

Separate Flow Nozzle Test Status Meeting

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized data bases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:

NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076

NASA/CP—2000-210524

Separate Flow Nozzle Test Status Meeting

Proceedings of a conference held at and sponsored by NASA Glenn Research Center Cleveland, Ohio September 9–10, 1997

National Aeronautics and Space Administration

Glenn Research Center

Note that at the time of research, the NASA Lewis Research Center was undergoing a name change to the NASA John H. Glenn Research Center at Lewis Field.

Both names may appear in this report.

Available from

NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076 Price Code: A16

PREFACE

In 1995, NASA GRC initiated efforts to meet the US industry's rising need to develop jet noise technology for separate flow nozzle exhaust systems. Such technology would be applicable to long-range aircraft using medium to high by-pass ratio engines. With support from the Advanced Subsonic Technology Noise Reduction program, these efforts resulted in the formulation of an experimental study, the Separate Flow Nozzle Test (SFNT). SFNT's objectives were to develop a data base on various by-pass ratio nozzles, screen quietest configurations and acquire pertinent data for predicting the plume behavior and ultimately its corresponding jet noise. The SFNT was a team effort between NASA GRC's various divisions, NASA Langley, General Electric, Pratt&Whitney, United Technologies Research Corporation, Allison Engine Company, Boeing, ASE FluiDyne, MicroCraft, Eagle Aeronautics and Combustion Research and Flow Technology Incorporated.

SFNT found several exhaust systems providing over 2.5 EPNdB reduction at take-off with less than 0.5% thrust loss at cruise with simulated flight speed of 0.8 Mach. Please see the following SFNT related reports: Saiyed, et al. (NASA/TM—2000-209948), Saiyed, et al. (NASA/CP—2000-210524), Low, et al. (NASA/CR—2000-210040), Janardan et al. (NASA/CR—2000-210039), Bobbitt, et al. (NASA/CR—201-210706) and Kenzakowski et al. (NASA/CR—2001-210611.).

I wish to thank the entire SFNT team of nearly 50 scientists, engineers, technicians and programmers involved in this project. SFNT would have fallen well short of its goals without their untiring support, dedication to developing the jet noise technology.

Naseem Saiyed SFNT Research Engineer

TABLE OF CONTENTS

Advanced Subsonic Technology Separate Flow Nozzle Tests for Engine Noise Reduction Sub-Element Naseem H. Saiyed, NASA Glenn Research Center	1
Advanced Subsonic Technology Noise Reduction Element Separate Flow Nozzle Tests for Engine Noise Reduction Sub-Element	
Naseem H. Saiyed, NASA Glenn Research Center	41
Separate Flow Nozzle Jet Noise Test Status Meeting at NASA Lewis Research Center J. Low, T. Barber, and S. Bhat	117
CFD Analysis for Selected Nozzles Thomas J. Barber, United Technologies Research Center	132
Phased Array Measurements for the Separate Flow Jet Noise Test at Glenn Srini Bhat and John Premo, Boeing Commercial Airplane Group	159
Discussion of Measured Acoustic and Related Aero Data Thomas J. Barber, United Technologies Research Center	176
Critical Propulsion and Noise Reduction Technologies for Future Commercial Subsonic Engines B.A. Janardan, G.E. Hoff, J.W. Barter, J.F. Brausch, P.R. Gliebe, R.S. Coffin,	
S. Martens, and B.R. Delaney, GE Aircraft Engines; W.N. Dalton, V.G. Mengle, B.R. Vittal, V.D. Baker, and F. Smith, Allison Engine Company	181
SFNT97 Flow Field Measurements	255
LaRC Separate Flow Testing Status	227
Jack Seiner, Jet Noise Laboratory, NASA Langley Research Center	337
Installed Jet Noise Thonse R.S. (Srini Bhat), NASA Glenn Research Center	345
List of Attendees	363

Separate Flow Test Status Meeting September 10, 1997 NASA Lewis Bldg 86 Rm 100

<u>Agenda</u>		
LeRC	Welcome	9:00
LeRC	Discussion of configurations, concepts tested, measurements, quality of data, schedule	9:15
LeRC	Results overview (EPNL Summary)	9:45
	Break	10:15
PW	PW noise reduction concept results Phased array results	10:30
	Lunch	12:00
GE	GE noise reduction concept results	1:00
LeRC	Diagnostic Measurements	2:30
	Break	3:00
LeRC	Outstanding issues and schedule	3:15
LaRC	LaRC Separate Flow Testing Status	3:30
Boeing	Installed Jet Test Results	4:00
All	Open Discussion	4:15
	Adjourn	5:30

Advanced Subsonic Technology

Separate Flow Nozzle Tests for

Engine Noise Reduction sub-element

Presented to AST Participants

September 10, 1997

Naseem H. Saiyed NASA Lewis Research Center Cleveland, Ohio

Baseline Configurations for all models

Baseline Cofigurations for all models

1BB, 5 BPR

5BB, 8 BPR

6BB, 5 BPR

NASA C-97-3403

NASA/CP-2000-210524

NASA C-97-3409

NASA C-97-3411

NASA C-97-3412

NASA C-97-3413

NASA C-97-3414

NASA C-97-3415

NASA C-97-3415

NASA C-97-3416

NASA C-97-3417

NASA C-97-3419

NASA C-97-3420

NASA C-97-3421

NASA C-97-3422

NASA/CP-2000-210524

NASA C-97-3428

NASA C-97-3427

NASA/CP-2000-210524

NASA/CP-2000-210524

NASA C-97-3432

NASA C-97-3433

NASA/CP---2000-210524

NASA C-97.3434

NASA C-97-3437

NASA C-97-3438

NASA C-97-3439 Advanced Subsonic Technology

Noise Reduction Element

Separate Flow Nozzle Tests for

Engine Noise Reduction sub-element

Presented to AST Participants

September 10, 1997

Naseem H. Saiyed NASA Lewis Research Center Cleveland, Ohio

AST goals and general information

Nozzle nomenclature

Nozzle schematics

Photograph of all baselines

Configurations tests and types of data acquired

Engine cycle and plug geometry impact on EPNL

1* Model 2

Model 5

Model 3

Results summary in text

Results summary in symbols

Conclusions

^{*} Delta EPNLs at end of each model section.

Advanced Subsonic Technology (AST

Accelerate development of enabling technologies to maintain U.S. leadership in aeronautics

Noise Reduction: One of 13 elements of AST

Goal: Achieve 10 dB reduction relative to 1992 by 2000

Engine Noise Reduction: One of five sub-elements of Noise Reduction

Achieve 6 dB reduction relative to 1992 by 2000 for engine Goal:

Intermediate jet noise goal:

3 dB reduction by 1997

Separate Flow Nozzle Test (SFNT

Jet noise test in support of Engine Noise Reduction sub-element

Cooperative effort between LeRC, PW, Boeing, GE and Allison

Test objectives:

Develop data base for separate flow nozzles (acoustics, flow-field, and source location) ਲਂ

Screen various noise reduction concepts for full scale engine tests Ď.

Scale model testing completed

General Information

Data acquired in LeRC's Aeroacoustic and Propulsion Lab

Anechoic dome with 25 microphones at 50 foot nominal radius from 45° to 160° at 5° increment

■ EPNL confidence of +/- 0.25 EPNdB

Forward flight of 0.28 Mach simulated with an ejector tunnel

Scale factor of 8 used for full scale simulation

Data presented for level fly-over at 1500 foot sideline, 14.7 psia, 77°F and 70% r.h., One engine only

Test Matrix

Bypass Ratio 5 and 8

Bypass Ratio 5 cycle points were a compromise between GE and PW

Fan temperature maintained at 600 R due to excessive time in gaining status "on-point"

Static and forward flight at 0.2 and 0.28 Mach

Test Hardware parameters varied:

a. Core plug (internal and external)

Fan nozzles (chevrons, tabs, scarfed, off-set, doublets) <u>.</u>

Core nozzles (vortex generator doublets, tabs, mixers, chevrons) ပံ

Test Hardware

Hardware nomenclature:

Baseline (clean nozzle without any enhancer device) 12 chevrons and 24 chevrons (for fan C24 = C) 12 Alternating flipper chevrons nterior doublet C12 and C24

Exterior doublet

Full mixer H Fm

Half mixer

Fan off-set nozzle

12 Inward flipper chevrons

Scarfed nozzle

24 flipper tab and 48 flipper tabs T24 and T48

Tongue mixer

Hardware designation: [model #][core nozzle][fan nozzle]

Example: 3T24T48 = [model 3] with [24 tabs on core nozzle] and [48 tabs on fan nozzle]

12 Chevrons Applied to External Plug Core Nozzie

. 24 Chevrons Applied to Fan Nozzle

Flipper Chevron Located on External Plug Nozzle (All Chevrons Penetrating the Core Flow)

Flipper Chevrons Located on External Plug Nozzle (Alternating Chevrons Penetrating the Core/Fan Flows)

Figure 6.

Figure 7.

Vortex Generator Doublet Description

Doublet Design and Installation Information

Description	# Doublets	H [in.]	a (in.)	L [in.]	W (in.)
internal placement on the BPR=5, external plug core nozzle	64	0.05	0.50	0.35	0.25
external placement on the BPR=5, external plug core nozzle	20	0.15	0.50	1.05	.75
internal placement on the fan nozzle common to models 2-5	96	0.06	0.60	0.42	0.30

Figure 10. Fan Nozzle Flipper Tabs Example

Figure 13. Half Mixer Concept

[一(型)を]計・2

The offset centerline distance (iz) will be a function of the axial distance (x) from the attachment flange of the fan nozzle. This offset distance is governed by the following equation:

2 - 中 (四(四)-1)

where H is the maximum offset distance, and L is the current boseline for nozzle langth.

Two set of fan offset centerline wezzles are to be fabricated with the following maximum offset distances;

- () H = 0.25 ", L = 10.216"
- (2) H = 0.50 1 L = 10.216

Figure 14. Offset Nozzle Concept

104.4.56.1c.

Baseline Configurations for all models

4BB, 8 BPR 28B, 5 BPR 186, 58PR 586, 8 BPR 3BB, 5 BPR

7

Model 1: Co-Planar nozzle, 5 BPR (1BB)

Model 2: Internal plug, shortened fan, 5 BPR

Core		Fan Nozzle	
Nozzle	B (baseline)	C24 (24 chevrons) D (doublets)	D (doublets)
B (baseline)	>	3	9
C12 (12 chevrons)	*	4	
Tm (tongue mixer)	2	5	

These numbers refer to the photographs of hardware with pril directivity and epnl vs vmix data superimposed * Note:

Model 3: External plug, shortened fan, 5 BPR (work horse)

Core				Fan Nozzle	. 0		
Nozzle	В	C24	Ω	S	0	T24	T48
	(baseline)	(24 chevrons)	(internal doublet)	(scarfed)	(offset)	(24 flipper tabs)	(48 flipper tabs)
B (baseline)	>	17		26	28	30	32
T24 (24 flipper tabs)	7	82				ñ	8
T48 (48 Ilipper tabs)	8	19					34
C8 (8 chevrons)	6	20					
C12 (12 chevrons)	10	21					
(12 Inward flip. chevrons)	+	22					
A (12 alternating flip chev)	12	23	÷				
Di (internal doublet)	13						
Dx (external doublet)	14			^			
Hm (Half mixer)	15	24	•	27.	29		
Fm (Full mixer)	16	25					
	·				•		

Model 4: Internal plug, shortened fan, 8 BPR

External plug, shortened fan, 8 BPR Model 5:

Core Nozzle		Fan Nozzie
	B (baseline)	C24 (24 chevrons)
B (baseline)	٨	36
C12 (12 chevrons)	35	28

Table 1. Separate Flow Nozzle Acoustic Test Summary.

