Aula 4 Planos Tangentes e Aproximações Lineares

MA211 - Cálculo II

Marcos Eduardo Valle

Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Motivação

Considere o paraboloide elíptico dado por $z = -2x^2 - y^2$.

Suponha que desejamos estudar a figura próximo do ponto P(1, 1, -3).

A medida que damos zoom, vemos:

A medida que damos mais zoom, vemos:

E com mais zoom ainda, vemos:

Aparentemente, observamos um plano!

Planos Tangentes

Suponha que a superfície S é dada pelo gráfico de z = f(x, y), em que f tem derivadas parciais f_x e f_y contínuas. Seja $P = (x_0, y_0, z_0)$ um ponto em S.

Vamos deduzir a equação do plano tangente a S em P.

A equação de qualquer plano passando por $P = (x_0, y_0, z_0)$ é

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0,$$

ou ainda, supondo $C \neq 0$, obtemos

$$z-z_0=a(x-x_0)+b(y-y_0).$$
 (1)

A intersecção do plano tangente com o plano $y = y_0$, fornece

$$z-z_0=a(x-x_0).$$

Agora, essa reta é também tangente a superfície S ao londo da curva C_1 obtida pela intersecção com o plano $y=y_0$. Logo,

$$a=f_{x}(x_{0},y_{0}).$$

Analogamente, devemos ter

$$b=f_{V}(x_{0},y_{0}).$$

Plano Tangente

Suponha que f seja uma função de duas variáveis com derivadas parciais de primeira ordem contínuas. A equação do plano tangente à superfície z=f(x,y) no ponto $P=(x_0,y_0,z_0)$ é dada por

$$z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0).$$

Linearização e Aproximação Afim

A função afim (transformação linear transladada)

$$L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0),$$

é denominada **linearização** de f em (x_0, y_0) . A linearização fornece uma **aproximação afim** de f para pontos (x, y) próximos de (x_0, y_0) .

Determine o plano tangente ao paraboloide elíptico $z = -2x^2 - y^2$ no ponto P = (1, 1, -3).

Determine o plano tangente ao paraboloide elíptico $z = -2x^2 - y^2$ no ponto P = (1, 1, -3).

Resposta: A equação do plano tangente é z = -4x - 2y + 3. A linearização é L(x, y) = -4x - 2y + 3.

A função

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$

cujo gráfico é

possui derivadas parciais f_x e f_y , mas elas não são contínuas. A equação $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ não fornece o plano tangente.

Função Diferencial

Uma função f das variáveis x e y é **diferenciável em** (x_0, y_0) se ela pode ser bem aproximada por um plano em pontos próximos de (x_0, y_0) . Formalmente, temos:

Definição 2 (Função Diferenciável)

Uma função f é diferenciável em (x_0, y_0) se existem a e b tais que tal que o erro

$$E(x,y) = f(x,y) - [f(x_0,y_0) + a(x-x_0) + b(y-y_0)]L(x,y),$$

dado pela diferença entre f e uma aproximação afim satisfaz

$$\lim_{(x,y)\to(x_0,y_0)}\frac{E(x,y)}{\|(x,y)-(x_0,y_0)\|}=0.$$

Teorema 3 (Condição Suficiente para Diferenciabilidade)

Se as derivadas parciais f_x e f_y existirem perto de (x_0, y_0) e forem contínuas em (x_0, y_0) , então f é diferenciável em (a, b). Nesse caso,

$$f(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + E(x,y),$$

$$com \lim_{(x,y)\to(x_0,y_0)} \frac{E(x,y)}{||(x,y)-(x_0,y_0)||} = 0.$$

Exemplo 4

Mostre que

$$f(x, y) = xe^{xy}$$

é diferenciável em (1,0) e determine sua linearização ali. Em seguida, use a linearização para aproximar f(1.1,-0,1).

Teorema 3 (Condição Suficiente para Diferenciabilidade)

Se as derivadas parciais f_x e f_y existirem perto de (x_0, y_0) e forem contínuas em (x_0, y_0) , então f é diferenciável em (a, b). Nesse caso,

$$f(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + E(x,y),$$

$$com \lim_{(x,y)\to(x_0,y_0)} \frac{E(x,y)}{||(x,y)-(x_0,y_0)||} = 0.$$

Exemplo 4

Mostre que

$$f(x, y) = xe^{xy}$$

é diferenciável em (1,0) e determine sua linearização ali. Em seguida, use a linearização para aproximar f(1.1,-0,1).

Resposta: Verifique que f_x e f_y são funções contínuas. A linearização é L(x,y)=x+y e L(1.1,-0.1)=1. O valor da função é $f(1.1,-0.1)\approx 0.98542$.

Continuidade, Derivadas Parciais e Diferenciabilidade

A existência das derivadas parciais não implica a continuidade da função. A diferenciabilidade, porém, implica continuidade!

Teorema 5

Se f é diferenciável em (x_0, y_0) , então f é contínua em (x_0, y_0) .

