## Resistivity:

| Conductors              | Semiconductors              | Insulators                          |
|-------------------------|-----------------------------|-------------------------------------|
| < 10 <sup>-3</sup> Ω•cm | $10^{-3} - 10^9  \Omega$ cm | > 10 <sup>9</sup> Ω•cm              |
| Metals (Au, Al, Cu, Hg) | Si, Ge, GaAs, InP           | SiO <sub>2</sub> , HfO <sub>2</sub> |
| Solids, liquids (Hg)    | Solids                      | Solids, liquids gases               |

Unit cell: any small volume of crystal to reproduce the entire crystal. Primitive cell: smallest unit cell

Crytalline Plane and Miller Index



$$\frac{\partial^2 y}{\partial x^2} = k^2 y$$
 General solution:  $y = Ae^{bx}$ 

Plug into the equation:  $b^2Ae^{bx}=k^2Ae^{bx}$ 

$$\Rightarrow b = \pm k$$

$$\Rightarrow y = A_1 e^{kx} + A_2 e^{-kx}$$

$$\frac{\partial^2 y}{\partial x^2} = -k^2 y$$
 General solution:  $y = Ae^{bx}$ 

Plug into the equation:  $b^2Ae^{bx} = -k^2Ae^{bx}$ 

$$\Rightarrow b = \pm ki$$

$$\Rightarrow y = A_1 e^{ikx} + A_2 e^{-ikx}$$

$$K = \frac{2\pi}{\lambda}, E = mc^2 = hv = \frac{hc}{\lambda}, p = \frac{h}{\lambda} = mv$$

$$\frac{\partial^2 \psi(x)}{\partial x^2} + \frac{2m}{\hbar^2} (E - V(x))\psi(x) = 0$$

$$E = \frac{k^2 \hbar^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

$$k = \frac{n\pi}{a}$$
  $n = 0, \pm 1, \pm 2, ...$ 

$$p = \hbar k = mv$$
 
$$\frac{dE}{dk} = \frac{\hbar^2 k}{m} \xrightarrow{mv = \hbar k} \frac{\hbar mv}{m} = \hbar v$$

$$\mathsf{E} = \frac{v^2}{2m} = \frac{\hbar^2 k^2}{2m} \qquad \qquad v = \frac{1}{\hbar} \frac{dE}{dk}$$

$$J = qNv_d = q\sum_{i}^{N} v_i$$

## **Conduction Band:**

$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*} (k - k_1)^2$$

## Valence Band:

$$E = E(k) = E_c - \frac{\hbar^2}{2m_p^*} (k - k_2)^2$$

$$E - E_c = C_1(k)^2$$

$$\frac{1}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{2C_1}{\hbar^2}$$

$$\frac{1}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{2C_1}{\hbar^2} = \frac{1}{m^*}$$

n type semiconductor





$$v = \mu E = \mu V/L$$

$$I = \frac{\Delta Q}{\Delta t} = \frac{nqA_c\Delta L}{\Delta t} = nqA_c\mu V/L \qquad \Rightarrow \quad \sigma = \frac{I}{V} = \frac{N_D qA_c\mu}{L}$$

$$f_F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})} \quad f_F(E) \approx \exp(-\frac{E - E_F}{kT})$$

$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*} k^2$$

$$k = \mp \frac{\sqrt{2m_n^*(E - E_c)}}{\hbar}$$



Within  $\Delta E$ , we have the number of k is  $\frac{d(k/\pi)}{dE}\Delta E$ 

$$g(E) = \frac{1}{2} \frac{d(k/\pi)}{dE}$$

$$E = E(k) = E_c + \frac{\hbar^2}{2m_n^*}k^2$$

$$k = \mp \frac{\sqrt{2m_n^*(E - E_c)}}{\hbar}$$



Within  $\Delta E$ , we have the number of k is  $\frac{d(4\pi \left(\frac{k}{\pi}\right)^2/3)}{dE} \Delta E$ 

$$g(E) = \frac{1}{8} \frac{d(4\pi \left(\frac{k}{\pi}\right)^2 / 3)}{dE}$$

$$g_v(E) = \frac{4\pi (2m_p^*)^{3/2}}{h^3} \sqrt{E_v - E}$$

$$n_0 = \int_{E_c}^{\infty} g_c(E) f_F(E) dE$$

$$p_0 = \int_{-\infty}^{E_v} g_v(E) [1 - f_F(E)] dE$$

$$if \exp(x - \mathcal{E}) > 10 \Leftrightarrow \frac{E - E_F}{kT} > 3 \Leftrightarrow E - E_F > 3kT$$

