

DS-GA 3001.007 Introduction to Machine Learning

Lecture 10

Support Vector Machines - Classifying with Hinge Loss

Extending Perceptron Algorithm by Incorporating Margins

DS-GA 3001.007 Introduction to Machine Learning

Lecture 10

Support Vector Machines - Classifying with Hinge Loss

Announcements

- Homework 4 extended to Wednesday November 13 at 11:59pm
- Survey 3 due Sunday November 10 at 11:59pm
- Project
 - Milestone due ThursdayNovember 28 at 11:59pm
 - ▶ Background
 - ▶ Plans
 - ▶ Description of Methodology
 - ► Proposed Experiments
 - ► Some Relevant Datasets

Notation

Outcome space $\mathcal{Y} = \{-1, 1\}$ Action space $\mathcal{A} = \{-1, 1\}$

▶ 0-1 Loss

$$\ell(f(x), y) = 1(f(x) \neq y)$$

▶ Notation

Outcome space $\mathcal{Y} = \{-1, 1\}$ Action space $\mathcal{A} = \{-1, 1\}$

▶ 0-1 Loss

$$\ell(f(x),y)=1(f(x)\neq y)$$

Does not capture certainty about the classification

▶ Notation

Output space $\mathcal{Y} = \{-1, 1\}$

Action space A = R

▶ Notation

Outcome space
$$\mathcal{Y} = \{-1, 1\}$$

Action space $\mathcal{A} = \{-1, 1\}$

▶ 0-1 Loss

$$\ell(f(x),y) = 1(f(x) \neq y)$$

Does not capture certainty about the classification

Notation

Output space $\mathcal{Y} = \{-1, 1\}$ Action space $\mathcal{A} = \mathbf{R}$

- Margin
 - For prediction f(x) and label $y \in \{-1, 1\}$ is f(x) y
 - Same sign means positive value. Different sign means negative
 - ▶ Positive means correct.
 Negative means incorrect.

Review: Loss Functions for Classification Functional Margin

Functional Margin not Geometric Margin

Notation

Outcome space
$$\mathcal{Y} = \{-1, 1\}$$

Action space $\mathcal{A} = \{-1, 1\}$

▶ 0-1 Loss

$$\ell(f(x),y) = 1(f(x) \neq y)$$

Does not capture certainty about the classification

Notation

Output space $\mathcal{Y} = \{-1, 1\}$ Action space $\mathcal{A} = \mathbf{R}$

- Margin
 - For prediction f(x) and label $y \in \{-1, 1\}$ is f(x) y
 - Same sign means positive value. Different sign means negative
 - Positive means correct.Negative means incorrect.

Not convex meaning no **subgradient** at decision boundary

No gradient at decision boundary

- Lesson
 - ► Support Vector Machines
 - ► Hard Margin
 - ► Soft Margin
 - Convexity and Subgradients
 - Rearranging Optimization Problems
- Demo
 - Classifying Images with SVM

Objectives

- How can we generalize derivatives to nondifferentiable functions
- What is the geometric way to understand SVM?
- How can we combine objective and constraint in a minimization problem?
- Readings:
 - Shalev-Schwarz Chapter 9
 - ▶ Boyd <u>notes</u>, Murphy Chapter 8.3

We will cover next week

- ▶ Lesson
 - ► Support Vector Machines
 - ► Hard Margin
 - ► Soft Margin
 - Convexity and Subgradients
 - Rearranging Optimization Problems
- Demo
 - Classifying Images with SVM

Objectives

- How can we generalize derivatives to nondifferentiable functions?
- What is the geometric way to understand SVM?
- How can we combine objective and constraint in a minimization problem?
- Readings:
 - ► Shalev-Schwarz Chapter 9
 - ▶ Boyd <u>notes</u>, Murphy Chapter 8.3

Useful for classification and outlier detection

- Lesson
 - ► Support Vector Machines
 - ► Hard Margin
 - ► Soft Margin
 - Convexity and Subgradients
 - Rearranging Optimization Problems
- Demo
 - Classifying Images with SVM

