Let a_n and b_n be the perimeters of the regular n-gons that circumscribe and inscribe a circle of radius r.

We can express the side lengths of the inner and outer polygons, respectively, with the formulas $s_n = 2r\sin(\frac{\pi}{n})$ and $S_n = 2r\tan(\frac{\pi}{n})$.

Thus $a_n = 2nr \tan(\frac{\pi}{n})$ and $b_n = 2nr \sin(\frac{\pi}{n})$.

We will now show that $\frac{2a_nb_n}{a_n+b_n}=a_{2n}$.

$$\frac{2a_n b_n}{a_n + b_n} = \frac{2 * 2nr \tan(\frac{\pi}{n}) * 2nr \sin(\frac{\pi}{n})}{2nr \tan(\frac{\pi}{n}) + 2nr \sin(\frac{\pi}{n})}$$
$$= 4nr \frac{\tan(\frac{\pi}{n}) \sin(\frac{\pi}{n})}{\tan(\frac{\pi}{n}) + \sin(\frac{\pi}{n})}$$
$$= 4nr \tan(\frac{\pi}{2n})$$
$$= a_{2n}$$

On the third step, we used the identity $\tan(\frac{x}{2}) = \frac{\tan(x)\sin(x)}{\tan(x) + \sin(x)}$.

Now let's show that $\sqrt{a_{2n}b_n} = b_{2n}$.

$$\sqrt{a_{2n}b_n} = \sqrt{2(2n)r\tan(\frac{\pi}{2n})2nr\sin(\frac{\pi}{n})}$$

$$= \sqrt{2(2n)r\tan(\frac{\pi}{2n})2nr * 2\sin(\frac{\pi}{2n})\cos(\frac{\pi}{2n})}$$

$$= 4nr\sqrt{\tan(\frac{\pi}{2n})\sin(\frac{\pi}{2n})\cos(\frac{\pi}{2n})}$$

$$= 4nr\sqrt{\sin^2(\frac{\pi}{2n})}$$

$$= 4nr\sin(\frac{\pi}{2n})$$

$$= b_{2n}$$

On the third step, we used the identity $\sin(x) = 2\sin(\frac{1}{2}x)\cos(\frac{1}{2}x)$.

We have now proven that $a_{2n} = \frac{2a_nb_n}{a_n+b_n}$ and $b_{2n} = \sqrt{a_{2n}b_n}$.

These formulas allow us to calculate the perimeter of a regular n-gon, given its apothem r or its circumradius R, where $n = 6 * 2^k$ for some natural number k. The apothem of a regular polygon is also called its inradius. The circumradius of a regular polygon is also called its outradius.