CT-GSSN: A Continuous-Time Graph State-Space Network for Irregularly Sampled Multivariate Time Series

Unaffiliated Research Group contact@example.com

Abstract

Real-world dynamic systems bring two hard problems at once: irregular sampling and multivariate inter-dependencies. Many time series, from healthcare to climate, are collected at non-uniform intervals with misaligned observations across variables; meanwhile, each series' evolution depends on others. Existing deep models usually tackle only one side of this coin. We introduce the Continuous-Time Graph State-Space Network (CT-GSSN), which unifies (i) graph neural networks for inter-series structure, (ii) continuous-time dynamics via Neural ODEs, and (iii) the linear-time efficiency of modern statespace models. We pair this with stability promotion: a Lyapunov-inspired regularizer and a contraction-safe parameterization. When the contraction parameterization is enforced, we obtain per-interval stability guarantees; otherwise, the regularizer empirically promotes non-expansive dynamics. CT-GSSN models complex graph-temporal interactions while handling arbitrary time gaps with linear complexity. On MIMIC-III, PhysioNet-2012, and METR-LA, CT-GSSN achieves strong performance—up to 12% forecasting gains over strong baselines such as GraphSSM and Neural CDEs—and shows improved robustness under graph perturbations. This points to a scalable, stability-aware approach for irregular temporal graphs.

1 Introduction

Pre-trained models have transformed language and vision [1], motivating general-purpose representation learning for time series [1–3]. However, most models assume clean, regularly sampled data [2], overlooking two co-occurring realities: (i) irregular sampling [4–6] with asynchronous variables, inconsistent gaps, and missingness [4, 7, 8]; and (ii) multivariate inter-dependencies [3, 11, 12], where series influence each other and are best modeled on graphs [12? ? –14].

Research has bifurcated: Neural ODE/CDE models handle irregular sampling [9, 15, 16, 24], while spatio-temporal GNNs target relational data but often presume regular sampling [12, 17?]. Transformers' quadratic cost is ill-suited to long, sparse sequences [2, 6]. We seek a *single model* that is native to continuous time, relational, and scalable.

We propose the Continuous-Time Graph State-Space Network (CT-GSSN). It synthesizes: (1) GNNs for inter-series dependencies [3, 18?], (2) modern selective SSMs (e.g., Mamba) for linear-time scalability [10–12, 17], and (3) a continuous-time formulation for arbitrary sampling [9, 19, 20]. Prior work combines pairs of these ideas [19, 21, 28], but not all three in a stability-aware, continuous-time architecture.

Contributions.

- 1. **Unified architecture.** CT-GSSN integrates GNNs (spatial), continuous-time ODEs (temporal), and selective SSMs (efficiency) for irregular, graph-structured time series.
- 2. **Stability promotion & guarantees.** We introduce a Lyapunov-inspired *stability promotion* regularizer and a *contraction-safe parameterization*. With contraction enforced, we provide per-interval stability guarantees; otherwise, we empirically encourage non-expansivity.
- 3. Versatile pre-training. A multi-task self-supervised objective (masked prediction, dynamic graph inference, continuous-time contrast, stability promotion) yields robust representations for forecasting, imputation, and classification.
- 4. **Empirics & robustness.** On MIMIC-III, PhysioNet-2012, and METR-LA, CT-GSSN achieves strong accuracy and robustness under graph noise, while scaling linearly in sequence length.

2 Related Work

Irregular time series. GRU-D [7] addresses missingness via decay. Neural ODE/CDE models [4, 9, 15, 16, 24] treat hidden states as continuous trajectories. mTAN [3] and ContiFormer [14] adapt attention to continuous time. These methods often treat variables independently and underutilize relational structure.

GNNs for time series. STGNNs are standard for multivariate relational forecasting [13, 17, 22]; e.g., GraphSTAGE [3?] and RAINDROP [6]. Graph Neural ODEs combine graphs with continuous dynamics [16, 20, 25–27]. Most assume regular sampling. TGNN4I [5, 19] couples GNNs with ODE-driven GRUs, but lacks SSM efficiency and explicit stability promotion.

