0.1 Ayudantia 1

Problema 1. Sean A y B dos conjuntos y sea X un conjunto con las siguientes propiedades

- 1. $A \subset X y B \subset X$
- 2. Si $A \subset Y$ y $B \subset Y$ entonces $X \subset Y$

Demostrar que $X = A \cup B$

Solucion. Veamos que $A \cup B \subset X$, sea $x \in A \cup B$, luego por definicion tenemos que $x \in A \cup B \iff x \in A \lor x \in B$, si $x \in A$ entonces por la propiedad (1) tenemos $x \in X$, analogamente si $x \in B$, por lo tanto tenemos que $A \cup B \subset X$.

Demostremos la otra contencion, es decir $X \subset A \cup B$. Notemos que $A \subset A \cup B$ y $B \subset A \cup B$, por la propiedad (2) tenemos que $X \subset A \cup B$.

A partir de las 2 contensiones podemos concluir que $X = A \cup B$

Problema 2. Sean $A, B \subset E$. Demostrar que $A \cap B = \emptyset$ si y solamente si $A \subset B^C$.

Solucion. Supongamos que $A \cap B = \emptyset$, veamos que $A \subset B^C$. Sea $x \in A$ entonces $x \notin B$ pues de otra forma $x \in A \land x \in B \implies x \in A \cap B$ lo cual no puede ser pues la interseccion es vacia, pero si $x \notin B \implies x \in B^C$, por lo tanto $x \in A \implies x \notin B$, es decir $x \in B^C$. Por lo tanto $A \subset B^C$. Procederemos por contradiccion, supongamos que $A \cap B \neq \emptyset$ entonces existe $x \in A \cap B$, pero esto implica que $x \in A \land x \in B$ pero como $A \subset B^C$ tenemos que $x \in B^C$ es decir $x \in B^C \land x \in B$ pero esto es una contradiccion pues es lo mismo que decir $x \notin B \land x \in B$. Por lo tanto $A \cap B = \emptyset \iff A \subset B^C$

Problema 3. Sea $f: A \to B$ una funcion, demuestre que

- 1. $X \subset f^{-1}(f(X))$, para todo $X \subset A$
- 2. f es invectiva si y solamente si $f^{-1}(f(X)) = X$ para todo $X \subset A$
- 3. De un ejemplo de una funcion donde solo se tenga la primera inclusion.

Solucion. 1. Sea $X\subset A$, demostremos que $X\subset f^{-1}(f(X))$ para todo $X\subset A$. Sea $x\in X$, luego tenemos que

$$x \in X \implies f(x) \in f(X) \implies x \in f^{-1}(f(X))$$

2. Necesitamos demostrar la otra inclusion. Sea $X \subset A$ y $x \in f^{-1}(f(X))$ luego

$$x \in f^{-1}(f(X)) \implies \exists y \in f(X), f(x) = y$$

Pero dado que $y \in f(X)$ tenemos que $\exists x_0 \in X, f(x_0) = y$, por lo tanto

$$f(x) = f(x_0) \implies x = x_0$$

dado que $x_0 \in X \implies x \in X$, por lo tanto $f^{-1}(f(X)) \subset X$. Por lo tanto, por (1), se tiene lo pedido, i.e. $f^{-1}(f(X)) = X$

3. Considere la siguiente funcion

$$f: \{0,1\} \to \{0,1\}$$

 $f(0) = 1$
 $f(1) = 1$

Consideremos el conjunto $X = \{1\}$ entonces tenemos que

$$f^{-1}(f(\{1\})) = f^{-1}(\{1\}) = \{0, 1\}$$

Por lo tanto solo se tiene que $X \subset f^{-1}(f(\{1\}))$

Problema 4. Considere $f:A\to B$ y $g:B\to C$ funciones, demuestre lo siguiente

- 1. si f y g son funciones inyectivas entonces $g \circ f : A \to C$ es una funcion inyectiva.
- 2. si f y g son funciones sobreyectivas entonces $g \circ f : A \to C$ es una funcion sobreyectiva.
- 3. si f y g son funciones biyectivas entonces $g \circ f : A \to C$ es una funcion biyectiva.

Solution. 1. Sea $(g \circ f)(x) = (g \circ f)(y)$ entonces

$$(g \circ f)(x) = (g \circ f)(y) \implies g(f(x)) = g(f(y)) \implies f(x) = f(y) \implies x = y$$

Por lo tanto $g \circ f$ es inyectiva

2. Sea $y \in C$ entonces existe $b \in B$ tal que g(b) = y, pues $g : B \to C$ es una funcion sobreyectiva, de igual forma existe $a \in A$ tal que f(a) = b, pues $f : A \to B$ es sobreyectiva. Por lo tanto tenemos que

$$(g \circ f)(a) = g(f(a)) = g(b) = y$$

Por lo que se tiene que $g \circ f : A \to C$ es sobreyectiva.

3. Aplicacion directa de los 2 anteriores pues f biyectiva si y solo si f inyectiva y sobreyectiva, de igual forma para g.