7.2 Applications of Euler's and Fermat's Theorem.

i) Solving non-linear congruences.

Example Find a solution to $x^{12} \equiv 3 \mod 11$.

Solution Any solution of this must satisfy gcd(x, 11) = 1 so Fermat's Little Theorem gives $x^{10} \equiv 1 \mod 11$. Thus our equation becomes

$$3 \equiv x^{12} \equiv x^2 x^{10} \equiv x^2 \mod 11.$$

Now check.

$$\begin{array}{cccc}
x & x^2 \mod 11 \\
1 & 1 \\
2 & 4 \\
3 & 9 \\
4 & 5 \\
5 & 3
\end{array}$$

Note that if $x \ge 6$ then $11 - x \le 5$ and $x^2 \equiv (11 - x)^2 \mod 11$ so all possible values of $x^2 \mod 11$ will be seen in the table.

From the table we see **an** answer is $x \equiv 5 \mod 11$.

ii) Example Show that $x^5 \equiv 3 \mod 11$ has **no** solutions.

Solution by contradiction. Assume $x^5 \equiv 3 \mod 11$ has solutions. Any solution of this must satisfy $\gcd(x,11)=1$ so Fermat's Little Theorem gives $x^{10} \equiv 1 \mod 11$. Since 5|10 we square both sides of the congruence to get

$$1 \equiv x^{10} \equiv (x^5)^2 \equiv 3^2 \equiv 9 \mod 11.$$

This is false and so the assumption is false and thus the congruence has no solution.

iii) Example Find a solution to $x^7 \equiv 3 \mod 11$.

Solution Again $x^{10} \equiv 1 \mod 11$ by Fermat's Little Theorem but this time $7 \nmid 10$, in fact $\gcd(7, 10) = 1$. From Euclid's Algorithm we get

$$3 \times 7 - 2 \times 10 = 1. \tag{1}$$

Raise both sides of the congruence to the third power to get

$$3^{3} \equiv (x^{7})^{3} \equiv x^{3\times7} \equiv x^{1+2\times10} \text{ by } (1),$$
$$\equiv x (x^{10})^{2}$$
$$\equiv x \mod 11.$$

Hence **a** solution is $x \equiv 3^3 \equiv 5 \mod 11$.

Don't forget to check your answer (by successive squaring of 5).

iv) Example Find the last two digits of 13^{1010} , (asked for in Chapter 3).

$$13^{1010} = (13^{40})^{25} 13^{10} \equiv 1^{25} 13^{10} \equiv 13^{10} \mod 100.$$

Hence, using (??),

$$13^{1010} \equiv 13^{10} = 13^8 \times 13^2$$

 $21 \times 69 \equiv 49 \mod 100.$

Therefore, the last two digits of 13^{1010} are 49.

Question for students. What are the last *three* digits of 13^{1010} ? See appendix.

v) Is $2^{35} + 1$ divisible by 11? Here we look at $2^{35} + 1 \mod 11$. Because 11 is prime we could use Fermat's Little Theorem to say $2^{10} \equiv 1 \mod 11$. Thus

$$2^{35} + 1 \equiv 2^5 + 1 \equiv 32 + 1 = 33 \equiv 0 \mod 11$$
,

i.e. $2^{35} + 1$ is divisible by 11.

Question for students. Show that $2^{1194} + 1$ is divisible by 65.

Appendix

Contents

- 1. Further examples of Fermat's Theorem
- 2. Wilson's Theorem
- 1) Further examples of the use of Euler's and Fermat's Theorems.

Example Show that $2^{1194} + 1$ is divisible by 65.

Solution We need show that $65 | (2^{1194} + 1)$. Since $65 = 5 \times 13$ we need show that $5 | (2^{1194} + 1)$ and $13 | (2^{1194} + 1)$.

5 is prime so by Fermat's Little Theorem we have $2^4 \equiv 1 \mod 5$. Hence

$$2^{1194} + 1 = (2^4)^{298} 2^2 + 1 \equiv 1^{298} \times 4 + 1$$

= $5 \equiv 0 \mod 5$.

