Virologie 5: Impfstoffe und antivirale Medikamente

Prof. Dr. Alexandra Trkola

Institut für Medizinische Virologie, Universität Zürich

Alexandra Trkola

Medizinische Fakultät

Medizinische Fakultät

Virologie 5: Impfstoffe und antivirale Medikamente

Lernziele der Lektion

- 1. Sie können die Funktionsweise von Impfstoffen gegen Viren erläutern.
- 2. Sie können die Prinzipien der antiviralen Impfstoffentwicklung erläutern.
- 3. Sie können Angriffspunkte und Wirkweise prototypischer antiviraler Medikamente benennen.
- 4. Sie können die Prinzipien und Problematik der Resistenzbildung gegen antivirale Medikamente aufzählen.

5.10.2022 Alexandra Trkola Seite 3

Themen der heutigen Vorlesung

- Arten der Impfstoffe
- Wirkung der Impfstoffe
- Antivirale Medikamente

Geschichte der Impfstoffentwicklung

Geschi	chte der Vakzinentwicklung
1000	Variolation in China (Impfung mit Pockenvirus, small pox)
1721	Lady Montague bringt Variolation nach England
1796	Vakzinierung gegen Pocken (mit Kuhpockenvirus) durch Jenner
1885	Tollwut-Vakzine entwickelt (Pasteur)
1938	Gelbfieber Vakzine (Thieler)
1954	Polio Vakzine entwickelt (Salk)
1979	World Health Organization (WHO) erklärt Pockenvirus für eliminiert
2006	Papillomavirus-Vakzine eingeführt

Erster Impfstoff: 1796 Edward Jenner, Verwendet Kuhpockenvirus zur Vakzinierung gegen Pocken (Variola)

History of vaccines/time line

https://www.historyofvaccines.org/timeline/all

Derzeit verwendete antivirale Impfstoffe wirken durch Antikörper

- Fokus der Impfstoffentwicklung ist daher immer zuerst auf Antikörper
- Antikörper können über verschiedene Mechanismen wirken
- Verbesserte Wirkung der Impfstoffe durch Induktion zellulärer Immunität ist Ziel

Virus	Type of vaccine	Vaccine-induced protective immunity	Mechanisms of immune control during virus infection
Smallpox	Live	Antibodies, CTL	CTL
Rabies	Killed virus	Antibodies	Antibodies, CD4, CTL
Polio	Live or killed virus	Antibodies	Antibodies
Measles	Live	Antibodies ; CTL	Antibodies, CD4, CTL
Mumps	Live	Antibodies	Antibodies
Rubella	Live	Antibodies	Antibodies
Varicella zoster	Live	Antibodies ; CTL	Antibodies, CTL
Influenza	Protein	Antibodies	Antibodies, CD4, CTL
Hepatitis A	Killed virus	Antibodies	Antibodies, CD4, CTL
Hepatitis B	Protein	Antibodies	Antibodies, CD4, CTL
Human papillomavirus	VLP	Antibodies	CD4, CTL
Hepatitis C	?	?	CD4, CTL
CMV	?	?	CD4, CTL
EBV	?	?	CD4, CTL
HSV-1 and -2	?	?	CTL
HIV-1 and HIV-2	?	?	CD4, CTL, Antibodies
HHV-6			Antibodies, T cells

Immunisierung kann aktiv oder passiv erfolgen

Aktive Impfung

- Impfstoff enthält Antigen
- Impfstoff ruft Immunantwort hervor

Passive Immunisierung

- Keine Impfung; keine Immunreaktion
- Antikörper werden verabreicht
 - Immunglobulin-Präparationen
 - Antikörper von Mutter auf Kind übertragen

Arten der Impfstoffe

Lebendimpfstoffe (replizieren)

- Attenuiertes virus (live attenuated virus)
- Rekombinante virale Vektoren
- Rekombinante bakterielle Vektoren

Totimpfstoffe (replizieren nicht)

- Inaktiviertes Virus (whole inactivated virus)
- Inaktiviertes Virus/aufgereinigte Subunits
- Subunit/Rekombinantes Protein
- Synthetische Peptide
- Virus like Particle (VLP)
- DNA
- mRNA, self-amplifying RNA

Welcher Impfstoff ist zu bevorzugen?

