АННОТАЦИЯ/РЕФЕРАТ

Дипломная работа: 19 с., 0 рис., 7 табл., 7 источников. ГЕНЕТИЧЕ-СКИЕ АЛГОРИТМЫ, МАШИННОЕ ОБУЧЕНИЕ, NP-ПОЛНЫЕ ЗА-ДАЧИ, ЗАДАЧА О РЮКЗАКЕ, ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Объект исследования - задача о многомерном рюкзаке Цель работы - исследование применения генетического алгоритма к задаче о многомерном рюкзаке. В процессе работы был реализован генетический алгоритм на языке С# и его модификации. В результате исследования ...

ОГЛАВЛЕНИЕ

	Стр.
АННОТАЦИЯ/РЕФЕРАТ	5
ВВЕДЕНИЕ	7
ГЛАВА 1 Теоретическая часть	8
1.1 Задача о многомерном рюкзаке	8
1.2 Генетические алгоритмы	9
1.2.1 Этапы работы алгоритма	10
1.2.2 Выбор этапов	11
1.2.3 Дополнения алгоритма	12
ГЛАВА 2 Вторая глава	13
2.1 Наборы тестов	13
2.2 Первый набор тестов	14
2.2.1 Мутация в одной позиции	14
2.2.2 Инверсионная мутация	15
2.3 Второй набор тестов	15
ЗАКЛЮЧЕНИЕ	17
СПИСОК ЛИТЕРАТУРЫ	18
ПРИЛОЖЕНИЕ А КОД ПРОГРАММНОГО ПРОДУКТА	19

ВВЕДЕНИЕ

В ходе развития компьютерных наук человечеств встретилось с классом NP-полных задач. Такие задачи решаются алгоритмически за недетерминированное полиномиальное время, что существенно затрудняет поиск решения таких задач в приемлемые сроки. Одной из таких задач является задача о рюкзаке(Knapsack problem) и её модификации. Объектом исследования даной работы является задача о многомерном рюкзаке(Multidimensional knapsack problem). Предмет исследования решение задачи о многомерном рюкзаке с использованием генетического алгоритма.

Многие прикладные проблемы могут быть формализованы в виде рассматриваемой задачи. Примерами таких проблем являются размещение процессоров и баз данных в системе распределенных вычислений (см. [5]), погрузка груза и контроль бюджета (см. [6]), задачи раскройки (см. [7]) и др. Решение этих проблем обуславливает актуальность решения задачи о рюкзаке.

Цель исследования Для достижения цели были поставлены следующие задачи

- Исследовать
- Спроектировать
- Оценить

ГЛАВА 1

Теоретическая часть

1.1 Задача о многомерном рюкзаке

В данной работе рассматривается задача о многомерном рюкзаке (Multidimensional 0-1 knapsack problem, MKP). Эта задача является модификацией классической задачи о рюкзаке, поставленной в 19 веке Джорджем Мэттьюсоном. (см [1]) Данный же вариант задачи впервые был предложен Клиффордом Петерсеном в 1967 году.(см [2]) Постановка задач такова

Пусть существует N предметов, каждый из которых имеет стоимость c_i и размеры s_{ij} , где $i \in {1,2,...,N,j} \in {1,2,...,M}$. Пусть также существует рюкзак с ограничениями по вместимости по измерениям r_i . Требуется максимизировать сумму

$$\sum_{i=1}^{N} c_i x_i$$

где $x_i \in \{0,1\}$ при условии

$$\sum_{i=1}^{N} s_{ij} x_i < r_j \forall j \in \{1, 2, ..., M\}$$
(1.1)

И стандартная задача, и её модификация являются NP-полными задачами. Вычислительная сложность задачи такого рода при переборном решении для N предметов -

$$o(2^{N})$$

, что, вкупе с NP-сложностью, делает алгоритмическое решение та-

кой задачи неэффективным для больших N. Однако такие задачи могут быть решены эвристическими алгоритмами, то есть алгоритмами, для которых их корректность строго не доказана.

