

MAT 3007 – Optimization Sensitivity Analysis

Lecture 10

June 30th

Andre Milzarek

iDDA / CUHK-SZ

Repetition

Recap: Duality Theory

- Construct the dual problem.
- Weak duality theorem/strong duality theorem.
- Complementarity conditions
- Interpret the dual problem in applications:
 - The production planning problem
 - The multi-firm alliance problem
 - The alternative systems problem
 - The maximum flow problem

Sensitivity Analysis

Sensitivity Analysis

One important question when studying LP is as follows:

► How do the optimal solution and the optimal value change when the input changes?

This type of problems is called sensitivity analysis.

▶ We first study this question from a local perspective and then continue with global discussions.

Local Sensitivity

Consider the standard LP:

$$\begin{aligned} & \text{minimize}_{x} & & c^{\top}x \\ & \text{s.t.} & & Ax = b \\ & & & x \geq 0. \end{aligned}$$

We denote the associated optimal value by V.

▶ If A and c are fixed, V can be viewed as a function of b: V(b).

Theorem: Differentiability of the Optimal Value Function

If the dual has a unique optimal solution y^* , then $\nabla V(b) = y^*$.

- If the dual optimal solution is not unique (or is unbounded or infeasible), then the gradient is not well-defined.
- ▶ If one changes b_i by a small amount Δb_i , then the change of the objective value will be $\Delta b_i y_i^*$

Explanation

We know that the optimal value V is also the optimal value of the dual problem:

$$\begin{aligned} \text{maximize}_y & & b^\top y \\ \text{s.t.} & & A^\top y \leq c, \end{aligned}$$

i.e.,
$$V(b) = b^{\top} y^*$$
.

If we change b by a small amount Δb , such that the optimal sol. does not change, then the change of V must be $\Delta b^{\top} y^*$.

Local Sensitivity

Similarly, if A and b are fixed, V can be viewed as a function of c.

Theorem: Differentiability of V(c)

If the primal prob. has a unique optimal sol. x^* , then $\nabla V(c) = x^*$.

If one changes c_i by a small amount Δc_i , then the change of the objective value will be $\Delta c_i x_i^*$.

Reason: If we change c by a small amount Δc , such that the optimal solution does not change, then the change of V must be $\Delta c^{\top} x^*$.

Local Sensitivity

The latter results also hold for inequality constraints (or maximization problems):

$$\begin{aligned} \text{maximize}_{x} & & c^{\top}x \\ \text{s.t.} & & Ax \leq b \\ & & x \geq 0. \end{aligned}$$

We have:

- 1. If the dual has a unique optimal sol. y^* , then $\nabla V(b) = y^*$.
- 2. If the primal has a unique optimal sol. x^* , then $\nabla V(c) = x^*$.
- ➤ To see why this must be true, one can add a slack variable and transform it back to the standard form. We can then use the earlier result.

Example: Production Planning

The optimal solution is $x^* = (50, 100)$ with optimal value 250.

The dual problem is

minimize
$$100y_1 + 200y_2 + 150y_3$$
 subject to $y_1 + y_3 \ge 1$ $2y_2 + y_3 \ge 2$ $y_1, y_2, y_3 \ge 0$

The optimal solution is $y^* = (0, 0.5, 1)$ with optimal value 250.

Example: Continued - I

The optimal solution is $x^* = (50, 100)$ with optimal value 250. The dual optimal solution is $y^* = (0, 0.5, 1)$.

Q1: What is the optimal value if we have 202 units of resource 2?

▶ It will change by $\Delta b_2 y_2^* = 1$. Therefore, the optimal value would be 251 (\rightsquigarrow check with CVX: \checkmark).

Example: Continued - II

The optimal solution is $x^* = (50, 100)$ with optimal value 250. The dual optimal solution is $y^* = (0, 0.5, 1)$.

Q2: What is the optimal value if we have 99 units of resource 1?

▶ It will change by $\Delta b_1 y_1^* = 0$. Therefore, the optimal value would be unchanged (\rightsquigarrow check with CVX: \checkmark).

Example: Continued - III

The optimal solution is $x^* = (50, 100)$ with optimal value 250. The dual optimal solution is $y^* = (0, 0.5, 1)$.

Q3: What is the opt. value if the profit of product 1 becomes 1.02?

▶ It will increase by $\Delta c_1 x_1^* = 1$. Therefore, the optimal value would be 251 (\rightsquigarrow check with CVX: \checkmark).

Example: Continued - IV

The optimal solution is $x^* = (50, 100)$ with optimal value 250. The dual optimal solution is $y^* = (0, 0.5, 1)$

Q4: What is the opt. value if the profit of product 2 becomes 1.97?