Totimpfstoff

- Inaktivierte Viruspräparationen oder Subunit-Impfstoffe werden zur Impfung verwendet
- Nachteile:
 - Initiale Immunantwort niedrig (keine Vermehrung, geringe Pattern recognition)
 - Booster Impfungen und Adjuvant notwendig

Killed virus vaccine Initial dose dose dose Third dose

Lebendimpfstoff

- Attenuiertes Virus, das nur schwach repliziert
- Ruft starke humorale und zelluläre Immunantwort (Aktivierung durch Pattern recognition!) hervor
- Nachteile:
 - kann bei Immunsuppression nicht verwendet werden (Gefahr Infekt).
 - Lagerung schwieriger.
 - Bei Produktion exaktes Monitoring notwendig damit Rückmutation zu virulentem Virus ausgeschlossen ist.

Arten der Impfstoffe am Beispiel HIV

Influenza Impfstoffe

Heute: Subunits aufgereinigt von inaktiviertem Virus

Zukunft: Rekombinant, virale Vektoren, DNA, mRNA

Lambert et al. N Engl J Med 2010

Die Übertragbarkeit eines Virus wirkt sich auf die Impfstrategie aus

Basic reproductive number: Ro

- R₀ eines Pathogens gibt die Anzahl der Personen an, die eine einzelne infizierte Person durchschnittlich ansteckt.
- R₀ < 1: die Infektion stirbt relativ rasch aus
 R₀ > 1 die Infektion verbreitet sich
- Essenziell: R₀ < 1 erreichen durch Isolation oder Impfung

Wie hoch muss Impfrate sein, damit eine Population geschützt ist ?

Herd immunity: abhängig von Ro

je höher R₀, desto mehr Menschen müssen geimpft sein, damit Verbreitung gestoppt werden kann

Geschätzte Herd Immunity thresholds für Impfstoffe

Disease	Transmission	R _o	Herd immunity threshold
Masern	aerogen	12–18	83–94%
Mumps	aerogen	4–7	75–86%
Polio	fäkal-oral	5–7	80–86%
Rubella	aerogen	5–7	83–85%
Pocken	soziale Kontakte	6–7	83–85%

Epid Rev 1993;15: 265-302, Am J Prev Med 2001; 20 (4S): 88-153, MMWR 2000; 49 (SS-9); 27-38

Wie gut muss ein Impfstoff sein, um Wirkung zu zeigen?

Figure 1. Number of Global New HIV Infections by Year and Vaccine: Current Trends Scenario (2020-2030)

Scenario	Vaccine effectiveness	Population coverage		
No Vaccine	n/a	n/a		
Low	50%	30%		
Medium	70%	40%		
High	90%	40%		

Source: IAVI

WHO Ziel: Eliminierung des Masernvirus

- Hohe Deckung der Bevölkerung mit Impfschutz notwendig, damit Viruseliminiert werden kann.
- Eliminierung möglich, weil Masernvirus nur im Menschen replizieren kann (hat kein anderes Reservoir).
- Vermehrtes Auftreten zusammen mit HIV Infektion
- Vermehrtes Auftreten in Europa (Impfgegner)

opyright © 2006 Nature Publishing Group Nature Reviews | Microbiology

Moss and Griffin Nature Reviews Microbiology 4, 900 – 908 (December 2006) | doi:10.1038/nrmicro1550

Impfstoffe wirken!

