第八章 欧氏空间

1. 设 $\alpha_1, \alpha_2, \dots, \alpha_m$ 是欧式空间 V 中的 m 个向量, 矩阵

$$G(\alpha_1, \alpha_2, \cdots, \alpha_m) = \begin{vmatrix} (\alpha_1, \alpha_1) & (\alpha_1, \alpha_2) & \cdots & (\alpha_1, \alpha_m) \\ (\alpha_2, \alpha_1) & (\alpha_2, \alpha_2) & \cdots & (\alpha_2, \alpha_m) \\ \cdots & \cdots & \cdots & \cdots \\ (\alpha_m, \alpha_1) & (\alpha_m, \alpha_2) & \cdots & (\alpha_m, \alpha_m) \end{vmatrix}$$

称为 $\alpha_1, \alpha_2, \dots, \alpha_m$ 的 Gram 行列式. 证明: $G(\alpha_1, \alpha_2, \dots, \alpha_m) = 0$ 的充分必要条件是 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性相关.

证明: (法一)必要性. 设 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$. 对 $i = 1, 2, \cdots, n$, 将 α_i 与该式做内积, 得

$$\begin{cases} (\alpha_1, \alpha_1)k_1 + (\alpha_1, \alpha_2)k_2 + \dots + (\alpha_1, \alpha_m)k_m = 0 \\ (\alpha_2, \alpha_1)k_1 + (\alpha_2, \alpha_2)k_2 + \dots + (\alpha_2, \alpha_m)k_m = 0 \\ \dots \\ (\alpha_m, \alpha_1)k_1 + (\alpha_m, \alpha_2)k_2 + \dots + (\alpha_m, \alpha_m)k_m = 0 \end{cases}$$

若 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关,则 $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0$ 有非零解. 因此上述线性方程组有非零解,从而其系数矩阵的行列式为零,即 $G(\alpha_1,\alpha_2,\cdots,\alpha_m)=0$.

充分性. 若 $G(\alpha_1, \alpha_2, \dots, \alpha_m) = 0$,则 $G(\alpha_1, \alpha_2, \dots, \alpha_m)$ 相应的矩阵的列向量必线性相关,不失一般性,不妨设第 m 个列向量可由其余 m-1 个列向量线性组合表示,即

$$\begin{pmatrix} (\alpha_1, \alpha_m) \\ (\alpha_2, \alpha_m) \\ \vdots \\ (\alpha_m, \alpha_m) \end{pmatrix} = a_1 \begin{pmatrix} (\alpha_1, \alpha_1) \\ (\alpha_2, \alpha_1) \\ \vdots \\ (\alpha_m, \alpha_1) \end{pmatrix} + a_2 \begin{pmatrix} (\alpha_1, \alpha_2) \\ (\alpha_2, \alpha_2) \\ \vdots \\ (\alpha_m, \alpha_2) \end{pmatrix} + \dots + a_{m-1} \begin{pmatrix} (\alpha_1, \alpha_{m-1}) \\ (\alpha_2, \alpha_{m-1}) \\ \vdots \\ (\alpha_m, \alpha_{m-1}) \end{pmatrix},$$

故

$$\begin{pmatrix} (\alpha_1, \alpha_m - a_1\alpha_1 - a_2\alpha_2 - \dots - a_{m-1}\alpha_{m-1}) \\ (\alpha_2, \alpha_m - a_1\alpha_1 - a_2\alpha_2 - \dots - a_{m-1}\alpha_{m-1}) \\ \vdots \\ (\alpha_m, \alpha_m - a_1\alpha_1 - a_2\alpha_2 - \dots - a_{m-1}\alpha_{m-1}) \end{pmatrix} = 0,$$

即

$$(\alpha_i, \alpha_m - a_1\alpha_1 - a_2\alpha_2 - \dots - a_{m-1}\alpha_{m-1}) = 0, i = 1, 2, \dots, m,$$

从而

$$(v_m - a_1\alpha_1 - a_2\alpha_2 - \dots - a_{m-1}\alpha_{m-1}, \alpha_m - a_1\alpha_1 - a_2\alpha_2 - \dots - a_{m-1}\alpha_{m-1}) = 0,$$

由内积定义即得 $v_m - a_1\alpha_1 - a_2\alpha_2 - \cdots - a_{m-1}\alpha_{m-1} = 0$, 即 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关.

(法二) 设 ξ_1,ξ_2,\cdots,ξ_n 是 n 维欧氏空间 V 的一个标准正交基, X_1,X_2,\cdots,X_m 分别是 α_i 在 ξ_1,ξ_2,\cdots,ξ_n 下的坐标,则 $(\alpha_i,\alpha_j)=X_i^TX_j,\ i,j=1,2,\cdots,m$. 令 $A=(X_1,X_2,\cdots,X_m)$,则 $G(\alpha_1,\alpha_2,\cdots,\alpha_m)=A^TA$. 因 $A\in\mathbb{R}^{n\times m}$,因此 $r(A^TA)=r(A)$,进而 $G(\alpha_1,\alpha_2,\cdots,\alpha_m)=0$

的充分必要条件是 $r(A^TA)=r(A)< m$ 的充分必要条件是 A 的列向量线性相关的充分必要条件是 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关. \square

2. 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是欧氏空间 V 的 n 个线性无关的向量, $\gamma_1, \gamma_2, \dots, \gamma_n$ 是这组向量经过正交化所得到的向量组。求证: $G(\alpha_1, \alpha_2, \dots, \alpha_n) = G(\gamma_1, \gamma_2, \dots, \gamma_n) = (\gamma_1, \gamma_1)(\gamma_2, \gamma_2) \dots (\gamma_n, \gamma_n)$.

