Homework 5 Honors Analysis I

Homework 5

ALECK ZHAO

October 9, 2017

Chapter 4: Open Sets and Closed Sets

- 3. Some authors say that two metrics d and ρ on a set M are equivalent if they generate the same open sets. Prove this.
- 18. Given a nonempty bounded subset E of \mathbb{R} , show that $\sup E$ and $\inf E$ are elements of \overline{E} . Thus $\sup E$ and $\inf E$ are elements of E whenever E is closed.
- 33. Let A be a subset of M. A point $x \in M$ is called a limit point of A if every neighborhood of x contains a point of A that is different from x itself, that is, if $(B_{\varepsilon}(x) \setminus \{x\}) \cap A \neq \emptyset$ for every $\varepsilon > 0$. If x is a limit point of A, show that every neighborhood of x contains infinitely many points of A.
- 41. Related to the notion of limit points and isolated points are boundary points. A point $x \in M$ is said to be a boundary point of A if each neighborhood of x hits both A and A^c . In symbols, x is a boundary point of A if and only if $B_{\varepsilon}(x) \cap A \neq \emptyset$ and $B_{\varepsilon}(x) \cap A^c \neq \emptyset$ for every $\varepsilon > 0$. Verify each of the following formulas, where $\partial(A)$ denotes the set of boundary points of A:
 - (a) $\partial(A) = \partial(A^c)$
 - (b) $\overline{A} = \partial(A) \cup A^{\circ}$
 - (c) $M = A^{\circ} \cup \partial(A) \cup (A^{c})^{\circ}$
- 48. A metric space is called separable if it contains a countable dense subset. Find examples of countable dense sets in \mathbb{R} , in \mathbb{R}^2 , and in \mathbb{R}^n .

Chapter 5: Continuity

- 17. Let $f, g: (M, d) \to (N, \rho)$ be continuous, and let D be a dense subset of M. If f(x) = g(x) for all $x \in D$, show that f(x) = g(x) for all $x \in M$. If f is onto, show that f(D) is dense in N.
- 42. Suppose that $f: \mathbb{Q} \to \mathbb{R}$ is Lipschitz. Show that f extends to a continuous function $h: \mathbb{R} \to \mathbb{R}$. Is h unique? Explain. (Hint: Given $x \in \mathbb{R}$, choose a sequence of rationals (r_n) converging to x and argue that $h(x) = \lim_{n \to \infty} f(r_n)$ exists and is actually independent of the sequence (r_n) .)
- 46. Show that every metric space is homeomorphic to one of finite diameter. (Hint: Every metric is equivalent to a bounded metric.)
- 48. Prove that \mathbb{R} is homeomorphic to (0,1) and that (0,1) is homeomorphic to $(0,\infty)$. Is \mathbb{R} isometric to (0,1)? to $(0,\infty)$? Explain.
- 56. Let $f: (M, d) \to (N, \rho)$.
 - (i) We say that f is an open map if f(U) is open in N whenever U is open in M; that is, f maps open sets to open sets. Give examples of a continuous map that is not open and an open map that is not continuous.
 - (ii) Similarly, f is called closed if it maps closed sets to closed sets. Give examples of a continuous map that is not closed and a closed map that is not continuous.