#### Accelerating Joins with Filters

Nicholas Corrado Xiating Ouyang

University of Wisconsin-Madison

#### Star Schema



- If the query optimizer chooses a poor join order, intermediate join results may be unnecessarily large.
- Solution: try to filter out extraneous tuples before performing joins



























































- ullet LIP uses statistics from all previous batches to compute  $\sigma$ 
  - Slow response to local changes in key distributions

#### Implementation and benchmarking



SSB benchmark

Skewed SSB benchmark

benchmark

• Select where Credit Score ≥ 700

| Credit Score |             |
|--------------|-------------|
| 720          |             |
| 750          | 50 batches  |
| 720          | 50 batches  |
|              | J           |
| 400          |             |
| 400          |             |
| 400          | 50 batches  |
|              | <u></u>     |
| 770          |             |
| 810          | 50 batches  |
| 800          | >50 batches |
| • • •        | J           |

Select where Credit Score ≥ 700





Select where Credit Score ≥ 700





Select where Credit Score ≥ 700





• LIP-k performs better than LIP on some queries...

Select where Credit Score ≥ 700

#### Credit Score 720 750 50 batches 720 400 400 50 batches 400 770 810 50 batches 800



- LIP-k performs better than LIP on some queries...
- ...but LIP performs better on others

• Given any tuple t, a mechanism  $\mathcal{M}$  decides a sequence of applying the filters to *minimize* the number of probes.

- Given any tuple t, a mechanism  $\mathcal{M}$  decides a sequence of applying the filters to *minimize* the number of probes.
  - if t passes **all** filters: n probes necessary

- Given any tuple t, a mechanism  $\mathcal{M}$  decides a sequence of applying the filters to *minimize* the number of probes.
  - if t passes all filters: n probes necessary
  - if not, at least one filter rejects it: 1 probe best / n probes worst

- Given any tuple t, a mechanism  $\mathcal{M}$  decides a sequence of applying the filters to *minimize* the number of probes.
  - if t passes **all** filters: n probes necessary
  - if not, at least one filter rejects it: 1 probe best / n probes worst

$$\frac{\text{\#probes by }\mathcal{M}}{\text{\#probes by OPT}} \leq n.$$

- Given any tuple t, a mechanism  $\mathcal{M}$  decides a sequence of applying the filters to *minimize* the number of probes.
  - if t passes all filters: n probes necessary
  - if not, at least one filter rejects it: 1 probe best / n probes worst

Competitive ratio of 
$$\mathcal{M}=\frac{\# \text{probes by } \mathcal{M}}{\# \text{probes by OPT}} \leq n.$$

- Given any tuple t, a mechanism  $\mathcal{M}$  decides a sequence of applying the filters to *minimize* the number of probes.
  - if t passes all filters: n probes necessary
  - if not, at least one filter rejects it: 1 probe best / n probes worst

Competitive ratio of 
$$\mathcal{M}=\frac{\# \text{probes by } \mathcal{M}}{\# \text{probes by OPT}} \leq n.$$

#### Theorem

There is no **deterministic** mechanism  $\mathcal{M}$  for LIP achieving a competitive ratio less than N, where N is the number of filters used in LIP.

- Given any tuple t, a mechanism  $\mathcal{M}$  decides a sequence of applying the filters to *minimize* the number of probes.
  - if t passes all filters: n probes necessary
  - if not, at least one filter rejects it: 1 probe best / n probes worst

Competitive ratio of 
$$\mathcal{M} = \frac{\# \text{probes by } \mathcal{M}}{\# \text{probes by OPT}} \leq n.$$

#### Theorem

There is no **deterministic** mechanism  $\mathcal{M}$  for LIP achieving a competitive ratio less than N, where N is the number of filters used in LIP.

Randomness?

#### Conclusion

- Implemented LIP and its variant LIP-k
- Relative performance of LIP and LIP-k depends on the query
- Can we use randomness to achieve a better robustness guarantee?

# Thank you!

# Competitive Ratio vs. k on Uniform Data



#### Competitive Ratio vs. k on Adversarial Data

- Adversarial data set constructed such that LIP-k has worst case performance for odd k
- Run on query with N=2 joins

