

Comparison with DK1.1_RF_mmW model(s)

Please use the bookmark to navigate

General information on EGLVTV models

- Maximum supply voltage is 1.5 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 100nm to 10um.
 - ✓ Drawn transistor width varies from 0.16um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): eglvtvnfet_acc, eglvtvpfet_acc
 - ✓ Gm_ana: Drain transconductance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Sv@1hz: Gate noise voltage spectral density at 1Hz, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Aid: delta_Id/Id * sqrt(W.L)
 - ✓ Gds_ana: Drain conductance at Ids = iana*M*W/L, Vds = Vdd/4, f = 100k
 - ✓ Vgs_ana: Vgs value for which drain current is iana*M*shrink_iana*W/(shrink_iana*L+dlshrink_iana+plashrink_iana*p_la) at Vds=Vdd/4V.
 - ✓ Avt: delta Vt * sqrt(W.L)
 - ✓ Id_sv: Drain current at Vgs = Vgs_ana and Vds = Vdd/4V for which noise voltage and current spectral densities Sv, Si are extracted.
 - ✓ Cbd_off: Bulk-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Cdg_ana: Drain-to-Gate transcapacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Ft ana: Transition frequency at Ids = iana*M*W/L, Vds = Vdd/4V
 - ✓ Sv@th: Gate thermal noise voltage spectral density, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Abeta: delta_GmMax/GmMax * sqrt(w/L)
 - ✓ Cdd_ana: Total drain capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Gdc_ana: Voltage gain at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgg_ana: Total gate capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgd_0v: Gate-to-Drain capacitance at Vgs = 0V, Vds = vds_cggV, f = 100kHz.
 - ✓ Vtgmmax : Threshold voltage at Vds = 0.05 derived from Gm max method.

ST Confidential

eglvtvnfet_acc Electrical characteristics per geometry

dormieub

eglvtvnfet_acc@ w=2e-6, l=0.10e-6, swshe=0, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, sd=1.4e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.5, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	wrt DK1.1_RF_mmW TT	FFF
VtGmmax [mV]	401.7 0.0mV	351.3 0.0mV	301.9 0.0mV
Vgs_ana [mV]	637.4 0.0mV	562.7 0.0mV	492.9 0.0mV
GDC_ana []	24.1 0.0%	26.77 0.0%	28.83 0.0%
GBW_QS [GHz]	149.1 0.0%	162.7 0.0%	173.1 0.0%
Ft_ana [GHz]	60.99 0.0%	65.63 0.0%	70.14 0.0%
Gm_ana [μS]	707.6 0.0%	771.8 0.0%	837.7 0.0%
Gds_ana [μS]	29.37 0.0%	28.83 0.0%	29.05 0.0%
Cgg_ana [fF]	1.85 0.0%	1.87 0.0%	1.9 0.0%
Cdg_ana [fF]	1.09 0.0%	1.06 0.0%	1.09 0.0%
Cdd_ana [aF]	751 0.0%	751.6 0.0%	766.9 0.0%
Avt [mV.μm]	1.77 -0.9%	1.73 -0.9%	1.72 -0.8%
Abeta [%.μm]	0.63 1.3%	0.52 1.2%	0.44 1.1%
AId [%.µm]	0.56 1.2%	0.47 1.1%	0.41 1.0%
Sv@1Hz [V/√Hz]	5.77e-06 0.0%	3.23e-05 0.0%	1.84e-04 0.0%
Sv@th [V/√Hz]	4.84e-09 0.0%	4.56e-09 0.0%	4.35e-09 0.0%

eglvtvnfet_acc@ w=2e-6, l=2.0e-6, swshe=0, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, sd=1.4e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=0, vdd=1.5, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	436.1 0.0mV	398.4 0.0mV	359.9 0.0mV
Vgs_ana [mV]	599.4 0.0mV	555.2 0.0mV	510.3 0.0mV
GDC_ana []	472.1 0.0%	452.4 0.0%	436 0.0%
GBW_QS [GHz]	13.42 0.0%	13.55 0.0%	13.67 0.0%
Ft_ana [GHz]	0.43 0.0%	0.44 0.0%	0.44 0.0%
Gm_ana [μS]	49.05 0.0%	50.75 0.0%	52.39 0.0%
Gds_ana [nS]	103.9 0.0%	112.2 0.0%	120.2 0.0%
Cgg_ana [fF]	18.09 0.0%	18.43 0.0%	18.9 0.0%
Cdg_ana [fF]	6.8 0.0%	6.95 0.0%	7.16 0.0%
Cdd_ana [aF]	582.2 0.0%	596.2 0.0%	610.4 0.0%
Avt [mV.μm]	3.89 -0.3%	3.71 -0.3%	3.62 -0.3%
Abeta [%.µm]	0.92 0.3%	0.89 0.3%	0.86 0.3%
AId [%.μm]	0.88 0.1%	0.85 0.2%	0.83 0.2%
Sv@1Hz [V/√Hz]	2.91e-06 0.0%	5.32e-06 0.0%	9.57e-06 0.0%
Sv@th [V/√Hz]	1.49e-08 0.0%	1.46e-08 0.0%	1.43e-08 0.0%

