Calculs Algébriques

Dans tout ce qui va suivre, pour $n \in \mathbb{N}^*$, on notera $I_n = [1, n]$.

Sommes

Sommes télescopiques

- 1 Calculer la somme $\sum_{k=1}^{n} \sqrt{1 + \frac{1}{k^2} + \frac{1}{(k+1)^2}}$.
- 2 La suite de Fibonacci est définie comme suit

$$F_0 = 1$$
; $F_1 = 1$; $\forall n \in \mathbb{N}$, $F_{n+2} = F_{n+1} + F_n$

Calculer 1. $\sum_{k=1}^{n} F_k$ 2. $\sum_{k=1}^{n} F_k^2$ 3. $\sum_{k=2}^{n} \frac{1}{F_{k-1}F_{k+1}}$

- 1. Calculer les sommes suivantes
 - (a) $\sum_{n=0}^{\infty} {k \choose n}$ avec $p, n \in \mathbb{N}$;
 - (b) $\sum_{k=0}^{p} (-1)^k \binom{n}{k}$ avec $p \in \mathbb{N}$ et $n \in \mathbb{N}^*$.
 - **2.** Soit $n \in \mathbb{N}^*$
 - (a) Simplifier la somme $S_{n,p} = \sum_{k=1}^{n} \prod_{l=0}^{p} (k+l)$ pour tout
 - (b) Retrouver la valeur de $\sum_{i=1}^{n} k^2$.
 - (c) Calculer la somme $\sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{2n-1}{k}}$.

Calcul de sommes

- **4** Soit $n \in \mathbb{N}^*$. Montrer que pour toute famille $(x_i)_{i \in I_n}$ de nombres complexes:
 - 1. $\sum_{i=1}^{n} \left(x_i \frac{1}{n} \sum_{i=1}^{n} x_i \right) = 0.$
 - **2.** $\frac{1}{n} \sum_{i=1}^{n} \left(x_i \frac{1}{n} \sum_{i=1}^{n} x_i \right)^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^2.$
- - **1.** $A_n = \sum_{0 \le i \le j \le n} \frac{i}{j+1}$. **2.** $B_n = \sum_{k=1}^n (-1)^k k^2$.
 - 3. $C_n = \sum_{k=0}^{n} {2n+1 \choose k}$.
- 6 Soit N un nombre entier de n chiffres. Soit s la somme de ses chiffres, et t la somme de tous les nombres obtenus en combinant 2 quelconques des chiffres de N de rangs distincts (si 2 chiffres sont egaux, un meme nombre peut apparaitre plusieurs fois dans la somme).

Exprimer t en fonction de s.

- 7 Calculer, pour $n \in \mathbb{N}$, les sommes suivantes 1. $A_n = \sum_{1 \le i \le j \le n} (i+j)$. 2. $B_n = \sum_{1 \le i,j \le n} \min(i,j)$.

8 Calculer de deux façons les sommes suivantes
1.
$$A_n = \sum_{1 \le i,j \le n} ij$$
. 2. $B_n = \sum_{1 \le i,j \le n} i^2j$.

Retrouver la valeur de $\sum_{i=1}^{n} k^3$ et calculer $\sum_{i=1}^{n} k^4$.

- 9 On pose, pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^{n} (-1)^{\lfloor \sqrt{k} \rfloor}$.
 - **1.** Calculer $S_{(2m)^2-1}$ pour tout $m \in \mathbb{N}$.
 - **2.** Montrer que, pour tout $n \in \mathbb{N}$, on a

$$|S_n| \le \sqrt{n+1}$$

Préciser le cas de l'égalité.

- **10** Soit *E* un ensemble fini de cardinal *n*. En considérant l'involution $X \mapsto \overline{X}$ de $\mathscr{P}(E)$, montrer les formules suivantes
 - $\mathbf{1.} \sum_{X \in \mathscr{P}(E)} |X| = n2^{n-1}.$
 - 2. (a) $\sum_{(X,Y)\in\mathscr{P}(E)^2} |X\cap Y| = n4^{n-1}$.
 - (b) $\sum_{(X,Y)\in\mathscr{P}(F)^2} |X \cup Y| = 3n4^{n-1}$.

Formule du binôme

- **11** Soit *n* un entier naturel.
 - **1.** Montrer qu'il existe deux entiers a_n et b_n tels que

$$(1+\sqrt{2})^n = a_n + b_n\sqrt{2}$$
 et $(1-\sqrt{2})^n = a_n - b_n\sqrt{2}$.

2. Calculer $a_n^2 - 2b_n^2$ et déduire qu'il existe un entier p - n

$$(1+\sqrt{2})^n = \sqrt{p_n} + \sqrt{p_n+1}.$$

- **12** Calculer, pour tout $n \in \mathbb{N}^*$, les sommes suivantes

 - **1.** $A_n = \sum_{k=0}^n k \binom{n}{k}$ **2.** $B_n = \sum_{k=0}^n (-1)^k \binom{n}{k}$
 - **3.** $C_n = \sum_{k=0}^n k^2 \binom{n}{k}$ **4.** $D_n = \sum_{k=0}^n \frac{\binom{n}{k}}{k+1}$
- **13** Calculer, pour tous $p, q \in \mathbb{N}$, la somme

$$\sum_{k=0}^{p} \binom{p+q}{k} \binom{p+q-k}{p-k}$$

1. Soit $(n, p, q) \in \mathbb{N}^3$.

1

(a) En utilisant l'identité polynomiale

$$(1+x)^p(1+x)^q = (1+x)^{p+q},$$

montrer que
$$\sum_{k=0}^{n} {p \choose k} {q \choose n-k} = {p+q \choose n}$$
.

(b) Calculer la somme suivante

$$A_{n,p,q} = \sum_{k=0}^{n} k \binom{p}{k} \binom{p}{n-k}.$$

2. Montrer que, pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{k} - \binom{n}{k-1}^2 = \frac{1}{n+1} \binom{2n}{n}$$

- 15 Calculer les sommes suivantes
 - 1. $\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2$, pour tout $n \in \mathbb{N}$.
 - 2. $\sum_{k=1}^{p} k \binom{n}{p-k} \binom{n}{k}$, pour tous $n, p \in \mathbb{N}^*$.
- **16** Soit $n \in \mathbb{N}^*$.
 - **1.** Montrer que $\sum_{j=0}^{n} j \binom{2n}{n-j} = n \binom{2n-1}{n}$.
 - 2. En déduire la valeur des somme suivantes

$$A_n = \sum_{\substack{0 \le k \le n \\ 0 \le \ell \le n}} \min(k, \ell) \binom{n}{k} \binom{n}{\ell},$$

$$B_n = \sum_{\substack{0 \le k \le n \\ 0 \le \ell \le n}} \max(k, \ell) \binom{n}{k} \binom{n}{\ell}.$$

17 1. Montrer que, pour tout $p, q, n \in \mathbb{N}$, on a

$$\sum_{k=0}^{n} \binom{n-k}{p} \binom{k}{q} = \binom{n+1}{p+q+1}.$$

2. En déduire que, pour tout $n \in \mathbb{N}$, on a

$$\sum_{k=0}^{n} 2^k \binom{2n-k}{n} = 4^n$$