









# **Art 7: Formal Representations**

- General View
- Regular Expressions
- Grammar
- Automata







## Let's start...









Compilers – Art. 7

**Formal Representations** 





# **Universal Concepts**

## **Alphabet:**

- An alphabet ∑ is a finite, nonempty, set of symbols. For example:
- The binary alphabet is {0, 1}
- The decimal alphabet is {0,1,2,3,4,5,6,7,8,9}
- Note: The metasymbols { , and } used here that are not in the alphabet.

#### \*\*\* IMPLEMENTATION NOTE

\*\*\*

- For the scanner, the alphabet may be characters in the ASCII character set.
- For the parser the alphabet is the set of tokens produced by the scanner.
- Ex. Important sets: *keywords*

```
MOLD Language keywords: { "data", "code", "int", "real", "string", "if", "then", "else", "while", "do"}
```



# **Universal Concepts**

## String:

 A string is a finite set of symbols from an alphabet (not necessarily in a grammar).

#### Example:

- For the alphabet ∑ = {a, b, c} some strings are: {a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, abc, acb, bac, bca, cab, cba}
- Note: The order of symbols in a string matter.

## **Empty string:**

- ε is the empty string.
- It is the string consisting of no symbols.
- The length of a string s is |s| and is equal to the number of symbols in the string.
- So:  $|\varepsilon| = 0$ , |abc| = 3.

# **Universal Concepts**

## **Equipotency of \varepsilon:**

 ε can be considered as a neutral element in operations:

$$\varepsilon = \varepsilon \varepsilon = \varepsilon^{k}$$

$$x = 3x = x3$$

Think about this [2]:What is the best model for PL?



## **Empty Language:**

Useless

- The regular expression that matches nothing: Φ.
  - Defined by Φ, it is the pattern for nothing; it generates the set containing nothing;
  - Representation: L(Φ) = { }
- Note: This is not the same as the empty string.
  - By contrast, ε is the pattern for the set that contains the string that contains no characters.

# **Operations in Languages**

#### **Concatenation of sets**

 The concatenation of two sets A and B is defined by:

```
AB = \{ xy \mid x \text{ in A and y in B } \}
```

which reads "the set of strings xy such that x is in A and y is in B".

- For example.
- If A = {a,b} and B = {c,d} thenAB = { ac, ad, bc, bd }

#### **Powers of sets**

 The power of a set A: The repetition of A several times.

$$A^4 = \{ x \mid 4\text{-symbol string } \}$$

which reads "the set of strings with four symbols".

This is just repeated:

$$A^0 = \{ \epsilon \}, A^1 = A, A^2 = AA, A^3 = AAA, ...$$

Note that  $A^0 = \{ \epsilon \}$  (for any set)



# **Operations in Languages**

#### Union of sets

 The union of two sets A and B is defined by:

$$A \cup B = \{ x \mid x \text{ in } A \text{ or } x \text{ in } B \}$$

which reads "the set of strings x such that x is in A or x is in B".

- For example.
- If A = {a,b} and B = {c,d} thenAUB = { a, b, c, d }

#### Kleene closure

The Kleene closure of a set A is the
 \* operator defined as the set of all strings including the empty string:

$$A^* = \bigcup_{i=0}^{\infty} A^i$$

It is the union of all powers of A.

$$A^* = A^0 + A^1 + A^2 + A^3 + \dots$$

# **Operations in Languages**

#### **Positive closure**

 The positive closure is the + operator defined as the set of all strings excluding the empty string:

$$A^{+} = \bigcup_{i=1}^{\infty} A^{i}$$

It means:

$$A + = A^* - \{\epsilon\} = A^1 + A^2 + A^3 + \dots$$

## **Examples**

Let L be the set {A, B, ... Z, a, b, ... z} Let D be the set {0, 1, ......9}

- $L \cup D$  is the set of letters and digits: {A, B, ... Z, a, b, ... z, 0, 1, .....9}
- LD is the set of strings consisting of a letter followed by a digit: {A0, A1, A2 .., B0, B1,... Z9, a0, b0, a1, b1 ... }
- L<sup>4</sup> is the set of all four-letter strings
- L\* is the set of all strings of letters, including ε.
- L(L\(\subset)\)\* is the set of all strings of letters and digits beginning with a letter
- D+ is the set of all strings of one or more digits







