实验二 DNS协议漏洞利用实验

王美珍、梅松、张云鹤

华中科技大学网络空间安全学院

主要内容

- □ 实验目的
- □ 实验环境
- □ 实验内容
- □ 实验要求

1 实验目的

- □ 本实验的学习目标是让学生获得有关协议漏洞的第一手经验,以及针对这些漏洞的攻击。
- □ TCP/IP协议中的漏洞代表了协议设计和实现中的一种特殊类型的漏洞,它们提供了宝贵的教训
- □ 重点学习DNS协议的漏洞以及如何利用漏洞进行攻击

2 实验环境

- Ubuntu Seed虚拟机下载地址:
 - □ QQ群空间
- 虚拟机软件: vmware (15.5.0及兼容版本) + vmware tools
- ubuntu系统的用户密码 普通用户: seed 密码:dees 超级用户: root 密码: seedubuntu
- □ 实验采用一个虚拟机,多个容器来完成

docker容器的使用

- □ 容器查看
 - docker ps -a,可以看到已有一个server
- □ 容器创建
 - docker run -it --name=server --privileged "seedubuntu" /bin/bash
- □ 容器启用/停止
 - docker start/stop 容器名
- □ 进入容器的命令行
 - docker exec -it 容器名 /bin/bash
- □ 删除容器(实验未完成前不要删除)
 - docker rm 容器名

实验环境截图

3 实验内容

- □ DNS本地攻击
- □ DNS远程攻击

域名系统

DNS区域和权威域名服务器

- □ 一个DNS区域把树状域内临近的域名和子域组织起来,并将管理权限分配给实体。
 - 例如: example.com是一个国际企业,有很多子域名: usa.example.com、uk.example.com

本地DNS服务器

DNS迭代查询

- □ 查询www.example.net
 - 查询根域名服务器

b.iana-servers.net. 172800 IN A

- 查询.net域名服务器
- 查询.example.net域名服务器

```
seed@ubuntu:~$ dig @a.root-servers.net www.example.net

seed@ubuntu:~$ dig @m.gtld-servers.net www.example.net

seed@ubuntu:$ dig @a.iana-servers.net www.example.net

;; QUESTION SECTION:
;;www.example.net. IN A

;; ANSWER SECTION:
www.example.net. 86400 IN A 93.184.216.34
```

199.43.133.53

DNS根域名服务器

Hostname	IP Addresses	Manager
a.root-servers.net	198.41.0.4, 2001:503:ba3e::2:30	VeriSign, Inc.
b.root-servers.net	192.228.79.201	University of Southern California (ISI)
c.root-servers.net	192.33.4.12	Cogent Communications
d.root-servers.net	199.7.91.13, 2001:500:2d::d	University of Maryland
e.root-servers.net	192.203.230.10	NASA (Ames Research Center)
f.root-servers.net	192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
g.root-servers.net	192.112.36.4	US Department of Defence (NIC)
h.root-servers.net	128.63.2.53, 2001:500:1::803f:235	US Army (Research Lab)
i.root-servers.net	192.36.148.17, 2001:7fe::53	Netnod
j.root-servers.net	192.58.128.30, 2001:503:c27::2:30	VeriSign, Inc.
k.root-servers.net	193.0.14.129, 2001:7fd::1	RIPE NCC
l.root-servers.net	199.7.83.42, 2001:500:3::42	ICANN
m.root-servers.net	202.12.27.33, 2001:dc3::35	WIDE Project

DNS攻击

- · 攻击用户主机:修改/etc/hosts,或/etc/resolv.conf
- 欺骗用户响应: 伪造来自服务器的响应包,在真的服务器响应到达用户主机之前
- DNS缓存中毒攻击: 伪装其它服务器到服务器的响应, 毒化服务器缓存(可以用公网上的域名测试,如baidu)

DNS本地攻击

□ 攻击者和用户机或本地DNS服务器同一 LAN,攻击者可以嗅探网络流量

- □ 攻击用户主机,欺骗用户响应
 - netwox 105

(建议欺骗外网的域名,不要用www.example.com)

- □ 攻击DNS服务器,DNS缓存中毒攻击
 - netwox 105
 - scapy

构造DNS报文

IP Header

UDP Header

Transaction ID (id)	Flags		
Number of Question Records (qdcount)	Number of Answer Records (ancount)		
Number of Authority Records (nscount)	Number of Additional Records (arcount)		

