menggunakan struktur rangka beton adalah 435 hari, sedangkan waktu yang dibutuhkan pada pekerjaan struktur rangka baja adalah 397 hari dengan ukuran bangunan yang sama dan tingkat kesulitan yang sama. Sehingga struktur rangka baja lebih efisien waktunya 38 hari dibandingkan struktur rangka beton.

Kata kunci: Perbandingan, Biaya, Waktu, Struktur rangka, Baja, Beton.

1. PENDAHULUAN

Perkembangan teknologi konstruksi saat ini mengalami kemajuan pesat, yang ditandai dengan hadirnya berbagai jenis material dan peralatan yang modern. Dalam perkembangan dunia konstruksi sekarang ini, sangat banyak usaha yang dilakukan untuk meningkatkan kualitas dan kuantitas kerja, baik secara struktur maupun manajemen konstruksi. Setidaknya upaya yang dilakukan merupakan usaha untuk memperbaiki dan mencapai hasil kerja yang lebih baik. Dalam pelaksanaan suatu proyek konstruksi, semakin besar proyek yang dikerjakan maka semakin besar pula kendala yang akan dihadapi oleh perusahaan jasa konstruksi. Para pengusaha konstruksi selalu merealisasikan berusaha proyeknya mengesampingkan tercapainya efisiensi biaya dan waktu namun tetap memenuhi mutu. Pemilihan suatu metode sangat penting dalam pelaksanaan suatu proyek konstruksi karena dengan metode pelaksanaan yang tepat dapat memberikan hasil yang maksimal terutama jika ditinjau dari segi biaya maupun dari segi waktu. Dengan adanya kemajuan teknologi yang semakin pesat dalam konstruksi, memungkinkan pengelola dunia proyek untuk memilih salah satu metode pelaksanaan konstruksi tertentu, dari beberapa alternatif metode pelaksanaan konstruksi yang ada. Salah satu usaha yang dilakukan oleh pengelola proyek adalah mengganti cara-cara konvensional menjadi lebih modern. Hal ini memunculkan inovasi sistem struktur beton diganti menggunakan baja sebagai alternatif lain dari sistem konvensional.

Hal: 140-151

2. TINJAUAN PUSTAKA

Beton

Dalam konstruksi, beton adalah sebuah bahan bangunan komposit yang terbuat dari kombinasi agregat dan pengikat semen. Bentuk paling umum dari beton adalah beton semen Portland, yang terdiri dari agregat mineral (biasanya kerikil dan pasir), semen dan air. Biasanya dipercayai bahwa beton mengering setelah pencampuran dan peletakan. Sebenarnya, beton tidak menjadi padat karena air menguap, tetapi semen berhidrasi, mengelem komponen lainnya bersama dan akhirnya membentuk material seperti batu. Beton digunakan untuk membuat perkerasan jalan, struktur bangunan, pondasi, jembatan penyeberangan, struktur parkiran, dasar untuk pagar/gerbang.

Baja

Baja adalah logam paduan dengan besi sebagai unsur dasar dan karbon sebagai unsur paduan utamanya. Kandungan karbon dalam baja berkisar antara 0,2% hingga 2,1% berat sesuai grade-nya. Fungsi karbon dalam baja adalah sebagai unsur pengeras. Unsur paduan lain yang biasa ditambahkan selain karbon adalah mangan (manganese), krom (chromium), vanadium, dan nikel. Dengan memvariasikan kandungan karbon dan unsur paduan lainnya, berbagai jenis kualitas baja bisa didapatkan. Kandungan karbon yang besar dalam baja mengakibatkan meningkatnya kekerasan tetapi baja tersebut akan rapuh dan tidak mudah dibentuk.

Perbandingan Baja Dan Beton

Berikut ini secara detail perbandingan konstruksi baja dan beton:

1. Segi Keamanan

Beton : Material beton adalah sebuah material yang aman apabila dikaitkan dengan bahaya api, angin dan benturan. Hal tersebut tentunya berkaitan dengan karakternya yang kaku dan berat. Dengan design yang baik, maka beton juga digunakan untuk memenuhi kriteria yang diharapkan dalam keperluan untuk ketahanan gempa bumi.

Baja : Kelebihan baja adalah berkaitan dengan beban saat terjadi gempa bumi, angin dan beban-beban yang dinamis lainnya. Hal ini diperoleh dari sifat yang dimiliki oleh materialnya yang sangat daktail, dimana baja tersebut mampu berdeformasi dengan besar tanpa khawatir langsung runtuh sehingga langsung menyerap energy yang dinamis dengan sangat baik .

Hal: 140-151

2. Segi kekuatan

Beton : memiliki kekuatan maksimalnya sekitar 100 MPa

Baja : Apabila dibandingkan dengan beton, baja terbilang lebih unggul. Hal ini bisa kita ambil contoh untuk baja yang berjenis BJ37 dengan fy sekitar 240 MPa dan fu sekitar 370 MPa. Jika kita melihat dari data tersebut maka bisa dikatakan apabila baja ini 3 kali lebih kuat jika dibandingkan dengan beton.

3. Segi harga

Beton : Harga dari material beton umumnya relatif mahal. Hal ini karena pengerjaanya yang cukup lama sehingga membuat harga pekerja menjadi membengkak

Baja : Baja mempunyai kemudahan dalam penggunaannya. Hal tersebut dapat diartikan jika waktu yang diperlukan untuk bisa membangun bangunan dengan baja akan lebih cepat. Dengan begitu, maka kuta bisa lebih menghemat banyak biaya daripada beton.

4. Segi waktu pelaksanaan

Beton: Khusus untuk bahan material beton cast in place, jadi waktu yang digunakan dalam melaksanakan konstruksi relatif lebih panjang atau lama. Namun saat ini masih bisa ditangani dengan adanya beton precast.

