MAGNETIC RECORDING MEDIUM AND METHOD OF MANUFACTURING THE SAME

Publication number: JP2002342908

Publication date:

2002-11-29

Inventor:

SENZAKI TOMOJI; UCHIYAMA HIROSHI; IGARI

TAKAHIRO

Applicant:

SONY CORP

Classification:

- international:

G11B5/64; G11B5/65; G11B5/73; G11B5/851;

G11B5/62; G11B5/64; G11B5/84; (IPC1-7): G11B5/64;

G11B5/65; G11B5/73; G11B5/851

- european:

G11B5/64D3; G11B5/73N; G11B5/851

Application number: JP20010143566 20010514 Priority number(s): JP20010143566 20010514

Report a data error here

Also published as:

関 US 2002187368 (A1)

Abstract of JP2002342908

PROBLEM TO BE SOLVED: To provide a magnetic recording medium which can be manufactured at a substrate temperature of about room temperature by using a substrate made of a resin and is suitable for high-density recording to realize a high coercive force and a high signal-to-noise ratio, and a method of manufacturing the same. SOLUTION: A magnetic film which is mainly composed of Co-Pt-Cr and contains an Si oxide is formed on the substrate made of the resin in such a manner that the content of the Si oxide attains 8 to 16 atm.% of the content of the Co-Pt-Cr in terms of Si atoms to reduce the interaction between crystals. In forming the magnetic film on the substrate made of the resin, the substrate made of the resin is deposited in a non-heating state by a sputtering method in a chamber where the gaseous pressure is regulated to 0.133 to 2.66 Pa.

1:磁気記錄媒体

6:保護層

2: 基板

3:下地層

4:中間層

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2002-342908

(P2002-342908A)

(43)公開日 平成14年11月29日(2002.11.29)

(51) Int. Cl. 7 G11B 5/64 5/65 5/73 5/851	識別記 号	FI
		審査請求 有 請求項の数9 〇L (全15頁)
(21)出願番号	特願2001-143566(P2001-143566)	(71)出願人 000002185 ソニー株式会社
(22)出願日	平成13年 5 月14日 (2001. 5. 14)	東京都品川区北品川6丁目7番35号 (72)発明者 先崎 友二 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内
		(72)発明者 内山 浩 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内
		(74)代理人 100090527 弁理士 舘野 千惠子
		最終頁に続く

(54) 【発明の名称】磁気記録媒体とその製造方法

(57)【要約】

【課題】 樹脂製の基板を使って、室温程度の基板温度で製造可能であり、高保磁力、および高いS/N比を実現した高密度記録に適する磁気記録媒体、およびその製造方法を提供する。

【解決手段】 樹脂製の基板上にCo-Pt-Crを主体としてSi酸化物を含有する磁性膜を、前記Si酸化物の含有量がSi原子に換算して、Co-Pt-Crに対して8原子%以上、16原子%以下とするように形成し、結晶間相互作用を低減する。また、前記樹脂製の基板上に前記磁性膜を形成する際、ガス圧を0.133Pa以上、2.66Pa以下としたチャンバー内でスパッタリング法により、樹脂製の基板を非加熱状態で成膜する。

1:磁気記録媒体

5:磁性層 6:保護層

2 : 基板 3 : 下地層

4:中間層

【特許請求の範囲】

基板上にCo-Pt-Cァを主体とし、 【調求項1】 Si酸化物を含有する磁性膜が形成され、前記Si酸化 物の含有量がSi原子に換算して、Co-Pt-Crに 対して8原子%以上、16原子%以下であることを特徴 とする磁気記録媒体。

【請求項2】 前記基板が樹脂製の基板であることを特 徴とする請求項1記載の磁気記録媒体。

【請求項3】 前記磁性膜の厚さが10mm以上、25 nm以下であることを特徴とする請求項1記載の磁気記 10 録媒体。

【請求項4】 前記Co-Pt-Crと、Si酸化物に おけるSiとの総和を100原子%としたときに、Pt が12原子%以上、20原子%以下であり、Crが0原 子%を超え、10原子%以下であり、Siが8原子%以 上、16原子%以下であり、残部がCoであることを特 徴とする請求項1記載の磁気記録媒体。

【請求項5】 前記基板の表面に凹凸パターンが形成さ れていることを特徴とする請求項1記載の磁気記録媒

【請求項6】 前記基板の平均表面粗さが1nm以下で あり、最大突起高さが15nm以下であることを特徴と する請求項1記載の磁気記録媒体。

【請求項7】 樹脂製基板上にCo-Pt-Crを主体 としてSi酸化物を含有し、前記Si酸化物の含有量が Si原子に換算して、Co-Pt-Crに対して8原子 %以上、16原子%以下であるような磁性膜を少なくと も形成してなる磁気記録媒体の製造方法であって、前記 磁性膜は、ガス圧を0.133Pa以上、2.66Pa 以下としたチャンバー内でスパッタリング法により成膜 30 することを特徴とする磁気記録媒体の製造方法。

【請求項8】 前記磁性膜をチャンバー内でスパッタリ ング法により成膜するに際し、前記基板は非加熱状態と することを特徴とする請求項7記載の磁気記録媒体の製 造方法。

【請求項9】 前記磁性膜を10nm以上、25nm以 下の厚さで成膜することを特徴とする請求項7記載の磁 気記録媒体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、スパッタリング法 により基板上に磁性層を成膜してなる磁気記録媒体、お よびその製造方法に関する。

[0002]

【従来の技術】コンピュータ等の外部記憶装置として、 アルミニウムやガラス等からなる基板上に磁性層が形成 してなる磁気ディスクと、スライダーに搭載された磁気 ヘッドとを備える、所謂、磁気ディスクドライブが多用 されている。この磁気ディスクドライブでは、磁気ディ スク表面に対して微小間隔を保って磁気ヘッドを対向、

浮上させ、この浮上状態で磁気ディスクに対して信号の 記録再生を行う。

【0003】近年のコンピュータの多機能化及び高性能 化に伴い、磁気ディスクドライブに対して髙密度記録化 の要望が高まっている。磁気ディスクドライブの高密度 記録を実現する手法の一つとして、磁気ヘッドと磁気デ ィスクの間の間隔を極力狭めることが挙げられる。

【0004】磁気ディスクドライブでは、磁気ヘッドを 搭載したスライダーが磁気ディスクの表面上を、例え ば、20nm程度の間隔を保って浮上し、信号の書き込 み、および/または読み出しを行なう。この場合、磁気 ディスクの表面に存在する突起高さが20nm以上の突 起は、磁気ヘッドクラッシュの原因となる。このため、 磁気ディスクには、表面に存在する突起の高さが20n m未満とされるような厳しい表面平滑性が要求される。 【0005】従来、アルミニウム基板を用いた場合で は、次のような方法により15 n m以上の高さを有する 突起が除去され、平滑なディスク表面を得ていた。ま ず、アルミニウムからなる金属母材から基板形状のアル 20 ミニウムを切り出す。次いで、この切り出したアルミニ ウム基板に対して高精度な研磨を施す。即ち、この研磨 工程によって磁気ヘッドのクラッシュの原因となる高さ 15 n m以上の突起をアルミニウム基板の表面から除去 する。具体的には、アルミニウム基板の表面に高い表面 平滑性を付与するために、アルミニウム基板に対する研 磨と洗浄を繰り返すと共に、研磨を繰り返す毎に研磨に 用いる砥粒の粒径を小さくすることによって、最終的に 高さ15nm以上の突起を除去する。このような操作 は、ガラス基板の場合にもアルミニウム基板と同様にし て行われ、研磨と洗浄とが繰り返されることによって平 滑な表面を得ている。

【0006】しかしながら、アルミニウムやガラスから なる基板を用いる場合には、上述のように基板の表面平 滑性を得るための研磨等の工程が煩雑であるため、製造 コストが高いものとなり、磁気ディスク自体の価格を引 き上げる要因になるという問題がある。

【0007】このため、磁気ディスク用の基板として、 プラスチックからなる基板(樹脂製基板)が提案されて いる。樹脂製基板の場合には、射出成形法等によって作 40 製されるため、基板の表面粗さは、射出成形に用いられ る金型、あるいはスタンパの表面粗さに対応する。この ため、髙精度に平滑化された金型、あるいはスタンパを 用いることで、問題となるような突起が存在しない、優 れた表面平滑性を有する基板を製造することができる。 従って、樹脂製基板を用いることで、アルミニウム基板 や、ガラス基板で行われていた研磨、洗浄等の工程が不 要となり、磁気ディスクを製造する際の作業が簡略化さ れ、製造コストを安価に抑えることが出来る。

