Reconstruction of TLAPS proofs solved by SMT in Lambdapi

Alessio Coltellacci

Univ. Lorraine, CNRS, Inria, Loria

ICSPA

Outline

Translation through an example

Formalisation overview

Evaluation

Blocking points

Future perspectives

TLA⁺ at a glance

- Specification language to design and verify reactive systems
- Systems are described as state machines

VARIABLE x CONSTANT N $ASSUME N \in Nat$

$$Init \stackrel{\triangle}{=} \quad \land \ x = 0$$

$$Next \triangleq \land x < N \land x' = x + 1$$

$$Spec \stackrel{\triangle}{=} Init \wedge \square[Next]_{\langle x \rangle}$$

TLAPS proof example

```
THEOREM cantor ==
    \forall S:
        \forall f \in [S \to \text{SUBSET } S]:
            \exists A \in \text{SUBSET } S:
                \forall x \in S:
                  f[x] # A
PROOF
<1>1 TAKE S
<1>2. TAKE f \in [S \to \text{SUBSET } S]
<1>3. DEFINE T == \{ z \in S : z \notin f[z] \}
<1>4. WITNESS T \in SUBSET S
<1>5. TAKE x \in S
<1>6. QED BY x \in T \lor x \notin T
```

Proposed solution

Simple example

```
(set-logic QF_UF)
(declare-sort U 0)
(declare-fun a () U)
(declare-fun b () U)
(declare-fun p (U) Bool)
(assert (p a))
(assert (= a b))
(assert (not (p b)))
(get-proof)
```

Alethe SMT proof

```
(assume a0 (p a))
(assume a1 (= a b))
(assume a2 (not (p b)))
(step t1 (cl (not (= (p a) (p b))) (not (p a)) (p b)) :rule equiv_pos2)
(step t2 (cl (= (p a) (p b))) :rule cong :premises (a1))
(step t3 (cl (p b)) :rule resolution :premises (t1 t2 a0))
(step t4 (cl) :rule resolution :premises (a2 t3))
```

Alethe format

Definition (Alethe step notation)

A proof in the Alethe language is an indexed list of step following the format:

$$j. \Delta \vdash \varphi (R; p_1 \dots p_n)[a_1, \dots, a_n]$$

With $i \in \mathbb{I}$ where \mathbb{I} is a countable infinite set of valid indices, a formula φ , a rule name \mathcal{R} from a set of possible rules, a possible empty sets $\{p_1 \dots p_n\} \subseteq \mathbb{I}$ of premises (previous steps), a possible empty list of arguments $[a_1 \dots a_n]$ where $a_i = (x_i, t_i)$ with x_i a variable and t_i a term, and a context Δ .

Overview of rules

1. Special rules

```
* \vdash \varphi asssume

* \vdash \varphi (hole; p_1 \dots p_n)[a_1 \dots a_n]

* \varphi_1 \dots \varphi_n, \psi \vdash \neg \varphi_1 \dots \neg \varphi_n \psi

(subproof; p_1 \dots p_n)
```

2. Resolution rules

- * th_resolution, resolution
- contraction

3. Introducing tautologies

- * $\vdash \neg(\neg\neg\varphi) \lor \varphi$ (not_not)
- * $\vdash \neg (\varphi_1 \approx \varphi_2) \lor \neg \varphi_1 \lor \varphi_2$ (equiv_pos2)
- * $\vdash \neg (\varphi_1 \land \cdots \land \varphi_n) \lor \varphi_k$ (and-pos)

4. Linear arithmetic

* lia_generic, la_generic

* $\vdash t_1 \leq t_2 \vee t_2 \leq t_1 \text{ (la_totality)}$

5. Quantifier handling

*
$$j. \Delta, x_i \mapsto y_i \vdash \varphi \approx \varphi'$$

 $i. \vdash \forall x_1 \dots x_n, \varphi \approx \forall y_1 \dots y_n, \varphi'$ (bind)
* forall inst

