Sistemas Digitais

Aula 10

Multilexers
Tecnologia 3-state
Funções com multiplexers

Multiplexers

Um multiplexer encaminha o valor lógico de uma das *n* entradas de dados (com *n* potência de 2) para uma única saída.

A fonte é seleccionada com base em $s = [log_2(n)]$ entradas de controlo.

Multiplexers (cont.)

Equação de saída de um multiplexer n:1 (m_i – termo mínimo j das entradas de controlo)

$$Y = \sum_{j=0}^{n-1} EN \cdot m_j \cdot D_j$$

Exemplo: Multiplexer 2:1:

EN	SEL	D1	Do	У
0	×	X	X	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

EN	SEL	У
0	X	0
1	0	DO
1	1	D1

$$Y = EN \cdot \overline{SEL} \cdot D0 + EN \cdot SEL \cdot D1$$

Multiplexers (cont.)

Equação de saída de um multiplexer n:1: (m_i – termo mínimo j das entradas de controlo)

$$Y = \sum_{j=0}^{n-1} EN \cdot m_j \cdot D_j$$

Exemplo: Multiplexer 4:1:

EΝ	SEL1	SEL0	У
0	X	X	0
1	0	0	DO
1	0	1	D1
1	1	0	D2
1	1	1	D3

 $Y = EN \cdot \overline{SEL1} \cdot \overline{SEL0} \cdot D0 + EN \cdot \overline{SEL1} \cdot SEL0 \cdot D1 + EN \cdot SEL1 \cdot \overline{SEL0} \cdot D2 + EN \cdot SEL1 \cdot SEL0 \cdot D3$

Multiplexers comerciais

74x153 – dual multiplexer 4:1

GA_L	GB_L	S1	S0	YA	YB
0	0	0	0	A0	B0
0	0	0	1	A1	B1
0	0	1	0	A2	B2
0	0	1	1	А3	В3
0	1	0	0	A0	0
0	1	0	1	A1	0
0	1	1	0	A2	0
0	1	1	1	А3	0
1	0	0	0	0	B0
1	0	0	1	0	B1
1	0	1	0	0	B2
1	0	1	1	0	В3
1	1	Χ	Χ	0	0

74x151 - multiplexer 8:1 de 1 bit

EN_L	С	В	Α	Υ	W_L
1	Χ	Χ	Χ	0	1
0	0	0	0	D0	D0
0	0	0	1	D1	D ₁
0	0	1	0	D2	D ₂
0	0	1	1	D3	D3
0	1	0	0	D4	D4
0	1	0	1	D5	D ₅
0	1	1	0	D6	D6
0	1	1	1	D7	D7

74x157 - multiplexer 2:1 de 4 bits

EN_L	SEL	QD	QC	QB	QA
1	Х	0	0	0	0
0	0	D0	C0	B0	A0
0	1	D1	C1	B1	A1

Multiplexers em cascata

Multiplexers maiores podem ser implementados colocando multiplexers mais pequenos em cascata.

Exemplo:

Construir um multiplexer 8:1:

Multiplexers e funções lógicas

Com um multiplexer 2ⁿ:1 e constantes 0 e 1 pode-se implementar qualquer função lógica de *n* variáveis.

Com um multiplexer 2^{n-1} :1, constantes 0 e 1 e portas NOT pode-se implementar qualquer função lógica de n variáveis.

Exemplos:
$$f(a,b,c) = a \cdot \overline{b} + a \cdot c + \overline{a} \cdot \overline{c}$$

f	f	f	С	Ь	α
	C	1	0	0	0
	٢	0	1	0	0
	C	1	0	1	0
	C	0	1	1	0
	1	1	0	0	1
<u></u>	1	1	1	0	1
7 0+0		0	0	1	1
	С	1	1	1	1

Buffers 3-state

Para além das representações eléctricas LOW e HIGH dos estados lógicos, existe um terceiro "estado" eléctrico - alta impedância (Z) que representa uma resistência infinita.

Uma saída com 3 estados possíveis chama-se saída three-state (ou tri-state).

Dispositivos 3-state têm uma entrada adicional de activação (enable).

Buffer 3-state

OE_L	α	f
0	0	0
0	1	1
1	×	Z

OE_L	f
0	α
1	Z

O estado Z permite ligar as saídas de mais do que um dispositivo *3-state* ao mesmo ponto, desde que **apenas um** tenha a sua saída activa em cada instante.

Para tal os dispositivos *3-state* são projectados por forma a entrarem no estado Z mais rapidamente do que a saírem do mesmo:

$$\begin{aligned} t_{\text{pLZ}} &< t_{\text{pZL}} & t_{\text{pLZ}} &< t_{\text{pZH}} \\ t_{\text{pHZ}} &< t_{\text{pZH}} & t_{\text{pHZ}} &< t_{\text{pZL}} \end{aligned}$$

Multiplexagem com buffers 3-state

Com portas 3-state pode-se construir multiplexers "baratos".

Exemplos: Multiplexer 2:1:

SEL	У
0	D0
1	D1

Multiplexer 4:1:

EN_L	51	50	У
1	×	×	Ζ
0	0	0	DO
0	0	1	D1
0	1	0	D2
0	1	1	D3

Exercícios

Implemente a função $f(a,b,c) = a + \overline{b} + c$ com

a) um descodificador 3-to-8;

b) um multiplexer 4:1.

Construa um multiplexer 8:1 com um descodificador 3-to-8 e *buffers* 3-state.

Exercícios

Considere a função $f(x_3, x_2, x_1, x_0)$ dada pelo seguinte mapa de Karnaugh:

- a) Determine a função mínima na forma de uma soma de produtos a dois níveis
- b) Implemente a mesma função recorrendo a um multiplexer de 16:1 e as constantes '0' e '1'
- c) Implemente a mesma função recorrendo a um multiplexer de 8:1 e 1 operador not e constantes '0' e '1'
- d) Implemente a mesma função recorrendo a um multiplexer de 4:1, às constantes '0' e '1' e ao menor número possível de operadores lógicos booleanos

X1X0 X3X	×2 00	01	11	10
00			1	1
01	1		1	
11	1		1	
10			1	1

