A Horror Story

Predicting the unpredictable

Presented by Enia, Javier and Daniela

the dataset

Unknown gender

What is 0 and 1? We still don't know it.

What do we want to predict?

Final Exam Score or GPA?

What variables affect the most the GPA?

No correlation.

Heatmap

EDA. Min GPA vs SES

EDA. Min GPA vs Ethnicity

EDA. Min GPA vs Study Hours

EDA. Min GPA vs Age

Transforming data

Reducing bits

From 64 to 16 bits.

One Hot Encoding

Converting categorical variables to binary.

Balance data

More than the 80% of rows have a GPA above 2.

Testing the data

Tranforming and preparing data

- Normalizer
- Scaler
- Encoder

Predictive Models

- Random Forest Classifier
- Gradient boosting Classifier
- Logistic Regressiom

Which is the most suitable predictive model?

Predictive Model	Normalizer	Scaler	Encoder
Random Forest	0: 0.10	0: 0.99	0: 0.10
Classifier	1: 0.84	1: 0.98	1: 0.84
Gradient Boosting Classifier	0: 0.22 1: 0.84	0: 0.00 1: 0.84	0: 0.00 1: 0.84
Logistic	0: 0.00	0: 0.00	0: 0.00
Regression	1: 0.84	1: 0.84	1: 0.84

- **Step 0:** Find a dataset.
- **Step 1**: Check if the data is real.
- Step 2: Do a heatmap.
- **Step 3:** Analyse in detail all the variables.
- **Step 4:** If dataset doesn't meet basic requirements, go back to step 0.
- **Step 5:** Analyse different models and choose the best one.
- **Step 6:** Congrats, you have a predictive model!

XX. Thankyou

@Ironhack