6. Skolemization

- * sko_ex
- * sko_forall

7. Clausification rules

- 1 le
- * distinct_elim

8. Simplification rules

- * and_simplify
- bool_simplify
- eq_simplify
- * sum_simplify

Alethe proof as derivation tree

$$t_{i} \xrightarrow{\frac{\vdots}{\Delta'' \vdash p_{1}}} \frac{\vdots}{\text{Rule}(\dots)} \xrightarrow{t_{k}} \frac{\vdots}{\Delta' \vdash p_{n}} \text{Rule}(\dots)$$

$$\Delta \cup \{p_{1}, \dots, p_{n}\} \vdash c_{1}, \dots c_{n}$$
 Rule(a₁, ..., a_n)

SMT proof

```
(assume a0 (p a))
(assume a1 (= a b))
(assume a2 (not (p b)))
(step t1 (cl (not (= (p a) (p b))) (not (p a)) (p b)) :rule equiv_pos2)
(step t2 (cl (= (p a) (p b))) :rule cong :premises (a1))
(step t3 (cl (p b)) :rule resolution :premises (t1 t2 a0))
(step t4 (cl) :rule resolution :premises (a2 t3))
```

Carcara

- Carcara is an efficient and independent proof checker and elaborator for Alethe proofs.
- Carcara is written in Rust, a high performance language,
- implements elaboration procedures for a few important rules (ex: infering pivots),
- it remove implicit transformations (ex: reordering clause).

Elaborated proof with Carcara

Make pivot and resolution order explicit

Corresponding proof tree

$$\frac{a_0}{t_3} \frac{\Delta \vdash p(a)}{\Delta \vdash p(a)} = \frac{t_1}{t_3'} \frac{\Delta \vdash \neg (p(a) = p(b)), \neg p(a), p(b)}{\Delta \vdash \neg p(a), p(b)} \frac{\text{equiv.pos2}}{\text{Resolution}(a_0, t3')} = \frac{t_2}{\Delta \vdash p(a) = p(b)} \frac{\text{cong}(a_1)}{\text{Resolution}(t_1, t_2)} = \frac{a_2}{\Delta \vdash \neg p(b)} \frac{\Delta \vdash \neg p(b)}{\Delta \vdash \neg p(b)} \frac{\text{Resolution}(a_2, t_3)}{\Delta \vdash \neg p(b)}$$

Translate prelude

```
1 (declare-sort U 0)
2 (declare-fun a () U)
3 (declare-fun b () U)
4 (declare-fun p (U) Bool)

→
```

```
symbol U : TYPE;

rule U → τ ο;

symbol a : U;

symbol b : U;

symbol p : U → Prop;
```

Translate assert/assume

```
1 (assert (p a))
2 (assert (= a b))
3 (assert (not (p b)))
```

```
(assume a0 (p a))
(assume a1 (= a b))
(assume a2 (not (p b)))
```

```
constant symbol a0 : \dot{\pi} (p a \forall \Box);
constant symbol a1 :
\dot{\pi} (a \Longleftrightarrow b \forall \Box);
constant symbol a2 :
\dot{\pi} (¬ (p b) \forall \Box);
```

Translation of step t1 and t2

```
opaque symbol pb :
   begin
   have t1: \dot{\pi} (
        \neg^c ((p a) \iff ^c (p b))

∀ (p a)
        ۷ (p b)
        ∨ □)
        apply equiv pos2;
10
   have t2: \dot{\pi} (
11
        pa \iff^{c} pb
12
        ∨ □)
13
14
        apply;
15
16
        apply cong p (a1);
17
   };
```

Translation of step t3

```
(step t3 (cl (p b))
2
        :rule resolution
        :premises (t1 t2 a0))
3
```

```
have t3 : \dot{\pi} ((p b) \vee \Box) {
        have t1 t2 : \dot{\pi} (
             (\neg^c ((p a)))
4
             6
             apply resolution t1 t2;
        };
8
        have t1_t2_a0 : \dot{\pi} ((p b) \lor \Box)
9
10
             apply resolution t1_t2 a0;
11
        };
12
        apply t1_t2_a0;
13
14
```

