janvier 2013

Numéro d'anonymat :	
---------------------	--

Examen de langages et automates (première session)

Tout document personnel autorisé Durée : 2 heures

REMPLIR LES CADRES ET RENDRE CE DOCUMENT AINSI COMPLETE UN EXCÈS DE REPONSES FAUSSES SERA SANCTIONNÉ PAR DES POINTS NÉGATIFS

Exercice 1:

Indiquer si les assertions suivantes sont vraies et le justifier très brièvement.

Si A= { $a^{2n+1} \mid n \in \mathbb{N}$ } alors $A^2 = \{ a^{4n+2} \mid n \in \mathbb{N} \}$.

Non, $a^4 = a^3 \cdot a^1$ est dans A^2 et pas dans $\{a^{4n+2} \mid n \in \mathbb{N} \}$

Si A= { $a^{2n+1} \mid n \in \mathbb{N}$ } et $m \in A^2$ alors |m| est un nombre pair.

Oui car $m \in A ==> |m|$ est impair et $m \in A^2 ==> m = m_1 m_2$ avec $|m_1|$ et $|m_2|$ impair donc |m| pair

L'ensemble des préfixes des mots d'un langage A est inclus dans le langage A*.

Non. Contre exemple : $A = \{aa\}$, $A^* = \{a^{2n+2}, n \in \mathbb{N}\}$ « a » est un préfixe de aa et n'est pas dans A^*

Si les mots du langage A sur l'alphabet {a,b} ont autant de a que de b, alors les mots de A* ont autant de a que de b.

Oui car la concaténation de mots qui ont autant de a que de b est un mot qui a autant de a que de b (et le mot vide a autant de a que de b).

• L= { $m \in \{a,b\}^* \mid m[1] = m[|m|] \}$ est un langage fermé pour la concaténation.

Non. Contre exemple : $a \in L$ et $b \in L$. Mais $ab \notin L$

Exercice 2:

Soit l'automate A suivant :

Calculer deux expressions rationnelles r_e et r_s associées à cet automate (telles que $L(r_e) = L(r_s) = L(A)$) en appliquant la méthode de variation des états d'entrée (pour trouver r_e), puis la méthode de variation de sortie (pour trouver r_s). Remarque : inutile de compléter préalablement l'automate. On explicitera les calculs.

Variation des états d'entrée

```
R1 = aR2

R2 = bR3

R3 = aR2+ \varepsilon

Résolution (non unique):

R1 = abR3

R2 = bR3

R3=abR3 + \varepsilon

==> R3 = (ab)*

==> r_e = R1 = (ab)(ab)* = (ab)+
```

Variation des états de sortie

```
R1 = \varepsilon

R2 = R1a+R3a

R3 = R2 b

Résolution (non unique):

R1 = \varepsilon

R2 = a + R2ba

R3=R2b

==> R2 = a(ab)*

==> r<sub>s</sub> = R3 = a(ab)*b
```

En déduire une propriété sur les expressions rationnelles.

```
a(ab)*b=(ab)+
```

Exercice 3:

Soient $A_1 = (\Sigma, E_1, i_1, F_1, \delta_1)$ et $A_2 = (\Sigma, E_2, i_2, F_2, \delta_2)$ deux automates déterministes complets. Soit l'automate $A_{1_2} = (\Sigma, E_1 \times E_2, i_1, i_2)$, $F_1 \times F_2$, δ_{1-2}) où δ_{1-2} est défini par :

$$\forall e \in E_1, \forall e' \in E_2, \forall \alpha \in \Sigma, \delta_{1-2}((e,e'), \alpha) = (\delta_1(e,\alpha), \delta_2(e',\alpha))$$

a) Prouver que:

$$\forall e \in E_1, \forall e' \in E_2, \forall m \in \Sigma^*, \delta_{1-2}^*((e,e'), m) = (\delta_1^*(e,m), \delta_2^*(e',m))$$

Preuve par induction sur la longueur |m| de m :

 $\Pi(n) = |m| \le n$

Si |m|=0 alors $m = \varepsilon$. Dans ce cas:

$$\delta_{1-2}^{*}$$
 ((e,e') , ϵ) = (e,e') par définition de la fonction de transition itérée et (δ_1^{*} (e, ϵ) , δ_2^{*} (e', ϵ)) = (e,e') "

Hypothèse : $\Pi(n)$ vrai

Soit m tel que |m| = n+1 et $n \ge 0$. Alors $m=\alpha$ m' avec $\alpha \in \Sigma$

et
$$\delta_{1-2}^{*}((e,e'),m) = \delta_{1-2}^{*}((e,e'),\alpha m')$$

$$= \delta_{1-2}^{*}((\delta_{1-2}(e,e'),\alpha),m') \qquad \text{déf de } \delta_{1-2}^{*}$$

$$= \delta_{1-2}^{*}((\delta_{1}(e,\alpha),\delta_{2}(e',\alpha)),m') \qquad \text{déf de } \delta_{1-2}^{*}$$

$$= (\delta_{1}^{*}(\delta_{1}(e,\alpha),m'),\delta_{2}^{*}(\delta_{2}(e',\alpha),m')) \qquad \text{hyp. Rec.}$$

$$= (\delta_{1}^{*}(e,\alpha m'),\delta_{2}^{*}(e',\alpha m'))$$

$$= (\delta_{1}^{*}(e,m),\delta_{2}^{*}(e',m))$$

b) Prouver que $L(A_{1,2}) = L(A_1) \cap L(A_2)$ où L(A) est le langage associé à l'automate A.

