Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling

小池 貴之

東京大学

July 17, 2014

ArXiv/1406.2386, collaborator:谷崎佑弥 (Tokyo, Nishina Center, RIKEN)

目次

- Motivation
- Lefschetz-thimble path integral
 - Zero-dimensional analogue of real-time path integral
 - Lefschetz-thimble path integral
 - Some examples
- Quantum tunneling by Lefschetz-thimble path integral
- Summary

1. Motivation

Motivation

• (real-time) path integral

$$K(x_f, t_f; x_i, t_i) = \int \mathcal{D}x \exp iS[x(t)]/\hbar$$

を考えたい.

Motivation

• (real-time) path integral

$$K(x_f, t_f; x_i, t_i) = \int \mathcal{D}x \exp iS[x(t)]/\hbar$$

を考えたい.

• しかしこれは振動積分となり、収束に関して問題がある.

Motivation

• (real-time) path integral

$$K(x_f, t_f; x_i, t_i) = \int \mathcal{D}x \exp iS[x(t)]/\hbar$$

を考えたい.

- しかしこれは振動積分となり、収束に関して問題がある.
- そのため、定式化や quantum Monte Carlo simulation には問題がつきまとう.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

問題 1

(real-time) path integral

$$K(x_f, t_f; x_i, t_i) = \int \mathcal{D}x \exp iS[x(t)]/\hbar$$

は, 測度論的に定式化できるか?

問題 1

(real-time) path integral

$$K(x_f, t_f; x_i, t_i) = \int \mathcal{D}x \exp iS[x(t)]/\hbar$$

は. 測度論的に定式化できるか?

Wick rotation による変数変換なども有効だが、こ こでは直接 real-time のままでの定式化を考えたい。

問題 1

(real-time) path integral

$$K(x_f, t_f; x_i, t_i) = \int \mathcal{D}x \exp iS[x(t)]/\hbar$$

は, 測度論的に定式化できるか?

- Wick rotation による変数変換なども有効だが、ここでは直接 real-time のままでの定式化を考えたい。
- E. Witten (ArXiv/1001.2933) のアイデアに基づき, Lefschetz-thimble path integral を考える.

4□ > 4□ > 4 = > 4 = > = 90

Lefschetz-thimble path integral を用いて double-well potential を考察することで, 次を考えたい.

Lefschetz-thimble path integral を用いて double-well potential を考察することで, 次を考えたい.

問題 2

Quantum tunneling を, Lefschetz-thimble path integral を介して semi-classical に記述せよ.

2. Lefschetz-thimble path integral

Lefschetz-thimble path integral とは?

• Picard-Lefschetz theory (=複素版の Morse theory) を応用することで, 適切な積分サイクル $\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}$ の選択を行い,

$$\int \mathcal{D} x \exp \mathrm{i} S[x(t)]/\hbar := \sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \mathcal{D} x \exp \mathrm{i} S[x(t)]/\hbar$$

と定義する.

Lefschetz-thimble path integral とは?

• Picard–Lefschetz theory (=複素版の Morse theory) を応用することで, 適切な積分サイクル $\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}$ の選択を行い,

$$\int \mathcal{D}x \exp \mathrm{i} S[x(t)]/\hbar := \sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \mathcal{D}x \exp \mathrm{i} S[x(t)]/\hbar$$

と定義する.

• 各 \mathcal{J}_{σ} 上での積分は、収束するように選ぶ.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Lefschetz-thimble path integral とは?

• Picard-Lefschetz theory (=複素版の Morse theory) を応用することで, 適切な積分サイクル $\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}$ の選択を行い,

$$\int \mathcal{D}x \exp \mathrm{i}S[x(t)]/\hbar := \sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \mathcal{D}x \exp \mathrm{i}S[x(t)]/\hbar$$

と定義する.

- 各 \mathcal{J}_{σ} 上での積分は、収束するように選ぶ.
- 適切な $\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}$ を選ぶために、空間を複素化して考える必要がある.

- **↓ ロ ♪ ∢ 昼 ♪ ∢ 種 ♪** → **夏 → り**へぐ

Zero-dimensional analogue of real-time path integral

• まずは簡単な例で、どのように積分サイクルの選択を行うのかについて述べる.

Zero-dimensional analogue of real-time path integral

- まずは簡単な例で、どのように積分サイクルの選択を行うのかについて述べる.
- 例として, 次を考える.

Zero-dimensional analogue of real-time path integral

- まずは簡単な例で、どのように積分サイクルの選択を行うのかについて述べる.
- 例として, 次を考える.

