Package 'zalpha'

February 22, 2020

Type Package

Version 0.1.0

Title Run a Suite of Selection Statistics

Author Clare Horscroft	
Maintainer Clare Horscroft <c.horscroft@soton.ac.uk></c.horscroft@soton.ac.uk>	
Description A suite of statistics from the Zalpha family for identifying areas of the genome under selective pressure.	-
License MIT + file LICENSE	
Encoding UTF-8	
Depends R (>= 2.10)	
LazyData true	
RoxygenNote 6.1.1	
Suggests testthat (>= 2.1.0)	
Suggests testulat (>= 2.1.0)	
R topics documented:	
LDprofile	2
LR	2
L_plus_R	3
snps	4
Zalpha	5
Zalpha_all	6
Zalpha_BetaCDF	8
Zalpha_expected	9
Zalpha_log_rsq_over_expected	1
Zalpha_rsq_over_expected	2
Zalpha_Zscore	4
Zbeta	5
Zbeta_BetaCDF	6
Zbeta_expected	8
Zbeta_log_rsq_over_expected	9
Zbeta_rsq_over_expected	21
Zbeta_Zscore	22
Index 2	24

2 LR

LDprofile Dataset containing an example LD profile
--

Description

A simulated LD profile, containing example LD statistics for genetic distances of 0 to 0.0049, in bins of size 0.0001.

Usage

```
data(LDprofile)
```

Format

A data frame with 50 rows and 5 variables:

bin the lower bound of each bin

rsq the expected rsq value for a pair of snps, where the genetic distance between them falls in the given bin

sd the standard deviation of the expected rsq value

Beta_a the first shape parameter for the Beta distribution fitted for this bin

Beta_b the second shape parameter for the Beta distribution fitted for this bin

LR Runs the LR function

Description

Returns the |L||R| value for each SNP location supplied to the function. For more information about the |L||R| diversity statistic please see Jacobs (2016).

Usage

```
LR(pos, ws, X = NULL)
```

Arguments

pos	A numeric vector of SNP locations
WS	The window size which the LR statistic will be calculated over. This should be on the same scale as the pos vector.
X	Optional. Specify a region of the chromosome to calculate LR for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate LR for every SNP in the pos vector.

Value

A list containing the SNP positions and the LR values for those SNPs

L_plus_R

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

Examples

```
## load the snps example dataset
data(snps)
## run LR over all the SNPs with a window size of 3000 bp
LR(snps$positions,3000)
## only return results for SNPs between locations 600 and 1500 bp
LR(snps$positions,3000,X=c(600,1500))
```

L_plus_R

Runs the L_plus_R function

Description

Returns the $\binom{|L|}{2} + \binom{|R|}{2}$ value for each SNP location supplied to the function. For more information about the L_plus_R diversity statistic please see Jacobs (2016).

Usage

```
L_plus_R(pos, ws, X = NULL)
```

Arguments

pos	A numeric vector of SNP locations
WS	The window size which the L_plus_R statistic will be calculated over. This should be on the same scale as the pos vector.
X	Optional. Specify a region of the chromosome to calculate L_plus_R for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate L_plus_R for every SNP in the pos vector.

Value

A list containing the SNP positions and the L_plus_R values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

4 snps

Examples

```
## load the snps example dataset
data(snps)
## run L_plus_R over all the SNPs with a window size of 3000 bp
L_plus_R(snps$positions,3000)
## only return results for SNPs between locations 600 and 1500 bp
L_plus_R(snps$positions,3000,X=c(600,1500))
```

snps

Dataset containing details on simulated SNPs

Description

A dataset containing the positions, genetic distances and alleles for 20 SNPs, across 10 simulated chromosomes.

Usage

data(snps)

Format

A data frame with 20 rows and 12 variables:

positions location of the SNP on the chromosome

distances genetic distance of the SNP from the start of the chromosome

chrom_1 allele of the SNP on the first example chromosome

chrom_2 allele of the SNP on the second example chromosome

chrom_3 allele of the SNP on the third example chromosome

chrom_4 allele of the SNP on the fourth example chromosome

chrom_5 allele of the SNP on the fifth example chromosome

chrom_6 allele of the SNP on the sixth example chromosome

chrom_7 allele of the SNP on the seventh example chromosome

chrom_8 allele of the SNP on the eighth example chromosome

chrom_9 allele of the SNP on the ninth example chromosome

chrom_10 allele of the SNP on the tenth example chromosome

Zalpha 5

Zalpha Runs the Zalpha function	Zalpha
---------------------------------	--------

