Relações

Alexandre Checoli Choueiri

02/06/2024

- 1 Motivação
- 2 Relacionamentos entre tabelas
- 3 Diagramas Entidade Relacionamento
- 4 Implementação chaves
- 6 Conclusões
- 6 JOIN
- Conjuntos

Até o momento, realizamos buscas em bancos de dados com uma **única tabela**. Usualmente os bancos de dados possuem muitas tabelas, que se relacionam entre si. Vamos ver um exemplo considerando os próprios dados de livros.

	Autor		Liv	ro
Nome	Período	Nacionalidade	Nome	Editora
Dostoievski Nietzsche	1800 1800	Rússia Alemanha	Crime e castigo O anticristo	Ed. 51 Martin Claret
Homero	800 A.C	Grécia	llíada	Penguin

Autor			Liv	ro
Nome	Período	Nacionalidade	Nome	Editora
Dostoievski	1800	Rússia	Crime e castigo	Ed. 51
Nietzsche	1800	Alemanha	O anticristo	Martin Claret
Homero	800 A.C	Grécia	llíada	Penguin

Considere que temos as duas tabelas acima, uma relacionada a autores e outra a livros. Como podemos saber qual autor escreveu qual livro?

Autor			Liv	ro
Nome	Período	Nacionalidade	Nome	Editora
Dostoievski	1800	Rússia	Crime e castigo	Ed. 51
Nietzsche	1800	Alemanha	O anticristo	Martin Claret
Homero	800 A.C	Grécia	llíada	Penguin

Uma forma de contornar o problema é usar o sistema da "honestidade". Nós vamos convencionar que o primeiro elemento da tabela de **Autor** sempre vai corresponder ao primeiro elemento da tabela **Livro**.

	Autor		Liv	ro
Nome	Período	Nacionalidade	Nome	Editora
Dostoievski	1800	Rússia	Crime e castigo	Ed. 51
Nietzsche	1800	Alemanha	O anticristo	Martin Claret
Homero	800 A.C	Grécia	llíada	Penguin

Temos então que:

	Autor		Livi	ro
Nome	Período	Nacionalidade	Nome	Editora
Dostoievski Nietzsche Homero	1800 1800 800 A.C	Rússia Alemanha Grécia	Crime e castigo O anticristo Ilíada	Ed. 51 Martin Claret Penguin

Temos então que:

1. Dostoievski $\overset{escreveu}{\rightarrow}$ Crime e castigo

Autor			Liv	ro
Nome	Período	Nacionalidade	Nome	Editora
Dostoievski	1800	Rússia	Crime e castigo	Ed. 51
Nietzsche	1800	Alemanha	O anticristo	Martin Claret
Homero	800 A.C	Grécia	llíada	Penguin

Temos então que:

1. Dostoievski $\overset{escreveu}{\rightarrow}$ Crime e castigo

E assim podemos convencionar com a segunda e terceiras linhas também:

Autor				Liv	ro	
Nome	Período	Nacionalidade	Nome	2	Editor	ra
Dostoievski	1800	Rússia	Crime	e e castigo	Ed. 5	1
Nietzsche	1800	Alemanha	O ant	cicristo	Martin C	laret
Homero	800 A.C	Grécia	llíada		Pengu	in

- 1. Dostoievski $\stackrel{escreveu}{\rightarrow}$ Crime e castigo
- 2. Nietzsche $\overset{escreveu}{\rightarrow}$ O anticristo
- 3. Homero $\overset{escreveu}{\rightarrow}$ Ilíada

Autor			_	Livi	O
Nome	Período	Nacionalidade	_	Nome	Editora
Dostoievski Nietzsche Homero	1800 1800 800 A.C	Rússia Alemanha Grécia	-	Crime e castigo O anticristo Ilíada	Ed. 51 Martin Claret Penguin

Essa solução, no entanto, pode gerar uma série de problemas:

	Autor		_	Livi	ro
Nome	Período	Nacionalidade		Nome	Editora
Dostoievski Nietzsche Homero	1800 1800 800 A.C	Rússia Alemanha Grécia	_	Crime e castigo O anticristo Ilíada	Ed. 51 Martin Claret Penguin

Essa solução, no entanto, pode gerar uma série de problemas:

- 1. Os dados devem ficar sempre na mesma ordem
- 2. Algum **erro de inserção** em uma tabela pode produzir um erro em muitos elementos

Autor_Livro						
Nome	Período	Nacionalidade	Nome	Editora		
Dostoievski	1800	Rússia	Crime e castigo	Ed. 51		
Nietzsche	1800	Alemanha	O anticristo	Martin Claret		
Homero	800 A.C	Grécia	llíada	Penguin		

Uma outra possibilidade para resolver o problema é simplesmente juntar as tabelas.

Autor_Livro							
Nome	Período	Nacionalidade	Nome	Editora			
Dostoievski Nietzsche Homero	1800 1800 800 A.C	Rússia Alemanha Grécia	Crime e castigo O anticristo Ilíada	Ed. 51 Martin Claret Penguin			

Uma outra possibilidade para resolver o problema é simplesmente **juntar as tabelas**.

Quais problemas essa abordagem pode gerar?

Autor_Livro							
Nome	Período	Nacionalidade	Nome	Editora			
Dostoievski	1800	Rússia	Crime e castigo	Ed. 51			
Dostoievski	1800	Rússia	Irmãos Karamázov	Ed. 51			
Nietzsche	1800	Alemanha	O anticristo	Martin Claret			
Homero	800 A.C	Grécia	llíada	Penguin			

Sabemos que Dostoievski escreveu mais de um livro, como Os Irmão Karamázov.

Autor_Livro				
Nome	Período	Nacionalidade	Nome	Editora
Dostoievski	1800	Rússia	Crime e castigo	Ed. 51
Dostoievski	1800	Rússia	Irmãos Karamázov	Ed. 51
Nietzsche	1800	Alemanha	O anticristo	Martin Claret
Homero	800 A.C	Grécia	llíada	Penguin

Sabemos que Dostoievski escreveu mais de um livro, como Os Irmão Karamázov. Essa solução gera muitas redundâncias nos dados. Para todo livro de Dostoievski no banco de dados, termos uma repetição de seu Período e Nacionalidade.

Isso nos indica que quando trabalhamos com mais de uma tabela em um banco de dados, **é necessário pensar nas relações que elas desempenham entre si**. Vamos então entender como fazer isso.

Antes de entendermos como podemos operar tecnicamente as relações entre as duas tabelas, vamos entender quais são as relações possíveis entre as tabelas **Autor** e **Livro**.

De forma simplificada, podemos pensar que um autor escreve um livro. E de forma similar, um livro é escrito por um autor. Essa relação é chamada de $\bf 1$ para $\bf 1$ (1-1).

No entanto, vimos no exemplo que é possível que um autor escreva mais de um livro, como Dostoievski.

O que gera um segundo tipo de relacionamento: **1 para muitos** (1-n), um autor pode escrever muitos livros.

Ainda, sabemos que alguns livros possuem mais de um autor (livros técnicos, por exemplo).

O que gera um novo tipo de relacionamento, chamado de **muitos para muitos** (n-n).

Esses são todos os relacionamentos que podem existir entre as tabelas de um banco de dados:

- Um para um
- Um para muitos
- Muitos para muitos

Para criar um novo banco de dados, ou mesmo entender um já existente, é primordial conhecer como as tabelas se relacionam. Por sorte, exitem ferramentas visuais que facilitam essa tarefa, uma delas é o **Diagrama Entidade Relacionamento** (Entity Relationship Diagrams - ER Diagrams).

Um diagrama entidade relacionamento representa visualmente como as tabelas e colunas de um banco de dados se relacionam. Existem muita representações possíveis para o diagrama ER, algumas delas são:

Diagramas pela notação de Chen.

Diagramas pela notação UML.

Diagramas pela notação pés de corvo - Crow's foot.

