

PCT/JP2004/017117
11.11.2004

PA 1232633

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 06, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/520,281

FILING DATE: November 17, 2003

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

T. Lawrence

T. LAWRENCE
Certifying Officer

16698
U.S.P.T.O.**PROVISIONAL APPLICATION COVER SHEET**

This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(c).

Docket Number 245598US90PROV

INVENTOR(s)/APPLICANT(s)

LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)
KATADA	Yoshinori		Oyama, Japan
TAGA	Kazuo		Oyama, Japan

 Additional inventors are named on separately numbered sheets attached hereto.**TITLE OF THE INVENTION (280 CHARACTERS MAX)**

EXPANSION TANK APPARATUS, PRODUCTION METHOD OF EXPANSION TANK APPARATUS AND LIQUID-COOLED RADIATOR

CORRESPONDENCE ADDRESS

Customer Number

22850

Phone: (703) 413-3000

Fax: (703) 413-2220

ENCLOSED APPLICATION PARTS

- | | | | | |
|---|--------------------------|----|--|--|
| <input checked="" type="checkbox"/> Specification | <i>Number of Pages:</i> | 15 | <input type="checkbox"/> CD(s), Number | |
| <input checked="" type="checkbox"/> Drawing(s) | <i>Number of Sheets:</i> | 5 | <input checked="" type="checkbox"/> Other (specify): | White Advance Serial Number Card
Application Data Sheet (2) |

METHOD OF PAYMENT

- Applicant claims small entity status. See 37 CFR 1.27.
- A check or money order is enclosed to cover the Provisional Filing Fees
- Credit card payment form is attached to cover the Provisional Filing Fees in the amount of _____
- The Director is hereby authorized to charge filing fees and credit any overpayment to Deposit Account Number 15-0030

PROVISIONAL \$160.00
FILING FEE
AMOUNT

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

 No. Yes, the name of the U.S. Government agency and the Government contract number are:

Respectfully Submitted,

1/19/03

DATE

Masayasu Mori

Registration Number: 47,301

James D. Hamilton

REGISTRATION NO. 28,421

H:\24PROV\245598\PROV_CVR.DOC

PROVISIONAL APPLICATION PENDING ONLY

【書類名】明細書

【発明の名称】膨張タンク装置、膨張タンク装置の製造方法および液冷式放熱装置

【技術分野】

【0001】

この発明は、たとえばパーソナルコンピュータやサーバなどのIT機器や、AV機器や、産業機械や、工作機械などが備えている発熱源から発せられる熱を放熱する装置に用いられる膨張タンク装置、膨張タンク装置の製造方法および膨張タンク装置を備えた液冷式放熱装置に関する。

【0002】

この明細書および特許請求の範囲において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。また、図5の上下を上下というものとする。

【背景技術】

【0003】

従来、たとえばパーソナルコンピュータやサーバなどが備えている発熱源から発せられる熱を放熱する方法として、片面が受熱面となされたアルミニウム製放熱基板と、放熱基板の他面に一体に設けられた放熱フィンとよりなるものを使用し、放熱基板の受熱面に発熱源を接触させ、ファンにより放熱フィンに風を当てることによって、発熱源から発せられる熱を放熱基板および放熱フィンを介して空気中に逃がす方法が広く採用されていた。

【0004】

しかしながら、最近では、たとえばパーソナルコンピュータやサーバなどにおいては、高速処理が要求されるアプリケーションが増加する一方で、音楽や動画などのマルチメディアアプリケーションも増加している。そのため、たとえば中央演算処理装置（以下、CPUという）の動作周波数も高くなってしまっており、発熱量も著しく増加している。また、これらの機器においては、静謐性も要求されている。したがって、上述した方法では十分な放熱性能が得られなくなってくるとともに、要求される静謐性を満たすこともできない。