13 is prime so again by Fermat's Little Theorem we have $2^{12}\equiv 1\,\mathrm{mod}\,5.$ Hence

$$2^{1194} + 1 = (2^{12})^{99} 2^6 + 1 \equiv 1^{99} \times 64 + 1$$

= $65 \equiv 0 \mod 13$.

Combining these we get the required result.

Example Is 221 prime?

Solution Fermat's Little Theorem tells us that If 221 is prime then $2^{220} \equiv 1 \mod 221$. Note that

$$220 = 128 + 64 + 16 + 8 + 4$$
$$= 2^{7} + 2^{6} + 2^{4} + 2^{3} + 2^{2}.$$

Look at powers of 2 modulo 221.

$$\begin{array}{c|c}
n & 2^{2^n} = \left(2^{2^{n-1}}\right)^2 \mod 221 \\
\hline
0 & 2 \\
1 & 2^2 = 4 \\
2 & 4^2 = 16 \\
3 & 16^2 = 256 \equiv 35 \\
4 & 35^2 = 1225 \equiv 120 \equiv -101 \\
5 & (-101)^2 = 10201 \equiv 35 \\
6 & 35^2 \equiv -101 \\
7 & (-101)^2 \equiv 35.
\end{array}$$

So

$$2^{220} = 2^{2^7} 2^{2^6} 2^{2^4} 2^{2^3} 2^{2^2}$$

$$\equiv 35 \times (-101) \times (-101) \times 35 \times 16$$

$$\equiv 220 \times 220 \times 16$$

$$\equiv 16 \mod 221.$$

Since $2^{220} \not\equiv 1 \mod 221$ we deduce that 221 is **not** prime.

Example You now notice that 221 is composite and in fact $221 = 17 \times 13$. Use Fermat's Little Theorem, and not the method of successive squaring modulo 221, to check that $2^{220} \equiv 16 \mod 221$.

Solution. If $x \equiv 2^{220} \mod (17 \times 13)$ then

$$x \equiv 2^{220} \mod 17$$
 and $x \equiv 2^{220} \mod 13$.

By Fermat's Little Theorem we have $2^{16} \equiv 1 \mod 17$ so

$$2^{220} = 2^{13 \times 16 + 12} \equiv 2^{12} \equiv (2^4)^3$$

 $\equiv (-1)^3 \equiv -1 \equiv 16 \mod 17.$

Similarly $2^{12} \equiv 1 \mod 13$ so

$$2^{220} = 2^{18 \times 12 + 4} \equiv 2^4 = 16 \equiv 3 \mod 13$$
.

Thus our two equations become

$$x \equiv 16 \mod 17$$
 and $x \equiv 3 \mod 13$

Such a system was solved in the Appendix to Chapter 3, using the Chinese Remainder Theorem, where we found $x \equiv 16 \mod 221$.

Example Solve $x^{22} + x^{11} \equiv 2 \mod 11$.

Solution Any solution must have gcd(x, 11) = 1 and so, by By Fermat's Little Theorem, $x^{10} \equiv 1 \mod 11$. Thus

$$x^{22} + x^{11} \equiv x^2 + x$$

 $\equiv x^2 + 12x$ on adding 11 to make the cofficient even,
 $\equiv (x+6)^2 - 36 \mod 11$,

by completing the square. Thus we need only solve $(x+6)^2 - 36 \equiv 2 \mod 11$, i.e. $(x+6)^2 \equiv 5 \mod 11$. From the table

$$\begin{array}{cccc}
x & x^2 \mod 11 \\
1 & 1 \\
2 & 4 \\
3 & 9 \\
4 & 5 \\
5 & 3
\end{array}$$

we see that two solutions are $x+6\equiv 4 \operatorname{mod} 11$ and $x+6\equiv -4 \operatorname{mod} 11$, i.e. $x\equiv 1 \text{ or } 9 \operatorname{mod} 11$.

