

Digital Logic Circuit (SE273 – Fall 2020)

Lecture 4: Combinational Logic Design

Jaesok Yu, Ph.D. (jaesok.yu@dgist.ac.kr)

Assistant Professor

Department of Robotics Engineering, DGIST

Goal

- Learn to design combinational circuits
 - Specification, formulation, optimization
 - Technology mapping, verification
- Implement a number of important functions
 - The fundamental and reusable circuits (= functional blocks)
 - Implement functions of a single variable (decoders, encoders, multiplexers,...)

Combinational Logic vs Sequential Logic

Combinational Logic

Sequential Logic

Storage (Memory) Element

$$Out = f(In)$$

$$Out = f(In, Previous\ In)$$

Design Procedure

- Specification: write a specification for the circuit
- Translation (Formulation): derive the truth table or initial Boolean equations
- Optimization: apply two-level and/or multi-level optimization
- Technology Mapping: transform the logic diagram to a new diagram using the available technology
- Verification: verify the correctness of the final design

Specification

- The excess-3 code for a decimal digit 'd' is the binary combination equal to 'd+3'
- The excess-3 code has desirable properties with respect to implementing decimal subtraction

Truth Table for Code-Converter Example

Decimal Digit			Output Excess-3					
	A	В	С	D	W	X	Υ	Z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	/ 0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

Excess3 Code?

Self-complementary property

Truth Table for Code-Converter Example

Decimal Digit		Input BCD				Out Exce	-		
	A	В	С	D	W	X	Υ	Z	•
0	0	0	0	0	0	0	1	1	-
1	0	0	0	1	0	1	0	0	<taking 1's="" complement=""></taking>
2	0	0	_1_	0	0	1	0	1	_
3	0	0	1	1	0	1	1	0	W X Y Z: 1 0 0 1 (6
4	0	1	0	0	0	1	1	1	
5	0	1	0	1	1	0	0	0	T
6	0	1	1	0	1	0	0	1	
7	0	1	1	1	1	0	1	0	<9's comple
8	1	0	0	0	1	0	1	1	9 – 3
9	1	0	0	1	1	1	0	0	= 9 + 6 (9's complement
									= 15 (1 is end-around

complement> omplement of 3) = 15 (1 is end-around carry, add again) > 5+1 = 6

0 1 (6)

Formulation

- The excess-3 code is obtained from a BCD code by adding '0011'
- We can build a truth table accordingly
- The six combinations from 1010 through 1111 are not listed as they are never used in BCD code
- We can treat them as don't-care conditions

В	CD(842	1)	Excess-3				
A	В	С	D	w	X	у	z	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	Ω	1	1	1	0	0	
1	0	1	0	X	X	X	X	
1	0	1	1	X	X	X	X	
1	1	0	0	X	X	X	X	
1	1	0	1	X	X	X	X	
1	1	1	0	X	X	X	X	
1	1	1	1	X	X	X	X	

Optimization

- We may use the K-maps for the initial optimization of the four output functions
- Don't-care conditions (X's) are useful to further reduce # of literals/terms
- Each map represents one of the outputs of the circuit

- Now, we can draw two-level AND-OR logic diagram
 - Directly from the Boolean expressions derived from the maps
 - We may apply multiple-level optimization as a 2nd optimization step (ex: reduce the gate input cost)
 - For the additional optimization, we consider sharing subexpressions

$$T_1 = C + D$$

 $W = A + BC + BD = A + BT_1$
 $X = \overline{B}C + \overline{B}D + B\overline{C}\overline{D} = \overline{B}T_1 + B\overline{T}_1$
 $Y = CD + \overline{T}_1$
 $Z = \overline{D}$

• Then, the logic diagram becomes

$$T_1 = C + D$$

 $W = A + BC + BD = A + BT_1$
 $X = \overline{B}C + \overline{B}D + B\overline{C}\overline{D} = \overline{B}T_1 + B\overline{T}_1$
 $Y = CD + \overline{T}_1$
 $Z = \overline{D}$

Hierarchical Design

- Hierarchical design approach is generally used in designing a digital system (divide-and-conquer)
 - We may deal with circuit complexity as we broken down into pieces (called functional blocks)
 - If a block is still to large, it can be broken into smaller blocks
 - This process can be repeated as necessary

Hierarchical Design Procedure

Specification

- An equality comparator is a circuit that compares two binary vectors to determine whether they are equal or not
- Inputs: two vectors A[3:0] and B[3:0]
- Output: a single-bit variable E (E=1 if vectors A and B are equal)

