Erick Butler POLETTO Ricardo Alexandre FIORELLI

Data Center Energy Efficiency: Analysis and Test of Energy Consumption Benchmark Tools

 $\label{eq:milder} \begin{array}{l} \mbox{Milan} - \mbox{IT} \\ \mbox{Academic Year 2007-2009} \end{array}$

Erick Butler POLETTO Ricardo Alexandre FIORELLI

Efficienza Energetica dei Data Center: Analisi e Verifica dei Tool di Benchmark dei Consumi

Tesi di Laurea

Orientator: Prof.ssa Chiara FRANCALANCI

Laurea Specialistica in Ingegneria Informatica Dipartimento di Elettronica ed Informazione (DEI) Politecnico di Milano

Milan-IT

Anno Accademico 2007-2009

Acknowledgements

"It's the only home we know. Yet everyday, we take the earth for granted.

Everytime we leave the lights on, we are doing the earth harm.

When we forget to turn off our computers, energy is also wasted.

But together we can help make the world a greener place, one simple act at a time.

Because when it comes to the environment, small changes can make a world of difference.", The "Power To Change" manifest

Questions and Doubts

In order not to have any text not related to the thesis in the middle of the text and maybe, in the final version nobody sees it, I created this file, like that, we can put some information here and delete it in the last version. Of course, these are not the only issues related to the thesis, but it is better to have a centralized way to do that.

The questions are:

Section 3.4.2 Do we need to insert all tables here, in appendix, or even, do we need to insert the tables? Or just the database schema?

Glossary of Abrevitations

X	X			
CPU	Central Processing Unit			
DDR	Double-Data Rate			
HVAC				
HDD	Hard-disk Drive			
ICT	Information and Communication Technology			
LTO	Linear Tape-Open			
MFD	Multi Function Devices			
MPN	Manufacturer Part Number			
OS	Operational System			
PC	Personal Computer			
PDU				
PSU	Power Supply Unit			
RAID				
ROI	Return on Investment			
ROM	Read-Only Memory			
SaaS	Software as a Service			
SDRAM	Synchronous Dynamic Random Access Memory			
SAN	Storage-Area Networks			
TOC	Total Cost of Ownership			
VM	Virtual Machine			
X	x			

Abstract

Contents

List of Figures

List of Tables

1	Intr	oducti	on	p. 13
	1.1	Motiva	ation	p. 13
	1.2	Termin	nology Clarification	p. 13
	1.3	Definit	tion of the problem	p. 13
	1.4	Solutio	on Strategy	p. 13
	1.5	Struct	ure	p. 13
2	Stat	e of th	ne Art	p. 14
	2.1	Green	ICT or Green Computing	p. 14
	2.2	Comp	uter Energy Management Categories	p. 15
		2.2.1	Machine Configuration	p. 15
		2.2.2	Policies / Tools / Labels	p. 17
		2.2.3	Thin Client Architectures	p. 19
		2.2.4	Servers and Virtualization	p. 23
		2.2.5	Data Storage	p. 27
		2.2.6	Power Architectures	p. 30
		2.2.7	Data Center Infrastructure	p. 31
3	Met	hodolo	m pgy	p. 35

	3.1	Overview		p. 35
	3.2	Research Des	sign	p. 36
	3.3	Energy Mana	agement and Benchmarking Tools	p. 37
		3.3.1 SiSoft	ware SANDRA	p. 38
		3.3.2 Energ	y Measurement Instrument	p. 39
		3.3.3 WebS	PHINX - A Personal, Customized Web Crawler	p. 39
		3.3.4 CPU-	Z	p. 40
	3.4	Data Process	sing and Analysis	p. 40
		3.4.1 Measu	ires	p. 40
		3.4.2 Comp	onents Database	p. 41
4	Ana	lysis and Re	esults	p. 43
	4.1	Analysis		p. 43
		4.1.1 Overv	view	p. 43
	4.2	Results		p. 43
		4.2.1 Bench	nmark Results	p. 43
\mathbf{C}_{0}	onclu	sions		p. 44
	Pers	pectives and I	Future Developments	p. 44
\mathbf{R}	efere	ices		p. 45
$\mathbf{A}_{]}$	ppen	dix A – List	of SiSoftware Sandra Modules	p. 46
$\mathbf{A}_{]}$	ppen	dix B - Con	nparison Tape Drives	p. 49
\mathbf{A}	ppen	dix C - List	of Other Energy Management Tools	p. 51
	C.1	Power To Ch	ange	p. 51
	C.2	PlateSpin - F	Recon	p. 51
	C.3	APC Virtual	ization Energy Cost Calculation	p. 51

Appendix D - Database of Components				
D.1	SANDRA Benchmark Table Schema	p. 52		
D.2	Database Schema	p. 52		
Appen	dix E - Measures	p. 54		
	dix E - Measures Measurement Tables	p. 54 p. 54		
E.1		p. 54		

$List\ of\ Figures$

1	Power Consumption for Hard-drives	p. 17
2	Normalized Excel Subtotals Task Response Times	p. 20
3	Normalized PDF Subtotals Task Response Times	p. 21
4	Examples of Blade Servers	p. 23
5	Examples of Rack Servers	p. 24
6	Installed Base of Virtualized and Non-Virtualized Servers	p. 27
7	Illustration of Virtualization Applied to a Physical Server	p. 27
8	Conventional AC architecture efficiency	p. 30
9	Rack-level DC architecture efficiency	p. 30
10	Facility-level DC architecture efficiency	p. 31
11	Power Consumption per Number of Servers in the Rack	p. 32
12	Footprint Reduction for a 35 kW Heat Load	p. 32
13	Economic Cross-over of Annualized Charges Air-cooled to Water-cooled	
	for 2000 Hours of Operations (in US \$)	p. 33
14	The Experimental Design Process	p. 37
15	Energy Measurement Instrument	p. 39
16	Database Schema	p. 53

List of Tables

1	Power Consumption: RAM	p. 16
2	Energy used by Monitors	p. 18
3	Energy used by a standard computer	p. 18
4	Energy Recommendation to an Energy-Efficient Printer	p. 19
5	Performance Results for Excel Subtotals Calculation	p. 21
6	Performance Results for PDF Compression Subtotals Calculation	p. 21
7	PC and thin client power consumption	p. 22
8	Power consumption for several servers, excluding cooling and redundancy	p. 24
9	Performance and Power Dissipation for Several Processors by the Specjbb200 Java Benchmark)5 p. 28
10	Tape Drive Power Costs	p. 29
11	Disk Array Power Costs	p. 29
12	Life Cycle Costs of Water-cooled and Air-cooled Solutions	p. 34
13	SANDRA Table Analysis	p. 40
14	Energy Measurement Device Table Analysis	p. 41
15	Example of Table Generated by WebSPHINX	p. 41
16	Comparison Between SDLT and DLT Tape Drives Capacities and Trans-	
	fer Rates	p. 49
17	Access times for several tape drives	p. 49
18	Comparison Between LTO Tape Drives Capacities and Transfer Rates .	p. 50
19	RefDNetAA: .NET Arithmetic Benchmark on several CPUs	p. 52

1 Introduction

Purpose of the study.

