Vezin Lomàn

MAT432

Date de rendu: 05/01/2021

Devoir maison

I. 1. On détermine le support de T_n définie comme dans l'énoncé. On a pour $n \in \mathbf{N}^*$, $h \in \mathbf{R}^*$ et $\phi \in \mathcal{C}_c^{\infty}(\mathbf{R})$

$$\langle T_n, \phi \rangle = \langle \delta_0 + \sum_{k=1}^n \frac{h^k}{k!} \delta_0^{(k)}, \phi \rangle$$

$$= \langle \delta_0, \phi \rangle + \sum_{k=1}^n \frac{h^k}{k!} \langle \delta_0^{(k)}, \phi \rangle$$

$$= \phi(0) + \sum_{k=1}^n \frac{h^k}{k!} \phi^{(k)}(0).$$

Le support de la dirac δ_0 et de ses dérivées $\delta_0^{(k)}$, $k \le n$ est le singleton $\{0\}$. On voit alors facilement que la restriction de T_n à $\mathbf{R} \setminus \{0\}$ est nulle et donc par définition du support d'une distribution

$$supp(T_n) = \{0\}.$$

2. Montrons que $\operatorname{supp}(S) \subset K$. Supposons par l'absurde que ce ne soit pas le cas, c'est à dire $\operatorname{supp}(S) \setminus K \neq \emptyset$. Soit Ω un voisinage ouvert de $\operatorname{supp}(S)$. $\Omega \setminus K \neq \emptyset$ et par définition du support $\langle S_n, \phi \rangle = 0$ pour tout $\phi \in \mathcal{C}_c^{\infty}(\mathbf{R})$ à support dans $\operatorname{supp}(S) \setminus K$ et tout $n \in \mathbf{N}^*$. Aussi par définition du support S n'est pas identiquement nulle sur $\Omega \setminus K$ ce qui nous donne l'existence de $\psi \in \mathcal{C}_c^{\infty}(\mathbf{R})$ à support dans $\operatorname{supp}(S) \setminus K$ telle que

$$\langle S, \psi \rangle \neq 0.$$

Mais alors pour cette fonction ψ

$$0 = \langle S_n, \psi \rangle \not\rightarrow \langle S, \psi \rangle \neq 0,$$

ce qui contredit $S_n \to_n S$ au sens des distributions. On a donc bien

$$supp(S) \subset K$$
.

3. Par définition de T_n on obtient

$$\star = \langle T_n, \phi_{|_{\mathbf{R}}} \rangle = \phi(0) + \sum_{k=1}^n \frac{h^k}{k!} (-1)^k \phi^{(k)}(0).$$

En se souvenant que les fonctions holomorphes sur un domaine sont analytiques sur ce domaine, on en déduit en reconnaissant l'expression du développement de Taylor à l'ordre n de $\phi(-h)$ et comme $|h| \le R$ que

$$\star = \phi(0-h) + o(h^n) = \phi(-h) + o(h^n).$$

En particulier l'analycité de ϕ garantit

$$\phi(-h) = \phi(0) + \sum_{k=1}^{\infty} \frac{(-h)^k}{k!} \phi^{(k)}(0).$$

La suite $\langle T_n, \phi \rangle$ converge donc et on trouve naturellement

$$\lim_{n\to\infty}\langle T_n,\phi\rangle=\phi(-h).$$

4. Dans la question 1. nous avons montré que le support de T_n est supp $(T_n) = \{0\}$ pour tout $n \in \mathbb{N}$. On en déduit que la suite de distributions $(T_n)_{n \in \mathbb{N}}$ ne converge pas au sens des distributions puisque sinon par la question 2. le support de la limite devrait appartenir au singleton $\{0\}$, ce qui n'est pas le cas comme $h \neq 0$.

II. 1. Posons pour plus de simplicité $H_n := \sum_{k=1}^n \frac{1}{k}$ la n-ème somme partielle de la série harmonique. On montre que la suite $H_n - \log(n)$ converge et que sa limite est positive. Fixons $n \in \mathbb{N}_*$.

Dans un premier temps remarquons que sur \mathbb{R}_+^* la fonction inverse $t \longmapsto \frac{1}{t}$ est décroissante. Ainsi pour $1 \le k \le n-1$ et $t \in [k,k+1]$ on obtient

$$\frac{1}{k+1} \le \frac{1}{t} \le \frac{1}{k}.$$

On intègre par rapport à t sur les intervalles [k, k+1] pour obtenir par croissance de l'intégrale et comme tous les termes sont positifs

$$\frac{1}{k+1} \le \int_{k}^{k+1} \frac{\mathrm{d}t}{t} \le \frac{1}{k}.$$

On en déduit d'une part

$$\frac{1}{k} - \int_{k}^{k+1} \frac{\mathrm{d}t}{t} \ge 0,$$

et d'autre part que

$$\frac{1}{k} - \int_{k}^{k+1} \frac{\mathrm{d}t}{t} \le \frac{1}{k} - \frac{1}{k+1}.$$

