

AutoMatic generation of Neural Network architectures using a genetic Algorithm

Wolf-Guido Bolick, <u>Paul Czodrowski</u> RDKit UserGroupMeeting, Berlin, September 20th 2017

What is a DNN (deep neural network)?

Morgan fingerprints
as input
keras for learning
deep neural networks
scikit-learn for
statistical Measures
& train/test set splits

DNN Architectures & Hyperparameters

NN-Architecture

- Layer-Type
- Layers
- Neurons per Layer
- Activation-Functions

Training-Parameters

- Optimizer
- Learning-Rate
- Weight-Decay
- Batch-Size
- Loss-Function

• ...

Hyperparameters

Optimization of Hyperparameters

Expert

- Hyperparameters derived from literature & experience
- Hyperparameter search within promising parameter areas

Lucky People

Random-Search

Everyone

- Grid-Search
- Probability based algorithms
- Directed Random-Search (e.g. genetic algorithms)

What is a Genetic Algorithm (GA)?

Validation strategy: nested cross validation

- consensus Model of 25 individual Models
- · Hyperparameter search inside inner loops & validated inside outer loops
 - Every compound is represented in 16/25 individual models

Implemented workflow

Analogy GA & DNN

Genetic algorithm

Deep neural network

GA settings

Parameter	Default value
Population size	100
Worker	10
Fingerprint size	1024
Evolution strategy	drop worst 50 %
SMARTS- Patterns	826

Default value		
sgd, rmsprop, adagrad, adadelta, adam, adamax, nadam		
mse, mae, msle		
5E-2, 1E-1, 5E-1, 1.0		
5E-7, 1E-7, 0.0		
0.0, 0.1,, 0.9		
0, 1		
5%, 6%,, 20%		

Parameter	Default value		
Chromosomes	2 - 5		
Layer types	Dense, Dropout		
Neurons	32 - 512		
Neurons stepsize	32		
Dropout ratio	5, 10,, 90%		
Activation functions	linear, sigmoid, hardsigmoid, softmax, relu, tanh		

Results for in house hERG data set

• outer kappa: almost o.e → Moderate Model · Nested cv: computation time ca. 8 - 14 hours on gpu cluster

NN-Architecture	Split 1	Split 2	Split 3	Split 4	Split 5		
Optimizer	sgd	adadelta	sgd	sgd	adadelta		
Loss-Function	mae	msle	msle	mae	msle		
Learning-Rate	1.0	0.5	1.0	1.0	1.0		
Batch-Size	0.2	0.09	0.14	0.15	0.12		
Momentum	0.1	0.8	0.6	0.4	0.3		
Nesterov-Momentum	1.0	-	1.0	1.0	-		
Weight-Decay	5e-07	5e-07	-	-	1e-07		
Layer 1							
Layer-Type	dense	dense	dense	dense	dense		
Activation-Function	relu	relu	tanh	relu	relu		
Neurons	288	416	64	480	128		
Dropout-Ratio	-	-	-	-	-		
Layer 2							
Layer-Type	-	dense	dense	dropout	-		
Activation-Function	-	relu	softmax	-	-		
Neurons	-	64	384	-	-		
Dropout-Ratio	-	-	-	0.15	-		
Performance					•		
Inner Kappa	0.63 ± 0.02	0.62 ± 0.01	0.60 ± 0.03	0.63 ± 0.02	0.63 ± 0.02		
Outer Kappa	0.57 ± 0.02	0.56 ± 0.04	0.56 ± 0.05	0.58 ± 0.02	0.59 ± 0.01		
Generation	20	40	79	19	49		
# Architectures	1318	1157	1146	1364	1403		

DNN performance over the GA generations

Influence of individual parameters

Optimizer

Contributing

pairs

Interface

inner kappa of best found NN

active workers

Interface, ctd

Detailed view of one particular architecture Statistics given as well

Summary

- (Almost) stable implemention of a genetic algorithm the for hyperparameter search in Deep Neural Networks
 - Follow-up studies on-going at Merck
- Comparison with other machine learning techniques
 - Coming soon
- Roll-out of the code
 - First step: publish a paper (not a single line written so far)!

Acknowledgment

- Wolf-Guido Bolick
- Fabian Steinmetz
- Kristina Preuer, Günter Klambauer (Hochreiter group)
- Andreas Dominik (THM/JLU Gießen)