【0008】磁気ディスクを製作する場合、一般にスパ 50 ッタリング法により基板上に、例えば、Сο系合金薄膜

からなる磁性層を成膜する際、200 ℃程度、あるい はそれ以上の温度に基板を加熱して成膜を行っている。

【0009】スパッタリング法においては、基板温度が高い場合、基板表面に飛来した原子が結晶軸を揃えて密に並ぶまでに有する運動エネルギーは、基板温度が低いときよりも大きい。このため、基板を加熱することにより、Co系合金薄膜の磁気特性、特に保磁力Hcが高められる。

【0010】しかしながら、樹脂製基板は、ガラス転移温度が低いため、基板上に磁性層を成膜する際に、200℃以上という高い温度に基板を加熱することが出来ない。このような制約があるため、樹脂製基板を用いた磁気ディスクは保磁力Hcが小さくなるという欠点があった。

【0011】このため、樹脂製基板を磁気ディスクに採用するに当たっては、室温程度の基板温度で磁性層の成膜を行なっても、磁気記録媒体として十分な磁気特性を磁性層に付与できるようにすることが望まれていた。

[0012]

【発明が解決しようとする課題】磁気記録の分野におい 20 ては、高記録密度化が要求されていると共に、信号形態もアナログ信号からデジタル信号に代わっている。そのため、高記録密度化と共に、信号形態に合わせた媒体設計も重要になっている。また、磁気記録媒体を設計するに当たっては、記録再生に使用する磁気ヘッドの特性等によって考慮しなければならない要素が多数ある。

【0013】このような要素である磁気記録媒体の磁気特性の内、再生用磁気ヘッドの再生能力によって制限される磁気特性が残留磁化厚みである。磁性層の残留磁化厚みは、磁性層の残留磁化Mrと磁性層の厚さtとの積 30 Mr・tで表される。この残留磁化厚みは、磁気ヘッドアンプのノイズを無視できる程度に再生出力が大きくなるような範囲の値に制御する必要がある。磁気ヘッドの再生感度と磁気ヘッドの飽和磁束によってこの値は決定される。

【0014】また、磁気記録媒体の磁気特性のうち、記録用磁気ヘッドの書き込み能力によって制限されるのが保磁力である。磁性層の保磁力は、記録用磁気ヘッドの書き込み能力の範囲内にするという観点から、保磁力の最大値が決定される。

【0015】更に、高記録密度(特に高線記録密度)を 実現するためには、分解能を高め、高周波信号を記録再 生しても再生出力が小さくならないようにすることが必 要である。分解能を示す指標としては保磁力に対する残 留磁化厚みの比(Mr・t/Hc)がある。この値が小 さいほど分解能は高まり、周波数特性が向上する。従っ て、分解能を高めるという観点からは、保持力を大きく し、かつ残留磁化厚みを小さくすることが必要である。

【0016】また、高密度記録化の研究は、磁気記録媒 れるものではなく、所望とする目的や性育体のみならず、情報の記録再生を行なう磁気ヘッドの分 50 の構成や材料等を選択することができる。

野においても盛んである。中でも磁気抵抗効果型磁気へッドは、従来の薄膜ヘッド等に比べて感度が高いため、極めて微小な信号を検出することが出来る一方で、雑音も検出し易い。このため、磁気ヘッドの高性能化に伴って磁気記録媒体のノイズを低減すること、即ち、高いS/N比を得ることが重要となる。

[0018]

【課題を解決するための手段】本発明は、基板上にCo-Pt-Crを主体とし、Si酸化物を含有する磁性膜が形成され、前記Si酸化物の含有量がSi原子に換算して、Co-Pt-Crに対して8原子%以上、16原子%以下であることを特徴とする磁気記録媒体である。

【0019】以上のように構成された磁気記録媒体では、磁性層中のCo-Pt-Crの結晶粒が、適量のSi酸化物に囲まれた状態となり、当該結晶粒の結晶間相互作用が小さくなる。また、磁性膜の厚さが10nm以上、25nm以下と適度な厚さとなされている。これにより、磁気記録媒体は低ノイズ化し、高S/N比が得られると共に、高保磁力が得られる。

【0020】また、本発明にかかる磁気記録媒体の製造方法は、樹脂製基板上にCo-Pt-Crを主体としてSi酸化物を含有し、前記Si酸化物の含有量がSi原子に換算して、Co-Pt-Crに対して8原子%以上、16原子%以下であるような磁性膜を少なくとも形成してなる磁気記録媒体の製造方法であって、前記磁性膜は、ガス圧を0.133Pa(1mTorr)以上、2.66Pa(20mTorr)以下としたチャンバー内で、スパッタリング法により成膜することを特徴とする磁気記録媒体の製造方法である。

【0021】このような磁気記録媒体の製造方法では、磁性層の成膜時に、基板温度を室温程度とすることが可能であると共に、Arガス圧を最適にすることにより、高S/N比、および高保持力を実現する磁気記録媒体を製造できる。

40 [0022]

【発明の実施の形態】以下、本発明にかかる磁気記録媒体、およびその製造方法に関する実施の形態について、図面を示しながら詳細に説明する。なお、以下の発明で用いる図面は、各部の特徴を分かりやすく図示するために、特徴となる部分を拡大して示している場合があり、各部材の寸法比率が実際と同じであるものではない。また、磁気記録媒体を構成する各層の構成や材料等について例示するが、本発明は例示する磁気記録媒体に限定されるものではなく、所望とする目的や性能に応じて各層の構成や材料等を選択することができる。

【0023】本発明に係る磁気記録媒体は、基板上に強磁性体であるCo-Pt-Crを主体とした磁性薄膜が形成されてなる金属薄膜型の磁気記録媒体である。図1に示すように、磁気記録媒体1は、基板2と、基板2上に形成された下地層3と、下地層3上に形成された中間層4と、中間層4上に形成された磁性層5と、磁性層5上に形成された保護層6とを有している。

【0024】磁性層5は、Co-Pt-Crを主体とし、Si酸化物(SiOx(x:1以上、2以下))を含有している。そして、磁性層5におけるSi酸化物の10含有量は、当該酸化物を構成する構成元素Siの比率がCo-Pt-Crに対して、8原子%以上、16原子%以下となるような量とされている。また、磁性層5の厚さは10nm以上、25nm以下とされている。

【0025】この磁性層5は、磁性層5を構成するCo-Pt-Crの結晶粒間に、Si酸化物(SiOx(x:1以上、2以下))が島状に分散せしめられた構造となっている。即ち、Co-Pt-Crの結晶粒がSi酸化物によって囲まれ孤立化し、当該結晶粒の結晶間相互作用が分断される。これによって、磁化遷移部分の20磁化のばらつきに起因するノイズを低減することが出来る。それと共に、各結晶粒が磁気的に孤立することによって磁化の回転が一斉回転型になるため、保磁力が大きくなる。即ち、磁気記録媒体1は高S/N比、および高保磁力を持つ媒体となることが可能になる。ただし、本発明は上記した磁性層5の微細構造に拘束されるものではない。

【0026】磁性層におけるSi酸化物含有量が、Co -Pt-Crに対するSi酸化物を構成する構成元素Siの比率として換算したときに、当該構成元素Siが、8原子%未満とされるような量である場合、<math>Co-Pt-Crの結晶粒を囲んで孤立化させる効果が不十分となり、高S/N比、および高保磁力が得られない。

【0027】一方、磁性層におけるSi酸化物の含有量がCo-Pt-Crに対するSi酸化物を構成する構成元素Siの比率として換算した場合、構成元素Siが16原子%を上回るような量である場合、磁性層中のCo-Pt-Crの含有量が相対的に減少するため、逆にS/N比、および保磁力は小さくなってしまう。

【0028】従って、磁性層 5におけるSi酸化物(Si Ox(x:1以上、2以下))の含有量が、当該酸化物を構成する構成元素Siの比率としてCo-Pt-Crに対して、8原子%以上、16原子%以下となるような量とされることによって、Co-Pt-Crの結晶粒と、当該結晶粒を囲むSi酸化物との比率が適正となる。これによって、Co-Pt-Crの結晶粒の結晶間相互作用が効率良く分断され、高S/N比、および高保磁力を得ることが出来る。

