

Statistics for Data Science

White Wine Quality Analysis Report

Sumanth M S20150010033 CSE, Final Year, IIIT Sri City

Problem Statement

The goal is to model Wine Quality based on physicochemical tests. Quality is based on scores where each was graded with the quality between 3 (very bad) and 9 (very excellent). In short, Exploration and Analysis of Wine Quality.

Data Set Description

The given data set is a Multivariate Data Set consists of 4898 Observations along with 12 Variables. Among 12 variables, there are 11 Independent Variables and 1 Dependent Variable. It is given that there are no Missing Values. The list of Independent Variables is as follows:

 X_1 : Fixed Acidity X_2 : Volatile Acidity X_3 : Citric Acid X_4 Residual Sugar

 X_5 : Chlorides X_6 : Free Sulfur Dioxide X_7 : Total Sulfur Dioxide X_8 : Density

 X_9 :pH X_{10} :Sulphates X_{11} :Alcohol

Dependent Variable: Quality

Objectives

- Descriptive Statistics
- Performing Multiple Linear Regression
- Model Adequacy Tests
- Model Diagnostics
- Principal Component Analysis
- 2D Clustering , Plots from other aspects and Confidence Regions for β 's

Descriptive Statistics

Distribution of Variables: Each variable in the dataset is distributed normally. Below are the distribution figures for variables in the mentioned order above.

Scatter Plot: Displaying the location of each observation in the feature space of the independent variable in the given dataset.

In the above graphs, it is observed that more points of each observation are densely connected.

The table shows the mean, standard deviation, min and max of each independent variable.

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
mean	6.854787668	0.2782411188	0.3341915067	6.391414863	0.04577235606	35.30808493	138.3606574	0.9940273765	3.188266639	0.4898468763	10.51426705
std	0.843868227	0.1007945484	0.1210198042	5.072057784	0.02184796809	17.00713733	42.49806455	0.002990906917	0.1510005996	0.1141258339	1.230620568
min	3.8	0.08	0	0.6	0.009	2	9	0.98711	2.72	0.22	8
max	14.2	1.1	1.66	65.8	0.346	289	440	1.03898	3.82	1.08	14.2

Multiple Linear Regression

The MLR Equation is Y = $X\beta + \epsilon$

X is Data Matrix of Independent Variables, β is Regression Coefficient, ϵ is the Residual Error and Y is Dependent Variable.

 $\boldsymbol{\beta}$ can be found using the formula : $(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{Y}$

 ϵ can be found using the formula : $Y_{\textit{Estimated}} - Y_{\textit{Actual}}$

In the below shown graphs, we can observe the distribution of errors is Normal.

I have shown the scatter plot of residual beside the distribution graph.

 $\boldsymbol{Y}_{\textit{Estimated}} \, \mathit{Vs} \, \boldsymbol{Y}_{\textit{Actual}} \,$ is shown here in the below graph.

Confidence Intervals for each regression coefficient is shown below.

The final equation of Multiple Linear Regression is:

$$Y = 150.19X_0 + 0.065X_1 - 1.863X_2 + 0.0221X_3 + 0.081X_4 - 0.2473X_5 + 0.0037X_6$$

$$-0.0003X_7 - 150X_8 + 0.686X_9 + 0.6315X_{10} + 0.1935X_{11} \\$$

 $Y_{\it Estimated} \ Vs \ Y_{\it Actual}$

Dep. Variable:	qua	lity	R-squared:			0.282		
Model:		OLS	Adj. R-squared:			0.280		
Method:	Least Squ	ares	F-st	atistic:		174.3		
Date:	Thu, 29 Nov	2018	Prob	(F-statisti	0.00			
Time:	22:0	8:59		Likelihood:	-5543.7			
No. Observations:	4898 4886 11		AIC:			1.111e+04		
of Residuals:			BIC:			1.119e+04		
of Model:								
Covariance Type:	nonro	bust						
	coef	std	егг	t	P> t	[0.025	0.975]	
onst	150.1928	18	.804	7.987	0.000	113.328	187.057	
ixed acidity	0.0655	0	.021	3.139	0.002	0.025	0.106	
olatile acidity	-1.8632	0	.114	-16.373	0.000	-2.086	-1.640	
itric acid	0.0221	0	.096	0.231	0.818	-0.166	0.210	
esidual sugar	0.0815	0	.008	10.825	0.000	0.067	0.096	
chlorides	-0.2473	0	.547	-0.452	0.651	-1.319	0.824	
ree sulfur dioxide	0.0037	0	.001	4.422	0.000	0.002	0.005	
otal sulfur dioxide	-0.0003	0	.000	-0.756	0.450	-0.001	0.000	
lensity	-150.2842	19	.075	-7.879	0.000	-187.679	-112.890	
H	0.6863	0	.105	6.513	0.000	0.480	0.893	
ulphates	0.6315	0	.100	6.291	0.000	0.435	0.828	
lcohol	0.1935	0	.024	7.988	0.000	0.146	0.241	
mnibus:	114	.161	Durb	in-Watson:		1.621		
rob(Omnibus):	0	.000	Jarq	ue-Bera (JB)		251.637		
kew: 0.07			Prob(JB):			2.28e-55		
Kurtosis:	4	.101	Cond	. No.		3.74e+05		