eglvtvpfet_acc Electrical characteristics per geometry

eglvtvpfet_acc@ w=2e-6, l=0.10e-6, swshe=0, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, sd=1.4e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=1.5, vdd=1.5, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	389 0.0mV	334.7 0.0mV	278.6 0.0mV
Vgs_ana [mV]	677.9 0.0mV	583.3 0.0mV	498 0.0mV
GDC_ana []	11.18 0.0%	13.31 0.0%	14.65 0.0%
GBW_QS [GHz]	56.47 0.0%	65.55 0.0%	70.82 0.0%
Ft_ana [GHz]	23.2 0.0%	26.31 0.0%	28.79 0.0%
Gm_ana [μS]	233.5 0.0%	264 0.0%	288.8 0.0%
Gds_ana [μS]	20.88 0.0%	19.83 0.0%	19.71 0.0%
Cgg_ana [fF]	1.6 0.0%	1.6 0.0%	1.6 0.0%
Cdg_ana [aF]	868.3 0.0%	804.1 0.0%	809.4 0.0%
Cdd_ana [aF]	652.7 0.0%	639.2 0.0%	647 0.0%
Avt [mV.µm]	2.36 -0.9%	2.3 -0.9%	2.27 -0.9%
Abeta [%.μm]	0.68 1.1%	0.57 0.8%	0.5 0.3%
AId [%.µm]	0.69 0.9%	0.56 0.8%	0.48 0.6%
Sv@1Hz [V/√Hz]	6.1e-06 0.0%	2.18e-05 0.0%	8.06e-05 0.0%
Sv@th [V/√Hz]	8.08e-09 0.0%	7.38e-09 0.0%	7.05e-09 0.0%

eglvtvpfet_acc@ w=2e-6, l=2.0e-6, swshe=0, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, sd=1.4e-07, devtype=PCELLwoWPE, as=1.2e-13, ad=1.2e-13, ps=2.24e-06, pd=2.24e-06, vbs=1.5, vdd=1.5, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

	SSF	TT	FFF
VtGmmax [mV]	410.2 0.0mV	375.5 0.0mV	340.5 0.0mV
Vgs_ana [mV]	584.1 0.0mV	542.2 0.0mV	500.3 0.0mV
GDC_ana []	258.1 0.0%	233.7 0.0%	213 0.0%
GBW_QS [GHz]	5.55 0.0%	5.53 0.0%	5.48 0.0%
Ft_ana [GHz]	0.17 0.0%	0.17 0.0%	0.17 0.0%
Gm_ana [μS]	17.41 0.0%	17.72 0.0%	17.96 0.0%
Gds_ana [nS]	67.45 0.0%	75.8 0.0%	84.32 0.0%
Cgg_ana [fF]	16.56 0.0%	16.58 0.0%	16.57 0.0%
Cdg_ana [fF]	6.32 0.0%	6.32 0.0%	6.32 0.0%
Cdd_ana [aF]	499.3 0.0%	510.5 0.0%	522.3 0.0%
Avt [mV.μm]	5.23 -0.3%	5 -0.3%	4.87 -0.3%
Abeta [%.µm]	0.91 0.2%	0.94 0.4%	0.97 0.4%
AId [%.μm]	0.91 0.3%	0.9 0.4%	0.9 0.5%
Sv@1Hz [V/√Hz]	3.26e-06 0.0%	5.7e-06 0.0%	9.96e-06 0.0%
Sv@th [V/√Hz]	2.58e-08 0.0%	2.55e-08 0.0%	2.52e-08 0.0%

eglvtvnfet_acc Electrical characteristics scaling

Scaling versus Length (T=25C,vbs=0V)

eglvtvnfet_acc, VtGmmax [mV] vs l [m]

eglvtvnfet_acc, Vgs_ana [mV] vs l [m]

eglvtvnfet_acc, GDC_ana [] vs l [m]

eglvtvnfet_acc, GBW_QS [GHz] vs l [m]