Objectives

- How can we generalize derivatives to nondifferentiable functions
- What is the geometric way to understand SVM?
- How can we combine objective and constraint in a minimization problem?
- Readings:
 - ► Shalev-Schwarz Chapter 9
 - ▶ Boyd <u>notes</u>, Murphy Chapter 8.3

Useful for working with absolute value

- Lesson
 - ► Support Vector Machines
 - ► Hard Margin
 - ► Soft Margin
 - Convexity and Subgradients
 - Rearranging Optimization Problems
- Demo
 - Classifying Images with SVM

Objectives

- How can we generalize derivatives to nondifferentiable functions
- What is the geometric way to understand SVM?
- How can we combine objective and constraint in a minimization problem?
- Readings:
 - ► Shalev-Schwarz Chapter 9
 - ▶ Boyd <u>notes</u>, Murphy Chapter 8.3

Useful for determining features

- Lesson
 - ► Support Vector Machines
 - ► Hard Margin
 - ► Soft Margin
 - Convexity and Subgradients
 - Rearranging Optimization Problems
- Demo
 - Classifying Images with SVM

Objectives

- How can we generalize derivatives to nondifferentiable functions
- What is the geometric way to understand SVM?
- How can we combine objective and constraint in a minimization problem?
- Readings:
 - ► Shalev-Schwarz Chapter 9
 - ▶ Boyd <u>notes</u>, Murphy Chapter 8.3

$$\min_{w \in \mathbf{R}^d, b \in \mathbf{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \left[w^T x_i + b \right] \right).$$

Support Vector Machines

$$\min_{w \in \mathbf{R}^d, b \in \mathbf{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \left[w^T x_i + b \right] \right).$$

Penalization form not constraint form with l2 regularization not l1 regularization

Support Vector Machines

$$\min_{\mathbf{w} \in \mathbf{R}^d, b \in \mathbf{R}} \frac{1}{2} ||\mathbf{w}||^2 + \frac{c}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \left[\mathbf{w}^T x_i + b\right]\right).$$

c not lambda

Penalization form not constraint form with l2 regularization not l1 regularization

b is intercept term in line...for classification with lines b is threshold

Soft Margin

$$\min_{w \in \mathbf{R}^d, b \in \mathbf{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

c not lambda

Penalization form not constraint form with l2 regularization not l1 regularization

b is intercept term in line...for classification with lines b is threshold

Soft Margin

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \left[w^T x_i + b \right] \right).$$

c not lambda

Penalization form not constraint form with l2 regularization not l1 regularization

While w and b are unconstrained, the objective is not differentiable...so use make sense of gradient or rearrange

$$\min_{w \in \mathbf{R}^d, b \in \mathbf{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \left[w^T x_i + b \right] \right).$$

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right).$$

$$\min_{w \in \mathbf{R}^d, b \in \mathbf{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \left[w^T x_i + b \right] \right).$$

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right).$$

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

Support Vector Machines

$$\min_{w \in \mathbf{R}^d, b \in \mathbf{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \left[w^T x_i + b \right] \right).$$

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to $\xi_i \geqslant \max(0, 1 - y_i [w^T x_i + b])$.

Differentiable with n + d + 1 unknowns

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$

$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max \left(0, 1 - y_i \left[w^T x_i + b \right] \right).$$

minimize $\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$
subject to $\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right).$

