

LECTURE 4: ARM CORTEX-M ARCHITECTURE OVERVIEW

Learning Goals

- Introduce about the ARM Cortex M processor.
- Explain some core components in Cortex-M including NVIC,
 SysTick timer and Floating Point Unit.
- Explain about the basic concepts on Cortex-M instruction set.

Table of contents

- General Information about the Cortex-M
- Introduction to the architecture
- Programmer Model
- Instruction Set
- Summary

Table of contents

- General Information about the Cortex-M
- Introduction to the architecture
- Programmer Model
- Instruction Set
- Summary

General Information about the Cortex-M

Development of the ARM Architecture

		<u> </u>	<u>:</u>
v4	v5	v6	v7 >
Halfword and signed halfword / byte support System mode Thumb instruction set (v4T)	Improved interworking CLZ Saturated arithmetic DSP MAC instructions Extensions: Jazelle (5TEJ)	SIMD Instructions Multi-processing v6 Memory architecture Unaligned data support Extensions: Thumb-2 (6T2) TrustZone® (6Z) Multicore (6K) Thumb only (6-M)	Thumb-2 Architecture Profiles 7-A - Applications 7-R - Real-time 7-M - Microcontroller
		Contox 840/840	Cortox 042/044

Cortex M0/M0+
Cortex M1

Cortex M3/M4

General Information about the Cortex-M ARM CORTEX

The ARM Cortex family includes processors based on the three distinct profiles of the ARMv7 architecture.

The A profile for sophisticated, high-end applications running open and complex operating systems

The R profile for real-time systems

The M profile optimized for cost-sensitive and microcontroller applications

General Information about the Cortex-M

Embedded Processors

General Information about the Cortex-M

Cortex-M compatibility

General Information about the Cortex-W

Cortex-M Advantages:

1. Energy efficiency

2. Smaller code

3. Ease of use

4. High performance

General Information about the Cortex-M

Cortex M0

- 32-bit RISC processor
- 3-stage pipeline von
 Neumann architecture
- ARMv6-M architecture
- 16-bit Thumb instruction set with Thumb-2 technology.
- Load-Store Architecture
- 56 Instructions
- Low power support

Table of contents

- General Information about the Cortex-M
- Introduction to the architecture
- Programmer Model
- Instruction Set
- Summary

Simplified Block Diagram

Cortex-M0 Functional Blocks

- ARMv6-M Thumb instruction set
- NVIC: 32 external interrupt inputs
- Debug: 4 HD breakpoints, 2 watchpoints.
- Bus interfaces: 32-bit AMBA-3 AHB-Lite system interface

Memory model

- 32-bit address space
- Virtual memory is not supported in ARMv6-M.
- Instruction fetches are always half-word-aligned
- Data accesses are always naturally aligned

Exception model

- An exception may be an interrupt or a hardware error.
- Each exception has exception number,
 priority number and vector address
- Vector table base address is fixed at 0x00.

Vector Table

System control space

Consists of the following groups:

- CPUID space.
- System control, configuration and status.
- SysTick system timer
- Nested Vectored Interrupt Controller
 (NVIC)

Table of contents

- General Information about the Cortex-M
- Introduction to the architecture
- Programmer Model
- Instruction Set
- Summary

Operation Modes & States

Core Registers

- All registers are 32 bits wide
- 13 general purpose registers
- Registers r0 r7 (Low registers)
- Registers r8 r12 (High registers)
- 3 registers with special meaning/usage
 - Stack Pointer (SP) r13
 - Link Register (LR) r14
 - Program Counter (PC) r15
- Special-purpose registers
 - xPSR shows a composite of the content of
 - APSR, IPSR, EPSR

Special Registers

Special Registers

APSR, IPSR, and EPSR

	31	30	29	28	27	26:25	24	23:20	19:16	15:10	9	8	7	6	5	4:0
xPSR	N	Z	С	٧	σ	ICI/IT	Т		GE*	ICI/IT		Exception Number				

