

Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi

Office of the Controller of Examinations	
(EXTRA SHEET)	

	(EXTRASHEET) S.No:
	Continuous Sheet No: Regd. No:
	Solution Paper section (A) P#(1)
Q 1	Given:
(a)	$\vec{E} = 2 \times \hat{i} + 3 \hat{j} = N/C$
1-1-1-1	x = 0 meters (for left face)
	$\frac{x = 3 \text{ meters (for right face)}}{\vec{d} = dx \hat{i} + dy \hat{j} + dz \hat{k} / d\hat{i} + d\hat{j} + d\hat{k}}$
	To Find:
	Φ _R , Φ _L , Φ _T = electric flux through right, lef, and top face? Solution: we know that
	$\phi = \oint \vec{E} \cdot \vec{J} \vec{A}$
	d = ((2x i+ 2i) + 14i
	$\phi_{R} = \int (2 \times \hat{i} + 2 \hat{j}) \cdot dA \hat{i}$ $= 2 \times \int JA(\hat{i} \cdot \hat{i}) + 2 \int JA(\hat{j} \cdot \hat{i})$
	$= 2x \int \int A + 0 \qquad \therefore \hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{k} = 0 $ $= 2x \int \int A + 0 \qquad \therefore \hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{k} = 0 $
	$= ax \cdot A \longrightarrow (a) \qquad : \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$
	= &(3).(3x3)
	Φ = 54 N.m/c : A 1ca = A = 3×3 m²
	$\phi_{2} = -2 \times A$ from eqn. (a
	$= -2(0) \cdot 9$
	$\Phi_{L} = 0 \text{Nm}^{2}/c$
	$\phi_{+} = \int (2x\hat{i} + 2\hat{j}) \cdot dA\hat{j} = 2x \int dA(\hat{i} \cdot \hat{j}) + 2 \int dA(\hat{i} \cdot \hat{j}) = 2 \cdot A$ $\phi_{+} = 2 \times 9 = 18 \text{ N·m/q}$
	$/\phi_{+} = 2 \times 9 = 18 \text{ N·m/}$

Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi

	Office of the Controller of (EXTRA SH)	
	Continuous Sheet No:	Regd. No :
		(§)
Q.3		
(a)	Date -:	(b) Because electric field
	9, = 6 c	lines are unidirectional.
	q, - 4 c	so they ean't cross each
	Y = 2 cm	so they can't cross each other even at far field.
	$Find = \vec{F} = ?$	2-6
1 4	solution -: we know that	
	F'= K V, V2	
	72	
	= 9×109 x 6×4	1.2)
	(2)2	(C) (i) spherical charge distrib
	= 24×9×109 N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	4	(ii hold whom distance is
	$\left(\vec{F}\right) = 54\times10^{9} \text{ N}$	not of infinite value
		before the charges.
		<i>V</i>
-		
Q. 2	Data-s a=2 cm	
(a)	9/1-5c, 9/2	=10c, 9/3=10c, 9/4-5c
	To Find-	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	net electric field a	t the square's center= =?
)	Solution-	
	using superposition	priciple for four charges
	$\vec{E} = \sum_{i=1}^{\infty} E_i = \sum_{i=1}^{\infty}$	$k \stackrel{q_i}{\longrightarrow} (A)$
	1=1 i=1	Yi C
	where k= 4TEO (c	emmun)

Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi

Office of the Controller of Examinations (EXTRA SHEET)

S.	N	0.				
Э.		ο:	_			

	Continuous Sheet No: Regd. No:
	Continuous Sheet No: Regd. No:
	(4)
Q. 2	Since all four charges are tive
-	
(a)	so the electric field will be
	directed away from each charge. 1 1 E3 E4 + 12
	Since E, and E, and are
	opposite in direction so
	annell each others effect by a by
	Carreers each officers
	similarly, F2 and Fy has
	same maynitude and opposite in direction, so cancels each other affect.
	cancely each other affect.
	7)
	so at center o, net electric field is zero.
_	
_	$ \vec{E} = 0$
	i net
77	
1	