

Customer Segmentation Unsupervised Machine Learning

TEAM MEMBERS
Vimal Kumar
Vishal Kumar Yadav

Problem Statement:

- To identify major customer segments on a transnational data set.
- Data set contains all the transactions occurring between 1st December 2010 and 9th December 2011 for a UK-based and registered non-store online retail.
- The company mainly sells unique all-occasion gifts.
- Many customers of the company are wholesalers.

Total Rows= 541909 Total features=8

- ❖ InvoiceNo: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation.
- StockCode: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each distinct product.
- ❖ Description: Product (item) name. Nominal.
- Quantity: The quantities of each product (item) per transaction. Numeric.
 InvoiceDate: Invoice Date and time. Numeric, the day and time when each
 - transaction was generated.
- UnitPrice: Unit price. Numeric, Product price per unit in sterling.
- CustomerID: Customer number. Nominal, a 5-digit integral number uniquely assigned to each customer.
- Country: Country name. Nominal, the name of the country where each customer resides.

Data Wrangling

Information of the data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

Data	COTOMIS (COCS	ar a co.		
#	Column	Non-Nu	ll Count	Dtype
Θ	InvoiceNo	541909	non-null	object
1	StockCode	541909	non-null	object
2	Description	540455	non-null	object
3	Quantity	541909	non-null	int64
4	InvoiceDate	541909	non-null	object
5	UnitPrice	541909	non-null	float64
6	CustomerID	406829	non-null	float64
7	Country	541909	non-null	object
dtype	es: float64(2)), int64	4(1), obje	ct(5)
memor	v usage: 33.1	L+ MB		

- Invoicedate to datetime.
- If InvoiceNo starts with C means it's a cancellation.
- Shape of data after dropping entries=397884

Null values

```
# Let's check the null values count.
retail_df.isnull().sum().sort_values(ascending=False)
```

CustomerID	135080
Description	1454
InvoiceNo	0
StockCode	0
Quantity	Θ
InvoiceDate	0
UnitPrice	0
Country	Θ
dtype: int64	
	Men

Data Wrangling:

retail d	df[retail_d	f['Quantity	' <u>]</u> (0]					
	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
141	C535379	D	Discount	-1	01-12-2010 09:41	27.50	14527.0	United Kingdom
154	C535383	35004C	SET OF 3 COLOURED FLYING DUCKS	-1	01-12-2010 09:49	4.65	15311.0	United Kingdom
235	C536391	22556	PLASTERS IN TIN CIRCUS PARADE	-12	01-12-2010 10:24	1.65	17548.0	United Kingdom
236	C536391	21984	PACK OF 12 PINK PAISLEY TISSUES	-24	01-12-2010 10:24	0.29	17548.0	United Kingdom
237	C536391	21983	PACK OF 12 BLUE PAISLEY TISSUES	-24	01-12-2010 10:24	0.29	17548.0	United Kingdom
540449	C581490	23144	ZINC T-LIGHT HOLDER STARS SMALL	-11	09-12-2011 09:57	0.83	14397.0	United Kingdom
541541	C581499	M	Manual	-1	09-12-2011 10:28	224.69	15498.0	United Kingdom
541715	C581568	21258	VICTORIAN SEWING BOX LARGE	-5	09-12-2011 11:57	10.95	15311.0	United Kingdom
541716	C581569	84978	HANGING HEART JAR T-LIGHT HOLDER	-1	09-12-2011 11:58	1.25	17315.0	United Kingdom
541717	C581569	20979	36 PENCILS TUBE RED RETROSPOT	-5	09-12-2011 11:58	1.25	17315.0	United Kingdom

 Invoice No starting with C had negative entries in the quantity column means negative values in quantity column indicates cancellations.

Feature Engineering:

Changed the datatype of Invoice Date column into datetime.

```
retail df["year"] = retail df["InvoiceDate"].apply(lambda x: x.year)
retail df["month num"] = retail df["InvoiceDate"].apply(lambda x: x.month)
retail df["day num"] - retail df["InvoiceDate"].apply(lambda x: x.day)
retail_df["hour"] = retail_df["InvoiceDate"].apply(lambda x: x.hour)
retail_df["minute"] = retail_df["InvoiceDate"].apply(lambda x: x.minute)
retail_df['TotalAmount']=retail_df['Quantity']*retail_df['UnitPrice']
```

```
def time(time):
  if (time==5 or time==7 or time==8 or time==9 or time==10 or time==11) :
    return'Morning'
  elif (time==12 or time==13 or time==14 or time==15 or time==16 or time==17):
    return 'Afternoon'
  else:
   return 'Evening'
```

```
retail_df['Day_time_type']=retail_df['hour'].apply(time)
```

EDA(Exploratory Data Analysis):

Top 10 Products(Description wise)

- WHITE HANGING
 HEART T- LIGHT
 HOLDER is the highest
 selling product almost
 2018 units were sold.
 - REGENCY
 CAKESTAND 3 TIER is
 the 2nd highest selling
 product almost 1723
 units were sold.

