Firewall: Introduction

CSC 154

Roadmap

- Network
 - Hosts, routers, packets
- Packet
 - DL header
 - IP header
 - TCP header
 - Port #
 - Popular network services and vulnerabilities
 - Flags
 - TCP3-way handshake
- Why we need a firewall

What is the Internet?

- Purpose of the Internet: to enable any two computers to talk to each other
 - Online chat/video
 - Instant Message
- The Simplest Internet = Computer 1 (sender) + (a bunch of routers) + Computer 2 (receiver)

How does the Internet work?

- The routers relay the message from the sender to the receiver
- The message is contained in a packet
 - which could be viewed as an envelope
- The packet could get lost or corrupted during transmission
- For reliability, the receiver will typically send an acknowledgement note back
- There may exist multiple routes (or paths) from the sender to the receiver

How to use TCP ports and IP addresses (1)

When Alice sends a letter to Bob, what to put on the envelope?

Sheraton Hotel 678 Sunrise Ave Los Angelos, CA

Hilton Hotel 234 Moonrise Ave Boston, MA 02116

How to use TCP ports and IP addresses (2)

How to use TCP ports and IP addresses (3)

How to use TCP ports and IP addresses (4)

When Alice calls Bob, what number to dial?

(310) 642-1111 Ext. 203
IP address TCP port number

Sheraton Hotel 678 Sunrise Ave Los Angelos, CA (310) 642-1111

Hilton Hotel 234 Moonrise Ave Boston, MA 02116

How to use TCP ports and IP addresses (5)

What does a TCP port mean in computer world?

- -- Multiple programs are running on a single computer
- -- -- We assign a port number to each program
- -- Two types of programs:
 - -- **Service**-providing programs
 - -- Service-requesting programs
- -- The first 1,024 ports re reserved for **services**
- -- From OS perspectives: processes, sockets

Receiver PC

IP address: 130.126.2.45

How to use TCP ports and IP addresses (6)

When browser X sends a message to the Web server:

The simplest packet

Receiver computer

IP address: 130.126.2.45

Sender computer

IP address: 162.11.200.5

The simplest packet has a drawback! (7)

When browser X sends a message to the Web server:

The simplest packet

Drawback: there is NO return address!!! When the receiver sends back the acknowledgement, the receiver will cry – because ...

How to use TCP ports and IP addresses (8)

- Preamble | Destination Mac | Source Mac |
 Source IP | Destination IP | Source Port |
 Destination Port | payload | CRC |
 - Transport Layer Header
 - TCP Header
 - UDP Header
 - Network Layer/Internet Protocol Header
 - Data Link Layer Header

What elements are inside a TCP header? What is the size for each such element?

- Source Port
- Destination Port
 - 16bits each

- ACK Flag
- SYN Flag
 - 1bit each

What elements are inside an IP header? What is the size for each such element?

- Protocol
 - 8 bits
 - TCP? UDP?
 - Protocol can also be ICMP

- Source IP
- Destination IP
 - both 32 bits

Popular Internet services and their port numbers (1)

- 80 HTTP
- 23 Telnet
- 25 SMTP
- 20/21 FTP
- 53 DNS
- 22 SSH

Popular Internet services and their port numbers (2)

HTTP overview

HTTP: hypertext transfer protocol

- Web's application layer protocol
- Port: 80 on servers
- client/server model
 - client: browser that requests, receives, (using HTTP protocol) and "displays" Web objects
 - server: Web server sends (using HTTP protocol) objects in response to requests

Browser-side Vulnerability

Malicious (java) applets

Buffer overflow vulnerabilities of browser plug-ins

Cross Site Scripting vulnerabilities

FTP: separate control, data connections

Sharing or isolation: what if the uploaded file is a trojan horse?

- FTP client contacts FTP server at port 21, using TCP
- client authorized over control connection
- client browses remote directory, sends commands over control connection
- when server receives file transfer command, server opens 2nd TCP data connection (for file) to client
- after transferring one file, server closes data connection

- server opens another TCP data connection to transfer another file
- control connection: "out of band"
- FTP server maintains
 "state": current directory,
 earlier authentication

Mail access protocols

- SMTP: delivery/storage to receiver's server
- mail access protocol: retrieval from server
 - POP: Post Office Protocol [RFC 1939]: authorization, download
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored msgs on server
 - HTTP: gmail, Hotmail, Yahoo! Mail, etc.
- Sniffing: Plain text login/password in SMTP
- Virus, SPAM

DNS name resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, allowing root server bypassed
- Bombard TLD servers
 - Potentially more dangerous

Redirect attacks

- Man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus replies to DNS server, which caches

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- Requires amplification

How does Telnet work? Vulnerabilities?

- For users to remotely access system over the net
 - unencrypted login/password
 - Port 23

- Vulnerable because of lack of encryption:
 - Password sniffing
 - Hijack a session already in progress

How to establish a TCP connection between two hosts?

- A TCP connection
 - Step 1: establish the connection
 - Step 2: send the messages
 back and forth
 - Step 3: terminate the connection

- A phone call session
 - Step 1: Dial the phone number
 - Step 2: do talking
 - Step 3: hang up

TCP 3-way handshake

TCP 3-Way Handshake (step-by-step)

- Assume client A with (5.6.7.8:xxxx) wants to establish a TCP connection with server B (1.2.3.4: yyyy)
 - 1st Step: Connection request by client A: Contains source IP(5.6.7.8), source port(xxxx), and destination IP (1.2.3.4), destination Port(yyyy).
 Also has SYN flag is set to 1, ACK is 0
 - 2nd Step: the ip 1.2.3.4 will acknowledge by sending ACK flag (set to 1).
 - Source 1.2.3.4 destination is 5.6.7.8
 - 3rd Step: the original IP of 5.6.7.8 sends back to 1.2.3.4 ACK 1 SYN 0.
- Additional comments: SYN flag is used to setup TCP connection, ACK flag is used to acknowledge receipt of a packet.

UDP Has No Handshaking

UDP: no "connection" between client & server

- no handshaking before sending data
- sender explicitly attaches IP destination address and port # to each packet
- rcvr extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-oforder

Compare TCP with UDP

- Header information exactly same
 - TCP connection-oriented, reliable, flags
 - TCP provides reliable, in-order byte-stream transfer ("pipe") between client and server
 - UDP connectionless, no flags
 - UDP provides unreliable transfer of groups of bytes ("datagrams") between client and server
 - All packets of the session must be blocked if the goal is to block a UDP session; however, TCP session packets to be blocked can be distinguished by ACK.

Why do we need a firewall?

- Internet/network
- Packet

- The attacker hacks a network via packets
 - Why a packet can enable the attacker to break into the network?
- Firewalls can protect a network
 - Why?

A network = a military base

Good packets vs. bad packets

A good packet = a truck with chocolate

A bad packet = a truck with terrorists and bombs

A bad packet can hack the network if you let it in!

Network

Military base

Look Into a Bad Packet

The Orignal Packet of Code Red:

A network needs a firewall = a military base needs a guard

Network

Military base

A packet filtering firewall = a guard that only checks the driver

So a packet filtering firewall only checks the header

A proxy firewall = a pseudo center

Network Military base