CLASSROOM CONTACT PROGRAMME

(Academic Session: 2019-2020)

MHT-CET: ENTHUSE COURSE

Test Type : ONLINE TEST – 05 Test Pattern : MHT-CET

TEST DATE: 26-09-2020

PCB GROUP Paper code: CET2012FSPCB926	Roll No-				
FULL SYLLABUS:					

Important Instructions

Do not open this Test Booklet until you are asked to do so.

- **1.** Immediately fill in the form number on this page of the Test Booklet with *Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.*
- **2.** The candidates should not write their Form Number anywhere else (except in the specified space)on the Test Booklet/Answer Sheet.
- 3. The test is of 3 hours duration.
- 4. The Test Booklet consists of 200 questions. The maximum marks are 200. Duration 180 minutes
- 5. Question Paper Format:

Physics (50 Questions) Chemistry (50 Questions) carrying 1 mark each questions and BIO (100 Questions) carrying 1 mark each.

Each question has four choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

Marking scheme: Phy chem. +1 for correct answer and 0 if not Attempted. No negative marking.

Bio +1 for correct answer and 0 if not Attempted. **No** negative marking.

- 6. Use Blue/Black Ball Point Pen only for writting particulars/marking responses on Side–1 and Side–2 of the Answer Sheet. Use of pencil is strictly prohibited.
- **7.** No candidate is allowed to carry any textual material, printed or written, bits of papers, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room.
- **8.** Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- **9.** On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. **However, the candidate are allowed to take away this Test Booklet with them.**
- 10. Do not fold or make any stray marks on the Answer Sheet.

Your Hard Work Leads to Strong Foundation

SECTION - A- PHYSICS

a) 12%

2.

	$\mathbf{a)} 5\hat{i} + \hat{k}$	b) $-5\hat{i} + 3\hat{j}$	c) $3\hat{j} + 5\hat{k}$	$\mathbf{d)} - 3\hat{j} + 2\hat{k}$
3.	A particle moves une process is,	der the effect of a forc	te F = cx form $x = 0$ to	o $x = x_1$. The work done in the
	a) cx_1^2	b) $\frac{1}{2}cx_1^2$	$c) cx_1^3$	d) Zero
4.	On doubling the spe	eed of an object it's		
	a) K.E. is doubled		b) PE is doubled	
	c) Momentum is do	ubled	d) Acceleration is	doubled
5.	In a streamline flow,	,		
	a) The speed of a pa	article always remain	same	
	b) The velocity of a	particle always remai	n same.	
	c) The kinetic energ	gies of all particles arr	riving at a given poin	t are the same
	d) The potential end	ergies of all the partic	le arriving at a given	point are the same.
6.		am deviation of a prist acting angle of that pr		$\sqrt{3}$ is equal to its refracting
	a) 30°	b) 45°	c) 60°	d) 90°
7.	_	t of wavelength 589 n rater is 1.33. The wave		ir on a water surface. The ed light is
	a) 589 nm	b) 443 nm	c) 333 nm	d) 221 nm
8.	A convex glass lens	$(\mu_g = 1.5)$ has focal len	igth of 10 cm when p	laced in air. What is the focal
	length of the lens wh	nen it is immersed in	water $\left(\mu_{w} = \frac{4}{3}\right)$	
	a) 8 cm	b) 20 cm	c) 30 cm	d) 40 cm
9.				ect on the screen is formed by a e focal length of the lens is
	a) 20.4 cm	b) 21.4 cm	c) 22.5 cm	d) 28.5 cm
10.	<u> </u>	e magnetic field in rrent flowing through	<u> </u>	aving 5000 turns per metre is
	a) 2A	b) 3A	c) 4A	d) 5A
11.	the outer conductor	_	r_2 are the inner and	xial cable and returns through outer radii of the cable, then rill be
	a) $\frac{\mu_0 I}{2r}$	$\frac{\mu_0 I}{(r_1 + r_2)}$	c) zero	d) infinity
	· 2r	b) $\frac{\sqrt{1-\frac{2}{2}}}{2}$	•	•

If the errors involved in the measurements of a side and mass of a cube are 3% and 4%

c) 14%

What vector must be added to the sum of two vectors $2\hat{i} - \hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} - 2\hat{k}$ so that the

d) 15%

respectively. What is the maximum error in the density of the material?

b) 13%

resultant is a unit vector along z axis?

	a)	1.11 x 10-7 T	b)	3.33 x 10 ⁻⁹ T	C)	$3 \times 10^{-3} \text{ T}$		d) 3.3 x 10 1
14.	cu: and fiel	rrent of 2.0 A. It is d perpendicular to	sus its l		ntro urn	e of 2.0 A. It is su in a horizontal pl	spe: ane	nded through its centre e in a uniform magnetic
	a)	3 x 10 ⁻³ Nm	b)	1.5 x 10 ⁻³ Nm	c)	1.5 x 10 ⁻² Nm	d)	3 x 10 ⁻² Nm
15.				moment 200 A-m² is red to deflect it throug		_	neti	ic field of intensity 0.25
	a)	50 N-m	b)	25 N-m	c)	20 N-m	d)	15 N-m
16.				has a magnetic mome on the perpendicular				has a magnetic 8 cm from its centre is
	a)	10-5 T	b) 10-4 T	c)	10-3 T		d) 10-2 T
17.	Th	e difference betwee	n ar	ngular speed of minut	e ha	and and second h	and	l of a clock is
	a)	$\frac{59\pi}{900}$ rad/s	b)	$\frac{59\pi}{1800}$ rad/s	c)	$\frac{59\pi}{2400}$ rad/s	d)	$\frac{59\pi}{3600}$ rad/s
18.	of		_	circle of radius r with end of second revolut		_		eleration. If the velocity has started then the
	a)	$\frac{v^2}{8\pi r}$	b)	$\frac{v^2}{6\pi r}$	c)	$\frac{v^2}{4\pi r}$	d)	$\frac{v^2}{2\pi r}$
19.	Th	e orbital velocity of	a sa	atellite revolving near	pla	net is		
		Directly proportion		_	-			
	•			o square root of densi	ity c	of planet		
	•	V 1 1		o cube of density of p	·	-		
	•			o square density of pl				
20	•			ne earth is increased t			ho	ndy at the equator
20.		does not change	OI ti	b) doubles		decreases	, 50	d) increases
21	•	0	f an	here of mass M and ra	•		. n o	·
41.		•	_					
	cer	otre is $-MR^{-}$. The r	adıı	as of gyration of the sp	one	re about a paralle	ı ax	as to the above and
	tar	ngent to the sphere	is:					
	a)	$\frac{7}{5}R$	b)	$\frac{3}{5}R$	c)	$\left(\sqrt{\frac{7}{5}}\right)R$		$\mathbf{d)} \ \left(\sqrt{\frac{3}{5}}\right) R$
						(••)		