证明: (法一) 首先, 因 $\gamma_1, \gamma_2, \cdots, \gamma_n$ 是正交向量组, 所以 $(\gamma_i, \gamma_j) = 0, i \neq j$, 从而

$$G(\gamma_1, \gamma_2, \dots, \gamma_n) = \begin{vmatrix} (\gamma_1, \gamma_1) \\ (\gamma_2, \gamma_2) \\ \vdots \\ (\gamma_n, \gamma_n) \end{vmatrix} = (\gamma_1, \gamma_1)(\gamma_2, \gamma_2) \cdots (\gamma_n, \gamma_n).$$

其次,由 Schmidt 正交化方法知: $\alpha_1 = \gamma_1, \ \alpha_2 = a_{21}\gamma_1 + \gamma_2, \ \cdots, \ \alpha_n = a_{n1}\gamma_1 + a_{n2}\gamma_2 + \cdots + \gamma_n$. 记 $A = (a_{ij})_{n \times n}$, 其中 $a_{ii} = 1, a_{ij} = 0, 1 \le j < i \le n$, 则 A 是单位上三角阵.直接计算有

$$(\alpha_i, \alpha_j) = (\sum_{s=1}^n a_{is} \gamma_s, \sum_{t=1}^n a_{jt} \gamma_t) = \sum_{s=1}^n a_{is} a_{js} (\gamma_s, \gamma_s).$$

FILL $G(\alpha_1, \alpha_2, \dots, \alpha_n) = (\det A^T)G(\gamma_1, \gamma_2, \dots, \gamma_n)(\det A) = G(\gamma_1, \gamma_2, \dots, \gamma_n).$

(法二) 设 $\xi_1, \xi_2, \dots, \xi_n$ 是 V 的一个标准正交基, α_i 在该基下的坐标向量是 X_i , 则 $(\alpha_i, \alpha_j) = X_i^T X_j$, $(i = 1, 2, \dots, n)$. 因此 $G(\alpha_1, \alpha_2, \dots, \alpha_n) = \det((X_1, X_2, \dots, X_n)^T (X_1, X_2, \dots, X_n))$.

记 γ_i 在 $\xi_1, \xi_2, \dots, \xi_n$ 下的坐标向量为 Y_i . 从 Schmidt 正交化方法中可得到: $\gamma_1 = \alpha_1, \gamma_2 = a_{21}\alpha_1 + \alpha_2, \dots, \gamma_n = a_{n1}\alpha_1 + \dots + \alpha_n$. 因此

$$(Y_1, Y_2, \dots, Y_n) = (X_1, X_2, \dots, X_n)A, A = \begin{pmatrix} 1 & a_{21} & \dots & a_{n1} \\ 0 & 1 & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

从而

$$G(\gamma_1, \gamma_2, \dots, \gamma_n) = \det((Y_1, Y_2, \dots, Y_n)^T (Y_1, Y_2, \dots, Y_n))$$

$$= \det(A^T (X_1, X_2, \dots, X_n)^T (X_1, X_2, \dots, X_n)A)$$

$$= \det((X_1, X_2, \dots, X_n)^T (X_1, X_2, \dots, X_n)) = G(\alpha_1, \alpha_2, \dots, \alpha_n).$$

又因 $\gamma_1, \gamma_2, \dots, \gamma_n$ 是两两正交的,则 $G(\gamma_1, \gamma_2, \dots, \gamma_n)$ 是对角阵,故

$$G(\gamma_1, \gamma_2, \cdots, \gamma_n) = (\gamma_1, \gamma_1)(\gamma_2, \gamma_2) \cdots (\gamma_n, \gamma_n).$$

3. 设 V 是 n 维实列向量组成的欧氏空间 (内积取为标准内积), 设有 n 个未知数 n 个方程式的非齐次线性方程组 $AX=\beta$, 求证:上述方程组有解的充分必要条件是向量 β 与齐次线性方程组 $A^TX=0$ 的解空间正交.

证明: (法一) 充分性. 设 r(A) = r, $A^TX = 0$ 的解空间 U 的基为 $\eta_1, \eta_2, \dots, \eta_{n-r}$. 令矩阵 $B = (\eta_1, \dots, \eta_{n-r})$, 则 $A^TB = 0$, 进而 $B^TA = 0$, 结合 A 的秩为 r, 得 U^{\perp} 为 A 的列向量生成的子空 间. 由设 $\beta \in U^{\perp}$, 则 $r(A, \beta) = r(A)$, 所以 $AX = \beta$ 有解.

必要性. 若 $AX = \beta$ 有解,则 $r(A,\beta) = r(A)$,从而 β 属于 A 的列向量生成的子空间. 注意到 U^{\perp} 为 A 的列向量生成的子空间,所以 $\beta \in U^{\perp}$,即 β 属于齐次线性方程组 $A^{T}X = 0$ 的解空间的正交补空间.

(法二) 将矩阵 A 按列分块为 $A=(A_1,A_2,\cdots,A_n),\ r(A)=r$. 设 $\eta_1,\ \eta_2,\ \cdots,\ \eta_{n-r}$ 为 $U=\{X|A^TX=0\}$ 的一个基. 记 $W=\langle A_1,A_2,\cdots,A_n\rangle,\$ 可证 $U^T=W$. 事实上,由 U 的定义知每个 A_i 均与 $\eta_j(j=1,2,\cdots,n-r)$ 正交,因此 $W\subseteq U^T$. 又 $\dim U^T=r=r(A)=\dim W,$ 故 $U^T=W$. 从 而 $AX=\beta$ 有解的充分必要条件是 $\beta\in W$ 的充分必要条件是 $\beta\in U^T$. \square

4. 设 U 是 n 维欧式空间 V 的子空间,有 $V=U\bigoplus U^{\perp}$,对于任意的 $\alpha\in V$, $\alpha=\beta+\gamma$,其中 $\beta\in U$ 称为 α 在 U 的正投影, $\gamma\in U^{\perp}$,求证:对于 U 中任意的 $\beta'\neq\beta$,有 $|\alpha-\beta|<|\alpha-\beta'|$.