【0005】

また、たとえば産業機械や工作機械などの発熱源から発せられる熱を放熱する方法とし

て、フロン系の作動液を用いたヒートパイプを利用して大気中に熱を逃がす方法が広く採用されていた。

【0006】

しかしながら、地球環境保護の点からフロンを利用しない冷却方式への転換が求められている。

【0007】

このような問題を解決するために、水を主体とする冷却液、たとえば不凍液を用いた液冷式放熱装置が利用されるようになってきている。

【0008】

たとえば、ノート型パーソナルコンピュータの液冷式放熱装置として、冷却液が満たされたウォータージャケットからなりかつ発熱電子部品に固定された受熱器と、両端が受熱器に接続されかつ冷却液を循環させる冷却液循環チューブとを備え、受熱器内および冷却液循環チューブ内に不凍液が封入されており、受熱器がキーボードを有するパソコン本体部に配置され、冷却液循環チューブがパソコン本体部に開閉自在に設けられたディスプレイ装置まで延ばされ、ディスプレイ装置における開いた際に上方に位置する角部に、冷却液循環チューブに連通したリザーブタンクが設けられたものが提案されている（特許文献1参照）。この液冷式放熱装置においては、リザーブタンクの働きにより、発熱源から受けた熱により冷却液が加熱された際の熱膨張を吸収するとともに、冷却液が減少した際の冷却液の不足分を補充するようになっている。

【0009】

ところで、液冷式放熱装置において冷却効率を向上させるためには、冷却液中の空気をできる限り循環系から排除する必要がある。しかしながら、特許文献1記載の液冷式放熱装置では、ディスプレイ装置を閉じた際にリザーブタンク内の空気が冷却液循環チューブ内に混入し、この空気はディスプレイ装置を開いてもリザーブタンク内に戻りにくいので、冷却効率が低下するという問題がある。

【特許文献1】特開2002-182797号公報

【発明の開示】

【発明が解決しようとする課題】

【0010】

この発明の目的は、上記問題を解決し、冷却液中の空気を循環系から排除するとともに、循環系の破損を防止することができ、しかも循環系内の冷却液の減少を防止することができる膨張タンク装置、膨張タンク装置の製造方法および液冷式放熱装置を提供することにある。

【課題を解決するための手段】

【0011】

1) 冷却液通路を有するとともに上面が平坦面であるタンク設置ベースと、タンク設置ベースの上面に設けられた膨張タンクとを備えており、タンク設置ベースが、その上面と冷却液通路とを通じさせる連通穴を有しており、膨張タンクが、上方に膨出しつつ下方に開口した膨出部を有するタンク本体と、タンク本体の下端に接合されかつ膨出部の下端開口を塞ぐとともに、タンク設置ベースの上面に接合された底板とを有しており、膨張タンクの底板における連通孔と対応する部分に、タンク設置ベースの連通穴と通じるように貫通穴が形成され、底板における貫通穴の周縁に、上方に向かって貫通穴の中央部側に傾斜した邪魔板が全周にわたって設けられている膨張タンク装置。

【0012】

2) タンク設置ベースが、上下2枚のベース形成用板を積層状に接合することにより形成されており、下ベース形成用板を下方に膨出させることにより上下両ベース形成用板間に冷却液通路が形成され、上ベース形成用板に連通穴があけられている上記1)記載の膨張タンク装置。

【0013】

3) 上下両ベース形成用板がそれぞれ金属からなり、上下両ベース形成用板がろう付されている上記2)記載の膨張タンク装置。

【0014】

4) 上下両ベース形成用板がそれぞれアルミニウムからなり、上ベース形成用板の下面および下ベース形成用板の上面のうち少なくともいずれか一方に設けられていたろう材層を利用して上下両ベース形成用板がろう付されている上記2)または3)記載の膨張タンク装置

。

【0015】

5) タンク本体の膨出部の頂壁が平坦であり、頂壁における邪魔板先端に囲まれた開口に臨む部分が下方に突出させられている上記 1) ~ 4) のうちのいずれかに記載の膨張タンク装置置。

【0016】

6) タンク本体および底板がそれぞれ金属からなり、タンク本体における膨出部の周囲の外向きフランジと底板とがろう付されている上記 1) ~ 5) のうちのいずれかに記載の膨張タンク装置。

【0017】

7) タンク本体および底板がそれぞれアルミニウムからなり、タンク本体の下面および底板の上面のうちの少なくともいずれか一方に設けられていたらう材層を利用してタンク本体の外向きフランジと底板とがろう付されている上記 6) 記載の膨張タンク装置。

