FCC PART 15 SUBPART C TEST REPORT

for

Security Device

Model No.: SD-800

FCC ID: V93PSD9865001

of

Applicant: Posiflex Technology, Inc.
Address: 6, Wu-Chuan Road, Wu Ku, Taipei, Taiwan, R.O.C

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

A2LA Accredited No.: 2732.01

Report No.: W6M20911-10226-P-15

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: wts@wts-lab.com

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

TABLE OF CONTENTS

l	GEN	NERAL INFORMATION	. 2
	1.1	Notes	. 2
	1.2	TESTING LABORATORY	.3
	1.2.1	Location	í
	1.2.2	Details of accreditation status	í
	1.3	DETAILS OF APPROVAL HOLDER	. 4
	1.4	APPLICATION DETAILS	. 4
	1.5	GENERAL INFORMATION OF TEST ITEM	. 4
	1.6	TEST STANDARDS	. 5
2	TEC	CHNICAL TEST	. 5
	2.1	SUMMARY OF TEST RESULTS	. 5
	2.2	TEST ENVIRONMENT	. 5
	2.3	TEST EQUIPMENT LIST	. 6
	2.4	GENERAL TEST PROCEDURE	. 8
3	TES	ST RESULTS (ENCLOSURE)	10
	3.1	OUTPUT POWER (FIELD STRENGTH)	
	3.2	OUT OF BAND RADIATED EMISSIONS	12
	3.3	FREQUENCY TOLERANCE	15
	3.4	Power Line Conducted Emission	
4		X	

FCC ID: V93PSD9865001

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems. The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services(Taiwan) Co., Ltd.

Tester:

December 02, 2009		Kevin Wang	Keron Wong		
Date	WTS-Lab.	Name	Signature		

Technical responsibility for area of testing:

December 02, 2009		Chang Tse-Ming	Chang se-Ming
Date	WTS	Name	Signature

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.)

Company

Worldwide Testing Services(Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA accredited number: 2732.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

Test location, where different from Worldwide Testing Services (Taiwan) Co., Ltd.:

Name:	./.
Accredited number:	./.
Street:	./.
Town:	./.
Country:	./.
Telephone:	./.
Fax:	./.

Registration number: W6M20911-10226-P-15 FCC ID: V93PSD9865001 **Details of approval holder** 1.3 Posiflex Technology, Inc. Name: Street: 6, Wu-Chuan Road, Wu Ku, Town: Taipei, Country: Taiwan, R.O.C Telephone: 886 2 2299-1599 Fax: 886 2 2299-1819 1.4 **Application details** Date of receipt of test item: November 24, 2009 Date of test: from November 25, 2009 to December 01, 2009 1.5 **General information of Test item** Description of test item: Security Device **SD-800** Type identification: Multi-listing model number: ./. **Brand Name: POSIFLEX** Transmitting frequency: 13.56 MHz Operation mode: duplex 5 Vdc power from PC (PC: 110 VAC) Voltage supply: (If the device is using battery, please check if the device is tested under fresh battery condition.) Antenna type: PCB antenna Photos: see Annex

Manufacturer: (if applicable)

 Name:
 ./.

 Street:
 ./.

 Town:
 ./.

 Country:
 ./.

Additional information: ./.

FCC ID: V93PSD9865001 **1.6 Test standards**

Technical standard: FCC RULES PART 15 SUBPART C § 15.225 (2008-10)

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.			
or			
The deviations as specified in 3 were ascertained in the course of the tests			

2.2 Test environment

Temperature: 23 °C

Relative humidity content: 20 ... 75 %

Air pressure: 86 ... 103 kPa

Details of power supply: 5 Vdc power from PC (PC: 110 VAC)

Extreme conditions parameters:. /.

