Observe que o primeiro intervalo tem amplitude menor que o segundo. Outra observação importante é que por (11.40) e um γ fixo, os intervalos que podemos obter para amostras diferentes (mas de mesmo tamanho n) terão a mesma amplitude, dada por $2z(\gamma)/\sqrt{4n}$. Por outro lado, usando (11.41), a amplitude do intervalo será $2z(\gamma)$ $\frac{\sqrt{\hat{p}\hat{q}}}{n}$, que é variável de amostra para amostra, pois \hat{p} (e, conseqüentemente, \hat{q}) variará de amostra para amostra.

Problemas

14. Calcule o intervalo de confiança para a média de uma $N(\mu, \sigma^2)$ em cada um dos casos abaixo.

Média Amostral	Tamanho da Amostra	Desvio Padrão da População	Coeficiente de Confiança
1 <i>7</i> 0 cm	100	15 cm	95%
165 cm	184	30 cm	85%
180 cm	225	30 cm	70%

- 15. De 50.000 válvulas fabricadas por uma companhia retira-se uma amostra de 400 válvulas, e obtém-se a vida média de 800 horas e o desvio padrão de 100 horas.
 - (a) Qual o intervalo de confiança de 99% para a vida média da população?
 - (b) Com que confiança dir-se-ia que a vida média é 800 ± 0.98 ?
 - (c) Que tamanho deve ter a amostra para que seja de 95% a confiança na estimativa 800 ± 7.84 ?

(Que suposições você fez para responder às questões acima?)

- 16. Qual deve ser o tamanho de uma amostra cujo desvio padrão é 10 para que a diferença da média amostral para a média da população, em valor absoluto, seja menor que 1, com coeficiente de confiança igual a:
 - (a) 95% (b) 99%
- 17. Uma população tem desvio padrão igual a 10.
 - (a) Que tamanho deve ter uma amostra para que, com probabilidade 8%, o erro em estimar a média seja superior a uma unidade?
 - (b) Supondo-se colhida a amostra no caso anterior, qual o intervalo de confiança, se $\bar{x} = 50$?
- 18. Uma amostra aleatória de 625 donas de casa revela que 70% delas preferem a marca A de detergente. Construir um intervalo de confiança para p= proporção das donas de casa que preferem A com c.c. $\gamma=90\%$.
- 19. Encontre os intervalos de confiança para p se k/n = 0,3, com c.c. $\gamma = 0,95$. Utilize os dois enfoques apontados na seção 11.6, com n = 400.
- 20. Antes de uma eleição, um determinado partido está interessado em estimar a proporção p de eleitores favoráveis ao seu candidato. Uma amostra piloto de tamanho 100 revelou que 60% dos eleitores eram favoráveis ao candidato em questão.

- (a) Determine o tamanho da amostra necessário para que o erro cometido na estimação seja de, no máximo, 0,01 com probabilidade de 80%.
- (b) Se na amostra final, com tamanho igual ao obtido em (a), observou-se que 55% dos eleitores eram favoráveis ao candidato em questão, construa um intervalo de confiança para a proporção p. Utilize $\gamma = 0.95$.
- 21. Suponha que estejamos interessados em estimar a proporção de consumidores de um certo produto. Se a amostra de tamanho 300 forneceu 100 indivíduos que consomem o dado produto, determine:
 - (a) o intervalo de confiança para p, com coeficiente de confiança de 95% (interprete o resultado);
 - (b) o tamanho da amostra para que o erro da estimativa não exceda a 0,02 unidades com probabilidade de 95% (interprete o resultado).

11.7 Erro Padrão de um Estimador

Vimos que, obtida a distribuição amostral de um estimador, podíamos calcular a sua variância. Se não pudermos obter a distribuição exata, usamos uma aproximação, se essa estiver disponível, como no caso de \overline{X} , e a variância do estimador será a variância dessa aproximação. Por exemplo, para a média amostral \overline{X} , obtida de uma amostra de tamanho n, temos que

$$Var(\overline{X}) = \frac{\sigma^2}{n}$$
,

na qual σ^2 é a variância da v.a. X definida sobre a população.

À raiz quadrada dessa variância chamaremos de erro padrão de \overline{X} e o denotaremos por

$$EP(\overline{X}) = \frac{\sigma}{\sqrt{n}}.$$
 (11.42)

Definição. Se T for um estimador do parâmetro θ , chamaremos de erro padrão de T a quantidade

$$EP(T) = \sqrt{Var(T)}. (11.43)$$

A variância de T dependerá dos parâmetros da distribuição de X, o mesmo acontecendo com o erro padrão. Por exemplo, em (11.42), $EP(\overline{X})$ depende de σ , que em geral é desconhecida. Podemos, então, obter o erro padrão estimado de \overline{X} , dado por

$$\operatorname{ep}(\overline{X}) = \widehat{\operatorname{EP}}(\overline{X}) = S/\sqrt{n}, \tag{11.44}$$

na qual S^2 é a variância amostral. Genericamente, o erro padrão estimado de T é dado por

$$\widehat{EP}(T) = \sqrt{\widehat{Var}(T)}.$$
 (11.45)

Muitas vezes a quantidade (11.45) é chamada de erro amostral. Mas preferimos chamar de erro amostral à diferença $e = T - \theta$.