【0018】

8) 底板の下面および上ベース形成用板の上面のうちの少なくともいずれか一方に設けられていたらう材層を利用して底板と上ベース形成用板とがろう付されている上記 4) ~ 7) のうちのいずれかに記載の膨張タンク装置。

【0019】

9) 上記 1) 記載の膨張タンク装置を製造する方法であって、下方に膨出した冷却液通路を有する金属製下ベース形成用板と、貫通状の連通穴を有する金属製上ベース形成用板とを用意すること、上方に膨出しつつ下方に開口した膨出部を有する金属製タンク本体と、タンク本体の膨出部の下端開口を塞ぐ金属製底板とを用意すること、底板に貫通穴を形成するとともに、底板における貫通穴の周縁に、上方に向かって貫通穴の中央部側に傾斜した邪魔板を全周にわたって形成しておくこと、下ベース形成用板上に、上ベース形成用板を、連通穴が冷却液通路に臨むように重ね合わせること、上ベース形成用板上に、貫通穴内に連通穴が含まれるように底板を重ね合わせるとともに、底板上に、タンク本体を、邪魔

板が上方膨出部内に来るよう重ね合わせること、上下両ベース形成用板どうし、上ベース形成用板と底板、および底板とタンク本体とを同時にろう付することを含む膨張タンク装置の製造方法。

【0020】

10) 上下両ベース形成用板、底板およびタンク本体をアルミニウムで形成し、上ベース形成用板の下面および下ベース形成用板の上面のうち少なくともいずれか一方にろう材層を設けておくとともに、タンク本体の下面および底板の上面のうちの少なくともいずれか一方にろう材層を設けておき、さらに底板の下面および上ベース形成用板の上面のうちの少なくともいずれか一方にろう材層を設けておき、これらのろう材層を利用して上下両ベース形成用板どうし、上ベース形成用板と底板、および底板とタンク本体とをろう付する上記9)記載の膨張タンク装置の製造方法。

【0021】

11) 上記1)～8)のうちのいずれかに記載の膨張タンク装置におけるタンク設置ベースの冷却液通路の両端開口に連なる冷却液循環路と、冷却液循環路の途中に設けられた受熱部と、タンク設置ベースの冷却液通路および冷却液循環路内で冷却液を循環させるポンプとを備えている液冷式放熱装置。

【0022】

12) 上記2)～8)のうちのいずれかに記載の膨張タンク装置におけるタンク設置ベースの冷却液通路の両端開口に連なる冷却液循環路と、冷却液循環路の途中に設けられた受熱部と、タンク設置ベースの冷却液通路および冷却液循環路内で冷却液を循環させるポンプとを備えており、冷却液循環路の少なくとも一部分が、上下両ベース形成用板の延長部分間に形成されている液冷式放熱装置。

【0023】

13) 積層状に接合された2枚の金属板からなる基板に、冷却液通路を有する受熱部、請求項1～8)のうちのいずれかに記載の膨張タンク装置、および受熱部の冷却液通路と膨張タンク装置の冷却液通路とを接続する冷却液循環路が設けられており、膨張タンク装置のタンク設置ベースが上記2枚の金属板からなる液冷式放熱装置。

【0024】

14) 冷却液循環路および冷却液通路内に封入されている冷却液の量が、膨張タンク装置

を垂直状態にした際に、冷却液循環路および冷却液通路内を満たすとともに、膨張タンクの膨出部内の冷却液の液面が膨張タンクの底板における邪魔板先端で囲まれる開口よりも上方に位置し、しかも膨張タンク装置を上下逆向きにした際に、冷却液循環路および冷却液通路内を満たすとともに、膨張タンクの膨出部内の冷却液の液面が膨張タンクの底板における邪魔板先端で囲まれる開口よりも上方に位置するような量である上記 11)～13)のう

ちのいずれかに記載の液冷式放熱装置。

【0025】

15) キーボードを有する本体部と、本体部に開閉自在に設けられたディスプレイ装置とよりなり、本体部のハウジング内に上記 11)～14)のうちのいずれかに記載の液冷式放熱装