证明: (法一) $V=U\bigoplus U^{\perp}$, 设 ξ_1,ξ_2,\cdots,ξ_r 是 U 的一个标准正交基; $\xi_{r+1},\xi_{r+2},\cdots,\xi_n$ 是 U^{\perp} 的一个标准正交基. 则对任意的 $\alpha\in V$,

$$\alpha = \beta + \gamma = \sum_{i=1}^{r} a_i \xi_i + \sum_{i=r+1}^{n} a_i \xi_i, \ a_i = (\alpha, \xi_i), \ |\alpha - \beta|^2 = \sum_{i=r+1}^{n} a_i^2.$$

对任意的 $\beta = \beta' \in V$, $\beta' = b_1 \xi_1 + \cdots + b_r \xi_r$, 且至少有一个 $b_i \neq a_i$, 因此

$$|\alpha - \beta'|^2 = |\sum_{i=1}^r (a_i - b_i)\xi_i|^2 + \sum_{i=r+1}^n a_i^2 = \sum_{i=1}^r (a_i - b_i)^2 + \sum_{i=r+1}^n a_i^2 > |\alpha - \beta|^2$$
.

(法二) 对任意的 $\beta \neq \beta' \in U$, $0 \neq \beta - \beta' \in U$, $\gamma \in U^{\perp}$, 所以由已知 $\alpha = \beta + \gamma$ 及勾股定理知 $|\alpha - \beta'|^2 = |(\beta - \beta') + \gamma|^2 = |\beta - \beta'|^2 + |\gamma|^2 > |\gamma|^2 = |\alpha - \beta|^2$. \square

注: 本题说明向量 α 和 V 的子空间 U 的最短距离为 α 在 U^T 的正投影的长度.

5. 证明: 在 R^3 中向量 (x_0, y_0, z_0) 到平面 $U = (x, y, z) \in R^3 \mid ax + by + cz = 0$ 的最短距离等于

$$\frac{|ax_0 + by_0 + cz_0|}{\sqrt{a^2 + b^2 + c^2}}.$$

证明: $U = \{(x,y,z) | ax + by + cz = 0\}$, 则 $U^T = \langle (a,b,c) \rangle$, 及 $\xi = \frac{(a,b,c)}{\sqrt{a^2 + b^2 + c^2}}$ 是 U^T 的一个标准 正交基. 由复习题 5 知,所求最短距离为 (x_0,y_0,z_0) 在 U^T 的正投影 γ 的长度, $\gamma = ((x_0,y_0,z_0),\xi)\xi$,故所求最短距离为 $\frac{|ax_0+by_0+cz_0|}{\sqrt{a^2+b^2+c^2}}$.

6. 设 $A \neq n$ 阶实可逆矩阵,求证: A 可分解为 A = QT, 其中 Q 是正交阵, T 是主对角线上的元素 均大于零的上三角阵,且这样的分解是唯一的.

证明:存在性. 将 A 按列分块为 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$. 因 A 可逆,故 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是线性无关向量组,可用 Schmidt 法将 α_i 正交化,再将其标准化得 β_i ,整理得

$$\begin{cases} \beta_1 = c_{11}\alpha_1 \\ \beta_2 = c_{21}\alpha_1 + c_{22}\alpha_2 \\ \dots \\ \beta_n = c_{n1}\alpha_1 + c_{n2}\alpha_2 + \dots + c_{nn}\alpha_n \end{cases}$$

其中 c_{ii} 为实数且 $c_{ii} > 0$. 用矩阵形式表示为

$$(\beta_1, \beta_2, \dots, \beta_n) = A \begin{pmatrix} c_{11} & c_{21} & \dots & c_{n1} \\ 0 & c_{22} & \dots & c_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & c_{nn} \end{pmatrix},$$

即 $(\beta_1, \beta_2, \dots, \beta_n) = AC$, $Q = (\beta_1, \beta_2, \dots, \beta_n)$ 为正交阵,所以 A = QT, 其中 $T = C^{-1}$. 因为 C 是主对角元为正的实上三角阵,故 T 也是主对角元大于 0 的上三角阵.

唯一性.若有两个分解 $A=QT=Q_1T_1$,则 $Q^{-1}Q_1=TT_1^{-1}$.一方面正交阵的逆仍是正交阵,两个正交阵的积也是正交阵,所以 $Q^{-1}Q_1(=TT_1^{-1})$ 是正交阵.另一方面上三角阵之积也是上三角阵,所以 $(Q^{-1}Q_1=)TT_1^{-1}$ 是上三角阵.而上三角阵若为正交阵则必是对角阵且对角元为 ± 1 ,但 TT_1^{-1} 的对角元均为正,因此 $Q^{-1}Q_1=TT_1^{-1}=I$.故 $T=T_1$, $Q=Q_1$,即 A=QT 的分解唯一. \square

7. 设 V_1 , V_2 是 n 维欧氏空间 V 的子空间.

