Lecture 1: Intro to Data Science in Python

Areeb Gani, Michael Ilie, Vijay Shanmugam

Welcome!

ml.mbhs.edu

Outline

Topics

- Jupyter Notebooks
- Deepnote
- Data
- Pandas
- Linear Regression
- Scikit-Learn
- Statsmodels

Deepnote!

Jupyter Notebooks

- Jupyter notebooks are the google docs of code
- Standard and widely used format:
 - Extensively used in ML world, (ie kaggle)
- Serves many purposes:
 - Can be a document for you to work in, with easy graphical control
 - Good format to present your work to others
 - Can be used interactively

Jupyter Notebooks

- Comprised of cells (blocks of code to be run)
- Run these blocks by pressing "shift +Enter" (or clicking "Run")
- Supports Markdown (nice formatting language)
- Has magic functions which have special features

Data

- Iris dataset
 - Each entry contains petal length, petal width, sepal length, sepal width, and species

Pandas (overview)

- Library for manipulating and storing datasets
- Can be converted from files to Python/Numpy arrays, making it easy for machine learning algorithms

import pandas as pd

Pandas (basic functions)

- Data is represented in pandas "dataframe" (pd.DataFrame)
 - o In the following slides, let iris be a variable holding a pandas DataFrame
- We can view first 5 rows of dataframe by calling .head()

	sepal_length float64	sepal_width float64	<pre>petal_length float64</pre>	<pre>petal_width float64</pre>	species object	
0	5.1	3.5	1.4	0.2	setosa	
1	4.9	3	1.4	0.2	setosa	
2	4.7	3.2	1.3	0.2	setosa	
3	4.6	3.1	1.5	0.2	setosa	
4	5	3.6	1.4	0.2	setosa	
5 rows × 5 columns						

display(iris) — ⊘							
	sepal_length float64 4.3 - 7.9	sepal_width float64 2.0 - 4.4	<pre>petal_length float64 1.0 - 6.9</pre>	<pre>petal_width float64 0.1 - 2.5</pre>	species object setosa		
0	5.1	3.5	1.4	0.2	setosa		
1	4.9	3	1.4	0.2	setosa		
2	4.7	3.2	1.3	0.2	setosa		
3	4.6	3.1	1.5	0.2	setosa		
4	5	3.6	1.4	0.2	setosa		
Expand rows 5 - 144							
145	6.7	3	5.2	2.3	virginica		
146	6.3	2.5	5	1.9	virginica		
147	6.5	3	5.2	2	virginica		
148	6.2	3.4	5.4	2.3	virginica		
149	5.9	3	5.1	1.8	virginica		

150 rows × 5 columns

Pandas (basic functions)

- We can access shape (rows, columns) of DataFrame using .shape
- We can access specific column using []

```
e.g. iris['sepal_length']e.g. iris[['sepal_length', 'sepal_width']]
```



```
iris['sepal_length']
       5.1
       4.9
       4.7
       4.6
       5.0
      . . .
145
       6.7
146
       6.3
       6.5
147
148
       6.2
       5.9
Name: sepal_length, Length: 150, dtype: float64
```

Pandas (basic functions)

```
# 1. Column labels, and types of data in each column
iris.dtypes
sepal_length
              float64
               float64
sepal_width
petal_length
             float64
              float64
petal_width
               object
species
dtype: object
# 2. Calculate the average petal length
iris['petal_length'].mean()
3.75800000000000005
# 3. Determine which iris species are in the dataset
iris['species'].unique()
array(['setosa', 'versicolor', 'virginica'], dtype=object)
```

<pre># 4. Summary of the data iris.describe()</pre>									
	sepal_length float64	sepal_width float64	<pre>petal_length float64</pre>	<pre>petal_width float64</pre>					
count	150	150	150	150					
mean	5.843333333333334	3.0573333333333333	3.75800000000000005	1.199333333333333					
std	0.828066127977863	0.4358662849366982	1.7652982332594662	0.7622376689603465					
min	4.3	2	1	0.1					
25%	5.1	2.8	1.6	0.3					
50%	5.8	3	4.35	1.3					
75%	6.4	3.3	5.1	1.8					
max	7.9	4.4	6.9	2.5					

Pandas (indexing)

Pandas (creation)

We can also create our own DataFrame

```
column_labels = ['A', 'B']
column_entries = [
    [1, 2],
    [4, 5],
    [7, 8]
pd.DataFrame(column_entries, columns=column_labels)
  A int64 B int64
          2
           8
```

Numpy

- Numerical library for Python
- Enables us to perform mathematical operations, vector and matrix operations, random distributions, etc.
- Heavily used under-the-hood in many ML libraries
- Written in C so it is very fast

Linear Regression

- Linear Regression is trying to predict a linear relationship between data points
 - o Image below is 2D, but we can generalize to n-dimensions
- Will cover math and methods behind it next week

Scikit Learn

- Scikit-learn is one of the most popular machine learning libraries in Python
- Easy-to-use, but still very powerful not as complicated as TF/PyTorch
- Models are pre-programmed in classes

```
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(x,y)
```

Statsmodels

- Statsmodels is a data science library that uses statistical methods
- Similar interface to Scikit-learn, although can be more complex with detailed metrics - similar to R

```
import statsmodels.api as sm
lm = sm.OLS(y,x)
results = lm.fit()
```

Join Our Groups

- Sign up for Discord (https://discord.gg/3Z5YuPqt)
- Join Deepnote (https://deepnote.com/join-team?token=af3af0284bc8497)
- Fill out our form (<u>https://forms.gle/Fr31aFLWx8cHdtTY8</u>)
 - Join mailing list + Github organization

Next week: Linear Regression + Logistic Regression