Quadratic
Programming
Problem...could solve
with <u>CVXOPT</u>

Differentiable with n + d + 1 unknowns

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$

$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

Derivative of hinge loss
$$\ell(m)=\max(0,1-m)$$
:
$$\ell'(m)=\begin{cases} 0 & m>1\\ -1 & m<1\\ \text{undefined} & m=1 \end{cases}$$

$$\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) = \ell'\left(y_{i}w^{T}x_{i}\right)y_{i}x_{i} \text{ (chain rule)}$$

$$= \begin{pmatrix} 0 & y_{i}w^{T}x_{i} > 1 \\ -1 & y_{i}w^{T}x_{i} < 1 \\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{pmatrix} y_{i}x_{i} \text{ (expanded } m \text{ in } \ell'(m))$$

$$= \begin{pmatrix} 0 & y_{i}w^{T}x_{i} > 1 \\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1 \\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{pmatrix}$$

$$\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) = \begin{cases} 0 & y_{i}w^{T}x_{i} > 1\\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1\\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

$$\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) = \begin{cases} 0 & y_{i}w^{T}x_{i} > 1\\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1\\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

$$\nabla_{w}J(w) = \nabla_{w}\left(\frac{1}{n}\sum_{i=1}^{n}\ell\left(y_{i}w^{T}x_{i}\right) + \lambda||w||^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) + 2\lambda w$$

$$= \begin{cases} \frac{1}{n}\sum_{i:y_{i}w^{T}x_{i}<1}(-y_{i}x_{i}) + 2\lambda w & \text{all } y_{i}w^{T}x_{i} \neq 1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

$$\nabla_{w} \ell \left(y_{i} w^{T} x_{i} \right) = \begin{cases} 0 & y_{i} w^{T} x_{i} > 1 \\ -y_{i} x_{i} & y_{i} w^{T} x_{i} < 1 \\ \text{undefined} & y_{i} w^{T} x_{i} = 1 \end{cases}$$

$$\nabla_{w}J(w) = \nabla_{w}\left(\frac{1}{n}\sum_{i=1}^{n}\ell\left(y_{i}w^{T}x_{i}\right) + \lambda||w||^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) + 2\lambda w$$

$$= \begin{cases} \frac{1}{n}\sum_{i:y_{i}w^{T}x_{i}<1}(-y_{i}x_{i}) + 2\lambda w & \text{all } y_{i}w^{T}x_{i} \neq 1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

Does it make sense to check this on the computer...with floating point numbers

Demo

- Support Vector Machine
 - ▶ Iris Dataset
 - ▶ Features
 - ▶ Petal Width
 - ► Petal Length
 - ► Classification
 - ► Iris-Versicolor
 - ► Iris-Setosa

Take-Aways

- Why is SVM affected by scaling?
- ► How can soft margin SVM be used to detect outliers?
- ► How does changing C affect the classification? What prevents against overfitting.
- ► How do we use SVM in sklearn?

Convex Function

В

Question

- What is a concave function?
- Can a function be both convex and concave?

 $f: \mathbb{R}^d \to \mathbb{R}$ be a function.

A level set or contour line for the value c is the set of points $x \in \mathbb{R}^d$ for which f(x) = c.

 $f: \mathbb{R}^d \to \mathbb{R}$ be a function.

A level set or contour line for the value c is the set of points $x \in \mathbb{R}^d$ for which f(x) = c.

A sublevel set for the value c is the set of points $x \in \mathbb{R}^d$ for which $f(x) \leq c$.

 $f: \mathbb{R}^d \to \mathbb{R}$ be a function.

A level set or contour line for the value c is the set of points $x \in \mathbb{R}^d$ for which f(x) = c.

A sublevel set for the value c is the set of points $x \in \mathbb{R}^d$ for which $f(x) \leq c$.

If $f: \mathbb{R}^d \to \mathbb{R}$ is convex, then the sublevel sets are convex.

Convexity

Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable.

Predict f(y) given f(x) and $\nabla f(x)$?

Linear (i.e. "first order") approximation:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x)$$

Convexity

Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable.

Then for any $x, y \in \mathbb{R}^d$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

The linear approximation to f at x is a global underestimator of f:

Convexity

Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable.

Then for any $x, y \in \mathbb{R}^d$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

The linear approximation to f at x is a global underestimator of f:

If $\nabla f(x) = 0$ then x is a global minimizer of f.

A vector $g \in \mathbb{R}^d$ is a subgradient of $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x)$$
.