Translation of step t4

```
1 (step t4 (cl)
2 :rule resolution
3 :premises (a2 t3)) →
```

```
have t4 : \dot{\pi} \square \{
     have a2_t3 : \dot{\pi} \square {
          apply resolution a2 t3;
     apply a2_t3;
apply t4;
proofterm;
end;
```

Corresponding proof term

Supported rules overview

1. Special rules ✓

```
* \vdash \varphi asssume

* \vdash \varphi (hole; p_1 \dots p_n)[a_1 \dots a_n]

* \varphi_1 \dots \varphi_n, \psi i. \vdash \neg \varphi_1 \dots \neg \varphi_n \psi

(subproof; p_1 \dots p_n)
```

2. Resolution rules ✓

- th_resolution, resolution
- contraction

3. Introducing tautologies ✓

- * $\vdash \neg(\neg\neg\varphi) \lor \varphi$ (not_not)
- * $\vdash \neg(\varphi_1 \approx \varphi_2) \lor \neg \varphi_1 \lor \varphi_2$ (equiv_pos2)
- * $\vdash \neg (\varphi_1 \land \cdots \land \varphi_n) \lor \varphi_k$ (and-pos)

4. Linear arithmetic ×

* lia_generic, la_generic * $\vdash t_1 \le t_2 \lor t_2 \le t_1$ (la_totalitv) 5. Quantifier handling (WIP)

*
$$j.\Delta, x_i \mapsto y_i \vdash \varphi \approx \varphi'$$

 $i. \vdash \forall x_1 \dots x_n, \varphi \approx \forall y_1 \dots y_n, \varphi'$ (bind)
* forall_inst

- 6. Skolemization (WIP)
 - * sko_ex
 - * sko_forall
- 7. Clausification rules (WIP)
 - 1 le
 - * distinct_elim
- 8. Simplification rules ×
 - * and_simplify
 - bool_simplify
 - eq_simplify
 - * sum_simplify

Translation through an example

Formalisation overview

Evaluation

Blocking points

Future perspectives

Contexts in Alethe

Definition (Proof context)

We denote Δ_c as the Alethe proof context. It is use to reason about bound variable and store previous proved **step**.

If
$$j. x_1 \mapsto y_1, \dots, x_n \mapsto y_n \vdash \varphi y_1 \dots y_n (R, p_1 \dots p_n)[x_1, \dots, x_n]$$
 proved

Then
$$j(\varphi y_1 \dots y_n; R; p_1 \dots p_n; a_1 \dots a_n) \in \Delta$$

And $x_1 \mapsto y_1, \dots, x_n \mapsto y_n \in \Delta$

Definition (Definition context)

We denote Δ_{def} as the Alethe definition context. It is use to store user declarations declare-sort and declare-fun.

Definition (Alethe context)

We set
$$\Delta = \Delta_c \cup \Delta_{def}$$

Alethe encoding in Lambdapi

We denote $\Gamma_{\mathcal{A}}$ as the Lambdapi context with Alethe definitions.

Encoding of classical logic in $\Gamma_{\mathcal{A}}^{-1}$

- The set of terms Set: TYPE function symbol Set → ... → Set,
- the set of propositions Prop : TYPE predicate symbol Set →... →Prop,
- ▶ and the classical connectives $\forall^c \mid \exists^c \mid \land^c \mid \neg^c \mid \lor^c \mid \Rightarrow^c \mid \iff c$.
- \blacktriangleright $\pi^c := \neg \neg p$ the definition of classical proofs of proposition p,
- \blacktriangleright the axioms of classical natural deduction system \mathcal{NK} and some lemmas.
- ▶ quantification on propositions/impredicativity (*e.g.* $\forall p, p \Rightarrow p$): symbol \circ : Set;

```
rule \tau_0 \hookrightarrow \text{Prop};
```

¹Classical logic definitions is based on Lambdapi Stdlib.

Alethe encoding in Lambdapi

We encode Alethe rule \mathcal{R} as corresponding symbol R.

