

Studienplan (Curriculum) für das

Masterstudium Chemie und Technologie der Materialien

an der Technischen Universität Wien

und

an der Universität Wien

UE 066 658 bzw. UA 066 658

Gültig ab 1. Oktober 2022

Inhaltsverzeichnis

1.	Grundlage und Geltungsbereich	3
2.	Qualifikationsprofil	3
3.	Dauer und Umfang	4
4.	Zulassung zum Masterstudium	4
5.	Aufbau des Studiums	4
6.	Lehrveranstaltungen	12
7.	Prüfungsordnung	12
8.	Studierbarkeit	14
9.	Diplomarbeit	15
10.	Akademischer Grad	15
11.	Qualitätsmanagement	16
12.	Inkrafttreten	16
13.	Übergangsbestimmungen	16
A.	Modulbeschreibungen	18
В.	Lehrveranstaltungstypen	49
С.	Semestereinteilung der Lehrveranstaltungen	51
D.	Semesterempfehlung für schiefeinsteigende Studierende	52
E.	Prüfungsfächer mit den zugeordneten Modulen und Lehrveranstaltungen	53

1. Grundlage und Geltungsbereich

Der vorliegende Studienplan definiert und regelt das gemeinsam an der Technischen Universität Wien (TU Wien) und Universität Wien (Uni Wien) eingerichtete ingenieurwissenschaftliche Masterstudium Chemie und Technologie der Materialien. Es basiert auf dem Universitätsgesetz 2002 – UG (BGBl. I Nr. 120/2002 idgF.) – und den Studienrechtlichen Bestimmungen der Satzungen der beteiligten Universitäten (Technische Universität Wien und Universität Wien) sowie der Verordnung der Rektorate gemäß § 54e Abs. 3 UG für das gemeinsam eingerichtete Masterstudium Chemie und Technologie der Materialien in der jeweils geltenden Fassung.

2. Qualifikationsprofil

Das Masterstudium Chemie und Technologie der Materialien vermittelt eine vertiefte, wissenschaftlich und methodisch hochwertige, auf dauerhaftes Wissen ausgerichtete Bildung, welche die Absolvent*innen sowohl dazu befähigt, sich im Rahmen eines facheinschlägigen Doktoratsstudiums weiter zu vertiefen als auch eine Beschäftigung in Tätigkeitsbereichen an der Schnittstelle zwischen Chemie und Technologie der Materialien aufzunehmen und sie international konkurrenzfähig macht.

Aufgrund der beruflichen Anforderungen werden im Masterstudium Chemie und Technologie der Materialien Qualifikationen hinsichtlich folgender Kategorien vermittelt:

Fachliche und methodische Kompetenzen Absolvent*innen des Masterstudiums Chemie und Technologie der Materialien haben ein breites, auf chemischen und physikalischen Grundlagen aufgebautes Verständnis der Beziehungen zwischen Zusammensetzung, Struktur und Morphologie von Materialien einerseits und deren chemischen und physikalischen Eigenschaften andererseits. Ihre chemische Kompetenz versetzt sie in die Lage, Materialien für unterschiedliche Anforderungen zu synthetisieren, zu modifizieren und zu charakterisieren.

Kognitive und praktische Kompetenzen Die während des Studiums erworbenen theoretischen und praktischen Fähigkeiten versetzen die Absolvent*innen des Masterstudiums Chemie und Technologie der Materialien in die Lage, die entsprechenden Synthese-, Verarbeitungs- und Charakterisierungsmethoden problem- und zielorientiert anzuwenden sowie eine dem Anwendungszweck angemessene Materialauswahl zu treffen.

Soziale Kompetenzen und Selbstkompetenzen Absolvent*innen des Masterstudiums Chemie und Technologie der Materialien sind in der Lage, sowohl selbständig als auch im Team mit Ingenieur*innen, Physiker*innen, Werkstoffwissenschaftler*innen und anderen Naturwissenschaftler*innen Lösungsansätze für materialchemische Fragestellungen zu erarbeiten, die für die Gesellschaft des 21. Jahrhunderts von Bedeutung sind.

3. Dauer und Umfang

Der Arbeitsaufwand für das Masterstudium Chemie und Technologie der Materialien beträgt 120 ECTS-Punkte. Dies entspricht einer vorgesehenen Studiendauer von 4 Semestern als Vollzeitstudium.

ECTS-Punkte sind ein Maß für den Arbeitsaufwand der Studierenden. Ein Studienjahr umfasst 60 ECTS-Punkte.

Die Regelungen für den Abschluss des Studiums sind in 7. Prüfungordnung zu finden.

4. Zulassung zum Masterstudium

Die Zulassung zum Masterstudium Chemie und Technologie der Materialien setzt den Abschluss eines fachlich in Frage kommenden Bachelorstudiums oder eines anderen fachlich in Frage kommenden Studiums mindestens desselben hochschulischen Bildungsniveaus an einer anerkannten in- oder ausländischen postsekundären Bildungseinrichtung voraus.

Fachlich in Frage kommend sind jedenfalls die Bachelorstudien *Technische Chemie* an der Technischen Universität Wien und *Chemie* an der Universität Wien.

Zum Ausgleich wesentlicher fachlicher Unterschiede können Ergänzungsprüfungen vorgeschrieben werden, die bis zum Ende des zweiten Semesters des Masterstudiums abzulegen sind. Im Zulassungsbescheid kann festgelegt werden, welche dieser Ergänzungsprüfungen Voraussetzung für die Ablegung von im Curriculum des Masterstudiums vorgesehenen Prüfungen an der jeweiligen Universität sind. Übersteigen die wesentlichen fachlichen Unterschiede das Ausmaß von 30 ECTS-Punkten, so liegt kein fachlich in Frage kommendes Studium vor.

Die Zulassung zum Masterstudium *Chemie und Technologie der Materialien* erfolgt gemäß § 54e Abs. 4 nur an einer der beteiligten Universitäten nach Wahl der Studierenden.

Personen, deren Erstsprache nicht Deutsch ist, haben die Kenntnis der deutschen Sprache, sofern dies gem. § 63 Abs. 1 Z 3 UG erforderlich ist, nach den jeweiligen Bestimmungen der zulassenden Universität nachzuweisen.

5. Aufbau des Studiums

Die Inhalte und Qualifikationen des Studiums werden durch Module vermittelt. Ein Modul ist eine Lehr- und Lerneinheit, welche durch Eingangs- und Ausgangsqualifikationen, Inhalt, Lehr- und Lernformen, den Regelarbeitsaufwand sowie die Leistungsbeurteilung gekennzeichnet ist. Die Absolvierung von Modulen erfolgt in Form einzelner oder mehrerer inhaltlich zusammenhängender Lehrveranstaltungen. Thematisch ähnliche Module werden zu Prüfungsfächern zusammengefasst.

Prüfungsfächer und zugehörige Module

Das Masterstudium Chemie und Technologie der Materialien gliedert sich in nachstehende Prüfungsfächer mit den ihnen zugeordneten Modulen.

Pflichtfächer (30,0 ECTS)

Ziel der Grundlagenmodule und des Angleichungsmoduls ist es, die fachlichen Grundlagen für die nachfolgenden Module der gebundenen Wahl zu legen sowie unterschiedliche Vorkenntnisse der Absolvent*innen an den beiden Partneruniversitäten anzugleichen.

- Grundlagen I (18,0 ECTS)
- Grundlagen II (9,0 ECTS)
- Angleichungsmodul (3,0 ECTS)

Die Modul Grundlagenmodule $Grundlagen\ I$ und $Grundlagen\ II$ sowie das Anglei-chungsmodul sind verpflichtend zu absolvieren.

Gebundene Wahlfächer (mindestens 50,0 ECTS)

Für die gebundenen Wahlfächer des Masterstudiums Chemie und Technologie der Materialien sind aus der folgenden Liste fünf Module im Umfang von jeweils 10 ECTS auszuwählen, wobei jeweils mindestens zwei Module an der Universität Wien (Uni Wien) und an der Technischen Universität Wien (TU Wien) zu absolvieren sind. Außerdem sind diese fünf Wahlmodule aus zumindest drei der unten angeführten Wahlmodulgruppen zu wählen.

Wahlmodulgruppe A: "Charakterisierung von Materialien"

- 1. WA1 Thermodynamische Charakterisierung Metallischer Systeme (Thermodynamic Characterisation of Metallic Systems) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)
- 2. WA2 Charakterisierung fester Stoffe (Characterisation of Solid Materials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)
- 3. WA3 Grenzflächenchemie und Oberflächenanalytik (Chemistry of Interfaces and Analysis of Surfaces) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)
- 4. WA4 Kristallstrukturen und ihre Aufklärung (Crystal Structures and Crystal Structure Determination)(Wahlmodul Universität Wien) (mindestens 10,0 ECTS)
- 5. WA5 Analytische Aspekte der Materialchemie (Analytical Aspects of Materials Chemistry) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)

Wahlmodulgruppe B: "Funktions- und Strukturmaterialien und ihre Anwendungen"

- 1. WB1 Energiespeicherung und -umwandlung (Energy Storage and Conversion) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)
- 2. WB2 Funktionelle Materialien (Functional Materials) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)
- 3. WB3 Soft Matter Grenzflächen (Soft Matter Interfaces) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)
- 4. WB4 Strukturwerkstoffe (Structural Materials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)

Wahlmodulgruppe C: "Materialklassen und Synthese"

- 1. WC1 Biomaterialien (Biomaterials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)
- 2. WC2 Hochleistungswerkstoffe (High Performance Materials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)
- 3. WC3 Nanochemie (Nanochemistry) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)
- 4. WC4 Polymerchemie (Polymer Chemistry) (Wahlmodul TU Wien) (mindestens $10.0\,\mathrm{ECTS}$)
- 5. WC5 Kolloide und Grenzflächen (Colloids and Interfaces) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)
- 6. WC6 Verbundwerkstoffe (Composite Materials) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)

Wahlmodulgruppe D: "Theorie und Grundlagen von Materialien und ihre Eigenschaften"

- 1. WD1 Abschätzung physikalisch-chemischer Eigenschaften (Estimation of Physicalchemical Properties) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)
- 2. WD2 Struktur und Eigenschaften Metallischer Systeme (Structure and Properties of Metallic Systems) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)

- 3. WD3 Modellierung von "Soft Matter" und Materialien (Modeling of Soft Matter and Materials) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)
- 4. WD4 Digitale Methoden in der Chemie (Computer Science for Molecules and Materials) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS)
- 5. WD5 Theoretische Materialchemie (Theoretical Materials Chemistry) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)

Wahlmodulgruppe E: "Werkstoffmechanik und Werkstoffverarbeitung"

- 1. WE1 Mechanik von Biomaterialien (Mechanics of Biomaterials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)
- 2. WE2 Polymertechnologie (Polymer Technology) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)
- 3. WE3 Schadensanalyse (Failure Analysis) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)
- 4. WE4 Werkstoffmechanik (Mechanics of Materials) (Wahlmodul TU Wien) (mindestens $10.0\,\mathrm{ECTS}$)
- 5. WE5 Werkstoffverarbeitung (Processing of Materials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS)

Freie Wahlfächer und Transferable Skills (10,0 ECTS)

Freie Wahlfächer und Transferable Skills (Pflichtmodul) (10,0 ECTS)

Die Lehrveranstaltungen dieses Moduls können frei aus dem Angebot an wissenschaftlichen und künstlerischen Lehrveranstaltungen, die der Vertiefung des Faches oder der Aneignung außerfachlicher Kenntnisse, Fähigkeiten und Kompetenzen dienen, aller anerkannten in- und ausländischen postsekundären Bildungseinrichtungen ausgewählt werden, wobei aber mindestens 5,0 ECTS-Punkte aus dem Bereich der Transferable Skills zu absolvieren sind. Den Studierenden wird insbesondere ein facheinschlägiges Seminar zur Begleitung der Diplomarbeit empfohlen, welches dann dem Bereich der Transferable Skills zugerechnet wird.

Diplomarbeit (30,0 ECTS)

Das Prüfungsfach *Diplomarbeit* umfasst 30 ECTS-Punkte und besteht aus der wissenschaftlichen Arbeit (Diplomarbeit, siehe *9. Diplomarbeit*), die mit 27 ECTS-Punkten bewertet wird, sowie aus der kommissionellen Abschlussprüfung im Ausmaß von 3 ECTS-Punkten (s. 7. *Prüfungsordnung*).

Kurzbeschreibung der Module

Im Folgenden werden die Module des Masterstudiums Chemie und Technologie der Materialien in Kürze charakterisiert. Eine ausführliche Beschreibung ist in Anhang A zu finden.

Grundlagen I (18,0 ECTS) Nach Absolvierung dieses Moduls können Studierende die wesentlichen Grundlagen zur Synthese, Herstellung und Verarbeitung anorganischer, keramischer wie auch metallischer Materialien beschreiben sowie die Eigenschaften dieser Stoffe und analytische Methoden zu Charakterisierung von Materialien erklären. Des Weiteren können die Studierenden die Grundlagen des Chemikalienrechts erläutern.

Grundlagen II (9,0 ECTS) Nach Absolvierung dieses Moduls können Studierende die wesentlichen Grundlagen der Synthese organischer Materialien erläutern und grundlegende chemische Konzepte zur gezielten Materialherstellung beschreiben.

Angleichungsmodul (3,0 ECTS) Das Angleichungsmodul dient dazu, den Absolvent*innen des Bachelorstudiums *Chemie* an der Uni Wien bzw. des Bachelorstudiums *Technische Chemie* an der TU Wien oder vergleichbarer Bachelorstudien der Chemie Themenbereiche näherzubringen, die in den jeweiligen Bachelorstudien nicht in ausreichendem Ausmaß behandelt werden.

WA1 Thermodynamische Charakterisierung Metallischer Systeme (Thermodynamic Characterisation of Metallic Systems) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können die Studierenden experimentelle Methoden zur Messung thermodynamischer Größen problemorientiert auswählen und anwenden. Sie können gängige thermodynamische Modelle erklären und diese auf konkrete Fragestellungen anwenden.

