Lecture 8

Theorem: - For every Hermitian metrix $H_{n\times n}$,

there exists a unitary metrix $S_{n\times n}$ such that $S^*HS = diagonal(\lambda_1, - \lambda_n)$ = $\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix}$ where $\lambda_1, - \lambda_n$ are the eigenvalues of H,

i.e. Every Hermitian matrix is diagonizable.

Proof: We prove by Induction on n. N=1: the statement is trivially true.

Assum n=2:

Let 25 be an eigenventor of A Corresponding to the eigenvalue λ_1 .

l ||2||=1.

choose a ventor on such that my is orthogonal to my & 1/m/1=1.

(we can always find such vertor by using Gram-schmidt. orthonormals ation.)

Let
$$V = \begin{bmatrix} 2y & 2y \end{bmatrix}$$
. Then V is a unitary $2x2$ metrix.

Now
$$(J^{*}HU)^{*} = \begin{bmatrix} \chi_{1}^{*} \\ \chi_{2}^{*} \end{bmatrix} H \begin{bmatrix} \chi_{1} & \chi_{2}^{*} \end{bmatrix}$$

$$= \begin{bmatrix} \chi_{1}^{*} \\ \chi_{2}^{*} \end{bmatrix} H \chi_{2} H \chi_{2} \end{bmatrix} \chi_{2}^{*} H \chi_{2} + \chi_{2}^{*} H \chi_{2}$$

$$= \begin{bmatrix} \chi_{1}^{*} \\ \chi_{2}^{*} \end{bmatrix} H \chi_{2} H \chi_{2} + \chi_{2}^{*} H \chi_{2} +$$

$$\Rightarrow \lambda_1 = \lambda_1 \quad \text{o} \quad \text{attan} = 0.$$

$$1. \quad v^* + v = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \text{attan} \end{bmatrix}$$

Let 12 = at Har.

Then Ut HU= [7, 0] 0 12

in Our requered unitary matrix.

Thus the statement is time for n=2.

Amm n>3 & the indution hypothesis.

Let x_j be an eigenventor of f Corresponding to the eigenvelve λ_i . $x_j = 1$. $x_j = 1$. $x_j = 1$.

that { 24, --, 2h rectors in C" roch

that { 24, --, 2h } is an orthonormal set.

Thin is always possible by Gram-Schmidt.

i.e. \(n_i, n_j \) = 0 \(\tau_i + j \) \(\tau_i \) \(\tau_i

Now
$$U^*HU = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} H \begin{bmatrix} x_1 & x_2 & \dots & x_{2n} \\ x_2 & \dots & x_{2n} \\ x_2 & \dots & x_{2n} \end{bmatrix}$$

$$= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \begin{bmatrix} Hx_1 & Hx_2 & \dots & Hx_{2n} \\ x_2 & Hx_2 & \dots & x_{2n} & Hx_{2n} \\ x_2 & Hx_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & Hx_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_2 & \dots & \vdots & \vdots \\ x_1 & x_2 & \dots & x_{2n} & \dots & x_{2n} \\$$

Sme His a Hermitian motifix, We have J^*HU is also Hermitian. $J^*HU = J^*HU$ $= J^*HU$

$$U^{*}HU = \begin{bmatrix} \lambda_{1} & 0 & - & - & - & 0 \\ 0 & (\lambda_{2}^{*}H_{22} & - & - & - & \lambda_{3}^{*}H_{22} \\ \vdots & \vdots & & \vdots \\ 0 & (\lambda_{n}^{*}H_{21} & - & - & - & \lambda_{3}^{*}H_{22} \\ \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_{1} & 0 \\ 0 & G_{1} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_{1} & 0 \\ 0 & G_{1} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_{1} & 0 \\ 0 & G_{1} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_{1} & 0 \\ 0 & G_{1} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_{1} & 0 \\ 0 & G_{1} \end{bmatrix}$$

check that 67 is a Hermitian matrix. $(5 G^{*} = G)$ i. Chiy a Hernstein metrix of tize (m) x(m). in By Indution hypotheus, There exists a unity metrix Theoxims, such that T*GT = diagnal (2, -, m) Let P= 10 T nxn. let S=UP $S^*HS = (UP)^*H(UP)$ $= (p^*U^*) + (V^*)$ $= p^*(v^* H v) p$ $= P^* \left[\frac{\partial_1}{\partial G} \right] P$ $=\begin{bmatrix} 1 & 0 \\ 0 & T \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & T \end{bmatrix}$

$$= \left[\begin{array}{c} 1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 67 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

$$= \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right] \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & 7 \end{array}\right]$$

Check that S is a Hermitton matrix.