Por ser uma das mais utilizadas, estudaremos a notação de pés de corvo.

Alexandre Checoli Choueiri DEP - UFPR : Banco de dados - Relações

27/85

O diagrama ao lado é um exemplo de ER com a notação de pés de corvo. Cada retângulo indica uma **entidade**, ou seja, uma **tabela** em nosso banco de dados. Além disso, existem arcos ligando as tabelas, com uma notação específica, esse arcos indicam os relacionamentos entre as tabelas. **Vamos entender o que cada um representa**.

A linha com um círculo branco pode ser entendida como um 0. Ou seja, nada precisa estar relacionado a esta entidade.

A linha com uma barra indica que a entidade precisa ter **pelo menos um** relacionamento com outra tabela.

Finalmente, a linha com 3 bifurcações (que parece um pé de corvo) significa que a **entidade está relacionada de muitas formas** em uma outra tabela.

Vamos criar um diagrama entidade relacionamento para a relação entre autores e livros. Lembrando das possibilidades já discutidas:

Um autor poderia escrever um livro e somente um livro (e um livro seria escrito por somente um autor)

Um autor poderia escrever mais de um livro (porém cada livro ainda seria escrito por um autor)

Finalmente, um autor poderia escrever muitos livros, e cada livro poderia ser escrito por muitos autores.

Note que cada situação descreve **relacionamentos diferentes**, e portanto geram diagramas distintos.

Vamos representar a última situação, em que um livro pode ser escrito por muitos autores e um autor pode escrever muitos livros.

O primeiro passo é representar as tabelas que vamos relacionar como retângulos, e uma linha unindo-as.

Agora podemos estabelecer a primeira relação, começando de **Autor** para **Livros**. Sempre pensamos na relação em duas possibilidades: o mínimo e o máximo.

Para facilitar, podemos adicionar um verbo indicando a relação: **Autor** escreve no mínimo 1 **Livro**.

Mas também pode escrever muitos livros.

OBS: Note que a ordem de leitura de um par de tabelas começa pelo nome da primeira e termina no início da segunda: *um autor pode escrever 1 ou muitos livros*

Mas ainda precisamos modelar a relação de livros para autores: um livro deve ser escrito por pelo menos 1 autor, mas pode ser escrito por muitos.

O diagrama ER que modela a relação entre a tabela Autor e Livro fica da seguinte forma então.

EXERCÍCIO: Crie os diagramas ER para modelar as situações abaixo, envolvendo as mesmas tabelas (Autor e Livro).

EXERCÍCIO: Crie os diagramas ER para modelar as situações abaixo, envolvendo as mesmas tabelas (**Autor** e **Livro**).

Usamos os diagramas ER em duas situações:

- 1. Quando estamos criando um banco de dados do 0, para montar as corretas relações entre as tabelas e deixar o banco de dados otimizado.
- 2. Quando começamos a realizar buscas em um BD, para entendermos melhor as relações existentes nas tabelas.

EXERCÍCIO: Faça a modelagem completa do problema 1 em: link da página no site

Mas como podemos ralizar a implementação dessas relações?

- Um para um
- Um para muitos
- Muitos para muitos

Para isso precisamos entender o conceito de chaves em bancos de dados.

Chave

A chave de uma tabela (**relação**) é um atributo (coluna) que define únicamente os elementos de cada linha da mesma.

Ou seja, para cada tabela deve existir uma coluna com um valor identifique toda linha sem duplicidade. Vamos considerar a nossa tabela de **Livro** como exemplo:

Livro		
Nome	Editora	
Crime e castigo	Ed. 51	
O anticristo	Martin Claret	
llíada	Penguin	

Ou seja, para cada tabela deve existir uma coluna com um valor identifique toda linha sem duplicidade. Vamos considerar a nossa tabela de **Livro** como exemplo:

Livro		
Nome	Editora	
Crime e castigo	Ed. 51	
O anticristo	Martin Claret	
llíada	Penguin	

Existe algum atributo que possa ser considerado como a nossa chave da tabela?