Baja : Apabila dilihat dari waktu pengerjaannya, struktur yang dimiliki baja merupakan pilihan untuk masa depan. Dengan sistem fabric on site nya waktu dan mutu yang dimiliki oleh baja ini tebilang dapat dikurangi, sehingga biaya konstruksi bapat dikurangi.

Rangka

Rangka bangunan adalah bagian dari bangunan yang merupakan struktur utama pendukung berat bangunan dan beban luar yang bekerja padanya. Untuk bangunan sederhana, rangka bangunan dapat dibuat dari tiang-tiang (kolom) yang saling dihubungkan oleh batangbatang datar (balok). Pada bangunan yang Statika Vol.5 No.1, April 2022 Publikasi Oleh Fakultas Teknik Universitas Graha Nusantara https://jurnal.ugn.ac.id/index.php/statika p-ISSN 2541-027X | e-ISSN 2774-9509

permanen, rangka bangunan dibuat dari konstruksi beton dengan dinding dari pasangan batu bata atau batako. Untuk bangunan bertingkat sederhana/rendah, umumnya berupa struktur rangka portal (frame structure) yaitu kerangka yang terdiri dari kolom dan balok.

Balok

Balok adalah bagian dari struktur yang berfungsi sebagai penyalur momen menuju struktur kolom. Balok dikenal sebagai elemen lentur, yaitu elemen struktur yang dominan memikul gaya dalam berupa momen lentur dan gaya geser. Menurut Prof Widodo dalam buku "Analisis Tegangan Regangan" balok beton memiliki sifat rangka yang dibebani secara tetap dalam jangka waktu yang lama.

Kolom

Berdasarkan SNI 2847 2013, kolom adalah komponen struktur bangunan yang tugas utamanya menyangga beban aksial tekan vertikal dengan bagian tinggi yang tidak ditopang paling tidak tiga kali dimensi lateral terkecil. Fungsi kolom adalah sebagai penerus beban seluruh bangunan ke pondasi. Menurut SNI 2847-2013, ada empat ketentuan terkait perhitungan kolom:

- 1. Kolom harus direncanakan untuk memikul beban aksial terfaktor yang bekerja pada semua lantai atau atap dan momen maksimum yang berasal dari beban terfaktor pada satu bentang terdekat dari lantai yang ditinjau. Kombinasi pembebanan yang menghasilkan rasio maksimum dari momen terhadap beban aksial juga harus diperhitungkan.
- 2. Pada konstruksi rangka atau struktur menerus pengaruh dari adanya beban tidak seimbang pada lantai atau atap terhadap kolom luar atau dalam harus diperhitungkan. Demikian pula pengaruh beban eksentris.
- 3. Dalam menghitung momen akibat beban gravitasi yang bekerja pada kolom, ujungujung terjauh kolom dapat dianggap jepit, selama ujung-ujung tersebut menyatu (monolite) dengan komponen struktur lainnya.
- Momen-momen yang bekerja pada setiap level lantai harus didistribusikan pada kolom diatas dan dibawah lantai tersebut

berdasarkan kekakuan relatifkolom dengan juga memperhatikan kondisi pada ujung kolom

Hal: 140-151

Biaya

Perhitungan rencana anggaran biaya pada proyek yang menggunakan baja sebagai material rangka secara umum tidak ada perbedaan, yaitu harus melalui rencana anggaran Begitu biaya. juga biaya pelaksanaan pekerjaannya. Perhitungan anggaran biaya juga melalui beberapa tahapan perhitungan atau estimasi, pada tahapan perencanaan terdapat Owner Estimate, yaitu estimasi biaya yang disusun oleh pemilik proyek dan Engineer Estimate, yaitu estimasi biaya yang disusun oleh perencana.

Tenaga Kerja

Tenaga kerja adalah sumber daya manusia yang memiliki kemampuan dan keahlian yang berbeda-beda sesuai dengan bidang keahliannya. Adapun kemampuan tenaga kerja meliputi jenis dan macam-macam tenaga kerja dan jumlah tenaga kerja dan jumlah tenaga kerja yang diperlukan untuk menyelesaikan suatu pekerjaan.

Penyediaan tenaga kerja pada umumnya meliputi tenaga kerja biasa, tenaga kerja terampil dan tenaga kerja ahli. Untuk setiap pekerjaan memerlukan tenaga kerja tertentu baik mengenai jumlah maupun keahlian dalam menyelesaikan pekerjaan tersebut. Secara teoritis keperluan rata-rata jumlah tenaga kerja dapat dihitung dari total ruang lingkup kerja proyek yang dinyatakan dalam jam, orang atau bulan dibagi dengan kurun waktu perencanan.

3. HASIL PENELITIAN

Bagianinimengkaji rancangan penelitian, objek penelitian mengenai berapa besar anggaran biaya yang dibutuhkan untuk pemasangan rangka beton dan pemasangan rangka baja.

Studi Literatur

Studi literatur adalah metode yang digunakan untuk menghimpun data atau sumbersumber yang berhubungan dengan topik pembahasan yang diangkat dalam suatu penelitian. Studi literatur bisa didapat dari berbagai sumber, seperti: buku, jurnal, pustaka dan alamat web.

https://jurnal.ugn.ac.id/index.php/statika

p-ISSN 2541-027X | e-ISSN 2774-9509

Pengumpulan data

Data yang dibutuhkan dalam penelitian ini adalah sebagai berikut :

1. Data sekunder

Data diambil dengan metode dokumentasi, yaitu pengamatan kondisi fisik dan aktivitas di lapangan juga untuk memperoleh data analisa harga satuan yang meliputi volume pekerjaan, harga bahan, upah kerja, dan harga satuan pekerjaan.

2. Data primer

Data dikumpulkan dengan metode observasi, yaitu data tentang besarnya biaya pelaksanaan pekerjaaan struktur rangka baja di proyek, yang meliputi volume pekerjaan, harga bahan, upah kerja dan harga satuan pekerjaan diproyek.

