申请	छ ग्रेष	#-1.15
景	號	3010030t
類	<i>\$</i> •]	cost 2/46

(以上各欄由本局填註)

(以上各欄由本局填註)				
發明 專 利 説 明 書				
一、發明名稱	中文	近紅外線之聚合起始劑		
क्राना	英 文	NEAR INFRARED POLYMERIZATION INITIATOR		
	姓 名	1.室伏克己 2.細田喜一		
二、 <mark>發明</mark> 人 創作 人	籍 賞 (國籍)	日本		
	住、居所	1.日本國神奈川縣川崎市川崎區扇町5-1 2.日本國神奈川縣川崎市川崎區扇町5-1		
	姓 名 (名稱)	日商・昭和電工股份有限公司		
二、肉块人	籍 贯 (凶籍)	日本		
三、申請人	住、居所 (事務所)	日本國東京都港區芝大門 1 丁目 13番 9 號		
	代表人 姓 名	村田一		

甲4(210×297公差)

-1-

(請先問請背面之注意事項再填寫本頁各欄)

四、中文分明摘要(分明之飞裤:近紅外線之聚合起始劑

紅外光聚合反應起始劑包括一在近紅外光範圍有 外線之陽離子染料,其用下列通式(1)代表之:

> D . A -(1)

其中 D'代表一在近紅外範圍有吸收之染料, 且 A'代表 一 陰 離 子 , 及 至 少 一 個 從 下 列 通 式 (2) 所 代 表 之 族 群 所 選 出之含硼增感劑:

英文發明摘要(發明之名稱:

國(地區) 申請專利·申請日期 1989.9.27 1990.1.16 附註:本常已向 日本

特願平 1-249289 特願平 2-6962

1990.1.16

特願平 2-6961

甲4(210×297公巷)

- 2 -

請先閱讀背面之注意事項再填寫本頁各欄

四、中文發明摘要(發明之名稱:

(承上頁)

其中R1R2R3及R4各自獨立代表烷基,芳基,烷芳基, 丙烯基,芳烷基,烯基、炔基,環烷基,或飽和或不 飽和雜環族團,但書為R1R2R3及R4中至少有一個代表 有1到8個碳原子之烷基,且R3R6R7及R3各自獨立代 表氫原子或烷基,芳基,丙烯基,烷芳基,芳烷基, 烯基,炔基、環烷基或飽和或不飽和之雜環族團, 及有機過氧化物。

英文發明摘要(發明之名稱:

附註:本案已向

圆(地區) 申請專利·申請日期:

豫號:

發明之背景

(1)發明之範疇。

本發明是關於能用近紅外光以高敏感度引起至少含一種烯式可聚合之單體或寡合體其之聚合反應之聚合起始劑

(2)相關技藝之描述

光聚合反應在各項領域上廣泛使用:例如,供塗層之熟化,形成一平版之印刷片,一樹脂之字句 印板及印刷電路板,製備光阻及光罩,及製造黑白或彩色之轉印板或上色板。而且,一可光聚合之配方也用在牙醫之領域上。然而在每一情形,光聚合是用紫外或可見光來達成,以近紅外光線之聚合尚未發展出。

通常,可行光聚合之配方包括一烯式不飽和化合物及一光聚合反應起始劑(例如參見日本公開公報第59-138203號,日本公開公報第63-162769號及日本公開公報第64-72150號)。日本公開公報第63-162769號透露一可聚合之配方其中之乙烯基化合物使用α-翻羰化合物做為光聚合起始劑在有胺類如N,N-二甲基苯胺出現下以紫外光及可見光照射固化,且這樣可光聚合之配方用於牙齒之填充物及密合劑,供做產製齒冠及人工假牙,及供做製造人工牙齒(例如參見日本公開公報第63-203151號)。而且,為發展一可用紫外光固化之墨水之可光聚合配方已經有認與的嘗試(例如參見日本公開公報第01-229084號,日本公

