The Bin Packing Problem

The bin Packing Problem is an optimization Problem, in which items of different Sizes must be Packed into a finite number of bins or Containers each of fixed given Capacity, in a way that minimizes the number of bins used.

The Decision version of the Problem is NP-Complete.

4 bins required =2

he Study simplified version of the Problem.

Problem:

Given n items,

item i has size SiE(0,1]

Pack items into the fewest Unit capacity bins.

Example:	item Size	
	1 - 0.6	bincapacity = 1
	2 - 0.7	•
	3 -0.8	
	4 - 0.8	
	5 - 0.3	

& bins required = 4

Naive Algorithm - Next fit (NF) algorithm

check to see if the current item fits in the current bin. It so, then Place it there otherwise Start a new bin.

OPT 0.5 | 0.2 | 0.1 | 0.6 | 0.2 | 0.4 | 0.2 | 0.5 | 0.1 | 0.6 |

OPT 0.5 | 0.2 | 0.5 | 0.6 | 0.6 | 0.6 | 0.5 | 0.7 | 0.5 | 0.2

Next Fit 0.5 0.7 0.2 0.2 0.5 0.6 0.5

Clearly NF algorithm runs in Polynomial time.

Q: How bad it is? (Approximation valia)

Intuition: (Assume # bins is even)

Sizes of items in bin i + next item > 1

Sizes & items in bin i and bin in > 1

if Next-Fit uses & bins then

OPT >K

ie, K = 2 OPT.

if # & bins is odd, then OPT > $\frac{k-1}{2}$ $k \leq 20PT+1$

Asymptotic 2-approximation.

There are several other approximation algorithms. Similar to Next Fit, I will list few of them below.

Next-k-Fit: instead of keeping only one bin open,
the algorithm keeps the last k bins open and
chooses the first bin in which the item fits.

First-Fit: keeps all bins open, in the order in which they were opened. It attempts to place each new item into the first bin in which it fits.

Approximation Ration = 1.7 (Easy analysis chains it is a 2-approximation)

Best-Fit: keeps all bins open. It attempts to place each new item into the bin with maximum load in which it fits.

Approximation Ration = 1.7

FIRST FIT DECREASING (FFD)

order the items such that $S_1 \geqslant S_2 \geqslant ... \geqslant S_n$ and apply FIRST FIT.

FFD

Analysis: k: # of bins used by FFD algorithm

K1: optimal number of bins

We fartition the items according to their value as follows.

$$A = \{S_i : S_i > \frac{2}{3}\}$$

$$C = \left\{ Si : \frac{1}{3} < Si \leq \frac{1}{2} \right\}$$

$$D = \{ Si : Si \leq 13 \}$$

Case1: There is one bin b with all items from D.

In this Case we know that

- b has to be the last bin
- All bins except the last bin have used more than $\frac{2}{3}$ of their Capacities, otherwise items from D can be fit into them

 $\frac{2(K-1)}{3} \leq \sum Si \leq OPT$

ie, $K \leq \frac{3}{2}$ op T+1

Casea: It there are t71 bins with all items from D.

Above inequality still holds in this Case. .: We can lead the Same Conclusion.

Case3: There is no bin with all items from D. In this case, we remove all items of D Without changing the total number of bins. Then we have		
Then we have		
1) No bin has more than two items		
2) Any bin with one item from A can't		
accommodate any other item.		
3) Any bin with one item from B can accommodate		
only another item from C.		
(4) Any bin with one item from C can		
accommodate either one item from B or		
one item C, but not both		

As FFD Processes items by non-increasing order with respect to their weight. Therefore it puts each item from C with the largest Possible item from B that might fit with it and that does not already share a bin with another item. Hence in this case.

Soln of FFD and optimal solution are same.

Partition Problem:

Given a multiset S of Positive integers,

decide whether S can be partitioned into two sets

S1 and S2 such that the sum of the numbers

in S1 equals the sum of the numbers in S2.

- Partition Problem is NP-complete.

- Partition BIN-Packing

An instance $S=\{S_1,S_2,...S_n\}$ of Partition is yes instance if and only if the items can be Packed into two bins of Size $\frac{1}{2} \Sigma S_i$.

.. BIN-Packing is NP-Complete.

Lemma: There is no P-approximation algorithm

With $P < \frac{3}{2}$ for BIN PACKING unless P = NP.

Profe Same reduction as the above.

A $P = (\frac{3}{3} - E)$ - approximation algorithm Alg for BIN PACKING Would yield a Polynomial-time algorithm for Partition Problem.

On No-instances Alg would clearly use at least 3 bins, but on YES-instances it would use at most $(\frac{3}{3} - \epsilon) 2 < 3$ bins.

Corollany: There is no PTAS for Bin Packing Unless P=NP.