Perhitungan Volume

Perhitungan masing-masing volume pekerjaan disesuaikan dengan gambar kerja yang telah ditentukan agar didapatkan hasil yang mendekati kenyataan. Untuk gedung bertingkat perhitungan volume dihitung secara terpisah sesuai dengan dimensi dan spesifikasi yang telah ditentukan. Cara menghitung volume beton kolom dan cara perhitungan menggunakan data lantai 1 adalah sebagai berikut:

Kolom K1 40x40

Volume beton = $p \times 1 \times 1 \times 1$ Jumlah kolom = $(0,40 \text{ m} \times 0,40 \text{ m} \times 4 \text{ m}) \times 22$ = $0,64 \text{ m}^3 \times 22$ = 14.08 m^3

Kolom K2 30x40

Volume beton = p x 1 x t x Jumlah kolom = (0.30 m x 0.40 m x 4 m) x 11= 5.28 m^3

Kolom K3 30x30

Volume Beton = p x 1 x t x Jumlah Kolom = (0.30 m x 0.30 m x 4 m) x 5= 1.8 m^3

Volume Pekerjaan Besi Kolom

Menghitung berat besi untuk dimensi kolom satuan yang digunakan untuk volume besi kolom adalah kilogram (kg). Perhitungan besi kolom terdiri dari dua bagian, yakni perhitungan beras besi untuk tulangan pokok dan berat besi untuk besi sengkang.

Lt 1, kolom K1

```
Volume Besi (m³) = Luas lingkaran penampang besi x panjang besi x jumlah tulangan pokok = (1/4 \times \pi \times D^2) \times 4 \times 12= (0.25 \times 3.14 \times 0.016 \times 0.016) \times 4m \times 12= 0.00965 \text{ m³}
```

Jadi, volume untuk seluruh kolom K1 adalah = 0.00964608 m³ x 22

 $= 0.21221376 \text{ m}^3$

Berat jenis besi (kg/m3) = 7.850 kg/m^3 (ketetapan berdasarkan hasil percobaan penimbangan SNI besi). Jadi, berat besi tulangan pokok (kg)

= 0.21221376m³ x 7.850 kg/m³ = 1.665,878 kg

Hal: 140-151

Selain berat besi tulangan utama, juga harus dihitung berat besi sengkang. Besi yang digunakan untuk sengkang Ø10 mm dengan jarak antara sengkang 0,1 cm. Jadi jumlah sengkang untuk kolom setinggi 4 m adalah:

Jumlah sengkang untuk 1 kolom (Tinggi kolom/ Jarak sengkang +1)

> = 4 / 0.1 m + 1= 41 buah

Panjang sengkang adalah keliling kolom dikurangi tebal selimut beton. Tebal selimut beton untuk dimensi kolom di penelitian ini adalah 0.03m.

K1

Panjang sengkang = (Keliling kolom-Selimut beton) + (6 x Diameter besi sengkang) = ((0,4 - 0,03)x 4) + (6 x 0,01) = 1,48 + 0,06 = 1,54 meter (1 sengkang)

Jadi, total panjang sengkang

= 1,54 m x 902 buah = 1.389.08 meter

menghitung berat besi sengkang kita gunakan rumus beras besi tulangan pokok, yaitu sebagai berikut:

Volume besi K1 = Luas lingkaran penampang besi sengkang x panjang besi sengkang $= (1/4 \text{ x } \pi \text{ x D}^2) \text{ x panjang besi sengkang}$ = (0.25 x 3.14 x 0.01 x 0.01) x 1.389.08m $= 0.10904 \text{ m}^3$

Publikasi Oleh Fakultas Teknik Universitas Graha Nusantara

https://jurnal.ugn.ac.id/index.php/statika

p-ISSN 2541-027X | e-ISSN 2774-9509

Jadi,
berat besi sengkang kolom (kg) = 0,10904 m³ x 7.850 kg/m³= 855,986 kg

Total berat besi untuk satu kolom (kg) = berat besi tulangan pokok + berat besi sengkang kolom

= 1.665,878 kg + 855,985 kg = 2 521,864 kg untuk kolom K1

Pekerjan Bekisting Kolom

Untuk menghitung volume bekisting untuk dimensi kolom satuan yang digunakan untu volume bekisting kolom adalah meter persegi (m²). Menghitung luas bekisting kolom adalah sebagai berikut:

Luasan bekisting K1 = (Panjang x Tinggi kolom x 2) + (Lebar x Tinggi Kolom x 2)

=
$$(0.40 \text{ m x } 4 \text{ x } 2) + (0.40 \text{ x } 4 \text{ x}$$

= $3.2 \text{ m}^2 + 3.2 \text{ m}^2$
= 6.4 m^2

Jadi volume bekisting kolom untuk tiang kolom ukuran 40/40 adalah 140,8 m²

Pekerjaan Balok Sloof

Untuk menghitung biaya yang dibutuhkan untuk mengerjakan beton sloof per kubik, terlebih dahulu dihitung volume beton. Untuk menghitung volume beton sloof adalah sebagai berikut:

Volume beton = Panjang x Lebar x Total panjang sloof

 $= 0.25 \times 0.40 \times 169$ = 16.9 m³

Pekerjaan volume besi sloof

Untuk menghitung besi untuk dimensi sloof pada Skripsi ini. Satuan yang digunakan untuk menghitung berat besi sloof adalah kilogram (kg). Rumus untuk menghitung volume besi adalah:

Berat besi (kg) = Volume besi (m³) x berat jenis besi (kg/m³)

Untuk menghitung berat besi tulangan pokok sloof adalah:

Volume besi (m³)= Luas lingkaran penampang besi x panjang besi x jumlah tulangan pokok sloof