Description

Returns a Z_{α} value for each SNP location supplied to the function. For more information about the Z_{α} statistic please see Jacobs (2016). The Z_{α} statistic is defined as:

$$Z_{\alpha} = \frac{\left(\binom{|L|}{2} \right)^{-1} \sum_{i,j \in L} r_{i,j}^2 + \left(\binom{|R|}{2} \right)^{-1} \sum_{i,j \in L} r_{i,j}^2}{2}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, and r^2 is equal to the squared correlation between a pair of SNPs

Usage

```
Zalpha(pos, x, ws, minRandL = 4, minRL = 25, X = NULL)
```

Arguments

pos	A numeric vector of SNP locations
х	A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.
WS	The window size which the Z_{α} statistic will be calculated over. This should be on the same scale as the pos vector.
minRandL	Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is 4.
minRL	Minimum value for the product of the set sizes for R and L. Default is 25.
X	Optional. Specify a region of the chromosome to calculate Z_{α} for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate Z_{α} for every SNP in the pos vector.

Value

A list containing the SNP positions and the Z_{α} values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

```
## load the snps example dataset
data(snps)
## run Zalpha over all the SNPs with a window size of 3000 bp
Zalpha(snps$positions,as.matrix(snps[,3:12]),3000)
## only return results for SNPs between locations 600 and 1500 bp
Zalpha(snps$positions,as.matrix(snps[,3:12]),3000,X=c(600,1500))
```

6 Zalpha_all

Zalpha_all	Runs all the statistics in the zalpha package

Description

Returns every statistic for each SNP location, given the appropriate parameters. See Details for more information.

Usage

```
Zalpha_all(pos, x = NULL, ws, dist = NULL, LDprofile_bins = NULL,
LDprofile_rsq = NULL, LDprofile_sd = NULL, LDprofile_Beta_a = NULL,
LDprofile_Beta_b = NULL, minRandL = 4, minRL = 25, X = NULL)
```

Arguments

pos	A numeric vector of SNP locations	
х	Optional. A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.	
WS	The window size which the statistics will be calculated over. This should be on the same scale as the pos vector.	
dist	Optional. A numeric vector of genetic distances (e.g. cM, LDU). This should be the same length as pos.	
LDprofile_bins	Optional. A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.	
LDprofile_rsq	Optional. A numeric vector containing the expected r^2 values for the corresponding bin in the LD profile. Must be between 0 and 1 .	
LDprofile_sd	Optional. A numeric vector containing the standard deviation of the r^2 values for the corresponding bin in the LD profile.	
LDprofile_Beta	_a	
	Optional. A numeric vector containing the first estimated Beta parameter for the corresponding bin in the LD profile.	
LDprofile_Beta_b		
	Optional. A numeric vector containing the second estimated Beta parameter for the corresponding bin in the LD profile.	
minRandL	Minimum number of SNPs in each set R and L for the statistics to be calculated. Default is 4.	
minRL	Minimum value for the product of the set sizes for R and L. Default is 25.	
X	Optional. Specify a region of the chromosome to calculate the statistics for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate the statistics for every SNP in the pos vector.	

Zalpha_all 7

Details

Not all statistics will be returned, depending on the parameters supplied to the function. If x is not supplied, only Zalpha_expected, Zbeta_expected, LR and L_plus_R will be calculated. For any of the statistics which use an expected r^2 value, the parameters dist, LDprofile_bins and LDprofile_rsq must be supplied. This includes the statistics: Zalpha_expected, Zalpha_rsq_over_expected, Zalpha_log_rsq_over_expected, Zalpha_BetaCDF, Zbeta_expected, Zbeta_rsq_over_expected Zbeta_log_rsq_over_expected, Zbeta_Zscore and Zbeta_BetaCDF.

- For Zalpha_Zscore and Zbeta_Zscore to be calculated, the parameter LDprofile_sd must also be supplied.
- For Zalpha_BetaCDF and Zbeta_BetaCDF to be calculated, the parameters LDprofile_Beta_a and LDprofile_Beta_b must also be supplied.

For more information about the statistics please see Jacobs (2016).