問題 3 (Airy function)

$$Ai(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dx \, \exp i \left(\frac{x^3}{3} + \lambda x \right)$$

を定式化せよ.

4 D > 4 D > 4 E > 4 E > E 900

Airy functionの性質 (1)

• Lebesgue の意味では、この積分は意味をなさない.

Airy functionの性質 (1)

- Lebesgue の意味では、この積分は意味をなさない.
- 一方で, Airy integral

$$Ai(\lambda) = \lim_{\varepsilon \to +0} \frac{1}{2\pi} \int_{\mathbb{R}} dx \, \exp(i - \varepsilon \operatorname{sign}(x)) \left(\frac{x^3}{3} + \lambda x \right)$$

としては意味を持つ.

Airy functionの性質 (1)

- Lebesgue の意味では、この積分は意味をなさない.
- 一方で, Airy integral

$$Ai(\lambda) = \lim_{\varepsilon \to +0} \frac{1}{2\pi} \int_{\mathbb{R}} dx \, \exp(i - \varepsilon \operatorname{sign}(x)) \left(\frac{x^3}{3} + \lambda x\right)$$

としては意味を持つ.

• しかしここでは、積分サイクルを取り替えるという観点から、Airy functionの定式化を行いたい.

Airy functionの性質 (2)

- 被積分関数を複素平面上で考えると,上図灰色の 場所では"収束が良い".
- 実際, 青線に沿って被積分関数 $\exp i \left(x^3/3 + \lambda x\right)$ は 0 へ収束.
- 積分サイクルは \mathcal{J}_1 又は $\mathcal{J}_2 + \mathcal{J}_3$ が適切に見える.

前スライドの \mathcal{J}_1 又は $\mathcal{J}_2 + \mathcal{J}_3$ のような "良い積分サイクル" の選び方を考えたい. 正確には, 以下のような \mathbb{C} のサイクル $\sum n_{\sigma}\mathcal{J}_{\sigma}$ をどう選ぶかを考えたい.

前スライドの \mathcal{J}_1 又は $\mathcal{J}_2 + \mathcal{J}_3$ のような "良い積分サイクル" の選び方を考えたい. 正確には, 以下のような \mathbb{C} のサイクル $\sum n_{\sigma}\mathcal{J}_{\sigma}$ をどう選ぶかを考えたい.

• サイクルとして (=相対ホモロジーの元として) 元のサイクル $\mathbb{R} \subset \mathbb{C}$ と等しい.

前スライドの \mathcal{J}_1 又は $\mathcal{J}_2 + \mathcal{J}_3$ のような "良い積分サイクル" の選び方を考えたい. 正確には, 以下のような \mathbb{C} のサイクル $\sum n_{\sigma}\mathcal{J}_{\sigma}$ をどう選ぶかを考えたい.

- サイクルとして (=相対ホモロジーの元として) 元 のサイクル $\mathbb{R} \subset \mathbb{C}$ と等しい.
- 各 \mathcal{J}_{σ} 上 exp i $(x^3/3 + \lambda x)$ は可積分.

前スライドの \mathcal{J}_1 又は $\mathcal{J}_2 + \mathcal{J}_3$ のような "良い積分サイクル" の選び方を考えたい. 正確には, 以下のような \mathbb{C} のサイクル $\sum n_{\sigma}\mathcal{J}_{\sigma}$ をどう選ぶかを考えたい.

- サイクルとして (=相対ホモロジーの元として) 元 のサイクル $\mathbb{R} \subset \mathbb{C}$ と等しい.
- 各 \mathcal{J}_{σ} 上 exp i $(x^3/3 + \lambda x)$ は可積分.

Picard-Lefschetz theory を用いることで、このようなサイクルを選ぶことが出来る (E. Witten ArXiv/1001.2933).

Picard-Lefschetz theory

● ここで言う Picard-Lefschetz theory は複素版の Morse theory, つまり多様体から ℝへの "高さ関数" の臨界点の情報から, もとの多様体の性質を調べ る技術を指す。

Picard-Lefschetz theory

- ここで言う Picard-Lefschetz theory は複素版の Morse theory, つまり多様体からℝへの"高さ関数" の臨界点の情報から, もとの多様体の性質を調べ る技術を指す.
- Airy function の例では、多様体として \mathbb{C} 、高さ関数 として $\mathcal{I}(x) := \mathrm{i}(x^3/3 + \lambda x)$ の実部 $\mathrm{Re}(\mathcal{I}) : \mathbb{C} \to \mathbb{R}$ を考える.

