that $X = W + \eta$ where $\eta \sim N(0, \tau^2 = 57)$. The goal is to fit the model $Y = \beta_o + \beta_1 X + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$. Apply the multiple imputation methodology to construct point and interval estimates of β_1 .

Site	Yield (Y)	Soil	Site	Yield (Y)	Soil
		Nitrogen (W)			Nitrogen (W)
1	86	70	7	99	50
2	115	97	8	96	70
3	90	53	9	99	94
4	86	64	10	104	69
5	110	95	11	96	51
6	91	64			

Note that α_o, α_1 and τ^2 are known in the set of equations (8.2).

2. **Project:** Generate a sample of size 1000, (X_i, Y_i, W_i) , i = 1, 2, ... 1000 from a trivariate normal distribution mean (0, 1, 2) and covariance matrix,

$$\begin{bmatrix} 1 & 1 & 1.7 \\ & 2 & 1.5 \\ & & 4 \end{bmatrix}$$

- (a) The goal is to infer about the regression coefficient for X in the model $Y = \beta_0 + \beta_1 X + \epsilon$, $\epsilon \sim N(0, \sigma^2)$. Set aside the first 900 observations as data from the main study and treat the remaining 100 observations as data from a substudy. Fit the above regression model on the main study data and store the point estimates of β_o , β_1 and σ and the interval estimate of β_1 .
- (b) Create a data corresponding to scenario (a) in Figure 8.1 by deleting X from the main study. Multiply impute the missing values of X in the main study. Perform multiply imputed analysis and again store the point and interval estimates of the same parameters.
- (c) Create a data corresponding to scenario (b) by deleting X values from the main study and Y values from the substudy. Multiply impute the missing values of X in the main study. Perform multiply imputed analysis as in (b).
- (d) Create a data corresponding to scenario (c) by deleting X on the main study, Y from the first 50 subjects in the substudy

- and W from the last 50 subjects. Perform multiply imputed analysis as in (b).
- (e) Generate new samples and repeat the process (a) to (d), 250 times.
- (f) Compare the bias and mean square properties of the estimates of β_o, β_1 and σ^2 .
- (g) Compute the true value of β_1 and calculate the actual coverage rate for each method of estimating the confidence interval. Also, calculate the length of the confidence intervals.

Based on this simulation study write a brief report on your findings and recommendations.

- 3. Refer to the example in Section 8.3.1. Suppose that one is interested in assessing the effect of not raking the generated values Z for the nonsampled subjects to the known population total. Construct inference about Q, by redoing the analysis of data without raking.
- 4. Sukhatme and Sukhatme (1970) provide area under wheat for 1936, X, as well. Construct inference about Q by using both X and Z as covariates.
- 5. **Project:** From the NHANES series, identify six years and a set of four variables (X_1, X_2, X_3, X_4) that were collected every year. Call this a complete data. From year 1, delete all values except for variables X_1 and X_2 . Similarly, keep (X_1, X_3) in year 2; in year 3, (X_1, X_4) ; in year 4 (X_2, X_3) ; in year 5, (X_2, X_4) ; and, finally, in year 6, keep (X_3, X_4) . Vertically concatenate the six data sets. Multiply impute the missing values in the concatenated data set. Perform several example analysis that require 3 or more variables from the multiply imputed data sets and also on vertically concatenated six complete data sets. Compare the point and interval estimates. Write a brief report on your findings.
- 6. This problem is adapted based on a study described in Fleiss (1986). A large nursing home has a population of about 400 patients with senile dementia. Two methods (A and B) for training patients to take care of themselves were under consideration. A randomized study was conducted with 11 patients receiving training method A and 8 receiving training method B. Two weeks after training, each