1. Exercise 2.22 Suppose $f: X \to Y$ is a homeomorphism and $U \subseteq X$ is an open subset. Show that f(U) is open in Y and the restriction $f|_U$ is a homeomorphism from U to f(U).

Proof. Suppose $f: X \to Y$ is a homeomorphism and $U \subseteq X$ is an open subset. Recall that since f is a homeomorphism we know that $f^{-1}: Y \to X$ is a continuous so f(U), the pre-image of an open set U, must be open in Y.

Proving that $f|_U$ is a homeomorphism from U to f(U) involves showing that $f|_U$ is a bijection and $f|_U$ and $f^{-1}|_U$ are continuous. Clearly since $U \subseteq X$, and $f: X \to Y$ is a bijection it must follow that any restriction $f|_U$ must also be a bijection (by contradiction this result is immediate).

Let $O \subseteq f(U)$ be an open set and note that $f^{-1}|_U(O) = U \cap f^{-1}(O)$. Since $f: X \to Y$ is continuous and O is also open in Y we know that $f^{-1}(O)$ must be open in X. Finally note that $U \cap f^{-1}(O)$ must be open in X and since $U \cap f^{-1}(O) \subseteq U$, $f^{-1}|_U(O) = U \cap f^{-1}(O)$ is open in U.

Let $O \subseteq U$ be an open set and note that $f|_U(O) = f(U) \cap f(O)$. Since $f^{-1}: Y \to X$ is continuous and O is also open in X we know that f(O) must be open in Y. Therefore $U \cap f(O)$ must be open in Y and since $U \cap f(O) \subseteq U$, $f|_U(O) = U \cap f(O)$ is open in U.

2. Exercise 2.23 Let \mathbb{T}_1 and \mathbb{T}_2 be topologies on the same set X. Show that the identity map of X is continuous as a map from (X, \mathbb{T}_1) to (X, \mathbb{T}_2) if and only if \mathbb{T}_1 is finer than \mathbb{T}_2 , and is a homeomorphism is and only if and only if $\mathbb{T}_1 = \mathbb{T}_2$.

Proof. (is finer than) (\Rightarrow) Suppose the identity map f from (X, \mathbb{T}_1) to (X, \mathbb{T}_2) is continuous. Let $U \in \mathbb{T}_2$, and note that since f is continuous and the identity, it follows that $f^{-1}(U) = U$ must be open in \mathbb{T}_1 . Thus $\mathbb{T}_2 \subseteq \mathbb{T}_1$.

(\Leftarrow) Consider the identity map f from (X, \mathbb{T}_1) to (X, \mathbb{T}_2) and suppose that $\mathbb{T}_2 \subseteq \mathbb{T}_1$. Let $U \in \mathbb{T}_2$ and note that since f is the identity map $f^{-1}(U) = U$. Since $\mathbb{T}_2 \subseteq \mathbb{T}_1$ we conclude that $f^{-1}(U) \in \mathbb{T}_1$ and that f is continuous.

Proof. (Homeomorphism) (\Rightarrow) Suppose f is a homeomorphism from (X, \mathbb{T}_1) to (X, \mathbb{T}_2) . By definition f is a bijection, and clearly since f is an identity map it must follow that $\mathbb{T}_1 = \mathbb{T}_2$.

- (\Leftarrow) Consider the identity map f from (X, \mathbb{T}_1) to (X, \mathbb{T}_2) and suppose that $\mathbb{T}_1 = \mathbb{T}_2$. By the previous result we can conclude that f and f^{-1} are continuous, and clearly since f is an identity map with $\mathbb{T}_1 = \mathbb{T}_2$ it is also a bijection. Thus f is a homeomorphism.
- **3. Problem 2-4** Let X be a topological space and let \mathcal{A} be a collection of subsets of X. Prove the following containments.

(a)
$$\overline{\bigcap_{A\in\mathcal{A}}A}\subseteq\bigcap_{A\in\mathcal{A}}\overline{A}$$

Due: February 1, 2023

Proof. Note that the set $\bigcap_{A \in \mathcal{A}} \overline{A}$ is a closed set which must contain $\bigcap_{A \in \mathcal{A}} A$, since $\overline{A} \subseteq A$. Also recall that by definition $\overline{\bigcap_{A \in \mathcal{A}} A}$ is the intersection of all such closed subsets containing $\bigcap_{A \in \mathcal{A}} A$. Thus it follows that $\overline{\bigcap_{A \in \mathcal{A}} A} \subseteq \bigcap_{A \in \mathcal{A}} \overline{A}$.

(b)
$$\overline{\bigcup_{A\in\mathcal{A}}A}\supseteq\bigcup_{A\in\mathcal{A}}\overline{A}$$

Proof. Let $x \in \bigcup_{A \in \mathcal{A}} \overline{A}$. Note that $x \in \overline{A}$ for some $A \in \mathcal{A}$. Note that \overline{A} is the smallest closed set, which contains A, and $\overline{\bigcup_{A \in \mathcal{A}} A}$ is the smallest closed subset which contains $\bigcup_{A \in \mathcal{A}} A$, and since $A \subset \bigcup_{A \in \mathcal{A}} A$ it must follow that that $x \in \overline{A} \subseteq \overline{\bigcup_{A \in \mathcal{A}} A}$.

