Министерство науки и высшего образования Российской Федерации Новосибирский государственный технический университет Кафедра теоретической и прикладной информатики

Факультет: ФПМИ Группа: ПМ-63

Студенты: Кожекин М.В.

Майер В.А. Назарова Т.А. Утюганов Д.С.

Вариант: 9(1)

Новосибирск

1. Цель работы

Изучить алгоритмы, используемые при построении дискретных оптимальных планов эксперимента.

2. Задание

- 1. Изучить алгоритмы построения дискретных оптимальных планов.
- 2. Разработать программу построения дискретных оптимальных планов эксперимента, реализующую заданный алгоритм.
- 3. Для числа наблюдений 20, 25, 30, 35, 40 построить оптимальные планы на каждой из сеток, указанных в варианте задания. Выбрать лучшие дискретные планы для заданного числа наблюдений.
- 4. Оформить отчет, включающий в себя постановку задачи, результаты проведенных в п. 3 исследований, текст программы.
 - 5. Защитить лабораторную работу.

3. Анализ

Задана двухфакторная модель на квадрате со сторонами [-1, 1].

Дискретное множество \tilde{X} - сетки $10\mathrm{x}10$ и $20\mathrm{x}20$. Строить D-оптимальные планы. Алгоритм Фёдорова. Повторные наблюдения допускаются.

$$y = \Theta_0 + \Theta_1 \cdot x_1 + \Theta_2 \cdot x_2 + \Theta_3 \cdot x_1 \cdot x_2 + \Theta_4 \cdot x_1^2 + \Theta_5 \cdot x_2^2$$

Этапы алгоритма Фёдорова синтеза непрерывного оптимального плана:

- 1. Выбирается невырожденный начальный план ε_N^0 и малая константа $\delta>0,\,{\rm s}=0.$
- 2. Выбирается пара точек: x_j^s , принадлежащая плану ε_N^s , и x^s , не принадлежащая плану, по правилу

$$(x_j^s, x^s) = arg \left(\max_{x_j \in \varepsilon_N^s} \max_{x \in \tilde{X}} \Delta(x_j, x) \right)$$

где

$$\Delta(x_j, x) = \frac{1}{N} \left[d(x, \varepsilon_N) - d(x_j, \varepsilon_N) \right]$$
$$-\frac{1}{N^2} \left[d(x, \varepsilon_N) d(x_j, \varepsilon_N) - d^2(x, x_j, \varepsilon_N) \right]$$

 $d(x,\varepsilon) = f^{T}(x)M^{-1}f(x), \quad d(x,x_{j},\varepsilon) = f^{T}(x)M^{-1}f(x_{j})$

- 3. Величина $\Delta(x_j, x)$ сравнивается с δ . Если $\Delta(x_j, x) \leq \delta$, то вычисления прекращаются, в противном случае осуществляется переход на шаг 4.
- 4. Точка x_j заменяется в плане на точку х. В результате получается новый план ε_N^{s+1} . Далее s заменяется s+1 и осуществляется переход на шаг 2.

Оптимизационная процедура, выполнимая на шаге 2, может оказаться слишком трудоёмкой в ввычислительном плане, поэтому на практике ограничиваются поиском первой пары точек (x_j^s, x^s) , для которой выполняется условие $\Delta\left(x_j^s, x^s\right) \geq \delta$. После чего выполняется шаг 4.

4. Исследования работы алгоритма

Сходимость алгоритма Фёдорова при $N=30,\,\delta=0.01$ на сетке $11x11,\,21x21.$

Как видно из 4-х изображений работы метода и графика $\log(|M^{-1}(\varepsilon)|)$ на каждой итерации можно понять, что метод на сетке 11x11 сходится за 24 итерации, а на сетке 21x21 узел за 29 шагов.

4.1. Сетка 11х11

4.2. Сетка 21х21

4.3. Влияние шага метода

Как видно из графиков при изменении δ в [0.1, 0.01, 0.001] метод первые 12 итераций (при сетке 11х11 и 15 на сетке 21х21) сходится одинаково быстро. Затем алгоритм с меньшим шагом находет более оптимальное решение.

Особенно это заметно при большем числе узлов сетки.

4.4. Влияние числа узлов плана

При малом числе точек плана алгоритм сходится сначала медленнее, а потом быстрее. Однако это не так значительно для решения задачи

4.5. Влияние числа узлов сетки

При увеличиении числа точек сетки методу требуется больше итераций, однако, результат остаётся примерно одинаковым. При малых N и n метод расходится.

