IST 652 : Scripting for Data Analysis

# COVID-19 Deaths & Mentions in the United States

Team 6:

Mahitha Chennamadhava

Shubham Patil

Kayla Carleton





### Table of Contents

- 1. Introduction
- 2. Objective
- 3. Data Description
- 4. Data Cleaning
- 5. Data Exploration
- 6. Data Analysis
- 7. Regression
- 8. Challenges
- 9. Conclusion



### Introduction

- When we sat down to discuss the dataset for our final project, we all agreed to do something that was health related and something that was recent
- The pandemic left many disturbances today including the underlying health conditions affiliated with COVID. This in return opens a wide range of possibilities in order to understand future precautionary measures
- In this presentation we will cover how COVID-19 deaths impacting a range of factors in the United States

## Objectives

#### **Visualization for Communication:**

• Use visualizations (such as histograms, line plots, and heatmaps) to effectively communicate trends and patterns to a diverse audience, making the analysis accessible and informative.

#### **Predictive Modeling**

 Implement predictive models into our analysis and forecast future trends in COVID-19 deaths based on historical data.

#### **Comparative Analysis:**

• Compare COVID-19 death rates across different health conditions, states, or demographics to draw insights into the effectiveness of public health measures and healthcare systems.

#### **Understanding the Impact:**

• Analyze the overall impact of COVID-19 on mortality rates, identifying trends and patterns in the number of deaths over the pandemic.

#### **Geospatial Analysis:**

 Explore geographic variations in COVID-19 deaths, examining how different states have been affected using heatmaps

#### **Demographic Patterns:**

• Investigate demographic factors such as age and underlying health conditions to understand how different populations are affected by COVID-19

RangeIndex: 621000 entries, 0 to 620999
Data columns (total 22 columns):

| Data | Cotumns (total 22 C | o cullins / .   |        |
|------|---------------------|-----------------|--------|
| #    | Column              | Non-Null Count  | Dtype  |
| 0    | sid                 | 621000 non-null | object |
| 1    | id                  | 621000 non-null | object |
| 2    | position            | 621000 non-null | int64  |
| 3    | created_at          | 621000 non-null | int64  |
| 4    | created_meta        | 0 non-null      | object |
| 5    | updated_at          | 621000 non-null | int64  |
| 6    | updated_meta        | 0 non-null      | object |
| 7    | meta                | 621000 non-null | -      |
| 8    | Data As Of          | 621000 non-null | object |
| 9    | Start Date          | 621000 non-null | object |
| 10   | End Date            | 621000 non-null | object |
| 11   | Group               | 621000 non-null | object |
| 12   | Year                | 608580 non-null | object |
| 13   | Month               | 558900 non-null | object |
| 14   | State               | 621000 non-null | object |
| 15   | Condition Group     | 621000 non-null | object |
| 16   | Condition           | 621000 non-null | object |
| 17   | ICD10_codes         | 621000 non-null | object |
| 18   | Age Group           | 621000 non-null | object |
| 19   | COVID-19 Deaths     | 437551 non-null | object |
| 20   | Number of Mentions  |                 | object |
| 21   | Flag                | 183449 non-null | object |

## Data Description

- Source: The dataset was sourced from Data.gov
- The dataset has 124,200 rows and 22 columns
- **Timeframe**: Covers data from [start date] to [end date], providing a comprehensive view of the COVID-19 impact over time.
- Scope and Scale: Comprises over 600,000 records, reflecting a wide range of demographic and clinical data points across the United States.
- Key Variables:
- **State**: Geographical location within the United States, excluding entries labeled as 'United States' to focus on individual states.
- Condition Group and Condition: Categorization of COVID-19 associated health conditions as per ICD10 clinical codes.
- **COVID-19 Deaths:** Recorded fatalities attributed to COVID-19, requiring conversion from object to numeric data type for analysis.
- **Number of Mentions:** Frequency count of specific conditions or keywords in the dataset, potentially linked to reported deaths.
- Age Group: Demographic segmentation of data, which can provide insights into the age-related impact of the pandemic.