A vector $g \in \mathbb{R}^d$ is a subgradient of $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

f is subdifferentiable at x if \exists at least one subgradient at x.

The set of all subgradients at x is called the **subdifferential**: $\partial f(x)$

A vector $g \in \mathbb{R}^d$ is a subgradient of $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

f is **subdifferentiable** at x if \exists at least one subgradient at x.

The set of all subgradients at x is called the **subdifferential**: $\partial f(x)$

Properties

- f is convex and differentiable $\implies \partial f(x) = {\nabla f(x)}.$
- Any point x, there can be 0, 1, or infinitely many subgradients.
- $\partial f(x) = \emptyset \implies f$ is not convex.

A vector $g \in \mathbb{R}^d$ is a subgradient of $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

f is subdifferentiable at x if \exists at least one subgradient at x.

The set of all subgradients at x is called the subdifferential: $\partial f(x)$

What if

$$0 \in \partial f(x)$$

- f is convex and differentiable $\implies \partial f(x) = {\nabla f(x)}.$
- Any point x, there can be 0, 1, or infinitely many subgradients.
- $\partial f(x) = \emptyset \implies f$ is not convex.

Question

Subgradients

Let $\mathcal{X} = \{1, \dots, 10\}$, let $\mathcal{Y} = \{1, \dots, 10\}$, and let $A = \mathcal{Y}$. Suppose the data generating distribution, P, has marginal $X \sim \text{Unif}\{1,\ldots,10\}$ and conditional distribution Y|X = $x \sim \text{Unif}\{1,\ldots,x\}$. For each loss function below give a target function

(a)
$$\ell(a, y) = (a - y)^2$$
,
(b) $\ell(a, y) = |a - y|$,
(c) $\ell(a, y) = 1(a \neq y)$.

(b)
$$\ell(a, y) = |a - y|$$
,

(c)
$$\ell(a, y) = 1 (a \neq y)$$
.

Subgradients

-g is not a descent direction...the function might not decrease

Suppose f is convex.

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$.
- Let z be any point for which $f(z) < f(x_0)$.
- Then for small enough t > 0,

$$||x-z||_2 < ||x_0-z||_2.$$

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$ and t > 0.
- Let z be any point for which $f(z) < f(x_0)$.

Suppose f is convex.

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$.
- Let z be any point for which $f(z) < f(x_0)$.
- Then for small enough t > 0,

$$||x-z||_2 < ||x_0-z||_2.$$

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$ and t > 0.
- Let z be any point for which $f(z) < f(x_0)$.
- Then

Suppose f is convex.

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$.
- Let z be any point for which $f(z) < f(x_0)$.
- Then for small enough t > 0,

$$||x-z||_2 < ||x_0-z||_2.$$

$$||x-z||_{2}^{2} = ||x_{0}-tg-z||_{2}^{2}$$

$$= ||x_{0}-z||_{2}^{2} - 2tg^{T}(x_{0}-z) + t^{2}||g||_{2}^{2}$$

$$\leq ||x_{0}-z||_{2}^{2} - 2t[f(x_{0}) - f(z)] + t^{2}||g||_{2}^{2}$$

When are these terms negative?

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$ and t > 0.
- Let z be any point for which $f(z) < f(x_0)$.
- Then

Suppose f is convex.

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$.
- Let z be any point for which $f(z) < f(x_0)$.
- Then for small enough t > 0,

$$||x-z||_2 < ||x_0-z||_2.$$

$$||x-z||_{2}^{2} = ||x_{0}-tg-z||_{2}^{2}$$

$$= ||x_{0}-z||_{2}^{2} - 2tg^{T}(x_{0}-z) + t^{2}||g||_{2}^{2}$$

$$\leq ||x_{0}-z||_{2}^{2} - 2t[f(x_{0}) - f(z)] + t^{2}||g||_{2}^{2}$$

- Consider $-2t[f(x_0)-f(z)]+t^2||g||_2^2$.
 - It's a convex quadratic (facing upwards).
 - Has zeros at t = 0 and $t = 2(f(x_0) f(z)) / ||g||_2^2 > 0$.
 - Therefore, it's negative for any

$$t \in \left(0, \frac{2(f(x_0) - f(z))}{\|g\|_2^2}\right).$$

When are these terms negative?

