ОПИСАНИЕ МАТLAB

Окна системы MATLAB

Рис. 4. Основное окно системы МАТLАВ

После запуска программы MATLAB на экране появляется основное окно системы (рис. 4), составленное из окон следующего назначения:

Command Window	предназначено для ввода команд и вывода результатов вычислений и сообщений об ошибках;
Command History	в окне выводится список выполнявшихся ранее команд и время загрузок системы;
Workspace	обеспечивает просмотр переменных и внесение в них изменений;
Current Directory	предназначено для просмотра и установки текущей папки;
Launch Pad	обеспечивает быстрый доступ к установленным расширениям MATLAB, справочной системе и документации.

Вычисления в режиме диалога выполняются в командном окне Command Window.

>> приглашение для ввода команды. Команда выполняется после нажатия клавиши Enter.

Точка с запятой в конце выражения подавляет вывод результата.

Программы создаются в окне Редактора, вызываемого командой File> New> M-File (рис. 5).

Рис. 5. Окно Редактора МАТLAВ

Константы

Константы (постоянные величины) могут быть числовыми и символьными:

- 0.9093 дробное число. Десятичная точка отделяет целую часть числа от дробной;
- 1.6021e-20 число $1,6021\cdot10^{-20}$ в экспоненциальной форме (без пробелов);
- 3і или 3ј мнимое число;
- 2+3і комплексное число;
- рі число $\pi = 3,14159265...$;
- 'текст' символьная константа;
- %текст текстовый комментарий.

Переменные

Имена переменных состоят из букв английского алфавита, цифр и символа подчеркивания. Первым символом в имени должна быть буква. МАТLAВ идентифицирует число символов не более 31. МАТLAВ различает прописные и строчные буквы.

- а=3 присвоение переменной а значения 3;
- А=2 присвоение другой переменной А значения 2.

Вектора и матрицы

По умолчанию все числовые переменные в МАТLAВ считаются матрицами. Матрицей принято называть прямоугольный массив чисел или выражений. Скалярная величина есть матрица порядка 1×1 . Вектором является одномерный массив размера $1 \times n$ (вектор-строка) или $m \times 1$ (вектор-столбец).

- $v = [4 \ 0]$ ввод вектор-строки $v = (4 \ 0)$.
- v=[4,0] Элементы отделяются пробелами или запятыми.
- u=[5;6] ввод вектор-столбца $u=\begin{bmatrix}5\\6\end{bmatrix}$.

Элементы отделяются точкой с запятой.

- $M = [1 \ 2; \ 3 \ 8]$ ввод матрицы $M = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$.
 - р1=M(1,2) переменной р1 присваивается значение элемента матрицы M из 1-й строки 2-го столбца, равное 2.
 - p2=M(3) значение переменной p2 равно 2. Матрица M рассматривается как длинный вектор, сформированный из столбцов исходной матрицы.
 - r=M(:,1) создается вектор-столбец $r=\begin{pmatrix} 1\\3 \end{pmatrix}$, элементы которого равны элементам 1-го столбца матрины M.
 - $\mathbf{q} = \mathbf{M}(\, 2\, ,\, \colon\,)$ создается вектор-строка $q = \begin{pmatrix} 3 & 8 \end{pmatrix},$ элементы которого равны элементам 2-й строки матрицы M.
 - A=M создается матрица A, равная матрице M.

A(2,:)=[] удаление 2-й строки матрицы $A=(1\ 2)$. $C=[M\ u]$ объединение матрицы M и вектора u в одну

матрицу $C = \begin{pmatrix} 1 & 2 & 5 \\ 3 & 8 & 6 \end{pmatrix}$.

- x=0:2:6 формирование вектора как диапазона чисел от 0 до 6 с шагом 2 $x=(0\ 2\ 4\ 6)$.
- t=1:5 формирование вектор-строки с элементами от 1 до 5 с шагом 1 $t=(1\ 2\ 3\ 4\ 5).$
- z=linspace(1,9,5) формирование вектор-строки из 5 элементов, значения которой равномерно распределены на отрезке от 1 до 9.
- E=eye(3) задание единичной матрицы размера 3×3.
- Z=zeros(3) задание нулевой матрицы размера 3x3.
- N=ones(3,4) задание матрицы из единиц размера 3×4 .
- size(N) размер матрицы N в виде вектор-строки [3 4] (3 строки, 4 столбца).
- zeros(size(N)) нулевая матрица такого же размера, как N length(z) длина вектора z.

