This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

européen d s br vets

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 03.11.1999 Bulletin 1999/44

(51) Int Cl.⁶: C08F 10/00, C08F 4/602

- (21) Application number: 99500063.5
- (22) Date of filing: 26.04.1999
- (84) Designated Contracting States:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE
 Designated Extension States:
 AL LT LV MK RO SI
- (30) Priority: 27.04.1998 EP 98500101
- (71) Applicant: REPSOL QUIMICA S.A. E-28046 Madrid (ES)
- (72) Inventors:
 - Munoz-Escalona Lafuente, Antonio 28223 Madrid (ES)

- Lafuente Canas, Pilar 28043 Madrid (ES)
- Sancho Royo, José 28003 Madrid (ES)
- Pena Garcia, Begona 28027 Madrid (ES)
- Martinez Nunez, Ma Francisca 28028 Madrid (ES)
- Martin Marcos, Carlos 28850 Torrejon de Ardoz, Madrid (ES)
- (74) Representative: Del Santo Abril, Natividad Oficina Garcia Cabrerizo, S.L., Vitruvio, 23 28006 Madrid (ES)
- (54) Catalytic systems for the polymerization and copolymerization of alpha-olefins
- (57) The invention relates to heterogeneous catalytic systems obtainable by reacting a porous inorganic support with an alumoxane and subsequently supporting at least one metallocene compound thereon, characterized in that the metallocene compound is defined by the following general formulas:

$$(LR_k)_z[LR_{k-f}(R^lOSiR^{ll}_3)_f]_xMX_y$$

wherein:

L, equal to or different from each other, is selected from the group comprising: cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, octahydrofluorenyl or benzoindenyl; each $\bf R$ is independently selected from hydrogen, $\bf C_1$ - $\bf C_{20}$ alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, C_7 - C_{20} arylalkyl, C_7 - C_{20} alkylaryl, C_8 - C_{20} arylalkenyl, linear or branched, optionally substituted by 1 to 10 halogen atoms, or a group SiR^{II}₃; each R^I, equal to or different from each other, is a divalent aliphatic or aromatic hydrocarbon group containing from 1 to 20 carbon atoms, optionally containing from 1 to 5 heteroatoms of groups 14 to 16 of the periodic table of the elements and boron; preferably it is: C₁-C₂₀ alkylene, C₃-C₂₀cycloalkylene, C₆-C₂₀ arylene, C₇-C₂₀ alkenyl, C₇-C₂₀ arylalkylene, or alkylarylene, linear or branched, or a group SiRII2; each RII is independently selected from C1-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C3-C20 alkenyl, C7-C20 arylalkyl, C_8 - C_{20} arylalkenyl or C_7 - C_{20} alkylaryl, linear or branched; preferably $R^{||}$ is methyl, ethyl, isopropyl; each Q is independently selected from B, C, Si, Ge, Sn; M is a metal of group 3, 4 or 10 of the Periodic Table, Lanthanide or Actinide; preferably it is titanium, zirconium or hafnium; each X is independently selected from: hydrogen, chlorine, bromine, ORII, NRII₂, C₁-C₂₀ alkyl or C₆-C₂₀ aryl; L' is N or O; z is equal to 0, 1 or 2; x is equal to 1, 2 or 3; y is equal to 1, 2 or 3; x + y + z is equal to the valence of M; m is an integer which can assume the values 1, 2, 3 or 4; a and b are integers whose value ranges from 0 to k-1; f is an integer whose value ranges from 1 to k; g is an integer whose value ranges from 0 to 1; c and e are equal to 0 or 1; $\mathbf{a} + \mathbf{b} + \mathbf{c}$ is at least 1; $\mathbf{a} + \mathbf{g} + \mathbf{c}$ is at least 1; d is equal to 0, 1 or 2; when Q is B then c + d = 1; when Q is C, Si, Ge or Sn, then c + d = 2; when L' is N, then g + e = 1; when L' is O, then $\mathbf{g} = 0$ and $\mathbf{e} = 0$.

The invention also relates to the polymerization process making use of the above defined catalytic

Fig. 1

Description

5

15

20

30

35

40

45

50

[0001] The present invention relates to a heterogeneous catalytic system and its use in olefin polymerization.

STATE OF THE ART

[0002] It is very well known that homogeneous catalytic systems present a disadvantage: when they are used in suspension polymerization processes, a part of the produced polymer adheres to the reactor walls; this effect is technically called "reactor fouling". Besides, in most cases, the particle size of the obtained polymer is very small and the bulk density is low, thus the industrial production is reduced. In order to prevent the reactor from fouling and to control the size and the morphology of the polymer particles which are formed, the homogeneous system can be supported on an inorganic oxide.

[0003] In the last years different preparatory strategies have been used in order to reach this aim. EPA-206794 (Exxon) discloses a catalyst which comprises a carrier, a metallocene, and an alumoxane. The carrier is first treated with alumoxane and then the metallocene is added. EP-A-295312 (Mitsui) discloses a catalyst consisting of a carrier wherein alumoxane is precipitated and then the resulting material is impregnated with a metallocene. No additional cocatalyst is used in the polymerization process.

[0004] The first application claiming a process wherein the metallocene is reacted with the support surface is EP 293815 (HOECHST). The metallocene contains a SiOR group that reacts with the OH groups on the surface of the support.

[0005] EP 757053 (HOECHST) supports the metallocene by reacting the hydroxy groups of the inorganic support with a metallocene which contains a M-R-Z-CI group, wherein M is Si, Ge or Sn and Z is B, Si, Ge or Sn. EP 757992 (REPSOL) discloses a catalyst comprising a metallocene which contains a Si-Cl group to react with the hydroxyls of the inorganic support.

25 [0006] Object of the present invention is the preparation of a supported catalyst for (co)polymerization of ethylene, whose activity is not decreased by the heterogeneization process and which results in a polymer having a very good morphology.

[0007] Thanks to the methods described in the present invention, heterogeneous catalysts can be obtained; they allow to effectively control the morphology and the distribution of particle sizes, with a regular growth of the polymer around the catalyst particles and without reactor fouling.

DETAILED DESCRIPTION OF THE INVENTION.

[0008] The present invention relates to heterogeneous catalytic systems obtained by reacting a specific class of metallocene compounds with a treated porous inorganic support, i.e. a support having on its surface an alumoxane.

[0009] According to the present invention the specific class of metallocene compounds is defined by general formulas 1, 11 and 111.

$$(LR_k)_z[LR_{k-f}(R^IOSiR^{II}_3)_f]_xMX_y$$

$$(R_{3}^{II}SiOR^{I})_{c} Q_{m} \qquad (R_{3}^{II}SiOR^{I})_{c} Q_{m}$$

wherein:

5

10

20

25

30

35

40

45

55

L, equal to or different from each other, is selected from the group comprising: cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, octahydrofluorenyl and benzoindenyl;

each R is independently selected from hydrogen, C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, C_7 - C_{20} arylalkyl, C_7 - C_{20} alkylaryl, C_8 - C_{20} arylalkenyl, linear or branched, optionally substituted by 1 to 10 halogen

atoms, or a group SiRII3;

each R^{I} , equal to or different from each other, is a divalent aliphatic or aromatic hydrocarbon group containing from 1 to 20 carbon atoms, optionally containing from 1 to 5 heteroatoms of groups 14 to 16 of the periodic table of the elements and boron; preferably it is: C_1 - C_{20} alkylene, C_3 - C_{20} cydoalkylene, C_6 - C_{20} arylene, C_7 - C_{20} alkenyl, C_7 - C_{20} arylalkylene, or alkylarylene, linear or branched, or a group SiRII $_2$;

each R^{II} is independently selected from C_1 - C_{20} alkyl , C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, C_7 - C_{20} arylalkenyl or C_7 - C_{20} alkylaryl, linear or branched; preferably R^{II} is methyl, ethyl, isopropyl;

each Q is independently selected from B, C, Si, Ge, Sn; preferably it is C or Si;

M is a metal of group 3, 4 or 10 of the Periodic Table, Lanthanide or Actinide; preferably it is titanium, zirconium or hafnium:

each X is independently selected from: hydrogen, chlorine, bromine, ORII, NRII₂, C₁-C₂₀ alkyl or C₆-C₂₀ aryl; preferably it is chlorine, bromine;

L' is N or O:

k depends of the type of L; more specifically when L is cyclopentadienyl k is equal to 5, when L is indenyl k is equal to 7, when L is fluorenyl or benzoindenyl k is equal to 9, when L is tetrahydroindenyl k is equal to 11 and when L is octahydrofluorenyl, k is equal to 17;

z is equal to 0, 1 or 2; preferably z is 1;

x is equal to 1, 2 or 3; preferably x is 1;

y is equal to 1, 2 or 3;

x + y + z is equal to the valence of M;

m is an integer which can assume the values 1, 2, 3 or 4;

a and b are integers whose value ranges from 0 to k-1;

f is an integer whose value ranges from 1 to k;

g is an integer whose value ranges from 0 to 1;

c and e are equal to 0 or 1;

 $\mathbf{a} + \mathbf{b} + \mathbf{c}$ is at least 1;

a + g + c is at least 1;

d is equal to 0, 1 or 2;

when Q is B, then c + d = 1;

when \mathbf{Q} is \mathbf{C} , \mathbf{Si} , \mathbf{Ge} or \mathbf{Sn} , then $\mathbf{c} + \mathbf{d} = \mathbf{2}$;

when L' is N, then $\mathbf{g} + \mathbf{e} = 1$;

when L' is O, then g = 0 and e = 0.

[0010] Non limitative examples of RIOSiRII3 are:

 $(C_2H_5)_2$ Me; $C(CH_3)_2$ - $C(CH_3)_2$ - $OSi(PhMe)_3$; $CH(CH_3)$ - $CH(CH_3)$ -O- $SiEtMe_2$; $SiMe_2$ - $OSiMe_3$. [0011] Preferably the group $R^iOSiR^{ij}_3$ is selected from CH_2 - CH_2 - $OSiMe_3$, CH_2 - $CH_$

[0011] Preferably the group HOSiR"₃ is selected from CH₂-CH₂-OSIMe₃, CH₂-CH₂-CH₂-OSIMe₃, CH₂-CH₂-OSIMe₃, CH₂-CH₂-OSIMe₃, SiMe₂-CH₂-CH₂-OSIMe₃, SiMe₂-CH₂-CH₂-OSIMe₃.

[0012] Preferred structures of compounds of formula I, II and III are the following:

$$R_{3}^{\Pi}SiO-R^{I}-Si$$

$$Cp$$

$$R_{3}^{\Pi}SiO-R^{I}-Cp$$

$$R_{3}^{\Pi}SiO-R^{I}-Cp$$

$$R_{3}^{\Pi}SiO-R^{I}-Cp$$

$$R_{3}^{\Pi}SiO-R^{I}-Cp$$

$$R_{3}^{\Pi}SiO-R^{I}-Cp$$

$$R_{3}^{\Pi}SiO-R^{I}-Cp$$

$$R_{3}^{\Pi}SiO-R^{I}-Cp$$

$$R_{3}^{\Pi}SiO-R^{I}-Cp$$

.

$$R_{3}^{\Pi}SiO-R^{I}-Si$$

$$R_{3}^{\Pi}SiO-R^{I}-BzInd$$

$$R_{3}^{\Pi}SiO-R^{I}-BzInd$$

$$R_{3}^{\Pi}SiO-R^{I}-BzInd$$

$$R_{3}^{\Pi}SiO-R^{I}-BzInd$$

$$R_{3}^{\Pi}SiO-R^{I}-BzInd$$

$$R_{3}^{\Pi}SiO-R^{I}-BzInd$$

R₃ SiO-R-BzInd
R
R
R₃ SiO-R-BzInd

R₃ SiO-R-

$$R_{3}^{II} \text{S iO} - R_{4}^{I} \text{C} \text{C} \text{p}$$

$$R = \begin{bmatrix} R_{3}^{II} & SiO - R^{1} - Fluo \\ R & & & \\ R & & & \\ R^{II} & SiO - R^{1} - Fluo \end{bmatrix}$$

Fluo
$$R_3^{II}$$
SiO- R_3^{II} SiO- R_4^{II} Si R_3^{II} SiO- R_4^{II} Cp R_4^{II} SiO- R_4^{II} Cp R_4^{II} SiO- R_4^{II} Cp R_4^{II} SiO- R_4^{II} SiO- R_4^{II} Cp R_4^{II} SiO- R_4^{II} Si

$$R_{3}^{II}SiO-R^{I}-Si$$

$$R_{3}^{II}SiO-R^{I}-Ind$$

$$R_{3}^{II}SiO-R^{I}-Ind$$

$$R_{3}^{II}SiO-R^{I}-Ind$$

$$R_{3}^{II}SiO-R^{I}-Ind$$

$$R_{3}^{II}SiO-R^{I}-Ind$$

$$R_{3}^{II}SiO-R^{I}-Ind$$

$$R_{3}^{II}SiO-R^{I}-Ind$$

$$R_{3}^{II}SiO-R^{I}-Ind$$

$$R_{3}^{II}SiO-R_{-Si}^{I} \xrightarrow{Cp} T_{1} \xrightarrow{X} R_{3}^{II}SiO-R_{-Si}^{I} \xrightarrow{Ind} T_{1} \xrightarrow{X} R_{3}^{II}SiO-R_{-Si}^{I} \xrightarrow{Fluo} T_{1} \xrightarrow{X} X$$

5

÷ ∳ ,

$$R_3^{\Pi}SiO^{-}R_{-}^{I}Si$$

$$R_3^{\Pi}SiO^{-}R_{-}^{I}Si$$

$$R_3^{\Pi}SiO^{-}R_{-}^{I}Si$$

$$R_3^{\Pi}SiO^{-}R_{-}^{I}Si$$

$$R_3^{\Pi}SiO^{-}R_{-}^{I}Si$$

$$R_3^{\Pi}SiO^{-}R_{-}^{I}Si$$

$$R_3^{\Pi}SiO^{-}R_{-}^{I}Si$$

$$R_{3}^{\Pi}SiO-R^{I} \qquad R_{3}^{\Pi}SiO-R^{I} \qquad R_{3}^{$$

[0013] Wherein Cp, Ind, Bzind and Fluo indicate respectively a cyclopentadienyl, indenyl, benzoindenyl and fluorenyl ring optionally substituted by C₁-C₂₀ alkyl, C₃-C₂₀ cycloalkyl, C₆-C₂₀ aryl, C₃-C₂₀ alkenyl, C₇-C₂₀ arylalkyl, C₈-C₂₀ arylalkenyl or C₇-C₂₀ alkylaryl; the maximum number of substituents depends on the amount of hydrogen which can be substituted, R, Rl, Rl and X have the above indicated meaning.

