Exercices

Exercice 1

Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie pour tout $n\in\mathbb{N}^*$ et tout $x\in[0,2]$ par

$$f_n(x) = \frac{x^n}{1 + x^n}$$

- 1. Étudier la convergence simple de $(f_n)_{n\in\mathbb{N}^*}$ sur [0,2]. Préciser la limite simple éventuelle f de $(f_n)_{n\in\mathbb{N}^*}$ sur [0,2].
- 2. Que remarquez-vous du point de vue de la continuité?

Exercice 2

Soit (f_n) la suite de fonctions définie pour tout $n \in \mathbb{N}$ et tout $x \in [0,1[$ par

$$f_n(x) = n^2 x^n$$

- 1. Étudier la convergence simple de (f_n) sur [0,1[.
- 2. A-t-on $\lim_{n\to+\infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n\to+\infty} f_n(x) dx$?

Exercice 3

Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie pour tout $n\in\mathbb{N}^*$ et tout $x\in\mathbb{R}$ par

$$f_n(x) = \frac{e^{-x\sqrt{n}}}{n}$$

- 1. Étudier la convergence simple de $(f_n)_{n\in\mathbb{N}^*}$ sur \mathbb{R} .
- 2. Montrer que $\int_0^{+\infty} f_n(x) dx$ converge.
- 3. A-t-on $\lim_{n\to+\infty} \int_0^{+\infty} f_n(x) dx = \int_0^{+\infty} \lim_{n\to+\infty} f_n(x) dx$?