5. Исходный код программы

lab3.py

```
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
from numpy.linalg import det, inv, norm

k = 2  # число переменных 2: (x,y)
m = 6  # число параметров a + b*x + c*y + d*x*y + e*x^2 + f*y^2
MAX_ITER = 50
```

```
def f(theta, x):
       return
               theta[0] + \
               theta[1]*x[0] + \
12
                theta[2]*x[1] + \
13
                theta[3]*x[0]*x[1] + \
14
                theta[4]*x[0]**2 + 
                theta[5]*x[1]**2
16
17
  def f_vector(x):
       return np.array([
19
           [1],
20
           [x[0]],
21
           [x[1]],
           [x[0]*x[1]],
23
           [x[0]**2],
24
           [x[1]**2]
25
26
       1)
27
  def f_vector_T(x):
28
       return np.array([
29
           1,
30
           x[0],
31
           x[1],
32
           x[0]*x[1],
33
34
           x[0]**2,
           x[1]**2
35
       ])
36
38
39
40
41
  class Lab3():
42
43
      Класс для 3 лабораторной работы
44
      Для стандартизации все критерии ищут минимальное значение
45
46
       def
             _init__(self, N, width, delta):
47
           ''' Выделение памяти под массивы '''
           n = width**2
49
           self.x_grid = np.ndarray((n, k))
50
           self.x_plan = np.ndarray((N, k))
51
           self.p = np.full(N, 1/N)
           self.M = np.ndarray((m, m))
           self.D = np.ndarray((m, m))
54
           self.width = width
           self.n = n
           self.delta = delta
           self.max_iter = MAX_ITER
58
           self.N = N
59
60
       def Fedorov_algorithm(self, do_visualisation = False):
61
62
           Алгоритм Фёдорова синтеза дискретного
63
           оптимального плана эксперимента
64
65
           self.generate_initial_guess()
66
           do_calc = True
67
           s = 0
```

```
result = np.zeros(self.max_iter)
70
           while do calc == True and s < self.max iter:
71
               self.build_matrix_M()
72
               self.build_matrix_D()
73
               D = self.calc_D()
74
               max_delta, i, j = self.find_two_points()
               self.x_plan[i] = self.x_grid[j]
               do_calc = not (max_delta < self.delta)</pre>
               result[s] = D
               if s % 10 == 0 and do_visualisation:
                    self.draw_plan_on_iteration(s)
80
               s += 1
               print(s, i, j, max_delta, D)
           if do_calc == False:
               for i in range(s, self.max_iter):
                    result[i] = result[s-1]
           if do visualisation:
               self.draw_plan_on_iteration(s)
           return result
90
91
       def draw_plan_on_iteration(self, s):
92
           t = np.linspace(-1, 1, 11)
           plt.title('Алгоритм Фёдорова на шаге ' + str(s))
94
           plt.scatter([self.x_plan[i][0] for i in range(len(self.x_plan))],[self.
95
      x_plan[i][1] for i in range(len(self.x_plan))], )
           plt.xticks(t)
           plt.yticks(t)
97
           plt.savefig('pics/plan_Fedorov_{}_{}_{}..3f}_{}.png'.format(self.N, self.
      width, self.delta, s))
           plt.clf()
99
100
       def find_two_points(self):
101
           ''' Поиск точки плана и сетки для их замены '''
102
           # для начала:
103
           indicies = np.ndarray((self.N, 2), dtype = np.int64) # Пары i,j
104
           max_deltas = np.full(self.N, -9000.0)
105
           # перебираем все точки плана и все точки сетки
107
           for i, int_point in enumerate(self.x_plan):
108
               for j, ext_point in enumerate(self.x_grid):
109
                   delta = self.Delta(int_point, ext_point)[0]
                    # выбрали пару точек получше
                   if delta > max_deltas[i]:
                        max_deltas[i] = delta
                        indicies[i][0] = i
                        indicies[i][1] = j
116
           max_delta_res = -9000.0
           I = 0
           J = 0
           for i, max_delta in enumerate(max_deltas):
               if max_delta > max_delta_res:
                   max_delta_res = max_delta
                   I = indicies[i][0]
                   J = indicies[i][1]
124
125
           return max_delta_res, I, J
126
```

```
def generate_initial_guess(self):
128
            '' Задаём начальное приближение '''
129
           # создаём сетку
130
           self.t = np.linspace(-1, 1, self.width)
           i = 0
           for x1 in self.t:
               for x2 in self.t:
134
                    self.x_grid[i] = np.array([x1, x2])