		ėwe.
Date Tested	320/87 325/87 325/87 325/87 325/87 327/87 327/87 327/87 326/87 4/1/87 4/10/87 4/10/87 4/10/87 4/23/87 4/23/87 4/23/87 4/23/87 4/23/87 4/23/87 4/23/87 4/23/87 4/23/87 4/23/87	
Data Points	4%は7月~7~9日27%の25~~888~~日888~~日86~~~	
Total No. of Power Settings	\$2000000000000000000000000000000000000	
Mach Number	0,0.20,0.28 0,0.20,0.28	
Clock Pos.		,
Mixing Concept Orig.	GEAE GEAE GEAE GEAE GEAE GEAE GEAE GEAE	ran
Fan Concept Enhancer	Base Base Base Base Base 24 Chev. Base Base Base Base Base Base Base Base	
Core Mixing Enhancer	Base Base Base Base Base Base Base Base	Hall Mix.
ā		EX.
898		ω
Model		с
Config.	2000000 2000000 200100 200100 201100 201100 201100 201100 201100 201100 201100 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000 300000	3090045
Test	28BB 28BB 28BC 28CC 28CC 28CC 28CC 28CC	3HmB(45)

Notes: (bit) = boundary layer trip
(vg) = vortex generators
Total Number of Data Points includes background noise conditions

Table 1. - AAPL Separate Flow Nozzle Accustic Test Summary (Concluded).

······································	,,,,,,,,,,,,,,,,		******											*****				_					-										_				*	
Date Tested	3/25/97	4/3/97	4/4/0/	4/8/97	4/8/97	4/9/97	4/11/97	4/15/97	4/16/97	4/14/97	107777	10/41/4	2001	4/15/9/	4/18/97	4/16/97	4/14/97	4/15/97	4/17/97	4/22/97	4/22/97	4/22/97	4722/97	421/97	4/4/97	477.07	4/8/97	4/9/97	4/10/97	4/11/97	4/14/97	4/15/97	4/16/97	4/17/97	4/18/97	4723/97		
Data Points	9	<u> </u>	<u> </u>		Ť.	2	2	00	^		- 1	~ P	- 1	~	27	~	<u></u>	G)	<u></u>	75	6 0	80	8	22	8	2	2	=	2	<u>~</u>	60	Ö	œ	60	8	7	1	
Power Settings	Cycle 2	Cycle 2	Cycle 22	Cycle 2	Cycle 2	Cycle 20	Cycle 2	Coc	200	360	2000	2000	Cycle Z	Cycles 2&6	Cycle 2	Cycle 2	Cycle 2	Cycle 2	Cycle 22	Cycles 344	Cycle 4	Cycle 4	Cycle 4	Cycles 384	Cycle 2	Cycle 2	Cycle 2	Cycle 2	Cycle 2	C) C C)	Cycle 2	Cycle 2	Cycle 2	Cycle 2	Cyc. 18288	C 45 5	•	
Mach	0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0.020.028	000000	8000000	0,0,00,00	0,0.40,0.40	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0,20,0,28	0.0.20,0.28	0.0.20.0.28	0.0.20,0.28	0.020.028	0,0.20,0.28	0	0,0,20,0,28	0,0.20,0.28	0.0.20,0.28	0,0.20,0.28	0,0.20,0.28	0.0.20.0.28	0.0.20.0.28	0.0.20.0.28	0.0.20.0.28	0.0.20.0.28		
Clock Pos.	0	0	0	0	45	0		· c	> <	> <		-	<u> </u>	<u> </u>	0	0	0	0	0	0	0	. 0		0	0		•	0	0	0	0	0	. 0		0	0		
Concept Orig.	GEAE	P&W	GEAE/P&W	GEAE/P&W	GEAE/P&W	P&W	HAT.	u vu c	֓֞֝֞֜֜֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֡֓֞֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡֓֡֓֡	מלולט כ	בוראה האור	GEA	GEAE	GEAE	GEAE	GEAE	GEAE	GEAE	GEAE	GEAE	GEAE	GFAF	GFAF	GFAE	GEAE	GEAE	GEAE	GEAE	GEAE	GEAE	GEAE	SFAF	GFAF	GFAE	GEAE	GEAE		
Concept Enhancer	96 Int. Doub.	Scart Noz.	24 Chev.	24 Chev.	Base	Max Offset Noz.	Dace 0	24 040		24 Cnev.	Base	Base	Base	24 Chev.	24 Chev.	24 Chev.	Base	Base	Base	Raga	24 Chev	24 Chay	Race	2 6 6	Rasa	Rage	Base	Rasa	Base	Rasa	986	Baco	2 4	Boso	Base	Bag .		
Mixing Enhancer	Base	Half Mix.	Hall Mix.	Half Mix.	Hall Mix	Holl Mix	7040 0	2 C C C C C C C C C C C C C C C C C C C	12 C/18V.	8 Chev.	8 Chev.	12 In-Flip Chevs	12 In-Flip Chevs	12 In-Filo Chevs	12 In-Flip Cheys	12 All-Flin Chave	12 Alt-Flip Chevs	64 Int Doub	20 Ext Doi:10	Pace	0 00	2000	\$ C C C C C C C C C C C C C C C C C C C	- CE CE 64.	Dasa	B age	926	Dage C	9 6	0 0	200	0 0 0	0 00	0 0	0 0	2 0	Dasa	
Plug	ī	X	X	Ä	č	į		ž i	ž	X.	ž	Ĕ	X	X	ž	ă	i	í	iù	į	Š		ž į	ž:	<u>≓</u> 3	3 2	Šů	1 3	i i	į	,	į į	i i				Ku	
вря	v.	'n	ur.	ı.c) V	วน		n (n	S	ഗ	ഹ	un	v	· • • • •	····) (f) u	, v	. a	0 0	0 0		2		n u	n 4	n u	n u	n u	n 4	n L	0 1	n 1	ດ ເ	n u	ဂ	
Model No.	۰	, co	(r.) et	۰ د) (? (<u>ب</u>	m	က	ო	ന	67) (*)	·····) ¢) (°) C	3 5	י נ	n u	n,	n ı	ο.	4 (n c	n (つ	2 (· ·	י כי	·······		· ·	· ·	n (מי	
Config. Code	200200	3040200	3090100	3090100	200000	0000000	OCCUPACE OF THE PROPERTY OF TH	3010000	3010100	3020100	302000	3030000	303000	202020	200000000000000000000000000000000000000	001000	20000	0000000	2000000	2000000	0000000	20000	5010100	2010000	4000000	300000	2000000	300000	300000	300000	200000	300000	3000000	300000	300000	300000	300000	
Test Confia.	OBC	Olympe Olympe	2000			(45) (45)	SHMCmax(U)	30,28	၁၃၂၃၄	သွင်	35,8 B	300	218(r)		3 5 5	E (<u>ب</u>	0 S S S	200 G	30xp	288	၁၉၄	ည္မ	2CB	488	388(1)	388(5)	38B(r)	388(5)	388(0)	38B(r)	38B(r)	38B(r)	38B(r)	38B(r)	38B(r)	388(r)	

Notes:

(bit) = boundary layer trip (vg) = vortex generators ⊽otal Number of Data Points includes background noise conditions

Table 2. Additional AAPL Separate Flow Nozzle Acoustic Testing.

Date Tested	4/9/97	¥12/97	712/97	787217	5/13/07	5/13/97	13/97	5/13/97	79717	78771X	3/18/97	3/18/97	
	60 P	7 5	7 2	70 T	5 E		. Z	& &	6	8	<u>8</u>	<u>8</u>	
Data Points							-		=				
Power Settings	Cycle 2	Cycle 2	Cycle 2		2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 6	6 6 6 6 7	Cycle 2	C de 5	2 8 5 C)	Cyde 2	Cycle 2	
Mach Number	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.28	0,0.20,0.26	0,0,28	0.028	0,28	0,20,28	0,.20,.28	0.28	0.28	
Clock Pos.	0 0	0	0	0 (0 () c	0	0	0	0	0	1
Concept Orig.	Paw	GEAE/AEC	GEAE/AEC	NASA	GEAE	Y Y	CEAEMASA	P&W	GEAE	GEAE/P&W	GEAE	P&W	
Concept	Max. Offset Noz.	Base	24 Chev.	Base	Base	Base	Base 74 Chou	48 File Tabs	Base	24 Chev.	Base	Base	
Mixing Enhancer	Half Mix.	Tonglie Mix.	Tongue Mix.	Base	Base	Full Xix	Hall Mix.	rull Mix.	Rasa	24 Ello Taha	Race	24 Filp Tabs	
Plug	ä	i i	New	New	ĔŻ	Ä	<u> </u>	ž į	i	Š	3 3	i ä	
8 P.B	2	un u	ာ ဟ	4	w	ഗ	s o	un u	n u) u	ט מ	n v	
Model No.	က	N 0	u cu	**	က	က	დ .	с	n c	n c	າ ເ	າ ຕ	
Config.	3090500	2000000	6100100	7000000	3000000	3110000	3090000	3110100	30/0400	300000	0010/05	3070000	
Test Config.	3HmOmax(0)	28B(r)	61mB	788	388(r)	ЗҒВ	3HmB(0)r	3FC	3724748	(u) ABB(3124C	38B(r) 3T24B(r)	

Note: Matrix does not include flexible wire (attached to centerbody plug traiting edge) configurations testing conducted on 6/18/97.

Table 3. AAPL Separate Flow Nozzle Phased Array (NASA) Test Summary.

Date Tacted	2000	3025/97	3/25/97	47/47/8	3/2//9/	3/28/97	4/3/97	4/3/97	4/4/97	4/7/97	4/8/97	4/9/97	4/9/97.	4/10/97	4/10/97	4/10/97	4/11/87	Z/11/W/	4744/67	10/41/4	4/14/3/	4/10/9/	4/12/9/	4/12/9/	4/16/9/	4/16/97	4/17/97	4/17/97	4/18097	4/18/97	4/21/97	421/97	
Escort	nugs.	À	4	XXX XXX	339,340	352,353	497,500	505,507	549,561	576-585	909'609	655 or 657	668,670	069	769	502	197	17/4		377	9//	3	816	824 or 626	843	851	875	882	892	918	928	976	
Cycle/P.S.		6			2720	2/20	2/21	12/2	2/20/21	2/Special	2/21	2221	2/20/21	2/20	2720	2/20	V6/6	0000	2000	02/2	2720	2/20	2/20	2/20	2/20	2/20	2/20	222	2/20	220	. 2/20	4/4	٠
×	,	4	,	,	0,.28	0,28	0,28	0,28	0,28	0	0,28	.28	0,28	0.28	0.28	86.0	0.00	2 2 2	0.20	0.28	0.28	.28	.28	.28	.28	.28	.28	.28	28	28	98	28	
Clock	Hosiiion	V/V		۷»	٧A	NA	86	180	KVA	NA	0	0	0	86	GB)	N/A	50.2	C 2	V/N	Υ×	N/A	N/A	N/A	N/A	N/A	N/A	45	NA NA	N/A	NIA	N/A	Y N	
Fan Nozzle		0000	Dasa	96 Int. Doub.	24 Chev.	24 Chev.	Base	Base	Base	Base	Base	Max. Offset Noz.	May Offset Noz.	Max Offset Noz.	May Officel Moy	Max. Clisci Hot.	40 Fig. 1805	24 riip iaus	баѕе	Base	Base	Base	24 Chev.	24 Chev.	24 Chev.	24 Chev.	Base	Base	od Chav	Hace	Dane	Dasa	Date
Core Nozzle			case	Base	12 Chev.	Base	Half Wix.	Hall Mix	Base	Rase	Half Mix	Каса	N Hell	Han was.	Daso	pase	case	Баѕе	12 Chev.	12 In-Flip Chevs.	12 Alt-Flip Chevs.	64 Int. Doub.	12 In-Flip Chevs.	12 Chev.	8 Chev.	12 Alt-Flip Chevs.	Half Mix	SO EST DOM	AND LAN. COUNTY	IZ III-FIIID CIIOVS.	Dase	Base .	5869
Plug			Ë	E	la.	ju	Ž						1	TX:	LXI.	×	ĽŽ	EX.	Ext.	EXI.	Exi.	EXI:	EXI:	EX.	12.0	Ē			3	ıxi.	ĽŽ	Ĕ	E E
ВРЯ			2	5	S	, 4	, 4	, 4	, u	, 4	, 4	, 4	1	n	٥	2	2	ເກ	S	2	2	2	5	2		, "	, "	,			٥	9	8
Model	¥2:		C)	~	6	1	3 6	, k	? 6	? 6	2 6	2 6	? k	2)	2	က	က	3	3	3	3	6	3		, 6	, 6	7	, k	2	8	ဗ	2	4
Test Config.	•		288	280	200	200	אנו בייילאי	Shinb(30)	SHMB(18U)	350	300	SHIND(U)	3BOMax(u)	3HmOmax(0)	380max(90)	3BOmax(180)	38148	3BT24	30.128	AIR	AAR	and a		36176	Xexe	2000	SAC	3Hmb(45)	ЗДХВ	3IC	388	2BC	488
Sea				k	1	1	1	۵	٥	1	8	S I	9	=	12	13	14	5	19	*			2 6	3 6	7	22	23	24	25	56	27	28	29

Table 4. AAPL Separate Flow Nozzle Phased Array (Boeing) Test Summary.