- $(1) (V_1^{\perp})^{\perp} = V_1;$
- $(2) V_1 \subseteq V_2, \ \ \ \ V_2^{\perp} \subseteq V_1^{\perp};$
- (3) $(V_1 + V_2)^{\perp} = V_1^{\perp} \cap V_2^{\perp}$;
- (4) $(V_1 \cap V_2)^{\perp} = V_1^{\perp} + V_2^{\perp}$.

证明: (1) 一方面, $V = (V_1^{\perp}) \oplus (V_1^{\perp})^{\perp}$, 故 $\dim(V_1^{\perp})^{\perp} = n - \dim(V_1^{\perp}) = \dim V_1$. 另一方面,对任意的 $u_1 \in V_1$, $u \in V_1^{\perp}$, $(u_1, u) = 0$, 故 $V_1 \subseteq (V_1^{\perp})^{\perp}$, 从而 $(V_1^{\perp})^{\perp} = V_1$.

- (2) 对任意的 $u \in V_2^{\perp}$, 任意的 $u_2 \in V_2$, 有 $(u, u_2) = 0$. 又已知 $V_1 \subseteq V_2$, 任意的 $u_1 \in V_1 \subseteq V_2$, $(u, u_1) = 0$. 因而 $u \in V_1^{\perp}$, 从而 $V_2^{\perp} \subseteq V_1^{\perp}$.
- (3) 依题意,对任意的 $u \in (V_1 + V_2)^{\perp}$, $v_1 + v_2 \in V_1 + V_2$, 总有 $(u, v_1 + v_2) = 0$. 显然 $v_2 = 0 \in V_2$, 上 式即为对任意的 $v_1 \in V_1$, 总有 $(u, v_1) = 0$, 因此 $u \in V_1^{\perp}$. 同理, $u \in V_2^{\perp}$, 因此 $(V_1 + V_2)^{\perp} \subseteq V_1^{\perp} \cap V_2^{\perp}$.

另一方面,对任意的 $v \in V_1^{\perp} \cap V_2^{\perp}$, $u_1 + u_2 \in V_1 + V_2$, 有 $(v, u_1) = 0$, $(v, u_2) = 0$. 从而 $(v, u) = (v, u_1) + (v, u_2) = 0$,于是 $v \in (V_1 + V_2)^{\perp}$,即 $V_1^{\perp} \cap V_2^{\perp} \subseteq (V_1 + V_2)^{\perp}$.综上所述,成立 $(V_1 + V_2)^{\perp} = V_1^{\perp} \cap V_2^{\perp}$.

- $(4) 由 (1) 及 (3), 我们可得 <math>(V_1^{\perp} + V_2^{\perp})^{\perp} = (V_1^{\perp})^{\perp} \cap (V_2^{\perp})^{\perp} = V_1 \cap V_2,$ 从而有 $(V_1 \cap V_2)^{\perp} = V_1^{\perp} + V_2^{\perp}.$
 - 8. 设 φ 是 n 维欧式空间 V 的对称变换. U 是 φ 不变子空间, 则 U^{\perp} 也是 φ 不变子空间.

证明: (法一) 设 $\gamma_1,\gamma_2,\cdots,\gamma_m$ 是 U 的一个标准正交基,将其扩为 V 一个标准正交基 $\gamma_1,\gamma_2,\cdots,\gamma_n$. 则 $U^T=\langle\gamma_{m+1},\gamma_{m+2},\cdots,\gamma_n\rangle$. 由已知 U 是 φ - 不变子空间,则

$$\varphi(\gamma_1, \gamma_2, \dots, \gamma_n) = (\gamma_1, \gamma_2, \dots, \gamma_n) \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}.$$

又因为 φ 是对称变换,故 $\left(egin{array}{cc} A & C \\ 0 & B \end{array} \right)$ 是对称阵,从而 C=0,所以 U^\perp 也是 φ — 不变子空间.

(法二) 对任意的 $\alpha \in U^{\perp}$,往证 $\varphi(\alpha) \in U^{\perp}$. 事实上,对任意的 $\beta \in U$,因 U 是 φ — 不变子空间,故 $\varphi(\beta) \in U$. 又因 φ 是对称变换,所以 $(\varphi(\alpha),\beta) = (\alpha,\varphi(\beta)) = 0$,故 $\varphi(\alpha) \in U^{\perp}$,即 U^{\perp} 也是 φ — 不变子空间. \square

9. 设 φ 是欧式空间 V 的正交变换, U 是 φ - 不变子空间,则 U^{\perp} 也是 φ - 不变子空间.

证明: (法 -) 设 $\xi_1, \xi_2, \cdots, \xi_m$ 为 U 的一个标准正交基,将其扩为 V 的一个标准正交基 $\xi_1, \xi_2, \cdots, \xi_n$, 则 $U^\perp = \langle \xi_{m+1}, \cdots, \xi_n \rangle$, $V = U \bigoplus U^\perp$. 由假设 U 是 φ — 不变子空间,从而 $\varphi(\xi_1, \xi_2, \cdots, \xi_n) = (\xi_1, \xi_2, \cdots, \xi_n) \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$. 又因为 φ 是正交变换,则 $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ 为正交阵,即 $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}^{-1} = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}^T$,直接计算即得 B = 0,因此 U^\perp 也是 φ — 不变子空间.