1.2 Генетические алгоритмы

Генетические алгоритмы являются семейством в множестве эвристических алгоритмов. Впервые такой алгоритм был предложен А. Фразером. (см [3]) Алгоритм является итеративным. Генетический алгоритм моделирует естественные процессы эволюции популяции, а именно - мутацию и скрещивание. Решение задачи с помощью такого алгоритма требует нескольких предварительных этапов:

- Выбор кодирования генотипа. На этом этапе нужно выбрать способ кодирования генотипа, который будет эффективен для данной задачи. Такой генотип должен однозначно моделировать сущность, рассматриваемую в задаче.
- Выбор начального приближения.

 Для запуска итерационного процесса требуется создать начальное множество пул генотипов.
- Выбор мутации. На каждой итерации алгоритма часть пула генотипов подвергется мутациям, то есть определенным образом изменяются их составляющие.
- Выбор механизма скрещивания (кроссинговера).
 После мутации происходит создание новых генотипов из частей старых с сохранением признаков родителя. Алгоритм скрещи-

вания позволяет получить из двух родительских генотипов два различных дочерних генотипа.

- Выбор функции оценки(фитнесс-функции).

Такая функция позволяет оценивать генотипы с точки зрения их близости к оптимальному решению и отбирать из них лучшие на каждой итерации.

1.2.1 Этапы работы алгоритма

- Создается пул генотипов с импользованием заданного алгоритма начального приближения
- Запускается итерационный процесс

Случайным образом выбирается часть пула, которая подвергнется мутации

Выбранная часть пула генотипов мутируется с использованием заданного алгоритма мутации

Мутировавшие генотипы замещают собой исходные в пуле, немутировавшие остаются без изменений

Из пула генотипов выбираются пары для скрещивания

Производится скрещивание с использованием заданного алгоритма

С использованием заданной функции оценки из результатов скрещивания выбираются лучшие

Если выполнено условие останова - например, достигнут предел числа итераций или известный максимум, то итерационный процесс завершается, в противном случае начинается следующая итерация. - Результат итерационного процесса отдается пользователю

1.2.2 Выбор этапов

Наиболее естественным кодированием отдельного решения задачи о рюкзаке в генотип является бинарная последовательность длины N, состоящая из нулей и единиц. Каждый і-й элемент такой последовательности является индикатором вхождения і-го предмета в текущее решение. Такая модель требует наличия проверки коееректности генотипа - соблюдения условия 1.1

Для генерации начального приближения был использован жадный алгоритм. Сначала создается генотип из единиц, соответствующий конфигурации рюкзака, в который положены все предметы. Затем в случайном порядке единицы заменяются на нули, пока полученныая конфигурация не будет удовлетворять условию коррекности. После этого полученный генотип мутируется с помощью текущей мутации до заполнения пула решений.

В ходе работы было реализовано несколько алгоритмов мутации и скрещивания с целью сравнения их эффективности. Были реализованы следующие алгоритмы мутации:

- Мутация в одной позциции, при которой заменяется значение в одной случайно выбранной точке генотипа.
- Инверсионная мутация, при которой половина генотипа заменяется на противоположные значения.

Были реализованы следующие алгоритмы скрещивания:

- Скрещивание по 1 точке, при котором выбирается произвольная точка в последовательнсти генотипа, значения до точки берутся

от первого генотипа, после - от второго.

- Скрещивание по двум точкам, при котором выбираются две различные произвльные точки, значения внутри интервала и в самих точках берутся из первого генотипа, вне интервала из второго.
- Побитовае скрещивание, при котором значения на нечетных позициях берутся из первого генотипа, на четных из второго.

В качестве функции оценки используется стоимость всех предметов, содеражщихся в рюкзаке, соответствующем конфигурации.

1.2.3 Дополнения алгоритма

В связи со спецификой задачи в алгоритм были внесены дополнения.

Были введены проверки генотипов на корректность после мутации и скрещивания Если генотип не удовлетворяет условию корректности, то значения начиная с первой позиции начинают зануляться до достижения генотипом корректности.

Были введены дополнительные пулы лучших конфигураций за время работы алгоритма. Такие пулы решают одновременно несколько задач

- Недопущение сильного ухудшения результатов решения вследствие случайных мутаций.
- Возможность сравнения решений после окончания работы алгоритма
- Возможность сохранения результатов при перезапуске алгоритма с другим начальным приближением. Такой перезапуск оправдан при получении генотипа локального максимума.

