CSARCH1 Long Test 1 Mock Test

- $Positional\ Number\ System\ _$
- 1. How many unique symbols are there in the Hexadecimal System?
- 2. Given the number 12345.678₉, which digit is associated with the lowest place value?
- 3. Given the number 0x1AB23.45, give the place value expansion.
- 4. [T or F] Any number represented in the Quinary Number System (Base 5) can have digits from 0-5.
- 5. What is x if $322_4 = 134_x$?

$Number\ Base\ Conversion\ ___$

Complete the table. Limit to 2 fractional places for non-terminating fractional values

Complete the table. Emili to 2 fractional places for non-terminating fractional values.						
	Decimal	Binary	Base-4	Base-7	Octal	Hexadecimal
	107.6875					
				66.232		
					227.21	

Binary Data Organization 0x1919FA23FA43C7BC

(Word defined as 32-bit)

(* * * * * * * * * * * * * * * * * * *	·)
LSb	
LSB	
LSNibble	
LSWord	
LSDoubleWord	
LSQuadWord	
MSb	
MSB	
MSNibble	
MSWord	
${ m MSDoubleWord}$	
MSQuadWord	

0xFA3E0FF3141AABB2 (Word defined as 16-bit)

(Word defined as 10-bi	0)
LSb	
LSB	
LSNibble	
LSWord	
LSDoubleWord	
LSQuadWord	
MSb	
MSB	
MSNibble	
MSWord	
${ m MSDoubleWord}$	
MSQuadWord	

${\bf Address}({\bf Hex})$	8-bit memory data (Hex)
1007	FF
1006	1A
1005	AB
1004	23
1003	78
1002	BA
1001	C5
1000	28
Big Endian	

2-byte hex data stored at address 1005.

4-byte hex data stored 1003.

Litte Endian

2-byte hex data stored 1001.

8-byte hex data stored at 1004

$\mathbf{Address} (\mathbf{Hex})$	16-bit memory data (Hex)
$100\mathrm{E}$	FOCA

100E	F0CA
100C	A989
100A	1000
1008	7878
1006	2334
1004	A4BC
1002	1231
1000	5AC2
Big Endian	
2-byte hex data stored at ad	dress 1008.

4-byte hex data stored 1004.

Litte Endian

2-byte hex data stored 1002. 8-byte hex data stored at 1006

2x vs 10y1. Binary prefixes are mainly used in

- 2. 10^y are also known as the prefixes. 3. Determine which is larger: 3GiB or 3GB.
- 4. If specifications of a RAM stick is stated to have 8GB, what is the actual value?
- Complements1. Given the following numbers, find the radix complement (r) and the diminished radix complement (r-1).

a. 6423₇

199

- 2. $1011\ 1101_2\ -\ 1111\ 1111_2\ =\ _$? Is the result an overflow if the operands are unsigned? $_$ 3. $1100\ 1111_2\ -\ 1111\ 1110_2\ =\$? Is the result an overflow if the operands are unsigned?
- Binary Codes for Decimals Base-10 BCD $\mathbf{2421}$ Excess-3 Binary

4. $55_9 - 82_9 =$ _____? Is the result an overflow if the operands are unsigned? _____

b. CCA.1A

1011011

Boolean Algebra		
1. Given the following function, find the number of variables, literals, and terms.		
A. ABC + C'B'A + A		

84-2-1

B. (B + A)(C' + A)D2. Maxterm and Minterm are known as _____ forms.

- 4. In the context of truth tables, a function is 0 if a maxterm evaluates to _. 5. Given a function's sum of minterm and product of maxterm, their truth tables are (complementary, equal).
- 6. Given a function's sum of minterm and the complement of a function's product of maxterm, the indices are (complementary, equal).

3. In the context of truth tables, a function is 1 if a minterm evaluates to _.

- Given the following boolean functions find the following: For boolean functions in no's 1-3, find the following:
 - a. (Σ notation) Canonical Sum of Minterm. b. (Π notation) Canonical Product of Maxterm.
 - e. (Σ notation) Canonical Sum of Minterm of F'.

c. (Algebraic) Standard Product of Sum. d. (Algebraic) Standard Sum of Product.

- f. (Algebraic) Product of Sum of F'.
- 1. F(W, X, Y, Z) = XZ + WXY + WX'Z + W'Z + YZ'
- 2. F(A, B, C, D) = ACB' + B'C' + AD + ACD' + A'CB3. F(A, B, C, D) = A'B'CD + AB' + A'BC' + B(A' + C')
- For boolean functions in no's 4-6, find the following:
 - a. (Σ notation) Canonical Sum of Minterm.
 - b. (Π notation) Canonical Product of Maxterm. c. (Algebraic) Standard Product of Sum.
 - d. (Algebraic) Standard Sum of Product. e. (Σ notation) Canonical Sum of Minterm of F'.
 - f. (Algebraic) Sum of Product of F'.
- 4. F(A, B, C, D) = (D + B' + C')(A' + B' + C)(A' + D)
- 5. F(A, B, C, D) = (C' + A + D')(B + C)(B + D')(A + B' + C)6. F(V, W, X, Y, Z) = (V + Y' + Z)(V + W + Y')(V + W + X')

