## SUPPLEMENTARY INFORMATION

DOI: 10.1038/NGEO2801

# Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos

Yuan Li<sup>1\*</sup>, Rajdeep Dasgupta<sup>1</sup>, Kyusei Tsuno<sup>1</sup>, Brian Monteleone<sup>2</sup>, and Nobumichi Shimizu<sup>2</sup>.

- 1. Department of Earth Science, Rice University, 6100 Main Street, MS 126, Houston, TX 77005.
- 2. Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.

#### **Supplementary Material**

#### Calculating carbon abundance and C/S ratio of Earth's mantle during accretion

The carbon abundance retained in Earth's mantle during accretion was calculated using Eqs.3-4 (see Methods), in the framework of continuous core formation model<sup>1,2</sup>, following the method of Boujibar et al<sup>3</sup>. In this method, four models for the variation of  $fO_2$  during accretion was used and tested (Supplementary Fig. 9a), and in each accretion stage (100 stages in total) the equilibrium pressure is equivalent to the pressure of half of the depth of the mantle and the equilibrium temperature was assumed to be liquidus of the mantle. The liquidus determined for pyrolite at <25 GPa and the liquidus determined for a chondrite at >25 GPa were taken as mantle liquidus <sup>3-5</sup>.

Supplementary Figure 9b shows the calculated  $D_C^{alloy/silicate}$  during accretion, at conditions corresponding to models a-d in Supplementary Figure 9a. In models a-b, that

<sup>\*</sup>Present Address: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.

capture two relatively reduced paths of terrestrial accretion, Eq. 4 was used, and in models c-d, where initial conditions were more oxidized, Eq.3 was used. The Ni and S contents in the alloy were fixed to be 5 wt.% and 1.2 wt.%, respectively. The Si content in the alloy was varied from 10 to 0 wt.% from low  $fO_2$  to high  $fO_2$  in models a-b, according to the correlation of  $fO_2$  and Si content in alloy observed in this study and the study of Boujibar et al<sup>3</sup>. The melt water content was fixed to be 0.3 wt.%, which was estimated to be the water content of the bulk Earth. Considering the high volatility of carbon during accretion, the bulk Earth carbon abundance was chosen to be 1000 and 5000 p.p.m, which are well comparable to the bulk Earth sulfur abundance of 6500 p.p.m chosen by Boujibar et al<sup>3</sup>. These values chosen were conservative, because carbon is more volatile than sulfur and the carbon abundance in all kinds of chondrites is indeed much lower than the sulfur abundance (Supplementary Fig. 1).

The calculated carbon abundance in Earth's mantle during accretion was presented in Supplementary Figure 9c, d. These calculated values (0.6-3.3 p.p.m) are significantly lower than the carbon abundance estimated for the Earth's present mantle (35-115 p.p.m)<sup>7</sup>, and are also significantly lower than the sulfur abundance (150-250 p.p.m) estimated for the Earth's present mantle<sup>8,9</sup> and the sulfur abundance (200-500 p.p.m) calculated by Boujibar et al<sup>3</sup> for the Earth's mantle during accretion. Therefore, the Earth's present mantle C/S ratio cannot be established during Earth's continuous accretion (Supplementary Fig. 10).

To illustrate further that the C/S ratio in Earth's mantle established during accretion is significantly lower than the Earth's present mantle C/S ratio, the C/S ratio resulting from a single stage, equilibrium core formation model was also calculated (Supplementary Fig. 10). In this model, considering the fact that  $fO_2$  is the main factor controlling  $D_C^{alloy/silicate}$  and  $D_S^{alloy/silicate}$  and in order to avoid large uncertainties in the application of the experimental data to a deep MO by extrapolation, three pairs of  $D_C^{alloy/silicate}$  and  $D_S^{alloy/silicate}$  obtained directly from high-pressure experiments (Fig. 1), corresponding to MOs with different oxygen fugacities, were chosen. This has been done similarly for modelling the fractionation of light elements C, N, and H in MOs by previous studies  $^{10-13}$ . The calculated results (Supplementary Fig. 10) show that the mantle C/S ratio obtained in a single stage core formation model is also

significantly lower than the Earth's present mantle C/S ratio. Therefore, in any physically realistic model of Earth's accretion, the Earth's present mantle C/S ratio could not have been established if carbon and sulfur were delivered simultaneously to Earth's MO in a chondritic ratio and if equilibrium core formation occurs in the terrestrial MO.

## Calculating $D_{\mathcal{C}}^{sulfide/silicate}$

The partition coefficients of carbon between sulfide and silicate melt ( $D_C^{sulfide/silicate}$ ) were calculated based on the experimentally measured carbon solubility in sulfide (Fig. 1b) and the calculated carbon solubility in a peridotitic melt at the Fe-FeO buffer and at the corresponding P-T conditions. The carbon solubility in a peridotitic melt was calculated using the parameterization of all the experimental data presented in Supplementary Figure 4, between  $\log fO_2$  IW-1.5 and IW and pressure and temperature of 1-6 GPa and 1345-2000 °C:

$$log(C, ppm) = -3362/T - 110P/T + 0.86X_{H2O} + 0.66NBO/T + 0.26\Delta IW +$$
  
2.9 (R<sup>2</sup> = 0.72) (1)

in which T is temperature in K, P is pressure in GPa,  $X_{H2O}$  is mole fraction of water in silicate melt, and  $\Delta IW$  is the oxygen fugacity relative to the Fe-FeO buffer. The calculated  $D_C^{sulfide/silicate}$  is between 10 and 500 when sulfur in the sulfide is between 25 and 40 wt.%.

### **Supplementary Figures and Tables**



**Figure S1. The carbon content and C/S ratio of different chondrites.** The data were taken from ref. 14. The Earth's present mantle C/S ratio was calculated using 150-250 p.p.m S and 35-115 p.p.m carbon estimated for the bulk silicate mantle<sup>7-9</sup>. Note that the Earth's present mantle C/S ratio is similar to that of carbonaceous chondrites.



