화학전지 예비보고서

서울대학교 전기정보공학부 2018-12432 박정현* (Dated: September 11, 2023)

본 실험에서는 물질의 특성에 따른 전기전도도를 확인하고, 여러가지의 금속에 대한 전기화학적 서열을 확인한다. 또한 다니엘 전지를 제작한 후 농도에 따른 기전력을 측정해 네른스트 식을 검증하고 이해한다. 화학전지를 이용해 염의 용해도곱 상수를 직접 계산하여 화학전지와 용해도곱상수에 대한 이해도를 높인다.

I. INTROUDCTION

II. 전기전도도

전류는 전하의 흐름이다. 이때 전하는 전기장에 의해 가속되고 충돌하며 통계적으로 보았을 때 평균적으로 특정속도를 가지고 흐르게 된다. 두 위치 사이의 전위차는 전기장의 세기에 비례하므로 전류는 아래와 같은 식을 가지게된다.[3]

$$J = \sigma E \tag{1}$$

이 때 비례상수 σ 를 전기전도도로 정의한다. 이 때 전류가 흐르기 위해서는 전하가 존재해야 하며 이러한 전하는 이동가능한 이온, 혹은 금속 자체의 전자 등에 의해 발생할 수있다. 예를 들어 설탕의 경우 $C_6H_{12}O_6$ 의 분자식을 가지고 이온으로 분리되지 않으므로 전기전도도는 0에 매우 가깝다. 또한 설탕 수용액이 되는 경우에도 이온으로 분리되지 않으므로 중류수의 경우 대부분의 이온은 아래의 식에 의해 발생하게 된다.

$$2H_2O(l) \leftrightarrow H_3O^+(aq) + OH^-(aq) \tag{2}$$

이 때 물의 이온화 상수는 $[H3O+][OH-]=1.0\times10^{-14}$ 이고 중성의 증류수는 H_3O^+ 와 OH^- 의 농도가 같으므로 H_3O^+ 의 농도는 $1.0\times10^{-7}M$ 이다. 따라서 증류수, 혹은 설탕을 녹인 수용액 모두 전기는 거의 흐르지 않는다. 순수한 소금(NaCl(s))의 경우에는 이온 결정에서 이온이움직이지 못하므로 전류가 흐르지 않는다. 하지만 수용액이되는 경우 $NaCl(s)\to Na^+(aq)+Cl^-(aq)$ 가 되어 이이분리되므로 전기가 흐르게된다. 귤의 경우 여러 이온들이수용액 상태로 존재하므로 전류가 흐르게 된다.

이 때 Na의 경우 전기음성도가 0.93, Cl의 경우 3.16, C의 경우 2.55, H의 경우 2.20, O의 3.44으로 NaCl의 경우 전기음성도 차이가 커 이온 결합을 하게 되지만 $C_6H_{12}O_6$ 의 경우 전기음성도 차이가 작아 공유결합을 하게 된다. 이러한 화학 특성으로 인해 소금은 수용액 상에서 이온 상태로용해되고 설탕은 분자 그대로 용해되 전기전도도 차이가 발생하게 된다.[2]

III. 표준 환원 전위

화학전지는 금속의 환원력의 차이에 따라 화학적 에너지를 전기에너지로 변화하는 장치이다. 화워 반응은 전자를

받아들이는 과정이며 이 때 깁스에너지는 아래와 같이 나타 난다. 단 해당 경우는 전해질의 농도가 1M, 압력이 1기압, 그리고 온도가 25C인 경우에 해당함을 주의해야 한다.[2]

$$\Delta G^o = -nFE^o \tag{3}$$

$$Pb(s) + Cu^{2+}(aq) \leftrightarrow Cu(s) + Pb^{2+}(aq) \tag{4}$$

$$Zn(s) + Cu^{2+}(aq) \leftrightarrow Cu(s) + Zn^{2+}(aq)$$
 (5)

$$Zn(s) + Pb^{2+}(aq) \leftrightarrow Pb(s) + Zn^{2+}(aq)$$
 (6)

IV. 화학전지

금속의 환원력이 다름을 통해 전지를 만들어 낼 수 있으며 가장 간단한 예가 볼타 전지이다. 볼타 전지는 동일한수용액에 다른 금속판을 넣어 사용한다. 하지만 이 경우에는 환원전위가 높은 금속에서 수소 기체가 달라붙는 분극현상이 발생한다. 이를 해결하기 위해 동일한 수용액에 한번에 넣는 것이 아닌 각각의 금속판을 다른 수용액에 넣고염다리를 두 수용액을 연결할 수 있다. 이러한 전지가 다니엘 화학전지이며 예는 아래와 같다.

$$Zn(s)|Zn^{2+}||Cu^{2+}|Cu(s)$$
 (7)

$$Cu^{2+}(aq) + Zn(s) \leftrightarrow Cu(s) + Zn^{2+}(aq) \tag{8}$$

이 때 반응비는 수용액 상태의 물질만을 포함하여 아래와 같이 나타나게 된다.

$$Q = [Zn^{2+}]/[Cu^{2+}] \tag{9}$$

집스에너지는 아래와같이 나타나므로 위의 식은 아래와 같이 네른스트 식으로 변형된다.

