Zkouška OPT 10.2.2021

Každý příklad pište na samostatnou stránku a ofoťte do samostatného souboru, jehož jméno (bez přípony) je číslo příkladu.

Každý příklad musí mít nejen odpověď, ale i postup. Odpověď bez postupu se nepočítá.

1. (5b) Stroj na lisování plastů umí vyrábět dva druhy výrobků (v jeden okamžik ovšem umí vyrábět jen jeden druh), hadičky a gumičky. Hadičky vyrábí rychlostí 200 kg/hod, gumičky rychlostí 140 kg/hod. Je nasmlouváno, že hadiček se nesmí vyrobit více než 6000 kg a gumiček se nesmí vyrobit více než 4000 kg. Z prodeje hadiček je zisk 25 Kč/kg, z prodeje gumiček 30 Kč/kg. Kolik kg máme vyrobit hadiček a gumiček, chceme-li největší zisk a máme-li k dispozici 40 hodin práce stroje? Cenu surovin a cenu za běh stroje nepočítáme. Napište jako lineární program.

 $\max 25h + 30g$ z.p. $h/200 + g/140 \le 40, \ h \le 6000, \ g \le 4000, \ h, g \ge 0$ (prvni omezeni se da psat taky jako $7h + 10g \le 56000)$

2. (4b) V geometrii počítačového vidění se vyskytuje rovnice $\mathbf{x}^T \mathbf{F} \mathbf{y} = 0$, kde $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ jsou známé vektory a $\mathbf{F} \in \mathbb{R}^{3 \times 3}$ je neznámá matice. Tato rovnice se dá zapsat ve tvaru $\mathbf{a}^T \mathbf{f} = 0$, kde $\mathbf{f} \in \mathbb{R}^9$ je sloupcový vektor vytvořený ze sloupečků matice \mathbf{F} zapsaných pod sebou a $\mathbf{a} \in \mathbb{R}^9$ je sloupcový vektor, jehož složky jsou výrazy obsahující složky vektorů $\mathbf{x} = (x_1, x_2, x_3)$ a $\mathbf{y} = (y_1, y_2, y_3)$. Najděte vektor \mathbf{a} .

 $\mathbf{a} = \mathbf{y}^T \otimes \mathbf{x}^T = (x_1y_1, x_2y_1, x_3y_1, x_1y_2, x_2y_2, x_3y_2, x_1y_3, x_2y_3, x_3y_3)$ (viz resene cviceni 2.6a ve skriptech).

- 3. Máme podprostor $U = \text{span}\{(1,2,0),(0,1,-1)\}$ prostoru \mathbb{R}^3 .
 - (a) (2b) Najděte libovolnou bázi podprostoru U^{\perp} . Lib. násobek (-2, 1, 1), najdeme např. pomocí vektorového součinu.
 - (b) (4b) Najděte ortogonální projekci vektoru $\mathbf{x}=(-1,1,0)$ na podprostor U. Z možných postupů výpočtu zvolte takový, který vykoná co nejméně aritmetických operací (plus, mínus, krát, děleno) za předpokladu, že už máte bázi podprostoru U^{\perp} . Tento postup jednoznačně popište.

Když báze je $\mathbf{u}=(-2,1,1),$ tak projekce bodu \mathbf{x} na U je

$$\mathbf{y} = \mathbf{x} - \frac{1}{\mathbf{u}^T \mathbf{u}} \mathbf{u} \mathbf{u}^T \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{6} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \left(\begin{bmatrix} -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

kde součin tří matic se musí počítat odzadu (viz zavorka), jinak to zabere víc operací.

- 4. Hledáme extrémy funkce $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = x + 2y na množině $X = \{(x,y) \in \mathbb{R}^2 \mid x^2 4x + y^2 = 0\}$.
 - (a) (3b) Úlohu vyřešte algebraicky. U každého extrému napište, zda je lokální nebo globální. Pro každý stacionární bod odůvodněte, proč je to minimum, maximum nebo nic z toho. K tomu nemusíte použít podmínky druhého řádu, ale můžete uvést jiný argument (vycházející např. z náčrtku).

$$L(x,y,\lambda) = x + 2y + \lambda(x^2 - 4x + y^2)$$
, stacionarni body (x,y,λ) funkce L jsou $(2 \pm \frac{2}{\sqrt{5}}, \pm \frac{4}{\sqrt{5}}, \mp \frac{\sqrt{5}}{4})$.