Formulation

- We bypass the use of a truth table due to its size!!
- Step1: To compare A and B, the bit values in each of the respective positions, 3→0, of A and B must be equal
- Step2: If all of bit positions of A and B contain equal values, then E = 1
- Intuitively, we developed a simple 2-level hierarchy

Optimization

- For bit position i, we define the circuit output N_i to be 0 if A_i and B_i have the same values
- And $N_i = 1$ if A_i and B_i have different values
- Then, MX circuit can be described by

$$N_i = \overline{A}_i B_i + A_i \overline{B}_i$$

- Now, we employ four copies of this circuit
- Output E can be computed by the relation:

$$E = \overline{N_0 + N_1 + N_2 + N_3}$$

- Hierarchical Design Example: 4-bit Equality Comparator
 - Both circuits given are optimum two-level circuits
 - Two circuit diagrams plus the block diagram represent the hierarchical design of a 4-bit equality comparator

11 Symbols are required to represent the circuit

- We may represent the circuit without interconnections
 - By simply starting with the top block
 - Then, connect blocks or primitives from which the block is constructed
 - The hierarchy can be easily understood

How many gates are needed?

What is the purpose of this diagram?

Primitive Blocks

- At leaves of the hierarchy tree, there are logic gates
 - These gates are commonly called primitive blocks
 - There can be more complex blocks, other than simple gates, as predefined blocks (MX blocks can be considered as predefined XOR gates)

Reusability of Blocks

- Reusability is another important property of hierarchical design
 - There are four copies of 2-input MX blocks
 - On the right, there is only one copy of the 2-input MX block
 - That means a circuit designer need to implement one MX block and use this design four times

Technology – Transistors (Intel Processors)

2,250 transistors in 12mm² 10,000 nm, 1MHz operation

42 million transistors in 217mm² 180 nm, 1.3GHz operation

2.6 billion transistors in 355mm² 22 nm, 3GHz operation

REBOTICS

Future Technology: Light? Quantum?

Technology Mapping

- Mapping AND, OR, NOT gates to NAND / NOR gate cells is critical in designing a digital circuit (why??)
 - A NAND technology consists of a collection of cells, each of which includes a NAND gate with a fixed # of inputs
 - Assume we have four cell types, based on # of inputs (n = 1, 2, 3, 4)
 - INV, 2NAND, 3NAND, and 4NAND, respectively

Technology Mapping

- We begin with the optimized logic diagram of the circuit consisting of AND and OR gates (+ inverters)
 - Then, the function is converted to NAND logic by converting the logic diagram to NAND gates and INVs
 - Same applies for NOR gate cells

Technology Mapping

- Procedure for technology mapping
 - Objective: obtain a circuit diagram with the fewest INVs
 - Replace each AND and OR gate with NAND (NOR) gate and inverter equivalent circuits: (a) and (b)
 - 2) Cancel all inverter pairs

Implement the following optimized function with NAND gates:

$$F = AB + \overline{(AB)}C + (\overline{AB})\overline{D} + E$$

Implement the following optimized function with NAND gates:

$$F = AB + \overline{(AB)}C + (\overline{AB})\overline{D} + E$$

Implement the following optimized function with NAND gates:

$$F = AB + \overline{(AB)}C + (\overline{AB})\overline{D} + E$$

Step 1 is applied!!

 Replace each AND and OR gate with NAND (NOR) gate and inverter equivalent circuits

- Implementation with NAND Gates
 - Implement the following optimized function with NAND gates:

$$F = AB + \overline{(AB)}C + (\overline{AB})\overline{D} + E$$

Step 2 is applied!!

2) Cancel all Inverter pairs

Implement the following optimized function with NAND gates:

$$F = AB + \overline{(AB)}C + (\overline{AB})\overline{D} + E$$

- Implementation with NOR Gates
 - Implement the following optimized function with NOR gates:

$$F = AB + \overline{(AB)}C + (\overline{AB})\overline{D} + E$$

Implement the following optimized function with NOR gates:

$$F = AB + \overline{(AB)}C + (\overline{AB})\overline{D} + E$$

Step 1 is applied!!