Value

A list containing the SNP positions and the statistics for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

See Also

Zalpha Zalpha_expected Zalpha_rsq_over_expected Zalpha_log_rsq_over_expected Zalpha_Zscore Zalpha_BetaCDF Zbeta Zbeta_expected Zbeta_rsq_over_expected Zbeta_log_rsq_over_expected Zbeta_Zscore Zbeta_BetaCDF LR L_plus_R

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zalpha_all over all the SNPs with a window size of 3000 bp
## will return all 15 statistics
Zalpha_all(snps$positions,as.matrix(snps[,3:12]),3000,snps$distances,
LDprofile$bin,LDprofile$rsq,LDprofile$sd,LDprofile$Beta_a,LDprofile$Beta_b)
## only return results for SNPs between locations 600 and 1500 bp
Zalpha_all(snps$positions,as.matrix(snps[,3:12]),3000,snps$distances,
LDprofile$bin,LDprofile$rsq,LDprofile$sd,LDprofile$Beta_a,LDprofile$Beta_b,X=c(600,1500))
## will only return statistics not requiring an LD profile
Zalpha_all(snps$positions,as.matrix(snps[,3:12]),3000)
```

8 Zalpha_BetaCDF

Zalpha_BetaCDF	Runs the Zalpha function using a cumulative beta distribution function
	on the r-squared values for the region

Description

Returns a $Z_{\alpha}^{BetaCDF}$ value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the $Z_{\alpha}^{BetaCDF}$ statistic please see Jacobs (2016). The $Z_{\alpha}^{BetaCDF}$ statistic is defined as:

$$Z_{\alpha}^{BetaCDF} = \frac{{{{{\left({\frac{{|L|}}{2}} \right)}^{ - 1}}\sum\nolimits_{i,j \in L} {\frac{{B(r_{i,j}^2;a,b)}}{{B(a,b)}}} + {{{{\left({\frac{{|R|}}{2}} \right)}^{ - 1}}}\sum\nolimits_{i,j \in R} {\frac{{B(r_{i,j}^2;a,b)}}{{B(a,b)}}} }}{2}}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, r^2 is equal to the squared correlation between a pair of SNPs, and $\frac{B(r_{i,j}^2;a,b)}{B(a,b)}$ is the cumulative distribution function for the Beta distribution given the estimated a and b parameters from the LD profile.

Usage

```
Zalpha_BetaCDF(pos, x, dist, ws, LDprofile_bins, LDprofile_Beta_a,
 LDprofile_Beta_b, minRandL = 4, minRL = 25, X = NULL)
```

Arg

Χ

guments			
	pos	A numeric vector of SNP locations	
	х	A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.	
	dist	A numeric vector of genetic distances (e.g. cM , LDU). This should be the same length as pos .	
	WS	The window size which the $Z_{\alpha}^{BetaCDF}$ statistic will be calculated over. This should be on the same scale as the pos vector.	
	LDprofile_bins	A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.	
LDprofile_Beta_a			
		A numeric vector containing the first estimated Beta parameter for the corresponding bin in the LD profile.	
	LDprofile_Beta_b		
		A numeric vector containing the second estimated Beta parameter for the corresponding bin in the LD profile.	

Minimum number of SNPs in each set R and L for the statistic to be calculated. minRandL

Default is 4.

Minimum value for the product of the set sizes for R and L. Default is 25. minRL

> Optional. Specify a region of the chromosome to calculate $Z_{\alpha}^{BetaCDF}$ for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate $Z_{\alpha}^{BetaCDF}$ for every SNP in the pos vector.

Zalpha_expected 9

Details

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the $Z_{\alpha}^{BetaCDF}$ values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

Examples

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zalpha_BetaCDF over all the SNPs with a window size of 3000 bp
Zalpha_BetaCDF(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$Beta_a,LDprofile$Beta_b)
## only return results for SNPs between locations 600 and 1500 bp
Zalpha_BetaCDF(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$Beta_a,LDprofile$Beta_b,X=c(600,1500))
```

Zalpha_expected

Runs the Zalpha function on the expected r-squared values for the region

Description

Returns a $Z_{\alpha}^{E[r^2]}$ value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the $Z_{\alpha}^{E[r^2]}$ statistic please see Jacobs (2016). The $Z_{\alpha}^{E[r^2]}$ statistic is defined as:

$$Z_{\alpha}^{E[r^2]} = \frac{\binom{|L|}{2}^{-1} \sum_{i,j \in L} E[r_{i,j}^2] + \binom{|R|}{2}^{-1} \sum_{i,j \in R} E[r_{i,j}^2]}{2}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, and $E[r^2]$ is equal to the expected squared correlation between a pair of SNPs, given an LD profile.

