IOE511/Math562: Continuous Optimization Methods Homework10

Yiding Ji

10 1 Problem 1

- (a) First, these two problems have the same feasible regions \mathcal{F} . Suppose $x \in \mathcal{F}$, denote $\theta = \frac{1-e^Tc}{n}$, then $\|x-d\|^2 = \|x-c-\theta e\|^2 = (x-c-\theta e)^T(x-c-\theta e) = \|x-c\|^2 + \theta^2\|e\|^2 2\theta e^T(x-c) = \|x-c\|^2 + \theta^2\|e\|^2 2\theta(1-e^Tc)$. Since $\theta^2\|e\|^2 2\theta(1-e^Tc)$ can be viewed as a constant term for x, the objective functions for the two problems only differ by a constant. Thus, the two optimal problems are the same.
- (b) Clearly, $\min \frac{1}{2} ||x d||^2 \ge 0$ and the equality holds when x = d, so as long as $e^T d = 1$, $x^* = d$ is an optimal solution.
- (c) Since the constraints are linear, we can apply KKT conditions. So for optimal x^* , $\exists u, v$, s.t., $e^Tx^* = 1, x^* \geq 0, x^* d + ve u = 0, u \geq 0, u_jx_j^* = 0, \forall j$. So $e^T(x^* d) + ve^Te e^Tu = nv e^Tu = 0$ as $e^Td = 1, e^Tx^* = 1, e^Te = n$. So $v = \frac{e^Tu}{n} \geq 0$ Notice that $x_j^* = u_j v + d_j, \forall j$. If $d_j < 0, x_j^* > 0$, then $u_j = 0, x_k^* = d_j v < 0$, that's the contradiction, so $x_j^* = 0$.

(d)

- (1) Let $d = c + \frac{1 e^T c}{n}e$, if $d \ge 0$, set $x^* = d$ and terminate.
- (2) If $d_j < 0$, set $x_j^* = 0$.
- (3) Reduce components of c and x corresponding to negative components of d.
- (4) Let c be the vector containing only the remaining components of c, n is the number of remaining components. Go back to step 1.

Since the dimension of the problem may be reduced at every iteration, this algorithm should terminate in at most n iterations.

10 2 Problem 2

If C = D, then $S_C(y) = S_D(y), \forall y$.

If $S_C(y) = S_D(y), \forall y$, first we show $C \subseteq D$, by contradiction. Suppose $\exists x' \in C$, s.t., $x' \not\supseteq D$, since D is closed and convex, there exists a hyperplane that strictly separates x' from D. i.e.,

 $\exists y \in \mathbb{R}^n, \alpha \in \mathbb{R}$, s.t., $y^T x > \alpha$ and $y^T x < \alpha, \forall x \in D$. Then we know $S_D(y) = \sup_{x \in D} y^T x \le \alpha$, but $S_C(y) = \sup_{x \in C} y^T x' > \alpha$, and $S_C(y) > S_D(y)$, contradiction. Similarly, we can also show that $D \subseteq C$, so C = D.

3 Problem 3

First,
$$v^* = \sup_{u \ge 0} L^*(u)$$
, where $u \in \mathbb{R}^n$, $L^*(u) = \inf_{x \in X} f(x) + \sum_{i=1}^n u_i g_i(x)$, also $\bar{v}^* = \sup_{\bar{v} \ge 0} \bar{L}^*(\bar{v})$, where $\bar{u} \in \mathbb{R}^r$, $\bar{L}^*(u) = \inf_{x \in \bar{X}} f(x) + \sum_{i=1}^r \bar{u}_i g_i(x)$. By weak duality, $\bar{v}^* \le f^*$.

Then, suppose u is a feasible solution for (D), construct \bar{u} by letting $\bar{u}_i = u_i$ for $i = 1, 2, \dots, r$, then \bar{u} is a feasible solution for (\bar{D}) . So, $L^*(u) = \inf_{x \in X} f(x) + \sum_{i=1}^n u_i g_i(x) \le L^*(u) = \inf_{x \in \bar{X}} f(x) + \sum_{i=1}^n u_i g_i(x) \le \inf_{x \in \bar{X}} f(x) + \sum_{i=1}^r u_i g_i(x) = \bar{L}^*(u) \le \bar{v}^*$. The first inequality is because $\bar{X} \subseteq X$, the second inequality is because $u_i \ge 0, g_i(x) \le 0$. So $\forall u$ feasible for (D), $L^*(u) \le \bar{v}^*$, so $v^* \le \bar{v}^*$.