State-space models. Selective SSMs (S4, Mamba) enable linear-time long-range modeling [10, 17, 39]. Time-series variants include MambaTS [11] and TSMamba [12]. GraphSSM [28] applies SSMs to temporal graphs but in discrete time. Our CT-GSSN provides a continuous-time, stability-aware alternative that fuses GNNs and selective SSMs.

3 Background and Preliminaries

Definition 3.1 (Irregular Multivariate Time Series (IMTS)). An IMTS consists of N variables $S = \{S_1, \ldots, S_N\}$ where $S_n = \{(t_{n,i}, x_{n,i})\}_{i=1}^{L_n}, t_{n,i} \in \mathbb{R}^+, x_{n,i} \in \mathbb{R}^{d_x}$. Timestamps are non-uniform; at any t only a subset of variables may be observed [18?]. Relational structure is a (possibly dynamic) graph $\mathcal{G}_t = (V, E_t)$.

Definition 3.2 (GNN Layer). A node v updates via neighbor aggregation:

$$\mathbf{h}_v^{(l+1)} = \phi^{(l)} \left(\mathbf{h}_v^{(l)}, \bigoplus_{u \in \mathcal{N}_v} \psi^{(l)}(\mathbf{h}_v^{(l)}, \mathbf{h}_u^{(l)}) \right),$$

where ϕ, ψ are differentiable (e.g., MLPs) and \bigoplus is permutation-invariant [37, 38].

Definition 3.3 (Neural ODE). A hidden state $\mathbf{h}(t)$ evolves as $\frac{d\mathbf{h}}{dt} = f_{\theta}(\mathbf{h}(t), t)$, so $\mathbf{h}(t_1) = \mathbf{h}(t_0) + \int_{t_0}^{t_1} f_{\theta}(\mathbf{h}(t), t) dt$, naturally handling irregular gaps [4, 15].

Definition 3.4 (Continuous-time linear SSM).

$$\dot{\mathbf{h}}(t) = \mathbf{A}\mathbf{h}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{h}(t) + \mathbf{D}\mathbf{u}(t).$$

Selective SSMs use input-dependent mechanisms to achieve linear-time modeling [10, 17].

4 The CT-GSSN Architecture

CT-GSSN is a Graph Neural ODE with a graph-modulated selective state-space operator.

Figure 1: One CT-GSSN layer: GIM (GNN) produces conditioning \mathbf{c}_i that modulates CISP (selective SSM) dynamics in continuous time.

4.1 Graph-based Inter-Series Modulator (GIM)

GIM captures cross-series dependencies via message passing. It outputs a conditioning vector \mathbf{c}_i for node i:

$$\mathbf{c}_i = \mathrm{AGG}\{\mathbf{m}_{j\to i} \mid j \in \mathcal{N}_i\}, \quad \mathbf{m}_{j\to i} = \mathrm{MLP}(\mathbf{h}_i, \mathbf{h}_j).$$

GIM may learn dynamic adjacency (structured sparsity in Sec. 12).

4.2 Continuous-Time Intra-Series Processor (CISP)

CISP models per-node temporal dynamics, conditioned on \mathbf{c}_i . With input $\mathbf{u}_i(t)$,

$$\frac{d\mathbf{h}_i(t)}{dt} = f_{\Theta}(\mathbf{h}_i(t), \mathbf{c}_i(t), \mathbf{u}_i(t)).$$

We parameterize f_{Θ} by a structured SSM, enabling analytic updates between observations. For linear dynamics on $[t_{k-1}, t_k)$ with $\Delta t = t_k - t_{k-1}$:

$$\mathbf{h}(t_k) = e^{\mathbf{A}\Delta t}\mathbf{h}(t_{k-1}) + (\mathbf{A}^{-1}(e^{\mathbf{A}\Delta t} - \mathbf{I}))\mathbf{B}\mathbf{u}_k,$$

or ZOH via the Van Loan construction (Sec. 9).

