MATH 131BH (Real Analysis)

April 4, 2022

- 1 3.28 Monday Week 1: Intro to the course. Review of material covered in 131AH: foundations (definition and constructions of naturals and reals), metric space convergence, continuity.
- 3.30 Wednesday Week 1: Limit of a function: definition and alternative formulations via images of balls and sequential characterization. Limit on a set, left and right limits for functions on \mathbb{R} . Discontinuities of first and second kind. Monotone functions have no discontinuities of second kind.

Limits of functions

Recall: $f: X \to Y$ is said to be **continuous at** $x \in X$ if

$$\forall \, \varepsilon > 0 \, \exists \, \delta > 0 \, \forall \, z \in x : \rho_X(x,z) < \delta \Rightarrow \rho(f(z),f(x)) < \varepsilon.$$

Alternatives:

• $f(B_X(x,\delta)) \subseteq B_Y(f(x),\varepsilon)$;

•
$$\forall \{x_n\}_{n\in\mathbb{N}} \in X^{\mathbb{N}} : x_n \to x \Rightarrow f(x_n) \to f(x).$$

A function $f: X \to Y$ is **continuous** if

 $\forall x \in X : f \text{ is continuous at } x$,

or, alternatively,

 $\forall O \subseteq Y \text{ open} : f^{-1}(O) \text{ open}.$

Definition 2.1

A function $f: X \to Y$ has limit $y \in Y$ at $x \in X$, notation $\lim_{z \to x} f(z) = y$, if

$$\forall \varepsilon \exists \delta > 0 \forall z \in X : 0 < \rho_X(x, z) < \delta \Rightarrow \rho_Y(f(z), y) < \varepsilon.$$

Alternatives:

• $f(B_X(x,\delta) \setminus \{x\}) \subseteq B_Y(y,\varepsilon)$;

•
$$\forall \{x_n\}_{n\in\mathbb{N}} \in X^{\mathbb{N}} : (\forall n \in \mathbb{N} : x_n \neq x) \land x_n \to x \Rightarrow f(x_n) \to y;$$

•
$$g(z) := \begin{cases} f(z) & z \neq x \\ y & z = x \end{cases}$$
 is continuous at x .

Definition 2.2

f has a **removable discontinuity** at *x* if $\lim_{z\to x} f(z)$ exists but $\neq f(x)$.

Definition 2.3

Let $A \subseteq X$ be nonempty, $x \in \overline{A}$ be not an isolated point. Then $\lim_{z \to x} f(z) = \lim_{z \to x} f_A(z)$ where f_A is the restriction of f to A.

Definition 2.4

For $f: \mathbb{R} \to \mathbb{R}$, let $x \in \overline{\mathrm{Dom}(f)}$ be such that $\mathrm{Dom}(f) \cap (x, \infty) \neq \emptyset$ and $\mathrm{Dom}(f) \cap (-\infty, x) \neq \emptyset$. Then $\lim_{z \to x^+} f(z) := \lim_{z \to x, z \in \mathrm{Dom}(f) \cap (x, \infty)} f(z) \wedge \lim_{z \to x^-} f(z) := \lim_{z \to x, z \in \mathrm{Dom}(f) \cap (-\infty, x)} f(z)$ are the **right** / **left limits of** f **at** x.

Alternative notation: $f(x^+)$, $f(x^-)$.

Example 2.5.

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$
 (2.1)

has no right or left limits.

Example 2.6.

$$f(x) = \begin{cases} \frac{1}{n+1} & x = q_n \text{ where } \{q_n\}_{n \in \mathbb{N}} \text{ enumerates } \mathbb{Q} \\ 0 & x \notin \mathbb{Q}. \end{cases}$$
 (2.2)

Then $\forall x \notin \mathbb{Q} : \lim_{z \to x} f(z) = 0$ so f is continuous on $\mathbb{R} \setminus \mathbb{Q}$, and $\forall x \in \mathbb{Q} : \lim_{z \to x} f(z) = 0$ but f is not continuous at x.