Dale Tested	4728/07	4729/97	4729/97	4/29/97	4/30/97	4/30/97	4/30/97	4/30/97	29.63	5/1/9/	2/1/3/	21/8/	/RFS	52297	16776	180%	/ROZA	5/5/97	1858	5/5/67	5/5/97	218/97	2/6/97	28097	2,000	5/6/97	28097	577.87	18118	577.07	23/187	
Escort Adgs.	1088-1101	1102-1106	1107-1111	1112-1119	1120-1124	1125-1129	1130-1138	1139-1143	1144-1147	1148-1150	1151-1153	1154-1158	1159-1163	1164-1166	1167-1169	1170-1172	1173-1175	1176-1180	1181-1185	1186-1188	1169-1191	1192-1196	1197-1199	1200-1202	1203-1205	1208-1207	1208-1209	1210-1214	1215-1219	1220-1224	1225-1220	
Cycle/P.S.	2/1-7,21-23	2/21-23	2/21-23	2/20-24	2/21-23	2/21-23	2/20-24	2/21-23	2/21-23	2/21,23	2/21,23	2/21-23	2/21-23	2/21,23	2/21,23	2/21-23	2/21,23	2/21-23	2/21-23	2721-23	2271-23	221-23	2/21/23	221,23	2721,23	221,23	221,23	2721-23	221-23	221-23	221-23	
×	0,2,28	0,28	0,28	0,.2,.28	0,28	0,28	0,2,28	0,28	0,28	0,.28	0,28	0,28	0,.28	0,28	0,0.28	0.28	0,28	0,28	0,28	.28	82.	92.0	0,28	0,28	0,28	0	0	0,28	0.28	0,28	0.28	
Angle	8	96	86	83	86	88	86	8	8	06	8	8	86	96	86	86	96	133	120	128	RE	821	120	821	821	120	133	921	R	2 82	K	
Clock	NIA	MA	AWA A	NN N	N/A	NA	NWA	NWA	0	8	180	A/N	NVA	9	081	¥N.	MA M	N/A	MW.	NA	NA	NA.	0	8	82	MM	N/N	0	Kal	i e	, Kar	<u> </u>
Fan Nozzle	Base	Base	24 Chev.	Base	Base	48 Flip Tabs	48 Fip Tabs	Base	Base	Base	Base	Base	24 Flip Tabs	Max. Offset	Max. Offset	Base	Base	Base	Base	Base	24 File Tabs	24 Chev.	Base	Hase	Base	Base	24 Filo Tabs	May Offsel	Ties Office	MaA. Cilsai		
Core Nozzle	Base	12 In-Filp Chevs.	12 In-Flip Chevs.	Base	12 Alf-Flip Chevs.	24 Filo Tabs	48 Flip Tabs	48 Flip Tabs	Hall Mix.	Hall Mix.	Half Mix.	24 Flip Tabs	24 Flip Tabs	Base	Base	12 Chev.	Base	Base	Ваѕе	24 Flip Tabs	24 File labs	19 In-Flin Chevs.	Half Mix.	Hall Mir	Hall Miy	24 Flin Tabs	24 Flin Tahe	Baca Baca	Care	pase	acpa	Dase
Plug	Į.	EXI	Exi.	Ext.	EX	E	Exi.	EX.	EXI:	Exi	EXI.	EXI	Ext.	Exi.	Ext.	Ext.	lui.	i i	Exi	E						3 2			i i	Ľ.	i K	Z Z
HdB	4	2	2	· Lo	2	3	ı lin	2	S	2	S	S	5	5	5	S	2	3	7	, /	,	,	,	,	7	,	, 4	, ,	٥	2	۸	2
Model #	-		, -	,) F	, .		. 6	3	3	3	8		3 (5	3	3	6	, ,	k	, [,	? *	, *	? [? }	7	? }	2	~	8	6	3
Test Config.		- HE	310	ABB	325	AT54TA	21.481.48	TTARH	3HmHm	2HmH/401	2HmH/180	37248	Persere	AROmay(0)	480 may/1801	3C12B	ABR	288	200	200	31240	3124124	382	SHIMB(U)	3HMB(30)	3HmB(180)	31246	3124124	3BOmax(0)	3BOmax(180)	38S(0)	385(180)
Seq.	-		, ,	1	7 4	7 2	1	,	, 0	,	2	=	1	2 2	<u> </u>	2 4	1	2	2 6	2 8	8	5.1	27	53	24	22	92	27	28	53	8	31

Table 5. AAPL Separate Flow Nozzle Plume Survey Test Summary.

Segment	Test Config.	Model	BPR	Plug	Core Nozzle	Fan Nozzle	Clock	Date Tested
	0	**)	•		Position	
_	388	۳.	S	Ext.	Base	Base	N/A	5/20/97
2	3C12B	r	S	Ext.	12 Chev.	Base	N/A	5/20/97
m	3C12C	~	2	Ext.	12 Chev.	24 Chev.	N/A	5/21/97
4	звс	۳.	3	Ext.	Base	24 Chev.	N/A	5/22/97
5	31C	3	5	Ext.	12 In-Flip Chevs.	24 Chev.	N/A	5122197
9	3T24C	3	5	Ext.	24 Flip Tubs	24 Chev.	N/A	5/22/97
7	3C8B	3	5	Exi.	8 Chev.	Base	N/A	5/23/97
80	318	3.	5	Ext.	12 In-Flip Chevs.	Base	N/A	5/23/97
6	3AB	3	5	Ext.	12 Alt-Flip Chevs.	Base	N/A	5/23/97
10	3HmB(90)		5	Ext.	Half Mix.	Base	8	503/97
=	3FB	3	5	Ext.	Full Mix.	Base	N/A	5/27/97
12	3T48B	3	2	Ext.	48 Flip Tabs	Base	N/A	16/12/5
13	3T24B	3	2	Ext.	24 Flip Tabs	Base	N/A	5027/97
14	3T24T24	3	5	Ext.	24 Flip Tabs	24 Flip Tabs	N/A	5/27/97
15	3BT24	3	5	Exi:	Base	24 Flip Tabs	N/A	2/28/97
91	3BOmax(90)	3	2	Ext.	Base	Max. Offset Noz.	8	5/28/97
17	3T24T48	3	2	EXI.	24 Flip Tabs	48 Flip Tabs	N/A	5/28/97
18	488	4	∞	Int.	Base	Base	N/A	5/29/97
6		-	5	Int.	Base	Base	N/A	5/30/97
20	6TmB	2	S	New	Tongue Mix.	Base	N/A	5/30/97
21	7BB	4	4	New	Base	Base	N/A	5/30/97
22	388	3	2	Ext.	Base	Base	N/A	6/30/97
23	3BC	3	S	Ext.	Base	24 Chev.	N/A	6/30/97
24	3BT24	3	S	Ext.	Base	24 Flip Tabs	Y.N	6/30/97

Note: For all configurations, M=.28 & Cycle 2/Point 21 where test conditions.

Table 6. AAPL Separate Flow Nozzle IR Camera Test Summary.

Configuration		Mach No.	Cycle/Power Setting	Corresponding Escort Rdg.	IR#
?	?	?	?	?	1
?	?	?	?	?	2
?	?	?	?	?	3
3HmB(0)	4/8/97	0.28	2/20	603	4
3HmB(0)	4/8/97	0.20	2/21	605	5
3HmB(0)	4/8/97	0.0	2/21	606	6
3HmC(45)	4/8/97	0.28	2/?	?	7
388	4/9/97	0.0	2/21	640	8
388	4/9/97	0.28	2/21	642	9
3BOmax(0)	4/9/97	0.28	2/23	652	10
3BOmax(0)	4/9/97	0.28	2/22	653	11
3BOmax(0)	4/9/97	0.28	. 2/21	654	12
3BOmax(0)	4/9/97	0.28	2/20	655	13
3BOmax(0)	4/9/97	0.0	2/21	659	14
3HmOmax(0)	4/9/97	0.28	2/23	664	15
3HmOmax(0)	4/9/97	0.28	2/21	665 ·	16
3HmOmax(0)	4/9/97	0.28	2/20	668	17
3HmOmax(0)	4/9/97	0.0	2.21	670	18 .
3HmOmax(0)	4/9/97	0.0	2/20	671	19 .
3BOmax(90)	4/10/97	0.28	2/21	689	20
3BOmax(90)	4/10/97	0.0	2/21	692	21
3BOmax(180)	4/10/97	0.28	2/21	696	22
3BOmax(180)	4/10/97	0.28	2/20	697	23
3BOmax(180)	4/10/97	0.0	2/21	699	24
3BT24	4/11/97	0.28	2/20	727	25
3C12B	4/11/97	0.28	2/20	741 •	25(?)
3C8B	4/14/97	0.28	2/20	762	1
31B	4/14/97	0.28	2/20	771	2
3AB ·	4/14/97	0:28	2/20	778	3
3DiB	4/15/97	0.28	2/20	801	4
3IC	4/15/97	0.28	2/20	816	5
3C12C	4/15/97	0.28	2/20	824	6
3C12C	4/15/97	0.28	2/20	826	7
388	4/16/97	0.28	2/24	832	8
388	4/16/97	0.28	2/23	834	9
388	4/16/97		2/22	835	10
388	4/16/97		2/21	836	11
3BB	4/16/97		2/20	837	12
3C8C	4/16/97		2/20	843	13
3AC	4/16/97		2/22	849	14

Table 6. AAPL Separate Flow Nozzle IR Camera Test Summary (Concluded).