- 1.1 Motivation
- 1.2 Terminology Clarification
- 1.3 Definition of the problem
- 1.4 Solution Strategy

1.5 Structure

This document is structured as follows:

- Chapter 1 is the introduction;
- Chapter 2 is the state of the art, giving background information for the understan
- Chapter 3
- Chapter 4

•

2 State of the Art

2.1 Green ICT or Green Computing

Green ICT, which is a new term originated from "Green Computing", is the exploitation of a combination of techniques and approaches in ICT towards the end of achieving a more energy efficient use of computer related resources. In other words, it is the research and development of techniques and software that monitor the energy spent by servers, computers, printers and all information and communication equipment to the end of making a responsible use of these resources in terms of energy consumption. In order to achieve this objective, it is imperative to analyse the information about the ICT components among workstations, servers, networks, cooling and many others. The analysis of the information provided by these measures is made through a set of tools, which will be explained in the chapter 3.

The steps that have to be taken in order to apply a green strategy are first to analyse where in the data center the more energy is being wasted ("Assessment"), and then to act with correction and prevention interventions ("Action Plan"). For instance: when buying a new piece of equipment, it should be determined how much energy each of the available options spend and opt for those which consume less energy. Moreover, energy-efficient architectures such as thin clients, virtualization and power management policies should be considered in higher decisional levels. The direct benefits from green ICT strategies range from the direct reduction of electricity bills and costs related to cooling to the reduction of the space required by a datacenter.

The ICT energy consumption has become a critical issue for IT organizations nowadays, where it can provide substantial cost reductions in datacenters and compliance with environmental policies. In the United States alone, data centers consumed \$4.5 billion worth of electricity in 2006. Industry analyst Gartner (KUMAR, February 2007) estimates that over the next 5 years, most enterprises will spend as much energy as they spend on hardware infrastructure, power and air conditioning. Furthermore, It is also important

to consider that there are some indirect objectives concerning green computing, such as reduction of carbon footprint and disposal of hazard elements to the environment. In the next section there is the explanation of all the approaches and categories for applying a green solution.

2.2 Computer Energy Management Categories

In terms of hardware and equipment, the main measures to be taken towards a Green ICT environment can be grouped in the following categories:

- Workstation Configuration;
- Policies / Tools / Labels;
- Thin client architectures:
- Servers and Virtualization;
- Data Storage;
- Power Architectures:
- Data Center Infrastructure.

For each of those categories there are several types of information that are relevant to the evaluation of the current situation of power consumption. For each category there will be a corresponding description along with a number of possible interventions, either purely conceptual or available in the market. In some cases a numerical analysis will also be provided. This information will allow the creation of a methodology to identify critical consumption issues where an investment in green ICT would bring the greater savings.

2.2.1 Machine Configuration

This category represents the components used in a certain machine configuration. The component's performance and power consumption can be obtained from several sources, such as the manufacturer specifications, benchmarks and also direct measurements in the case of power consumption. The following are the dimensions that influence the final power consumption of a machine.

Single-core / Multi-core Processors Processors in general affect the overall power consumption of the computer by means of the workload that is required by it. For example, if the computer is in idle (without any processes running) the energy consumed is less than if the computer stays in full workload, but the idle state does not mean anything to the efficiency, because it is needed a high workload (about 70%) to have the best workload/power consumption ratio.

RAM Memory There are several types and dimensions of memories that should be analyzed, for instance the difference in operation in 2.5V in DDR SDRAM, when compared 3.3V in SDRAM significantly reduce the power consumption. When compating DDR and DDR2, The Table 1 compares the difference in power consumption of DDR and DDR2 under various circumstances and it shows that the power consumed by RAM, even on maximum workload (+4.5W), does not have much effect on the overall computer consumption (220W).

RAM Type	Size	Load	+12V1	+5V	+3.3V	Rise from Baseline
PC3200 DDR	512 MB	Idle	0.5A	0.6A	3.0A	n/a
		Memtest86	No Change	No Change	+0.7A	+2.3W
	1 GB	Idle	No Change	No Change	+0.6A	+2.0W
		Memtest86	No Change	No Change	+1.0A	+3.3W
533 MHz DDR2	512 MB	Idle	0.5A	3.6A	0.5A	n/a
		Memtest86	No Change	+0.4A	No Change	+2.0W
	1 GB	Idle	No Change	No Change	No Change	No Change
		Memtest86	No Change	+0.9A	No Change	+4.5W

Table 1: Power Consumption: RAM

Hard Drives and Mass Memory Power consumption in this case is affected mainly by design of the hard drive's spindle motor and the number and size of the spindle platters and, also, other components such as the actuator and controller board. Also, solid-state and flash drives reduce significantly the power consumed by the component, Figure 1 shows this difference.

Chassis Concerning power supply, fans or other PC components not belonging to the main parts, it is necessary to require quality other than price. Heating and cooling are really where the power consumption goes. Most computers only make up a fairly small percentage of your electrical bill. One should never underestimate the efficiency of the power supply, because most low quality ones are only about 45-55% efficient, whereas it is possible to achieve more than 80%.

Figure 1: Power Consumption for Hard-drives

Monitor Type As shown by Table 2¹, flat panel liquid crystal display (LCD) monitors power consumption equals to half the power of conventional CRT monitors. LCD monitors also dissipate less heat, which helps to reduce air conditioning costs. Another interesting point is that either LCD or CRT monitors consume the same amount of energy with or without screensavers. As LCD monitors do not consume much energy when turned off, that would be the best solution for idle computers.

2.2.2 Policies / Tools / Labels

The amount of saved energy depends also on policies that regard technology acquisition and IT management, which may be enforced by a variety of specialized tools. Exam-

http://michaelbluejay.com/electricity/computers.html

Monitors	
Typical 17" CRT	80 watts
Typical 17" LCD	35 watts
Apple MS 17" CRT ^a	63 watts
Apple MS 17" CRT^b	54 watts
Screen saver ^{c}	same as above
Sleeping monitor ^d	0-15 watts
Monitor turned off at switch	0-10 watts

^a mostly white (blank IE window)

Table 2: Energy used by Monitors

ples of policies that regard equipment acquisition are: the acquisition of new computers or components labeled as green by the manufacturer, purchase of computers with multi-core processors and even to discourage the purchase of specific kinds of hardware such as dual or large monitors and graphic cards. Another kind of policy relates to the management of the machines. One example of the latter is to turn off workstations or servers if they are going to be unused for a long time. This kind of measure is particularly efficient as a computer in idle mode uses 20 to 50 times the power of a computer in standby mode².

Computers				
Desktop Computer	60-250 watts			
On screen Saver ^a	60-250 watts			
Sleep / Standby	1-6 watts			
Laptop	15-45 watts			

^a no difference

Table 3: Energy used by a standard computer

The tools that automate these methods have as their main feature the possibility to let computers in a network in standby mode or even to turn them off after a long period of no utilization. In addition, the shared usage of networked pieces of hardware can be an effective way to achieve energy savings. Networked systems allow several nearby users to share a single printer, which generally generates savings in both equipment cost and energy if compared with each computer having a dedicated printer. Above that, choosing multifunction devices (MFD) that encapsulates in one machine the functionality of many others. In addition to saving space and materials, these multifunctionals save energy if compared to several different machines working in parallel. The Table 4³ describes the

^b mostly black (black Windows desktop with just a few icons)

^c any image on screen ^d dark screen

²http://www.cosn.org/Initiatives/GreenComputing/EnergyUse/tabid/4515/Default.aspx

³http://www1.eere.energy.gov/femp/procurement/eep_printer.html

power consumption in standby mode that an energy-efficient networked printer should have in relation to the printer type and to the number of pages it prints per minute.

