AR18

CODE: 18BST101 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, October-2021

LINEAR ALGEBRA AND CALCULUS (Common to All Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a) Determine the rank of the matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$ 6M

b) For what values of k the equations x+y+z=1, 2x+y+4z=k, 4x+y+10z=k² have a solution and solve them completely in each case.

(OR)

2. Determine the Eigen values, Eigen vectors of the matrix

12M

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

UNIT-II

Expand e^x siny in ascending powers of x and y.

12M

(OR)

4. a) Find the stationary points of $u(x, y) = \cos x \cos y \cos(x+y)$ 6M where $0 < x < \pi$, $0 < y < \pi$. Find the minimum value of u(x, y).

b) Find the dimensions of a rectangular box open at the top of maximum capacity whose surface is 432 sq cm..

UNIT-III

5. a) Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the major axis.

b) Find the surface area of the solid generated by the revolution 6M of the asteroid x=acos³t, y=asin³t about the y-axis.

(OR)

Find the volume of the solid formed by revolving a loop of the lemniscate $r^2=a^2\cos 2\theta$ about the line $\theta=\pi/2$.

UNIT-IV

7. Change the order of the integration in $I = \int_{0}^{4a2\sqrt{ax}} \int_{\frac{x^2}{4a}}^{4a2\sqrt{ax}} dx dy$ and hence evaluate it.

(OR)

- 8. a) Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x^{2} dx dy}{\sqrt{x^{2} + y^{2}}}$ by changing into polar coordinates.
 - b) Find the volume of the solid bounded by the planes x=0,y=0,x+y+z=1 and z=0.

<u>UNIT-V</u>

- 9. a) Find the angle between the surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at the point (2,-1,2).
 - b) Find the work done in moving a particle around a circle if the circle has centre at the origin and radius 3 and if the force field is given by $\mathbf{F} = (2x y + z)\mathbf{i} + (x + y z^2)\mathbf{j} + (3x 3y + 4z)\mathbf{k}.$

(OR)

10. Verify Gauss' divergence theorem for $\mathbf{F}=4xz\mathbf{i}-y^2\mathbf{j}+yz\mathbf{k}$ and 12M S is the surface of the cube bounded by x=0,x=1,y=0,y=1,z=0 and z=1.

AR16

CODE: 16BS1001 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, October-2021

ENGINEERING MATHEMATICS – I

(Common to All Branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the Question must be answered at one place

<u>UNIT-</u>I

Prove that $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is self-orthogonal, where λ is parameter.

(OR)

2. Solve $2xydy-(x^2+y^2+1)dx=0$ 14M

UNIT-II

3. Solve $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-2x}\sin 2x$.

(OR)

4. Solve $(D^2 + 2D + 1)y = x \cos x$.

UNIT-III

5. a) Expand $e^x \cos y \operatorname{near}\left(1, \frac{\pi}{4}\right)$ by Taylor's series method.

Prove that $u = \frac{x^2 - y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between them.

(OR)

6. Find the maximum and minimum values of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ 14M

UNIT-IV

7. Change the order of integration and hence evaluate the integral $\int_{0}^{1} \int_{y^{2}}^{2-x} xy \, dy \, dx$.

(OR)

8. a) Evaluate $\iint (x^2 + y^2) dx dy$ in the positive quadrant for which $x + y \le 1$.

b) Evaluate $\iiint_V dx \, dy \, dz$ where *V* is the finite region of space formed by the planes x = 0, y = 0, z = 0 and 2x + 3y + 4z = 12.

UNIT-V

9. a) Prove that if \bar{r} is the positive vector of any point in space, then $r^n \bar{r}$ is irrotational. 7M

b) Find the work done by the force $\overline{F} = z\overline{i} + x\overline{j} + y\overline{k}$, when it moves a particle along the arc of the curve $\overline{r} = \cos t \overline{i} + \sin t \overline{j} - t \overline{k}$ from t = 0 to $t = 2\pi$.

