1. Approximate the integral $\int_0^3 x^2 dx$ by Riemann sums using left-, right-endpoint, and midpoint, as well as different step sizes. Compare your data with the exact answer.

Step size	5	10	20	50
Left endpoint				
Right endpoint				
Midpoint				

2. Approximate the integral $\int_0^3 \sin x^2 dx$.

Step size	5	10	20	50
Left endpoint				
Right endpoint				
Midpoint				

3. Approximate your favorite integrals which cannot be computed exactly.

Integral: _____

Step size	5	10	20	50
Left endpoint				
Right endpoint				
Midpoint				

Integral: _____

Step size	5	10	20	50
Left endpoint				
Right endpoint				
Midpoint				

Integral: _____

Step size	5	10	20	50
Left endpoint				
Right endpoint				
Midpoint				

Integral: _____

Step size	5	10	20	50
Left endpoint				
Right endpoint				
Midpoint				