Chapter 6 – Harmonic Oscillator and Mechanical Resonanse

UM-SJTU Joint Institute Physics I (Summer 2019) Mateusz Krzyzosiak

Agenda

- Motivation
- Simple Harmonic Oscillator
 - Equation of Motion. Solution
 - Uniform Circular Motion and Simple Harmonic Motion
- 3 Damped Oscillations
 - Underdamped Regime
 - Overdamped Regime
 - Critical Damping
- Forced (or Driven) Oscillations. Mechanical Resonance
 - Steady-state Oscillations: Amplitude and Phase-Lag
 - Mechanical Resonance in Practice. Demonstrations

Motivation Simple Harmonic Oscillator Damped Oscillations Forced (or Driven) Oscillations., Mechanical Resonance

Motivation

Example I: Horizontal Mass-Spring System

Equation of motion (net force = elastic force)

$$ma_x = F_x \implies \qquad \ddot{x} + \frac{k}{m}x = 0$$

Example II. Vertical Mass–Spring System

Equation of motion (net force = weight + elastic force)

$$ma_x = mg - k(x + \triangle I)$$
 \Longrightarrow $ma_x = \underbrace{mg - k\triangle I}_{=0} - kx$

$$ma_x = -kx$$
 \Longrightarrow $\ddot{x} + \frac{k}{m}x = 0$

Example III. Simple Pendulum

Tangential component on the net force (non-zero contribution only due to weight)

$$F_{ heta} = -mg\sin heta pprox -mg heta$$

Because for small angles

$$\sin\theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots$$

$$\hookrightarrow_{\text{keep the } 1^{\text{st}} \text{term}}$$

When is this approximation valid?

E.g., for
$$\theta = 0.1$$
 (6°), $\sin \theta = 0.0998$

Example III. Simple Pendulum

Motion along the arc (tangential components)

$$ma_{\theta} = F_{\theta}$$
 $\stackrel{a_{\theta} = I\ddot{\theta}}{\Longleftrightarrow}$ $mI\ddot{\theta} \approx -mg\theta$ $\ddot{\theta} + \frac{g}{I}\theta = 0$

Observation:

In all three cases, the equation of motion is of the same form

[with
$$\omega_0^2=k/m$$
 for the mass–spring systems and $\omega_0^2=g/I$ for the simple pendulum]

Any particle (system) with the equation of motion of the above form is called a **simple harmonic oscillator** (SHO).

Simple Harmonic Oscillator

Simple Harmonic Oscillator

Simple Harmonic Oscillator – only the restoring force acts.

$$\ddot{x} + \omega_0^2 x = 0 \qquad \Longrightarrow \qquad \boxed{x(t) = ?}$$

How to solve? Guess a solution and check...

Our guess

$$x(t)=\cos(\omega_0 t)$$

Check

$$\dot{x} = -\omega_0 \sin(\omega_0 t)$$
 and $\ddot{x} = -\omega_0^2 \cos(\omega_0 t) = -\omega_0^2 x$

Periodic behavior (oscillations)

Have we found the most general form of the solution?

$$egin{aligned} x(t) &= A\cos\omega_0 t \ \dot{x}(t) &= -\omega_0 A\sin\omega_0 t \ \ddot{x}(t) &= -\cos^2 A\cos\omega_0 t = -\omega_0^2 x(t) \end{aligned}
ightarrow ext{also solves the equation}$$

2

$$x(t) = A\cos(\omega_0 t + \phi)$$

 $\dot{x}(t) = -\omega_0 A\sin(\omega_0 t + \phi)$
 $\ddot{x}(t) = -\cos^2 A\cos(\omega_0 t + \phi) = -\omega_0^2 x(t) \rightarrow \text{solves it, too!}$

The most general solution

$$x(t) = A\cos(\omega_0 t + \phi)$$
 amplitude phase shift

Equivalently (see Problem Set 4) the most general solution can be written as

$$x(t) = B\cos\omega_0 t + C\sin\omega_0 t$$

Note: We have two constants (now, B and C) again.¹

The constants A and ϕ (or B and C) are found by applying the initial conditions:

$$\begin{cases} x(0) = x_0 \\ v_x(0) = v_{0x} \end{cases}$$

then the problem has a unique solution.