**Figure S2.** Selected back-scattered electron images of run products. a, Coexistence of quenched silicate melt and alloy melt from run G325. b, Detailed texture of quenched silicate melt and alloy melt in (a). c. d, Detailed texture of quenched silicate melt and alloy melt from run MA75. e, Texture of coexisting quenched alloy melt and silicate melt from run MA80. Note that in this run typical quench crystals were produced from the silicate melt during quench.



Figure S3. The carbon solubility in alloy melt as a function of pressure and temperature. In a given system, the carbon solubility in alloy melt is almost constant within analytical error, independent of pressure or temperature. The observed small variation is mainly caused by the variation of S and/or Si contents in the alloy melt (see Fig. 1).



Figure S4. The carbon solubility in silicate melt at graphite saturation as a function of oxygen fugacity and melt  $H_2O$  content. Note that the solution behavior of carbon changes at the oxygen fugacity of  $\leq$ IW-1.5, depending on the bulk water content. This possible change is mainly due to the potential change of carbon species in silicate melt as function of oxygen fugacity and melt water content. See text for more details.



**Figure S5.** Typical Raman and FTIR spectra of silicate glasses from this study showing regions associated with C-H-O volatile species. a, In the Raman spectra, the peak intensity of water generally decreases with decreasing oxygen fugacity, while the peak intensities of CH<sub>4</sub> and H<sub>2</sub> increase. b, In the FTIR spectra, the peaks of CO<sub>3</sub><sup>2</sup>- doublets are only resolvable at oxidized conditions, while at reduced conditions they disappear but some N-H peaks appear. All the oxygen fugacity values are relative to the Fe-FeO (IW) buffer following the non-ideal solution model for alloy and silicate melt (see Supplementary Table 1).



Figure S6. The correlations between Raman peak intensities of molecular  $H_2$  and  $CH_4$  in silicate melt (a) and between non-carbonate carbon and molecular  $H_2$  contents in silicate melt (b). These strong correlations indicate that carbon in the silicate melt is mainly as hydrogenated carbon species (e.g.,  $CH_4$ ). Note that molecular  $H_2$  in panel (b) refers to all the non-hydroxyl hydrogen in silicate melt and equals the bulk hydrogen determined using SIMS minus the hydrogen in the form of hydroxyl determined using FTIR using the Beer-Lambert law. In panel (b) for simplification, only the hydroxyl hydrogen contents determined at  $E_{OH^-} = 60 \text{ L}$  mol<sup>-1</sup>cm<sup>-1</sup> were used; the strong correlation would not change at all if  $E_{OH^-} = 90 \text{ L}$  mol<sup>-1</sup>cm<sup>-1</sup> is used. The non-carbonate carbon and the bulk carbon measured using SIMS are the same for all the experiments with  $log fO_2 < IW-1.3$ .



Figure S7. The  $D_C^{alloy/silicate}/D_S^{alloy/silicate}$  ratio as a function of oxygen fugacity. Note that  $D_C^{alloy/silicate}/D_S^{alloy/silicate}$  ratio increases from about 20 up to 1000 with oxygen fugacity decreasing from about  $\Delta IW$ =-0.5 to  $\Delta IW$ =-4.5. The data of  $D_C^{alloy/silicate}$  and  $D_S^{alloy/silicate}$  used in this figure are taken from the experiments in which  $D_C^{alloy/silicate}$  and  $D_S^{alloy/silicate}$  were simultaneously determined for the ThB/Knippa-Fe-Ni-S (<5 wt.%)  $\pm$  Si system (Table S1).



Figure S8. Comparison of the experimentally measured  $log D_C^{alloy/silicate}$  and the predicted  $log D_C^{alloy/silicate}$  using Eqs. 3-4. Note that panels (a, b) correspond to Eqs.3-4, respectively. Also note that  $log D_C^{alloy/silicate}$  can well be predicted within 0.25 log units and 0.5 log units, respectively, as indicated by the dashed lines.



Figure S9. The possible change of oxygen fugacity, the corresponding  $D_C^{alloy/silicate}$ , and the calculated carbon abundance in mantle during Earth's continuous core formation. a, four possible variation of oxygen fugacity during Earth's accretion (ref. 3). b, the calculated  $D_C^{alloy/silicate}$  at conditions corresponding to models a-d in panel (a), using Eqs.3-4. c. d, the calculated carbon abundance in Earth's mantle during continuous accretion. Note that the calculated carbon abundance in Earth's mantle (marked by the arrows in panel c and d) is significantly lower than the Earth's present mantle carbon abundance. See text for details.



Figure S10. The calculated C/S ratio in Earth's mantle as a function of equilibrium alloy/silicate mass ratio. Three different pairs of  $D_S^{alloy/silicate}$  and  $D_C^{alloy/silicate}$  values were used, which correspond to very low  $fO_2$ , intermediate  $fO_2$ , and relatively high  $fO_2$  MO condition. The initial C/S ratio is assumed to be 0.5, comparable to the C/S ratio in carbonaceous chondrites. The C/S ratio resulting from continuous accretion model (Supplementary Fig. 9) is plotted for comparison. C/S ratio was calculated from the mantle carbon abundance modelled in Supplementary Figure 9 and sulfur abundance modelled in ref. 3. The results show that the C/S ratio observed for Earth's present mantle cannot be produced by single stage, equilibrium core formation model with any reasonable alloy/silicate mass ratio or continuous core formation model, if carbon and sulfur were delivered simultaneously by chondritic materials during Earth's accretion. The main reason is that  $D_C^{alloy/silicate}$  is exceedingly higher than  $D_S^{alloy/silicate}$  and the carbon content in the silicate mantle, resulting from core-segregation, is extremely low.

