LIM10: Devoir final du 21 mai 2012

Il sera tenu compte de la clarté de la rédaction et de la présentation.

Exercice 1. Une étude de fonction (6pts)

On définit f sur \mathbb{R} par

$$f(x) = \begin{cases} 2x + x^2 + \frac{x^3}{3} & \text{si } x < 0\\ 2e^{x^3 + x} - 2 & \text{si } x \ge 0 \end{cases}$$

- a) Montrer que f est continue en 0.
- b) Montrer que f est de classe C^1 sur \mathbb{R} . Que vaut f'(0)?
- c) Montrer que f admet un DL d'ordre 2 en 0.
- d) Etudier la fonction f et tracer l'allure de son graphe.

Solution de l'exercice 1.

- a) On a que $\lim_{x\to 0^-} f(x) = 0$ et $\lim_{x\to 0^+} f(x) = 0$. Or f(0) = 0, donc on a $\lim_{x\to 0} f(x) = f(0)$ et f est continue en 0.
- b) f est continue sur \mathbb{R} , et de classe \mathcal{C}^1 sur \mathbb{R}^* . De plus, pour x < 0, $f'(x) = 2 + 2x + x^2$ donc $\lim_{x \to 0^-} f'(x) = 2$. Pour $x \ge 0$ on a $f'(x) = 2(3x^2 + 1)e^{x^3 + x}$ donc $\lim_{x \to 0^+} f'(x) = 2$. Donc d'après le théorème limite de la dérivée, f est de classe \mathcal{C}^1 sur \mathbb{R} et f'(0) = 2.
- c) Pour x < 0, $f(x) = 2x + x^2 + o(x^2)$. Pour $x \ge 0$, on a $f(x) = 2(1 + (x + x^3) + \frac{1}{2}(x + x^3)^2 + o(x^2)) 2 = 2x + x^2 + o(x^2)$. Donc par égalité des DL en 0, f admet un DL d'ordre 2 en 0.
- d) Doit figurer sur le graphe : f(0) = 0 et f'(0) = 2, la fonction est croissante, le recollement en continu et (éventuellement) la décroissance polynômiale à gauche est moins forte que la croissance exponentielle à droite.

Exercice 2. Une factorisation de polynôme (6pts)

- a) Soit $t \in \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z})$. Montrer que l'unique solution de l'equation $\frac{1+iz}{1-iz} = e^{2it}$ est $z = \tan t$.
- b) Soit maintenant α un réel tel que $\frac{\alpha}{\pi}\notin\mathbb{Q}.$ On considère le polynôme

$$P(X) = (1 + iX)^n - e^{i2n\alpha}(1 - iX)^n.$$

Quel est le degré de P et son coefficient dominant?

- c) Trouver les racines de P et en déduire sa décomposition en produit d'irréductibles sur $\mathbb{C}[X]$.
- d) BONUS : en déduire la valeur de $\prod_{k=0}^{n-1} \tan \left(\alpha + \frac{k\pi}{n}\right)$

Solution de l'exercice 2.

a) On a

$$\frac{1+iz}{1-iz} = e^{2it} \Longleftrightarrow iz \left(1+e^{2it}\right) = e^{2it} - 1.$$

Par l'hypothèse sur t, on a $e^{2it} \neq -1$, si bien que l'équation précédente est équivalente à

$$z = \frac{e^{it} - e^{-it}}{i(e^{it} + e^{it})} = \tan t.$$

- b) Le monôme d'ordre n est $i^n(1-(-1)^ne^{i2n\alpha})X^n$: comme α/π n'est pas multiple de 1/n par hypothèse, ce monôme a un coefficient non nul et le polynôme P est alors de degré n et de coefficient dominant $i^n(1-(-1)^ne^{i2n\alpha})$
- c) Déterminons les racines de P, càd les solutions de l'équation $(1+iz)^n e^{i2n\alpha}(1-iz)^n = 0$. En notant que -i n'est pas solution, cette équation est équivalente à :

$$\left(\frac{1+iz}{1-iz}\right)^n = e^{2i\alpha n}.$$

et d'après la structure des racines n-èmes de l'unité, cette équation est équivalente à :

$$\exists k \in \{0, \dots, n-1\} : \frac{1+iz}{1-iz} = e^{2i(\alpha + \frac{k\pi}{n})}.$$

D'après l'hypothèse sur α , on a $\alpha + \frac{k\pi}{n} \notin \frac{\pi}{2} + \pi \mathbb{Z}$ pour tout $k \in \{0, \dots, n-1\}$. Par la partie a), les solutions de l'équation précedente sont alors $z = \tan(\alpha + \frac{k\pi}{n})$, $k \in \{0, \dots, n-1\}$.

Finalement, on a la factorisation suivante:

$$P(X) = i^{n} (1 - (-1)^{n} e^{i2n\alpha}) \prod_{k=0}^{n-1} \left(X - \tan\left(\alpha + \frac{k\pi}{n}\right) \right)$$

Exercice 3. Suite d'intégrales (8pts)

Pour $n \in \mathbb{N}$, on pose,

$$I_n = \int_0^{\pi/4} \tan^{2n} x dx$$

- a) Calculer I_0 et I_1 .
- b) Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante. En déduire qu'elle est convergente. On note $l=\lim_{n\to\infty}I_n\in\mathbb{R}$.
- c) Montrer que pour tout $n \in \mathbb{N}$,

$$I_n + I_{n+1} = \frac{1}{2n+1}$$

En déduire la valeur de l.

d) Déduire de la question précédente que quand $n \to \infty$,

$$I_n \sim \frac{1}{4n}$$

e) Pour $N \in \mathbb{N}$, on pose

$$S_N = \sum_{n=0}^{N} \frac{(-1)^n}{2n+1}.$$

Trouver une relation entre S_N , I_0 et I_{N+1} . En déduire que la suite $(S_N)_{N\in\mathbb{N}}$ converge et que sa limite est $\frac{\pi}{4}$.

Solution de l'exercice 3.

- a) $I_0 = \pi/4$, $I_1 = 1 \pi/4$.
- b) Comme $x \in [0, \pi/4]$, $0 \le \tan^2 x \le 1$. Par positivité de l'intégrale, $0 \le I_{n+1} \le I_n$. Donc la suite I_n converge.
- c) Il n'est pas nécessaire de faire une intégration par partie, $I_n + I_{n+1}$ est directement calculable par quadrature. On en déduit l = 0.
- d) Avec un encadrement comme pour Wallis, on trouve l'équivalent.
- e) $S_N = \sum_{n=0}^N (-1)^n (I_n + I_{n+1}) = I_0 + (-1)^N I_{N+1}$. En prenant la limite, on trouve $S_N \to I_0 = \pi/4$.