Efficiency Recommendation						
Printer Speed	Recommended "Slee	ep " Mode^a				
	Laser $B/W + All Ink jet^b$	Laser Color^c				
≥10 pages/min	10 watts or less	35 watts or less				
11-20 pages/min	20 watts or less	45 watts or less				
21-30 pages/min	30 watts or less	70 watts or less				
31-44 pages/min	40 watts or less	70 watts or less				
>44 pages/min	75 watts or less	70 watts or less				

^a "Sleep" mode is a low-power standby condition, it restores automatically with a print request.

Table 4: Energy Recommendation to an Energy-Efficient Printer

One last kind of policy is to favor the acquisition of eco-labeled products. An eco-label is given to products that comply with some energy efficiency specifications. The most famous of these labels is the ENERGY STAR[®], which is an energy efficiency program sponsored by the U.S. Environmental Protection Agency. For example, An ENERGY STAR[®] qualified computer is possible to use up to 70% less electricity than computers without enabled power management features.

2.2.3 Thin Client Architectures

According to Wikipedia, in 2009, "a thin client is a client computer or client software in client-server architecture networks which depends primarily on the central server for processing activities, and mainly focuses on conveying input and output between the user and the remote server". This is very well connected to both ideas of cloud computing and Green ICT and it is possible to subdivide in three categories for comparison against standard the PC architecture: Performance, Power Consumption and Hardware Savings and they are going to be exploited in the following subsections.

PC vs. Thin Client: Performance

In order to analyze and give a comparison base of the performance between standard PCs and two types of thin clients, a set of tests were executed. The variable that was the number of active clients on a network, each running the same typical office applications tasks. The following client platforms were considered in this study:

^b Includes both black-ink and color ink jets, and printer/fax combinations.

^c Also includes LED and thermal transfer color printers.

- PC: OptiPlex 210L PCs, basic managed PC desktops running Windows XP Professional;
- Sun thin client: Sun Ray 2 running Sun Ray proprietary software;
- Wyse thin client: Wyse Winterm 5150SE, Linux-based thin clients running Wyse Linux V6.

Each network used a standard file server, an HP ProLiant DL360 3.4MHz with and Intel Xeon processor and Microsoft Server 2003 Enterprise Edition. For test reasons, all the files that were manipulated by the PC were stored at the server. The tests are listed below:

- Calculating subtotal in Microsoft Office Excel 2003 (Figure 2 and Table 5)
- Compressing a PDF within Adobe Acrobat 7.0 Standard (Figure 3 and Table 6)

Figure 2: Normalized Excel Subtotals Task Response Times

Performance Results				Comp	arative	e Rating
PC solution	Thin-client solutions		Number of	PC solution	Thin-	-client solutions
Dell	Sun	Wyse	concurrent	Dell	Sun	Wyse
OptiPlex	Ray	Winterm	active	OptiPlex	Ray	Winterm
210L	2	5150SE	clients	210L	2	5150SE
12.9	13.2	13.1	1	1.00	0.90	0.98
12.8	30.2	29.7	2	1.01	0.43	0.43
12.7	45.5	41.9	3	1.02	0.28	0.31
12.9	58.3	57.3	4	1.00	0.22	0.23
12.8	68.1	67.9	5	1.01	0.19	0.19

Table 5: Performance Results for Excel Subtotals Calculation

Figure 3: Normalized PDF Subtotals Task Response Times

Perfor	mance	Results		Comp	arative	e Rating
PC solution	Thin-client solutions		Number of	PC solution	Thin-	-client solutions
Dell	Sun	Wyse	concurrent	Dell	Sun	Wyse
OptiPlex	Ray	Winterm	active	OptiPlex	Ray	Winterm
210L	2	5150SE	clients	210L	2	5150SE
16.1	16.0	15.6	1	1.00	1.01	1.03
16.4	23.8	24	2	0.98	0.68	0.67
16.5	33.0	33.1	3	0.98	0.49	0.49
16.6	43.7	44.3	4	0.97	0.37	0.36
16.7	54.0	55.1	5	0.96	0.30	0.29

Table 6: Performance Results for PDF Compression Subtotals Calculation

PC vs. Thin Client: Power Consumption

Supposing 30 thin users share a 400W server, the total power consumption will be 1300W - a yearly cost of €640.00. 30 PCs would consume 10000W instead - a yearly

	Thin Client	PC
Weight	2.2 - 7.7 lbs	22 - 33 lbs
Volume	$1.5 - 3 \; \mathrm{dm^3}$	$30 - 35 \text{ dm}^3$
Packing material	2.2 - 4.4 lbs	3 - 5 kg
Power consumption(including monitor)	20 - 50 watt	300 - 400 watt
Heat rejection	5 - 35 watt	85 - 115 watt
Noise level	0 dbA	50 - 60 dbA

Table 7: PC and thin client power consumption

Hardware Savings

Savings on client hardware The economy brought by the substitution of PCs with thin clients was estimated around US\$ 208 per PC per year. The estimative considered the average prices of a PC, an adequate thin client and the PC upgrade costs every 3 years. If energy consumption is considered, the savings will be even greater.

The following considerations were taken:

- Thin client cost: US\$250.00 x PC cost: US\$750.00;
- PC needs to be upgraded every 3 years and thin clients need to be replaced every 6 years.

Therefore, in a 6-year period US\$1500.00 will be spent on a PC against US\$250.00 that will be spent on a thin client.

Extra server hardware costs Considering that:

- On average 30 users will need a dual processor server with 4 GB of RAM and SCSI hard disks;
- A brand new server should cost around US\$4,500.00 and will depreciate on average in 3 years.

For 60 users, the thin client solution should out-price the PC one by US\$11,300.00 per year, excluding the administration costs of both solutions.

2.2.4 Servers and Virtualization

Rack vs. Blade

According to Goldworm(GOLDWORM, 2007), Blade servers are a package of "ultrahigh density components including servers, storage, and communications interfaces in a pre-wired chassis with shared components such as power, cooling, and networking. In contrast to the conventional horizontal positioning within a rack (rack mounted servers), blades servers are typically (though not always) installed vertically in a blade chassis, like books in a bookshelf". This disposition of the blade servers along with their reduced dimension provide a high server density and thus of performance. For example, 60 blade servers such as the one depicted in Figure 4 can fit in the same physical space as 42 rack-mounted servers. A blade enclosure, which can hold from 8 to 24 (REHN, 2008) blade servers, provides common services such as power supply, cooling and networking thus eliminating redundancies in each individual blade server. A standard rack can accommodate more than 250 blade servers against approximately 42 standard servers. In

Figure 4: Examples of Blade Servers

the Table 8, a comparison is made between IBM HS21 blades and x3550 rack servers. The blades and rack servers have comparable performance.

• 2.0 GHz intel quad core;

Figure 5: Examples of Rack Servers

- 8 GB DDR2 memory;
- Both in standard configuration, with no HDDs.

