

## Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <a href="http://about.jstor.org/participate-jstor/individuals/early-journal-content">http://about.jstor.org/participate-jstor/individuals/early-journal-content</a>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

XVIII. Contributions to Terrestrial Magnetism.—No. VIII. By Lieut.-Colonel Edward Sabine, R.A., For. Sec. R.S.

Received June 15,—Read June 18, 1846.

Containing a Magnetic Survey of the Southern Hemisphere between the Meridians of 0° and 125° East, and Parallels of -20° and -70°.

THE Antarctic Expedition, under Captain Sir James Clark Ross, R.N., has furnished the materials for maps of the three magnetic elements in the high latitudes of the southern hemisphere for nearly two-thirds of its circumference. The first and second portions of the results, comprising between the meridians of 125° and 300°, have already been communicated to the Royal Society, and are contained in the Vth and VIth Numbers of these Contributions\*; a third portion, comprehending between the meridians of 300° and 360°, is in preparation and will shortly be laid before the Society. In order to complete the magnetic survey of the high latitudes of the southern hemisphere as far as they are accessible, there remained the portion between the longitudes of 0° and 125°, or thereabouts. The tracks of vessels in the employ of the enterprising merchants, the Messrs. Enderby, had shown that no difficulties of serious importance obstructed the navigation of the ocean in the vicinity of the Antarctic Circle between the meridians specified: and there appeared to be little reason to doubt, that a vessel, despatched from the Cape of Good Hope, might accomplish this remaining portion of the survey in a single season, without encountering any particular risk.

Lieut. CLERK, of the Royal Artillery, had been attached by Lord VIVIAN, Master-General of the Ordnance, to the Magnetic Observatory at the Cape of Good Hope, with the express view of being engaged in a magnetic survey, either of the colony itself, or of such portion of the globe as might be conveniently accessible from it; and on his passage from England to the Cape had had an opportunity of practising with the instruments employed in a magnetic survey conducted on the ocean. The completion of the survey of the high latitudes appeared the most important service which Lieut. Clerk could render to magnetical science; and on its being proposed to him, he most readily undertook it.

In June 1844 the subject was brought under the consideration of the Committee of Physics of the Royal Society, by a letter from myself to Sir John F. W. Herschel, Bart., Chairman of the Committee, accompanied by one addressed by Sir John Herschel to the Committee, expressing his earnest hope that the measures suggested for the

<sup>\*</sup> Philosophical Transactions, 1843, Art. X., and 1844, Art. VII.

completion of the survey might receive the attention which they appeared to him to merit. These letters were submitted by the Committee to the Council of the Royal Society, with a recommendation that an application should be made by the President and Council to the Lords Commissioners of the Admiralty, to authorize the completion of the southern survey in the manner suggested.

The Board of Admiralty having been pleased to accede to this request, the "Pagoda," a bark of 360 tons, was hired at the Cape of Good Hope by the Admiral commanding on the station, and was fitted for a voyage of some months duration, receiving a complement of four officers and thirty-eight seamen from the flag-ship. Lieut. T. E. L. Moore, of the Royal Navy, who had been one of the officers of Her Majesty's ship Terror in the Antarctic Expedition, and was consequently accustomed to the navigation of the high latitudes, as well as practised in magnetic observations, (having taken a very prominent share in those of Her Majesty's ship Terror, recorded in Nos. V. and VI. of these Contributions,) was selected to command the Pagoda, and instructed to cooperate with Lieut. Clerk, and to give him every assistance and support in the execution of the service on which they were jointly employed. At the time of his appointment, Lieut. Moore was serving in the Caledonia at Lisbon, and some little delay occurred in his recall, and also in his subsequent departure from England, in consequence of which he did not join the Pagoda at the Cape until the 4th of January, when she had been some days ready for sea.

It may be useful to officers desirous of making magnetic observations on board ship, to be acquainted with the precautions which, at the period in question, were deemed desirable for the employment of magnetic instruments on board ship under the most advantageous conditions, and for eliminating the disturbing effects of the ship's iron: a copy of the instructions with which Lieut. Clerk was furnished is therefore subjoined:—

# Instructions for Lieut. H. Clerk, R.A., on points connected with the Magnetic Observations on Board Ship.

"1. Influence of the Ship's Iron.—Before the ship is fitted, you had better select, in concert with the naval officer appointed to command her, suitable positions for the standard compass and for your Fox. They should both be on the midship line of the ship; the standard compass sufficiently high to see well over the bulwarks when taking azimuths: the Fox lower for the sake of steadiness: it is generally found convenient to use the Fox a few feet in front of the standard. When the positions have been chosen, have any iron that may be near them removed, (as far as can conveniently be done,) and do not let any fresh iron be placed within at least six feet of either of them.

"When the ship is perfectly ready for sea, take a day for the determination of the effect of the ship's iron on the standard compass. You are already acquainted with the usual process of doing this, and are furnished with the printed instructions issued

by the Admiralty; therefore I do not enter into further details on this point, except to suggest that you should be particularly careful that the ship's boats, davits, &c. are all in the positions they will occupy at sea; and that it will be quite sufficient for your purpose that the deviation should be tried on the sixteen principal points of the compass, instead of on thirty-two, as is sometimes done.

"2. Whilst engaged with the standard compass, have a second compass, of which the compass error (meaning thereby the index error) is known, placed in the gimball table of your Fox, and observe generally (by means of the lubber-line) whether the effect of the ship's iron is nearly the same at the two positions, viz. at the position of the standard compass and at that of the Fox. Observe particularly whether the points of no deviation are the same. It simplifies matters greatly that they should be so, and that at both positions the points of no deviation should be nearly the north and south points. This they will most probably be in a vessel which will not have much iron near either position; but it will be advantageous, when first choosing the positions, to try roughly,—by means of a couple of compasses, one in the proposed position of the standard compass, and the other in that of the Fox,—whether they point alike when the ship's head is either north or south. By interchanging the compasses in these positions, you will prevent any deception which might arise from compass errors.

"The observations which have been described will give you the value of the constants a and b, for the corrections of all the declinations observed on board throughout the voyage, and you will probably find that they will give you work enough for one day.

"3. I shall suppose therefore that you take a second day for the determination of the four constants at the position of the Fox. For this you will require the inclination and intensity with the ship's head on the same sixteen points as before, employing a deflector for the intensity on this occasion, in preference to weights, as more convenient. You will find of course that the points of no deviation with the compass become the points of extreme deviation of the inclination and intensity; for convenience I shall suppose them north and south points. Having completed the observations with the Fox, remove it and observe the horizontal intensity with the head successively north, east, south and west, and north again\*, placing the apparatus for the horizontal intensity on the gimball stand of the Fox. This will give you a and b for that position more satisfactorily than the observations of the Fox; from these latter, with the shore observations, you will have c and d.

"The formulæ applicable to all the proceedings which have been described, will be found in Mr. Smith's Memorandum in No. V. of the Contributions to Terrestrial Magnetism. But besides the induced magnetism to which these formulæ refer, the

<sup>\* &</sup>quot;These are compass points, the compass being supposed in strictness to be placed on the spot of the gimball table; if a compass placed at this spot has been found to agree with the standard compass, the latter gives directly the required azimuth of the ship's head."

iron of a ship is found sometimes to exercise upon its compasses a magnetic influence of a distinct character, to which it may become in some instances desirable to give a separate consideration. This influence may be either from permanent magnetism strictly so called, or from a polarity which is temporarily retained, and undergoes alterations consequent upon changes in the inducing action in which it originated, but following after them at a greater or less interval of time. This additional magnetic force may be represented by additional symbols, P, Q and R, i. e. the force resolved along the principal section of the ship, transversely to it, and in the vertical direction.

"The alterations which the introduction of this force makes in Mr. Smith's formula are stated in a second memorandum now printing in No. VI. of the Contributions, a copy of which will be in your hands before you sail.

"This memorandum furnishes equations by which all the constants may be determined by observations in different magnetic latitudes,—of the horizontal force on the *four* principal points,—and of the dip on the *two* principal, together with the dip and horizontal force observed on shore or on the ice. These are part of the observations already directed.

- "4. The observations described in No. 3 must be repeated on the return to the Cape at the conclusion of the voyage, before any change has been made in the iron of the ship. If polarity due to the inducing action of a higher magnetic latitude has been retained, the observations on the return will be found to differ from those made before you sailed. If the disturbing influence of the ship's iron be solely the effect either of instantly induced magnetism, or of permanent magnetism strictly so called, the observations will agree with those made before the departure of the vessel.
- "5. If in the course of the voyage you should anchor in any port in a high latitude, at Enderby's Land for example, or at the Adelie Land of d'Urville, it will be extremely desirable to repeat the same observations. Whenever a choice exists between the shore and fixed ice, as a place for observation out of the influence of the ship's iron, always prefer the fixed ice.
- "6. The approximate value of a, the most important of the constants, may be obtained on board at any time during the voyage when the weather is sufficiently favourable, by azimuths at the north or south points and at the east or west points for the position of the standard compass, and by the horizontal intensity observed on the north and south points for the position of the Fox. If Hansteen's needles are used for the latter purpose, and n, s, be the number of vibrations at north and south in a certain time, commencing at the same arc, and performed in a nearly uniform temperature, then  $\frac{n}{s} = \tan \lambda$ , and  $\cos 2 \lambda = a \tan \theta$ ; also if  $\Delta =$  the deviation when  $\zeta' = 90^{\circ}$ ,

$$\Delta = 90^{\circ} - 2\lambda$$
.

<sup>&</sup>quot;7. The horizontal intensity at the north and south points should be observed on

board frequently; those on the north, south, east and west points, occasionally; and the dip and horizontal intensity on shore or on the ice, with corresponding observations on board, as often as possible.

"8. Index Correction.—The most convenient mode of employing Mr. Fox's apparatus at sea being to use it with the face of the circle in one direction only (i. e. east or west, I shall here assume it east), the index correction with the face east must be sought, by a comparison of the Inclinations observed in that position of the instrument on shore and on fixed ice, with the true Inclinations determined with needles whose poles may be reversed and a complete observation made with them. As the index correction is liable to vary as a function of the Inclination, it should be determined in different Inclinations, and for this purpose it will be desirable to obtain at least one determination in a high latitude.

"When observing on shore or on the ice for the index correction with the face east, do not omit to observe with the face west also, as the mean index correction is useful in showing the kind of separation which exists between the centre of gravity and the point of suspension in the needle for which it is determined. Mr. Fox's apparatus is furnished with three needles; one to be used when the poles are required to be reversed; the magnetism of the other two should be preserved from change if possible; it has been found a convenient practice to employ one of the latter always as the mounted needle, and the other as a deflector.

"9. Comparison of the Weights and Deflectors.—Experience has shown that the intensity may be more conveniently and satisfactorily determined on board ship by the use of deflectors than by constant weights.

"It is necessary however that the 'equivalent weights' of the deflectors employed should be carefully ascertained. Besides the table which you will form for this purpose in the manner practised by Mr. Fox, it will be necessary to have comparisons between the angles of deflection produced by the deflectors and the constant weights at the Cape before and after the voyage, and on any opportunity which you may have in a high latitude either on shore or on the ice. You may also get occasional comparisons on board in very favourable weather.

"In the choice of constant weights to be employed during the voyage, use none that give a less angle of deflection than 15°. In the observations at the Cape, as your base station, make a double series (i. e. the same observations repeated on two separate days) both before and after the voyage.

"10. Azimuths.—You will find it a convenient practice to deduce your azimuths from the hour angle, instead of from the altitude, which is the more usual custom. First take the altitudes which will give you the hour angle corresponding to the time by chronometer (at least until you materially change your geographical position); and as soon as you have completed this observation, take the sun's azimuth, noting the time of observation by chronometer; the hour angle will then give you the true azimuth. Blank forms are sent suited to this mode of observation.

MDCCCXLVI. 2 Y

- "11. General Remarks.—You cannot do better than follow the admirable example of the Antarctic Expedition, in observing the three magnetic elements on board every day on which the weather will permit you to use the instruments.
- "12. Frequent reference has been made in these instructions to the importance of at least one opportunity of observing on shore or on the ice in a high latitude, for various objects connected with the reduction and correction of the whole body of magnetic observations made during the voyage. If Enderby's Land, or land connected with it, should not be accessible, it is by no means necessary that the ship should *enter* the ice in order to give you the opportunity of landing on a piece of ice of sufficient magnitude. A favourable day being chosen, she may approach the ice sufficiently near, and remain four or five hours, whilst her boat takes you to make the observations and to return.

"If the ice be not 'fixed' you must be careful to detect an azimuthal motion, should there be any, by which the inclination circle might otherwise be removed from the plane of the magnetic meridian without your being aware of it. You will also take care that the magnetic instruments are sufficiently distant from the boat.

"EDWARD SABINE."

#### " Woolwich."

The Pagoda sailed from the Cape of Good Hope on the 9th of January, proceeding, pursuant to instructions, towards the Antarctic Circle in the meridian of Greenwich. She crossed the 60th parallel in the longitude of 4° east, and being impeded by ice in her direct progress to the southward, coasted its margin to the south-east, and attained her greatest southing on the 10th of February in latitude -68° 10' and longitude 35°. She was then according to the chart in the vicinity of the western extremity of Enderby's Land, but from strong south-east gales and the position of the ice was unable to approach it sufficiently even to see the land: from thence she continued a general progress to the eastward, keeping in as high a parallel as the ice and weather permitted. On the 10th of March she had obtained the 96th degree of east longitude in about the 60th degree of latitude, when the season was considered to be so far advanced that it would not be prudent to persevere in the completion of the survey in the high latitudes; and a course was therefore taken for King George's Sound in Australia, where the ship arrived on the 1st of April. During the whole of this voyage observations of the three magnetic elements were made twice in each day, except in extreme circumstances of weather, by Lieut. Moore in the afternoon and Lieut. CLERK in the forenoon, each being furnished with a separate (Fox's) apparatus for the Inclination and Force; and on the arrival of the ship at King George's Sound, the two instruments were found to give an almost identical value for the intensity of the force, the results being by Lieut. Moore's Fox 1.680, and by Lieut. CLERK's 1.688.

After remaining a sufficient time to examine the index and other corrections of the instruments, and to obtain the necessary data for eliminating the effects of the ship's iron on the magnetic results obtained during the voyage, the Pagoda quitted King George's Sound on the 27th of April and returned to the Cape of Good Hope, touching at Mauritius by the way for the purpose of repeating the observations on the influence of the ship's iron. She arrived at the Cape on the 20th of June, having continued the practice of observing the magnetic elements daily on the return passage, in the same manner as in the high latitudes.

The voyage was performed without accident or loss of life, and the crew returned in perfect health, due doubtless in great degree to the supplies of warm clothing and preserved meats, which, by direction of the Admiralty, Lieut. Moore had taken with him from England.

No failure occurred in any of the instruments notwithstanding the continual use in which they were kept by the zeal of the observers. If where so much was so well accomplished it is permissible to feel or to express regret on any account, it can be only that circumstances should have prevented the completion of the survey in the high latitudes as far as the 125th degree of longitude according to the original design, whereby the observations of the magnetic force would have been carried up to the principal axis of the isodynamic oval of 2.00.

On the conclusion of the voyage Lieut. CLERK received directions from the Master-General of the Ordnance to return to Woolwich, for the purpose of completing the reduction of his own observations and those of Lieut. Moore. The following pages contain Lieut. CLERK's report; in which he has also embodied a series of observations on the Inclination and Force with a Fox's apparatus, made in 1844 by Lieut. ALEX-ANDER SMITH, R.N., one of the Assistants at the Hobarton Magnetic Observatory, on his passage to Van Diemen Island; and a second series, also of the Inclination and Force, made in 1845 by Lieut. DAYMAN, R.N., of the same observatory, in a passage in the bark "Leander" from Hobarton to the Cape. Both these officers had previously been employed in the Antarctic Expedition under Sir James Clark Ross, and their observations now communicated are a consequence of the zeal which they imbibed, and the practice in the use of instruments which they acquired, in that expedition. Their observations transmitted to the Admiralty were sent to Woolwich for reduction and publication. Lieut. CLERK has also embodied in his report the determinations of the three magnetic elements made by Sir James Ross in the Erebus in 1840 on her passage from the Cape of Good Hope to Kerguelen Island, and thence to Hobarton.

On inspecting the map, it will be seen that the tracks of the Erebus and Prince Regent held about a middle line between the outward and homeward tracks of the Pagoda, and are therefore extremely useful in connecting results which would otherwise have been somewhat too far apart.

Lieut. CLERK has taken the Cape of Good Hope as the base station of the observations of the magnetic force made in the Pagoda. The determinations of the absolute horizontal force made at the observatory at the Cape in February, March, April and May 1845 (page 362 in seq.), which are the last received from that station, give a mean result of 4.482, the mean inclination during the same month being  $-53^{\circ}$  25'.5. Combining these with the determination at Woolwich in No. VII. of these Contributions \*, we have the total force at the Cape in the arbitrary scale 0.993. The ratios determined by Mr. Fox's statical apparatus (page 363 in seq.) by separate needles are 1.000 and 1.006: the value of the total force at the Cape as a base station for the observations of the Pagoda has therefore been taken as 1.000.

As Lieut. Smith did not touch at the Cape on his passage to Hobarton, and as the needle which Lieut. Dayman had employed on his homeward passage was broken at the Cape before observations had been made with it, and consequently before the series between Hobarton and the Cape could be connected with the latter station, it has been necessary to employ Hobarton as the base station of both these series. I have already stated in Nos. V. and VI. of these Contributions, the results of the observations which were made to determine the absolute horizontal force at Hobarton between 1840 and 1844; viz. by Sir James C. Ross in 1840 and 1841, with magnets of fifteen inches in length †; by Lieut. Kay in 1841 and 1842, with magnets of the same length; by Lieut. Kay in 1844 with magnets of twelve inches, and with others of 9·18 and 7·50 inches. I have now to add the results of twenty-four determinations made by Lieut. Kay between November 1844 and September 1845, with magnets of various lengths, as shown in the following table:—

| Magnets and  | Magnets and their length. |                | No. of     | Horizontal |  |  |  |
|--------------|---------------------------|----------------|------------|------------|--|--|--|
| Suspended.   | Deflecting.               | Date.          | distances. | force.     |  |  |  |
| in.          | in.                       | ,              |            |            |  |  |  |
| <b></b> 7·50 | 9.18                      | Nov. 7, 1844.  | 3          | 4.5108     |  |  |  |
| <b></b> 7·50 | 9.18                      | Sept. 9, 1845. | 3          | 4.4810     |  |  |  |
| A 57 3.00    | D xv. 3.67                | Dec. 7, 1844.  | 3          | 4.5316     |  |  |  |
| A 57 3.00    | D xv. 3.67                | Dec. 9, 1844.  | 5          | 4.5118     |  |  |  |
| A 57 3.00    | D xv. 3.67                | Dec. 11, 1844. | 5          | 4.4954     |  |  |  |
| A 57 3.00    | D xv. 3.67                | Jan. 12, 1845. | 5          | 4.5058     |  |  |  |
| A 57 3.00    | D xv. 3-67                | May 5, 1845.   | 3          | 4.4997     |  |  |  |
| A 57 3.00    | D xv. 3.67                | Aug. 15, 1845. | 5          | 4.4762     |  |  |  |
| A 57 3.00    | D 9 3.67                  | Aug. 19, 1845. | 5          | 4.5104     |  |  |  |
| A 57 3.00    | D 9 3-67                  | May 6, 1845.   | 3          | 4.5076     |  |  |  |
| A 57 3-00    | A 19 3.02                 | Aug. 20, 1845. | 5          | 4.4905     |  |  |  |
| A 52 3.00    | D xvi. 3.67               | Jan. 19, 1845. | 3          | 4.4940     |  |  |  |
| R 1 3.00     | D xvi. 3.67               | Aug. 28, 1845. | 4          | 4.4970     |  |  |  |
| I 12 2.45    | A 19 3-00                 | Dec. 13, 1844. | 5          | 4.4954     |  |  |  |
| I 12 2.45    | A 19 3.00                 | Dec. 13, 1844. | 5          | 4.4899     |  |  |  |
| I 12 2.45    | A 19 3.00                 | Dec. 15, 1844. | 5          | 4.4865     |  |  |  |
| I 12 2.45    | A 19 3.00                 | Jan. 14, 1845. | 5          | 4.4809     |  |  |  |
| I 12 2.45    | A 29 3.00                 | Aug. 26, 1845. | 5          | 4.5016     |  |  |  |
| I 12 2.45    | A 23 3.00                 | Aug. 22, 1845. | 5          | 4.4994     |  |  |  |
| I 1 2.45     | A 23 3.00                 | Dec. 20, 1844. | 3          | 4.5046     |  |  |  |
| I 1 2.45     | A 23 3.00                 | Dec. 23, 1844. | 3          | 4.5121     |  |  |  |
| I 1 2.45     | A 23 3.00                 | Dec. 26, 1844. | 5          | 4.5020     |  |  |  |
| I 1 2.45     | A 23 3.00                 | Jan. 15, 1845. | 5          | 4.5082     |  |  |  |
| Î 1 2·45     | A 23 3-00                 | May 9, 1845.   | 3          | 4.4970     |  |  |  |
| Mean         |                           |                |            |            |  |  |  |

<sup>\*</sup> Philosophical Transactions, 1846, p. 246.

<sup>‡</sup> Ibid. p. 168 (note).

<sup>§</sup> Ibid. 1844, p. 111.

<sup>†</sup> Ibid. 1843, p. 168.

<sup>|</sup> Ibid. p. 112.

Collecting in one view the different mean results, we have

| Ross, in 1840-41, 15 in. magnets   |     | •    |     |    | •   | •   |     |      | •  |   | 4.573 |
|------------------------------------|-----|------|-----|----|-----|-----|-----|------|----|---|-------|
| KAY, in 1841, 15 in. magnets .     |     | •    |     |    |     |     | •   |      | •  | • | 4.553 |
| KAY, in 1842, 15 in. magnets .     |     |      |     |    |     | •   | •   |      |    | • | 4.513 |
| KAY, in 1843, 12 in. magnets .     |     |      |     | •  |     |     |     | •    | ٠  |   | 4.520 |
| Kay, in 1843, 9.18 and 7.50 in. ma | agr | nets | 3   | •  |     | •   | •   |      | •  |   | 4.501 |
| Kay, in 1844-45, magnets of vario  | us  | len  | gth | s, | 9.1 | 8 t | o 2 | 2.45 | in |   | 4.499 |

These results exhibit (with one exception) a progressive decrease, but between those of 1840-41, and subsequent years, there is a very great difference. The inclination has decreased from  $-70^{\circ}$  40'·7, observed in 1840-41\*, to  $-70^{\circ}$  37'·6, which is the mean of the results obtained twice in each week at the Hobarton Observatory in the first nine months of 1845. Assuming the total force at Hobarton as constant, the horizontal component should have been increased rather than diminished by the small secular change which appears to have taken place in the Inclination. discrepancy between the earlier and later results of the absolute determinations cannot therefore be a consequence of secular change in the Inclination; nor is it probable that the total force should have undergone a decrease of such magnitude. Presuming the results of 1840-41, with the 15-inch magnets, to have been affected with error from some cause as yet unexplained, (possibly from an erroneous value having been taken for the moment of inertia of the magnet,) the subsequent results exhibit only such differences as cannot be regarded as excessive. They have all to undergo recalculation, as Lieut. Kay does not consider the elements of reduction as vet finally determined; and they will all, in common with all the other determinations of the absolute horizontal force given in these Contributions, have to receive a small correction for the difference of the magnetic moment of the deflecting bar, caused by the earth's inducing action in the different positions in which the bar is placed in the experiments of deflection and vibration. If, therefore, we assume provisionally the mean of the four last results, or 4.508, as the best approximation to which we have yet arrived for the horizontal component at Hobarton, and  $-70^{\circ} 39'$ as the corresponding Inclination, we have the total force in the arbitrary scale 1.797; and we may hence conclude, that influenced by the earlier determinations (those of 1840-41), the provisional value of the total force at Hobarton, employed in the Vth and VIth Numbers of the Contributions (1.82), was taken too high, and that all the values of the force dependent on Hobarton will require a correction to be applied, in amount about -0.02, before they are combined in the general map of the southern hemisphere. For Lieut. Smith's and Lieut. Dayman's observations, Lieut. CLERK has taken a base value of 1.80 at Hobarton.

A subsequent number of these Contributions will contain the Magnetic Observations of the Erebus and Terror in the summer of 1843-1844, between the meridians

<sup>\*</sup> Philosophical Transactions, 1843, p. 165.

of Cape Horn and of the Cape of Good Hope, which will complete the survey of the high latitudes of the southern hemisphere.

I propose then to combine in one general view the several portions of the southern survey which have been successively communicated; and I shall reserve until that occasion, as more convenient than the present, such general remarks as suggest themselves in reference to the magnetic lines determined in the present Number.

"Report on the Magnetic Observations made in Her Majesty's hired bark Pagoda, from January to June 1845, by Lieut. Henry Clerk of the Royal Artillery.

"1. Calculation of Corrections for the Ship's Local Attraction.

"To obtain the corrections for the observations of the Declination, the deviations of the compass were observed on each of the sixteen principal points at the Cape of Good Hope, King George's Sound, the Mauritius, and again at the Cape on the return of the Expedition. The following are the observations:—

| J. | Ship's head.                                              | Cape of G                                                                                       | ood Hope.                                                                                                       | King George's<br>Sound.                                                                                                            | Mauritius.                                                                                                                                   |
|----|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | `                                                         | January.                                                                                        | June.                                                                                                           |                                                                                                                                    |                                                                                                                                              |
|    | N. N.N.W. N.W. W.N.W. W.S.W. S.W. S.S.E. E.E. E.N.E. N.E. | 0 12+ 0 57+ 0 08- 0 00 0 13- 0 28- 1 28- 1 06- *1 48+ 0 42+ 1 12+ 1 27+ 0 57+ 0 27+ 0 12+ 0 32+ | 0 20+ Not observed. 0 50+ 0 50- 0 15- 0 30- 1 20- 1 25- 0 18- Not observed. 1 50+ 1 40+ 1 45+ 1 50+ 1 35+ 1 13+ | 0 15+<br>0 00<br>0 20+<br>1 40-<br>1 40-<br>1 50-<br>1 00-<br>0 15-<br>0 50+<br>0 55+<br>2 20+<br>3 10+<br>2 40+<br>3 30+<br>2 35+ | 0 20+<br>0 30+<br>0 20-<br>0 30-<br>0 50-<br>1 10-<br>1 10-<br>0 50-<br>0 20+<br>1 00+<br>1 20+<br>0 55+<br>1 20+<br>0 50+<br>1 20+<br>1 20+ |

The + sign denotes a deviation of the north end towards the west.

"The values of  $\theta$  (the Inclination) being as follows, viz.—

Cape of Good Hope . . .  $\theta = -5\mathring{3}$  44 King George's Sound . .  $\theta = -65$  04 Mauritius . . . . .  $\theta = -53$  56

"From these observations we can obtain the values of a and b by the formulæ in No. V. of the Contributions to Terrestrial Magnetism  $\uparrow$ , which give the following values, viz.—

<sup>\*</sup> This observation is evidently erroneous.

<sup>+</sup> Philosophical Transactions, 1843, Part II. p. 148.

Cape of Good Hope . . . 
$$a=.0148$$
 . . .  $b=.9848$   
King George's Sound . . .  $a=.0199$  . . .  $b=1.0040$   
Mauritius . . . . . . . .  $a=.0158$  . . .  $b=.9907$   
Mean . .  $a=.0168$  . . .  $b=.9932$ 

"The values of a and b can also be obtained by observations of the horizontal intensity on the N., S., E. and W. points alone.

"If the card of the azimuth compass be deflected by another magnet (the small deflectors belonging to the dipping-needle for instance), and if  $v_n$ ,  $v_s$ ,  $v_w$ , and  $v_e$  be the angles of deflection observed on the N., S., W. and E. points respectively, then

$$a \tan \theta = \frac{\csc v_n - \csc v_s}{\csc v_n + \csc v_s}; \quad b = \frac{\csc v_w + \csc v_e}{2 \sqrt{\csc v_w \cdot \csc v_e}}.$$

"The deflections were obtained in this manner at the Cape of Good Hope, and at King George's Sound on the N. and S. points, viz.—

| Cape of Good Hope.                    | King George's Sound.                                 |
|---------------------------------------|------------------------------------------------------|
| At N. the deflection $=16^{\circ} 20$ | At N. the deflection $\cdot = 15^{\circ} 23^{\circ}$ |
| At S = 15 35                          | At S = $14 06$                                       |
| Hence $a = \frac{1}{0168}$            | And $a = 0198$                                       |

Agreeing very closely with the values determined above.

"After an inspection of the observations at the several stations, Mr. Archibald Smith has kindly furnished the following Memorandum.

- "'The formulæ for the correction of observations of magnetic declination, made on board ship, given in the Vth and VIth numbers of the Contributions, are deduced on the supposition that the soft iron of the ship is symmetrically distributed on each side of the fore and aft vertical section passing through the compass. The deviations observed in the Pagoda by Lieut. Clerk, seem to show that the soft iron was not so distributed in that vessel, and to require for their correction formulæ in which no supposition is made as to the distribution of the iron of the vessel, except that there is no iron very near the compass.
- "'Using the notation of the memorandums in Nos. V. and VI. of the Contributions, let  $\varphi$  represent the total magnetic force of the earth at the place of observation,  $\theta$  the inclination,  $\zeta$  the azimuth of the ship's head, reckoning from (magnetic) north to west, and let  $\varphi'$ ,  $\theta'$ ,  $\zeta'$  represent the values of the same quantities, shown by an instrument placed at a fixed position in the vessel, and affected by the attraction of the iron in the vessel.
- "'The first three equations in the memorandum in Contribution No. VI. may be transformed into the following, viz.—

$$\varphi \cos \theta \cos \zeta = \varphi' \cos \theta' \{A' \cos \zeta' + B' \sin \zeta'\} + \varphi' \sin \theta' C' + P'. \qquad (1.)$$

$$\varphi \cos \theta \sin \zeta = \varphi' \cos \theta' \{ D' \cos \zeta' + E' \sin \zeta' \} + \varphi' \sin \theta' F' + Q'. \qquad (2.)$$

$$\varphi \sin \theta = \varphi' \cos \theta' \{G' \cos \zeta' + H' \sin \zeta'\} + \varphi' \sin \theta' K' + R'. \qquad (3.)$$

"'The coefficients A'B'...R' might, if required, be expressed in terms of the corresponding coefficients of Contribution No. VI. It is here however only important to observe that A'B'C'D'E'F'G'H'K' depend only on the amount and distribution of the soft iron. P'Q'R' depend partly on the amount and distribution of the soft iron, and partly on the amount and distribution of the permanently magnetic iron, and become zero when there is no permanently magnetic iron. If the soft iron is symmetrically distributed on each side of the fore and aft vertical section passing through the compass, B'D'F'H' are equal to zero.

"The above equations are deduced, it must be remembered, on the hypothesis that the soft iron of the vessel receives its full charge of induced magnetism instantly on the vessel assuming a new position, and that the rest of the iron in the vessel is in a permanently magnetic state. On this hypothesis, and supposing that no iron is very near the compass, the equations are accurate, and the coefficients A' B', &c. are constant, and independent of the latitudes. The hypothesis is however evidently not strictly true. The magnetic state of the hard, if not of the soft iron of the vessel, changes with a change of position and with time. In consequence of this, different values of the coefficients are derived from observations made at different places, and at the same place at different times.

"'Careful observations, made in a variety of circumstances and localities, and particularly, (for a reason which will appear in a subsequent part of this Memorandum,) observations made near the line of no dip, when the affected dip is zero, may hereafter throw light on the nature of the change which takes place in the magnetic state of a vessel, and furnish the means of determining the change which the coefficients undergo. In the present Memorandum they are supposed to be constant.

"'From equations (1.) and (2.) the following may be deduced:

$$\sin (\zeta - \zeta') = \frac{\varphi' \cos \theta'}{\varphi \cos \theta} \left\{ \frac{D' - B'}{2} - \frac{A' - E'}{2} \sin 2\zeta' + \frac{B' + D'}{2} \cos 2\zeta' \right\} \\
- \frac{\varphi' \sin \theta' C' + P'}{\varphi \cos \theta} \sin \zeta' + \frac{\varphi' \sin \theta' F' + Q'}{\varphi \cos \theta} \cos \zeta'$$
(4.)

"'This equation is rigorously accurate, on the assumptions which have been made. If  $\varphi' \cos \theta'$  and  $\varphi' \sin \theta'$  were known in terms of  $\varphi$ ,  $\theta$  and  $\zeta'$ , and the coefficients determined by observation, this equation would furnish accurate corrections for observations of Declination. The expression is very much simplified if we may assume  $\theta'=\theta$ , and  $\varphi'=\varphi$ . This assumption may I believe in general be safely made, except in high magnetic latitudes. Making this assumption, we have the following approximate formula,

$$\sin(\zeta - \zeta') = \frac{D' - B'}{2} - \left\{ C' \tan \theta + \frac{P'}{\varphi \cos \theta} \right\} \sin \zeta' + \left\{ F' \tan \theta + \frac{Q'}{\varphi \cos \theta} \right\} \cos \zeta'$$

$$- \frac{A' - E'}{2} \sin 2 \zeta' + \frac{B' + D'}{2} \cos 2 \zeta'$$
(5.)

"This equation may conveniently be put under the form  $\sin \delta = A + B \sin \zeta' + C \cos \zeta' + D \sin 2\zeta' + E \cos 2\zeta'$ . . . . . . . . (6.)

 $\delta = \zeta - \zeta'$  is the deviation of the compass; B corresponds to the coefficient a tan  $\theta$  of the former memorandum; D to the coefficient 1-b. A, B, C, D, E are coefficients, which are to be determined by observations of deviation made with the ship's head on different azimuths. A, D and E, it will be seen, are independent of the dip, and, to the extent to which the hypothesis above mentioned is correct, will have the same values in different latitudes. B and C depend on the dip, and also on the proportion of the soft to the permanently magnetic iron. This ratio cannot be determined from observations made in one place. If P', Q', C', F' remain constant, they can severally be determined from values of B and C deduced in two different latitudes, and the values of B and C in any other latitude may be deduced from the equations

$$\mathbf{B} = -\left\{ \mathbf{C}' \tan \theta + \frac{\mathbf{P}'}{\varphi \cos \theta} \right\} \dots (7.) \qquad \mathbf{C} = \mathbf{F}' \tan \theta + \frac{\mathbf{Q}'}{\varphi \cos \theta} \dots (8.)$$

the accurate values of B and C being

$$\mathbf{B} = -\frac{\varphi' \sin \theta' \mathbf{C}' + \mathbf{P}'}{\varphi \cos \theta'}, \qquad \mathbf{C} = \frac{\varphi' \sin \theta' \mathbf{F}' + \mathbf{Q}'}{\varphi \cos \theta}.$$

If the affected dip is zero, we have

$$R = -\frac{P'}{\phi}, \qquad C = \frac{Q'}{\phi}.$$

So that from observations on the line of no dip, or more accurately when the affected dip is zero, the effect of the permanent magnetism may be obtained.

"'If we distinguish the points of the compass, reckoning from north to west, by the numbers from 1 to 32, north being 0 or 32, and north by west being 1; and if we designate by  $\delta_0$ ,  $\delta_1$ , &c. the westerly deviation when the ship's head is north, or north by west, &c., so that  $\delta_8$  represents the deviation at W.,  $\delta_{16}$  at S.,  $\delta_{24}$  at E., it is evident from the equations that we have at once the following simple expressions for the values of the coefficients:—

$$A = \frac{1}{4} \left\{ \sin \delta_0 + \sin \delta_8 + \sin \delta_{16} + \sin \delta_{24} \right\}. \qquad (9.)$$

$$C = \frac{1}{2} \left\{ \sin \delta_0 - \sin \delta_{16} \right\}. \qquad (11.)$$

$$D = \frac{1}{4} \left\{ \sin \delta_4 - \sin \delta_{12} + \sin \delta_{20} - \sin \delta_{28} \right\}. \quad . \quad . \quad . \quad (12.)$$

$$E = \frac{1}{4} \left\{ \sin \delta_0 - \sin \delta_8 + \sin \delta_{16} - \sin \delta_{24} \right\}. \quad . \quad . \quad . \quad . \quad (13.)$$

- "' More accurate values of the coefficients may be obtained by combining observations of deviation, made with the ship's head on the several points, in the following manner:—
- "'1. Suppose the deviation to have been observed on all the thirty-two points. Let MDCCCXLVI. 2 z

 $\zeta'_1, \zeta'_2, \ldots, \zeta'_{32}$  be the observed azimuths, which of course are 11° 15′, 22° 30′, &c. Then we have

$$\sin \delta_{0} = A + C + E$$

$$\sin \delta_{1} = A + B \sin \zeta'_{1} + C \cos \zeta'_{1} + D \sin 2\zeta'_{1} + E \cos 2\zeta'_{1}$$

$$\sin \delta_{2} = A + B \sin \zeta'_{2} + C \cos \zeta'_{2} + D \sin 2\zeta'_{2} + E \cos 2\zeta'_{2}$$

$$&c. &c.$$

$$\sin \delta_{31} = A + B \sin \zeta'_{31} + C \cos \zeta'_{31} + D \sin 2\zeta'_{31} + E \cos 2\zeta'_{31}$$
(14.)

Combining these equations by the method of least squares, we obtain by virtue of a well-known property of circular functions,

$$A = \frac{1}{32} \sum \sin \delta$$

$$B = \frac{1}{16} \sum \sin \delta \sin \zeta'$$

$$C = \frac{1}{16} \sum \sin \delta \cos \zeta'$$

$$D = \frac{1}{16} \sum \sin \delta \sin 2\zeta'$$

$$E = \frac{1}{16} \sum \sin \delta \cos 2\zeta'$$
(15.)

where

$$\Sigma \sin \delta = \sin \delta_0 + \sin \delta_1 \dots + \sin \delta_{31},$$

$$\Sigma \sin \delta \sin \zeta' = \sin \delta_0 \sin \zeta'_0 + \sin \delta_1 \sin \zeta'_1 + \&c. + \sin \delta_{31} \sin \zeta'_{31}$$
&c. &c. &c.

