MA615 HW2

Yiru Fei 2019/9/18

Extract from:

Bradley Efron and Trevor Hastie

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science

Cambridge University Press, 2016

 $https: //web.stanford.edu/\ hastie/CASI_files/PDF/casi.pdf$

Modern Bayesian practice uses various strategies to construct an appropriate "prior" $g(\mu)$ in the absence of prior experience, leaving many statisticians unconvinced by the resulting Bayesian inferences. Our second example illustrates the difficulty.

Table 3.1 Scores from two tests taken by 22 \$students, \$ mechanics and vectors.

	1	2	3	4	5	6	7	8	9	10	11
mechanics	7	44	49	59	34	46	0	32	49	52	44
vectors	51	69	41	70	42	40	40	45	57	64	61
	12	13	14	15	16	17	18	19	20	21	22
mechanics	36	42	5	22	18	41	48	31	42	46	63
vectors	59	60	30	58	51	63	38	42	69	49	63

Table 3.1 shows the scores on two tests, **mechanics** and **vectors**, achieved by n = 22 students. The sample correlation coefficient between the two scores is $\hat{\theta} = 0.498$.

$$\hat{\theta} = \sum_{i=1}^{22} (m_i - \bar{m})(v_i - \bar{v}) / \left[\sum_{i=1}^{22} (m_i - \bar{m})^2 \sum_{i=1}^{22} (v_i - \bar{v})^2 \right]^{1/2}$$

with m and v short for **mechanics** and **vectors**, \bar{m} and \bar{v} their averages.