Практика 10. Числовые ряды. Часть 1

Числовые ряды. Признаки сходимости положительных рядов.

Числовой ряд:
$$u_1 + u_2 + ... + u_n + ... = \sum_{n=1}^{\infty} u_n$$

n-ая частичная сумма ряда: $S_n = u_1 + u_2 + ... + u_n$.

Ряд называется cxodsumumcs, если существует конечный предел $\lim_{n\to\infty} S_n = S$, в противном случае ряд называется расходящимся.

$$S = \lim_{n \to \infty} S_n -$$
сумма ряда.

$$R_n = S - S_n = u_{n+1} + u_{n+2} + ... -$$
 остаток ряда (после n -го члена)

Необходимый признак сходимости ряда: $\lim_{n\to\infty}u_n=0$.

Признаки сходимости знакоположительных рядов	
Признак сравнения	Пусть $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ — знакоположительные числовые ряды,
	$u_n \le v_n$, начиная с некоторого n .
	Тогда 1) $\sum_{n=1}^{\infty} v_n$ сходится $\Rightarrow \sum_{n=1}^{\infty} u_n$ сходится;
	$2) \sum_{n=1}^{\infty} u_n \text{ расходится} \Rightarrow \sum_{n=1}^{\infty} v_n \text{ расходится}$
Предельная форма признака сравнения	Пусть $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ — знакоположительные числовые ряды,
	существует конечный отличный от нуля предел $\lim_{n \to \infty} \frac{u_n}{v_n} = k$.
	Тогда $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$ сходятся или расходятся одновременно.
	Эталонные ряды:
	$1)\sum_{n=1}^{\infty}aq^{n-1}, q <1$ сходящийся (геометрическая прогрессия) $S=\frac{a}{1-q}$
	$_{\alpha}$ $\stackrel{\sim}{\Sigma}$ 1 сходящийся, если $\alpha > 1$ (обобщенный гармонический)
	расходящийся, если $\alpha < 1$ (обобщенный гармонический)
Признак Даламбера	Пусть $\sum_{n=1}^{\infty} u_n$ — знакоположительный числовой ряд,
	существует $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$. Тогда
	$l < 1 \Rightarrow$ ряд сходится
	$l > 1 \Rightarrow$ ряд расходится
	$l=1 \Rightarrow$ вопрос о поведении ряда открыт
Признак Коши (радикальный)	Пусть $\sum_{n=1}^{\infty} u_n$ — знакоположительный числовой ряд,
	существует $\lim_{n \to \infty} \sqrt[n]{u_n} = l$. Тогда
	$l < 1 \Rightarrow$ ряд сходится
	$l > 1 \Rightarrow$ ряд расходится
	$l=1\Rightarrow$ вопрос о поведении ряда открыт
Интегральный	Если $f(x)$ – непрерывная, положительная, невозрастающая функция для $x \ge a$,
признак Коши	и начиная с некоторого $n,\ u_n=f(n)$, то ряд $\sum_{n=1}^\infty u_n$ и несобственный интеграл $\int\limits_a^{+\infty} f(x)dx$
	сходятся или расходятся одновременно.

Задания.

- **1.** Дан общий член ряда $a_n = \frac{n}{10^n + 1}$. Написать первые четыре члена ряда. **2.** Найти общий член ряда: a) $\frac{1}{2} + \frac{3}{4} + \frac{5}{8} + \frac{7}{16} + \cdots$; б) $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \cdots$.
- **3.** Найти пятую, двадцатую и n-ую частичные суммы ряда $\sum_{n=0}^{\infty} \ln \frac{n+1}{n}$. Исследовать данный ряд на
- **4.** Известно, что а) $S_n = \arctan r$; б) $S_n = \frac{3n+1}{5n-2}$; в) $S_n = \frac{2n^2-1}{n+5}$. Найти сумму ряда.
- **5.** Найти сумму ряда $\sum_{n=1}^{\infty} \frac{1}{25n^2 15n 4}$. Доказать сходимость ряда. Сколько членов ряда надо взять, чтобы вычислить его сумму с точностью до 0,001?
- **6.** Исследовать сходимость ряда, найти сумму ряда: $\frac{2}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{2}{3} \left(\frac{1}{2}\right)^{n-1} + \dots$
- 7. Установить, выполняется ли необходимый признак сходимости для ряда:

a)
$$\sum_{n=1}^{\infty} \frac{2n}{2n+1}$$
; 6) $\sum_{n=1}^{\infty} \frac{2n-1}{n^2}$; B) $\sum_{n=1}^{\infty} \cos \frac{1}{n}$.

Исследовать ряд на сходимость (8-16)

8.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 2n}}$$
. 9. $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt[4]{n^{15}}}$. 10. $\sin \frac{\pi}{2} + \sin \frac{\pi}{4} + ... + \sin \frac{\pi}{2^n} + ...$. 11. $\frac{1}{3} + \frac{4}{9} + ... + \frac{n^2}{3^n} + ...$

12.
$$\frac{1}{3} + \frac{1 \cdot 3}{3 \cdot 6} + \dots + \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{3^n \cdot n!} + \dots$$
 13. $\arcsin 1 + \arcsin^2 \frac{1}{2} + \dots + \arcsin^n \frac{1}{n} + \dots$ 14. $\sum_{n=1}^{\infty} \frac{\left(\frac{n+1}{n}\right)^n}{3^n}$.

15.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln^2(n+1)}$$
. 16. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

17. Найти сумму ряда $\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \ldots + \frac{1}{n(n+1)(n+2)} + \ldots$ Доказать сходимость ряда. Сколько членов ряда надо взять, чтобы вычислить его сумму с точностью до 0,001?

Исследовать на сходимость ряд (18-20)

18.
$$\sum_{n=1}^{\infty} \frac{1}{4 \cdot 2^n - 3}$$
. **19.** $\sum_{n=1}^{\infty} \frac{1}{2^n} \left(1 + \frac{1}{n} \right)^{n^2}$. **20.** $\sum_{n=1}^{\infty} \frac{10^n 2n!}{(2n)!}$.