Instructions on How to Run This Code

This notebook is designed for the **Al Jord** team at the **Centre for Genomic Regulation**. All components in this repository operate within a *Virtual Machine* (either Docker or Singularity), ensuring consistent functionality regardless of when or where it is downloaded, as long as the working directory is the root of this repository.

Accessing the HPC Cluster

To access the HPC Cluster, you may require assistance from **Emyr James**, the head of Scientific IT as of 2024-2025. COntact him first to grant you access to the cluster and then follow these steps to set you up:

- 1. (Optional for external access) Install Forticlient VPN:
 - Select Add New Connection and choose SSL-VPN.
 - Set https://vpn.crg.es:10000/sslvpn/ as the Remote Gateway.
 - Use your CRG credentials for the *Username* and *Password*.
- 2. SSH Client Setup:
 - For *MacOS* or *Linux*, open Terminal and run: ssh login1.hpc.crg.es -1 <your-CRG-username> Enter your CRG password when prompted.
 - For Windows, open Powershell or Terminal as Administrator and run:

```
wsl --install
wsl --set-default-version 2
wsl --install Ubuntu-20.04
Follow the installation steps for Ubuntu. Then, run:
ssh login1.hpc.crg.es -1 <your-CRG-username>
Enter your CRG password when prompted.
```

You will now be in your personal folder within the lab team directory.

Download the Repository

Clone the repository to your HPC folder:

```
git clone https://github.com/andresgordoortiz/24CRG_ADEL_MANU_00CYTE_SPLICING.git cd 24CRG_ADEL_MANU_00CYTE_SPLICING
```

Explore the repository's folders:

ls

Note: These folders correspond to those in *Isilon*. Files can be uploaded or downloaded through Isilon as needed.

Running the Analysis

Run the following pipelines to execute the complete analysis, from downloading samples to generating the final report and Excel tables:

Important: you must pass a suitable VASTDB database as absolute path to run the pipelines sbatch workflows/full_processing_pipeline_fmndko.sh /users/mirimia/projects/vast-tools/VASTDB sbatch workflows/full_processing_pipeline_pladb.sh /users/mirimia/projects/vast-tools/VASTDB sbatch workflows/full_processing_pipeline_spire.sh /users/mirimia/projects/wast-tools/VASTDB sbatch workflows/full_processing_pipeline_spire.sh /users/mirimia/projects/wast-tools/VASTDB sbatch workflows/full_processing_pipeline_spire.sh /users/mirimia/projects/wast-tools/VASTDB sbatch workflows/full_processing_pipeline_spire.sh /users/mirimia/projects/wast-tools/VASTDB sbatch workflows/full_processing_pipeline_spire.sh /users/mirimia/projects/wast-tools/wast-tools/wast-tools/wast-tools/wast-tools/wast-tools/wast-tools/wast-tools/wast-tools/wast-tools/w

Important: Ensure the workflow is provided with a valid path to the VASTDB database. The code above should run smoothly since Manu keeps a copy of it in his folder but, if not available, download the Mm2 database as follows:

```
# This wll download the VASTDB for the mouse assembly.
mkdir VASTDB
wget https://vastdb.crg.eu/libs/vastdb.mm2.23.06.20.tar.gz
tar -xzvf vastdb.mm2.23.06.20.tar.gz -C VASTDB
```

And then run the pipelines with the new VASTDB:

sbatch workflows/full_processing_pipeline_fmndko.sh \$(pwd)/VASTDB
sbatch workflows/full_processing_pipeline_pladb.sh \$(pwd)/VASTDB
sbatch workflows/full_processing_pipeline_spire.sh \$(pwd)/VASTDB

After a few hours the analysis should finish, but you can check the estatus of your query using:

```
squeue -u <your-CRG-user>
```

After it has finished, run the R Report (it will take an hour or so)

sbatch scripts/R/run_notebook.sh

Signed: Andrés Gordo Ortiz