GÜÇ VE ENERJİ

4. HAFTA

Bilgisayar Teknolojisi

- Performans iyileştirmeleri
 - Yarı iletken teknolojideki ilerlemeler
 - Boyut, saat hızı
 - Bilgisayar mimarisindeki iyileştirmeler
 - HLL derleyicileri, UNIX
 - RISC mimarileri
 - Tüm ilerlemeler:
 - Hafif bilgisayarlar
 - Verimli yorumlanan programlama dilleri

Tek işlemci Performansı

Mimarideki mevcut trendler

- Komut seviyeli paralellik (ILP) ilerleyemedi
 - Tek işlemci performansının ilerlemesi 2003 yılında durdu
- Yeni performans modelleri
 - Veri seviyeli paralellik (Data-level parallelism DLP)
 - İş parçacığı seviyeli paralellik (Thread-level parallelism -TLP)
 - İstek seviyeli paralellik (Request-level parallelism -RLP)
- Tümü uygulamaların yeniden tasarlanmasını gerektirir

Ne tarafa Doğru Gidiyoruz?

- Modern eğilimler
- Saat hızı iyileştirmeleri yavaşlıyor
 - güç sınırlamaları
- tek çekirdekli bir işlemciyi daha iyi hale getirmek zor
- Çok-çekirdekli sistemler: her yeni işlemci üretimi daha fazla çekirdek içeriyor
- daha iyi programlama modelleri ve verimli çoklu iş parçacığı uygulamalarına ihtiyaç
- daha iyi bellek hiyerarşilerine ihtiyaç
- daha iyi enerji verimliliğine ihtiyaç
- Bazı kullanımlarda, zayıf çekirdekler çekici
- Düşük veri hareketi

Paralellik

- Uygulamalardaki paralellik sınıfları:
 - Veri seviyeli paralellik (Data-Level Parallelism -DLP)
 - Görev seviyeli paralellik (Task-Level Parallelism -TLP)
- Mimari tabanlı paralellik sınıfları:
 - Talimat seviyeli paralellik (Instruction-Level Parallelism - ILP)
 - Vektör mimarileri / Grafik işlemciler (GPUs)
 - İş parçacığı seviyeli paralellik
 - İstek seviyeli paralellik

Flynn Taksonomisi

- Tek talimat akışı, tek veri akışı (Single instruction stream, single data stream -SISD)
- Tek talimat akışı, çoklu veri akışı (Single instruction stream, multiple data streams - SIMD)
 - Vector mimarileri
 - Multimedya ilaveleri
 - Grafik işlemciler
- Çoklu talimat akışı, tek veri akışı (Multiple instruction streams, single data stream - MISD)
 - Ticari uygulama yok
- Çoklu talimat akışı, çoklu data akışı (Multiple instruction streams, multiple data streams - MIMD)
 - Sıkı-bağlı MIMD
 - Zayıf- bağlı MIMD

<u>Teknolojideki Trendler</u>

- Entegre devre teknolojisi
 - Transistor yoğunluğu: 35%/yıl
 - Kalıp boyutu (Die size): 10-20%/yıl
 - Tüm entegre: 40-55%/yıl
- DRAM kapasitesi : 25-40%/yıl (yavaşlıyor)
- Flash kapasitesi: 50-60%/yış
 - 15-20X bir başına DRAM'dan daha ucuz
- Magnetic disk teknolojisi: 40%/yıl
 - 15-25X bit başına daha ucuz vs. Flash
 - 300-500X bit başına daha ucuz vs. DRAM

Bandgenişliği ve Gecikme

- Bant genişliği veya verim
 - Belirli bir zamanda yapılan toplam iş
 - İşlemciler için 10.000-25.000X iyileştirme
 - Bellek ve diskler için 300-1200X iyileştirme
- Gecikme veya tepki süresi
 - Bir etkinliğin başlaması ile tamamlanması arasındaki süre
 - İşlemciler için 30-80X iyileştirme
 - Bellek ve diskler için 6-8X iyileştirme

