Equivalencia lógica y aplicaciones

Clase 02

IIC 1253

Prof. Cristian Riveros

Proposiciones

Una proposición es una afirmación que puede ser:

Conectivos lógicos

р	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

Estos conectivos los usamos para crear proposiciones compuestas

Variables y formulas

Una variable proposicional p es una variable que puede ser reemplazada por los valores 1 o 0.

Una formula proposicional α es una formula que puede ser:

- 1. una variable proposicional,
- 2. los valores 1 o 0, o
- la negación (¬), conjunción (∧), disyunción (∨), condicional (→), bicondicional (↔) de formulas proposicionales.

Sea $\alpha(p_1,\ldots,p_n)$ una formula con variables p_1,\ldots,p_n y v_1,\ldots,v_n una secuencia de valores 1 o 0.

Valuaciones (o asignación de verdad)

Una valuación (o asignación de verdad) $\alpha(v_1, \ldots, v_n)$ es el valor de verdad que resulta al considerar α como una proposición y p_1, \ldots, p_n como proposiciones atómicas con valores de verdad v_1, \ldots, v_n , respectivamente.

Ejemplos

Si $\alpha(p,q,r) := p \wedge (q \rightarrow r)$ y $\beta(p,q) := (p \wedge \neg q) \vee (\neg p \wedge 1)$, entonces:

- $\alpha(1,0,1) = 1$
- $\alpha(0,0,0) = 0$
- $\beta(0,1) = 1$

Ejemplo (Tabla de verdad)

Para la formula $\alpha(p,q,r) \coloneqq (\neg p \lor q) \land r$ tenemos

p	q	r	$(\neg p \lor q) \land r$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Esta tabla se conoce como la **tabla de verdad** de la formula $\alpha(p,q,r)$.

¿qué ocurre si dos formulas tienen la misma tabla de verdad?

Outline

Equivalencia lógica

Aplicación

Outline

Equivalencia lógica

Aplicación

Equivalencia lógica entre formulas

Definición

Sean $\alpha(p_1, \ldots, p_n)$ y $\beta(p_1, \ldots, p_n)$ dos formulas proposicionales con las mismas variables proposicionales.

Decimos que α y β son lógicamente equivalentes:

$$\alpha \equiv \beta$$

si **para toda valuación** v_1, \ldots, v_n se cumple que:

$$\alpha(\mathbf{v}_1,\ldots,\mathbf{v}_n)=\beta(\mathbf{v}_1,\ldots,\mathbf{v}_n)$$

¿qué propiedad tienen que cumplir las tablas de verdad de α y β para que α y β sean lógicamente equivalentes?

Equivalencia entre formulas

Ejemplo

Para las formulas $p \land (q \lor r)$ y $(p \land q) \lor (p \land r)$:

p	q	r	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Como ambas formulas son equivalentes para toda valuación, entonces:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

Podemos demostrar varias equivalencias útiles de esta manera.

Las siguientes formulas son lógicamente equivalentes :

1. Conmutatividad:

$$p \wedge q \equiv q \wedge p$$

 $p \vee q \equiv q \vee p$

2. Asociatividad:

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

 $p \vee (q \vee r) \equiv (p \vee q) \vee r$

Las siguientes formulas son lógicamente equivalentes:

3. Idempotente:

$$p \wedge p \equiv p$$
 $p \vee p \equiv p$

4. Doble negación:

$$\neg \neg p \equiv p$$

Las siguientes formulas son lógicamente equivalentes:

5. Distributividad:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

Demostraci	ón					
	р	q	r	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$	
	0	0	0	0	0	
	0	0	1	0	0	
	0	1	0	0	0	
	0	1	1	0	0	
	1	0	0	0	0	
	1	0	1	1	1	
	1	1	0	1	1	
	1	1	1	1	1	

Las siguientes formulas son lógicamente equivalentes:

5. Distributividad:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

 $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

6. De Morgan:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

Demostración

р	q	$\neg(p \land q)$	$\neg p \lor \neg q$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Las siguientes formulas son lógicamente equivalentes:

7. Implicación:

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

8. Absorción:

$$p \lor (p \land q) \equiv p$$

 $p \land (p \lor q) \equiv p$

Las siguientes formulas son lógicamente equivalentes:

9. Identidad:

$$p \lor 0 \equiv p$$

 $p \land 1 \equiv p$

10. Dominación:

$$\begin{array}{ccc} \rho \wedge 0 & \equiv & 0 \\ \rho \vee 1 & \equiv & 1 \end{array}$$

Demuestre las equivalencias lógicas anteriores.

