5 Classification

Amal Aboulhassan

Machine Learning Taxonomy

Machine Learning Process

Supervised Learning Process

Logistic Regression

- Logistic Regression: estimates the probability that a point belongs to a certain class
- In binary classification, we use two terms:
 - Positive class: the class under question. For example (heart attack class). Labeled as "1"
 - Negative class: the other class. For example (no-heart attack class). Labeled as "0"
- If estimated probability is >0.5, then the model suggests that the point belongs to the positive class "1". If it is <0.5, then it suggests the point belongs to the negative class "0

Types of Binary Classification

Binary Prediction

Goal: Predict label (o or 1) given features x

```
• Input: x_i \triangleq [x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF}]

"features"

"covariates"

"attributes"

Entries can be real-valued, or other numeric types (e.g. integer, binary)
```

• Output: $y_i \in \{0, 1\}$

"responses" or "labels" Binary label (0 or 1)

```
>>> yhat_N = model(predict(x_NF))
>>> yhat_N[:5]
[0, 0, 1, 0, 1]
```

Heart attack example in the previous lecture

Types of Binary Classification

Probability Prediction

Goal: Predict probability of label given features

```
• Input: x_i \triangleq [x_{i1}, x_{i2}, \dots x_{if} \dots x_{iF}]

"features" Entries can be real-valued, or other numeric types (e.g. integer, binary)
```

• Output: $\hat{p}_i \triangleq p(Y_i = 1|x_i)$ Value between 0 and 1 e.g. 0.001, 0.513, 0.987

```
>>> yproba_N2 = model.predict_proba(x_NF)
>>> yproba1_N = model.predict_proba(x_NF)[:,1]
>>> yproba1_N[:5]
[0.143, 0.432, 0.523, 0.003, 0.994]
```

Cancer data in the homework

Logistic Regression Classifier

Parameters:

weight vector
$$w = [w_1, w_2, \ldots w_f \ldots w_F]$$
 bias scalar b

Prediction:

$$\hat{p}(x_i, w, b) = p(y_i = 1 | x_i) \triangleq \text{sigmoid} \left(\sum_{f=1}^F w_f x_{if} + b \right)$$

Training:

find weights and bias that minimize error

Logistic Regression Classifier

Logistic Sigmoid Function

Goal: Transform real values into probabilities

$$\hat{y} = \begin{cases} 0 & \text{if } \hat{p} < 0.5, \\ 1 & \text{if } \hat{p} \ge 0.5. \end{cases}$$

$$z_N = x_N * w$$

Exponential Function: $f(x) = e^x$ e (2.7182818...)

Logistic Regression: Training

Optimization: Minimize total log loss on train set

$$\min_{w,b} \sum_{n=1}^{N} \log \log(y_n, \hat{p}(x_n, w, b))$$

Algorithm: Gradient descent

Avoid overfitting: Use L2 or L1 penalty on weights

- The logarithm is the inverse function to exponentiation
- Example :
 - \circ 1000 = 10³
 - \circ What is the logarithm base 10 of 1000 ($\log_{10}(1000)$)?

- The logarithm is the inverse function to exponentiation
- Example :
 - \circ 1000 = 10³
 - \circ What is the logarithm base 10 of 1000 ($log_{10}(1000)$)? 3

- $\log_2 16 = 4$, since $2^4 = 2 \times 2 \times 2 \times 2 = 16$.
- ullet Logarithms can also be negative: $\log_2 rac{1}{2} = -1$ since $2^{-1} = rac{1}{2^1} = rac{1}{2}$.
- $\log_{10} 150$ is approximately 2.176, which lies between 2 and 3, just as 150 lies between $10^2 = 100$ and $10^3 = 1000$.
- For any base b, $\log_b b = 1$ and $\log_b 1 = 0$, since $b^1 = b$ and $b^0 = 1$, respectively.

Evaluation: Error Function

- Why (-ve) log?
- What are the values with high probabilities close to 1?
- What are the values with low probabilities closer to zero?

$$c(\theta) = \begin{cases} -\log(\hat{p}) & \text{if } y = 1, \\ -\log(1-\hat{p}) & \text{if } y = 0. \end{cases}$$

Evaluation: Error Function

- Why (-ve) log?
- What are the values with high probabilities close to 1?
- What are the values with low probabilities closer to zero?
- If an instance belongs to the positive class, but the prediction generated small probability → big error → big log

$$c(\theta) = \begin{cases} -\log(\hat{p}) & \text{if } y = 1, \\ -\log(1-\hat{p}) & \text{if } y = 0. \end{cases}$$

Evaluation: Error Function

Log loss (aka "binary cross entropy")

from sklearn.metrics import log_loss

$$\log_{-\mathrm{loss}}(y,\hat{p}) = -y\log\hat{p} - (1-y)\log(1-\hat{p})$$
 High probability, y = 1

- Low probability, y=1
- High probability, y=0
- Low probability, y=0

Lower is better!

Advantages:

- smooth
- easy to take derivatives!

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} log(\hat{p}^{(i)}) + (1 - y^{(i)}) log(1 - \hat{p}^{(i)})]$$

$$\min_{w,b} \sum_{n=1}^{N} \log \log(y_n, \hat{p}(x_n, w, b))$$

Gradient descent for L2 penalized LR

$$\min_{\boldsymbol{w}, w_0} \left[-\sum_{i} \log p(y_i | \boldsymbol{x}_i; \boldsymbol{w}, w_0) + \frac{\lambda}{2} ||\boldsymbol{w}||_2^2 \right]$$

Start with
$$\mathbf{w}^{0} = 0$$
, $w_{0}^{0} = 0$, step size s for $t = 0, ..., (T - 1)$
 $\mathbf{w}^{t+1} = \mathbf{w}^{t} - s \nabla J(\mathbf{w}^{t}, w_{0}^{t}) - \lambda \mathbf{w}^{t}$
 $w_{0}^{t+1} = w_{0}^{t} - s \nabla J(\mathbf{w}^{t}, w_{0}^{t})$

$$\text{if } L(\boldsymbol{w}^{t+1}, w_0^{t+1}) - L(\boldsymbol{w}^t, w_0^t) < \delta \\ \text{break}$$
 return \boldsymbol{w}^T, w_0^T

Mike Hughes - Tufts COMP 195 - Spring 2010

Log loss is convex!

Intuition: 1D minimization

Rule for picking step sizes

- Never try just one!
- Try several values (exponentially spaced) until
 - Find one clearly too small
 - Find one clearly too large (oscillation / divergence)
- Always make trace plots!
 - Show the loss, norm of gradient, and parameters
- Smarter choices for step size:
 - Decaying methods
 - Search methods
 - Adaptive methods

- Common methods
 - Decay over iterations
 - Line Search scipy.optimize.line_search

Decision Tree

Leaves make binary predictions! (but can be made probabilistic)

Mike Hughes - Tufts COMP 125 - Spring 2010

Decision Tree

Parameters:

- at each internal node: x variable id and threshold
- at each leaf: probability of positive y label

Prediction:

- identify rectangular region for input x
- predict: most common y value in region
- predict_proba: report fraction of each label in region

Training:

- minimize error on training set
- often, use greedy heuristics

Decision Tree Example

https://www.youtube.com/watch?v=_L39rN6gz7Y

Decision Tree

Decision Tree: Predicted Probas

Slide Credits

- Some slides credited to Mike Hughes Tufts
- https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Logistic
 Regression.html
- https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html

Questions!