置が配置されているノート型パーソナルコンピュータ。

【発明の効果】

【0026】

上記 1)の膨張タンク装置におけるタンク設置ベースの冷却液通路の両端開口に連なつて

冷却液循環路を形成し、冷却液循環路の途中に受熱部を設け、タンク設置ベースの冷却液通路および冷却液循環路内で冷却液を循環させるポンプを配置しておけば、受熱部において発熱源から発せられる熱を受けて加熱された冷却液は、ポンプにより冷却液循環路およびタンク設置ベースの冷却液通路を通って受熱部に戻る間に冷却される。そして、冷却液中に気泡状態で含まれる空気は、タンク設置ベースの冷却液通路を通過する際に、タンク設置ベースの連通穴および底板の貫通穴を通ってタンク本体の膨出部内に入り、ここに溜められる。しかも、貫通穴の周囲の邪魔板の働きにより、一旦膨出部内に入った空気は冷却液通路に逆流しにくくなる。したがって、空気が冷却液循環路内の冷却液から排除され、冷却効率が向上する。また、発熱源から受けた熱により冷却液が加熱されて熱膨張したとしても、冷却液は膨張タンクの膨出部内に流入するので、内圧上昇による冷却液循環路の破損が防止される。さらに、膨張タンク装置の膨張タンク本体内に余剰の冷却液を入れておけば、冷却液が減少したとしても冷却効率の低下が防止される。

【0027】

上記 2)～4)の膨張タンク装置によれば、上下両ベース形成用板を簡単な加工方法で製作

することができ、その結果タンク設置ベースを比較的簡単に製造することができる。

【0028】

上記 5)の膨張タンク装置によれば、タンク本体の膨出部内に入った空気が、タンク設置

ベースの冷却液通路内へ逆流しにくくなる。

【0029】

上記 6)および 7)の膨張タンク装置によれば、タンク本体および底板を簡単な方法で製作

することができ、その結果膨張タンクを比較的簡単に製造することができる。

【0030】

上記 8)の膨張タンク装置によれば、膨張タンク装置全体を比較的簡単に製造することが

できる。

【0031】

上記 9)および 10)の膨張タンク装置の製造方法によれば、膨張タンク装置全体を比較的簡単に製造することができる。

【0032】

上記 11)～13)の液冷式放熱装置によれば、受熱部において発熱源から発せられる熱を受

けて加熱された冷却液は、ポンプにより冷却液循環路およびタンク設置ベースの冷却液通路を通って受熱部に戻る間に冷却される。そして、冷却液中に気泡状態で含まれる空気は、タンク設置ベースの冷却液通路を通過する際に、タンク設置ベースの連通穴および底板の貫通穴を通ってタンク本体の膨出部内に入り、ここに溜められる。しかも、貫通穴の周囲の邪魔板の働きにより、一旦膨出部内に入った空気は冷却液通路に逆流しにくくなる。したがって、空気が冷却液循環路内の冷却液から排除され、冷却効率が向上する。また、発熱源から受けた熱により冷却液が加熱されて熱膨張したとしても、冷却液は膨張タンクの膨出部内に流入するので、内圧上昇による冷却液循環路の破損が防止される。さらに、

膨張タンク装置の膨張タンク本体内に余剰の冷却液を入れておけば、冷却液が減少したとしても冷却効率の低下が防止される。

【0033】

上記 14) の液冷式放熱装置によれば、膨張タンク装置の姿勢をどのようなものにしたとしても、膨張タンクの膨出部内の空気が冷却液通路内に逆流することが極力防止される。

【0034】

上記 15) のノート型パーソナルコンピュータによれば、C P Uなどの発熱電子部品を効率良く冷却することができるとともに、静肃性が向上する。

【発明を実施するための最良の形態】

【0035】

以下、この発明の実施形態を、図面を参照して説明する。なお、以下の説明において、図1に矢印Xで示す方向を左、これと反対方向を右といい、同じく矢印Yで示す方向を前、これと反対方向を後というものとする。

