序論

Data visualization

川田恵介 東京大学 keisukekawata@iss.u-tokyo.ac.jp

2025-07-30

1 概論

1.1 本講義

- •「Data Visualization を活用したデータ分析」について、包括的な紹介を行う
 - ・企業の戦略や政策等の意思決定への活用を念頭
 - ▶ Visualization + データ分析の基礎概念の学習 + 実習

1.2 多様化

- ・ 学際的に発展しており、(伝統的)統計学、計量経済学、医療/生物統計、奇怪学習(AI)など、(互いに重複する)分野が存在し、さまざまな分析方法を提案
 - ▶ 本講義では極力包括的にこれらの手法を紹介し、実装する

1.3 データ例: 中古マンション取引データ

District	Price	Size	year_2024	
千代田区	94	40	1	
千代田区	100	65	0	
千代田区	130	65	1	
千代田区	98	65	0	
千代田区	58	40	0	
千代田区	330	95	1	

・ 事例と変数(属性)からなる

1.4 データ分析

- 業務の電子化等に伴い、数多くのデータが蓄積されている
 - そのままでは膨大な情報が乱雑に保存されているだけであり、人間が活用できない
- データ分析の大目標: データを人間が理解でき、かつ、信頼できる"情報"に変換する
 - ▶ 人間による意思決定の支援に繋げたい

1.5 Data Visualization

- 情報は、数値や数式で表現されてきた
 - ▶ 人間の認知能力との相性が悪く、情報を直感的に理解するためには、ある程度の訓練が必要
- PC の処理能力向上に伴い、情報を視覚的に表現しやすくなった
 - より多くの情報を伝えやすくなる
- ・ 実務においても注目されている (例: Uber Eats)

1.6 例: 平均取引価格表

Call:				
lm(formula = Price	e ~ 0 + District,	data = data)		
Coefficients:				
District世田谷区	District由中区	District中野区	Districtdk⊠	
52.02			36.21	
District千代田区				
71.54			31.29	
	District新宿区			
47.51	46.49	41.67	7 29.91	
District江戸川区	District江東区	District渋谷区	District港区	
33.69	46.85	65.68	93.20	
District目黒区	District練馬区	District荒川区	District葛飾区	
54.98	33.83	37.02	2 27.76	
District豊島区	District足立区	District墨田区		
39.09	31.23	34.36	õ	

1.7 例: 平均取引価格の図

1.8 Dashboard

- 日常的に確認すべき指標を一覧として表示し、日常的に更新する
 - ▶ 例: NTT データ, デジタル省
- ・ 社会や組織の動きを包括的に捉えることを目標
 - ▶ 「特異な動きをした数字」のみに注目する("センセーショナリズム")のではなく、普通 の動きも合わせて認識する必要がある

1.9 まとめ

- 実務組織からの関心も高いデータ分析の学習は強く推奨
 - 例: Amazon, Cyber Agent, Microsoft, Mizuho, Netflix, Uber
 - ▶ 講師自身の経験: 日本経済研究センター、日本銀行、厚生労働省、内閣府
- 成績評価: 授業参加度 (20%)、毎回の課題 (40%)、最終レポート (40%)
- 参考章: Statistical Inference via Data Science

2 データ分析の流れ

2.1 Work flow

2.2 データの特徴推定

- データが持つ大量の情報を、適切に整理/要約する
- ・ 注意点: データの特徴そのものは、研究関心ではない
 - ・ データの背後にある社会(母集団)の特徴が関心(推定目標)
 - ▶ 社会の特徴を推論できるように、情報を抽出する(推定)必要がある

2.3 研究/推定目標

- 推定目標の設定: データから推定可能、かつ、研究目標に関連する社会の特徴を設定する
- 研究目標の設定: データ分析から明らかにしたい社会やその仕組みの特徴を設定する
- ・ 講義は、データからの推定 → 推定目標の設定 → 研究目標の設定 の順番で議論する

2.4 研究目標の例

• 時系列比較: 2019-2024年で、東京 23 区の中古マンション価格はどのように変化したのか?

- 因果効果: ある介入(例:改築)によって、ある結果(例:取引価格)がどのように**変化**するのか推定する
 - ▶ 社会の"仕組み"に関する研究課題

2.5 到達目標

- ・ エントリーシート等で、"大学で学んだこと"を書く際に、
 - ・ "機械学習や因果推論などのデータ分析の手法を用いて、東京の不動産市場の分析を 行い、結果を dashboard 形式でレポートにまとめた経験がある"と書くことができ る

Bibliography