IBM server model	Base Power	kWh consumed	Total cost
	Consumption	over 5 years	(\$0.03/kWh)
			over 5 years
BC-H Chassis, no blades	0.510 kWh	22,350	\$670.50
BC-H HS21 blade	0.318 kWh	13,936	\$418.08
x3550 server	0.373 kWh	16,346	\$490.39
x3650 server	0.455 kWh	19,940	\$598.20
BC-H chassis with 14	4.962 kWh	217,455	\$6,523.65
HS21 blades			
14 x3550 servers	5.222 kWh	228,849	\$6,865.46
14 x3650 servers	6.370 kWh	279,259	\$8,374.80

Table 8: Power consumption for several servers, excluding cooling and redundancy

- Space saving and efficiency packing more computer power in a significantly smaller area;
- Consolidation of servers to improve and centralize management as well as utilization;
- Return on investment (ROI) and improved total cost of ownership (TOC) through increased hardware utilization and reduced operating expenses;
- More energy efficient, due to existence of centralized power supply, cooling and networking.

According to the figures, the choice of using a blade server provides roughly 5% power saving over a similar rack-mount configuration. The main benefit brought by the use of blade servers, however, is the processing density, as a rack filled with blade servers may carry up to 50% more servers than one with rackable servers. Other benefits are that blade servers are easier to service and reduce the number of power cables needed from as much as 80% (HENDERSON, 2007).

In conclusion, blade servers do not provide much in terms of power saving but it greatly reduces the amount of space used in datacenters. However, the high power density might prove to be a problem to server farms in terms of overheating. Solutions to this problem are described in the section of Data Center Infrastructure.

Virtualization

The overall goal of virtualization is to create a logical abstraction of physical assets. It allows multiple "virtual" servers to run on one physical server, thereby consolidating many physical servers into one. Wikipedia, in 2009, defines virtualization as the following: "Virtualization is the process of presenting a logical grouping or subset of computing resources so that they can be accessed in ways that give benefits over the original configuration. This new virtual view of the resources is not restricted by the implementation, geographic location or the physical configuration of underlying resources." Virtualization can improve efficiency and availability of resources and applications in the organization and according to Vmware, the choice of virtualized servers over the standard nonvirtualized configuration makes possible to save 50-70% overall IT costs. Apart from the reduction of costs, virtualization may free up IT resources, provide better infrastructure optimization and utilization, increase availability and improve desktop management.

Besides that, virtualization has made positive improvements to the environment issue. Gartner (STAMFORD, October 2007) estimates that 1.2 million workloads run in virtual machines, which represents an annual aggregate power savings of about 8.5 billion kWh-more electricity than is consumed annually in all of New England for heating, ventilation and cooling. While this is a good start, there are plenty of opportunities for saving even more energy and money. Analyst firm IDC (IDC, February 2007) states that the un-utilized server capacity equates to approximately:

- in term of equipment and energy costs: US\$140 billion annually
- in terms of hardware costs: 3 years supply of hardware

• in terms of computing power: more than 20 million servers

At the annual production rate of 4 tons of carbon dioxide (CO₂) per server, these unutilized servers produce a total of more than 80 million tons of CO₂ per year. This is more than is emitted from the country of Thailand and more than half of all countries in South America. From the organizational point of view these data suggests that virtualization is a good improvement to the data center, saving not only space provided to the servers but also saving energy by reducing the idle time of the servers and augmenting their workload. It is also important to state that, by providing a virtualized solution, the number and variety of available applications can be increased.

There are two kinds of virtualization that may be used in a data center: storage and computing virtualization. Storage-area networks (SAN) may be implemented to present several different physical storage racks as a single virtual storage pool (ANTONOPOULOS, September 2005). On the other hand, computing virtualization can be implemented in two ways. The first case is when a single physical server can offer multiple virtual servers, each with its own OS. Another option is to consolidate multiple physical servers into a cluster that acts as a single server. There are cross-platform server virtualization softwares available which allows data center managers to cluster and partition servers.

According to the Figure 6 there is a trend indicating an increasing number of virtualized units over time along a forecast that by the end of 2009 the number of virtualized servers will be greater than non-virtualized ones. Logical units represent virtualized storage while physical units represent the use of non-virtualized storage. As shown in the Figure 7, virtualization tools such as VMware allow one physical server to act as a number of logical servers. VMware also provides a benchmark tool called VMmark⁴ along with a set of test results in (MAKHIJA, September 2006) for a configuration that includes a mail server, a java server, a standby server, a web server, a database server and a file server.

Coming along with the virtualization trend are high-throughput and eco-responsible processors such as the Sun's UltraSPARC T1 processor (HETHERINGTON, December 2005), which support up to 128 virtualized systems in a single server and gives one of the best performance per watt of the available processors. As shown in the Table 9⁵, with relation to the UltraSPARC CPU the only comparable performance was met by the POWER5+ processor, which in average dissipates 4.5 times as much as the earlier.

⁴http://www.vmware.com/products/vmmark/

⁵http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2657&p=4

Virtualized Versus Nonvirtualized Servers Installed Base Forecast, 2006-2011

Source: IDC, 2007

Figure 6: Installed Base of Virtualized and Non-Virtualized Servers

Figure 7: Illustration of Virtualization Applied to a Physical Server

2.2.5 Data Storage

There are currently three main technologies to store data: hard disks, tape drives and flash-based storage. This session will cover the first two, as they are the predominant

		Power		Number		
		Dissipation		of		
		$ ext{CPUs}$	Number	Active	\mathbf{Score}	Score
System	\mathbf{CPU}	(Estimated)	of cores	Threads	(bops)	(%)
Sun Fire	1x 1.2GHz	72-79 W	8	32	63.378	160%
T2000	UltraSPARC T1					
Sun Fire	2x 2.4GHz	150-180 W	4	4	45.124	114%
X4200	DC Opteron					
IBM	2x 1.9GHz	320-360 W	4	8	61.789	156%
p5 550	POWER5+					
IBM 346	2x 2.8GHz	270-300 W	4	8	39.585	100%
xSeries	DC Xeon					

Table 9: Performance and Power Dissipation for Several Processors by the Specjbb2005 Java Benchmark

technologies in datacenters. At the end of the session a comparison will be made between hard and tape drives.

Tape Drives

A tape drive is a data storage device that reads and writes data stored on a magnetic tape. Its main use is as archival storage of data stored in hard drives. It is typically used for archival storage of data stored on hard drives. Tape media generally has a favorable unit cost, long archival stability and low energy consumption per MB of data stored to compensate for their slow seek times. Despite the slow seek time, tape drives can stream data to tape as quickly as hard drives. For example, modern LTO drives can reach continuous data transfer rates of up to 80MB/s, which is as fast as most 10,000rpm hard disks, according to Wikipedia, 2008. Tape drives can range in capacity from a few megabytes to hundreds of gigabytes. Data can be compressed as to maximize the capacity usage. In this case the compression rate is of usually 2:1. A set of tables related to tape drives can be found in Appendix B

Disk Arrays

Disk array refers to a linked group of one or more physical independent hard disks constituting a larger, high-performance system. They are usually implemented using RAID technology, which can provide component redundancy and high throughputs.