【0036】

図1および図2はこの発明による膨張タンク装置を備えた液冷式放熱装置の全体構成を示し、図3～図7はその要部の構成を示す。また、図8および図9は液冷式放熱装置の製造方法を示す。

【0037】

図1および図2において、液冷式放熱装置(1)は、上下に積層状に接合された2枚の高熱伝導性板、たとえばアルミニウム板(2)(3)からなる左右方向に長い方形状の基板(4)に、冷却液通路(7)を有する受熱部(5)、冷却液通路(17)を有する膨張タンク装置(14)、および両冷却液通路(7)(17)を接続する冷却液循環路(6)とが一体に設けられ、両冷却液通路(7)(17)および冷却液循環路(6)内に不凍液などからなるアルミニウムに対して非腐食性の冷却液が封入されたものである。

【0038】

図3および図4に詳細に示すように、受熱部(5)は、上下のアルミニウム板(2)(3)からなるとともに、両アルミニウム板(2)(3)間に前後方向に伸びる冷却液通路(7)が形成されている受熱部本体(8)と、受熱部本体(8)の冷却液通路(7)内に左右方向に並んで配置されかつ高熱伝導性材、たとえばアルミニウム押出形材からなる2つの偏平チューブ(9)とを

備えている。上アルミニウム板(2)は下面にろう材層を有するアルミニウムプレージングシートからなるとともに、下アルミニウム板(3)はペア材からなり、両アルミニウム板(2)(3)は上アルミニウム板(2)のろう材層を利用してろう付されている。

【0039】

受熱部本体(8)を構成する上アルミニウム板(2)の上面は、発熱体(12)が熱的に接触する受熱面(11)となっている。受熱部本体(8)の冷却液通路(7)は、下アルミニウム板(3)を下方に膨出させることにより形成されており、その前端部は先端に向かって徐々に幅狭となっている。冷却液通路(7)は、前端が開口するとともに後端の右端部が開口している。受熱部本体(8)を構成する上アルミニウム板(2)における偏平チューブ(9)の両端を含む部分は、2つの偏平チューブ(9)の全幅の合計以上の長さにわたって外方に膨出させられ、左右方向に伸びるろう材流入防止用膨出部(13)が形成されている。

【0040】

各偏平チューブ(9)は並列状に形成され、かつ冷却液通路(7)の長さ方向（前後方向）に伸びる複数の穴状通路(9a)を有している。各偏平チューブ(9)の両端は膨出部(13)の幅方向（前後方向）の中間部に位置している。両偏平チューブ(9)の上壁における上アルミニウム板(2)下面に接した部分全体は、それぞれ上アルミニウム板(2)の下面のろう材層を利用して上アルミニウム板(2)にろう付されている。また、両偏平チューブ(9)の下壁は、それぞれその両端部を除いて偏平チューブ(9)よりも短いシート状ろう材を利用して下アルミニウム板(3)にろう付されている。

【0041】

なお、偏平チューブとしては、アルミニウム押出形材製のものに代えて、アルミニウム製電縫管の内部にインナーフィンを挿入することにより複数の穴状通路を形成したもの用いてもよい。また、片面にろう材層を有するアルミニウムプレージングシートに圧延加工を施すことにより形成され、かつ連結部を介して連なった2つの平坦壁形成部と、各平坦壁形成部における連結部とは反対側の側縁より隆起状に一体成形された側壁形成部と、平坦壁形成部の幅方向に所定間隔をおいて両平坦壁形成部よりそれぞれ隆起状に一体成形された複数の仕切壁形成部とを備えた板を、連結部においてヘアピン状に曲げて側壁形成部どうしを突き合わせて相互にろう付し、仕切壁形成部により仕切壁を形成することにより、穴状通路を設けたものを用いてもよい。この場合、側壁形成部と仕切壁形成部とが、

アルミニウムプレージングシートのろう材面側に形成される。

【0042】

膨張タンク装置(14)は基板(4)の右端部上に設けられており、膨張タンク装置(14)の後方に、受熱部(5)の冷却液通路(7)、冷却液循環路(6)および膨張タンク装置(14)の冷却液通路(17)内で冷却液を循環させるポンプ(15)が設けられている。

