Semileptonic B Decays

Masahiro Morii Harvard University

Determination of $|V_{ub}|$ and $|V_{cb}|$ with Inclusive and Exclusive $b \to u\ell v$ and $b \to c\ell v$ Decays

APS Meeting, April 22-25, 2006

The Unitary Triangle

■ The goal: Over-constrain the apex $(\bar{\rho}, \bar{\eta})$ to test the completeness of the Cabibbo-Kobayashi-Maskawa model

■ $\beta = 21.7^{+1.3}_{-1.2}$ degrees \rightarrow Let's measure the opposite side precisely!

Semileptonic B Decays

■ Natural probe for $|V_{ub}|$ and $|V_{cb}|$

- \blacksquare Γ_c larger than Γ_u by a factor ~50
 - Extracting $b \rightarrow u\ell v$ signal challenging
- Sensitive to hadronic effects
 - Must understand them to extract $|V_{ub}|$, $|V_{cb}|$
 - Use data to bolster theory

Inclusive vs. Exclusive

Inclusive Measurements

■ Operator Product Expansion predicts total rate Γ_{u} as

Perturbative terms known to $\mathcal{O}(\alpha_s^2)$

Non-perturb. terms suppressed by $1/m_b^2$

- Dominant error from m_b^{5}
 - m_b measured to ±1%
 - \Rightarrow ±2.5% on $|V_{ub}|$
- Total rate can't be measured due to $B \rightarrow X_c \ell \nu$ background
 - Must enhance *S/B* with cuts

Kinematical Cuts

■ Three independent kinematic variables in $B \rightarrow X \ell v$

- Measure partial rates in favorable regions of the phase space
- Caveat: Spectra more sensitive to non-perturbative effects than the total rate $\rightarrow \mathcal{O}(1/m_b)$ instead of $\mathcal{O}(1/m_b^2)$
 - Need to know the **Shape Function** (= what the *b*-quark is doing inside the *B* meson)
- Solution: Measure $B \to X_c \ell \nu$ spectra → Non-perturb. effects

Inclusive $B \to X_c \ell \nu$ Spectra

- Observables: E_{ℓ} (lepton energy) and m_{χ} (hadron system mass)
 - Measurements by BABAR, Belle, CDF, CLEO, DELPHI

- OPE predicts observables integrated over large phase space
- → Moments: $\langle E_{\ell}^{n} \rangle = \frac{1}{\Gamma} \int (E_{\ell} \langle E_{\ell} \rangle)^{n} \frac{d\Gamma_{c}}{dE_{\ell}} dE_{\ell}$ $\langle m_{X}^{n} \rangle = \frac{1}{\Gamma_{c}} \int m_{X}^{n} \frac{d\Gamma_{c}}{dm_{X}} dm_{X}$

$$\left\langle m_X^n \right\rangle = \frac{1}{\Gamma_c} \int m_X^n \frac{d\Gamma_c}{dm_X} dm_X$$

Global OPE Fit

- OPE predicts total rate Γ_c and moments $\langle E_\ell^n \rangle$, $\langle m_X^n \rangle$ as functions of $|V_{cb}|$, m_b , m_c , and several non-perturb. params
 - Each observable has different dependence
 - → Can determine all parameters from a global fit
- $\blacksquare E_{\gamma}$ spectrum in $B \to X_s \gamma$ decays connected directly to the SF
 - Small rate and high background makes it tough to measure
 - Measured by *BABAR*, Belle, CLEO

APS April Meeting 2006

M. Morii, Harvard

OPE Fit Results

 BABAR
 PRD69:111103 PRD69:111104 PRD72:052004 hep-ex/0507001

 Belle
 PRL93:061803 hep-ex/0508005

 CLEO
 PRD70:031002 PRL87:251807

 CDF
 PRD71:051103

- Buchmüller & Flächer (hep-ph/0507253)

 fit data from 10 measurements with an OPE calculation by Gambino & Uraltsev (Eur. Phys. J. C34 (2004) 181)
 - Fit parameters: $|V_{cb}|$, m_b , m_c , μ_{π}^2 , μ_{G}^2 , ρ_{D}^3 , ρ_{LS}^3 , BR($B \to X_c \ell \nu$)