Comparison between Tape Drives and Disk Arrays

Supposing a 995 TB database consisting of:

- Storage base (frequently used data)
- Backup cache (13 weeks)
- Backup archive (1 year backup)

A solution consisting exclusively of disk arrays would require four 32-drawer disk array systems of 245 TB each. In order to ensure reliability and recoverability, a RAID5 format with two RAID5 arrays assigned to each drawer has been assumed. The total equipment cost is estimated on US\$10.57M (REINE, October 2008) and according to the table 10 the disk array solution consumes 98KWh per TB per year. With a native capacity of 800GB

		Standby	Per	Number	Total	Power		Annual
	Processor	Power	SATA	of SATA	Array	Per	Annual	Cost
Power	Chassis	Supply	Drawer	Drawers	Power	Day	Power	US\$0.12/kWh
Typical	430 W/h	34 W/h	$325 \mathrm{W/h}$	32	11 kW/h	264 kWh	96,360 kWh	11,563
Maximum	800 W/h	300 W/h	$425~\mathrm{W/h}$	32	15 kW/h	360 kWh	131,400 kWh	15,768

Table 10: Tape Drive Power Costs

and throughput of 120 MB/sec, an LTO 4 drive has a compressed capability to write at 240 MB/sec, or 864 GB/hour. Supposing the same database is to be entirely stored at this drive, the equipment cost would be of US\$233,878.00 with an annual energy cost of US\$599.00. The tape solution will consume 1150 kWh in 1 year or 1,16kWh per TB per year. In overall, for the 995 TB database the following conclusions can be drawn:

No of	No of	Library	Frame		Drive			
frames	drives	acquisition	acquisition	Cartridge	acquisition	Space	Energy	Total
acquired	acquired	cost	\mathbf{cost}	$\cos t$	cost	cost	\mathbf{cost}	\mathbf{cost}
1	2	76.000	30.000	82,278	45,600	68,850	599	303,327

Table 11: Disk Array Power Costs

- Disk arrays consume 84 times as much as tape drives, per TB stored
- The disk array solution costs 35 times as much as the tape drive solution

Although the cost difference between of both solutions may be high, performance should be also considered in the comparison. In that case, an adequate proportion between disk array and tape storage must be drawn according to the frequency of backup access.

2.2.6 Power Architectures

Conventional AC Architecture

Figure 8: Conventional AC architecture efficiency

In this configuration (Figure 8) the following transformations take place:

- PDU steps down the voltage from 480VAC to 208VAC;
- Power Supply Unit (PSU) converts 208VAC to 380VDC;
- Final component distribution at 12VDC.

The efficiency is measured for both conventional (baseline) and high efficiency (best-inclass) equipments. The difference in efficiency between the two equipment choices is of 20%.

Rack-Level DC Architecture

Figure 9: Rack-level DC architecture efficiency

On Figure 9, it is possible to see that, after the PDU, an 208VAC to 48VDC/380VDC conversion is made in the rack. PSU and PDU are considered to be best-in-class, with high efficiency.

Figure 10: Facility-level DC architecture efficiency

Facility-level DC Architecture

In this configuration (Figure 10), the DC-AC conversion in the UPS and the AC-DC conversion in the power supply are removed. It can be noted that the 480VAC-380VDC conversion in the UPS is more efficient than the 480VAC-48VDC conversion.

2.2.7 Data Center Infrastructure

Water Cooling

The reasonable limit of rack power and cooling capacity for a conventional forced-air (HVAC) cooled data center is 8 kW per rack. For power densities approaching 15 kW per rack, the layout of the computing rooms and cooling facilities must be determined using specialized software (such as HP Static Smart Cooling). For racks requiring more than 15 kW, the latest cooling techniques use water (Figure 11) (HP, April 2007).

As shown in the figure 12, the use of water cooling reduces in 50% the equipment footprint, allowing greater server density. A 35 kW heat load dispersed among 4 racks could be concentrated in one single rack.

With relation to maintenance costs, The annual cost for water cooling and air cooling (including charges, maintenance, equipment) do not differ by a large amount as seen in Table 12 and Figure 13. In this way, the main benefit brought by water cooling is the footprint reduction which can increase the server density in a data center.

Figure 11: Power Consumption per Number of Servers in the Rack

Figure 12: Footprint Reduction for a 35 kW Heat Load

Figure 13: Economic Cross-over of Annualized Charges Air-cooled to Water-cooled for 2000 Hours of Operations (in US \$)

LIFE CYCLE COSTING - TOTAL ANNUAL CHARGES METHOD - TI AE 140											
Generic Comparison 600 kWr @ 3000 hrs	Option A - V	Option A - Water Cooled With Cooling Tower				Option B - Packaged Air Cooled Plant					
ITEM	Design Years = n	Full Life Cost	Annual Charge Factor	Present Value (1)	Equiv. Annual Charge	Full Life Cost	Annual Charge Factor	Present Value (1)	Equiv. Annual Charge		
CAPITAL COSTS											
A - Provision of New Water Cooled Chiller	15	\$189,750	0.15		\$29,362		0.15				
B - Cost of Air Cooled Packaged Plant.	15	***************************************	0.15		*==,===	\$159,500	0.15		\$24,68		
Dosing Set c/w dual biocide and inhibitor pumps	15	\$2,750	0.15		\$426		0.15		,		
Water Meter Monitoring	15	\$250	0.15		\$39		0.15				
Chemical Spill control	15	\$50	0.15		\$8		0.15				
Cleaning Access to cooling Tower to facility RMP and OH&S requirements	15	\$10,000	0.15 0.15		\$1,547		0.15 0.15				
SUB TOTAL			0.1.0		\$31,382		5.1.0		\$24,681		
RUNNING COSTS		Cost/a				Cost/a					
Water Supply Cost for Options A	15	\$2,479	0.15	7.28	\$2,792		0.15	7.28			
Water Sewerage Discharge Cost for Options A.	15	\$150	0.15	7.28	\$169		0.15	7.28			
Annual maintenance Chemical Dosing and Cleaning for Option A	15	\$2,022	0.15	7.28	\$2,277		0.15	7.28			
Annual Registration Charge and RMP Review for Option A	15	\$500	0.15	7.28	\$563		0.15	7.28			
A - Estimated Power Cost - for Options A.	15	\$36,264	0.15	7.28	\$40,837		0.15	7.28			
B - Power Cost - Air Cooled Chiller.	15 15		0.15 0.15	7.28 7.28		\$45,664	0.15 0.15	7.28 7.28	\$51,423		
SUB TOTAL					\$46,638				\$51,423		
MAINTENANCE AND REPLACMENT COSTS		Cost.				Cost.					
Option A Compressor and Chiller Component Replacement.	7.5		0.22				0.22				
Option B Fan Motor Replacement	7.5		0.22			\$5,000	0.22		\$1,083		
A. Conoral Maintenance Costs for Ortion A	45	Cost/a	0.45	7.00	#4 000	Cost/a	0.45	7.00			
A - General Maintenance Costs for Option A.	15	\$1,500	0.15	7.28	\$1,689	droo.	0.15	7.28	AEC.		
B - General Maintenance Costs for Option B.	15 15		0.15 0.15	7.28 7.28		\$500	0.15 0.15	7.28 7.28	\$563		
	15		0.15	7.28			0.15	7.28			
SUB TOTAL					\$1,689				\$1,646		
SALVAGE VALUE											
A - Scrap Value of Cooling Tower System	15	-\$500	0.15	0.16	-\$12		0.15	0.16			
B - Scrap Value of Air Cooled Packaged Plant	15 15		0.15 0.15	0.16 0.16		-\$500	0.15 0.15	0.16 0.16	-\$1		
SUB TOTAL	15		0.15	0.16	-\$12		0.15	0.16	-\$1:		
TOTAL ANNUAL CHARGES					\$79,696				\$77,738		

ASSUMPTIONS NOTES

Escalation = e 2.0% (1) Present Value (Escalating Annuity) for Running Costs and Maintenance.

Discount Rate = r 13.0% Present Value (Single Sum) for Salvage Value and Replacement Costs.

