Assignment 3 Practical Data Science

By: Vijit Kumar (s3799493)

Introduction

- Missing rating values
- Collaborative Filtering

General Overview

Dataset

- m number of users
- n number of items
- r represents the rating.

_	i_1	i_2	i_3	i_4	i_5	i_6	<i>i</i> ₇	i_8	i_9	i_n
1	<i>r</i> _{1,1}			$r_{1,4}$						
2		<i>r</i> _{2,2}			s'			$r_{2,8}$		
					9	r _{3,6}				
	3			$r_{4,4}$						$r_{4,n}$
	- 8		r _{5,3}		8		r _{5,7}			
					a.				r _{6,9}	
,			$r_{m,2}$							$r_{m,n}$

Pearson Correlation Coefficient (PCC)

- User-User correlation matrix
- Item-Item correlation matrix

PCC Similarity Equation

User-User Based

$$Sim(a, u) = \frac{\sum_{i \in I(a) \cap I(u)} (r_{a,i} - \overline{r}_a) \cdot (r_{u,i} - \overline{r}_u)}{\sqrt{\sum_{i \in I(a) \cap I(u)} (r_{a,i} - \overline{r}_a)^2} \cdot \sqrt{\sum_{i \in I(a) \cap I(u)} (r_{u,i} - \overline{r}_u)^2}},$$

Item-Item Based

$$Sim(i,j) = \frac{\sum_{u \in U(i) \cap U(j)} (r_{u,i} - \overline{r}_i) \cdot (r_{u,j} - \overline{r}_j)}{\sqrt{\sum_{u \in U(i) \cap U(j)} (r_{u,i} - \overline{r}_i)^2} \cdot \sqrt{\sum_{u \in U(i) \cap U(j)} (r_{u,j} - \overline{r}_j)^2}},$$

PCC Similarity Equation with significance weighting

$$Sim'(a,u) = \frac{Min(|I_a \cap I_u|, \gamma)}{\gamma} \cdot Sim(a,u),$$
 User-User based

$$Sim'(i,j) = \frac{Min(|U_i \cap U_j|, \delta)}{\delta} \cdot Sim(i,j),$$
 Item-Item based

Similar Neighbor Selection

Similar users selection with ITA parameter

$$S(u) = \{u_a | Sim'(u_a, u) > \eta, u_a \neq u\},\$$

Similar item selection with THETA parameter

$$S(i) = \{i_k | Sim'(i_k, i) > \theta, i_k \neq i\},\$$

Similar Neighbor Selection

Similar User Selection

Similar Item Selection

Missing Data Prediction

User based prediction component

$$P(r_{u,i}) = \overline{u} + \frac{\sum_{u_a \in S(u)} Sim'(u_a, u) \cdot (r_{u_a,i} - \overline{u}_a)}{\sum_{u_a \in S(u)} Sim'(u_a, u)}.$$

Item based prediction component

$$P(r_{u,i}) = \bar{i} + \frac{\sum_{i_k \in S(i)} Sim'(i_k, i) \cdot (r_{u, i_k} - \bar{i}_k)}{\sum_{i_k \in S(i)} Sim'(i_k, i)}.$$

Prediction

Predict Missing Value Based on User

Predict Missing Value Based on Item

- LAMBDA parameter to aggregate the final prediction.
- Similar users are present during neighbor selection
- Similar items are present during neighbor selection

$$P(r_{u,i}) = \lambda \times (\overline{u} + \frac{\sum_{u_a \in S(u)} Sim'(u_a, u) \cdot (r_{u_a, i} - \overline{u}_a)}{\sum_{u_a \in S(u)} Sim'(u_a, u)}) + \frac{\sum_{u_a \in S(u)} Sim'(i_k, i) \cdot (r_{u, i_k} - \overline{i}_k)}{\sum_{i_k \in S(i)} Sim'(i_k, i)},$$

- No LAMBDA parameter
- Only Similar users are present in neighbor selection

Only User based component will be used

$$P(r_{u,i}) = \overline{u} + \frac{\sum_{u_a \in S(u)} Sim'(u_a, u) \cdot (r_{u_a,i} - \overline{u}_a)}{\sum_{u_a \in S(u)} Sim'(u_a, u)}.$$

Only item based component will be used

- No LAMBDA parameter
- Only Similar items are present in neighbor selection

$$P(r_{u,i}) = \bar{i} + \frac{\sum_{i_k \in S(i)} Sim'(i_k, i) \cdot (r_{u, i_k} - \bar{i}_k)}{\sum_{i_k \in S(i)} Sim'(i_k, i)}.$$

- No Similar users are selected
- No similar items are selected
- There is no prediction the rating remains 0.

Final output

100	i_1	i_2	i_3	i_4	i_5	i_6	i_7	i_8	i_9	i_n
1	$r_{1,1}$			<i>r</i> _{1,4}	a					
2		r _{2,2}						$r_{2,8}$		
						r _{3,6}				
				r _{4,4}						$r_{4,n}$
			r _{5,3}		() S		r _{5,7}			
	8				8				r _{6,9}	
			$r_{m,2}$							$r_{m,n}$

60	i_1	i_2	i_3	i_4	i_5	i_6	i_7	i_8	i_9	i_n
u_1	$r_{1,1}$	0	$\hat{r}_{1,3}$	$r_{1,4}$	0	$\hat{r}_{1,6}$	0	$\hat{r}_{1,8}$	$\hat{r}_{1,9}$	0
u_2	0	$r_{2,2}$	0	$\hat{r}_{2,4}$	$\hat{r}_{2,5}$	0	$\hat{r}_{2,7}$	$r_{2,8}$	0	$\hat{r}_{2,n}$
u_3	$\hat{r}_{3,1}$	0	$\hat{r}_{3,3}$	$\hat{r}_{3,4}$	î	<i>r</i> _{3,6}	0	$\hat{r}_{3,8}$	r _{3,9}	0
u_4	$\hat{r}_{4,1}$	$\hat{r}_{4,2}$	0	$r_{4,4}$	$\hat{r}_{4,5}$	$\hat{r}_{4,6}$	$\hat{r}_{4,7}$	0	$\hat{r}_{4,9}$	$r_{4,n}$
u_5	$\hat{r}_{5,1}$	$\hat{r}_{5,2}$	r _{5,3}	0	$\hat{r}_{5,5}$	0	r _{5,7}	$\hat{r}_{5,8}$	$\hat{r}_{5,9}$	$\hat{r}_{5,n}$
u_6	$\hat{r}_{6,1}$	$\hat{r}_{6,2}$	0	$\hat{r}_{6,4}$	r _{6,5}	$\hat{r}_{6,6}$	$\hat{r}_{6,7}$	0	r _{6,9}	$\hat{r}_{6,n}$
u_{m}	$\hat{r}_{m,1}$	0	$r_{m,2}$	$\hat{r}_{m,4}$	0	$\hat{r}_{m,6}$	0	$\hat{r}_{m,8}$	$\hat{r}_{m,9}$	$r_{m,n}$

Initial Matrix

Final Matrix