Simple couche et Hyper-singulier sur un segment

Martin AVERSENG

October 2, 2017

1 Potentiel de simple couche sur un segment

Commençons par fixer les notations, de la même manière que dans le papier d'Oscar Bruno. Soit une fente $\Gamma = (-1,1) \times \{0\}$ dans le plan \mathbb{R}^2 . On note $\Omega = \mathbb{R}^2 \setminus \Gamma$ le domaine extérieur à la fente. On considère une onde plane u^{inc} de vecteur d'onde k et on cherche le champ u diffracté par Γ . Selon la modélisation choisie, le champ $u \in H^1(\Omega)$ est solution de l'une des équations suivantes (condition de Dirichlet ou Neumann):

$$\begin{cases} \Delta u + k^2 u = 0 & \text{dans } \Omega \\ u = u^{inc} & \text{sur } \Gamma \end{cases}$$
 (1.1)

$$\begin{cases} \Delta u + k^2 u = 0 & \operatorname{dans} \Omega \\ u = u^{inc} & \operatorname{sur} \Gamma \end{cases}$$

$$\begin{cases} \Delta u + k^2 u = 0 & \operatorname{dans} \Omega \\ \frac{\partial u}{\partial n} = \frac{\partial u^{inc}}{\partial n} & \operatorname{sur} \Gamma \end{cases}$$

$$(1.1)$$

Ce problème peut être mis sous forme d'équations intégrales. Soit G_k le noyau de Green définit pour $x \in \mathbb{R}^2$ par

$$G_k(x, x') = \begin{cases} -\frac{1}{2\pi} \ln(|x - x'|), & \text{si } k = 0\\ \frac{i}{4} H_0^1(k|x - x'|), & \text{si } k > 0 \end{cases},$$

Où H_0^1 est la fonction de Hankel de première espèce. Soit S l'opérateur de simple couche sur Γ définit

$$Su(x) = \int_{\Gamma} G_k(x, x') u(x') d\Gamma(x')$$

et N l'opérateur "hypersingulier" défini par

$$Nu(x) = \lim_{z \to 0^+} \frac{\partial}{\partial z} \int_{\Gamma} \frac{\partial G_k(x + ze_y, x')}{\partial e_y} u(x') d\Gamma(x')$$

avec $\frac{\partial G_k}{\partial e_y} = e_y \cdot \nabla_{x'} G_k(x, x')$ et où e_y est le vecteur (0, 1). Soient μ et λ des solutions des équations intégrales suivantes :

$$S\lambda = u_{|\Gamma}^{inc},$$

$$N\mu = \frac{\partial u^{inc}}{\partial n}_{|\Gamma}.$$

Alors, dans le cas du problème de Dirichlet, λ est le saut de la dérivée normale de u à travers la fente, où la normale est définie de manière opposée de chaque côté de la fente. Dans le cas du problème de Neumann, l'unique solution (à constante près) μ est le saut du champ u à travers la fente. On obtient ensuite le champ total dans tout l'espace avec les formules de représentation intégrale. Si l'on résout un problème de Dirichlet, on pose par convention $\mu = 0$ (en effet, on cherche alors une solution continue à travers la fente). De même, si l'on résout un problème de Neumann, on prend par convention $\lambda = 0$. On a alors pour u la formule suivante pour $x \notin \Gamma$

$$u(x) = S\lambda(x) - D\mu(x)$$

Οù

$$S\lambda = \int_{\Gamma} G_k(x, x') \lambda(x') d\Gamma(x'), \text{ et}$$

$$\mathcal{D}\mu = \int_{\Gamma} \frac{\partial G_k(x, x')}{\partial e_y} \mu(x') d\Gamma(x').$$

À cause de la présence de "bords" sur la fente Γ , la solution de l'équation n'est pas infiniment dérivable, même si l'onde incidente u^{inc} l'est, contrairement au cas où le domaine de résolution de l'équation de Helmholtz est plus régulier. Plus précisément, on a le résultat suivant, cf. [2]:

Theorem 1.1. On suppose que u_{inc} est infiniment dérivable sur Γ . La solution u du problème 1.1 recherchée vérifie alors le développement suivant :

$$u(x) =$$

On pose $\omega(x) = \sqrt{1 - x^2}$.

On s'intéresse aux propriétés de l'opérateur $\alpha \mapsto \frac{1}{\omega} S \frac{1}{\omega} \alpha$. Selon la remarque du paragraphe 2.3 de [1], on admet la conjecture suivante :

Theorem 1.2. Soit f une fonction dans $H^s(-1,1)$, s > 0. Alors l'unique solution de l'équation d'inconnue $\alpha \in H^1(-1,1)$:

$$S\left(\frac{\alpha}{\omega}\right) = f$$

est dans $H^{s+1}(-1,1)$.