Bandgenişliği ve Gecikme

Log-log plot of bandwidth and latency milestones

Transistörler ve iletişim

- Nitelik (feature) boyutu
 - X veya Y boyutunda minimum transistör veya tel boyutu
 - 1971'de 10 mikron 2024'de .002 mikron
 - Transistör performansı doğrusal olarak artar
 - Kablo gecikmesi nitelik boyutu ile iyileşmez!
 - Entegre yoğunluğu kuadratik olarak artar

```
MOSFET scaling
(process nodes)
10 µm - 1971
 6 µm - 1974
 3 \, \mu m - 1977
 1.5 \mu m - 1981
 1 µm - 1984
800 nm - 1987
600 nm - 1990
350 nm - 1993
250 nm - 1996
180 nm - 1999
130 nm - 2001
 90 nm - 2003
 65 nm - 2005
 45 nm - 2007
 32 nm - 2009
 22 nm - 2012
 14 nm - 2014
 10 nm - 2016
  7 \text{ nm} - 2018
  5 nm - ~2020
Future
  3 nm - ~2021
  2 nm - ~2024
```

Güç ve Enerji

- Problem: gücü al, gücü ver
- Termal Tasarım Gücü (TDP)
 - Sürdürülebilir güç tüketimini tanımlar
 - Güç kaynağı ve soğutma sistemi tasarımı için kullanılır
 - En yüksek güçten daha küçük, ortalama güç tüketiminden daha yüksek
- Saat hızı güç tüketimini kısıtlamak için çalışma anında düşürülebilir
- Görev başına enerji çoğu kez daha iyi bir ölçüttür

Dinamik Enerji ve Güç

- Dinamik enerji:
 - Transistor 0 -> 1 veya 1 -> 0 anahtarlanır
 - ½ x Kapasitif Yük x Gerilim²

- Dinamik Güç:
 - ½ x Kapasitif Yük x Gerilim² x Anahtarlama Frekansı
- Saat hızını düşürmek gücü düşürür, enerjiyi değil

Trendler

- Transistör ve voltaj başına kapasitans azalıyor, ancak transistörlerin sayısı daha hızlı bir şekilde artıyor; dolayısıyla saat frekansı sabit tutulmalıdır
- Güç kaybı da artıyor;
- Güç kaybı
 - transistör sayısı, kaçak akım ve sağlanan voltajın bir fonksiyonudur

<u>Enerji</u>

 Bugün yüksek performanslı işlemcilerde güç tüketimi 100-150W arasında

Enerji = güç x zaman= (dynpower + lkgpower) x time

Güç

- Intel 80386 tüketim~ 2 W
- 3.3 GHz Intel
 Core i7 tüketimi
 130 W
- Isı 1.5 x 1.5 cm
 boyutlu çipten
 uzaklaştırılmalıdır
- Hava ile soğutmanın sınırı

<u>Gücü Düşürme</u>

- Gücü düşürme teknikleri:
 - Bir şeyi hakkıyla yapmama
 - Dinamik voltaj-frekans ayarı
 - DRAMve diskler için düşük güç durumu
 - Overclocking, çekirdeklerin kapatılması

Statik Güç

- Statik güç tüketimi
 - Akım_{static} x Güç
 - Transistör sayısı ile büyür
 - Düşürmek için: power gating

Maliyetteki Trendler

- Maliyetler, öğrenme eğrisi sayesinde düşrüldü
 - verim

- DRAM: fiyat maliyeti yakından izler
- Mikroişlemciler: fiyat hacme bağlıdır
 - Hacim iki kat arttıkça 10% daha az

Entegre devre maliyeti

Entegre devre

$$Cost of integrated circuit = \frac{Cost of die + Cost of testing die + Cost of packaging and final test}{Final test yield}$$

Cost of die =
$$\frac{\text{Cost of wafer}}{\text{Dies per wafer} \times \text{Die yield}}$$

Dies per wafer =
$$\frac{\pi \times (\text{Wafer diameter/2})^2}{\text{Die area}} - \frac{\pi \times \text{Wafer diameter}}{\sqrt{2 \times \text{Die area}}}$$

Bose-Einstein formülü:

Die yield = Wafer yield $\times 1/(1 + Defects per unit area \times Die area)^N$

- Birim alan başına kusur(Defects per unit area) = 0.016-0.057 kusur/ cm2 (2010)
- N = proses karmaşıklık çarpanı = 11.5-15.5 (40 nm, 2010)

Example

Some microprocessors today are designed to have adjustable voltage, so a 15% reduction in voltage may result in a 15% reduction in frequency. What would be the impact on dynamic energy and on dynamic power?

Answer

Because the capacitance is unchanged, the answer for energy is the ratio of the voltages

$$\frac{\text{Energy}_{\text{new}}}{\text{Energy}_{\text{old}}} = \frac{(\text{Voltage} \times 0.85)^2}{\text{Voltage}^2} = 0.85^2 = 0.72$$

which reduces energy to about 72% of the original. For power, we add the ratio of the frequencies

$$\frac{Power_{new}}{Power_{old}} = 0.72 \times \frac{(Frequency \ switched \times 0.85)}{Frequency \ switched} = 0.61$$

shrinking power to about 61% of the original.

