**CSL3050: DBMS** 

# **Assignment 04**

## By Shashank Shekhar Asthana (B21CS093)

For the question given to us, we have to do a variety of things in the problem. First, we have to write the university schema, then populate the tables, and then write the queries.

Below are the displayed screenshots of the tables, which are populated with the six dummy value columns

#### **TABLE CLASSROOM**

| ⊕ BUILDING   | ROOM_NUMBER |    |
|--------------|-------------|----|
| 1 Building A | 101         | 30 |
| 2 Building B | 201         | 40 |
| 3 Building C | 301         | 25 |
| 4 Building A | 102         | 35 |
| 5 Building B | 202         | 45 |
| 6 Building C | 302         | 20 |

#### **TABLE DEPARTMENT**

| DEPT_NAME   | ME      | <b>⊕</b> BUILDING |   | <b>♦</b> BUDGET |
|-------------|---------|-------------------|---|-----------------|
| 1 Computer  | Science | Building          | X | 120000          |
| 2 Mathemati | ics     | Building          | Y | 96000           |
| 3 Physics   |         | Building          | Z | 70000           |
| 4 Chemistry | 7       | Building          | Z | 60000           |
| 5 Biology   |         | Building          | W | 75000           |
| 6 Economics | 3       | Building          | V | 90000           |

#### **TABLE INSTRUCTOR**

|   | ∯ ID | ⊕ NAME |           |             |           | ΜE      |        |
|---|------|--------|-----------|-------------|-----------|---------|--------|
| 1 | 101  | Prof.  | Suchetana | Chakraborty | Computer  | Science | 200000 |
| 2 | 102  | Prof.  | Gaurav    |             | Mathemati | .cs     | 250000 |
| 3 | 103  | Prof.  | Kumar     |             | Physics   |         | 180000 |
| 4 | 104  | Prof.  | Banerjee  |             | Biology   |         | 320000 |
| 5 | 105  | Prof.  | Narayan   |             | Chemistry | 7       | 170000 |
| 6 | 106  | Prof.  | Philip    |             | Economics | 3       | 100000 |

#### **TABLE COURSE**

|   |         | ∯ TITLE                          | DEPT_NAME        |   |
|---|---------|----------------------------------|------------------|---|
| 1 | CS101   | Introduction to Computer Science | Computer Science | 3 |
| 2 | MATH101 | Calculus I                       | Mathematics      | 4 |
| 3 | PHY101  | Physics I                        | Physics          | 4 |
| 4 | BI0101  | Biology I                        | Biology          | 3 |
| 5 | CHEM101 | Chemistry I                      | Chemistry        | 3 |
| 6 | HIST101 | Indian Economics                 | Economics        | 3 |

#### **TABLE SECTION**

|   |         | \$ SEC_ID |      | <b>∜ YEAR</b> | <b>⊕</b> BUILDING |     | ↑ TIME_SLOT_ID |
|---|---------|-----------|------|---------------|-------------------|-----|----------------|
| 1 | CS101   | 1         | Fall | 2023          | Building A        | 101 | 1              |
| 2 | MATH101 | 1         | Fall | 2023          | Building B        | 201 | 2              |
| 3 | PHY101  | 1         | Fall | 2023          | Building C        | 301 | 3              |
| 4 | BI0101  | 1         | Fall | 2023          | Building A        | 102 | 4              |
| 5 | CHEM101 | 1         | Fall | 2023          | Building B        | 202 | 5              |
| 6 | HIST101 | 1         | Fall | 2023          | Building C        | 302 | 6              |

#### **TABLE TEACHES**

|   | ∯ID | COURSE_ID |   |      | <b>∜ YEAR</b> |  |
|---|-----|-----------|---|------|---------------|--|
| 1 | 101 | CS101     | 1 | Fall | 2023          |  |
| 2 | 102 | MATH101   | 1 | Fall | 2023          |  |
| 3 | 103 | PHY101    | 1 | Fall | 2023          |  |
| 4 | 104 | BI0101    | 1 | Fall | 2023          |  |
| 5 | 105 | CHEM101   | 1 | Fall | 2023          |  |
| 6 | 106 | HIST101   | 1 | Fall | 2023          |  |

