Turing's Thesis

Turing's thesis:

Any computation carried out by mechanical means can be performed by a Turing Machine

(1930)

Computer Science Law:

A computation is mechanical if and only if it can be performed by a Turing Machine

There is no known model of computation more powerful than Turing Machines

Definition of Algorithm:

An algorithm for function f(w) is a Turing Machine which computes f(w)

Algorithms are Turing Machines

When we say:

There exists an algorithm

We mean:

There exists a Turing Machine that executes the algorithm

Variations of the Turing Machine

The Standard Model

Infinite Tape

 $\Diamond \Diamond a a b a b b c a c a \Diamond \Diamond \Diamond$

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with: • Stay-Option

- · Semi-Infinite Tape
- · Off-Line
- Multitape
- Multidimensional
- Nondeterministic

The variations form different Turing Machine Classes

We want to prove:

Each Class has the same power with the Standard Model Same Power of two classes means:

Both classes of Turing machines accept the same languages

Same Power of two classes means:

For any machine M_1 of first class there is a machine $\,M_{\,2}\,$ of second class

such that: $L(M_1) = L(M_2)$

And vice-versa

Simulation: a technique to prove same power Simulate the machine of one class with a machine of the other class Second Class Simulation Machine First Class Original Machine M_2 M_1 M_1

Configurations in the Original Machine correspond to configurations in the Simulation Machine

Original Machine: $d_0 \succ d_1 \succ \cdots \succ d_n$

 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$ Simulation Machine: $d_0' \succ d_1' \succ \cdots \succ d_n'$

Final Configuration

Original Machine:

Simulation Machine:

 d'_f

The Simulation Machine and the Original Machine accept the same language

Turing Machines with Stay-Option

The head can stay in the same position

Left, Right, Stay

L,R,S: moves

Example:

Time 1

Time 2

 $\Diamond \Diamond b a b a b b c a c a \Diamond \Diamond \Diamond$

 q_2

 (q_1) $a \rightarrow b, S$ (q_2)

Theorem:

Stay-Option Machines have the same power with Standard Turing machines Proof:

Part 1: Stay-Option Machines are at least as powerful as

Standard machines

Proof: a Standard machine is also

a Stay-Option machine

(that never uses the 5 move)

Proof:

Part 2: Standard Machines

are at least as powerful as Stay-Option machines

Proof: a standard machine can simulate

a Stay-Option machine

Stay-Option Machine

Simulation in Standard Machine

Similar for Right moves

20

Stay-Option Machine

Simulation in Standard Machine

For every symbol x

Example

Stay-Option Machine:

$$\underbrace{q_1}^{a \to b, S} \underbrace{q_2} \quad \underbrace{\frac{1}{|\Diamond |a|a|b|a|\Diamond}}_{q_1} \quad \underbrace{\frac{2}{|\Diamond |b|a|b|a|\Diamond}}_{q_2}$$

Simulation in Standard Machine:

Standard Machine--Multiple Track Tape

Standard Turing machines simulate Semi-infinite tape machines:

Trivial

Theorem: Semi-infinite tape machines have the same power with Standard Turing machines

Off-line machines simulate Standard Turing Machines:

Off-line machine:

- 1. Copy input file to tape
- 2. Continue computation as in Standard Turing machine

Theorem: Off-line machines
have the same power with
Stansard machines

Standard machines simulate Multitape machines:

Standard machine:

- Use a multi-track tape
- A tape of the Multiple tape machine corresponds to a pair of tracks

Theorem: Multi-tape machines have the same power with Standard Turing Machines

Same power doesn't imply same speed:

Language
$$L = \{a^n b^n\}$$

Acceptance Time

Standard machine n^2

Two-tape machine n

$$L = \{a^n b^n\}$$

Standard machine:

Go back and forth n^2 times

Two-tape machine:

Copy
$$b^n$$
 to tape 2 $(n \text{ steps})$

Leave
$$a^n$$
 on tape 1 $(n \text{ steps})$

Compare tape 1 and tape 2 (n steps)

Multidimensional machines simulate Standard machines:

Use one dimension

Standard machines simulate Multidimensional machines:

Standard machine:

- · Use a two track tape
- Store symbols in track 1
- Store coordinates in track 2

Standard machine:

Repeat for each transition

- Update current symbol
- Compute coordinates of next position
- Go to new position

Theorem: MultiDimensional Machines have the same power with Standard Turing Machines

57

NonDeterministic Turing Machines $a \to b, L \longrightarrow q_2$ $q_1 \longrightarrow a \to c, R \longrightarrow q_3$ Non Deterministic Choice

NonDeterministic Machines simulate Standard (deterministic) Machines:

Every deterministic machine is also a nondeterministic machine

Deterministic machines simulate NonDeterministic machines:

Deterministic machine:

Keeps track of all possible computations

Non-Deterministic Choices q_1 q_2 q_3 Computation 1 q_6 q_7

Simulation

Deterministic machine:

- Keeps track of all possible computations
- Stores computations in a two-dimensional tape

66

Repeat

- Execute a step in each computation:
- If there are two or more choices in current computation:
 - 1. Replicate configuration
 - 2. Change the state in the replica

Theorem: NonDeterministic Machines have the same power with Deterministic machines

Remark:

The simulation in the Deterministic machine takes time exponential time compared to the NonDeterministic machine

71