## Data Cleaning



## Data Exploration: Scatter Plot & Stripp Plot

- Explored the data with df.head(), df.info(), df.describe()
- Created a scatter plot for Deaths Vs Number of cases to understand the relationship between these variables
- Plotted stripp plot to understand how age group factor has an impact on Covid 19 deaths





## Age Filtering

- Performed filtering on the Age group variable
- Age filtering for above age of 65

| _meta | updated_at | updated_meta | meta | Data As Of              | Start Date              | <br>Year | Month | State            | Condition<br>Group      | Condition                                    | ICD10_codes | Age<br>Group | COVID-<br>19<br>Deaths | Number<br>of<br>Mentions | Flag |
|-------|------------|--------------|------|-------------------------|-------------------------|----------|-------|------------------|-------------------------|----------------------------------------------|-------------|--------------|------------------------|--------------------------|------|
| None  | 1695825684 | None         | {}   | 2023-09-<br>24T00:00:00 | 2020-01-<br>01T00:00:00 | <br>None | None  | United<br>States | Respiratory<br>diseases | Influenza<br>and<br>pneumonia                | J09-J18     | 65-74        | 129005.0               | 133088                   | None |
| None  | 1695825684 | None         | {}   | 2023-09-<br>24T00:00:00 | 2020-01-<br>01T00:00:00 | <br>None | None  | United<br>States | Respiratory<br>diseases | Influenza<br>and<br>pneumonia                | J09-J18     | 85+          | 121119.0               | 123018                   | None |
| None  | 1695825684 | None         | {}   | 2023-09-<br>24T00:00:00 | 2020-01-<br>01T00:00:00 | <br>None | None  | United<br>States | Respiratory<br>diseases | Chronic<br>lower<br>respiratory<br>diseases  | J40-J47     | 65-74        | 27920.0                | 29359                    | None |
| None  | 1695825684 | None         | {}   | 2023-09-<br>24T00:00:00 | 2020-01-<br>01T00:00:00 | <br>None | None  | United<br>States | Respiratory<br>diseases | Chronic<br>lower<br>respiratory<br>diseases  | J40-J47     | 85+          | 27866.0                | 28796                    | None |
| None  | 1695825684 | None         | {}   | 2023-09-<br>24T00:00:00 | 2020-01-<br>01T00:00:00 | <br>None | None  | United<br>States | Respiratory<br>diseases | Adult<br>respiratory<br>distress<br>syndrome | J80         | 65-74        | 30138.0                | 30138                    | None |

## Pie Chart & Bar Graph

- Pie chart and bar graph shows the distribution of Deaths by states.
- California, Texas, followed by Florida recorded most number of deaths. Where as Alaska, Vermont have least number of Covid 19 deaths.





## **Grouping Data**

#### **Counted Condition Group**

| Condition Group                                                           |        |
|---------------------------------------------------------------------------|--------|
| All other conditions and causes (residual)                                | 27000  |
| Alzheimer disease                                                         | 27000  |
| COVID-19                                                                  | 27000  |
| Circulatory diseases                                                      | 189000 |
| Diabetes                                                                  | 27000  |
| Intentional and unintentional injury, poisoning, and other adverse events | 27000  |
| Malignant neoplasms                                                       | 27000  |
| Obesity                                                                   | 27000  |
| Renal failure                                                             | 27000  |
| Respiratory diseases                                                      | 162000 |
| Sepsis                                                                    | 27000  |
| Vascular and unspecified dementia                                         | 27000  |
| dtype: int64                                                              |        |

#### Number of Mentions Per Age Group

| Age Group    |                             |
|--------------|-----------------------------|
| 0-24         | 1.556827                    |
| 25-34        | 5.398871                    |
| 35-44        | 15.637929                   |
| 45-54        | 43.152662                   |
| 55-64        | 107.697316                  |
| 65-74        | 178.955195                  |
| 75-84        | 203.862396                  |
| 85+          | 196.574813                  |
| All Ages     | 622.197288                  |
| Not stated   | 0.005286                    |
| Name: Number | of Mentions, dtype: float64 |

