

Biologie samenvatting VWO5 Thema 5 Planten

Biologie En Gedrag (Hogeschool Rotterdam)

Biologie Thema 5 Planten

Basisstof 1

Bouw

- De wortel, de stengel en het blad zijn de organen van een zaadplant
- Ze bestaan uit 3 verschillende weefsels
 - Dekweefsel
 - Het dekweefsel vormt de buitenzijde van een plant en beschermt tegen waterverlies en infecties
 - Vaatweefsel
 - Het vaatweefsel komt in alle organen voor en bestaat voornamelijk uit transportvaten (houtvaten en bastvaten)
 - In houtachtige stengels liggen de houtvaten in jaarringen. De bastvaten liggen eromheen.
 - <u>In kruidachtige stengels</u> liggen de vaten bij elkaar in vaatbundels
 - In bladeren liggen de vaten in nerven
 - Vulweefsel (grondweefsel)
 - Het vulweefsel zit tussen het dekweefsel en het vaatweefsel en is betrokken bij fotosynthese, opslag en stevigheid

Groei en ontwikkeling

- Planten groeien hun hele leven door, als de omstandigheden gunstig zijn
 - Voldoende water
 - Voldoende mineralen
 - Zuurstof
 - Koolstofdioxide
 - Licht
 - Geschikte temperatuur
- Tijdens de groei vinden er in planten allerlei veranderingen plaats
 - o Cellen kunnen zich specialiseren, waarbij ze van vorm veranderen.
 - Organen kunnen veranderen en er kunnen nieuwe organen ontstaan
 - Dee veranderingen noem je ontwikkeling
- Bij planten vinden delingen plaats in meristemen (deelweefsels)
 - In het meristeem van een plant komen stamcellen voor (cellen die nog niet gedifferentieerd zijn)
 - Dankzij deze stamcellen kunnen planten hun hele leven groeien
 - o Meristemen bevinden zich in:
 - De toppen van wortels en stengels
 - Knoppen
 - Jonge bladeren
 - De toppen van stengels en wortels worden groeipunten genoemd en zorgen voor lengtegroei
- Als een cel in het meristeem zich deelt, ontstaan twee dochtercellen
 - Een van beide cellen blijft een meristeemcel en zal zich na verloop van tijd opnieuw delen
 - O De andere cel ondergaat celstrekking, waarbij de cel groeit door opname van water
 - Daarbij kan de cel van vorm veranderen (celdifferentiatie) en een speciale functie krijgen (celspecialisatie)

Lengte- en diktegroei

- In houtachtige planten vindt zowel lengte- als diktegroei plaats
 - Lengtegroei vindt plaats in de jongste delen: de stengeltop en de worteltop
 - Diktegroei vindt vooral plaats in een ringvormig meristeem dat cambium heet
 - Planten groeien in de dikte doordat cellen in het cambium zich delen
 - Na elke deling blijft één van de twee dochtercellen in het cambium liggen
 - De andere komt erbuiten te liggen
 - Naar binnen toe vormt het cambium houtcellen en naar buiten toe bastcellen

- Houtvaten ontstaan uit boven elkaar gelegen houtcellen
 - De houtcellen zetten tegen de verticale primaire celwanden dikke secundaire celwanden af van cellulose en houtstof (lignine)
 - De dwarswanden tussen boven elkaar liggende houtcellen verdwijnen onder invloed van enzymen en ten slotte verdwijnen ook de cellen zelf
- Bij bastvaten verdwijnen de dwarswanden tussen de cellen niet, maar komen er openingen in (zeefplaat, afb 7)
 - o De cellen verdwijnen niet, wel de celkernen
 - Daardoor leven bastvatcellen betrekkelijk kort
 - Dode bastvaten worden dichtgedrukt

Afb. 6 Het ontstaan van een houtvat (lengtedoorsnede, schematisch).

▼ Afb. 7 Bastvaten.

