ORG 0000H

LJMP MAIN

ORG 0030H

MAIN: MOV 54H,#15 ;温度下限值

MOV 55H,#20 ;温度上限值

MOV A,#18 ;温度当前值

AGAIN: CJNE A,55H,LOOP1

AJMP FH

LOOP1: JNC JW

CJNE A,54H,LOOP2

AJMP FH

LOOP2: JC SW

FH: LCALL DWD ;调读温度子程序

LJMP AGAIN

SW: SETB P1.0 ;电热丝加电

LCALL DELAY_1M

CLR P1.0

LJMP FH

JW: SETB P1.1 ;压缩机启动

LCALL DELAY_1M

CLR P1.1 LJMP FH DELAY_1M: ;1分钟延时子程序

•••••

RET

DWD: ;读温度子程序

.....

RET

END

第5章 80C51的中断与定时

- 5.1 中断概述
- 5.2 80C51单片机的中断系统
- 5.3 80C51单片机的定时器/计数器

单片机中断技术概述

中断提出的原因:多任务处理和实时控制。

中断技术的实质:资源共享技术。

举例:看书---》电话--》敲门

5.2 80C51单片机的中断系统

一、中断源和中断向量

共有六个中断源,分别是外部中断两个、定时中断两个和两个串行中断,它们是:

- 1、外部中断0 -----INTO,由P3.2提供,
- 2、外部中断1 -----INT1, 由P3.3提供,

外部中断有两种信号方式,即电平方式(低电平)和脉冲方式(下降沿)。

- 3、T0溢出中断--- 由片内定时/计数器0提供
- 4、T1溢出中断----由片内定时/计数器1提供
- 5、串行口中断---- RI和TI由片内串行口提供

中断源(6个) 中断向量(5个)

外部中断0 0003H

定时器0溢出 000BH

外部中断1 0013H

定时器1溢出 001BH

串行发送中断 0023H

串行接收中断 0023H

补充

二、 中断控制: 能处理多任务、效率高

中断源: 引起程序中断的事件。

中断请求: 中断源要求为其服务的请求。

中断优先级: 多个中断请求时,如何排序。

IE----中断允许控制寄存器,

TCON----定时控制寄存器,

SCON-----串行口控制寄存器。

IP----中断优先级控制寄存器,

1. 中断允许控制寄存器IE(复位时为00H)

D7	D6	D5	D4	D3	D2	D1	DO
EA			ES	ET1	EX1	ET0	EXO

0禁止,1允许

(复位时为00H)

3. 串行口控制寄存器SCON (复位时为00H)

D7	D6	D5	D4	D3	D2	D1	DO
						ΤI	RI

串行中断请求标志

4. 中断优先级控制寄存器IP (复位时为00H)

D7	D6	D5	D4	D3	D2	D1	DO
			PS	PT1	PX1	PT0	PX0

0低级别,1高级别

三、中断优先级控制原则和控制逻辑

P103

- 1、低级不能打断高级中断.
- 2、某中断响应后,同级不能嵌套.
- 3、同级同时发生,按顺序查询:

INTO—TO—INT1—T1—串行

中断的初始化

字节寻址 MOV IE, #81H

位寻址: SETB EA SETB EXO

四、中断响应过程

1、中断采样:

- 1) 外部电平方式时,源至少保持12振荡周期.
- 2) 脉冲方式, 负脉冲至少保持12振荡周期。

2、中断查寻:

- 1) 按照IP设置的优先级,先查高级后低级.
- 2) 同级按照

INTO—TO—INT1—T1—串行

3、中断响应

单片机响应中断后,自动执行下列操作:

- ① 由硬件清除相应的中断请求标志(除电平触发和串行通讯触发)
- ② 调用入口地址,断点入栈保护,相当于执行 LCALL指令。

中断源	硬件入口	软件入口
外部中断0	P3. 2	0003H
定时器T0	P3. 4	000BH
外部中断1	P3. 3	0013H
定时器T1	P3. 5	001BH
串行口中断	P3. 0 P3. 1	0023H
定时器T2	P1. 0	002BH(52子系列有)

补充

1)中断响应条件:

- ① 有中断源发出中断申请。
- ② 中断总容许位EA=1,即CPU开放中断。
- ③ 请求中断的相应中断容许位为1。

2) 中断响应被阻止的情况:

- ① CPU正在执行同级或更高一级中断服务程序。
- ② 现行指令完成前,不响应任何请求。
- ③ 执行RETI、IP、IE后至少再执行一条其他指令 才相应中断。

4、响应时间

从查询中断请求标志位到转向中断服务入口地址所需的机器周期数。

1) 最快响应时间

以外部中断的电平触发为最快。

从查询中断请求信号到中断服务程序需要3个 机器周期:

1个周期(查询)+2个周期(长调用LCALL)

2) 最长时间

若当前指令是RET、RETI和IP、IE指令,紧接着下一条是乘除指令发生,则最长为8个周期: 2个周期执行当前指令(其中含有1个周期查询) +4个周期乘除指令+2个周期长调用=8个周期。

五、中断服务程序

- 1、 中断服务程序编写注意事项:
 - 1)入口地址只有8个字节,一般程序放不下,需加 LJMP 语句跳转到64K空间。
 - 2) 若想禁止更高优先级中断,可执行 CLR EA 关中断,中断返回时执行 SETB EA 开中断。
 - 3)在中断子程序中可加保护现场和恢复现场数据程序。

4) 主程序中的中断初始化

中断都是在运行主程序时发生的,是主程序的随机事件。是否允许发生以及如何发生,都应该在主程序中预先设置,这就是中断初始化。

中断初始化的内容包括堆栈设置、中断系统总开放、中断允许设置、中断请求方式设置(只限外部中断)和中断优先级设置等。

例:外部中断0的初始化 ORG 0000H ;系统复位后转向主程序 AJMP MAIN ORG 0003H ;转向外部中断0服务程序 AJMP **EXINTO** ORG 0030H TCON, #01H; 脉冲触发方式 MAIN: MOV IE, #81H ;中断开放,外中断0允许 MOV IP, #01H ; INTO为高优先级, 其余为低 MOV SP, #3FH ; 设置堆栈 MOV SJMP :外部中断0服务程序 **EXINTO:** RETI

END

中断服务流程图

中断服务流程图

中断服务流程图

中断子程序与子程序调用的区别

	中断子程序	子程序调用
1、控制方式	IP IE SP等,比 较复杂	只和SP有关,简单
2、发生时刻	不可预知	事先安排
3、入口地址	固定隔8个字节	64K空间任意安排
4、执行子程序	自动完成	LCALL
5、返回语句	RETI	RET

作业:

- 1、MCS-51有几个中断源?入口地址是多少?
- 2、MCS-51的中断优先级怎样设置?同级别中 断的优先顺序是怎样的?

实验:

- 1、实验1-6的"1)循环程序和3)查表程序"
- 2、实验1-7

复习

中断源

- 一、为什么需要专门固化的定时器/计数器?
- 1、定时器和计数器是自动控制系统最常用的功能。
- 2、可以用软件延时或软件计数实现定时和计数功能 但是单片机CPU被占用,无法进行多任务处理。
- 3、采用专门的定时器和计数器独立运行,有利于提高单片机的性能,适用于实时多任务处理的要求。

两个16位加法计数器

图6-1 8051定时器结构

单片机定时器/计数器的硬件结构示意图

1. 计数功能:

对外来脉冲进行计数。

T0(P3.4)和T1(P3.5)两个引脚,作为计数输入端。

外部输入的脉冲在出现负跳变时有效,计数器加1。

计数方式下,单片机在每个机器周期的S5P2拍节时对外部计数脉冲进行采样。如果前一个机器周期采样为高电平,后一个机器周期采样为低电平,即为一个有效的计数脉冲。在下一机器周期的S3P1进行计数。

即采样计数脉冲需要2个机器周期,即24个振荡周期

计数脉冲的频率最高为振荡脉冲频率的 1/24

2. 定时:

来自单片机的内部。

对机器周期进行计数,即每个机器周期产生一个计数脉冲使计数器加1,直至计满溢出。

一个机器周期=12*振荡周期

12MHZ晶体, 计数周期(机器周期)=1us。即每1us计数器加1。 从开始计数到溢出这段时间就是"定时"时间。

因此,若机器周期一定,计数初值越大,则定时越短

计数频率为振荡频率的1/12

二、方式寄存器TMOD和控制寄存器TCON

1.控制寄存器TCON

TCON

8FH	8EH	8DH	8CH	8BH	8AH	89H	88H
TF ₁	TR ₁	TF ₀	TR ₀	IE ₁	IT ₁	IE ₀	IT ₀

TF1 (TCON. 7, 8FH位) --定时器T1中断请求溢出标志位。

TFO(TCON. 5, 8DH位)--定时器TO中断请求溢出标志位。

TR1 (TCON. 6, 8EH位) --- T1运行控制位。

0: 关闭T1; 1: 启动T1运行。只由软件置位或清零。

TRO (TCON. 4, 8CH位) ----TO运行控制位。

0: 关闭T0; 1: 启动T0运行。只由软件置位或清零。

2.方式寄存器TMOD (不能进行位寻址,没有位地址)

