Курс «Параллельные вычисления на основе технологии OpenCl»

Лабораторная работа №1. Двухмерная свертка

Постановка задачи: Даны две матрицы A и B. Матрица A имеет размер $N \times N$. Матрица B имеет размер $M \times M$. Требуется посчитать матрицу C = convolution(A, B), элементы матрицы C задаются следующим уравнением:

$$C(i,j) = \sum_{k=-HM}^{k=HM} \sum_{l=-HM}^{l=HM} A(i+k,j+l) \cdot B(k+HM,l+HM)$$
, где $HM = \frac{M-1}{2}$

Примечание: A(i,j) = 0, если i < 0 или j < 0 или $i \ge N$ или $j \ge N$.

Ограничения: $1 \le M \le 9$; $1 \le N \le 1024$; М нечетное число.

Формат входных данных: Матрицы A и B и размер записаны в файле input.txt. На первой строке записаны два числа N и M. Следующие N строк содержат по N чисел разделенных пробелом — строки матрицы A с первой по -ую. Следующие M строк содержат по M чисел разделенных пробелом — строки матрицы B с первой по -ую.

Формат выходных данных: В выходной файл *output.txt* требуется вывести N строк по N чисел разделенных пробелом — строки матрицы C с первой по -ую. Числа необходимо выводить с точностью до трех знаков после запятой.

Пример 1:

input.txt	output.txt
5 3	46664
11111	69996
11111	69996
11111	69996
11111	46664
11111	
111	
111	
111	

Пример 2:

input.txt	output.txt
5 3	21.74 25.73 31.76 3.14 20.91
1.3 1.6 3.2 1.5 1.7	49.54 113.57 98.01 54.14 32.37
1.4 2.5 -3.6 0 1	64.57 111.94 125.77 122.72 132.57
4.2 3.1 5.6 1.4 1	79.83 163.25 145.04 118.67 173.19
3.1 5.1 1.5 10 4.3	50.99 104.58 71.2 105.37 102.95
7 1.1 1.8 5.9 3.1	
2.1 5.6 3.2	
8.6 2.3 1.1	
9.5 4.1 4.5	