ADVANCED ASSET MANAGEMENT – GROUP PROJECT

DATABASE: Monthly returns of 47 European stocks from August 2005 to March 2022

OBJECTIVE: Backtesting of a cluster-based long/short momentum strategy

GENERAL NOTES

- Computations must be made using Python.
- Expected output:
 - ✓ Working, clean, and well-organized Python code
 - ✓ A "commercial" 2-pager presenting the backtest of the investment strategy, including
 - A brief description of the strategy
 - The backtested performances
 - Summary statistics
 - Meaningful charts ...
 - ✓ A short report containing
 - Part I
 - Step 1: a chart showing the historical evolution of the number of stocks in the 2 clusters
 - Part II
 - The description of the detailed methodology used for the statistical test for "luck"
 - The confidence intervals of the various statistics under the null hypothesis of luck
- Deadline: the report and the python code must be send by email (ZIP file preferred) the 02
 MAY 2022 at the latest.

Part I – Simulate the monthly performances of a cluster-based long/short momentum strategy, from August 2008 to March 2022

Initial in-sample estimation window: August 2005 to July 2008

At each date t, from July 2008 to February 2022:

- Step 1: Using the full data available, from time 0 up to time t, identity the 2 main
 European stock clusters, through a hierarchical clustering approach.
 - ✓ Stock features are their monthly returns
 - ✓ Distance metric: correlation
 - ✓ Linkage methodology: Ward
- **Step 2:** Within each cluster, rank each stock s according to its **momentum score** $(MOM_{s,t})$, defined as the average of its **12-months return momentum score** $(R_MOM_{s,t})$ and of its **12-months specific momentum score** $(S_MOM_{s,t})$
 - $\checkmark MOM_{s,t} = (R_MOM_{s,t} + S_MOM_{s,t})/2$
 - ✓ The 12-months return momentum score is defined as the within-cluster cross sectional z-score of the 12-month return momentum defined as:

$$r_mom_{s,t} = \frac{\sum_{i=1}^{11} r_{t-i}}{11}$$

✓ The 12-months specific momentum score is defined as the within-cluster cross sectional z-score of the 12-month specific momentum defined as:

$$s_{-}mom_{s,t} = \frac{\sum_{i=0}^{11} (\alpha_{s,t} + \varepsilon_{s,t-i})}{12}$$

with $\alpha_{s,t} + \varepsilon_{s,t-i}$ estimated from the following model (over the last 36 months): $r_{s,\tau} = \alpha_{s,t} + \beta_{s,t}Rm_{\tau} + \varepsilon_{s,\tau}$ for $\tau: t-35 \to t$

- Step 3: Build a long/short momentum portfolio within each of the 2 clusters
 - ✓ The long portfolio is invested in stocks that display above (or equal) the cluster median of the momentum scores
 - ✓ The short portfolio is invested in stocks that display below the cluster median of the momentum scores
 - ✓ The allocation methodology for both long and short portfolios follows an inverse volatility weighting scheme, with no leverage.
 - ✓ The long/short portfolio is invested at 100% in the long portfolio and -100% in the short one.

Step 4: Build the global cluster-based long/short momentum portfolio

$$Global\ portfolio = \frac{N_1P_1 + N_2P_2}{N_1 + N_2}$$

where P_1 and P_2 are the long/short portfolios of clusters 1 and 2 respectively, N_1 and N_2 the number of stocks in clusters 1 and 2 at time t.

 Step 5: Compute the out-of-sample performance at time t+1 of the global cluster-based long/short momentum portfolio

Part II – Assess the performance of this cluster-based long/short momentum investment strategy

- Step 1: Compute the following risk and performance metrics from the simulated track record of the investment strategy
 - ✓ Average return
 - ✓ Volatility
 - ✓ CVaR (95%, 1 month)
 - ✓ Maximum drawdown
- Step 2: Check the significancy of these risk and performance statistics against the null hypothesis of luck. Comment your results.