Ces deux inégalités nous donnent donc l'encadrement

$$0 \le \frac{1}{k} - \int_{k}^{k+1} \frac{\mathrm{d}t}{t} \le \frac{1}{k} - \frac{1}{k+1}.$$

Comme la série de terme général $\frac{1}{k} - \frac{1}{k+1}$ converge et que tous les termes sont positifs par comparaison la série de terme général

$$\frac{1}{k} - \int_{k}^{k+1} \frac{\mathrm{d}t}{t} = \frac{1}{k} - (\log(k+1) - \log(k))$$

converge également et la limite et positive. Finalement sommons sur $1 \le k \le n-1$ pour trouver la n-ème somme partielle de la série en question

$$H_{n-1} - \sum_{k=1}^{n-1} \log(k+1) - \log(k) = H_{n-1} - \log(n),$$

en reconnaissant une somme télescopique. En particulier grâce aux encadrements précédents

on trouve que la limite est inférieure à 1 comme

$$0 \le H_n - \log(n) \le 1.$$

La suite de terme général

$$H_n - \log(n) = H_{n-1} - \log(n) + \frac{1}{n}$$

converge également, vers la même limite, par convergence de la suite de terme général $\frac{1}{n}$, vers 0.

2. On applique le point c. du théorème **4.2** du cours, selon lequel si T est une distribution à support compact dans un ouvert $\Omega \subset \mathbf{R}^N$ et si $(\phi_n)_n$ est une suite de fonctions $\mathcal{C}^{\infty}(\Omega)$ telle que pour tout $\alpha \in \mathbf{N}^N$ on a

$$\partial^{\alpha}\phi_{n} \rightarrow_{n} \partial^{\alpha}\phi$$

uniformément sur les compacts de Ω alors

$$\langle T, \phi_n \rangle \rightarrow_n \langle T, \phi \rangle$$
.

Dans notre cas, par hypothèse le support de T est inclus dans $V \subset \Omega$ ouvert donc on peut regarder T comme une distribution à support compact dans V. De plus $\mathcal{C}^{\infty}(\Omega) \subset \mathcal{C}^{\infty}(V)$ comme $V \subset \Omega$ et on a

$$\partial^{\alpha}\phi_{n} \rightarrow_{n} \partial^{\alpha}\phi$$
 uniformément sur V ,

donc en particulier sur tout compact de V.

Avec V qui joue le rôle de Ω dans l'énoncé ci dessus on obtient pour toute suite $(\phi_n)_n$ de $\mathcal{C}^{\infty}(\Omega)$, donc de $\mathcal{C}^{\infty}(V)$ comme ci dessus

$$\langle T, \phi_n \rangle \to_n \langle T, \phi \rangle.$$

3. Soit $m \in \mathbf{N}^*$ et soit $\phi \in \mathcal{C}^\infty_c(\mathbf{R})$, la formule du développement de Taylor d'ordre 1 en 0

avec $h = \frac{1}{k}$ nous donne

$$\langle T_m, \phi \rangle = \sum_{k=1}^m \phi(\frac{1}{k}) - m\phi(0) - \log(m)\phi'(0)$$

$$= \sum_{k=1}^m (\phi(0) + \frac{1}{k}\phi'(0) + o(\frac{1}{k^2})) - m\phi(0) - \log(m)\phi'(0)$$

$$= (\sum_{k=1}^m \frac{1}{k} - \log(m))\phi'(0) + \sum_{k=1}^m o(\frac{1}{k^2}).$$

Par le point 1. nous savons que la limite suivante existe

$$\sum_{k=1}^{m} \frac{1}{k} - \log(m) \to_{m} \gamma.$$

De plus par convergence de la série des inverses au carré il existe une constante réelle finie *C* telle que

$$\sum_{k=1}^{\infty} o(\frac{1}{k^2}) \le C.$$

Ainsi la limite des T_m est bien une distribution que l'on peut nommer T. En exprimant le terme de reste par une intégrale on trouve

$$\boxed{\langle T, \phi \rangle = \gamma \phi'(0) + \sum_{k=1}^{\infty} \int_0^{\frac{1}{k}} \frac{(\frac{1}{k} - t)^2}{2} \phi^{(2)}(t) \mathrm{d}t.}$$

telle que $\langle T_m, \phi \rangle \to_m \langle T, \phi \rangle$. Par choix arbitraire de $\phi \in \mathcal{C}_c^{\infty}(\mathbf{R})$ on a

$$T_m \to_m T$$
.

