Algebra II: Tutorial 10

April 20, 2022

Problem 1 (Finite fields are normal). Let f(x) be a monic irreducible polynomial over \mathbb{F}_p , and let α be a root of f in some splitting field of f over \mathbb{F}_p . Show that $L = \mathbb{F}_p(\alpha)$ is a splitting field for f over \mathbb{F}_p .

Solution. By the structure theory of finite fields, we know that every finite field L is the splitting field of some polynomial over \mathbb{F}_p ; in particular L is normal. Since f is irreducible over \mathbb{F}_p and has a root in L, f splits completely in L. A straightforward argument shows that L is then a splitting field. \blacksquare

Problem 2. Show that there are exactly two cubic irreducible polynomials in $\mathbb{F}_2[x]$, namely $f = x^3 + x + 1$ and $g = x^3 + x^2 + 1$. Write down the multiplication tables of the field extensions of \mathbb{F}_2 by adding a root of f and g, say \mathbb{F}_8 and \mathbb{F}'_8 . Show that they are isomorphic.

Solution. This is a tedious but straightforward exercise. We omit the solution.

Problem 3 (Recognising prime subfields of finite fields). Let L be a field containing \mathbb{F}_p . For $\alpha \in L$, show that $\alpha \in \mathbb{F}_p$ if and only if $\alpha^p - \alpha = 0$.

Solution. This is a special case of a theorem in the notes. If $\alpha \in \mathbb{F}_p$, then either $\alpha = 0$ or $\alpha \in \mathbb{F}_p^*$. In the former case, our claim holds trivially. In the latter case, \mathbb{F}_p^* is an abelian group of order 8, so $\alpha^8 = 1$, which proves our claim. Conversely, any element $\alpha \in L$ satisfying $\alpha^p - \alpha = 0$ is a root of the polynomial $f_1(x) = x^p - x$. This polynomial has at most p roots, and all the elements in \mathbb{F}_p are roots, hence any root must be an element of \mathbb{F}_p .

Problem 4. Let $f(x) = x^9 - x + 1$ in \mathbb{F}_3 .

- 1. Show that f has no roots in \mathbb{F}_3 and in \mathbb{F}_9 .
- 2. Show that $\mathbb{F}_{27} \cong \frac{\mathbb{F}_3[x]}{(x^3-x-1)}$, and show that every root of x^3-x-1 is a root of f.
- 3. Determine all the roots of f over \mathbb{F}_{27} , and deduce a factorisation of f over \mathbb{F}_3 .

Solution. 1. A direct computation shows that f has no roots in \mathbb{F}_3 . Let $\alpha \in \mathbb{F}_9$, in particular $\alpha^9 = \alpha$, and so $f(\alpha) = 1$, so f has no roots in \mathbb{F}_9 .

- 2. It is easy to see that $x^3 x 1$ has no roots in \mathbb{F}_3 and so is irreducible over \mathbb{F}_3 . The quotient $\frac{\mathbb{F}_3[x]}{(x^3 x 1)}$ is a finite field extension of \mathbb{F}_3 of degree $\deg(f) = 3$, so is isomorphic to \mathbb{F}_{27} . Let $\alpha \in \mathbb{F}_{27}$ be a root of $x^3 x 1$. Then, $\alpha^9 \alpha + 1 = (\alpha + 1)^3 \alpha + 1$. By the binomial identity for fields with characteristic p, $(\alpha + 1)^3 = \alpha^3 + 1 = \alpha + 2$, so $\alpha^9 \alpha + 1 = \alpha + 2 \alpha + 1 = 0$.
- 3. By part 2. we know that $x^3 x 1$ divides f, and a direct computation shows that $f(x) = (x^3 x 1)(x^6 + x^4 + x^3 + x^2 x 1)$. Note that any element of \mathbb{F}_{27} can be expressed uniquely as $\beta = a\alpha^2 + b\alpha + c$ for $a, b, c \in \mathbb{F}_3$. Note that

$$\beta^{9} - \beta + 1 = a\alpha^{18} + b\alpha^{9} + c - (a\alpha^{2} + b\alpha + c) + 1$$
$$= a(\alpha + 1)^{6} + b(\alpha + 1)^{3} - a\alpha^{2} - b\alpha + 1$$
$$= a\alpha + 2(b + 1).$$

Suppose now that β is a root of f(x), i.e. $\beta^9 - \beta + 1 = a\alpha + 2(b+1) = 0$. This implies that a = 0 and b = -1, with $c \in \mathbb{F}_3$ free. Then, a direct check shows that $\alpha, \alpha + 1$ and $\alpha + 2$ are indeed the only roots of f (this fact could already be established combining Problem 1 with the fact that there are at most three roots of f in \mathbb{F}_{27}). Notice this already implies that $x^6 + x^4 + x^3 + x^2 - x - 1$ is irreducible over \mathbb{F}_3 , and $f(x) = (x^3 - x - 1)(x^6 + x^4 + x^3 + x^2 - x - 1)$ is a factorisation into irreducibles over \mathbb{F}_3 . Suppose not, say $g(x) = x^6 + x^4 + x^3 + x^2 - x - 1$ is reducible over \mathbb{F}_3 . Then, g(x) has an irreducible factor of degree 1, 2 or 3. By Problem 1, g(x) splits into linear factors in a field extension of degree 1, 2 or 3 respectively. Yet we have shown that g has no roots in \mathbb{F}_3 , \mathbb{F}_9 . Furthermore, f has three roots in \mathbb{F}_{27} , none of which are roots of g: this is a contradiction. \blacksquare