Table 12: Life Cycle Costs of Water-cooled and Air-cooled Solutions

$\it 3 \quad Methodology$

This chapter will describe the steps taken to the end of constructing the components database and of validating the data contained in it. These can be shortly described as follows:

- **Phase 0: Project definition -** As this work is part of a project aimed to create a methodology to implement a Green ICT strategy, this first phase consisted of the definition of the logical components of this project and of how the current work would collaborate to it.
- Phase 1: Analysis of Benchmarking Softwares A number of existing softwares were analyzed and those that have proven to be more adequate were selected. A list of the analyzed softwares can be found in Appendix C.
- Phase 2: Catalog The tools were used to obtain information about computer components that were later used to create a component database.
- Phase 3: Database design and construction The database schema was designed and data began to be inserted into the relations.
- **Phase 4: Analysis -** The validity of the stored data was tested with the help of direct measurements.

3.1 Overview

The main and broader objective of the research that is being conducted is to develop a methodology to implement a green ICT strategy. Namely, the methodology would provide a set of tools to guide the hardware acquisition process in an organization either in terms of workstations or of datacenter equipment. The present work will contribute to this research by providing a component database with information related to hardware

components, which will be used as one of the inputs of the methodology. This work was conducted in order to determine how much energy a computer's components, for instance, CPU¹, Memory and Hard Drives spend and also how much they would affect the cost of acquisition of new computers as a whole. This is calculable with information such as component performance, power consumption and price. The analysis was carried out with the help of specialized softwares that will be described in the following sections and also with analytical measures made with an energy measurement device. In the end the benchmarking measures obtained from these softwares were compared with both the measures obtained from the device and with information provided by the component datasheets. With the benchmarking software, more than 1000 components were categorized in a database, whose schema can be found in Figure 16. Firstly, the Sisoft Sandra's database 3.3.1 was used to collect the components and separate them by categories, along with their benchmark related data. Secondly, WebSPHINX 3.3.3 was used to create a collection of components and their respective MPNs. In the end, an energy measurement device 3.3.2 was used for the comparison and validation of the results given by the other benchmarks and acquisition of new data. Finally, these data were all linked in a database for later comparison.

3.2 Research Design

The experimental method of research was used in this study. Figure 14 draws the steps of the method used. To define the experimental type of research, Bryman (BRYMAN, 1989) states that "the experimental design (...) allows the causal hypothesis that underpins the question to be examined", which means that this method is a systematic and scientific approach to research in which the researcher manipulates one or more variables, controlling and measuring any changes in other variables. The emphasis given is on the results and analysis of the benchmarks provided and theirs measures. It allows to verify the thesis in which this work is based on, by making use of empirical methods changing the benchmark used and the purpose of it.

The present study was defined to identify the power consumption of the computer components in order to have a better tool to analyze the results of the measurements. The quantitative method (direct measurements and benchmarking), other than the qualitative method, was employed so as to identify the more energy efficient with the reason of building the most green data center and workstations. Among all components, the ones

¹Central Processing Unit

Figure 14: The Experimental Design Process

included in the measurements are: Chipset, Memory, Data Storage, Processor and the chassis (fan, power supply, etc). The choice of analyzing each component separately and also the whole computer power consumption was made in order to have a better control of the energy consumed and the ability to compare the different combination of components and, besides that, to obtain a representative amount of data for later analysis.

In order to obtain relevant data, three analysis' methods were used: empirical, benchmarking and research. For the empirical method, it was used an energy measurement device (section 3.3.2) that connected the electrical plug to the computer, and the measure was taken down in a spreadsheet 14. While doing this, the benchmarking tool (section 3.3.1) was performed in the host computer in order to acquire measures in a set of different situations. The last method, the research, the WebSPHINX, a web crawler was used in order to obtain information about the price and the MPN and with the objective of having a linked database provided by this code. In a later stage, all the data acquired by the measurement approaches were separated by categories and components. The database generated are explained in the section 3.4.

3.3 Energy Management and Benchmarking Tools

In order to obtain relevant information about the data required for making the comparison between the components, some energy management and benchmarking tools were used. The softwares that used were selected over the other available ones for their superior evaluation on the following criteria:

Size of Database The database of components used by the software, in order to get a good result, should be considerably large;

Characteristics of Benchmarks The benchmarks provided by the software should provide information about the energy consumed for each component;

Number of Benchmarks The software should have a good variety of benchmarks;

Quality of Benchmarks Although the number of benchmarks should be sufficient in number, the quality, precision and relevancy were also important in the decision method;

Ease of Use In the sense that the software should provide an ambient of work that is intuitive and comfortable;

The acquisition of data was made analyzing the results of these benchmarks, making use of their database and system measurement capabilities.

3.3.1 SiSoftware SANDRA

SiSoftware Sandra² is an information and diagnostic utility. It provides most of the information one need to know about their hardware, software and other devices whether hardware or software. SANDRA was the main software utilized to benchmark the data in this thesis work. It contains a vast database of components associated with both benchmark results and manufacturer specifications.

The software goes beyond the point of other Windows Utilities, by giving the user, the possibility of benchmarking and comparing at both high and low level the computer devices. Moreover, it is a tool for monitoring the performance on systems and even benchmarking many parts of the computer, this includes, CPU, memory, hard disks, CD/DVD ROM, network, PSU, etc. For that reason, it is considered one of the most complete benchmarking tools available. Besides the benchmarking, Sandra also provides access to information about the Hardware, including the Motherboard, processor, disks, printers, etc; and Software, such as, key softwares (web browsers, e-mail program, etc.), OS information, processes, memory usage and more.

 $^{^2{\}rm The}$ System ANalyser, Diagnostic and Reporting Assistant

The detailed list of modules utilized by SiSoftware Sandra can be found in Appendix A.

Furthermore, the Sandra has a great functionality that is a catalog of pricing, which, in addition to the power consumption and other important characteristics, the best combination (which means the most green) of devices can be chosen to the server.

3.3.2 Energy Measurement Instrument

Figure 15: Energy Measurement Instrument

The device, which can be seen on Figure 15, was used for comparing and validating with the results of the benchmarks given by Sandra. After the result of the benchmark was obtained from the SiSoftware Sandra, this equipment that was connected to the computer read how much energy it was consumed and it was inserted in the database.

3.3.3 WebSPHINX - A Personal, Customized Web Crawler

 $WebSPHINX^3$ is a Java class library used for web crawling. It provides a way to browse and process web pages automatically.

This piece of software was used to establish the pricing, linking it with the MPN, and, afterwards, composing the database explained in 4.1.

 $^{^3}$ Website-Specific Processors for HTML Information Extraction

3.3.4 CPU-Z

CPU-Z detects information about the CPU, RAM Memory, motherboard, chip-set and more. That program was used to complete the database with missing information about the components.

3.4 Data Processing and Analysis

3.4.1 Measures

For each computer in which this method of data acquittance was performed the results were inserted in the tables 13 and 14. The Table 13 was obtained by running SANDRA benchmarks, the first column "Processor Benchmark", it was used the "Processor Arithmetic" benchmark and the energy spent by the processor is displayed in the results. Afterwards, the "Cache & Memory" benchmark and, also, the results inserted in the table.

Conversely, for the measurement device (table 14) relevant data were acquired by the following method: first of all, the computer in idle state (monitor on, with no user processes running) and secondly, with the same operating methods, however, with the monitor off, and finally, with the processor fully stressed, i.e. while running SANDRA Benchmarks. As a limitation we had while taking measures, as it was only possible to obtain data from notebooks, that is the reason why the monitor had to measured in an on and off state.