Example Show that there are no integer solutions (x, y) to

$$x^{12} - 11x^6y^5 + y^{10} \equiv 8.$$

Solution We assume for a contradiction that there *are* integer solutions. When we look at this modulo 11 they will remain solutions.

There are three cases.

First, it maybe that 11|y in which case the equation becomes $x^{12} \equiv 8 \mod 11$. For any solution of this we must have $\gcd(x,11)=1$ so, again by Fermat's Theorem, $x^{10} \equiv 1 \mod 11$ and so we get $x^2 \equiv 8 \mod 11$. From the table above we see this has no solutions.

Secondly, $11 \nmid y$ and $11 \mid x$ when the equation becomes $y^{10} \equiv 8 \mod 11$. But Fermat's Little Theorem gives $y^{10} \equiv 1 \mod 11$. Thus there are no solutions.

Finally, 11 $\nmid y$ and 11 $\nmid x.$ So Fermat's Theorem again gives both $x^{10},y^{10}\equiv 1\, \mathrm{mod}\, 11.$ Thus

$$x^{12} - 11x^6y^5 + y^{10} \equiv x^2 + 1 \mod 11,$$

and so we are looking for solutions to $x^2 \equiv 7 \mod 11$. Again from the table we see this has no solution.

In all cases our equation has no solutions modulo 11. This contradiction means our original equation has no integer solutions.

2) Wilson's Theorem.

Recall that

$$\mathbb{Z}_{m}^{*} = \{ [r]_{m} : 1 \le r \le m, \gcd(r, m) = 1 \}$$
$$= \{ [r]_{m} : 1 \le r \le m, \exists [x]_{m} \in \mathbb{Z}_{m} : [r]_{m} [x]_{m} = [1]_{m} \}.$$

Question What $1 \le r \le m$ are self-inverse modulo m, i.e. for which we can we take $[x]_m = [r]_m$ in $[r]_m [x]_m = [1]_m$? In other words, for which $1 \le r \le m$ do we have $r^2 \equiv 1 \mod m$?

Answer given here only for m = p, prime.

Theorem $x^2 \equiv 1 \mod p$ if, and only if, $x \equiv 1$ or $-1 \mod p$. **Proof**

$$x^{2} \equiv 1 \mod p \iff p \mid (x^{2} - 1)$$

$$\Leftrightarrow p \mid (x - 1) (x + 1)$$

$$\Leftrightarrow p \mid (x - 1) \text{ or } p \mid (x + 1) \text{ since } p \text{ prime}$$

$$\Leftrightarrow x \equiv 1 \mod p \text{ or } x \equiv -1 \mod p.$$

Thus the only self-inverses in \mathbb{Z}_p^* are $[1]_p$ and $[p-1]_p$. As a corollary of this we have

Theorem Wilson's Theorem. If p is prime then

$$(p-1)! \equiv -1 \bmod p.$$

Proof p.291. Take the product of all the classes in \mathbb{Z}_p^* :

$$\prod_{\substack{1 \le r \le p-1 \\ \gcd(r,p)=1}} [r]_p$$

Rearrange, pairing up a class with its inverse, leaving $[1]_p$ and $[p-1]_p$ unpaired. So the product becomes

$$[1]_p \left(\prod_{\text{pairs}} [r]_p [r]_p^{-1} \right) [p-1]_p = [p-1]_p.$$

Thus

$$\prod_{\substack{1 \le r \le p-1 \\ \gcd(r,p)=1}} [r]_p = [p-1]_p,$$

which is equivalent to the stated result.

Example Calculate 20! mod 23.

Solution 23 is a prime so Wilson's Theorem gives $22! \equiv -1 \mod 23$. But

22! =
$$22 \times 21 \times 20! \equiv (-1) \times (-2) \times 20!$$

 $\equiv 2 \times 20! \mod 23.$

By observation 12 is the inverse of 2 modulo 23 so

20!
$$\equiv (12 \times 2) \times 20! = 12 \times (2 \times 20!)$$

 $\equiv 12 \times 22!$ from above,
 $\equiv -12$ from $22! \equiv -1 \mod 23$,
 $\equiv 11 \mod 12$.