EM461 - Mecânica dos Fluidos I

Pedro Henrique Limeira da Cruz ${\it March~20,~2023}$

Contents

L	\mathbf{Est}	rática dos Fluidos	3
	1.1	Equação Base - Estática de Fluidos	3
	1.2	Variação de Pressão em um Fluido Estático	4
	1.3	Variação de Pressão Em um Gás Ideal	4

1 Estática dos Fluidos

Antes de começarmos nossos estudos sobre a mecânica dos fluidos em movimento, iremos revisar (ou para alguns introduzir) a estática de fluidos.

1.1 Equação Base - Estática de Fluidos

A equação mais básica da estática de fluidos é aquela que modela o campo de pressão em um fluido estático. A partir das experiências do dia-a-dia podemos verificar o principal aspecto sobre a pressão em uma coluna de fluido estático:

A pressão Aumenta com a Profundidade

A partir disso, e com a intenção de modelarmos matematicamente o sistema, fazemos a análise mais básica de mecânica estática, a lei de Newton. Para esse caso, entretanto, como estamos falando de um fluido e não de um corpo concentrado, iremos aplicar a lei de newton em um cenário diferencial, para lidarmos com pequenas massas (ou pequenos volumes) do fluido, como mostra a equação 1:

$$d\vec{F}_{resultante} = \vec{a}dm \tag{1}$$

A partir disso, como temos nossa lei de newton básica (mas agora aplicada para o problemas diferencial de fluidos), podemos prosseguir e identificar as forças envolvidas.

A primeira força de campo que iremos ver e que atua nos problemas de estática de fluidos é a força oriunda da gravidade, quando analisamos um pequeno volume diferencial do fluido, dada por:

$$d\vec{F}_B = \vec{g}\rho d\forall \tag{2}$$

Onde:

- ρ: Massa específica. Para problemas que estaremos analisando é constante em função tanto do tempo quanto posição.
- \forall : Volume do elemento, dada em coordenadas cartesianas tal que $d\forall = dx \ dy \ dz$
- g: Aceleração da gravidade.

A segunda força que iremos analisar agora é a **única força de superfície** presente, tendo em vista que estamos abordado a estática de fluidos e, por conseguinte, não há a presença de tensão de cisalhamento, é a **força de pressão de superfície** p = p(x, y, z) (um vetor com três componentes), que varia conforme a posição dentro do fluido. Podemos entender essa pressão de superfície como sendo a **Pressão exercida pela coluna de fluido ao redor do volume diferencial sendo estudado**.

A partir disso, temos a Lei de Newton que governa o problema diferencial do fluido (dado pela equação 1) e temos que as únicas forças que atua no nosso problema são a força de pressão p(x, y, z) e a força peso do volume diferencial sob análise. Como estamos lidando com um problema de estática a somatória de todas as forças precisa ser zero, temos:

$$d\vec{F} = (-\nabla p + \rho \vec{g})d\forall \Rightarrow \frac{d\vec{F}}{d\forall} = -\nabla p + \rho \vec{g}$$
(3)

Onde temos então a equação final 3, que representa a força resultante por unidade de volume, que ao igualarmos a zero resulta em:

$$-\nabla p + \rho \vec{q} = 0 \tag{4}$$

Onde:

- $-\nabla p$: Força de pressão resultante por unidade de volume em um ponto. Representado pelo vetor gradiente com uma componente x uma y e uma z
- $\rho \vec{g}$: Força de campo (gravitacional) por unidade de volume em um ponto

1.2 Variação de Pressão em um Fluido Estático

A seção anterior foi de suma importância por introduzir a modelagem amtemática básica para a estática de fluidos, com a equação 4. A partir disso, podemos dissecar tal equação e relacionarmos o que sabemos na prática (que a pressão aumenta com a profundidade) com a modelagem.

Para tal, precisamos primeiro considerar que estamos lidando com um **líquido incompressível**, de tal forma que $\rho = const$ e também que a gravidade é uma constante e aponta na direção z somente. A partir disso, precisamos analisar a equação 4 somente no eixo z, resultando em:

$$-\nabla p + \rho \vec{g} = 0$$

$$-\frac{\partial p}{\partial z} + \rho(-g_z) = 0$$

$$-\frac{dp}{dz} + \rho(-g_z) = 0$$

$$dp = +\rho g_z dz$$

$$\int_{p_0}^p dp = \int_{z_0}^z \rho g_z dz$$

$$p - p_0 = \rho g_z (z - z_0)$$

$$\Delta p = \rho g h$$
(5)

É importante ressaltar que, a equação 6 só é valida para:

- Fluido Estático
- A gravidade é a única força de campo
- ullet O eixo z é vertical voltado para cima

Além disso, a equação 5 é importante para os casos em que o fluido não é incompressível (e por conseguinte a massa específica ρ pode variar com a pressão p). Para esses casos, devemos partir nossas contas dessa equação e fazer a integral para o devido $\rho = f(p)$, como é nos casos dos gases ideais. Importante ressaltar que o sinal da gravidade é negativo pois o eixo z é positivo para cima, se o eixo z for positivo para baixo o sinal da gravidade na equação 5 seria positivo.

1.3 Variação de Pressão Em um Gás Ideal