Motivation Spatial K Means clustering Time series segmentation Analysis results for Barium dataset Discussion

# Statistical Analysis of Surface Water Data Time series segmentation



- Motivation
- Spatial K Means clustering
- Time series segmentation
- Analysis results for Barium dataset
  - Spatial K Means clustering
  - Time series segmentation over clusters
- Discussion

- Motivation
- Spatial K Means clustering
- 3 Time series segmentation
- Analysis results for Barium dataset
  - Spatial K Means clustering
  - Time series segmentation over clusters
- Discussion

### Surface Water Data

- It includes irregularly spaced time series of Barium and Sulphate concentrations at approx. 80 PA counties from 1921-2015
- Deciphering spatial and temporal correlations may provide important insights about water quality deterioration due to energy extraction processes
- Challenges: spatial and temporal "sparsity"
- Our current work:
  - Naive spatial clustering using k-means
  - Time series segmentation

### Surface Water Data

- It includes irregularly spaced time series of Barium and Sulphate concentrations at approx. 80 PA counties from 1921-2015
- Deciphering spatial and temporal correlations may provide important insights about water quality deterioration due to energy extraction processes
- Challenges: spatial and temporal "sparsity"
- Our current work:
  - Naive spatial clustering using k-means
  - Time series segmentation

- Motivation
- Spatial K Means clustering
- Time series segmentation
- Analysis results for Barium dataset
  - Spatial K Means clustering
  - Time series segmentation over clusters
- Discussion

# Spatial K means clustering

- K means clustering over latitude and longitude.
- Criteria: Spatial density of points;
  - Dense measurements over one region form a cluster.
- Clustering selection:
  - Number of clusters chosen using scree plot.
  - Sum of squares within clusters vs. number of clusters.

- Motivation
- Spatial K Means clustering
- Time series segmentation
- Analysis results for Barium dataset
  - Spatial K Means clustering
  - Time series segmentation over clusters
- Discussion

### Model and Goals

Time series segmentation

- Assumption: There are m breakpoints.
- Model<sup>1</sup>:

$$\begin{aligned} \mathsf{Ba}_i(\mathsf{Su}_i) &= \mathsf{Time}_i\beta_1 + u_i \quad (i = 1, ..., T_1) \\ &\vdots \\ \mathsf{Ba}_i(\mathsf{Su}_i) &= \mathsf{Time}_i\beta_m + u_i \quad (i = T_{m+1}, ..., T) \end{aligned}$$

- Goals:
  - Point estimate of breakpoints.
  - Interval estimate of breakpoints.

<sup>&</sup>lt;sup>1</sup>Bai, Jushan, and Pierre Perron. "Computation and analysis of multiple structural change models." Journal of applied econometrics 18.1 (2003):

# Methodology

Time series segmentation

- Notation:
  - h: Minimum segment length.
  - SSR $_{t_1:t_2}^r$ : Sum of squared residuals for the time segment  $t_1$ - $t_2$  with r breakpoints.
- Recursive problem:

$$\mathsf{SSR}_{1:T} = \min_{mh \leq j \leq T-h} \left[ \mathsf{SSR}_{1:j}^{m-1} + \mathsf{SSR}_{(j+1):T}^{0} \right]$$

- Construction of triangular matrix of sums of squared residuals.
- Time Complexity:  $O(T^2)$

# Confidence intervals for breakpoints

Asymptotic distribution of breakpoint estimate:

$$A_T(\hat{T}_i - T_i) \xrightarrow{d}$$
 some Wiener process

where  $A_T$  is a normalization constant.

• Using above asymptotic distribution function of the breakpoint.<sup>2</sup>, 95% confidence intervals for point estimates  $\hat{T}_1,...,\hat{T}_m$  can be created.

<sup>&</sup>lt;sup>2</sup>Bai, Jushan. "Estimation of a change point in multiple regression models." Review of Economics and Statistics 79.4 (1997): 551-563.



# Choosing the number of segments

Bayesian Information Criterion (BIC):

$$\mathsf{BIC} = -2\log(\hat{L}) + k\log(n)$$

- Limitation in our case: n >> k condition not satisfied by Barium data for some clusters
- Residual sum of squares:
  - Always decreases and so can't be used for choosing segmentation.

- Motivation
- Spatial K Means clustering
- 3 Time series segmentation
- Analysis results for Barium dataset
  - Spatial K Means clustering
  - Time series segmentation over clusters
- 5 Discussion

- Motivation
- Spatial K Means clustering
- Time series segmentation
- Analysis results for Barium dataset
  - Spatial K Means clustering
  - Time series segmentation over clusters
- Discussion

# Scree plot for K Means clustering



Figure: Scree plot for K Means clustering for Barium; K chosen as 8 based on elbow

# Visualization of spatial clusters



Figure: Visualization of spatial clusters on map

- Motivation
- Spatial K Means clustering
- 3 Time series segmentation
- Analysis results for Barium dataset
  - Spatial K Means clustering
  - Time series segmentation over clusters
- Discussion

# Sample BIC and RSS plots for cluster A

#### **BIC and Residual Sum of Squares**



Figure: BIC and RSS for cluster A

### Cluster A



Figure: Cluster A with 184 observations and 9 breakpoints

### Cluster B



Figure: Cluster B with 53 observations and 6 breakpoints

### Cluster C



Figure: Cluster C with 105 observations and 1 breakpoint

### Cluster D



Figure: Cluster D with 162 observations and 5 breakpoints

### Cluster E



Figure: Cluster E with 152 observations and 4 breakpoints

### Cluster F



Figure: Cluster F with 1349 observations and 10 breakpoints

### Cluster G



Figure: Cluster G with 79 observations and 2 breakpoints

### Cluster H



Figure: Cluster H with 269 observations and 10 breakpoints

- Motivation
- Spatial K Means clustering
- 3 Time series segmentation
- Analysis results for Barium dataset
  - Spatial K Means clustering
  - Time series segmentation over clusters
- Discussion

### Discussion

### Summary of current works:

- Spatial K-Means Clustering
- Time series segmentation
- Interactive Shiny app

#### Future works:

- Robust estimation of breakpoints.
  - SAR $_{t_1:t_2}^r$ : Sum of absolute residuals for the time segment  $t_1-t_2$  with r breakpoints.

$$SAR_{1:T} = \min_{mh < j < T-h} \left[ SAR_{1:j}^{m-1} + SAR_{(j+1):T}^{0} \right]$$

 Agglomerative clustering and Spatial segmentation based on trend

### Discussion

### Summary of current works:

- Spatial K-Means Clustering
- Time series segmentation
- Interactive Shiny app

#### Future works:

- Robust estimation of breakpoints.
  - SAR $_{t_1:t_2}$ : Sum of absolute residuals for the time segment  $t_1-t_2$  with r breakpoints.

$$SAR_{1:T} = \min_{mh < j < T-h} \left[ SAR_{1:j}^{m-1} + SAR_{(j+1):T}^{0} \right]$$

 Agglomerative clustering and Spatial segmentation based on trend