SOLUCIÓN ECUACIONES NO LINEALES SEMANA 27/4 - 1/5

Sea $f:[a,b]\to\mathbb{R}$ una función no lineal. Queremos encontrar las soluciones de la ecuación

$$f(x) = 0.$$

Como la f es no lineal esta ecuación no se puede solucionar analiticamente en la mayoría de los casos. Abajo proponemos diferentes métodos para aproximar numericamente una solución de la ecuación.

1. Algoritmo para el método de bisección

Supongamos que f sea continua y que f(a)f(b) < 0. Entonces existe una solución de (1).

- (1) Sea $x_0 := (a+b)/2$ el punto medio del intervalo [a,b]. Si $f(x_0) = 0$, entonces hemos encontrado una solución de (1). Si no:
- (2) Calculamos $f(a)f(x_0)$. Si $f(a)f(x_0) < 0$, entonces definimos $b := x_0$, al contrario $a := x_0$. Volvemos al punto (1).

A cada paso de iteración nos acercamos a una solución de (1) con un error aproximado de (b-a)/2.

2. Algoritmo para el método de punto fijo

Sea $g:[a,b]\to\mathbb{R}$ una función no lineal. Queremos encontrar las soluciones de la ecuación

$$(2) g(x) = x.$$

Las soluciones de (2) se llaman puntos fijos de g. La ecuación (1) se puede escribir como (2) definiendo g(x) := f(x) + x, y al revés definiendo f(x) := g(x) - x.

Un algoritmo para aproximar numericamente un punto fijo de una función g es el siguiente.

Sea x_0 un punto de [a, b].

- (1) Se define $x_1 := g(x_0)$.
- (2) Volvemos al punto (1) con $x_0 := x_1$.

Si el método converge, a cada paso de iteración nos acercamos a una solución de (2) con un error aproximado de $|x_1 - x_0|$.

3. Algoritmo para el método de Newton

Supongamos que f sea una función de clase \mathbb{C}^1 . El método de Newton para encontrar una solución de (1) utiliza el algoritmo de punto fijo con g(x) := x - f(x)/f'(x).

Sea x_0 un punto de [a, b].

- (1) Se define $x_1 := x_0 f(x_0)/f'(x_0)$.
- (2) Volvemos al punto (1) con $x_0 := x_1$.

Si el método converge, a cada paso de iteración nos acercamos a una solución de (1) con un error aproximado de $|x_1 - x_0| = |f(x_0)/f'(x_0)|$.

4. Function handle en MATLAB

Recordamos que en MATLAB es posible utilizar una función como parametro de input/output de otra función utilizando "function handle". Se define un function handle de la forma siguiente: por ejemplo,

$$f = @(x) \sin(x)$$

Para definir, por ejemplo, una función que calcule la media m de f en dos puntos a y b:

```
 \begin{array}{l} {\rm function}\;[m] = {\rm Media}(f,\,a,\,b) \\ {\rm m} = \left(f(a) + f(b)\right) \,/\,\,2; \\ {\rm end} \end{array}
```

Si ahora quiero utilizar la función "Media" para el sin en 0 y 1:

```
f = @(x) \sin(x)Media(f, 0, 1)
```

5. Problemas

- (1) Escribir una función de MATLAB con inputs la función f, el intervalo [a, b] y el numéro de iteracciones n y con outputs la solución aproximada x y el error aproximado al paso n de la ecuación (1) con el método de bisección.
- (2) Escribir una función de MATLAB con inputs la función f, el punto inicial $x_0 \in [a,b]$ y el numéro de iteracciones n y con outputs la solución aproximada x y el error aproximado al paso n de la ecuación (2) con el método de punto fijo.
- (3) Escribir una función de MATLAB con inputs la función f, su derivada f', el punto inicial $x_0 \in [a, b]$ y el numéro de iteracciones n y con outputs la solución aproximada x y el error aproximado al paso n de la ecuación (1) con el método de Newton.
- (4) Escribir un script de MATLAB que aproxime la solución de sin(x) = |x|/2 con los tre métodos y on un error menor que 10^{-2} .