Lemma 2.7

$$\forall r > 0 \,\forall \, \varepsilon > 0 : \left\{ x \in \mathbb{R} : |x| < r \land \left| f(x) \right| > \varepsilon \right\} \text{ finite} \Rightarrow \forall \, x \in \mathbb{R} : \lim_{z \to x} f(z) = 0.$$

Definition 2.8

A function $f: \mathbb{R} \to \mathbb{R}$ has a **discontinuity of**

- **first kind** at x if $f(x^+)$ and $f(x^-)$ exist but are not both equal to f(x);
- **second kind** at x if one or both of $f(x^+)$ and $f(x^-)$ don't exist.

Example 2.9.

$$f(x) := \begin{cases} (-1)^n & x = \frac{1}{n+1}, n \in \mathbb{N} \\ \text{linear} & x \in (0, \infty) \setminus \left\{ \frac{1}{n+1} : n \in \mathbb{N} \right\} \\ 0 & x \le 0. \end{cases}$$
 (2.3)

This function has a discontinuity of second kind at 0.

Lemma 2.10

Let $f: \mathbb{R} \to \mathbb{R}$ (Dom $(f) = \mathbb{R}$) be monotone. Then $\forall x \in \mathbb{R} : f(x^+), f(x^-)$ exist and so f has no discontinuities of second kind.

Proof. Let $x \in \mathbb{R}$ and assume f is nondecreasing. We claim that $\lim_{z \to x^+} f(z) = \inf \left\{ f(z) : z > x \right\} =: L$. Indeed, $\forall z > x : f(z) \ge f(x)$, so $L \ge f(x)$ and so $L \in \mathbb{R}$. Then $(\forall z > x : L \le f(z)) \land (\forall \varepsilon > 0 \exists z_\varepsilon > x : f(z_\varepsilon) < L + \varepsilon)$. Let $\delta := z_\varepsilon - x$. Then $\forall z \in (x, x + \delta) : f(z) \le f(z_\varepsilon) < L + \varepsilon$. Then $\forall z \in (x, x + \delta) : L \le f(z) < L + \varepsilon$ and therefore $|f(z) - L| < \varepsilon$. Then $\lim_{z \to x^+} f(z) = L$.

3 3.31 Thursday Week 1: Monotone functions have only countably many discontinuities. Functions of bounded variation. Jordan decomposition theorem. Comments on uniqueness. Rectifiability of curves. Limsup and liminf of a function.

Limits of functions

Last time we showed that monotone functions have no discontinuities of second time.

Lemma 3.1

Let $f: \mathbb{R} \to \mathbb{R}$ be monotone. Then $\{x \in \mathbb{R} : f(x^+) \neq f(x^-)\}$ is countable.

Proof. Pick $k, m \in \mathbb{N}$ and let $A_{m,k} := \{x \in [-m, m] : |f(x^+) - f(x^-)| > \frac{1}{k+1}\}$. We claim that $A_{m,k}$ is finite. Let $x_0 < x_1 < \dots < x_n$ be such that $\forall i \leq n : x_i \in A_{k,m}$. Assume (without loss of generality) that f is non-decreasing. Then

$$f(m+1) \ge f(x_n^+) = f(x_0^+) + \sum_{i=1}^n \left(f(x_i^+) - f(x_{i-1}^+) \right)$$

$$\ge f(m-1) + \sum_{i=1}^n \left(f(x_i^+) - f(x_i^-) \right)$$

$$\ge f(-m+1) + \frac{n}{k+1}.$$
(3.4)

Then $n \le (k+1)$. Since $\{x \in \mathbb{R} : f(x^+) \ne f(x^-)\} = \bigcup_{k \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} A_{k,m}$, we are done.

Q: Can these be generalized to other functions?

Definition 3.2

A **partition** Π of an interval [a,b] is a sequence $\{t_i\}_{i=0}^n$ such that

$$a = t_0 < t_1 < \cdots < t_{n-1} < t_n = b$$
.

Definition 3.3

Given $f: [a, b] \to \mathbb{R}$, its **total variation** on [a, b]

$$V(f, [a, b]) := \sup_{\Pi = \{t_i\}_{i=0}^n} \sum_{i=1}^n |f(t_i) - f(t_{i-1})|$$

where the supremum if over the partitions of [a, b].

