

CURSO DE ENGENHARIA DE SOFTWARE

Disciplina: Sistemas Distribuídos

MODELOS FUNDAMENTAIS

Prof. M.e Alexandre Tannus

Anápolis - 2021.1

Introdução

- Modelos
 - Explicitam informações necessárias e relevantes sobre o sistema
 - Tratam as possibilidades e impossibilidades de acordos com as informações disponíveis
 - Algoritmos de propósito geral
 - Propriedades desejáveis

Modelos Fundamentais

- ▶ Interação
 - ► Atrasos de comunicação
 - ► Coordenação de processos
 - ► Tempo global
- ► Falha
 - Máquinas
 - ► Redes
- Segurança
 - ► Ataques externos e internos
 - ▶ Define e classifica formas de ataque

Modelo de Interação

- ► Cooperação entre processos servidores para o fornecimento de um serviço
 - ▶ Domain Name Service (DNS)
 - ► Network Information Service (NIS)

- ▶ Processos P2P cooperando para atingir um objetivo
 - ► Teleconferência

Mudança de paradigma

- ► Algoritmos sequenciais
 - Executam uma sequência de instruções utilizando um único processo

- Sistemas Distribuídos
 - ► Cada processo é responsável por uma 'parte' do processamento
 - ► Mensagens são transmitidas entre os processos

Problemas

- Qual a velocidade de execução de cada processo?
- ► Como ocorre a sincronização da troca de mensagens?
- Existe garantia que todos os processos serão finalizados?
- O desempenho da comunicação pode afetar o sistema?
- ▶ É possível manter uma noção global de tempo?

Desempenho da comunicação

- Latência
 - ► Tempo entre o envio e recepção de uma mensagem

- ► Largura de banda
 - Volume total de informações que pode ser transmitido em determinado momento
- ► Jitter
 - Variação no tempo exigida para distribuir uma série de mensagens.

Sincronização e relógio global

- ► Cada computador possui um relógio interno
 - ► Time stamps: carimbos de tempo associados aos processos
 - ▶ Drift: Diferença entre o relógio do computador e um relógio de referência

- ► Tipos de sistemas
 - Síncronos
 - Assíncronos

Sistemas síncronos

- ► Características principais
 - Limites de tempo para execução de cada etapa dos processos
 - ► Conhecimento do tempo de recebimento de mensagens
 - Drifts conhecidos pelos processos

Modelo de falhas

- ▶ Define como uma falha pode ocorrer
- ► Indica meios de recuperação de falhas
- ► Tipos de falhas
 - ▶ Omissão de processo
 - Omissão de comunicação
 - Arbitrárias

Falha por omissão de processo

- Processo deixa de executar as ações que deveria
- Indicador
 - ▶ Timeout

Falha por omissão de comunicação

Falhas arbitrárias

- ► Pior tipo de falha
 - Atribuição incorreta de valores
 - ► Corrupção de mensagens
 - ► Envio de mensagens inexistentes

Tipos de falhas

Classe da falha	Afeta	Descrição
Parada por falha	Processo	O processo pára e permanece parado. Outros processos podem detectar esse estado.
Colapso	Processo	O processo pára e permanece parado. Outros processos podem não detectar esse estado.
Omissão	Canal	Uma mensagem inserida em um <i>buffer</i> de envio nunca chega no <i>buffer</i> de recepção do destinatário.
Omissão de envio	Processo	Um processo conclui um envio, mas a mensagem não é colocada em seu <i>buffer</i> de envio.
Omissão de recepção	Processo	Uma mensagem é colocada no <i>buffer</i> de recepção de um processo, mas esse processo não a recebe efetivamente.
Arbitrária (bizantina)	Processo ou canal	O processo/canal exibe comportamento arbitrário: ele pode enviar/transmitir mensagens arbitrárias em qualquer momento, cometer omissões; um processo pode parar ou realizar uma ação incorreta.

Falhas de temporização

► Afetam apenas sistemas síncronos

Classe da falha	Afeta	Descrição
Relógio	Processo	O relógio local do processo ultrapassa os limites de sua taxa de desvio em relação ao tempo físico.
Desempenho	Processo	O processo ultrapassa os limites do intervalo de tempo entre duas etapas.
Desempenho	Canal	A transmissão de uma mensagem demora mais do que o limite definido.

Segurança

"A segurança de um sistema distribuído pode ser obtida tornando seguros os processos e os canais usados por suas interações e protegendo contra acesso não autorizado os objetos que encapsulam."— COULOURIS, 2013

Onde aplicar segurança?

- Processos
 - Vulnerabilidades

- Canais
 - Sniffers

- Objetos
 - ▶ Uso não autorizado

Proteção a objetos

- Direitos de acesso
 - ▶ Definem quem pode acessar determinado recurso

Ameaças ao processo

- ► Problemas de identificação
 - Roubo de senhas
 - ► Roubo de informações
 - Roubo de identidade
 - Violação de direitos de acesso
 - Páginas falsas

Ameaças ao canal de comunicação

► Alteração, cópia e/ou extração de mensagens de um canal de comunicação

Negação de serviço

- ▶ Ataque para retardar ou impedir o acesso de usuários a um sistema
 - Realização de múltiplas invocações
 - ► Envio incessante de mensagens

- Causado por sobrecarga dos recursos físicos
 - Processamento
 - ► Largura de banda
 - ▶ Memória

Fornecendo segurança ao sistema

- ► Criptografia
- Autenticação
- Canais seguros

Análise de segurança

- ► Listar formas de ataque possíveis
 - ► Rede
 - ► Ambiente Físico
 - Processos

- Avaliar custo benefício das soluções de segurança
- ► Entender o RISCO HUMANO para o sistema

