DM10 - Basket-ball

Correction

Exercice 1 - Lancer au basket-ball

1. On commence par faire un schéma!

On en déduit :

$$\overrightarrow{v_0} = v_0(\cos\alpha \overrightarrow{e_x} + \sin\alpha \overrightarrow{e_z}).$$

2. La base cartésienne est fixe, donc on peut intégrer directement les vecteurs accélération puis vitesse. Avec la condition initiale $\vec{v}(0) = \vec{v_0}$, on a

$$\overrightarrow{v}(t) = -gt\overrightarrow{e_z} + \overrightarrow{v_0}.$$

Enfin, avec $\overrightarrow{OM}(0) = h\overrightarrow{e_z}$, on a

$$\overrightarrow{OM}(t) = -\frac{1}{2}gt^2\overrightarrow{e_z} + \overrightarrow{v_0}t + h\overrightarrow{e_z}.$$

Puisque le vecteur $\overrightarrow{v_0}$ est contenu dans le plan $(O, \overrightarrow{e_x}, \overrightarrow{e_z})$, le vecteur \overrightarrow{OM} l'est aussi à tout instant : le mouvement est contenu dans le plan $(O, \overrightarrow{e_x}, \overrightarrow{e_z})$.

3. En projetant le vecteur position selon $\overrightarrow{e_x}$, $\overrightarrow{e_y}$ et $\overrightarrow{e_z}$, on obtient

$$\begin{cases} x(t) = v_0 t \cos \alpha \\ y(t) = 0 \\ z(t) = -\frac{1}{2}gt^2 + v_0 t \sin \alpha + h \end{cases}$$

4. La première équation horaire donne

$$t = \frac{x}{v_0 \cos \alpha},$$

d'où, en injectant dans la dernière

$$z(x) = -\frac{gx^2}{2v_0^2 \cos^2 \alpha} + x \tan \alpha + h.$$

5. On cherche l'abscisse x_C telle que $z(x_C) = 0$ soit la solution de l'équation

$$0 = -\frac{gx^2}{2v_0^2 \cos^2 \alpha} + x \tan \alpha + h.$$

Il s'agit d'une équation polynomiale du deuxième ordre admettant deux racines dont l'une seulement est positive (...)

$$x_C = \frac{v_0^2}{g} \left(\frac{\sin(2\alpha)}{2} + \sqrt{\left(\frac{\sin(2\alpha)}{2}\right)^2 + \frac{2gh}{v_0^2} \cos^2 \alpha} \right).$$

Rappel: $\sin(2\alpha) = 2\cos\alpha\sin\alpha$.

6. L'altitude maximale est atteinte à l'instant t_S pour lequel $\dot{z}(t_S) = 0$, soit

$$t_S = \frac{v_0 \sin \alpha}{g}.$$

On a donc

$$z_S = z(t_S) = \frac{v_0^2}{2g} \sin^2 \alpha + h.$$

7. En lançant le ballon verticalement, on maximise l'altitude atteinte, ce qui correspond à $\alpha = \frac{\pi}{2}$.

 z_S est maximale lorsque $\sin^2 \alpha = 1$, ce qui correspond bien au cas où

$$\alpha = \frac{\pi}{2}.$$

8. Pour h=0, la portée du tir devient

$$x_C = \frac{v_0^2}{g}\sin(2\alpha).$$

Cette expression est maximale quand $\sin(2\alpha)$ l'est, c'est-à-dire pour

$$\alpha = \frac{\pi}{4}.$$

9. Avec $\alpha = \frac{\pi}{4}$,

$$x_C = \frac{v_0^2}{g} \left(\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{gh}{v_0^2}} \right).$$

On a donc

$$\tilde{x}_C = \frac{x_C}{x_C(h=0)} = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{gh}{v_0^2}}.$$

Pour $h=2\,\mathrm{m}$, on obtient $\tilde{x}_C=1,17$ tandis que pour $h=1,5\,\mathrm{m}$, on a $\tilde{x}_C=1,13$: un grand joueur de $2\,\mathrm{m}$ ne lancera que $4\,\%$ plus loin qu'un joueur de $1,5\,\mathrm{m}$. La taille du joueur n'a donc pas beaucoup d'importance sur la distance du lancer.

Exercice 2 - Conjonction de planètes

1. le mouvement est circulaire uniforme, donc à vitesse angulaire constante. On a

$$\dot{\theta} = \frac{2\pi}{T}$$
, d'où $\theta = \frac{2\pi}{T}t + \text{cste.}$

Une conjonction correspond à un instant où les positions angulaires des deux planètes sont égales, modulo 2π . En prenant comme origine des dates une conjonction, on a donc

$$\theta_A(0) - \theta_B(0) = 0.$$

La suivante, séparée de la première d'une durée Δt intervient donc quand

$$\theta_A(\Delta t) - \theta_B(\Delta t) = 2\pi.$$

On a donc

$$\frac{2\pi}{T_A}\Delta t - \frac{2\pi}{T_B}\Delta t = 2\pi$$
, soit $\Delta t = \frac{T_A T_B}{T_B - T_B}$.

2. On a

$$\Delta t = \frac{T_T T_V}{T_T - T_V}.$$

A.N. : $\Delta t \approx 587$ jours.