 STU	DENT	ID N	0	

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2015/2016

ECP2216 – MICROCONTROLLER AND MICROPROCESSOR SYSTEMS

(All sections / Groups)

3 JUNE 2016 9.00 a.m — 11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 10 pages with 5 Questions only.
- 2. Attempt ALL FIVE COMPULSORY questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

(a) Convert BD₁₆ into 8-bit two's complement number and identify it is a positive or negative number.

[2 marks]

(b) A memory block has 20 address lines and 32 data lines. Express the memory capacity of this memory block in the units of Bytes.

[3 marks]

(c) Von Neumann architecture is a computer architecture described by the mathematician and physicist John von Neumann in 1945. Illustrate by sketching a block diagram of this architecture.

[5 marks]

(d) (i) Define the term Microarchitecture.

[3 marks]

(iii) The 80386DX includes six functional units that operate in parallel for pipelined processing. Name these six functional units and highlight which unit provides memory management in protected mode.

1/10

[7 marks]

Continued ...

LGC

(a) Identify the bit addresses which are set to 1 after the execution of the following instruction.

MOV 20H, # 54H

[3 marks]

(b) Determine the contents of Program Status Word (PSW) and Accumulator (A) after the execution of the following instruction sequence.
 (Assume initial value: A=00H and PSW=00H)

MOV A, #0C8H MOV R7, #58H ADD A, R7

[4 marks]

(c) Assume that the available memory ICs are 1Kbytes ROM and 1Kbytes RAM. Design an 8051 microcontroller based system that can address contiguous 4Kbytes of memory space. 2Kbytes of RAM should occupy the first portion of the memory space followed by 2Kbytes of ROM. (Draw and label the system configuration showing the 8051 signal lines to be used for data, address and control buses.)

[13 marks]

(a) State any THREE available addressing modes for MCS-51 program branching instructions.

[3 marks]

(b) Determine the contents of the accumulator (ACC) and PSW register after the execution of **EACH** instruction in the following MCS-51 assembly language program. Assume initial value of PSW is 00H.

ORG 0000H MOV A, #26H ADD A, #0FFH SUBB A, #16H END

[6 marks]

(c) An MCS-51 assembly language subroutine is shown as following:

SUBROUTINE:

MOV R6, #200

AGAIN:

NOP

NOP

DJNZ R6, AGAIN

RET

(i) Assume that a 12 MHz crystal frequency is used, calculate the total execution time of the subroutine.

[3 marks]

(ii) Using the MCS-51 Opcode Map, convert the instruction

"DJNZ R6, AGAIN"

into the corresponding machine code. Assume the first instruction of the subroutine is addressed at 0000H.

[5 marks]

(iii) Modify the subroutine to increase the total execution time to 0.8 seconds.

[3 marks]

(a) State ALL available interrupt sources in an 8051 microcontroller and arrange them in the order corresponding to their default priority.

[5 marks]

(b) Assume 11.0592MHz crystal frequency, 8-bit data, 1 stop bit, no parity and operation at 9600 baud rate generated by Timer 1. Write a MCS-51 assembly language subroutine to receive a character from serial port and store the character in R4. (Show the initialization of SCON, TMOD and TH1 registers.)

[5 marks]

(c) An 8051 microcontroller system with INT1 pin and INT0 pin connected to a switch that is normally high. Write a MCS-51 assembly language program to perform the following tasks.

INTO pin goes low:

Use timer 0 interrupt to generate a pulse

width of Ims from P1.0.

INT1 pin goes low:

Use timer 1 interrupt to generate a pulse

width of 0.5ms from P1.1.

[10 marks]

(a) Figure 5(a) depicts an 8051 microcontroller interfaces to a common anode-type seven-segment LED display device on Port 3 and two press buttons on P0.0 and P0.1.

Figure 5(a)

(i) Fill in Table 5(a) to define the bit patterns for each character to decode the seven-segment LED display.

lable 5(a)									
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0		
h	g	f	е	d	С	b	а		
					=		1		
							_		
	<i>P3.7</i> h	P3.7 P3.6 h g					P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 h g f e d c b		

[2 marks]

(ii) Assume I second delay subroutine DELAY is available. Write a MCS-51 assembly language program that will wait for the button press on P0.0. Once the button is pressed, seven-segment LED display will repeatedly display the characters in sequence starting from E, C, P and A. Time duration for each character to be displayed is I second. The display will be stopped only if the button press on P0.1 occurs.

