Commodity Futures Markets Options

Rodney Beard

April 6, 2017

► H. Geman, Ch.4. Agricultural Commodity Spot Markets, in: *Agricultural Finance*, John Wiley & Sons, 2015.

$$P(t) + S(t) = C(t) + ke^{r(T-t)}$$

- ▶ No taxes, no transaction costs: "frictionless markets"
- the underlying stock pays no dividend over the lifetime of the option
- ▶ interest rates *r* are constant. *r* is the continuously compounded interest rate
- ▶ Zero arbitrage. With zero initial wealth and zero risk at date 0 the final wealth will be zero at date *T*.

The Greeks

Proof of put-call parity:

	t	T	
		S(T) < k	S(T) > k
buy the stock	-S(t)	S(T)	<i>S</i> (<i>T</i>)
buy the put	-P(t)	k - S(T)	0
sell the call	+C(t)	0	-(S(T)-k)
Sum	$-ke^{r(T-t)}$	k	k

- Price formula has been established without any assumption on preferences and beliefs of market participants (separation assumption)
- From Put-call parity

or

$$P(t) = C(t) + ke^{r(T-t)} - S(t)$$

$$P(t) = -S(t)[1 - N(d_1)] + ke^{-r(T-t)}[1 - N(d_2)]$$

$$P(t) = ke^{r(T-t)}N(-d_2) - S(t)N(-d_2)$$

The value of the Portfolio (1 call option and n stocks):

$$V_P(t) = C_t + nS_t = -ke^{r(T-t)}N(d_2)$$

in the interval (t, t + dt).

Evolution of the portfolio in this period is

$$\frac{dV(t)}{dt} = -rk^{r(T-t)}N(d_2)$$
$$dV = rk^{r(T-t)}N(d_2)dt$$

From the first equation

$$C_t = V_P(t) - nS(t) = V_P(t) + S_t \frac{\partial C}{\partial S}$$

Why?

Another approach to Black-Scholes

See pp. 68-69

$$V_P(t) = C(t) + nS(t)$$

then

$$dV_P(t) = dC(t) + ndS(t)$$

but

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

and by Ito's lemma

$$dC(t) = \left[\frac{\partial C}{\partial t} + \mu S_t \frac{\partial C_t}{\partial S_t} + \frac{1}{2}\sigma^2 S_t^2\right] dt$$
$$+ \left[\sigma S_t \frac{\partial C}{\partial S_t}\right] dW_t$$

From

$$dV_P(t) = dC(t) + ndS(t)$$

substituting gives

$$dV_{P}(t) = \left[\frac{\partial C}{\partial t} + \mu S_{t} \frac{\partial C_{t}}{\partial S_{t}} + \frac{1}{2} \sigma^{2} S_{t}^{2} + n\mu S_{t}\right] dt$$
$$+ \left[\sigma S_{t} \frac{\partial C}{\partial S_{t}} + n\sigma S_{t}\right] dW_{t}$$

Examine the last term

$$\left[\sigma S_t \frac{\partial C}{\partial S_t} + n\sigma S_t\right] dW_t$$

Set this = 0 and solve for n:

$$n = -\frac{\partial C}{\partial S_t}(t, S_t)$$

This tells you how many stocks to buy to eliminate risk. But it also tells us why $C_t = V_P(t) - nS(t) = V_P(t) + S_t \frac{\partial C}{\partial S}$

Setting
$$n = -\frac{\partial C}{\partial S_t}(t, S_t)$$
 we get

$$dV_P(t) = \left[\frac{\partial C}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 C}{\partial S_t^2}\right] dt$$

Possibly even more fundamental than the LOP

$$dV_P(t) = rV_P(t)dt$$

and using

$$C(t) = V_P(t) + S_t \frac{\partial C}{\partial S}$$

Rearrange to get $V_P(t) = C(t) - S_t \frac{\partial C}{\partial S}$ Substituting we get

$$dV_P(t) = r\left(C(t) - S_t \frac{\partial C}{\partial S}\right) dt$$

 $dV_P(t) = r\left(C(t) - S_t \frac{\partial C}{\partial S}\right) dt$

but

$$dV_P(t) = \left[\frac{\partial C}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 C}{\partial S_t^2}\right] dt$$

Equating these we get

$$\left[\frac{\partial C}{\partial t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 C}{\partial S_t^2}\right] dt = r\left(C(t) - S_t \frac{\partial C}{\partial S}\right) dt$$

or

$$\frac{\partial C}{\partial t} + S_t \frac{\partial C}{\partial S} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 C}{\partial S_t^2} - rC(t) = 0$$

which is the Black-Scholes PDE (partial differential equation) with terminal value $C(T) = \max(0, S(T) - K)$. Then solve as previously shown via the Heat equation method or come other appropriate method

Futures Markets Options

Rodney Beard

The Greeks

From the solution of the Black-Scholes equation we had

$$C(t) = S(t)N(d_1) - ke^{r(T-t)}N(d_2)$$

where N() are normally distributed probabilites evaluated at the values d_1 and d_2 respectively.

Now differentiate this with respect to S(t) to get

$$\frac{\partial C}{\partial S} = N(d_1)$$

This expression $\frac{\partial C}{\partial S}$ is called Δ .

Because N() is positive then $\frac{\partial C}{\partial S} > 0$

$$\delta \approx \frac{\partial C}{\partial S} \delta S = N(d_1) \delta S$$

Divide both sides by $\frac{C}{S}$ and note $SN(d_1) > C$ results in

$$\frac{\delta C}{C} > \frac{\delta S}{S}$$

The return to a call option is greater than the return to the underlying asset.

Geman notes: Confident farmers buy call options to exploit the leverage effect but doubly expose themselves to risk by doing so.

$$\Gamma = \frac{\partial \Delta}{\partial S} = \frac{\partial^2 C}{\partial S^2} = N'(d_1) \frac{1}{S\sigma\sqrt{T-t}} > 0, \forall S$$

 $N'(d_1)$ is the standard normal density at d_1

$$\Delta > 0$$

and

$$\Gamma > 0$$

- ▶ Imply C(S) is convex. At ALL dates! Why?
- ► Clearly true at *T* from payoff graph

Thanks for listening!