| Run No       | ۵         | 7           | Duration    | Starting Material                                                                                                    | Quench Products                | ³logf02 (∆IW) | Pogf O2 (AIW) | Raman <sup>c</sup> FTIR-C | - C <sup>d</sup> FTIR (OH, wt%) | <ol> <li>ETIR (OH, wt%)</li> </ol> | <sup>f</sup> H <sub>2</sub> O in silicate (SIMS) | <sup>g</sup> C in silicate (SIMS) | C in alloy      | D <sup>alloy/silicate</sup> | D alloy/si licate |
|--------------|-----------|-------------|-------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|---------------|---------------------------|---------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------|-----------------|-----------------------------|-------------------|
|              | GPa       | ၁           | min         |                                                                                                                      |                                | Ideal         | Non-ideal     | p.p.m                     | m 8=60                          | 06=3                               | wt.%                                             | p.p.m                             | wt.%            | Carbon                      | Sulfur            |
| MA94         | 4         | 2000        | 7           | ThB+Fe-Ni(5wt%)-S (3wt%)                                                                                             | Glass+alloy                    | -1.30         | -0.67         | ٨                         | 0.73 ± 0.05                     | 0.48 ± 0.03                        | 1.1 ± 0.0                                        | 78 ± 17                           | 5.80 ± 0.22     | 748 ± 170                   | 35 ± 6            |
| MA95         | 4         | 1800        | 15          | ThB+Fe-Ni(5wt%)                                                                                                      | Glass+alloy                    | -1.40         | -0.68         | >                         | $0.77 \pm 0.05$                 | $0.51 \pm 0.03$                    | 1.0 ± 0.1                                        | 48 ± 2                            | $6.06 \pm 0.41$ | 1259 ± 94                   | 32 ± 6            |
| G325         | 3         | 1800        | 25          | Knippa + Fe-Ni(5wt%)-S(5wt%)                                                                                         | Glass+alloy                    | -1.38         | -0.69         | ۷ 29 ±                    | 2                               | $0.17 \pm 0.01$                    | $0.32 \pm 0.01$                                  | 97 ± 6                            | 5.49 ± 0.11     | 564 ± 35                    | 15 ± 1            |
| MA61         | 9         | 1800        | 20          | Knippa+ Fe-Ni(5wt%)-S (3wt%)                                                                                         | Glass+quench crystals + alloy  | -1.41         | -0.73         | >                         |                                 |                                    | 0.55 ± 0.13                                      | 72 ± 14                           | $5.95 \pm 0.19$ | 822 ± 165                   | 38 ± 6            |
| G324         | 33        | 1800        | 20          | Knippa + Fe-Ni(5wt%)-S(3wt%)                                                                                         | Glass+alloy                    | -1.42         | -0.73         | √ 27 ±                    | ± 3 0.10 ± 0.00                 | 0.07 ± 0.00                        | 0.14 ± 0.00                                      | 100 ± 4                           | 5.52 ± 0.04     | 549 ± 22                    | 11 ± 1            |
| G323         | 3         | 1700        | 80          | Knippa + Fe-Ni(5wt%)-S(3wt%)                                                                                         | Glass+alloy                    | -1.43         | -0.75         | v 21 ±                    |                                 | $0.10 \pm 0.00$                    | 0.18 ± 0.00                                      | 0 ∓ 89                            | $5.15 \pm 0.21$ | 754 ± 30                    | 22 ± 5            |
| 6388         | 1.5       | 1600        | 120         | Knippa+Fe-Ni(5wt%)-Si(7wt%)                                                                                          | Glass+alloy                    | -2.00         | -1.36         | >                         | $0.63 \pm 0.01$                 | $0.42 \pm 0.01$                    | 0.77 ± 0.00                                      | 31 ± 2                            | 4.89            | 1589 ± 101                  |                   |
| G391         | 1.5       | 1600        | 120         | Knippa+Fe-Ni(5wt%)-Si(13wt%)                                                                                         | Glass+alloy                    | -2.30         | -1.69         | >                         | $0.81 \pm 0.04$                 | 0.54 ± 0.03                        | 0.81 ± 0.01                                      | 24 ± 1                            | 5.06 ± 0.19     | 2141 ± 141                  | 27 ± 5            |
| MA84         | 9         | 2000        | 7           | Knippa+ Fe-Ni(5.0wt%)-Si (7wt%)                                                                                      | Glass + alloy                  | -2.62         | -1.92         | >                         | $0.24 \pm 0.00$                 | $0.16 \pm 0.00$                    | 0.35 ± 0.00                                      | 25 ± 0                            | 4.79 ± 0.43     | 1886 ± 174                  |                   |
| MA85         | 4         | 2000        | 7           | Knippa+ Fe-Ni(5wt%)-Si (7wt%)                                                                                        | Glass + alloy                  | -2.68         | -1.98         | >                         | $0.46 \pm 0.01$                 | $0.30 \pm 0.01$                    | 0.56 ± 0.00                                      | 40 ± 0                            | $4.51 \pm 0.47$ | $1117 \pm 118$              |                   |
| 6389         | 1.5       | 1600        | 120         | Knippa+Fe-Ni(5wt%)-Si(7wt%)                                                                                          | Glass+alloy                    | -3.30         | -2.64         | >                         | $0.49 \pm 0.00$                 | 0.33 ± 0.00                        | 0.66 ± 0.02                                      | 27 ± 1                            | $5.14 \pm 0.18$ | 1910 ± 89                   | 16 ± 2            |
| MA77         | ∞         | 2000        | 2           | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(13wt%)                                                                              | Glass + alloy                  | -3.54         | -2.82         | ×                         |                                 |                                    | $0.27 \pm 0.01$                                  | 56 ± 11                           | 5.07 ± 0.23     | $901 \pm 175$               | 13 ± 6            |
| MA72         | ∞         | 2200        | e           | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(13wt%)                                                                              | Glass + alloy                  | -3.69         | -2.88         | >                         |                                 |                                    | 0.37 ± 0.01                                      | 8 + 66                            | 4.70 ± 0.29     | 475 ± 33                    | 6.8 ± 7.0         |
| MA75         | 4         | 2000        | 9           | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(13wt%)                                                                              | Glass + alloy                  | -3.85         | -3.10         | >                         |                                 |                                    | 0.46 ± 0.01                                      | 117 ± 56                          | 5.23 ± 0.19     | 448 ± 217                   | 3.6 ± 0.9         |
| MA70         | ∞         | 2100        | 2           | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(13wt%)                                                                              | Glass + alloy                  | -3.90         | -3.11         | >                         |                                 |                                    | 0.30 ± 0.04                                      | 132 ± 6                           | 4.38 ± 0.29     | 332 ± 26                    | 8.3 ± 7.0         |
| MA73         | 9         | 2000        | 9           | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(13wt%)                                                                              | Glass + alloy                  | -4.04         | -3.29         | >                         | $0.25 \pm 0.01$                 | $0.16 \pm 0.01$                    | 0.45 ± 0.01                                      | 82 ± 3                            | $4.23 \pm 0.21$ | 513 ± 33                    | 5.3 ± 2.5         |
| MA68         | œ         | 2000        | 9           | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(13wt%)                                                                              | Glass + alloy                  | -4.16         | -3.40         | >                         | $0.33 \pm 0.01$                 | $0.22 \pm 0.00$                    | 0.75 ± 0.14                                      | 195 ± 28                          | 3.86 ± 0.27     | 198 ± 31                    | $4.3 \pm 1.9$     |