[0014] Preferred compounds for use in the present invention are the following:

bis(trimethylsiloxyethyl-cyclopentadienyl) zirconium dichloride;
(trimethylsiloxyethyl-cyclopentadienyl)(cyclopentadienyl) zirconium dichloride;
(trimethylsiloxyethyl-cyclopentadienyl)(indenyl) zirconium dichloride;
(trimethylsiloxyethyl-cyclopentadienyl)(2-methyl-indenyl) zirconium dichloride;
(trimethylsiloxyethyl-cyclopentadienyl)(fluorenyl) zirconium dichloride;
(trimethylsiloxyethyl-cyclopentadienyl)(9-methyl-fluorenyl) zirconium dichloride;
(trimethylsiloxyethyl-cyclopentadienyl)(pentamethylcyclopentadienyl) zirconium dichloride;
[1-(2-trimethylsiloxyethyl)indenyl] (cyclopentadienyl) zirconium dichloride

[1-(2-methylsiloxyethyl)indenyl] (pentamethyl cyclopentadienyl) zirconium dichloride bis(trimethylsiloxypropyl-cyclopentadienyl) zirconium dichloride; (trimethylsiloxypropyl-cyclopentadienyl)(cyclopentadienyl) zirconium dichloride; (trimethylsiloxypropyl-cyclopentadienyl)(indenyl) zirconium dichloride; 5 (trimethylsiloxypropyl-cyclopentadienyl)(2-methyl-indenyl) zirconium dichloride; (trimethylsiloxypropyl-cyclopentadienyl)(fluorenyl) zirconium dichloride; (trimethylsiloxypropyl-cyclopentadienyl)(9-methyl-fluorenyl) zirconium dichloride; (trimethylsiloxypropyl-cyclopentadienyl)(pentamethylcyclopentadienyl) zirconium dichloride; [1-(3-trimethylsiloxypropyl)indenyl](cyclopentadienyl) zirconium dichloride; bis(trimethylsiloxy-methoxy-cyclopentadienyl) zirconium dichloride; 10 (trimethylsiloxy-methoxy-cyclopentadienyl)(cyclopentadienyl) zirconium dichloride; (trimethylsiloxy-methoxy-cyclopentadienyl)(indenyl) zirconium dichloride; (trimethylsiloxy-methoxy-cyclopentadienyl)(2-methyl-indenyl) zirconium dichloride; (trimethylsiloxy-methoxy-cyclopentadienyl)(fluorenyl) zirconium dichloride; (trimethylsiloxy-methoxy-cyclopentadienyl)(9-methyl-fluorenyl) zirconium dichloride; 15 (trimethylsiloxy-methoxy-cyclopentadienyl)(pentamethylcyclopentadienyl) zirconium dichloride; bis(trimethylsiloxy-ethoxy-cyclopentadienyl) zirconium dichloride; (trimethylsiloxy-ethoxy-cyclopentadienyl)(cyclopentadienyl) zirconium dichloride; (trimethylsiloxy-ethoxy-cyclopentadienyl)(1-indenyl) zirconium dichloride; (trimethylsiloxy-ethoxy-cyclopentadienyl)(2-methyl-indenyl) zirconium dichloride; 20 (trimethylsiloxy-ethoxy-cyclopentadienyl)(fluorenyl) zirconium dichloride; (trimethylsiloxy-ethoxy-cyclopentadienyl)(9-methyl-fluorenyl) zirconium dichloride; (trimethylsiloxy-ethoxy-cyclopentadienyl)(pentamethylcyclopentadienyl) zirconium dichloride; bis(trimethylsiloxy-ethyl-(dimethyl)silyl-cyclopentadienyl) zirconium dichloride; (trimethylsiloxy-ethyl-(dimethyl)silyl-cyclopentadienyl)(cyclopentadienyl) zirconium dichloride; 25 (trimethylsiloxy-propyl-(dimethyl)silyl-cyclopentadienyl)(cyclopentadienyl) zirconium dichloride; (trimethylsiloxy-ethyl-(dimethyl)silyl-cyclopentadienyl)(indenyl) zirconium dichloride; (trimethylsiloxy-ethyl-(dimethyl)silyl-cyclopentadienyl)(2-methyl-indenyl) zirconium dichloride; (trimethylsiloxy-ethyl-(dimethyl)silyl-cyclopentadienyl)(fluorenyl) zirconium dichloride; (trimethylsiloxy-ethyl-(dimethyl)silyl-cyclopentadienyl)(9-methyl-fluorenyl) zirconium dichloride; 30 (trimethylsiloxy-ethyl-(dimethyl)silyl-cyclopentadienyl)(pentamethylcyclopentadienyl) zirconium dichloride; bis(trimethylsiloxy-(dimethyl)silyl-cyclopentadienyl) zirconium dichloride; (trimethylsiloxy-(dimethyl)silyl-cyclopentadienyl)(cyclopentadienyl) zirconium dichloride; dimethylsilandiylbis(2-trimethylsiloxyethyl-cyclopentadienyl) zirconium dichloride; dimethylsilandiylbis(3-trimethylsiloxyethyl-cyclopentadienyl) zirconium dichloride; 35 dimethylsilandiyl(3-trimethylsiloxyethyl-cyclopentadienyl) (ciclopentadienyl)zirconium dichloride; dimethylsilandiyl(2-trimethylsiloxyethyl-cyclopentadienyl)(1-indenyl) zirconium dichloride; dimethylsilandiyl(3-trimethylsiloxyethyl-cyclopentadienyl)(1-indenyl) zirconium dichloride; dimethylsilandiyl(1-(3-trimethylsiloxyethyl-indenyl))(ciclopentadienyl) zirconium dichloride; dimethylsilandiyl(2-trimethylsiloxyethyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride; 40 dimethylsilandiyl(3-trimethylsiloxyethyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride; dimethylsilandiyl(2-trimethylsiloxyethyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride; dimethylsilandiyl(3-trimethylsiloxyethyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride; dimethylsilandiyl(2-trimethylsiloxyethyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride; dimethylsilandiyl(3-trimethylsiloxyethyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride; 45 dimethylsilandiyl(3-trimethylsiloxyethyl-cyclopentadienyl)(-(2-methylbenzoindenyl)) zirconium dichloride; dimethylsilandiylbis(2-trimethylsiloxypropyl-cyclopentadienyl) zirconium dichloride; dimethylsilandiylbis(3-trimethylsiloxypropyl-cyclopentadienyl) zirconium dichloride; dimethylsilandiyl(3-trimethylsiloxypropyl-cyclopentadienyl) (ciclopentadienyl) zirconium dichloride; dimethylsilandiyl(1-(3-trimethylsiloxypropyl-indenyl)) (ciclopentadienyl) zirconium dichloride; 50 dimethylsilandiyl(2-trimethylsiloxypropyl-cyclopentadienyl)(1-indenyl) zirconium dichloride; dimethylsilandiyl(3-trimethylsiloxypropyl-cyclopentadienyl)(1-indenyl) zirconium dichloride; dimethylsilandiyl(2-trimethylsiloxypropyl-cydopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride; dimethylsilandiyl(3-trimethylsiloxypropyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride; dimethylsilandiyl(2-trimethylsiloxypropyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride; 55 dimethylsilandiy(3-trimethylsiloxypropyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride; dimethylsilandiyl(2-trimethylsiloxypropyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride; dimethylsilandiyl(3-trimethylsiloxypropyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;

```
dimethylsilandiyl(3-trimethylsiloxypropyl-cyclopentadienyl)(1-(2-methylbenzoindenyl)) zirconium dichloride;
          dimethylsilandiylbis(2-trimethylsiloxy-methoxy-cyclopentadienyl) zirconium dichloride;
          dimethylsilandiylbis(3-trimethylsiloxy-methoxy-cyclopentadienyl) zirconium dichloride;
          dimethylsilandiyl(2-trimethylsiloxy-methoxy-cyclopentadienyl)(1 -indenyl) zirconium dichloride;
          dimethylsilandiyl(3-trimethylsiloxy-methoxy-cyclopentadienyl)(1-indenyl) zirconium dichloride;
5
          dimethylsilandiyl(2-trimethylsilóxy-methoxy-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          dimethylsilandiyl(3-trimethylsiloxy-methoxy-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          dimethylsilandiyl(2-trimethylsiloxy-methoxy-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          dimethylsilandiyl(3-trimethylsiloxy-methoxy-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          dimethylsilandiyl(2-trimethylsiloxy-methoxy-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
10
          dimethylsilandiyl(3-trimethylsiloxy-methoxy-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          dimethylsilandiylbis(2-trimethylsiloxy-ethoxy-cyclopentadienyl) zirconium dichloride;
          dimethylsilandiylbis(3-trimethylsiloxy-ethoxy-cyclopentadienyl) zirconium dichloride;
          dimethylsilandiyl(2-trimethylsiloxy-ethoxy-cyclopentadienyl)(1-indenyl) zirconium dichloride;
          dimethylsilandiy(3-trimethylsiloxy-ethoxy-cyclopentadienyl)(1-indenyl) zirconium dichloride;
15
          dimethylsilandiyl(2-trimethylsiloxy-ethoxy-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          dimethylsilandiyl(3-trimethylsiloxy-ethoxy-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          dimethylsilandiyl(2-trimethylsiloxy-ethoxy-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          .dimethylsilandiyl(3-trimethylsiloxy-ethoxy-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          dimethylsilandiyl(2-trimethylsiloxy-ethoxy-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
20
          dimethylsilandiyl(3-trimethylsiloxy-ethoxy-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          dimethylsilandiylbis(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl) zirconium dichloride;
          dimethylsilandiylbis(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl) zirconium dichloride;
          dimethylsilandiy!(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
          dimethylsilandiy!(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
25
          dimethylsilandiyl(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-(2-methylindenyl)) zirconium dichlo-
           dimethylsilandiy!(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-(2-methylindenyl)) zirconium dichlo-
           ride;
           dimethylsilandiyl(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
30
           dimethylsilandiyl(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-(2-methyl-fluorenyl))
                                                                                                                     zirconium
           dichloride;
           dimethylsilandiyl(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-(2-methyl-fluorenyl))
                                                                                                                     zirconium
35
           dichloride;
           dimethylsilandiyl(3-(trimethylsiloxy-(dimethyl)silyl)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           dimethylsilandiyl(3-(trimethylsiloxy-(dimethyl)silyl)-cyclopentadienyl)(1-(2-methylbenzoindenyl)) zirconium dichlo-
           dimethylsilandiylbis(1-(3-trimethylsiloxy-(dimethyl)silyl)-indenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxy-(dimethyl)silyl)-indenyl) (1-indenyl)zirconium dichloride;
40
           isopropylidenebis(2-trimethylsiloxyethyl-cyclopentadienyl) zirconium dichloride;
           isopropylidenebis(3-trimethylsiloxyethyl-cyclopentadienyl) zirconium dichloride;
           isopropylidene(2-trimethylsiloxyethyl-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           isopropylidene(3-trimethylsiloxyethyl-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           isopropylidene(1-(3-trimethylsiloxyethyl-indenyl)(ciclopentadienyl) zirconium dichloride;
45
           isopropylidene(2-trimethylsiloxyethyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(3-trimethylsiloxyethyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(2-trimethylsiloxyethyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           isopropylidene(3-trimethylsiloxyethyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           isopropylidene(2-trimethylsiloxyethyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
50
           isopropylidene(3-trimethylsiloxyethyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           isopropylidene(3-trimethylsiloxyethyl-cyclopentadienyl)(1-(2methylbenzoindenyl)) zirconium dichloride;
           isopropylidenebis(2-trimethylsiloxypropyl-cyclopentadienyl) zirconium dichloride;
           isopropylidenebis(3-trimethylsiloxypropyl-cyclopentadienyl) zirconium dichloride;
           isopropylidene(2-trimethylsiloxypropyl-cyclopentadienyl)(1-indenyl) zirconium dichloride;
55
           isopropylidene(3-trimethylsiloxypropyl-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           is opropylidene (1-(3-trimethylsiloxypropyl-indenyl) (ciclopentadienyl) \ zirconium \ dichloride;
           isopropylidene(2-trimethylsiloxypropyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
```

```
isopropylidene(3-trimethylsiloxypropyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          isopropylidene(2-trimethylsiloxypropyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          isopropylidene(3-trimethylsiloxypropyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          isopropylidene(2-trimethylsiloxypropyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          isopropylidene(3-trimethylsiloxypropyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
5
          isopropylidene(3-trimethylsiloxy/propyl-cyclopentadienyl)(1-(2methylbenzoindenyl)) zirconium dichloride;
          isopropylidenebis(2-(trimethylsiloxy-methoxy)-cyclopentadienyl) zirconium dichloride;
          isopropylidenebis(3-(trimethylsiloxy-methoxy)-cyclopentadienyl) zirconium dichloride;
          isopropylidene(2-(trimethylsiloxy-methoxy)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
          isopropylidene(3-(trimethylsiloxy-methoxy)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
10
          isopropylidene(2-(trimethylsiloxy-methoxy)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          isopropylidene(3-(trimethylsiloxy-methoxy)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          isopropylidene(2-(trimethylsiloxy-methoxy)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          isopropylidene(3-(trimethylsiloxy-methoxy)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          isopropylidene(2-(trimethylsiloxy-methoxy)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
15
          isopropylidene(3-(trimethylsiloxy-methoxy)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           isopropylidenebis(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl) zirconium dichloride;
           isopropylidenebis(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl) zirconium dichloride;
           isopropylidene(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           isopropylidene(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
20
           isopropylidene(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           isopropylidene(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           isopropylidene(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
25
           isopropylidene(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           isopropylidenebis(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl) zirconium dichloride;
           isopropylidenebis(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl) zirconium dichloride;
           isopropylidene(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           isopropylidene(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
30
           isopropylidene(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-(2-methylindenyl)) zirconium dichlo-
           ride:
           isopropylidene(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-(2-methylindenyl)) zirconium dichlo-
           ride;
           isopropylidene(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
35
           isopropylidene(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           isopropylidene(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichlo-
           isopropylidene(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichlo-
40
           isopropylidene(3-(trimethylsiloxy-(dimethyl)silyl)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           isopropylidene(3-(trimethylsiloxy-(dimethyl)silyl)-cyclopentadienyl)(1-(2-methylbenzoindenyl)) zirconium dichlo-
           ride;
           ethylidenebis(2-trimethylsiloxyethyl-cyclopentadienyl) zirconium dichloride;
45
           ethylidenebis(3-trimethylsiloxyethyl-cyclopentadienyl) zirconium dichloride;
           ethylidene(3-trimethylsiloxyethyl-cyclopentadienyl) (cyclopentadienyl) zirconium dichloride;
           ethylidene(2-trimethylsiloxyethyl-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           ethylidene(3-trimethylsiloxyethyl-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxyethyl-indenyl))(ciclopentadienyl) zirconium dichloride;
           ethylidene(2-trimethylsiloxyethyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
50
           ethylidene(3-trimethylsiloxyethyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(2-trimethylsiloxyethyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           ethylidene(3-trimethylsiloxyethyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           ethylidene(2-trimethylsiloxyethyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidene(3-trimethylsiloxyethyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
 55
           ethylidenebis(2-trimethylsiloxypropyl-cyclopentadienyl) zirconium dichloride;
           ethylidenebis(3-trimethylsiloxypropyl-cyclopentadienyl) zirconium dichloride;
```

