

Relational Algebra

COMP9311 24T3; Week 2.2

By Wenjie Zhang, UNSW

Motivation

- We've seen what a relational model is.
- We needed a formal language to specify data (tuples) from the relational model.
- Relational Algebra (E.F. Codd (1970))

Why Relational Algebra?

- It provides a formal foundation for relational model operations
- It is used as a basis for implementing and optimizing queries in the query processing and optimization
- Some of its concepts are incorporated into SQL

Relational Algebra

Relational Algebra is a procedural data manipulation language (**DML**). It specifies operations on relations to define <u>new relations</u>:

Unary Relational Operations: Select, Project

Operations from Set Theory: Union, Intersection, Difference,

Cartesian Product

Binary Relational Operations: Join, Divide.

1 SELECT

The SELECT operation/predicate is used to select a subset of the tuples of a relation R, satisfying some conditions.

Notation: $\sigma_{\langle selection\ condition \rangle}(R)$

Intuition: Filters out all tuples that do not satisfy select condition

Selection Condition

The condition is defined by a **selection clause**:

- <attribute> operator <constant>
- < attribute > operator < attribute >

Where *operator* is one of =, <, \le , >, \ge or \ne ...

Example:

- > age ≤ 24
- > commission ≥ 24 000

Selection Condition

Selection clauses can also be

<expression> operator <expression>

With this, we can use **Boolean connectives** as operators

- > C1 AND C2
- > C1 OR C2
- > NOT C

Terms equivalently expressed by ∧ (and), ∨(or), ¬ (not)

Q: Select the enrolment records for the students whose supervisor is Person 1

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

 $\sigma_{(Supervisor=1)}(\mathit{ENROLMENT})$

The output relation is

Enrolment#	Supervisee	Supervisor	Department	Degree
2	3	1	Comp.Sci	Ph.D.
3	4	1	Comp.Sci	M.Sc.
4	5	1	Comp.Sci	M.Sc.

Q: Select the enrolment records for Person 1's non-Ph.D. students

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

$$\sigma_{(Supervisor=1\ AND\ Degree \neq "Ph.D.")}(ENROLMENT) \ \sigma_{(Supervisor=1\ AND\ NOT\ Degree = "Ph.D.")}(ENROLMENT)$$
 Same

The output relation is

Enrolment#	Supervisee	Supervisor	Department	Degree
3	4	1	Comp.Sci	M.Sc.
4	5	1	Comp.Sci	M.Sc.

Properties of Selection

Properties:

> Consecutive selects can be combined:

$$\sigma_{\langle cond1\rangle}(\sigma_{\langle cond2\rangle}(R)) = \sigma_{\langle cond1\rangle AND \langle cond2\rangle}(R)$$

> Selection is a *commutative* operation:

$$\sigma_{}(\sigma_{}(R)) = \sigma_{}(\sigma_{}(R))$$

2 PROJECT

The PROJECT operation is used to project a subset of the attributes (column) of a relation, denoted by:

General form: $\pi_{<attribute\ list>}(R)$

Result:

- schema: attribute list (A₁,...,A_k)
- instance: the set of all subtuples t[A₁,...,Ak] where t ∈ R

Q: Find departments and degree requirements for the courses that students enroll.

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

 $\pi_{\{department, degree\}}(ENROLLMENT)$

The output relation is

Department	Degree
Psychology	Ph.D.
Comp.Sci	Ph.D.
Comp.Sci	M.Sc.

Duplicates of PROJECT

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

Question: What if we do PROJECTION on only department?

Department
Psychology
Comp.Sci.
Comp.Sci.
Comp.Sci.

Department
Psychology
Comp.Sci.

Duplicates of PROJECT

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

Question: What if we do PROJECTION on only department?

Answer: Keep only one 'Comp.Sci.'.

DepartmentPsychology

Comp.Sci.

Relational Algebra is based on sets, so no duplicates are allowed.

The PROJECT operation removes any duplicate tuples, so the result of the PROJECT operation is a set of distinct tuples, and this is known as duplicate elimination.

