Compa - Compra Carrito de la compra autónomo

Universitat Autònoma de Barcelona (UAB) Escola d'enginyeria informática - Robótica 2025

Pol Tomé, Adrià Fernandez Mata, David Madueño Noguer, Tiago David Nunes Rodrigues, Moisés Sánchez Pin

7 de mayo de 2025

Índice

1.	Introducción	1
2.	Marco Teórico y Contextualización2.1. Localización 2D	
3.	Descripción del Sistema CompaCompra	2

Resumen

Compa Compra es un asistente de compra autónomo que se encarga de guíar y asistir al usuario del establecimiento para completar sus compras de forma fácil y sencilla. El usuario se comunica con ComCom mediante una aplicación en la que se especifican los productos. ¡Haz la lista y ComCom te guía!

1. Introducción

El acto de comprar es una actividad cotidiana, pero no siempre es eficiente. Ya sea por la dificultad de encontrar productos, la congestión en los pasillos o la necesidad de comparar opciones, recorrer el supermercado puede convertirse en una tarea tediosa. **Compa Compra** es un asistente autónomo diseñado para mejorar la experiencia de compra de cualquier usuario, independientemente de su perfil, edad o necesidades específicas.

A través de una aplicación multimedia, el cliente introduce su lista de compras, y el robot ComCom procesa la mejor ruta dentro del establecimiento usando técnicas avanzadas de localización y planificación de trayectos. Gracias al algoritmo *D* Lite y el uso de balizas Bluetooth, **Compa Compra** optimiza el tiempo de compra y facilita el acceso eficiente a cada producto.

2. Marco Teórico y Contextualización

El proyecto **CompaCompra** se fundamenta en dos áreas clave de la robótica y la navegación autónoma: la **localización 2D** mediante trilateración y la planificación de rutas con **D* Lite**. Estos conceptos permiten que el asistente guíe al usuario dentro del supermercado con precisión y adaptabilidad.

2.1. Localización 2D

Uno de los principales retos de la navegación autónoma es la **localización en interiores**. Para determinar la posición de **ComCom**, se emplea trilateración 2D con cuatro balizas Bluetooth fijas en las esquinas del supermercado.

El método utiliza la medición de la **intensidad de señal recibida (RSSI)** de cada baliza para estimar la distancia entre el robot y las referencias fijas. Sin embargo, la señal RSSI puede verse afectada por interferencias, por lo que se aplican técnicas de **filtrado y corrección de errores**, como la media móvil y el filtro de Kalman.

Una vez obtenida la posición estimada (x,y), se ajusta a la cuadrícula más cercana del supermercado, definida como una malla de **0.5m² por nodo**. Este proceso permite una representación discreta del espacio de navegación y facilita el cálculo de rutas.

Para más información sobre trilateración, consultar la documentación: Trilateración en Wikipedia

2.2. Algoritmo de Path Finding: D* Lite

El desplazamiento óptimo del robot se gestiona mediante **D* Lite**, un algoritmo eficiente de búsqueda de rutas en entornos dinámicos. A partir de la posición del usuario y los productos en la lista de compra, el sistema calcula la trayectoria ideal en la malla de nodos.

Cada nodo del supermercado puede clasificarse en:

- Libre: zonas transitables sin obstáculos.
- Ocupado: áreas bloqueadas por estanterías, obstáculos o carros de otros clientes.

Inicialmente, se consideran todos los obstáculos conocidos, pero el camino se **recalcula dinámicamente** si **ComCom** detecta nuevos impedimentos durante su recorrido. Esto permite que el robot se adapte en tiempo real a los cambios en el entorno.

Para más información sobre **D* Lite**, consultar la documentación: D* Lite en Wikipedia

3. Descripción del Sistema CompaCompra