Quantum physics grew up widely in the second half of the 20th century, many people contributed to pushing forward on many quantum technologies. I was highly unaware of the new achievements that quantum technologies can give us in the forthcoming years and this is a great surprise to me because I can now learn from some of the cutting-edge that are performing on the quantum scene.

Report workbook

John Doe

John Doe

John Doe University October 2021

Contents

F	Page
List of Figures	II
List of Tables	III
List of Equations	IV
Glossary	V
Declaration	VI
Abstract	VII
Introduction	1
2 Another chapter 2.1 Section here	2 3
Epilogue	6
List of Publications	7

List of Figures

	Pa	age
2.1	Prism drawing	2
2.2	Disc sample figure	3
2.3	Set of two images	4
2.4	This is a single image	4
2.5	Set of two images, this reference will show up in this caption but it will hide in List	
	Of Figures	5

List of Tables

	Pa	age
2.1	Sample table	3
2.2	Table with complex cells	3
2.3	Complex table 2	4

List of Equations

]	Page
2.1	Theoretical Kittel equation expanded for a Permalloy thin-film for X-axe		3

Glossary

Glossary item 1 Glossary item 1 1

Glossary item 2 Glossary item 2 1

Declaration

I hereby declare that the work presented in this thesis is entirely my own and that I did not use any other sources and references than the listed ones. I have marked all direct or indirect statements from other sources contained therein as quotations. Neither this work nor significant parts of it were part of another examination procedure. I have not published this work in whole or in part before. The electronic copy is consistent with all submitted copies.

Zaragoza (Aragón), October 2021

Abstract

This is justified text.

1

Introduction

This is an introduction. this is bold this is italic text

This a reference [1].

This is Glossary item 1 and this is Glossary item 2.

Citation here. Footnote url here¹.

Another footnote simple².

Bibliography

^[1] Yi Li, Tomas Polakovic, Yong-Lei Wang, Jing Xu, Sergi Lendinez, Zhizhi Zhang, Junjia Ding, Trupti Khaire, Hilal Saglam, Ralu Divan, John Pearson, Wai-Kwong Kwok, Zhili Xiao, Valentine Novosad, Axel Hoffmann, and Wei Zhang. Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices. *Physical review letters*, 123:107701, September 2019.

¹http://google.com

²this is a footnote

Another chapter

This is a chapter [1].

Figure 2.1: Prism drawing

Second page.

Footnote url here with header³.

$$f = 28 \cdot \sqrt{(B_{DC} + (N_y - N_x) \cdot 0.86 \cdot 10^6 \cdot 4\pi \cdot 10^{-7}) \cdot (B_{DC} + (N_z - N_x) \cdot 0.86 \cdot 10^6) \cdot 4\pi \cdot 10^{-7}}$$

Equation 2.1: Theoretical Kittel equation expanded for a Permalloy thin-film for X-axe

2.1 Section here

This is a new section.

Item	Item
size1 (nm)	$\begin{array}{c c} size2 \\ (nm) \end{array}$
8	600
10	400
12	300

Table 2.1: Sample table

Figure 2.2: Disc sample figure

Item	Item	Item	Item
one	two	three	four
(m)	(m)	(m)	(m)
8	$15000 \times 800 \times 60$	7.5413550	0
10	$15000 \times 450 \times 60$	9.4630770	0
12	$15000 \times 350 \times 60$	10.368898	0

Table 2.2: Table with complex cells

 $^{^3}$ http://google.com

Report workbook 2. Another chapter

Item size	Object	Object width	Current	Gap @ 500nm	Gap @ 1μm	
$(\mu \mathrm{m})$	(m)	(nm)	(mA)	(nT)	(nT)	
	259.07	300	1.61000×10^4	51.66902	29.08373	
$15 \times 0.800 \times 0.06$		400		50.82305	28.93193	
23 // 0.000 // 0.00			600		48.54992	28.49336
	$\times 0.450 \times 0.06$ 224.42	300		76.05934	42.81274	
$15\times0.450\times0.06$		224.42	400	2.37000×10^4	74.81401	42.58931
		600		71.46784	41.94378	
	$5 \times 0.350 \times 0.06$ 229.52		300		84.72435	47.69013
$15\times0.350\times0.06$		400	2.64000×10^4	83.33715	47.44119	
		600		79.61009	46.72226	

Table 2.3: Complex table 2

Important note: This is a nice ToDO note.

Figure 2.3: Set of two images

Figure 2.4: This is a single image

Figure 2.5: Set of two images, this reference^[2] will show up in this caption but it will hide in List Of Figures

Bibliography

- ^[1] Niobium Superconducting Nanowire, Anthony J. Annunziata, Daniel F. Santavicca, Joel D. Chudow, Luigi Frunzio, Michael J. Rooks, Aviad Frydman, and Daniel E. Prober. Single-photon detectors. *Physical review letters*, 2006.
- ^[2] Yi Li, Tomas Polakovic, Yong-Lei Wang, Jing Xu, Sergi Lendinez, Zhizhi Zhang, Junjia Ding, Trupti Khaire, Hilal Saglam, Ralu Divan, John Pearson, Wai-Kwong Kwok, Zhili Xiao, Valentine Novosad, Axel Hoffmann, and Wei Zhang. Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices. *Physical review letters*, 123:107701, September 2019.

Epilogue

This ia an epilogue.

List of Publications

^[1] Fernando Luis, Pablo J. Alonso, Olivier Roubeau, Verónica Velasco, David Zueco, David Aguila, Leoní A. Barrios, and Guillem Aromí. A dissymmetric [gd₂] coordination molecular dimer hosting six addressable spin qubits, 2020.

^[2] Salvatore Savasta, Omar Di Stefano, Alessio Settineri, David Zueco, Stephen Hughes, and Franco Nori. Gauge principle and gauge invariance in quantum two-level systems, 2020.