Die- Kalıp-entegre bloğu?

Photograph of an Intel Skylake microprocessor die,

Wafer-silikon devre levhası

This 200mmdiameter wafer of RISC-V dies was designed by SiFive

Ornek

Example

Find the number of dies per 300 mm (30 cm) wafer for a die that is 1.5 cm on a side and for a die that is 1.0 cm on a side.

Answer When die area is 2.25 cm²:

Dies per wafer =
$$\frac{\pi \times (30/2)^2}{2.25} - \frac{\pi \times 30}{\sqrt{2 \times 2.25}} = \frac{706.9}{2.25} - \frac{94.2}{2.12} = 270$$

Because the area of the larger die is 2.25 times bigger, there are roughly 2.25 as many smaller dies per wafer:

Dies per wafer =
$$\frac{\pi \times (30/2)^2}{1.00} - \frac{\pi \times 30}{\sqrt{2 \times 1.00}} = \frac{706.9}{1.00} - \frac{94.2}{1.41} = 640$$

Example

Find the die yield for dies that are 1.5 cm on a side and 1.0 cm on a side, assuming a defect density of 0.047 per cm² and N is 12.

Answer

The total die areas are 2.25 and 1.00 cm². For the larger die, the yield is

Die yield =
$$1/(1 + 0.047 \times 2.25)^{12} \times 270 = 120$$

For the smaller die, the yield is

Die yield =
$$1/(1 + 0.047 \times 1.00)^{12} \times 640 = 444$$

The bottom line is the number of good dies per wafer. Less than half of all the large dies are good, but nearly 70% of the small dies are good.

Güvenilirlik

- Modül güvenirliği
 - Ortalama hata zamanı (Mean time to failure -MTTF)
 - Ortalama tamir zamanı (Mean time to repair -MTTR)
 - Hatalar arasındaki ortalama zaman (Mean time between failures - MTBF) = MTTF + MTTR
 - Erişilebilirlik = MTTF / MTBF

Güvenilirlik ve Erişilebilirlik

- Bir sistem aşağıdaki iki şey arasında değişir:
 - Servis başarısı: servis şartnameyi yerine getiriyor
 - Servis kesintisi: servisler şartnameyi yerine getiremiyor
- Bu geçiş, arızalar ve restorasyonlardan kaynaklanır
- Güvenilirlik, sürekli servis başarısını ölçer
- Genellikle ortalama arıza süresi (MTTF) olarak ifade edilir.
- Erişilebilirlik, servisin şartnamenin yerine getirdiği kısmını ölçer
- MTTF / (MTTF + MTTR) olarak hesaplanır

Example Assume a disk subsystem with the following components and MTTF:

- 10 disks, each rated at 1,000,000-hour MTTF
- 1 ATA controller, 500,000-hour MTTF
- 1 power supply, 200,000-hour MTTF
- 1 fan, 200,000-hour MTTF
- 1 ATA cable, 1,000,000-hour MTTF

Using the simplifying assumptions that the lifetimes are exponentially distributed and that failures are independent, compute the MTTF of the system as a whole.

Answer The sum of the failure rates is

Failure rate_{system} =
$$10 \times \frac{1}{1,000,000} + \frac{1}{500,000} + \frac{1}{200,000} + \frac{1}{200,000} + \frac{1}{1,000,000}$$

= $\frac{10 + 2 + 5 + 5 + 1}{1,000,000 \text{ hours}} = \frac{23}{1,000,000} = \frac{23,000}{1,000,000,000 \text{ hours}}$

or 23,000 FIT. The MTTF for the system is just the inverse of the failure rate

$$MTTF_{system} = \frac{1}{Failure \, rate_{system}} = \frac{1,000,000,000 \, hours}{23,000} = 43,500 \, hours$$

or just under 5 years.

100 W'da %100 kapasitede çalışan bir işlemcinin %20'si kaçak güç olarak harcanmaktadır. Bu işlemci %50 kapasitede çalıştığında toplam güç sarfiyatı ne olur?