Usage

```
Zalpha_expected(pos, dist, ws, LDprofile_bins, LDprofile_rsq,
  minRandL = 4, minRL = 25, X = NULL)
```

10 Zalpha_expected

Arguments

pos	A numeric vector of SNP locations
dist	A numeric vector of genetic distances (e.g. cM , LDU). This should be the same length as pos.
WS	The window size which the $Z_{\alpha}^{E[r^2]}$ statistic will be calculated over. This should be on the same scale as the pos vector.
LDprofile_bins	A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.
LDprofile_rsq	A numeric vector containing the expected r^2 values for the corresponding bin in the LD profile. Must be between 0 and 1.
minRandL	Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is $4. $
minRL	Minimum value for the product of the set sizes for R and L. Default is 25.
X	Optional. Specify a region of the chromosome to calculate $Z_{\alpha}^{E[r^2]}$ for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate $Z_{\alpha}^{E[r^2]}$ for every SNP in the pos vector.

Details

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the $Z_{\alpha}^{E[r^2]}$ values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zalpha_expected over all the SNPs with a window size of 3000 bp
Zalpha_expected(snps$positions,snps$distances,3000,LDprofile$bin,LDprofile$rsq)
## only return results for SNPs between locations 600 and 1500 bp
Zalpha_expected(snps$positions,snps$distances,3000,LDprofile$bin,LDprofile$rsq,X=c(600,1500))
```

Zalpha_log_rsq_over_expected

Runs the Zalpha function on the log of the r-squared values over the expected r-squared values for the region

Description

Returns a $Z_{\alpha}^{log_{10}(r^2/E[r^2])}$ value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the $Z_{\alpha}^{log_{10}(r^2/E[r^2])}$ statistic please see Jacobs (2016). The $Z_{\alpha}^{log_{10}(r^2/E[r^2])}$ statistic is defined as:

$$Z_{\alpha}^{log_{10}(r^2/E[r^2])} = \frac{{{|L|}\choose{2}}^{-1} \sum_{i,j\in L} log_{10}(r_{i,j}^2/E[r_{i,j}^2]) + {{|R|}\choose{2}}^{-1} \sum_{i,j\in R} log_{10}(r_{i,j}^2/E[r_{i,j}^2])}{2}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, r^2 is equal to the squared correlation between a pair of SNPs, and $E[r^2]$ is equal to the expected squared correlation between a pair of SNPs, given an LD profile.

Usage

```
Zalpha_log_rsq_over_expected(pos, x, dist, ws, LDprofile_bins,
   LDprofile_rsq, minRandL = 4, minRL = 25, X = NULL)
```

Arguments

pos	A numeric vector of SNP locations
X	A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.
dist	A numeric vector of genetic distances (e.g. cM, LDU). This should be the same length as pos.
WS	The window size which the $Z_{\alpha}^{log_{10}(r^2/E[r^2])}$ statistic will be calculated over. This should be on the same scale as the pos vector.
LDprofile_bins	A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.
LDprofile_rsq	A numeric vector containing the expected r^2 values for the corresponding bin in the LD profile. Must be between 0 and 1.
minRandL	Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is 4.
minRL	Minimum value for the product of the set sizes for R and L. Default is 25.
X	Optional. Specify a region of the chromosome to calculate $Z_{\alpha}^{log_{10}(r^2/E[r^2])}$ for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate $Z_{\alpha}^{log_{10}(r^2/E[r^2])}$ for every SNP in the pos vector.

Details

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the $Z_{\alpha}^{log_{10}(r^2/E[r^2])}$ values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

Examples

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zalpha_log_rsq_over_expected over all the SNPs with a window size of 3000 bp
Zalpha_log_rsq_over_expected(snps$positions, as.matrix(snps[,3:12]), snps$distances, 3000,
LDprofile$bin,LDprofile$rsq)
## only return results for SNPs between locations 600 and 1500 bp
Zalpha_log_rsq_over_expected(snps$positions, as.matrix(snps[,3:12]), snps$distances, 3000,
LDprofile$bin,LDprofile$rsq,X=c(600,1500))
```

Zalpha_rsq_over_expected

Runs the Zalpha function on the r-squared values over the expected r-squared values for the region

Description

Returns a $Z_{\alpha}^{r^2/E[r^2]}$ value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the $Z_{\alpha}^{r^2/E[r^2]}$ statistic please see Jacobs (2016). The $Z_{\alpha}^{r^2/E[r^2]}$ statistic is defined as:

$$Z_{\alpha}^{r^2/E[r^2]} = \frac{{\binom{|L|}{2}}^{-1} \sum_{i,j \in L} r_{i,j}^2/E[r_{i,j}^2] + {\binom{|R|}{2}}^{-1} \sum_{i,j \in R} r_{i,j}^2/E[r_{i,j}^2]}{2}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, r^2 is equal to the squared correlation between a pair of SNPs, and $E[r^2]$ is equal to the expected squared correlation between a pair of SNPs, given an LD profile.