開公報第01-271469號及日本公開公報第02-22370號)。

然而, 適些可用光聚合之配方使用可見光, 則光之傳送會受到成份或填充物色調之故而有不利的影響, 且固化之程度會依色調或是所添加填充物之量而變動。

本發明之提網

要解決這個問題,則對包含有能吸收近之陽離子染料及一含硼之增感劑及或一有機過氧化物組合做調查,且其結果發現,用近紅外線能以高敏感度引起聚合反應之對光譜敏感之聚合起始劑可以得到。本發明就是基於這項發現。

更特定地說,按照本發明特提供一種近紅外聚合起始 劑其包含近紅外範圍內可吸收近紅外線之陽離子性染料, 其可用下列通式(1)來代表:

$$D^+ \cdot A^- \tag{1}$$

其中 D⁺ 表示在近紅外範圍內有吸收之陽離子性染料,且A⁻代表一陰離子,

且包括從下列由通式(2)所代表之含硼增感劑所成之族至少一員:

其中R1R2R3及R4各自代表一烷基,芳基、烷芳基,烯丙基,芳烷基,烯基,炔基,脂環族,或飽和或不飽和之雜環族團但書為R1R2R3及R1中至少有一個是代表有1到8個碳原子之烷基,且R1R6R1及R3各自獨立代表氫原子或烷基,芳基,丙烯基,烷芳基,芳烷基,

烯 基 , 炔 基 , 脂 環 族 或 飽 和 或 不 飽 和 之 雜 環 族 ,

以及有機過氧化物。

較佳實施例之描述

本發明之聚合反應起始劑在用波長最少有700nm之近紅外線時能以高的敏感度引起聚合反應。因此,經由添加該近紅外光聚合起始劑到自由基式可加成聚合或交連化之化合物,或這類化合物和有機填充物,無機填充物或其等之混合填充料或與諸如著色染料或頗料一起則可以得到一可用近紅外線聚合化之可行光聚合反應之配方。

至於構成本發明用於近紅外光聚合反應起始劑之能吸收近紅外線之特定陽離子染料,可提到的為花青染料,三 芳基甲烷,aminium及diimonium染料。至於陰離子,可提到的有鹵素陰離子,Cloa ,PFa ,BFa ,SbFa ,CH。SOa ,FaCSOa ,CaHaSOa ,CHaCaHaSOa ,HOCaHaSOa ,ClCaHaSOa ,及硼酸鹽陰離子以下列通式(3)來代表;

其中R1R2R2及R4各自獨立代表烷基,芳基、烷芳基,烯丙基,芳烷基,烯基,炔基,脂環基或飽和或不飽和雜環族團,但書為R1R2R2及R4中至少有一個是代表有1到8個碟原子之烷基。

至於硼酸鹽陰離子,硼酸三苯基丁基陰離子及硼酸三茴香基丁基陰離子特別合宜。本發明所用之吸收近紅外線之陽離子性染料的例子示於表1。

五、發明說明(

- 染:	表 1 ————————————————————— 料 編 號 結 構 式	R	Ar	λmax
			· ·	(TMPT)
1	C ₂ H ₅ Ph ₃ B-n-C ₄ H ₉			820nm
2	C=CH-CH=CH-C + N(CH ₃) Ph ₃ B-·n-C ₄ H ₉	2	-	830nm
-A	(CH ₃ CH ₂) ₂ N	3 ⁾ 2	正丁基苯	822nm
-B	C=CH-CH=CH-C	<i>3</i>	正己基礎	
-c	(CH ₃ CH ₂) ₂ N Ar ₃ B R N(CH ₂ CH ₃) ₂		正辛基苯	E 822nm
4	S (CH-CH)3CH S N C2H5	. •		768nm
-A			丁基苯基	748nm
- B	CH ₃ CH ₃ CH ₃ CH ₃		.1 基本基	748nm
-C	CH ² CH ³ CH ³		上 本日本 辛基苯基	748nm
	сн _з			/40NM
	Ar ₃ B·R			
		<u> </u>		所を一枚あ
				李春

五、發明說明()

表 1 (績)

