XỬ LÝ TÍN HIỆU SỐ

Tuần 10

Giảng viên: Lê Ngọc Thúy

Nội dung

CHƯƠNG 3: BIẾN ĐỔI FOURIER RỜI RẠC

- ☐ Biến đổi Fourier của dãy tuần hoàn
- ☐ DFT của dãy có chiều dài hữu hạn
- ☐ Giải thuật FFT

Độ phức tạp tính toán của DFT

Độ phức tạp tính toán của DFT

✓ Công thức tính DFT N điểm:

$$X_R(k) = \sum_{n=0}^{N-1} \left[x_R(n) \cos \frac{2\pi kn}{N} + x_I(n) \sin \frac{2\pi kn}{N} \right]$$

$$X_{I}(k) = -\sum_{n=0}^{N-1} \left[x_{R}(n) \sin \frac{2\pi kn}{N} - x_{I}(n) \cos \frac{2\pi kn}{N} \right]$$

- ✓Độ phức tạp tính toán:
- 2 N² phép tính lượng giác.
- 4 N² phép nhân.
- 4N(N 1) phép cộng.

Các giải thuật FFT

Phương pháp "chia để trị"

- ✓ Phân tích DFT N điểm thành các DFT với số điểm ít hơn để tính toán hiệu quả hơn.
- ✓ Giả sử: N = L.M
- ✓ Sắp xếp dãy N xung tín hiệu x(n) thành mảng 2 chiều x(l, m):
 - ➤ Theo chiều hàng: n = M l + m
 - ➤ Theo chiều cột: n = l + m L

Xếp dãy xung theo hàng

: \	0	11	2		M - 1
0	x(0)	(1) x	x(2)		x(M-1)
1	x(M)	x(M+1)	x(M+2)	•••	x(2M-1)
2	x(2M)	x(2M + 1)	x(2M + 2)		x(3M-1)
	: :		÷		:
L - 1	x((L-1)M)	x((L-1)M+1)	x((L-1)M+2)	•••	x(LM-1)

Xếp dãy xung theo cột

\	0	1	2	 M - 1
0	x (0)	x(L)	x(2L)	 x((M-1)L)
1	x(1)	x(L+1)	x(2L+1)	 x((M-1)L+1)
2	x(2)	x(L + 2)	x(2L + 2)	 x((M-1)L+2)
	:	÷	:	 :
L-1	x(L-1)	x(2L - 1)	x(3L - 1)	 x(LM - 1)

Phương pháp "chia để trị"

- ✓ Phân tích DFT N điểm thành các DFT với số điểm ít hơn để tính toán hiệu quả hơn.
- ✓ Giả sử: N = L.M
- ✓ Sắp xếp dãy N xung tín hiệu x(n) thành mảng 2 chiều x(l, m):
 - ➤ Theo chiều hàng: n = M l + m
 - ➤ Theo chiều cột: n = l + m L
- ✓ Sắp xếp dãy giá trị DFT X(k) thành mảng 2 chiều X(p,q):

$$X(p,q) = \sum_{m=0}^{M-1} \sum_{l=0}^{L-1} x(l,m) W_N^{(Mp+q)(mL+l)}$$

Phương pháp "chia để trị"

$$X(p,q) = \sum_{m=0}^{M-1} \sum_{l=0}^{L-1} x(l,m) W_N^{(Mp+q)(mL+l)}$$

$$W_N^{(Mp+q)(mL+l)} = W_N^{MLmp} W_N^{mLq} W_N^{Mpl} W_N^{lq}$$

$$W_N^{Nmp} = 1, W_N^{mqL} = W_{N/L}^{mq} = W_M^{mq}, W_N^{mpl} = W_{N/M}^{pl} = W_L^{pl}$$

$$X(p,q) = \sum_{l=0}^{L-1} \left\{ W_N^{lq} \left[\sum_{m=0}^{M-1} x(l,m) W_M^{mq} \right] \right\} W_L^{lp}$$

So sánh độ phức tạp tính toán

- ✓Độ phức tạp tính toán DFT:
- 2 N² phép tính lượng giác.
- 4 N² phép nhân.
- 4N(N 1) phép cộng.
 - ✓Độ phức tạp tính toán theo phương pháp "chia để trị":
 - N(M+L+1) phép nhân.
 - N (M + L 2) phép cộng.

