Assignment-2

Soft Computing

(BCSE-0103)

Maximum Marks-15

Attempt all questions:

03 Marks Each

Q:1 Suppose, R(x, y) and S(x, y) are the two relations define over two crisp sets $x \in A$ and $y \in B$

$$R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

Find the following

- O RUS
- 2 Rns
- 3 R

Q:2 Two fuzzy sets P and Q are defined on x as follows.

$\mu(x)$	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>x</i> ₅
Р	0.1	0.2	0.7	0.5	0.4
Q	0.9	0.6	0.3	0.2	8.0

Find the following:

- (a) $P_{0.2}$, $Q_{0.3}$ (c) $(P \cup \overline{P})_{0.8}$
- (b) $(P \cup Q)_{0.6}$ (d) $(P \cap Q)_{0.4}$

Q:3 Name and describe the main features of genetic algorithm.

Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as:

$$f(x) = (a+b) - (c+d) + (e+f) - (g+h) ,$$

and let the initial population consist of four individuals with the following chromosomes:

> $x_1 = 65413532$ $x_2 = 87126601$ $x_3 = 23921285$ $x_4 = 41852094$

- a) Evaluate the fitness of each individual, showing all your workings, and arrange them in order with the fittest first and the least fit last.
- b) Perform the following crossover operations:
 - Cross the fittest two individuals using one-point crossover at the middle point.
- O:5 Differentiate classical algorithm & genetic algorithm. Write a short note on selection operator.