Records: qd, an, ns, ar

DNS Heade

NS Data

Scapy构造DNS报文

```
>>> ls(DNS)
           : ShortField (Cond)
length
                                                    = (None)
            : ShortField
id
                                                    = (0)
           : BitField (1 bit)
                                                    = (0)
gr
           : BitEnumField (4 bits)
                                                      (0)
opcode
           : BitField (1 bit)
                                                      (0)
aa
           : BitField (1 bit)
tc
                                                      (0)
           : BitField (1 bit)
                                                    = (1)
rd
           : BitField (1 bit)
                                                    = (0)
ra
           : BitField (1 bit)
                                                    = (0)
Z
           : BitField (1 bit)
ad
                                                    = (0)
           : BitField (1 bit)
cd
                                                    = (0)
rcode
           : BitEnumField (4 bits)
                                                      (0)
           : DNSRRCountField
adcount
                                                    = (None)
ancount
           : DNSRRCountField
                                                    = (None)
           : DNSRRCountField
                                                    = (None)
nscount
           : DNSRRCountField
                                                    = (None)
arcount
qd
            : DNSQRField
                                                    = (None)
           : DNSRRField
                                                    = (None)
an
           : DNSRRField
                                                    = (None)
ns
           : DNSRRField
                                                    = (None)
ar
```

DNS记录格式(RFC 1035)

Question Record

Name	Record Type	Class
twysw.example.com	"A" Record 0x0001	Internet 0x0001

Answer Record

Name	Record Type	Class	Time to Live	Data Length	Data: IP Address
twysw.example.com	"A" Record 0x0001	Internet 0x0001	0x00002000 (seconds)	0x0004	1.2.3.4

Authority Record

Name	Record Type	Class	Time to Live	Data Length	Data: Name Server
example.com	"NS" Record 0x0002	Internet 0x0001	0x00002000 (seconds)	0x0017	ns.dnslabattacker.net

用scapy构造DNS报文

DNSQR Class

```
>>> ls(DNSQR)
qname : DNSStrField = (b'www.example.com')
qtype : ShortEnumField = (1)
```

qclass : ShortEnumField = (1)

DNSRR Class

```
>>> ls(DNSRR)
```

```
\begin{array}{llll} & \text{rrname} & : \ \mathsf{DNSStrField} & = \ (b'.') \\ \mathsf{type} & : \ \mathsf{ShortEnumField} & = \ (1) \\ \mathsf{rclass} & : \ \mathsf{ShortEnumField} & = \ (1) \\ \mathsf{ttl} & : \ \mathsf{IntField} & = \ (0) \\ \mathsf{rdlen} & : \ \mathsf{FieldLenField} & = \ (\mathsf{None}) \end{array}
```

rdata : MultipleTypeField = (b'')

本地DNS缓存中毒攻击

```
local dns srv = "10.0.2.7"
def spoof dns(pkt):
 if (DNS in pkt and 'example.com' in pkt[DNS].qd.qname.decode('utf-8')):
   old ip = pkt[IP]
   old udp = pkt[UDP]
   old dns = pkt[DNS]
   ip = IP ( dst = ?? , \
               src = ??
   udp = UDP ( dport = ?? , \
               sport = 53)
   Anssec = DNSRR( rrname = old dns.qd.qname, \
                  type = ??,
                   rdata = ?? ,
                  ttl = 259200)
   dns = DNS( id = old dns.id,
              aa=1, gr=1, gdcount=??, ancount=??,
              qd = old dns.qd,
              an = ??)
   spoofpkt = ???
   send(spoofpkt)
f = 'udp and (src host {} and dst port 53)'.format(local dns srv)
pkt=sniff(filter=f, prn=spoof dns)
```

DNS远程攻击

- 攻击者不能嗅探到 DNS服务器和用 户之间的数据
- 远程缓存中毒

Figure 1: The Lab Environment Setup

远程缓存中毒

Figure 2: The complete DNS query process

当Apollo等待 example.com DNS 服务器的应答时,攻 击者伪造DNS响应

远程缓存中毒

- 难点1: 猜对事务ID 解决: 事务ID 16位,范围有限
- · 难点2:缓存效应解决:Kaminsky攻击,查询包含不同名字的域名

此实验可能需要尝试多 次才能成功一次,实验 过程中一定要及时保存 结果的截图

4 实验要求

- □ 按照实验指导手册,使用本实验提供的虚拟 机完成实验内容。
- □ 通过实验课的上机实验,回答超星平台的问题, 提交作业。
- □ 本次实验不需要提交报告
- □ 注意保存实验过程中的截包数据和屏幕截屏 ,超星平台作业需要提交。

参考资料:

- □ 杜文亮 计算机安全导论:深度实践 高等 教育出版社
- □ SEED实验室网站:

http://www.cis.syr.edu/~wedu/seed/

□ Scapy中文手册

https://wizardforcel.gitbooks.io/scapy-docs/content/

常见错误

1. service bind9 start

提示加载liblwres.so.141动态库失败,权限不够

解决: docker run后面不带--privileged参数

2. Service bind9 start

启动失败,无错误原因提示

查看错误信息: named -d 3 -f -g

一般是配置文件语法错误引起的