Le résultat est probablement un peu faux. En revanche, il est clair que si le second membre est C^{∞} , α est C^{∞} , ce qui est prouvé dans [2] et utilisé dans [1]. Nous nous restreignons dans un premier temps à l'analyse de ce cas, qui ne permet malheureusement pas de comprendre l'impact de la régularité du second membre sur la vitesse de convergence.

Remark 1.1. L'équation

L'intérêt de cette propriété est qu'on obtient une convergence rapide de l'approximation par éléments finis lorsque le pas du maillage h devient petit. Ce fait se base sur une version du lemme de Céa adaptée à notre situation. Soit $S_{\omega} := \frac{1}{\omega} S_{\omega}^{1}$ (ce n'est pas la même notation que celle choisie par Oscar Bruno). De manière immédiate, S_{ω} hérite de la propriété de coercivité de S.

Proposition 1.1. Pour tout α tel que $\frac{\alpha}{\omega} \in H^{-1/2}(-1,1)$, on a

$$(S_{\omega}\alpha, \alpha) \ge c \left\| \frac{\alpha}{\omega} \right\|_{H^{-1/2}}^2$$

Proof. On a
$$(S_{\omega}\alpha, \alpha) = \left(\frac{1}{\omega}S\frac{1}{\omega}\alpha, \alpha\right) = \left(S\frac{1}{\omega}\alpha, \frac{1}{\omega}\alpha\right) \ge c \left\|\frac{\alpha}{\omega}\right\|_{H^{-1/2}}^2 \quad \Box$$

Soit V_h un sous-espace vectoriel de dimension finie de $\{\alpha \mid \alpha/\omega \in H^{-1/2}\}$. Soit α_h l'unique solution de la formulation variationnelle : $\forall \beta_h \in V_h$:

$$(S_{\omega}\alpha_h, \alpha_h) = \int_{-1}^{1} f(x) \frac{\beta_h(x)}{w(x)}.$$

Le lemme de Céa assure

$$\|(\alpha - \alpha_h)/\omega\|_{H^{-1/2}} \le \inf_{\beta_h \in V_h} C \|(\alpha - \beta_h)/\omega\|_{H^{-1/2}}$$

Question Y a-t-il une bonne méthode pour montrer que le terme de droite est d'ordre O(h) pour des éléments finis \mathbb{P}_1 ?

Soient T_n les polynômes de Tchebychev de première espèce. D'après [1], on a

$$S\left(\frac{T_n}{\omega}\right) = \lambda_n T_n$$

Avec $\lambda_0 = \frac{\ln(2)}{2}$ et $\lambda_n = \frac{1}{2n}$ pour $n \neq 0$. D'autre part, considérons l'opérateur Λ qui, à une fonction g définie sur le segment (-1,1) associe la donnée de Neumann de la solution u du problème $\begin{cases} -\Delta u &= 0 \quad \text{dans } \mathbb{R}^2 \setminus \{(-1,1) \times \{0\}\} \\ u &= g \quad \text{sur } (-1,1) \times \{0\} \end{cases}$ En prenant la normale du côté des u positifs. Les formules de Calderòn impliquent alors que

$$S\Lambda g = \frac{1}{2}g$$

Donc $S^{-1} = 2\Lambda$. On a donc

$$\omega \Lambda T_n = \mu_n T_n$$

où $\mu_n = \frac{1}{\ln(2)}$ si n = 0 et $\mu_n = n$ sinon. Or l'équation différentielle vérifiée par les polynômes T_n nous fournit un opérateur différentiel P explicite qui satisfait pour $n \neq 0$ à la relation $PT_n = -\mu_n^2 T_n$. L'opérateur P est donné par

$$P = (1 - x^2)\partial_{xx} - x\partial_x = (\omega\partial_x)^2$$

Les polynômes T_n forment une base Hilbertienne de $L^2\left[(-1,1),\omega^{-1}(x)dx\right]$. On a donc pour toute fonction $\varphi = \sum_{n=0}^{+\infty} c_n T_n(x)$ dans cet espace :

$$[P^2 + (\omega \Lambda)^2] \varphi = c_0 \mu_0^2 T_0$$

L'intérêt de cette relation est qu'il permet d'exprimer l'opérateur $\omega\Lambda$ en fonction d'un opérateur différentiel donc local, qui permet une discrétisation numérique efficace. Dans l'optique de la résolution d'un problème intégral, on pourrait utiliser $\omega\Lambda$ ou une approximation de celui-ci pour préconditionner l'équation. Puisque les deux opérateurs du membre de gauche sont diagonalisés par une même base Hilbertienne, ils commutent sur cet espace de Hilbert.

References

- [1] Oscar P Bruno and Stéphane K Lintner. Second-kind integral solvers for te and tm problems of diffraction by open arcs. *Radio Science*, 47(6), 2012.
- [2] Martin Costabel, Monique Dauge, and Roland Duduchava. Asymptotics without logarithmic terms for crack problems. 2003.