

FACULTY OF HEALTH SCIENCES - SCHOOL OF MEDICINE MSc Health Statistics and Data Analytics

KONSTANTINOS I. BOUGIOUKAS

PHYSICIST, BIOSTATISTICIAN AND RESEARCH METHODOLOGIST

What is the propose of visualization?

1. Analysis

-Using visualizations to gain insight (understanding)

2. Communication

- Passing a message to others (connection)

3. Monitoring

- Tracking information about performance (stewardship)

4. Planning

- Predicting and preparing for the future (foresight)

Visual Processing Stages

Nobel prizes

Goals in first 5'

Vs Zlatan Ibrahimovic

https://www.r-bloggers.com/analyzing-the-greatest-strikers-in-football-ii-visualizing-data/

Chart types

Good data visualisation

Step	Description	Notes
1.	Appropriate plot type for results	Might be a boxplot, a scatterplot, a linear regression fit many options
2.	Plot is well organised	The independent (explanatory) variable is on the x and the dependent (respnse) variable is on the y axis
3.	X and Y axes use correct units	Having proper symbols (for alpha, beta, etc.) and super/subscript where needed
4.	X and Y axes easy to read	Beware awkward fonts and tiny letters
5.	Clear informative legend	It's easy to tell apart what points/lines on the graph represent
6.	Plot is not cluttered	Don't put all results on one plot, give them space to shine
7.	Clear and consistent colour scheme	Stick with the same colours for the same variables, avoid red/green combinations which might look the same to colourblind people
8.	Plot is the right dimensions	Avoid overlapping labels and points/lines which merge together and make your graph longer/wider if needed
9.	Measures of uncertainty where appropriate	Error bars, confidence and credible intervals, remember to say in the caption what they are
10.	Concise and informative caption	Remember to include what the data points show (raw data? Model predictions?), what is the sample size for each treatment, the effect size and what measure of uncertainty accompanies it

The plotting environments in R

What is ggplot2?

 Based on the Grammar of Graphics, a coherent system for describing and building graphs.

 ggplot2 enables you to compose simple to complex graphs by combining independent components.

Basic elements to build a ggplot graph

Data

dataset

Aesthetics

color

position

size

Geometry

points

lines

bars

ggplot()

- Initializes a ggplot object
- Adds layers to create graph
- No defaults, more control

ggplot(dataset, aes(x = var1, y = var2)) + geom_point()

Plot

ggplot() function

Example: scatter plot

```
ggplot(data = dat, mapping = aes(x = gdp_capita, y = cases_per_100k)) +
geom_point()
```


In this case, geom_point()
inherits the x and y aesthetics
from the ggplot() function

Example: scatter plot- Color aesthetic

```
ggplot(dat, aes(x = gdp_capita, y = cases_per_100k)) +
geom_point(aes(color = region))
```


qdp capita

Here, we added **inside** the aes() of geom_point the color aesthetic.

The data of variable **region** mapped to **color** aesthetic of **geom_point**.

Obviously, the qualitative scale was applied automatically by ggplot2

Example: scatter plot- Size aesthetic

```
ggplot(dat, aes(x = gdp_capita, y = cases_per_100k)) +
geom_point(aes(size = tests_per_capita))
```


We can add a third variable tests_per_capita using the size aesthetic

Example: scatter plot- Add a new geom

```
ggplot(dat, aes(x = gdp_capita, y = cases_per_100k)) +
geom_point() +
geom_text_repel(aes(label = country))
```


We can add the name of the **country** for each data point with a new geometry:

geom_text_repel()

Example: scatter plot- Change the scale of the y-axis

We transform the scale to log10 with scale_y_continuous()

Note: Continuous variable *tests_per_capital* mapped to **size** and categorical variable *region* mapped to **color**.

Theme elements

Themes can be used to give plots a consistent customized look to the non-data elements of the plot. Modify a single plot's theme using theme()

Modify theme elements

Confirmed cases per 100,000 inhabitants, GDP per capita, and COVID-19 testing rate by country

May 20, 2021

Example: Animated plots with gganimate

Example: Histogram

Ozone in Chicago Winter 2000

Data: NMMAPS

Geometry: geom_histogram (color + fill)

Example: Violin dotplot

Geometry: geom_violin (color + fill) + geom_point