TMOD

\mathbf{D}_7	\mathbf{D}_{6}	\mathbf{D}_{5}	D ₄	\mathbf{D}_3	D ₂	\mathbf{D}_1	\mathbf{D}_0
GATE	C/T	\mathbf{M}_{1}	$\mathbf{M_0}$	GATE	C/T	$\mathbf{M_1}$	\mathbf{M}_0

C/T----定时器/计数器方式选择。

0: 定时器; 1: 计数器。

GATE--外部门控位。

0:不用外部门,只将 TR0/1置1启动定时器;

1: 使用外部门,外部请求信号INT0/INT1(高电平)和TR0/TR1(置1)共同来启动定时器。

$M_1 M_0$	工作方式	功 能 说 明
0 0	方式0	13位计数器
0 1	方式1	16位计数器
1 0	方式2	自动再装入8位计数器
1 1	方式3	定时器0:分成两个8位计数器 定时器1:停止计数

图6-4 TMOD各位定义及具体的意义

三、 定时器工作方式0

 $M_1M_0=00$ 时,13位计数器,其逻辑结构如图所示。

在方式0下:

1) 计数工作方式时,计数值的范围是: $1\sim8192(2^{13})$

2) 定时工作方式时, 定时时间的计算公式为:

(213一计数初值)×晶振周期×12

或(213一计数初值)×机器周期

若晶振频率为6MHz, 1个机器周期为1/6 x 10⁻⁶ x12=2μ s

则最小定时时间为: [2¹³ -(2¹³ -1)]x2μs=2μs

最大定时时间为: $[2^{13}-0]$ x2 μ s=16384 μ s =16.384ms

5.1 ORG 0030H ;查询方式 P112

MAIN: MOV TMOD,#00H

MOV TH1,#0FCH

MOV TL1,#03H

MOV IE,#00H

SETB TR1

LOOP: JBC TF1,LOOP1 ...

AJMP LOOP

LOOP1: MOV TH1,#0FCH

MOV TL1,#03H

CPL P1.0

AJMP LOOP

END

四、方式1(T1,T0)

当M₁M₀=01时,16位计数器,其逻辑结构如图 所示。

在方式1下, 计数工作方式时, 计数值的范围是:

 $1\sim65536(2^{16})$

定时工作方式时,定时时间的计算公式为:

(216一计数初值)×晶振周期×12

或(216一计数初值)×机器周期

若晶振频率为6MHz ,1个机器周期为1/6 x 10⁻⁶ x12=2 μ s

则最小定时时间为: $[2^{16}-(2^{16}-1)]$ x2 μ s=2 μ s

最大定时时间为: $[2^{16}-0]$ x2 μ s=131072 μ s =131.072 μ s

五、 方式2 (T1, T0)

当M₁M₀=10,自动重加载8位计数器,其逻辑结构如图

方式0和方式1有个共同的特点,就是计数溢出后计数器全清0,因此,循环定时时就需要反复设定计数器初值,比较麻烦,而方式2具有自动重加载初值的功能,免去很多反复设置初值的工作。

在方式2下, 计数工作方式时, 计数值的范围是:

 $1\sim 256(2^8)$

定时工作方式时,定时时间的计算公式为:

(28一计数初值)×晶振周期×12

或(28一计数初值)×机器周期

若晶振频率为6MHz, 1个机器周期为1/6 x 10-6 x12=2μs

则最小定时时间为: $[2^8-(2^8-1)] \times 2\mu s=2\mu s$

最大定时时间为: $[2^8-0] \times 2\mu s = 512\mu s$

例5.2

ORG 0000H

P114

LJMP

MAIN

ORG

0030H

;查询方式

MAIN: MOV

MOV IE,#00H

MOV

TMOD,#02H

MOV

THO,#0CEH

MOV

TLO,#0CEH

SETB

TR₀

LOOP: JBC

TF0,LOOP1

AJMP LOOP

LOOP1: CPL

P1.0

AJMP

LOOP

中断方式 补充

ORG 0000H;

LJMP MAIN

ORG 000BH

CPL P1.0

RETI

ORG 0030H

MAIN: MOV TMOD,#02H

MOV TH0,#0CEH

MOV TLO,#0CEH

SETB EA

SETB ETO.