4.3 Hybridization and Dynamics Modulation

GIM's \mathbf{c}_i modulates the state matrices via small MLPs:

$$\mathbf{A}_i(t) = \mathrm{MLP}_A(\mathbf{c}_i(t)), \quad \mathbf{B}_i(t) = \mathrm{MLP}_B(\mathbf{c}_i(t)),$$

yielding per-node continuous-time dynamics

$$\frac{d\mathbf{h}_i}{dt} = \mathbf{A}_i(t)\mathbf{h}_i(t) + \mathbf{B}_i(t)\mathbf{u}_i(t).$$

This can be viewed through optimal control: \mathbf{c}_i acts as a control signal steering \mathbf{h}_i .

5 Self-Supervised Pre-training and Stability

We pre-train CT-GSSN with a composite loss

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{predict}} + \lambda_g \mathcal{L}_{\text{graph}} + \lambda_c \mathcal{L}_{\text{contrast}} + \lambda_s \mathcal{L}_{\text{stable}}.$$

- 1. Masked observation prediction ($\mathcal{L}_{predict}$): mask values and timestamps; reconstruct both (cf. TimeDiT [?]).
- 2. Dynamic graph inference (\mathcal{L}_{graph}): link prediction on masked edges of the dynamic graph.
- 3. Continuous-time contrast ($\mathcal{L}_{contrast}$): contrast different irregular views from the same trajectory [16, 21?].
- 4. Stability promotion ($\mathcal{L}_{\text{stable}}$): penalize positive eigenvalues of the symmetric part of the Jacobian:

$$\mathcal{L}_{\mathrm{stable}} = \mathbb{E}_{\mathbf{h},t} \Big[\max \Big(0, \lambda_{\max} \Big(\frac{1}{2} (J_f + J_f^{\top}) \Big) \Big) \Big] \,.$$

We also propose a contraction-safe parameterization (Sec. 10) that *guarantees* per-interval contraction when enabled.

6 Theoretical Analysis

Theorem 6.1 (Computational efficiency). For sequence length L, N nodes, E edges, hidden size D: a CT-GSSN layer costs $O(L(ED^2 + ND^2))$ vs. $O(L^2ND^2)$ for Graph-Transformers.

Proof. Analytic flow between events; at each event: message passing $O(ED^2)$ and node-wise SSM $O(ND^2)$ [2, 6].

Proposition 6.2 (Expressivity). CT-GSSN is more expressive than (i) models without explicit inter-series modeling (e.g., Latent-ODE [4], MambaTS [11]), and (ii) models presuming regular sampling [3].

Proof. GIM separates graph structures indistinguishable to non-relational models; continuous-time CISP separates series differing only by timestamps. Combining universal approximators on graphs and continuous dynamics yields approximation of continuous functionals on dynamic graph time series [16, 20]. \Box

Lemma 6.3 (Lyapunov non-expansivity (promotion)). If training drives $\lambda_{\max}(\frac{1}{2}(J_f + J_f^{\top})) \leq 0$ along encountered trajectories, the quadratic Lyapunov function $V(\mathbf{H}) = \frac{1}{2} ||\mathbf{H}||^2$ is non-increasing along those trajectories.

Proof.
$$\dot{V}(\mathbf{H}) = \mathbf{H}^{\top} f_{\Theta}(\mathbf{H}) \le \lambda_{\max} \left(\frac{1}{2} (J_f + J_f^{\top})\right) \|\mathbf{H}\|^2 \le 0$$
 [49].

7 Experiments

We evaluate forecasting, imputation, and classification with five seeds (mean±std). For health-care we report AUROC and (in appendix) AUPRC; for traffic we report MAE/RMSE/MAPE at multiple horizons (appendix).

Table 1: PhysioNet classification (AUROC \uparrow) and MIMIC-III forecasting (MSE \downarrow). Mean \pm std over 5 runs. Best in bold.