Clause

Alethe treats clause as a set creating a canonical representation problem. We define clause as list in a Church encoding style to solve it:

```
constant symbol Clause : TYPE;
 symbol □ : Clause; // Nil
 injective symbol V: Prop \rightarrow Clause \rightarrow Clause; // Cons x 1
 sequential symbol ++ : Clause → Clause → Clause;
 rule \Box ++ $m \hookrightarrow $m
 with (\$x \lor \$1) ++ \$m \hookrightarrow \$x \lor (\$1 ++ \$m);
 symbol Clause ind: \Pi P: (Clause \rightarrow Prop), \Pi 1,
\pi (P \square) \rightarrow (\Pi x: Prop, \Pi 1: Clause, \pi (P 1) \rightarrow
\pi (P (x \forall 1))) \rightarrow \pi (P 1);
```

Clause concatenation and canonical form

With clause as disjunction

$$((x_1 \lor x_2) \lor x_3) \lor (y_1 \lor y_2 \lor y_3) \leadsto (((x_1 \lor x_2) \lor x_3) \lor (y_1 \lor y_2 \lor y_3))$$

With clause with type Clause

$$((x_1 \vee x_2) \vee x_3 \vee \Box) \ ++ \ (y_1 \vee y_2 \vee y_3 \vee \Box) \rightsquigarrow x_1 \vee x_2 \vee x_3 \vee y_1 \vee y_2 \vee y_3 \vee \Box$$

Proof of clause

Proof of clause (cl. $\varphi_1, \ldots, \varphi_n$) with $(\mathcal{R}; p_1 \ldots p_n)[a_1 \ldots a_n]$ in a step such as

$$j. \Delta \vdash (cl \varphi_1, \ldots, \varphi_n) (R; p_1 \ldots p_n)[a_1, \ldots, a_n]$$

are encoded as proof:

```
injective symbol \dot{\pi} c: TYPE := \pi (\mathcal{E} c);

sequential symbol \mathcal{E}: Clause \rightarrow Prop;

rule \mathcal{E} (\$x \lor \$y) \leftrightarrow \$x \lor^c (\mathcal{E} \$y)

with \mathcal{E} \Box \hookrightarrow \bot;
```

Alethe rule encoding example

The rule *not_implies*1 in Alethe set of rules

```
i. \vdash \neg(\varphi_1 \rightarrow \varphi_2) (...)
j. \vdash \varphi_1 (not_implies1; i)
```

is translated into:

```
opaque symbol not_implies_1 [\varphi_1 \ \varphi_2] : \pi(\neg^c(\varphi_1 \Rightarrow^c \varphi_2)) \rightarrow \dot{\pi} \ (\varphi_1 \lor \Box) : begin

assume \varphi_1 \ \varphi_2 \ H;
apply \lor_{i1}^c;
apply \land_{e1}^c (imply_to_and H);
end;
```

Clause conversion lemma

Lemma (Clause equivalence with disjunctions)

Given a b Clause we have the equivalence:

$$\forall a \ b : Clause. \ \llbracket a \ ++ \ b \rrbracket \quad \stackrel{\cdot}{\Longleftrightarrow} ^{c} \quad \llbracket a \rrbracket \lor^{c} \llbracket a \rrbracket$$

Clause resolution rule translation

Lemma (Resolution)

Given a b: Clause and a privot x: Prop, then a premise of $(x \lor a) \in \Gamma_A$ and a premise of $(\neg^c x \lor b) \in \Gamma_A$ implies a clause a + +b.

Lambdapi encoding:

```
opaque symbol resolution x a b : \dot{\pi} (x \lor a) \rightarrow \dot{\pi} (\neg^c x \lor b) \rightarrow \dot{\pi} (a ++ b) :=
```

Translation functions

The embedding uses four functions:

- \triangleright \mathcal{F} which translates first order formulas to $\Gamma_{\mathcal{A}}$ -propositions,
- \triangleright S which translates SMTLib sort from theory to Γ_A -type,
- \triangleright \mathcal{T} which translates first order individual terms to $\Gamma_{\mathcal{A}}$ -terms,
- ▶ $C(\Gamma, c_1 ... c_n)$ which translates a non-empty set of commands $c_1 ... c_n$ to typing goal $\Gamma \vdash M : N$ and a term of type M : N being proof term.