Corollary For every symmetric metrix A, There exists an orthogonal metrix S_{nxn} such that $S^{t}AS = dragonal(\lambda_1, --, \lambda_n)$ In particly A is diagonable,

Corollary! For every square metrix A over C, there exists a unitory matrix S_{hxn} such that $C^*AS = an user triangular motrix.$

proofs Note that the property of Hermitian matrix was used on the above proof to reduce the elements above the main diagonal to zero of a trantend matrix.

0110 - ---

Find an orthogonal matrix S subthat $S^{\dagger}AS$ is an upper $S^{\dagger}AS$ matrix,

Where $A = \begin{bmatrix} 0 & 1 & 1 \\ -2 & 3 & 2 \\ -3 & 3 & 4 \end{bmatrix}$.

Sol!
The eigenvolus of A are A = A = 0.

Alt (A - A = 1) = 0.

All $(A - b)^2(b - 5) = 0$.

A = 1, 1, 5.

The eigenventors corresponding to $\lambda = 1$: $(A-T)(\frac{3}{2}) = 0$

$$\Rightarrow \begin{bmatrix}
-1 & 1 & 1 \\
-2 & 2 & 2 \\
-3 & 3 & 3
\end{bmatrix}
\begin{bmatrix}
\chi \\
y \\
\frac{1}{2}
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

~ C-11-1 ~ 0

$$\frac{\chi_3}{2} = \frac{y_3}{||y_1||} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

& Sx, x, x3 y an orthonormal ret.

Let
$$U = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_5 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} x_2 & -x_2 & 0 \\ x_2 & x_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$U^*AU = U^tAU = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ -0 & 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ -2 & 3 & 2 \\ -3 & 3 & 4 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 2 & 4 & 3 \\ -2 & 2 & 1 \\ -3\sqrt{2} & 3\sqrt{2} & 4\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 2 & 6 & 3\sqrt{2} \\ 0 & 4 & \sqrt{2} \\ 0 & 6\sqrt{2} & 8 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 3\sqrt{2} \\ 0 & 2 & \sqrt{2} \\ 0 & 3\sqrt{2} & 4 \end{bmatrix}$$

Let
$$6 = \begin{bmatrix} 2 & 1/2 \\ 3\sqrt{2} & 4 \end{bmatrix}$$

The eigenshus of G onl 1, 5.

Ergennutors Corr. to 2= 1.

(A -T1/21

$$= \frac{1}{3\sqrt{2}} \frac{1}{3} \frac{1}{3} = \frac{1}{3}$$

$$= \frac{1}{3\sqrt{2}} \frac{1}{3} = \frac{1}{3} \frac{1}{3}$$

Theorem! Let H be a Hermitian matrix. Let it be an eigenvalue of H of multiplicity m. Then There exists a set of m

etgeneeters anawated with 2 orthogonal (1. i) m li ligerentors com to logernalne d. By above theorem, Then calits a Unitory mostrix Unxn. such that U* HU = dragoul natorx (), -> Jm, muss, -> Am) where $\lambda_1 = --- = \lambda_m = \lambda$. & みょキカ サゾニハナリーつった。 The Column of U say my -- > Mm, -- > Mm is an orthonoral set. (:' U is unitary). U* (AI-H) U = 71- U*H U = AI - diagnol metrix (2), -2 $= \begin{pmatrix} 0 & y - y^{m} \\ 0 & y - y^{m} \end{pmatrix}$ ·· nank (v*(2-H) v) = n-m => rank () I-H) = n-m

=) Nullty of JI-H's egrel to

(by oak-vulley-k')

=) olse (N (JI-H)) = m.

E(A)

=) there exists m l.i eigeneutors

Corr to J.

Now one the Gram-Schmodt orthonomelyts

We get m ofthonomel set of

eigenvectors correcto the eigenvalue & ofA.