Compilers – Art. 7

RE (Regular Expressions)





## Remember Kleene Theorem

## Main Idea:

#### The language that can be defined by:

- 1. Regular Expressions (compact language);
- 2. Regular Grammar (syntax production rules);
- 3. Finite Automaton (DFA);
- 4. Transition graph (transition / state diagrams).



## **Model 1:** Regular Expressions:

- Regular expressions are a convenient notation (or means or tools) for specifying certain simple (though possibly infinite) set of strings over some alphabet.
- 2. A regular expression is a shorthand equivalent to a regular grammar.

$$L(RE) = L(G)$$

# Remember Kleene Theorem

- TIP: A regular expression can be used to construct a Deterministic Finite Automaton (DFA) which therefore can recognize strings (words) of the grammar, which is the purpose of the Scanner.
- The sets of strings defined by regular expression are termed regular sets.

To define the RE (as any expression notation) use operands and operations.

- The operands are alphabet symbols or strings defined by regular expressions (regular definitions).
- The standard operations are catenation (concatenation), union or alternation (|), and recursion or Kleene closure (\*)
- Regular expressions use the metasymbols |, (, ), {, } , [, ], \* , + (and others ?, ^) to define its operations.

# **RE Operations:**

#### Catenation

- RE: For the alphabet Σ = {a, b, c}, if x = ab and y = b&c, then x.y = abbc.
- 2. Note: Since ε is a valid word (empty string), remember that: εx = xε = x

#### **Alternation:**

- RE: For example if Σ = {a, b, c, d}
   then L(a|b) = {a,b} and L(c|d) = {c,d}
   so
- a|b is either a or b
- c|d is either c or d

16

# **RE Operations:**

### Recursion

- 1. RE: For a regular expression **r**, Kleene Closure is defined by:
- $L(r^*) = L(r)^*$
- which means concatenation with all powers of L.

## **Example:**

 $L((a|bb)^*) = L(a|bb)^* = L(a|bb)^0 + L(a|bb)^1 + L(a|bb)^2 + L(a|bb)^3 + ...$ 

- $L(a|bb)^0 = \{\epsilon\}$
- $L(a|bb)^1 = \{a,bb\}$
- $L(a|bb)^2 = \{a,bb\}\{a,bb\} = \{aa, abb, bba, bbb\}$  or:
- L((a|bb)\*) = {ε, a, bb, aa, abb, bba, bbbb, aaa, abba, bbaa, bbbba, aabb, ...}
- {dc, ddc, dddc, ddddc, ...} = d+c(a|c|dd+)\*

# More about RE

## **Special operations**

- Positive Closure (One or more +)
  - $a+ = aa^* (also a^* = a+ | \epsilon)$
- Exponentiation or Power operation (exactly k)
  - a<sup>k</sup> = aaa...a (exactly k times)
- Optional Inclusion (Zero or one ?)

• a? = a | 
$$\varepsilon$$

 $(a|c|dd+)^*? = \varepsilon | (a|c|dd+)^* = \varepsilon | a | c | dd |$  aa

#### **Character classes:**

- Specify a **range** of characters or numbers that follow a sequence.
- Examples:
  - [a-z] means any character in the range a to z.
  - [A-Z] means any character in the range A to Z.
  - A regular expression for the pattern for an identifier that begins with a letter or an underscore and is followed by any number of numbers and letters is:

[a-zA-Z\_][A-Za-z0-9]\*

{ a, b, ..., A, B, ..., \_, aA, aa0, ....}



# More about RE

## **Complements:**

- A complement character class is specified using the ^ or (~) symbols, or Not operator.
- Examples:
  - [^a-z] matches any character except a to z.
  - Comment = // (^CR)\*CR



Sometimes, the complement is the better (shortest) to represent collections.