【0043】

膨張タンク装置(14)は、図5に詳細に示すように、上下のアルミニウム板(2)(3)（上下両ベース形成用板）からなるとともに、両アルミニウム板(2)(3)間に前後方向に伸びる冷却液通路(17)が形成されているタンク設置ベース(16)と、タンク設置ベース(16)上に設けられた膨張タンク(18)とを備えている。

【0044】

タンク設置ベース(16)の冷却液通路(17)は、下アルミニウム板(3)を下方に膨出させることにより形成されている。タンク設置ベース(16)を構成する上アルミニウム板(2)には、冷却液通路(17)をタンク設置ベース(16)上面に通じさせる円形の連通穴(19)が形成されている。連通穴(19)の形状は円形に限定されるものではない。

【0045】

膨張タンク(18)は、上方に膨出しつつ下方に開口した膨出部(22)を有するアルミニウム製タンク本体(21)と、タンク本体(21)の下端開口を閉鎖しつつタンク本体(21)よりも後方に伸びるアルミニウム製底板(23)とからなる。

【0046】

タンク本体(21)は、下面にろう材層を有するアルミニウムプレージングシートよりなる円形板の周縁部を除いた部分を上方に膨出させることにより形成されたものであり、膨出部(22)は円錐台状でその周壁(22a)は上方に向かって径方向内方に傾斜している。また、膨出部(22)の頂壁(22b)は平坦であり、その中央部に下方突出部(24)が形成されている。タンク本体(21)における膨出部(22)の周囲の外向きフランジ(21a)は、下方突出部(24)が連通穴(19)の真上に位置するように、上記ろう材層を利用して底板(23)にろう付されている。タンク本体(21)は円形板から形成されるものに限定されず、また膨出部(22)も円錐台状に限定されない。

【0047】

底板(23)は、下面にろう材層を有するアルミニウムプレーティングシートよりなる前後方向に長い方形状であり、上記ろう材層を利用してタンク設置ベース(16)の上アルミニウム板(2)にろう付されている。底板(23)における上アルミニウム板(2)の連通穴(19)と対応する部分には、連通穴(19)よりも大きい円形貫通穴(25)が、連通穴(19)と通じるようにこれと同心状に形成されている。貫通穴(25)は円形に限定されるものではない。底板(23)における貫通穴(25)の周縁部には、上方に向かって径方向内方に傾斜した邪魔板(26)が全周にわたって一体に形成されており、邪魔板(26)の先端に囲まれて開口(27)が形成されている。そして、下方突出部(24)が開口(27)に臨んでいる。

【0048】

ポンプ(15)は、膨張タンク装置(14)の底板(23)におけるタンク本体(21)から後方に突出した部分に取り付けられている。

【0049】

液冷式放熱装置(1)の冷却液循環路(6)は、下アルミニウム板(3)を下方に膨出させることにより形成されたものであり、タンク設置ベース(16)を構成する上下アルミニウム板(2)(3)の左方への延長部分間に形成されることになる。冷却液循環路(6)は、受熱部(5)の冷却液通路(7)の前端開口と膨張タンク装置(14)の冷却液通路(17)の前端開口とを連通させる直線状部分(6a)と、冷却液通路(7)の後端の右端部の開口と冷却液通路(17)の後端開口とを連通させる蛇行状部分(6b)とよりなる。受熱部(5)の冷却液通路(7)、膨張タンク装置(14)の冷却液通路(17)および冷却液循環路(6)に封入されている冷却液の量は、図6に示すように基板(4)を垂直状態にした際に、冷却液通路(7)(17)内および冷却液循環路(6)内を満たすとともに、膨張タンク(18)の膨出部(22)内の冷却液の液面が膨張タンク(18)の底板(23)における邪魔板(26)先端の開口(27)よりも上方に位置し、しかも図7に示すように基板(4)を上下逆向きにした際に、冷却液通路(7)(17)内および冷却液循環路(6)内を満たすとともに、膨張タンク(18)の膨出部(22)内の冷却液の液面が膨張タンク(18)の底板(23)における邪魔板(26)先端の開口(27)よりも上方に位置するような量である。