$$n_0 = \frac{2(2\pi m_n^* kT)^{\frac{3}{2}}}{h^3} \exp\left(\frac{E_F - E_c}{kT}\right) = N_c \exp\left(\frac{E_F - E_c}{kT}\right)$$

$$p_0 = \frac{2(2\pi m_p^* kT)^{\frac{3}{2}}}{h^3} \exp\left(\frac{E_v - E_F}{kT}\right) = N_v \exp(\frac{E_v - E_F}{kT})$$

$$n \times p = n_i^2 = N_c N_v \exp\left(\frac{E_v - E_c}{kT}\right) \Rightarrow n_i = \sqrt{N_c N_v} \exp\left(-\frac{E_g}{2kT}\right)$$

$$n = N_c \exp(\frac{E_F - E_c}{kT}) \qquad p = N_v \exp(\frac{E_v - E_F}{kT})$$

$$n = N_c \exp(\frac{E_F - E_c}{kT}) \qquad p = N_v \exp(\frac{E_v - E_F}{kT}) \qquad N_c \approx 10^{19} cm^{-3}$$

$$N_v \approx 10^{19} cm^{-3}$$

$$n_0 = n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right] \qquad p_0 = n_i \exp\left[\frac{-(E_F - E_{Fi})}{kT}\right] \qquad n_i \approx 10^{10} cm^{-3}$$

$$n = N_c \exp\left(\frac{E_{Fi} - E_c}{kT}\right) = p = N_v \exp\left(\frac{E_v - E_{Fi}}{kT}\right)$$

$$E_{Fi} = \frac{1}{2}(E_c + E_v) + \frac{1}{2}kTln(\frac{N_v}{N_c})$$

$$E_{midgap} = \frac{1}{2} (E_c + E_v)$$

$$E_{Fi} = E_{midgap} + \frac{3}{4}kTln(\frac{m_p^*}{m_n^*})$$

$$n_{d} = N_{d} - N_{d}^{+}$$

$$= \frac{N_{d}}{1 + \frac{1}{2} \exp(\frac{E_{d} - E_{F}}{kT})}$$

$$p_{a} = \frac{N_{a}}{1 + \frac{1}{8} \exp(\frac{E_{F} - E_{a}}{kT})} = N_{a} - N_{a}^{-}$$

$$n_{0} + (N_{a} - p_{a}) = p_{0} + (N_{d} - n_{d})$$

$$n_{0} = \frac{(N_{d} - N_{a})}{2} + \sqrt{\left(\frac{N_{d} - N_{a}}{2}\right)^{2} + n_{i}^{2}}$$

$$n_{0} = \frac{N_{d}^{+} + \sqrt{(N_{d}^{+})^{2} + 4n_{i}^{2}}}{2} \quad (but \ N_{d}^{+} \text{ unknown})$$

$$n_{0} = N_{c} \times \frac{-1 + \sqrt{1 + \frac{8N_{D}}{N_{c}} \exp(\frac{E_{A}}{kT})}}{4 \exp(\frac{E_{A}}{kT})} = \begin{cases} \sqrt{\frac{N_{D}N_{c}}{2} \exp(-\frac{E_{A}}{2kT})} & partial \ ionization, \\ N_{D} & complete \ ionization \end{cases}$$

$$n_{0} = \frac{N_{D} + \sqrt{N_{D}^{2} + 4n_{i}^{2}}}{2} \quad Complete \ ionization \ at \ high \ T$$

$$E_{D} = E_{D} + kT \ln(\sqrt{1 + \frac{8N_{D}}{N_{c}}} \exp(\frac{E_{A}}{kT}) - 1) - \frac{E_{C} + E_{D}}{2} + \frac{kT}{2} \ln \frac{N_{D}}{2N_{c}} \quad T \ small \ T$$

$$E_F = E_c + kT ln(\frac{\sqrt{1 + \frac{8N_D}{N_c} \exp(\frac{E_A}{kT})} - 1}{4 \exp(\frac{E_A}{kT})}) = \begin{cases} \frac{E_c + E_D}{2} + \frac{kT}{2} ln \frac{N_D}{2N_c} & T \text{ small} \\ E_c - kT ln \frac{N_c}{N_D} & T \text{ big} \end{cases}$$

$$v_d pprox \left(rac{q au_{cp}}{m_{cp}^*}
ight)E \ \Rightarrow \ rac{v_d}{E} = rac{q au_{cp}}{m_{cp}^*} = \mu_p \ (for \ holes)$$
 