WA2 Charakterisierung fester Stoffe (Characterisation of Solid Materials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung des Moduls können Studierende die experimentelle Herangehensweise an spezifische physikalischchemische Fragestellungen, die im chemisch-technischen Laborbereich auftreten können, erklären sowie wichtige physikalisch-chemische Charakterisierungsmethoden beschreiben, welche einerseits dazu dienen, Materialien und ihre Eigenschaften zu charakterisieren und andererseits zu vermitteln, welchen Informationsgehalt, welche Möglichkeiten, aber auch welche Limitationen diese Methoden im speziellen Fall besitzen.

WA3 Grenzflächenchemie und Oberflächenanalytik (Chemistry of Interfaces and Analysis of Surfaces) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung des Moduls verfügen Studierende über grundlegende Kenntnisse zur Chemie und Physik an Grenzflächen sowie zu modernen Methoden der Oberflächencharakterisierung, vor allem im Hinblick auf die Untersuchung von Oberflächenprozessen an Nanostrukturen. Sie können die Grundprinzipien chemischer Kinetik und deren Anwendung in der Katalyse beschreiben und erläutern.

WA4 Kristallstrukturen und ihre Aufklärung (Crystal Structures and Crystal Structure Determination) (Wahlmodul Universität Wien) (mindestens 10,0

ECTS) Nach Absolvierung dieses Moduls können die Studierenden die Grundlagen der Röntgenbeugung, die Aufgabenbereiche der Röntgenpulver- und Röntgeneinkristall-Diffraktometrie sowie Methoden der Strukturbestimmung und Verfeinerungsmethoden beschreiben und die Grenzen kristallographischer Untersuchungen sowie Komplementarität mit NMR, Massenspektrometrie, Chromatographie und anderen Methoden der chemischen Analyse erläutern.

WA5 Analytische Aspekte der Materialchemie (Analytical Aspects of Materials Chemistry) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können Studierende Methoden zur Charakterisierung von Materialien und ihrer Oberflächen sowie verschiedene spektrometrische Techniken und Rastermethoden beschreiben und diese teilweise selbst experimentell anwenden. Zudem sammeln sie Erfahrungen in der Anwendung rational strukturierter Materialien für die Sensorik bzw. Schnellanalytik.

WB1 Energiespeicherung und -umwandlung (Energy Storage and Conversion) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können Studierende die Bezüge zwischen atomistischer Struktur und Materialeigenschaften erläutern. Mit Hilfe elektrochemischer Konzepte und deren Anwendungen können sie zielführend an der Weiterentwicklung von Energiespeichern und Energiewandlern arbeiten.

WB2 Funktionelle Materialien (Functional Materials) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls haben Studierende gelernt, wie man an/organische Hybridmaterialien (Silikate, Oxide, etc.) synthetisiert und wie man ihre chemischen und morphologischen Eigenschaften (Partikelgröße und -form) als auch ihre Funktionalität und Porosität kontrolliert. Mit diesem Wissen können Studierende nanoporöse Materialien synthetisieren, die als Sorbents, feste Katalysatoren oder Nanocarriers fungieren. Außerdem können sie moderne Charakterisierungsmethoden erklären.

WB3 Soft Matter Grenzflächen (Soft Matter Interfaces) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Modul können die Studierenden die Grundlagen der physikalischen Chemie von Grenzflächen von Soft Matter erläutern. Außerdem können sie geeignete Experimente zur Untersuchung der chemischen und physikalischen Eigenschaften dieser Grenzflächen planen und deren Ergebnisse interpretieren.

WB4 Strukturwerkstoffe (Structural Materials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls sind Studierende in der Lage, Prüfmethoden für Konstruktionswerkstoffe sowie auf Basis von Kennwerten Strukturwerkstoffe für Anwendungen gezielt auszuwählen.

WC1 Biomaterialien (Biomaterials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können Studierende verschiedene Möglichkeiten für den Einsatz von Werkstoffen in der Medizin erläutern sowie Biomaterialien und ihre Struktur, ihre mechanischen Eigenschaften und Designstrategien beschreiben.

WC2 Hochleistungswerkstoffe (High Performance Materials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können die Studierenden Methoden für die Herstellung und Verarbeitung von Hochleistungswerkstoffen, sowohl von Gebrauchs- als auch von Sonderwerkstoffen, erläutern und diese auf konkrete Fragestellungen anwenden.

WC3 Nanochemie (Nanochemistry) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Aufgrund der in diesem Modul vermittelten Lehrinhalte sollen die Studierenden in der Lage sein, wichtige theoretische Grundlagen von Nanomaterialien zu beschreiben, Einflüsse von Nanodimension auf physikalische und chemische Eigenschaften (optischen, elektronischen, strukturellen) herzuleiten, wichtige Charakterisierungsmethoden von Nanomaterialien zu beschreiben, theoretische Konzepte auf verwandte Materialklassen anzuwenden, verschiedene Prozesse und Verfahren zur Herstellung von Nanomaterialien zu beschreiben sowie Prozesse, bei denen Nanomaterialien verwendet werden, bezüglich ihrer großtechnischen Umsetzbarkeit (hinsichtlich Wirtschaftlichkeit, Umweltverträglichkeit und gesetzliche Vorgaben) zu beurteilen.

WC4 Polymerchemie (Polymer Chemistry) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Im Rahmen dieses Moduls erwerben die Studierenden die Fähigkeiten, theoretische und synthetische Besonderheiten unterschiedlicher Polymerisationsklassen zu beschreiben, spezielle Synthesemethoden für bestimmte Polymerarchitekturen auszuwählen und zu begründen, Grundlagen wichtiger Methoden zur Charakterisierung von Polymeren und polymeren Materialien zu erklären und Lösungen für methodenübergreifende Fragestellungen zu finden.

WC5 Kolloide und Grenzflächen (Colloids and Interfaces) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können die Studierendendie grundlegenden Konzepte der Kolloid- und Grenzflächenchemie und der Partikel-Wechselwirkungen beschreiben sowie deren Anwendung erläutern.

WC6 Verbundwerkstoffe (Composite Materials) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS) Nach Abschluss des Moduls können die Studierenden die Eigenschaften von modernen Verbundwerkstoffen beschreiben sowie den Einfluss der Materialwahl auf die Eigenschaften von Composites erklären. Sie können Konzepte wie Festigkeit und Zähigkeit erklären sowie die Möglichkeiten der Optimierung von Materialeigenschaften erläutern. Außerdem können sie self-healing Methoden und die Prinzipien hinter structural colouration in der Natur auf das Design von Composites und modernen Materialien anwenden.

WD1 Abschätzung physikalisch-chemischer Eigenschaften (Estimation of Physical-chemical Properties) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können die Studierenden Fluid- bzw. Polymersystemen beschreiben und anwenden und die vermittelten theoretischen Grundlagen in der Herstellung, Anwendung und Charakterisierung moderner Materialien einsetzen.

WD2 Struktur und Eigenschaften Metallischer Systeme (Structure and Properties of Metallic Systems) (Wahlmodul Universität Wien) (mindestens 10,0

ECTS) Mit der Absolvierung dieses Moduls werden die Studierenden in die Lage versetzt, eigenständig Kristallstrukturen von Festkörpern zu untersuchen und experimentelle Daten in Hinblick auf Phasengleichgewichte auszuwerten. Die Studierenden können die geeigneten experimentellen Methoden problemorientiert auswählen, anwenden und deren Aussagekraft abschätzen.

WD3 Modellierung von "Soft Matter" und Materialien (Modeling of Soft Matter and Materials) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können Studierende die grundlegenden Wechselwirkungen von Materie in verschiedenen Reaktionsmedien erläutern und die vermittelten theoretischen Grundlagen zur Beschreibung von (flüssigen) Materialien anwenden. Dieses Modul stellt somit eine Brücke zwischen Theorie und Praxis in der Physikalischen Chemie weicher Materie, Materialien und Molekülen dar.

WD4 Digitale Methoden in der Chemie (Computer Science for Molecules and Materials) (Wahlmodul Universität Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können Studierende die Grundlagen, wie große chemische Datenmengen verarbeitet werden, beschreiben und Techniken zur Verarbeitung dieser Datenmengen erläutern.

WD5 Theoretische Materialchemie (Theoretical Materials Chemistry) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls sind Studierende in der Lage, Symmetrien, elektronische Strukturen und Energiebänder in Festkörpern zu beschreiben, einfache quantenmechanische Berechnungen in Festkörpern durchzuführen, optische Eigenschaften und Spektroskopie zu erklären, elektrische und mechanische Eigenschaften zusammenzufassen und Grundlagen des Magnetismus, relativistische Effekte und Gitterschwingungen in Festkörpern zu erklären.

WE1 Mechanik von Biomaterialien (Mechanics of Biomaterials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls sind Studierende in der Lage, die grundlegenden Prinzipien der Punkt-, Starrkörper und Kontinuumsmechanik zu erklären, die Prinzipien der dimensionalen Analyse und Skalierungsgesetze anzuwenden, die biomechanischen Prinzipien des muskosekeletalen und kardiovaskularen System abzuleiten, die Anatomie des muskuloskeletalen und des kardiovaskularen Systems zu beschreiben, mechanische und biomechanische Probleme zu lösen, mittels mikromechanischer Modelle aus CT Daten mechanische Eigenschaften biologischer Gewebe zu bestimmen, einfache CT-basierte FEA Simulationsmodelle zu erstellen, visualisieren und auszuwerten, Problemstellungen aus dem Umfeld der Biomechanik der Gewebe zu lösen sowie Kenntnisse aus den Lehrveranstaltungen des Moduls und Studiums anzuwenden und eine Projekt-Arbeit (gemäß den Gepflogenheiten des Fachgebietes) zu verfassen.

WE2 Polymertechnologie (Polymer Technology) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können Studierende die wichtigsten Standard-Thermoplasten, Duromeren und Elastomeren beschreiben sowie ihre typischen industriellen Einsatzgebiete als Konstruktionswerkstoffe, Folien, Fasern,

Beschichtungen und Kompositwerkstoffen erläutern. Außerdem können sie den Einfluss erklären, den Füllstoffe und Additive auf die Lagerstabilität und Verarbeitung haben.

WE3 Schadensanalyse (Failure Analysis) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls sind Studierende in der Lage, unter Zuhilfenahme der Systematik der Schadensanalyse, Bauteilversagen zu untersuchen, die Schadensursache(n) einzugrenzen und Vorkehrungen zur Vermeidung gleichartiger Schadensfälle zu treffen.

WE4 Werkstoffmechanik (Mechanics of Materials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung des Moduls sind Studierende in der Lage, Grundbegriffe der Werkstoffmechanik wie Spannung, Dehnung, Elastizität oder Festigkeit zu erklären sowie moderne mikromechanische und bruchmechanische Methoden zu beschreiben, mit denen genauere chemische und mikrostrukturelle Informationen in mechanische Eigenschaften (elastisch, plastisch, viskos, spröde) übersetzt werden können.

WE5 Werkstoffverarbeitung (Processing of Materials) (Wahlmodul TU Wien) (mindestens 10,0 ECTS) Nach Absolvierung dieses Moduls können Studierenden die üblichen Verfahren der Kunststoffverarbeitung sowie derzeit kommerziell verfügbare generative Fertigungsverfahren beschreiben. Außerdem können die Studierenden selbstständig Arbeiten auf dem Gebiet der Werkstoffverarbeitung und Werkstoffcharakterisierung in aktuellen Forschungsprojekten (Metalle, Keramiken und Polymere) durchführen.

Freie Wahlfächer und Transferable Skills (Pflichtmodul) (10,0 ECTS) Die Lehrveranstaltungen dieses Pflichtmoduls dienen der Vertiefung des Faches sowie der Aneignung außerfachlicher Kenntnisse, Fähigkeiten und Kompetenzen.

6. Lehrveranstaltungen

Die Inhalte der Module werden durch Lehrveranstaltungen vermittelt. Die Lehrveranstaltungen der einzelnen Module sind in Anhang A in den jeweiligen Modulbeschreibungen spezifiziert. Lehrveranstaltungen werden durch Prüfungen im Sinne des UG beurteilt. Die Arten der Anmeldung zu Lehrveranstaltungen und Prüfungen sowie der Beurteilung von Prüfungen sind in 7. Prüfungsordnung festgelegt.

Entsprechend der Verordnung der Rektorate gemäß § 54e Abs 3 UG ist für die Anerkennung von Prüfungen das studienrechtliche Organ der zulassenden Universität zuständig.

7. Prüfungsordnung

Der positive Abschluss des Masterstudiums erfordert:

1. die positive Absolvierung der im Studienplan vorgeschriebenen Module, wobei ein Modul als positiv absolviert gilt, wenn die ihm gemäß Modulbeschreibung zuzurechnenden Lehrveranstaltungen positiv absolviert wurden,

- 2. die Abfassung einer positiv beurteilten Diplomarbeit und
- 3. die positive Absolvierung der kommissionellen Abschlussprüfung. Diese erfolgt mündlich vor einem Prüfungssenat entsprechend den Studienrechtlichen Bestimmungen der Satzung jener Universität, an der die Zulassung erfolgt ist, und dient der Präsentation und Verteidigung (Defensio) der Diplomarbeit und dem Nachweis der Beherrschung des wissenschaftlichen Umfeldes. Dabei ist vor allem auf Verständnis und Überblickswissen Bedacht zu nehmen. Die Anmeldevoraussetzungen zur kommissionellen Abschlussprüfung sind erfüllt, wenn die Punkte 1 und 2 erbracht sind.

Das Abschlusszeugnis beinhaltet jedenfalls

- (a) die Prüfungsfächer zusammen mit dem jeweiligen Umfang in ECTS-Punkten und der jeweiligen Note (nur TU Wien),
- (b) die Titel der gewählten Module mit ihrem jeweiligen Umfang in ECTS-Punkten und den jeweiligen Noten,
- (c) das Thema und die Note der Diplomarbeit,
- (d) die Note der kommissionellen Abschlussprüfung.