Da forma como o banco está definido, **não**. Podemos ter livros iguais sendo publicados por editoras diferentes, e editoras diferentes lançando o mesmo livro.

Da forma como o banco está definido, **não**. Podemos ter livros iguais sendo publicados por editoras diferentes, e editoras diferentes lançando o mesmo livro.

No entanto, todo livo possui um **ISBN** (International Standard Book Number), que identifica unicamente o livro. Desta forma podemos usar o ISBN como o atributo chave da nossa tabela **Livro**:

Livro		
ISBN	Nome	Editora
976-85-333-0865-0	Crime e castigo	Ed. 51
778-84-332-0765-0	O anticristo	Martin Claret
973-85-333-0765-0	llíada	Penguin

O ISBN é como um CPF para livros.

Agora que entendemos **o que é uma chave**, podemos fazer uma simplificação. Ao usar o ISBN, cada string ocupa 17 bytes de espaço (1 para cada caractere). Com muitos registros no banco de dados, isso ocupa muito espaço computacional, o que podemos fazer para **otimizar a representação desta chave**?

Agora que entendemos **o que é uma chave**, podemos fazer uma simplificação. Ao usar o ISBN, cada string ocupa 17 bytes de espaço (1 para cada caractere). Com muitos registros no banco de dados, isso ocupa muito espaço computacional, o que podemos fazer para **otimizar a representação desta chave**?

Podemos simplesmente usar um número sequencial para cada livro do banco de dados, de forma que nunca os números são repetidos (**chamado de id**).

Livro		
Nome	Editora	
Crime e castigo	Ed. 51	
O anticristo	Martin Claret	
llíada	Penguin	
	Nome Crime e castigo O anticristo	

Usamos as **chaves** das tabelas para criar os relacionamentos. Considere a relação existente entre as tabelas **Livro** e **Nota** (relação um-para-muitos).

Essa é uma relação do tipo um-para-muitos: um livro pode ser avaliado várias vezes. Podemos implementar essa relação exportando a **chave primária** da tabela livro para a tabela **nota**.

Considere as duas tabelas que queremos relacionar.

Livro		
id	Nome	Editora
0	Crime e castigo	Ed. 51
1	O anticristo	Martin Claret
2	llíada	Penguin
3	llíada	Nova fronteira

Nota		
id	Nota	
0	3	_
1	2	
2	2	
3	4	
4	3	

Considere as duas tabelas que queremos relacionar.

Livro			Nota	
id Nome Editora		id	Nota	
0	Crime e castigo	Ed. 51	0	3
1	O anticristo	Martin Claret	1	2
2	llíada	Penguin	3	4
3	llíada	Nova fronteira	4	3

A chave primária de uma tabela é aquela coluna que unicamente identifica cada linha. No caso acima, as duas colunas de id.

Considere as duas tabelas que queremos relacionar.

Livro		
id	Nome	Editora
0	Crime e castigo	Ed. 51
1	O anticristo	Martin Claret
2	llíada	Penguin
3	llíada	Nova fronteira

Nota		
id	Nota	id_livro
0	3	2
1	2	3
2	2	3
3	4	2
4	3	0

Criamos a relação entre as duas tabelas **exportando** a chave primária da tabela **Livro** para a tabela **Nota** (id_livro).

Considere as duas tabelas que queremos relacionar.

Livro		
id	Nome	Editora
0	Crime e castigo	Ed. 51
1	O anticristo	Martin Claret
2	llíada	Penguin
3	llíada	Nova fronteira

Nota		
id	Nota	$id_{-}livro$
0	3	2
1	2	3
2	2	3
3	4	2
4	3	0

Criamos a relação entre as duas tabelas **exportando** a chave primária da tabela **Livro** para a tabela **Nota** (id_livro). A chave exportada na tabela Nota tem o nome de **chave estrangeira**, pois é uma chave que veio de outra tabela, somente para fins de relacionar as mesmas.