Function \mathcal{F}

translates first order formulas to Γ_A -propositions

Definition (\mathcal{F})

The definition of $\mathcal{F}(f)$ is as follows.

- if $f = cl x_1 ... x_n$, then $\mathcal{F}_{\Delta}(cl x_1 ... x_n) = x_1 \vee \cdots \vee x_n \vee \Box$,
- ▶ if $f = a_1 \wedge \cdots \wedge a_n$, then $\mathcal{F}_{\Delta}(a_1 \wedge \cdots \wedge a_2) = a_1 \wedge^c \cdots \wedge^c a_2 \wedge^c \top$,
- ▶ if $f = a_1 \lor \cdots \lor a_n$, then $\mathcal{F}_{\Delta}(a_1 \lor \cdots \lor a_2) = a_1 \lor^c \cdots \lor^c a_2 \lor^c \bot$,
- ▶ if $f = a \approx b$ and $ab \in \mathbf{Bool}$, then $\mathcal{F}_{\Delta}(a \approx b) = a \iff {}^{c}b$,
- ▶ if $f = a \approx b$ and $a b \notin \textbf{Bool}$, then $\mathcal{F}_{\Delta}(a \approx b) = (a = b)$,
- ▶ otherwise we are in the case $\mathcal{F}_{\Delta}(f) = f$ with all connector changes for their Corresponding classical connector \star^c .

Why this \mathcal{F} definitions for conjunctions and disjunctions?

N-ary rules are proved with "reflexivity" proof. For example

i.
$$\Delta \vdash \neg(\varphi_1 \land \cdots \land \varphi_n), \varphi_k \quad (and_pos)$$
 with $1 \le k \le n$

where we have the reflexivity proof:

```
sequential symbol \operatorname{In}_{\Lambda}^{c}: \operatorname{Prop} \to \operatorname{Prop} \to \operatorname{\mathbb{B}};

rule \operatorname{In}_{\Lambda}^{c} $x ($h \Lambda^{c} $t1) \hookrightarrow (eq $x $h) Bool.or (\operatorname{In}_{\Lambda}^{c} $x $t1)

with \operatorname{In}_{\Lambda}^{c} $x \operatorname{T} \hookrightarrow \operatorname{false};

symbol and \operatorname{pos} [\varphi_{1} - \varphi_{n} \varphi_{k}]:

\pi ((\operatorname{In}_{\Lambda}^{c} \varphi_{k} \varphi_{1} - \varphi_{n}) = \operatorname{true}) \to \dot{\pi} (\neg^{c} \varphi_{1} - \varphi_{n} \vee \varphi_{k} \vee \square);
```

Function S

translates SMTLib sort from theory to $\Gamma_{\mathcal{A}}$ -type

The definition of S(t) is as follows.

- ▶ if t = Bool, then S(Bool) = Prop,
- ▶ if $t \neq \textbf{Bool}$, then $S(t) = \tau o$,
- ▶ if $t = f(a_1 ... a_n)$ and $codomain(f) = \mathbf{Bool}$, then $S(f(a_1 ... a_n)) = f : S(a_1) \to \cdots \to S(a_1) \to \mathbf{Prop}$,
- if $t = f(a_1 ... a_n)$ and $codomain(f) \neq \textbf{Bool}$, then $S(f(a_1 ... a_n)) = f : S(a_1) \rightarrow \cdots \rightarrow S(a_1) \rightarrow \textbf{Set}$,

Function $\mathcal{T}(t)$

Definition

The definition of $\mathcal{T}(t)$ is a direct shallow embedding of t in corresponding term t in $\Gamma_{\mathcal{A}}$ (variables, functions, constants).

Function $C(\Gamma, -)$

translates Alethe commands

Definition

The function $C(\Gamma, i. \Delta \vdash \varphi \quad (R; p_1 \dots p_n)[a_1 \dots a_n]) \to \Gamma'$ translates, in a given context Γ , a step i into a judgement (typing goal) $\Gamma \vdash i : \mathcal{F}(\varphi)$ with a term M along satisfying the goal. It returns a new context Γ' with $i \in \Gamma'$. The definition of C is defined recursively on R.

