

Arduino-IOT [wk12]

cds_dht22 + node MongoDB-II

Visualization of Signals using Arduino, Node.js & storing signals in MongoDB & mining data using Python

Email: chaos21c@gmail.com

My ID

ID를 확인하고 github에 repo 만들기

ID	성명
AA01	강동하
AA02	고서진
AA03	김민재
AA04	김예원
AA05	김주호
AA06	김창욱
AA07	김현서
AA08	박종혁
AA09	서명진
AA10	유동기
AA11	
AA12	이근보
AA13	정호기

위의 id를 이용해서 github에 repo를 만드시오.

Option: ^{아두이노}응용 실습 과제 – AAnn

Public, README.md check

[Practice]

- [wk11: mongoDB test]
- Insert documents to test mongodb
 & cds-dht22-node-mongodb
- Upload folder: aann-rpt11
- Use repo "aann" in github

wk11: Practice: aann-rpt11

- [Target of this week]
 - Complete your works: mongoDB test.
 - Save your outcomes and upload outputs in github

```
제출폴더명: aann-rpt11 에 아래 파일을 추가
```

```
- 제출할 파일들
```

- ① AAnn_mongo_schemas.png
- ② AAnn_mongo_update.png
- 3 dbtest.js (cds_dht22 folder)
- 4 dbtest2.js (cds_dht22 folder)
- **⑤** AAnn_iot_mongodb.png

Purpose of AA

주요 수업 목표는 다음과 같다.

- 1. Node.js를 이용한 아두이노 센서 신호 처리
- 2. Plotly.js를 이용한 아두이노 센서 신호 시각화
- 3. MongoDB에 아두이노 센서 데이터 저장 및 처리

4. 저장된 IoT 데이터의 마이닝 (파이썬 코딩)

Layout [H S C]

on WEB monitoring Arduino data

IoT Signal from Arduino Weather Station

Real-time Signals

on Time: 2021-10-27 11:54:48.997

Signals (온도,습도,조도) : 23.4,42.6,286

Real-time Weather Station from sensors

on Time: 2023-11-22 14:32:01.051

A5. Introduction to IoT service

System (Arduino, sDevice, ...)

Data (signal, image, sns, ...)

Visualization & monitoring

Data storaging & mining

Service

Arduino

& Node.js

& MongoDB

Multi-sensors

DHT22 + CdS

DHT22 + CdS circuit

DHT22[D4] + 1 k Ω , CdS[A0] + 10 k Ω

DHT22 + CdS + Node.js

[3] Result: Parsed streaming data from dht22 & CdS (Run in Terminal)

node cds_dht22_node.js


```
node
문제
              디버그 콘솔
                                  JUPYTER.
AAnn, 2021-10-27 11:53:01.872, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:02.872, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:04.150, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:05.154, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:06.428, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:07.431, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:08.709, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:09.713, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:10.987, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:11.990, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:13.269, 23.4, 42.6, 284
AAnn, 2021-10-27 11:53:14.268, 23.4, 42.6, 284
AAnn, 2021-10-27 11:53:15.546, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:16.550, 23.4, 42.6, 284
AAnn, 2021-10-27 11:53:17.824, 23.4, 42.6, 286
AAnn, 2021-10-27 11:53:18.827, 23.4, 42.6, 286
```

Arduino data on network socket

IoT Signal from Arduino Weather Station

Real-time Signals

on Time: 2021-10-27 11:54:48.997

Signals (온도,습도,조도) : 23.4,42.6,286

Real-time monitoring of signals from Arduino CdS + DHT22 circuit

WEB client: client_cds_dht22.html

Real-time Weather Station from sensors

on Time: 2021-10-27 12:04:53.016

1. 작업 폴더 구조

2.1 cds_dht22_mongodb.js

```
1 // cds dht22 mongodb.js
 3 var serialport = require('serialport');
 4 var portName = 'COM4'; // check your COM port!!
  var port = process.env.PORT | 3000;
 7 var io = require('socket.io').listen(port);
 9 // MongoDB
10 var mongoose = require('mongoose');
11 var Schema = mongoose.Schema;
12 // MongoDB connection
13 mongoose.connect('mongodb://localhost:27017/iot'); // DB name
14 var db = mongoose.connection;
15! db.on('error', console.error.bind(console, 'connection error:'));
16 db.once('open', function callback () {
console.log("mongo db connection OK.");
18 });
19 // Schema
20 var iotSchema = new Schema({
       date : String,
21
22 temperature : String,
23
       humidity : String,
    luminosity: String
24
```


2.2 cds_dht22_mongodb.js

```
// Schema
23
    var iotSchema = new Schema({
      ! date: String,
     temperature: String,
26
      I humidity: String,
27
      ! luminosity: String,
28
29
     // Display data on console in the case of saving data.
     iotSchema.methods.info = function () {
31
       var iotInfo = this.date
32
         ? "Current date: " +
33
           this.date +
34
           ", Temp: " +
35
          this.temperature +
36
           ", Humi: " +
37
          this.humidity +
38
           ", Lux: " +
39
           this.luminosity
40
         : "I don't have a date";
41
       console.log("iotInfo: " + iotInfo);
42
43
```


2.3 cds_dht22_mongodb.js

```
const Readline = require("@serialport/parser-readline");
45
46
     // serial port object
     var sp = new serialport(portName, {
47
      baudRate: 9600, // 9600 38400
48
       dataBits: 8.
49
   parity: "none",
50
51
    stopBits: 1,
    flowControl: false,
52
     parser: new Readline("\r\n"),
53
54
     });
55
56
     const parser = sp.pipe(new Readline({ delimiter: "\r\n" }));
57
     // Read the port data
58
     sp.on("open", () => {
59
     console.log("serial port open");
60
61
     });
62
     var readData = ""; // this stores the buffer
63
     var temp = "";
64
     var humi = "";
65
     var lux = "";
66
67
     var mdata = []; // this array stores date and data from multiple sensors
68
     var firstcommaidx = 0;
69
     var Sensor = mongoose.model("Sensor", iotSchema); // sensor data model
```


2.4 cds_dht22_mongodb.js - parsing data & save data in MongoDB

```
parser.on("data", function (data) {
        // call back when data is received
 73
        readData = data.toString(); // append data to buffer
 74
        firstcommaidx = readData.indexOf(",");
 75
 76
        // parsing data into signals
 77
        if (readData.lastIndexOf(",") > firstcommaidx && firstcommaidx > 0) {
 78
           temp = readData.substring(0, firstcommaidx);
 79
 80
           humi = readData.substring(
 81
            firstcommaidx + 1,
 82
            readData.indexOf(",", firstcommaidx + 1)
 83
 84
 85
           lux = readData.substring(readData.lastIndexOf(",") + 1);
 86
          readData = "":
 87
          dStr = getDateString();
 88
          mdata[0] = dStr; // Date
 89
          mdata[1] = temp; // temperature data
 90
          mdata[2] = humi; // humidity data
 91
          mdata[3] = lux; // luminosity data
 92
          var iot = new Sensor({
 93
                                       // Sensor document 객체
            date: dStr,
 94
            temperature: temp,
 95
            humidity: humi,
 96
            luminosity: lux.
 97
         });
 98
 99
         // save lot data to MongoDB
         iot.save(function (err, iot) {
100
            if (err) return handleEvent(err);
101
            iot.info(); // Display the information of iot data on console.
102
         });
103
          io.sockets.emit("message", mdata); // send data to all clients
104
         else {
105
106
          // error
107
          console.log(readData);
108
109
```


2.5 cds_dht22_mongodb.js

```
io.sockets.on("connection", function (socket) {
113
        // If socket.io receives message from the client browser then
114
115
        // this call back will be executed.
        socket.on("message", function (msg) {
116
117
          console.log(msg);
        });
118
        // If a web browser disconnects from Socket.IO then this callback is called.
119
        socket.on("disconnect", function () {
120
          console.log("disconnected");
121
        });
122
      });
123
124
      // helper function to get a nicely formatted date string
125
      function getDateString() {
126
        var time = new Date().getTime();
127
        // 32400000 is (GMT+9 Korea, GimHae)
128
129
        // for your timezone just multiply +/-GMT by 3600000
        var datestr = new Date(time + 32400000)
130
          .toISOString()
131
          .replace(/T/, " ")
132
          .replace(/Z/, "");
133
        return datestr;
134
135
```


2.6 [Run] node cds_dht22_mongodb.js

```
D:\aann\aann-rpt11-Complete\cds_dht22>node cds_dht22_mongodb
serial port open
mongo db connection OK.
iotInfo: Current date: 2023-11-22 14:50:19.089, Temp: 20.3, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.089, Temp: 20.2, Humi: 45.6, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.083, Temp: .2, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.090, Temp: 20.2, Humi: 45.6, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.090, Temp: 20.3, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.088, Temp: 20.3, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.091, Temp: 20.2, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.091, Temp: 20.2, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.092, Temp: 20.3, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.092, Temp: 20.3, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.093, Temp: 20.2, Humi: 45.6, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.093, Temp: 20.2, Humi: 45.6, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.093, Temp: 20.2, Humi: 45.6, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.089, Temp: 20.2, Humi: 45.6, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:19.091, Temp: 20.3, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:20.672, Temp: 20.3, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:21.672, Temp: 20.3, Humi: 45.7, Lux: 63
iotInfo: Current date: 2023-11-22 14:50:22.683, Temp: 20.3, Humi: 45.7, Lux: 63
```


3. cds_dht22_mongodb.js → Check documents in Mongo shell

Mongo shell

- > show dbs
- > use iot
- > show collections
- > db.sensors.find() .pretty()

```
node
ox mongo
                                 JS cds dht22 mongodb.js
> show dbs
        0.000GB
config 0.000GB
        0.000GB
        0.000GB
        0.000GB
> use iot
switched to db iot
> show collections
> db.sensors.find().pretty()
        "_id" : ObjectId("6181eb5338cdbc755b232170"),
        "date": "2021-11-03 10:52:19.797",
        "temperature": "23.5".
        "humidity" : "40.5",
        "luminosity": "84".
        " v" : 0
        "_id" : ObjectId("6181eb5638cdbc755b232172"),
        "date": "2021-11-03 10:52:22.074",
        "temperature": "23.5",
        "humidity" : "40.5",
        "luminosity": "51",
        " v" : 0
        "_id" : ObjectId("6181eb5838cdbc755b232174"),
        "date": "2021-11-03 10:52:24.352",
        "temperature": "23.5",
        "humidity" : "40.5",
        "luminosity" : "81",
        " v" : 0
                           Save as
```

AAnn_iot_mongdb.png

Arduino

& Node.js

mongodb & MongodB

& Express server

- 1.1 Install express server package.json
- Go to cds_dht22 project
- npm install --save express
- package.json

```
"author": "aa00",
"license": "MIT",
"dependencies": {
"express": "^4.17.1",
 "mongoose": " ^6.7.0 ",
 "serialport": "^9.2.4",
  "socket.io": "^2.4.1"
```


2.1 cds_dht22_express.js

```
// cds dht22 express.js
    var express = require("express");
    var app = express();
 3
    var web port = 3030; // express port
 5
 6
     // MongoDB
    var mongoose = require("mongoose");
     var Schema = mongoose.Schema; // Schema object
 8
 9
     // MongoDB connection
     mongoose.connect("mongodb://localhost:27017/iot", {
10
       useNewUrlParser: true,
11
       useUnifiedTopology: true,
12
     });
13
14
     var db = mongoose.connection;
     db.on("error", console.error.bind(console, "connection error:"));
15
16
     db.once("open", function callback() {
       console.log("mongo db connection OK.");
17
     });
18
     // Schema
19
     var iotSchema = new Schema({
20
     date: String,
21
     temperature: String,
22
     humidity: String,
23
     luminosity: String,
24
25
26
     var Sensor = mongoose.model("Sensor", iotSchema); // sensor data model
```


2.2 cds_dht22_express.js

```
28
     // Web routing address
     app.get("/", function (req, res) {
29
     // localhost:3030/
30
      res.send("Hello Arduino IOT: express server by AA00!");
31
     });
32
     // find all data & return them
33
     app.get("/iot", function (req, res) {
34
        Sensor.find(function (err, data) {
35
         res.json(data);
36
37
       });
38
     });
     // find data by id
39
      app.get("/iot/:id", function (req, res) {
40
        Sensor.findById(reg.params.id, function (err, data) {
41
         res.json(data);
42
43
       });
      });
44
45
46
     // Express WEB
      app.use(express.static( dirname + "/public")); // WEB root folder
47
      app.listen(web port); // port 3030
48
49
      console.log("Express IOT is running at port:3030");
```


2.3 [Run] node cds_dht22_express.js

```
(base) D:\aann\aann-rpt10\cds_dht22>node cds_dht22_express
Express_IOT is running at port:3030
mongo db connection OK.
```


2.4 cds_dht22_express.js → routing1, http://localhost:3030/

Hello Arduino IOT: express server by AA00!

2.5 cds_dht22_express.js → routing2 http://localhost:3030/iot

AAnn_iot_mongodb_web.png

2.6 cds_dht22_express.js → routing2 http://localhost:3030/iot:id

```
S localhost:3030/iot/6181eb6138○ ×
          localhost:3030/iot/6181eb6138cdbc755b23217c
                                      ⊕(
                                    \Box
  앱 🚟 Gmail N 네이버 🔼 YouTube 📳 ML blog 🧻 AL_IOT
                                   Android
```


2.7 copy cds_dht22_client.html & gauge.min.js → ./public/ subfolder http://localhost:3030/client_cds_dht22.html (web root folder)

Real-time Weather Station from sensors

on Time: 2021-11-03 11:49:58.294

2.8 CORS bug (Cross Origin Resource Sharing)

* CORS problem

→ 원격 서버 내의 파일에 접근을 허용

2.9 CORS patch on the express server → cds_dht22_express.js Node cmd에서 'cors' module 설치 (version 2.8.4 이상) npm install --save cors

```
// cds_dht22_express_cors.js
     // Express + CORS
     var express = require("express");
     var cors = require("cors");
5 var app = express();
6 app.use(cors());
     var web_port = 3030; // express port
     // MongoDB
     var mongoose = require("mongoose");
10
11
     var Schema = mongoose.Schema; // Schema object
```

```
D:\aann\aann-rpt11\cds_dht22>node cds_dht22_express
Express_IOT with CORS is running at port:3030
mongo db connection OK.
```


DHT22 + CdS + Node.js + MongoDB

Web monitoring – Google AngularJS

DHT22 + CdS + Node.js + MongoDB

Web monitoring: http://localhost:3030/iot

DHT22 + CdS + Node.js + MongoDB

Web monitoring

DHT22 + CdS + Node.js + MongoDB

Web monitoring

3.5 Web client: client_iotDB.html - iot DB monitoring (public 폴더에서 제공)

Web monitoring-2: week

Web monitoring-3: day

3.1 Web client: client_iotDB.html

```
client_iotDB.html
 1 <!DOCTYPE html>
 2 <head>
       <meta charset="utf-8">
    <!-- Plotly.js -->
 5
    <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
   </head>
   <body>
       <h1>MongoDB database visualization by AA00k/h1>
8
9
       (hr)
10
       <h2>Time series : Multi sensor data</h2>
11
12
       <!-- Plotly chart will be drawn inside this DIV -->
13
       <div id="myDiv" style="width: 900px; height: 600px"></div>
14
```


3.2 Web client: client_iotDB.html

```
<script>
    <!-- JAVASCRIPT CODE GOES HERE -->
   Plotly.d3.json(" http://localhost:3030/iot ", function(err, json){
        //alert(json);
         alert(JSON.stringify(json)); // It works!!!
       //alert(JSON.parse(eval(json));
        if(err) throw err;
        var date = [];
        var temp = []:
       var humi = []:
        var lumi = [];
       var jsonData = eval(JSON.stringify(json));
       //alert(jsonData.length);
        //alert(jsonData[2].luminosity);
        for (var i = 0; i < jsonData.length; i++) {
            date[i] = jsonData[i].date;
            temp[i] = jsonData[i].temperature ;
            humi[i] = jsonData[i].humidity;
            lumi[i] = jsonData[i].luminosity;
```

JSON file

```
{"_id": "5fbdab71d02de805786af43c", "date": "2020-11-25
09:55:13.068", "temperature": "18.9", "humidity": "24.7", "luminosity": "207", "__v":0},
{"_id": "5fbdab73d02de805786af43d", "date": "2020-11-25
09:55:15.341","temperature":"18.9","humidity":"24.7","luminosity":"208","__v":0},
{"_id": "5fbdab75d02de805786af43e", "date": "2020-11-25
```


3.3 Web client: client_iotDB.html - data & layout

```
// time series of sensor data
var trace1 = {
   type: "scatter",
   mode: "lines",
   name: 'Temperature',
   x: date,
   y: temp,
   line: {color: '#fc1234'}
var trace2 = {
   type: "scatter",
   mode: "lines",
    name: 'Humidity',
   x: date,
  y: humi,
  line: {color: '#3412fc'}
var trace3 = {
   type: "scatter",
   mode: "lines",
   name: 'Luminosity',
   x: date,
  y: lumi,
   line: {color: '#34fc12'}
var data = [trace1, trace2, trace3];
```

```
// Layout with builtin rangeslider
var layout = {
    title: 'Temp vs. Humi vs. Lumi with rangeslider',
        autorange: true,
        range: [date[0], date[date.length-1]], rangeselector: {buttons: [
                 count: 1,
                 label: '1 hour',
                 step: 'hour',
                 stepmode: 'backward'
                 count: 6,
                 label: '6 hour',
                 step: 'hour',
                 stepmode: 'backward'
                 count: 24,
                 label: '1 day',
                 step: 'hour',
                 stepmode: 'backward'
                 count: 7,
                 label: '1 week',
                 step: 'day',
                 stepmode: 'backward'
             {step: 'all'}
            rangeslider: {range: [date[8], date[date.length
           autorange: true,
           range: [0, 300],
            type: 'linear
    );
    Plotly newPlot('myDiv', data, layout);
})
```


3.4 Web client: client_iotDB.html - load iot data in json file

3.5 Web client: client_iotDB.html - iot DB monitoring

AAnn_iot_client.png

[Practice]

- ◆ [wk12]
- > RT Data storaging with MongoDB
- Multi-sensor circuits (cds-dht22)
- Complete your project
- Upload folder: aann-rpt11

Wk11/12: Practice: aann-rpt11

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

제출폴더명: aann-rpt11

- 압축할 파일들

- ① AAnn_iot_mongodb_web.png
- ② AAnn_iot_ison.png
- 3 AAnn_iot_client.png
- 4 All *.ino
- **5** All *.js
- 6 All *.html in public folder
- 7 Delete 'node_modules' folder

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.nodejs.org/ko Node.js
- https://plot.ly/ plotly
- https://www.mongodb.com/ MongoDB
- ✓ http://www.w3schools.com

 By w3schools.com
- http://www.github.com GitHub

Target of this class

Real-time Weather Station from nano 33 BLE sensors

on Time: 2020-09-09 10:27:17.321

