Дерево принятия решений

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Постройте дерево принятия решений.

Формат входных данных

Первая строка содержит три целых положительных числа M ($1 \le M \le 100$) — число признаков у объектов (исключая класс), K ($1 \le K \le 20$) — число классов и H ($1 \le H \le 10$) — максимальная глубина (в рёбрах) дерева принятия решений.

Вторая строка содержит целое положительное число N ($1 \leqslant N \leqslant 4000$) — число объектов в обучающей выборке.

Следующие N строк содержат описания объектов в обучающей выборке. В i-й из этих N строк перечислено M+1 целое число: первые M чисел $A_{i,j}$ ($|A_{i,j}| \le 10^9$) — признаки i-го объекта, последнее число C_i ($1 \le Ci \le K$) — его класс.

Формат выходных данных

Выведите построенное дерево принятия решений.

В первой строке выведите целое положительное число S $(1\leqslant S\leqslant 2^{11})$ — число вершин в дереве.

В следующих S строках выведите описание вершин дерева. В v-й из этих строк выведите описание v-й вершины:

- Если v-я вершина узел, выведите через пробел: заглавную латинскую букву 'Q', целое положительное число f_v ($1 \le f_v \le M$) индекс признака по которому происходит проверка в данном узле, вещественное число с плавающей точкой b_v константа с которой происходит сравнения для проверки, два целых положительных числа l_v и r_v ($v < l_v, r_v \le S$) индекс вершины дерева в которую следует перейти, если выполняется условие $A[f_v] < b_v$, и индекс вершины дерева в которую следует перейти, если условие не выполняется.
- Если v-я вершина лист, выведите через пробел: заглавную латинскую букву 'C' и целое положительное число D_v ($1 \le D_v \le K$) класс объекта попавшего в данный лист.

Вершины нумеруются с единицы. Корнем дерева считается первая вершина.

Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам микро F_1 -мера.

Пусть $Score=100\cdot\frac{F-B}{J-B}$, где $F-F_1$ -мера вашего решения, $J-F_1$ -мера решения эталона с запасом $\approx 1\%,\, B-F_1$ -мера наивного решения с запасом $\approx 2\%.$

Тогда
$$Verdict = \begin{cases} Ok & Score \geqslant 100 \\ PartiallyCorrect & 0 \leqslant Score \leqslant 100 \\ WrongAnswer & Score < 0 \end{cases}$$

Пример

стандартный ввод	стандартный вывод
2 4 2	7
8	Q 1 2.5 2 5
1 2 1	Q 2 2.5 3 4
2 1 1	C 1
3 1 2	C 4
4 2 2	Q 2 2.5 6 7
3 4 3	C 2
4 3 3	C 3
1 3 4	
2 4 4	

Страница 2 из 2