12. A long straight wire carries a current of 50A. An electron moving at 10⁷ m/s is 5 cm away

13. The magnetic induction at a point P which is at a distance of 4 cm from a long current

b) 3.2 x 10⁻¹⁶ N

a) 1.6 x 10-6 N

from the wire. The force acting on electron if its velocity is directed towards the wire will be

carrying wire is 10-8 T. The induction at a distance 12 cm from same current carrying wire is

c) 4.8 x 10⁻¹⁶ N

d) 1.8 x 10⁻¹⁶ N

22. Three rings each of mass P and radius Q are arranged as shown in fig. The moment of inertia of the arrangement about YY' will be Q 2

- **b)** $\frac{2}{5}PQ^2$
- c) $\frac{5}{2}PQ^2$ d) $\frac{2}{7}PQ^2$
- 23. Two particles are executing SHM of same amplitude and frequency along the same straight line path. They pass each other when going in opposite directions, each time their displacement is half of their amplitude. What is the phase difference between them?
 - a) $5\pi/6$
- **b)** $2\pi/3$
- c) $\pi/3$
- **d)** π/6
- **24.** A particle is acted simultaneously by two mutually perpendicular S.H.Ms; $x = a \cos \omega t$ and $y = a \sin \omega t$. The trajectory of motion of the particle will be
 - a) an ellipse
- b) a parabola
- c) a circle
- d) a hyperbola
- 25. One litre of a gas is maintained at pressure 72cm of mercury. It is compressed isothermally so that its volume becomes 900 cm³. The values of stress and strain will be respectively
 - **a)** $0.106 \text{ N}m^{-2} \& 0.1$ **b)** $1.06 \text{ N}m^{-2} \& 0.1$
- **c)** $106.62 \text{ N}m^{-2} \& 0.1$ **d)** $10662.4 \text{ N}m^{-2} \& 0.1$
- steel and brass wires in the Fig. are a, b, c respectively. Then the corresponding ratio of increase in their lengths would be

26. If the ratio of lengths, radii and Young's modulii of

a)
$$\frac{2ac}{b^2}$$

b)
$$\frac{3a}{2b^2c}$$

b)
$$\frac{3a}{2b^2c}$$
 c) $\frac{3c}{2ab^2}$

$$\mathbf{d)} \ \frac{2a^2c}{b}$$

- 27. A water drop of 0.05 cm³ is squeezed between two glass plates and spreads into area of 40cm². If the surface tension of water is 70 dyne/cm then the normal force required to separate the glass plates from each other will be
 - 22.5 N a)
- **b)** 45N
- c) 90 N

- **d)** 450N
- 28. The work done is increasing the size of a soap film from 10cm x 6cm to 10cm x 11cm is 3x10-4 joule. The surface tension of the film is
 - a) $1.5 \times 10^{-2} \text{ N/}m$
- **b)** $3.5 \times 10^{-2} \text{ N/} m$
- c) $6.0 \times 10^{-2} \text{ N/} m$
- **d)** $11.0 \times 10^{-2} \text{ N/}m$
- **29.** From a point source, if amplitude of waves at a distance r is A, it's amplitude at a distance 2r will be
 - a) A

b) 2A

- c) A/2
- d) A/4
- 30. Two simple harmonic motions are represented by $y_1 = 4\sin\left(4\pi t + \frac{\pi}{2}\right)$, $y_2 = 3\cos\left(4\pi t\right)$. The resultant amplitude is
 - **a)** 7

b) 1

c) 5

d) $2+\sqrt{3}$

31.	. When a gas filled in a closed vessel is heated through 1° C, its pressure increases by 0.4%. The initial temperature of the gas was										
	a) 250 K	b) 2500 K	c) 250°C	d) 25°C							
32.	at two atmospheres re	vo vessels having equal volumes contain molecular hydrogen at one atmosphere and heliun two atmospheres respectively. If both samples are at the same temperature, the r.m.s. locity of hydrogen molecules is									
	a) equal to that of he	lium	b) twice that of heli	um							
	c) half that of helium	l	d) $\sqrt{2}$ times that of 1	helium.							
33.	polarisation are mutu	amines two adjacent plan Ially perpendicular. In one Position, a rotation of 30° i Il be	e position of the analy	yser, beam B shows zero							
	a) 1/2	b) 1/3	c) 1/4	d) 1/5							
34.	speed and wavelength	active index of 2.4 for soc of this light in diamond	are								
	a) $2.25 \times 10^8 \text{m/s}, 2455 \overset{\scriptscriptstyle 0}{\mathrm{A}}$	b) $1.25 \times 10^8 m/s, 1455 \text{ A}$	c) $1.25 \times 10^8 \text{m/s}, 2455$	${\bf A}^{0}$ d) 2.25×10 ⁸ m/s ,2355 ${\bf A}^{0}$							
35.	The distance of a inte	rference point on screen f	from two slits are 1.8	x 10-5m and 1.23 x10-5m.							
	If wavelength of light point will be	used is $6000\mathrm{\mathring{A}}$ then the n	number of bright or da	ark fringe formed at that							
	a) 8th dark	b) 9th dark	c) 10th dark	d) 11 th dark							
36.		cident on two parallel slits be between the rays coming		t P ₁ the fringes will be dark							
	a) n π radians	b) $(n + 0.5)\pi$ radians	c) $(2n + 0.5)\pi$ radians	d) $(2n + 1)\pi$ radians							
37.	If two open organ pipe second, the speed of s	es of length 50 cm and 51 sound is.	cm sounded togethe	r produce 7 beats per							
	a) 307 m/s	b) 327 m/s	c) 350 m/s	d) 357 m/s							
38.		ng sphere of diameter 20 of point at a distance of 10	•								
	a) $10.25 \times 10^5 N/C$	b) $15.25 \times 10^5 N/C$	c) $25.25 \times 15^5 N/C$	d) $20.25 \times 10^5 N/C$							
39.	Two cells A and B are	is 100 cm long and consta connected in series first m and 12 cm. The ratio o	and then in oppositi	-							
	a) 1:2	b) 3:2	c) 4:3	d) 3:5							
40.		lows a balance wheatston following steps will not br									
	$P = 10 \Omega$ $Q = 100 \Omega$ $R = 20 \Omega$ $S = 200 \Omega$										
	a) increasing R by 20	b) increasing Q by 10	Ω c) increasing S to	by 20Ω d) all of these							
41.		ctor of length 0.4 m is monsity 0.9 Wb/m^2 . The ind									
	a) 1.26 V	b) 2.52 V	c) 5.04 V	d) 7.2 V							

