Mathematical Theory of Robustness of Neural Networks EDIC Candidacy Exam

Thomas Weinberger

EPFL LTHC

February 2023

Overview

- Introduction
- [Bubeck et al., NeurIPS '21]: Typical random neural networks are non-robust
- [Vardi et al., NeurIPS '22]: Gradient flow is biased towards selecting non-robust neural networks
- [Schmidt et al., NeurIPS '18]: Learning robustly is much harder than only learning
- Research proposal

Introduction: Robustness of NNs

• **Empirical** studies ca. 2014¹: classification with neural networks highly susceptible to small perturbations on the input

¹Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. and Fergus, R., 2014. Intriguing properties of neural networks. ICLR 2014.

Introduction: Robustness of NNs

- **Empirical** studies ca. 2014¹: classification with neural networks highly susceptible to small perturbations on the input
- Perturbations typically imperceptible to the human eye

¹Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. and Fergus, R., 2014. Intriguing properties of neural networks. ICLR 2014. ** ** ** ** ** ** **

Introduction: Robustness of NNs

- **Empirical** studies ca. 2014¹: classification with neural networks highly susceptible to small perturbations on the input
- Perturbations typically imperceptible to the human eye

Theory still rather poorly understood → recent results

¹Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. and Fergus, R., 2014. Intriguing properties of neural networks. ICLR 2014.

Paper 1

Bubeck, S., Cherapanamjeri, Y., Gidel, G. and Tachet des Combes, R., 2021. **A single gradient step finds adversarial examples on random two-layers neural networks.** Advances in Neural Information Processing Systems, 34.

ullet Random two-layer neural networks $f: \mathbb{R}^d o \mathbb{R}$

$$f(x) = \frac{1}{\sqrt{k}} \sum_{l=1}^{k} a_l \cdot \sigma(w_l^{\top} x)$$
 (1)

- d: input dimension, k: $\#_{neurons}$ in hidden layer, $\sigma: \mathbb{R} \to \mathbb{R}$: non-linearity
- $w_l \sim \mathcal{N}(0, \frac{1}{d}I_d)$, $a_l \sim \mathcal{U}(\{-1, +1\})$ all i.i.d.

ullet Random two-layer neural networks $f:\mathbb{R}^d o\mathbb{R}$

$$f(x) = \frac{1}{\sqrt{k}} \sum_{l=1}^{k} a_l \cdot \sigma(w_l^{\top} x)$$
 (1)

- d: input dimension, k: $\#_{neurons}$ in hidden layer, $\sigma: \mathbb{R} \to \mathbb{R}$: non-linearity
- $w_I \sim \mathcal{N}(0, \frac{1}{d}I_d)$, $a_I \sim \mathcal{U}(\{-1, +1\})$ all i.i.d.
- Task: binary classification based on sign(f(x))

ullet Random two-layer neural networks $f: \mathbb{R}^d o \mathbb{R}$

$$f(x) = \frac{1}{\sqrt{k}} \sum_{l=1}^{k} a_l \cdot \sigma(w_l^{\top} x)$$
 (1)

- d: input dimension, k: $\#_{neurons}$ in hidden layer, $\sigma: \mathbb{R} \to \mathbb{R}$: non-linearity
- $w_l \sim \mathcal{N}(0, \frac{1}{d}I_d)$, $a_l \sim \mathcal{U}(\{-1, +1\})$ all i.i.d.
- **Task:** binary classification based on sign(f(x))
- Data: $x \in \sqrt{d} \cdot \mathbb{S}^{d-1}$

ullet Random two-layer neural networks $f:\mathbb{R}^d o\mathbb{R}$

$$f(x) = \frac{1}{\sqrt{k}} \sum_{l=1}^{k} a_l \cdot \sigma(w_l^{\top} x)$$
 (1)

- *d*: input dimension, *k*: $\#_{neurons}$ in hidden layer, $\sigma : \mathbb{R} \to \mathbb{R}$: non-linearity
- $w_l \sim \mathcal{N}(0, \frac{1}{d}I_d)$, $a_l \sim \mathcal{U}(\{-1, +1\})$ all i.i.d.
- **Task:** binary classification based on sign(f(x))
- Data: $x \in \sqrt{d} \cdot \mathbb{S}^{d-1}$
- Question: how large δ needed s.t. $\forall x : \text{sign}(f(x+\delta)) \neq \text{sign}(f(x))$?

