AZT I Zeth 13

Dosna Kuzle, Metz Nege

Aufgabe 1 (Verzweigung).

(4 Punkte)

Wir betrachten die Eigenschaften "unverzeigt", "rein verzweigt", "zahm verzweigt" und "wild verzweigt" von Erweiterungen lokaler Körper.

(a) Zeichen Sie ein Venndiagramm dieser Eigenschaften und in jeden möglichen Schnitt (von mindestens einer) dieser Eigenschaften ein Beispiel einer solchen Erweiterung und begründen Sie dies.

1 ist teilerfremd zu jeder natürlichen Zahl.

Jede unverzweigte Erweiterung hat per Definition Verzweigungsindex 1. Daher ist für unverzweigte Erweiterungen der Verzweigungsindex stets teilerfremd zur Charakteristik des Restklassenkörpers => Alle unverzweigten Erweiterungen sind zahm verzweigt.

Q_3/Q_3 ist offensichtlich unverzweigt.

3 hat Bewertung 1 in Q_3 und ist daher Uniformisierende.

Mit AZT I folgt, dass $\mathcal{U}_{\mathfrak{z}}(\mathfrak{S})/\mathfrak{O}_{\mathfrak{z}}$ rein verzweigt ist vom Verzweigungsgrad 2. Die Restklassenkörpercharakteristik ist 3. Wegen (2,3) = 1 ist diese Erweiterung zahm verzweigt.

Die Erweiterung 0,0 ist rein verzweigt vom Verzweigungsgrad 3.

Die Restklassenkörpercharakteristik ist 3. Wegen (3,3) = 3 ist diese Erweiterung wild verzweigt.

In Q_3 hat die Gleichung X^2 + 1 keine Nullstellen, da sie sonst im Restklassenkörper F_3 eine Nullstelle haben müsste. Das ist aber nicht der Fall, da 1^2 = 2^2 = 1 mod 3. Daher erhalten wir durch Adjunktion von i eine echte unverzweigte Erweiterung. Da diese Erweiterung unverzweigt ist, bleibt 3 eine Uniformisierende in Q_3(i). Daher ist die Erweiterung $\frac{\partial_3(i)}{\partial j}/\frac{\partial_2}{\partial j}$ weder unverzweigt noch rein verzweigt, aber immer noch zahm verzweigt, da der Verzweigungsgrad weiterhin 2 ist. Analog ist die Erweiterung $\frac{\partial_3(i)}{\partial j}/\frac{\partial_3}{\partial j}$ nicht rein verzweigt, aber wild verzweigt, da der Verzweigungsgrad und die Restklassenkörpercharakteristik beide 3 und somit nicht teilerfremd sind.

(b) Wir betrachten die folgenden Eigenschaften von Klassen & algebraischer Körpererweiterungen (in eine	em
algebraischen Abschluss):	

 $(\text{VK}) \ \textit{Verkettung: } L|K \in \mathcal{E} \quad \& \quad M|L \in \mathcal{E} \quad \Rightarrow \quad L|M \in \mathcal{E}$

(BW) Basiswechsel: $L|K \in \mathcal{E}$ & K'|K beliebig $\Rightarrow L \cdot K'|K' \in \mathcal{E}$

(Komp) Kompositum: $L_1|K\in\mathscr{E}$ & $L_2|K\in\mathscr{E}$ \Rightarrow $L_1\cdot L_2|K\in\mathscr{E}$

Zeichnen Sie eine Tabelle, in der veranschaulicht wird, welche der obigen Klassen von Erweiterungen lokaler Körper welche der Eigenschaften (VK), (BW) und (Komp) erfüllen und begründen Sie dies.

٤	V K	BU	Kump	
unverzweigt	ja, folgt aus der	ja, nach Korollar 8.108 aus AZT 1	ja, nach Korollar 8.101	
	Produktformel für Verzweigungsindizes.		aus AZT 1	
rein zahm	ja, nach Lemma 8.114 aus AZT 1	gilt vermutlich nur, wenn K'/K unverzweigt. Ggbsp?	ja, nach Korollar 8.116	
verzweigt			aus AZT 1	