$$|V_{cb}| = (41.96 \pm 0.23_{\text{exp}} \pm 0.35_{\text{OPE}} \pm 0.59_{\Gamma_{sl}}) \times 10^{-3}$$

$$|E| = (41.96 \pm 0.23_{\text{exp}} \pm 0.35_{\text{OPE}} \pm 0.59_{\Gamma_{sl}}) \times 10^{-3}$$

$$|E| = (41.96 \pm 0.23_{\text{exp}} \pm 0.35_{\text{OPE}} \pm 0.59_{\Gamma_{sl}}) \times 10^{-3}$$

$$|E| = (41.96 \pm 0.23_{\text{exp}} \pm 0.030_{\text{OPE}} \text{GeV}$$

$$|E| = (41.96 \pm 0.23_{\text{exp}} \pm 0.030_{\text{OPE}} \text{GeV}$$

$$|E| = (41.96 \pm 0.23_{\text{exp}} \pm 0.035_{\text{OPE}} \text{GeV}$$

$$|E| = (41.96 \pm 0.035_{\text{exp}} \pm 0.035_{\text{OPE}} \text{GeV}$$

$$|E| = (41.96 \pm 0.035_{\text{OPE}} \pm 0.035_{\text{OPE}} \text{GeV}$$

• Goodness of the fit and the consistency between $X_c \ell \nu$ and $X_s \gamma$ add confidence to the theory

Inclusive $B \to X_{\nu} \ell \nu$

- Measure partial BF $\Delta \mathcal{B}(B \to X_{\nu} \ell \nu)$ in a region where ...
 - the signal/background is good, and
 - the partial rate $\Delta\Gamma_u$ is reliably calculable <

■ Many possibilities – Review a few recent results

Large $\Delta\Gamma_u$ generally good, but not always

Lepton Endpoint

- Find leptons with large E_{ℓ}
 - Push below the charm threshold
 - → Larger signal acceptance
 - → Smaller theoretical error
 - $S/B \sim 1/15$ ($E_{\ell} > 2$ GeV) → Accurate subtraction of background is crucial!

	E_{ℓ} (GeV)	$ V_{ub} $ (10 ⁻³)
BABAR 80fb ⁻¹	2.0–2.6	$4.41 \pm 0.29_{\rm exp} \pm 0.31_{\rm SF+theo}$
Belle 27fb ⁻¹	1.9–2.6	$4.82 \pm 0.45_{\rm exp} \pm 0.30_{\rm SF+theo}$
CLEO 9fb-1	2.2–2.6	$4.09 \pm 0.48_{\rm exp} \pm 0.36_{\rm SF+theo}$

Shape Function: determined from the OPE fit

Theory errors: Lange et al. PRD72:073006

lepton

reconstructed B

Prelim.

Hadronic B Tag

■ Fully reconstruct one *B* in hadronic decays

■ Use the recoiling *B* with known charge and momentum

Access to all kinematic variables

M _x (GeV/c	$q^2 (GeV^2/c^2)$	P ₊ (GeV/c)		
	Region	$ V_{ub} $ (10 ⁻³)		
	$m_X < 1.7 \text{ GeV}, q^2 > 8 \text{ GeV}^2$	$4.70 \pm 0.37_{\rm exp} \pm 0.31_{\rm SF+theo}$		
Belle 253M BB	$m_X < 1.7 \text{ GeV}$	$4.09 \pm 0.28_{\rm exp} \pm 0.24_{\rm SF+theo}$		
	$P_{+} > 0.66 \mathrm{GeV}$	$4.19 \pm 0.36_{\rm exp} \pm 0.28_{\rm SF+theo}$		
BABAR 210M BB	$m_X < 1.7 \text{ GeV}, q^2 > 8 \text{ GeV}^2$	$4.75 \pm 0.35_{\rm exp} \pm 0.32_{\rm SF+theo}$		

$|V_{ub}|$ from Inclusive $B \to X_u \ell v$

 \blacksquare | V_{ub} | determined to $\pm 7.4\%$

Experimental	±4.5%
SF params.	±4.1%
Theory	±4.2%

- Expt. and SF errors will improve with more data
- Theory errors from
 - Sub-leading SF (3.8%)
 - Higher-order nonperturbative corrections
 - Weak annihilation (1.9%)
 - Can be constrained with future measurements

