Algoritmalara Giriş

6.046J/18.401J

DERS 2

Asimptotik Simgelem

• O-, Ω -, ve Θ -simgelemi

Yinelemeler

- Yerine koyma metodu
- Yineleme döngüleri
- Özyineleme ağacı
- Ana Metot (Master metod)

Prof. Erik Demaine

O-simgelemi (üst sınırlar):

Tüm $n \ge n_0$ değerleri için sabitler c > 0, $n_0 > 0$ ise $0 \le f(n) \le cg(n)$ durumunda f(n) = O(g(n)) yazabiliriz.

O-simgelemi (üst sınırlar):

Tüm n≥n_0 değerleri için sabitler c>0, n_0>0 ise $0 \le f(n) \le cg(n)$ durumunda f(n)=O(g(n)) yazabiliriz.

ÖRNEK:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$

O-simgelemi (üst sınırlar):

Tüm n≥n_0 değerleri için sabitler c>0, n_0>0 ise $0 \le f(n) \le cg(n)$ durumunda f(n)=O(g(n)) yazabiliriz.

Örnek:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$ fonksiyonlar, değerler değil

O-simgelemi (üst sınırlar):

Tüm $n \ge n_0$ değerleri için sabitler c > 0, $n_0 > 0$ ise $0 \le f(n) \le cg(n)$ durumunda f(n)=O(g(n)) yazabiliriz.

O-simgeleminin tanımı

```
O(g(n)) = \{ f(n) : \text{tüm } n \ge n\_0 \text{ değerlerinde} 
 c > 0, n\_0 > 0 \text{ ise,} 
 0 \le f(n) \le cg(n) \}
```


O-simgeleminin tanımı

$$O(g(n)) = \{ f(n) : \underset{\text{tüm } n \ge n_0 \text{ değerlerinde}}{\text{tüm } n \ge n_0 \text{ değerlerinde}}$$

$$c>0, \ n_0 > 0 \text{ ise,}$$

$$0 \le f(n) \le cg(n) \}$$

ÖRNEK:
$$2n^2 \in O(n^3)$$

O-simgeleminin tanımı

$$O(g(n)) = \{ f(n) : \text{tüm } n \ge n_0 \text{ değerlerinde}$$

 $c>0, n_0 > 0 \text{ ise},$
 $0 \le f(n) \le cg(n) \}$

ÖRNEK: $2n^2 \in O(n^3)$

(Mantıksallar: $\lambda n.2n^2 \in O(\lambda n.n^3)$; ne olup bittiğini anladığımız sürece özensiz olmak yararlı olabilir.)

Makro ornatımı (substitution)

Uzlaşım (Convention): Bir formülün içindeki bir set, o setin içindeki anonim bir fonksiyonu temsil eder.

Makro ornatımı (substitution)

Uzlaşım: Bir formülün içindeki bir set, o setin içindeki anonim bir fonksiyonu temsil eder.

$$f(n) = n^3 + O(n^2),$$

bazı $h(n) \in O(n2)$ için
 $f(n) = n^3 + h(n)$
anlamına gelir.

Makro ornatımı (substitution)

Uzlaşım: Bir formülün içindeki bir set, o setin içindeki anonim bir fonksiyonu temsil eder.

$$n^2 + O(n) = O(n^2)$$

şu anlama da gelir;
her $f(n) \in O(n)$ için:
 $n^2 + f(n) = h(n)$,
bazı $h(n) \in O(n^2)$ olunca.

Ω-simgelemi (alt sınırlar)

O-simgelemi bir *üst-sınır* simgelemidir. f(n) en az $O(n^2)$ 'dir demenin bir anlamı yoktur.

Ω -simgelemi (alt sınırlar)

O-simgelemi bir üst-sınır simgelemidir. f(n) en az $O(n^2)$ 'dir demenin bir anlamı yoktur.

```
\Omega(g(n)) = \{ f(n) : \text{tüm } n \ge n\_0 \text{ değerlerinde} 
c > 0, \ n\_0 > 0 \text{ ise,} 
0 \le cg(n) \le f(n) \}
```


Ω -simgelemi (alt sınırlar)

O-simgelemi bir üst-sınır simgelemidir. f(n) en az $O(n^2)$ 'dir demenin bir anlamı yoktur.

$$\Omega(g(n)) = \{ f(n) : \text{tüm } n \ge n_0 \text{ değerlerinde}$$

$$c > 0, \ n_0 > 0 \text{ ise,}$$

$$0 \le cg(n) \le f(n) \}$$

$$\sqrt{n} = \Omega(\lg n)$$
 $(c = 1, n_0 = 16)$

Θ-simgelemi (sıkı sınırlar)

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Θ-simgelemi (sıkı sınırlar)

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

ÖRNEK:
$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

o-simgelemi ve ω-simgelemi

O-simgelemi ve Ω -simgelemi \leq ve \geq gibidir. o-simgelemi ve ω -simgelemi \leq ve \geq gibidir..

