Table I. The classification accuracy (mean±std %) of each comparing algorithm on corrupted benchmark dataset of CIFAR-10 (The backbone is instantiated with ResNet-18). The number of labeled instances per class is set to v = 400. The number of false positive labels is set to $r \in \{3,5,7\}$. The best results among methods are highlighted in bold.

Dataset	Method	r = 3	<i>r</i> = 5	r = 7
	ConCont	$88.74 \pm 0.14\%$	$88.32 \pm 0.17\%$	$80.16 \pm 0.38\%$
CIFAR-10	SPMI	$92.54 \pm 0.22\%$	$90.72 \pm 0.28\%$	$82.13 \pm 0.19\%$
(v = 400)	FairMatch	$92.85 \pm 0.09\%$	$92.37 \pm 0.33\%$	$81.12 \pm 0.17\%$
	Ours	$94.32\pm0.16\%$	$93.26\pm0.21\%$	$86.11\pm0.33\%$

Table II. The classification accuracy (mean \pm std %) of each comparing algorithm on corrupted benchmark dataset of CIFAR-100 (The backbone is instantiated with ResNet-18). The number of labeled instances per class is set to v=100. The number of false positive labels is set to $r \in \{5,10,15,20\}$. The best results among methods are highlighted in bold.

Dataset	Method	<i>r</i> = 5	r = 10	<i>r</i> = 15	r = 20
	ConCont	62.71 ± 0.11%	61.89 ± 0.23%	56.32 ± 0.17%	50.28 ± 0.37%
CIFAR-100	SPMI	60.19 ± 0.45%	58.87 ± 0.33%	54.94 ± 0.53%	$47.98 \pm 0.43\%$
(v = 100)	FairMatch	$63.74 \pm 0.32\%$	$61.12 \pm 0.18\%$	57.55 ± 0.43%	$53.69 \pm 0.31\%$
	Ours	71 . 15 \pm 0 . 12 %	$69.76 \pm 0.19\%$	$\mathbf{64.24\pm0.41}\%$	$60.81 \pm 0.26\%$