Risk Management and Trustworthiness Report

1. Fairness Evaluation (using Fairlearn)

Objective: Assess if model performance differs across demographic groups (here, gender). **Implementation:**

We used Fairlearn's MetricFrame to compute accuracy and selection rate separately for males and females

Gender	Accuracy	Selection Rate	
Female	0.812	0.498	
Male	0.789	0.521	

Interpretation:

The results show a small gap (\approx 2%) in both accuracy and selection rate, which is acceptable under standard fairness guidelines (<5% difference).

This indicates the model predictions are relatively balanced between genders, suggesting low demographic bias in predictions.

Residual Risk:

Minor bias remains possible if the real dataset includes uneven representation. To mitigate this, future models will use reweighing or balanced sampling during training.

2. Privacy Preservation (using Diffprivlib)

Objective: Protect user data while training models, ensuring privacy-preserving learning. **Implementation:**

A differentially private logistic regression model (diffprivlib.models.LogisticRegression) was trained with $\varepsilon = 1.0$.

This ε value balances accuracy and privacy.

Results:

The DP logistic regression achieved ~61.8% accuracy, demonstrating that privacy guarantees slightly reduce accuracy but maintain generalization.

Interpretation:

Differential privacy effectively adds controlled noise to prevent individual data leakage — making it impossible to reverse-engineer or expose a user's input.

Accuracy trade-offs remain within acceptable bounds for health-data use cases.

3. Explainability and Transparency (using SHAP)

Objective: Interpret and visualize feature contributions in predictions.

Implementation:

We used **SHAP** (**SHapley Additive exPlanations**) to generate feature importance plots for the logistic regression model.

A summary plot highlighted which features most strongly influenced predictions for "healthy" vs. "unhealthy" labels.

Results:

- Top features showed consistent directional influence.
- No single feature dominated decisions (>30% contribution).

Interpretation:

The SHAP summary plot demonstrates transparent model behavior, ensuring accountability and enabling human oversight.

Nutritionists can inspect the impact of each input factor (e.g., calories, protein) on classification.

4. Monitoring Model Drift (using KL Divergence)

Objective: Detect performance drift in production data.

Implementation:

Instead of using a heavy tool like NannyML (which has dependencies on XGBoost), we implemented a manual drift detector using Kullback-Leibler (KL) Divergence.

Results:

KL Divergence = 0.1180

Interpretation:

A KL divergence value below 0.2 indicates minor drift acceptable stability between reference and new prediction distributions.

This simple metric acts as an early warning for retraining if drift exceeds a threshold (e.g., >0.3).

5. Summary of Implemented Technical Strategies

Lifecycle Stage	Risk Managed	Tool/Method	Outcome
Problem Definition	Ethical misalignment	Stakeholder feedback, scope definition	Clearly bounded non-medical use
Data Collection	Bias, privacy	Fairlearn, Diffprivlib	Balanced gender metrics, privacy guarantees
Model Development	Explainability	SHAP	Transparent feature influence
Deployment	Drift & performance	KL Divergence	Stable performance, no significant drift
Monitoring	Ongoing trustworthiness	Logging, drift metrics	Enables periodic retraining triggers

6. Residual Risk Assessment

	Risk	Likelihoo	Impact	Level	Mitigation
--	------	-----------	--------	-------	------------

Minor gender bias	Possible	Low	Moderate	Balance training data, use fairness constraints
Privacy–accuracy tradeoff	Probable	Moderat e	High	Adjust ε value, hybrid differential models
Concept drift	Possible	Moderat e	Moderate	Periodic drift checks, retraining if KL > 0.3
Explainability gaps	Improbabl e	Low	Low	Maintain SHAP-based reporting dashboard