

Índice

- 1. Representación de objetos espaciales
- 2. Interior-Based Representations
- 3. Space-filling curves

Object-based decomposition

Image-based (cell-based) decomposition

Pixel Voxel

Pixel Voxel

Interior-based representations

Boundary-based representations

Celda Unitaria

Representación explícita

(object-based)

$$B = \{(6,0), (7,0), (5,1), (6,1), (7,1)\}$$

Representación implícita

(image-based)

Celda y mosaicos (cell and tilings)

- 1. La partición debe ser un patrón infinitamente repetitivo, de modo que pueda utilizarse para imágenes de cualquier tamaño.
- 2. La partición debe ser infinitamente descomponible en patrones cada vez más finos (es decir, de mayor resolución). Esto significa que el tamaño de las celdas de tamaño unitario no tiene un mínimo.

(cell and tilings)

Poligonal

No poligonal

(cell and tilings)

Atomic tile

Regular tiling

Molecular tile

(cell and tilings)

Molecular tile

(cell and tilings)

(cell and tilings)

Mosaicos isoédricos

Celda y mosaicos (cell and tilings)

Mosaicos limitados

La celda atómica no se puede descomponer

Mosaicos ilimitados

La celda atómica se puede descomponer

(cell and tilings)

Número de Adyacencia

El número de adyacencia de un mosaico es el número de distancias inter-centroides diferentes entre una celda cualquiera y sus vecinos.

(cell and tilings)

Orientación uniforme

Se dice que un mosaico tiene una orientación uniforme si todas las celdas se pueden mapear entre sí manteniendo la misma orientación mediante traslaciones (no rotación ni reflexión).

Celda y mosaicos (cell and tilings)

Es preferible mosaicos con orientación uniforme y una distancia de adyacencia mínima

(cell and tilings)