= $(1/4 \times \pi \times D^2) \times \text{panjang besi } \times 8$ = $(0.25 \times 3.14 \times 0.014 \times D^2) \times 1.000 \times 1$

0,014)x169x 8

=0,208019m³

Berat jenis besi $(kg/m^3) = 7.850 \text{ kg/m}^3$ (ketetapan berdasarkan hasil penimbangan besi. Jadi, berat besi tulangan pokok sloof $(kg) = 0.208019 \text{ m}^3 \times 7.850 \text{ kg/m}^3 = 1.632,95 \text{ kg}$

Selain tulangan utama, berat besi harus dihitung adalah sengkang sloof. Besi yang digunakan untuk sengkang berdiameter 10 mm dengan jarak 0,1 meter. Jadi jumlah sengkang untuk sloof sepanjang 169 meter adalah:

Jumlah sengkang (1 sloof)= Panjang sloof/ Jarak sengkang + 1

= 169/0,1m +1 = 1.691 buah

Hal: 140-151

Panjang sengkang adalah keliling sloof dimensi diatas dikurangi selimut beton. Tebal selimut beton untuk dimensi sloof adalah 0,03 m.

Panjang sengkang = (Keliling sloof – selimut beton) + (6 x Diameter besi sengkang)

$$= ((0.25 - 0.03) \times 2) + ((0.4 - 0.03) \times 2) + (6 \times 0.01)$$

$$= 0.44 + 0.74 + 0.06 = 1.24 \text{ meter}$$

Jadi, total panjang sengkang = 1,24 m x 1.691 buah = 2.096,84 meter

Untuk menghitung berat sengkang digunakan rumus yang sama untuk berat besi tulangan pokok yaitu:

Volume besi (m³) = Luas lingkaran penampang besi sengkang x panjang besi sengkang

= $(1/4 \times \pi \times D^2) \times 2.096,84$ = $(0.25 \times 3.14 \times 0.01 \times 0.01) \text{ m}^2$ $2.096,84 = 0.16460194 \text{ m}^3$

Berat besi tulangan pokok (kg/m³) = 7.850 kg/m³ (ketetapan berdasarkan hasil penimbangan besi. Jadi berat besi tulangan pokok (kg) = 0,16460194 m³ x 7.850 kg/m³ = 1.292,125 Kg

X

Jadi, total berat besi untuk satu sloof yang terdiri dari besi tulangan pokok dan besi sengkang sloof adalah:

Total berat besi sloof (kg) = Berat besi tulangan pokok + Berat besi sengkang sloof

= 1.632,95 + 1.292,125 = 2.925,075 kg

Bekisting sloof

Untuk menghitung volume bekisting untuk sloof. Satuan yang digunakan adalah meter persegi (m²). Karena sloof berada diatas pondasi, maka volume bekisting sloof hanya dihitung sisi tegaknya. Sisi bawah tidak dihitung.Untuk menghitung luas bekisting sloof adalah:

Luas bekisting = (Sisi tegak sloof x 2 x panjang sloof)

 $= (0.4 \times 2 \times 169 \text{ m}) = 135.2 \text{ m}^2$

Tabel 1. Volume Bekisting Kolom Dan Balok beton

octon				
Jenis	Volume (m²)			
Sloof	135,2			
Balok Lt 1	261,8			
Balok Lt 2	254,45			
Ring Balok	131,75			
Kolom Lt1	226,4			
Kolom Lt 2	215,08			
Kolom Lt3	190			
Total	1.414,68			

Tabel 2. Volume Beton Dan Volume Berat Besi

Tuber 2.	· Oldille L	octon Dun	T OTGING D	ciat Desi
Jenis Pekerjaa n	Volum e Beton m³	Volume Berat Besi Tulangan Pokok	Volume Berat Besi Sengkan g	Total Volume Berat Besi
			1.292,12	2.925,07
Sloof	16,9	1.632,95	5	5
Kolom		1.665,87		2.521,86
K1 Lt 1	14,08	8	855,986	4
Kolom				1.066,52
K2 Lt 1	5,28	694,116	372,409	5
Kolom				
K3 Lt 1	1,8	252,406	144,012	396,418
Balok 20/40 Lt 2	14,6	1.234,37	1.116,38	2.350,75
Balok 30/50 Lt 2	5,25	422,73	333,094	755,824
Balok 30/60 Lt 2	7,56	608,732	451,409	1.060,14 1
Kolom K1 Lt 2	13,376	1.582,58	814,23	2.396,81
Kolom K2 Lt 2	5,016	659,41	354,243	1.013,65
Kolom K3 Lt 2	1,71	239,785	136,987	376,772
Balok 25/40 Lt 3	14,6	1.234,37	1.116,38	2.350,75

Balok 25/45 Lt 3	3,94	422,73	289,835	712,565
Balok 25/60 Lt 3	6,3	507,276	425,466	932,742
Kolom K2 Lt 3	10,03	1.318,82	708,486	2.027,30
Kolom K3 Lt 3	5,47	767,314	438,358	1.205,67 2
Ring balok 25/30	3,07	254,673	263,399	518,072
Ring balok 25/35	8,92	633,578	717,249	1.350,82 7

Hal: 140-151

Tabel 3. Hasil Volume Tiap Lantai

Jenis	Jumlah/	Volume	Berat besi
	Panjang	beton (m³)	total (kg/m³)
Sloof	169	16,9	2.925,075
Kolom			
Lantai 1	38	21,16	3.984,807
Kolom			
Lantai 2	38	20,10	3.787,235
Kolom			
Lantai 3	38	15,50	3.232,978
Balok			
Lantai 2	223	27,41	4.166,715
Balok			
Lantai 3	223	24,84	3.996,06
Ring			1.868,85
Balok	143	12	
Jui	nlah	137,916	23.961,72

