JEE MAINS 6 Sept 2020 Shift-1

ee24btech11015 - Dhawal

- 1) The region represented by $\{z = x + \iota y \in C : z \text{Re}(z) \le 1\}$ is also given by the inequality : $\{z = x + \iota y \in C : z - \operatorname{Re}(z) \le 1\}$ (06/09/2020 - Shift - 1)
 - a) $y^2 \le 2(x+\frac{1}{2})$ b) $y^2 \le x+\frac{1}{2}$ c) $y^2 \le 2(x+1)$ d) $y^2 \le x+1$

- 2) The negation of the Boolean expression $p \lor (\sim p \land q)$ is equivalent to : (06/09/2020 - Shift - 1)
 - a) $\sim p \lor \sim q$ b) $\sim p \lor q$
- c) $\sim p \land \sim q$ d) $p \land \sim q$
- 3) The general solution of the differential equation $\sqrt{1+x^2+y^2+x^2y^2}+xy\left(\frac{dy}{dx}\right)=0$ (06/09/2020 - Shift - 1)(where C is a constant of integration)
 - a) $\sqrt{1+y^2} + \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1} \right) + c$
 - b) $\sqrt{1+y^2} \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2-1}}{\sqrt{1+x^2+1}} \right) + c$ c) $\sqrt{1+y^2} + \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2+1}}{\sqrt{1+x^2-1}} \right) + c$

 - d) $\sqrt{1+y^2} \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2}+1} \right) + c$
- 4) Let L_1 be a tangent to the parabola $y^2 = 4(x+1)$ and L_2 be a tangent to the parabola $y^2 = 8(x+2)$ such that L_1 and L_2 intersect at right angles. Then L_1 and L_2 meet on (06/09/2020 - Shift - 1)the straight line:
 - a) x + 2y = 0
- b) x + 2 = 0
- c) 2x + 1 = 0
- d) x + 3 = 0
- 5) The area (in sq. units) of the region A = $\{(x, y) : |x| + |y| \le 1, 2y^2 \ge |x|\}$ (06/09/2020 - Shift - 1)

d) $\frac{7}{6}$

d) $\frac{1}{2}$

7) Let a, b, c, d and $p = 2(ab + bc + cd) p + d$			s such that $(a^2 + b^2 + c^2) p^2 - (06/09/2020 - Shift - 1)$
a) a, c, p are in G.P.b) a, b, c, d are in G.P.		c) a, b, c, d are in A.P.d) a, c, p are in A.P.	
	In how many way		y with four members are to ated so that the same family $(06/09/2020 - Shift - 1)$
a) (2!)(3!)(4!)	b) $(3!)^3(4!)$	c) $(3!)(4!)^3$	d) $(3!)^2(4!)$
9) The values of λ and $x + y + z = 2$ x + 2y + 3z = 5 $x + 3y + \lambda z = \mu$ has infinitely many			equations $(06/09/2020 - S hift - 1)$
a) 6 and 8	b) 5 and 8	c) 5 and 7	d) 4 and 9
10) Let m and M be re Then the ordered p	$\begin{vmatrix} \cos^2 x \\ 1 + \cos^2 x \\ \cos^2 x \end{vmatrix}$	$ \begin{array}{ccc} 1 + \sin^2 x & \sin^2 x & \sin^2 x & \sin^2 x & 1 + \sin^2 $	
	_		d) (-3,3)
11) A ray of light com $x = 1$ at the point	ing from the point A. The ray gets re	$\begin{pmatrix} 2 \\ 2\sqrt{3} \end{pmatrix}$ is incident effected on the line	t at an angle 30° on the line e $x = 1$ and meets x-axis at t: $(06/09/2020 - Shift - 1)$
a) $\begin{pmatrix} 4 \\ -\sqrt{3} \end{pmatrix}$	b) $\begin{pmatrix} 3 \\ -\frac{1}{\sqrt{3}} \end{pmatrix}$	c) $\begin{pmatrix} 3 \\ -\sqrt{3} \end{pmatrix}$	d) $\begin{pmatrix} 4 \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$
			bers are selected at random A.P. with positive common $(06/09/2020 - Shift - 1)$

c) $\frac{1}{3}$

c) $\frac{1}{\sqrt{3}}$

6) The shortest distance between the lines $\frac{x-1}{0} = \frac{y+1}{-1} = \frac{z}{1}$ and x+y+z+1=0, 2x-y+z+3=0 is : (06/09/2020 - Shift-1)

a) $\frac{1}{6}$

a) 1

b) $\frac{5}{6}$

b) $\frac{1}{\sqrt{2}}$

a) $\frac{10}{99}$

b) $\frac{5}{33}$

- c) $\frac{15}{101}$
 - d) $\frac{5}{101}$

13) If f(x + y) = f(x)f(y) and $\sum_{x=1}^{\infty} f(x) = 2$, $x, y \in \mathbb{N}$, where \mathbb{N} is the set of all natural number, then the value of $\frac{f(4)}{f(2)}$ is: (06/09/2020 - Shift - 1)

a) $\frac{2}{3}$

b) $\frac{1}{0}$

c) $\frac{1}{3}$

d) $\frac{4}{9}$

14) If $\{p\}$ denotes the fractional part of the number p, then $\left\{\frac{3^{200}}{8}\right\}$ is equal to: (06/09/2020 - Shift - 1)

a) $\frac{5}{8}$

b) $\frac{1}{8}$

c) $\frac{7}{8}$

d) $\frac{3}{8}$

15) Which of the following points lies on the locus of the foot of perpendicular drawn upon any tangent to the ellipse $\left(\frac{x^2}{4}\right) + \left(\frac{y^2}{2}\right) = 1$ from any of its foci?

(06/09/2020 - Shift - 1)

- a) $\begin{pmatrix} -1 \\ -\sqrt{3} \end{pmatrix}$
- b) $\begin{pmatrix} -2 \\ -\sqrt{3} \end{pmatrix}$ c) $\begin{pmatrix} -1 \\ -\sqrt{2} \end{pmatrix}$

