Fixpunktiteration

Fuer die Beispiel beschränken wir uns erst auf Funktionen der Form

$$\{f \mid | f : \mathbb{D} \subset \mathbb{R} \to \mathbb{W} \subset \mathbb{R} \}$$

Idee/Motivation

Manche Taschenrechner lassen bestimmte Operationen durch Druecken der Gleichtaste (=) wiederholen. Operationen wie x^2 , sin(x), tan(x) und so weiter. Nun streben Funktionen wie x^2 gegen ∞ , andere wie sin(x) konvergieren gegen einen bestimmten Wert (hier gegen 0).

Definition Fixpunktgleichung

Sei $\varphi : \mathbb{D} \subset \mathbb{R} \to \mathbb{W} \subset \mathbb{R}$. Dann ist φ eine Fixpunktgleichung, wenn ein $\tilde{x} \in \mathbb{D}$ existiert, sodass $\varphi(\tilde{x}) = \tilde{x}$ gilt.

Geometrisch ist $\varphi(x)$ genau dann eine Fixpunktgleichtung, wenn diese die Funktion f(x) = x schneidet.

Hier sight man, dass fuer x = 0 mit $\varphi(x) = \sin(x)$ folgt, dass $\varphi(0) = 0$ ein Fixpunkt ist.

Fixpunktiteration

Eine Fixpunktiteration ist ein Verfahren zur nachrungsweisen Bestimmung von Loesungen von Gleichungen. Sei $\varphi : \mathbb{D} \to \mathbb{D}$ und sei $x_0 \in D$ der Startwert. Dann definieren wir die Folge $(x_k)_{k \in \mathbb{N}_0}$ durch $x_{k+1} = \varphi(x_k)$.

Fuer $\varphi(x) = \sin(x)$ und $x_0 = 1$ gilt dann :

х	xt	Unterschied, %
1	0.8414710	15.8529015
0.8414710	0.7456241	11.3903919
0.7456241	0.6784305	9.0117340
0.6784305	0.6275718	7.4965154
0.6275718	0.5871810	6.4360498
0.5871810	0.5540164	5.6481061
0.5540164	0.5261071	5.0376335
0.5261071	0.5021707	4.5497201
0.5021707	0.4813294	4.1502465
0.4813294	0.4629579	3.8168162
0.4629579	0.4465966	3.5340806
0.4465966	0.4318984	3.2911492
0.4318984	0.4185957	3.0800696
0.4185957	0.4064778	2.8948929
0.4064778	0.3953765	2.7310763
0.3953765	0.3851557	2.5850886
0.3851557	0.3757034	2.4541415

$$(x = x_n, x1 = x_{n+1}, Unterschied = |x_n - x_{n+1}|)$$

Hier sieht man, dass der Unterschied immer kleiner wird und wohl $\lim_{n\to\infty} x_n = 0$ ergibt, also gegen den Fixpunkt konvergiert.

Fuer die Funktion $\varphi(x) = x^2$ schauen wir uns die Fixpunktiteration mit $x_{t1} = 0.5, x_{t2} = 2$ an:

х	x1	Unterschied, %
0.5	0.25	50
0.25	0.0625	75
0.0625	0.00390625	93.75
0.00390625	0.000015258789	99.609375
0.000015258789	0.00000000233	99.998474121094
×	xl	Unterschied, %
2	4	200
4	16	400
16	256	1600
256	65536	25600

Waehrend der erste Startwert gegen 0 konvergiert, divergiert der 2. Startwert gegen ∞ . Wenn wir die Spruenge anschauen, die zwischen beliebigen $x, \varphi(x)$ entstehen, laesst sich etwas erkennen:

Wir definieren zwei neue Eigenschaften: abstossend und anziehend:

Definition

Ein Fixpunkt x^* heisst **anziehend**, falls sich in einer Umgebung von x^* $C \subset \mathbb{D}$ die Punkte durch Fixpunktiteration dem Fixpunkt annaehern, also fuer ein $y \in C$ gilt: $|\varphi(x^*) - \varphi(y)| < |x^* - y|$.

Ein Fixpunkt x^* heisst **abstossend**, falls sich in einer Umgebung von x^* $C \subset \mathbb{D}$ die Punkte durch Fixpunktiteration vom Fixpunkt entfernen, also fuer ein $y \in C$ gilt: $|\varphi(x^*) - \varphi(y)| > |x^* - y|$.

Daraus erkennnen wir eine wichtige Eigenschaft von konvergierenden Fixpunktiterationen: $\varphi(x)$ muss kontrahierend sein.

Doch hierbei stellt sich dann die Frage: Was muss gegeben sein, damit eine Fixpunktiteration fuer jeden Startwert gegen einen Fixpunkt konvergiert? Banach hat hierfuer einen Ansatz geliefert.

Fixpunktsatz von Banach

Gegeben sei ein vollständiger metrischer Raum $(X, |\cdot|)$ und eine nichtleere, abgeschlossene Menge $M \subset X$.