[8 marks]

(b) An 8051 microcontroller based automated coffee maker machine is shown in Figure 5(b) which performs the following process:

Figure 5(b)

- 1. The chamber is first filled with hot drinking water through a solenoid Valve W.
- 2. When the hot drinking water reaches Level W, Valve W is closed and the chamber is now filled with coffee powder through Valve C.
- 3. When the mixture in the chamber reaches Level C, Valve C is closed.
- 4. The mixer motor starts the stirring process that last for approximately 2 minutes.
- 5. After that, the drainage Valve E opens to dispense the mixture.
- 6. When the mixture reaches Level E, Valve E is closed and the buzzer will sound for approximately 1 minute to indicate the completion.
- 7. The whole process is repeated from Step 1 again.

The chamber has three level sensors that send signals to input lines P1.0 to P1.2. A logical HIGH from the sensor indicates that the level has been reached. The output lines P0.0, P0.2, and P0.3 provide signals to the solenoid valves. A logical HIGH from the lines will open the corresponding valve. The output lines P0.1 and P0.4 provide signals to the mixer motor and buzzer respectively which are both activated by a logical HIGH. Write a MCS-51 assembly language program to carry out the process. Assume 12MHz crystal frequency is used

[10 marks]

End of Page

APPENDIX

Special Function Register Formats

Interrupt Enable (IE)

Bit Addr.	AFH	-	-	ACH	ABH	AAH	A9H	A8H	1
Name	EA		-	ES	ET1	EX1	ETO	EX0	

BIT	SYMBOL	FUNCTION (Enable=1, Disable=0)
IE.7	EA	Global enable/disable.
		EA = 1, each individual source is enabled/disabled by setting/clearing its enable bit.
		EA = 0, disable all interrupts.
1E.6	-	Undefined
IE.5	•	Not implemented in 8051, ET2 for 8052.
IE.4	ES	Serial port interrupt enable bit
E.3	ET1	Timer 1 interrupt enable bit.
E.2	EX1	External interrupt enable bit.
E.1	ETD	Timer 0 interrupt enable bit.
E.O	EX0	External interrupt enable bit

Interrupt Priority (IP)

Bit Addr.	_	-	-	всн	BBH	ВАН	вэн	В 8Н
Name	-			PS	PT1	PX1	PTO	PX0

BIT	SYMBOL	FUNCTION (Enable=1, Disable=0)	
P.7		Undefined	
P.6	•	Undefined	
IP.5		Not implemented in 8051, PT2 for 8052.	
IP.4	PS	Serial port interrupt priority bit.	
IP.3	PT1	Timer 1 interrupt priority bit.	
IP.2	PX1	External interrupt priority bit.	
IP.1	PTO	Timer 0 interrupt priority bit.	
IP.0	PX0	External interrupt priority bit.	

Interrupt Vectors

Interrupt Source	Flag	Vector Address
System Reset	RST	0000H
External 0	IE0	0003H
Timer 0	TF0	000BH
External 1	1E1	0013H
Timer 1	TF1	001BH
Serial Port	RI & TI	0023H
Timer 2 (8052)	TF2 or EXF2	002BH

Program Status Word (PSW)

Bit Addr. D7H	D6H	D5H	D4H	D3H	D2H		DOLL	
Name CV	100	-			DE!	-	- חטרו	
Name CY	AC	F0	RS1	RSO	0V	-	Р	

Serial Control (SCON)

Bit Addr.	9FH	9EH	9DH		9BH	9AH	99H	98H
Name	SMO	SM1	SM2	REN	TB8	RB8	TI	RI

BIT	SYMBOL	FUNCTION
SCON.7	SM0	Serial port mode bit 0 (see Table A.1).
SCON.6	SM1	Serial port mode bit 1 (see Table A 1)
SCON,5	SM2	Serial port mode bit 2; enables multiprocessor communications in modes 2 and 3; RI will not be activated if received 9 th bit is 0. In mode 1, if SM2 = 1, then RI will be activated only if a valid stop bit was received. In mode 0, SM2 should be 0.
SCON.4	REN	Receiver enable: must be set to receive characters
SCON.3	TBB	Transmit bit 8; 9 th bit transmitted in modes 2 and 3; set/cleared by software.
SCON.2	RB8	Receive bit 8; 9th bit received.
SCON.1	Π	Transmit interrupt flag; set at end of character transmission; cleared by software.
SCON.0	RI	Receive interrupt flag; set at end of character reception; cleared by software.