Nur an der TU Wien gilt auch folgender Absatz:

Die Note des Prüfungsfaches "Diplomarbeit" ergibt sich aus der Note der Diplomarbeit und der Note der kommissionellen Abschlussprüfung mit der Gewichtung 70% zu 30%. Die Note jedes anderen Prüfungsfaches ergibt sich durch Mittelung der Noten jener Lehrveranstaltungen, die dem Prüfungsfach über die darin enthaltenen Module zuzuordnen sind, wobei die Noten mit dem ECTS-Umfang der Lehrveranstaltungen gewichtet werden. Bei einem Nachkommateil kleiner gleich 0,5 wird abgerundet, andernfalls wird aufgerundet.

Lehrveranstaltungen des Typs VO (Vorlesung) werden aufgrund einer abschließenden Prüfung beurteilt, die aus einem mündlichen und/oder schriftlichen Prüfungsteil bestehen kann. Alle anderen Lehrveranstaltungen besitzen immanenten Prüfungscharakter; die Beurteilung erfolgt durch mehrere Teilleistungen.

Der positive Erfolg von Prüfungen und wissenschaftlichen sowie künstlerischen Arbeiten ist mit "sehr gut" (1), "gut" (2), "befriedigend" (3) oder "genügend" (4), der negative Erfolg ist mit "nicht genügend" (5) zu beurteilen. Lehrveranstaltungen, bei denen eine Beurteilung in der oben genannten Form nicht möglich ist, werden durch "mit Erfolg teilgenommen" bzw. "ohne Erfolg teilgenommen" beurteilt.

Entsprechend der Verordnung der Rektorate gemäß § 54e Abs 3 UG gelten für Lehrveranstaltungen und Prüfungen die studienrechtlichen Bestimmungen jener Universität, an der sie angeboten werden. Für die Vollziehung der studienrechtlichen Bestimmungen ist das zuständige studienrechtliche Organ jener Universität zuständig, der die jeweilige Lehrveranstaltung bzw. Prüfung zuzuordnen ist.

8. Studierbarkeit

Studierende des Masterstudiums Chemie und Technologie der Materialien sollen ihr Studium mit angemessenem Aufwand in der dafür vorgesehenen Zeit abschließen können.

Den Studierenden wird empfohlen, ihr Studium nach dem Semestervorschlag in Anhang C zu absolvieren. Studierenden, die ihr Studium im Sommersemester beginnen, wird empfohlen, ihr Studium nach der Semesterempfehlung in Anhang D zu absolvieren.

Lehrveranstaltungskapazitäten

Entsprechend der Verordnung der Rektorate gemäß § 54e Abs 3 UG erfolgt die Aufnahme von Studierenden in Lehrveranstaltungen gemäß den studienrechtlichen Bestimmungen der jeweiligen Universität, an der die Lehrveranstaltungen abgehalten werden.

Für Lehrveranstaltungen, die auch in anderen ordentlichen Studien an einer der beteiligten Universitäten angeboten werden, gelten die für diese Studien an der jeweiligen Universität festgelegten Gruppengrößen für die entsprechenden Lehrveranstaltungstypen (siehe Anhang B); für originäre Lehrveranstaltungen des Masterstudiums *Chemie und Technologie der Materialien* gelten die folgenden Bestimmungen an den jeweiligen Universitäten.

TU Wien

Für Gruppengrößen originärer Lehrveranstaltungen des Masterstudiums *Chemie und Technologie der Materialien*, die an der TU Wien angeboten werden, gelten die folgenden Richtwerte:

	Gruppengröße	
Lehrveranstaltungstyp	je Leiter*in	je Tutor*in
VO	100	
UE mit Tutor*innen	30	15
UE	15	
LU mit Tutor*innen	20	8
LU	8	
EX, PR, SE	10	

Für Lehrveranstaltungen des Typs VU werden für den Vorlesungsteil die Gruppengröße für VO und für den Übungsteil die Gruppengrößen für UE herangezogen.

Die Lehrveranstaltungsleiter*innen sind berechtigt, für ihre Lehrveranstaltungen Ausnahmen von der Teilnahmebeschränkung zuzulassen.

Universität Wien

Für prüfungsimmanente Lehrveranstaltungen können bei beschränkten Raum-, Personaloder Finanzressourcen und/oder auf Grund anderer logistischer Rahmenbedingungen vom zuständigen studienrechtlichen Organ Teilnahmebeschränkungen erlassen werden.

Für die Gruppengrößen von Lehrveranstaltungen, die an der Universität Wien originär für das Masterstudium *Chemie und Technologie der Materialien* angeboten werden, gelten die folgenden Richtwerte:

Lehrveranstaltungstyp	Gruppengröße je Leiter*in
VU	12
SE	12
UE	10
PR	10

Die Modalitäten zur Anmeldung zu Lehrveranstaltungen und Prüfungen der Universität Wien sowie zur Vergabe von Plätzen für Lehrveranstaltungen der Universität Wien richten sich nach den Bestimmungen der Satzung der Universität Wien.

9. Diplomarbeit

Die Diplomarbeit ist eine wissenschaftliche Arbeit, die dem Nachweis der Befähigung dient, ein Thema selbstständig inhaltlich und methodisch vertretbar zu bearbeiten. Das Thema der Diplomarbeit ist von der oder dem Studierenden frei wählbar und muss im Einklang mit dem Qualifikationsprofil stehen.

Entsprechend der Verordnung der Rektorate gemäß § 54e Abs 3 UG gelten für die Betreuung, Einreichung zur Beurteilung und Beurteilung der Diplomarbeit die studienrechtlichen Bestimmungen jener Universität, welcher der/die Betreuer*in der Diplomarbeit zugeordnet ist. Für die Vollziehung der studienrechtlichen Bestimmungen ist das studienrechtliche Organ jener Universität zuständig, an der die Diplomarbeit betreut, zur Beurteilung eingereicht und beurteilt wird.

Das Prüfungsfach *Diplomarbeit* umfasst 30 ECTS-Punkte und besteht aus der wissenschaftlichen Arbeit (Diplomarbeit), die mit 27 ECTS-Punkten bewertet wird, sowie aus der kommissionellen Abschlussprüfung im Ausmaß von 3 ECTS-Punkten.

Die Entgegennahme der Meldung von Thema und Betreuung der Diplomarbeit sowie die Untersagung von Thema und Betreuung der Diplomarbeit erfolgt entsprechend der Verordnung der Rektorate gemäß § 54e Abs 3 UG jedenfalls durch das zuständige studienrechtliche Organ jener Universität, der die Betreuer*in zugeordnet ist.

10. Akademischer Grad

Den Absolvent*innen des Masterstudiums Chemie und Technologie der Materialien wird der akademische Grad "Diplom-Ingenieur"/"Diplom-Ingenieurin" – abgekürzt "Dipl.-Ing." oder "DI" (international vergleichbar mit "Master of Science") – verliehen.

11. Qualitätsmanagement

Das Qualitätsmanagement des Masterstudiums Chemie und Technologie der Materialien erfolgt entsprechend den jeweiligen Bestimmungen der beteiligten Universitäten für die an diesen Universitäten abgehaltenen Lehrveranstaltungen.

12. Inkrafttreten

Dieser Studienplan tritt mit 1. Oktober 2022 in Kraft.

13. Übergangsbestimmungen

- 1. Dieses Curriculum gilt für alle Studierenden, die ab Wintersemester 2022 das gemeinsam eingerichtete Masterstudium *Chemie und Technologie der Materialien* beginnen.
- 2. Studierende, die zum Zeitpunkt des Inkrafttretens dieses Curriculums nach dem letztgültigen Curriculum des gemeinsamen Masterstudiums *Chemie und Technologie der Materialien* unterstellt waren, sind berechtigt, ihr Studium bis längstens 31. Oktober 2024 nach diesem letztgültigen Curriculum abzuschließen.
- 3. Studierende, die vor dem Wintersemester 2022 das Masterstudium *Chemie und Technologie der Materialien* begonnen haben, können sich jederzeit durch eine einfache Erklärung freiwillig den Bestimmungen dieses Curriculums unterstellen.
- 4. Wenn im späteren Verlauf des Studiums Lehrveranstaltungen, die auf Grund der ursprünglichen Curricula vorgeschrieben waren, nicht mehr angeboten werden, kann das nach den Organisationsvorschriften der Universität, an der die entsprechenden Lehrveranstaltungen anzubieten waren, zuständige Organ von Amts wegen entsprechende Äquivalenzlisten verlautbaren.

Ergänzende Bestimmungen

A: Modulbeschreibungen

B: Lehrveranstaltungstypen

C: Semestereinteilung der Lehrveranstaltungen

D: Semesterempfehlung für schiefeinsteigende Studierende

E: Prüfungsfächer mit den zugeordneten Modulen und Lehrveranstaltungen

A. Modulbeschreibungen

In Modulen, bei denen nicht alle Lehrveranstaltungen einer einzigen der betreffenden Universität zugeordnet sind, wird bei jeder Lehrveranstaltung angegeben, von welcher der beiden Universitäten diese Lehrveranstaltung anzubieten ist. In den Wahlmodulen werden alle Lehrveranstaltungen von der im Modulnamen angegebenen Universität angeboten.

Die den Modulen zugeordneten Lehrveranstaltungen werden in folgender Form angeführt:

9,9/9,9 XX Titel der Lehrveranstaltung

Dabei bezeichnet die erste Zahl den Umfang der Lehrveranstaltung in ECTS-Punkten und die zweite ihren Umfang in Semesterstunden. ECTS-Punkte sind ein Maß für den Arbeitsaufwand der Studierenden, wobei ein Studienjahr 60 ECTS-Punkte umfasst und ein ECTS-Punkt 25 Stunden zu je 60 Minuten entspricht. Der Typ der Lehrveranstaltung (XX) ist für jede der beteiligten Universitäten in Anhang B im Detail erläutert.

Aktuelle Informationen für Studierende zu den in den Modulen angebotenen Lehrveranstaltungen sind den Vorlesungsverzeichnissen der jeweiligen Universitäten zu entnehmen.

Grundlagen I

Regelarbeitsaufwand: 18,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende die wesentlichen Grundlagen zur Synthese, Herstellung und Verarbeitung anorganischer, keramischer wie auch metallischer Materialien beschreiben sowie die Eigenschaften dieser Stoffe und analytische Methoden zu Charakterisierung von Materialien erklären. Des Weiteren können die Studierenden die Grundlagen des Chemikalienrechts erläutern.

Kognitive und praktische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende Phasendiagramme lesen und interpretieren. Sie sind in der Lage Fragestellungen im Bereich Chemikalienrecht und -sicherheit selbständig zu recherchieren und zu beantworten.

Soziale Kompetenzen und Selbstkompetenzen: Absolvent*innen besitzen die Fähigkeit in Gruppen Themen zu bearbeiten.

Inhalt: Umfangreiche Einführung in die verschiedenen Aspekte der Eigenschaften, Anwendungen und Charakterisierung von Materialien, der Nutzung von Phasendiagrammen sowie der Synthese und Verarbeitung von keramischen, metallischen und anderen anorganischen Materialien. Selbständige Erarbeitung von Themen aus dem Bereich Chemikalienrecht und -sicherheit.

Erwartete Vorkenntnisse: Keine.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls: Alle Lehrveranstaltungen dieses Moduls sind verpflichtend zu absolvieren.

Die aktuell in Frage kommenden Lehrveranstaltungen dieses Moduls für die Lehrveranstaltungen in der folgenden Liste werden jedes Semester im Vorlesungsverzeichnis der jeweiligen Universitäten ausgewiesen.

- 2,0/1,0 VO Phasendiagramme (Uni Wien)
- 3,0/1,0 SE Chemikalienrecht und Sicherheit (Uni Wien)
- 4,0/2,0 VO Modern Methods for Materials Characterization (Uni Wien)
- 3,0/2,0 VO Synthese anorganischer Materialien (TU Wien)
- 3,0/2,0 VO Keramische Materialien (TU Wien)
- 3,0/2,0 VO Chemische Technologien Metallurgie (TU Wien)

Grundlagen II

Regelarbeitsaufwand: 9,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende die wesentlichen Grundlagen der Synthese organischer Materialien erläutern und grundlegende chemische Konzepte zur gezielten Materialherstellung beschreiben.

Soziale Kompetenzen und Selbstkompetenzen: Studierende erwerben im Verlauf des Moduls Teamarbeits- und Kommunikationsfähigkeiten. Absolvent*innen besitzen die Fähigkeit in Gruppen Themen zu bearbeiten und zu präsentieren.

Inhalt: Die Lehrveranstaltungen dieses Moduls vermitteln grundlegende Konzepte der Materialchemie sowie einen breiten Überblick über relevante Strategien zur Synthese organischer Materialien. Außerdem wird die selbständige Auseinandersetzung mit vielfältigen materialchemischen und -technologischen Fragestellungen im wissenschaftlichen Diskurs gefördert.

Erwartete Vorkenntnisse: Keine.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls: Alle Lehrveranstaltungen dieses Moduls sind verpflichtend zu absolvieren.

Die aktuell in Frage kommenden Lehrveranstaltungen dieses Moduls für die Lehrveranstaltungen in der folgenden Liste werden jedes Semester im Vorlesungsverzeichnis der jeweiligen Universitäten ausgewiesen.

- 4,0/2,0 VO Grundlegende Konzepte der Materialchemie (Uni Wien)
- 3,0/2,0 VO Synthese organischer Materialien (TU Wien)
- 2,0/2,0 SE Chemie und Technologie der Materialien (Uni Wien)

Angleichungsmodul

Regelarbeitsaufwand: 3,0 ECTS

Lernergebnisse: Das Angleichungsmodul dient dazu, den Absolvent*innen des Bachelorstudiums *Chemie* an der Uni Wien bzw. des Bachelorstudiums *Technische Chemie* an der TU Wien oder vergleichbarer Bachelorstudien der Chemie Themenbereiche näherzubringen, die in den jeweiligen Bachelorstudien nicht in ausreichendem Ausmaß behandelt werden.