• How to solve the Lasso?

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda ||w||_1$$

• $||w||_1 = |w_1| + |w_2|$ is not differentiable!

• How to solve the Lasso?

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda ||w||_1$$

• $||w||_1 = |w_1| + |w_2|$ is not differentiable!

- Replace each w_i by $w_i^+ w_i^-$.
- Write $w^+ = (w_1^+, ..., w_d^+)$ and $w^- = (w_1^-, ..., w_d^-)$.

• How to solve the Lasso?

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda ||w||_1$$

• $||w||_1 = |w_1| + |w_2|$ is not differentiable!

- Replace each w_i by $w_i^+ w_i^-$.
- Write $w^+ = (w_1^+, ..., w_d^+)$ and $w^- = (w_1^-, ..., w_d^-)$.

$$\min_{\substack{w^+, w^- \in \mathbb{R}^d \\ w_i^+ \geqslant 0}} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right)$$
 subject to $w_i^+ \geqslant 0$ for all i $w_i^- \geqslant 0$ for all i

Switching the order is helpful operation

• How to solve the Lasso?

$$\min_{w \in \mathbf{R}^d} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda ||w||_1$$

 $w \in \mathbb{R}^n$ $\frac{1}{i-1}$ $w_1 = |w_1| + |w_2|$ is not differentiable!

• Replace each w_i by $w_i^+ - w_i^-$.

• Replace each w_i by $w_i^+ - w_i^-$. • Write $w^+ = \left(w_1^+, \dots, w_d^+\right)$ and $w^- = \left(w_1^-, \dots, w_d^-\right)$.

$$\min_{\substack{w^+,w^- \in \mathbb{R}^d \\ w_i^+ \geqslant 0}} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda 1^T \left(w^+ + w^- \right)$$
subject to $w_i^+ \geqslant 0$ for all i

$$w_i^- \geqslant 0$$
 for all i

Suppose you want to minimize penalization form

$$\min_x f(x) + \lambda g(x)$$

Suppose you want to minimize penalization form

$$\min_x f(x) + \lambda g(x)$$

Question: Is it equivalent to constraint form?

$$\min_x f(x)$$

s.t.
$$g(x) \leq R$$

Rearranging Optimization Problems

Suppose you want to minimize penalization form

$$\min_x f(x) + \lambda g(x)$$

Question: Is it equivalent to constraint form?

$$\min_x f(x)$$

Suppose minimizer for penalization form is not minimizer for constraint form

Set
$$R = g(x^*)$$
.

Rearranging Optimization Problems

Suppose you want to minimize penalization form

$$\min_x f(x) + \lambda g(x)$$

Question: Is it equivalent to constraint form?

$$\min_{x} f(x)$$

Suppose minimizer for penalization form is not minimizer for constraint form

Set
$$R = g(x^*)$$
.

Note

$$f(x') < f(x^*)$$

Rearranging Optimization Problems

Suppose you want to minimize penalization form

$$\min_x f(x) + \lambda g(x)$$

Question: Is it equivalent to constraint form?

$$\min_x f(x)$$
s.t. $g(x) \leq R$

Suppose minimizer for penalization form is not minimizer for constraint form

Set
$$R = g(x^*)$$
.

Note

$$f(x') < f(x^*)$$

Therefore

$$f(x') + \lambda g(x') < f(x^*) + \lambda g(x^*)$$

Rearranging Optimization Problems

Suppose you want to minimize penalization form

$$\min_x f(x) + \lambda g(x)$$

Question: Is it equivalent to constraint form?

$$\min_x f(x)$$
s.t. $g(x) \leq R$

Combining objective function and constraint is helpful

Suppose minimizer for penalization form is not minimizer for constraint form

Set
$$R = g(x^*)$$
.

