FUNDAMENTOS MATEMÁTICOS PARA COMPUTAÇÃO

Definições Recorrentes

SUMÁRIO

- > Definições Recorrentes
- > Sequências
- > Conjuntos
- > Operações
- > Algoritmos

Definições Recorrentes

- Definição recorrente: o item definido aparece como parte da definição.
- Definição recorrente ou definição por recorrência ou definição recursiva.

nacadeiaalimentar(X, Y) <= seAlimenta(X, Y)</pre>

nacadeiaalimentar(X, Y) <=

seAlimenta(X, Z) e nacadeiaalimentar(Z, Y)

Sequência: lista de objetos que são numerados em determinada ordem.

Sequência definida por recorrência:

- Define-se o primeiro ou alguns valores iniciais.
- Define-se valores subsequentes em termos de valores anteriores.

Exemplo: Escreva os cinco primeiros valores

- 1. T(1) = 1
- 2. $T(n) = T(n 1) + 3 para n \ge 2$

Exemplo: Escreva os cinco primeiros valores

1.
$$T(1) = 1$$

2.
$$T(n) = T(n - 1) + 3 para n \ge 2$$

$$T(1) = 1$$
 $T(4)=T(4-1)+3$
 $T(2)=T(2-1)+3$ $=T(3)+3$
 $=T(1)+3$ $= 7+3=10$
 $= 1+3=4$ $T(5)=T(5-1)+3$
 $=T(3)=T(3-1)+3$ $=T(4)+3$
 $=T(2)+3=4+3=7$ $=10+3=13$

Sequência de Fibonacci:

Introduzida no século XIII por Leonardo Fibonacci.

1.
$$F(1) = 1$$

2.
$$F(2) = 1$$

3.
$$F(n) = F(n-2) + F(n-1)$$
 para $n > 2$
 $F(3)=F(1)+F(2)=2$
 $F(4)=F(2)+F(3)=3$
 $F(5)=F(3)+F(4)=5$
 $F(6)=F(4)+F(5)=8$

1170-1250

Exemplo:

```
Prove que
  F(n + 4) = 3F(n + 2) - F(n) para todo n \ge 1
na sequência de Fibonacci.
Dem: Por indução
n=1:
                         n=2:
F(1+4)=3F(1+2)-F(1)
                         F(2+4)=3F(2+2)-F(2)
     F(5)=3F(3)-F(1)
                              F(6)=3F(4)-F(2)
        5=3(2)-1
                                 8=3(3)-1
        5=5 Ok
                                 8=8 Ok
```

Exemplo:

```
Prove que
  F(n + 4) = 3F(n + 2) - F(n) para todo n \ge 1
na sequência de Fibonacci.
Dem: Por indução
n=k: F(k+4)=3F(k+2) - F(k) Hipótese de Indução
Provar para n=k+1
     F(k+1+4)=3F(k+1+2) - F(k+1)
     F(k+5)=3F(k+3) - F(k+1)
```

```
Dem: Por indução
n=k: F(k+4)=3F(k+2) - F(k) Hipótese de Indução
Provar para n=k+1
 F(k+5)=3F(k+3) - F(k+1)
 F(k+5)=F(k+3)+F(k+4) Fibonacci
       =F(k+3)+3F(k+2)-F(k) Hip. Indução
       =3F(k+1)-F(k-1) + 3F(k+2)-F(k) Hip. Indução
       =3F(k+1)+3F(k+2)-F(k-1)-F(k)
       =3(F(k+1)+F(k+2))-(F(k-1)+F(k)) Fibonacci
       =3F(k+3)-F(k+1) Fibonacci
Logo, F(k+5) = 3F(k+3)-F(k+1)
```

Exemplo: Prove que F(n + 4) = 3F(n + 2) – F(n) para todo n ≥ 1 na sequência de Fibonacci.

Dem: Demonstração usando apenas Fibonacci

$$F(n+4)=F(n+2)+F(n+3)$$

$$=F(n+2)+F(n+2)+F(n+1)$$

$$=F(n+2)+F(n+2)+F(n-1)+F(n)$$

$$F(n+1)=F(n-1)+F(n) \Leftrightarrow F(n-1)=F(n+1)-F(n)$$

$$F(n+4)=F(n+2)+F(n+2)+F(n+1)-F(n)+F(n)$$

$$=F(n+2)+F(n+2)+F(n+2)-F(n)$$

$$=3F(n+2)-F(n)$$

Conjuntos

- Os objetos em uma sequência são ordenados
- Um conjunto de objetos é uma coleção na qual não há nenhuma ordem imposta.
- Alguns conjuntos podem ser definidos por recorrência.