$$o(g(n)) = \{ f(n) : t \text{üm } n \ge n_0 \text{ değerlerinde,}$$

 $c > 0 \text{ sabiti için } n_0 \text{ sabiti varsa}$
 $0 \le f(n) \le cg(n) \}$

ÖRNEK:
$$2n^2 = o(n^3)$$
 $(n_0 = 2/c)$

o-simgelemi ve ω-simgelemi

O-simgelemi ve Ω -simgelemi \leq ve \geq gibidir. *o*-simgelemi ve ω -simgelemi < ve > gibidir.

$$\omega(g(n)) = \{ f(n) : t \text{üm } n \ge n_0 \text{ değerlerinde,}$$

 $c > 0 \text{ sabiti için } n_0 \text{ sabiti varsa}$
 $0 \le f(n) \le cg(n) \}$

$$\sqrt{n} = \omega(\lg n)$$
 $(n_0 = 1 + 1/c)$

Yinelemelerin çözümü

- *Ders 1*' deki birleştirme sıralaması çözümlemesi bir yinelemeyi çözmemizi gerektirmişti.
- Yinelemeler entegral, türev, v.s. denklemlerinin çözümlerine benzer.
 - Bazı numaralar öğrenin.
- *Ders 3*: Yinelemelerin "böl-ve-fethet" algoritmalarına uygulanması.

Yerine koyma metodu (yöntemi)

En genel yöntem:

- 1. Çözümün şeklini tahmin edin.
- 2. Tümevarım ile doğrulayın.
- 3. Sabitleri çözün.

Yerine koyma metodu (yöntemi)

En genel yöntem:

- 1. Çözümün şeklini tahmin edin.
- 2. Tümevarım ile doğrulayın.
- 3. Sabitleri çözün.

ÖRNEK:
$$T(n) = 4T(n/2) + n$$

- [$T(1) = \Theta(1)$ olduğunu varsayın.]
- $O(n^3)$ 'ü tahmin edin. (O ve Ω ayrı ayrı kanıtlayın.)
- k < n için $T(k) \le ck^3$ olduğunu varsayın.
- $T(n) \le cn^3$ 'ü tümevarımla kanıtlayın.

Yerine koyma örneği

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^3 + n$$

$$= (c/2)n^3 + n$$

$$= cn^3 - ((c/2)n^3 - n) \leftarrow istenen - kalan$$

$$\leq cn^3 \leftarrow istenen$$
ne zaman ki $(c/2)n^3 - n \geq 0$, örneğin,
eğer $c \geq 2$ ve $n \geq 1$.

Örnek (devamı)

- Başlangıç koşullarını da ele almalı, yani, tümevarımı taban şıklarına (base cases) dayandırmalıyız.
- Taban: $T(n) = \Theta(1)$ tüm $n < n_0$ için, ki n_0 uygun bir sabittir.
- •1 $\leq n < n_0$ için, elimizde " $\Theta(1)$ " $\leq cn^3$, olur; yeterince büyük bir c değeri seçersek.

Örnek (devamı)

- Başlangıç koşullarını da ele almalı, yani, tümevarımı taban şıklarına (base cases) dayandırmalıyız.
- *Taban*: $T(n) = \Theta(1)$ tüm $n < n_0$ için, ki n_0 uygun bir sabittir.
- $1 \le n < n_0$, için, elimizde " $\Theta(1)$ " $\le cn^3$, olur; yeterince büyük bir c değeri seçersek.

Bu, sıkı bir sınır değildir!

 $T(n) = O(n^2)$ olduğunu kanıtlayacağız.

 $T(n) = O(n^2)$ olduğunu kanıtlayacağız.

Varsayın ki $T(k) \le ck^2$, k < n için olsun :

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

$$= O(n^{2})$$

$$T(n) = O(n^2)$$
 olduğunu kanıtlayacağız.

Varsayın ki $T(k) \le ck^2$; $k \le n$: için€

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

Yanlış!I.H.(tümevarım hipotezini) kanıtlamalıyız.

 $T(n) = O(n^2)$ olduğunu kanıtlayacağız.

Varsayın ki $T(k) \le ck^2$; k < n: için

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

= Yanlış! I.H.(tümevarım hipotezini) kanıtlamalıyız.

$$=cn^2-(-n)$$
 [istenen –kalan]

 $\leq cn^2$ seçeneksiz durum c > 0. Kaybettik!

Fikir: Varsayım hipotezini güçlendirin.

• Düşük-düzeyli bir terimi çıkartın.

Varsayım hipotezi: $T(k) \le c_1 k^2 - c_2 k$; $k \le n$ için.

(Inductive hypothesis)

Fikir: Varsayım hipotezini güçlendirin.

• Düşük-düzeyli bir terimi çıkartın.

Varsayım hipotezi: $T(k) \le c_1 k^2 - c_2 k$; $k \le n$ için.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\leq c_1n^2 - c_2n \text{ eger } c_2 \geq 1.$$

Fikir: Varsayım hipotezini güçlendirin.

• Düşük-düzeyli bir terimi çıkartın.

Varsayım hipotezi: $T(k) \le c_1 k^2 - c_2 k$; $k \le n$ için.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\leq c_1n^2 - c_2n \text{ eger } c_2 \geq 1.$$

 c_1 'i başlangıç koşullarını karşılayacak kadar büyük seçin.