eglvtvnfet_acc, Ft_ana [GHz] vs l [m]

eglvtvnfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

eglvtvnfet_acc, Gm_ana/w [S/um] vs l [m]

eglvtvnfet_acc, Gds_ana/w [S/um] vs l [m]

eglvtvnfet_acc, Sv@1Hz [V/sqrt(Hz)] vs l [m]

eglvtvnfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

eglvtvnfet_acc, Cgg_ana/l [fF/um] vs l [m]

eglvtvnfet_acc, Cdg_ana/w [fF/um] vs l [m]

eglvtvnfet_acc, Cdd_ana/w [fF/um] vs l [m]

eglvtvnfet_acc, Cgd_0V/w [fF/um] vs l [m]

eglvtvnfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus Width (T=25C,vbs=0V)

eglvtvnfet_acc, VtGmmax [mV] vs w [m]

eglvtvnfet_acc, Vgs_ana [mV] vs w [m]

eglvtvnfet_acc, GDC_ana [] vs w [m]

eglvtvnfet_acc, GBW_QS [GHz] vs w [m]

eglvtvnfet_acc, Ft_ana [GHz] vs w [m]

L==0.10e-6 and nf==2 and Temp==25 and Vbs==0 and devType=="PCELLwoWPE"

dormieub

eglvtvnfet_acc, Gm_ana/Id_Sv [1/V] vs w [m]

eglvtvnfet_acc, Gm_ana/w [S/um] vs w [m]

eglvtvnfet_acc, Gds_ana/w [S/um] vs w [m]

eglvtvnfet_acc, Sv@1Hz [V/sqrt(Hz)] vs w [m]

eglvtvnfet_acc, Sv@th [V/sqrt(Hz)] vs w [m]

eglvtvnfet_acc, Cgg_ana/l [fF/um] vs w [m]

eglvtvnfet_acc, Cdg_ana/w [fF/um] vs w [m]

eglvtvnfet_acc, Cdd_ana/w [fF/um] vs w [m]

eglvtvnfet_acc, Cgd_0V/w [fF/um] vs w [m]

eglvtvnfet_acc, Cbd_off/w [fF/um] vs w [m]

Scaling versus Length @ W/L=10&&W/nf<5um (vbs=0V)

eglvtvnfet_acc, VtGmmax [mV] vs l [m]

eglvtvnfet_acc, Vgs_ana [mV] vs l [m]

eglvtvnfet_acc, GDC_ana [] vs l [m]

eglvtvnfet_acc, GBW_QS [GHz] vs l [m]

eglvtvnfet_acc, Ft_ana [GHz] vs l [m]

eglvtvnfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

eglvtvnfet_acc, Gm_ana/w [S/um] vs l [m]

 $W/L{=}10\ and\ w/nf{<}5\ and\ Temp{=}{=}25\ and\ vbs{=}{=}0\ and\ devType{=}{=}"PCELLwoWPE"$

eglvtvnfet_acc, Gds_ana/w [S/um] vs l [m]

 $W/L{=}10\ and\ w/nf{<}5\ and\ Temp{=}{=}25\ and\ vbs{=}{=}0\ and\ devType{=}{=}"PCELLwoWPE"$

eglvtvnfet_acc, Sv@1Hz [V/sqrt(Hz)] vs l [m]

eglvtvnfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

eglvtvnfet_acc, Cgg_ana/l [fF/um] vs l [m]

eglvtvnfet_acc, Cdg_ana/w [fF/um] vs l [m]

eglvtvnfet_acc, Cdd_ana/w [fF/um] vs l [m]

eglvtvnfet_acc, Cgd_0V/w [fF/um] vs l [m]

 $W/L{=}10\ and\ w/nf{<}5\ and\ Temp{=}{=}25\ and\ vbs{=}{=}0\ and\ devType{=}{=}"PCELLwoWPE"$

eglvtvnfet_acc, Cbd_off/w [fF/um] vs l [m]

eglvtvnfet_acc, Avt [mV.um] vs l [m]

/L==10 and w/nf<5 and Temp==25 and vbs==0 and stratn==2 and l<5e-6 and devType=="PCELLwoWP]

eglvtvnfet_acc, Abeta [%.um] vs l [m]

/L==10 and w/nf<5 and Temp==25 and vbs==0 and stratn==2 and l<5e-6 and devType=="PCELLwoWP]

eglvtvnfet_acc, AId [%.um] vs l [m]

