Problem Statement: Predicting Employee Attrition

Dataset: IBM HR Analytics Employee Attrition & Performance

In the process of building a model, it's crucial to follow key steps:

- 1. Data Collection: Gather all necessary data.
- 2. Data Preparation: Clean, organize, and standardize data for accuracy.
- 3. Exploratory Data Analysis: Identify patterns and trends in the data.
- 4. Insight Generation: Extract actionable insights from analysis.
- 5. Decision Making: Utilize data-driven strategies to enhance workforce performance and meet organizational goals.

Steps Achieved:

- 1. Loaded the data using pandas library.
- 2. Performed data cleaning by checking if any null values, found the data to be clean.
- 3. Stage to do exploratory data analysis:
 - We dropped the unnecessary features from the data set.
 - Compared attrition with all categorical as well as continuous variable, insights generated as:
 - 1. Suggests a higher attrition rate among males compared to females.
 - 2. The age group between 28-32 witnesses the highest attrition rate, notably between 18-20, often see heightened attrition pattern then reaches a turning point around the age of 21.
 - 3. Significant increase in attrition rates specifically below 5000 per month. This trend gradually decreases, with a slight increase observed around the 10000 mark
 - 4. Employee with higher salary remain with company while other leave.
 - 5. Employee who started their career with company tend to leave job more than who share a good experience with the company.
- 4. Data preprocessing:
 - 1. Encoded the categorical variables to the numerical form using Labelencoding.
 - 2. There are high correlation between some features:

MonthlyIncome - JobLevel YearsInCurrentRole - YearAtCompany YearWithCurrManager - YearsInCurrentRole TotalWorkingYears - JobLevel TotalWorkingYears - MonthlyIncome PercentSalaryHike - PerformanceRating

3. Calculating imbalance ratio:

Imbalance Ratio (Retained Employees: Attrited Employees): 5.20

: 1

Data is biased for retained employees.

Using SMOTE to balance the data.

- 5. Splitting data to test and train
- 6. Calculating ANNOVA and chi-square value.
- 7. Plotted the AUC-ROC curve for the classification model.
- 8. Model selection:

XGBoost, SVM, Logistice Regression, KNN, Decision Tree

9. Model evaluation:

	Model	Cross Validation Score	ROC-AUC	F1 Score (Attrition)	F1 Score (No Attrition)
0	XGBoost (XGB)	91.40%	84.10%	0.84	0.84
1	SVM	90.77%	83.53%	0.83	0.84
2	Decision Tree	91.74%	77.66%	0.77	0.78
3	Random Forest	88.19%	80.64%	0.80	0.82
4	KNN	89.19%	80.07%	0.81	0.78
5	Logistic Regression	87.50%	78.36%	0.78	0.79

Here we are getting most accuracy with XGBoost algorithm.

10. Summary:

- Gender disparity: Higher attrition rate among males compared to females
- Age dynamics: Highest attrition between ages 28-32, declining with age
- Income levels: Spikes in attrition at very low income, decreasing as income rises
- Job satisfaction: Lower satisfaction correlates with higher attrition, especially for average salaries
- Departmental differences: Sales and HR have highest attrition, R&D lower
- Job role impact: Higher-level roles have lower attrition rates
- Salary increment influence: Enhanced increments incentivize retention
- Educational background: Lower attrition among higher education levels
- Salary and stock options: Higher pay and stock options promote loyalty
- Work-life balance: Crucial factor affecting motivation and retention