【0029】また、磁性層5の厚さが10nm未満であ 互作用の分断に寄与しないSiが存在することになり、る場合、磁性層における結晶配向性が乱れた初期成長層 50 この結果、 SiO_2 を磁性層5に用いることから期待さ

の影響が大きくなるため、結晶磁気異方性の劣化が起こり、S/N比、および保磁力が低下してしまう場合がある。一方、磁性層5の厚さが25nmを上回る場合、垂直方向の反磁界が小さくなり、磁化の垂直成分が増加するため、S/N比、および水平方向の保磁力が低下してしまう場合がある。このような理由から、磁性層5の厚さは、10nm以上、25nm以下の範囲、特には、15nm以上、20nm以下の範囲であることが望ましい。これにより、S/N比、および保磁力の更なる向上が図られ、磁気記録媒体1は、高性能の磁気ヘッドに対しても記録再生が可能となり、高密度記録に好適なものとなる。

【0030】磁性層5は、Co-Pt-CrとSi酸化物(SiOx(x:1以上、2以下))を構成する構成元素Siとの総和を100原子%としたとき、Ptが12原子%以上、20原子%以下であり、Crが0原子%を超え、10原子%以下であり、Si酸化物を構成する元素Siが8原子%以上、16原子%以下であり、残部がCoであるような組成であることが好ましい。磁性層5を構成する元素の組成が上記の範囲とされることで、優れた保磁力が磁気記録媒体1に付与されると共に、高いS/N比を有し、媒体ノイズを顕著に抑えることができる。

【0031】ここで、磁性層5中のCo-Pt-Crの結晶粒を孤立化させるSi酸化物としてSiOxで表される酸化物を用いることが好ましい。SiOxとしては、具体的には、 SiO_2 、SiO 等が挙げられる。これらのSi 酸化物を用いることにより、Co-Pt-Cr の結晶粒の結晶間相互作用をより効率的に分断することが出来るため、S/N比、および保磁力の更なる向上を図ることができる。

【0032】また、磁性層5中のCo-Pt-Crの結晶粒を孤立化させるSi酸化物(SiOx)と共に、更に、Cr2O3、TiO2、ZrO2、Y2O3等の酸化物を併用することが好ましい。磁性層5は、スパッタリング法により基板2上に成膜される。この時、ターゲットの組成と磁性層の組成とが化学量論的組成から外れることがあり、所望の特性を有する磁性層を得られないことがある。Si酸化物(SiOx)として、例えばSiO240を含有させたターゲットをスパッタリングした時に、SiO2はSiとOとに分離した状態となってターゲットからはじき飛ばされ、基板上に被着するが、この際にO原子が不足気味となり、単体のSiが生ずることがある

【0033】このような単体のSiでは、Co-Pt-Crの結晶粒を所望通りに囲むことができず、当該結晶粒の結晶間相互作用を分断することができない。即ち、磁性層5において、Co-Pt-Cr結晶粒の結晶間相互作用の分断に寄与しないSiが存在することになり、この結果 SiOを磁性層5に用いることから期待さ

れるほどのS/N比、および保磁力の向上効果が得られない場合がある。

【0034】そこで、磁性層5中に含有させる酸化物として、Si酸化物(SiOx)と共に、Cr₂O₃、TiO₂、ZrO₂またはY2O₃を併用することにより、これらのCr₂O₃、TiO₂、ZrO₂、Y2O₃が、磁性層5中のSiOxにOが不足した場合、これを補うことができる。即ち、磁性層5において、Co-Pt-Cr結晶粒の結晶間相互作用の分断に寄与しないSiOxができるのを低減(単体のSiのできる確率を小さく)するこ 10とができる。このことから、SiOxと共に、Cr2O₃、TiO₂、ZrO₂またはY2O₃を磁性層5に含有させることにより、S/N比、および保磁力の大幅な向上を図ることができる。

【0035】上記磁気層5以外の図1に示す本発明の磁気記録媒体1を構成する基板2、下地層3、中間層4、保護層6は、それぞれ以下のような構成となっている。

【0036】基板2は、樹脂材料からなることが好ましい。樹脂材料(プラスチック材料)を用いることによって、スタンパを装着した射出成形装置等で樹脂製基板の 20成形が可能となり、従来の金属基板やガラス基板で施されていた研磨、洗浄等の煩雑な工程を省略することができると共に、良好な表面平滑性が容易に得られる。基板2に用いる樹脂材料としては、ポリメチルメタクリレートや、ポリカーボネート、ポリシクロオレフィン系炭化水素が挙げられる。

【0037】また、基板2の表面平均粗さは1nm以下 性層5のCo-Pt-Crの結晶粒がSi酸化物(Si であり、最大突起高さが15nm以下であることが好ま しい。このように基板2の表面平滑性を良好とすること 低減される。これによって磁気記録媒体1は、高S/N により、磁気記録媒体1と磁気へッドとの間の間隙が極 30 比、および高保磁力を実現し、高密度記録に好適なもの となる。 へッドとの接触・衝突が防止され、記録再生が安定して 【0045】以下、図1に示すような構成の磁気記録媒体1の製造方法について説明する。まず、マスタリング

【0038】なお、基板2の材料としては、樹脂材料に限定されず、必要により、従来から磁気記録媒体用の基板として用いられる材料を使用することも可能である。 具体的には、アルミニウム、ガラス等が挙げられる。

【0039】下地層3としては、例えばCr、Cr-W 【0046】次に、このガラス原盤11上に、例えばス 合金等を用いることができる。基板2上に下地層3を成 ピンコーター等の方法により、フォトレジスト溶液を塗 膜することにより、磁性層5の表面平滑性を良好なもの 40 布する。フォトレジスト溶液を塗布後、1000℃以下 とすることができる。 の温度でベーク処理し、図3に示すような、所定の膜厚

【0040】中間層4としては、例えばCo-Cr、Ti、Ti-Cr、Ru、CoRu、Re、CoReを用いることができる。磁性層5の下に中間層4を形成することにより、磁性層5の結晶配向を良好なものとし、磁気特性を向上させることができる。

【0041】この理由について、例えば、中間層4としてTiを用いた場合について説明する。中間層4に用いられるTiの面間隔は、磁性層5に用いられるCoの面間隔より15%~17%大きい。一方、磁性層5ではC

o中に面間隔の大きな原子であるPtが加えられているため、実際の磁性層5の面間隔は、Co単独の面間隔に較べて大きい。従って、中間層4を構成するTiと、磁性層5との面間隔が近似するようになり、磁性層5の結晶配向は良好なものとなる。中間層4としてCo-Cr、Ti、Ti-Cr、Ru、CoRu、Re、CoReを用いた場合についても、中間層4にTiを用いた場合と同様、磁性層5の結晶配向を良好なものとすることができる。

【0042】保護層6は、磁気ヘッドの接触による磨耗や損傷等から磁気記録媒体1を保護するために設けられる。そのため、磁気記録媒体1の保護はもちろん、磁気ヘッドに対して損傷を与えることのないような硬度の高い、例えば、カーボン(C)等を主体とする薄膜が用いられる。

【0043】保護層6上に、潤滑剤を含有する潤滑剤層を形成することも可能である。保護層6上に潤滑剤層を形成することにより、磁気記録媒体1の表面の摩擦係数を低減し、磁気記録媒体1の走行性や耐久性を向上させることができる。

【0044】以上のように構成された磁気記録媒体1は、基板上にCo-Pt-Crを主体とし、Si酸化物を含有する磁性膜が形成され、前記Si酸化物の含有量がSi原子に換算して、Co-Pt-Crに対して8原子%以上、16原子%以下とし、磁性層5の厚さが10nm以上、25nm以下とされている。これにより、磁性層5のCo-Pt-Crの結晶粒がSi酸化物(SiOx)によって囲まれ、当該結晶粒の結晶間相互作用が低減される。これによって磁気記録媒体1は、高S/N比、および高保磁力を実現し、高密度記録に好適なものとなる

