General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

AERONAUTICS AND SPACE ENGINEERING BOARD AERONAUTICS ASSESSMENT COMMITTEE

MARCH 16-17, 1977

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LEWIS RESEARCH CENTER

CLEVELAND. OHIO 44135

(NASA-TM-85594) AERONAUTICS AND SPACE ENGINEERING BOAFD: AERONAUTICS ASSESSMENT COMMITTEE (NASA) 263 p HC A12/MF A01 N84-22771

Unclas G3/31 00501

CSCL 13B

AERONAUTICS AND SPACE ENGINEERING BOARD

AERONAUTICS ASSESSMENT COMMITTEE

AGENDA

Wednesday, March 1	<u>6</u>				
8:00- 8:15am	Welcome and Center Overview	Dr.	В.	Lundin	
8:15- 8:45am	Introduction to Aeronautics Program	Mr.	W.	Stewart	
8:45-10:00am	MATERIALS AND STRUCTURES R&T	Mr.	R.	Hall	
	High Temperature Engine Materials Fatigue and Fracture Life Prediction Composite Materials and Structures	Mr.	M.	Probst Hirschberg Freche	
10:00-10:15am	Coffee Break				
10:15-11:15am	PROPULSION ENVIRONMENTAL IMPACT MINIMIZATION				
	Propulsion Noise Research Propulsion Pollution Reduction		-	Feiler Petrash	
11:15-12:30pm	PROPULSION COMPONENTS				
	Inlets and Nozzles Fan, Compressor and Turbine Research	Mr.	М.	Bowditch Hartmann, Rohlik	
12:30- 1:30pm	Lunch				:
1:30- 3:00pm	PROPULSION COMPONENTS (CONTINUED)				
3:00- 5:00pm	Combustors, Augmentation Power Transfer Research Fuel Research Instrumentation AIRBREATHING ENGINE SYSTEMS	Mr.	W. J.	Petrash Anderson Grobman Wenger	
J.00- J.00pm	Propulsion Concrols Research Full-Scale Engine Research V/STOL Propulsion Research Advanced Engine Concepts Advanced General Aviation Propulsion Research	Mr. Mr. Mr.	R. R.	Drain Willoh Luidens Weber Willis, Jr	•
• • • • • • • • • • • • • • • • • • • •	Adjourn				
5:30pm	Social Hour and Dinner - Guerin House				

AERONAUTICS AND SPACE ENGINEERING BOARD

AERONAUTICS ASSESSMENT COMMITTEE

AGENDA

Wednesday, March	<u>16</u>		en en gerinde en
8:00- 8:15am	Welcome and Center Overview	Dr. B	. Lundin
8:15- 8:45am	Introduction to Aeronautics Program	Mr. W	. Stewart
8:45-10:00am	MATERIALS AND STRUCTURES R&T	Mr. R	. Hall
	High Temperature Engine Materials Fatigue and Fracture Life Prediction Composite Materials and Structures	Mr. M	. Probst . Hirschberg . Freche
10:00-10:15am	Coffee Break		
10:15-11:15am	PROPULSION ENVIRONMENTAL IMPACT MINIMIZATION		•
	Propulsion Noise Research Propulsion Pollution Reduction		. Feiler). Petrash
11:15-12:30pm	PROPULSION COMPONENTS		
	Inlets and Nozzles Fan, Compressor and Turbine Research	Mr. N). Bowditch i. Hartmann, i. Rohlik
12:30- 1:30pm	Lunch		.
1:30- 3:00pm	PROPULSION COMPONENTS (CONTINUED)		
	Combustors, Augmentation Power Transfer Research Fuel Research Instrumentation	Mr. Mr.	D. Petrash V. Anderson J. Grobman V. Wenger
3:00- 5:00pm	AIRBREATHING ENGINE SYSTEMS		
	Propulsion Concrols Research Full-Scale Engine Research V/STOL Propulsion Research Advanced Engine Concepts Advanced General Aviation Propulsion Research Adjourn	Mr. I	D. Drain R. Willoh R. Luidens R. Weber E. Willis, Jr.
5:30pm	Social Hour and Dinner - Guerin House		

Thursday, March 17

8:00-10:00am	Center Director Discussion of Issues	Dr. B. Lundin
10:00-12:30pm	Committee Discussion of Presentations	
12:30- 1:30pm	Lunch	
1:30- 2:30pm	Center Presentations as Directed	
2:30- 5:00pm	Executive Discussion Analysis and Summary	

- PRINCIPAL ROLES OF LEWIS

- AIR BREATHING PROPULSION SYSTEMS
- LAUNCH VEHICLE DEVELOPMENT AND OPERATION
- SPACE PROPULSION SYSTEMS TECHNOLOGY
- SPACE ENERGY PROCESSES AND TECHNOLOGY
- TERRESTRIAL ENERGY TECHNOLOGY AND APPLICATIONS
- HIGH POWER SPACE COMMUNICATIONS

AREAS OF TECHNICAL EXCELLENCE

- COMPRESSOR AND TURBINE AERODYNAMICS
- COMBUSTION
- MATERIALS
- MECHANICAL POWER TRANSMISSION
- FRACTURE MECHANICS AND FATIGUE
- ELECTRONIC POWER PROCESSING
- ELECTRIC PROPULSION
- ENERGY CONVERSION PROCESSES AND SYSTEMS
- LAUNCH VEHICLE ENGINEERING AND OPERATIONS

RECENT PROGRAM TRENDS IN AERONAUTICS AT LEWIS

- SHIFT TOWARDS CIVIL NEEDS
 - o ENVIRONMENT
 - o ENERGY
 - o ECONOMY
- GRADUALLY DECLINING R&T BASE; GROWTH IN "PROJECTS",
 EXPERIMENTAL ENGINES
- RECENT INTEREST, SUPPORT, BY MASA MANAGEMENT
- RECENTLY GROWING RELATIONS WITH SMALL ENGINE BUILDERS
- LINE AND CLOSE RELATIONS WITH USAF APL IN R&T BASE
- STABILITY OF STAFFING, ORGANIZATION
- GOOD RELATIONS WITH UNIVERSITIES, INDUSTRY
- INTRODUCTION OF A FUNDING "BOW-WAVE"

LEWIS RESEARCH CENTER AERONAUTICS FACILITIES FUNDING (C OF F)

INTRODUCTION TO AERONAUTICS PROGRAM

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

- O MAINTAIN OPTIMUM BALANCE, IN-HOUSE VS. CONTRACT/GRANT
- O SUPPORT TO LEWIS PROJECT/ORGANIZATIONS
- O SUPPORT TO OTHER NASA CENTERS/HEADQUARTERS
- SERVICE TO OTHER AGENCIES

OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

PROGRAMS WITH OTHER NASA CENTERS

LANGLEY RESEARCH CENTER

- SCAR
- GENERAL AVIATION AGRICULTURE
- ACEE
- · NONAXISYMMETRIC NOZZLE
- · Noise

AMES RESEARCH CENTER

- · AMST
- QSRA
- · VTOL TECHNOLOGY
- · HELICOPTER TECHNOLOGY

- GASP
- · Noise

DRYDEN FLIGHT RESEARCH CENTER

- F-15
- YF-12
- · HIMAT

SPACE FLIGHT CENTERS

· SHUTTLE

AF/NASA INTEGRATED PROGRAMS

ORIGINAL PAGE TO OF POOR QUALITY

FORMAL PROGRAMS IN PROCESS

FULL-Scale Engine Research (FSER)

ADVANCED COMPRESSOR TECHNOLOGY

AEROELASTIC STABILITY OF FAN AND COMPRESSOR BLADED SYSTEMS

ADVANCED CONTROL TECHNOLOGY

LONG-RANGE PLAN CONTROL TECHNOLOGY

SEAL TECHNOLOGY

MECHANICAL COMPONENTS AND LUBRICATION TECHNOLOGY

INSTRUMENTATION TECHNOLOGY

Noise Technology

ALTERNATE FUELS

INFORMAL AGREEMENTS

EMISSIONS TECHNOLOGY

THRUST AUGMENTATION TECHNOLOGY

VARIABLE CYCLE ENGINE TECHNOLOGY

ADVANCED MATERIALS TECHNOLOGY

SOLAR CELL AND ELECTROCHEMICAL POWER

PLAN BEING FORMULATED

DISTORTION

CATALYTIC COMBUSTOR TECHNOLOGY

ADVANCED TURBINE TECHNOLOGY

NON-AXISYMMETRIC NOZZLE

NASA AERONAUTICS MISSION OBJECTIVES

- SAFER, MORE ECONOMICAL, EFFICIENT AND ENVIRONMENTALLY ACCEPTABLE AIR TRANSPORTATION SYSTEM.
- FAVORABLE COMPETITIVE POSITION FOR THE U.S. IN THE INTERNATIONAL AVIATION MARKET PLACE.
- MAINTENANCE OF SUPERIORITY OF U.S. MILITARY AIRCRAFT.

DISCIPLINARY RGT PRESENTATIONS

SUB-PROGRAM CODE	TITLE	SPEAKER
505-01, 02	MATERIALS AND STRUCTURES ROT	R. HALL
505-03	HIGH TEMPERATURE ENGINE MATERIALS FATIGUE & FRACTURE LIFE PREDICTION COMPOSITE MATERIALS AND STRUCTURES PROPULSION ENVIRONMENTAL IMPACT MINIMIZATION	H. PROBST M. HIRSCHBERG J. FRECHE
505-04	PROPULSION NOISE RESEARCH PROPULSION POLLUTION REDUCTION PROPULSION COMPONENTS	C. FEILER D. PETRASH
505-05	Inlets and Nozzles Fan, Compressor and Turbine Research Combustors, Augmentation Power Transfer Research Fuel Research Instrumentation AIRBREATHING ENGINE SYSTEMS	D. BOWDITCH M. HARTMANN, H. ROHLII D. PETRASH W. ANDERSON J. GROBMAN N. WENGER POOR
	PROPULSION CONTROLS RESEARCH FULL-Scale Engine Research V/STOL Propulsion Research Advanced Engine Concepts Advanced General Aviation Propulsion Research	D. DRAIN R. WILLOH R. LUIDENS R. WEBER E. WILLIS, JR.

MATERIALS & STRUCTURES

FY 77 RESOURCES SUMMARY

MATERIALS

SPECIFIC OBJECTIVE	R&D \$M	DMY
HIGH TEMPERATURE ENGINE MATERIALS	2.3	94
FATIGUE, FRACTURE, AND LIFE PREDICTION	0.3	29
SAFER LIGHTWEIGHT AIRCRAFT MATERIALS	<u>0.7</u>	<u>22</u> 145
STRUCTURES		
ADVANCED AIRCRAFT STRUCTURES	0.2	3

ORIGINAL PAGE IS

SCHEMATIC DIAGRAM OF TURBOFAN ENGINE

CS-73101

(4)

ណ៍មេសាស៊ីសមាទិស្សី ខ្លាំងនេះ

=

(+

NASA - LEWIS HIGH TEMPERATURE ENGINE MATERIALS PROGRAM

Bert Probst March 16, 1977

HIGH TEMPERATURE ENGINE MATERIALS

R&T BASE

OBJECTIVE: TO DEVELOP TECHNOLOGY BASE TO PROVIDE SUPERIOR MATERIALS & PROCESSES FOR THE HIGH TEMPERATURE COMPONENTS OF AIRCRAFT TURBINE ENGINES.