▶ It will decrease by $\Delta c_2 x_2^* = -3$. Therefore, the optimal value would be 247 (\rightsquigarrow check with CVX: \checkmark).

Property: Inactive Constraints

$$\begin{aligned} \text{maximize}_{x} & & c^{\top}x \\ \text{s.t.} & & Ax \leq b \\ & & x \geq 0 \end{aligned}$$

At an optimal x^* suppose we have $a_i^\top x^* < b_i$. What happens if we change b_i ?

- ▶ By the complementarity conditions, the corresponding dual variable y_i^* must be 0.
- ► Therefore, changing the right-hand-side of an inactive constraint by a small amount will not affect the optimal value (also the optimal solution).
- Intuition: If the stock of a resource is not critical, then increasing or reducing the stock by a small amount does not matter.

Shadow Prices

Change of the Optimal Value Function:

▶ $\nabla V(b) = y^*$, where y^* is the (unique) optimal dual solution.

We call y^* the shadow prices of b.

- ▶ In the production example, the shadow price of a resource corresponds to the increment of profit if there is one unit more of that resource (locally).
- ► Therefore, it can be viewed as the unit value or unit fair price for that resource.
- Remember we came up with the same explanation when discussing its dual problem!

Caveat: How Small is Small Enough?

The above analysis is only local, meaning that it can only deal with small changes!

- Basically, it is valid as long as the optimal basis does not change.
- → It may not be true otherwise.

Example: In the production planning problem, if the amount of resource 1 reduces to 0, then the optimal solution will be (0, 100) with optimal value 200 (reduced by 50). This difference would be different from $\Delta b_1 y_1^* = 0$.

- We want to study what ranges of changes belong to small changes.
- ► This is part of the global sensitivity analysis.

Global Sensitivity

Global Sensitivity

We now study what will happen if:

- 1. b changes to $b + \Delta b$
- 2. c changes to $c + \Delta c$

Recall the simplex tableau:

$$\begin{array}{|c|c|c|c|} \hline c^{\top} - c_B^{\top} A_B^{-1} A & -c_B^{\top} A_B^{-1} b \\ \hline A_B^{-1} A & A_B^{-1} b \\ \hline \end{array}$$

At the Optimum:

- ▶ The reduced costs satisfy $c^{\top} c_B^{\top} A_B^{-1} A \ge 0$.
- ▶ $A_B^{-1}b$ and $(A_B^{-1})^{\top}c_B$ are the basic part of the optimal primal solution and the optimal dual solution, respectively.

Changing b

Suppose b becomes $\tilde{b} = b + \Delta b$. Now, the new basic solution corresponding to the original optimal basis is:

$$\tilde{x}_B = A_B^{-1}(b + \Delta b) = x^* + A_B^{-1}\Delta b.$$

Note that the reduced costs $c^{\top} - c_B^{\top} A_B^{-1} A$ do not depend on b!

▶ If $\tilde{x}_B \ge 0$, then B is still the optimal basis and the new optimal solution is $(\tilde{x}_B, 0)$ with the new optimal value:

$$V(\tilde{b}) = V^* + c_B^{\mathsf{T}} A_B^{-1} \Delta b = V^* + (y^*)^{\mathsf{T}} \Delta b,$$

where y^* is the optimal dual solution (this explains the local theorem).

If the original basis is still optimal, then the local sensitivity analysis holds.

Changing b

We now study when the change only occurs in one component of b:

- ▶ What ranges of changes qualify for a small change?
- ▶ When does the local sensitivity analysis hold?

Assume $\Delta b = \lambda e_i$ (e_i is a vector with 1 at position i). Then, we need to have:

$$x^* + \lambda A_B^{-1} e_i \ge 0$$

so that the optimal basis remains the same.

 \rightsquigarrow We can find the range of λ by solving these inequalities!

Example: Production Planning

Consider the production example:

The optimal basis is $\{1, 2, 3\}$ and we have $x^* = (50, 100, 50, 0, 0)^{\top}$.

► How much can we change the third right-hand-side coefficient (150) such that the optimal basis remains the same?

Example: Continued

The final simplex tableau is

В	0	0	0	1/2	1	250
1	1	0	0	-1/2	1	50
3	0	0	1	1/2	-1	50
2	0	1	0	1/2	0	100

Thus
$$A_B^{-1} = \begin{bmatrix} 0 & -0.5 & 1 \\ 0 & 0.5 & 0 \\ 1 & 0.5 & -1 \end{bmatrix}$$
. If *b* changes to $b + \lambda \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, then

$$\tilde{x}_B = x_B^* + \lambda A_B^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 50 \\ 100 \\ 50 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

In order for this to be positive, we need $-50 \le \lambda \le 50$.