【0045】以下、図1に示すような構成の磁気記録媒体1の製造方法について説明する。まず、マスタリング工程により、プラスチックからなる基板2の原盤となるスタンパ13を作製する。このマスタリング工程では、図2に示すようなガラス原盤11を用意し、アルカリ、酸、流水超音波等によってその表面を洗浄・研磨する。【0046】次に、このガラス原盤11上に、例えばスピンコーター等の方法により、フォトレジスト溶液を塗布する。フォトレジスト溶液を塗布後、1000℃以下の温度でベーク処理し、図3に示すような、所定の膜厚

【0047】次いで、図4に示すように、例えば、波長442nmのHe-Cdレーザーや、波長412nmのKrレーザー等を用いて、カッティングデータに対応した溝のパターン露光をフォトレジスト層12に施す。パターン露光を受けたフォトレジスト層12は、露光部12aとされる。

を有するフォトレジスト層12を形成する。

られるTiの面間隔は、磁性層5に用いられるCoの面 【0048】更に、図5に示すように、フォトレジスト 間隔よリ15%~17%大きい。一方、磁性層5ではC 50 層12に対して、アルカリ性の現像液等を用いて現像処

理を施す。これにより、フォトレジスト層12の露光部12aが溶出し、グループやサーボパターン等に対応した所定の凹凸パターンが形成される。

【0049】その後、所定の凹凸パターンが形成されたフォトレジスト層12上に、導電化層を形成し、更に、Ni等のメッキを施す。これにより、図6に示すように、フォトレジスト層12の上にスタンパ13が形成される。

【0050】最後に、スタンパ13をガラス原盤11、およびフォトレジスト層12から剥離し、剥離したスタ 10ンパ13をアルカリ溶液や、有機溶剤等を用いて洗浄し、凹凸パターンが転写された面に残存しているフォトレジストを除去する。そして、凹凸パターンが形成されていない面側を研磨し、スタンパ13を所望の厚みとすることにより、図7に示すように、凹凸パターンが転写された射出成形用のスタンパ13が得られる。

【0051】なお、基板2としてグルーブやサーボパターン等の凹凸パターンを有していない平板上の基板2を作製する場合には、上記工程のうち、パターン露光、および現像処理を行わないようにする。この場合、フォト 20レジスト溶液の塗布及びベーク処理だけを行い、その上にNi等のメッキを施す。これにより、表面に凹凸パターンのない、平板状のスタンパが得られる。

【0052】基板2は、以上のように作製されたスタンパ13を用いて、樹脂材料を射出成形することで作製される。このとき得られる基板2の表面の粗さは、フォトレジスト層12の表面の粗さに対応したものとなる。そして、実際に以上のようにして基板2を作製したところ、基板2の表面平均粗さが1nm以下、最大突起高さが15nm以下となった。このように、基板2を作製す 30ることで、基板2の表面の突起を取り除く研磨工程や洗浄工程を施すことなく、表面平滑性に優れた基板2を作製することができる。

【0053】磁気記録媒体1は、以上のように作製された基板2の上に磁性層5を含む積層膜を成膜することで作製される。磁性層5を含む積層膜は、例えば、図8に示すようなインライン型スパッタリング装置21を用いて成膜される。

【0054】インライン型スパッタリング装置21は、1列に並んだチャンバー23a、チャンバー23b、チ 40 ャンバー23c、チャンバー23d、およびチャンバー23eを有している。各チャンバー23a~eは、それぞれチャンバー23a~e内部を高真空に保つ排気装置22a~eと、スパッタガスをチャンバー23a~e内部に導入するガス導入孔26a~eとを有している。スパッタリングを行う際には、まず、チャンバー23a~e内は、排気装置22a~eによって大気を排出され高真空状態に保たれ、成膜時にガス導入孔26a~eからArガス等のスパッタガスが導入される。

【0055】チャンバー23aは、内部にターゲット電 50 を、成膜する薄膜に対応したチャンバー内へと移動さ

源より整合回路を通じて電力が供給されるカソード24 a と、カソード24 a に接触した状態で保持されている バッキングプレートと、バッキングプレート上に保持されるターゲットとを備えている。 なお、後述する実施例 の磁気ディスク1を作製する際には、チャンバー23 a の内部に設置するターゲットとして、Cr-W合金からなる下地層3用のターゲットを用いた。

【0056】チャンバー23bは、チャンバー23aと同様に、内部にターゲット電源より整合回路を通じて電力が供給されるカソード24bと、カソード24bに接触した状態で保持されているバッキングプレートと、バッキングプレート上に保持されるターゲットとを備えている。なお、後述する実施例の磁気ディスクを作製する際には、チャンバー23bの内部に設置するターゲットとして、Co-Crからなる中間層4用のターゲットを用いた。

【0057】チャンバー23cは、チャンバー23aと 同様に、内部にターゲット電源より整合回路を通じて電 力が供給されるカソード24cと、カソード24cに接 触した状態で保持されているバッキングプレートと、バ ッキングプレート上に保持されるターゲツトとを備えて いる。なお、後述する実施例の磁気ディスクを作製する 際には、チャンバー23cの内部に設置するターゲット として、Co-Pt-Crを主体とし、Si酸化物(S i Ox)を含有する磁性層5用のターゲットを用いた。 【0058】チャンバー23dは、チャンバー23aと 同様に、内部にターゲット電源より整合回路を通じて電 力が供給されるカソード24dと、カソード24dに接 触した状態で保持されているバッキングプレートと、バ ッキングプレート上に保持されるターゲットとを備えて いる。なお、後述する実施例の磁気ディスクを作製する 際には、チャンバー23dの内部に設置するターゲット として、Cからなる保護層6用のターゲットを用いた。 【0059】また、インライン型スパッタリング装置2 1は、基板2を保持するパレット25を備えている。こ のパレット25は、チャンバー23a~eの内部で、パ レット25が保持した状態の基板2が各ターゲットと対 向するように配置され、且つ各チャンバー23a~eの 間を移動可能となされている。

【0060】以上のようなインライン型スパッタリング装置21で基板2上に磁性層5等の積層膜を成膜する際には、まず、基板2をパレット25によって保持して、これをチャンバー23eの内部に導入する。次に、排気装置22a~eが、各チャンバー23a~eの内部を排気して、高真空状態に保持する。次いで、ガス導入孔26a~eから、Arガス等のスパッタガスをチャンバー23a~eの内部に導入し、各チャンバー23a~e毎に所定のガス圧とする。

【0061】そして、基板2を保持したパレット25 を 成職する強職に対応したチャンバー内へと移動さ

30

せ、基板2をターゲットと対向させた状態で、ターゲッ トをスパッタリングする。これにより、基板2上に薄膜 が成膜される。そして、基板2上に磁性層5を含む所定 の積層膜が形成されるように、このような成膜を各チャ ンバー23a~e内で行う。

【0062】以上のようにして、基板2を保持したパレ ット25を各チャンバー23間を移動させることによっ て、基板2上に磁性層5を含む積層膜を形成する。これ により、基板2上に磁性層5を含む積層膜が形成されて なる磁気記録媒体1が得られる。

【0063】そして、本発明では、基板2上に磁性層5 を成膜する際に、チャンバー23c内のガス圧を、0. 133Pa (1mTorr)以上、2.66Pa (20 mTorr)以下の範囲内とする。使用ガスとしては、 不活性ガス、例えば、Arガスが挙げられる。これによ り、高S/N比、および高保磁力を実現し、優れた磁気 特性を有する磁気記録媒体1を作製することが可能とな る。チャンバー内のガス圧を0.133Pa(1mTo rr)未満とした場合、S/N比、および保磁力の向上 が不十分となる。一方、チャンバー内のガス圧を2.6 20 6Pa (20mTorr) より大とすると、チャンバー 内のガス圧を0.133Pa (1mTorr) とした場 合よりもS/N比、および保磁力が低下してしまう。

【0064】チャンバー内のガス圧を、0.133Pa (1mTorr)以上、2.66Pa (20mTor r)以下とし、磁性層5の材料にCo-Pt-Crを用 いることで、スパッタリング法で磁性層5を成膜する際 に、基板2を加熱しなくとも、十分な磁気異方性を付与 することができる。これによって、基板2として、金属 等に較べて耐熱性の低い樹脂材料(プラスチック材料) を採用することが可能となる。

[0065]

【実施例】以下、本発明を適用した磁気記録媒体とし て、図8に示したインライン型スパッタリング装置21 を用いて実際に金属薄膜型の磁気ディスクを作製し、そ れらの磁気特性等を調べた結果について説明する。