Sei $\varphi: M \to M$ eine Kontraktion mit Kontraktionszahl $0 \le K < 1$, also gilt $|\varphi(x) - \varphi(y)| \le K \cdot |x - y|$ fuer alle $x, y \in M$.

Ausserdem sei die Folge $(x_n)_{n\in\mathbb{N}}$ iterativ definiert durch $x_{n+1}:=\varphi(x_n)$ fuer einen beliebigen Startwert $x_0\in M$.

Dann gilt mit obigen Voraussetzungen: Es existiert genau ein $\tilde{x} \in M$: $\varphi(\tilde{x}) = \tilde{x}$. Fuer alle $x_0 \in M$ gilt weiterhin: $\lim_{n \to \infty} x_n = \tilde{x}$

Bemerkung

Raum: Menge X, die die bestimmte Eigenschaften enthält (Beispiel: Vektorraum aus der linearen Algebra)

Metrischer Raum: Raum X mit einer Metrik $||\cdot||:X\to\mathbb{R}^+$, bspw. \mathbb{R}^2 mit Abstandsformel/2-Norm

Abgeschlossene Menge: Sei M ein Metrischer Raum und $S \subset M$. Dann heisst S abgeschlossen, dalls alle Grenzwert von Folgen in S auch in S konvergieren. (Beispiel (0,1) offen, [0,1] abgeschlossen)

Vollständiger Raum: Metrischer Raum, in dem jede Cauchy-Folge von Elementen des Raums im Raum konvergiert.

$$a_n \subset A$$
. $\lim_{n \to \infty} (a_n) \stackrel{Vollständig}{=} a \stackrel{Vollständig}{\Rightarrow} a \in A$

Banachraum: Vollständiger, normierter Vektorraum (Beispiel $(\mathbb{R}, ||\cdot||)$.

Beweis

Wir zeigen 3 Aussagen:

- 1. Die iterativ definierte Folge $x_{n+1} = \varphi(x_n)$ konvergiert, also besitzt einen Grenzwert.
- 2. Der Grenzwert der Folge ist ein Fixpunkt in $\varphi(x)$.
- 3. $\varphi(x)$ besitzt nur diesen Fixpunkt, also ist der Fixpunkt eindeutig.
- 1. Wir benutzen die Folge und die Kontraktionseigenschaft und erhalten dadurch folgende Abschätzung:

$$|x_{n+1} - x_n| = |\varphi(x_n) - \varphi(x_{n-1})|$$

$$\leq K \cdot |x_n - x_{n-1}|$$

$$= K \cdot |\varphi(x_{n-1}) - \varphi(x_{n-2})|$$

$$\leq K^2 \cdot |x_{n-2} - x_{n-3}|$$

$$\vdots$$

$$\leq K^n \cdot |x_1 - x_0|$$
(1)

Als naechstes zeigen wir $|x_m - x_n| \le \sum_{k=n}^{m-1} (|x_{k+1} - x_k|) = |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \ldots + |x_{n+1} - x_n|$ mit $0 \le n < m$:

$$|x_{m} - x_{n}| = |x_{m} - x_{m-1} + x_{m-1} - x_{n}|$$

$$\stackrel{\Delta - Gleichung}{\leq} |x_{m} - x_{m-1}| + |x_{m-1} - x_{n}|$$

$$= |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2} + x_{m-2} - x_{n}|$$

$$\stackrel{\Delta - Gleichung}{\leq} |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + |x_{m-2} - x_{n}|$$

$$\vdots$$

$$= |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_{n}|$$
(2)

mit (1) und (2) erhalten wir nun insgesamt:

$$|x_{m} - x_{n}| \overset{(2)}{\leq} |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_{n}|$$

$$\overset{(1)}{\leq} K^{m-1} \cdot |x_{1} - x_{0}| + K^{m-2} \cdot |x_{1} - x_{0}| + \dots + K^{n} \cdot |x_{1} - x_{0}|$$

$$= (K^{m-1} + K^{m-2} + \dots + K^{n}) \cdot |x_{1} - x_{0}|$$

$$= K^{n} \cdot (K^{m-1-n} + K^{m-2-n} + \dots + K^{n-n}) \cdot |x_{1} - x_{0}|$$

$$= K^{n} \cdot \sum_{k=0}^{m-1-n} (K^{k} \cdot |x_{1} - x_{0}|) \qquad (\sum_{k=0}^{m} (q^{k}) = \frac{1-q^{m+1}}{1-q})$$

$$= K^{n} \cdot \frac{1 - K^{m-1-n+1}}{1 - K} \cdot |x_{1} - x_{0}|$$

$$= \frac{K^{n} - K^{m}}{1 - K} \cdot |x_{1} - x_{0}|$$

$$\leq \frac{K^{n}}{1 - K} \cdot |x_{1} - x_{0}|$$

Wählt man n, sodass $\frac{K^n}{1-K} \cdot |x_1 - x_0| \le \varepsilon$ ist , so folgt: $|x_m - x_n| \le \frac{K^n}{1-K} \cdot |x_1 - x_0| \le \varepsilon$. Somit muss (x_n) eine Cauchy-Folge sein, und da A eine abgeschlossene Teilmenge des vollständigen, metrischen Raumes X ist, existiert der Grenzwert \tilde{x} und liegt in A.