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls haben Absolvent*innen des Bachelorstudiums Chemie an der Universität Wien oder vergleichbarer Studien einen ersten Einblick in die technische, industrielle Umsetzung von Materialsynthesen gewonnen. Absolvent*innen des Bachelorstudiums Technische Chemie an der TU Wien oder vergleichbarer Studien wiederum haben erste Kenntnisse im Bereich der Theoretischen Chemie erlangt.

Kognitive und praktische Kompetenzen: Nach Absolvierung des Moduls können Studierende die Umsetzbarkeit von Materialsynthesen im technischen Maßstab abschätzen bzw. haben sie einen ersten Einblick in Fertigkeiten, die für die Berechnung von Molekülmodellen erforderlich sind.

Inhalt: Für Absolvent*innen des Bachelorstudiums Chemie an der Universität Wien oder vergleichbarer Studien:

Spezifika der chemischen Technologie anorganischer Stoffe: Stoffkreisläufe, Rohstoffgewinnung, Anorganische Großchemie, Metallurgie, Baustoffe, Glas und Keramik; oder

Spezifika der chemischen Technologie organischer Stoffe: Gewinnung und industrielle Verarbeitung von petrochemischen Rohstoffen (Erdöl, Erdgas, Kohle), Grundlagen der makromolekularen Chemie, der nachwachsenden Rohstoffe, der Textil- und Waschmittelchemie.

Für Absolvent*innen des Bachelorstudiums Technische Chemie an der TU Wien oder vergleichbarer Studien:

Grundkonzepte der Theoretischen Chemie. Grundlagen der Quantenmechanik für Atome und Moleküle, Theorie der chemische Bindung, Elektronstrukturmethoden und Grundlagen der Kernbewegung (Molekulardynamik).

Erwartete Vorkenntnisse: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Schriftliche oder mündliche Prüfung über Theorie und Fragen aus der Praxis.

Lehrveranstaltungen des Moduls: Abhängig von dem der Zulassung zugrundeliegenden Bachelorstudium.

Für Absolvent*innen des Bachelorstudiums Chemie an der Universität Wien oder vergleichbarer Studien:

 $3{,}0/2{,}0$ VO Chemische Technologie Anorganischer Stoffe (TU Wien) oder

3,0/2,0 VO Chemische Technologie Organischer Stoffe (TU Wien)

Für Absolvent*innen des Bachelorstudiums Technische Chemie an der TU Wien oder vergleichbarer Studien:

3,0/2,0 VO Introduction to Computational Chemistry and Physics (Uni Wien)

WA1 Thermodynamische Charakterisierung Metallischer Systeme (Thermodynamic Characterisation of Metallic Systems) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können die Studierenden experimentelle Methoden zur Messung thermodynamischer Größen problemorientiert auswählen und anwenden. Sie können gängige thermodynamische Modelle erklären und diese auf konkrete Fragestellungen anwenden.

Kognitive und praktische Kompetenzen: Die Studierenden können die vermittelten theoretischen Grundlagen in der Herstellung und Charakterisierung metallischer Materialien anwenden und erwerben laborpraktische Fähigkeiten.

Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken sowie die Fähigkeit zur Weiterbildung sowie Team- und Kommunikationsfähigkeit gefördert.

Inhalt: Charakterisierung thermodynamischer Eigenschaften sowie deren Modellierung mit Hilfe der CALPHAD-Methode anhand metallischer Stoffsysteme. Ausgewählte Synthesemethoden metallischer Materialien werden vorgestellt.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische und naturwissenschaftliche Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis physikalisch-chemischer Vorgänge,

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken und Weiterbildung.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

 $2,\!0/1,\!0$ VO Vorlesung aus dem Bereich Thermodynamische Charakterisierung metallischer Systeme A

- $2,\!0/1,\!0$ VO Vorlesung aus dem Bereich Thermodynamische Charakterisierung metallischer Systeme B
- 6,0/6,0 PR Praktikum aus dem Bereich Thermodynamische Charakterisierung metallischer Systeme

WA2 Charakterisierung fester Stoffe (Characterisation of Solid Materials) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung des Moduls können Studierende die experimentelle Herangehensweise an spezifische physikalisch-chemische Fragestellungen, die im chemisch-technischen Laborbereich auftreten können, erklären sowie wichtige physikalisch-chemische Charakterisierungsmethoden beschreiben, welche einerseits dazu dienen, Materialien und ihre Eigenschaften zu charakterisieren und andererseits zu vermitteln, welchen Informationsgehalt, welche Möglichkeiten, aber auch welche Limitationen diese Methoden im speziellen Fall besitzen.

Kognitive und praktische Kompetenzen: Die Studierenden können das Gelernte selbständig zur Analyse verschiedener Materialien und zur Erarbeitung geeigneter theoretischer Modelle anwenden.

Soziale Kompetenzen und Selbstkompetenzen: Im Rahmen dieses Moduls wird die Fähigkeit der Studierenden gefördert, Eigenschaften verschiedener Materialien zu diskutieren und das Gelernte beim Betrachten neuer Situationen einzubeziehen.

Inhalt: Den Studierenden werden grundlegende Kenntnisse der Festkörperphysik und zu Eigenschaften und Charakterisierung von Festkörpern durch Kombination von Spektroskopie, Diffraktion und Mikroskopie sowie über die elektronische Struktur als Grundlage für die Beschreibung von Materie vermittelt. Im Rahmen einer Wahlübung wird dieses Konzept illustriert, indem die Struktur (atomar, elektronisch), Morphologie und Zusammensetzung verschiedener Substanzen mit Hilfe verschiedener Methoden ermittelt werden.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundlegende Kenntnisse auf dem Themengebiet der Physikalischen, Theoretischen und Analytischen Chemie.

Kognitive und praktische Kompetenzen: Analytische Denkweise; Begabung zur Abstraktion, Modellbildung und Anwendung von Modellen auf praktische Fragestellungen.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VO Physikalisch-chemische Methoden der Materialcharakterisierung 3,0/2,0 VO Schwingungspektroskopie 4,0/4,0 LU Wahlübungen, chemisch (Oberflächenchemie und -analytik)

WA3 Grenzflächenchemie und Oberflächenanalytik (Chemistry of Interfaces and Analysis of Surfaces) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach erfolgreicher Absolvierung des Moduls können Studierende die Grundlagen der Chemie und Physik an Grenzflächen sowie zu modernen Methoden der Oberflächencharakterisierung, vor allem im Hinblick auf die Untersuchung von Oberflächenprozessen an Nanostrukturen beschreiben und erklären sowie die Grundprinzipien chemischer Kinetik und deren Anwendung in der Katalyse erläutern.

Kognitive und praktische Kompetenzen: Nach erfolgreicher Absolvierung des Moduls können Studierende das Gelernte zur Analyse von Oberflächenprozessen selbständig anwenden und geeignete theoretische Modelle erarbeiten. Sie können chemisch-kinetische Konzepte auf Themen in verschiedenen Bereichen der heterogenen und homogenen Katalyse anwenden. Sie können Eigenschaften von Oberflächen sowie chemisch-kinetische Konzepte diskutieren und besitzen die Fähigkeit, das Gelernte beim Betrachten neuer Situationen einzubeziehen.

Inhalt: Den Studierenden werden grundlegende Kenntnisse zur Chemie und Physik an Grenzflächen vermittelt sowie moderne Methoden der Oberflächencharakterisierung vorgestellt. Besonderes Augenmerk liegt auf dem Verständnis und der Untersuchung von Oberflächenprozessen an Nanostrukturen, wie sie beispielsweise in der heterogenen Katalyse vorkommen (vom Modellsystem zur industriellen Anwendung). Die theoretischen Kenntnisse werden im Rahmen einer Laborübung vertieft und experimentell angewandt. Außerdem werden die Grundprinzipien der chemischen Kinetik, der homogenen und heterogenen Katalyse vermittelt.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundlegende Kenntnisse auf dem Themengebiet der Physikalischen, Theoretischen und Analytischen Chemie.

Kognitive und praktische Kompetenzen: Fähigkeit zur Behandlung von Problemen der Physikalischen Theoretischen und Analytischen Chemie.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste

von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VO Chemie und Physik der Grenzflächen

3,0/2,0 VO Kinetik und Katalyse

4,0/4,0 LU Wahlübungen, chemisch (Oberflächenchemie und -analytik)

WA4 Kristallstrukturen und ihre Aufklärung (Crystal Structures and Crystal Structure Determination)(Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können die Studierenden die Grundlagen der Röntgenbeugung, die Aufgabenbereiche der Röntgenpulver- und Röntgeneinkristall-Diffraktometrie sowie Methoden der Strukturbestimmung und Verfeinerungsmethoden beschreiben und die Grenzen kristallographischer Untersuchungen sowie Komplementarität mit NMR, Massenspektrometrie, Chromatographie und anderen Methoden der chemischen Analyse erläutern.

Kognitive und praktische Kompetenzen: Nach Absolvierung dieses Moduls können die Studierenden die vermittelten theoretischen Grundlagen in der Analyse und Charakterisierung moderner Materialien anwenden. In diesem Modul werden neben fachlichen Kenntnissen auch digitale Kompetenzen vermittelt und praktische Fähigkeiten in modernen Forschungslaboren erworben.

Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken sowie die Fähigkeit zur Weiterbildung und der Erwerb von Teamarbeits- and Kommunikationsfähigkeiten gefördert.

Inhalt: Kristalline Stoffe zeichnen sich durch eine interne Regelmäßigkeit aus. Diese Regelmäßigkeit ermöglicht die Aufklärung ihrer atomaren Zusammensetzung mit einer sehr hohen räumlichen Auflösung. Der Wissenschaftszweig, der diese Methoden entwickelt, nennt sich Kristallographie. Das Modul liefert eine Einführung in diese Methoden und fördert das Verständnis über die Art von Informationen, die damit über die chemischen Eigenschaften gewonnen werden kann.

Inhaltlich fokussiert sich das Modul auf Röntgenpulverdiffraktometrie und Röntgeneinkristalldiffraktometrie. Auch darüber hinaus gehende Aspekte werden behandelt. Die Studierenden lernen den Umgang mit kristallographischen Methoden und den daraus gewonnenen Daten. Die Überschneidung mit weiteren gängigen chemischen Untersuchungsmethoden wird mit dem Ziel diskutiert, die Komplementarität der Methoden zu verstehen und nutzen zu lernen.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische und naturwissenschaftliche

Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

2,0/1,0 VO Vorlesung aus dem Bereich Kristallstrukturen und ihre Aufklärung

4,0/2,0 VO Vorlesung aus dem Bereich Kristallstrukturen und ihre Aufklärung

4,0/4,0 PR Praktikum aus dem Bereich Kristallstrukturen und ihre Aufklärung

WA5 Analytische Aspekte der Materialchemie (Analytical Aspects of Materials Chemistry) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende Methoden zur Charakterisierung von Materialien und ihrer Oberflächen beschreiben. Sie können verschiedene spektrometrische Techniken und Rastermethoden erläutern und diese teilweise selbst experimentell anwenden. Zudem können sie die Anwendung rational strukturierter Materialien für die Sensorik bzw. Schnellanalytik erklären.

Kognitive und praktische Kompetenzen: Die Studierenden können die vermittelten theoretischen Grundlagen in der Herstellung und Charakterisierung moderner Materialien anwenden. In diesem Modul werden neben fachlichen Kenntnissen auch digitale Kompetenzen vermittelt und praktische Fähigkeiten in modernen Forschungslaboren erworben. Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken sowie die Fähigkeit zur Weiterbildung und der Erwerb von Teamarbeits- and Kommunikationsfähigkeiten gefördert.

Inhalt: Dieses Modul umfasst die Vermittlung analytischer Methoden zur Materialcharakterisierung und -analyse als auch analytischer Strategien, bei denen funktionelle Materialien eine wichtige Rolle bei der Erkennung spielen. Der Fokus liegt stark auf Materialoberflächen, beschränkt sich aber nicht darauf. Die vorgestellten Techniken reichen von Spektrometrie und Rastermethoden bis hin zu Anwendungen von Materialien in der Sensorik.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische und naturwissenschaftliche Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis physikalisch-chemischer Systeme.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

2,0/1,0 VO Vorlesung aus dem Bereich Analytische Aspekte der Materialchemie A 2,0/1,0 VO Vorlesung aus dem Bereich Analytische Aspekte der Materialchemie B 6,0/6,0 PR Praktikum aus dem Bereich Analytische Aspekte der Materialchemie

WB1 Energiespeicherung und -umwandlung (Energy Storage and Conversion) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende die Bezüge zwischen atomistischer Struktur und Materialeigenschaften erläutern.

Kognitive und praktische Kompetenzen: Mit Hilfe elektrochemischer Konzepte und deren Anwendungen können Studierende nach Absolvierung dieses Moduls zielführend an der Weiterentwicklung von Energiespeichern und Energiewandlern arbeiten.

Inhalt: Inhalt des Moduls ist die Vermittlung der Grundlagen zu Materialien für die Energieumwandlung und Energiespeicherung. Ein Schwerpunkt liegt hierbei auf elektrochemischen Aspekten und deren Bezug zu Materialchemie und -technologie beim Einsatz in Batterien, Brennstoffzellen oder Elektrolysezellen. Zur Sprache kommen auch Materialien für andere Energiewandler wie Solarzellen oder Piezzowandler.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundlagen der Physikalischen Chemie und Elektrochemie; hilfreich sind auch Grundlagen zu keramischen Materialien.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

Von den folgenden drei Vorlesungen sind zwei verpflichtend zu absolvieren:

3.0/2.0 VO Elektrochemische Energieumwandlung und Energiespeicherung 3.0/2.0 VO Anwendungen elektrochemischer Materialien 3.0/2.0 VO Grundlagen der Festkörperelektrochemie und Festkörperkinetik

Von den folgenden beiden Laborübungen ist eine verpflichtend zu absolvieren:

4,0/4,0 LU Wahlübung technologisch (Elektrochemie) 4,0/4,0 LU Wahlübung technologisch (Festkörperelektrochemie)

WB2 Funktionelle Materialien (Functional Materials) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende erklären, wie man an/organische Hybridmaterialien (Silikate, Oxide, etc.) synthetisiert und wie man ihre chemischen und morphologischen Eigenschaften (Partikelgröße und -form) als auch ihre Funktionalität und Porosität kontrolliert. Außerdem können sie moderne Charakterisierungsmethoden erklären.

