EE 330 Lecture 30

Amplifier Biasing (a precursor)

Amplifier Characterization

- Amplifier parameters
- Two-port amplifier models
- Dependent Sources

Amplifier Biasing (precursor)

- Voltage sources V_{EE} and V_{CC} used for biasing
- Not convenient to have multiple dc power supplies
- V_{OUTQ} very sensitive to V_{EE}
- Biasing is used to obtain the desired operating point of a circuit
- Ideally the biasing circuit should not distract significantly from the basic operation of the circuit

Amplifier Biasing (precursor)

Not convenient to have multiple dc power supplies V_{OUTQ} very sensitive to V_{EE}

Single power supply Additional resistor and capacitor

Compare the small-signal equivalent circuits of these two structures

Compare the small-signal voltage gain of these two structures

Amplifier Biasing (precursor)

Compare the small-signal equivalent circuits of these two structures

Since Thevenin equivalent circuit in red circle is V_{IN} , both circuits have same voltage gain

But the load placed on V_{IN} is different

Method of characterizing the amplifiers is needed to assess impact of difference

Amplifier Biasing (a precursor)

- Amplifier Characterization
 - Amplifier parameters
 - Two-port amplifier models
 - Dependent Sources

Determine $V_{\rm OUTQ}$, $A_{\rm V}$, $R_{\rm IN}$ Assume β =100 Determine $v_{\rm OUT}$ and $v_{\rm OUT}$ (t) if $v_{\rm IN}$ =.002sin(400t)

In the following slides we will analyze this circuit

(biasing components: C, R_B , V_{CC} in this case, all disappear in small-signal gain circuit)

Several different biasing circuits can be used

dc equivalent circuit

dc equivalent circuit

$$I_{CQ} = \beta I_{BQ} = 100 \left(\frac{12V - 0.6V}{500K} \right) = 2.3mA$$

$$V_{OUTQ} = 12V - I_{CQ}R_1 = 12V - 2.3mA \cdot 2K = 7.4V$$

Determine the SS voltage gain (A_{V})

ss equivalent circuit

ss equivalent circuit

$$v_{OUT} = -g_{m}v_{BE}R_{1}$$
 $v_{IN} = v_{BE}$

$$A_{V} = -R_{1}g_{m}$$

$$A_{V} \cong -\frac{I_{CQ}R_{1}}{V_{t}}$$

$$A_{V} \cong -\frac{2.3mA \cdot 2K}{26mV} \cong -177$$

This basic amplifier structure is widely used and repeated analysis serves no useful purpose

Determine V_{OUTQ}, A_V, R_{IN}

- Here R_{IN} is defined to be the impedance facing V_{IN}
- Here any load is assumed to be absorbed into the one-port
- Later will consider how load is connected in defining R_{IN}

Determine R_{IN}

$$\mathsf{R}_\mathsf{in} = rac{oldsymbol{v}_\mathsf{IN}}{oldsymbol{i}_\mathsf{IN}}$$

$$R_{in} = R_B // r_{\pi}$$

Usually R_B>>r_π

$$R_{in} = R_B / / r_{\pi} \cong r_{\pi}$$

$$\mathsf{R}_{\mathsf{in}} \cong r_{\pi} = \frac{\mathsf{I}_{\mathsf{CQ}}}{\mathsf{\beta} \mathsf{V}_{\mathsf{t}}}$$

Determine v_{OUT} and v_{OUT} (t) if v_{IN} =.002sin(400t)

$$oldsymbol{v}_{\!\scriptscriptstyle \mathsf{OUT}} = \mathsf{A}_{\scriptscriptstyle \mathsf{V}} oldsymbol{v}_{\!\scriptscriptstyle \mathsf{IN}}$$

$$V_{\text{OUT}} = -177 \bullet .002 \sin(400t) = -0.354 \sin(400t)$$

$$V_{OUT}(t) \cong V_{OUTQ} + A_{V} V_{IN}$$

$$V_{OUT} \cong 7.4V - 0.35 \bullet \sin(400t)$$

Amplifier Biasing (a precursor)

- Amplifier Characterization
 - Amplifier parameters
 - Two-port amplifier models
 - Dependent Sources

Two-Port Representation of Amplifiers

- Two-port model representation of amplifiers useful for insight into operation and analysis
- Internal components to the two-port can be quite complicated but equivalent two-port model is quite simple

Two-port representation of amplifiers

Amplifiers can be modeled as a two-port for small-signal operation

In terms of y-parameters

Other parameter sets could be used

- Amplifier often unilateral (signal propagates in only one direction: wlog y₁₂=0)
- One terminal is often common

Two-port representation of amplifiers

Unilateral amplifiers:

- Thevenin equivalent output port often more standard
- R_{IN}, A_V, and R_{OUT} often used to characterize the two-port of amplifiers

Unilateral amplifier in terms of "amplifier" parameters

$$R_{IN} = \frac{1}{y_{11}}$$
 $A_{V} = -\frac{y_{21}}{y_{22}}$ $R_{OUT} = \frac{1}{y_{22}}$

Amplifier input impedance, output impedance and gain are usually of interest Why?

