Declaration

- This report has not been submitted for any other degree at this or any other University. It is
- 3 solely the work of us except where cited in the text or the Acknowledgements page. It describes
- 4 work carried out by us for the capstone design project. We are aware of the university's policy
- 5 on plagiarism and the associated penalties and we declare that this report is the product of our
- 6 own work.

7	Student:	Date:
8	Signature:	
9	Student:	Date:
10	Signature:	
11	Student:	Date:
12	Signature:	

3 Abstract

21 Acknowledgment

Table of Contents

D	eclara	tion								
A	Abstract Acknowledgment									
A										
L	ist of l	Figures								
L	List of Tables									
1	Intr	oduction and Motivation								
	1.1	Problem statement								
	1.2	Project significance								
	1.3	Project objectives								
2	Bac	kground and Related Work								
	2.1	Background								
	2.2	Related work								
3	Req	uirements Analysis								
	3.1	Functional requirements								
	3.2	Design constraints								
	3.3	Design standards								
	3.4	Professional code of ethics								
	3.5	Assumptions								
4	Pro	posed Solution								
	4.1	Solution overview								
	4.2	High level architecture								
	4.3	Hardware/software to be used								
5	Pro	of of Concept								
6	Maı	ket Research and Business Viability								
7	Pro	ect Plan								
	7.1	Project milestones								
	7.2	Project timeline								
	7.3	Anticipated risks								
8	Sho	rt Guide								
	8.1	Figure								
	8.2	Equations								
	8.3	Simple table								
	8 4	Table from a csy file								

66	5 Appendix 11				
65	8.7	Cross-references	9		
64	8.6	Citations	9		
63	8.5	Graph from a csv file	9		

67 List of Figures

68	1	The arch linux logo	7
69	2	The relationship between potential and kinetic energies	9
70	List o	of Tables	
71	1	Technical design constraints	3
72	2	Practical design constraints	3
73	3	Design standards table	4
74	4	Slope, intercept and their uncertainties	8
75	5	Translational and rotational energies	8

₆ 1 Introduction and Motivation

7 1.1 Problem statement

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

1.2 Project significance

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

93 1.3 Project objectives

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2 Background and Related Work

102 2.1 Background

2.2 Related work

One of the essential ideas of the project is navigating and tracking the objects while minimizing 111 the required time to detect all targets. Various methods and approaches were studied and 112 implemented in previous research papers with different constraints and goals in mind. The methodology and algorithm in each paper was different as some of them used AI related 114 algorithms while others relied on heavy mathematical calculations to determine the best path. In 115 paper hua21, the main idea was to propose a navigation algorithm that enables each UAV to determine its own movement locally and track pedestrians (mobile targets), it focused on multiple 117 drones to cover a specific area. pen21 took the advantage of DRL to develop an online path 118 planning algorithm based on double deep Q-learning network (DDQN). The constraints were to minimize the energy consumption of the UAV, the objects on the ground were not stationary 120 and were following a Gauss-Markov movement pattern. Author hua20 aimed to propose a 121 reactive real-time sliding mode control algorithm to navigate a team of UAVs (UAS). The area 122 was divided into multiple sub-areas using the Voronoi partitioning technique, each drone was 123 responsible for a sub-area, he implemented his ideas for both types of tergets, stationary targets 124 and mobile. 125

All the mentioned papers presented their solutions using different simulation software. However, none of them was implemented in the real-world which questions the reliability of the algorithms.

3 Requirements Analysis

3.1 Functional requirements

3.2 Design constraints

Name	Description		
Power supply	The Anafi and the Raspberry Pi must be battery powered because they		
	are mobile (with ?? voltages DC/mAh)		
Flying The flying range of the Anafi is limited by the signal streng			
range/altitude	communication between the computer and the Raspberry Pi. Also, the		
	altitude is dictated by the Anafi's maximum height it can reach and the		
	performance of the drone at a certain height.		
Flying time The maximum flying time must be lower than the Anafi's 2			
	max flight lower than the Raspberry Pi's ?? minutes		
Transmission	The delay in the communication between the Raspberry Pi and the		
delay	Anafi must be acceptable		
Payload/weights	The Raspberry Pi with its peripherals should not exceed the maximum		
	load the Anafi can carry.		

Table 1: Technical design constraints

Туре	Name	Description	
Economic	Cost	The cost of the entire system must not exceed x \$	
Environmental	Light	The Anafi requires good lighting to take pictures of the tar-	
	source	gets	
Safety/Security	Secure	The communication between Anafi-Raspberry Pi and Rasp-	
	commu-	berry Pi-computer should be uninterrupted and secured	
	nication	against interference	
Safety/Security	Safety	The Anafi must know how to return to base should there be a	
		discommunication with the computer	
Ethical	Privacy	The drone must not invade the privacy of the entities other	
		than the targets	
Ethical	Privacy	The monitored targets must be acceptable by law to be	
		tracked	
Environmental	Eco-	The system only uses electricity and emissions	
	friendly		
Sustainability	Modularity	The system must be such that the DRL algorithm can be	
		swapped with an improved one easily	
Reliability	Efficiency The DRL should perform as expected all the time		

Table 2: Practical design constraints.