(法二) 设 ξ_1,ξ_2,\cdots,ξ_m 为 U 的一个标准正交基,将其扩为 V 的一个标准正交基 ξ_1,ξ_2,\cdots,ξ_n ,则 $U=\langle \xi_1,\xi_2,\cdots,\xi_m\rangle,U^\perp=\langle \xi_{m+1},\cdots,\xi_n\rangle.$ 因为 φ 正交,从而 $\varphi(\xi_1),\varphi(\xi_2),\cdots,\varphi(\xi_n)$ 是 V 的一个标准正交基. 又因为 U 是 φ — 不变子空间,所以 $\varphi(\xi_1),\varphi(\xi_2),\cdots,\varphi(\xi_m)\in U$,且由正交知它们线性无关,个数为 U 的维数,因此是 U 的一个基. 此外, $\varphi(\xi_{m+1}),\varphi(\xi_{m+2}),\cdots,\varphi(\xi_n)$ 与 $\varphi(\xi_1),\varphi(\xi_2),\cdots,\varphi(\xi_m)$ 均正交,故 $\varphi(\xi_{m+1}),\varphi(\xi_{m+2}),\cdots,\varphi(\xi_n)\in U^\perp$,从而 U^\perp 也是 φ — 不变子空间.

(法三) 设 ξ_1,ξ_2,\cdots,ξ_m 为 U 的一个标准正交基,将其扩为 V 的一个标准正交基 ξ_1,ξ_2,\cdots,ξ_n . 因 φ 是正交变换,因此 $\varphi(\xi_1),\varphi(\xi_2),\cdots,\varphi(\xi_n)$ 也是 V 的一个标准正交基.又 U 是 φ — 子空间,因此 $\varphi(\xi_1),\varphi(\xi_2),\cdots,\varphi(\xi_m)\in U$,注意到它们正交,因此线性无关且个数为 U 的维数,故 $\varphi(\xi_1),\varphi(\xi_2),\cdots,\varphi(\xi_m)$ 构成 U 的一个基.

对任意 $\alpha \in U^{\perp}$, $\beta \in U$, $\beta = \sum_{i=1}^{m} a_i \varphi(\xi_i)$, 注意到 φ 是正交变换, 因此

$$(\varphi(\alpha), \beta) = (\varphi(\alpha), \sum_{i=1}^{m} a_i \varphi(\xi_i)) = \sum_{i=1}^{m} a_i (\varphi(\alpha), \varphi(\xi_i)) = \sum_{i=1}^{m} a_i (\alpha, \xi_i) = 0,$$

故 $\varphi(\alpha) \in U^{\perp}$, 这就证明了 U^{\perp} 也是 φ - 不变子空间.

注: 该部分证明也可改为证明对 $i=1,2,\cdots,m, (\varphi(\alpha),\varphi(\xi_i))=(\alpha,\xi_i)=0.$ □

10. 已知 $\alpha_1 = (1, -2, 1)^T$, $\alpha_2 = (-1, a, 1)^T$ 依次是三阶不可逆实对阵 A 的属于特征值 $\lambda_1 = 1, \lambda_2 = -1$ 的特征向量. 求

- (1) A;
- (2) $A^{2010}\beta$, $\sharp \neq \beta = (1,1,1)^T$.

解: (1) 因实对称阵属于不同特征值的特征向量正交,因此 $\alpha_1^T\alpha_2=0$ 得 a=0. 又 A 是不可逆矩阵,因此必有特征值 0,属于 0 特征值的特征向量和 α_1 , α_2 正交,计算得 $\alpha_3=(1,1,1)^T$ 是 0 特征值的一个特征

向量. 将
$$\alpha_1$$
, α_2 , α_3 单位化得正交矩阵 $U = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ -\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}$, 使得 $U^TAU = \text{diag}\{1, -1, 0\}$,

即

$$A = U \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} U^T = \begin{pmatrix} -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \end{pmatrix}.$$

- (2) 因 β 是 A 的属于 0 特征值的特征向量, 故 $A\beta = 0$, 进而 $A^{2010}\beta = 0$.
- 11. 设三阶实对称阵 A 的特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2$. 又 $\alpha_1 = (1, -1, 1)^T$ 是 A 的属于 λ_1 的一个特征向量,记 $B = A^5 4A^3 + E$.
 - (1) 验证 α_1 是 B 的特征向量, 并求 B 的全部特征值和特征向量;
 - (2) 求矩阵 B.

解: (1) $A\alpha_1 = \lambda_1 \alpha_1$, $B = A^5 - 4A^3 + E$, 知 B 的特征值为 -2, 1, 1.

 $B\alpha_1=(A^5-4A^3+E)\alpha_1=-2\alpha_1$. 所以 B 的属于特征值 -2 的特征向量是 $k_1\alpha_1$, 其中 k_1 为非零实数.

因 B 是对称阵,故 B 属于 1 的特征向量和 α_1 正交,直接计算得 $\alpha_2 = (1,1,0)^T$, $\alpha_3 = (-1,0,1)^T$,故 B 的属于特征值 1 的特征向量是 $k_2\alpha_2 + k_3\alpha_3$,其中 k_2 , k_3 是不全为零的实数.

12. 设矩阵
$$A = \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix}$$
, $\beta = (1,1,-2)^T$. 已知线性方程组 $AX = \beta$ 有解但不唯一,试求:

- (1) a 的值;
- (2) 正交阵 Q, 使得 Q^TAQ 为对角阵.

解: (1) 因为 $AX = \beta$ 有解但不唯一,则 $\det A = -(a+2)(a-1)^2 = 0$,从而 a 应取值 -2 或 1. 又 β 是 $AX = \beta$ 的解,故 $r(A) = r(A, \beta)$,从而 a 只能取值 -2.