Changing c

Now suppose c changes to $\tilde{c} = c + \Delta c$.

- ▶ In order for the basic solution to be still optimal, we need to guarantee that the reduced costs are nonnegative!
- ▶ We only need to consider the non-basic part since the basic part must still be 0:

$$\tilde{c}_N^{\top} - \tilde{c}_B^{\top} A_B^{-1} A_N \geq 0.$$

Note that this basis still provides a basic feasible solution since the feasibility does not depend on c.

We now assume $\Delta c = \lambda e_j$. We discuss two cases: $j \in B$ and $j \in N$. We study how to find ranges for λ such that the original basis is still optimal (and thus we can apply the local sensitivity analysis).

Case 1: $j \in B$

In this case, the reduced costs are:

$$c_N^{\top} - (c_B^{\top} + \lambda e_j^{\top}) A_B^{-1} A_N$$

= $c_N^{\top} - c_B^{\top} A_B^{-1} A_N - \lambda e_j^{\top} A_B^{-1} A_N.$

Note that $c_N^{\top} - c_B^{\top} A_B^{-1} A_N$ are the reduced costs for the original problem. We denote it by r_N^{\top} .

Therefore, in order to maintain the optimality of the current basis, we need to have:

$$r_N^{\top} - \lambda e_j^{\top} A_B^{-1} A_N \ge 0. \tag{1}$$

- We can solve the range of λ from (1).
- ▶ This is a set of inequalities.

Case 2: $j \in N$

In this case, the reduced costs are:

$$c_N^{\top} + \lambda e_i^{\top} - c_B^{\top} A_B^{-1} A_N = r_N^{\top} + \lambda e_i^{\top}$$

Therefore, in order to maintain the optimality of the current basis, we need to have:

$$r_N + \lambda e_j \ge 0. (2)$$

▶ We can solve the range of λ from (2).

Example: Production Planning

Consider the same production example:

The final simplex tableau is:

В	0	0	0	1/2	1	250
1	1	0	0	-1/2	1	50
3	0	0	1	1/2	-1	50
2	0	1	0	1/2	0	100

How much can we change the first objective coefficient so that we can use the local sensitivity analysis?

Example: Continued

We have

$$A_B^{-1} = \begin{bmatrix} 0 & -0.5 & 1 \\ 1 & 0.5 & -1 \\ 0 & 0.5 & 0 \end{bmatrix}; \quad A_N = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad r_N = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}.$$

Assume we change the profit 1 from 1 to $1 + \lambda$ (i.e., $-1 - \lambda$ in the standard form). Then, we need:

$$r_N - \lambda A_N^{\top} (A_B^{-1})^{\top} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} - \lambda \begin{bmatrix} 0.5 \\ -1 \end{bmatrix} \ge 0$$

$$\rightsquigarrow -1 < \lambda < 1$$
.

▶ If the profit coefficient of the first product is between 0 and 2, we can use the local sensitivity theorem to compute the opt. value using x^* .

What if the Change is Outside the Range?

If we change *c* so much such that the reduced cost of the current solution contains negative components, then:

We can continue with the simplex tableau until it reaches optimal solution.

If the change of b is so much that the solution corresponding to the original optimal basis B is no longer feasible, then:

- We may need to solve the problem from the start.
- However, we can also have a dual perspective: the objective coefficients of the dual problem have changed. We can then use the method that deals with changes in the objective coefficients.

Changing A

If the change appears in a non-basic column, say in A_j , then the original optimal solution is still feasible.

The only change occurs in the reduced costs of jth variable.

▶ Recompute \bar{c}_j . If it is still nonnegative, then the original optimal solution stays optimal. Otherwise, update the tableau for the *j*th column as well as the reduced cost and continue from there.

If the change appears in a basic column, then nearly all numbers in the tableau will change. In general, there is not a simple way to deal with it.

Other Changes

Adding a Variable (the rest are kept the same):

- ► The original BFS is still a BFS, the reduced costs are unchanged.
- We only need to check the reduced cost corresponding to the new variable.
- ▶ If it is nonnegative, then the original optimal solution is still optimal; otherwise continue the simplex method from there.

Adding a Constraint:

- If the original optimal solution satisfies the constraint, then it is still optimal.
- ▶ If not, then the best way to deal with it is to interpret it as adding a dual variable. Then use the simplex tableau for the dual problem to continue calculations.

Questions?