MAJOR TARGETS:

- o IDENTIFY IMPROVED BLADE MATERIAL BY FY 78
- o UNCOATED OXIDE DISPERSION STRENGTHENED VANE FOR 2000°F/3000 HOURS AND 25% LOWER COST BY FY 78
- o POWDER METALLURGY DISK ALLOY 1400°F/40% LOWER COST BY
- o CERAMIC SHROUD FOR 2600°F BY FY 80
- o THERMAL BARRIER COATINGS 3000 HOUR LIFE FOR BLADES, VANES, AND COMBUSTORS BY FY 80
- o FIVE FOLD INCREASE IN BALLISTIC IMPACT RESISTANCE OF SiC AND/OR Si₃N₄ By Fy 79

HIGH TEMPERATURE ENGINE MATERIALS -- PROGRAM MAJOR THRUSTS

COMPONENT KEY PROBLEMS		OUR APPROACH	MATERIAL CANDIDATES	
BLADES	o STABILITY OF STRENGTHENING PHASES	o ALIGNED MICROSTRUCTURES o INERT STRENGTHENERS o COMBINED STRENGTHENING MECHANISMS	o FIBER REINFORCED SUPERALLOYS o EUTECTICS o ODS + \(\gamma'' \) o THERMAL BARRIER COATINGS	
VANES	o SURFACE STABILITY o HOT SPOT CAPABILITY	o SEPARATE STRENGTHENING MECHANISM FROM ALLOY CHEMISTRY o ADJUST ALLOY CHEMISTRY FOR CORROSION RESIST	o ODS NiCrAl o CERAMICS o THERMAL BARRIER COATINGS	

HIGH TEMPERATURE ENGINE MATERIALS -- PROGRAM MAJOR THRUSTS

COMPONENT	KEY PROBLEMS	OUR APPROACH	MATERIAL CANDIDATES
DISKS	o STRENGTH VS. FABRICABILITY CRACK NUCLEATION & GROWTH	o POWDER METALLURGY ALLOYS - DERIVE STRENGTH FROM CHEMISTRY NOT DEFORMATION O CREEP-FATIGUE STUDIES	o II B SERIES (HIGH)'; HIGH REF. METALS)
SHROUDS	o SURFACE STABILITY o ABRADABILITY FOR MINIMUM TIP CLEARANCE	o CORROSION/EROSION RESISTANT MAT'LS o ''COMPLIANT'' RESPONSE TO TIP RUB	o NiCrAlY o CERAMICS

SOME CONTRIBUTIONS FROM THE HIGH TEMPERATURE ENGINE MATERIALS PROGRAM

- o ODS-NiCrAl VANES
- o $\gamma/\gamma'-5$ EUTECTIC BLADES
- o NiCrAly SHROUD
- o CERAMIC BLADE ROOT DESIGN CONCEPTS

IR-100 AWARDS

- o FIBER REINFORCED SUPERALLOY 1968
- o FLOATING ZONE FIBER DRAWING 1972
- o WAZ ALLOYS 1974
- o THERMAL BARRIER COATINGS 1976

ODS ALLOYS APPLIED IN ENGINES

A CASE HISTORY OF NASA-INDUSTRY-UNIVERSITY PARTNERSHIP

UNDERLINES DENOTE NASA SPONSORSHIP

OBJECTIVE: FATIGUE, FRACTURE, & LIFE PREDICTION
505-01-2

M.H. HIRSCHBERG

TARGETS

- ◆ VERIFY STRAINRANGE PARTITIONING FOR ENGINE COMPONENT LIFE PREDICTION BY FY 81
- DEVELOP ENVIRONMENTALLY CONTROLLED CRACK GROWTH TEST METHODS BY FY 81
- DEVELOP ASTM STANDARD FRACTURE TOUGHNESS TEST METHODS FOR BRITTLE & HIGH-TOUGHNESS MATERIALS

TOTAL R&D	\$K	300
DMY		29

WHY FATIGUE, FRACTURE, AND LIFE PREDICTION RESEARCH

- MANY BROKEN PARTS AND SERVICE FAILURES
- PROVIDE EMPIRICAL DATA
 PROVE AD HOC DESIGNS
- POORLY ORGANIZED DESIGN RATIONALE
- TREMENDOUS ANNUAL COST

 OCCASIONAL CATASTROPHE

 FREQUENT RETROFITS AND DOWN TIME

 INSPECTION

 MAJOR PROBLEMS C-5A, F-111, COMET, 2-0-2

FATIGUE LIFE PREDICTION

CAUSES OF ENGINE FAILURES

THE HOT ENDS OF THE ENGINES, PRIMARILY THE TURBINE, ARE RESPONSIBLE FOR 70 TO 75 PERCENT OF MAINTENANCE COSTS.

NASA - LEWIS DEVELOPMENTS FOR FATIGUE LIFE PREDICTION

• METHOD OF UNIVERSAL SLOPES - LOW AND INTERMEDIATE TEMPERATURES

• 10% RULE

- HIGH TEMPERATURES

● TIME-CYCLE FRACTIONS - HIGH TEMPERATURES

■ STRAINRANGE PARTITIONING - HIGH TEMPERATURES

TURBINE COMPONENT LIFE PREDICTION PROGRAM

ORIGINAL PAGE IS

TRANSIENT ANALYSIS FOR LIFE PREDICTION

COMPARISON OF EXPERIMENTAL AND CALCULATED LIVES

AGARD PROGRAM PARTICIPANTS

NASA LEWIS	USA	NGTE	GB
GE EVENDALE	,	NPL	"
P&WA FLORIDA	n - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ROLLS ROYCE	n
ORNL	"	CRANFIELD TECH	, , , , , , , , , , , , , , , , , , ,
AFML	n	UNIV OF BRISTOL	
TRW CLEVELAND	n	ONERA	F
MAR-TEST	n	CEAT	
PENN STATE UNIV	n	DFVLR	D
CASE WESTERN RESERVE UNIV	n - 1	IABG OTTOBRUNN	"
		CRM	В

ORIGINAL PAGE IS

INDUSTRY/GOVERNMENT COMMITTEE ON AIRCRAFT GAS TURBINE ENGINE COMPONENT LIFE PREDICTION

GO	VER	NME	NT

AFAPL

AFML

AFOSR

AFFDL

ASD

NASA NAPTC

AMRDL

INDUSTRY

GE

P&WA

GM-ALLISON

GARRETT

TELEDYNE CAE

WILLIAMS RES.

AVCO-LYCOMING

FRACTURE

STANDARD TEST METHODS FOR CRACK CROWTH & FRACTURE RESISTANCE MEASUREMENTS

- 1. FRACTURE CONTROL PLAN
 (Material Selection,
 Design, Manufacture,
 and Operation)
- 2. FAILURE ANALYSIS & REMEDIAL ACTIONS

ORIGINAL PAGE 19 OF POOR QUALITY

EFFECT OF FRACTURE TOUGHNESS ON LIFE

TOUGHNESS IMPROVEMENT DUE TO MICROSTRUCTURAL CONTROL

ALLOY-TEMPER	YIELD STRE	NGTH	FRACTURE 7	roughness
and the second of the second				
2924-T851	62		22	
				•
2124-T851	64		30	

COMPOSITES AND STRUCTURES

505-01-3

505-02-4

JOHN C. FRECHE

MATERIALS

OBJECTIVE: SAFER LIGHTWEIGHT AIRCRAFT MATERIALS IMPROVED POLYMERS AND COMPOSITES

- DEVELOP POLYIMIDE GOOD FOR 2000 HRS. AT 600 F BY FY 80
- DEMONSTRATE FILAMENT WOUND COMPOSITE BLADE WITH 25% COST SAVINGS BY FY 80
- DEMONSTRATE FAA FOD REQUIREMENTS FOR COMPOSITE FAN BLADE BY FY 82

	LeRC
TOTAL R&D \$M	. 7
DMY	22.0

PMR POLYIMIDE PROCESS

SUPPLIERS OF PMR POLYIMIDE PREPREG MATERIALS

Dupont
FERRO
FIBERITE
TRW EQUIPMENT
U. S. POLYMERIC

CURRENT APPLICATIONS OF PMR POLYIMIDES

COMPONENT QCSEE INNER COWL	<u>CONTRACTOR</u> GE	AGENCY NASA LERC
FOURTH STAGE COMPRESSOR BLADES AND BLADE SPACERS FOR SUPERSONIC WIND TUNNEL AT AEDC	HAMILTON STD.	AIR FORCE
AUGMENTER DUCT FOR F100 ENGINE	COMPOSITES HORIZONS	AIR FORCE
EXTERNAL ENGINE COMPONENTS FOR F100 ENGINE	P&W/TRW	AIR FORCE
YF 12 WING PANELS	IN HOUSE	NASA LARC
SHUTTLE ORBITER AFT BODY FLAP (CASTS)		NASA LARC

INTERLAMINAR SHEAR STRENGTH OF PMR POLYIMIDE/HTS GRAPHITE FIBER COMPOSITES

FILAMENT WOUND

COMPOSITE FAN BLADE PROGRAMS

SCHEMATIC OF SUPERHYBRID CONCEPT

OF POOR QUALITY

IMPROVED B/AL IMPACT RESISTANCE

18 J (13 FT-LB)
50 V/O 0.14 MM B IN 5052 AI
(UNIDIRECTIONAL)

64 J (47 FT-LB) 50 V/O 0.14 MM B IN 1100 AI (UNIDIRECTIONAL)

96 J (71 FT-LB) 50 V/O 0.2 MM B IN 1100 AI (UNIDIRECTIONAL)

CS-72579

IMPROVED FOD TOLERANCE OF B/A1 J 79 FAN BLADES

11"

THEN

NOW

OF POOR QUALITY

IMPROVED FOD TOLERANCE OF B/A1 J 79 FAN BLADES

OF POOR QUALITY

11"

NOW

IMPROVED FOD TOLERANCE OF B/A1 J 79 FAN BLADES

OF POOR QUALITY

11**

NOW

IMPACTED SPAR SHELL BLADE

OBJECTIVE: ADVANCED AIRCRAFT STRUCTURES ADVANCED CONCEPTS, INCLUDING COMPOSITES

• DEMONSTRATE 25% WEIGHT REDUCTION FOR STATIC TURBINE COMPOSITE PARTS BY FY 82

	LeRC
TOTAL R&D \$M	. 2
DMY	3.0

OF POOR QUALITY

COMPOSITE INTERDEPENDENCY PANEL ACTIVITIES WITH AF

ENGINE FOD

HIGH PERFORMANCE RESIN MATRIX COMPOSITES

ENGINE STATIC STRUCTURES

MOISTURE EFFECTS

AIRFRAME FAILURE MODES

NDI

COMPUTER AIDED DESIGN/ANALYSIS/OPTIMIZATION MODULES FOR COMPOSITES STRUCTURES

ENGINE FLIGHT

ACTIVE COOPERATIVE PROGRAMS WITH AF

J-79

AEROELASTICITY

COOPERATIVE PROGRAMS WITH LARC

CASTS

OF POOR QUALITY

ORIGINAL PAGE IS

PROPULSION ENVIRONMENTAL IMPACT MINIMIZATION

PROPULSION NOISE RESEARCH

PRESENTER

DR. CHARLES E. FEILER

V/STOL AND NOISE DIVISION

R&T TRENDS PROPULSION NOISE RESEARCH

PROPULSION SYSTEMS ACOUSTICS BRANCH

TURBOMACHINERY NOISE SECTION ACOUSTICS SECTION ENGINE NOISE SECTION

(19 PROFESSIONALS)

JET ACOUSTICS BRANCH

SECTION A SECTION B

(12 PROFESSIONALS)

OPERATIONS BRANCH

SECTION A SECTION B

(11 PROFESSIONALS)

ORIGINAL PAGE IS OF POOR QUALITY

:-76-2750

ORIGINAL PAGE IS OF POOR QUALITY

PROGRAM: PROPULSION ENVIRONMENTAL IMPACT MINIMIZATION R&T

SPECIFIC OBJECTIVE: PROPULSION NOISE RESEARCH

DESCRIPTION: RESEARCH EFFORTS ARE DIRECTED TOWARD UNDERSTANDING THE BASIC PRINCIPLES AND PHENOMENA INVOLVED IN THE GENERATION, PROPAGATION AND SUPPRESSION OF AIRCRAFT PROPULSION GENERATED NOISE. ALSO INCLUDED ARE STUDIES OF AERODYNAMIC FLOW INTERACTION WITH SURFACES, ATMOSPHERIC REFRACTION AND SCATTERING, AND THE DEVELOPMENT OF AN AIRCRAFT NOISE PREDICTION TECHNIQUE.

TARGETS:

- O JET SOURCE NOISE AND PRACTICAL SOURCE NOISE REDUCTION CONCEPTS
- O CORE SOURCE NOISE AND PRACTICAL SOURCE NOISE REDUCTION CONCEPTS
- O DETERMINE THE EFFECTS OF FORWARD VELOCITY ON ENGINE GENERATED NOISE AND PROPAGATION
- O JET/SURFACE INTERACTION SOURCE NOISE PRINCIPLES AND PRACTICAL MEANS FOR REDUCING SUCH NOISE
- FAN SOURCE NOISE AND SOURCE NOISE REDUCTION CONCEPTS (TURBOMACHINERY)
- O ACOUSTIC SUPPRESSOR PRINCIPLES AND CONCEPTS

DOUBLE BYPASS VCE

TAKEOFF/SUBSONIC CRUISE MODE

SUPERSONIC CRUISE MODE

CD+120+4-02 C-76+35+5 ORIGINAL PAGE 19 OF POOR QUALITY

VARIABLE STREAM CONTROL ENGINE

OF POOR QUALITY

P&W VSCE-502B
TAKEOFF & SUPERSONIC OPERATION

SUBSONIC CRUISE OPERATION

CD - 11970 - 07

STATIC AND FLIGHT DIRECTIVITIES FOR ENGINES WITH DIFFERENT LEVELS OF INTERNAL HOISE RELATIVE TO JET HOISE

EXPERIMENTAL CALCULATED

O ---STATIC FLIGHT

ANGLE FROM ENGINE INLET AXIS, DEGREES

FLYOVER
OASPL
(JET PLUS
INTERNAL).