【0066】実施例1

まず、磁性層中のSiO2の含有量と磁気特性について 検討した。 前述のようにしてスタンパを作製し、樹脂 材料を射出成形してなる表面に凹凸を設けた基板を得 た。この基板の平均表面粗さは、0.352nm、最大 突起高さは、4.505nmであった。なお、基板の樹 脂材料としては、日本ゼオン社製のZEONEX(商品 名)を用いた。

【0067】図1に準じた構成で、前記基板2上に84 原子%Cr-16原子%W(以降、原子%を省き84C r-16Wと表記する。なお、他の化合物の場合につい ても同様に表記する)合金からなる下地層3と、58C o-42Crからなる中間層4と、Co-Pt-Cr、

層6とを順次成膜した。次に、保護層6の表面にフッ素 系潤滑剤を塗布し、サンプル磁気ディスクを得た。

12

【0068】このとき、インライン型スパッタリング装 置21の、磁性層5を成膜するチャンバー内に設置され るターゲットは、Co、Pt、Cr、およびSi酸化物 としてSiO₂を混合し、焼成することにより得た。な お、これらCo、Pt、Cr、およびSi0ゥは、Co と、Ptと、Crと、SiOzを構成する構成元素Si との総和を100原子%としたとき、Coを100-(14+6+x) 原子%、Ptを14原子%、Crを6 原子%、SiOzを構成する構成元素Siをx原子%と なるような比率で混合した。

【0069】スパッタリング前のチャンバー内圧力は、 2. 67×10 ⁵ Pa (2×10 ⁷ Torr) とした。 また、スパッタリング時のそれぞれのArガス圧力は、 下地層3の成膜時は4Pa (30mTorr)、中間層 4の成膜時は5.3Pa (47mTorr)、磁性層5 の成膜時は1.1Pa (8.6mTorr)、保護層6 の成膜時は1. 6 Pa (12mTorr) とした。ま た、スパッタリング時のそれぞれの成膜速度として、下 地層3の成膜時は、2nm/s、中間層4の成膜時は、 2nm/s、磁性層5の成膜時は、2nm/s、保護層 6の成膜時は、0.5nm/sとした。また、これらの 薄膜を成膜する際、基板2を保持するパレットは室温に

【0070】以上のように作製された磁性層5中のSi O₂含有量が異なる複数のサンプルディスクについて、 それらの保磁力HcをRMM(Remanent Mo ment Magnetometer) で測定した。ま た、線速度12.9m/s、波長0.5μm(約100 kFCI))としたときのS/N比を、電磁変換測定器 「GUZIK-1632A」で測定した。

【0071】S/N比の測定に用いる磁気ヘッドには、 インダクティブ型磁気ヘッドからなる記録用磁気ヘツド と、シールド型の磁気抵抗効果型磁気ヘッドからなる再 生用磁気ヘッドとを組み合わせたものを使用した。ここ で、記録用磁気ヘッドについては、記録トラック幅を 2. 7μ mとし、ギャップ長を0. 35μ mとした。ま た、再生用磁気ヘッドについては、磁気低抗効果素子の 磁界検出に寄与する部分の幅、所謂、再生MR幅を2. 40 3 μ m と し、磁気低抗効果素子を狭持するシールドの間 隔を0.26μmとした。これらの磁気ヘッドは、ナノ スライダに搭載した。

【0072】各サンプル磁気ディスクについて、保磁 力、およびS/N比を測定した結果を図9に示す。図9 において、横軸は、磁性層におけるSiO2の含有量を Co-Pt-Crに対するSiO₂の構成元素Siの比 率として示したものである。右縦軸は、サンプル磁気デ ィスクの保磁力の大きさを示している。なお、図の保磁 およびSiO₂とからなる磁性層5と、Cからなる保護 50 力はOe単位で示しているが、本文中では、SI単位

(A/m) を併記して示した。換算は、10e ≒79A /mによる。左縦軸は、サンプル磁気ディスクに対して 記録再生を行ったときのS/N比を示している。

【0073】図9から明らかなように、磁性層における SiO,の含有量が、Co-Pt-Crに対するSiO, を構成する構成元素Siの比率が8原子%以上、16原 子%以下となるような量である場合、1.82×10° A/m (2. 3 kOe) ~1. 98×10⁵ A/m (2. 5kOe) と高い保磁力が得られると共に、35 d B以上の高いS/N比が得られた。しかし、磁性層に 10 おけるSiO2の含有量が、Co-Pt-Crに対する SiOzを構成する構成元素Siの比率が8原子%未満 となるような量である場合には、媒体ノイズが増加し保 磁力、およびS/N比のいずれも急激に低下してしまっ た。

【0074】一方、磁性層におけるSiO2の含有量 が、Co-Pt-Crに対するSiOzを構成する構成 元素Siの比率が16原子%を上回るような量である場 合には、特に保磁力の低下が著しく、現行の磁気ヘッド による記録が困難となるところがある。これらの結果か 20 ら、磁性層におけるSiO₂の含有量を、Co-Pt-Crに対するSiO₂を構成する構成元素Siの比率と して8原子%以上、16原子%以下となるような量とす ることで、Со-Рt-Сrの結晶粒の結晶間相互作用 を分断し、高S/N比と高保磁力とを兼ね備えた優れた 磁気特性を得られることが分かった。

【0075】実施例2

実施例1で明らかになった最適な磁性層の組成を適用し て、実施例1と同様にして磁気ディスクを作製し、磁性 層5の最適な厚さについて検討した。前記のように樹脂 材料を射出成形してなる樹脂製基板2上に、84Cr-16W合金からなる下地層3と、58Co-42Crか らなる中間層4と、Co-Pt-Cr、およびSiO₂ とからなる磁性層 5 と、Cからなる保護層 6 とを順次成 膜した。次に、保護層の表面にフッ素系潤滑剤を塗布 し、サンプル磁気ディスクを得た。

【0076】このとき、インライン型スパッタリング装 置の、磁性層を成膜するチャンバー内に設置されるター ゲットは、Co、Pt、Cr、およびSi酸化物として SiO₂を混合し、焼成することにより得た。これらC o、Pt、Cr、およびSiO₂は、Coと、Ptと、 Crと、SiO₂を構成する構成元素Siとの総和を1 00原子%としたとき、Coを68原子%、Ptを14 原子%、Crを6原子%、SiO2を構成する構成元素 Siを12原子%となるような比率で混合した。それと 共に、磁性層5の厚さを変化させたこと以外は、実施例 1と同様にして複数のサンプル磁気ディスクを作製し た。

【0077】そして、磁性層の厚さがそれぞれ異なる複

手法にて、保磁力、およびS/N比を測定した。各サン プル磁気ディスクについて保磁力を測定した結果を、図 10に示す。図10において、横軸は磁性層の厚さを示 しており、縦軸はサンプル磁気ディスクの保磁力の大き さを示している。なお、図の保磁力はOe単位で示して いるが、本文中では、SI単位(A/m)と併記して示 した。換算は、10e ≒ 79 A/mによる。また、各サ ンプル磁気ディスクについてS/N比を測定した結果 を、図11に示す。図11において、横軸は磁性層の厚 さを示しており、縦軸はサンプル磁気ディスクに対して 記録再生を行ったときのS/N比を示している。

【0078】図10から明らかなように、磁性層の厚さ を10 n m以上、25 n m以下の範囲内としたときに は、2. 37×10⁵ A/m (3.0kOe)以上の高 い保磁力が得られた。特に、磁性層の厚さを15nm以 上、20 n m以下の範囲内とすることにより、2.61 ×10⁵ A/m (3.3kOe)以上の極めて高い保磁 力を得られることが分かった。一方、磁性層の厚さが1 0 n m末満である場合には、保磁力は2. 3 7×10⁶ A/m (3.0kOe) を下回る低い値を示した。ま た、磁性層の厚さが25nmを上回る場合も、保磁力は 2. 37×10⁵ A/m (3. 0kOe) を下回る低い 値を示した。これらの結果から、磁性層の厚さを10n m以上、25nm以下の範囲内とすることで、高保磁力 を得られることが分かった。