Com efeito, por um lado temos

$$\lim_{(x,y)\to(x_0,y_0)} E(x,y) = \lim_{(x,y)\to(x_0,y_0)} ||(x-x_0,y-y_0)|| \frac{E(x,y)}{||(x-x_0,y-y_0)||} = 0.$$

Por outro lado, temos

$$\lim_{(x,y)\to(x_0,y_0)} E(x,y) = \lim_{(x,y)\to(x_0,y_0)} f(x,y) - f(x_0,y_0) - a(x-x_0) - b(x-x_0)$$

$$= \lim_{(x,y)\to(x_0,y_0)} f(x,y) - f(x_0,y_0) = 0.$$

Logo, f é contínua em (x_0, y_0) pois $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$.

Diferenciais

Suponha que a função f é diferenciável em (x_0, y_0) . Defina

$$\Delta x = x - x_0$$
, $\Delta y = y - y_0$ e $\Delta z = f(x, y) - f(x_0, y_0)$.

A diferenciabilidade pode ser escrita como

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + E(\Delta x, \Delta y),$$

em que $E(\Delta x, \Delta y)$, o erro da aproximação linear de f, satisfaz

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{E(\Delta x, \Delta y)}{\|(\Delta x, \Delta y)\|} = 0.$$

Desprezando o erro $E(\Delta x, \Delta y)$, que será zero quando $\Delta x \equiv dx$ e $\Delta y \equiv dy$ são diferenciais (ou infinitesimais), temos:

Derivada Total

A diferencial dz, também chamada derivada total, é

$$dz = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy.$$

10,10,10,10,10,10

Interpretação Geométrica

Com a notação de diferencial, temos:

$$f(x,y)\approx f(x_0,y_0)+dz.$$

- a) Se $z = f(x, y) = x^2 + 3xy y^2$, determine a differencial dz.
- b) Se x varia de 2 a 2.05 e y varia de 3 a 2.96, compare os valores de Δz e dz.

- a) Se $z = f(x, y) = x^2 + 3xy y^2$, determine a diferencial dz.
- b) Se x varia de 2 a 2.05 e y varia de 3 a 2.96, compare os valores de Δz e dz.

Resposta:

- a) dz = (2x + 3y)dx + (3x 2y)dy.
- b) Tomando $x_0 = 2$, $dx = \Delta x = 0.05$, $y_0 = 3$, $dy = \Delta y = -0.04$, obtemos

$$dz = [2(2) + 3(3)]0.05 + [3(2) - 2(3)](-0.04) = 0.65.$$

O incremento Δz é

$$\Delta z = f(2.05, 2.96) - f(2,3) = 0.6449.$$

Observe que $\Delta z \approx dz$, mas dz é mais fácil de ser calculado.

Foram feitas medidas do raio da base e da altura de um cone circular reto e obtivemos 10cm e 25cm, respectivamente, com possível erro nessas medidas de, no máximo, 0.1cm. Utilize a diferencial para estimar o erro máximo cometido no cálculo do volume do cone.

Foram feitas medidas do raio da base e da altura de um cone circular reto e obtivemos 10cm e 25cm, respectivamente, com possível erro nessas medidas de, no máximo, 0.1cm. Utilize a diferencial para estimar o erro máximo cometido no cálculo do volume do cone.

Resposta: O volume do cone é dado por

$$V=\frac{1}{3}\pi r^2h.$$

A diferencial do volume é

$$dV = \frac{1}{3}\pi(2rhdr + r^2h).$$

Como cada erro é no máximo 0.1, obtemos

$$dV = \frac{1}{3}\pi(500 \times 0.1 + 100 \times 0.1) = 20\pi \approx 63cm^3,$$

como estimativa do erro do volume.

Funções de três ou mais variáveis

Aproximações lineares, diferenciabilidade e diferenciais são definidas de forma análoga para funções de três ou mais variáveis. Por exemplo:

A linearização de uma função de três variáveis em

$$\mathbf{x}_0 = (x_0, y_0, z_0)$$
 é

$$L(\mathbf{x}) = f(\mathbf{x}_0) + f_x(\mathbf{x}_0)(x - x_0) + f_y(\mathbf{x}_0)(y - y_0) + f_z(\mathbf{x}_0)(z - z_0),$$

para $\mathbf{x} = (x, y, z)$ suficientemente próximos de \mathbf{x}_0 .

Se w = f(x, y, z), a diferencial dw é dada por

$$dw = \frac{\partial w}{\partial x}dx + \frac{\partial w}{\partial y}dy + \frac{\partial w}{\partial z}dz.$$

As dimensões de uma caixa retangular são medidas como 75cm, 60cm e 40cm, e cada medida foi feita com precisão 0.2cm. Use diferenciais para estimar o maior erro possível quando calcularmos o volume da caixa usando essas medidas.

As dimensões de uma caixa retangular são medidas como 75cm, 60cm e 40cm, e cada medida foi feita com precisão 0.2cm. Use diferenciais para estimar o maior erro possível quando calcularmos o volume da caixa usando essas medidas.

Resposta: O volume da caixa é V = xyz e o diferencial é

$$dV = \frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz = yzdx + xzdy + xydz.$$

Logo,

$$dV \approx (60)(40)(0.2) + (75)(40)(0.2) + (75)(60)(0.2) = 1980cm^3.$$

Embora pareça grande, o erro cometido é apenas 1% do volume da caixa.

