Universidade Federal do Paraná Curso de Verão UFPR 2019

Curso: Introdução à Análise na Reta

Professores: Bruno de Lessa e Ricardo Paleari

3º Lista de Exercícios - 21/01

- 1. Seja $(\mathbb{K}, +, \cdot)$ um corpo. Para $x \in \mathbb{K}$, denotamos seu oposto aditivo por -x e se $x \neq 0$, seu inverso multiplicativo será denotado por x^{-1} . Denotamos também por 0 o elemento neutro de + e por 1 o elemento neutro de \cdot .
 - a) Prove que se $x, y \in \mathbb{K}$ e x + y = x, então y = 0 (unicidade do elemento neutro da adição).
 - b) Prove que se $x, y \in \mathbb{K}$ e x + y = 0, então y = -x (unicidade do elemento oposto da adição).
 - c) Prove que se $x \in \mathbb{K}$, então $x \cdot 0 = 0$.
 - d) Prove que se $x, y \in \mathbb{K}, x \neq 0$ e $y \neq 0$, então $x \cdot y \neq 0$.
 - e) Prove que se $x, y, z \in \mathbb{K}, z \neq 0$ e $x \cdot z = y \cdot z$, então x = y.
 - f) Prove que se $x, y \in \mathbb{K}$, $x \neq 0$ e $x \cdot y = x$, então y = 1 (unicidade do inverso multiplicativo).
 - g) Prove que se $x, y \in \mathbb{K}$ e $x \cdot y = 1$, então $y = x^{-1}$ (unicidade do inverso multiplicativo).
 - h) Prove que se $\in \mathbb{K}$, então $(-1) \cdot x = -x$.
 - i) Prove que se \mathbb{K} possui pelo menos dois elementos, então $1 \neq 0$.
- 2. Seja $(\mathbb{K}, +, \cdot, \leq)$ um corpo ordenado com pelo menos 2 elementos. Definimos $\mathbb{K}^+ = \{x \in \mathbb{K}; 0 \leq x \text{ e } x \neq 0\}$. Além disso, x < y e y > x significam $y x \in \mathbb{K}^+$ e $y \geq x$ significa $y x \in \mathbb{K}^+ \cup \{0\}$.
 - a) Prove que $\forall x \in \mathbb{K}$ vale $x^2 \geq 0$. Além disso, prove que $x^2 > 0$ se $x \neq 0$. Conclua por indução as afirmações análogas para x^n quando $x \geq 0$ e $n \in \mathbb{N}$.
 - b) Prove que 1 > 0.
 - c) Prove que se $x \in \mathbb{K}$, então $x \leq 0$ se, e somente se, $-x \geq 0$. Além disso, x < 0 se, e somente se, -x > 0.
 - d) Prove que se $x, y, z \in \mathbb{K}$, então $x + z \le y + z$ se, e somente se, $x \le y$.
 - e) Prove que se $x,y\in\mathbb{K}$ e $z\in\mathbb{K}^+,$ então $x\cdot z\leq y\cdot z$ se, e somente se, $x\leq y.$
 - f) Prove que se $x, y, z, w \in \mathbb{K}$ e $x \leq y, z \leq w$, então $x + z \leq y + w$.
 - g) Prove que se $x, y, z, w \in \mathbb{K}$ e $0 < x \le y, 0 < z \le w$, então $x \cdot z \le y \cdot w$.
- 3. Defina $\mathbb{C} = \mathbb{R} \times \mathbb{R} = \{(a, b); a, b \in \mathbb{R}\}$. Em \mathbb{C} definimos a operações

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b) \cdot (c,d) = (a \cdot c - b \cdot d, a \cdot d + b \cdot c)$

É possível mostrar que com essas operações $(\mathbb{C}, +, \cdot)$ é um corpo, em que "0" = (0,0) e "1" = (1,0). Vamos assumir isso! Defina também i = (0,1).

- a) Prove que para todos $a, b \in \mathbb{R}$ vale $(a, 0) + (0, 1) \cdot (b, 0) = (a, b)$. Por isso usamos o abuso de notação (a, b)" = " $a + i \cdot b$, pensando que a" = "(a, 0) e b" = "(b, 0), que é uma maneira de incluir \mathbb{R} em \mathbb{C} .
- b) Prove que $i^2 = -1$.

- c) Conclua que não importa qual seja a relação de ordem \leq colocada em $\mathbb{C},~(\mathbb{C},+,\cdot,\leq)$ nunca será um corpo ordenado.
- d) Em \mathbb{C} definimos a seguinte relação \leq :

$$(a, b) \le (c, d)$$
 se $(a < c)$ ou $(a = c e b \le d)$.

Prove que \leq é uma ordem em \mathbb{C} . Ela é chamada ordem lexicográfica, ou ordem do dicionário.

- 4. Seja $(\mathbb{K}, +, \cdot, \leq)$ um corpo ordenado.
 - a) Prove que $\forall x, y \in \mathbb{K}$ vale $|x y| \ge ||x| |y||$.
 - b) Prove que $\forall n \in \mathbb{N} \text{ e } \forall x \in \mathbb{K} \text{ com } x > -1 \text{ vale } (1+x)^n \ge 1 + n \cdot x.$
- 5. Sejam $A,B\subset\mathbb{R}$ subconjuntos limitados. Para cada $\lambda\in\mathbb{R}$ defina os conjuntos

$$\begin{split} \lambda \cdot A &= \{\lambda \cdot a; a \in A\} \\ A + B &= \{a + b; a \in A \in b \in B\} \\ A \cdot B &= \{a \cdot b; a \in A \in b \in B\} \end{split}.$$

- a) Prove que se $A \subset B$, então inf $A \ge \inf B$ e sup $A \le \sup B$.
- b) Prove que se $\lambda \geq 0$, então inf $(\lambda \cdot A) = \lambda \cdot \inf A$ e sup $(\lambda \cdot A) = \lambda \cdot \sup A$.
- c) Prove que inf $(A + B) = \inf A + \inf B$ e sup $(A + B) = \sup A + \sup B$.
- d) Prove que se $A, B \subset [0, \infty]$, então inf $(A \cdot B) = \inf A \cdot \inf B$ e sup $(A \cdot B) = \sup A \cdot \sup B$.