【0079】また、図11から明らかなように、磁性層 の厚さを10nm以上、25nm以下の範囲内としたと きには、30dB以上の高いS/N比が得られた。特 に、磁性層の厚さを15nm以上、20nm以下の範囲 内とすることにより、約35dBの極めて高いS/N比 を得られることが分かった。一方、磁性層の厚さが10 nm未満である場合、S/N比は30dBを下回る低い 値を示した。また、磁性層の厚さが25nmを上回る場 合も、S/N比は30dBを下回る低い値を示した。こ れらの結果から、磁性層の厚さを10nm以上、25n m以下の範囲内とすることで、高S/N比を得られるこ とが分かった。

【0080】以上の実施例2の結果から、磁性層の厚さ を10 n m以上、25 n m以下の範囲内に規定すること で、高保磁力と高S/N比とを兼ね備えた優れた磁気特 性を得られることが分かった。更に、磁性層の厚さを1 5 n m以上、20 n m以下の範囲内とすることにより、 磁気ディスクは、極めて優れた磁気特性を有することが 明らかとなった。

【0081】実施例3

40

次に、図1の構成に準じて、実施例1と同様にして2種 類の磁気ディスクを作製し、磁性層を成膜する際の最適 なガス圧について検討した。磁気ディスク構成は、前記 のように樹脂材料を射出成形してなる基板上に、84C 数のサンプル磁気ディスクについて、実施例1と同様の 50 r-16W合金からなる下地層3と、58Co-42C

rからなる中間層4と、Co-Pt-Cr、およびSi O.とからなる磁性層 5 と、Cからなる保護層 6 とを順 次成膜した。次に、保護層の表面にフッ素系潤滑剤を塗 布し、サンプル磁気ディスクを得た。

【0082】このとき、インライン型スパッタリング装 置21の、磁性層5を成膜するチャンパー内に設置され る一種類のターゲットは、Co、Pt、Cr、およびS i酸化物 (SiOx) としてSiOzを混合し、焼成す ることにより得た。なお、これらCo、Pt、Cr、お よびSiO2は、Coと、Ptと、Crと、SiO2を構 10 が得られた。しかし、Arガスの圧力を0.133Pa 成する構成元素Siとの総和を100原子%としたと き、Coを68原子%、Ptを14原子%、Crを6原 子%、SiO2を構成する構成元素Siを12原子%と なるような比率で混合した。それと共に、磁性層を成膜 する際のチャンバー内のArガスの圧力を変化させたこ と以外は、実施例1と同様にして複数のサンプル磁気デ ィスクを作製した。

【0083】インライン型スパッタリング装置21の、 磁性層5を成膜するチャンバー内に設置される他の一種 類のターゲツトは、Co、Pt、Cr、およびSi酸化 20 物としてSiO₂を混合し、焼成することにより得た。 これらCo、Pt、Cr、およびSiO2は、Coと、 Ptと、Crと、SiOzを構成する構成元素Siとの 総和を100原子%としたとき、Coを64原子%、P tを14原子%、Crを6原子%、SiO₂を構成する 構成元素Siを16原子%となるような比率で混合し た。それと共に、磁性層5を成膜する際のチャンバー内 のArガスの圧力を変化させたこと以外は、実験1と同 様にして複数のサンプル磁気ディスクを作製した。

【0084】以上のように作製された複数のサンプル磁 30 気ディスクについて、実施例1と同様の手法にて、保磁 力及びS/N比を測定した。各サンプル磁気ディスクに ついて保磁力を測定した結果を、図12に示す。図12 において、横軸は磁性層 5を成膜する際のArガスの圧 力を示している。なお、図のArガス圧はmTorr単 位で示しているが、本文中では、SI単位(Pa)と併 記して示した。換算は、1mTorr≒0.133Pa による。縦軸はサンプル磁気ディスクの保磁力の大きさ を示している。なお、図の保磁力は〇 e 単位で示してい るが、本文中では、SI単位(A/m)と併記して示し 40 た。換算は、10e≒79A/mによる。また、各サン プル磁気ディスクについてS/N比を測定した結果を、 図13に示す。図13において、横軸は磁性層5を成膜 する際のArガスの圧力を示している。表示単位は、図 12と同様に扱った。縦軸はサンプル磁気ディスクに対 して記録再生を行ったときのS/N比を示している。

【0085】また、図12、および図13中、〇印は、 SiO2の含有量が、Co-Pt-Crに対するSiO2 の構成元素Siの比率として12原子%とされたサンプ ル磁気ディスクの評価結果を表す。また、図12、およ 50

び図13中、△印は、SiO₂の含有量が、Co-Pt -Crに対するSiO.の構成元素Siの比率として1 6原子%とされたサンプル磁気ディスクの評価結果を表

【0086】図12から明らかなように、磁性層5成膜 時のArガスの圧力を0.133Pa(1mTorr) 以上、2.66Pa (20mTorr) 以下の範囲内と したときには、SiO₂の含有量にかかわらず、2.4 5×10⁶ A/m (3.10kOe) 以上の高い保磁力 (1mTorr) 未満とした場合、例えば、磁性層5に おけるSiOzの含有量が、Co-Pt-Crに対する SiOzを構成する構成元素Siの比率が16原子%と なるような量とされたサンプル磁気ディスクの保磁力 は、2. 44×10⁵ A/m (3. 09kOe) であ り、現在使用されている磁気ヘッドの記録能力を考慮す ると、不十分な値であった。一方、Arガスの圧力が 2. 66 Pa (20 m Torr) を上回る場合、Arガ スをO. 133Pa (1mTorr) とした場合よりも S/N比、および保磁力が低下してしまった。これらの 結果から、磁性層5成膜時のスパッタガスの圧力を、 O. 133Pa (1mTorr)以上、2. 66Pa (20mTorr) 以下の範囲内とすることで高保磁力 を得られることが分かった。

【0087】また、図13から明らかなように、磁性層 5成膜時のArガスの圧力を0.133Pa (1mTo rr) 以上、2. 66Pa (20mTorr) 以下の範 囲内としたときには、SiO₂の含有量にかかわらず、 35dB以上の極めて高いS/N比が得られた。しか し、Arガスの圧力を0.133Pa (1mTorr) 未満とした場合、例えば磁性層 5 における SiOcの含 有量が、Co-Pt-Crに対するSiOzを構成する 構成元素Siの比率が12原子%となるような量とされ たサンプル磁気ディスクのS/N比は、34.2dBで あり、現在使用されている磁気ヘッドの記録能力を考慮 すると、不十分な値であった。一方、Arガスの圧力が 2. 66 Pa (20mTorr) を上回る場合、Arガ スを0. 133Pa(1mTorr)とした場合よりも S/N比、および保磁力が低下してしまった。これらの 結果から、磁性層5成膜時のスパッタガスの圧力を、 O. 133Pa (1mTorr) 以上、2. 66Pa

(20mTorr) 以下の範囲内とすることで高S/N 比を得られることが分かった。

【0088】以上の実施例3の結果から、磁性層5成膜 時のスパッタガスの圧力を 0. 133 Pa (1mTor r) 以上、2. 66 Pa (20m Torr) 以下の範囲 内に規定することで、高保磁力と高S/N比とを兼ね備 え、高密度記録に好適な磁気ディスクを製造できること が分かった。

【0089】実施例4

磁性層5の強磁性体として、Co-PtとSi酸化物 (SiO₂)を用いる場合、およびCo-Pt-Crと Si酸化物(SiO2)、並びにCr2O2を併用する場 合について、磁気ディスクを図1の構成に準じて、実施 例1と同様に作製し、それぞれ磁性層としての効果につ いて検討した。前記のように樹脂材料を射出成形してな る基板上に、84Cr-16W合金からなる下地層3 と、58Co-42Crからなる中間層4と、Co-P t、およびSiO₂からなる磁性層5、もしくはCo-Pt-Cr、およびSiO2とCr2O3からなる磁性層 5と、Cからなる保護層6とを順次成膜した。次に、保 護層6の表面にフッ素系潤滑剤を塗布し、2種類のサン プル磁気ディスクを得た。

【0090】このとき、インライン型スパッタリング装 置21の、磁性層5を成膜するチャンバー内に設置され る一種類のターゲットは、Co、Ptと、Si酸化物と してSiO₂を混合し、焼成することにより得た。C o、Pt、およびSiO2は、CoとPtとSiO2を構 成する構成元素Siとの総和を100原子%としたと き、Co64原子%、Ptを20原子%、SiOzを構 成する構成元素Siを16原子%となるような比率で混 合した。それと共に、磁性層5の厚さを変化させたこと 以外は、実施例1と同様にして複数のサンプル磁気ディ スクを得た。