- Uit het cambium ontstaan veel meer houtcellen dan bastcellen.
 - Elk jaar ontstaat zo een laag hout en een dun laagje bast
 - o Jaarring: Al het hout dat gedurende één jaar is gevormd
 - Jaarringen zijn zichtbaar doordat bomen en struiken in het voorjaar groeien en niet in de winter
 - <u>Voorjaar</u>: Er ontstaan wijde houtvaten met dunne wanden (voorjaarshout) die veel water en opgeloste stoffen kunnen vervoeren --> lichtgekleurd
 - Zomer: Er ontstaan steeds nauwere houtvaten met steeds dikkere wanden (zomerhout) --> donkergekleurd
 - Jaargrens: De scherpe overgang tussen het donkere zomerhout en het lichte voorjaarshout
 - In de herfst en de winter is er geen cambiumactiviteit
- In de bast zijn geen jaarringen te onderscheiden, doordat de bastvaten snel worden samengedrukt.

Plastiden

- In cellen van planten en algen kunnen plastiden voorkomen: celorganellen die met functie hebben bij de fotosynthese, het lokken van insecten en het opslaan van reservestoffen
 - Plastiden worden gevormd uit proplastiden die zich, evenals stancellen, bevinden in het meristeem

- In het donker worden etioplasten gevormd
 - o Dat zijn bladkorrels die nog niet aan licht zijn blootgesteld
- In het licht ontstaan uit etioplasten chloroplasten
 - o Ze zorgen voor de groene kleur en zijn belangrijk voor de fotosynthese
- Chromoplasten (kleurstofkorrels) hebben zich ontwikkeld uit chloroplasten
- Een leukoplast is kleurloos en is gespecialiseerd in het opslaan van
 - Zetmeel (amyloplasten)
 - Olie (etaioplasten)
 - Eiwitten (proteïnoplasten)
- Plastiden kunnen, afhankelijk van de omstandigheden, in een ander type overgaan.
 - Bij een aardappel die aan licht wordt blootgesteld, veranderen de amyloplasten in chloroplasten.
 - o Chloroplasten kunnen veranderen in leukoplasten of andersom
 - o Bij een rijpende tomaat worden chloroplasten omgezet in rode chromoplasten.

Basisstof 2

Opname van water en mineralen

- Het transport in zaadplanten vindt vooral plaats via houtvaten en bastvaten
 - De houtvaten vervoeren vooral water en zouten van de wortels via de stengels naar de bladeren
 - Dit is de anorganische sapstroom
 - Bastvaten vervoeren water en assimilatieproducten van de bladeren naar alle delen van de plant (de organische sapstroom)
- Planten nemen via de wortels water en mineralen op
 - Dat gebeurt vooral via de worteluiteinden, waar cellen van de epidermis (opperhuid)
 zijn uitgegroeid tot wortelharen
 - Deze wortelharen zorgen voor fijne vertakkingen die het worteloppervlak sterk vergroten

- De houtvaten en bastvaten liggen in de centrale cilinder
 - o De buitenste laag cellen van de centrale cilinder heet de endodermis
 - Deze zorgt voor de selectieve opname van mineralen
 - Water met opgeloste mineralen wordt via de wortelharen opgenomen uit de bodem en diffundeert via de schors naar de endodermis
 - Dit gebeurt voornamelijk via de celwanden

- Deze zijn permeabel (doordringbaar) voor water en mineralen
- In de celwanden van endodermiscellen bevindt zich het bandje van Caspary, dat impermeabel (ondoordringbaar) is voor water en mineralen
 - Dit bandje ligt in de zijkant, onderkant en bovenkant van de celwand (zoals het cement van een gemetselde muur)
 - De enige manier om deze barrière tussen schors en centrale cilinder te passeren, is via de celwand aan de kant van de schors
- Het celmembraan van de endodermiscellen transporteert actief mineralen van de wortelschors naar de centrale cilinder
 - Daardoor wordt de osmotische waarde in de centrale cilinder hoger dan die in de schors
 - Door osmose diffundeert er vervolgens water naar de centrale cilinder
 - De bandjes van Caspary verhinderen dat het water met opgeloste mineralen vanuit de centrale cilinder kan terugstromen naar de schors.
- Worteldruk: Het water met de opgeloste mineralen stijgt daardoor in de houtvaten