| MA78         | ∞         | 2000        | 7           | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(13wt%)                                                                              | Glass + alloy                  | -4.53         | -3.70         | >                         | $0.20 \pm 0.00$                 | $0.14 \pm 0.00$                    | 0.69 ± 0.03                                      | 241 ± 1                           | 3.07 ± 0.56     | $127 \pm 23$                | 2.4 ± 2.4         |
| MA64         | 9         | 1800        | 20          | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(13wt%)                                                                              | Glass + alloy                  | -4.50         | -3.77         | >                         | $0.20 \pm 0.00$                 | $0.14 \pm 0.00$                    | $0.51 \pm 0.01$                                  | 170 ± 162                         | 5.63 ± 1.24     | 331 ± 323                   | 4.2 ± 2.4         |
| MA66         | œ         | 1800        | 20          | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(13wt%)                                                                              | Glass+quench crystals + alloy  | -4.70         | -4.00         | ×                         |                                 |                                    |                                                  | 10 ± 2                            | $4.83 \pm 0.14$ | 5042 ± 1062                 | $3.5 \pm 0.7$     |
| 6338         | e         | 1800        | 25          | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(16wt%)                                                                              | Glass+alloy                    | -4.60         | -4.00         | >                         | $0.09 \pm 0.00$                 | 0.06 ± 0.00                        | 0.24 ± 0.01                                      | 146 ± 16                          | 3.69 ± 0.46     | 253 ± 41                    | $0.3 \pm 0.2$     |
| 6336         | 3         | 1700        | 09          | Knippa+ Fe-Ni(5wt%)-S(3.5wt%)-Si(16wt%)                                                                              | Glass+alloy                    | -5.20         | -4.30         | >                         |                                 |                                    | 0.48 ± 0.00                                      | 142 ± 3                           | 5.57 ± 0.21     | 392 ± 17                    | 0.9 ± 0.3         |
| 6390         | 1.5       | 1600        | 120         | Knippa+Fe-Ni(5wt%)-Si(13wt%)                                                                                         | Glass+alloy                    | -5.20         | -4.41         | >                         |                                 |                                    | 0.24 ± 0.01                                      | 96 ± 26                           | 3.27 ± 0.09     | 342 ± 92                    | $0.7 \pm 0.4$     |
| G327         | e         | 1800        | 20          | Knippa+ Fe-Ni(5wt%)-Si(15wt%)                                                                                        | Glass+alloy                    | -5.50         | -4.79         | >                         | $0.02 \pm 0.00$                 | 0.02 ± 0.00                        | 0.13 ± 0.00                                      | 56 ± 2                            | 2.88 ± 0.31     | 516 ± 58                    |                   |
| G328         | 3         | 1700        | 09          | Knippa+ Fe-Ni(5wt%)-Si(15wt%)                                                                                        | Glass+alloy                    | -5.99         | -5.26         | >                         | $0.02 \pm 0.00$                 | $0.01 \pm 0.00$                    | $0.10 \pm 0.00$                                  |                                   | $3.12 \pm 0.84$ | 689 ± 186                   |                   |
| MA76         | 9         | 1800        | 20          | Knippa+ Fe-Ni(5wt%)-S(5wt%)                                                                                          | Fine quench crystals + alloy   | -1.50         | -0.83         | ×                         |                                 |                                    |                                                  |                                   | 5.40 ± 0.24     |                             | $21 \pm 13$       |
| MA79         | ∞         | 2000        | 7           | Knippa+ Fe-Ni(5wt%)-Si(7wt%)                                                                                         | Fine quench crystals + alloy   | -2.85         | -2.15         | ×                         |                                 |                                    |                                                  |                                   | 5.50 ± 0.50     |                             |                   |
| MA81         | ∞         | 2100        | 3.5         | Knippa+ Fe-Ni(5wt%)-Si(7wt%)                                                                                         | Fine quench crystals + alloy   | -2.40         | -1.68         | ×                         |                                 |                                    |                                                  |                                   | 5.60 ± 0.35     |                             |                   |
| MA83         | 8         | 2200        | 4           | Knippa+ Fe-Ni(5wt%)-Si(7wt%)                                                                                         | Fine quench crystals + alloy   | -2.27         | -1.52         | ×                         |                                 |                                    |                                                  |                                   | 4.90 ± 0.44     |                             |                   |
| Partition co | efficient | ts for sulf | fur between | Partition coefficients for sulfur between metal and silicate melt are measured from the experiments published in rei | periments published in ref.16. |               |               |                           |                                 |                                    |                                                  |                                   |                 |                             |                   |
| G316-02      | 33        | 1600        |             |                                                                                                                      |                                |               | -0.7          |                           |                                 |                                    |                                                  |                                   |                 | 1016 ± 29                   | 25 ± 2            |
| G315-01      | 3         | 1600        |             |                                                                                                                      |                                |               | 9.0-          |                           |                                 |                                    |                                                  |                                   |                 | 1291 ± 86                   | 38 ± 4            |
| G317-03      | e         | 1600        |             |                                                                                                                      |                                |               | 9.0-          |                           |                                 |                                    |                                                  |                                   |                 | 981 ± 57                    | 28 ± 3            |
| G318-04      | e         | 1600        |             |                                                                                                                      |                                |               | -0.7          |                           |                                 |                                    |                                                  |                                   |                 | 820 ± 17                    | 16 ± 2            |
| 6330-16      | e         | 1600        |             |                                                                                                                      |                                |               | -4.2          |                           |                                 |                                    |                                                  |                                   |                 | 540 ± 22                    | $3.2 \pm 1.2$     |
| G331-17      | m         | 1600        |             |                                                                                                                      |                                |               | 4.4           |                           |                                 |                                    |                                                  |                                   |                 | 317 ± 8                     | $1.8 \pm 1.1$     |
| G337-19      | 6         | 1600        |             |                                                                                                                      |                                |               | -4.6          |                           |                                 |                                    |                                                  |                                   |                 | 176 ± 11                    | $0.4 \pm 0.1$     |