Properties of PROJECT

Consider $\pi_{\langle list1 \rangle}(\pi_{\langle list2 \rangle}(R))$

If !st2> contains all the attributes in !st1> :

Then
$$\pi_{< list1>}(\pi_{< list2>}(R)) = \pi_{< list1>}(R)$$

Else the operation is not well defined.

Project Predicate

Question: is projection commutative with selection?

i.e.,
$$\pi_X(\sigma_B(R)) = \sigma_B(\pi_X(R))$$
?

Consider the following:

$$\pi_{\{degree\}}(\sigma_{(Department='Psychology')}(ENROLMENT))$$

 $\sigma_{(Department='Psychology')}(\pi_{\{degree\}}(ENROLMENT)) \quad \text{Error as SELECT cannot find Department}$

Degree Ph.D.

Answer: The attribute used in SELECT must be a subset of the attribute list in PROJECT

Intuition: Projection and Selection

- 1. Selection performs a horizontal decomposition, and
- 2. projection performs a vertical decomposition

3 SET UNION

UNION is the set-theoretic union of the tuples of two relations.

$$R \cup S = \{t: t \in R \text{ or } t \in S\}$$

Condition: R and S must be union compatible!

Union compatibility: there is a 1-1 correspondence between their attributes: the same name and same domain.

Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both:

```
\pi_{\{course\_id\}}(\sigma_{(semester="Fall" \land year=2009)}(sectioon)) \cup \\ \pi_{\{course\_id\}}(\sigma_{(semester="Spring" \land year=2010)}(sectioon))
```

Example

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

Example: STUDENT U RESEARCHER =

Person#	Name	
1	Dr C.C.Chen	
3	Ms K.Juliff	
4	Ms J.Gledhill	
5	Ms B.K.Lee	
2	Dr R.G.Wilkinson	

4 SET INTERSECTION

INTERSECTION is an operation that includes all tuples that are in present both relations, denoted by

$$R \cap S = \{t: t \in R \ and \ t \in S\}$$

- Condition: R and S must also be union compatible!
- \triangleright Example: $R_1 \leftarrow \sigma_{(supervisor=1)}(ENROLMENT)$

$$R_2 \leftarrow \sigma_{(degree='Ph.D.')}(ENROLMENT)$$

$$R_1 \cap R_2 =$$

Enrolment#	Supervisee	Supervisor	Department	Degree
2	3	1	Comp.Sci.	Ph.D.

Example of Intersection

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

Example: STUDENT ∩ RESEARCHER =

Person#	Name
1	Dr C.C. Chen

5 SET DIFFERENCE

DIFFERENCE is a relation that includes all tuples that are in the left relation but not in the right relation, denoted by

$$R - S = \{t: t \in R \text{ and } t \notin S\}$$

Condition: R and S must also be union compatible!

ST	UDEN'	Γ:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms R K Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

Example: STUDENT – RESEARCHRER =

Person#	Name
3	Ms K. Juliff
4	Ms J. Gledhill
5	Ms B.K. Lee

Summary

Operations on Relations

• UNION: A U B

• INTERSECTION: $A \cap B$

• DIFFERENCE: A - B

Express: The names of persons who are either a student or a researcher

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

Express: The names of persons who are either a student or a researcher

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

 $\pi_{\{name\}}(STUDENT \cup RESEARCHER)$

Dr C.C.Chen Dr R.G.Wilkinson Ms K.Juliff Ms J.Gledill Ms B.K.Lee

Express: The names of persons who are a student and a researcher

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

Express: The names of persons who are a student and a researcher

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

 $\pi_{\{name\}}(STUDENT \cap RESEARCHER)$

Express: The names of persons who are a student **but not** a researcher

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

Express: The names of persons who are a student but not a researcher

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

 $\pi_{\{name\}}(STUDENT - RESEARCHER)$

Name
Ms K.Juliff
Ms J.Gledill
Ms B.K.Lee

Express: The departments and degrees of Courses which are not enrolled by any student

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

COURSE:

<u>Department</u>	Degree
Psychology	Ph.D.
Comp.Sci.	Ph.D.
Comp.Sci.	M.Sc.
Psychology	M.Sc.