Top 10 products(Stock Code wise)

- StockCode-85123A is the first highest selling product.
- StockCode-22423 is the 2nd highest selling product.

EDA(Exploratory Data Analysis):

7000

United Kingdom

Germany

Top 10 frequent Customers.

France

Country

Spain

TOP 10 Customers

- CustomerID-17841 had purchased highest number of products.
- CustomerID-14911 is the 2nd highest customer who purchased the most the products.

Top 5 Countries(Based on number of Customers)

- UK has highest number of customers.
 - Germany, France and Ireland has almost equal number of customers.

❖EDA(Exploratory Data Analysis):

Top 5 Countries(Based on Least number of Customers)

- There are very less customers from Saudi Arabia.
- Bahrain is the 2nd Country having least number of customers.

TOP 10 Customers(Avg amount spent by customers)

- 77183 (Pounds) is the highest average amount spent by the CustomerID-12346.
 - 56157 (Pounds) is the 2nd highest average amount spent by the CustomerID-16446.

EDA(Exploratory Data Analysis):

- Sales On Thursdays are very high.
- Sales On Fridays are very less.

- Most of the sales happens in the afternoon.
- Least sales happens in the evening.

 Most of the sales happened in November month. February Month had least sales.

Model Building:

RFM Model Analysis:

What is RFM?

- •RFM is a method used to analyze customer value. RFM stands for RECENCY, Frequency, and Monetary.
- RECENCY: How recently did the customer visit our website or how recently did a customer purchase?
- •Frequency: How often do they visit or how often do they purchase?
- Monetary: How much revenue we get from their visit or how much do they spend when they purchase?

Why it is Needed?

RFM Analysis is a marketing framework that is used to understand and analyze customer behavior based on the above three factors RECENCY, Frequency, and Monetary.

The RFM Analysis will help the businesses to segment their customer base into different homogenous groups so that they can engage with each group with different targeted marketing strategies.

***** Model Building:

ΑI

Platinaum

Platinaum 4 6 1

Platinaum

Platinaum

111

111

111

111

5675 143825.06 1 1 1

RFM Model Analysis:

- Recency = Latest Date Last Invoice Data.
- Frequency = Count of invoice no. of transaction(s).
- Monetary = Sum of Total Amount for each customer.

		4	12415.0	24	714	124914.53	2 1	1	211	4	Platinaum
uantile		5	14156.0	9	1400	117379.63	1 1	1	111	3	Platinaum
'Frequency': {0.25: 17.0, 0.5: 41.0, 0.75: 100.0},		6	17511.0	2	963	91062.38	1 1	1	111	3	Platinaum
'Monetary': {0.25: 307.41499999999996,		7	16029.0	38	242	81024.84	2 1	1	211	4	Platinaum
0.5: 674.4849999999999, 0.75: 1661.7400000000002},		8	16684.0	4	277	66653.56	1 1	1	111	3	Platinaum
'Recency': {0.25: 17.0, 0.5: 50.0, 0.75: 141.75}}		9	14096.0	4	5111	65164.79	1 1	1	111	3	Platinaum
Distribution of Monetary	_	Biddebaton of frequency			0.014	_	_				
N.000275	cone -				0.H12 -						
8.000299	0065				9313						
0.00025	0004				g-0.000 -		\wedge				
1.000200 ·	g com -				0.000	/					
ESCRETS -	0002				0.004 -	/		1			
E60859 -	0001				0.002 -	/					
a courts	1				4400	/					_

14545.0

18102.0

17450.0

14911.0

❖ Model Building:

RFM Model Analysis:

· Log transformation on Frequency, Recency and Monetary.

RFM Model Analysis:

· So just using RFM Model analysis we created 4 clusters namely Platinum, Gold, Silver and Bronze.

K-means Clustering: (Recency and Monetary)

Finding the Optimal value of cluster using Elbow method and Silhouette Score.

Elbow Method For Optimal k

cmatplotlib.axes._subplots.AxesSubplot at 0x7fcd94e5ed90>

For n clusters = 4 The average silhouette score is : 0.3649058771514865 For n clusters - 5 The average silhouette score is : 0.3395250404488943 For n clusters - 6 The average silhouette score is: 0.3422201212043055 For n_clusters = 7 The average silhouette score is : 0.34787086356830993 For n_clusters = 8 The average silhouette_score is : 0.33774535264866695 For n clusters - 9 The average silhouette score is: 0.3459604789419575 For n clusters - 10 The average silhouette score is: 0.3479066146663346

For n clusters = 3 The average silhouette score is: 0.3433470120059089

❖ Model Building:

K-means Clustering: (Recency and Monetary)

K-means Clustering: (Recency and Monetary)

DBSCAN Algorithm (Recency and Monetary)

K-means Clustering: (Frequency and Monetary)

Finding the Optimal value of cluster using Elbow method and Silhouette Score.