"deal  $f_0$ , with respect to the Fe-FeO(IW)buffer calculated assuming ideal solution behavior of alloy and silicate melt; "non-ideal  $f_0$ , with respect to the Fe-FeO (IW) buffer calculated assuming non-ideal solution behavior of alloy and silicate melt: "carbon as carbonate."

v: measured; X: not measured. Glass=Silicate glass; Alloy = alloy melt,  $D^{\text{Merylinent}}$  - C or S in Alloy/C or S in Glass; ThB=basalt with a MORB-like composition. For each sample, 3-6 spots were analyzed by SIMS and 2-5 spots were analyzed by FIR. The Table is arranged in the order of decreasing experimental  $fO_{\mathcal{D}}$  except for the runs with fine quench crystals.

de The water content was measured by FTR using the Beer-Lambert law at extinction coefficent = 60 and 90 L mor<sup>1</sup>cm<sup>-1</sup> for water at ~3550 cm<sup>-1</sup>, respectively. Fulk water in silicate melt determined by SIMS.

Table S2. Major and minor element contents and S content in silicate melts and alloy melts (in wt.%).

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table S2. | Majo             | r and            | minor     | elemen    | it con | tents | and S | conte | nt in s | silicate          | melt             | s and    | alloy m | nelts (in | wt.%). |      |     |     |     |     |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|------------------|-----------|-----------|--------|-------|-------|-------|---------|-------------------|------------------|----------|---------|-----------|--------|------|-----|-----|-----|-----|-------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Run No    | SiO <sub>2</sub> | TiO <sub>2</sub> | $Al_2O_3$ | $Cr_2O_3$ | FeO*   | MnO   | MgO   | NiO   | CaO     | Na <sub>2</sub> O | K <sub>2</sub> O | $P_2O_5$ | S       | Total     | NBO/T  | Fe   | Ni  | С   | S   | Si  | Total |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MA94      | 47.0             | 0.8              | 15.1      | 0.0       | 16.2   | 0.2   |       | 0.1   | 9.9     | 2.5               | 0.1              | 0.0      | 0.16    | 100.5     | 0.89   | 86.6 | 5.5 | 5.8 | 5.6 | 0.0 | 103.5 |
| MASS     |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     |     |     |     |       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  |                  |           |           |        |       |       |       |         |                   | 0.1              | 0.0      | 0.15    |           | 0.91   |      |     | 6.1 |     | 0.0 |       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-σ       | 0.5              | 0.0              | 0.1       | 0.1       | 0.2    | 0.0   | 0.1   | 0.0   | 0.2     | 0.1               | 0.0              | 0.0      | 0.02    |           |        | 0.4  | 0.1 | 0.4 | 0.5 | 0.0 |       |
| MAGH     | G325      | 38.8             | 3.2              | 10.7      | 0.06      | 17.2   | 0.19  | 12.6  | 0.02  | 11.1    | 2.8               | 1.7              | 0.59     | 0.18    | 99.1      | 1.37   | 89.0 | 5.4 | 5.5 | 2.7 | 0.0 | 102.6 |
| 1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   | 1-σ       | 0.3              | 0.1              | 0.1       | 0.01      | 0.1    | 0.01  | 0.1   | 0.01  | 0.1     | 0.0               | 0.0              | 0.01     | 0.00    | 0.3       |        | 0.6  | 0.1 | 0.1 | 0.2 | 0.0 | 0.7   |
| Sample      | MA61      | 39.5             | 3.2              | 10.6      | 0.1       | 16.1   | 0.2   | 11.7  | 0.03  | 11.1    | 2.6               | 1.7              | 0.6      | 0.07    | 97.5      | 1.27   | 86.2 | 6.2 | 5.9 | 2.8 | 0.0 | 101.1 |
| 1-4   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   1-5   | 1-σ       | 0.4              | 0.0              | 0.1       | 0.0       | 0.5    | 0.0   | 0.4   | 0.01  | 0.2     | 0.1               | 0.1              | 0.1      | 0.01    | 2.0       |        | 0.5  | 0.4 | 0.2 | 0.3 | 0.0 | 0.4   |
| Section   Sec   | G324      | 39.0             | 3.3              | 10.9      | 0.05      | 16.6   | 0.19  | 13.2  | 0.01  | 11.3    | 2.9               | 1.7              | 0.58     | 0.27    | 100.0     | 1.37   | 88.3 | 6.2 | 5.5 | 3.0 | 0.0 | 103.0 |
| 1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   | 1-σ       | 0.2              | 0.1              | 0.1       | 0.01      | 0.2    | 0.01  | 0.1   | 0.01  | 0.1     | 0.1               | 0.0              | 0.01     | 0.01    | 0.4       |        | 0.6  | 0.2 | 0.0 | 0.3 | 0.0 | 0.5   |
| Section   Sec   | G323      | 39.1             | 3.3              | 10.7      | 0.06      |        | 0.19  |       | 0.01  | 11.3    |                   | 1.8              | 0.65     |         | 99.7      | 1.37   | 87.4 | 6.1 | 5.1 | 4.1 | 0.0 |       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     |     |     |     |       |
| Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 1.01   | 85.9 | 5.3 | 4.9 | 0.1 | 0.0 | 96.1  |
| 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     |     |     |     | 400 = |
| MARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.93   |      |     |     |     |     |       |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 1.05   |      |     |     |     |     |       |
| MASS   S.S   S.   |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 1.05   |      |     |     |     |     |       |
| 1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   1-0   |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 1 11   |      |     |     |     |     |       |
| Gase     |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 1.11   |      |     |     |     |     |       |
| 1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.81   |      |     |     |     |     |       |
| MA74   S44   S4,   S4   |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.01   |      |     |     |     |     |       |
| Hart     |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.72   |      |     |     |     |     |       |
| MA72   S33   S.0   1.10   O.0   1.2   O.1   S1.0   O.1   1.20   S.0   1.20   O.0   O.1    |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | •=     |      |     |     |     |     |       |
