Um Estudo Empírico do Desempenho de Combinações de Previsões

Defesa de Monografia

Leiliane da Silva Oliveira

Curso de Estatística Universidade Federal de Juiz de Fora Departamento de Estatística-ICE Orientador: Henrique Steinherz Hippert

28 de Novembro de 2011

Sumário

- INTRODUÇÃO
- PUNDAMENTAÇÃO TEÓRICA
 - Técnicas Descritivas
 - Métodos e Modelos de Previsão
 - Combinação de Previsões
 - Medidas de Erros
- METODOLOGIA
- RESULTADOS
 - Análise Descritiva
 - Modelos de Previsão Individual
 - Combinações de Previsões
 - Comparação entre modelos
- CONCLUSÃO
- 6 ANEXOS
- BIBLIOGRAFIA

1.INTRODUÇÃO

Uma *série temporal* é qualquer conjunto de observações ordenadas no tempo.

Exemplo

- Índices diários da Bolsa de Valores de São Paulo;
- Índices pluviométricos mensais de uma cidade;
- Consumo de energia elétrica.

1.INTRODUÇÃO

Uma série temporal é qualquer conjunto de observações ordenadas no tempo.

Exemplo

- Índices diários da Bolsa de Valores de São Paulo;
- Índices pluviométricos mensais de uma cidade;
- Consumo de energia elétrica.

- Análise: permite investigar o mecanismo gerador de uma série, descrever o seu comportamento e procurar periodicidades relevantes nos dados.
- Previsão: construção de modelos matemáticos a partir dos quais seja possível prever valores futuros da série.
- Combinação de previsão: Poderíamos talvez obter previsões mais precisas.

Modelo Adequado?

- Análise: permite investigar o mecanismo gerador de uma série, descrever o seu comportamento e procurar periodicidades relevantes nos dados.
- Previsão: construção de modelos matemáticos a partir dos quais seja possível prever valores futuros da série.
- Combinação de previsão: Poderíamos talvez obter previsões mais precisas.

Modelo Adequado?

- Análise: permite investigar o mecanismo gerador de uma série, descrever o seu comportamento e procurar periodicidades relevantes nos dados.
- **Previsão:** construção de modelos matemáticos a partir dos quais seja possível prever valores futuros da série.
- Combinação de previsão: Poderíamos talvez obter previsões mais precisas.

Modelo Adequado

- Análise: permite investigar o mecanismo gerador de uma série, descrever o seu comportamento e procurar periodicidades relevantes nos dados.
- Previsão: construção de modelos matemáticos a partir dos quais seja possível prever valores futuros da série.
- Combinação de previsão: Poderíamos talvez obter previsões mais precisas.

Modelo Adequado?

- Análise: permite investigar o mecanismo gerador de uma série, descrever o seu comportamento e procurar periodicidades relevantes nos dados.
- Previsão: construção de modelos matemáticos a partir dos quais seja possível prever valores futuros da série.
- Combinação de previsão: Poderíamos talvez obter previsões mais precisas.

Modelo Adequado?

As referências básicas são [Morettin e Toloi, 2006] e [Ehlers, 2011].

Características de uma Série Temporal:

- Dados Auto-correlacionados
- Discreta
- Contínua

A escolha de um modelo adequado depende de vários fatores, como o conhecimento **a priori** da natureza dos dados e o objetivo da análise.

As referências básicas são [Morettin e Toloi, 2006] e [Ehlers, 2011].

Características de uma Série Temporal:

- Dados Auto-correlacionados
- Discreta
- Contínua

A escolha de um modelo adequado depende de vários fatores, como o conhecimento **a priori** da natureza dos dados e o objetivo da análise.

As referências básicas são [Morettin e Toloi, 2006] e [Ehlers, 2011].

Características de uma Série Temporal:

- Dados Auto-correlacionados
- Discreta
- Contínua

A escolha de um modelo adequado depende de vários fatores, como o conhecimento **a priori** da natureza dos dados e o objetivo da análise.

As referências básicas são [Morettin e Toloi, 2006] e [Ehlers, 2011].

Características de uma Série Temporal:

- Dados Auto-correlacionados
- Discreta
- Contínua

A escolha de um modelo adequado depende de vários fatores, como o conhecimento **a priori** da natureza dos dados e o objetivo da análise.

As referências básicas são [Morettin e Toloi, 2006] e [Ehlers, 2011].

Características de uma Série Temporal:

- Dados Auto-correlacionados
- Discreta
- Contínua

A escolha de um modelo adequado depende de vários fatores, como o conhecimento **a priori** da natureza dos dados e o objetivo da análise.

A primeira ferramenta para a análise de séries temporais é o gráfico dos dados ao longo do tempo, o qual nos permite verificar algumas características da série temporal, como:

- Tendência
- Sazonalidade

Figura: Séries simuladas com tendência constante, linear e quadrática

A primeira ferramenta para a análise de séries temporais é o gráfico dos dados ao longo do tempo, o qual nos permite verificar algumas características da série temporal, como:

- Tendência
- Sazonalidade

Figura: Séries simuladas com tendência constante, linear e quadrática

- Tendência
- Sazonalidade

Figura: Séries simuladas com tendência constante, linear e quadrática

- Tendência
- Sazonalidade

Figura: Séries simuladas com tendência constante, linear e quadrática

- Tendência
- Sazonalidade

Figura: Séries simuladas com tendência constante, linear e quadrática

- Tendência
- Sazonalidade

Figura: Séries simuladas com tendência constante, linear e quadrática

O **correlograma** (Figura 2), um gráfico de barras mostrando os primeiros k coeficientes de autocorrelação, também é útil para identificar características da série temporal.

Figura: Decomposição Clássica da Série Airline e Correlograma

O **correlograma** (Figura 2), um gráfico de barras mostrando os primeiros k coeficientes de autocorrelação, também é útil para identificar características da série temporal.

Figura: Decomposição Clássica da Série Airline e Correlograma

O **correlograma** (Figura 2), um gráfico de barras mostrando os primeiros k coeficientes de autocorrelação, também é útil para identificar características da série temporal.

Figura: Decomposição Clássica da Série Airline e Correlograma

O **correlograma** (Figura 2), um gráfico de barras mostrando os primeiros k coeficientes de autocorrelação, também é útil para identificar características da série temporal.

Figura: Decomposição Clássica da Série Airline e Correlograma

- Modelos de previsão: retiram das observações passadas as informações sobre o padrão da série.
- Suponha uma série:

$$Z(t) = [z_1, z_2, z_3, \cdots, z_t]$$

$$\hat{Z}_{t+k} = E(Z_{t+k}|Z_t, Z_{t-1}, \cdots, Z_1)$$
 (1)

- Adotamos K=1.
- Denotamos erros de previsão por:

$$e_{t+k} = Z_{t+k} - \hat{Z}_{t+k} \tag{2}$$

- Modelos de previsão: retiram das observações passadas as informações sobre o padrão da série.
- Suponha uma série:

$$Z(t) = [z_1, z_2, z_3, \cdots, z_t]$$

$$\hat{Z}_{t+k} = E(Z_{t+k}|Z_t, Z_{t-1}, \cdots, Z_1)$$
 (1)

- Adotamos K=1.
- Denotamos erros de previsão por:

$$e_{t+k} = Z_{t+k} - \hat{Z}_{t+k} \tag{2}$$

- Modelos de previsão: retiram das observações passadas as informações sobre o padrão da série.
- Suponha uma série:

$$Z(t) = [z_1, z_2, z_3, \cdots, z_t]$$

$$\hat{Z}_{t+k} = E(Z_{t+k}|Z_t, Z_{t-1}, \cdots, Z_1)$$
 (1)

- Adotamos K=1.
- Denotamos erros de previsão por:

$$e_{t+k} = Z_{t+k} - \hat{Z}_{t+k} \tag{2}$$

- Modelos de previsão: retiram das observações passadas as informações sobre o padrão da série.
- Suponha uma série:

$$Z(t) = [z_1, z_2, z_3, \cdots, z_t]$$

$$\hat{Z}_{t+k} = E(Z_{t+k}|Z_t, Z_{t-1}, \cdots, Z_1)$$
 (1)

- Adotamos K=1.
- Denotamos erros de previsão por

$$e_{t+k} = Z_{t+k} - \hat{Z}_{t+k}$$
 (2)

- Modelos de previsão: retiram das observações passadas as informações sobre o padrão da série.
- Suponha uma série:

$$Z(t) = [z_1, z_2, z_3, \cdots, z_t]$$

$$\hat{Z}_{t+k} = E(Z_{t+k}|Z_t, Z_{t-1}, \cdots, Z_1)$$
 (1)

