Computational Improvements for the BEM including Viscothermal Effects

Mikkel Paltorp Schmitt, Vicente Cutanda Henríquez, Niels Aage & Peter Risby Andersen

The Boundary Element Method

The basis of the (Acoustical) Boundary Element Method is the integral equation

$$\alpha \zeta(\mathbf{x}) p(\mathbf{x}) - \int_{\Gamma} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}(\mathbf{y})} p(\mathbf{y}) \, dS_{\mathbf{y}} + s(\alpha) k \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) v_{\mathbf{n}}(\mathbf{y}) \, dS_{\mathbf{y}} = 0.$$
 (1)

In order to discrete the integrals we need to approximate the geometry. This can be done using e.g. elements

$$\mathbf{x}^{e}(\mathbf{u}) = \mathbf{X}^{e}\mathbf{N}(\mathbf{u}) \in \Gamma^{e}, \quad \forall \mathbf{u} \in \mathcal{L}, \quad \cup_{e=1}^{N} \Gamma^{e} \approx \Gamma$$
 (2)

Figure 1. The original domain in shown in gray while a two (linear) elements are shown in red. The red points denote the interpolation nodes of the elements (the columns of \mathbf{X}^e).

The pressure (and its normal derivative) on an element can be approximated as

$$p(\mathbf{x}^e(\mathbf{u})) = \mathbf{T}(\mathbf{x}^e(\mathbf{u}))\mathbf{p} = \underbrace{\mathbf{T}(\mathbf{x}(\mathbf{u}))(\mathbf{L}^e)^{\top}}_{\mathbf{T}^e(\mathbf{u})} \underbrace{\mathbf{L}^e \mathbf{p}}_{\mathbf{p}^e} = \mathbf{T}^e(\mathbf{u})\mathbf{p}^e, \quad \mathbf{u} \in \mathcal{L},$$
(3)

where \mathbf{L}^e is a matrix that extracts the relevant rows of \mathbf{p} , i.e. for the element in Figure 1 we have that

$$\mathbf{L}^e = egin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}, \quad \text{so that} \quad egin{bmatrix} p_1 \\ p_4 \\ p_3 \end{bmatrix} = \mathbf{L}^e \mathbf{p}. \tag{4}$$

The final ingredient is to approximate the integral on the eth element by using a quadrature scheme

$$\int_{\Gamma^e} f(\mathbf{y}) \, \mathrm{d}S_{\mathbf{y}} = \int_{\mathcal{L}} \mathsf{jacobian}(\mathbf{u}) f(\mathbf{u}) \, \mathrm{d}\mathbf{u} \approx \sum_{i=1}^Q \mathsf{jacobian}(\mathbf{u}_i) w_i f(\mathbf{u}_i). \tag{5}$$

Using all of the above it is found that the discrete form of (1) is

$$(\operatorname{diag}(\zeta) - \mathbf{F})\mathbf{p} + s(\alpha)k\mathbf{G}\mathbf{v_n} = \mathbf{H}\mathbf{p} + s(\alpha)k\mathbf{G}\mathbf{v_n} = \mathbf{0},$$
 (6)

References

- [1] M. Berggren, A. Bernland, and D. Noreland, "Acoustic boundary layers as boundary conditions," Journal of Computational Physics, 2018.
- [2] M. Brunaeu, P. Herzog, J. Kergomard, and J. Polack, "General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries," *Wave Motion*, 1989.
- [3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, "Julia: A fresh approach to numerical computing," SIAM review, 2017.
- [4] V. Cutanda Henríquez and P. R. Andersen, "A three-dimensional acoustic boundary element method formulation with viscous and thermal losses based on shape function derivatives," *Journal of Computational Acoustics*, 2018.
- [5] T. Askham, Z. Gimbutas, L. Greengard, L. Lu, J. Magland, D. Malhotra, M. O'Neil, M. Rachh, and V. Rohklin, "FMM3D," 2023.
- [6] D. Panagiotopoulos, E. Deckers, and W. Desmet, "Krylov subspaces recycling based model order reduction for acoustic bem systems and an error estimator," Computer Methods in Applied Mechanics and Engineering, 2020.