SF-Free $|V_{ub}|$ Measurement

■ Possible to combine $b \to u\ell v$ and $b \to s\gamma$ so that the SF cancels

$$\Gamma(B \to X_u \ell \nu) = \frac{\left|V_{ub}\right|^2}{\left|V_{ts}\right|^2} \int W(E_{\gamma}) \frac{d\Gamma(B \to X_s \gamma)}{dE_{\gamma}} dE_{\gamma}$$
Weight function

■ BABAR applied Leibovich, Low, Rothstein

(PLB 486:86) to 80 fb⁻¹ data

m_X cut	$ V_{ub} $ (10-3)		
1.67 GeV	$4.43 \pm 0.45_{\rm exp} \pm 0.29_{\rm theo}$		
2.5 GeV	$3.84 \pm 0.76_{\rm exp} \pm 0.10_{\rm theo}$		

- Trade SF error → Stat. error
- m_X < 2.5 GeV is almost (96%) fully inclusive \rightarrow Theory error reduces to $\pm 2.6\%$

Inclusive vs. Exclusive

Exclusive Measurements

- Exclusive rates determined by $|V_{xb}|$ and Form Factors
 - Theoretically calculable at kinematical limits
 - Lattice QCD works if D^* or π is ~ at rest relative to B
 - Empirical extrapolation is necessary to extract $|V_{xb}|$ from measurements
- Measure differential rates to constrain the FF shape
 - Then use FF normalization from the theory

Exclusive $B \rightarrow D^* \ell \nu$

Decay rate is

$$\frac{d\Gamma(B \to D^* l v)}{dw} = \frac{G_F^2 |V_{cb}|^2}{48\pi^3} \mathcal{F}(w)^2 \mathcal{G}(w)$$
 phase space

- D^* boost in the B rest frame
 - $\mathcal{F}(1) = 1$ in the heavy-quark limit; lattice QCD: $\mathcal{F}(1) = 0.919^{+0.030}_{-0.035}$
 - $\mathcal{F}(w)$ shape expressed by ρ^2 (slope at w = 1) and R_1 , R_2 (form factor ratios)
- Hashimoto et al, PRD 66 (2002) 014503

■ Curvature constrained by analyticity

Caprini, Lellouch, Neubert NPB530 (1998) 153

- Measure decay angles θ_{ℓ} , θ_{V} , χ
 - Fit 3-D distribution in bins of w to extract ρ^2 , R_1 , R_2

$B \rightarrow D^* \ell \nu$ Form Factors

■ BABAR measured FF params. with 79 fb⁻¹

Signal MC vs. bkgd.-subtracted data, 1D projections

$$R_1 = 1.396 \pm 0.060_{\text{stat}} \pm 0.044_{\text{syst}}$$
 $R_2 = 0.885 \pm 0.040_{\text{stat}} \pm 0.026_{\text{syst}}$
 $\rho^2 = 1.145 \pm 0.059_{\text{stat}} \pm 0.046_{\text{syst}}$
Using *BABAR* measurements only

- R₁ and R₂ improved by a factor 5 over previous CLEO measurement PRL 76 (1996) 3898
- Will improve all measurements of $B \rightarrow D^* \ell \nu$

 $|V_{\rm cb}| = 37.6 \pm 0.3(stat) \pm 1.3(syst) \stackrel{+1.5}{_{-1.3}}(theory) \times 10^{-3}$

$|V_{cb}|$ from $B \rightarrow D^* \ell \nu$

■ HFAG average still uses FF from CLEO

c.f. $(42.0 \pm 0.7) \times 10^{-3}$ from inclusive OPE fit

Exclusive $B \rightarrow \pi \ell \nu$

 $\blacksquare B \to \pi \ell \nu$ rate is given by

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$
One FF for $B \to \pi \ell \nu$
with massless lepton

- Form factor $f_+(q^2)$ has been calculated using
 - Lattice QCD
 - Unquenched calculations by Fermilab (hep-lat/0409116) and HPQCD (PRD73:074502)
 - $\pm 12\%$ for $q^2 > 16$ GeV²
 - Light Cone Sum Rules
 - Ball & Zwicky (PRD71:014015)
 - $\pm 13\%$ for $q^2 < 16$ GeV²

