2016-12-12 TF Study

GAN

CONTENTS

01

02

03

04

Memory Networks Implication in Text

Experiment

Future work

- Purpose:
 - 1. Train the manifold of data
 - 2. Generate distribution of data
- Process:
 - 1. Generator에 Input X & Z
 - 2. Generator produces predictions Y
 - 3. Discriminator discriminate train data & Y
 - 4. Train

G: D가 Y와 Train data를 구별할 수 없도록

D: G가 만든 데이터와 실제 데이터를 잘 구별하도록

Method:

- $p_z(z)$: prior on input noise, D(x): probability that x came from data rather than p_g
- D and G play the following two-player minimax game with value function V(G,D)

$$\min_{G} \max_{D} V(D,G) = \underbrace{\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})]}_{\text{D correct}} + \underbrace{\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]}_{\text{D wrong}}.$$

Proved)

- $p_g = p_{data}$ 인 Glabal optimal 존재 \rightarrow 학습이 잘 되면 G가 data의 원래 분포를 그대로 따라가는 것이 가능
- G, D 에 충분한 capacity → converge 보장

Method:

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(x^{(i)}\right) + \log\left(1 - D\left(G\left(z^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(z^{(i)}\right) \right) \right).$$

G 학습

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

k 번 D 학습

01 GAN Experiment

- Experiment:
 - MNIST, Toronto Face Database, CIFAR-10 적용
 - Generator rectifier linear & sigmoid / Discriminator maxout, drop out

01 GAN Failure & Improvement

• Failure:

- Training GAN = Finding Nash Equilibrium of non-convex game
- Gradient descent → not suitable for game theory → often fail to converge
- 2-player game에서 G,D가 서로 min / max 최적화를 하려다 보니 converge 하지 않는 경우 발생

Improved:

- Feature matching: maximum mean discrepancy 사용
- *Mini batch features*: batch normalization 적용

02 Improve GAN Feature Matching

Feature matching

- Prevent Generator from overtraining on the current Discriminator
- D를 통해서 나온 output 을 사용한 학습 → 중간 레이어의 high-level feature들로 학습
- New objective for generator $||\mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}} \mathbf{f}(\boldsymbol{x}) \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \mathbf{f}(G(\boldsymbol{z}))||_2^2. \qquad : f(\boldsymbol{x}): \ \textit{activations on an intermediate layer of D}$
- Discriminator는 그대로 학습

02 Improve GAN Mini batch feature

Mini batch features

- Generator often collapse to a parameter setting / always emits the same point
- 서로 다른 데이터면 다른 곳으로 보내야하는데... 모두 같은 곳으로 보내도 objective function은 만족하는....
- 각각의 데이터를 independent 하게 확인하기 때문 → 동시에 여러 개를 확인해서 조합하게끔 변형 → D의 중간 부분을 변형
- Define *closeness* of examples in minibatch → use it as regularization
- $f(x_i) \in \mathbb{R}^A$, multiply tensor $T \in \mathbb{R}^{A \times B \times C}$, result matrix $M_i \in \mathbb{R}^{B \times C}$ compute L1-distance between rows of M_i and apply negative exponential $\Rightarrow c_b(x_i, x_j) = \exp(-\|M_{i,b} - M_{j,b}\|_{L^1})$
- $o(x_i)$: output for this minibatch layer

$$o(\mathbf{x}_i)_b = \sum_{j=1}^n c_b(\mathbf{x}_i, \mathbf{x}_j) \in \mathbb{R}$$

$$o(\mathbf{x}_i) = \left[o(\mathbf{x}_i)_1, o(\mathbf{x}_i)_2, \dots, o(\mathbf{x}_i)_B\right] \in \mathbb{R}^B$$

$$o(\mathbf{X}) \in \mathbb{R}^{n \times B}$$

- Concatenate $o(x_i)$ to $f(x_i)$ and feed to next layer
 - Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.

