Instructor name: Roy Zhao

1 Symmetry

1.1 Concepts

1. A function is called **even** if f(x) = f(-x) and **odd** if f(x) = -f(-x). For an even function $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$. For an odd function, $\int_{-a}^{a} f(x)dx = 0$.

1.2 Problems

- 2. True False An even function is symmetric across the y axis.
- 3. True False An odd function is symmetric across the x axis.
- 4. Is $f(x) = x^3 + x$ even, odd, or neither?
- 5. Is $f(x) = \sqrt{1 x^4}$ even, odd, or neither?
- 6. Is $f(x) = x^5 + x^2$ even, odd, or neither?
- 7. Is $f(x) = \frac{x}{x^2 + 1}$ even, odd, or neither?

2 Integration by Parts

- 8. True False Integration by parts will automatically give the antiderivative of a function
- 9. Find $\int \arctan(x) dx$.
- 10. Find $\int \sin(x)\cos(x)dx$.
- 11. Integrate $\int x \ln x dx$.
- 12. Integrate $\int \frac{\ln x}{x^5} dx$.
- 13. Integrate $\int (\ln x)^2 dx$.

- 14. Integrate $\int x(\sin x + \cos x)dx$.
- 15. Integrate $\int_{\tan(1)}^{\tan(e)} \frac{\ln(\arctan(x))}{1+x^2} dx.$
- 16. Integrate $\int_{\pi/4}^{\arctan(e)} \sec^2(x) \ln(\tan(x)) dx$..