Faculté des Sciences de Rabat

Année Universitaire 2021-2022

Master IPS (Sécurité & Cryptographie)

Département d'Informatique

Série de TD n° 2 Chiffrement de Feistel

Exercice:1

un processus de Feistel permet de chiffrer un message M de 2n bits (on considère en général des messages de 64 ou 128 bits).

- M est découpé en deux parties L₀ et R₀ de longueur n (parties gauche et droite du message)
- A l'aide d'une fonction f_1 de $\{0,1\}^n$ vers $\{0,1\}^n$, les parties L_0 et R_0 sont transformées en

$$L_1 = R_0 \text{ et } R_1 = L_0 \oplus f_1(R_0)$$

- 1) Montrer que La transformation $(L_0, R_0) \rightarrow (L_1, R_1)$ est bijective et déterminer sa réciproque .
- 2) En déduire que pour tout entier n>1 le schèma de Feistel à n rondes est une bijection qui associe à chaque (L₀, R₀) un et seul (Ln, Rn)

Exercice:2

On considère le diagramme de Feistel, sur des mots binaires de 4 bits à 2 rondes où les fonctions f₁ et f₂ sont données dans le tableau ci-dessous :

$$f_1 \mid 00 \mapsto 11, \quad 01 \mapsto 00, \quad 10 \mapsto 11, \quad 11 \mapsto 00$$

 $f_2 \mid 00 \mapsto 10, \quad 01 \mapsto 01, \quad 10 \mapsto 00, \quad 11 \mapsto 11$

- Crypter le mot 1111 en utilisant ce diagramme.
- Trouver tous les mots de 4 bits qui sont invariants par ce diagramme de Feistel.
- Encrypter le message binaire suivant par ce diagramme de Feistel en utilisant le mode CBC avec pour IV le mot 0000 :

1000 1101 0011 1110