Comptadors sincrònics de mòdul arbitrari

Per tal de dissenyar un comptador de mòdul arbitrari, existeix una metodologia general que consisteix en construir el diagrama de seqüència del comptador, a partir del qual generem la taula de transicions per als diferents FF i coneixent la taula d'excitació d'aquests, podem deduir com hem de

connectar les entrades dels FF. Màquina d'estats finits

Exemple

Disseny d'un comptador de 5 estats

- 1. Decidim quants FF són necessaris:
- 2. Decidim quins FF volem fer servir: RS, JK, T o D i utilitzem la seva taula d'excitació:
- 3. Plantegem la taula de transicions de l'estat present a l'estat futur.
- 4. Utilitzant la les taules 2) i 3) decidim quines són les entrades dels diferents FF.
- 5. Simplifiquem cadascuna de les variables d'entrada dels FF.

Q ⁿ	Q^{n+1}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

]	Instant n	l		instar Q ₂	
Q_2	Q_1	Q_0	Q		Q_1
)	1	1	1		0
	0	0	1		0
	0	1	1		1
	1	0	1		1
	1	1	0		1

- 1. Decidim quants FF són necessaris:
- 2. Decidim quins FF volem fer servir: RS, JK, T o D i utilitzem la seva taula d'excitació:
- 3. Plantegem la taula de transicions de l'estat present a l'estat futur.
- 4. Utilitzant la les taules 2) i 3) decidim quines són les entrades dels diferents FF.
- 5. Simplifiquem cadascuna de les variables d'entrada dels FF.

Q ⁿ	Q^{n+1}	J	K
0	0	0	X
0	1	1	X X
1	0	X	1
1	1	X	0

$J_0=1$	$K_0 = \overline{Q_2} + \overline{Q_1} = \overline{Q_2 \cdot Q_1}$

$$J_1 = Q_0$$
 $K_1 = \overline{Q_2}$
 $J_2 = 1$ $K_2 = Q_1 \cdot Q_0$

	Instant n	l							ins	stant n	+1
Q_2	Q_1	Q_0	J_0	K_0	J_1	K_1	J_2	K_2	Q_2	Q_1	Q_0
0	1	1	X	1	Χ	1	1	X	1	0	0
1	0	0	1	X	0	X	Χ	0	1	0	1
1	0	1	X	1	1	X	X	0	1	1	0
1	1	0	1	X	X	0	X	0	1	1	1
1	1	1	X	0	Χ	0	Χ	1	0	1	1

Comptadors sincrònics reversibles

El procediment és el mateix que al cas anterior, però aquí apareix una altre variable de control (M) que determina si el comptador és creixent o decreixent.

Estat	Preser	nt (n)	Estat Futur (n+1)) Estat Futur (n+		
			M=0			$\mathbf{M}=1$		
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0
0	1	1	1	1	1	1	0	0
1	0	0	0	1	1	1	0	1
1	0	1	1	0	0	1	1	0
1	1	0	1	0	1	1	1	1
1	1	1	1	1	0	0	1	1

J_0		MQ_2					
		00	01	11	10		
Q_1Q_0	00	X	1	1	Χ		
	01	X	X	X	X		
	11	X	X	X	X		
	10	X	1	1	X		

K ₀		MQ_2					
		00	01	11	10		
	00	X	X	X	X		
Q_1Q_0	01	Χ	1	1	X		
	11	0	1	0	1		
	10	Χ	Χ	X	Χ		

$$J_0 = 1$$

$$K_0 = \overline{Q_1} + \overline{M} \cdot Q_2 + M \cdot \overline{Q_2}$$

$$J_{1} = \overline{Q_{0}} \cdot \overline{M} + M \cdot Q_{0} \qquad K_{1} = \overline{Q_{2}} \cdot M + Q_{0} \cdot \overline{M}$$

$$J_{2} = 1 \qquad K_{2} = Q_{1} \cdot Q_{0} \cdot M + \overline{Q_{1}} \cdot \overline{Q_{0}} \cdot \overline{M}$$