Livro		
id	Nome	Editora
0	Crime e castigo	Ed. 51
1	O anticristo	Martin Claret
2	llíada	Penguin
3	Ilíada	Nova fronteira

Nota					
id	Nota	id_livro			
0	3	2			
1	2	3			
2	2	3			
3	4	2			
4	3	0			

Note que a relação do diagrama ER (um-para-muitos) é implementada completamente pela uso das chaves.

Novamente, lembrando dos relacionamentos:

- Um para um
- Um para muitos
- Muitos para muitos

Conseguimos implementar a relação um-para-muitos. Como poderíamos implementar a relação **muitos-para-muitos**?

Novamente, lembrando dos relacionamentos:

- Um para um
- Um para muitos
- Muitos para muitos

Conseguimos implementar a relação um-para-muitos. Como poderíamos implementar a relação **muitos-para-muitos**? Considere a relação muitos-para-muitos entre as tabelas Autor e Livro:

Bem como os dados de cada tabela como abaixo:

Autor				_	Livro		
id	Nome	Período	Nacionalidade		id	Nome	Editora
1	Dostoievski	1800	Rússia		1	Crime e castigo	Ed. 51
2	Nietzsche	1800	Alemanha		2	O anticristo	Martin Claret
3	Homero	800 A.C	Grécia		3	llíada	Penguin

Bem como os dados de cada tabela como abaixo:

Autor				Livro			
id	Nome	Período	Nacionalidade		id	Nome	Editora
1	Dostoievski	1800	Rússia		1	Crime e castigo	Ed. 51
2	Nietzsche	1800	Alemanha		2	O anticristo	Martin Claret
3	Homero	800 A.C	Grécia		3	llíada	Penguin

Como podemos criar a relação muitos-para-muitos usando as chaves?

Bem como os dados de cada tabela como abaixo:

Autor				Livro			
id	Nome	Período	Nacionalidade		id	Nome	Editora
1	Dostoievski	1800	Rússia	_	1	Crime e castigo	Ed. 51
2	Nietzsche	1800	Alemanha		2	O anticristo	Martin Claret
3	Homero	800 A.C	Grécia		3	llíada	Penguin

Nesse caso, para implementar a relação precisamos **criar uma nova tabela** que contém duas chaves estrangeiras, uma de cada tabela da relação muitospara-muitos. Essa nova tabela é chamada de tabela associativa, de junção, etc...(associative, joint table).

Implementação - chaves

Bem	como	os	dados	de	cada	tabela	como	abaixo:	

id Nome		Período	Nacionalidade
1	Dostoievski	1800	Rússia
2	Nietzsche	1800	Alemanha
3	Homero	800 A.C	Grécia

Autor

LIVIO					
id	Nome	Editora			
1 Crime e castigo		Ed. 51			
2	O anticristo	Martin Claret			
3	llíada	Penguin			

Livro

	Autor_Livro					
id	id_autor	$id_{-}livro$				
1	1	1				
2	2	2				
3	3	3				

Implementação - chaves

Aprenderemos o relacionamento um-para-um um pouco mais a frente no curso.

- Um para um
- Um para muitos
- Muitos para muitos

Conclusões

Conclusões

- 1. O diagrama ER nos fornece uma maneira de modelar como o banco de dados deve se comportar (ou usamos um diagrama já feito para entender como um banco funciona).
- 2. A **implementação** do banco de dados, como mostrado na modelagem de um ER é feita por meio de **relações** entre as tabelas.
- 3. As relações são implementadas por meio de chaves: a chave primária de uma tabela é a coluna com valores que identificam unicamente a linha.
- 4. Quando exportamos uma chave primária de uma tabela A para uma tabela B (criando uma relação entre elas), a mesma é chamada de **chave estrangeira** na tabela B.

