# REDES NEURONAIS ARTIFICIAIS

Luís Morgado
ISEL-ADEETC

# ALGORITMO DE RETROPROPAGAÇÃO

#### Erro de classificação

$$E = \sum_{z} (d_{sz} - o_{sz})^2$$

#### Actualização dos pesos

$$w_{ij}^{(n+1)} = w_{ij}^{(n)} + \Delta w_{ij}^{(n)}$$

$$\Delta w_{ij}^{(n)} = -\eta \left( \frac{\partial E}{\partial w_{ij}} \right)$$

 $\eta$  - Taxa de aprendizagem

#### Condição de paragem

$$E = \sum_{z} (d_{sz} - o_{sz})^2 \le \mathcal{E}$$





# ALGORITMO DE RETROPROPAGAÇÃO

## Optimização num espaço de pesos $w_i$

Minimização do erro de classificação



#### **Objectivo: Minimizar erro**



$$\boldsymbol{x}^{n+1} = \boldsymbol{x}^n + \Delta \, \boldsymbol{x}^n$$
 ,  $n \geq 0$ 

$$\Delta \! m{x}^n = - \eta 
abla \! f(m{x}) \quad \eta$$
 - Dimensão do passo



## **Problemas**

$$\boldsymbol{x}^{n+1} = \boldsymbol{x}^n + \Delta \, \boldsymbol{x}^n$$
,  $n \geq 0$ 

$$\Delta oldsymbol{x}^n = -\eta 
abla f(oldsymbol{x}) \quad \eta$$
 - Dimensão do passo

#### Passo $\eta$ pequeno

# Small Steps Target

#### Passo $\eta$ grande



Convergência lenta

Oscilação

# ALGORITMO DE RETROPROPAGAÇÃO

## Efeito da variação da taxa de aprendizagem $\eta$





## **Óptimos locais**



## Descida de gradiente com momento



## Descida de gradiente com momento

$$\Delta x_i \leftarrow \alpha \Delta x_{i-1} - \eta \nabla f(x_i)$$



#### APRENDIZAGEM EM REDES NEURONAIS

Métodos de Optimização para Treino de Redes Neuronais

#### Descida de Gradiente

$$\Delta w_i = -\eta \, \frac{\partial L}{\partial w_i}$$

#### Descida de Gradiente com Momento

$$\Delta w_i^t = \alpha \Delta w_i^{t-1} - \eta \frac{\partial L}{\partial w_i}$$

#### Descida de Gradiente Estocástica

Em cada iteração de treino é utilizado um subconjunto amostra do conjunto de treino (batch)

#### **Outros métodos**

Root Mean Square Propagation (RMSProp), Adaptive Moment Estimation (Adam), Adaptive Gradient Algorithm (AdaGrad)

# **SOBREPARAMETRIZAÇÃO**

- A sobreparametrização (overfitting) é um dos problemas que pode surgir com frequência em redes neuronais artificiais
- Se a aprendizagem se prolongar em demasia, entre outras causas, pode resultar numa diminuição da capacidade de generalização da rede
- Apesar da rede ter aprendido os detalhes de um conjunto de treino particular, pode não responder de forma adequada quando são apresentados exemplos novos





Uma rede pode aprender os detalhes de um conjunto de treino particular, não respondendo de forma adequada quando são apresentados exemplos novos

## **Exemplo**



| Robert | Raquel | Romeo | Joan | James | Juliet | $A_d$ | Ao       | $S_d$ | $S_o$    |
|--------|--------|-------|------|-------|--------|-------|----------|-------|----------|
| 1      | 0      | 0     | 0    | 0     | 1      | 1     | 0.99     | 0     | 0.00     |
| 0      | 0      | 1     | 1    | 0     | 0      | 1     | 0.06(?)  | 0     | 0.94 (?) |
| 0      | 0      | 0     | 0    | 1     | 1      | 0     | 0.97 (?) | 1     | 0.01 (?) |

#### Causas

- Aprendizagem prolongada em demasia
- Poucos exemplos de treino
- Dados com ruído
- Rede tem demasiados parâmetros (neurónios, ligações)
  - Mais do que necessário para os dados em causa

## Soluções

- Simplificação da rede
- Paragem prévia (early stopping)
- Aumento dos dados (data augmentation)
- Regularização
- Redução selectiva de parâmetros (dropout)

Paragem prévia (early stopping)



#### **BIBLIOGRAFIA**

[Aggarwal, 2018]
C. Aggarwal, Neural Networks and Deep Learning
Springer, 2018

[Munakata, 1998]

T. Munakata, Fundamentals of the New Artificial Intelligence, Springer, 1998

[Winston, 1992]

P. Winston, Artificial Intelligence, 3rd Edition, Addison-Wesley, 1992

[Raizer et al., 2009]

K. Raizer, H. Idagawa, E. Nobrega, L. Ferreira, *Training and Applying a Feedforward Multilayer Neural Network in GPU*, CILAMCE, 2009