/L==10 and w/nf<5 and Temp==25 and vbs==0 and stratn==2 and l<5e-6 and devType=="PCELLwoWP]

eglvtvpfet_acc Electrical characteristics scaling

Scaling versus Length (T=25C,vbs=1.5V-FBB)

dormieub

eglvtvpfet_acc, VtGmmax [mV] vs l [m]

eglvtvpfet_acc, Vgs_ana [mV] vs l [m]

eglvtvpfet_acc, GDC_ana [] vs l [m]

W==2e-6 and nf==2 and Temp==25 and vbs==1.5 and devType=="PCELLwoWPE"

ST Confidential

dormieub

eglvtvpfet_acc, GBW_QS [GHz] vs l [m]

eglvtvpfet_acc, Ft_ana [GHz] vs l [m]

eglvtvpfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

eglvtvpfet_acc, Gm_ana/w [S/um] vs l [m]

eglvtvpfet_acc, Gds_ana/w [S/um] vs l [m]

eglvtvpfet_acc, Sv@1Hz [V/sqrt(Hz)] vs l [m]

eglvtvpfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

eglvtvpfet_acc, Cgg_ana/l [fF/um] vs l [m]

eglvtvpfet_acc, Cdg_ana/w [fF/um] vs l [m]

eglvtvpfet_acc, Cdd_ana/w [fF/um] vs l [m]

eglvtvpfet_acc, Cgd_0V/w [fF/um] vs l [m]

eglvtvpfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus Width (T=25C,vbs=1.5V-FBB)

eglvtvpfet_acc, VtGmmax [mV] vs w [m]

L==0.10e-6 and nf==2 and Temp==25 and Vbs==1.5 and devType=="PCELLwoWPE"

dormieub

eglvtvpfet_acc, Vgs_ana [mV] vs w [m]

eglvtvpfet_acc, GDC_ana [] vs w [m]

L==0.10e-6 and nf==2 and Temp==25 and Vbs==1.5 and devType=="PCELLwoWPE"

dormieub

eglvtvpfet_acc, GBW_QS [GHz] vs w [m]

eglvtvpfet_acc, Ft_ana [GHz] vs w [m]

eglvtvpfet_acc, Gm_ana/Id_Sv [1/V] vs w [m]

eglvtvpfet_acc, Gm_ana/w [S/um] vs w [m]

eglvtvpfet_acc, Gds_ana/w [S/um] vs w [m]

eglvtvpfet_acc, Sv@1Hz [V/sqrt(Hz)] vs w [m]

 $L{==}0.10e{-}6~and~nf{=}{=}2~and~Temp{=}{=}25~and~Vbs{=}{=}1.5~and~devType{=}{=}"PCELLwoWPE"$

eglvtvpfet_acc, Sv@th [V/sqrt(Hz)] vs w [m]

eglvtvpfet_acc, Cgg_ana/l [fF/um] vs w [m]

eglvtvpfet_acc, Cdg_ana/w [fF/um] vs w [m]

 $L{==}0.10e{-}6~and~nf{=}{=}2~and~Temp{=}{=}25~and~Vbs{=}{=}1.5~and~devType{=}{=}"PCELLwoWPE"$

eglvtvpfet_acc, Cdd_ana/w [fF/um] vs w [m]

eglvtvpfet_acc, Cgd_0V/w [fF/um] vs w [m]

 $L{==}0.10e{-}6~and~nf{=}{=}2~and~Temp{=}{=}25~and~Vbs{=}{=}1.5~and~devType{=}{=}"PCELLwoWPE"$

eglvtvpfet_acc, Cbd_off/w [fF/um] vs w [m]

Scaling versus Length @ W/L=10&&W/nf<5um (vbs=1.5V-FBB)

dormieub

eglvtvpfet_acc, VtGmmax [mV] vs l [m]

eglvtvpfet_acc, Vgs_ana [mV] vs l [m]

W/L==10 and w/nf<5 and Temp==25 and vbs==1.5 and Temp==25 and Temp==2

eglvtvpfet_acc, GDC_ana [] vs l [m]

eglvtvpfet_acc, GBW_QS [GHz] vs l [m]

 $W/L{=}10\ and\ w/nf{<}5\ and\ Temp{=}{=}25\ and\ vbs{=}{=}1.5\ and\ devType{=}{=}"PCELLwoWPE"$

eglvtvpfet_acc, Ft_ana [GHz] vs l [m]

eglvtvpfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

W/L==10 and w/nf<5 and Temp==25 and vbs==1.5 and Temp==25 and Temp==2

eglvtvpfet_acc, Gm_ana/w [S/um] vs l [m]

 $W/L{=}10\ and\ w/nf{<}5\ and\ Temp{=}{=}25\ and\ vbs{=}{=}1.5\ and\ devType{=}{=}"PCELLwoWPE"$

eglvtvpfet_acc, Gds_ana/w [S/um] vs l [m]

