

Introducción al Análisis y Visualización de Datos con Python

Principios de visualización de información

Felipe Restrepo Calle

ferestrepoca@unal.edu.co

Departamento de Ingeniería de Sistemas e Industrial Facultad de Ingeniería Universidad Nacional de Colombia Sede Bogotá

Visualization Analysis & Design

Tamara Munzner

AK Peters Visualization Series

CRC Pres

2014

Presentaciones:

http://www.cs.ubc.ca/~tmm/talks.html

http://johnguerra.co/lectures/visualAnalytics_fall2018/

Introducción

Principios de visualización

Análisis

Marcadores y canales

Ejemplos

Introducción

Análisis:

¿Qué?

¿Por qué?

¿Cómo?

Marcadores y canales

Ejemplos

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Introducción

Los sistemas de visualización basados en computador proporcionan representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a realizar tareas de manera más efectiva.

La visualización es adecuada cuando existe la necesidad de aumentar las capacidades humanas en lugar de reemplazar a las personas con métodos computacionales de toma de decisiones.

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Introducción

Los sistemas de visualización basados en computador proporcionan representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a realizar tareas de manera más efectiva.

La visualización es adecuada cuando existe la necesidad de aumentar las capacidades humanas en lugar de reemplazar a las personas con métodos computacionales de toma de decisiones.

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Introducción

¿Por qué involucrar al humano?

- No se necesita visualización si existe una solución completamente automática y de confianza
- Muchos problemas de analítica están mal especificados
 - ✓ No se sabe exactamente qué preguntas hacer con anticipación
- Posibilidades
 - ✓ Los usuarios finales usarán las visualización a largo plazo (ejemplo: análisis exploratorio detallado)
 - ✓ Presentación de resultados conocidos
 - ✓ Sirven para una mejor comprensión de los requisitos antes de desarrollar modelos
 - ✓ Ayudar a desarrolladores de soluciones automáticas a refinar/depurar y determinar parámetros
 - ✓ Ayudar a los usuarios finales de soluciones automáticas a verificar

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Introducción

Los sistemas de visualización basados en computador proporcionan representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a realizar tareas de manera más efectiva.

¿Por qué usar computadores?

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Introducción

Los sistemas de visualización basados en computador proporcionan representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a realizar tareas de manera más efectiva.

¿Por qué usar computadores?

- ✓ Más allá de la paciencia humana
- ✓ Escalabilidad a grandes conjuntos de datos
- ✓ Soportan interactividad

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Introducción

Los sistemas de visualización basados en computador proporcionan representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a realizar tareas de manera más efectiva.

¿Por qué usar una representación externa?

Representación externa: reemplaza la cognición con la percepción

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Introducción

Los sistemas de visualización basados en computador proporcionan representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a realizar tareas de manera más efectiva.

¿Por qué depender de la visión?

- ✓ El sistema visual humano es un canal de ancho de banda alto para el cerebro
 - Visión general procesamiento en segundo plano
 - Experiencia subjetiva de ver todo simultáneamente
 - Un procesamiento significativo ocurre en paralelo
- ✓ Sonido: menor ancho de banda y diferente semántica
 - Audición general no admitida
- ✓ Táctil / háptica: poca capacidad de grabación/reproducción
 - ✓ Solo comunicación de ancho de banda muy bajo hasta el momento
- ✓ Sabor, olor: no hay dispositivos de grabación/reproducción viables

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Introducción

Los sistemas de visualización basados en computador proporcionan representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a realizar tareas de manera más efectiva.

¿Por qué visualizar los datos en detalle?

- ✓ Los resúmenes pierden información, los detalles importan
- ✓ Sirve para confirmar lo esperado y encontrar patrones inesperados
- ✓ Útil para evaluar la validez del modelo estadístico

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Anscombe's Quartet: Raw Data

Introducción

	1		2		3		4	
	Χ	Υ	X	Υ	X	Υ	Χ	Υ
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.816		0.8	16	0.8	16	0.8	316

¿Por qué visualizar los datos en detalle?

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Anscombe's Quartet: Raw Data

Introducción

	1		2		3		4	
	X	Y	X	Υ	X	Υ	X	Υ
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.816		0.816		0.816		0.816	

¿Por qué visualizar los datos en detalle?

Análisis

Marcadores y canales

Ejemplos

Introducción: Visualización (vis)

Introducción

¿Por qué visualizar los datos en detalle?

https://dabblingwithdata.wordpress.com/2017/05/03/the-datasaurus-a-monstrous-anscombe-for-the-21st-century/

Análisis

Marcadores y canales

Ejemplos

Introducción: Limitaciones de recursos

Introducción

Límites computacionales

- ✓ Tiempo de procesamiento
- ✓ Memoria del sistema

Límites humanos

- ✓ Atención humana
- ✓ Memoria
- ✓ Retención

Límites de las pantallas

- ✓ Los píxeles son recursos preciosos, el recurso más limitado
- ✓ Densidad de información: tasa de espacio utilizado para codificar información vs. espacios en blanco no utilizados. Compromiso entre desorden y desperdicio de espacio. Necesario encontrar un punto óptimo entre denso y disperso.