(b) (3b) Ověřte výsledek úvahou pomocí náčrtku. Na náčrtku musí být množina X, všechny extrémy, a vrstevnice funkce f procházející každým extrémem.

 $x^2 - 4x + y^2 = (x - 2)^2 + y^2 - 4$, takze X je kruznice se stredem v bode (2,0) a polomerem 2.

- 5. Jsou dány body $(x_1, y_1, z_1), \ldots, (x_n, y_n, z_n) \in \mathbb{R}^3$. Hledáme čísla $a, b \in \mathbb{R}$ taková, aby součet druhých mocnin (kolmých) vzdáleností bodů od roviny $P = \{(x, y, z) \in \mathbb{R}^3 \mid z = ax + by\}$ byl minimální.
 - (a) (3b) Má tato úloha vždy optimální řešení? Vysvětlete. Ma reseni prave tehdy kdyz optimalni rovina neni svisla (tj. rovnobezna s osou z).
 - (b) (3b) Napište algoritmus, který spočítá čísla a, b. Nejdriv najdeme optimalni rovinu ax + by + cz = 0 pomoci eig nebo SVD. Pak prevedeme na kyzeny tvar z = -(ax + by)/c (coz muzeme, protoze rovina neni svisla, tedy $c \neq 0$).
- 6. (4b) Máme dvě rovinné křivky popsané rovnicemi $\mathbf{x}^T \mathbf{A} \mathbf{x} = a$ a $\mathbf{x}^T \mathbf{B} \mathbf{x} = b$, kde $\mathbf{x} \in \mathbb{R}^2$, $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{2 \times 2}$ a $a, b \in \mathbb{R}$. Hledáme průsečík těchto křivek Newtonovou metodou. Napište iteraci metody.

$$\mathbf{g}(\mathbf{x}) = \begin{bmatrix} \mathbf{x}^T \mathbf{A} \mathbf{x} - a \\ \mathbf{x}^T \mathbf{B} \mathbf{x} - b \end{bmatrix}, \ \mathbf{g}'(\mathbf{x}) = \begin{bmatrix} \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T) \\ \mathbf{x}^T (\mathbf{B} + \mathbf{B}^T) \end{bmatrix}, \ \mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{g}'(\mathbf{x}_k)^{-1} \mathbf{g}(\mathbf{x}_k).$$

7. Jsou dány spojitě diferencovatelná funkce $f: \mathbb{R}^n \to \mathbb{R}$, nenulový vektor $\mathbf{a} \in \mathbb{R}^n$ a číslo $b \in \mathbb{R}$. Hledáme vzdálenost množiny $X = \{ \mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) = 0 \}$ od nadroviny $H = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} = b \}$.

- (a) (3b) Formulujte tuto optimalizační úlohu. Ve vaší formulaci musí být jednoznačně vidět, co jsou proměnné, co účelová funkce a co omezující podmínky.

 Jedna mozna formulace: min $\|\mathbf{x} \mathbf{y}\|^2$ za podmínek $f(\mathbf{x}) = 0$ a $\mathbf{a}^T \mathbf{y} = b$ pres $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

 Jina formulace: min $|\mathbf{a}^T \mathbf{x} b|$ za podminky $f(\mathbf{x}) = 0$ pres $\mathbf{x} \in \mathbb{R}^n$. To plyne z toho, ze vzdalenost bodu
 - \mathbf{x} od nadroviny H je (az na nasobek $\|\mathbf{a}\|$) rovna $|\mathbf{a}^T\mathbf{x} b|$, viz skripta. Jeste jina formulace: min $(\mathbf{a}^T\mathbf{x} - b)^2$ (coz je diferencovatelne) za podminky $f(\mathbf{x}) = 0$.
- (b) (4b) Dokažte toto tvrzení: Nechť \mathbf{x} je bod množiny X, který je nejblíže nadrovině H. Jestliže $X \cap H = \emptyset$ a $\nabla f(\mathbf{x}) \neq \mathbf{0}$, pak tečný prostor k množině X v bodě \mathbf{x} je rovnoběžný s H. (Nápověda: můžete použít podmínky prvního řádu na extrémy vázané rovnostmi.)