ullet **Random** two-layer neural networks $f: \mathbb{R}^d o \mathbb{R}$

$$f(x) = \frac{1}{\sqrt{k}} \sum_{l=1}^{k} a_l \cdot \sigma(w_l^{\top} x)$$
 (1)

- *d*: input dimension, *k*: $\#_{neurons}$ in hidden layer, $\sigma: \mathbb{R} \to \mathbb{R}$: non-linearity
- $w_l \sim \mathcal{N}(0, \frac{1}{d}I_d)$, $a_l \sim \mathcal{U}(\{-1, +1\})$ all i.i.d.
- Task: binary classification based on sign(f(x))
- Data: $x \in \sqrt{d} \cdot \mathbb{S}^{d-1}$
- **Question:** how large δ needed s.t. $\forall x : sign(f(x + \delta)) \neq sign(f(x))$?
 - W.h.p. over weights
 - Size of δ : ℓ_2 -norm

• For k large + our scale of input/weights + σ "nice", should expect w.h.p. (CLT)

$$|f(x)| \in \Theta(1). \tag{2}$$

• For k large + our scale of input/weights + σ "nice", should expect w.h.p. (CLT)

$$|f(x)| \in \Theta(1). \tag{2}$$

Bounded gradient:

$$\|\nabla f(x)\| \in \Omega(1) \tag{3}$$

• For k large + our scale of input/weights + σ "nice", should expect w.h.p. (CLT)

$$|f(x)| \in \Theta(1). \tag{2}$$

Bounded gradient:

$$\|\nabla f(x)\| \in \Omega(1) \tag{3}$$

• Gradient locally stable: for δ small,

$$\|\nabla f(x) - \nabla f(x+\delta)\| \in o(\|\nabla f(x)\|) \tag{4}$$

• Together with an *upper* bound on $\|\nabla f(x)\|$ implies that the gradient essentially is constant on the "macroscopic" scale.

• For k large + our scale of input/weights + σ "nice", should expect w.h.p. (CLT)

$$|f(x)| \in \Theta(1). \tag{2}$$

Bounded gradient:

$$\|\nabla f(x)\| \in \Omega(1) \tag{3}$$

• Gradient locally stable: for δ small,

$$\|\nabla f(x) - \nabla f(x+\delta)\| \in o(\|\nabla f(x)\|) \tag{4}$$

- Together with an *upper* bound on $\|\nabla f(x)\|$ implies that the gradient essentially is constant on the "macroscopic" scale.
- **Combined:** apply constant sized perturbation in direction $\pm \nabla f$ to locally linear function with constant size output \rightarrow can change output to constant sized output of opposite sign!

Main Theorem

Theorem

Let $\gamma \in (0,1)$ and let σ be non-constant, Lipschitz and with Lipschitz derivative. Assume $k \geq C_1 \log^3(1/\gamma)$, $d \geq C_2 \log(k/\gamma) \log(1/\gamma)$, and let $\eta \in \mathbb{R}$ such that $|\eta| = C_3 \sqrt{\log(1/\gamma)} ||\nabla f(x)||^{-2}$ and $sign(\eta) = -sign(f(x))$. Then with probability at least $1 - \gamma$:

$$sign(f(x)) \neq sign(f(x + \eta \nabla f(x))).$$
 (5)

Moreover, we have $\|\eta \nabla f(x)\| \leq C_4 \sqrt{\log(1/\gamma)}$.

Main Theorem

Theorem

Let $\gamma \in (0,1)$ and let σ be non-constant, Lipschitz and with Lipschitz derivative. Assume $k \geq C_1 \log^3(1/\gamma)$, $d \geq C_2 \log(k/\gamma) \log(1/\gamma)$, and let $\eta \in \mathbb{R}$ such that $|\eta| = C_3 \sqrt{\log(1/\gamma)} ||\nabla f(x)||^{-2}$ and $sign(\eta) = -sign(f(x))$. Then with probability at least $1 - \gamma$:

$$sign(f(x)) \neq sign(f(x + \eta \nabla f(x))).$$
 (5)

Moreover, we have $\|\eta \nabla f(x)\| \leq C_4 \sqrt{\log(1/\gamma)}$.

