191220154 张涵之 第3章作业

$$8. \qquad C_1 = A_1 \cdot B_1 + A_1 \cdot C_0 + B_1 \cdot C_0$$

$$C_2 = A_2 \cdot B_2 + A_2 \cdot C_1 + B_2 \cdot C_1$$

$$C_3 = A_3 \cdot B_3 + A_3 \cdot C_2 + B_3 \cdot C_2$$

$$C_4 = A_4 \cdot B_4 + A_4 \cdot C_3 + B_4 \cdot C_3$$

- 10. 10 的原码和补码均为 001010, -6 的原码为 100110, 补码 111010, 6 均为 000110
 - (1) $[x+y]_{*}=[10]_{*}+[-6]_{*}\pmod{2^{6}}=001010+111010=000100$,真值为 4 $[x-y]_{*}=[10]_{*}+[6]_{*}\pmod{2^{6}}=001010+000110=010000$,真值为 16
 - (2) 对原码 001010 和 100110 符号位有 0⊕1 = 1,数值部分为 01010 和 00110

C	P	Y	说明
0	$0\ 0\ 0\ 0\ 0$	0 0 1 1 0	$P_0 = 0$
	$+\ 0\ 0\ 0\ 0\ 0$		$Y_5 = 0$,不做加法(加 0)
0	$0\ 0\ 0\ 0\ 0$	0 0 1 1 0	C、P和Y同时右移一位
0	$0\ 0\ 0\ 0\ 0$	00011	得 P ₁
	+ 0 1 0 1 0		$Y_4 = 1, +X$
0	01010		C、P和Y同时右移一位
0	00101	00001	得 P ₂
	+ 0 1 0 1 0		$Y_3 = 1, +X$
0	0 1 1 1 1		C、P和Y同时右移一位
0	0 0 1 1 1	10000	得 P ₃
	$+\ 0\ 0\ 0\ 0\ 0$		$Y_2 = 0$,不做加法(加 0)
0	0 0 1 1 1	10000	C、P和Y同时右移一位
0	00011	1 1 0 0 0	得 P ₄
	$+\ 0\ 0\ 0\ 0\ 0$		$Y_1 = 0$,不做加法(加 0)
0	00011	1 1 0 0 0	C、P和Y同时右移一位
0	00001	1 1 1 0 0	得 P ₅

可见 $[x \times y]_{\mathbb{R}} = 100000 \ 111100$,是 12 位机器数原码表示,真值为-60

(3)
$$[x]_{ih} = 001010$$
, $[y]_{ih} = 111010$, $[-x]_{ih} = 110110$

P	Y	y -1	说明
$0\ 0\ 0\ 0\ 0\ 0$	1 1 1 0 1 0	0	设 $y_{-1}=0$, $[P_0]_{\circledast}=0$
			y ₀ y ₋₁ = 00, P、Y 直接右移一位
$0\ 0\ 0\ 0\ 0\ 0$	0 1 1 1 0 1	0	得[P ₁]**
+ 110110			$y_1y_0 = 10$, $+[-x]_{ab}$
110110			P、Y 同时右移一位
111011	0 0 1 1 1 0	1	得[P _{2]*}
+ 001010			$y_2y_1=01$, $+[x]_{n}$
000101			P、Y 同时右移一位

000010	100111	0	得[P ₃] _补
+ 110110			$y_3y_2 = 10, +[-x]_{i}$
1 1 1 0 0 0			P、Y 同时右移一位
111100	010011	1	得[P _{4]*}
			y ₄ y ₃ = 11, P、Y 直接右移一位
111110	001001	1	得[P _{5]*}
			y ₅ y ₄ = 11, P、Y 直接右移一位
111111	000100	1	得[P _{6]补}

可见[x×y]* = 111111 000100, 是 12 位机器数补码表示,真值为-60

(4) [x]_原数值部分扩展为 10 位 00000 01010, [y]_原数值部分 00110, [-y]₊取 11010

A	Q	说明
$0\ 0\ 0\ 0\ 0$	01010	开始 R ₀ = X
+ 11010		$R_1 = X - Y$
1 1 0 1 0	01010	$R_1 < 0$,则 $q_6 = 0$,没有溢出
10100	$1\; 0\; 1\; 0\; _$	$2R_1$ (R和Q同时左移,空出一位商)
+ 00110		$R_2 = 2R_1 + Y$
1 1 0 1 0	10100	$R_2 < 0$,则 $q_5 = 0$
10101	$0\ 1\ 0\ 0\ _$	$2R_2$ (R和Q同时左移,空出一位商)
+ 00110		$R_3 = 2R_2 + Y$
1 1 0 1 1	01000	$R_3 < 0$,则 $q_4 = 0$
10110	$1\; 0\; 0\; 0\; _$	2R ₃ (R和Q同时左移,空出一位商)
+ 00110		$R_4 = 2R_3 + Y$
1 1 1 0 0	10000	$R_4 < 0$,则 $q_3 = 0$
1 1 0 0 1	$0\ 0\ 0\ 0\ _$	2R4(R和Q同时左移,空出一位商)
+ 00110		$R_5 = 2R_4 + Y$
1 1 1 1 1	$0\ 0\ 0\ 0\ 0$	$R_5 < 0$,则 $q_2 = 0$
1 1 1 1 0	$0\ 0\ 0\ 0\ _{-}$	2R ₅ (R和Q同时左移,空出一位商)
+ 00110		$R_6 = 2R_5 + Y$
00100	00001	$R_6 > 0$, $y q_1 = 1$