#### **TABLE STUDENT**

|   | ∯ ID | NAME             | DEPT_NAME        | ↑ TOTAL_CREDIT |
|---|------|------------------|------------------|----------------|
| 1 | 201  | Samuel           | Computer Science | 0              |
| 2 | 202  | Shashank Asthana | Mathematics      | 0              |
| 3 | 203  | SVS              | Physics          | 0              |
| 4 | 204  | Manan Choti      | Biology          | 0              |
| 5 | 205  | SJ               | Chemistry        | 0              |
| 6 | 206  | Yash             | Economics        | 0              |

### **TABLE TAKES**

|   | ∯ ID |         |   | \$ SEMESTER |      | ∯ GRADE |
|---|------|---------|---|-------------|------|---------|
| 1 | 201  | CS101   | 1 | Fall        | 2023 | A       |
| 2 | 202  | MATH101 | 1 | Fall        | 2023 | С       |
| 3 | 203  | PHY101  | 1 | Fall        | 2023 | С       |
| 4 | 204  | BI0101  | 1 | Fall        | 2023 | A       |
| 5 | 205  | CHEM101 | 1 | Fall        | 2023 | В       |
| 6 | 206  | HIST101 | 1 | Fall        | 2023 | С       |

### **TABLE ADVISOR**

|   | ∯ S_ID | ∯ I_ID |
|---|--------|--------|
| 1 | 201    | 101    |
| 2 | 202    | 102    |
| 3 | 203    | 103    |
| 4 | 204    | 104    |
| 5 | 205    | 105    |
| 6 | 206    | 106    |

### TABLE TIME\_SLOT

|   | ↑ TIME_SLOT_ID | <b>⊕</b> DAY |           |           |
|---|----------------|--------------|-----------|-----------|
| 1 | 1              | Monday       | 01-SEP-23 | 01-SEP-23 |
| 2 | 2              | Tuesday      | 01-SEP-23 | 01-SEP-23 |
| 3 | 3              | Wednesday    | 01-SEP-23 | 01-SEP-23 |
| 4 | 4              | Thursday     | 01-SEP-23 | 01-SEP-23 |
| 5 | 5              | Friday       | 01-SEP-23 | 01-SEP-23 |
| 6 | 6              | Saturday     | 01-SEP-23 | 01-SEP-23 |

#### **TABLE PREREQ**

|   |         | ♦ PREREQ_ID |  |
|---|---------|-------------|--|
| 1 | CS101   | MATH101     |  |
| 2 | PHY101  | MATH101     |  |
| 3 | BI0101  | CHEM101     |  |
| 4 | CHEM101 | PHY101      |  |
| 5 | HIST101 | BIO101      |  |
| 6 | MATH101 | HIST101     |  |

Now we can move on to solving the queries given in the question

A. Use FOR loop, to insert a Fibonacci sequence into a column in the output table.

| 1 | 0 |  |
|---|---|--|
| 2 | 1 |  |
| 3 | 1 |  |
| 4 | 2 |  |
| 5 | 3 |  |
| 6 | 5 |  |

B. Use CURSOR, FOR loop, and IF statements to insert the (course\_id,prereq\_id) of prereq table, whose prereq\_id is among [1011, 1032, 2310].

\*The screenshot below shown is appeared to not to return any rows because while populating the tables the prere\_id is not among [1011,1032,2310]



```
CREATE TABLE output table2 (
  course_id VARCHAR2(255),
  prereq_id VARCHAR2(255)
);
DECLARE
  v prereq id VARCHAR2(255);
  v_course_id VARCHAR2(255);
  CURSOR prereq_cursor IS
    SELECT course id, prereg id FROM prereg
    WHERE prereq_id IN ('1011', '1032', '2310');
BEGIN
  FOR prereq_rec IN prereq_cursor LOOP
    v course id := prereq rec.course id;
    v_prereq_id := prereq_rec.prereq_id;
    -- Insert into the output table
    INSERT INTO output table2 (course id, prereg id)
    VALUES (v_course_id, v_prereq_id);
  END LOOP;
END;
```

The above code displays the query.