W/L==10 and w/nf<5 and Temp==25 and vbs==1.5 and devType=="PCELLwoWPE"

dormieub

eglvtvpfet_acc, Sv@1Hz [V/sqrt(Hz)] vs l [m]

eglvtvpfet_acc, Sv@th [V/sqrt(Hz)] vs l [m]

eglvtvpfet_acc, Cgg_ana/l [fF/um] vs l [m]

eglvtvpfet_acc, Cdg_ana/w [fF/um] vs l [m]

 $W/L{=}10\ and\ w/nf{<}5\ and\ Temp{=}{=}25\ and\ vbs{=}{=}1.5\ and\ devType{=}{=}"PCELLwoWPE"$

eglvtvpfet_acc, Cdd_ana/w [fF/um] vs l [m]

W/L==10 and w/nf<5 and Temp==25 and vbs==1.5 and devType=="PCELLwoWPE"

eglvtvpfet_acc, Cgd_0V/w [fF/um] vs l [m]

W/L==10 and w/nf<5 and Temp==25 and vbs==1.5 and devType=="PCELLwoWPE"

eglvtvpfet_acc, Cbd_off/w [fF/um] vs l [m]

 $W/L{=}10\ and\ w/nf{<}5\ and\ Temp{=}{=}25\ and\ vbs{=}{=}1.5\ and\ devType{=}{=}"PCELLwoWPE"$

eglvtvpfet_acc, Avt [mV.um] vs l [m]

L==10 and w/nf<5 and Temp==25 and vbs==1.5 and stratn==2 and l<5e-6 and devType=="PCELLwoWI

eglvtvpfet_acc, Abeta [%.um] vs l [m]

L==10 and w/nf<5 and Temp==25 and vbs==1.5 and stratn==2 and l<5e-6 and devType=="PCELLwoWI

eglvtvpfet_acc, AId [%.um] vs l [m]

 $L{=}10~and~w/nf{<}5~and~Temp{=}{=}25~and~vbs{=}{=}1.5~and~stratn{=}{=}2~and~l{<}5e{-}6~and~devType{=}{=}"PCELLwoWI"$

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model eglvtvnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} mc sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 300e-9 A
 - **x** model_version = 1.2.e
 - \mathbf{X} vstep_ivt = 0.005 V
 - **x** iana = 5e-6 A
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - \mathbf{X} vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V

Sep 25, 2018

- **x** mc_nsigma = 3
- \times vgs_start = 0 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- **x** shrink_ivt = 1
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- x f ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 1
- Model eglvtvpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **✗** model_version = 1.2.e

- \times vstep_ivt = 0.005 V
- \mathbf{X} iana = 2e-6 A
- \times vds_mm = 0.05 V
- **x** ams_release = 2018.3
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **✗** sbenchlsf_release = Alpha
- \times vds sat = Vdd V
- **x** mc_nsigma = 3
- \mathbf{x} vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \times vddmax = vdd
- **x** mc_runs = 5000
- **x** shrink_ivt = 1
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \star vbs = 1.5 V
- \times vdd = 1.5 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - **x** eglvt_dev = 1

ST Confidential

- Model eglvtvnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 300e-9 A
 - **✗** model_version = 1.2.d
 - \mathbf{X} vstep_ivt = 0.005 V
 - \mathbf{X} iana = 5e-6 A
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - \times mc_nsigma = 3
 - \mathbf{x} vgs_start = 0 V
 - **✗** plashrink_ivt = 1
 - \star ithslwi = 10e-9 A
 - x vds_ana = Vdd/4 V
 - \times vds_cbd = 0 V
 - \times vddmax = vdd
 - **x** mc_runs = 5000
 - **x** shrink_ivt = 1

- \times vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.5 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - **x** eglvt_dev = 1
- Model eglvtvpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times vds_cgd = 0 V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 70e-9 A
 - **✗** model_version = 1.2.d
 - \times vstep_ivt = 0.005 V
 - **x** iana = 2e-6 A
 - **x** vds mm = 0.05 V
 - \mathbf{X} ams_release = 2018.3
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3

ST Confidential

- \mathbf{x} vgs_start = 0 V
- **x** plashrink_ivt = 1
- **x** ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- **x** vddmax = vdd
- **x** mc_runs = 5000
- **x** shrink_ivt = 1
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- **x** vbs = 1.5 V
- \times vdd = 1.5 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - **x** eglvt_dev = 1

Sep 25, 2018

ST Confidential