

Radio Frequency Exposure

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	UAP AC				
Frequency band (Operating)	 □ WLAN: 2.412GHz ~ 2.462GHz □ WLAN: 5.150GHz ~ 5.250GHz □ WLAN: 5.725GHz ~ 5.850GHz □ Bluetooth: 2.402GHz ~ 2.480 GHz □ Other: Zigbee: 2.405~2.480 GHz 				
Device category	☐ Portable (<20cm separation) ☐ Mobile (>20cm separation)				
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)				
Antenna diversity	☐ Single antenna ☐ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity				
Max. output power	5.77dBm(3.78mW)				
Antenna gain (Max)	2 dBi				
Evaluation applied					
Remark:					
	er is <u>5.77 dBm (3.78 mW)</u> at <u>2405 MHz</u> (with <u>numeric 2 antenna gain</u> .) to routine RF evaluation; MPE estimate is used to justify the compliance.				

3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is

1.0 mW/cm² even if the calculation indicates that the power density would be larger.

Cerpass Technology Corp. Issued date : Jun. 24, 2013

Tel: 886-2-2655-8100 Fax: 886-2-2655-8200 Page No. : 1 of 3

FCC ID : 2AAIVHVC-50X

Report No.: TEFI1305106

^{*}Note: Simultaneous transmission is not applicable for this EUT.

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = *Distance in meters*

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Cerpass Technology Corp.

Tel: 886-2-2655-8100 Fax: 886-2-2655-8200 Page No. : 2 of 3

FCC ID : 2AAIVHVC-50X

Issued date : Jun. 24, 2013

Report No.: TEFI1305106

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
O-QPSK	2405	5.77	2	20	0.001	1
O-QPSK	2445	5.53	2	20	0.001	1
O-QPSK	2480	5.19	2	20	0.001	1

NOTE:

Total (Chain0+Chain1), the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Cerpass Technology Corp. Issued date : Jun. 24, 2013

Tel: 886-2-2655-8100 Fax: 886-2-2655-8200 Page No. : 3 of 3

FCC ID : 2AAIVHVC-50X

Report No.: TEFI1305106