Name:	

SEMIFINAL

Math 237 – Linear Algebra

Version 6

Choose up to 6 problems to work. Work each problem on one of the attached pages; write the standard in the upper left corner. Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_4 = -1$$

E2. Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix}$$

E3. Solve the system of equations

$$-3x + y = 2$$
$$-8x + 2y - z = 6$$
$$2y + 3z = -2$$

E4. Find a basis for the solution set to the homogeneous system of equations

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 0$$
$$x_1 + x_2 - x_3 + 5x_4 = 0$$

V1. Let V be the set of all points on the parabola $y = x^2$ with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 2x_1x_2)$$

 $c \odot (x_1, y_1) = (cx_1, c^2y_1)$

(a) Show that the vector **addition** \oplus is **associative**: $(x_1, y_1) \oplus ((x_2, y_2) \oplus (x_3, y_3)) = ((x_1, y_1) \oplus (x_2, y_2)) \oplus (x_3, y_3)$.

(b) Determine if V is a vector space or not. Justify your answer.

V2. Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$.

V3. Determine if the vectors $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 5\\-1\\-2 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\-1 \end{bmatrix}$, and $\begin{bmatrix} 0\\2\\-1 \end{bmatrix}$ span \mathbb{R}^3

V4. Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=1 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

S1. Determine if the set of vectors
$$\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$$
 is linearly dependent or linearly independent.

S2. Determine if the set
$$\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$$
 is a basis of \mathcal{P}^3 .

S3. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}2\\0\\-2\\0\end{bmatrix},\begin{bmatrix}3\\1\\3\\6\end{bmatrix},\begin{bmatrix}0\\0\\1\\1\end{bmatrix},\begin{bmatrix}1\\2\\0\\1\end{bmatrix}\right\}\right)$$
. Find a basis of W .

$$\mathbf{S4.} \quad \text{Let } W = \text{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right). \text{ Compute the dimension of } W.$$

A1. Let
$$T: \mathbb{R}^3 \to \mathbb{R}$$
 be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 + 3x_1\end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

A2. Determine if the map
$$T: \mathcal{P}^6 \to \mathcal{P}^7$$
 given by $T(f) = xf(x) - f(1)$ is a linear transformation or not.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

(a)
$$S: \mathbb{R}^2 \to \mathbb{R}^4$$
 given by the standard matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$.

(b)
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
 given by the standard matrix
$$\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 11 & -1 & 5 \end{bmatrix}$$

A4. Let
$$T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^3$$
 be the linear map given by $T\left(\begin{bmatrix} a & b \\ x & y \end{bmatrix}\right) = \begin{bmatrix} a+x \\ 0 \\ b+y \end{bmatrix}$. Compute a basis for the kernel and a basis for the image of T .

M1. Let

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 0 & 7 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

M2. Determine if the matrix
$$\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$$
 is invertible.

M3. Find the inverse of the matrix
$$\begin{bmatrix} 3 & 1 & 3 \\ 2 & -1 & -6 \\ 1 & 1 & 4 \end{bmatrix}$$
.

G1. Compute the determinant of the matrix

$$\begin{bmatrix} 1 & 3 & 2 & 4 \\ 5 & 0 & -4 & 0 \\ -2 & 3 & -1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

- **G2.** Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 2 & -3 & 2 \\ 8 & -9 & 5 \\ 8 & -7 & 3 \end{bmatrix}$.
- **G3.** Find the eigenspace associated to the eigenvalue 2 in the matrix $A = \begin{bmatrix} 0 & -2 & -1 & 0 \\ -4 & -2 & -2 & 0 \\ 14 & 12 & 10 & 2 \\ -13 & -10 & -8 & -1 \end{bmatrix}$.
- **G4.** Compute the geometric multiplicity of the eigenvalue -1 in the matrix $A = \begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -11 & 4 & -2 \end{bmatrix}$

Standard:	

Standard:	