Equivalências

Matemática discreta e Lógica Matemática

AULA 2 - Equivalências Proposicionais

Prof. Dr. Hércules A. Oliveira

UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática

Equivalências Lógicas

Proposições compostas - Definição 1

- Uma proposição composta que é verdadeira, qualquer que sejam os valores-verdade das proposições que ocorrem nela, é chamada de *Tautologia*.
- Uma proposição composta que é sempre falsa, qualquer que seja o valor-verdade das proposições que a compõem, é chamada de Contradição.
- ① Uma proposição composta que não é *Tautologia* nem *Contradição* é chamada cd *Contingência*.

- Podemos construir exemplos de tautologias e contradições usando apenas uma variável proposicional. Considere a tabela-verdade de p ∨ ¬p e p ∧ ¬p, abaixo.
- ② $p \lor \neg p$ é sempre verdade é uma tautologia.
- ⓐ e $p \land \neg p$ é sempre falsa é uma contradição.

p	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$
V	F	V	F
F	V	V	F

- **①** Podemos construir exemplos de tautologias e contradições usando apenas uma variável proposicional. Considere a tabela-verdade de $p \lor \neg p$ e $p \land \neg p$, abaixo.
- 2 $p \lor \neg p$ é sempre verdade é uma tautologia.
- ⑤ e $p \land \neg p$ é sempre falsa é uma contradição.

p	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$
V	F	V	F
F	V	V	F

- **①** Podemos construir exemplos de tautologias e contradições usando apenas uma variável proposicional. Considere a tabela-verdade de $p \lor \neg p$ e $p \land \neg p$, abaixo.
- ② $p \lor \neg p$ é sempre verdade é uma tautologia.
- ③ e $p \land \neg p$ é sempre falsa é uma contradição.

p	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$
V	F	V	F
F	V	V	F

- **①** Podemos construir exemplos de tautologias e contradições usando apenas uma variável proposicional. Considere a tabela-verdade de $p \lor \neg p$ e $p \land \neg p$, abaixo.
- ② $p \lor \neg p$ é sempre verdade é uma tautologia.
- **③** e $p \land \neg p$ é sempre falsa é uma contradição.

p	$\neg p$	$p \lor \neg p$	$p \wedge \neg p$
V	F	V	F
F	V	V	F

Equivalências Lógicas

Definição 2

- ① As proposições compostas p e q são chamadas de *logicamente* equivalentes se $p \leftrightarrow q$ é uma tautologia.
 - A notação $p \equiv q$ indica que p e q são logicamente equivalentes
 - Proposições compostas que têm o mesmo valor-verdade em todos os possíveis casos são chamadas de logicamente equivalentes.

Exemplo

Mostre que $\neg (p \lor q)$ e $\neg p \land \neg q$ são logicamente equivalentes

Equivalências Lógicas

Definição 2

- As proposições compostas p e q são chamadas de *logicamente* equivalentes se $p \leftrightarrow q$ é uma tautologia.
 - A notação $p \equiv q$ indica que p e q são logicamente equivalentes.
 - Proposições compostas que têm o mesmo valor-verdade em todos os possíveis casos são chamadas de logicamente equivalentes.

Exemplo

Mostre que $\neg (p \lor q)$ e $\neg p \land \neg q$ são logicamente equivalentes.

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
V	V	V	F	F	F	F
V	F	V	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	V	V	V

Lei de Morgan

- As Leis mostram como negar conjunções e como negar disjunções.
- A negação de uma disjunção é formada tomando a conjunção das negações das proposições componentes.

Tabela-Verdade

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

→ Exemplo: Use a Lei de De Morgan para expressar as negações de: Miguel tem um celular e um laptop.

Lei de Morgan

- As Leis mostram como negar conjunções e como negar disjunções.
- A negação de uma disjunção é formada tomando a conjunção das negações das proposições componentes.

Tabela-Verdade

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

→ Exemplo: Use a Lei de De Morgan para expressar as negações de: Miguel tem um celular e um laptop.

$p \wedge \overline{q}$

Miguel tem um celular p Miguel tem um laptop q

negação

- Miguel não tem um celular ou não tem um laptop.

$p \wedge \overline{q}$

Miguel tem um celular p Miguel tem um laptop q

negação

- Miguel não tem um celular ou não tem um laptop.