In order to have an example of the data acquired, only a few measures are displayed in the tables. The full version is evinced in Appendix E.

Computer	Processor	Cache & Memory
Model	Benchmark (W)	Benchmark (W)
HPdv3500el (13.3")	19.69	26.69
HPdv6580el (15.4")	32.01	40.06
Compaq-nx9420 (17.0")	26.93	36.16
Acer Aspire 4720z (15.0")	19.78	34.57
Acer Aspire 5930G (15.4")	25.13	32.13

 Table 13:
 SANDRA Table Analysis

Computer	Idle with	Idle with	Estimated Monitor	Processor
Model	Monitor On (W)	Monitor Off (W)	Power (W)	Fully Stressed (W)
HPdv3500el (13.3")	28.57	25.19	3.38	35.64
HPdv6580el (15.4")	62.18	57.14	5.04	85.27
Compaq-nx9420 (17.0")	78.89	74.65	4.24	79.64
Acer Aspire 4720z (15.0")	44.57	39.88	4.69	67.28
Acer Aspire 5930G (15.4")	44.48	39.56	4.92	62.83

Table 14: Energy Measurement Device Table Analysis

3.4.2 Components Database

The Sisoftware SANDRA has a database with the results of all benchmarks for a considerable number of components already given and that is what makes it proper for comparison. From this database, it was extracted and created a new one, which better represents the power consumption of each component related to each benchmark. The tables generated by this method is evinced in Appendix D.1.

The only issue related to the SANDRA database is the fact that for different benchmarks, it was used a different way to provide information about the same component. For example, a benchmark of cryptography for the processor "Intel Core 2 Duo T8400", the model of the processor could be referenced as "Intel Core Duo T2300 (DC, 1.66GHz, 2MB L2)" or even "Intel T2300", what makes it difficult to link them together. In order to do so, it was necessary a number of code that would be unique for every component.

In Sisoftware website there exists a list of components and related price where it is possible to compare them. This list has a web-based version and also can be accessed inside the software, which besides the price has all the information to be linked inside the software for each component that is being analyzed a the time to run the specific benchmark. A specific and useful information that exists in the website is the MPN, which, like the ISBN for books, are unique. Therefore, in order to link all the components together, it was possible to obtain this MPNs and assign them to the components and afterwards link them to the specific benchmark. An example of the table generated with WebSPHINX for processors are shown in Table 15.

Processors	MPN
AMD Phenom II X4 940 Quad Core Processor	HDZ940XCGIBOX
Intel Core 2 Duo E8400 Dual Core Processor	BX80570E8400
AMD Athlon 64 X2 Dual Core Processor	AD775ZWCGHBOX
AMD Phenom II X3 720 Triple Core Processor	HDZ720WFGIBOX
Intel Core 2 Q9550 Quad Core Processor	BX80569Q9550

Table 15: Example of Table Generated by WebSPHINX

The next step of the procedure is the generation of a relevant and consolidated database, which is shown in Figure 16, it contains the assembled data explained in the previous sections.

4 Analysis and Results

4.1 Analysis

4.1.1 Overview

explicar que a gente pegou as coisas e separou por tabelas, tentar na
o ser redundate com o que teve no ${\rm cap3}$

4.2 Results

4.2.1 Benchmark Results

Conclusions

Perspectives and Future Developments

Suggestions for future developments, there are

- Link this research with SaaS
- •
- •
- •
- •

References

ANTONOPOULOS, A. M. What can virtualization bring to the data center? *Network World*, September 2005.

BAILEY. What are the difference between servers? XENON, 2009.

BRYMAN, A. Research Methods and Organization Studies. [S.l.]: Routledge, 1989. ISBN 0415084040.

COOKE, D. Power Distribution within Six PCs. jun. 2009. http://www.silentpcreview.com/article265-page1.html.

GOLDWORM, B. Blade Servers and Virtualization. [S.l.]: Wiley-India, 2007. ISBN 8126512156, 9788126512157.

HENDERSON, T. Blade servers vs. rack servers. Network World, 2007.

HETHERINGTON, R. The UltraSPARC T1 Processor - Power Efficient Throughput Computing. [S.l.], December 2005.

HP. HP Modular Cooling System: water cooling technology for high-density server installations. [S.l.], April 2007.

IDC. Enterprise class virtualization 2.0 application mobility, recovery, and management. February 2007.

KUMAR, R. Eight critical forces shape enterprise data center strategies. *Gartner, Inc.*, February 2007.

MAKHIJA, V. VMmark: A scalable benchmark for virtualized systems. [S.l.], September 2006.

REHN, R. What else do you know about blade servers. Hospedagem Local, 2008.

REINE, D. Disk and Tape Square Off Again - Tape Remains King of the Hill with LTO-4. [S.l.], October 2008.

STAMFORD, C. Agility will become the primary measure of data centre excellence by 2012. *Gartner, Inc.*, October 2007.

$APPENDIX\ A$ - List of SiSoftware Sandra Modules

Here is the list of principal modules used in this research work.

- •System Summary
- •Mainboard/Chipset/System Monitors Info
- •CPU/BIOS Info
- •APM & ACPI (Advanced Power Management) Info
- •PCI(e), AGP, CardBus, PCMCIA bus and devices Info
- •Video Information (monitor, card, video bios, caps, etc.)
- •OpenGL Information
- •Keyboard Info
- •Windows Memory Info
- •Windows Info
- •Font (Raster, Vector, TrueType, OpenType) Information
- •Modem/ISDN TA Information
- •Network Information*
- •IP Network Information*
- •WinSock & Internet Security Information
- •Drives Information (Removable Hard Disks, CD-ROM/DVD, RamDrives, etc.)

- •Ports (Serial/Parallel) Info
- •Remote Access Service Connections (Dial-Up, Internet)*
- •OLE objects/servers Info*
- •Processes (Tasks) & Threads Info
- •Modules (DLL, DRV) Info
- •Services & Device Drivers (SYS) Info*
- •SCSI, SAS Information*
- •ATA, ATAPI, SATA, RAID Information
- •Data Sources Information*
- •CMOS/RTC Information*
- •Smart Card & SIM Card Information*

List of Benchmarks

- •Arithmetic Benchmark (including SSE2, SSSE3)
- •Multi-Media Benchmark
- •Multi-Core Efficiency Benchmark
- •Power Management Efficiency Benchmark
- •File System (Removable, Hard Disks, Network, RamDrives) Benchmark
- •Removable Storage/Flash Benchmark
- ullet CD-ROM/DVD Benchmark
- •Memory Bandwidth Benchmark
- •Cache & Memory Bandwidth Benchmark
- •Network/LAN Bandwidth Benchmark
- •Internet/ISP Connection Benchmark
- •Internet/ISP Peerage Benchmark

Applications and Usage

- •Hardware Interrupts Usage*
- •DMA Channel Usage*
- •I/O Ports Usage*
- •Memory Range Usage*
- •Plug & Play Enumerator*
- •Hardware registry settings
- •Environment settings
- •Registered File Types
- •Key Applications* (web-browser, e-mail, news, anti-virus, firewall, etc.)
- $\bullet \textbf{Installed Applications*} \\$
- •Installed Programs*
- •Start Menu Applications*
- •Installed Web Packages* (ActiveX, Java classes)
- •System Event Logs*