42.	2. An e.m.f. of 20 mV is induced in a solenoid by a rate of change of current 4 A/s. The self inductance of the solenoid is									
	a) 3 mH	b) 4 mH	c) 5 mH	d) 6 mH						
43.		ng pairs have linear rela mitted from a surface?	ationships between the	mselves when						
	a) Intensity of incident radiation and stopping potentialb) Photoelectric current and frequency of incident radiation									
	c) Photoelectric curricular collector (anode)	rent and the potential (difference between the	emitter (cathode) and						
	d) Frequency of inci	dent radiation and the	stopping potential							
44.	The number of photo frequency v_0) is prop		ght of a frequency v (h	igher than the threshold						
	a) Threshold freque	ncy (v_0)	b) Frequency of incid	lent light (v)						
	c) $v - v_0$		d) intensity of the inc	cident light						
45.	The energy of an excorbit is	cited hydrogen atom is	- 3.4 eV. The principal	quantum number of the						
	a) 1	b) 2	c) 3	d) 4						
46.	A hydrogen atom in orbital angular mom		os 10.2 eV of energy. W	hat is the increase in its						
	a) 2.11×10^{-34} J.S	b) $3.16 \times 10^{-34} \text{ J.S}$	c) $1.05 \times 10^{-34} \text{ J.S}$	d) $4.22 \times 10^{-34} \text{ J.S}$						
47.	conduction bands as	_	band gaps represented	s each. Their valence and by $(E_g)_{C'}(E_g)_{Si}$ and $(E_g)_{Ge}$ eir case?						
	$\mathbf{a)} \left(E_g\right)_C = \left(E_g\right)_{Si}$	b) $\left(E_g\right)_C < \left(E_g\right)_{Ge}$	$\mathbf{c)} \left(E_g\right)_C > \left(E_g\right)_{Si}$	$\mathbf{d)} \ \left(E_g\right)_{\!\!C} < \! \left(E_g\right)_{\!\!Si}$						
48.		alator, a semiconductor here is an increase in t	-	ed by 20°C above the room						
	a) Conductor	b) Semiconductor	c) Insulator	d) Alloy						
49.	What is the modulat	ion index of an over mo	odulated wave							
	a) 1	b) zero	c) <1	d) >1						
50.	When an electromag	netic wave enters an io	nised layer of earth's a	tmosphere present in						
	a) The electron clou	d will not oscillate in th	ne electric field of the w	vave						
	b) The electron coul sinusoidal electroma	d will oscillate in the el agnetic wave	ectric field of wave in t	he opposite phase of						
	c) The electron clou electromagnetic way	d will oscillate in the el e	ectric field of wave in t	he phase of sinusoidal						
	d) The electron cloufor a sinusoidal electron		ectric field of wave with	n a phase retardation of 90º						
SECT	ION – B- CHEMISTRY									
51.	The number of atom	ns in 4.25 g of NH3 is ap	oproximately							
	a) 1×10^{23}	b) 2×10^{23}	c) 4×10^{23}	d) 6×10^{23}						
52.	The numbers of mol	es of BaCO ₃ which con	tain 1.5 moles of oxyge							

c) 3

b) 1

a) 0.5

d) 6.02×10^{23}

53.	For an ideal gas, number of moles per litre in terms of its pressure P, gas constant R and temperature T is									
	a) PT/R	b) PRT	c) P/RT	d) RT/P						
54.	The oxidation states of	of iodine in HIO ₄ , H ₃ IO ₅	and H_5IO_6 are	respectively .						
	a) +3, +3, +7		b) +7, +7, +3							
	c) +7, +7, +7		d) +7, +5, +3	3						
55.		111		isotherm, which of the						
	following statements	is CORRECT? (k and n	are constants)							
	,,,	ear in the slope term	,,,							
	c) Only $\frac{1}{n}$ appears a	s the slope.	d) $\log\left(\frac{1}{n}\right)$ appea	rs as the intercept.						
56.	The dipole moment of	f BF3 is zero because _	•							
	a) it is covalent molecule									
	b) it is a tetraatomic molecule									
	c) it is having trigonal planar geometry									
	d) the electronegativity difference between boron and fluorine is more									
57.	The composition of tr	itium is								
a) 1 electron, 1 proton, 1 neutron b) 1 electron, 2 protons, 1 neutrons										
	c) 1 electron, 1 proto	on, 2 neutrons	d) 1 electron, 1	proton, 3 neutrons						
58.	Plaster of paris is									
	·	b) CaSO ₄ . 3H ₂ O c		·						
59.		n be used as an adsorbent	_							
	a) Na_2O	b) NaCl	$\mathbf{c)} \qquad \mathrm{Al}_{2}\mathrm{O}_{3}$	d) Alum						
60.		AC name of the alkyl grou	ıp shown ?							
	CH ₂ CH ₃									
	$-\text{CHCH}_2\text{CH(CH}_3)_2$									
	a) 1-ethyl-3-methy	lbutyl	b) 1-ethyl-3, 3-0	limethyl propyl						
	c) 4-ethyl-2-methy	lbutyl	d) 5-methylhex	yl						
61.	Xenon crystallizes in radius of Xenon atom		e and the edge of the	unit cell is 620 pm, then the						
	a) 219.20 pm	b) 438.5 pm	c) 265.5 pm	d) 536.94 pm						
62.	In the crystal of CsCl	, the nearest neighbour	rs of each Cs ion are							
	-	b) eight chloride ions		d) eight cs+ ions						
63.	What is the molarity	of a 450 mL solution co	ontaining 5 g of NaOl	, -						
	a) 0.125 M	b) 0.278 M	c) 2M	d) 3.2 M						