(c)
$$\operatorname{Int}\left(\bigcap_{A\in\mathcal{A}}A\right)\subseteq\bigcap_{A\in\mathcal{A}}\operatorname{Int}(A)$$

Proof. Note that Int(A) is the largest open subset contained in A, and since $\bigcap_{A \in \mathcal{A}} A \subseteq A$, for each $A \in \mathcal{A}$ it follows that, $Int(\bigcap_{A \in \mathcal{A}} A) \subseteq Int(A)$. Therefore we can conclude that $Int(\bigcap_{A \in \mathcal{A}} A) \subseteq \bigcap_{A \in \mathcal{A}} Int(A)$.

(d)
$$\operatorname{Int}\left(\bigcup_{A\in\mathcal{A}}A\right)\supseteq\bigcup_{A\in\mathcal{A}}\operatorname{Int}(A)$$

Proof. Again since Int(A) is the largest open subset contained in A, and since $\bigcup_{A \in \mathcal{A}} A \supseteq A$, for each $A \in \mathcal{A}$ it follows that, $Int(\bigcup_{A \in \mathcal{A}} A) \supseteq Int(A)$. Therefore we can conclude that $Int(\bigcup_{A \in \mathcal{A}} A) \supseteq \bigcup_{A \in \mathcal{A}} Int(A)$.

(e) When \mathcal{A} is a finite collection, show that equality holds in (b) and (c), but not necessarily in (a) or (d).

Proof. Note that $\overline{\bigcup_{A \in \mathcal{A}} A}$ is the smallest closed set containing $\bigcup_{A \in \mathcal{A}} A$ and $\bigcup_{A \in \mathcal{A}} \overline{A}$ contains $\bigcup_{A \in \mathcal{A}} A$. By our result from b and since $\bigcup_{A \in \mathcal{A}} \overline{A}$ is closed we get equality.

Similarly since Int $(\cap_{A \in \mathcal{A}} A)$ is the largest open set contained in $\cap_{A \in \mathcal{A}} A$ and $\cap_{A \in \mathcal{A}} Int(A)$ is contained in $\cap_{A \in \mathcal{A}} A$. By our result from c and since $\cap_{A \in \mathcal{A}} Int(A)$ is now open we get equality.

For a counterexample for a consider $X = \mathbb{R}$ with the usual topology and $\mathcal{A} = \{(-1,0),(0,1)\}$. The closure of the intersection is empty, but the intersection of the closer is $\{0\}$.

For a counter example for d consider again $X = \mathbb{R}$ with the usual topology and $\mathcal{A} = \{[-1, 0], [0, 1]\}$. The interior of the intersection of the union is (-1, 1), but

the union of the interiors is $(-1, 1)\setminus\{0\}$.

4. Problem 2-5 (brief justifications only) For each of the following properties, give an example consisting of two subsets $X, Y \subseteq \mathbb{R}^2$, both considered as topological spaces with their Euclidean topologies, together with a map $f: X \to Y$ that has the indicated property.

For most examples I justified openness, or closedness of a function defined on \mathbb{R} or subsets of \mathbb{R} by looking at the basis of open intervals.

(a) f is open but neither closed nor continuous.

Proof. Let $f:(-\infty,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & x < 1 \\ 2 & x = 1 \end{cases}$$

This function is clearly discontinuous at x=1 (construct a sequence $x_n=1-\frac{1}{n}$ which converges to 1 and note that $f(x_n) \not\to f(1)$). Let $(a,b) \subseteq (-\infty,1]$ we find that f((a,b))=(a,b) an open interval. Consider the closed interval [-1,1] and note that $f([-1,1])=[-1,1)\cup\{2\}$ which is not open in $\mathbb R$ since $f([-1,1])^c=(-\infty,-1)\cup[1,2)\cup(2,\infty)$ a not open set.

(b) f is closed but neither open nor continuous.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & x < 0 \\ -1 & x \ge 0 \end{cases}$$

Clearly this function is discontinuous. It is not open since the only possible images are either $\{1\}$, $\{-1\}$ or $\{-1,1\}$ which are closed sets in \mathbb{R} . Note that f must be closed for the same reason.

(c) f is continuous but neither open nor closed.

Proof. Consider $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = |\arctan(x)|$. This function is continuous. Note that $f(\mathbb{R}) = [0, \frac{pi}{2})$ and since $[0, \frac{\pi}{2})$ is not closed and not open in \mathbb{R} , f is neither open nor closed.

