2/2

2/2

2/2

-1/2

2/2

2/2

2/2

2/2

2/2

0/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas) :
SARKAR RIDAY	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. J'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +228/1/xx+···+228/5/xx+.	
Q.2 Un alphabet est toujours muni d'une relation d'or	rdre :
□ vrai	faux
Q.3 Pour $L_1 = (\{a\}\{b\})^*, L_2 = \{a, b\}^*$:	
$\square L_1 \not\supseteq L_2 \qquad \boxed{m} L_1 \subseteq L_2$	$\Box L_1 = L_2 \qquad \Box L_1 \supseteq L_2$
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{a, b\}$?	
	bb } \square $\{aa, bb\}$ \square $\{aa, ab, bb\}$ $ab, ba, bb\}$
Q.5 Que vaut Suff({ab, c}):	
\square $\{b,c,\varepsilon\}$ \square $\{b,\varepsilon\}$	$[b,b,c,\varepsilon]$ $[a,b,c]$ $[0]$
Q.6 Que vaut $\overline{\{a\}^*}$, avec $\Sigma = \{a, b\}$.	
$\Box \{a\}\{b\}^*\{a\} \qquad \Box \{b\}\{a\}^* \cup \{b\}^* \qquad [a,b]^*$	
Q.7 Pour toutes expressions rationnelles e, f , on a $e \cdot f$	$f \equiv f \cdot e$.
■ faux	□ vrai
Q.8 Pour toutes expressions rationnelles e , f , on a (ef)	$)^*e \equiv e(fe)^*.$
☐ faux	vrai vrai
	vidi
Q.9 Pour $e = (ab)^*, f = (a+b)^*$:	
$\Box L(e) \supseteq L(f) \qquad \qquad \blacksquare L(e) \subseteq L(f)$	$\Box L(e) = L(f) \qquad \Box L(e) \stackrel{\not\subseteq}{\not\supseteq} L(f)$
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \implies L_1 = L_2$.	
	□ vrai
Q.11 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-	-+]*[0-9A-F]+' n'engendre pas :

Déterminiser cet automate.

2/2

1.2/2

-1/2

1.6/2

2/2

2/2

2/2

2/2

0/2

2/2

Q.31

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

- a*b*c*
- ☐ (abc)*
- \Box $a^* + b^* + c^*$
- \Box $(a+b+c)^*$

Q.32 🕏 Quels états peuvent être fusionnés sans changer le langage reconnu.

- ☐ 1 avec 3
- 3 avec 4
- ☐ 0 avec 1 et avec 2
- ☐ 2 avec 4
- 1 avec 2
- ☐ Aucune de ces réponses n'est correcte.

Q.33 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

2/2

- \square Il existe un DFA qui reconnaisse ${\cal P}$
- \square Il existe un ε -NFA qui reconnaisse $\mathcal P$

Q.34 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de \longrightarrow

2/2

Q.35

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- $(ab^{+} + a + b^{+})(a(a + b^{+}))^{*}$

- $\Box (ab^* + (a+b)^*)(a+b)^+$
- \Box $(ab^* + a + b^*)a(a + b)^*$

Q.36 Sur $\{a,b\}$, quel est le complémentaire de

2/2

2/2

$$2/2$$
 $\Box \rightarrow \bigcirc \stackrel{a}{\longrightarrow} \bigcirc$

Fin de l'épreuve.

,

.