MSCI152: Introduction to Business Intelligence and Analytics

Lecture 11: Multiple Linear Regression

Dr Anna Sroginis

Lancaster University Management School

Agenda

"All models are wrong, but some are useful" George Box

- Recap
- 2 Categorical independent variables
- 3 Linear versus non-linear relationships
- 4 Forecasting with regression
- 5 Powerful but complex regression

More details can be found in Camm et al., Section 7.6, 7.7 & 7.10

Recap of the previous lecture

- Multiple linear regression gives an average estimate of linear relation:
 - $\hat{y}_j = b_0 + b_1 x_{1,j} + b_2 x_{2,j} + ... + b_{k-1} x_{k-1,j}$, where
 - y_j is a dependent (response) variable (the one that we want to model/predict);
 - $x_{1,j}$, $x_{2,j}$, ..., $x_{k-1,j}$ are independent variables (explanatory);
- As soon as you fit any model, you need to validate this model
- Confidence intervals help you to test and interpret the coefficients
- We can measure the quality of a fit of a model: Adjusted R² is better for multiple regression
- But we should be careful with over/under fitting

General Approach

- Plot charts for each variable
 - As before, look for the shape of relationship and outliers
 - But, shape may be obscured by effect of other variables
- Think what variables to include and how
- 3 Use Excel or stats package to fit regression equation
- 4 Validate your model
- Use Excel output to assess the strength of relationship overall and for each variable (parameter estimation)
 - Any statistically insignificant or missing variables? Wrong specification?
- 6 Consider alternative models
 - We have to decide which variables to include, so there are lots of choices

Agenda

- 1 Recap
- 2 Categorical independent variables
- 3 Linear versus non-linear relationships
- 4 Forecasting with regression
- 5 Powerful but complex regression

Qualitative predictors

So far, we have assumed that all variables are *quantitative*. But in practice, this is not always the case - often, some predictors are *qualitative*.

Let's consider this **credit card debt** dataset:

	Α	В	С	D	Е	F	G	Н	ı	J	K
1	Income	Limit	Rating	Cards	Age	Education	Own	Student	Married	Region	Balance
2	14.891	3606	283	2	34	11	No	No	Yes	South	333
3	106.025	6645	483	3	82	15	Yes	Yes	Yes	West	903
4	104.593	7075	514	4	71	11	No	No	No	West	580
5	148.924	9504	681	3	36	11	Yes	No	No	West	964
6	55.882	4897	357	2	68	16	No	No	Yes	South	331
7	80.18	8047	569	4	77	10	No	No	No	South	1151
8	20.996	3388	259	2	37	12	Yes	No	No	East	203
9	71.408	7114	512	2	87	9	No	No	No	West	872
10	15.125	3300	266	5	66	13	Yes	No	No	South	279
11	71.061	6819	491	3	41	19	Yes	Yes	Yes	East	1350

- Which variables are quantitative? Qualitative?
- What could be our response variable?

Qualitative predictors with only two levels

Suppose that we wish to investigate differences in **credit card** balance between those who **own** a **house** and those who **don't** (ignoring the other variables).

Definition

A qualitative predictor (also known as a factor) with two levels is called a **dummy** variable.

Based on the **OWN** variable, we can create a new variable that takes the form

$$x_i = \begin{cases} 1 \text{ if } i \text{th person owns a house} \\ 0 \text{ if } i \text{th person does not own a house,} \end{cases}$$
 (1)

Qualitative predictors with only two levels

If we use this dummy variable as a predictor in a simple regression of this form:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{2}$$

We will get this:

$$y_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person owns a house} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person does not own a house,} \end{cases}$$
 (3)

- β₀ is the average credit card balance among those who do not own,
- $\beta_0 + \beta_1$ is the average credit card balance among those who do own their house
- β_1 is the average **difference in balance** between owners and non-owners.