	a) 5	b) 12.5	c) 4.76	d) 1.25			
65.	Which of the following	g is a colligative propert	y?				
	a) Viscosity	b) Surface tension	c) Refractive index	d) Osmotic pressure			
66.		ustion of C_6H_6 is $-3250R$ and open vessel, the amou	$kJmol^{-1}$ When 0.39 g of bent of heat liberated is	enzene is burnt in			
	a) – 16.25 J	b) -16.25 kJ	c) -32.5 J	d) -32.5 kJ			
67.	O		30 kJ mol ⁻¹ and 242 kJ m l energy of HCl (in kJ mol	1 3			
	a) 430 + 242 - 91	b) 430 + 242 + 91	c) 215+121-91	d) 215 + 121 + 91			
68.	When equilibrium is	s attained					
	a) $Q = 1$	b) $\Delta G = 0$	c) $\Delta G^0 = 0$ d)	$\Delta G = -2.303 \text{ RT log K}$			
69.	Given $l/a = 0.5$ cm ⁻¹ , F	R = 50 ohm, M = 1.0. Th	e molar conductance of t	he electrolytic cell is			
	a) 10 ohm ⁻¹ cm ² mol ⁻¹	1	b) 20 ohm ⁻¹ cm ² mol ⁻¹	1			
	c) 300 ohm ⁻¹ cm ² mo] -1	d) 100 ohm ⁻¹ cm ² mo	1 -1			
70 .	70. The resistance of 0.01N NaCl solution at 25° C is 200Ω . Cell constant of conductivity cell 1cm ⁻¹ . The molar conductance is						
	a) $5 \times 10^2 \Omega^{-1} cm^2 mo$] -1	b) 6 x $10^3 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$				
	c) $7 \times 10^4 \Omega^{-1} cm^2 mo^{-1}$	1-1	d) 8 x $10^5 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$				
71.	When one coulomb of	charge is passed the qu	uantity of silver deposited	l is			
	a) 1 g of silver		b) 0.1 gram atom of silv	rer			
	c) 1 electrochemical e	equivalent of silver	d) 1 chemical equivalen	t of silver			
72 .	Consider the reaction	, $2A + B$ → Products					
		ne was doubled, the ra	the half-life did not chan te increased by two times	_			
	a) L mol ⁻¹ s ⁻¹	b) no unit	c) mol L ⁻¹ s ⁻¹	d) s ⁻¹			
73.	The unit of rate const	ant for certain reaction	is time-1. The order of the	e reaction is			
	a) 0	b) 1	c) 2	d) 3			
74.	The naturally occurring	ng material from which	metal can be economical	ly extracted			
	a) Ore	b) Meneral	c) Gangue	d) Flux			
75 .	Main objective of roas	ting is					
	a) To remove volatile	compounds	b) Oxidation				
	c) Reduction		d) Slag formation				
76.	What are the products	s obtained when ammor	nia is reacted with excess	s of chlorine?			
	a) N_2 and NCl_3	b) N_2 and HCl	c) N_2 and NH_4Cl	d) NCl ₃ and HCl			
77 .	Which of the following	g are peroxoacids of sul	phur				
	a) H_2SO_5 and $H_2S_2O_8$		b) H_2SO_5 and $H_2S_2O_7$				
	c) $H_2S_2O_7$ and $H_2S_2O_7$	8	d) $H_2S_2O_6$ and $H_2S_2O_7$				

64. The percent weight of NaOH in 1.25 molar sodium hydroxide solution is

- 78. Which reaction is not feasible?
 - **a)** $2K1 + Br_2 \rightarrow 3KBr + I_2$

b) $2KBr + I_2 \rightarrow 2Kl + Br_2$

c) $2KBr + Cl_2 \rightarrow 2KCl + Br_2$

- **d)** $2H_2O + 2F_2 \rightarrow 4HF + O_2$
- **79.** The transition elements have general electronic configuration
- **b)** $(n-1)d^{1-10}$, ns^{0-2} , np^6
- c) $(n-1)d^{1-10} ns^{1-2}$
- **d)** nd¹⁰ ns²
- **80.** Which of the following is incorrect about transition metal element
 - a) They have variable oxidation state
 - **b)** Their compounds are generally paramagnetic
 - c) They do not have tendency to form complexes.
 - d) Their compounds are coloured
- **81.** Which of the following complex species is not expected to exhibit optical isomerism?
 - $[Co(en)_3]^{3+}$
- **b)** $[Co(en)_2Cl_2]^+$
- c) $[Co(NH_3)_3Cl_3]$
- **d)** $[Co(en)(NH_3)Cl_2]^+$
- **82.** The IUPAC name of the coordination Compound $K_2[Zn(OH)_4]$ is

 - a) potassium tetrahydroxyzinc (II) b) dipotassium tetrahydroxyzinc (II)

 - c) potassium tetrahydroxy zincate (II) d) potassium tetrahydroxy zincate (III)
- 83. Tertiary alkyl halides are practically inert to substitution by S_N2 mechanism because of
 - a) steric hindrance
- **b)** inductive effect
- c) instability
- **d)** insolubility
- 84. Chlorobenzene on treatment with sodium in dry ether gives diphenyl. The name of the reaction is
 - a) Fittig reaction
- **b)** Wurtz-Fittig reaction
- c) Sandmeyer reaction
- **d)**Gattermann reaction

85. In the following sequence of reactions,

$$C_2H_5Br \xrightarrow{AgCN} X \xrightarrow{\text{Re duction}} Y; Y \text{ is}$$

- a) n-propylamine
- **b)** isopropylamine
- c) ethylamine
- d) ethylmethylamine

86. Consider the following reaction,

$$A \xrightarrow{K_2Cr_2O_7}$$
 acetone

Identify A in the above reaction.