"'If we represent  $\sin \delta_0$ ,  $\sin \delta_1$ , &c. by  $s_0$ ,  $s_1$ , &c., and remember that all the values of  $\sin \zeta'$ ,  $\cos \zeta'$ ,  $\sin 2\zeta'$ ,  $\cos 2\zeta'$  which occur in these formulæ can be represented by the quantities  $s_1$ ,  $s_2$ ,  $s_3$ ,  $s_4$ ,  $s_5$ ,  $s_6$ ,  $s_7$ , we shall find

$$\mathbf{C} = \frac{1}{16} \{s_0 - s_{16}\},$$

$$+ \cdot 0613 (\log = \overline{2} \cdot 78745) \{s_1 + s_{31} - s_{15} - s_{17}\},$$

$$+ \cdot 0577 (\log = \overline{2} \cdot 76149) \{s_2 + s_{30} - s_{14} - s_{18}\},$$

$$+ \cdot 0520 (\log = \overline{2} \cdot 71572) \{s_3 + s_{29} - s_{13} - s_{19}\},$$

$$+ \cdot 0442 (\log = \overline{2} \cdot 64536) \{s_4 + s_{28} - s_{12} - s_{20}\},$$

$$+ \cdot 0347 (\log = \overline{2} \cdot 54062) \{s_5 + s_{27} - s_{11} - s_{21}\},$$

$$+ \cdot 0239 (\log = \overline{2} \cdot 37872) \{s_6 + s_{26} - s_{10} - s_{22}\},$$

$$+ \cdot 0122 (1c^{--} = \overline{2} \cdot 08611) \{s_7 + s_{25} - s_9 - s_{23}\}. \qquad (18.)$$

$$\mathbf{D} = \cdot 0577 (\log = \overline{2} \cdot 76149) \{s_1 - s_{31} - s_{15} + s_{17} + s_7 - s_{25} - s_9 + s_{23}\},$$

$$+ \cdot 0442 (\log = \overline{2} \cdot 64536) \{s_2 - s_{30} - s_{14} + s_{18} + s_6 - s_{26} - s_{10} + s_{22}\},$$

$$+ \cdot 0229 (\log = \overline{2} \cdot 37872) \{s_3 - s_{29} - s_{13} + s_{19} + s_5 - s_{27} - s_{11} + s_{21}\},$$

$$+ \frac{1}{16} \{s_4 - s_{28} - s_{12} + s_{20}\}. \qquad (19.)$$

$$\mathbf{E} = \frac{1}{16} \{s_0 + s_{16} - s_8 - s_{24}\},$$

$$+ \cdot 0239 (\log = \overline{2} \cdot 37872) \{s_1 + s_{31} + s_{15} + s_{17} - s_7 - s_{25} - s_9 - s_{23}\},$$

$$+ \cdot 0442 (\log = \overline{2} \cdot 64536) \{s_2 + s_{30} + s_{14} + s_{18} - s_6 - s_{26} - s_{10} - s_{22}\},$$

$$+ \cdot 0442 (\log = \overline{2} \cdot 64536) \{s_2 + s_{30} + s_{14} + s_{18} - s_6 - s_{26} - s_{10} - s_{22}\},$$

$$+ \cdot 0442 (\log = \overline{2} \cdot 64536) \{s_2 + s_{30} + s_{14} + s_{18} - s_6 - s_{26} - s_{10} - s_{22}\},$$

$$+ \cdot 0442 (\log = \overline{2} \cdot 64536) \{s_2 + s_{30} + s_{14} + s_{18} - s_6 - s_{26} - s_{10} - s_{22}\},$$

$$+ \cdot 0577 (\log = \overline{2} \cdot 76149) \{s_3 + s_{29} + s_{13} + s_{19} - s_5 - s_{27} - s_{11} - s_{21}. \qquad (20.)$$

2. Using the deviations observed on the sixteen principal points only, we have

$$A = \frac{1}{16} \{s_0 + s_2 + s_4 \dots + s_{30}\}. \dots (21.)$$

$$B = 0.0478 (\log = \overline{2} \cdot 67975) \{s_2 - s_{30} + s_{14} - s_{18}\},$$

$$+ 0.0884 (\log = \overline{2} \cdot 94639) \{s_4 - s_{28} + s_{12} - s_{20}\},$$

$$+ 1155 (\log = \overline{1} \cdot 06252) \{s_6 - s_{26} + s_{10} - s_{22}\},$$

$$+ \frac{1}{8} \{s_8 - s_{24}\}. \dots (22.)$$

$$C = \frac{1}{8}(s_0 - s_{16}),$$

$$+ \cdot 1155 (\log = \overline{1} \cdot 06252) \{s_2 + s_{30} - s_{14} - s_{18}\},$$

$$+ \cdot 0884 (\log = \overline{2} \cdot 94639) \{s_4 + s_{28} - s_{12} - s_{20}\},$$

$$+ \cdot 0478 (\log = \overline{2} \cdot 67975) \{s_6 + s_{26} - s_{10} - s_{22}\}. \qquad (23.)$$

$$\mathbf{D} = 0884 (\log = \overline{2} \cdot 94639) \{ s_2 - s_{30} - s_{14} + s_{18} + s_6 - s_{26} - s_{10} + s_{22} \},$$

$$+ \frac{1}{8} \{ s_4 - s_{28} - s_{12} + s_{20} \}. \qquad (24.)$$

$$\mathbf{E} = \frac{1}{8} \{ s_0 + s_{16} - s_8 - s_{24} \},$$

$$+ \cdot 0884 \ (\log = \overline{2} \cdot 94639) \{ s_2 + s_{30} + s_{14} + s_{18} - s_6 - s_{10} - s_{22} - s_{26} \}. \tag{25.}$$

"'3. Using the deviations observed on the eight principal points only, we have

"'Having found A, B, C, D, E by any of the above methods, a table of the deviations on all the points may then be computed. The computation will be facilitated by using the following Table:—

"'Let  $B_1$ ,  $B_2$  ....  $B_7$ ,  $C_1$ ,  $C_2$  ....  $C_7$  represent the values of B and C multiplied by  $\sin 11^{\circ} 15'$ ,  $\sin 22^{\circ} 30'$ , and let  $D_2$ ,  $D_4$ ,  $D_6$ ,  $E_2$ ,  $E_4$ ,  $E_6$  represent the values of D and E multiplied by  $\sin 22^{\circ} 30'$ ,  $\sin 45^{\circ}$ , and  $\sin 67' 30^{\circ}$ , we have then

$$\begin{split} & \sin \delta_0 = A + C + E \\ & \sin \delta_{16} = A - C + E \\ & \sin \delta_1 = A + B_1 + C_7 + D_2 + E_6 \\ & \sin \delta_{31} = A - B_1 + C_7 - D_2 + E_6 \\ & \sin \delta_{15} = A + B_1 - C_7 - D_2 + E_6 \\ & \sin \delta_{15} = A + B_1 - C_7 + D_2 + E_6 \\ & \sin \delta_{15} = A - B_1 - C_7 + D_2 + E_6 \\ & \sin \delta_2 = A + B_2 + C_6 + D_4 + E_4 \\ & \sin \delta_3 = A - B_2 + C_6 - D_4 + E_4 \\ & \sin \delta_{30} = A - B_2 + C_6 - D_4 + E_4 \\ & \sin \delta_{14} = A + B_2 - C_6 - D_4 + E_4 \\ & \sin \delta_{18} = A - B_2 - C_6 + D_4 + E_4 \\ & \sin \delta_3 = A + B_3 + C_5 + D_6 + E_2 \\ & \sin \delta_{29} = A - B_3 + C_5 - D_6 + E_2 \\ & \sin \delta_{19} = A - B_3 - C_5 + D_6 + E_2 \\ & \sin \delta_{19} = A - B_3 - C_5 + D_6 + E_2 \\ & \sin \delta_{29} = A - B_4 + C_4 - D \\ & \sin \delta_{29} = A - B_4 - C_4 - D \\ & \sin \delta_{20} = A - B_4 - C_4 + D \end{split}$$

$$\begin{split} &\sin\delta_5 = A + B_5 + C_3 + D_6 - E_2 \\ &\sin\delta_{27} = A - B_5 + C_3 - D_6 - E_2 \\ &\sin\delta_{11} = A + B_5 - C_3 - D_6 - E_2 \\ &\sin\delta_{21} = A - B_5 - C_3 + D_6 - E_2 \\ &\sin\delta_6 = A + B_6 + C_2 + D_4 - E_4 \\ &\sin\delta_{26} = A - B_6 + C_2 - D_4 - E_4 \\ &\sin\delta_{10} = A + B_6 - C_2 - D_4 - E_4 \\ &\sin\delta_{22} = A - B_6 - C_2 + D_4 - E_4 \\ &\sin\delta_{22} = A - B_7 + C_1 + D_2 - E_6 \\ &\sin\delta_{23} = A - B_7 + C_1 - D_2 - E_6 \\ &\sin\delta_{23} = A - B_7 - C_1 + D_2 - E_6 \\ &\sin\delta_{23} = A - B_7 - C_1 + D_2 - E_6 \\ &\sin\delta_8 = A + B - E \\ &\sin\delta_{24} = A - B - E. \end{split}$$

- "'If the deviations are under 7° or 8°, the angles of deviation may be used in the formulæ instead of the sines of the angles without producing a sensible error in the result.
- "'It may be observed that  $\varphi'\cos\theta'$  and  $\varphi'\sin\theta'$  would be themselves properly expressed in a series containing sines and cosines of  $\zeta'$  and  $2\zeta'$ , and this would introduce into the expression for  $\sin\delta$  terms of the form

F sin 
$$3\zeta' + G \cos 3\zeta' + H \sin 4\zeta' + K \cos 4\zeta'$$
.

"'The omission of these terms from the formula we have used does not affect the values we have found for A, B, C, D, E; and the values of the additional coefficients may be determined from the following expressions, in which we make use of the observations on the sixteen principal points only:—

$$F = \frac{1155}{\log = 1.06252} \{s_2 - s_{30} + s_{14} - s_{18}\},$$

$$+ \frac{0884}{\log = 2.94639} \{s_4 - s_{28} + s_{12} - s_{20}\},$$

$$- \frac{0478}{\log = 2.67975} \{s_6 - s_{26} + s_{10} - s_{22}\},$$

$$- \frac{1}{8} (s_8 - s_{24}). \qquad (31.)$$

$$G = \frac{1}{8} (s_0 - s_{16})$$

$$+ \frac{0478}{\log = 2.67975} \{s_2 + s_{30} - s_{14} - s_{18}\},$$

$$- \frac{0884}{\log = 2.94639} \{s_4 + s_{28} - s_{12} - s_{20}\},$$

$$- \frac{1155}{\log = 1.06252} \{s_6 + s_{26} - s_{10} - s_{22}\}. \qquad (32.)$$

$$H = \frac{1}{16} \{s_2 - s_{30} - s_{14} + s_{18} - s_6 + s_{26} + s_{10} - s_{22}\}. \qquad (33.)$$

$$K = \frac{1}{16} \{s_0 + s_{16} + s_8 + s_{24} - s_4 - s_{28} - s_{12} - s_{20}\}. \qquad (34.)$$

- "'If the deviations are so small that the angles may be used instead of their sines, then the differences between the observed deviations and the deviations calculated with the first five terms may be used instead of  $s_2$ ,  $s_4$ , &c. in finding F and G or H and K. There is however no advantage gained thereby, as the quantities within the brackets in F and G have already been found in calculating B and C.
- "'As an example of the use of these formulæ, we may take the deviations observed on board Her Majesty's ship Erebus at Gillingham, in Sept. 1839\*.
  - "'From the deviations observed on the sixteen principal points, I find

$$\delta = 17' + 235' \cdot \sin \zeta' - 13' \cos \zeta' + 21' \cdot \sin 2\zeta' - 1' \cdot 23 \cos 2\zeta'$$
.

"'From the deviations on the eight principal points, I find

$$\delta = 16' + 233' \cdot 5 \sin \zeta' - 14' \cdot \cos \zeta' + 21 \sin 2\zeta' - 0' \cdot 75 \cos 2\zeta'$$

"'Applying the correction derived from the first formula, the residuary differences on the sixteen principal points, beginning with north, are respectively—

$$-3', 0, +6', +14', -6', -18', +12', +7', +1', -11', -12', -9', +5', +7', +6', 0.$$

"'These differences evidently nearly follow the law of  $\sin 3\zeta'$ ; they give

$$F=5'.5$$
;  $G=-7'.$ 

" 'After applying the correction  $5' \cdot 5 \sin 3\zeta' - 7' \cos 3\zeta'$ , the residuary difference is +4' -2', -3', +9', 0', -9', +13', -1', -6', -9', -3', -4', -1', -2', +5', +8'.

"'The differences, it will be seen, are smaller, and do not distinctly follow any regular law. If we calculate H and K we shall find

$$H=2'$$
;  $K=1'$ .

But these corrections are so much within the errors of observation, that there could be no advantage in using them.

"'The expression for sin & may be put under the following form, viz.—

$$\sin \delta = A + \sqrt{B^2 + C^2} \sin (\zeta' + \alpha) + D \sin 2\zeta' + E \cos 2\zeta', \dots (35.)$$

in which  $\alpha$  is the angle whose tangent is  $\frac{C}{B}$ , and is nearly the easterly azimuth of the line of no deviation.

"It seems probable that in ordinary cases A,  $\alpha$ , D and E will not change materially with a change of latitude, while  $\sqrt{B^2+C^2}$  will vary nearly as the tangent of the dip. The last-mentioned term is also the most important, from its magnitude and its dependence on the changes which the permanent magnetism undergoes. It may therefore be useful to have the means of obtaining this quantity separately. This may be done from observations of the horizontal force, made in the position of the standard compass, with the ship's head on any two opposite (affected) courses, from the formula

$$\sqrt{B^2 + C^2} = \frac{\sqrt{H_1^2 + H_2^2 + 2H_1H_2\cos(\text{diff. of true azimuth})}}{H_1 + H_2}, \dots (36.)$$

<sup>\*</sup> Contributions, No. V., p. 150.

in which  $H_1$   $H_2$  represent the observed horizontal force in the two positions of the ship's head.

"' If the difference of the true azimuths of the ship's head is 180°, the expression

becomes 
$$\sqrt{B^2+C^2} = \pm \frac{H_1-H_2}{H_1+H_2}, \quad (37.)$$

which is the same expression as that for the value of  $\alpha \tan \theta$  in the Memorandum in No. V. of these Contributions.

- "'The value of the horizontal force may be determined by vibrating a horizontal needle, or by deflecting the compass needle in the manner described by Lieut. CLERK in page 347. The difference of azimuths may be determined by the bearings of a distant object, or astronomically.
- "'This method seems to be adapted to the case of a ship lying at moorings in a tideway. The observations may be made before and after the change of tide, and the rudder adjusted so that the difference of the compass bearings of the ship's head may be exactly 180°.
- "'This formula is more accurate the more nearly the dip approaches to 90°; and the method seems therefore particularly applicable in high magnetic latitudes.
- "'If the true magnetic azimuth of the ship's head on the two positions is determined, the values of B and C may be obtained by the formula

$$B = -\frac{H_2 \cos \zeta_1 + H_1 \cos \zeta_2}{H_1 + H_2},$$

$$C = \frac{H_2 \sin \zeta_1 + H_1 \sin \zeta_2}{H_1 + H_2}.$$

" 'A. S.'

" 'Lincoln's Inn, March 3, 1846."

"The constants for correcting the declination observations were (in consequence of this Memorandum) calculated by the equations 21, 22, 23, 24 and 25, taking the mean of the two series at the Cape of Good Hope.

"The following are the deduced values of the constants:-

| Station.                                              | θ.     | ø.    | A.      | В.    | C.      | D.      | E.                          |
|-------------------------------------------------------|--------|-------|---------|-------|---------|---------|-----------------------------|
| Cape of Good Hope<br>Mauritius<br>King George's Sound | -53 56 | 1.158 |         | 01550 | +.00514 | +.00448 | 00333<br>+-00335<br>+-00082 |
| Means                                                 | -57 35 | 1.291 | +.00844 | 02086 | +.00638 | +.00401 | +.00028                     |

"From the three values of B, and C, values of C' and P', F' and Q' were obtained by the equations

B=-
$$\left(C'\tan\theta+\frac{P}{\varphi\cos\theta}\right)$$
; and C=F' tan  $\theta+\frac{Q}{\varphi\cos\theta}$ ;

for we have

Cape . . 
$$-\cdot 01412 = C' \times 1\cdot 363 + P' \times 1\cdot 669$$
; also  $+\cdot 00742 = -1\cdot 363F' - 1\cdot 669Q'$   
Mauritius .  $-\cdot 01550 = C' \times 1\cdot 373 + P' \times 1\cdot 467$ ; also  $+\cdot 00514 = -1\cdot 373F' - 1\cdot 467Q'$   
King George's Sound .  $-\cdot 03295 = C' \times 2\cdot 151 + P' \times 1\cdot 393$ ; also  $+\cdot 00658 = -2\cdot 151F' - 1\cdot 393Q'$ .

Hence by elimination we obtain

$$C' = -.0209$$
;  $F' = -.0006$ ;  $P' = +.0088$ ;  $Q' = -.0034$ .

"From the values of C', P', F' and Q', a table of the values of B and C in different dips and intensities was formed, and from them with the mean values of A, D and E, a table for correcting the observations of Declination was calculated by equ. 35. The corrections thus obtained appear to give very closely the true corrections, at all events much within the limits of observation errors. The following is a comparison between the observed and calculated deviations at King George's Sound,  $\theta$  being  $=-65^{\circ}$  04', and  $\varphi=1.70$ .

| Ship's head.                       | δ by calcula-<br>tion.                                                    | δ by observa-<br>tion.                                       | Difference.                                                          | Ship's head.                              | δ by calcula-<br>tion.                                               | δ by observa-<br>tion.                                                               | Difference.                                                          |
|------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| N. N.N.W. N.W. W.N.W. W. S.W. S.W. | +0° 52°<br>+0° 17°<br>-0° 21°<br>-0° 58°<br>-1° 16°<br>-0° 54°<br>-0° 24° | +0° 15′<br>0 00<br>+0 20<br>-1 40<br>-1 50<br>-1 00<br>-0 24 | -0 37<br>-0 17<br>+0 41<br>-0 42<br>-0 15<br>-0 34<br>-0 06<br>+0 09 | S. S.S.E. S.E. E.S.E. E. N.E. N.E. N.N.E. | +0 03<br>+0 47<br>+1 25<br>+2 02<br>+2 25<br>+2 17<br>+1 52<br>+1 22 | +0° 50°<br>+0° 55°<br>+2° 20°<br>+3° 10°<br>+2° 40°<br>+3° 10°<br>+3° 30°<br>+2° 35° | +0 47<br>+0 08<br>+0 55<br>+1 08<br>+0 15<br>+0 53<br>+1 38<br>+1 13 |

+ Sign denotes a deviation towards the west.

"It appears from this comparison, that the calculated corrections are smaller in amount than the observed. As the ship had just returned from a high magnetic latitude, it is probable that the observed corrections belonged to a greater dip than the one at the station, and therefore that the corrections would be more nearly represented by taking them out from the Table for a larger Inclination and Intensity. The great differences on the E.S.E., N.E. and N.N.E. points are caused most probably by errors of observation.

"The correctness of equation (6.) will be more easily perceived by the accordance of observations made at sea, in a high dip, making due allowance for the difficulty of observing in bad weather.

### "2. Calculation of Corrections for the Inclination Observations.

"To obtain these corrections four constants are necessary, viz. a, b, c, d; a and b are obtained from the deviations of a compass (placed on the same spot as the dipping-

| needle) on the sixteen principal points. | The following are the observations at King |
|------------------------------------------|--------------------------------------------|
| George's Sound, the Mauritius, and the   | Cape of Good Hope.                         |

| Ship's head.                              | King George's<br>Sound.                         | Mauritius.                                      | Cape of<br>Good Hope.                                | Ship's head.                       | King George's<br>Sound.                                                      | Mauritius.                                            | Cape of<br>Good Hope.                                                        |
|-------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|
| N. N.N.W. N.W. W.N.W. W. S.W. S.W. S.S.W. | -0 45 -1 15 -2 05 -3 20 -3 35 -3 45 -1 55 *3 00 | -0 05 -1 25 -1 45 -2 25 -3 05 -3 05 -1 35 -1 05 | -0 25 Not observed0 05 -0 35 -0 50 -1 15 -1 45 -0 35 | S. S.S.E. S.E. E.S.E. E. N.E. N.E. | Not observed.<br>+2 40<br>+3 25<br>+3 25<br>+3 25<br>+2 35<br>+2 45<br>+2 20 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | -0 50<br>Not observed.<br>+1 55<br>+2 35<br>+2 40<br>+1 10<br>+0 45<br>+0 05 |

<sup>&</sup>quot;Allowing for the errors of observation, it appears from these observations that the iron is symmetrically distributed in reference to the compass placed on the same spot where the observations of inclination and intensity were made, and therefore that we may use the equations in Contributions V. and VI.

"From these equations the values of a and b are found,—

At King George's Sound . . . 
$$a=0296$$
;  $b=9867$ ; Mauritius . . . . . . .  $a=0272$ ;  $b=9910$ ; Cape of Good Hope . . . .  $a=0192$ ;  $b=9766$ .

"The values of a and b can be found independently of the compass, from the observations of dip and intensity themselves, A' being supposed =1, by means of the formulæ

"Values of  $\phi'$  and  $\theta'$  were obtained from observations on the sixteen principal points of the compass made at King George's Sound, Mauritius, and the Cape of Good Hope. They are as follows:—

Values of  $\theta'$ .

|                                    | Obs                                                                          | erved Inclinati                                                              | on.                                                                                                                                                                                                                                  |                                      | Obs                                                                                                                                                    | erved Inclinati                                                              | on.                                                                          |
|------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Ship's head.                       | King George's<br>Sound.                                                      | Mauritius.                                                                   | Cape of<br>Good Hope.                                                                                                                                                                                                                | Ship's head.                         | King George's<br>Sound.                                                                                                                                | Mauritius.                                                                   | Cape of<br>Good Hope.                                                        |
| N. N.N.W. N.W. W.N.W. W. S.W. S.W. | -66 15<br>-66 33<br>-66 19<br>-66 07<br>-65 44<br>-65 42<br>-65 31<br>-64 48 | -54 38<br>-54 44<br>-54 47<br>-55 02<br>-55 21<br>-54 39<br>-54 29<br>-54 07 | $\begin{array}{cccc} -5\mathring{4} & 0\mathring{1} \\ -5\mathring{4} & 35 \\ -5\mathring{4} & 56 \\ -5\mathring{4} & 47 \\ -5\mathring{4} & 46 \\ -5\mathring{4} & 31 \\ -5\mathring{3} & 45 \\ -5\mathring{3} & 09 \\ \end{array}$ | S. S.S.E. S.E. E.S.E. E. E.N.E. N.E. | $\begin{array}{c} -6\overset{4}{4} \ 5\overset{2}{2} \\ -65 \ 00 \\ -65 \ 29 \\ -65 \ 5\overset{2}{2} \\ -66 \ 23 \\ -66 \ 07 \\ -66 \ 31 \end{array}$ | -53 46<br>-53 41<br>-54 20<br>-54 25<br>-54 50<br>-54 55<br>-54 47<br>-54 27 | -53 28<br>-53 50<br>-53 51<br>-54 24<br>-54 46<br>-54 53<br>-54 37<br>-54 25 |

<sup>\*</sup> This observation is not taken into account, being obviously erroneous. 3 a

| Values | of | $\varphi'$ |  |
|--------|----|------------|--|
|--------|----|------------|--|

|                                      | Оъ                                                          | served Intens                                                        | ity.                                                        |                                    | Observed Intensity.                                         |                                                             |                                                             |  |  |
|--------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--|--|
| Ship's head.                         | King George's<br>Sound.                                     | Mauritius.                                                           | Cape of Good<br>Hope.                                       | Ship's head.                       | King George's<br>Sound.                                     | Mauritius.                                                  | Cape of Good<br>Hope.                                       |  |  |
| N. N.N.W. N.W. W.N.W. W. S.W. S.S.W. | 1·737<br>1·736<br>1·734<br>1·752<br>1·758<br>1·775<br>1·790 | 1·150<br>1·152<br>1·151<br>1·158<br>1·166<br>1·198<br>1·191<br>1·200 | 1.024<br>1.020<br>1.025<br>1.025<br>1.028<br>1.036<br>1.049 | S. S.S.E. S.E. E.S.E. E. N.E. N.E. | 1·799<br>1·797<br>1·790<br>1·773<br>1·753<br>1·757<br>1·736 | 1·206<br>1·204<br>1·182<br>1·189<br>1·169<br>1·166<br>1·159 | 1.066<br>1.055<br>1.045<br>1.032<br>1.029<br>1.024<br>1.023 |  |  |

"The observed values of  $\theta$  and  $\varphi$  are approximately—

King George's Sound . . 
$$\theta = -65^{\circ} 11^{\circ}$$
;  $\varphi = 1.733$   
Mauritius . . . .  $\theta = -54 14$ ;  $\varphi = 1.158$   
Cape of Good Hope . . .  $\theta = -53 37$ ;  $\varphi = 1.027$ .

"Substituting these values in equations (1.) and (2.), we have

King George's Sound . . 
$$a=.0242$$
;  $b=.9905$ ; Mauritius . . . .  $a=.0234$ ;  $b=1.0105$ ; Cape of Good Hope . . .  $a=.0186$ ;  $b=.9916$ .

"Including these values with those obtained from the compass observations, we get the mean values for a and b,

$$a = .0237$$
;  $b = .9912$ .

"The constants c and d are calculated from the formula

$$c\cos\zeta+d\tan\theta=b\sin\zeta\csc\zeta'\tan\theta'$$

for the observations between N.N.W. and S.S.W., and N.N.E. and S.S.E.; and for the other points, viz. N. and S., by the formula

$$c\cos\zeta+d\tan\theta=(\cos\zeta+a\tan\theta)\sec\zeta'\tan\theta'.$$

"The values of  $\zeta$  and  $\theta$ ' were given by the observations at the several stations. The values of c and d are as follows:—

King George's Sound . . 
$$c=.010$$
;  $d=1.054$ ; Mauritius . . . . .  $c=.014$ ;  $d=1.011$ ; Cape of Good Hope . . .  $c=.003$ ;  $d=1.033$ .

The values of c and d were also obtained from the observations of dip and intensity, independently of a and b, by the formula

$$c\cos\theta\cos\zeta-d\sin\theta=\frac{\phi'}{\phi}\sin\theta'$$

A being supposed equal to unity; which gives the following values:—

King George's Sound . . c=.028; d=1.023; Mauritius . . . . . c=.024; d=1.017; Cape of Good Hope . . . c=.021; d=1.020.

"The mean of these six values makes

$$c=0.017$$
;  $d=1.026$ .

"From these values of a, b, c and d, a table of corrections was found by means of equations (12.) and (13.) (Contribution V.), employing calculated values of  $\zeta$ .

"In order to test the accuracy of the table, we may compare observed and calculated values of the dip at King George's Sound. It will be seen that on the northerly points the correction is rather too large, on the easterly and westerly too small, and nearly correct on the S., S.S.W. and S.S.E. points. The differences however are within the limits of observation errors.

| Ship's head.                                                                                                 | Observed Incli-<br>nation.                                                                                                                                      | Tabular correction.                                                           | Corrected Inclination.                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N. N.N.w. and N.N.E. N.W. and N.E. W.N.W. and E.N.E. W. and E. S.W. and S.E. S.W. and S.E. S.S.W. and S.S.E. | $\begin{array}{c} -6\mathring{6} \ 1 \acute{5} \\ -66 \ 3 2 \\ -66 \ 18 \\ -66 \ 07 \\ -66 \ 03 \\ -65 \ 47 \\ -65 \ 30 \\ -64 \ 54 \\ -64 \ 52 \\ \end{array}$ | +1 23<br>+1 23<br>+1 31<br>+1 09<br>+0 46<br>+0 23<br>+0 02<br>-0 16<br>-0 18 | $ \begin{array}{c} -6\mathring{4} & 5\mathring{2} \\ -65 & 09 \\ -64 & 47 \\ -64 & 58 \\ -65 & 17 \\ -65 & 24 \\ -65 & 28 \\ -65 & 10 \\ -65 & 10 \end{array} $ |

The mean inclination observed on shore with the same needle being  $-65^{\circ}$  11'.

"3. Calculation of Corrections for Intensity Observations.

"The constant A is calculated from the above observations by means of the formula

$$\frac{\Phi_{\cdot}^{f}}{A'\Phi}\sin\theta'=c\cos\theta\cos\zeta+d\sin\theta.$$

"The values of  $\theta$ ,  $\varphi'$  and  $\zeta$ , are all given by the observations on the sixteen points of the compass; those of  $\varphi$  and  $\theta$  by the observations on shore. The following are the resulting values for A', viz.—

King George's Sound . . . A'=0.998Mauritius . . . . . . A'=0.992Cape of Good Hope . . . A'=0.992Mean . . A'=0.994

"This value being so near unity, A is assumed =1.0, with which and the values of c and d already determined, a table of corrections was formed by means of the equation

$$\frac{\phi'}{\phi} = A'c(\frac{d}{c}\tan\theta + \cos\zeta)\cos\theta \csc\theta' *,$$

 $\theta'$  and  $\zeta$  being obtained from the tables for correcting the dips and declinations.

\* Philosophical Transactions, 1843, Part II. p. 162.

#### "II. Determination of Index Corrections.

#### "1. Declination Observations.

"The compass used was one of the Admiralty compasses (B. 20). It was supplied with two cards, one considerably heavier than the other to be used in bad weather; but as it was found that in all weathers the heavy card was the steadiest and gave the best results, it was accordingly generally used. The index corrections of both cards were determined at the Magnetic Observatory, Cape of Good Hope. The following are the means of several observations with each card; the mean monthly declination by the observatory declinometer being  $+29^{\circ}$  07'.

Card A (the light card) gave 
$$.+2\mathring{8} \stackrel{\circ}{20}$$
; correction  $+4\mathring{7}$ .  
Card J (the heavy card) gave  $.+28 \stackrel{\circ}{15}$ ; correction  $+52$ .

"These corrections have been applied to all the observations, according to the card employed.

#### "2. Inclination Observations.

"Two of Mr. Fox's instruments were kept in constant use, one observed in the forenoon and the other in the afternoon. In order to distinguish them, we may call the one observed in the morning No. 1, the other was marked C. 9. In No. 1, needle 1 was mounted and used throughout, the spare needle 2 being used as a deflector. The index correction for 1 was determined at the Magnetic Observatory at the Cape, both before and after the Expedition, by comparing the inclination with the face of the instrument west (that being the way the observations were taken on board) with the mean monthly inclination shown by the observatory needles. The following are the observations with the deflectors at 40° from the apparent dip:—

```
November 10, 1844, needle 1, face west -5\overset{\circ}{3} 3\overset{\circ}{9}; correction +\overset{\circ}{8} November 10, 1844, needle 1, face east -53 59; correction +28 November 21, 1844, needle 1, face west -53 38; correction +7 November 21, 1844, needle 1, face east -53 58; correction +27 The mean monthly inclination being -53^{\circ} 31'.
```

"After the 13th of January it was found more convenient to adjust the deflectors at the apparent dip, and make the same observations serve both for dip and intensity. The index corrections to be applied in this case are given by the following observations:—

| 70.4                              |                                                                             | Observed                                                                            | Inclination.—I                                          | Face West.                                                            | •                                                                                       | True Inclina-                                              | Index correc- |
|-----------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|
| Date.                             | Direct.                                                                     | Def. N.                                                                             | Def. S. Def. N and S. Mean.                             |                                                                       | Mean.                                                                                   | tion.                                                      | tion.         |
| 1844. December 1 December 5 1845. | $-5\overset{\circ}{3} \overset{\circ}{52} \\ -53 \overset{\circ}{49}$       | $-5\overset{\circ}{3}\overset{\circ}{21}$ $-5\overset{\circ}{3}\overset{\circ}{20}$ | $-5\overset{\circ}{3} \overset{\prime}{44} \\ -53 & 43$ | $-5\overset{\circ}{3} \overset{\circ}{39} \\ -53 \overset{\circ}{38}$ | $-5\overset{\circ}{3} \overset{\circ}{3}\overset{\circ}{9} \\ -53 \overset{\circ}{3} 8$ | $\left.\begin{array}{cccccccccccccccccccccccccccccccccccc$ | + 07          |
| June 30                           | $     \begin{array}{rrr}       -54 & 12 \\       -54 & 08     \end{array} $ | -53 13 $-53 15$                                                                     | $-53 	ext{ } 46 \\ -53 	ext{ } 46$                      | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                | $     \begin{array}{rrr}       -53 & 45 \\       -53 & 43     \end{array} $             | $\left53 \ 25 \right.$                                     | +19           |
| Mean                              | -54 01                                                                      | -53 17                                                                              | -53 45                                                  | $-53 \ 43$                                                            | $-53 \ 41$                                                                              | -53 28                                                     | +13           |

"Magnets N and S are the small magnets belonging to the apparatus used conjointly; deflector N and deflector S are the respective poles of the spare needle. +13' has been applied in all cases except when only magnets N and S have been used, in which case +24' has been used, that being the mean correction for direct and magnets N and S.

"For the index corrections for needle A of C. 9, we have only an observation in Simon's Bay, Cape of Good Hope, before starting. Needle A was used from the Cape to King George's Sound, and was observed on shore at King George's Sound on the 7th of April. On the 10th it was found, from the discordance of the observations, that its axle had been damaged since the observations on the 7th, it was therefore taken out and needle B mounted in its place. The instrument had a third needle C which was used as a deflector. The small magnets were also used, both conjointly and separately. The observation in Simon's Bay gives,—

For C. 9, needle A . . . . . . . 
$$-53^{\circ} 24'$$
 Corrected inclination, needle 1 . . .  $-53^{\circ} 50'$  Index correction  $-26'$ .

This correction has been applied to all observations made with needle A of C. 9. For the correction of needle B, we have a comparison at the Cape of Good Hope after the return of the Expedition, and also at Woolwich, in January 1846. All observations with this instrument were taken with the face east.

| "The following | g are the | observations | at the | Cape:— |
|----------------|-----------|--------------|--------|--------|
|----------------|-----------|--------------|--------|--------|

| Date.                        |         |                                                          | Observed                                                | Inclination.—l                | Face East.                                                            |                                                 |                                         | True                                                    | Index<br>correc- |  |
|------------------------------|---------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|---------------------------------------------------------|------------------|--|
| Batter                       | Direct. | Def. N.                                                  | Def. S.                                                 | Mag. N and S.                 | Mag. N.                                                               | Mag. S.                                         | Mean.                                   | Inclination.                                            | tion.            |  |
| 1845.<br>June 30.<br>July 2. |         | $-5\overset{\circ}{4} \ 1\overset{\circ}{5} \\ -54 \ 11$ | $-5\overset{\circ}{2}  4\overset{\prime}{7} \\ -52  55$ | $-5\mathring{4} 06'$ $-54 15$ | $-5\overset{\circ}{3} \overset{\circ}{29} \\ -53 \overset{\circ}{49}$ | $-53^{\circ} 23^{\circ} -53^{\circ} 41^{\circ}$ | $-5\overset{\circ}{3} \overset{40}{45}$ | $-5\overset{\circ}{3}\ 2\overset{\prime}{5} \\ -53\ 25$ | $+15 \\ +20$     |  |
| Mean                         | -53 48  | -54 13                                                   | -52 51                                                  | -54 10                        | -53 39                                                                | -53 32                                          | -53 43                                  | -53 25                                                  | +18              |  |

#### "And at Woolwich:-

| Date.                    |         |                    |                    |                                                 | True                  | Index                 |                       |                                          |                  |
|--------------------------|---------|--------------------|--------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------|------------------------------------------|------------------|
| Date.                    | Direct. | Def. N.            | Def. S.            | Mag. N and S.                                   | Mag. N.               | Mag. S.               | Mean.                 | Inclination.                             | correc-<br>tion. |
| 1846.<br>Jan. 13.<br>15. |         | $+68 02 \\ +68 21$ | $+68 37 \\ +68 52$ | $+68^{\circ} 24^{\circ} +68^{\circ} 45^{\circ}$ | $+68 \ 32 \ +68 \ 35$ | $+68 \ 30 \ +68 \ 34$ | $+68 \ 31 \ +68 \ 41$ | $\left.\right\} + 68^{\circ} 58^{\circ}$ | +22              |
| Mean                     | +6857   | +68 12             | +68 44             | +68 35                                          | +68 33                | +68 32                | +68 36                | +68 58                                   | +22              |

<sup>&</sup>quot;The index correction obtained at the Cape has been used for all the observations taken with this needle.

- "3. Elements of Calculation of the Intensity Observations.
- "Fox No. 1.—For the observations with this instrument, the Cape of Good Hope has been taken as a base station, the intensity having been observed there both before and after the Expedition, so that any change in the magnetism of the deflectors or needles can be detected.
- "The intensity at Woolwich being assumed =1.372, it is necessary to get the corresponding intensity at the Cape. This can be got independent of the dippingneedles, by means of the absolute horizontal intensity and inclination observed at each station.
- "The value of the horizontal intensity at the Cape is given as follows by observations made at the observatory in February, March, April and May 1845:—
- "Observations of the Absolute Horizontal Intensity, at the Magnetic Observatory, Cape of Good Hope, 1845.

Bar. A. 21. Suspended . . . length 3.00 inch . . . 
$$\left(1 + \frac{H}{F}\right) = 1.00084$$
.

Bar. V. Deflecting . . . length 3.67 inch . . .  $q = .00008 . . . \log \pi^2 . k = 1.57254$ .

| Date.                                                                                | Angles of        | Deflection.                          | time of                                   |                                           | Bifilar readings at 60 during              |                                                | Results.       |                                      |                |       |
|--------------------------------------------------------------------------------------|------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------------|----------------|--------------------------------------|----------------|-------|
| er                                                                                   | Dist. 1.2 ft.    | Dist. 1·3 ft.                        | vibration.                                | Deflection.                               | Vibration.                                 | Deflection.                                    | Vibration.     | m.                                   | x.             |       |
| 1845.<br>Feb. 10, 11, 12.<br>Mar. 10, 11, 12.<br>Apr. 13, 14, 15.<br>May 14, 15, 16. | 6 01·1<br>5 57·5 | 4 47.5<br>4 44.0<br>4 41.2<br>4 39.2 | s<br>4·4970<br>4·5310<br>4·5570<br>4·5650 | 7 <sup>1</sup> ·4<br>71·4<br>62·9<br>60·7 | 7 <sup>°</sup> 1·7<br>71·9<br>62·6<br>59·9 | Scale dir.<br>185·9<br>186·0<br>176·9<br>177·2 | 185·8<br>177·4 | 0·4118<br>0·4064<br>0·4019<br>0·4001 | 4·480<br>4·478 | 4.482 |

<sup>&</sup>quot;The value of k is obtained by means of two cylindrical weights in the usual manner; the value employed is the mean of several determinations. Bifilar magnetometer k=000218, q=000218. Increase of reading denotes increase of force.

Whence 
$$X=4.482$$
,  $\theta$  being  $=-53^{\circ} 25'.5$ .

"The corresponding values at Woolwich are

$$X=*3.7284$$
,  $\theta$  being =  $+68^{\circ}$  57'.9.

- "From these values of X and  $\theta$ , we obtain the relative value of the intensity at the Cape (that at Woolwich being 1.372), I=0.993.
- "The relative intensity given by the needles of No. 1, from observations made at Woolwich and the Cape and given in the sequel, are as follows:—

Needle 1. 
$$\{ \begin{array}{ll} \text{Weight 1 gr. I=0.996} \\ \text{Weight 2 grs. I=1.017} \\ \end{array} \} 1.006. \quad \text{Needle 2.} \{ \begin{array}{ll} \text{Weight 1 gr. I=0.994} \\ \text{Weight 2 grs. I=1.006} \\ \end{array} \} 1.000.$$

<sup>\*</sup> Contributions, No. VII.; Philosophical Transactions, 1846, p. 246.

"The value of I at the Cape has therefore been assumed provisionally as unity; subject to future correction should any appear to be required.

"The spare needle 2 was always used as a deflector; the two small magnets were used conjointly only with this apparatus.

"Tables of equivalent weights were made at the Cape both before and after the Expedition, according to the method given in the instructions for the use of Mr. Fox's instrument. The following Table contains the mean of the two series.

| De                         | ef. N.                                    | De                         | ef. S.                                    | Mag. 1                     | Mag. N and S.                             |                            | f. N.<br>inued.)                          | Def. S.<br>(Continued.)    |                                           | Mag. N. and S. (Continued.) |                                           |
|----------------------------|-------------------------------------------|----------------------------|-------------------------------------------|----------------------------|-------------------------------------------|----------------------------|-------------------------------------------|----------------------------|-------------------------------------------|-----------------------------|-------------------------------------------|
| v'.                        | w'.                                       | v'.                         | w'.                                       |
| 21<br>22<br>23             | gr.<br>1.816<br>1.835<br>1.850            | 22<br>23<br>24             | gr.<br>1·950<br>1·964<br>1·972            | 41<br>42<br>43             | grs.<br>3·608<br>3·522<br>3·438           | 31<br>32<br>33             | gr.<br>1·843<br>1·828<br>1·814            | 32<br>33<br>34             | gr.<br>1.935<br>1.918<br>1.903            | 51<br>52<br>53              | grs.<br>2·786<br>2·717<br>2·654           |
| 24<br>25<br>26<br>27<br>28 | 1.861<br>1.867<br>1.868<br>1.867<br>1.866 | 25<br>26<br>27<br>28<br>29 | 1.977<br>1.983<br>1.980<br>1.977<br>1.968 | 44<br>45<br>46<br>47<br>48 | 3·350<br>3·262<br>3·179<br>3·093<br>3·013 | 34<br>35<br>36<br>37<br>38 | 1.801<br>1.788<br>1.770<br>1.756<br>1.744 | 35<br>36<br>37<br>38<br>39 | 1.891<br>1.868<br>1.852<br>1.833<br>1.812 | 54<br>55<br>56<br>57<br>58  | 2.595<br>2.535<br>2.480<br>2.428<br>2.377 |
| 29<br>30                   | 1.861<br>1.858                            | 30<br>31                   | 1.960<br>1.946                            | 49<br>50                   | 2.933<br>2.853                            | 39<br>40                   | 1.726<br>1.707                            | 40<br>41                   | 1.793<br>1.775                            | 59<br>60                    | 2.330                                     |

"With these values of w', and the following values of v and w, the values of I' have been calculated by the formula

 $I' = I \frac{\sin v \cdot w'}{\sin v' \cdot w}$  when deflectors are used, and

 $I'=I\frac{\sin v}{\sin v'}$  when weights are used.

Values of v at the Cape of Good Hope.

|   | Date.                        | Def. N. $w = 1.721$ . | Def. S. $w = 1.782$ . | Mag. N and S. $w=2.337$ .  | Weight<br>1 grain. | Weight 2 grains. | Weight $2\frac{1}{2}$ grains. |
|---|------------------------------|-----------------------|-----------------------|----------------------------|--------------------|------------------|-------------------------------|
|   | 1844.<br>Dec. 1.<br>5.       | 39 06<br>39 01        | 40 38<br>40 37        | 59 23<br>59 22             | 21 36<br>21 34     | 46 54<br>46 33   | 65 22<br>65 20                |
|   | 1845.<br>June 30.<br>July 2. |                       | 40 39<br>40 39        | 5 <del>8</del> 16<br>58 21 | 21 38<br>22 06     | 46 32<br>46 21   | 65 30<br>65 30                |
| 1 | Mean                         | 39 15                 | 40 38                 | 58 51                      | 21 42              | 46 35            | 65 25                         |

"From this Table it is evident that, with the exception of magnets N and S, the needles preserved their magnetism throughout the voyage. Magnets N and S lost magnetism to the amount of 033. The mean of the four observations have been taken; the early intensities by this method will therefore be rather too small, the latter ones rather too great.

"The formulæ for calculation are as follows:-

"Fox C. 9.—The values of the intensity at the Cape by the observations before and after the Expedition, by Fox, No. 1, are:—

Before . . . . . 
$$I=0.999$$
 After . . . . .  $I=1.001$  diff.  $002$ .

"These values agreeing so closely, we may assume that the intensity at King George's Sound with this apparatus will be very near the truth, and that King George's Sound may therefore be taken as a base station for needle A of C. 9, which was not observed at the Cape before our departure. The intensities were observed with needle A mounted, from the Cape to King George's Sound, when the needle got unfortunately damaged, and it was necessary to replace it with needle B: one day's observations had however been made before the accident, and these observations serve for calculating the intensities taken on the voyage, assuming the intensity at King George's Sound to be that given by the other apparatus, viz. 1.688.

"The same deflectors and weights were used throughout; the spare needle C as a deflector, the two small magnets both conjointly and separately.