Exmeplo

- **1** Mostre que $p \rightarrow q$ e $\neg p \lor q$ são logicamente equivalentes.
- Mostre que $p \lor (q \land r)$ e $(p \lor q) \land (p \lor r)$ são logicamente equivalentes.

p	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \vee r$	$(p \vee q) \wedge (p \vee r)$
V	V	V	\vee	V	\vee	V	V
\vee	\bigvee	F	F	V	\vee	V	V
V	F	∇	F	V	\vee	V	V
V	F	F	F	V	\vee	V	V
F	∇	∇	\vee	V	\vee	V	V
F	∇	F	F	F	\vee	F	F
F	F	\bigvee	F	F	F	V	F
F	F	F	F	F	F	F	F

Exmeplo

- **1** Mostre que $p \rightarrow q$ e $\neg p \lor q$ são logicamente equivalentes.
- ② Mostre que $p \lor (q \land r)$ e $(p \lor q) \land (p \lor r)$ são logicamente equivalentes.

p	\overline{q}	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
V	V	V	V	V	V	V	V
V	V	F	F	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	F	F	V	F	F
F	F	V	F	F	F	V	F
F	F	F	F	F	F	F	F

- V indica uma proposição composta que é sempre verdadeira, uma tautologia.
- F indica uma proposição composta que é sempre falsa, uma contradição.

Equivalências	Nome
$p \wedge \mathbf{V} \equiv p$	Propriedade dos elementos neutros
$p \vee \mathbf{F} \equiv p$	Propriedade dos elementos neutros

Definição

Extensão da Lei De Morgan

Lógica Formal

Definição 1

Seja p uma proposição. A negação de p, indicada por $\neg p$ (e também por \bar{p}), é a sentença "Não é o caso de p".

- A proposição $\neg p$ é lida "não p" (não é p).
- \bullet O valor-verdade da negação de $p, \neg p,$ é o oposto do valor-verdade de p.

- p: Hoje é quarta.
- A negação ¬p: Não é o caso de hoje ser quarta. Hoje não é quarta.

Tabela-Verdade

Síntese das proposições

"Quando"

p	$\neg p$
V	F
F	V

Operadores lógicos: Conectivos

Definição 2

- Sejam p e q Proposições. A conjunção de p e q, indicada por p ∧ q, é a proposição "p e q".
- **②** A conjunção $p \land q$ é verdadeira quando ambas são verdadeiras, e falsa caso contrário.

O conectivo lógico e é representado pelo símbolo \land e as proposições são representadas por letras.

Operadores lógicos: Conectivos

Exemplo

Encontre a conjunção das proposições p e q, em que p é: Hoje é sexta-feira, e q é: Hoje está chovendo.

Resposta:

A conjunção $p \land q$ dessas proposições é a proposição: Hoje é sexta-feira e está chovendo.

Essa proposição é verdadeira em uma sexta chuvosa e falsa em qualquer outro caso.

Linux é um sistema operacional e Java é uma linguagem de programação.

Conjunção

Podemos então apresentar a tabela com os valores lógicos de $p \land q$ para todos os valores lógicos possíveis dos elementos p e q. Cada linha da tabela representa um possível valor lógico associado a cada uma das letras de proposição e apresenta o valor lógico resultante da expressão composta.

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

Definição 3

- Sejam p e q proposições. A disjunção de p e q, indicada por $p \lor q$, é a proposição "p ou q".
- ② A disjunção $p \lor q$ é falsa se p e q são ambas falsas, e verdadeiras em qualquer outro caso.

O conectivo lógico ou é representado pelo símbolo ∨.

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

Disjunção Exclusiva

Definição 4

- Sejam p e q proposições. A disjunção exclusiva (ou ou exclusiva) de p e q, indicada por $p \oplus q$.
- ② A disjunção $p \oplus q$ é verdadeira quando exatamente uma das duas for verdadeira e falsa nos outros casos.

O conectivo lógico ou (apenas) é representado pelo símbolo \oplus .

p	q	$p \oplus q$
V	V	F
V	F	V
F	V	V
F	F	F

Definição 5

- **3** Sejam p e q proposições. A proposição Condicional $p \rightarrow q$ é a proposição "se p, então q".
- ② A condição $p \rightarrow q$ é falsa quando p é verdadeira e q é falsa, e verdadeira em qualquer outro caso.

Na condição $p \rightarrow q$, p é chamada de *hipótese* (ou antecedentes, ou premissa) e q é chamada de *conclusão* (ou consequência, ou consequênte).

p	q	p o q
V	V	V
V	F	F
F	V	V
F	F	V

Exemplo 1

- Se eu for eleito, então os impostos vão diminuir.
- ② p: Se eu for eleito $\rightarrow q$: então os impostos vão diminuir.

p	q	p o q
V	V	V
V	F	F
F	V	V
F	F	V

- Seja p a proposição "Maria aprende matemática discreta" e q a proposição "Maria vai conseguir um bom emprego".
- ② Expresse $p \rightarrow q$ em português.
- Se Maria aprender matemática discreta, então ela vai conseguir um bom emprego.
- Maria vai conseguir um bom emprego quando aprender matemática discreta.