染料 编號 ———————	結構式	1	R Ar	λ max (TMPT
6-A 6-B 6-C	CH ₃ CH ₃ CH ₃ CH ₋	N N	正丁基苯基 正己基茴基 正辛基苯基	785nm 785nm 785nm
	+ CH ₃ Ar ₃ B-·R	сн3		
7-A 7-B	Ph Ph	s	正丁基苯基 正己基茴基	828nm 828nm
7-C N	2) 3 COOCH 3	CH + N COOCH 3	正辛基苯基	828nm
8 C	Ar ₃ B-R H ₃ CH ₂ CH-C CH-C CH-C	CH ₃		787nm
	Ph ₃ B · n-C ₄ H ₅	· -		
C2H	CH-CH CH-CH	S CA		819nm
CH=C	\bigcap)	1	080nm
Ph	3 ^{B-•n-C} 4 ^H 9			
	e de la compansión de l		所以	

五、發明説明()
---------	---

表 1 (績)

染料編號	結構式	λ max (TMPT)
	CH-(CH-CH) C2H5 C2H5 C2H5	820nm
(C ₂ H ₅) ₂ I	C-CH-CH-CH-C	(C ₂ H ₅) ₂ 822nm
.3	S	768nm
4	CH ₃	748nm
5	CH ₃	785nm
S CH ₂)	Ph Ph CH-CH S CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	828nm
		所至 经产 正要

表 1 (續)

染料編號	•	結構式	~ Blax
			(TMPT)

表 1 (績)

染料編號	結構式	λ max (TMPT)
(CH ₃) ₂	C=CH-CH=CH-C C 204	830nm
3	S (CH=CH) 3 CH S N C 2H 5	768nm
	CH ₃	748n.m
	CH3CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	787nm
:	第二章 第二章 第二章 第二章	

λ:吸收波長

TMPT:三甲基丙烯酸三羟甲基丙烷酯

Ph: 苯基

五、發明說明()

這些染料較合宜的和氣清除劑合併使用以在自由基鍵轉移之程序中能吸收氧及一鍵轉移創作為活性之氫供給需。對於氣清除劑之例子,可提到的例如有鱗,亞磷酸鹽,醛酸類及其它可易於被氧氧化之化合物。至於鍵轉移劑,可提到的例如有N-苯基甘氨酸,N-再有取酸,N-苯基甘氨酸如異丁烯醛-β-經基苯並噻唑,2-酰基苯並噻唑,2-酰基苯 並噻唑,2-酰基苯 並 哪唑, 及别位至少有一烷基,苯氧基,乙酯氧基,及 間位及對位至少有一烷基,苯氧基,乙酯氧基, 與基或 國素取代基。在鄰位上有烷基取代基之N,N-二烷基苯胺 特别合宜使用。例如可以提到的有2,6-雙異丙基-N,N-二甲基苯胺,2,6-雙甲基苯胺。

本發明所用之含硼增感劑為以通式(2)代表之季數-硼酸鹽錯合物,至於較合宜之例子,可提到的有:

正丁基三苯基硼酸四甲基铵,

正丁基三 茴基硼酸四甲基铵,

正辛基三苯基硼酸四甲基鈹,

正辛基三茴基硼酸四甲基銨,

正丁基三苯基硼酸四乙基 鈸,正丁基三茴基硼酸四乙基 鋑,

正丁基三苯基硼酸三甲基氫铵,

正丁基三苯基硼酸三乙基氫銨,

正丁基三苯基硼酸四氢銨,四丁基硼酸四甲基銨及四丁基硼酸四乙基銨。

本發明之聚合起始劑之所可以加進去之自由基式加成可聚合或可交連化之化合物包括所有習用之乙烯式不飽和化合物,特別是單羥醇及多羥醇對丙烯酸及異丁烯酸之酯類,及含4-(甲基)丙烯酸之芳香族多羧酸及其等之酸酐。所謂丙烯酸尿烷及甲基丙烯酸酯類是包括於前述之酯中。而且,

2, 2-雙〔4-(3-甲基丙烯基氧-2-經基)-苯基〕丙烷,它是從美國專利第3, 066, 112號知道之一反應産物,雙(甲基丙烯氧乙基)三甲基己撐雙尿烷; 2, 2´-雙(4-甲基丙烯氧多乙基氧苯基)丙烷,三甲基丙烯酸四羟基甲烷酯,四甲基丙烯酸四羟基甲烷酯,六丙烯酸雙戊基赤蘚

