

Inteligência Artificial

Época Recurso – 24 de Julho de 2009

Com Consulta / Duração: 2h30m

1. Problemas de Pesquisa (4.0 Val)

Considere o seguinte problema de pesquisa em que o estado inicial é o nó A e o estado objectivo é o nó G. Suponha que, nas árvores de pesquisa, os <u>nós são gerados por ordem alfabética</u>. Quando um nó é expandido são gerados e analisados imediatamente todos os seus sucessores, excepto o seu antecessor directo da árvore (que não é gerado). Responda às seguintes questões.

- a) Apresente as árvores de pesquisa dos seguintes algoritmos. Indique numericamente a ordem de expansão dos nós e apresente a solução final obtida e o seu respectivo custo. (1.75 Val)
 - i) Pesquisa em largura
 - ii) Pesquisa em profundidade
 - iii) Pesquisa de custo uniforme
 - iv) Pesquisa gananciosa utilizando as heurísticas h2 e h3
- b) Considerando a aplicação do algoritmo A* ao problema, indique justificando quais das quatro heurísticas (h1, h2, h3, h4) são admissíveis? Apresente a árvore de pesquisa do algoritmo A* para todas as heurísticas admissíveis. Nota: No caso de as árvores geradas serem equivalentes às geradas por um dos algoritmos da alínea anterior simplesmente justifique essa situação sem repetir o desenho da árvore de pesquisa. (1.75 Val).
- c) Comente a optimalidade dos algoritmos utilizados na resolução do problema nas alíneas anteriores (0.5 Val).

Nó	h1	h2	h3	h4
A	0	5	6	2
В	0	3	5	2
С	0	4	2	2
D	0	2	5	2
Е	0	4	3	2
F	0	1	4	2
G	0	0	0	0

2. Algoritmos Genéticos (3.5 Val.)

Suponha que a caravana de um conhecido partido político deseja visitar as 20 cidades portuguesas mais importantes durante a campanha eleitoral para as próximas eleições legislativas. Dispõe da matriz **float Dist[20][20]** que contém as distâncias, por estrada, entre cada par de cidades (sendo que Dist[i][j] = Dist[j][i] e Dist[i][i]=0). Pretende-se, sair da cidade 1 (Lisboa), visitar as restantes 19 cidades, cada qual uma vez, minimizando a distância total percorrida e regressando novamente, no final, à cidade 1. Pretende-se que as cidades 5, 6, 7, 8 e 9 não sejam visitadas umas a seguir às outras. Caso tal aconteça deve ser adicionada uma penalidade de 100 (por exemplo se a cidade 5 for a primeira visitada e a 8 for a segunda, adicionar 100 de penalização). Suponha que pretende resolver este problema utilizando Algoritmos Genéticos.

- **a.** Proponha uma estrutura de dados para o Indivíduo (Cromossoma) a utilizar explicando-a. (0.75 Val)
- **b.** Apresente o pseudo-código (ou código em C++/Java) para a função de fitness a utilizar que recebe um cromossoma e calcula a respectiva avaliação. (0.75 Val).
- **c.** Apresente, explicando, uma possível função de cruzamento a utilizar. (1 Val).
- **d.** Apresente, explicando, uma possível função mutação a utilizar. (0.5 Val).
- **e.** Discuta resumidamente outros possíveis métodos para resolver este problema e qual a facilidade de obtenção da solução óptima dependendo da dimensão do problema (i.e. do número de cidades a visitar). (0.5 Val).

3. Linguagem Natural (3.5 Val.)

Pretende-se implementar um sistema que responda a questões relativas a professores, funcionários e alunos e respectivos departamentos ou cursos. O sistema deve ser capaz de reconhecer quais professores (e respectiva categoria) e funcionários pertencem a um determinado **departamento**, bem como quais alunos estão em determinado **curso**. O sistema deve aceitar frases do <u>tipo</u> das seguintes:

quantos professores existem no dei? Resposta: 28 quantos professores auxiliares estão no dei? Resposta: 15 e no deec? Resposta: 42

quais funcionários existem no dei? Resposta: [sandra, idalina, ...] quais funcionários existe no dei? Resposta: erro de sintaxe

que alunos existem no dei? Resposta: erro de semântica (alunos existem em cursos)

- **a.** Especifique a base de conhecimento em Prolog.
- **b.** Escreva um programa em Prolog que efectue a análise <u>sintática</u> e <u>semântica</u> (usando DCGs) de frases do tipo das enumeradas, e responda convenientemente. Considere que a entrada do programa é já a lista de palavras que constituem a frase a analisar.