(d) f is continuous and open but not closed.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^x$. This function is continuous. This function is open, if you take any open interval (a, b) we find that $f(a, b) = (e^a, e^b)$ an open interval. Note that $f(\mathbb{R}) = (0, \infty)$ an open set, thus f is not closed. \square

(e) f is continuous and closed but not open.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 1. Clearly f is continuous. Note that any closed set on \mathbb{R} will have a closed image of $\{1\}$ but so will any open set, hence f closed but not open.

(f) f is open and closed but not continuous.

Proof. Let $f:[0,\infty)\to[0,\infty)$ defined by,

$$f(x) = \begin{cases} \frac{1}{x} & x > 0 \\ 0 & x = 0 \end{cases}.$$

Note f is not continuous at x=0. Clearly the image of any open interval $f((a,b))=(\frac{1}{b},\frac{1}{a})$ is open. Note that closed intervals of the form $f([a,b])=[\frac{1}{b},\frac{1}{a}]$ where a>0. Note that the image of closed intervals including 0 are given by $f([0,b])=[\frac{1}{b},\infty)\cup\{0\}$ which are also closed in $[0,\infty)$ since $f([0,b])^c=(0,\frac{1}{b})$. \square

5. Problem 2-10 Suppose $f, g: X \to Y$ are continuous maps and Y is Hausdorff. Show that the set $A = \{x \in X : f(x) = g(x)\}$ is closed in X. Give a counterexample if Y is not Hausdorff.

Proof. Suppose $f,g:X\to Y$ are continuous maps and Y is Hausdorff. Consider $A^c=\{x\in X:f(x)\neq g(x)\}$ and let $x\in A^c$. By definition we know that $f(x)\neq g(x)$, and therefore since Y is Hausdorff there exists two open sets U_f and U_g such that $f(x)\in U_f$ and $g(x)\in U_g$ with $U_f\cap U_g=\emptyset$. Since f and g are continuous we know that $f^{-1}(U_f)$ and $g^{-1}(U_g)$ are open in X which both contain x. Now note that $f^{-1}(U_f)\cap g^{-1}(U_g)\subseteq A^c$, since $f(f^{-1}(U_f)\cap g^{-1}(U_g))\subseteq U_f$ and $g(f^{-1}(U_f)\cap g^{-1}(U_g))\subseteq U_g$ and $U_f\cap U_g=\emptyset$. Finally note that $x\in f^{-1}(U_f)\cap g^{-1}(U_g)\subseteq A^c$ so A^c is open and A is closed.

Consider $f, g : \mathbb{R} \to \mathbb{R}$ with both sets having the indiscrete topology where f(x) = x and g(x) = -x. In this example $A = \{0\}$ and under \mathbb{R} with the indiscrete topology this set is not closed, since $A^c \neq \emptyset$, \mathbb{R} .

(You'll need the definition of a Hausdorff space, which we will see on Friday.)

6. Problem 2-15 Let X and Y be topological spaces. Suppose $f: X \to Y$ is continuous and $p_n \to p$ in X. Show that $f(p_n) \to f(p)$ in Y.

Proof. Let $U \in \mathcal{V}(f(p))$ and note that since f is continuous we know that $f^{-1}(U)$ is open in X. Since $p_n \to p$ in X and $f^{-1}(U) \in \mathcal{V}(p)$ there exists some $N \in \mathbb{N}$ such that $p_n \in f^{-1}(U)$ for all $n \geq N$. It then follows that $f(p_n) \in U$ for all $n \geq N$ and thus by definition $f(p_n) \to f(p)$.

7. (This is a modification of Exercise 2.28)

Consider the map $\exp: [0,1) \to S^1$ given by $\exp(x) = e^{2\pi i x} = \cos(2\pi x) + i\sin(2\pi x)$. This map is continuous (for example, it is sequentially continuous as a map between metric spaces). From familiar properties of trigonometric functions it is a bijection (though it would not be if we expanded the range to [0,1] and it would not be if we shrunk the range!). Your job is to show that its inverse function is not continuous. Hint: Find a sequence $\{x_n\}$ in S^1 that converges to some point x, and yet $f^{-1}(x_n) \nrightarrow f^{-1}(x)$.

Proof. Let $\exp^{-1}: S^1 \to [0,1)$ be the inverse function and consider the sequence $x_n = e^{2\pi i \frac{-1}{n}}$. Note that,

$$\lim_{n \to \infty} e^{2\pi i \frac{-1}{n}} = \lim_{n \to \infty} e^{2\pi i} e^{\frac{-1}{n}} = 1$$

So $x_n \to 1$. Note that,

$$e^{2\pi i(1-\frac{1}{n})} = e^{2\pi i}e^{2\pi i\frac{-1}{n}} = (1)e^{2\pi i\frac{-1}{n}} = e^{2\pi i\frac{-1}{n}}$$

With $(1-\frac{1}{n}) \in [0,1)$ we know that $\exp^{-1}(x_n) = (1-\frac{1}{n})$ for all n. However clearly $\exp^{-1}(x_n) \to 1$, yet $\exp^{-1}(1) = 0$ and therefore \exp^{-1} is not continuous at $1 \in S^1$.