Tautología y contradicciones

Definición

Decimos que una formula $\alpha(p_1, \ldots, p_n)$ es:

• una tautología si para toda valuación v_1, \ldots, v_n se tiene que:

$$\alpha(v_1,\ldots,v_n) = 1$$

una contradicción si para toda valuación v_1, \ldots, v_n se tiene que

$$\alpha(v_1,\ldots,v_n) = 0$$

¿qué propiedad tiene que cumplir la **tabla de verdad** de $\alpha(p_1, \ldots, p_n)$ para que α sea una tautología o una contradicción?

Tautología y contradicciones

Definición

Decimos que una formula $\alpha(p_1, \ldots, p_n)$ es:

• una tautología si para toda valuación v_1, \ldots, v_n se tiene que:

$$\alpha(v_1,\ldots,v_n) = 1$$

lacktriangle una contradicción si para toda valuación v_1,\ldots,v_n se tiene que

$$\alpha(v_1,\ldots,v_n) = 0$$

¿cuáles formulas son tautologías/contradicciones?

- $p \lor \neg p$
- p ∧ ¬p
- $(p \leftrightarrow p) \rightarrow p$

Definición

Sean $\alpha(p_1, \ldots, p_n)$ y β_1, \ldots, β_n formulas proposicionales.

La **composición** $\alpha(\beta_1, \dots, \beta_n)$ es la formula resultante de reemplazar en α cada aparición de la variable p_i por la formula β_i para todo $i \leq n$.

Ejemplo

- $\alpha(p,q) := p \wedge (q \vee \neg p)$
- $\beta_1(r,s) := (r \land \neg s)$
- $\beta_2(t,u) := (t \rightarrow u)$

$$\alpha(\beta_1(r,s),\beta_2(t,u)) := (r \land \neg s) \land ((t \rightarrow u) \lor \neg (r \land \neg s))$$

Definición

Sean $\alpha(p_1,\ldots,p_n)$ y $\beta_1,\ldots\beta_n$ formulas proposicionales.

La **composición** $\alpha(\beta_1,\ldots,\beta_n)$ es la formula resultante de reemplazar en α cada aparición de la variable p_i por la formula β_i para todo $i \leq n$.

Teorema

Sean $\alpha(p_1,\ldots,p_n)$, $\alpha'(p_1,\ldots,p_n)$ y β_1,\ldots,β_n formulas proposicionales.

Si
$$\alpha(p_1,\ldots,p_n)\equiv\alpha'(p_1,\ldots,p_n)$$
, entonces $\alpha(\beta_1,\ldots,\beta_n)\equiv\alpha'(\beta_1,\ldots,\beta_n)$.

¿qué implicación tiene este teorema para las equivalencias útiles?

Teorema

Sean $\alpha(p_1,\ldots,p_n)$, $\alpha'(p_1,\ldots,p_n)$ y β_1,\ldots,β_n formulas proposicionales.

Si $\alpha(p_1,\ldots,p_n)\equiv\alpha'(p_1,\ldots,p_n)$, entonces $\alpha(\beta_1,\ldots,\beta_n)\equiv\alpha'(\beta_1,\ldots,\beta_n)$.

Demostración

Sean $\alpha(p,q)$, $\alpha'(p,q)$, $\beta_1(r,s)$ y $\beta_2(r,s)$ formulas tal que:

$$\alpha(p,q) \equiv \alpha'(p,q)$$

¿qué debemos demostrar?

Demostración

Sean $\alpha(p,q)$, $\alpha'(p,q)$, $\beta_1(r,s)$ y $\beta_2(r,s)$ formulas tal que:

$$\alpha(p,q) \equiv \alpha'(p,q)$$

Considere una valuación cualquiera (v_1, v_2) y defina los valores de verdad:

$$v_1' := \beta_1(v_1, v_2)$$

$$v_2' := \beta_2(v_1, v_2)$$

Entonces:

$$\alpha(\beta_{1}(v_{1}, v_{2}), \beta_{2}(v_{1}, v_{2})) = \alpha(v'_{1}, v'_{2})$$

$$= \alpha'(v'_{1}, v'_{2})$$

$$= \alpha'(\beta_{1}(v_{1}, v_{2}), \beta_{2}(v_{1}, v_{2}))$$
(?)

Por lo tanto, $\alpha(\beta_1(r,s),\beta_2(r,s)) \equiv \alpha'(\beta_1(r,s),\beta_2(r,s))$

¿para qué nos sirven las equivalencias lógicas?

