JOURNAL CLUB

A Universal Catalyst for First-Order Optimization (H. Lin, J. Mairal and Z. Harchaoui)

CMAP, Ecole Polytechnique

March 8th, 2018

PLAN

- 1 MOTIVATIONS
- 2 Existing Acceleration Methods
- 3 Universal Catalyst
- 4 Conclusion

MOTIVATIONS

LARGE CLASS OF PROBLEMS

Unconstrained Minimization of a large sum of functions

$$\min_{x \in \mathbb{R}^p} \left\{ F(x) \triangleq \frac{1}{n} \sum_{i=1}^n f_i(x) + \psi(x) \right\}$$
 (1)

where f_i are L_i —smooth and convex and ψ is a convex penalty but not necessarily differentiable.

$$|\nabla f_i(x) - \nabla f_i(y)| < L_i|x - y| \tag{2}$$

- Goal: Provide an acceleration scheme that can apply to existing un-accelerated methods
- Acceleration in the sense of Nesterov

EMPIRICAL RISK MINIMIZATION

- Given training data $(y_i, z_i)_{i=1}^n$ where y_i are responses and z_i are regressors. x here represents the model parameters.
- F is the loss function and measures how well the model fit the training data and ψ prevents from overfitting
- Example: logistic regression. Reponses y_i take values in $\{0,1\}$:

$$\min_{x \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i < x, z_i >}) + \lambda ||x||^2 \right\}$$
 (3)

Large-scale dimension leads to first-order gradient-based methods

Main contributions

- Generic acceleration scheme, which applies to previously unaccelerated algorithms such as SVRG, SAG, SAGA, SDCA, MISO, or Finito, and which is not tailored to finite sums.
- Complexity analysis for μ -strongly convex objectives.
- Complexity analysis for non-strongly convex objectives.

EXISTING ACCELERATION METHODS

• Classical way to solve the problem without the penalty $(\min_{x \in \mathbb{R}^p} f(x))$ is by gradient descent method (L smooth objective function):

$$x^{k} = x^{k-1} - \frac{1}{L} \nabla f(x^{k-1})$$
 (4)

• Can be viewed as a proximal regularisation of the linearized function f at x^{k-1} (Beck, Teboulle, 2009):

$$x^{k} = \arg\min_{x \in \mathbb{R}^{p}} \{ f(x^{k-1}) + \langle x - x^{k-1}, \nabla f(x^{k-1}) \rangle + \frac{1}{L} \|x - x^{k-1}\|^{2} \}$$
(5)

Leads to ISTA when adding a penalty

$$x^{k} = \arg\min_{x \in \mathbb{R}^{p}} \frac{1}{2} \{ \|x - (x^{k-1} - \frac{1}{L}\nabla f(x^{k-1}))\|^{2} + \frac{1}{L}\psi(x) \}$$
 (6)

NESTEROV ACCELERATION

• (1980), Nesterov introduced an acceleration scheme adding a memory term to the descent:

$$x^{k} = \arg\min_{x \in \mathbb{R}^{p}} \frac{1}{2} \{ \|x - (y^{k-1} - \frac{1}{L} \nabla f(y^{k-1}))\|^{2} + \frac{1}{L} \psi(x) \}$$
 (7)

with
$$y^{k-1} = x^{k-1} + \beta^k (x^{k-1} - x^{k-2})$$
 and $0 < \beta^k < 1$

• Complexity to reach an $\epsilon-$ solution:

Algo	$\mu > 0$	$\mu = 0$
ISTA	$\mathcal{O}(n rac{L}{\mu} \log(1/\epsilon))$	$\mathcal{O}(\frac{nL}{\epsilon})$
FISTA	$\mathcal{O}(n\sqrt{\frac{L}{\mu}}\log(1/\epsilon))$	$\mathcal{O}(rac{nL}{\sqrt{\epsilon}})$

- ϵ -solution means $f(x^k) f(x^*) \le \epsilon$
- Large sum structure of f not exploited here

SAG/SAGA/MISO

- Randomized algorithms take into account the structure of the objective function and compute only one random gradient at each iteration which yields a better **expected** computation complexity
- To get $\mathbb{E}\left[f(x^k) f(x^*)\right] \leq \epsilon$ we need $\mathcal{O}(1/\epsilon)$ iterations Algo $\mu > 0$ SAG, SAGA, MISO etc.. $\mathcal{O}(\max\left(n, \frac{L}{\mu}\right) \log(1/\epsilon))$ FISTA $\mathcal{O}(n\sqrt{\frac{L}{\mu}} \log(1/\epsilon))$
- Acceleration when the number of observations is large enough:

$$\max\left(n, \frac{L}{\mu}\right) \le n\sqrt{\frac{L}{\mu}} \Rightarrow n \ge \sqrt{\frac{L}{\mu}}$$
 (8)

- Not in the sense of Nesterov though (Acceleration due to incremental update, not to a memory term)
- See Bottou et. al. 2018

Universal Catalyst

Universal Catalyst

- Challenge: can we accelerate these algorithms by a universal scheme for both convex and strongly convex objectives ?
- Given any algorithm \mathcal{M} that can solve a convex problem, at iteration k, rather than minimizing F(x), use as many iterations of \mathcal{M} as needed to minimize:

$$G^{k}(x) \triangleq F(x) + \frac{\mathcal{K}}{2} ||x - y^{k-1}||^{2}$$
 (9)

such that $G^k(x) - G^* \le \epsilon^k$.

