Međuispit iz Matematičke analize 1

27. studenog 2018.

- 1. (8 bodova)
 - (a) (2b) Skicirajte skup svih $z\in\mathbb{C}$ za koje vrijedi $\left\{\begin{array}{c} |z-1-i|\leqslant 2,\\ \mathrm{Re}z>1\end{array}\right.$
 - (b) (6b) Odredite sve $z \in \mathbb{C}$ za koje vrijedi

$$\begin{cases} \arg(i \cdot z^3) = \pi \\ |z - i| = \sqrt{3} \end{cases}.$$

- 2. (8 bodova) Dan je skup $S = \{1, 2, 3, 4\}.$
 - (a) (3b) Navedite primjer relacije ρ na skupu S koja:
 - (a1) nije refleksivna, a simetrična je.
 - (a2) nije simetrična.
 - (a3) nije tranzitivna.
 - (b) (5b) Nadopunite relaciju

$$\rho = \{(1,1), (1,3), (2,2), (3,1), (3,3), (3,4), (4,3)\}$$

do relacije ekvivalencije na skupu $S=\{1,2,3,4\}$ te za tako dobivenu relaciju ekvivalencije odredite klase ekvivalencije.

- 3. (8 bodova) Na trening košarkaške ekipe u jednoj gimnaziji došlo je 10 učenika 2. razreda, 8 učenika 3. razreda i 6 učenika 4. razreda. Na koliko načina možemo složiti jednu košarkašku ekipu od 5 učenika tako da:
 - (a) (3b) u ekipi bude jednak broj učenika 2. i 3. razreda? (*Uputa: Broj učenika može biti i* 0.)
 - (b) (5b) u ekipi se nalazi barem jedan učenik iz svakog razreda? (Uputa: Koristite formulu uključivanja i isključivanja.)
- 4. (8 bodova) Zadana je funkcija $f: \mathbb{R} \to \mathbb{R}$ sa $f(x) = 3\operatorname{ch}(x) 1$.
 - (a) (2b) Skicirajte graf funkcije f te odredite njezinu sliku Im(f).
 - (b) (2b) Napišite definiciju injekcije te pokažite da f nije injekcija. Obrazložite svoje tvrdnje.
 - (c) (4b) Neka je $g:[0,+\infty) \to Im(f)$ zadana sg(x)=f(x). Dokažite da je g bijekcija, odredite inverznu funkciju g^{-1} te odredite domenu i sliku od g^{-1} .

5. (8 bodova)

- (a) (1b) Napišite definiciju gomilišta niza realnih brojeva (a_n) .
- (b) (2b) Je li niz (a_n) zadan rekurzivno s

$$a_1 = 2$$
, $a_{n+1} = 2 - a_n$, $n \geqslant 1$

konvergentan? Obrazložite svoju tvrdnju.

- (c) (5b) Jesu li sljedeće tvrdnje istinite ili lažne? Istinite tvrdnje dokažite, a lažne opovrgnite protuprimjerom.
 - (T1) Svako gomilište niza je limes tog istog niza.
 - (T2) Limes niza je gomilište tog istog niza.
 - (T3) Ako je niz rastući i omeđen odozgo, tada on konvergira.

6. (10 bodova)

(a) (4b) Odredite sve realne brojeve a i b tako da funkcija $f: \mathbb{R} \to \mathbb{R}$ zadana s

$$f(x) = \begin{cases} ax^2 + b, & \text{za } x \ge 1\\ \arctan(x), & \text{za } x < 1 \end{cases}$$

bude neprekinuta i diferencijabilna u točki x=1. Za takve a i b skicirajte graf funkcije f.

- (b) (2b) Koristeći definiciju derivacije funkcije, izvedite formulu za derivaciju produkta dviju funkcija f i g.
- (c) (2b) Pomoću formule za derivaciju inverzne funkcije, izvedite derivaciju funkcije $y = \arcsin(x)$.
- (d) (2b) Izračunajte derivaciju funkcije $f(x) = (\operatorname{tg}(\ln x))^2$.