- a) propan-1-ol
- **b)** propan-2-ol
- c) butan-2-ol
- **d)** ethanol
- 87. Which one of the following alcohols undergoes dehydration most easily?

$$CH_3CH_2 - CH - CH_2 - CH_2OH$$

 CH_3

a) $CH_3CH_2CH_2CH_2OH$

$$CH_3$$

 $CH_3 - CH_2 - CH_2 - CH - CH_3$ c)

- **d)** $CH_3 CH_2 C CH_2CH_3$
- **88.** The decreasing order for the acidic strength of $1^{\circ}, 2^{\circ}, 3^{\circ}$ alcohols, H_2O and R C \equiv CH is
 - **a)** $RC \equiv CH > 3^{0} > 2^{0} > 1^{0} > H_{2}O$
- **b)** $1^0 > 2^0 > 3^0 > H_2O > RC \equiv CH$

OH

- **c)** $H_2O > 1^0 > 2^0 > 3^0 > RC \equiv CH$
- **d)** $3^0 > 2^0 > 1^0 > H_2O > RC \equiv CH$

89.	How will you convert butan-2-one to propanoic acid?
	a) Tolllen's reagent b) Fehling solution c) NaOH/I ₂ /H ⁺ d) NaOH/NaI/H ⁺
90.	Which reaction is used for the preparation of acetophenone?
	a) Reimer-Tiemann reaction b) Wurtz-Fitting reaction
	c) Friedel-Craft reaction d) Cannizaro's reaction
91.	In the following reaction, $RCH_2COOH \xrightarrow{Br_2/P} X \xrightarrow{Excess NH_3} Y$ The major amounts of X and Y
	are
	a) R CHBrCONH ₂ , R CH(NH ₂)COOH b) R CHBrCOOH, R CH(NH ₂)COOH
	c) R CH ₂ COBr,R CH ₂ COONH ₄ d) R CHBrCOOH, R CH ₂ CONH ₂
92.	An organic amino compound reacts with aqueous nitrous acid at low temperature to produce an oily nitrosoamine. The compound is
	a) CH_3NH_2 b) $CH_3CH_2NH_2$ c) $CH_3CH_2NHCH_2CH_3$ d) $(CH_3CH_2)_3N$
93.	During Gabriel phthalimide synthesis of amines the source of nitrogen is
	a) Potassium phthalimide $C_6H_4(CO)_2N^-K^+$
	b) Potassium cyanide, KCN
	c) Sodium azide, NaN ₃
	d) Sodium nitrite, NaNO ₂
94.	Consider the following sequence of reaction $CH_3CN + H_2O \xrightarrow{H^+} A \xrightarrow{ExcessCl_2} B$
	In the above reaction, A and B respectively are
	a) CH ₃ COOH, CCl ₃ COOH b) CH ₃ CH ₂ OH, CH ₃ CH ₂ Cl
	c) CH ₃ CH ₀ , CCl ₃ CHO d) CH ₃ COCH ₃ , CCl ₃ COCH ₃
95	A certain compound gives negative test with ninhydrin and positive test with Benedic't
J 0.	solution, it is
	a) an amino acid b) a monosaccharide c) a lipid d) a protein
96.	The tripeptide hormone present in most living cells is
	a) glutathione b) glutamine c) oxytocin d) ptyalin
97.	Buna-N is
	a) Fibres b) Elastomer c) Thermosetting polymer d) Thermoplastic polymer
98.	Which of the following is artificial silk?
	a) Viscose rayon b) Nylon-6 c) Terylene d) Nylon-66
99.	Platelet aggregation is inhibited by
	a) Boric acid b) aspirin c) Bithional d) Sodium carbonate
100.	Which of the following is not aromatic compound
	a) Valium b) Ibuproten c) Equanil d) Naproxen

SECTION C - BIOLOGY **101.** Taxinomy is the study of a) evolution b) the classification of life forms by their similarities and differences c) genetics **d)** the history of the field of biology 102. In nomenclature a) both genus and species are prited in italics b) genus and species may be of same name c) both in genus and species the first letter is capital **d)** genus is written after the species **103.** Prokaryotic cells lack a) Nuclear membrane **b)** DNA c) chlorophyll d) Membranous vesicles **104.** Which of the following is found in animal cell only? a) mitochondria **b)** DNA c) Golgi complex d) Microbodies **105.** Heterochromatin a) Is involved in protein synthesis **b)** Is compactly coiled region c) Have less DNA **d)** Both (a) and (c) **106.** The components of cane sugar are a) glucose and fructose b) fructose and galactose c) fructose and ribose d) glucose and glucose **107.** Which of the following are water soluble protein? a) Globulins **b)** Albumins c) Albuminoids d) Prolamins 108. The function of microvilli is a) Extensive movement of substances over cell surfaces **b)** Increase in surface area for absorption c) Cellular movement **d)** Specialised uptake of macromolecules 109. Squamous epithelium is also called a) Germinal epithelium **b)** Columnar epithelium c) Pavement epithelium **d)** Sensory epithelium 110. Active transport involves **a)** expenditure of energy **b)** uphill transport c) downhill transport **d)** Both a) and b) **111.** A cell becomes turgid when placed in a) isotonic solution **b)** hypertonic solution

d) None of these

c) rectum

c) deplasmolysis d) endosmosis

112. The process of absorption of water by the solid particles is known as

b) imbibition

b) colon

c) hypotonic solution

113. Feces are temporarily stored in

a) plasmolysis

anus

a)