Table A.1 The 8051 Serial Port Mode Selection

SMO	SM1	Mode	Description	Baud Rate
0	O	0	Shift register	Fixed
0	1	1	8-bit UART	Variable
1	0	2	9-bit UART	Fixed
1	11	3	9-bit UART	Variable

Timer Control (TCON)

Bit Addr.	8FH	8EH	BDH	8CH	8BH	BAH	H98	HSS
Name	TF1	TR1	TFD	TRO	JE1	IT1	IEO	IT0

BIT	SYMBOL	FUNCTION
TCON.7	TF1	Timer-1 overflow flag. Set by hardware on overflow.
		Cleared by hardware when processor vectors to interrupt routine. Must be cleared by software when not involve interrupt
TCON.6	TR1	Timer-1 run control bit. Set/cleared by software to turn limer/counter on/off.
TCON.5	TFQ	Timer-0 overflow flag. Do the same function as TF1 but for Timer-0
TCON.4	TRO	Timer-0 run control bit. Do the same function as TR1 but for Timer-0
TCON.3	IE t	External interrupt-1 edge flag. Set by hardware when interrupt-1 falling edge is detected. Cleared by hardware when interrupt is
		processed.
FCON.2	IT1	Interrupt-1 Type control bit. Set/cleared by software to specify falling edge/low level triggered external interrupts.
TCON.1	IE0	External interrupt-1 edge fleg. Do the same function as IE1 but for external interrupt-0.
rcon.o	ITO	Interrupt-0 Type control bit. Do the same function as IT1 but for external interrupt-0.

Timer Mode (TMOD)

Bit	7	5	5	4	3	2	1	0
Name	GATE	C/T	M1	MO	GATE	C/T	M1	MO

BIT	SYMBOL	FUNCTION
TMOD.7	GATE1	When this bit is set the timer will only run when INT1 (P3.3) is high (hardware control).
		When this bit is cleared the timer will run regardless of the state of INT1 (software control).
TMOD.6	C/T1	Timer / Counter select bit.
		$C/\widetilde{T} = 0 \rightarrow Timer operation.$
		C / $\tilde{T} = 1 \rightarrow$ Counter operation.
TMOD.5	M1	Mode selection bits (see Table A.2), [for timer 1]
TMOD.4	MO	Mode selection bits (see Table A.2). [for timer 1]
TMOD.3	GATE0	Exactly the same function as GATE1 but for Timer0
TMOD.2	C/T0	Exactly the same function as C/T1 but for Timer0
TMOD.1	M1	Mode selection bits (see Table A.2). [for timer 0]
TMOD.0	MO	Mode selection bits (see Table A.2), [for timer 0]

Table A.2 Timer Mode Selection

_	- 1 -	2010 / Was / WITE	THOUS GOLGOUGH
M1	MO	Timer Mode	Description of Mode
0	0	0	13-bit Timer
0	1	1	16-bit Timer
1	0	2	8-bit auto-reload
1	1	3	Split timer mode