Definition 3.4

f is said to be of **bounded variation** on [a,b] if $V(f,[a,b]) < \infty$.

Lemma 3.5

If $f: \mathbb{R} \to \mathbb{R}$ is of bounded variation on [-m, m] for all $m \in \mathbb{N}$, then f has only discontinuities of first kind and the set $\{x \in \mathbb{R} : f(x^+) \neq f(x^-)\}$ is countable.

Theorem 3.6: Jordan decomposition (1881)

Let $f: [a,b] \to \mathbb{R}$ obey $V(f,[a,b]) < \infty$. Then $\exists h,g: [a,b] \to \mathbb{R}$ nondecreasing such that $\forall t \in [a,b]$: f(t) = h(t) - g(t).

Proof. Define h(t) := V(f, [a, t]) and g(t) := V(f, [a, t]) - f(t). Note that h(t) - g(t) = f(t).

We need to show that h and g are nondecreasing.

Let $a \le t < t' \le b$. Then for any partition Π of [a, t]. $\Pi' = \Pi \cup \{t'\}$ is a partition of [a, t']. Then

$$V(f,[0,t']) \ge \sum_{i=1}^{m} |f(t_i) - f(t_{i-1})| + |f(t') - f(t)|.$$
(3.5)

Taking supremum over Π gives

$$V(f, [a, t']) \ge V(f, [a, t]) + |f(t') - f(t)|. \tag{3.6}$$

Note that
$$|f(t') - f(t)| \ge 0$$
 and $|f(t') - f(t)| \ge f(t') - f(t)$. Then $h(t') \ge h(t)$ and $g(t') \ge g(t)$.

The representation of f = h - g is called a Jordan decomposition. This is not unique because a nondecreasing function can be added to both h and g.

However, there is a minimal decomposition $f = h_0 - g_0$ such that $g_0(a) = 0$ such that for any other Jordan decomposition f = h - g we have $h - h_0$, $g - g_0$ nondecreasing. This is then *the* Jordan decomposition.

Rectifiability of curves

Definition 3.7

Let (X, ρ) be a metric space. A curve C is Ran(f) for an $f : \mathbb{R} \to X$ continuous such that Dom(f) is nonempty and connected. This f is called a **parametrization** of C.

Definition 3.8

Assuming Dom(f) = [a, b], the **length of** C is

$$\ell(C) := \sup_{\Pi = \{t_i\}_{i=1}^n} \sum_{i=1}^n \rho(f(t_{i-1}), f(t_i)).$$

Definition 3.9

A curve is **rectifiable** if $\ell(C) < \infty$.

Definition 3.10

Let (X, ρ) be a metric space and $f: X \to \mathbb{R}$. Then

$$\limsup_{z \to x} f(z) := \inf_{\delta > 0} \sup_{z \in B(x,\delta) \setminus \{x\}} f(z)$$

and

$$\liminf_{z \to x} f(z) := \sup_{\delta > 0} \inf_{z \in B(x,\delta) \setminus \{x\}} f(z).$$

Lemma 3.11

$$\lim_{z \to x} f(z) \text{ exists in } \mathbb{R} \Leftrightarrow \limsup_{z \to x} f(z) = \liminf_{z \to x} f(z) \in \mathbb{R}.$$

4 4.1 Friday Week 1: Discussion

Definition 4.1

Let (X, ρ_X) , (Y, ρ_Y) be metric spaces, $E \subseteq X$, $f: E \to Y$, and $x \in \overline{E}$. Then $\lim_{t \to x} f(t) = \alpha$ is defined by

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x \in E \land 0 < \rho_X(t, x) < \delta \Rightarrow \rho_Y(f(t), \alpha) < \varepsilon.$$

Equivalently,

$$\forall \{t_n\}_{n\in\mathbb{N}} \in (E \setminus \{x\})^{\mathbb{N}} : t_n \to x \Rightarrow f(t_n) \to \alpha.$$

Note. f need not be defined at x.