Функции

МАТLАВ предоставляет большое количество встроенных математических функций. Имя функции записывается строчными буквами, аргументы указываются в круглых скобках через запятую. В качестве аргументов можно использовать выражения и другие функции.

- abs(a) абсолютная величина (|a|);
- sign(a) знак числа a;
- sqrt(x) корень квадратный из $x(\sqrt{x})$;
- $\exp(x)$ экспонента (e^x) ;
- log(x) натуральный логарифм (lnx);
- log10(x) десятичный логарифм (lg x);
- sin(x), cos(x) cuhyc (sin x), kocuhyc (cos x);
- asin(x), acos(x) арксинус (arcsin x), арккосинус;
- atan(x), acot(x) apkrahrenc (arctg x), apkrotahrenc.

Большинство функций может работать с аргументами в виде векторов и матриц, вычисляя значения для каждого их элемента. Данная операция называется векторизацией и обеспечивает упрощение записи операций, производимых одновременно над всеми элементами векторов и матриц, и существенное повышение скорости их выполнения.

```
>>x=0:0.1:0.5
>>y=sin(x)
y=
0.0998 0.1987 0.2955 0.3894 0.4794
```

Справочная система MATLAB

help		список разделов справки;
help	раздел	список команд указанного раздела;
help	имя_команды	описание команды с указанным именем;
help	ops	операторы и специальные символы;
help	elfun	элементарные математические функции;
help	demos	список примеров;
type	имя_т-файла	просмотр текста т.файла.

Арифметические операции

В MATLAВ реализованы два типа арифметических операций: операции над матрицами в соответствии с правилами линейной алгебры и поэлементные операции. Чтобы их различить, поэлементным операциям предшествует точка.

u = [1;3]	заданы два вектор-столбца и матрица
v = [2; 4]	(1) (2) , $(5 6)$
M=[5 6; 7 8]	$u = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \ v = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \ M = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}.$
M+2	ко всем элементам матрицы И прибавля-
	ется число 2.
u+v	складываются соответствующие элементы
	векторов.
M*u	матричное умножение.
v*u	ошибка. При матричном умножении число
	столбцов первого сомножителя должно быть
	равно числу строк второго.
v.*u	поэлементное умножение.

M.*u	ошибка. Массивы должны быть одинако-
	вого размера.
M^2	степень матрицы. Если показатель степени
	целое положительное число, то матрица
	перемножается сама на себя.
M.^2	поэлементное возведение в степень.
M∖u	левое деление. Равносильно $M^{-1}\cdot u$.
u./v	поэлементное деление.
М′	транспонирование матрицы. Строки ста-
	новится столбцами.
u′	транспонирование. Вектор-столбец стано-
	вится вектор-строкой.

Решение системы линейных уравнений

Систему линейных уравнений

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$

•••

$$a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n = b_n$$

обычно кратко записывают в матричном виде

$$Ax = b$$

Решение системы линейных уравнений в МАТLAВ находят с помощью левого деления

$$x = A \ b.$$

Матричные вычисления

По умолчанию действует следующее правило: вычисляется соответствующая операция для элементов столбцов и результат помещается в вектор-строку. Чтобы проделать вычисления построчно, можно вначале транспонировать исходную матрицу, а затем полученный в результате вектор-столбец превратить в строку. Кроме того, для многомерных массивов можно явно указать размерность, по которой будет действовать операция.

sum(u)	возвращается сумма элементов вектора и.
sum(M)	возвращается вектор-строка, содержащая
или $sum(M,1)$	сумму элементов по столбцам матрицы М.

sum(M,2)	возвращается	вектор-столбец	с суммой
	элементов масс	сива М по строкам	Л.
min(M)	определение	минимальных	элементов
	столбцов матри	ицы М.	
max(M)	определение н	аибольших элеме	нтов столб-
	цов матрицы 1	М.	
$[C,I]=\max(M)$	кроме максима	альных значений	возвраща-
	ется вектор ин	дексов этих элем	ентов.
prod(M)	произведение з	лементов столбцо	в матрицы.
mean(M)	определение ср	едних элементов	матрицы.
sort(M)	сортировка эле	ементов матрицы	по возрас-
	танию.		

Полиномы в MATLAB

р=[1 0 -2 -5] представление полинома $p(x)=x^3-2x-5$ с помощью вектор-строки, содержащей упорядоченные по убыванию степени коэффициенты полинома.

polyval(p,x) вычисляет значения многочлена p в точках x.

