Ejercicios Álgebra Lineal

Espacios Vectoriales y Transformaciones Lineales

§1 Subespacios invariantes

Definición 1.1 (Subespacio invariante)

Suponiendo $T \in \mathcal{L}(V)$. Un subespacio U de V es llamado **invariante** bajo T si $u \in U$ implica $Tu \in U$.

En la búsqueda del subespacio no trivial más simple posible (1-dimensional) nos encontramos con un U definido como

$$U = \{\lambda v : \lambda \in \mathbb{F}\} = \operatorname{span}(v)$$

Vemos que si U es invariante bajo un operador $T \in \mathcal{L}(V)$ entonces $Tv \in U$ y por tanto hay un escalar $\lambda \in \mathbb{F}$ que cumple

$$Tv = \lambda v$$

Esta ecuación es tan importante que el vector v y el valor λ reciben su propio nombre.

§2 Vectores y valores propios

Definición 2.1 (Valor Propio o Eigenvalue)

Suponiendo $T \in \mathcal{L}(V)$. Un número $\lambda \in \mathbb{F}$ es llamado valor propio de T si existe $v \in V$ tal que $v \neq 0$ y $Tv = \lambda v$.

Es condición indispensable que $v \neq 0$ porque cualquier escalar $\lambda \in \mathbb{F}$ cumple $T0 = \lambda 0$.

Definición 2.2 (Vector Propio o Eigenvector)

Suponiendo $T \in \mathcal{L}(V)$ y $\lambda \in \mathbb{F}$ es un valor propio de T. Un vector $v \in V$ es llamado vector propio de T correspondiente a λ si $v \neq 0$ y $Tv = \lambda v$.

Teorema 2.3 (Una lista de vectores propios es linealmente independiente)

Sea $T \in \mathcal{L}(V)$. Supón $\lambda_1, \ldots, \lambda_m$ son distintos valores propios de T y v_1, \ldots, v_m son los correspondientes vectores propios. Entonces v_1, \ldots, v_m es linealmente independiente.

Demostración. Suponeos que v_1, \ldots, v_m es linealmente dependiente. Siendo k el entero positivo más pequeño tal que

$$v_k \in span(v_1, \dots, v_{k-1}); \tag{5.11}$$

la existencia de k con esta propiedad se sigue del Lema de Dependencia Lineal

(2.21). Por tanto existe $a_1, \ldots, a_{k-1} \in \mathbb{F}$ tal que

$$v_k = a_1 v_1 + \dots + a_{k-1} v_{k-1}. \tag{5.12}$$

Applicando T a ambos lados de la ecuación obtenemos

$$\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$$

Multiplicando ambos lados de 5.12 por λ_k y luego restando la ecuación de arriba obtenemos

$$0 = a_1(\lambda_k - \lambda_1)v_1 + \dots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}.$$

Dado que definimos k como el menor entero positivo que satisface $5.11, v_1, \ldots, v_{k-1}$ es linealmente independiente. Por tanto la ecuación de arriba implica que todas las a's son 0. Sin embargo, esto significa que v_k es igual a 0, contradiciendo nuestra hipotesis de que v_k es un vector propio. Por tanto nuestra asunción de que v_1, \ldots, v_m es linealmente dependiente es falsa.

Teorema 2.4

Suponiendo V finito-dimensional. Cada operador en V tiene como mucho $\dim V$ valores propios distintos.

Demostración. Sea $T \in \mathcal{L}(V)$. Suponiendo que $\lambda_1, \ldots, \lambda_m$ son distintos valores propios de T. Sea v_1, \ldots, v_m los correspondientes vectores propios. El teorema 2.3 implica que la lista v_1, \ldots, v_m es linealmente independiente. Por tanto $m \leq \dim V$, como se deseaba.

$$\underbrace{v_1,\dots,v_m}_{\text{lista linealmente independiente}}$$

Proposición 2.5

Suponiendo que V es finito-dimensional y S, $T \in \mathcal{L}(V)$. Probar que ST es invertible si y solo si ambos S y T son invertibles.

Demostración. (\Leftarrow) Suponiendo que S y T son invertibles, por el Problema~1,~ST es también invertible.

(⇒) Suponiendo que ST es invertible. Demostraremos que T es invectiva y S sobreyectiva. Como V es finito-dimensional, esto implicaría que tanto S como T son invertibles. Entonces suponiendo $v_1, v_2 \in V$ son tales que $Tv_1 = Tv_2$. Luego $(ST)(v_1) = (ST)(v_2)$, y como ST es invertible (y por tanto invectiva), debemos tener que $v_1 = v_2$, por tanto T es invectiva. Siguiente, suponiendo $v \in V$. Como T^{-1} es sobreyectiva, existe $w \in V$ tal que $T^{-1}w = v$. Y como ST es sobreyectiva, existe $p \in V$ tal que (ST)(p) = w. A esto le sigue que $(STT^{-1})(p) = T^{-1}(w)$, y por tanto Sp = v. Luego S es sobreyectiva, completando la prueba.