$$\begin{split} \mathbf{m} \in \mathbf{L}(\mathbf{A}_{1\,2}) &<==> \; \delta_{1\cdot2} \, *(\;\; (\mathbf{i}_1, \mathbf{i}_2) \,, \, \mathbf{m}) \in \; \mathbf{F}_1 \, \mathbf{x} \, \mathbf{F}_2 \\ &<==> \; (\;\; \delta_1 *(\mathbf{i}_1 \,, \, \mathbf{m}) \;\, , \; \delta_2 *(\mathbf{i}_2 \,, \, \mathbf{m}) \;\,) \in \; \mathbf{F}_1 \, \mathbf{x} \, \mathbf{F}_2 \\ &<==> \;\; \delta_1 *(\mathbf{i}_1 \,, \, \mathbf{m}) \in \; \mathbf{F}_1 \quad \text{et} \quad \; \delta_2 *(\mathbf{i}_2 \,, \, \mathbf{m}) \;\,) \in \; \mathbf{F}_2 \\ &<==> \;\; \mathbf{m} \in \mathbf{L}(\mathbf{A}_1) \quad \text{et} \quad \; \mathbf{m} \in \mathbf{L}(\mathbf{A}_2 \,) \\ &<==> \;\; \mathbf{m} \in \mathbf{L}(\mathbf{A}_1) \;\, \cap \;\, \mathbf{L}(\mathbf{A}_2 \,) \end{split}$$

Exercice 4 : Soit $G = \langle \Sigma, X, P, S \rangle$ une grammaire non contextuelle d'axiome S et de non terminaux X. Soit L_G le langage associé à la grammaire G.

a) Soit la grammaire G^2 = < Σ , {S^2} \cup X ,P \cup { S^2 --> SS } ,S^2 > où S^2 \notin X Prouver que L_{G^2} = L_G . L_G

$$\begin{array}{lllll} m \in L_{G^2} &<==> S^2 ---> m \\ &==> S^2 --> SS ----> m \\ &==> S^2 --> SS ----> m = m_1 m_2 & \text{et} & S --> m_1 & \text{et} & S --> m_2 \\ &<==> m = m_1 m_2 & \text{et} & m_1 \in L_G & \text{et} & m_2 \in L_G \\ &<==> m \in L_G \cdot L_G \\ \hline Réciproquement, on peut largement inverser le raisonnement précédent : \\ m \in L_G \cdot L_G ==> m = m_1 m_2 & \text{et} & m_1 \in L_G & \text{et} & m_2 \in L_G \\ &==> m = m_1 m_2 & \text{et} & S --> m_1 & \text{et} & S --> m_2 \\ &==> S^2 ---> SS ----> m_1 & S ---> m_1 m_2 = m \\ &==> S^2 ----> m & ==> m \in L_{G^2} \\ \hline \end{array}$$

b) Définir la grammaire G' associée au langage $(L_G)^*$

$$G' = \langle \Sigma, \{S'\} \cup X, P \cup \{S' --> S'S \mid \epsilon \}, S'> \qquad \text{où } S' \not\in X$$

c) Prouver que $L_{G'} \subseteq (L_G)^*$

$$\begin{array}{lll} G' = & < \Sigma \;, \{S'\} \; U \; X \;, P \; U \; \{ \; S' \; - - > \; S'S \; | \; \epsilon \; \} \;, \; S' > & \text{où } \; S' \not\in X \\ \\ Preuve \; de \; L_{G'} \; \subseteq \; (L_G)^* \; : \\ \\ \Pi(n) = \; S' \; - ^n - - > m \; = > \; m = \epsilon \quad \text{ou} \quad m = \Pi \; m_i \; \text{ et } \; S' \; - - > m_i \\ \\ \Pi(0) \; \text{est trivialement vrai } \; \text{car} \; |m| \; \leq 0 = = > \; m = \epsilon \\ \\ Hypothèse : \; \Pi(n) \; \text{vrai} \\ \\ Soit \; m \; \text{tel } que \; |m| = \; n + 1 \; . \\ \\ S' \; - ^{n+1} \; - > m \; = = > \; \; S' \; - - > \; S'S \; - - > \; m \\ \\ = > \; \; S' \; - ^{-s} \; - - > \; m_1 \; \; \text{et } \; S \; - - > \; m_2 \; \; \text{et } \; m = m_1 m_2 \\ \\ = = > \; \; m_1 \in (L_G)^* \; \; \text{et } \; \; m_2 \in (L_G) \; \; \text{et } \; m = m_1 m_2 \\ \\ = = > \; \; m = \; m_1 m_2 \in (L_G)^* \; \; . \\ (L_G) \; \subseteq \; (L_G)^* \; . \end{array}$$

d) Prouver que $(L_G)^* \subseteq L_{G'}$

 $G' = \langle \Sigma, \{S'\} \cup X, P \cup \{S' --> S'S \mid \varepsilon \}, S' \rangle$ où $S' \notin X$

Preuve de $(L_G)^* \subseteq L_{G'}$:

 $\Pi(n) = (m = \prod_{i=1}^{n} m_i | avec S --> m_i) ==> S' ---> m$

 $\Pi(1)$ vrai:

$$m = m_1$$
 et $S --> m_1 ==> S' ---> S'S --> S --> m_1 ==> m = m_1 \in L_{G'}$

Hyp: $\Pi(n)$ vrai avec n > 0

Montrons $\Pi(n+1)$:

$$m = \prod_{i=1}^{n+1} m_i$$
 et S --> m_i ==> S' ---> S'S --> $\prod_{i=1}^{n} m_i$ m_{n+1} = m

$$==> m \in L_{G'}$$

Il en découle que $\Pi(n)$ vrai pour tout n > 0.

Il faut aussi vérifier que, comme $\epsilon \in (LG)^*$, on a bien aussi $\epsilon \in L_{G'}$ ce qui est vrai car S' --> ϵ est une production de G'.