Note

$$f(x') < f(x^*)$$

Therefore

$$f(x') + \lambda g(x') < f(x^*) + \lambda g(x^*)$$

Suppose we have two functions $f: \mathbf{R}^d \to \mathbf{R}$ and $g: \mathbf{R}^d \to \mathbf{R}$. Now consider the following optimization problem:

$$\min_{x \in \mathbf{R}^d} f(x) + g(x).$$

Suppose we have two functions $f: \mathbf{R}^d \to \mathbf{R}$ and $g: \mathbf{R}^d \to \mathbf{R}$. Now consider the following optimization problem:

$$\min_{x \in \mathbf{R}^d} f(x) + g(x).$$

This is an unconstrained optimization problem. Let's also consider the following constrained optimization problem:

minimize
$$f(x) + \xi$$

subject to $\xi \ge g(x)$.

Suppose we have two functions $f: \mathbf{R}^d \to \mathbf{R}$ and $g: \mathbf{R}^d \to \mathbf{R}$. Now consider the following optimization problem:

$$\min_{x \in \mathbf{R}^d} f(x) + g(x).$$

This is an unconstrained optimization problem. Let's also consider the following constrained optimization problem:

Need to go both ways to have equivalent problem...there cannot be a gap

minimize
$$f(x) + \xi$$

subject to $\xi \ge g(x)$.

$$A = \begin{bmatrix} 5 & 5 & 5 & 5 & 5 \\ 8 & 8 & 1 & 8 & 8 \\ +\infty & +\infty & +\infty & 0 & +\infty \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 5 & 5 & 5 & 5 \\ 8 & 8 & 1 & 8 & 8 \\ +\infty & +\infty & +\infty & 0 & +\infty \end{bmatrix}$$

We always have

$$\max_{j} \min_{i} a_{ij} = d^* \le p^* = \min_{i} \max_{j} a_{ij}.$$

$$p^* = \min_i \max_j a_{ij}$$

$$d^* = \max_j \min_i a_{ij}$$

$$A = \begin{bmatrix} 5 & 5 & 5 & 5 & 5 \\ 8 & 8 & 1 & 8 & 8 \\ +\infty & +\infty & +\infty & 0 & +\infty \end{bmatrix}$$

▶ We always have

$$\max_{j} \min_{i} a_{ij} = d^* \le p^* = \min_{i} \max_{j} a_{ij}.$$

$$p^* = \min_i \max_j a_{ij}$$

$$d^* = \max_j \min_i a_{ij}$$

because

$$d^* = a_{i_d j_d} \le a_{i_p j_d} \le a_{i_p j_p} = p^*.$$

$$A = \begin{bmatrix} 5 & 5 & 5 & 5 & 5 \\ 8 & 8 & 1 & 8 & 8 \\ +\infty & +\infty & +\infty & 0 & +\infty \end{bmatrix}$$

Primal Problem and Dual Problem may not be equal meaning you cannot switch max and min

We always have

$$\max_{j} \min_{i} a_{ij} = d^* \le p^* = \min_{i} \max_{j} a_{ij}.$$

$$p^* = \min_i \max_j a_{ij}$$

$$d^* = \max_j \min_i a_{ij}$$

because

$$d^* = a_{i_d j_d} \le a_{i_p j_d} \le a_{i_p j_p} = p^*.$$

Minimize x + y subject to constraint $x^2 + y^2 = 1$

Rearranging Optimization Problems

- Minimize x + y subject to constraint $x^2 + y^2 = 1$
- ▶ We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

- Minimize x + y subject to constraint $x^2 + y^2 = 1$
- ► We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

Take derivative to find minimum

$$\nabla L = \begin{pmatrix} \frac{\partial L}{\partial x} \\ \frac{\partial L}{\partial y} \\ \frac{\partial L}{\partial \lambda} \end{pmatrix} = \begin{pmatrix} 1 + 2\lambda x \\ 1 + 2\lambda y \\ x^2 + y^2 - 1 \end{pmatrix}$$

