ASSIGNMENT-2

NAME:-AKASH KUMAR SAHU

ID:-2019KUEC2026

AIM:- Evaluate DTFT of the signal (a^n)*u(n) using MATLAB. First check whether DTFT exists or not.

Theory:-

Code:-

```
a=input ('Value of a:');
N=input('Size of x[n]:');
x=zeros(1,N);
j=0;
%computing x[n]
for i=1:N
   x(i)=a^{(j)};
   j=j+1;
end
%computing X (w)
w=0;
X=zeros(1,N);
for i=1:N
   d=0;
   k=0;
    for j=1:N
    d=d+x(j)*exp(-1i*w*k);
    k=k+1;
    end
  X(i)=d;
  w=w+1;
  end
disp(X);
```

```
Command Window
>> dsp
Value of a:1
Size of x[n]:5
Columns 1 through 4

5.0000 + 0.00001 -0.5195 - 1.13511  0.7449 - 0.86241  0.9029 + 0.26271
Column 5

0.0871 + 0.5919i
```

AIM:- Prove the following properties of DTFT using MATLAB: Linearity, Scaling, Time-reversal, Time-Shifting, Frequency-Shifting.

SOFTWARE USED:-MATLAB

1. The linearity property of DTFT -

```
clc;
clear all;
close all;
N=100; %length of signal
n=0:N-1
M=200; %length of frequency vector
alpha=3;
beta=4;
k=0:M;
w=(pi/M)*k;
x1=randn(1,N);
x2=randn(1,N);
X1=x1*(exp(-1j*pi/M).^(n'*k));
X2=x2*(exp(-1j*pi/M).^(n'*k));
x=alpha*x1+beta*x2;
X=x*(exp(-1j*pi/M).^(n'*k));
%For Verification
X check=alpha*X1+beta*X2;
```

and Window													
=													
Columns	1	through 1	13										
0	1	2	3	4	5	6	7	В	9	10	11	12	
Columns	14	through	26										
13	14	15	16	17	18	19	20	21	22	23	24	25	
Columns	27	through	39										
26	27	28	29	30	31	32	33	34	35	36	37	38	
Columns	40	through	52										
39	40	41	42	43	44	45	46	47	48	49	50	51	
Columns	53	through	65										
52	53	54	55	56	57	58	59	60	61	62	63	64	
Columns	66	through	78										

2. Time reversal property of DTFT –

```
clc;
clear all;
close all;
w=-pi:2*pi/255*pi;
num=[1 2 3 4];
L=length(num)-1;
h1=freqz(num,1,w);
h2=freqz(fliplr(num),1,w);
h3=exp(w*L*i).*h2;
subplot(2,2,1)
plot(w/pi,abs(h1)); grid
title('Magnitude spectrum of Original Sequence')
subplot(2,2,2)
plot(w/pi,abs(h3)); grid
title('Magnitude spectrum of Time Reversed Sequence')
subplot(2,2,3)
plot(w/pi,angle(h1)); grid
title('Phase Spectrum of Original Sequence')
subplot(2,2,4)
plot(w/pi,angle(h3)); grid
title('Phase spectrum of Time Reversed Sequence')
```


); grid

3. Frequency shifting property of DTFT –

```
clc;
clear all;
close all;
w=-pi:2*pi/255*pi;
wo=0.4*pi;
num=[1 2 3 4 5 6 7];
L=length(num);
h1=freqz(num,1,w);
n=0:L-1;
num1=exp(wo*i*n).*num;
h2=freqz(num1,1,w);
subplot(2,2,1)
plot(w/pi,abs(h1)); grid
title('Magnitude spectrum of Original Sequence')
subplot(2,2,2)
plot(w/pi,abs(h2)); grid
title('Magnitude spectrum of Frequency Shifted Sequence')
subplot(2,2,3)
plot(w/pi,angle(h1)); grid
```

```
title('Phase Spectrum of Original Sequence')
subplot(2,2,4)
plot(w/pi,angle(h2)); grid
title('Phase spectrum of Frequency Shifted Sequence')
```

OUTPUT: -

): arid

4. The time shifting property of DTFT –

```
clc, clear all, close all;
x=rand(1,21);
n=0:20;
k=0:20;w=(pi/20)*k;
X=x*(exp(-1i*pi/500*n'*k));
y=x;m=n+2;
Y=y*(exp(-1i*pi/500*n'*k));
subplot(1,2,1);plot(n,abs(X));
subplot(1,2,2);plot(m,abs(Y));
```