- Adotamos K=1.
- Denotamos erros de previsão por:

$$e_{t+k} = Z_{t+k} - \hat{Z}_{t+k} \tag{2}$$

- Naïve: $\hat{Z}_{t+1} = \hat{a}_t = Z_t$
- Média Global: $\hat{Z}_{t+1} = \hat{a}_t = \frac{Z_t + Z_{t-1} + \dots + Z_1}{4}$
- Média Móvel: $\hat{Z}_{t+1} = \hat{a}_t = M_t = \frac{Z_t + Z_{t-1} + \dots + Z_{t-N+1}}{N}$
- Amortecimento Exponencial Simples:

- Naïve: $\hat{Z}_{t+1} = \hat{a}_t = Z_t$
- Média Global: $\hat{Z}_{t+1} = \hat{a}_t = \frac{Z_t + Z_{t-1} + \dots + Z_1}{t}$
- Média Móvel: $\hat{Z}_{t+1} = \hat{a}_t = M_t = \frac{Z_t + Z_{t-1} + \dots + Z_{t-N+1}}{N}$
- Amortecimento Exponencial Simples:

• Naïve:
$$\hat{Z}_{t+1} = \hat{a}_t = Z_t$$

• Média Global:
$$\hat{Z}_{t+1} = \hat{a}_t = rac{Z_t + Z_{t-1} + \cdots + Z_1}{t}$$

• Média Móvel:
$$\hat{Z}_{t+1} = \hat{a}_t = M_t = \frac{Z_t + Z_{t-1} + \dots + Z_{t-N+1}}{N}$$

• Amortecimento Exponencial Simples: $\hat{Z}_{t+1} = \alpha Z_t + \alpha (1-\alpha) Z_{t-1} + \alpha (1-\alpha)^2 Z_{t-2} + \alpha (1-\alpha)^3 Z_{t-3} + \dots + \alpha (1-\alpha)^t Z_{t-2}$

- Naïve: $\hat{Z}_{t+1} = \hat{a}_t = Z_t$
- Média Global: $\hat{Z}_{t+1} = \hat{a}_t = \frac{Z_t + Z_{t-1} + \dots + Z_1}{t}$
- Média Móvel: $\hat{Z}_{t+1} = \hat{a}_t = M_t = rac{Z_t + Z_{t-1} + \cdots + Z_{t-N+1}}{N}$
- Amortecimento Exponencial Simples: $\hat{Z}_{t+1} = \alpha Z_t + \alpha (1-\alpha) Z_{t-1} + \alpha (1-\alpha)^2 Z_{t-2} + \alpha (1-\alpha)^3 Z_{t-3} + \dots + \alpha (1-\alpha)^t Z_{t-2}$

- Naïve: $\hat{Z}_{t+1} = \hat{a}_t = Z_t$
- Média Global: $\hat{Z}_{t+1} = \hat{a}_t = rac{Z_t + Z_{t-1} + \cdots + Z_1}{t}$
- Média Móvel: $\hat{Z}_{t+1} = \hat{a}_t = M_t = rac{Z_t + Z_{t-1} + \cdots + Z_{t-N+1}}{N}$
- Amortecimento Exponencial Simples: $\hat{Z}_{t+1} = \alpha Z_t + \alpha (1-\alpha) Z_{t-1} + \alpha (1-\alpha)^2 Z_{t-2} + \alpha (1-\alpha)^3 Z_{t-3} + \cdots + \alpha (1-\alpha)^t Z_1$

$$Z_{t+1} = \alpha Z_t + \alpha (1-\alpha) Z_{t-1} + \alpha (1-\alpha) Z_{t-2} + \alpha (1-\alpha) Z_{t-3} + \dots + \alpha (1-\alpha) Z_1$$

Amortecimento Exponencial de Holt

• Série com tendência linear: Amortecimento Exponencial de Holt.

$$Z_t = \mu_t + \varepsilon_t \tag{3}$$

$$\mu_t = a_t + b_t t \tag{4}$$

• Duas constantes de amortecimento: α e β , atualiza a média e a tendência respectivamente.

$$\hat{a}_t = \alpha Z_t + (1 - \alpha)(\hat{a}_{t-1} + \hat{b}_{t-1})$$
 (5)

$$b_t = \beta(\hat{a}_t - \hat{a}_{t-1}) + (1 - \beta)b_{t-1} \tag{6}$$

A previsão é dada por:

$$\hat{Z}_{t+1} = \hat{a}_t + \hat{b}_t$$

Amortecimento Exponencial de Holt

• Série com tendência linear: Amortecimento Exponencial de Holt.

$$Z_t = \mu_t + \varepsilon_t \tag{3}$$

$$\mu_t = a_t + b_t t \tag{4}$$

• Duas constantes de amortecimento: α e β , atualiza a média e a tendência respectivamente.

$$\hat{a}_t = \alpha Z_t + (1 - \alpha)(\hat{a}_{t-1} + \hat{b}_{t-1})$$
 (5)

$$\hat{b}_t = \beta(\hat{a}_t - \hat{a}_{t-1}) + (1 - \beta)\hat{b}_{t-1}$$
 (6)

A previsão é dada por:

$$\hat{Z}_{t+1} = \hat{a}_t + \hat{b}_t$$

Amortecimento Exponencial de Holt

• Série com tendência linear: Amortecimento Exponencial de Holt.

$$Z_t = \mu_t + \varepsilon_t \tag{3}$$

$$\mu_t = a_t + b_t t \tag{4}$$

• Duas constantes de amortecimento: α e β , atualiza a média e a tendência respectivamente.

$$\hat{a}_t = \alpha Z_t + (1 - \alpha)(\hat{a}_{t-1} + \hat{b}_{t-1})$$
 (5)

$$\hat{b}_t = \beta(\hat{a}_t - \hat{a}_{t-1}) + (1 - \beta)\hat{b}_{t-1}$$
 (6)

A previsão é dada por:

$$\hat{Z}_{t+1} = \hat{a}_t + \hat{b}_t$$

- Abordagem estatística: os modelos são controlados por leis probabilísticas;
- Conhecido por Metodologia de [Box e Jenkins, 1994], consiste em ajustar modelos autorregressivos (eq.7) ou de média móvel(eq.8);

$$Z_{t} = \xi + \phi_{1} Z_{t-1} + \phi_{2} Z_{t-2} + \dots + \phi_{p} Z_{t-p} + \varepsilon_{t}$$
 (7)

$$Z_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2} - \dots - \theta_q \varepsilon_{t-q}$$
 (8)

- Modela séries estacionárias ou não e sazonais ou não;
- A construção do modelo é feita de forma iterativa:
 - SARIMA):
 Especificação de uma classe geral de modelos (ARMA,ARIMA ou SARIMA):
 - Identificação da ordem do modelo com base na análise da Função de Autocorrelação (FAC) e da Função de Autocorrelação Parcial (FACP)
 - Estimação dos parâmetros do modelo identificado
 - Diagnóstico do modelo ajustado através da análise de resíduos.

<□ > <□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Abordagem estatística: os modelos são controlados por leis probabilísticas;
- Conhecido por Metodologia de [Box e Jenkins, 1994], consiste em ajustar modelos autorregressivos (eq.7) ou de média móvel(eq.8);

$$Z_{t} = \xi + \phi_{1} Z_{t-1} + \phi_{2} Z_{t-2} + \dots + \phi_{p} Z_{t-p} + \varepsilon_{t}$$
 (7)

$$Z_{t} = \mu + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \theta_{2}\varepsilon_{t-2} - \dots - \theta_{q}\varepsilon_{t-q}$$
 (8)

- Modela séries estacionárias ou não e sazonais ou não;
- A construção do modelo é feita de forma iterativa:
 - Especificação de uma classe geral de modelos (ARMA,ARIMA ou SARIMA);
 - Identificação da ordem do modelo com base na análise da Função de Autocorrelação (FAC) e da Função de Autocorrelação Parcial (FACP)
 - Estimação dos parâmetros do modelo identificado
 - Diagnóstico do modelo ajustado através da análise de resíduos

- Abordagem estatística: os modelos são controlados por leis probabilísticas;
- Conhecido por Metodologia de [Box e Jenkins, 1994], consiste em ajustar modelos autorregressivos (eq.7) ou de média móvel(eq.8);

$$Z_{t} = \xi + \phi_{1} Z_{t-1} + \phi_{2} Z_{t-2} + \dots + \phi_{p} Z_{t-p} + \varepsilon_{t}$$
 (7)

$$Z_{t} = \mu + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \theta_{2}\varepsilon_{t-2} - \dots - \theta_{q}\varepsilon_{t-q}$$
 (8)

- Modela séries estacionárias ou não e sazonais ou não;
- A construção do modelo é feita de forma iterativa:
 - Especificação de uma classe geral de modelos (ARMA,ARIMA ou SARIMA);
 - Identificação da ordem do modelo com base na análise da Função de Autocorrelação (FAC) e da Função de Autocorrelação Parcial (FACP)
 - Estimação dos parâmetros do modelo identificado
 - Diagnóstico do modelo ajustado através da análise de resíduos.

