Contents

Pr	Preface				
M	athen	atical notation	xi		
Co	Contents				
1	Intı	oduction	1		
	1.1	Example: Polynomial Curve Fitting	4		
	1.2	Probability Theory	12		
		1.2.1 Probability densities	17		
		1.2.2 Expectations and covariances	19		
		1.2.3 Bayesian probabilities	21		
		1.2.4 The Gaussian distribution	24		
		1.2.5 Curve fitting re-visited	28		
		1.2.6 Bayesian curve fitting	30		
	1.3	Model Selection	32		
	1.4	The Curse of Dimensionality	33		
	1.5	Decision Theory	38		
		1.5.1 Minimizing the misclassification rate	39		
		1.5.2 Minimizing the expected loss	41		
		1.5.3 The reject option	42		
		1.5.4 Inference and decision	42		
		1.5.5 Loss functions for regression	46		
	1.6	Information Theory	48		
		1.6.1 Relative entropy and mutual information	55		
	Exer	rises	58		

xiii

xiv CONTENTS

2	Pro	bability	y Distributions 67
	2.1	Binar	y Variables
		2.1.1	The beta distribution
	2.2	Multi	nomial Variables
		2.2.1	The Dirichlet distribution
	2.3	The C	Gaussian Distribution
		2.3.1	Conditional Gaussian distributions 85
		2.3.2	Marginal Gaussian distributions
		2.3.3	Bayes' theorem for Gaussian variables
		2.3.4	Maximum likelihood for the Gaussian
		2.3.5	Sequential estimation
		2.3.6	Bayesian inference for the Gaussian
		2.3.7	Student's t-distribution
		2.3.8	Periodic variables
		2.3.9	Mixtures of Gaussians
	2.4	The E	Exponential Family
		2.4.1	Maximum likelihood and sufficient statistics
		2.4.2	Conjugate priors
		2.4.3	Noninformative priors
	2.5	Nonp	arametric Methods
		2.5.1	Kernel density estimators
		2.5.2	Nearest-neighbour methods
	Exe	cises	
3	T :	M.	dels for Regression 137
3	3.1		dels for Regression137r Basis Function Models138
	3.1	3.1.1	
		3.1.1	1
		3.1.2	J 1
		3.1.3	8
		3.1.4	8
	2.2		1 1
	3.2 3.3	I ne E	Bias-Variance Decomposition
	3.3	3.3.1	sian Linear Regression
		3.3.2	Parameter distribution
		3.3.3	
	2.4		1
	3.4	Bayes	sian Model Comparison
	3.5		Evidence Approximation
		3.5.1	
		3.5.2	Maximizing the evidence function
	2.	3.5.3	Effective number of parameters
	3.6	Limit cises	ations of Fixed Basis Functions
	L.X.P.I	CISES	1/3

			CONTENTS	XV
4	Lin	ear Ma	odels for Classification	179
_	4.1		iminant Functions	
	7.1	4.1.1	Two classes	
		4.1.2	Multiple classes	
		4.1.3	Least squares for classification	
		4.1.4	Fisher's linear discriminant	
		4.1.5	Relation to least squares	
		4.1.6	Fisher's discriminant for multiple classes	
		4.1.7	The perceptron algorithm	
	4.2		abilistic Generative Models	
	1.2	4.2.1	Continuous inputs	
		4.2.2	Maximum likelihood solution	
		4.2.3	Discrete features	
		4.2.4	Exponential family	
	4.3		abilistic Discriminative Models	
	1.5	4.3.1	Fixed basis functions	
		4.3.2	Logistic regression	
		4.3.3	Iterative reweighted least squares	
		4.3.4	Multiclass logistic regression	
		4.3.5	Probit regression	
		4.3.6	Canonical link functions	
	4.4		Laplace Approximation	
		4.4.1	Model comparison and BIC	
	4.5		sian Logistic Regression	
	1	4.5.1	Laplace approximation	
		4.5.2	Predictive distribution	
	Exe	cises		220
_				
5		ıral Ne		225
	5.1		-forward Network Functions	
	<i>-</i> -	5.1.1	Weight-space symmetries	
	5.2		rork Training	
		5.2.1	Parameter optimization	
		5.2.2	Local quadratic approximation	
		5.2.3	Use of gradient information	239
		5.2.4	Gradient descent optimization	
	5.3		Backpropagation	
		5.3.1	Evaluation of error-function derivatives	
		5.3.2	A simple example	
		5.3.3	Efficiency of backpropagation	246
		5.3.4	The Jacobian matrix	
	5.4		Hessian Matrix	
		5.4.1	Diagonal approximation	
		5.4.2	Outer product approximation	
		5.4.3	Inverse Hessian	252