Picard-Lefschetz theory

- ここで言う Picard-Lefschetz theory は複素版の Morse theory, つまり多様体からℝへの"高さ関数" の臨界点の情報から, もとの多様体の性質を調べ る技術を指す.
- Airy function の例では、多様体として \mathbb{C} 、高さ関数 として $\mathcal{I}(x) := \mathrm{i}(x^3/3 + \lambda x)$ の実部 $\mathrm{Re}(\mathcal{I}) : \mathbb{C} \to \mathbb{R}$ を考える.
- このように, 正則関数の実部であるような高さ関数は, 次スライドで述べるように, 特別な性質を持つ.

Lemma 1 (Complex Morse Lemma の系)

f を n次元複素多様体上の正則関数として, morse である (i.e. 各臨界点が非退化である) ものとする. このとき, 各臨界点 p 周りでうまく局所座標 $(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)$ を選ぶことで,

$$p = (0, 0, ..., 0), p$$
 まわりで $\operatorname{Re}(f) = \sum_{j=1}^{n} (x_j^2 - y_j^2)$

と書ける。

Lemma 1 (Complex Morse Lemma の系)

f を n 次元複素多様体上の正則関数として, morse である (i.e. 各臨界点が非退化である) ものとする. このとき, 各臨界点 p 周りでうまく局所座標 $(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)$ を選ぶことで,

$$p = (0, 0, \dots, 0), \ p$$
 まわりで $\operatorname{Re}(f) = \sum_{j=1}^{n} (x_j^2 - y_j^2)$

と書ける。

特に、高さ関数 $Re(\mathcal{I})$ についての \mathbb{C} の臨界点は、全て鞍点となっていることが分かる.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

upward/downward flow

• \mathcal{I} の各臨界点 x_σ に対し, x_σ での $\operatorname{Re}(\mathcal{I})$ の upward flow, つまり始点を x_σ とする曲線 $c=(c_j)_j$ であって

$$\frac{dc_j(t)}{dt} = \frac{\partial}{\partial x_j} \operatorname{Re}(\mathcal{I})$$

を満たすようなものを考える.

upward/downward flow

• \mathcal{I} の各臨界点 x_{σ} に対し, x_{σ} での $\operatorname{Re}(\mathcal{I})$ の upward flow, つまり始点を x_{σ} とする曲線 $c=(c_{j})_{j}$ であって

$$\frac{dc_j(t)}{dt} = \frac{\partial}{\partial x_j} \operatorname{Re}(\mathcal{I})$$

を満たすようなものを考える.

• 集合 K_{σ} で、upward flow の終点となり得る点全体の集合を表す.

upward/downward flow

• \mathcal{I} の各臨界点 x_{σ} に対し, x_{σ} での $\operatorname{Re}(\mathcal{I})$ の upward flow, つまり始点を x_{σ} とする曲線 $c=(c_{j})_{j}$ であって

$$\frac{dc_j(t)}{dt} = \frac{\partial}{\partial x_j} \operatorname{Re}(\mathcal{I})$$

を満たすようなものを考える.

- 集合 K_{σ} で, upward flow の終点となり得る点全体 の集合を表す.
- 集合 \mathcal{J}_{σ} で, downward flow の終点となり得る点全体の集合を表す.

- 4 ㅁ > 4 @ > 4 돌 > 4 돌 > - 돌 - 쒼익()

upward/downward flowの例

Figure 1: $\lambda = i$ での, 高さ関数 $\operatorname{Re}(\mathcal{I})$ の等高線

Figure 2: $\lambda = i$ での, 各臨界点での upward/downward flow

- **(ロ)(@)(ミ)(ミ)** - ミー かくぐ

Airy functionの定式化

• 二つ前のスライドの補題から, n次元複素多様体上の正則 morse 関数 f に対し, morse 関数 Re(f) の各臨界点 x_{σ} に対して定義される集合 K_{σ} , \mathcal{J}_{σ} は, ともに実 n次元のサイクルであることが分かる (従って $\lambda=i$ で K_{σ} , \mathcal{J}_{σ} が常に曲線となっていたのは偶然ではない).