Introducción

Principios de visualización

Análisis

Marcadores y canales

Ejemplos

Agenda

Introducción

Análisis:

¿Qué? ¿Por qué? ¿Cómo?

Marcadores y canales

Ejemplos

Análisis

Marcadores y canales

Ejemplos

Análisis: Marco de trabajo para análisis visual

Dominio: ¿Quiénes son los usuarios objetivo?

Introducción

Abstracción: Traducción de los detalles del dominio al vocabulario de visualización

What? ¿Qué se muestra? Abstracción de datos
No solo dibujar lo que le dan: transformar a nueva forma
Why? ¿Por qué le interesa al usuario? Abstracción de tareas

Representación (idiom)

How? ¿Cómo se muestra?

- Codificación visual: ¿cómo dibujarlo?
- Interacción: ¿cómo manipularlo?

Algoritmo

Computación eficiente

A Multi-Level Typology of Abstract Visualization Tasks

Brehmer and Munzner. IEEE TVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).

Análisis

Marcadores y canales

Ejemplos

Análisis: Marco de trabajo para análisis visual

Análisis: ¿Qué?

What?

Why?

How?

Introducción

What?

Datasets

Attributes

- → Items
- → Attributes
- → Links
- → Positions
- → Grids

mplos

Data and Dataset Types

Networks & Trees Items (nodes) Links Attributes

Fields Grids Positions Attributes Geometry Clusters, Sets, Lists Items Items Positions

→ Ordered → Ordinal

→ Quantitative

Ordering Direction

Dataset Types

→ Tables

Items

(rows)

- → Networks
- → Fields (Continuous)

→ Diverging

→ Seguential

- → Cyclic

→ Multidimensional Table

Attributes (columns)

Cell containing value

→ Trees

→ Geometry (Spatial)

- **Dataset Availability**
 - → Static

→ Dynamic

Análisis y Visualización de Datos con Python

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Qué? - Tipos de datos y conjuntos de datos

Data Types

- → Items → Attributes → Links → Positions → Grids
- Data and Dataset Types

- Dataset Availability
 - → Static → Dynamic

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Qué? - Tipos de conjuntos de datos

Introducción

→ Tables

→ Networks

→ Fields (Continuous)

→ Geometry (Spatial)

→ Multidimensional Table

→ Trees

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Qué? - Tipos de atributos

Introducción

Attributes

Attribute Types

→ Categorical

→ Ordered

→ Ordinal

→ Quantitative

Ordering Direction

→ Sequential

→ Diverging

Análisis: ¿Qué?

What?

Why?

How?

Análisis y Visualización de Datos con Python

Introducción

What?

Datasets

Attributes

- → Items
- → Attributes
- → Links
- → Positions
- → Grids

→ Attribute Types

→ Ordered

mplos

Data and Dataset Types

Networks & Trees Items (nodes) Links Attributes

Fields Grids Positions Attributes Geometry Items Positions

Clusters, Sets, Lists Items

→ Ordinal

→ Quantitative

Ordering Direction

Dataset Types

→ Tables

Items

(rows)

- → Networks
- → Fields (Continuous)

- → Seguential
- → Diverging

→ Cyclic

→ Multidimensional Table

Attributes (columns)

Cell containing value

→ Trees

→ Geometry (Spatial)

Dataset Availability

→ Static

→ Dynamic

⊘ Targets

Análisis: ¿Por qué?

{action, target} pairs

- discover distribution
- compare trends
- locate outliers
- browse topology

Analyze

Introducci

→ Consume

→ Produce

Search

	Target known	Target unknown		
Location known	·.·· Lookup	• . Browse		
Location unknown	⟨`@.> Locate	< • € Explore		

Attributes

- **Network Data**
 - → Topology

→ Paths

Spatial Data

→ Shape

What?

Why?

How?

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Por qué? – Acciones: analizar

Introducción

Analyze

→ Enjoy

→ Derive

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Por qué? – Acciones: ejemplo "disfrutar"

Figure 3.3. Name Voyager, a vis tool originally intended for parents focused deciding on what to name their expected baby, ended up being used by many nonparents to analyze historical trends for their own enjoyment. Left: Names starting with 'O' had a notable dip in popularity in the middle of the century. Right: Names starting with 'LAT' show a trend of the 1970s. After [Wattenberg 05, Figures 2 and 3], using http://www.babynamewizard.com.

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Por qué? – Acciones: ejemplo "grabar"

Figure 3.4. Graphical history recorded during an analysis session with Tableau. From [Heer et al. 08, Figure 1].

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Por qué? - Acciones: ejemplo "derivar"

Figure 3.5. Derived attributes can be directly visually encoded. (a) Two original data attributes are plotted, imports and exports. (b) The quantitative derived attribute of trade balance, the difference between the two originals, can be plotted directly.

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Por qué? – Acciones: buscar

	Target known	Target unknown		
Location known	• • • Lookup	• Browse		
Location unknown	₹ Locate	< Explore		

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Por qué? – Acciones: consultar

Análisis

Marcadores y canales

Ejemplos

Análisis: ¿Por qué? – Objetivos (targets)

Introducción

How?

