EDINBURGH NAPIER UNIVERSITY CONPUTER SCHOOL

Computational Intelligence Lecture7

Student name: weiguang ran

Professor: *Dr. Kevin Sim* Due date: *Febuary 28th*, 2020

Note1

Multi Layer Perceptrons

Note.

- Single Perceptrons can be combined into multi-layer networks
- In theory any function can be approximated by a multi-layer network (here only 2 classes and 2 attributes are shown)

Example Multilayer perceptron for XOR A network that solves XOR

- 1. 3 neurons are used
- 2. 2 in a 'hidden layer' and 1 for the output
- 3. The weights are calculated to produce the correct output for all input pairs

Note 2

Learning XOR

Note. Learning XOR

$$\sum w_i x_i = 1 + 1 - 1.5 = 0.5 \tag{1}$$

Note3

Training multilayer Networks

Answer.

- The simple perceptron learning rule can't be applied to a multi-layer network
 - 1. As there is a knock-on effect with the output of one node being the input of the next
- For any given input pattern, we can only easily calculate the error at the final output node(s)
 - 1. we don't know what the outputs for the hidden nodes should be
- There are 2 ways to find the required weights:
 - 1. Backpropagation (for supervised learning, a bit more later)
 - 2. Evolutionary Algorithms (unsupervised learning, next week)

Note4

Classification with MLPs

Answer.

- What kind of problems can we use NNs for
- Dealing with data
- Designing the neural network
- Training the network (for classification)
- Backpropagation
- Testing the network

Note5

What kind of problems are NNs good at?

Answer.

- Instances can be represented by many input-output pairs (both can be vectors)
- Target function can be discrete-valued, real-valued, or a vector of real/discrete attributes
- Training examples can contain errors

- Long training times are acceptable
- Fast evaluation of the target functions is required once trained
- The ability of humans to understand the learned target function is not important

Note6

And when they are not very good

Answer.

- If you need to understand the reasons behind output:
 - E.g medical applications predicting a heart attack
- No relationship between input and output variables
 - E.g day of the week -> weather forecast
- No relationship between the past and the future
 - E.g predicting the lottery numbers for next week
- Training data is very biased:
 - Only have examples from one particular class (e.g trying to predict class of degree but only have examples of students who obtained 2(1) and 3rd.)

Note7

Dealing with data

Answer.

- Factors to consider
 - categorical, numerical, discrete, ordered
- input encoding
 - Transforming the data
- output encoding

Note8

How do we convert the output to a price?

Answer.

- We can do the same for the output:
- Prices vary between £52,500 and £225,000
- Set up output so that £50,000 maps to 0, and £250,000 maps to 1

$$output = \frac{120,920 - 50000}{250,000 - 50000} = 0.3546 \tag{2}$$

Note that the NN is unlikely to be good on new data that is outside of the boundaries you set so choose them carefully

Note9

Discrete Data

Answer.

- Discrete data such as number of bedrooms, number of bathrooms, also has minimum and maximum values
- Convert to numerical values on a scale:

Note10

Backpropagation

Answer. The Backprop Algorithm:

- For each pattern presented it:
 - Calculates error at output (easy)
 - Changes weights to output layer to reduce this error
 - Calculates error at last-but-one layer (harder)
 - Changes weights to reduce this
 - Repeat....
- The algorithm is applied each iteration until the network error is minimised