【0091】インライン型スパッタリング装置21の、 磁性層5を成膜するチャンバー内に設置される他の種類 のダーゲットは、Co、Pt、Cr、ならびにSi酸化 物としてSiO2のほか、Cr2O3を併用混合し、焼成 することにより得た。これらCo、Pt、Cr、SiO 2、およびCr2O1は、Coと、Ptと、Crと、Si O₂を構成する構成元素Siと、Cr₂O₃を構成する構 成元素Crとの総和を100原子%としたとき、Coを 67原子%、Ptを14原子%、Crを6原子%、S i O₂を構成する構成元素Siを12原子%、Cr₂O₃ を構成する構成元素Crを1原子%となるような比率で 混合した。それと共に、磁性層5の厚さを変化させたこ と以外は、実施例1と同様にして複数のサンプル磁気デ ィスクを得た。

【0092】以上のように作製された複数のサンプル磁 気ディスクについて、実施例1と同様の手法にて、保磁 40 力、およびS/N比を測定した。各サンプル磁気ディス クについて保磁力を測定した結果を、図14に示す。図 14において、横軸は磁性層5の厚さを示しており、縦 軸はサンプル磁気ディスクの保磁力の大きさを示してい る。なお、図の保磁力はOe単位で示しているが、本文 中では、SI単位(A/m)と併記して示した。換算 は、10e≒79A/mによる。また、各サンプル磁気 ディスクについてS/N比を測定した結果を、図15に 示す。図15において、横軸は磁性層5の厚さを示して おり、縦軸はサンプル磁気ディスクに対して記録再生を 50 置21の、磁性層5を成膜するチャンバー内に設置され

行ったときのS/N比を示している。

【0093】図14、および図15中、口印は、SiO 2の含有量が、Co-Ptに対するSiO2の構成元素S iの比率として16原子%とされたサンプル磁気ディス クの評価結果を表す。また図14、および図15中、△ 印は、SiOzの含有量が、Co-Pt-Crに対する SiO:の構成元素Siの比率として12原子%とさ れ、Cr2O3の含有量が、Co-Pt-Crに対するC r2O3の構成元素Crの比率として1原子%とされたサ 10 ンプル磁気ディスクの評価結果を表す。

【0094】図14から明らかなように、磁性層5の強 磁性体としてCo-Ptを含有するサンプル磁気ディス クは、磁性層5の厚さが10nm以上、25以下の範囲 内で、2. 37×10⁶ A/m (3. 0kOe) 以上の 高保磁力を得られた。また、Co-Pt-CェとSiO 2と共に、C r 2 O 2を含有するサンプル磁気ディスク も、磁性層の厚さが10nm以上、25nm以下の範囲 内で、2. 37×10⁵ A/m (3. 0kOe)以上の 髙保磁力を得られることが分かった。

【0095】一方、図15から明らかなように、Co-Pt-CrとSiO₂と共に、Cr₂O₃を含有するサン プル磁気ディスクでは、磁性層5の強磁性体としてCo -PtとSiO₂を含有するサンプル磁気ディスクに比 べて、高S/N比を得られることが分かった。また、図 11中に示すような、磁性層 5 における SiO2 の含有 量が、Co-Pt-Crに対するSiO₂を構成する構 成元素 Siとして比率が12原子%となるような量とさ れたサンプル磁気ディスクのS/N比との比較から明ら かなように、Co-Pt-CrとSiO2と共に、Cr2 30 O₃を含有するサンプル磁気ディスクは、S/N比が向 上することが分かった。これは、Si酸化物としてSi O₂と共に、Cr₂O₃を併用することで、単独のSiに O原子が補給され、Co-Pt-Crの結晶粒の結晶間 相互作用が低下するためと考えられる。

【0096】以上の実施例4の結果から、磁性層5中の Si酸化物としてSiO2と共に、Cr2O3を併用する ことで、磁気特性を更に向上させられることが明らかと なった。

【0097】実施例5

図1の構成に準じ、実施例1と同様にして磁気ディスク を作製し、酸化物を含有する磁性層中の、Crの最適な 含有量を検討した。前記のように樹脂材料を射出成形し てなる基板上に、84Cr-16W合金からなる下地層 3と、58Co-42Crからなる中間層4と、Co-Pt-Cr、およびSiO2からなる磁性層 5と、Cか らなる保護層6とを順次成膜した。次に、保護層6の表 面にフッ素系潤滑剤を塗布し、サンプル磁気ディスクを

【0098】このとき、インライン型スパッタリング装

るターゲットは、Co、Pt、Cr、およびSi 酸化物としてSiO2を混合し、焼成することにより得た。なお、これらCo、Pt、Cr、およびSiO3は、Coと、Ptと、Crと、SiO3を構成する構成元素Siとの総和を100原子%としたとき、Coを100ー(16+x+12)原子%、Ptを16原子%、Crを x原子%、SiO3を構成する構成元素Siを12原子%となるような比率で混合した。また、Crの含有量は、4原子%、6原子%、10原子%、12原子%と変化させた。それにより、残留磁化Mrと磁性層厚さ 10の積Mr・100値を変化させた以外は、実施例12にして複数のサンプル磁気ディスクを作製した。

【0099】以上のように作製された複数のサンプル磁気ディスクについて、実施例1と同様の手法にて保磁力を測定した。各サンプル磁気ディスクについて保磁力を測定した結果を図16に示す。図16において、横軸は残留磁化Mrと、磁性層厚さtとの積Mr・tを示し、縦軸はサンプル磁気ディスクの保磁力の大きさを示している。なお、図の保磁力はOe単位で示しているが、本文中では、SI単位(A/m)と併記して示した。換算20は、10e≒79A/mによる。

【0100】図16から明らかなように、Co-Pt-Cre、 SiO_2 を構成する構成元素Sieの総和を100原子%としたときのCrの含有量が10原子%以下である場合に、Mr・tの広い範囲にわたって、高い保磁力が得られることが分かった。特にCo-Pt-Creと、 SiO_2 を構成する構成元素Sie0%和を100%としたときのCr0含有量が4原子%、6原子%、100原子%である場合、 2.53×10^5 A/m (3.2kOe) を上回る優れた保磁力を示した。

【0101】従って、Co-Pt-Crと、SiO。を構成する構成元素Siとの総和を100原子%としたときのCrの含有量は、0原子%を超え、10原子%以下であることが好ましく、特に4原子%以上、10原子%以下が好ましいことが明らかとなった。

【0102】実施例6

図1の構成に準じ、実施例1と同様にして磁気ディスクを作製し、酸化物を含有する磁性層5中の、Ptの最適な含有量を検討した。前記のように樹脂材料を射出成形してなる基板上に、84Cr-16W合金からなる下地 40層3と、58Co-42Crからなる中間層4と、Co-Pt-Cr、およびSiOzからなる磁性層5と、Cからなる保護層6とを順次成膜した。次に、保護層6の表面にフッ素系潤滑剤を塗布し、サンプル磁気ディスクを得た。

【0103】このとき、インライン型スパッタリング装置の、磁性層5を成膜するチャンバー内に設置されるターゲットは、Co、Pt、Cr、およびSi酸化物とし

て SiO_2 を混合し、焼成することにより得た。これら Co、Pt、Cr、および SiO_2 は、Coと、Ptと、Crと、 SiO_2 を構成する構成元素Siとの総和 を100原子%としたとき、Coを100-(x+6+12)原子%、Ptをx原子%、Cr を6原子%、Si O_2 を構成する構成元素Siを12原子%となるような 比率で混合した。そして、図17に示すように、Ptの 含有量を変化させたこと以外は、実施例1と同様にして 複数のサンプル磁気ディスクを作製した。

【0104】以上のように作製された複数のサンプル磁気ディスクについて、実施例1と同様の手法にて保磁力、およびS/N比を測定した。各サンプル磁気ディスクについて、保磁力、およびS/N比を測定した結果を、図17に示す。図17において、横軸のPt含有量は、Co-Pt-Crと、SiO2を構成する構成元素Siとの総和を100原子%としたときの比率として示したものである。右縦軸はサンプル磁気ディスクの保磁力の大きさを示す。なお、図の保磁力はOe単位で示しているが、本文中では、SI単位(A/m)と併記して示した。換算は、10e=79A/mによる。また、左縦軸はサンプル磁気ディスクに対して記録再生を行ったときのS/N比を示している。

