COMP 631: Introduction to Information Retrieval

01/31/2022

XIA (BEN) HU CS, Rice University

https://cs.rice.edu/~xh37/index.html

"Tolerant" retrieval

- -Wild-card queries
- –Spelling correction
- –Soundex

Wild-card queries: *

- mon*: find all docs containing any word beginning with "mon".
- Easy with binary tree (or B-tree) lexicon:
 retrieve all words in range: mon ≤ w < moo
- *mon: find words ending in "mon": harder
 - Maintain an additional B-tree for terms backwards.

Can retrieve all words in range: *nom ≤ w < non*.

from this, how can we enumerate all terms meeting the wild-card query **pro*cent**?

Query processing

- At this point, we have an enumeration of all terms in the dictionary that match the wildcard query.
- We still have to look up the postings for each enumerated term.
- E.g., consider the query:

se*ate AND fil*er

This may result in the execution of many Boolean *AND* queries.

B-trees handle *'s at the end of a query term

- How can we handle *'s in the middle of query term?
 - co*tion
- We could look up co* AND *tion in a B-tree and intersect the two term sets
 - Expensive
- The solution: transform wild-card queries so that the *'s occur at the end
- This gives rise to the **Permuterm** Index.

Permuterm index

(hello)

- For term *hello*, index under: redundacy
 - hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello where \$ is a special symbol.
- Queries: \$hell* (form we search)
 - X lookup on X\$

- X* lookup on \$X*
- *X lookup on X\$*
 - *X* lookup on X*
- X*Y lookup on Y\$X*

Rice

permutation

rice\$

ice\$r

ce\$ri

e\$ric

\$rice

queries of user inout

Permuterm query processing

- Rotate query wild-card to the right
- Now use B-tree lookup as before.
- Permuterm problem: ≈ quadruples lexicon size

Empirical observation for English.

Bigram (k-gram) indexes

- Enumerate all k-grams (sequence of k chars) occurring in any term
- e.g., from text "April is the cruelest month" we get the 2-grams (bigrams)

```
$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,
ue,el,le,es,st,t$, $m,mo,on,nt,h$
```

- + sis a special word boundary symbol
- Maintain a <u>second</u> inverted index <u>from</u>
 <u>bigrams to</u> <u>dictionary terms</u> that match each bigram.

Bigram index example

 The k-gram index finds terms based on a query consisting of k-grams (here k=2).

Processing wild-cards

- Query mon* can now be run as
 - \$m AND mo AND on
- Gets terms that match AND version of our wildcard query.
- But we'd enumerate moon.
- Must post-filter these terms against query.
- Surviving enumerated terms are then looked up in the term-document inverted index.
- Fast, space efficient (compared to permuterm).

Processing wild-card queries

- As before, we must execute a Boolean query for each enumerated, filtered term.
- Wild-cards can result in expensive query execution (very large disjunctions...)
 - pyth* AND prog*
- If you encourage "laziness" people will respond!

Type your search terms, use '*' if you need to.
E.g., Alex* will match Alexander.

Which web search engines allow wildcard queries?

- "Tolerant" retrieval
 - -Wild-card queries
 - –Spelling correction
 - –Soundex

Spell correction

- Two principal uses
 - Correcting document(s) being indexed
 - Correcting user queries to retrieve "right" answers
- Two main flavors:
 - Isolated word
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words
 - e.g., $from \rightarrow form$
 - Context-sensitive
 - Look at surrounding words,
 - e.g., I flew form Heathrow to Narita.

Document correction

- Especially needed for OCR'ed documents
 - Correction algorithms are tuned for this: rn/m
 - Can use domain-specific knowledge
 - E.g., OCR can confuse O and D more often than it would confuse O and I (adjacent on the QWERTY keyboard, so more likely interchanged in typing).
- But also: web pages and even printed material have typos
- Goal: the dictionary contains fewer misspellings
- But often we don't change the documents and instead fix the query-document mapping

Query mis-spellings

- Our principal focus here
 - E.g., the query *Barack Obam*
- We can either
 - Retrieve documents indexed by the correct spelling, OR
 - Return several suggested alternative queries with the correct spelling
 - Did you mean ...?

Isolated word correction

- Fundamental premise there is a lexicon from which the correct spellings come
- Two basic choices for this
 - A standard lexicon such as
 - Webster's English Dictionary
 - An "industry-specific" lexicon hand-maintained
 - The lexicon of the indexed corpus
 - E.g., all words on the web
 - All names, acronyms etc.
 - (Including the mis-spellings)

Isolated word correction

- Given a lexicon and a character sequence Q, return the words in the lexicon closest to Q
- What's "closest"?
- We'll study several alternatives
 - Edit distance (Levenshtein distance)
 - Weighted edit distance
 - n-gram overlap

Edit distance

- Given two strings S_1 and S_2 , the minimum number of operations to convert one to the other
- Operations are typically character-level
 - Insert, Delete, Replace, (Transposition)
- E.g., the edit distance from dof to dog is 1
 - From *cat* to *act* is 2 (Just 1 with transpose.)
 - from *cat* to *dog* is 3.
- Generally found by dynamic programming.
- Demo: http://www.let.rug.nl/~kleiweg/lev/

Weighted edit distance

- As above, but the weight of an operation depends on the character(s) involved
 - Meant to capture OCR or keyboard errors
 Example: m more likely to be mis-typed as n than as q
 - Therefore, replacing m by n is a smaller edit distance than by q
 - This may be formulated as a probability model
- Requires weight matrix as input
- Modify dynamic programming to handle weights

Using edit distances

- Given query, first enumerate all character sequences within a preset (weighted) edit distance (e.g., 2)
- Intersect this set with list of "correct" words
- Show terms you found to user as suggestions
- Alternatively,
 - We can look up all possible corrections in our inverted index and return all docs ... slow
 - We can run with a single most likely correction
- The alternatives disempower the user, but save a round of interaction with the user

Edit distance to all dictionary terms?

