Roteiro de produção da AI-0146 (limites)

Dr. Ivan Ramos Pagnossin

4 de abril de 2012

1 Limites e continuidade

Para este passo-a-passo a Al-0146 deve ser configurada de modo que f(x) = 2x + 1.

Nesta atividade interativa veremos, passo-a-passo, o conceito de limite de uma função de uma variável.

O valor f(x) para $x = x_0$ é simplesmente $f(x_0)$. Mas e se x for um número muito próximo de x_0 , embora diferente? Intuitivamente, podemos responder: "f(x) será muito próximo de $f(x_0)$ " (é possível finalizar esta frase com "embora diferente"?). Este realmente é o caso na maioria das vezes, mas nem sempre. Veja esta equação:

$$\lim_{x \to x_0} f(x) = L.$$

Ela deve ser lida assim: o limite de f quando x tende a x_0 ($x \to x_0$) é igual a L. Ou seja, se x for muito pr'oximo de x_0 , f(x) será igual a L, um número que não conhecemos a priori. L é dito "o limite" de f em x_0 .

Dois detalhes podem ter passado despercebidos: primeiro, L não é necessariamente igual a $f(x_0)$ (veremos que isto tem a ver com a *continuidade* de f). Segundo, o que significa dizer que x é "próximo" de x_0 ?

Para responder a esta pergunta, veja a figura acima (Al-0146). x_0 é um *ponto interior* ao domínio de f (você pode arrastá-lo), enquanto x é um ponto qualquer da vizinhança de x_0 (experimente arrastá-lo também). Dizer que x é "próximo" de x_0 significa dizer simplesmente isso: que x está na vizinhança de x_0 , ou ainda que $|x - x_0| < \delta$, onde δ é a "amplitude" da vizinhança (veja a figura).

Discutir no fórum: Por que x_0 deve ser um ponto interior ao domínio de f?

A função f é calculada sempre em x (nunca em x_0) e resulta no número f(x), também apresentado na figura, na reta \mathbb{R} à direita [você só pode alterar f(x) mexendo em x]. Há também o ponto L, no centro do intervalo aberto $]L - \varepsilon, L + \varepsilon[$, com $\varepsilon > 0$. Arraste L e os colchetes ao redor dele para entender a construção da figura antes de continuar.

Caso não se lembre, dizer que f(x) pertence ao intervalo $]L - \varepsilon, L + \varepsilon[$ é o mesmo que escrever:

$$L - \varepsilon < f(x) < L + \varepsilon$$
.

Ou ainda, que a distância de f(x) até L é menor que ε :

$$|L - f(x)| < \varepsilon$$
.

Discutir no fórum: Por que o software não permite mover f(x)? Qual é a implicação disso em x?

Com isto tudo em mente, dizer que L é o limite de f quando x tende a x_0 significa o seguinte: se **eu** escolher um ε arbitrariamente pequeno, **você** pode encontrar um δ tal que, para qualquer x na vizinhança de x_0 , f(x) pertence ao intervalo $]L - \varepsilon$, $L + \varepsilon[$.

Na figura acima você pode escolher *L* ao bel prazer (arraste-o), mas apenas para um valor será possível satisfazer o critério do parágrafo anterior. Este é o limite procurado.

Na Al-0146, faça $x_0 = 2$ e $\varepsilon = 3$, fixando-os de modo a impedir o usuário de alterá-los a partir daqui.

Parece complicado, mas a ideia é simples. Vamos experimentá-la passo-a-passo na figura acima. Nosso objetivo é determinar L, partindo de um valor arbitrariamente escolhido (escolhi $x_0 = 2$). Não é necessário preocupar-se com valores numéricos, embora você possa vê-los passando o mouse por cima de L, ε , etc.

Passo 1 Coloque x_0 próximo de 2 e ajuste $\delta \approx 1$ (de modo que a vizinhança fique toda dentro do domínio de f). Este é o ponto no qual calcularemos o limite.

Faça $x_0=2$ e $\delta=1$ na Al-0146 se os valores ajustados pelo usuário diferirem de mais de 10% desses valores.

Fixe x_0 e δ na Al-0146, impedindo o usuário de alterá-los a partir daqui.

