$MM^{++} \Rightarrow (*) (part 2)$

David Asperó

University of East Anglia

European Set Theory Conference 2022 — Hausdorff Lecture 29 August 2022

A slightly closer look at the theorem

Recall:

Theorem (Asperó-Schindler) *MM*⁺⁺ *implies* (*).

(*) is the following conjunction:

- AD holds in $L(\mathbb{R})$.
- There is a \mathbb{P}_{\max} -generic filter G over $L(\mathbb{R})$ such that $L(\mathcal{P}(\omega_1)) = L(\mathbb{R})[G]$.

 $\mathbb{P}_{max} \in L(\mathbb{R})$ is the forcing notion I will define next.

Given $\eta \leq \omega_1$, a sequence $(\langle (M_\alpha, I_\alpha), G_\alpha, j_{\alpha,\beta} \rangle : \alpha < \beta \leq \eta)$ is a generic iteration (of (M_0, I_0)) iff

- M₀ is a countable transitive model of ZFC* (enough of ZFC).
- $M_0 \models$ " I_0 is a normal ideal on ω_1 ".
- $j_{\alpha,\beta}$, for $\alpha < \beta \leq \eta$, is a commuting system of elementary embeddings

$$j_{lpha,eta}:(extit{ extit{M}}_{lpha};\in, extit{ extit{I}}_{lpha})\longrightarrow(extit{ extit{M}}_{eta};\in, extit{ extit{I}}_{eta})$$

• For each $\alpha < \eta$, G_{α} is a $\mathcal{P}(\omega_1)^{M_{\alpha}}/I_{\alpha}$ -generic filter over M_{α} ,

$$j_{lpha,lpha+1}: extit{ extit{M}}_lpha \longrightarrow ext{Ult}(extit{ extit{M}}_lpha, extit{ extit{G}}_lpha)$$

is the corresponding elementary embedding, and $(M_{\alpha+1}, I_{\alpha+1}) = (\text{Ult}(M_{\alpha}, G_{\alpha}), j_{\alpha,\alpha+1}(I_{\alpha})).$

• If $\beta \leq \eta$ is a limit ordinal, (M_{β}, I_{β}) and $j_{\alpha,\beta}$ (for $\alpha < \beta$) is the direct limit of $(\langle (M_{\alpha}, I_{\alpha}), G_{\alpha}, j_{\alpha,\alpha'} \rangle : \alpha < \alpha' < \beta)$.

A pair (M, I) is *iterable* if the models in every generic iteration of (M, I) are well-founded.

 \mathbb{P}_{max} is the following forcing:

Conditions in \mathbb{P}_{\max} are triples (M, I, a), where

- (1) (M, I) is an iterable pair.
- (2) $M \models \mathsf{MA}_{\omega_1}$
- (3) $a \in \mathcal{P}(\omega_1)^M$ and $M \models \omega_1 = \omega_1^{L[a]}$.

Extension relation: $(M^1, I^1, a^1) \leq_{\mathbb{P}_{\max}} (M^0, I^0, a^0)$ iff $(M^0, I^0, a^0) \in M_1$ and, in M^1 , there is a generic iteration $\mathcal{I} = (\langle (M_\alpha, I_\alpha), G_\alpha, j_{\alpha,\beta} \rangle : \alpha < \beta \leq \eta)$ of (M^0, I^0) for $\eta = \omega_1^{M^1}$ such that

- (a) $j_{0,\eta}(a^0) = a^1$
- (b) \mathcal{I} is *correct* in (M^1, I^1) , in the sense that $j_{0,\eta}(I^0) \subseteq I^1$ and every I_{η} -positive subset of $\omega_1^{M_{\eta}} (= \omega_1^{M^1})$ in M_{η} is I^1 -positive.

The following is a very rough proof sketch of our theorem:

 MM^{++} implies $AD^{L(\mathbb{R})}$ (in fact PFA suffices).

Hence, we just need to show, under MM^{++} , that $L(\mathcal{P}(\omega_1)) = L(\mathbb{R})[G]$ for a \mathbb{P}_{\max} -generic filter G over $L(\mathbb{R})$.

A standard fact:

Fact

(Woodin) If NS_{ω_1} is saturated, MA_{ω_1} holds, $\mathcal{P}(\omega_1)^{\sharp}$ exists, and $A\subseteq\omega_1$ is such that $\omega_1^{L[A]}=\omega_1$, then Γ_A is a filter on \mathbb{P}_{\max} and $L(\mathcal{P}(\omega_1))=L(\mathbb{R})[\Gamma_A]$, where

• Γ_A is the set of $(M, I, a) \in \mathbb{P}_{\max}$ such that there is a correct iteration of (M, I) (relative to $(H_{\omega_2}, NS_{\omega_1})$) sending a to A.

Hence, fixing A as in the Fact, we only need to show that Γ_A meets every dense $D \subseteq \mathbb{P}_{\max}$ such that $D \in L(\mathbb{R})$.

