232.7

THOMAS BREYDO

Problem. Suppose T is a positive operator on V. Prove that T is invertible if and only if

$$\langle Tv, v \rangle > 0$$

for all nonzero $v \in V$.

Claim. If $\langle Tv, v \rangle > 0$ for all nonzero $v \in V$, then T is invertible.

Proof. Suppose $\langle Tv, v \rangle > 0$ for all nonzero $v \in V$. For any $v \in V$ where Tv = 0,

$$\langle Tv, v \rangle = 0,$$

which implies v=0, since $\langle Tv,v\rangle>0$ for all nonzero v. Since Tv=0 implies v=0, T is injective and thus invertible.

Claim. If T is invertible, then $\langle Tv, v \rangle > 0$ for all nonzero $v \in V$.

Proof. Since T is positive, $\langle Tv, v \rangle \geq 0$ for all $v \in V$. Thus, it suffices to prove that $\langle Tv, v \rangle \neq 0$ for all nonzero $v \in V$.

Suppose $v \in V$ is nonzero. Then, $Tv \neq 0$ because T is invertible. If $\sqrt{T}v = 0$ then Tv = 0, so $\sqrt{T}v \neq 0$. Thus, by the definiteness of the inner product,

$$\left\langle \sqrt{T}v, \sqrt{T}v \right\rangle > 0.$$

But

$$\left\langle \sqrt{T}v, \sqrt{T}v \right\rangle = \left\langle \sqrt{T}v, \sqrt{T}^*v \right\rangle$$
$$= \left\langle \sqrt{T}\sqrt{T}v, v \right\rangle$$
$$= \left\langle Tv, v \right\rangle,$$

so $\langle Tv, v \rangle > 0$ for nonzero v.

Note. You can view the source code for this solution here.