TECNOLÓGICO NACIONAL DE MÉXICO

ÁLGEBRA ELEMENTAL

ALFABETO GRIEGO

FABETO GRIEGO		
Letra	Variante	Nombre en español
A, α		Alfa
B, β		Beta
Γ , γ	Γ	Gama
Δ , δ	Δ	Delta
E, ϵ	ε	Epsilon
Z,ζ		Zeta
H, η		Eta
Θθ	Θ , ϑ	Teta
I, ι		Iota
K, κ		Kapa
Λ, λ	Λ	Lambda
M, μ		Mi (o también Mu)
N, ν		Ni (o también Nu)
Ξ, ξ	Ξ	Xi
O, o		Omicron
Π, π	Π, ϖ	Pi
P, ρ	ρ	Ro
Σ , σ	Σς	Sigma
T, τ		Tau
Υ , v	Υ	Ipsilon
Φ, ϕ	Φ, φ	Fi
X, χ		Ki (o también Ji)
Ψ, ψ	Ψ	Psi
Ω, ω	Ω	Omega

Propiedades de los número reales (\mathbb{R})

Si a, b y c representan números reales $(a, b, c \in \mathbb{R})$, entonces se cumplen las siguientes propiedades en las operaciones de adición y multiplicación.

- 1. Cerradura de la adición $a+b\in\mathbb{R}$
- 2. Cerradura de la multiplicación $a \times b \in \mathbb{R}$
- 3. Conmutatividad de la adición a+b=b+a
- 4. Conmutatividad de la multiplicación $a \times b = b \times a$
- 5. Asociatividad de la adición (a+b)+c=a+(b+c)
- 6. Asociatividad de la multiplicación $(a\times b)\times c = a\times (b\times c)$
- 7. Existencia del neutro aditivo En \mathbb{R} existe el número 0 tal que a+0=a

- 8. Existencia del neutro multiplicativo En \mathbb{R} existe el número 1 tal que $a \times 1 = a$
- 9. Existencia del inverso aditivo Para cualquier número real a existe el número real -a tal que a + (-a) = 0
- 10. Existencia del inverso multiplicativo Para cualquier número real a distinto de cero existe el número a^{-1} , comunmente representado como la fracción $\frac{1}{a}$, tal que $a \times a^{-1} = 1$
- 11. Distributividad del producto sobre la adición

$$a \times (b+c) = (a \times b) + (a \times c)$$

PROPIEDADES DE LA IGUALDAD

Si a, b y c representan números reales $(a, b, c \in \mathbb{R})$, entonces se cumplen las siguientes propiedades en la igualdad.

- 1. Reflexividad (o Identidad)
- 2. Simetría $a = b \Leftrightarrow b = a$
- 3. Transitividad Si a = b y b = c, entonces a = c
- 4. **Uniformidad** Si a = b, entonces $a \times c = b \times c$
- 5. Cancelación Si a + b = c + b, entonces a = c
- 6. Aditiva de la igualdad Si a = b, entonces a + c = b + c
- 7. Multiplicativa de la igualdad Si a = b, entonces $a \times c = b \times c$

PROPIEDADES DE LAS DESIGUALDADES

1. Propiedades transitivas

Si a > b y b > c, entonces a > c

Si $a \ge b$ y $b \ge c$, entonces $a \ge c$

Si a < b y b < c, entonces a < cSi $a \le b$ y $b \le c$, entonces $a \le c$

2. Propiedades de adición

Si a > b, entonces a + c > b + c

Si $a \ge b$, entonces $a + c \ge b + c$

Si a < b, entonces a + c < b + c

Si $a \le b$, entonces $a + c \le b + c$

3. Propiedades de multiplicación (Parte 1)

Si c es un número **positivo** (c > 0), entonces:

Si a > b, entonces $a \times c > b \times c$

Si $a \ge b$, entonces $a \times c \ge b \times c$

Si a < b, entonces $a \times c < b \times c$

Si $a \leq b$, entonces $a \times c \leq b \times c$

4. Propiedades de multiplicación (Parte 2)

Si c es un número **negativo** (c < 0), entonces:

Si
$$a > b$$
, entonces $a \times c < b \times c$

Si
$$a \geq b$$
, entonces $a \times c \leq b \times c$

Si
$$a < b$$
, entonces $a \times c > b \times c$

Si
$$a \leq b$$
, entonces $a \times c \geq b \times c$

5. Propiedades de los recíprocos (Parte 1)

Si a y b, son números distintos de cero con el mismo signo (ab > 0), entonces:

Si
$$a > b$$
, entonces $\frac{1}{a} < \frac{1}{b}$
Si $a \ge b$, entonces $\frac{1}{a} \le \frac{1}{b}$
Si $a < b$, entonces $\frac{1}{a} > \frac{1}{b}$
Si $a \le b$, entonces $\frac{1}{a} \ge \frac{1}{b}$

6. Propiedades de los recíprocos (Parte 2)

Si a y b son números distintos de cero con signo contrario (ab < 0), entonces:

Signo contrario
$$(ab < 0)$$
,
Si $a > b$, entonces $\frac{1}{a} > \frac{1}{b}$
Si $a \ge b$, entonces $\frac{1}{a} \ge \frac{1}{b}$
Si $a < b$, entonces $\frac{1}{a} < \frac{1}{b}$
Si $a \le b$, entonces $\frac{1}{a} \le \frac{1}{b}$