Configuration	Date	Mach No.	Cycle/Power Setting	Corresponding Escort Rdg.	IR#
3AC	4/16/97	0.28	2/20	851	15
ЗАC	4/16/97	0.28	2/21	853	16
3HmB(45)	4/17/97	0.28	2/20	875	17
3DxB	4/17/97	0.28	2/20	882	18
3IC	4/18/97	0.28	2/20	892	19
3BB	4/18/97	0.28	2/20	918	20
288	4/21/97	0.28	2/20	945	21
2BC	4/21/97	0.28	2/20	958	21(?)
3AC	4/16/97	0.28	2/20	851	15
3AC	4/16/97	0.0	2/21	853	16
?	?	?	?	?	1
488	4/21/97	0.28	4/41	975	2
5CB	4/22/97	0.28	4/41	1023	3 .
3T24B	2/23/97	0.28	2/20	1057	4
388	4/23/97	0.28	2/20	1073	5
3T48C	4/23/97	0.28	2/20	1080	6
3T48T48	4/23/97	0.28	2/20	1085	7
?	?	?	?	?	1
6TmB	5/12/97	0.28	2/21	1251	2
6TmB	5/12/97	0.28	2/20	1252	3
6TmC	5/12/97	0.28	2/21	1258	4
6TmC	5/12/97	0.28	2/20	1259	5
3B _. B	5/13/97	0.28	2/21	1275	6
3FB	5/13/97	0.28	2/21	1283	7
3FB	5/13/97	?	Special	1286	8
3HmB	5/13/97	0.28	2/21	1290 '	9
3FC	5/13/97	0.28	2/21	1296	10
3T24T48	5/13/97	0.28	2/21	1302	11

Internal and External Plug for 5 and 8 BPR engines

MODEL 2

BPR 5, Internal Plug

BPR 5, Internal Plug ne mixer significantly reduces jet noise and creates intense 12 Chevrons reduce jet noise and create mixing noise. mixing noise.

Impact of Core 12 chevrons with 24 Chevrons on Fan

Fan chevrons reduce jet noise but create mixing noise.

Impact of Core Tongue mixer with 24 Chevrons on Fan

Fan chevrons reduce jet noise and slightly reduce mixing noise generated from Tongue mixer.

BPR 5, Internal Plug

Fan doublets create broad-band noise slightly greater than baseline. Fan Chevrons reduce the jet noise and create mixing noise.

虿

MODEL 5

Impact of 12 Chevrons on core with baseline fan

12 Chevrons on core reduce jet noise with little mixing noise increase.

Impact of 24 Fan Chevrons with baseline core

24 Fan chevrons reduce jet noise without increase in mixing noise.

Impact of 24 Fan Chevrons with 12 Core Chevrons

24 Chevrons reduce jet noise but increase mixing noise.

ON

MODEL 3

BPR 5, External Plug 24 tabs on core create more mixing noise than baseline and 48 tabs. 48 tabs mixing noise is identical to the baseline.

Impact of Core chevrons, 8 and 12, with

8 Chevrons reduce the low-frequency noise more than 12 chevrons. Neither device has a high-frequency component above the baseline.

Impact of Core Inward and Alternating chevrons with baseline fan

Inward chevrons reduce the low-frequency noise WITHOUT appreciable high frequency noise.

NASA/CP-2000-210524

Impact of Core Internal and External Vortex

Doublets do not provide significant variations from baseline.

BPR 5, External Plug Half-mixer is quieter than full mixer for nearly all frequencies. Mixers reduce low frequency but create high frequency.

NASA/CP-2000-210524

24 Chevr on fan creates high frequency noise.

BPR 5, External Plug

Impact of 24 Chevron fan on 24-Tab core

Fan chevrons reduce the broad-band noise including the high frequency mixing noise for 24-Tab core.

Fan chevrons reduce the low-frequency but increase the high frequency.

BPR 5, External Plug Fan chevrons significantly reduce low-frequency noise and slightly increase the high frequency noise.

NASA/CP---2000-210524

Impact of 24 Chevron fan on 12 Chevron Core

Fan chevrons significantly reduce broad-band noise.

Fan chevrons significantly reduce low-frequency noise and slightly increase the high frequency noise.

Fan chevrons slightly increasse the high frequency noise over the Alternating core chevrons.

Impact of 24 Chevron fan on core Half-mixer

Fan chevrons reduce jet noise but do not change mixing noise.

Impact of 24 Chevron fan on core Full-mixer

Fan chevrons increase the medium frequencies.

BPR 5, External Plug

Impact of Scarfed fan nozzle with baseline core

Off-set fan nozzle at 90 or 180 is very loud.

Impact of Fan tabs (24 and 48) with baseline core

Fan 24 and 48 Tabs have same jet noise reduction, but 24 tabs create more more mixing noise than 48 tabs.

48 Tab fan reduces low-frequency more than 24 tab.

BPR 5, External Plug

EPNL Benefits with Various Noise Suppresors External Plug with 5 BPR engine

Growth Takeoff (Vmixed = 1200 ft/sec)

EXternal Plug with 5 BPR engine (continued)

Growth Takeoff (Vmixed = 1200 ft/sec)

EPNL Benefits with Various Noise Suppresors External Plug with 5 BPR engine (completed)

Growth Takeoff (Vmixed = 1200 ft/sec)

External Plug with Various Noise Suppresors External Plug with 5 BPR engine (static and flight)

Current Takeoff (Vmixed = 1150 ft/sec)

External Plug with 5 BPR engine (static and flight)

External Plug with 5 BPR engine (static and flight)

Current Takeoff (Vmixed = 1150 ft/sec)

EPNL benefit, EPNdB

EPNL benefit, EPNdB

BPR 5, External Plug Summary (Model 3)

	DLU 3, External ridg carrings (incace	
Core	Fan Nozzle	zzle
Nozzle	B (baseline)	C24 (24 chevrons)
B (baseline)	BB	wrt BB: No change in jet noise. Creates mixing noise.
T24 (24 flipper tabs)	¹ Significantly reduces jet noise but creates mixing noise	² Reduces jet noise, transition noise and mixing noise
T48 (48 flipper tabs)	Reduces jet noise, but less than T24. Minute mixing noise	Reduces jet noise but creates mixing noise
C8 (8 chevrons)	Reduces jet noise. No mixing noise.	Reduces jet noise and slightly increases mixing noise
C12 (12 chevrons)	Reduces jet noise, but less than C8. No mixing noise.	Reduces jet noise, transition noise and mixing noise.
I (12 Inward flip. chevrons)	Moderately reduces jet noise. Creates small amount of mixing noise.	Significantly reduces jet noise with slight increase in mixing noise
A (12 alternating flip chev)	Significantly reduces jet noise. Creates significant transitioning noise and mixing noise.	No change in jet noise. Creates more mixing noise
Di (internal doublet)	Not much difference.	Not done
Dx (external doublet)	Not much difference.	Not done
Hm (Half mixer)	Significantly reduces jet noise. Creates intense mixing noise.	Reduces jet noise. No change in mixing noise.
Fm (Full mixer)	Less reduction than Hm for jet noise. Creates intense mixing noise (even more than Hm).	No change in jet noise or mixing noise. Creates transition noise.

¹ Note: Fan baseline column comparisons are made against the baseline core and baseline fan nozzles.

² Note: Fan chevron column comparisons are made against the core device with baseline fan nozzles.

BPR 5, External Plug Summary (Model 3) concluded

		Fan Nozzle	zzle
Nozzle		T24	T48
(ра	(baseline)		
B (baseline)	BB	wrt BB: Reduces jet noise but creates wrt BB: Reduces jet noise, transigniantly high transition and mixing creates moderate mixing noise.	Reduces jet noise but creates wrt BB: Reduces jet noise, transition noise and 1v high transition and mixing creates moderate mixing noise.
	. •	noise	
T24 (24 flipper tabs)		wrt BB: Moderately reduces jet noise.	³ Reduces jet noise, transition noise. No change in
		Creates transition and mixing noise.	mixing noise.

		Fan Nozzle	zle
Solution	_		
Nozzle	В	Scarfed	Offset
	(baseline)		
R (haseline)	BB	wrt BB: Creates high transition frequencies	Creates high transition frequencies wrt BB: 0' rotation is nearly identical to BB. Other
D (Dascinic)	ļ ļ		rotations creates transitioning noise.

8	
Plug Summary (Mo	
Internal	
BPR 5.	

Core		Fan Nozzle	
Nozzle	R (baceline)	C24	Q
		(24 chevrons)	(96 doublets)
B (baseline)	BB	wrt BB: Reduce jet noise and	wrt BB: Broad-band small increase.
		increase mixing noise.	
C12 (12 chevrons)	4Slighty reduce let noise. Minimal	Jet noise is reduced and	
	increase in mixing noise	mixing noise is enhanced.	
Tm (tongue mixer)	Significantly reduce jet noise and	Jet noise is reduced. Mixing	
	increase mixing noise.	noise is unchanged.	

BPR 8, External Plug Summary (Model 5)

Core	Fan Nozzle	9
Nozzle	B (baseline)	C24
		(24 chevrons)
B (baseline)	BB	wrt BB: .
C12 (12 chevrons)	⁵ Slightly reduce jet noise with no	
	change in mixing noise	

4 Note: See notes 1 and 2.

5 Note: See notes 1 and 2.

_	Ì
(U)	١
<u>"</u>	
ŏ	l
0	
₹	l
	1
nman	
≽	
Ξ	
ഗ	
2	1
置	
Ц.	
a	
9	,
×	
Ш	l
	_
3	
BPR	
Ü	
\Box	

Core Nozzle			Fan Nozzle	ozzie		
	(wrt 3BB)	Baseline		(wrt core	24 Cheuron	
		ran		ucvices)	CIICVIOII	
***************************************	Jet Noise	Transition	Mixing	Jet noise	Transition	Mixing
B (baseline)	0	0	0	0	+	++
T24 (24 flipper tabs)	t 1 1	++	++	: ! /	1	
T48 (48 flipper tabs)	1	1	0	en e	0	++
C8 (8 chevrons)	I	0	0	t I	0	++
C12 (12 chevrons)	ſ	0	0	# I	1	1
I (12 Inward flip. chevrons)	t t	0	+		0	+
A (12 alternating flip chev)	1 1 1	++++	+++	0	0	++
Di (internal doublet)	0	0	0			
Dx (external doublet)	0	0	0			
Hm (Half mixer)	 1 1	0	+++	I I	0	. 0
Fm (Full mixer)		. 0	++++	0	++	0
			•			

BPR 5, External Plug Summary (Model 3) concluded

Core Nozzle				Fan Nozzle	•		
			Scarfed (wrt			Off-set	
			(
	Angle	Jet Noise	Transition	Mixing	Jet noise	I ransition	MIXIM
B (baseline)	0.	0	+	+	0	0	0
B (baseline)	°06	0	++	+	++++	++++ ++++ ++++	++++
B (baseline)	180°	0	+	+	++++	++++ ++++ ++++	++++

Core Nozzle			Fan Nozzle	ozzie		
		T24			T48	
		(24 flip. tabs)			(48 flip. tabs)	
		(see footnote 1)		3)	(see footnote 2)	
		-		Tet noice	Transition	Mixing
	Jet Noise	Transition	Mixing			0
B (baseline)	,	+++	++++	1 1	1	++
T24 (24 flipper tabs)	t 1	+++	++++	1 t	1	0

~

el 2)	
y (Model	
Plug Summary	
al Plug	
5. Internal F	_
BPR 5	

Core					Fan Nozzle	zle			
Nozzle		Baseline			C24 (24 chevrons)	vrons)		D (96 doublets)	ets)
	Jet	Transiti	Mixing	Jet noise	Jet noise Transitio Mixing	Mixing			
	noise	ou			ш				
B (baseline)				1	0	++	+	+	+
C12 (12 chevrons)	t	0	+	1 1 1	0	++	·		
Tm (tongue mixer)	1 1	0	+++	l I	0	1		•	
			+		·				

BPR 8, External Plug Summary (Model 5)

	•		X			
Core			Fan	Fan Nozzle		
Nozzle		Baseline			C24 (24 chevrons)	ns)
·	Jet noise	Transition Mixing	Mixing	Jet noise	Transition	Mixing
						(
B (baseline)			•	1	ı	0
C12 (12 chevrons)	8	0	0	1	8	+
				Control of the contro		· 多数 图 30

Conclusions

- High quality and quantity data (acoustics, plume flow field and source location)
- Jet noise reduction goal of 3 EPNdB in model scale accomplished using configuration (3.2 EPNdB reduction) 300
- Several concepts provided 2.5 2.7 EPNdB reduction
- Test clearly demonstrated need for balancing jet noise reduction with increased transition and mixing noise
- 24 Fan chevrons reduced jet noise in some cases, but increased mixing noise reduced its benefits
- Core tabs and chevrons reduced jet noise with little or no gain in mixing noise (T24 on core is an exception)
- Doublets did not provide any significant EPNL reductions

湖

Half mixer and Full mixer reduced jet noise and increased mixing noise.