- *4. T* a pour support l'ensemble $\{\frac{1}{n} \mid n \in \mathbf{N}^*\} \cup \{0\}$. Pour $m \in \mathbf{N}^*$ le support de T_m est quant à lui l'ensemble $\{\frac{1}{k} \mid 1 \le k \le m\} \cup \{0\}$.
- 5. L'ordre de T vaut 1. Cela est donné par la majoration de l'intégrale

$$\sum_{k=1}^{\infty} \int_{0}^{\frac{1}{k}} \frac{(\frac{1}{k} - t)^{2}}{2} \phi^{(2)}(t) dt \le \|\phi'\| \sum_{n=1}^{\infty} \frac{1}{k^{2}}.$$

De plus par le point 3. on obtient pour $m \in \mathbf{N}^*$ et $\phi \in \mathcal{C}_c^{\infty}(\mathbf{R})$ quelconques

$$|\langle T_m, \phi \rangle| \leq (\sum_{k=1}^m \frac{1}{k} - \log(m)) |\phi'(0)| + \sum_{k=1}^m o(\frac{1}{k^2}),$$

en particulier les deux sommes sont bornées puisque convergentes et il existe une constante réelle *C* telle que

$$|\langle T_m, \phi \rangle| \leq C |\phi'(0)|,$$

ce qui montre que T_m est également d'ordre 1.¹

6. Soit $\phi \in \mathcal{C}^{\infty}(\mathbf{R})$ nulle sur le support de T. Soit $k \in \mathbf{N}^*$ quelconque, on écrit le développement de Taylor à l'ordre 1 en $\frac{1}{k}$

$$0 = \phi(0) - \phi(\frac{1}{k}) = \frac{1}{k}\phi'(0) + o(\frac{1}{k}).$$

En multipliant par *k* des deux côtés on obtient donc

$$\phi'(0) = o(\frac{1}{k}) \cdot k.$$

Le résultat étant valable pour tout $k \in \mathbb{N}^*$ on peut passer à la limite $k \to \infty$ et on obtient

$$\phi'(0) = 0.$$

Pour $m \in \mathbf{N}^*$ quelconque, ϕ s'annule sur $\{\frac{1}{k} \mid k \leq m\} \cup \{0\}$ et donc par définition de T_m on a alors $\langle T_m, \phi \rangle = 0$. Puis par convergence au sens des distributions $T_m \to_m T$ on en conclut

$$\langle T, \phi \rangle = 0.$$

7. Soit $\varepsilon > 0$ et soit $n \in \mathbb{N}$. Pour $x \in \mathbb{R}$ quelconque on a

$$|\phi_n(x)-0|=\phi_n(x)\leq \frac{1}{\sqrt{n}}.$$

Ainsi pour tout $n \ge \frac{1}{\varepsilon^2}$ on obtient

$$\phi_n(x) \leq \varepsilon$$
,

ce qui montre la convergence uniforme $\phi_n \rightarrow_n 0$.

¹Techniquement nous avons montré que T et T_m sont d'ordre au plus 1, pour montrer qu'elles ne peuvent pas être d'ordre 0 on peut exhiber des fonctions test similaires à celles que nous avons utilisées pour établir que la k—ème dérivé de la Dirac est d'ordre k.

Par définition de ϕ_n , pour $k \in \mathbb{N}$ quelconque

$$\phi^{(k)}(x) = 0, \quad \forall x \in \mathbf{R} \setminus \left[\frac{1}{n+1}, \frac{1}{n}\right].$$

Ainsi les seuls points du support de T où $\phi_n^{(k)}$ n'est pas forcément nulle sont $\{\frac{1}{n+1},\frac{1}{n}\}$. Comme ϕ est $\mathcal{C}^{\infty}(\mathbf{R})$ sa dérivée à l'ordre k est en particulier continue et donc

$$\phi^{(k)}(\frac{1}{n}) = \lim_{x \to \frac{1}{n}^+} \phi^{(k)}(x) = 0$$

où la limite est prise par la droite et de même

$$\phi^{(k)}(\frac{1}{n+1}) = \lim_{x \to \frac{1}{n+1}^{-}} \phi^{(k)}(x) = 0$$

en prenant la limite par la gauche.

 $\phi_n^{(k)}$ est donc nulle sur le support de T et converge en particulier uniformément vers 0 sur ce dernier par choix arbitraire de $n \in \mathbb{N}$.

8. Soit $m \in \mathbb{N}^*$ et soit $n \geq 1$, on calcule $\langle T_m, \phi_n \rangle$.

$$\langle T_m, \phi_n \rangle = \sum_{k=1}^m \phi_n(\frac{1}{n}) - m\phi_n(0) - \log(m)\phi_n'(0)$$

$$= \sum_{k=1}^m \phi_n(\frac{1}{k}) \quad \text{comme par définition on a } \phi_n(0), \phi_n'(0) = 0$$

$$= \sum_{k=1}^n \frac{1}{\sqrt{n}}$$

$$= \frac{n}{\sqrt{n}}.$$

On en déduit par passage à la limite $m \to \infty$

$$\langle T, \phi_n \rangle = \frac{n}{\sqrt{n}}.$$

9. On remarque que $\phi_n \to_n 0$ uniformément sur **R** et les dérivées k-ème tendent toutes uniformément vers 0 sur le support de T mais contrairement au point 2. on a

$$\langle T, \phi_n \rangle \not\rightarrow_n \langle T, 0 \rangle$$

puisque le premier terme diverge alors que le deuxième vaut 0.

L'hypothèse que les dérivées successives convergent uniformément *au voisinage* du support et non seulement sur ce dernier est donc primordiale.