Masernfälle pro Million Einwohner in den USA vor und nach Einführung der Masernimpfung

Robert Rhode https://youtu.be/p0x13N6WYY0

Hürden

- Angst vor Impfung
- Impfzögerer und Gegner
- Wenige Impfstoffe entwickelt
- Gesundheitssysteme

Edward Jenner verwendet 1796 Kuhpockenvirus zur Vakzinierung gegen Pocken (Variola)

Viren als Werkzeuge: Gene and Cargo delivery

- Viren werden in Medizin und Forschung als Vektoren verwendet
- Wichtig f
 ür Impfstoffe und Therapien
- Viren sind nützliche Vehikel, weil sie leicht modifiziert werden können, je nach Bedarf:
- Replikation Ja/Nein
- Integration Ja/Nein
- Antigen presentation
- Re-targeting
- Payload

Modifikation von Viren für Impfstoffe und therapeutische Zwecke

a) Entry re-targeting

- Viren müssen an bestimmte Zielzellen dirigiert werden
- Hüllproteine müssen durch passenden Liganden für gewünschten Zellrezeptor ersetzt werden (z.B. Antikörper)

b) Immune evasion

- pre-exsitierende Immunität gegen virale Vektoren würde rasch zur Elimination führen
- Engineering der Virusoberfläche, notwendig damit es von Immunsystem nicht erkannt wird (z.B. andere Oberflächenprotein, verstärkte Glykosylierung)

c) Veränderte Viruseigenschaften

 z.B. zu Optimierung der Expression des Fremdgens im Gewebe

Ex vivo Gentherapie mit viralen Vektoren

1. Entnahme von Patientenzellen

3. Infektion der Leukapheresis removes immune Zellen Bioreactor generates patient's blood vector supernatant ex vivo, Expansion Counterflow centrifugal elutriation enriches the product for the lymphocytes by separating the und cells by size Leukocytes are washed out Producer cell line of the apheresis buffer in a cell washer such as Rückführung in (assemble the vector) the Haemonetics Cell Saver **Patienten** Viral vector Centrifuge concentration LENTIVIRUS (leukapheresis buffer, Viral vector anticoagulants) Monocytes and purification residual red blood Final product cells and platelets are removed from the product Oft werden Lentiviren verwendet (HIV https://bioprocessintl.com/manufacturing/cell-therapies/cell-delivered-gene-Viren), da diese sich gut in DNA einbauen therapy-viral-vector-manufacturing-method-widen-applicability/

2. Production viraler Vektor

CAR-T Zell Therapie verwendet lentivirale Vektoren

Antikörpertherapie mit virale Vektoren?

Antikörper können auf drei Arten in Therapie und Prävention eingesetzt werden

- 1. Passive Immunisierung
- Konventioneller Impfstoff
 De novo Produktion durch
 Gentherapie oder virale
 Vektoren

Antivirale Medikamente

Rascher Anstieg seit 1987 ausgehend von Erfolg bei HIV (AZT)

Antivirale Medikamente nur für wenige Viren verfügbar

Sher viele Medikamente gegen HIV

Antivirale Medikamente

Virus-gerichtet

- Greifen im Viruslebenszyklus an
- Sind spezifisch gegen Virusreplikation gerichtet, ohne zelluläre Mechanismen zu beeinflussen
- Gefahr der Zellschädigung potenziell geringer

Gefahr, dass Virus mutiert ist geringer

Wirtszell -gerichtet

- können breit wirksam sein
 Chance, dass Resistenzentwicklung weniger
 Möglichkeiten hat
- Nebenwirkungen sind eher möglich

Wirkmechanismen antiviraler Medikamente

Virale Enzyme sind gute Angriffspunkte für Medikamente

- Greifen im Viruslebenszyklus an
- Sind spezifisch gegen
 Virusreplikation gerichtet,
 ohne zelluläre
 Mechanismen zu
 beeinflussen

HIV-1 Medikamente

Derzeit angewandte Antivirale Medikamente greifen hauptsächlich die viralen Enzyme an

Sie unterdrücken Virusreplikation erfolgreich

Medikamente müssen lebenslang genommen werden (Latenz von HIV)

Problematisch (adherence, Nebenwirkungen)

Was ist der Wirkmechanismus der Enzyme-Inhibitoren?