Credit card balance vs owning a house

Regression St	atistics					
Multiple R	0.021474					
R Square	0.0004611					
Adjusted R Square	-0.0020503					
Standard Error	460.22995					
Observations	400					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	38891.914	38891.914	0.1836156	0.6685161	
Residual	398	84301020	211811.61			
Total	399	84339912				
	Coefficients	tandard Erro	t Stat	P-value	Lower 95%	Upper 95%
Intercept	509.80311	33.128077	15.388853	2.909E-42	444.67522	574.931
Own	19.733123	46.05121	0.4285039	0.6685161	-70.8009	110.26715

- What is the regression equation?
- What do you think about this model?

Qualitative predictors with more than two levels

When a qualitative predictor has **more than two levels**, a single **dummy** variable cannot represent all possible values. For example, **REGION** variable has three values: West, East and South.

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person from the South} \\ 0 & \text{if } i \text{th person is not from the South,} \end{cases}$$
 (4)

$$x_{i2} = \begin{cases} 1 \text{ if } i \text{th person from the West} \\ 0 \text{ if } i \text{th person is not from the West,} \end{cases}$$
 (5)

- We always need to create
 - 2 dummies for a 3-level variable;
 - 3 dummies for a 4-level variable etc.
- There will always be one fewer dummy variable than the number of levels.

Qualitative predictors with more than two levels

So we add these dummy variables:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i \tag{6}$$

We will get this:

$$y_{i} = \begin{cases} \beta_{0} + \beta_{1} + \epsilon_{i} & \text{if } i \text{th person is from the South} \\ \beta_{0} + \beta_{2} + \epsilon_{i} & \text{if } i \text{th person is from the West} \\ \beta_{0} + \epsilon_{i} & \text{if } i \text{th person is from the East} \end{cases}$$
 (7)

- β_0 is the average credit card balance for people from the **East**,
- β_1 is the difference in the average balance people from the **South versus the East**
- β₂ is the difference in the average balance people from the
 West versus the East.

Credit card balance vs region

SUMMARY O	UTPUT					
301111111111111111111111111111111111111	001					
Regression	Statistics					
Multiple R	0.0147921					
R Square	0.0002188					
Adjusted R So	-0.0048179					
Standard Erro	460.86508					
Observations	400					
ANOVA						
	df	SS	A 4C		C!!6!	
	uj	33	MS	F	Significance F	
Regression	2	18454.2	9227.1002	0.0434428	0.9574919	
Regression Residual	-	18454.2			-	
	2	18454.2 84321458	9227.1002		-	
Residual	2 397	18454.2 84321458	9227.1002		-	
Residual	2 397 399	18454.2 84321458	9227.1002 212396.62		-	Upper 95%
Residual	2 397 399	18454.2 84321458 84339912	9227.1002 212396.62	0.0434428	0.9574919	
Residual Total	2 397 399 Coefficients	18454.2 84321458 84339912 tandard Errol 46.318683	9227.1002 212396.62 t Stat	0.0434428 P-value	0.9574919 Lower 95%	Upper 95%

- What is the regression equation?
- What do you think about this model?

Exercise

Remember this **credit card debt** dataset?

	Α	В	С	D	Ε	F	G	н	ı	J	K
1	Income	Limit	Rating	Cards	Age	Education	Own	Student	Married	Region	Balance
2	14.891	3606	283	2	34	11	No	No	Yes	South	333
3	106.025	6645	483	3	82	15	Yes	Yes	Yes	West	903
4	104.593	7075	514	4	71	11	No	No	No	West	580
5	148.924	9504	681	3	36	11	Yes	No	No	West	964
6	55.882	4897	357	2	68	16	No	No	Yes	South	331
7	80.18	8047	569	4	77	10	No	No	No	South	1151
8	20.996	3388	259	2	37	12	Yes	No	No	East	203
9	71.408	7114	512	2	87	9	No	No	No	West	872
10	15.125	3300	266	5	66	13	Yes	No	No	South	279
11	71.061	6819	491	3	41	19	Yes	Yes	Yes	East	1350

• To include all qualitative variables in the regression, how many dummy variables do you need to create in total?

