Analyse avancée I Mathématiques 1^{ère} année Prof. Cl. Hongler

Corrigé 3 du mardi 4 octobre 2016

Exercice 1.

Montrons que la suite $(x_n)_{n\geq 0}$ définie par

$$x_0 = 1$$
, $x_{n+1} = \frac{1}{2} (x_n + \sin(x_n)\cos(x_n))$, $\forall n \in \mathbb{N}$,

est convergente et calculons sa limite.

Démonstration : On va montrer que la suite est décroissante et minorée.

1.) On a $\sin x \cos x = \frac{1}{2} \sin 2x$, ainsi

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{2} \sin(2x_n) \right).$$

- 2.) (*Minoration*) Montrons, par induction, que $x_n > 0$, $\forall n \geq 0$:
 - a) Pour N = 0: $x_0 = 1 > 0$.
 - b) Supposons que $x_n > 0$, pour n = 0, 1, ..., N et montrons que $x_{N+1} > 0$.

$$x_{N+1} = \frac{1}{2} \left(x_N + \frac{1}{2} \sin(2x_N) \right) = \frac{1}{4} \left(2x_N + \sin(2x_N) \right) \ge \frac{1}{4} \left(2x_N - \left| \sin(2x_N) \right| \right)$$

Puisque pour tout t > 0, $|\sin t| < t$ et que par hypothèse d'induction $x_N > 0$, on a bien

$$x_{N+1} > 0.$$

La suite est donc bornée inférieurement par zéro.

3.) (Décroissance) On voit facilement que

$$x_{n+1} = \frac{1}{2}x_n + \frac{1}{4}\sin(2x_n) \le \frac{1}{2}x_n + \frac{1}{4} \cdot 2x_n = x_n.$$

La suite est donc décroissante. Ainsi on a l'existence de $x \in \mathbb{R}$ tel que $\lim_{n \to \infty} x_n = x$.

4.) (*Limite*) Puisque $\lim_{n\to\infty} \sin(2x_n) = \sin(2x)$ on a

$$x = \frac{1}{2}x + \frac{1}{4}\sin 2x \Leftrightarrow x = \frac{1}{2}\sin 2x \Leftrightarrow 2x = \sin 2x,$$

d'où on obtient x = 0.

Exercice 2.

Montrons que la suite $(x_n)_{n\geq 1}$ définie par

$$x_0 = 3$$
, $x_1 = 2$, $x_{n+1} = \sqrt[3]{x_n + x_{n-1}}$, $\forall n \in \mathbb{N}^*$

est convergente et calculons sa limite.

 $D\'{e}monstration$:

1) (Convergence) Montrons par induction que la suite est minorée par 1 et décroissante, i.e

$$1 < x_{n+1} < x_n < x_{n-1}, \quad \forall n \in \mathbb{N}^*.$$

a) Pour n = 1, on a

$$x_0 = 3 > x_1 = 2 > x_2 = \sqrt[3]{2+3} > 1.$$

b) On suppose maintenant l'hypothèse vraie jusqu'à $n \in \mathbb{N}^*$ et on va montrer qu'elle est vraie pour n+1. On a donc

$$1 < x_{k+1} < x_k < x_{k-1}, \quad \forall k = 1, \dots, n,$$

et on veut montrer que

$$1 < x_{n+2} < x_{n+1} < x_n.$$

Comme la fonction $\sqrt[3]{x}$ est strictement croissante on a bien par l'hypothèse de récurrence que

$$x_{n+1} = \sqrt[3]{x_n + x_{n-1}} > \sqrt[3]{x_{n+1} + x_n} = x_{n+2}.$$

De plus, comme x_n et x_{n+1} sont plus grands que 1, on a

$$x_{n+2} = \sqrt[3]{x_{n+1} + x_n} > 1.$$

Ainsi la suite $(x_n)_{n\geq 0}$ est minorée et décroissante, donc convergente.

2) (Limite) Si $x \in \mathbb{R}$ est la limite de la suite, il vérifie alors l'équation

$$x^3 = 2x \implies x = 0 \text{ ou } x = \pm \sqrt{2}.$$

Mais comme $x_n > 1$, $\forall n \in \mathbb{N}$, on a finalement que $\lim_{n \to \infty} x_n = \sqrt{2}$.