DB

EXTERNALLY BLOWN FLAP NOISE SOURCES

ORIGINAL PACE IS

EFFECT OF FLIGHT ON MILET FLOW

OF POOR QUALITY

EFFECT OF FLORITON MILET FLOW

BPF TONE CUT-OFF AND UNSTEADINESS

CHICAGO RODA PO

The property of the state of th

ORIGINAL PAGE IS OF POOR QUALITY

QCSEE UTW ENGINE

PROPULSION ENVIRONMENTAL IMPACT MINIMIZATION

PROPULSION POLLUTION REDUCTION RESEARCH

DONALD A. PETRASH - AIRBREATHING ENGINES DIVISION

R & T TRENDS

GLOBAL ATMOSPHERIC SAMPLING PROGRAM

GLOBAL ATMOSPHERIC SAMPLING PROGRAM

GASP MEASUREMENTS

PARTICULATES NUMBER DENSITY

SIZE DISTRIBUTION

FILTER SAMPLES SULFATES

NITRATES

CHLORIDES

GASES

OZONE WATER VAPOR

OXIDES OF NITROGEN CARBON MONOXIDE CHLOROFLUOROMETHANES

GEOGRAPHICAL LOCATION METEOROLOGICAL CONDITIONS AIRCRAFT OPERATING CONDITIONS

RELATED INFORMATION

OF POOR QUALITY

COMBUSTION & POLLUTION RESEARCH BRANCH DON-A. PETRASH

EXPERIMENTAL COMBUSTOR

ENVIRONMENTAL

IMPACT

SECTION

SECTION ROBERT E. JONES E. A. LEZBERG

EMISSIONS TECHNOLOGY SECTION

SECTION

LARRY A. DIEHL

JACK B. GROBMAN

ADVANCED TECHNOLOGY

RICHARD W. NIEDZWIECKI

LARRY P. COOPER ROBERT A. DUERR VALERIE J. LYONS CECIL J. MAREK EDWARD J. MULARZ GREGORY M. RECK ANDREW J. SZANISZLO

HELMUT F. BUTZE JAMES S. FEAR CARL T. NORGREN

BRANCH E. A. WILLIS SPARK IGNITION SECTION

GENERAL AVIATION

ERWIN E. KEMPKE

JOHN CASSIDY DONALD COSGROVE PEGGY EVANICH MICHAEL SKOROBATCKYI

RESEARCH FACILITIES

	GAS TURBINE COMBUSTORS -			•	
	<u>FACILITY</u>	MAX. AIRFLOW LB/SEC	MAX. PRES. PSIA	MAX. INLET TEMP, OF	
	CELL 11, ORL	5-10	120	500-1000	
	*CE5A, ERB	35	450	700-1200	
	ECRL-1	110	120	1150	ORIC OF
\bigcap_{i}	SPARK IGNITION ENGINES -				ORIGINAL PAG
9	<u>FACILITY</u>	ENGINE TYPE	INTAKE AIR	DYNAMOMETER HP/RPM	PAGE IS
	SE-17	A/C	TEMP. HUMIDITY CONTROLLED	300/500	•
	SE-11	MULTI-CYLINDER	AMBIENT	250/4500	
	SE-12	SINGLE-CYLINDER	AMBIENT	50/5000	

*OPERATIONAL IN 1978

PHOTO OF SE 17 (Non-Reproducible)

SPECIFIC OBJECTIVE: PROPULSION POLLUTION REDUCTION RESEARCH

VARIOUS TECHNIQUES FOR REDUCING POLLUTANT EMISSIONS FROM AIRCRAFT POWER PLANTS FOR LANDING TAKEOFF-CYCLE (LTD) ARE BEING EXPLORED. GAS TURBINE COMBUSTOR DESIGN CONCEPTS ARE BEING EVALUATED AND NUMEROUS ANALYTICAL AND EXPERIMENTAL STUDIES ARE BEING PERFORMED TO IDENTIFY PLAUSIBLE APPROACHES.

TARGETS:

- EVALUATE THE POTENTIAL OF ADVANCED TECHNOLOGY ENGINE COMBUSTORS
 TO REDUCE EXHAUST EMISSIONS POLLUTION TO 10 PERCENT OF CURRENT
 LEVELS FOR CO AND THC AND 25 PERCENT FOR NO_X, AND DEMONSTRATE
 THESE REDUCTIONS IN HIGH PRESSURE, HIGH TEMPERATURE TEST
 FACILITIES FY 1981
- DETERMINE THE POTENTIAL OF ADVANCED EMISSION REDUCTION CONCEPTS
 FY 1980

TARGET: EVALUATE AND DEMONSTRATE THE POTENTIAL OF ADVANCED TECHNOLOGY ENGINE COMBUSTORS TO REDUCE EXHAUST EMISSION POLLUTION

PRINCIPAL PROGRAM ELEMENTS:

IN-HOUSE

- FLAMEHOLDER GEOMETRY EFFECTS ON EMISSIONS
- EFFECT OF DROP SIZE ON EMISSIONS
- FUEL PREPARATION STUDY
- EFFECT OF HOT SURFACES/BOUNDARY LAYERS IN PREMIXING PASSAGES
- CONCEPTUAL DESIGN STUDY (SECTOR TESTS)

CONTRACT/GRANT

- AUTOIGNITION STUDY (UTRC)
- PRESSURE AND TEMPERATURE EFFECTS ON EMISSIONS (GASL)
- FLAMEHOLDER GEOMETRY STUDY (GASL)
- COMPRESSOR DISCHARGE CHARACTERIZATION (G.E.) (P&WA)
- FUEL PREPARATION MODEL
- FUEL PREPARATION DATA
- LEAN STABILITY AUGMENTATION STUDY
- EXPERIMENTAL CLEAN COMBUSTOR PHASE III
 - GENERAL ELECTRIC CF6-50
 - PRATT & WHITNEY JT9D-7

CONTRACT/GRANT (CONT.)

- POLLUTION REDUCTION TECHNOLOGY PHASE II
 - GARRETT/AIRESEARCH
- LOW POWER EMISSIONS REDUCTION (G.E.)
- LOW NO_X COMBUSTORS (SOLAR)
- VSCE DUCT BURNER (P&WA)
- LOW EMISSIONS DUCT BURNER (G.E.)
- FLOW PROCESSES IN COMBUSTORS CORNELL UNIVERSITY
- LEAN COMBUSTION TECHNOLOGY UNIV. OF CALIFORNIA AT BERKELEY
- COMBUSTION AERODYNAMICS AND POLLUTANT FORMATION MIT
- SOOT FORMATION AND BURNOUT IN FLAMES MIT

ORIGINAL PANEL FA

TECHNOLOGY

EXPERIMENTAL CLEAN COMBUSTOR PROGRAM T2 CLASS, JT9D-7 ENGINE

VORBIX CONCEPT

()

TARGET: DETERMINE THE POTENTIAL OF ADVANCED EMISSION REDUCTION CONCEPTS - FY '80

PROGRAM:

IN-HOUSE

- o TEMPERATURE/HUMIDITY CORRELATION FOR AIRCRAFT ENGINE EMISSIONS
- o FUEL INJECTION, HIGH ENERGY SPARK, LEAN OPERATION

CONTRACI

- o FAA/NASA INTERAGENCY PROGRAM
- O TELEDYNE CONTINENTAL MOTORS EXHAUST EMISSION REDUCTION
- o AVCO-LYCOMING EXHAUST EMISSION REDUCTION

PROPULSION POLLUTION REDUCTION RESEARCH

MAJOR CONTRIBUTIONS '72-'77

- DEMONSTRATION OF EMISSIONS REDUCTION WITH A DOUBLE ANNULAR COMBUSTOR AND WITH A VORBIX TWO-STAGE COMBUSTOR IN THE EXPERIMENTAL CLEAN COMBUSTOR PROGRAM.
- DEVELOPMENT AND DEMONSTRATION OF POLLUTION REDUCTION COMBUSTOR TECHNOLOGY IN T1, P2, AND T4 CLASSES OF ENGINES.
- DEMONSTRATION OF LOW-NOX CAPABILITY OF SWIRL-CAN COMBUSTORS IN ECRL.
- DEMONSTRATION OF NO $_{\rm X}$ EMISSION INDEX < 1 USING A PREMIXED-PREVAPORIZED COMBUSTOR AND ALSO A CATALYTIC COMBUSTOR.
- DEMONSTRATION OF EXHAUST GAS RECIRCULATION FOR FLAME STABILIZATION AND NOX REDUCTION.
- DEMONSTRATION OF H₂O INJECTION FOR NO_X CONTROL.
- DETERMINATION OF THE EFFECT OF INLET-AIR HUMIDITY ON NOX FORMATION.
- EXPERIMENTALLY CHARACTERIZED EMISSIONS FROM TEN DIFFERENT PISTON ENGINE TYPES. ALSO HAVE ESTABLISHED EFFORTS OF VARYING FUEL-AIR RATIO AND IGNITION TIMING ON EMISSION LEVELS.
- COMPLETED TESTING ON TWO AIRCRAFT PISTON ENGINES TO DETERMINE EFFECTS ON EMISSIONS OF TEMPERATURE AND HUMIDITY.

ECCP /JT9D-7 POLLUTANT LEVELS

	CO	THC	NO_{X}
GOAL	4.3	0.8	3.0
PRODUCTION COMBUSTOR	8.5	3.9	5.9
VORBIX COMBUSTOR	3.3	0.3	2.6

DISCIPLINE/SUB-PROG.

PROPULSION COMPONENTS

SPECIFIC OBJECTIVE

INLET AND NOZZLE RESEARCH

PRESENTER

DAVID N. BOWDITCH

CHIEF, PROPULSION AERODYNAMICS BRANCH.
WIND TUNNEL AND FLIGHT DIVISION

R&T TRENDS

INLET AND NOZZLE RESEARCH

PROPULSION AERODYNAMICS BRANCH

ORIGINAL PAGE IS OF POOR QUALITY

INLET PROGRAM72 TO PRESENT

MATRIX OF 2D AND AXISYMMETRIC INLETS
SUPERSONIC PERFORMANCE
TRANSONIC PERFORMANCE

INLET ENGINE COMPATABILITY

DISTORTION - STALL CORRELATION

STABILITY

UNSTART - RESTART

STALL OVERPRESSURE

INLET AIRFRAME INTEGRATION

GENERATE ANALYTICAL METHODS

NASA C-68-4156

> ORIGINAL PAGE IS OF POOR QUALITY

GENERATE ANALYTICAL METHODS

CURRENT - ITERATION BETWEEN INVISCID AND BOUNDARY LAYER ANALYSIS

NEAR TERM - FULLY VISCOUS SUBSONIC 3D ANALYSIS
FULLY VISCOUS SUPERSONIC 2D ANALYSIS

FAR TERM - FULLY VISCOUS SUBSONIC, TRANSONIC, AND SUPERSONIC 3D ANALYSIS

PATCHED ANALYSIS FOR SEPARATED FLOWS

CONCEPTUAL INLET STUDIES

DISTORTION - STATISTICAL ANALYSIS
WT/FLT COMPARISON

BOUNDARY LAYER CONTROL - BLOWING, 2D INLET, SHORT DIFFUSERS

HIGH & , B INLET PERFORMANCE

FOCUSED APPLICATIONS

MILITARY - STEALTH, VTOL SCAR

ORIGINAL PAGE IS

NOZZLE PROGRAM 72 TO PRESENT

SUPERSONIC CRUISE

INTERNAL PERFORMANCE EXPERIMENT ANALYSIS

INSTALLED TRANSONIC PERFORMANCE WIND TUNNEL FLIGHT

NOISE SUPPRESSOR FLY-BY NOISE FLY-BY PERFORMANCE

COOLING

MILITARY

BOATTAIL DRAG VARIATION WITH REYNOLD'S NUMBER WIND TUNNEL FLIGHT

NON-AXISYMMETRIC NOZZLES
ANALYSIS
COOLING
SUBSONIC CRUISE

MIXER ANALYSIS AND EXPERIMENTAL INVESTIGATION

EXHAUST NOZZLE TEST PROGRAMS

ISOLATED NOZZLE

5% SCALE F106

22 SCALE F106

F106 FLIGHT

OF POOR QUALITY

PROGRAM: PROPULSION COMPONENTS R&T

INLET AND NOZZLE RESEARCH 505-04-11

DESCRIPTION: ANALYTICAL AND EXPERIMENTAL DESIGN METHODOLOGY FOR THE INTERNAL FLOW OF INLETS AND NOZZLES TO ACHIEVE HIGHER PERFORMANCE WITH INCREASED PROPULSION SYSTEM STABILITY AND OPERATING RANGE IS BEING DEVELOPED.