Usage

```
Zalpha_rsq_over_expected(pos, x, dist, ws, LDprofile_bins, LDprofile_rsq,
    minRandL = 4, minRL = 25, X = NULL)
```

Arguments

pos	A numeric vector of SNP locations
X	A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.
dist	A numeric vector of genetic distances (e.g. cM , LDU). This should be the same length as pos .
WS	The window size which the $Z_{\alpha}^{r^2/E[r^2]}$ statistic will be calculated over. This should be on the same scale as the pos vector.
LDprofile_bins	A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.
LDprofile_rsq	A numeric vector containing the expected r^2 values for the corresponding bin in the LD profile. Must be between 0 and 1.
minRandL	Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is $4. $
minRL	Minimum value for the product of the set sizes for R and L. Default is 25.
X	Optional. Specify a region of the chromosome to calculate $Z_{\alpha}^{r^2/E[r^2]}$ for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate $Z_{\alpha}^{r^2/E[r^2]}$ for every SNP in the pos vector.

Details

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the $Z_{lpha}^{r^2/E[r^2]}$ values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zalpha_rsq_over_expected over all the SNPs with a window size of 3000 bp
Zalpha_rsq_over_expected(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$rsq)
## only return results for SNPs between locations 600 and 1500 bp
Zalpha_rsq_over_expected(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$rsq,X=c(600,1500))
```

14 Zalpha_Zscore

Zalpha_Zscore Runs the Zalpha function using the Z score of the r-squared values f the region	unction using the Z score of the r-squared values for
--	---

Description

Returns a Z_{α}^{Zscore} value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the Z_{α}^{Zscore} statistic please see Jacobs (2016). The Z_{α}^{Zscore} statistic is defined as:

$$Z_{\alpha}^{Zscore} = \frac{{{{{\left({\frac{{|L|}}{2}} \right)}^{ - 1}}\sum\nolimits_{i,j \in L} {\frac{{r_{i,j}^2 - E[r_{i,j}^2]}}{{\sigma [r_{i,j}^2]}}} + {{{\left({\frac{{|R|}}{2}} \right)}^{ - 1}}\sum\nolimits_{i,j \in R} {\frac{{r_{i,j}^2 - E[r_{i,j}^2]}}{{\sigma [r_{i,j}^2]}}} }}{2}}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, r^2 is equal to the squared correlation between a pair of SNPs, $E[r^2]$ is equal to the expected squared correlation between a pair of SNPs, given an LD profile, and $\sigma[r^2]$ is the standard deviation.

Usage

```
Zalpha_Zscore(pos, x, dist, ws, LDprofile_bins, LDprofile_rsq,
   LDprofile_sd, minRandL = 4, minRL = 25, X = NULL)
```

Arguments

pos	A numeric vector of SNP locations
X	A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.
dist	A numeric vector of genetic distances (e.g. cM , LDU). This should be the same length as pos .
WS	The window size which the Z_{α}^{Zscore} statistic will be calculated over. This should be on the same scale as the pos vector.
LDprofile_bins	A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.
LDprofile_rsq	A numeric vector containing the expected r^2 values for the corresponding bin in the LD profile. Must be between 0 and 1 .
LDprofile_sd	A numeric vector containing the standard deviation of the r^2 values for the corresponding bin in the LD profile.
minRandL	Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is $4. $
minRL	Minimum value for the product of the set sizes for R and L. Default is 25.
X	Optional. Specify a region of the chromosome to calculate Z_{α}^{Zscore} for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate Z_{α}^{Zscore} for every SNP in the pos vector.

Zbeta 15

Details

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the Z^{Zscore}_{α} values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

Examples

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zalpha_Zscore over all the SNPs with a window size of 3000 bp
Zalpha_Zscore(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$rsq,LDprofile$sd)
## only return results for SNPs between locations 600 and 1500 bp
Zalpha_Zscore(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$rsq,LDprofile$sd,X=c(600,1500))
```

Zbeta

Runs the Zbeta function

Description

Returns a Z_{β} value for each SNP location supplied to the function. For more information about the Z_{β} statistic please see Jacobs (2016). The Z_{β} statistic is defined as:

$$Z_{\beta} = \frac{\sum_{i \in L, j \in R} r_{i,j}^2}{|L||R|}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, and r^2 is equal to the squared correlation between a pair of SNPs

Usage

```
Zbeta(pos, x, ws, minRandL = 4, minRL = 25, X = NULL)
```

16 Zbeta_BetaCDF

Arguments

pos	A numeric vector of SNP locations
X	A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.
ws	The window size which the Z_{β} statistic will be calculated over. This should be on the same scale as the pos vector.
minRandL	Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is 4.
minRL	Minimum value for the product of the set sizes for R and L. Default is 25.
X	Optional. Specify a region of the chromosome to calculate Z_{β} for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate Z_{β} for every SNP in the pos vector.