【0050】

上述した液冷式放熱装置(1)は、たとえばキーボードを有するパソコン本体部と、パソコン本体部に開閉自在に設けられたディスプレイ装置とを備えたノート型パーソナルコンピュータにおいて、パソコン本体部のハウジング内に配置され、CPU(発熱源)が液冷

式放熱装置(1)の受熱部(5)の受熱面(11)に熱的に接触させられる。ノート型パーソナルコンピュータの起動時には、ポンプ(15)により冷却液が受熱部(5)の冷却液通路(7)、膨張タンク装置(14)の冷却液通路(17)および冷媒循環路(6)内を循環させられる。C P Uから発せられた熱は、上アルミニウム板(2)を経て受熱部(5)の冷却液通路(7)内に配置された偏平チューブ(9)の穴状通路(9a)内を流れる冷却液に伝わる。そして、冷却液が、冷却液循環路(6)および膨張タンク装置(14)の冷却液通路を通って受熱部(5)の冷却液通路(7)に戻るまでの間に、冷却液の有する熱が上下アルミニウム板(2)(3)を経て外部に放熱され、冷却液が冷却される。このような動作を繰り返してC P Uから発せられる熱が放熱される。

【0051】

なお、C P Uから発せられる熱量が多い場合には、基板(4)における受熱部(5)から離れた場所に放熱フィンを有する放熱器（図示略）を配置しておき、従来の場合よりは出力が小さくて静謐な冷却ファン（図示略）により放熱器の放熱フィンに風を当てるようにしてもよい。

【0052】

冷却液中に気泡状態で含まれる空気は、膨張タンク装置(14)の冷却液通路(17)を通過する際に、タンク設置ベース(16)の連通穴(19)および底板(23)の貫通穴(25)を通ってタンク本体(21)の膨出部(22)内に入り、ここに溜められる。しかも、貫通穴(25)の周囲の邪魔板(26)の働きにより、一旦膨出部(22)内に入った空気は冷却液通路(17)に逆流しにくくなる。したがって、冷却液循環路(6)内の冷却液から空気が排除され、冷却効率が向上する。また、C P Uから受けた熱により冷却液が加熱されて熱膨張したとしても、冷却液は膨張タンク(18)のタンク本体(21)内に流入するので、内圧上昇による冷却液循環路(6)の破損が防止される。さらに、膨張タンク装置(14)のタンク本体(21)の膨出部(22)内に余剰の冷却液を入れておけば、冷却液が減少したとしても冷却効率の低下が防止される。

【0053】

上述した液冷式放熱装置(1)の製造方法について、図8および図9を参照して説明する。

【0054】

下面にろう材層(31)を有するアルミニウムプレーティングシートからなる上アルミニウム板(2)にプレス加工を施して、受熱部(5)のろう材流入防止用膨出部(13)および膨張タンク

装置(14)の連通穴(19)を同時に形成する。アルミニウムペア材からなる下アルミニウム板(3)にプレス加工を施して、受熱部(5)の冷却液通路(7)、膨張タンク装置(14)の冷却液通路(17)および冷却液循環路(6)を下方膨出状に同時に形成する。下面にろう材層(33)を有するアルミニウムプレージングシートからなる円形板にプレス加工を施して、膨出部(22)および下方突出部(24)を同時に形成し、タンク本体(21)をつくる。さらに、下面にろう材層(32)を有するアルミニウムプレージングシートからなる底板(23)にプレス加工を施して、貫通穴(25)、邪魔板(26)および開口(27)を形成する。

【0055】

ついで、受熱部(5)の冷却液通路(7)内に、2つのアルミニウム押出形材製偏平チューブ(9)を左右方向に並べて配置する。このとき、偏平チューブ(9)の下面と下方膨出部(22)の底面との間に、偏平チューブ(9)よりも短いシート状ろう材(30)を、その両端が偏平チューブ(9)の両端よりも長さ方向の内側に位置するように配置する。