$$rac{v_d}{E} = rac{q au_{cn}}{m_{cp}^*} = \mu_n \ (for \ electrons)$$

$$I_{drf} = \frac{\Delta Q}{\Delta t} = \frac{q p_0 A_c \Delta L}{\Delta t} = q p_0 A_c v = q p_0 A_c \mu_p E = q p_0 A_c \mu_p \frac{V}{L} = \sigma \cdot V$$

$$J_{drf} = q(p_0\mu_p + n_0\mu_n)E$$
  $\frac{1}{\mu} = \frac{1}{\mu_L} + \frac{1}{\mu_L}$ 

$$v_n = \frac{v_s}{\left[1 + \left(\frac{E_{on}}{E}\right)^2\right]^{1/2}} \quad v_p = \frac{v_s}{\left[1 + \left(\frac{E_{op}}{E}\right)^2\right]^{1/2}}$$

$$J_{nx|dif} = -qF_n = qD_n \frac{dn}{dx}$$

$$J_{px|dif} = qF_p = -qD_p \frac{dp}{dx}$$

$$J = qn\mu_n E_x + qp\mu_p E_x + qD_n \nabla n - qD_p \nabla p$$

$$E_x = -\frac{d\phi}{dx} = \frac{1}{e} \frac{dE_i}{dx}$$
$$= \frac{1}{q} \frac{kT}{n(x)} \frac{dn(x)}{dx}$$

$$D_n = \frac{\mu_n kT}{q}$$

$$\rho = \frac{1}{\sigma} = \frac{1}{q\mu_{n}n} = \frac{1}{q\mu_{n}N_{d}} \quad \rho = \frac{1}{\sigma} = \frac{1}{q\mu_{n}p} = \frac{1}{q\mu_{n}N_{a}}$$



## From textbook Semiconductor Physics and Devices: Basic Principles 4th edition. P716-718 (Appendix B)

Table B.2 | Conversion factors

|                                                                    | Prefixes   |        |        |
|--------------------------------------------------------------------|------------|--------|--------|
| $1 \text{ Å (angstrom)} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$ | $10^{-15}$ | femto- | = f    |
| $1 \mu\mathrm{m} (\mathrm{micrometer}) = 10^{-4} \mathrm{cm}$      | $10^{-12}$ | pico-  | = p    |
| $1 \text{ mil} = 10^{-3} \text{ in.} = 25.4 \ \mu\text{m}$         | $10^{-9}$  | nano-  | = n    |
| 2.54  cm = 1  in.                                                  | $10^{-6}$  | micro- | $=\mu$ |
| $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$                     | $10^{-3}$  | milli- | = m    |
| $1  \mathrm{J} = 10^7  \mathrm{erg}$                               | $10^{+3}$  | kilo-  | = k    |
|                                                                    | $10^{+6}$  | mega-  | = M    |
|                                                                    | $10^{+9}$  | giga-  | = G    |
|                                                                    | $10^{+12}$ | tera   | = T    |

Table B.3 | Physical constants

| Avogadro's number                       | $N_A = 6.02 \times 10^{+23}$                                |
|-----------------------------------------|-------------------------------------------------------------|
|                                         | atoms per gram                                              |
|                                         | molecular weight                                            |
| Boltzmann's constant                    | $k = 1.38 \times 10^{-23} \text{J/K}$                       |
|                                         | $= 8.62 \times 10^{-5} \mathrm{eV/K}$                       |
| Electronic charge                       | $e = 1.60 \times 10^{-19} \mathrm{C}$                       |
| (magnitude)                             |                                                             |
| Free electron rest mass                 | $m_0 = 9.11 \times 10^{-31} \mathrm{kg}$                    |
| Permeability of free space              | $\mu_0=4\pi	imes 10^{-7}$ H/m                               |
| Permittivity of free space              | $\epsilon_0 = 8.85 \times 10^{-14} \mathrm{F/cm}$           |
|                                         | $= 8.85 \times 10^{-12} \text{F/m}$                         |
| Planck's constant                       | $h = 6.625 \times 10^{-34} \text{J-s}$                      |
|                                         | $= 4.135 \times 10^{-15} \mathrm{eV}$ -s                    |
|                                         | $\frac{h}{2\pi} = \hbar = 1.054 \times 10^{-34} \text{J-s}$ |
|                                         | $2\pi$                                                      |
| Proton rest mass                        | $M = 1.67 \times 10^{-27} \mathrm{kg}$                      |
| Speed of light in vacuum                | $c = 2.998 \times 10^{10} \mathrm{cm/s}$                    |
| Thermal voltage ( $T = 300 \text{ K}$ ) | $V_t = \frac{kT}{e} = 0.0259 \text{ V}$                     |
|                                         | kT = 0.0259  eV                                             |