TARGETS:

- ESTABLISH CRITERIA FOR PREDICTION OF DRAG ON BOATTAIL NOZZLES INCLUDING REYNOLDS NUMBER EFFECTS FY 1978
- IDENTIFY STATISTICAL DISTORTION TECHNIQUES FOR THE PREDICTION OF PEAK INSTANTANEOUS INLET DISTORTION FY 1980
- EVALUATE AUXILIARY AIRFLOW INLETS FOR VARIABLE CYCLE ENGINES FY 1980
- ESTABLISH RATIONALE FOR PREDICTION OF INTERACTION EFFECTS OF NOZZLES ON AIRCRAFT PERFORMANCE FY 1980
- EVALUATE A COMPUTER ANALYSIS OF THREE-DIMENSIONAL TRANSONIC INLET FLOWS AT HIGH ANGLE OF ATTACK FY 1982
- DEVELOP A THREE-DIMENSIONAL ANALYSIS FOR THE FLOW IN A SUPERSONIC DIFFUSER OF GENERAL GEOMETRY FY 1982

LEWIS PROPELLER AERODYNAMIC PROGRAM

OBJECTIVE: GENERATE THE TECHNOLOGY FOR MULTI-BLADED, HIGHLY EFFICIENT, HIGH SPEED PROPELLERS SUITABLE FOR USE ON ADVANCED TURBOPROP-POWERED AIRCRAFT OPERATING AT MACH 0.8 AND 30,000 FEET.

EXPERIMENTAL

PROP. TEST RIGS - 1000 H.P., SR & CR HIGH SPEED MODELS - 8SR, 2CR LASER FLOW SURVEY

ANALYSIS

CURRENT - MOD. GOLDSTEIN, COMPRESSOR, TRANSONIC NACELLE FUTURE - LIFTING LINE: SR & CR PROP/NACELLE LIFTING SURFACE: TRANSONIC 3D

ORIGINAL PAGE IS OF POOR QUALITY.

ORIGINAL PAGE IS OF POOR QUALITY

PROPULSION COMPONENTS R&T (RL)

FAN, COMPRESSOR, AND TURBINE PESEARCH

FAN AND COMPRESSOR RESEARCH

MELVIN J. HARTMANN, CHIEF FAN AND COMPRESSOR BRANCH FLUID SYSTEM COMPONENTS DIVISION

R &T TRENDS
PROPULSION COMPONENTS
FANS, COMPRESSORS, TURBINES, (PROPELLERS)

FAN AND COMPRESSOR BRANCH ORGANIZATION

CHIEF, M. J. HARTMANN

MULTISTAGE COMPRESSOR SECTION HEAD, C. L. BALL

- DEMONSTRATE TECHNOLOGY
 FOR DEVELOPMENT OF
 MULTISTAGE COMPRESSORS
 WITH REDUCED NUMBER OF
 STAGES, HIGH EFFICIENCY,
 A WIDE STABLE FLOW RANGE,
 FEWER PARTS, LOWER COST.
- DETERMINE THE CRITERIA FOR MATCHING HIGH PRES-SURE STAGES IN MULTI-STAGE ENVIRONMENT.

DESIGN AND
ANALYSIS SECTION
HEAD, D. M. SANDERCOCK

- DEVELOP DESIGN/OFF-DESIGN PREDICTION SYSTEMS.
- DEVELOP ANALYTICAL
 "TOOLS" TO AID IN
 ANALYSIS OF EXPERIMENTAL RESULTS.
- CONDUCT ANALYTICAL PARAMETRIC STUDIES.
- DEVELOP UNSTEADY FLOW ANALYSIS CODES FOR PREDICTING BLADE FLUTTER.

PERSONNEL 8

ORIGINAL PAGE IS

EXPERIMENTAL PERFORMANCE EVALUATION OF ADVANCED FAN, CORE COMPRESSOR STAGES.

SINGLE STAGE

COMPRESSOR SECTION

HEAD, C. H. HAUSER

- MAKE DETAILED FLOW MEASUREMENTS - HOLO-GRAPHY, LASER VELOCI-METER.
- CONDUCT EXPERIMENTAL
 STUDIES OF SPECIAL
 DESIGN FEATURES VARIABLE PITCH ROTORS,
 CASING TREATMENT.
- CONTRACT MONITOR/FAN FOR VCE.

PERSONNEL 7

PERSONNEL 6 (PLUS 1 AAMRDL)

SINGLE STAGE COMPRESSOR RESEARCH FACILITY

OF POOR QUALITY

MULTI-STAGE COMPRESSOR RESEARCH FACILITY

FAN AND COMPRESSOR TECHNOLOGY

OBJECTIVES:

TO IMPROVE EFFICIENCY, OPERATING RANGE, DISTORTION TOLERANCE, DURABILITY, RELIABILITY, AND TO REDUCE WEIGHT, VOLUME, AND COST OF THE WIDE VARIETY OF FANS AND COMPRESSORS REQUIRED FOR ADVANCED PROPULSION SYSTEMS. IMPROVE ACCURACY OF PERFORMANCE PREDICTION TO REDUCE THE TIME, COST, AND RISK OF INCORPORATING ADVANCED FANS AND COMPRESSORS INTO FUTURE ENGINE DEVELOPMENT PROGRAMS.

TARGETS:

- DETERMINE METHODS OF MAINTAINING HIGH LEVELS OF FAN PERFORMANCE WHEN APPLYING LOW NOISE FAN DESIGN APPROACHES OR SOUND SUPPRESSION DEVICES - FY 1978.
- EVALUATE THE LIMITS OF PRESSURE RATIO FOR CORE COMPRESSOR STAGES (HUB/TIP RATIO 0.5 - 0.93) CONSISTENT WITH HIGH EFFICIENCY (85%) AND STALL MARGIN (10%) -FY 1978.
- DETERMINE THE CRITERIA FOR MATCHING HIGH PRESSURE RATIO STAGES IN ADVANCED MULTISTAGE COMPRESSORS - FY 1980.
- DETERMINE BLADE SHAPES AND TECHNIQUES SUCH AS SPECIAL TIP CLEARANCE PROVISIONS FOR ACHIEVING RETENTION OF PERFORMANCE OVER THE LIFE OF FANS AND COMPRESSORS -FY 1979.
- DEVELOP AND EVALUATE IMPROVED ANALYTICAL METHODS OF CALCULATING THREE-DIMENSIONAL FLOWFIELDS THROUGHOUT A COMPRESSOR - FY 1978.
- DEMONSTRATE THE TECHNOLOGY IN SMALL SINGLE-STAGE CENTRIFUGAL COMPRESSORS FOR ACHIEVING 10:1 PRESSURE RATIO WITH AN EFFICIENCY GREATER THAN 78% - FY 1980.

OF POOR QUALITY

FAN BASE TECHNOLOGY

PROGRAM

APPLICATIONS

PAST - HIGH MACH NUMBER BLADING

IN-HOUSE

- . 1400 FT/SEC STAGES (25)
- LOW-NOISE DESIGNS
- TWO-STAGE FAN
- VARIABLE-PITCH FANS

CONTRACT

- . 1000 FT/SEC STAGE (PWA)
- 1400 ft/sec stage (ge)
- . 1500 FT/SEC STAGE (GE)
- 1600 ft/sec stage (PWA & AIRES)
- . 1800 FT/SEC STAGE (PWA)
- . LOW NOISE FANS (PWA & GE)

CURRENT

- . CASING TREATMENT/TIP CLEARANCE (IH)
- VARIABLE-PITCH FAN (PR=1.35) (IH)
- LOW SOURCE NOISE FANS (IH)
- VCE FAN STUDY (GE)

FUTURE

- IMPROVE HIGH-SPEED PERFORMANCE IN 1800-2000 FT/SEC RANGE
- OPTIMIZE FOR COMPOSITE BLADING
- REFINE EXISTING DESIGN SYSTEMS

BASIS OF DESIGN SYSTEMS FOR CURRENT FANS

- DIRECT APPLICATIONS
 - . MCA BLADE SHAPES
 - . CASING TREATMENT (JT9D)
 - TRANSONIC ROTOR PERFORMANCE (CF-6)
 - TWO-STAGE FAN (APSI & EXP. FAN)
 - . SCALED 1600 FT/SEC FAN
 - LOW SPEED FAN

OF POOR QUALITY

SINGLE STAGE FAN/COMPRESSOR EFFICIENCIES

ORIGINAL PAGE 19 OF POOR QUALITY

COMPRESSOR BASE TECHNOLOGY

PROGRAM

PAST

- ADVANCED MULTISTAGE AXIAL FLOW COMPRESSOR (AMAC) (GE & PWA)
- LOW ASPECT RATIO (IH & PWA)
- . BLUNT LEADING EDGE (IH)
- . CASING TREATMENT-TIP CLEARANCE STUDY (IH)

CURRENT

- SINGLE STAGE STUDIES (INLET, MIDDLE, EXIT) (IH)
- . INLET STAGE GROUPS (IH)
- . EXIT STAGE GROUPS (GE & PWA)

FUTURE

- . ADVANCED CORE COMPRESSORS (~20-1 PR)
- . PERFORMANCE RETENTION

APPLICATIONS

- . AMAC STUDY
- . DESIGN CODES
- FLOW BLOCKAGE TECHNIQUES FOR MATCHING AXIAL-CENTRIFUGAL COMPRESSORS

LOW ASPECT RATIO COMPRESSOR BLADING

ORIGINAL PAGE IS · OF POOR QUALITY

DESIGN/ANALYSIS SYSTEMS

DEVELOP CODES

2D UNSTEADY FLOW CODES

VERIFICATION DESIGN METHODOLOGY

PAST	
INUI	

INOT	
. AXISYMMETRIC DESIGN CODE - DATA BANK	I.H.
• 2D SUBSONIC INVISCID FLOW CODES (HUB-TO-SHROUD) (BLADE-TO-BLADE)	I.H.
. 2D BOUNDARY LAYER FLOW CODES	I.H.
. SHOCK CONFIGURATION (DYNAMIC PRESSURE) (HOLOGRAPHY)	I.H. & C
	æ C
CURRENT	
• AXISYMMETRIC OFF-DESIGN PERFORMANCE CODE	I.H.
. 2D TRANSONIC INVISCID FLOW CODES (HUB-TO-SHROUD) (BLADE-TO-BLADE)	ATL
. 2D TRANSONIC PERTURBATION CODES (SHORT-RUNNING)	NIELSEN Eng.
. 3D BOUNDARY LAYER (END WALL) FLOW CODE	I.H.
. 3D TRANSONIC INVISCID FLOW CODES (LONG-RUNNING)	MIT
. 3D VISCOUS FLOW CODE (LONG RUNNING)	THERMO MECH, SYS.
. FLOW DENSITY - GAS FLUORESCENT	MIT
. TRANSONIC FLOW VERIFICATION	MIT
FUTURE	
. 3D VISCOUS FLOW CODE (SHORT RUNNING)	c
. FLOW VERIFICATION - INTERNAL FLOW MEASUREMENTS	I.H. & C
INTEGRATION OF CODES INTO A DESIGN METHODOLOGY	

ORIGINAL PARE IN

SMALL CENTRIFUGAL COMPRESSOR TECHNOLOGY

PAST

- 6:1 CONENTIONAL BACKSWEPT IMPELLER/VANED-ISLAND DIFFUSER (AIRESEARCH/IH)
- . 6:1 TANDEM BACKSWEPT IMPELLER/TANDEM CASCADE DIFFUSER (AIRESEARCH/IH)

CURRENT

- . 3:1 MIXED-FLOW FIRST STAGE OF 10:1 TWO-STAGE (AIRESEARCH/IH)
- . 6:1 RADIAL BLADED IMPELLER WITH VARIOUS DIFFUSER DESIGNS (IH)
- . 8:1 BACKSWEPT IMPELLER (SINGLE STAGE) (IH)
- LDV FLOW MEASUREMENTS/3D COMPUTER CODE VERIFICATION (CREARE)

FUTURE

- . 6:1 RADIAL-BLADED IMPELLER WITH SPLITTERS (IH)
- . 8:1 BACKSWEPT IMPELLER WITH SPLITTERS (IH)
- DIFFUSER GEOMETRY STUDIES (IH)

ORIGINAL PAGE 19 OF POOR QUALITY

AEROELASTIC PROGRAM NASA/AFAPL

CURRENT

- FLUTTER BOUNDARY MAPPING
- INSTRUMENTATION
- UNSTEADY AERO ANALYSIS AND EXPERIMENTAL MODELING
- STRUCTURAL DYNAMICS AND EXPERIMENTAL MODELING
- . AERO/STRUCTURAL INTEGRATION

FUTURE

- . AEROELASTIC "TAILORING"
- FLUTTER COMPENDIUM
- FORCED VIBRATIONS
- . AERO/STRUCTURAL DYNAMICS

FAN AND COMPRESSOR BASE TECHNOLOGY

CLOSING COMMENTS

- PROGRAM MUST PROVIDE THE ADVANCED DATA BASE, THE DESIGN/ANALYSIS METHODS, AND THE NEW IDEAS IN THE PUBLIC DOMAIN.
- EXTENDING THE FLOW AND DYNAMIC ANALYSIS METHODS PROVIDES A POTENTIAL FOR REDUCING THE COST OF INTRODUCING ADVANCED MACHINERY.
- PRESENT TREND EMPHASIZES NEAR TERM APPLICATIONS AT THE EXPENSE OF BUILDING THE LONG TERM DATA BASE.
- AN EFFECTIVE BALANCE BETWEEN INHOUSE AND CONTRACT EFFORTS MUST BE MAINTAINED.
- PRESENT STAFF SIZE LIMITS INHOUSE AND CONTRACT PROGRAMS SUCH THAT TARGET DATES MAY NOT BE ACHIEVED.

