

Comment on "The Landau-Zener Formula"

A. I. Chichinin*

Institute of Chemical Kinetics and Combustion SB RAS, 3, Institutskaya Str., Novosibirsk, 630090 Russia, and Novosibirsk State University, 2, Pirogova Str., Novosibirsk, 630090 Russia

J. Phys. Chem. B 2005, 109 (17), 8428-8430. DOI: 10.1021/jp040627u

he Landau–Zener formula was derived in 1932 and since then has remained an important tool in molecular dynamics and spectroscopy. In 2005, C. Witting proposed a simple derivation of the formula; it looks very useful and probably will be widely used.

In this Comment, a new derivation of the Landau-Zener formula is proposed. Several shortcomings of Witting's derivation are overcome; now it is really "a single line"

Let there be two nonperturbed diabatic states, labeled 1 and 2, and the energy difference between them is

$$E_{12}(t) \equiv E_1(t) - E_2(t) = \hbar \alpha t = \nu (F_1 - F_2)t \tag{1}$$

where ν is velocity, t is time, and $F_1 \equiv dU_1/dr$ and $F_2 \equiv dU_2/dr$ are the slopes of the potential energy curves. We search for the perturbed wave function in the form $A(t)\Psi_1(r, t) + B(t)\Psi_2$ (r, t), where $\Psi_1(r, t)$ and $\Psi_2(r, t)$ are eigenfunctions of the nonperturbed Hamiltonian. The perturbation is given by timeindependent off-diagonal matrix elements H_{12} and $|H_{12}|$

Putting the wave function into the time-dependent Schrödinger equation yields the second-order differential equation

$$\ddot{B}(t) + i\alpha t \dot{B}(t) + \omega_{12}^{2} B(t) = 0$$
 (2)

where *B* is a complex function and all other parameters are real. We assume that $|B(-\infty)| = 1$ and the aim is to find $|B(+\infty)| \equiv$ $B_{\rm f}$. Note that at large t the first term is negligible in comparison with the other two and the solution of eq 2 is $B(t \to \pm \infty) =$ $B(\pm \infty)(\pm t)^{i(\omega_{12}^2/\alpha)}$. From this asymptotic behavior, one obtains

$$(\ddot{B}/B)_{t\to\pm\infty} = -(\omega_{12}^2 + i\alpha)\omega_{12}^2/(\alpha t)^2$$
 (3)

From this equation, we shall use only one consequence: $(B/B)_{t\to\pm\infty}$ varies as t^{-2} .

After $\overline{\text{dividing eq 2}}$ by tB and integrating over t, one obtains

$$\ln B_{\rm f} = \int_{-\infty}^{\infty} \frac{\dot{B}}{B} \frac{\mathrm{d}t}{B} = -\frac{1}{i\alpha} \int_{-\infty}^{\infty} \left[\frac{\omega_{12}^2 + \ddot{B}/B}{t} \right] \mathrm{d}t \equiv -\frac{I_x}{i\alpha}$$
(4)

Here the integral at the right side is denoted as I_x .

From this point, we follow our own logic, which is different from that of Wittig. We will evaluate I_x by expressing it as a part of the contour integral along the contour that goes along the real axis from t = -T to t = +T and then along a semicircle centered at 0 from t = +T to t = -T, where $T \to \infty$. From eq 2, it follows that the expression in square brackets has no pole at t = 0. Thus, the I_x integral may be calculated from the relation I_x + $I_{\rm C}$ = 0, where $I_{\rm C}$ is the contour integral that goes along an

infinitely large semicircle centered at 0 and placed either in upper or lower parts of the complex plane. The I_C integral may be obtained from the integral of eq 4 by replacing real t by complex variable $z = |z|e^{i\phi}$

$$I_{C} \equiv \oint \left[\frac{\omega_{12}^{2} + \ddot{B}(z)/B(z)}{z} \right] dz$$

$$= i \int_{0}^{\pm \pi} (\omega_{12}^{2} + \ddot{B}/B)_{|z| \to \infty} d\phi$$

$$= \pm i\pi\omega_{12}^{2}$$
(5)

where the upper and the lower signs correspond to semicircles in the upper and lower part of the complex plane, respectively. According to eq 3, $(B/B)_{|z|\to\infty} \sim z^{-2}$; hence, this term vanishes. Substituting the result from eq 5 in eq 4 gives

$$B_{\rm f} = \exp(\pm \pi \omega_{12}^2/\alpha) \tag{6}$$

Since *B* is a wave function coefficient, it should be $|B| \le 1$; this condition makes one of the signs impossible. Finally, using definitions from eq 1, we obtain the Landau-Zener formula for the probability of nonadiabatic transition P_{LZ} :

$$P_{\rm LZ} = |B_{\rm f}|^2 = e^{-2\pi\omega_{12}^2/|\alpha|} = e^{-2\pi\hbar^2\omega_{12}^2/\nu|F_1 - F_2|}$$

Surely, the introduction of the time of flight through the interaction region $\tau_d \equiv \omega_{12}/\alpha$ in this expression is very useful for a qualitative understanding of the nature of nonadiabatic transitions. In summary, all present simplifications of the Wittig's approach are based on two notes: the expression in square brackets in eq 4 has no pole at t = 0, and the condition $|B| \le 1$ helps to choose the correct solution in eq 6.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chichinin@kinetics.nsc.ru.

The authors declare no competing financial interest.

REFERENCES

(1) Wittig, C. J. Phys. Chem. B 2005, 109, 8428-8430.

Received: February 18, 2013 April 17, 2013 Revised:

Α