SR-02(2022)

frasyrを用いた 再生産関係の推定:実践編

- fit.SR関数を用いたSR関係の推定
- 結果のプロットと解釈

動画製作者 漁業情報解析部 資源解析グループ 福井 眞 shinfukui@affrc.go.jp fukui shin87@fra.go.jp

VPA解析による資源の年齢別状態の時系列情報

- 再生産関係の推定のために、親魚量と加入量の時系列データが必要
- frasyrを使ってVPAを計算したことを前提とする
- fit.SR関数、fit.SRregime関数で再生産関係を推定する
- ここで紹介する手順は以下を参照
 https://ichimomo.github.io/frasyr/articles/fittingSR.html

get.SRdata & derive_biopar

- frasyrでVPAの結果のオブジェクトには様々な結果が格納されているが、そのなかから再生産関係の推定に必要な SSB/Recruitmentの時系列を取り出す必要がある
 - →get.SRdata関数をつかう
- SR関係の推定後、モデル診断に生物パラメータ(bio.par)が必要
 →derive_biopar関数をつかう
- SR関係を推定してみよう!
 - →fit.SR関数、fit.SRregime関数をつかう

get.SRdata & derive_biopar

- get.SRdata関数の引数
 - vpares:vpaの戻り値オブジェクト
 - weight.year:SR関係を推定するのに使う期間の指定(0で全期間)
 - weigth.data:どのデータをSR関係推定に使うか
 - など
- derive_biopar関数の引数
 - res_obj: vpaの戻り値オブジェクト
 - derive year:生物パラメータに使う期間
 - stat:生物パラメータを代表する統計量の種類(デフォルトはmean)

get.SRdataでSRdataを作成

derive_bioparでbio_parを作成

いざ再生産関係の推定へ

- frasyrでVPAの結果のオブジェクトには様々な結果が格納されているが、そのなかから再生産関係の推定に必要なSSB/Recruitmentの時系列を取り出す必要がある
 →get.SRdata関数をつかう
- ・SR関係の推定後、モデル診断に生物パラメータ(bio.par)が必要
 →derive_biopar関数をつかう
- SRdata、bio.parが生成できたら
- SR関係を推定してみよう!
 - →fit.SR関数、fit.SRregime関数をつかう

fit.SRを使ってみよう!

- fit.SR関数の引数
 - SRdata
 - SR="BH","RI","HS"
 - method="L1","L2"
 - AR=0 / 1
 - out.AR = FALSE / TRUE
 - bio_par

```
🛂 🔻 📸 📹 🔻 🔚 📥 🔝 Go to file/function 📑 🔻 🛗 🔻 Addins 🔻
 ® SR-02.R ∶
           Source on Save
                                                  4
 35 # 再生産関係にHockey-Stick型を指定、推定方法を最小絶対値法とし(method
                                                                            Data
     ="L1")、自己相関を仮定しない(AR=0)場合
                                                                            bio
    resL1HS = fit.SR(SRdata = SRdata_ex,
                    SR = "HS",
                                                                             • res
                    method = "L1",
                                                                             🕩 resl
                    out.AR = FALSE,
                                                                             SRda
                    AR = 0
  41
                    bio_par = bio_par)
  42
  43 # 結果オブジェクトの中身
  44 names(resL1HS)
  45 resL1HS
  46 # 結果をテキストでファイル出力
  47 out.SR(resL1HS, filename = "L1HS")
                                                                     R Script $
 Console Terminal
               Background Jobs
 R 4.1.2 ~/git/frasyr/ 
 [1] 14.07974
                                                                               200
$BIC
[1] 17.36025
                                                                             迎 15C
$steepness
      SPR<sub>0</sub>
               SB0
                       RØ
                                Β0
1 330.4307 491442.4 1487.278 596037.5 0.8913961
                                                                                50
attr(,"class")
 [1] "fit.SR"
    推定結果をプロット
```

SR-02(2022)

fit.SRの戻り値オブジェクトと出力

- fit.SR関数の戻り値
 - "input" "obj.f" "obj.f2" "opt" "resid" "resid2" "sd.pred" "pars" "loglik" "pred" "k" "AIC" "AICc" "BIC" ["steepness"]
- out.SR関数でtxt出力
- plot_SR関数(plot.SR, SRplot_gg関数)で図のプロット
 - ggsave_SH関数で図の保存

plot_SR

plot_SR関数 (plot.SR, SRplot_gg)のオプション

```
• Go to file/function
                                    📗 🔠 🕶 🛗 🕶 Addins 🕶
 ₿ SR-02.R
                                                                                Environment History Connections Build Gi
            Source on Save
                                                    # 推定結果をプロット
                                                                                R - Global Environment -
     plot_SR(SR_result = resL1HS,
                                                                                Data
  50
             refs = NULL,
                                                                                bio_par
                                                                                                 4 obs. of 4 var
  51
             xscale = 1000,
                                                                                res_vpa_example List of 28
  52
             xlabel = "千トン",
                                                                                • resL1HS
                                                                                                 List of 15
  53
             yscale = 1,
                                                                                SRdata_ex
                                                                                                 30 obs. of 4 va
  54
             ylabel = "\mathbb{R}",
  55
             labeling.year = NULL,
  56
             add.info = TRUE,
  57
             recruit_intercept = 0,
  58
             plot_CI = FALSE,
  59
             CI = 0.9
             shape\_custom = c(21,3),
  60
  61
             box.padding = 0,
  62
             add_graph = NULL
  63
                                                                                Files Plots Packages Help Viewer
  64
     SRplot_gg(resL1HS,
                                                                                🛑 🧼 🔑 Zoom 🞏 Export 🗸 😜 💊
               plot_CI=T)
                                                                                   2500
  66 # プロットオブジェクトを格納
 66:1 (Top Level)
                                                                        R Script $
                                                                                   2000
 Console Terminal
                Background Jobs
                                                                                Ⅲ 1500 ·
 R 4.1.2 ~/git/frasyr/ 
                                                                                量 7000-
          recruit_intercept = 0,
          plot_CI = FALSE,
          CI = 0.9,
          shape\_custom = c(21,3),
                                                                                    500
          box.padding = 0,
          add_graph = NULL)
                                                                                                   20
  SRplot_gg(resL1HS,
                                                                                                          親魚量
           plot_CI=T)
                                                                                                      関数形: HS, É
```

fit.SRregime設定

fit.SRregimeの戻り値オブジェクトと出力

- fit.SRregime関数の戻り値
 - "input" "opt" "obj.f" "obj.f2" "resid" "loglik" "k" "AIC"
 "AICc" "BIC" "regime_pars" "regime_resid" "sd.pred" "pred"
 "pred_to_obs" ["steepness"]
- out.SR関数でtxt出力
- plot_SRregime関数(SRregime_plot関数)で図のプロット
 - ggsave関数をつかって図の保存

fit.SRregimeの戻り値オブジェクトと出力

- fit.SRregime関数の戻り値
 - "input" "opt" "obj.f" "obj.f2" "resid" "loglik" "k" "AIC"
 "AICc" "BIC" "regime_pars" "regime_resid" "sd.pred" "pred"
 "pred_to_obs" ["steepness"]
- out.SR関数でtxt出力
- plot_SRregime関数(SRregime_plot関数)で図のプロット
 - ggsave関数をつかって図の保存

plot_SRregime

SR関係を推定できた!

- frasyrを使ったSR関係の推定と結果・図の出力については以上です
- 次回「frasyrを用いた再生産関係の推定:診断編 SR-03(2022)」 では推定した再生産関係の妥当性をチェックします

お疲れ様でした!