TURBINE RESEARCH

IMPROVEMENT OF TURBINE LIFE,

TURBINE PERFORMANCE, AND TURBINE

DESIGN METHODS

HAROLD E. ROHLIK
CHIEF
TURBINE BRANCH

ORIGINAL PAGE IS

TURBINE RESEARCH

SPECIALIZED WORK AREAS

AERODYNAMIC PERFORMANCE

COOLED-BLADE HEAT TRANSFER

INTERNAL FLOW ANALYSIS

HOT PART LIFE PREDICTION

KEY PERSONNEL

T. P. MOFFITT

R. Y. WONG

W. J. WHITNEY

R. J. ROELKE

R. S. COLLADAY

F. S. STEPKA

R. P. COCHRAN

R. E. GAUGLER

T. KATSANIS

L. J. GOLDMAN

A. KAUFMAN

TURBINE TEST CAPABILITY

TEMPERATURE	DIAMETER	SPEED	USE
<u>°</u> F	INCHES	RPM	
COLD	6	100,000	AERO
COLD	12	30,000	AERO
COLD	30	6,000	AERO
• 1000	. 20	15,000	AERO (THERMO)
• 4000	20	22,000	AERO (THERMO)

• BEING CONSTRUCTED

HIGH PRESSURE FACILITY

TURBINE RESEARCH

STATEMENT OF OBJECTIVE

IMPROVEMENT OF LIFE, PERFORMANCE, AND DESIGN METHODS FOR AXIAL AND RADIAL TURBINES.

TARGETS

- DETERMINE LEVELS OF EFFICIENCY AND AERODYNAMIC EFFECTS
 OF COOLING IN ADVANCED SINGLE AND TWO-STAGE CORE TURBINES FY 1979
- DETERMINE MINIMUM COOLANT FLOW REQUIREMENTS AND MINI-MUM AERODYNAMIC PENALTIES FOR THE VERY HIGH-PRESSURE, HIGH-TEMPERATURE OPERATING CONDITIONS - FY 1980
- TEMPERATURES IN TURBINE VANES, BLADES AND END WALLS WITH VERY HIGH HEAT FLUXES AND COMPLEX COOLANT FLOWS AND BLADE CONFIGURATIONS, (2) AERODYNAMIC PERFORMANCE WITH VARIOUS COOLING AIR DISCHARGE LOCATIONS, SECONDARY FLOWS, TIP CLEARANCE AND END WALL LOSSES, AND (3) CYCLIC STRESS DISTRIBUTIONS FOR LOW-CYCLE FATIGUE BLADE LIFE EVALUATION FY 1981

CORE TURBINE LOSSES

- Ceramic coated turbine blade.

- Ceramic coated blades after 500 cycles of testing.

MAJOR CONTRIBUTIONS - TURBINES

- THERMAL BARRIER COATINGS
- HIGH STAGE WORK FACTOR TURBINES
- PNEUMATIC VARIABLE GEOMETRY USING JET-FLAP BLADING
- AERO AND THERMO DESIGN COMPUTER PROGRAMS

OF POOR QUALITY

PROPULSION COMPONENTS

COMBUSTION AND AUGMENTATION SYSTEM RESEARCH

DONALD A. PETRASH - AIRBREATHING ENGINES DIVISION

R & T TRENDS

COMBUSTION AND AUGMENTATION SYSTEMS

(A)

(Fy

RESEARCH FACILITIES

FACILITY ORL-12	AIR FLOW RATE, LB/SEC 15	PRESSURE, PSIA 15	TEMPERATURE, OF AMBIENT
CE-5B, B	5	30	1150
CE-5M	35	450	250
CE-9B,A	35	450	950
ECRL-1	110	120	1150
HPF	187	600	1150

HIGH PRESSURE-HIGH TEMPERATURE TURBINE FACILITY HIGH PRESSURE AIR SYSTEM-OF POOR QUALITY PREHEATER TURBINE RIG COMBUSTOR RIG

PROPULSION COMPONENTS R&T

SPECIFIC

OBJECTIVE: COMBUSTOR AND AUGMENTATION SYSTEM RESEARCH

STATEMENT OF OBJECTIVE

EXPERIMENTAL RESEARCH IS CONDUCTED ON SCALE MODELS AND FULL SCALE COMBUSTORS AND AUGMENTORS EXPLORING MEANS FOR IMPROVING DURABILITY AT HIGH TEMPERATURES AND PRESSURES.

TARGET:

- EXPERIMENTALLY DEMONSTRATE ADVANCED COMBUSTOR CONCEPTS CAPABLE OF EFFICIENT AND DURABLE OPERATION AT PRESSURES FROM 12-40 ATMOSPHERES AND DISCHARGE TEMPERATURES UP TO 4000° F. FY 1981.
- EXPERIMENTALLY DEMONSTRATE THE ABILITY OF SELECTED COMBUSTOR CONCEPTS TO PROVIDE EFFICIENT (100%) COMBUSTION AND DURABLE OPERATION FOR SMALL GAS TURBINE (<1000 SHP) SHAFT POWER ENGINES FY 80.

ORIGINAL PAGE CE OF POOR QUALITY

TARGET: EXPERIMENTALLY DEMONSTRATE ADVANCED COMBUSTOR CONCEPTS

CAPABLE OF EFFICIENT AND DURABLE OPERATION AT PRESSURES

FROM 12 TO 40 ATMOSPHERES AND DISCHARGE TEMPERATURES

UP TO 4000° F FY 1981.

PRINCIPAL PROGRAM ELEMENTS:

IN-HOUSE

- HIGH PRESSURE COMBUSTOR PROGRAM
- ADVANCED HIGH PRESSURE, HIGH TEMPERATURE COMBUSTOR CONCEPTS
 - SWIRL-FLOW
 TWO-ZONE
 RICH-BURNING
 VARIABLE GEOMETRY
- FUEL INJECTION TECHNIQUES

CONTRACT/GRANT

- EMISSION PARAMETERS OF GAS TURBINE ENGINES
 (UN. OF CINC.)
- TRANSPIRATION COOLED HIGH PRESSURE, HIGH TEMPERATURE LINER (DDA)

EXPERIMENTAL CLEAN COMBUSTOR PROGRAM T2 CLASS, JT9D-7 ENGINE

ENGINE CONVENTIONAL (BASELINE) COMBUSTOR

HYBRID CONCEPT

VORBIX CONCEPT

OF POOR QUALITY

TARGET: EXPERIMENTALLY DEMONSTRATE THE ABILITY OF SELECTED COMBUSTOR CONCEPTS TO PROVIDE EFFICIENT (100%) AND DURABLE OPERATION FOR SMALL GAS TURBINE (< 1000 SHP) SHAFT POWER ENGINES - FY 1980.

PRINCIPAL PROGRAM ELEMENTS:

IN-HOUSE

- SMALL REVERSE-FLOW COMBUSTOR PROGRAM
 - FUEL INJECTION TECHNIQUES
 - LINER COOLING
 - LINER DURABILITY TO 3000°F

CONTRACT

• TRANSPIRATION COOLED LINERS (DDA)

MAJOR CONTRIBUTIONS, 72 - 77

- DEMONSTRATED EFFICIENT COMBUSTION AT 4000°F EXIT TEMPERATURES
- DEMONSTRATED IDLE EMISSION REDUCTION WITH AIR-ASSIST FUEL INJECTION
- DEMONSTRATED NO_X EMISSION REDUCTION WITH AIR-BLAST FUEL INJECTION
- DEVELOPED CORRELATION OF NO_X EMISSIONS TO AMBIENT HUMIDITY
- DEVELOPED CORRELATION OF DILUTION JET MIXING PARAMETERS
- DEVELOPED CORRELATION OF FILM-COOLING PARAMETERS
- DEMONSTRATED THE EFFICIENCY OF SWIRL-FLOW FOR REDUCED LENGTH AFTERBURNERS

EFFECT OF IMPROVING FUEL ATOMIZATION

ORIGINAL PAGE IS

Effect of inlet-air humidity on formation of oxides of nitrogen. Combustor pressure, 6 atmospheres; reference Mach number, 0.065; nominal exit temperature, 1478 K (22000 F).

PROPULSION COMPONENTS POWER TRANSFER RESEARCH

MECHANICAL COMPONENTS BRANCH WILLIAM J. ANDERSON, CHIEF

POWER TRANSFER RESEARCH R&T BASE MANPOWER AND RESOURCES

MECHANICAL COMPONENTS BRANCH MAJOR FACILITIES

SURFACE EXAMINATION TOOLS

X-RAY DIFFRACTION
SCANNING ELECTRON MICROSCOPY (SEM)
AUGER ELECTRON SPECTROSCOPY (AES)
FIELD ION MICROSCOPY (FIM)
ELECTRON SPECTROSCOPY FOR CHEMICAL ANALYSIS (ESCA)

PLASMA SPRAY, ION AND SPUTTER COATING APPARATUS
4 MILLION DN ROLLING BEARING TEST RIG
MATERIAL FATIGUE TESTERS (CONTACT AND BENDING)
SPUR AND BEVEL GEAR TESTERS
SHAFT SEAL TESTER
HIGH TEMPERATURE RUB ENERGETICS RIG
ROTOR DYNAMICS TEST RIG
FIXED RATIO TRANSMISSION TEST STAND
VARIABLE SPEED RATIO TRANSMISSION TEST STAND
HYBRID HELICOPTER TRANSMISSION TEST STAND
OPTICAL ELASTOHYDRODYNAMICS TEST RIG
FERROGRAPHIC LUBRICANT ANALYSIS RIG

POWER TRANSFER RESEARCH

DESCRIPTION: A BROAD RANGE OF AREAS IS EXPLORED ANALYTICALLY AND EXPERIMENTALLY. THESE AREAS INCLUDE LUBRICATION THEORY, GEAR LIFE PREDICTIONS, SHAFT VIBRATIONS, BEARING AND SEALS LIFE EXTENSION AND PERFORMANCE IMPROVEMENT AT HIGH TEMPERATURES AND SHAFT SPEEDS, AND ADVANCED POWER TRANSMISSION RESEARCH.