Express: The departments and degrees of Courses which are not enrolled by any student

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

COURSE:

Department	Degree
Psychology	Ph.D.
Comp.Sci.	Ph.D.
Comp.Sci.	M.Sc.
Psychology	M.Sc.

 $COURSE - (\pi_{(Department, degree)}(ENROLMENT))$

CARTESIAN PRODUCT

$$R \times S = \{t_1 | | t_2 : t_1 \in R \text{ and } t_2 \in S\}$$

- Intuition: every combination of tuples in R with tuples in S.
- $\succ t_1 \mid\mid t_2$ indicates the concatenation of tuples.
- > R and S not required to be union compatible, but
- \triangleright The number of tuples in the output relations is always |R| * |S|

Usually assumes that attributes of r(R) and s(S) are disjoint. (That is, $R \cap S = \emptyset$). If not, you must devise a naming schema to distinguish between the attribute names if they are the same in r(A,B) and s(A,C), by attaching the relation's name, r.A and s.A (known as dot-notation)

Example of cartesian product

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

RESEARCHER:

	Person #	Name
	1	Dr C.C.Chen
1	2	Dr R.G.Wilkinson

Example of cartesian product

ENROLMENT X RESEARCHRER =

E'ment#	S'ee	S'or	D'ment	Degree	Person #	Name
1	1	2	Psych.	Ph.D.	1	Dr C.C. Chen
1	1	2	Psych.	Ph.D.	2	Dr R.G.Wilkinson
2	3	1	Cmp.Sci	Ph.D.	1	Dr C.C. Chen
2	3	1	Cmp.Sci	Ph.D.	2	Dr R.G.Wilkinson
3	4	1	Cmp.Sci	M.Sc.	1	Dr C.C. Chen
3	4	1	Cmp.Sci	M.Sc.	2	Dr R.G.Wilkinson
4	5	1	Cmp.Sci	M.Sc.	1	Dr C.C. Chen
4	5	1	Cmp.Sci	M.Sc.	2	Dr R.G.Wilkinson

There were 4 tuples in ENROLMENT and 2 tuples in RESEARCHER. In the result, there are 8 tuples.

Useful if we add a condition

 $R_1 \leftarrow ENROLMENT \times RESEARCHER$

E'ment#	S'ee	S'or	D'ment	Degree	Person#	Name
1	1	2	Psych.	Ph.D.	1	Dr C.C. Chen
1	1	2	Psych.	Ph.D.	2	Dr R.G.Wilkinson
2	3	1	Cmp.Sci	Ph.D.	1	Dr C.C. Chen
2	3	1	Cmp.Sci	Ph.D.	2	Dr R.G.Wilkinson
3	4	1	Cmp.Sci	M.Sc.	1	Dr C.C. Chen
3	4	1	Cmp.Sci	M.Sc.	2	Dr R.G.Wilkinson
4	5	1	Cmp.Sci	M.Sc.	1	Dr C.C. Chen
4	5	1	Cmp.Sci	M.Sc.	2	Dr R.G.Wilkinson

In practice it's useful if we give a cartesian product specified condition $\sigma_{(Supervisor=Person\#)}(R_1)=$

E'ment#	S'ee	S'or	D'ment	Degree	Person#	R'cher. Name
1	1	2	Psych.	Ph.D.	2	Dr R.G.Wilkinson
2	3	1	Cmp.Sci.	Ph.D.	1	Dr C.C. Chen
3	4	1	Cmp.Sci.	M.Sc.	1	Dr C.C. Chen
4	5	1	Cmp.Sci.	M.Sc.	1	Dr C.C. Chen

