GATE ALL BRANCHES

ENGINEERING MATHEMATICS

Single Variable Calculus

Single Variable calculus

Limit V Existence of limit

V Herrito evaluate The limit

If LML # RHL and Not finite Limit does Not exerts

left f(z) =	(x+2)	LH	L (Left Ha	nd)
X	(X+2)		f(x)=x+=	
X=1.9	1.9+2=	-	3.9	Conve
X=1.99	1.99+2		3.99	= 4
X=1.999	1.933+2		3.9999	4
X=1.9999	1.99999-	+2	3-99999	
f(x)=x+2	RHL (Rue	ght Hand		J
X	+2 for	()	4	
2-01 2-0	1+2 4.0			
2.001 20	101+2 4-00			
वे ०००। वे	00)+2 4·0	no		
	1			

Y= (X+2)	
Lt (x+2) X+2 Put x+2 7=2	
y=2+2=4	

LML= RML=4 Lmnt susts

Method:

Lt (x+2)

$$f(x) = (x+2)$$
 $f(x) = (x+2)$
 $f(x-h) = (x-h)+2$
 $f(x) = (x+h)+2$
 $f(x) = (x+h)+2$
 $f(x) = (x+h)+2$
 $f(x) = (x+h)+2$
 $f(x) = (x+h)+2$

Plug in Limits

 $f(x) = (x+h)+2$

Right Hand limit

 $f(x) = (x+h)+2$

Plug in Limits

 $f(x) = (x+h)+2$
 $f(x) = (x+h)+2$

Questions

Q. Questions
$$f(x)=2x-1$$

$$f(1-h)=2(1-h)-1$$
Show that the limit of:
$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x > 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x > 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x > 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f(x) = \begin{cases} 2x-1 & \text{if } x > 1 \\ x & \text{if } x > 1 \end{cases}$$

$$f$$

Questions

Evaluate the left hand and right hand limits of the function defined by

$$f(x) = \begin{cases} x^2 & , & x < 1 \\ x^3 & , & 1 < x < 4 \\ 4 - x & , & x > 4 \end{cases}$$

at x = 1, 4 and hence check existence of limit at x = 1, 4.

$$f(x) = \begin{cases} \chi^2 & \chi < 1 \\ \chi^3 & 1 < \chi < 4 \end{cases}$$

$$H = \begin{cases} \chi^2 & \chi < 4 \end{cases}$$

$$= \chi \times 4 \qquad \chi > 4 \qquad \chi$$

$$\frac{\chi^{2} \left(1 + \chi^{3}\right) \left(y - \chi\right)}{\chi^{2} \left(1 + \chi^{3}\right)}$$

$$\frac{LHL}{\chi^{3}} \left(y - \chi\right)$$

$$RHL = \int_{h \to 0}^{h \to 0} \left(1 + h\right) = \int_{h \to 0}^{h \to 0} \left(1 + h\right)$$

$$= \int_{h \to 0}^{h \to 0} \left(1 + h\right)^{3}$$

$$= \int_{h \to 0}^{h \to 0} \left(1 + h\right)^{3} + 3h^{2} + 3h$$

$$RHL = \int_{h \to 0}^{h \to 0} \left(1 + h\right)^{3} + 3h^{2} + 3h$$

$$RHL = \int_{h \to 0}^{h \to 0} \left(1 + h\right)^{3} + 3h^{2} + 3h$$

$$RHL = \int_{h \to 0}^{h \to 0} \left(1 + h\right)^{3} + 3h^{2} + 3h$$

$$RHL = \int_{h \to 0}^{h \to 0} \left(1 + h\right)^{3} + 3h^{2} + 3h$$

At point
$$x=4$$

LHL = $At f(a-h)$
 $\Rightarrow At f(4-h)$
 $\Rightarrow At (4-h)^3$
 $= At (4-h)$

Questions

Evaluate the left hand and right-hand limits of the function

$$f(x) = \begin{cases} \frac{\sqrt{(x^2 - 6x + 9)}}{(x - 3)}, & x \neq 3 \end{cases}$$

$$\begin{cases} x \neq 3 \end{cases}$$

at x = 3 and hence comment on the existence of limit at x = 3.

$$f(x) = \begin{cases} \sqrt{x^2 - 6x + 9} & x \neq 3 \\ 0 & x = 3 \end{cases}$$

$$f(x) = \begin{cases} \sqrt{(x - 3)^2} & x \neq 3 \\ 0 & x = 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x^2 - 6x + 9} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x^2 - 6x + 9} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D = \begin{cases} \sqrt{x - 3} & x \neq 3 \\ \sqrt{x - 3} & x \neq 3 \end{cases}$$

$$D =$$

$$f(z) = \begin{cases} \sqrt{(x-3)^2} & x+3 \\ \sqrt{x-3} & x+3 \end{cases} = \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases} = \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases} = \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases} = \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases} = \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x + 3 \\ \sqrt{x-3} & x+3 \end{cases}$$

$$= \begin{cases} x +$$

$$f(x) = \frac{|x-3|}{(x-3)} \times +3$$

$$RHL = \frac{1}{h+0} f(a+h)$$

$$= \frac{1}{h+0} f(3+h)$$

$$= \frac{1}{3+h-3} = \frac{1}{h+0} \frac{1}{h+0} h$$

$$RML = \frac{1}{h+0} \frac{1}{h+0} = \frac{1}{h+0} \frac{1}{h+0} = \frac{1}{h+0}$$

$$h+0 = \frac{1}{h+0} \frac{1}{h+0} = \frac{1}{h+0} \frac{1}{h+0} = \frac{1}{h+0}$$

= does Not

Q.

Questions

$$f(-h) = -h-|-h| = LHL -h = h+0 f(a-h)$$

If
$$f(x) = \begin{cases} \frac{x-|x|}{x}, & x \neq 0 \\ \frac{x}{2}, & x = 0 \end{cases}$$
 the $\lim_{h \to 0} f(x)$ is $\lim_{h \to 0} f(x) = \lim_{h \to 0} f(x)$

(a) 2
$$f(x) = \sqrt{\frac{x-|x|}{x}} x \neq 0$$

$$\frac{\chi-|\chi|}{\chi-|\chi|} \propto \pm 0$$

$$\frac{\chi-|\chi|}{\chi-|\chi|} \propto \pm 0$$

$$\frac{\chi-|\chi|}{\chi-|\chi|} \sim \frac{\chi+|\chi|}{\chi+|\chi|} \sim \frac{\chi+|\chi|}{\chi+|\chi|}$$

RHL= lt
$$\frac{1}{h}$$
 $\frac{1}{h}$ $\frac{1}{h$

LHL+RNL 2000 Not wish

