Week 13 (B): Developing Responsible AI

1. Introduction

- 1.1. Socio-technical Challenge
- 1.2. Keeping Control
- 1.3. Meaningful Human Control
- 2. Artificial Moral Agents
 - 2.1. Several Possible Ways
 - 2.1.1. Act according to what people want
 - 2.1.2. Act according to what is right
 - 2.2. Machine ethics
 - 2.2.1. Implicitly ethical
 - 2.2.2. Explicitly Ethical
 - 2.3. Approaches to design Artificial Moral Agents

Top-down

Bottom-up

Hybrid

3. Top-down approaches

Basic Way

- 3.1. Pros and Cons
- 3.2. Other Approaches

Case-Based Reasoning

Logical Reasoning

4. Bottom-up approaches

Basic

- 4.1. Pros and Cons
- 4.2. Example: Inverse Reinforcement Learning (IRL)
 - 4.2.1. Motivation for RL
 - 4.2.2. Critics
- 4.3. Example for IRL: Gridworld Example
 - 4.3.1. Goal:
 - 4.3.2. Heueristics methods:
 - 4.3.3. Formalizing
- 4.4. Other bottom-up approaches

Leraning social norms

Learn societal preferences

1. Introduction

1.1. Socio-technical Challenge

Intelligent systems with increasing levels of autonomy should be addressed as **complex socio-technical systems**, comprising humans and AI agents

Hybrid Intelligence (HI) is the combination of human and machine intelligence, **expanding** human intellect instead of replacing it

1.2. Keeping Control

- Humans must be in a position to be capable of being in control of the system
- · Machines should be able to understand and follow our moral standards

1.3. Meaningful Human Control

- Humans not computers and their algorithms should ultimately remain in control of, and thus be morally
 responsible for relevant decisions
- Meaningful Human Control **is not a sufficient condition** for a morally appropriate behavior of an autonomous system, because humans may be themselves following questionable moral principles

Strictly technical solutions are not sufficient for moral/value alignment

2. Artificial Moral Agents

2.1. Several Possible Ways

2.1.1. Act according to what people want

Cons:

- · no agreement
- · people are not consistent

2.1.2. Act according to what is right

Goal 1:

Maximize happiness and well-being for the majority of a population

Cons:

ROBO blocks one room to extinguish the fire but there are people inside

Goal 2:

Morality should be based on whether a action itself is right or wrong

Cons:

ROBO saves someone in a wheelchair but dozens of people get severely injured?

2.2. Machine ethics

Machine Ethics is the field concerned with the question of how to embed ethical behaviors, or a means to determine ethical behaviors into AI systems

2.2.1. Implicitly ethical

designed to avoid unethical consequences

2.2.2. Explicitly Ethical

designed to behave ethically

2.3. Approaches to design Artificial Moral Agents

Top-down

Translating human ethical knowledge into implementation

Bottom-up

Machines can **learn** how to act (morally)

Hybrid

Combination of top-down and bottom-up approaches

3. Top-down approaches

Basic Way

Translating knowledge into an implementation

3.1. Pros and Cons

Pros:

- No new (ethical) knowledge required
- Explainable
- (Many times) predictable

Cons:

- Human knowledge is usually not specified in a very structured or detailed way for concrete cases
- · Risk of losing or misrepresenting information
- Disregards individual perspectives
- How to compare different ethical theories

3.2. Other Approaches

Case-Based Reasoning

In case-based reasoning, a new situation is **assessed** based on a collection of **prior cases** (e.g., legal precedents). **Similar cases** are identifiedm and their conclusions are transferred to **apply** to the current situation

Logical Reasoning

Deductive logic: Knowledge is represented as **logical statements** (propositions and rules) that **allow deriving** new propositions

4. Bottom-up approaches

Basic

learn how to act if it receives as input enough data to **learn** from or rewards signals.

4.1. Pros and Cons

Pros

- Benefits from recent advance in machine learning
- No prior ethical knowledge required

Cons

- Ethical examples may be hard to label
- Machine can **learn "wrong"** rules
- Difficult to **generalize** to different contexts

4.2. Example: Inverse Reinforcement Learning (IRL)

4.2.1. Motivation for RL

Learn a "good" reward function, for situations where it cannot be properly designed

4.2.2. Critics

- Need for a more realistic setting:
 - Access to a set of **actual trajectories** instead of the optimal policy
 - Ambiguity problem: multiple rewards can represent the same optimal policy
- assumption that humans are rational optimizers

4.3. Example for IRL: Gridworld Example

Let's assume that: "Experts" achieve identical or higher rewards than other

First guess:

- White = 0
- Blue = 1
- Green = 3

Route 1: 0 + 0 + 1 + 3 = 4 Route 2: 0 + 1 + 1 + 3 = 5

Second guess:

- White = 0
- Blue = -1
- Green = 2

Route 1: 0 + 0 - 1 + 2 = 1Route 2: 0 - 1 - 1 + 2 = 0

Third guess:

- White = 0
- Blue = 0
- Green = 1

Route 1: 0 + 0 + 0 + 1 = 1Route 2: 0 + 0 + 0 + 1 = 1

Fourth guess:

- White = 0
- Blue = 0
- Green = 0

Route 1: 0 + 0 + 0 + 0 = 0Route 2: 0 + 0 + 0 + 0 = 0

4.3.1. Goal:

Find R where π provided by the expert is optimal

4.3.2. Heueristics methods:

• Prefer solutions where the expert policy performs better than the other ones

$$\max(value^* - value^{2ndbest})$$

• Prefer solutions with smaller rewards

 $\min Reward$

4.3.3. Formalizing

• Bellman equation: ${m V}^\pi = {m R} + \gamma {m P}_{a^*} {m V}^\pi$ Where: ${m P}_{a^*}$ is a $N \times N$ matrix ${m V}^\pi$ and ${m R}$ are N x 1 vectors

We can rewrite it as:

$$V^{\pi} - \gamma P_{a^*} V^{\pi} = R$$

$$V^{\pi} (I - \gamma P_{a^*}) = R$$

$$V^{\pi} = (I - \gamma P_{a^*})^{-1} R$$

Now let's formalize our assumption that π^* achieves identical or higher expected value then all other policies:

$$P_{a^*}V^{\pi} \geqslant P_aV^{\pi}, \forall a \in A \setminus a^*$$

$$P_{a^*}V^{\pi} - P_aV^{\pi} \geqslant 0, \forall a \in A \setminus a^*$$

$$P_{a^*}(I - \gamma P_{a^*})^{-1}R - P_a(I - \gamma P_{a^*})^{-1}R \geqslant 0, \forall a \in A \setminus a^*$$

$$(P_{a^*} - P_a) (I - \gamma P_{a^*})^{-1}R \geqslant 0, \forall a \in A \setminus a^*$$

Then

- Prefer solutions where the expert policy performs better than the other ones
 - Maximize the gap of expected value of acting optimally and the best expected value acting suboptimally

$$\max imize \sum_{i=1}^{N} \min_{a \in A \setminus a^{*}} (\mathbf{P}_{a^{*}} - \mathbf{P}_{a}) (\mathbf{I} - \gamma \mathbf{P}_{a^{*}})^{-1} \mathbf{R}$$

- Prefer solutions with smaller rewards

4.4. Other bottom-up approaches

Leraning social norms

Learn societal preferences

(personal interest)