Kognitive und praktische Kompetenzen: Nach Absolvierung dieses Moduls können die Studierenden die vermittelten theoretischen Grundlagen in der Herstellung und Charakterisierung moderner Materialien anwenden und erwerben damit praktische Fähigkeiten in modernen Forschungslaboren zu arbeiten. Sie können nanoporöse Materialien synthetisieren, die als Sorbents, feste Katalysatoren oder Nanocarriers fungieren.

Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken sowie die Fähigkeit zur Weiterbildung und der Erwerb von Teamarbeits- and Kommunikationsfähigkeiten gefördert.

Inhalt: Studierenden werden mit verschiedenen Ansätzen zur Synthese an/organischer mikro- und mesoporöser Materialien vertraut gemacht, welche es ermöglichen, hochporöse Materialien mit verschiedenen chemischen und strukturellen Eigenschaften herzustellen. Anwendungen dieser Materialien, z.B. als Trennmedium oder in der Katalyse werden diskutiert. Den Studierenden werden moderne Methoden zur Charakterisierung solcher Materialien vermittelt. Schließlich können sie diese Fähigkeiten praktisch bei der Herstellung an/organischer Sorptionsmittel für eine Vielzahl von Anwendungen, darunter Gassorption, Wasserreinigung, Energiespeicherung und Katalyse, anwenden.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische und naturwissenschaftliche Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis physikalisch-chemischer Systeme.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

2,0/1,0 VO Vorlesung aus dem Bereich funktionale Materialien A

2,0/1,0 VO Vorlesung aus dem Bereich funktionale Materialien B

6,0/6,0 PR Praktikum aus dem Bereich funktionale Materialien

WB3 Soft Matter Grenzflächen (Soft Matter Interfaces) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Modul können die Studierenden die Grundlagen der physikalischen Chemie von Grenzflächen von Soft Matter erläutern.

Kognitive und praktische Kompetenzen: Nach Absolvierung dieses Modul können die Studierenden die vermittelten theoretischen Grundlagen in der Herstellung und Charakterisierung moderner Materialien anwenden und erwerben damit praktische Fähigkeiten in modernen Forschungslaboren zu arbeiten. Sie können geeignete Experimente zur Untersuchung der chemischen und physikalischen Eigenschaften dieser Grenzflächen planen und deren Ergebnisse interpretieren.

Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken sowie die Fähigkeit zur Weiterbildung und der Erwerb von Teamarbeits- and Kommunikationsfähigkeiten gefördert.

Inhalt: Die Studierenden erhalten einen Überblick über die Grundlagen der Wechselwirkung Soft Matter an Grenzflächen und werden in verschiedene oberflächenspezifische experimentelle Techniken eingeführt.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis physikalisch-chemischer Systeme.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

Die beiden folgenden Lehrveranstaltungen sind jedenfalls verpflichtend zu absolvieren:

4,0/4,0 PR Praktikum aus dem Bereich Soft Matter Grenzflächen

2,0/2,0 UE Übung aus dem Bereich Soft Matter Grenzflächen

Außerdem ist eine der folgenden Lehrveranstaltungen verpflichtend zu absolvieren:

4,0/3,0 VU Vorlesung mit Übungen aus dem Bereich Soft Matter Grenzflächen

4,0/2,0 VO Vorlesung aus dem Bereich Soft Matter Grenzflächen

WB4 Strukturwerkstoffe (Structural Materials) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls sind Studierende in der Lage, Prüfmethoden für Konstruktionswerkstoffe sowie auf Basis von Kennwerten Strukturwerkstoffe für Anwendungen gezielt auszuwählen.

Im Detail sind folgende Lehrergebnisse für die Lehrveranstaltungen anzuführen:

Nach positiver Absolvierung der VO Werkstoffauswahl sind Studierende in der Lage Konstruktionswerkstoffe, nach den Gebrauchseigenschaften der Bauteilfunktionsanforderungen auszuwählen, anwendungsspezifische Belastungsszenarien durch werkstoffliche Grundkennwerte zu beschreiben sowie das passende Formgebungsverfahren auszuwählen.

Nach positiver Absolvierung der VU Werkstoffprüfung sind Studierende in der Lage, Prüfprobleme zu erkennen und (unter Mithilfe von Normendatenbanken) für verschiedene Werkstoffklassen und Einsatzgebiete geeignete Prüfverfahren auszuwählen und deren Ergebnisse zu bewerten.

Nach positiver Absolvierung des Seminars Werkstoffe für den Maschinenbau sind Studierende in der Lage ein an sie herangetragenes Thema technisch und wissenschaftlich auszuarbeiten. Sie sind in der Lage, Informationen aus der einschlägigen Fach- und Allgemein-Literatur sowie Online-Quellen zu extrahieren und in ein Gesamtbild einzufügen.

Inhalt: Werkstoffprüfung mit zerstörenden und zerstörungsfreien Prüfverfahren. Vermittlung der Gemeinsamkeiten und Unterschiede bei der Prüfung von Metallen, Keramiken und Polymeren. Übertragung der Bauteilfunktionsanforderungen auf Gebrauchseigenschaften von Konstruktionswerkstoffen. An einem Werkstoffeinsatzbeispiel für maschinenbauliche Anwendungen können die erworbenen Kenntnisse unter Berücksichtigung der Fertigungskette und des Produktlebenszyklus umgesetzt und eine konkrete Werkstoffauswahl durchgeführt werden.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VO Werkstoffauswahl 4,0/4,0 VU Werkstoffprüfung 3,0/2,0 SE Werkstoffe für den Maschinenbau

WC1 Biomaterialien (Biomaterials) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse: Nach Absolvierung dieses Moduls können Studierende verschiedene Möglichkeiten für den Einsatz von Werkstoffen in der Medizin erläutern sowie Biomaterialien und ihre Struktur, ihre mechanischen Eigenschaften und Designstrategien beschreiben.

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende

- Möglichkeiten der Bestimmung der Biokompatibilität von Werkstoffen und
- Anwendungen biokompatibler Werkstoffe in Orthopädie, Zahnmedizin, Augenheilkunde, Kardiologie beschreiben sowie
- Struktur-Eigenschaftsbeziehungen bei biologischen Werkstoffen und Biomaterialien erklären.

Kognitive und praktische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende

- den Einsatz von Werkstoffen in der Medizin,
- die Zell-Material-Wechselwirkung und
- den chemischen und physikalischen Aufbau von biologischen Werkstoffen und Biomaterialien

erläutern bzw. erklären.

Soziale Kompetenzen und Selbstkompetenzen: Mit der Absolvierung dieses Moduls werden

- analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken und die Fähigkeit zur Weiterbildung sowie
- der Erwerb von Basiswissen an der Schnittstelle Werkstoffwissenschaften/ Chemie/Biologie/ Medizin zur Bewertung technischer und sozialer Implikationen von aktuellen Entwicklungen im Feld der biomedizinischen Technik

gefördert bzw. unterstützt.

Inhalt:

- Vermittlung von Kenntnissen über den Einsatz von Werkstoffen in der Medizin: Den Studierenden werden biologische Materialien und Biomaterialien in Bezug auf ihre strukturellen und funktionellen Eigenschaften vorgestellt. Eingegangen wird auch auf Designstrategien, welche in der Natur bei der Optimierung biologischer Materialien zum Einsatz kommen.
- Selbstständiges Arbeiten auf dem Gebiet der biomedizinischen Technik in aktuellen Forschungsprojekten.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis biologisch-chemischer Systeme

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VO Biokompatible Werkstoffe

3,0/2,0 VO Biomaterials

4,0/4,0 PR Biomaterialien und Biomechanik

WC2 Hochleistungswerkstoffe (High Performance Materials) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können die Studierenden Methoden für die Herstellung und Verarbeitung von Hochleistungswerkstoffen, sowohl von Gebrauchs- als auch von Sonderwerkstoffen, erläutern

Kognitive und praktische Kompetenzen: Die Studierenden erlernen den Umgang mit Geräten und Anlagen der Hochleistungswerkstoffe (im Labormaßstab) und können ausgewählte Werkstoffe selbst herstellen, verarbeiten und charakterisieren.

Soziale Kompetenzen und Selbstkompetenzen: Die Studierenden können ein Projektkonzept erstellen und gemeinsam mit ihren Kolleg*innen praktisch umsetzen und auswerten.

Inhalt: Die Studierenden werden mit den wichtigsten keramischen, metallischen Werkstoffen oder Verbundwerkstoffen vertraut gemacht, mit ihrer Herstellung, Formgebung und mit Nachbearbeitungsschritten wie Wärme- und Oberflächenbehandlung sowie den wichtigsten Anwendungen. Sie lernen, die verschiedenen Werkstofffamilien anhand von Anforderungsprofilen zu bewerten. In der Laborpraxis stellen sie Werkstoffe selbst her und charakterisieren sie.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Wissen aus dem Bachelorstudium im Bereich Anorganische Technologie/Werkstoffe.

Kognitive und praktische Kompetenzen: Praktische Kenntnisse aus einschlägigenLabor-übungen im Bachelorstudium.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

Von den folgenden drei Vorlesungen sind zwei verpflichtend zu absolvieren:

3,0/2,0 VO Technologie keramischer Werkstoffe

3,0/2,0 VO Verbundwerkstoffe und Verbunde

3,0/2,0 VO Pulvermetallurgie und Sinterwerkstoffe

4,0/4,0 LU Wahlübung Hochleistungswerkstoffe

WC3 Nanochemie (Nanochemistry) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse: Aufgrund der in diesem Modul vermittelten Lehrinhalte sollen die Studierenden in der Lage sein, wichtige theoretische Grundlagen von Nanomaterialien zu beschreiben, Einflüsse von Nanodimension auf physikalische und chemische Eigenschaften (optischen, elektronischen, strukturellen) herzuleiten, wichtige Charakterisierungsmethoden von Nanomaterialien zu beschreiben, theoretische Konzepte auf verwandte Materialklassen anzuwenden, verschiedene Prozesse und Verfahren zur Herstellung von Nanomaterialien zu beschreiben sowie Prozesse, bei denen Nanomaterialien verwendet werden, bezüglich ihrer großtechnischen Umsetzbarkeit (hinsichtlich Wirtschaftlichkeit, Umweltverträglichkeit und gesetzliche Vorgaben) zu beurteilen.

Fachliche und methodische Kompetenzen: Aufgrund der in diesem Modul vermittelten Lehrinhalte sind die Studierenden imstande, wichtige theoretische Grundlagen von Nanomaterialien zu beschreiben, Einflüsse von Nanodimension auf physikalische und chemische Eigenschaften (optischen, elektronischen, strukturellen) herzuleiten, wichtige Charakterisierungsmethoden von Nanomaterialien zu beschreiben, theoretische Konzepte auf verwandte Materialklassen anzuwenden, verschiedene Prozesse und Verfahren zur Herstellung von Nanomaterialien zu beschreiben sowie Prozesse, bei denen Nanomaterialien verwendet werden, bezüglich ihrer großtechnischen Umsetzbarkeit (hinsichtlich Wirtschaftlichkeit, Umweltverträglichkeit und gesetzliche Vorgaben) zu beurteilen.

Kognitive und praktische Kompetenzen: Die umfassende Ausbildung auf dem Gebiet der Anwendung nanoskaliger Materialien befähigt die Studierenden zum sicheren und verantwortungsvollen Umgang mit nanoskaligen Materialien und den damit verbundenen Risiken. Studierende sollen Fragestellungen zur Herstellung, zur Charakterisierung, zur Verarbeitung von nanoskaligen Materialien sowohl selbständig als auch in Teamarbeit lösen und damit der Umsetzung der Nanotechnologie als eine Schlüsseltechnologie des 21. Jahrhunderts dienlich sein.

Soziale Kompetenzen und Selbstkompetenzen: Im Rahmen der Lehrveranstaltungen, die sich mit nanoskaligen Materialien befassen, werden soziale Kompetenz, Innovationskompetenz und Kreativität vermittelt und gefördert.

Inhalt: Die Lehrveranstaltungen des Moduls vermitteln grundlegende Kennnisse zur Chemie und Physik nanostruktuierter Materialien sowie deren potenziellen Anwendungen. Schwerpunkte liegen bei:

- Synthese von Nanostrukturen durch chemische Prozesse
- Physikalische Ursachen von Nano-Effekten
- Molekulare Selbstorganisation mit Beispielen für 0D bis 3D Systeme
- Anwendung und Vertiefung von der Thematik angepassten Methoden zur Charakterisierung der Nanomaterialien
- Evaluierung von Eigenschaften und Untersuchung hinsichtlich ausgewählter Anwendungen

• Zusammenhang zwischen den Eigenschaften von Nanomaterialien und ihren Anwendungen

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Die Studierenden sollen über physikalisches, chemisches und biologisches Grundlagenwissen verfügen und sollen Verständnis für die technische Umsetzung physikalisch-chemischer und biologischer Prozesse im großtechnischen Maßstab zeigen.