Notation

The notation $tac(A)[\Gamma \vdash \varphi]$ means applying the Lambdapi tactic tac (with argument A) to the judgement $\Gamma \vdash \varphi$ and making the judgements (subgoals) generated by the tactic be the premises of the rule.

Example 1: equiv_pos2 case

We translate a step *i* using the alethe rule *equiv_pos2*:

i.
$$\vdash \neg(\varphi_1 \approx \varphi_2), \neg \varphi_1, \varphi_2$$
 (equiv_pos2)

with given a context Γ as

$$\mathcal{C}(\Gamma, i. \vdash \neg(\varphi_1 \approx \varphi_2), \neg \varphi_1, \varphi_2 \ (equiv_pos2)) = apply(equiv_pos2)[\Gamma \vdash i : \mathcal{F}(\neg(\varphi_1 \approx \varphi_2), \neg \varphi_1, \varphi_2)]$$

Example 2: *cong* case

We translate a step k using the alethe rule cong

```
i. \quad \Delta \qquad \vdash t_1 \approx u_1
                                                                                                                (\dots)
 j. \quad \Delta \qquad \vdash t_n \approx u_n
                                                                                                                (\dots)
k. \quad \Delta \qquad \vdash f \ t_1 \dots t_n \approx f \ u_1 \dots u_n
                                                                                              (cong; p_1 \dots p_n)
as:
if codomain(f) \in Bool, then \mathcal{C}(\Gamma, i. \Delta \vdash f t_1 ... t_n \approx f u_1 ... u_n (cong; p_1 ... p_n))
 = cong2_f(f \ p_1 \dots cong2_f(f \ p_{n-1} \ p_n))[\Gamma \vdash i : \mathcal{F}(f \ t_1 \dots t_n \approx f \ u_1 u_n)]
otherwise f_{equal_n}(f p_1 \dots p_n)[\Gamma \vdash i : \mathcal{F}(f t_1 \dots t_n \approx f u_1 u_n)],
with C(\Gamma \setminus \{i\}, i. \Delta \vdash t_1 \approx u_1 (...)) \in \Gamma and
with C(\Gamma \setminus \{j\}, j, \Delta \vdash t_n \approx u_n (...)) \in \Gamma
```

Soundness argument

Theorem (soundness)

We define the soundness as for a Alethe context Δ and a first order formula φ in a step $i. \Delta \vdash \varphi (\mathcal{R}; p_1 \ldots p_n)[a_1 \ldots a_n]$ proved by rule \mathcal{R} , the translation $\mathcal{C}(\Gamma, i.\Delta \vdash_{FOL} \varphi(\mathcal{R}; p_1 \ldots p_n)[a_1 \ldots a_n])$ give a term $i: \tau$ such that $\Gamma_{\mathcal{A}} \vdash i: \tau$.

Proof.

(proof intuition) By induction on R.

Translation through an example

Formalisation overview

Evaluation

Blocking points

Evaluation with TLA+ example

Stephan Merz. TLA+ Case Study: A Resource Allocator.

- Use set theory only,
- no skolemization,
- ▶ 25 proofs obligations,
- ▶ size of the Alethe proofs varies between 4 and 288 steps.

Evaluation results

Proofs obligations

- ▶ 16 on the 25 proofs obligations passed,
- some proofs obligations do not passed due to rules not supported yet.

Bug founds

- 2 importants bugs in Carcara elaboration process found,
- ▶ 1 bug found in CVC5 with and_not rule,
- and a related bug found in the new TLAPS SMT encoding.

Translation through an example

Formalisation overview

Evaluation

Blocking points

Issues for reconstructing simplification rules

Transformation case is implicit, and multiple transformations in a step are possible.