【0056】

その後、上下アルミニウム板(2)(3)を重ね合わせるとともに底板(23)およびタンク本体(21)を配置し、上下アルミニウム板(2)(3)どうし、上下アルミニウム板(2)(3)と偏平チューブ(9)、上アルミニウム板(2)と底板(23)、および底板(23)とタンク本体(21)とを同時にろう付する。これらのろう付は、上アルミニウム板(2)のろう材層(31)、シート状ろう材(30)、底板(23)のろう材層(32)およびタンク本体(21)のろう材層(33)を利用して行う。こうして、液冷式放熱装置(1)が製造される。

【0057】

液冷式放熱装置(1)の製造にあたり、上アルミニウム板(2)に膨出部(13)が形成されていること、および偏平チューブ(9)と下アルミニウム板(3)とが偏平チューブ(9)よりも短くかつ両端が偏平チューブ(9)の両端よりも長さ方向の内側に位置するように配置されたシート状ろう材(30)によりろう付されていることにより、上記ろう付の際に、溶融したろう材が偏平チューブ(9)の穴状通路(9a)内に流入することが防止される。

【0058】

上記実施形態においては、膨張タンク装置(14)は、受熱部(5)および冷却液循環路(6)とともに液冷式放熱装置(1)の基板(4)に一体に設けられているが、これに代えて、膨張タンク装置のみを基板(4)とは別個に形成し、膨張タンク装置の冷却液通路の両端に、それぞ

れ膨張タンク装置とは別体のチューブなどの一端部を接続し、これらのチューブの他端部を基板(4)の冷却液循環路(6)に接続することにより、液冷式放熱装置を形成してもよい。また、膨張タンク装置と、上述した構成または他の適当な構成の受熱部とを別個に形成し、膨張タンク装置の冷却液通路と受熱部の冷却液通路とをたとえば別体のチューブなどで接続することにより、液冷式放熱装置を形成してもよい。

【0059】

また、上記実施形態においては、膨張タンク装置(14)のタンク設置ベース(16)を形成する上アルミニウム板(2)と底板(23)とは底板(23)下面のろう材層(32)を利用してろう付されているが、これに代えて、上アルミニウム板(2)の上面にろう材層を形成するとともに、底板(23)下面にはろう材層を形成せず、上アルミニウム板(2)上面のろう材層を利用して上アルミニウム板(2)と底板(23)とをろう付してもよい。また、タンク本体(21)の外向きフランジ(21a)と底板(23)とはタンク本体(21)下面のろう材層(33)を利用してろう付されているが、これに代えて、底板(23)の上面にろう材層を形成するとともに、タンク本体(21)下面にはろう材層を形成せず、底板(23)上面のろう材層を利用してタンク本体(21)の外向きフランジ(21a)と底板(23)とをろう付してもよい。

【図面の簡単な説明】

【0060】

【図1】この発明による受熱部を備えた液冷式放熱装置の全体構成を示す斜視図である。

【図2】同じく分解斜視図である。

【図3】図1のIII-III線拡大断面図である。

【図4】図1のIV-IV線拡大断面図である。

【図5】図1のV-V線拡大断面図である。

【図6】ベースを垂直状態にした図5相当の断面図である。

【図7】ベースを上下逆向きにした図5相当の断面図である。

【図8】液冷式放熱装置の製造方法示す受熱部の部分の断面図である。

【図9】液冷式放熱装置の製造方法を示す膨張タンク装置の部分の断面図である。

【符号の説明】

【0061】

- (1) : 液冷式放熱装置
- (2) : 上アルミニウム板（上ベース形成用板）
- (3) : 下アルミニウム板（下ベース形成用板）
- (5) : 受熱部
- (6) : 冷却液循環路
- (7) : 冷却液通路
- (12) : 発熱体（発熱源）
- (14) : 膨張タンク装置
- (16) : タンク設置ベース
- (17) : 冷却液通路
- (18) : 膨張タンク
- (19) : 連通穴
- (21) : タンク本体
- (21a) : 外向きフランジ
- (22) : 膨出部
- (22b) : 頂壁
- (23) : 底板
- (24) : 下方突出部
- (25) : 貫通穴
- (26) : 邪魔板
- (27) : 開口

2003-380869

【書類名】図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