#### Number of Deaths by State

[14]: State

| [1+] | State                  |                |
|------|------------------------|----------------|
|      | Alabama                | 432004.0       |
|      | Alaska                 | 25563.0        |
|      | Arizona                | 675395.0       |
|      | Arkansas               | 277702.0       |
|      | California             | 2765450.0      |
|      | Colorado               | 388689.0       |
|      | Connecticut            | 248369.0       |
|      | Delaware               | 69242.0        |
|      | District of Columbia   | 52580.0        |
|      | Florida                | 1915568.0      |
|      | Georgia                | 797183.0       |
|      | Hawaii                 | 35550.0        |
|      | Idaho                  | 127624.0       |
|      | Illinois               | 857240.0       |
|      | Indiana                | 630686.0       |
|      |                        |                |
|      | Iowa                   | 238231.0       |
|      | Kansas                 | 214046.0       |
|      | Kentucky               | 512253.0       |
|      | Louisiana              | 381519.0       |
|      | Maine                  | 49061.0        |
|      | Maryland               | 423271.0       |
|      | Massachusetts          | 454212.0       |
|      | Michigan               | 766221.0       |
|      | Minnesota              | 383921.0       |
|      | Mississippi            | 365180.0       |
|      | Missouri               | 477690.0       |
|      | Montana                | 92001.0        |
|      | Nebraska               | 134276.0       |
|      | Nevada                 | 297838.0       |
|      | New Hampshire          | 59426.0        |
|      | New Jersey             | 818458.0       |
|      | New Mexico             | 174399.0       |
|      | New York               | 912528.0       |
|      | New York City          | 713151.0       |
|      | North Carolina         | 761941.0       |
|      | North Dakota           | 65317.0        |
|      | Ohio                   | 1090446.0      |
|      | Oklahoma               | 438130.0       |
|      | Oregon                 | 213144.0       |
|      | Pennsylvania           | 1190005.0      |
|      | Puerto Rico            | 142259.0       |
|      | Rhode Island           | 84425.0        |
|      | South Carolina         | 483097.0       |
|      | South Dakota           | 81556.0        |
|      | Tennessee              | 673816.0       |
|      | Texas                  | 2453758.0      |
|      | United States          | 26501616.0     |
|      | Utah                   | 126856.0       |
|      | Vermont                | 18419.0        |
|      | Virginia               | 460649.0       |
|      | Washington             | 390447.0       |
|      | West Virginia          | 175517.0       |
|      | Wisconsin              | 402985.0       |
|      | Wyoming                | 36806.0        |
|      | Name: COVID-19 Deaths, |                |
|      | name. Covid-15 Deaths, | acype, 110aco+ |

- Grouping data by 'State' and calculating total COVID-19 deaths per state
- Grouping data by 'Condition Group' and counting the occurrences of each group
- Grouping data by 'Age Group' and calculating average number of mentions per age group

## Analysis

#### Bar Chart: Total COVID-19 Deaths by Age Group

- This bar chart illustrates the distribution of COVID-19 related deaths across different age groups.
- The data suggests that the impact of COVID-19 on mortality rates increases with age, with the highest number of deaths occurring in the oldest age bracket.

#### Stacked Bar Chart: COVID-19 Mortality Rate by Condition Group

- The stacked bar chart presents the mortality rate of patients with COVID-19 in conjunction with various underlying health conditions or comorbidities.
- The length of each bar represents the percentage of the mortality rate attributed to each condition group, providing insight into which health issues are most commonly associated with fatal COVID-19 outcomes.
- This visualization emphasizes the significant risk factors, such as cardiovascular diseases and diabetes, contributing to COVID-19 mortality.





## Histogram Analysis





- For the "Histogram of COVID-19 Deaths by Month," you can observe the distribution of COVID-19 deaths across different months. The x-axis represents the months, and the y-axis represents the frequency of deaths.
- For the "Histogram of COVID-19 Deaths by Year," the histogram gives an overview of the distribution of deaths across different years, while the line plot shows the trend or pattern of COVID-19 deaths over the years. The line plot connects the high points of the histogram, providing a visual representation of the variation in the number of deaths each year.

## Linear Regression Analysis



Intercept: 0.6028922878045648 Coefficient: 0.9117763436901557

- Predictive model that showcases how deaths and mentions are closely related to the data's average
- As deaths increase, the number of mention increases (and vice versa), creating a positive linear regression line

## Outlier Analysis-Box Plot

- Both COVID-19 deaths and cases have a skewed distribution with most data points concentrated at the lower end.
- The median values are closer to the bottom of the data range, indicating a lower central tendency for both deaths and cases.
- There are numerous outliers for both deaths and cases, signifying instances of very high numbers that deviate from the typical values.
- The variance in the data is substantial, with the bulk of observations being low, but with some significantly high values.





## Hypothesis Testing & Frequency Distribution

- Comparing the COVID-19 deaths to condition variable in the dataset
- The ANOVA results show a high F-statistic of approximately 53.98 and a very low p-value (around 3.49×10–2373.49×10–237). This indicates a statistically significant difference in COVID-19 deaths across different condition groups in our dataset, allowing to reject the null hypothesis that there is no difference between group means.
- In Frequency Distribution, the bar chart displays the top 10 conditions associated with COVID-19 deaths, with "Pneumonia" accounting for the highest number of deaths, followed by and "Influenza".
- The decreasing order indicating the relative impact of each condition on COVID-19 mortality.

