Eksamen i Statistik 2

23. juni 2016

Eksamen varer 4 timer. Alle hjælpemidler er tilladt under eksamen, også computer, men du må ikke have internetforbindelse. Besvarelsen må gerne skrives med blyant.

Eksamenssættet består af tre opgaver med i alt 18 delspørgsmål. De tre opgaver vægtes ens. Data til opgave 3 ligger i filen bus.txt på en USB-stick. Sticken skal afleveres tilbage når eksamen slutter, men udelukkende for at den kan genbruges. Den kan altså ikke indgå som en del af besvarelsen.

Opgave 1

1. For fast r, hvor r er et naturligt tal, betragt fordelingen med tæthed

$$f_p(x) = {x+r-1 \choose x} p^x (1-p)^r$$
 for $x \in \mathbb{N}_0$

mht tællemålet på \mathbb{N}_0 . Fordelingen afhænger af parameteren $p \in (0,1)$.

Du kan uden bevis benytte at f_p er en tæthed. Det kan ligeledes benyttes uden bevis at der for |a| < 1 gælder

$$\sum_{k=1}^{\infty} k \cdot a^k = \frac{a}{(1-a)^2} \quad ; \quad \sum_{k=1}^{\infty} k^2 \cdot a^k = \frac{a(1+a)}{(1-a)^3}$$

Lad X_1, \ldots, X_n være uafhængige og identisk fordelte stokastiske variable med tæthed f_p , med kendt $r \in \mathbb{N}$ og ukendt $p \in (0, 1)$.

- (a) Opskriv likelihoodfunktionen og loglikelihoodfunktionen.
- (b) Find scorefunktionen og informationsfunktionen. Find fortegnet på den forventede information.
- (c) Gør rede for at der er en entydig maksimaliseringsestimator \hat{p} og skriv den op.
- (d) Sæt nu r = 1. Undersøg om \hat{p} er konsistent.
- (e) Sæt nu r=1. Gør rede for at \hat{p} er asymptotisk normalfordelt, og angiv parametrene i den asymptotiske fordeling.

Opgave 2

2. Betragt de to faktorer:

$$F: \{1,\ldots,N\} \longrightarrow \{\text{F1, F2, F3, F4, F5}\}$$

$$G: \{1,\ldots,N\} \longrightarrow \{\text{G1, G2, G3}\}$$

Faktoren $F \times G$ antages at være surjektiv.

Betragt varianskomponentmodellen $X \sim \mathbf{N}(A\beta, \sigma^2\Sigma)$, hvor $A\beta \in L \subset \mathbb{R}^N$, dim(L) = k, $\sigma^2 > 0$ og $\Sigma = I + \lambda BB^T$. Her er I identitetsmatricen og $\lambda \geq 0$. Vi antager yderligere at $A = A_G$ er designmatricen for faktorunderrummet for faktor G og matricen B er effektmatricen hørende til effektparret (F, 1).

- (a) Er X_i 'erne uafhængige? (At svare ja eller nej er nok)
- (b) Hvad er k? (Her skal både angives i ord hvad det er og angives en numerisk værdi)
- (c) Antag at $\dim(F \times G) = N$ og at datasættet er ordnet efter faktor F, således at først kommer alle observationer med label F1 i faktor F, dernæst alle observationer med label F2, osv. Opskriv kovariansmatricen.
- (d) Opskriv likelihoodfunktionen.
- (e) Er der en anden estimator af parametrene i modellen end maksimaliseringsestimatoren, man kunne foretrække? Argumenter for dit svar.

Resten af spørgsmålene drejer sig ikke om varianskomponentmodellen ovenfor.

(f) Betragt de surjektive faktorer B og T, der antages at være usammenlignelige. De er begge forskellige fra den konstante faktor 1. Betragt deres tilhørende underrum L_B og L_T . Angiv hvilke af følgende udsagn, der er henholdsvis korrekte, falske eller ikke kan afgøres uden at vide mere om faktorerne.

A.
$$L_B + L_T \subseteq L_{B \times T}$$

B.
$$L_{B\times T}\subseteq L_B+L_T$$

C.
$$L_{B\times T}\subseteq L_{B\wedge T}$$

D.
$$L_{B \wedge T} \subseteq L_{B \times T}$$

E.
$$L_B + L_T \subseteq L_{B \wedge T}$$

F.
$$L_{B \wedge T} \subseteq L_B + L_T$$

G.
$$L_B + L_T \subseteq L_1$$

H.
$$L_1 \subseteq L_B + L_T$$

I.
$$L_1 \subseteq L_{B \wedge T}$$

J.
$$L_{B \wedge T} \subseteq L_1$$

- (g) Lad L_1 og L_2 være to underrum, begge forskellige fra $\{0\}$. Hvilke af følgende udsagn er korrekte?
 - A. Hvis $L_1 \perp_G L_2$ så er $L_1 \subset L_2$
 - B. Hvis $L_1 \subset L_2$ så er $L_1 \perp_G L_2$
 - C. Hvis $L_1 \subset L_2$ så er $L_1 \perp L_2$
 - D. Hvis $L_1 \perp L_2$ så er $L_1 \perp L_2$
 - E. Hvis $L_1 \perp L_2$ så er $L_1 \perp L_2$
- (h) Betragt følgende interaktionsplots mellem de to faktorer Behandling og Køn, med henholdsvis 3 og 2 kategorier.

- i. Vurder for hvert af ovenstående to interaktionsplots om de bedst beskrives med en vekselvirkningsmodel eller med en additiv model.
- ii. Antag at responsen er lungekapacitet, og at man gerne vil have at den er stor. Hvilken behandling bør anbefales i hvert tilfælde?
- iii. Antag at responsen er blodtryk, og at man gerne vil have at den er lille. Hvilken behandling bør anbefales i hvert tilfælde?

Opgave 3

3. Ved en undersøgelse af virkningen af forskellige dæktyper på benzinforbruget af offentlige busser blev følgende forsøg gennemført: 3 busser, A, B og C gennemkørte adskillige gange samme rundstrækning på ca. 10 km med 3 forskellige dæktyper K, L og M, og benzinforbruget i milliliter blev målt.

Data er tilgængelige i filen bus.txt og består af variablene bus, daek og benzin, hvor den sidste angiver benzinforbruget.

Vi antager i det følgende at de målte benzinforbrugstal kan ses som realisationer af uafhængige, normalfordelte stokastiske variable med samme varians σ^2 og med en middelværdi der potentielt afhænger af bussen og dæktypen. Vi indicerer observationerne ved mængden I, og betragter to faktorer:

$$\begin{array}{ll} {\tt Bus} & : & I \longrightarrow \{A,B,C\} \\ {\tt Dæk} & : & I \longrightarrow \{K,L,M\} \\ \end{array}$$

I spørgsmålene nedenfor bør angives relevante kvadrerede projektionslængder, dimensioner, F-test størrelser og fordelinger, både teoretisk og med numeriske værdier.

- (a) Gør rede for at de to faktorer er geometrisk ortogonale og opstil en passende statistisk model for data.
- (b) Undersøg om der er en signifikant vekselvirkning mellem de to faktorer.
- (c) Fortsæt med den additive model. Undersøg om der er en signifikant forskel på de tre bussers benzinforbrug. Test om dæktypen påvirker benzinforbruget.
- (d) Estimer parametrene i den additive model hvor begge faktorer indgår, og angiv deres simultane fordeling.
- (e) De to busser A og B er samme mærke bus, hvorimod bus C er af et andet mærke. Dermed kan det tænkes at busserne A og B virker ens. Opstil og test denne hypotese.