(2) β 与 AX = 0 的解空间正交,解得 A 的特征值为 $\lambda_1 = 0, \lambda_2 = 3, \lambda_3 = -3$,特征向量为 $\alpha_1 = (1,1,1)^T, \alpha_2 = (-1,0,1)^T, \alpha_3 = (1,-2,1)^T$. Schmidt 正交化方法中可得到 $\gamma_1 = (\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})^T,$ $\gamma_2 = (-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})^T, \gamma_3 = (\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$. 即 $Q = (\gamma_1,\gamma_2,\gamma_3)$,使得 Q^TAQ 为对角阵.

13. 设

$$A = \left(\begin{array}{ccc} 2 & 0 & 1\\ 0 & 2 & a\\ 1 & 1 & b \end{array}\right),$$

已知 $\alpha = (1,1,1)^T$ 是 A 的特征向量.

- (1) 求 a, b 的值及特征向量 α 所对应的特征值;
- (2) 求 A 的全部特征值和特征向量;
- (3) 问 A 是否可对角化? 若是, 求正交阵 Q, 使得 $Q^{-1}AQ$ 为对角阵.

解: (1) 由已知条件 α 是 A 的属于特征值 λ_0 的特征向量,则 $A\alpha = \lambda_0 \alpha$,有 $\lambda_0 = 3$, a = 1, b = 1.

- (2) A 的特征值为 $\lambda_1=0, \lambda_2=2, \lambda_3=3$. $\alpha_1=(-1,-1,2)^T, \alpha_2=(1,-1,0)^T, \alpha_3=(1,1,1)^T$ 是 A 的特征向量,因此的属于特征值 1,2,3 的所有特征向量分别是 $k_1\alpha_1, k_2\alpha_2, k_3\alpha_3$,其中 k_1,k_2,k_3 是任意非零实数.
- (3) A 是实对称阵,则 A 可对角化. α_1 , α_2 , α_3 是不同特征值的特征向量,已正交,将它们单位化后得: $\gamma_1 = (-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})^T$, $\gamma_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)^T$, $\gamma_3 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^T$. 令 $Q = (\gamma_1, \gamma_2, \gamma_3)$, 则 $Q^T A Q$ 为对角阵.

14. 设 φ 是 n 维欧式空间上的线性变换,证明: φ 是对称变换的充分必要条件是 φ 有 n 个两两正交的特征向量.

证明: 必要性. 设 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是 V 的一个标准正交基, φ 是对称变换, 则 φ 在 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 的矩阵是实对称阵,所以存在正交阵 U,使得 $U^TAU = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$,其中 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 就 是 A 的特征值. 令 $(\beta_1, \beta_2, \cdots, \beta_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n)U$,则 $\beta_1, \beta_2, \cdots, \beta_n$ 也是标准正交向量组,且 $\varphi(\beta_1, \beta_2, \cdots, \beta_n) = (\beta_1, \beta_2, \cdots, \beta_n)U^TAU = (\beta_1, \beta_2, \cdots, \beta_n)\operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$,所以 $\varphi(\beta_i) = \lambda_i\beta_i (i=1,2,\cdots,n)$,即 $\beta_1, \beta_2, \cdots, \beta_n$ 是 φ 的 n 个两两正交的特征向量.

充分性. 设 φ 有 n 个两两正交的特征向量 $\beta_1,\beta_2,\cdots,\beta_n,$ $\varphi(\beta_i)=\lambda_i\beta_i,$ $i=1,2,\cdots,n.$ 将 $\beta_i,i=1,2,\cdots,n$ 单位化后为 $\alpha_i=\frac{\beta_i}{|\beta_i|},$ $i=1,2,\cdots,n,$ 则 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 V 的一个标准正交基,且 $\varphi(\alpha_i)=\lambda_i\alpha_i,$ 从而

$$\varphi(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}.$$

显然 $\operatorname{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}$ 是对称阵. 上述关系说明 φ 在标准正交基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的矩阵是对称阵, 因此 φ 是对称变换. \square

15. 设 A,B 是 \mathbb{R} 上的 n 阶对称阵,且 AB=BA. 求证存在正交阵 Q, 使得 Q^TAQ,Q^TBQ 同时为对角阵.

证明: (法一) 由 A 为 n 阶对称阵, 则存在正交阵 U, 使得: $U^TAU = \mathrm{diag}\{\lambda_1 E_{r_1}, \lambda_2 E_{r_2}, \cdots, \lambda_t E_{r_t}\}$, 其中 $\lambda_1, \lambda_2, \cdots, \lambda_t$ 为 A 的所有互异特征值. 由已知 AB = BA, 得 $U^TAUU^TBU = U^TBUU^TAU$. 将 U^TBU 做分块

$$U^T B U = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1t} \\ B_{21} & B_{22} & \cdots & B_{2t} \\ \vdots & \vdots & & \vdots \\ B_{t1} & B_{t2} & \cdots & B_{tt} \end{pmatrix}, \text{ \sharp \neq μ $\neq $r_i \times r_j$ } \text{ f \sharp p \in π \in a \in B_{t1} \in B_{t2} \in a \in B_{tt} \in $B_$$

直接计算得 $B_{ij}=0$ $(i \neq j, i, j=1, 2, \cdots, t)$. 注意到 U 是正交阵,B 是对称阵,因此 U^TBU 是对称阵,进而 B_{ii} 均为对称阵.对每个 B_{ii} ,存在正交阵 P_i ,使得 $P_i^TB_{ii}P_i$ 是对角阵 D_i ,且 $P_i^T\lambda_iE_{r_i}P_i=\lambda_iE_{r_i}$. 令 $Q=U\mathrm{diag}\{P_1,P_2,\cdots,P_t\}$,则 Q^TAQ,Q^TBQ 均为对角阵.

(法二) 对矩阵的阶数用归纳法.

当 n=1 时, 结论成立.