TARGETS:

- DETERMINE FUNDAMENTALS OF <u>WEAR</u> AND <u>ABRADABILITY</u> OF <u>COMPRESSOR</u> GAS PATH SEALS AND DEVISE GAS PATH SEAL CLEARANCE CONTROL CONCEPTS USING ACTIVE AND/OR PASSIVE TECHNIQUES AND STRUCTURAL ANALYSIS TO ESTABLISH IMPROVED CONCEPTS THAT PROVIDE IMPROVED CONTROL OF CASE/ROTOR DISPLACEMENT - FY 1979
- DEMONSTRATE THE TECHNOLOGY FOR SAFELY OPERATING (BY MEANS OF IMPROVED BALANCING METHODS, DAMPER DESIGN, AND ROTOR DYNAMICS COMPUTER PROGRAMS) MULTI-MASS TURBINE ENGINE ROTORS AND POWER TRANSMISSION SHAFTING FOR HELICOPTERS AND STOL TYPE AIRCRAFT ABOVE THE FOURTH FLEXIBLE CRITICAL SPEED - FY 1979
- DETERMINE RUB THERMAL RESPONSE OF TURBINE GAS PATH SEALS AND ESTABLISH WEAR AND EROSION FUNDAMENTALS OF CERAMIC SHROUD MATERIALS - FY 1979
- DEMONSTRATE AND DEVELOP THE TECHNOLOGY FOR INCREASING THE LIFE (BY 200%) AND LOAD CARRYING CAPACITY (BY 50%) OF GEARS THROUGH IMPROVEMENTS IN TOOTH DESIGNS AND MANUFACTURING PROCESSES TO INCREASE THE TIME BETWEEN OVERHAUL OR REDUCE THE WEIGHT OF TRANSMISSION - FY 1980

ORIGINAL PAGE IS

POWER TRANSFER RESEARCH KEY R&T PROGRAMS

PROGRAM	<u>NEED</u>	KEY PERSONNEL
IMPROVED GAS PATH SEALS	ENERGY EFFICIENT ENGINES OF THE 1980'S (ENERGY CONSERVATION, INTER- NATIONAL COMPETITION)	L. LUDWIG J. ZUK R. BILL
2.7 TO 3.0 MILLION DN BALL & ROLLER BEARINGS	ADVANCED TURBINE ENGINES OF THE 1980's; ADVANCED MILITARY ENGINES (MILITARY SUPERIORITY)	E. ZARETSKY B. HAMROCK R. PARKER
LOWER WEIGHT POWER TRANSFER AND TRANSMISSION SYSTEMS	MORE EFFICIENT ROTOR CRAFT AND POWERED LIFT (MILITARY SUPERIORITY AND INTER- NATIONAL COMPETITION)	D. TOWNSEND S. LOEWENTHAL D. FLEMING
IMPROVED ENGINE SYSTEMS DYNAMICS	ADVANCED TURBINE ENGINES OF THE 1980's	L. LUDWIG D. FLEMING J. ZUK

POWER TRANSFER RESEARCH

CONTRIBUTIONS

- 1. ADVANCED BALL BEARING
 DEVELOPMENT
 100 FOLD LIFE
 IMPROVEMENT 3 MILLION DN OPERATIONAL
 CAPABILITY
- 2. <u>Bearing Restoration</u>
 Bearings with life expectancy
 of New Bearings at half the
 cost
- 3. OH-58 HELICOPTER TAIL ROTOR

 DRIVE
 IMPROVED GREASE, SEALS AND BEARING
 MOUNTS PLUS DUST SHIELD
- 4. HYDRODYNAMIC SEAL NASA LIFTOFF PRINCIPLE EMPLOYED.
- 5. TRANSMISSION SEAL
 IMPROVED SHAFT RIDING OIL SEAL

APPLICATIONS & IMPACT

MAINSHAFT AND ACCESSORY BEARINGS IN PRATT & WHITNEY & GENERAL ELECTRIC AIRCRAFT GAS TURBINE ENGINES.

INCORPORATED INTO BOTH COMPANIES BEARING PURCHASE SPECIFICATIONS.

MILITARY EQUIPMENT REPLACEMENT BEARINGS. SAVINGS:
TO ARMY \$1M/YR
AIR FORCE \$300K/YR

Entire military fleet being refitted. Savings to Army \$900K/YR

SHUTTLE LOX TURBOPUMP.
SOLVED THE SEAL LIFE PROBLEM

BILL OF MATERIAL IN BELL 214B.
BEING FLIGHT TESTED IN BELL 214A.
UH-1 AND COBRA HELICOPTERS

<u>CONTRIBUTIONS</u>

- 6. MAINSHAFT SEALS
 NASA GAS LUBRICATED
 SELF-ACTING SEAL
- 7. ION PLATED & SPUTTERED
 DRY FILM LUBRICANT COATINGS
- 8. PLASMA SPRAYED SELF-LUBRICATING
 COATINGS WITH WIDE TEMPERATURE
 SPECTRUM CAPABILITIES
 CRYOGENIC TO 1600°F TEMPERATURE RANGE
- 9. Computerized Shaft Balancing
 For automatic balancing of high
 speed flexible shafts
- 10. MIST LUBRICATION OF HIGH SPEED
 BALL BEARINGS
 CAPABILITY DEVELOPED FOR 2 MILLION
 DN BEARING OPERATION. REDUCES
 POWER LOSS. SIMPLIFIES MECHANICAL
 DESIGN.

APPLICATIONS & IMPACT

Industrial gas compressors (Ingersoll Rand) ATEGG Engine Seal - Koppers Steam Seal - Westinghouse Computer Programs - Sealol Co. Advanced aircraft turbine engines

Hosts of applications
Turbine engine vane pivots
Spacecraft parts (1000 on Viking)

TURBINE ENGINE VANE PIVOTS
TURBINE ENGINE HOT SECTION PIVOTS
INDUSTRIAL MACHINERY (2 LICENSED VENDORS)

More efficient, less costly rotor balancing. Engine demonstrator programs being conducted on the T55, T53 and T700 engines.

EMERGENCY BACK-UP SYSTEMS ON TURBINE ENGINES AND TRANSMISSIONS. EMERGENCY SYSTEM ON THE T700 ENGINE.

CONTRIBUTIONS

- 11. Low-Cost High Stability
 Fixed Geometry Journal Bearings
 Lower cost anti-whirl bearings.
 Mass produced by Broaching.
- 12. COMPUTER PROGRAM FOR SECTOR
 SHAPED THRUST BEARING PAD
 FIRST EXACT SOLUTION FOR SECTOR
 SHAPED PAD. APPLIES TO LIQUIDS
 AND GASES.

APPLICATIONS & IMPACT

USED IN GROUND BASED GAS TURBINE ENGINE (T-55, Avco-Lycoming). POTENTIAL APPLICATIONS IN SUPERCHARGERS AND SMALL TURBOMACHINERY.

Upgrades design capability for Liquid and gas lubricated thrust bearings. Widespread use in industrial machinery.

ORIGINAL PAGE 18 OF POOR QUALITY

UNFAILED 120-mm BORE ANGULAR-CONTACT HIGH-SPEED TEST BALL BEARING

STATE-OF-THE-ART ROLLING-ELEMENT BEARING HISTORY

ORIGINAL PAGE 19 OF POOR QUALITY

HYDRODYNAMIC SEAL AFTER 12 hr (100 STARTS)

OPERATION IN LIQUID OXYGEN AT 400 psia ΔP, 32 000 rpm

TRANSMISSION SEAL AFTER 1200-hr OPERATION IN BELL 214B HELICOPTER ORIGINAL PAGE IS OF POOR QUALITY

OF POOR QUALITY

SELF-ACTING FACE SEAL SHOWING SHROUDED RAYLEIGH STEP-PAD DESIGN

MAIN SHAFT SEAL PERFORMANCE IN SMALL GAS TURBINE ENGINE

SELF-ACTING MAINSHAFT SEAL

ENDURANCE LIVES OF MOS2 FILMS APPLIED BY VARIOUS TECHNIQUES

ORIGINAL PAGE IS OF POOR QUALITY

COEFF OF FRICTION OF NIOBIUM SLIDING ON (NI-Cr)
ALLOY WITH GOLD DEPOSITED BY VAPOR DEPOSITION,
AND ION PLATING ABOUT 2000 Å THICK
(LOAD, 250 g; SPEED, 5 ft/min;
AMBIENT TEMP, 10-11 TORR)

ORIGINAL PAGE IS OF POOR QUALITY

PLASMA-SPRAYED COATINGS FOR SELF-ALINING BEARINGS

TWO-PLANE BALANCE WITH RIGID ROTOR

LOW-SPEED BALANCING TECHNIQUE FOR RIGID ROTORS (WITH UNBALANCED MASS IN PLANE 2 AND BALANCE WEIGHTS IN PLANES 1 AND 3) IS NOT ADEQUATE FOR BALANCING HIGH SPEED FLEXIBLE ROTORS. IN FACT, AT THE CRITICAL SPEED THIS BALANCING METHOD IS DETRIMENTAL SINCE SHAFT BENDING IS INCREASED BY THE BALANCE WEIGHTS.

STABILITY OF FIXED GEOMETRY BEARINGS

THREE-TILTED-LOBE BEARING

ASSEMBLED BEARING CONFIGURATION

BEARING SECTOR ASSEMBLY

ORIGINAL FACE SA OF POOR QUALITY,

SECTOR PAD THRUST BEARING

PROPULSION COMPONENTS

FUELS TECHNOLOGY.

JACK S. GROBMAN - AIRBREATHING ENGINES DIVISION .

RESEARCH FACILITIES

COMBUSTOR RESEARCH - ALTERNATIVE FUELS

- o CE-5B, ENGINE RESEARCH BUILDING
 - MAX. PRESSURE, 450 PSIA
 - MAX. INLET TEMPERATURE, 900° F (1200° F)
 - MAX. AIRFLOW, 35 LB/SEC

FUELS SYNTHESIS AND CHARACTERIZATION

- O ANALYTICAL LABORATORY
- o DISTILLATION LABORATORY
 - ATMOSPHERIC AND VACUUM
 - MAX. CAPACITY, 18 GAL.
- HYDROPROCESSING LABORATORY
 - FLOW RATE, 1 LITER/HOUR
 - MAX. PRESSURE, 3000 PSI
 - MAX. TEMPERATURE, 1000° F

FUELS TECHNOLOGY

OBJECTIVE: EVALUATE THE POTENTIAL CHARACTERISTICS OF FUTURE JET AIRCRAFT FUELS,

DETERMINE EFFECTS ON ENGINE COMPONENTS AND EVOLVE COMPONENT TECHNOLOGY

TARGETS: o IDENTIFY PROBABLE PROPERTIES OF FUTURE ALTERNATIVE AVIATION TURBINE FUELS
REFINED FROM EITHER PETROLEUM, SHALE OIL OR COAL SYNCRUDES - FY 1978

- O DETERMINE EFFECTS OF RELAXING FUEL SPECIFICATIONS ON COMBUSTOR PERFORMANCE, EMISSIONS, AND DURABILITY: AND EVOLVE COMBUSTOR TECHNOLOGY FOR BROAD SPEC. FUELS FY 1978
- O DETERMINE THE EFFECTS OF RELAXING FUEL SPECIFICATIONS ON FUEL SYSTEM PERFORMANCE AND DURABILITY AND ON ENGINE MATERIALS SUCH AS FUEL SYSTEM ELASTOMERS AND HOT SECTION ALLOYS AND COATINGS, AND TO EVOLVE AND EVALUATE TECHNOLOGY FOR BROAD SPEC. FUELS FY 1978
- o PERFORM ENGINE DEMONSTRATION TESTS WITH CANDIDATE ALTERNATIVE FUELS FY 1981

TARGET: TO IDENTIFY THE PROBABLE PROPERTIES OF FUTURE ALTERNATIVE AVIATION TURBINE FUELS REFINED FROM EITHER PETROLEUM, SHALE OIL OR COAL SYNCRUDES - FY 1978

PRINCIPLE PROGRAM ELEMENTS

IN-HOUSE

- O LABORATORY SYNTHESIS OF JET FUELS FROM SHALE OIL AND COAL SYNCRUDES
- LABORATORY SYNFUEL CHARACTERIZATION STUDIES
 - COMBUSTION PROPERTIES, E. G. AROMATIC CONTENT
 - THERMAL STABILITY
 - FREEZING POINT

CONTRACT/GRANT

- o STUDY GRANT, "FORECAST OF FUTURE AVIATION FUELS", U. C. L. A.
- REFINERY ENERGY OPTIMIZATION STUDY, GORDIAN ASSOC.
- LABORATORY SYNFUEL PROCESSING STUDIES
 - EXXON
 - ATLANTIC RICHFIELD
- STUDY GRANT, "STABILITY OF NITROGEN CONTAINING TURBINE FUELS", COLORADO SCHOOL OF MINES