- Abordagem estatística: os modelos são controlados por leis probabilísticas;
- Conhecido por Metodologia de [Box e Jenkins, 1994], consiste em ajustar modelos autorregressivos (eq.7) ou de média móvel(eq.8);

$$Z_{t} = \xi + \phi_{1} Z_{t-1} + \phi_{2} Z_{t-2} + \dots + \phi_{p} Z_{t-p} + \varepsilon_{t}$$
 (7)

$$Z_{t} = \mu + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \theta_{2}\varepsilon_{t-2} - \dots - \theta_{q}\varepsilon_{t-q}$$
 (8)

- Modela séries estacionárias ou não e sazonais ou não;
- A construção do modelo é feita de forma iterativa:
 - Especificação de uma classe geral de modelos (ARMA,ARIMA ou SARIMA);
 - 2 Identificação da ordem do modelo com base na análise da Função de Autocorrelação (FAC) e da Função de Autocorrelação Parcial (FACP)
 - Estimação dos parâmetros do modelo identificado;
 - O Diagnóstico do modelo ajustado através da análise de resíduos.

- Abordagem estatística: os modelos são controlados por leis probabilísticas;
- Conhecido por Metodologia de [Box e Jenkins, 1994], consiste em ajustar modelos autorregressivos (eq.7) ou de média móvel(eq.8);

$$Z_{t} = \xi + \phi_{1} Z_{t-1} + \phi_{2} Z_{t-2} + \dots + \phi_{p} Z_{t-p} + \varepsilon_{t}$$
 (7)

$$Z_{t} = \mu + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \theta_{2}\varepsilon_{t-2} - \dots - \theta_{q}\varepsilon_{t-q}$$
 (8)

- Modela séries estacionárias ou não e sazonais ou não;
- A construção do modelo é feita de forma iterativa:
 - Especificação de uma classe geral de modelos (ARMA,ARIMA ou SARIMA);
 - ② Identificação da ordem do modelo com base na análise da Função de Autocorrelação (FAC) e da Função de Autocorrelação Parcial (FACP)
 - Estimação dos parâmetros do modelo identificado;
 - O Diagnóstico do modelo ajustado através da análise de resíduos.

- Abordagem estatística: os modelos são controlados por leis probabilísticas;
- Conhecido por Metodologia de [Box e Jenkins, 1994], consiste em ajustar modelos autorregressivos (eq.7) ou de média móvel(eq.8);

$$Z_{t} = \xi + \phi_{1} Z_{t-1} + \phi_{2} Z_{t-2} + \dots + \phi_{p} Z_{t-p} + \varepsilon_{t}$$
 (7)

$$Z_{t} = \mu + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \theta_{2}\varepsilon_{t-2} - \dots - \theta_{q}\varepsilon_{t-q}$$
 (8)

- Modela séries estacionárias ou não e sazonais ou não;
- A construção do modelo é feita de forma iterativa:
 - Especificação de uma classe geral de modelos (ARMA,ARIMA ou SARIMA);
 - ② Identificação da ordem do modelo com base na análise da Função de Autocorrelação (FAC) e da Função de Autocorrelação Parcial (FACP);
 - Estimação dos parâmetros do modelo identificado;
 - Oiagnóstico do modelo ajustado através da análise de resíduos.

- Abordagem estatística: os modelos são controlados por leis probabilísticas;
- Conhecido por Metodologia de [Box e Jenkins, 1994], consiste em ajustar modelos autorregressivos (eq.7) ou de média móvel(eq.8);

$$Z_{t} = \xi + \phi_{1} Z_{t-1} + \phi_{2} Z_{t-2} + \dots + \phi_{p} Z_{t-p} + \varepsilon_{t}$$
 (7)

$$Z_{t} = \mu + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \theta_{2}\varepsilon_{t-2} - \dots - \theta_{q}\varepsilon_{t-q}$$
 (8)

- Modela séries estacionárias ou não e sazonais ou não;
- A construção do modelo é feita de forma iterativa:
 - Especificação de uma classe geral de modelos (ARMA,ARIMA ou SARIMA);
 - Identificação da ordem do modelo com base na análise da Função de Autocorrelação (FAC) e da Função de Autocorrelação Parcial (FACP);
 - Stimação dos parâmetros do modelo identificado;
 - O Diagnóstico do modelo ajustado através da análise de resíduos.

- Abordagem estatística: os modelos são controlados por leis probabilísticas;
- Conhecido por Metodologia de [Box e Jenkins, 1994], consiste em ajustar modelos autorregressivos (eq.7) ou de média móvel(eq.8);

$$Z_{t} = \xi + \phi_{1} Z_{t-1} + \phi_{2} Z_{t-2} + \dots + \phi_{p} Z_{t-p} + \varepsilon_{t}$$
 (7)

$$Z_{t} = \mu + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \theta_{2}\varepsilon_{t-2} - \dots - \theta_{q}\varepsilon_{t-q}$$
 (8)

- Modela séries estacionárias ou não e sazonais ou não;
- A construção do modelo é feita de forma iterativa:
 - Especificação de uma classe geral de modelos (ARMA,ARIMA ou SARIMA);
 - Identificação da ordem do modelo com base na análise da Função de Autocorrelação (FAC) e da Função de Autocorrelação Parcial (FACP);
 - Stimação dos parâmetros do modelo identificado;
 - Diagnóstico do modelo ajustado através da análise de resíduos.

Se a série é não-estacionária é necessário torná-la estacionária através de diferenciação.

A tabela a seguir resume como se faz a identificação dos modelos ARMA.

Tabela: Padrões teóricos da FAC e FACP para modelos ARMA

		Há p barras, de $k = 1$ a $k = p$
MA(q)	Há q barras, de $k=1$ a $k=q$	
	Sequencia infinita de barras, domindaa por exponenciais ou senóides amortecidas, para $k > p - q$	Sequancia infinita de barras, dominada por exponenciais ou senóides amortecidas, para $k > p - q$

Se a série é não-estacionária é necessário torná-la estacionária através de diferenciação.

A tabela a seguir resume como se faz a identificação dos modelos ARMA.

Tabela: Padrões teóricos da FAC e FACP para modelos ARMA

		Há p barras, de $k = 1$ a $k = p$
MA(q)	Há q barras, de $k=1$ a $k=q$	
	Sequencia infinita de barras, domindaa por exponenciais ou senóides amortecidas, para $k > p - q$	Sequancia infinita de barras, dominada por exponenciais ou senóides amortecidas, para $k > p - q$

Se a série é não-estacionária é necessário torná-la estacionária através de diferenciação.

A tabela a seguir resume como se faz a identificação dos modelos ARMA.

Tabela: Padrões teóricos da FAC e FACP para modelos ARMA

	FAC	FACP
AR(p)	Barras decaem exponencialmente ou em	Há p barras, de $k = 1$ a $k = p$
	forma de senóide amortecida	
MA(q)	Há q barras, de $k = 1$ a $k = q$	Barras decaem exponencialmente ou em
		forma de senóide amortecida
ARMA(p,q)	Sequencia infinita de barras, domindaa	Sequancia infinita de barras, dominada
	por exponenciais ou senóides	por exponenciais ou senóides
	amortecidas, para $k > p - q$	amortecidas, para $k > p - q$

- Nos Modelos Estruturais a suposição de estacionariedade não é necessária, pois eles conseguem modelar séries que possuem componentes fixos ou aleatórios ao longo do tempo [Morettin e Toloi, 2006];
- São facilmente interretáveis;
- A previsão é feita por uma atualização sequencial de estimativas iniciais, usando o filtro de Kalman;
- Todo modelo linear de séries temporais pode ser representado por equações de espaço de estados:

$$Z_t = FX_t + \nu_t \tag{9}$$

$$X_t = GX_{t-1} + v_t \tag{10}$$

- Nos Modelos Estruturais a suposição de estacionariedade não é necessária, pois eles conseguem modelar séries que possuem componentes fixos ou aleatórios ao longo do tempo [Morettin e Toloi, 2006];
- São facilmente interretáveis;
- A previsão é feita por uma atualização sequencial de estimativas iniciais, usando o filtro de Kalman;
- Todo modelo linear de séries temporais pode ser representado por equações de espaço de estados:

$$Z_t = FX_t + \nu_t \tag{9}$$

$$X_t = GX_{t-1} + v_t \tag{10}$$

- Nos Modelos Estruturais a suposição de estacionariedade não é necessária, pois eles conseguem modelar séries que possuem componentes fixos ou aleatórios ao longo do tempo [Morettin e Toloi, 2006];
- São facilmente interretáveis;
- A previsão é feita por uma atualização sequencial de estimativas iniciais, usando o filtro de Kalman;
- Todo modelo linear de séries temporais pode ser representado por equações de espaço de estados:

$$Z_t = FX_t + \nu_t \tag{9}$$

$$X_t = GX_{t-1} + v_t \tag{10}$$

- Nos Modelos Estruturais a suposição de estacionariedade não é necessária, pois eles conseguem modelar séries que possuem componentes fixos ou aleatórios ao longo do tempo [Morettin e Toloi, 2006];
- São facilmente interretáveis;
- A previsão é feita por uma atualização sequencial de estimativas iniciais, usando o filtro de Kalman;
- Todo modelo linear de séries temporais pode ser representado por equações de espaço de estados:

$$Z_t = FX_t + \nu_t \tag{9}$$

$$X_t = GX_{t-1} + v_t \tag{10}$$

Os principais modelos estruturais em séries temporais são:

Modelo de Nível Local;

$$Z_t = \mu_t + \varepsilon_t \tag{11}$$

$$\mu_t = \mu_{t-1} + \eta_t \tag{12}$$

Modelo de Tendência Local;

$$Z_t = \mu_t + \varepsilon_t \tag{13}$$

$$\mu_t = \mu_{t-1} + \beta_{t-1} + \eta_t \tag{14}$$

$$\beta_t = \beta_{t-1} + \xi_t \tag{15}$$

• Modelo de Tendência Local e Componente Sazonal.

$$Z_t = \mu_t + S_t + \varepsilon_t \tag{16}$$

Os principais modelos estruturais em séries temporais são:

Modelo de Nível Local;

$$Z_t = \mu_t + \varepsilon_t \tag{11}$$

$$\mu_t = \mu_{t-1} + \eta_t \tag{12}$$

Modelo de Tendência Local;

$$Z_t = \mu_t + \varepsilon_t \tag{13}$$

$$\mu_t = \mu_{t-1} + \beta_{t-1} + \eta_t \tag{14}$$

$$\beta_t = \beta_{t-1} + \xi_t \tag{15}$$

Modelo de Tendência Local e Componente Sazonal.

$$Z_t = \mu_t + S_t + \varepsilon_t \tag{16}$$

Os principais modelos estruturais em séries temporais são:

Modelo de Nível Local;

$$Z_t = \mu_t + \varepsilon_t \tag{11}$$

$$\mu_t = \mu_{t-1} + \eta_t \tag{12}$$

Modelo de Tendência Local;

$$Z_t = \mu_t + \varepsilon_t \tag{13}$$

$$\mu_t = \mu_{t-1} + \beta_{t-1} + \eta_t \tag{14}$$

$$\beta_t = \beta_{t-1} + \xi_t \tag{15}$$

Modelo de Tendência Local e Componente Sazonal.

$$Z_t = \mu_t + S_t + \varepsilon_t \tag{16}$$

Os principais modelos estruturais em séries temporais são:

Modelo de Nível Local;

$$Z_t = \mu_t + \varepsilon_t \tag{11}$$

$$\mu_t = \mu_{t-1} + \eta_t \tag{12}$$

Modelo de Tendência Local;

$$Z_t = \mu_t + \varepsilon_t \tag{13}$$

$$\mu_t = \mu_{t-1} + \beta_{t-1} + \eta_t \tag{14}$$

$$\beta_t = \beta_{t-1} + \xi_t \tag{15}$$

Modelo de Tendência Local e Componente Sazonal.

$$Z_t = \mu_t + S_t + \varepsilon_t \tag{16}$$

- É desejável que se tenha uma diversidade entre as previsões individuais, o que garante que um método compensa a fraqueza de outro;
- Essa diversidade por si só não é a chave para uma ótima combinação de previsão;
- A precisão da previsão individual também é muito importante para se obter um melhor resultado;
- A forma padrão de se olhar para a diversidade de um conjunto de métodos de previsão é examinar os coeficientes de correlação entre as previsões.

- É desejável que se tenha uma diversidade entre as previsões individuais, o que garante que um método compensa a fraqueza de outro;
- Essa diversidade por si só não é a chave para uma ótima combinação de previsão;
- A precisão da previsão individual também é muito importante para se obter um melhor resultado;
- A forma padrão de se olhar para a diversidade de um conjunto de métodos de previsão é examinar os coeficientes de correlação entre as previsões.

- É desejável que se tenha uma diversidade entre as previsões individuais, o que garante que um método compensa a fraqueza de outro;
- Essa diversidade por si só não é a chave para uma ótima combinação de previsão;
- A precisão da previsão individual também é muito importante para se obter um melhor resultado;
- A forma padrão de se olhar para a diversidade de um conjunto de métodos de previsão é examinar os coeficientes de correlação entre as previsões.

- É desejável que se tenha uma diversidade entre as previsões individuais, o que garante que um método compensa a fraqueza de outro;
- Essa diversidade por si só não é a chave para uma ótima combinação de previsão;
- A precisão da previsão individual também é muito importante para se obter um melhor resultado;
- A forma padrão de se olhar para a diversidade de um conjunto de métodos de previsão é examinar os coeficientes de correlação entre as previsões.

- É desejável que se tenha uma diversidade entre as previsões individuais, o que garante que um método compensa a fraqueza de outro;
- Essa diversidade por si só não é a chave para uma ótima combinação de previsão;
- A precisão da previsão individual também é muito importante para se obter um melhor resultado;
- A forma padrão de se olhar para a diversidade de um conjunto de métodos de previsão é examinar os coeficientes de correlação entre as previsões.

Para [Zou e Yang, 2004] a idéia é que:

- Quando há muita incerteza em encontrar o melhor modelo, combinando pode reduzir a instabilidade da previsão;
- E portanto, melhorar a precisão da previsão.

- Do erro de variância das previsões,
- Da correlação entre os erros de previsão e,
- Da amostra de dados do passado utilizados para a estimativa.

Para [Zou e Yang, 2004] a idéia é que:

- Quando há muita incerteza em encontrar o melhor modelo, combinando pode reduzir a instabilidade da previsão;
- E portanto, melhorar a precisão da previsão.

- Do erro de variância das previsões.
- Da correlação entre os erros de previsão e,
- Da amostra de dados do passado utilizados para a estimativa.

Para [Zou e Yang, 2004] a idéia é que:

- Quando há muita incerteza em encontrar o melhor modelo, combinando pode reduzir a instabilidade da previsão;
- E portanto, melhorar a precisão da previsão.

- Do erro de variância das previsões
- Da correlação entre os erros de previsão e,
- Da amostra de dados do passado utilizados para a estimativa.

Para [Zou e Yang, 2004] a idéia é que:

- Quando há muita incerteza em encontrar o melhor modelo, combinando pode reduzir a instabilidade da previsão;
- E portanto, melhorar a precisão da previsão.

- Do erro de variância das previsões,
- Da correlação entre os erros de previsão e,
- Da amostra de dados do passado utilizados para a estimativa.

Para [Zou e Yang, 2004] a idéia é que:

- Quando há muita incerteza em encontrar o melhor modelo, combinando pode reduzir a instabilidade da previsão;
- E portanto, melhorar a precisão da previsão.

- Do erro de variância das previsões,
- Da correlação entre os erros de previsão e,
- Da amostra de dados do passado utilizados para a estimativa.

Para [Zou e Yang, 2004] a idéia é que:

- Quando há muita incerteza em encontrar o melhor modelo, combinando pode reduzir a instabilidade da previsão;
- E portanto, melhorar a precisão da previsão.

- Do erro de variância das previsões,
- Da correlação entre os erros de previsão e,
- Da amostra de dados do passado utilizados para a estimativa.

Para [Zou e Yang, 2004] a idéia é que:

- Quando há muita incerteza em encontrar o melhor modelo, combinando pode reduzir a instabilidade da previsão;
- E portanto, melhorar a precisão da previsão.

- Do erro de variância das previsões,
- Da correlação entre os erros de previsão e,
- Da amostra de dados do passado utilizados para a estimativa.

É comum verificar a adequação do modelo através dos erros de previsão. A tabela abaixo apresenta algumas dessas medidas.

- Influencia dos valores iniciais de alguns modelos: A parte inicial das séries de erros será desprezada, quando do cálculo das medidas [Morettin e Toloi, 2006];
- 🌘 A parte central da série de erros é usada para a otimização dos parâmetros do modelc
- E indicado a separação dos últimos valores da série temporal para a comparação de modelos.

É comum verificar a adequação do modelo através dos erros de previsão. A tabela abaixo apresenta algumas dessas medidas.