## **Precedence of operators:**

- Decrease precedence order:
  - Grouping: ()
  - Character classes: []
  - Power / Recursion (Kleene star): \*
  - Concatenation: , . , , ,
  - Alternation: |
  - Positive closure: +
  - Optional: ?
  - Iteration: k

## More about RE (1)

#### Remember:

Example 3.4: Let  $\Sigma = \{a, b\}$ .

- 1. The regular expression  $\mathbf{a}|\mathbf{b}$  denotes the language  $\{a,b\}$ .
- 2.  $(\mathbf{a}|\mathbf{b})(\mathbf{a}|\mathbf{b})$  denotes  $\{aa, ab, ba, bb\}$ , the language of all strings of length two over the alphabet  $\Sigma$ . Another regular expression for the same language is  $\mathbf{aa}|\mathbf{ab}|\mathbf{ba}|\mathbf{bb}$ .
- 3.  $\mathbf{a}^*$  denotes the language consisting of all strings of zero or more a's, that is,  $\{\epsilon, a, aa, aaa, \dots\}$ .
- 4.  $(\mathbf{a}|\mathbf{b})^*$  denotes the set of all strings consisting of zero or more instances of a or b, that is, all strings of a's and b's:  $\{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$ . Another regular expression for the same language is  $(\mathbf{a}^*\mathbf{b}^*)^*$ .
- 5.  $\mathbf{a}|\mathbf{a}^*\mathbf{b}$  denotes the language  $\{a, b, ab, aab, aaab, \dots\}$ , that is, the string a and all strings consisting of zero or more a's and ending in b.

# More about RE (2)

#### RE Properties:

| LAW                            | DESCRIPTION                                  |
|--------------------------------|----------------------------------------------|
| r s=s r                        | is commutative                               |
| r (s t) = (r s) t              | is associative                               |
| r(st) = (rs)t                  | Concatenation is associative                 |
| r(s t) = rs rt; (s t)r = sr tr | Concatenation distributes over               |
| $\epsilon r = r\epsilon = r$   | $\epsilon$ is the identity for concatenation |
| $r^* = (r \epsilon)^*$         | $\epsilon$ is guaranteed in a closure        |
| $r^{**} = r^*$                 | * is idempotent                              |

Figure 3.7: Algebraic laws for regular expressions

## More about RE (3)

- Common Syntax for RE (Lex):
- Conventions are used in order to express RE in a specific notation.
- For instance, the Lex file (used for automated generated parsers), has the following notation...

| Expression     | MATCHES                                 | Example    |
|----------------|-----------------------------------------|------------|
|                |                                         |            |
| c              | the one non-operator character $c$      | a          |
| $\setminus c$  | character $c$ literally                 | \*         |
| " $s$ "        | string $s$ literally                    | "**"       |
|                | any character but newline               | a.*b       |
| ^              | beginning of a line                     | ^abc       |
| \$             | end of a line                           | abc\$      |
| [s]            | any one of the characters in string $s$ | [abc]      |
| $[\hat{\ }s]$  | any one character not in string $s$     | [^abc]     |
| r*             | zero or more strings matching $r$       | a*         |
| r+             | one or more strings matching $r$        | a+         |
| r?             | zero or one $r$                         | a?         |
| $r\{m,n\}$     | between $m$ and $n$ occurrences of $r$  | $a\{1,5\}$ |
| $r_1r_2$       | an $r_1$ followed by an $r_2$           | ab         |
| $r_1 \mid r_2$ | an $r_1$ or an $r_2$                    | a b        |
| (r)            | same as $r$                             | (a b)      |
| $r_1/r_2$      | $r_1$ when followed by $r_2$            | abc/123    |

