Muscle signals can pilot a robot

By Brandon Truong and Zetao Wu

June 1, 2020

Who made it?

- MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) came up with it
 - called "Conduct-A-Bot" which uses human muscle signals from wearable sensors to pilot a robot's movement.
- Finished experiment during March 2020
 - Purpose to largely reduce the barrier to casual users interacting with robots
 - Experiment involved controlling a drone with muscle sensors

How does it work?

- ·Uses wearable surface electromyography (EMG) sensors and an inertial measurement unit (IMU) to detect muscle signals
 - Includes detecting arm stiffening, fist clenching, rotation of arm and left/right/up/down motion.
- ·Online clustering algorithm helps interpret these signal
- ·Allows processing of gesture in real time without calibration and user data
 - Neural network of previous data supplements algorithm
 - •Predicts wrist flexion and rotation from forearm muscle signals

Pros:

- Increased robustness by separating movement into easily interpretable gestures, thus improving accuracy.
- Increased deployability through reducing need of external equipment
- Requires only 2-3 wearable sensors rather than cameras and motion capture
- Less susceptible to environmental noise

Cons:

- Predefined gesture library sacrifices full control of movement for precision
- Wearing muscle sensors can be irritating during extended use

Advantages of Using Muscle Control

- Easier to learn
- Easier to control for beginners
- You can feel how much force you are putting into an action

- Builds on Gaussian Mixture Models (GMM) to create a good model of gestures, movement, relaxation
- Streaming data online allows for no predefined GMM, dynamically creates a new GMM to fit the user from scratch

Software Overview

Algorithm 1: Online Clustering of Streaming Data

```
Input: n-dimensional signal sample sample^{1\times n}
   Params: k, history length H, Trefit, Tinitialize, zscore_bounds
   Output: cluster prediction Kpredicted
 1: Initialize k + 1 rolling buffers: histories^{(k+1)\times H\times n}
2: while current time < Tinitialize do
        histories[k+1] \leftarrow sample // store as unknown cluster
4: if Trefit seconds since last GMM fit then
        allSamples^{H(k+1)\times n} = concatenate all (k+1) histories
        qmm = FitModel(allSamples, k)
 6:
        K_{all}^{H(k+1)\times 1} = \text{PredictCluster}(gmm, allSamples[i]) \forall i
 7:
        histories[c] = allSamples[K_{all} == c] \forall c = 1...k
        histories[k+1]=[]
10: K_{predicted}^{1\times 1} = PredictCluster(gmm, sample)
11: histories[Kpredicted] ← sample
   Function PredictCluster(gmm, sample):
        [posteriors^{1\times k}, zscores^{1\times k}]= EvalGMM(gmm, sample)
12:
        K_{predicted} = \text{cluster with } max(posteriors)
13:
        if any of zscores violate zscore_bounds for Kpredicted then
14:
            K_{predicted} = k + 1 // \text{ mark as unknown cluster}
```

- Buffer to store info before system is initialized
- Fit all data and predicts a good model based on it
 - Tests for z-score,
 statistic value for
 checking deviation

Hardware Overview

- ·Uses two EMG electrodes attached to upper arm
- ·Attached to triceps brachii and biceps brachii to detect muscle signals at upper arm
- ·8 dry EMG electrodes on upper forearm samples muscle activity below the elbow
- •IMU containing accelerometer and gyroscope detects rotation and acceleration of forearm.
- Upper arm sends data to data acquisition (DAQ) device and through USB while forearm sends data through Bluetooth to Simulink R2018b

Results

- Classifiers identified 97.6% of 1200 cued open-loop gestures
 - Repeated patterns and gestures
- 81.6% of 1535 unstructured gestures was responded to by the robot (closed-loop)
 - Real life application of piloting a drone through hoops
 - Errors may have resulted from multiple gestures in a given time or change in handling (accelerating/rotating quicker than before)

-	Down	85		1.2%	11.8%	9.4%			2.4%	57.8%	17.6%
	Up	131		3.1%	2.3%	8.4%			76.3%		9.9%
Actu	Right	121	0.8%	0.8%	1.7%	2.5%		88.4%	0.8%		5.0%
Actual Gesture	Left	174		2.9%	2.3%	1.1%	67.2%	1.7%			24.7%
ture	ccw	342	0.9%	0.3%	1.5%	95.6%	0.3%		u.		1.5%
	CW	212	8.5%		76.4%	1.4%		0.5%			13.2%
	Fist	327		82.6%		0.9%	15.0%	1.5%			
S	tiffen	143	84.6%		2			1.4%			14.0%

Its Significance

- Reduces need for user to calibrate
- Increases range of possible motions by using muscle signals
 - Can tell how much force and torque to put into action

Possible Applications

- Remote handling
 - Can benefit those in hazardous jobs/ those that handle hazardous chemicals by improving safety through remote robotic movement without sacrificing accuracy
 - Ex. chemical waste management, industrial machinery operation, decontamination of rooms, etc.

Works Cited

DelPreto, Joseph, "Plug-and-Play Gesture Control Using Muscle and Motion Sensors", ACM, March 23, 2020, https://dl.acm.org/doi/pdf/10.1145/3319502.3374823

Gordon, Rachel, "Muscle signals can pilot a robot", MIT NEWS, April 27, 2020, https://news.mit.edu/2020/conduct-a-bot-muscle-signals-can-

pilot-robot-mit-csail-0427