Setelah volume untuk beton selesai kita peroleh selanjutnya menghitung volume untuk struktur baja. Maka kita hitung volumenya sesuai gambar rencana. Biasanya volume baja dalam satuan kg, maka dihitung terlebih panjang materialnya berapa kemudian lihat Tabel 4 berapa beratnya / m (kg/m). Dari Tabel 4 kita akan mendapatkan volume material baja dalam kg dibawah:

Tabel 4 Tabel Berat Besi Baja WF (Wide Flange)

No	Ukuran	Panjang	Berat	Berat/m
	(mm)	(m)	(kg)	(kg)
1	WF 100 x 50	12	112	9,333
	x 5 x 7			
2	WF 125 x 60	12	158	13,200
	x 6 x 8			
3	WF 148 x	12	253	21,100
	100 x 6 x 9			
4	WF 150 x 75	12	168	14,000
	x 5 x 7			
5	WF 175 x 90	12	217	18,100

https://jurnal.ugn.ac.id/index.php/statika

p-ISSN 2541-027X | e-ISSN 2774-9509

	x 5 x 8			
6	WF 198 x 99	12	218	18,200
	x 4,5 x 7			
7	WF 200 x	12	143	11,917
	100 x 3,2 x			
	4,5			
8	WF 200 x	12	256	21,333
	100 x 5,5 x 8			
9	WF 248 x	12	308	25,700
	124 x 5 x 8			
10	WF 250 x	12	355	29,600
	125 x 6 x 9			

Cara membaca tabel berat besi baja WF diatas adalah:

Contoh : WF 200 x 100 x5,5 x 8 mm -12 m' 256kg 21,333, artinya dimensi besi H beam tersebut adalah .

Panjang 12 m

Tinggi 20 cm

Lebar 10 cm

Tebal Badan 5,5 mm

Tebal sayap 8 mm

Mempunyai berat total 256 kg

Sedangkan berat per meter : 256 / 12 = 21,333 kg/m

Baja yang digunakan untuk kolom dan balok dalam Skripsi ini adalah baja WF 200 x 100 x5,5 x 8 mm diketahui pemasangan baja WF untuk tiang kolom sebanyak 38 tiang dengan tinggi bangunan 11,8 m, dengan panjang bangunan 31m dan lebar bangunan 9m jika dillihat dari gambar rencana.Maka, untuk mengetahui banyak material yang digunakan adalah sebagai berikut :

Kolom = Tinggi bangunan x berat baja per meter

 $=11,8m \times 21,333$ kg/m

= 251,73 kg

Jadi, kebutuhan baja WF pada semua tiang kolom yaitu:

= Jumlah kolom x berat baja untuk 1 kolom

baja

 $= 38 \times 251,73 \text{ kg}$

= 9.565,7 kg

Maka, kebutuhan untuk tiang kolom baja adalah

= 9.565.7 kg

Balok Panjang: 31 m x 4

: 124 m

Lebar : 9 m x 11

: 99 m

Maka, kebutuhan panjang balok WF:

= Panjang x berat baja permeter

= 124 m x 21,333 kg

= 2.645,3 kg

Maka, kebutuhan lebar balok baja WF:

= 99 m x 21,333 kg

= 2.111,9 kg

Jadi, kebutuhan baja WF keseluruhan untuk balok lantai 2 :

= Panjang + Lebar

=2.645,3+2.111,9 kg

= 4.757,3 kg

Maka, kebutuhan balok untuk lantai 3 sama dengan lantai 2 dikarenakan ukuran panjang dan lebar baloknya sama. Jadi hasil lantai 2 dikalikan 2 :

$$= 4.757.3 \text{ kg x } 2 = 9.515 \text{ kg}$$

Ring balok

Panjang ring balok = 31 m x 3

= 93 m

Hal: 140-151

Lebar ring balok = 9 m x 5 = 45 m

Maka, kebutuhan panjang ring balok baja adalah:

= Panjang ring balok x berat baja permeter

= 97 m x 21,333 kg

= 2.069,3 kg

Sedangkan kebutuhan lebar ring balok baja adalah

= Lebar ring balok x berat baja perbatang

= 45 m x 21,333 kg

= 960 kg

Maka, kebutuhan keseluruhan ring balok baja adalah sebagai berikut

= Panjang ring balok + lebar ring balok

= 2.069,3 kg + 960 kg

= 3.029,3 kg

Jadi, seluruh berat total baja adalah:

= 9.565,7 + 9.515 + 3.029,3

= 22.110 kg

Perhitungan Biaya Pelaksanaan

Sebelum kita menghitung biaya pelaksanaan yang dibutuhkan untuk struktur rangka beton dan rangka baja ada beberapa tahapan yang harus kita penuhi. Adapun tahapan yang dimaksud yaitu:

a. Harga upah

b. Biaya pelaksanaan

c. Harga bahan

Tabel 5. Daftar Harga Upah (Anonim, 2019)

No	Jenis Barang	Harga
1	Pekerja	102.000,00
2	Tukang Besi	140.200,00
3	Tukang Kayu	140.200,00
4	Tukang Las	140.200,00
5	Kepala Tukang	175.000,00
6	Mandor	150.000,00

Harga bahan

Adapun harga satuan bahan dihitung berdasarkan Harga Satuan Pokok Kegiatan (HSPK) Padangsidimpuan pada saat bangunan berjalan atau tahun anggaran 2019. Adapun harga satuan yang diperoleh dapat kita lihat pada Tabel 6 dibawah ini:

Tabel 6 Daftar Harga Bahan (Anomim, 2019)