"Tables of equivalent weights for these deflectors, with needle A mounted, were obtained in the same way as in the case of the other apparatus. They are as follows:

| De   | f. N. | De  | f. S. | Mag. N                                  | and S.         | Ma       | g. N.          | Ma         | g. S.          |
|------|-------|-----|-------|-----------------------------------------|----------------|----------|----------------|------------|----------------|
| v'.  | w'.   | v'. | w'.   | v'.                                     | w'.            | v'.      | w'.            | v'.        | w'.            |
| 5ů   | grs.  | 5   | grs.  | 7ů                                      | grs.<br>2.625  | 5ů       | grs.           | 5 <b>0</b> | grs.           |
|      | 2.175 |     | 2.206 | 70                                      | 2.675          | 49       | 1.578          | 49         | 1.975          |
| 49   | 2.200 | 49  | 2 247 | 69                                      |                | 49<br>48 | 2.028          | 48         | 2.025          |
| 48   | 2.225 | 48  | 2.288 | $\frac{68}{67}$                         | 2.725          | 47       | 2.078          | 47         | 2.075          |
| 47   | 2.263 | 47  | 2.323 | 66                                      | 2·775<br>2·825 | 46       | 2.130          | 46         | 2.125          |
| 46   | 2.300 | 46  | 2.357 | 65                                      | 2.875          | 45       | 2.235          | 45         | 2.175          |
| 45   | 2.338 | 45  | 2.388 |                                         | 2.925          | 44       | 1 1 1          | 44         | 2.240          |
| 44   | 2.375 | 44  | 2.419 | $\begin{array}{c} 64 \\ 63 \end{array}$ | 2.982          | 43       | 2·288<br>2·341 | 43         | 2·304<br>2·368 |
| 43   | 2.413 | 43  | 2.460 |                                         | 3.038          | 42       | 2.394          | 42         | 1              |
| 42   | 2.450 | 42  | 2.500 | 62                                      | 3.038          | 41       |                | 41         | 2.433          |
| 41   | 2.488 | 41  | 2.538 | 61                                      |                |          | 2.447          |            | 2.498          |
| 40   | 2.525 | 40  | 2.575 | 60                                      | 3.150          | 40       | 2.500          | 40         | 2.563          |
| . 39 | 2.565 | 39  | 2615  | 59                                      | 3.222          | 39       | 2.570          | <b>39</b>  | 2.623          |
| 38   | 2.605 | 38  | 2.655 | 58                                      | 3.294          | 38       | 2.640          | 38         | 2.683          |
| 37   | 2.645 | 37  | 2.695 | 57                                      | 3.365          | 37       | 2.710          | 37<br>20   | 2.743          |
| 36   | 2.685 | 36  | 2.735 | 56                                      | 3.436          | 36       | 2.780          | 36         | 2.803          |
| 35   | 2.725 | 35  | 2.775 | 55                                      | 3.507          | 35       | 2.850          | 35         | 2.863          |
| 34   | 2.755 | 34  | 2.806 | 54                                      | 3.595          | 34       | 2.900          | 34         | 2.937          |
| 33   | 2.785 | 33  | 2.837 | 53                                      | 3.683          | 33       | 2.950          | 33         | 3.011          |
| 32   | 2.815 | 32  | 2.869 | 52                                      | 3.770          | 32       | 3.000          | 32         | 3.085          |
| 31   | 2.845 | 31  | 2.901 | 51                                      | 3.857          | 31       | 3.050          | 31         | 3.158          |
| 30   | 2.875 | 30  | 2.932 | 50                                      | 3.944          | 30       | 3.100          | 30         | 3.232          |
| 29   | 2.900 | 29  | 2.954 | 49                                      | 4.047          |          | 1              |            |                |
| 28   | 2.925 | 28  | 2.975 | 48                                      | 4.150          |          | 1 1            |            |                |

| "The angles of deflection observed at King George's S | Sound are as follows:— |
|-------------------------------------------------------|------------------------|
|-------------------------------------------------------|------------------------|

| Def. N. $w = 2.779$ | Def. S. $w = 2.821$ . | Mag. N and S. $w = 3.909$ . | Mag. N. $w = 2.875$ . | Mag. S.<br>2.895. | Weight<br>1 grain. | Weight 1½ grain.  | Weight 2 grains. | Weight $2\frac{1}{2}$ grains. | Weight<br>3 grains. |
|---------------------|-----------------------|-----------------------------|-----------------------|-------------------|--------------------|-------------------|------------------|-------------------------------|---------------------|
| 33° 11              | 33 32                 | 50° 24                      | 34 30                 | 34 34             | 10° 44             | 1 <sub>7</sub> 16 | 22° 55           | 28 18                         | 35° 10′             |

"Employing the values of v and w (I being = 1.688), we get formulæ for calculating the intensities, viz.—

```
Def. N . . . . I' = :3325 \csc v' \cdot w'.

Def. S . . . . I' = :3306 \csc v' \cdot w'.

Mag. N and S I' = :3327 \csc v' \cdot w'.

Mag. N . . . I' = :3326 \csc v' \cdot w'.

Mag. S . . . . I' = :3308 \csc v' \cdot w'.
```

Weight 1 grain . I'=:3144 cosec v'.

Weight  $1\frac{1}{2}$  grain. I'=:5010 cosec v'.

Weight 2 grains . I'=:6573 cosec v'.

Weight  $2\frac{1}{2}$  grains . I'=:8003 cosec v'.

Weight 3 grains . I'=:9722 cosec v'.

Comparing observations made at sea near the Cape with those given by the other needle, the deflectors of this apparatus do not appear to have lost magnetism.

"From King George's Sound to the Cape, needle B was mounted, the same deflectors and weights being used as with needle A. The Cape of Good Hope has been taken as the base station in this case, the intensity having been observed there on the return of the Expedition.

"The table of equivalent weights is given below.

| De         | ef. N. | $\mathbf{D}\epsilon$     | f. S. | Mag. N     | V and S. | Ma        | g. N. | Ma          | ıg. S. |
|------------|--------|--------------------------|-------|------------|----------|-----------|-------|-------------|--------|
| v'.        | w'.    | v'.                      | w'.   | v'.        | w'.      | v'.       | w'.   | v'.         | w'.    |
| <b>2</b> 9 | 1.794  | $3\mathbf{\mathring{5}}$ | 2.104 | 5 <b>0</b> | 2.763    | 3î        | 1.891 | <b>3</b> 6  | 2.174  |
| 30         | 1.782  | 36                       | 2.076 | 51         | 2.701    | 32        | 1.862 | 37          | 2.122  |
| 31         | 1.765  | 37                       | 2.046 | <b>52</b>  | 2.638    | 33        | 1.833 | 38          | 2.069  |
| 32         | 1.748  | 38                       | 2.015 | <b>53</b>  | 2.576    | 34        | 1.804 | <b>39</b> . | 2.012  |
| 33         | 1.734  | 39                       | 1.986 | $\bf 54$   | 2.513    | 35        | 1.773 | 40          | 1.954  |
| 34         | 1.719  | 40                       | 1.956 | <b>55</b>  | 2.457    | <b>36</b> | 1.741 | 41          | 1.903  |
| 35         | 1.697  | 41                       | 1.927 | <b>56</b>  | 2.401    | 37        | 1.705 | 42          | 1.851  |
| 36         | 1.675  | 42                       | 1.898 | 57         | 2.345    | 38        | 1.669 | 43          | 1.801  |
| 37         | 1.657  | 43                       | 1.865 | <b>58</b>  | 2.288    | 39        | 1.635 | 44          | 1.751  |
| 38         | 1.638  | 44                       | 1.832 | 59         | 2.247    | 40        | 1.600 | 45          | 1.707  |
| . 39       | 1.619  | 45                       | 1.799 | 60         | 2.203    | 41        | 1.563 | 46          | 1.663  |
| 40         | 1.600  | 46                       | 1.766 | 61         | 2.167    | 42        | 1.525 | 47          | 1.626  |
| 41         | 1.582  | 47                       | 1.740 | 62         | 2.110    | 43        | 1.494 | 48          | 1.588  |
| 42         | 1.563  | 48                       | 1.713 | 63         | 2.071    | 44        | 1.463 |             |        |
| 43         | 1.541  | 49                       | 1.684 | 64         | 2.032    | 45        | 1.443 |             |        |
| 44         | 1.519  | 50                       | 1.654 | 65         | 1.996    |           | 1 1   |             |        |
| 45         | 1.491  |                          |       | 66         | 1.960    |           |       |             |        |
|            |        |                          |       | <b>67</b>  | 1.927    |           |       |             | 1      |

"The following are the angles of deflection on three separate days at the Magnetic Observatory, Cape of Good Hope:—

| Def. N. $w = 1.500$ .               | Def. S. $w = 1.659$ . | Mag. N and S. $w = 1.953$ . | Mag. N. w=1.480. | Mag. S. $w = 1.615$ .        | Weight<br>1 grain. | Weight<br>1½ grain. | Weight<br>2 grains. |
|-------------------------------------|-----------------------|-----------------------------|------------------|------------------------------|--------------------|---------------------|---------------------|
| 4 <sup>3</sup> 3 <sup>2</sup> 45 00 | 49 48<br>49 59        | 66 02<br>66 20              | 43 21<br>43 45   | 4 <sup>°</sup> 7 13<br>47 23 | 28° 00             | 44 1ó               | 69° 31′             |
| 44 33                               | 49 42                 | 66 16                       | 43 15            | 47 20                        | 28 26              | 44 16               | 69 15               |
| 44 42                               | 49 50                 | 66 13                       | 43 27            | 47 19                        | 28 13              | 44 13               | 69 23               |

"Assuming the intensity at the Cape as unity, we get the following formulæ for calculation:—

| Def. N          | • |    | ٠., | •. | $I'=4692 \csc v' \cdot w'$ . |
|-----------------|---|----|-----|----|------------------------------|
| Def. S          | • | •  |     | •. | $l'=4606 \csc v' \cdot w'$ . |
| Mag. N and S .  |   | •  |     |    | $I'=4686\csc v' \cdot w'$ .  |
| Mag. N          |   |    |     |    | $I'=4634 \csc v' \cdot w'$ . |
| Mag. S          | • |    |     | •  | $I'=4552 \csc v' \cdot w'$ . |
| Weight 1 grain. |   | •  |     | •  | $I'=4728\csc v'$ .           |
| Weight 1½ grain |   | •. |     |    | $I' = 6974 \csc v'$ .        |
|                 |   |    |     |    | $I' = .9361 \csc v'$ .       |

"The value of the intensity at King George's Sound by this needle is-

By weights . . . . 1 688. By deflectors . . . 1 672.

"The intensity by the other apparatus No. 1 is 1.688.

"At the Mauritius the intensity is-

By weights . . . . . 1.156. By deflectors . . . . 1.155.

And by the other instrument 1.156.

"It is therefore evident that needle B preserved its magnetism from King George's Sound to the Cape. Comparing the results with the deflectors with those of the other instrument, the deflectors do not appear to have lost magnetism; the difference at King George's Sound of '01 arises probably from error of observation. As the results given by weights are the most accurate when the observations are made on land, they have been exclusively used in such cases; at sea both weights and deflectors have been used.

"Besides the correction for the effect of the ship's iron, a second correction for the effect of temperature on the needle and deflectors is necessary. The observations have all been reduced to a common temperature of 60° by means of the formulæ

$$c=\mathbf{I}'$$
.  $q(t'-t)$ ,

t being taken as  $60^{\circ}$  and q being the coefficient for  $1^{\circ}$  of Fahr. Values of q for each needle and deflector employed, were obtained at the Magnetic Observatory, Cape of Good Hope, in the usual manner. The following is an abstract of the observations:—

| Needle or deflector.                                                                                                                                                                                                                               | Approximate distance.                   | Total deflec-<br>tion in scale<br>divisions.                                       | Mean alternation of temperature.                                              | No. of alternations.                      | Corresponding<br>mean differ-<br>ence of<br>deflection.              | billar correc-                                                                             | Values of $q$ .                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|
| $\begin{array}{c} {\rm No.\ 1.} \begin{cases} {\rm A.\ 1.} \\ {\rm A.\ 2.} \\ {\rm Def.\ N} \\ {\rm Def.\ S} \end{cases} \\ {\rm C.\ 9.} \begin{cases} {\rm A.} \\ {\rm B.} \\ {\rm C.} \\ {\rm Def.\ N} \\ {\rm Def.\ S} \end{cases} \end{array}$ | ft. in. 3 0 3 0 1 0 1 5 1 5 1 5 1 0 1 0 | 497.5<br>805.2<br>873.3<br>880.5<br>1019.0<br>1059.5<br>1065.9<br>1004.8<br>1021.7 | 38 35<br>38 76<br>40 43<br>40 02<br>34 68<br>43 35<br>43 46<br>45 85<br>47 38 | 5<br>5<br>5<br>5<br>3<br>4<br>5<br>5<br>5 | 1·36<br>3·88<br>4·33<br>2·82<br>4·21<br>3·18<br>3·67<br>7·08<br>6·45 | +·000046<br>+·000004<br>·000019<br>·000054<br>-·000070<br>-·000004<br>+·000008<br>+·000004 | ************************************** |

"From the values of q tables of corrections were formed; observing that when weights are used an increase of temperature gives an additive correction, and the contrary when the deflectors are used. As the values of q are small, and the greatest difference of temperature amounts only to  $30^{\circ}$ , the corrections are seldom of any importance; they have however always been applied.

"Besides the observations made on board the Pagoda, others have been laid down on the maps, in order to assist in drawing the magnetic lines. A series of observations made by Lieut. Smith, R.N., between the Cape and Van Diemen Island, and another by Lieut. Dayman, R.N., between Van Diemen Island and the Cape (with the same instrument), have been laid down on the map of the Inclination. The same needles and deflectors were used in both cases. Lieut. Smith's observations are all taken with the face of the instrument east; those of Lieut. Dayman's with it both east and west. The following observations, made at the Ross Bank Observatory, Van Diemen Island, will serve to obtain the index corrections; the inclination by the observatory needles being  $-70^{\circ}$  40'.

| Observer.                                                          | Direct. | Def. N. | Def. S. | Def. N and S. | Mean. | Index correction. | Face of instrument. |
|--------------------------------------------------------------------|---------|---------|---------|---------------|-------|-------------------|---------------------|
| Lieut. SMITH.<br>Lieut. DAYMAN.<br>Lieut. SMITH.<br>Lieut. DAYMAN. | -7054   | -69 54  | -7042   | -71 36 } }    | 1     | +48<br>-27        | East<br>West        |

"These corrections have been applied to all the observations made by Lieut. Smith \*.

"As no observations were made for local attraction, we can only obtain approximate corrections, by comparing observations made on or near the same spot with the ship's head on different points of the compass. In the series made by Lieut. Smith we have the following observations:—

| T   | August 14.        | August 18.      | September 10. September 13.                          | September 13. |  |
|-----|-------------------|-----------------|------------------------------------------------------|---------------|--|
| S.I | E. by E. ½ E68 06 | E. by s $-67$ 3 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 02<br>09      |  |

- "From these comparisons it would appear that the correction is very small, especially on the easterly points which were those generally observed upon; the observations have therefore been entered without any correction for the effect of the ship's iron
- "With regard to those of Lieut. DAYMAN, there are two cases where observations have been taken on different days, but in nearly the same position, and with the
- \* When observations have been made with the face both east and west, the correction becomes +10'; when weights as well as deflectors are used for the inclination, the correction face east and west becomes -13'; this has been applied to the observations made by Lieut. Dayman.

ship's head on different points of the compass, and also some in very nearly the same geographical position as the Pagoda. Comparing these, it appears that the effect of the iron is nearly the same in both ships; the observations have consequently been corrected from the Table that was used for those taken on board the Pagoda. The following comparisons will show how near these corrections approach the truth.

| Lat.                                                                                                                           | Long.                                                 | Inclination.                                                                  | Ship's head.                                                   | Tabular corrections.             | Corrected Inclination.                                                                                     |                                                                                                                                                                                                                                                       | Remarks.       |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| -35 22<br>-35 06<br>-34 58<br>-34 16<br>-24 00<br>-23 59<br>-34 36<br>-34 31<br>-34 48<br>-35 07<br>-36 58<br>-36 06<br>-36 24 | 117 55<br>112 59<br>113 01<br>99 33<br>99 15<br>25 23 | $ \begin{array}{r} -66 & 47 \\ -55 & 32 \\ -57 & 01 \\ -56 & 09 \end{array} $ | N.W.  W.N.W.  S.W. $\frac{1}{2}$ W.  N. by W. $\frac{1}{2}$ W. | +1 31<br>+1 12<br>+0 18<br>+1 19 | -65 14<br>-65 16<br>-64 44<br>-54 20<br>-54 07<br>-56 43<br>-57 06<br>-55 08<br>-67 03<br>-67 19<br>-66 27 | Lieut. Dayman. Lieut. Clerk. Lieut. Dayman. Lieut. Clerk. Lieut. Dayman. Lieut. Dayman. Lieut. Dayman. Lieut. Dayman. Lieut. Dayman. Lieut. Dayman. | Difference + 0 |

"The observations thus corrected have been entered in the chart. The lines on the chart are drawn by estimation, so as to conform as nearly as possible with the observations: some part of the lines laid down by Lieut.-Colonel Sabine (in No. V. of the Contributions) from Sir James C. Ross's observations have been dotted in, to show the agreement of the two series.

"In the Chart of 'Magnetic Declinations,' a series of observations made on board the 'Erebus' by Sir James C. Ross, between the Cape of Good Hope and Hobarton, have been laid down. These observations have been corrected for index error and local attraction, in the same way as the other observations during the Antarctic Expedition, the same constants being used.

"In the chart of intensities, Sir James C. Ross's observations between the Cape of Good Hope and Hobarton have also been entered. These observations are contained in Lieut.-Colonel Sabine's Contributions, No. III. and V. The Cape of Good Hope is the base station in this case; but the intensity there has been taken as 0.981; it is therefore necessary to reduce them to an intensity at the Cape = 1.0, in order that they may compare with the intensities taken on board the Pagoda; this is done by multiplying each of them by  $\frac{.981}{1.000} = 1.02$  nearly. The observations thus corrected are given in a table at the end of the 'Pagoda' observations, together with those of variation and inclination by Sir J. Ross, and the inclinations and intensities by Lieuts. Smith and Dayman.

"In calculating the intensities observed by Lieut. Smith, Hobarton has been taken as the base station, and the results by weights only used. The same has been done









±



ns in H.M.S. Pagoda 1845. .....Erebus 1840.



Engraved by J. & C. Walker.











r the Pagoda ——Expedition of Sir J. C. Ross y Lieu<sup>‡</sup> A. Smith R.N. y Lieu<sup>‡</sup> J. Dayman R.N.



Engraved by J.&C.Walker.













in the Pagoda \_\_\_\_Expedition of Sir J.C.Ross by Lieut.<sup>‡</sup>A.Smith R.N. by Lieut.<sup>‡</sup>J.Dayman R.N.



Engraved by J. & C. Walker.

with the series by Lieut. DAYMAN, the weights of two grains and three grains having been observed daily; the following observations with weights made at the observatory, Hobarton, give the formulæ for calculation:—

(II.) Lieut. Smith's. 
$$\begin{cases}
2 \text{ grains } v = 10 & 33'; & I = 1.80; I' = .3296 \text{ cosec } v'. \\
3 \text{ grains } v = 16 & 05; & I = 1.80: I' = .4987 \text{ cosec } v'.
\end{cases}$$
(II.) Lieut. Dayman's. 
$$\begin{cases}
1 \text{ grain } v = 5 & 19 \\
2 \text{ grains } v = 10 & 35 \\
3 \text{ grains } v = 16 & 20 \\
4 \text{ grains } v = 21 & 50 \\
5 \text{ grains } v = 27 & 41 \\
6 \text{ grains } v = 34 & 08
\end{cases}$$
From these we obtain the following values of  $v$  for 2 and 3 grains; viz.—

for 2 grains  $v = 10 & 43'$ .

for 3 grains  $v = 16 & 11$ .

Hence for 2 grains  $I' = .3347$  cosec  $v'$ .

for 3 grains  $I' = .5017$  cosec  $v'$ .

"In correcting these observations the same plan has been pursued as with the dip observations. As Lieut. Smith's observations required no correction in the latter case, so none has been applied to the intensities; and Lieut. Dayman's have been corrected from the same table as was used for the 'Pagoda' observations. No corrections have been applied for the effect of temperature; but they are probably so small as not to affect the results."

# Observations of the Declination made on board Her Majesty's hired Bark "Pagoda," from the 10th of January to the 23rd of June 1845.

The Observers are distinguished as follows:—M. Lieut. Moore; B. Mr. Bodie, Master; Cl. Lieut. Clerk; Cm. Mr. Comber, Mate; T. Mr. Tufnell, and Bn. Mr. Burdon, Midshipmen. West Declination characterized by the sign +.

|                       |                                                                                                                 | Ì                                |                              |                                                                                                                       |                                                                                              | -                   | Correct                                                                                                          | tions.                       |                                                                                                    |                                                                                     |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Date.                 | Lat.                                                                                                            | Long.                            | Observer.                    | Declination observed.                                                                                                 | Ship's head.                                                                                 | Inclination.        | Ship's attraction.                                                                                               | Index.                       | Corrected Declination.                                                                             | Remarks.                                                                            |
| 1845.<br>Jan. 10 A.M. | $-3\overset{\circ}{4}\ 4\overset{\prime}{2} \\ -34\ 42 \\ -34\ 42$                                              |                                  | М.<br>М.<br>М.               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                  | W.<br>W.<br>W. <sup>1</sup> / <sub>2</sub> S.                                                | $iggraphi -53 \ 15$ | $+16 \\ +16 \\ +15$                                                                                              | +47                          | $\begin{vmatrix} +30 & 07 \\ +30 & 15 \\ +29 & 52 \end{vmatrix}$ $+29 & 51$                        | Card A.                                                                             |
| 11 ам.                | $     \begin{array}{rrr}     -34 & 42 \\     -35 & 26 \\     -35 & 26   \end{array} $                           | 17 36                            | CL.<br>CL.<br>M.<br>CL.      | +28 06 $+27 31$ $+27 51$ $+27 43$                                                                                     | w.<br>w.s.w.<br>w.s.w.<br>w.s.w.                                                             |                     | $+16 \\ +11 \\ +11 \\ +11$                                                                                       | +47<br>+47<br>+47            | $\begin{vmatrix} +29 & 09 \\ +28 & 29 \\ +28 & 49 \\ +28 & 41 \end{vmatrix} + 28 & 39$             | Index correction +47' by observa- tions made at the observatory, Cape of Good Hope. |
| 12 а.м.               |                                                                                                                 |                                  | M.<br>B.<br>B.<br>B.         | $     \begin{array}{r}       +27 & 41 \\       +25 & 45 \\       +26 & 23 \\       +27 & 06     \end{array} $         | s.w.byw. <del>1</del> w.<br>w. by n.<br>w. by n.<br>w. by n.                                 |                     | $+10 \\ +03 \\ +03 \\ +03$                                                                                       | +47 + 47 + 47                | $egin{pmatrix} +28 & 38 \ +26 & 35 \ +27 & 13 \ +27 & 56 \ \end{pmatrix} +27 & 15$                 |                                                                                     |
| 13 A.M.<br>15 P.M.    | $     \begin{array}{r}       -35 & 10 \\       -35 & 10 \\       -38 & 43     \end{array} $                     | 13 25<br>14 25                   | В.<br>В.<br>В.<br>М.         | $     \begin{array}{r}     +24 & 37 \\     +25 & 04 \\     +24 & 38 \\     +24 & 22     \end{array} $                 | s.w. by w. s.w. by w. s.w. by w. s.s.w. $\frac{1}{2}$ w.                                     |                     | $   \begin{array}{r}     +07 \\     +07 \\     +07 \\     \hline     00   \end{array} $                          | +47<br>+47<br>+47<br>+47     | $ \begin{vmatrix} +25 & 31 \\ +25 & 58 \\ +25 & 32 \\ +25 & 09 \\ +25 & 09 \end{vmatrix} +25 & 09$ | . *                                                                                 |
| 16 а.м.<br>16 р.м.    | $     \begin{array}{rrr}       -39 & 01 \\       -39 & 12 \\       -39 & 20     \end{array} $                   | 14 45                            | М.<br>См.<br>М.<br>М.<br>В.  | +27 13<br>+25 44<br>+27 48<br>+28 25                                                                                  | s.w. by w. $\frac{1}{2}$ w.<br>s.w. by s.<br>s.w. by s.<br>s.w. by s.                        |                     | +18  +06  +06  +06  +06                                                                                          | +47<br>+47<br>+47            | $\begin{vmatrix} +28 & 18 \\ +26 & 37 \\ +28 & 41 \\ +29 & 18 \end{vmatrix}$                       |                                                                                     |
|                       | $\begin{array}{rrrr} -39 & 22 \\ -39 & 22 \\ -39 & 22 \\ -39 & 22 \\ -39 & 22 \\ -39 & 22 \end{array}$          | 14 25<br>14 25<br>14 25<br>14 25 | B. B. B. B. B.               | $\begin{vmatrix} +27 & 10 \\ +28 & 28 \\ +27 & 01 \\ +27 & 49 \\ +27 & 28 \\ +28 & 28 \end{vmatrix}$                  | s.w. by s.<br>s.w. by s.<br>s.w. by s.<br>s.w. by s.<br>s.w. by s.                           | >-54 13             | $     \begin{array}{r}     +06 \\     +06 \\     +06 \\     +06 \\     +06 \\     +06 \\     +06   \end{array} $ | + 47<br>+ 47<br>+ 47<br>+ 47 | $egin{array}{c ccccccccccccccccccccccccccccccccccc$                                                |                                                                                     |
| 17 а.м.               | $     \begin{array}{rrr}       -39 & 22 \\       -40 & 08 \\       -40 & 08 \\       -40 & 09     \end{array} $ | 14 25<br>14 32<br>14 32          | См.<br>В.<br>В.<br>М.<br>Сг. | +26 26<br>+26 17<br>+25 18<br>+25 33<br>+26 56                                                                        | s.w. by s.<br>s.w. by w.<br>s.w. by w.<br>s.w. by w.                                         |                     | $+06 \\ +16 \\ +16 \\ +16 \\ +16 \\ +16$                                                                         | + 47<br>+ 47<br>+ 47<br>+ 47 | +27 19  <br>+27 20  <br>+26 21  <br>+26 36  <br>+27 59                                             |                                                                                     |
|                       | -40 	16  -40 	18  -40 	15                                                                                       | 14 36<br>14 35<br>14 37<br>14 37 | Т.<br>Т.<br>См.<br>См.       | +27 34 $+26 54$ $+27 04$ $+27 12$                                                                                     | s.w. by w. s.w. by w. s.w. by w. s.w. by w.                                                  | <b>├</b> —55 05     | $+16 \\ +16 \\ +16 \\ +16$                                                                                       | +47<br>+47<br>+47<br>+47     | $egin{array}{c ccccccccccccccccccccccccccccccccccc$                                                |                                                                                     |
| 19 а.м.               | $-44 	45 \\ -44 	45$                                                                                            | 14 38<br>14 32<br>13 19<br>13 19 | См.<br>Т.<br>М.<br>Сь.<br>М. | $\begin{array}{r} +26 & 00 \\ +26 & 00 \\ +27 & 57 \\ +25 & 09 \\ +23 & 05 \end{array}$                               | s.w. by w.<br>s.w. by w.<br>s.w. by w.<br>s.s.w. $\frac{1}{2}$ w.<br>s.s.w. $\frac{1}{2}$ w. |                     | $+16 \\ +16 \\ +16 \\ +04 \\ +04$                                                                                | +47<br>+47<br>+47<br>+47     | +27 03<br>+27 03<br>+29 00<br>+26 00<br>+23 56<br>+26 34                                           | Ship very unsteady;                                                                 |
| 20 л.м.               | -46 24 $-46 24$                                                                                                 | 13 19<br>13 34<br>13 34<br>13 34 | См.<br>В.<br>В.              | $     \begin{array}{r}     +27 & 40 \\     +27 & 00 \\     +24 & 51 \\     +24 & 31 \\     +25 & 02     \end{array} $ | s.s.w.<br>s.s.w.<br>s.w. by w.<br>s.w. by w.<br>s.w. by w.                                   |                     | $+02 \\ +19$                                                                                                     | +47<br>+47<br>+47            | +28 29<br>+27 49<br>+25 57<br>+25 37<br>+26 08<br>+25 54                                           | heavy sea.                                                                          |
| 22 а.м.               | -48 27<br>-48 27<br>-48 27<br>-48 27                                                                            | 10 51<br>10 51                   | В.<br>В.<br>М.<br>Ст.        | $     \begin{array}{r}     +23 & 08 \\     +22 & 41 \\     +24 & 40 \\     +24 & 54     \end{array} $                 | s.w. by s. s.w. by s. s.w. by s. s.w. by s.                                                  |                     | +12<br>+12<br>+12<br>+12                                                                                         | +47 + 47 + 47                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             |                                                                                     |

|                       |                                                                                                                         |                                          | <u>;</u>                |                                                                              |                                                                                                          |                                                        | Correc                                                               | tions.                                                  |                                                                                                     |                                                                               |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Date.                 | Lat.                                                                                                                    | Long.                                    | Observer.               | Declination observed.                                                        | Ship's head.                                                                                             | Inclination.                                           | Ship's attraction.                                                   | Index.                                                  | Corrected Declination.                                                                              | Remarks.                                                                      |
| 1845.<br>Jan. 23 а.м. | -50 30 $-50 31$                                                                                                         | 1                                        | М.<br>См.               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                         | s.w. $\frac{1}{2}$ s. s.w. by s.                                                                         | <u> </u>                                               | +° 16<br>+ 16                                                        | $+47 \\ +47$                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               |                                                                               |
| 23 г.м.               | -50 50                                                                                                                  | 10 17                                    | CL.<br>M.<br>CL.<br>M.  | $\begin{vmatrix} +24 & 27 \\ +23 & 18 \\ +21 & 09 \\ +23 & 14 \end{vmatrix}$ | s.w. $\frac{1}{2}$ s.<br>s.w.byw. $\frac{1}{2}$ w.<br>s.w. by w.                                         | -57 11                                                 | $\begin{vmatrix} + & 16 \\ + & 16 \\ + & 16 \end{vmatrix}$           | +47<br>+47<br>+47                                       | $\begin{vmatrix} +25 & 30 \\ +24 & 21 \\ +22 & 12 \end{vmatrix} + 23 & 55$                          |                                                                               |
| 24 A.M.               | -5058 $-5058$                                                                                                           | 10 10<br>10 09                           | Сь.<br>Т.<br>В.         | $\begin{vmatrix} +22 & 26 \\ +22 & 15 \\ +23 & 11 \end{vmatrix}$             | s.w.<br>s.w.<br>s.w.<br>s.w. by w.                                                                       | ]<br>]                                                 | $\begin{vmatrix} + & 16 \\ + & 16 \\ + & 16 \\ + & 25 \end{vmatrix}$ | +47<br>+47                                              | $egin{array}{c cccc} +24 & 17 \\ +23 & 29 \\ +23 & 18 \\ +24 & 23 \\ \hline \end{array}$            |                                                                               |
| 24 p.m.               | $     \begin{array}{rrr}     -51 & 45 \\     -51 & 45 \\     -51 & 47 \\     -51 & 47     \end{array} $                 | 9 34                                     | М.<br>Сь.<br>См.<br>См. | +22 00                                                                       | s.w. by w.<br>s.w. by w.<br>s.w.byw.½w.<br>s.w.byw.½w.                                                   | $\begin{vmatrix} -57 & 39 \\ 1 & 39 \end{vmatrix}$     | + 25<br>+ 25<br>+ 29<br>+ 29                                         | +47 + 47                                                | $\begin{pmatrix} +21 & 18 \\ +22 & 10 \\ +23 & 16 \\ +25 & 06 \end{pmatrix}$                        |                                                                               |
|                       | $     \begin{array}{r rrr}     -51 & 47 \\     -51 & 47 \\     -51 & 45     \end{array} $                               | 9 34<br>9 40<br>9 34                     | См.<br>Вм.<br>В.        | $\begin{vmatrix} +24 & 04 \\ +22 & 50 \\ +23 & 11 \end{vmatrix}$             | $\begin{array}{c} s.w.byw.\frac{1}{2}w.\\ s.w.byw.\frac{1}{2}w.\\ s.w.byw. \end{array}$                  |                                                        | + 29<br>+ 29<br>+ 25                                                 | $\begin{vmatrix} +47 \\ +47 \\ +47 \end{vmatrix}$       | $egin{array}{cccc} +25 & 20 \\ +24 & 06 \\ +24 & 23 \\ \end{array}$                                 |                                                                               |
|                       |                                                                                                                         | 9 34<br>9 32                             | M.<br>CL.<br>CL.<br>B.  | $\begin{vmatrix} +20 & 06 \\ +20 & 58 \\ +22 & 46 \\ +21 & 49 \end{vmatrix}$ | s.w. by w. s.w. by w. s.w. by w. s.w. by w.                                                              | $\left  \begin{array}{c} -57 & 39 \end{array} \right $ | 1+ 26                                                                | 5 + 47 $5 + 47$                                         | $\begin{pmatrix} 1 + 21 & 18 \\ + 22 & 10 \\ + 23 & 58 \\ + 23 & 01 \end{pmatrix} + 23 \ 46$        | Card A.                                                                       |
|                       | $ \begin{array}{c cccc} -51 & 50 \\ -51 & 50 \\ -51 & 50 \end{array} $                                                  | 9 32<br>9 31<br>9 31                     | B.<br>CL.<br>M.<br>CL.  | $\begin{vmatrix} +22 & 53 \\ +22 & 18 \\ +22 & 49 \end{vmatrix}$             | s.w. byw. $\frac{1}{2}$ w. s.w. byw. $\frac{1}{2}$ w. s.w. byw. $\frac{1}{2}$ w.                         |                                                        | + 25<br>+ 25<br>+ 25                                                 | 9 + 47<br>9 + 47<br>9 + 47                              | 7 + 24 09  7 + 23 34  7 + 24 05                                                                     |                                                                               |
| 25 A.M.               | $     \begin{array}{r rrr}     -51 & 50 \\     -51 & 50 \\     -52 & 45 \\     -53 & 00      \end{array} $              | 9 31<br>7 53<br>7 53                     | Т.<br>М.<br>См.         | $\begin{vmatrix} +22 & 36 \\ +22 & 21 \\ +22 & 50 \end{vmatrix}$             | s.w. by w. ½ w.<br>s.w. by w. ½ w.<br>s.w. by w. ½ w.<br>s w. by w.                                      | .IJ                                                    | + 2:<br>+ 2:<br>+ 2:<br>+ 2:                                         | $\begin{vmatrix} 9 + 4 \\ 9 + 4 \end{vmatrix}$          | 7 + 24 24 $7 + 23 52$ $7 + 23 37$ $7 + 24 02$ $+ 23 49$                                             | 3 Caral A                                                                     |
| 26 а.м                | $     \begin{array}{r}       -53 & 00 \\       -53 & 00 \\       -53 & 52 \\       -53 & 52     \end{array} $           | 7 53                                     | См.<br>См.<br>М.<br>В.  | 1 '                                                                          | s.w. by w.<br>s.w. by w.<br>w. ½ N.<br>w. ½ N.                                                           |                                                        | + 20<br>+ 20<br>+ 30<br>+ 30                                         | $5 + 47 \\ 6 + 59$                                      | $7 + 23 	ext{ } 18 $ $7 + 24 	ext{ } 06$ $2 + 21 	ext{ } 17$ $2 + 21 	ext{ } 46$                    | Card A.                                                                       |
|                       | -53 52<br>-53 52<br>-53 52                                                                                              | 6 16<br>6 16<br>6 16                     | CL.                     | $\begin{array}{c} +20 & 56 \\ +20 & 24 \\ +20 & 36 \end{array}$              | w. by s. w. by s. w. by s.                                                                               |                                                        | + 3<br>+ 3<br>+ 3                                                    | 3 + 59 $3 + 59$ $3 + 59$                                | $\begin{vmatrix} 2 + 22 & 21 \\ 2 + 21 & 49 \\ 2 + 22 & 01 \end{vmatrix}$                           |                                                                               |
| 26 р.м                | $     \begin{array}{r rrr}     -53 & 58 \\     -53 & 58 \\     -53 & 58 \\     \hline     -53 & 58 \\     \end{array} $ | 6 16                                     | См.                     | $+20 36 \\ +21 08$                                                           | w. by s.<br>w. by s.<br>E. $\frac{1}{2}$ s.<br>E. $\frac{1}{2}$ s.                                       | -57 00                                                 | 1+ 9                                                                 | $\begin{vmatrix} 3 + 59 \\ 2 + 59 \end{vmatrix}$        | $\begin{vmatrix} 2 & +22 & 53 \\ 2 & +22 & 01 \\ 2 & +20 & 38 \\ 2 & +21 & 08 \end{vmatrix} + 21 3$ | 4 Card J. Compass steady. Index correction +52' by observa- tions made at the |
| 0.5                   | $     \begin{bmatrix}     -53 & 58 \\     -53 & 58 \\     -53 & 58     \end{bmatrix} $                                  | 6 06<br>6 06<br>6 06                     | CL.<br>CL.<br>M.        | $\begin{vmatrix} +20 & 54 \\ +20 & 53 \\ +22 & 03 \end{vmatrix}$             | N.E.<br>N.<br>E. ½ S.                                                                                    |                                                        | $\begin{bmatrix} -1 & 1 \\ - & 5 \\ -1 & 2 \end{bmatrix}$            | 7 + 59 + 59 + 59 + 59                                   | $egin{array}{c ccc} 2 + 20 & 29 \ 2 + 20 & 54 \ 2 + 21 & 33 \ \end{array}$                          | Magnetic Observatory, Cape of Good Hope.                                      |
| 4                     | -55 13<br>-55 30<br>-55 48<br>-58 53                                                                                    | 5 54<br>5 5 50                           | M.<br>M.                | 1 .                                                                          | s.w. by s. $\frac{1}{2}$ s<br>s.s.w. $\frac{1}{2}$ w.<br>s.w. by s.<br>s.w. $\frac{1}{2}$ s.             |                                                        | $\begin{vmatrix} + & 1 \\ + & 1 \end{vmatrix}$                       | $\begin{vmatrix} 0 \\ +5 \\ 2 \\ +5 \end{vmatrix}$      | 2   + 21 00 $2   + 22 16 $ $2   + 22 52 $ $2   + 20 52 $ $2   + 17 18$                              | 3 Card unsteady.                                                              |
| 29 р. м               | -5853 $-5913$                                                                                                           | 3 4 00                                   | M.                      | $ +15 \ 36$                                                                  | s.w. by s. s.w. $\frac{1}{2}$ s.                                                                         | -59 0                                                  | $\begin{vmatrix} + & 1 \\ + & 1 \end{vmatrix}$                       | $\begin{vmatrix} 9 + 5 \\ 9 + 5 \end{vmatrix}$          | $\begin{vmatrix} 2 & +14 & 56 \\ 2 & +16 & 47 \end{vmatrix} + 17 = 3$                               | O Card unsteady.                                                              |
| 31 A.M                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                  | 8 18<br>8 9 05                           | В.<br>См                | $+20 \ 32$                                                                   | s.w. $\frac{1}{2}$ s.<br>E. $\frac{1}{2}$ s.<br>s.e. by s.<br>s.e. by s.                                 |                                                        | $\begin{bmatrix} -1 & 4 \\ - & 4 \end{bmatrix}$                      | $\begin{vmatrix} 7 + 5 \\ 8 + 5 \end{vmatrix}$          | 2 + 20 	59<br>2 + 21 	40<br>2 + 20 	36<br>2 + 19 	31                                                |                                                                               |
| 31 P.M                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                  | 8 9 05<br>5 9 30                         | CL.                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                        | s.e. by s.<br>s.e.<br>s.e.<br>s.s.e. ½ E.                                                                | $\left  \right _{-61}$ 3                               | $\begin{bmatrix} - & 4 \\ -1 & 0 \\ -1 & 0 \end{bmatrix}$            | $\begin{vmatrix} 8 + 5 \\ 1 + 5 \\ 1 + 5 \end{vmatrix}$ | $\begin{vmatrix} 2 & +19 & 47 \\ 2 & +20 & 22 \\ 2 & +20 & 59 \end{vmatrix} + 20 \ 2$               | 9 Unsteady,                                                                   |
|                       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                  | 0 10 07<br>0 10 07<br>0 10 07<br>0 10 07 | CL                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                        | S.S.E. $\frac{1}{2}$ E.<br>S.S.E. $\frac{1}{2}$ E.<br>S.S.E. $\frac{1}{2}$ E.<br>S.S.E. $\frac{1}{2}$ E. |                                                        | - 3<br> - 3                                                          | $\begin{vmatrix} 1 + 5 \\ 1 + 5 \end{vmatrix}$          | 2 + 21 	 37 $2 + 20 	 49 $ $2 + 19 	 44 $ $2 + 19 	 42$                                             |                                                                               |

