Observation of the table

```
SELECT *
FROM dsv1069.final_assignments_qa
LIMIT 100
```

index	item_id	test_a	test_b	test_c	test_d	test_e	test_f
0	2512.0	1.0	0.0	1.0	1.0	0.0	1.0
1	482.0	0.0	1.0	1.0	1.0	0.0	0.0
2	2446.0	0.0	1.0	1.0	0.0	1.0	0.0
3	1312.0	0.0	0.0	0.0	0.0	0.0	1.0
4	3556.0	1.0	1.0	0.0	1.0	0.0	0.0
95	3610.0	0.0	1.0	1.0	0.0	0.0	1.0
96	1205.0	0.0	0.0	0.0	1.0	1.0	1.0
97	1585.0	0.0	0.0	0.0	0.0	0.0	0.0
98	1315.0	0.0	1.0	1.0	0.0	1.0	0.0
99	1368.0	1.0	0.0	1.0	1.0	1.0	1.0
100 rows × 7 columns							

Part 1: Reformating the 'final_assignments_qa' table for futher analysis. Table should have everything to compute metrics like 30-day view-binary

```
SELECT item_id,
   test_a AS test_assignment,
   (CASE
    WHEN test_a is not null THEN 'item_test_1'
   END) AS test_number,
   (CASE
    WHEN test_a is not null THEN '2013-01-05 00:00:00'
   END) AS test_start_date
FROM dsv1069.final_assignments_qa
UNION
SELECT item_id,
   test_b AS test_assignment,
    WHEN test_b is not null THEN 'item_test_2'
   END) AS test_number,
   (CASE
    WHEN test_b is not null THEN '2013-01-05 00:00:00'
```

```
END) AS test_start_date
FROM dsv1069.final_assignments_qa
UNION
SELECT item_id,
   test_c AS test_assignment,
   (CASE
    WHEN test_c is not null THEN 'item_test_3'
   END) AS test_number,
    WHEN test_c is not null THEN '2013-01-05 00:00:00'
   END) AS test_start_date
FROM dsv1069.final_assignments_qa
UNION
SELECT item_id,
   test_d AS test_assignment,
   (CASE
    WHEN test_d is not null THEN 'item_test_4'
   END) AS test_number,
   (CASE
    WHEN test_d is not null THEN '2013-01-05 00:00:00'
   END) AS test_start_date
FROM dsv1069.final_assignments_qa
UNION
SELECT item_id,
   test_d AS test_assignment,
   (CASE
    WHEN test_d is not null THEN 'item_test_5'
   END) AS test_number,
   (CASE
    WHEN test_d is not null THEN '2013-01-05 00:00:00'
   END) AS test_start_date
FROM dsv1069.final_assignments_qa
UNION
SELECT item_id,
   test_e AS test_assignment,
    (CASE
    WHEN test_e is not null THEN 'item_test_6'
   END) AS test_number,
   (CASE
    WHEN test_e is not null THEN '2013-01-05 00:00:00'
   END) AS test_start_date
FROM dsv1069.final_assignments_qa
UNION
SELECT item_id,
   test_f AS test_assignment,
   (CASE
    WHEN test_f is not null THEN 'item_test_7'
   END) AS test_number,
    WHEN test_f is not null THEN '2013-01-05 00:00:00'
    END) AS test_start_date
```

FROM dsv1069.final_assignments_qa

ORDER BY test_number

index	item_id	test_assignment	test_number	test_start_date
0	210.0	0.0	item_test_1	2013-01-05 00:00:00
1	3825.0	0.0	item_test_1	2013-01-05 00:00:00
2	2827.0	1.0	item_test_1	2013-01-05 00:00:00
3	2542.0	1.0	item_test_1	2013-01-05 00:00:00
4	719.0	0.0	item_test_1	2013-01-05 00:00:00
95	2363.0	1.0	item_test_1	2013-01-05 00:00:00
96	290.0	1.0	item_test_1	2013-01-05 00:00:00
97	3965.0	0.0	item_test_1	2013-01-05 00:00:00
98	3673.0	1.0	item_test_1	2013-01-05 00:00:00
99	2590.0	0.0	item_test_1	2013-01-05 00:00:00
100 rows × 4 colum	ns			