- Covers sub-exponential width regime
- ullet Constants depend only on σ

Lower Bound on Gradient

- Assume: σ is 1-Lipschitz, *L*-smooth, and $\sigma(0) = 0$.
- Then, $|\sigma(X)| \leq |X|$
- $\forall I: w_I^\top x \sim \mathcal{N}(0,1)$ $\rightarrow |f(x)| \in \Theta(1)$ follows from Bernstein's inequality
- We have

$$\nabla f(x) = \frac{1}{\sqrt{k}} \sum_{l=1}^{k} a_l w_l \sigma'(w_l^{\top} x)$$
 (6)

- Bound $\|\nabla f(x)\| \ge \|P\nabla f(x)\|$ with $P := I_d xx^\top/d$ projection onto orthogonal complement of x
- This decouples the product of the two random variables appearing inside the sum
- ullet Bernstein's inequality and a standard ξ^2 concentration bound

Stability of Gradient

Evoke variational description of euclidean norm:

$$\sup_{\delta \in \mathbb{R}^d: \|\delta\| \le R} \|\nabla f(x) - \nabla f(x+\delta)\| \tag{7}$$

$$= \sup_{\mathbf{v} \in \mathbb{S}^{d-1} \delta \in \mathbb{R}^d : \|\delta\| \le R} \frac{1}{\sqrt{k}} \sum_{l=1}^k a_l(\mathbf{w}_l^\top \mathbf{v}) \cdot \left(\sigma'(\mathbf{w}_l^\top \mathbf{x}) - \sigma'(\mathbf{w}_l^\top \cdot (\mathbf{x} - \delta)) \right)$$
(8)

- ϵ -net jointly over v, δ with metric $||v-v'|| + ||\delta-\delta'||$
- ullet Union bound and upper bound approximation error o upper bound on gradient deviation
- Finally, use following standard descend Lemma:

$$f(x - \eta \nabla f(x)) \le f(x) - \eta \|\nabla f(x)\| \tag{9}$$

$$\times \left(\|\nabla f(x)\| - \sup_{\frac{\|\delta\|}{\|\nabla f(x)\|} \le \eta} \|\nabla f(x) - \nabla f(x+\delta)\| \right)$$
 (10)

Experiments

- Averaged over 100 random inputs and 100 networks
- Search over $|\eta| \le 20$ (empirically: ≈ 1 almost always)

 Results also hold for ReLU, random inputs, Gaussian output neuron weights

- Results also hold for ReLU, random inputs, Gaussian output neuron weights
- Only shallow NNs

- Results also hold for ReLU, random inputs, Gaussian output neuron weights
- Only shallow NNs
- Doesn't explain non-robustness of trained NNs (e.g. with first order methods)

- Results also hold for ReLU, random inputs, Gaussian output neuron weights
- Only shallow NNs
- Doesn't explain non-robustness of trained NNs (e.g. with first order methods)
- Could be that stationary points selected by gradient descent are very "atypical"

Paper 2

Vardi, G., Yehudai, G. and Shamir, O., 2022. **Gradient Methods Provably Converge to Non-Robust Networks.** In Advances in Neural Information Processing Systems, 36.

$$f_{\theta}(x) = \sum_{l=1}^{k} a_l \cdot \sigma(w_l^{\top} x + b_l)$$
 (11)

- $w_l \in \mathbb{R}^d$, $a, b \in \mathbb{R}^k$, stack in param. vector $\theta = [w_1, \dots, w_k, b, a]$
- *d*: input dimension, *k*: $\#_{\text{neurons}}$ hidden layer, *n*: $\#_{\text{samples}}$ $\sigma(x) = \max\{0, x\}$

$$f_{\theta}(x) = \sum_{l=1}^{k} a_l \cdot \sigma(w_l^{\top} x + b_l)$$
 (11)

- $w_l \in \mathbb{R}^d$, $a, b \in \mathbb{R}^k$, stack in param. vector $\theta = [w_1, \dots, w_k, b, a]$
- *d*: input dimension, *k*: $\#_{\text{neurons}}$ hidden layer, *n*: $\#_{\text{samples}}$ $\sigma(x) = \max\{0, x\}$
- **Assumption:** data sufficiently separated: $|\langle x_i, x_j \rangle| \in o(d)$ for all $i \neq j$

$$f_{\theta}(x) = \sum_{l=1}^{k} a_l \cdot \sigma(w_l^{\top} x + b_l)$$
 (11)

