2do. parcial - Cálculo Diferencial e Integral en Varias Variables

PARTE I: VERDADERO O FALSO

Verdadero o Falso #1

V1: Si $f \colon \mathbb{R}^3 \to \mathbb{R}$ es una función continua, entonces

$$S_0 := \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 0\},\$$

es un conjunto cerrado de \mathbb{R}^3 .

- Verdadero.
- Falso.

V2: Si $f: \mathbb{R}^3 \to \mathbb{R}$ es una función continua, entonces

$$S_0 := \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) \le 0\},\$$

es un conjunto cerrado de \mathbb{R}^3 .

- Verdadero.
- Falso.

 $\mathbf{V3:}\ \mathrm{Si}\ f\colon\mathbb{R}^3\to\mathbb{R}$ es una función continua, entonces

$$S_0 := \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) < 0\},\$$

es un conjunto abierto de \mathbb{R}^3 .

- \bullet Verdadero.
- Falso.

Verdadero o Falso #2

V1: Sea $(x_0, y_0) \in \mathbb{R}^2$. Existe una función $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en (x_0, y_0) , que cumple que

$$df_{(x_0,y_0)}(1,1) = 1 = df_{(x_0,y_0)}(-1,1),$$

y además

$$\frac{\partial f}{\partial u}(x_0, y_0) = 0.$$

 $(d\!f_{(x_0,y_0)}$ denota el diferencial de f en el punto $(x_0,y_0).)$

- Verdadero.
- Falso.

V2: Sea $(x_0, y_0) \in \mathbb{R}^2$. Existe una función $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en (x_0, y_0) , que cumple que

$$df_{(x_0,y_0)}(1,1) = 1 = df_{(x_0,y_0)}(-1,1),$$

y además

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0.$$

 $(d\!f_{(x_0,y_0)}$ denota el diferencial de f en el punto $(x_0,y_0).)$

- Verdadero.
- Falso.

V3: Sea $(x_0, y_0) \in \mathbb{R}^2$. Existe una función $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en (x_0, y_0) , que cumple que

$$df_{(x_0,y_0)}(1,1) = 1 = df_{(x_0,y_0)}(1,-1),$$

y además

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0.$$

 $(df_{(x_0,y_0)}$ denota el diferencial de f en el punto (x_0,y_0) .)

- Verdadero.
- Falso.

Verdadero o Falso #3

V1: Sea $f: D \to \mathbb{R}$ continua y positiva en D, donde $D \subseteq \mathbb{R}^2$ es un rectángulo compacto (es decir, cerrado y acotado). Entonces necesariamente f es integrable y además

$$\iint_D f \ge \operatorname{área}(D).$$

- Verdadero.
- Falso.

V2: Sea $f: D \to \mathbb{R}$ continua en D, donde $D \subseteq \mathbb{R}^2$ es un rectángulo compacto (es decir, cerrado y acotado). Entonces necesariamente f es integrable y además

$$\left|\iint_D f\right| \geq \iint_D |f|.$$

- Verdadero.
- Falso.

V3: Sean U y V rectángulos compactos de \mathbb{R}^2 (es decir, cerrados y acotados). Si existe $f \colon \mathbb{R}^2 \to \mathbb{R}$ integrable, que cumple

$$\iint_{U \cup V} f = \iint_{U} f + \iint_{V} f,$$

entonces necesariamente U y V son disjuntos.

- Verdadero.
- Falso.

PARTE II: MÚLTIPLE OPCIÓN

Múltiple Opción #1

V1: Sea $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ una función diferenciable con $\alpha(0) = (0,0)$, y $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ la función dada por

$$f(x,y) = (e^{x+y}, e^{x-y}).$$

Sabiendo que $(f \circ \alpha)'(0) = (2,0)$, el diferencial de α en 0 es el vector dado por:

- (A) $\alpha'(0) = (1,1)$
- (B) $\alpha'(0) = (1, -1)$
- (C) $\alpha'(0) = (0,0)$
- (D) $\alpha'(0) = (-1, 1)$
- (E) $\alpha'(0) = (1,0)$

V2: Sea $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ una función diferenciable con $\alpha(0) = (0,0)$, y $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ la función dada por

$$f(x,y) = (e^{x+y}, e^{x-y}).$$

Sabiendo que $(f \circ \alpha)'(0) = (0,4)$, el diferencial de α en 0 es el vector dado por:

- (A) $\alpha'(0) = (2, -2)$
- (B) $\alpha'(0) = (-2, 2)$
- (C) $\alpha'(0) = (2,2)$
- (D) $\alpha'(0) = (0,0)$
- (E) $\alpha'(0) = (2,0)$

V3: Sea $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ una función diferenciable con $\alpha(0) = (0,0)$, y $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ la función dada por

$$f(x,y) = (e^{x+y}, e^{x-y}).$$

Sabiendo que $(f \circ \alpha)'(0) = (1,3)$, el diferencial de α en 0 es el vector dado por:

- (A) $\alpha'(0) = (2, -1)$
- (B) $\alpha'(0) = (-2, 1)$
- (C) $\alpha'(0) = (-1, 2)$
- (D) $\alpha'(0) = (1, -2)$
- (E) $\alpha'(0) = (0,0)$

Múltiple Opción #2

V1: Hallar el valor de $\alpha \in \mathbb{R}$ para el cual

$$\lim_{(x,y)\to (0,0)}\frac{\cos(x^2+y)-1+x^2+\alpha y^2}{x^2+y^2}=1.$$

- (A) $\alpha = 3/2$
- (B) $\alpha = 1/2$
- (C) $\alpha = -1/2$
- (D) $\alpha = -3/2$
- (E) $\alpha = 0$