TARGET: TO DETERMINE THE EFFECTS OF RELAXING FUEL SPECIFICATIONS ON COMBUSTOR

PERFORMANCE, EMISSIONS, AND DURABILITY: AND TO EVOLVE AND EVALUATE COMBUSTOR

TECHNOLOGY FOR BROAD. SPEC. FUELS - FY 1978

PRINCIPLE PROGRAM ELEMENTS

IN-HOUSE

- O EXPERIMENTAL EVALUATION OF CONVENTIONAL COMBUSTOR WITH BROAD SPEC. FUELS
- evolution and evaluation of conceptual combustors for Broad spec. Fuels
- EXPERIMENTAL MEASUREMENT OF FLAME RADIATION FOR VARYING FUEL PROPERTIES

CONTRACT/GRANT

- O EXPERIMENTAL EVALUATION OF LOW-POLLUTANT COMBUSTORS WITH BROAD-SPEC. FUELS: GE, P&W
- o COMBUSTOR DESIGN STUDY BROAD SPEC. FUELS
- o STUDY OF EFFECT OF FUEL PROPERTIES ON SOOT FORMATION AND OXIDATION, M.I.T.
- EVOLUTION AND EVALUATION OF COMBUSTOR TECHNOLOGY FOR BROAD SPEC. FUELS

OF POOR QUALITY

EFFECT OF HYDROGEN CONTENT OF FUEL ON COMBUSTOR LINER SURFACE TEMPERATURE

ORIGINAL PAGE 19

PRINCIPLE PROGRAM ELEMENTS

IN-HOUSE

- EVALUATION OF THERMAL BARRIER COATINGS FOR COMBUSTORS
- O ACCELERATED HOT CORROSION-TURBINE MATERIAL TESTS WITH ALTERNATIVE FUELS

CONTRACI

- o FUEL SYSTEM DESIGN STUDY FOR HIGH FREEZING POINT FUELS, BOEING
- EXPERIMENTAL STUDY OF PUMPABILITY IN LOW TEMPERATURE FUEL SYSTEMS
- O EXPERIMENTAL EVALUATION OF EFFECT OF FUEL PROPERTIES ON ELASTOMERS, JPL

OF BOOR OHALLY

EFFECT OF CERAMIC COATING ON MAXIMUM LINER TEMPERATURE

(+

FUEL TANK TEMPERATURES WITH CONSTANT HEAT INPUT - 5000 N.M.

MAJOR CONTRIBUTIONS

- O SYNTHESIZED JET AIRCRAFT SYNFUELS FROM SHALE OIL AND COAL SYNCRUDES
- O CORRELATED THERMAL STABILITY OF SYNFUELS WITH CHEMICAL COMPOSITION
- EVALUATED EFFECTS OF VARYING FUELS PROPERTIES ON A CONVENTIONAL COMBUSTOR LINER
 AT SIMULATED OPERATING CONDITIONS
- EVALUATED EFFECTS OF VARYING FUEL PROPERTIES ON LOW-POLLUTANT COMBUSTORS AT SIMULATED OPERATING CONDITIONS
- EVALUATED THE EFFECT OF THERMAL BARRIER COATING CONSISTING OF YTTRIA STABILIZED ZIRCONIA CERAMIC ON A CONVENTIONAL COMBUSTOR LINER
- O PERFORMED ANALYTICAL STUDY OF EFFECT OF HIGH FREEZING POINT FUELS ON THE DESIGN OF THE AIRCRAFT FUEL SYSTEM

PROPULSION COMPONENTS

PROPULSION INSTRUMENTATION RESEARCH

Norman C. Wenger

Airbreathing Engines Division

R & T TRENDS

INSTRUMENTATION

P.A.S.O.

(ADJUSTED DATA THAT INCLUDES INSTRUMENTATION RAT BASE ACTIVITIES INCLUDED IN OTHER DISCIPLINE AREAS)

*INSTRUMENTATION DEVELOPMENT & APPLICATIONS BRANCH WAS FORMED IN AUGUST 1074.

LEWIS RESEARCH CENTER

INSTRUMENTATION ORGANIZATION CHART

INSTRUMENTATION MISSION

-- Expand and demonstrate the technology required for significantly improving present instrumentation and measurement techniques to a level commensurate with the needs of advanced systems and component research programs

TARGET AREAS*:

- o Turbine Blade Temperature Measurement
- o Gas Temperature Measurement
- o Gas Flow Measurement
- o Blade Tip Clearance Measurement
- o Blade Flutter Measurement
- o Rotary Instrumentation Systems

^{*}Also target areas for NASA/USAF Joint Program on Engine Instrumentation

TURBINE BLADE TEMPERATURE MEASUREMENT

TARGET:

Determine the feasibility of using surface film sensors and remote sensing infrared techniques for measuring surface temperature distributions on turbine blades at temperatures up to 2000°F.

PROGRAM:

IN-HOUSE

- o Miniature thermocouples
- o Infrared techniques multicolor pyrometry
- o Thin film thermocouples

CONTRACT/GRANT

o Thin film thermocouple development (Pratt & Whitney Aircraft)

OF POOR QUALITY

CAS TEMPERATURE MEASUREMENT

TARGET: Determine the feasibility of using both advanced probe designs and Raman

spectroscopy for measuring combustion gas temperature up to 4000°F at

pressures up to 40 atmospheres.

PROGRAM:

IN-HOUSE

- o Gas cooled thermocouple probe
- o Raman spectroscopy

CONTRACT/GRANT

o Raman spectroscopy (Polytechnic Institute of New York)

GAS COOLED THERMOCOUPLE PROBE

GAS FLOW MEASUREMENT

TARGET:

Demonstrate techniques for accurately mapping gas flows in inlets and within the moving blade rows of compressor stages.

PROGRAM:

IN-HOUSE

- o <u>Laser Doppler velocimeter</u>
- o Holocamera
- o Drag force anemometer

CONTRACT/GRANT

o High temperature pressure transducer (Boeing Aerospace)

DRAG FORCE ANEMOMETER (BEAM PROBE)

OF POOR QUALITY

BLADE TIP CLEARANCE MEASUREMENT

TARGET: Demonstrate techniques for measuring individual clearance between

moving compressor or turbine blades and the outer casing.

PROGRAM:

IN-HOUSE

o Capacitance Probes

CONTRACT/GRANT

O Development of a laser optic tip clearance measurement system (Pratt & Whitney Aircraft)

BLADE FLUTTER MEASUREMENT

TARGET:

Determine the feasibility of using blade mounted sensors and remote sensing techniques for determining the onset, modal patterns, frequencies, and amplitudes of aeroelastic blade instability.

PROGRAM:

IN-HOUSE

- o Stroboscopic Imagery System
- o Photoelectric Scanning System
- o Strain gage signal monitor
- o Strain gage system development

CONTRACT/GRANT

- o Surface pressure measurement on compressor blades (Pratt & Whitney Aircraft)
- o Strain gage system reliability test (Pratt & Whitney Aircraft)
- o Thin film strain gage system development
- o Investigation of coherent optical techniques for measuring blade flutter parameters (Auburn University)

ROTARY INSTRUMENT SYSTEM

TARGET:

Demonstrate a rotary instrument system capable of transmitting up to 100 channels of data from a rotating shaft at shaft speeds up to 23,000 RPM.

PROGRAM:

CONTRACT/GRANT

o Development of a modular system for thermocouple, dynamic strain, static strain, and pressures signals (Acurex Corp.)

INSTRUMENTATION CONTRIBUTIONS

1972 - 1977

- o High Resolution Infrared Pyrometer
- o Rotary Instrument Systems
- o Optical Blade Flutter Monitors
- o Drag Force Anemometer
- o Gas Cooled Thermocouple
- o Coaxial Thermocouple Miniaturization
- o Laser Doppler Velocimeter Applications

AIR BREATHING ENGINE SYSTEMS R & T 3

PROPULSION CONTROLS RESEARCH

DANIEL DRAIN --

WIND TUNNEL & FLIGHT DIVISION

R & T TRENDS

PRIMARY ACTIVITY

- o SIMULATIONS
- O ENGINE COMPONENT DYNAMICS
- O CONTROL HARDWARE
- O INLET DYNAMICS
- $\circ \quad \mathsf{SUPPORT} \left\{ \begin{array}{l} \mathsf{QCSEE} \\ \mathsf{VSTOL} \end{array} \right.$
- O CONTROL THEORY
- O DIGITAL CONTROL
 APPLICATIONS

+

PRINCIPAL ELEMENTS OF THE PROGRAM

- PROPULSION SYSTEM DYNAMIC UNDERSTANDING
- CONTROL THEORY AND EVALUATION
- CONTROL USING DIGITAL COMPONENTS

SIGNIFICANT CONTRIBUTIONS

INLET/ENGINE AIRFLOW MATCHING

INTEGRATED PROPULSION CONTROL SYSTEM

• MULTIVARIABLE CONTROL SYSTEMS

MULTIVARIABLE CONTROL

ORIGINAL PAGE IS

INTEGRATED PROPULSION CONTROL SYSTEM

IPCS PERFORMANCE IMPROVEMENTS

SPECIFIC OBJECTIVE: PROPULSION CONTROLS RESEARCH

DESCRIPTION: THE UNDERSTANDING AND PREDICTION OF PROPULSION SYSTEM DYNAMIC BEHAVIOR IS
BEING IMPROVED SO THAT MAXIMUM PERFORMANCE CAN BE MAINTAINED SAFELY AND RELIABLY EVEN WITH
SUDDEN AND UNEXPECTED DISTURBANCES.

TARGETS:

- DEVELOP METHODOLOGY TO EMPERICALLY PREDICT AIRCRAFT/INLET/ENGINE INTERACTIONS FY 1979
- Assess multivariable control design methods for advanced high flexibility engines FY 1980
- DEVELOP PRACTICAL AND RELIABLE DIGITAL CONTROL SYSTEMS, INCLUDING FIBEROPTRONICS
 FY 1982

AIRBREATHING ENGINE SYSTEMS

FULL-SCALE ENGINE RESEARCH

ROSS WILLOH, AIRBREATHING ENGINES DIVISION

R & T TRENDS FULL-SCALE ENGINE RESEARCH

FULL-SCALE ENGINE RESEARCH

SPECIFIC OBJECTIVE: FULL-SCALE ENGINE RESEARCH

The state of the s

DESCRIPTION: EXPERIMENTAL AND ANALYTICAL EFFORTS ARE UNDERTAKEN TO DEVELOP IMPROVED UNDERSTANDING OF GOVERNING PHENOMENA AND TO PROVIDE AN EXPANDED TECHNOLOGY BASE FOR FUTURE ENGINE SYSTEM DEVELOPMENT. PARTICULAR EMPHASIS IS PLACED ON SEEKING UNDERSTANDING AND SOLUTIONS FOR THE DYNAMIC INTERACTION PROBLEMS ENCOUNTERED WHEN ENGINE COMPONENTS ARE COMBINED TO FORM AN ENGINE SYSTEM.

TARGETS:

- o INVESTIGATE AEROMECHANICAL INSTABILITY CHARACTERISTICS OF ADVANCED HIGH PERFORMANCE TURBOJET AND TURBOFAN ENGINES - 1980
- DEVELOP IMPROVED TECHNIQUES FOR INTERNAL MIXING OF EXHAUST GAS STREAMS - 1979
- DEVELOP IMPROVED ANALYTICAL TECHNIQUES FOR PREDICTION OF EFFECTS OF STEADY STATE AND DYNAMIC FLOW DISTORTIONS - 1981
- O PROVIDE EXPERIMENTAL AND ANALYTICAL SUPPORT FOR PROGRAMS ON ADVANCED ENGINE COMPONENTS, MODERN CONTROL CONCEPTS, IMPROVED MATERIALS, ETC. 1982

Pigero 1. - Schemtis diegran of eltitub test chemics.