酯,六甲基丙烯酸雙戊基赤蘚酯,4-(甲基) 丙烯醛氧甲氧羰基酞酸,其酸酐,4-(甲基) 丙烯醛氧乙氧羰基酞酸及其酸酐均是。

不只是商用之著色科及顔料而且各參考文獻上所透露之已知染料或顔料(例如,有機合成化學協會編輯1970年出版之"染料手冊"及日本顔料技術協會編輯1976年出版之"最新顔料手冊")皆可做為本發明之著色劑。

較合宜地,本發明之近紅外光聚合反應起始劑含可吸收紅外線之陽離子染料其量為0.01到10%重量比,特別是從0.1到5%重量比,基於乙烯式不飽和化合物,且含硼增感劑及/或有機過氧化物其含有量從0.01到10%重量比,特別是0.1到5%重量比,每%是基於吸收近紅外光陽離子染料之重。而且,氫清除劑及鍵轉移劑可依類似於吸收紅外光陽離子染料之量加入之。

現在將描述應用到印刷墨水上之一特定例子。一有乙烯式不飽和基之單體或光聚合物,其通常做為活性之載體,和本發明之近紅外光聚合起始劑及一色料一起揉合且所得之近紅外光可固化之油墨印到一個供化妝品及食物用的鋁箔紙上,厚度5μm。然後,該塗覆之鋁箔紙用來自於紅外線照射裝置之光線照射,該處其油墨即乾而固定到鋁箔紙上無穿透性及無乾性。

至於做為牙科成份之應用的例子,可以提到的為供病人白齒或前齒蛀牙部份之治療。更特定地說,蛀掉之部份用牙醫鑽子除去,且牙齒用蝕刻液處理,一包括有近紅外光聚合起始劑之牙齒配方充入蛀洞內,該配方用近紅外發

光装置以近紅外線照射以固化之,治療於是完成。

依照本發明, 茲提供一種包括有可吸收近紅外線之陽離子染料及一含硼增感劑及/或有機過氧化物之聚合反應 起始劑, 其能在近紅外線下以高的敏感度引起聚合反應, 不受該可光聚合配方成份或填充物之色調所影響。

本發明現用底下之例子做詳細描述而其等絶非本發明範圍之限制。

例1到例8:

一包括有4克之2,2´-雙〔4-(3-甲基丙烯氧-2-經基丙氧)苯基〕丙烷,2克之三甲基丙烯酸三經甲基丙烷酯,1克之三甘油二異丁烯酸酯,3克之二甘油二異丁烯酸酯,30克之細硅石(顆粒大小小於10μm,平均顆粒大小為5μm),一示於表2之吸收近紅外線之陽離子染料,一示於表2之含硼增感劑及0.04克之N,N,2,4,6-五甲基苯胺之糊狀混合物充入一不銹鋼模內(內徑為6mm直徑高8mm)且該填充糊狀之表面用一聚酯膜蓋助以形成樣品。

例9到12:

一包括4克之2、2-雙(甲基丙烯氫)三甲基己撐雙 尿烷,2克之三甲基丙烯酸三羟甲基丙烷酯,1克之三甘 油二異丁烯酸酯,3克之二甘油二異丁烯酸酯,1克之硅 酸鋁鋰(顆粒小於10μm;平均顆粒大小5μm),29克 之氧化鋁,一示於表2可吸收近紅外線之陽離子染料,一 示於表2之含硼增感劑及0.04克之N,N,2,4,6-五甲基

苯胺之糊狀混合物充入一不銹鋼模(內部直徑 6 mm高 8 mm),該充填糊狀物之表面用一聚酯膜蓋著做為樣品。 例 13到 15:

一包括有6克之三甲基丙烯酸三羟甲基丙烷酯, 4克之三甘醇二異丁烯酸酯, 一示於表2之可吸收近紅外線之陽離子染料, 一示於表2之含硼增感劑, 0.04克之N, N, 2, 4, 6-五甲基苯胺及一色料 (Orient Kagaku kogyo提供, 示於表2) 之混合物裝到一不銹鋼模 (內直徑6 mm高高8 mm) 內, 且該充填混合物之表面用一聚酯膜遮蓋以做為樣品。