Agenda

- 1 Recap
- 2 Categorical independent variables
- 3 Linear versus non-linear relationships
- 4 Forecasting with regression
- 5 Powerful but complex regression

Linear relationships

• Do you remember my favourite example?

Used BMW in the UK (4 Series, Automatic)

Non-linear relationships

• If we take the whole available sample, we see a non-linear pattern in this data:

Used BMW in the UK (4 Series, Automatic)

Polynomial linear regression

A simple approach for incorporating non-linear associations in a linear model is to include **transformed** versions of the predictors.

 One of the ways to model non-linear relationships is polynomial regression. The simplest form is to add a quadratic shape:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i \tag{8}$$

But it is still a linear model!

Quadratic linear regression

- Remember to include initial term!
- In business analytics applications, polynomial regression models of higher than second (x_i^2) or third-order (x_i^3) are rarely used. Be careful and always justify these transformations!
- There are alternatives for certain cases.

SUMMARY O	UTPUT					
Regression	n Statistics					
Multiple R	0.85347226					
R Square	0.72841489					
Adjusted R So	Adjusted R Sc 0.72695867					
Standard Erro	3361.9783					
Observations	376					
	Coefficients	Standard Erroi	t Stat	P-value	Lower 95%	Upper 95%
Intercept	29497.7662	322.581577	91.4428109	1.605E-257	28863.4597	30132.0726
mileage	-0.4253346	0.01872869	-22.71032	2.5624E-72	-0.4621617	-0.3885076
mileage^2	2.7021E-06	2.0798E-07	12.9921274	4.265E-32	2.2931E-06	3.1111E-06

Used BMW example: quadratic variable

• What do you think about this fit?

Agenda

- 1 Recap
- 2 Categorical independent variables
- 3 Linear versus non-linear relationships
- 4 Forecasting with regression
- 6 Powerful but complex regression

Predicting with regression

Once we have estimated a regression line, we can use it to forecast by simply using numerical inputs for the various variables in the model.

But we need to have x_i :

- X is known ahead of time (e.g., the size of a sales force, or demographic details concerning a consumer).
- X is unknown but can still be forecast (e.g., gross domestic product).
- X is unknown, but we wish to make what-if forecasts (e.g., the effects of different advertising or pricing policies).

Point prediction

To calculate a **point prediction**, substitute the given values of the X's into the estimated regression equation.

Source: https://otexts.com/fpp2/forecasting-regression.html

Prediction intervals

A **prediction interval** is an interval estimate of an individual y value given values of the independent variables.

An approximate 95% prediction interval associated with this forecast is given by

$$\hat{y} \pm 1.96 \hat{\sigma}_e \sqrt{1 + \frac{1}{T} + \frac{(x - \bar{x})^2}{(T - 1)s_x^2}},$$

where

- T is the total number of observations
- \bar{x} is the mean of the observed x values
- s_x is the standard deviation of the observed x values
- σ_e is the standard error of the regression

Prediction intervals

Agenda

- 1 Recap
- 2 Categorical independent variables
- 3 Linear versus non-linear relationships
- 4 Forecasting with regression
- 5 Powerful but complex regression

Other regression features

- Other types of regression
 - Log-regression, logistic regression, multi-level regressions etc.
- Interaction between independent variables
 - Sales = $b_0 + b_1$ Price + b_2 Advertising + b_3 Price · Advertising
- There are different variable selection methods
 - Backward elimination, forward selection, stepwise selection, best subsets

Don't worry about the details:

 You will not be asked about this in the exam or the coursework.

Just giving you an idea of the range of things you can do with regression!

A couple more words about regression

We briefly discussed the main assumptions to validate your model, but there are also other issues that you might have:

- Outliers
- Omitted variables
 - underfitting the data we don't explain the structure well
- Redundant variables
 - overfitting the data we explain the noise
- Multicolleniarity
 - two or more predictor variables are closely related to one another - avoid it!
- Heteroscedasticity
 - the variances of the error terms are non-constant always plot your residuals!

Wrap up

Here we:

Modelling relationships between two and more variables:
 Multiple linear regression

Next time:

Introduction to forecasting