(Replace to NOR gate)

Implement the following optimized function with NOR gates:

$$F = AB + \overline{(AB)}C + (\overline{AB})\overline{D} + E$$

Step 2 is applied!! (Cancel all inverters)

- Comparison Btw NAND and NOR Implementations
 - Which implementation seems to be better and why?

$$F = AB + \overline{(AB)}C + (\overline{AB})\overline{D} + E$$

REBOTICS tions

Comparison Btw NAND and NOR Implementations

- Which implementation seems to be better and why?
 - Gate-input cost:
 - Depth of logic gates in series:

- The result of a technology mapping is clearly influenced by the initial circuit or equation forms prior to mapping
 - Mapping to NANDs for a circuit with an OR gate at the output produces a NAND gate at the output (natural)
 - For NOR counterpart, it produces an inverter driven by a NOR gate at the output

REBOTICS

Comparison Rtw NAND and NOR Implementations

- The result of a technology mapping is clearly influenced by the initial circuit or equation forms prior to mapping
 - Mapping to NANDs for a circuit with an OR gate at the output produces a NAND gate at the output (natural)
 - For NOR counterpart, it produces an inverter driven by a NOR gate at the output

Verification

- Determine whether or not a given circuit implements its specified function
 - Manual logic analysis
 - Computer simulation-based logic analysis
- If the circuit does not meet its specification, then it is incorrect
- Verification plays a vital role in preventing incorrect circuit designs from being manufactured

Manual Logic Analysis

- It consists of finding Boolean equations for the circuit outputs, then finding the truth table for the circuit
 - It is often convenient to break up the circuit into subcircuit by defining intermediate variables at selected points
 - Fan-out points: at which a gate output drives two or more gate inputs

Manual Verification of BCD-to-Excess3 Code Converter

- Objective is to complete the truth table from the circuit implementation
 - The intermediate point T is selected to simplify the analysis

NAND-mapped circuit implementation

	Inp BC			Output Excess-3				
A	В	C	D	W	X	Y	Z	
0	0	0	0				1	
0	0	0	1					
0	0	1	0		1		1	
0	0	1	1		1	1		
0	1	0	0				1	
0	1	0	1	1				
0	1	1	0	1			1	
0	1	1	1	1		1		
1	0	0	0	1			1	
1	0	0	1	1				

Truth table to be completed

Manual Verification of BCD-to-Excess3 Code Converter

- Objective is to complete the truth table from the circuit implementation
 - The intermediate point T is selected to simplify the analysis

NAND-mapped circuit implementation

	Inp BC	out CD		Output Excess-3				
A	В	C	D	W	X	Y	Z	
0	0	0	0				1	
0	0	0	1					
0	0	1	0		1		1	
0	0	1	1		1	1		
0	1	0	0				1	
0	1	0	1	1				
0	1	1	0	1			1	
0	1	1	1	1		1		
1	0	0	0	1			1	
1	0	0	1	1				

Truth table to be completed

	Inp BC	out CD				put ess-	
A	В	С	D	W	X	Y	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Original truth table

Simulation-Based Verification

- You can use computer simulation for verification
 - A computer permits verification with significantly larger number of variables
 - Greatly reduces the tedious analysis effort
- Simulation is performed on provided input values
 - You need to apply (almost) all possible input combinations

Simulation-Based Verification

 In addition to entering the circuit schematic, input combinations are given as a waveform

NAND-mapped circuit implementation

Simulation results of computer-based verification

Combinational Functional Blocks

- Functional blocks: a pre-defined combinational circuit that is specific to a certain combinational function
- Normally, a large-scale integrated circuits are almost always sequential
 - It is a combination of a combinational circuit and storage elements
 - To ease the design process, some frequently-used blocks are pre-designed

Block diagram of a sequential circuit

Rudimentary Logic Functions

- What are the most basic functions?
 - · Value-fixing, transferring, inverting, and enabling

Multi-Bit Functions

- The functions defined so far can be applied to multiple bits on a bitwise basis
 - We can think of multiple-bit functions as vectors of single-bit functions
 - With $F = (0,1,A,\overline{A})$, it becomes (0,1,0,1) with A = 0
 - For multiple-bit wires, we use a single line with greater thickness with a slash, representing the bit-width

Enabling

- The enabling permits an input signal to pass through to an output
 - With EN=1, input X reaches the output
 - With EN=0, output is fixed at 0
- When do we need enabling signal?
 - One example is a three-state buffer

INF	TU	OUTPUT
Α	В	С
0	1	0
1		1
X	0	Z (high impedance)

Decoding

- In digital computers, discrete quantities of information are represented by binary codes
 - An n-bit binary code is capable of representing 2ⁿ distinct elements
 - **Decoding**: conversion of an input code to an m-bit code with $n \le m \le 2^n$
 - Decoding is performed by a circuit called decoder
- We design functional blocks, called n-to-m line decoders, which are the most important building blocks in a digital system

A	$\mathbf{D_0}$	$\mathbf{D_1}$
0	1	0
1	0	1

1-to-2 line decoder

Decoder Design Example

- A 2-to-4 line decoder
 - Output D_i is equal to 1 whenever the two input values on A_1 and A_0 are the binary code for the number '*i*'
 - There are four possible minterms in total

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Larger Decoders

- Larger decoders require a high gateinput cost (why?)
 - We use a hierarchical design approach
 - The resulting decoder will have the same or a lower gate-input cost than the one constructed by simply enlarging each AND gate

Can you design a 6-to-64 line decoder?