例 16到 18:

一包括有6克之三甲基丙烯酸三羟甲基丙烷酯,4克之三甘醇二異丁烯酸酯,一示於表2可吸收近紅外線之陽離子染料,一示於表2之含硼增感劑,0.03克之N-苯基甘氨酸及一色料(Orient Kagaku Kogyo提供,示於表2)之混合物裝到一不銹鋼模內(內直徑6mm且高為8mm),且該填充之混合物表面用一聚酯膜覆蓋做為樣品。

經由使用同於例1所用之可吸收近紅外線之陽離子染料,除了不用含硼增感劑之外依例1所述之同樣方法製備 好樣品,如表2所示。

對照組例2:

對照組例1:

經由使用同於例了所用之可吸收近紅外線之陽離子 染料,除了不用含硼增感劑之外依例了所述之同樣方法製

五、發明説明()

備好樣品,如表2所示。

對照組例3:

除了使用樟腦醌和氢醌甲醚,其至今為止用於可見光聚合型之樹脂,而非使用例 1 之近紅外光吸收陽離子染料及含硼增感劑之外,樣品依例 1 所述之同樣方法製備,如表 2 所示。

五、發明説明()

Æ	• • •
112	_

	光 聚 合 反 應 起 始 劑 (編 號 為 表 1 之 編 號)	含量 (重量百分比)
例 1	dye 5A TEAPB	0.1 0.01
例 2	dye 5A TEAPB	0.1 0.3
例 3	dye 5A TMAPB	0 . 1 0 . 5
例 4	dye 3A TMAPB	0.1
例 5	dye 5B TMAPB	0 . 1 0 . 3
例 6	dye 6C TMAPB	0 . 1 0 . 3
例 7	dye 12 TMAPB	0 . 1 0 . 3
例 8	dye 16 TMAPB	0.1 0.3
例 9	dye 3B TMAAB	0.1
例 10	dye 6C TMAAB	0.1 0.3
例 11	dye 7A TMHPB	0 . 1 0 . 3
例 12	dye 18 TMAAB	0.1 0.3
例 13	dye 3A TMAPB colorant SO Red 1	0.1 0.3 10.0

五、發明說明()

麦	2	(糭)
~	_	•	不 其	,

	光聚合反應起始劑 (編號為表1之編號)	含量 (重量百分比)
例 14	dye 7B TMAPB colorant SO cyane 1	0.1 0.3 10.0
例 15	dye 16 TMAPB colorant SO Red 1	0.1 0.3 10.0
例 16	dye 3A TMAPB colorant SC Red 1	0.1 0.3 10.0
例 17	dye 7B TMAPB colorant SO cyane 1	0.1 0.3 10.0
例 18	dye 12 TMAPB colorant SO Red 1	0.1 0.3 10.0
對照組例 1	dye 5A	0.1
對照組例2	dye 12	0.1
對照組例3	樟 腦 醌 氫 醌 甲 醚	0.1

註:TMAPB:正丁基三苯基硼酸四甲基銨 TEAPB:正丁基三苯基硼酸四乙基銨 TMAAB:正丁基三茴基硼酸四甲基銨 TMHPB:正丁基三苯基硼酸三甲基氫銨

五、發明說明()

前述例子及對照組例子之各個樣品用一波長為830nm 之半導體雷射照射,強度200mW時間10秒,然後照射後之 樣品浸入乙醇內1小時以除去未聚合之成份。之後,關於 例1到例18及對照組例1到例3之各樣品其可聚合性及色 調加以評估之,且結果列於表3。

表 3

照光後之色調	可聚合性
乳白	. 0
乳白	0
乳白	0
乳白	0
乳白	0
乳白	0
乳白	0
乳白	0
乳白	0
乳白	0
乳白	0
乳白	0
¥I	. 0
藍	0
<u> </u>	0
ă .	0
藍	0
¥I	0
乳白	Δ
藍	×
乳白	×
	乳白 乳白 乳白 乳白 乳白 乳白 乳白 乳白 乳白 乳白 乳白 乳白 乳白 乳