- Compute $y^k=x^k+\beta^k(x^k-x^{k-1})$ with $\beta^k=\frac{\alpha_{k-1}(1-\alpha_{k-1})}{\alpha_{k-1}^2+\alpha_k}$, $\alpha_k^2=(1-\alpha_k)\alpha_{k-1}^2+q\alpha_k$ and $q=\frac{\mu}{\mu+\mathcal{K}}$
- The Catalyst algorithm $\mathcal A$ is a wrapper of $\mathcal M$ that takes advantage of both basic M-M scheme and Nesterov acceleration

Two stages algorithm

- G^k is easier to minimize than F
 - G^k is always strongly convex as long as F is convex
 - G^k has a better condition number when F is strongly convex $(\frac{L+K}{\mu+K}<\frac{L}{\mu})$
- need to find a trade-off between $\mathcal{K}>>1$ (easy) and $\mathcal{K}=0$.
- Inner loop: How many iterations of \mathcal{M} to obtain the ϵ^k precision $(G^k(x) G^* \leq \epsilon^k)$
- Outter loop: with the sequences of (x^k) obtained by \mathcal{M} , wisely choose the update y^k (stepsize β^k) to obtain optimal rate on $F(x^k) F^*$

MAIN THEOREM FOR STRONGLY CONVEX OBJECTIVE

• Choose $\alpha_0 = \sqrt{q}$ and $q = \frac{\mu}{\mu + \mathcal{K}}$ and the sequence:

$$\epsilon^{k} = \frac{2}{9} (F(x^{0}) - F^{*})(1 - \rho)^{k}$$
 (10)

• Then the algorithm generates iterates (x^k) such that:

$$F(x^k) - F^* \le C(1-\rho)^{k+1} (F(x^0) - F^*)$$
 with $C = \frac{8}{(\sqrt{q} - \rho)^2}$ (11)

• In practice $\rho=0.9\sqrt{q}$ and since we don't know F^* for non negative function we can set $\epsilon^k=\frac{2}{9}F(x^0)(1-\rho)^k$

MAIN THEOREM FOR NON STRONGLY CONVEX OBJECTIVE

• Choose $\alpha_0 = (\sqrt{5} - 1)/2$ and the sequence:

$$\epsilon^{k} = \frac{2(F(x^{0}) - F^{*})}{9(k+2)^{4+\eta}} \tag{12}$$

• Then the algorithm generates iterates (x^k) such that:

$$F(x^{k}) - F^{*} \le \frac{8}{(k+2)^{2}} ((1+2/\eta)^{2} F(x^{0}) - F^{*} + \frac{\mathcal{K}}{2} \|x^{0} - x^{*}\|^{2})$$
(13)

• In practice $\eta = 0.1$

INNER LOOP ALGORITHM

• An appropriate \mathcal{M} (applied to G^k) for a strongly convex objective function HAS to ta have a linear convergence rate, i.e. there exists $\tau_{\mathcal{M}}$ such that:

$$G^{k}(z^{t}) - G^{k*} \le (1 - \tau_{\mathcal{M}})^{t} (G^{k}(z^{0}) - G^{k*})$$
 (14)

- $au_{\mathcal{M}}$ depends on the condition number. ISTA: $au_{\mathcal{M},F} = \mu/L$ and FISTA: $au_{\mathcal{M},F} = \sqrt{\mu/L}$
- Thanks to the quadratic term added to F we can achieve faster rates since $\tau_{\mathcal{M},G^k} = \frac{\mu + \mathcal{K}}{L + \mathcal{K}} > \tau_{\mathcal{M},F}$
- With the proposed sequence (ϵ^k) the precision is reached, choosing $z^0 = x^{k-1}$ with
 - Strongly convex case: constant number of iterations $\tilde{\mathcal{O}}(\frac{1}{\tau_{\mathcal{M}}})$
 - Convex case: constant number of iterations $\tilde{\mathcal{O}}(\frac{1}{\tau_{\mathcal{M}}})\log(k+2)$

CONCLUSION

EXPECTED COMPUTATIONAL COMPLEXITY

Case when $n \leq L/\mu$ when $\mu > 0$

Algo	$\mu > 0$	$\mu = 0$	Cat. $\mu > 0$	Cat. $\mu = 0$		
FG			$ ilde{\mathcal{O}}(n\sqrt{rac{L}{\mu}}\log(rac{1}{\epsilon}))$			
SAGA	$\mathcal{O}(rac{L}{\mu}\log(rac{1}{\epsilon}))$	$\mathcal{O}(n\frac{L}{\epsilon})$	$ ilde{\mathcal{O}}(\sqrt{rac{nL}{\mu}}\log(rac{1}{\epsilon}))$	$ ilde{\mathcal{O}}(nrac{L}{\sqrt{\epsilon}})$		
MISO	$\mathcal{O}(rac{L}{\mu}\log(rac{1}{\epsilon}))$	NA	$ ilde{\mathcal{O}}(\sqrt{rac{nL}{\mu}}\log(rac{1}{\epsilon}))$	$\tilde{\mathcal{O}}(n\frac{L}{\sqrt{\epsilon}})$		

- Plus:
 - Simple acceleration scheme that applies to large class of methods
 - Recover Optimal rates for known algorithms
 - Simple to implement
- Minus:
 - Acceleration when $n \le L/\mu$ otherwise hard to beat $O(n \log(1/\epsilon))$
 - μ is just an estimate of the true strong convexity $\mu' \geq \mu$
 - When $n \le L/\mu$ but $n \ge L/\mu'$ apperas to be hard to accelerate.

Thank you