- $w_l \in \mathbb{R}^d$, $a, b \in \mathbb{R}^k$, stack in param. vector $\theta = [w_1, \dots, w_k, b, a]$
- d: input dimension, k: #neurons hidden layer, n: #samples $\sigma(x) = \max\{0, x\}$
- **Assumption:** data sufficiently separated: $|\langle x_i, x_i \rangle| \in o(d)$ for all $i \neq j$
- Holds w.h.p. when $x_i \sim \mathcal{U}(\sqrt{d} \cdot \mathbb{S}^{d-1})$ i.i.d. and $n \in \mathcal{O}(\text{poly}(d))$

$$f_{\theta}(x) = \sum_{l=1}^{k} a_l \cdot \sigma(w_l^{\top} x + b_l)$$
 (11)

- $w_l \in \mathbb{R}^d$, $a, b \in \mathbb{R}^k$, stack in param. vector $\theta = [w_1, \dots, w_k, b, a]$
- d: input dimension, k: $\#_{neurons}$ hidden layer, n: $\#_{samples}$ $\sigma(x) = \max\{0, x\}$
- **Assumption:** data sufficiently separated: $|\langle x_i, x_j \rangle| \in o(d)$ for all $i \neq j$
- ullet Holds w.h.p. when $x_i \sim \mathcal{U}(\sqrt{d}\cdot\mathbb{S}^{d-1})$ i.i.d. and $n\in\mathcal{O}(\mathsf{poly}(d))$
- Empirical loss

$$\mathcal{L}(\theta) := \sum_{i=1}^{n} \ell(y_i f_{\theta}(x_i)). \tag{12}$$

with either $\ell(z) = e^{-z}$ or $\ell(z) = \log(1 + e^{-z})$.

Robust Networks Exist

Achieving robustness is not hard for separated data:

Robust Networks Exist

Achieving robustness is not hard for separated data:

Theorem (Robust Networks Exist)

Assume that for all $i \neq j$ it holds that $|\langle x_i, x_j \rangle| \leq c \cdot d$, where 0 < c < 1. Then, there always exists some f_θ such that for every x_i , an adversarial perturbation must be of size at least $\Omega(\sqrt{d})$.

Robust Networks Exist

Achieving robustness is not hard for separated data:

Theorem (Robust Networks Exist)

Assume that for all $i \neq j$ it holds that $|\langle x_i, x_j \rangle| \leq c \cdot d$, where 0 < c < 1. Then, there always exists some f_θ such that for every x_i , an adversarial perturbation must be of size at least $\Omega(\sqrt{d})$.

Proof sketch: construct NN such that exactly one neuron is active per training sample. Then, requires $\|\delta\| \in \Omega(\sqrt{d})$ to turn off neuron and turn on other neuron of opposite sign.

Dynamics and KKT points

• Start at $\theta(0)$ and perform **gradient flow** on the empirical loss:

$$\frac{d\theta(t)}{dt} \in -\partial^{\circ} \mathcal{L}(\theta(t)) \tag{13}$$

• Convergence in direction of $\theta(t)$ to $\tilde{\theta}$: $\lim_{t \to \infty} \frac{\theta(t)}{\|\theta(t)\|} = \frac{\tilde{\theta}}{\|\tilde{\theta}\|}$

Dynamics and KKT points

• Start at $\theta(0)$ and perform **gradient flow** on the empirical loss:

$$\frac{d\theta(t)}{dt} \in -\partial^{\circ} \mathcal{L}(\theta(t)) \tag{13}$$

• Convergence in direction of $\theta(t)$ to $\tilde{\theta}$: $\lim_{t\to\infty} \frac{\theta(t)}{\|\theta(t)\|} = \frac{\tilde{\theta}}{\|\tilde{\theta}\|}$

Theorem (GF and KKT Points, Lyu and Li '19, Ji and Telgarsky '20)

Let f_{θ} be a homogenous ReLU network. Consider minimizing either the exponential or logistic loss using gradient flow.

Assume that $\exists t_0$ s.t. $\mathcal{L}(\theta(t_0)) < 1$, that is, $y_i f_{\theta(t_0)}(x_i) > 0$ for every x_i . Then, gradient flow converges in direction to a first order stationary point (KKT point) of the following maximum margin problem in param. space:

$$\min_{\theta} \frac{1}{2} \|\theta\|^2 \quad s.t. \quad \forall i \in [n] \quad y_i f_{\theta}(x_i) \ge 1$$
 (14)

Moreover, $\mathcal{L}(\theta(t)) \to 0$ and $\|\theta(t)\| \to \infty$ as $t \to \infty$.

