Section 8.8

8.8.1

- **a.** Give a recursive definition for strings of properly nested parentheses and curly braces. For example, {}{} is properly nested but {} is not properly nested. The empty string should not be included in your definition.
 - Basis: λ has properly nested parentheses and curly braces.
 - Recursive rules: If u and v are properly nested sequences of parentheses and curly braces then:
 - 1. (u), $\{u\}$, $(\{u\})$, and $\{(u)\}$ is properly nested.
 - 2. uv is properly nested.
 - Exclusion statement: a string is properly nested only if it given in the basis or can be constructed by applying the recursive rules to the string in the basis.

8.8.2

Let $A = \{a, b\}$.

- **a.** Give a recursive definition for A^* .
 - Basis: $\lambda \in A^*$.
 - Recursive rules: If $u \in A^*$ then:
 - 1. ub and $ua \in A^*$.
 - 2. bu and $au \in A^*$.
 - Exclusion statement: a string is in A^* if it given in the basis or can be constructed by applying the recursive rules to the string in the basis.
- **b.** The set A^+ is the set of strings over the alphabet $\{a,b\}$ of length at least 1. That is $A^+ = A^* \{\lambda\}$. Give a recursive definition for A^+ .
 - Basis: a and $b \in A^+$.
 - Recursive rules: If $u \in A^+$ then:
 - 1. ub and $ua \in A^+$.
 - 2. bu and $au \in A^+$.
 - Exclusion statement: a string is in A^+ if it given in the basis or can be constructed by applying the recursive rules to the strings in the basis.
- **c.** Let S be the set of all strings from A^* in which there is no b before an a. For example, the strings λ , aa, bbb, aabbbb all belong to S, but aabab \notin S. Give a recursive definition for the set S.
 - Basis: $\lambda \in S$.
 - Recursive rules: If $u \in S$ then:
 - 1. $au \in S$.
 - $2. ub \in S.$
 - \bullet Exclusion statement: a string is in S if it given in the basis or can be constructed by applying the recursive rules to the string in the basis.

8.8.4

Give a recursive definition for each subset of the binary strings. A string x should be in the recursively defined set if and only if x has the property described.

- **a.** The set S consists of all strings with an even number of 1's.
 - Basis: $\lambda \in S$.
 - Recursive rules: If $u \in S$ then:
 - 1. 1u1, 11u, and $u11 \in S$.
 - 2. 0u and $u0 \in S$.
 - Exclusion statement: a string is in S if it given in the basis or can be constructed by applying the recursive rules to the string in the basis.
- **b.** The set S is the set of all binary strings that are palindromes. A string is a palindrome if it is equal to its reverse. For example, 0110 and 11011 are both palindromes.
 - Basis: λ , 0, and $1 \in S$.
 - Recursive rules: If $u \in S$ then:
 - 1. $1u1 \in S$.
 - 2. $0u0 \in S$.
 - \bullet Exclusion statement: a string is in S if it given in the basis or can be constructed by applying the recursive rules to the string in the basis.
- **c.** The set S consists of all strings that have the same number of 0's and 1's.
 - Basis: $\lambda \in S$.
 - Recursive rules: If u and $v \in S$ then:
 - 1. $1u0 \in S$.
 - 2. $0u1 \in S$.
 - 3. $uv \in S$.
 - Exclusion statement: a string is in S if it given in the basis or can be constructed by applying the recursive rules to the string in the basis.