Lecture 5

- Magnetic measurement
- Impedance measurement

MAGNETIC FIELD

$$\oint \overrightarrow{H} \cdot d\overrightarrow{I} = \int_{S} \overrightarrow{J} \cdot d\overrightarrow{S} \qquad H [A/m]$$

J current density S surface

(ANOTHER) MAGNETIC FIELD

μ = Permeability that is "how much a material can be permeated by H"

B is the concentration of the MAGNETIC FLUX over an area

$$\Phi = \int_{S} \underline{B} \cdot d\underline{S}$$

An interesting property of the magnetic flux

$$\mathbf{v} = -\frac{\mathbf{d}}{\mathbf{dt}} \int_{S} \vec{\mathbf{B}} \cdot \mathbf{d} \vec{S}$$

If you want to measure B you can simply integrate the voltage induced in a search coil, then divide by the area of the coil

$$v = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S}$$

We assume B uniform, so $\phi = B \cdot S$

$$v = -\frac{d}{dt}B.S$$

The amplitude of B is obtained by

$$B = -\frac{1}{S} \int_{t_1}^{t_2} v \cdot dt$$

What about the direction?

HOW TO INTEGRATE A VOLTAGE

I - Passive integrator

$$V_2 = \frac{I}{I + j\omega CR} V_1$$

HOW TO INTEGRATE A VOLTAGE

2 - Active integrator

$$V_2 = \frac{1}{C} \int_{t_1}^{t_2} i_c dt = \frac{1}{C} \int_{t_1}^{t_2} - \frac{V_1}{R} dt$$

HOW TO INTEGRATE A VOLTAGE

3 - Numerically

You digitize the waveform of the voltage and then you sum up the samples multiplied time the sampling time and you obtain the integral of the voltage.

$$B = -\frac{1}{S} \int_{t_1}^{t_2} v \cdot dt$$

Problem 1.

Do I really measure B?

What is missing in this equation?

Problem 2. \rightarrow ?

A search coil is NOT suitable to measure low frequency field

Response of Search Coil Magnetometer

Measurement of DC magnetic field

- I- Hall effect sensor
- 2 Anisotropic MagnetoResistor (AMR)
- 3 Fluxgate

HALL EFFECT SENSOR

$$V = k \cdot F = k \cdot l \cdot B$$

Problem I. How can I pick up the voltage?

I would like to have the contacts as large as possible

but if the contacts are too large they short circuit the current

Problem 2. How can I obtain uniform current?

I would like to have contacts as long as possible

but this would short circuit the voltmeter.

Several shapes provide a compromise

Anisotropic MagnetoResistor (AMR)

The resistance (slightly) changes when a magnetic field deflects its magnetization M

Problem: the characteristic is NOT linear

If the resistance is 800 Ω how can I know if the field is - 50A/m or + 50 A/m? Both of them cause the same drop of resistance!

If the characteristic was at least monotonic I could distinguish positive and negative magnetic field

If I measure 800 Ω , for sure the field is - 50A/m because no other field causes 800 Ω

Monotonic function is not enough.

Large variation of H cause only little variation of R

We need a LINEAR charateristic

- it's monotonic
- the slope (sensitivity) is uniform everywhere

Unfortunately the resistance behave non linearly

How can we get something linear out of this?

I can use only this part of the characteristic:

I shift the characteristic so that it is centered in the linear part

In order to do so, I should rotate the Magnetization M of 45° for no magnetic field applied

We use barber poles to shift the angle between Magnetization and Current

The current flows from a conductive strip to the following conductive strip following the closest distance

In fact, we do not rotate M, we rotate I

Problem: M can "deteriorate" if we expose it to very large magnetic field

AMR sensors must be periodically magnetized to restore full magnetization

Additional problem: the magnetoresistive effect is low!

The resistance changes only a few % of its value at H=0

How can we measure such a resistance?

Back to lecture n. 4., we can use a WHEATSTONE BRIDGE

We use 4 magnetoresistors, connected with opposite sensitivity direction

If H increases

 R_3 (and R_2) increases $\rightarrow V_A$ increases

 R_4 (and R_1) decreases $\rightarrow V_B$ decreases

Finally $V_{OUT} = V_A - V_B$ increases

If they had the same sensitive direction V_{OUT} would not change!

KMZ 51

3 - Fluxgate

I generate a large excitation field H_{ex} using an excitation coil on a magnetic core

Let us assume a sinusoidal Hex and simplified hysteresis curve

we wind a pick-up coil to measure the variation of flux

What happens if I add an additional DC field?

The effective BH loop is shifted by H_{dc}

The first transition occurs earlier

The second transition occurs later

The voltage peaks shift in opposite direction

This shift is typically detected by extracting the 2nd harmonic

In fact, the core is not single a rod.