Main Theorem

Theorem (Main Theorem)

Let $\{(x_i, y_i)\}_{i=1}^n \subset (\sqrt{d} \cdot \mathbb{S}^{d-1}) \times \{\pm 1\}$, such that the two classes are balanced (at least a constant fraction each) and let $n \leq \frac{d+1}{3(\max_{i \neq j} |\langle x_i, x_j \rangle| + 1)}$. Let f_θ be a network with θ a KKT point as above. Then there exists a vector $\delta = \eta \sum_{i=1}^n y_i x_i$ for some $\eta > 0$ with $|\eta| \in \mathcal{O}\left(\sqrt{\frac{d}{c^2 n}}\right)$ which is a universal perturbation over the whole training set, i.e., $\forall i \in [n] : sign(f_\theta(x_i - y_i \delta)) = -y_i$.

Main Theorem

Theorem (Main Theorem)

Let $\{(x_i,y_i)\}_{i=1}^n\subset (\sqrt{d}\cdot\mathbb{S}^{d-1})\times\{\pm 1\}$, such that the two classes are balanced (at least a constant fraction each) and let $n\leq \frac{d+1}{3(\max_{i\neq j}|\langle x_i,x_j\rangle|+1)}$. Let f_θ be a network with θ a KKT point as above. Then there exists a vector $\delta=\eta\sum_{i=1}^n y_ix_i$ for some $\eta>0$ with $|\eta|\in\mathcal{O}\left(\sqrt{\frac{d}{c^2n}}\right)$ which is a universal perturbation over the whole training set, i.e., $\forall i\in[n]: sign(f_\theta(x_i-y_i\delta))=-y_i$.

• If $x_i \sim \mathcal{U}(\sqrt{d} \cdot \mathbb{S}^{d-1})$, then w.h.p. $\max_{i \neq j} |\langle x_i, x_j \rangle| \in \mathcal{O}(\sqrt{d} \log(d))$ and hence for $n \in \Theta(\frac{\sqrt{d}}{\log(d)})$ we have $\|\delta\| \in o(\sqrt{d})$

Main Theorem

Theorem (Main Theorem)

Let $\{(x_i,y_i)\}_{i=1}^n\subset (\sqrt{d}\cdot\mathbb{S}^{d-1})\times\{\pm 1\}$, such that the two classes are balanced (at least a constant fraction each) and let $n\leq \frac{d+1}{3(\max_{i\neq j}|\langle x_i,x_j\rangle|+1)}$. Let f_θ be a network with θ a KKT point as above. Then there exists a vector $\delta=\eta\sum_{i=1}^n y_ix_i$ for some $\eta>0$ with $|\eta|\in\mathcal{O}\left(\sqrt{\frac{d}{c^2n}}\right)$ which is a universal perturbation over the whole training set, i.e., $\forall i\in[n]: sign(f_\theta(x_i-y_i\delta))=-y_i$.

- If $x_i \sim \mathcal{U}(\sqrt{d} \cdot \mathbb{S}^{d-1})$, then w.h.p. $\max_{i \neq j} |\langle x_i, x_j \rangle| \in \mathcal{O}(\sqrt{d} \log(d))$ and hence for $n \in \Theta(\frac{\sqrt{d}}{\log(d)})$ we have $\|\delta\| \in o(\sqrt{d})$
- Independent of the width and number of parameters

•
$$x_i \sim \mathcal{U}(\sqrt{d}\mathbb{S}^{d-1})$$
, $y_i \sim \mathcal{U}(\{\pm 1\})$

- $x_i \sim \mathcal{U}(\sqrt{d}\mathbb{S}^{d-1}), y_i \sim \mathcal{U}(\{\pm 1\})$
- ullet Trained with SGD and exponential loss until $\mathcal{L} \leq 10^{-30}$

- $x_i \sim \mathcal{U}(\sqrt{d}\mathbb{S}^{d-1}), y_i \sim \mathcal{U}(\{\pm 1\})$
- ullet Trained with SGD and exponential loss until $\mathcal{L} \leq 10^{-30}$
- Consider maximum η_{min} over all n samples
- Averaged over 5 networks per data point

