TD1-Analyse lexicale

Théorie

Exercice 1.T1

Soit F un ensemble fini de mots sur l'alphabet $\{a, b, c\}$. Soit L l'ensemble des mots de $\{a, b, c\}^*$ qui ont au moins un facteur dans F. Montrer que L est rationnel.

Exercice 1.T2

Soit L l'ensemble des mots de $\{a,b\}^*$ possédant un nombre pair de a et un nombre impair de b. Construire un automate fini déterministe reconnaissant ce langage.

Exercice 1.T3

On considère l'ensemble L des mots sur l'alphabet $\{a,b,c\}$ qui comportent le même nombre de a de b et de c.

Ce langage formel L est-il rationnel? algébrique?

Exercice 1.T4

On considère les langages

$$R_1 := (aa)^+b$$
, $R_2 := (ab)^+b$, $R_3 := \{a, b\}$.

On appelle décomposition d'un mot $w \in \{a, b, c\}$ sur (R_1, R_2, R_3) tout t-uple de mots $(w_0, \dots, w_i, \dots w_n)$ tel que :

$$w = w_1 \cdots w_i \cdot w_{i+1} \cdots w_n$$
, et $\forall i \in [1, n], w_i \in R_1 \cup R_2 \cup R_3$

(pour $w = \varepsilon$ la suite vide, de longueur n = 0, est une décomposition).

1- Chaque mot de $\{a, b, c\}^*$ a-t-il au moins une décomposition sur ces langages? exactement une décomposition?

Une décomposition est dite gloutonne ssi pour tout $i \in [1, n]$, w_i est le plus long préfixe de $w_i \cdot w_{i+1} \cdots w_n$ qui appartient à $R_1 \cup R_2 \cup R_3$.

2- Montrer que tout mot $w \in \{a, b, c\}^*$ a une décomposition gloutonne. Montrer que, pour chaque mot w, cette décomposition gloutonne est unique.

Exercice 1.T5

Donner un automate fini, déterministe, avec sorties, qui calcule l'homomorphisme de monoides libres, $\{a,b,c\}^* \to \{a,b,c\}^*$ défini par :

$$a \mapsto b, b \mapsto c, c \mapsto a$$
.

Exercice 1.T6

À tout mot w sur l'alphabet $\{a,b\}$, on associe le mot f(w) suivant : soit

$$D(w) = (v_1, v_2, \dots, v_n),$$

la décomposition (gloutonne) définie à l'exercice 1.T4; sur chaque facteur $v_i \in R_1$, on applique la substitution $a \mapsto b, b \mapsto c$, sur chaque facteur $v_i \in R_2$, on applique la substitution $a \mapsto$

 $c, b \mapsto d$, sur chaque facteur $v_i \in R_3$, on ne change rien. Par exemple,

$$f(aaaaabababbbbaab) = a \cdot bbbbc \cdot cdcdd \cdot b \cdot b \cdot bbc$$

- 1- Soient $u, v \in \{a, b\}^*$. Est-il toujours vrai que f(u) est préfixe de f(uv)?
- 2- Peut-on calculer f avec un automate fini déterministe (sur les entrées) et avec sorties?
- 3- Soit # une nouvelle lettre (i.e. qui n'appartient pas à $\{a,b,\}$) et soit $g:\{a,b\}^*\#\to \{a,b,c,d,\#\}^*$ l'application définie par

$$g(w \cdot \#) := f(w) \cdot \#.$$

Peut-on calculer g avec un automate fini déterministe (sur les entrées) et avec sorties? Aide : remarquer que $g(a^{2n}\#) = a^{2n}\#$ et $g(a^{2n}b\#) = b^{2n}c\#$.

Programmes FLEX

Chaque exercice consiste maintenant à réaliser un programme exécutable exo.o en utilisant le compilateur d'analyseur lexical flex.

Exercice 1.1

Reconnaître les mots sur l'alphabet $\{a, b, c\}$ qui ont au moins un facteur abb.

Exercice 1.2

- 1- Reconnaître les mots sur l'alphabet $\{a,b,c\}$ qui ont au moins un facteur dans l'ensemble $\{cabb,cbab,cbb,cbbba\}$.
- 2– Donner la liste des couples (position, numero du facteur) dans le mot d'entrée.

Exemple:

Sur l'entrée cabbbcbabcccacbbba, le programme devra retourner (0,0)(5,1)(13,3)

*3- Reprendre la question 2 pour l'ensemble de facteurs {cabb, bbc}.

Sur l'entrée cabbbcabbbcabbbc, le programme devra retourner

(0,0)(3,1)(5,0)(9,1)(11,0)(14,1)

Exercice 1.3

Reconnaître les mots de $\{a,b\}^*$ possédant un nombre pair de a et un nombre impair de b. Solution 1 : On définira deux variables globales entières (des "compteurs") que l'on mettra à jour au fur et à mesure de la lecture du mot.

Solution 2 : On écrira en flex un automate fini reconnaissant ce langage (on utilisera les "start conditions" de flex).

Exercice 1.4

Reconnaître l'ensemble L des mots sur l'alphabet $\{a,b,c\}$ qui comportent le même nombre de a de b et de c.

Exercice 1.5

Décomposer un mot en produit de mots appartenant aux langages

$$R_1 := (aa)^+b$$
, $R_2 := (ab)^+b$, $R_3 := \{a, b\}$.

(voir l'exercice 1.T4 ci-dessus). On demande au programme d'imprimer en sortie, pour w, la décomposition "gloutonne" de w, où les facteurs successifs sont entourés de crochets. Par exemple, sur l'entrée aaaaabababbbbaab, le programme devra retourner

[a] [aaaab] [ababb] [b] [b] [aab]

Exercice 1.6

Le programme doit, pour tout mot d'entrée sur l'alphabet $\{a,b,c\}$, imprimer en sortie le mot obtenu en effectuant la substitution de lettres :

$$a \mapsto b, b \mapsto c, c \mapsto a.$$

Exercice 1.7

Le programme doit, pour tout mot d'entrée w sur l'alphabet $\{a,b,c\}$, imprimer en sortie le mot f(w) suivant : soit

$$D(w) = v_1, v_2, \dots, v_n,$$

la décomposition définie à l'exercice 1.T4;

- sur chaque facteur $v_i \in R_1$, on applique la substitution $a \mapsto b, b \mapsto c$, sur chaque facteur $v_i \in R_2$, on applique la substitution $a \mapsto c, b \mapsto d$, sur chaque facteur $v_i \in R_3$, on ne change rien.
- de plus les images des facteurs successifs sont entourées de crochets. Par exemple, sur l'entrée aaaaabababbbbaab, le programme devra retourner [a] [bbbbc] [cdcdd] [b] [bbc]