More useful if we add a projection

 $R_1 \leftarrow ENROLMENT \times RESEARCHER$

$$R_2 \leftarrow \sigma_{(Supervisor = Person\#)}(R_1)$$

E'ment#	S'ee	S'or	D'ment	Degree	Person#	R'cher. Name
1	1	2	Psych.	Ph.D.	2	Dr R.G.Wilkinson
2	3	1	Cmp.Sci.	Ph.D.	1	Dr C.C. Chen
3	4	1	Cmp.Sci.	M.Sc.	1	Dr C.C. Chen
4	5	1	Cmp.Sci.	M.Sc.	1	Dr C.C. Chen

$$\pi_{\{E'ment\#,S'ee,S'or,Name,D'ment,Degree\}}(R_2)$$

E'ment#	S'ee	S'or	Name	D'ment	Degree
1	1	2	Dr R.G.Wilkinson	Psych.	Ph.D.
2	3	1	Dr C.C. Chen	Comp.Sci.	Ph.D.
3	4	1	Dr C.C. Chen	Comp.Sci.	M.Sc.
4	5	1	Dr C.C. Chen	Comp.Sci.	M.Sc.

The two equal attributes occur only once

The last of these is also known as *natural join*, the next to last is *equi-join*.

6 JOIN

- JOIN is used to combine related tuples from two relations into single "longer" tuples.
- > Theta-join

 $R\bowtie_{< join\ condition>} S=\{t_1\mid\mid t_2:t_1\in R\ and\ t_2\in S\ and< join\ condition>\}$

A general join condition is of the form:

<condition> AND <condition> AND ... AND <condition>

6.1 Equi-join

A type of theta-join where the only comparison operator used is "=" is called an Equi-join

Example:

 $ENROLMENT \bowtie_{(Supervisor = Person\#)} RESEARCHER$

6.2 Natural Join

A type of equi-join that requires each pair of join attributes to have the same name and domain in both relations.

Notes: In a natural join, there may be several valid pairs of join attributes.

 $ENROLMENT \bowtie_{(department, name), (department, name)} COURSE$

If there are pairs of joining attributes identically named, we can write $ENROLMENT \bowtie COURSE$

Note: this notion also acceptable if there's one join attribute

6.2 Natural Join

Intuitions:

- > Enforce equality on all attributes with same name
- > Eliminate one copy of duplicated attributes

JOINS

Remember the differences between the types of joins:

- 1. Theta JOIN
- 2. Equi JOIN
- 3. Natural JOIN

Note: all denoted with ⋈

STUDENT:

Person#	Name	
1	Mr J.He	
3	Ms K.Juliff	
4	Ms J.Gledill	
5	Ms B.K.Lee	

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

COURSE

<u>Depart</u>	<u>Degree</u>
EE	PhD
CS	PhD
EE	MSc
CS	MSc

ENROLMENT:

Enrol#	Supervisee	Supervisor	Depart	Degree
1	1	2	EE	PhD
2	3	1	CS	PhD
3	4	1	CS	MSc
4	5	1	CS	MSc

What are the names of students who are studying for an MSc in computer science?

STUDENT:

Person#	Name	
1 Mr J.He		
3	Ms K.Juliff	
4	Ms J.Gledill	
5	Ms B.K.Lee	

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

COURSE

<u>Depart</u>	<u>Degree</u>
EE	PhD
CS	PhD
EE	MSc
CS	MSc

ENROLMENT:

Enrol#	Supervisee	Supervisor	Depart	Degree
1	1	2	EE	PhD
2	3	1	CS	PhD
3	4	1	CS	MSc
4	5	1	CS	MSc

What are the names of students who are studying for an MSc in computer science?

STUDENT:

Person#	Name
1	Mr J.He
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

COURSE

<u>Depart</u>	<u>Degree</u>
EE	PhD
CS	PhD
EE	MSc
CS	MSc

ENROLMENT:

Enrol#	Supervisee	Supervisor	Depart	Degree
1	1	2	EE	PhD
2	3	1	CS	PhD
3	4	1	CS	MSc
4	5	1	CS	MSc

The IDs of students who are supervised by Dr C.C.Chen

STUDENT:

Person#	Name
1	Mr J.He
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

COURSE

<u>Depart</u>	<u>Degree</u>
EE	PhD
CS	PhD
EE	MSc
CS	MSc

ENROLMENT:

Enrol#	Supervisee	Supervisor	Depart	Degree
1	1	2	EE	PhD
2	3	1	CS	PhD
3	4	1	CS	MSc
4	5	1	CS	MSc

The IDs of students who are supervised by Dr C.C.Chen

R1 = ENROLMENT ⋈ (supervisor=person#) RESEARCHER

$$R2 = \sigma_{\text{(name=Dr C.C.Chen)}}R1$$

$$R3 = \pi_{\text{\{supervisee\}}}R2$$

$$R3 = \pi_{\{\text{supervisee}\}} R2$$

Divide

- ➤ The DIVISION operation is applied to two
 Relations R and S, where the attributes of S are a
 subset of the attributes of R.
- ➤ The relation returned by the division operator will have attributes = (All attributes of R – All Attributes of S)
- Return all tuples from relation R which are associated to every S's tuple.

В В S a₁ b₁ a_1 b_2 Α b₁ a_2 b_2 a₁ a_3 $R \div S =$ b₁ a₄ a_5 b₁ a_5

Divide

Typical use: which courses are offered by all departments?

 $Course \div (\pi_{Department}Course)$

Divide

Typical use: which courses are offered by all degrees?

$$Course \div (\pi_{Degree}Course)$$

<u>Depart</u>	<u>Degree</u>
EE	PhD
CS	PhD
EE	MSc
CS	MSc

COURSE

STUDENT:

Person#	Name
1	Mr J.He
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

COURSE

<u>Depart</u>	<u>Degree</u>
EE	PhD
CS	PhD
EE	MSc
CS	MSc

ENROLMENT:

Enrol#	Supervisee	Supervisor	Depart	Degree
1	1	2	EE	PhD
2	3	1	CS	PhD
3	4	1	CS	MSc
4	5	1	CS	MSc

The names of supervisor who supervises both MSc and PhD students

STUDENT:

Person#	Name
1	Mr J.He
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

COURSE

<u>Depart</u>	<u>Degree</u>
EE	PhD
CS	PhD
EE	MSc
CS	MSc

ENROLMENT:

Enrol#	Supervisee	Supervisor	Depart	Degree
1	1	2	EE	PhD
2	3	1	CS	PhD
3	4	1	CS	MSc
4	5	1	CS	MSc

The names of supervisor who supervises both MSc and PhD students

R1 =
$$\pi_{\{SUPERVISOR, DEGREE\}}$$
 ENROLMET ÷ $\pi_{\{DEGREE\}}$ COURSE
R2 = $\pi_{\{Name\}}$ (R1 $\bowtie_{(supervisor=person\#)}$ RESEARCH)

Exercise

R:

Α	В	С
a ₁	b ₁	C ₁
a ₁	b ₁	c_2
a ₁	b ₁	c_3
a ₁	b_2	c_2
a_2	b ₁	c ₁
a_2	b_2	c_2
a_3	b ₁	c ₁
a_3	b_2	c ₁
a_3	b_2	c_2

S:

В	С
b ₁	c ₁
b ₁	c_2

Write relational algebra that retrieves:

- 1. Find A of R that contains all S.
- 2. Find (A, B) of R that contains all C of S.

Exercise Answers:

1.
$$R \div S$$

A

 a_1

2.
$$R \div \pi_{\{c\}}(S)$$

Α	В
a ₁	b ₁
a_3	b_2

Rename Operator

- The rename operator p changes the name of one or more attributes
- Change the names in a schema
- Does not affect instance of the target relation

Family

Father	Child
Adam	Abel
Adam	Cain
Abraham	Isaac

ρ_(Parent, Child) (Family)

Parent	Child
Adam	Abel
Adam	Cain
Abraham	Isaac

Why might this be useful? To be included in relational algebra?

Why RENAME Operator?

- > To unify schemas for set operators
- For disambiguation in "self-join"

Basic vs Extended Operators

Note: $\{\sigma, \pi, \cup, -, \times\}$ (and rename) are sufficient to define all these operations: this is a relationally complete set of operators. These are the **basic operators** of the Relational Algebra.