- Minimize x + y subject to constraint $x^2 + y^2 = 1$
- ► We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

▶ Take derivative to find minimum

$$\nabla L = \begin{pmatrix} \frac{\partial L}{\partial x} \\ \frac{\partial L}{\partial y} \\ \frac{\partial L}{\partial \lambda} \end{pmatrix} = \begin{pmatrix} 1 + 2\lambda x \\ 1 + 2\lambda y \\ x^2 + y^2 - 1 \end{pmatrix}$$

Solutions at

$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$
 and $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$.

ightharpoonup Minimize x+y subject to constraint $x^2+y^2 \le 1$

- Minimize x+y subject to constraint $x^2+y^2 \le 1$
- ► We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda \left(1 - (x^2 + y^2)\right)$$

• Here $\lambda > 0$

- Minimize x+y subject to constraint $x^2+y^2 \le 1$
- ► We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda \left(1 - (x^2 + y^2)\right)$$

• Here $\lambda > 0$

Take max over the dual variables and min over the primal variables

- Minimize x + y subject to constraint $x^2 + y^2 \le 1$
- ► We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda \left(1 - (x^2 + y^2)\right)$$

• Here $\lambda > 0$

So penalization form and constraint form are definitely the same!

- lacktriangle Minimize x+y subject to constraint $x^2+y^2 \leq 1$
- ▶ We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda \left(1 - (x^2 + y^2)\right)$$

▶ Here $\lambda > 0$. Take derivative to find minimum

$$abla L = \left(\begin{array}{c} rac{\partial L}{\partial x} \\ rac{\partial L}{\partial y} \end{array} \right) = \left(\begin{array}{c} 1 + 2\lambda x \\ 1 + 2\lambda y \end{array} \right)$$

- Minimize x+y subject to constraint $x^2+y^2 \le 1$
- ► We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda \left(1 - (x^2 + y^2)\right)$$

▶ Here $\lambda > 0$. Take derivative to find minimum

$$\nabla L = \begin{pmatrix} \frac{\partial L}{\partial x} \\ \frac{\partial L}{\partial y} \\ \end{pmatrix} = \begin{pmatrix} 1 + 2\lambda x \\ 1 + 2\lambda y \\ \end{pmatrix}$$

Solutions at

$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$
 and $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$.

- Minimize x+y subject to constraint $x^2+y^2 \le 1$
- ► We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda \left(1 - (x^2 + y^2)\right)$$

▶ Here $\lambda > 0$. Take derivative to find minimum

$$\nabla L = \begin{pmatrix} \frac{\partial L}{\partial x} \\ \frac{\partial L}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 + 2\lambda x \\ 1 + 2\lambda y \end{pmatrix}$$

Solutions at

$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$
 and $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$.

Note that solutions not unique. Is the objective convex? Is the objective concave?

- Minimize x+y subject to constraint $x^2+y^2 \le 1$
- ▶ We can combine the objective and constraint into a single function called the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda \left(1 - (x^2 + y^2)\right)$$

▶ Here $\lambda > 0$. Take derivative to find minimum

$$\nabla L = \begin{pmatrix} \frac{\partial L}{\partial x} \\ \frac{\partial L}{\partial y} \\ \end{pmatrix} = \begin{pmatrix} 1 + 2\lambda x \\ 1 + 2\lambda y \\ \end{pmatrix}$$

Solutions at

$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$
 and $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$.

At the minimizer the constraint is satisfied...this is example of complementary slackness

Summary

- Support Vector Machines
 - ► Hard Margin: Only applies to linearly separable data
 - ► Soft Margin: Allows for slack variables. Useful for outlier detection
- Subgradients
 - ▶ Useful for convex functions. Takes any vector with properties of gradient.
 - ► Subgradient Descent variant of Gradient Descent
- Rearranging Optimization Problems
 - Combine objective and constraint
 - ▶ Switch order of minimization / maximization
 - ► Lagrangians, First Order Conditions and Complementary Slackness