| MA75   S.1   3.1   1.0   0.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.   |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.75   |      |     |     |     |     |       |
| 1-α         0.2         0.0         0.1         0.0         0.0         0.1         1.0         0.0         0.0         0.1         0.0         0.0         0.1         0.0         0.0         0.1         0.0         0.0         0.1         1.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td>1-σ</td> <td>0.8</td> <td>0.0</td> <td>0.2</td> <td>0.0</td> <td>0.5</td> <td>0.0</td> <td>0.3</td> <td>0.01</td> <td>0.1</td> <td>0.1</td> <td>0.0</td> <td>0.0</td> <td>0.1</td> <td>2.4</td> <td></td> <td>3.1</td> <td>0.5</td> <td>0.3</td> <td>3.0</td> <td>0.4</td> <td>1.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-σ       | 0.8              | 0.0              | 0.2       | 0.0       | 0.5    | 0.0   | 0.3   | 0.01  | 0.1     | 0.1               | 0.0              | 0.0      | 0.1     | 2.4       |        | 3.1  | 0.5 | 0.3 | 3.0 | 0.4 | 1.2   |
| MA70   S.3.   S.1.   S.1.   S.1.   S.1.   S.1.   S.1.   S.2   S.2.   S.2.   S.3.      | MA75      | 55.1             | 3.1              | 11.0      | 0.0       | 1.0    | 0.1   | 13.2  | 0.0   | 11.8    | 2.4               | 1.8              | 0.0      | 0.7     | 100.8     | 0.71   | 84.5 | 5.0 | 5.2 | 2.4 | 2.5 | 99.6  |
| 1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-σ       | 0.2              | 0.0              | 0.1       | 0.0       | 0.3    | 0.0   | 0.2   | 0.0   | 0.1     | 0.1               | 0.1              | 0.0      | 0.0     | 1.2       |        | 1.9  | 0.2 | 0.2 | 0.6 | 0.1 | 1.9   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MA70      | 53.3             | 3.1              | 11.0      | 0.0       | 0.9    | 0.1   | 13.2  | 0.01  | 12.0    | 3.1               | 1.8              | 0.0      | 0.4     | 99.5      | 0.76   | 83.3 | 4.6 | 4.4 | 3.5 | 3.2 | 99.0  |
| 1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-σ       | 0.2              | 0.0              | 0.1       | 0.0       | 0.1    | 0.0   | 0.2   | 0.00  | 0.1     | 0.1               | 0.1              | 0.0      | 0.0     | 1.0       |        | 3.3  | 0.4 | 0.3 | 3.0 | 0.3 | 1.3   |
| MA68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MA73      | 56.1             | 3.0              | 11.7      | 0.0       | 0.8    | 0.1   | 12.7  | 0.01  | 12.1    | 2.7               | 1.8              | 0.0      | 0.5     | 102.2     | 0.68   | 83.7 | 4.8 | 4.2 | 2.8 | 2.8 | 98.3  |
| 1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                  |                  | 0.1       |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     |     |     |     |       |
| MA78   S5.1   Z.8   11.3   0.0   0.5   0.1   13.3   0.01   12.1   3.0   1.8   0.1   0.7   101.4   0.73   82.4   5.4   3.1   1.7   6.5   99.2   1.9   0.9   0.9   0.9   0.9   0.7   0.8   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9   0.9    | MA68      |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.73   |      |     |     |     |     |       |
| 1-σ $0.9$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     |     |     |     |       |
| MA64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.73   |      |     |     |     |     |       |
| $1 \cdot \sigma$ 0.8         0.0         0.2         0.0         0.1         0.0         0.1         0.2         0.0         0.0         1.9         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     |     |     |     |       |
| MA66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.72   |      |     |     |     |     |       |
| $1-\sigma$ 0.3         0.1         0.2         0.0         0.1         0.0         0.4         0.3         0.2         0.3         0.0         0.1         0.57         Heat of the property of the                                                                                                                                                           |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.96   |      |     |     |     |     |       |
| G338         54.7         3.0         11.8         0.01         0.4         0.11         14.1         0.01         11.8         2.8         1.8         0.00         2.0         102.53         0.74         85.1         5.5         3.7         0.6         6.1         101.0           1-σ         0.4         0.2         0.1         0.01         0.1         0.01         0.1         0.0         0.0         0.58         1.8         0.2         0.5         0.4         0.2         1.4           G336         53.7         3.3         11.7         0.01         0.3         0.14         13.7         0.00         11.8         3.0         1.9         0.00         0.72         86.2         5.2         5.6         1.5         3.0         101.5           1-σ         0.7         0.1         0.1         0.0         0.1         0.1         0.1         0.1         0.1         0.0         0.0         0.0         0.0         1.5         0.0         1.5         0.0         0.0         0.0         1.6         0.0         0.1         1.6         0.2         0.0         0.1         1.6         0.2         0.1         0.3         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                  |                  |           |           |        |       |       | n.u   |         |                   |                  |          |         |           | 0.86   |      |     |     |     |     |       |
| 1 - σ $0.4$ $0.2$ $0.1$ $0.01$ $0.1$ $0.01$ $0.1$ $0.01$ $0.1$ $0.00$ $0.1$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                  |                  |           |           |        |       |       | 0.01  |         |                   |                  |          |         |           | 0.74   |      |     |     |     |     |       |
| G336         53.7         3.3         11.7         0.01         0.3         0.14         13.7         0.00         1.8         3.0         1.9         0.00         1.7         101.26         0.72         86.2         5.2         5.6         1.5         3.0         101.5           1-σ         0.7         0.1         0.1         0.00         0.0         0.1         0.1         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.1         1.6         0.2         0.0         0.1         0.0         0.1         0.0         0.1         0.0         0.1         0.0         0.1         0.0         0.1         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.74   |      |     |     |     |     |       |