Figure 3.8: Lex regular expressions

# **Grammar Examples**

SVID = AVID\$

abc123\$...}

# VID = AVID | SVID Examples: {a, b, c, a1, b12, c123, ..., a\$, b\$, c\$, a1\$, b12\$, c123\$ AVID = L (L | D)\* Examples: {a, b, c, ...abc, abcdf, abc123...} L = a | b | ... | z | A | B | ... | Z Examples: {a, b, c,...z, A,..., Z} D = 0 | ... | 9 Examples: {0, 1, 2, 3,...9}

Examples: {a\$, b\$, c\$, ....abc\$, abcdf\$,

Suppose a grammar in which string variables must finish with "\$"

```
IL = DIL

• Examples: {1, 2, , 0, 00, 111, 123, ..., 777, ...}

DIL = ZDS | NzDD*

• Examples: {1, 2, , 0, 00, 111, 123, ..., 777, ...}

ZDS = 00*

• Examples: {0, 00, 000, ..., 00000000}

NzD = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• Examples: {1, 2, ..., 9}

D = 0 | NzD

• Examples: {0, 1, 2, ..., 9}
```

Suppose a grammar in which numbers starting with "0" cannot include other digits.







Compilers – Art. 7

BNF – Grammar (review)





# **Remember Kleene Theorem**

S / \
Sb a

Model 2: Grammar Formalization

$$G = \{V_T, V_N, P, S\}$$

- Where:
- 1.  $V_T$  = Terminals;
- 2.  $V_N = \text{Non-Terminals} (V_N -> V_N \mid V_T)$
- 3.  $P = Production rules: \{A \rightarrow X_1 X_2 ... X_N\};$
- 4. S = Start symbol.

## **Example:**

1. G1:  $\{\{a,b\}, \{S\}, P = \{S \rightarrow Sb \mid a\}, S\}$ 

The infinite set of words can be given by:

a, ab, abb, abbb, ...

The corresponding RE1: ab\*

**Note:** The grammar G1 and RE1 are equivalent!

# **Grammar Examples**

```
<variable identifier> → <arithmetic variable identifier> | <string variable identifier>
    Example: {a, b, c, a1, b12, c123, ..., a$, b$, c$, a1$, b12$, c123$, ...}
<arithmetic variable identifier> → <letter> <opt letters or digits>
    Example: {a, b, c, ...,abc, abcdf, abc123...}
<opt letters or digits> \rightarrow <letters or digits> | \epsilon
    Example: \{ \epsilon, a, b, c, ..., abc, abcdf, abc123... \}
<letters or digits> → <letter or digit> | <letters or digits> <letter or digit>
    Example: {a, b, c, ..., 1, 2, 3, 1s, e2 ...1111, aaaaa,...}
<letter or digit> → <letter> | <digit>
    Example: {a, b, c, ..., 1, 2, 3 }
<letter> -> a | b |...| z | A | B | ...| Z
• Example: {a, b, c, ..., z, A,..., Z }
 <digit> -> 0 | ... | 9
• Example: {0, 1, 2, 3, ..., 9}
```

## **Grammar Examples**

```
<string variable identifier> -> <arithmetic variable identifier>$
    Example: {a$, b$, c$, ....abc$, abcdf$, abc123$...}
 <integer literal> -> <decimal integer literal>
  Example: {1, 2, , 0, 00, 111, 123, ..., 777, ...}
 <decimal integer literal> -> <zeros> | <non zero digit> <opt_digits>
• Example: {1, 2, , 0, 00, 111, 123, ..., 777, ...}
 <zeros> -> 0 | <zeros>0
  Example: {0, 00, 000, ..., 00000000}
 <opt digits> -> <digits> | ε
• Example: { ε, 1, 2, , 0, 00, 111, 123, ..., 777, ...}
 <digits> -> <digit> | <digits> <digit>
• Example: { 1, 2, , 0, 00, 111, 123, ..., 777, ...}
 <digit> -> 0 | <non zero digit>
• Example: { 0, 1, 2, ..., 9}
 <non zero digit> -> 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
    Example: {1, 2, ..., 9}
```





