Computer Vision now and then

From counting pixels to distinguishing Chihuahuas from Muffins

Visual Computing from a traditional Machine Learning Perspective

Color Histograms Counting Pixels

maxEmbedded.com

Affective Color Features

Counting Pixels smarter

- Contrasts
 - Warm/Cool
 - Light/Dark
 - Colorfullness

Filter Reducing Information

Image responses for Gabor filter kernels

Edge Detectors

Kernel based

Sabel

a°					
-1	٥	1			
-2	0	2			
-1	٥	1			

Kirsch

-3	-3	5
-3	0	5
-3	-3	5

Rabinsan

-1	٥	1
-1	0	1
-1	٥	1

45°

٥	1	2
-1	0	1
-2	-1	٥

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} * \mathbf{A} \quad ext{and} \quad \mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$

Texture

Local Binary Patterns (LBP)

Face Detection

Alexander Schindler and Andreas Rauber. **A music video information retrieval approach to artist identification**. In *Proceedings of the 10th International Symposium on Computer Music Multidisciplinary Research (CMMR2013) to appear*, Marseille, France, October 14-18 2013.

Object Detection

Histogram of Oriented Gradients (HOG)

Input image

Histogram of Oriented Gradients

Object Detection Template Matching

template

Scale Invariance Image Pyramids

Downsample image subsequently

Object Detection => SIFT Scale Invariant Feature Transforms

SIFT

Image Registration

Reinhold Huber-Moerk and Alexander Schindler. **Quality assurance for document image collections in digital preservation.** In *Proceedings of the 14th International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS 2012)*, Lecture Notes in Computer Science, Brno, Czech Republic, September 4-7 2012. Springer.

SIFT

Object Detection with SIFT Bag of Visual Words

Pre - Deep Learning State-of-the-art in Object Detection

Bags of Words - Pipeline

SIFT - Bag of Visual Words approach

Feature Composition

Complex Object recognition Approaches

- Early/Late fusion
- Ensemble Classifiers

Deep Learning Predicting input data

Deep Learning

Convolution Layer Properties

Filtering

Scaling

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Matching

Deep Learning

Advantages

- Resembles many approved traditional methods
- Simplifies the processing chain (implicit feature extraction)
- Simplifies Multi-label Classification
- Commonly higher accuracies

Thank You for your attention!

Alexander Schindler alexander.schindler@ait.ac.at