| 1 - σ $0.7$ $0.1$ $0.1$ $0.00$ $0.01$ $0.1$ $0.01$ $0.1$ $0.01$ $0.1$ $0.01$ $0.01$ $0.1$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.72   |      |     |     |     |     |       |
| G390         55.4         2.3         10.6         0.1         0.2         0.0         12.8         0.0         11.5         2.9         1.7         0.0         3.33         103.1         0.73         82.2         5.6         3.3         2.5         7.8         101.4           1-σ         0.6         0.1         0.2         0.0         0.1         0.0         0.1         0.0         0.3         0.1         0.0         0.08         0.7         1.6         0.2         0.1         1.5         0.3         0.9           G327         54.1         2.7         11.9         0.00         0.2         0.09         14.0         0.00         1.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.72   |      |     |     |     |     |       |
| 1 - σ $0.6$ $0.1$ $0.2$ $0.0$ $0.1$ $0.0$ $0.1$ $0.0$ $0.3$ $0.1$ $0.0$ $0.03$ $0.1$ $0.0$ $0.03$ $0.1$ $0.0$ $0.03$ $0.1$ $0.0$ $0.03$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.73   |      |     |     |     |     |       |
| G327         54.1         2.7         11.9         0.00         0.2         0.09         14.0         0.00         12.6         3.1         2.0         0.00         100.5         0.78         85.7         5.4         2.9         0.0         7.8         101.8           1-σ         0.3         0.1         0.1         0.00         0.01         0.1         0.00         0.1         0.1         0.00         0.1         0.1         0.0         0.2         0.5         0.1         0.3         0.0         0.2         0.5           G328         54.4         2.8         12.2         0.00         0.1         0.09         14.4         0.00         1.25         2.9         2.0         0.00         0.00         0.1         0.3         0.0         0.7         100.4           1-σ         0.3         0.1         0.1         0.00         0.0         0.1         0.0         0.0         0.0         0.00         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     |     |     |     |       |
| G328         54.4         2.8         12.2         0.00         0.1         0.09         14.4         0.00         12.5         2.9         2.0         0.00         0.01         0.07         83.8         5.1         3.1         0.0         7.7         100.4           1-σ         0.3         0.1         0.1         0.00         0.01         0.1         0.00         0.1         0.0         0.0         0.0         0.00         0.00         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                  | 2.7              |           | 0.00      | 0.2    | 0.09  | 14.0  | 0.00  | 12.6    | 3.1               | 2.0              | 0.00     | 0.00    |           | 0.78   | 85.7 | 5.4 |     |     | 7.8 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-σ       | 0.3              | 0.1              | 0.1       | 0.00      | 0.0    | 0.01  | 0.1   | 0.00  | 0.1     | 0.1               | 0.0              | 0.01     | 0.00    | 0.4       |        | 0.5  | 0.1 | 0.3 | 0.0 | 0.2 | 0.5   |
| MA76 $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $40.0$ $4$ | G328      | 54.4             | 2.8              | 12.2      | 0.00      | 0.1    | 0.09  | 14.4  | 0.00  | 12.5    | 2.9               | 2.0              | 0.00     | 0.00    | 101.1     | 0.77   | 83.8 | 5.1 | 3.1 | 0.0 | 7.7 | 100.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-σ       | 0.3              |                  |           | 0.00      | 0.0    | 0.01  | 0.1   | 0.00  | 0.1     | 0.0               | 0.0              | 0.00     | 0.00    | 0.4       |        |      | 0.3 | 0.8 | 0.0 | 0.4 | 2.3   |
| MA79 47.8 3.4 11.1 0.0 3.5 0.2 15.2 0.01 13.4 2.6 1.5 0.1 0.0 98.8 0.9 90.5 4.2 5.5 0.0 0.0 100.1 $1 \cdot \sigma$ 0.3 0.5 0.2 0.0 0.3 0.0 0.3 0.01 0.3 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MA76      | 40.0             | 3.3              | 10.8      | 0.1       | 14.8   | 0.2   | 12.2  | 0.03  | 11.5    | 2.3               | 1.6              | 0.5      | 0.15    | 97.5      | 1.23   | 86.9 | 5.3 | 5.4 | 3.2 | 0.0 | 100.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-σ       | 0.4              | 0.1              | 0.2       | 0.0       | 0.8    | 0.0   |       |       |         | 0.7               | 0.4              | 0.1      | 0.04    | 3.8       |        | 1.3  | 0.7 | 0.2 | 1.8 | 0.0 | 0.2   |
| MA81 $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MA79      | 47.8             | 3.4              | 11.1      | 0.0       | 3.5    | 0.2   | 15.2  | 0.01  | 13.4    | 2.6               | 1.5              | 0.1      | 0.0     | 98.8      | 0.99   | 90.5 | 4.2 | 5.5 | 0.0 | 0.0 | 100.1 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     | 0.5 | 0.0 |     |       |
| MA83 47.1 3.3 10.8 0.0 6.8 0.2 13.3 0.03 12.6 2.3 1.5 0.1 0.0 98.1 0.97 89.5 4.9 4.9 0.0 0.0 99.3 $1$ -σ 0.9 0.1 0.1 0.0 0.2 0.0 0.5 0.02 0.2 0.1 0.1 0.1 0.0 0.0 0.2 0.3 0.5 1.3 0.6 0.4 0.0 0.0 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 1.10   |      |     |     |     |     |       |
| <u>1-σ</u> 0.9 0.1 0.1 0.0 0.2 0.0 0.5 0.02 0.2 0.1 0.1 0.0 0.0 2.3 1.3 0.6 0.4 0.0 0.0 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     |     |     |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           | 0.97   |      |     |     |     |     |       |
| NBO/T= 2 total O/T - 4 (T=Si+Ti+Al+Cr+P). For each sample typically 10-20 spots were analyzed and 1-σ is the standard deviation based on the replicate analyses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                  |                  |           |           |        |       |       |       |         |                   |                  |          |         |           |        |      |     |     |     |     |       |

