	Examen final de Xarxes de Computadors (2	XC)		Grau en Ing	geniería Informàtic	ca	21/6/2021		Primavera 2021	
Non	, ,	Cognoms					Grup	DNI		
	ració: 2h45m. El test es recollirà en 25 minuts. Res st (2.5 punts) Marca les respostes correctes.					e combinac	ione cón nocci	hles (de	tot fals a tot cort)	١.
	alen la meitat si hi ha un error, 0 si més.	. Totes les p	regunt	es son multiles	sposia. totes le	es combinac	10115 SUIT PUSSI	Dies (ut	tot lais a tot cert)	١,
1.	. Respecte split-horitzon en RIP:									
	☐ Pot reduir el temps de convergèn									
	 □ Durant la convergència de RIP fa □ Pot reduir el nombre d'entrades of 			•	icles d'encamir	nament				
	☐ Pot fer que un cop RIP a converq				ncaminament s	siauin més r	netites			
ว	. Un router d'Internet té un enllaç d'1 Gbps	•	•					octra ar	nunciada awnd Lo	٠.
۷.	connexions s'han iniciat des de punts difer pèrdues, però no es buida mai, de manera	ents i en mi	tjana e	Is round trip tir	<i>nes</i> , RTT, són d	liferents. La	cua del router			
	☐ El retard màxim que introdueix el		•							
	☐ Com que hi ha pèrdues, la velocit	3			serà inferior a	100 Mbps				
	 □ La finestra awnd de les connexion □ Si la velocitat eficaç de totes les orangements 	-		•	tra mitiana de	transmissió	de totes les c	onnexio	ns tamhé ho serà	
2	. Diques quins dels següents protocols tene			•	ici a mirgania ac	ti anomio	de totes les e	OTTICATO	ns tumbe no sera	
3.		-		-known port:						
	□ ICMP □ ARP □ MIME □ D									
4.	. Diques quines de les següents subxarxes s			-	2.168.0.0/24					
	☐ 1 subxarxa amb 200 hosts i una☐ 192.168.0.240/27 i 192.168.0.2		o nosts	S						
	☐ 192.168.0.240/28 i 192.168.0.2	•								
	□ 192.168.0.240/27 i 192.168.0.2									
	□ 192.168.0.240/28 i 192.168.0.2	24/28								
5.	. Suposa que en un PC connectat a una xara datagrama UDP té 8 bytes. Digues quines a							cket UD	P. La capçalera d'u	n
	 El nivell UDP generarà un datagra 	ama UDP de	1480	bytes i un altre	e de 336 bytes					
	☐ El camp offset del primer datagra			-	240 1-1					
	El nivell IP generarà un datagramEl nivell UDP generarà 2 datagrar		-		348 bytes					
_		iics obi ac	ia iliat	cixa ililua						
6.	. El protocol SMTP: ☐ Fa servir TCP									
	☐ Ho pot fer servir un client de corr	reu ner envi	ar un m	nissatge al seu	servidor de co	rreu				
	☐ Ho pot fer servir un client de corr	-		_						
	☐ HELO és una de les comandes de	l protocol								
7.	. Suposa cwnd=350 bytes, MSS=100 bytes de la finestra de congestió (cwnd) si arribe	i ssthresh= en 3 acks qu	400 by ue conf	ytes. Digues qı İrmen noves da	uines de les seg ades:	güents seqi	iències serien	possible	es per a a l'evolucio	ó
	□ 400, 420, 443									
	□ 350, 350, 350 □ 371, 307, 433									
	□ 371, 397, 422 □ 450, 472, 493									
	□ 450, 550, 650									
8.	. Un usuari registra el domini uuu.cat, de f uuu.hosting.com, amb IP 80.80.80.80 i au zona del domini uuu.cat permetria que aix	toritat ns.ho ò fos possib	osting.o							
	□ www.uuu.cat CNAME uuu.hosting	J.com								
	☐ uuu.cat NS ns.hosting.com☐ www.uuu.cat NS ns.hosting.com									
	□ www.uuu.cat A 80.80.80.80									
9	. En la taula MAC d'un switch (en una xarxa	on tots els	disnosi	itius tenen con	nectivitat entre	ells).				
٥.	☐ Hi pot haver la mateixa adreça M		•			,				
	☐ Hi pot haver l'adreça MAC broado				-					
	☐ Hi pot haver l'adreça MAC de la ta	argeta de xa	arxa d'ı	un router						
	☐ Hi pot haver adreces IP									
10.	. En una xarxa els únics dispositius són com una única adreça IP (diferent per a cada P					En tots els	dispositius hi h	a PCs c	onnectats, tots aml	b
	☐ L'adreça MAC d'un PC connectat	a un AP wifi	és pos	ssible que estig	jui en la taula N	MAC de tots	els commutad	ors		
	☐ Hi ha un únic domini broadcast									
	☐ Hi pot haver PCs en VLANs difere		الحد	4				.:c:		
	L'adreça MAC d'un PC connectatHi pot haver un commutador que				e estigui en la t	tauia MAC d	e tots eis ap v	/ITI		
	pot haver an commutation que	au. 100 l.	JJ ut							

