

Institutt for matematiske fag

Eksamensoppgave i MA0301 Elementær diskret matematikk
Faglig kontakt under eksamen: Martin Strand TIf: 970 27 848
Eksamensdato: 23. mai 2014 Eksamenstid (fra–til): 09:00–13:00 Hjelpemiddelkode/Tillatte hjelpemidler: D: Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.
Annen informasjon: Alle svar skal begrunnes. Ta med så mye mellomregning og forklaring at det er enkelt å forstå hvordan du har tenkt.
Oppgavesettet består av ti punkter, og hvert punkt teller like mye.
Målform/språk: bokmål Antall sider: 3 Antall sider vedlegg: 0
Kontrollert av:

Sign

Dato

Oppgave 1 Hvor mange ord kan du lage av bokstavene i ordet MYGGSTIKK? I hvor mange av disse står begge G-ene ved siden av hverandre?

Oppgave 2 Er dette et gyldig argument?

$$(p \to r) \land (p \lor q) \land (q \to s) \land (\neg r) \to s$$

Oppgave 3 La A være en mengde, og la $\mathcal{P}(A)$ være potensmengden til A. Vis at $|\mathcal{P}(A)| = 2^{|A|}$.

Oppgave 4 Bevis ved induksjon at

$$1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

holder for alle positive heltall.

Oppgave 5 La \mathbb{Z} være heltallene, og la \mathbb{Q} være alle brøker. Husk at $\mathbb{Z} - \{0\}$ betyr alle heltall unntatt null, og la $f : \mathbb{Z} \times (\mathbb{Z} - \{0\}) \to \mathbb{Q}$ være funksjonen gitt ved

$$f(a,b) = \frac{a}{b}.$$

 $\operatorname{Er} f$

- i. injektiv?
- ii. surjektiv?

Oppgave 6 Lag en endelig tilstandsmaskin som gjenkjenner alle ordene i språket

$$\{01\} \{11\}^* \{1\} \cup \{1\} \{0,1\}^*$$

Oppgave 7 Hva er en elementær oppdeling (*elementary subdivision*)? Hva vil det si at to grafer er homeomorfe? Avgjør om grafene under er planare eller ikke.

Oppgave 8 Finn korteste vei fra a til h i denne grafen, ved hjelp av Dijkstras algoritme. Du trenger ikke å forklare hvert steg i detalj, men oppgi alle etikettene på hjørnene, samt en beskrivelse av korteste vei og hvor lang den er.

Oppgave 9 Definer relasjonen \sim på \mathbb{Z} ved $a \sim b$ dersom a - b er delelig med 5, altså at $\frac{a-b}{5}$ er et heltall.

- a) i. Hva er en ekvivalensrelasjon?
 - ii. Vis at \sim er en ekvivalensrelasjon.
 - iii. Beskriv ekvivalensklassene til \sim . Hvor mange ekvivalensklasser er det?

La \mathcal{R}_1 være ekvivalensklassen til 1, \mathcal{R}_2 være ekvivalensklassen til 2, og så videre. Husk at en representant for en ekvivalensklasse er et element i klassen, og at en klasse kan ha mange representanter.

b) La x og y være vilkårlige heltall. Begge er da representanter for sin ekvivalensklasse. I hvilken av ekvivalensklassene \mathcal{R}_1 til \mathcal{R}_5 ligger da x + y? Hva med $x \cdot y$?

Hint: Prøv deg først fram med noen tilfeldig valgte tall, og sjekk hvilken klasse summen av dem kommer i. Kan du se et mønster, og klarer du å beskrive mønsteret? En fullstendig besvarelse av oppgaven krever en helt presis beskrivelse og forklaring.