ONLINE-MHT-CET TEST -05- Page no. 11

d) caecum

114.	Enz	ym	e pr	odu	ıced	by sa	livary glands	is					
	a) S				•		b) ptylin		•	,	,	nd (b)	•
115.	The	ph	ase	of g	grow	th wh	ere cell wall s	starts ac	cum	ulati	ing r	new materia	al is known as
	a) pl	has	se of	f cel	1 for	matio	n b) p	hase of	elon	gatio	on		
116.	• -					ntiatio g state	on d) prements given	orimary position of the below.	grow	rth			
	I. Pe	rn	nane	nt 1	ocal	ised q	ualitative cha	anges.					
	II. R	ega	ainiı	ng d	livis	ion ab	ility.						
	III. N	νlο	dific	atio	n of	devel	opment by pl	lant.					
	IV. I	. 00	sing	g the	e ab	ility to	divide.						
	The	ab	ove	stat	teme	ents re	elates to						
	a) I—Plasticity, II—Differentiation, III—Differentiation, IV—Redifferentiation												
	b) I—Differentiation, II—Differentiation Ill—Plasticity, IV—Redifferentiation												
	c) I—Redifferentiation, II—Differentiation, III—Plasticity, IV—Development												
	d) I— Lag phase, II—Log phase, III—Plasticity, IV—Exponential phase												
117.	117. Match the following columns. Column I Column II												
	A		IAA			1	Herring sp	perm DN	A				
	В		ABA	1		2	Bolting						
	C		Ethy	ylen	ıe	3	Stomatal	closure					
	D		GA			4	Weed-free	lawns					
	E		Cyto	okin	ins	5	Ripening o	of fruits					
	Cod	es											
	A		В	С	D	E		A	В	C	D	E	
	a) 4	;	3	5	2	1		b) 5	3	4	2	1	
	c) 4		1	5	3	2		d) 5	3	1	1	4	
118.				_	corr	espon							
	a) e					. •	b) trachea) lar	•		d) thyroid
119.						_	ish bronchiol				ب		
	•						in diameter t ave cartilage						
	•						_				sue	along, whi	ch extend from the
	inte		_				re emplored	<i>zy</i>		020			011 01100110 11 0111 0110
	d) E		, ,		•	•	4	44			•		
120.							ng has the sr	mallest d				i 1	م د داد د
	a) F	_	_		aıy I	broun	cnus			•	_	imary brou atory brond	
121.	•				son	for th	e success of I	Mendelia		•	-	-	
			-				breeding			_			oss-breeding
	·			_			erozygous		•			_	ot easily available

122.			dominant (tT) crossed dwarf character is	with hor	noz	ygous dwa	rf plant, the	en t	the percentage of
	a)	60%	b) 40%		c)	50%		d)	70%
123.	Me	ndel's law we	re true for situation i	n which					
	a)	Alleles are aff	fected by their enviro	nment					
	b)	Alleles show	complete dominance						
	c)	Alleles of a ge	ene alter the effect of	a differen	t ge	ene			
	d)	A give charac	eter is determined by	more that	n oı	ne gene			
124.	Son	me of the dom	ninant traits studied	oy Mende	1 we	ere			
	a)	Round seed s	shape, constricted po	d-shape a	ınd	axial flowe	er position		
	b)	Green pod co	lour, inflated pod sha	ape and a	xial	flower pos	sition		
	•	_	olour, violet flower co	_		_			
	•		position, green pod co		-	_			
125.	•	st cross is a c			O				
	e)	Hybrid X don	ninant parent		f)	Hybrid X	recessive p	are	nt
	•	Hybrid X hyb	_		h)	ū	antly related		
126.	О.		guments that life on	earth cam	•		-	•	
		Theory of par					ore theory		d) All of these
127.	Pro	oteinoids are	•				-		·
	a)	Carbohyd	rate structure consis	ting of br	anc	hed sugar	S		
	b)	Fatty acid	l structure consisting	of branc	hed	fatt molec	cules		
	c) Protein structure consisting of branched amin acids								
100	•		ture consisting of un				. 1		
128.			ecule to get evolved fi	rst on the	_			Λ 11	of those
120	•	Protein	f) DNA ogenesis, life originat	ed from	gj	RNA	11)	ΑII	of these
149.		•	b) Pre-existing life		Che	micals	d) Extr	a-te	errestrial matter
130.	•	dth of the DN	•	, , ,	0110	11110010	4 , 21101	a	
		15 A	b) 20A		c)	25A		d)	34A
131.			e which use a DNA to	emplate to	o ca	talyse the	polymerisa	tior	n of
		oxynucleotide							534 . 6
100	a)	DNA ligas	•		•	DNA heli		d)	DNA Gyrase
132.	_	nuy stained p euchromatin	part of chromatin whi b) heterochro			oosely pac) chromat		I)	hromonemata
133	•		a portion of the chro			•	osome u	. , C	momonemata
100.		only histones	•			O	JA d)	В	oth DNA and RNA
134.	•	ŭ	del of RNA, which nit			,	•		
		Adenine	b) Guanine	c) T		_			osine
135.	Lin	iked gene are	present on						
	a)	same chro	omosome		b)	differ	ent chromo	son	ne
	c)	heterologo	ous chromosome		d)	paire	d chromoso	me	
136.	Lin	ikage and cro	ssing over are						
	a)	same phe			b)		ent phenom		
	c)	opposite p	ohenomena		d)	identi	cal phenon	iena	a

137.	The genes located in	n the same chromosome do	not	separate and are in	herited together over				
	its generations due	to the phenomenon of							
	a) complete link	kage	b)	incomplete linka	age				
	c) incomplete re	ecombination	d)	complete recom	bination				
138.	Linkage groups are	always present on the							
	a) homologous chr	omosomes	b)	analogous chromos	omes				
	c) sex chromosome	es	d)	heterologous chrom	nosomes				
139.	Polyploidy means of	ccurrence of							
	a) haploid sets of c	hromosomes	b)	diploid sets of chron	mosomes				
	c) more than diploi	id sets of chromosomes	d)	All of the above					
140.	Recombinant DNA	have integrated fragment of							
	a) salinity resistan	t gene	b)	disease resistant ge	ene				
	c) allergy resistant	gene	d)	All of the above					
141.		NA molecules that can carr	уа	foreignB segme	ent into the host cell.				
	Here A and b refers								
	A	В							
	•	RNA							
	•	DNA							
	•	RNA							
140	•	DNA			4 1.1.411				
142.	12. Which of the following steps are involved in the process of recombinant biotechnology? Arrange correct order.								
	I. Extraction of the	e desired gene product.							
	II. Amplification of	the gene of interest.							
		sired DNA fragment.							
	•	ONA fragment into a vector.							
		mbinant DNA into the host.							
	Correct order is								
	a) I, II, III, IV and			III, II, IV, V and I					
1.40	c) II, IV, V, III and		•	I, IV, V, III AND II	1.00				
143.		n endonuclease called Eco		_					
144	a) Coelom	b) Coenzyme	•		d) Colon				
144.	a) Reverse transcri	ded as a molecular scissor in		Restriction endonu	ماممه				
	c) Taq polymerase	piasc		Topoisomerase	cicasc				
145		NA fingerprinting can be inc	•	•					
140.	a) Using intron seq			Using exon sequenc	es				
	c) Using polymeras	-	•	All of the above					
	of com 8 bory morals	30 0110111	,	111 01 0110 000 0					
146.	Polymorphism occu	ırs at							
	a) Genetic level		b)	Individual level					
	c) Both (a) and (b)		•	None of these					
147.	_	echnique involves the transf							
	a) gel of membrane			membrane to gel					
	c) solution to gel		d)	gel to solution					
148.	VNTR varies in size								
	a) 0.1 – 20 kb	b) 0.2 – 10 kb	c)	0.3 – 30 kb	d) 0.4 – 15 kb				

