CS301 - Assignment 0

Muhammed Orhun Gale - 26754

03/13/2022

Problem 1:

(i) Input: Two sets of N elements say $S_1 = \{x_1,...,x_n\}$ and $S_2 = \{y_1,...,y_n\}$ for some $n \in \mathbb{Z}^+$.

Output: A set of bijections from S_1 to S_2 or vice versa such that for all bijections $(x_m, y_m), (x_{k_1}, y_{k_2}) \cap (\mathbf{x}_{l_1}, y_{l_2}) = \emptyset$ for some $k_1, k_2, l_1, l_1 \in \mathbb{Z}^+$ such that $k_1, k_2, l_1, l_1 \leq n$.

(ii) Input: $S_1 = \{w_1, w_2, w_3\}, S_2 = \{m_1, m_2, m_3\}$

Output: $S_B = \{(w_2, m_1), (w_3, m_2), (w_1, m_3)\}$

Problem 2:

(i) Pseudocode

```
Do for each w_i of set S_1 {

Do for each m_j of set S_2 {

if m_j is not matched

{

Create (w_i, m_j) tuple
}

if m_j's coefficient is greater than current match of w_i {

Delete current tuple of w_i Create (w_i, m_j) tuple
}

else

{

Do nothing
}
```

}

(ii) Asymptotic Time Complexity

Since we iterate over S_1 and for each element of it iterate S_2 , total number of iterations will be N*N then the Asymptotic Time Complexity will be equal to $\mathcal{O}(n^2)$.

Problem 3:

It is in the zip, I could not add in LaTeX. See Problem3 photo