註: 〇:照光部份完全聚合 △:照光部份留有未聚合之部份 ×:照光部份未聚合

例 19到 24:

一包括 4 克之 2, 2-雙〔4-(3-甲基丙烯氧-2-羟基丙氧)苯基〕丙烷, 2 克之三甲基丙烯酸三羟甲基丙烷酯, 1 克之三甘二異丁烯酯, 3 克之雙甘醇二異丁烯酯, 3 0克之細硅石(顆粒大小小於 10 μ m, 平均顆粒大小為 5 μ m), 一示於表 4 之吸收近紅外線之染料, 一示於表 4 之有機過氧化物及 0.04克之 2, 6-二異丙基 -N, N-二甲基苯胺之糊狀混合物加入到一不銹鋼模(內直徑 6 mm高 8 mm)內,且該充填混合物之表面蓋一聚酯膜做成樣品。例 25 及 例 26:

一包括4克之2,2-雙(甲基丙烯氧乙基)三甲基己 撐雙尿烷,2克之三丙烯酸三經甲基丙烷酯,1克之三甘 醇雙異丁烯酯,3克之雙甘醇二異丁烯酸酯,1克之硅酸 鋁鋰(顆粒大小小於10μm,平均顆粒大小為5μm), 29克之氧化鋁,一示於表4之吸收近紅外光之染料及一示 於表4之有機過氧化物之糊狀混合物充入到一不銹鋼模(内直徑6mm高8mm)內,且該充填之混合物表面用一聚酯 膜蓋住以做成樣品。

例 27及 28:

一包括 4 克之 2, 2-雙〔4-(3-甲基丙氧-2-經基丙氧) 苯基〕丙烷, 2 克之三甲基丙烯酸三羟甲基丙烷酯, 1 克 之三甘醇二異丁烯酸酯, 3 克之二甘醇二異丁烯酸酯, 30 克之細硅石(顆粒大小10 μ m, 平均顆粒大小 5 μ m), 一示於表 4 之吸收近紅外線之染料, 一示於表 4 之有機過

五、發明説明(

氧化物及0.04克之2,6-二異丙基-N,N-二甲基苯胺之糊狀物充入一不銹鋼模(內直徑6 mm高 8 mm)內,且該填充物之表面蓋一聚酯膜做成樣品。

對照組例4:

除了使用樟腦醌及氫醌甲醚,其等至今為止用於可見 光聚合式樹脂,而不用近紅外線吸收染料及有機過氧化物 之外,樣品依同於例19所述之方法製備,如表4所示。

五、發明說明()

表 4

	光聚合反應起始劑	含量 (重量百分比)
例 19	dye 5 A T B B P B	0.1
例 20	dye 5A TBBPB	0.1 0.3
例 2 1	dye 5A TBBPB	0.1 0.5
例 2 2	dye 5B TBBPB	0.1
例 23	dye 6C TBBPB	0.1 0.3
例 2 4	dye 7A TBBPB	0.1 0.3
例 25	dye 24 BPO	0 . 1 0 . 3
例 26	dye 16 BPO	0 . 1 0 . 3
例 27	dye 5A BPO	0 . 1 0 . 3
例 28	dye 7A BPO	0.1
對照組例4	樟腦 醌 氫醌甲醚	0 . 1 0 . 0 2

註: TBBPB: 指3, 3´4, 4´-四-(特丁基過氧羰) 苯酮BPO: 指過氯化二苯醛

前述各個例子及對照組例子之樣品用波長為830nm之 半導體雷射照射,強度為200mW時間20秒,然後該照光後 之樣品浸入乙醇中1小時以除去未聚合之部份。之後,關 於例19到例28及對照組例4之各個樣品,其可聚合性及色 調加以評估之且結果列於表5。

五、發明説明()

表 5

	照光後之色調	可聚合性
例 19	乳白	0 -
列 20	乳白	0
例 21	乳白	0
列 2 2	乳白	0
列 2 3	乳白	Ö
列 24	乳白	0
列 25	乳白	0
列 2 6	乳白	0
列 2 7	乳白	0
列 28	乳白	0
對照組例 4	乳白	×

