Solving Differential Equations Mechanical Systems

Faculty of Technology and Bionics

Problem description:

- Free fall at h_0
- Increased velocity until equilibrium between weight force and drag force
- Opening parachute at h_1
- Increased air resistance
- Reduced velocity of parachutist

Apply

- 0

23

T

Simulation Results

Advanced Exercise

Implement a height dependent air density (linear interpolation between breakpoints)

Height [m]	Air density [kg/m³]
0	1.225
1000	1.112
2000	1.007
3000	0.909

linear interpolations constant level up to next breakpoint height