xvi CONTENTS

		5.4.4	Finite differences
		5.4.5	Exact evaluation of the Hessian
		5.4.6	Fast multiplication by the Hessian
	5.5	Regul	arization in Neural Networks
		5.5.1	Consistent Gaussian priors
		5.5.2	Early stopping
		5.5.3	Invariances
		5.5.4	Tangent propagation
		5.5.5	Training with transformed data
		5.5.6	Convolutional networks
		5.5.7	Soft weight sharing
	5.6	Mixtu	re Density Networks
	5.7		sian Neural Networks
		5.7.1	Posterior parameter distribution
		5.7.2	Hyperparameter optimization
		5.7.3	Bayesian neural networks for classification 28
	Exer	cises	
6		nel Me	
	6.1		Representations
	6.2		ructing Kernels
	6.3		l Basis Function Networks
		6.3.1	Nadaraya-Watson model
	6.4		sian Processes
		6.4.1	Linear regression revisited
		6.4.2	Gaussian processes for regression
		6.4.3	Learning the hyperparameters
		6.4.4	Automatic relevance determination
		6.4.5	Gaussian processes for classification
		6.4.6	Laplace approximation
		6.4.7	Connection to neural networks
	Exer	cises	
_	a	T 7	137 11
7	_		rnel Machines 32
	7.1		mum Margin Classifiers
		7.1.1	Overlapping class distributions
		7.1.2	Relation to logistic regression
		7.1.3	Multiclass SVMs
		7.1.4	SVMs for regression
		7.1.5	Computational learning theory
	7.2		ance Vector Machines
		7.2.1	RVM for regression
		7.2.2	Analysis of sparsity
		7.2.3	RVM for classification
	Ever	cicac	35

				CONTENTS	XVII
8	Gra	phical	Models		359
	8.1	Bayes	sian Networks		. 360
		8.1.1	Example: Polynomial regression		
		8.1.2	Generative models		
		8.1.3	Discrete variables		
		8.1.4	Linear-Gaussian models		. 370
	8.2	Condi	itional Independence		. 372
		8.2.1	Three example graphs		
		8.2.2	D-separation		
	8.3	Marko	ov Random Fields		
		8.3.1	Conditional independence properties .		
		8.3.2	Factorization properties		
		8.3.3	Illustration: Image de-noising		. 387
		8.3.4	Relation to directed graphs		
	8.4		ence in Graphical Models		
		8.4.1	Inference on a chain		
		8.4.2	Trees		
		8.4.3	Factor graphs		
		8.4.4	The sum-product algorithm		
		8.4.5	The max-sum algorithm		
		8.4.6	Exact inference in general graphs		
		8.4.7	Loopy belief propagation		
		8.4.8	Learning the graph structure		
	Exer		· · · · · · · · · · · · · · · · · · ·		
9	Mix	ture M	odels and EM		423
	9.1	K-me	eans Clustering		. 424
	-	9.1.1	Image segmentation and compression		
	9.2	Mixtu	res of Gaussians		
		9.2.1	Maximum likelihood		
		9.2.2	EM for Gaussian mixtures		
	9.3	An A			
		9.3.1	Gaussian mixtures revisited		
		9.3.2			
		9.3.3	Mixtures of Bernoulli distributions		
		9.3.4	EM for Bayesian linear regression		
	9.4		M Algorithm in General		
	Exer	_			
10	Ann	roxims	ate Inference		461
-0	10.1		ional Inference		
	10.1		Factorized distributions		
			Properties of factorized approximations		
			Example: The univariate Gaussian		
			Model comparison		
	10.2	Illustr	ration: Variational Mixture of Gaussians		. 474
	10.4	musu	anon, fundional mixture of Gaussians		,-