ethylidene(3-trimethylsiloxypropyl-cyclopentadienyl) (cyclopentadienyl) zirconium dichloride;

```
ethylidene(2-trimethylsiloxypropyl-cyclopentadienyl)(-indenyl) zirconium dichloride;
          ethylidene(3-trimethylsiloxypropyl-cyclopentadienyl)(1-indenyl) zirconium dichloride;
          ethylidene(1-(3-trimethylsiloxypropyl-indenyl))(ciclopentadienyl) zirconium dichloride;
          ethylidene(2-trimethylsiloxypropyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          ethylidene(3-trimethylsiloxypropyl-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
5
          ethylidene(2-trimethylsiloxyprogyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          ethylidene(3-trimethylsiloxypropyl-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          ethylidene(2-trimethylsiloxypropyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidene(3-trimethylsiloxypropyl-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidenebis(2-(trimethylsiloxy-methoxy)-cyclopentadienyl) zirconium dichloride;
10
          ethylidenebis(3-(trimethylsiloxy-methoxy)-cyclopentadienyl) zirconium dichloride;
          ethylidene(2-(trimethylsiloxy-methoxy)-cyclopentadienyl)(-indenyl) zirconium dichloride;
          ethylidene(3-(trimethylsiloxy-methoxy)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
          ethylidene(2-(trimethylsiloxy-methoxy)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          ethylidene(3-(trimethylsiloxy-methoxy)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
15
          ethylidene(2-(trimethylsiloxy-methoxy)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          ethylidene(3-(trimethylsiloxy-methoxy)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
          ethylidene(2-(trimethylsiloxy-methoxy)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidene(3-(trimethylsiloxy-methoxy)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidenebis(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl) zirconium dichloride;
20
           ethylidenebis(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl) zirconium dichloride;
           ethylidene(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           ethylidene(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           ethylidene(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
25
           ethylidene(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           ethylidene(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           ethylidene(2-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidene(3-(trimethylsiloxy-ethoxy)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidenebis(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl) zirconium dichloride;
30
           ethylidenebis(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl) zirconium dichloride;
           ethylidene(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           ethylidene(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-indenyl) zirconium dichloride;
           ethylidene(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
35
           ethylidene(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           ethylidene(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           ethylidene(2-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidene(3-(trimethylsiloxy-ethyl-(dimethyl)silyl)-cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           dimethylsilandiylbis(1-(2-trimethylsiloxyethyl-indenyl)) zirconium dichloride;
40
           dimethylsilandiylbis(1-(3-trimethylsiloxyethyl-indenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxyethyl-indenyl))(1-indenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxyethyl-indenyl))(1-indenyl) zirconium dichloride;
           dimethylsilandiy!(1-(2-trimethylsiloxyethyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxyethyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
45
           dimethylsilandiyl(1-(2-trimethylsiloxyethyl-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxyethyl-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxyethyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxyethyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           dimethylsilandiylbis(1-(2-trimethylsiloxypropyl-indenyl)) zirconium dichloride;
50
           dimethylsilandiylbis(1-(3-trimethylsiloxypropyl-indenyl)) zirconium dichloride;
           dimethylsilandiy!(1-(2-trimethylsiloxypropyl-indenyl))(1-indenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxypropyl-indenyl))(1-indenyl) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxypropyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxypropyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
 55
           dimethylsilandiyl(1-(2-trimethylsiloxypropyl-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxypropyl-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxypropyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
```

```
dimethylsilandiyl(1-(3-trimethylsiloxypropyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          dimethylsilandiylbis(1-(2-trimethylsiloxy-methoxy-indenyl)) zirconium dichloride;
          dimethylsilandiylbis(1-(3-trimethylsiloxy-methoxy-indenyl)) zirconium dichloride;
          dimethylsilandiyl(1-(2-trimethylsiloxy-methoxy-indenyl))(1-indenyl) zirconium dichloride;
          dimethylsilandiyl(1-(3-trimethylsiloxy-methoxy-indenyl))(1-indenyl) zirconium dichloride;
          dimethylsilandiyl(1-(2-trimethylsiloxy-methoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
          dimethylsilandiyl(1-(3-trimethylsiloxy-methoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
          dimethylsilandiyl(1-(2-trimethylsiloxy-methoxy-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxy-methoxy-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxy-methoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
10
           dimethylsilandiyl(1-(3-trimethylsiloxy-methoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           dimethylsilandiylbis(1-(2-trimethylsiloxy-ethoxy-indenyl)) zirconium dichloride;
           dimethylsilandiylbis(1-(3-trimethylsiloxy-ethoxy-indenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxy-ethoxy-indenyl))(1-indenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxy-ethoxy-indenyl))(1-indenyl) zirconium dichloride;
15
           dimethylsilandiyl(1-(2-trimethylsiloxy-ethoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxy-ethoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxy-ethoxy-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxy-ethoxy-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxy-ethoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
20
           dimethylsilandiyl(1-(3-trimethylsiloxy-ethoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           dimethylsilandiylbis(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl)) zirconium dichloride;
           dimethylsilandiylbis(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-indenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-indenyl) zirconium dichloride;
25
           dimethylsilandiyl(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilandiyl(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride,
30
           dimethylsilandiyl(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           is opropylidene bis (1-(2-trimethylsiloxyethyl-indenyl)) \ zirconium \ dichloride:
           isopropylidenebis(1-(3-trimethylsiloxyethyl-indenyl)) zirconium dichloride:
           isopropylidene(1-(2-trimethylsiloxyethyl-indenyl))(1-indenyl) zirconium dichloride;
           isopropylidene(1-(3-trimethylsiloxyethyl-indenyl))(1-indenyl) zirconium dichloride;
35
           isopropylidene(1-(2-trimethylsiloxyethyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(1-(3-trimethylsiloxyethyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(1-(2-trimethylsiloxyethyl-indenyl))(9-fluorenyl) zirconium dichloride;
           isopropylidene(1-(3-trimethylsiloxyethyl-indenyl))(9-fluorenyl) zirconium dichloride;
           isopropylidene(1-(2-trimethylsiloxyethyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
40
           isopropylidene(1-(3-trimethylsiloxyethyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           isopropylidenebis(1-(2-trimethylsiloxypropyl-indenyl)) zirconium dichloride;
           isopropylidenebis(1-(3-trimethylsiloxypropyl-indenyl)) zirconium dichloride:
           isopropylidene(1-(2-trimethylsiloxypropyl-indenyl))(1-indenyl) zirconium dichloride;
           isopropylidene(1-(3-trimethylsiloxypropyl-indenyl))(1-indenyl) zirconium dichloride;
45
           isopropylidene(1-(2-trimethylsiloxypropyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(1-(3-trimethylsiloxypropyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(1-(2-trimethylsiloxypropyl-indenyl))(9-fluorenyl) zirconium dichloride;
           isopropylidene(1-(3-trimethylsiloxypropyl-indenyl))(9-fluorenyl) zirconium dichloride;
           isopropylidene(1-(2-trimethylsiloxypropyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
50
           isopropylidene(1-(3-trimethylsiloxypropyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           isopropylidenebis(1-(2-trimethylsiloxy-methoxy-indenyl)) zirconium dichloride;
           isopropylidenebis(1-(3-trimethylsiloxy-methoxy-indenyl)) zirconium dichloride;
           isopropylidene(1-(2-trimethylsiloxy-methoxy-indenyl))(1-indenyl) zirconium dichloride;
           isopropylidene(1-(3-trimethylsiloxy-methoxy-indenyl))(1-indenyl) zirconium dichloride;
55
           isopropylidene(1-(2-trimethylsiloxy-methoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(1-(3-trimethylsiloxy-methoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(1-(2-trimethylsiloxy-methoxy-indenyl))(9-fluorenyl) zirconium dichloride;
```

```
isopropylidene(1-(3-trimethylsiloxy-methoxy-indenyl))(9-fluorenyl) zirconium dichloride,
          isopropylidene(1-(2-trimethylsiloxy-methoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          isopropylidene(1-(3-trimethylsiloxy-methoxy-indenýl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          isopropylidenebis(1-(2-trimethylsiloxy-ethoxy-indenyl)) zirconium dichloride;
          isopropylidenebis(1-(3-trimethylsiloxy-ethoxy-indenyl)) zirconium dichloride;
          isopropylidene(1-(2-trimethylsiloxy-ethoxy-indenyl))(1-indenyl) zirconium dichloride;
          isopropylidene(1-(3-trimethylsiloxy-ethoxy-indenyl))(1-indenyl) zirconium dichloride;
          isopropylidene(1-(2-trimethylsiloxy-ethoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
          isopropylidene(1-(3-trimethylsiloxy-ethoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
          isopropylidene(1-(2-trimethylsiloxy-ethoxy-indenyl))(9-fluorenyl) zirconium dichloride;
          isopropylidene(1-(3-trimethylsiloxy-ethoxy-indenyl))(9-fluorenyl) zirconium dichloride;
          isopropylidene(1-(2-trimethylsiloxy-ethoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          isopropylidene(1-(3-trimethylsiloxy-ethoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          isopropylidenebis(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl)) zirconium dichloride;
          isopropylidenebis(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl)) zirconium dichloride;
15
          isopropylidene(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-indenyl) zirconium dichloride;
          isopropylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-indenyl) zirconium dichloride;
          isopropylidene(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
          isopropylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
          isopropylidene(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-fluorenyl) zirconium dichloride;
20
          isopropylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-fluorenyl) zirconium dichloride;
          isopropylidene(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          sopropylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidenebis(1-(2-trimethylsiloxyethyl-indenyl)) zirconium dichloride;
          ethylidenebis(1-(3-trimethylsiloxyethyl-indenyl)) zirconium dichloride;
25
          ethylidene(1-(2-trimethylsiloxyethyl-indenyl))(1-indenyl) zirconium dichloride;
          ethylidene(1-(3-trimethylsiloxyethyl-indenyl))(1-indenyl) zirconium dichloride;
          ethylidene(1-(2-trimethylsiloxyethyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
          ethylidene(1-(3-trimethylsiloxyethyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
          ethylidene(1-(2-trimethylsiloxyethyl-indenyl))(9-fluorenyl) zirconium dichloride;
30
          ethylidene(1-(3-trimethylsiloxyethyl-indenyl))(9-fluorenyl) zirconium dichloride;
          ethylidene(1-(2-trimethylsiloxyethyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidene(1-(3-trimethylsiloxyethyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidenebis(1-(2-trimethylsiloxypropyl-indenyl)) zirconium dichloride;
           ethylidenebis(1-(3-trimethylsiloxypropyl-indenyl)) zirconium dichloride;
35
           ethylidene(1-(2-trimethylsiloxypropyl-indenyl))(1-indenyl) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxypropyl-indenyl))(1-indenyl) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxypropyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxypropyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxypropyl-indenyl))(9-fluorenyl) zirconium dichloride;
40
           ethylidene(1-(3-trimethylsiloxypropyl-indenyl))(9-fluorenyl) zirconium dichloride; dichloride;
           ethylidene(1-(2-trimethylsiloxypropyl-indenyl))(9-(2-methyl-fluorenyl) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxypropyl-indenyl))(9-(2-methyl-fluorenyl) zirconium dichloride; dichloride
           ethylidenebis(1-(2-trimethylsiloxy-methoxy-indenyl)) zirconium dichloride;
           ethylidenebis(1-(3-trimethylsiloxy-methoxy-indenyl)) zirconium dichloride;
45
           ethylidene(1-(2-trimethylsiloxy-methoxy-indenyl))(1-indenyl) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-methoxy-indenyl))(1-indenyl) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxy-methoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-methoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxy-methoxy-indenyl))(9-fluorenyl) zirconium dichloride;
 50
           ethylidene(1-(3-trimethylsiloxy-methoxy-indenyl))(9-fluorenyl) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxy-methoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-methoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidenebis(1-(2-trimethylsiloxy-ethoxy-indenyl)) zirconium dichloride;
           ethylidenebis(1-(3-trimethylsiloxy-ethoxy-indenyl)) zirconium dichloride;
55
           ethylidene(1-(2-trimethylsiloxy-ethoxy-indenyl))(1-indenyl) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-ethoxy-indenyl))(1-indenyl) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxy-ethoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
```

```
ethylidene(1-(3-trimethylsiloxy-ethoxy-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxy-ethoxy-indenyl))(9-fluorenyl) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-ethoxy-indenyl))(9-fluorenyl) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxy-ethoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
5
           ethylidene(1-(3-trimethylsiloxy-ethoxy-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidenebis(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl)) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-indenyl) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
10
           ethylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-fluorenyl) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-fluorenyl) zirconium dichloride;
           ethylidene(1-(2-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           ethylidene(1-(3-trimethylsiloxy-ethyl-(dimethyl)silyl-indenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
15
           dimethylsilylenebis(9-(1-trimethylsiloxyethyl-fluorenyl)) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxyethyl-fluorenyl))(cyclopentadienyl) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxyethyl-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxyethyl-fluorenyl))(1-indenyl) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxyethyl-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
20
           dimethylsilylenebis(9-(1-trimethylsiloxypropyl-fluorenyl)) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxypropyl-fluorenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxypropyl-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride,
           dimethylsilylene(9-(1-trimethylsiloxypropyl-fluorenyl))(1-indenyl) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxypropyl-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
25
           dimethylsilylenebis(9-(1-trimethylsiloxy-methoxy-fluorenyl)) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(1-indenyl) zirconium dichloride;
30
           dimethylsilylene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           dimethylsilylenebis(9-(1-trimethylsiloxy-ethoxy-fluorenyl)) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(1-indenyl) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
35
           dimethylsilylenebis(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl)) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(9-fluorenyl) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(1-indenyl) zirconium dichloride;
           dimethylsilylene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
40
           isopropylidenebis(9-(1-trimethylsiloxyethyl-fluorenyl)) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxyethyl-fluorenyl))(9-fluorenyl) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxyethyl-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxyethyl-fluorenyl))(1-indenyl) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxyethyl-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
45
           isopropylidenebis(9-(1-trimethylsiloxypropyl-fluorenyl)) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxypropyl-fluorenyl))(9-fluorenyl) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxypropyl-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxypropyl-fluorenyl))(1-indenyl) zirconium dichloride;
50
           isopropylidene(9-(1-trimethylsiloxypropyl-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           isopropylidenebis(9-(1-trimethylsiloxy-methoxy-fluorenyl)) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(9-fluorenyl) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(1-indenyl) zirconium dichloride;
55
           isopropylidene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
           isopropylidenebis(9-(1-trimethylsiloxy-ethoxy-fluorenyl)) zirconium dichloride;
           isopropylidene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(9-fluorenyl) zirconium dichloride;
```

i.

isopropylidene(9-(1-trim thylsiloxy-ethoxy-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;

```
isopropylidene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(1-indenyl) zirconium dichloride;
          isopropylidene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          isopropylidenebis(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl)) zirconium dichloride;
          isopropylidene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(9-fluorenyl) zirconium dichloride;
          isopropylidene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(11-(2-methyl-indenyl)) zirconium dichloride;
5
          isopropylidene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(1-indenyl) zirconium dichloride;
          isopropylidene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidenebis(9-(1-trimethylsiloxyethyl-fluorenyl)) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxyethyl-fluorenyl))(9-fluorenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxyethyl-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
10
          ethylidene(9-(1-trimethylsiloxyethyl-fluorenyl))(1-indenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxyethyl-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidenebis(9-(1-trimethylsiloxypropyl-fluorenyl)) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxypropyl-fluorenyl))(9-fluorenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxypropyl-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
15
          ethylidene(9-(1-trimethylsiloxypropyl-fluorenyl))(1-indenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxypropyl-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidenebis(9-(1-trimethylsiloxy-methoxy-fluorenyl)) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(9-fluorenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
20
          ethylidene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(1-indenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxy-methoxy-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidenebis(9-(1-trimethylsiloxy-ethoxy-fluorenyl)) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(9-fluorenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
25
          ethylidene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(1-indenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxy-ethoxy-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          ethylidenebis(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl)) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(9-fluorenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(1-(2-methyl-indenyl)) zirconium dichloride;
30
          ethylidene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(1-indenyl) zirconium dichloride;
          ethylidene(9-(1-trimethylsiloxy-ethyl-(dimethyl)silyl-fluorenyl))(9-(2-methyl-fluorenyl)) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silandiylbis(cyclopentadienyl) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silandiylbis(9-fluorenyl) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silandiyl(cyclopentadienyl)(1-indenyl) zirconium dichloride;
35
          trimethylsiloxyethyl(methyl)silandiyl(cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
          trimethylsiloxyethyl (methyl) silandiyl (cyclopentadienyl) (9-fluorenyl) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silndiyl(cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silandiylbis(1-indenyl) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silandiyl(cyclopentadienyl)(1-(2-methylbenzoindenyl)) zirconium dichloride;
40
          trimethylsiloxyethyl(methyl)silandiylbis(1-(2-methylbenzoindenyl)) zirconium dichloride;
          trimethylsiloxypropyl(methyl)silandiylbis(cyclopentadienyl) zirconium dichloride;
           trimethylsiloxypropyl(methyl)silandiylbis(9-fluorenyl) zirconium dichloride;
           trimethylsiloxypropyl(methyl)silandiyl(cyclopentadienyl)(1-indenyl) zirconium dichloride;
           trimethylsiloxypropyl(methyl)silandiyl(cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
45
           trimethylsiloxypropyl(methyl)silandiyl(cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           trimethylsiloxypropyl(methyl)silandiyl(cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           trimethylsiloxypropyl(methyl)silandiylbis(1-indenyl) zirconium dichloride;
           trimethylsiloxypropyl(methyl)silandiyl(cyclopentadienyl)(1-(2-methylbenzoindenyl)) zirconium dichloride;
           trimethylsiloxy-methoxy(methyl)silandiylbis(cyclopentadienyl) zirconium dichloride;
50
           trimethylsiloxy-methoxy(methyl)silandiyl(cyclopentadienyl)(1-indenyl) zirconium dichloride;
           trimethylsiloxy-methoxy(methyl)silandiyl(cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
           trimethylsiloxy-methoxy(methyl)silandiyl(cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
           trimethylsiloxy-methoxy(methyl)silandbyl(cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           trimethylsiloxy-ethoxy(methyl)silandiylbis(cyclopentadienyl) zirconium dichloride;
55
           trimethylsiloxy-ethoxy(methyl)silandiyl(cyclopentadienyl)(1-indenyl) zirconium dichloride;
           trimethylsiloxy-ethoxy(methyl)silandiyl(cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride;
           trimethylsiloxy-ethoxy(methyl)silandiyl(cyclopentadienyl)(9-fluorenyl) zirconium dichloride;
```