Value

A list containing the SNP positions and the Z_{β} values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

Examples

```
## load the snps example dataset
data(snps)
## run Zbeta over all the SNPs with a window size of 3000 bp
Zbeta(snps$positions,as.matrix(snps[,3:12]),3000)
## only return results for SNPs between locations 600 and 1500 bp
Zbeta(snps$positions,as.matrix(snps[,3:12]),3000,X=c(600,1500))
```

Zbeta_BetaCDF

Runs the Zbeta function using a cumulative beta distribution function on the r-squared values for the region

Description

Returns a $Z_{\beta}^{BetaCDF}$ value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the $Z_{\beta}^{BetaCDF}$ statistic please see Jacobs (2016). The $Z_{\beta}^{BetaCDF}$ statistic is defined as:

$$Z_{\beta}^{BetaCDF} = \frac{\sum_{i \in L, j \in R} \frac{B(r_{i,j}^2; a, b)}{B(a, b)}}{|L||R|}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, r^2 is equal to the squared correlation between a pair of SNPs, and $\frac{B(r_{i,j}^2;a,b)}{B(a,b)}$ is the cumulative distribution function for the Beta distribution given the estimated a and b parameters from the LD profile.

Zbeta_BetaCDF 17

Usage

```
Zbeta_BetaCDF(pos, x, dist, ws, LDprofile_bins, LDprofile_Beta_a,
 LDprofile_Beta_b, minRandL = 4, minRL = 25, X = NULL)
```

Arguments nos

pos	A numeric vector of SNP locations
x	A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.
dist	A numeric vector of genetic distances (e.g. cM, LDU). This should be the same length as pos.
WS	The window size which the $Z_{\beta}^{BetaCDF}$ statistic will be calculated over. This should be on the same scale as the pos vector.
LDprofile_bins	A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.
LDprofile_Beta_a	
	A numeric vector containing the first estimated Beta parameter for the corresponding bin in the LD profile.
LDprofile_Beta_b	
	A numeric vector containing the second estimated Beta parameter for the corre-

Default is 4. minRL Minimum value for the product of the set sizes for R and L. Default is 25.

sponding bin in the LD profile.

Optional. Specify a region of the chromosome to calculate $Z_{\beta}^{BetaCDF}$ for in the format c(startposition, endposition). The start position and the end

position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate $Z_{\beta}^{BetaCDF}$ for every SNP in the pos

Minimum number of SNPs in each set R and L for the statistic to be calculated.

vector.

Details

Χ

minRandL

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the $Z_{\beta}^{BetaCDF}$ values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps. Genetics, 2016. 203(4): p. 1807

18 Zbeta_expected

Examples

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zbeta_BetaCDF over all the SNPs with a window size of 3000 bp
Zbeta_BetaCDF(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$Beta_a,LDprofile$Beta_b)
## only return results for SNPs between locations 600 and 1500 bp
Zbeta_BetaCDF(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$Beta_a,LDprofile$Beta_b,X=c(600,1500))
```

Zbeta_expected

Runs the Zbeta function on the expected r-squared values for the re-

Description

Returns a $Z_{\beta}^{E[r^2]}$ value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the $Z_{\beta}^{E[r^2]}$ statistic please see Jacobs (2016). The $Z^{E[r^2]}_{\beta}$ statistic is defined as:

$$Z_{\beta}^{E[r^2]} = \frac{\sum_{i \in L, j \in R} E[r_{i,j}^2]}{|L||R|}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, and $E[r^2]$ is equal to the expected squared correlation between a pair of SNPs, given an LD profile.

Usage

```
Zbeta_expected(pos, dist, ws, LDprofile_bins, LDprofile_rsq,
 minRandL = 4, minRL = 25, X = NULL)
```

Arguments

pos	A numeric vector of SNP locations
dist	A numeric vector of genetic distances (e.g. cM, LDU). This should be the same length as pos.
WS	The window size which the $Z_{\beta}^{E[r^2]}$ statistic will be calculated over. This should be on the same scale as the pos vector.
LDprofile_bins	A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.
LDprofile_rsq	A numeric vector containing the expected r^2 values for the corresponding bin in the LD profile. Must be between 0 and 1.
minRandL	Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is 4.
minRL	Minimum value for the product of the set sizes for R and L. Default is 25.

Χ

Optional. Specify a region of the chromosome to calculate $Z_{\beta}^{E[r^2]}$ for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate $Z_{\beta}^{E[r^2]}$ for every SNP in the pos vector.

Details

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the $Z_{\beta}^{E[r^2]}$ values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

Examples

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zbeta_expected over all the SNPs with a window size of 3000 bp
Zbeta_expected(snps$positions,snps$distances,3000,LDprofile$bin,LDprofile$rsq)
## only return results for SNPs between locations 600 and 1500 bp
Zbeta_expected(snps$positions,snps$distances,3000,LDprofile$bin,LDprofile$rsq,X=c(600,1500))
```