Stack

- Full descending: stack pointer indicates the last stacked item on the stack memory.
- Two stacks, two independent stack pointers.
- Handler mode always uses the MSP (Main Stack Pointer)
- Thread mode can use MSP (Main Stack Pointer) by default, or PSP (Process Stack Pointer).
- In an OS environment, ARM recommends that threads running in Thread mode use the process stack and the kernel and exception handlers use the main stack

Table of contents

- General Information about the Cortex-M
- Introduction to the architecture
- Programmer Model
- Instruction Set
- Summary

- The ARM Architecture is a Load/Store architecture
 - No direct manipulation of memory contents
 - Memory must be loaded into the CPU to be modified, then written back out

Thumb-2 Instruction set

- Variable-length instructions
 - ARM instructions are a fixed length of 32 bits
 - Thumb instructions are a fixed length of 16 bits
 - Thumb-2 instructions can be either 16-bit or 32-bit
- Thumb-2 gives approximately 26% improvement in code density over ARM
- Thumb-2 gives approximately 25% improvement in performance over Thumb

Cortex M0 ISA Overview:

- ARMv6-M supports Thumb-2 technology
 (The ARM instruction set is not supported)
- Thumb-2 technology supports mixed 16-bit/32-bit instructions
- Small number of additional 32-bit instructions supported
- Conditional execution is supported
- Optimized for compilation from C
 - Thumb-2 instructions are not designed to be written by hand
 - Easy to learn due to small number of mnemonics

Instruction Classes

- Branch instructions
- Data-processing instructions
- Load and store instructions
- Status register access instructions
- Miscellaneous instructions

Branch instructions

- B Branch
 - Absolute branch to a target address, relative to Program Counter (PC)
 - +/- 256 bytes range, conditional execution supported
 - +/- 1MB range, no conditional execution supported

- BL Branch with Link
 - Branch to a subroutine Link register is updated
 - +/- 16MB range, relative to Program Counter (PC)

Data Processing Instructions:

- Consist of:
 - Arithmetic: ADD ADC SUB SBC RSB RSC
 - Logical: AND ORR EOR BIC
 - Comparisons: CMP CMN TST TEQ
 - Data movement: MOV MVN
- These instructions only work on registers, NOT memory.
- Syntax:

```
<Operation>{<cond>}{S} Rd, Rn, Operand2
```

- Comparisons set flags only they do not specify Rd
- Data movement does not specify Rn
- Second operand is sent to the ALU via barrel shifter.

Using Barrel Shifter:

Result

Load and store instructions:

LDR STR Word LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed byte load

LDRSH Signed halfword load

- Memory system must support all access sizes
- Syntax:
 - LDR{<cond>}{<size>} Rd, <address>
 - STR{<cond>}{<size>} Rd, <address>

e.g. **LDREQB**

Status Register Access Instructions

MRS/MSR - Move data between a general purpose register and status register

- MRS (Register ← Status Register)
- MSR (Status Register ← Register)

Syntax:

- LDR{<cond>}{<size>} Rd, <address>
- STR{<cond>}{<size>} Rd, <address>

Table of contents

- General Information about the Cortex-M
- Introduction to the architecture
- Programmer Model
- Instruction Set
- Summary

Summary

- ➤ All the ARM Cortex M processors are 32-bit RISC (Reduced Instruction Set Computing) processors. They have:
 - 32-bit registers
 - 32-bit internal data path
 - 32-bit bus interface
- ➤ The Cortex-M processors contain the core of the processor, NVIC, the SysTick timer, and optionally the floating point unit (for Cortex-M4).

➤ All the ARM Cortex -M processors are based on Thumb technology, which allows a mixture of 16-bit and 32-bit instructions to be used within

Question & Answer

Thanks for your attention!

Copyright

- This course including Lecture Presentations,
 Quiz, Mock Project, Syllabus, Assignments,
 Answers are copyright by FPT Software
 Corporation.
- This course also uses some information from external sources and non-confidential training document from Freescale, those materials comply with the original source licenses.