3-**\$**

trimethylsiloxy-ethoxy(methyl)silandiyl(cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiylbis(cyclopentadienyl) zirconium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl(cyclopentadienyl)(1-indenyl) zirconium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl(cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride; 5 trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl(cyclopentadienyl)(9-fluorenyl) zirconium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl(cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichlotrimethylsiloxy-methoxy(methyl)methylidenebis(cyclopentadienyl) zirconium dichloride; trimethylsiloxy-methoxy(methyl)methylidene(cyclopentadienyl)(1-indenyl) zirconium dichloride; 10 trimethylsiloxy-methoxy(methyl)methylidene(cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride; trimethylsiloxy-methoxy(methyl)methylidene(cyclopentadienyl)(9-fluorenyl) zirconium dichloride; trimethylsiloxy-methoxy(methyl)methylidene(cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride; trimethylsiloxy-ethoxy-(methyl)methylidenebis(cyclopentadienyl) zirconium dichloride; trimethylsiloxy-ethoxy-(methyl)methylidene(cyclopentadienyl)(1-indenyl) zirconium dichloride; 15 trimethylsiloxy-ethoxy-(methyl)methylidene(cyclopentadienyl)(1-(2-methyl-indenyl)) zirconium dichloride; trimethylsiloxy-ethoxy-(methyl)methylidene(cyclopentadienyl)(9-fluorenyl) zirconium dichloride; trimethylsiloxy-ethoxy-(methyl)methylidene(cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methylidenebis(cyclopentadienyl) zirconium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methylidene(cyclopentadienyl)(1-indenyl) zirconium dichloride; 20 trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methylidene(cyclopentadienyl)(1-(2-methylindenyl)) zirconium dichlotrimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methylidene(cyclopentadienyl)(9-fluorenyl) zirconium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methylidene(cyclopentadienyl)(9-(2-methyl-fluorenyl)) zirconium dichloride: 25 trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methylidenebis(1-indenyl) zirconium dichloride; 1-trimethylsiloxyethyl-ethylidenebis(cyclopentadienyl) zirconium dichloride; 1-trimethylsiloxyethyl-ethylidene-1-(cyclopentadienyl)-2-(1-indenyl) zirconium dichloride; 1 -trimethylsiloxyethyl-ethylidene- 1 -(cyclopentadienyl)-2-(1 -(2-methyl-indenyl)) zirconium dichloride; 1-trimethylsiloxyethyl-ethylidene-1-(cyclopentadienyl)-2-(9-fluorenyl) zirconium dichloride; 30 1-trimethylsiloxyethyl-ethylidene-1-(cyclopentadienyl)-2-(9-(2-methyl-fluorenyl)) zirconium dichloride; 1-trimethylsiloxyethyl-ethylidenebis(1-indenyl) zirconium dichloride; 1-trimethylsiloxypropyl-ethylidenebis(cyclopentadienyl) zirconium dichloride; 1-trimethylsiloxypropyl-ethylidene-1-(cyclopentadienyl)-2-(1-indenyl) zirconium dichloride; 1-trimethylsiloxypropyl-ethylidene-1-(cyclopentadienyl)-2-(1-(2-methyl-indenyl)) zirconium dichloride; 35 1-trimethylsiloxypropyl-ethylidene-1-(cyclopentadienyl)-2-(9-fluorenyl) zirconium dichloride; 1-trimethylsiloxypropyl-ethylidene-1-(cyclopentadienyl)-2-(9-(2-methyl-fluorenyl)) zirconium dichloride; 1-trimethylsiloxypropyl-ethylidenebis(1-indenyl) zirconium dichloride; 1-trimethylsiloxy-methoxy-ethylidenebis(cyclopentadienyl) zirconium dichloride; 1-trimethylsiloxy-methoxy-ethylidene-1-(cyclopentadienyl)-2-(1-indenyl) zirconium dichloride; 40 1-trimethylsiloxy-methoxy-ethylidene-1-(cyclopentadienyl)-2-(1 -(2-methyl-indenyl)) zirconium dichloride; 1 -trimethylsiloxy-methoxy-ethylidene- 1 -(cyclopentadienyl)-2-(9-fluorenyl) zirconium dichloride; 1-trimethylsiloxy-methoxy-ethylidene-1-(cyclopentadienyl)-2-(9-(2-methyl-fluorenyl)) zirconium dichloride; 1-trimethylsiloxy-ethoxy-ethylidenebis(cyclopentadienyl) zirconium dichloride; 1-trimethylsiloxy-ethoxy-ethylidene-1-(cyclopentadienyl)-2-(1-indenyl) zirconium dichloride; 45 1-trimethylsiloxy-ethoxy-ethylidene-1-(cyclopentadienyl)-2-(1-(2-methyl-indenyl)) zirconium dichloride; 1-trimethylsiloxy-ethoxy-ethylidene-1-(cyclopentadienyl)-2-(9-fluorenyl) zirconium dichloride; 1-trimethylsiloxy-ethoxy-ethylidene-1-(cyclopentadienyl)-2-(9-(2-methyl-fluorenyl)) zirconium dichloride; 1-trimethylsiloxy-ethyl-(dimethyl)silyl ethylidenebis(cyclopentadienyl) zirconium dichloride; 1-trimethylsiloxy-ethyl-(dimethyl)silyl ethylidene-1-(cyclopentadienyl)-2-(1-indenyl) zirconium dichloride; 50 1-trimethylsiloxy-ethyl-(dimethyl)silyl ethylidene-1-(cyclopentadienyl)-2-(1-(2-methyl-indenyl)) zirconium dichloride 1-trimethylsiloxy-ethyl-(dimethyl)silyl ethylidene-1-(cyclopentadienyl)-2-(9-fluorenyl) zirconium dichloride; 1-trimethylsiloxy-ethyl-(dimethyl)silyl ethylidene-1-(cyclopentadienyl)-2-(9-(2-methyl-fluorenyl)) zirconium dichlo-55 trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(cylopentadienyl) titanium dichloride; trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(tetramethylcylopentadienyl) titanium dichloride; trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(1-indenyl) titanium dichloride; trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) titanium dichloride;

5

trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) titanium dichloride; trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) titanium dichloride; trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(1-(2-metthylbenzoindenyl) titanium dichloride; (dimethyl)silandiyl-(tertbutylamido)(3-(trimethylsiloxyethylcylopentadienyl) titanium dichloride; (dimethyl)silandiyl-(tertbutylamido)(1-(3-trimethylsiloxyethylindenyl) titanium dichloride; (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(cylopentadienyl) titanium dichloride; (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(tetramethylcylopentadienyl) titanium dichloride; (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(1-indenyl) titanium dichloride; (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(9-fluorenyl) titanium dichloride; (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(1-(2-methylbenzoindenyl) titanium dichloride; 10 trimethylsiloxypropyl(methyl)silandiyl(tertbutylamido)-(cylopentadienyl) titanium dichloride; trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(tetramethylcyclopentadienyl) titanium dichloride; trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(1-indenyl) titanium dichloride; trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) titanium dichloride; trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) titanium dichloride; 15 trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) titanium dichloride; trimethylsiloxypropyl(methyl)silandiyl(tertbutylamido)-(1-(2-methylbenzoindenyl) titanium dichloride; (dimethyl)silandiyl-(tertbutylamido)(3-(trimethylsiloxypropylcylopentadienyl) titanium dichloride; (dimethyl)silandiyl-(tertbutylamido)(1-(3-trimethylsiloxypropylindenyl) titanium dichloride; (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(cylopentadienyl) titanium dichloride; 20 (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(tetramethylcylopentadienyl) titanium dichloride; (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(1-indenyl) titanium dichloride; (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(9-fluorenyl) titanium dichloride; (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(1-(2-methylbenzoindenyl) titanium dichloride; trimethylsiloxy-methoxy (methyl)silandiyl-(tertbutylamido)(cylopentadienyl) titanium dichloride; 25 trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(tetramethylcyclopentadienyl) titanium dichloride; trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(1-indenyl) titanium dichloride, trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) titanium dichloride; trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) titanium dichloride; trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) titanium dichloride; 30 trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(cylopentadienyl) titanium dichloride; trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(tetramethylcyclopentadienyl) titanium dichloride; trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(1-indenyl) titanium dichloride; trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) titanium dichloride; trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) titanium dichloride; 35 trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) titanium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl(tertbutylamido)-(cylopentadienyl) titanium dichloride; silandiyl-(tertbutylamido)(tetramethylcyclopentadienyl) trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl) dichloride: trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl-(tertbutylamido)(1-indenyl) titanium dichloride; 40 trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) titanium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) titanium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) titanium dichloride; trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(cylopentadienyl) titanium dichloride; trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(tetramethylcyclopentadienyl) titanium dichloride; 45 trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(1-indenyl) titanium dichloride; trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(1-(2-methyl-indenyl)) titanium dichloride; trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(9-fluorenyl) titanium dichloride; trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(9-(2-methyl-fluorenyl)) titanium dichloride; trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(cylopentadienyl) titanium dichloride; 50 trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(tetramethylcyclopentadienyl) titanium dichloride; trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(indenyl) titanium dichloride; trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(2-methyl-indenyl) titanium dichloride; trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(9-fluorenyl) titanium dichloride; trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(2-methyl-fluorenyl) titanium dichloride; 55 trimethylsiloxy-methoxy(methyl)methylene(tertbutylamido)(cylopentadienyl) titanium dichloride; trimethylsiloxy-methoxy(methyl)methylene(tertbutylamido)(tetramethylcyclopentadienyl) titanium dichloride; trimethylsiloxy-methoxy(methyl)methylen(tertbutylamido)(1-indenyl) titanium dichloride;

```
trimethylsiloxy-methoxy(methyl)methylen(-tertbutylamido)(1-(2-methyl-indenyl)) titanium dichloride;
          trimethylsiloxy-methoxy(methyl)methylen(-tertbutylamido)(9-fluorenyl) titanium dichloride;
          trimethylsiloxy-methoxy(methyl)methylen(-tertbutylamido)(9-(2-methyl-fluorenyl)) titanium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylene(tertbutylamido)(cylopentadienyl) titanium dichloride;
5
          trimethylsiloxy-ethoxy-(methyl)methylene(tertbutylamido)(tetramethylcyclopentadienyl) titanium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylen(tertbutylamido)(1-indenyl) titanium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylen(tertbutylamido)(1-(2-methyl-indenyl)) titanium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylen(tertbutylamido)(9-fluorenyl) titanium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylen(tertbutylamido)(9-(2-methyl-fluorenyl)) titanium dichloride;
10
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methylene(tertbutylamido)(cylopentadienyl) titanium dichloride;
          trimethylsiloxy-ethyl-(dimethyl)silyl (methyl) methylene (tertbutylamido) (tetramethylcyclopentadienyl) titanium
          dichloride;
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methilene(tertbutylamido)(1-indenyl) titanium dichloride;
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methilene(tertbutylamido)(1-(2-methyl-indenyl)) titanium dichloride;
15
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methilene(tertbutylamido)(9-fluorenyl) titanium dichloride;
          trimèthylsiloxy-ethyl-(dimethyl)silyl-(methyl)methilene(tertbutylamido)(9-(2-methyl-fluorenyl)) titanium dichloride;
          trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(cylopentadienyl) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(tetramethylcylopentadienyl) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(1-indenyl) zirconnium dichloride;
          trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) zirconium dichloride;
20
          trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          trimethylsiloxyethyl(methyl)silandiyl-(tertbutylamido)(1-(2-metthylbenzoindenyl) zirconnium dichloride;
           (dimethyl)silandiyl-(tertbutylamido)(3-(trimethylsiloxyethylcylopentadienyl) zirconium dichloride;
25
           (dimethyl)silandiyl-(tertbutylamido)(1-(3-trimethylsiloxyethylindenyl) zirconium dichloride;
           (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(cylopentadienyl) zirconium dichloride;
           (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(tetramethylcylopentadienyl) zirconium dichloride;
           (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(1-indenyl) zirconium dichloride;
           (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(9-fluorenyl) zirconium dichloride;
           (dimethyl)silandiyl-(2-trimethylsiloxyethylamido)(1-(2-methylbenzoindenyl) zirconium dichloride;
30
          trimethylsiloxypropyl(methyl)silandiyl(tertbutylamido)-(cylopentadienyl) zirconium dichloride;
          trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(tetramethylcyclopentadienyl) zirconium dichloride;
          trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(1-indenyl) zirconium dichloride;
          trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) zirconium dichloride;
          trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) zirconium dichloride;
35
           trimethylsiloxypropyl(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           trimethylsiloxypropyl(methyl)silandiyl(tertbutylamido)-(1-(2-methylbenzoindenyl) zirconium dichloride,
           (dimethyl)silandiyl-(tertbutylamido)(3-(trimethylsiloxypropylcylopentadienyl) zirconium dichloride;
           (dimethyl)silandiyl-(tertbutylamido)(1-(3-trimethylsiloxypropylindenyl) zirconium dichloride;
40
           (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(cylopentadienyl) zirconium dichloride;
           (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(tetramethylcylopentadienyl) zirconium dichloride;
           (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(1-indenyl) zirconium dichloride;
           (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(9-fluorenyl) zirconium dichloride;
           (dimethyl)silandiyl-(3-trimethylsiloxypropylamido)(1-(2-methylbenzoindenyl) zirconium dichloride;
           trimethylsiloxy-methoxy (methyl)silandiyl-(tertbutylamido)(cylopentadienyl) zirconium dichloride;
45
           trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(tetramethylcyclopentadienyl) zirconium dichloride;
           trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(1-indenyl) zirconium dichloride;
           trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) zirconium dichloride;
           trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) zirconium dichloride;
           trimethylsiloxy-methoxy(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) zirconium dichloride;
50
           trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(cylopentadienyl) zirconium dichloride;
           trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(tetramethylcyclopentadienyl) zirconium dichloride;
           trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(1-indenyl) zirconium dichloride;
           trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) zirconium dichloride;
55
           trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) zirconium dichloride;
           trimethylsiloxy-ethoxy(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) zirconium dichloride;
           trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl(tertbutylamido)-(cylopentadienyl) zirconium dichloride;
```

trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl) silandiyl-(tertbutylamido)(tetramethylcyclopentadienyl) zirconium

```
dichloride;
         trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl-(tertbutylamido)(1-indenyl) zirconium dichloride;
         trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl-(tertbutylamido)(1-(2-methyl-indenyl)) zirconium dichloride;
         trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl-(tertbutylamido)(9-fluorenyl) zirconium dichloride;
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)silandiyl-(tertbutylamido)(9-(2-methyl-fluorenyl)) zirconium dichloride;
5
          trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(cylopentadienyl) zirconium dichloride;
          trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(tetramethylcyclopentadienyl) zirconium dichloride;
          trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(1-indenyl) zirconium dichloride;
          trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(1-(2-methyl-indenyl)) zirconium dichloride;
          trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(9-fluorenyl) zirconium dichloride;
10
          trimethylsiloxyethyl-(methyl)methylene(tertbutylamido)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(cylopentadienyl) zirconium dichloride;
          trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(tetramethylcyclopentadienyl) zirconium dichloride;
          trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(indenyl) zirconium dichloride;
          trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(2-methyl-indenyl) zirconium dichloride;
15
          trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(9-fluorenyl) zirconium dichloride;
          trimethylsiloxypropyl-(methyl)methylene(tertbutylamido)(2-methyl-fluorenyl) zirconium dichloride;
          trimethylsiloxy-methoxy(methyl)methylene(tertbutylamido)(cylopentadienyl) zirconium dichloride;
          trimethylsiloxy-methoxy(methyl)methylene(tertbutylamido)(tetramethylcyclopentadienyl) zirconium dichloride;
          trimethylsiloxy-methoxy(methyl)methylen(tertbutylamido)(1-indenyl) zirconium dichloride;
20
          trimethylsiloxy-methoxy(methyl)methylen(-tertbutylamido)(1-(2-methyl-indenyl)) zirconium dichloride;
          trimethylsiloxy-methoxy(methyl)methylen(-tertbutylamido)(9-fluorenyl) zirconium dichloride;
          trimethylsiloxy-methoxy(methyl)methylen(-tertbutylamido)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylene(tertbutylamido)(cylopentadienyl) zirconium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylene(tertbutylamido)(tetramethylcyclopentadienyl) zirconium dichloride;
25
          trimethylsiloxy-ethoxy-(methyl)methylen(tertbutylamido)(1-indenyl) zirconium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylen(tertbutylamido)(1-(2-methyl-indenyl)) zirconium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylen(tertbutylamido)(9-fluorenyl) zirconium dichloride;
          trimethylsiloxy-ethoxy-(methyl)methylen(tertbutylamido)(9-(2-methyl-fluorenyl)) zirconium dichloride;
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methylene(tertbutylamido)(cylopentadienyl) zirconium dichloride;
30
          trimethylsiloxy-ethyl-(dimethyl)silyl (methyl) methylene (tertbutylamido) (tetramethylcyclopentadienyl) zirconium
          dichloride;
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methilene(tertbutylamido)(1-indenyl) zirconium dichloride;
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methilene(tertbutylamido)(1-(2-methyl-indenyl)) zirconium dichloride;
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methilene(tertbutylamido)(9-fluorenyl) zirconium dichloride;
35
          trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl)methilene(tertbutylamido)(9-(2-methyl-fluorenyl)) zirconium dichlo-
           ride:
          trimethylsiloxyethyl(methyl) silandiyl-oxo(cylopentadienyl) titanium dichloride;
           trimethylsiloxyethyl(methyl) silandiyl-oxo-(tetramethylcyclopentadienyl) titanium dichloride;
           trimethylsiloxyethyl(methyl) silandiyl-oxo(1-indenyl) tilanium dichloride;
40
           trimethylsiloxyethyl(methyl) silandiyl-oxo(1-(2-methyl-indenyl)) titanium dichloride;
           trimethylsiloxyethyl(methyl) silandiyl-oxo(9-fluorenyl) titanium dichloride;
           trimethylsiloxyethyl(methyl) silandiyl-oxo(9-(2-methyl-fluorenyl)) titanium dichloride;
           trimethylsiloxypropyl(methyl) silandiyl-oxo(cylopentadienyl) titanium dichloride;
           trimethylsiloxypropyl(methyl) silandiyl-oxo(tetramethylcyclopentadienyl) titanium dichloride;
45
           trimethylsiloxypropyl(methyl) silandiyl-oxo(1-indenyl) titanium dichloride;
           trimethylsiloxypropyl(methyl) silandiyl-oxo(1-(2-methyl-indenyl)) titanium dichloride;
           trimethylsiloxypropyl(methyl) silandiyl-oxo(9-fluorenyl) titanium dichloride;
           trimethylsiloxypropyl(methyl) silandiyl-oxo(9-(2-methyl-fluorenyl)) titanium dichloride;
           trimethylsiloxy-methoxy(methyl) silandiyl-oxo(cylopentadienyl) titanium dichloride;
50
           trimethylsiloxy-methoxy(methyl) silandiyl-oxo(tetramethylcyclopentadienyl) titanium dichloride;
           trimethylsiloxy-methoxy(methyl) silandiyl-oxo(1-indenyl) titanium dichloride;
           trimethylsiloxy-methoxy(methyl) silandiyl-oxo(1-(2-methyl-indenyl)) titanium dichloride;
           trimethylsiloxy-methoxy(methyl) silandiyl-oxo(9-fluorenyl) titanium dichloride;
           trimethylsiloxy-methoxy(methyl) silandiyl-oxo(9-(2-methyl-fluorenyl)) titanium dichloride;
 55
           trimethylsiloxy-ethoxy(methyl) silandiyl-oxo(cylopentadienyl) titanium dichloride;
           trimethylsiloxy-ethoxy(methyl) silandiyl-oxo(tetramethylcyclopentadienyl) titanium dichloride;
           trimethylsiloxy-ethoxy(methyl) silandiyl-oxo(1-indenyl) titanium dichloride;
```

trimethylsiloxy-ethoxy(methyl) silandiyl-oxo(1-(2-methyl-indenyl)) titanium dichloride; trimethylsiloxy-ethoxy(methyl) silandiyl-oxo(9-fluorenyl) titanium dichloride; trimethylsiloxy-ethoxy(methyl) silandiyl-oxo(9-(2-methyl-fluorenyl)) titanium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl) silandiyl-oxo(cylopentadienyl) titanium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl) silandiyl-oxo(tetramethylcyclopentadienyl) titanium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl) silandiyl-oxo(1-indenyl) titanium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl) silandiyl-oxo(fluorenyl) titanium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl) silandiyl-oxo(fluorenyl) titanium dichloride; trimethylsiloxy-ethyl-(dimethyl)silyl-(methyl) silandiyl-oxo(9-methylfluorenyl) titanium dichloride

5

10

15

20

25

30

35

45

55

[0015] The metallocene compounds according to the invention can be prepared according to the methods disclosed in EP 839836 which is herewith enclosed by reference.

[0016] Supports useful in the preparation of the heterogeneous catalyst of the invention are inorganic oxides, such as: silica, alumina, silica alumina, aluminium phosphates and mixtures thereof, which result in supported catalysts with contents in transition metal between 0.01 and 3% by weight, preferably between 0.1 and 1%.

[0017] The inorganic oxide, before treatment with the metallocene, is treated in such a way that it has deposited on its surface an alumoxane. Alumoxanes suitable for the preparation of the support are those represented by the formulas:

(RAIO), R(R-AI-O), AIR2

wherein R is alkyl or anyl group containing from 1 to 20 carbon atoms; n ranges from 1 to 40, preferably from 5 to 20 and m ranges from 3 to 40 preferably from 3 to 20.

[0018] Generally, in the preparation of alumoxane from, for example, aluminum trimethyl and water, a mixture of linear and cyclic compounds are obtained.

The alumoxane can be prepared in a variety of ways. For example, they are prepared by contacting water with a solution of aluminum trialkyl, such as, for example aluminum trimethyl, in a suitable organic solvent such as benzene or an aliphatic hydrocarbon.

[0019] The treatment of the inorganic porous support can be done according to any method known in the art. For example the alumoxane can be deposited onto the surface of the inorganic support by dissolving the alumoxane into a suitable solvent and adding the inorganic support into the solution, or it can be deposited onto the surface of the porous support by precipitation in the presence of the support.

[0020] It is also possible to form the alumoxane directly on the surface of the porous support by reacting an aluminum alkyl with the hydration water present onto the support surface.

[0021]. A method that can be fit for preparing supported catalysts according to this invention consists in the impregnation, under anhydrous conditions and inert atmosphere, of the solution of any metallocene of formula I, II or III, or a mixture thereof, on the treated supporting material at a proper temperature, preferably between -20° C and 90 °C. The supported catalyst that contains the metallocene can be obtained through filtration and washing with a proper solvent, preferably an aliphatic or aromatic hydrocarbon without polar groups.

[0022] Another method that can properly be used consists in depositing the metallocene on the treated support by using a solution of the compound that has to be heterogenized, eliminating the solvent through evaporation and then warming the solid residue at a temperature between 25 and 150° C. Besides, the resulting residue, obtained by this process, can be subjected to washing and subsequent filtration.

[0023] The supported catalyst does not require addition of alumoxane or ionizing compound to the reactor, but only a certain amount of aluminium trialkyl. This fact constitutes a further clear advantage in view of most polymerization process which require large amounts of aluminoxane.

[0024] The most proper polymerization procedure can change according to the chosen type of polymerization process (suspension, gas phase, solution or in bulk).

[0025] For the polymerization in suspension, the cocatalyst can previously be mixed with the supported solid catalyst, can be added to the polymerization medium before the supported catalyst, or both operations can be sequentially realized.

[0026] The process consists in putting in contact the monomer, or, in certain cases, the monomer and the comonomer, with a catalytic composition according to the present invention, that includes at least one supported metallocene complex of formula I, II or III, at a proper temperature and pressure.

[0027] Examples of olefins that can be polymerized are ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene and cyclic olefins.

[0028] Suitable olefins that can be used as comonomers to obtain ethylene copolymers are alfa-olefins such as propylene, butene, hexene, octene, 4-methyl-1-pentene and cyclic olefins and can be used in proportions from 0,1 to

70% by weight of the total of the monomers. In the case of homopolymerization of ethylene, the density of polymers ranges between 0,950 and 0,965 g/cm³; in the case of copolymerization of ethylene, the density is as low as 0,900 g/cm³.

[0029] To control the molecular weight of the obtained polymers, hydrogen can optionally be used as a chain transfer agent in such proportions that the hydrogen partial pressure, with respect to the olefin one, be from 0,01 to 50%.

[0030] In the particular case of the polymerization technique known as suspension process or controlled particle morphology process, the used temperature will be between 30° and 100 °C, the same which is typically used in gas phase.

[0031] The used pressure changes according to the polymerization technique, it ranges from atmospheric pressure to 350 MPa.

[0032] It has been surprisingly found that the presence of the group -OSiRII₃ is essential in order to obtain excellent results in term of catalyst activity. If a group Si-CI is present on the metallocene instead of the group RIOSiRII₃, the result is clearly inferior. Although it is not yet possible to describe exactly the interaction taking place between alumoxane and trialkylsililoxy group, it seems very clear that it results in a catalyst presenting unique balance between activity of the catalyst and morphology of the obtained polymer, even better than the results disclosed in patent EP 839836.

[0033] The activity of the catalyst according to the invention has been measured in homogeneous catalysis and onto silica impregnated with MAO. The same conditions have been used for metallocenes containing a Si-Cl group and for metallocenes which do not contain a functional group which can react with silica. Table I shows that the metallocene according to the invention is slightly less active under homogeneous condition than the corresponding non-functionalized metallocene, but it becomes much more active when supported onto treated silica. The same conclusions apply when comparing the metallocene according to the invention with the metallocene containing a Si-Cl group.

[0034] The following examples are described in order to better understand the invention. The materials, the chemical compounds and the conditions used in these examples are illustrative and do not limit the scope of the invention.

EXAMPLES

10

15

20

25

30

35

40

55

EXAMPLE 1

Preparation of [(3-trimethylsiloxypropyl)methylsilylen]bis indenyl zirconium dichloride.

Preparation of (3-trimethylsiloxypropyl)methyldichlorosilane.

[0035] A 500 ml Schlenk flask equipped with a stir-bar, a reflux condenser and a rubber septum was charged under nitrogen with 103.3g of HSiMe₂Cl and 5 drops of a 0.1M solution of the platinum Pt(0) 2,4,6,8-tetramethyl -2,4,6,8-tetravinylcyclotetrasiloxane complex (a product sold by Aldrich Chemical Co) at room temperature. To this solution 100 g of Me₃SiO-CH₂-CH=CH₂ was added during 30 minutes. After the addition was completed, the reaction mixture was gradually heated at 40 °C and maintained at this temperature under stirring for 2 hours, and finally heated at 60 °C for another 5 hours. The desired product can be isolated by distillation under vacuum (10 mbar) at 75 °C. Yield 84% ¹H NMR (CDCl₃): 0.120 (s, 9H, Si(Me)₃), 0.810 (s, 6H, SiMe), 1.120-1.190 (m,CH₂), 1.695-1.792 (m, 2H, CH₂), 3.597 (t, 2H, CH₂).

Preparation of (3-trimethylsiloxypropyl)methyl bis indenyl silane.

[0036] A 500 ml Schlenk flask equipped with a stir-bar, and a rubber septum was charged under nitrogen with 200 ml of ethyl ether and 34.8 g freshly distilled indene. To this solution 120 ml 2.5M BuLi solution in hexane was slowly added at 0 °C, under stirring. The resulting mixture was stirred for 1 hour at 0°C and subsequently for 2 more hours at room temperature. The obtained red solution is again cooled to 0 °C and a solution of 39.9 g of Me₃SiO(CH₂)₃Si (Me)Cl₂ in 100 ml is slowly added (1 hour). After a 2 hours stirring, the temperature is allowed to rise and the reaction mixture is stirred for 6 more hours at room temperature. All the solvents are removed under low pressure, and the residue extracted with 300 ml of hexane and the inorganic salts filtered. All the volatiles were again removed, first under low pressure (10 mbar) and then at 80 °C under higher vacuum (0.01 mbar). The desired product was obtained pure by short path distillation of the residue at 0.001 mbar and 160°C, as a mixture of rac and meso isomers. ¹H NMR (CDCl₃) (mixture of all isomers): (-0.3740) - (-0.138)- 0.087 (s, 3H, SiMe), 0.085- 0.091- 0.095(s, 9H, Si(Me)₃), 0.320- 0.651-0.950- 1.183- 1.34 (br m 4H -CH2-CH2), 3,280- 3.349- 3.425 (t, 2H, CH₂-O), 3.651- 3.680 (s, 2H, C₉H₇), 6.361- 6.422- 6.610- 6.954 (4H, m, C₉H₆), 7.229- 7.310- 7.531 (m, 8H, C₉H₆). MS: m/z(%)= 404 M+(1%); 288.7(31%); 246.7 (100%); 230.7(30%); 114.7(17%), 72.8(20%).

Preparation of [(3-trimethylsiloxypropyl)methylsilylen]bis indenyl zirconium dichloride.

[0037] A 250 ml Schlenk flask equipped with a stir-bar and a rubber septum was charged under nitrogen with 75 ml of ethyl ether and 9.14 g of $Me_3SiO(CH_2)_3Si(Me)(C_9H_7)_2$. To this solution 17.2 ml of a 2.5 M solution of n-BuLi in hexane was slowly added under stirring at 0°C.After the addition was completed, the reaction mixture was stirred 2 hours at room temperature. The solvent was removed and the residue suspended in 75 ml of toluene.

[0038] The above prepared suspension was added to a suspension of ZrCl₄.2Et₂O in 100 ml toluene at 0 °C, and stirred for 1 hour. The temperature was allowed to rise and the reaction mixture stirred for 5 more hours. The final suspension was filtered through Celite ™ and the solvent removed under low pressure until an orange red viscous oil was obtained. The addition of hexane yielded a yellow orange solid shown to be the desired product as a mixture of rac and meso isomers. The rac isomer can be obtained pure by extraction of the meso isomer from the original mixture with additional hexane.

[0039] 1 H NMR (CDCl₃) (mixture of all isomers): 0.157 (s, 9H, SiMe₃), 0.986-1.152-1.400 (s, 3H, Si(Me)), 0.986-1.652-1.783-2.0546 (m, 4H, -CH₂-CH₂), 3,.836 (t, 2H, CH₂-O), 6.131-6.158 (2H, m, C₉H₇), 6.952-6.968 (m, 2H, C₉H₆), 7.124-7.413-7.457-7.622 (m, 8H, C₉H₆).

EXAMPLE 2

20

30

Preparation of [(1,1-dimethyl-1-sila-4-trimetylsiloxybutyl) cyclopentadienyl] cyclopentadienyl zirconium dichloride:

Preparation of (3-trimethylsiloxypropyl)dimethylchlorosilane.

[0040] A 500 ml Schlenk flask equipped with a stir-bar, a reflux condenser and a rubber septum was charged under nitrogen with 94.6 g of HSiMe₂Cl and 5 drops of a 0.1 M solution of the platinum complex Pt(0) 2,4,6,8-tetramethyl -2,4,6,8-tetravinylcyclotetrasiloxane complex (a product sold by Aldrich Chemical Co) at room temperature. To this solution 131 g of Me₃SiO-CH₂-CH=CH₂ was added during 30 minutes. After the addition the reaction mixture was gradually heated at 40 °C and mantained at this temperature under stirring for 2 hours, and finally heated at 60 °C for another 5 hours. The desired product can be isolated by distillation under vacuum (25 mbar) at 84 °C. Yield 80%. ¹H NMR (CDCl₃): 0.125 (s, 9H, SiMe₃), 0.413 (s, 6H, SiMe₂), 0.798-0.890 (m, 2H, CH₂), 1.595-1.720 (m, 2H, CH₂), 3.585 (t, 2H, CH₂).

Preparation of (1,1-dimethyl-1-sila-4-trimethylsiloxybutyl)cyclopentadiene.

[0041] A 1L Schlenk flask equipped with a stir-bar and a rubber septum was charged under nitrogen with 89 g (0.396 mol) of Me₃SiO(CH₂)₃Si(Me)₂Cl_and 200 ml of dry hexane. To this solution 250 ml of a solution of THF containing 0.396 mol of C₅H₅Na was added under stirring at 0 °C. After the addition the reaction mixture was maintained at this temperature for 1 hour. The temperature was allowed to raise to 23°C and the mixture was stirred for 8 more hours. The final suspension was filtered, subsequently the volatiles were removed at reduced pressure. The product was isolated from the residue by distillation at 65-65°C and 1 mbar as a mixture of double bond isomers. ¹H NMR (CDCl₃): -0.03 (s, 6H, Si(Me)₂), 0.2 (s, 9H, Si(Me)₃), 0.52-0.65 (m, 2H, CH₂), 1.59 (m, 2H, CH₂), 3.45 br (1H C₅H₄), 3.55 (t,2H, CH₂-O), 6.45-6-7 (m, 4H, C₅H₄).