Remark.

$$\limsup_{t\to x} f(t) := \inf_{\delta>0} \sup_{t\in B(x,\delta)\setminus\{x\}} f(t) = \lim_{\delta\to 0} \sup_{t\in B(x,\delta)\setminus\{x\}} f(t).$$

lim inf is similarly defined.

Remark.

 $\limsup = \liminf \implies \limsup$

Discontiuities

Definition 4.2

Let $f:(a,b)\to\mathbb{R}$ be not continuous at x. Then f has a **discontinuity of first kind** at x if f(x+) and f(x-) both exist. Otherwise it is of **second kind**.

Remark. Discontinuities of the first kind are also known as simple discontinuities. The cases include

- $f(x+) = f(x-) \neq f(x)$: removable discontinuity, and
- $f(x+) \neq f(x-)$: jump discontinuity.

Example 4.3.

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$
 (4.7)

has a discontinuity of second kind at 0.

Example 4.4.

$$f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 (4.8)

is continuous on $\mathbb{R} \setminus \mathbb{Q}$ and has discontinuities of first kind (removable) at every point in \mathbb{Q} .

Recall: A monotone function has no discontinuity of second kind and has at most countably many discontinuities of first kind. One can deduce this from the fact that the real line is a union of countably many open intervals (indexed by rationals).

Definition 4.5

A function $f:(a,b)\to\mathbb{R}$ is convex if

$$\forall x, y \in (a, b) : x \le y \Rightarrow (\forall \lambda \in [0, 1] : f(\lambda x + (1 - \lambda)y)) \le \lambda f(x) + (1 - \lambda)f(y).$$

In words, this means that for any interval, the secant line is above the graph.

5 4.4 Monday Week 2

<u>Last time:</u> $\lim_{z \to x} f(z)$, $\lim \sup_{z \to x} f(z) = \inf_{\delta > 0} \sup_{z \in B(x,\delta) \setminus \{x\}x} f(z)$

Lemma 5.1

$$\lim_{z \to x} f(z) \text{ exists (in } \mathbb{R}) \Leftrightarrow \limsup_{z \to x} f(z) = \liminf_{z \to x} f(z) \in \mathbb{R}.$$

Proof. Both are equivalent:

$$\forall \, \varepsilon > 0 \,\exists \, \delta > 0 : 0 \leq \sup_{z \in B(x,\delta) f(z) \setminus \{x\}} - \inf_{z \in B(x,\delta) \setminus \{x\}} f(z) \leq 2\varepsilon.$$

Definition 5.2

$$\lim_{z \to x} f(z) = \begin{cases} +\infty & \limsup_{z \to x} f(z) = \liminf_{z \to x} f(z) = +\infty \\ -\infty & \limsup_{z \to x} f(z) = \liminf_{z \to x} f(z) = -\infty. \end{cases}$$

Note. This characterization works even outside \mathbb{R} -valued functions:

$$\lim_{z \to x} f(z) \text{ exists} \Leftrightarrow \lim_{\delta \to 0^+} \sup \underbrace{\left\{ \rho(f(z), f(u)) : z, u \in B(x, \delta) \setminus \{x\} \right\}}_{= \operatorname{diam}(f(B(x, \delta) \setminus \{x\}))} = 0.$$

The derivative

Definition 5.3

Let $f: \mathbb{R} \to \mathbb{R}$, $x \in \text{int}(\text{Dom}(f))$. We say that f has **derivative** or **is differentiable at** x if

$$f'(x) := \lim_{z \to x} \frac{f(z) - f(x)}{z - f}$$
 exists in \mathbb{R} .

We call f'(x) (Lagrange notation) the **derivative at** x, alternative notation $\frac{df}{dx}$ (Leibnitz notation).

Lemma 5.4

f'(x) exists $\Rightarrow f$ continuous at x.