Greifen sie das Enzyme direkt an?

Stellen sie falsches Substrat?

Reverse transcriptase (RT) targeting Medikamente:

Greifen RT direkt an

Non-Nukleoside RT Inhibitors

Stellen falsches Substrat

Nukleoside and Nukleotide RT inhibitors

Hemmung der Protease verhindert Reifung von HIV

- Gag-Pol Polyprotein ist im immature (unreifen) Partikel noch nicht in die Einzelproteine gespalten
- Spaltung erfolgt erst im Partikel durch die virale Protease
- Durch Hemmung der Protease können Partikel nicht reifen, HIV ist nicht infektiös im immature Status

Trotz Erfolg der HIV-1 Medikamente – Entwicklung geht weiter

Behandlunsgmöglichkeit für resistente Viren

Long-lasting

Höhere Potent - niedrigere Dosierung - weniger Nebenwirkungen

Neue Inhibitoren, die das latent Reservoir reduzieren

Cure HIV-1

Enzyminhibitoren: Neuraminidase-Inhibitoren blockieren Influenza A

Viren können rasch Resistenzen zu antiviralen Medikamenten ausbilden und diese übertragen

Resistenz zu Influenza Medikamenten

Medikamente werden für Pandemie-Einsatz gebraucht (Prophylaxe)

* The H275Y strain of H1N1 pandemic virus is transmissible in ferrets but reduced in mixed populations (ref. 9).

NA: neuraminidase polymerase acidic (PA) subunit of the heterotrimeric polymerase

Was Sie aus dieser Vorlesung mitnehmen sollten

- ☐ Die derzeitig vorhandenen Impfstoffe gegen Viren schützen durch spezifische Antikörper
- Es gibt verschiedenste Prinzipien der Impfstoffentwicklung
- ☐ Viren werden auch für therapeutische Zwecke eingesetzt
- Es gibt nur für wenige Viren zugelassene antivirale Medikamente
- □ Antiviral wirksame Medikamente k\u00f6nnen das Virus direkt oder Wirtszellfaktoren inhibieren.
- ☐ Drug Resistance bleibt ein grosses Problem

Fragen zur Vorlesung?

Anhang

 Folien im Anhang sind zum Nachschlagen für Interessierte gedacht.

Kein Prüfstoff in dieser Vorlesungsreihe

Impfplan – Empfehlungen BAG

Bundesamt für Gesundheit

Tabelle 1: Synopsis Schweizerischer Impfplan 2024

Empfohlene Basisimpfungen und ergänzende Impfungen durch EKIF/BAG

✓ Impfstatus kontrollieren und ggf. nachimpfen.

	Säugling	ge, Kind	er und J	lugendli	che						Erwachs	sene	
Alter*	Monate Jahre												
Impfung	Geburt	2	3**	4	5**	9	12***	12-18	4-7	11-14/15	25	45	≥65
DTP		DTPa		DTPa			DTP _a		DTP _a /dTp _a	dTpa	dTp _a ^{11) 12)}	dT 11) 12)	dT 11) 12)
Polio		IPV		IPV			IPV		IPV	✓ 8)	✓	✓	1
Hib		Hib		Hib			Hib	√ 4)					
Hepatitis B	1)	HBV		нву			нву			(HBV) 9)	√ 13)	√ 13)	√ 13)
Pneumokokken P		PCV		PCV			PCV	√ 4)					PCV 14
Rotaviren		RV 2)		RV 2)									
Men. B			В		В			B 5)		B 5)			
Men. ACWY								ACWY 5)		ACWY 5)			
MMR						MMR 3)	MMR 3)	√ 6)	√ 6)	√ 6)	√ 6)	√ 6)	
Varizellen						VZV	VZV	√7)	√ 71	√ 7)	√7)	√ 7)	
HPV										HPV 10)	(HPV) 10)		
Herpes Zoster													HZ 15)
Influenza													jährlich ¹⁶

