EE230: Analog Circuits Lab Lab No. 10-11

Abhineet Agarwal, 22b1219

April 3, 2024

1 Differential Amplifier with Resistive Load

1.1 Aim of the experiment

Simulating and experimenting with a differential amplifier circuit with a resistive load, amplifying the small signal AC component of the input Voltage.

1.2 Design

For the circuit, the differential gain, A_v is given by:

$$A_v = R_2 * \sqrt{I_{tail} K_{n1}} \tag{1}$$

and the output common mode voltage is:

$$V_{outcm} = V_{DD} - \frac{I_{tail}R_2}{2} \tag{2}$$

Simulation 1.3

For the specifications:

$$\mathrm{Gain} > 12\mathrm{dB}$$

$$V_{incmmin} = 3.5 V_{incmmin}$$

,
$$V_{incmmin} = 3.5 \text{V}$$
 and $5 \text{V} < V_{outcmmin} < 7 \text{V}$

and keeping
$$Kn = 0.53mA/V^2$$
, $Kp = 0.16mA/V^2$, $V_{thn} = 0.45$ V, $V_{thp} = -0.5$ V.

Choosing the following values:

$$A_v = 5$$

 $R_2 = R_3 = 7.47 \text{k}\Omega$
 $V_{outCM} = 6.84 \text{V}$
 $I_{tail} = 0.846 \text{mA}$
 $R_1 = 9.17 \text{k}\Omega$

$V_{GS1} = V_{DS1} = V_{GS2}$	2.23V
V_{DS2}	2.8V
V_{out1}	6.83V
V_{out2}	6.83V
I_{ref}	$0.846 \mathrm{mA}$

1.4 Simulation Results

1.4.1 Large signal(DC) response

1.4.2 Vin1 sweep

Figure 1: (Vout1 - Vout2) vs (Vin1 - Vin2)

1.4.3 Small signal(AC) response

Figure 2: Vout1 and Vout2

So the small signal gain comes out to be:

$$A_v = 5 (3)$$

1.5 Experiment Results

1.5.1 Large signal analysis

 $V_{in1} = V_{in2} = 4.5 V$

The following values were observed: $V_{out1} = 6.36$ V

 $V_{out2} = 6.75 V$

All MOSFETS were observed to be in saturation.

1.5.2 Small Signal Analysis

 $V_{in1} = 20 \text{ mVpp}$, 1kHz sinusoid with 4.5 DC offset

 $V_{in2} = 20$ mVpp, 1kHz sinusoid with 4.5 DC offset, out of phase with V_{in1}

The following values were observed:

 $V_{out1} = 112 \text{ mVpp}, 1\text{kHz sinusoid}$

 $V_{out2} = 112 \text{ mVpp}$, 1kHz sinusoid out of phase with V_{out1}

We observed a 180 degree phase shift as well. So the small signal gain comes out to be:

$$A_v = \frac{112}{20} = 5.6 \tag{4}$$

1.6 Conclusion and Inference

This experiment demonstrated the method to bias a MOSFET in the correct region (saturation), and also demonstrated the construction of a differential amplifier with a resistive load.

1.7 Experiment completion status

Completed.

2 Differential Amplifier with Diode connected Load

2.1 Aim of the experiment

Simulating and experimenting with a differential amplifier circuit with a diode connected load, amplifying the small signal AC component of the input Voltage.

2.2 Design

For the circuit, the differential gain, A_v is given by:

$$A_v = -g_{m1}(r_{o2}||r_{o4}) (5)$$

where

$$r_o = \frac{1}{\lambda I_D} \tag{6}$$

and the output DC mode voltage is:

$$V_{outDC} = V_{DD} - \sqrt{\frac{I_o}{K_n}} - V_{th} \tag{7}$$

2.3 Simulation

For the specifications:

$$V_{outDC} = 6V$$

$$V_{DD} = 10 \mathrm{V}$$

we get

$$5.1V < V_{incm} < 6.45V$$

$$5.1 \stackrel{\circ}{\rm V} < V_{incm} < 6.45 \stackrel{\circ}{\rm V}$$
 and keeping $Kn = 0.53 mA/V^2, \, Kp = 0.16 mA/V^2, \, V_{thn} = 0.45 \stackrel{\circ}{\rm V}, \, V_{thp} = -0.5 \stackrel{\circ}{\rm V}$