Построение графиков

x=0:pi/50:2*pi	задание диапазона $0 \le x \le 2\pi$.
y=sin(x)	вычисление функции.
plot(x,y)	создается кусочно-линейный
	график зависимости компо-
	нент вектора y от x .
x2=0:pi/10:2*pi	
$y2=\sin(x2-0.25)$	строятся две кривые на од-
plot(x,y,x2,y2)	ном графике.
plot(x,y,'k:',x2,y2,'ro')	строятся графики с заданными цветом, стилем линий
	и маркерами (рис. 6).

Рис. 6. Построение графиков с заданными свойствами линий

Цв	ет линий	Сті	иль линий	Тип	маркера
У	Желтый	_	Сплошная	0	Окружность
M	Фиолетовый		Штриховая	х	Крест
С	Голубой		Штрих-пунктир	+	Плюс
r	Красный	:	Двойной пунктир	*	Звездочка
g	Зеленый			s	Квадрат
В	Синий			d	Ромб
W	Белый			V	Треугольник
к	Черный				

fplot('sin(t)+0.5',[0 6]) строится график функции, заданной в символьном виде, на интервале от 0 до 6.

Трехмерная графика

```
plot3(x,y,z) трехмерный аналог команды plot. [X,Y]=meshgrid(x,y) формируется прямоугольная сетка, заданная векторами x и y. [X,Y]=meshgrid([-3:0.15:3]); -3 \le x,y \le 3
```

 $Z=X.^2+Y.^2;$ задание функции Z(X, Y) на сетке mesh(X,Y,Z) строится каркасная поверхность Z(X, Y) (рис. 7 а). surf(X,Y,Z) строится сплошная цветная поверхность (рис. 7 б). соntour(X,Y,Z) строится контурный график (рис. 7 в).

Рис. 7. Построение трехмерных поверхностей

Управление выводом графика

```
plot(x,y,x2,y2,'r-.')
title('График','FontName','Arial Cyr')
вывод заголовка заданным шрифтом.
xlabel('X') маркировка оси x.
ylabel('Y') маркировка оси y.
```

text(5.2,4.5,'TEXT')
legend('y','y2')
grid on

вывод текста в заданное координатами место графика. идентификация кривых (легенда). нанесение координатной сетки (рис .8).

Рис. 8. Нанесение надписей на графике

hold on	продолжение вывода графиков в текущее окно.
hold off	отменяет режим продолжения.
figure	открывается новое графическое окно.
<pre>subplot(m,n,p)</pre>	разбивает графическое окно на тхп
	подокон, р - номер текущего подокна,
	нумерация идет по строкам (рис. 9).

```
t=0:pi/50:2*pi;
subplot(1,2,1); plot(t,sin(t))
title('Fig.1')
subplot(1,2,2); plot(t,t.^2)
title('Fig.2')
```


Рис. 9. Вывод графиков в одном графическом окне

Программирование в среде MATLAB

Программы создаются в окне Редактора, вызываемого щелчком по кнопке New M-File на панели инструментов. Программы на языке программирования MATLAB сохраняются в виде текстовых файлов с расширением m (*m-файлы*).

```
m-файл сценарий. Работает с данными операторы из рабочей области
```

```
function [v1,v2,...]=fname(p1,p2...) %Комментарий операторы var1=... var2=...
```

m-файл функция fname содержит входные (p1,p2,...) и выходные (v1,v2,...) параметры и использует локальные переменные, доступные только в пределах данной функции.

global X Y Z

Объявление переменных X, Y, Z глобальными. Чтобы несколько программных модулей могли совместно использовать глобальную переменную, ее идентификатор должен быть объявлен как global во всех этих модулях.

Управляющие конструкции языка программирования

s=0;
for i=1:5
 s=s+v(i)
end

цикл с определенным числом повторений. вычисление суммы элементов вектора v.

x=[]; k=1;
 while k<5
 x=[x k^3];
 k=k+1;
end</pre>

цикл с неопределенным числом повторений обеспечивает выполнение команд тела цикла, пока истинно проверяемое условие;

формирование вектора x с элементами k^3 (k<5).

if x<0
 y=0;
elseif x>1
 y=x;
else
 y=x.^2;
end

условный оператор выполняет группу операторов, если логическое выражение истинно:

вычисление функции
$$y = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x \le 1 \\ x, & x > 1 \end{cases}$$

r=9; h=10; d=13
flag=1
switch flag
 case 1
 S=pi*r^2
 case 2
 S=h*d
 end

оператор переключения;

вычисление площади фигуры в зависимости от ее типа (1 - круг, 2 - прямо-угольник).