Aktuell in der Schweiz verfügbare Impfstoffe: siehe www.infovac.ch

https://www.bag.admin.ch/bag/de/home/gesund-leben/gesundheitsfoerderung-und-praevention/impfungen-prophylaxe/richtlinien-empfehlungen-impfungen-prophylaxe.html

Kombinationsimpfung

Impfplan – Empfehlungen BAG für Personen mit erhöhtem Expositionsrisiko Tabelle 8

Empfohlene Impfungen für Bevölkerungsgruppen mit einem erhöhten Expositionsrisiko und/oder Übertragungsrisiko für spezifische Erreger

Stand 2024

	Hepatitis A	Hepatitis B	Varizellen	Influenza	Pneumokokken	Meningokokken A,C, W, Y und B	Pertussis	FSME	Tollwut
Beschäftigte im Gesundheitswesen ¹⁾	X ²⁾	×3)	×	×			×4)		
Schwangere Frauen und Personen mit regelmässigem Kontakt beruflich/familiär) zu Säuglingen <6 Monaten				×			×		
Laborpersonal mit möglichem Expositionsrisiko	×2)	×2)	×2)		×2)	×2)			×2)
Familienangehörige von Personen mit einem erhöhten Risiko			×	×			×4)		
Enge Kontaktpersonen von Erkrankten	×	×				×			
Bewohnende und Personal von Pflegeheimen und Einrichtungen ür Personen mit chronischen Erkrankungen				×					
Menschen mit geistigen Beeinträchtigungen in Heimen und das Betreuungspersonal		×							
Drogenkonsumierende und deren Kontaktpersonen	×	×							
Personen mit häufig wechselnden Sexualpartnern		×							
Männer mit sexuellen Kontakten zu Männern 1)	×	×							
Personen mit einer sexuell übertragbaren Krankheit		×							
Hämodialysepatientinnen und -patienten		×							
Hämophile Personen		×							
Sozialarbeiterinnen und -arbeiter, Gefängnispersonal und Polizeiangestellte mit häufigem Kontakt zu Drogenkonsumierenden		×							
Personen in Haft		×							
Personen aus Ländern mit hoher oder intermediärer Hepatitis-B-Endemizität		×							
Kinder aus Ländern mit mittlerer und hoher Endemizität, die in der Schweiz leben und für einen vorübergehenden Aufenthalt in ihr Herkunftsland zurückkehren	×								
Personen mit engem Kontakt zu Personen aus Ländern mit hoher Endemizität	×2)								
Kanalisationsarbeitende und Angestellte von Kläranlagen	×								
Rekruten/Rekrutinnen						×			
Erwachsene und Kinder (im Allgemeinen ab 6 J.), die in einem Risikogebiet wohnen oder sich zeitweise dort aufhalten und Zecken-exponiert sind								×	
Fierärztinnen und -ärzte (inkl. Studierende, Praxisangestellte); Personal in Laboratorien mit Tollwut-Diagnostik, Tollwutforschungslaboratorien und Tollwut- mpfstoff-Produktionslaboratorien									×
Fierpflegerinnen und -pfleger, Tierhändlerinnen und -händler, Fierseuchenpolizistinnen und -polizisten									×
Fledermausforschende und -schützende									×

¹⁾ Für spezifische Personen innerhalb dieser Gruppe wird die Impfung gegen Mpox empfohlen, siehe Mpox (Affenpocken)

²⁾ Gemäss Expositionsrisiko

³ Siehe Algorithmus zur Hepatitis-B-Impfung bei Beschäftigten im Gesundheitswesen (Kapitel 3.3.b)

⁴⁾ Bei Arbeit auf Säugling-/Neonatalstationen oder mit regelmässigem Säuglingskontakt im Alter < 6 Monate

Antiviral Medikamente

Antiviral Drug Approvals 1987-2017

FDA Approval of HIV Medicines

1981: First AIDS cases are reported in the United States.