Preparation of [(1,1-dimethyl-1-sila-4-trimetylsiloxybutyl)cyclopentadienyl]cyclopenta- dienyl zirconium dichloride.

[0042] A 250 ml Schlenk flask equipped with a stir-bar and a rubber septum was charged under nitrogen with 14 g (0.0396 mol) of (C₅H₅)ZrCl₃.DME_and 100 ml of dry hexane. To this solution 0.0396 mol of Me₃SiO(CH₂)₃ Si (Me)₂C₅H₄K in 50 ml THF was slowly added at 0 °C, under stirring. The resulting mixture was stirred for 1 hour at 0°C and subsequently for 6 more hours at room temperature. All the solvents were removed under reduced pressure and the solid residue was extracted with hexane and filtered. The solution was again partially evaporated and cooled at -20 °C to give white crystals (Yield 45 %). ¹H NMR (CDCl₃): 0.125 (s, 9H, Si(Me)₃), 0.333 (s, 6H, Si(Me)₂), 0.688-0.722 (m, 2H, CH₂), 1.504-1.538 (m, 2H, CH₂), 3.520 (t, 2H, CH₂), 6.479 (s, 5H, C₅H₅), 6.570 (m, 2H, C₅H₄), 6.725 (m, 2H, C₅H₄).

EXAMPLE 3

10

20

25

30

35

50

Preparation of [1-(3-trimethylsiloxypropyl)indenyl]cyclopentadienyl zirconium dichloride.

5 Preparation of [3-(3 trimethylsiloxypropyl)indene].

[0043] A solution of 25.3 g (230 mmol) of Lilnd in 250 ml of THF was slowly added to a solution of 48.5 g (230 mmol) of 3-bromo-1-trimethylsiloxypropane, prepared according to EP 0 839 836, in 250 ml of THF at room temperature. A red solution was immediately formed. The mixture was stirred at room temperature for 12 h and then the solvent was removed under vacuum, the residue was treated with hexane and the supernatant solution was filtered. The removal of the hexane led to a green oil. This oil was distilled in order to obtain a pale yellow oil. (T_b: 89-91°C, 1 mm Hg). (21.5 g, 87.4 mmol, yield: 38%). ¹H-NMR (CDCl₃): 7.52 (m, 1H); 7.45 (m, 1H); 7.36 (m, 1H); 7.24 (m, 1H); 6.28 (m, 1H); 3.74 (m, 2H); 3.39 (m, 2H); 2.65 (m, 2H); 1.99 (m, 2H); 0.20 (s, 9H).

15 Preparation of lithium [1-(3-trimethylsiloxypropyl)indenide].

[0044] To 1.5 g (6.1 mmol) of [3-(3-trimethylsiloxypropyl)indene] in ether at -78°C, 2.44 ml (6.1 mmol) of a 2.5 M butyllithium solution in hexane was added. The immediate formation of a white solid was observed. The mixture was maintained under stirring for 2 h. Then, the solvent was removed under vacuum and the residue was washed twice with 25 ml of hexane to give a brown solid. (1.3 g, 5.2 mmol, yield 85%).

Preparation of [1-(3-trimethylsiloxypropyl)indenyl]cyclopentadienyl zirconium dichloride.

[0045] To a suspension of 1.0 g (4 mmol) of cyclopentadienyl zirconium trichloride in ether at 0°C, a suspension of 1.0 g (4 mmol) of lithium [1-(3-trimethylsiloxypropyl)indenide] in ether was added. The formation of a yellowish solid was observed immediately. The mixture was stirred for 12 h, then the supernatant solution was filtered and the volatiles were removed under vacuum to give a yellow oily-solid. This solid was washed with hexane to give a yellow powder, which was characterized as [1-(3-trimethylsiloxypropyl)indenyl] cyclopentadienyl zirconium dichloride (0.85 g, 1.8 mmol, yield: 45%). ¹H-NMR (CDCl₃): 7.67 (m, 2H); 7.30 (m, 2H); 6.70 (m. 1H): 6.45 (m, 1H); 6.13 (s, 5H); 3.65 (m, 2H); 3.04 (dm, 2H); 1.92 (m, 2H); 0.17 (s, 9H).

EXAMPLE 4

Preparation of dimethylsilylen [3-(2-trimethylsiloxyethyl)cyclopenadienyl] indenyl zirconium dichloride.

Preparation of (2-trimethylsiloxyethylcyclopentadienyl) indenyl dimethyl silane.

[0046] To a suspension of 0.63 g (26.3 mmol) of HNa in THF at -78°C, a solution of 6.3 g (26.3 mmol) of cyclopentadienylindenyldimethylsilane in THF was added. Immediately a purple solution was formed. Then, the volatiles were removed and the residue was washed with hexane to give a pink solid. The solid was solved again in THF, and a solution of 5.2 g (26.3 mmol) of 2-bromo-1-trimethylsiloxyethane in THF was added at room temperature. A white suspension was formed immediately. The mixture was stirred for 12 h, and then the solvents were removed and the residue was treated with hexane and the supernatant solution was filtered. The removal of the hexane led to a brown oil. This oil was distilled in order to obtain a yellow-orange oil, which was characterized as a mixture of position isomers of (2-trimethylsiloxyethylindenyl) cyclopentadienyl dimethyl silane. (T_b: 170-175°C; 1 mm Hg), (3.9 g, 11 mmol; yield: 42%). ¹H-RMN(CDCl₃): 7.54-7.42 (m, 2H); 7.31-7.12 (m, 2H); 6.95 (m, 1H); 6.91 (m, 1H); 6.72 (m, 1H); 6.61 (m, 1H); 6.60-6.42 (m, 3H); 3.78 (m, 2H); 3.62 (m, 1H); 3.42 (m, 2H); 2.62 (m, 2H), 0.17 (m, 15 H).

Preparation of dimethylsilylen [3-(2-trimethylsiloxyethyl)cyclopentadienyl] indenyl zirconium dichloride.

[0047] To a solution of 1.4 g (35 mmol) of HK in THF at room temperature, a solution of 6.2 g (17.5 mmol) of (2-tri-methylsiloxyethylindenyl) cyclopentadienyl dimethyl silane in THF is added. Immediately, a purple solution was formed. Then, the solution was added to a suspension of 4.1 g (17.5 mmol) of zirconium tetrachloride in toluene at -78°C. The formation of a yellow suspension was observed. The mixture was stirred for 12 h and then the solvents were evaporated, the residue was treated with hexane and the supernatant solution was filtered and stored at -35°C. A yellow mycrocristalline solid was obtained, which was characterized as a mixture in a ratio 50:50 of two stereoisomers. (5.8 g, 11.3 mmol, yield: 65%). 1H-NMR (CDCl₃): 7.75 (m, 2H, Isomer a and b); 7.52 (m, 1H, Isomer a); 7.41 (m, 1H, Isomer b); 7.12 (m, 4H, Isomer a and b); 6.51 (m, 1H, Isomer b); 6.48 (m, 1H, Isomer a); 6.22 (m, 1H, Isomer a); 6.11 (m, 1H,

Isomer b); 5.90 (m, 1H, Isomer a); 5.83 (m, 1H, Isomer b); 5.57 (m, 1H, Isomer b); 5.54 (m, 1H, Isomer a); 3.78 (m, 2H, Isomer b); 3.67 (m, 2H, Isomer a); 2.88 (m, 2H, Isomer b); 2.70 (dm, 2H, Isomer a); 1.03 (s, 3H, Isomer b); 1.02 (s, 3H, Isomer a); 0.82 (s, 3H, Isomer a); 0.80 (s, 3H, Isomer b); 0.10 (s, 9H, Isomer b); 0.08 (s, 9H, Isomer a); 13C-NMR (CDCl₃): 141.0, 138.7, 135.1, 135.0, 127.8, 127.2, 126.3, 126.1, 125.8, 124.1, 123.7, 123.6, 119.2, 119.1, 117.6, 117.4, 116.2, 115.7, 115.6, 112.3, 112.2, 105.5, 104.7, 89.8, 89.7, 62.3, 62.2, 33.3, 33.2, -0.51, -2.34, -2.35, -4.62, -4.63.

EXAMPLE 5

10

15

20

40

45

50

55

Preparation of dimethylsilylen [3-(2-trimethylsiloxyethyl)cyclopentadienyl] cyclopentadienyl zirconium dichloride.

Preparation of (2-trimethylsiloxyethylcyclopentadienyl) cyclopentadienyl dimethyl silane.

[0048] A solution of 11.5 g (61 mmol) of biscyclopentadienyldimethylsilane in THF was added to a suspension of 1.3 g (55 mmol) of HK in THF at -78°C. A purple solution was immediately formed. Then, the volatiles were removed and the residue was washed with hexane to give a pink solid. The solid was solved again in THF and a solution of 10.8 g (55 mmol) of 2-bromo-1-trimethylsiloxyethane in THF was added at room temperature. A pink suspension was immediately formed. The mixture was stirred for 12 h, and then the solvents were removed, the residue was treated with hexane and the supernatant solution was filtered. The removal of the hexane led to a reddish oil. This oil was distilled in order to obtain a yellow oil, which was characterized as a mixture of position isomers of (2-trimethylsiloxyethylcyclopentadienyl) dimethyl cyclopentadienyl silane (T_b: 135-140°C; 1 mm Hg), (8.7 g, 28.6 mmol, yield: 52%). ¹H-RMN (CDCl₃): 6.82-6.40 (m, 7H); 3.82 (m, 2H); 3.10 (m, 2H); 2.73 (m, 2H); 0.20 (s, 15 H).

Preparation of dimethylsilylen [3-(2-trimethylsiloxyethyl)cyclopentadienyl] cyclopentadienyl zirconium dichloride.

[0049] 4.24 ml (10.6 mmol) of a 2.5 M butyllithium solution in hexane was added to a solution of 1.6 g (5.3 mmol) of (2-trimethylsiloxyethylcyclopentadienyl) cyclopentadienyl dimethyl silane in ether at room temperature. The immediate formation of a white solid was observed. After 2 h the mixture was added to a suspension of 1.2 g (5.3 mmol) of zirconium tetrachloride in toluene at -78°C. The formation of a yellow suspension was observed. The mixture was stirred for 12 h and then the solvents were evaporated, the residue was treated with hexane and the supernatant solution was filtered. The removal of the hexane led to a green solid, which was recrystallized in hexane at -35°C to give a green powder, which is characterized as dimethylsilylen [3-(2-trimethylsiloxyethyl)cyclopentadienyl] cyclopentadienyl zirconium dichloride (0.4 g. 0.86 mmol, yield: 16%). ¹H-NMR (CDCl₃): 7.05 (m, 1H); 6.96 (m, 1H); 6.67 (m, 1H); 5.98 (m, 1H); 5.92 (m, 1H); 5.86 (m, 1H); 5.60 (m, 1H) 3.80 (m, 2H); 2.88 (m, 2H); 0.72 (s, 3H); 0.77 (s, 3H); 0.10 (s, 9 H). ¹³C-NMR (CDCl₃): 138.9, 127.3, 126.7, 126.6, 114.5, 113.5, 113.3, 112.9, 107.1, 107.0, 62.6, 34.4, 1.1, -3.5, -3.6.

EXAMPLE 6

Preparation of [1-(2-trimethylsiloxyethyl)indenyl] cyclopentadienyl zirconium dichloride.

Preparation of [3-(2-trimethylsiloxyethyl)indene].

[0050] A solution of 43.1 g (392 mmol) of Lilnd in 250 ml of THF was slowly added to a solution of 82.7 g (392 mmol) of 2-bromo-1-trimethylsiloxyethane, prepared according to EP 0 839 836, in 250 ml of THF at 0°C. An orange solution is Immediately formed. The mixture was stirred at room temperature for 12 h and then the solvent was removed under vacuum, the residue was treated with hexane and the supernatant solution was filtered. The removal of the hexane led to a dark brown oil. This oil was distilled in order to obtain a pale yellow oil. (T_b : 84-86°C, 1 mm Hg). (41.8 g, 180 mmol, yield: 46%). ¹H-NMR (CDCl₃): 7.52 (m, 1H); 7.45 (m, 1H); 7.36 (m, 1H); 7.25 (m, 1H); 6.31 (m, 1H); 3.96 (m, 2H); 3.40 (m, 2H); 2.90 (m, 2H); 0.19 (s, 9H).

Preparation of lithium [1-(2-trimethylsiloxyethyl)indenide].

[0051] 10.3 ml (16.4 mmol) of a 1.6 M butyllithium solution in hexane was added to 3.8 g (16.4 mmol) of [3-(2-trimethylsiloxyethyl)indene] in ether at -78°C. The immediate formation of a white solid was observed. The mixture was maintained under stirring for 2 h. Then the solvent was removed under vacuum and the residue was washed twice with 25 ml of hexane to give a white solid. (3.6 g, 15 mmol, yield: 91.5%).

Preparation of [1-(2-trimethylsiloxyethyl)indenyl] cyclopentadienyl zirconium dichloride.

[0052] A suspension of 3.9 g (16.4 mmol) of lithium [1-(2-trimethylsiloxyethyl)indenide] in ether was added to a suspension of 5.8 g (16.4 mmol) of cyclopentadienyl zirconium trichloride complex with dimethoxyethane in 100 ml of ether at 0°C. The formation of a yellowish solid was immediately observed. The mixture was stirred for 12 h, then the supernatant solution was filtered and the volatiles were removed under vacuum to give a yellow oily-solid. This solid was washed with hexane to give a yellow powder, which was characterized as [1-(2-trimethylsiloxyethyl)indenyl] cyclopentadienyl zirconium dichloride (3.3 g, 7.2 mmol, yield: 44%). ¹H-NMR (CDCl₃): 7.65 (m, 2H); 7.29 (m, 2H); 6.67 (m, 1H); 6.46 (m, 1H); 6.12 (s, 5H); 3.87 (m, 2H); 3.20 (dm, 2H); 0.05 (s, 9H). ¹³C-NMR (CDCl₃): 127.2, 125.3, 125.2, 125.0, 124.9, 124.1, 116.1, 97.8, 97.7, 62.3, 31.3, -0.8.

EXAMPLE 7

10

15

20

25

30

35

40

55į.

Preparation of [1-(2-trimethylsiloxyethyl)indenyl] pentamethylcyclopentadienyl zirconium dichloride.

Preparation of [1-(2-trimethylsiloxyethyl)indenyl] pentamethylcyclopentadienyl zirconium dichloride.

[0053] A suspension of 1.5 g (6.5 mmol) of lithium [1-(2-trimethylsiloxyethyl)indenide] in ether was added to a suspension of 2.2 g (6.5 mmol) of pentamethylcyclopentadienyl zirconium trichloride in 100 ml of ether at 0°C. After 30 minutes, the formation of a white solid was observed. The mixture was stirred for 12 h, then the supernatant solution was filtered and the volatiles were removed under vacuum to give a yellow oily-solid. This solid was recrystallized in hexane to give a mycrocristalline yellow solid, which was characterized as [1-(2-trimethylsiloxyethyl)indenyl] pentamethylcyclopentadienyl zirconium dichloride (1.7 g, 3.2 mmol, yield: 49%). ¹H-NMR (CDCl₃): 7.65 (m, 1H); 7.33 (m, 1H); 7.25 (m, 2H); 6.08 (m, 1H); 5.92 (m, 1H); 3.72 (dm, 2H); 3.28 (m, 1H); 2.72 (m, 1H); 2.04 (s, 15H); 0.03 (s, 9H). ¹³C-NMR (CDCl₃): 131.4; 127.1; 126.7; 125.2; 125.1; 124.2; 123.5; 122.6; 116.1; 97.0; 62.6; 32.1; 12.5; -0.6.

PREPARATION OF SUPPORTED FUNCTIONALIZED METALLOCENES

EXAMPLE 8

Heterogenization of (3-trimethylsiloxypropycyclopentadienyl) (cyclopentadienyl) zirconium dichloride on silica modified

[0054] In a flask of 250 ml of capacity it was weighed 5 g of silica modified with MAO commercialized by Witco with a 24,7% weight of AI and it was added 120 ml of toluene. Then, it was added a solution in toluene of (3-trimethylsi-loxipropylcyclopentadienyl) (cyclopentadienyl) zirconium dichloride (0,255 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene at 70° C up to a total volume of 500 ml. The solid was finally dried under vacuum for 24 hours. The Zr and AI content in the catalyst was determined by ICP and it was 0,29 % and 19,4 % by weight respectively.