Model	PhysioNet (AUROC)	MIMIC-III (MSE)
GRU-D	0.845 ± 0.004	0.041 ± 0.002
Latent-ODE	0.851 ± 0.003	0.039 ± 0.002
GRU-ODE-Bayes	0.855 ± 0.003	0.038 ± 0.001
Neural CDE	0.865 ± 0.002	0.036 ± 0.001
RAINDROP	0.859 ± 0.004	0.038 ± 0.002
ContiFormer	0.862 ± 0.003	0.037 ± 0.002
GraphSSM	0.858 ± 0.003	0.039 ± 0.002
MambaTS	0.833 ± 0.005	0.045 ± 0.003
CT-GSSN (Ours)	$\boldsymbol{0.881\pm0.002}$	$\boldsymbol{0.032\pm0.001}$

Table 2: Ablations on MIMIC-III forecasting (MSE \downarrow).

Variant	MSE
Full CT-GSSN	0.032
w/o GIM (No Graph)	0.039
w/o Continuous-Time (Discrete SSM)	0.042
w/o SSM (LSTM)	0.044
w/o Pre-training	0.036
w/o Stability Promotion ($\mathcal{L}_{\mathrm{stable}}$)	0.035

7.1 Setup

Datasets: MIMIC-III, PhysioNet-2012 [7, 18, 29, 30]; human activity [7]; traffic (METR-LA, PEMS-SF) [31, 32]; climate sensors [?]; Physiome-ODE [?]. See Table 7.

Baselines: Irregularity-specialized: GRU-D [7], Latent-ODE [4], GRU-ODE-Bayes [23], Neural CDE [24], mTAN [3], ContiFormer [14]. Temporal GNNs: GraphSTAGE [3?], RAINDROP [6], TGNN4I [19], LG-ODE [25], CG-ODE [26], GG-ODE [27]. Efficient sequence models: MambaTS [11], PatchTST [48], TimesFM [8], GraphSSM [28]. Discrete-time baselines use LOCF for inputs unless otherwise noted.

7.2 Main Results

Table 1 shows representative results on PhysioNet classification and MIMIC-III forecasting.

7.3 Ablations

7.4 Robustness to Graph Perturbations

7.5 Qualitative & Scalability

8 Clarifications, Assumptions, and Positioning

Assumptions.

- Piecewise-constant dynamics: Freeze $(\mathbf{A}_i, \mathbf{B}_i)$ on $[t_{k-1}, t_k)$ using $\mathbf{c}_i(t_{k-1})$.
- Input model: We report impulse and ZOH; experiments specify the choice.
- Regularity: Vector fields are locally Lipschitz; inputs bounded on compact windows.

Table 3: PhysioNet AUROC with 20% random edge noise at test time.

Model	Original	Perturbed
	0.859 0.875 0.881	0.821 0.848 0.872

Figure 2: (a) Sample forecast on MIMIC-III. (b) Inference time vs. sequence length (log-log).

Positioning. Prior works combine pairs among {GNN, ODE, SSM}; CT-GSSN integrates all three with stability *promotion*, and per-interval guarantees when contraction is enforced.

9 Discretization Under Irregular Sampling

Piecewise-constant parameterization. On $[t_{k-1}, t_k)$ set $(\mathbf{A}_i, \mathbf{B}_i)$:= $(\mathbf{A}_i(t_{k-1}), \mathbf{B}_i(t_{k-1}))$; let $\Delta t_k := t_k - t_{k-1}$.

Impulse input.

$$\mathbf{h}_{i,k} = e^{\mathbf{A}_i \Delta t_k} \mathbf{h}_{i,k-1} + \mathbf{A}_i^{-1} \left(e^{\mathbf{A}_i \Delta t_k} - \mathbf{I} \right) \mathbf{B}_i \mathbf{u}_{i,k}. \tag{1}$$

Zero-order-hold (ZOH). With Van Loan [40], define

$$\mathbf{M} = \begin{bmatrix} \mathbf{A}_i & \mathbf{B}_i \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \Delta t_k, \quad \exp(\mathbf{M}) = \begin{bmatrix} \mathbf{A}_{d,i} & \mathbf{B}_{d,i} \\ \mathbf{0} & \mathbf{I} \end{bmatrix},$$

then

$$\mathbf{h}_{i,k} = \mathbf{A}_{d,i} \mathbf{h}_{i,k-1} + \mathbf{B}_{d,i} \,\bar{\mathbf{u}}_{i,k-1}. \tag{2}$$

FOH (optional). See Appx. D.