To suppress first harmonic two rods excited in opposite direction are used

Evolution of double rod to ring core (to reduce demagnetizing factor)

Measurement of BH loop

a) closed (and uniform) specimen

Measurement of BH loop

b) open specimen

H inside the yoke is directly measured in the air gap of the yoke, for example using Hall sensor

MEASUREMENT OF IMPEDANCE

First of all, let's give a model of an impedance

$$R_S + j\omega L_S$$
 $\sim \sim \sim \sim \sim \sim Q = \omega L_S/R_S$
 $L_S R_S$

AC WHEATSTONE BRIDGE

The condition for balanced bridge is still the same

$$\underline{Z}_1 \cdot \underline{Z}_4 = \underline{Z}_2 \cdot \underline{Z}_3$$

to obtain
$$V_{OUT} = 0$$

... but it's a complex equation!

$$\underline{Z}_1 \cdot \underline{Z}_4 = \underline{Z}_2 \cdot \underline{Z}_3$$

I complex equation \rightarrow 2 scalar equations

Real
$$Re[\underline{Z}_1 \cdot \underline{Z}_4] = Re[\underline{Z}_2 \cdot \underline{Z}_3]$$

Imaginary
$$Im[Z_1 \cdot Z_4] = Im[Z_2 \cdot Z_3]$$

Measurement of Capacitance

Schering bridge

$$R_2 \cdot \frac{1}{j\omega C_3} = \left(R_4 + \frac{1}{j\omega C_4}\right) \cdot \left(\frac{1}{\frac{1}{R_1} + j\omega C_1}\right)$$

Solving for real and imaginary part

$$R_4 = \frac{R_2 \cdot C_1}{C_3}$$

$$C_4 = \frac{C_3 \cdot R_1}{R_2}$$

C₁ is variable

R_I is variable

TRANSFORMER BRIDGE

The bridge is balanced if no current flows through the ammeter, that is if the $|_{1}=|_{2}$ or

$$V_1 / Z_1 = V_2 / Z_2$$

AUTOTRANSFORMER

 $V_B = V_A \cdot N_B/N_A$

The voltage can be very finely regulated by using cascade dividers

How does it work?

Each stage is powered by a voltage 10 times lower than the previous stage

At each stage we can select the value of each decimal number

$$V_{out}$$
=0.6+0.02+0.004+0.0003 V = 0.6243 V

C_N, R_N: reference but not variable We change the current acting on the voltage

nx, nc, nR: number of turns of the windings

The bridge is balanced if

$$n_X \cdot \underline{I}_X = n_C \cdot \underline{I}_C + n_R \cdot \underline{I}_R$$

becomes

$$\begin{aligned} &n_X \cdot \underline{V_X} \cdot (G_p + j\omega C_p) = n_C \cdot \underline{V_C} \cdot j\omega C_N + n_R \cdot \underline{V_R} \cdot G_N \\ &n_X \cdot N_X \cdot (G_p + j\omega C_p) = n_C \cdot N_C \cdot j\omega C_N + n_R \cdot N_R \cdot G_N \end{aligned}$$

$$n_X \cdot N_x \cdot (G_p + j\omega C_p) = n_C \cdot N_C \cdot j\omega C_N + n_R \cdot N_R \cdot G_N$$

The unknown resistance and capacitance depend only on the ratio of the transformers

IMPEDANCE TO VOLTAGE CONVERTER

$$\frac{V_2}{Z_N} = -\frac{Z_1}{Z_N} \cdot V_1$$

The very same thing as Resistance to Voltage converter... but complex!

IMPEDANCE TO VOLTAGE CONVERTER

IMPEDANCE TO VOLTAGE CONVERTER

$$\frac{V_{2}}{R_{N}} = -\frac{R_{S}+j\omega L_{S}}{R_{N}} \cdot V_{1}$$

$$R_{S}+j\omega L_{S} = -R_{N} \cdot \frac{V_{2}}{V_{1}}$$

I consider V_1 at phase=0, so Real

$$R_{S}+j\omega L_{S}=-R_{N}\cdot\frac{\frac{V_{2}}{V_{1}}}{L_{S}=-R_{N}\cdot\frac{lm\left(\frac{V_{2}}{V_{1}}\right)}{\omega V_{1}}$$

$$R_{S}=-R_{N}\cdot\frac{Re\left(\frac{V_{2}}{V_{1}}\right)}{V_{1}}$$

$$L_{S}=-R_{N}\cdot\frac{lm\left(\frac{V_{2}}{V_{1}}\right)}{\omega V_{1}}$$

Back to lesson 2 - Controlled rectifier

Shifting the control voltage by $\pi/2$ we measure the imaginary part instead of the real part of the voltage

