SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (ii) TITLE OF INVENTION: METHODS AND COMPOSITIONS FOR THERAPEUTIC INTERVENTION IN CARDIAC HYPERTROPHY
- (iii) NUMBER OF SEQUENCES: 9
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Arnold, White & Durkee
 - (B) STREET: P.O. Box 4433
 - (C) CITY: Houston
 - (D) STATE: Texas
 - (E) COUNTRY: USA
 - (F) ZIP: 77210
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US Unknown
 - (B) FILING DATE:
 - (C) CLASSIFICATION: Unknown
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: McMillian, Nabeela R.
 - (B) REGISTRATION NUMBER: P-43,363
 - (C) REFERENCE/DOCKET NUMBER: UTSD:548
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 512/418-3000
 - (B) TELEFAX: 512/474-7577
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CTATCCTTTT GTTTTCCATC CTG

23

(2)	INFORMATION FOR SEQ ID NO:2:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
TCC	CTGCCTT TTCCAGCAAC GGT	23
(2)	INFORMATION FOR SEQ ID NO:3:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GCT	CCAGGAT AAAAGGCCAC GGT	23
(2)	INFORMATION FOR SEQ ID NO:4:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
TAC	ATTGGAA AATTTTATTA CAC	23
(2)	INFORMATION FOR SEQ ID NO:5:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
TGG	AAAACAA	10

Arg Lys Arg Ser Pro Thr Gln Ser Phe Arg Phe Leu Pro Val Ile Cys 675 680 685

Leu Glu Glu Pro Leu Pro Asp Ser Ser Leu Arg Gly Phe Pro Ser Ala 690 695 700

Ser Ala Thr Pro Phe Gly Thr Asp Met Asp Phe Ser Pro Pro Arg Pro 705 710 715 720

Pro Tyr Pro Ser Tyr Pro His Glu Asp Pro Ala Cys Glu Thr Pro Tyr
725 730 735

Leu Ser Glu Gly Phe Gly Tyr Gly Met Pro Pro Leu Tyr Pro Gln Thr
740 745 750

Gly Pro Pro Pro Ser Tyr Arg Pro Gly Leu Arg Met Phe Pro Glu Thr
755 760 765

Arg Gly Thr Thr Gly Cys Ala Gln Pro Pro Ala Val Ser Phe Leu Pro 770 780

Arg Pro Phe Pro Ser Asp Pro Tyr Gly Gly Arg Gly Ser Ser Phe Pro 785 790 795 800

Leu Gly Leu Pro Phe Ser Pro Pro Ala Pro Phe Arg Pro Pro Pro Leu 805 810 815

Pro Ala Ser Pro Pro Leu Glu Gly Pro Phe Pro Ser Gln Ser Asp Val 820 825 830

His Pro Leu Pro Ala Glu Gly Tyr Asn Leu Val Gly Pro Gly Tyr Gly 835 840 845

Pro Gly Glu Gly Ala Pro Glu Gln Glu Leu Ser Arg Gly Gly Tyr Ser 850 855 860

Ser Gly Phe Arg Asp Ser Val Pro Ile Gln Gly Ile Thr Leu Glu Glu 865 870 875 880

Val Ser Glu Ile Ile Gly Arg Asp Leu Ser Gly Phe Pro Ala Pro Pro 885 890 895

Gly Glu Glu Pro Pro Ala 900

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2881 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GCTTCTGGAG	GGAGGCGGCA	GCGACGGAGG	AGGGGGCTTC	TCAGAGAAAG	GGAGGGAGGG	60
AGCCACCCGG	GTGAAGATAC	AGCAGCCTCC	TGAACTCCCC	CCTCCCACCC	AGGCCGGGAC	120
CTGGGGGCTC	CTGCCGGATC	CATGGGGGCG	GCCAGCTGCG	AGGATGAGGA	GCTGGAATTT	180
AAGCTGGTGT	TCGGGGAGGA	AAAGGAGGCC	CCCCCGCTGG	GCGCGGGGG	ATTGGGGGAA	240
GAACTGGACT	CAGAGGATGC	CCCGCCATGC	TGCCGTCTGG	CCTTGGGAGA	GCCCCTCCC	300
TATGGCGCTG	CACCTATCGG	TATTCCCCGA	CCTCCACCCC	CTCGGCCTGG	CATGCATTCG	360
CCACCGCCGC	GACCAGCCCC	CTCACCTGGC	ACCTGGGAGA	GCCAGCCCGC	CAGGTCGGTG	420
AGGCTGGGAG	GACCAGGAGG	GGGTGCTGGG	GGTGCTGGGG	GTGGCCGTGT	TCTCGAGTGT	480
CCCAGCATCC	GCATCACCTC	CATCTCTCCC	ACGCCGGAGC	CGCCAGCAGC	GCTGGAGGAC	540
AACCCTGATG	CCTGGGGGGA	CGGCTCTCCT	AGAGATTACC	CCCCACCAGA	AGGCTTTGGG	600
GGCTACAGAG	AAGCAGGGGC	CCAGGGTGGG	GGGGCCTTCT	TCAGCCCAAG	CCCTGGCAGC	660
AGCAGCCTGT	CCTCGTGGAG	CTTCTTCTCC	GATGCCTCTG	ACGAGGCAGC	CCTGTATGCA	720
GCCTGCGACG	AGGTGGAGTC	TGAGCTAAAT	GAGGCGGCCT	CCCGCTTTGG	CCTGGGCTCC	780
CCGCTGCCCT	CGCCCCGGGC	CTCCCCTCGG	CCATGGACCC	CCGAAGATCC	CTGGAGCCTG	840
TATGGTCCAA	GCCCCGGAGG	CCGAGGGCCA	GAGGATAGCT	GGCTACTCCT	CAGTGCTCCT	900
GGGCCCACCC	CAGCCTCCCC	GCGGCCTGCC	TCTCCATGTG	GCAAGCGGCG	CTATTCCAGC	960
TCGGGAACCC	CATCTTCAGC	CTCCCCAGCT	CTGTCCCGCC	GTGGCAGCCT	GGGGGAAGAG	1020
GGGTCTGAGC	CACCTCCACC	ACCCCCATTG	CCTCTGGCCC	GGGACCCGGG	CTCCCCTGGT	1080
CCCTTTGACT	ATGTGGGGGC	CCCACCAGCT	GAGAGCATCC	CTCAGAAGAC	ACGGCGGACT	1140
TCCAGCGAGC	AGGCAGTGGC	TCTGCCTCGG	TCTGAGGAGC	CTGCCTCATG	CAATGGGAAG	1200
CTGCCCTTGG	GAGCAGAGGA	GTCTGTGGCT	CCTCCAGGAG	GTTCCCGGAA	GGAGGTGGCT	1260
GGCATGGACT	ACCTGGCAGT	GCCCTCCCCA	CTCGCTTGGT	CCAAGGCCCG	GATTGGGGGA	1320
CACAGCCCTA	TCTTCAGGAC	CTCTGCCCTA	CCCCCACTGG	ACTGGCCTCT	GCCCAGCCAA	1380
TATGAGCAGC	TGGAGCTGAG	GATCGAGGTA	CAGCCTAGAG	CCCACCACCG	GGCCCACTAT	1440
GAGACAGAAG	GCAGCCGTGG	AGCTGTCAAA	GCTGCCCCTG	GCGGTCACCC	CGTAGTCAAG	1500
CTCCTAGGCT	ACAGTGAGAA	GCCACTGACC	CTACAGATGT	TCATCGGCAC	TGCAGATGAA	1560

