SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Mislav Žanić

EFIKASNE IMPLEMENTACIJE PRIORITETNOG REDA

Diplomski rad

Voditelj rada: Goranka Nogo

Zagreb, 2022.

Ovaj diplomski rad obranjen je dana	pred ispitnim povjerenstvom
u sastavu:	
1.	, predsjednik
2.	, član
3.	 , član
Povjerenstvo je rad ocijenilo ocjenom	<u> </u>
	Potpisi članova povjerenstva:
	1.
	2.
	3.

Sadržaj

Sa	adržaj		iv
U	vod		1
1	Fibo	onacci Heap	3
2	Bro	dalov Queue	5
	2.1	Uvod	5
	2.2	Opis ASP-a	5
	2.3	Vodilja	6
	2.4	Opis implementacije	7

Uvod

...

Poglavlje 1 Fibonacci Heap

Poglavlje 2

Brodalov Queue

2.1 Uvod

Apstraktna struktura podataka prezentirana u ovom poglavlju zadovoljava asimptotske granice O(1) za FindMin, Meld, Insert i DecreaseKey, te $O(\log n)$ za DeleteMin. U poglavlju 3.3 opisujem pomoćnu strukturu podataka potrebnu za realizaciju nekih ograničenja Brodalovog reda.

2.2 Opis ASP-a

U ovom potpoglavlju navodim pravila koja Brodalov red treba poštovati između svake dvije operacije, dokazujem tvrdnje koje proizlaze iz tih pravila i objašnjavam okvirnu strukturu Brodalovog reda. Prioritetan red definiramo kao skup od dva stabla T_1 i T_2 . Čvorove korijene stabla T_i označavati ću sa t_i . Dalje navodim invarijante koje struktura podataka treba zadovoljavati.

Definicija 2.2.1 (Invarijante čvorova). *Neka je x čvor Brodalovog reda. Tada za čvor x trebaju vrijediti sljedeće invarijante:*

```
S1: Ako je x list, onda je r(x) = 0,

S2: r(x) < r(p(x)),

S3: Ako r(x) > 0, onda n_{r(x)-1}(x) \ge 2,

S4: n_i(x) \in \{0, 2, ..., 7\},

S5: T_2 = \emptyset ili r(t_1) \le r(t_2).
```

S1 i S2 kažu da je rang lista jednak 0 i da rang čvora x strogo raste prema korijenu. S3 kaže da čvor ranga k > 0 mora imat barem dvoje dijece ranga k - 1. S5 kaže da je T_2

prazno stablo, ili ima rang veči od T_1 S4 kaže da je broj djece ranga i čvora x konstantan i ne smije biti 1. Ne dopuštamo da broj čvorova stabla bude 1 kako bi i dalje vrijedila invarijanta S3 nakon što odrežemo dijecu največeg ranga nekog čvora. $n_i(x) \le 7$ je posljedica konstrukcije koju kasnije objašnjavamo. Iz S1 i S3 slijedi sljedeća lema.

Lema 2.2.2. Neka je x čvor nekog stabla T koje zadovoljava S1 i S3. Podstablo sa korijenom x, ranga r(x) ima barem $2^{r(x)+1} - 1$ čvorova.

Dokaz. Dokaz indukcijom po rangu čvora x.

Baza: r(x) = 0.

Iz S1 slijedi da je x list, pa podstablo sa korijenom u x ima $1 = 2^{0+1} - 1$ čvorova.

Pretpostavka: za čvor x ranga $r(x) = n \in \mathbb{N}$ vrijedi tvrdnja.

Korak:

Neka je x čvor ranga r(x) = n + 1. Tada, po S3, slijedi da x ima barem dvoje dijece ranga n. Tada podstablo sa korijenom u čvoru x ima barem $2(2^{k+1} - 1)$ dijece iz čega slijedi tvrdnja.

Lema 2.2.3. Neka je x čvor ranga r(x) nekog stabla T koje zadovoljava S1-S5 i neka je $n \in \mathbb{N}$ broj čvorova u T. Tada su rang i stupanj čvora x $O(\log n)$.

Dokaz. Dovoljno je tvrdnju pokazat za korijen stabla T. Označimo ga sa t. Iz S1-S4 slijedi da n možemo ogranićiti odozgo sa $7^{r(t)} + 1$ i da se ta granica može positći (svi čvorovi osim listova imaju po 7 djece svakog ranga manjeg od svog ranga). Iz toga slijedi $r(t) \in O(\log n)$, a iz toga i da je stupanj t iz $O(\log n)$. □

Definicija 2.2.4 (Invarijante strukture). *Neka je w_i(x) broj čvorova u W(x) ranga i.*

```
O1: t_1 = \min T_1 \cup T_2,

O2: ako \ y \in V(x) \cup W(x), onda \ y \ge x,

O3: ako \ y \le p(y), onda \ \exists x \ne y \ tako \ da \ y \in W(x) \cup V(x),

O4: w_i(x) \le 6,

O5: ako \ V(x) = (y_{|V(x)|-1}, \dots, y_1, y_0), onda \ r(y_i) \ge \lfloor \frac{i}{\alpha} \rfloor, za \ i = 0, 1, \dots, |V(x)| - 1, gdje \ je \alpha \ konstanta.
```

Definicija 2.2.5 (Invarijante korijena). *Neka je x čvor Brodalovog reda. Tada za čvor x trebaju vrijediti sljedeće invarijante:*

```
R1: n_i(t_j) \in \{2, 3, ..., 7\}, za \ i = 0, 1, ..., r(t_j) - 1, R2: |V(t_1)| \le \alpha r(t_1), R3: ako \ y \in W(t_1), onda \ r(y) < r(t_1).
```

2.3. VODILJA

2.3 Vodilja

U ovom dijelu opisujem pomočnu apstraktnu strukturu podataka *vodilji*. Probleme koje riješavaju vodilje može se opisati ovako.

Definicija 2.3.1 (Problem vodilje). *Pretpostavimo da imamo niz cijelih brojeva* x_n, \ldots, x_1 za koji $\check{z}elimo$ da vrijedi invarijanta $x_i \leq T, T \in \mathbb{Z}, i \in \{1, \ldots, n\}$. Za svaki inkrement nekog od $x_i, i \in \{1, \ldots, n\}$ t.d. $x_i > T$ trebamo O(1) operacija redukcije kojima ponovno uspostavljamo invarijantu.

Definicija 2.3.2. Neka je x_n, \ldots, x_1 proizvoljan niz cijelih brojeva. Operacija redukcije nad $x_i, i \in \{1, \ldots, n-1\}$ definiramo kao dekrement x_i za barem 2 i inkrement x_{i+1} za najviše 1. Za x_n , operaciju redukcije definiramo analogno, bez inkrementa sljedečeg elementa niza.

2.4 Opis implementacije

Sažetak

Ukratko ...

Summary

In this ...

Životopis

Dana ...