- Influencia dos valores iniciais de alguns modelos: A parte inicial das séries de erros será desprezada, quando do cálculo das medidas [Morettin e Toloi, 2006];
- A parte central da série de erros é usada para a otimização dos parâmetros do modelo;
- É indicado a separação dos últimos valores da série temporal para a comparação de modelos.

Erro Médio: (Mean Error,ME)=	
Erro Médio Absoluto: (Mean Absolute Error,MAE)=	
${\bf Erro\ Percentual\ M\'edio:\ \ (Mean\ Percent\ Error, MPE)} =$	
Erro Absoluto Percentual Médio: (Mean Absolute Percent Error,MAPE) =	
${\bf Erro~Quadrático~M\'edio:}~~({\sf Mean~square~Error}, {\sf MSE}) =$	

É comum verificar a adequação do modelo através dos erros de previsão. A tabela abaixo apresenta algumas dessas medidas.

- Influencia dos valores iniciais de alguns modelos: A parte inicial das séries de erros será desprezada, quando do cálculo das medidas [Morettin e Toloi, 2006];
- A parte central da série de erros é usada para a otimização dos parâmetros do modelo;
- É indicado a separação dos últimos valores da série temporal para a comparação de modelos

Erro Médio: (Mean Error,ME)=	
Erro Médio Absoluto: (Mean Absolute Error,MAE)=	
$\textbf{Erro Percentual M\'edio:} \ \ (\textbf{Mean Percent Error}, \textbf{MPE}) =$	
$\textbf{Erro Absoluto Percentual M\'edio: (Mean Absolute Percent Error, MAPE)} =$	
${\bf Erro~Quadr\'atico~M\'edio:}~~({\sf Mean~square~Error},{\sf MSE}) =$	

É comum verificar a adequação do modelo através dos erros de previsão. A tabela abaixo apresenta algumas dessas medidas.

- Influencia dos valores iniciais de alguns modelos: A parte inicial das séries de erros será desprezada, quando do cálculo das medidas [Morettin e Toloi, 2006];
- A parte central da série de erros é usada para a otimização dos parâmetros do modelo;
- É indicado a separação dos últimos valores da série temporal para a comparação de modelos.

Erro Médio: (Mean Error,ME)=	
$\textbf{Erro M\'edio Absoluto:} \ (Mean Absolute Error, MAE) =$	
${\bf Erro\ Percentual\ M\'edio:\ \ (Mean\ Percent\ Error, MPE)} =$	
Erro Absoluto Percentual Médio: (Mean Absolute Percent Error,MAPE) =	

2.4 Medidas de Erros

É comum verificar a adequação do modelo através dos erros de previsão. A tabela abaixo apresenta algumas dessas medidas.

- Influencia dos valores iniciais de alguns modelos: A parte inicial das séries de erros será desprezada, quando do cálculo das medidas [Morettin e Toloi, 2006];
- A parte central da série de erros é usada para a otimização dos parâmetros do modelo;
- É indicado a separação dos últimos valores da série temporal para a comparação de modelos.

Tabela: Medidas de Erros de Previsão

Erro Médio: (Mean Error,ME)=	$\frac{1}{N}\sum_{i=1}^{N}e_{t}$
Erro Médio Absoluto: (Mean Absolute Error,MAE)=	$\frac{1}{N}\sum_{i=1}^{N} e_t $
$\textbf{Erro Percentual M\'edio:} \text{(Mean Percent Error,MPE)} =$	$\frac{100}{N} \sum_{i=1}^{N} \left(\frac{e_t}{Z_t} \right)$
$\textbf{Erro Absoluto Percentual M\'edio: (Mean Absolute Percent Error, MAPE)} =$	$\frac{100}{N} \sum_{i=1}^{N} \left \left(\frac{e_t}{Z_t} \right) \right $
Erro Quadrático Médio: (Mean square Error, MSE) =	$\frac{1}{N} \sum_{i=1}^{N} e_t^2$

3.METODOLOGIA

Objetivo: Verificar se a combinação de previsões é capaz de melhorar a precisão das previsões feitas por diferentes métodos.

Fizemos previsões individuais por três modelos, em seguida vários tipos de combinações com essas previsões, e por fim, uma comparação do Erro Quadrático Médio (MSE) das previsões de cada modelo e cada combinação.

Previsões individuais

- Amortecimento exponencial de Holt;
- Modelos ARIMA:
- Modelos estruturais de tendência local

3.METODOLOGIA

Objetivo: Verificar se a combinação de previsões é capaz de melhorar a precisão das previsões feitas por diferentes métodos.

Fizemos previsões individuais por três modelos, em seguida vários tipos de combinações com essas previsões, e por fim, uma comparação do Erro Quadrático Médio (MSE) das previsões de cada modelo e cada combinação.

Previsões individuais

- Amortecimento exponencial de Holt;
- Modelos ARIMA;
- Modelos estruturais de tendência local.

3.METODOLOGIA

Objetivo: Verificar se a combinação de previsões é capaz de melhorar a precisão das previsões feitas por diferentes métodos.

Fizemos previsões individuais por três modelos, em seguida vários tipos de combinações com essas previsões, e por fim, uma comparação do Erro Quadrático Médio (MSE) das previsões de cada modelo e cada combinação.

Previsões individuais

- 4 Amortecimento exponencial de Holt;
- Modelos ARIMA;
- Modelos estruturais de tendência local.

- Média Simples
- Mediana
- Média dos Extremos
- Regressão: Esta combinação usa as previsões individuais como variáveis regressoras para explicar a variabilidade da série temporal Z_t.
- Otima: Estudada por Bates [Menezes et al., 2000], consiste em uma média ponderada pela covariância dos erros de previsão, em que os pesos são dados por

$$\omega = \frac{\mathsf{S}^{-1}1}{\mathsf{1}^t\mathsf{S}^{-1}1} \tag{17}$$

Onde S é a matriz de correlação dos erros de previsão e 1 é uma vetor unitário.

- Média Simples
- Mediana
- Média dos Extremos
- Regressão: Esta combinação usa as previsões individuais como variáveis regressoras para explicar a variabilidade da série temporal Z_t.
- Ótima: Estudada por Bates [Menezes et al., 2000], consiste em uma média ponderada pela covariância dos erros de previsão, em que os pesos são dados por

$$\omega = \frac{\mathbf{S}^{-1}\mathbf{1}}{\mathbf{1}^{\mathsf{t}}\mathbf{S}^{-1}\mathbf{1}} \tag{17}$$

Onde **S** é a matriz de correlação dos erros de previsão e **1** é uma vetor unitário.

- Média Simples
- Mediana
- Média dos Extremos
- Regressão: Esta combinação usa as previsões individuais como variáveis regressoras para explicar a variabilidade da série temporal Z_t.
- Ótima: Estudada por Bates [Menezes et al., 2000], consiste em uma média ponderada pela covariância dos erros de previsão, em que os pesos são dados por

$$\omega = \frac{\mathbf{S}^{-1}\mathbf{1}}{\mathbf{1}^{\mathsf{t}}\mathbf{S}^{-1}\mathbf{1}} \tag{17}$$

Onde **S** é a matriz de correlação dos erros de previsão e **1** é uma vetor unitário.

- Média Simples
- Mediana
- Média dos Extremos
- Regressão: Esta combinação usa as previsões individuais como variáveis regressoras para explicar a variabilidade da série temporal Z_t.
- Ótima: Estudada por Bates [Menezes et al., 2000], consiste em uma média ponderada pela covariância dos erros de previsão, em que os pesos são dados por

$$\omega = \frac{\mathbf{S}^{-1}\mathbf{1}}{\mathbf{1}^{\mathsf{t}}\mathbf{S}^{-1}\mathbf{1}} \tag{17}$$

Onde **S** é a matriz de correlação dos erros de previsão e **1** é uma vetor unitário.

- Média Simples
- Mediana
- Média dos Extremos
- Regressão: Esta combinação usa as previsões individuais como variáveis regressoras para explicar a variabilidade da série temporal Z_t .
- Otima: Estudada por Bates [Menezes et al., 2000], consiste em uma média ponderada pela covariância dos erros de previsão, em que os pesos são dados por

$$\omega = \frac{\mathbf{S}^{-1}\mathbf{1}}{\mathbf{1}^{t}\mathbf{S}^{-1}\mathbf{1}} \tag{17}$$

Onde **S** é a matriz de correlação dos erros de previsão e **1** é uma vetor unitário.

- Média Simples
- Mediana
- Média dos Extremos
- Regressão: Esta combinação usa as previsões individuais como variáveis regressoras para explicar a variabilidade da série temporal Z_t .
- Otima: Estudada por Bates [Menezes et al., 2000], consiste em uma média ponderada pela covariância dos erros de previsão, em que os pesos são dados por:

$$\omega = \frac{\mathsf{S}^{-1}\mathsf{1}}{\mathsf{1}^t\mathsf{S}^{-1}\mathsf{1}}\tag{17}$$

Onde ${\bf S}$ é a matriz de correlação dos erros de previsão e ${\bf 1}$ é uma vetor unitário.

