

Group 2 Jamal Warida Mustafa Ahmed Kyle W. Brown Sujeet Shrestha

Vehicle Recognition using Single-Shot Detection for Autonomous Implementation.

Overview

- Single-Shot Detection (SSD)
- Model
- Training
- Experiments
- Related Work
- Developing Applications
- Conclusion

Objective: Identify vehicles in nighttime, snowy, and drone YouTube videos using SSD's bounding boxes for vehicle recognition.

Introduction

- Current state-of-the-art object detection systems are variants of the following approach:
 - Hypothesize bounding boxes
 - Resample pixels or features for each box
 - Applying a high-quality classifier
- Approaches are computationally intensive for embedded systems.
- Too slow for real-time applications.

Single Shot Detection (SSD)

- **SSD**, is a single-shot detector for multiple categories that is faster than the previous state-of-the-art for single shot detectors (YOLO).
 - The core of SSD is predicting category scores and box offsets for a fixed set of default bounding boxes using small convolutional filters applied to feature maps.
 - To achieve high detection accuracy, predictions of different scales are produced from feature maps of different scales, then predictions are separated by aspect ratio.

Model

Multi-scale feature maps

 Convolutional feature layers are added to the end of the network which decrease in size and allow predictions of detections at multiple scales

Convolutional predictors

 Bounding box offset output values are measured relative to a default box position relative to each feature map location.

Default Boxes and aspect Ratios

Training

The overall objective loss function is a weighted sum of the localization loss (loc) and the confidence loss (conf):

$$L(x,c,l,g) = \frac{1}{N} (L_{conf}(x,c) + \alpha L_{loc}(x,l,g))$$
(1)

The overall objective loss function is a weighted sum of the localization loss (loc) and the confidence loss (conf): N

$$L_{loc}(x, l, g) = \sum_{i \in Pos} \sum_{m \in \{cx, cy, w, h\}} x_{ij}^{k} \operatorname{smooth}_{L1}(l_{i}^{m} - \hat{g}_{j}^{m})$$

$$\hat{g}_{j}^{cx} = (g_{j}^{cx} - d_{i}^{cx})/d_{i}^{w} \qquad \hat{g}_{j}^{cy} = (g_{j}^{cy} - d_{i}^{cy})/d_{i}^{h}$$

$$\hat{g}_{j}^{w} = \log\left(\frac{g_{j}^{w}}{d_{i}^{w}}\right) \qquad \hat{g}_{j}^{h} = \log\left(\frac{g_{j}^{h}}{d_{i}^{h}}\right)$$
(2)

where N is the number of matched default boxes. If N = 0, wet set the loss to 0. The localization loss is a Smooth L1 loss between the predicted box (l) and the ground truth box (g) parameters.

Training

The confidence loss is the softmax loss over multiple classes confidences (c).

$$L_{conf}(x,c) = -\sum_{i \in Pos}^{N} x_{ij}^{p} log(\hat{c}_{i}^{p}) - \sum_{i \in Neg} log(\hat{c}_{i}^{0}) \quad \text{where} \quad \hat{c}_{i}^{p} = \frac{\exp(c_{i}^{p})}{\sum_{p} \exp(c_{i}^{p})} \quad (3)$$

Suppose we want to use *m* feature maps for prediction. The scale of the default boxes for each feature map is computed as:

$$s_k = s_{\min} + \frac{s_{\max} - s_{\min}}{m - 1} (k - 1), \quad k \in [1, m]$$
 (4)

where S_{\min} is 0.2 and S_{\max} is 0.9, meaning the lowest layer has a scale of 0.2 and the highest layer has a scale of 0.9, and all layers in between are regularly spaced.

Experiments

- Bounding boxes to identify vehicles from YouTube videos.
- Experiments designed to test vehicle recognition using SSD to identify vehicles.
- Experiments include:
 - Identifying moving and parked vehicles in snowy conditions.
 - Using bounding boxes to identify vehicles in nighttime video.
 - Drone videos of vehicles moving and parked.

Snowy Experiments

Parked Vehicles

Distance	Total Vehicles	Identified Vehicles	Accuracy
< 10 ft	25	4	16%

Moving Vehicles

Distance	Total Vehicles	Identified Vehicles	Accuracy
< 5 ft	9	4	44 %

Night Time Experiment

Moving Vehicles

Distance	Total Vehicles	Identified Vehicles	Accuracy
< 10 ft	14	6	43 %

Drone Experiments

Moving Vehicles

Distance	Total Vehicles	Identified Vehicles	Accuracy
> 50 ft	17	3	18 %

Parked Vehicles

Distance	Total Vehicles	Identified Vehicles	Accuracy
< 15 ft	28	23	82 %

Related Work

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

- SSD300 is the only real-time detection method that can achieve above 70% mAP.
- When using a larger input image, SSD512 outperforms all methods on accuracy while maintaining a near real-time speed.

12

Developing Applications

- Autonomous
 - ADAS
- Military
 - Transportation
 - Bomb disposal
 - Drones
 - Emergency & Rescue
 - Object detection & tracking

Conclusion

- Discussed SSD, a fast-single shot detector for multiple categories.
- Introduced state-of-the-art related work using SSD for vehicle recognition using YouTube videos.
- Experiments
 - Snowy conditions:
 - Nighttime conditions:
 - Drone videos

Experiment	Accuracy
Snowy -Parked	16%
Snowy - Moving	44%
Nighttime	43%
Drone - Moving	18%
Drone - Parked	82%

 New and developing technology with many potential military, rescue, and autonomous applications.

Any Questions or Comments?