Examen final de Redes de Computado	ores (XC), Grado en Ingeniería	21/06/20	021	Primavera 2021
NOMBRE: APELLIDOS:		GRUPO	ID	

Duración: 2h45m.

Problema 1 (2.5 puntos)

La siguiente figura representa la topología de red de una empresa con dos ubicaciones diferentes (la sede -HQ- y la ubicación remota A) interconectadas mediante un túnel a través de Internet.

La red de la ubicación A incluye estaciones en dos LANs cableadas, estaciones móviles conectadas por un AP WiFi configurado como puente (bridge) y servidores locales. La red de la sede se compone de estaciones de trabajo y servidores públicos. El número de hosts se define en la figura.

La empresa quiere configurar una combinación de direcciones IP públicas y privadas.

- Se utilizan direcciones privadas para todas las estaciones de la empresa, así como para los servidores en la ubicación A. El rango base para el bloque de direcciones privadas es 10.10.0.0/8.
- Se utilizan direcciones públicas para los servidores de la sede. El rango base para el bloque público comienza en 200.200.0.128.
- A las interfaces ppp0 de cada router se les asignan direcciones en 200.200.0.194/30 (RHQ) y 200.200.1.194/30 (RA). A la interfaz relacionada del router ISP se le ha asignado la dirección 1 en la subred.
- La conexión entre la ubicación A y la sede se realiza mediante un túnel a través de Internet configurado utilizando direcciones del rango 192.168.0.0/24.

Finalmente, se configuran VLAN en las ubicaciones y se asocian a interfaces virtuales (subinterfaces) en el router local llamadas <interface>.0 e <interface>.1. Además, todos los routers implementan un firewall y RHQ implementa además PNAT (RA no implementa PNAT).

amen final de Redes de Computadores (XC), Grado en Ingeniería		21/06/2021		Primavera 2021
NOMBRE:	APELLIDOS:	GRUPO	ID	

Duración: 2h45m.

a) (<u>0.5 puntos</u>) Asigna un bloque a cada subred haciendo que los rangos de las redes sean lo más ajustados posible al tamaño real de las subredes, pero de manera que se puedan agregar para minimizar el número de rutas en las tablas de enrutamiento. Asigna direcciones comenzando por las subredes en HQ, luego la ubicación A, etc.

Ubicación / subred	IP/prefijo
HQ/Estaciones	10.10.0.0/28
RHQ-ISP	200.200.0.195/30
RA-ISP	200.200.1.195/30

b) (<u>0.5 puntos</u>) Completa la tabla de enrutamiento del router RA. Todas las estaciones deberían poder acceder a Internet a través del firewall en RHQ. Utiliza agregación y rutas predeterminadas cuando sea posible. Las rutas se evaluarán de la máscara más larga a la más corta.

Subred	IP/prefijo	GW	Interfaz

c) (<u>0.5 puntos</u>) Un cliente en el puerto 9000 en la estación 10.10.0.7 inicia una conexión TCP con el servidor web remoto 96.100.244.240:80 en Internet. Completa los valores de los campos en las cabeceras IP y TCP para los datagramas generados por el cliente cuando entra o sale de la interfaz especificada en RHQ.

Interfaz	IP fuente	#puerto fuente	IP destino	#puerto destino	Proto
e1					
ppp0					

d) (<u>0.5 puntos</u>) Otro cliente en el puerto 10000 en la estación 10.10.0.7 inicia una nueva conexión TCP con el servidor web 10.10.1.3:80 en la ubicación remota. Completa los valores de los campos en las cabeceras IP y TCP para los datagramas generados por el cliente cuando entra o sale de la interfaz especificada en RHQ.

