Contents

1. Evaluación	1
2. Conjuntos de números	1
2.1. Complejos	
2.1.1. Reales	1
2.1.1.1. Racionales (Q) (a/b)	1
2.1.1.1.1. Enteros (Z)	
2.1.1.1.1. Enteros negativos (Z')	1
2.1.1.1.2. Monoide (0)	
2.1.1.1.3. Naturales (<i>N</i>)	
2.1.1.1.3.1. Primo: Divide entre si y 1	1
2.1.1.1.3.2. Compuesto: Los demás, 3+ divisores	2
2.1.1.1.2. Fraccionarios (<i>F</i>)	
2.1.1.2. Irracionales ($\mathbb{I}=\mathbb{R}-Q$)	2
2.1.2. $\mathbb{I}m$ aginarios	
3. Introducción a conjuntos	
3.1. Definición de conjunto	
3.2. Operaciones	3
3.3. Ejercicio	
4. Exposisición	

1. Evaluación

1er, 2do Parcial ... 40 %
Tareas ... 10 %
Proyecto ... 25 %

Examen Final ... 25 %

Correos acepta de 2 am a 2:30 am

2. Conjuntos de números

2.1. Complejos

Los números complejos son una suma de una parte real $\mathbb R$ y una parte imaginaria $\mathbb Im$, por ejemplo 2+3i.

2.1.1. \mathbb{R} eales

Son un subconjunto de los números complejos $\mathbb C$ donde no existe la parte imaginaria, por lo que se puede representar en una recta numérica.

2.1.1.1. Racionales (*Q*) (a/b)

Se representan con un cociente de dos enteros, por ejemplo $\frac{1}{3}=0.33\bar{3}$, también tenemos por ejemplo el $2=\frac{2}{1}$

2.1.1.1. Enteros (\mathbb{Z})

Que no tienen parte decimal

2.1.1.1.1. Enteros negativos (Z')

2.1.1.1.2. Monoide (0)

2.1.1.1.3. Naturales (N)

Dependiendo de si se denota \mathbb{N}_0 o \mathbb{N}_1 se considera si el conjunto incluye al 0 o no, esto depende de si conviene o no para los trabajos de investigación. Entonces $\mathbb{N}_0 = \{0,1,2,...\}$ y $\mathbb{N}_1 = \{1,2,...\}$

2.1.1.1.3.1. Primo: Divide entre si y 1

2.1.1.1.3.2. Compuesto: Los demás, 3+ divisores

2.1.1.1.2. Fraccionarios (*F*)

Todos los demás que no son enteros

2.1.1.2. Irracionales ($\mathbb{I} = \mathbb{R} - Q$)

Entre estos tenemos razones que no son repetitivas en su parte decimal, es decir que no hay patrones en la secuecia de números decimales como con π , $\sqrt{2}$, τ , e

También tenemos aqui todas las raíces de números primos.

2.1.2. $\mathbb{I}maginarios$

En los números imaginarios se entiende $i = \sqrt{-1}$. Para descartar rápidamente numeros que no están expresados de la forma imaginaria solo tenemos que fijarnos en el *exponente* de la raíz.

$$\sqrt[n]{a}$$

En caso de que a sea un número negativo y n sea par, entonces podemos decir con seguridad que se trata de un número imaginario.

En todos los demás casos el resultado obtenido será c+0i, donde no existe una parte imaginaria.

3. Introducción a conjuntos

3.1. Definición de conjunto

Un conjunto es una colección de *elementos*. Sea A un conjunto de elementos que puede ser finito o infinito se dice que a es elemento de A si, y solo si $a \in A$.

Por lo tanto se puede decir que $A \in \{a\}$.

Simbologia:

- ∃ existe
- ∄ no existe
- ∃! existe solo para
- \in pertenece
- ∉ no pertenece
- $<, \le, >, \ge$ menor, menor que, mayor, mayor que
- «, » super mayor y super menor, se usan para decir que el objeto que se está analizando es tan grande que no cabe en el sistema, por lo tanto se puede simplificar.