(OBS: Antes de continuar, faça os exercícios sobre subqueries da aula (link da aula))

Ainda temos uma ferramenta para manipular várias tabelas, chamada de **JOIN**. O **JOIN** é usado quando queremos unir as informações de duas tabelas em uma única, para facilitar a visualização, por exemplo.

			n	nigrations	
sea lions			id	distance	days
id	name		10484	1000	107
10484	Ayah		11728	1531	56
11728	Spot		11729	1370	37
11729	Tiger		11732	1622	62
11732	Mabel		11734	1491	58
11734	Rick		11735	2723	82
11790	Jolee		11736	1571	52
		•	11737	1957	92

Considere um banco de dados que coleta informações sobre as distâncias percorridas por leões marinhos. Temos os nome dos leões na tabela **sea lions**, e as informações de distâncias na tabela **migrations**.

sea lions				
id	name			
10484	Ayah			
11728	Spot			
11729	Tiger			
11732	Mabel			
11734	Rick			
11790	Jolee			

migrations					
id	distance	days			
10484	1000	107			
11728	1531	56			
11729	1370	37			
11732	1622	62			
11734	1491	58			
11735	2723	82			
11736	1571	52			
11737	1957	92			

Note que não temos informações de migrações para todos os leões marinhos.

sea lions JOIN migrations

id	name	id	distance	days
10484	Ayah	10484	1000	107
11728	Spot	11728	1531	56
11729	Tiger	11729	1370	37
11732	Mabel	11732	1622	62
11734	Rick	11734	1491	58

Poderíamos então estar interessados em **juntar** todos os que tem um equivalente em uma única tabela, para facilitar a visualização. Para esses tipos de operação (juntar tabelas) usamos o comando sql **JOIN**.

sea lions JOIN migrations

id	name	id	distance	days
10484	Ayah	10484	1000	107
11728	Spot	11728	1531	56
11729	Tiger	11729	1370	37
11732	Mabel	11732	1622	62
11734	Rick	11734	1491	58

Perceba também que nessa junção, removemos todos os elementos que não tem matching nas tabelas (considerando os ids). Mas poderíamos ter optado por outras possibilidades, o que gera novos tipos de **JOIN**.

		n	nigrations	
sea	lions	id	distance	days
id	name	10484	1000	107
10484	Ayah	11728	1531	56
11728	Spot	11729	1370	37
11729	Tiger	11732	1622	62
11732	Mabel	11734	1491	58
11734	Rick	11735	2723	82
11790	Jolee	11736	1571	52
		11737	1957	92

Para entender melhor os diferentes tipos de JOIN e sua nomenclatura, precisamos pensar nas duas tabelas que serão unidas como uma tabela da esquerda (LEFT) e uma da direita (RIGHT). Ainda, vamos usar a representação de conjuntos para criar diagramas de Venn.

 sea lions

 id
 name
 1

 10484
 Ayah
 1

 11728
 Spot
 1

 11729
 Tiger
 1

 11732
 Mabel
 1

 11734
 Rick
 1

 11790
 Jolee
 1

id	distance	days			
10484	1000	107			
11728	1531	56			
11729	1370	37			
11732	1622	62			
11734	1491	58			
11735	2723	82			
11736	1571	52			
11737	1957	92			

migrations

sea lions JOIN migrations

sea nons sont inigrations					
id name		id	distance	days	
10484	Ayah	10484	1000	107	
11728	Spot	11728	1531	56	
11729	Tiger	11729	1370	37	
11732	Mabel	11732	1622	62	
11734	Rick	11734	1491	58	

Quando selecionamos os elementos em comum entre as duas tabelas, temos um INNER JOIN.

11734 11790

migrations

sea lions		id	distance	days
id	name	10484	1000	107
)484	Ayah	11728	1531	56
1728	Spot	11729	1370	37
1729	Tiger	11732	1622	62
L732	Mabel	11734	1491	58
L734	Rick	11735	2723	82
1790	Jolee	11736	1571	52
		11737	1957	92

sea lions JOIN migrations

	8								
	id	name	id	distance	days				
ĺ	10484	Ayah	10484	1000	107				
	11728	Spot	11728	1531	56				
	11729	Tiger	11729	1370	37				
	11732	Mabel	11732	1622	62				
	11734	Rick	11734	1491	58				
	11790	Jolee	-	-	-				

