Introducción a la Inteligencia Artificial

Walter Casas

Introducción

La inteligencia artificial es una de las áreas más emocionantes y en constante evolución en la ciencia de la computación. Este curso introductorio cubrirá los conceptos básicos de la inteligencia artificial y proporcionará una introducción a las técnicas y herramientas más comunes utilizadas en la programación de modelos de aprendizaje automático.

Objetivos

Al final de este curso, los estudiantes serán capaces de:

- Comprender los conceptos básicos de la inteligencia artificial y su aplicación en el mundo real
- Programar y evaluar modelos de aprendizaje automático utilizando Python y las bibliotecas Numpy, Pandas y Matplotlib.
- Desarrollar un proyecto final que demuestre la comprensión de los conceptos y técnicas aprendidos durante el curso.

Desarrollo

Este curso introductorio de inteligencia artificial consta de 15 clases que se llevarán a cabo los días lunes y miércoles de 7 a 9 de la noche, comenzando el 03 de abril de 2023. A continuación se detalla el contenido de cada clase:

Clase 1: Introducción a Python

- Introducción a Python y ambiente de desarrollo
- Variables y tipos de datos
- Operadores aritméticos y lógicos
- Estructuras de control de flujo

Clase 2: Numpy

- Introducción a Numpy y su función en la programación científica
- Creación y manipulación de arrays
- Operaciones y funciones matemáticas con arrays

Clase 3: Pandas

Introducción a Pandas y su función en la manipulación de datos

- Creación y manipulación de DataFrames
- Selección y filtrado de datos

Clase 4: Matplotlib

- Introducción a Matplotlib y su función en la visualización de datos
- Creación de gráficos y diagramas
- Personalización de gráficos y diagramas

Clase 5: Introducción a la Inteligencia Artificial

- Definición de inteligencia artificial
- Conceptos básicos de aprendizaje automático
- Ejemplos de aplicaciones de inteligencia artificial

Clase 6: Modelos de Regresión

- Introducción a los modelos de regresión
- Regresión lineal
- Regresión polinómica
- Evaluación de modelos de regresión

Clase 7: Práctica de Modelos de Regresión

- Implementación de modelos de regresión en Python
- Evaluación de modelos de regresión con Numpy y Pandas

Clase 8: Modelos de Clasificación

- Introducción a los modelos de clasificación
- Clasificación binaria y multiclase
- Evaluación de modelos de clasificación

Clase 9: Práctica de Modelos de Clasificación

- Implementación de modelos de clasificación en Python
- Evaluación de modelos de clasificación con Numpy y Pandas

Clase 10: Modelos de Clustering

- Introducción a los modelos de clustering
- Clustering K-means
- Evaluación de modelos de clustering

Clase 11: Práctica de Modelos de Clustering

- Implementación de modelos de clustering en Python
- Evaluación de modelos de clustering con Numpy y Pandas

Clase 12: Modelos de Redes Neuronales

- Introducción a los modelos de redes neuronales
- Redes neuronales feedforward
- Backpropagation
- Evaluación de modelos de redes neuronales

Clase 13: Práctica de Modelos de Redes Neuronales

- Implementación de modelos de redes neuronales en Python
- Evaluación de modelos de redes neuronales con Numpy y Pandas

Clase 14: Modelos de Series de Tiempo

- Introducción a los modelos de series de tiempo
- Modelos ARMA y ARIMA
- Evaluación de modelos de series de tiempo

Clase 15: Práctica de Modelos de Series de Tiempo

- Implementación de modelos de series de tiempo en Python
- Evaluación de modelos de series de tiempo con Numpy y Pandas

Evaluación

La evaluación se dividirá en dos partes: evaluación continua y proyecto final.

Evaluación continua

La evaluación continua consistirá en la realización de ejercicios prácticos en clase y en casa. Estos ejercicios serán revisados por el profesor y se tendrán en cuenta para la calificación final. La evaluación continua representa el 60% de la calificación final.

Proyecto final

El proyecto final será una aplicación práctica de alguna técnica de inteligencia artificial vista durante el curso. El proyecto final se presentará en la última clase del curso y será evaluado por el profesor. El proyecto final representa el 40% de la calificación final.

Para aprobar el curso, se necesitará una calificación mínima de 12 en la evaluación continua y en el proyecto final. La nota final se calculará como la media ponderada de la evaluación continua y el proyecto final.

Referencias

Aquí hay una lista de algunos libros recomendados para aquellos interesados en profundizar en el tema de la inteligencia artificial:

- "Pattern Recognition and Machine Learning" de Christopher Bishop
- "Artificial Intelligence: A Modern Approach" de Stuart Russell y Peter Norvig
- "Deep Learning" de Yoshua Bengio, lan Goodfellow y Aaron Courville
- "Python Machine Learning" de Sebastian Raschka y Vahid Mirjalili
- "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" de Aurélien Géron