Decoding and Enabling Combinations

 The n-to-m line decoding with enabling can be implemented by attaching 'm' enabling circuits to the outputs

With EN=0, it resets all D_i signals

EN	$\mathbf{A_1}$	$\mathbf{A_0}$	$\mathbf{D_0}$	$\mathbf{D_1}$	D_2	D_3
0	Х	Χ	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

What about for larger decoders?

Demultiplexer (DEMUX)

- How can we transmit the information from a single line to one of 2ⁿ possible output lines?
 - Such distribution is done by a circuit, called demultiplexer
 - An 1-to-4 line demultiplexer can be implemented by a 2-to-4 line decoder

EN	$\mathbf{A_1}$	$\mathbf{A_0}$	$\mathbf{D_0}$	$\mathbf{D_1}$	D_2	D_3
0	Х	Χ	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Decoder-Based Combinational Circuits

- Any Boolean function can be expressed as a sum of minterms
 - One can use a decoder to generate the minterms and combine them with OR gate to form a sum-of-minterms implementation
 - A Boolean function can be expressed as a sum-of-minterms from the truth table or K-map

▶ 1-bit Binary Adder with Decoder and OR-Gate Implementation

- Let's consider binary addition
 - The sum bit S and the carry bit C can be derived from three input bits
 - X and Y: two bits being added
 - Z: incoming carry

Truth Table for 1-Bit Binary Adder

X	Y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S(X, Y, Z) = \sum m(1, 2, 4, 7)$$

$$C(X, Y, Z) = \sum m(3, 5, 6, 7)$$

Minterm 0 is not used

What happens with a long list of minterms?

Encoding

- Inverse operation of a decoder
 - An encoder has '2n' (or fewer) input lines and 'n' output lines
 - The output generates a binary code for the input value
 - Example: octal-to-binary encoder

Truth Table for Octal-to-Binary Encoder

					Output	s				
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	Ao
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

The remaining 56 rows of binary combinations are considered don't cares

Octal-to-Binary Encoder

- $A_i = 1$ for the columns in which $D_j = 1$ only if subscript 'j' has a binary representation with a 1 in the ith position
 - Only one input becomes active at any given time
 - Sometimes, two inputs may be active simultaneously which results in incorrect output (ambiguity)

Truth Table for Octal-to-Binary Encoder

				Outputs						
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	Ao
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$A_0 = D_1 + D_3 + D_5 + D_7$$
$$A_1 = D_2 + D_3 + D_6 + D_7$$

$$A_2 = D_4 + D_5 + D_6 + D_7$$

Four-input OR gates

Octal-to-Binary Encoder

- To resolve such ambiguity, some encoder circuits must establish an input priority
 - Ensure only one input to be encoded
 - Ex: put a higher priority for inputs with higher subscript numbers

Truth Table for Octal-to-Binary Encoder

				Outputs						
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	A
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

The output will be still 110, because D_6 has higher priority than D_3

Priority Encoder

- A combinational circuit that implements a priority function
 - If two (or more) inputs are equal to 1, the input having the highest priority takes precedence
 - The truth table for a four-input priority encoder is as follows
 - No conflict of representing a minterm should appear when using 'X'

Truth Table of	Priority	Encoder
----------------	----------	---------

		Outputs			outs	Inp	
Valid bi	V	A ₀	A ₁	D ₀	D ₁	D ₂	D ₃
	0	Х	Х	0	0	0	0
	1	0	0	1	0	0	0
	1	1	0	X	1	0	0
	1	0	1	Χ	X	1	0
	1	1	1	X	X	X	1

Priority Encoder

- A combinational circuit that implements a priority function
 - Consider the case when input D₃ has the highest priority
 - If D₃=1, then output becomes '11 (binary 3)'
 - The output is 10 if $D_2=1$, provided that $D_3=0$