Ejemplo

Operadores generalizados

Gracias a la asociatividad de \vee y \wedge , nos ahorraremos los paréntesis:

$$(p_1 \lor p_2) \lor p_3 \equiv p_1 \lor (p_2 \lor p_3) \equiv p_1 \lor p_2 \lor p_3$$

 $(p_1 \land p_2) \land p_3 \equiv p_1 \land (p_2 \land p_3) \equiv p_1 \land p_2 \land p_3$

También usaremos una generalización de ∧ y ∨:

$$\bigwedge_{i=1}^{n} p_{i} \equiv p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}$$

$$\bigvee_{i=1}^{n} p_{i} \equiv p_{1} \vee p_{2} \vee \cdots \vee p_{n}$$

Operadores generalizados

Ejemplo equivalencias generalizadas

Distributividad:

$$p \vee \left(\bigwedge_{i=1}^{n} q_{i}\right) \equiv \bigwedge_{i=1}^{n} \left(p \vee q_{i}\right)$$

$$p \wedge \left(\bigvee_{i=1}^{n} q_{i}\right) \equiv \bigvee_{i=1}^{n} \left(p \wedge q_{i}\right)$$

De Morgan:

$$\neg \bigwedge_{i=1}^{n} p_{i} \equiv \bigvee_{i=1}^{n} \neg p_{i}$$
$$\neg \bigvee_{i=1}^{n} p_{i} \equiv \bigwedge_{i=1}^{n} \neg p_{i}$$

Outline

Equivalencia lógica

Aplicación

Conectivos ternarios

Queremos definir el conectivo lógico: if p then q else r

р	q	r	if p then q else r
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

¿cómo se puede representar este conectivo usando \neg , \land y \rightarrow ?

Conectivos ternarios

Solución: $(p \rightarrow q) \land ((\neg p) \rightarrow r)$

р	q	r	if p then q else r	$(p \to q) \land ((\neg p) \to r)$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

Usando tablas de verdad podemos definir conectivos $\textit{n}\text{-}arios: \ \textit{C}(\textit{p}_1,\ldots,\textit{p}_\textit{n}).$

p_1	p ₂	 p_{n-1}	p_n	$C(p_1,p_2,\ldots,p_{n-1},p_n)$
0	0	 0	0	b_1
0	0	 0	1	b_2
÷	:	 ÷	:	:
1	1	 1	1	b_{2^n}

¿és posible representar $C(p_1,\ldots,p_n)$ usando \neg , \lor , \land , \rightarrow y \leftrightarrow ?

Ejemplo

p	q	r	C(p,q,r)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Ejemplo

p	q	r	C(p,q,r)	p	q	r	$\alpha_4(p,q,r)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
1	0	0	0	1	0	0	0
1	0	1	1	1	0	1	1
1	1	0	0	1	1	0	0
1	1	1	1	1	1	1	1

$$\alpha_4(p,q,r) := (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$$

¿és posible representar C(p,q,r) usando \neg , \lor , \land , \rightarrow y \leftrightarrow ?

p_1	p_2	•••	p_{n-1}	p_n	$C(p_1, p_2, \ldots, p_{n-1}, p_n)$
0	0		0	0	b_1
0	0	•••	0	1	b_2
÷	÷		:	÷	:
v_{i1}	V_{i2}	 v_{ij}	 $V_{i(n-1)}$	Vin	b_i
÷	:		÷	:	:
1	1		1	1	b_{2^n}

Suponiendo que $v_{i1}, \ldots, v_{ij}, \ldots, v_{in}$ es la valuación correspondiente a la fila i con valor b_i de la tabla de verdad de $C(p_1, \ldots, p_n)$, entonces:

$$C(p_1, p_2, \ldots, p_{n-1}, p_n) \equiv \bigvee_{i:b_i=1} \left(\left(\bigwedge_{j:v_{ij}=1} p_j \right) \wedge \left(\bigwedge_{j:v_{ij}=0} \neg p_j \right) \right)$$

Toda tabla de verdad se puede representar con \land , \lor y \neg !!!

$$C(p_1, p_2, \ldots, p_{n-1}, p_n) \equiv \bigvee_{i: b_i=1} \left(\left(\bigwedge_{j: v_{ij}=1} p_j \right) \wedge \left(\bigwedge_{j: v_{ij}=0} \neg p_j \right) \right)$$

Ejemplo (anterior)

p_1	p_2	p_3	$C(p_1,p_2,p_3)$	p_1	p_2	p ₃	$\alpha(p_1,p_2,p_3)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
1	0	0	0	1	0	0	0
1	0	1	1	1	0	1	1
1	1	0	0	1	1	0	0
1	1	1	1	1	1	1	1
			•				

$$\alpha(p_1, p_2, p_3) \coloneqq (\neg p_1 \wedge \neg p_2 \wedge p_3) \vee (\neg p_1 \wedge p_2 \wedge \neg p_3) \vee (p_1 \wedge \neg p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge p_3)$$

Formas normales

Un literal es una variable proposicional o la negación de una variable.