What about JOIN, INTERSECTION and DIVIDE?
They are **extended operators** because they can be derived from the basic operators.

E.g., We can write $R \div S$ as

$$TEMP1 \leftarrow \pi_{R-S}(R)$$

 $TEMP2 \leftarrow \pi_{R-S}((TEMP1 \times S) - R)$
 $RESULT = TEMP1 - TEMP2$

- \succ The result to the right of \leftarrow is assigned to the relation variable on the left of \leftarrow .
- May use variable in subsequent expressions.

Aggregate Operators

What if we want a relation with information about "sum of salaries" of employees, or the "average age" of students?

We need more expressive power, we can use *aggregation functions* to summarize information from multiple tuples into *aggregate values*.

We can use an **aggregation operator** γ and a function such as *SUM*, *AVG*, *MIN*, *MAX*, or *COUNT*. What if NULL?

If R =
$$\begin{vmatrix} A & B \\ 1 & 2 \\ 3 & 4 \\ \hline 3 & 5 \\ \hline 1 & 1 \end{vmatrix}$$
, then $\gamma_{SUM(A)}(R) = \begin{vmatrix} SUM(A) \\ 8 \end{vmatrix}$ and $\gamma_{AVG(B)}(R) = \begin{vmatrix} AVG(B) \\ 3 \end{vmatrix}$

Aggregate Operators

We can also retrieve aggregate values for groups, like the "sum of employee salaries" *per department* or the "average student age" *per faculty*.

We give γ additional arguments to specify that the aggregation behavior should be based on groups (defined by a set of attributes).

If R =
$$\begin{pmatrix} a & b \\ 1 & 2 \\ 3 & 4 \\ 3 & 5 \end{pmatrix}$$
, then $\gamma_{a,SUM(b)}(R) = \begin{pmatrix} a & SUM(b) \\ 1 & 5 \\ 3 & 9 \end{pmatrix}$

Formal Definition

A basic relational algebra expression is one of the following:

- >A relation in the database
- >(could also be a) constant relation

A general relational algebra expression is constructed out of smaller subexpressions. Let E_1 and E_2 be relational algebra expressions; the following are all relational-algebra expressions:

- $\triangleright E_1 \cup E_2$
- $\triangleright E_1 E_2$
- $\triangleright E_1 \times E_2$
- $\succ \sigma_P(E_1)$ where P is predicate on attributes in E_1
- $\succ \pi_S(E_1)$ where S is a set of attributes in E_1
- $\triangleright \rho_X(E_1)$ where X is the new name for the result of E_1

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R	$\sigma_{\leq selection\ condition >}(R)$
PROJECT	Produces a new relation with only some of the attributes of R and removes duplicate tuples.	$\pi_{< attribute\ list>}(R)$
THETA-JOIN	Produces all combinations of tuples from R and S that satisfy the join condition.	$R \bowtie_{< join\ condition>} S$
EQUI-JOIN	Produces all the combinations of tuples from R and S that satisfy a join condition with only equality comparisons.	$R \bowtie_{< join\ condition>} S$
NATURAL-JOIN	Same as EQUIJOIN except that the join attributes of S are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$R \bowtie_{< join\ condition>} S$
UNION	Produces a relation that includes all the tuples in R or S or both R and S; R and S must be union compatible.	$R \cup S$
INTERSECTION	Produces a relation that includes all the tuples in both R and S; R and S must be union compatible.	$R \cap S$
DIFFERENCE	Produces a relation that includes all the tuples in R that are not in S; R and S must be union compatible.	R-S
CARTESIAN PRODUCT	Produces a relation that has the attributes of R and S and includes as tuples all possible combinations of tuples from R and S.	$R \times S$
DIVISION	Produces a relation $T(X)$ that includes all tuples $t[X]$ in $R(Z)$ that appear in R in combination with every tuple from $S(Y)$, where $Z = X \cup Y$.	$R(Z) \div S(Y)$ 59