|                                |                                                                                                                                                                                            |                                                             | ដ                                   |                                                                                                                                                                                       | :                                                                                                                                                       |                | Correct                                                                              | ions.                                    |                                                                                                                                                               |                                                                                                                                                                     |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date.                          | Lat.                                                                                                                                                                                       | Long.                                                       | Observer.                           | Declination observed.                                                                                                                                                                 | Ship's head.                                                                                                                                            | Inclination.   | Ship's<br>attrac-<br>tion.                                                           | Index.                                   | Corrected Declination                                                                                                                                         | . Remarks.                                                                                                                                                          |
| 1845.<br>Feb. 1 A.M.<br>1 P.M. |                                                                                                                                                                                            | 12 45<br>12 55<br>12 55                                     | См.<br>В.<br>Сь.                    | $\begin{array}{r} +22 & 21 \\ +20 & 12 \end{array}$                                                                                                                                   | s.e. by s.<br>s.e. by s.<br>s.e. by s.                                                                                                                  |                | - 48<br>- 48<br>-1 04                                                                | $+52 \\ +52 \\ +52$                      | +20 00                                                                                                                                                        | 7 Very unsteady.                                                                                                                                                    |
| 2 A.M.<br>2 P.M.               | $\begin{array}{rrrr} -61 & 54 \\ -61 & 54 \\ -61 & 55 \\ -61 & 54 \\ -61 & 54 \end{array}$                                                                                                 | 16 34<br>16 38<br>16 40<br>16 42<br>16 57                   | B. M. M. T. CL. B.                  | +22 55<br>+25 19<br>+26 34<br>+23 04<br>+21 28<br>+21 36                                                                                                                              | E.N.E.<br>S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E.<br>S.E. by E.<br>S.E. $\frac{1}{2}$ E.                                | -63 28         | -1 10<br>-1 10<br>-1 10<br>-1 18<br>-1 10                                            | $+52 \\ +52 \\ +52 \\ +52 \\ +52 \\ +52$ | $ \begin{vmatrix} +21 & 47 \\ +25 & 01 \\ +26 & 16 \\ +22 & 46 \\ +21 & 02 \\ +21 & 18 \\ +19 & 54 \end{vmatrix} $                                            | l Unsteady.                                                                                                                                                         |
| 3 А.М.                         | $     \begin{bmatrix}       -61 & 54 \\       -61 & 54 \\       -61 & 49 \\       -61 & 50 \\       -61 & 50 \\       -61 & 50 \\       -61 & 50 \\       -61 & 50 \\       -61 & 50     $ | 16 57<br>19 15<br>19 15<br>19 15<br>19 06<br>19 12<br>19 13 | Bn. T. Bn. Cm. B. M. M. M.          | +20 12<br>+27 44<br>+27 56<br>+25 32<br>+27 32<br>+27 19<br>+27 41<br>+27 43<br>+27 15                                                                                                | S.E. \(\frac{1}{2}\) E. S.E. \(\frac{1}{2}\) E. E.S.E. S.E. by E. \(\frac{1}{2}\) E. S.E. by E. \(\frac{1}{2}\) E. E.S.E. E.S.E. E.S.E. E.S.E. E. by S. | \right\}-64 20 | -1 10<br>-1 44<br>-1 36<br>-1 36<br>-1 44<br>-1 44                                   | +52 $+52$ $+52$ $+52$ $+52$ $+52$ $+52$  | +27 26<br>+27 04<br>+24 48<br>+26 48<br>+26 27                                                                                                                | 4 A less delicate point<br>was used for the<br>suspension of the                                                                                                    |
| 3 р.м.                         | $\begin{bmatrix} -61 & 50 \\ -61 & 50 \end{bmatrix}$                                                                                                                                       | 19 13<br>19 13<br>19 13<br>19 14<br>19 14<br>19 14          | CL.<br>BN.<br>M.<br>CL.<br>CL.      | $     \begin{array}{r}       +27 & 13 \\       +27 & 56 \\       +27 & 59 \\       +27 & 32 \\       +26 & 52 \\       +24 & 05 \\       +23 & 31 \\       +23 & 24     \end{array} $ | E.S.E. E.S.E. N.E. by N. N.W. ½ W. W. by N. W. by S.                                                                                                    |                | $ \begin{vmatrix} -1 & 44 \\ -1 & 44 \\ -1 & 34 \\ + & 21 \\ +1 & 00 \end{vmatrix} $ | +52 $+52$ $+52$ $+52$ $+52$ $+52$ $+52$  | $\begin{array}{c} +25 & 04 \\ +27 & 04 \\ +27 & 07 \\ +26 & 40 \\ \end{array}$ $\begin{array}{c} +26 & 10 \\ +25 & 18 \\ +25 & 23 \\ +25 & 26 \\ \end{array}$ | compass-card,<br>which made it<br>much steadier.                                                                                                                    |
|                                | $ \begin{array}{r rrr} -61 & 50 \\ -61 & 50 \\ -61 & 50 \\ -61 & 50 \\ -61 & 50 \\ -61 & 50 \\ -61 & 50 \end{array} $                                                                      | 19 14<br>19 14<br>19 14<br>19 14<br>19 14<br>19 14<br>19 14 | CL.<br>B.<br>CL.<br>CL.<br>M.<br>M. | +23 31<br>+24 37<br>+25 37<br>+24 52<br>+24 00<br>+24 06<br>+23 51                                                                                                                    | w.s.w. n.w. by w. n.w. n.w. w. by n. w. w.                                                                                                              | -64 20         | +1 07<br>+ 29<br>+ 12<br>+ 12<br>+1 00<br>+1 13<br>+1 13                             | +52 $+52$ $+52$ $+52$ $+52$ $+52$ $+52$  | $egin{array}{c cccc} +25 & 30 \\ +25 & 58 \\ +26 & 41 \\ +25 & 56 \\ +25 & 52 \\ +26 & 11 \\ +25 & 56 \\ \hline \end{array} > +26 \ 1$                        | 6 Card steady. Being<br>a calm the decli-<br>nations were ob-<br>served on different<br>points of the com-                                                          |
| .4 а.м.                        | $\begin{array}{c cccc} -61 & 50 \\ -61 & 50 \\ -61 & 50 \\ -61 & 50 \\ -61 & 50 \\ -61 & 50 \\ -62 & 00 \\ -62 & 00 \end{array}$                                                           | 19 14<br>19 14<br>19 14<br>19 14<br>19 14<br>20 55          | M.<br>M.<br>M.<br>M.                | +25 46<br>+23 53<br>+28 55<br>+25 55<br>+24 45*<br>+27 03<br>+25 36<br>+26 09                                                                                                         | W.S.W. S.W. S.S.E. S. $\frac{1}{2}$ E. In the boat. S. by E. S. $\frac{1}{2}$ E. S. $\frac{1}{2}$ E.                                                    |                | + 48<br>- 35<br>- 11<br>- 19<br>- 11                                                 | +52 $+52$ $+52$ $+52$ $+52$ $+52$        | +27 45<br>+25 33<br>+29 12<br>+26 36<br>+25 37<br>+27 36<br>+26 17<br>+26 50                                                                                  | pass to obtain the effect of the ship's iron. The compass was afterwards placed in a copper-fastened boat and the declination observed at a distance from the ship. |
| 4 P.M.                         | $\begin{array}{cccc} -62 & 00 \\ -62 & 05 \\ -62 & 07 \\ -62 & 10 \\ -62 & 10 \\ -62 & 10 \\ -62 & 10 \end{array}$                                                                         | 20 37<br>20 58<br>21 04<br>21 03<br>21 03<br>21 03          | M.<br>M.<br>CL.<br>CL.              | $\begin{array}{c} +26 & 59 \\ +26 & 59 \\ +29 & 02 \\ +27 & 14 \\ +28 & 15 \\ +28 & 16 \\ +30 & 14 \\ +27 & 26 \\ \end{array}$                                                        | S. ½ E. S.S.E. ½ E. S.S.E. S.S.E. S.S.E. S.S.E. S.S.E. S.S.E.                                                                                           | >-64 40        | _ 11<br>_ 44<br>_ 35<br>_ 35<br>_ 35<br>_ 35                                         | +52 $+52$ $+52$ $+52$ $+52$ $+52$ $+52$  | $\begin{vmatrix} +27 & 40 \\ +29 & 10 \end{vmatrix}$                                                                                                          | 5 Compass steady.                                                                                                                                                   |
|                                | $\begin{array}{r} -63 & 14 \\ -63 & 18 \\ -63 & 18 \\ -63 & 18 \\ -63 & 18 \\ -63 & 19 \end{array}$                                                                                        | 21 10<br>21 10<br>21 10<br>21 10<br>21 10<br>21 10          | M.<br>M.<br>CL.<br>Bn.<br>T.        | $\begin{array}{c} +27 & 26 \\ +29 & 01 \\ +28 & 51 \\ +27 & 08 \\ +28 & 47 \\ +28 & 08 \\ +28 & 14 \\ \end{array}$                                                                    | s. by E. s. by E. s. ½ E.                                                                                               |                | _ 19<br>_ 19<br>_ 11<br>_ 11<br>_ 11                                                 | $+52 \\ +52 \\ +52 \\ +52 \\ +52$        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                         | 6 Steady.                                                                                                                                                           |

<sup>\*</sup> This observation is not much to be depended on, as the compass was very unsteady and difficult to observe.

|                      |                                                                                       |                         | Ŀ                                                        |                                                                  |                                                                           |                                                                      | Correc                          | tions.        |                                                                                                   |                   |
|----------------------|---------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|---------------|---------------------------------------------------------------------------------------------------|-------------------|
| Date.                | Lat.                                                                                  | Long.                   | Observer.                                                | Declination observed.                                            | Ship's head.                                                              | Inclination.                                                         | Ship's attraction.              | Index.        | Corrected Declination.                                                                            | Remarks.          |
| 1845.<br>Feb. 6 а.м. | -6406                                                                                 |                         | В.                                                       | +28 41                                                           | S.S.E.                                                                    | ٦ ° ′                                                                | _° 42                           |               | +28 517 ° ′                                                                                       |                   |
|                      | -64 18 $-64 18$ $-64 20$                                                              | 24 05                   | CL.<br>CL.<br>M.                                         | $\begin{vmatrix} +28 & 29 \\ +29 & 44 \\ +29 & 57 \end{vmatrix}$ | S.S.E.<br>S.S.E.<br>S.S.E.                                                | N .                                                                  | - 42                            | +52           | $egin{array}{c c} +28 & 39 \\ +29 & 54 \\ +30 & 07 \\ \hline \end{array}$                         |                   |
| 6 р.м.               | -64 25 $-64 35$ $-64 38$                                                              | 26 30                   | M.<br>Cl.<br>Cl.                                         | $+28 \ 43$                                                       | s.s.e. $\frac{1}{2}$ e.<br>s.e. by s. $\frac{1}{2}$ s.<br>s.s.e.          | <b>}−66 39</b>                                                       | -48 $-50$                       | $+52 \\ +52$  | $\begin{vmatrix} +28 & 47 \\ +31 & 45 \\ +31 & 32 \end{vmatrix}$                                  | Card steady.      |
| 7                    | -64 38 $-64$ 25 $-65$ 30                                                              | 26 35<br>26 28          | Bn.<br>M.                                                | $+3239 \\ +3106$                                                 | S.S.E.<br>S.S.E. ½ E.                                                     |                                                                      | <ul><li>42</li><li>48</li></ul> | $+52 \\ +52$  | $\begin{bmatrix} +32 & 49 \\ +31 & 10 \end{bmatrix}$                                              |                   |
| A.M.                 | -65 25 $-65 16$                                                                       | 27 45<br>27 45          | B.<br>Cl.                                                | +32 02  +32 46  +30 41  +37 36                                   | s.e. by s.<br>s.s.e.<br>s.s.e. ½ e.                                       |                                                                      | -42 $-52$                       | $ +52 \\ +52$ | $     \begin{array}{r}         +31 & 51 \\         +32 & 56 \\         +30 & 41     \end{array} $ |                   |
| 7 г.м.               | -65 16 $-66 02$                                                                       | 29 05                   | В.                                                       | +31 	 16 $+31 	 51 $ $+31 	 12$                                  | S.S.E. $\frac{1}{2}$ E.<br>S.S.E. $\frac{1}{2}$ E.<br>S. $\frac{1}{2}$ E. | -67 28                                                               | - 52<br>- 18                    | $+52 \\ +52$  |                                                                                                   | Compass steady.   |
|                      | -66 02 $-66 02$                                                                       | 29 05<br>29 05          | В.                                                       | +30 11 $+30 25$ $+31 08$                                         | S. ½ E.<br>S. ½ E.<br>S. ½ E.                                             |                                                                      | - 18<br>- 18                    | +52  + 52     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                            |                   |
| 9 р.м.               | $ \begin{array}{rrr} -66 & 02 \\ -66 & 02 \\ -66 & 26 \end{array} $                   | 29 05                   | B <sub>N</sub> .<br>C <sub>L</sub> .<br>C <sub>L</sub> . | $+31 00 \\ +31 49 \\ +36 04$                                     | S. ½ E.<br>S. ½ E.<br>S.E. by E.                                          | <u>}</u>                                                             | - 18                            | +52           | $+31 \ 34$ $+32 \ 23$ $+35 \ 48$                                                                  | :                 |
| 10 а.м.              | -66 26                                                                                | 37 25<br>37 25<br>38 32 | B <sub>N</sub> . M. B.                                   | $+35 08 \\ +36 34 \\ +37 20$                                     | s.e. by e.<br>s.e. by e.<br>s. by w. ½ w.                                 | $-68 \ 49$                                                           | -1 08 + 32                      | $+52 \\ +52$  | +3452 $+3539$ $+3618$ $+3844$                                                                     | Steady.           |
| 10 p.m.              | -67 03                                                                                | 38 32<br>38 32<br>38 32 | B <sub>N</sub> .                                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$           | S.S.W. $\frac{1}{2}$ W.<br>S.S.W. $\frac{1}{2}$ W.                        | -69 22                                                               | + 52                            | +52           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             | Steady.           |
| 11 а.м.              |                                                                                       | 38 32<br>39 41<br>39 41 | CL.                                                      | +39 35                                                           | N. by w.<br>E.<br>E. by s.                                                | ]                                                                    | -246                            | $+52 \\ +52$  | +3951 $+3812$ $+3833$                                                                             |                   |
|                      | -67 34 $-67 34$                                                                       | 39 41<br>39 41<br>39 41 | CL.                                                      | +39 26  +36 03  +37 37                                           | E. by s. s.w. by s. s.                                                    | -69 38                                                               | $-2 & 30 \\ +1 & 00$            | $+52 \\ +52$  | $\begin{vmatrix} +37 & 48 \\ +37 & 55 \\ +38 & 31 \end{vmatrix}$                                  | Card steady.      |
| 12 A.M.              | $     \begin{array}{r}     -67 & 34 \\     -67 & 38     \end{array} $                 | 39 41<br>39 41<br>39 23 | Сь.                                                      | +38 57  +37 49  +37 23                                           | N.N.E.<br>S. ½ E.<br>N. by E.                                             |                                                                      | $-1 & 40 \\ - & 15$             | $+52 \\ +52$  | $     \begin{array}{r}       +38 & 09 \\       +38 & 26 \\       +36 & 50     \end{array} $       |                   |
|                      | -66 38                                                                                | 39 23<br>39 20          | CL.<br>M.                                                | +39 04   +35 56                                                  | S.S.E.<br>S.S.E.                                                          | $-70 \ 16$                                                           | 45<br>45                        | $ +47 \\ +47$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             | Card A. unsteady. |
|                      | -67 06 $-67 06$                                                                       | 40 03<br>40 03          | Сь.<br>Т.                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$           | N.E. $\frac{1}{2}$ E.<br>N.E. by E.<br>N.E. by E.                         | $-69 \ 35$                                                           | -2 26 $-2 26$                   | $+52 \\ +52$  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             | Card J. steady.   |
|                      | $ \begin{array}{rrrr} -67 & 06 \\ -67 & 06 \\ -67 & 01 \end{array} $                  | 40 03<br>40 30          | B. B.                                                    | +3553                                                            | n.e. by e.<br>n.e. by e. ½ e.<br>n.n.e.                                   | $\left. \begin{array}{c} \\ \\ \\ \\ \end{array} \right\} = 69 \ 15$ | -2 32 $-1 35$                   | $+52 \\ +52$  | $\begin{array}{c c} +36 & 29 \\ +36 & 45 \\ \hline +35 & 10 \\ +20 & 12 \\ \end{array}$           | Very unsteady.    |
| 16 а.м.              | $ \begin{array}{rrrr} -67 & 01 \\ -64 & 52 \\ -64 & 52 \\ 64 & 52 \end{array} $       | 38 35<br>38 35          | M.<br>CL.                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$           | N.N.E. $\frac{1}{2}$ E. s. by E. N.N.E.                                   |                                                                      | - 22 $-137$                     | +52<br>+52    | $+36 \ 41$<br>$+40 \ 51$                                                                          | Compass unsteady. |
|                      | $ \begin{array}{rrrr} -64 & 52 \\ -64 & 52 \\ -64 & 52 \end{array} $                  | 38 37<br>38 37          | T.<br>Bn.                                                | $+35 \ 44 \\ +36 \ 06 \\ +36 \ 31$                               | s.e.<br>e.s.e.<br>s.e. by e.                                              | $\left.\right\}$ -68 47                                              | -2 03 $-1 46$                   | $+52 \\ +52$  | $+3455 \\ +3537$                                                                                  | compass unstrany. |
| 17 р.м.              | -6452 $-6452$                                                                         | 40 12                   | Bn.<br>M.                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$           | S.S.E.<br>S.S.E.<br>S.S.E.                                                |                                                                      | - 44<br>- 44                    | $+52 \\ +52$  | +37 087 $+35 36$ $+37 49$ $+36 54$                                                                | Steady.           |
|                      | $     \begin{array}{r}     -64 & 52 \\     -64 & 52 \\     -64 & 52     \end{array} $ | 40 12                   |                                                          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$           | s.s.e.<br>s.e. by s.<br>s.e. by s.                                        |                                                                      | -106                            | +52           | $     \begin{array}{c c}     +38 & 28 \\     +37 & 40 \\     +34 & 40   \end{array} $             | , '               |

| Date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lat.                                                                   | Long.                   | Observer.         | Declination observed.                                                                       | Ship's head.                                                             | Inclination.                                      | Corrections.  Ship's sattraction.                                                                              | Corrected Declination.                                                                              | Remarks.        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|-------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------|
| 1845.<br>Feb. 18 а.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-6\overset{\circ}{4} \overset{\circ}{22} \\ -64 \overset{\circ}{22}$  | 40° 49°<br>40° 49°      |                   | $+38\ 35\ +34\ 41$                                                                          | s. by E. $\frac{1}{2}$ E.<br>N. by E. $\frac{1}{2}$ E.                   | $\left.\right\} - 68                   $          | -32 + 59                                                                                                       | $\begin{pmatrix} 2 + 38 & 55 \\ 2 + 34 & 09 \end{pmatrix} + 36 & 32 \end{pmatrix}$                  | Very unsteady.  |
| 19 р.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r rrrr} -63 & 58 \\ -63 & 58 \\ -63 & 56 \end{array} $ | 41 25<br>41 25          | CL.<br>Bn.        | +38 43  +38 20                                                                              | s.e. by e. ½ e.<br>e.s.e.                                                | $\left.\right\}_{-69}^{2}$                        | $\begin{vmatrix} -2 & 04 \\ -2 & 15 \\ +5 \end{vmatrix}$                                                       | $\begin{pmatrix} 2 + 37 & 31 \\ 2 + 36 & 57 \end{pmatrix} + 37 & 34$                                | Very unsteady.  |
| 20 а.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{bmatrix} -63 & 24 \\ -63 & 24 \end{bmatrix}$                   | 44 47<br>45 32          |                   | $+40 08 \\ +41 03$                                                                          | E. by s.<br>s.e. by s.<br>s.e. by e. ½ e.                                |                                                   | $\begin{vmatrix} -2 & 30 \\ -1 & 08 \\ -2 & 04 \\ +59 \end{vmatrix}$                                           | $\begin{bmatrix} +39 & 52 \\ +39 & 51 \end{bmatrix}$                                                |                 |
| 20 р.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -63 19                                                                 | 45 32<br>45 52          | См.<br>М.         |                                                                                             | s.e. by e. $\frac{1}{2}$ e.<br>s.e. by e. $\frac{1}{2}$ e.<br>s.e. by e. | <b>}−70 09</b>                                    | $\begin{vmatrix} -2 & 04 & +5 \\ -1 & 54 & +5 \end{vmatrix}$                                                   | $\begin{vmatrix} +38 & 27 \\ 2 & +38 & 48 \end{vmatrix}$                                            | Unsteady.       |
| 21 а.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -63 34                                                                 | 46 48<br>46 48          | Cr.               | $\begin{vmatrix} +39 & 46 \\ +39 & 00 \end{vmatrix}$                                        | s.e. by s.<br>E. by s. ½ s.<br>s.s.e.                                    |                                                   |                                                                                                                | 2 + 38 10<br>2 + 39 03                                                                              |                 |
| 21 р.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -63 41                                                                 | 47 03<br>47 24          | М.<br>В.          | $\begin{vmatrix} +39 & 20 \\ +40 & 22 \\ +42 & 45 \end{vmatrix}$                            | S.S.E.<br>S.E. $\frac{1}{2}$ S.<br>S.E.                                  | <b> </b>                                          | $\begin{vmatrix} -1 & 01 + 5 \\ -1 & 37 + 5 \end{vmatrix}$                                                     | 2 + 42 00                                                                                           | Card steady.    |
| 22 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        | 47 24<br>49 29          |                   | $+41 50 \\ +35 00$                                                                          | S.E.<br>S.E.<br>S.S.W. ½ W.                                              |                                                   |                                                                                                                | 2 + 41 05<br>2 + 36 43 $+ 30 91$                                                                    | Very unsteady.  |
| 25 а.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -61 36 $-61 36$                                                        | 52 56                   | М.<br>В.<br>Ст.   | , -                                                                                         | s. by E.<br>E. ½ N.<br>E.                                                |                                                   | $     \begin{array}{r rrrr}         & 24 + 5 \\         & 2 & 51 + 5 \\         & 2 & 57 + 5     \end{array} $ | 2 + 41 59 $2 + 39 04$ $2 + 39 35$                                                                   |                 |
| 25 р.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _61 30                                                                 | 53 43<br>55 13          | Bn.<br>M.<br>Cl.  | $+40 \ 31 \\ +43 \ 14$                                                                      | s.e. by e. s.e. by s.                                                    | $-70 \ 48$                                        | $\begin{bmatrix} -2 & 00 + 5 \\ -1 & 13 + 5 \end{bmatrix}$                                                     | $\begin{vmatrix} +39 & 23 \\ 2 & +42 & 53 \end{vmatrix}$                                            | Card steady.    |
| 26 а.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -61 19                                                                 | 56 52<br>57 26          | М.<br>В.<br>М.    | $\begin{array}{r} +42 & 44 \\ +43 & 56 \end{array}$                                         | S.E. $\frac{1}{2}$ E.<br>S. S.E. $\frac{1}{2}$ E.                        |                                                   | $ -1 \ 57  + 5$                                                                                                | 2 + 43 39<br>2 + 42 51                                                                              |                 |
| 26 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -61 17                                                                 | 57 18<br>58 30          | M.<br>CL.<br>CL.  | $     \begin{array}{r}     +42 & 00 \\     +42 & 11 \\     +43 & 29     \end{array} $       | S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E.<br>S.E.                   | <b>├</b> —71 44                                   | $\begin{vmatrix} -1 & 57 + 5 \\ -1 & 46 + 5 \end{vmatrix}$                                                     | $\begin{vmatrix} 2 & +41 & 06 \\ 2 & +42 & 35 \end{vmatrix}$                                        | Very unsteady.  |
| 27 A.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -61 02                                                                 | 62 55<br>62 55          |                   |                                                                                             | S.E. $\frac{1}{2}$ E.<br>E.<br>S.E. $\frac{1}{2}$ S.                     | $\begin{bmatrix} \\ \\ \\ -72 & 53 \end{bmatrix}$ | $\begin{vmatrix} -1 & 57 + 5 \\ -3 & 21 + 5 \\ -1 & 40 + 5 \end{vmatrix}$                                      | 2 + 43 39<br>2 + 45 14                                                                              | Very unsteady.  |
| 27 p.m.<br>28 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _61 43                                                                 | 65 00<br>69 36          | M.<br>CL.<br>M.   | $\begin{vmatrix} +47 & 17 \\ +45 & 48 \\ +46 & 00 \end{vmatrix}$                            | S.E. ½ S.<br>S.S.E.<br>S.S.E.                                            |                                                   | $ -1 \ 40  + 5$                                                                                                | 2 + 46 29  2 + 45 44                                                                                |                 |
| March 1 A.M. 1 P.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{rrr} -62 & 10 \\ -62 & 10 \end{array} $                | 72 24<br>72 25          | Сь.<br>Т.<br>М.   | $\begin{vmatrix} +46 & 09 \\ +46 & 04 \\ +46 & 19 \end{vmatrix}$                            | S.S.E.<br>S.S.E.<br>S.S.E. ½ E.                                          |                                                   | $\begin{vmatrix} -1 & 02 + 5 \\ -1 & 02 + 5 \\ -1 & 19 + 5 \end{vmatrix}$                                      | $2 + 45 54 \\ 2 + 45 52$                                                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -62 10 $-62 10$                                                        | 72 26<br>72 26<br>72 26 | CL.               | $\begin{vmatrix} +47 & 55 \\ +46 & 07 \\ +46 & 12 \end{vmatrix}$                            | s.E. by E. s.s.E. $\frac{1}{2}$ E. s.s.E. $\frac{1}{2}$ E.               | <b>  }−74 34</b>                                  | $\begin{vmatrix} -1 & 19 + 5 \\ -1 & 19 + 5 \end{vmatrix}$                                                     | 2 + 45 45                                                                                           | Compass steady. |
| 2 л.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -62 36 $-62 43$                                                        | 76 05                   | В.<br>М.          | $\begin{vmatrix} +47 & 31 \\ +50 & 57 \\ +49 & 39 \end{vmatrix}$                            | s.E. by s.<br>s. $\frac{1}{2}$ E.<br>s. $\frac{1}{2}$ E.                 |                                                   | $\begin{vmatrix} - & 10 + 5 \\ - & 10 + 5 \end{vmatrix}$                                                       | $egin{array}{cccc} 2 + 46 & 46 \ 2 + 51 & 39 \ 2 + 50 & 21 \ \end{array}$                           |                 |
| Permitted and Control of the Control | -6243                                                                  | 76 05<br>76 05          | CL.<br>CL.<br>CM. | $\begin{vmatrix} +49 & 31 \\ +49 & 10 \\ +49 & 50 \end{vmatrix}$                            | s. by E. s. by E.                                                        |                                                   | $\begin{vmatrix} + & 28 + 5 \\ - & 28 + 5 \end{vmatrix}$                                                       | $2 + 4955 \ 2 + 5010 \ 2 + 5014$                                                                    |                 |
| 2 г.м.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{bmatrix} -62 & 46 \\ -62 & 46 \end{bmatrix}$                   | 76 50<br>76 50          | CL.               | $\begin{vmatrix} +49 & 52 \\ +48 & 18 \\ +48 & 37 \end{vmatrix}$                            | S. $\frac{1}{2}$ E.<br>S. $\frac{1}{2}$ E.<br>S. $\frac{3}{4}$ E.        | -74 58                                            | $\begin{bmatrix} - & 10 + 5 \\ - & 19 + 5 \end{bmatrix}$                                                       | $2 + 49 00 \ 2 + 49 10$                                                                             | Card steady.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _62 54                                                                 | 76 59<br>76 59<br>76 59 |                   | $     \begin{array}{r}       +50 & 33 \\       +50 & 17 \\       +51 & 31     \end{array} $ | s.<br>s.                                                                 |                                                   | + 08 + 5                                                                                                       | $     \begin{array}{c cccc}     2 + 51 & 33 \\     2 + 51 & 17 \\     2 + 52 & 31     \end{array} $ |                 |

| Date   Lat   Long   E   Declination observed.   Ship's head.   Inclination                              |          |        |        | <b>#</b> |            |                           |                   | Correc  | tions.  |                        |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|----------|------------|---------------------------|-------------------|---------|---------|------------------------|-------------------|
| March 4 A.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date.    | Lat.   | Long.  | Observe  |            | Ship's head.              | Inclination.      | attrac- | Index.  | Corrected Declination. | Remarks.          |
| 5 A.M61 41 84 50 M. +50 48 Sec. \( \frac{1}{2} \) 84 50 M. +40 48 Sec. \( \frac{1}{2} \) 84 50 M. +46 36 Sec. \( \frac{1}{2} \) 84 50 Cc. +52 14 Sec. \( \frac{1}{2} \) 85 50 M. +46 36 Sec. \( \frac{1}{2} \) 85 59 M. +46 36 Sec. \( \frac{1}{2} \) 85 59 M. +46 24 Sec. \( \frac{1}{2} \) 85 59 M. +46 24 Sec. \( \frac{1}{2} \) 85 59 M. +46 24 Sec. \( \frac{1}{2} \) 85 59 M. +46 24 Sec. \( \frac{1}{2} \) 85 59 M. +46 24 Sec. \( \frac{1}{2} \) 85 57 A.M60 51 87 20 B. +49 16 E. \( \frac{1}{2} \) 90 00 M. +50 04 Sec. \( \frac{1}{2} \) 85 59 M. +46 16 E. \( \frac{1}{2} \) 90 00 M. +50 04 Sec. \( \frac{1}{2} \) 85 59 M. +46 36 Sec. \( \frac{1}{2} \) 85 59 M. +46 36 Sec. \( \frac{1}{2} \) 85 50 M. +46 36 Sec. \( \frac{1}{2} \) 85 50 M. +46 36 Sec. \( \frac{1}{2} \) 85 50 Sec. \( \frac{1}{2} \) 91 00 M. +50 04 Sec. \( \frac{1}{2} \) 85 50 Sec. \( \frac{1}{2} \) 91 00 M. +50 04 Sec. \( \frac{1}{2} \) 85 50 Sec. \( \frac{1}{2} \) 91 00 M. +50 04 Sec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 91 30 M. +46 19 Sec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 91 35 Sec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 91 32 Bec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 91 32 Bec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 91 32 Bec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 92 Bec. \( \frac{1}{2} \) 95 Sec. \( \frac{1}{2} \) 85 Sec. \( \frac{1}{2} \) 95 Sec. \( \frac{1}{2} \) 95 Sec.                               | 1845.    | aº ./  |        |          |            | ,                         | <b>-</b> 8 oó     | 9 00    | ( , , , |                        | /                 |
| - 61 41 84 50 CL . +5 21 4 S.E6 61 41 84 50 CL . +5 21 4 S.E6 61 41 85 59 CL . +4 51 4 S.E6 61 41 85 59 M. +46 36 S.E6 60 48 88 23 CL . +4 9 25 S.E6 12 09 10 0 CL46 48 S.E6 12 09 10 0 CL46 47 S.E6 12 09 10 0 CL46 47 S.E6 12 09 10 0 CL46 47 S.E6 12 09 10 0 CL46 48 S.E6 12 09 10 0 CL46 48 S.E6 12 89 15 85 CL44 52 S.E6 12 89 15 85 CL44 52 S.E6 12 89 15 85 CL46 48 S.E6 12 89 15 85 CL46 48 S.E6 12 89 15 85 CL46 48 S.E6 12 89 15 80 CL46 58 S.E46 48 S.E6 12 89 15 80 CL46 58 S.E6 12 89 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |        |        |          |            |                           | 70 20             | -4 08   | +52     | +52 17 +52 17          | Very unsteady.    |
| - 6.1 41 84 50 CL. + 52 14 55 S.E 6.1 41 85 50 CL. + 47 11 S.E 6.1 41 85 59 M. + 46 84 S.E. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 A.M.   |        |        |          |            |                           |                   | -2 27   | + 52    | +49 13  <br>+47 53     |                   |
| - 6.1 4 1 84 50 T. + 44 55 S.E. 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |        |        |          |            | 1                         |                   | -236    | +52     | +50 30                 |                   |
| -6.1 41 85 59 M. +46 36 S.E. ½ S6.1 41 85 59 M. +46 24 S.E. ½ S6.1 41 85 59 M. +46 24 S.E. ½ S. S6.1 41 85 59 M. +46 24 S.E. ½ S. S6.1 41 85 59 M. +46 24 S.E. ½ S. S. S.E. 6.0 51 87 20 B.S. +49 16 S.E. ½ S. S. S.E. 6.0 51 87 20 B.S. +49 16 S.E. ½ S. S.E. 6.1 20 91 00 M. +49 9.5 S.E. 6.1 20 91 00 M. +40 00 C.L. +47 29 S. ½ W. S. ½ E. 6.1 20 91 00 C.L. +47 29 S. ½ W. S. ½ E. 6.1 28 91 58 C.L. +45 48 53 S. S.E. 6.1 28 91 58 C.L. +45 48 32 S.W. by S6.1 28 91 58 B.S. +46 32 S.W. by S6.1 28 91 58 B.S. +46 32 S.W. by S6.1 28 91 58 B.S. +46 32 S.W. by S6.1 29 91 32 B.S. +43 53 C.E. +40 41 1.3 S.E. ½ S. S. S.E. 6.1 27 91 32 B.S. +43 53 C.E. +45 48 27 S. S. S.E. 6.1 27 91 32 B.S. +52 57 E.S.E. ½ E. 6.1 29 91 49 B. +52 26 E. S.E. 6.1 39 31 49 B. +51 01 E.S.E. 5. S.E. 5.E. 5.E. 5.E. 5.E. 5.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        | 84 50  | Т.       |            | 1                         | $-76 \ 43$        | -236    | +52     | +48 11 > +47 19        | Unsteady.         |
| 6 A.M.   60 51 87 20 B.   52 54   60 61 87 20 B.   52 54   60 62 87 20 B.   52 54   61 20 91 00 M.   54 00 62 B.   61 20 91 00 M.   55 04 8.   58 0.   61 20 91 00 M.   55 04 8.   58 0.   61 20 91 00 M.   55 04 8.   58 0.   61 20 91 00 M.   55 04 8.   58 0.   61 20 91 00 M.   55 04 8.   58 0.   61 20 91 00 M.   55 04 8.   58 0.   61 20 91 00 M.   55 04 8.   58 0.   61 20 91 00 M.   55 04 8.   58 0.   61 20 91 00 M.   55 04 8.   58 0.   61 20 91 00 M.   55 04 8.   58 0.   58 0.   61 20 91 00 M.   50 04 8.   58 0.   58 0.   61 20 91 00 M.   50 04 8.   58 0.   58 0.   61 20 91 00 M.   50 04 8.   58 0.   58 0.   61 20 91 00 M.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04 8.   50 04                         | 5 р.м.   |        |        |          |            |                           |                   |         |         | •                      |                   |
| 6 A.M60 51 87 20 B. +52 54 N.E60 51 87 20 B. +49 16 S.E. S.S.E. S.S.E. S.S.E61 20 91 00 M. +50 04 s. by E61 20 91 00 CL. +47 29 s. ½ E61 20 91 00 CL. +47 39 s. ½ E61 20 91 00 CL. +46 47 s. ½ E61 20 91 00 CL. +46 47 s. ½ E61 20 91 00 CL. +46 48 s. w. by S61 28 91 58 CL. +45 22 s.w. by S61 28 91 58 CL. +45 22 s.w. by S61 28 91 58 B. +46 32 s.w. by S61 28 91 58 B. +46 32 s.w. by S61 28 91 32 B.N. +53 20 E. S.S.E61 28 91 32 B.N. +53 20 E. S.S.E61 27 91 32 B. +53 20 E. S.S.E61 27 91 32 B. +53 20 E. S.S.E61 27 91 32 B. +51 53 E. S.E61 39 149 B. +51 53 E. S.E61 39 149 B. +51 51 30 E. S.E61 39 149 B. +51 101 E.N.E61 39 149 B. +51 101 E.N.E60 39 20 B. +48 53 E.N.E66 58 92 02 B. +48 53 E.N.E66 58 92 02 B. +48 53 E.N.E60 58 92 02 B. +48 53 E.                                                                                                                                                                                                                               |          |        |        |          |            |                           |                   |         |         |                        |                   |
| -60 48 88 23 CL. +49 25 S.E. 8.S.E. 60 48 88 23 CL. +49 25 S.E. 8.S.E. 61 29 91 00 M. +50 04 S.E. 8.S.E. 61 29 91 00 CL. +47 29 S. ½ W. 61 29 91 00 CL. +46 47 S. ½ E. 8.S.W. by S. 61 28 91 58 CL. +45 38 S.W. by S. 61 28 91 58 CL. +45 48 38 S.W. by S. 61 28 91 58 M. +46 19 S.W. by S. 61 28 91 58 M. +46 19 S.W. by S. 61 28 91 58 M. +46 19 S.W. by S. 61 27 91 32 B. +55 25 76 S.E.E. 61 27 91 32 B. +55 25 76 S.E.E. 61 27 91 32 B. +55 25 76 S.E.E. 61 27 91 32 B. +55 25 76 S.E.E. 61 27 91 32 B. +55 25 76 S.E.E. 61 27 91 32 B. +55 25 76 S.E.E. 61 27 91 32 B. +55 25 76 S.E.E. 66 13 91 49 B. +51 01 E.N.E. 66 68 92 02 B. +48 33 E.N.E. 66 68 92 02 B. +48 53 E.N.E. 66 68 92 02 B. +48 53 E.N.E. 66 68 92 02 B. +48 53 E.N.E. 66 68 92 02 B. +51 01 E.N.E. 66 68 92 02 B. +52 24 N.E. by E. 66 50 92 04 BN. +52 42 E.N.E. 66 50 92 04 BN. +52 25 N.E. B.E. E. 60 39 92 77 M. +51 50 0 E.S.E. 66 39 09 27 M. +51 50 00 E.S.E. 66 50 92 04 BN. +52 42 E.N.E. 66 50 92 04 BN. +52 45 E.N.E. E.N.E. 66 50 92 04 BN. +52 45 E.N.E. 66 50 92 04 BN. +52 50 E.N.E. 50 E.N.E. 60 50 92 04 BN. +44 80 9 E.S.E. 50 93 1100 45 CL. +44 46 N.E. 52 50 E.N.E. 50 93 1100 45 CL. +44 50 N.E. 52 50 E.N.E. 50 93 1100 45 CL. +44 20 N. 5. E.N.E. 50 93 1100 45 CL. +44 20 N. 5. E.N.E. 50 93 1100 45 CL. +44 20 N. 5. E.N.E. 50 93 1100 45 CL. +44 20 N. 5. E.N.E. 50 93 1100 45 CL. +44 20 N. 5. E.N.E. 50 93 1100 45 CL. +44 20 N. 5. E.N.E. 50 93 1100 45 CL. +44 20 N. 5. E.N.E. 50 93 1100 45 CL. +44 20 N. 5. E.N.E. 50 93 1100 45 CL. +44 20 N. 5. E.N.E. 50 93 1100 45 CL. +44 20 N. 5                         | 6        |        |        |          |            |                           | $\exists$         |         | 1 .     | . = =                  |                   |
| -60 48 88 23   CL, +49 25   S.E.   -61 10 90 26 B. +50 52   S.S.E.   -61 20 91 00   M. +50 04   S. by E.   -61 20 91 00   CL, +47 29   S. \frac{1}{4} \)   -61 20 91 00   CL, +47 29   S. \frac{1}{4} \)   -61 20 91 00   CL, +47 29   S. \frac{1}{4} \)   -61 20 91 00   CL, +47 29   S. \frac{1}{4} \)   -61 20 91 00   CL, +44 28   S. \frac{1}{4} \)   -61 20 91 00   CL, +46 48   S. \frac{1}{8} \)   -61 28 91 58   CL, +46 48   S. \frac{1}{8} \)   -61 28 91 58   CL, +46 48   S. \frac{1}{8} \)   -61 28 91 58   SL, +46 32   S. \frac{1}{8} \)   -61 28 91 38   M. +46 19   S.S.W. by S. \frac{1}{8} \)   -61 28 91 38   M. +46 19   S.S.W. by S. \frac{1}{8} \)   -61 27 91 32   B. +55 20   E.S.E. \frac{1}{6} \)   -61 27 91 32   B. +55 20   E.S.E. \frac{1}{6} \)   -61 27 91 32   B. +55 20   E.S.E. \frac{1}{6} \)   -61 27 91 32   B. +55 20   E.S.E. \frac{1}{6} \)   -61 29 20   CL, +53 18   E.N.E. \frac{1}{6} \)   -60 33 91 49   B. +52 28   E.N.E. \frac{1}{6} \)   -60 58 92 02   B. +48 53   E.N.E. \frac{1}{6} \)   -60 58 92 02   B. +48 53   E.N.E. \frac{1}{6} \)   -60 58 92 02   B. +48 53   E.N.E. \frac{1}{6} \)   -60 30 93 20   B. +48 53   E.N.E. \frac{1}{6} \)   -60 30 93 20   B. +48 53   E.N.E. \frac{1}{6} \)   -60 30 93 20   B. +48 53   E.N.E. \frac{1}{6} \)   -60 30 93 20   B. +48 53   E.N.E. \frac{1}{6} \)   -60 30 93 20   B. +48 53   E.N.E. \frac{1}{6} \)   -60 30 93 20   B. +48 53   E.N.E. \frac{1}{6} \)   -60 30 93 20   B. +48 53   E.N.E. \frac{1}{6} \)   -60 30 93 30   M. +48 10   E.N.E. \frac{1}{6} \)   -60 30 93 30   -44 44 10   -44 46   -52 44 30   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10   -44 11 +52 +49 10                            | U A.M.   |        |        |          |            | (                         | -77.04            |         |         |                        | Compass unsteady. |
| 7 A.M61 10 90 26 B. +50 52 s.s.e61 20 91 00 M. +50 04 s. ½ w61 20 91 00 CL. +47 29 s. ½ w61 20 91 00 CL. +46 47 s. ½ w61 20 91 00 CL. +46 47 s. ½ w61 28 91 58 CL. +45 22 s.w. by s61 28 91 58 CL. +45 22 s.w. by s61 28 91 58 CL. +46 48 s.w. by s61 28 91 58 M. +46 19 s.s.w. by s61 28 91 58 M. +46 19 s.s.w. by s61 28 91 38 M. +46 19 s.s.w. by s61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +53 20 e.s.s. ½ c61 27 91 32 B.w. +52 54 20 e.s.s. ½ c60 58 92 02 B.w. +52 54 20 e.s.s. ½ c60 58 92 02 B.w. +52 54 20 e.s.s. ½ c60 58 92 02 B.w. +52 54 20 e.s.s. ½ c60 58 92 02 B.w. +52 54 20 e.s.s. ½ c60 30 92 07 0.s. +44 50 50 0.s. +44 60 50 0.s. +44 60 50 0.s. +44 60 0.s. +44 60 0.s. +44 60 0.s. +                                                                                                                                                                                           | 9        | _      |        |          |            | •                         |                   |         |         |                        | _                 |
| $ \begin{array}{c} -61 \ 20 \ 91 \ 00 \ CL, \ +47 \ 29 \ s. \frac{1}{3} \ W. \ -61 \ 20 \ 91 \ 00 \ CL, \ +46 \ 47 \ 8 \ s. \frac{1}{3} \ E. \ -61 \ 20 \ 91 \ 00 \ CL, \ +46 \ 48 \ s. \frac{1}{3} \ E. \ -61 \ 28 \ 91 \ 58 \ CL, \ +45 \ 22 \ s.w. \ by \ s. \ -61 \ 28 \ 91 \ 58 \ BN. \ +46 \ 43 \ s.w. \ by \ s. \ s.w. \ by \ s. \ -61 \ 28 \ 91 \ 58 \ BN. \ +46 \ 43 \ s.w. \ by \ s. \ s.w. \ by \ s. \ -61 \ 28 \ 91 \ 58 \ BN. \ +46 \ 43 \ s.w. \ by \ s. \ -61 \ 20 \ 91 \ 32 \ BN. \ +53 \ 20 \ E.s. \ E.s. \ e. \ by \ s. \ -61 \ 27 \ 91 \ 32 \ BN. \ +51 \ 53 \ E.s. \ e. \ by \ s. \ -61 \ 15 \ 92 \ 00 \ CL. \ +53 \ 18 \ E. \ by \ s. \ BN. \ -61 \ 03 \ 91 \ 49 \ B. \ +51 \ 01 \ E. \ by \ s. \ -61 \ 03 \ 91 \ 49 \ B. \ +52 \ 59 \ E. \ by \ s. \ -60 \ 03 \ 91 \ 49 \ B. \ +52 \ 21 \ B.N. \ e. \ by \ s. \ -60 \ 03 \ 91 \ 40 \ BN. \ +52 \ 59 \ E.N. \ e. \ by \ s. \ -60 \ 03 \ 92 \ 02 \ BN. \ +53 \ 20 \ E.S. \ e. \ by \ s. \ -446 \ +52 \ +44 \ 90 \ 92 \ Card \ deady. \ -446 \ +52 \ +49 \ 90 \ -428 \ +90 \ 92 \ Card \ deady. \ -446 \ +52 \ +49 \ 90 \ -428 \ +90 \ -428 \ +90 \ -428 \ +90 \ -428 \ +90 \ -428 \ +446 \ -411 \ +52 \ +48 \ 50 \ -446 \ +52 \ +48 \ 50 \ -440 \ +29 \ +138 \ +52 \ +48 \ 50 \ -440 \ +138 \ +52 \ +48 \ 50 \ -440 \ +138 \ +52 \ +48 \ 50 \ -440 \ +138 \ +52 \ +48 \ 50 \ -440 \ +138 \ +52 \ +48 \ 49 \ -411 \ +152 \ +48 \ 50 \ -440 \ +138 \ +52 \ +48 \ 49 \ -411 \ +152 \ +48 \ 49 \ -411 \ +152 \ +48 \ 49 \ -411 \ +152 \ +48 \ 49 \ -411 \ +152 \ +48 \ 49 \ -411 \ +152 \ +48 \ 49 \ -411 \ +152 \ +48 \ 49 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +48 \ 50 \ -411 \ +152 \ +49 \ 50 \ +49 \ 90 \ -420 \ +24 \ +138 \ +240 \ +138 \ +240 \ +138 \ +240 \ +138 \ +240 \ +138 \ +240 \ +140 \ +152 \ +48 \ +138 \ +240 \ +140 \ +152 \ +48 \ +138 \ +240 \ +152 \ +48 \ +138 \ +2$ | 7 А.М.   |        | 90 26  | В.       | +5052      | S.S.E.                    | Ď l               |         |         |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        | - 1      |            |                           |                   |         |         |                        |                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |        |        |          |            |                           |                   |         |         |                        |                   |
| 7 P.M61 28 91 58 Cr. +45 22 sw. by s61 28 91 58 Cr. +46 48 sw. by s61 28 91 58 Bx. +46 32 sw. by s61 28 91 58 Bx. +46 32 sw. by s61 38 91 58 Bx. +46 32 sw. by s61 39 92 00 B. +48 30 -61 27 91 32 Bx. +52 57 -61 27 91 32 Bx. +51 53 Es. E52 7 -61 15 92 00 Cr. +53 18 Es. E. E. by n61 03 91 49 B. +51 51 Es. E. E. by n61 03 91 49 B. +51 01 -41 15 +52 +43 34 -41 11 +52 +43 34 -44 11 +52 +43 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +52 +45 11 -44 11 +5                                                    |          |        |        |          |            |                           |                   | 上 15    | 1 1     | 1 70 00 1              |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 р.м.   |        |        |          |            |                           | $-77 \ 38$        |         |         |                        | Unsteady.         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        |          |            |                           |                   |         |         |                        |                   |
| 8 A.M. $-61$ 27 91 32 BN. $+45$ 30 S.S.W. E.S.E. $-61$ 27 91 32 BN. $+55$ 30 E.S.E. $-61$ 27 91 32 BN. $+55$ 30 E.S.E. $-61$ 27 91 32 BN. $+55$ 30 E.S.E. $-61$ 27 91 32 BN. $+55$ 31 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 34 $-41$ 11 $+52$ $+49$ 32 $-44$ 34 $+52$ $+47$ 19 $-44$ 34 $+52$ $+47$ 19 $-44$ 34 $+52$ $+47$ 19 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 34 $+52$ $+49$ 30 $-44$ 36 $-44$ 36 $-44$ 37 $-44$ 38 $-44$ 37 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 38 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39 $-44$ 39                           |          |        |        |          |            |                           |                   |         |         |                        |                   |
| 8 A.M. $-61$ 27 91 32 BN. $+53$ 20 $-61$ 27 91 32 BN. $+53$ 20 $-61$ 27 91 32 BN. $+51$ 53 $-61$ 15 92 00 CL. $+53$ 18 E.S.E. $-61$ 15 92 00 CL. $+53$ 18 E. by N. $-61$ 03 91 49 B. $+52$ 26 E.N.E. $-61$ 03 91 49 T. $+52$ 54 E.N.E. $-60$ 58 92 02 BN. $+52$ 21 E.N.E. $-60$ 58 92 02 BN. $+52$ 21 $-60$ 58 92 02 BN. $+52$ 21 $-60$ 58 92 02 BN. $+52$ 21 $-60$ 58 92 02 BN. $+52$ 22 $-60$ 58 92 04 BN. $+52$ 22 $-60$ 58 92 04 BN. $+52$ 21 $-60$ 30 92 27 M. $+51$ 50 $-60$ 30 92 27 M. $+51$ 50 $-60$ 30 94 01 B. $+46$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 10 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11 $-41$ 11                           |          |        |        |          |            |                           |                   |         | 1 1     |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        |        |        |          |            |                           | $\langle \  $     |         |         |                        | Amplitude.        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 A.M.   |        |        |          |            |                           |                   |         |         |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | _ •    |        |          |            |                           |                   |         | 1 1     | +48 34                 |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        |          |            |                           | > -77 57          |         |         |                        | Card steady.      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 р.м.   | - 1    |        |          |            |                           |                   |         |         |                        |                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |        |        |          |            |                           |                   |         | 1 '     |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 4 34   |        |        |          |            |                           | ┤ │               |         |         |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J A.M.   |        |        |          |            |                           |                   |         |         |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        |          |            |                           | 77 20             | -4 34   | +52     | +40 00 i               | Compass unstoody  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        |          |            | E.N.E.                    | \rightarrow 11 32 |         |         | +49 17                 | compass unsteady. |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        |          |            | 1                         |                   |         |         |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        |          | ,          |                           | Į                 |         |         |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 A.M.  |        |        |          |            | E. Dy S. $\frac{1}{2}$ S. |                   |         |         | 1 40 40                |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 р.м.  |        |        | M.       | +48 10     |                           | $-77 \ 37$        | -249    | +52     | $+46 \ 13 > +44 \ 53$  | Unsteady.         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        |          |            | ·                         |                   | -249    | +52     | +4557                  |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        | В.       | +3842      |                           | ή                 |         |         |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 р.м.  |        |        |          |            |                           |                   |         |         |                        |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        |          |            |                           | _70 31            |         |         |                        | Very unsteady     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        | T.       | +41 02     |                           | \rightarrow 13 51 |         |         |                        | very unsteady.    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        | В.       | +40 27     |                           |                   | -146    | +52     | $+39 \ 33$             |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | _59 31 | 100 45 | CL.      | +45 55     | N. by E. $\frac{1}{2}$ E. |                   | -238    | + 52    | +44 09                 |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | _58 31 | 98 59  |          | +4231      |                           | -78 50            |         |         |                        | Very unsteady.    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 А.М.  |        |        |          |            |                           | 70 10             |         |         |                        | Very unsteader    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 73 14 |        |        |          |            |                           | >-/8 10           | -438    | +52     | +40 10                 | very unsteady.    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |        | M.       | $+40 \ 48$ |                           | اء ء ا            |         |         | 1 27 22 )              |                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |        |        |          |            | 1                         | $\} - 78 26$      | -4 02   | +52     | $+37 \ 36 \ $          | very unsteady.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 55 50  | 103 08 | CL.      | +3652      | E. by N.                  | ጎ                 | -5 01   | +52     | $+32\ 43$              |                   |
| $\begin{bmatrix} -55 & 35 & 103 & 20 & \text{CL.} & +37 & 50 & \text{E. by s.} \end{bmatrix}$ $\begin{bmatrix} -4 & 40 & +32 & +34 & 02 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 р.м.  | _55 40 | 103 18 | M.       | +3537      |                           | <b>}</b> −78 33   |         |         |                        | Very unsteady.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · .      | 55 35  | 103 20 | CL.      | +37 50     | E. by s.                  | J                 | -4 40   | + 32    | + 04 0%)               |                   |

