Optimización Tarea 5

Francisco Javier Peralta Ramírez

25 de marzo de 2018

1. Implementar el método de región de confianza "Doglegz apliquelo a la función de Rosembrock. Con el método de Dogleg la función Rosembrock converge extremandamente rápido, en tan sólo 60 iteraciones logra obtener valores de f(x) = 7.76163E - 17

Paso Hessiano

k	$ \nabla f(x_k) $	$f(x_k)$
1	0.15478	24.2
2	0.00081548	4.73188
3	0.000986846	4.73188
4	6.99271e-05	4.01844
58	7.20339e-06	4.43994e-06
59	1.02172e-06	8.54455e-10
60	1.49948e-07	7.76163e-17

2. Resolver el problema de ajustar una mezcla de gaussianas a un histograma 3D. La función está dada por:

$$\min_{\alpha^j,\mu^j} g(\alpha^j,\mu^j) = \sum_{c \in \Omega} [h^j(c) - \sum_{i=1}^n \alpha_i^j exp\left(-\frac{||c - \mu_i^j||_2^2}{2\sigma^2}\right)]^2$$

Requerimos encontrar el gradiente con respecto a alpha y mu.

$$\begin{split} \frac{\delta}{\delta\alpha_{k}^{j}} &= -2\sum_{c\in\Omega}[h^{j}(c) - \sum_{i=1}^{n}\alpha_{i}^{j}exp\left(-\frac{||c-\mu_{i}^{j}||_{2}^{2}}{2\sigma^{2}}\right)]exp\left(-\frac{||c-\mu_{k}^{j}||_{2}^{2}}{2\sigma^{2}}\right) \\ \frac{\delta}{\delta\mu_{k}^{j}} &= \sum_{c\in\Omega}[h^{j}(c) - \sum_{i=1}^{n}\alpha_{i}^{j}exp\left(-\frac{||c-\mu_{i}^{j}||_{2}^{2}}{2\sigma^{2}}\right)]\alpha_{k}^{j}exp\left(-\frac{||c-\mu_{k}^{j}||_{2}^{2}}{2\sigma^{2}}\right)\frac{(c-\mu_{k}^{j})}{\sigma^{2}} \end{split}$$

Y los hessianos

$$\begin{split} \frac{\delta}{\delta\alpha_k^j\delta\alpha_l^j} &= 2\sum_{c\in\Omega} exp\left(-\frac{||c-\mu_l^j||_2^2}{2\sigma^2}\right) exp\left(-\frac{||c-\mu_k^j||_2^2}{2\sigma^2}\right) \\ \frac{\delta}{\delta\mu_k^j\delta\mu_l^j} &= -\sum_{c\in\Omega} \alpha_l^j exp\left(-\frac{||c-\mu_l^j||_2^2}{2\sigma^2}\right) \frac{(c-\mu_l^j)}{\sigma^2} \alpha_k^j exp\left(-\frac{||c-\mu_k^j||_2^2}{2\sigma^2}\right) \frac{(c-\mu_k^j)}{\sigma^2} \end{split}$$

Para resolver el problema, optimizamos con dogleg primero sobre las α , luego sobre las μ y esto lo contamos como una iteración. Continuamos resolviendo hasta lograr convergencia.

Al obtener los alphas, y los mus, usamos la siguiente función para categorizar:

$$\begin{split} f(c,\alpha,\mu) &= \sum_{i=1}^n \alpha_i^j exp \left(-\frac{||c-\mu_i^j||_2^2}{2\sigma^2} \right) \\ F(c,\alpha^1,\mu^1) &= \frac{f(c,\alpha^1,\mu^1) + \epsilon}{f(c,\alpha^1,\mu^1) + f(c,\alpha^2,\mu^2) + 2\epsilon} \\ F(c,\alpha^2,\mu^2) &= \frac{f(c,\alpha^2,\mu^2) + \epsilon}{f(c,\alpha^1,\mu^1) + f(c,\alpha^2,\mu^2) + 2\epsilon} \end{split}$$

Asignamos la categoría 2 cuando $F(c,\alpha^2,\mu^2)>F(c,\alpha^1,\mu^1)$ y 1 en el caso contrario.

Figura 1: 5 Gaussianas