Mecánica Cuántica. Tarea 1

Grupo CO11 Trimestre 21-l Profesor: Miguel Angel Bastarrachea Magnani Ayudante: Yoshua Chávez Bolaños, Fecha: Miércoles 30 de abril de 2021. Fecha de entrega: Miércoles 7 de abril de 2021.

1. Una matriz \hat{X} de 2×2 (no necesariamente Hermitiana ni unitaria) está escrita como

$$\hat{X} = a_0 \mathbb{I} + \hat{\boldsymbol{\sigma}} \cdot \mathbf{a}$$

donde a_0 y $a_{1,2,3}$ son números.

- a) ¿Cómo están a_0 y a_k (k = 1, 2, 3) relacionadas con tr(X) y $tr(\sigma_k X)$?
- b) Obtén a_0 y a_k en términos de los elementos de matriz X_{ij} .
- 2. Construya $|\mathbf{S} \cdot \hat{\mathbf{n}}; +\rangle$ tal que

$$\mathbf{S} \cdot \hat{\mathbf{n}} | \mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle = \frac{\hbar}{2} | \mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle$$

donde \hat{n} está dada en coordenadas esféricas, con β el ángulo polar y α el ángulo azimutal. Exprese su respuesta como una combinación lineal de $|+\rangle$ y $|-\rangle$. Nota: La respuesta es

$$\cos\left(\frac{\beta}{2}\right)|+\rangle + \sin\left(\frac{\beta}{2}\right)e^{i\alpha}|-\rangle$$

- 3. Un sistema de spín 1/2 es sabido que está en un autovalor de $\mathbf{S} \cdot \hat{\mathbf{n}}$ con autovalor de $\hbar/2$, donde \hat{n} es un vector unitario que yace en el plano-xz que genera un ángulo γ con el eje-z positivo.
 - a) Suponga que medimos S_x . ¿Cuál es la probabilidad de obtener $\hbar/2$?
 - b) Evalua la dispersión en S_x . Esto es

$$\langle (S_x - \langle S_x \rangle)^2 \rangle$$

4. Dos observables A_1 y A_2 que no dependen explícitamente del tiempo se conocen por no conmutar

$$[A_1, A_2] \neq 0$$

Aún así, sabemos que conmutan con el Hamiltoniano: $[A_1,H]=0$ y $[A_2,H]=0$. Pruebe que las energías de los autoestados están, en general, degeneradas. ¿Existen excepciones? Piense en el problema de la fuerza central $H=\mathbf{p}^2/2m+V(r)$, con $A_1\to L_z$ y $A_2\to L_x$.

5. a) Calcula

$$\langle (\Delta S_x)^2 \rangle = \langle S_x^2 \rangle - \langle S_x \rangle^2$$

donde el valor esperado se toma para el estado S_z+ . Usando tu resultado revisa la relación de incertidumbre gereralizada

$$\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \ge \frac{1}{4} |\langle [A, B] \rangle|^2$$

con $A \to S_x$ y $B \to S_y$. b) Revisa la relación de incertidumbre con $A \to S_x$ y $B \to S_y$ para el estado $S_x +$.