Özyineleme-ağacı metodu

- Özyineleme-ağacı, bir algoritmadaki özyineleme uygulamasının maliyetini (zamanı) modeller.
- Özyineleme-ağacı metodu, elipsleri (...) kullanan diğer yöntemler gibi, güvenilir olmayabilir.
- Öte yandan özyineleme-ağacı metodu "öngörü" olgusunu geliştirir.
- Özyineleme-ağacı metodu "yerine koyma metodu" için gerekli tahminlerinde yararlıdır.

$$T(n) = T(n/4) + T(n/2) + n^2$$
: çözün

$$T(n) = T(n/4) + T(n/2) + n^2$$
: çözün
$$T(n)$$

$$T(n) = T(n/4) + T(n/2) + n^2$$
: çözün
$$T(n/4) \qquad T(n/2)$$

$$T(n) = T(n/4) + T(n/2) + n^2$$
: çözün

$$T(n) = T(n/4) + T(n/2) + n^{2}:$$

$$(n/4)^{2} \qquad (n/2)^{2}$$

$$(n/16)^{2} \qquad (n/8)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2}$$

$$\vdots$$

$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Ana Metod (The Master Method)

Ana method aşağıda belirtilen yapıdaki yinelemelere uygulanır:

$$T(n) = a T(n/b) + f(n) ,$$

burada $a \ge 1$, b > 1, ve f asimptotik olarak pozitiftir.

Üç yaygın uygulama

f(n)'i $n^{\log_b a}$ ile karşılaştırın:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ $\varepsilon > 0$ sabiti durumunda
 - f(n) polinomsal olarak $n^{\log_b a}$ göre daha yavaş büyür (n^{ϵ} faktörü oranında).

$$\mathbf{C}\ddot{o}\mathbf{Z}\ddot{\mathbf{U}}\mathbf{M}$$
: $T(n) = \Theta(n^{\log_b a})$.

Üç yaygın uygulama

- f(n)'i $n^{\log_b a}$ ile karşılaştırın:
- 1. $f(n) = O(n^{\log_b a \varepsilon})$ $\varepsilon > 0$ sabiti durumunda;
 - f(n) polinomsal olarak $n^{\log_b a}$ göre daha yavaş büyür(n^{ϵ} faktörü oranında).

$$\mathbf{C\ddot{o}z\ddot{u}m}$$
: $T(n) = \Theta(n^{\log_b a})$.

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ $k \ge 0$ sabiti durumunda;
 - f(n) ve $n^{\log_b a}$ benzer oranlarda büyürler.

$$C\ddot{o}z\ddot{u}m$$
: $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

Üç yaygın uygulama

f(n)'i $n^{\log_b a}$ ile karşılaştırın:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ $\varepsilon > 0$ sabiti durumunda;
 - f(n) polinomsal olarak $n^{\log_b a}$ 'ye göre daha hızlı büyür (n^{ϵ} faktörü oranında),

 $ve\ f(n),\ d\ddot{u}zenlilik\ koşulunu\ af(n/b) \le cf(n)$ durumunda, c < 1 olmak kaydıyla karşılar.

 $\c C\ddot{o}z\ddot{u}m$: $T(n) = \Theta(f(n))$.

Örnek.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Durum 1: $f(n) = O(n^{2-\epsilon})$ $\epsilon = 1$ için.
 $\therefore T(n) = \Theta(n^2).$

Ör.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Durum 1: $f(n) = O(n^{2-\varepsilon})$ $\varepsilon = 1$ için.
 $\therefore T(n) = \Theta(n^2).$

Ör.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Durum 2: $f(n) = \Theta(n^2 \lg^0 n)$, yani, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n)$.

Ör. $T(n) = 4T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$ DURUM 3: $f(n) = \Omega(n^{2+\epsilon})$ $\epsilon = 1$ için $ext{ve } 4(n/2)^3 \le ext{cn}^3 \text{ (düz. koş.)}$ $ext{c} = 1/2$ için. $\therefore T(n) = \Theta(n^3).$

Ör. $T(n) = 4T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$ Durum 3: $f(n) = \Omega(n^{2+\epsilon})$ $\epsilon = 1$ için $ve \ 4(n/2)^3 \le cn^3$ (düz. koş.) c = 1/2 için $\therefore T(n) = \Theta(n^3).$

Ör. $T(n) = 4T(n/2) + n^2/\lg n$ $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2/\lg n.$ Ana metod geçerli değil. Özellikle, $\varepsilon > 0$ olan sabitler için $n^{\varepsilon} = \omega(\lg n)$ elde edilir.

Yineleme ağacı: $\cdots f(n/b^2)$


```
Recursion tree: (Ozyineleme Ağacı)
h = \log_b n
```


Appendix/EK: Geometrik seriler

$$1+x+x^2+\dots+x^n = \frac{1-x^{n+1}}{1-x}$$
; $x \ne 1$ için

$$1+x+x^2+\cdots = \frac{1}{1-x}$$
 ; $|x| < 1$ için