LOOP: SETB TRO

HERE: SJMP \$

例5.3

ORG 0000H

P115

LJMP I

MAIN

ORG

0030H

;查询方式

MAIN: MOV IE,#00H

MOV TMOD,#60H

MOV TH1,#9CH

MOV TL1,#9CH

SETB TR1

DEL:

JBC

TF1,LOOP...

AJMP DEL

LOOP: INC A

AJMP DEL

六、方式3(T0)

当 M_1M_0 =11时,只用于定时器0,T0被分成两个独立的8位计数器,其逻辑结构如图所示。

定时器T₀用作方式3时,T1仍可用于方式0~2结构 这时,仅用C/T来切换定时或计数。 查询方式

SETB TRO

SJMP

使用查询方式时:定时器溢出中断请求标志位TF0,TF1,由用户软

LOOP1:JBC

TF0,LOOP2 LOOP1 件清0。

中断方式

ORG 000BH

LJMP TOINT

SETB EA

SETB ETO

SETB PTO

SETB TRO

HERE: SJMP HERE

TOINT:

使用中断方式时:

定时器溢出中断请

求标志位TF0,TF1,

由硬件自动清0。

单片机专门固化的定时器/计数器的特点:

- 1、51子系统有2个计数器、52子系统有3个计数器
- 2、每个计数器都是一个加法计数器。
- 3、每个计数器都可定义为8bit、13bit、16bit等4种工作方式,以方便在不同的环境下使用。
- 4、每个计数器都可以置初值,每来一个脉冲+1。
- 5、每个计数器都可以选择计数源,内部或外部。
- 6、当选择内部振荡源,由于已知频率,所以可以当定时器,计数频率固定为振荡频率的12分频。
- 7、当选择外部脉冲,由于频率未知,可用内部振荡频率去测量,最大计数脉冲为振荡频率的24分频。

七 MCS-51单片机外部中断源扩展

1、OC门线或实现

2、 通过定时器/计数器实现:

以TO 实现一个外部中断扩展。

则初始化程序为:

MOV TMOD, #06H ; 00000110

MOV THO, #0FFH ;来一个脉冲就溢出

MOV TLO, #OFFH

SETB EA ; 开全局中断

SETB ETO ; 开TO中断

SETB TRO ; 准备计数

将中断子程序放在T0中断入口处(000BH)。

八、定时器/计数器与中断综合应用举例

作业:

编写一个程序,只用定时器0控制,同时产生周期为 2ms和100ms的方波信号,分别由P1.0和P1.1引脚输出, 采用中断方式。系统时钟为12MHz。

作业讲评:

利用定时器0控制产生周期为2ms和100ms的方波信号, 分别由P1.0和P1.1引脚输出,采用中断方式。系统时 钟为12MHz。

分析:方波为2ms,定时时间为1ms。

机器周期为1μs,采用方式0,则计数初值为

X=2¹³-1000=7192=11100000 11000B

TH0=E0H TL0=18H

方波为100ms,定时时间为50ms,可采用50 次1ms定时

作业讲评

ORG 0000H

LJMP BEGIN

ORG 000BH

LJMP TOINT

ORG 0030H

BEGIN: MOV TMOD, #00H

MOV TL0, #18H

MOV THO, #0E0H

MOV R2, #50

SETB EA

SETB ETO

SETB TRO

HERE: SJMP HERE

中断方式

TOINT: MOV TL0, #18H

MOV THO, #0E0H

CPL P1.0

DJNZ R2, RETURN

CPL P1.1

MOV R2, #50

RETURN: RETI

作业讲评

ORG 0000H

LJMP BEGIN

ORG 0030H

BEGIN: MOV TMOD, #00H

MOV TL0, #18H

MOV THO, #0E0H

MOV R2, #50

SETB TRO

LOOP1: JBC TF0, LOOP2

SJMP LOOP1

查询方式

LOOP2: MOV TL0, #18H

MOV THO, #0E0H

CPL P1.0

DJNZ R2, RETURN

CPL P1.1

MOV R2, #50

RETURN: LJMP LOOP1