C. Use WHILE loop/s to display number of instructors in each department. (Output department names and respective number).

|   | DEPT_NAME        |   |
|---|------------------|---|
| 1 | Mathematics      | 1 |
| 2 | Chemistry        | 1 |
| 3 | Economics        | 1 |
| 4 | Biology          | 1 |
| 5 | Computer Science | 1 |
| 6 | Physics          | 1 |

D. Use DBMS\_OUTPUT to display the average salary of instructors in each dept, ordered in ascending order (average salary).

|   | DEPARTMENT_NAME  | \$ AVERAGE_SALARY |  |
|---|------------------|-------------------|--|
| 1 | Mathematics      | 250000            |  |
| 2 | Chemistry        | 170000            |  |
| 3 | Economics        | 100000            |  |
| 4 | Biology          | 320000            |  |
| 5 | Computer Science | 200000            |  |
| 6 | Physics          | 180000            |  |

E. Use UPDATE to increase the grade of students who got an 'F' in the course 'Database Systems/MATH101' to 'C' grade.

|   | ∯ID |         |   |      | <b>∜ YEAR</b> | ∯ GRADE |
|---|-----|---------|---|------|---------------|---------|
| 1 | 201 | CS101   | 1 | Fall | 2023          | A       |
| 2 | 202 | MATH101 | 1 | Fall | 2023          | С       |
| 3 | 203 | PHY101  | 1 | Fall | 2023          | С       |
| 4 | 204 | BI0101  | 1 | Fall | 2023          | A       |
| 5 | 205 | CHEM101 | 1 | Fall | 2023          | В       |
| 6 | 206 | HIST101 | 1 | Fall | 2023          | С       |

F. Use UPDATE to increase the department budget by 20% for CS and Maths department.

|   | DEPT_NAME        | BUILDING   | BUDGET |
|---|------------------|------------|--------|
| 1 | Computer Science | Building X | 144000 |
| 2 | Mathematics      | Building Y | 115200 |
| 3 | Physics          | Building Z | 70000  |
| 4 | Chemistry        | Building Z | 60000  |
| 5 | Biology          | Building W | 75000  |
| 6 | Economics        | Building V | 90000  |

G. Create an output table that contains the list of courses which are taken by students from atleast 3 different departments.



H. Use RECORD to create an output table that displays the score of student "Samuel" in a tuple form (grade, credit) for each course taken by him in the last 2 semesters.



## I. Use Exception Handling to handle an error occurred by searching for a instructor named "Ram" that is not present in the database.

```
DECLARE

v_instructor_name VARCHAR2(255) := 'Ram';

v_instructor_id NUMBER(5);

BEGIN

-- Attempt to find the instructor

SELECT ID INTO v_instructor_id

FROM instructor

WHERE name = v_instructor_name;

-- If instructor is found, display the ID

DBMS_OUTPUT.PUT_LINE('Instructor ID: ' || v_instructor_id);

EXCEPTION

WHEN NO_DATA_FOUND THEN

-- Handle the exception if instructor is not found

DBMS_OUTPUT.PUT_LINE('Instructor not found in the database.');

END;

/
```



# J. Create an output table that lists the courses taken by 'Prof. Suchetana Chakraborty' within the last 3 years and has more than 5% students getting an A grade.

CREATE TABLE output\_table AS

SELECT t.course\_id, t.semester, t.year

FROM takes t

JOIN teaches ON teaches.course\_id=t.course\_id

JOIN instructor i ON t.ID = teaches.ID

WHERE i.name = 'Prof. Suchetana Chakraborty'

AND t.year >= EXTRACT(YEAR FROM SYSDATE) -3

GROUP BY t.course\_id, t.semester, t.year

HAVING SUM(CASE WHEN t.grade = 'B' THEN 1 ELSE 0 END) / COUNT(\*) > 0.05;