Half mixer reduced jet noise more than full mixer and increased mixing noise less than full mixer. (Half is better than full).

Core tabs and chevrons reduced jet noise with little or no gain in mixing noise (T24 on core is an exception) Scarfed fan created transition and mixing noise at all rotations without decreasing jet noise. (90° was loudest)

Offset fan nozzle created jet, transition and mixing noises at 90° and 0° did not create or reduce any form of noise.

24 Tab fan reduced the jet noise but increased the transition and mixing noise 48 Tab fan reduced the jet and the transition noise and increased the mixing noise Tongue mixer reduced jet noise and increased mixing noise.

Data base in place to explore full-scale verification candidates

SEPARATE FLOW NOZZLE JET NOISE TEST STATUS

MEETING at NASA Lewis Research Center

Presentation Outline

- o Test Objective
- o PW's Jet Noise Reduction Nozzle Concepts
- o Descriptions of PW's Nozzles "Acoustic" Features
- o CFD Analyses for Selected Nozzles
- o Review of Test Results
- o Noise Data Repeatability / Normalization Factors Applied
- o Noise Comparisons for Selected Concepts, EPNL, PNL Directivities, Spectra
- o Summary of EPNL Reductions for PW's Nozzle Concepts Tested
- o Plume Survey Temperature Profiles
- o Boeing's Phased-Array Microphone System Source Noise Location Results
- o Discussion of Measured Acoustics and Related Aero Data

J.Low / T. Barber / S. Bhat September 10, 1997

AST TASK 14.2 JET NOISE TEST OBJECTIVE

engine/nacelle installations with minimal changes in for nonmixed, separate flow high bypass ratio (BPR) Conduct model jet noise tests, demonstrating a 3 dB reduction in jet noise (relative to 1992 technology) engine and nacelle geometry.

0

Baseline Nozzle System with Separate Flow, External Plug and BPR of 5

Nomenclature For Naming Nozzle Configurations

Nozzle Configuration

W XX YY

Model # (W)

1 = Coplanar (BPR=5)

4 = Internal Plug (BPR=8)

2 = Internal Plug (BPR=5)

3 = External Plug (BPR=5) 5 = External Plug (BPR=8)

Core Nozzle Mixing Enhancer (XX)

Baseline Axisymmetric Nozzle

= 12 Chevrons C12

8 Chervons

= 12 Inward Flipper Chervons

= 12 Alternating Flipper Chevrons

64 Internal Doublet Vortex Generators

20 External Doublet Vortex Generators

24 Flipper Tabs (P&W)

48 Flipper Tabs (P&W) T48

= 10-mini=lobed Half Mixer (P&W) Hm

- Tongue Mixer (Allison) H

20-mini-lobed Full Mixer (P&W) Fm

Fan Nozzle Mixing Enhancer (YY)

B = Baseline Axisymmetric Nozzle

C = 24 Chevrons

Di = 96 Internal Doublet Vortex Generators

T24 = 24 Flipper Tabs (P&W)

T48 = 48 Flipper Tabs (P&W)

Omax = Maximum Offset Centerline Nozzle (P&W)

S = Scarfed Nozzle (P&W)

Ct = 24 Chevrons with B.L. trip

Cv = 24 Chevrons with external VGs

PW's JET NOISE REDUCTION NOZZLE CONCEPTS

Core Jet Noise Reduction Concepts

o 24 Flipper Tabs

48 Flipper Tabs

o 10 mini-lobed Half Mixer

o 20 mini-lobed Full Mixer

Fan Jet Noise Reduction Concepts

o 24 Flipper Tabs

48 Flipper Tabs

0

o Scarfed / "Sugar Scoop"

Offset Centerline

* Combinations of PW's "best" core nozzle concepts and GE's "best" fan nozzle concepts were also tested.

PW's 24 Flipper Tabs Core Nozzle

Sketch of the Tab Arrangement for the 24 Flipper Tabbed Core Nozzle

(6 up, 6 neutral, 6 down, 6 neutral)

PW's 48 Flipper Tabs Core Nozzle

PW's 10 mini-lobed Core Half Mixer

PW's 10 mini-lobed Core Half Mixer

PW's 24 Flipper Tabs Fan Nozzle

PW's 48 Flipper Tabs Fan Nozzle

PW's Scarfed Fan Nozzle

SKETCH SHOWING OFFSETTING OF THE CENTERLINE OF FAN NOZZLE AS FUNCTION OF NOZZLE AXIAL LENGTH

PW's Offset Centerline Fan Nozzle

CFD Analysis for Selected Nozzles

United Technologies Research Center Thomas J. Barber

CFD Analysis Parametrics

- NASTAR Navier-Stokes Analyses Performed for **HBPR Separate Flow Nozzles**
- k-E Model Used With Wall Functions
- **Take-Off Condition Only Simulated**
- M = 0.3, Ptp = 3184 psf, Ttp = 1491R
- Grid Independence Studies Have Been Performed
- Axisymmetric (3BB): 35K Points
- Scarfed (3BS): 300K Points
- Offset (3BOmax): 400K Points
- Blended Mixer (3HB): 1200K Points
- Results Referenced to Fan Nozzle Diameter (D)

Schematic of HBPR Exhaust System

Computational Domain

- All Coordinates Normalized by Fan Nozzle T.E. Diameter
 - Axial Coordinate Origin at Centerbody T.E.

Axial Velocity 3BOmax

x/D = 6.0Axial Velocity 3HB-Mixer x/D = 0.0

Total Temperature Contours Axisymmetric & Offset Nozzles

REVIEW OF TEST RESULTS

o Noise Data Variability Due to:

o variations in test day ambient temperatures

(29 deg. F - 74 deg. F)

o variations in jet velocities and idealized net thrusts from differences in nozzles pressure ratios and temperatures settings for test conditions.

MODEL #3 BASELINE NOZZLE NOISE CURVE REPLOTTED AS EPNL vs VMIX/C0 0000 O (NORMALIZED FOR AMBIENT TEMPERATURE DIFFERENCES) (O) (O) 1500-ft Sideline Flyover g o VMIX/CO <u>ထ</u> 3BB 0,7 08 09 EDAL - 10 Log (Fn/1000)

REVIEW OF TEST RESULTS

(PW's and GE's "best" Core Nozzle Concepts) – 3BB vs 3T24B vs 3IB o Noise Comparisons For Baseline and Selected Nozzle Concepts

e EPNL vs VMIX/C0

o PNL Directivities

o SPL and NOY Spectra

o Summary of EPNL Reductions for PW's Nozzle Concepts Tested.

COMPARISON OF BASELINE AND SELECTED CORE NOZZLE CONCEPTS

EPAL - 10 Log (Fn/1000)

COMPARISON OF BASELINE AND SELECTED CORE NOZZLE CONCEPTS PNL DIRECTIVITIES

COMPARISON OF BASELINE AND SELECTED CORE NOZZLE CONCEPTS SPL SPECTRA at Baseline Nozzle Inlet Angle of 80 degrees.

COMPARISON OF BASELINE AND SELECTED CORE NOZZLE CONCEPTS SPL SPECTRA at Baseline Nozzle Peak PNLT Angle (130 deg)

COMPARISON OF BASELINE AND SELECTED CORE NOZZLE CONCEPTS NOY SPECTRA at Baseline Nozzle Peak PNLT Angle (130 deg)

EPNL REDUCTIONS for PW's CORE NOZZLE CONCEPTS 3HmB(0) 1500-ft Sideline Flyover Delta EPNdB 3T48B Delta EPNdB

VMIX/CO

VMIX/CO

EPNL REDUCTIONS for PW's FAN NOZZLE CONCEPTS

SUMMARY / CONCLUSION

CONCEPTS THAT PROMOTE MIXING OF THE CORE STREAM ARE MORE EFFECTIVE THAN THOSE THAT WORK ON THE FAN STREAM.

for Selected Nozzles

-

the Separate Flow Jet Noise test Phased array measurements for at LeRC

Srini Bhat/ John Premo Boeing Commercial Airplane Group September 10, 1997

viewfoils 090997 JWP

Overview

Phased array measurements for the SFJN test at LeRC

- Introduction
- Description of phased arrays
- Setup for the SFJN test
- **Boeing supplied resources**
- LeRC provided resources
- Phased array acquisition and processing
 - Review of selected results
- Selected 1/3 octave band contours
- Selected integrated spectra
- Conclusions

Description of phased arrays

Phased array measurements for the SFJN test at LeRC

phased arrays - system of microphones which allows the sound from a particular location or direction to be selectively measured through coherent addition of the microphone signals

Setup for the SFJN test

Phased array measurements for the SFJN test at LeRC

Three arrays were used during testing.

Each array has its own advantages

Array A: Large 7 arm logarithmic spiral

Determines source density in two dimensions

Located below the jet at 90 and 120 degrees

Works well from 1000 to 8000 Hertz

Array B: Small 7 arm logarithmic spiral (contained within array A)

Determines source density in two dimensions

Located below the jet at 90 and 120 degrees

Works well from 8000 to 50000+ Hertz

Array C: Sideline linear array

Image in one direction along axis of jet

Works well from 1000 to 50000 Hertz

Phased array measurements for the SFJN test at LeRC

Boeing supplied resources

- Microphones, amplifiers, cables, and arrays
- Data acquisition hardware

LeRC supplied resources

- Access to the LACE cluster parallel computer for processing
- SGI computer with the FAST program for viewing the processed

Separate Flow Jet Noise Reduction Test

Model 3BB viewed with array B

Run: 1115

Point: 21

Mach: 0.28

Phased array measurements for the SFJN test at LeRC

General Results:

- Looks like there are two separate source regions
- Region 1: Near the the nozzle exit
- Region 2: Several nozzle diameters downstream of the nozzle exit

Possible Explanation:

- Two regions correspond to different source mechanisms
- Region 1 is primarily due to secondary/ambient mixing and any nozzle trailing edge and duct noise
- Region 2 is more the classical jet noise region

Review of Selected Results

Phased array measurements for the SFJN test at LeRC

General Results:

- The relative importance of the two regions change with frequency
- Region 1: dominates at higher frequencies
- Region 2: dominates at low frequencies

Note that the peak levels as a function of frequency remain relatively frequency is increased and Region 1 starts to dominate Region 2. constant within each region. However, the center of mass of the source density moves progressively closer to the nozzle as the

Separate Flow Jet Noise Reduction Test

Model 3BB viewed with array A

Run: 1113

Point: 23

Mach: 0.28

Separate Flow Jet Noise Reduction Test

Model 3BB viewed with array A

Run: 1119

Point: 23

Mach: 0.00

Phased array measurements for the SFJN test at LeRC

Comparison of sources versus power settings:

 The upstream region is less affected by increases in power than the downstream

Possible Explanation:

- Two regions correspond to different source mechanisms
- Region 1 likely scales as M⁶ or M⁷
- Region 2 likely scales as M⁸

Comparison of sources versus tunnel Mach number:

 The upstream region is less affected by increases in tunnel Mach number than the downstream

Possible Explanation:

Same as above

Separate Flow Jet Noise Reduction Test

Model 31C viewed with array A

Run: 1109

Point: 21

Mach: 0.28

Review of Selected Results

Phased array measurements for the SFJN test at LeRC

Comparison of baseline to enhanced mixing nozzles:

- The upstream region has increased levels
- The downstream region has decreased levels

Possible Explanation:

- Increased mixing from the devices
- Increases the turbulence intensities/mixing upstream
- Decreases the relative velocities downstream