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

Test Equipment List 2.3

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2009/9/10	2010/9/9
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function Test	
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO- LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2009/3/27	2010/3/26
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2009/9/9	2010/9/8
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	2009/5/9	2010/5/8
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2009/7/21	2010/7/20
ETSTW-CE 015	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T8-02	20307	FCC	2009/9/12	2010/9/11
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2009/9/9	2010/9/8
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	Function	on Test
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2009/10/1	2010/9/30
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2009/9/18	2010/9/17
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2009/9/11	2010/9/10
ETSTW-RE 010	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2009/9/11	2010/9/10
ETSTW-RE 011	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070165	МОТЕСН	Functi	on Test
ETSTW-RE 017	Log-Periodic Antenna	HL025	352886/001	R&S	2009/5/4	2010/5/3
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2009/10/1	2010/9/30
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Functi	on Test
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2009/8/19	2010/8/18
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	EMCO	2009/8/14	2011/8/13
ETSTW-RE 028	Log-Periodic Dipole Array Antenna	3148	34429	EMCO	2009/4/15	2010/4/14
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2009/4/15	2010/4/14
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2009/3/23	2010/3/22
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2009/8/23	2010/8/22
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P14508	LeCroy	2009/6/15	2010/6/14
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2009/8/23	2010/8/22
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2009/1/8	2010/1/7
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2009/5/5	2010/5/4
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2009/5/21	2010/5/20
ETSTW-RE 047	PSA SERIES SPECTRUM ANALYZER	E4445A	MY46181369	Agilent	2009/6/15	2010/6/14
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2009/8/31	2010/8/30
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2009/4/14	2010/4/13
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R&S	2009/6/10	2010/6/09
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Functi	on Test
ETSTW-RE 065	Amplifier	AMF-6F- 18002650-25-10P	941608	MITEQ	2009/4/21	2010/4/20

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

2009/10/2	2010/10/1
2009/1/13	2010/1/12
2009/1/13	2010/1/12
2008/10/9	2010/10/8
2008/10/9	2010/10/8
2009/3/6	2010/3/5
2008/12/19	2009/12/18
2009/3/24	2010/3/23
2009/6/5	2010/6/4
Function Test	
2009/9/22	2010/9/21
2009/9/21	2010/9/20
2009/9/16	2010/9/15
2009/9/16	2010/9/15
2009/9/16	2010/9/15
2009/3/6	2010/3/5
2009/3/6	2010/3/5
2009/8/20	2010/8/19
2009/8/20	2010/8/19
2009/3/6	2010/3/5
2009/3/6	2010/3/5
	2008/10/9 2008/10/9 2008/10/9 2009/3/6 2008/12/19 2009/3/24 2009/6/5 Function 2009/9/22 2009/9/21 2009/9/16 2009/9/16 2009/3/6 2009/3/6 2009/8/20 2009/8/20 2009/3/6

FCC ID: V93PSD9865001

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2003 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2003 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz) METER READING + ACF + CABLE LOSS (to the receiver) = FS

33 $20 dB\mu V + 10.36 dB + 6 dB = 36.36 dB\mu V/m @3m$

The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table) and arranged according to ANSI C63.4-2003 Section 13.1.2. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules
- (4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, a exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by Worldwide Testing Services(Taiwan) Co., Ltd. at the registered open field test site located No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.). The Registration Number: **930600.**

FCC ID: V93PSD9865001

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

The formula is as follows:

Average = Peak + Duty Factor

Duty Factor = 20 log (dwell time/T)

T = 100ms when the pulse train period is over 100 ms or the period of the pulse train.

Modified Limits for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

FCC ID: V93PSD9865001

3 Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Output Power Field Strength	15.225 (a) (b) (c)	×	×	
Out of Band Radiated Emissions	15.225 (d)	×	×	
Frequency Stability	15.225 (e)	×	×	
Power Line Conducted Emission	15.207 (a)	×	×	

The follows is intended to leave blank.

FCC ID: V93PSD9865001

3.1 Output Power (Field Strength)

FCC Rules: 15.225 (a) (b) (c), 15.205, 15.209, 15.35 Operation within the band 13.110 - 14.010 MHz Limit

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15.848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

Measurement Results:

The field strength at 3 meter distance as $53.47~dB\mu V/m$. Extrapolated with 40dB to 30 meter distance it would be $13.47~dB\mu V/m$.