3.3 Design standards

Standard	Usage		
IEEE 802.11	To be used in the communication between the Raspberry Pi and the		
	Anafi and the Raspberry Pi and the computer		
WPA2	To be used in securing the communications above		
GPS	To be used by the Anafi to convey its position to the Raspberry Pi		
SSH	To be used between the Raspberry Pi and the computer		
JSON-RPC	Communication protocol used to control the components of the simu-		
version 2.0	lated Anafi		
Google	To be used by Gazebo for the message passing between its server and		
Protocol	client		
Buffers			

Table 3: Design standards table.

3.4 Professional code of ethics

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

147 3.5 Assumptions

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

4 Proposed Solution

4.1 Solution overview

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"?

Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

4.2 High level architecture

164

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2 4.3 Hardware/software to be used

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

5 Proof of Concept

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

88 6 Market Research and Business Viability

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the

alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

7 Project Plan

7.1 Project milestones

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

7.2 Project timeline

205

221

222

223

224

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

7.3 Anticipated risks

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

8 Short Guide

Please read the guides available online about the right way to write $\angle ETEX$ such as how to include a math symbol in text (e.g. x not x) and a proper noun with all capitals (e.g. x).

Below are examples of different constructs in a report. You can copy-paste and change the content. For more information, refer to the relevant package manual in CTAN.

Figure 1: The arch linux logo

226 8.1 Figure

227 8.2 Equations

$$E_{p} = mgh = mg(x_{f} - x_{i})$$

$$E_{k} = E_{t} + E_{r}$$

$$E_{t} = \frac{1}{2}mv^{2}$$

$$E_{r} = \frac{1}{2}I\omega^{2}$$

$$I = \frac{1}{2}MR^{2}$$

$$\omega = \frac{v}{r}$$

$$E_{k} = \frac{1}{2}mv^{2} + \frac{1}{2}I\left(\frac{v}{r}\right)^{2}$$
(5)

where E_p is the potential energy, E_k the kinetic energy, E_t the translational energy and E_r the rotational energy.

$$\frac{\partial E_p}{\partial m} = \frac{\partial}{\partial m}(mgh)$$

$$= gh$$

$$\frac{\partial E_p}{\partial g} = \frac{\partial}{\partial g}(mgh)$$

$$= mh$$

$$\frac{\partial E_p}{\partial h} = \frac{\partial}{\partial h}(mgh)$$

$$= mg$$

230 **8.3** Simple table

Table 4: Slope, intercept and their uncertainties

Slo	ope	Intercept (J)		
Value	Error	Value	Error	
1.0933	0.0300	0.0148	0.0157	

231 **8.4** Table from a csv file

Table 5: Translational and rotational energies.

m kg	v_m m s ⁻¹	E_t J	δE_t J	E_r J	δE_r J
0.055	0.17	0.00079	0.00001	0.280	0.007
0.075	0.20	0.00150	0.00002	0.387	0.010
0.095	0.23	0.00251	0.00003	0.512	0.013
0.115	0.25	0.00359	0.00003	0.605	0.015
0.135	0.27	0.00492	0.00004	0.706	0.018

8.5 Graph from a csv file

Potential Versus Kinetic Energies $0.8 \qquad E_p \text{ vs. } E_k$ $0.7 \qquad y = 1.0933 \, x + 0.0148, R^2 = 0.9977$ $0.6 \qquad 0.5 \qquad 0.5$ $0.04 \qquad 0.3 \qquad 0.2$ $0.1 \qquad 0.1 \qquad 0.2$

Figure 2: The relationship between potential and kinetic energies.

Kinetic Energy, E_k [J]

8.6 Citations

234

235

236

237

238

- in-text citation: use \cite{dirac} to produce dirac or \textcite{dirac} to produce dirac
- citation in parentheses: \parencite {knuthwebsite} produces [knuthwebsite] (for IEEE, this has no difference to the \cite{} command above.)

8.7 Cross-references

Label using suitable names with the following format: figure \label {fig: <name>}, tables \label {tab: <name>}, sections \label {sec: <name>} and equations

```
241 \label{eq:<name>}.
242 Then when cross-referencing, use \cref{<type>:<name>}
243 (or \Cref{<type>:<name>} when used at the beginning of a sentence)
```

Appendix