Conclusions

Phased array measurements for the SFJN test at LeRC

- Phased arrays can be used to qualitatively image jet noise sources
- Two separate source regions:
- upstream near nozzle exit (Region 1)
- downstream several nozzle diameters (Region 2)
- The upstream region is less affected by increases in power than the downstream
- The upstream region is less affected by increases in tunnel Mach number than the downstream
- Jet Mixing devices:
- increase upstream sources (Region 1)
- decrease downstream sources (Region 2)
- Preliminary results of using phased array measurements to determine far-field spectra are promising

Discussion of Measured Acoustic & Related Aero Data

United Technologies Research Center Thomas J. Barber

PNLT Directivity, dB

1500 Foot Sideline Fly-over

Critical Propulsion and Noise Reduction Technologies for Future Commercial Subsonic Engines NASA Contract NAS3-27720

Area of Interest 14.3: Separate Flow Exhaust System Noise

NASA/AST Separate Flow Test Status Meeting Cleveland, September 10, 1997 B A Janardan, G E Hoff, J W Barter, J F Brausch, P R Gliebe, R S Coffin, S Martens, B R Delaney GE Aircraft Engines, Cincinnati

W N Dalton, V G Mengle, B R Vittal, V D Baker, F Smith Allison Engine Company, Indianapolis

Outline

- . Objectives, Approach & Goal
- Baseline Nozzles & Test Cycle Definition
- Repeatability & Baseline Nozzle Results
- Noise Reduction Concepts
- Noise Reduction Test Configurations of BPR=5 Internal Plug Nozzle & Acoustic Results
- Noise Reduction Test Configurations of BPR=5 External Plug Nozzle & Acoustic Results
- Noise Reduction Test Configurations of BPR=8 External Plug Nozzle & Acoustic Results
- 8. Summary

Area of Interest 14.3: Separate Flow Exhaust System Noise

Nozzles (BPR = 5, 8). Explore Jet Noise Reduction Concepts Objectives: Establish Empirical Jet Noise Database for Separate Flow (with Low Thrust Loss) for Separate Flow Nozzles

Approach: Model Design & Fabrication

Assistance in Test Planning & Test Coverage at Lewis AAPL Baseline Nozzles Representative of Langley/MD Designs 11 Jet Mixing Enhancement Concepts (both Core & Fan) 5 Baseline Separate Flow Configurations (BPR = 5, 8) Hardware Adapted to NASA Lewis Jet Rig System Mixing Concepts Screening Selection Data Analyses & Report

Goal:

1.5+ dB Jet Noise Reduction Relative to Separate Flow Designs

AAPL Jet Exit Rig Configuration for Separate Flow Nozzle Test

- NASA Lewis responsible for hardware upstream of break planes and adaptive spool
- GEAE/AEC responsible for baseline model test hardware design downstream of adaptive spool and their fabrication
 - GEAE/AEC responsible for design and fabrication of selected noise reduction concept hardware (P&W also designed and fabricated different noise reduction concept hardware under a separate NASA contract)

BPR=8; Internal Plug Model 4

FFF

BPR=8; External Plug Model 5

baj29/al4pit09.doc

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 GE Aircraft Engines Fan or Core Nozzle Pressure Ratio BPR = 5 & 8; Power Setting Parameters of Test Points ■ BPR=5 Core **▲ BPR=8** Core o BPR=5 Fan ▲ BPR=8 Fan 40 ผ 4 25 46 500 1600 1300 1200 1100 1000 900 800 700 909 1500 1400 Fan or Core Nozzle Temperature, R 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2 7 Fan Nozzle Pressure Ratio 824 25 42 £3 a BPR=5 4 BPR=8 5 1.0 0. 9 0 10 10 တ ئى ق 9 μ̈ <u>რ</u> Ċ, **...** Core Nozzle Pressure Ratio

20

5

Repeatability Baseline Models 2 & 3 (BPR=5)

Results of Baseline Nozzles Baseline Models 1, 2, 3 (BPR=5) & 4, 5 (BPR=8) Coplanar Nozzles Vs Internal Plug Vs External Plug Internal Plug Vs External Plug Baseline Models 1 vs 2 vs 3 (BPR=5) Baseline Models 4 vs 5 (BPR=8)

Separate Flow Nozzle with External Plug (3BB); BPR=5 **EPNL vs. Vmix**

GE Aircraft Engines

Scale Factor =8 Altitude=1500 ft

M = 0.28

Repeatability

Baseline

1275, 60 deg *

917, 45 deg 1072, 51 deg BPR = TP 21 PNL Directivity & Noy Spectra

One-Third Octave Center Fred., Hz

One-Third Octave Center Freq., Hz

leeung

BPNd "INd

GENERAL ELECTRIC Aircraft Engines

395, 46 deg

LEGEND

682, 38 deg

734, 44 (leg

6 788, 57 deg 836, 48 deg 882, 39 deg

eyon T

1.15 Scale Factor = 8, Altitude = 1500 ft, M = 0.28 1.10 Separate Flow Nozzle with External Plug (3BB); BPR=5 1.05 Normalized EPNL vs Normalized Vmix 1.08 0.95 0.30 0.85 • 3BB - April 10 3BB - April 15 • 3BB - April 11 o 3BB - April 16 + 3BB - April 18 × 3BB - April 23 x 3BB - May 13 ▲ 3BB - April 8 • 3BB - April 9 a 3BB - April 4 ■ 3BB - April 1 0.80 0.75 90 88 86 8 74 82 68 9 99 64 62 EPNI→10LOG(F/1000), dB

GE Aircraft Engines bajd8/AAPLD3 XLS/Chart2

Normalized Vmix (Vmix/camb)

GE Aircraft Engines baj46/AAPL03B.XLS/CHartz1

1.15 Scale Factor = 8, Altitude = 1500 ft, M = 0.28 BPR=5 Sep Flow Nozzles; Coplanar (1BB), Int Plug (2BB) & Ext Plug (3BB) 1.05 Normalized EPNL vs Normalized Vmix 1.00 Normalized Vmix (Vmix/camb) 0.95 0.30 0.85 Poly. (3BB) Poly. (2BB) Poly. (1BB) 0.80 388 **2BB** 18B 0.75 88 90 86 **₩** 82 80 78 76 74 72 20 68 09 99 64 62 EPNL 10LOG(F/1000), dB

GE Aircraft Engines

Separate Flow Nozzle with Int Plug (4BB) & Ext Plug (5BB); BPR = 8

GE Aircraft Engines

Summary - Repeatability & Baseline Nozzle Results

- Baseline 3BB Was Repeated 12 Times (Probably a Record For Number of Repeats of A Baseline)
- For a Given Test Point Setting, Noise Level Was Dependent Upon Ambient Temperature
- Repeatability Was Established With Normalization
- Coplanar (1BB), Internal Plug (2BB) & External Plug (3BB) No Significant Acoustic Differences Were Noted Between Baseline BPR=5 Nozzles
- No Significant Acoustic Differences Were Noted Between Internal Plug (4BB) & External Plug (5BB) Baseline BPR=8 Nozzles
- Normalized & Correlated Baseline Nozzle EPNL Database Will Be Used To Compare & Evaluate Tested Noise Reduction Concepts

Noise Reduction Concepts Selected for Evaluation

Core Nozzie	Model	Fan Nozzle*	Model
	1 2 3 4 5		1 2 3 4 5

Chevron (8)		×		Chevron (24)	X	×	×	×
Chevron (12)	X	×	X					
Flipper Chevron (12)		×			•••••	***************************************		
(Inward Flip)	•••••							
Flipper Chevron (12)		X						
(Alternately Flip)					,,,,			
Vortex Generating		×		Vortex Generating	X	×	X	×
Doublet (64)		•	******	Doublet (96)		··-		
(Core Flow Side)		***		(Fan Flow Side)		-		
Vortex Generating		×						
Doublet (20)								
(Fan Flow Side)		•••••						
Tongue Mixer	X							

* Fan Nozzle Hardware Is Common For Models 2 Through 5

Noise Reduction Test Configurations of Model 2

With Fan Nozzle Noise Reduction Concepts 2BC, 2BD

With Core Nozzle Noise Reduction Concepts 2C12B, 2TmB, 6TmB With Core & Fan Nozzle Noise Reduction Concepts 2C12C, 2TmC, 6TmC

baj29/a14pit09.doc

Noise Reduction Test Configurations with Model 2 BPR = 5, Internal Plug

With Different Fan Nozzles

1.15 Scale Factor = 8, Altitude = 1500 ft, M = 0.28 1.10 Separate Flow Nozzle with Internal Plug (2BB); BPR=5 7 1.05 with Chevron and Doublets Fan Nozzle (2BC, 2BD) 1.00 Normalized Vmix (Vmix/camb) 0.95 0.90 0.85 -Poly. (2BB) 0.80 2BC 2BD 0.75 88 86 84 90 82 80 **%** 9/ 74 22 20 09 89 99 62 29 EPNL™10LOG(F/1000), dB

GE Aircraft Engines

Scale Factor = 8, Altitude = 1500 ft, M = 0.28 35000 **⋖**Bo× Separate Flow Nozzle with Internal Plug (2BB); BPR=5 with Chevron and Doublets Fan Nozzle (2BC, 2BD) **%** 30000 Net Thrust, Ib 00 × 25000 8 20000 **⊘**3€ o 2BB **x** 2BC **▲** 2BD 15000 70 98 96 94 92 90 88 78 9/ 72 86 82 80 74 84 ЕЬИГ' ЧВ

GE Aircraft Engines

Comparison of fan nozzle mixing enhancers- Sound power 100001 Model 2 150' polar Scale factor=8 Mfj=.28 Cycle point 21 2 BD 100001 1/3 octave center frequency 96 internal doublets- fan 24 chevrons fan 2.BC Baseline fan 100.0 Baseline core Baseline core Baseline core 120.0 140.0 150.0 130.0 Sound power- db.

Noise Reduction Test Configurations with Model 2 BPR = 5, Internal Plug

6TIMB

baj29/a14pit09.doc

1.15 Scale Factor = 8, Altitude = 1500 ft, M = 0.28 1.10 with Chevron & Tongue Mixer on Core Nozzle (2C12B, 2TmB, 6TmB) Separate Flow Nozzle with Internal Plug (2BB); BPR=5 1.05 1.00 0.95 0.90 0.85 Poly. (2BB) 0.80 2C12B 2TmB **6TmB** 0.75 09 06 88 86 84 82 80 78 9/ 74 70 68 99 64 62 EPNL™ 0LOG(F/1000), dB

GE Aircraft Engines

Normalized Vmix (Vmix/camb)

Noise Reduction Test Configurations with Model 2 BPR = 5, Internal Plug

With Different Core & Fan Nozzles

baj 29/a 14pit 09. doc

1.15 Scale Factor = 8, Altitude = 1500 ft, M = 0.28 with Chevron & Tong-Mix on Core and Chevron on Fan Nozzle(2TmC, 2CC) 1.10 Separate Flow Nozzle with Internal Plug (2BB); BPR=5 1.05 7 21 1.00 Normalized Vmix (Vmix/camb) 0.95 0.90 0.85 - Poly. (2BB) 2C12C **6TmC** 2TmC 0.80 0.75 82 76 9 86 80 78 74 70 90 88 84 89 99 64 62 EPNL™10LOG(F/1000), dB

GE Aircraft Engines

■ 1200 □1150 □ 1100 □ 1000 ■ 950 Vmix ∆ EPNL, dB 9.0 0 0 **9** Ω. 1200 Vmix, fps 1100 6 920 8mTa SBC OmT8 SCISB 8mTS Model SBD SCISC 2TmC