V2: Hallar el valor de $\alpha \in \mathbb{R}$ para el cual

$$\lim_{(x,y)\to(0,0)}\frac{\cos(x^2+y)-1+2x^2+\alpha y^2}{x^2+y^2}=2.$$

- (A) $\alpha = 5/2$
- (B) $\alpha = 3/2$
- (C) $\alpha = -3/2$
- (D) $\alpha = -5/2$
- (E) $\alpha = 0$

V3: Hallar el valor de $\alpha \in \mathbb{R}$ para el cual

$$\lim_{(x,y)\to(0,0)}\frac{\cos(x^2+y)-1-x^2+\alpha y^2}{x^2+y^2}=-1.$$

- (A) $\alpha = -1/2$
- (B) $\alpha = 1/2$
- (C) $\alpha = 3/2$
- (D) $\alpha = -3/2$
- (E) $\alpha = 0$

Múltiple Opción #3

V1: Se asume que existe la integral doble mostrada a continuación para una función continua $f: D \to \mathbb{R}$ sobre una región D y que

$$\iint_D f = \int_0^4 \left(\int_{-\sqrt{4-y}}^{(y-4)/2} f(x,y) \ dx \right) dy.$$

Si se invierte el orden de integración, entonces:

(A)
$$\int_{-2}^{0} \left(\int_{2x+4}^{4-x^2} f(x,y) \ dy \right) dx$$

(B)
$$\int_{-2}^{0} \left(\int_{4-x^2}^{2x+4} f(x,y) \ dy \right) dx$$

(C)
$$\int_{-2}^{0} \left(\int_{2x+4}^{\sqrt{16+8x}} f(x,y) \ dy \right) dx$$

(D)
$$\int_{-2}^{0} \left(\int_{x+2}^{4-x^2} f(x,y) \ dy \right) dx$$

(E)
$$\int_0^4 \left(\int_{-\sqrt{4-x}}^{(x-4)/2} f(x,y) \ dy \right) dx$$

V2: Se asume que existe la integral doble mostrada a continuación para una función continua $f: D \to \mathbb{R}$ sobre una región D y que

$$\iint_D f = \int_0^4 \left(\int_{(4-y)/2}^{\sqrt{4-y}} f(x,y) \ dx \right) dy.$$

Si se invierte el orden de integración, entonces:

(A)
$$\int_0^2 \left(\int_{4-2x}^{4-x^2} f(x,y) \ dy \right) dx$$

(B)
$$\int_0^2 \left(\int_{4-x^2}^{4-2x} f(x,y) \ dy \right) dx$$

(C)
$$\int_0^2 \left(\int_{2-x}^{4-x^2} f(x,y) \ dy \right) dx$$

(D)
$$\int_0^2 \left(\int_{4-2x}^{\sqrt{16-8x}} f(x,y) \, dy \right) dx$$

(E)
$$\int_0^4 \left(\int_{(4-x)/2}^{\sqrt{4-x}} f(x,y) \ dy \right) dx$$

V3: Se asume que existe la integral doble mostrada a continuación para una función continua $f: D \to \mathbb{R}$ sobre una región D y que

$$\iint_D f = \int_0^4 \left(\int_{(y-4)/2}^{-2+\sqrt{y}} f(x,y) \ dx \right) dy.$$

Si se invierte el orden de integración, entonces:

(A)
$$\int_{-2}^{0} \left(\int_{(x+2)^2}^{2x+4} f(x,y) \ dy \right) dx$$

(B)
$$\int_{-2}^{0} \left(\int_{2x+4}^{(x+2)^2} f(x,y) \ dy \right) dx$$

(C)
$$\int_{-2}^{0} \left(\int_{(x+2)^2}^{x+2} f(x,y) \ dy \right) dx$$

(D)
$$\int_{-2}^{0} \left(\int_{4-\sqrt{-8x}}^{2x+4} f(x,y) \ dy \right) dx$$

(E)
$$\int_0^4 \left(\int_{(x-4)/2}^{-2+\sqrt{x}} f(x,y) \ dy \right) dx$$

PARTE III: DESARROLLO

D1

(a) Defina qué significa que una función $f: \mathbb{R}^2 \to \mathbb{R}$ sea diferenciable en un punto (x_0, y_0) . [3 puntos]

Considere la función $f \colon \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} (2x^2 + 3y^2)\cos\left(\frac{1}{2x^2 + 3y^2}\right) + 2x - 3y + 1 & \text{si } (x,y) \neq (0,0), \\ 1 & \text{si } (x,y) = (0,0). \end{cases}$$

- (b) Hallar $\frac{\partial f}{\partial x}(0,0)$ y $\frac{\partial f}{\partial y}(0,0)$, en caso de existir. [4 puntos]
- (c) Determine si f es diferenciable en (0,0). [7 puntos]
- (d) Determine si f es de clase C^1 . [4 puntos]

D2

- (a) Enuncie el Teorema de Cambio de Variable para integrales triples. [3 puntos]
- (b) Sea

$$D = \{(x, y, z) \in \mathbb{R}^3 : y \ge |x|, \ 0 \le z \le \sqrt{x^2 + y^2} \le 1\},\$$

y g el cambio de variable a coordenadas cilíndricas que asocia a la terna (ρ, θ, z) la terna (x, y, z). Realice un bosquejo aproximado de D y $g^{-1}(D)$.

(c) Sea $f: \mathbb{R}^3 \to \mathbb{R}$, dada por

$$f(x, y, z) = yz.$$

Calcule $\iiint_D f$, donde D es la región de la parte (b). [9 puntos]