Stijgende sapstroom in houtvaten

- Het water met opgeloste mineralen gaat van de houtvaten in de centrale cilinder en de stengel naar de nerven van bladeren
 - De houtvaten vertakken zich door het gehele blad, waardoor dicht bij elke cel een houtvat ligt
- Het transport in houtvaten is voornamelijk het gevolg van verdamping van water uit de bladeren en van capillaire werking
- De capillaire werking is mogelijk doordat de houtvaten nauw zijn
 - Watermoleculen trekken elkaar aan met cohesiekrachten en de watermoleculen 'plakken' aan de celwanden door adhesiekrachten
 - De cohesie- en adhesiekrachten zijn samen groter dan de zwaartekracht, waardoor het water omhoog wordt getransporteerd
 - Het watertansport wordt ook beïnvloed door een verschil in waterpotentiaal aan beide uiteinden van de houtvaten
 - Dat verschil ontstaat o.a. door verdamping van water uit de bladeren
 - Hierbij diffundeert waterdamp uit de luchtholten en intercellulaire ruimten van bladeren naar buiten via huidmondjes (kleine openingen in de epidermis van blad of stengel)
 - Daardoor zak water verdampen in de celwanden die grenzen aan de luchtholten.
 - Dit water wordt door capillaire werking aangevuld vanuit houtvaten in het blad en uiteindelijk vanuit de houtvaten in de stengel(s) en wortels
 - Door verdamping ontstaat boven in de houtvaten een onderdruk, waar door water door de houtvaten wordt gezogen
 - Deze stroming wordt verdampingsstroom genoemd

Regeling van de verdamping

- Bij de planten wordt de mate van verdamping geregeld door het openen of sluiten van de huidmondjes
 - o 's Nacht zijn alle huidmondjes gesloten
 - o Bij droge omstandigheden kunnen de huidmondjes ook overdag sluiten
- Het openen en sluiten van de huidmondjes gebeurt door een vormverandering van de sluitcellen
 - Als de turgor van de sluitcellen door watertekort afneemt, veranderen de sluitcellen zodanig van vorm dat de opening tussen de sluitcellen kleiner wordt en het huidmondje ten slotte dichtgaat
 - De plant zal daardoor minder vocht verliezen
 - Als de turgor van de sluitcellen door voldoende water toeneemt, wordt de opening tussen de sluitcellen groter, waardoor het huidmondje opengaat.
 - De turgor van sluitcellen is afhankelijk van de osmotische waarde van het vacuolevocht
 - De turgorveranderingen treden niet alleen op door verdamping, maar ook:
 - Onder invloed van licht
 - Door een verandering in het CO₂-gehalte van de sluitcellen

▼ Afb. 19 Huidmondje (schematisch).

1 open

2 dicht

- Doordat de worteldruk water maar enkele meters kan laten stijgen, speelt deze bij naaldbomen en bij loofbomen in de zomer een kleine rol
 - Het opwaartse transport van water en mineralen komt dan tot stand door verdamping van water door de bladeren
 - o In het voorjaar speelt de worteldruk bij loofbomen een groetere rol
 - Er zijn dan nog geen bladeren die de opwaartse sapstroom in stand kunnen houden

Transport in bastvaten

- Bastvaten transporteren organische producten van de fotosynthese door de gehele plant
- Sap in de bastvaten bevat:
 - Voornamelijk suiker (de disacharide sacharose) --> de concentratie kan wel 30% zijn
 - Mineralen
 - Aminozuren
 - Hormonen
- De stroom gaat van een suikerbron naar plaatsen waar de suiker nodig is of waar die wordt opgeslagen
 - o Bladeren, maar ook stengels zijn voorbeelden van een suikerbron
 - Daar wordt suiker gemaakt door oftewel fotosynthese ofwel de afbraak van zetmeel
 - Suiker wordt vervolgens via bastvaten vervoerd en opgeslagen in vruchten in de vorm van:
 - Fructose
 - In groeipunten van wortels en stengels in de vorm van zetmeel
 - In het voorjaar verloopt het transport van suiker anders: dan wordt suiker niet door bastvaten, maar door de houtvaten vervoerd
 - Het suikerrijke sap uit de wortels gaat dan via de houtvaten naar de groeiende delen, zoals knoppen

Basisstof 3

Gaswisseling

- Voor hun fotosynthese hebben planten koolstofdioxide nodig en bij dit proces geven ze zuurstof af
- Gaswisseling: De opname en afgifte van gassen
 - o Dee plant gebruikt de huidmondjes voor de gaswisseling
 - o Naar koolstofdioxide hebben planten veel water nodig voor hun groei
 - Slechts een klein deel van het opgenomen water wordt gebruikt voor koolstofassimilatie en celstrekking
 - De rest verdampt via huidmondjes
 - Deze staan bij de meeste planten een groot deel van de dag open
 - Onder warme, droge of winderige omstandigheden verdampt een plant daardoor veel water
 - Door tijdens zulke omstandigheden de huidmondjes te sluiten, beperkt de plant het waterverlies, maar oook de koolstofassimilatie

▼ Afb. 25 Waterverlies door verdamping in één plant in één seizoen.