Noise Benefits Relative to Baseline Model 2

Tamb = 50°F; Scale Factor = 8; Altitude = 1500 ft; M = 0.28

GE Aircraft Engines GCK /acit4.3/epns. xts Mod. 2 - 1200 Column 3D (2) 9/8/97

Summary - Noise Reduction Test Concents of BPR=5 Internal Plug Nozzle (Model 2)

Some Mixing Concepts Change Slope of EPNL vs V_{mix}

Due to Improved Mixing & High Frequency Noise Increase From There is Tradeoff Between Low Frequency Jet Noise Reduction Vortex Generation

Test Noise Reduction Concepts Used Separately on Core Or Fan Provide ≈ 1 EPNdB Benefit At Typical Sideline Condition Test Noise Reduction Concepts Used Combined on Core And Fan Provide

≡ 1.5 to 2 EPNdB Benefit At Typical Sideline Condition

Test Noise Reduction Concepts Provide Little Benefit Or Noise Increase At Typical Cutback Condition

Noise Reduction Test Configurations of Model 3

With Fan Nozzle Noise Reduction Concept 3BC

With Core Nozzle Noise Reduction Concepts 3C8B, 3C12B, 3IB, 3AB 3DiB, 3DxB

With Core & Fan Nozzle Noise Reduction Concepts 3C8C, 3C12C, 3IC, 3AC

Noise Reduction Test Configurations with Model 3 BPR = 5, External Plug

With Different Fan Nozzle

3BC

Scale Factor = 8, Altitude = 1500 ft, M = 0.28 1.10 1.05 Separate Flow Nozzle with External Plug; BPR=5 With 24 Chevron Fan Nozzle (3BC) 1.00 Normalized Vmix (Vmix/camb) 0.95 0.90 Poly. (3BB Test Data) 0.85 0.80 3BC 0.75 90 88 86 84 82 80 78 76 74 72 70 09 99 64 62 EPNL+10LOG(F/1000), dB

GE Aircraft Engines

1.15

Separate Flow Test Status Meeting

Noise Reduction Test Configurations with Model 3

BPR = 5, External Plug

With Doublets on Core Nozzle

baj29/a14pit09.doc

1.15 Scale Factor = 8, Altitude = 1500 ft, M = 0.28 1.10 With Doublet Noise Reduction Features on Core Nozzle (Di, Dx) 1.05 Separate Flow Nozzle with External Plug; BPR=5 1.00 Normalized Vmix (Vmix/camb) 0.95 0.90 - Poly. (3BB Test Data) 0.85 0.80 × 3DxB 3DiB 0,75 9 06 88 86 82 9/ 84 78 74 89 99 62 64 EPNL+10LOG(F/1000), dB

GE Aircraft Engines

Altitude=1500 ft Scale Factor =8 PNL Directivity Baseline (3BB) vs 64 Internal SPL Spectra Doublets on Core (3DiB) BPR=5 M=0.28 TP 21 388-788 3DB-800 LEGEND S dB One-Third Octave Spectrum at 130.0 deg. One-Third Octave Spectrum at 155.0 deg. One-Third Octave Center Fraq., Hz One-Third Octave Certler Freq., H2 8 80 09 82 75S 66 S는 작명 One-Third Octave Spectrum at 90.0 deg. One-Third Octave Centar Freq., Hz Angle re: Infet, Deg. PNL Directivity фB EPNJ "INJ

Altitude = 1500 ft Scale Factor =8 PNL Directivity Baseline (3BB) vs 20 External SPL Spectra Doublets on Core (3DxB) BPR=5 M=0.28 TP 21 LEGEND 5 dB One-Third Octave Spectrum at 130.0 deg. One-Third Octave Spectrum at 115.0 deg. One-Thard Octave Center Freq. Hz One-Third Octave Center Freq. Hz 85 J98 os 9P 7±S One-Third Octave Spectrum at 90.0 dag. One-Third Octave Center Freq., Hz so too no Anglere: Intel, Deg. PNL Directivity 1 dB BPNd TNd

Noise Reduction Test Configurations with Model 3

BPR = 5, External Plug

With Different Core Nozzles

baj29/a14pit09.doc

1.15 Scale Factor = 8, Altitude = 1500 ft, M = 0.28 1.10 With Four Different Chevron Core Nozzles (C8, C12, I, A) 1.05 Separate Flow Nozzle with External Plug; BPR=5 1.00 Normalized Vmix (Vmix/camb) 0.95 0.30 - Poly. (3BB Test Data) 0.85 3C12B 0.80 3C8B 3AB 3<u>IB</u> 0.75 90 88 86 82 9/ 74 09 84 70 68 99 62 64 EPNI™OLOG(F/1000), dB

GE Aircraft Engines

PNL Directivity

[전 기원

94

€6

16

68

78

98

PNL Directivity

GENERAL ELECTRIC Aircraft Engines

£8

виг, Риав

18

64

Ш

08

98

92

04

99

GENERAL ELECTRIC Aircraft Engines

5PL, dB

99

09

0Þ

97

Noise Reduction Test Configurations with Model 3

BPR = 5, External Plug

With Different Core & Fan Nozzles

baj29/a14pit09.doc

1.15 Scale Factor = 8, Altitude = 1500 ft, M = 0.28 1.10 With Four Different Core & Fan Chevron Nozzle (3C8C,3C12C,3IC,3AC) 1.05 Separate Flow Nozzle with External Plug; BPR=5 1.00 Normalized Vmix (Vmix/camb) 0.95 0.30 -Poly. (3BB Test Data) 0.85 3C12C 3C8C 0.80 3AC 3IC 0.75 88 98 90 84 82 78 9/ 74 70 68 60 99 62 8 EPNL#10LOG(F/1000), dB

GE Aircraft Engines

PNL Directivity

98

97

GENERAL ELECTRIC Aircraft Engines

99

09

94

0Þ

÷

Altitude=1500 ft 3BB minus Noy Scale Factor =8 Noy values of values of 3IC BPR = 5TP 21M = 0.28F. 22.5 -126 X Bank aspl, Test. 2222, Reading: 917, Config.: 000 MINUS Bank aspl, Test. 2222, Reading: 90, Config.: 000 PEAK PNL 1 = 90.50 at 130.0 DEG, PEAK PNL 2 = 86.40 at 110.0 DEG VON ATJEG

15.28 (39/2497 mickris2804.cdf as6302/ebc/757.x11 PLOT 1 EGS LIB 5.41 08/0497 (EGSHEP.XCPOST 5.41 08/04/97 on cOT67) soedsco ver. 1.2.24 Jan 1995

NASA/CP-2000-210524

Separate Flow Test Status Meeting

GE Aircraft Engines G.Komtos /aci14.3/epnls.xts Mod. 3 -- 1200 Column 3D (2)

■1150 **■** 1200 □1100 □ 1000 Vmix ■ 950 Δ EPNL, dB о. ग 9.5 0.0 1200 Vmix, fps 1150 1100 1000 950 3018 386 3DxB 30128 3C8B つてわる

Noise Benefits Relative to Baseline Model 3 Tamb = 50°F; Scale Factor = 8; Altitude = 1500 ft; M = 0.28

Summary - Noise Reduction Test Concepts of BPR=5 External Plug Nozzle (Model 3)

- Core Nozzle Doublets (Both Internal & External of Core Nozzle) Provide No Significant Noise Benefit
- At Typical Sideline Condition Following Benefits Were Noted:
- 1) Both 8 Chevron & 12 Chevron Core Nozzles ≥ 1 to 1.5 EPNdB
- 2) Inward & Alternate Flip Core Chevron Nozzles = 2.5 EPNdB
 - Benefits upto An Additional Maximum Benefit of 1.0 EPNdB 3) Addition of Fan Chevron Increases Core Chevron Nozzle
- 4) 3IC & 3AC ≈ 3.0 & 3.4 EPNdB
- Chevron Core Nozzles Gave Significant Low Frequency Jet Noise SPL Reduction. Except for Alternate Flip Core Chevron Nozzle, Chevron Nozzles Did Not Increase High Frequency SPL
 - Test Concepts Provide 0.5 to 1 EPNdB Benefit at Typical Cutback Condition

Noise Reduction Test Configurations of Model 5

With Fan Nozzle Noise Reduction Concept **5BC**

With Core Nozzle Noise Reduction Concept **5C12B**

With Core & Fan Nozzle Noise Reduction Concepts

With Chevron Core and Fan Nozzles

Separate Flow Nozzle with Int Plug (4BB) & Ext Plug (5BB); BPR = 8

GE Aircraft Engines baj46/AAPLO3A.XLS/Charbo

GENERAL ELECTRIC Aircraft Engines

GENERAL ELECTRIC Aircraft Engines

Summary - Noise Reduction Test Concepts of BPR=8 External Plug Nozzle (Model 5)

Chevron Noise Reduction Concepts Used Separately on Core Or Chevron Noise Reduction Concepts Used Combined on Core And Fan Provide

1.5 EPNdB Benefit At Typical Sideline Condition

Summary

- Successful Separate Flow Acoustic Test Program Completed
- Concepts Identified That Give Significant Jet Noise Reduction
- Some Concepts Meet NASA Stretch Goal of 3.0 EPNdB Jet Noise Reduction At Typical Takeoff Condition
- Good Cooperation Between NASA & Industry Participants During Planning & Execution of Test Program
- Need to Assess Performance Impact of Significant Noise Reduction Concepts

SFNT97 Flow Field Measurements

Nozzle geometry → Flow → Sound

- IR for online diagnostics with acoustics
- Ptot, Ttot, Pstat rake surveys for mean flow measurements
- Focused Schleiren for density and some turbulence structure
- Laser sheet visualization for near-nozzle diagnostics
- Two-point hotwire measurements for turbulence models

Non-intrusive flow diagnostic with acoustic testing IR Camera On-line

Total temperature rake data

Plume Survey Rake Instrumentation

Four vertical rakes (Z)

- 10" total span

- 1/4" ∆z p_{tot}

- 1/4" Az t_{tot}

- 1/2" ∆z p_{stat} x2 rakes

Traverse actuation in horizontal plane (X,Y)

pstat only measured in first two crosssections (10.5" and 13.5") Velocity obtained using p_{stat} = p_{amb} is denoted by "velocity*"

Page 1

Model 3 Configurations Tested

Other Configurations Tested

- 188
 - 28B • 48B
- 6TmB
- **78B**

SFNT97 Plume Survey

SFNT97: Plume survey

SFNT97: Plume survey

1600

400

Mean velocity field Cycle point 21, M=0.28; x=10.5"

1600

400

Mean velocity field Cycle point 21, M=0.28; x=18"

1600

400

SFNT97: Plume survey

Mean velocity field Cycle point 21, M=0.28; x=30"

SFNT97: Plume survey

Mean velocity field Cycle point 21, M=0.28; x= 30"

SFNT97: Plume survey

Velocity profiles Fan mixer: Effect of chevron

y = 0.0"

Velocity profiles Fan: Offset Nozzle

Focused Schleiren

Model 3 Configurations

124	×						
H			22 No. 1 Nove 1		81		
C24	×			· · · · · · · · · · · · · · · · · · ·		ğ.	
M	×	X	X	X	×	×	×
Model 3	В	8 <u>2</u>	¥	Ī	L	Ħ	T24

- 10"diameter view taken every 6" along x for 16" < x < 46"
- All data taken at Cycle Point 21, M = 0.28

Model 2 configurations

aB		I	-
Bl ₂	*		
		~~	
	\sim	E.	100
四四	B	日	
10 m	α	N	1.000

×

T48

SFNT97: Focused Schleiren

Near Nozzle Schleiren Initial divergence and longitudinal distortion

3T24B

388

SFNT97: Focused Schleiren

Downstream Schleiren Unsteady turbulent structure

3BT24 cycle point 21, x=46" shutter speed 1/2000 sec

Measurements of two-point space-time correlations using hotwires

- MGB prediction method assumes isotropic, homogeneous turbulence
- Shear layers are not isotropic, nor homogeneous.
- Q: How far from these assumptions is reality and what are some actual valid turbulence models?
- measurements been incorrect in neglecting Q: By how much have previous probe interference?
- Q: What is the frequency dependence of the space-time correlation matrix? (Space-time separation assumption)

Measurements/Statistics

- Attempt to answer these by taking data in simple round jet (core of model 1).
- Used two x-wires separated by ξ on independent traverses.
- Used combination of probes to take spacetime correlations for several radii at 3 axial locations
- $uu(\xi,\tau;\mathbf{x})$, $uv(\xi,\tau;\mathbf{x})$, $uw(\xi,\tau;\mathbf{x})$, $vv(\xi,\tau;\mathbf{x})$, $ww(\xi,\tau;\mathbf{x})$
- $uuuu(\xi,\tau;\mathbf{x}), uuvv(\xi,\tau;\mathbf{x}), uvuv(\xi,\tau;\mathbf{x}), vvvv(\xi,\tau;\mathbf{x}),$ wwww($\xi,\tau;\mathbf{x}$), uwuw($\xi,\tau;\mathbf{x}$)
- Will calculate $\mathcal{L}_{11}/\mathcal{L}_{22}$ and A₁₁₁₁, A₁₂₁₂, A₂₂₂₂ as function of radius, axial location, and frequency.