7. Propiedades de simplificación para el valor absoluto (Parte 1)

Si
$$|a| < b$$
, entonces $-b < a < b$

Si
$$|a| \le b$$
, entonces $-b \le a \le b$

8. Propiedades de simplificación para el valor absoluto (Parte 2)

Si
$$|a| > b$$
, entonces $-b > a \lor a > b$

Si
$$|a| \ge b$$
, entonces $-b \ge a \lor a \ge b$

Intervalos

Intervalo abierto

$$(a, b) = \{x \mid a < x < b\}$$

Intervalo cerrado

$$[a, b] = \{x \mid a \le x \le b\}$$

Intervalos semiabiertos

$$(a,b] = \{x \mid a < x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

Intervalos infinitos

$$[a, \infty) = \{x \mid x \ge a\}$$

$$(-\infty, a] = \{x \mid x \le a\}$$

$$(a, \infty) = \{x \mid x > a\}$$

$$(-\infty, a) = \{x \mid x < a\}$$

VALOR ABSOLUTO Y SUS PROPIEDADES

Si a es un número real, entonces el valor absoluto de a, que se denota por el símbolo |a|, representa a un número real definido como:

$$|a| = \sqrt{a^2}$$

o también como:

$$|a| = (-a);$$
 si $a < 0$
a; si $a \ge 0$

Geométricamente el valor absoluto representa la distancia desde a hasta el origen y satisface las siguientes propiedades:

1.
$$|a| \ge 0$$

$$2. |a| = 0 \Leftrightarrow a = 0$$

3.
$$|-a| = |a|$$

$$4. |a \times b| = |a| \times |b|$$

5. Si
$$a \neq 0$$
, entonces $|a^{-1}| = \frac{1}{|a|}$

6. Si
$$b \neq 0$$
, entonces $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$

7.
$$|a+b| \le |a| + |b|$$

8.
$$|a-b| \ge |a| - |b|$$

PROPIEDADES DE LOS EXPONENTES

1.
$$a^m a^n = a^{m+n}$$

2.
$$(a^m)^n = a^{mn}$$

3.
$$\frac{a^m}{a^n} = a^{m-n}$$
; para $a \neq 0$

4.
$$a^0 = 1 \text{ para } a \neq 0$$

5.
$$a^1 = a$$

6.
$$a^{-m} = \frac{1}{a^m} \text{ para } a \neq 0$$

7.
$$(ab)^m = a^m b^m$$

8.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
; para $b \neq 0$

PROPIEDADES DE LOS RADICALES

1.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

2.
$$(\sqrt[n]{a})^m = a^{\frac{m}{n}}$$

= $\sqrt[n]{a^m}$

3.
$$\sqrt[n]{a^n} = \langle a; \text{ si } n \text{ es impar} \\ |a|; \text{ si } n \text{ es par}$$

$$4. \quad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

5.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
; para $b \neq 0$

DEFINICIÓN Y PROPIEDADES DE LOS LOGARITMOS

En las siguientes expresiones el número b se dice base del logaritmo y representa a un número positivo distinto de 1.

Definición:

$$\log_b x = y \Leftrightarrow b^y = x$$

Propiedades:

1.
$$\log_b b^x = x$$

2.
$$\log_b b = 1$$

3.
$$\log_b 1 = 0$$

$$4. \, \log_b uv = \log_b u + \log_b v$$

$$5. \log_b \frac{u}{v} = \log_b u - \log_b v$$

6.
$$\log_b u^n = n \log_b u$$

7.
$$\ln u = \log_e u$$

$$8. \log u = \log_{10} u$$

Cambio de base:

Si $a \ge b$ son números positivos distintos de 1, se tiene que:

$$\log_b u = \frac{\log_a u}{\log_a b}$$

PRODUCTOS NOTABLES

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$(a \pm b)^4 = a^4 \pm 4a^3b + 6a^2b^2 \pm 4ab^3 + b^4$$

$$(a \pm b)^5 = a^5 \pm 5a^4b + 10a^3b^2 \pm 10a^2b^3 + 5ab^4 \pm b^5$$

$$(a \pm b)^6 = a^6 \pm 6a^5b + 15a^4b^2 \pm 20a^3b^3 + 15a^2b^4 \pm 6ab^5 + b^6$$

FACTORES NOTABLES

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$a^{2} + b^{2} \text{ no es factorizable}$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{4} - b^{4} = (a + b)(a - b)(a^{2} + b^{2})$$

$$a^{4} + b^{4} \text{ no es factorizable}$$

$$a^{5} - b^{5} = (a - b)(a^{4} + a^{3}b + a^{2}b^{2} + ab^{3} + a^{4})$$

$$a^{5} + b^{5} = (a + b)(a^{4} - a^{3}b + a^{2}b^{2} - ab^{3} + a^{4})$$

$$a^{6} - b^{6} = (a - b)(a + b)(a^{2} + ab + b^{2})(a^{2} - ab + b^{2})$$

$$a^{6} + b^{6} = (a^{2} + b^{2})(a^{4} - a^{2}b^{2} + b^{4})$$

SOLUCIÓN DE ECUACIONES POLINOMIALES

Fórmula general para la ecuación de primer grado (ax + b = 0)

$$x = -\frac{b}{a}$$

Fórmula general para la ecuación de segundo grado $(ax^2 + bx + c = 0)$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$