Podemos selecionar todos os elementos da tabela da esquerda: aqueles que não tem equivalentes são mantidos com valores nulos. Esse é o LEFT JOIN.

		n	nigrations		9	sea lions	JOIN n	nigrations	
sea lions		id	distance	days	id	name	id	distance	days
id	name	10484	1000	107	10484	Ayah	10484	1000	107
10484	Ayah	11728	1531	56	11728	Spot	11728	1531	56
11728	Spot	11729	1370	37	11729	Tiger	11729	1370	37
11729	Tiger	11732	1622	62	11732	Mabel	11732	1622	62
11732	Mabel	11734	1491	58	11734	Rick	11734	1491	58
11734	Rick	11735	2723	82	-	-	11735	2723	82
11790	Jolee	11736	1571	52	-	-	11736	1571	52
		11737	1957	92	-	-	11737	1957	92

Da mesma forma podemos selecionar todos os elementos da direita, mantendo os sem equivalentes na outra tabela com valores nulos. Esse é o **RIGHT JOIN**.

migrations sea lions id distance days id name Avah Spot Tiger Mabel Rick lolee

|--|

id	name	id	distance	days
10484	Ayah	10484	1000	107
11728	Spot	11728	1531	56
11729	Tiger	11729	1370	37
11732	Mabel	11732	1622	62
11734	Rick	11734	1491	58
11790 Jolee		-	-	-
-	-	11735	2723	82
-	-	11736	1571	52
-	-	11737	1957	92

Finalmente, ao selecionarmos todos os elementos de ambas as tabelas, mantendo valores sem equivalentes, temos um **FULL JOIN**.

Resumo

Conjuntos

Temos ainda a possibilidade relacionar duas tabelas, com base nos valores de suas colunas e em operações de conjuntos. Considere o banco de dados de livros novamente, e as duas tabelas "Autor" e "Tradutor".

	autnors		translator		
id	name	country	birth	id	name
1	Adania Shibli	Palestine	1974	1	Adrian Nathan West
2	Ahmed Saadawi	Iraq	1973	2	Alison L. Strayer
3	Alia Trabucco Zerán	Chile	1983	3	Ahmed Saadawi

Temos ainda a possibilidade relacionar duas tabelas, com base nos valores de suas colunas e em operações de conjuntos. Considere o banco de dados de livros novamente, e as duas tabelas "Autor" e "Tradutor".

authors						translator
id	name	country	birth	i	d	name
1	Adania Shibli	Palestine	1974		1	Adrian Nathan West
2	Ahmed Saadawi	Iraq	1973	2	2	Alison L. Strayer
3	Alia Trabucco Zerán	Chile	1983	3	3	Ahmed Saadawi

Note que existem pessoas que são tanto Autores quanto Tradutores. Podemos explorar essas relações por meio das **operações entre conjuntos**.

Temos ainda a possibilidade relacionar duas tabelas, com base nos valores de suas colunas e em operações de conjuntos. Considere o banco de dados de livros novamente, e as duas tabelas "Autor" e "Tradutor".

authors						translator
id	name	country	birth	Ī	id	name
1	Adania Shibli	Palestine	1974		1	Adrian Nathan West
2	Ahmed Saadawi	Iraq	1973		2	Alison L. Strayer
3	Alia Trabucco Zerán	Chile	1983		3	Ahmed Saadawi

Note que existem pessoas que são tanto Autores quanto Tradutores. Podemos explorar essas relações por meio das **operações entre conjuntos**.

O que o seguinte conjunto representa:

O que o seguinte conjunto representa: Pessoas que são Autoras e Tradutoras

O que o seguinte conjunto representa:

O que o seguinte conjunto representa: Pessoas que são Autoras ou Tradutoras

O que o seguinte conjunto representa:

O que o seguinte conjunto representa: Pessoas que são somente Autoras

O que o seguinte conjunto representa:

O que o seguinte conjunto representa: Pessoas que são somente Tradutoras

O que o seguinte conjunto representa:

O que o seguinte conjunto representa: Pessoas que são somente Autoras ou somente Tradutoras