Honework 5 Honors Analysis II

Homework 5

ALECK ZHAO

March 9, 2018

Chapter 15: Lebesgue Measure

25. Suppose that $m^*(E) > 0$. Given $0 < \alpha < 1$, show that there exists an open interval I such that $m^*(E \cap I) > \alpha m^*(I)$. (Hint: It is enough to consider the case $m^*(E) < \infty$. Now suppose that the conclusion fails.)

Proof. Consider the case when $m^*(E) < \infty$. Fix α and $\varepsilon > 0$, and suppose that $m^*(E \cap I) \le \alpha m^*(I)$ for any open interval I. Then there exists an open set $G \supset E$ such that $m^*(G) < m^*(E) + \varepsilon$. Then $G = \bigcup_{n=1}^{\infty} I_n$ for disjoint, open intervals I_n , and we have $E = \bigcup_{n=1}^{\infty} E \cap I_n$. Now,

$$m^*(E) = m^* \left(\bigcup_{n=1}^{\infty} (E \cap I_n) \right) \le \sum_{n=1}^{\infty} m^*(E \cap I_n) \le \sum_{n=1}^{\infty} \alpha m^*(I_n) = \alpha \sum_{n=1}^{\infty} m^*(I_n) < \sum_{n=1}^{\infty} m^*(I_n) = m^*(G)$$

This is a contradiction, so there must exist an open interval I such that $m^*(E \cap I) > \alpha m^*(I)$.

28. Fix α with $0 < \alpha < 1$ and repeat our "middle thirds" construction for the Cantor set except that now, at the *n*th stage, each of the 2^{n-1} open intervals we discard from [0,1] is to have length $(1-\alpha)3^{-n}$. Check that $m^*(\Delta_{\alpha}) = \alpha$. (Hint: You only need upper estimates for $m^*(\Delta_{\alpha})$ and $m^*(\Delta_{\alpha}^c)$.)

Proof. For Δ_{α}^{c} , this is the union of all the middle third intervals, which are all disjoint, bounded, open intervals, and thus Δ_{α}^{c} is measurable with

$$m^*(\Delta_{\alpha}^c) = m(\Delta_{\alpha}^c) = \sum_{n=1}^{\infty} 2^{n-1} (1-\alpha) 3^{-n} = \frac{1-\alpha}{2} \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n = \frac{1-\alpha}{2} \cdot \frac{2/3}{1-\frac{2}{3}} = 1-\alpha$$

so
$$m^*(\Delta_\alpha) = 1 - (1 - \alpha) = \alpha$$
.

38. Prove that E is measurable if and only if $E \cap K$ is measurable for every compact set K.

Proof. (\Longrightarrow): Since compact sets are measurable, and intersections of measurable sets are measurable, it follows that $E \cap K$ is measurable.

 (\Leftarrow) : Let $E_n = E \cap [-n, n]$. Then since [-n, n] is compact, E_n is measurable for all n, and $E = \bigcup_{n=1}^{\infty} E_n$, so E is measurable.

40. If A and B are measurable sets, show that $m(A \cup B) + m(A \cap B) = m(A) + m(B)$.

Proof. Define the sets

$$E_1 = A \cap B$$

$$E_2 = A \setminus (A \cap B)$$

$$E_3 = B \setminus (A \cap B)$$

Honework 5 Honors Analysis II

Then E_1, E_2, E_3 are pairwise disjoint sets, and we have

$$E_1 \cup E_2 = A$$

$$E_1 \cup E_3 = B$$

$$E_1 \cup E_2 \cup E_3 = A \cup B$$

$$\implies m(A \cup B) + m(A \cap B) = m(E_1 \cup E_2 \cup E_3) + m(E_1)$$

$$= m(E_1) + m(E_2) + m(E_3) + m(E_1)$$

$$= m(E_1 \cup E_2) + m(E_1 \cup E_3) = m(A) + m(B)$$

as desired. \Box

- 45. Let $f: X \to Y$ be any function.
 - (a) If \mathcal{B} is a σ -algebra of subsets of Y, show that $\mathcal{A} = \{f^{-1}(B) : B \in \mathcal{B}\}$ is a σ -algebra of subsets of X.

Proof. We have $\emptyset \in \mathcal{A}$ since $\emptyset \in \mathcal{B}$ and $\emptyset = f^{-1}(\emptyset)$. Let $A \in \mathcal{A}$, so $A = f^{-1}(B) = \{a \in X : f(a) \in B\}$ for some $B \in \mathcal{B}$. Then

$$A^{c} = \{a \in X : f(a) \notin B\} = \{a \in X : f(a) \in B^{c}\}\$$

Here $B^c \in \mathcal{B}$ since \mathcal{B} is a σ -algebra, so $A^c \in \mathcal{A}$, so \mathcal{A} is closed under complement.

Let (A_n) be a sequence of subsets of X in A. Then let (B_n) be a sequence of subsets in B such that $A_i = f^{-1}(B_i)$ for all i. We have

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \left\{ a \in X : f(a) \in B_n \right\} = \left\{ a \in X : f(a) \in \bigcup_{n=1}^{\infty} B_n \right\}$$

and since \mathcal{B} is closed under countable union, $\bigcup_{n=1}^{\infty} B_n \in \mathcal{B}$, so it follows that $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$, so \mathcal{A} is closed under countable union. Similarly,

$$\bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} \left\{ a \in X : f(a) \in B_n \right\} = \left\{ a \in X : f(a) \in \bigcap_{n=1}^{\infty} B_n \right\}$$

and since \mathcal{B} is closed under countable intersection, it follows that $\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$, so \mathcal{A} is closed under countable intersection. Thus, \mathcal{A} is a σ -algebra of subsets of X.