商的最高位为 0,说明没有溢出,数值部分为 00001,符号位为 $0 \oplus 1 = 1$ 则 $[x/y]_{\mathbb{R}}$ 的商为 100001 原码表示,真值为-1,余数为 000100,真值为 4

- 11. 用一位乘法计算要 8 * 1ns + 8 * 0.5ns = 12ns, 两位乘法要 4 * 1ns + 4 * 0.5ns = 6ns
- 16. 不能,尽管使用 unsigned long long 之后,实参 arraysize 的表示范围增大了,但由于标注库函数函数 malloc 的形参定义为 unsigned int,则实际分配空间时,arraysize 仍会被转换成 unsigned int 传入,则按例 3.8 中取 count = 2³⁰ + 1,arraysize 超出 unsigned int 能表示的最大范围,malloc 函数还是只会分配 4 个字节的空间,同样造成整数溢出。标准库函数不能修改,则程序员要么手动实现自己的形参定义为 unsigned long long 的与 malloc 功能相同的函数用于内存分配。如果还要使用 C 语言提供的 malloc,则应该

在调用该函数前检查 arraysize 是否超出 unsigned int 表示范围,若超出,则输出提示信息告知用户数组过大,元素复制失败,并终止程序,否则再进行正常复制。 具体实现为将例 3.8 中第五行改为:

```
unsigned long long arraysize = count* (unsigned long long) sizeof (int);
unsigned int myarraysize = (unsigned int) arraysize;
if (myarraysize != arraysize) {
    printf("Failure: array size too large\n");
    return -1;
}
int myarray = (int *) malloc (myarraysize);
```

17. 使用移位(左移 n 位相当于乘以 2^n)和加减来实现乘法比直接进行乘法操作更合算。

 $55\times x=64\times x-9\times x=64\times x-8\times x-x$

 $55 \times x = 32 \times x + 23 \times x = 32 \times x + 16 \times x + 8 \times x - x$

则前一种更合算,进一步可表示为 $55 \times x = x << 6 - x << 3 - x$

只需要进行两次位移、两次减法操作即可,共需要4个时钟周期就可以完成

- 21. IEEE 754 标准单精度和双精度浮点数格式的尾数分别为 23 位和 52 位则加上隐藏位,能表示的最大有效位数分别为 24 位和 53 位则不能精确表示的最小正整数分别为 2²⁴ + 1 和 2⁵³ + 1
- 22. ①对于结果形如+/-1b.bb...b 的情况,需要进行右归: 尾数右移一位,阶码加 1。注意右移后得到的隐藏位为 1。最后一位移出时,要考虑舍入。
 - ②对于结果形如+/-0.00...01bb..b 的情况,需要进行左归: 尾数逐次左移,每移一位价码减 1,直到阶码全为 0 或第一位 1 移到小数点左边。其中当阶码全为 0 时,尾数不再左移,结果为非规格化数形式。进行尾数相加时,默认小数点位置在第一个数值位(即隐藏位)之后,所以小数点右移 k 位后被移到了第一位 1 后面,这个 1 就是隐藏位。

- (1) 对阶。 $[E_x]_{\&} = 0111\ 1110$, $[E_y]_{\&} = 1000\ 0101$, $[E_x E_y]_{\&} = [E_x]_{\&} + [-[E_y]_{\&}]_{\&} = 0111\ 1110 + 0111\ 1011 = 1111\ 1001$, $E_x E_y = -111B = -7$,x 的尾数右移 7 位,对 阶后 x 的阶码为 $1000\ 0101$,尾数为 $0.000\ 0001\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000$,其中粗 体"1"为右移的隐藏位,最低两位粗体"0"为移出时保留的附加位。
- (3) 尾数规格化。尾数相加后的结果已经是规格化结果。
- (4) 舍入。针对第(3)步得到的结果,对小数点右边第23位后的数字进行舍入, 得到最终的尾数部分。此处舍去的两位数字均为0,直接丢弃即可。
- x + y 的真值为-1.0000001B×2⁶ = -1000000.1B = -64.5

- (1) 对阶,同上,阶码为10000101。
- (6) 尾数规格化。尾数相加后的结果已经是规格化结果。
- (7) 舍入。针对第(3)步得到的结果,对小数点右边第23位后的数字进行舍入,得到最终的尾数部分。此处舍去的两位数字均为0,直接丢弃即可。
- x + y 的真值为 $1.00001B \times 2^6 = 1000010B = 66$