

Lecture 30.

Damped oscillators.

Resonance (if time permits).

Damping

very low

Q: Assume that a mass oscillates on a spring, and there is a friction force between the mass and the table. Which of these graphs can represent the coordinate of the mass as function of time?

- A. (1)
- B. (2)
- C. (3)
- All of them
- E. None of them

Demo: Mass on spring with position sensor, with and without damping

Q: The two graphs show different oscillations for the same system. Compared with the first case, the total potential plus kinetic energy in the second case is

$$E_{++} = KE + PE = \frac{kA^2}{2}$$

- A. The same
- B. Twice as big
- C. Half as big
- D. One quarter as big
- E. One 16th as big

Q: The two graphs show different oscillations for the same system. Compared with the first case, the total potential plus kinetic energy in the second case is

• Energy is same at all times

$$\bullet E_{tot} = \frac{1}{2}kA^2$$

• So:

$$\frac{E_{2,tot}}{E_{1,tot}} = \frac{A_2^2}{A_1^2} = \frac{1}{4}$$

- A. The same
- B. Twice as big
- C. Half as big
- D. One quarter as big
- E. One 16th as big

Key fact about oscillating systems:

> Their energy is proportional to amplitude squared

$$E \propto A^2$$

Real oscillators:

> Energy is lost (friction, air/fluid drag, heating of system...)

- Amplitude decreases with time
- > Energy decreases as square of the amplitude

Q1: What fraction of the original kinetic + potential energy remains in the oscillator

- A. All of it
- B. Half of it
- C. One quarter of it
- D. $1/\sqrt{2}$ of it

Q2: What fraction of the energy at t = 5 s remains at t = 10 s?

Q1: What fraction of the original kinetic + potential energy remains in the oscillator

at t = 5 s?

- A. All of it
- B. Half of it

 $E_1 = \frac{1}{4}E_0$

$$E_2 = \frac{1}{4}E_1$$

- D. $1/\sqrt{2}$ of it

Common situation: amplitude decreases by same fraction each full oscillation

Example:

$$t = 0 \longrightarrow A = A_0$$

$$t = T \longrightarrow A = A_0 \cdot r$$

$$t = 2T \longrightarrow A = A_0 \cdot r^2$$

$$t = 3T \longrightarrow A = A_0 \cdot r^3$$

fraction

We assume that r < 1, so A is decreasing at each iteration

General:

$$t/T = \text{number}$$

$$t \longrightarrow A = A_0 \cdot r^{t/T} \quad \text{of periods}$$
(integer)

Exponential decay

• Show that: $\underline{A(t)} = A_0 \cdot r^{t/T}$ is equivalent to $\underline{A(t)} = A_0 e^{-t/t_0}$

$$A(t) = A_0 e^{t} = A_0 e^{t} = A_0 e^{t}$$

with $t_0 = -\frac{I}{\ln(r)}$

$$t_0 = -\frac{T}{\ln(r)}$$

> Time constant

Exponential decay

• Show that: $A(t) = A_0 \cdot r^{t/T}$ is equivalent to $A(t) = A_0 e^{-t/t_0}$ with $t_0 = -\frac{T}{\ln(r)}$

$$A(t) = A_0 e^{-t/t_0} = A_0 e^{\ln(r) \cdot t/T} = A_0 \left(e^{\ln(r)} \right)^{t/T} = A_0 r^{t/T}$$

$$t_0 = -\frac{T}{\ln(r)}$$

Time constant A_0 $0 > 37\% \text{ of } A_0 \text{ remains,}$ or $63\% \text{ of } A_0 \text{ is lost}$ $A(t_0) = A_0 e^{-1} = 0.368 A_0$ $A(2t_0) = A_0 e^{-2} = 0.135 A_0$ $A(2t_0) = A_0 e^{-2} = 0.135 A_0$

 $2t_0$

Damped Oscillations

Q: The graph shows displacement vs time for a damped oscillation.

The time constant t_0 in this case is nearest to +

$$t_0 = \frac{1}{e_n(r)}$$
 $r \approx \frac{1}{8}$

7/8 = 0.875 gives to=7.5 ≈ 7. Perfect agreement with way 2 is reached if we

$$x(t)$$

 $\Gamma = 0.867$ sensitive!

Way 2:

A. 1 s

-4

$$A(+) = A_{\bullet} e$$

B. 3 s

$$\hat{b} = 8e^{-2s}$$

Q: The graph shows displacement vs time for a damped oscillation. The time constant t_0 in this case is nearest to

• At circled points,
$$\cos = 1$$
 so $x(t) = A_0 e^{-t/t_0}$

• At
$$t = 0$$
, $x = 8$ cm. At $t = 2$ s, $x = 6$ cm.

• 6
$$cm = 8 cm \cdot e^{-2/t_0} \implies e^{-2/t_0} = 0.75$$

 $\implies -2/t_0 = \ln(0.75) \implies t_0 = 7 s$

Forces that lead to damping are velocity-dependent & opposite in direction to velocity

drag forces in fluids (air or liquid)

Example: drag forces from air/liquid

Example: viscous fluid drag

Equations of motion:

• Use these to predict how x and v change with time

Example: viscous fluid drag

• Equations of motion:

$$> \frac{dx}{dt} = v$$

$$\geqslant \frac{dv}{dt} = -\frac{k}{m}x - \frac{b}{m}v$$

The solution is:

$$> x(t) = A_0 e^{-t/t_0} \cos(\omega t + \phi)$$

with
$$t_0 = \frac{2m}{b}$$
 and $\omega = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$

$$ightharpoonup$$
 Valid for $b < 2\sqrt{km}$

Check it: calculate $v = \frac{dx}{dt}$, and then verify 2nd equation

Classifying damping

0.5

-0.5

$$x(t) = A_0 e^{-t/t_0} \cos(\omega t + \phi)$$
 with $t_0 = \frac{2m}{b}$ and $\omega = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$

Accurate to just use

$$\omega = \sqrt{k/m}$$

unless very highly damped

20

 $b = 0.2 \times 2\sqrt{km}$ heavily damped oscillations

$$b = 0.1 \times 2\sqrt{km}$$
 lightly damped oscillations ($\omega \approx \omega_{b=o} = \sqrt{k/m}$)

10

b = 0 no damping (no decay, pure oscillations)

Damped oscillations – applications

➤ Shock absorbers: cars, bikes, doors, buildings...

Forced Oscillations and Resonance (extra – you are not responsible for this material)

- A damped oscillator left to itself will eventually stop moving
- But we can maintain a constant-amplitude oscillation by applying a periodic driving force
- Applying a driving force F with angular frequency ω_d to a damped harmonic oscillator results in a forced oscillation
- The forced oscillation amplitude is:

$$A = \frac{F_{max}}{\sqrt{(k - m\omega_d^2)^2 + b^2\omega_d^2}}$$

Q: What happens if ω_d is close to the natural angular frequency of the oscillator, $\omega = \sqrt{k/m}$?

Breaking a wine glass: High-speed video