 Je $L(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \|\mathbf{x} \mathbf{y}\|^2 + \alpha f(\mathbf{x}) + \beta (b \mathbf{a}^T \mathbf{y})$. Derivace: $L_x = \mathbf{x} \mathbf{y} + \alpha \nabla f(\mathbf{x}) = \mathbf{0}$, $L_{\mathbf{y}} = \mathbf{y} \mathbf{x} \beta \mathbf{a} = \mathbf{0}$. Sečtení těchto dvou rovnic dá $\alpha \nabla f(\mathbf{x}) = \beta \mathbf{a}$. To může platit buď pro $\alpha = \beta = 0$ nebo pro $\alpha, \beta \neq 0$. První případ by implikoval $\mathbf{x} = \mathbf{y}$, což je nemožné protože $X \cap H = \emptyset$. Tedy $\nabla f(\mathbf{x})$ je násobkem \mathbf{a} , což je dokazované tvrzení.
- (c) (4b) Najděte vzdálenost dvou křivek v rovině: přímky y=2x-3 a paraboly $y=x^2$. Z dokazaneho tvrzeni: hledame bod (x,y) na krivce $f(x,y)=x^2-y$ ktery ma gradient $\nabla f(x,y)=(2,-1)$ kde 2x-y=3 je nase primka (nadrovina). To je bod (1,1). Nejblizsi bod na přímce je pak $(\frac{9}{5},\frac{3}{5})$, vzdálenost $\sqrt{(\frac{9}{5}-1)^2+(\frac{3}{5}-1)^2}=2/\sqrt{5}\approx 0.8944$.
- 8. Máme lineární program min $\{\mathbf{b}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{0} \leq \mathbf{A}\mathbf{x} \leq \mathbf{1}\}$, kde $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{b} \in \mathbb{R}^n$ jsou dány.
 - (a) **(5b)** Napište duální úlohu a upravte ji do co možná jednoduchého tvaru (jednoduchost se hodnotí). Prepiseme primarni omezeni jako $\begin{bmatrix} \mathbf{A} \\ -\mathbf{A} \end{bmatrix} \mathbf{x} \geq \begin{bmatrix} \mathbf{0} \\ -\mathbf{1} \end{bmatrix}$ a pouzijeme kucharku ze skript na konstrukci dualu, pricemz dualni promenne rozdelime na dve casti $\mathbf{y} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$. Dual maximalizuje max $\begin{bmatrix} \mathbf{0} \\ -\mathbf{1} \end{bmatrix}^T \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$ z.p. $\begin{bmatrix} \mathbf{A} \\ -\mathbf{A} \end{bmatrix}^T \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \mathbf{b}$ a $\mathbf{u}, \mathbf{v} \geq \mathbf{0}$. To se slusi upravit na $-\min\{\mathbf{1}^T\mathbf{v} \mid \mathbf{A}^T(\mathbf{u} \mathbf{v}) = \mathbf{b}, \ \mathbf{u}, \mathbf{v} \geq \mathbf{0}\}$.
 - (b) (3b) Jaké musí být \mathbf{A} a \mathbf{b} , aby primární úloha měla optimální řešení? Odpověď napište co možná výstižně a jednoduše. Odpověď odůvodněte. (Nápověda: můžete využít výsledek minulého podúkolu.) Z vety o silne dualite: primar ma opt. reseni iff duál má opt. řešení. Dual ma opt. reseni iff je pripustny (nemuze byt neomezeny, protoze je tam $\mathbf{1}^T\mathbf{u}$ a $\mathbf{u} \geq \mathbf{0}$). To plati iff soustava $\mathbf{A}^T\mathbf{y} = \mathbf{b}$ ma reseni (protoze kazdy vektor $\mathbf{y} \in \mathbb{R}^m$ jde napsat jako $\mathbf{y} = \mathbf{u} \mathbf{v}$ pro $\mathbf{u}, \mathbf{v} \geq \mathbf{0}$). Tj. $\mathbf{b} \in \operatorname{rng} \mathbf{A}^T$.

Bodů celkem: 50