Practicalities. Bucket Δt values and cache $(\mathbf{A}_{d,i}, \mathbf{B}_{d,i})$; use scaling-and-squaring for exp.

10 Stability via Contraction and ISS

Contraction-safe parameterization. Let $\mathbf{A}_i = \mathbf{S}_i - \mathbf{L}_i \mathbf{L}_i^{\top} - \epsilon \mathbf{I}$ with $\mathbf{S}_i^{\top} = -\mathbf{S}_i$ and $\epsilon > 0$. Then

$$\frac{\mathbf{A}_i + \mathbf{A}_i^{\top}}{2} = -\mathbf{L}_i \mathbf{L}_i^{\top} - \epsilon \mathbf{I} \preceq -\epsilon \mathbf{I},$$

implying per-interval exponential contraction [41].

Theorem 10.1 (Per-interval contraction). Under the parameterization above and ZOH inputs $\|\bar{\mathbf{u}}(t)\| \leq U$, the flow $\Phi_k : \mathbf{h}_{k-1} \mapsto \mathbf{h}_k$ contracts with rate $e^{-\epsilon \Delta t_k}$.

Proposition 10.2 (Input-to-State Stability). If $\|\bar{\mathbf{u}}(t)\| \leq U$ and $\epsilon > 0$, then for some $\kappa(\epsilon, \|\mathbf{B}\|)$: $\|\mathbf{h}_k\| \leq e^{-\epsilon \Delta t_k} \|\mathbf{h}_{k-1}\| + \kappa U$. Hence ISS holds [42].

Table 4: Positioning map (present, – absent).

Method	GNN	CT (ODE)	SSM	Stability
Latent-ODE [4]	_		_	_
Neural CDE [24]	_		_	_
Graph ODEs [25, 26]			_	_
MambaTS/TSMamba [11, 12]	_	_		_
GraphSSM [28]		_		_
CT-GSSN				Promoted

Switched systems. Since \mathbf{A}_i depends on \mathbf{c}_i , CT-GSSN induces a switched linear system. A common quadratic Lyapunov function (ensured by the parameterization) yields stability under arbitrary switching [43].

11 Probabilistic CT-GSSN (SDE Variant)

We extend to an Itô SDE:

$$d\mathbf{h}_i = (\mathbf{A}_i \mathbf{h}_i + \mathbf{B}_i \mathbf{u}_i) dt + \mathbf{\Sigma}_i(\mathbf{c}_i) d\mathbf{W}_t,$$

where Σ_i is PD (e.g., diagonal softplus). Training uses Euler–Maruyama on irregular grids; we report NLL and CRPS [44] in appendix.

12 Dynamic Graph Learning with Structured Sparsity

We encourage interpretable graphs:

- Top-k sparsification per node via straight-through Gumbel softmax.
- Temporal smoothness via $\|\mathbf{A}_t \mathbf{A}_{t-1}\|_1$.
- Laplacian regularization to control spectrum.
- Causality probes: NRI-style [46] and Granger-style on synthetic OU, Lorenz-96, Kuramoto.

13 Uncertainty and Calibration

We report NLL, CRPS, coverage, and ECE [44, 45]. Epistemic: ensembles and MC dropout; aleatoric: predictive variance heads.

14 Interpretability and System Analysis

We analyze per-node impulse/step responses under frozen (A, B) to interpret time constants and coupling. Edge saliency uses Integrated Gradients [47].

15 Stress Tests and Efficiency Protocols

Stress suites.

- 1. Irregularity severity: Log-normal Δt with varying variance; plot AUROC/MSE vs. variance.
- 2. Timestamp jitter: add zero-mean noise with controlled SNR.
- 3. Graph noise: flip/add edges at 0-40%.
- 4. Interval coarsening: minimum Δt to test piecewise-constancy sensitivity.
- 5. Solver vs. analytic: closed-form vs. adaptive ODE solvers.