Example 1: Assume amplifier is <u>unilateral</u>

- Can get gain without reconsidering details about components internal to the Amplifier !!!
- Analysis more involved when not unilateral

Amplifier input impedance, output impedance and gain are usually of interest Why?

Example 2: Assume amplifiers are unilateral

- Can get gain without reconsidering details about components internal to the Amplifier !!!
 - Analysis more involved when not unilateral

Two-port representation of amplifiers

- Amplifier usually unilateral (signal propagates in only one direction: wlog y₁₂=0)
- One terminal is often common
- "Amplifier" parameters often used

- Amplifier parameters can also be used if not unilateral
- One terminal is often common

y parameters

Amplifier parameters

Determination of small-signal model parameters:

In the past, we have determined small-signal model parameters of electronic devices from the nonlinear port characteristics

$$\begin{vmatrix} \mathbf{I_1} = \mathbf{f_1}(\mathbf{V_1}, \mathbf{V_2}) \\ \mathbf{I_2} = \mathbf{f_2}(\mathbf{V_1}, \mathbf{V_2}) \end{vmatrix} \mathbf{y_{ij}} = \frac{\partial \mathbf{f_i}(\mathbf{V_1}, \mathbf{V_2})}{\partial \mathbf{V_j}} \Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_0}$$

- Will now determine small-signal model parameters for two-port comprised of linear networks (instead of just electronic devices)
- Could go back to the nonlinear models and analyze as we did for electronic devices
- Will follow a different approach (results are identical) that is often much easier

Two-Port Equivalents of Interconnected Two-ports

Example:

- could obtain two-port in any form
- often obtain equivalent circuit w/o identifying independent variables
- Unilateral iff $A_{VR}=0$ (or if $A_{V}=0$ though would probably relabel ports)
- Thevenin-Norton transformations can be made on either or both ports

Two-Port Equivalents of Interconnected Two-ports

Example:

Two-Port Equivalents of Interconnected Two-ports

$$\boldsymbol{v}_1 = \boldsymbol{i}_1 \boldsymbol{R}_{in} + \boldsymbol{A}_{VR} \boldsymbol{v}_2$$

 $\boldsymbol{v}_2 = \boldsymbol{i}_2 \boldsymbol{R}_0 + \boldsymbol{A}_{VO} \boldsymbol{v}_1$

Or equivalently

$$\mathbf{i}_{1} = \mathbf{v}_{1} \left(\frac{1}{\mathsf{R}_{in}} \right) + \mathbf{v}_{2} \left(\frac{-\mathsf{A}_{\mathsf{VR}}}{\mathsf{R}_{in}} \right)$$

$$\mathbf{i}_{2} = \mathbf{v}_{1} \left(\frac{-\mathsf{A}_{\mathsf{VO}}}{\mathsf{R}_{0}} \right) + \mathbf{v}_{2} \left(\frac{1}{\mathsf{R}_{0}} \right)$$

(One method will be discussed here)

A method of obtaining R_{in}

Terminate the output in a short-circuit

$$\begin{array}{c}
\mathbf{i}_{1} = \mathbf{v}_{1} \left(\frac{1}{\mathsf{R}_{in}}\right) + \mathbf{v}_{2} \left(\frac{-\mathsf{A}_{\mathsf{VR}}}{\mathsf{R}_{in}}\right) \\
\mathbf{i}_{2} = \mathbf{v}_{1} \left(\frac{-\mathsf{A}_{\mathsf{VO}}}{\mathsf{R}_{0}}\right) + \mathbf{v}_{2} \left(\frac{1}{\mathsf{R}_{0}}\right)
\end{array}$$

$$\begin{array}{c}
\mathbf{v}_{2} = 0 \\
\mathbf{v}_{1} = \mathbf{v}_{\mathsf{test}} \\
\mathbf{i}_{1} = \mathbf{i}_{\mathsf{test}}
\end{array}$$

$$\begin{array}{c}
\mathbf{v}_{\mathsf{test}} \\
\mathbf{v}_{\mathsf{test}}
\end{array}$$