NASA C-75-729 OF POOR QUALITY

6

+

PSL AIR SERVICE CAPABILITY

SERVICE	CAPACITY (LB/SEC)	
	PRESENT	CY '77
COMB. AIR		
60 PSIA	460	450
165 PSIA	386	386
DRYING CAPACITY (<.5 GR.)	230	460
COMB. AIR TEMP.		
65,0° F	230	230 ORIGINAL 280
1200° F PSL 3/4 ONLY	280	280 OR A
- 35° F 10 PSIA	100	PAGE
100° F 25 PSIA		ALI-
PSL 1/2		130
PSL 3/4	• • • • • • • • • • • • • • • • • • •	386
EXH. CAPABILITY (AT MACHINES)		
50,000 FT (LESS AT	220	220
70,000 FT TEST CHAMBERS)	90	90

-65°

FULL-SCALE ENGINE RESEARCH JOINT AIR FORCE/NASA FSER PROGRAM

OBJECTIVE

IMPROVE BASIC UNDERSTANDING OF SYSTEMS AND COMPONENTS IN THE ENGINE ENVIRONMENT ESTABLISH AND IMPROVE DESIGN CRITERIA FOR FUTURE ENGINE DEVELOPMENT

GROUND RULES

- o ENGINES TO BE ALLOCATED BY AIR FORCE FROM ADVANCED DEVELOPMENT PROGRAMS
- o PROGRAM OBJECTIVES WILL BE ESTABLISHED JOINTLY BY AIR FORCE APL AND NASA LERC
- o NASA WILL PROVIDE RESOURCES FOR PROGRAM EXECUTION AND REPORTING

PROGRAMS

- O DEVOTED TO AREAS WHERE SYSTEMATIC FULL-SCALE TESTING OF HIGHLY-INSTRUMENTED ENGINES CAN CONTRIBUTE TO FUNDAMENTAL UNDERSTANDING AND FUTURE DESIGN
- o ENGINES ARE REGARDED AS FACILITIES ON WHICH A VARIETY OF PROGRAMS ARE CONDUCTED
- o DO NOT INCLUDE DEVELOPMENT PROBLEM SOLUTION OR CIP WORK

FULL-SCALE ENGINE RESEARCH CURRENT PRIMARY PROJECT AREAS

- o FLUTTER (F100, J85-21)
- o DISTORTION (TF30, F100, TF34)
- o ENGINE DYNAMICS AND SIMULATION (J85-13, TF30, F100, TF34)
- o HIGH ALTITUDE PERFORMANCE (TF34)
- o EXHAUST GAS MIXERS (TF30, TF34)
- o TIP CLEARANCE (TF34)

FULL-SCALE ENGINE RESEARCH CURRENT SUPPORT PROJECT AREAS

- MATERIALS & PROCESSES
 - -THERMAL BARRIER COATING ON F100 1ST STG. TURBINE BLADES
- o AUGMENTORS (F100)
- o EMISSIONS (TF34)
- o EXHAUST NOZZLES (J85-13)
- o CONTROLS (F100)
- o INSTRUMENTATION
- o ENGINE BALANCING (F100)
- o THRUST METER (TF30, F100)

OF POOR QUALITY

FAN AND COMPRESSOR BLADING FLUTTER DATA BANK

TYPICAL FLUTTER REGIONS SHOWN ON COMPRESSOR MAP

F100 ENGINE INSTRUMENTED FOR FLUTTER
TESTING IN PSL-1

ORIGINAL PAGE 19 OF POOR QUALITY

FAN AND COMPRESSOR BLADING FLUTTER DATA BANK

TYPICAL FLUTTER REGIONS SHOWN ON COMPRESSOR MAP

RATIO

F100 ENGINE INSTRUMENTED FOR FLUTTER TESTING IN PSL-1

F-100 FX213 FAN FLUTTER DATA

TURBOFAN EXHAUST GAS MIXER

MIXER PERFORMANCE

MIXER

ORIGINAL PAGE IS

FULL-SCALE ENGINE RESEARCH DISTORTION PROGRAM STATUS

- O HAVE ESTABLISHED EXTENSIVE EXPERIMENTAL DATA BANK
- o CONTRACT ANALYSIS STUDIES
- o CURRENT TF30 PROGRAM
- o ENGINE SYSTEM RESPONSES TO HIGH FREQUENCY DISTURBANCES
- o TEST TECHNIQUES
- o FUTURE PROGRAMS

ORIGINAL PAGE IS

FULL-SCALE ENGINE RESEARCH CURRENT SUPPORT PROJECT AREAS

- MATERIALS & PROCESSES
 -THERMAL BARRIER COATING ON F100 1ST STG. TURBINE BLADES
- o AUGMENTORS (F100)
- o EMISSIONS (TF34)
- o EXHAUST NOZZLES (J85-13)
- o CONTROLS (F100)
- o INSTRUMENTATION
- o ENGINE BALANCING (F100)
- o THRUST METER (TF30, F100)

FULL-SCALE ENGINE RESEARCH

ACCOMPLISHMENTS

- o ESTABLISHED EXTENSIVE DISTORTION DATA BANK
- O DEVELOPED DISTORTION JET AND HYDROGEN BURNER SYSTEMS FOR DISTORTION TESTING
- O GENERATED FULL-SCALE ALTITUDE DATA FOR AN EXHAUST GAS MIXER
- O ESTABLISHED IN-HOUSE CAPABILITY FOR FLUTTER TESTING AND DATA ANALYSIS
- O GENERATED HEAT TRANSFER DATA AND DATA CORRELATIONS FROM COOLED PLUG NOZZLE TESTS
- O INVESTIGATED AUGMENTOR CONFIGURATIONS AND DEVELOPED A HYDROGEN BURNER SYSTEM TO RAISE TURBINE DISCHARGE TEMPERATURE TO SIMULATE ADVANCED ENGINES

ORIGINAL PAGE IS OF POOR QUALITY

DISCIPLINE/SUB-PROG.

AIRBREATHING ENGINE SYSTEMS

SPECIFIC OBJECTIVE

V/STOL PROPULSION RESEARCH

PRESENTER

ROGER W. LUIDENS, CHIEF

LOW SPEED AERODYHAMICS BRANCH

WIND TUNNEL AND FLIGHT DIVISION

R&T TRENDS

V/STOL PROPULSION RESEARCH

SPECIFIC OBJECTIVE: V/STOL PROPULSION RESEARCH

DESCRIPTION: ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS
WILL BE CONDUCTED TO PROVIDE A TECHNOLOGY
BASE FOR ADVANCED TURBINE ENGINE COMPONENTS/
SYSTEMS UNIQUE TO AND REQUIRED BY FUTURE STOL
AND VTOL AIRCRAFT.

- TARGETS:
- 1 INVESTIGATE LIFT CRUISE FAN PROPULSION CONCEPTS FY 1980
- DEVELOP ADVANCED POWER TRANSFER COMPONENTS/ SYSTEMS - FY 1982
- ③ EVALUATE ADVANCED CONTROL CONCEPTS FOR V/STOL PROPULSION SYSTEMS FY 1982

CONCEPTUAL UTW SHORT-HAUL AIRCRAFT

OF POOR QUALITY

QCSEE UTW ENGINE

OF POOR QUALITY

MODEL FAN INSTALLATION

ORIGINAL PAGE IS OF POOR QUALITY

INLET FLOW ANALYSIS

VTOL AIRCRAFT CONFIGURATION

VTOL AIRCRAFT CONFIGURATION

GAS TIP-DRIVEN CONCEPT

ORIGINAL PAGE IS

AIRBREATHING ENGINE SYSTEMS ADVANCED ENGINE SYSTEM CONCEPTS

RICHARD J. WEBER
WIND TUNNEL AND FLIGHT DIVISION

R&T TRENDS

ADVANCED ENGINE SYSTEM CONCEPTS

ORGANIZATION

SPECIFIC OBJECTIVE: ADVANCED ENGINE SYSTEM CONCEPTS

DESCRIPTION: INVESTIGATIONS ARE CONDUCTED TO DETERMINE THE FEASIBILITY

AND POTENTIAL BENEFITS OF NEW OR UNUSUAL PROPULSION SYS-

STEFF CONCEPTS FOR FUTURE COMMERCIAL OR MILITARY AIRCRAFT

APPLICATIONS.

TARGETS: DEVELOP IMPROVED CAPABILITIES FOR ANALYZING THE PERFOR-

MANCE, WEIGHT AND COST OF ADVANCED PROPULSION SYSTEMS -

FY 1979

ASSESS THE MERITS OF ADVANCED VARIABLE CYCLE ENGINE

CONCEPTS - 1980

EVALUATE PROPULSION CONCEPTS FOR ADVANCED VTOL AIRCRAFT -

1981

CONTINUING IMPROVEMENT OF TOOLS

INSTALLATION EFFECTS (FY 77)

LIEE_CYCLE_COSTS
TIP TURBINES
CENTRIFUGAL COMPRESSORS
MOMENTS OF INERTIA
AERO & MECH. DESIGN LIMITS
MANEUVERING INLETS
2-D INLETS
MAP GENERATORS

OVERVIEW OF FUEL CONSERVATIVE ENGINE STUDIES

SUPERSONIC TRANSPORT PROPULSION

EXAMPLE ALTERNATIVE AST ENGINE CONCEPT SUPERSONIC FAN ENGINE

GENERAL AVIATION TURBINE ENGINE (GATE)

I-H ANALYSES

EXPERIMENTAL ENGINE

CONTRACTED STUDIES

- MARKET ASSESSMENT

-PARAMETRIC ANALYSIS

- COMMONALITY

-TECHNOLOGY REQUIREMENTS

DISCIPLINE/SUBPROGRAM: AIRBREATHING ENGINE SYSTEMS

SPECIFIC OBJECTIVE:

ADVANCED GENERAL AVIATION

PROPULSION RESEARCH

E. A. WILLIS TRANSPORTATION PROPULSION DIVISION OF POOR QUALITY

GENERAL AVIATION - R & T TRENDS

GENERAL AVIATION -- ORGANIZATION

ORIGINAL PAGE IS

ORIGINAL PAGE IS

GENERAL AVIATION TEST FACILITIES

FACILITY	ENGINE TYPE	INTAKE & COOLING	DYNAMOMETER HP/RPM
SE-17	AIRCRAFT	TEMPERATURE/HUMIDITY CONTROLLED	300/5000
SE-11	AUTOMOTIVE	AMBIENT INTAKE WATER COOLED	250/4500
SE-12	SINGLE-CYLINDER RESEARCH (SPARK-IGNITION)	AMBIENT INTAKE WATER COOLED	50/5000
SE-6	SINGLE-CYLINDER RESEARCH (DIESEL)	AMBIENT/HEATED INTAKE WATER COOLED	125/5000

ADVANCED GENERAL AVIATION PROPULSION RESEARCH

SPECIFIC OBJECTIVE

ALTERNATIVE ENGINES, INCLUDING DIESEL, ROTARY AND STIRLING, WILL BE STUDIED AND THE BEST CANDIDATE COMPARED TO CONVENTIONAL AND IMPROVED SPARK-IGNITION (S-I) ENGINES.

TARGETS

- OTTO CYCLE SIMULATION COMPUTER CUDE FY 1979
- ALTERNATIVE ENGINE SELECTION FY 1979
- DESIGN DATA FOR ADVANCED CYLINDER HEADS AND DUCTING FY 1980

TARGET: OTTO CYCLE SIMULATION CODE

PROGRAM ELEMENTS: IN-HOUSE

- CYCLE-TO-CYCLE VARIATIONS
- VALVE TIMING & MANIFOLD MASS FLOW CHARACTERIZATION
- PISTON BLOWBY
- IMPROVED HC EMISSIONS PREDICTIONS

TARGET: ALTERNATIVE ENGINE SELECTION

PROGRAM ELEMENTS: IN-HOUSE

- LIGHTWEIGHT DIESEL (SEMI-INDEPENDENT TURBOCHARGER)
- STIRLING

CONTRACT/GRANT

- LIGHTWEIGHT DIESEL (UNIVERSITY OF MICHIGAN
- ROTARY ENGINE (CURTISS-WRIGHT)
- ADVANCED SPARK-IGNITION
- STIRLING

TARGET: DESIGN DATA FOR ADVANCED CYLINDER HEADS & DUCTING

PROGRAM ELEMENTS: <u>IN-HOUSE</u>

• COOLING FINS STUDY FOR SMALL A/C ENGINES

UNIQUE OTTO CYCLE SIMULATION CODE

(CONTINUING DEVELOPMENT)

- 1. FINITE BURNING INTERVAL
- 2. DETAILED CHEMICAL KINETICS THROUGHOUT COMBUSTION & EXPANSION PROCESS
- 3. COMPLETE CYCLE (720°)
- 4. SOME ABILITY TO PREDICT HC EMISSIONS
- 5. CAN USE THREE DIFFERENT HEAT TRANSFER RELATIONS THROUGHOUT CYCLE

UNIQUE INSTRUMENTATION FOR COMBUSTION PHENOMENA

- REAL TIME MEASUREMENT OF % CHARGE BURNED, COMBUSTION INTERVAL, IGNITION LAG, TIMING ANGLE & IMEP
- 100 CYCLE AVERAGE & STD. DEVIATION OF COMB. PARAMETERS
- SENSES CONTROL PARAMETERS SUCH AS IMEP FOR NEW CLOSED-LOOP CONTROL SYSTEMS
- UNIQUE UTILIZATION OF ELECTRONIC DEVICES
- EXAMPLE: IDENTIFICATION OF HC EMISSIONS SOURCE AT IDLE (MISFIRING)