149.	Science of altering for human welfare		ants in order to increas	se their va	lue and utility
	a) plant breeding		c) plant genetic	s A) A1	1 of these
150	, ,	, ,	g. Fill up the blanks a	•	
100.	option for A and B	teps of plant breeding	g. I in up the blanks a	na choose	арргорпасс
	I. Collection of gerr	mnlasm			
	IIA	npiasin.			
		/hybridiantion			
	III. Cross-breeding IVB	/ Hybridisadon			
		and commercialisation	on of new cultiver		
	G .		of superior recombinan	ıta	
	•		-		
	•	_	on of superior recombi		
		•	of superior recombinan		unorior rocombinants
1 = 1	•	-	its; B—Selection and to	· ·	-
151.	-		Indian environment h		ieveloped by
	a) euploidy and clo	C	b) hybridisation and a		
150	c) polyploidy and		d) cloning and polypl	.010У	
152.		lisease-resistant whe	at varieties are		
	I. Sonalika				
	II. Kalyan Sona				
	III. Jaya				
	IV. Ratna				
	Choose the corred	_			
	a) I and II	b) I and III	·	d) III and	IV
153.	_	ng a non-communical			AN 11:1:4:
154	a) measlesHealth is affected b		c) diphtheria		d) diabetes
154.			a) lifeatyle		1) all of these
155	a) Genetic disc Fever in malaria is	•	s c) lifestyle	•	all of these
100.	a) Release of mero		b) Entry of sp	orozoites i	nto blood capillaries
	•	merozoites into RBCs	• • •		-
156.	Infective stage of P	lasmodium for men i	S		
	a) merozoites	b) ookinetes	c) sporozoites	S	d) None of these
157.	Which of the follow	ring organisms ¡s use	ed in the production of	beverages	like wine,
	beer, whisky branc	ly or rum?			
	a) Clostridium but	ylicum	b) Aspergillus niger		
	c) Saccharomyces	cerovislee	d) Penicillium notatur	m	
158.	The chemical subs	tances produced by s	some microbes, which	can kill or	retard the
	growth of other mic	crobes are called			
	a) ethanol	b) citric acid	c) antibiotics d) opiates	

159.	Which one of the fo	ollowing Is a wrong r	natching of a micro	be and its In	dustrial				
	product?		Q						
	a) Yeast		— Statins						
	b) Acetobacter acet		— Acetic add						
	c) Clostridium aced	· ·	— Lactic acid						
	d) Aspergillus niger		— Citric acid						
160.	a) leghorn	egg-type variety use b) plymoth roc	-		rough out the world is d) new hampshire				
161.	Pick the wrong stat	ement regarding bir	rd flu.						
	a) It is an avian inf	fluenza							
	b) It is caused by I	H_1N_1 virus							
	c) It is a fatal disea								
	·	_			t with infected poultry				
162.	In MOET procedure following hormones	e to induce follicular s are administered to		iper-ovulatio	n which of the				
	a) Follicle stimulat	ing hormone	b) Progesterone						
1.50	c) Androgen	11 · · · · · · · · · · · · · · · · · ·	d) Oxytocin						
163.	Which one of the fo	_			4) Dhed island Ded				
164	a) Australop Which of the follow:	b) Minorica	c) Assel	thesis 2	d) Rhod island Red				
104.		•		itilesis :					
	a) $CO_2 + 2H_2O - \frac{L_2}{C}$	$colonization C_5H_{10}O_4$	$+ H_2O + O_2$						
	b) $CO_2 + 2H_2O - \frac{Li}{C}$	$(CH_2O)_n + (CH_2O)_n$	O_2						
	c) $CO_2 + 2H_2O - \frac{Li}{c}$	$c_3H_6O_3 + c_3H_6O_3 + c_3H$	$-CO_2 + O_2$						
	d) $CO_2 + 2H_2O \xrightarrow{\text{Light energy}} (CH_2O)_n + H_2O + O_2$								
165.	The main photosynthetic pigments in the plants are								
	a) chlorophyll-a and	d chlorophyll-c	b) chlorophyll-a ar	nd chlorophy	rll-d				
166.	c) chlorophyll-b and At which wavelengt		d) chlorophyll-b a: ctive?	nd chlorophy	yll-c				
	a) 780 nm	b) 680 nm	c) 690 nm	d) 550 nm					
167.	The Photosynthetic	•	•	•	•				
	a) Photon	b) quantamsome	c) Peroxysome		Oxysome				
168.	Major proteins in th	ne human blood are							
	a) fibrinogen	b) globulins	c) albumins	d) All of th	lese				
169.	The chief function of	, 0	•	•					
	a) produce antibodies b) form fibrinogen								
	c) maintain colloidal asmotic pressure d) remove work products								
170.	When thromboplas	_	·	1					
	a) Dunng hypertens								
		sed cell at the place	of injury						
	•	of erythroblastosis f	-						
	d) During anaemia	· ·							
	,								

