Lista de Exercícios 5 de Álgebra Linear Computacional

Prof.: Fabrício Murai e Letícia Pereira Pinto

Informações importantes:

- Data de entrega: até 23:59 do dia 30/04/2019.
- Questões podem ser discutidas entre até três alunos. Nomes dos colegas precisam ser listados. Contudo, a escrita das soluções e submissão deve ser feita individualmente.
- Submissão deve ser feita em formato PDF através do Moodle, mesmo que tenham sido resolvidas a mão e escaneadas.
- Todas as soluções devem ser justificadas.

1. Seja $A = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix}$.

- (a) Calcule a decomposição (manualmente) PA = LU Não precisa resolver Ly = Pb, nem Ux = y.
- (b) Calcule o determinante de A a partir de P, L e U.
- 2. Considere o sistema linear Ax = b, onde a matriz $A = \begin{bmatrix} 9 & 18 \\ 18 & 52 \end{bmatrix}$ é simétrica e definida positiva. Sendo $b = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, encontre a solução usando a Decomposição de Cholesky.
- 3. Refinamento de solução baseado na matriz A anterior.
 - (a) Para $b = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, calcule o erro residual (r = b Ax) da solução aproximada dada por $x^{(0)} = \begin{bmatrix} 0,5 \\ -0,1 \end{bmatrix}$.
 - (b) Use r para executar um refinamento da solução $x^{(0)}$
- 4. Assinale ${\bf V}$ para verdadeiro ou ${\bf F}$ para falso ${\bf e}$ justifique:
 - () A decomposição de Cholesky pode ser aplicada a qualquer matriz $A^{\top}A$ tal que as entradas de A são números reais.
 - () A fatoração LU de uma matriz quadrada A de posto n pode resultar em uma matriz U com linhas nulas.
 - () A fatoração LU é aproximadamente duas vezes mais demorada que a fatoração Cholesky, mas ambas requerem o mesmo espaço em memória.
- 5. LEMBRETE: Não deixe de submeter também a lista "Exercícios Práticos 5 (EP5)" pelo Moodle.