MAthesis

Contents

Boxplots (continental (n) vs. Island (y) species)		
paleoTS analysis	13	
all (continental and insular)	. 13	
continental (excluding insular species)	. 16	
insular (excluding continental) $\dots \dots \dots$. 19	
play with time bins: no bins	. 22	
larger time bins	. 28	
per continent	. 31	

Table 1: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

bin	EpochBins	MeanBins	nIndividuals	nSpecies	nGenera
(0,0.0117]	Modern	0.00585	252	64	18
(0.0117, 0.126]	Upper Pleistocene	0.06885	47	16	8
(0.126, 0.781]	Middle Pleistocene	0.45350	48	11	6
(0.781, 2.59]	Lower Pleistocene	1.68450	73	27	11
(2.59, 3.6]	Upper Pliocene	3.09400	23	15	9
(3.6, 5.33]	Lower Pliocene	4.46600	29	17	8
(5.33,11.6]	Upper Miocene	8.47000	52	23	9
(11.6,16]	Middle Miocene	13.78900	38	17	11
(16,23]	Lower Miocene	19.50000	25	13	9
(23,50]	Oligocene and Eocene	36.51500	7	5	5

Figure 1: Map displaying all fossil occurrences of testudinids, with color indicating whether relevant literature was available (black if not) and if it was, whether body size data was available or not (yes and no, respectively).

Figure 2: Map displaying all localities for which body size data for testudinids was available in the literature. Size of points denotes sample size, color denotes approximate age.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Figure 3: Distribution of body size data, logtransformed, all data.

- ## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
- ## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Figure 4: Distribution of body size data per time bin, logtransformed.

Figure 5: Distribution of body site data of continental (n) and insular(y) species, logtransformed.

Table 2: General statistics of body size data: all, per time bin, insular and continental

nCL	min	max	var	mean	$\log m$	med	$\log med$	skew	logsk	kurt	logku	Variable
573	80.00	2500	146793.95	419.2	2.5	270.0	2.4	2.30	0.70	9.25	2.84	all
251	80.00	1300	67716.64	328.9	2.4	242.0	2.4	1.85	0.60	5.91	2.73	Modern
46	102.44	1250	69637.75	438.4	2.6	331.1	2.5	1.30	0.29	3.89	2.69	Upper Pleistocene
47	132.00	1500	64523.61	357.3	2.5	285.6	2.5	2.99	1.58	12.00	5.93	Middle Pleistocene
71	107.80	2000	176257.96	417.4	2.5	224.1	2.4	2.08	1.06	6.77	2.99	Lower Pleistocene
20	165.00	1600	269797.71	636.6	2.7	440.5	2.6	0.96	0.29	2.38	1.78	Upper Pliocene
24	176.00	2500	516172.48	953.5	2.8	847.5	2.9	1.08	-0.31	3.32	2.13	Lower Pliocene
49	107.00	2100	274774.35	542.8	2.6	250.0	2.4	1.46	0.66	4.00	2.17	Upper Miocene
34	111.00	1500	169511.65	454.8	2.5	255.0	2.4	1.32	0.83	3.16	2.29	Middle Miocene
24	160.00	1100	81679.97	425.8	2.5	317.0	2.5	1.20	0.48	3.25	2.06	Lower Miocene
7	275.00	635	15613.99	453.2	2.6	412.5	2.6	0.29	-0.17	2.06	2.36	Oligocene and Eocene
434	81.00	2500	137816.81	375.5	2.5	250.0	2.4	2.90	1.08	12.62	3.97	continental
139	80.00	2000	151260.27	555.7	2.6	466.0	2.7	1.08	-0.24	4.33	2.01	insular

Boxplots (continental (n) vs. Island (y) species)

Warning: Removed 9 rows containing missing values (geom_pointrange).

Fossil genera, CL, per Reference

Figure 6: Sampling Accumulation Curve of fossil genera per reference

Figure 7: Boxplots of generic mean CL per time bin, including mean and sd CL for each genus (as pointrange).

Figure 8: Boxplots of each genus per time bin, continental vs. insular species.