100 W'da %100 kapasitede çalışan bir işlemcinin %20'si kaçak güç olarak harcanmaktadır. Bu işlemci %50 kapasitede çalıştığında toplam güç sarfiyatı ne olur?

```
Total power = dynamic power + leakage power
= 80W x 50% + 20W
= 60W
```

Güç vs. Enerji

- Enerji bize sabit bir görevi yerine getirmenin gerçek "maliyetini" anlatır
- Güç (enerji / zaman) kısıtlamalar demektir;
 sadece güç dağıtımını veya soğutma çözümünü
 maksimize edecek kadar hızlı çalışabilir
- A işlemcisi B işlemcisinden 1,2 kat fazla güç tüketirse, tüketir ancak bir görevi % 30 daha kısa sürede bitirirse,

Bağıl enerjisi 1,2 X 0,7 = 0,84 olur. Proc-A daha iyidir.

A işlemcisi B işlemcisinden 1,4 kat fazla güç tüketir, ancak görevi % 20 daha kısa sürede bitirirse, hangi işlemciyi seçersiniz:

- (a) Eğer güç dağıtım kısıtlamaları varsa
- (b) Operasyon başına enerjiyi en aza indirmeye çalışıyorsanız?
- (c) Cevap sürelerini en aza indirmeye çalışıyorsanız?

A işlemcisi B işlemcisinden 1,4 kat fazla güç tüketir, ancak görevi % 20 daha kısa sürede bitirirse, hangi işlemciyi seçersiniz:

(a) Eğer güç kısıtlamaları varsa

Proc-B

(b) Operasyon başına enerjiyi en aza indirmeye çalışıyorsanız?

Proc-A 1.4x0.8 = 1.12 kat daha çok enerji harcar

(c) Cevap sürelerini en aza indirmeye çalışıyorsanız?

Proc-A daha hızlıdır, ancak Proc-B'nin frekansını (ve gücünü) artırabilir ve Proc-A'nın tepki süresini eşleştirebiliriz (yine de güç ve enerji açısından daha iyi olur)

Gücü ve enerjiyi düşürmek

- Aktif olmayan transistörler kapatılabilir (kaybı azaltır)
- Tipik durumu belirle ve etkinlik belirli bir eşiği aştığında
- DFS: Dinamik frekans ölçeklendirme yalnızca frekansı ve dinamik gücü azaltır, ancak enerjiye artırır
- DVFS: Dinamik voltaj ve frekans ölçeklendirme :
 - voltaj ve frekansı (örneğin)% 10 azalttığımızda; bir program % 8 yavaşlayabilir,
 - ancak dinamik gücü % 27 azaltabilir, toplam gücü % 23 azaltabilir, toplam enerjiyi% 17 azaltabilir
 - Not: voltaj düşmesi → transistör yavaşlaması → frekans düşmesi

- 3 GHz'de çalışan A işlemcisi 80 W dinamik güç ve 20 W statik güç tüketir. Bir programı 20 saniyede tamamlar.
- a) Frekansı% 20 oranında düşürürsem enerji tüketimi ne olur?
- b) Frekansı ve voltajı% 20 oranında düşürürsem enerji tüketimi nedir?

- 3 GHz'de çalışan A işlemcisi 80 W dinamik güç ve 20 W statik güç tüketir. Bir programı 20 saniyede tamamlar.
- a) Frekansı% 20 oranında düşürürsem enerji tüketimi ne olur?

```
Yeni dinamik güç = 64W; Yeni statik güç = 20W
Yeni çalışma zamanı = 25 sn
Enerji = 84 W x 25 sn= 2100 Joules
```

b) Frekansı ve voltajı% 20 oranında düşürürsem enerji tüketimi nedir?

```
Yeni DP = 41W; Yeni statik güç= 16W;
Yeni çalışma zamanı= 25 sn; Enerji = 1425 Joules
```

<u>Diğer Teknoloji Trendleri</u>

- DRAM yoğunluğu yılda % 40-60 artar, gecikme süresi 10 yılda % 33 azalır,
- Bant genişliği gecikme azaldıkça iki kat daha hızlı iyileşir
- Disk yoğunluğu her yıl % 100 artar, DRAM'a benzer gecikme süresi de artar
- DRAM ve sabit disk sürücüleri arasında bir köprü sağlayabilen NVRAM teknolojileri
- Ayrıca, güvenilirlik konusundaki artan endişeler (transistörler daha küçük olduğundan, düşük voltajlarda çalışıyor ve çok fazla var)

Maliyet

- Maliyet birçok faktör tarafından belirlenir: hacim, verim, üretim olgunluğu, işleme adımları, vb.
- Önemli bir belirleyici: çip alanı
- Küçük alan→ wafer başına daha fazla çip
- Küçük alan → herhangi bir kusur durumunda daha küçük bir alan zayi olur, yani verim artar
- Kabaca söylemek gerekirse, alanın yarısı = maliyetin üçte biridir