A method of obtaining A_{V0}

Terminate the output in an open-circuit

$$\frac{\mathbf{i}_{1} = \mathbf{v}_{1} \left(\frac{1}{\mathsf{R}_{in}}\right) + \mathbf{v}_{2} \left(\frac{-\mathsf{A}_{\mathsf{VR}}}{\mathsf{R}_{in}}\right)}{\mathbf{i}_{2} = \mathbf{v}_{1} \left(\frac{-\mathsf{A}_{\mathsf{VO}}}{\mathsf{R}_{0}}\right) + \mathbf{v}_{2} \left(\frac{1}{\mathsf{R}_{0}}\right)}$$

$$\mathbf{v}_{1} = \mathbf{v}_{\mathsf{test}}$$

$$\mathbf{v}_{2} = \mathbf{v}_{\mathsf{out-test}}$$

$$\mathbf{v}_{2} = \mathbf{v}_{\mathsf{out-test}}$$

A method of obtaining R₀

Terminate the input in a short-circuit

$$\mathbf{i}_{1} = \mathbf{v}_{1} \left(\frac{1}{\mathsf{R}_{in}} \right) + \mathbf{v}_{2} \left(\frac{-\mathsf{A}_{\mathsf{VR}}}{\mathsf{R}_{in}} \right) \\
\mathbf{i}_{2} = \mathbf{v}_{1} \left(\frac{-\mathsf{A}_{\mathsf{VO}}}{\mathsf{R}_{0}} \right) + \mathbf{v}_{2} \left(\frac{1}{\mathsf{R}_{0}} \right)$$

$$\mathbf{R}_{0} = \frac{\mathbf{v}_{\mathsf{test}}}{\mathbf{i}_{\mathsf{test}}}$$

Terminate the input in an open-circuit

$$\begin{array}{c}
\mathbf{i}_{1} = \mathbf{v}_{1} \left(\frac{1}{\mathsf{R}_{in}} \right) - \mathbf{v}_{2} \left(\frac{\mathsf{A}_{\mathsf{VR}}}{\mathsf{R}_{in}} \right) \\
\mathbf{i}_{2} = \mathbf{v}_{1} \left(\frac{-\mathsf{A}_{\mathsf{VO}}}{\mathsf{R}_{0}} \right) + \mathbf{v}_{2} \left(\frac{1}{\mathsf{R}_{0}} \right)
\end{array}$$

$$\begin{array}{c}
\mathbf{i}_{1} = 0 \\
\mathbf{v}_{\mathsf{tost}}
\end{array}$$

$$\begin{array}{c}
\mathbf{i}_{1} = 0 \\
\mathbf{v}_{\mathsf{tost}}$$

Determination of Amplifier Two-Port Parameters

- Input and output parameters are obtained in exactly the same way, only distinction is in the notation used for the ports.
- Methods given for obtaining amplifier parameters R_{in} , R_{OUT} and A_{V} for unilateral networks are a special case of the non-unilateral analysis by observing that A_{VR} =0.
- In some cases, other methods for obtaining the amplifier paramaters are easier than what was just discussed

Determine V_{OUTQ} and the SS voltage gain (A_V) , assume β =100

(A_V is one of the small-signal model parameters for this circuit)

Determine V_{OUTQ} and the SS voltage gain (A_V) , assume β =100

(A_V is one of the small-signal model parameters for this circuit)

dc equivalent circuit

Determine V_{OUTO}

dc equivalent circuit

This circuit is most practical when $I_B << I_{BB}$ With this assumption,

$$V_{B} = \left(\frac{R_{B2}}{R_{B1} + R_{B2}}\right) 12V$$

$$I_{CQ} = I_{EQ} = \left(\frac{V_{B} - 0.6V}{R_{1}}\right) = \frac{1.4V}{.5K} = 2.8mA$$

$$V_{OUTQ} = 12V - I_{CQ}R_{1} = 6.4V$$

Note: This Q-point is nearly independent of the characteristics of the nonlinear BJT!

This voltage gain is nearly independent of the characteristics of the nonlinear BJT!

This is a fundamentally different amplifier structure

It can be shown that this is slightly non-unilateral

Determine SS voltage gain

$$egin{align*} oldsymbol{v}_{\scriptscriptstyle OUT} = - \mathsf{g}_{\scriptscriptstyle \mathsf{m}} oldsymbol{v}_{\scriptscriptstyle \mathsf{BE}} \mathsf{R}_2 \ oldsymbol{v}_{\scriptscriptstyle IN} = oldsymbol{v}_{\scriptscriptstyle \mathsf{BE}} + \mathsf{R}_{\scriptscriptstyle \mathsf{1}} ig(oldsymbol{v}_{\scriptscriptstyle \mathsf{BE}} ig[\mathsf{g}_{\scriptscriptstyle \pi} + \mathsf{g}_{\scriptscriptstyle \mathsf{m}} ig] ig) \end{aligned}
ight.$$

$$A_{V} = \frac{-R_{2}g_{m}v_{BE}}{v_{BE} + R_{1}(v_{BE}[g_{\pi} + g_{m}])} = \frac{-R_{2}g_{m}}{1 + R_{1}([g_{\pi} + g_{m}])}$$

$$A_{V} \approx \frac{-R_{2}g_{m}}{R_{1}g_{m}} = \frac{-R_{2}}{R_{1}} = -4$$

End of Lecture 30