

Text Mining 1 Introduction

9th Madrid Summer School (2014) on Advanced Statistics and Data Mining

Florian Leitner florian.leitner@upm.es

"Text Mining" or "Text Analytics"

The discovery of {new or existing} facts by applying **natural language processing** ("NLP") & statistical learning techniques.

Predictions

Language Understanding = Artificial Intelligence?

"Her" Movie, 2013

"Watson" & "CRUSH" IBM's future bet: Mainframes & AI

"The Singularity" Ray Kurzweil (Google's director of engineering)

"predict crimes before they happen"

MSS/ASDM: Text Mining

cognitive computing:

"processing information more like a human than a machine"

_anguage Processing

Examples of Language Processing Applications

Spam filtering

Document Classification

Date/time event detection

Information Extraction

(Web) Search engines

Information Retrieval

Watson in Jeopardy! (IBM)

Question Answering

Twitter brand monitoring

Sentiment Analysis (Stat. NLP)

Siri (Apple) and Google Now

Language Understanding

Spelling Correction

Statistical Language Modeling

Website translation (Google)

Machine Translation

"Clippy" Assistant (Microsoft)

Dialog System

Finding similar items (Amazon)

Recommender System

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

Current Topics in Text Mining

Course requirements...

Basic Linear Algebra and Probability Theory; Computer Savvy

You will learn about...

Other topics...

- Information Retrieval
- Question Answering
- Dialogue Systems
- Text Summarization
- Machine Translation
- Language Understanding

- Language Modeling
- String Processing
- Text Classification
- Information Extraction

Words, Tokens, Shingles, and N-Grams

Text with words

This is a sentence.

Character-based,
Regular Expressions,
Probabilistic, ...

"tokenization"

NB:

Tokens

Token **N-Grams**

2-Shingles

a.k.a. k-Shingling

3-Shingles

This is a

This is

is a

a sentence

sentence.

sentence

This is a

is a sentence

a sentence

Character **N-Grams**

all **trigrams** of "sentence": [sen, ent, nte, ten, enc, nce]

Beware: the terms "k-shingle" and "n-gram" are not used consistently...

Lemmatization, Part-of-Speech (PoS) Tagging, and Named Entity Recognition (NER)

PoS Tagset:
Penn
Treebank

Token	Lemma	PoS 4	NER
Constitutive	constitutive	JJ	Ο
binding	binding	NN	0
to	to	ТО	Ο
the	the	DT	0
peri-κ	peri-kappa	NN	B-DNA
В	В	NN	I-DNA
site	site	NN	I-DNA
is	be	VBZ	0
seen	see	VBN	Ο
in	in	IN	0
monocytes	monocyte	NNS	B-cell
			0

B-I-O NER Tagging

Information Retrieval (IR)

Text Vectorization: Inverted Index

Comparing Word Vectors: Cosine Similarity

Text 1: He that not wills to the end neither wills to the means.

Text 2: If the mountain will not go to Moses, then Moses must go to the mountain.

tokens	Text 1	Text 2
end	1	0
go	0	2
he	1	0
if	0	1
means	1	0
Moses	0	2
mountain	0	2
must	0	1
not	1	1
that	1	0
the	2	2
then	0	1
to	2	2
will	2	1

Document Classification

Supervised ("Learning to Classify", e.g., spam filtering) vs. **Unsupervised** ("Exploratory Grouping", e.g., topic modeling)

Inverted (I-) Indices

factors, normalization (len[text]), probabilities, and n-grams

Text 1: He that not wills to the end neither wills to the means.

Text 2: If the mountain will not go to Moses, then Moses must go to the mountain.

tokens	Text 1	Text 2
end	1	0
go	0	2
he	1	0
if	0	1
means	1	0
Moses	0	2
mountain	0	2
must	0	1
not	1	1
that	1	0
the	2	2
then	0	1
to	2	2
will	2	1

unigrams	T1	T2	p(T1)	p(T2)
end	1	0	0.09	0.00
go	0	2	0.00	0.13
he	1	0	0.09	0.00
if	0	1	0.00	0.07
means	1	0	0.09	0.00
Moses	0	2	0.00	0.13
mountain	0	2	0.00	0.13
must	0	1	0.00	0.07
not	1	1	0.09	0.07
that	1	0	0.09	0.00
the	2	2	0.18	0.13
then	0	1	0.00	0.07
to	2	2	0.18	0.13
will	2	1	0.18	0.07
SUM	11	15	1.00	1.00

bigrams	Text 1	Text 2
end, neither	1	0
go, to	0	2
he, that	1	0
if, the	0	1
Moses, must	0	1
Moses, then	0	1
mountain, will	0	1
must, go	0	1
not, go	0	1
not, will	1	0
that, not	1	0
the, means	1	0
the, mountain	0	2
then, Moses	0	1
to, Moses	0	1
to, the	2	1
will, not	0	1
will, to	2	0

I-Indices and the Central Dogma Machine Learning

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

(transposed)

The Curse of Dimensionality

(RE Bellman, 1961) [inventor of dynamic programming]

- p » n (more tokens/n-grams/features than texts/documents)
- Inverted indices (X) are very **sparse** matrices.
- Even with millions of training examples, unseen tokens will keep coming up in the "test set" or in production.
- In a high-dimensional hypercube, most instances are closer to the face of the cube ("nothing") than their nearest neighbor.
- ✓ Remedy: the "blessing of non-uniformity" → dimensionality reduction (a.k.a. [low-dimensional] embedding)
- feature extraction: PCA, LDA, factor analysis, unsupervised classification of tokens based on their surrounding tokens ("word embedding"), ...
- ▶ feature "reduction": locality sensitivity hashing, random projections, ...

