3

SUPERVISOR'S USE ONLY

91579

Level 3 Calculus, 2017

91579 Apply integration methods in solving problems

9.30 a.m. Thursday 23 November 2017 Credits: Six

Achievement	Achievement with Merit	Achievement with Excellence
Apply integration methods in solving problems.	Apply integration methods, using relational thinking, in solving problems.	Apply integration methods, using extended abstract thinking, in solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Show ALL working.

Make sure that you have the Formulae and Tables Booklet L3-CALCF.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–16 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL

QUESTION ONE

ASSESSOR'S USE ONLY

(a) Find $\int 4 \sec^2 2x \, dx$.

1 Tilld J 4 Sec 2x dx.

(b) Use integration to find the area enclosed between the curve $y = \frac{x^2 + \sqrt{x}}{x}$ and the lines y = 0, x = 1, and x = 4 (the area shaded in the diagram below).

An object's acceleration is modelled by the function
$a(t) = 1.2\sqrt{t}$
where a is the acceleration of the object, in m s ⁻²
and t is the time in seconds since the start of the object's motion.
f the object had a velocity of 7 m s ⁻¹ after 4 seconds, how far did it travel in the first
seconds of motion?
You must use calculus and show the results of any integration needed to solve the problem.
k.
Find the value of k if $\int_{0}^{k} 3e^{2x} dx = 4$.
Find the value of k if $\int_{0}^{k} 3e^{2x} dx = 4$.
Find the value of k if $\int_{0}^{k} 3e^{2x} dx = 4$. You must use calculus and show the results of any integration needed to solve the problem.
U
U
O .
O .
O .
O .
U
U
U
U .
V

Mean value =
$$\frac{\int_{a}^{b} f(x) dx}{b - a}$$

Find the mean value of $y = \sin^2 x$ between x = 0 and $x = \pi$. Part of the graph of $y = \sin^2 x$ is shown below.

QUESTION TWO

ASSESSOR'S
AUGEOUCK U
LICE ONLY

(a)	Find	$\int \frac{6}{2x-1} \mathrm{d}x.$
-----	------	------------------------------------

Find $\int (2x-5)^4 dx$.			
$\int (2\pi^{-3}) dx$.			

(c) The diagram below shows the curve $y = -x^2 + 3x + 10$, and the line y = -x + 14, which is the tangent to the curve at the point (2, 12).

Calculate the shaded area.

You must use calculus and show the results of any integration needed to solve the problem.		

(d) Part of the graph of $y = \sin 3x \cos 2x$ is shown below.

Find the area enclosed between the curve $y = \sin 3x \cos 2x$ and the lines y = 0, x = 0, and $x = \frac{\pi}{4}$.

(e)	The acceleration of an object is modelled by the function $a(t) = \frac{20 \ln t}{t}$.	ASSESSOF USE ONL
	where a is the acceleration of the object in m s ⁻² and t is the time in seconds since the start of the object's motion.	
	The object was moving with a velocity of 12 m s ⁻¹ when $t = 4$.	
	Find the velocity of the object after 10 seconds.	
	You must use calculus and show the results of any integration needed to solve the problem.	

QUESTION THREE

ASSESSOR'S USE ONLY

(a) Find	$\int \left(\frac{9}{x^4} + 8e^{4x}\right) dx$	x.
----------	--	----

Question Three continues on the following page.

(b) Julia wants to find an approximation of the area of a paved courtyard that she wishes to construct on her property. She takes some measurements and these are shown on the diagram below.

Using these measurements, and the Trapezium rule, find an approximation of the area of paved courtyard.

(c) Julia's friend Sarah believes that the equation of the curved border of the paved courtyard can be modelled by the function $y = \frac{15x - 15}{x + 2}$.

Use integration to find the area of the courtyard, shown in the diagram above.

Solve the differential equation $\frac{dy}{dx} = \frac{y}{\sqrt{x}}$, given that when $x = 4$, then $y = 1$. You must use calculus and show the results of any integration needed to solve the problem					
10u must use cut	uius ana snow	the results of	any integratio	n needed to soit	e ine provien

Given that when $t = 0, y$	= 8, and that when $t = 2$, $y = 12$,	, find the value of y when $t = 5$.	
You must use calculus an	nd show the results of any integr	ation needed to solve the problem.	
			-
			_
			_
			-
			-
			_
			_
			_
			_
			_

		Extra paper if required.	ASSESSOR'S
QUESTION NUMBER		Write the question number(s) if applicable.	USE ONLY
NUMBER			1

		Extra paper if required.	
NIESTION		Write the question number(s) if applicable.	
QUESTION NUMBER		(с) и орринения	

	Write the		r if required. umber(s) if app	nlicable			
QUESTION NUMBER	viito tiit	- quodion ne		onodolo.	·		