Part 2: Calculate the order binary, and average views for the 30 day window after the test assignment for the 2 test

```
SELECT
 test_assignment,
 SUM(order_binary)
                     AS orders_completed_30d,
 COUNT(DISTINCT item_id)
                          AS items,
 SUM(orders)/COUNT(item_id) AS average_views_per_item
FROM
 (SELECT
   test_events.item_id,
   test_events.test_assignment,
   test_events.order_date,
   test_events.test_number,
   test_events.test_date,
   COUNT(invoice_id) AS orders,
   {\tt MAX(CASE~WHEN~(order\_date~>~test\_events.test\_date~AND~DATE\_PART('day',~order\_date~-~test\_date)~<=~30)}
        THEN 1 ELSE 0 END) AS order_binary
 FROM
   (SELECT
     A.item_id AS item_id,
     test_assignment,
     test_number,
      test_start_date AS test_date,
     created_at AS order_date,
      invoice_id
    FROM
```

```
dsv1069.final_assignments AS A

LEFT JOIN

dsv1069.orders AS 0

ON

A.item_id = 0.item_id

WHERE

test_number = 'item_test_2'
) AS test_events

GROUP BY

test_events.item_id,
test_events.test_assignment,
test_events.order_date,
test_events.test_anumber,
test_events.test_date
) AS order_binary

GROUP BY test_assignment
```

index	test_assignment	orders_completed_30d	items	average_views_per_item
0	0.0	399	1130	1.004173
1	1.0	381	1068	1.004659

Part 3: Calculate the view binary, and average views for the 30 day window after the test assignment for the 2 test

```
SELECT
 test_assignment,
 SUM(view_binary)
                                 AS view_binary_30d,
 COUNT(DISTINCT item_id)
                                 AS items,
 SUM(events)/COUNT(item_id) AS average_views_per_item
FROM
 (SELECT
   test_events.item_id,
   test_events.test_assignment,
   test_events.test_number,
   test_events.test_date,
   COUNT(event_id) AS events,
   MAX(CASE
         WHEN (event_time > test_events.test_date AND DATE_PART('day', event_time - test_date) <= 30)
          THEN 1 ELSE 0 END) AS view_binary
 FROM
   (SELECT
     A.item_id
                     AS item_id,
     test_assignment,
     test_number,
     test_start_date AS test_date,
     event_time,
     event_id
    FROM
```

```
dsv1069.final_assignments AS A
    LEFT JOIN
      (SELECT
       event_time,
       event_id,
        (CASE
         WHEN parameter_name = 'item_id' THEN CAST(parameter_value AS INT)
          ELSE null
       END) AS item_id
      FROM
        dsv1069.events
      WHERE
        event_name = 'view_item') AS views
      A.item_id =views.item_id
      test_number = 'item_test_2'
     ) AS test_events
  GROUP BY
    test_events.item_id,
   test_events.test_assignment,
   test_events.test_number,
    test_events.test_date
  ) AS views_binary
GROUP BY
  test_assignment,
  test_date
```

index	test_assignment	view_binary_30d	items	average_views_per_item
0	0.0	918	1130	119.762832
1	1.0	890	1068	119.338951

Part 4: Compute the lifts in metrics and the p-values for the binary metrics using a interval 95% confidence.

I used Abba for interpreting the results of binomial experiment/test.

Results:

Order binary

We have not collected enough samples to be able to detect statistically significant lift of 1%. The p-value is 0.86 and the true mean is likely to be between -10% and 12%. This result is not statistically significant. There is a no substantial difference in the number of orders within 30days of the assigned treatment date betwee the two treatments.

View Binary

We have not collected enough samples to be able to detect statistically significant lift of 2,6%. The p-value is 0.2 and the true mean is likely to be between -1.4% to 6.5%. This result is statistically significant. However, there is still not a substantial difference in the number of views within 30days of the assigned treatment date between the two treatments.