No Jenis Barang	Satuan	Harga Satuan
(Rp)		
Semen Portland	kg	1.843,00
2. Pasir Beton	kg	214,05
3. Kerikil	kg	185,12
4. Air	L	99,00
5. Besi Beton	kg	21.800
6. Kawat Beton	kg	23.769
7. Kayu	m^3	3.000.000,00
8. Paku 5-10	kg	25.000,00
9. Minyak Bekistin	g	L
10. Balok Kayu	m^3	3.000.000,00
11. Plywood 9mm	Lbr	233.042,00
12. Kayu ø8-10/4m	Btg	19.404,00
13. Solar	L	6.597,00
14. Minyak Pelumas	L	46.569,00
15. Kawat Las Listri	k	kg
16. Baja Profil IWF	kg	22.050,00

Menghitung biaya pelaksanaan

Bersadarkan volume yang diperoleh di atas, sebelum kita menghitung biaya pelaksanaan yang dibutuhkan maka langkah berikutnya adalah menghitung biaya pelaksanaan baik biaya pelaksanaan rangka beton maupun rangka baja. Adapun analisa pekerjaan yang digunakan dihitung berdasarkan Analisa Harga Satuan Pokok (Anomim, 2016). Adapun perhitungan biaya pelaksanaan Beton dan baja yaitu:

a. Beton

Berdasarkan analisa biaya pelaksanaan beton dalam satu kg dapat kita hitung berdasarkan data. Adapun data yang digunakan adalah Analisa Harga Satuan Pokok (Anonim,2016) sebagai berikut.

Tabel 7Membuat 1 m³ Dinding BetonMutu f² = 19,3 MPa (K225)

Hal: 140-151

No	Uraian	Kode	Satuan	
	Koefisien			
$\overline{\mathbf{A} \ \mathbf{T}}$	ENAGA			
P	ekerja	L.01	ОН	10
T	ukang Batu	L.02	OH	0,275
K	epala Tukang	L.03	ОН	0,028
N	I andor	L.04	OH	0,083
B B	AHAN			
Seme	en Portland		kg	
3'	71.000			
Pasir	Beton		kg	698
Kerik	cil		kg	1.047
Air			L	215
D J	umlah (A+B+	C)		
FΗ	larga Satuan I	Pekerjaai	1	
	Setelah 700106	roleh da	nta koefisie	n didana

Setelah 700 poeroleh data koefisien didapat, maka tahap selanjutnya adalah mengalikan koefisien dengan harga satuan yang sudah ada pada sub bab sebelumnya. Adapun contoh perhitungannya adalah sebagai berikut:

Pekerja — koefisien x hargasatuan = 1,65 x 102.000,00 = 168.300

Berdasarkan hasil dari koefisien dan harga satuan diatas, maka dapat kita lihat perhitungan membuat beton 1 m³ sesuai dengan Analisa Harga Satuan Pokok.Berdasarkan perhitungan jumlah keseluruhan total pekerjaan rangka struktur beton dapat kita lihat pada Tabel 8 dibawah ini:

Tabel 8 Jumlah Total Pekerjaan Rangka Struktur Beton

No	Jenis Pekerjaan	Analisa	Sat	Vol	Harga Satuan	Total Harga
A	Pekerjaan Beton					
1	Pek.1 m³ beton (k 225)	A.4.1.1.7	m³	124,46	1.272.465,20	175.493.310,52
2	Pek.Pembesian 10 kg	A.4.1.1.7	kg	18.949,724	25.124,44	602.024.796,44
3	Pek. Bekisting Sloof	A.4.1.1.21	m²	135.2	241.479,70	32.648.055,44
4	Pek. Bekisting Kolom	A.4.1.1.22	m²	631.48	421.714,10	266.304.019.87
5	Pek. Bekisting balok	A.4.1.1.23	m²	648	430.714,10	279.102.736,80
				SubTot	al	1.355.572.919,07

b. Baja

Berdasarkan analisa biaya pelaksanaan rangka struktur baja dapat kita hitung

berdasarkan data. Adapun data yang digunakan adalah Analisa Satuan Pokok sebagai berikut: Tabel 9. Pemasangan 1 kg Rangka Kuda-kuda Baja

No	Uraian	Kode	Satuan	Koefisien		
A	TENAGA					
	Pekerja	L.01	ОН	0,060		
	Tukang Batu	L.02	OH	0,060		
	Kepala Tukang	L.03	OH	0,006		
	Mandor	L.04	OH	0,003		
В	BAHAN					
	Besi WF		kg	1,150		
PERAL	ALATAN					
D	Jumlah (A+B+C)	Jumlah (A+B+C)				
F	F Harga Satuan Pekerjaan					

Setelah diperoleh data koefisien didapat maka tahap selanjutnya adalah mengalikan koefisien dengan harga satuan yang sudah ada pada sub bab sebelumnya. Adapun contoh perhitungannya dalah sebagai berikut:

Berdasarkan hasil dari koefisien dan harga satuan diatas, maka dapat kita lihat perhitungan pemasangan 1 kg besi profil sesuai dengan Analisa Harga Satuan Pokok.Berdasarkan perhitungan jumlah keseluruhan total pengerjaan rangka struktur baja dapat kita lihat pada Tabel 4.18 di bawah ini:

Tabel 10. Jumlah Total Pekerjaan Rangka Struktur Baja

No	Jenis Pekerjaan	Analisa	Sat	Vol	Harga Satuan	Total Harga
A	Pekerjaan Baja					
1	Pemasangan 1kg Iwf	A.4.2.1.2	kg	22.110	41.389,50	915.102.027,71
2	Pek. 100 kg perakitan	A.4.2.1.3	kg	22.110	1.469.15	32.482.113,75
3	Pek. 10 cm pengelasan	A.4.1.1.21	kg	22.110	44.174,05	976.666.993,26
SubTotal						1.924.251.134,72

Menghitung Waktu Pekerjaan Struktur Rangka Beton Dan Baja

Berdasarkan total volume lantai (1), (2) dan (3) yaitu dengan total volume Beton 137.916 m³, volume pembesian 23.961,72 kg, volume bekisting 1.414.68 m². Adapun untuk

mendapatkan waktu yang dibutuhkan dalam pengerjaan struktur rangka beton, maka tahap selanjutnya mencari nilai tim untuk pekerjaan struktur rangka beton rata-rata produktifitas perharinya, berdasarkan harga koefisien yang dipakai adalah:

Hal: 140-151

a. Struktur Rangka Beton

Adapun koefisien yang dipakai dalam menghitung produktifitas pekerjaan rangka struktur beton dengan 10 pekerja, 5 tukang, 1 kepala tukang, 1 mandor adalah sebagai berikut:

Pekerja : 1,650 OH Tukang Batu : 0,275 OH Kepala Tukang : 0,028 OH Mandor : 0,083 OH

Contoh perhitungan produktivitas adalah sebagai berikut:

$$P = \frac{V}{Txn}$$

$$P = \frac{1m^3}{0,275 \text{ } OH}$$

$$P = 3,63 \text{ } m^3 / OH$$

Setelah kita mendapatkan produtifitas pekerjaan beton perhari maka langkah selanjutnya adalah menghitung berapa lama waktu yang dibutuhkan dalam pengerjaan beton dengan volume keseluruhan bangunan lantai (1), (2), Dam (3). Adapun perhitungannya adalah sebagai berikut:

Total =
$$\frac{\text{Volume Pekerjaan}}{\text{Volume Pekerjaan Perhari}}$$

Total = $\frac{137,916 \text{ m}^3}{3,63 \text{ m}^3}$

Total = 7,59 = 8 hari

Berdasarkan perhitungan di atas, adapun waktu yang dibutuhkan untuk pekerjaan beton seluruhnya adalah 8 hari.Berdasarkan perhitungan, maka kita akan mendapatkan hasil dari waktu pengerjaan struktur rangka beton. Adapun waktu yang dibutuhkan untuk pekerjaan struktur rangka beton seluruhnya adalah:

8 hari + 336 hari + 7 hari + 42 hari + 43 hari = 436 hari

Maka, waktu yang dibutuhkan untuk pekerjaan struktur rangka beton keseluruhan adalah 436 hari.

b. Struktur Rangka Baja

Adapun koefisien yang dipakai dalam menghitung produktifitas pekerjaan rangka struktur baja dengan 10 pekerja, 5 tukang, 1 kepala tukang,1 mandor adalah sebagai berikut:

Pekerja : 0,060 OH Tukang Besi : 0,060 OH Kepala Tukang : 0,006 OH Mandor : 0,003 OH

Contoh perhitungan produktivitas adalah sebagai berikut

$$P = \frac{V}{Txn}$$

$$P = \frac{1kg}{0.06 \text{ } OH}$$

$$P = 16.67 \text{ } kg/OH$$

Setelah kita mendapatkan produktivitas pekerjaan pemasangan 1 kg rangka kuda-kuda WF perhari, maka langkah selanjutnya adalah menghitung berapa lama waktu yang dibutuhkan dalam pengerjaan beton dengan volume keseluruhan bangunan lantai (1), (2), dan (3). Adapun perhitungannya adalah sebagai berikut:

$$Total = \frac{Volume \ Pekerjaan}{Volume \ Pasangan \ Perhari}$$

$$Total = \frac{22,110}{16,67 \ kg}$$

Total = 265.2 = 265 hari

Berdasarkan perhitungan di atas, waktu yang dibutuhkan untuk pemasangan 1 kg rangka kuda-kuda adalah 265 hari.Berdasarkan perhitungan-, maka kita akan mendapatkan hasil dari waktu pengerjaan struktur rangka baja. Adapun waktu yang dibutuhkan untuk pekerjaan struktur rangka baja seluruhnya adalah :

265 hari + 44 hari + 88 hari = 397 hari

Maka, waktu yang dibutuhkan untuk pekerjaan struktur rangka baja keseluruhan adalah 397 hari.

Selisih Biaya Dan Waktu Pekerjaan Rangka Struktur Beton Dan Rangka Struktur Baja

Hal: 140-151

Berdasarkan perhitungan biaya dan waktu pekerjaan struktur rangka beton dan rangka baja pada gedung lantai tiga (3) dengan ukuran bangunan gedung yang sama. Adapun hasil perhitungan dari biaya dan waktu pengerjaan struktur rangka beton dan struktur rangka baja adalah sebagai berikut:

1. Struktur Rangka Beton

Adapun hasil perhitungan total biaya keseluruhan pekerjaan struktur rangka beton yaitu sebagai berikut:

Tabel 11. Total Biaya Pekerjaan Struktur Rangka Beton

No	Jenis Pekerjaan	Analisa	Sat	Vol	Harga Satuan	Total Harga
A	Pekerjaan Beton					
1	Pek.1 m³ beton (K-225)	A.4.1.1.7	m³	124.,46	1.272.465,20	175.493.310,52
2	Pek.Pembesian 10 kg	A.4.1.1.7	kg	18.949,72	4 25.124,44	602.024.796,44
3	Pek. Bekisting Sloof	A.4.1.1.21	m²	135,2	241.479,70	32.648.055,44
4	Pek. Bekisting Kolom	A.4.1.1.22	m²	631,48	421.714,10	266.304.019,87
5	Pek. Bekisting balok	A.4.1.1.23	m²	648	430.714,10	279.102.736,80
			Sub	Total		1.355.572.919,07

2. Struktur Rangka Baja

Sedangkan untuk perhitungan total biaya struktur rangka baja pada ukuran bangunan gedung yang sama dapat kita lihat perhitungan dibawah ini.

