Agriplots Basic Linear Programming Model

Decision Variables

- X_i : Binary variable, equals 1 if a tracking PV is installed at location j, 0 otherwise.
- Y_i : Binary variable, equals 1 if a fixed PV is installed at location j, 0 otherwise.

Objective Function

Maximize $\sum_{j=1}^{\text{num_locations}} \left(\text{tracking_energy_production}_j \cdot X_j + \text{fix_energy_production}_j \cdot Y_j \right)$

Constraints

(1) $X_i + Y_i \le 1 \quad \forall j \in \{1, ..., num_locations\}$

(2)
$$\sum_{j=1}^{\text{num_locations}} (X_j + Y_j) \le \text{num_of_PV_limit}$$

(3)
$$\sum_{j=1}^{\text{num_locations}} \left(\text{influence_on_crops}_j \cdot X_j + \text{influence_on_crops}_j \cdot Y_j \right) \ge$$

num_locations

$$\sum_{j=1} (X_j + Y_j) \cdot influence_on_crops_lower_limit$$

num locations

(4)
$$\sum_{j=1}^{\infty} (\text{total_revenue}_j \cdot X_j + \text{total_revenue}_j \cdot Y_j) \ge \text{minimal_total_revenue}$$

(5) $X_j, Y_j \in \{0,1\} \quad \forall j \in \{1, \dots, \text{num_locations}\}$

Explanations

- **The objective function** maximizes the overall energy production from installed tracking and fix PVs.
- **Constraint (1):** Each location can have at most one generator: either a tracking PV or a fixed PV, but not both.
- **Constraint (2):** The total number of PV installations is limited by the maximum allowed number of PVs.
- **Constraint (3):** The total influence on crops from installed PVs must not fall below the overall average of the installed PVs.
- **Constraint (4):** The total revenue from installed PVs must meet or exceed the minimum revenue requirement.
- **Constraint (5):** The decision variables X_j and Y_j are binary, indicating whether a PV is installed at each location.