

1 using Rijkstera 's algorithm to find the shortest path from v, to V?

Ans !

Verten	V	V ₂	V ₃	V4	Vs	V6	100
L (v)	0	2					
T	Vi		Control of the Contro	and the same of the same of		and the second second	

I teration O:

 $u = V_1$ has $L\{u\} = 0$, T becomes $T = \{v_1\}$.

There are 3 edges incident with V_1 , i = e, $V_1 V_2$, $V_1 V_3$ and $V_1 V_4$, where V_2 , $V_3 V_4 \in I$ $L(V_2) = \min \{old L(V_2), L(V_1) + \omega(V_1, V_2)\}$ $= \min \{old L(V_3), L(V_1) + \omega(V_1, V_2)\}$ $= \min \{old L(V_3), L(V_1) + \omega(V_1, V_2)\}$ $= \min \{old L(V_4) + L(V_4) + \omega(V_1, V_2)\}$ $= \min \{old L(V_4) + L(V_4) + \omega(V_1, V_2)\}$ $= \min \{old L(V_4) + L(V_4) + \omega(V_1, V_2)\}$ $= \min \{old L(V_4) + L(V_4) + \omega(V_1, V_2)\}$ $= \min \{old L(V_4) + L(V_4) + \omega(V_1, V_2)\}$ $= \min \{old L(V_4) + L(V_4) + \omega(V_1, V_2)\}$

Verten	V	Vz	V2	V4	Vs	V6	Vy
L (v)	0	2	1	4	00	8	00
T	-	Vz	V3	VA	vs	V6	V ,

Iteration 3:

u = v3 has LLu) = 1, Thecomes T - {v3}.

There are 4 edges incident with v3, i.e,

V3v2, v3 v5, V3v6, v3 v4 where v2, v5, v6, v4 ET.

 $L(V_2) = \min \{ old L(V_2), L(V_3) + w(V_3, V_2) \}$ = $\min \{ 2, 1 + 2 \} = 2$

L (V3) = min { old L (V5), L (V3) + w (V3, V5)} = min (00, 1+5) = 6

 $L(V_6) = \min \{ old L(V_6), L(V_3) + \omega(V_3, V_6) \}$ = $\min \{ \infty, 1 + 7 \} = 8$

 $L(V_4) = \min \{ \text{ord } L(V_4), L(V_3) + \omega(V_3, V_4) \}$ = $\min \{ 4, 1+2 \} = 3$

Hence minimum label is L(V2) = 2.

retrov	Vi	V2	V3	Language ten			
L(V)	0	2	1	3	6	8	00
T	-	VL	-	V 4	vs	V6	Va

I terotion 3:

Then are only I solge incident with V_2 , i.e, $V_2 \vee V_3 \vee V_4 \vee V_5 \wedge V_6 \vee V_7 \vee V_8 \wedge V_8$

 $L(Vs) = \min \{ \text{old } L(Vs), L(V_1) + \omega(V_2, V_1) \}$ = $\min \{ 6, 2 + 3 \} = 5$

Hence the minimum tabel is L(V5) = 5.

Verton	Vi	Vz				Samuel Color	
L(V)	0	2	1	3	5	8	20
T	_	_	<u> </u>	V4	5 V5	V6	7

I terration 4:

There are only only I edge violent with Urile, Vous where $V_7 \in T$.

 $L(V_7) = \min \{ \text{old } L(V_7), L(V_5) + \omega(V_5, V_7) \}$ $= \min \{ \infty, 5 + 1 \} = 6$

Hence the minimum tobel is L(U2) = 6.

Verten			The second second	A COLUMN TO THE REAL PROPERTY OF THE PARTY O	1		The second second second
L(v)	0	2	1	3 V4	5	8	6
T	_	-	_	VA	-	V6	Va

Here the shortest distance between v, and vy is 6 wits.

Hence the shortest pots is v, - v3 - v2 - V5-V7.

3 Find the minimum spouning tree of the following graph by using Kruskal's algorithm and Prim's algorithm.

Ans: (a) Koushal's algorithm

List all the edges with respect to their weight

List of edges	Weight	Selection
(B,D)	2	With the received
$(0, \tau)$	2	Tool dals to the or
(A, c)	3	K. A. A. Marian, et al. M. Series
(c, D)	3	
(B,c)	4	×
(B, T)	5	×
(A, 18)	7 6	X
(A, 05)	7 7	*-
(c, s)	8	×
	100	

(4) Use a binary tree to represent the following expressions. (i) ((a-c) *d) / (a+(b-a)) Ano: - Representation of the expression ((a-c)+d)/ (a + (b-d)) as a binary tree then:-(ii) Derow the bimory tree when ironder and postorder traversals is given below: Inorses Postordes m Sol":- We know that the last node is post-order is the groot node have I is the groot.