Truth '	Table	of P	riority	Encoder
---------	-------	------	---------	---------

Inputs			Outputs			
D ₃	D ₂	D ₁	D ₀	A ₁	A ₀	V
0	0	0	0	Х	Х	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

Simplification using map reduction

Priority Encoder

- A combinational circuit that implements a priority function
 - Consider the case when input D₃ has the highest priority
 - If D₃=1, then output becomes '11 (binary 3)'
 - The output is 10 if $D_2=1$, provided that $D_3=0$

Simplification using map reduction

Logic diagram of a 4-input priority encoder

Selecting

- Selection of information to be used in a computer is a very important function
 - Selection circuits have a set of inputs from which selections are made, a single output, and a set of control lines
 - Multiplexers are widely used as selection circuits

Multiplexer (MUX)

- A multiplexer selects binary information from one of many input lines and directs it to a single output line
 - The selection is governed by 'selection inputs'
 - Normally, there are 2ⁿ input lines with 'n' selection inputs

$$Y = \overline{S}I_0 + SI_1$$

Truth Table for 2-to-1-Line Multiplexer

s	I ₀	I ₁	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

▶ 4-to-1 Line Multiplexer

- The output Y depends on four inputs I₀, I₁, I₂, and I₃ and two select inputs S₁ and S₀
 - We can form a condensed truth table by putting information variables in the output column
 - Simply, it can be implemented by using two inverters, four 3-input AND gates, and a 4-input OR gate (gate-input cost: 18)

Condensed Truth Table for 4-to-1-Line Multiplexer

S ₁	S ₀	Υ
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

$$Y = \overline{S}_1 \overline{S}_0 I_0 + \overline{S}_1 S_0 I_1 + \overline{S}_1 \overline{S}_0 I_2 + S_1 S_0 I_3$$

Any different implementations?

▶ 4-to-1 Line Multiplexer

- A different implementation is obtained by factoring the AND terms
 - Its implementation is combining a 2-to-4 line decoder, four AND gates (enabling circuit), and a 4-input OR gate
 - The resulting circuit has a gate-input cost of 22 (more costly!!)

Condensed Truth Table for 4-to-1-Line Multiplexer

S ₁	S ₀	Υ
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

$$Y = (\overline{S}_1 \overline{S}_0) I_0 + (\overline{S}_1 S_0) I_1 + (S_1 \overline{S}_0) I_2 + (S_1 S_0) I_3$$

► 64-to-1 Multiplexer

- A multiplexer design can be easily expanded to 64-to-1 MUX
 - (6-to-64 decoder) + (64 x 2 AND-OR gate)
 - This structure has a gate-input cost of 183 + 128 + 64 = 374
 - If this implementation is replaced by inverters and 7-input AND gates, the gate-input cost becomes 6 + 448 + 64 = 518!!

▶ 4-to-1 Quad Multiplexer

 It has two selection bits and each information input is replaced by a vector of four inputs

Since the information inputs are a vector, the output Y becomes a four-

element vector

▶ VHDL example – 4 to 1 Multiplexer


```
library IEEE;
use IEEE.STD LOGIC_1164.ALL;
entity mux 4to1 top is
    Port ( SEL : in STD LOGIC VECTOR (1 downto 0); -- select input
          A : in STD LOGIC VECTOR (3 downto 0); -- inputs
          X : out STD LOGIC);
                                                      -- output
end mux 4to1 top;
architecture Behavioral of mux 4to1 top is
begin
with SEL select
   X \le A(0) when "00",
        A(1) when "01",
        A(2) when "10",
        A(3) when "11",
         '0' when others;
end Behavioral;
```


Design Constraints

- Fan-out
 - The number of gate inputs driven by the output of another single logic gate.
- Power Dissipation (Primary design constraint in the last 15 years!)
 - As a result of applied voltage and currents flowing through the logics, some power will be dissipated in it in the form of heat.
- Propagation Delay
 - Propagation delay is the length of time taken for a signal to reach its destination
 - Wires have an approximate propagation delay of 1 ns for every 6 inches (15 cm) of length.
 Logic gates can have propagation delays ranging from more than 10 ns down to the picosecond range, depending on the technology being used.
- Noise Margin
 - the noise margin is the amount by which the signal exceeds the threshold for a proper '0' or '1'.

Summary

- There are five-step design procedure in designing a digital circuit
 - Specification, formulation, optimization, technology mapping, verification
 - These steps apply to both manual and computer-aided design
- We have dealt with functional blocks, combinational circuits that are frequently used to design larger circuits
 - Decoders
 - Encoders
 - Multiplexers