Введение в математический анализ

Тюленев Александр Иванович (Конспектировал Иван-Чай) 6 лекция

Содержание

- 1 Частичные пределы
- 2 Верхний и нижний частичный предел

1 Частичные пределы

Th 1. Если $\{x_n\}_{n=1}^{\infty}$ - неограничена сверху, то $+\infty$ является ее частичным пределом.

 $Ecnu\ \{x_n\}_{n=1}^{\infty}$ - неограничена снизу, то $-\infty$ является ее частичным пределом.

Докажем для случая ограниченности сверху. Заметим, что если $\{x_n\}_{n=1}^{\infty}$ неограничена сверху, то $\forall n \in \mathbb{N}$ отбросим первые N элементов и снова получим последовательность неограниченную сверху. Т.е. рассмотрим $\{y_n\}_{n=1}^{\infty} = \{x_{n+N}\}_{n=1}^{\infty}$.

$$\forall \varepsilon>0 \quad \exists n\in\mathbb{N}: y_n>\frac{1}{\varepsilon}.$$

$$\Downarrow$$

$$\forall N\in\mathbb{N}, \forall \varepsilon>0 \quad \exists k>N: x_k>\frac{1}{ens}.$$

 $+\infty$ - частичный предел $\{x_n\}_{n=1}^\infty$ по критерию частичного предела. \square

Th (Обобщенная теорема Больцаро-Вейерштрасса). Любая числовая последовательность $\{x_n\}_{n=1}^{\infty}$ имеет хотя бы один частичный предел в $\overline{\mathbb{R}}$.

$$\mathbf{Def}$$
 1. $PL\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right):=\left\{L\in\overline{\mathbb{R}}:L-$ частичный предел $\right\}$

$$\mathbf{Def\ 2.}\ \Pi ycmb\ A\subset\overline{\mathbb{R}}.\ M=\sup A\Leftrightarrow \begin{cases} a\leq M, \forall a\in A\\ \forall M'< M\quad \exists x\in A: M'< a\leq M. \end{cases}$$

$$\textbf{Def 3. } \Pi y cmb \ A \subset \overline{\mathbb{R}}. \ m = \sup A \Leftrightarrow \begin{cases} a \geq m, \forall a \in A \\ \forall m' > m \quad \exists x \in A : m \leq a < m'. \end{cases}$$

2 Верхний и нижний частичный предел

Def 4. Верхний предел

$$\overline{\lim}_{n\to\infty} x_n = \sup PL(\{x_n\}_{n=1}^{\infty}).$$

Def 5. Нижений предел

$$\underline{\lim}_{n\to\infty} x_n = \inf PL(\{x_n\}_{n=1}^{\infty}).$$

Lem 1. $\Pi ycmb \exists \lim_{n\to\infty} x_n = A \in \overline{\mathbb{R}}$. $Tor \partial a \ PL(x_n) = A$.

Доказательство.

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) \in \mathbb{N} : \forall n \ge N(\varepsilon) \hookrightarrow x_n \in U_{\varepsilon}(A).$$

Возьмем произвольную подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$ последовательности $\{x_n\}_{n=1}^{\infty}$ и покажем, что $\lim_{k\to\infty}x_{n_k}=A$.

$$n_k \ge k \Rightarrow \forall \varepsilon > 0 \quad \exists K(\varepsilon) = N(\varepsilon) : \forall k \ge K(\varepsilon) \hookrightarrow x_{n_k} \in U_{\varepsilon}(A).$$

Th 2. Пусть $\{x_n\}_{n=1}^{\infty}$ - произвольная числовая последовательность, тогда

$$\underline{\lim}_{n\to\infty} \in PL(\{x_n\}_{n=1}^{\infty}).$$

$$\overline{\lim}_{n\to\infty} \in PL(\{x_n\}_{n=1}^{\infty}).$$

Докажем для верхнего предела. Обозначим $M = \sup PL(\{x_n\}_{n=1}^{\infty})$

Из определения sup

$$\forall \varepsilon > 0 \hookrightarrow U_{\frac{\varepsilon}{2}} \cap PL(\{x_n\}_{n=1}^{\infty}) \neq \varnothing.$$

 $\downarrow \downarrow$

$$\exists c \in PL(\{x_n\}_{n=1}^{\infty}) : c \in U_{\frac{\varepsilon}{2}}(M).$$

По критерию частичного предела в $U_{\frac{\varepsilon}{2}}(c)$ содержится значения бесконечного количества элементов $\{x_n\}_{n=1}^{\infty}$.

$$c \in U_{\frac{\varepsilon}{2}} \Rightarrow U_{\frac{\varepsilon}{2}} \subset U_{\varepsilon}(M).$$

Из этого $U_{\varepsilon}(M)$ содержит значения бесконечного количества значений элементов $\{x_n\}_{n=1}^{\infty}$, но ε был выбран произвольно. $\Rightarrow M$ - частичный предел. \square

Th 3. Пусть $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность, тогда

$$\overline{\lim}_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} \left(\sup_{k>n} x_k \right).$$

$$\underline{\lim}_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} \left(\inf_{k\geq n} x_k \right).$$

Докажем для верхнего предела.

$$\forall n \in \mathbb{N} \quad y_n = \sup_{k > n} x_k.$$

Заметим, что $y_{n+1} \leq y_n \quad \forall n \in \mathbb{N}$

Если $y_n = +\infty$ хотя бы при одном $n \in \mathbb{N}$, то $y_n = +\infty$ $\forall n \in \mathbb{N}$. Получается монотонная последовательность, которая по теореме Вейерштрасса имеет предел равный ее inf.

Докажем, что $\overline{\lim}_{n\to\infty}x_n\leq \inf_{n\in\mathbb{N}}\sup_{k\geq n}x_n$, для этого докажем, что $c\leq \inf_{n\in\mathbb{N}}\sup_{k\geq n}x_n$, если с - частичный предел.

Пусть $\{x_{n_k}\}_{k=1}^\infty$ - подпоследовательность последовательности $\{x_n\}_{n=1}^\infty$: $\lim_{k\to\infty}x_{n_k}=c$ Если $y_n\in\mathbb{R}\quad \forall n\in\mathbb{N}$

Дальнейшая часть лекции пока в разработке, довольствуемся тем, что имеем