City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>A</u> 20 20 / 21

Part I Course Over	view								
Course Title:	Complex Analysis								
Course Code:	MA3517								
Course Duration:	One semester								
Credit Units:	3								
Level:	В3								
Proposed Area: (for GE courses only)	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Science and Technology								
Medium of Instruction:	English								
Medium of Assessment:	English								
Prerequisites: (Course Code and Title)	MA2508 Multi-variable Calculus								
Precursors: (Course Code and Title)	Nil								
Equivalent Courses : (Course Code and Title)	Nil								
Exclusive Courses: (Course Code and Title)	Nil								

1

Part II **Course Details**

1. **Abstract**

(A 150-word description about the course)

This course aims to provide an introduction on the theory and applications of functions of a complex variable. It will help students to understand the basic theory of complex analysis and apply the methods to solve problems in physics and engineering.

Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs [#]	Weighting* (if applicable)	curricu learnir (pleaso approp	very-englum reng outcome tick priate)	lated omes where
			Al	A2	A3
1.	explain at high level concepts from complex analysis, including analyticity of functions and conformality of mappings.	10%	✓		
2.	state and prove rigorously mathematical statements concerning analytic functions.	15%	√		
3.	generate power series and Laurent series expansions of complex-valued functions.	15%		√	
4.	evaluate line/contour integrals directly or by using the residue theorem, and compute real integrals via contour integration.	20%		√	
5.	determine images of curves and sets under complex mappings, particularly conformal maps.	10%		√	
6.	apply techniques of complex analysis in other mathematical and scientific applications, such as Laplace and Fourier transforms.	20%	√	√	V
7.	the combination of CILOs 1-6	10%	√	√	√
* If w	eighting is assigned to CILOs, they should add up to 100%.	100%			_

If weighting is assigned to CILOs, they should add up to 100%.

A1:

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

3.

Teaching and Learning Activities (TLAs) (TLAs designed to facilitate students' achievement of the CILOs.)

TLA		CIL	O No					Hours/week	
		1	2	3	4	5	6	7	(if applicable)
Lecture	Learning through teaching is	Y	Y	Y	Y	Y	Y	Y	39 hours in
	primarily based on lectures.								total
Take-home	Learning through take-home	Y	Y	Y	Y	Y	Y		after-class
assignments	assignments helps students								
	understand basic concepts of								
	complex analysis and practise								
	techniques of series expansion								
	and contour/real integral								
	computation.								
Online	Learning through online						Y		after-class
applications	examples for applications								
	helps students create and								
	formulate mathematical models								
	in science/engineering with								
	techniques of complex analysis.								
Math Help	Learning activities in Math	Y	Y	Y	Y	Y	Y		after-class
Centre	Help Centre provides students								
	extra help.								

Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 2 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment	Assessment		CILO No.		Weighting*	Remarks				
Tasks/Activ	ities	1	2	3	4	5	6	7		
	Continuous Ass	essm	ent:	_30	9	%				
Test		Y	Y	Y					15-30%	Questions are designed for the first part of the course to see how well students have learned the concept of analyticity of complex-valued functions and its function-theoretic consequences.

Hand-in assignments	Y	Y	Y	Y	Y	Y			0-15%	These are skills
5										based assessment to
										enable students to
										apply basic concepts
										and techniques of
										complex analysis in
										proving
										mathematical
										statements,
										evaluating
										real/contour
										integrals,
										performing integral
										transforms and
										modeling a range of
										scientific
										applications.
Formative take-home	Y	Y	Y	Y	Y	Y			0%	The assignments
assignments	•		1	1	1	1			070	provide students
assignments										chances to
										demonstrate their
										achievements on
										methods of complex
										analysis learned in
										this course.
Examination: _^	70	_% (dura	tion	: 2 h	rs, if	i fappli	cable)		Examination
										questions are
										designed to see how
										far students have
										achieved their
										intended learning
										outcomes.
										Questions will
										primarily be skills
										and understanding
										based to assess the
										student's versatility
										in complex analysis
										and its applications.
* The weightings should add up	to 10	00%.							100%	

5. Assessment Rubrics
(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Test	ABILITY to APPLY and EXPLAIN the methodology of limits, derivatives, integrals of functions of one complex variable.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignments	CAPACITY for SELF-DIRECTED LEARNING to understand the properties of complex functions, in particular, the analytic functions.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Formative take-home assignments	CAPACITY for SELF-DIRECTED LEARNING to apply principles of complex analysis to some problems in science and engineering	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Examination	ABILITY to DEVELOP mathematical models through complex analysis and SOLVE problems with different methods	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Functions of a complex variable. Cauchy-Riemann equations. Conformal mapping. Analytic functions. Contour integrals. Cauchy integral theorem. The residue theorem. Laplace and Fourier transforms.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Complex variables and applications, by Ruel V. Churchill, James Ward Brown.
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Fundamentals of complex analysis with applications to engineering and science, by E.B. Saff, A.D. Snider.
2.	Complex analysis: an introduction to the theory of analytic functions of one complex variable, by Lars V. Ahlfors.
3.	A collection of problems on complex analysis, by L.I. Volkovyskii, G.L. Lunts, I.G. Aramanovich.