A Galois field, $GF(p^n)$, is a finite field with p^n elements.

A polynomial of degree n-1 is an expression of the form

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x^1 + a_0x^0$$

where x^i is called the ith term and a_i is called coefficient of the ith term.

Represent the 8-bit word (10011001) using a polynomials

n-bit word
$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ \downarrow & \downarrow \\ Polynomial & 1x^7 + 0x^6 + 0x^5 + 1x^4 + 1x^3 + 0x^2 + 0x^1 + 1x^0 \end{bmatrix}$$

First simplification
$$1x^7 + 1x^4 + 1x^3 + 1x^0$$

Second simplification

$$x^7 + x^4 + x^3 + 1$$

A Galois field, $GF(p^n)$, is a finite field with p^n elements.

For the sets of polynomials in $GF(2^n)$, a group of polynomials of degree n is defined as the modulus. Such polynomials are referred to as irreducible polynomials.

Degree	Irreducible Polynomials
1	(x+1),(x)
2	$(x^2 + x + 1)$
3	$(x^3 + x^2 + 1), (x^3 + x + 1)$
4	$(x^4 + x^3 + x^2 + x + 1), (x^4 + x^3 + 1), (x^4 + x + 1)$
5	$(x^5 + x^2 + 1), (x^5 + x^3 + x^2 + x + 1), (x^5 + x^4 + x^3 + x + 1), (x^5 + x^4 + x^3 + x^2 + 1), (x^5 + x^4 + x^2 + x + 1)$

A Galois field, $GF(p^n)$, is a finite field with p^n elements.

Find the result of $(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$ in GF(28) with irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$. Note that we use the symbol \otimes to show the multiplication of two polynomials.

Solution

$$P_{1} \otimes P_{2} = x^{5}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x^{2}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x(x^{7} + x^{4} + x^{3} + x^{2} + x)$$

$$P_{1} \otimes P_{2} = x^{12} + x^{9} + x^{8} + x^{7} + x^{6} + x^{9} + x^{6} + x^{5} + x^{4} + x^{3} + x^{8} + x^{5} + x^{4} + x^{3} + x^{2}$$

$$P_{1} \otimes P_{2} = (x^{12} + x^{7} + x^{2}) \mod (x^{8} + x^{4} + x^{3} + x + 1) = x^{5} + x^{3} + x^{2} + x + 1$$

A Galois field, $GF(p^n)$, is a finite field with p^n elements.

To find the final result, divide the polynomial of degree 12 by the polynomial of degree 8 (the modulus) and keep only the remainder.

$$x^{4} + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1$$

$$x^{12} + x^{7} + x^{2}$$

$$x^{12} + x^{8} + x^{7} + x^{5} + x^{4}$$

$$x^{8} + x^{5} + x^{4} + x^{2}$$

$$x^{8} + x^{4} + x^{3} + x + 1$$

Remainder
$$x^5 + x^3 + x^2 + x + 1$$

A Galois field, $GF(p^n)$, is a finite field with p^n elements.

In GF (2⁴), find the inverse of $(x^2 + 1)$ modulo $(x^4 + x + 1)$.

q	r_1	r_2	r	t_I	t_2	t
$(x^2 + 1)$	$(x^4 + x + 1)$	$(x^2 + 1)$	(x)	(0)	(1)	$(x^2 + 1)$
(x)	$(x^2 + 1)$	(x)	(1)	(1)	$(x^2 + 1)$	$(x^3 + x + 1)$
(x)	(x)	(1)	(0)	$(x^2 + 1)$	$(x^3 + x + 1)$	(0)
	(1)	(0)	()	$(x^3 + x + 1)$	(0)	

Solution

The answer is $(x^3 + x + 1)$

A Galois field, $GF(p^n)$, is a finite field with p^n elements.

In GF(28), find the inverse of (x5) modulo $(x^8 + x^4 + x^3 + x + 1)$?

q	r_{I}	r_2	r	t_I	t_2	t
(x^3)	$(x^8 + x^4 + x^3 + x^3)$	$(x+1) \qquad (x^5)$	$(x^4 + x^3 + x + 1)$	(0)	(1)	(x^3)
(x+1)	(x^5) (x^4)	$+x^3+x+1)$	$(x^3 + x^2 + 1)$	(1)	(x^3)	$(x^4 + x^3 + 1)$
(x)	$(x^4 + x^3 + x + 1)$	$(x^3 + x^2 + 1)$	(1)	(x^3)	$(x^4 + x^3 + 1)$	$(x^5 + x^4 + x^3 + x)$
$(x^3 + x^2 + 1)$	$(x^3 + x^2 + 1)$	(1)	(0)	$(x^4 + x^3 + 1)$	$(x^5 + x^4 + x^3 + x)$	(0)
	(1)	(0)		$(x^5 + x^4 + x^3)$	+x) (0)	

Solution

The answer is $(x^5 + x^4 + x^3 + x)$