- Média Simples
- Mediana
- Média dos Extremos
- Regressão: Esta combinação usa as previsões individuais como variáveis regressoras para explicar a variabilidade da série temporal Z_t .
- Otima: Estudada por Bates [Menezes et al., 2000], consiste em uma média ponderada pela covariância dos erros de previsão, em que os pesos são dados por:

$$\omega = \frac{\mathsf{S}^{-1}\mathsf{1}}{\mathsf{1}^t\mathsf{S}^{-1}\mathsf{1}}\tag{17}$$

Onde ${\bf S}$ é a matriz de correlação dos erros de previsão e ${\bf 1}$ é uma vetor unitário.

- Com cerca de 100 observações;
- Que n\u00e3o possuem sazonalidade;
- Que n\u00e3o possuem quebra estrutural (mudan\u00a\u00e3a brusca do n\u00edvel da s\u00e9rie).

As séries de 1 a 9 estão disponíveis em [Hyndman, 2011]:

- Série Cow
- Série Buffsnow
- Série Calfem
- Série DowJones
- Série Globtp
- Série Huror
- Série Sheep
- Série Summer
- Série Ausgundeaths
- Série Carga

- Com cerca de 100 observações;
- Que não possuem sazonalidade;
- Que n\u00e3o possuem quebra estrutural (mudan\u00a\u00e3a brusca do n\u00eavel da s\u00e9rie).

As séries de 1 a 9 estão disponíveis em [Hyndman, 2011]

- Série Cow
- 2 Série Buffsnow
- Série Calfem
- Série Dow Jones
- Série Globtp
- Série Huror
- Série Sheep
- Série Summer
- Série Ausgundeaths
- Série Carga

- Com cerca de 100 observações;
- Que não possuem sazonalidade;
- Que não possuem quebra estrutural (mudança brusca do nível da série).

As séries de 1 a 9 estão disponíveis em [Hyndman, 2011]:

- Série Cow
- Série Buffsnow
- Série Calfem
- Série DowJones
- Série Globtp
- Série Huron
- Série Sheep
- Série Summer
- Série Ausgundeaths
- Série Carga

- Com cerca de 100 observações;
- Que não possuem sazonalidade;
- Que n\u00e3o possuem quebra estrutural (mudan\u00e7a brusca do n\u00edvel da s\u00e9rie).

As séries de 1 a 9 estão disponíveis em [Hyndman, 2011]:

- Série Cow
- Série Buffsnow
- Série Calfem
- Série DowJones
- Série Globtp
- Série Huron
- Série Sheep
- Série Summer
- Série Ausgundeaths
- Série Carga

Para as análises e previsões usamos software livre R (versão 2.13).

Partição das séries

*Série de estimação:*A partição contendo 80% da série de erros, utilizada para a estimação dos parâmetros dos modelos.

Série de teste: A segunda partição, contendo os últimos 20% da série de erros, utilizada para a compração entre os modelos.

Importante!

Os primeiros 20% não foram usados para o cálculo das mediadas de erros de previsão, de forma a evitar a influência dos valores iniciais atribuídos em cada modelo.

Para as análises e previsões usamos software livre R (versão 2.13).

Partição das séries:

Série de estimação: A partição contendo 80% da série de erros, utilizada para a estimação dos parâmetros dos modelos.

Série de teste: A segunda partição, contendo os últimos 20% da série de erros, utilizada para a compração entre os modelos.

Importante!

Os primeiros 20% não foram usados para o cálculo das mediadas de erros de previsão, de forma a evitar a influência dos valores iniciais atribuídos em cada modelo.

Para as análises e previsões usamos software livre R (versão 2.13).

Partição das séries:

Série de estimação: A partição contendo 80% da série de erros, utilizada para a estimação dos parâmetros dos modelos.

Série de teste: A segunda partição, contendo os últimos 20% da série de erros, utilizada para a compração entre os modelos.

Importante!!

Os primeiros 20% não foram usados para o cálculo das mediadas de erros de previsão, de forma a evitar a influência dos valores iniciais atribuídos em cada modelo.

4.RESULTADOS

Total de 90 modelos de previsão:

- Análise Descritiva;
- Modelos de Previsão Individual;
- Ombinações de Previsões;
- Comparação entre os modelos;

4.1 Análise Descritiva

Série Huron

- Estacionária
- AR(2)

Figura: Gráfico de linha, FAC e FACP da série Huron

Série DowJones

- Decaimento lento da FAC;
- Variação na média;
- Não-Estacionária.

Figura: Gráfico de linha, FAC e FACP da série DowJones

Ao diferenciá-la temos uma série estacionária.

Tabela: Parâmetros otimizados do modelo AEH

Modelo\Sér	ie Cow	Buff.	Calf.	DowJ.	Globtp	Huron	Sheep	Sum.	Ausg.	Carga
MSE	52,674	510,568	56,813	0,1944	0,015	0,606	6309	0,9502	0,621	3,632
α	0,05	0,35	0,15	0,95	0,25	0,95	0,95	0,2	0,95	0,55
β	0,15	0,2	0,05	0,2	0,05	0,05	0,95	0,05	0,1	0,15

- Algumas séries possuem a constante α próxima de 1;
- Consequentemente, previsões com pouca precisão
- Série Sheep: As duas constantes próximas de 1.

Tabela: Parâmetros otimizados do modelo AEH

Modelo\Sér	ie Cow	Buff.	Calf.	DowJ.	Globtp	Huron	Sheep	Sum.	Ausg.	Carga
MSE	52,674	510,568	56,813	0,1944	0,015	0,606	6309	0,9502	0,621	3,632
α	0,05	0,35	0,15	0,95	0,25	0,95	0,95	0,2	0,95	0,55
β	0,15	0,2	0,05	0,2	0,05	0,05	0,95	0,05	0,1	0,15

- Algumas séries possuem a constante α próxima de 1;
- Consequentemente, previsões com pouca precisão
- Série Sheep: As duas constantes próximas de 1.

Tabela: Parâmetros otimizados do modelo AEH

Modelo\Sér	e Cow	Buff.	Calf.	DowJ.	Globtp	Huron	Sheep	Sum.	Ausg.	Carga
MSE	52,674	510,568	56,813	0,1944	0,015	0,606	6309	0,9502	0,621	3,632
α	0,05	0,35	0,15	0,95	0,25	0,95	0,95	0,2	0,95	0,55
β	0,15	0,2	0,05	0,2	0,05	0,05	0,95	0,05	0,1	0,15

- Algumas séries possuem a constante α próxima de 1;
- Consequentemente, previsões com pouca precisão;
- Série Sheep: As duas constantes próximas de 1.

Tabela: Parâmetros otimizados do modelo AEH

Modelo\Sér	e Cow	Buff.	Calf.	DowJ.	Globtp	Huron	Sheep	Sum.	Ausg.	Carga
MSE	52,674	510,568	56,813	0,1944	0,015	0,606	6309	0,9502	0,621	3,632
α	0,05	0,35	0,15	0,95	0,25	0,95	0,95	0,2	0,95	0,55
β	0,15	0,2	0,05	0,2	0,05	0,05	0,95	0,05	0,1	0,15

- Algumas séries possuem a constante α próxima de 1;
- Consequentemente, previsões com pouca precisão;
- Série Sheep: As duas constantes próximas de 1.

- Ajustamos vários modelos ARIMA co diferentes ordens;
- Escolhemos o modelo ARIMA pelo MSE;
- Verificamos os pressupostos dos modelos, ao nível de significância de 1%:

```
Média nula (testes t),
Normalidade(teste de Lilliefors),
Descorrelação dos erros (teste de Durbin Watson)
```

Não adotamos AIC.

- Ajustamos vários modelos ARIMA co diferentes ordens;
- Escolhemos o modelo ARIMA pelo MSE;
- Verificamos os pressupostos dos modelos, ao nível de significância de 1%:

```
Média nula (testes t),
Normalidade(teste de Lilliefors),
Descorrelação dos erros (teste de Durbin Watson)
```

Não adotamos AIC.

- Ajustamos vários modelos ARIMA co diferentes ordens;
- Escolhemos o modelo ARIMA pelo MSE;
- Verificamos os pressupostos dos modelos, ao nível de significância de 1%:

```
Média nula (testes t),
Normalidade(teste de Lilliefors),
Descorrelação dos erros (teste de Durbin Watson).
```

Não adotamos AIC.