| Date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lat.                                                   | Long.                                                                                | Observer.  | Declination observed.                                                | Ship's head.                                                            | Inclination.                                                     | Correction Ship's                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ected Declination.                                                                                | Remarks.          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                      | ops        | observed.                                                            |                                                                         |                                                                  | attrac-                                                                   | Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                   |
| 1845.<br>Mar. 16 A.m.<br>16 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -54 42                                                 | 2105 08                                                                              | CL.        |                                                                      | N.E. <u>1</u> E.                                                        | ) ° ′                                                            | $\begin{vmatrix} -3 & 47 \\ -3 & 56 \end{vmatrix} +$                      | 52  + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 12                                                                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -54 38                                                 | 106 08<br>106 28                                                                     |            | $+32 06 \\ +33 16$                                                   | N.E. ½ E.<br>E.                                                         | -78 41                                                           |                                                                           | 52 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 22 + 29 24                                                                                      | Very unsteady.    |
| 17 А.М.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-54 	36 \\ -54 	05$                                   | 3 106 28<br>5 106 28<br>5 108 15                                                     | Bn.<br>CL. | $\begin{vmatrix} +34 & 13 \\ +34 & 45 \\ +29 & 19 \end{vmatrix}$     | E.<br>E. by s.                                                          | $\left  \begin{array}{c} \\ \\ \\ \end{array} \right  = 79 \ 04$ | $\begin{vmatrix} -4 & 46 + \\ -4 & 46 + \\ -4 & 52 + \end{vmatrix}$       | $\begin{array}{c c} 52 + 3 \\ 52 + 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 51  <br>5 19   6 34                                                                             | Very unsteady.    |
| 18 А.М.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-53 \ 30$                                             | 510815 $011013$ $411024$                                                             | Bn.        | $\begin{vmatrix} +32 & 02 \\ +25 & 18 \\ +22 & 05 \end{vmatrix}$     | E. $\frac{1}{2}$ S.<br>N.N.E.<br>N.N.E. $\frac{1}{2}$ E.                |                                                                  | $egin{bmatrix} -5 & 05   + \ -2 & 37   + \ -2 & 58   + \ \end{matrix}$    | +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 33 )                                                                                           |                   |
| STOCK STATE OF THE | -53 08                                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                | M.         | $\begin{vmatrix} +26 & 50 \\ +26 & 25 \\ +23 & 34 \end{vmatrix}$     | N.E. $\frac{1}{2}$ E.<br>N.E. $\frac{1}{2}$ E.                          | $\left  \begin{array}{c} -77 & 34 \end{array} \right $           | $\begin{vmatrix} -4 & 01 \\ -3 & 47 \\ -4 & 01 \end{vmatrix}$             | -52 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $23 \ 30 \ ) + 21 \ 32$                                                                           | Very unsteady.    |
| 18 p.m.<br>19 p.m.<br>20 A.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -53 03 $-52 38$                                        | $     \begin{array}{ccccccccccccccccccccccccccccccccc$                               | T.<br>CL.  | +20 00                                                               | N. ½ W.<br>N.N.E.<br>N.E. by N.                                         | -77 09                                                           |                                                                           | $\begin{array}{c c}   52 + 2 \\   52 + 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{bmatrix} 0 & 04 \\ 6 & 43 \end{bmatrix} + 16 & 43 \end{bmatrix}$                          | Very unsteady.    |
| 20 A.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{vmatrix} -49 & 29 \\ -49 & 29 \end{vmatrix}$   | 211234 $211234$                                                                      | Bn.<br>Bn. | $\begin{array}{r} +21 & 06 \\ +20 & 05 \end{array}$                  | n. by E. ½ E.<br>N.N.E.                                                 |                                                                  | $\begin{vmatrix} -2 & 04 \\ -2 & 19 \end{vmatrix} +$                      | -52 + 1 $-52 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 54 8 38                                                                                         |                   |
| 20 P.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -49 00 $-49 00$                                        | 0 112 51                                                                             | CL.        | +1758 + 1830                                                         | N.E. $\frac{1}{2}$ N. N.E. $\frac{1}{2}$ N.                             | \\ \-76 17                                                       | -3 10 T                                                                   | $\begin{array}{c c} -52 + 1 \\ -52 + 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{vmatrix} 5 & 40 \\ 6 & 12 \end{vmatrix} + 17 & 09$                                        | Compass unsteady. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -48 54 $-48 56$                                        | 911253 $411255$ $611256$                                                             | T.<br>M.   | $\begin{vmatrix} +21 & 50 \\ +17 & 12 \\ +17 & 24 \end{vmatrix}$     | N.E. $\frac{1}{2}$ E.<br>N.E. $\frac{1}{2}$ E.<br>N.E. $\frac{1}{2}$ E. |                                                                  | $\begin{vmatrix} -3 & 35 & + \\ -3 & 35 & + \\ -3 & 35 & + \end{vmatrix}$ | -52 + 1 $-52 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 29 4 41                                                                                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-48 	56 \\ -46 	39 \\ -45 	04$                        |                                                                                      | M.         | $\begin{vmatrix} +17 & 33 \\ +11 & 55 \\ +8 & 52 \end{vmatrix}$      | N.E. $\frac{1}{2}$ E.<br>N. $\frac{1}{2}$ W.<br>N. $\frac{1}{2}$ W.     | $\begin{bmatrix} 1 & -74 & 30 \\ 1 & -74 & 30 \end{bmatrix}$     | 15 +                                                                      | -52 + 1 $-52 + 1$ $-52 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 02 + 12 09                                                                                     | Steady.           |
| 25 а.м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -44 54 $-43 53$                                        |                                                                                      | M.         | $\begin{vmatrix} +10 & 38 \\ + & 7 & 12 \\ + & 5 & 40 \end{vmatrix}$ | N.<br>N. by w. ½ w.<br>N. by w.                                         |                                                                  | $\begin{bmatrix} -1 & 03 \\ - & 30 \end{bmatrix}$                         | $   \begin{array}{c c}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{bmatrix} 0 & 27 \end{bmatrix} + \begin{bmatrix} 9 & 45 \\ 7 & 34 \\ 5 & 50 \end{bmatrix}$ | very unsteady.    |
| Constitution of the Consti | $\begin{bmatrix} -43 & 59 \\ -43 & 49 \end{bmatrix}$   | $     \begin{array}{c}       2 & 116 & 59 \\       2 & 116 & 59 \\     \end{array} $ | Bn.<br>Cl. | + 8 18<br>+ 7 42                                                     | N. ½ W.                                                                 | 72 28                                                            | _ 54 +                                                                    | - 52 +<br>- 52 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 16                                                                                              | Card unsteady.    |
| 26 а.м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $8   116   55 \\ 9   116   42$                                                       | CL.        | + 5 59<br>+ 7 45<br>+ 3 45                                           | N. N. $\frac{1}{2}$ E. N. by W.                                         |                                                                  | $\begin{vmatrix} -1 & 12 & + \\ - & 33 & + \end{vmatrix}$                 | - 52 +<br>- 52 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 25 J<br>4 04                                                                                    |                   |
| 26 p.m<br>27 a.m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 4 116 42<br>2 116 42<br>0 116 15                                                     | M.         | + 3 10                                                               | N. by w. N. by w. N. by w.                                              | $\left  \right\} -70 \ 43$                                       | - 33 +<br> - 33 +                                                         | -52 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c c} 5 & 07 \\ 3 & 29 \\ 7 & 28 \end{array} $                                     | Card unsteady.    |
| 27 г.м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-38 \ 3$                                              | 0 116   15<br>2 116   17<br>8 116   19                                               | / M.       | + 7 48                                                               | N. by w.<br>N. by E.<br>N. by E.                                        | -68 27                                                           | $\begin{vmatrix} - & 33 \\ -1 & 20 \\ -1 & 20 \end{vmatrix}$              | - 52 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 20                                                                                              | Compass steady.   |
| 28 р.м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -37 0 $-36 4$                                          | 2 116 38<br>6 116 33<br>6 116 33                                                     | M. M.      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                | N. by E. $\frac{1}{2}$ E<br>N.N.E.<br>N.N.E. $\frac{1}{2}$ E.           | $-66 \ 38$                                                       | $\begin{vmatrix} -1 & 11 \\ -1 & 26 \\ -1 & 33 \end{vmatrix}$             | $-52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 + \\ -52 $ | $ \begin{vmatrix} 3 & 51 \\ 5 & 11 \\ 4 & 32 \end{vmatrix} + 4 & 35$                              | Steady.           |
| 29 А.М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-36 \ 1$ $-36 \ 1$                                    | 3 1 1 6 4 0<br>2 1 1 6 4 0<br>3 1 1 6 4 0                                            | M. M.      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                | n. by E.                                                                | Ĭ                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                    | 52   + 52   + 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 34 )<br>5 41  <br>4 14                                                                          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{bmatrix} -36 & 1 \\ -36 & 1 \end{bmatrix}$     | 2 116 40<br>1 116 40                                                                 | T.<br>M.   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                | N. by E.                                                                | -65 44                                                           | $\begin{vmatrix} -1 & 07 \\ - & 53 \end{vmatrix}$                         | +52 +<br>+52 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c} 4 & 37 \\ 5 & 37 \end{array}$ + 4 59                                          | Steady.           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -360                                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                | CL.        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                | N.E. $\frac{1}{2}$ E.<br>N.E. $\frac{1}{2}$ E.<br>N.E. $\frac{1}{2}$ E. |                                                                  | $\begin{vmatrix} -1 & 56 \\ -1 & 56 \\ -1 & 56 \end{vmatrix}$             | -52 + 52 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 33<br>4 57<br>5 44                                                                              | "                 |
| 30 А.м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -35 0                                                  | 911741 $911741$ $411741$                                                             | CL.        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                | S.E. \frac{1}{2} E.  N. \frac{1}{9} E.  S. \frac{1}{2} E.               | _65 36                                                           | 6 - 13 +                                                                  | - 52 +<br>- 52 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c c} 6 & 28 \\ 6 & 47 \\ 5 & 31 \end{array} $                                     | O Compass steady. |
| 30 р.м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 4 117 41                                                                             | l Bn.      | + 5 05                                                               | S. ½ E.<br>S.                                                           |                                                                  | <b>—</b> 13 +                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 44                                                                                              |                   |

| <u> </u>           | 1                                                                         |                    |                  |                                                       | 1                                       | 1                                    | ī              |              | 1                                                               | 1                    |
|--------------------|---------------------------------------------------------------------------|--------------------|------------------|-------------------------------------------------------|-----------------------------------------|--------------------------------------|----------------|--------------|-----------------------------------------------------------------|----------------------|
|                    |                                                                           |                    | :                |                                                       |                                         |                                      | Correct        | tions.       |                                                                 |                      |
| Date.              | Lat.                                                                      | Long.              | Observer.        | Declination                                           | Ship's head.                            | Inclination.                         | Chin/a         | 1.           | Corrected Declination.                                          | Remarks.             |
| Date.              | 1340.                                                                     | Long.              | pse              | observed.                                             | omp s neada                             | Incimation.                          | Ship's attrac- | Index.       | Corrected Decimation.                                           | Remarks.             |
| 1                  |                                                                           |                    | 0                |                                                       |                                         |                                      | tion.          | Inc          | ,                                                               |                      |
|                    |                                                                           |                    |                  |                                                       |                                         |                                      |                |              |                                                                 |                      |
| 1845.              | 000                                                                       | 118 04             | n-               | $+\mathring{7} \ 5\acute{9}$                          |                                         | $-6\mathring{5} 2\acute{0}$          | 1 =6           | 1.56         | +6.55 + 6.55                                                    |                      |
| Mar. 31 A.M.       |                                                                           |                    |                  |                                                       | N.E. $\frac{1}{2}$ E.                   | -65 20 $-65 00$                      | 1 00           | + 5%         |                                                                 | Unsteady.            |
| April 1 A.M.       |                                                                           |                    |                  | +957                                                  | N.N.E.                                  | -05 00                               | -1 22          |              |                                                                 | Unsteady.<br>Card J. |
| 11 A.M.<br>14 A.M. |                                                                           |                    | CL.              | $  \begin{array}{c} +4 & 17 \\ +4 & 53 \end{array}  $ | Observed                                | on ahono                             |                |              | $\begin{vmatrix} +5 & 09 \\ +5 & 45 \\ \end{vmatrix}$ $+5 & 33$ | Card J.              |
| ITA.M.             | King G<br>Sound, A                                                        |                    |                  | +458                                                  | Observed                                | on shore.                            |                | +47          |                                                                 | Card A.              |
| 21 л.м.            |                                                                           |                    |                  | $+3 \ 48$                                             | w. by s.                                | <b>-65</b> 11                        | +1 17          |              |                                                                 | Card J. unsteady.    |
| 22 A.M.            |                                                                           | 1                  |                  | +5 10                                                 | s.                                      | -65 11                               |                |              | +5 59 +5 59                                                     | Unsteady.            |
| 23 а.м.            |                                                                           | 114 55             |                  | +3 05                                                 | N.W.                                    | ה די                                 |                |              | +4 18                                                           |                      |
|                    | -35 38                                                                    | 1                  | M.               | +4 33                                                 | N.N.W. $\frac{1}{2}$ W.                 | -65 11                               |                |              | +5 16 > +5 41                                                   | Unsteady.            |
| 23 р.м.            | 1 .                                                                       |                    | M.               | +629                                                  | N.W. $\frac{1}{2}$ N.                   | )                                    |                | +52          | +7 30                                                           |                      |
| 24 а.м.            | -3424                                                                     | 113 17             | M.               | $+6 \ 31$                                             | n.w. by n.                              | ń                                    | - 04           | +52          | +7 19                                                           |                      |
|                    |                                                                           | 113 15             |                  | +6 10                                                 | n.w. by n.                              | -64 44                               | - 04           | +52          | +6.58                                                           | Cond sunstands       |
|                    | -34 17                                                                    |                    |                  | +5 34                                                 | n.w. by n.                              | -07 44                               | - 04           | +52          | T 0 22                                                          | Card unsteady.       |
| Noon.              |                                                                           |                    |                  | +5 00                                                 | n.w. by n.                              | Ų                                    | <b>— 04</b>    | +52          | $+5$ 48 $\rightarrow$                                           |                      |
| 25 A.M.            |                                                                           | 111 44             | M.               | +6.55                                                 | n.w. by n.                              |                                      | - 08           | +52          | +7 39                                                           |                      |
|                    | 1                                                                         | 111 45             | ۱ ~              | +604                                                  | n.w. by n.                              | -62 18                               | - 08           | +52          | +6 48                                                           |                      |
|                    | 1                                                                         | 111 44             |                  | +5 20                                                 | N.W. $\frac{1}{2}$ N.                   | }                                    |                | +52          | $ +6 06\rangle +6 36$                                           | Steady.              |
| 1                  |                                                                           | 111 43             |                  | +5 05                                                 | N.W. $\frac{1}{2}$ N.                   |                                      | <b>—</b> 06    | + 5%         | +5 51                                                           |                      |
| 06                 |                                                                           | 111 40             |                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | n.w. by n.                              | K                                    | — US           | + 5%         | $\begin{vmatrix} +6 & 37 \\ +6 & 39 \end{vmatrix}$              |                      |
| 26 а.м.            |                                                                           | $109 15 \\ 109 15$ | CL.<br>Bn.       | +6.25                                                 | n.w. by n.                              |                                      | 10             | + 52         | $\begin{vmatrix} +6 & 38 \\ +7 & 05 \end{vmatrix}$              |                      |
| 26 р.м.            |                                                                           | 109 13             | M.               | +5.58                                                 | N.W. by N.                              | <b>  }−60 30</b>                     | 1 02           | 1 52         | $\begin{vmatrix} +7 & 05 \\ +6 & 52 \end{vmatrix} + 7 & 20$     | Unsteady.            |
| 20 F.M.            |                                                                           | 108 58             |                  | +752                                                  | N.W.                                    | 11                                   | + 02           | $\pm 52$     | +8 46                                                           |                      |
| 27 л.м.            |                                                                           | 106 55             |                  | +604                                                  | N.W. $\frac{1}{2}$ W.                   | H                                    | 1. 10          | +52          | 1 / AC 1                                                        | Q1 . 1 *             |
| 1                  |                                                                           | 106 55             | См.              | +5 00                                                 | N.W.                                    | -59 25                               | + 02           | +52          | +5 54                                                           | Steady,              |
| 28 а.м.            |                                                                           |                    |                  | +8 27                                                 | N.                                      | $\left  \frac{1}{2} - 57 \right  22$ | _ 50           | +52          | +8 29 \ +6 22                                                   | Very unsteady.       |
| 28 р.м.            |                                                                           | 106 34             |                  | +4 26                                                 | n. by w.                                | J -0, 22                             | 40             | +52          | T 4 38 )                                                        |                      |
| 29 а.м.            | 1 -                                                                       | 105 16             | M.               | +3.56                                                 | N.W.                                    |                                      | <b>— 07</b>    | +52          | +4 41                                                           |                      |
| 1                  | 1                                                                         | 105 16             |                  | +5 52                                                 | N.W.                                    | -55 07                               |                | +52          | $\begin{vmatrix} +6 & 37 \\ +6 & 12 \end{vmatrix} + 5 & 30$     | Very unsteady.       |
| 20                 |                                                                           | 105 16             | -                | +5 28                                                 | N.W.                                    | Ŋ                                    | - 07           |              | +6 13                                                           |                      |
| 30 а.м.            | $     \begin{array}{r}       -24 & 10 \\       -24 & 05     \end{array} $ |                    | CL.              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | W.N.W.                                  | $\frac{1}{5}$ -54 30                 |                |              | $\begin{vmatrix} +5 & 10 \\ +5 & 54 \end{vmatrix} + 5 & 32$     | Very unsteady.       |
| Мау 1 л.м.         | 1                                                                         |                    | CL.              | +3 02                                                 | W.N.W.                                  | K                                    |                |              | +4 32                                                           |                      |
| May 1 A.M.         | -23 58                                                                    |                    | CL.              | +3 00                                                 | w.                                      |                                      | + 38           | ± 52         | 1 4 90                                                          |                      |
| 1                  | -23 58                                                                    |                    | M.               | +4 25                                                 | w.                                      | -54 07                               | + 38           | +52          | $\begin{vmatrix} +4 & 30 \\ +5 & 55 \end{vmatrix} + 5 & 14$     | Unsteady.            |
| Noon.              |                                                                           |                    | M.               | +4 30                                                 | w.                                      |                                      |                |              | +6 00                                                           |                      |
| 2 A.M.             |                                                                           |                    | M.               | +757                                                  | N. by E. $\frac{1}{2}$ E.               | ĸ                                    | - 58           | +52          | +7 51                                                           |                      |
|                    | _24 01                                                                    | 1                  | М.               | +750                                                  | N.N.E.                                  | _54 11                               | -1 00          | +52          | +7 42 \ 17 08                                                   | Compass steady.      |
|                    | _24 01                                                                    |                    |                  | +6.26                                                 | N. by E. $\frac{1}{2}$ E.               | \                                    | <b>–</b> 58    | +52          | T 0 20 ]                                                        |                      |
| 1                  | _24 01                                                                    |                    |                  | +647                                                  | N.N.E.                                  | Ų                                    | -1 00          | +52          | +6 39                                                           |                      |
| 3 А.М.             |                                                                           |                    | M.               | +5 58                                                 | $W_{\bullet} \frac{1}{2} N_{\bullet}$   | ]                                    | + 40           | +52          | $\begin{bmatrix} +7 & 30 \\ +6 & 20 \end{bmatrix}$              |                      |
|                    | _23 55                                                                    |                    | M.               | +458                                                  | $W. \frac{1}{2} N.$                     |                                      | + 40           | +52          | +6 30                                                           |                      |
|                    | _23 55                                                                    |                    |                  | $+3 \ 40$                                             | W. $\frac{1}{2}$ N.                     | -54 21                               | + 40           | + 5%         | $\begin{vmatrix} +5 & 12 \\ +6 & 06 \end{vmatrix} + 6 & 10$     | Steady.              |
| 3 р.м.             | -24 00 $-24 00$                                                           |                    |                  | $+4 \ 41$                                             | $W. \frac{1}{2} S.$                     |                                      | + 93           | + 5%         | $+5 \ 30$                                                       |                      |
|                    | -24 00 $-23 55$                                                           |                    | Сь.<br>См.       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\mathbf{W}.\ \frac{1}{2}\ \mathbf{S}.$ |                                      | + 40           | + 52<br>+ 50 | +6 14                                                           |                      |
| 4 A.M.             |                                                                           |                    | CL.              | +5 09                                                 | w. ½ s.<br>w.n.w.                       | $\forall$                            | + 12           | +52          | +6 13                                                           |                      |
| TA.M.              | -24 17                                                                    |                    | M.               | +4 22                                                 | w.n.w.                                  |                                      |                |              | + 5 06 1                                                        | Card J. steady.      |
| 1                  | -24 17                                                                    |                    | M.               | +351                                                  | w.n.w.                                  | -54 07                               | + $12$         | +47          | $+\frac{3}{4} \frac{20}{50} > +5 31$                            | Card A. steady.      |
| Noon.              |                                                                           |                    | M.               | +4 30                                                 | w.n.w.                                  |                                      | + 12           | +52          | +5 34 ]                                                         | Card J. steady.      |
| 5 A.M.             | 24 05                                                                     | 92 11              | CL.              | +605                                                  | n.w. by n.                              | 52 44                                | - 23           | +52          | $+6 \ 34 \ +6 \ 34$                                             | Steady.              |
| 6 а.м.             | 22 54                                                                     | 90 50              | M.               | +4 38                                                 | N.W.                                    | η                                    | - 13           | +52          | +5 177                                                          |                      |
|                    | _22 54                                                                    | 90 50              | B <sub>N</sub> . | +457                                                  | N.W.                                    |                                      | <b>—</b> 13    | +52          | +5 36                                                           |                      |
|                    | -22 54                                                                    |                    |                  | +449                                                  | N.W.                                    |                                      | <b>—</b> 13    | +52          | +5 28                                                           |                      |
|                    | _22 50                                                                    | 90 48              |                  | +5 04                                                 | N.W.                                    |                                      | - 13           | +52          | +5 43                                                           |                      |
| 6 р.м.             | _22 39                                                                    | 90 35              | iVI.             | +5 59                                                 | n.w. by n.                              | -5249                                | — 23           | +52          | +6 28 > +5 56                                                   | Compass steady.      |
|                    |                                                                           | <u> </u>           |                  |                                                       | <u>!</u>                                |                                      |                | -            |                                                                 |                      |

|                     |                 |                              | <u>.:</u>        |                                                       |                                                                                                 |                           | Correct          | ions.        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|-----------------|------------------------------|------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|------------------|--------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date.               | Lat.            | Long.                        | Observer.        | Declination observed.                                 | Ship's head.                                                                                    | Inclination.              | Ship's           | , i          | Corrected Declination.                                        | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                 |                              | Ops              | observed.                                             | -                                                                                               |                           | attrac-<br>tion. | Index.       |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 |                              |                  |                                                       |                                                                                                 |                           |                  | I            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1845.<br>Мау 6 р.м. | -2239           | 90 32                        | M.               | +612                                                  | N.N.W.                                                                                          | >-52 49                   | - ° 34           | +52          | +6 30 > +5 56                                                 | Compass steady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -22 39          | 90 32                        | Bn.              | +4 40                                                 | n.w. by n.                                                                                      |                           | - 23             | +52          | +5 09                                                         | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C                   | -22 39          |                              | Cr.              | +553                                                  | n.w. by n.                                                                                      |                           |                  |              | +6 22                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sunset.<br>7 A.M.   |                 | 90 32<br>89 42               | CL.<br>M.        | $\begin{array}{r} +6 & 33 \\ +3 & 30 \end{array}$     | N.N.W.<br>N.W.                                                                                  | ر<br>ا                    | - 34<br>- 18     |              | $\begin{vmatrix} +6 & 51 \\ +4 & 04 \\ \end{vmatrix}$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                   | -21 53          | 89 42                        | CL.              | +409                                                  | N.W.                                                                                            | -52 01                    | - 18             | +52          | $\begin{pmatrix} +4 & 04 \\ +4 & 43 \end{pmatrix} +4 & 23$    | Unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8 л.м.              |                 | 88 08                        | M.               | +3 42                                                 | n.w. by w.                                                                                      |                           | $-\frac{10}{10}$ | +52          | +4 24                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | 88 <b>05</b><br>88 <b>05</b> | M.<br>Cl.        | $+3 53 \\ +3 25$                                      | n.w. by w.<br>n.w. by w.                                                                        | $> -51 \ 15$              |                  | $+52 \\ +52$ | $\begin{vmatrix} +4 & 35 \\ +4 & 07 > +4 & 45 \end{vmatrix}$  | Card steady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | -20 45          | 88 05                        | B <sub>N</sub> . | +4 11                                                 | n.w. by w.                                                                                      |                           | - 10             | +52          | +4 53                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Noon.               |                 | 87 56                        | M.               | +430                                                  | $W_{\bullet} \frac{1}{2} N_{\bullet}$                                                           | J                         | + 26             | + 52         | $+5 \ 48$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 а.м.              |                 | 85 39<br>85 39               | M.<br>Cl.        | $\begin{array}{c c} +4 & 38 \\ +3 & 28 \end{array}$   | W. $\frac{1}{2}$ N. W. $\frac{1}{2}$ N.                                                         | >-51 18                   | $+ 26 \\ + 26$   | $+52 \\ +52$ | $\begin{vmatrix} +5 & 56 \\ +4 & 46 \\ +5 & 20 \end{vmatrix}$ | Steady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Noon                |                 | 85 19                        | M.               | +4 00                                                 | $W \cdot \frac{1}{2} N \cdot$                                                                   |                           | + 26             | +52          | +5 18                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 A.M.             | 1               | 82 45                        | M.               | +4 12                                                 | $W_{\bullet} \frac{1}{2} N_{\bullet}$                                                           | )                         | + 26             | +52          | +5 30                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | 82 24<br>82 30               | M.<br>Bn.        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c} W \cdot \frac{1}{2} & N \cdot \\ W \cdot \frac{1}{2} & N \cdot \end{array}$ | -51 22                    | + 26 + 26        | $+52 \\ +52$ | $\begin{array}{c c} +5 & 35 \\ +4 & 24 > +5 & 08 \end{array}$ | Very unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                 | 82 30                        | CL.              | $+3 \ 26$                                             | $\mathbf{W} \cdot \frac{1}{2} \mathbf{N} \cdot$                                                 | 61 22                     | + 26             | +52          | +4 44                                                         | roay unstoucy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                 | 82 30                        | T.               | +4 08                                                 | $W_{\bullet} \frac{1}{2} N_{\bullet}$                                                           | ا لِ                      |                  | +52          | +5 26                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | 79 36<br>79 34               | M. M.            | $\begin{array}{c c} +2 & 56 \\ +2 & 31 \end{array}$   | W. $\frac{1}{4}$ N. W. $\frac{1}{4}$ N.                                                         |                           | + 24  + 24       | $+52 \\ +52$ | $\begin{array}{c c} +4 & 12 \\ +3 & 47 \end{array}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                   | . 1             | 79 34                        | B <sub>N</sub> . | +2 27                                                 | W. ¼ N.<br>W. ¼ N.                                                                              |                           | + 24             | +52          | $+3 \ 43$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -20 36          | 79 34                        | CL.              | +3 12                                                 | w. 1 N.                                                                                         | <b>├</b> —51 48           | + 24             | +52          | +4 28 > +4 43                                                 | Compass unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11 Р.М.             | -20 36 $-20 36$ | 79 00<br>79 00               | M. CL.           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | W. $\frac{1}{4}$ N.                                                                             |                           |                  | $+52 \\ +52$ | $\begin{array}{c c} +6 & 04 \\ +5 & 50 \end{array}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | 79 00                        | T.               | $+3 \ 43$                                             | W. $\frac{1}{4}$ N. W. $\frac{1}{4}$ N.                                                         | ]                         |                  | +52          | +459                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12 A.M.             | -20 44          | 78 34                        | M.               | +5 38                                                 | <b>N.</b>                                                                                       | <b>1</b>                  | _ 50             | +52          | +5 40                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | 78 34 78 34                  | CL.              | $\begin{array}{c c} +6 & 28 \\ +5 & 06 \end{array}$   | N.                                                                                              |                           |                  | $+52 \\ +52$ | $\begin{array}{c c} +6 & 30 \\ +5 & 20 \end{array}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | 78 34                        | CL.              | +6 32                                                 | N.N.W.                                                                                          |                           |                  | +52          | $\begin{array}{c c} +5 & 20 \\ +6 & 46 \end{array}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | <b>-20 44</b>   | 78 34                        | M.               | +5 27                                                 | N.W.                                                                                            |                           | _ 22             | +52          | +5 57                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | 78 34 78 34                  | CL.<br>M.        | $\begin{array}{c c} +5 & 12 \\ +3 & 23 \end{array}$   | N.W.                                                                                            |                           |                  | +52          | +5 42                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | 78 34 78 34 78 34            | CL.              | $\begin{array}{c c} +5 & 25 \\ +5 & 36 \end{array}$   | W.N.W.                                                                                          |                           |                  | $+52 \\ +52$ | $\begin{array}{c c} +4 & 19 \\ +6 & 32 \end{array}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,                   | -20 44          | 78 34                        | М.               | +2 23                                                 | w.                                                                                              |                           | + 20             | +52          | $+3 \ 35$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | 78 34                        | CL.              | +4 09                                                 | w.                                                                                              | 50.00                     | 1                | +52          | +5 21                                                         | To obtain correc-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                 | 78 34 78 34                  | M. CL.           | $\begin{array}{c c} +2 & 58 \\ +4 & 22 \end{array}$   | w.s.w.                                                                                          | -52 02                    |                  | $+52 \\ +52$ | $\begin{array}{c c} +4 & 05 \\ +5 & 29 \end{array}$           | tions for the ship's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | -20 44          | 78 34                        | М.               | +4 20                                                 | s.w.                                                                                            |                           | + 06             | +52          | +5 18                                                         | A calm, heavy swell,<br>compass unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | -20 44<br>20 44 |                              | CL.              | +4 26                                                 | s.w.                                                                                            |                           | + 06             | +52          | +5 24                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                   |                 | 78 34 78 34                  | M. CL.           | $\begin{array}{c c} +4 & 46 \\ +4 & 48 \end{array}$   | s.s.w.                                                                                          |                           | _ 01             | $+52 \\ +52$ | $\begin{array}{c c} +5 & 37 \\ +5 & 39 \end{array}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -20 44          | 78 34                        | M.               | +4 42                                                 | s.                                                                                              | 1                         | - 08             | +52          | +5 26                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -20 44          | 78 34                        | CL.              | +4 29                                                 | s.                                                                                              |                           | -08              | +52          | +5 13                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -20 44 $-20 44$ | 78 34 78 34                  | M. CL.           | $\begin{array}{c c} +5 & 41 \\ +6 & 00 \end{array}$   | E.N.E.                                                                                          |                           | -1 13 $-1 13$    | $+52 \\ +52$ | $\begin{array}{c c} +5 & 20 \\ +5 & 39 \end{array}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -20:44          | 78 34                        | M.               | +6 21                                                 | N.N.E.                                                                                          | j                         | - 57             | +52          | +6.16                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13 а.м.             | -20 39          | 77 45                        | CL.              | +4 11                                                 | w. ,                                                                                            | )                         | + 20             | +52          | +5 23                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                   | -20 39 $-20 39$ | 77 45<br>77 45               | T.<br>M.         | $\begin{array}{c c} +4 & 29 \\ +3 & 49 \end{array}$   | w.                                                                                              | -51 59                    | + 20 + 20        | $+52 \\ +52$ | $+5 \ 41 + 5 \ 22 + 5 \ 01$                                   | Steady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14 А.М.             | -20 28          | 76 23                        | M.               | $+4 \ 43$                                             | $w. \frac{1}{2} N.$                                                                             | 7                         | + 16             | +52          | +551                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -20 28          | 76 23                        | B <sub>N</sub> . | +4 25                                                 | $W \cdot \frac{1}{2} N \cdot$                                                                   | -52 20                    | + 16             | +52          | +5 33 > +6 01                                                 | Very unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15 а.м.             | -20 28 $-20 45$ | 76 23<br>73 20               | Сь.<br>М.        | $\begin{array}{c c} +5 & 31 \\ +4 & 46 \end{array}$   | $W \cdot \frac{1}{2} N \cdot W \cdot \frac{1}{2} N \cdot$                                       | -52[25]                   | + 16 + 16        | $+52 \\ +52$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$        | Unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | -20 27          | 70 49                        | M.               | +6 12                                                 | $\begin{array}{c} W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{2} N \cdot \end{array}$       | ~ i                       | + 16             | +52          | +7.20] $+6.35$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>(</i> * )        | <b>—20 27</b>   | 70 49                        | CL.              | +4 43                                                 | $W_{\bullet} \stackrel{\overline{1}}{\underline{2}} N_{\bullet}$                                | $\int_{0}^{\infty} dz dz$ | + 16             | +52          | $+5 51$ $\}$ $+0 55$                                          | Card unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <del></del>         |                 |                              |                  |                                                       | أبالا                                                                                           |                           |                  |              |                                                               | OR THE PROPERTY OF THE PROPERT |