Conjuntos

Exemplo:

- 1. Qualquer letra de proposição é uma fbf.
- 2. Se P e Q são fbfs, então (P ∧ Q), (P ∨ Q),

 $(P \rightarrow Q)$, (P') e $(P \leftrightarrow Q)$ também são.

A, B e C são fbfs pela regra 1.

Pela regra 2, temos: (A ∧ B), C'

Pela regra 2 novamente:(A ∧ B)→ C'

Pela regra 2 novamente: ((A ∧ B)→ C')'

Conjuntos

Exemplo: Considere a definição recorrente

- 1. A cadeia vazia λ (a cadeia sem símbolo) pertence a A*.
- 2. Um único elemento qualquer de A pertence a A*.
- 3. Se x e y são cadeias em A*, então a concatenação xy de x e y também pertence a A*.

Dada uma cadeia x, temos: λx=xλ=x

Se x = 1011 e y = 001, temos

 $xy=1011001 yx=0011011 yx\lambda x=0011011$

Operações

Exemplo: Considere a definição recorrente abaixo para a operação de potenciação aⁿ, onde a é um número real não nulo e n é um inteiro não negativo

1.
$$a^0 = 1$$

2. $a^n = (a^{n-1})a para $n \ge 1$$

Logo,
$$2^3=2.(2.(2.(2.(2^0)))$$

 $2^3=2.(2^{3-1})=2.(2^2)$ $=2.(2.(2.(1)))$)
 $=2.(2.(2^{2-1}))=2.(2.(2^1))$ $=2.(2.(2))$
 $=2.(2.(2^{1-1}))=2.(2.(2.(2^0)))$ $=2.(4)=8$

Operações

Exemplo:

```
    m(1) = m
    m(n) = m(n-1) + m para n ≥ 2 m(4)
```

definição recorrente para a multiplicação de dois inteiros positivos m e n.

$$m(4)=m(4-1)+m$$
 $m(4)=((m(1)+m)+m)+m$
 $=m(3)+m$ $=((m+m)+m)+m$
 $=(m(2)+m)+m$ $=(2m+m)+m$
 $=((m(1)+m)+m)+m$ $=3m+m$
 $=4m$

Exemplo: Algoritmo Iterativo

Soma(inteiro n)

```
1. s=0
```

s=0+1=1

2. Para i de 1 até n faça

Linha 3

```
3. s=s+i
```

```
retorna s
                   i=2
                            Linha 2
                                      i=5
                                                  Linha 2
                   s=1+2=3 Linha 3
                                      s=10+5=15
                                                  Linha 3
                            Linha 2
                                     i=6
                                                  Linha 2
                   i=3
n=5
                   s=3+3=6 Linha 3 s=15
                                                  Linha 4
s=0
         Linha 1
                            Linha 2
                   i=4
         Linha 2
i=1
```

s=6+4=10 Linha 3

Exemplo:

Soma(inteiro n)

- 1. Se n<=1 então
- 2. retorna n
- 3. Senão
- 4. retorna Soma(n-1) + n

- Desvantagens da Recursão
 - Gera sobrecarga (overhead) com as chamadas de função, gerando gasto de tempo de processamento e espaço de memória.
 - Uma cópia da função (variáveis da função) é criada, consumindo memória.
 - Logo, a iteração tende a ser mais rápida por não fazer repetidas chamadas de funções.

Recursão	Iteração
Estruturas condicionais	Estruturas de repetição
Repetição implícita	Repetição explícita
Caso base como critério de parada	Condição com critério de parada
Lento	Rápido
Solução simples	Solução complexa
Fácil manutenção	Difícil Manutenção

Quando usar Recursão ou Iteração? Os conceitos e exemplos apresentados nesses slides são baseados no conteúdo da seção 3.1 do material-base "Fundamentos Matemáticos para a Ciência da Computação", J.L. Gersting, 7a edição, LTC editora.

FUNDAMENTOS MATEMÁTICOS PARA COMPUTAÇÃO

Definições Recorrentes