$$I_o = 1.96 \text{mA}$$

$$R_D = 3.48 \mathrm{k}\Omega$$

$$V_{D05} = 3.63 \text{V}$$

$$V_{incm} = 5.7 \text{V}$$

Simulation Results 2.4

Large signal(DC) response 2.4.1

$V_{in1} = V_{in2}$	5.7V
V_{DS5}	3.15V
V_{GS0}	3.15V
V_{DS0}	3.337V
V_{out}	6.03V
V_{g3}	6.03V

Left_Click & drag to move Cursor 1

2.4.2 Small signal(AC) response

So the small signal gain comes out to be:

$$A_v = 86.80$$
 (8)

While the hand calculated value is 86.67, which is pretty close to this value.

2.4.3 Common mode gain

Which gives the common mode gain = 0.01.

2.5 Experiment Results

2.5.1 Large signal analysis

 $V_{in1} = V_{in2} = V_{inCM} = 5.5 V$

 $V_{out} = 6.4 \text{V}$

 $V_{gs} = 2V$

 $V_{ds} = 4.1 V$

 $I_{ref} = 1.27 \text{mA}$

All MOSFETs observed to be in saturation.

2.5.2 Small Signal Analysis

 $V_{in1} = 20 \text{ mVpp}$, 1kHz sinusoid with 5.5V DC offset

 $V_{in2} = 20$ mVpp, 1kHz sinusoid with 5.5V DC offset, out of phase with V_{in1} The following values were observed:

 $V_{out} = 3.3 \text{Vpp}$, 1kHz sinusoid, with an offset of 5.9 V. So the small signal gain comes out to be:

$$A_v = \frac{3.3}{0.04} = 85\tag{9}$$

All MOSFETS were observed to be in saturation.

2.6 Conclusion and Inference

This experiment demonstrated the method to bias a MOSFET in the correct region, and also demonstrated how to build a differential amplifier with diode connected load.

2.7 Experiment completion status

Completed.

3 Five Transistor OTA Design

3.1 Aim of the experiment

Simulating and experimenting with different applications of the 5T-OTA circuit, including an inverting amplifier, a unity gain amplifier and a differentiator.

3.2 Unity Gain Amplifier

3.2.1 Design

3.2.2 Simulation

Vin DC SWEEP

SINUSOIDAL INPUT

3.2.3 Experimental Results

 $R_D = 3.4 \mathrm{k}\Omega$

 $V_i n = \text{sinusoid of 1V}$ peak to peak amplitude, 1kHz frequency and an offset of 5.5V

 $V_{outAC} = \text{sinusoid}$ with 1V peak to peak, from 5.53 to 6.53 V.

3.3 Inverting Amplifier

3.3.1 Design

3.3.2 Simulation

3.3.3 Experimental Results

 $V_{bias} = 5.5 V$

 $R_2 = 10 \text{ M}\Omega$

 $R_1 = 1 \text{ M}\Omega$

 $V_d = 50 \text{ mVpp}$, 1kHz sinusoid

The output observed was a 499.2 mVpp, 1kHz sinusoid

So the gain is $A_v = -167$ degrees

3.4 Differentiator

3.4.1 Design

for this circuit:

 $V_{outpp} = \frac{f*V_{inpp}}{250}$ where f = frequency (Hz) of the input waveform

3.4.2 Simulation

Keeping Vin as triangular waveform of 100 mVpp, 1 KHz frequency, with C = 100pF, R = $10 \mathrm{M}\Omega$

3.4.3 Experimental Results

For $V_{in}=100 \mathrm{mVpp}$, 1kHz sinusoid, $V_{out}=400 \mathrm{mVpp}$, we observed a triangular waveform from 5.97 V to 6.10 V.

3.5 Conclusion and Inference

This experiment demonstrated the method to bias a MOSFET in the correct region, and also demonstrated a unity gain amplifier, an inverting amplifier and a differentiator circuit, using a 5T-OTA circuit.

3.6 Experiment completion status

Completed.