|             |                                                      |                                                    |                  |                                                          |                                                 |                           | `                                             |           |                                                                                |                     |
|-------------|------------------------------------------------------|----------------------------------------------------|------------------|----------------------------------------------------------|-------------------------------------------------|---------------------------|-----------------------------------------------|-----------|--------------------------------------------------------------------------------|---------------------|
|             |                                                      |                                                    |                  |                                                          |                                                 |                           | Correct                                       | ions.     |                                                                                |                     |
| <b>5</b> 0. |                                                      |                                                    | Observer.        | Declination                                              | ~                                               |                           | ~                                             | 1         |                                                                                |                     |
| Date.       | Lat.                                                 | Long.                                              | ser              | observed.                                                | Ship's head.                                    | Inclination.              | Ship's attrac-                                | Index.    | Corrected Declination.                                                         | Remarks.            |
|             |                                                      |                                                    | O                |                                                          |                                                 |                           | tion.                                         | nd        |                                                                                |                     |
|             |                                                      |                                                    |                  |                                                          |                                                 |                           |                                               |           |                                                                                |                     |
| 1845.       | 0 /                                                  |                                                    | ~                | 9 .6                                                     |                                                 |                           | ,                                             |           | 2 / 0 /                                                                        |                     |
| Мау 17 л.м. |                                                      |                                                    | CL.              | ( '                                                      | w.                                              | $-53 \ 01$                | +20                                           | +52       |                                                                                | Card unsteady.      |
|             |                                                      | 69 35                                              | CL.              | + 4 45                                                   | W.                                              | J 00 01                   | +20                                           | +52       | T 0 0/                                                                         | Card unsteady.      |
| 18 а.м.     |                                                      | 68 30                                              | CL.              | + 6 28                                                   | $\mathbf{W} \cdot \frac{1}{4} \mathbf{S} \cdot$ |                           | +20                                           | +52       |                                                                                |                     |
|             |                                                      | 68 22                                              | M.<br>M.         | +624                                                     | w. by s.                                        | 50.00                     | +18                                           | +52       |                                                                                | G                   |
| P.M.        |                                                      | 68 04<br>68 04                                     | Bn.              | $\begin{vmatrix} + & 7 & 35 \\ + & 8 & 59 \end{vmatrix}$ | N.N.W.                                          | $-53\ 06$                 | $-37 \\ -37$                                  | +52  + 52 |                                                                                | Compass steady.     |
| Sunset.     |                                                      | 68 00                                              | M.               | + 7 45                                                   | N.N.W.<br>N. by W. ½ W.                         |                           | $-37 \\ -47$                                  | +52 + 52  |                                                                                |                     |
| 19 л.м.     | 1                                                    | 67 54                                              | M.               | +640                                                     | N.W.                                            | $\forall$                 | -19                                           | +52       |                                                                                |                     |
| 13 A.M.     | 1                                                    | 67 54                                              | CL.              | +621                                                     | N.W. $\frac{1}{2}$ N.                           | -53 24                    | -23                                           | +52       |                                                                                | Card steady.        |
|             | $-21 11 \\ -21 11$                                   | ,                                                  | т.               | +511                                                     | N.W. $\frac{1}{2}$ N.                           | -35 24                    | -23                                           | +52       |                                                                                | Cura stoucy.        |
| 20 A.M.     | -21 12                                               |                                                    | CL.              | + 6 24                                                   | w. by N.                                        | ጘ <u>.</u>                | +15                                           | +52       | l   # 01 1                                                                     |                     |
|             |                                                      | 67 29                                              | B <sub>N</sub> . | + 6 36                                                   | w. by N.                                        | -5349                     | +15                                           | +52       |                                                                                | Steady.             |
| 21 а.м.     |                                                      | 66 26                                              | CL.              | + 6 53                                                   | w. by N.                                        | ነ                         | +15                                           | +52       |                                                                                |                     |
|             |                                                      | 66 26                                              | Bn.              | + 6 34                                                   | w. by N.                                        | -53 56                    | +15                                           | +52       |                                                                                |                     |
| ľ           | -21 01                                               | 66 20                                              | M.               | + 6 30                                                   | w. by N.                                        | ]                         | +15                                           | +52       | + 7 37                                                                         |                     |
| 22 A.M.     | $-20 \ 41$                                           | 63 16                                              | M.               | + 7 17                                                   | w. by N.                                        | $\left.\right\} -53 \ 53$ | +15                                           | +52       | $+824$ $_{\perp 897}$                                                          |                     |
| Sunset.     | -20 38                                               | 62 44                                              | М.               | + 7 23                                                   | w. by n.                                        | 3-33 33                   | +15                                           | +52       | T 8 30 J                                                                       |                     |
| 23 A.M.     |                                                      | 59 42                                              | CL.              | + 8 40                                                   | w. by N.                                        | )                         | +15                                           | +52       |                                                                                |                     |
|             | $ -20 \ 30$                                          |                                                    | B <sub>N</sub> . | + 8 12                                                   | w. by N.                                        | >-54~09                   |                                               |           | +919>+944                                                                      |                     |
|             | _20 30                                               | 1                                                  | M.               | + 9 00                                                   | w. by n.                                        | J .                       | +15                                           |           | +10 07)                                                                        |                     |
| 24 A.M.     | , -                                                  | 57 55                                              | M.               | + 8 15                                                   | $W \cdot \frac{1}{2} N \cdot$                   | -53 56                    | +20                                           | +52       |                                                                                | Very unsteady.      |
| 27 A.M.     |                                                      |                                                    | M.               | + 8 31                                                   | On shore.                                       |                           |                                               |           | $ +923\} + 944$                                                                | Port Louis, Mauri-  |
| 20          | -2009                                                |                                                    | M.               |                                                          | J                                               | 3                         | Lac                                           |           | T10 05 J                                                                       | tius.               |
| 29 а.м.     |                                                      |                                                    | CL.              | +913                                                     | w.                                              | 54 00                     | +26                                           |           | $\left  \begin{array}{cc} +10 & 31 \\ +10 & 50 \end{array} \right\} + 11 & 15$ | Card steady.        |
| 20 4 34     |                                                      | 55 33                                              | M.               | +10 47                                                   | W. $\frac{1}{2}$ N.                             | ΙŹ                        | +20                                           |           | T11 09 J                                                                       |                     |
| 30 A.M.     |                                                      | 53 10                                              | M.               | +12 09                                                   | s.w.byw.½w.                                     | 1 1                       | +19                                           |           | $\left  { +13\ 20}\atop { +13\ 52} \right $                                    | 1                   |
| P.M.        |                                                      | 52 58<br>52 58                                     | B.               | $\begin{vmatrix} +12 & 44 \\ +12 & 34 \end{vmatrix}$     | s.w. by w. s.w. by w.                           | $-54 \ 45$                | $\begin{vmatrix} +16 \\ +16 \end{vmatrix}$    |           | $\begin{vmatrix} +13 & 52 \\ +13 & 42 \end{vmatrix} + 13 & 44$                 | :                   |
| <b>.</b>    |                                                      | 52 58                                              | M.               | +12 54                                                   | s.w. by w.                                      | 11                        | +16                                           |           | $\begin{bmatrix} +13 & 42 \\ +14 & 02 \end{bmatrix}$                           |                     |
| 31 р.м.     | 1 .                                                  |                                                    | CL.              |                                                          | s.w.byw. $\frac{1}{2}$ w.                       | K                         | +19                                           |           | $ +13 \ 28$                                                                    |                     |
| 02 11       | $-23 \ 44$                                           | 1                                                  | CL.              |                                                          | s.w.byw. $\frac{1}{2}$ w.                       |                           |                                               |           | +14 59>+14 22                                                                  | Card unsteady.      |
|             | _23 44                                               | 1                                                  | M.               | +13 28                                                   | s.w.byw. $\frac{1}{2}$ w.                       |                           | +19                                           |           | +14 39                                                                         | 1                   |
| June 1 A.M. | 1 .                                                  | 1                                                  | CL.              |                                                          | w.s.w.                                          | 15                        | 1 27                                          | +52       | 115 25                                                                         |                     |
|             | _25 47                                               |                                                    | M.               | +13 24                                                   | w.s.w.                                          | $  \} -57 19$             | +27                                           |           | $\begin{vmatrix} +13 & 33 \\ +14 & 43 \end{vmatrix} + 15 & 09$                 | Unsteady.           |
| 2 A.M.      |                                                      | 49 20                                              | M.               | +15 38                                                   | N.W.                                            | 11                        | -01                                           |           | +16 297                                                                        |                     |
| 1           | _26 30                                               | 49 20                                              | CL.              | +15 25                                                   | N.W.                                            | <b>├</b> —58 36           |                                               | +52       | $+16\ 16 > +16\ 23$                                                            |                     |
| 1           | _26 30                                               |                                                    | T.               | +15 32                                                   | N.W.                                            | IJ                        | -01                                           |           | +16 23J                                                                        | **                  |
| 4 A.M.      |                                                      |                                                    | CL.              |                                                          | w. by s.                                        | Ŋ                         | +48                                           |           | $+21 \ 30$                                                                     |                     |
|             |                                                      | 46 09                                              | Cr.              | +1901                                                    | w. by s.                                        |                           | +48                                           | +52       | +20 41                                                                         |                     |
| <b>I</b> .  |                                                      | 46 14                                              |                  | +17 56                                                   | w. by s.                                        | $-58 \ 38$                |                                               |           |                                                                                | Very unsteady.      |
| 4 P.M.      |                                                      | 45 59                                              |                  | +19 18                                                   | w. by s.                                        |                           | +48                                           |           | +20 58                                                                         |                     |
| Sunset      |                                                      | 45 39                                              | CL.              | +17 38                                                   | w.                                              | K                         | +51                                           |           | +19 21 ]                                                                       |                     |
| 5 А.М.      |                                                      |                                                    | CL.              |                                                          | w.                                              |                           | +31                                           |           | $\begin{bmatrix} +21 & 03 \\ +20 & 27 \end{bmatrix}$                           | Card very unsteady. |
| 1           | _28 19                                               |                                                    | M.               | +21 14                                                   | w.                                              | $-58 \ 31$                | +31                                           |           |                                                                                | card very unsteady. |
| · C         |                                                      | 43 00                                              | CL.              | +18 55                                                   | W.                                              | K                         | +31                                           |           | $\begin{bmatrix} +20 & 18 \ +21 & 02 \end{bmatrix}$                            |                     |
| 0 A.M       | -28 50                                               |                                                    |                  | +19 58  +19 47                                           | N.W. by W.                                      |                           | $  \begin{array}{c} +12 \\ +12 \end{array}  $ |           | 1 00 51                                                                        |                     |
| 1           | $\begin{bmatrix} -28 & 49 \\ -28 & 49 \end{bmatrix}$ | $\begin{vmatrix} 42 & 10 \\ 42 & 11 \end{vmatrix}$ | M. CL.           |                                                          | N.w. by w.                                      | <b>├</b> —59 01           | +12 + 12                                      |           | $\begin{vmatrix} +20 & 51 \\ +22 & 52 \end{vmatrix} + 21 & 57$                 | Very unsteady,      |
| 1           |                                                      | 42 00                                              | M.               | $\begin{vmatrix} +21 & 48 \\ +22 & 00 \end{vmatrix}$     | N.W. by W.                                      | 11                        | +12 + 12                                      |           | $\begin{bmatrix} +22 & 32 \\ +23 & 04 \end{bmatrix}$                           |                     |
| 7 4 34      |                                                      | 40 32                                              |                  | $\begin{vmatrix} +22 & 00 \\ +21 & 48 \end{vmatrix}$     | w. by w.                                        | K                         | +22                                           | +59       | $\begin{bmatrix} +23 & 04 \end{bmatrix} \\ +23 & 02 \end{bmatrix}$             |                     |
| I A.M       |                                                      | 40 20                                              | M.               | +21 29                                                   | w. by n.                                        | 11                        | +22                                           | +52       | $\begin{bmatrix} +22 & 02 \\ +22 & 43 \end{bmatrix}$                           |                     |
| 1           |                                                      | 40 32                                              |                  |                                                          | w. by N.                                        | -5854                     |                                               |           | $\begin{vmatrix} +22 & 18 \\ +22 & 18 \\ +22 & 34 \end{vmatrix}$               | Unsteady            |
| 7 р.м       | _28 40                                               |                                                    |                  | +21 	 17                                                 | w. by N.                                        | 1                         | +22                                           |           | $+22 \ 31$                                                                     |                     |
| 1           |                                                      | 39 52                                              | CL.              | +21 04                                                   | w. by N.                                        |                           | +22                                           |           | +22 18                                                                         |                     |
|             | ]                                                    |                                                    |                  |                                                          | 1                                               |                           |                                               | 1         |                                                                                |                     |

|                              |                                                                  |                                                                     | ï.                                |                                                                                                               |                                                                                                                                                                      |                                                                | Correction                                                   | ons.                 |                                                                                                   |                |
|------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------|----------------|
| Date.                        | Lat.                                                             | Long.                                                               | Observer.                         | Declination observed.                                                                                         | Ship's head.                                                                                                                                                         | Inclination.                                                   | Ship's attraction.                                           | Index.               | Corrected Declination.                                                                            | Remarks.       |
| 1845.<br>June 8 A.M.         | -28 53                                                           | 37 58<br>37 55<br>37 56                                             | M.<br>M.<br>CL.                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                         | W.<br>W.<br>W. ½ S.                                                                                                                                                  | <u> </u>                                                       | + 32 -                                                       | +52                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                              |                |
| 8 p.m.                       | -28 56<br>-28 58                                                 | 37 56<br>37 49<br>37 37                                             | Т.<br>М.<br>М.                    | $\begin{vmatrix} +21 & 13 \\ +22 & 00 \\ +21 & 44 \\ +23 & 19 \end{vmatrix}$                                  | $\begin{array}{c} W \cdot \frac{1}{2} S \cdot \\ W \cdot \frac{1}{2} S \cdot \\ W \cdot \\ W \cdot \frac{1}{2} S \cdot \end{array}$                                  | <b>-59</b> 11                                                  | $\begin{vmatrix} + & 27 \\ + & 32 \end{vmatrix}$             | $^{+52}_{+52}$       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             |                |
| Sunset.<br>9 A.M.<br>11 A.M. | -30 20 $-30 16$                                                  |                                                                     | CL.<br>M.<br>CL.<br>M.            | $\begin{vmatrix} +22 & 48 \\ +25 & 36 \\ +24 & 38 \\ +26 & 28 \end{vmatrix}$                                  | $\begin{array}{c} W. \frac{1}{2} S. \\ W. \frac{1}{2} S. \\ W. \frac{1}{2} S. \\ N.W. \text{ by } W. \end{array}$                                                    | $\left.\begin{array}{c} \\ \\ \\ \end{array}\right\} -57 59$   | + 30<br>+ 30                                                 | $^{+}52$ $^{+}52$    | T 20 00 j                                                                                         | Very unsteady. |
| 11 A.M.                      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$           | 33 41<br>33 41<br>33 41                                             | M.<br>M.                          | $\begin{vmatrix} +24 & 42 \\ +27 & 05 \\ +26 & 59 \end{vmatrix}$                                              | W. ½ N.<br>S.E.<br>N.E.                                                                                                                                              | -56 37                                                         | $\begin{vmatrix} + & 24 \\ - & 40 \\ -1 & 10 \end{vmatrix}$  | $^{+52}_{+52}_{+52}$ | T 20 41                                                                                           | Very unsteady. |
| 12 A.M.<br>13 A.M.           |                                                                  | 33 41                                                               | Bn.<br>Cl.<br>M.<br>M.            | $\begin{vmatrix} +27 & 43 \\ +29 & 36 \\ +23 & 58 \\ +25 & 15 \end{vmatrix}$                                  | s.e.<br>s.e. $\frac{1}{2}$ e.<br>w. by N.<br>w. by s. $\frac{1}{2}$ s.                                                                                               | -57 19                                                         | $\begin{vmatrix} - & 46 \\ + & 19 \end{vmatrix}$             | $^{+52}_{+52}$       | $egin{bmatrix} +27 & 55 \ +29 & 42 \ +25 & 09 \ +26 & 32 \ \end{pmatrix}$                         | Very unsteady. |
|                              | $\begin{vmatrix} -31 & 05 \\ -31 & 06 \\ -31 & 16 \end{vmatrix}$ | 31 34<br>31 30<br>31 28                                             | M.<br>M.<br>M.<br>Bn.             | $     \begin{array}{r}     +25 & 22 \\     +25 & 13 \\     +25 & 25     \end{array} $                         | w. by s. $\frac{1}{2}$ s.<br>w. by s. $\frac{1}{2}$ s.<br>w. by s. $\frac{1}{2}$ s.                                                                                  |                                                                | $egin{bmatrix} + & 25 \ + & 25 \ + & 25 \ \end{pmatrix}$     | $^{+52}_{+52}_{+52}$ | $\begin{vmatrix} +26 & 39 \\ +26 & 30 \\ +26 & 42 \end{vmatrix}$                                  |                |
| 13 р.м.                      | -31 05                                                           |                                                                     | CL.                               | $\begin{vmatrix} +27 & 16 \\ +25 & 46 \\ +24 & 39 \\ +25 & 06 \end{vmatrix}$                                  | w. by s. $\frac{1}{2}$ s. s.w.byw. $\frac{1}{2}$ w.s.w.byw. $\frac{1}{2}$ w.                                                                                         |                                                                | $\begin{vmatrix} + & 25 \\ + & 21 \end{vmatrix}$             | $^{+52}_{+52}$       | $\begin{vmatrix} +28 & 34 \\ +27 & 03 \\ +25 & 52 \\ +26 & 19 \end{vmatrix}$                      | Card steady.   |
| 14 A.M.                      |                                                                  | 29 51<br>3 29 45                                                    | M.<br>CL.<br>T.                   | $\begin{vmatrix} +25 & 26 \\ +28 & 06 \\ +27 & 02 \\ +27 & 19 \end{vmatrix}$                                  | $\begin{array}{c c} s.w.byw.\frac{1}{2}w.\\ s.w.byw.\frac{1}{2}w.\\ w.\frac{1}{2}s.\\ w.\frac{1}{2}s. \end{array}$                                                   | $\left  \begin{array}{c} \\ \\ \\ \end{array} \right  = 57 34$ | $egin{pmatrix} + & 21 \\ + & 22 \\ + & 30 \end{bmatrix}$     | $+52 \\ +52$         | $\begin{vmatrix} +26 & 39 \\ +29 & 20 \\ +28 & 24 \\ +28 & 41 \end{vmatrix}$                      | Card unsteady. |
| 15 А.М                       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$           | 29 55<br>27 14<br>5 27 12                                           | CL.<br>M.<br>T.                   | $\begin{vmatrix} +27 & 09 \\ +27 & 06 \\ +26 & 23 \end{vmatrix}$                                              | $W. W. \frac{1}{2} S. W. \frac{1}{2} S.$                                                                                                                             |                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | $+52 \\ +52 \\ +52$  | $egin{pmatrix} +28 & 32 \ +28 & 28 \ +27 & 45 \ \end{pmatrix}$                                    |                |
|                              | -3440                                                            | $\begin{vmatrix} 27 & 10 \\ 27 & 00 \end{vmatrix}$                  | Bn.<br>CL.                        | $\begin{vmatrix} +28 & 21 \\ +26 & 52 \end{vmatrix}$                                                          | $\begin{array}{c cccc} W \cdot \frac{1}{2} & N \cdot \\ W \cdot \frac{1}{2} & N \cdot \\ W \cdot \frac{1}{2} & N \cdot \\ W \cdot \frac{1}{2} & N \cdot \end{array}$ | -57 06                                                         | $^{+}_{5}$ $^{26}_{+}$ $^{26}$                               | $+52 \\ +52$         | $\begin{vmatrix} +27 & 26 \\ +29 & 16 \\ +29 & 39 \\ +28 & 10 \end{vmatrix} +28 & 41$             |                |
| 15 Noon<br>P.M               | -345                                                             | 26 46<br>25 58<br>25 58                                             | M.<br>CL.                         |                                                                                                               | N.w. by w.<br>N.w. by w.<br>N.w. by w.                                                                                                                               |                                                                | + 02<br>00<br>00                                             | $+52 \\ +52 \\ +52$  | $egin{pmatrix} +29 & 44 \\ +28 & 46 \\ +28 & 46 \end{bmatrix}$                                    |                |
| 10 A.M                       | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$           | $egin{pmatrix} 23 & 38 \\ 0 & 23 & 34 \\ 2 & 23 & 32 \end{bmatrix}$ | B <sub>N</sub> . C <sub>L</sub> . | $\begin{vmatrix} +27 & 26 \\ +28 & 06 \\ +28 & 14 \end{vmatrix}$                                              | $w.\frac{1}{2} s.$ $w.\frac{1}{2} s.$ $w. by n.$ $w. by n.$                                                                                                          | -56 08                                                         | $\begin{vmatrix} + & 27 \\ 3 + & 17 \\ + & 17 \end{vmatrix}$ | +52 + 52 + 52        | $\begin{vmatrix} +28 & 30 \\ +28 & 45 \\ +29 & 15 \\ +29 & 23 \end{vmatrix}$                      | Card unsteady. |
|                              | -354                                                             | 0 21 34                                                             | CL.                               | $     \begin{array}{r}       +31 & 16 \\       +28 & 38 \\       +28 & 21 \\       +26 & 41     \end{array} $ | N. $\frac{1}{2}$ E.<br>N.W. $\frac{1}{2}$ W.<br>W.N.W.<br>W. by S.                                                                                                   | $\begin{vmatrix}                                    $          | $\begin{bmatrix} - & 53 \\ - & 14 \\ + & 04 \end{bmatrix}$   | $+52 \\ +52 \\ +52$  | $egin{pmatrix} +31 & 15 \ +29 & 16 \ +29 & 17 \ +27 & 56 \ \end{pmatrix} +29 & 16 \ \end{array}$  | 1              |
| 19 А.м                       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$           | 8 20 24<br>8 20 24<br>5 19 35                                       | M. CL.                            | $\begin{vmatrix} +27 & 29 \\ +27 & 43 \\ +29 & 00 \end{vmatrix}$                                              | 8.W. $\frac{3}{4}$ S.<br>S.W. $\frac{3}{4}$ S.<br>N.W.                                                                                                               | $\left.\right\} -54 50$                                        | $\begin{vmatrix} + & 19 \\ + & 19 \\ - & 19 \end{vmatrix}$   | +52 + 52 + 52        | $egin{pmatrix} +28 & 40 \\ +28 & 54 \\ +29 & 33 \end{pmatrix} +28 & 47 \\ +29 & 33 \end{pmatrix}$ | 7              |
|                              |                                                                  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$              |                                   | $\begin{vmatrix} +28 & 14 \\ +27 & 34 \end{vmatrix}$                                                          | N.W. $\frac{1}{2}$ W.                                                                                                                                                |                                                                |                                                              |                      | $\begin{array}{c c} +29 & 06 \\ +28 & 12 \end{array}$                                             | 7              |

| Date. | Lat.                                                                    | Long.                         | Observer.                                | Declination<br>observed.                                                                                                                                                         | Ship's head. | Inclination.                       | Ship's attraction.                                                                                                   | Index. su                                                                                                             | Corrected Declination.                                                                 | Remarks.                                                                                 |
|-------|-------------------------------------------------------------------------|-------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|       | -34 12  -34 12  Wanchor in Simon's Bay.  As 56  Magnet servator of Good | -dO Hobe.  Cape of Good Hobe. | M.<br>M.<br>M.<br>M.<br>M.<br>CL.<br>CL. | +28 52<br>+28 23<br>+28 23<br>+27 40<br>+27 28<br>+27 14<br>+27 40<br>+28 36<br>+29 30<br>+29 34<br>+29 47<br>+30 22<br>+29 56<br>+29 51<br>+29 26<br>+28 26<br>+28 11<br>+28 07 | Correction   | the Index as for Cards true Decli- | - 37<br>- 19<br>+ 04<br>+ 26<br>+ 21<br>+ 11<br>+ 02<br>- 07<br>- 20<br>- 39<br>- 1 01<br>- 1 23<br>- 1 19<br>- 1 09 | +52 $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ $+52$ | +29 21<br>+30 02<br>+29 47<br>+29 38<br>+29 51<br>+29 29<br>+29 34<br>+29 18<br>+29 18 | To obtain the corrections for the ship's iron.  Card J. error ~52'.  Card A. error -47'. |

Observations of the Inclination made on board Her Majesty's hired Bark "Pagoda," from the 10th of January to the 21st of July 1845, with Needle A (Fox C. 9). Face East.

Observer Lieut. T. E. L. MOORE, R.N. One hour after Noon.

|                   |         |       |                                                               |                                                                                                                                  |                                                                                                                                                                                                                                                                                                     | Corre                                                            | ctions.   |                        |                                       |
|-------------------|---------|-------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------|------------------------|---------------------------------------|
| Date.             | Lat.    | Long. | Method<br>employed.                                           | Observed<br>Inclination.                                                                                                         | Ship's head.                                                                                                                                                                                                                                                                                        | Ship's attraction.                                               | Index.    | Corrected Inclination. | Remarks.                              |
| 1845.<br>Jan. 10. | 34 46   | 17 46 | Direct. Needle N. Needle S. Mag. N. Mag. N.S. Mag. S.         | $\begin{array}{rrrrr} -5\overset{\circ}{4} & 2\acute{6} \\ -54 & 44 \\ -53 & 27 \\ -54 & 22 \\ -53 & 53 \\ -53 & 54 \end{array}$ | w. by n.                                                                                                                                                                                                                                               | +63                                                              | ,<br>- 26 | -53 34                 | Fresh breeze, a head<br>swell.        |
| 11.               | -35 29  | 15 09 | Direct. Direct. Needle N. Needle S. Mag. N.S. Mag. N.         | $\begin{array}{r rrrr} -54 & 32 \\ -52 & 27 \\ -52 & 38 \\ -51 & 42 \\ -52 & 55 \\ -52 & 15 \end{array}$                         | w. by N. N.W. by W.                                                                                                                                                                                                                                     | Len                                                              | -26       | -51 27                 | A little motion.                      |
| 12.               | -35 17  | 14 00 | Mag. S. Direct. Needle N. Needle S. Mag. N.S. Mag. N. Mag. S. | -52 09<br>-51 45<br>-52 17<br>-51 20<br>-51 56<br>-51 29<br>-51 26                                                               | N.W. by W.  W. \frac{1}{2} S.                                                                                                                                                                        |                                                                  | -26       | <b>—51</b> 16          | A little motion.                      |
| 13.               | -35 24  | 13 23 | Direct. Direct. Needle N. Needle S. Mag. N.S. Mag. N.         | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                             | $\begin{array}{c} \text{W.} \frac{1}{2} \text{ S.} \\ \text{S.W.} \frac{1}{2} \text{ S.} \end{array}$ | +27                                                              | -26       | -51 19                 | A little motion.                      |
| 15.               | -38 42  | 14 27 | Mag. S. Direct. Needle N. Needle S. Mag. N.S. Mag. N. Mag. S. | $     \begin{array}{r}       -53 & 47 \\       -52 & 36 \\       -53 & 38 \\       -53 & 19     \end{array} $                    | s.w. $\frac{1}{2}$ s.<br>s. by w. $\frac{1}{2}$ w.<br>s. by w. $\frac{1}{2}$ w.                                                                                                 | +18                                                              | -26       | -53 31                 | A head' swell, table<br>unsteady.     |
| 16.               | -39 10  | 14 38 | Direct. Direct. Needle N. Needle S. Mag. N.S. Mag. N.         | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                            | s. by w. ½ w.<br>s. by w. ½ w.<br>s.w.byw.½w.<br>s.w.byw.½w.<br>s.w.byw.½w.<br>s.w.byw.½w.                                                                                                                                                                                                          | $\left  \begin{array}{c} \\ \\ \\ \\ \end{array} \right _{>+12}$ | -26       | 54 12                  | Table very unsteady.                  |
| 17.               | - 40 41 | 14 16 | Mag. S. Direct. Direct. Needle N. Needle S. Mag. N.S.         | $\begin{array}{rrrrr} -53 & 58 \\ -53 & 36 \\ -55 & 17 \\ -55 & 27 \\ -54 & 47 \\ -55 & 22 \end{array}$                          | s.w.by w.½w.<br>s.w.by w.½w.<br>w.s.w.<br>w.s.w.<br>w.s.w.                                                                                                                                                                                                                                          |                                                                  | -26       | 54 - 59                | A heavy head swell,<br>much motion.   |
| 21.               | 50 21   | 10 31 | Direct. Needle N. Needle S. Mag. N.S. Mag. N. Mag. S.         | -55 39<br>-55 32<br>-55 15<br>-55 49<br>-55 25<br>-55 31                                                                         | s.w.<br>s.w.<br>s.w.<br>s.w.<br>s.w.                                                                                                                                                                                                                                                                | +24                                                              | -26       | 55 34                  | Moderate breezes, a<br>little motion. |

|                           |                     |         |                                              |                                                                                                                                   |                                                                                                                  | Corrections.                                                |            |                  |                                                                                 |
|---------------------------|---------------------|---------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------|------------------|---------------------------------------------------------------------------------|
| Date.                     | Lat.                | Long.   | Method<br>employed.                          | Observed<br>Inclination.                                                                                                          | Ship's head.                                                                                                     | Ship's attraction.                                          | Index.     | Corrected Inclin | ation. Remarks.                                                                 |
| 1845.<br><b>J</b> an. 23. | $-\mathring{5}0$ 48 | 3 10 18 | Direct.<br>Needle N.                         | -5745                                                                                                                             | s.w.byw.½w.<br>s.w.byw.½w.                                                                                       | ) ′                                                         | -          | 0 /              |                                                                                 |
|                           |                     |         | Mag. N.S.<br>Mag. N.<br>Mag. N.<br>Mag. S.   | $-57 	ext{ } 45 \ -57 	ext{ } 28$                                                                                                 | s.w.byw. $\frac{1}{2}$ w.<br>s.w.byw. $\frac{1}{2}$ w.<br>s.w.byw. $\frac{1}{2}$ w.<br>s.w.byw. $\frac{1}{2}$ w. | +34                                                         | -26        | -57 19           | A little motion.                                                                |
| 24.                       | -51 4               | 9 36    | Direct. Direct. Needle N.                    | $     \begin{array}{r rrr}     -57 & 25 \\     -57 & 24     \end{array} $                                                         | s.w.byw. $\frac{1}{2}$ w. s.w. by w.                                                                             | $\left. ight\} +30$                                         | -26        | <b>-57</b> 28    | Moderate breeze,                                                                |
| 24.                       | -51 50              | 9 30    | Direct. Mag. N.S.                            | -5741                                                                                                                             | s.w. by w.<br>s.w.byw.½w.<br>s.w.byw.½w.                                                                         | 3                                                           |            | -57 42           | table steady.  A head swell, much                                               |
| 25.                       | -53 2               | 7 32    | Direct. Direct. Needle N.                    | $     \begin{array}{r rrr}     -57 & 44 \\     -57 & 26 \\     -57 & 51     \end{array} $                                         | s.w.byw. $\frac{1}{2}$ w.<br>s.w.byw. $\frac{1}{2}$ w.<br>s.w.byw. $\frac{1}{2}$ w.                              |                                                             |            | • =:·            | motion 4½ P.M.                                                                  |
|                           |                     |         | Mag. N.S.<br>Mag. N.<br>Mag. N.<br>Mag. S.   | -57.24 $-57.33$                                                                                                                   | s.w.byw.½w.<br>s.w.byw.½w.<br>s.w.byw.½w.<br>s.w.byw.½w.                                                         | <b>&gt;+28</b>                                              | -26        | -57 24           | Ship passing through streams of loose ice.                                      |
| 26.                       | -54 09              | 6 02    | Direct. Direct. Needle N.                    | $     \begin{array}{r rrr}     -57 & 24 \\     -57 & 56 \\     -57 & 49     \end{array} $                                         | s.w.byw.½w.<br>w. by n.<br>w. by n.                                                                              |                                                             |            |                  |                                                                                 |
|                           |                     |         | Needle S.<br>Mag. N.S.<br>Mag. N.<br>Mag. S. | $ \begin{array}{rrrr} -57 & 02 \\ -57 & 55 \\ -57 & 05 \\ -57 & 18 \end{array} $                                                  | w. by n. w. by n. w. by n. w. by n.                                                                              | <b>&gt;+61</b>                                              | -26        | -56 58           | Table steady, small pieces of loose ice about the ship.                         |
| 27.                       | -55 1               | 5 55    | Direct. Direct. Needle N. Direct.            | $ \begin{array}{r rrrr} -57 & 43 \\ -57 & 30 \\ -58 & 23 \\ -57 & 54 \end{array} $                                                | w. by N. s.s.w. ½ w. s.s.w. ½ w. s.s.w. ½ w.                                                                     | $\left. \begin{array}{c} \\ \\ \\ \end{array} \right. + 10$ | <b>—26</b> | -58 12           | Ship pitching heavily, fresh breezes.                                           |
| 31.                       | <b>-61</b> 1        | 9 07    | Direct.<br>Needle N.<br>Needle S.            | $ \begin{vmatrix} -61 & 13 \\ -61 & 41 \\ -60 & 41 \end{vmatrix} $                                                                | S.S.E.<br>S.S.E.<br>S.S.E.                                                                                       |                                                             |            |                  |                                                                                 |
|                           |                     |         | Mag. N.S.<br>Mag. N.<br>Mag. S.<br>Direct.   | $ \begin{vmatrix} -61 & 04 \\ -60 & 58 \\ -61 & 26 \\ -61 & 23 \end{vmatrix} $                                                    |                                                                                                                  | <b>&gt;+05</b>                                              | -26        | -61 43           | Table steady, heavy snow.                                                       |
| Feb. 1.                   | -62 0               | 12 52   | Direct. Needle N. Needle S.                  | $ \begin{vmatrix} -62 & 56 \\ -62 & 41 \\ -62 & 36 \end{vmatrix} $                                                                | s.e. by s. s.e. by s.                                                                                            | <b>)</b> 0                                                  | -26        | <b>-63</b> 17    | Much motion, table very unsteady,                                               |
| 2.                        | -61 5               | 6 16 36 | Direct. Direct. Needle N. Needle S.          | $ \begin{array}{r rrrr} -63 & 12 \\ -63 & 59 \\ -62 & 25 \\ -63 & 37 \end{array} $                                                | s.e. by s.<br>s.e. $\frac{1}{2}$ e.<br>s.e. $\frac{1}{2}$ e.<br>s.e. $\frac{1}{2}$ e.                            |                                                             |            |                  | heavy snow.                                                                     |
|                           |                     |         | Needle N.S.<br>Mag. N.<br>Mag. S.            | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                            | S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E.                                          | +13                                                         | -26        | -63 55           | Heavy snow, a head<br>sea, ship pitching<br>violently, water<br>clear from ice. |
| 3.                        | -61 5               | 0 19 14 | Direct. Direct. Direct.                      | $ \begin{vmatrix} -64 & 09 \\ -65 & 09 \\ -64 & 49 \end{vmatrix} $                                                                | w.s.w.                                                                                                           | $egin{pmatrix} +25 \\ +92 \end{smallmatrix}$                |            |                  |                                                                                 |
|                           | Co. ^               | 0 20 40 | Direct. Direct.                              | $     \begin{array}{r rrr}     -65 & 00 \\     -64 & 59 \\     -64 & 44 \\     \hline     64 & 18 \\     \hline     \end{array} $ | w.<br>w.s.w.<br>s.w.                                                                                             | $\begin{vmatrix} +47 \\ +25 \\ +03 \end{vmatrix}$           |            | -64 44           | Calm.                                                                           |
| 4.                        | <b>-63 0</b>        | 0 20 40 | Direct. Needle N. Needle S. Needle N.S.      | $ \begin{array}{r rrrr} -64 & 13 \\ -64 & 12 \\ -63 & 39 \\ -64 & 06 \end{array} $                                                | s.w.                                                                                                             | \\\\>+03                                                    | -26        | -64 25           | Unsteady.                                                                       |
|                           | •                   |         | Mag. N. Mag. S.                              | $\begin{bmatrix} -63 & 59 \\ -64 & 06 \end{bmatrix}$                                                                              |                                                                                                                  | ]                                                           |            |                  |                                                                                 |

|         |            |       |                        |                                                                           |                                                     | Correc             | ctions.     |                        |                                        |
|---------|------------|-------|------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|--------------------|-------------|------------------------|----------------------------------------|
| Date.   | Lat.       | Long. | Method<br>employed.    | Observed<br>Inclination.                                                  | Ship's head.                                        | Ship's attraction. | Index.      | Corrected Inclination. | Remarks.                               |
| 1845.   |            |       |                        |                                                                           |                                                     | ,                  | ,           | 0 /                    |                                        |
| Feb. 5. | $-63\ 19$  | 21 48 | Direct.                | $-65^{\circ} 17^{\circ}$                                                  | S.S.E.                                              | ר ו                | .•          |                        |                                        |
|         |            |       | Needle N.              | -64 39                                                                    | S.S.E.                                              |                    |             |                        | }                                      |
|         |            |       | Needle S.              | -64 29                                                                    | S.S.E.                                              | ,,                 | o.c         | Gr of                  |                                        |
| . ,     |            |       | Needle N.S.<br>Mag. N. |                                                                           | S.S.E.<br>S.S.E.                                    | $\rangle$ -15      | <b>- 26</b> | -65 35                 | Heavy swell from<br>S.E., light breeze |
|         |            |       | Mag. N.                | $\begin{vmatrix} -64 & 46 \\ -64 & 52 \end{vmatrix}$                      | S.S.E.<br>S.S.E.                                    |                    |             |                        | table steady.                          |
|         |            |       | Direct.                | -65 25                                                                    | S.S.E.                                              |                    |             |                        |                                        |
| 6.      | -64 25     | 24 18 | Direct.                | $-66 \frac{17}{17}$                                                       | S.S.E. 1/2 E.                                       | ξ                  |             |                        |                                        |
|         |            |       | Needle N.              | -66 16                                                                    | S.S.E. 1/2 E.                                       |                    |             |                        |                                        |
|         |            |       | Needle S.              | -65 28                                                                    | S.S.E. 1/2 E.                                       | <b>&gt;-14</b>     | -26         | -66 41                 | Table steady.                          |
|         |            |       | Needle N.S.            |                                                                           | S.S.E. 1/2 E.                                       |                    |             |                        | j                                      |
|         | C= 00      | 20.40 | Direct.                | -66 07                                                                    | S.S.E. \(\frac{1}{2}\) E.                           | Į.                 |             |                        | ļ                                      |
| 7.      | -65 39     | 28 48 | Direct.<br>Needle N.   |                                                                           | s. by E. ½ E.                                       |                    |             |                        |                                        |
|         |            |       | Needle S.              | -66 54                                                                    | s. by E. $\frac{1}{2}$ E. s. by E. $\frac{1}{2}$ E. |                    |             |                        | -                                      |
|         |            |       | Needle N.S.            | -67 05                                                                    | s. by E. $\frac{1}{2}$ E.                           | $\rangle$ -22      | -26         | -67 56                 | Table steady.                          |
|         |            |       | Mag. N.                | -67 02                                                                    | s. by E. $\frac{1}{2}$ E.                           |                    |             |                        |                                        |
|         |            |       | Mag. S.                | -67 10                                                                    | s. by E. 1/2 E.                                     |                    |             |                        |                                        |
| 8.      | -66 27     | 30 45 | Direct.                | -68 28                                                                    | s.E. by E.                                          | )                  |             |                        | •                                      |
|         |            |       | Needle N.              | -68 09                                                                    | s.e. by e.                                          |                    |             |                        |                                        |
|         |            |       | Needle S.              | -6749                                                                     | s.E. by E.                                          | 105                | 06          | -68 31                 | Ì                                      |
|         |            |       | Needle N.S.            | -6804                                                                     | s.E. by E.                                          | $\rangle + 05$     | 26          | -08 31                 | Fresh breeze, table steady.            |
|         |            |       | Mag. N.<br>Mag. S.     | $     \begin{array}{r rrr}     -68 & 08 \\     -68 & 06     \end{array} $ | s.e. by e.                                          |                    |             |                        |                                        |
|         |            |       | Direct.                | -68 26                                                                    | s.e. by e.                                          |                    |             |                        |                                        |
| 9.      | $-66 \ 36$ | 36 50 | Direct.                | -6911                                                                     | s.e. by e.                                          | 3 1                |             |                        |                                        |
| 3.      |            |       | Needle N.              | -69 13                                                                    | s.e. by e.                                          |                    |             |                        |                                        |
|         |            |       | Needle S.              | -68 40                                                                    | s.e. by e.                                          |                    |             |                        | (                                      |
|         |            |       | Needle N.S.            |                                                                           | s.e. by e.                                          | >+05               | -26         | -69 22                 | Light breeze, very steady.             |
|         |            |       | Mag. N.                | -6859                                                                     | s.e. by e.                                          |                    |             | et i                   |                                        |
|         |            |       | Mag. S. Direct.        | -69 02<br>60 00                                                           | s.e. by e.                                          |                    |             |                        |                                        |
| 10.     | -67 10     | 38 51 | Direct.                | $\begin{vmatrix} -69 & 20 \\ -70 & 12 \end{vmatrix}$                      | s.e. by e.                                          | $\forall$          |             |                        |                                        |
| 10.     | -0, 10     | 00 01 | Needle N.              | $-70^{\circ} 12^{\circ} -70^{\circ} 53^{\circ}$                           | s. by w.                                            |                    |             |                        |                                        |
|         | -          |       | Needle S.              | -70 02                                                                    | s. by w.                                            |                    |             |                        |                                        |
|         |            |       | Needle N.S.            |                                                                           | s. by w.                                            | -32                | -26         | -71 07                 | Steady.                                |
|         |            |       | Mag. N.                | -70 00                                                                    | s. by w.                                            | 1                  |             |                        |                                        |
|         |            |       | Mag. S.                | -70 12                                                                    | s. by w.                                            |                    |             |                        |                                        |
|         | C# 90      | 40.00 | Direct.                | -70 05                                                                    | s. by w.                                            | ر ا                |             |                        |                                        |
| 11.     | -67 39     | 40 28 | Direct.<br>Needle N.   | $\begin{vmatrix} -70 & 33 \\ -70 & 26 \end{vmatrix}$                      | N.E.                                                | \ \ +89            | -26         | -69 27                 | Strong breeze, sail-                   |
| 12.     | -67 18     | 40 22 | Direct.                | $-69 \ 36$                                                                | N.E.<br>S. ½ E.                                     | 7                  |             |                        | ing along a pack of ice, unsteady.     |
| 1 ~.    | 0, 10      | 10 22 | Needle N.              | $-69 \ 43$                                                                | S. $\frac{1}{2}$ E.                                 |                    |             |                        |                                        |
|         |            |       | Needle S.              | -68 58                                                                    | S. $\frac{1}{2}$ E.                                 |                    |             |                        |                                        |
|         | ļ          |       | Needle N.S.            | -6928                                                                     | $S_{\bullet} = \frac{1}{2} E_{\bullet}$             | > -32              | -26         | <b>-70 20</b>          | Fresh breeze, table                    |
| - 1     |            |       | Mag. N.                | -69 18                                                                    | S. $\frac{1}{2}$ E.                                 |                    |             |                        | unsteady.                              |
| ·       |            |       | Mag. S.                | -69 03                                                                    | $s. \frac{1}{2} E.$                                 |                    |             |                        |                                        |
| 13.     | -66 55     | 40 1C | Direct.                | -69 28                                                                    | S. \(\frac{1}{2}\) E.                               | Ν, I               |             |                        |                                        |
| 19.     | 00 99      | 40 16 | Direct.<br>Needle N.   | -70 12 $-70 28$                                                           | E.N.E.<br>E.N.E.                                    |                    |             |                        |                                        |
|         |            |       | Needle S.              | -69 54                                                                    | E.N.E.                                              |                    |             |                        |                                        |
| .       |            |       | Needle N.S.            | -7008                                                                     | E.N.E.                                              | \_+67              | -26         | -69 30                 | A swell from the                       |
|         |            |       | Mag. N.                | -70 14                                                                    | E.N.E.                                              |                    |             |                        | eastward, table<br>unsteady.           |
|         |            |       | Mag. S.                | <b>-70 06</b>                                                             | E.N.E.                                              |                    |             |                        |                                        |
| 1       |            |       | Direct.                | -70 13                                                                    | E.N.E.                                              | ا زا               |             |                        |                                        |