-96-

AGGAACCTGC	GGCCTCATGC	CTTCTATCAG	GTGCACCGTA	TCACAGGCAA	GATGGTGGCC	1620
ACGGCCAGCT	ATGAAGCCGT	AGTCAGTGGC	ACCAAGGTGT	TGGAGATGAC	TCTGCTGCCT	1680
GAGAACAACA	TGGCGGCCAA	CATTGACTGC	GCGGGAATCC	TGAAGCTTCG	GAATTCAGAC	1740
ATTGAGCTTC	GGAAGGGTGA	GACGGACATC	GGGCGCAÀAA	ACACACGTGT	ACGGCTGGTG	1800
TTCCGGGTAC	ACGTGCCCCA	GGGCGGCGGG	AAGGTCGTCT	CAGTACAGGC	AGCATCGGTG	1860
CCCATCGAGT	GCTCCCAGCG	CTCAGCCCAG	GAGCTGCCCC	AGGTGGAGGC	CTACAGCCCC	1920
AGTGCCTGCT	CTGTGAGAGG	AGGCGAGGAA	CTGGTACTGA	CCGGCTCCAA	CTTCCTGCCA	1980
GACTCCAAGG	TGGTGTTCAT	TGAGAGGGGT	CCTGATGGGA	AGCTGCAATG	GGAGGAGGAG	2040
GCCACAGTGA	ACCGACTGCA	GAGCAACGAG	GTGACGCTGA	CCCTGACTGT	CCCCGAGTAC	2100
AGCAACAAGA	GGGTTTCCCG	GCCAGTCCAG	GTCTACTTTT	ATGTCTCCAA	TGGGCGGAGG	2160
AAACGCAGTC	CTACCCAGAG	TTTCAGGTTT	CTGCCTGTGA	TCTGCAAAGA	GGAGCCCCTA	2220
CCGGACTCAT	CTCTGCGGGG	TTTCCCTTCA	GCATCGGCAA	CCCCCTTTGG	CACTGACATG	2280
GACTTCTCAC	CACCCAGGCC	CCCCTACCCC	TCCTATCCCC	ATGAAGACCC	TGCTTGCGAA	2340
ACTCCTTACC	TATCAGAAGG	CTTCGGCTAT	GGCATGCCCC	CTCTGTACCC	CCAGACGGGG	2400
CCCCCACCAT	CCTACAGACC	GGGCCTGCGG	ATGTTCCCTG	AGACTAGGGG	TACCACAGGT	2460
TGTGCCCAAC	CACCTGCAGT	TTCCTTCCTT	CCCCGCCCCT	TCCCTAGTGA	CCCGTATGGA	2520
GGGCGGGCT	CCTCTTTCCC	CCTGGGGCTG	CCATTCTCTC	CGCCAGCCCC	CTTTCGGCCG	2580
CCTCCTCTTC	CTGCATCCCC	ACCGCTTGAA	GGCCCCTTCC	CTTCCCAGAG	TGATGTGCAT	2640
CCCCTACCTG	CTGAGGGATA	CAATAAGGTA	GGGCCAGGCT	ATGGCCCTGG	GGAGGGGCT	2700
CCGGAGCAGG	AGAAATCCAG	GGGTGGCTAC	AGCAGCGGCT	TTCGAGACAG	TGTCCCTATC	2760
CAGGGTATCA	CGCTGGAGGA	AGTGAGTGAG	ATCATTGGCC	GAGACCTGAG	TGGCTTCCCT	2820
GCACCTCCTG	GAGAAGAGCC	TCCTGCCTGA	ACCACGTGAA	CTGTCATCAC	CTGGCAACCC	2880
С						2881

-97-