 $^{^12^{\}text{nd}}$ order ordinary differential equations have general solutions depending on two parameters *

Position, Velocity, and Acceleration in SHM

These three curves show SHM with the same period T and amplitude A but with different phase angles ϕ .

(a) Displacement x as a function of time t

(b) Velocity v_x as a function of time t

(c) Acceleration a_x as a function of time t

The a_x -t graph is shifted by $\frac{1}{4}$ cycle from the v_x -t graph and by $\frac{1}{2}$ cycle from the x-t graph.

Uniform Circular Motion and Simple Harmonic Motion

Uniform Circular Motion and Simple Harmonic Motion

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t} = \omega_0 = \frac{v}{R} = \text{const}$$

$$\implies \varphi = \omega_0 t \quad [assume \ \varphi(0) = 0]$$

$$x = R \cos \widetilde{\omega_0 t}, \qquad y = R \sin \widetilde{\omega_0 t}$$

Differentiate twice w.r.t. time

$$\begin{cases} a_x = -R\omega^2 \cos \omega_0 t = -\omega_0^2 x \\ a_y = -\omega_0^2 y \end{cases}$$

Conclusion: The projection of P onto the x axis (or the y axis) moves as if it was in a simple harmonic motion.

Underdamped Regime Overdamped Regime Critical Damping

Damped Oscillations

Damped Oscillations

Oscillating object placed in a liquid – add a linear drag to the model (b = const > 0)

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -b\frac{\mathrm{d}x}{\mathrm{d}t} - kx$$

$$\ddot{x} + \frac{b}{m}\dot{x} + \omega_0^2 x = 0$$

How to solve? (not easy to guess directly...)

Try $x(t) = e^{\lambda t}$ (will need to find λ). Then

$$\dot{x} = \lambda e^{\lambda t} = \lambda x$$

$$\ddot{x} = \lambda^2 e^{\lambda t} = \lambda^2 x$$

Plugging back into the equation of motion

$$\lambda^2 x + \frac{b}{m} \lambda x + \omega_0^2 x = 0$$
 \Longrightarrow $\lambda^2 + \frac{b}{m} \lambda + \omega_0^2 = 0$

Observation: A differential equation turned into an algebraic (quadratic) one. Easy to solve!

Solution (roots) of the algebraic equation depends on the sign of

$$\Delta = \left(\frac{b}{m}\right)^2 - 4\omega_0^2$$

1
$$\Delta < 0$$
; complex roots $\lambda_{1,2} = -\frac{b}{2m} \pm i \sqrt{\omega_0^2 - \left(\frac{b}{2m}\right)^2}$

②
$$\Delta > 0$$
; real & different roots $\lambda_{1,2} = -\frac{b}{2m} \pm \sqrt{\left(\frac{b}{2m}\right)^2 - \omega_0^2}$

3
$$\Delta = 0$$
; real root (repeated) $\lambda = -\frac{b}{2m}$

Need to analyze these three cases.

Damped Oscillations: Case I (Underdamped Regime)

$$\Delta < 0 \qquad \Longrightarrow \qquad \left(\frac{b}{m}\right)^2 - 4\omega_0^2 < 0 \qquad \Longrightarrow \qquad \left[\left(\frac{b}{m}\right)^2 < 4\omega_0^2\right]$$

It is the case of weak damping (underdamped regime). Then, the general solution

$$x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} =$$

$$= C_1 e^{-\frac{b}{2m} t} e^{i\sqrt{\omega_0^2 - (\frac{b}{2m})^2} t} + C_2 e^{-\frac{b}{2m} t} e^{-i\sqrt{\omega_0^2 - (\frac{b}{2m})^2} t}$$

But x(t) is a physical quantity (displacement from the equilibrium position); must be real, so

$$C_1 = rac{1}{2}Ae^{i\phi_0} = C_2^* \qquad \Longrightarrow \qquad C_2 = rac{1}{2}Ae^{-i\phi_0}$$

Hence (recall the formula: $e^{iu} = \cos u + i \sin u$)...

Effects of weak damping (underdamped regime)

- * Motion still periodic, but the amplitude of oscillations decreases exponentially with time.
- * The angular frequency of oscillations $\omega = \sqrt{\omega_0^2 \left(\frac{b}{2m}\right)^2} < \omega_0, \text{ i.e. it is smaller than that for the undamped case (the natural angular frequency } \omega_0).$ Consequently, the period $T = 2\pi/\omega$ increases.

