L. Mereu – A. Nanni Successioni numeriche

1. Limite di una successione

Definizione di successione

Una successione è una funzione reale che ha come dominio l'insieme dei numeri naturali:

$$f: \mathbb{N} \to \mathbb{R} / n \to f(n) = a_n$$

La successione di termini $a_1, a_2, ..., a_n, ...$ viene indicata con il simbolo $\{a_n\}$.

Si dice che la successione $\{a_n\}$ converge verso il limite l e si scrive:

$$\lim_{n\to+\infty}a_n=l$$

se, fissato comunque un numero positivo ε , esiste in corrispondenza di esso un $n_{\varepsilon} \in \mathbb{N}$ tale che per i termini a_n con $n>n_{\mathcal{E}}$ sia verificata la disuguaglianza

$$|a_n - l| < \mathcal{E}$$

Si dice che la successione $\{a_n\}$ diverge positivamente e si scrive:

$$\lim_{n\to+\infty}a_n=+\infty$$

 $\lim_{n\to +\infty}a_n=+\infty$ se, fissato comunque un numero positivo k, i termini a_n della successione divengono più grandi di k:

$$a_n > k$$

da un certo n_k in poi, cioè per $n>n_k$.

Si dice che la successione $\{a_n\}$ diverge negativamente e si scrive:

$$\lim_{n\to+\infty}a_n=-\infty$$

se, fissato comunque un numero positivo k, i termini a_n della successione divengono inferiori a -k:

$$a_n < -k$$

da un certo n_k in poi, cioè per $n>n_k$.

Le successioni convergenti e quelle divergenti, sia positivamente che negativamente, si dicono regolari.

Le successioni che non sono né convergenti né divergenti , a $+\infty$ o a $-\infty$, si dicono **indeterminate** o irregolari.