À l'instant t_i

Étape 1

À l'instant t_i : position et vitesse sont connues : (x_i, v_i) , calcul de l'accélération par

$$a_i = f(t_i, x_i, v_i) = f(x_i)$$

Étape 2

Procédure RK4

$$k_1 = a_i$$

— Calcul de k_2 : position et vitesses estimées à $t_i + \frac{h}{2}$, partant de x_i utilisant vitesse et accélération connues, par Euler

$$v_2 = v_i + \frac{h}{2}k_1$$

$$x_2 = x_i + \frac{h}{2}v_i$$

$$k_2 = f(x_2)$$

— Calcul de k_3 : position et vitesses estimées à $t_i + \frac{h}{2}$, partant de x_i utilisant vitesse et accélération précédentes (v_2, k_2) , par Euler

$$v_3 = v_i + \frac{h}{2}k_2$$

$$x_3 = x_i + \frac{h}{2}v_i + \frac{h^2}{4}k_1$$

$$k_3 = f(x_3)$$

— Calcul de k_4 : position et vitesses estimées à $t_i + h$, partant de x_i utilisant vitesse et accélération précédentes (v_3, k_3) , par Euler

$$v_4 = v_i + hk_3$$
$$x_4 = x_i + hv_i + \frac{h^2}{2}k_2$$

$$k_4 = f(x_4)$$

— Calcul (x_{i+1}, v_{i+1})

$$v_{i+1} = v_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$x_{i+1} = x_i + hv_i + \frac{h^2}{6}(k_1 + k_2 + k_3)$$

— reprendre étape 1 à l'instant t_{i+1} , avec (x_{i+1}, v_{i+1})