Interfaz	IP fuente	#puerto fuente	IP destino	#puerto destino	Proto
e1					
ppp0					

e) (<u>0.5 puntos</u>) Configura el firewall en el enrutador RHQ. En particular: 1) cualquier cliente de Internet debería poder acceder a los servidores de la sede central pero no a la red privada; 2) cualquier estación de la red privada puede acceder a los servidores públicos y a Internet. Especifica la interfaz donde aplicar las reglas ACL; Las reglas se aplicarán a la entrada de dicha interfaz.

Interfaz de entrada	IP/prefijo fuente	#puerto fuente	IP/prefijo destino	#puerto destino	Proto	Acción (Aceptar/Denegar)
	Cualquiera	Cualquiera	Cualquiera	Cualquiera	Cualquiera	Denegar

Examen final de Xarxes de Comput	adors (XC), Grau en Enginyeria Informàtica	21/6/	2021	Primavera 2021
NOMBRE:	APELLIDOS	GRUPO	DNI	

Problema 2 (1.5 puntos)

Tenemos la red mostrada en la figura:

- 10 clientes, C1 a C10, se conectan con enlaces Ethernet a 10 Mbps al switch Sw1.
- 10 clientes, C11 a C20, se conectan con enlaces a 10 Mbps a Sw2.
- 2 clientes, M1 y M2, se conectan mediante una red WiFi IEEE 802.11b al punto de acceso AP, que a su vez se conecta a 10 Mbps a Sw2. La máxima velocidad de transmisión efectiva que podemos alcanzar en la red IEEE 802.11b es de 8 Mbps
- Un servidor S se conecta mediante un enlace a 100 Mbps a Sw3
- Los tres switches Sw1, Sw2, Sw3 se interconectan con enlaces a 100 Mbps
- Sw3 se conecta con un enlace a 100 Mpbs con el router R

Inicialmente todos los equipos están situados en la misma red IP (10.1.0.0/16) y misma VLAN.

a) Los puertos f2 de Sw1 y f1 de Sw2 están en estado "BLOCKED". ¿Qué protocolo permite llegar a este estado de forma automática? ¿Qué problema tendríamos en esta red si estos puertos estuvieran activos? ¿Por qué crees que los diseñadores de esta red han tomado la decisión de interconectar los tres switches, incluso sabiendo que tendrán dos puertos bloqueados?

Supongamos que todos los clientes (C1 a C20, M1 y M2) intentan enviar información a la máxima velocidad posible al servidor S. Los switches implementan el control de flujo explicado en clase (es decir, "back-pressure").

b) ¿Qué velocidades efectivas alcanzarían los nodos C1 a C10?, ¿Qué velocidades efectivas alcanzarían los nodos C11 a C20?, ¿Qué velocidades efectivas alcanzarían los nodos M1 y M2?.

Queremos segmentar la red en dos subredes: 10.1.0.0/24 y 10.1.64.0/24. En la red 10.1.0.0/24 tendremos los clientes C1-C10, el servidor S, los clientes M1-M2, y una de las subinterfaces de R. En la red 10.1.64.0/24 estarán los clientes C11-C20 y una de las subinterfaces de R.

Los puertos en 10.1.0.0/24 estarán en VLAN1 mientras los puertos en 10.1.64.0/24 estarán en VLAN2.

c) Esta configuración define dos dominios de broadcast. Especificar a qué dominio o dominios pertenece cada uno de los puertos de los tres switches.

Dominio de Broadcast de VLAN1	Puertos en dominio de broadcast
Sw1	
Sw2	
Sw3	
Dominio de Broadcast de VLAN2	Puertos en dominio de broadcast
Sw1	
Sw2	
Sw3	

d) Especificar qué puertos de los switches Sw1, Sw2, Sw3 se deben configurar en modo trunk. La solución debe garantizar que la operación de la red no se vea interrumpida aunque caiga o el enlace Sw1-Sw3 o el Sw2-Sw3 (aunque no lo podrá garantizar si caen simultáneamente). Justifica la solución

Switch	Puertos configurados en modo trunk
Sw1	
Sw2	
Sw3	

Justificación de porqué se deben configurar los puertos anteriores en modo trunk		

Examen final de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica		21/06/2021	Primavera 2021
NOM (en MAJÚSCULES):	COGNOMS (en MAJÚSCULES):	GRUP:	DNI:

Duració: 2h 45 minuts. El test es recollirà en 25 minuts.