(OR)

10. Verify Stoke's theorem for $\overline{F} = (y - z + 2)\overline{i} + (yz + 4)\overline{j} - xz\overline{k}$ where S is the surface 14M of the cube x = 0, y = 0, z = 0, x = 2, y = 2, z = 2 above the xy-plane.

AR13

SET-2 **CODE: 13BS1001**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, October-2021

ENGINEERING MATHEMATICS - I (Common to All Branches)

Time: 3 Hours Max Marks: 70 **PART-A ANSWER ALL QUESTIONS** $[1 \times 10 = 10 \text{ M}]$ 1. a) Solve $xdx + ydy = \frac{xdy - ydx}{x^2 + y^2}$. 1 M b) Find the general solution of $2xydy - (x^2 + y^2 + 1)dx = 0$. 1 M c) Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$ 1 M d) If $f(D) = D^2 + 2D + 1$, then find $\frac{1}{f(D)} \cos 2x$ 1 M e) If $x = \frac{u^2}{v}$, $y = \frac{v^2}{u}$ find $\frac{\partial(u,v)}{\partial(xv)}$ 1 M f) Write the properties of Jacobians. 1 M g) Solve $\int_0^2 \int_{-x}^x xy \, dy dx$. 1 M h) Evaluate $\int_0^a \int_0^x \int_0^y x^3 y^2 z \, dx \, dy \, dz$. 1 M i) Show that $3y^4z^2i + z^3x^2j - 3x^2y^2k$ is solenoidal. 1 M j) Write the formula for area in double integration. 1 M **PART-B** Answer one question from each unit [5x12=60M]**UNIT-I** 2. a) A body is originally at 80° C and cools down to 60° C in 20 6 M minutes. If the temperature of the air is 40° C, find the temperature of the body after 40 minutes. b) Solve $\frac{dy}{dx} + y \tan x = y^2 \sec x$ 6 M (OR) 3. a) Find the orthogonal trajectories of the family of curves 6 M $r^n = a^n cosn\theta$. 6 M

b) Solve $(x^4e^x - 2mxv^2)dx + 2mx^2vdv = 0$

UNIT-II

- 4. a) Solve $(D^2 4)y = x \sinh x + 54x + 8$. 6 M
 - b) Solve $(D^2 + 1)y = \sin 2x$ 6 M

(OR)

- 5. a) Solve $(D^4 + 2D^2 + 1)y = x^2 \cos^2 x$ 6 M
 - b) Find the distance from the centre at which the velocity in SHM 6 M will be
 - (i) half and (ii) one-third of the maximum.

UNIT-III

- 6. a) Expand $x^2y \mid 3y \mid 2$ in powers of (x-1) and (y +2) using 6 M Taylor's theorem.
 - b) Show that $u = \sin^{-1} x + \sin^{-1} y$, $v = x\sqrt{1 y^2} + y\sqrt{1 x^2}$ are functionally dependent and find functional relationship.

(OR)

7. Divide 24 into three parts such that the continued product of the first, square of the second and cube of the third is maximum

UNIT-IV

- 8. a) By change of order of Integration evaluate $\int_0^\infty \int_1^y y \, e^{-\left(\frac{y^2}{x}\right)} \, dx \, dy$ 6 M
 - b) Evaluate $\int_{-c}^{c} \int_{-a}^{a} \int_{-b}^{b} (x^2 + y^2 + z^2) dx dy dz$ 6 M

(OR)

9 Evaluate $\iint y \, dx \, dy$ bounded by the parabolas 12M $y^2 = 4x$ and $x^2 = 4y$.

UNIT-V

- 10. a) Find the directional derivative of $\emptyset = xy + yz + zx$ at A in the directional of \overline{AB} where A (1,2,-1) and B(1,2,3)
 - b) Prove that $r^n \overline{r}$ is solenoidal if n = -3

(OR)

11. Verify Gauss Divergence theorem for $\overline{F} = 2xzi + yzj + z^2k$ over the 12M upper half of the sphere $x^2 + y^2 + z^2 = a^2$.