ANOVA F-statistic: 53.980576930153816

p-value: 3.498008065053823e-237



## Plot of Deaths By Condition Group

- **Chart Analysis**: Demonstrates COVID-19 fatalities by comorbid conditions.
- Insights:
- 'COVID-19' is the predominant cause of recorded deaths.
- 'Alzheimer's' and 'dementia' are notable for their high impact.
- Significant fatalities also occurred in patients with 'Respiratory Diseases', 'Diabetes', and 'Heart Conditions'.

## Analysis of Washington State

#### First Plot: COVID-19 Deaths by Condition in Washington State

- This bar chart provides an in-depth look at the comorbidities or underlying conditions associated with COVID-19 fatalities in Washington State.
- Each bar represents a different medical condition and is color-coded for clear differentiation.
- The plot highlights which conditions have been most frequently associated with death cases, with the tallest bars indicating the highest number of deaths.
- Notably, conditions such as 'pneumonia' and 'sepsis' show significantly higher mortality figures, suggesting their severe impact on COVID-19 patients.

#### Second Plot: COVID-19 Deaths by Age Group in Washington State

- This histogram breaks down the total number of COVID-19 deaths by age group within the state, offering a clear demographic perspective.
- A stark increase in deaths is observed among the older populations, with the highest number occurring in the '65+' age category.
- The distribution signifies the heightened vulnerability of the elderly to COVID-19, underscoring the need for targeted protective measures for senior citizens.





## Cluster Analysis

- **Visual Overview**: The scatter plot displays a comparison of the top five states by COVID-19 deaths against the number of times COVID-19 is mentioned in official records.
- Axes Interpretation:
- **X-Axis**: Represents the count of COVID-19 deaths.
- **Y-Axis**: Denotes the number of mentions of COVID-19 in documents.
- Insights:
- Texas & California: High impact, with large numbers of deaths and mentions.
- Florida: Notable for a high number of mentions relative to deaths.
- Georgia & Arizona: Lower impact, with fewer deaths and mentions.







### Heatmap

- **Purpose of the Heatmap**: This map visualizes the intensity of COVID-19 deaths across the United States, using color coding to represent varying levels of impact.
- Color Interpretation:
- Dark Purple: Lower numbers of reported deaths.
- Yellow-Green: Higher numbers of reported deaths.
- The scale at the bottom translates the color gradient into the actual number of deaths.
- Insight:
- States with darker shades show relatively fewer deaths, while those in yellow-green have reported higher death counts.
- The color gradient provides an at-a-glance understanding of geographical trends in COVID-19 mortality rates.
- **Usage**: Such a heatmap can quickly convey regional differences and identify areas with the most significant health impact from the pandemic, which can be crucial for targeted public health responses.

## Challenges



Large Dataset: With over 600,000 entries, processing and analyzing the dataset can be computationally intensive and may require optimization techniques or more robust hardware.



Data Type Discrepancies:
Columns like 'COVID-19
Deaths' and 'Number of
Mentions' being in an
object data type instead of
numeric, necessitating
type conversion and error
handling.



Missing Values: Significant numbers of missing entries in crucial columns, such as 'COVID-19 Deaths' and 'Number of Mentions', require careful handling to avoid bias.



Geospatial Data
Integration: Difficulties in
integrating geospatial data
due to format issues (e.g.,
shapefiles not being
directly accessible or
compatible).



Clarity of Visualizations:
Ensuring that complex
data is represented in a
way that is
understandable and
visually clear to the
audience.



Choice of Appropriate
Visuals: Determining the
most effective type of
visualization for the data
at hand, such as choosing
between heatmaps, bar
charts, or cluster
diagrams.

### Conclusion

- Our analysis revealed distinct temporal trends, highlighting periods of heightened mortality rates. Additionally, we observed intriguing geographic variations, emphasizing the importance of localized interventions and healthcare strategies.
- By showcasing the demographic factors, we identified specific populations that faced elevated risks. Understanding the impact of age, gender, and underlying health conditions is crucial for targeted public health efforts.
- Our use of Python's visualization capabilities not only facilitated a deeper understanding of the data but also made complex information accessible to a broader audience. Effective communication through visuals is crucial for informed decision-making.



Questions?

THANK YOU!