^{*} Commercial version only

$APPENDIX\ B$ - $Comparison\ Tape\ Drives$

SDLT &	Native Capacity &	Compressed Capacity &
DLT Tape Drives	Transfer Rate	Transfer Rate
DLT-S4	$800 \mathrm{GB}$ at $60 \mathrm{MB/s}$	1600 GB at 320 MB/s
SDLT 600	$300 \mathrm{GB}$ at $36 \mathrm{MB/s}$	600GB at $72MB/s$
SDLT 320	160GB at 16MB/s	320GB at 32MB/s
SDLT 220	110GB at 11MB/s	220GB at 22MB/s
DLT 8000	40GB at $6MB/s$	80GB at 12 MB/s
DLT V4	$160 \mathrm{GB} \ \mathrm{at} \ 10 \mathrm{MB/s}$	320GB at 20MB/s
DLT1	40GB at 3MB/s	80GB at 12 MB/s
DLT-VS160	$80 \mathrm{GB} \ \mathrm{at} \ 8 \mathrm{MB/s}$	160 GB at 16 MB/s
DLT-VS80	40GB at 3 MB/s	80GB at 6MB/s
DLT 7000	35GB at 5MB/s	70GB at 10 MB/s
DLT 4000	20GB at 1.5 MB/s	40GB at 3MB/s
DLT 2000XT	15GB at 1.25MB/s	30GB at 2.5MB/s

Table 16: Comparison Between SDLT and DLT Tape Drives Capacities and Transfer Rates

Product	Capacity, native	Average file access	Data transfer rate,	
	(uncompressed)	time (first file)	native (uncompressed)	
T-Series				
T9840A	20 GB	8 sec	10 MB/sec	
T9840B	20 GB	8 sec	19 MB/sec	
T9840C	40 GB	8 sec	30 MB/sec	
T9940A	60 GB	41 sec	10 MB/sec	
T9940B	200 GB	41 sec	30 MB/sec	
	LTO Ultrium			
LTO Gen 1	100 GB	86-96 sec	15-16 MB/sec	
LTO Gen 2	200 GB	64-75 sec	32-35 MB/sec	
LTO Gen 3	400 GB	$72 \mathrm{sec}$	80 MB/sec	
SDLT				
SDLT 320	160 GB	82 sec	16 MB/sec	
SDLT 600	300 GB	79 sec	36 MB/sec	

Table 17: Access times for several tape drives

		Compressed
SDLT &	Native Capacity &	Capacity &
DLT Tape Drives	Transfer Rate	Transfer Rate
LTO-4	800GB at 120MB/s	1.6TB at 240MB/s
	(864GB per hour)	
HP Ultrium 1760	800GB	1.6TB at 576GB/hr
HP Ultrium 1840	800GB at 120MB/s	1.6TB at 240MB/s
HP Ultrium 960	400GB at 80MB/s	$800 \mathrm{GB} \mathrm{\ at\ } 160 \mathrm{MB/s}$
HP Ultrium 460	200GB at 30 MB/s	$400 \mathrm{GB} \ \mathrm{at} \ 60 \mathrm{MB/s}$
HP Ultrium 230	100 GB at 15 MB/s	200 GB at 30 MB/s
IBM LTO-4	800GB at 120MB/s	1.6TB at 240MB/s
IBM LTO-3	400GB at 80MB/s	$800 \mathrm{GB}$ at $160 \mathrm{MB/s}$
IBM LTO-2	200 GB at 35 MB/s	$400 \mathrm{GB} \ \mathrm{at} \ 70 \mathrm{MB/s}$
IBM LTO-1	$100 \mathrm{GB} \ \mathrm{at} \ 15 \mathrm{MB/s}$	200 GB at 30 MB/s
Quantum LTO3	400 GB at 245 GB/hr	$800 \mathrm{GB}$ at $490 \mathrm{GB/hr}$
Quantum LTO3 HH	$400 \mathrm{GB}$ at $68 \mathrm{MB/s}$	$800 \mathrm{GB} \ \mathrm{at} \ 90 \mathrm{MB/s}$
Quantum LTO2	200GB at 123GB/hr	400 GB at $245 GB/hr$
Quantum LTO2HH	200GB at 94GB/hr	$400 \mathrm{GB}$ at $144 \mathrm{GB/hr}$
Tandberg Data LTO4 FH	800GB at 120MB/s	1.6TB at 240MB/s
Tandberg Data LTO3 FH	400GB at 80 MB/s	$800 \mathrm{GB} \ \mathrm{at} \ 160 \mathrm{MB/s}$
Tandberg Data LTO3 HH	$400 \mathrm{GB}$ at $60 \mathrm{MB/s}$	$800 \mathrm{GB} \ \mathrm{at} \ 120 \mathrm{MB/s}$
Tandberg Data LTO2 HH	200GB at 24 MB/s	400GB at 48 MB/s
Tandberg Data LTO1 HH	$100 \mathrm{GB} \ \mathrm{at} \ 16 \mathrm{MB/s}$	200GB at 32 MB/s
Certance LTO-1	100GB at 960MB/min	200GB at 1920MB/min

Table 18: Comparison Between LTO Tape Drives Capacities and Transfer Rates

$APPENDIX \ C-List \ of \ Other \ Energy \\ Management \ Tools$

C.1 Power To Change

Power To Change is a widget for desktops that measures how much energy was saved when the computer is turned-off. With this application installed, when the machine is turned on, the user can receive information about how much energy and carbon footprint it was saved while it was turned off, and also, compare with global results and others. The widget can be downloaded from http://www.hp.com/powertochange.

C.2 PlateSpin - Recon

This software did not compose the ones used for doing this thesis. Yet, it is important to notice this, because it is almost the same of Sandra, but it provides a more incisive work on Data Centers in general. It provides workload profiling, analysis and planning of complex server consolidation, disaster recovery, capacity planning, asset management and green data center initiatives. It also provides forecasting for optimizing the data center by collecting hardware, software and services inventory for all server workloads. Furthermore, it results an statistics work for the server workloads running on data center and how their resources are being used.

C.3 APC Virtualization Energy Cost Calculation

http://www.techworld.com/green-it/news/index.cfm?RSS&NewsID=116650

$APPENDIX\ D$ - $Database\ of\ Components$

D.1 SANDRA Benchmark Table Schema

ID	Number	Component ID
OsType	Text	Architecture type (x86 or x64)
Platform	Text	Platform type (Desktop/Mobile/Server)
System Name	Text	CPU Model
Speed (MHz)	Number	CPU Speed
Power (.01W)	Number	CPU Power
CPU Type	Text	CPU Family
No of Core Units	Number	Number of CPU cores
FSB Speed (MHz)	Number	Bus Speed Obs: set as 0 for all records
Aggregate Performance (MOPS)	Number	Average between performance in
		dhrystone and whetstone benchmarks
Dhrystone int ALU value (MIPS)	Number	Dhrystone performance
Type of dhrystone	Text	Type of dhrystone
		benchmark (.NET)
Whetstone float	Number	Whetstone performance
FPU value (MFLOPS)		
Type of whetstone	Text	Type of whetstone
		benchmark (.NET)

Table 19: RefDNetAA: .NET Arithmetic Benchmark on several CPUs

D.2 Database Schema

Figure 16: Database Schema

APPENDIX E - Measures

- E.1 Measurement Tables
- E.2 Characteristics of Measured Computers

 \mathbf{S}