COMPARATIVE EXAMPLE 9

Heterogenization of (chlorodimethylsilylcydopentadienyl) (cyclopentadienyl) zirconium dichloride on silica modified with MAO.

[0055] In a flask of 250 ml of capacity it was weighed 5 g of silica modified with MAO commercialized by Witco with a 24,7% weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of (chlorodimethyl-silylcyclopentadienyl) (cyclopentadienyl) zirconium dichloride (0,255 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene at 70° C up to a total volume of 500 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,40 % and 20,7 % by weight respectively.

COMPARATIVE EXAMPLE 10

Heterogenization of (chloromethylsilandiyl)bis(cyclopentadienyl) zirconium dichloride on silica modified with MAO.

[0056] In a flask of 250 ml of capacity it was weighed 5 g of silica modified with MAO commercialized by Witco with a 24,7% weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of (chloromethylsi-landiyl)bis(cyclopentadienyl) zirconium dichloride (0,255 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene at 70° C up to a total volume of 500 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,36 % and 18,1 % by weight respectively.

EXAMPLE 11

15 Heterogenization of (3-trimethylsiloxypropyl)methylsilylen]bis(1-indenyl) zirconium dichloride on silica modified with MAO.

[0057] In a flask of 250 ml of capacity it was weighted 3 g of silica modified with MAO commercialized by Witco with a 23% by weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of [(3-trimethylsi-loxypropyl)methylsilylen]bis(1-indenyl) zirconium dichloride (0,2 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene up to a total volume of 250 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,41 % and 22 % by weight respectively.

EXAMPLE 12

20

25

30

35

40

45

50

55

Heterogenization of [(1,1-dimethyl-1-sila-4-trimethylsiloxybufyl)-cyclopentadienyl] cyclopentadienyl zirconium dichloride on silica modified with MAO

[0058] In a flask of 250 ml of capacity it was weighted 3 g of silica modified with MAO commercialized by Witco with a 23% by weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of [(1,1-dimethyl-1-sila-4-trimethylsiloxybutyl)-cyclopentadienyl] cyclopentadienyl zirconium dichloride (0,33 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene up to a total volume of 250 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,99 % and 22,4 % by weight respectively.

EXAMPLE 13

Heterogenization of [1-(3-trimethylsilosypropyl)indenyl](cyclopentadienyl) zirconium dichloride on silica modified with MAO.

[0059] In a flask of 250 ml of capacity it was weighted 3 g of silica modified with MAO commercialized by Witco with a 23% by weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of [1-(3-trimethyl-silosypropyl)indenyl](cyclopentadienyl) zirconium dichloride (0,140 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene up to a total volume of 250 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,59 % and 27 % by weight respectively.

EXAMPLE 14

Heterogenization of dimethylsilylen(trimethylsiloxyethyl-3cyclopentadienyl)(1-indenyl) zirconium dichloride on silica modified with MAO.

[0060] In a flask of 250 ml of capacity it was weighted 3 g of silica modified with MAO commercialized by Witco with a 24,7% by weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of dimethylsilylen

(trimethylsiloxyethyl-3-cyclopentadienyl)(1-indenyl) zirconium dichloride (0,152 mmol of Zr). The reaction mixtur—was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene at 70°C up to a total volume of 500 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,35 % and 20 % by weight respectively.

EXAMPLE 15

10

15

20

25

30

35 .

40

45

[0061] Heterogenization of dimethylsilylen(trimethylsiloxyethyl-3cyclopentadienyl) (cyclopentadienyl) zirconium dichloride on silica modified with MAO.

[0062] In a flask of 250 ml of capacity it was weighted 3,2 g of silica modified with MAO commercialized by Witco with a 24,7% by weight of Al and it was added 120 ml of toluene.

[0063] Then, it was added a solution in toluene of dimethylsilylen(trimethylsiloxyethyl-3 cyclopentadienyl)(cyclopentadienyl) zirconium dichloride (0,096 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene up to a total volume of 500 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,24 % and 23 % by weight respectively.

EXAMPLE 16

Heterogenization of [1-(2-trimethylsiloxyethyl)Indenyl](cyclopentadienyl) zirconium dichloride on silica modified with MAO

[0064] In a flask of 250 ml of capacity it was weighted 3,7 g of silica modified with MAO commercialized by Witco with a 24,7% by weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of [1-(2-trimethylsiloxyethyl)Indenyl](cyclopentadienyl) zirconium dichloride (0,111 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene up to a total volume of 500 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,23 % and 23 % by weight respectively.

PREPARATION OF SUPPORTED NON-FUNCTIONALIZED METALLOCENES

COMPARATIVE EXAMPLE 17

Heterogenization of biscyclopentadienyl zirconium dichloride on silica modified with MAO.

[0065] In a flask of 250 ml of capacity it was weighed 5 g of silica modified with MAO commercialized by Witco with a 24,7% weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of biscyclopentadienyl zirconium dichloride (0,255 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene at 70° C up to a total volume of 500 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,36 % and 18,4 % by weight respectively.

EXAMPLE 18

Heterogenization of (trimethylsilylcyclopentadienyl) (cyclopentadienyl) zirconium dichloride on silica modified with MAO.

[0066] In a flask of 250 ml of capacity it was weighed 5 g of silica modified with MAO commercialized by Witco with a 24,7% weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of (trimethylsilylcy-clopentadienyl) (cyclopentadienyl) zirconium dichloride (0,255 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene at 70° C up to a total volume of 500 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,4 % and 21,2 % by weight respectively.

EXAMPLE 19

Heterogenization of (dimethylsilandiyl)bis(cyclopentadienyl) zirconium dichloride on silica modified with MAO.

[0067] In a flask of 250 ml of capacity it was weighed 5 g of silica modified with MAO commercialized by Witco with a 24,7% weight of Al and it was added 120 ml of toluene. Then, it was added a solution in toluene of (dimethylsilandiyl) bis(cyclopentadienyl) zirconium dichloride (0,255 mmol of Zr). The reaction mixture was maintained under mechanic stirring at room temperature. After 2 hours of reaction the resulting solid was isolated by filtration and washed with consecutive fractions of toluene at 70° C up to a total volume of 500 ml. The solid was finally dried under vacuum for 24 hours. The Zr and Al content in the catalyst was determined by ICP and it was 0,37 % and 20,8 % by weight respectively.

POLYMERIZATION WITH FUNCTIONALIZED SOLUBLE CATALYSTS

15 COMPARATIVE EXAMPLE 20

Copolymerization of ethylene/1-hexene

[0068] The reactions of copolymerization of ethylene/1-hexene were carried out in a reactor Büchi of 1,3 liters of capacity, under anhydrous conditions. The reactor, charged with 600 ml of dry heptane, was conditioned at 70°C and pressurized with ethylene up to 4 atm. Then, it was added 20 ml of 1-hexene, 2,7 ml of a solution of MAO 10% in toluene (commercialized by Witco) and finally 0,42 ml of a solution 4,7 x 10⁻³ M in toluene of (3-trimethylsiloxi propyl cyclopentadienyl) (cyclopentadienyl) zirconium dichloride (0,002 mmol of Zr). The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 10,4 g of polyethylene (activity 5,2 x 10⁶ g PE/mol M x h x atm) with a Mw of 172.800, MWD of 4 and a comonomer content of 1,77% molar.

COMPARATIVE EXAMPLE 21

30 Polymerization of ethylene

[0069] The polymerization reaction of ethylene was carried out in a reactor Būchi of 1,3 liters of capacity, under anhydrous conditions. The reactor, charged with 600 ml of dry heptane, was conditioned at 70°C and pressurized with ethylene up to 4 atm. Then, it was added 1,1 ml of a solution of MAO 10% in toluene (commercialized by Witco) and 0,28 ml of a solution 2,8 x 10⁻³ M in toluene of (chlorodimethylsilylcyclopentadienyl) (cyclopentadienyl) zirconium dichloride (0,0008 mmol of Zr). The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 8,1 g of polyethylene (activity 10,0 x 10⁶ g PE/mol M x h x atm) with a Mw of 288.300 and MWD 2.2.

40 COMPARATIVE EXAMPLE 22

Polymerization of ethylene

[0070] The polymerization reaction of ethylene was carried out by following the method and the conditions described in example 21, but it was added 5,3 ml of a solution of MAO 10% in toluene (commercialized by Witco) and 0,93 ml of a solution 4,3 x 10⁻³ M in toluene of (chloromethylsilandiyl) bis (cyclopentadienyl) zirconium dichloride (0,004 mmol of Zr). The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 5,1 g of polyethylene (activity 1,3 x 10⁶ g PE/mol M x h x atm) with a Mw of 162.000.

COMPARATIVE EXAMPLE 23

50

55

[0071] The polymerization reaction of ethylene was carried out in a reactor Büchi of 1,3 liters of capacity, under anhydrous conditions. The reactor, charged with 600 ml of dry heptane, was conditioned at 70°C and pressurized with ethylene up to 4 atm. Then, it was added 26,7 ml of a solution of MAO 1,5 M in Toluene, 10 ml of 1-hexene and 5,3 ml of a solution in toluene (1,5 x 10⁻³ M) of [1-(2-methylsiloxyethyl) Indenyl] (pentamethyl cyclopentadienyl) zirconium dichloride (0,008 mmol of Zr). The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified

methanol. It was obtained 7,3 g of polyethylene (activity 9,2 x 10⁵ g PE/mol M x h x atm) with an Mw of 215.400 and a comonomer content of 0,7% molar.

POLYMERIZATION WITH NON-FUNCTIONALIZED SOLUBLE CATALYSTS

COMPARATIVE EXAMPLE 24

Copolymerization of ethylene/1-hexene

[0072] The reaction of copolymerization of ethylene with 1-hexene was carried out by following the method and the conditions described in example 20, but it was added 2,7 ml of a solution of MAO 10% in toluene commercialized by Witco and finally 0,7 ml of a solution in toluene (2,7 x 10⁻³ M) of biscyclopentadienyl zirconium dichloride (0,002 mmol of Zr). The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 16 g of polyethylene (activity 8,0 x 10⁶ g PE/mol M x h x atm) with a Mw of 59.300, MWD 2.4 and a comonomer content of 1,08% molar.

COMPARATIVE EXAMPLE 25

20 Polymerization of ethylene

10

15

25

30

45

[0073] The polymerization reaction of ethylene was carried out by following the method and the conditions described in example 21, but it was added 1,1 ml of a solution of MAO 10% in toluene (commercialized by Witco) and then 0,3 ml of a solution in toluene (3,0 x 10⁻³ M) of (trimethylsilylcyclopentadienyl) (cyclopentadienyl) zirconium dichloride (0,0008 mmol of Zr). The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 13,5 g of polyethylene (activity 16,9 x 10⁶ g PE/mol M x h x atm) with a Mw of 319,200 and MWD 2.3.

COMPARATIVE EXAMPLE 26

Polymerization of ethylene

[0074] The polymerization reaction of ethylene was carried out by following the method and the conditions described in example 21, but it was added 5,3 ml of a solution of MAO 10% in toluene commercialized by Witco and finally 0,87 ml of a solution in toluene (4,6 x 10⁻³ M) of (dimethylsilandyil)bis(cyclopentadienyl) zirconium dichloride (0,004 mmol of Zr). The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 11,7 g of polyethylene (activity 2,90 x 10⁶ g PE/mol M x h x atm) with a Mw of 64.500 and MWD 3.5.

POLYMERIZATION WITH FUNCTIONALIZED SUPPORTED CATALYSTS

EXAMPLE 27

Copolymerization of ethylene/1-hexene

[0075] The reactions of copolymerization of ethylene with 1-hexene were carried out in a reactor Būchi of 1,3 liters of capacity, under anhydrous conditions. The reactor, charged with 600 ml of dry heptane, was conditioned at 70°C and pressurized with ethylene up to a pressure of 3,5 atm, then it was added 20 ml of 1-hexene, 1,7 ml of a solution of TIBA 1,34 M in heptane and it was finally added, through a overpressure of ethylene of 0,5 atm, 0,179 g (0,0057 mmol of Zr) of the catalyst prepared according to example 8. The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 13,8 g of polyethylene (activity 2,4 x 10⁶ g PE/mol M x h x atm) with a Mw of 178.600, a MWD of 2,4 and a comonomer content of 2,27% molar.

EXAMPLE 28

Polymerization of ethylene

[0076] The reactions of polymerization of ethylene were carried out in a reactor Büchi of 1,3 liters of capacity, under anhydrous conditions. The reactor, charged with 600 ml of dry heptane, was conditioned at 70°C and pressurized with ethylene up to a pressure of 3,5 atm. Later, it was added 1,7 ml of a solution of TIBA 1,34 M in heptane and it was finally added, through a overpressure of ethylene of 0,5 atm, 0,130 g (0,0057 mmol of Zr) of the catalyst described in example 9. The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 6 g of polyethylene (activity 1,1 x 10° g PE/mol M x h x atm) with a Mw of 378.500 and MWD 2.6.

EXAMPLE 29

15 Polymerization of ethylene

[0077] The polymerization reaction of ethylene was carried out by following the method and the conditions described in example 28, but it was added 2,4 ml of a solution of TIBA 1,34 M in heptane and 0,203 g (0,008 mmol of Zr) of the catalyst described in example 10. The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 2,5 g of polyethylene (activity 0,32 x 10⁶ g PE/mol M x h x atm) with a Mw of 159.600 and MWD 5.3.

EXAMPLE 30

20

25

30

40

50

[0078] The reaction of copolymerization of ethylene with 1-hexene was carried out in an autoclave of a capacity of 2 liters, under anhydrous conditions. The reactor, charged with 1 I of dry isobutane, 49,6 ml of 1-hexene and 0,83 ml of a solution of TIBA 0,61 M in heptane, was conditioned at a temperature of 85°C. Later, it was added 0,033 g (0,0015 mmol of Zr) of the catalyst prepared according to example 11 and the reactor was pressurized with ethylene up to a total pressure of 40 atm. The copolymerization reaction was maintained at 85°C and at a pressure of 40 atm for 60 minutes. At the end of the reaction, the reactor was depressurized and it was obtained 255,4 g of polyethylene (activity 4,3 x 10⁶ g PE/mol M x h x atm) with a Mw of 311.200, MWD of 7,9, a comonomer content of 1,27% molar (hexene), and 0,17% molar (butene). The powder bulk density was 0,38 g/cc.

35 EXAMPLE 31

[0079] The copolymerization reaction of ethylene/1-hexene was carried out by following the method and the conditions described in example 30, but it was added 141,5 ml of 1-hexene and 7,7 ml of a solution of TIBA 0,61 M in heptane. Later, it was added 0,071 g (0,0077 mmol of Zr) of the catalyst prepared according to example 12 and the reactor was pressurized with ethylene up to a total pressure of 40 atm. The copolymerization reaction was maintained at 85°C and at a pressure of 40 atm for 60 minutes. At the end of the reaction, the reactor was depressurized and it was obtained 181 g of polyethylene (activity 0,6 x 10⁶ g PE/mol M x h x atm), with a comonomer content of 1,1% molar and a bulk density of 0,39 g/cc.

45 EXAMPLE 32

[0080] The copolymerization reaction of ethylene/1-hexene was carried out by following the method and the conditions described in example 30, but it was added 141,5 ml of 1-hexene and 0,74 ml of a solution of TIBA 0,61 M in heptane. Later, it was added 0,034 g (0,0022 mmol of Zr) of the catalyst prepared according to example 13 and the reactor was pressurized with ethylene up to a total pressure of 40 atm. The copolymerization reaction was maintained at 85°C and at a pressure of 40 atm for 60 minutes. At the end of the reaction, the reactor was depressurized and it was obtained 95,4 g of polyethylene (activity 1,1 x 10⁶ g PE/mol M x h x atm), with a comonomer content of 0,7% molar and a bulk density of 0,37 g/cc.