Definición

Una formula α está en Forma Normal Disyuntiva (DNF) si es una disyunción de conjunciones de literales, o sea, si es de la forma:

$$\alpha = \beta_1 \vee \beta_2 \vee \ldots \vee \beta_k$$

con $\beta_i = (I_{i1} \wedge ... \wedge I_{ik_i})$ y $I_{i1}, ..., I_{ik_i}$ son literales.

¿cuáles formulas están en DNF?

- $(p \land \neg q) \lor (\neg p \land p \land s) \lor (r \land \neg s)$
- $(s \land (p \lor r)) \lor (\neg q \land r \land s)$
- $(s \wedge r) \vee \neg q \vee r \vee s$

Formas normales

Un literal es una variable proposicional o la negación de una variable.

Definición

Una formula α está en Forma Normal Conjuntiva (CNF) si es una conjunción de disyunciones de literales, o sea, si es de la forma:

$$\alpha = \beta_1 \wedge \beta_2 \wedge \ldots \wedge \beta_k$$

con $\beta_i = (I_{i1} \vee ... \vee I_{ik_i})$ y $I_{i1}, ..., I_{ik_i}$ son literales.

¿cuáles formulas estan en CNF?

- $(p \vee \neg q) \wedge (\neg p \vee p \vee s) \wedge (r \vee \neg s)$
- $(s \wedge r) \wedge (\neg q \vee r \vee s)$

Formas normales y equivalencia lógica

Teorema

- 1. Toda formula α es lógicamente equivalente a una formula en DNF.
- 2. Toda formula α es lógicamente equivalente a una formula en CNF.

Demostración DNF (explicación)

Sea $\alpha(p_1,\ldots,p_n)$ y v_{i1},\ldots,v_{in} la valuación correspondiente a la *i*-ésima fila de la tabla de verdad de α con valor $\alpha(v_{i1},\ldots,v_{in})$, entonces:

$$\alpha(p_1,\ldots,p_n) \ \equiv \ \bigvee_{i:\,\alpha(v_{i_1},\ldots,v_{i_n})=1} \left(\left(\bigwedge_{j:\,v_{ij}=1} p_j \right) \ \land \ \left(\bigwedge_{j:\,v_{ij}=0} \neg p_j \right) \right)$$

Solo por esta vez, daremos la afirmación de DNF como verdadera sin dar una demostración.

Formas normales y equivalencia lógica

Demostración CNF (asumiendo que DNF es verdadera)

Sea $\alpha(p_1, \ldots, p_n)$ una formula cualquiera.

Considere la formula $\neg \alpha(p_1, ..., p_n)$. Asumiendo DNF, sabemos que:

$$\neg \alpha(p_1, \dots, p_n) \equiv \bigvee_{i: (\neg \alpha)(v_{i1}, \dots, v_{in}) = 1} \left(\left(\bigwedge_{j: v_{ij} = 1} p_j \right) \wedge \left(\bigwedge_{j: v_{ij} = 0} \neg p_j \right) \right)$$

$$\equiv \bigvee_{i: \alpha(v_{i1}, \dots, v_{in}) = 0} \left(\left(\bigwedge_{j: v_{ij} = 1} p_j \right) \wedge \left(\bigwedge_{j: v_{ij} = 0} \neg p_j \right) \right)$$

¿cómo usamos lo anterior para demostrar CNF?

Formas normales y equivalencia lógica

Demostración (CNF)

Por el teorema de composición de formulas y De Morgan:

$$\alpha(p_1, \dots, p_n) \equiv \neg(\neg \alpha(p_1, \dots, p_n))$$

$$\equiv \neg\left(\bigvee_{i:\alpha(v_{i1}, \dots, v_{in})=0} \left(\bigwedge_{j:v_{ij}=1} p_j\right) \land \left(\bigwedge_{j:v_{ij}=0} \neg p_j\right)\right)$$

$$\equiv \bigwedge_{i:\alpha(v_{i1}, \dots, v_{in})=0} \neg\left(\left(\bigwedge_{j:v_{ij}=1} p_j\right) \land \left(\bigwedge_{j:v_{ij}=0} \neg p_j\right)\right)$$

$$\equiv \bigwedge_{i:\alpha(v_{i1}, \dots, v_{in})=0} \left(\bigvee_{j:v_{ij}=1} \neg p_j\right) \lor \left(\bigvee_{j:v_{ij}=0} p_j\right)$$

□ (significa "queda esto demostrado")