Airy functionの定式化

- 二つ前のスライドの補題から, n次元複素多様体上の正則 morse 関数 f に対し, morse 関数 Re(f) の各臨界点 x_{σ} に対して定義される集合 K_{σ} , \mathcal{J}_{σ} は, ともに実 n次元のサイクルであることが分かる (従って $\lambda=i$ で K_{σ} , \mathcal{J}_{σ} が常に曲線となっていたのは偶然ではない).
- $n_{\sigma} := \langle \mathcal{K}_{\sigma}, \mathbb{R} \rangle$ とすると, $\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}$ は (相対ホモロジーの元として) \mathbb{R} と同じ積分サイクルと見なせる.

Airy functionの定式化

- 二つ前のスライドの補題から, n次元複素多様体上の正則 morse 関数 f に対し, morse 関数 Re(f) の各臨界点 x_{σ} に対して定義される集合 \mathcal{K}_{σ} , \mathcal{J}_{σ} は, ともに実 n次元のサイクルであることが分かる (従って $\lambda=i$ で \mathcal{K}_{σ} , \mathcal{J}_{σ} が常に曲線となっていたのは偶然ではない).
- $n_{\sigma} := \langle \mathcal{K}_{\sigma}, \mathbb{R} \rangle$ とすると, $\sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}$ は (相対ホモロジーの元として) \mathbb{R} と同じ積分サイクルと見なせる.
- \mathcal{J}_{σ} 上 Im(\mathcal{I}) の値が一定であることに注意すると, 明らかに \mathcal{J}_{σ} 上 exp \mathcal{I} は可積分である.

以上から Airy function は,

$$Ai(\lambda) := rac{1}{2\pi} \sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} dx \, \exp{\mathrm{i}} \left(rac{x^{3}}{3} + \lambda x
ight)$$
 $= rac{1}{2\pi} \sum_{\sigma} \langle \mathcal{K}_{\sigma}, \mathbb{R} \rangle e^{\mathrm{Im}\mathcal{I}(x_{\sigma})} \int_{\mathcal{J}_{\sigma}} dx \, \exp{\mathrm{Re}}\mathcal{I}(x)$

と定式化できる.

<□▶ <┛▶ <둘▶ <불▶ = 900

以上から Airy function は,

$$Ai(\lambda) := rac{1}{2\pi} \sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} dx \, \exp{\mathrm{i}} \left(rac{x^{3}}{3} + \lambda x
ight)$$
 $= rac{1}{2\pi} \sum_{\sigma} \langle \mathcal{K}_{\sigma}, \mathbb{R} \rangle e^{\mathrm{Im}\mathcal{I}(x_{\sigma})} \int_{\mathcal{J}_{\sigma}} dx \, \exp{\mathrm{Re}}\mathcal{I}(x)$

と定式化できる.

この定式化は、殆どすべての λ について意味を成すが、ある \mathcal{J}_{σ} によって二つ以上の臨界点が結ばれる場合 (Stokes phenomenon、次スライド参照) などには意味を持たない.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Stokes phenomenon

Figure 3: Stokes phenomenon, 図はArXiv/1001.2933 p. 28より引用.

Lefschetz-thimble path integral

以上と同様に考えることで、Lefschetz-thimble path integral による

$$K(x_f, t_f; x_i, t_i) = \int \mathcal{D}x \exp iS[x(t)]/\hbar$$

の定式化は、以下のようになされる.

Lefschetz-thimble path integral

 以上と同様に考えることで、Lefschetz-thimble path integral による

$$K(x_f, t_f; x_i, t_i) = \int \mathcal{D}x \exp iS[x(t)]/\hbar$$

の定式化は、以下のようになされる.

• 以下では空間をXとして, potential を $V: X \to \mathbb{R}$ と記す:

$$S[x(t)] = \int dt \left(\frac{1}{2}\left(\frac{dx}{dt}\right)^2 - V(x(t))\right).$$

< ロ ト ← 個 ト ← 差 ト ← 差 ト 一 差 ・ 夕 Q (^)

path integral では, 積分は path の空間

 $\mathcal{X} := \{x \colon [t_i, t_f] \to X : \text{path} \mid x(t_i) = x_i, x(t_f) = x_f\}$ 上でなされる.

path integral では, 積分は path の空間

 $\mathcal{X} := \{x \colon [t_i, t_f] \to X : \text{path} \mid x(t_i) = x_i, x(t_f) = x_f\}$ 上でなされる.

