• i t z

WHAT IS CLAIMED IS:

1	1.	A method comprising:	
2	fabr	ricating a first plurality of FPGA integrated circuits with a first secret	
3	key embedded by way of a first mask set; and		
4	fab	ricating a second plurality of FPGA integrated circuits with a second	
5	secret key embedded by way of a second mask set.		
1	2.	The method of claim 1 wherein a first secure bitstream will	
2	configure properly user-configurable logic of the first plurality of FPGA integrated		
3	circuits, but not the second plurality of FPGA integrated circuits.		
1	3.	The method of claim 1 further comprising:	
2	loading an unencrypted bitstream into one of the first plurality of FPGA		
3	integrated circuits to generate a secure bitstream using the first secret key.		
1	4.	The method of claim 1 wherein the first plurality of FPGA	
2	integrated circuits with the first secret key are assigned to a first geographic area and the		
3	second plurality of FPGA integrated circuits with the second secret key are assigned to a		
4	second geographic area.		
1	5.	The method of claim 1 wherein the first plurality of FPGA	
2	integrated circuits with the first secret key are fabricated in a first time period and the		
3	second plurality of FPGA integrated circuits with the second secret key are fabricated in		
4	second time period, different from the first time period.		
1	6.	The method of claim 1 wherein only one mask differs between the	
2	first and second mask sets.		
1	7.	The method of claim 1 wherein the first plurality of FPGA	
2	integrated circuits	with the first secret key are assigned exclusively to a first customer.	
1	8.	The method of claim 5 wherein the first time period is about the	
2	same duration as the second time period.		
1	9.	The method of claim 5 wherein the first time period is a different	
2	duration from the	second time period	

. . .

1	10.	the method of claim 6 wherein the one mask is a contact mask.		
1	11.	The method of claim 1 wherein there are random differences		
2	between artwork of the	first and second plurality of FPGA integrated circuits in addition		
3	to the different embedd	to the different embedded secret keys.		
1	12.	The method of claim 1 wherein the first and second secret keys are		
2	presented on wires of respective plurality of FPGA integrated circuits for only a limited			
3	duration.			
1	13.	The method of claim 1 wherein the first secret key is embedded by		
2	setting an initial state of a selection of memory cells in a device configuration memory of			
3	the FPGA integrated circuit.			
1	14.	The method of claim 1 wherein the first secret key is embedded by		
2		large block of logic in the first plurality of FPGA integrated		
3	circuits and its value extracted using a CRC algorithm.			
1	15.	The method of claim 13 further comprising:		
2	extractin	ng the first secret key by using a CRC algorithm to compute a		
3	checksum of the initial state of the device configuration memory.			
1	16.	The method of claim 1 further comprising:		
2	loading	an unencrypted bitstream into one of the first plurality of FPGA		
3	integrated circuits to generate a secure bitstream based on the first secret key and an on-			
4	chip generated random number.			
1	17. 7	The method of claim 1 further comprising:		
2	loading	an unencrypted bitstream into one of the first plurality of FPGA		
3	integrated circuits to generate a secure bitstream based on the first secret key and an on-			
4	chip generated random number, wherein the secure bitstream includes a message			
5	authentication code.	•		
1	18. <i>A</i>	A method comprising:		
2		ng a first secret key within the artwork of an FPGA integrated		
3	circuit;			

4	storing a user-defined second secret key within an encrypted FPGA		
5	bitstream stored in an external nonvolatile memory accessible by the FPGA;		
6	decrypting the user-defined second secret key using the first secret key;		
7	and		
8	setting up a secure network link between the FPGA and a server using the		
9	user-defined second secret key.		
1	19. The method of claim 18 further comprising:		
2	downloading an FPGA bitstream using the secure network link;		
3	encrypting the downloaded FPGA bitstream using the first secret key; and		
4	storing the encrypted downloaded bitstream in the external memory.		
1	20. The method of claim 18 wherein the secure network link is created		
2	using a standard internet security protocol.		
1	21. The method of claim 18 further comprising:		
2	configuring the FPGA using the encrypted downloaded bitstream stored in		
3	the external memory.		
1	22. A method comprising:		
2	storing a first secret key on an FPGA chip;		
3	causing the FPGA to calculate a message authentication code (MAC)		
4	corresponding to a user design; and		
5	storing the message authentication code with bitstream information in a		
6	nonvolatile memory.		
1	23. The method of claim 22 further comprising:		
2	storing copyright messages with the bitstream information;		
3	detecting unauthorized alterations to the bitstream using the message		
4	authentication code; and		
5	preventing bitstreams which have been altered from being used to		
6	configure an FPGA.		
1	24. The method of claim 22 further comprising:		
2	recording the message authentication code along with corresponding		
3	identification information for a product containing the FPGA; and		

- 4 examining the message authentication code stored in the nonvolatile
- 5 memory of a product containing a pirated FPGA design, which will enable determining
- 6 the identity of the customer to whom the pirated FPGA was originally supplied using a
- 7 record of MACs and corresponding product identification.