Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Факультет: программной инженерии и компьютерной техники Направление подготовки: 09.03.04 — Программная инженерия Дисциплина: «Моделирование»

УИР №1 Вариант №6

Выполнили:

Белогаев Данила Валерьевич Кузнецов Максим Александрович

Группа: Р34131

Преподаватель:

Алиев Тауфик Измайлович

Санкт-Петербург, 2023 г.

Цель работы: Изучение методов обработки и статистического анализа результатов измерений на примере заданной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности на основе корреляционного анализа, а также аппроксимация закона распределения заданной последовательности по двум числовым моментам случайной величины. **Задание:**

В процессе исследований необходимо выполнить обработку заданной числовой последовательности (ЧП) для случаев, когда путем измерений получено 10, 20, 50, 100, 200 и 300 значений случайной величины, а именно:

- рассчитать значения следующих числовых моментов заданной числовой последовательности:
 - математическое ожидание;
 - дисперсию;
 - > среднеквадратическое отклонение;
 - коэффициент вариации;
 - доверительные интервалы для оценки математического ожидания с доверительными вероятностями 0,9; 0,95 и 0,99;
 - относительные отклонения (в процентах) полученных значений от наилучших значений, полагая, что наилучшими (эталонными) являются значения, рассчитанные для наиболее представительной выборки из трехсот случайных величин;
- построить график значений для заданной числовой последовательности и определить ее характер, а именно: является эта последовательность возрастающей/убывающей, периодичной (при наличии периодичности оценить по графику длину периода);
- выполнить *автокорреляционный анализ* и определить, можно ли заданную числовую последовательность считать *случайной*;
- построить **гистограмму распределения частот** для заданной числовой последовательности;
- выполнить **аппроксимацию закона распределения** заданной случайной последовательности *по двум начальным моментам*, используя, в зависимости от значения коэффициента вариации, одно из следующих распределений:
 - ✓ равномерный;
 - ✓ экспоненциальный;
 - ✓ нормированный Эрланга *k*-го порядка или гипоэкспоненциальный с заданным коэффициентом вариации;
 - ✓ гиперэкспоненциальный с заданным коэффициентом вариации;

- реализовать генератор случайных величин в соответствии с полученным аппроксимирующим законом распределения (в EXEL или программно) и проиллюстрировать на защите его работу;
- сгенерировать последовательность случайных величин в соответствии с полученным законом распределения и рассчитать значения числовых моментов по аналогии с заданной числовой последовательностью;
- выполнить *автокорреляционный анализ* сгенерированной последовательности случайных величин;
- выполнить сравнительный анализ *сгенерированной* последовательности случайных величин с *заданной* последовательностью, построив соответствующие зависимости на **графике значений** и **гистограмме** распределения частот;
- оценить корреляционную зависимость сгенерированной и заданной последовательностей случайных величин.

Результаты проводимых исследований представить в виде таблиц и графиков.

На основе полученных промежуточных и конечных результатов следует сделать обоснованные выводы об исследуемой числовой последовательности, предложить закон распределения для ее описания и оценить качество аппроксимации этим законом.

Ход работы:

Этап 1:

Для исходной последовательности:

		Количество случайных величин							
Характеристика		10	20	50	100	200	300		
	Значение	126.168	92.1225	104.7612	97.714	102.1646	104.400407		
Мат. ож.	%	20.850104	-11.760401	0.345586	-6.404579	-2.141569			
Дов.инт. (0,9)	Значение	68.84	35.91 278	21.61	13.95	11.50	0.50		
	%	624.631579		127.473684	46.842105	21.052632	9.50		
Дов.инт. (0,95)	Значение	84.95	43.47	25.91	16.67	13.73			
	%	649.779347	283.671668	128.684907	47.131509	21.182701	11.33		
Дов.инт. (0,99)	Значение	122.04	59.42	34.55	22.07	18.10			
	%	717.962466	298.257373	131.568365	47.922252	21.313673	14.92		
Дисперсия	Значение	14101.214796	8627.915304	8308.826929	7061.635390	9691.019253			
	%	41.838603	-13.215175	-16.424760	-28.969772	-2.521829	9941.732715		
С.к.о.	Значение	118.748536	92.886572	91.152767	84.033537	98.442975			
	%	19.096013	-6.841627	-8.580506	-15.720567	-15.720567	99.708238		
К-т вариации	Значение	0.941194	1.008294	0.870100	0.859995	0.963572			
	%	-1.451460	5.574339	-8.895351	-9.953466	0.891700	0.955056		

% - относительные отклонения рассчитанных значений от значений, полученных для выборки из трехсот величин

Чем больше значений берется в выборке, тем точнее рассчитываются параметры.