Verpflichtende Voraussetzungen: Keine

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VO Chemie der Nanomaterialien

3,0/2,0 VO Technologie nanostrukturierter Materialien oder

3,0/2,0 VO Molekulare und selbstorganisierte Materialien

4,0/4,0 LU Wahlübungen, chemisch (angewandte anorganische Chemie)

WC4 Polymerchemie (Polymer Chemistry) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Im Rahmen dieses Moduls erwerben die Studierenden die Fähigkeiten,

- theoretische und synthetische Besonderheiten unterschiedlicher Polymerisationsklassen zu beschreiben,
- spezielle Synthesemethoden für bestimmte Polymerarchitekturen auszuwählen und zu begründen,
- Grundlagen wichtiger Methoden zur Charakterisierung von Polymeren und polymeren Materialien zu erklären und
- Lösungen für methodenübergreifende Fragestellungen zu finden.

Kognitive und praktische Kompetenzen: Im Rahmen dieses Moduls erwerben die Studierenden die Fähigkeiten,

- theoretisches Wissen mit praktischen Aufgaben in der Synthese und Charakterisierung von Polymeren. zu verbinden;
- im Bereich der makromolekularen Chemie und der nachwachsenden Rostoffe experimentell zu arbeiten;
- grundlegende analytische Methoden richtig auszuwählen und durchzuführen.

Soziale Kompetenzen und Selbstkompetenzen: Im Rahmen dieses Moduls erwerben die Studierenden die Befähigung zu

- Teamarbeit in kleineren Gruppen innerhalb der Laborübung,
- · Zeitmanagement in der Laborarbeit,
- Daten- und Berichtsmanagement im Laborbetrieb,
- Selbstorganisation.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundlagen der chemischen Technologie der organischen Stoffe und der Polymerchemie.

Kognitive und praktische Kompetenzen: Laborarbeit auf Basis von Laborvorschriften und grundlegende (organische) synthetische Chemie.

Soziale Kompetenzen und Selbstkompetenzen: Grundlegende (Selbst-)Organisation im Laborbetrieb.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VO Spezielle Synthesemethoden für Polymere

3,0/2,0 VO Polymercharakterisierung

4,0/4,0 LU Angewandte Makromolekulare Chemie

WC5 Kolloide und Grenzflächen (Colloids and Interfaces) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Die Studierenden können nach Abschluss des Moduls die grundlegenden Konzepte der Kolloid- und Grenzflächenchemie und der Partikel-Wechselwirkungen beschreiben sowie deren Anwendung erläutern.

Kognitive und praktische Kompetenzen: Die Studierenden können die erlernten theoretischen Grundlagen in der Synthese, Präparation und Charakterisierung moderner Materialien anwenden und erwerben praktische Fähigkeiten in modernen Forschungslaboren. Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken sowie die Fähigkeit zur Weiterbildung und der Erwerb von Teamarbeits- and Kommunikationsfähigkeiten gefördert.

Inhalt: Vermittelt werden Grundlagen der Kolloid- und Grenzflächenchemie, wie z.B. van der Waals Kräfte, Elektrochemische Doppelschicht, Einfluss von Polymeren; kinetische Eigenschaften von Partikeln; Grenzflächen: fest-gasförmig, fest-flüssig, flüssigflüssig; Oberflächen- und Grenzflächenspannung; Benetzung; oberflächenaktive Substanzen; Emulsionen; Rheologie disperser Systeme.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische und naturwissenschaftliche Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis chemischer Systeme.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

4,0/2,0 VO Vorlesung aus dem Bereich Kolloide und Grenzflächen

6,0/6,0 PR Praktikum aus dem Bereich Kolloide und Grenzflächen

WC6 Verbundwerkstoffe (Composite Materials) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Abschluss des Moduls können die Studierenden die Eigenschaften von modernen Verbundwerkstoffen beschreiben sowie den Einfluss der Materialwahl auf die Eigenschaften von Composites erklären. Sie können Konzepte wie Festigkeit und Zähigkeit erklären sowie die Möglichkeiten der Optimierung von Materialeigenschaften erläutern. Außerdem können sie self-healing Methoden und die Prinzipien hinter structural colouration in der Natur auf das Design von Composites und modernen Materialien anwenden.

Kognitive und praktische Kompetenzen: Die Studierenden können die vermittelten theoretischen Grundlagen in der Herstellung und Charakterisierung moderner Materialien anwenden und erwerben praktische Fähigkeiten in modernen Forschungslaboren.

Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken sowie die Fähigkeit zur Weiterbildung und der Erwerb von Teamarbeits- and Kommunikationsfähigkeiten gefördert.

Inhalt: In diesem Modul werden folgende Grundlagen vermittelt:

- Einführung in faserverstärkte Materialien (Metalle, Keramiken oder Polymere),
- Natürliche und synthetische Verstärkungsfasern,
- Matrixsysteme,
- Grenzflächen in Verbundwerkstoffen,
- Mechanischen Eigenschaften,
- spezifische Anwendungen.

Außerdem erfolgt eine Einführung in biologische Verbundwerkstoffe in der Natur, in Bezug auf ihre Strukturierung,

- für verbesserte Festigkeit und Zähigkeit,
- um Selbstheilungsfähigkeiten einzubauen,
- strukturelle Farben,
- besondere Benetzungseigenschaften (z. B. SLIPS, Superhydrophobie usw.)

und wie die oben genannten Konzepte genutzt werden können, um synthetische Verbundstoffe mit neuartigen Eigenschaften zu schaffen.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische und naturwissenschaftliche Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis chemischer Systeme, 3D Vorstellungsvermögen.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

4,0/2,0 VO Vorlesung aus dem Bereich Verbundmaterialien

6,0/6,0 PR Praktikum aus dem Bereich Verbundmaterialien

WD1 Abschätzung physikalisch-chemischer Eigenschaften (Estimation of Physical-chemical Properties) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können die Studierenden die grundlegenden Möglichkeiten von Fluid- bzw. Polymersystemen beschreiben und erklären.

Kognitive und praktische Kompetenzen: Nach Absolvierung dieses Moduls können die Studierenden die vermittelten theoretischen Grundlagen in der Herstellung, Anwendung und Charakterisierung moderner Materialien einsetzen und haben praktische Fähigkeiten in modernen Forschungslaboren erworben.

Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken sowie die Fähigkeit zur Weiterbildung und der Erwerb von Teamarbeits- and Kommunikationsfähigkeiten gefördert.

Inhalt: In den Vorlesungen dieses Moduls werden die grundlegenden theoretischen Beschreibungen für Fluide (reale Fluide und ihre Mischungen), Polymere und Polymerlösungen (soft matter, complex systems) vorgestellt. Die Modelle ermöglichen das Verhalten realer Fluidsysteme (z.B. pVT Relationen) bzw. das komplexe Verhalten von Polymeren und ihren Lösungen (z.B. Elastoviskosität) quantitativ zu bestimmen. Im Praktikum werden die erlernten Modelle anhand von Beispielen angewendet und Messungen durchgeführt, die auf den erlernten Grundlagen basieren.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische und naturwissenschaftliche Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis physikalisch-chemischer Systeme.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

- 4,0/2,0 VO Vorlesung aus dem Bereich Abschätzung physikalisch chemischer Eigenschaften
- 6,0/6,0 PR Praktikum aus dem Bereich Abschätzung physikalisch chemischer Eigenschaften

WD2 Struktur und Eigenschaften Metallischer Systeme (Structure and Properties of Metallic Systems) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierenden eigenständig Kristallstrukturen von Festkörpern untersuchen und experimentelle Daten in Hinblick auf Phasengleichgewichte auswerten. Die Studierenden können die geeigneten experimentellen Methoden problemorientiert auswählen, anwenden und deren Aussagekraft abschätzen.

Kognitive und praktische Kompetenzen: Die Studierenden können die vermittelten theoretischen Grundlagen in der Herstellung und Charakterisierung metallischer Materialien anwenden und erwerben praktische Fähigkeiten in modernen Forschungslaboren.

In diesem Modul werden neben fachlichen Kenntnissen auch digitale Kompetenzen vermittelt.

Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken sowie die Fähigkeit zur Weiterbildung und der Erwerb von Teamarbeits- and Kommunikationsfähigkeiten gefördert.

Inhalt: Die Studierenden erhalten Einblick in die experimentelle Untersuchung von Struktur und Phasengleichgewichten metallischer Materialien. Dabei werden ausgewählte Standardmethoden wie Röntgen-Pulverdiffraktometrie, Elektronenmikroskopie, Metallographie und thermische Analyse theoretisch behandelt und angewendet. Die Festkörperchemie mit Schwerpunkt auf metallischen Systemen wird anhand konkreter Beispiele erarbeitet.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische und naturwissenschaftliche Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis physikalisch-chemischer Systeme.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

 $2,\!0/1,\!0$ VO Vorlesung aus dem Bereich Struktur und Eigenschaften Metallischer Systeme A

- $2,\!0/1,\!0$ VO Vorlesung aus dem Bereich Struktur und Eigenschaften Metallischer Systeme B
- 6,0/6,0 PR Praktikum aus dem Bereich Struktur und Eigenschaften Metallischer Systeme

WD3 Modellierung von "Soft Matter" und Materialien (Modeling of Soft Matter and Materials) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende die grundlegenden Wechselwirkungen von Materie in verschiedenen Reaktionsmedien erläutern.

Kognitive und praktische Kompetenzen: Die Studierenden können die vermittelten theoretischen Grundlagen zur Beschreibung von (flüssigen) Materialien anwenden. Außerdem vertiefen sie ihre digitalen Kompetenzen und erwerben Grundkenntnisse in Data Science, d.h. im Erzeugen und Auswerten relevanter großer Datenmengen.

Inhalt: Dieses Modul stellt die grundlegenden Wechselwirkungen von Materie in verschiedenen Reaktionsmedien vor. Es schlägt somit eine Brücke zwischen Theorie und Praxis in der Physikalischen Chemie weicher Materie, Materialien und Molekülen. Studierende lernen in diesem Modul verschiedene computergestützte Verfahren anzuwenden, um Eigenschaften von Molekülen und Materialien in verschiedenen Reaktionsmedien zu untersuchen oder vorherzusagen. Hierbei wenden die Studierenden gängige Techniken in Machine Learning und Molekulardynamischen Simulationen an.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Erweiterte Kenntnisse in Mathematik und physikalischer Chemie.

Kognitive und praktische Kompetenzen: Grundverständnis physikalisch-chemischer Systeme.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken und Arbeiten am Computer.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

Aus den beiden folgenden Blöcken von Lehrveranstaltungen ist ein Block zur Gänze zu absolvieren:

4,0/2,0 VO Vorlesung aus dem Bereich Modellierung von Soft Matter und Materialien

2,0/2,0 UE Übung aus dem Bereich Modellierung von Soft Matter und Materialien oder

2.0/1.0 VO Vorlesung aus dem Bereich Modellierung von Soft Matter und Materialien 4.0/3.0 VU Vorlesung mit Übung aus dem Bereich Modellierung von Soft Matter und Materialien

Außerdem ist jedenfalls das folgende Praktikum zu absolvieren:

4,0/4,0 PR Praktikum aus dem Bereich Modellierung von Soft Matter und Materialien

WD4 Digitale Methoden in der Chemie (Computer Science for Molecules and Materials) (Wahlmodul Universität Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende die Grundlagen, wie große chemische Datenmengen verarbeitet werden, beschreiben und Techniken zur Verarbeitung dieser Datenmengen erläutern.

Kognitive und praktische Kompetenzen: Die Studierenden erwerben Grundkenntnisse in Data Science, d.h. im Erzeugen und Auswerten relevanter großer Datenmengen.

Soziale Kompetenzen und Selbstkompetenzen: Die Studierenden lernen verantwortungsvoller Umgang mit sensiblen Daten.

Inhalt: Neben dem Erlernen einer gängigen Programmiersprache werden auch Leistungsmerkmale und Performance-Steigerung von Programmen thematisiert. Als Grundlagen werden numerische Methoden besprochen und praktisch angewendet.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundkenntnisse in Algorithmen sind wünschenswert, aber nicht zwingend erforderlich.

Kognitive und praktische Kompetenzen: Grundkenntnisse im Umgang mit Computern.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken und Arbeiten am Computer.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

4,0/4,0 PR Praktikum aus dem Bereich Digitale Methoden in der Chemie

4,0/2,0 VO Vorlesung aus dem Bereich Digitale Methoden in der Chemie

2,0/1,0 SE Seminar aus dem Bereich Digitale Methoden in der Chemie

WD5 Theoretische Materialchemie (Theoretical Materials Chemistry) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage,

- Symmetrien, elektronische Strukturen und Energiebänder in Festkörpern zu beschreiben,
- einfache quantenmechanische Berechnungen in Festkörpern durchzuführen,
- optische Eigenschaften und Spektroskopie zu erklären, elektrische und mechanische Eigenschaften zusammenzufassen und
- Grundlagen des Magnetismus, relativistische Effekte und Gitterschwingungen in Festkörpern zu erklären.

Kognitive und praktische Kompetenzen: Die Studierenden erwerben die Fähigkeit, konzeptionelle und theoretische Erkenntnisse der Quantenmechanik in Vorhersagen von Materialeigenschaften umzusetzen und quantenmechanische Berechnungen an Festkörpern durchzuführen.

Inhalt: Die Studierenden erwerben theoretische und praktische Kenntnisse über die quantenmechanische Beschreibung von Festkörpern. Methoden zur Lösung der Schrödingergleichung im Festkörper sowie Konzepte wie Blochfunktion, Bandstruktur, Zustandsdichte, chemische Bindung in Festkörpern, Relation zwischen Struktur und Eigenschaften, Magnetismus und Spin-Bahnwechselwirkung, theoretische Spektroskopie (STM, XPS, UPS, XES, PES, IR, Mössbauer, NMR), endliche Temperaturen und Phononen werden erläutert und in praktischen Übungen vertieft.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundlagen der Theoretischen Chemie.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VO Physikalische und theoretische Festkörperchemie

3,0/2,0 VO Simulation von Festkörpern

4,0/4,0 LU Wahlübungen chemisch (Theoretische Chemie)

WE1 Mechanik von Biomaterialien (Mechanics of Biomaterials) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls sind Studierende in der Lage,

- die grundlegenden Prinzipien der Punkt-, Starrkörper und Kontinuumsmechanik zu erklären,
- die Prinzipien der dimensionalen Analyse und Skalierungsgesetze anzuwenden,
- die biomechanischen Prinzipien des muskosekeletalen und kardiovaskularen System abzuleiten,
- die Anatomie des muskuloskeletalen und des kardiovaskularen Systems zu beschreiben.
- mechanische und biomechanische Probleme zu lösen,
- mittels mikromechanischer Modelle aus CT Daten mechanische Eigenschaften biologischer Gewebe zu bestimmen,
- einfache CT-basierte FEA Simulationsmodelle zu erstellen, visualisieren und auszuwerten,
- Problemstellungen aus dem Umfeld der Biomechanik der Gewebe zu lösen,
- Kenntnisse aus den Lehrveranstaltungen des Moduls und Studiums anzuwenden und
- eine Projektarbeit (gemäß den Gepflogenheiten des Fachgebietes) zu verfassen.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls sind Studierende in der Lage, eine Projektarbeit in einem Vortrag zu präsentieren.