【0105】図17から明らかなように、Co-Pt-Cret、 SiO_2 を構成する構成元素Sieの総和を100原子%としたときのPtの含有量を12原子%より多くすると、2.37×10 5 A/m (3.0kOe)を上回る優れた保磁力を得られることが分かった。

【0106】また、Co-Pt-Crと、SiO₂を構成する構成元素Siとの総和を100原子%としたとき のPtの含有量が12原子%以上、20原子%以下であるとき、33dBを上回るS/N比を示した。特に、Co-Pt-Crと、SiO₂を構成する構成元素Siとの総和を100原子%としたときのPtの含有量が13原子%以上、16原子%以下であるとき、S/N比が35dBを上回り、媒体ノイズを顕著に抑えられることが分かった。

【0107】以上の結果から、Co-Pt-Cr と、 SiO_2 を構成する構成元素Siとの総和を100原子% としたときのPtの含有量は、12原子%以上、20原子%以下であることが好ましく、特に13原子%以上、16原子%以下であることが好ましいことが明らかとなった。

【0108】実施例7

以下の表1に示した条件で膜形成を行い、磁気特性、電 磁変換特性、環境試験を行った。

[0109]

【表1】

	RF Glow	84Cr 16W	50Ti — 50W	Ru	62Co-17. 5Pt -8. 5Cr-12SiO ₂	С
圧力 (Pa)	13. 3	2. 7	0. 8	10. 0	1. 1	1. 1
投入電力 (W)	200. 0	50. 0	150. 0	180. D	180. 0	1200. 0
時間 (Sec)	8. 0	6. 7	11. 1	20. 2	11. 1	5. 3
膜厚 (nm)		1. 0	10. 0	20. 0	. 11.0	6. 0

【0110】ポリシクロオレフィン(日本ゼオン社製の ZEONEX) を材料としたプラスチック基板にRF Glow処理/84Cr-16W/50Ti-50W/ Ru/62Co-17. 5Pt-8. 5Cr-12Si O2/Cの順で膜形成を行った。このときに得られた磁 気特性はVSM(振動試料型磁気特性測定機)を用いて $Mr \cdot t = 0$. 4mA, Hc = 255kA/m, $S^* =$ 0.85 (S*: 保磁力角形比)という結果を得た。磁 気変換特性をスピンスタンドLS-90, R/W An alyzer Guzik 1632A (共同電子社製) を用いて行った。ヘッドは記録 0.5μm、再生 0.2 5 μ m の トラック幅、浮上 2 5 n m の G M R ナノスライ 20 ダーを用いた。測定半径28.7mm、回転数5400 rpm、記録密度250kFCIにおけるS/Nを測定 した。その結果、S/Nの絶対値は27dBが得られ た。この媒体のSEM測定の結果、クラックは入ってい ないことを確認した。また、この媒体をClass 1 00以下のClean環境のもと、80℃、80%の環 境下に4時間放置した後、1時間かけて-40℃まで下 げ、さらに1時間放置し室温に4時間かけて戻した。そ の後、膜浮きを光学顕微鏡で観察した。しかし、膜浮き は発生していなかった。このディスクが変形していない 30 ことを確認するため上記スピンスタンドLS90で上記 ヘッドを用いて浮上を確認したが、クラッシュすること なく電磁変換特性を確認することができた。

[0111]

【発明の効果】請求項1に係る発明では、基板上にCoーPtーCrを主体とし、Si酸化物を含有する磁性膜が形成され、前記Si酸化物の含有量がSi原子に換算して、CoーPtーCrに対して8原子%以上、16原子%以下でとすることによって、磁性層におけるCoーPtーCrの結晶粒の結晶間相互作用を低減して、高保 40磁力、および高S/N比を実現し、高密度記録に好適な磁気記録媒体を提供することができる。

【0112】請求項2、5、6に係る発明では、前記基板が樹脂製の基板であることによって、製造コストが大幅に削減される。また、表面平均粗さが1nm以下、最大突起高さが15nm以下となり、表面平滑性に優れた磁気ディスクが作製できる。

【0113】請求項3に係る発明では、前記磁性膜の厚さが10nm以上、25nm以下とすることにより、高保磁力、および高S/N比を発現することができる。

【0114】請求項4に係る発明では、前記Co-Pt-Cre、Si酸化物におけるSieの総和を100原子%としたときに、Ptが12原子%以上、20原子%以下であり、Crが0原子%を超え、10原子%以下であり、Siが8原子%以上、16原子%以下であり、残部がCoであるようにすることで、Si 酸化物(SiOx)中のOの欠乏を防止するため、磁性層におけるCo-Pt-Crの結晶粒の結晶間相互作用を効果的に低減して、高保磁力、および高S/N比を実現することができる。

【0115】請求項7、8、9に係る発明では、樹脂製基板上にCo-Pt-Crを主体としてSi酸化物を含有し、前記Si酸化物の含有量がSi原子に換算して、Co-Pt-Crに対して8原子%以上、16原子%以下であるような磁性膜を少なくとも形成してなる磁気記録媒体の製造方法であって、前記磁性膜は、ガス圧を0.133Pa(1mTorr)以上、2.66Pa(20mTorr)以下としたチャンバー内でスパッタリング法により成膜することによって、高保磁力、および高S/N比を実現することができる。特に、本手法によれば、基板加熱を行うことなく磁気特性に優れた磁性層を成膜することができるため、基板として樹脂材料(プラスチック材料)を採用することができる。従って、優れた磁気特性を有する磁気記録媒体を低コストにて製造することが可能となる。

【図面の簡単な説明】

【図1】本発明を適用した磁気記録媒体の要部概略断面図である。

【図2】磁気記録媒体の基板用スタンパの作製に使うガラス原盤を示す概略断面図である。

【図3】磁気記録媒体の基板用スタンパの作製に使うガラス原盤上に形成されたフォトレジスト層を示す概略断面図である。

【図4】磁気記録媒体の基板用スタンパの作製に使うフォトレジスト層の露光部を示す概略断面図である。

【図5】磁気記録媒体の基板用スタンパの作製に使う露 光部が溶出されたフォトレジスト層およびガラス原盤を 示す概略断面図である。

【図6】磁気記録媒体の基板用スタンパの作製に使うガラス原盤およびフォトレジスト層上に形成されたスタンパを示す概略断面図である。

50 【図7】スタンパを示す概略断面図である。

【図8】インライン型スパッタリング装置の構成を示す 概略図である。

【図9】実施例1の各サンプル磁気ディスクの保磁力およびS/N比を示す図である。

【図10】実施例2の各サンプル磁気ディスクの保磁力を示す図である。

【図11】実施例2の各サンプル磁気ディスクのS/N 比を示す図である。

【図12】実施例の3各サンプル磁気ディスクの保磁力を示す図である。

【図13】実施例3の各サンプル磁気ディスクのS/N 比を示す図である。

【図14】実施例4の各サンプル磁気ディスクの保磁力を示す図である。

【図15】実施例4の各サンプル磁気ディスクのS/N 比を示す図である。

【図16】実施例5の各サンプル磁気ディスクの保磁力を示す図である。

【図17】実施例6の各サンプル磁気ディスクの保磁力およびS/N比を示す図である。

【符号の説明】

1 ······磁気記録媒体、2 ·····・基板、3 ·····・下地層、4 ···
 ···・中間層、5 ····・・磁性層、6 ····・・保護層、11 ····・・ガラ

10 ス原盤、12 ····・・フォトレジスト層、12 a ···・・露光
 部、13 ····・・スタンパ、21 ····・・インライン型スパッタ
リング装置、22 a ~ e ····・・排気装置、23 a ~ e ···・・
チャンバー、24 a ~ d ····・カソード、25 ····・・パレット、26 a ~ e ···・・ガス導入孔

フロントページの続き

(72)発明者 猪狩 孝洋 東京都品川区北品川 6 丁目 7 番35号 ソニ 一株式会社内

△ Cr 10原子% □ Cr 12原子%

> F ターム(参考) 5D006 BB02 BB06 BB07 CB01 CB07 DA03 EA03 FA09 5D112 AA02 AA05 AA24 BA01 BA10 BB05 FA04 FB20

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.