 $\mbox{Figure 9: Boxplot continental vs. insular, genera summarised } \\$

Figure 10: Boxplot continental vs. insular, genera summarised

paleoTS analysis

all (continental and insular)

individuals (all)

Figure 11: individuals, including island species

 $\label{thm:condition} \mbox{Table 3: Model-fitting results for testudinidae, individuals, including island species}$

	$\log L$	K	AICc	Akaike.wt
GRW	-68.07841	2	141.8711	0.008
URW	-68.07845	1	138.6569	0.040
Stasis	-63.29025	2	132.2948	0.952

Figure 12: paleoTS plot with species mean, including island species

Table 4: Model-fitting results for testudinidae, species, including island species

	$\log L$	K	AICc	Akaike.wt
GRW	-56.73574	2	119.4715	0.145
URW	-56.93847	1	116.4484	0.656
Stasis	-56.41523	2	118.8305	0.199

Figure 13: paleoTS plot with genus mean, including island species

 $\label{thm:condition} \begin{tabular}{ll} Table 5: Model-fitting results for testudinidae, genera, including island species \end{tabular}$

	$\log L$	K	AICc	Akaike.wt
GRW	-64.79973	2	135.3137	0.164
URW	-64.86224	1	132.2245	0.768
Stasis	-65.68705	2	137.0884	0.068

continental (excluding insular species)

individuals (continental)

Figure 14: individuals, excluding island species

Table 6: Model-fitting results for testudinidae, individuals, excluding island species

	$\log L$	K	AICc	Akaike.wt
GRW	-70.13728	2	145.9888	0.018
URW	-70.14070	1	142.7814	0.090
Stasis	-66.24073	2	138.1957	0.892

Figure 15: paleoTS plot with species mean, excluding island species

Table 7: Model-fitting results for testudinidae, species, excluding island species

	$\log L$	K	AICc	Akaike.wt
GRW	-60.94204	2	127.8841	0.019
URW	-62.39001	1	127.3515	0.025
Stasis	-57.04727	2	120.0945	0.955

Figure 16: paleoTS plot with genus mean, excluding island species

Table 8: Model-fitting results for testudinidae, genera, excluding insular species

	$\log L$	K	AICc	Akaike.wt
GRW	-65.96537	2	137.6450	0.172
URW	-66.03667	1	134.5733	0.799
Stasis	-67.73195	2	141.1782	0.029

insular (excluding continental)

individuals (insular)

Figure 17: individuals, excluding continental species

Table 9: Model-fitting results for testudinidae, individuals, only insular species

	$\log L$	K	AICc	Akaike.wt
GRW	-62.23202	2	131.4640	0.000
URW	-52.89195	1	108.5839	0.999
Stasis	-58.14309	2	123.2862	0.001

Figure 18: paleoTS plot with species mean, only insular species

 $\label{thm:continuous} \mbox{Table 10: Model-fitting results for testudinidae, species, only insular species}$

	$\log L$	K	AICc	Akaike.wt
GRW	-60.94204	2	127.8841	0.019
URW	-62.39001	1	127.3515	0.025
Stasis	-57.04727	2	120.0945	0.955

Figure 19: paleoTS plot with genus mean, only insular species

 $\label{thm:continuous} \mbox{Table 11: Model-fitting results for testudinidae, genera, only insular species}$

	$\log L$	K	AICc	Akaike.wt
GRW	-60.79557	2	128.5911	0
URW	-67.79820	1	138.3964	0
Stasis	-52.91882	2	112.8376	1

play with time bins: no bins

 $\label{thm:condition} \mbox{Table 12: Model-fitting results for testudinidae, genera, only insular species}$

	$\log L$	K	AICc	Akaike.wt
GRW	-6491.7067	2	12987.54	0
URW	-6564.3336	1	13130.71	0
Stasis	-817.7247	2	1639.58	1

Table 13: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

tt	mm	VV	nn
0.00025	312.3935	59397.2190	240
0.50025	443.0221	92434.1831	106
1.50000	408.7154	166210.0663	65
2.50000	511.5214	250980.0218	14
3.50000	855.4545	491968.4502	22
4.50000	856.8167	442457.0942	12
5.50000	898.4286	665399.2857	7
6.50000	1066.6667	685833.3333	3
7.50000	169.3333	290.0833	3
8.50000	439.0000	143244.5625	25
9.50000	1200.0000	0.0000	1
10.50000	633.0000	182138.8440	6
11.50000	225.6000	24395.8000	5
12.50000	297.8450	95170.7552	20
13.50000	904.3333	420956.3333	3
14.50000	662.1286	187942.8824	7
15.50000	553.3333	192533.3333	3
16.50000	532.6600	183446.2780	5
17.50000	410.2308	80269.6923	13
18.50000	405.0000	2450.0000	2
19.50000	353.5000	32382.3333	4
23.50000	406.2500	78.1250	2
25.50000	450.0000	0.0000	1
32.50000	275.0000	0.0000	1
33.50000	400.0000	0.0000	1
49.50000	617.5000	612.5000	2

