approximate solution of MDP

goal: characterize performance of PI algorithms applied to function approximations Bertsekas & Tsitsiklis Ch 6

· consider MDP

win
$$E\left[\sum_{t=0}^{\infty} x^{t} \cdot c\left(x_{t}, u_{t}\right)\right]$$

s.t. $x^{+} v P(x, u)$, $x \in X = \mathbb{R}^{n}$, $u \in U = \mathbb{R}^{m}$

greedy policies

· sppose given on approximation ~ of v* or ~ of g*

-> how would you choose policy?

(what information do you need,
and what is computational complexity?)

- greedy policy choice is $\pi(x) = \arg\min_{u \in \mathcal{U}} \mathcal{E}(x, u; \theta)$

= argmin $\sum P(x+|x,u)$. $(c(x,u)+y,\tilde{v}(x^{+};\Theta))$

* note that & allows & to be determined without model (P)

* equivalent def of greedy policy in terms of Bellman operators: $T\tilde{v} = T\tilde{\pi}\tilde{v}$

note: if $U = \mathbb{R}^m$ then $\widetilde{\pi}(x)$ obtained by solving NLP L> we'll consider role of function approximator for $\widetilde{\pi}$ later on...

assuming $\tilde{\pi}$ can be computed, alternately improving policy (i.e. computing $\tilde{\pi}$ given \tilde{v}/\tilde{g}) and evaluating policy (i.e. computing \tilde{v}/\tilde{g} given $\tilde{\pi}$) determines a policy iteration algo v/\tilde{g} architecture

* natural guestions:

1º does a giver algo converge?

- 1. coes a given algo converge.
- 2°. if so, is limit close to v*/T*?
- o partial answers to (20) are the following:

prop: (6.1 in B&T 96)

suppose $\|V - V^*\|_{\infty} = \mathcal{E}$ if π is greedy policy wit Vthen $\|V^{\pi} - V^*\|_{\infty} \leq \frac{2V\mathcal{E}}{1-V}$ * this bound is tight: ex 6.2 in B&T 96

- Suppose $\{(\tilde{\pi}_{k}, \tilde{v}_{k})\}_{k=1}^{\infty}$ is a seguence of policies and (approximate) values generated by policy iteration

prop: (6.2 in B&T 96)

 $-if \exists S, \varepsilon > 0 \quad s.t.$ $\| \widetilde{V}_{K} - V \widetilde{\Pi}_{K} \|_{\infty} \leq \varepsilon,$

 $\| T_{\widetilde{\boldsymbol{\pi}}_{k+1}} \widetilde{\boldsymbol{v}}_{k} - T \widetilde{\boldsymbol{v}}_{k} \|_{\boldsymbol{\infty}} \leq 8$, then

 $\lim_{K\to\infty} \sup_{0} \|\sqrt{\pi_{K}} - \sqrt{\pi_{K}}\|_{\infty} \leq \frac{(8+2\cdot \varepsilon\cdot x)}{(1-x)^{2}}$

- this bound is tight; see ex 6.4 in BET 96

approximating values

o suppose or given and we seek to approximate $v^{\pi}(x)$ by $\tilde{v}^{\pi}(x;\theta)$

· con use gradient-like "TD(1)" method:

suppose $X:[0,T] \rightarrow X$, $u:[0,T] \rightarrow \mathcal{U}$ given

• then $\Theta^+ = \Theta - \alpha \sum_{t=0}^{T} D \tilde{v}^T(x_t; \theta) \cdot (\tilde{v}^T(x; \theta) - \sum_{t=t}^{T} Y^{t-t} C(x_t, u_t))$ can be rewritten

$$\Theta^{+} = \Theta + \chi \sum_{t=0}^{T} D \tilde{v}^{T}(x_{t}; \theta) \cdot (\partial_{t} + d_{t+1} + \dots + d_{T-1})$$

$$= \Theta + \chi \sum_{t=0}^{T} D \tilde{v}^{T}(x_{t}; \theta) \sum_{t=t}^{T} d_{t}$$
where $d_{t} = C(x_{t}, u_{t}) + Y \cdot \tilde{v}^{T}(x_{t+1}; \theta) - \tilde{v}^{T}(x_{t}; \theta)$

o"TO(λ)" variout:

$$\Theta^{+} = \Theta + \chi \sum_{t=0}^{T} D \tilde{v}^{T} (x_{t}; \theta) \sum_{t=t}^{T} d_{\tau} (\tilde{v} \cdot \tilde{\lambda})^{\tau-t}$$

o performance with $\lambda < 1$ unreliable: can fail to converge & but helpful in practice? can fail to converge? but helpful in practice: cf ex 6.6 in B&T 96

approximating policies

B & T 96: Ch. 6.4 optimistic PI Ch. 6.2

o we'll now assume it's impractical to solve for greedy π given \tilde{v} or \tilde{g} (too many states and/or Punknown)

- propose to approximate η using $\tilde{\pi}: X \times \mathcal{Y} \longrightarrow \Delta(\mathcal{U})$
- -> have would you determine $\tilde{\pi}$?

 (what information do you need,
 and what is computational complexity?)
- solve the optimization problem

 min | ~+ \pi ||^2

 very
- though it seems like we'd need

 To solve this problem,

 can approximate solution (anline)

 using data (stochastic descent)

can colon for lapet ~ an allow

- can solve for best $\widetilde{\pi}$, eg offline, or can incrementally update toward best $\widetilde{\pi}$, eg anline: $\Psi^{+}=\Psi-\alpha\cdot D_{\Psi}\widetilde{\pi}(x;\Psi)\cdot D_{u}\sum_{x'\in x}P(x+|x_{i}u)\left(\mathbf{c}(x_{i}u)+\delta\cdot\widetilde{v}(x+;\theta)\right)$ $\Theta^{+}=\Theta-\alpha\cdot D_{\Theta}\widetilde{v}(x,\theta)\cdot\left(\widetilde{v}(x;\Theta)-\gamma\cdot\widetilde{v}(x+;\theta)\right)$

* Du E[c(x,u) + 8. ~ (x+; \varepsilon)] can be approximated using "log likelihood tack" from 1st lecture of

o here's the best we can hope for:

1°. suppose $\widetilde{V}_{k}^{\pi} \rightarrow \widetilde{V}^{\pi} \leftarrow \widetilde{V}_{k}^{\pi} \rightarrow \widetilde{V}^{\pi} \leftarrow \widetilde{V}_{k}^{\pi} \rightarrow \widetilde{V}_{k}^$

- so l°. ¿2°. together seen good, but: 2° is generally not true... (see Sec 6.4.2 in B \$ T 96)