• Proof technique only applicable to shallow NNs

- Proof technique only applicable to shallow NNs
- Strong separation condition; implies upper bound on dataset size

- Proof technique only applicable to shallow NNs
- Strong separation condition; implies upper bound on dataset size
- Doesn't allow for clusters of points within which examples have large inner products

- Proof technique only applicable to shallow NNs
- Strong separation condition; implies upper bound on dataset size
- Doesn't allow for clusters of points within which examples have large inner products
- Experiments: separation condition probably too pessimistic

- Proof technique only applicable to shallow NNs
- Strong separation condition; implies upper bound on dataset size
- Doesn't allow for clusters of points within which examples have large inner products
- Experiments: separation condition probably too pessimistic
- Universal perturbations

- Proof technique only applicable to shallow NNs
- Strong separation condition; implies upper bound on dataset size
- Doesn't allow for clusters of points within which examples have large inner products
- Experiments: separation condition probably too pessimistic
- Universal perturbations
- Robust networks exist but gradient flow converges to non-robust ones
 → yet another implicit bias of neural networks trained with gradient based methods

Paper 3

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K. and Madry, A., 2018. **Adversarially robust generalization requires more data.** Advances in neural information processing systems, 31.

• For any learning task, robustness alone is trivially achievable (constant hypothesis)

- For any learning task, robustness alone is trivially achievable (constant hypothesis)
- **Natural question:** inherent trade-off between robustness and generalization?

- For any learning task, robustness alone is trivially achievable (constant hypothesis)
- Natural question: inherent trade-off between robustness and generalization?
- This paper answers question for two simple learning tasks

- For any learning task, robustness alone is trivially achievable (constant hypothesis)
- Natural question: inherent trade-off between robustness and generalization?
- This paper answers question for two simple learning tasks
- Holds for any learning algorithm, including NNs trained with ERM

- For any learning task, robustness alone is trivially achievable (constant hypothesis)
- Natural question: inherent trade-off between robustness and generalization?
- This paper answers question for two simple learning tasks
- Holds for any learning algorithm, including NNs trained with ERM
- Separation between (linear) vs. (non-linearity o linear) classifiers (not shown here)

Setup

Binary classification with $0-1\ loss$

Setup

Binary classification with 0-1 loss

Definition (Standard Classification Error)

Let $\mathcal{D}: \mathbb{R}^d \times \{\pm 1\} \to \mathbb{R}$ be a distribution. Then, the classification error β of a classifier f is defined as

$$\beta := \mathbb{P}_{(x,y)\sim\mathcal{D}}(f(x') \neq y) \tag{15}$$

Setup

Binary classification with 0-1 loss

Definition (Standard Classification Error)

Let $\mathcal{D}: \mathbb{R}^d \times \{\pm 1\} \to \mathbb{R}$ be a distribution. Then, the classification error β of a classifier f is defined as

$$\beta := \mathbb{P}_{(x,y)\sim\mathcal{D}}(f(x') \neq y) \tag{15}$$

Definition (Robust Classification Error)

The (\mathcal{B} -)robust classification error β_r of a classifier f is defined as $\beta_r := \mathbb{P}_{(x,y)\sim\mathcal{D}}[\exists x' \in \mathcal{B}(x) : f(x') \neq y].$

Here:
$$\mathcal{B}(x) = \mathcal{B}_{\infty}^{\epsilon}(x) = \{x' \in \mathbb{R}^d | ||x' - x||_{\infty} \le \epsilon\}$$

• **Considered regime:** single sample sufficient to obtain low standard classification error (w.h.p.) from a single sample.

- **Considered regime:** single sample sufficient to obtain low standard classification error (w.h.p.) from a single sample.
- Applies to following two data models + linear classifiers:

- **Considered regime:** single sample sufficient to obtain low standard classification error (w.h.p.) from a single sample.
- Applies to following two data models + linear classifiers:

Definition (Gaussian Model)

Let θ^* be a per-class mean vector and let $\sigma>0$ be the variance. A (θ^*,σ) -Gaussian model is defined by the distribution over $\mathbb{R}^d\times\{\pm 1\}$ by first drawing a label $y\in\{\pm 1\}$ uniformly at random and then sampling the input point $x\in\mathbb{R}^d$ from $\mathcal{N}(y\cdot\theta^*,\sigma^2I)$.