Table 14: Model-fitting results for testudinidae, equal time bins, individuals

	$\log L$	K	AICc	Akaike.wt
GRW	-181.0860	2	366.7174	0.001
URW	-182.5837	1	367.3413	0.001
Stasis	-174.2101	2	352.9656	0.998

Table 15: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

tt	mm	VV	nn
0.00025	397.6667	96349.541	58
0.50025	561.9257	113439.136	27
1.50000	620.6031	318426.391	23
2.50000	505.6300	220722.247	10
3.50000	685.2500	336444.138	11
4.50000	951.2000	525502.647	9
5.50000	803.6250	719333.562	4
6.50000	1066.6667	685833.333	3
7.50000	174.2500	435.125	2
8.50000	659.7000	290503.185	9
9.50000	1200.0000	0.000	1
10.50000	633.0000	182138.844	6
11.50000	328.5000	58824.500	2
12.50000	498.0192	226588.614	7
13.50000	904.3333	420956.333	3
14.50000	576.6500	161906.135	6
15.50000	553.3333	0.000	1
16.50000	532.6600	183446.278	5
17.50000	428.2292	49344.877	4
18.50000	405.0000	0.000	1
19.50000	377.3333	44841.333	3
23.50000	406.2500	0.000	1
25.50000	450.0000	0.000	1
32.50000	275.0000	0.000	1
33.50000	400.0000	0.000	1
49.50000	617.5000	0.000	1

 $\label{thm:condition} \begin{tabular}{ll} Table 16: Model-fitting results for testudinidae, equal time bins, individuals \end{tabular}$

	$\log L$	K	AICc	Akaike.wt
GRW	-177.3909	2	359.3272	0.011
URW	-178.7626	1	359.6991	0.010
Stasis	-172.9454	2	350.4363	0.979

Table 17: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

tt	mm	vv	nn
0.00025	335.6380	49292.698	17
0.50025	547.6849	98246.139	12
1.50000	558.2001	194613.806	11
2.50000	627.7867	235547.641	5
3.50000	758.8929	285072.539	7
4.50000	961.8833	621030.522	6
5.50000	1020.0000	797671.000	3
6.50000	850.0000	845000.000	2
7.50000	174.2500	435.125	2
8.50000	770.9667	229304.487	6
9.50000	1200.0000	0.000	1
10.50000	527.1000	143534.355	5
11.50000	328.5000	58824.500	2
12.50000	602.1210	291476.249	5
13.50000	904.3333	420956.333	3
14.50000	624.4800	183271.727	5
15.50000	553.3333	0.000	1
16.50000	532.6600	183446.278	5
17.50000	366.5238	41915.395	3
18.50000	405.0000	0.000	1
19.50000	377.3333	44841.333	3
23.50000	406.2500	0.000	1
25.50000	450.0000	0.000	1
32.50000	275.0000	0.000	1
33.50000	400.0000	0.000	1
49.50000	617.5000	0.000	1

Table 18: Model-fitting results for testudinidae, equal time bins, individuals

	$\log L$	K	AICc	Akaike.wt
GRW	-179.4504	2	363.4462	0.008
URW	-178.8180	1	359.8099	0.051
Stasis	-174.7233	2	353.9921	0.940

larger time bins

Table 19: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

tt	mm	vv	nn
0.5	404.7783	74680.998	21

nn ——	VV	mm	tt
11	194613.806	558.2001	1.5
5	235547.641	627.7867	2.5
7	285072.539	758.8929	3.5
6	621030.522	961.8833	4.5
3	797671.000	1020.0000	5.5
2	845000.000	850.0000	6.5
2	435.125	174.2500	7.5
6	229304.487	770.9667	8.5
1	0.000	1200.0000	9.5
5	143534.355	527.1000	10.5
2	58824.500	328.5000	11.5
5	291476.249	602.1210	12.5
3	420956.333	904.3333	13.5
5	183271.727	624.4800	14.5
1	0.000	553.3333	15.5
5	183446.278	532.6600	16.5
3	41915.395	366.5238	17.5
1	0.000	405.0000	18.5
3	44841.333	377.3333	19.5
1	0.000	406.2500	23.5
1	0.000	450.0000	25.5
1	0.000	275.0000	32.5
1	0.000	400.0000	33.5
1	0.000	617.5000	49.5