归纳假设结论对 n-1 阶成立.

当 n 阶时,因 AB = BA,且 A,B 是 $\mathbb R$ 上的 n 阶对称阵,所以存在公共的单位特征向量 $X_1 \in \mathbb R^n$,使得 $AX_1 = \lambda_1 X_1$, $BX_1 = \mu_1 X_1$.将 X_1 扩为标准内积空间 $\mathbb R^n$ 的标准正交基 X_1, X_2, \cdots, X_n .记 $P = (X_1, X_2, \cdots, X_n)$,则 P 是正交阵,且 $P^TAP = \begin{pmatrix} \lambda_1 & \alpha \\ 0 & A_1 \end{pmatrix}$, $P^TBP = \begin{pmatrix} \mu_1 & \beta \\ 0 & B_1 \end{pmatrix}$.注意 到 A,B 实对称,因此 P^TAP , P^TBP 实对称,从而 $\alpha = \beta = 0$, A_1 , B_1 是 n-1 阶实对称阵.又由 AB = BA 及 P 是正交阵,计算可得 $A_1B_1 = B_1A_1$.由归纳假设得存在 n-1 阶正交阵 P_1 使得 $P_1^{-1}A_1P_1$, $P_1^{-1}B_1P_1$ 为对角阵.令 $Q = P\begin{pmatrix} 1 & 0 \\ 0 & P_1 \end{pmatrix}$,则 Q 为正交阵,且 Q^TAQ , Q^TBQ 均为对角阵.

(法三) 将 A, B 视为 \mathbb{R}^n 的线性变换 φ , ψ , 则由已知条件知 φ , ψ 是对称变换,且 $\varphi\psi = \psi\varphi$. 命题转换为证明:存在 V 标准正交基 $\eta_1, \eta_2, \cdots, \eta_n$, 使得 φ 和 ψ 在该基下的矩阵均为对角矩阵.

n=1 时显然成立. 归纳假设结论对小于 n 者成立.

因 φ 是对称变换, 所以存在特征值 $\lambda_1 \in \mathbb{R}$ 及相应特征子空间 V_1 . 显然, V_1 是 φ — 子空间. 若 $\dim V_1 = n$, 结论显然成立. 下设 $\dim V_1 < n$.

设 $\gamma_1, \gamma_2, \dots, \gamma_m$ 是 V_1 的一个标准正交基,将其扩为 \mathbb{R}^n 一个标准正交基 $\gamma_1, \gamma_2, \dots, \gamma_n$. 则 $V_1^T = \langle \gamma_{m+1}, \gamma_{m+2}, \dots, \gamma_n \rangle$. 因为 V_1 是 φ 一不变子空间,则

$$\varphi(\gamma_1, \gamma_2, \dots, \gamma_n) = (\gamma_1, \gamma_2, \dots, \gamma_n) \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}.$$

又因为 φ 是对称变换,故 $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ 是对称阵,从而 $C=0,\,A^T=A,\,B^T=B,\,$ 表明 $\varphi|_{V_1}$ 和 $\varphi|_{V_1^\perp}$ 分别是 V_1 和 V_1^\perp 的对称变换.

因为 $\varphi\psi=\psi\varphi$, 因此 V_1 也是 $\psi-$ 子空间,且由 ψ 是对称变换,同理可得 $\psi|_{V_1}$ 和 $\psi|_{V_1^{\perp}}$ 分别是 V_1 和 V_1^{\perp} 的对称变换. 从而 $\varphi|_{V_1^{\perp}}\psi|_{V_1^{\perp}}=\psi|_{V_1^{\perp}}\varphi|_{V_1^{\perp}}$.

由归纳假设存在 U 的标准正交基 $\eta_1,\eta_2,\cdots,\eta_m$, 使得 $\varphi|_U$ 和 $\psi|_U$ 在该基下的矩阵分别为对角矩阵 D_1 和 S_1 . 同理存在 U^\perp 的标准正交基 $\eta_{m+1}+\eta_{m+2},\cdots,\eta_n$, 使得 $\varphi|_{U^\perp}$ 和 $\psi|_{U^\perp}$ 在该基下的矩阵分别为对角矩阵 D_2 和 S_2 . 从而 $\eta_1,\eta_2,\cdots,\eta_m,\eta_{m+1}+\eta_{m+2},\cdots,\eta_n$ 是 V 的标准正交基,且 φ 和 ψ 在该基下的矩阵为对角阵 $\mathrm{diag}\{D_1,D_2\}$ 和 $\mathrm{diag}\{S_1,S_2\}$. \square

16. 设 $\xi_1, \xi_2, \dots, \xi_n$ 和 $\eta_1, \eta_2, \dots, \eta_n$ 是 n 维欧氏空间 V 的两个标准正交基. 证明: 如果存在正交变换 φ 使得 $\varphi(\xi_1) = \eta_1$,则

$$\langle \varphi(\xi_2), \cdots, \varphi(\xi_n) \rangle = \langle \eta_2, \cdots, \eta_n \rangle.$$

证明: 因为 $\xi_1, \xi_2, \dots, \xi_n$ 是n 维欧氏空间V 的两个标准正交基, φ 是正交变换,因此 $\varphi(\xi_1), \varphi(\xi_2), \dots, \varphi(\xi_n)$ 也是V 的标准正交基,进而 $\langle \varphi(\xi_1) \rangle^{\perp} = \langle \varphi(\xi_2), \dots, \varphi(\xi_n) \rangle$. 因为 $\eta_1, \eta_2, \dots, \eta_n$ 是标准正交基,所以 $\langle \eta_1 \rangle^{\perp} = \langle \eta_2, \dots, \eta_n \rangle$. 又由已知 $\varphi(\xi_1) = \eta_1$,所以

$$\langle \varphi(\xi_2), \cdots, \varphi(\xi_n) \rangle = \langle \varphi(\xi_1) \rangle^{\perp} = \langle \eta_1 \rangle^{\perp} = \langle \eta_2, \cdots, \eta_n \rangle.$$

17 (1) 设 u, v 是欧氏空间 V 中两个不同的单位向量, 求证: 必存在镜面反射 φ , 使 $\varphi(u) = v$.