Xの適切な意味での"複素化" \widetilde{X} に対して, path の空間 $\widetilde{\mathcal{X}} := \{z : [t_i, t_f] \to \widetilde{X} : \text{path } | z(t_i) = x_i, z(t_f) = x_f \}$ を無限次元の複素多様体と見なし, その上の関数

$$\mathcal{I}[z] := \mathrm{i} \int dt \, \left(\frac{1}{2} \left(\frac{dz}{dt} \right)^2 - V(z(t)) \right)$$

に対し、関数 $Re(\mathcal{I})$ を高さ関数として用いる.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

path integral では, 積分は path の空間

 $\mathcal{X} := \{x \colon [t_i, t_f] \to X : \text{path} \mid x(t_i) = x_i, x(t_f) = x_f\}$ 上でなされる.

Xの適切な意味での"複素化" \widetilde{X} に対して, path の空間 $\widetilde{\mathcal{X}} := \{z : [t_i, t_f] \to \widetilde{X} : \text{path} \mid z(t_i) = x_i, z(t_f) = x_f\}$ を無限次元の複素多様体と見なし、その上の関数

$$\mathcal{I}[z] := \mathrm{i} \int dt \, \left(\frac{1}{2} \left(\frac{dz}{dt} \right)^2 - V(z(t)) \right)$$

に対し、関数 $\operatorname{Re}(\mathcal{I})$ を高さ関数として用いる。 尚、以下では V が \widetilde{X} 上に正則に拡張することを仮定する.

→ロト ←個 ト ← 差 ト ← 差 ・ りへで

臨界点全体の集合を $\{z_{\sigma}\}_{\sigma\in\Sigma}$ と書くことにする. これは, (複素化された) 運動方程式の解全体の空間である.

臨界点全体の集合を $\{z_{\sigma}\}_{\sigma\in\Sigma}$ と書くことにする. これは, (複素化された) 運動方程式の解全体の空間である.

 $\sigma \in \Sigma$ に対し, 集合 \mathcal{J}_{σ} を

$$\mathcal{J}_{\sigma} := \left\{ z(t;0) \left| \begin{array}{l} \frac{\partial z(t;u)}{\partial u} = -\frac{\overline{\delta \mathcal{I}[z(t;u)]}}{\delta z(t;u)}, \\ z(t,-\infty) = z_{\sigma}(t) \end{array} \right. \right\}$$

で定義する.

臨界点全体の集合を $\{z_{\sigma}\}_{\sigma\in\Sigma}$ と書くことにする. これは, (複素化された) 運動方程式の解全体の空間である.

 $\sigma \in \Sigma$ に対し, 集合 \mathcal{J}_{σ} を

$$\mathcal{J}_{\sigma} := \left\{ z(t;0) \left| \begin{array}{l} \frac{\partial z(t;u)}{\partial u} = -\frac{\overline{\delta \mathcal{I}[z(t;u)]}}{\delta z(t;u)}, \\ z(t,-\infty) = z_{\sigma}(t) \end{array} \right. \right\}$$

で定義する. K_{σ} についても同様である.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

臨界点全体の集合を $\{z_{\sigma}\}_{\sigma\in\Sigma}$ と書くことにする. これ は、(複素化された)運動方程式の解全体の空間である.

 $\sigma \in \Sigma$ に対し. 集合 \mathcal{T}_{σ} を

$$\mathcal{J}_{\sigma} := \left\{ z(t;0) \left| \begin{array}{l} \frac{\partial z(t;u)}{\partial u} = -\frac{\overline{\delta \mathcal{I}[z(t;u)]}}{\delta z(t;u)}, \\ z(t,-\infty) = z_{\sigma}(t) \end{array} \right. \right\}$$

で定義する. 火。についても同様である.

以下で定める.

$$\int \mathcal{D}x \exp \mathrm{i} S[x(t)]/\hbar := \sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \mathcal{D}x \exp \mathrm{i} S[x(t)]/\hbar.$$

Some examples ([Y. Tanizaki, T. K, §3])

• $X = \mathbb{R}, V \equiv 0$ のとき (つまり, 直線状の自由粒子のとき) には, $\widetilde{X} = \mathbb{C}$ とすることで, $\{z_{\sigma}\}_{\sigma}$ 及び \mathcal{J}_{σ} を完全に求めることができる. 結果, 各 \mathcal{J}_{σ} 上での積分は Wiener 積分となり, Lefschetz-thimble path integral を完全に計算できる.

