EXERCISE SHEET 2

Answers should be handed in by Monday 2nd November 2009.

- 1. Let $\mathbb{Q}(\alpha)$: \mathbb{Q} be a simple field extension with the property that the minimal polynomial of α is $t^3 + t^2 2$. Calculate the minimal polynomials of $\alpha 1$ and $\alpha^2 + 1$ over \mathbb{Q} , and express their multiplicative inverses in $\mathbb{Q}(\alpha)$ in the form $c_0 + c_1\alpha + c_2\alpha^2$ for suitable $c_0, c_1, c_2 \in \mathbb{Q}$.
- **2.** Suppose that L:K is a field extension, and that $\alpha \in L$ is algebraic over K, and $\beta \in L$ is transcendental over K. If, in addition, one has $\alpha \notin K$, show that $K(\alpha, \beta):K$ is not a simple extension.

3.

- (a) Show that if p is a prime number, then for every positive integer n the polynmomial $x^n p$ is irreducible over $\mathbb{Q}[x]$.
- (b) By making the substitution y = x 1, or otherwise, show that when p is a prime number, the polynomial $x^{p-1} + x^{p-2} + \cdots + x + 1$ is irreducible over \mathbb{Q} .

4.

- (a) Let K be a field of characteristic not equal to 2, and let m be a quadratic polynomial over K. Show that m has a zero in a simple extension $K(\alpha)$ of K where $\alpha^2 = k \in K$. thus, allowing "square roots" \sqrt{k} allows us to solve all quadratic equations over K.
- (b) Show that for fields of characteristic 2 there exist quadratic equations which cannot be solved by adjoining square roots of elements of the field. (Hint: consider $\mathbb{Z}/2\mathbb{Z}$.
- (c) Show that we can solve all quadratic equations over a field of characteristic 2 if we allow ourselves not only to adjoin square roots of elements but generalized square roots $\sqrt[*]{k}$ defined to be solutions of the equation $t^2 + t = k$.
- **5.** Let $m \in \mathbb{Z}^+$ and $U_m = \{z \in \mathbb{C} \mid z^m = 1\}$. Then U_m is a cyclic subgroup of \mathbb{C}^* of order m, generated by $\omega = e^{2\pi i/m}$. Any generator of U_m is a called a *primitive* m-th root of 1; these are the ω^k where (k, m) = 1, so there are $\phi(m)$ primitive m-th roots of 1, where ϕ is Euler's ϕ -function.

The field $\mathbb{Q}_m = \mathbb{Q}(\omega)$ is called the *m-th cyclotomic field*; m_{ω} , the minimal polynomial of ω over \mathbb{Q} , is called the *m-th cyclotomic polynomial*. Prove the following:

- (a) By considering derivatives prove that m_{ω} has no multiple zeros.
- (b) Show that a zero of m_{ω} is a primitive m-th root of 1.
- (c) If θ is a primitive m-th root of 1 and p is prime with (m, p) = 1, then θ^p has the same minimum polynomial as θ .
- (d) Show that every primitive m-th root of 1 is a zero of m_{ω} , and conclude that $\deg(m_{\omega}) = \phi(m)$.