1985-89	1990-94	1995-99	2000-04	2005-09	2010-14	2015-19	2020-24
1987 Zidovudine (NRTI)	1991 Didanosine* (NRTI) 1992 Zalcitabine* (NRTI) 1994 Stavudine* (NRTI)	1995 Lamivudine (NRTI) Saquinavir Mesylate* (PI) 1996 Indinavir* (PI) Nevirapine (NNRTI) Ritonavir (PI) 1997 Combivir* (FDC) Delavirdine* (NNRTI) Nelfinavir* (PI) Saquinavir* (PI) 1998 Abacavir (NRTI) Efavirenz (NNRTI) 1999 Amprenavir* (PI)	2000 Didanosine EC* (NRTI) Kaletra (FDC) Trizivir* (FDC) 2001 Tenofovir DF (NRTI) 2002 Stavudine XR* (NRTI) 2003 Atazanavir (PI) Emtricitabine (NRTI) Enfuvirtide (FI) Fosamprenavir* (PI) 2004 Epzicom* (FDC) Truvada (FDC)	2005 Tipranavir* (PI) 2006 Atripla* (FDC) Darunavir (PI) 2007 Maraviroc (CA) Raltegravir (INSTI) 2008 Etravirine (NNRTI)	2011 Complera (FDC) Nevirapine XR (NNRTI) Rilpivirine (NNRTI) 2012 Stribild (FDC) Truvada (PrEP) 2013 Dolutegravir (INSTI) 2014 Cobicistat (PE) Elvitegravir* (INSTI) Triumeq (FDC)	2015 Evotaz (FDC) Genvoya (FDC) Prezcobix (FDC) 2016 Descovy (FDC) Odefsey (FDC) 2017 Juluca (FDC) Raltegravir HD (INSTI) 2018 Biktarvy (FDC) Cimduo (FDC) Delstrigo (FDC) Doravirine (NNRTI) Ibalizumab-uiyk (PAI) Symfi (FDC) Symfi Lo (FDC) Symtuza (FDC) Temixys* (FDC) 2019 Dovato (FDC) Descovy (PrEP)	Postemsavir* (AI) Tivicay PD (INSTI) 2021 Cabenuva (FDC) Cabotegravir (INSTI) Cabotegravir (PrEP) 2022 Triumeq PD (FDC) Lenacapavir (CI) 2024 Rilpivirine PED (NNRTI)

Drug Class Abbreviations:

Al: Attachment Inhibitor; CA: CCR5 Antagonist; CI: Capsid Inhibitors; FDC: Fixed-Dose Combination; FI: Fusion Inhibitor; INSTI: Integrase Inhibitor; NNRTI: Non-Nucleoside Reverse Transcriptase Inhibitor; NRTI: Nucleoside Reverse Transcriptase Inhibitor; PE: Pharmacokinetic Enhancer; PI: Protease Inhibitor; PAI: Post-Attachment Inhibitor; Prep: Pre-exposure prophylaxis

*Note: Approvals are for HIV treatment, unless otherwise indicated. Drugs in gray are no longer available and/or are no longer recommended for use in the United States by the HHS HIV/AIDS medical practice guidelines. These drugs may still be used in fixed-dose combination formulations. Fixed-dose combination brand products in gray may be available as generics.

Welches Medikament eignet sich wofür?

Einfache Verabreichung wichtig für compliance

- Oral
 - Once daily
 - o Once weekly
 - Combination Drugs (Einzeltablette statt mehrere)
- Infusion und Injektion nicht geeignet für Langzeittherapie

Produktionskosten

Lagerung (cold chain)

Easy oral application

Cost effective

Comparatively high production costs

Different ways of application:
- Intravenous
- Controlled release devices
- Vectorized delivery (gene)

Application: Injection

Application: Injection