02 Improve GAN Other methods to improve

Other improves

- Historical averaging
 - : D, G 의 cost에 과거 정보를 지우는 방식을 도입 → online learning style
- One sided label smoothing
 - : 0,1 로 class 를 나누는 방식 말고 다른 숫자로 smoothing 해서 class 분리
- Virtual batch normalization
 - : DCGAN에서 효과적이었던 Batch normalization을 다소 수정하여 도입

02 Improve GAN Semi-supervised

Semi-supervised learning

- sample from Generator
 - : G를 통해 생성한 sample data를 추가하여 semi-supervised learning 이 가능
- Label them with new generated class
 - : 1개의 class를 추가하여 Classifier를 만듦.
 - $: p_{model}(y = K + 1|x) = 1 D(x)$ 라 하면
- Loss function

$$\begin{split} L &= -\mathbb{E}_{\boldsymbol{x},y \sim p_{\text{data}}(\boldsymbol{x},y)}[\log p_{\text{model}}(y|\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x} \sim G}[\log p_{\text{model}}(y=K+1|\boldsymbol{x})] \\ &= L_{\text{supervised}} + L_{\text{unsupervised}}, \text{ where} \\ L_{\text{supervised}} &= -\mathbb{E}_{\boldsymbol{x},y \sim p_{\text{data}}(\boldsymbol{x},y)} \log p_{\text{model}}(y|\boldsymbol{x},y < K+1) \\ L_{\text{unsupervised}} &= -\{\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} \log[1-p_{\text{model}}(y=K+1|\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim G} \log[p_{\text{model}}(y=K+1|\boldsymbol{x})]\}, \end{split}$$

• • effective to improve the quality of generated images as judged by human annotators

02 Improve GAN Experiment

• Experiment:

- Semi-supervised learning → MNIST, CIFAR-10, SVHN dataset
- Sample generation → MNIST, CIFAR-10, SVHN, ImageNet

Model	Number of incorrectly predicted test examples for a given number of labeled samples			
	20	50	100	200
DGN [21]		333 ± 14		
Virtual Adversarial [22]	212			
CatGAN [14]	191 ± 10			
Skip Deep Generative Model [23]	132 ± 7			
Ladder network [24]	106 ± 37			
Auxiliary Deep Generative Model [23]			96 ± 2	
Our model	1677 ± 452	221 ± 136	93 ± 6.5	90 ± 4.2
Ensemble of 10 of our models	1134 ± 445	142 ± 96	86 ± 5.6	81 ± 4.3

Table 1: Number of incorrectly classified test examples for the semi-supervised setting on permutation invariant MNIST. Results are averaged over 10 seeds.

Model	Test error rate for			
	a given number of labeled samples			
	1000	2000	4000	8000
Ladder network [24]			$20.40{\pm}0.47$	
CatGAN [14]			$19.58 {\pm} 0.46$	
Our model	$21.83{\pm}2.01$	19.61 ± 2.09	18.63 ± 2.32	17.72 ± 1.82
Ensemble of 10 of our models	19.22 ± 0.54	17.25 ± 0.66	15.59 ± 0.47	14.87 ± 0.89

Table 2: Test error on semi-supervised CIFAR-10. Results are averaged over 10 splits of data.

02 Improve GAN Experiment

Experiment:

• Sample generation → MNIST, CIFAR-10, SVHN, ImageNet

13	£ 3	73	9 3	21
10	10	7 4	7 1	13
7 6	53	2 B	6 8	16
9	4 6	23	= 0	89
01	€ 8	4 1	37	5 9
15	2	79	14	85
38	1 6	3 5	11	2 4
1.2	34	36	24	79
8	8 1	1 7	60	2 6
97	70	3 9	31	1.9

Mode1	Percentage of incorrectly predicted test examples for a given number of labeled samples			
	500	1000	2000	
DGN [21]		36.02 ± 0.10		
Virtual Adversarial [22]		24.63		
Auxiliary Deep Generative Model [23]		22.86		
Skip Deep Generative Model [23]		$16.61 {\pm} 0.24$		
Our model	18.44 ± 4.8	8.11 ± 1.3	6.16 ± 0.58	
Ensemble of 10 of our models		5.88 ± 1.0		

Figure 3: (*Left*) samples generated by model during semi-supervised training. Samples can be clearly distinguished from images coming from MNIST dataset. (*Right*) Samples generated with minibatch discrimination. Samples are completely indistinguishable from dataset images.

Figure 5: (Left) Error rate on SVHN. (Right) Samples from the generator for SVHN.

Presentation

Thanks for Watching