|          |                  |       |                        |                                                        |                                                    | Corre              | ctions. |                        |                                      |
|----------|------------------|-------|------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------|---------|------------------------|--------------------------------------|
| Date.    | Lat.             | Long. | Method employed.       | Observed.<br>Inclination.                              | Ship's head.                                       | Ship's attraction. | Index.  | Corrected Inclination. | Remarks.                             |
| 1845.    |                  |       |                        |                                                        |                                                    |                    |         |                        |                                      |
| Feb. 14. | $-66^{\circ}$ 24 | 40 01 | Direct.                | -7038                                                  | N.E. by N.                                         | h '                | 1       | 0, 1                   |                                      |
|          |                  |       | Needle N.              | -70 07                                                 | n.e. by n.                                         | >+89               | -26     | -69 15                 | Very squally, with                   |
|          |                  |       | Needle S.              | $-70\ 10$                                              | n.e. by n.                                         | 100                |         | 0, 10                  | thick weather,<br>table unsteady.    |
| 16.      | -64 52           | 90 97 | Direct.                | -70 17                                                 | N.E. by N.                                         | 7                  |         | **                     | table unsteady.                      |
|          | -04 6%           | 38 37 | Direct.<br>Needle N.   | -68 03 $-68 13$                                        | s. by E.<br>s. by E.                               |                    |         |                        |                                      |
|          |                  |       | Needle S.              | -67 20                                                 | s. by E.                                           |                    | 00      | 00.00                  |                                      |
|          |                  |       | Needle N.S.            |                                                        | s. by E.                                           | >-30               | -26     | -68 53                 | A heavy swell, un-<br>steady.        |
|          |                  |       | Mag. N.                | -6752                                                  | s. by E.                                           |                    |         |                        | 1                                    |
|          | 0                |       | Mag. S.                | -68 06                                                 | s. by E.                                           | J                  |         |                        |                                      |
| 17.      | $-64 \ 43$       | 40 12 | Direct.                | -6958                                                  | N.                                                 | Π                  |         |                        |                                      |
|          |                  |       | Needle N.<br>Needle S. | $-70 02 \\ -69 22$                                     | N.<br>N.                                           |                    |         |                        |                                      |
|          |                  |       | Needle N.S.            |                                                        | N.                                                 | +76                | -26     | -68 18                 | Calm, a heavy sea,                   |
|          | -                |       | Mag. N.                | -68 25                                                 | N.                                                 | ] [ ' ' '          | ,,,,    |                        | not steady.                          |
|          |                  |       | Mag. S.                | -68 30                                                 | N.                                                 |                    |         |                        |                                      |
|          |                  |       | Direct.                | -68 50                                                 | N.                                                 | J.                 |         |                        |                                      |
| 19.      | -64 05           | 41 09 | Direct.                | $-70 \ 13$                                             | E. by s.                                           | } +27              | -26     | -70 02                 | Observed the inner                   |
| മെ       | -63 19           | 45 52 | Needle N. Direct.      | -6952                                                  | E. by s.                                           | IJ                 |         | •                      | circle to have<br>moved, table       |
| 20.      | -05 19           | 45 5% | Needle N.              |                                                        | s.e. by <b>e</b> . ½ e.<br>s.e. by <b>e</b> . ½ e. | 1 1                |         | _                      | very unsteady.                       |
|          |                  |       | Needle S.              |                                                        | s.e. by E. $\frac{1}{2}$ E.                        |                    | -26     | -70 14                 | A heavy swell.                       |
|          |                  | -     | Needle N.S.            | -69 54                                                 | s.E. by E. 1/2 E.                                  | ] .                |         |                        |                                      |
|          | -63 22           | 45 58 | Direct.                | -6954                                                  | S.E.                                               | Й                  |         | $\rangle$ -70 15       |                                      |
|          |                  |       | Needle N.              | -69 53                                                 | S.E.                                               | -08                | -26     | <b>-70 15</b>          | Strong breezes, with                 |
|          |                  |       | Needle S.              | -69 06                                                 | S.E.                                               |                    |         | ,,,,,,                 | a heavy sea run-<br>ning.            |
| 91       | -63 36           | 46 46 | Needle N.S.<br>Direct. | $\begin{bmatrix} -69 & 50 \\ -69 & 38 \end{bmatrix}$   | S.E.                                               | K                  |         |                        | 5                                    |
| Α1.      | -00 00           | 10 10 | Needle N.              | -69 39                                                 | S.E.                                               |                    | ~ 0     |                        |                                      |
|          |                  |       | Needle S.              | -69 03                                                 | S.E.                                               | \\ \rightarrow -08 | -26     | -70 05                 | Table unsteady,<br>eight icebergs in |
|          |                  |       | Needle N.S.            | $-69 \ 43$                                             | S.E.                                               | IJ                 |         |                        | sight.                               |
|          | -63 36           | 46 50 | Direct.                | -70 01                                                 | S.E.                                               | ח                  |         | >-70 13                | 3                                    |
|          |                  |       | Needle N.              | -7002                                                  | S.E.                                               | ] ]                |         |                        |                                      |
|          |                  |       | Needle S. Needle N.S.  | $\begin{vmatrix} -69 & 34 \\ -69 & 32 \end{vmatrix}$   | S.E.                                               | -10                | -26     | -70 21                 | Much motion.                         |
|          |                  |       | Mag. N.                | $-69 \ 37$                                             | S.E.                                               |                    | . ~0    | 10 213                 | much motion.                         |
|          |                  | 1     | Mag. S.                | -69 32                                                 | S.E.                                               | 11 .               |         |                        |                                      |
|          |                  |       | Direct.                | -70 00                                                 | S.E.                                               |                    |         | 6.                     |                                      |
| 25.      | -61 34           | 53 49 | Direct.                | -7044                                                  | S.E. ½ E.                                          | Ď.                 |         |                        |                                      |
|          |                  |       | Needle N. Needle S.    | -70 22                                                 | S.E. $\frac{1}{2}$ E.                              | 11                 |         |                        |                                      |
|          |                  |       | Needle N.S.            |                                                        | S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{3}$ E.     | _05                | -26     | -70 49                 | Iceblink to the                      |
|          |                  |       | Mag. N.                | -7008                                                  | S.E. ½ E.                                          | 7-00               | -       | 70 13                  | southward, fresh                     |
|          |                  |       | Mag. S.                | -70 08                                                 | S.E. $\frac{1}{2}$ E.                              |                    |         |                        | breezes, table<br>unsteady.          |
|          |                  |       | Direct.                | -7042                                                  | S.E. 1 E.                                          |                    |         | -                      |                                      |
| 26.      | -61 19           | 57 33 | Direct.                | -71 03                                                 | S.E. ½ E.                                          | )                  |         |                        | 1                                    |
|          |                  |       | Needle N.              | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | S.E. ½ E.                                          | -07                | -26     | -71 26                 | No ice in sight,                     |
|          |                  |       | Needle S. Needle N.S.  |                                                        | S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E.     |                    |         |                        | unsteady.                            |
|          | -61 22           | 57 41 | Direct.                | $-70 \ 40$ $-71 \ 01$                                  | S.E. 2 E.<br>S.E.                                  | K                  |         |                        |                                      |
|          |                  |       | Needle N.              | -71 22                                                 | S.E.                                               | 1                  |         |                        |                                      |
|          |                  |       | Needle S.              | -70 30                                                 | S.E.                                               | _13                | -26     | -71 27                 | Danah har                            |
|          |                  |       | Needle N.S.            | $-70 \ 43$                                             | S.E.                                               | > 13               | -20     | 11 21                  | Fresh breeze, table steady.          |
|          |                  |       | Mag. N.                | -70 29                                                 | S.E.                                               |                    |         |                        |                                      |
|          |                  | 1     | Mag. S.                | $-70 \ 40$                                             | S.E.                                               | IJ                 |         |                        |                                      |

|                          |               |       |                                                         |                                                                                                                      |                                                                                                                                                             | Corre                                                  | ctions.    |                                                      |                                                  |
|--------------------------|---------------|-------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|------------------------------------------------------|--------------------------------------------------|
| Date.                    | Lat.          | Long. | Method<br>employed.                                     | Observed<br>Inclination.                                                                                             | Ship's head.                                                                                                                                                | Ship's attraction.                                     | Index.     | Corrected Inclinatio                                 | n. Remarks.                                      |
| 1845.<br>Feb. <b>27.</b> | -61° 16′      | 64 20 | Direct.<br>Needle N.                                    | $ \begin{array}{c cccc} -71 & 20 \\ -71 & 48 \\ \hline \end{array} $                                                 | S.S.E. $\frac{1}{2}$ E.<br>S.S.E. $\frac{1}{2}$ E.                                                                                                          | -26                                                    | ,<br>-26   | -72 18                                               | Very unsteady.                                   |
| 28.                      | -61 49        | 71 30 | Needle S. Direct. Needle N. Needle S.                   | $ \begin{array}{rrrrr} -71 & 10 \\ -72 & 44 \\ -72 & 49 \\ -72 & 36 \end{array} $                                    | S.S.E. ½ E.<br>S.S.E.<br>S.S.E.<br>S.S.E.                                                                                                                   |                                                        | -          |                                                      |                                                  |
| -                        |               | -     | Needle N.S.<br>Mag. N.<br>Mag. S.                       |                                                                                                                      | S.S.E.<br>S.S.E.<br>S.S.E.                                                                                                                                  | >-33                                                   | -26        | $\begin{vmatrix} -73 & 36 \\ -73 & 36 \end{vmatrix}$ | Table steady.                                    |
|                          | -61 49        | 71 30 | Direct. Needle N. Needle S. Needle N.S.                 | $     \begin{array}{rrr}     -72 & 45 \\     -73 & 01 \\     -72 & 12     \end{array} $                              | s.s.e.<br>s.s.e.<br>s.s.e.<br>s.s.e.                                                                                                                        | $\left  \right\rangle$ -36                             | -26        | <b>-73 40</b>                                        | Steady.                                          |
| Mar. 1.                  | -62 10        | 72 25 | Direct. Needle N. Needle S. Needle N.S. Mag. N.         | $     \begin{array}{rrr}     -73 & 37 \\     -73 & 54 \\     -73 & 25     \end{array} $                              | s.e. by s.<br>s.e. by s.<br>s.e. by s.<br>s.e. by s.                                                                                                        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                 | -26        | -74 33                                               | Calm, table steady.                              |
| 2.                       | -62 47        | 76 14 | Mag. S. Direct. Needle N. Needle S. Needle N.S. Mag. N. | $   \begin{array}{rrrr}     -73 & 45 \\     -73 & 41 \\     -74 & 12 \\     -73 & 39 \\     -73 & 45   \end{array} $ | s.E. by s.<br>s. by E. $\frac{1}{2}$ E.<br>s. by E. $\frac{1}{2}$ E.<br>s. by E. $\frac{1}{2}$ E.<br>s. by E. $\frac{1}{2}$ E.<br>s. by E. $\frac{1}{2}$ E. | -40                                                    | -26        | <b>-74</b> 55                                        |                                                  |
|                          | -62 49        | 76 16 | Mag. S. Direct. Needle N. Needle S. Needle N.S.         | -73 48<br>-74 11<br>-74 21<br>-73 43<br>-73 58                                                                       | s. by E. \(\frac{1}{2}\) E. s. s. s. s. s. s.                                                                                                               | $\left. ight\}$ $-45$                                  | -26        | -75 15 -75 (                                         | Steady breeze, table steady.                     |
| 3.                       | -64 20        | 79 38 | Direct. Direct. Needle N. Needle S. Needle N.S.         | $-74 56 \\ -74 39$                                                                                                   | s. by w. $\frac{1}{2}$ w.                                                     | $\left. \begin{array}{c} -40 \end{array} \right $      | -26        | <b>—75 57</b>                                        | Squalls of snow,<br>fresh breeze, un-<br>steady. |
| 5.                       | <b>-61 42</b> | 85 07 | Direct. Direct. Needle N. Needle S.                     | -74 56<br>-76 13<br>-76 40<br>-76 18                                                                                 | s. by w. $\frac{1}{2}$ w.<br>s.e. $\frac{1}{2}$ e.<br>s.e. $\frac{1}{2}$ e.<br>s.e. $\frac{1}{2}$ e.                                                        | }<br>}-17                                              | -26        | <b>-76</b> 58                                        | Table very unsteady                              |
| 6.                       | -60 48        | 88 33 | Needle N.S. Direct. Direct. Needle N. Needle S.         | -75 59<br>-76 06<br>-76 21<br>-76 41<br>-76 06                                                                       | S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E.<br>S.E.<br>S.F.<br>S.F.                                                                                      |                                                        |            |                                                      | aurora visible.                                  |
|                          | C1 00         | 01.15 | Needle N.S.<br>Mag. N.<br>Mag. S.<br>Direct.            | -75 46<br>-75 56<br>-76 16<br>-76 26                                                                                 | S.E.<br>S.E.<br>S.E.                                                                                                                                        | _23                                                    | -26        | 77 04                                                | Very unsteady.                                   |
| 7.                       | <b>-61 23</b> | 91 15 | Direct. Needle N. Needle S. Needle N.S. Mag. N.         | $ \begin{array}{c cccc} -76 & 26 \\ -77 & 02 \\ -76 & 12 \\ -76 & 28 \\ -76 & 13 \end{array} $                       | s.s.w.<br>s.s.w.<br>s.s.w.<br>s.s.w.                                                                                                                        | -46                                                    | -26        | <b>-77 41</b>                                        | Aurora visible.                                  |
| 8.                       | <b>—61 07</b> | 92 10 | Mag. S. Direct. Direct. Needle N. Needle S.             | -76 35<br>-76 26<br>-78 11<br>-77 39<br>-76 55                                                                       | s.s.w.<br>s.s.w.<br>e. by s.<br><b>e.</b> s.e.<br>e.s.e.                                                                                                    | $\left. egin{array}{c} +13 \\ > 00 \end{array}  ight.$ | -26<br>-26 | $-78 \ 24$ $-77 \ 29$ $-77 \ 5$                      | 7 Aurora visible; table unsteady; snow.          |
| all of the second        |               |       | Needle N.S.<br>Direct.                                  | $ \begin{array}{c c} -76 & 39 \\ -76 & 59 \end{array} $                                                              | E.S.E.                                                                                                                                                      |                                                        |            | ·                                                    |                                                  |

| ·          |                    |                  |                        |                                                            |                                                | Correc             | ctions. |                                                | * * * * * * * * * * * * * * * * * * *   |
|------------|--------------------|------------------|------------------------|------------------------------------------------------------|------------------------------------------------|--------------------|---------|------------------------------------------------|-----------------------------------------|
| Date.      | Lat.               | Long.            | Method.<br>employed.   | Observed<br>Inclination.                                   | Ship's head.                                   | Ship's attraction. | Index.  | Corrected Inclination.                         | Remarks.                                |
| 1845.      | -6° 30             | 92° 34           | Direct.                | -77 <sup>°</sup> 12                                        | E.S.E.                                         | 01                 | စင်     | −7 <sup>°</sup> 7 3 <sup>°</sup> 77            | ,                                       |
| Mar. 9.    | -00 30             | 92 34            | Needle N.              | $-77 12 \\ -77 31$                                         | s.e. by e.                                     | 7 -01              |         | 77 99                                          | Very unsteady,                          |
|            |                    |                  | Needle S.              | -7649                                                      | s.e. by e.                                     | -10                | -26     | -77 28 -77 38                                  | aurora visible.                         |
|            | •                  | V 1              | Needle N.S.            |                                                            | s.e. by e.                                     | - 10               | -20     | -11 200                                        |                                         |
| 10         | Ca 00              | 96 03            | Direct.                | $-76 	ext{ 41} \\ -77 	ext{ 10}$                           | s.E. by E.                                     | K I                |         |                                                |                                         |
| 10.        | -60 03             | 90 03            | Direct.<br>Needle N.   | -77 10 $-77 25$                                            | s.e. by e.                                     |                    | ~ 0     |                                                |                                         |
| 1          |                    |                  | Needle S.              | -76 45                                                     | s.e. by E.                                     | >-10               | -26     | <b>-77</b> 38                                  | Table unsteady,<br>aurora still         |
|            |                    |                  | Direct.                | -77 01                                                     | s.e. by e.                                     | J                  |         |                                                | visible.                                |
| 11         | -5945              | 99 50            | Direct.                | -79 30                                                     | E. $\frac{1}{2}$ N.                            |                    |         |                                                |                                         |
|            |                    |                  | Needle N.<br>Needle S. | -79 13 $-79 29$                                            | E. $\frac{1}{2}$ N.<br>E. $\frac{1}{2}$ N.     |                    |         |                                                |                                         |
|            |                    |                  | Needle N.S.            |                                                            | E. $\frac{1}{2}$ N.                            | >+32               | -26     | -79 23                                         | A heavy sea, very                       |
|            |                    |                  | Mag. N.                | -7945                                                      | E. $\frac{1}{2}$ N.                            |                    |         |                                                | unsteady.                               |
|            |                    |                  | Mag. S.                | -7943                                                      | E. $\frac{1}{2}$ N.                            |                    |         |                                                | -                                       |
| 12         | -57 46             | 99 17            | Direct.                | $-79 35 \\ -78 30$                                         | E. $\frac{1}{2}$ N. E. N. E.                   | $\forall$          |         |                                                |                                         |
| 10.        | 37 40              | 33 17            | Needle N.              | -78 04                                                     | E.N.E.                                         |                    | o.C     |                                                |                                         |
|            |                    |                  | Needle S.              | -78 00                                                     | E.N.E.                                         | >+50               | 26      | <b>-77</b> 43                                  | 6 A.M. The aurora<br>seen faintly, very |
|            |                    |                  | Direct.                | -78 20                                                     | E.N.E.                                         | J                  |         |                                                | unsteady.                               |
| 14.        | -56 56             | 101 36           | Direct.<br>Needle N.   | -78 04                                                     | E. by s.                                       |                    |         |                                                |                                         |
|            |                    |                  | Needle S.              | -78 21   -77 33                                            | E. by s.<br>E. by s.                           | +13                | -26     | -78 11                                         | A.M. Aurora visi-                       |
| 1          |                    |                  | Needle N.S.            |                                                            | E. by s.                                       |                    | ~0      | 70 11                                          | ble, unsteady; squally, with snow.      |
|            |                    |                  | Direct.                | -77 58                                                     | E. by s.                                       | j                  |         |                                                | 1                                       |
| 15.        | -55 40             | 103 18           | Direct.<br>Needle N.   | $-78 \ 30$                                                 | E.N.E.                                         |                    |         |                                                |                                         |
|            |                    |                  | Needle S.              | $ \begin{array}{c cccc} -78 & 53 \\ -78 & 31 \end{array} $ | E.N.E.                                         | +56                | -26     | <b>-78 09</b>                                  | Unsteady.                               |
|            |                    |                  | Needle N.S.            |                                                            | E.N.E.                                         |                    | ~0      | 70 03                                          | o nascady.                              |
|            |                    |                  | Direct.                | -78 30                                                     | E.N.E.                                         | J .                |         |                                                |                                         |
| 16.        | -54 38             | 106 15           | Direct.                | -79 32                                                     | E                                              | J                  |         |                                                |                                         |
|            |                    |                  | Needle N.<br>Needle S. | $ \begin{array}{c c} -79 & 29 \\ -78 & 48 \end{array} $    | E.<br>E.                                       | ⊥ 25               | - 26    | <b>-7</b> 9 13                                 | Heavy squalls, un-                      |
| 1          |                    |                  | Needle N.S.            |                                                            | E.                                             | > T 20             | ~0      | -13 10                                         | steady.                                 |
|            |                    |                  | Direct.                | -79 13                                                     | <b>E</b> •                                     | ]                  |         |                                                |                                         |
| 17.        | -54 10             | 108 15           | Direct.                | -79 17                                                     | E. by s.                                       | <b>)</b>           |         |                                                |                                         |
|            |                    |                  | Needle N.<br>Needle S. | $ \begin{array}{c c} -79 & 31 \\ -78 & 38 \end{array} $    | E. by s.<br>E. by s.                           | 113                | 26      | <b>-7</b> 9 19                                 | A strong gale, very                     |
| .          |                    |                  | Needle N.S.            | -78 56                                                     | E. by s.                                       | >+10               | 20      | 75 15                                          | unsteady.                               |
|            |                    | , ·              | Direct.                | -79 10                                                     | E. by s.                                       | )                  |         |                                                |                                         |
| 18.        | -53 00             | 110 35           | Direct.                | -78 38                                                     | N.E.                                           | Ť                  |         |                                                |                                         |
|            |                    |                  | Needle N.<br>Needle S. | $ \begin{array}{c cccc} -78 & 51 \\ -78 & 39 \end{array} $ | N.E.                                           | 1                  |         |                                                |                                         |
| 1          |                    |                  | Needle N.S.            | -78 50                                                     | N.E.                                           |                    | -0      | <b>*</b> • • • • • • • • • • • • • • • • • • • |                                         |
|            |                    | •                | Mag. N.                | -78 25                                                     | N.E.                                           | +80                | -26     | <b>-77</b> 39                                  | Unsteady, a heavy<br>swell from the     |
|            | 1                  |                  | Mag. S.                | -7804                                                      | N.E.                                           | .                  |         |                                                | westward, strong<br>breeze.             |
| 10         | 51 00              | 111 00           | Direct.                | $ \begin{array}{c c} -78 & 26 \\ -78 & 30 \end{array} $    | N.E.                                           | J <sub>+80</sub>   | -26     | <b>-77</b> 36                                  | Too unsteady to                         |
| 19.<br>20. | $-51 00 \\ -48 57$ | 111 29<br>112 56 | Direct. Direct.        | -78 30 $-77 14$                                            | N.E.<br>N.E. <sup>1</sup> / <sub>2</sub> N.    | 7 +00              | -20     | 11 90                                          | continue the                            |
| ~ ~ •      |                    | 222 00           | Needle N.              | -77 25                                                     | N.E. $\frac{1}{2}$ N.                          |                    |         |                                                | observation.                            |
|            |                    |                  | Needle S.              | <b>—77 01</b>                                              | N.E. $\frac{1}{2}$ N.                          | >+84               | -26     | -76 04                                         | Very unsteady.                          |
| ·          |                    |                  | Needle N.S.            | -76 55                                                     | N.E. $\frac{1}{2}$ N.                          | ( 104              | ~"      |                                                |                                         |
|            | .                  | yr .             | Mag. N.<br>Mag. S.     | -76 51 $-76 45$                                            | N.E. $\frac{1}{2}$ N.<br>N.E. $\frac{1}{2}$ N. |                    |         |                                                |                                         |
|            |                    |                  | Luge D.                | , 0 10                                                     | 2 N                                            | J                  |         |                                                |                                         |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                           | Inclination.   | Remarks.                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                            | 0 /            |                                                      |
| $egin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                              |                | 1                                                    |
| Needle S. $ -76 	ext{ }11 $ N.w. $\frac{1}{2}$ N.                                                                                                                                                 |                | 1                                                    |
|                                                                                                                                                                                                   |                |                                                      |
| Needle N.S. $ -76 \ 28 \  $ N.W. $\frac{1}{2}$ N. $ >+85 \  -26 \  $ -7                                                                                                                           | 5 32           | Light breeze, table                                  |
| Mag. N. $-76 \ 38$ N.W. $\frac{1}{2}$ N.                                                                                                                                                          |                | steady, thick fog.                                   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                           |                |                                                      |
| 2445 08   116 50   Direct.   -74 31   N. by E.   7                                                                                                                                                |                |                                                      |
|                                                                                                                                                                                                   | 3 27           | A heavy sea, ship<br>pitching heavily,               |
| Direct. $ -74 \ 37 $ N. by E.                                                                                                                                                                     |                | very unsteady.                                       |
| 25. $-43$ 22   116 49   Direct. $ -73$ 25   N. $\frac{1}{2}$ E.                                                                                                                                   |                |                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                           |                |                                                      |
| Needle N.S. $ -73 \ 18 $ N. $\frac{1}{2}$ E. $  > +70 \   -26 \  $                                                                                                                                | 2 10           | A heavy westerly<br>swell, unsteady.                 |
| $\left \begin{array}{c cccc} Mag. \ N. & -72 & 26 \\ Mag. \ S. & -72 & 46 \\ \end{array}\right  \left \begin{array}{cccccc} N. \frac{1}{2} E. \\ N. \frac{1}{2} E. \\ \end{array}\right  \right $ |                |                                                      |
| 26. $-41 \ 00$ 116 42 Mag. S. $-72 \ 46$ N. $\frac{1}{2}$ E. $-72 \ 09$ N. by W.                                                                                                                  |                |                                                      |
| Needle N.   -71 50   N. by w.                                                                                                                                                                     |                |                                                      |
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                              | 1 14           | A heavy westerly                                     |
| Mag. N.   -72 00   N. by w.                                                                                                                                                                       |                | swell.                                               |
| $\left \begin{array}{c c} \text{Mag. S.} & -72 & 12 & \text{N. by w.} \\ \text{Direct.} & -72 & 09 & \text{N. by w.} \end{array}\right $                                                          |                |                                                      |
| 2738 40 116 15 Direct72 09 N. by w. J<br>Direct69 08 N. by E.                                                                                                                                     |                |                                                      |
| Needle N.   -69 08   N. by E.                                                                                                                                                                     |                |                                                      |
| Needle S. $ -68 \ 38 $ N. by E. $ >+81 $ $ -26 $ $ -6 $ Needle N.S. $ -68 \ 59 $ N. by E. $ >+81 $                                                                                                | 8 04           | Table steady.                                        |
| Direct.   -69 03   N. by E.   }                                                                                                                                                                   |                |                                                      |
| 2837 00 116 57 Direct67 24 N. by E. Needle N67 37 N. by E.                                                                                                                                        |                |                                                      |
| Needle C   66 = 0   - 1   - 1                                                                                                                                                                     | 6 21           | Wahlastandar slaveda                                 |
| Needle N.S. $-67  14  \text{N}$ . by E. $\frac{1}{2}  \text{E}$ . $(-730)  -20  \text{M}$                                                                                                         | 00 21          | Table steady, cloudy:                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                            |                |                                                      |
| 2936 11   116 48   Direct.   -66 53   N.N.E.                                                                                                                                                      |                |                                                      |
|                                                                                                                                                                                                   | 6 00           | Unsteady.                                            |
| $ \begin{vmatrix} Needle S. & -66 & 51 \\ Needle N.S. & -66 & 57 \end{vmatrix} $ N.N.E.                                                                                                           |                |                                                      |
| 3035 07 117 28 Direct66 15 N.N.E.                                                                                                                                                                 |                |                                                      |
|                                                                                                                                                                                                   | 5 24           | Unsteady.                                            |
| Needle N.S65 59 N.N.E.                                                                                                                                                                            |                |                                                      |
| April 735 02 117 56 Direct64 42 Needle N64 39                                                                                                                                                     |                |                                                      |
| N                                                                                                                                                                                                 | 64 55          | At the tents, King                                   |
| Needle N.S.   -64 39                                                                                                                                                                              | 94 99          | George's Sound.                                      |
| Mag. N.   -64 18   Mag. S.   -64 29                                                                                                                                                               | . •            | Covern                                               |
| 1135 02 117 56 Direct65 22                                                                                                                                                                        | ſ              | At the tents, King<br>George's Sound.                |
| Needle N.   -65 04                                                                                                                                                                                |                | The readings of needle A. being very                 |
| Needle N.S. $\begin{vmatrix} -04 & 48 \\ -65 & 13 \end{vmatrix}$ $\rightarrow \dots + 18$                                                                                                         | 64 52 <b>{</b> | discordant put in<br>needle B., the<br>change having |
| Mag. N.   -65 11                                                                                                                                                                                  |                | tween the 7th and                                    |
| Mag. S.   -65 15   J                                                                                                                                                                              | (              | 10th of April*.                                      |

|                   |            |        |                          |                                                            |                                         | Corre              | ctions. |                                                            |                                   |
|-------------------|------------|--------|--------------------------|------------------------------------------------------------|-----------------------------------------|--------------------|---------|------------------------------------------------------------|-----------------------------------|
| Date.             | Lat.       | Long.  | Method<br>employed.      | Observed<br>Inclination.                                   | Ship's head.                            | Ship's attraction. | Index.  | Corrected Inclination.                                     | Remarks.                          |
| 1845.<br>Apr. 12. | -35 02     | 117 56 | Direct.                  | $-6\mathring{5} \ 3\mathring{4}$                           | <b>1</b>                                | ,                  | . /     | 0 / 0 /                                                    |                                   |
|                   |            |        | Needle N.                | -65 39                                                     |                                         |                    |         | ÷                                                          |                                   |
|                   |            |        | Needle S. Needle N.S.    | $ \begin{array}{r rrrr} -65 & 07 \\ -65 & 25 \end{array} $ | <b>}</b>                                |                    | +18     | -65 07                                                     | At the tents, King                |
|                   |            |        | Mag. N.                  | -65 21                                                     |                                         |                    |         |                                                            | George's Sound.*                  |
| 7.0               | 05.00      | 117 50 | Mag. S.                  | -65 23                                                     | J · · ·                                 | ,                  |         |                                                            | -                                 |
| 19.               | -35 02     | 117 56 | Direct.<br>Needle N.     | -65 15 $-64 55$                                            | s.                                      |                    |         |                                                            |                                   |
|                   | ·          |        | Needle S.                | -64 32                                                     | s.<br>s.                                | >-21               | +18     | -65 02                                                     |                                   |
|                   |            |        | Direct.                  | -65 15                                                     | s.                                      |                    |         |                                                            |                                   |
| 20.               | -35 06     | 117 55 | Direct.                  | -6629                                                      | s.e. by e.                              | $+12 \\ -18$       | +18     | $\begin{bmatrix} -65 & 59 \\ -65 & 58 \end{bmatrix}$ 65 59 | Unsteady.                         |
| 23.               | 25 20      | 114 95 | Direct.                  | -65 58 $-66 33$                                            | s. by E.                                | -18                | +18     | $[-65 \ 58]$                                               | Chistoady.                        |
| 23.               | -35 30     | 114 35 | Direct.<br>Needle N.     | -67 30                                                     | N.W.                                    |                    |         |                                                            |                                   |
|                   |            |        | Needle S.                | -66 30                                                     | N.W.                                    | >+92               | +18     | -6454                                                      | Very unsteady.                    |
|                   |            |        | Needle N.S.              | -66 35                                                     | N.W.                                    |                    | ·       |                                                            |                                   |
| 2.                |            | 00     | Direct.                  | $-66 \ 30$                                                 | N.W.                                    | j                  |         |                                                            |                                   |
| 25.               | -32 24     | 111 26 | Direct.                  | -64 03 $-64 22$                                            | N.w. by N.                              |                    |         |                                                            |                                   |
|                   |            |        | Needle N.<br>Needle S.   | $-63 \ 31$                                                 | n.w. by n.<br>n.w. by n.                |                    |         |                                                            |                                   |
| ľ                 |            |        | Needle N.S.              |                                                            | n.w. by n.                              | >+88               | +18     | -62 22                                                     | Moderate breeze,<br>table steady. |
| l                 |            |        | Mag. N.                  | $-64 \ 43$                                                 | n.w. by n.                              |                    |         |                                                            | •                                 |
|                   |            |        | Mag. S.                  | -64 06                                                     | n.w. by n.                              |                    |         |                                                            |                                   |
| 27.               | -29 16     | 106 49 | Direct.                  | -64 13 $-60 10$                                            | n.w. by n.                              | $\forall$ [        |         |                                                            |                                   |
| 21.               | -zg 10     | 100 49 | Needle N.                | -60 56                                                     | W.N.W.                                  |                    |         | •                                                          |                                   |
|                   |            |        | Needle S.                | _60 16                                                     | W.N.W.                                  | >+72               | +18     | -59 30                                                     | Very unsteady.                    |
|                   |            |        | Needle N.S.              |                                                            | W.N.W.                                  |                    |         |                                                            |                                   |
| 00                | 05 05      | 106 20 | Direct.                  | -60 53                                                     | w.n.w.                                  | J.                 |         |                                                            |                                   |
| 28.               | -27 35     | 106 32 | Direct.<br>Needle N.     | -58 	47 $-58 	46$                                          | w. by n.<br>w. by n.                    | 1 1                |         |                                                            |                                   |
|                   |            |        | Needle S.                | -5851                                                      | w. by N.                                |                    |         |                                                            | A heavy swell, un-                |
|                   |            |        | Needle N.S.              | _58 24                                                     | w. by N.                                | >+61               | +18     | -57 26                                                     | steady.                           |
|                   |            |        | Mag. N.                  | -5853                                                      | w. by n.                                | 1                  |         |                                                            |                                   |
|                   |            |        | Mag. S.                  | _58 53<br>_58 43                                           | w. by N.                                |                    |         | ,                                                          |                                   |
| 29.               | $-25 \ 46$ | 104 55 | Direct.                  | -56 54                                                     | w. by n.                                | $\exists$ 1        |         |                                                            |                                   |
| ~3.               |            |        | Needle N.                | _56 54                                                     | N.W.                                    |                    | . 10    | EE 05                                                      | Y                                 |
|                   |            |        | Needle S.                | $-56 \ 41$                                                 | N.W.                                    | >+88               | +18     | -55 <b>0</b> 5                                             | Very unsteady.                    |
|                   | 00.50      | 00.06  | Direct.                  | _56 54                                                     | N.W.                                    | 7                  |         |                                                            |                                   |
| May 1.            | -23 58     | 99 06  | Direct.                  | $-55 	48 \ -55 	30$                                        | N.W.                                    |                    |         |                                                            | Ungtondy                          |
|                   |            |        | Needle N.<br>Needle S.   | -55 22                                                     | N.W.                                    | >+87               | +18     | -53 46                                                     | Unsteady.                         |
|                   |            |        | Needle N.S.              | _55 28                                                     | N.W.                                    |                    |         |                                                            |                                   |
| 2.                | -24 01     | 97 25  | Direct.                  | $-55 \ 37$                                                 | $W. \frac{1}{2} N.$                     | ή l                |         |                                                            |                                   |
|                   |            |        | Needle N.                | -55 58                                                     | $W \cdot \frac{1}{2} N \cdot$           | >+56               | +18     | -54 18                                                     | Unsteady.                         |
|                   |            |        | Needle S.<br>Needle N.S. | -55 01   -55 32                                            | W. $\frac{1}{2}$ N. W. $\frac{1}{2}$ N. |                    |         |                                                            |                                   |
|                   |            |        | Treenie IV.D.            | -00 0%                                                     | W • 2 N •                               | ノー                 |         |                                                            |                                   |

<sup>\*</sup> Captain Fitzrov having left a memorandum at King George's Sound stating that he had found local magnetic disturbance at King George's Sound, the Inclination was observed on the opposite side of the bay, on the same day as at the tents: needle B gave as follows (no correction being here applied for Index in either case):—

The distance between the two stations was between three and four miles.