→ Trends

→ Features

Network Data

→ Topology

→ Paths

Attributes

→ One

→ Many

→ Distribution

→ Dependency

→ Correlation

→ Similarity

Spatial Data

→ Shape

⊘ Targets

Análisis: ¿Por qué?

{action, target} pairs

- discover distribution
- compare trends
- locate outliers
- browse topology

Analyze

Introducci

→ Consume

→ Produce

Search

	Target known	Target unknown		
Location known	·.·· Lookup	• . Browse		
Location unknown	⟨`@.> Locate	< • € Explore		

Attributes

- **Network Data**
 - → Topology

→ Paths

Spatial Data

→ Shape

Análisis

Marcadores y canales

Ejemplos

Análisis:

¿Cómo?

How?

→ Express

Introducción

→ Map

from categorical and ordered attributes

→ Motion Direction, Rate, Frequency, ...

Manipulate

Select

Navigate

< >

Facet

Aggregate

Análisis y Visualización de D

Introducción

Principios de visualización

Análisis

Marcadores y canales

Ejemplos

Agenda

Introducción

Análisis:

¿Qué? ¿Por qué? ¿Cómo?

Marcadores y canales

Ejemplos

Análisis

Marcadores y canales

Ejemplos

Marcadores y canales

• Marcadores: primitivas geométricas

Canales:

- ✓ Aspecto de los marcadores
- ✓ Es posible codificar info redundante en varios canales

Introducción

Consideraciones

- Los marcadores de puntos sólo transmiten la posición; sin restricciones de área. Se pueden codificar en tamaño y forma
- Los marcadores de línea transmiten la posición y la longitud. Sólo se puede codificar por tamaño en 1D (ancho)
- Los marcadores de área son muy restringidos. No se pueden codificar por tamaño o forma

Canales

Análisis

Marcadores y canales

Ejemplos

Marcadores y canales: Codificación visual como combinación de marcadores y canales

1: vertical position

Introducción

2: vertical position horizontal position

mark: point

3: vertical position horizontal position color hue

mark: point

4: vertical position horizontal position color hue size (area)

mark: point

mark: line

Análisis

Marcadores y canales

Ejemplos

Marcadores y canales:

Introducción

Canales: Tipos de expresividad y rankings de efectividad

Principio de efectividad

Codificar los atributos más importantes con los canales mejor clasificados

Principio de expresividad

Hacer coincidir las características del canal con las de los datos

Análisis

Marcadores y canales

Ejemplos

Marcadores y canales: Expresividad y efectividad

Introducción

Factores a tener en cuenta:

- Precisión
- Discriminabilidad
- Posibilidad de separación
- Popout

Análisis

Marcadores y canales

Ejemplos

Marcadores y canales:

Factores a tener en cuenta:

- Precisión
- Discriminabilidad
- Posibilidad de separación
- **Popout**

¿Cuántos pasos diferenciables?

Introducción

- Debe ser suficiente para el número de niveles de atributos para mostrar
- Ejemplo: ancho de línea pocos pasos

[Cleveland and McGill 84a]. After [Heer and Bostock 10, Figure 4]

[mappa.mundi.net/maps/maps 014/telegeography.html]

Análisis

Marcadores y canales

Ejemplos

Marcadores y canales:

Introducción

Factores a tener en cuenta:

- Precisión
- Discriminabilidad
- Posibilidad de separación -
- Popout

Position + Hue (Color)

Fully separable

Size + Hue (Color)

Some interference

Width + Height

Some/significant interference

Red

Major interference

[Ware 13, Figure 5.23].

Análisis

Marcadores y canales

Ejemplos

Marcadores y canales:

Factores a tener en cuenta:

- Precisión
- Discriminabilidad
- Posibilidad de separación
- Popout

Encontrar el punto rojo

Introducción

¿Cuánto tiempo tarda en cada figura?

Introducción

Análisis

Marcadores y canales

Ejemplos

Agenda

Introducción

Análisis:

¿Qué?

¿Por qué?

¿Cómo?

Marcadores y canales

Ejemplos

Análisis

Marcadores y canales

Ejemplos

Ejemplos:

http://johnguerra.co

Introducción

John Alexis Guerra Gómez

I do **Visual Analytics**, i.e., I include the **user** in the big data analysis/science loop.

john.guerra[~at~]gmail.com

johnguerra.co

PDF Version

Análisis

Marcadores y canales

Ejemplos

Ejemplos:

Introducción

https://navio.dev/

Introducción

Marcadores y canales

Ejemplos

Ejemplos:

Análisis

http://johnguerra.co/viz/consultaAnticorrupcion2018/

Introducción al Análisis y Visualización de Datos con Python

Principios de visualización de información

Felipe Restrepo Calle

ferestrepoca@unal.edu.co

Departamento de Ingeniería de Sistemas e Industrial Facultad de Ingeniería Universidad Nacional de Colombia Sede Bogotá