Linear Regression evaluation metrics

R^2

- Corresponds to explained variance. \mathbb{R}^2 = 0.6 means that the model accounts for 60% of the variance
- low $R^2 \neq$ bad model \rightarrow it's domain dependent s
- R^2 = resuduals from model/residuals from mean
- literally a measure of how much better the model is at predicting results compared to predicting the average for every datapoint.
- adjusted R^2 accounts for adding independent variables
 - \mathbb{R}^2 will always increase when you add feature variables

MSE

- · average of the square of the residuals
- sensitive to outliers

RMSE

 square root of MSE → easier to interpret b/c it will have the same units as the dependent variable

MAE

- absolute average (manhattan) distance between prediction and results
- less sensitive to outliers compared to MSE

References

- https://corporatefinanceinstitute.com/resources/data-science/r-squared/
- https://statisticsbyjim.com/regression/interpret-r-squared-regression/
- https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e