Значение коэффициента вариации приближено к 1, но все же чуть меньше единицы.

Этап 2:

По графику можно сделать вывод, что последовательность не является ни возрастающей, ни убывающей, ни периодичной **Этап 3:**

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	-0.025188	-0.013442	0.003957	-0.005139	-0.000835	0.002845	0.027131	0.126956	-0.043054	-0.155791

Выполнив автокорреляционный анализ, можно считать, что последовательность случайная, так как данные коэффициенты указывают на

то, что между числами не было выявлено зависимости, нет тенденции и периодичности. *Этап 4:*

По гистограмме видно, что большинство значений находятся в промежутке от 0 до 100, и дальше постепенно их частота уменьшается *Этап 5:*

Коэффициент вариации = 0.955056

Для аппроксимации закона распределения такой случайной величиины в теории массового обслуживания часто используют распределение Эрланга k-го порядка E_k , которое может быть представлено в виде последовательности k экспоненциально распределенных фаз с одинаковым параметром $\alpha_i = \alpha = 1/M[\tau]$ $(i = \overline{1,k})$, где $M[\tau]$ — математическое ожидание экспоненциально распределенной случайной величины в одной фазе (рис.12).

Такое представление позволяет трактовать формирование случайных величин, распределенных по закону Эрланга, как сумму k случайных величин, распределенных по одному и тому же экспоненциальному закону.

Так как коэффициент вариации меньше 1, то мы выбрали нормированное распределение Эрланга 1-ого порядка. Так как значение очень близкое к 1, то взяли k=1.

9man 6:

Так как k = 1, то для генерации можно использовать экспоненциальное распределение

```
import numpy as np
# Задаем параметр экспоненциального распределения (обратное значение
cpeднего) alpha = 1.0
# Генерируем случайные числа согласно экспоненциальному
pacпределению generated_numbers =
np.random.exponential(scale=1/alpha, size=300)
# Округляем числа до двух знаков после запятой
generated_numbers = [x * 100 for x in generated_numbers]
```


Сгенерировали последовательность случайных величин в соответствии с полученным законом распределения *Этап 7:*

Для сгенерированной последовательности:

			Количество случайных величин							
Характеристика		10	20	50	100	200	300			
	Значение	75.149393	94.353349	129.456283	116.244059	105.417504				
Мат. ож.	%	-25.336435	-6.256630	28.619369	15.492560	4.735998	100.650690			
Дов.инт. (0,9)	Значение	57.82	44.06	28.47	19.48	13.35				
	%	462.999026	329.016553	177.21519	89.678676	29.990263	10.27			
Дов.инт. (0,95)	Значение	71.35	53.33	34.12	23.28	15.93				
	%	482.448980	335.346939	178.530612	90.040816	30.040816	12.25			
Дов.инт. (0,99)	Значение	102.50	72.90	45.51	30.81	21.01	16.14			
	%	535.068154	351.672862	181.97026	90.892193	30.173482				
Дисперсия	Значение	9948.305075	12985.609685	14417.774310	13760.613671	13054.509457				
	%	-14.412988	11.717476	24.038639	18.384971	12.310233	11623.615377			
С.к.о.	Значение	99.74119	113.954419	120.074037	117.305642	114.256332				
	%	-7.486751	5.696488	11.372635	8.804858	5.976522	107.812872			
К-т вариации	Значение	1.327239	1.207741	0.927526	1.009132	1.083846	1071150			
	%	23.906820	12.750894	-13.409127	-5.790592	1.184430	1.071159			

Математическое ожидание отличается от математического ожидания исходной выборки на величину, не превосходящую доверительные интервалы. Это говорит о том, что аппроксимация выполнена качественно.

Этап 8:

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	0.02869	0.01573	0.055484	0.057392	-0.021065	-0.006845	-0.06387	0.02851	0.16319	0.07223

Коэффициент автокорреляции Сдвигов ЧП от 1 до 10 приближены к нулю, следовательно, можно сказать, что выборка также случайна.

3man 9:

Сравнивая полученные гистограммы частот, можно сделать вывод, что сгенерированная нами последовательность практически идентична исходной (по варианту). Тем самым можно утверждать, что выбранная нами аппроксимация подходит.

Вывод: по результатам сравнения мы пришли к выводу, что итоговый генератор соответствует распределению исходной последовательности. Во время

выполнения лабораторной работы мы изучили методы обработки и статистического анализа результатов измерений на примере заданной исходной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности.