- Back to Contents
- Back to Calendar

Last Name, First Name	Discussion Section	on Student ID

Worksheet 8 • Restriction of Domain

- 1. Sketch the graph the function $f(x) = (x+1)^2$ and then reflect f about the line y = x. (Comment: When you reflect f about the line y = x, you interchange the roles of the x and y coordinates.) Is the reflection of f a function?
- **2.** Restrict the domain of f given by $f(x) = (x+1)^2$ in the simplest way possible so that f becomes invertible on that domain and the range of the inverse is an interval containing zero.
- 3. Let C be the function that projects the unit circle, \mathcal{C} , onto the x-axis. This is the function

$$C: \mathcal{C} \to [-1, 1]$$
 defined by $C(a, b) = a$.

Is this function invertible? If not, find the largest arc, \mathcal{A} , on the circle and containing (0,1) where it is invertible. You should highlight this arc \mathcal{A} .

4. Let S be the function that projects the unit circle, C, onto the y-axis. This is the function

$$S: \mathcal{C} \to [-1, 1]$$
 defined by $S(a, b) = b$.

Is this function invertible? If not, find the largest arc, \mathcal{B} , on the circle and containing (1,0) where it is invertible. You should highlight this arc \mathcal{B} .

5. Denote respectively by C^{-1} and S^{-1} the inverse of the restriction of C on \mathcal{A} and the inverse of the restriction of S on \mathcal{B} . Calculate

$$C^{-1}\left(\frac{1}{3}\right)$$
, $C^{-1}\left(-\frac{1}{3}\right)$, $S^{-1}\left(\frac{2}{3}\right)$, and $S^{-1}\left(-\frac{2}{3}\right)$.

- 6. Calculate
 - (a) $C^{-1}\left(C\left(\frac{2}{5}, \frac{\sqrt{21}}{5}\right)\right)$
 - (b) $C^{-1}\left(C\left(\frac{2}{5}, -\sqrt{21}/5\right)\right)$
 - (c) $S^{-1}\left(S\left(\frac{2}{5}, \frac{\sqrt{21}}{5}\right)\right)$
 - (d) $S^{-1}\left(S\left(-\frac{2}{5}, \frac{\sqrt{21}}{5}\right)\right)$.
 - (e) $S^{-1}\left(C\left(\frac{2}{5}, \frac{\sqrt{21}}{5}\right)\right)$
 - (f) $S^{-1}\left(C\left(\frac{2}{5}, -\sqrt{21}/5\right)\right)$
 - (g) $C^{-1}\left(S\left(\frac{2}{5}, \frac{\sqrt{21}}{5}\right)\right)$
 - (h) $C^{-1}\left(S\left(-\frac{2}{5}, \frac{\sqrt{21}}{5}\right)\right)$.