ГЛАВА 2

Вторая глава

2.1 Наборы тестов

Для оценки эффективности работы алгоритма было проведено его тестирование на различных наборах тестов. Первый набор тестов взят из книги Петерсена(см. [2]) и содержит 7 задач. Условия этих задач(см таблицу 2.1) позволяют проверить эффективность простейшей версии генетического алгоритма без модификаций и оценить её эффективность.

Таблица 2.1 --- Параметры первого набора тестов

№ задачи	Размерность	Количество предметов
1	6	10
2	10	10
3	15	10
4	20	10
5	28	10
6	39	5
7	50	5

Второй набор тестов взят из статьи Чу (см [4]) и содержит в себе 30 задач с одинаковыми параметрами: размерность рюкзака равна 5, рассматривается 100 различных предметов. Для каждого набора тестов известно лучшее решение, эффективность алгоритма оценивалась по скорости поиска решения в миллисекнудах и числу итераций. Для первого набора тестов рассматривались медианные значниия по 10 запускам

2.2 Первый набор тестов

2.2.1 Мутация в одной позиции

Рассмотрим результаты работы алгоритма без модификаций на первом наборе тестов. Для одноточечной мутации(см таблицу 2.2) алгоритм находит целевое решение

Таблица 2.2 --- Одноточечная мутация, одноточечное скрещивание

№ теста	Итерации	Время, мс
1	6	8
2	114340	2694
3	712	18
4	4022	92
5	3049	97
6	400974	13481
7	9343432	396644

Таблица 2.3 --- Одноточечная мутация, двуточечное скрещивание

№ теста	Итерации	Время, мс
1	21	9
2	70930	1697
3	901	22
4	2092	67
5	2672	95
6	23261	818
7	4770456	199461

Таблица 2.4 --- Одноточечная мутация, побитовое скрещивание

№ теста	Итерации	Время. мс
1	3	9
2	1826334	33017
3	1455	49
4	7869	219
5	2198	74
6	289379	10013
7	348826	13940

Таблица 2.5 --- Инверсионная мутация, одноточечное скрещивание

№ теста	Итерации	Время. мс
1	3	6
2	10	2
3	58	2
4	9538	560
5	-	-
6	-	-
7	-	-

2.2.2 Инверсионная мутация

Половинная мутация в контексте данной задачи оказалась менее эффективной(см таблицу ??)

2.3 Второй набор тестов

Таблица 2.6 --- Инверсионная мутация, двуточечное скрещивание

№ теста	Итерации	Время. мс
1	2	10
2	16	1
3	356	19
4	7161	422
5	-	-
6	-	-
7	-	-

Таблица 2.7 --- Инверсионная мутация, побитовое скрещивание

№ теста	Итерации	Время. мс
1	10	10
2	23	1
3	1409	52
4	246001	12189
5	-	-
6	-	-
7	-	-

ЗАКЛЮЧЕНИЕ

В ходе работы был реализован алгоритм, решающий зада

СПИСОК ЛИТЕРАТУРЫ

- 1. Mathews, G. B. On the partition of numbers / G.B. Mathews / / Proceedings of the London Mathematical Society. 28: C. 486–490.
- 2. C.C.Petersen "Computational experience / with variants of the Balas algorithm applied to the selection of R&D projects" Management Science 13(9) (1967) 736-750.
- 3. Fraser Alex. Computer Models in Genetics. New York: McGraw-Hill, 1970. ISBN 0-07-021904-4.
- 4. P.C.Chu and J.E.Beasley "A genetic algorithm for the multidimensional knapsack problem-/ Journal of Heuristics, vol. 4, 1998, C. 63-86.
- 5. Gavish, B. and H. Pirkul. (1982). "Allocation of Databases and Processors in a Distributed Computing System." In J. Akoka (ed.) Management of Distributed Data Processing, North-Holland, c. 215–231.
- 6. Shih, W. (1979). "A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem," Journal of the Operational Research Society 30, 369–378.
- 7. Gilmore, P.C. and R.E. Gomory. (1966). "The Theory and Computation of Knapsack Functions," Operations Research 14, 1045–1075.

ПРИЛОЖЕНИЕ А

КОД ПРОГРАММНОГО ПРОДУКТА

```
namespace Hellenist {
  public enum Case {
    Nominative = 1,
    Vocative = 2,
    Accusative = 3,
    Genitive = 4,
    Dative = 5
  }
}
```