55 EXAMPLE 33

[0081] The polymerization reaction of ethylene was carried out in a reactor Buchi of 1,3 liters of capacity, under anhydrous conditions. The reactor, charged with 600 ml of dry heptane, was conditioned at 90°C and pressurized with

ethylene up to 4 atm. Then, it was added 9,4 ml of a solution of TIBA 0,64 M in heptane, and 0,391 g (0,015 mmol of Zr) of the catalyst prepared according to example 14. The polymerization reaction was maintained at 90° C and a pressure of 4 atm for 30 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 1,6 g of polyethylene (activity 5,3 x 10^4 g PE/mol M x h x atm).

EXAMPLE 34

[0082] The copolymerization reaction of ethylene/1-hexene was carried out by following the method and the conditions described in example 33, but it was added 9,4 ml of a solution of TIBA 0,64 M, 10 ml of 1-hexene. Then, it was added 0,540 g (0,014 mmol of Zr) of the catalyst prepared according to example 15. The polymerization reaction was maintained at 90°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 2,9 g of polyethylene (activity 2,0 x 10⁵ g PE/mol M x h x atm) with a comonomer content of 2,0% molar.

EXAMPLE 35

10

15

25

30

35

40

50

55

[0083] The copolymerization reaction of ethylene/1-hexene was carried out by following the method and the conditions described in example 33, but it was added 3,6 ml of a solution of TIBA 0,64 M, 10 ml of 1-hexene. Then, it was added 0,226 g (0,0057 mmol of Zr) of the catalyst prepared according to example 16 The polymerization reaction was maintained at 90°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 1,1 g of polyethylene (activity 2 x 10⁵ g PE/mol M x h x atm) with a comonomer content of 1,2% molar.

POLYMERIZATION WITH NON-FUNCTIONALIZED SUPPORTED CATALYSTS

EXAMPLE 36

Copolymerization of ethylene/1-hexene

[0084] The reaction of copolymerization of ethylene with 1-hexene was carried out by following the method and the conditions described in example 27, but it was added 0,144 g (0,0057 mmol of Zr) of the catalyst described in example 17. The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 2,8 g of polyethylene (activity 0,5 x 10⁶ g PE/mol M x h x atm) with a Mw of 157.900, (MWD) of 3,7 and a comonomer content of 1,53% molar.

COMPARATIVE EXAMPLE 37

Polymerization of ethylene

[0085] The polymerization reaction of ethylene was carried out by following the method and the conditions described in example 28, but it was added 0,130 g (0,0057 mmol of Zr) of the catalyst described in example 18. The polymerization reaction was maintained at 70° C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 6,2 g of polyethylene (activity 1,1 x 10^{6} g PE/mol M x h x atm) with a Mw of 327.600 and MWD 2.3.

COMPARATIVE EXAMPLE 38

Polymerization of ethylene

[0086] The polymerization reaction of ethylene was carried out by following the method and the conditions described in example 28, but it was added 2,4 ml of a solution of TIBA 1,34 M in heptane and 0,179 g (0,008 mmol of Zr) of the catalyst prepared according to example 19. The polymerization reaction was maintained at 70°C and a pressure of 4 atm for 15 minutes. At the end of the reaction, the reactor was depressurized and the obtained product was treated with acidified methanol. It was obtained 2,4 g of polyethylene (activity 0,3 x 10⁶ g PE/mol M x h x atm) with a Mw of 86.900 and MWD 4.7.

COMPARATIVE EXAMPLE 39

Copolymerization of ethylene/1-hexene in Autoclave

[0087] The reaction of copolymerization of ethylene with 1-hexene was carried out in an autoclave of a capacity of 2 liters, under anhydrous conditions. The reactor, charged with 1 l of dry isobutane, 124 ml of 1-hexene and 0,6 ml of a solution of TIBA 1,34 M in heptane, was conditioned at a temperature of 90°C. Later, it was added 0,1 g (0,003 mmol of Zr) of the catalyst prepared according to example 8 and the reactor was pressurized with ethylene up to a total pressure of 40 atm. The copolymerization reaction was maintained at 90°C and at a pressure of 40 atm for 60 minutes.

At the end of the reaction, the reactor was depressurized and it was obtained 365 g of polyethylene (activity 5 x 10⁶ g PE/mol M x h x atm) with a Mw of 135.000, MWD of 2, a comonomer content of 1% molar, an bulk density of 0,3 g/cc, a particle medium size of 0,6 mm and a distribution of particles sizes as it is shown in fig. 1.

	Table I		ACTIVITY x 10 ⁶
TYPE OF CATALYST	EXAMPLE	METALLOCENE	ACTIVITY X TO
Homogeneous	20	Me,SiO CI	5,2
Heterogeneous	27		2,4
Homogeneous	<u>.</u>	THISO ME Z. CI	-
Heterogeneous	30	The Co.	4,3
Homogeneous	-		-
Heterogeneous	31		0,6
Homogeneous	- .	Me3SiO Zr CI	· • ·
Heterogeneous	32		1,1
Homogeneous	-	Me B D YCI	-
Heterogeneous	33		0,053
Homogeneous	-	O SI Mr. Mr. Mr. 22 Cl	-
Hatananan	24		0,2
Heterogeneous	34		<u> </u>
Homogeneous	-	TMSO CI	•

Table 1 continued

Het rogeneous	35		0,2
Homogeneous	23	TMSO CI	0,9
		(1.2	
Heterogeneous	-		-
Homogeneous	24	Q _{CI}	8,0
Heterogeneous	36	Za, cı	0,49
Homogeneous	21	Me CI-Si-CI	10
Heterogeneous	28	Ø cı	1,1
Homogeneous	25	Me Me—Si———————————————————————————————————	16,9
Heterogeneous	37	₩.cı	1,1
Homogeneous	22	CI_SI	1,3
Heterogeneous	29	Mc ² CI	0,32
Homogeneous	26	Me Si CI	2,9
Heterogeneous	38	Me ² Zr. _{Cl}	0,3

TMSO = Trimethylsiloxy

Claims

1. Heterogeneous catalytic system obtainable by reacting a porous inorganic support with an alumoxane and subsequently supporting at least one metallocene compound thereon, characterized in that the metallocene compound is defined by the following general formulas:

$(LR_k)_z[LR_{k-f}(R^IOSiR^{II}_3)_f]_xMX_v$

 $(R) \\ (R_3^{\Pi} \text{SiOR}^1) \\ (R_4^{\Pi} \text{SiOR}^1) \\ (R_6^{\Pi} \text{CoSiR}_3^{\Pi})_{a} (R)_{k-a-1} \\ (R_5^{\Pi} \text{SiOR}^1) \\ (R_6^{\Pi} \text{CoSiR}_3^{\Pi})_{g}$

wherein:

10

15

20

25

30

35

40

45

50

55

L, equal to or different from each other, is selected from the group comprising: cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, octahydrofluorenyl or benzoindenyl:

each **R** is independently selected from hydrogen, C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, C_7 - C_{20} alkylaryl, C_8 - C_{20} arylalkenyl, linear or branched, optionally substituted by 1 to 10 halogen atoms, or a group SiR^{II}₃;

each R^I , equal to or different from each other, is a divalent aliphatic or aromatic hydrocarbon group containing from 1 to 20 carbon atoms, optionally containing from 1 to 5 heteroatoms of groups 14 to 16 of the periodic table of the elements and boron; preferably it is: C_1 - C_{20} alkylene. C_3 - C_{20} cycloalkylene, C_6 - C_{20} arylarylene, or alkylarylene, linear or branched or a group SiR^{II}_2 ;

each R^{II} is independently selected from C_1 - C_{20} alkyl , C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, C_7 - C_{20} arylalkyl, C_8 - C_{20} arylalkenyl or C_7 - C_{20} alkylaryl, linear or branched: preferably R^{II} is methyl, ethyl or isopropyl; each \mathbf{Q} is independently selected from B, C, Si, Ge, Sn;

M is a metal of group 3, 4 or 10 of the Periodic Table, Lanthanide or Actinide;

each **X** is independently selected from: hydrogen, chlorine, bromine, OR^{II}, NR^{II}₂, C₁-C₂₀ alkyl or C₆-C₂₀ aryl; L' is N or O;

when L is cyclopentadienyl **k** is equal to 5, when L is indenyl k is equal to 7, when L is fluorenyl or benzoindenyl k is equal to 9, when L is tetrahydroindenyl k is equal to 11 and when L is octahydrofluorenyl, k is equal to 17;

z is equal to 0, 1 or 2;

x is equal to 1, 2 or 3;

y is equal to 1, 2 or 3;

x + y + z is equal to the valence of M;

m is an integer which can assume the values 1, 2, 3 or 4;

a and b are integers whose value ranges from 0 to k-1;

f is an integer whose value ranges from 1 to k;

g is an integer whose value ranges from 0 to 1;

c and e are equal to 0 or 1;

a + b + is at least 1;

 $\mathbf{a} + \mathbf{g} + \mathbf{c}$ is at least 1;

d is equal to 0, 1 or 2;

when \mathbf{Q} is B then $\mathbf{c} + \mathbf{d} = 1$; when \mathbf{Q} is C, Si, Ge or Sn, then $\mathbf{c} + \mathbf{d} = 2$; when \mathbf{L}' is N, then $\mathbf{g} + = 1$; when \mathbf{L}' is O, then $\mathbf{g} = 0$ and $\mathbf{e} = 0$.

5

15

25

30

35

40

- 2. Heterogeneous catalytic system according to claim 1 wherein the group RIOSiRII₃ is selected from CH₂-CH₂-OSiMe₃, CH₂-CH₂-CH₂-OSiMe₃, CH₂-O-CH₂-OSiMe₃, O-CH₂-CH₂-OSiMe₃, SiMe₂-CH₂-CH₂-CH₂-OSiMe₃, SiMe₂-CH₂-CH₂-CH₂-CH₂-OSiMe₃.
- 10 3. Heterogeneous catalytic system according to claims 1-3 wherein M is titanium, zirconium or hafnium.
 - 4. Heterogeneous catalytic system according to claims 1-4 wherein the alumoxane is represented by the formulas:

(RAIO)_n R(R-AI-O)_mAIR₂

wherein R is alkyl or aryl group containing from 1 to 20 carbon atoms; n ranges from 1 to 40, and m ranges from 3 to 40.

- 5. Heterogeneous catalyst system according to claims 1-5 wherein the inorganic support is selected from silica, alumina, silica alumina, aluminium phosphates and mixtures thereof.
 - 6. Heterogeneous catalyst system according to claims 1-6 wherein the content in transition metal is comprised between 0.01 and 3% by weight.
 - Heterogeneous catalyst system according to claim 7 wherein the content in transition metal is comprised between 0.1 and 1% by weight.
 - 8. Process for the polymerization of alpha olefins in slurry or in gas phase characterized by the use of the heterogeneous catalyst system of claims 1-8.
 - 9. Metallocene compounds according to the following formulas:

 $(LR_k)_z[LR_{k-f}(R^IOSiR^{II}_3)_f]_xMX_y$

50

45

wherein:

5

10

20

25

30

35

40

45

L, equal to or different from each other, is selected from the group comprising: cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, octahydrofluorenyl and benzoindenyl;

each **R** is independently selected from hydrogen, C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, C_7 - C_{20} alkylaryl, C_8 - C_{20} arylalkenyl, linear or branched, optionally substituted by 1 to 10

halogen atoms, or a group SiRII3;

each R^I, equal to or different from each other, is a divalent aliphatic or aromatic hydrocarbon group containing from 1 to 20 carbon atoms, optionally containing from 1 to 5 heteroatoms of groups 14 to 16 of the periodic table of the elements and boron; preferably it is: C₁-C₂₀ alkylene, C₃-C₂₀cycloalkylene, C₆-C₂₀ arylene, C₇-C₂₀ alkenyl, C₇-C₂₀ arylalkylene, or alkylarylene, linear or branched, or a group SiR^{II}₂;

each \mathbf{R}^{II} is independently selected from C_1 - C_{20} alkyl , C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl, C_7 - C_{20} arylalkyl, C_8 - C_{20} arylalkenyl or C_7 - C_{20} alkylaryl, linear or branched, preferably \mathbf{R}^{II} is methyl, ethyl or isopropyl,

each Q is independently selected from B, C, Si, Ge, Sn;

M is a metal of group 3, 4 or 10 of the Periodic Table, Lanthanide or Actinide; preferably it is titanium, zirconium or hafnium;

each **X** is independently selected from: hydrogen, chlorine, bromine, OR^{II}, NR^{II}₂, C₁-C₂₀ alkyl or C₆-C₂₀ aryl; L' is N or O

when L is cyclopentadienyl k is equal to 5, when L is indenyl k is equal to 7, when L is fluorenyl or benzoind nyl k is equal to 9, when L is tetrahydroindenyl k is equal to 11 and when L is octahydrofluorenyl, k is equal to 17;

z is equal to 0, 1 or 2;

x is equal to 1, 2 or 3;

y is equal to 1, 2 or 3;

x + y + z is equal to the valence of M;

m is an integer which can assume the values 1, 2, 3 or 4;

a and b are integers whose value ranges from 0 to k-1;

f is an integer whose value ranges from 1 to k;

g is an integer whose value ranges from 0 to 1;

c and e are equal to 0 or 1;

a + b + c is at least 1;

 $\mathbf{a} + \mathbf{g} + \mathbf{c}$ is at least 1;

d is equal to 0, 1 or 2;

when \mathbf{Q} is B then $\mathbf{c} + \mathbf{d} = 1$;

when \mathbf{Q} is \mathbf{C} , \mathbf{Si} , \mathbf{Ge} or \mathbf{Sn} , then $\mathbf{c} + \mathbf{d} = 2$;

when L' is N, then $\mathbf{g} + \mathbf{e} = 1$;

when L' is O, then $\mathbf{g} = 0$ and $\mathbf{e} = 0$.

characterized in that at least one L is a fluorenyl, benzoindenyl or octahydrofluorenyl ring, optionally substituted by C₁-C₂₀ alkyl, C₃-C₂₀ cycloalkyl, C₆-C₂₀ aryl, C₃-C₂₀ alkenyl, C₇-C₂₀ arylalkyl, C₈-C₂₀ arylalkenyl or C₇-C₂₀ alkylaryl.

THIS PAGE BLANK (USPTO)

Fig. 1

THIS PAGE BLANK (USPTO)

EUROPEAN SEARCH REPORT

EP 99 50 0063

		RED TO BE RELEVANT	Relevant	CLASSIFICATION OF THE
Category	Citation of document with inc of relevant passa		to claim	APPLICATION (Int.Cl.6)
P,X	EP 0 839 836 A (REPS 6 May 1998 (1998-05- * examples 7-19 * * claims 1,4,7-9,12- * claim 7 *	-06)	1-7,9,10	C08F10/00 C08F4/602
А	CHRISTOFFERS, JENS E "Stereoselective syr zirconocenes from do donor functionalized helical chelate comp ANGEW. CHEM., INT. E 34(20), 2266-7 CODER 0570-0833, XP0020788	nthesis of chiral publy substituted, if cyclopentadienes via plexes (1995), if aCIEAY; ISSN:	10	
A	WO 97 28170 A (BOREA HENDRIK (FI); NAESM 7 August 1997 (1997- * example 15 *	ALIS AS ;LUTTIKHEDDE AN JAN (FI); LEINO REK) -08-07)	10	
A	EP 0 751 156 A (MIT: 2 January 1997 (1993) * page 21, line 43 * * page 27, line 8 * * page 27, column 3	*	10	TECHNICAL FIELDS SEARCHED (Int.CI.6)
	The present search report has	been drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	23 August 1999	Fis	scher, B
X:pa Y:pa do A:te	CATEGORY OF CITED DOCUMENTS inflicularly relevant if taken alone inflicularly relevant if combined with anot current of the same category chnological background on-written disclosure	E ; earlier patent do after the filing di ther D : document cited t · document cited	ocument, but pub ale in the application for other reasons	lished on Or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 50 0063

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-08-1999

-	atent document d in search repo	-	Publication date		Patent family member(s)	Publication date
EP	0839836	Α	06-05-1998	JP NO	10226709 A 975049 A	25-08-19 04-05-19
WO	9728170	Α	07-08-1997	FI AU CN CZ EP	960437 A 1548597 A 1214687 A 9802294 A 0880534 A	31-07-19 22-08-19 21-04-19 16-12-19 02-12-19
EP	0751156	A	02-01-1997	CA CN JP US	2179371 A 1139676 A 9071616 A 5698651 A	08-01-19 18-03-19

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82