- Ajustamos vários modelos ARIMA co diferentes ordens;
- Escolhemos o modelo ARIMA pelo MSE;
- Verificamos os pressupostos dos modelos, ao nível de significância de 1%:

```
Média nula (testes t),
Normalidade(teste de Lilliefors),
Descorrelação dos erros (teste de Durbin Watson).
```

Não adotamos AIC.

- Ajustamos vários modelos ARIMA co diferentes ordens;
- Escolhemos o modelo ARIMA pelo MSE;
- Verificamos os pressupostos dos modelos, ao nível de significância de 1%:

```
Média nula (testes t),
Normalidade(teste de Lilliefors),
Descorrelação dos erros (teste de Durbin Watson).
```

Não adotamos AIC.

Tabela: Modelos ARIMA

Série	Modelo	MSE	AIC	DW	Т	LT
Cow	ARIMA(1,0,2)	52,602	435,8951	1,7951	0,1749	0,7962
Buffsnow	ARIMA(1,0,1)	430,3222	469,2364	1,8501	0,9929	0,2553
Calfem	ARIMA(0,0,0)	50,5278	656,4667	1,7741	0,9902	0,1314
DowJones	ARIMA(1,1,2)	0,1776	64,0239	1,8354	0,1498	0,71
Globtp	ARIMA(1,1,1)	0,0137	-113,4217	1,8573	0,4773	0,4384
Huron	ARIMA(2,0,0)	0,4703	168,9344	1,8416	0,2821	0,9007
Sheep	ARIMA(2,1,1)	3741,705	661,0407	2,0568	0,2402	0,1995
Summer	ARIMA(1,0,0)	0,781	217,0226	1,9406	0,4476	0,1971
Ausgundeaths	ARIMA(1,1,1)	0,5440	167,315	1,8408	0,9445	0,0039
Carga	ARIMA(0,1,1)	3,5005	293,6501	2,2548	0,6474	0,4044

- Os parâmetros são atualizados a cada instante pelo Filtro de Kalman;
- Otimizamos os valores iniciais das variâncias

Tabela: Variâncias dos Modelos Estruturais

- Maior variabilidade se encontra no erro ε na maioria das séries
- As séries DowJones e Sheep: maior variabilidade está no erro ξ referente à tendência.

- Os parâmetros são atualizados a cada instante pelo Filtro de Kalman;
- Otimizamos os valores iniciais das variâncias

Tabela: Variâncias dos Modelos Estruturais

- Maior variabilidade se encontra no erro ε na maioria das séries
- As séries DowJones e Sheep: maior variabilidade está no erro ξ referente à tendência.

- Os parâmetros são atualizados a cada instante pelo Filtro de Kalman;
- Otimizamos os valores iniciais das variâncias;

Tabela: Variâncias dos Modelos Estruturais

Série	MSE			
Cow	65,7497	100,0100	1,0	1,87
Buff.	516,7902	120,6770	1,0	8,2350
Calf.	58,3130	100,0234	1,0	
DowJ.	0,2330	10,0808	10,0	
Globtp	0,0167	200,00	10,00	
Huron	0,9743	100,0241	10,0	
Sheep 6		1,2373e-6	1,0	100,7050
Sum.		100,0078	1,0	02148
Ausg.		95,7015	1,0	42,0210
Carga	3,7224	99,7167	15	12,5810

- Maior variabilidade se encontra no erro ε na maioria das séries
- As séries DowJones e Sheep: maior variabilidade está no erro ξ referente à tendência.

- Os parâmetros são atualizados a cada instante pelo Filtro de Kalman;
- Otimizamos os valores iniciais das variâncias;

Tabela: Variâncias dos Modelos Estruturais

Série	MSE	$\sigma_{arepsilon}$	σ_{η}	σ_{ξ}
Cow	65,7497	100,0100	1,0	1,87
Buff.	516,7902	120,6770	1,0	8,2350
Calf.	58,3130	100,0234	1,0	0,2020
DowJ.	0,2330	10,0808	10,0	99,9920
Globtp	0,0167	200,00	10,00	9,9840
Huron	0,9743	100,0241	10,0	9,7560
Sheep	6092,0890	1,2373e-6	1,0	100,7050
Sum.	0,9028	100,0078	1,0	02148
Ausg.	0,7648	95,7015	1,0	42,0210
Carga	3,7224	99,7167	15	12,5810

- Maior variabilidade se encontra no erro ε na maioria das séries;
- As séries DowJones e Sheep: maior variabilidade está no erro ξ referente à tendência

- Os parâmetros são atualizados a cada instante pelo Filtro de Kalman;
- Otimizamos os valores iniciais das variâncias;

Tabela: Variâncias dos Modelos Estruturais

Série	MSE	$\sigma_{arepsilon}$	σ_{η}	σ_{ξ}
Cow	65,7497	100,0100	1,0	1,87
Buff.	516,7902	120,6770	1,0	8,2350
Calf.	58,3130	100,0234	1,0	0,2020
DowJ.	0,2330	10,0808	10,0	99,9920
Globtp	0,0167	200,00	10,00	9,9840
Huron	0,9743	100,0241	10,0	9,7560
Sheep	6092,0890	1,2373e-6	1,0	100,7050
Sum.	0,9028	100,0078	1,0	02148
Ausg.	0,7648	95,7015	1,0	42,0210
Carga	3,7224	99,7167	15	12,5810

- Maior variabilidade se encontra no erro ε na maioria das séries;
- As séries DowJones e Sheep: maior variabilidade está no erro ξ referente à tendência

Modelo Estrutural

- Os parâmetros são atualizados a cada instante pelo Filtro de Kalman;
- Otimizamos os valores iniciais das variâncias;

Tabela: Variâncias dos Modelos Estruturais

Série	MSE	$\sigma_arepsilon$	σ_{η}	σ_{ξ}
Cow	65,7497	100,0100	1,0	1,87
Buff.	516,7902	120,6770	1,0	8,2350
Calf.	58,3130	100,0234	1,0	0,2020
DowJ.	0,2330	10,0808	10,0	99,9920
Globt	0,0167	200,00	10,00	9,9840
Huron	0,9743	100,0241	10,0	9,7560
Sheep	6092,0890	1,2373e-6	1,0	100,7050
Sum.	0,9028	100,0078	1,0	02148
Ausg.	0,7648	95,7015	1,0	42,0210
Carga	3,7224	99,7167	15	12,5810

- Maior variabilidade se encontra no erro ε na maioria das séries:
- As séries DowJones e Sheep: maior variabilidade está no erro ξ referente à tendência.

- Na prática, é comum ter acesso às previsões individuais sem o conhecimento do método usado em sua estimação;
- Para melhorar a precisão da previsão: Restimação dos parâmetros do
- Reestimamos os modelos de combinação por: Regessão, Otima e
- Fizemos previsões com:

- Na prática, é comum ter acesso às previsões individuais sem o conhecimento do método usado em sua estimação;
- Para melhorar a precisão da previsão: Restimação dos parâmetros do modelo de combinação;
- Reestimamos os modelos de combinação por: Regessão, Ótima e Ótima com independência;
- Fizemos previsões com:
 - Modelos de parâmetros fixos (sem reestimação) e, Modelos de parâmetros variáveis (com reestimação)

- Na prática, é comum ter acesso às previsões individuais sem o conhecimento do método usado em sua estimação;
- Para melhorar a precisão da previsão: Restimação dos parâmetros do modelo de combinação;
- Reestimamos os modelos de combinação por: Regessão, Ótima e Ótima com independência;
- Fizemos previsões com:
 - Modelos de parâmetros fixos (sem reestimação) e, Modelos de parâmetros variáveis (com reestimação)

- Na prática, é comum ter acesso às previsões individuais sem o conhecimento do método usado em sua estimação;
- Para melhorar a precisão da previsão: Restimação dos parâmetros do modelo de combinação;
- Reestimamos os modelos de combinação por: Regessão, Ótima e Ótima com independência;
- Fizemos previsões com:
 - Modelos de parâmetros fixos (sem reestimação) e, Modelos de parâmetros variáveis (com reestimação).

4.4 Comparação entre modelos

Tabela: MSE na série de teste(Combinações Não-Reestimadas).

Modelo\Série	Cow	Buff.	Calf.	DowJ.	Globtp	Huron	Sheep	Sum.	Ausg.	Carga
Holt	23,73	697	59,18	0,1174	0,0258	0,7287	10751	0,4602	0,9164	4,20,25
ARIMA	40,92	346	56,7	0,1283	0,0218	0,5926	6700	0,5937	0,7741	4,6951
Mod.Estrutural	29,52	709	59,35	0,1745	0,0274	1,4140	11082	0,4951	1,2271	4,1004
Med.Simples	28,25	528	57,81	0,1162	0,0238	0,7445	8350	0,4982	0,9001	4,1703
Mediana	28,41	664	58,05	0,1142	0,0258	0,6520	9883	0,5103	0,9519	4,2492
Med.Extremo	28,37	476	57,72	0,1199	0,0230	0,8106	7866	0,4933	0,6614	4,1446
REG	35.58	341.66	68.63	0.1147	0.0218	0,59	5798	0.6732	0.8691	4.4707
ÓTIMA	71,72	335	56,82	0,1272	0,0219	0,5940	6422	0,7405	0,7826	4,5960
ÓTIMA.I	28,66	498	57,7	0,1158	0,0235	0,6741	7573	0,8754	0,8741	4,1887

Cobinação obteve melhor sesempenho em 60% das séries.