 $\label{thm:condition} \mbox{Table 20: Model-fitting results for testudinidae, equal time bins,} \\ \mbox{individuals}$

	$\log L$	K	AICc	Akaike.wt
GRW	-172.6279	2	349.8272	0.036
URW	-172.9972	1	348.1763	0.082
Stasis	-169.4260	2	343.4234	0.882

per continent

Africa, individuals

Table 21: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	VV	nn	mm
0.0000005	176705032.40	111	848.6396
0.0058500	84989.64	113	315.7257
0.4535000	0.00	1	132.0000
1.6845000	11633.02	6	192.3000
3.0940000	0.00	1	1000.0000
4.4660000	0.00	4	0.0000
8.4700000	0.00	1	1446.0000
19.5000000	73921.74	15	412.2000

Table 22: Model-fitting results for testudinidae, individuals, only insular species

	$\log L$	K	AICc	Akaike.wt
GRW	-69.73883	2	146.4777	0.00
URW	-62.56518	1	127.9304	0.99
Stasis	-65.08256	2	137.1651	0.01

Europe, individuals

Table 23: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	vv	nn	mm
0.00585	3707.446	35	187.3771

tt	VV	nn	mm
0.06885	138802.333	3	616.6667
0.45350	75333.898	12	377.8167
1.68450	306198.902	14	731.5786
3.09400	0.000	6	0.0000
4.46600	566267.670	14	1283.1429
8.47000	0.000	35	0.0000
13.78900	0.000	30	0.0000
19.50000	162024.202	6	482.2167
36.51500	13832.500	5	489.5000

Table 24: Model-fitting results for testudinidae, individuals, only insular species

	$\log L$	K	AICc	Akaike.wt
GRW	-73.23814	2	152.4763	0.001
URW	-74.54846	1	151.6683	0.002
Stasis	-66.43459	2	138.8692	0.997

America, individuals

Table 25: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	VV	nn	mm
0.0000005	389794806.8	807	254.5369
0.0058500	0.0	69	0.0000
0.0688500	0.0	43	0.0000
0.4535000	0.0	35	0.0000
1.6845000	0.0	49	0.0000
3.0940000	0.0	12	0.0000

tt	VV	nn	mm
4.4660000	0.0	9	0.0000
8.4700000	117249.1	14	467.4214
13.7890000	0.0	8	0.0000
19.5000000	0.0	4	0.0000
36.5150000	0.0	1	450.0000

 $\label{thm:control_control_control} \begin{tabular}{ll} Table 26: Model-fitting results for testudinidae, individuals, only insular species \end{tabular}$

	$\log L$	K	AICc	Akaike.wt
GRW	-64.72009	2	135.1545	0.130
URW	-64.43046	1	131.3609	0.864
Stasis	-67.81075	2	141.3358	0.006

Asia, individuals

Table 27: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	VV	nn	mm
0.0000005	3.088779e+09	810	137.2637
0.0058500	1.026795e + 04	35	279.0800
0.0688500	0.0000000e+00	1	270.0000
1.6845000	5.907610e + 05	4	989.5000
3.0940000	3.333333e+03	4	1550.0000
4.4660000	2.420000e+02	2	209.0000
8.4700000	4.500000e+04	2	1950.0000
36.5150000	0.000000e+00	1	275.0000

Figure 20: individuals, excluding continental species

Figure 21: individuals, excluding continental species

Figure 22: individuals, excluding continental species

Figure 23: individuals, excluding continental species

 ${\it Table~28:~Model-fitting~results~for~testudinidae,~individuals,~only}$ ${\it insular~species}$

	$\log L$	K	AICc	Akaike.wt
GRW	-80.46824	2	167.9365	0
URW	-58.38546	1	119.5709	1
Stasis	-66.94216	2	140.8843	0