Soziale Kompetenzen und Selbstkompetenzen: Die Studierenden können im Team eine Lösung für eine biomechanische Problemstellung entwickeln.

Inhalt: Das Modul basiert auf einer Einführung in die Biomechanik, die darauf abzielt, die für biomechanische Probleme relevanten Prinzipien der Kinematik, Dynamik und Energetik zu vermitteln und die biomechanische Funktion des Muskel-Skelett-Systems und des Herz-Kreislauf-Systems zu verstehen.

Anschließend werden computergestützte Werkzeuge zur Quantifizierung der strukturellen Eigenschaften von Biomaterialien und biologischem Gewebe vorgestellt, wobei die Studierenden lernen, wie man aus digitalen Bildern computergestützte Modelle erstellt, Materialeigenschaften und Randbedingungen anwendet, sie mit der Finite-Elemente-Methode analysiert und die erhaltenen Ergebnisse interpretiert. Abschließend wird das erworbene Wissen im Rahmen eines Projekts zur Biomechanik von Geweben in die Praxis umgesetzt.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundkenntnisse in Mathematik und Physik. Kognitive und praktische Kompetenzen: Selbständige und systematische Herangehenswei-

se zur Lösung von Aufgaben und Problemen.

Soziale Kompetenzen und Selbstkompetenzen: Fähigkeit zur Teamarbeit.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VU Computational Biomaterials and Biomechanics

3,0/2,0 VU Introduction to Biomechanics

4,0/4,0 PR Biomechanik der Gewebe

WE2 Polymertechnologie (Polymer Technology) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende die grundlegenden Eigenschaften von Polymeren und die Struktur-Eigenschaftsbeziehungen bei polymeren Werkstoffen beschreiben. Außerdem können sie den Einfluss erklären, den Füllstoffe und Additive auf die Lagerstabilität und Verarbeitung haben, sowie wesentliche Eigenschaften von Polymerkompositen und Beschichtungstechnologien erläutern.

Kognitive und praktische Kompetenzen: In diesem Modul werden Kenntnisse über die Verarbeitung und die Anwendung von Polymeren sowie die Wechselwirkung von Füllstoffen mit Polymer-Materialien vermittelt. Speziell das Wissen über Polymeradditive und Formulierungen wird in den praktischen Übungen weiter vertieft.

Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden analytisches, methodisches, lösungs- und gestaltungsorientiertes Denken und die Fähigkeit zur Weiterbildung gefördert. Durch den Erwerb von Basiswissen an der Schnittstelle Chemie und Werkstoffwissenschaften erwerben die Studierenden die Fähigkeit zur Bewertung technischer und sozialer Implikationen von aktuellen Entwicklungen im Feld der Kunststofftechnik.

Inhalt: In diesem Modul werden Kenntnisse über die Verarbeitung und die Anwendung von Polymeren sowie die Wechselwirkung von Füllstoffen mit Polymer-Materialien vermittelt, im Speziellen Kenntnisse über die Verarbeitung und Verwendung der wichtigsten Standard-Thermoplasten, Duromeren und Elastomeren und ihre typischen industriellen Einsatzgebiete als Konstruktionswerkstoffe, Folien, Fasern, Beschichtungen und Kompositwerkstoffe.

Neben den Matrixmaterialien haben aber auch Füllstoffe und Additive einen maßgeblichen Einfluss auf die Lagerstabilität, Verarbeitung und die Anwendung. Speziell dieses Wissen der Polymeradditive und Formulierungen wird in den praktischen Übungen weiter vertieft.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische und naturwissenschaftliche Grundkenntnisse, vertiefende Kenntnisse in einem naturwissenschaftlichen oder technischen Fach.

Kognitive und praktische Kompetenzen: Grundverständnis makromolekularer Systeme an der Schnittstelle Chemie/Werkstoffwissenschaften.

Soziale Kompetenzen und Selbstkompetenzen: Offenheit für interdisziplinäres Denken.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VO Polymerwerkstoffe

1,5/1,0 VO Kunststoffverbundsysteme und Lacktechnologie

5,5/5,5 LU Wahlübungen Polymertechnologie

WE3 Schadensanalyse (Failure Analysis) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse: Nach Absolvierung dieses Moduls sind Studierende in der Lage, unter Zuhilfenahme der Systematik der Schadensanalyse, Bauteilversagen zu untersuchen, die Schadensursache(n) einzugrenzen und Vorkehrungen zur Vermeidung gleichartiger Schadensfälle zu treffen.

Inhalt: Den Studierenden wird Einblick in die Systematik der Schadensanalyse gegeben. Anhand charakteristischer Schadensbilder werden Kenntnisse typischer Versagensformen von Werkstoffen / Bauteilen vermittelt. Darüber hinaus lernen die Studierenden Methoden zur Ermittlung der Schadensursachen und Maßnahmen zur Vermeidung der Schäden kennen.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Werkstoffwissenschaftliche und werkstofftechnische Grundkenntnisse metallischer Gefüge.

Soziale Kompetenzen und Selbstkompetenzen: Fähigkeit zur Zusammenarbeit in kleinen Teams.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der betreffenden Universität ausgewiesen.

Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VU Werkstoffcharakterisierung und zerstörungsfreie Prüfung

3,0/2,0 VU Schadensanalyse

4,0/4,0 PR Analyse des Bauteilversagens

WE4 Werkstoffmechanik (Mechanics of Materials) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung des Moduls sind Studierende in der Lage,

- Komponenten von Tensoren zweiter und vierter Stufe zu transformieren,
- Tensoroperationen in Kelvin-Mandel'scher Matrix-Vektor-Notation durchzuführen,
- Spannungszustände auf Gleichgewicht zu untersuchen,
- zu klären, ob Spannungszustände zu elastischen oder anelastischem Materialverhalten führen.
- · Verzerrungszustände auf Basis gegebener Verschiebungszustände zu quantifizieren,
- auf Basis von Verschiebungsableitungen zu klären, ob der linearisierte Verzerrungstensor anwendbar ist, oder der Green-Lagrange'sche Verzerrungstensor zu verwenden ist,
- Spannungszustände und Verzerrungszustände über Materialgesetze zueinander in Bezug zu stellen,
- Kenntnisse aus den Lehrveranstaltungen dieses Moduls praktisch anzuwenden.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls besitzen die Studierenden die Fähigkeit zur selbstständigen Aneignung und kritischen Reflexion neuer Informationen und Erkenntnisse sowie zur Ableitung neuer Erkenntnisse aus der theoretischen Auseinandersetzung und zur Nutzung für Innovationen.

Soziale Kompetenzen und Selbstkompetenzen: In diesem Modul werden Kompetenzen betreffend Teamarbeit und Kollegialität gefördert und vertieft.

Inhalt: In diesem Modul werden wesentliche Kenntnisse der Werkstoffmechanik vermittelt. Nach Einführung der Grundbegriffe wie Spannung, Dehnung, Elastizität oder Festigkeit werden moderne mikromechanische und bruchmechanische Methoden vorgestellt,

mit denen genauere chemische und mikrostrukturelle Informationen in mechanische Eigenschaften (elastisch, plastisch, viskos, spröde) übersetzt werden können.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundkenntnisse in Mathematik und Physik. Kognitive und praktische Kompetenzen: Selbständige und systematische Herangehensweise zur Lösung von Aufgaben und Problemen.

Soziale Kompetenzen und Selbstkompetenzen: Fähigkeit zu Teamarbeit und Kollegialität.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,5 VO Multiscale Material Modelling

2,0/2,0 UE Multiscale Material Modelling

3,0/2,5 VU Computational Material Modelling

2,0/2,0 LU Bruchmechanik

WE5 Werkstoffverarbeitung (Processing of Materials) (Wahlmodul TU Wien)

Regelarbeitsaufwand: mindestens 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach Absolvierung dieses Moduls können Studierenden die üblichen Verfahren der Kunststoffverarbeitung sowie derzeit kommerziell verfügbare generative Fertigungsverfahren beschreiben.

Kognitive und praktische Kompetenzen: Nach Absolvierung dieses Moduls können Studierende unter Anleitung selbst Arbeiten auf dem Gebiet der Werkstoffverarbeitung und Werkstoffcharakterisierung in aktuellen Forschungsprojekten (Metalle, Keramiken und Polymere) durchführen.

Inhalt: In diesem Modul werden Studierenden die üblichen Verfahren der Kunststoffverarbeitung vermittelt sowie derzeit kommerziell verfügbare generative Fertigungsverfahren vorgestellt. In den Übungen und im Praktikum erfolgt selbstständiges Arbeiten auf dem Gebiet der Werkstoffverarbeitung und Werkstoffcharakterisierung in aktuellen Forschungsprojekten (Metalle, Keramiken und Polymere). Reelle Produktionsprozesse und Betriebsdynamiken werden durch eine Exkursion besichtigt.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Werkstoffkunde nichtmetallischer Werkstoffe.

Kognitive und praktische Kompetenzen: Literaturrecherchen, Analysefähigkeit.

Soziale Kompetenzen und Selbstkompetenzen: Gruppenarbeit.

Verpflichtende Voraussetzungen: Keine.

Lehrveranstaltungen des Moduls:

Die aktuell in Frage kommenden Lehrveranstaltungen werden jedes Semester im Vorlesungsverzeichnis der entsprechenden Universität ausgewiesen. Insbesondere können die Studierenden nach Maßgabe des Angebots Lehrveranstaltungen aus der folgenden Liste von Lehrveranstaltungen wählen. Weitere Lehrveranstaltungen an den beteiligten Universitäten können nach Maßgabe der Regelungen der betreffenden Universität für dieses Wahlmodul akzeptiert werden.

3,0/2,0 VO Kunststofftechnik

2,0/2,0 VU Additive Manufacturing Technologies

4,0/4,0 PR Werkstoffverarbeitung

1,0/1,0 EX Werkstoffverarbeitung

Freie Wahlfächer und Transferable Skills (Pflichtmodul)

Regelarbeitsaufwand: 10,0 ECTS

Lernergebnisse: Die Lehrveranstaltungen dieses Moduls dienen der Vertiefung des Faches sowie der Aneignung außerfachlicher Kenntnisse, Fähigkeiten und Kompetenzen.

Inhalt: Abhängig von den gewählten Lehrveranstaltungen.

Erwartete Vorkenntnisse: Abhängig von den gewählten Lehrveranstaltungen.

Verpflichtende Voraussetzungen: Abhängig von den gewählten Lehrveranstaltungen.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Abhängig von den gewählten Lehrveranstaltungen.

Lehrveranstaltungen des Moduls: Die Lehrveranstaltungen dieses Moduls können frei aus dem Angebot an wissenschaftlichen und künstlerischen Lehrveranstaltungen, die der Vertiefung des Faches oder der Aneignung außerfachlicher Kenntnisse, Fähigkeiten und Kompetenzen dienen, aller anerkannten in- und ausländischen postsekundären Bildungseinrichtungen ausgewählt werden, wobei aber mindestens 5,0 ECTS-Punkte aus dem Bereich der Transferable Skills zu absolvieren sind. Den Studierenden wird insbesondere ein facheinschlägiges Seminar zur Begleitung der Diplomarbeit empfohlen, welches dann dem Bereich der Transferable Skills zugerechnet wird.

B. Lehrveranstaltungstypen

Nur Lehrveranstaltungen vom Typ VO sind nicht prüfungsimmanent, Lehrveranstaltungen jeglichen anderen Typs sind prüfungsimmanent.

Bei Lehrveranstaltungen vom Typ VO erfolgt die Leistungsbeurteilung aufgrund einer schriftlichen und/oder mündlichen Prüfung, bei prüfungsimmanenten Lehrveranstaltungen erfolgt die Leistungsbeurteilung aufgrund von mehreren Teilleistungen.

An den beiden beteiligten Universitäten werden Lehrveranstaltungen der folgenden Typen angeboten.

VO: Vorlesungen sind Lehrveranstaltungen, in denen die Inhalte und Methoden eines Faches unter besonderer Berücksichtigung seiner spezifischen Fragestellungen, Begriffsbildungen und Lösungsansätze vorgetragen werden. Bei Vorlesungen herrscht keine Anwesenheitspflicht.

UE: Übungen sind Lehrveranstaltungen, in denen die Studierenden einzeln oder in Gruppenarbeit, unter fachlicher Anleitung und Betreuung durch die Lehrenden, aufbauend auf theoretischem Wissen durch Anwendung auf konkrete Aufgaben spezifische praktische Fertigkeiten erlernen und durch Diskussion vertiefen.

VU: Vorlesungen mit integrierter Übung vereinen die Charakteristika der Lehrveranstaltungstypen VO und UE in einer einzigen Lehrveranstaltung.

SE: Seminare sind Lehrveranstaltungen, bei denen sich Studierende mit einem gestellten Thema oder Projekt auseinander setzen und dieses mit wissenschaftlichen Methoden bearbeiten, wobei eine Reflexion über die Problemlösung sowie ein wissenschaftlicher Diskurs gefordert werden.

