General Models of Ecological Diversification

Talk at Earth by Ankit

Introduction

Ecospace

How the Ecology of Past Utilized?

There has been many hypothesis to explain the utilization of ecospace of past.

 These hypothesis can be generalized into four models of ecological diversification.

Four Models of Ecologocial Diversification

Figure 1: Four ecological Models

Figure 2: Character Displacement

Hey !! we don't want to fight, let's be strong at our own places.

Figure 3: Divergence

Figure 4: Ecological Release

Few more

Key innovation, habitat colonization, increased nutrient availability etc.

• **Niche Conservatism** The tendency of species to retain ancestral ecological characteristic.

- **Niche Conservatism** The tendency of species to retain ancestral ecological characteristic.
- Competition- Colonization trade-offs that allow poorer competitors to resist extinction by virtue of higher dispersal rates- can maintain redundancy by restricting opportunities for local competitive interactions.

Figure 5: Habitat filtering control on community membership, can restrict community membership to species sharing particular functional traits

Disruption in competitive interactions lead to increase in degree of redundancy. Sometimes Keystone species (and predation help in disrupting the competition.

Keystone species hold together the complex web of relationships in an ecosystem.

e.g., The foxes prey on other species and help to keep their populations down.

Potential Mechanism: Partitioning

In a generalized sense, partitioning is a form of resource specialization.

Niche Differentiation

Resource Partitioning: Species alter their use of the niche to avoid competition, by dividing resources among them

Potential Mechanism: Partitioning

Ecological fitting

An organism continues to exploit the same resources, but in a new host or environment.

Potential Causal Mechanism: Neutral

Not a cause driven model, its a passive model which is random.

• Functional Richness (FRic)- Volume of the functional space occupied by the community.

Calculated by Quick hull algorithm

 Functional Richness (FRic)- Volume of the functional space occupied by the community.

Calculated by Quick hull algorithm

 Functional Evenness (FEve)- the evenness of the abundance distribution in a functional trait space.

 Functional Divergence (FDiv)- FDiv measures the degree to which the abundance of a community is distributed toward the extremities of occupied functional trait space.

• Life habit richness (H)- Number of unique trait combinations.

- Life habit richness (H)- Number of unique trait combinations.
- Maximum Distance (M)- Maximum pairwise distance between two species in functional trait space.

- Life habit richness (H)- Number of unique trait combinations.
- Maximum Distance (M)- Maximum pairwise distance between two species in functional trait space.
- Mean Distance (D)- Average distance between pairs of species in ecospace.

- Life habit richness (H)- Number of unique trait combinations.
- Maximum Distance (M)- Maximum pairwise distance between two species in functional trait space.
- Mean Distance (D)- Average distance between pairs of species in ecospace.
- Total Variance (V)- Sum variances for each trait across species.

- Life habit richness (H)- Number of unique trait combinations.
- Maximum Distance (M)- Maximum pairwise distance between two species in functional trait space.
- Mean Distance (D)- Average distance between pairs of species in ecospace.
- Total Variance (V)- Sum variances for each trait across species.
- Functional Dispersion (FDis)

Redundancy models

• Life-habit richness (H) values far lower than species richness(S)

Partitionoing

Redundancy models

- Life-habit richness (H) values far lower than species richness(S)
- Low H values and declining or low, nearly constant disparity values.

Partitionoing

Redundancy models

- Life-habit richness (H) values far lower than species richness(S)
- Low H values and declining or low, nearly constant disparity values.

Partitionoing

 Declining trends in all statistics (except for certain such as FRic and M, that will increase slowly).

Redundancy models

- Life-habit richness (H) values far lower than species richness(S)
- Low H values and declining or low, nearly constant disparity values.

Partitionoing

- Declining trends in all statistics (except for certain such as FRic and M, that will increase slowly).
- Linear gradients are present in ecospace occupation.

Expansion vs Neutral

• The rate of increase will be slightly greater for the expansion model.

Expansion vs Neutral

- The rate of increase will be slightly greater for the expansion model.
- The centroid will often (but not always) be empty as the model progresses in expansion but will typically occupied in Neutral.

Expansion vs Neutral

- The rate of increase will be slightly greater for the expansion model.
- The centroid will often (but not always) be empty as the model progresses in expansion but will typically occupied in Neutral.
- Need large ecospace frameworks with many characters

Dyanamics and Mechanism of Models

			Dynamics			
Model	Rule	Potential causal mechanisms	Richness (H)	Disparity/dispersion (FDis, V, FRic, M)	Internal structure (FDiv, D)	Spacing (FEve)
Expansion	Successive species occupy life habits divergent from those already inhabited.	Divergence, character displacement, adap- tive radiation, ecological opportunity, ecological release, key innovation, habitat colonization, increased nutrient availabil- ity, (in part: ecosystem engineering, esca- lation, Red Queen, seafood through time)	≈S	† (fastest)	↓ FDiv	Constant
Neutral	Successive species accumulate without regard to existing life habits.	Stochasticity, random colonization from species pool	≈S	↑ (fast)	↓ Fdiv D constant	Constant
Partitioning	Successive species occupy life habits inter- mediate to those already inhabited.	Niche partitioning, specialization, coevolu- tion, ecological fitting	$\mathrm{rel} \colon \leq S \; \mathrm{str} \colon < S$	↑ (slow) FRic, M, ↓ (slow) FDis, V	1	1
Redundancy	Successive species occupy life habits already inhabited.	Keystone species, intermediate disturbance, competition—colonization trade-off, emer- gent neutrality, habitat filtering, niche conservatism, adaptive peaks, systems stability	Constant and low	↓ FDis/V, low FRic, constant M	↑ FDiv, ↓ D	1