(2) 证明 n 维欧氏空间中任一正交变换均可表示一系列镜面反射的乘积.

证明: (1) 令 $e = \frac{u-v}{|u-v|}$,定义 φ 如下: $\varphi(X) = X - 2(e,X)e$,则 φ 是镜面反射. 注意到 (u,u) = (v,v) = 1,我们有 $|u-v|^2 = (u-v,u-v) = (u,u) + (v,v) - 2(u,v) = 2 - 2(u,v)$. $\varphi(u) = u - 2(e,u)e = u - 2(\frac{u-v}{|u-v|},u)\frac{u-v}{|u-v|} = u - 2\frac{1-(u,v)}{|u-v|^2}(u-v) = u - 2\frac{1-(u,v)}{2-2(u,v)}(u-v) = v$.

(2) (法一) 设 ξ 是 n 维欧氏空间 V 的正交变换,则存在 V 的一个标准正交基 $\eta_1, \eta_2, \cdots, \eta_n$,使得 ξ 在该基下的矩阵是 $\operatorname{diag}\{E_r, -E_s, \begin{pmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{pmatrix}, \cdots, \begin{pmatrix} \cos\theta_t & -\sin\theta_t \\ \sin\theta_t & \cos\theta_t \end{pmatrix}\}$. 记 $l_j = s + t + 2j$.

$$A = \begin{pmatrix} -1 & \\ & E_{n-1} \end{pmatrix}^{2}, B_{i} = \begin{pmatrix} E_{r+i-1} & \\ & -1 & \\ & E_{n-i} \end{pmatrix}, i = 1, 2, \dots, s$$

$$C_{2j-1} = \begin{pmatrix} E_{l_{j}-2} & \\ & -1 & \\ & E_{n-l_{j}+1} \end{pmatrix}, C_{2j} = \begin{pmatrix} E_{l_{j}-2} & \\ & -\cos\theta_{j} & \sin\theta_{j} \\ & \sin\theta_{j} & \cos\theta_{j} \end{pmatrix}, j = 1, 2, \dots, t.$$

取 ψ , σ_i , τ_j 使得他们在 $\eta_1, \eta_2, \cdots, \eta_n$ 下的矩阵分别为 A, B_i , C_j , $(i=1,2,\cdots,s,j=1,2,\cdots,2t)$, 则 ψ , σ_i , τ_j 均为镜面反射变换,且 $\varphi = \psi \psi \sigma_1 \cdots \sigma_s \tau_1 \cdots \tau_{2t}$.

(法二) 对维数 n 用归纳法. n=1 时,正交变换 ξ 或是恒等变换,或是 $\xi(X)=-X$. 后者已是镜面反射,而 1=(-1)(-1),即恒等变换是两个镜面反射之积,故结论成立. 现假定结论对 n-1 成立. 设 V 是 n 维欧氏空间, ξ 是 V 的正交变换. 设 e_1,e_2,\cdots,e_n 是 V 的一个标准正交基,因为 $|\xi(e_1)|=|e_1|=1$,由 (1) 知存在镜面反射 ψ ,使 $\psi\xi(e_1)=e_1$. ξ , ψ 都是正交变换,故 $\psi\xi$ 也是正交变换,于是 $V_1=e_1^\perp$ 是 $\psi\xi$ 的不变子空间,且 $(\psi\xi)|_{V_1}$ 是正交变换。由归纳假设,存在 V_1 的一系列镜面反射 $\psi_1,\psi_2,\cdots,\psi_k$,使得 $\psi\xi=\psi_1\psi_2\cdots\psi_k$. ψ_i 可以扩张到 V 上,满足 $\psi_i(e_1)=e_1$. 不难验证得到的线性变换仍是镜面反射.于是 $\xi=\psi^{-1}\psi_1\psi_2\cdots\psi_k$. 因为镜面反射的逆仍是镜面反射(事实上就是它自己),故结论成立. \square

18. 设 Q 是正交阵. 证明: 存在正交阵 S, 使得 $Q = S^3$.

证明: Q 是正交阵,则存在正交阵 P,使得 $P^TQP = \operatorname{diag}\{E_r, -E_s, A_1, \cdots, A_t\}$,其中 A_i 形如 $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$ 的二阶实矩阵.即 $Q = P\operatorname{diag}\{E_r, -E_s, A_1, \cdots, A_t\}P^T$.直接计算知 $E_r = E_r^3$, $-E_s = (-E_s)^3$.注意到 $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}^n = \begin{pmatrix} \cos\theta\theta & -\sin\theta\theta \\ \sin\theta & \cos\theta\theta \end{pmatrix}$,令 $B_i = \begin{pmatrix} \cos\frac{\theta_i}{3} & -\sin\frac{\theta_i}{3} \\ \sin\frac{\theta_i}{3} & \cos\frac{\theta_i}{3} \end{pmatrix}$,则 $B_i^3 = A_i$,因此只要取 $S = P\operatorname{diag}\{E_r, E_s, B_1, B_2, \cdots, B_r\}P^T$,就有 $Q = S^3$. \square