4.4 Comparação entre modelos

Tabela: MSE na série de teste(Combinações Reestimadas).

Modelo\Série	Cow	Buff.	Calf.	DowJ.	Globtp	Huron	Sheep	Sum.	Ausg.	Carga
Holt	23,73	697	59,18	0,1174	0,0258	0,7287	10751	0,4602	0,9164	4,2025
ARIMA	40,92	346	56,7	0,1283	0,0218	0,5926	6700	0,5937	0,7741	4,6951
Mod.Estrutural	29,52	709	59,35	0,1745	0,0274	1,4140	11082	0,4951	1,2271	4,1004
Med.Simples	28,25	528	57,81	0,1162	0,0238	0,7445	8350	0,4982	0,9001	4,1703
Mediana	28,41	664	58,05	0,1142	0,0258	0,6520	9883	0,5103	0,9519	4,2492
Med.Extremo	28,37	476	57,72	0,1199	0,0230	0,8106	7866	0,4933	0,6614	4,1446
REG	30,41	318	70,94	0,0871	0,0204	0,5502	5029	0,6231	0,7710	4,1352
ÓTIMA	58,00	330	56,58	0,1208	0,0213	0,5757	6269	0,6918	0,7568	4,4777
ÓTIMA.I	52,43	490	57,68	0,1155	0,0235	0,6698	7597	0,5033	0,8741	4,1795

Comparando essas tabelas entre si, percebemos que quando reestimamos os parâmetros das combinações por Regressão, combinação Ótima e combinação Ótima com Independência ocorre uma pequena melhora na precisão das previsões dessas combinações.

Dentre os métodos de previsão individual:

- Modelos ARIMA: melhor desempenho em 6 séries;
 Apesar das séries não serem tão longas quanto desejável
- AEH: melhor desempenho em 3 séries;
 Dificuldade de implementação do método, otimização das constantes de amortecimento e escolha dos valores iniciais.
- Modelo estrutural: melhor desempenho em apenas 1 série.
 Mostra o quanto é complicado trabalhar com esse método iterativo.

Dentre os métodos de previsão individual:

- Modelos ARIMA: melhor desempenho em 6 séries;
 Apesar das séries não serem tão longas quanto desejável
- AEH: melhor desempenho em 3 séries;
 Dificuldade de implementação do método, otimização das constantes de amortecimento e escolha dos valores iniciais.
- Modelo estrutural: melhor desempenho em apenas 1 série.
 Mostra o quanto é complicado trabalhar com esse método iterativo.

Dentre os métodos de previsão individual:

- Modelos ARIMA: melhor desempenho em 6 séries;
 Apesar das séries não serem tão longas quanto desejável
- AEH: melhor desempenho em 3 séries;
 Dificuldade de implementação do método, otimização das constantes de amortecimento e escolha dos valores iniciais.
- Modelo estrutural: melhor desempenho em apenas 1 série.
 Mostra o quanto é complicado trabalhar com esse método iterativo.

Dentre os métodos de previsão individual:

- Modelos ARIMA: melhor desempenho em 6 séries;
 Apesar das séries não serem tão longas quanto desejável
- AEH: melhor desempenho em 3 séries;
 Dificuldade de implementação do método, otimização das constantes de amortecimento e escolha dos valores iniciais.
- Modelo estrutural: melhor desempenho em apenas 1 série.
 Mostra o quanto é complicado trabalhar com esse método iterativo.

Dentre os métodos de previsão individual:

- Modelos ARIMA: melhor desempenho em 6 séries;
 Apesar das séries não serem tão longas quanto desejável
- AEH: melhor desempenho em 3 séries;
 Dificuldade de implementação do método, otimização das constantes de amortecimento e escolha dos valores iniciais.
- Modelo estrutural: melhor desempenho em apenas 1 série.
 Mostra o quanto é complicado trabalhar com esse método iterativo.

Em suma, as conclusões foram:

Em suma, as conclusões foram:

• Combinar as diversidades de métodos de previsão individuais garantiu efetivamente uma melhor precisão das previsões;

Em suma, as conclusões foram:

- Combinar as diversidades de métodos de previsão individuais garantiu efetivamente uma melhor precisão das previsões;
- A combinação por regressão se mostrou melhor desempenho que as outras combinações.

Em suma, as conclusões foram:

- Combinar as diversidades de métodos de previsão individuais garantiu efetivamente uma melhor precisão das previsões;
- A combinação por regressão se mostrou melhor desempenho que as outras combinações.

Sugestões para pesquisas futuras:

 Análises levando em consideração outras características das séries de erros:

Normalidade, variância e descorrelação.

Em suma, as conclusões foram:

- Combinar as diversidades de métodos de previsão individuais garantiu efetivamente uma melhor precisão das previsões;
- A combinação por regressão se mostrou melhor desempenho que as outras combinações.

Sugestões para pesquisas futuras:

- Análises levando em consideração outras características das séries de erros:
 - Normalidade, variância e descorrelação.
- Estudo sobre o número ideal de previsões individuais a serem combinadas;

Em suma, as conclusões foram:

- Combinar as diversidades de métodos de previsão individuais garantiu efetivamente uma melhor precisão das previsões;
- A combinação por regressão se mostrou melhor desempenho que as outras combinações.

Sugestões para pesquisas futuras:

- Análises levando em consideração outras características das séries de erros:
 - Normalidade, variância e descorrelação.
- Estudo sobre o número ideal de previsões individuais a serem combinadas;
- Estudo sobre a importância do número de observações das séries como fator para a escolha do método de combinação. Final

Gráficos: Amortecimento Exponencial de Holt

Observando os gráficos, podemos perceber que as previsões de Sheep parecem com as do modelo Naive. Já as previsões da série Globtp parecem ser precisas.

Gráficos: Modelos ARIMA

Podemos observar pelos gráficos que a série Ausgundeaths não obteve previsões muito precisas e a série Summer obteve.

Gráficos: Modelo Estrutural

Podemos observar pelos gráficos que a série Huron não obteve previsões muito precisas e a série DowJones obteve.

7.BIBLIOGRAFIA

- <http://robjhyndman.com/TSDL/>. Acessado em: 20 de julho de 2011.
 - Hippert, H.S. *Séries Temporais I*.Disciplina: Análise e Previsão de Séries Temporais I. Ago.-dez. de 2010 Notas de Aula. Digitalizado.
- Hippert, H.S. *Séries Temporais II*. Disciplina: Análise e Previsão de Séries Temporais II. Março-Julho de 2011 Notas de Aula. Digitalizado.
 - Hollauer, G.; Issler, J.V.; Notini, H.H. *Prevendo o Crescimento da Produção Industrial Usando um Número Limitado de Combinações de Previsões*. Economia Aplicada, v.12, p.177-198.

BIBLIOGRAFIA

Lemke, C. and Gabrys, B. Forecasting and Forecast Combination in Airline Revenue Management Applications. In: Nguyen, N.T., Kolaczek, G. and Gabrys, B., eds. Knowledge Processing and Reasoning for Information Society. Warsaw, Poland: EXIT Publishing House, p. 231-247. Disponível em: http://eprints.bournemouth.ac.uk/8502/. Acessado em: 02 de Ago.2011.

Lenke, C.; Gabrys, B. *Meta-Learning for Time Series Forecasting and Forecast Combination*. Neurocomputing, v.73, p.2006-2016.

Makridakis, S.; Wheelwright, S.C.; Hyndman, R.J. *Forecasting: Methods and Applications* 3ed. New York: John WILEY & Sons.

Menezes, L. M. de; Bunn, D.W.; Taylor, J.W. Review of Guidelines for the Use of Cambined Forecasting. European Journal of Operational Research, v.120, p.190-204.

Morettin, P.A.; Toloi, C.M. Análise de Séries Temporais. 2ed. São Paulo: Egard Blucher.

Rocha, V.B. *Uma Abordagem de WAVELETS Aplicada à Combinação de Previsões: Uma Análise Teórica e Experimental.* 155f. Dissertação (Mestrado em Ciências)-Universidade Federal do Paraná, Curitiba.

Zou, H.; Yang, Y. Combining Time Series Model for Forecasting. International Journal of Forecasting, v.20, p.69-84.

Obrigada!