Thuật toán FFT theo thời gian

- ✓ Sử dụng thuật toán chia để trị
- ✓ Sắp xếp dãy N xung tín hiệu x(n) theo chiều cột
- ✓ Mảng sắp xếp có M=N/2 cột, L=2 hàng

Thuật toán FFT cơ số 2 theo thời gian

$$F_{1}(k+N/2) = F_{1}(k)$$

$$F_{2}(k+N/2) = F_{2}(k)$$

$$W_{N}^{k+N/2} = -W_{N}^{k}$$

$$X(k) = F_{1}(k) + W_{N}^{k}F_{2}(k) \qquad k = 0, 1, \dots \frac{N}{2}$$

$$X\left(k + \frac{N}{2}\right) = F_{1}(k) - W_{N}^{k}F_{2}(k) \qquad k = 0, 1, \dots \frac{N}{2}$$

$$G_{1}(k) = F_{1}(k) \qquad k = 0, 1, \dots \frac{N}{2}$$

$$G_{2}(k) = W_{N}^{k}F_{2}(k) \qquad k = 0, 1, \dots \frac{N}{2}$$

$$X(k) = G_{1}(k) + G_{2}(k) \qquad k = 0, 1, \dots \frac{N}{2}$$

$$X\left(k + \frac{N}{2}\right) = G_{1}(k) - G_{2}(k) \qquad k = 0, 1, \dots \frac{N}{2}$$

Nguyên tắc tính FFT N điểm cơ số 2 theo thời gian

Nguyên tắc FFT 8 điểm theo thời gian

Sơ đồ FFT 8 điểm theo thời gian

Sơ đồ cánh bướm FFT cơ số 2 theo thời gian

Với $N = 2^{\nu}$ thì có:

- + N/2 cánh bướm cho mỗi bước tính
- + log₂ N bước

Thuật toán FFT cơ số 2 theo thời gian

Number of Points, N	Complex Multiplications in Direct Computation, N ²	Complex Multiplication in FFT Algorithm, (N/2) log ₂ N
4	16	4
8	64	12
16	256	32
32	1,024	80
64	4,096	192
128	16,384	448
256	65,536	1,024
512	262,144	2,304
1,024	1,048,576	5,120

Thuật toán FFT cơ số 2 theo thời gian

Thuật toán FFT theo tần số

- ✓ Sử dụng thuật toán chia để trị
- ✓ Sắp xếp dãy N xung tín hiệu x(n) theo chiều cột
- ✓ Mảng sắp xếp có M=2 cột, L=N/2 hàng

$$X(k) = \sum_{n=0}^{(N/2)-1} x(n) W_N^{kn} + \sum_{n=N/2}^{N-1} x(n) W_N^{kn} = \sum_{n=0}^{(N/2)-1} x(n) W_N^{kn} + W_N^{Nk/2} \sum_{n=0}^{(N/2)-1} x\left(n + \frac{N}{2}\right) W_N^{kn}$$

$$X(k) = \sum_{n=0}^{(N/2)-1} \left[x(n) + (-1)^k x\left(n + \frac{N}{2}\right) \right] W_N^{kn}$$

$$X(2k) = \sum_{n=0}^{(N/2)-1} \left[x(n) + x\left(n + \frac{N}{2}\right) \right] W_{N/2}^{kn} \qquad k = 0, 1, \dots \frac{N}{2}$$

$$X(2k+1) = \sum_{n=0}^{(N/2)-1} \left\{ \left[x(n) - x\left(n + \frac{N}{2}\right) \right] W_N^n \right\} W_{N/2}^{kn} \qquad k = 0, 1, \dots \frac{N}{2}$$

$$g_1(n) = x(n) + x\left(n + \frac{N}{2}\right)$$

$$g_2(n) = \left[x(n) - x\left(n + \frac{N}{2}\right) \right] W_N^n \qquad n = 0, 1, 2, \dots \frac{N}{2}$$

$$g_1(n) = x(n) + x\left(n + \frac{N}{2}\right)$$

$$g_2(n) = \left[x(n) - x\left(n + \frac{N}{2}\right)\right] W_N^n \qquad n = 0, 1, 2, \dots \frac{N}{2}$$

$$X(2k) = \sum_{n=0}^{(N/2)-1} g_1(n) W_{N/2}^{kn}$$

$$X(2k+1) = \sum_{n=0}^{(N/2)-1} g_2(n) W_{N/2}^{kn}$$

Tổng kết

- ☐ Biến đổi Fourier của dãy tuần hoàn
- ☐ DFT của dãy có chiều dài hữu hạn
- ☐ Giải thuật FFT
- ☐ Bài tập: 2.27 2.30