

RAMRAO ADIK INSTITUTE OF TECHNOLOGY NERUL, NAVI MUMBAI

Department of Computer Engineering

	Program: B. Tech. in Computer Engineering									
Course Nan	ne: Software Engineering	Year &Sem: TE- SEM -V								
Subject Code: CEC501		Lecture : 03 hours/week								
Theory Cre	dits: 3	Total Contact Hours: TH-39hrs								
Faculty:	Mrs. Smita Bharne	Academic Year: 2022-23								
	Mrs. Sheetal Ahir									
	Dr. Vaibhav Narawade									
Ms. Dhanshri Bhosale										
	Mr. Ganesh Ingle									
	<u> </u>									

CourseObjectives:

- 1. To introduce fundamentals of software engineering including requirement specifications, software design, testing and maintenance
- 2. Present software engineering methodologies for the development of Quality, cost effective, schedule- meeting software.

Course Outcomes: At the end of the course learner will able to

- CO1. Comprehend software development life cycle.
- CO2. Construct/Compose SRS document for a SEP (software engineering project).
- CO3 Plan, Schedule and Track SEP
- CO4 Apply design and development techniques to the SEP
- CO5 Use SCM, SQA and RMMM plan for SEP
- CO6 Understand ethical and professional issues related to Software Project Delivery

Program Outcomes:

- PO1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Mapping of Course outcomes with Program outcomes:

Subject Weight	Cor	urse Outcomes				Conti	ributi	on to	Progr	am ou	itcome	es		
			PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO1	Comprehend software development life cycle.	1	1	1	1	1	1			1	1	1	1
	CO2	Construct/Comp ose SRS document for a SEP (software engineering project).	1	1	1	2	1	1			1	1		1
ТНЕО	CO3	Plan, Schedule and Track SEP	1		2	1	1				2	1	1	1
RY 100%	CO4	Apply design and development techniques to the SEP	1	1	1	1	1	1		1	1		1	1
	CO5	SCM, SQA and RMMM plan for SEP	1	1	1		2	1	1	1		1		1
	CO6	Understand ethical and professional issues related to software project delivery	1	1			1	1	1	2		1	1	1

Program Specific Outcomes:

PSO1: To build competencies towards problem solving with an ability to understand, identify, analyze and design the problem, implement and validate the solution including both hardware and software.

PSO2:To build appreciation and knowledge acquiring of current computer techniques with an ability to use skills and tools necessary for computing practice.

PSO3: To be able to match the industry requirements in the area of computer science and engineering. To equip skills to adopt and imbibe new technologies.

Mapping of Course outcomes with Program Specific Outcomes:

	Course Outcomes	Contribution to Program Specific outcomes			
		PSO1	PSO2	PSO3	
CO1	Comprehend software development life cycle.	2	1	1	
CO2	Construct/Compose SRS document for a SEP (software engineering project).	2	1	1	
CO3	Plan, Schedule and Track SEP	2	2	1	
CO4	Apply design and development techniques to the SEP	2	1	1	
CO5	SCM, SQA and RMMM plan for SEP		1	1	
CO6	Understand ethical and professional issues related to Software Project Delivery	1	1	1	

Chapter Plan

Chapter	Topic	Duration	CO Meet	Weightage (in %)
1.	Software Process Models	6	CO1	16
2.	Industry Requirements: Analysis and Specification	8	CO2	20
3.	Software Project planning and management	5	CO3	12
4.	Software Design	8	CO4	20
5.	Software Configuration Management, Quality Assurance and Risk management	6	CO5	16
6.	Software testing and maintenance	6	CO6	16

Lesson Plan

Week No.	Sr. No.	Mapping with CO's	Co mapped	Teachi	ng Methodology
		Detailed contents		Co weightage	
Week 1	1.	Module1: Software Process Models - Evolving role of software, Type of Software SW Components: 4 Ps (Process, People,	CO1	2	PPT, Quiz
		Project, Product)			
	2.	SDLC methods/models: Build & Fix, Waterfall, Prototype (Evolutionary & Throw-away)		2	PPT
	3.	V model, Incremental iterative, Spiral, RAD		2	PPT
Week 2	4.	Introduction to agility, agile process models- Scrum, Kanban		2	PPT
	5.	Extreme Programming		1	PPT
	6.	Introduction to Devops		1	PPT
Week 3	7.	Module 2: Industry Requirements: Analysis and Specification	CO2	2	PPT
		Requirement elicitation(analysis)			
	8.	Software requirement specification (SRS) documentation		1	PPT
	9.	SRS documentation case study		2	PPT, Case study
Week 4	10.	Dataflow Diagram (DFD), Types and Components of Data Flow Diagram			PPT
	11.	Rules for DFD, Level-1 and level -2 DFD diagram		1	PPT
	12.	Examples of level-1 and level-2 DFD		1	PPT, problem solving

Week 5	13.	Examples of level-1 and level-2 DFD		1	PPT
	14.	Data dictionaries		1	PPT
	15.	Module 3: Software Project planning and management Project planning and Project scheduling.	CO3	2	PPT, Group discussion
Week 6	16.	Software Metrics: Size Metrics like LOC		2	PPT
	17.	Token Count, Function Count		2	PPT
	18.	Cost estimation using models like COCOMO		2	PPT
	19.	The management spectrum		1	PPT
Week 7	20.	Module 4 :Software Design Design concepts and principles	CO4	1	PPT
	21.	Effective modular design Cohesion and Coupling		1	PPT
Week	22.	UML diagrams- use case & class Diagram		2	PPT, example case study
8	23.	Activity diagram		1	PPT, example case study
	24.	Sequence & collaboration diagram		1	PPT,Example solving NPTEL video
Week	25.	Design model, Data designing, Architectural styles and design,		2	PPT
9	26.	User interface design		1	PPT
	27.	Component level design		1	PPT

**7. *	28.	Module 5: Software Configuration Management, Quality Assurance	CO5		PPT
Week 10		and Risk management		2	
		Reliability issues, Reliability metrics			
	29.	Reliability models, SQA(software quality Assurance)		2	PPT
	30.	ISO 9000 certification for software industry		1	
Week 11	31.	Software Risk identification, Risk projection		2	PPT , Quiz
	32.	Risk refinement, RMMM plans			PPT
	33.	Software Configuration Management			
Week 12	34.	Module 6: Software testing and maintenance Software testing techniques	CO6	2	PPT
	35.	Types of Software testing techniques		2	PPT
	36.	Testing for specialized environment		2	PPT, Video
Week	37.	Software maintenance and its types		2	PPT
13	38.	Software Re-engineering		3	PPT
	39.	Reverse-engineering.		3	PPT

Assessment of Course Outcomes

Assessment Method		arks)				
	CO1	CO2	CO3	CO4	CO5	CO6
IA-1 (20)	05	15				
Mid Sem (20)	05	10	05			
IA-2 (20)				10	05	05
End Sem (60)	10	15	05	15	10	05

Content beyond syllabus

Design Patterns for software designing

Signature of Head of Department

Signature of Faculty