Proof. The existence of f'(x) implies that $\exists \, \delta_0 > 0 \, \forall \, z \in \mathbb{R} : 0 < |z - x| < \delta_0 \Rightarrow \left| \frac{f(z) - f(x)}{z - x} \right| \le 1 + \left| f'(x) \right|$. Then, choosing $\varepsilon > 0$ and letting $\delta := \frac{\varepsilon}{1 + \left| f'(x) \right|}$, we get

$$\forall z \in \mathbb{R} : 0 < |z - x| < \sigma \Rightarrow \left| f(z) - f(x) \right| \le (1 + \left| f'(x) \right|) |z - x| < (1 + \left| f'(x) \right|) = \varepsilon.$$

Since f(z) - f(x) = 0 for z = x, we are done (in fact, we have shown that f is lipschitz continuous). \Box Another way to write existence of f'(x):

$$f(z) - f(x) = (f'(x) + u_x(z))(z - x)$$

where $\lim_{z\to x} u_x(z) = 0$. (Just define: $u_x(z) := \frac{f(z)-f(x)}{z-x} - f'(x)$ for $z\neq x$)

Lemma 5.5: Linear approximation

$$f'(x) \text{ exists} \Leftrightarrow \exists L \in \mathbb{R} : \lim_{\delta \to 0^+} \sup_{|z-x| < \delta} \frac{1}{\delta} \left| f(z) - f(x) - L(z-x) \right| = 0.$$

Lemma 5.6: Sum & product rule

Let f, g be differentiable at x. Then so are f + g and $f \cdot g$ and

$$(f+g)'(x) = f'(x) + g'(x)$$
$$(f \cdot g)'(x) = f'(x)g(x) + g'(x)f(x)$$
(Leibnizt rule).

Proof. [Product rule]

$$f(z)g(z) - f(x)g(x) = (f(z) - f(x))g(z) + (g(z) - g(x))f(z).$$

Then

$$\frac{f(z)g(z)-f(x)g(x)}{z-x}=\frac{f(z)-f(x)}{z-x}g(z)+\frac{g(z)-g(x)}{z-x}f(z).$$

Since $g(z) \to g(x)$ by continuity of g, formula follows by sum & product rule for limit.

Lemma 5.7: Chain rule

Let f be differentiable at x and g at f(x). Then $g \circ f$ is differentiable at x and

$$(g \circ f)'(x) = g'(f(x))f'(x) \quad \left(\frac{dg}{df}\frac{df}{dx}\right)$$

Proof. Define $v_{f(x)}$ such that $g(y) - g(f(x)) = (g'(f(x))) + v_{f(x)}(y)(y - f(x))$ and u_x such that $f(z) - f(x) = (f'(x) + u_x(z))(z - x)$.

$$(g \circ f)(z) - (g \circ f)(x) = [g'(f(x)) + v_{f(x)(f(z))}](f(z) - f(x))$$
$$= [g'(f(x)) + v_{f(x)}(f(z))][f'(x) + u_x(z)](z - x)$$

Dividing by $z - x \neq 0$, note that $f(z) \to f(x)$ implies $v_{f(x)}(f(z)) \to 0$ as $z \to x$, we are done.

Lemma 5.8

Let $f: \mathbb{R} \to \mathbb{R}$ be injective on $\mathsf{Dom}(f)$ and differentiable at $x \in \mathsf{int}(\mathsf{Dom}(f))$. Assume $f'(x) \neq 0$ and $f(x) \in \mathsf{int}(\mathsf{Ran}(f))$. Then f^{-1} is differentiable at f(x) and

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}.$$

In Leibnitz notation:

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}.$$

Lemma 5.9: First derivative test

Let $f: [a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then if $x \in (a,b)$ is a local maximum of f (i.e. $\exists \, \delta > 0 \, \forall \, z \in \mathbb{R} : |z-x| < \delta \Rightarrow f(x) \geq f(z)$) then f'(x) = 0.

Proof.

$$z > x \land |z - x| < \delta \Rightarrow \frac{f(z) - f(x)}{z - x} \le 0 \Rightarrow f'(x) \le 0$$

and

$$z < x \land |z - x| < \delta \Rightarrow \frac{f(z) - f(x)}{z - x} \ge 0 \Rightarrow f'(x) \ge 0.$$