UNIVERSIDAD TECNICA

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Ayudantía 3 Análisis Funcional

8 de septiembre de 2022

Problema 1. Supongamos que $(Y, \|\cdot\|_Y)$ es un e.v.n. y que $f: Y \to \mathbb{R}$ es una función continua y convexa, i.e., tal

$$f(\lambda y_1 + (1 - \lambda)y_2) \le \lambda f(y_1) + (1 - \lambda)f(y_2), \quad \forall y_1, y_2 \in Y, \forall \lambda \in [0, 1].$$

Consideremos ahora otro e.v.n. $(X, \|\cdot\|_X)$, un operador $A \in \mathcal{L}(X, Y)$ y $x_0 \in X$, tales que existe $\varphi \in X'$ que verifica

$$f(A(x_0)) + \varphi(x - x_0) \le f(A(x)), \quad \forall x \in X.$$

Pruebe, usando el Teorema de Hahn-Banach Geométrico, que existe $\ell \in Y^{'}$ tal que $\varphi = \ell \circ A$ y que además satisface

$$f(A(x_0)) + \ell(y - A(x_0)) \le f(y), \quad \forall y \in Y.$$

Indicación: Pruebe que los siguientes conjuntos son convexos y disjuntos:

$$A := \left\{ (y, z) \in Y \times \mathbb{R} \mid f(y) < z \right\} \quad \text{y} \quad B := \left\{ (A(x), f(A(x_0)) + \varphi(x - x_0)) \in Y \times \mathbb{R} \mid x \in X \right\}.$$

Problema 2. Sea $(X, \|\cdot\|_X)$ e.v.n. y $\{x_k\} \subseteq X$ tal que para todo $\ell \in X'$ se tiene que $\sum_{k \in \mathbb{N}} |\ell(x_k)| < +\infty$. Demuestre que

$$\sup_{\|\ell\|_{X'} \le 1} \sum_{k \in \mathbb{N}} |\ell(x_k)| < +\infty$$

Indicación: Defina una sucesión de operadores lineales adecuada y emplee el Teorema de Banach-Steinhaus.

Problema 3. Considere en este problema un espacio de medida (X, \mathcal{A}, μ) .

1. Sea $f \in L^p$ para algún $1 \le p < \infty$. Probar que

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}$$

2. Suponer $\mu(X) < +\infty$. Demuestre que si $1 \le p \le q$ entonces $L^q(X,\mu) \hookrightarrow L^p(X,\mu)$ de manera continua, y calcule la norma de la inclusión.