- **Considered regime:** single sample sufficient to obtain low standard classification error (w.h.p.) from a single sample.
- Applies to following two data models + linear classifiers:

Definition (Gaussian Model)

Let θ^* be a per-class mean vector and let $\sigma>0$ be the variance. A (θ^*,σ) -Gaussian model is defined by the distribution over $\mathbb{R}^d\times\{\pm 1\}$ by first drawing a label $y\in\{\pm 1\}$ uniformly at random and then sampling the input point $x\in\mathbb{R}^d$ from $\mathcal{N}(y\cdot\theta^*,\sigma^2I)$.

Definition (Bernoulli Model)

Let $\theta^* \in \{\pm 1\}^d$ and let $\tau > 0$. Then the (θ^*, τ) -Bernoulli model is defined by the following distribution over $(x, y) \in \{\pm\}^d \times \{\pm 1\}$: First, draw a label y uniformly at random from $\{\pm 1\}$. Then sample the data point $x \in \{\pm 1\}^d$ by sampling each coordinate according to

$$x_i = \begin{cases} y \cdot \theta_i^* & \text{with probability } 1/2 + \tau \\ -y \cdot \theta_i^* & \text{with probability } 1/2 - \tau \end{cases}$$

Separation under Gaussian Models

Given w, define linear classifier $f_w : \mathbb{R}^d \to \{\pm 1\}$ as $f_w(x) = \operatorname{sgn}(\langle w, x \rangle)$

Separation under Gaussian Models

Given w, define linear classifier $f_w : \mathbb{R}^d \to \{\pm 1\}$ as $f_w(x) = \operatorname{sgn}(\langle w, x \rangle)$

Theorem

Let (x,y) be drawn from a (θ^*,σ) -Gaussian model with $\|\theta^*\|_2 = \sqrt{d}$ and $\sigma \leq c \cdot d^{1/4}$. Let $\hat{w} \in \mathbb{R}^d$ be the vector $\hat{w} = y \cdot x$. Then w.h.p., the linear classifier $f_{\hat{w}}$ has classification error at most 1%.

Separation under Gaussian Models

Given w, define linear classifier $f_w : \mathbb{R}^d \to \{\pm 1\}$ as $f_w(x) = \operatorname{sgn}(\langle w, x \rangle)$

Theorem

Let (x,y) be drawn from a (θ^*,σ) -Gaussian model with $\|\theta^*\|_2 = \sqrt{d}$ and $\sigma \leq c \cdot d^{1/4}$. Let $\hat{w} \in \mathbb{R}^d$ be the vector $\hat{w} = y \cdot x$. Then w.h.p., the linear classifier $f_{\hat{w}}$ has classification error at most 1%.

Theorem

Let $\{x_i,y_i\}_{i=1}^n$ be drawn i.i.d. from a (θ^*,σ) -Gaussian model with $\|\theta^*\|_2 = \sqrt{d}$ and $\sigma \leq c_1 d^{1/4}$. Let $\hat{w} = \sum_{i=1}^n y_i x_i$. Then w.h.p., the linear classifier $f_{\hat{w}}$ has ℓ_{∞}^{ϵ} -robust classification error at most 1% if

$$n \geq \begin{cases} 1 & \text{for } \epsilon \leq \frac{1}{4}d^{-1/4} \\ c_2 \epsilon^2 \sqrt{d} & \text{for } \frac{1}{4}d^{-1/4} \leq \epsilon \leq \frac{1}{4} \end{cases}.$$

4日ト4回ト4号ト4号ト 号 り

Theorem

Let g_n be any learning algorithm, i.e., a function mapping n samples to a binary classifier f(x). Let $\sigma = c_1 d^{1/4}$, let $\epsilon \geq 0$, and let $\theta \in \mathbb{R}^d$ be drawn from $\mathcal{N}(0,I)$. Moreover, let the samples be drawn from the (θ,σ) -Gaussian model. Then, the expected ℓ_{∞}^{ϵ} - robust classification error of f_n is at least $(1-\frac{1}{d})\frac{1}{2}$ if

$$n \le c_2 \frac{\epsilon^2 \sqrt{d}}{\log d} \tag{16}$$

Theorem

Let g_n be any learning algorithm, i.e., a function mapping n samples to a binary classifier f(x). Let $\sigma = c_1 d^{1/4}$, let $\epsilon \geq 0$, and let $\theta \in \mathbb{R}^d$ be drawn from $\mathcal{N}(0,I)$. Moreover, let the samples be drawn from the (θ,σ) -Gaussian model. Then, the expected ℓ_{∞}^{ϵ} - robust classification error of f_n is at least $(1-\frac{1}{d})\frac{1}{2}$ if

$$n \le c_2 \frac{\epsilon^2 \sqrt{d}}{\log d} \tag{16}$$

Together with previous Thm.: Robust sample complexity in the range

$$c\frac{\epsilon^2 \sqrt{d}}{\log d} \le n \le c' \epsilon^2 \sqrt{d} \tag{17}$$

