

A.A. 2009-2010 - Docente: Prof. F. Pappalardi Tutori: Annamaria Iezzi e Dario Spirito

Tutorato 2 11 marzo 2010

1. Trovare il polinomio minimo dei seguenti numeri complessi (dove non indicato il campo base è \mathbb{Q}):

a) $\sqrt[4]{2}$

f) ξ_{16} su $\mathbb{Q}(i)$

b) $\sqrt[5]{4}$

g) $\sqrt[5]{11}$ su $\mathbb{Q}(\sqrt[3]{19})$.

c) $\sqrt[3]{2} + 1$

d) $\sqrt[3]{2} + \sqrt{2}$ su $\mathbb{Q}(\sqrt{2})$

h) $\frac{\sqrt[4]{2}}{1+\sqrt{2}}$

e) $\sqrt{2} + \sqrt{5}$ su $\mathbb{Q}(\sqrt{10})$.

i) $\xi_7 \operatorname{su} \mathbb{Q} \left(\cos \left(\frac{2\pi}{7} \right) \right)$

- 2. Sia $\alpha = \sqrt{2 + \sqrt{3}}$. Determinare il polinomio minimo di α su \mathbb{Q} e dimostrare che tutte le sue radici sono in $\mathbb{Q}(\alpha)$. Qual è l'inverso di α ?
- 3. Dimostrare che se $q \in \mathbb{Q}$ allora $\cos(q\pi)$ è algebrico su \mathbb{Q} .
- 4. Dimostrare, attraverso l'uso dei polinomi ciclotomici, che $\sum_{d|n} \phi(d) = n \ \forall \ n \in \mathbb{N}$.
- 5. Determinare un ampliamento algebrico di \mathbb{Q} di grado infinito contenuto propriamente nella chiusura algebrica $\overline{\mathbb{Q}}$ in \mathbb{C} .
- 6. Dimostrare che, se P(X) è un polinomio a coefficienti algebrici (su \mathbb{Q}), anche le sue radici sono algebriche su \mathbb{Q} .
- 7. Sia $f(X) = X^7 X + 1 \in \mathbb{F}_7[X]$.
 - a) Verificare che f non ha radici in \mathbb{F}_7 .
 - b) Provare che, se α è una radice di f, tutte le radici sono del tipo $\alpha + b$ al variare di $b \in \mathbb{F}_7$.
 - c) Dimostrare che f è irriducibile.
- 8. Sia $F \subseteq K$ un ampliamento di campi di caratteristica $\neq 2$, e siano $\alpha, \beta \in K$ trascendenti su F.
 - a) Si verifichi che almeno uno degli elementi $\alpha+\beta,\,\alpha-\beta$ è trascendente su F.
 - b) Se $\alpha^2 2\alpha\beta + \beta^2 + 1 = 0$, cosa si può dire di $\alpha \beta$? Quindi si calcoli, usando il punto precedente, $[F((\alpha + \beta)^3) : F]$ e $[F(\alpha + \beta) : F((\alpha + \beta)^3)]$.
 - c) Se char(F) = 2, l'asserzione (a) è vera in generale?
- 9. Determinare l'n-esimo polinomio ciclotomico per $n \in [4, 20]$.
- 10. Determinare il polinomio minimo di β su $\mathbb{Q}:$
 - a) $\beta = \alpha + 1$, dove $\alpha^3 3\alpha^2 + 15 = 0$
 - b) $\beta = \alpha^2$, dove $\alpha^5 6\alpha^4 + 4\alpha^2 2 = 0$