Zbeta_log_rsq_over_expected

Runs the Zbeta function on the log of the r-squared values over the expected r-squared values for the region

Description

Returns a $Z_{\beta}^{log_{10}(r^2/E[r^2])}$ value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the $Z_{\beta}^{log_{10}(r^2/E[r^2])}$ statistic please see Jacobs (2016). The $Z_{\beta}^{log_{10}(r^2/E[r^2])}$ statistic is defined as:

$$Z_{\beta}^{\log_{10}(r^2/E[r^2])} = \frac{\sum_{i \in L, j \in R} log_{10}(r_{i,j}^2/E[r_{i,j}^2])}{|L||R|}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, r^2 is equal to the squared correlation between a pair of SNPs, and $E[r^2]$ is equal to the expected squared correlation between a pair of SNPs, given an LD profile.

Usage

```
Zbeta_log_rsq_over_expected(pos, x, dist, ws, LDprofile_bins,
   LDprofile_rsq, minRandL = 4, minRL = 25, X = NULL)
```

Arguments

A numeric vector of SNP locations
A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.
A numeric vector of genetic distances (e.g. cM, LDU). This should be the same length as pos.
The window size which the $Z_{\beta}^{log_{10}(r^2/E[r^2])}$ statistic will be calculated over. This should be on the same scale as the pos vector.
A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.
A numeric vector containing the expected r^2 values for the corresponding bin in the LD profile. Must be between 0 and 1.
Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is 4.
Minimum value for the product of the set sizes for R and L. Default is 25.
Optional. Specify a region of the chromosome to calculate $Z_{\beta}^{log_{10}(r^2/E[r^2])}$ for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate $Z_{\beta}^{log_{10}(r^2/E[r^2])}$ for every SNP in the pos vector.

Details

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the $Z_{\beta}^{log_{10}(r^2/E[r^2])}$ values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zbeta_log_rsq_over_expected over all the SNPs with a window size of 3000 bp
Zbeta_log_rsq_over_expected(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
```

LDprofile\$bin,LDprofile\$rsq)
only return results for SNPs between locations 600 and 1500 bp
Zbeta_log_rsq_over_expected(snps\$positions,as.matrix(snps[,3:12]),snps\$distances,3000,
LDprofile\$bin,LDprofile\$rsq,X=c(600,1500))

Zbeta_rsq_over_expected

Runs the Zbeta function on the r-squared values over the expected r-squared values for the region

Description

Returns a $Z_{\beta}^{r^2/E[r^2]}$ value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the $Z_{\beta}^{r^2/E[r^2]}$ statistic please see Jacobs (2016). The $Z_{\beta}^{r^2/E[r^2]}$ statistic is defined as:

$$Z_{\beta}^{r^2/E[r^2]} = \frac{\sum_{i \in L, j \in R} r_{i,j}^2/E[r_{i,j}^2]}{|L||R|}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, r^2 is equal to the squared correlation between a pair of SNPs, and $E[r^2]$ is equal to the expected squared correlation between a pair of SNPs, given an LD profile.

Usage

```
Zbeta_rsq_over_expected(pos, x, dist, ws, LDprofile_bins, LDprofile_rsq,
    minRandL = 4, minRL = 25, X = NULL)
```

Arguments

pos	A numeric vector of SNP locations
X	A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.
dist	A numeric vector of genetic distances (e.g. cM, LDU). This should be the same length as pos.
WS	The window size which the $Z_{\beta}^{r^2/E[r^2]}$ statistic will be calculated over. This should be on the same scale as the pos vector.
LDprofile_bins	A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.
LDprofile_rsq	A numeric vector containing the expected r^2 values for the corresponding bin in the LD profile. Must be between 0 and 1.
minRandL	Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is 4.
minRL	Minimum value for the product of the set sizes for R and L. Default is 25.
X	Optional. Specify a region of the chromosome to calculate $Z_{\beta}^{r^2/E[r^2]}$ for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate $Z_{\beta}^{r^2/E[r^2]}$ for every SNP in the pos vector.

Details

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the $Z_{eta}^{r^2/E[r^2]}$ values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

Examples

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zbeta_rsq_over_expected over all the SNPs with a window size of 3000 bp
Zbeta_rsq_over_expected(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$rsq)
## only return results for SNPs between locations 600 and 1500 bp
Zbeta_rsq_over_expected(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$rsq,X=c(600,1500))
```