MCS-51 Opcode Map

ш	MOVX GDPTR, A	ACALL (P7) 20	MOVX PRO, A	MOVX GRL, A	CPL A 10	MOV dr, A	MOV PRD, A	MOV BRI, A	2 4	> 4	≥ 4	≥ ∢	> «	> 4		> 4
- -	P**	28 AC.	<u>8</u>	<u> </u>	ਹ`	명 문 문	ت ق	MOV GRL, A	HOV RG, A	MOV R1, A	MOV RZ, A	MOV A.S.	HOV A.A.	MOV RS, A	™ MOW	MOV R7.A
ш	MOVX A POPTR	28 A1MP (77)	MOVX	MOVX A, ØRI	E CLR	MOV A, dir	MOV A @80	HOV A, GRI	MOV A RO	MOV A RU	MOV A, RZ	MOV A. P. P. P.	MOV A R⁴	MOV A.RS	MOV A, R6 to	MOV A, R7
Ω	POP dir 30	PACALL [76) 20	SETB	SETB C	DA A	3B DJNZ dir, nel 2C	XCHD A @RG	XCHD A. @R1	P.O. rel	D3NZ R1, rel	DJNZ R2, rel 20	DONZ N3, ref 2c	DJNZ R4, 78	DJAZ R5, rel 20	DJNZ R6, rel	DJNZ RZ, rei
Ö	PLISH of 20	AJMP (P6) 20	CLR bl	CLR C 1C	SWAP A 1C.	XCH A, dfr	XCH A GRO	XCH A @R1	XCH A. 80	XCH A. RJ	XCH A R2 o	X C.	XCH A, 84	XCH A, R5	XCH 2	XCH 2
m	ANI C, /bit	ACALL (75) 2C	CPL FF	18 CPL	38 CJNE A, #data, rel	SCINE 20	ORO, #data,rel	39 CUNE (ER), #debyel	38 CONE RO, *data, rel	RL -data rel	CONE R2, +delb, rd	CONE N. TOWNER OF NO.	SECONE FM, redeta, rel	CONE RS, action, rel	39 CONE R6, = cata, rel	CONE P., rutata, rel
<	ORL C/bt %	AJMP (PS) 2C	MOV Chi	INC DPTR	HUL All ac		MOV 3C	MOV (PR.), dk	MOV R0, dir	MOV RI, off	MOV R2, dir	MOV F. Of	MOV R4, dir	MOV RS, dv 20	MOV H6, dir	MOV N
ത	MOV DOTR, AGRITIS	ACALL (Pt)	MOV bit C	HOVC A, GRA-DPTR	29 SUBB A, #data	28 SUIBB A dir	SUBB A @30	SUBB A, ØR1	52.BB A. 80 A.	SUSB A.R.1	SUBB ARZ	SUBB A. R.3 nc	SUBB 2	SUBB SUBB	SUBB 2	SUBB A, 87 1C
œ	SJMP	AJMP (P4)	ANE C, bit	MOVC A, GA+PC	B DIV	MOV dk, dk	MOV of, GRO		02	MOV.	MOV Gr. R2	MOV En , FB	MOV dir, R4	MOV SF. RS	MOV dfr, R5	MOV dr, R7
~	28 JNZ	ACALL (P3) 20	28 ORL C, bit	JMP BA+DPT	A, #deta	MOV off, #data	MOV 22	29 MOV ØR1, #úěta	MOV RO, #data	MOV Rt, Fdeta	MOV R2, #dela	MOV R3, #deta	MOV 2	MOV 25	MOV 2	MOV R7, #dem
60	2 P	AJMP (P3) xc	XRL dr. A	XRL dir, #dela	ZE XIRL A, Adata	28 XRL A.dırıcı	XRL A. @Ro	XRL A, OR1	XRL A RE	XRL A.Ri	N XRL	XRL A. R3	XRL A.Rd	2 XRL 2 10 10 10 10	A. RG	B XRL 2
ιn	28 JMC	ACALL (P2) 2C	ANI.	ANL dr. #data	ANL ANL	A dir	ANL A, GRO	ANIL ANIL A, BR1	A. NO	A.R.	ANL A, R2	ANL A R3	A R4 10	B ANL A, R5	AML A	A R7
4	78 JC 16 ZC	AJMP (P2) 2C	28 ORL dir, 4 tc	ORL dr, #data	29 ORL 2	28 ORL A, dir	ORL A, GRO	A, ®R1	ORL A, 100 TC	ORL A. R1	ORL A.R.	ORL A, R3 C	ORL A Res	9.8.4.83 5.75	ORL A. No	ORL A.T.
67	38 JNB bt. ref	ACALL (P1) 2C	RETI	RIC A	ADDC A, #data	ADDC A. ck tc	ADDC A, GRI	ADDC A, GRI	ADDC A Rd 3c	ADDC A.R. 10	ADDC A RZ 1C	ADDC A. R3	ADDC A, R4 IC	ADDC	ADDC A R6	ADDC A.R7
7	38 JB JK rel 20	ZE AJMP (P1) 2C	RET 20	5 A A	A #dela	ADD Adr	A DDD	ADD A, ORL	AUD 4	ADD ARI	ADD AR	A R3	AOD A, Rt	ADD A, RS (C)	ADD A.Ré	ADD AR7
_	38 318C bt. ₁€	ACALL (P0) 2C	3B CCALL addrts	RRC	iB DEC		1B DEC 490 YC	DEC ORI	B DEC	16 DEC R1 1C	18 DEC RZ 1C	PEC R3	DEC R ⁴	DEC RS 1C	15 DEC	" DEC "
0	il NOP or	23 AJMP (P0) 20	3 LIMP 3	13 RR A 10	INC A	ZB INC dir	INC OR0	INC (MRI 10	inc Re	INC	IB INC	INC R3 IC	INC Re 10	18 INC 1C	INC R6	IS INC
byn Inskruction operands	- A	-	~1	۳ <i>7</i>	4	اد م	<u>ن</u>	~_	<u>.</u>	6	V A	80	ن م		ш	L.