Given such a D, the set $X \in L(\mathbb{R})$ of reals coding a member of D is universally Baire. We even have that for every cardinal κ there is a tree T_{κ} on $\omega \times 2^{\kappa}$ such that

$$p[T_{\kappa}] = X$$

and

$$\Vdash_{\mathsf{Coll}(\omega,\,\kappa)}$$
 " $p[T_\kappa]$ codes a dense subset of \mathbb{P}_{\max} "

Hence, it is enough to show that there is a stationary set preserving poset \mathcal{P} adding a branch [x,b] through T_{ω_2} such that x codes a \mathbb{P}_{\max} -condition (M,I,a) for which there is a correct iteration sending a to A.

The forcing \mathcal{P} we constructed for this can be described as a recursively defined \mathcal{L} -forcing with side conditions.

 $\mathcal P$ is $\mathcal P_{\omega_3},$ for a certain sequence $\langle \mathcal P_\lambda:\lambda\le\omega_3\rangle$ of forcing notions.

Given λ , \mathcal{P}_{λ} consists of finite amounts of information about a certain configuration, \mathcal{C} , which we don't know (yet) is realized in a stat. preserving forcing extension of V, but which we can argue is realized in some outer model, thanks to the fact that

 $\Vdash_{\mathsf{Coll}(\omega,\,\kappa)}$ " $p[T_{\kappa}]$ codes a dense subset of \mathbb{P}_{\max} "

The above configuration $\mathcal C$ can be partially described as a branch [x,b] through T_{ω_2} such that x codes a $(N,I,b)\in\mathbb P_{\max}$ for which there is a correct iteration

$$\mathcal{J} = \langle (N_{\alpha}, I_{\alpha}, a_{\alpha}) : \alpha \leq \omega_{1} \rangle$$

with $a_{\omega_1} = A$ and such that in N there is a I-correct iteration

$$\mathcal{I} = \langle (M_{\xi}, I_{\xi}, a_{\xi}) : \xi \leq \omega_1^N \rangle$$

such that the last model (M^*, I^*) of $j_{0,\omega_1}^{\mathcal{J}}(\mathcal{I})$ is such that $(M^*, I^*) = (H_{\omega_2}^V, \operatorname{NS}_{\omega_1}^V)$.

Moreover, in $\mathcal C$ there are also countable models (the side conditions) $X_{\bar\lambda}$, for some $\bar\lambda<\lambda$, such that $\mathcal C\cap\mathcal C_{\bar\lambda}$ is 'generic' for $\mathcal P_{\bar\lambda}$ over $X_{\bar\lambda}$. The inclusion of these side conditions is crucially used in the proof that $\mathcal P$ preserves stationary sets and that the generic

$$\langle (N_{\alpha}^G, I_{\alpha}^G, a_{\alpha}^G) : \alpha \leq \omega_1 \rangle$$

added by \mathcal{P} is correct in V[G].

In the above proof, the forcing $\mathcal P$ makes $H^V_{\omega_2}$ the final model M^* of a generic iteration $j:(M,\operatorname{NS}_{\omega_1})\longrightarrow (M^*,\operatorname{NS}_{\omega_1}^V)$ of a countable M. It follows that $\mathcal P$ forces $\operatorname{cf}(\omega_2^V)=\omega$ (in fact $j``\omega_2^M$ is cofinal in ω_2^V).

This can be somewhat generalized:

Namba forcing-like outer models

Given a cardinal $\lambda \geq \omega_2$, let BMM⁺⁺(cf(ω))_{$<\lambda$} denote the following natural bounded form of MM⁺⁺:

Let $\kappa < \lambda$, let $X \in H_{\kappa^+}$, let $\varphi(x)$ be a Σ_0 formula $\varphi(x,y)$ in the language for $(H_{\kappa^+}, \in, \mathsf{NS}_{\omega_1})$, and suppose there is some stationary preserving poset $\mathbb P$

- (1) forcing $cf(\mu) = \omega$ for every regular cardinal μ such that $\aleph_1 < \mu \le \kappa$ and
- (2) forcing $(V^{\mathbb{P}}, \in, NS_{\omega_1}^{V^{\mathbb{P}}}) \models (\exists y)\varphi(X, y)$.

Then there are, in V, stationarily many $N \in [H_{\kappa^+}]^{\aleph_1}$ such that $X \in N$ and such that there is $Y \subseteq N$ with

$$(H_{\omega_2}, \in, NS_{\omega_1}) \models \varphi(\pi_N(X), \pi_N "Y),$$

where π_N is the transitive collapse of N.

(so BMM⁺⁺(cf(ω))_{$<\aleph_2$} is just BMM⁺⁺).

A variation of the proof of the $MM^{++} \Rightarrow (*)$ theorem gives that the following enhanced form of $BMM^{++}(cf(\omega))_{<\aleph_{\omega_1}}$ follows from MM^{++} .

Theorem

(Asperó-Schindler) Suppose MM⁺⁺ holds. Then the following holds for every uncountable $\kappa < \aleph_{\omega_1}$.