Some examples ([Y. Tanizaki, T. K, §3])

- $X = \mathbb{R}, V \equiv 0$ のとき (つまり, 直線状の自由粒子のとき) には, $\widetilde{X} = \mathbb{C}$ とすることで, $\{z_{\sigma}\}_{\sigma}$ 及び \mathcal{J}_{σ} を完全に求めることができる. 結果, 各 \mathcal{J}_{σ} 上での積分は Wiener 積分となり, Lefschetz-thimble path integral を完全に計算できる.
- $X = \mathbb{R}/\mathbb{Z}, V \equiv 0$ のとき (円周上の自由粒子のとき) にも, $\widetilde{X} = \mathbb{C}/\mathbb{Z}$ として, やはり直線上の場合と同じように上手くゆく.

Some examples ([Y. Tanizaki, T. K, §3])

- $X = \mathbb{R}, V \equiv 0$ のとき (つまり, 直線状の自由粒子のとき) には, $\widetilde{X} = \mathbb{C}$ とすることで, $\{z_{\sigma}\}_{\sigma}$ 及び \mathcal{J}_{σ} を完全に求めることができる. 結果, 各 \mathcal{J}_{σ} 上での積分は Wiener 積分となり, Lefschetz-thimble path integral を完全に計算できる.
- $X = \mathbb{R}/\mathbb{Z}, V \equiv 0$ のとき (円周上の自由粒子のとき) にも, $\widetilde{X} = \mathbb{C}/\mathbb{Z}$ として, やはり直線上の場合と同じように上手くゆく.
- $X = \mathbb{R}$, $V(z) = z^2/2$ のとき (Harmonic oscillator のとき) にも, やはり $\widetilde{X} = \mathbb{C}$ とすることで上手くゆく.

考察

• Lefschetz-thimble path integral を具体的に計算する上では、一般には、無限次元のサイクルと無限次元のサイクルとの交点数である n_{σ} の計算が大きな問題となる.

考察

- Lefschetz-thimble path integral を具体的に計算する上では、一般には、無限次元のサイクルと無限次元のサイクルとの交点数である n_{σ} の計算が大きな問題となる.
- しかし, 前スライドの例では, いずれも運動方程式の解 $\{z_{\sigma}\}_{\sigma}$ が, (複素化して考えているにもかかわらず) 全て実関数として求まる.

考察

- Lefschetz-thimble path integral を具体的に計算する上では、一般には、無限次元のサイクルと無限次元のサイクルとの交点数である n_{σ} の計算が大きな問題となる.
- しかし, 前スライドの例では, いずれも運動方程式の解 $\{z_{\sigma}\}_{\sigma}$ が, (複素化して考えているにもかかわらず) 全て実関数として求まる. この場合には元のサイクルと \mathcal{K}_{σ} とが z_{σ} 一点のみで交わっており(元のサイクル上で $\operatorname{Re}(\mathcal{I}) \equiv 0$ であることに注意), したがって $n_{\sigma} = 1$ と分かる.

3. Quantum tunneling by Lefschetz-thimble path integral

July 17, 2014

• $X = \mathbb{R}$ 上で double-well potential を考える:

$$\mathcal{I}[z] = \mathrm{i} \int dt \left[\frac{1}{2} \left(\frac{dz}{dt} \right)^2 - \frac{1}{2} (z^2 - 1)^2 \right].$$

• $X = \mathbb{R}$ 上で double-well potential を考える:

$$\mathcal{I}[z] = \mathrm{i} \int dt \, \left[\frac{1}{2} \left(\frac{dz}{dt} \right)^2 - \frac{1}{2} (z^2 - 1)^2 \right].$$

• その複素化を $\widetilde{X} = \mathbb{C}$ として運動方程式を解き, $\{x_{\sigma}\}_{\sigma \in \Sigma}$ を決定する.

• $X = \mathbb{R}$ 上で double-well potential を考える:

$$\mathcal{I}[z] = \mathrm{i} \int dt \, \left[\frac{1}{2} \left(\frac{dz}{dt} \right)^2 - \frac{1}{2} (z^2 - 1)^2 \right].$$

- その複素化を $\widetilde{X} = \mathbb{C}$ として運動方程式を解き, $\{x_{\sigma}\}_{\sigma \in \Sigma}$ を決定する.
- その内、どの解が Quantum tunneling に相当するのかについて考察を行う.

解くべきは

$$\frac{d^2z}{dt^2} = -2z(z^2-1), \ z(t_i) = x_i, \ z(t_f) = x_f$$

である.

解くべきは

$$\frac{d^2z}{dt^2} = -2z(z^2 - 1), \ z(t_i) = x_i, \ z(t_f) = x_f$$

である. この解は

$$z(t) = \sqrt{\frac{p^2-1}{2p}}\mathrm{sd}\left(\sqrt{2p}t + \mathrm{sd}^{-1}\left(\sqrt{\frac{2p}{p^2-1}}x_i,\ \sqrt{\frac{1+p}{2p}}\right),\ \sqrt{\frac{1+p}{2p}}\right)$$

と計算できる. ここで p は $z(t_f) = x_f$ なる複素定数であり, このとき

$$\left(\frac{dz}{dt}\right)^2 + (z^2 - 1)^2 = p$$

となっている.

→□▶ →□▶ → □▶ → □ ♥ ♀○

では、このような解 $\{z_{\sigma}\}_{\sigma\in\Sigma}$ は、どれくらいあるのか?

では, このような解 $\{z_{\sigma}\}_{\sigma\in\Sigma}$ は, どれくらいあるのか? 添え字集合 Σ を決定するには, 運動方程式を $X=-z^2+2/3$ と変数変換することが有効.

では、このような解 $\{z_{\sigma}\}_{\sigma\in\Sigma}$ は、どれくらいあるのか? 添え字集合 Σ を決定するには、運動方程式を $X=-z^2+2/3$ と変数変換することが有効.

以下, この変換を用いて, $t_i < t_f, x_i = x_f = 0$ のときに添え字集合 Σ を決定する.

では、このような解 $\{z_{\sigma}\}_{\sigma\in\Sigma}$ は、どれくらいあるのか? 添え字集合 Σ を決定するには、運動方程式を $X=-z^2+2/3$ と変数変換することが有効.

以下, この変換を用いて, $t_i < t_f, x_i = x_f = 0$ のときに添え字集合 Σ を決定する.

$$p_{\sigma}:=\left(rac{dz_{\sigma}}{dt}
ight)^2+(z_{\sigma}^2-1)^2$$

とする.

→ロト → □ ト → 重 ト → 重 → りへで

このとき, 微分方程式 $\frac{d^2z}{dt^2} = -2z(z^2-1)$ に変数変換 $X = -z^2 + 2/3$ を適応することで, $X_{\sigma} := -z_{\sigma}^2 + 2/3$ は 微分方程式

$$\left(\frac{dX}{dt}\right)^2 = 4\left(X - \frac{2}{3}\right)\left(X - \left(p - \frac{1}{3}\right)\right)\left(X + \left(p + \frac{1}{3}\right)\right)$$

の解であることが分かる. したがって X_{σ} は Weierstrass のペー関数, つまり \mathbb{C} 上の二重周期関数の区間 $[t_i, t_f]$ への制限であったことが分かる.

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

このとき, 微分方程式 $\frac{d^2z}{dt^2} = -2z(z^2 - 1)$ に変数変換 $X = -z^2 + 2/3$ を適応することで, $X_{\sigma} := -z_{\sigma}^2 + 2/3$ は 微分方程式

$$\left(\frac{dX}{dt}\right)^2 = 4\left(X - \frac{2}{3}\right)\left(X - \left(p - \frac{1}{3}\right)\right)\left(X + \left(p + \frac{1}{3}\right)\right)$$

の解であることが分かる. したがって X_{σ} は Weierstrass のペー関数, つまり \mathbb{C} 上の二重周期関数の区間 $[t_i, t_f]$ への制限であったことが分かる.

この二重周期に対応する格子を $\Lambda_{\sigma} \subset \mathbb{C}$ と書くことにする.

◆ロト ◆問ト ◆言ト ◆言ト · 言 · からぐ

トーラス $\mathbb{C}/\Lambda_{\sigma}$ 上の有理型関数として X_{σ} を考察することで, t_f と t_i はトーラス上に同じ点を定めなければならないことが分かる. したがって $t_f - t_i \in \Lambda_{\sigma}$ である.

トーラス $\mathbb{C}/\Lambda_{\sigma}$ 上の有理型関数として X_{σ} を考察することで, t_f と t_i はトーラス上に同じ点を定めなければならないことが分かる. したがって $t_f - t_i \in \Lambda_{\sigma}$ である.

一方で Λ_{σ} は次の二元で生成されることが知られている:

$$2\sqrt{\frac{2k_{\sigma}^2-1}{2}}K(\sqrt{k_{\sigma}}), \quad 2\mathrm{i}\sqrt{\frac{2k_{\sigma}^2-1}{2}}K(\sqrt{1-k_{\sigma}^2}).$$

ここで K は第一種完全楕円積分である.

