

CSC 212 Data Structures & Algorithms

Fall 2022 | Jonathan Schrader

Binary Search Trees

Housekeeping

Lab 8: Binary Search Trees

Election Day / Veteran's Day

- . Nov 7-11
- · Class only meets Thursday, Nov 10
- · Assignment 4 Due
- [.] Lab 9: Balancing Act Due
 - In-person labs are canceled

Term Project

K-ARY TREES

k-ary trees

In a k-ary tree, every node has between 0 and k children

In a full (proper) k-ary tree, every node has exactly 0 or k children

In a **complete** k-ary tree, every level is entirely filled, except possibly the deepest, where all nodes are as far left as possible

In a perfect k-ary tree, every leaf has the same depth and the tree is full

3-ary tree

examples

Binary Tree

 $bin_tree = \{1, 7, 9, 2, 6, 9, 5, 11, 5\}$

Implementing binary trees

Node

 $data \ left$ child right child

Tree

$$bst = \{a, b, c, d, e, f\}$$

BINARY SEARCH TREES

Binary Search Tree

A BST is a binary tree

A BST has symmetric order

 $\dot{}$ each node x in a BST has a key

 $\dot{}$ for all nodes y in the left subtree of x,

$$key(y) < key(x)^{**}$$

 $\dot{}$ for all nodes y in the right subtree of x,

$$key(y) > key(x)^{**}$$

(**) assume that the keys of a BST are pairwise distinct

BST Classes

```
class BSTNode {
  private:
    int data;
    BSTNode *left;
    BSTNode *right;

public:
    BSTNode(int d);
    ~BSTNode();

friend class BSTree;
};
```

```
class BSTree{
   private:
        BSTNode *root;
      void destroy(BSTNode *p);

public:
      BSTree();
   ~BSTree();
   void insert(int d);
   void remove(int d);
   BSTNode *search(int d);
};
```

SEARCH INTO BSTs

search

- 1) Start at root node
- 2) If the search key:
- a) matches the current node's key then found
- b) If search key > current node's key $\dot{}$ search on right child
- c) If search key is less than current node's
- $\dot{\,}$ search on left child
- 3) Stop when current node is

NULL (not found)

Search for 8

INSERT INTO BSTs

insert

Perform a Search operation

- · If found, no need to insert (may increase counter)
- ' If not found, insert node where Search stopped

Try it...

 $\overline{Serach...23,67,18...}$

Insert... 65, 27, 90, 11, 51...

REMOVE FROM BSTs

$remove:\ leaf$

trivial, delete node and set parent's pointer to NULL

$\overline{remove}:\ with\ 1\ child$

trivial, set parent's pointer to the only child andelete node

$remove: with \ 2 \ children$

 $find\ successor$ $copy\ successor's\ data\ to\ node$ $delete\ successor$

BST TRAVERSALS

traversals

O(n)

```
algorithm preorder (p) {
  if (p) {
    visit(p)
    inorder(p -> left)
    inorder(p -> right)
  }
}
```

```
algorithm postorder (p) {
  if (p) {
    inorder(p -> left)
    inorder(p -> right)
    visit(p)
  }
}
```


How would we:

- Destroy a binary tree
- · Print all elements ascending order

traversal: preorder

```
algorithm preorder (p) {
  if (p) {
    visit(p)
    inorder(p -> left)
    inorder(p -> right)
  }
}
```


https://sbme-tutorials.github.io/2020/data-structure-FALL/notes/week08.html#preorder-traversals

$traversal:\ postorder$

```
algorithm postorder (p) {
  if (p) {
    inorder(p -> left)
    inorder(p -> right)
    visit(p)
  }
}
```


https://sbme-tutorials.github.io/2020/data-structure-FALL/notes/week08.html#postorder-traversals

traversal:inorder

```
algorithm inorder (p) {
  if (p) {
    inorder(p -> left)
    visit(p)
    inorder(p -> right)
  }
}
```


https://sbme-tutorials.github.io/2020/data-structure-FALL/notes/week08.html#inorder-traversals

ANALYSIS

Tree Shape

$$best\ case = \{H,C,S,A,E,R,X\} \qquad typical = \{S,E,A,R,C,H,X\}$$

order of operations matter...

Implications

Cost of basic operations??

	best-case	worst-case	average-case
search			
insert			
remove			

Average-case analysis

If n distinct keys are inserted into a BST in random order, expected number of compares for basic operations is

$$\sim 2~ln~npprox 1.39~log~n$$

• proof: 1-1 correspondence with quick-so

$$h = O(\log n)$$

$inserting\ n\ keys\ in\ a\ BST\ in\ random\ order$

n=255

https://algs4.cs.princeton.edu/32bst/

Collections / Dictionaries

	What?	Sequential (unordered)	Sequential (ordered)	BST
search	search for a key	O(n)	$O(log \ n)$	O(h)
insert	insert a key	O(n)	O(n)	O(h)
delete	delete a key	O(n)	O(n)	O(h)
min/max	smallest/largest key	O(n)	O(1)	O(h)
floor/ceiling	predecessor / successor	O(n)	$O(log \ n)$	O(h)
rank	# of keys less than key	O(n)	$O(log \ n)$	O(h)**

(**) requires the use of 'size' at every node)