Escalamiento: Si se die que un valor es orden a la 1 ($x \approx O(1)$) se da a entender que el valor es muy pequeño. Al programar se puede usar el $\approx O(1)$ para poder aceptar gráficas experimentales resultantes del ruido del sistema y programación que son distintaas a la grafica ideal.

Para definir un conjunto se puede hacer de dos maneras; *exetnsiva* donde se enumeran todos los elementos o *comprensiva*, donde se usa la lógica para poder obtener una expresión sobre los elementos.

Ejemplo:

- Extensiva:
 - $\{a, b, c, d, e\}$
- · Comprensiva
 - $\{x \mid x \text{ son las vocales}\}$
 - $\{x\mid x \text{ son las vocales de la palabra casa}\}=\{a\}$, nótese como los conjintos solo pueden tener una vez los elementos
 - $\{x \in \mathbb{N}_0 | -3 \le x < 2\}$, donde \mathbb{N}_0 indica que nuestros naturales van desde el 0, en este caso es igual a $\{0,1\}$
 - $D \in \{x \in \mathbb{Z} \mid x^2 4 = 0\} = \{2, -2\}$
 - $F \in \{x \in \mathbb{R} | x^2 + 9 = 0\} = \emptyset$, debido a que la solución es x = +-3i, que no se encuentra en los reales

• $R \in \{x \in \mathbb{C} \mid x^2 + 2x + 1 = 0\}$ que es $\{-1\}$ porque la solución es repetida (-1, -1)

3.2. Operaciones

Unión: Sea $A \land B \neq \emptyset$, dos conjuntos no vacíos tal que $A \cup B = \{x \mid x \in A \lor x \in B\}$, donde juntamos los elementos de ambos.

Intersección: $\{x \mid x \in A \land x \in B\}$, es decir, los que estan en ambos conjuntos.

Diferencia: $A/B = A - B = \{x \mid x \in A \land x \notin B\}$, lo que no tiene el de la derecha la izquierda; los elementos que le faltan a B para ser A

Complemento: $A^c = \{x \mid x \in U \land x \notin A\}$, lo que le falta ser a A para ser el universo U

Diferencia simétrica: $A \triangle B$ o $A \oplus B$ que es $(A - B) \cup (B - A)$, es decir, todo lo que no se repite en A y B, es decir, todos los elementos que no son parte de $A \cap B$ pero que esten en $A \vee B$.

3.3. Ejercicio

Sea

•
$$U = \{x \in \mathbb{N} \mid 1 \le x < 100\} = \{1, 2, 3, ..., 99\}$$

• $A = \{x \in \mathbb{N} \mid 3 < x \le 7 \land x^2 - 5x + 6 = 0\} = \emptyset$
• $B = \{5, 6, 10, 11\}$
• $C = \{x \in \mathbb{N} \mid 2 < x \land x < 11\} = \{x \in \mathbb{N} \mid 2 < x < 11\} = \{3, 4, 5, 6, 7, 8, 9, 10\}$

 $C = \{x \in \mathbb{N} \mid$

$$(A \oplus B) \cup (B \cap C)$$

$$= \{5, 6, 10, 11\} \cup (5, 6, 10)$$

$$= \{5, 6, 10, 11\}$$

b)

a)

$$\begin{split} \left[(B-C) \cup (C-B) \right]^c \cap (A-B)^c \\ &= \left(B \oplus C \right)^c \cap (A-B)^c \\ &= \left\{ 3,4,7,8,9,11 \right\}^c \cap \emptyset^c \\ &= \left\{ 3,4,7,8,9,11 \right\}^c \cap E \\ &= \left\{ 3,4,7,8,9,11 \right\}^c \\ &= \left\{ 1,2,5,6,10,12,13,..,99 \right\} \end{split}$$

donde E es el universo y por lo tanto $A \cap E = A$

4. Exposisición

10 min, teoria, comporbar con codigo, etc