トーラス $\mathbb{C}/\Lambda_{\sigma}$ 上の有理型関数として X_{σ} を考察することで, t_f と t_i はトーラス上に同じ点を定めなければならないことが分かる. したがって $t_f - t_i \in \Lambda_{\sigma}$ である.

一方で Λ_{σ} は次の二元で生成されることが知られている:

$$2\sqrt{\frac{2k_{\sigma}^2-1}{2}}K(\sqrt{k_{\sigma}}), \quad 2\mathrm{i}\sqrt{\frac{2k_{\sigma}^2-1}{2}}K(\sqrt{1-k_{\sigma}^2}).$$

ここで K は第一種完全楕円積分である. この二元を基底として $t_f - t_i = (n_\sigma, m_\sigma) \in \mathbb{Z} \oplus \mathbb{Z} = \Lambda_\sigma$ なる n_σ, m_σ をとる.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Complex classical solutions (5)

以上の対応 $\sigma \mapsto (n_{\sigma}, m_{\sigma})$ は、 Σ と集合

$$\left\{(n,m)\in\mathbb{Z}\oplus\mathbb{Z}\left|\frac{n}{\gcd(n,m)}\cdot\frac{m}{\gcd(n,m)}\equiv 0\ \mathrm{mod}\ 2\right\}\right.$$

との全単射を (正確には符号分の不確定性を除いて) 誘導していることが分かる ([Y. Tanizaki, T. K, $\S4$]).

pの分布

ひょー

数表といくつかの解の様子

ひょー

• 今回は明らかに実で無い解 z_σ が無数に存在している. このうちのいずれかが Quantum tunneling に相当するものと考えられる.

- 今回は明らかに実で無い解 z_σ が無数に存在している. このうちのいずれかが Quantum tunneling に相当するものと考えられる.
- 解 z_{σ} が path integral に影響するためには, $n_{\sigma} \neq 0$ である必要がある.

- 今回は明らかに実で無い解 z_σ が無数に存在している. このうちのいずれかが Quantum tunneling に相当するものと考えられる.
- 解 z_{σ} が path integral に影響するためには, $n_{\sigma} \neq 0$ である必要がある.
- そのためには特に $\operatorname{Re}\mathcal{I}[z_{\sigma}] < 0$ である必要がある.

- 今回は明らかに実で無い解 z_σ が無数に存在している. このうちのいずれかが Quantum tunneling に相当するものと考えられる.
- 解 z_{σ} が path integral に影響するためには, $n_{\sigma} \neq 0$ である必要がある.
- そのためには特に $\operatorname{Re}\mathcal{I}[z_{\sigma}] < 0$ である必要がある.
- $\operatorname{Re} T[z_{\sigma}] < 0$ なる解が無数にあることも分かったが、それらの n_{σ} は計算方法は分かっておらず、したがって「path integral に確実に影響している」と分かっている非実数解は無い (今のところその存在すら証明は出来ていない).

$\operatorname{Re}\mathcal{I}[z_{\sigma}]<0$ なる解の例

ひょー

• Lefschetz-thimble path integral を用いることで、振動積分の可積分性の問題を回避して経路積分の定式化/簡単なものなら計算ができる.

- Lefschetz-thimble path integral を用いることで、振動積分の可積分性の問題を回避して経路積分の定式化/簡単なものなら計算ができる.
- double-well potential を例にとり, Quantum tunneling の semi-classical な記述を考察した.

- Lefschetz-thimble path integral を用いることで、振動積分の可積分性の問題を回避して経路積分の定式化/簡単なものなら計算ができる.
- double-well potential を例にとり, Quantum tunneling の semi-classical な記述を考察した.
- 古典解をすべて記述することには成功している.

- Lefschetz-thimble path integral を用いることで、振動積分の可積分性の問題を回避して経路積分の定式化/簡単なものなら計算ができる.
- double-well potential を例にとり, Quantum tunneling の semi-classical な記述を考察した.
- 古典解をすべて記述することには成功している.
- しかし、その内どの古典解が Quantum tunneling に対応しているかは未だ分かっていない。

- Lefschetz-thimble path integral を用いることで、振動積分の可積分性の問題を回避して経路積分の定式化/簡単なものなら計算ができる.
- double-well potential を例にとり, Quantum tunneling の semi-classical な記述を考察した.
- 古典解をすべて記述することには成功している.
- しかし、その内どの古典解が Quantum tunneling に対応しているかは未だ分かっていない。
- その難点は、無限次元のサイクル同士の交点数である n_{σ} の計算の難しさにある.