$$\Delta G = -nFE \tag{10}$$

$$= \Delta G^o + RT lnQ \tag{11}$$

$$E = E^{o} - RT/nFlnQ \tag{12}$$

$$= E^o - 0.05916/nlogQ (13)$$

구리가 아닌 납의 경우 화학전지와 반응비, 알짜 화학반응 식은 아래와 같아진다.

$$Zn(s)|Zn^{2+}||Pb^{2+}|Pb(s)$$
 (14)

$$Pb^{2+}(aq) + Zn(s) \leftrightarrow Pb(s) + Zn^{2+}(aq)$$
 (15)

$$Q = [Zn^{2+}]/[Pb^{2+}] \tag{16}$$

V. 용해도곱

KCl(s)는 수용액에서 완전히 용해된다. 따라서 50mL의 수용액에 $[K^+]0.03M$ 을 만들기 위해서는 $m=0.03M\times0.05L*(39.10+35.45)g/mol=111.8g$ 의 KCl(s)가 필요하다. AgCl(s)의 용해도 ${}_{4}GK_{5}$ 의 용해도 ${}_{4}GK_{5}$ 의 문상적으로 [2]으로 매우 작은 값을 가진다. 따라서 $AgCl(s)\leftrightarrow Ag^+(aq)+Cl^-(aq)$ 에서 대부분은 AgCl(s)으로 반응이 치우치게 된다. KCl(s)와 $AgNO_3(aq)$ 반응 직후에는 외부로부터의 Ag^+ 의 유입은 없다고 가정하므로 Ag^+ 의 농도 변화는 KCl(s)와 반응한 양과 동일하다.

VI. EXPERIMENTAL

VII. 전기전도도 확인

건전지, 전선, LED, 설탕, 소금, 귤을 준비한다. 건전지에 LED를 연결하여 잘 작동하는지 확인한다. 이후에 증류수 $(H_2O(l))$, 설탕 $(C_6H_{12}O_6(s))$, 설탕 수용액 $(C_6H_{12}O_6(aq))$, 소금(NaCl(s)), 소금 수용 액(NaCl(aq)) 각각에 건전지와 LED를 연결하여 LED가 작동하는지 확인하여 전기전도성의 유무를 확인한다.

VIII. 전기화학적 서열 확인

 $0.5cm \times 0.5cm$ Cu, Zn, Pb판, $1.0MZn(NO_3)_2$ 용액, $1.0MPb(NO_3)_2$ 용액, $1.0MCu(NO_3)_2$ 용액 각각을 10mL 씩 준비한다. 이 때 Cu, Zn, Pb판의 경우 사포로 문질러 표면의 산화된 면을 제거하여 화학반응이 잘 일어날 수 있도

록 한다. 각각의 판을 각각의 수용액이 화학반응의 유무를 확인하여 금속들의 전기화학적 서열을 확인한다.

IX. 화학 전지 실험

7cmCu, Zn, Pb판, 1cm의 X 비커, 다리, 전압계, 전선, 사포, $Zn(NO_3)_21.0M, 0.1M, Cu(NO_3)_21.0M, 0.1, 0.01, 0.001M,$ $Pb(NO_3)_2 1.0 M80 mL$ 을 각각 준비한다. 각각의 금 속판을 금속산화물을 제거하기 위해 잘 문질러준뒤 $1.0MZn(NO_3)_2, 1.0M, Cu(NO_3)_2$ 각각에 Zn, Cu를 5cm가량 넣은 뒤 전압계와 전선을 연결해 전위차를 측정한다. 같은 방법으로 $1.0MZn(NO_3)_2, 1.0MPb(NO_3)_2$ 용액에 Zn, Pb를 5cm정도 넣은뒤 전압계와 전선을 연결해 전위차를 측정한다. 이후에는 $Cu(NO_3)_2$ 를 10배씩 묽혀 0.1, 0.01, 0.001M의 수용액을 만들고 $0.1MZn(NO_3)_2$ 의 수용액에 각각 Cu, Zn 금속판을 넣어 같은 방법으로 전위차를 측정한다.

X. AgCl의 용해도곱 실험

아연판, 은도선, 비커, 염다리, 전압계, 전선, $0.010MAgNO_3(aq), 0.02MZn(NO_3)_2(aq), KCl(s)$ 을 준비한다. $0.010MAgNO_3(aq), 0.02MZn(NO_3)_2(aq)50mL$ 를 비커에 준비한뒤 각각에 은도선, 아연판을 담구고염다리로 연결한다. 각각의 금속에 전선과 전압계를 연결해 전압차를 측정한 뒤, 네른스트 식을 이용해 농도비를계산한다. 최종 $[K^+]=0.03M$ 이 되도록 111.8g의KCl(s)를 $AgNO_3(aq)$ 에 넣고 잘 섞어준 뒤 반응이 끝난 후전압차를 측정한 후 네른스트 식을 이용해 $[Ag^+]$ 농도를계산하여 반응한 $[Cl^-]$ 의 양을 계산한 뒤 용해도곱 상수 $K_{sp}=[Ag^+][Cl^-]$ 을 계산한다.

XI. REFERENCE

- [1] 김희준, 일반화학 실험(자유아카데미, 2016)
- [2] D.W. Oxtoby, H.P. Gillis, and L. Butler, *Principles of Modern Chemistry* (Brooks/Cole, Australia, 2020).
- [3] 1 D.J. GRIFFITHS, Introduction to Electrodynamics (CAMBRIDGE UNIV PRESS, S.l., 2023).