Passo 2 Arraste L para a direita, até 20, mais ou menos.

Faça L=20 na Al-0146 caso o valor ajustado pelo usuário difira de mais de 10% desse valor. Fixe L na Al-0146, impedindo o usuário de alterá-lo a partir daqui.

Pela definição acima, se $L \approx 20$ for o limite procurado, então podemos arrastar x livremente e sempre obteremos f(x) entre os colchetes ao redor de L. Veja se isto acontece.

Libere L na Al-0146, permitindo ao usuário alterá-lo a partir daqui.

Como você pode perceber, em nenhum momento $f(x) \in]L - \varepsilon, L + \varepsilon[$. Logo, $L \approx 20$ não é o valor que procuramos. Na verdade, L deve estar mais próximo de f(x).

Passo 3 Escolha um L mais próximo de f(x). Arraste x por todo o intervalo $]x_0 - \delta, x_0 + \delta[$ e observe o movimento de f(x) para tomar a sua decisão.

Se o usu

[Usuário escolheu $3 \le L \le 7$ → Muito bom! Parece que você entendeu a ideia.] Eu ajustei L = 6 apenas para simplificar, mas poderíamos prosseguir com o valor que você escolheu. Qual é o comportamento de f(x) agora? •

Desta vez f(x) hora está dentro do intervalo, hora não. O problema é que a vizinhança de x_0 está muito grande.

Passo 4 Faça $\delta \approx 0, 2$.

Faça $\delta=0,2$ na Al-0146 independentemente do ajuste do usuário.

Fixe δ , impedindo o usuário de alterá-lo a partir daqui.

Agora f(x) está totalmente contido no intervalo $]L - \varepsilon, L + \varepsilon[$. No entanto, ainda pela definição de limite, **eu** posso reduzir ε . Escolhi $\varepsilon = 1$, diminuindo assim a extensão desse intervalo, e novamente colocando f(x) fora dele. Verifique.

No primeiro \bullet do parágrafo acima, faça $\varepsilon=1$ na Al-0146 (continua fixo, não suscetível à ação do usuário).

O que devemos fazer para corrigir isto é, novamente, aproximar L de f(x).

Passo 5 Faça L = 5 e verifique o comportamento de f(x).

Faça $\varepsilon = 0, 5$ na Al-0146 (continua fixo, não suscetível à ação do usuário).

Parece que f(x) voltou a manter-se entre os colchetes. Mas agora eu reduzi ainda mais ε , para 0, 5.

Passo 6 Reduza δ mais um pouco (não se esqueça da ferramenta de zoom), de modo a devolver f(x) para o intervalo $|L - \varepsilon, L + \varepsilon|$.

Se o usuário não tiver reduzido δ , faça $\delta = 0.05$ na Al-0146.

Você percebe que eu posso continuar reduzindo ε e você, continuar ajustando L e δ de modo a manter f(x) no intervalo $|L - \varepsilon, L + \varepsilon|$ para qualquer x na vizinhança de x_0 ?

Passo 7 Pressione o botão [ÍCONE ZOOM MENOS] algumas vezes para voltar à visualização inicial e responda: quanto vale L?

$$L = [$$

Disponibilize um *text field* para o usuário digitar a resposta. O valor esperado é L=5, com erro aceitável de 10%.

Usuário errou \sim A resposta correta é L=5. Se você não chegou a este resultado (aproximadamente), refaça os passos acima antes de prosseguir.] Matemanticamente, escrevemos

$$\lim_{x \to 2} f(x) = 5.$$

Finalmente, note que L = f(2). Em palavras, o limite de f em x_0 é simplesmente $f(x_0)$. Quando isto acontece, dizemos que f é contínua em x_0 . E quando isto acontece para todos os pontos do domínio de f, dizemos simplesmente que f é contínua (em todos os pontos).

Acontece que este nem sempre é o caso. A figura acima agora ilustra uma outra função, e que não é contínua. Refaça os passos anteriores na busca por L para $x_0 = 2$ e discuta com seus colegas: é possível determinar o limite dessa função em $x_0 = 2$? Por que? E que função é essa? [DESENVOLVER PASSOS PARA ESTE CASO TAMBÉM].