

SUMMER TERM -2022 Course Handout Part - II

Date:

28.05.2022

In addition to part I (general handout for all courses appended to the timetable) this portion gives specific details regarding the course.

Course No: CHEM F212

Course Title: ORGANIC CHEMISTRY - I
Instructor-in-charge: KVG CHANDRA SEKHAR

Instructor: Manab Chakravarty

- **1.Course Description:** This course is a basic introductory course to organic chemistry.
- **2.Scope and objective of the course:** To familiarize the students with basic mechanistic aspects of organic reactions including mechanistic types, thermodynamics and kinetics, the important intermediates involved in organic reactions, functional group chemistry.
- **3. Text Book:** R. T. Morrison, R. Boyd and S. K. Bhattacharjee, Organic Chemistry, 7th edition. **(T1) Reference Books:** J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, OUP, 1st ed., 2000. **(R1)**

Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 4th edition 1992.

(R2)

G Marc Loudon, Organic Chemistry, Oxford, 4th Edition, 2002. **(R3)** Francis A Carey, Organic Chemistry, Tata McGrawHill, 7th edition, 2008. **(R4)**

4. Course Plan:

Lec. No.	Learning objectives	Topics to be Covered	Learning Outcomes	Chapter in the Text Book
1-2	Basic	Homolytic, heterolytic	Understanding of	T1: Ch. 4, pg. 55-59
	terminology	fission of bonds, concept of	basic organic	R1: Ch. 5, pg. 116-131.
	and	electrophiles and	reactions	Lecture notes
	representation	nucleophiles; how to write	and drawing reactions	
	of organic organic reaction realistically towards		realistically towards	
	reactions	mechanisms; movement of	creative organic	
		arrows; curved and fish-	chemistry;	
		hook arrows; examples	Representing the	
			movement of	
			electrons in reactions	
			by curly arrows	
3-4	Reactive	Carbocations: Structure &	Detailed analysis on	T1: Ch. 4, pg. 64-69.
	intermediates:	stability, generation and	the generation,	Lecture notes
	carbocations	reactions	character, type and	
			role of the useful	

5	Reactive intermediates: carbanions	Carbanions: Structure & stability, generation and reactions	intermediate carbocation in organic reactions, application in organic synthesis with stereochemical outcome Idea about another intermediate and difference between cation and anion intermediates in terms of the synthesis, behavior etc. Use of such intermediate in organic reactions	T1: Ch. 4, pg. 69-72. Lecture notes
6-7	Reactive intermediates: free radicals	Free radicals: Structure & stability, generation and reactions	Intermediate with a free electron and their reactions follow different rules than ionic intermediates, Idea of polymerization.	T1: Ch. 4, pg. 81-86. Lecture notes
8-10	Reactive intermediates: others	Carbenes; nitrenes: generation, stability, and fate	Substrate Conditions to generate carbenes, Carbenes are neutral species with only six electrons, electrophilic nature, insertion reaction and application in organic synthesis and modern development; How different these are with the ionic intermediates. Same information related to nitrene is expected to be gained as nitrenes are the nitrogen analogue of carbenes.	T1: Ch. 4, pg. 72-78. Lecture notes
11-13	Aromatic chemistry	Aromatic nucleophilic substitutions; Aromatic electrophilic substitutions; S _N Ar mechanism; benzyne mechanism;	Concept of aromaticity, Understanding the ways to functionalize the aromatic ring and its usefulness to	T1: Ch. 5C, pg. 262-283; Ch. 9, pg. 488-502. R1: Ch. 23, pg. 589-604. Lecture notes

14-17	Thormodynas	Thermodynamic and binetic	generate medicines and functional materials	T1.Ch 4 xx 07 100	
14-17	Thermodynam ics and kinetics of reactions	Thermodynamic and kinetic control; Hammond postulate; methods to determine mechanisms (Hammett equation, kinetic isotopic effect); examples	Importance in proposing mechanism, how the thermodynamic and kinetic parameters help to determine the feasibility of reactions (the speed and energy), how a reaction rate can vary with different substitution.	T1: Ch. 4, pg. 97-102. R1: Ch. 13, pg.319-330. Ch. 22, pg. 554-556. Ch. 41, pg.1090- 1101. R2: Ch. 6, pg. 208-215, 217-219, 226. Lecture notes	
18-21	Alkyl and aryl halides	Synthesis and reactions of alkyl and aryl halides	How these halides are related to our daily needs and the chemistry behind the fact	T1: Ch. 8, pg. 426-462. Ch. 9, pg. 482-485. Lecture notes	
22-25	Alcohols, phenol and ethers	Synthesis, reactivity; applications of Grignard reagents for synthesis; diols, acid/base catalysed ring opening	The chemistry involved in the naturally occurring functional groups that contain polar C-O bond, the distinct reactivity of these functional groups will be understood.	T1: Ch. 10, pg. 507-537. Ch. 11, pg. 545-562. Lecture notes (epoxides)	
26-28	Amines and nitro compounds	Synthesis, basicity and reactions	Many interesting natural products and widely used drugs are amines; hence such functional group chemistry will be learnt.	T1: Ch. 15, pg. 696-736. and Lecture Notes (Nitro compounds)	
29-37	Carbonyl compounds	Synthesis, reactivity, enolates, malonate and ethyl acetoacetate synthesis Aldol, Crossed Aldol and Claisen condensation; Conjugate addition reactions of α, β-unsaturated carbonyl compounds with special reference to Michael addition, Mannich reaction,	Concept about the most important functional group because its electon-deficient carbons and easily broken π -bond. The important name reactions and their applications in organic synthesis to synthesize medicinally	T1: Ch. 12, pg. 571-611. R1: Ch. 21, pg. 524-541. Lecture notes (malonate & ethyl acetoacetate)	

		Wittig reaction	useful molecules.	
38-40	Carboxylic	Synthesis, reactions,	Enrich with this	T1: Ch. 13, pg. 624-648;
	acid &	conversion for acid to other	interesting functional	Ch. 14, Pg. 657-685.
	derivatives	derivatives	groups in terms of	Lecture notes
			preparation, features	
			important products	
			such as aspirin	
41-42	Carbohydrates	Introduction and their	Concept on the largest	T1: Ch. 26, pg. 1228-1236,
		reactions	group of organic	1244-1253.
			molecules in nature,	Lecture notes
			the basic structures	
			and reactions of	
			carbohydrates	

5. Evaluation:

Component	Duration	Weightage (%)	Date and Time	Remarks
Mid-semester test	90 min.	30	25/06 (Saturday) 9:30-11	Closed
			AM	Book
Assignment	_	15	Continuous	Open Book
Seminar / Presentation	15 min.	10	After midsem	Open Book
Comprehensive	180 min.	45	22/07 (Friday) 9:00 – 12	Closed
Examination	100 IIIII.	45	Noon	Book

- 6. Make-up(s) will be granted only for genuine reasons.
- 7. Chamber consultation hours: To be announced
- **8. Notices:** All the notices pertaining to this course will be displayed on **Department of Chemistry Notice Board only**.
- **9. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- **10. Final grading** will be done on the basis of the overall performance of a student in each of the components as

listed in item no. 5. For **mid-semester grading**, progress made by a student up to that point of time would be

evaluated.

Instructor-in-Charge Organic Chemistry -