Rules example

```
j. \ \Delta \ \vdash \varphi_1 \lor \cdots \lor \varphi_n \ \ (\text{or\_simplify})
\blacktriangleright \bot \lor \cdots \lor \bot \Rightarrow \bot
\blacktriangleright \varphi_1 \lor \cdots \lor \varphi_n \Rightarrow \varphi_1 \lor \cdots \lor \varphi_{n^l} \text{ where all } \bot \text{ literals removed}
\blacktriangleright \varphi_1 \lor \cdots \lor \top \lor \cdots \lor \varphi_n \Rightarrow \top
\blacktriangleright \cdots
j. \ \Delta \ \vdash (\varphi_1 \approx \varphi_2) \approx \psi \ \ (\text{equiv\_simplify})
\blacktriangleright (\neg \varphi_1 \approx \neg \varphi_2) \Rightarrow \varphi_1 \approx \varphi_2
\blacktriangleright (\varphi \approx \varphi) \Rightarrow \top
\blacktriangleright (\varphi \approx \bot) \Rightarrow \bot
```

```
\begin{split} j. & \Delta & \vdash \varphi \approx \psi \quad \text{(bool\_simplify)} \\ \blacktriangleright \neg (\varphi_1 \to \neg \varphi_2) \Rightarrow \varphi_1 \land \neg \varphi_2 \\ \blacktriangleright \varphi_1 \to (\varphi_2 \to \varphi_3) \Rightarrow (\varphi_1 \land \varphi_2) \to \varphi_3 \\ \blacktriangleright \neg (\varphi_1 \to \neg \varphi_2) \Rightarrow \varphi_1 \land \neg \varphi_2 \\ \blacktriangleright \dots \\ j. & \Delta & \vdash \varphi_1 \bowtie \varphi_n \approx \psi \quad \text{(comp\_simplify)} \\ \blacktriangleright t < t \Rightarrow \bot \\ \blacktriangleright t_1 < t_2 \Rightarrow \neg (t_2 \le t_1) \\ \blacktriangleright t_1 \le t_2 \Rightarrow t_2 \le t_1 \\ \blacktriangleright \dots \end{split}
```

Reconstruction with RARE

[RARE] Schurr, HJ., et.al. Reliable Reconstruction of Fine-grained Proofs in a Proof Assistant. CADE 2021. Springer, Cham.

Checking linear arithmetic steps

- ▶ The la_generic rule models linear arithmetic reasoning
- ► For example, consider this la_generic step:

```
(step t1
(cl (<= (- x) 1) (<= (+ (* 2 x) (* (- 3) y)) 2) (<= y (- 1)))
:rule la_generic :args (2 1 3))
```

► It introduces the following tautology:

$$(-x \le 1) \lor (2x - 3y \le 2) \lor (y \le -1)$$

Checking linear arithmetic steps

```
(step t1

(cl (<= (- x) 1) (<= (+ (* 2 x) (* (- 3) y)) 2) (<= y (- 1)))

:rule la_generic :args (2 1 3))
```

- ► Checking that this clause is true is equivalent to proving that its negation, the following three inequalites, are contradictory
- ➤ Since la_generic steps provide the needed coefficients as arguments, checking them is simple
- Computing $2 \cdot (a) + 1 \cdot (b) + 3 \cdot (c)$, we get 0 > 1, so the step must be true

Checking linear arithmetic steps

► The lia_generic rule is very similar to la_generic, but it does not provide the coefficients as arguments:

```
(step t1
  (cl (<= (- x) 1) (<= (+ (* 2 x) (* (- 3) y)) 2) (<= y (- 1)))
  :rule lia_generic)</pre>
```

- ▶ In this case, the checker would need to search for the coefficients, which is an NP-hard problem
- ▶ Instead, occurences of this rule are not checked, and are considered holes by Carcara

Proposal for reconstructing arithmetic steps

Translation through an example

Formalisation overview

Evaluation

Blocking points

- Finish to validate *Allocator.tla*,
- add support for arithmetic steps,
- support for simplicifation steps,
- connect lambdapi TLA⁺ encoding (tla-lambdapi) with TLA⁺ SMT encoding,
- ▶ link Event-B encoding with tla-lambdapi (shared set theory library).