RECENT DEVELOPMENTS IN RISK MANAGEMENT

Dr. Aric LaBarr
Institute for Advanced Analytics

EXTREME VALUE THEORY

Complications to CVaR / ES

- CVaR estimates tend to be less stable than VaR for the same confidence level.
 - a) Requires a large number of observations to generate a reliable estimate.
- CVaR is more sensitive to estimation errors than VaR
 - a) Depends substantially on the accuracy of the tail model used.

Focus on the Tails

 We try so hard to estimate the full distribution.

 However, our only care is the tail of the distribution.

Why not just estimate the tail?

Extreme Value Theory

- Extreme Value Theory (EVT) provides the theoretical foundation for building statistical models **describing extreme events**.
- Used in many fields:
 - Finance
 - Structural Engineering
 - Traffic Prediction
 - Weather Prediction
 - Geological Prediction (Seismic events, flooding, etc.)

Extreme Value Theory

- Extreme Value Theory (EVT) provides the theoretical foundation for building statistical models describing extreme events.
- EVT provides the distributions for the following:
 - Block Maxima (Minima) the maximum (or minimum) the variable takes in successive period, for example months or years.
 - Exceedances the values that exceed a certain threshold.

Block Maxima (Minima)

- Trying to build the series of maximum (or minimum) values across time.
 - Example the highest annual rainfall in Raleigh, NC between 1900 and 2015.
- Popular distributions used (Right Skewed):
 - Fréchet
 - Weibull
 - Gumbel

Block Maxima (Minima)

Gumbel

Exceedances

- Trying to understand the distribution of values that exceed a certain threshold.
- Instead of isolating the tail of an overall distribution (limiting the values) we are trying to build a distribution for the tail events themselves.
- Popular distribution:
 - Generalized Pareto

Generalized Pareto

- Named after Italian engineer and economist Vilfredo Pareto.
- Came into popularity with the "Pareto Principle" more commonly known as the "80-20 Rule."
- Pareto noted in 1896 that 80% of the land of Italy was owned by 20% of the population.
- Richard Koch authored the book The 80/20 Principle to illustrate some common applications.

Exceedances

Extreme Value Theory

- Application to CVaR more accurate estimates of CVaR, but the math is VERY complicated.
- Need to use maximum likelihood estimation to find which generalized Pareto distribution fits our data the best.
- Choose ξ and β to maximize:

$$\sum_{i=1}^{n_u} \ln \left[\frac{1}{\beta} \left(1 + \frac{\xi(v_i - u)}{\beta} \right)^{-1/\xi - 1} \right]$$

Extreme Value Theory

- Application to CVaR more accurate estimates of CVaR, but the math is VERY complicated.
- VaR Calculation:

$$VaR = u + \frac{\beta}{\xi} \left\{ \left[\frac{n}{n_u} (1 - q) \right]^{-\xi} - 1 \right\}$$

CVaR Calculation:

$$ES = \frac{VaR + \beta - \xi u}{1 - \xi}$$

EVT: Two Position Portfolio

- \$200,000 invested in MSFT & \$100,000 in Apple today.
- You have 500 observations on both returns.
- Calculate the portfolio's value using each one of the historical daily returns:

$$200,000 \times R_M + 100,000 \times R_A$$

- Using the tail (typically 5%) of the 500 observations, estimate the generalized Pareto distribution parameters.
- Estimate VaR and ES from these.

Getting Stock Data – R

```
tickers = c("AAPL", "MSFT")

getSymbols(tickers)

stocks <- cbind(last(AAPL[,4], '500 days'), last(MSFT[,4], '500 days'))</pre>
```

```
AAPL.Close MSFT.Close
##
## 2018-01-12
                  177.09
                               89.60
## 2018-01-16
                  176.19
                               88.35
## 2018-01-17
                  179.10
                               90.14
## 2018-01-18
                  179.26
                               90.10
## 2018-01-19
                  178.46
                               90.00
## 2018-01-22
                  177.00
                               91.61
```

:

Manipulating Stock Data – R

```
stocks$msft_r <- ROC(stocks$MSFT.Close)
stocks$aapl_r <- ROC(stocks$AAPL.Close)</pre>
```

```
AAPL.Close MSFT.Close
##
                                           msft r
                                                         aapl r
## 2018-01-12
                  177.09
                             89.60
                                                             NA
## 2018-01-16
                 176.19
                             88.35 -0.0140491215 -0.0050950858
## 2018-01-17
                 179,10
                             90.14 0.0200578300 0.0163813730
## 2018-01-18
                 179.26
                             90.10 -0.0004438638 0.0008928955
## 2018-01-19
                 178.46
                             90.00 -0.0011104721 -0.0044727123
## 2018-01-22
                  177.00
                             91.61 0.0177307766 -0.0082147931
```