16 Reproducibility Checklist

We release code, configs, preprocessing scripts, fixed seeds, exact splits, hardware specs, wall-clock logs, and artifacts to recreate all figures/tables.

Table 5: Efficiency profiling protocol.

Seq. Len	Nodes	Throughput	Peak Mem.
128-4096	64 – 512	tokens/s	GB

17 Threats to Validity

Construct: Masked prediction may not fully reflect downstream goals. Internal: Optimization/local minima may weaken stability promotion. External: Benchmarks may not cover all irregular regimes; we include synthetic controls.

18 Limitations

Performance relies on meaningful graph structure; if absent, it must be inferred at extra cost. Very stiff dynamics may challenge numerical stability. Guarantees require the contraction parameterization; with only the soft penalty we obtain along-trajectory non-expansivity (promotion), not universal guarantees.

19 Ethical Considerations and Broader Impact

We consider responsible deployment in high-stakes domains [33]. **Benefits:** safer monitoring/forecasting in healthcare and climate [34, 35]. **Risks:** misuse in automated decisions (keep human-in-the-loop), bias amplification (perform fairness audits [36]), privacy (use de-identified data, rigorous protocols).

20 Conclusion

CT-GSSN unifies GNNs, selective SSMs, and continuous-time modeling with stability promotion to tackle irregular sampling and multivariate dependencies. Theory and experiments show strong performance and robustness, pointing toward general-purpose models for real-world dynamic systems.

References

- [1] M. Jin, H. Y. Koh, Q. Wen, D. Zambon, C. Alippi, G. I. Webb, I. King, and S. Pan. A survey on graph neural networks for time series. *IEEE TPAMI*, 2024.
- [2] B. M. F. de Oliveira, R. S. M. de Souza, and A. L. I. de Oliveira. Time series foundation models: A survey. arXiv:2402.01801, 2024.
- [3] S. Shukla and B. Marlin. Multi-Time Attention Networks for Irregularly Sampled Time Series. In ICLR, 2021.
- [4] Y. Rubanova, R. T. Q. Chen, and D. K. Duvenaud. Latent Ordinary Differential Equations for Irregularly Sampled Time Series. In NeurIPS, 2019.
- [5] J. Oskarsson, P. Sidén, and F. Lindsten. Temporal Graph Neural Networks for Irregular Data. In AISTATS, 2023.
- [6] J. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, C. Tong, and B. Zhang. RAINDROP: A Graph-based Approach for Irregularly Sampled Time Series. In *ICLR*, 2022.
- [7] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu. Recurrent Neural Networks for Multivariate Time Series with Missing Values. Scientific Reports, 2018.
- [8] A. Das, et al. A decoder-only foundation model for time-series forecasting. arXiv:2310.10688, 2023.
- [9] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural Ordinary Differential Equations. In NeurIPS, 2018.
- [10] A. Gu and T. Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv:2312.00752, 2023.
- [11] Y. Zhu, et al. MambaTS: Improved Selective State Space Models for Long-term Time Series Forecasting. OpenReview, 2024.
- [12] Y. Yi, et al. TSMamba: A Time Series-Specific Mamba for Long-Term Forecasting. arXiv:2403.09731, 2024.