11.10 Problemas e Complementos

22. Um pesquisador está em dúvida sobre duas possíveis estatísticas, t e t', para serem usadas como estimadores de um parâmetro θ . Assim, ele decidiu usar simulação para uma situação hipotética, procurando encontrar pistas que o ajudassem a decidir qual o melhor estimador. Partindo de uma população fictícia, onde θ = 10, ele retirou 1.000 amostras de 20 elementos, e para cada amostra calculou o valor das estatísticas t e t'. Em seguida, construiu a distribuição de fregüências, segundo o quadro abaixo.

Classes	% de <i>t</i>	% de <i>t</i> '		
5 ⊢ 7	10	5		
7 ⊢ 9	20	30		
9⊢11	40	35		
11 ⊢13	20	25		
13 ⊢15	10	5		

- (a) Verifique as propriedades de t e t como estimadores de θ .
- (b) Qual dos dois você adotaria? Por quê?
- 23. De experiências passadas, sabe-se que o desvio padrão da altura de crianças de 5^a série do 1^o grau é 5 cm.
 - (a) Colhendo uma amostra de 36 dessas crianças, observou-se a média de 150 cm. Qual o intervalo de confiança de 95% para a média populacional?
 - (b) Que tamanho deve ter uma amostra para que o intervalo 150 ± 0.98 tenha 95% de confiança?
- 24. Um pesquisador está estudando a resistência de um determinado material sob determinadas condições. Ele sabe que essa variável é normalmente distribuída com desvio padrão de duas unidades.
 - (a) Utilizando os valores 4,9; 7,0; 8,1; 4,5; 5,6; 6,8; 7,2; 5,7; 6,2 unidades, obtidos de uma amostra de tamanho 9, determine o intervalo de confiança para a resistência média com um coeficiente de confiança γ = 0,90.
 - (b) Qual o tamanho da amostra necessário para que o erro cometido, ao estimarmos a resistência média, não seja superior a 0,01 unidade com probabilidade 0,90?
 - (c) Suponha que no item (a) não fosse conhecido o desvio padrão. Como você procederia para determinar o intervalo de confiança, e que suposições você faria para isso? Veja também o Problema 44.
- 25. Estime o salário médio dos empregados de uma indústria têxtil, sabendo-se que uma amostra de 100 indivíduos apresentou os seguintes resultados:

Salário	Freqüência		
150,00 ← 250,00	8		
250,00 ← 350,00	22		
$350,00 \vdash 450,00$	38		
<i>45</i> 0,00 ⊢ <i>55</i> 0,00	28		
<i>55</i> 0,00 ⊢ 6 <i>5</i> 0,00	2		
650,00 ⊢ 750,00	2		

26. Suponha que as vendas de um produto satisfaçam ao modelo

$$V_t = \alpha + \beta t + a_t$$

onde a_{t} é a variável aleatória satisfazendo as suposições da seção 11.4, e o tempo é dado em meses. Suponha que os valores das vendas nos 10 primeiros meses do ano 1 sejam dados pelos valores da tabela abaixo. Obtenha as previsões para os meses de novembro e dezembro do ano 1 e para julho e agosto do ano 2.

\overline{t}	1	2	3	4	5	6	7	8	9	10
y_t	5,0	6,7	6,0	8,7	6,2	8,6	11,0	11,9	10,6	10,8

- 27. Numa pesquisa de mercado para estudar a preferência da população de uma cidade em relação a um determinado produto, colheu-se uma amostra aleatória de 300 indivíduos, dos quais 180 preferiam esse produto.
 - (a) Determine um intervalo de confiança para a proporção da população que prefere o produto em estudo; tome $\gamma = 0.90$.
 - (b) Determine a probabilidade de que a estimativa pontual dessa proporção não difira do verdadeiro valor em mais de 0,001.
 - (c) É possível obter uma estimativa pontual dessa proporção que não difira do valor verdadeiro em mais de 0,0005 com probabilidade 0,95? Caso contrário, determine o que deve ser feito.
- 28. Uma amostra de 10.000 itens de um lote de produção foi inspecionada, e o número de defeitos por item foi registrado na tabela abaixo.

Nº de defeitos	0	1	2	3	4
Quantidade de peças	6.000	3.200	600	150	50

- (a) Determine os limites de confiança para a proporção de itens defeituosos na população, com coeficiente de confiança de 98%. Use (11.40).
- (b) Mesmo problema, usando (11.41).
- 29. Antes de uma eleição em que existiam dois candidatos, A e B, foi feita uma pesquisa com 400 eleitores escolhidos ao acaso, e verificou-se que 208 deles pretendiam votar no candidato A. Construa um intervalo de confiança, com c.c. $\gamma = 0.95$, para a porcentagem de eleitores favoráveis ao candidato A na época das eleições.
- 30. Encontre o c.c. de um intervalo de confiança para p, se n = 100, $\hat{p} = 0.6$ e a amplitude do intervalo deve ser igual a 0.090.
- 31. Usando os resultados do Problema 32 do Capítulo 10, mostre que o intervalo de confiança para a diferença das médias populacionais, com variâncias conhecidas, é dado por

$$IC(\mu_1 - \mu_2 : \gamma) = (\overline{X} - \overline{Y}) \pm z(\gamma) \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}.$$

32. Estão sendo estudados dois processos para conservar alimentos, cuja principal variável de interesse é o tempo de duração destes. No processo A, o tempo X de duração segue a distribuição $N(\mu_A, 100)$, e no processo B o tempo Y obedece à distribuição $N(\mu_B, 100)$. Sorteiam-se duas amostras independentes: a de A, com 16 latas, apresentou tempo médio de duração igual a 50, e a de B, com 25 latas, duração média igual a 60.