Test condition			Transmitter field strength (dBµV/m)	Limit (dBµV/m)	
	T_{nom} = 23 °C V_{nom} = 110 VAC		80.32	84	

Explanation: see attached diagrams

Test equipment used: ETSTW-RE 027, ETSTW-RE 055

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

3.2 Out of Band Radiated Emissions

(d) The field strength of any emissions appearing outside of the 13.110-14.010~MHz band shall

not exceed the general radiated emission limits in § 15.209.

Frequency of Emission (MHz)	Limit	Measurement distance
0.009 - 0.490	2400 / f (KHz)	300
0.49 - 1.705	24000 / f (KHz)	30
1.705 - 30	30	30
30 – 88	100	3
88 - 216	150	3
216 – 960	200	3
Above 960	500	3

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

Summary table with radiated data of the test plots

Operating: TX mode

Operating. The mode					
Spurious Emissions Level (dBμA/m)					
f	Level (dBµV/m)				
9.386238018 kHz	101.25				
12.179674850 kHz	99.24				
64.855680844 kHz	91.69				
1.785182688 MHz	51.13				
2.406642087 MHz	49.61				
8.438643471 MHz	42.90				
Measurement uncertainty (dB)	± 4.86dB				

Model: SD-800 Date: 2009/11/27

Mode: TX Temperature: 24 °C Engineer: Kevin

Polarization: Horizontal Humidity: 60 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
72.2044	20.21	peak	11.54	31.75	40.00	-8.25	40	150
180.4207	20.55	peak	13.61	34.16	43.50	-9.34	210	150
298.9178	24.48	peak	16.20	40.68	46.00	-5.32	190	150
330.8617	17.62	peak	16.93	34.55	46.00	-11.45	120	150
668.9380	8.97	peak	24.39	33.36	46.00	-12.64	215	150
960.7214	3.40	peak	28.71	32.11	54.00	-21.89	82	150

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
71.6633	23.77	peak	11.65	35.42	40.00	-4.58	70	150
179.8798	22.14	peak	13.67	35.81	43.50	-7.69	240	150
192.3246	22.88	peak	12.38	35.26	43.50	-8.24	350	150
330.8617	13.94	peak	16.93	30.87	46.00	-15.13	140	150
671.7435	7.45	peak	24.43	31.88	46.00	-14.12	70	150
960.7214	3.76	peak	28.71	32.47	54.00	-21.53	20	150

Operating: RX mode

Spurious Emissions Level (dBµA/m)							
f	Level (dBµV/m)						
10.038990621 kHz	102.59						
64.855680856 kHz	92.52						
2.373690121 MHz	52.00						
3.335149591 MHz	47.26						
15.765410736 MHz	42.44						
Measurement uncertainty (dB)	± 4.86dB						

Mode: RX

Polarization: Horizontal

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
71.6633	18.20	peak	11.65	29.85	40.00	-10.15	170	150
180.4207	20.55	peak	13.61	34.16	43.50	-9.34	230	150
298.9178	22.48	peak	16.20	38.68	46.00	-7.32	330	150
330.8617	17.62	peak	16.93	34.55	46.00	-11.45	40	150
668.9380	8.97	peak	24.39	33.36	46.00	-12.64	310	150
960.7214	3.40	peak	28.71	32.11	54.00	-21.89	80	150

Polarization: Vertical

1 Oldrization: Vertical								
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
72.2044	23.30	peak	11.54	34.84	40.00	-5.16	125	150
180.4207	21.68	peak	13.61	35.29	43.50	-8.21	220	150
192.3246	23.88	peak	12.38	36.26	43.50	-7.24	75	150
330.8617	13.94	peak	16.93	30.87	46.00	-15.13	40	150
671.7435	7.45	peak	24.43	31.88	46.00	-14.12	180	150
960.7214	3.76	peak	28.71	32.47	54.00	-21.53	60	150

FCC ID: V93PSD9865001

Note 1. Correction Factor = Antenna factor + Cable loss - Preamplifier

- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. See the attached diagram as appendix.

All other not noted test plots do not contain significant test results in relation to the limits Test results: The unit meet the FCC requirements.