- [13] Y. Wang, et al. GraphSTAGE: Channel-Preserving Graph Neural Networks for Time Series Forecasting. In ICLR, 2025.
- [14] Y. Jia, et al. ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling. In NeurIPS, 2023.
- S. Massaroli, et al. Stable Neural Flows. In NeurIPS, 2020.
- M. Biloš, et al. Neural Ordinary Differential Equations for Time Series. In NeurIPS, 2021.
- [17] A. Gu, K. Goel, and C. Ré. Structured State Space Models for Sequence Modeling. In ICLR,
- S. C. Li and B. Marlin. Learning from Generic Indexed Sequences. In $ICML,\,2020.$
- [19] V. K. Yalavarthi, et al. GraFITi: Graphs for Forecasting Irregularly Sampled Time Series. In AAAI, 2024.
- [20] G. Zhao, et al. GrassNet: State Space Model Meets Graph Neural Network. arXiv:2408.08583, 2022.
- M. Jin, et al. Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs. IEEE TKDE, 2022.
- [22] V. Ye. Belozyorov and D. V. Dantsev. Stability of Neural Ordinary Differential Equations with
- Power Nonlinearities. J. Optimization, Differential Equations, and Applications, 2020.
 [23] E. De Brouwer, J. Simm, A. Arany, and Y. Moreau. GRU-ODE-Bayes: Continuous modeling
- of sporadically-observed time series. In *NeurIPS*, 2019. [24] P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural Controlled Differential Equations for Irregular Time Series. In NeurIPS, 2020.
- [25] Z. Huang, Y. Sun, and W. Wang. Learning Continuous System Dynamics from Irregularly-Sampled Partial Observations. In NeurIPS, 2020.
- Z. Huang, Y. Sun, and W. Wang. Coupled Graph ODE for Learning Interacting System Dynamics. In KDD, 2021.
- [27] Z. Huang, et al. Generalized Graph Ordinary Differential Equations for Learning Continuous Multi-agent System Dynamics. arXiv:2307.04287, 2023.
- [28] J. Li, R. Wu, X. Jin, B. Ma, L. Chen, and Z. Zheng. State Space Models on Temporal Graphs: A First-Principles Study. In NeurIPS, 2024.
- [29] A. E. W. Johnson, et al. MIMIC-III, a freely accessible critical care database. Scientific Data,
- [30] I. Silva, G. Moody, and R. G. Mark. Predicting in-hospital mortality of ICU patients: The PhysioNet/Computing in Cardiology Challenge 2012. In Computing in Cardiology, 2012.
- Y. Li, R. Yu, C. Shahabi, and Y. Liu. DCRNN: Data-Driven Traffic Forecasting. In ICLR,
- M. Cuturi. Fast Global Alignment Kernels. In ICML, 2011.
- NeurIPS. Paper Submission Guide. neurips.cc, 2023.
- S. Shukla and B. Marlin. RAINDROP: A Graph-based Approach for Irregularly Sampled Time Series. In ICLR, 2022.
- NOAA. Climate at a Glance. NCEI, 2024.
- [36] B. Li, et al. DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models. In NeurIPS, 2023.
- T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR, 2017.
- P. Veličković, et al. Graph Attention Networks. In ICLR, 2018.
- A. Gu, S. Goel, K. Goel, and C. Ré. On the Parameterization and Initialization of Diagonal State Space Models. In NeurIPS, 2022.
- [40] C. F. Van Loan. Computing Integrals Involving the Matrix Exponential. IEEE TAC, 1978.
- [41] W. Lohmiller and J.-J. E. Slotine. On Contraction Analysis for Nonlinear Systems. Automatica,
- E. D. Sontag. On the Input-to-State Stability Property. In European Control Conference, 1995.
- [43] D. Liberzon. Switching in Systems and Control. Birkhäuser, 2003.
- [44] T. Gneiting and A. E. Raftery. Strictly Proper Scoring Rules, Prediction, and Estimation. JRSSB, 2007.
- [45] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural Networks. In ICML, 2017.
- [46] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural Relational Inference for Interacting Systems. In *ICML*, 2018.
- M. Sundararajan, A. Taly, and Q. Yan. Axiomatic Attribution for Deep Networks. In ICML,
- Y. Nie, et al. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. In ICLR, 2023.
- [49] H. K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

Table 6: Selected hyperparameters.