Exercice 3.

Soient $(x_n)_{n=0}^{\infty}$ croissante et $(y_n)_{n=0}^{\infty}$ décroissante telles que $\lim_{n\to\infty} (x_n-y_n)=0$. Alors

1.) $\forall n \in \mathbb{N}$, on a

$$x_0 \le x_1 \le x_2 \le \ldots \le x_n \le y_n \le y_{n-1} \le \ldots \le y_0.$$

 $2.) \lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n.$

 $D\'{e}monstration:$

1.) Posons $z_n = x_n - y_n$. On a si $n \ge 1$

$$z_n - z_{n-1} = x_n - y_n + y_{n-1} - x_{n-1} = \left(\underbrace{x_n - x_{n-1}}_{>0}\right) + \left(\underbrace{y_{n-1} - y_n}_{>0}\right) \ge 0.$$

Ainsi $z_n \geq z_{n-1}$ et la suite $(z_n)_{n=0}^{\infty}$ est croissante. Puisque $\lim_{n\to\infty} z_n = 0$ par hypothèse, on aura $z_n \leq 0$, $\forall n \in \mathbb{N}$. Ainsi $x_n \leq y_n$.

2.) Clairement la suite $(x_n)_{n\geq 0}$ est croissante et majorée. Elle converge donc vers x. La suite $(y_n)_{n\geq 0}$ est décroissante et minorée. Elle converge donc vers y. De plus, on a

$$|x-y| \le |\underbrace{x-x_n}_{\stackrel{\longrightarrow}{n\to\infty}}| + |\underbrace{x_n-y_n}_{\stackrel{\longrightarrow}{n\to\infty}}| + |\underbrace{y_n-y}_{\stackrel{\longrightarrow}{n\to\infty}}|$$

et ainsi x = y.

Exercice 4.

Construire explicitement une suite de rationnels qui converge vers $\sqrt{5}$.

On construit une suite récursive de la manière suivante:

On suppose donné $\overline{x} \in \mathbb{Q}$ une approximation de $\sqrt{5}$ et on veut obtenir une meilleure approximation $\overline{x} + \delta x \in \mathbb{Q}$. L'idéal serait d'avoir $(\overline{x} + \delta x)^2 = 5$, mais cela reviendrait encore à prendre une racine. Si la première approximation est bonne, on peut supposer que δx est petit et donc négliger $(\delta x)^2$. On demande donc $(\overline{x})^2 + 2\overline{x}\delta x = 5$.

On définit sur cette base la suite récursive :

1.) choisir $x_0 \in \mathbb{Q}$.

2.) pour
$$n \in \mathbb{N}$$
 on pose $x_{n+1} = x_n + \frac{5 - x_n^2}{2x_n} = \frac{x_n}{2} + \frac{5}{2x_n}$ (et donc $x_n \in \mathbb{Q}$).

On vérifie que:

1.) si la suite converge vers x alors x vérifie $x^2 = 5$.

2.) on a
$$x_{n+1}^2 = x_n^2 + (5 - x_n^2) + \frac{(5 - x_n^2)^2}{4x_n^2}$$
 et donc $5 - x_{n+1}^2 = (5 - x_n^2) - (5 - x_n^2) - \frac{(5 - x_n^2)^2}{4x_n^2}$. Finalement: $5 - x_{n+1}^2 = -\frac{(5 - x_n^2)^2}{4x^2}$.

Si
$$|x_0^2 - 5| \le \alpha, \alpha > 0$$
, alors $-\alpha \le x_0^2 - 5 \le \alpha$ et donc $x_0^5 \ge 5 - \alpha$ d'où $\frac{1}{x_0^2} \le \frac{1}{5 - \alpha}$. Si $\alpha < 1$, alors $|5 - x_1^2| = |\frac{(5 - x_0^2)^2}{4x_0^2}| \le \frac{(5 - x_0^2)^2}{20}$ d'où on déduit la convergence **quadratique** de la suite vers $\sqrt{5}$.

Si on prend $x_0 > 0$, on converge vers $\sqrt{5}$, si on prend $x_0 < 0$, on converge vers $-\sqrt{5}$.