Zbeta_Zscore

Runs the Zbeta function using the Z score of the r-squared values for the region

Description

Returns a Z_{β}^{Zscore} value for each SNP location supplied to the function, based on the expected r^2 values given an LD profile and genetic distances. For more information about the Z_{β}^{Zscore} statistic please see Jacobs (2016). The Z_{β}^{Zscore} statistic is defined as:

$$Z_{\beta}^{Zscore} = \frac{\sum_{i \in L, j \in R} \frac{r_{i,j}^2 - E[r_{i,j}^2]}{\sigma[r_{i,j}^2]}}{|L||R|}$$

where |L| and |R| are the number of SNPs to the left and right of the current locus within the given window ws, r^2 is equal to the squared correlation between a pair of SNPs, $E[r^2]$ is equal to the expected squared correlation between a pair of SNPs, given an LD profile, and $\sigma[r^2]$ is the standard deviation.

Usage

```
Zbeta_Zscore(pos, x, dist, ws, LDprofile_bins, LDprofile_rsq, LDprofile_sd,
    minRandL = 4, minRL = 25, X = NULL)
```

Zbeta_Zscore 23

Arguments

A numeric vector of SNP locations
A matrix of SNP values. Columns represent chromosomes, rows are SNP locations. Hence, the number of rows should equal the length of the pos vector. SNPs should all be biallelic.
A numeric vector of genetic distances (e.g. cM , LDU). This should be the same length as pos.
The window size which the Z_{β}^{Zscore} statistic will be calculated over. This should be on the same scale as the pos vector.
A numeric vector containing the lower bound of the bins used in the LD profile. These should be of equal size.
A numeric vector containing the expected r^2 values for the corresponding bin in the LD profile. Must be between 0 and 1 .
A numeric vector containing the standard deviation of the r^2 values for the corresponding bin in the LD profile.
Minimum number of SNPs in each set R and L for the statistic to be calculated. Default is $4. $
Minimum value for the product of the set sizes for R and L. Default is 25.
Optional. Specify a region of the chromosome to calculate Z_{β}^{Zscore} for in the format c(startposition, endposition). The start position and the end position should be within the extremes of the positions given in the pos vector. If not supplied, the function will calculate Z_{β}^{Zscore} for every SNP in the pos vector.

Details

The LD profile describes the expected correlation between SNPs at a given genetic distance, generated using simulations or real data. Care should be taken to utilise an LD profile which is representative of the population in question. The LD profile should consist of evenly-sized bins of distances (for example 0.00001 cM per bin), where the value given is the (inclusive) lower bound of the bin.

Value

A list containing the SNP positions and the Z_{β}^{Zscore} values for those SNPs

References

Jacobs, G.S., T.J. Sluckin, and T. Kivisild, *Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps*. Genetics, 2016. **203**(4): p. 1807

```
## load the snps and LDprofile example datasets
data(snps)
data(LDprofile)
## run Zbeta_Zscore over all the SNPs with a window size of 3000 bp
Zbeta_Zscore(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$rsq,LDprofile$sd)
## only return results for SNPs between locations 600 and 1500 bp
Zbeta_Zscore(snps$positions,as.matrix(snps[,3:12]),snps$distances,3000,
LDprofile$bin,LDprofile$rsq,LDprofile$sd,X=c(600,1500))
```

Index

```
*Topic datasets
    LDprofile, 2
    snps, 4
L_plus_R, 3, 7
LDprofile, 2
LR, 2, 7
snps, 4
Zalpha, 5, 7
Zalpha_all, 6
Zalpha_BetaCDF, 7, 8
Zalpha\_expected, 7, 9
Zalpha_log_rsq_over_expected, 7, 11
Zalpha_rsq_over_expected, 7, 12
Zalpha_Zscore, 7, 14
Zbeta, 7, 15
Zbeta_BetaCDF, 7, 16
Zbeta_expected, 7, 18
{\tt Zbeta\_log\_rsq\_over\_expected}, 7, 19
{\tt Zbeta\_rsq\_over\_expected}, {\tt 7}, {\tt 21}
Zbeta_Zscore, 7, 22
```