Problema 3 (1 punt)

El client C1 estableix una connexió TCP amb el servidor remot S i transmet un fitxer gran cap al servidor. Utilitzant *tcpdump* es mesura la seva velocitat efectiva i el corresponent RTT. També s'observa que no hi ha pèrdues.

- a) Si la velocitat efectiva de C1 és V_1 Mbps i el RTT mesurat és RTT₁ ms, quina és la mida de la finestra de transmissió (wnd₁) abans de la desconnexió? Posar el resultat en funció de V_1 i RTT₁.
- b) Quin és el valor de la finestra anunciada pel servidor S (awnd)?

Mentre la connexió de C1 està activa, el client C2 estableix una connexió TCP amb el servidor remot S. A partir de la captura del tràfic s'obté V_2 i RTT₂. Suposem que l'únic enllaç comú d'ambdues connexions és el d'accés entre el *router* i el servidor S i que només hi ha aquestes dues connexions actives i que els valors de RTT_{1nou} i RTT₂ són semblants.

Amb les dues connexions simultàniament s'observa que el C1 redueix la seva velocitat efectiva ($V_{1nova} < V_1$). c) Aproximadament, quina serà la velocitat efectiva de C1(V_{1nova})?

- d) Es pot assegurar que amb les dues connexions simultànies, hi ha pèrdues? Per què?
- e) Si l'enllaç d'accés al servidor S és el coll d'ampolla, en quines condicions hi hauria pèrdues?

Mentre la connexió C1 està activa, el client C2 estableix simultàniament 3 connexions TCP amb el mateix servidor S.

f) Determinar la velocitat efectiva mitjana de cada una de les connexions TCP si la capacitat de l'enllaç al servidor S és de 200 Mbps.

Problema 4 (1 punt)

A continuació es mostra part de la captura del tràfic d'una connexió TCP que correspon a la descàrrega d'una pàgina web. Els números de línia serveixen per identificar els segments. Entre les línies 7 i 8, i 17 i 18 s'han eliminat segments per escurçar la traça. A la captura es pot observar que hi ha alguns segments de dades que porten més d'un MSS. El *tcpdump* ho presenta d'aquesta manera per facilitar l'anàlisi. A partir de la informació disponible, contestar les preguntes següents, indicant els números de línia d'on es calcula cada resposta.