Preliminary Flow Field Insights

- Complicated flow fields defy simple analysis
- Centerline decay
- Spread rate

Fan mixer:

- C24 'thickens' fan/ambient shear layer; no deformation of core flow
- C24 decreases core decay re baseline!
- T24 distorts fan/ambient shear layer and deforms the core flow 1
- T24 increases core decay re baseline.
- Offset nozzle caused 'vectored' flow, with fan flow splitting the core flow downstream.

Preliminary Flow Field Insights, Cont.

Core mixer:

- " chevron has more impact on core/fan shear layer than 'C' chevron.
- C8 gave stronger initial deformation than C12. Little effect by
- gave strong deformation (destruction!) of core/fan shear layer. Tabs were doubly effective because they alternated in/out and 1
- Half mixer better mixed than full by 60".
- T24 better mixed than T48.
- Alternating Tab ('A') performed similarly to T24, especially downstream.

Larc Separate Flow TESTING STATUS

NASA LANGLEY RESEARCH CENTER JET NOISE LABORATORY JACK SEINER

SEPTEMBER 10, 1997

PROGRAM OBJECTIVES

DEVELOP JET NOISE DATA BASE FOR SEPARATE FLOW NOZZLES WITH BYPASS RATIO'S 5 TO 14. EVALUATE EFFECT OF PYLON ON NOISE.

DEVELOP LOW PERFORMANCE IMPACT NOISE SUPPRESSION CONCEPTS.

EVALUATE POTENTIAL FOR ACTIVE CONTROL OF JET NOISE.

PROGRESS TO DATE

RC AND SEPARATE FLOW NOZZLES WITH COMPLETED ACOUSTIC DATA BASE FOR INTERNAL AND EXTERNAL PLUGS FOR BPR=5.

ACQUIRED PERFORMANCE & ACOUSTIC DATA FOR BLUEBELL PRIMARY AND SECONDARY RAMPS.

NASA/CP-2000-210524

FUTURE STUDIES

- COMPLETE DATA BASE STUDY
- VALIDATE NUMERICAL SIMULATION STUDIES
- OBTAIN RELIABLE PERFORMANCE DATA FOR SUPPRESSOR NOZZLES.
- EVALUATE POTENTIAL OF GLOW DISCHARGE AND SYNTHETIC JET ACTUATORS

Installed Jet Noise

Thonse R. S. (Srini) Bhat

September 10, 1997 NASA Lewis Research Center

Outline:

- Test facility
- Hardware & instrumentation layout
- Test configurations
- Results
- Spectral plots
- Phased array data
 - Velocity profiles
- Concluding remarks

200 Sept. 100 Se

Hardware & Instrumentation Layout

CONTRACTOR CONTRACTOR

Dual Flow Jet Generator

Baseline Nozzle Configuration

Test Configurations:

Installed jet (inboard)

--- different power settings

various flap settings

— different angle – of – attacks

— different installation locations

-- changes in bifurcation

Isolated jet

L

LSAF 1043 - Installed Jet Noise

Run: 2131

Mach: 0.0

LSAF 1043 - Installed Jet Noise

Run: 2195

Mach: 0.28

LSAF 1043 - Installed Jet Noise

Run: 2132

Mach: 0.28

NASA AST Jet Noise Meeting

Schematic of Jet Noise Source Model

NASA AST Jet Noise Meeting

Schematic of Jet Noise Component Spectra

NASA AST Jet Noise Meeting

Concluding remarks:

Installation increases noise

Noise increases with increasing flap deflection

Secondary—ambient & mixed—ambient compo nents are dominant

Modeling of installation effects is in progress Noise for installed jet is not axi-symmetric

Jet Noise Analysis and Separate Flow Nozzle Test Workshops Sept. 9-10, 1997

Title	FirstName	LastName	Company	Telephone	Here 9/9	Here 9/10
Mr.	Dennis	Huff	NASA Lewis	216-433-3913	X	X
Mr.	Isam	Yunis	NASA Lewis	216-433-8393	X	X
Mr.	Eugene	Krejsa	NASA Lewis	216-433-3951	X	X
Mr.	Naseem	Saiyed	NASA Lewis	216-433-6736		X
Dr.	James	Bridges	NASA Lewis	216-433-2693		X
Dr.	Valerie	Lyons	NASA Lewis			
Dr.	Milo	Dahl	NASA Lewis	216-433-3578	X	X
Dr.	Jeffery	Miles	NASA Lewis	216-433-5909	X	X
Dr.	James	Scott	NASA Lewis			
Dr.	John	Goodrich	NASA Lewis	216-433-5922	X	X
Dr.	Bernard	Blaha	NASA Lewis	216-433-3933	X	X
Mr.	William	Hughes	NASA Lewis	216-433-2597	X	X
Mr.	Mark	McNelis	NASA Lewis	216-433-8395	X	X
Ms.	Anne	McNelis	NASA Lewis	216-433-8880	X	X
Dr.	Marvin	Goldstein	NASA Lewis	216-433-5825	X	†·
Dr.	Hugh	Kao	NASA Lewis	216-433-5866	X	<u> </u>
Mr.	Nicholas	Georgiadis	NASA Lewis	216-433-3958	X	
Mr.	Dennis	Yoder	NASA Lewis	216-433-8716	X	
Mr.	John	Walter	NASA Lewis			
Mr.	David	Lam	NASA Lewis			
Dr.	Khairul	Zaman	NASA Lewis	216-433-5888		X
Mr.	Raymond	Castner	NASA Lewis			
Mr.	Luis	Beltran	NASA Lewis			X
Mr.	Benjamin	Dastoli	NASA Lewis			
Dr.	Duane	Hixon	ICOMP	216-962-3146	X	X
Dr.	Shyue-Horng	Shih	ICOMP	216-433-6680	X	X
Dr.	Abbas	Khavaran	NYMA	216-977-1120	X	
Dr.	R. M.	Nallasamy	NYMA	216-977-1287	X	X
Dr.	John	Seiner	NASA Langley	757-864-6276	X	X
Dr.	Joe	Posey	NASA Langley	757-864-7686		X
Mr.	William	Willshire	NASA Langley			
Mr.	Frank	Jones	NASA Langley			T
Mr.	John	Preisser	NASA Langley	757-864-3618		X

Jet Noise Analysis and Separate Flow Nozzle Test Workshops Sept. 9-10, 1997

Title	FirstName	LastName	Company	Telephone	Here 9/9	Here 9/10
Mr.	Dale	Ashby	NASA Ames			
Mr.	Phillip	Gliebe	GE Aircraft Engines	513-243-2865	X	X
Dr.	Bangalore	Janardan	GE Aircraft Engines	513-243-3393	X	Х
Dr.	R.K.	Majjigi	GE Aircraft Engines	513-552-4308	X	X
Dr.	Steve	Martens	GE Aircraft Engines	513-552-2768	X	X
Dr.	Ramani	Mani	GE CR&D	518-387-6341	X	X
Dr.	Brian	Mitchell	GE CR&D	518-387-7845	X	X
Dr.	Sayed	Saddoughi	GE CR&D	518-387-6878		X
Mr.	Donald	Weir	AlliedSignal Engines	602-231-1214	X	X
Mr.	Douglas	Mathews	Pratt & Whitney	860-565-2664		X
Mr.	John	Low	Pratt & Whitney	860-565-4279	X	X
Dr.	Barry	Wagner	Pratt & Whitney	860-565-3888		X
Mr.	Alfred	Stern	Pratt & Whitney	860-565-2566	X	
Dr.	Robert	Manzi	Pratt & Whitney			
Dr.	Thomas	Barber	UTRC	860-610-7619	X	X
Dr.	John	Simonich	UTRC	860-610-7871		X
Mr.	William	Dalton	Allison Engine Co.	317-230-2430	X	X
Dr.	Vinod	Mengle	Allison Engine Co.	317-230-2400	X	X
Mr.	David	Reed	Boeing Commercial			1
Mr.	John	Premo	Boeing Commercial			
Dr.	Mahendra	Joshi	Boeing - Long Beach	562-593-8583	X	X
Dr.	Belur	Shivashankara	The Boeing Company	425-234-9551	X	X
Dr.	Srini	Bhat	The Boeing Company	425-234-9550	X	X
Dr.	Krishna	Viswanathan	The Boeing Company	425-965-1186	X	X
Dr.	Philip	Morris	Penn State University	814-863-0157	X	
Dr.	Anthony	Pilon	Penn State University	814-865-1966	X	

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DAT	ES COVERED	
December 2000 Confere			nce Publication	
4. TITLE AND SUBTITLE	INDING NUMBERS			
Separate Flow Nozzle Test	Status Meeting			
6. AUTHOR(S)			VU-522-81-11-00	
o. Action(s)				
N. Saiyed, editor				
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)		RFORMING ORGANIZATION	
National Aeronautics and S	pace Administration	RE	EPORT NUMBER	
John H. Glenn Research Ce	-	l I	E-12499	
Cleveland, Ohio 44135-31	5-12499			
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	10. S	PONSORING/MONITORING	
		, A	GENCY REPORT NUMBER	
National Aeronautics and S				
Washington, DC 20546–00	001	l I	NASA CP—2000-210524	
11. SUPPLEMENTARY NOTES				
· ·	e held at and sponsored by NAS			
September 9–10, 1997. Res	ponsible person, N. Saiyed, orga	anization code 5940, 216–433	6-6/36.	
12a. DISTRIBUTION/AVAILABILITY	STATEMENT	12b.	DISTRIBUTION CODE	
Unclassified - Unlimited Subject Category: 71	Distrib	ution: Nonstandard		
Available electronically at http://	/gltrs.grc.nasa.gov/GLTRS			
	n the NASA Center for AeroSpace In:	formation, 301–621–0390.		
13. ABSTRACT (Maximum 200 word	-			
separate flow nozzle exhaus configurations and acquired Several exhaust system con-	p with US industry, completed a st systems. The study developed pertinent data for predicting the figurations provided over 2.5 EF ce industry in a conference host	a data base on various bypasse plume behavior and ultimate PNdB jet noise reduction at ta	s ratio nozzles, screened quietest ely its corresponding jet noise. ke-off power. These data were	
14. SUBJECT TERMS Engine noise; Acoustic nozz Exhaust noise; Noise suppre	zles; Aeroacoustics; Aircraft; No essor; Sonic nozzles	oise;	15. NUMBER OF PAGES 372 16. PRICE CODE A16 20. LIMITATION OF ABSTRACT	
OF REPORT	OF THIS PAGE	OF ABSTRACT		
Unclassified	Unclassified	Unclassified		