Exemplo 3

- Se hoje é sexta-feira, então 2 + 3 = 5.
- ② Se hoje é sexta-feira, então 2 + 3 = 6.

p	q	p o q
V	V	V
V	F	F
F	V	V
F	F	V

Exemplo 3

- Se hoje é sexta-feira, então 2 + 3 = 5.
- 2 Se hoje é sexta-feira, então 2 + 3 = 6.

Exemplo - programação

```
x=0.d0
do i=1,10
if (i.lt.7) then
write(*,*) i,x
x=x+0.1d0
endif
enddo
```

Definição 6

- **3** Sejam p e q proposições. A proposição Condicional $p \leftrightarrow q$ é a proposição "se e somente se".
- ② A condição $p \leftrightarrow q$ é verdadeira sempre que p e q têm o mesmo valor-verdade, e falsa caso contrário.
- Bicondicionais são também chamadas de bi-implicações.
- **②** Note que: $p \leftrightarrow q$ é exatamente o mesmo que $(p \rightarrow q) \land (q \rightarrow p)$.

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

- 1 p: Você pode tomar o avião.
- q: Você comprou uma passagem.
- § $p \leftrightarrow q$: Você pode tomar o avião se e somente se comprou uma passagem.

Proposição Compostas

Tabela-Verdade

O Construa a tabela-verdade para a proposição composta:

p	q	$\neg q$	$p \lor \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$
V	V	F	V	V	V
V	F	V	V	F	F
F	V	F	F	F	V
F	F	V	V	F	F

Proposição Compostas

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \wedge q$	$(p \lor q) \leftrightarrow (\neg p \land \neg q)$
V	V	V	F	F	F	F
V	F	V	F	V	F	F
F	V	v	V	F	F	F
F	F	F	V	V	V	F

Relembrando

p	Proposição	variável
q	Proposição	variável
$\neg q$	não é o caso de q	negativa de q
\wedge	e	Conjunção
V	ou	Disjunção
\oplus	ou exclusiva	Disjunção exclusiva
\rightarrow	se, então	Condicional
\leftrightarrow	se e somente se	Bicondicional

Prioridades

Operadores Lógicos

Operador	Prioridade
7	1
\wedge	2
V	3
\rightarrow	4
\leftrightarrow	5

Operadores Lógicos

Você pode acessar a internet a partir deste câmpus somente se voê é um expert em Ciência da Computação ou não é novato.

Separando

Você pode acessar a internet a partir deste câmpus somente se voê é um expert em Ciência da Computação ou não é novato.

Separando

Você pode acessar a internet a partir deste câmpus somente se você é um expert em Ciência da Computação ou não é novato.

Separando (uma condição apenas!!! →)

- **1** a: Você pode acessar a internet a partir deste câmpus
- 2 c: você é um expert em Ciência da Computação
- Conectivos:
 - somente se (se, então)- (\rightarrow)
 - ou (∨)

Como fica

Você pode acessar a internet a partir deste câmpus somente se voê é um expert em Ciência da Computação ou não é novato.

$$a \to (c \lor \neg f)$$

Como fica

Você pode acessar a internet a partir deste câmpus somente se voê é um expert em Ciência da Computação ou não é novato.

$$a \to (c \vee \neg f)$$

Como podemos traduzir para expressões lógicas?

Você pode ser aprovado nesta disciplina somente se estudar bastante.

Como fica

 $p \leftrightarrow q$

Como podemos traduzir para expressões lógicas?

Você pode ser aprovado nesta disciplina e em cálculo se prestar atenção na aula ou estudar muito em casa.

Como fica

 $p \wedge q \vee r$

Como podemos traduzir para expressões lógicas?

Você pode ser aprovado nesta disciplina somente se estudar bastante.

Como fica

 $p \leftrightarrow q$

Como podemos traduzir para expressões lógicas?

Você pode ser aprovado nesta disciplina e em cálculo se prestar atenção na aula ou estudar muito em casa.

Como fica

 $p \land q \lor r$

Como podemos traduzir para expressões lógicas?

Você pode ser aprovado nesta disciplina somente se estudar bastante.

Como fica

 $p \leftrightarrow q$

Como podemos traduzir para expressões lógicas?

Você pode ser aprovado nesta disciplina e em cálculo se prestar atenção na aula ou estudar muito em casa.

$$p \wedge q \vee r$$

Como fica

Você pode acessar a internet a partir deste câmpus somente se voê é um expert em Ciência da Computação ou não é novato.

$$a \to (c \lor \neg f)$$

Como fica

Você pode acessar a internet a partir deste câmpus somente se voê é um expert em Ciência da Computação ou não é novato.

$$a \to (c \lor \neg f)$$

Lógica de Bit

Bit (binary digit - dígito binário): 0 e 1.

Valor – Verdade	Bit
V	1
F	0

Lógica de Bit

Bit (binary digit - dígito binário): 0 e 1.

Valor – Verdade	Bit
V	1
F	0

Equivalências

FIM