CS/ECE/ME532 Activity 11

Estimated time: 45 mins for Q1 and 20 mins for Q2.

- 1. See period_11.ipynb.
- 2. Let a 4-by-2 matrix \boldsymbol{X} have SVD $\boldsymbol{X} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^T$ where $\boldsymbol{U} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$, $\boldsymbol{S} = \begin{bmatrix} 1 & 0 \\ 0 & \gamma \end{bmatrix}$, and $\boldsymbol{V} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
 - a) Express the solution to the least-squares problem $\arg\min_{\boldsymbol{w}} ||\boldsymbol{X}\boldsymbol{w} \boldsymbol{y}||_2^2$ as a function of \boldsymbol{U} , \boldsymbol{S} , \boldsymbol{V} , and \boldsymbol{y} .
 - b) Let $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Find the weights \mathbf{w} that minimize $||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$ as a function of

 γ . Calculate $||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$ and $||\mathbf{w}||_2^2$ as a function of γ for this value of \mathbf{w} . What happens to $||\mathbf{w}||_2^2$ as $\gamma \to 0$?

c) Now consider a "low-rank" inverse. Instead of writing

$$(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T = \sum_{i=1}^p \frac{1}{\sigma_i}\boldsymbol{v}_i\boldsymbol{u}_i^T$$

where p is the number of columns of \boldsymbol{X} (assumed less than the number of rows), we approximate

$$(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T pprox \sum_{i=1}^r rac{1}{\sigma_i} \boldsymbol{v}_i \boldsymbol{u}_i^T$$

In this approximation we only invert the largest r singular values, and ignore all of them smaller than σ_r . If r = 1, use the low-rank inverse to find \boldsymbol{w} , $||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}||_2^2$,

and
$$||\boldsymbol{w}||_2^2$$
 when $\boldsymbol{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ as in part b). Compare $||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}||_2^2$, and $||\boldsymbol{w}||_2^2$ to

the results for part b).