Compilers – Art. 7

**Starting Automata** 



# Remember Kleene Theorem

- Model 3: Automaton:
- Functional way to define the evolution of an acceptable string in a language.
- 2. Can be visual such as:



#### **Finite Automaton:**

 Mathematical representation of transitions that transform inputs in outputs that describes a language.

$$L(G) = A(\Sigma, Q, q0, Qf, \Delta)$$

2. This notation includes the alphabet  $(\Sigma)$  that, starting in a state (q0) can perform words in the end (Qf), by productions  $(\Delta)$  between states (Q).

**Note:** Empty string  $(\varepsilon)$  is also acceptable.



**29** 

## Remember Kleene Theorem

- Model 3: Automaton:
- 1. Modeling:  $L(G) = A(\Sigma, Q, q0, Qf, \Delta)$



#### **Delta transitions:**

```
\begin{split} &\Delta = \{\\ &\delta(\text{q0,digit}) = \text{q1;}\\ &\delta(\text{q0,period}) = \text{q3;}\\ &\delta(\text{q1,digit}) = \delta(\delta(\text{q0,digit}),\text{digit}) = \text{q1;}\\ &\delta(\text{q1,period}) = \delta(\delta(\text{q0,digit}),\text{period}) = \text{q3;}\\ &//... \end{split}
```

| Q\Σ  | digit | period | other(#) |
|------|-------|--------|----------|
| -> 0 | 1     | 3      | -        |
| 1    | 1     | 3      | 2        |
| 2*   | -     | -      | -        |
| 3    | 4     | -      | -        |
| 4    | 4     | -      | 5        |
| 5*   | -     | -      | -        |

Other =  $^$ digit &&  $^$ .  $\Sigma$ =(digit,., other)

# **Remember Kleene Theorem**

- Model 3: Automaton:
- Functional way to define the evolution of an acceptable string in a language.
- 2. Can be visual such as:



$$q1 = \delta(q0, digit)$$
  $q3 = \delta(q0, .), \delta(q1, .)$ 

 $Q = set of states = \{q0...q5\}$ 

#### **Finite Automaton:**

$$Qf = \{q2, q5\}$$

 Mathematical representation of transitions that transform inputs in outputs that describes a language.

$$L(G) = A(\Sigma, Q, q0, Qf, \Delta)$$

2. This notation includes the alphabet  $(\Sigma)$  that, starting in a state (q0) can perform words in the end (Qf), by productions  $(\Delta)$  between states (Q).

**Note:** Empty string  $(\varepsilon)$  is also acceptable.

# Formalization (1)

## • FA:

$$FA = (\Sigma, Q, q0, Qf, \Delta)$$

- Where:
- $\Sigma$  = Alphabet = {a0, a1, ..., an}
- Q = Set of states = {q0, q1, ..., qm}
- q0 = Initial state;
- Qf = Final states;
- $\Delta = P = Production rules: \{q_y = \delta(q_x, a_m), ..., q_z = \delta(q_y, a_n)\}$

#### **NFA vs DFA**



- 1. DFA: Deterministic, once you are in a state and read a symbol, you know exactly where to go.
- 2. NFA: Indeterministic because:
- It is possible to have more than one transition when read a symbol;
- Null (Epson) transitions: you can go to another state reading nothing.







Concluding





## Review

Importance of Kleene Theorem.

## **Some Questions**

- 1. Why to use different models?
- 2. How to chose a model for a specific representation?
- 3. Can you see advantages and disadvantages of each model?



Source: https://static.wixstatic.com/media/7594af\_51a81 a8ccc5f418281f52c8bdd2dd618~mv2.jpg





# Open questions...

- Any doubts / questions?
- How we are until now?









Compilers – Art. 7

Thank you for your attention