註:

〇:照射部份完全聚合 ×:照射部份未聚合 五、贫明説明()

例 29到 31:

一包括 4 克之 2, 2-雙 [4-(3-甲基丙烯氧-2-羟基丙氧) 苯基] 丙烷, 2 克之三甲基丙烯酸三羟甲基丙烷酯, 1 克之三甘醇二異丁烯酸酯, 3 克之二甘醇二異丁烯酸酯, 3 0克之細硅石(顆粒大小10μm, 平均顆粒大小5μm),一示於表6之近紅外線吸收陽離子染料,一示於表6之含硼增咸劑及一示於表6之有機過氧化物之糊狀物充入一不銹鋼模內(內直徑 6 μμ高 8 μμ)內,然後該填充物之混合物表面用一聚酯膜蓋住做為樣品。

五、發明說明(

	表 6	
	光聚合反應起始劑	含量
	(染料编號同表1)	(重量百分比)
例 29	dye 3 A	0.1
	TMAPB	0.3
	TBBPB	0.3
例 30	dye 7B	0.1
	TMAPB	0.3
	MEKP	0.3
例 31	dye 12	0.1
	TMAPB	0 . 3
	TBBPB	0.3

註: TMAPB: 指正丁基三苯基硼酸四甲基銨

TBBPB: 指3, 3´4, 4´-四 (特丁基過氫羰) 苯酮

五、發明説明()

上述例子所得之各個樣品以波長為830nm之半導體雷射照射,強度為200mW時間10秒,然後該照光後之樣品浸入乙醇中1小時以除去未聚合之部份。之後,關於例29到例31之各樣品,其可聚合性及色調加以評估,且結果列於表7。

表 7

	照光後之色調	可聚合性
例 2 9	乳白	. 0
例 30	乳白	0
例 31	乳白	0

註:

〇: 指照射之部份完全聚合

A7 B7 C7 D7

請先閱請計面之注意事項再填寫本頁

六、中請專利範圍

1. 一種近紅外之聚合反應起始劑包括由下列過式 (1)所 代表在近紅外光範圍內有吸收之能吸收紅外線之陽離 子染料:

$$D^{\bullet} \cdot A^{-} \tag{1}$$

其中D*代表在近紅外光範圍有吸收之陽離子染料,且A*代表陰離子,從鹵素陰/離子,Clo.*, PF。*, BF。*, CH。SO。*, C。H。SO。*, Ch。C。H。SO。*, Ch。C。H。SO。*, Ch。C。) H。SO。*, Clc。H。SO。*, 及以下列通式(3)所代表之陰離子中茲出;

其中R₁R₂R₃及R₄各自獨立代表一烷基,芳基但書為R₁R₂R₃及R₄中至少有一者是代表有1到8個碳原子之烷基。

及至少一個從下列過式(2) 所代表之族群所選出的含 硼增感劑:

其中R₁R₈R₅及R₄R₆R₆R₇及R₆各自獨立代表一烷基 ,芳基,但書為R₁R₈R₅R₄R₆R₆R₇及R₆中至少一個/

請先閱讀背面之注意事項再填寫本頁)

六、申請專利範圍

代表有1到8個碳原子之烷基,且R。 及有機過氧化物。

- 2.依據申請專利範圍第1項所述之起始劑,其中陽離子 染料是從花青染料,三芳基甲烷,銨眯啉及二銨眯啉 等染料中選出。
- 3.依據申請專利範圍第1項所述之起始劑,其中的硼酸 陰離子為硼酸三苯基丁基陰離/子及硼酸茴香基丁基陰 離子。
- 4.依據申請專利範圍第1項所述之起始劑,其中吸收近 紅外光之陽離子性染料是從下列錯合物中露出:

$$C_{2}^{H}_{5}$$

Ph3B-.n-C4H9

(請先閱請背面之注意事項再填寫本頁)

經濟部中央標準局印製

ı-

(請先閱讀背面之注意事項再填寫本頁)

經濟部中央標準局印製

甲4(210×297公差)

78. 8. 3,000

請先閱請背面之注意事項再填寫本頁)