Sentiment Analysis

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

Information Extraction (IE)

"from non-normalized text to connected data"

Language Understanding

Text Summarization

...is hard because...

Variance/human agreement: When is a summary "correct"?

Coherence: providing **discourse structure** (text flow) to the summary.

Paraphrasing: important sentences are repeated, but with different wordings.

Implied messages: (the Dow Jones index rose 10 points → the economy is thriving)

Anaphora (coreference)
resolution: very hard, but crucial.

Image Source: www.lexalytics.com

Question Answering

Biggest issue: very domain specific

IBM

WolframAlpha

Machine Translation

Languages...

- ▶ have no gender (en: the) or use different genders (es/de: el/die ; la/der ; ??/das)
- ▶ have different verb placements (es de).
- have a different concept of verbs (latin, arab, cjk).
- ▶ use different tenses (en de).
- have different word orders (latin, arab, cjk).

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

The Conditional Probability for Dependent Events

Joint Probability
$$P(X \cap Y) = P(X, Y) = P(X \times Y)$$
The **multiplication principle**
for dependent events*:
$$P(X \cap Y) = P(Y) \times P(X \mid Y)$$

therefore, by using a little algebra:

Conditional Probability
$$P(X \mid Y) = P(X \cap Y) \div P(Y)$$

*Independence

$$P(X \cap Y) = P(X) \times P(Y)$$

$$P(X \mid Y) = P(X)$$

$$P(Y \mid X) = P(Y)$$

Marginal, Conditional and Joint Probabilities

		variable,	/factor	margin	
contingency a	table	X=x	X=x	M	
variable/factor	Y= y	a/n = P(x	b/n = P(x	(a+b)/n = P(y	
	Y= y	c/n = P(x	d/n = P(x	(c+d)/n = P(y	
	M	(a+c)/n = P(x	(b+d)/n = P(x	∑ / n = 1	= P(X) = P(Y)

Joint Probability* $P(x_i, y_j) = P(x_i) \times P(y_j)$ Conditional Probability $P(x_i | y_j) = P(x_i, y_j) \div P(y_j)$ $P(y_i)$

*for **independent** events

Bayes' Rule: Diachronic Interpretation

$$\begin{array}{c} \textit{prior} & \textit{likelihood} \\ \\ \textit{posterior} & \rightarrow P(H|D) = \frac{P(H) \times P(D|H)}{P(D)} \\ \\ \textit{"normalizing constant"} \\ \textit{(law of total probability)} \end{array}$$

H - Hypothesis

D - Data

Bayes' Rule: The Monty Hall Problem

practical use: a trickster hides a stone with three cups...

An Overview of Open Source NLP Frameworks

- Natural Language ToolKit
- ▶ NLTK, Python
- General Architecture for Text Engineering
- ▶ GATE, Java
- Stanford NLP Framework
- CoreNLP, Java
- Unstructured Information Management Architecture
- ▶ UIMA, Java
- Many framework-sized sub-projects, e.g., ClearNLP

- LingPipe Framework
- LingPipe, Java (OpenSource, but only free for "non-commerical" use)
- FreeLing NLP Suite
- ▶ FreeLing, C++
- The Lemur Toolkit
- ▶ Lemur, C++ (IR + TextMining)
- The Bow Toolkit
- ▶ Bow, C (Language Modeling)
- DeepDive Inference Engine
- dp, Scala (+ SQL & Python)

Practicals :: Setup

- Install Python, Numpy, SciPy, matplotlib, pandas, and IPython
- Via graphical installer: http://continuum.io/downloads
- uses Continuum Analytics' "Anaconda Python 2.0.x", anaconda [for Py2.7, **recommended**] or anaconda3 [for Py3.4; if you are progressive & "know thy snake"]
- Via command line: manual installation of above packages for Py2.7 or 3.4
- http://fnl.es/installing-a-full-stack-python-dataanalysis-environment-on-osx.html
 ...but you're on your own here!
- Install **NLTK 2.x**
- Natural Language Toolkit http://www.nltk.org/install.html

- Via Anaconda (Py2.7 only): conda install nltk
- Default Python (Py2.7 only): pip install nltk
- or download 3-alpha (for Py3.4):
- http://www.nltk.org/nltk3-alpha
- Run in directory: python setup.py install
- Install SciKit-Learn 0.x
- http://scikit-learn.org/stable/install.html
- Via Anaconda: conda install sklearn
- Default Python: pip install sklearn
- [Install gensim (Py2.7 only)]
- http://radimrehurek.com/gensim
- Anaconda & Default Python: pip install gensim

Introduction to IPython, NLTK, NumPy, and SciPy

Ladies and Gentlemen, please start your engines!

Chatty Chatterbots

Create two chat bots with NLTK and let them talk to each other, printing each others answer on the screen.

http://www.nltk.org/api/nltk.chat.html

```
from nltk.chat import eliza; eliza.demo()
eliza??
from nltk.chat.util import \
    Chat, reflections
from nltk.chat.eliza import pairs as eliza_pairs
eliza = Chat(eliza_pairs, reflections)
eliza.respond?
```

"I do not fear computers. I fear the lack of them."

Isaac Asimov, ~1980 (?)