Reduced Order Series Expansion Boundary Element Method (ROSEBEM)

The Boundary Layer Impedance (BLI) boundary condition, as shown in (7), can be used to approximate the viscothermal losses^[1]

$$\frac{\partial p}{\partial \mathbf{n}}(\mathbf{x}) = \left[(\gamma - 1) \frac{\mathrm{i}k^2}{k_h} - \frac{\mathrm{i}\Delta^{\parallel}}{k_v} \right] p(\mathbf{x}). \tag{7}$$

Inserting the above into (1) and doing some manipulation it follows that

$$\zeta(\mathbf{x})p(\mathbf{x}) = \int_{\Gamma_{N}} G(\mathbf{x}, \mathbf{y}) \frac{\partial p(\mathbf{y})}{\partial \mathbf{n}(\mathbf{y})} dS_{\mathbf{y}} - \int_{\Gamma} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}(\mathbf{y})} p(\mathbf{y}) dS_{\mathbf{y}}
+ \frac{(\gamma - 1)ik^{2}}{k_{h}} \int_{\Gamma_{BLI}} G(\mathbf{x}, \mathbf{y})p(\mathbf{y}) dS_{\mathbf{y}} + \frac{i}{k_{v}} \int_{\Gamma_{BLI}} \nabla_{\mathbf{y}}^{\parallel} G(\mathbf{x}, \mathbf{y}) \cdot \nabla_{\mathbf{y}}^{\parallel} p(\mathbf{y}) dS_{\mathbf{y}},$$
(8)

A drawback of the BEM is that the discrete form of (6) depends on the frequency. This pain can be alleviated by applying a simple Taylor expansion of the Green's function(s), which transforms the discrete form into^[6]

$$\left(\sum_{m=0}^{M} \frac{(k-k_0)^m}{m!} \left[\left[\right] + \frac{(\gamma-1)ik^2}{k_h} \right] + \frac{i}{k_v} \left[\right] \mathbf{p} + \left[\partial_{\mathbf{n}} \mathbf{p} \right] = \mathbf{0} \quad (9)$$

This approach, however, increase memory usage due to the storing of M-times the matrices. To resolve resolve this issue we introduce \mathbf{U}_{ℓ} such that

$$\mathbf{p} \approx \mathbf{U}_{\ell} \mathbf{p}_{\ell}, \quad \frac{\partial \mathbf{p}}{\partial \mathbf{n}} \approx \mathbf{U}_{\ell} \frac{\partial \mathbf{p}_{\ell}}{\partial \mathbf{n}}, \quad \left(\left\| \mathbf{p} \right\| \right).$$
 (10)

Inserting this into (9), while multiplying both sides with $\mathbf{U}_{\ell}^{\mathsf{H}}$, it follows that

$$\left(\sum_{m=0}^{M} \frac{(k-k_0)^m}{m!} \left[\square + \frac{(\gamma-1)ik^2}{k_h} \square + \frac{i}{k_v} \square \right] \mathbf{p}_{\ell} + \square \partial_{\mathbf{n}} \mathbf{p}_{\ell} \right) = \mathbf{0}.$$
 (11)

In many practical cases storing all the matrices from the above requires about the same memory as the original BEM system from (8).

Results

The results shows that the model accurately describes the pressure while decreasing the computational efforts by 100x using only 1.65x the memory.

Improvements in the full formulation

Visually the new formulation looks as [2,4]

The acoustical pressure can be found by solving the following

$$\left[\mathbf{G}_{a}\left(\mu_{a}\left(\mathbf{R}\mathbf{N}\right)^{-1}\mathbf{R}\mathbf{D}_{c}+\mu_{h}\mathbf{G}_{h}^{-1}\mathbf{H}_{h}\right)-\phi_{a}\mathbf{H}_{a}\right]\mathbf{p}_{a}=\mathbf{G}_{a}\left(\mathbf{R}\mathbf{N}\right)^{-1}\mathbf{R}\mathbf{v}_{s}.$$
 (12)

Every matrix in (12) except G_a and H_a are *sparse*. As both matrices can be approximated using an acceleration method the multiplication in (12) can be done in linear time/storage^[5]. The acceleration methods work by using that

$$\left(\underbrace{\int_{\Gamma} G_a(\mathbf{t}_k, \mathbf{y}) \mathbf{T}(\mathbf{y}) \, dS_{\mathbf{y}}}_{k \text{th row of } \mathbf{G}}\right) \mathbf{z} \approx \underbrace{\left[G_a(\mathbf{t}_k, \mathbf{y}_1) \, G_a(\mathbf{t}_k, \mathbf{y}_2,) \, \dots \, G_a(\mathbf{t}_k, \mathbf{y}_{NQ})\right]}_{\text{multiplication with this can be accelerated}} \mathbf{Cz}, \quad (13)$$

where \mathbf{C} is a sparse matrix.

Results