NBO/T= 2 total O/T - 4 (T=Si+Ti+Al+Cr+P). For each sample, typically 10-20 spots were analyzed, and  $1-\sigma$  is the standard deviation based on the replicate analyses. Only one experiment, G388, had one spot analysis on the alloy melt pool and hence no compositional error could be calculated for that phase. FeO\* indicates total Fe.

#### **References:**

- 1. Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. *Nature* **441**, 825-833 (2006).
- 2. Rubie, D., Melosh, H., Reid, J., Liebske, C. & Righter, K. Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. *Earth Planet. Sci. Lett.* **205**, 239-255 (2003).
- 3. Boujibar, A. *et al.* Metal–silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. *Earth Planet. Sci. Lett.* **391**, 42-54 (2014).
- 4. Litasov, K. & Ohtani, E. Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa. *Phys. Earth Planet. Inter.* **134**, 105-127 (2002).
- 5. Andrault, D. *et al.* Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history. *Earth Planet. Sci. Lett.* **304**, 251-259 (2011).
- 6. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. *Earth Planet. Sci. Lett.* **313**, 56-66 (2012).
- 7. Rosenthal, A., Hauri, E. & Hirschmann, M. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO<sub>2</sub>/Ba and CO<sub>2</sub>/Nb systematics of partial melting, and the CO<sub>2</sub> contents of basaltic source regions. *Earth Planet. Sci. Lett.* **412**, 77-87 (2015).
- 8. Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. *Nature* **499**, 328-331 (2013).
- 9. McDonough, W. F. & Sun, S.-S. The composition of the Earth. *Chem. Geol.* **120**, 223-253 (1995).
- 10. Bergin, E. A., Blake, G. A., Ciesla, F., Hirschmann, M. M. & Li, J. Tracing the ingredients for a habitable earth from interstellar space through planet formation. *Proc. Natl. Acad. Sci.* **112**, 8965-8970 (2015).
- 11. Dasgupta, R., Chi, H., Shimizu, N., Buono, A. S. & Walker, D. Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon. *Geochim. Cosmochim. Acta* 102, 191-212 (2013).

- 12. Hirschmann, M. M. Constraints on the early delivery and fractionation of Earth's major volatiles from C/H, C/N, and C/S ratios. *Am. Mineral.* **101**, 540-553 (2016).
- Li, Y., Marty, B., Shcheka, S., Zimmermann, L. & Keppler, H. Nitrogen isotope fractionation during terrestrial core-mantle separation. *Geochem. Persp. Let.* 2, 138-147 (2016).
- 14. Wasson, J. T. & Kallemeyn, G. W. Compositions of Chondrites. *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences* **325**, 535-544 (1988).
- 15. Chi, H., Dasgupta, R., Duncan, M. S. & Shimizu, N. Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean–Implications for the abundance and origin of volatiles in Earth, Mars, and the Moon. *Geochim. Cosmochim. Acta* 139, 447-471 (2014).
- 16. Li, Y., Dasgupta, R. & Tsuno, K. The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 °C: Implications for core–mantle differentiation and degassing of magma oceans and reduced planetary mantles. *Earth Planet. Sci. Lett.* **415**, 54-66 (2015).
- 17. Stanley, B. D., Hirschmann, M. M. & Withers, A. C. Solubility of C-O-H volatiles in graphite-saturated martian basalts. *Geochim. Cosmochim. Acta* **129**, 54-76 (2014).
- Armstrong, L. S., Hirschmann, M. M., Stanley, B. D., Falksen, E. G. & Jacobsen, S. D. Speciation and solubility of reduced C-O-H-N volatiles in mafic melt: Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets.
   Geochim. Cosmochim. Acta 171, 283-302 (2015).