The following claims are presented for examination:

1	1. (Original) An apparatus comprising:
2	a receiver support structure, wherein:
3	said receiver support structure has a central axis; and
4	said receiver support structure supports a plurality of receivers,
5	wherein said plurality of receivers are disposed at a first radial distance
6	from said central axis;
7	a first dispensing element, wherein:
8	said first dispensing element dispenses a first ingredient; and
9	said first dispensing element is disposed above said receiver support
10	structure at said first radial distance;
11	a drive system, wherein:
12	said drive system comprises a first drive; and
13	said drive system causes, via rotary motion, a relative movement
14	between said dispensing element and said receivers; and
15	a system controller, wherein:
16	said system controller comprises means for causing said dispensing
17	element to dispense said first ingredient as a plurality of pulses; and
18	each pulse contains less than twenty percent of a total amount of said
19	first ingredient to be delivered to one of said receivers.
1	2. (Original) The apparatus of claim 1 wherein each pulse contains less than

2. (Original) The apparatus of claim 1 wherein each pulse contains less than ten percent of the total amount of said first ingredient to be delivered to said one receiver.

2

3

1

2

- (Original) The apparatus of claim 1 wherein each pulse contains less than
 one percent of the total amount of said first ingredient to be delivered to said one
 receiver.
 - **4. (Original)** The apparatus of claim 1 wherein each pulse contains less than one-tenth of one percent of the total amount of said first ingredient to be delivered to said one receiver.
- 1 **5. (Original)** The apparatus of claim 1 wherein said drive system is rotatably 2 coupled to said first dispensing element.

6. (Original) The apparatus of claim 5 wherein said drive system comprises a
 rotatable member, wherein said rotatable member has at least one arm, and wherein
 said first dispensing element depends from said arm.

- 7. (Original) The apparatus of claim 6 wherein said drive system comprises a reservoir support structure, wherein said reservoir support structure supports at least a first reservoir.
- 1 **8. (Original)** The apparatus of claim 7 wherein said drive system comprises a drive shaft, and wherein:
- said rotatable member is coupled to said drive shaft; and
 said reservoir support structure is coupled to said drive shaft.
- 9. (Original) The apparatus of claim 8 wherein said drive shaft is hollow, and further comprising:
- 3 said first reservoir; and

1

- a first conduit, wherein said first conduit passes through said drive shaft and fluidically couples said first reservoir to said first dispensing element.
- 1 **10. (Original)** The apparatus of claim 1 further comprising a second drive, wherein said receiver support structure is rotatably coupled to said second drive.
- (Original) The apparatus of claim 10 wherein said second drive is
 physically adapted to move said receiver support structure in step-wise fashion.
- 1 **12. (Original)** The apparatus of claim 1 wherein said drive system is rotatably coupled to said receiver support structure.
 - **13.** (Original) The apparatus of claim 12 further comprising:
- a non-rotatable member, wherein said first dispensing element depends from said non-rotatable member; and
- at least a first reservoir, wherein said first reservoir is disposed on said nonrotatable member.
- 1 **14. (Original)** The apparatus of claim 1 wherein said receiver support structure 2 is a platform, wherein said platform comprises a plurality of removable segments, wherein each segment accommodates one of said receivers.

-

ł	15. (Original) The apparatus of claim 14 wherein said removable segments
2	include a stirrer drive.
1	16. (Original) The apparatus of claim 1 wherein said first dispensing element
2	comprises a nozzle, wherein said nozzle has:
3	an inner passageway leading to an orifice, wherein said inner passageway
4	receives said first ingredient and dispenses it through said orifice; and
5	a shroud, wherein:
6	said shroud surrounds said inner passageway;
7	said shroud receives a first fluid, and
8	said first fluid controls a flow of said ingredient out of said orifice.
1	17. (Original) The apparatus of claim 16 wherein said inner passageway is
2	characterized by a venturi configuration.
1	18. (Original) The apparatus of claim 1 further said plurality of receivers.
1	19. (Original) The apparatus of claim 18 comprising a sampling/mixing system,
2	wherein, said sampling/mixing system comprises:
3	a device for aspirating liquid from, and delivering it to, one of said receivers;
4	a conduit having a first end and a second end, wherein:
5	said first end is coupled to a port in said one receiver; and
6	said second end is coupled to said device for aspirating and delivering
7	liquid.
1	20. (Original) The apparatus of claim 19 further comprising an analysis
2	window, wherein:
3	said analysis window is coupled to said conduit between said first end and
4	said second end; and
5	said analysis window is disposed beneath said receiver support structure

1 21. (Original) The apparatus of claim 20 further comprising an analytical 2 station, wherein said analytical station is disposed beneath said receiver support 3 structure, and wherein said analytical station comprises: 4 an emitter, wherein said emitter emits radiation; 5 a detector, wherein said detector is coupled to analysis electronics; and 6 a space between said emitter and said detector, wherein said space defines 7 a testing region and wherein said testing region is physically adapted to receive 8 said analysis window. 1 **22.** (**Original**) An apparatus comprising: 2 a dispensing system, wherein said dispensing system has a first plurality of 3 dispensing elements for dispensing a second plurality of ingredients into a third 4 plurality of receivers; 5 a drive system, wherein said drive system causes, via a rotary motion, a 6 relative movement between said dispensing system and said receivers to align one of 7 said dispensing elements with one of said receivers; and 8 a system controller, wherein said system controller comprises: 9 means for causing said dispensing element to dispense each of said 10 ingredients as a plurality of pulses; and 11 means for determining flow rate of said second plurality of ingredients 12 into said third plurality of receivers on a per ingredient, per receiver 13 basis, said means for determining flow rate comprising: 14 a device for measuring total flow of each of said ingredients; and 15 means for apportioning said flow on a per ingredient, per 16 receiver basis. 1

23. (Original) The apparatus of claim 22 wherein said system controller further comprises means for real-time adjustment of flow rate, wherein said means for real-time adjustment of flow rate comprises means for changing a quantity of ingredient contained in said pulses.

2

3

4

1	24. (Original) An apparatus comprising:
2	a dispensing system, wherein said dispensing system has a first plurality of
3	dispensing elements for dispensing a second plurality of ingredients into a third
4	plurality of receivers;
5	a drive system, wherein said drive system causes, via a rotary motion, a
6	relative movement between said dispensing system and said receivers to align one of
7	said dispensing elements with one of said receivers; and
8	a system controller, wherein said system controller comprises means for
9	distributed dispensing.
1	25. (Original) An apparatus comprising:
2	a first drive;
3	a rotatable member, wherein:
4	said rotatable member is coupled to said first drive; and
5	said rotatable member comprises a first arm and a second arm;
6	a first platform, wherein said first platform:
7	is disposed beneath said rotatable member;
8	supports a plurality of receivers; and
9	is coupled to a second drive;
10	a second platform, wherein said second platform:
11	is disposed beneath said first platform;
12	supports a plurality of reservoirs, and
13	is coupled to said first drive;
14	a first dispensing element, wherein said first dispensing element:
15	depends from said first arm; and
16	is fluidically coupled to at least a first one of said reservoirs; and
17	a second dispensing element, wherein said second dispensing element:
18	depends from said second arm; and
19	is fluidically coupled to at a second one of said reservoirs.

1	26. (Original) The apparatus of claim 25 further comprising:
2	a first liquid-transport system, wherein said first liquid-transport system delivers a
3	first liquid from said first reservoir to said first dispensing element; and
4	a second liquid-transport system, wherein said second liquid-transport system
5	delivers a second liquid from said second reservoir to said second dispensing element.

Page 7 of 10