171.	The	e intern	nediate c	ompou	and con	nmon fo	or aero	bic an	d anae	robic r	espirat	ion is		
	a)	Critic a	acid	b) Py	ruvic a	cid	c) Ace	etyl cor	npoun	d A	d) Su	accinic acid		
172.				-		-	on mo	lecule	of pyr	uvic ac	id gets	oxidised other	r	
			n molecu	le goes	s to for	m								
	•	Acetyl	Co-A											
	•	CO ₂ Citric a	acid											
	•		ı) and (b)											
173.	•	,	e is not c		about I	Kreb's c	ycle ?							
	a)	It is als	so called	citric a	acid cyc	cle								
	b) The intermediate compound which links glycolysis with Kreb's cycle is malic acidc) It occurs in mitochondriad) It starts with six carbon compound											is malic acid		
174	•					-	b	MADI	Iondi	EVDII	m 01001	ales get oxidise	. d	
174.		·	2 ATP		-	, 3 ATP				ATP		ATP, 5 ATP	ou r	
175.	•	by fishe		D,	2 A11	, 5 A11		C) S I	111, +	A11	uj 5 1	AII, 5 AII		
			otelic org	ganism	ıs		b) ureotelic organisms							
	•						d) Bo	1) Both (a) and (b)						
176.	c) uricotelic organisms 5. Urea cycle is also called						w _j 25011 (a) and (b)							
	a) Krebs' cycle						b) Henselet cycle							
	c) KrebHenselet cycle						d) Dark reaction							
177.	·		·		waste	produc	ets, which are derived from							
	a) p	a) proteins b) carbohydrates						c) lipids			d) fats			
178.	Ste	m cutti	ings are	commo	only us	ed for tl	he proj	pagatio	n of					
	a)	hanana	a.	b) ros	se		c) ma	ทยด		d) co	tton			
179.	•			•			se the correct option:							
			Colur	nn I				Column II						
		A)	Zoopl	Zoophily Ornithophily Entomophily Cheiropterophilly				Pollin	Pollination of birds					
		B)	Ornit					Pollination of insects						
		C)	Ento					Pollination of bats						
		D)	Cheir					Pollination by animals						
	Codes													
			A	В	C	D			A	В	C	D		
		a)	3	2	1	4		b)	1	2	3	4		
		c)	4	1	2	3		d)	4	2	1	3		
180.	In g	ginger,	vegetativ	e prop	agation	occurs	s throu	ıgh						
	a) rhizome b) offsets					c) bulbils d) runners								

181. The following is the diagram TS of anther. Identify the parts labelled as A, B and C.

then position of peacock is

a) primary producer

c) decomposer

	Codes									
	a) A—Connective tissue: B—Endothecj	um ; C—Pollen grain								
	b) A—Endothecium; B—Connective tissue; C—Pollen grain									
	c) A—Pollen grain; B—Connective tissu	ue ; C-Endothecjum								
182.	d) A—Endothecium; B—poglen grain; C—Connective tissue 2. Egg apparatus consists of									
	a) 2 synergids + 2 eggs	b) 2 synergids + 2 eggs								
183.	c) 2 synergds + 1 egg Hermaphrodite flower have	d) 2 synergids + 4 eggs								
	a) male and female on same plant	b) male and female on	same flower							
	c) male and female on different flower	d) male and female on	difference plant							
184.	Read the following statements carefully and select the incorrect option. I. The medulla is connected to the spinal cord. II. Medulla contains controlling centres for respiration, cardiovascular reflexes and gastric secretion. III. Cerebellum has very convoluted surface in order to provide the additional space for more									
185.	 neurons. a) Only I b) I and III Thalamus is a structure wrapped by ce a) a major centre for motor signalling b) a major coordinating centre for sens c) a major coordinating centre for sens d) not a nervous part of a brain 	ory and motor signallin	d) I, II and III							
186.	Which of the following is the smallest co	ranial nerve?								
	a) Abducent b) Optic	c) Trochlear	d) Facial							
187.	The process of accumulation of a dark of resistant to microbial action and under is called	-	g v							
	a) mineralisation b) humification	c) organisation	d) transformation							
188.	What is true about the phosphorus cyc I. Rocks are the natural reservoirs of ph II. Weathering of sedimentary rocks ma III. Herbivores and carnivores obtain ph Choose the correct option. a) I and II b) I and III	nosphorus. kes phosphate available nosphorus from plant di								
189.	Peacock eats a snake and snake eats fr	•								

b) secondary producer

d) top at the apex of food pyramid

190.	Match	the fo	llowing	g colun	nns.								
	Colun	nn I		_	Colur	nn Il							
	A)	Food chain Food web				1. An organism that eats meat.							
	B)					2. An organism that eats plant.							
	C)	Heterotroph					3. An organism that makes food from light or chemical energy without eating						
	D)	Autot	roph				4. An organism that gets its energy by eating other organisms.						
	E)	Carni	vore			5. The sequence of organisms as who eats whom in a biological community.							
	F)	Herbi	vore			6. The network of all the inter-related food chains in a biological community.							
	Codes												
		В	C	D	E	\mathbf{F}							
	a) 5	6	4	3	1	2							
	b) 6 c) 3	4 1	3 2	1 5	2 6	5 4							
	d) 2	5	6	4	3	1							
191.	•	metho	d of as	exual r	eprodu	ction	in animals the offsp	rings					
	a) differ genetically form parents												
	b) produced are genetically from parents												
	c) are completely differ from their parents and many of offsprings												
	d) produced are with haploid number of chromosomes												
192.	Prima	ry sex	organ	in man	is								
	a) Scr	otum		b) acc	essory	glan	d c) testis	d) uri	inary bladder				
193.	Tempe	erature	of hu	man te	stis is								
	a) 2-2.5 below body temperature b) 38°C												
	c) 33	°C	-	_			d) 2.25 above bod	y tempe	erature				
194.	Glands of male reproductive system are												
	a) prostate and seminal vesicles												
	b) prostate, Bartholin's glands and seminals												
	c) seminal vesicals and Bartholin's glands												
	d) prostate, Cowper's glands and seminals (seminal vesiciles)												
105	• -		_	_			,	•	in called				
195.		gea en eskin	u or pe	nis (cai b) pre		giai	s penis) is covered by c) both (a) and (c)		d) none of these				
106	•		emoin	s abser	-		c) both (a) and (c))	u) none of these				
190.	a) wh		Ciliaili		phant		c) Echidna	d) all	of these				
197	•		zariant	•		ກດກາ	lation due to change	•					
							_						
198.	a) Ecophenes b) Ecotypes c) Sciophytes d) Heliophytes 3. Which one of the following is a population?												
				7	-	-							
	a) A spider and some trapped flies in its webb) Earthworm that lives in a grassland along with other arthropods												
	•			a fores	_		G	•					
	•	_		in a fo									
199.	How r	nany ty	ypes of	age py	ramid	are t	here?						
		types	-		ree type		c) Four types	d) Fiv	ve types				
	u, iw	<i>J</i> 1		D , 1111	<i>J</i> 1		·	•	J P				
200.	•	· ·		ction c				•	5 F 1 5				
200.	Inters	· ·	intera	ction c		9	c) neutral	·	of these				