Задача 05.

Да се докаже, че $\, orall A_0, A_1, \dots, A_n \,$ е изпълнено: $Pig(\bigcap_{i=0}^\infty A_iig) = \bigcap_{i=0}^\infty Pig(A_iig).$ Док-во:

$$(\subseteq)$$
 Нека $X\in Pig(\bigcap_{i=0}^\infty A_iig)$. Тогава $X\subseteq\bigcap_{i=0}^\infty A_i\Leftrightarrow \forall i,x\in A_i$, където $x\in X$, т.е. $\bigcap_{i=0}^\infty A_i\subseteq A_k$ за $\forall k$. Но за всяко $k\in\mathbb{N},\ \bigcap_{i=0}^\infty A_i\subseteq A_k$, откъдето $X\in A_k$ за всяко $k\in\mathbb{N}$. Следователно за $\forall k\in\mathbb{N},\,x\in Pig(A_kig)$.

$$(\supseteq) \ \mathrm{Heka} \ Y \in \bigcap_{i=0}^{\infty} P \big(A_i \big) \Rightarrow Y \in P (A_0) \ \& \ Y \in P (A_1) \ \& \ \dots \ \mathrm{sa} \ \forall i \in \mathbb{N}, \ Y \in P (A_i),$$
 т.е. $Y \subseteq A_i$. Ще докажем, че $Y \subseteq \bigcap_{i=0}^{\infty} A_i$. Нека $y \in Y$, но
$$\forall i, \ Y \subseteq A_i \Rightarrow y \in A_i, \ \forall i \in \mathbb{N} \Rightarrow y \in \bigcap_{i=0}^{\infty} A_i \Rightarrow y \subseteq P \big(\bigcap_{i=0}^{\infty} A_i \big).$$

github.com/andy489