Plant	Verdamping (L)
Zwartoogboon (cowpea)	49,0
Aardappel	95,0
Graan	95,0
Tomaat	125,0
Maïs	206,0

Chlorofyl

- De groene delen van planten bevatten chlorofyl
 - o Chlorofyl absorbeert verschillende golflengten uit het zichtbare licht
 - Verschillende golflengte nemen wij waar als verschillende kleuren
 - Chlorofyl reflecteert de golflengte met de kleur groen
 - Daarom hebben planten voor ons een groene kleur

- De vacht van een konijn die alle kleuren reflecteert, zien wij als wit
 - Als je licht met alle golflengten door een oplossing van bladgroen leidt, kun je bepalen welke golflengten worden geabsorbeerd door het chlorofyl
 - Op deze manier ontstaat een absorptiespectrum
 - Afb. 28 Absorptiespectrum van chlorofyl en de fotosyntheseactiviteit bij verschillende golflengten.

Assimilatie en dissimilate

- Intensiteit van de fotosynthese: De snelheid waarmee bij de fotosynthese glucose wordt gevormd en zuurstof vrijkomt
 - o De intensiteit is afhankelijk van verschillende factoren:
 - De hoeveelheid van het licht
 - De kleur van het licht
 - De beschikbare hoeveelheid koolstofdioxide en water
 - De temperatuur
 - De hoeveelheid chlorofyl
 - De intensiteit van de fotosynthese wordt bepaald door de factor doe het minst gunstig is: de beperkende factor
 - Vb. Als bij een toenemende hoeveelheid licht de fotosynthese toeneemt, dan is licht de beperkende factor voor de fotosynthese
- Bij aerobe dissimilatie (verbranding) wordt beïnvloed door milieufactoren, zoals temperatuur en de hoeveelheid zuurstof
 - Meestal wordt de invloed van het licht op de intensiteit van de aerobe dissimilatie buiten beschouwing gelaten
- De intensiteit van de fotosynthese is niet rechtstreeks te bepalen
 - Een deel van de zuurstof die vrijkomt bij de fotosynthese wordt weer verbruikt bij de aerobe dissimilatie
 - De gemeten zuurstofproductie is dan lager dan de werkelijk geproduceerde hoeveelheid zuurstof
 - Door te bepalen hoeveel zuurstof 's nachts bij de aerobe dissimilatie wordt verbruikt, kan wel worden afgeleid hoeveel zuurstof er bij de fotosynthese is ontstaan (afb 30).
 - Ervan uitgaand dat de dissimilatie overdag gelijk is aan de dissimilatie 's nachts: <u>het zuurstofverbruik door dissimilatie + de zuurstofproductie door fotosynthese</u>
 - Deze waarde is de maat voor de intensiteit van de fotosynthese
 - In plaats van zuurstof kun je ook de opgenomen of afgegeven hoeveelheid koolstofdioxide bepalen

Afb. 30 Invloed van de verlichtingssterkte op de fotosynthese.

Opslag van assimiliatieproducten

- Overdag wordt er in een plant meestal meer glucose gevormd dan er bij dissimilatie wordt verbruikt
 - Het overschot aan glucose wordt gebruikt voor:
 - Opbouw en herstel van de plant
 - De vorming van reservestoffen
 - De glucose wordt bij de voortgezette assimilatie grotendeels omgezet in zetmeel en tijdelijk opgeslagen in bladcellen.
 - Door de omzetting in zetmeel wordt voorkomen dat de osmotische waarde van de bladcellen te veel stijgt (zetmeel is slecht oplosbaar in water)
 - Vooral 's nachts wordt het tijdelijk opgeslagen zetmeel omgezet in sacharose (suiker) en via bastvaten afgevoerd naar andere delen van de plant
 - Hier wordt het verbruikt bij de dissimilatie of wordt het opgeslagen als reservestof