Case II. Overdamped Regime

Now, $\Delta > 0$ so that $\left\lfloor \left(\frac{b}{m} \right)^2 > 4\omega_0^2 \right\rfloor$. It is the case of strong damping (**overdamped regime**) and the general solution

Effects of strong damping (overdamped regime)

- * No periodic behavior.
- Strong damping results in aperiodic motion: the particle returns aperiodically to the equilibrium position.

Case III. Critical Damping

Finally, is $\Delta=0$ so that $\left(\frac{b}{m}\right)^2=4\omega_0^2$. In this case damping is called **critical**and the general solution²

$$x(t) = D_1 e^{-\frac{b}{2m}t} + D_2 t e^{-\frac{b}{2m}t}$$

Effects of critical damping

- * No periodic behavior.
- * The system may pass through the equilibrium position at most once (see Problem Set).

^{2**} The second term includes the factor t in order to make it linearly independent from $e^{-\frac{b}{2m}t}$.

Forced (or Driven) Oscillations. Mechanical Resonance

Forced (or Driven) Oscillations

Now: restoring force + linear drag + **driving force** F_{dr}

Simplest case to analyze ($\omega_{dr} - -driving frequency$):

$$F_{dr} = F_0 \cos \omega_{dr} t$$
 (sinusoidal time-dependence)

Equation of motion

$$ma_{x} = F_{x} = -kx - bv_{x} + F_{0}\cos\omega_{dr}t$$

$$\ddot{x} + \frac{b}{m}\dot{x} + \underbrace{\frac{k}{m}}_{\omega_0^2} x = \frac{F_0}{m}\cos\omega_{dr}t$$

Observation

After some time the oscillations stabilize and the particle oscillates with the angular frequency of the driving force (there may be a shift in phase between the drive and the response though).

In general, the solution to the equation of motion in this case is of the form

Steady-State Solution

The steady-state solution

$$x_s(t) = A\cos(\omega_{dr}t + \phi)$$

 ϕ is assumed to be negative, so that it has the interpretation of a phase-lag

Detailed calculations (omitted here³) show that

$$A(\omega_{dr}) = \frac{F_0}{m\sqrt{(\omega_0^2 - \omega_{dr}^2)^2 + \left(\frac{b\omega_{dr}}{m}\right)^2}}$$

$$\tan \phi = \frac{b\omega_{dr}}{m(\omega_{dr}^2 - \omega_0^2)}$$

Note. (1) A is a function of ω_{dr} . (2) In general, $\phi \neq 0$, hence F_{dr} and x_s are **not** in phase.

³Welcome to take Honors Physics next time!

Amplitude. Mechanical Resonance

Features

- * Peak in the curve $A=A(\omega_{dr})$ at the **resonance frequency** $\omega_{dr}=\omega_{res}=\sqrt{\omega_0^2-b^2/2m^2}$. A sharp increase in the amplitude of oscillations when $\omega_{dr}\approx\omega_{res}$ is called the (mechanical) resonance.
- * Increasing damping shifts the resonance frequency downwards.
- * If $\omega_{dr} \to 0$ (i.e., $T_{dr} \to \infty$; constant force), then $A \to \frac{F_0}{m\omega_0^2} = \frac{F_0}{k}$.

Phase-Shift

$$\tan\phi = \frac{b\omega_{dr}}{m(\omega_{dr}^2 - \omega_0^2)}$$

Phase-Shift

* If $\omega_{dr} \to \omega_0$ (close to resonance⁴), then $\phi \to -\pi/2$.

The response $(x_s(t))$ lags the drive $(F_{dr}(t))$ by 1/4 of the cycle.

* If $\omega_{dr} \to \infty$ (high frequencies), then $\phi \to \pi$ the response lags the drive by 1/2 of the cycle (displacement and drive are in antiphase)

The response $(x_s(t))$ lags the drive $(F_{dr}(t))$ by 1/2 of the cycle.

⁴Small damping is assumed here, so $\omega_{res} \approx \omega_0$.

Mechanical Resonance in Practice. Demonstrations

[videos]