Untagged $B \rightarrow \pi \ell \nu$

■ Missing 4-momentum = neutrino

20

q² (GeV²)

25

0

■ Reconstruct $B \to \pi \ell v$ and calculate m_B and $\Delta E = E_B - \sqrt{s}/2$

$D^{(*)}\ell \nu$ -tagged $B \to \pi \ell \nu$

- Reconstruct one B in $D^{(*)}\ell v$ and look for $B \to \pi \ell v$ in the recoil
 - $B \to D^* \ell \nu$ BF large; two neutrinos in the event
- Event kinematics determined assuming known m_B and $m_v = 0$

soft π

	Mode	BF (10 ⁻⁴)		
Belle	$B^0 o \pi^- \ell \nu$	1.38 ± 0.24		
	$B^+ o \pi^0 \ell \nu$	0.77 ± 0.16		
BABAR Prelim.	$B^0 o \pi^- \ell \nu$	1.02 ± 0.28		
	$B^+ o \pi^0 \ell \nu$	1.86 ± 0.44		

$|V_{ub}|$ from $B \to \pi \ell \nu$

Average BF measurements and apply FF calculations

$\Delta \mathcal{B}(q^2 < 16) \ (10^{-4})$	$\Delta \mathcal{B}(q^2 > 16) \ (10^{-4})$	Total \mathcal{B} (10 ⁻⁴)
$0.94 \pm 0.06_{\rm stat} \pm 0.06_{\rm syst}$	$0.39 \pm 0.04_{\rm stat} \pm 0.04_{\rm syst}$	$1.34 \pm 0.08_{\rm stat} \pm 0.08_{\rm syst}$

Form Factor	q^2 (GeV ²)	$ V_{ub} $ (10-3)				
Ball-Zwicky	< 16	3.36 ± 0.1	$15_{\text{exp}=0.37 \text{ theo}}^{+0.55}$	HOI	LCSR	
HPQCD	> 16	4.20 ± 0.2	$29^{+0.63}_{\text{exp}=0.43\text{theo}}$	H	+	Unquenched
FNAL	> 16	3.75 ± 0.2	$26_{\text{exp}-0.43\text{theo}}^{+0.65}$	—		LQCD
	Inclusive	: 4.45 ± 0.2	$20_{\rm exp} \pm 0.26_{\rm SF+t}$	theo	> H	
■ Consistent within (large)			1		HFAG Winter 2006	
FF errors		2		4	I [∨ 1∩- ³]	
Experimental errors already competitive			ve .	ub	I [× 10 ⁻³]	

Summary

- Semileptonic *B* decays offer exciting physics opportunities
 - $|V_{ub}/V_{cb}|$ complements $\sin 2\beta$ to test (in)completeness of the SM
- Challenge of hadronic physics met by close collaboration between theory and experiment
 - Inclusive $B \to X_c \ell \nu \& X_s \gamma$ fit precisely determines $|V_{cb}|$, m_b , etc.
 - Dramatic progress in both measurement and interpretation of inclusive $B \to X_{\nu} \ell \nu$ in the last 2 years
- Inclusive $|V_{ub}|$ achieved ±7.4% accuracy
 - Room for improvements with additional data statistics
- $B \to D^* \ell \nu$ form factors have improved by a factor 5
- Measurements of $B \to \pi \ell \nu$ becoming precise
 - Improved form factor calculation needed

Backup Slides

Weak Annihilation

- WA turns B^+ into ℓv + soft hadrons
- Size and shape of WA poorly known
- Minimize the impact
 - Measure $X_{\mu}\ell\nu$ with v. loose cuts
 - Cut away large q^2 region
- Measure WA contribution
 - $\Gamma_{\rm sl}(D^+)$ vs. $\Gamma_{\rm sl}(D_{\rm s})$
 - CLEO-c
 - Distortion in q^2
 - CLEO hep-ex/0601027
 - $\blacksquare \Gamma(B^+ \to X_u \ell \nu) \text{ vs. } \Gamma(B^0 \to X_u \ell \nu)$
 - Work in progress

P_{lep} (GeV/c)