           # случайно выбираем точки плана и сохраняем
138
           # for i in range(self.N):
                  self.x_plan[i] = self.x_grid[np.random.choice(self.n)]
140
           # np.savetxt('plans/plan_{}x{}_{}.txt'.format(self.width, self.width,
141
      self.N), self.x_plan)
142
           # или же загружаем
143
           self.x_plan = np.loadtxt('plans/plan_{}x{}_{}.txt'.format(self.width,
144
      self.width, self.N), dtype=np.float)
       def build matrix M(self):
146
           ''' Построение информационной матрицы М '''
147
           self.M = np.zeros((m, m))
149
           for i in range(self.N):
                self.M += (self.p[i] * f_vector(self.x_plan[i]) * f_vector_T(self.
150
      x_plan[i]))
151
       def build_matrix_D(self):
           ''' Построение дисперсионной матрицы D '''
153
           self.D = inv(self.M)
154
       def calc_D(self):
156
           Критерий D - оптимальности. (D - determinant)
158
           Эллипсоид рассеивания имеет минимальный объём
159
160
           return np.log(det(self.D))
161
162
       def Delta(self, x_j, x):
           N = float(self.N)
164
           return ((self.d(x) - self.d(x_j)) / N) - \
165
                ((self.d(x) * self.d(x_j) - self.d_2(x,x_j)**2)/(N**2))
166
167
       def d(self, x):
168
           return f_vector_T(x) @ self.D @ f_vector(x)
169
       def d_2(self, x, x_j):
           return f_vector_T(x) @ self.D @ f_vector(x_j)
174
176
  t = np.linspace(0, MAX_ITER, 11)
177
178
  def perform_experiment(N, width, delta):
179
       13 = Lab3(N, width, delta)
180
       return 13.Fedorov_algorithm()
181
183 def research_delta():
```

```
Исследование скорости сходимости и устойчивости от delta '''
       print('Исследование скорости сходимости и устойчивости от delta')
       width = 21
186
       for N in [20, 40]:
187
           for delta in [0.001, 0.01, 0.1]:
               y = perform_experiment(N, width, delta)
189
               plt.plot(y, label=str(delta))
190
           plt.title('Dоптимальность— плана от delta')
           plt.legend(title='ceτκa: {}x{}\nN: {}'.format(width, width, N))
           plt.xticks(t)
194
           plt.xlabel('итерации')
195
           plt.ylabel(r'$\log(\left| M^{-1}(\varepsilon) \right|)$')
           plt.savefig('pics/research_delta_{}x{}_{}.png'.format(width, width, N),
197
      dpi=200)
           plt.clf()
198
  def research N():
200
       ''' Исследование скорости сходимости и устойчивости от N '''
201
       print('Исследование скорости сходимости и устойчивости от N')
202
       delta = 0.01
       for width in [11, 21]:
204
           for N in [20, 25, 30, 35, 40]:
205
               y = perform_experiment(N, width, delta)
               plt.plot(y, label=str(N))
207
           plt.title('Влияние числа узлов плана')
208
           plt.legend(title='ce\pia: {}\pi1)\ndelta: {:.3f}'.format(width, width, delta
209
      ))
           plt.xticks(t)
           plt.xlabel('итерации')
211
           plt.ylabel(r'$\log(\left| M^{-1}(\varepsilon) \right|)$')
           plt.savefig('pics/research_N_{}x{}.png'.format(width, width), dpi=200)
           plt.clf()
215
  def research_width():
216
       ''' Исследование скорости сходимости и устойчивости от числа узлов сетки '''
217
       print('Исследование скорости сходимости и устойчивости от числа узлов сетки')
218
       delta = 0.001
       for width in [11, 21]:
           for N in [20, 40]:
               y = perform_experiment(N, width, delta)
222
               plt.plot(y, label='N: {} n: {}'.format(N, width**2))
223
224
       plt.title('Влияние числа узлов сетки')
       plt.legend(title='delta: {:.3f}'.format(delta))
226
       plt.xticks(t)
227
       plt.xlabel('итерации')
       plt.ylabel(r'$\log(\left| M^{-1}(\varepsilon) \right|)$')
       plt.savefig('pics/research_width.png', dpi=200)
230
       plt.clf()
231
232
  def show_convergence(N, width, delta):
       print(N, width, delta)
234
       13 = Lab3(N, width, delta)
       y = 13.Fedorov_algorithm(True)
       plt.plot(y)
       plt.title('Сходимость метода Фёдорова')
238
       plt.text(24, 6, 'ce\pia: {}x{}\nN: {}\ndelta: {:.3f}'.format(width, width, N,
239
      delta))
       plt.xticks(t)
```

```
plt.xlabel('итерации')
     plt.ylabel(r'$\log(\left| M^{-1}(\varepsilon) \right|)$')
242
     243
     delta), dpi=200)
     plt.clf()
244
246 #
247 #
248 #
249 research_delta()
250 research_N()
251 research_width()
252 show_convergence(30, 11, 0.01)
253 show_convergence(30, 21, 0.01)
```