3. Logistic Regression

- (1) Units of observation i = 1, ..., n, with binary responses $Y_i = y_i$, where $y_i = 0$ or $y_i = 1$.
- One explanatory variable with values x_i , i = 1, ..., n.
- (2) Example. $Y_i = 1$, if i is ill, $Y_i = 0$ if not, and x_i is the level of exposure (amount smoked; dose of medicine etc.)
- (3) Dependence of response $P(Y_i = 1)$ on exposure x_i ?
- (4) Definition. logit(p) = log(p/(1-p)) for 0 .
- (5) Write $P(Y_i = 1) = p_i$. Logistic regression model, or a logit-model is

$$logit(p_i) = \beta_0 + \beta_1 x_i, \quad i = 1, \dots, n$$

(6) Using the inverse function we get

$$p_i = logit^{-1}(\beta_0 + \beta_1 x_i) = exp(\beta_0 + \beta_1 x_i)/(1 + exp(\beta_0 + \beta_1 x_i))$$

- (7) Properties of function $p = logit^{-1}(x)$: (i) $0 , (ii) <math>p \to 1$ as $x \to +\infty$, (iii) $p \to 0$ as $x \to -\infty$, (iv) strictly increasing.
- (8) Data generation using a computer. (i) Choose the number of observations, say, n=30. (ii) Generate the values of explanatory varibles, say, $x_i=(i-15.5)/14.5$. (iii) Select values for regression coefficients, say, $\beta_0=logit(0.3)$ and $\beta_1=1$. (iv) Compute the probabilities $p_i=logit^{-1}(\beta_0+\beta_1x_i)$.(v) Generate the responses: first pick independent $U_i\sim U[0,1], i=1,\ldots,n$, and then define $Y_i=1$ if $U_i< p_i$, otherwise $Y_i=0$.

(9) Estimation of coefficients using maximum likelihood. In the binomial case $Y_i \sim Bin(n_i, p_i(\beta_0, \beta_1)), i = 1, \ldots, n$ independent, with observed values $Y_i = y_i$ where $y_i \in \{0, \ldots, n_i\}$. The likelihood function is (omitting binomial coefficients that do not depend on the parameters)

$$L(\beta_0, \beta_1) = \prod_{i=1}^n p_i(\beta_0, \beta_1))^{y_i} (1 - p_i(\beta_0, \beta_1))^{n_i - y_i}$$

(10) Differentiating with respect to the parameters we get the *likelihood* equations

$$\sum_{i=1}^{n} (y_i - n_i p_i(\beta_0, \beta_1)) = 0$$
$$\sum_{i=1}^{n} (y_i - n_i p_i(\beta_0, \beta_1)) x_i = 0$$

Equations are *nonlinear*, to be solved numerically using e.g. Newton's method.

(11) Generalization: model has a constant term and k explanatory variables

$$logit(p_i) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik}, \quad i = 1, \ldots, n$$

(12) This can be written in vector form. Define $\beta = (\beta_0, \dots, \beta_k)^T$ and $\mathbf{x}_i = (1, x_{i1}, \dots, x_{ik})^T$, so

$$logit(p_i) = \mathbf{x}_i^T \boldsymbol{\beta} \quad i = 1, \dots, n$$

(13) Now the likelihood equations (k + 1 nonlinear equations, k + 1 unknowns) are (binomial case!) in vector form

$$\sum_{i=1}^n (y_i - n_i p_i(\beta)) \mathbf{x}_i = \mathbf{0},$$

where $p_i(\beta) = \exp(\mathbf{x}_i^T \beta)/(1 + \exp(\mathbf{x}_i^T \beta))$. These equations are also usually solved using some variant of Newton's method.