1	12:59:23.300128 IP 192.168.1.40.32940 > 185.66.41.28.443: [S]	seq 1839758928 win	64240	
_	options [mss 1460]			
2	12:59:23.319944 IP 185.66.41.28.443 > 192.168.1.40.32940: [S.]	seq 1515060931 ack	1839758929	win 27960
_	options [mss 1410]			
3	12:59:23.319982 IP 192.168.1.40.32940 > 185.66.41.28.443: [.]		ack 1	win 502
	options [nop,nop]			
4	12:59:23.324657 IP 192.168.1.40.32940 > 185.66.41.28.443: [P.]	seq 1:518	ack 1	win 502
5	12:59:23.344397 IP 185.66.41.28.443 > 192.168.1.40.32940: [.]	1.1000	ack 518	win 227
6	12:59:23.344855 IP 185.66.41.28.443 > 192.168.1.40.32940: [.]	seq 1:1399	ack 518	win 227
7	12:59:23.344867 IP 192.168.1.40.32940 > 185.66.41.28.443: [.]		ack 1399	win 501
 8	12:59:24.823937 IP 185.66.41.28.443 > 192.168.1.40.32940: [.]	seq 598262:601058	ack 8712	win 428
9	12:59:24.823942 IP 192.168.1.40.32940 > 185.66.41.28.443: [.]	3cq 370202.001030	ack 6712	win 7946
10	12:59:24.823993 IP 185.66.41.28.443 > 192.168.1.40.32940: [P.]	seq 601058:603578	ack 8712	win 428
11	12:59:24.823997 IP 192.168.1.40.32940 > 185.66.41.28.443: [.]	304 00 1000.000070	ack 603578	win 7985
12	12:59:24.824054 IP 185.66.41.28.443 > 192.168.1.40.32940: [P.]	seq 603578:608894	ack 8712	win 428
13	12:59:24.824054 IP 185.66.41.28.443 > 192.168.1.40.32940: [.]	seq 608894:610292	ack 8712	win 428
14	12:59:24.824060 IP 192.168.1.40.32940 > 185.66.41.28.443: [.]		ack 608894	win 8068
15	12:59:24.824106 IP 185.66.41.28.443 > 192.168.1.40.32940: [P.]	seq 610292:614210	ack 8712	win 428
16	12:59:24.824107 IP 185.66.41.28.443 > 192.168.1.40.32940: [.]	seq 614210:617006	ack 8712	win 428
17	12:59:24.824110 IP 192.168.1.40.32940 > 185.66.41.28.443: [.]		ack 614210	win 8152
	10 00 00 00000 ID 100 // 41 00 440 100 1/0 1 40 00040 ID I	1171250 1174500	I: 10110	/71
18	12:59:25.380950 IP 185.66.41.28.443 > 192.168.1.40.32940: [P.]	seq 1171350:1174582		win 671
19 20	12:59:25.380956 IP 192.168.1.40.32940 > 185.66.41.28.443: [.]	000 1174E00.117440E	ack 1174582 ack 18119	win 16914
21	12:59:30.381270 IP 185.66.41.28.443 > 192.168.1.40.32940: [P.]	seq 1174582:1174635 seq 18119:18165	ack 18119 ack 1174635	win 671 win 16914
22	12:59:30.381442 IP 192.168.1.40.32940 > 185.66.41.28.443: [P.] 12:59:30.381455 IP 185.66.41.28.443 > 192.168.1.40.32940: [P.]	seq 1174635:1174666		win 671
23	12:59:30:381559 IP 192:168.1.40.32940 > 185.66.41.28.443: [P.]	seq 18165:18196	ack 10119 ack 1174666	win 16914
23 24	12:59:30:381569 IP 192:168.1.40.32940 > 163:00:41:28.443: [F.]	seq 18196	ack 1174666	win 16914 win 16914
25	12:59:30:381765 IP 185.66.41.28.443 > 192.168.1.40.32940: [F.]	seq 1174666	ack 1174000 ack 18119	win 671
26	12:59:30.381773 IP 192.168.1.40.32940 > 185.66.41.28.443: [.]	354 11/4000	ack 10119 ack 1174667	win 16914
27	12:59:30.400363 IP 185.66.41.28.443 > 192.168.1.40.32940: [.]		ack 1174007 ack 18196	win 671
28	12:59:30.400363 IP 185.66.41.28.443 > 192.168.1.40.32940. [.]		ack 18197	win 671
20	12.07.30.700304 100.00.41.20.443 / 172.100.1.40.32740. [.]		uck 10177	WIII O/ I

- a) Interfície on s'ha fet la captura (client o servidor); explicar com es pot saber
- b) Valor aproximat del RTT
- c) Valor de la finestra anunciada pel client a l'inici de la connexió en octets (bytes) i en MSS
- d) Temps total de la descàrrega completa de la pàgina
- e) Estimació de la velocitat de descàrrega de la pàgina
- f) A l'instant 16, el valor mínim de la finestra de transmissió del servidor

Examen Final de Xarxes de Comput	omputadors (XC), Grau en Enginyeria Informàtica		Primavera 2021
NOM (MAJÚSCULES):	COGNOMS (MAJÚSCULES):	GRUP:	DNI:

Duració: 2h45m total. El test es recollirà en 25 minuts. Respondre en el mateix enunciat.

Problema 5 (1,5 punts)

Un usuari fa servir un navegador web per descarregar l'URL http://w1.org/ d'un servidor HTTP 1.1. W1.org té un servidor web i DNS. El contingut de la pàgina inclou tres imatges incrustades i és el següent:

<html>

</html>

a) Cas 1:

Revisa la figura anterior per explicar com el navegador fa servir quines característiques de DNS, TCP i HTTP per baixar cada element de la pàgina i com ho fa per descarregar diversos elements alhora:

Revisa la figura anterior per explicar com el navegador fa servir quines característiques de DNS, TCP i HTTP per baixar cada element de la pàgina sequencialment:

c) Cas 3:

Dibuixa una figura equivalent al segon cas si la pàgina HTML canvia tots els seus enllaços IMG de w1.org a w2.org