K-means Clustering: (Frequency and Monetary)

K-means Clustering: (Frequency and Monetary)

DBSCAN Algorithm (Frequency and Monetary)

K-means Clustering: (Recency, Frequency and Monetary)

Finding the Optimal value of cluster using Elbow method and Silhouette Score.


```
For n_clusters = 2, silhouette score is 0.39597280345877467
For n_clusters = 3, silhouette score is 0.30306623428198437
For n_clusters = 4, silhouette score is 0.30386623428198437
For n_clusters = 5, silhouette score is 0.2787783127811271
For n_clusters = 6, silhouette score is 0.2789768652581828
For n_clusters = 7, silhouette score is 0.26251570956441783
For n_clusters = 8, silhouette score is 0.26604516508252274
For n_clusters = 9, silhouette score is 0.25334399829401035
For n_clusters = 10, silhouette score is 0.25334399829401035
For n_clusters = 11, silhouette score is 0.261064644577631
For n_clusters = 12, silhouette score is 0.2629821003752360
For n_clusters = 13, silhouette score is 0.26209821003752366
For n_clusters = 14, silhouette score is 0.26105526187324323
For n_clusters = 15, silhouette score is 0.25105526187324323
For n_clusters = 15, silhouette score is 0.25105720187324323
```

❖ Model Building:

K-means Clustering: (Frequency and Monetary)

K-means Clustering: (Recency, Frequency and Monetary)

DBSCAN Algorithm (Recency and Monetary)

❖ Model Building:

Hierarchical Clustering(Recency, Frequency and Monetary)

Optimal Number of clusters using Dendogram.(Optimal Clusters=2)

❖Summary and Conclusion:

Firstly we did clustering based on RFM analysis. We had 4 clusters/Segmentation of customers based on RFM score.

	Recency		Frequency			Monetary				
	mean	min	max	mean	min	max	mean	min	max	count
RFM_Loyalty_Level										
Platinaum	19.412510	0	140	228.559778	20	7847	5255.277617	360.93	280206.02	1263
Gold	63.376133	0	372	57.959970	1	543	1169.031202	114.34	168472.50	1324
Silver	126.029562	1	373	24.503568	1	99	583.936944	6.90	77183.60	981
Bronz	217.261039	51	373	10.955844	1	41	199.159506	3.75	660.00	770

- Platinum customers=1263 (less recency but high frequency and heavy spending)
- Gold customers=1324 (good recency, frequency and monetary)
- Silver customers=981(high recency, low frequency and low spending)
- Bronze customers=770 (very high recency but very less frequency and spending)
- Later we implemented the machine learning algorithms to cluster the customers.

SLNo	Model Name	Data	Optimal Number of Clusters
1	Kmeans with Elbow method(Elbow Visualizer)	Recency and Monetary	2
2	Kmeans with Silhouette Score method	Recency and Monetary	2
3	DBSCAN	Recency and Monetary	2
4	Kmeans with Elbow method(Elbow Visualizer)	Frequency and Monetary	2
5	Kmeans with Silhouette Score method	Frequency and Monetary	2
6	DBSCAN	Frequency and Monetary	2
7	Kmeans with Elbow method(Elbow Visualizer)	Recency ,Frequency and Monetary	2
8	Kmeans with Silhouette Score method	Recency , Frequency and Monetary	2
9	DBSCAN	Recency , Frequency and Monetary	2
10	Hierarchical clustering	Recency ,Frequency and Monetary	2

❖ Summary and Conclusion:

	Recency			Frequency			Monetary				
	mean	mān	max	mean		max	mean	min	max	count	
Cluster_based_on_freq_mon_rec											
0	140.818973	1	373	24.930406	1	168	470.256981	3.75	77183.60	2414	
1	30.900208	1	372	175.520790	1	7847	4041.687917	161.03	280206.02	1924	

- Above clustering is done with recency, frequency and monetary data(Kmeans Clustering) as all 3
 together will provide more information.
- Cluster 0 has high recency rate but very low frequency and monetary. Cluster 0 contains 2414 customers.
- Cluster 1 has low recency rate but they are frequent buyers and spends very high money than other customers as mean monetary value is very high. Thus generates more revenue to the retail business.
- With this, we are done. Also, we can use more robust analysis for the clustering, using not only RFM but other metrics such as demographics or product features.

THANK YOU