Question 1.

- a. <u>Aggregate method.</u> There are $\lfloor \sqrt{n} \rfloor$ operations that each cost $2\sqrt{k}$, and the other $n \sqrt{n}$ operations each cost 1. This yields a total cost of $2*(1+2+3+...+1)+(n-\sqrt{n})+(n-\sqrt{n})*(1+2+3+...+1)+$
- b. Accounting method. Charge each operation \$2. When k is not a perfect square, use \$1 to pay for the operation and use the extra \$1 for credit. When k is a perfect square, the preceding $(k 1) (\sqrt{k} 1)^2 = 2\sqrt{k} 2$ operations have each paid a credit of \$1, which together with the \$2 for the current operation yields exactly enough to pay for its $2\sqrt{k}$ actual cost.
- c. <u>Potential method.</u> Define Φ = the number of operations since the most recent perfect square. That is, let $\Phi_{\kappa} = k (\sqrt{k})^2$. When k is not a perfect square, the amortized cost is $c' = c + \Phi_k \Phi_{k-1} = 1 + (k (\sqrt{k})^2) ((k-1) (\sqrt{k})^2) = 2$. When k is a perfect square, the amortized cost is $c' = c + \Phi_k \Phi_{k-1} = 2\sqrt{k} + (k (\sqrt{k})^2) ((k-1) (\sqrt{k} 1)^2) = 2\sqrt{k} + 0 (2\sqrt{k} 2) = 2$.