(b) If \mathcal{A} is a σ -algebra of subsets of X, show that $\mathcal{B} = \{B : f^{-1}(B) \in \mathcal{A}\}$ is a σ -algebra of subsets of Y.

Proof. We have $\emptyset \in \mathcal{B}$ since $\emptyset \in \mathcal{A}$ and $f^{-1}(\emptyset) = \emptyset$. Let $B \in \mathcal{B}$, so $f^{-1}(B) = \{a \in X : f(a) \in B\} \in \mathcal{A}$. Then

$$f^{-1}(B^c) = \{a \in X : f(a) \in B^c\} = (\{a \in X : f(a) \in B\})^c$$

and since \mathcal{A} is closed under complement, it follows that $f^{-1}(B^c) \in \mathcal{A}$, so \mathcal{B} is closed under complement.

Let (B_n) be a sequence of subsets of Y in \mathcal{B} . Then it follows that $f^{-1}(B_i) \in \mathcal{A}$ for all i, so then

$$\bigcup_{n=1}^{\infty} f^{-1}(B_n) = \bigcup_{n=1}^{\infty} \left\{ a \in X : f(a) \in B_n \right\} = \left\{ a \in X : f(a) \in \bigcup_{n=1}^{\infty} B_n \right\} \in \mathcal{A}$$

Honework 5 Honors Analysis II

so it follows that $\bigcup_{n=1}^{\infty} B_n \in \mathcal{B}$, so \mathcal{B} is closed under countable unions. Similarly,

$$\bigcap_{n=1}^{\infty} f^{-1}(B_n) = \bigcap_{n=1}^{\infty} \left\{ a \in X : f(a) \in B_n \right\} = \left\{ a \in X : f(a) \in \bigcap_{n=1}^{\infty} B_n \right\} \in \mathcal{A}$$

so it follows that $\bigcap_{n=1}^{\infty} B_n \in \mathcal{B}$, so \mathcal{B} is closed under countable intersections Thus, \mathcal{B} is a σ -algebra of subsets of Y.

51. Let $\mathcal{A} = \{E \subset \mathbb{R} : \text{either } E \text{ or } E^c \text{ is finite}\}$. Is \mathcal{A} an algebra? Is \mathcal{A} a σ -algebra? Explain.

Solution. Clearly $\emptyset \in \mathcal{A}$ since it is empty and thus finite. Then if $E \in \mathcal{A}$, either E or E^c is finite, so $E^c \in \mathcal{A}$ as well. If $E_1, \dots, E_N \in \mathcal{A}$, then either E_n or E_n^c is finite for all $1 \leq n \leq N$. If all the E_n are finite, then clearly $\bigcup_{n=1}^N E_n$ is finite. Otherwise, if E_k^c is finite for some k, then

$$\left(\bigcup_{n=1}^{N} E_n\right)^c = \bigcap_{n=1}^{N} E_n^c \subset E_k^c$$

which is finite. Thus, \mathcal{A} is closed under finite union. Similarly, if E_k is finite for some k, then $\bigcap_{n=1}^N E_n \subset E_k$ which is finite. Otherwise, E_n^c is finite for all n, wo

$$\left(\bigcap_{n=1}^{N} E_n\right)^c = \bigcup_{n=1}^{N} E_n^c$$

is finite. Thus, A is closed under finite intersections.

If $E_n = \{n\}$, then each of the E_n is finite, but $\bigcup n = 1^{\infty} E_n = \mathbb{N}$ is not finite, and neither is $\mathbb{R} \setminus \mathbb{N}$. Thus, \mathcal{A} is not closed under countable union, so it is not a σ -algebra.

61. Find a sequence of measurable sets (E_n) that decrease to \emptyset , but with $m(E_n) = \infty$ for all n.

Solution. Let $E_n = \bigcup_{k=1}^{\infty} (k, k + \frac{1}{n})$. Then as $n \to \infty$, each of these sets goes to \emptyset , but $m(E_n) = \infty$ for all finite n.

66. In the notation of Exercise 65, define $d(E,F) = m(E\Delta F)$ for $E,F \in \mathcal{M}_1$. Prove that d defines a pseudometric on \mathcal{M}_1 . (That is, d induces a metric on \mathcal{M}_1/\sim , the set of equivalence classes under equality a.e.)

Proof. Since measure is non-negative, we have $d(E,F) \geq 0$. Then

$$\begin{split} d(E,E) &= m(E\Delta E) = m(\varnothing) = 0 \\ d(E,F) &= m(E\Delta F) = m(F\Delta E) = d(F,E) \\ d(E,F) + d(F,G) &= m(E\Delta F) + m(F\Delta G) \geq m \left[(E\Delta F) \cup (F\Delta G) \right] \end{split}$$

Now, it is relatively easy to show $(E\Delta F) \cup (F\Delta G) = (E \cup F \cup G) \setminus (E \cap F \cap G)$. Then

$$\begin{split} G\Delta E &= (G \setminus E) \cup (E \setminus G) \subset (E \cup F \cup G) \setminus (E \cap F \cap G) \\ \Longrightarrow & d(G,E) = m(G\Delta E) \leq m \left[(E \cup F \cup G) \setminus (E \cap F \cap G) \right] \\ &\leq m(E\Delta F) + m(F\Delta G) = d(E,F) + d(F,G) \end{split}$$

Thus, d defines a pseudometric on \mathcal{M}_1 .