국가연구개발 보고서원문 성과물 전담기관인 한국과학기술정보연구원에서 가공·서비스 하는 연구보고서는 동의 없이 상업적 용도로 사용할 수 없습니다.

Parity	No. of records	Milk (kg)	Fat (kg)	Protein (kg)
		Mean ± STD	Mean ± STD	Mean ± STD
1	222,348	8,335 ± 1,749	316 ± 70	262 ± 53
2	143,040	$9,538 \pm 2,012$	358 ± 79	299 ± 60
3	79,420	$9,893 \pm 2,067$	373 ± 80	308 ± 62
4	39,651	$10,005 \pm 2,071$	378 ± 80	309 ± 62
5	17,769	$9,974 \pm 2,069$	377 ± 80	306 ± 61
Overall	502,228	$9,114 \pm 1,911$	344 ± 75	285 ± 58

(2) 통계적 방법

분석모형은 일반적인 animal 모형 (2.1)과 HV (heterogeneous variance) 모형 (2.2)을 이용하였다.

$$y_{\text{or}inimal} = fix_{all} + animal + error \tag{2.1}$$

$$(y_{\text{original}} - fix_{all}) * f_{HYS} = fix_{all} + animal + error$$
 (2.2)

위에서, $y_{original}=$ 유생산형질 (kg), $fix_{all}=$ 젖소군-분만년도-분만계절 (HYS)과 분만월령의 고정효과, animal=개체의 유전적 상가효과, $f_{HYS}=$ 젖소군-분만년도-분만계절 (HYS)에 대한 보정계수로서 다음과 같다.

$$f_{\mathit{HYS}_i} = \frac{\sigma_{E_i}}{\sigma_{\mathit{HYS}_i}}, \quad \sigma_{E_i} = \frac{\sigma.k + \sigma_{\mathit{HYS}_i} \cdot n_i}{k + n_i} = \frac{k}{k + n_i} \sigma + \frac{n_i}{k + n_i} \sigma_{\mathit{HYS}_i}, \ k = \frac{\sum_{i=1}^{l} n_i}{n \mathit{HYS}_i}$$

위에서, $\sigma_{HYS_i}=$ i번째 젖소군-분만년도-분만계절의 표준편차, $\sigma=$ 젖소군-분만년도-분만계절의 평균 표준편차, $\sigma_{E_i}=$ i번째 젖소군-분만년도-분만계절의 표준편차 기대치, $n_i=$ i번째 젖소군-분만년도-분만계절내 평균 젖소의 수, nHYS= 총 젖소군-분만년도-분만계절의 수이다. 또한 최근 분석한 국가단위 유전능력 평가자료와 분석년도에서 최근 4년치를 제외한 자료로 유전평가를 실시하여 씨수소에 대한 딸소수의 변화와 새롭게 추가된 딸소들의 효과가 씨수소의 육종가에 어느 정도 영향을 미치는지조사하였다.

$$y_i = a + bX_i + \theta t_i + e_i \tag{2.3}$$