Two Position Portfolio – R

```
pareto.fit <-gpdFit(as.numeric(stocks$port_v[-1])*-1, type = c("mle"))</pre>
tailRisk(pareto.fit, prob = 0.99)
##
       Prob
                 VaR
                           ES
## 95% 0.99 13214.64 15120.4
dollar(tailRisk(pareto.fit, prob = 0.99)[,2]*-1)
## [1] "$-13,214.64"
dollar(tailRisk(pareto.fit, prob = 0.99)[,3]*-1)
## [1] "$-15,120.40"
```

EVT: Two Position Portfolio

Parameter estimates:

$$\xi = -0.387$$
 $\beta = 4929.92$

• VaR = -\$13,214.64, CVaR = -\$15,120.40

Comparison Across Techniques

Technique	Value at Risk	Expected Shortfall (CVaR)
Delta-Normal	-\$10,351.69	-\$11,859.56
Historical (Common)	-\$12,024.55	-\$14,813.05
Historical (Stressed)	-\$18,639.23	-\$24,484.47
Historical (Weighted)	-\$13,329.83	-\$16,128.95
Monte Carlo	-\$8,234.93	-\$9,269.63
Extreme Value Theory	-\$13,214.64	-\$15,120.40

Comparison Across Techniques

Technique	Value at Risk	Expected Shortfall (CVaR)
Delta-Normal	-\$10,351.69	- \$11,859.56
Historical (Common)	-\$12,024.55	-\$14,813.05
Historical (Stressed)	-\$18,639.23	-\$24,484.47
Historical (Weighted)	-\$13,329.83	-\$16,128.95
Monte Carlo	-\$8,234.93	-\$9,269.63
Extreme Value Theory	-\$13,214.64	-\$15,120.40

Two Position Portfolio – R

Two Position Portfolio – R

Comparison of Simulated tail to Normal

EXTENSIONS TO VALUE AT RISK

VaR "like" Extensions

- There have been many additions to Value at Risk calculations:
 - Delta Gamma VaR
 - Delta Gamma Monte Carlo Simulation
 - Incremental VaR
 - 4. Component VaR
 - 5. Backtesting VaR

Delta – Gamma Approximation

- Improve the Delta Normal approach by taking into account higher derivatives than the first derivative only.
- In the expansion of the derivatives we can look at the first two:

$$dV = \frac{\partial V}{\partial RF} \cdot dRF + \frac{1}{2} \cdot \frac{\partial^2 V}{\partial RF^2} \cdot dRF^2 + \cdots$$

$$dV = \Delta \cdot dRF + \frac{1}{2} \cdot \Gamma \cdot dRF^2$$

Delta – Gamma Approximation

- Improve the Delta Normal approach by taking into account higher derivatives than the first derivative only.
- In the expansion of the derivatives we can look at the first two:

$$dV = \Delta \cdot dRF + \frac{1}{2} \cdot \Gamma \cdot dRF^2$$

- Essentially takes the variance component into account in building the Gamma portion of the equation.
- Delta Normal typically underestimates VaR when assumptions do not hold.
- Delta Gamma tries to correct for this, but is computationally more intensive.

Delta – Gamma Monte Carlo

- The Normality assumption might still be unreliable.
- The Delta Gamma Monte Carlo simulation technique simulates the risk factor before using the second order Taylor expansion to create simulated movements in the portfolio's value.
- Just like with regular simulation, the VaR is calculated using the simulated distribution of the portfolio.

Delta – Normal vs. Delta – Gamma

- If you have a large number of things to evaluate in a portfolio with few options, the Delta – Normal is fast and efficient enough.
- If you have only a few sources of risk and substantial complexity, the Delta –
 Gamma is better.
- If you have a large number of risk factors and substantial complexity, the traditional Monte Carlo simulation is still best.

Marginal VaR

- How much will the VaR change if we invest one more dollar in a position?
- In other words, the first derivative of VaR with respect to the weight of a certain position in the portfolio.
- Assuming Normality:

$$\Delta VaR_i = \alpha \times \frac{\text{Cov}(R_i, R_p)}{\sigma_p}$$

Incremental VaR

- The change in VaR due to the addition of a new position in the portfolio.
- Used whenever an institution wants to evaluate the effect of a proposed trade or change in the portfolio of interest.
- How is this different than Marginal VaR?
 - The change can be significant (not marginal unit of one)
 - The change can be in a vector of positions, not just one.

Incremental VaR

- Trickier to calculate as you now need to calculate VaR under both portfolios and take their difference.
- You can do a Taylor series expansion to get an approximation:

$$IVaR = (\Delta VaR)^T \cdot c$$

- ΔVaR is a vector of marginal VaR's
- c is a vector of additional exposures in our portfolio
 - Example \$10,000 in bonds and \$20,000 in options
- The approximation is quicker to calculate then taking the difference of the two correct calculations, but is not as accurate.

Component VaR

- Decompose VaR into its basic components in a way that takes into account the diversification of the portfolio.
- It is a "partition" of the portfolio VaR that indicates the change of VaR if a given component was deleted.
- The Component VaR is defined in terms of marginal VaR:

Component $VaR = \Delta VaR_i \times (\$ \text{ value of component i})$

The sum of all component VaR's is the total portfolio VaR.

