2023 春复分析每日一练 (IV)

黄天一

2023 年 6 月 18 日

核心内容回顾

- 1. 全纯函数可以在圆环区域上展开为 Laurent 级数; Laurent 级数在收敛圆环上内闭一致收敛.
- 2. 函数的三种孤立奇点和非孤立奇点, 函数在三种孤立奇点附近的性质刻画和 Laurent 展式特点.
- **3.** \mathbb{C}_{∞} 上的全纯、亚纯函数; 两个重要的全纯自同构群: Aut(\mathbb{C}) 和 Aut(\mathbb{C}_{∞}).

计算 Laurent 展开

- 1. 求函数 $\frac{1}{1-z}$ 在 $B(\infty,1)$ 上的 Laurent 展开式.
- **2.** 求函数 $\frac{z^2-1}{(z+2)(z+3)}$ 在 2 < |z| < 3 和 $3 < |z| < \infty$ 的 Laurent 展开式.
- 3. 求 $\log \frac{z-a}{z-b}$ 在 $\max(|a|,|b|) < |z| < \infty$ 上的 Laurent 展开式.

证明与计算题 3

- 1. 判断下列函数的奇点类型, 并指明极点的阶数.
- (1) $\frac{e^z}{z(1-e^z)}$.
- $(2) \cos(\frac{1}{\sin\frac{1}{z}}).$
- (3) $\frac{1}{z^2-1}\cos^z\frac{\pi z}{z+1}$.
- **2.** 设 $a \in \mathbb{C}_{\infty}$ 是函数 f(z) 的极点, 讨论 $e^{f(z)}$ 在 a 处的奇点类型.
- **3.** 设 f 在 \mathbb{C}_{∞} 上亚纯, 极点集合为 $\{1,2,\infty\}$. 若 f 在这三个极点处的 Laurent 展开式的主要部分分 别为 $\frac{1}{z-1}$, $\frac{1}{z-2}$ + $\frac{1}{(z-2)^2}$, $z+z^2$, 并且 f(0)=0, 求 f(z).
- **4.** 设函数 f(z) 在 $H(\infty, R)$ 上全纯, 并且满足 $|\operatorname{Re} f(z)| \leq M$. 证明: ∞ 是 f(z) 的可去奇点.
- **5.** (21 期末) 记 $D = \{s \in \mathbb{C} : \text{Re } s > 1\}$, 考虑函数项级数 $\sum_{n=1}^{\infty} \frac{1}{n^s}$.
- (1) 证明: 对任意 $s \in D$, 上述级数收敛. (2) 定义 $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, s \in D$. 证明: $\zeta(s)$ 为 D 上的全纯函数.
- (3) 我们知道, 复平面上的亚纯函数 $\cot(\pi z)$ 的部分分式展开为

$$\cot(\pi z) = \frac{1}{\pi z} + \frac{1}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{z+n} \right).$$

利用该部分分式展开证明: 亚纯函数 $\cot(\pi z)$ 在 z=0 附近的 Laurent 展开为

$$\cot(\pi z) = \frac{1}{\pi z} - \frac{2}{\pi} \sum_{k=1}^{\infty} \zeta(2k) z^{2k-1}.$$

(4) 计算 $\zeta(2)$ 的值.