Zachary Seymour MATH 506 Midterm: Exam 1 March 11, 2014

Prove the following statements. You need to provide a complete proof of each problem in order to get the full credit.

1 (10 points)

Let $(X, \|\cdot\|_1)$ and $(Y, \|\cdot\|_2)$ be two Banach spaces. If $Z = X \times Y$ (Cartesian product) with the norm given by $\|(x, y)\| = \|x\|_1 + \|y\|_2$, then $(Z, \|\cdot\|)$ is a Banach space.

2 (10 points)

Let (X, \mathcal{M}, μ) be a σ -finite measure space. Then for $1 \leq p < \infty$, $L^p(X, \mu)$ is a Banach space with the norm $||f||_p = (\int |f|^p d\mu)^{1/p}$.

Proof. We must show that $L^{p}(X,\mu)$ is complete in the given norm.

First, let $\{f_n\}$ be Cauchy in L^p with respect to $\|\cdot\|_p$. It thus suffices to show that $\sum \|f_n\|_p < \infty$ and f_n converges to some $f \in L^p$.

3 (20 points)

Let $\{H_n\}_{n=1}^{\infty}$ be a sequence of Hilbert spaces and let $H = \{\{x_n\} : x_n \in H_n, \sum \|x_n\|^2 < \infty\}$. For $\{x_n\}, \{y_n\} \in H$, $a, b \in \mathbb{R}$, define $a\{x_n\} + b\{y_n\} = \{ax_n + by_n\}$ and $(\{x_n\}, \{y_n\}) = \sum (x_n, y_n)$. Then H is a Hilbert space.

4 (10 points)

Let X be an inner product space and let $A \subset X$. then $A^{\perp} = \overline{A}^{\perp}$.

5 (10 points)

Suppose that H is a separable Hilbert space and $Y \subset H$ is a closed linear subspace. Then these is an orthonormal basis form H consisting only of elements of Y and Y^{\perp} .

6 (15 points)

Let Y be a closed linear subspace of a Hilbert space H. If $Y \neq H$, then $Y^{\perp} \neq \{0\}$. Is this always true if Y is not closed?

7 (10 points)

Let $T: C[0,1] \to \mathbb{R}$ is the linear transformation defined by

$$T(f) = \int_0^1 f(x) \, dx.$$

Suppose that C[0,1] is equipped with the sup-norm.

7a

T is continuous.

7b

Find ||T||.

8 (15 points)

Let ℓ^2 be the set of real sequences $x = (x_1, x_2, ...)$ such that $\sum_n |x_n|^2 < \infty$.

8a

Let T be the linear transformation defined by

$$T(x_1, x_2, x_3, x_4, \dots) = (0, 4x_1, x_2, 4x_3, x_4, \dots).$$

Then $T : \ell^2 \to \ell^2$ is continuous.

8b

Find ||T||.

Find T^2 and $||T^2||$.