

()()()

047 048 040

Supplementary Material

README file for the 'RMTest.m' Matlab Code

Abstract

This document explains how to use the code implementing the improved RMT estimate of covariance matrix and precision matrix proposed in the core of the article.

1. Archive content

- The function implementing our method is called RMTest.m which takes as arguments the data matrix X, the gradient_check and plot_cost options, the initial point C_0 and the distance under investigation. The function returns the estimated covariance matrix C_est and the cost function related to this estimated covariance.
- The main script comparing all algorithms for synthetic data is CompareEst.m.
- The main script comparing the estimation methods for the LDA/QDA application is ML_applications.m.
- folder Manopt: a Matlab toolbox for optimization on manifolds (Boumal et al., 2014). Some of the functions in this folder were adapted to better suit our present problem.
- folder Othermethods: containing alternative estimation methods among which the QuEST methods QuEST1 and QuEST2 from (Ledoit & Wolf, 2015; Ledoit et al., 2018), the Rao-Blackwell Ledoit-Wolf estimation methods (Chen et al., 2010) and the Oracle Approximating Shrinkage estimation method (Chen et al., 2010).
- folder Utilities: contains supplementary codes for the implementation of LDA,QDA.

2. Code CompareEst.m

The different options proposed to execute the script CompareEst.m comparing the different estimation algorithms are as follows:

- ullet The range of n and the value of p
- The covariance matrices metric "distance" (among Fisher, Battacharrya, KL, log, log1st, t) or for the precision matrices (among Inverse_Fisher, ,Inverse_Battacharrya,Inverse_KL, Inverse_log1st, Inverse_log,Inverse_t)
- The target matrix "Covariance" (among dirac, Wishart, toeplitz) and their parameters "param" if needed (for the Wishart and Toeplitz cases)
- The initialization point for the gradient descent algorithm denoted "initialization" (linear shrinkage from (Ledoit & Wolf, 2004) denoted "shrinkage", shrinkage from (Chen et al., 2010) denoted "alternative shrinkage", QuEST denoted as "ledoit-wolf") or the identity denoted "manual"
- Other binary option can be chosen (among 0/1): (gradient_check to check if the gradient is correct, plot_cost to see the cost/real distance during iterations.

3. Code ML_applications.m

The different options proposed to execute the script ML_applications.m are as follows:

- the data on which the LDA/QDA are applied denoted "dataset" for which the options are synthetic for synthetic data and eeg for eeg dataset.
- The machine learning algorithms denoted "application" for which the options are LDA and QDA.
- For synthetic data, the examples of covariance under investigation. For both the covariance of the first and second class, Wishart and toeplitz are the two options.

4. Reproducing the results of the article

The following sections detail the parameter setting to reproduce the figures of the main article.

4.1. Figure 1

055

057

058

059

060

068 069

077 078

079

086

087 088

096 097

098

109

 $\begin{array}{lll} 061 & Script \rightarrow \texttt{CompareEst.m} \\ 062 & covariance \rightarrow \texttt{toeplitz} \\ 063 & parameter \rightarrow 0.4 \\ 064 & p \rightarrow 512, \, n \rightarrow 500 \\ 065 & distance \rightarrow Fisher \\ 066 & Initialisation \rightarrow manual \\ 067 & plot_cost \rightarrow 1 \\ \end{array}$

4.2. Figure 2

 $\begin{array}{ll} 071 & Script \rightarrow \texttt{CompareEst.m} \\ 072 & covariance \rightarrow Wishart/toeplitz(0.1)/toeplitz(0.9)/dirac \\ 073 & n \rightarrow linspace(210,500,10), p \rightarrow 200 \\ 074 & distance \rightarrow Fisher \\ 075 & Initialisation \rightarrow shrinkage \\ 076 & plot_cost \rightarrow 0 \\ \end{array}$

4.3. Figure 3

 $\begin{array}{ll} \text{O80} & \text{Script} \rightarrow \text{CompareEst.m} \\ \text{O81} & \text{covariance} \rightarrow \text{Wishart/toeplitz}(0.1)/\text{toeplitz}(0.9)/\text{dirac} \\ \text{O82} & \text{n} \rightarrow \text{linspace}(210,500,10), \, \text{p} \rightarrow 200 \\ \text{O83} & \text{distance} \rightarrow \text{Inverse_Fisher} \\ \text{O84} & \text{Initialisation} \rightarrow \text{shrinkage} \\ \text{O85} & \text{plot_cost} \rightarrow 0 \\ \end{array}$

4.4. Figure 4

OSCRIPT → ML_applications.m

mu2 → mu1+80/p

application → LDA

covariance1 → Wishart/Wishart/toeplitz/

covariance2 → Wishart/toeplitz/toeplitz/

dataset → synthetic/synthetic/synthetic/eeg

p → linspace(500,200,10), n → 512

eeg dataset → n_train = 500, n_test = 1000,p=100

4.5. Figure 5

099 Script \rightarrow ML_applications.m 100 mu2 \rightarrow mu1+1/p except for the third one which is 101 mu1+80/p 102 application \rightarrow QDA 103 covariance1 \rightarrow Wishart/Wishart/toeplitz/ 104 covariance2 \rightarrow Wishart/toeplitz/toeplitz/ 105 dataset \rightarrow synthetic/synthetic/synthetic/eeg 106 p \rightarrow linspace(500,200,10), n \rightarrow 512 107 eeg dataset \rightarrow n.train = 150, n.test = 1000,p=100

References

- Boumal, N., Mishra, B., Absil, P.-A., and Sepulchre, R. Manopt, a Matlab toolbox for optimization on manifolds. *Journal of Machine Learning Research*, 15:1455–1459, 2014. URL http://www.manopt.org.
- Chen, Y., Wiesel, A., Eldar, Y. C., and Hero, A. O. Shrinkage algorithms for mmse covariance estimation. *IEEE Transactions on Signal Processing*, 58(10):5016–5029, 2010.
- Ledoit, O. and Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. *Journal of multivariate analysis*, 88(2):365–411, 2004.
- Ledoit, O. and Wolf, M. Spectrum estimation: A unified framework for covariance matrix estimation and pca in large dimensions. *Journal of Multivariate Analysis*, 139: 360–384, 2015.
- Ledoit, O., Wolf, M., et al. Optimal estimation of a large-dimensional covariance matrix under steins loss. *Bernoulli*, 24(4B):3791–3832, 2018.