- Given a (mis-spelled) query do we compute its edit distance to every dictionary term?
 - Expensive and slow
 - Alternative?
- How do we cut the set of candidate dictionary terms?
- One possibility is to use *n*-gram overlap for this
- This can also be used by itself for spelling correction.

n-gram overlap

- Enumerate all the n-grams in the query string as well as in the lexicon
- Use the n-gram index (recall wild-card search) to retrieve all lexicon terms matching any of the query n-grams
- Threshold by number of matching n-grams
 - Variants weight by keyboard layout, etc.

Example with trigrams

- Suppose the text is november
 - Trigrams are nov, ove, vem, emb, mbe, ber.
- The query is *december*
 - Trigrams are dec, ece, cem, emb, mbe, ber.
- So 3 trigrams overlap (of 6 in each term)
- How can we turn this into a normalized measure of overlap?

One option – Jaccard coefficient

- A commonly-used measure of overlap
- Let X and Y be two sets; then the J.C. is

$$|X \cap Y|/|X \cup Y|$$

- Equals 1 when X and Y have the same elements and zero when they are disjoint
- X and Y don't have to be of the same size
- Always assigns a number between 0 and 1
 - Now threshold to decide if you have a match
 - E.g., if J.C. > 0.8, declare a match

Matching trigrams

 Consider the query *lord* – we wish to identify words matching 2 of its 3 bigrams (*lo, or, rd*)

Standard postings "merge" will enumerate ...

Adapt this to using Jaccard (or another) measure.

Context-sensitive spell correction

- Text: I flew from Heathrow to Narita.
- Consider the phrase query "flew form Heathrow"
- We'd like to respond
 Did you mean "flew from Heathrow"?

 because no docs matched the query phrase.

Context-sensitive correction

- Need surrounding context to catch this.
- First idea: retrieve dictionary terms close (in weighted edit distance) to each query term
- Now try all possible resulting phrases with one word "fixed" at a time
 - flew from heathrow
 - fled form heathrow
 - flea form heathrow
- **Hit-based spelling correction:** Suggest the alternative that has lots of hits.

Demos

WordNet similarity demo

Netspeak

General issues in spell correction

- We enumerate multiple alternatives for "Did you mean?"
- Need to figure out which to present to the user
 - The alternative hitting most docs
 - Query log analysis
- More generally, rank alternatives probabilistically

argmax_{corr} P(corr | query)

– From Bayes rule, this is equivalent to argmax_{corr} P(query | corr) * P(corr)

- "Tolerant" retrieval
 - -Wild-card queries
 - —Spelling correction
 - –Soundex

Soundex

- Class of heuristics to expand a query into phonetic equivalents
 - Language specific mainly for names
 - E.g., chebyshev → tchebycheff
- Invented for the U.S. census ... in 1918

Soundex – typical algorithm

- Turn every token to be indexed into a 4character reduced form
- Do the same with query terms
- Build and search an index on the reduced forms
 - (when the query calls for a soundex match)

Soundex algorithm

- 1. Retain the first letter of the word.
- Change all occurrences of the following letters to '0' (zero):
 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.
- 3. Change letters to digits as follows:
- B, F, P, $V \rightarrow 1$
- C, G, J, K, Q, S, X, $Z \rightarrow 2$
- D,T \rightarrow 3
- $L \rightarrow 4$
- M, N \rightarrow 5
- $R \rightarrow 6$

Soundex

- 4. Change all consecutive duplicate digits to a single example. e.g. change 22 to 2
- 5. Remove all zeros from the resulting string.
- 6. Pad the resulting string with trailing zeros and return the first four positions, which will be of the form <uppercase letter> <digit> <digit> <digit>.
- E.g., *Herman* becomes H655.

Will *hermann* generate the same code?

Soundex

- Soundex is the classic algorithm, provided by most databases (Oracle, Microsoft, ...)
- How useful is soundex?
- Not very for information retrieval
- Okay for "high recall" tasks (e.g., Interpol), though biased to names of certain nationalities
- Zobel and Dart (1996) show that other algorithms for phonetic matching perform much better in the context of IR

What queries can we process?

- We have
 - Positional inverted index with skip pointers
 - Wild-card index
 - Spell-correction
 - Soundex
- Queries such as

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

Resources

- IIR 3, MG 4.2
- Efficient spell retrieval:
 - K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys 24(4), Dec 1992.
 - J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software - practice and experience 25(3), March 1995. http://citeseer.ist.psu.edu/zobel95finding.html
 - Mikael Tillenius: Efficient Generation and Ranking of Spelling Error Corrections. Master's thesis at Sweden's Royal Institute of Technology. http://citeseer.ist.psu.edu/179155.html
- Nice, easy reading on spell correction:
 - Peter Norvig: How to write a spelling corrector

http://norvig.com/spell-correct.html