六、申請專利範圍

經濟部中央標準局印製

(请先阅请背面之注意事项再填寫本頁)

D7

六、申請專利範圍

经济部中央標準局印製

甲4(210×297公桂)

- 38 -

74.7 mill

請先閱讀背面之注意事項再填寫本頁)

..... f

六、申請專利範圍

在上列式中,Ph表示苯基,R代表正丁基,正己基或正辛基,且Ar代表苯基或甲氧苯基。

- 5.依據申請專利範圍第1項所述之起始劑,其中吸收近紅外光之關離子染料和一氧清/除劑及一鍵轉移劑一起使用。
- 6.依據申請專利範圍第5項所述之起始劑,其中之氣清 除劑是由群,亞磷酸鹽,膦酸鹽,亞錫鹽類及其它易 被氧所氧化之化合物選出。
- 7.依據申請專利範圍第5項所述之起始劑,其中之鍵轉移劑是從N-苯基甘氨酸/N-取代之N-苯基甘氨酸,三甲基巴比土酸,2-基苯並噁唑,2-基苯並 唑,及N.N-二烷基苯胺類中選出。
- 8.依據申請專利範圍第1項所述之起始劑,其中含硼之增咸劑是從正丁基三苯基硼酸四甲基銨,正丁基三茴基硼酸四甲基銨,正丁基三茴基硼酸四甲基銨,正丁基三苯基硼酸四乙基銨。

正丁基三茴基硼酸四乙基钕,

正丁基三苯基硼酸三甲基氫欽,

正丁基三 茴基 硼 酸三乙基 氫 皱,

正丁基三苯基硼酸四氫銨,四丁基硼酸四甲基鈹及四丁基硼酸四乙基鈹之中酱出。

9.依據申請專利範圍第1項所述之起始別,其中之有機 過氧化物是從雙醯基過氧化物類如雙乙醛化過氧,雙 月桂化過氧,雙苯醛化過氣,P,P - 雙氯雙苯醯化

Ħ

絑

B7 C7 D7

六、申請專利範圍

過氧 , P, P´ -雙甲氧雙苯醯化過氧, P ,/ P´ -雙甲基 雙苯醯化過氧及P, P´-雙/硝基雙苯醯化過氧,氫過 氧化物類如特丁基過氧氫,枯烯過氧氫及2,5-雙甲 基己烷-2, 5-雙羥基過氣氫,酮過氧化物類者如甲基 乙基酮化過氧,及過碳酸鹽加特丁基過氧苯甲酸酯及 3, 3~, 4, 4~-四-(特丁基過氫羰基) 苯醯苯之中 選出。

- 10.依據申請專利範圍第1項所述之起始劑,其是做為供 乙烯式不飽和化合物聚合反應之用。
- 11. 依據申請專利範圍第10項所述之起始劑,其中之乙烯 式不飽和化合物是從單元醇及多元醇之丙烯酸酯及甲 基丙烯酸酯類,及含4-(甲基)丙烯醛氧基之芳香族 多元酸及其等之酐類中選出。
- 12.依據申請專利範圍第10項所述之起始劑,其中之聚合 反應是用波長至少有700nm之近紅外線所引發的。
- 13.依據申請專利範圍第1項所述之起始劑,其中含硼之 增感劑及或有機過氧化物之含,有量為0.01到10%重量 百分比及對能吸收紅外光之陽離子染料之重量比。
- 14.一種可行光聚合反應之配方其供以近紅外線引起聚合 反應,包含有申請專利範圍第1項所述之近紅外線光 聚合反應起始劑,及一自由基式可加成聚合或交連化 之化合物或其等與一有機填充料,無機填充物」或複合 填充物及或一著色料之混合物。
- 15.依據申請專利範圍第14項所述之配方, 其中之自由基

六、申請專利範圍

式可加成聚合或交連化之化合物是一乙烯式不飽和化合物。

16.依據申請專利範圍第15項所述之配方,其中可吸收近 紅外線之陽離子性染料含量為基於乙烯式不飽和化合 物之重的0.01到10%。 **訪先閱讀背面之注意事項再填寫本頁)**

經濟部中央標準局員工消費合作社印製