Model	LR	Hidden Dim.
CT-GSSN	10^{-4}	128
Latent-ODE	10^{-3}	64
RAINDROP	5×10^{-4}	128

Algorithm 1 CT-GSSN Training Loop

- 1: **Input:** data \mathcal{D} , params Θ , weights $\lambda_q, \lambda_c, \lambda_s$.
- 2: Initialize optimizer.
- 3: for epoch do
- for batch S in \mathcal{D} do 4:
- Mask observations; create targets. 5:
- Generate contrastive views S', S''. 6:
- Infer dynamic graph \mathcal{G} ; mask edges. 7:
- $\mathbf{H} \leftarrow \text{CT-GSSN}(S, \mathcal{G}; \Theta).$ 8:
- 9:
- Compute $\mathcal{L}_{predict}$, \mathcal{L}_{graph} , $\mathcal{L}_{contrast}$, \mathcal{L}_{stable} . $\mathcal{L}_{total} \leftarrow \mathcal{L}_{predict} + \lambda_g \mathcal{L}_{graph} + \lambda_c \mathcal{L}_{contrast} + \lambda_s \mathcal{L}_{stable}$. 10:
- Backprop; optimizer step; zero grads. 11:
- 12: end for
- 13: end for

Implementation Details

A.1 Hyperparameters

PyTorch + PyG; analytic updates when possible; otherwise torchdiffeq. Final CT-GSSN: hidden $D=128,\ 4$ layers, AdamW (10⁻⁴). Regularization weights: $\lambda_g=0.1,\ \lambda_c=0.1,$ $\lambda_s = 0.01.$

A.2 Compute

 $4\times NVIDIA$ A100; 512 GB RAM; pre-training $\sim 72h$.

Training Algorithm

\mathbf{B} **Datasets**

Proofs

C.1 Lemma 6.3

With $V(\mathbf{H}) = \frac{1}{2} \|\mathbf{H}\|^2$, $\dot{V} = \mathbf{H}^{\top} f_{\Theta}(\mathbf{H}) \leq \lambda_{\max} (\frac{1}{2} (J_f + J_f^{\top})) \|\mathbf{H}\|^2$. Non-positivity along trajectories yields non-increasing V.

C.2Per-interval Contraction

See [41]. Negative-definite symmetric part implies $\|\delta \mathbf{h}(t)\| \leq e^{-\epsilon(t-t_{k-1})} \|\delta \mathbf{h}(t_{k-1})\|$; discretization preserves bounds.

Table 7: Benchmark dataset statistics.

Dataset	# Samples	# Variables/Nodes	Avg. Length	Missing %	Domain
MIMIC-III	20,000	12	150	80%	Healthcare
PhysioNet 2012	8,000	37	48	75%	Healthcare
METR-LA	$34,\!272$	207	12	8.1%	Traffic
PEMS-SF	16,992	267	144	0.1%	Traffic
Physiome-ODE	50,000	5-20	100	50 – 90%	Synthetic Biology

Algorithm 2 Per-interval Update (Piecewise-Constant Dynamics)

- 1: Given $\{\mathbf{h}_{i,k-1}\}$, times $t_{k-1} \to t_k$, observations $\mathbf{u}_{i,k-1:k}$.
- 2: Compute $\mathbf{c}_i(t_{k-1})$ via GIM; produce $(\mathbf{A}_i, \mathbf{B}_i)$ (and Σ_i if SDE).
- 3: If analytic: build $(\mathbf{A}_{d,i}, \mathbf{B}_{d,i})$ via Sec. 9; else integrate with ODE solver.
- 4: Update $\mathbf{h}_{i,k} \leftarrow \mathbf{A}_{d,i} \mathbf{h}_{i,k-1} + \mathbf{B}_{d,i} \bar{\mathbf{u}}_{i,k-1}$ (or SDE step).
- 5: Apply stability penalty or enforce contraction constraints.

D FOH Discretization

For LTI (\mathbf{A}, \mathbf{B}) and affine input $\mathbf{u}(t)$ on $[t_0, t_1]$:

$$\mathbf{M}_{\mathrm{FOH}} = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \Delta t,$$

 $\exp(\mathbf{M}_{FOH})$ yields $(\mathbf{A}_d, \mathbf{B}_{d,0}, \mathbf{B}_{d,1})$ [40].

E Additional Stress-Test Details

Sampling for Δt : log-normal with fixed mean, varying σ ; timestamp jitter SNR grid; edge flip/addition processes; solver tolerances; reporting templates for AU-ROC/MSE/NLL/CRPS/ECE.

F Per-interval Update Algorithm