Bernoulli Model

Theorem

Let (x,y) be drawn from a (θ^*,τ) -Bernoulli model with $\tau \geq c \cdot d^{-1/4}$ where c is a universal constant. Let $\hat{w} \in \mathbb{R}^d$ be the vector $\hat{w} = y \cdot x$. Then with probability, the linear classifier $f_{\hat{w}}$ has classification error at most 1%.

Theorem (Informal)

Assume that the data is generated by the Bernoulli model. Then, a linear model f has expected ℓ_∞^ϵ -robust classification error of at least $\frac{1}{2}-\gamma$

$$n \in \tilde{\mathcal{O}}(\gamma^2 \cdot d) \tag{18}$$

while $\mathbf{f} \circ \operatorname{sign}$ has ℓ_{∞}^{ϵ} -robust classification error at most 1% when using a single sample.

- CNNs trained with robustness maximization algorithm
- Compare standard classification error to robust classification error on MNIST and CIFAR-10

80000

• Results pessimistic: existence of a familiy of distributions (Gaussian model) with separation between the two metrics

- Results pessimistic: existence of a familiy of distributions (Gaussian model) with separation between the two metrics
- Perhaps separation vanishes for:

- Results pessimistic: existence of a familiy of distributions (Gaussian model) with separation between the two metrics
- Perhaps separation vanishes for:
 - Structured data models (e.g. distributions on low-dimensional manifolds)

- Results pessimistic: existence of a familiy of distributions (Gaussian model) with separation between the two metrics
- Perhaps separation vanishes for:
 - Structured data models (e.g. distributions on low-dimensional manifolds)
 - Learning tasks where single-sample standard generalization is not possible

- Results pessimistic: existence of a familiy of distributions (Gaussian model) with separation between the two metrics
- Perhaps separation vanishes for:
 - Structured data models (e.g. distributions on low-dimensional manifolds)
 - Learning tasks where single-sample standard generalization is not possible
- Specialized results for NNs or models trained with first order methods?

- Results pessimistic: existence of a familiy of distributions (Gaussian model) with separation between the two metrics
- Perhaps separation vanishes for:
 - Structured data models (e.g. distributions on low-dimensional manifolds)
 - Learning tasks where single-sample standard generalization is not possible
- Specialized results for NNs or models trained with first order methods?
- Similar results for ℓ_2 -perturbations?

 Sample complexity of neural networks, not ignoring the training algorithm, and not just under worst-case distributions

- Sample complexity of neural networks, not ignoring the training algorithm, and not just under worst-case distributions
- Generalization/robustness under realistic data models, e.g., low-dim. manifolds, clusters, sparse models

- Sample complexity of neural networks, not ignoring the training algorithm, and not just under worst-case distributions
- Generalization/robustness under realistic data models, e.g., low-dim. manifolds, clusters, sparse models
- Separation of sample complexity: NNs vs Kernels, linear classifiers, ...

- Sample complexity of neural networks, not ignoring the training algorithm, and not just under worst-case distributions
- Generalization/robustness under realistic data models, e.g., low-dim. manifolds, clusters, sparse models
- Separation of sample complexity: NNs vs Kernels, linear classifiers, ...
- Generalization measures: beyond VC, beyond flatness

Thank you! Questions?

Bubeck, S., Cherapanamjeri, Y., Gidel, G. and Tachet des Combes, R., 2021. **A single gradient step finds adversarial examples on random two-layers neural networks.** Advances in Neural Information Processing Systems, 34.

Vardi, G., Yehudai, G. and Shamir, O., 2022. **Gradient Methods Provably Converge to Non-Robust Networks.** In Advances in Neural Information Processing Systems, 36.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K. and Madry, A., 2018. **Adversarially robust generalization requires more data.** Advances in neural information processing systems, 31.