4. Inteligência Artificial. (9.0 Val).

Responda a seis (6) das seguintes oito (8) questões em 5/10 linhas:

- **a.** Compare **explicando**, as ordens de complexidade temporal e espacial dos algoritmos de pesquisa "primeiro em largura", "primeiro em profundidade" e "aprofundamento progressivo". Suponha um exemplo simples de um problema de pesquisa, em que o factor de ramificação médio da árvore é de 10, a solução encontra-se a uma profundidade 12 e cada estado é representado por um byte. Em que circunstâncias será possível aplicar cada um dos algoritmos referidos na resolução deste problema prático?
- **b.** Construa em prolog um interpretador de pesquisa de solução do tipo "Primeiro_em_Profundidade" que, simultaneamente, evite ciclos no passo para a solução e que pesquise cada ramo até uma profundidade limite especificada como parâmetro para o algoritmo.
- c. Suponha que h1 e h2 são ambas heurísticas admissíveis para o algoritmo A*. Indique justificando, quais das seguintes heurísticas serão também admissíveis:
 - i) h3 = h1 + h2;
 - ii) h4 = min(h1; h2);
 - iii) h5 = max(h1; h2);
 - iv) h6 = h1 * h2;
 - v) h7 = w*h1 + (1-w)*h2 min $com \ w \in [0, 1].$
- d. Supondo que MAX é o primeiro a jogar, aplique o Algoritmo Minimax com cortes Alfa-Beta à seguinte árvore. Indique graficamente todos os cortes que efectuar na aplicação do algoritmo.
- MIN MAX MIN 6 8 3 11 2 9 14 15 2 4 11 8 2 1 13 7 15
- e. Pretende-se estudar a assiduidade de espectadores a uma sessão de teatro num final de tarde de sábado. Suponha a tabela de exemplos representada ao lado, em que os atributos analisados são a idade do possível espectador, as condições meteorológicas, e a duração da sessão de teatro. Sem fazer cálculos, indique justificando qual o atributo raiz da árvore de decisão encontrada pelo algoritmo ID3?
- **f.** Explique qual o interesse da utilização de um conjunto de teste em adição ao conjunto de treino na avaliação de algoritmos de aprendizagem. Como deve ser gerado este conjunto e como deve ser utilizado no treino de uma rede neuronal?

Idade	Tempo	Duração	Vai_Teatro
Criança	Sol	Curto	Sim
Criança	Chuva	Curto	Sim
Criança	Sol	Longo	Não
Criança	Núvens	Longo	Não
Adulto	Sol	Longo	Não
Adulto	Chuva	Curto	Sim
Adulto	Chuva	Longo	Não
Adulto	Núvens	Curto	Sim
Adulto	Núvens	Longo	Sim
Adulto	Sol	Curto	Sim

- **g.** Será que uma rede neuronal, inicializada com pesos aleatórios, treinada utilizando back-propagation (função sigmoide) até ao erro do conjunto de treino (sempre o mesmo) ser minimizado, encontra sempre a mesma solução? Explique brevemente porque sim ou porque não.
- **h.** Considere um Sistema Pericial com as seguintes regras:
 - R1: Se tempo está mau ou disposição é má então Sr X não vai ao jogo (FC=0.9)
 - R2: Se Sr X acha que vai chover então tempo está mau (FC=0.7)
 - R3: Se Sr X acha que vai chover e meteorologia diz que vai chover então disposição é má (FC=0.8)
 - R4: Se tempo está mau então disposição é má (FC=0.9)

Sabendo que a meteorologia diz que vai chover (FC=0.8) e o Sr.X acha que vai chover (FC=0.9), qual a conclusão que o Sistema Pericial retira sobre a ida do Sr.X ao jogo?

Eugénio Oliveira, Ana Paula Rocha, Luís Paulo Reis