Model Adequacy Tests

The above Model shown in the figure is not good fit model as one can observe \mathbb{R}^2 Value is very less.

Test of Individual Parameter:

 H_0 : Any of the regression coefficients, = 0

 H_1 : \neq 0 for all values of β .

The p-value for variables such as citric acid, chlorides, total sulfur dioxide are higher than 0.05, which states that we fail to reject the Hypothesis Test.

So Performed MLR again after the removal of above mentioned variables.

Even though We removed less p-value variables, R^2 has not improved. It is still same with value 0.282

Model Diagnostics

Cook's Distance:

Multi-Collinearity:

Influential Points:

There are some influential points which need to be removed but due to less number of observations, I have not removed.

Variance Inflation Factor: Here, I considered only the variables whose VIF < 10

PCA

In the above figure, it is shown that the Eigen-values of independent variables after ordering them in descending order.

I have found that Eigen-value of

volatile acidity > chlorides > density >pH > sulphates > free sulfur dioxide > total sulfur dioxide.

After reducing the dimensionality to 7 i,e Top 7 Eigen-value Independent Variables, MLR results are

N		144				0.463		
Dep. Variable:	22:08:59 4898 4890		R-squared:			0.162		
Model:				R-squared:	0.161			
Method:				atistic:	135.0			
Date:				(F-statisti	2.15e-182 -5921.8			
Time:			_	Likelihood:				
No. Observations:			AIC: BIC:			1.186e+04 1.191e+04		
Of Residuals:								
Of Model:		7						
Covariance Type:	nonro	bust						
	coef	std	егг	t	P> t	[0.025	0.975]	
onst	83.1639	4	.659	17.851	0.000	74.031	92.297	
volatile acidity	-1.3545	0	.118	-11.461	0.000	-1.586	-1.123	
chlorides	-5.0235	0	.553	-9.081	0.000	-6.108	-3.939	
density	-78.2991	4	.681	-16.725	0.000	-87.477	-69.121	
OH	0.2845	0	.078	3.625	0.000	0.131	0.438	
ulphates	0.5140	0	.104	4.942	0.000	0.310	0.718	
	0.0069	0	.001	7.864	0.000	0.005	0.009	
total sulfur dioxide	-0.0018	0	.000	-4.537	0.000	-0.003	-0.001	
======================================	 121	.072	Durb	======== in-Watson:	=======	1.639		
Prob(Omnibus):	0.000 Jarque-Bera (JB):				:	236.719		
kew:	0.162 Prob(JB):					3.96e-52		
(urtosis:	4	.027	Cond	. No.		8.51e+04		

Multi Collinearlity Number: 156.04 which is not a great serious problem.

Supervised Learning:

Here, I used Supervised Learning with Linear Regression to each the Mean Squared Errors. Split ratio - 80, 20

MSE for In Sample(Training): 0.56

MSE for Out Sample(Testing): 0.57

No much difference between them.

Classification - Clustering

Here, I considered each independent variable along with target Y to from clusters and observed the clustering process. Some of them shown here. In every case Y is on Y-axis.

Plots from other aspects

Pair wise plot of each variable along with another variable is shown below:

Confidence Regions of Regression Coefficients:

Beta values	Low Range	High Range			
1	107.653	192.732			
2	0.018	0.112			
3	-2.120	-1.605			
4	-0.194	0.238			
5	0.064	0.098			
6	-1.483	0.989			
7	0.001	0.005			
8	-0.001	0.000569			
9	-193.435	-107.133			
10	0.447	0.924			
11	0.404	0.858			
12	0.138	0.248			

My personal views on this data is, There are some other variables like Grape Riping, Temperature, Brand etc are impacting this quality variable.

Only 28.2% variance of Quality is explained by this independent variables.