4 Problem 4

(a) For the first approach, denote the problem as P_1 : $\min f_1(x)$, s.t. $f_j(x) \leq b_j$, $j = 2, \dots, s$, $g_i(x) \leq 0$, $i = 1, \dots, m$.

For the second approach, denote the problem as P_2 : $\min \sum_{j=1}^s w_j f_j(x)$, s.t. $g_i(x) \leq 0, i = 1, \dots, m$.

- (b) Suppose that x' is optimal for P_2 and $b_j = f_j(x')$ for $j = 2, \dots, s$. Prove x' is also optimal for P_1 by contradiction. Suppose that x' is not optimal for P_1 , i.e., $\exists x$, s.t., $f_1(x) < f_1(x')$. Then x is also feasible for P_2 and we have: $displaystyle \sum_{j=1}^s w_j f_j(x) = w_1 f_1(x) + \sum_{j=2}^s w_j f_j(x') \le w_1 f_1(x) + \sum_{j=2}^s w_j f_j(x') < w_1 f_1(x') + \sum_{j=2}^s w_j f_j(x') = \sum_{j=1}^s w_j f_j(x')$. Then x' is not optimal for P_2 , that is the contradiction.
- (c) Suppose \bar{x} is optimal for P_1 , then $\exists (\bar{u}_1, \dots, \bar{u}_m, v_2, \dots, v_s)$, s.t., $\nabla f(\bar{x}) + \sum_{j=2}^s v_j \nabla f_j(\bar{x}) + \sum_{j=1}^m \bar{u}_i \nabla g_i(\bar{x}) = 0$, $f_j(\bar{x}) \leq b_j$, $j = 2, \dots, s, g_i(\bar{x}) \leq 0$, $i = 1, \dots, m$, $(\bar{u}_1, \dots, \bar{u}_m, v_2, \dots, v_s) \geq 0$, $v_j(b_j f_j(\bar{x})) = 0$, $j = 2, \dots, s, \bar{u}_i g_i(\bar{x}) = 0$, $i = 1, \dots, m$.

If
$$\tilde{x}$$
 is optimal for P_2 , then $\exists (\tilde{u}_1, \dots, \tilde{u}_m)$, s.t., $\sum_{j=1}^s w_j \nabla f_j(\tilde{x}_j) + \sum_{i=1}^m \tilde{u}_i \nabla g_i(\tilde{x}) = 0$, $g_i(\tilde{x}) \leq 0$, $i = 1, \dots, m$, $(\tilde{u}_1, \dots, \tilde{u}_m) \geq 0$, $\tilde{u}_i g_i(x) = 0$, $i = 1, \dots, m$.

(d) First, under the conditions of the statement, both P_1 and P_2 are convex problems and KKT conditions are necessary and sufficient. Suppose \bar{x} is optimal for P_1 , then $\exists (\bar{u}_1, \dots, \bar{u}_m, v_2, \dots, v_s)$ satisfies KKT conditions. Let $w_1 = 1$, $w_j = v_j \geq 0$, $j = 2, \dots, s$. Then \tilde{x} and $\tilde{u} = \bar{u}$ satisfy KKT conditions for P_2 . Since KKT conditions are sufficient, \bar{x} is also optimal for P_2 .

5 Problem 5

First, write the Lagrangian dual of the problem: $L(x,v) = \sum_{(i,j) \in A} (\frac{1}{2} R_{ij} x_{ij}^2 - t_{ij} x_{ij}) + \sum_i v_i (\sum_{j:(i,j) \in A} x_{ij} - t_{ij}$

 $\sum_{j:(j,i)\in A} x_{ij}$). Since the constraints are linear, we apply KKT conditions, suppose x_{ij} is the optimal

solution, then $R_{ij}x_{ij} - t_{ij} - v_j + v_i = 0$ and it is just the Ohm's Law. Also, the objective function is convex, so KKT condition is also sufficient for optimality and x_{ij} is a strict and the unique optimal solution of the problem.