xviii CONTENTS

		10.2.1		4/5
		10.2.2	Variational lower bound	481
		10.2.3	Predictive density	482
		10.2.4	Determining the number of components	483
			Induced factorizations	485
	10.3		onal Linear Regression	486
		10.3.1	Variational distribution	486
		10.3.2	Predictive distribution	488
			Lower bound	489
	10.4		ential Family Distributions	490
	1011		Variational message passing	491
	10.5	Local	Variational Methods	493
	10.5	Variati	onal Logistic Regression	498
	10.0	10.6.1	Variational posterior distribution	498
			Optimizing the variational parameters	500
			Inference of hyperparameters	502
	10.7		tation Propagation	505
	10.7	10.7.1	Example: The clutter problem	511
			Expectation propagation on graphs	513
	E			517
	Exerc	cises .		317
11	Sam	pling N	Iethods	523
	11.1		Sampling Algorithms	526
			Standard distributions	526
		11.1.2	Rejection sampling	528
		11.1.3	Adaptive rejection sampling	530
		11.1.4	Importance sampling	532
		11.1.5	Sampling-importance-resampling	534
		11.1.6	Sampling and the EM algorithm	536
	11.2	Marko	v Chain Monte Carlo	537
			Markov chains	539
			The Metropolis-Hastings algorithm	541
	11.3		Sampling	542
			Sampling	546
	11.5		ybrid Monte Carlo Algorithm	
			Dynamical systems	
		11.5.2	Hybrid Monte Carlo	552
	11 6		ating the Partition Function	
				556
12	C	4	I -44 V	<i></i> 0
12			Latent Variables	559
	12.1		oal Component Analysis	561
			Maximum variance formulation	561
			Minimum-error formulation	
			Applications of PCA	
		12.1.4	PCA for high-dimensional data	569

		CONTENTS	xix
	12.2 Probabilistic PCA		. 570
	12.2.1 Maximum likelihood PCA		
	12.2.2 EM algorithm for PCA		
	12.2.3 Bayesian PCA		
	12.2.4 Factor analysis	 	
	12.3 Kernel PCA		
	12.4 Nonlinear Latent Variable Models		
	12.4.1 Independent component analysis .		
	12.4.2 Autoassociative neural networks .		
	12.4.3 Modelling nonlinear manifolds		
	Exercises		
13	Sequential Data		605
	13.1 Markov Models	 	
	13.2 Hidden Markov Models		
	13.2.1 Maximum likelihood for the HMM		
	13.2.2 The forward-backward algorithm	 	. 618
	13.2.3 The sum-product algorithm for the		
	13.2.4 Scaling factors		
	13.2.5 The Viterbi algorithm		
	13.2.6 Extensions of the hidden Markov n		
	13.3 Linear Dynamical Systems	 	. 635
	13.3.1 Inference in LDS	 	. 638
	13.3.2 Learning in LDS	 	. 642
	13.3.3 Extensions of LDS	 	. 644
	13.3.4 Particle filters	 	. 645
	Exercises	 	. 646
14	Combining Models		653
	14.1 Bayesian Model Averaging	 	
	14.2 Committees	 	
	14.3 Boosting		
	14.3.1 Minimizing exponential error		
	14.3.2 Error functions for boosting		
	14.4 Tree-based Models	 	. 663
	14.5 Conditional Mixture Models		
	14.5.1 Mixtures of linear regression mode		
	14.5.2 Mixtures of logistic models		
	14.5.3 Mixtures of experts	 	. 672
	Exercises	 	. 674
Ap	pendix A Data Sets		677
Ap	pendix B Probability Distributions		685
Аp	pendix C Properties of Matrices		695

XX CONTENTS

Appendix D	Calculus of Variations	703
Appendix E	Lagrange Multipliers	707
References		711

http://www.springer.com/978-0-387-31073-2

Pattern Recognition and Machine Learning Bishop, C.M.

2006, XX, 740 p. 304 illus. in color., Hardcover

ISBN: 978-0-387-31073-2