Let $X \in H_{\kappa^+}$, let $\varphi(x)$ be a Σ_0 formula in the language for $(H_{\kappa^+}, \in, \mathsf{NS}_{\omega_1})$, and suppose there is, in some collapse extension, an \sharp -closed transitive model W (where $\sharp = \{\langle r, r^\sharp \rangle : r \in \mathbb{R} \}$) such that $H^V_{\kappa^+} \in W$, such that $W \models$ "there is a Woodin cardinal above $(\kappa^+)^V$ ", and such that

- (1) every stationary subset of ω_1 in V is stationary in W,
- (2) every V-regular cardinal μ such that $\aleph_1^V < \mu \le \kappa$ has countable cofinality in W, and
- (3) $(W, \in, NS_{\omega_1}^W) \models (\exists y) \varphi(X, y).$

Then there are, in V, stationarily many $N \in [H_{\kappa^+}]^{\aleph_1}$ such that $X \in N$ and such that there is $Y \subseteq N$ with $(H_{\omega_2}, \in, NS_{\omega_1}) \models \varphi(\pi_N(X), \pi_N "Y)$, where π_N is the transitive collapse of N.

Given a restricted formula $\varphi(x,y)$ in the language for $(V;\in, \mathsf{NS}_{\omega_1})$ and a set X, the sentence $(\exists y)\varphi(X,y)$ is *honestly consistent* in case for every universally Baire set $A\subseteq\mathbb{R}$ there is an A-closed transitive model W of ZFC^* in some outer model such that

- (1) $H_{\omega_2}^V \in W$, $NS_{\omega_1}^W \cap V = NS_{\omega_1}^V$, and $X \in W$, and
- (2) $(W; \in, NS_{\omega_1}^W) \models (\exists y) \varphi(X, y).$

Definition

 $\mathsf{MM}^{++,*}$ is the following statement: Let $\varphi(x,y)$ be a restricted formula in the language for $(V;\in,\mathsf{NS}_{\omega_1})$ and X be a set such that $(\exists y)\varphi(X,y)$ is honestly consistent. Then there is a cardinal κ such that $X\in H_{\kappa^+}$ and the set of $N\in [H_{\kappa^+}]^{\aleph_1}$ such that $X\in N$ and such that there is some $Y\subseteq N$ with $(H_{\omega_2},\in,\mathsf{NS}_{\omega_1})\models\varphi(\pi_N(X),\pi_N``Y)$, where π_N is the transitive collapse of N, is stationary.

The above theorem shows that a natural fragment of MM^{++,*} follows from MM⁺⁺.

The following is open:

Question: Is MM^{++,*} consistent? Is it equivalent to MM⁺⁺?

The (*) (or MM⁺⁺) picture vs. the CH picture

The following dichotomy was observed by Woodin.

Theorem

(Woodin) Suppose $L(\mathbb{R}) \models AD$ and there is a \mathbb{P}_{max} -generic filter over $L(\mathbb{R})$. Then exactly one of the following holds.

- (1) (*)
- (2) CH

A strong form of (*):

Definition

(Woodin) $(*)^{++}$ is the following statement: There exists $\Gamma\subseteq\mathcal{P}(\mathbb{R})$ and a filter $G\subseteq\mathbb{P}_{max}$ such that

- $L(\Gamma, \mathbb{R}) \models AD^+$ and
- G is $L(\Gamma, \mathbb{R})$ -generic and $\mathcal{P}(\mathbb{R}) \in L(\Gamma, \mathbb{R})[G]$.

Woodin has proved that $(*)^{++}$ fails in all currently known models of MM⁺⁺.

Question: Is $(*)^{++}$ compatible with MM⁺⁺? Can $(*)^{++}$ be forced over a ZFC model?

Also:

Theorem

(Woodin) Assume the Ω Conjecture holds and there is a proper class of Woodin cardinals. Then there is no Ω -consistent axiom A such that

- (1) A implies $MM^{++}(\mathfrak{c})$ and
- (2) A provides, modulo forcing, a complete theory for \sum_{1}^{2} sentences.

Compare this with the well-known result, due to Woodin, that if there is a proper class of measurable Woodin cardinals, then CH provides, modulo forcing, a complete theory for \sum_{1}^{2} sentences.

The following is an important open question in this context.

Question: (Steel) Is there any reasonable large cardinal hypothesis relative to which \diamondsuit is maximal for Σ_2^2 sentences consistent with CH (with \diamondsuit) modulo forcing? I.e., is it true that if \diamondsuit holds and σ is a Σ_2^2 sentence such that $\sigma + \text{CH } (\sigma + \diamondsuit)$ is forcible, then σ is true?

If the answer were yes, then \diamondsuit would be complete, modulo forcing, for the Σ_2^2 theory; i.e., any two forcing extensions satisfying \diamondsuit would agree on Σ_2^2 sentences.

Question: Is it possible, in the presence of large cardinals, to force Σ_2^2 -maximality without adding reals?

If the answer is yes, then there are no canonical inner models, as they are currently understood, for the background large cardinal hypothesis.