EX: Exkursionen sind Lehrveranstaltungen, die außerhalb des Studienortes stattfinden. Sie dienen der Vertiefung von Lehrinhalten im jeweiligen lokalen Kontext.

An den beiden beteiligten Universitäten werden Lehrveranstaltungen der folgenden spezifischen Typen angeboten:

TU Wien

LU: Laborübungen sind Lehrveranstaltungen, in denen Studierende in Gruppen unter unter fachlicher Anleitung und Betreuung durch die Lehrenden experimentelle Aufgaben lösen, um den Umgang mit Geräten und Materialien sowie die experimentelle Methodik des Faches zu erlernen.

PR: Projekte sind Lehrveranstaltungen, in denen das Verständnis von Teilgebieten eines Faches durch die Lösung von konkreten experimentellen oder theoretischen Aufgaben vertieft und ergänzt wird. Projekte orientieren sich an den praktisch-beruflichen oder wissenschaftlichen Zielen des Studiums und ergänzen die Berufsvorbildung bzw. wissenschaftliche Ausbildung.

Universität Wien

PR: Praktika sind Lehrveranstaltungen, in denen Studierende Studierende aufbauend auf theoretischem und praktischem Wissen spezifische praktische Fertigkeiten erlernen und anwenden.

C. Semestereinteilung der Lehrveranstaltungen

1. Semester (WS)	30 ECTS
Grundlagenmodul I Lehrveranstaltungen aus den gewählten Wahlmodulen	18,0 ECTS 12,0 ECTS
2. Semester (SS)	30 ECTS
Grundlagenmodul II Angleichungsmodul Lehrveranstaltungen aus den gewählten Wahlmodulen Freiwahlfächer und Transferable Skill	9,0 ECTS 3,0 ECTS 14,0 ECTS 4,0 ECTS
3. Semester (WS)	30 ECTS
Lehrveranstaltungen aus den gewählten Wahlmodulen Freiwahlfächer und Transferable Skill	24,0 ECTS 6,0 ECTS
4. Semester (SS)	30 ECTS
Diplomarbeit Kommissionelle Abschlussprüfung	27,0 ECTS 3,0 ECTS

D. Semesterempfehlung für schiefeinsteigende Studierende

Generell wird ein Studienbeginn im Wintersemester empfohlen, da viele Lehrveranstaltungen in den Wahlmodulen auf den Lehrveranstaltungen in den Pflichtmodulen aufbauen.

1. Semester (SS)	30 ECTS
Grundlagenmodul II Angleichungsmodul Lehrveranstaltungen aus den gewählten Wahlmodulen	9,0 ECTS 3,0 ECTS 14,0 ECTS
Freiwahlfächer und Transferable Skill	4,0 ECTS
2. Semester (WS)	30 ECTS
Grundlagenmodul I Lehrveranstaltungen aus den gewählten Wahlmodulen	18,0 ECTS 12,0 ECTS
3. Semester (SS)	30 ECTS
Lehrveranstaltungen aus den gewählten Wahlmodulen Freiwahlfächer und Transferable Skill	24,0 ECTS 6,0 ECTS
4. Semester (WS)	30 ECTS
Diplomarbeit Kommissionelle Abschlussprüfung	27,0 ECTS 3,0 ECTS

E. Prüfungsfächer mit den zugeordneten Modulen und Lehrveranstaltungen

Prüfungsfach "Pflichtfächer" (30,0 ECTS)

Modul "Grundlagen I" (18,0 ECTS)

- 2,0/1,0 VO Phasendiagramme (Uni Wien)
- 3,0/1,0 SE Chemikalienrecht und Sicherheit (Uni Wien)
- 4,0/2,0 VO Modern Methods for Materials Characterization (Uni Wien)
- 3,0/2,0 VO Synthese anorganischer Materialien (TU Wien)
- 3,0/2,0 VO Keramische Materialien (TU Wien)
- 3,0/2,0 VO Chemische Technologien Metallurgie (TU Wien)

Modul "Grundlagen II" (9,0 ECTS)

- 4,0/2,0 VO Grundlegende Konzepte der Materialchemie (Uni Wien)
- 3,0/2,0 VO Synthese organischer Materialien (TU Wien)
- 2,0/2,0 SE Chemie und Technologie der Materialien (Uni Wien)

Modul "Angleichungsmodul" (3,0 ECTS)

- 3,0/2,0 VO Chemische Technologie Anorganischer Stoffe (TU Wien)
- 3,0/2,0 VO Chemische Technologie Organischer Stoffe (TU Wien)
- 3,0/2,0 VO Introduction to Computational Chemistry and Physics (Uni Wien)

Prüfungsfach "Gebundene Wahlfächer" (mindestens 50,0 ECTS)

Modul "WA1 Thermodynamische Charakterisierung Metallischer Systeme (Thermodynamic Characterisation of Metallic Systems) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

- $2,\!0/1,\!0$ VO Vorlesung aus dem Bereich Thermodynamische Charakterisierung metallischer Systeme A
- $2,\!0/1,\!0$ VO Vorlesung aus dem Bereich Thermodynamische Charakterisierung metallischer Systeme B
- 6,0/6,0 PR Praktikum aus dem Bereich Thermodynamische Charakterisierung metallischer Systeme

Modul "WA2 Charakterisierung fester Stoffe (Characterisation of Solid Materials) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,0 VO Physikalisch-chemische Methoden der Materialcharakterisierung
- 3,0/2,0 VO Schwingungspektroskopie
- 4,0/4,0 LU Wahlübungen, chemisch (Oberflächenchemie und -analytik)

Modul "WA3 Grenzflächenchemie und Oberflächenanalytik (Chemistry of Interfaces and Analysis of Surfaces) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

3,0/2,0 VO Chemie und Physik der Grenzflächen

3,0/2,0 VO Kinetik und Katalyse

4,0/4,0 LU Wahlübungen, chemisch (Oberflächenchemie und -analytik)

Modul "WA4 Kristallstrukturen und ihre Aufklärung (Crystal Structures and Crystal Structure Determination) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

2,0/1,0 VO Vorlesung aus dem Bereich Kristallstrukturen und ihre Aufklärung

4,0/2,0 VO Vorlesung aus dem Bereich Kristallstrukturen und ihre Aufklärung

4,0/4,0 PR Praktikum aus dem Bereich Kristallstrukturen und ihre Aufklärung

Modul "WA5 Analytische Aspekte der Materialchemie (Analytical Aspects of Materials Chemistry) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

2,0/1,0 VO Vorlesung aus dem Bereich Analytische Aspekte der Materialchemie A

2,0/1,0 VO Vorlesung aus dem Bereich Analytische Aspekte der Materialchemie B

6,0/6,0 PR Praktikum aus dem Bereich Analytische Aspekte der Materialchemie

Modul "WB1 Energiespeicherung und -umwandlung (Energy Storage and Conversion) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

3,0/2,0 VO Elektrochemische Energieumwandlung und Energiespeicherung

3,0/2,0 VO Anwendungen elektrochemischer Materialien

3,0/2,0 VO Grundlagen der Festkörperelektrochemie und Festkörperkinetik

4,0/4,0 LU Wahlübung technologisch (Elektrochemie)

4,0/4,0 LU Wahlübung technologisch (Festkörperelektrochemie)

Modul "WB2 Funktionelle Materialien (Functional Materials) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

2,0/1,0 VO Vorlesung aus dem Bereich funktionale Materialien A

2,0/1,0 VO Vorlesung aus dem Bereich funktionale Materialien B

6,0/6,0 PR Praktikum aus dem Bereich funktionale Materialien

Modul "WB3 Soft Matter Grenzflächen (Soft Matter Interfaces) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

4,0/4,0 PR Praktikum aus dem Bereich Soft Matter Grenzflächen

2,0/2,0 UE Übung aus dem Bereich Soft Matter Grenzflächen

4,0/3,0 VU Vorlesung mit Übungen aus dem Bereich Soft Matter Grenzflächen

4,0/2,0 VO Vorlesung aus dem Bereich Soft Matter Grenzflächen

Modul "WB4 Strukturwerkstoffe (Structural Materials) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

3,0/2,0 VO Werkstoffauswahl

4,0/4,0 VU Werkstoffprüfung

3,0/2,0 SE Werkstoffe für den Maschinenbau

Modul "WC1 Biomaterialien (Biomaterials) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

3,0/2,0 VO Biokompatible Werkstoffe

- 3.0/2.0 VO Biomaterials
- 4,0/4,0 PR Biomaterialien und Biomechanik

Modul "WC2 Hochleistungswerkstoffe (High Performance Materials) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,0 VO Technologie keramischer Werkstoffe
- 3,0/2,0 VO Verbundwerkstoffe und Verbunde
- 3,0/2,0 VO Pulvermetallurgie und Sinterwerkstoffe
- 4,0/4,0 LU Wahlübung Hochleistungswerkstoffe

Modul "WC3 Nanochemie (Nanochemistry) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,0 VO Chemie der Nanomaterialien
- 3,0/2,0 VO Technologie nanostrukturierter Materialien
- 3,0/2,0 VO Molekulare und selbstorganisierte Materialien
- 4,0/4,0 LU Wahlübungen, chemisch (angewandte anorganische Chemie)

Modul "WC4 Polymerchemie (Polymer Chemistry) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,0 VO Spezielle Synthesemethoden für Polymere
- 3,0/2,0 VO Polymercharakterisierung
- 4,0/4,0 LU Angewandte Makromolekulare Chemie

Modul "WC5 Kolloide und Grenzflächen (Colloids and Interfaces) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

- 4,0/2,0 VO Vorlesung aus dem Bereich Kolloide und Grenzflächen
- 6,0/6,0 PR Praktikum aus dem Bereich Kolloide und Grenzflächen

Modul "WC6 Verbundwerkstoffe (Composite Materials) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

- 4,0/2,0 VO Vorlesung aus dem Bereich Verbundmaterialien
- 6,0/6,0 PR Praktikum aus dem Bereich Verbundmaterialien

Modul "WD1 Abschätzung physikalisch-chemischer Eigenschaften (Estimation of Physical-chemical Properties) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

- $4,\!0/2,\!0$ VO Vorlesung aus dem Bereich Abschätzung physikalisch chemischer Eigenschaften
- 6,0/6,0 PR Praktikum aus dem Bereich Abschätzung physikalisch chemischer Eigenschaften

Modul "WD2 Struktur und Eigenschaften Metallischer Systeme (Structure and Properties of Metallic Systems) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

 $2,\!0/1,\!0$ VO Vorlesung aus dem Bereich Struktur und Eigenschaften Metallischer Systeme A

- $2,\!0/1,\!0$ VO Vorlesung aus dem Bereich Struktur und Eigenschaften Metallischer Systeme B
- $6,\!0/6,\!0$ PR Praktikum aus dem Bereich Struktur und Eigenschaften Metallischer Systeme

Modul "WD3 Modellierung von "Soft Matter" und Materialien (Modeling of Soft Matter and Materials) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

- 4,0/2,0 VO Vorlesung aus dem Bereich Modellierung von Soft Matter und Materialien
- 2,0/2,0 UE Übung aus dem Bereich Modellierung von Soft Matter und Materialien
- 2,0/1,0 VO Vorlesung aus dem Bereich Modellierung von Soft Matter und Materialien
- $4,\!0/3,\!0$ VU Vorlesung mit Übung aus dem Bereich Modellierung von Soft Matter und Materialien
- 4,0/4,0 PR Praktikum aus dem Bereich Modellierung von Soft Matter und Materialien

Modul "WD4 Digitale Methoden in der Chemie (Computer Science for Molecules and Materials) (Wahlmodul Universität Wien)" (mindestens 10,0 ECTS)

- 4,0/4,0 PR Praktikum aus dem Bereich Digitale Methoden in der Chemie
- 4,0/2,0 VO Vorlesung aus dem Bereich Digitale Methoden in der Chemie
- 2,0/1,0 SE Seminar aus dem Bereich Digitale Methoden in der Chemie

Modul "WD5 Theoretische Materialchemie (Theoretical Materials Chemistry) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,0 VO Physikalische und theoretische Festkörperchemie
- 3,0/2,0 VO Simulation von Festkörpern
- 4,0/4,0 LU Wahlübungen chemisch (Theoretische Chemie)

Modul "WE1 Mechanik von Biomaterialien (Mechanics of Biomaterials) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,0 VU Computational Biomaterials and Biomechanics
- 3,0/2,0 VU Introduction to Biomechanics
- 4,0/4,0 PR Biomechanik der Gewebe

Modul "WE2 Polymertechnologie (Polymer Technology) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,0 VO Polymerwerkstoffe
- 1,5/1,0 VO Kunststoffverbundsysteme und Lacktechnologie
- 5,5/5,5 LU Wahlübungen Polymertechnologie

Modul "WE3 Schadensanalyse (Failure Analysis) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,0 VU Werkstoffcharakterisierung und zerstörungsfreie Prüfung
- 3,0/2,0 VU Schadensanalyse
- 4,0/4,0 PR Analyse des Bauteilversagens

Modul "WE4 Werkstoffmechanik (Mechanics of Materials) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,5 VO Multiscale Material Modelling
- 2,0/2,0 UE Multiscale Material Modelling
- 3,0/2,5 VU Computational Material Modelling
- 2,0/2,0 LU Bruchmechanik

Modul "WE5 Werkstoffverarbeitung (Processing of Materials) (Wahlmodul TU Wien)" (mindestens 10,0 ECTS)

- 3,0/2,0 VO Kunststofftechnik
- 2,0/2,0 VU Additive Manufacturing Technologies
- 4,0/4,0 PR Werkstoffverarbeitung
- 1,0/1,0 EX Werkstoffverarbeitung

Prüfungsfach "Freie Wahlfächer und Transferable Skills" (10,0 ECTS)

Modul "Freie Wahlfächer und Transferable Skills (Pflichtmodul)" (10,0 ECTS)

Prüfungsfach "Diplomarbeit" (30,0 ECTS)

27,0 ECTS Masterarbeit 3,0 ECTS Kommissionelle Abschlussprüfung