**Table B.4** | Silicon, gallium arsenide, and germanium properties (T = 300 K)

| Property                                                                   | Si                    | GaAs                  | Ge                    |
|----------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|
| Atoms (cm <sup>-3</sup> )                                                  | $5.0 \times 10^{22}$  | $4.42 \times 10^{22}$ | $4.42 \times 10^{22}$ |
| Atomic weight                                                              | 28.09                 | 144.63                | 72.60                 |
| Crystal structure                                                          | Diamond               | Zincblende            | Diamond               |
| Density (g/cm <sup>3</sup> )                                               | 2.33                  | 5.32                  | 5.33                  |
| Lattice constant (Å)                                                       | 5.43                  | 5.65                  | 5.65                  |
| Melting point (°C)                                                         | 1415                  | 1238                  | 937                   |
| Dielectric constant                                                        | 11.7                  | 13.1                  | 16.0                  |
| Bandgap energy (eV)                                                        | 1.12                  | 1.42                  | 0.66                  |
| Electron affinity, $\chi$ (V)                                              | 4.01                  | 4.07                  | 4.13                  |
| Effective density of states in conduction band, $N_c$ (cm <sup>-3</sup> )  | $2.8 \times 10^{19}$  | $4.7 \times 10^{17}$  | $1.04 \times 10^{19}$ |
| Effective density of states in valence band, $N_{\nu}$ (cm <sup>-3</sup> ) | $1.04 \times 10^{19}$ | $7.0 \times 10^{18}$  | $6.0 \times 10^{18}$  |
| Intrinsic carrier concentration (cm <sup>-3</sup> )                        | $1.5 \times 10^{10}$  | $1.8 \times 10^{6}$   | $2.4 \times 10^{13}$  |
| Mobility (cm²/V-s)                                                         |                       |                       |                       |
| Electron, $\mu_n$                                                          | 1350                  | 8500                  | 3900                  |
| Hole, $\mu_p$                                                              | 480                   | 400                   | 1900                  |
| Effective mass $\left(\frac{m^*}{m_0}\right)$                              |                       |                       |                       |
| Electrons                                                                  | $m_I^* = 0.98$        | 0.067                 | 1.64                  |
|                                                                            | $m_i^* = 0.19$        |                       | 0.082                 |
| Holes                                                                      | $m_{th}^* = 0.16$     | 0.082                 | 0.044                 |
|                                                                            | $m_{bb}^* = 0.49$     | 0.45                  | 0.28                  |
| Density of states effective mass                                           |                       |                       |                       |
| Electrons $\left(\frac{m_{dn}^*}{m_o}\right)$                              | 1.08                  | 0.067                 | 0.55                  |
| Holes $\left(\frac{m_{dp}^*}{m_o}\right)$                                  | 0.56                  | 0.48                  | 0.37                  |
| Conductivity effective mass                                                |                       |                       |                       |
| Electrons $\left(\frac{m_{ci}^*}{m_o}\right)$                              | 0.26                  | 0.067                 | 0.12                  |
| $	ext{Holes}\left(rac{m_{cp}^*}{m_o} ight)$                               | 0.37                  | 0.34                  | 0.21                  |

Table B.5 | Other semiconductor parameters

| Material           | $E_g(\mathrm{eV})$ | a (Å) | $\epsilon_r$ | χ    | $\overline{n}$ |
|--------------------|--------------------|-------|--------------|------|----------------|
| Aluminum arsenide  | 2.16               | 5.66  | 12.0         | 3.5  | 2.97           |
| Gallium phosphide  | 2.26               | 5.45  | 10           | 4.3  | 3.37           |
| Aluminum phosphide | 2.43               | 5.46  | 9.8          |      | 3.0            |
| Indium phosphide   | 1.35               | 5.87  | 12.1         | 4.35 | 3.37           |

**Table B.6** | Properties of  $SiO_2$  and  $Si_3N_4$  (T = 300 K)

| Property                                        | SiO <sub>2</sub>                                     | Si <sub>3</sub> N <sub>4</sub> |  |
|-------------------------------------------------|------------------------------------------------------|--------------------------------|--|
| Crystal structure                               | [Amorphous for most integrated circuit applications] |                                |  |
| Atomic or molecular density (cm <sup>-3</sup> ) | $2.2 \times 10^{22}$                                 | $1.48 \times 10^{22}$          |  |
| Density (g/cm <sup>3</sup> )                    | 2.2                                                  | 3.4                            |  |
| Energy gap                                      | $\approx 9 \text{ eV}$                               | 4.7 eV                         |  |
| Dielectric constant                             | 3.9                                                  | 7.5                            |  |
| Melting point (°C)                              | ≈1700                                                | ≈1900                          |  |