Tabel 4.20. Jumlah Total Pekerjaan Rangka Struktur Baja

No	Jenis Pekerjaan	Analisa	Sat	Vol	Harga Satuan	Total Harga
A	Pekerjaan Baja					
1	Pemasangan 1kg Iwf	A.4.2.1.2	kg	22,110	41.389,50	915.102.027,71
2	Pek. 100 kg perakitan	A.4.2.1.3	kg	22,110	1.469.15	32.482.113,75
3	Pek. 10 cm pengelasan	A.4.1.1.21	kg	22,110	44.174,05	976.666.993,26
		1.924.251.134,72				

Setelah dapat hasil total biaya pasangan struktur rangka beton dan struktur rangka baja,selisih biaya dan waktu dapat dilihat dalam Tabel 4.21 di bawah ini:

Tabel 4.21. Selisih Biaya dan Waktu Struktrur Rangka Beton Dan Baja

No	Uraian	Biaya	Waktu (Hari)
1	Struktur Rangka Beton	1.355.572.919.07	435
2	Struktur Rangka Baja	1.924.251.134,72	397
	Selisih	568.678.215,65	38

Dari perbedaan tersebut, maka dapat dilihat bahwa pekerjaan struktur rangka dengan baja lebih mahal dibandingkan pekerjaan struktur rangka dengan menggunakan waktu material beton, dari segi dapat disimpulkan bahwa baja lebih efisien dibandingkan beton.

5. KESIMPULAN

Berdasarkan analisa perhitungan, maka dapat diambil kesimpulan mengenai biaya dan waktu pekerjaan struktur rangka beton dan struktur rangka baja sebagai berikut:

- 1. Total biaya keseluruhan pekerjaan struktur rangka beton adalah Rp 1.355.572.919,07 sedangkan biaya keseluruhan pekerjaan pasangan dinding menggunakan struktur rangka baja adalah Rp 1.924.251.134,72.
- 2. Waktu yang dibutuhkan dalam menyelesaikan pekerjaan struktur rangka beton adalah 436 hari, sedangkan waktu yang dibutuhkan pada pekerjaan struktur rangka baja adalah 397 hari.
- 3. Setelah dianalisis, maka dapat disimpulkan bahwa pekerjaan baja lebih mahal dibandingkan pekerjaan struktur rangka beton. Adapun perbedaanya yaitu Rp 568.678.215,65 dan untuk perbedaan waktu pekerjaan struktur rangka baja lebih cepat 39 hari daripada pekerjaan struktur rangka beton.

Saran

Adapun saran yang dapat diberikan penulis setelah mendapat hasil dan kesimpulan dari penelitian ini yaitu:

- 1. Untuk pelaksanaan proyek yang memiliki kontrak hari kerja yang cepat disarankan memakai material struktur baja sebagai rangka, karena pemasangan dilapangan berlangsung cepat.
- 2. Untuk pelaksanaan bangunan rumah sederhana sebaiknya menggunakan beton karena lebih mudah didapat dan tidak

diperlukan biaya pemeliharaan dan pengiriman dari luar kota.

Hal: 140-151

- 3. Sebelum merencanakan suatu struktur bangunan dahulukan dengan studi kelayakan pada perhitungan struktur agar dapat diperoleh hasil perencanaan yang memuaskan baik dari segi mutu,biaya maupun waktu.
- 4. Pemilihan metode pelaksanaan maupun penggunaan bahan dan peralatan berpedoman pada faktor kemudahan dalam pelaksanaan pekerjaan dilapangan, dan pengalaman kerja serta bagi ekonominya.

DAFTAR PUSTAKA

- Anonim, (2013), SNI 2847-2013 Tentang Persyaratan Beton Struktural Untuk Bangunan Gedung, Jakarta
- Anonim, (2016), Peraturan Menteri Pekerjaan Umum Dan Perumahan Rakyat Republik Indonesia.
- Anonim, (2019), Analisis Satuan Harga Pekerjaan Bidang Pekerjaan Umum, Padangsidimpuan.
- Aryani F., Wiranata, Larasati, K. R., (2014),
 Perbandingan Biaya Dan Waktu
 Pelaksanaan Pekerjaan Balok Struktur
 Beton Gedung Antara Metode
 Konvensional Dengan Precast,
 JurnalIlmiah Teknik Sipil, 18(2), 122-129
- Correia, Z., Andy, k, Wijaya, H.S., (2019), Perbandingan Efisiensi Balok Kolom Beton Dan Kolom Baja Di Bangunan Museum MPU Purwa Kota Malang, eUReka: Jurnal Penelitian Mahasiswa Teknik Sipil dan Teknik Kimia,3(2), 195-199.
- Hadi, Y.C.E., (2000), *Perhitungan Konstruksi Baja Lengkap*, Penerbit Yustadi,
 Surabaya.
- Manullang, R., (2018), *Pintar Menghitung Biaya Bangunan*, Penerbit Andi, Yogyakarta.
- Mulyono, T., (2004), *Teknologi Beton*, Andi, Yogyakarta.
- Pangudi, E., (2018), Analisis Efektivitas Desain Gedung Showroom Dan Workshop DSO Yogyakarta Dengan Struktur Beton

Hal: 140-151

Bertulang dan Struktur Baja. Jurnal Struktur Teknik Sipil.

- Sabikun, A., Suhudi, Wijaya, H. S., (2018), Kajian Empiris Perbandingan Biaya Konstruksi Baja dan Beton Pada Pembangunan Gedung Fakultas Ilmu Pendidikan Universitas Tribhuwana Tungga dewi Malang. SENTIKUIN, 1 D9.1-D9.6.
- Syalim, H., Aryanto, Samsurizal, E., (2018), Perencanaan Gedung Lima Lantai Dengan Struktrur Beton Dan Baja. Jurnal Mahasiswa Teknik Sipil Universitas Tanjungpura. 5(3), 1-12.
- Wildiyanto., (2008). Perbandingan Struktur Beton Bertulang Dengan Struktur Baja Dari Elemen Balok Kolom Ditinjau Dari Segi Biaya Pada Bangunan Rumah Toko 3 Lantai, Skripsi,Universitas Kristen Maranatha, Bandung