1.a) 다음 결과가 나오도록 """ 위치에 한 문장 으로 완성하시오. 단, 숫자 사용 불가.

123 456

```
class Ex:
    x = 123
    def __init__(self, x):
        self.x = x

ex = Ex(456)
'''''
print(a, b)
```

b) 문법적으로 문제가 없는 다음 클래스 R 의 자식 클래스 S를 2줄로 만드시오.

```
class R:
    def __init__(self, width, height):
        self.width = width
        self.height = height
    def area(self):
        return self.width * self.height
```

2. 함수 fun(1i)은 양의 정수 리스트 1i에서 최대값이 나오는 횟수를 반환한다. 이 함수를 """ 위치에 내장 함수를 활용하여 완성하시오. 단, 반복문은 사용할 수 없다[10점 감점].

```
2
1
1
3
```

```
def fun(li):
    rint(fun([3,5,3,5]))
    print(fun([5]))
    print(fun([5,3,4,5,5,4,6]))
    print(fun([5,5,5]))
```

3. 다음 결과가 나오도록 클래스 linspace를 일 반성 있게 작성하시오. 참조로 매개변수는 np.linspace()와 비슷하다.

```
4 4.25 4.5 4.75 5.0
0 1.0 2.0 3.0 4.0
[0, 0.5, 1.0, 1.5]
[2]
```

```
for x in linspace(4,5,5):
    print(x, end=" ")
print()
for x in linspace(0,4):
    print(x, end=" ")
print()
print(list(linspace(0,1.5,4)))
print(list(linspace(2,3,1)))
```

4. 함수 fun(n)이 반환한 문자열을 print하면 다음 처럼 n층인 역피라미드 모양이 출력된다. 한 층 내려가면 "*"가 2개 씩 줄어들고, 맨 아래 층은 "*"가 1 개이다. 모든 양의 정수 n에 대해 원하는 결과가 나오는 fun(n)을 """ 위치에 완성하시오. fun(n)에서 출력(print)하면 안된다[10점 감점].

```
******

***

**

**

**

*

**

*

**

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
```

```
def fun(n):
    rint(fun(4))
print(fun(3))
print(fun(1))
```

- 5. 파일 "1.txt"의 내용 뒤에 파일 "2.txt" 의 내용을 추가하여 파일 "12.txt"를 만드는 프로그램을 작성하시오. 예외 처리를 해야 하며[4점 감점], open한 파일은 close 되어야 한다[4점 감점].
- 6. 다음 조건을 만족하는 프로그램을 작성하시오.
 - 카운터 증가 버튼을 클릭하면 카운터 값이 1 증가
 - 카운터 감소 버튼을 클릭하면 카운터 값이 1 감소
 - 카운터 값과 버튼들은 그림처럼 배치

카운터 증가 버튼을 1회 클릭 후 화면

7. π 에서 π 까지의 sin, cos, sin + cos 그래프를 다음 그림처럼 나오도록 그리시오.

- 8. 아래 데이터에 대해, a) 오른쪽 표를 출력하고,
 - b) 사육비 합을 구하고, c) 두 표를 merge하고,
 - d) 왼쪽표에서 ID 열을 삭제하여 다음 결과가 나오도록 프로그램을 작성하시요.

동물	ID	사육비	동물	사료
사자	1001	800	사자	고기
사자	1002	700	코끼리	야채
코끼리	1003	1000	얼룩말	야채
얼룩말	1004	500		

동물에 대한 데이터