Explanation: See attached diagrams.

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 027, ETSTW-RE 028,

ETSTW-RE 029, ETSTW-RE 042, ETSTW-RE 043

FCC ID: V93PSD9865001

3.3 Frequency tolerance

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Measurement Results:

Temperature Degrees °C	Voltage	Frequency MHz	Frequency deviation Hz	Limit Hz (0.01%)
50	110	13.560576	576	1356
40	110	13.560865	865	1356
30	110	13.560865	865	1356
20	110	13.560801	801	1356
10	110	13.560384	384	1356
0	110	13.561115	1115	1356
-10	110	13.560817	817	1356
-20	110	13.560384	384	1356

Test equipment used: ETSTW-RE 055, ETSTW-CE 009

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

3.4 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Frequency	Level (dBµV)				
Trequency	quasi-peak	average			
150 kHz	lower limit line	Lower limit line			

	Model:	SD-80	0 Da	ate:	2009/	11/25			
	Mode:		Te	mperature	: 24	$^{\circ}\mathrm{C}$	Ε	Engineer:	Rick
Po	larization:	N	F	Humidity:	60	%			
	Frequency	Rea	ding	Factor	Res	sult	Liı	nit	Margin
		(dB	uV)	(dB)	(dB	uV)	(dB	uV)	
	(MHz)	QP	Ave.	Corr.	QP	Ave.	QP	Ave.	(dB)
	0.1850	41.07	29.05	10.76	51.83	39.81	64.26	54.26	-12.43
	0.2756	32.59	21.54	10.72	43.31	32.26	60.95	50.95	-17.64
	0.3686	24.58	16.50	10.69	35.27	27.19	58.53	48.53	-21.34
	0.7222	33.73	31.11	10.54	44.27	41.65	56.00	46.00	-4.35
	3.9187	24.66	17.73	10.18	34.84	27.91	56.00	46.00	-18.09
	13.5600	35.21	33.79	10.58	45.79	44.37	60.00	50.00	-5.63

Polarization: L1

Frequency	Reading		Factor	Result		Limit		Margin
	(dB	uV)	(dB)	(dBuV)) (dBuV		
(MHz)	QP	Ave.	Corr.	QP	Ave.	QP	Ave.	(dB)
0.1882	40.76	30.33	10.77	51.53	41.10	64.12	54.12	-12.59
0.2768	31.93	21.94	10.72	42.65	32.66	60.91	50.91	-18.25
0.5424	33.66	26.75	10.65	44.31	37.40	56.00	46.00	-8.60
0.7248	35.91	33.23	10.54	46.45	43.77	56.00	46.00	-2.23
3.9726	22.82	16.39	10.21	33.03	26.60	56.00	46.00	-19.40
13.5618	36.13	34.93	10.72	46.85	45.65	60.00	50.00	-4.35

FCC ID: V93PSD9865001

Note: 1. The formula of measured value as: Test Result = Reading + Correction Factor

- 2. The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.

Limits:

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi Peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Test is not required if the sample is using a battery.

Test equipment used: ETSTW-CE 001, ETSTW-CE 003, ETSTW-CE 004, ETSTW-CE 006

Explanation: See attached diagram

FCC ID: V93PSD9865001

Appendix

- 1. Output Power Field Strength
- 2. Out of Band Radiated Emissions
- 3. Power Line Conducted Emission

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

Output Power Field Strength

MAX OUTPUT POWER

Date: 27.NOV.2009 11:23:13

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

Out of Band Radiated Emissions

TX Mode

Spurious Emission

Date: 27.NOV.2009 09:42:44

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

Spurious Emission

Date: 27.NOV.2009 11:06:04

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001 Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001 Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

RX Mode

Spurious Emission

Date: 27.NOV.2009 11:10:16

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

Spurious Emission

Date: 27.NOV.2009 11:07:56

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001 Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001 Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20911-10226-P-15

FCC ID: V93PSD9865001

Power Line Conducted Emission

LISN N

LISN L1

Up Line: QP Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of AC conducted test data of this test report.