2. Setzen wir den Grenzwert \tilde{x} ein, so gilt da φ stetig ist:

$$\tilde{x} = \lim_{n \to \infty} (x_{n+1}) = \lim_{n \to \infty} (\varphi(x_n)) = \varphi(\lim_{n \to \infty} (x_n)) = \varphi(\tilde{x})$$

Somit ist \tilde{x} ein Fixpunkt von φx .

3. Wir zeigen per Widerspruchsbeweis, dass \tilde{x} ein eindeutiger Fixpunkt ist.

Nehmen wir an, es existiere neben \tilde{x} ein weiterer Fixpunkt $x^* \in A$ mit $x^* - \tilde{x}$. Dann gilt:

$$\begin{aligned} |\tilde{x} - x^*| &= |\varphi(\tilde{x}) - \varphi(x^*)| \\ &\leq K \cdot |\tilde{x} - x^*| \\ &< |\tilde{x} - x^*| \end{aligned}$$
 (da K < 1)

Daraus folgt $|\tilde{x} - x^*| < |\tilde{x} - x^*|$ was aber einen Widerspruch darstellt, daraus folgt, dass $\tilde{x} = x^*$ sein muss, also \tilde{x} eindeutig ist.

Beispiele von Aufgaben

Beweise die Existenz und Eindeutigkeit einer Nullstelle $x_0 \in [0,1]$ der Funktion:

$$q:[0,1]\to\mathbb{R}:x\to cos(x)-x$$

mithilfe des Banachschen Fixpunktsatzes.

Wir wandeln zunächst das Problem von einem Nullstellenproblem in ein Fixpunktproblem um, sei f definiert als:

$$f: [0,1] \to \mathbb{R}: f(x) = g(x) + x, \quad f(x) = \cos(x) - x + x = \cos(x)$$

Nun gilt folgendes:

g hat eindeutige Nullstelle in $[0,1] \Leftrightarrow f$ hat einen eindeutigen Fixpunkt in [0,1]

Nun muss gezeigt werden, dass f die Bedingungen des Banachschen Fixpunktsatzes erfüllt:

- 1. $(\mathbb{R}, |\cdot|)$ ist ein Banachraum, also ein metrischer Raum.
- 2. [0,1] ist eine abgeschlossene Menge von $\mathbb{R} = (\mathbb{R}, |\cdot|)$, also ist $(\mathbb{R}, |\cdot|)$ vollständig.
- 3. f ist eine Selbstabbildung, also muss gelten: $f([0,1]) \subset [0,1]$. Wir beobachten, dass f stetig und monoton fallend auf [0,1] ist. f ist stetig, da f eine Verkettung stetiger Funktionen ist $(\cos(x))$.

f ist monoton fallens auf [0,1], da $f'(x) = -sin(x) \le 0 \forall x \in [0,1]$. Es gilt nun fuer die Randwerte:

$$f(0) = cos(0) = 1$$

$$f(1) = cos(1) > 0$$

Also gilt $f([0,1]) \subset [0,1]$

4. Es gilt f ist eine Kontraktion. Mit dem Mittelwertssatz folgt:

$$|f(x) - f(y)| \le \sup_{\xi \in [0,1]} |f'(\xi)| \cdot |x - y|$$

$$\le \sup_{\xi \in [0,1]} |-\sin(\xi)| \cdot |x - y|$$

$$\le \sup_{\xi \in [0,1]} \sin(\xi) \cdot |x - y| \qquad (\sin(0) < \sin(x) < \sin(1), x \in (0,1))$$

$$= \sin(1) \cdot |x - y|$$

Da 0 < sin(1) < 1 gilt, muss f eine Kontraktion mit L = sin(1) < 1 sein.

Damit sind alle Bedingungen des Banachschen Fixpunktsatzes erfüllt, also existiert ein eindeutiger Fixpunkt im Intervall [0,1] für f, woraus die Eindeutigkeit der Nullstelle im Intervall [0,1] für g folgt.

Aufgaben

- a) Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}, x \to \frac{1}{3} + \frac{1}{4} \cdot (\ln(1 + \arctan(x)^2))$. Zeigen mit dem Banachschen Fixpunktsatz, dass f genau einen Fixpunkt im Intervall I = [0,1] besitzt.
- b) Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}, x \to \frac{1}{6}x^3 + \frac{1}{4} \cdot (x^2 x) + \frac{1}{6}$. Zeigen mit dem Banachschen Fixpunktsatz, dass f genau einen Fixpunkt im Intervall $I = [-\frac{1}{2}, \frac{1}{2}]$ besitzt.
- c) Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$f(x,y) = \begin{pmatrix} x \cdot e^y - \sin(x) + 0.09 \\ 0.1 \cdot e^x - y^2 \end{pmatrix}$$

Zeigen mit dem Banachschen Fixpunktsatz, dass f
 genau einen Fixpunkt in $[0,0.2]^2=[0,0.2]\times[0,0.2]$ besitzt.