

<u>Course</u> > <u>Unit 2: ...</u> > <u>4 Eigen</u>... > 14. Sy...

14. Symmetric matrices and their diagonalization

Note that because the eigenvalues of a real symmetric matrix are always complete, a real symmetric matrix is always diagonalizable. More it turns out is true for symmetric matrices.

Fun Fact 1 If **A** is a symmetric, real $n \times n$ matrix, its eigenvalues are real.

Two vectors \mathbf{v} and \mathbf{w} are **orthogonal** if their dot product is zero. The dot product of the two vectors \mathbf{v} and \mathbf{w} can be written as $\mathbf{v}^T \mathbf{w}$ using ordinary matrix multiplication.

Fun Fact 2 If $\bf A$ is a symmetric, real $n \times n$ matrix, the eigenvectors of any two distinct eigenvalues are orthogonal.

In particular, this means that we can find a basis for the eigenspaces that are all mutually orthogonal. This is because any repeated eigenvector has a complete eigenspace, and there is an algorithm, called the Gram–Schmidt algorithm, that allows us to find an orthogonal set of vectors.

Why do we care about orthogonal vectors?

Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be a collection of eigenvectors of \mathbf{A} that are pairwise orthogonal, that is

$$\mathbf{v}_i^T \mathbf{v}_j = 0 \qquad ext{if } i
eq j.$$

Normalize these vectors so that each of them has length one, that is

$$\mathbf{v}_i^T \mathbf{v}_i = 1.$$

Once the vectors are normalized in this manner, they are said to be **orthonormal**.

Let ${\bf S}$ be the matrix whose columns are these orthonormal vectors. Then we say that ${\bf S}$ is an **orthogonal matrix**, and has the special property that ${\bf S}^{-1}={\bf S}^T$. This is convenient because computing inverses is often computationally intensive, but the transpose is simple.

In particular, the diagonalization of the matrix ${f A}$ can be expressed as ${f A}={f SDS}^T$.

Remark 14.1 If you use the MATLAB command [S,D] = eig(A) to find the eigenvectors of a matrix A, the eigenvectors it finds will be unit length, and orthogonal if possible.

14. Symmetric matrices and their diagonalization

Hide Discussion

Topic: Unit 2: Linear Algebra, Part 2 / 14. Symmetric matrices and their diagonalization

Add a Post

Show all posts ▼		by recent activity ▼
There are no posts in this top	pic yet.	
×		
	Learn About Verified Certificates	
	Learn About Vermed Certificates	© All Rights Reser