|        |        |       |                                                  |                                                                                                                             |                                                                                          | Correc                                                                                                     | tions.     |                                                               |                                                                            |
|--------|--------|-------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------|----------------------------------------------------------------------------|
| Date.  | Lat.   | Long. | Method employed.                                 | Observed<br>Inclination.                                                                                                    | Ship's head.                                                                             | Ship's attraction.                                                                                         | Index.     | Corrected Inclination.                                        | Remarks.                                                                   |
| 1845.  |        | 0 4   |                                                  | · /                                                                                                                         |                                                                                          |                                                                                                            | ,          | 0 / 0 /                                                       |                                                                            |
| May 3. | -23 50 | 95 56 | Direct. Needle N. Needle S. Needle N.S. Direct.  | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                        |                                                                                          | $\left  \begin{array}{c} +56 \end{array} \right $                                                          | +18        | -54 26                                                        | Unsteady.                                                                  |
| 4.     | -24 17 | 93 50 | Direct. Needle N. Needle S. Needle N.S.          | -55 43<br>-56 08<br>-55 08<br>-55 33                                                                                        | W. ½ N. W.N.W. W.N.W. W.N.W.                                                             | $\left  \begin{array}{c} \\ \\ \\ \end{array} \right  + 72 \left  \begin{array}{c} \\ \end{array} \right $ | +18        | -54 07                                                        | Unsteady.                                                                  |
| 5.     | -24 02 | 92 07 | Direct. Direct. Needle N.                        | -55 35 $-54$ 42 $-54$ 39                                                                                                    | W.N.W.<br>N.W.<br>N.W.                                                                   | )<br>}+88                                                                                                  | +18        | -52 44                                                        | Cross sea, with rolling motion.                                            |
| 7.     | -21 44 | 89 38 | Needle S. Direct. Needle N.                      | $     \begin{array}{r}       -54 & 10 \\       -53 & 33 \\       -53 & 47 \\     \end{array} $                              | N.W. $\frac{1}{2}$ W. N.W. $\frac{1}{2}$ W.                                              | +83                                                                                                        | +18        | -51 45                                                        | Cross sea, with                                                            |
| 8.     | -20 38 | 87 50 | Needle S.<br>Needle N.S.<br>Direct.<br>Needle N. | $   \begin{array}{rrrr}     -53 & 03 \\     -53 & 19 \\     -52 & 48 \\     -53 & 18   \end{array} $                        | N.W. $\frac{1}{2}$ W.<br>N.W. $\frac{1}{2}$ W.<br>W. $\frac{1}{2}$ N.                    |                                                                                                            | •          |                                                               | rolling motion.                                                            |
|        |        |       | Needle S.<br>Needle N.S.<br>Direct.              | -5158                                                                                                                       | W. $\frac{1}{2}$ N.<br>W. $\frac{1}{2}$ N.<br>W. $\frac{1}{2}$ N.<br>W. $\frac{1}{2}$ N. | +54                                                                                                        | +18        | -51 33                                                        | Very unsteady.                                                             |
| 9.     | -20 37 | 85 02 | Direct. Needle N. Needle S. Needle N.S.          | $     \begin{array}{r}       -52 & 37 \\       -53 & 16 \\       -52 & 18 \\       -52 & 20     \end{array} $               | W. $\frac{1}{2}$ N.<br>W. $\frac{1}{2}$ N.<br>W. $\frac{1}{2}$ N.<br>W. $\frac{1}{2}$ N. | $\left  \begin{array}{c} \\ \\ \\ \end{array} \right  + 55 \left  \begin{array}{c} \\ \end{array} \right $ | +18        | -51 21                                                        | Unsteady.                                                                  |
| 10.    | -20 25 | 82 00 | Direct. Direct. Needle N. Needle S.              | $     \begin{array}{rrrr}     -52 & 20 \\     -52 & 31 \\     -52 & 30 \\     -52 & 48     \end{array} $                    | W. $\frac{1}{2}$ N. W. $\frac{3}{4}$ N. W. $\frac{3}{4}$ N. W. $\frac{3}{4}$ N.          |                                                                                                            |            |                                                               |                                                                            |
|        |        |       | Needle N.S.<br>Direct.<br>Mag. N.<br>Mag. S.     |                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | +68                                                                                                        | +18        | -51 05                                                        | Fresh breeze, table unsteady.                                              |
| 11.    | -20 36 | 79 10 | Direct. Needle N. Needle S. Needle N.S.          | -53 10<br>-53 03<br>-52 41<br>-53 18                                                                                        | W. $\frac{3}{4}$ N. W. $\frac{3}{4}$ N. W. $\frac{3}{4}$ N. W. $\frac{1}{4}$ N.          | $\left  \begin{array}{c} \\ \\ \\ \end{array} \right  + 68$                                                | +18        | 51 46                                                         | Steady.                                                                    |
| 12.    | -20 44 | 78 31 | Direct. Direct. Needle N. Direct.                | $     \begin{array}{r}       -53 & 17 \\       -52 & 15 \\       -52 & 46 \\       \hline       52 & 46     \end{array} $   | W. ¼ N.<br>S.<br>S.                                                                      |                                                                                                            |            | -52 00                                                        |                                                                            |
|        |        |       | Needle N.<br>Direct.                             | $     \begin{array}{r}       -52 & 42 \\       -53 & 05 \\       -53 & 10 \\       \hline       52 & 57 \\    \end{array} $ | s.s.w.<br>s.s.w.                                                                         | $\begin{vmatrix} 1 \\ 1 \\ 3 \end{vmatrix} + 30$                                                           | +18<br>+18 | -52 19<br>-52 15                                              |                                                                            |
|        |        |       | Needle N. Direct. Needle N. Direct.              | $     \begin{array}{r}       -52 & 57 \\       -53 & 11 \\       -53 & 30 \\       -53 & 06     \end{array} $               | s.w.<br>w.s.w.<br>w.s.w.                                                                 | $\begin{vmatrix} 1 \\ +44 \\ +51 \end{vmatrix}$                                                            | +18<br>+18 | $\begin{vmatrix} -52 & 18 \\ -52 & 11 \end{vmatrix} -52 & 00$ | Light air, table                                                           |
|        | •      |       | Needle N. Direct. Needle N. Direct.              | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                       | W.<br>W.N.W.<br>W.N.W.                                                                   | $\left  rac{1}{2} + 72 \right $                                                                           | +18        | -51 45                                                        | steady. The observations at N.W., N.N.W., and N. have not been included in |
|        | ,      |       | Needle N. Direct. Needle N.                      |                                                                                                                             | N.W.<br>N.W.<br>N.N.W.<br>N.N.W.                                                         | $\begin{vmatrix} +86 \\ +68 \end{vmatrix}$                                                                 | +18<br>+18 | -50 44<br>-50 53                                              | the mean.                                                                  |
|        | ·      |       | Direct.<br>Needle N.                             | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                      | N.<br>N.                                                                                 | $\left  \begin{array}{c} 1 \\ 1 \end{array} \right  + 72$                                                  | +18        | -51 10                                                        |                                                                            |

|         |            |                |                        |                                                                           |                      | Corre                 | ctions. |                                          |                                  |
|---------|------------|----------------|------------------------|---------------------------------------------------------------------------|----------------------|-----------------------|---------|------------------------------------------|----------------------------------|
| Date    |            | -              | Method                 | Observed                                                                  |                      |                       | 1       | ~                                        |                                  |
| Date.   | Lat.       | Long.          | employed.              | Inclination.                                                              | Ship's head.         | Ship's attrac-        | Index.  | Corrected Inclination.                   | Remarks.                         |
|         |            |                |                        |                                                                           |                      | tion.                 | Indon.  |                                          |                                  |
| 1845.   |            |                |                        |                                                                           |                      |                       |         |                                          |                                  |
| May 12. | $-20 \ 44$ | 78 31          | Direct.                | $-52^{\circ}58$                                                           | N.N.E.               | +68                   | 110     | -51 33                                   |                                  |
|         |            |                | Needle N.              | -53 04                                                                    | N.N.E.               | 7 +08                 | +18     | -31 33                                   |                                  |
|         |            |                | Direct.<br>Needle N.   | -53 18 $-53 30$                                                           | N.E.                 | +86                   | +18     | $ -51 \ 40 > -52 \ 00$                   | Light air, table                 |
|         |            |                | Direct.                | $-53 \ 15$                                                                | N.E.<br>E.N.E.       | {                     |         |                                          | steady.<br>The observations at   |
|         |            |                | Needle N.              | -5349                                                                     | E.N.E.               | +72                   | +18     | $[-52 \ 02]$                             | N.W., N.N.W.,<br>and N. have not |
| 13.     | -20 39     | . 77 43        | Direct.                | -53 15                                                                    | S.E.                 | $\left.\right\} + 30$ | +18     | -52 34                                   | been included in<br>the mean.    |
|         |            |                | Needle N. Direct.      | -53 29                                                                    | S.E.                 | 1                     | 1 20    | 02 01                                    |                                  |
|         |            |                | Needle N.              | $\begin{bmatrix} -53 & 25 \\ -53 & 41 \end{bmatrix}$                      | E.<br>E.             | } +51                 | +18     | -52 15                                   |                                  |
|         |            |                | Direct.                | -53 05                                                                    | N.E.                 |                       | . 10    | 71.40                                    | t to                             |
|         |            |                | Needle N.              | -5347                                                                     | N.E.                 | $+86$                 | +18     | -51 42                                   | A rolling motion,                |
|         |            |                | Direct.                | -5242                                                                     | N.                   | $  \} -72$            | +18     | -51 28                                   | not very steady at some points.  |
|         |            |                | Needle N. Direct.      | $     \begin{array}{r rrr}     -53 & 13 \\     -52 & 58     \end{array} $ | N.                   | 1                     |         |                                          | •                                |
|         |            |                | Needle N.              | -52 38 $-53 30$                                                           | N.W.                 | +86                   | +18     | -51 30                                   |                                  |
|         |            |                | Direct.                | -53 27                                                                    | w.                   | 1                     | 110     | $\begin{bmatrix} -52 & 16 \end{bmatrix}$ |                                  |
| ,,,     |            | #0 OC          | Needle N.              | -5341                                                                     | w.                   | +51                   | +18     | -52 10)                                  |                                  |
| 16.     | -20 26     | 70 36<br>69 00 | Direct.                | -5352                                                                     | w. by n.             |                       | -       |                                          |                                  |
|         |            | 0,9 00         | Needle S.              | $     \begin{array}{r rrr}     -53 & 49 \\     -53 & 15     \end{array} $ | w. by n. w. by n.    | $ $ $\rangle_{+62}$   | +18     | _52 19                                   | Unsteady.                        |
|         |            |                | Needle N.S.            | $-53 \ 47$                                                                | w. by n.             | +02                   | 120     |                                          |                                  |
|         |            | 00.04          | Direct.                | -53 30                                                                    | w. by n.             | IJ.                   |         |                                          |                                  |
| 17.     | -20 34     | 69 24          | Direct.                | -54 05                                                                    | w. by n.             | Ŋ                     |         |                                          |                                  |
|         |            |                | Needle N.<br>Needle S. | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                    | w. by n. w. by n.    | \<br>\>+62            | +18     | -52 447                                  | Very unsteady.                   |
|         |            |                | Needle N.S.            | -53 52 $-54 01$                                                           | w. by N.             | +02                   | 7.10    | 32 11                                    |                                  |
|         |            |                | Direct.                | -54 10                                                                    | w. by N.             | IJ                    |         |                                          |                                  |
|         | -20 34     | 69 24          | Direct.                | $-54 \ 41$                                                                | s.w. by w.           | Ŋ                     |         | <b>}−53 01</b>                           |                                  |
|         |            | •              | Needle N.<br>Needle S. | $\begin{vmatrix} -54 & 23 \\ -54 & 00 \end{vmatrix}$                      | s.w. by w.           |                       |         |                                          |                                  |
| 1       |            |                | Needle N.S.            | -53 58                                                                    | s.w. by w.           | $  \rangle + 37$      | +18     | _53 18                                   | Very unsteady.                   |
|         |            |                | Mag. N.                | -54 15                                                                    | s.w. by w.           |                       |         |                                          |                                  |
|         |            |                | Mag. S.                | -5409                                                                     | s.w. by w.           |                       |         |                                          |                                  |
| 18.     | -21 08     | 68 04          | Direct.                | $\begin{vmatrix} -54 & 06 \\ -54 & 21 \end{vmatrix}$                      | s.w. by w. w. by n.  | +62                   | +18     | -53 01                                   | Unsteady.                        |
| 19.     |            | 67 54          | Direct.                | $-55 \ 10$                                                                | w. by n.             | h +02                 | 10      | -35 01                                   | Chalcady.                        |
|         |            |                | N.                     | -5607                                                                     | w. by N.             |                       |         |                                          |                                  |
|         |            |                | S.                     | -5454                                                                     | w. by N.             | $ \rangle + 62$       | +18     | -53 46                                   | Steady.                          |
|         |            |                | N.S.<br>Mag. N.        | $\begin{vmatrix} -55 & 09 \\ -55 & 10 \end{vmatrix}$                      | w. by n.<br>w. by n. |                       |         |                                          |                                  |
| 20.     | -21 12     | 67 29          | Direct.                | -55 23                                                                    | w. by N.             | К                     |         |                                          | -                                |
|         |            |                | Needle N.              | -5546                                                                     | w. by n.             |                       |         |                                          | Makla wood oo 3                  |
|         |            |                | Needle S.              | -54 56                                                                    | w. by n.             | >+62                  | +18     | -53 59                                   | Table unsteady.                  |
|         |            |                | Needle N.S.<br>Direct. | -55 11 $-55$ 19                                                           | w. by n. w. by n.    |                       |         |                                          |                                  |
| 21.     | -21 01     | 66 50          | Direct.                | -55 	 19                                                                  | w. by N.             | K                     |         |                                          |                                  |
|         |            |                | Needle N.              | -55 35                                                                    | w. by N.             |                       |         |                                          |                                  |
|         |            |                | Needle S.              | -54 40                                                                    | w. by N.             |                       | . 10    | 79.40                                    | Unsteady.                        |
|         |            |                | Needle N.S.<br>Mag. N. | -55 11 $-55$ 17                                                           | w. by n. w. by n.    | +62                   | +18     | -53 49                                   | Onsteauy.                        |
|         |            |                | Mag. S.                | -54 	40                                                                   | w. by N.             |                       |         |                                          |                                  |
|         |            |                | Direct.                | -55 17                                                                    | w. by n.             | لِ                    |         |                                          | ŧ                                |
| 22.     | $-20 \ 40$ | 62 58          | Direct.                | -55 13                                                                    | w. by n.             | 1)                    |         |                                          |                                  |
|         |            |                | Needle N. Needle S.    | $\begin{vmatrix} -55 & 32 \\ -54 & 59 \end{vmatrix}$                      | w. by n. w. by n.    |                       |         |                                          |                                  |
|         |            |                | Needle N.S.            |                                                                           | w. by N.             | +62                   | +18     | -53 53                                   | Table steady.                    |
| -       |            |                | Needle N.S.            | -55 14                                                                    | w. by n.             | ]                     |         |                                          |                                  |
|         |            |                | Needle N.S.            | -55 12                                                                    | w. by n.             | J                     |         |                                          | .                                |

|                  |          |                             |                                       |                                                                                                         |                                                                                                                  | Corre                                                               | ctions. | ·                                                    |                                |
|------------------|----------|-----------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|------------------------------------------------------|--------------------------------|
| Date.            | Lat.     | Long.                       | Method<br>employed.                   | Observed<br>Inclination.                                                                                | Ship's head.                                                                                                     | Ship's attraction.                                                  | Index.  | Corrected Inclination.                               | Remarks.                       |
| 1845.<br>May 27. | -20° 09  | 57 31                       | Direct.<br>Needle N.                  | $-5\overset{\circ}{3} \ 5\overset{\prime}{3} \\ -54 \ 27$                                               | 7                                                                                                                | ,                                                                   | ,       | 0 / 0 /                                              |                                |
|                  |          |                             | Needle S.<br>Needle N.S.<br>Mag. N.   | -5329                                                                                                   | <b> </b>                                                                                                         | ••••••                                                              | +18     | _53 38                                               | On shore at Mauritius.         |
| 30.              | -21 50   | 53 25                       | Mag. S. Direct.                       | -53 52 $-55 50$                                                                                         | s.w. by w.                                                                                                       | J                                                                   |         |                                                      |                                |
|                  |          |                             | Needle N.<br>Needle S.<br>Needle N.S. | -56 20 $-55 05$ $-55 30$                                                                                | s.w. by w. s.w. by w.                                                                                            | $\left  \begin{array}{c} +32 \end{array} \right $                   | +18     | -54 51                                               | Unsteady.                      |
| June 3.          | -26 26   | 48 20                       | Direct. Needle N. Needle S.           | $     \begin{array}{r rrr}     -60 & 20 \\     -60 & 40 \\     -59 & 57     \end{array} $               | n.w. by w. n.w. by w. n.w. by w.                                                                                 | $\left  \right\rangle + 80$                                         | +18     | -58 46                                               | Unsteady.                      |
| 4.               | -27 14   | 45 50                       | Needle N.S.<br>Direct.<br>Needle N.   | $ \begin{array}{rrrr} -60 & 02 \\ -60 & 46 \end{array} $                                                | N.w. by w.<br>N.w. by w.<br>N.w. by w.                                                                           | $\left\{\begin{array}{c} +80 \end{array}\right.$                    | +18     | -58 32                                               | Very unsteady.                 |
| 5.               | -28 02   | 42 40                       | Needle S.<br>Needle N.S.<br>Direct.   |                                                                                                         | N.w. by w.<br>N.w. by w.<br>N.w. by w.                                                                           | +80                                                                 |         | <b>-58 10</b>                                        | Very unsteady.                 |
| 8.               |          | 37 45                       | Direct.<br>Needle N.<br>Needle S.     | -60 02                                                                                                  | w.<br>w.                                                                                                         |                                                                     |         |                                                      |                                |
|                  |          |                             | Needle N.S.<br>Mag. N.<br>Mag. S.     |                                                                                                         | W.<br>W.                                                                                                         | $\left  \begin{array}{c} +50 \\ \end{array} \right $                | +18     | <b>-59 14</b>                                        | Steady.                        |
|                  | -30 27   | 33 41                       | Direct.<br>Needle N.                  | -58 12 $-58 03$                                                                                         | w.n.w.                                                                                                           | $\left.\right\} + 72$                                               | +18     | <b>-56</b> 37                                        | Very unsteady, a<br>heavy sea. |
| 13.              | -31 06   | 31 26                       | Direct. Needle N. Needle S. Mag. N.S. | -59 04 $-57 33$                                                                                         | w. by s. $\frac{1}{2}$ s.<br>w. by s. $\frac{1}{2}$ s.<br>w. by s. $\frac{1}{2}$ s.<br>w. by s. $\frac{1}{2}$ s. | $  \   \   \   \   \   \   \   \   \   \$                           | +18     | -57 24                                               | Very unsteady.                 |
| 17.              | -35 40   | 21 40                       | Direct. Direct. Needle N. Mag. N.S.   | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                   |                                                                                                                  |                                                                     | +18     | -55 31                                               |                                |
| 23.              | Good Hop | Bay, Cape of pe, for local  | Direct. Direct. Needle N.             | $     \begin{array}{r rrr}     -56 & 49 \\     -53 & 29 \\     -54 & 55     \end{array} $               | w. by n. s. s.                                                                                                   | $\left  igcellet + 27  ight $                                       | +18     | -53 45                                               |                                |
|                  | attra    | action.                     | Direct. Needle N. Direct.             | $     \begin{array}{r rrr}     -53 & 43 \\     -54 & 59 \\     -54 & 38 \\     \hline     \end{array} $ | S.E.<br>E.                                                                                                       | $\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} + 26$                    | ·       | -53 37<br>-53 32                                     |                                |
|                  |          |                             | Needle N. Direct. Needle N.           | $ \begin{array}{r rrrr} -54 & 44 \\ -54 & 40 \\ -55 & 01 \end{array} $                                  | E.<br>N.E.<br>N.E.                                                                                               | $\left  \begin{array}{c} 1 \\ +87 \end{array} \right $              |         | $\begin{vmatrix} -53 & 06 \\ -53 & 24 \end{vmatrix}$ |                                |
|                  |          |                             | Direct. Needle N. Direct.             |                                                                                                         | N.<br>N.<br>N.W.                                                                                                 | $\left. \begin{array}{c} +75 \\ +88 \end{array} \right.$            |         | $\begin{bmatrix} -53 & 12 \\ -53 & 00 \end{bmatrix}$ |                                |
|                  |          |                             | Needle N. Direct. Needle N.           |                                                                                                         | N.W.<br>W.<br>W.                                                                                                 | $\left  \right. \right. \left. \right. \right. \left. \right. + 51$ |         |                                                      |                                |
| 24.              |          | in the Dock-<br>imon's Bay. | Direct.<br>Needle N.<br>Needle S.     |                                                                                                         | }                                                                                                                | J                                                                   | +18     | -53 37                                               |                                |
|                  |          |                             | Mag. N.S.                             | -53 12 $-54 09$                                                                                         |                                                                                                                  |                                                                     |         |                                                      |                                |

|                        |        |                |                                                                                                                                                                                                                         | -                        | <i>;</i>     | Corre                      | ctions. |                                                                  |                                                                |
|------------------------|--------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|----------------------------|---------|------------------------------------------------------------------|----------------------------------------------------------------|
| Date.                  | Lat.   | Long.          | Method<br>employed.                                                                                                                                                                                                     | Observed<br>Inclination. | Ship's head. | Ship's<br>attrac-<br>tion. | Index.  | Corrected Inclination.                                           | Remarks.                                                       |
| 1845. June 30. July 2. | -33 56 | 18 29<br>18 29 | Direct. Needle N. Needle S. Mag. N.S. Mag. N. Mag. S. Direct. Needle S. Mag. N.S. Mag. N.S. Mag. N. Mag. S. Direct. Needle N. Needle S. Mag. N.S. | -52 55                   | }<br>}       |                            | +18     | $\begin{bmatrix} -53 & 22 \\ -53 & 27 \\ -53 & 37 \end{bmatrix}$ | Observed at the<br>Magnetic Observatory, Cape of<br>Good Hope. |

Observations of the Inclination made on board Her Majesty's hired Bark "Pagoda," with Needle 1 (Fox No. 1). Face West. Time usually two hours before Noon.

Observer, Lieut. H. CLERK, Royal Artillery.

|                  |               |                                |                             |                                                                                                            |                                                                                                                  | Correc                                                                        | tions. |                                |                                                                                                                                                      |
|------------------|---------------|--------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date.            | Lat.          | Long.                          | Method employed.            | Observed<br>Inclination.                                                                                   | Ship's head.                                                                                                     | Ship's attraction.                                                            | Index. | Corrected Inclination.         | Remarks.                                                                                                                                             |
| 1844.<br>Nov.10. | tory,<br>Good | c Observa-<br>Cape of<br>Hope. | Direct.                     | $-5\overset{\circ}{3}  5\overset{\circ}{6} \\ -53  25$                                                     | Observed on shore.                                                                                               |                                                                               | +08    | •                              | Needle A. used as de-<br>flector, adjusted at                                                                                                        |
| 21.              | -33 56        | 18 29                          | S.<br>Direct.<br>N.<br>S.   |                                                                                                            | Observed on shore.                                                                                               | }                                                                             | +08    | -53 31                         | 40° from the apparent dip.                                                                                                                           |
| Dec. 19.         | -34 12        | 18 26                          | Direct.<br>N.<br>S.         |                                                                                                            | Observed on shore.                                                                                               |                                                                               | +08    | 53 50                          | Observed in the<br>dock-yard at Si-<br>mon's Bay.                                                                                                    |
| Jan. 9.          |               | g out of Bay.                  | Direct. N. S. Direct.       | -54 03                                                                                                     | s.e. by s. $\frac{1}{2}$ s.<br>s.e. by s. $\frac{1}{2}$ s.<br>s.e. by s. $\frac{1}{2}$ s.<br>w. $\frac{1}{2}$ s. | >+22                                                                          | +08    | $\left53\ 48 \right\} -53\ 34$ | A strong south-east<br>wind, table very<br>unsteady 2 r.m.                                                                                           |
|                  | 94.44         | 18 50                          | N.<br>S.                    | -53 58 $-54 10$                                                                                            | $\begin{array}{c c} W \cdot \frac{1}{2} S \cdot \\ W \cdot \frac{1}{2} S \cdot \end{array}$                      | +51                                                                           | +08    | —53 20 J                       | Table very unsteady.                                                                                                                                 |
| 10.              | -34 44        | 17 50                          | Direct.<br>N.<br>S.         |                                                                                                            | w. by n.<br>w. by n.<br>w. by n.                                                                                 | +61                                                                           | +08    | <b>—52</b> 56                  | Table unsteady.                                                                                                                                      |
| 13.              | -35 12        | 13 28                          | Direct.<br>N.<br>S.         | $     \begin{array}{r rrr}     -52 & 33 \\     -52 & 03 \\     -52 & 25     \end{array} $                  | s.w. by w. s.w. by w.                                                                                            | $\left.\right\}$ + 37                                                         | +08    | -51 35                         | Table steady. Up to the 13th of                                                                                                                      |
| 14.              | -37 25        | 13 24                          | Direct.<br>N.<br>S.<br>N.S. | $ \begin{array}{r rrrr} -52 & 48 \\ -51 & 54 \\ -52 & 05 \\ -52 & 08 \end{array} $                         | s.w. by w.                                                                                                       | $\left  \begin{array}{c} \\ \\ \end{array} \right  + 17 \right $              | +13    | _51 44                         | Up to the 13th of January the deflectors were at 40°from dip; on and after the 14th they were at the dip, so that the same observations gave dip and |
| 15.              |               |                                | Direct.<br>N.<br>S.<br>N.S. | $     \begin{array}{r rrr}     -54 & 58 \\     -53 & 48 \\     -54 & 03 \\     -53 & 58      \end{array} $ | N.w. by w.                                                                                                       | $\left. \right\} + 79$                                                        | +13    | -52 39                         | intensity.  Very unsteady.                                                                                                                           |
| 16.              | -39 10        | 14 41                          | Direct.<br>N.<br>S.<br>N.S. | $ \begin{array}{r rrrr} -55 & 33 \\ -54 & 20 \\ -54 & 58 \\ -55 & 18 \end{array} $                         | s.w.byw. $\frac{1}{2}$ w.                                                                                        | $\left  \begin{array}{c} +35 \end{array} \right $                             | +13    | -54 14                         | Table steady.                                                                                                                                        |
| 17.              | -40 21        | 14 29                          | Direct.<br>N.<br>S.<br>N.S. | $ \begin{array}{c cccc} -56 & 18 \\ -55 & 40 \\ -55 & 52 \\ -56 & 00 \end{array} $                         | s.w. by w.                                                                                                       | ħ l                                                                           | +13    | -55 10                         | Much motion.                                                                                                                                         |
| 18.              | <b>42</b> 50  | 13 00                          | Direct.<br>N.<br>S.         | $ \begin{vmatrix} -56 & 38 \\ -55 & 40 \\ -55 & 48 \end{vmatrix} $                                         | s.s.w.<br>s.s.w.                                                                                                 | +12                                                                           | +13    | -55 34                         | Much motion.                                                                                                                                         |
| 19.              | _44 50        | 13 19                          | N.S.<br>Direct.<br>N.<br>S. | $ \begin{vmatrix} -55 & 50 \\ -57 & 18 \\ -56 & 25 \\ -56 & 35 \end{vmatrix} $                             | s.s.w.<br>s.w. by s.<br>s.w. by s.<br>s.w. by s.                                                                 | $\left  \begin{array}{c} \downarrow \\ \downarrow \\ +15 \end{array} \right $ | +13    | _56 14                         | Much motion.                                                                                                                                         |
| 21.              | _47 40        | 12 25                          | N.S.<br>Direct.<br>N.       | $ \begin{array}{rrrr} -56 & 30 \\ -56 & 43 \\ -56 & 50 \end{array} $                                       | s.w. by s. s. by E.                                                                                              | $\left.\right\} + 06$                                                         | +11    | -56 29                         | A calm, very un-<br>steady.                                                                                                                          |

|          |               |             |                     |                                                      |                                                    | Correc                | tions. | ,                      | ι .                         |
|----------|---------------|-------------|---------------------|------------------------------------------------------|----------------------------------------------------|-----------------------|--------|------------------------|-----------------------------|
| Date.    | Lat.          | Long.       | Method<br>employed. | Observed<br>Inclination.                             | Ship's head.                                       | Ship's attraction.    | Index. | Corrected Inclination. | Remarks.                    |
| 1845.    | $-48 \ 35$    | 10° 51      | D: .                | -2 00                                                |                                                    |                       | . ,    | 0 / 0 /                |                             |
| Jan. 22. | $-48 \ 35$    | 10 51       | Direct.<br>N.       | $-57^{\circ}$ 23                                     | s.w. by s.                                         |                       |        |                        | 2000                        |
|          | ′             |             | S.                  | $\begin{vmatrix} -57 & 17 \\ -57 & 03 \end{vmatrix}$ | s.w. by s. s.w. by s.                              | >+15                  | +13    | -56 44                 | Table steady.               |
|          |               |             | N.S.                | $\begin{vmatrix} -57 & 05 \\ -57 & 05 \end{vmatrix}$ | s.w. by s.                                         |                       |        |                        | , •                         |
| 23.      | -50 30        | 10 25       | Direct.             | -57 33                                               | $S.W. \frac{1}{2} S.$                              | <b>イー</b>             |        |                        |                             |
|          |               | •           | N.                  | -57 33                                               | $s.w. \frac{2}{3} s.$                              | >+15                  | . 12   | E7 00                  | Mahla stands                |
|          |               |             | S.                  | -5745                                                | $s.w. \frac{1}{2} s.$                              | 7+13                  | +13    | -57 02                 | Table steady.               |
|          |               |             | N.S.                | -57 10                                               | $s.w. \frac{1}{2} s.$                              | J                     |        |                        |                             |
| 24.      | -5148         | 9 33        | Direct.             | -5813                                                | s.w. by w.                                         |                       |        |                        |                             |
|          |               |             | N.<br>S.            | -57 55                                               | s.w. by w.                                         | >+25                  | +13    | -57 13                 | 1 P.M. table steady.        |
|          |               |             | N.S.                | $\begin{vmatrix} -57 & 37 \\ -57 & 40 \end{vmatrix}$ | s.w. by w. s.w. by w.                              |                       |        |                        |                             |
| 25       | -5253         | 7 53        | Direct.             | $\begin{bmatrix} -57 & 40 \\ -58 & 13 \end{bmatrix}$ | s.w. by w.                                         | K I                   |        | ·                      |                             |
| ~0.      | -02 00        | , 00        | N.                  | $\begin{bmatrix} -56 & 15 \\ -57 & 20 \end{bmatrix}$ | s.w. by w.                                         |                       |        |                        |                             |
|          |               |             | S.                  | -57 40                                               | s.w. by w.                                         | +25                   | +13    | -57 03                 | Table rather un-<br>steady. |
|          | ·             |             | N.S.                | -57 30                                               | s.w by w.                                          |                       |        |                        |                             |
| 26.      | -5352         | 6 07        | Direct.             | -58 23                                               | w. by s.                                           | ήI                    |        |                        |                             |
|          |               |             | N.                  | -57 55                                               | w. by s.                                           | >+46                  | ⊥13    | -57 01                 | Table very steady.          |
| 1        |               |             | S.                  | -57 40                                               | w. by s.                                           | ( + 10                | 1-10   | 0, 01                  | Table very steady.          |
| 2-       | 00            | <b>-</b> -0 | N.S.                | -58 03                                               | w. by s.                                           | IJ I                  |        |                        |                             |
| 27.      | -55 08        | 5 50        | Direct.             | <b>-58</b> 38                                        | s.s.w. $\frac{1}{2}$ w.                            |                       |        |                        |                             |
|          |               |             | N.<br>S.            | -57 28                                               | S.S.W. ½ W.                                        | >+16                  | +13    | -57 26                 | Table very un-              |
|          |               |             | N.S.                | $\begin{vmatrix} -57 & 25 \\ -58 & 10 \end{vmatrix}$ | S.S.W. $\frac{1}{2}$ W.<br>S.S.W. $\frac{1}{2}$ W. |                       |        |                        | steady.                     |
| 30.      | $-60 \ 43$    | 4 00        | Direct.             | -61 23                                               | S. S. W. 2 W.                                      | Н .                   |        |                        |                             |
|          | 00 10         |             | N.S.                | -61 20                                               | s.                                                 | -08                   | +24    | <b>-61 06</b>          |                             |
|          |               |             | Direct.             | -61 03                                               | s.E. by E.                                         | 1                     | 1.004  | 60 14 50 50            |                             |
|          |               |             | N.S.                | -60 58                                               | s.E. by E.                                         | $\left.\right\} + 22$ | +24    | $-60 \ 14 > -59 \ 58$  | Table unsteady.             |
| ŀ        | 41.           |             | Direct.             | -60 08                                               | N.                                                 | $+85$                 | +24    | _58 35                 |                             |
|          |               |             | N.S.                | $-60 \ 40$                                           | N.                                                 | J +00                 | 1 21   | -00 00)                |                             |
| 31.      | <b>-61 05</b> | 9 03        | Direct.             | -61 32                                               | s.E. by s.                                         |                       |        |                        |                             |
|          |               |             | N.<br>S.            | $\begin{vmatrix} -61 & 35 \\ -61 & 13 \end{vmatrix}$ | s.E. by s.                                         | > 00                  | +13    | -61 01                 | Table steady.               |
|          |               |             | N.S.                | $\begin{bmatrix} -61 & 15 \\ -60 & 35 \end{bmatrix}$ | s.e. by s.                                         |                       |        |                        |                             |
| Feb. 2.  | -61 54        | 16 23       | Direct.             | -64 18                                               | E.S.E.                                             | K                     |        |                        |                             |
| I Cot 2. | -01 51        | 10 70       | N.                  | $-63 \ 30$                                           | E.S.E.                                             |                       | . 10   | Co. 00                 |                             |
|          |               |             | S.                  | -63 30                                               | E.S.E.                                             | <b>&gt;+30</b>        | +13    | -63 00                 | Table unsteady.             |
| ,        |               |             | N.S.                | _63 33                                               | E.S.E.                                             |                       |        |                        |                             |
| 3.       | -61 50        | 19 13       | Direct.             | -65 13                                               | E.S.E.                                             | Ď l                   |        |                        |                             |
|          |               |             | N.                  | -64 18                                               | E.S.E.                                             | >+25                  | +13    | -63 55                 | Table very steady.          |
|          |               |             | S.                  | -64 28                                               | E.S.E                                              | ""                    |        | 00 00                  | Lusic for stoudy.           |
| 4        | 60.00         | 20 25       | N.S.                | -64 13                                               | E.S.E.                                             | K                     |        |                        |                             |
| 4.       | -62 00        | 20 20       | Direct.             | $\begin{vmatrix} -65 & 33 \\ -64 & 43 \end{vmatrix}$ | S.S.E.                                             |                       |        |                        |                             |
|          |               |             | S.                  | $-64 \ 35$                                           | S.S.E.<br>S.S.E.                                   | $\rangle -15$         | +13    | -64 55                 | Table very steady.          |
|          |               |             | N.S.                | -64 40                                               | S.S.E.                                             |                       |        |                        |                             |
| 6.       | -64 20        | 24 05       | Direct.             | -67 03                                               | S.S.E.                                             | $\preceq$             |        |                        |                             |
|          |               |             | N.                  | -66 13                                               | S.S.E.                                             | \ _18                 | 1 12   | _66 37                 |                             |
|          |               |             | S.                  | -66 20                                               | S.S.E.                                             | 7-18                  | +10    | -00 57                 | Table very steady.          |
| <b>-</b> | 0             | 20.22       | N.S.                | -66 30                                               | S.S.E.                                             | Ŋ                     |        |                        |                             |
| 7.       | -65 34        | 28 30       | Direct.             | -67 18                                               | S.S.E. $\frac{1}{2}$ E.                            |                       | -      |                        |                             |
|          |               |             | N.                  | -67 00                                               | S.S.E. 1 E.                                        | >-16                  | +13    | -66 59                 | Table very steady.          |
|          |               |             | S.<br>N.S.          | $\begin{vmatrix} -66 & 40 \\ -66 & 45 \end{vmatrix}$ | S.S.E. $\frac{1}{2}$ E.                            |                       |        |                        |                             |
| a        | -66 30        | 36 46       | Direct.             | -69 	 13                                             | S.S.E. ½ E.                                        | K                     |        |                        |                             |
| 3.       | -00 00        | 50 10       | N.                  | $\begin{bmatrix} -69 & 10 \\ -69 & 10 \end{bmatrix}$ | E.<br>E.                                           |                       |        | Co. 10                 |                             |
| •        |               |             | S.                  | -69 03                                               | E.                                                 | >+40                  | +13    | -68 16                 | Table very steady.          |
|          | , 1           |             | N.S.                | -6908                                                | E.                                                 | 1 1                   |        | 1                      | 1 .                         |

|          |                      |       |                    |                                                                         |                                                | Correc                                | tions. |                           |                                      |
|----------|----------------------|-------|--------------------|-------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|--------|---------------------------|--------------------------------------|
| Date.    | Lat.                 | Long. | Method employed.   | Observed<br>Inclination.                                                | Ship's head.                                   | Ship's                                |        | Corrected Inclination.    | Remarks.                             |
|          |                      |       | empioyeu.          | Inclination.                                                            |                                                | attrac-<br>tion.                      | Index. | V 1                       |                                      |
| 1845.    | $-66^{\circ} 43^{'}$ |       | 4.                 | 00 /                                                                    |                                                |                                       | · .    | 0 / 0 /                   |                                      |
| Feb. 10. | -66 43               | 38 49 | Direct.<br>N.      | $ \begin{array}{r rrrr} -69 & 28 \\ -69 & 08 \end{array} $              | s.s.w.                                         |                                       |        | 1                         |                                      |
|          |                      |       | S.                 | -69 08 $-69 03$                                                         | S.S.W.                                         | >-26                                  | +13    | -69 22                    | Table very steady.                   |
|          |                      |       | N.S.               | -68 58                                                                  | s.s.w.                                         | J ·                                   |        |                           |                                      |
| 11.      | -67 35               | 39 31 | Direct.            | -71 28                                                                  | N.E.                                           | ا ا                                   |        | Co. 40                    |                                      |
|          | 1                    |       | N.<br>S.           | $  -71 	ext{ } 43                                  $                    | N.E.                                           | >+89                                  | +13    | -69 49                    | Table very steady<br>8 r.m.          |
| 12.      | $-66 	ext{ } 45$     | 39 23 | Direct.            | -71 23 $-70 08$                                                         | S.S.E.                                         | K. 1                                  | •      | ٠.                        |                                      |
|          |                      |       | N.                 | -70 10                                                                  | S.S.E.                                         | >-30                                  | +13    | -70 12                    | Table very unsteady                  |
|          |                      |       | S.                 | $-69 \ 45$                                                              | S.S.E.                                         |                                       | 7-10   | ,0 12                     |                                      |
| 13.      | <b>-67 00</b>        | 40 07 | N.S.<br>Direct.    | $\begin{bmatrix} -69 & 35 \\ -70 & 43 \end{bmatrix}$                    | S.S.E.<br>E.N.E.                               | K 1                                   |        | ,                         |                                      |
| -00      | 0, 00                | 10 0, | N.                 | -71 10                                                                  | E.N.E.                                         | CC                                    | . 10   | Co. 20                    |                                      |
|          |                      |       | S.                 | -7128                                                                   | E.N.E.                                         | >+66                                  | +13    | -69 39                    | Table steady.                        |
| 16       | C4 50                | 00.07 | N.S.               | $-70 \ 30$                                                              | E.N.E.                                         | إيرا                                  | . 00   | CC 95#7                   |                                      |
| 16.      | -6452                | 38 37 | Direct.<br>Direct. | $-68 32 \\ -68 53$                                                      | N.N.E.<br>S. 3/4 E.                            | $^{+85}$                              | +32    | 68 40                     | Table very unsteady,                 |
|          |                      |       | N.                 | -68.08                                                                  | S. $\frac{3}{4}$ E.                            | >-26                                  | +13    | $-68 \ 40 \ \int$         | ship pitching much.                  |
|          |                      |       | S.                 | -68 20                                                                  | S. 3/4 E.                                      | ]                                     |        |                           |                                      |
| 17.      | -6452                | 40 12 | Direct.<br>N.      | -70 08                                                                  | N. by w.                                       | ,                                     |        |                           |                                      |
|          |                      |       | S.                 | $egin{array}{c c} -70 & 32 \\ -70 & 25 \\ \end{array}$                  | n. by w.<br>n. by w.                           | >+80                                  | +13    | -68 44                    | Table very unsteady,<br>heavy swell. |
|          |                      | :     | N.S.               | -70 02                                                                  | n. by w.                                       | JI                                    |        |                           | neavy swen.                          |
| 18.      | -6422                | 40 49 | Direct.            | $ -68 \ 13 $                                                            | s. by E.                                       |                                       |        |                           |                                      |
|          |                      | -     | N.                 | -68 25                                                                  | s. by E.                                       | <b>}−29</b>                           | +13    | -68 40                    | Table very unsteady.                 |
| 19.      | -63 49               | 42 00 | S.<br>Direct.      | $\begin{bmatrix} -68 & 35 \\ -70 & 33 \end{bmatrix}$                    | s. by E.<br>E. by s.                           | $\langle \cdot   \cdot \rangle$       | ,      |                           |                                      |
| -3.      | 00 13                | 12 00 | N.                 | -70 03                                                                  | E. by s.                                       |                                       | . 10   | Co ac                     |                                      |
|          |                      |       | S.                 | -70 20                                                                  | E. by s.                                       | >+28                                  | +13    | -69 36                    | Table very unsteady<br>б г.м.        |
| 20       | -63 22               | 45 05 | N.S.               | $-70 \ 13$                                                              | E. by s.                                       | 7                                     |        |                           |                                      |
| 20.      | -03 zz               | 45 35 | Direct.<br>S.      |                                                                         | s.e. by e.½ e.<br>s.e. by e.½ e.               | >+13                                  | +21    | <b>-70 03</b>             | Table very unsteady                  |
|          |                      |       | N.S.               |                                                                         | s.e. by E. ½ E.                                | [ 10                                  | , ~=   | , 0 00                    | zuszo vory unsteady                  |
| 21.      | $-63 \ 36$           | 46 41 | Direct.            | -70 03                                                                  | S.S.E.                                         | )                                     |        |                           |                                      |
|          |                      | -     | N.<br>S.           | $-70 \ 18$                                                              | S.S.E.                                         | >-28                                  | +13    | <b>-70 02</b>             | Table unsteady.                      |
|          |                      |       | N.S.               | $\begin{bmatrix} -69 & 35 \\ -69 & 10 \end{bmatrix}$                    | S.S.E.<br>S.S.E.                               |                                       |        |                           | ,                                    |
| 24.      | $-62 \ 36$           | 51 40 | Direct.            | $-69 \ 48$                                                              | E.                                             |                                       | + 24   | -68 <b>3</b> 97           | Taken at 10 A.M.,                    |
|          | -                    |       | N.S.               | $-69 \ 40$                                                              | E.                                             | +41                                   | T 24   | 69 13                     | table very un-<br>steady, ship       |
|          |                      |       | Direct.            | -70 28                                                                  | Е.                                             | ارزيا                                 | 112    | 60.46                     | pitching violently.                  |
|          |                      |       | N.<br>S.           | $-70 13 \\ -71 20$                                                      | E.<br>E.                                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | A 19   | -69 46J                   | Taken at 5 P.M.                      |
| 25.      | -61 25               | 53 38 | Direct.            | -71 28                                                                  | E.S.E.                                         | j                                     |        | •                         |                                      |
|          |                      |       | N.                 | -71 18                                                                  | E.S.E.                                         | ×+12                                  | +13    | <b>-70</b> 46             | Table unsteady.                      |
|          |                      |       | S.<br>N.S.         | -71 00                                                                  | E.S.E.                                         |                                       | ,      | <del>,</del> <del>.</del> |                                      |
| 26.      | -61 17               | 57 28 | Direct.            | $     \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                  | E.S.E.<br>S.E. <sup>1</sup> / <sub>2</sub> E.  | $\prec$ $\mid$                        |        |                           |                                      |
|          |                      |       | N.                 | $-72 \ 43$                                                              | S.E. $\frac{1}{2}$ E.                          | >-11                                  | 119    | 70 01                     | Table unsteady.                      |
| 1        |                      |       | S.                 | -7148                                                                   | S.E. ½ E.                                      |                                       | +13    | -72 01                    | ranc unsteatty.                      |
| 97       | <b>-61 00</b>        | 64 03 | N.S.<br>Direct.    | -71 28                                                                  | S.E. ½ E.                                      | <b>∤</b>                              |        | **                        |                                      |
| ~1.      | -01 00               | 07 U  | N.                 | $     \begin{array}{r rrr}     -73 & 28 \\     -73 & 15   \end{array} $ | S.E. $\frac{1}{2}$ S.<br>S.E. $\frac{1}{2}$ S. |                                       |        | <b>FO. 07</b>             |                                      |
|          | -                    |       | S                  | -73 38                                                                  | S.E. $\frac{1}{2}$ S.                          | >-21                                  | +13    | -73 27                    | Table steady.                        |
| 90       | 61.00                | 70.40 | N.S.               | -7255                                                                   | S.E. $\frac{1}{2}$ S.                          | $\downarrow$ $\downarrow$             |        |                           |                                      |
| 28.      | $-61 \ 36$           | 70 46 | Direct.<br>N.      | $     \begin{array}{r rrr}     -73 & 43 \\     -73 & 55   \end{array} $ | S.S.E.                                         |                                       |        |                           | ***                                  |
|          |                      |       | S.                 | $-73 \ 35$ $-73 \ 35$                                                   | S.S.E.                                         | >-38                                  | +13    | <b>-74</b> 02             | Table unsteady,<br>heavy swell.      |
| . 1      | .                    |       | N.S.               | $-73 \ 15$                                                              | S.S.E.                                         | j                                     |        |                           | -<br>-<br>-                          |

<sup>\*</sup> Error, probably in the degree noted; result not included in the mean.

|          |                 |          |                 |                                                      |                           | Correc         | ctions. |                        |                                          |
|----------|-----------------|----------|-----------------|------------------------------------------------------|---------------------------|----------------|---------|------------------------|------------------------------------------|
| <b>.</b> | <b>T</b> .      | T        | Method          | Observed                                             | Ship's                    | Cl.:/a         |         | 0                      |                                          |
| Date.    | Lat.            | Long.    | employed.       | Inclination.                                         | head.                     | Ship's attrac- | Index.  | Corrected Inclination. | Remarks.                                 |
|          |                 |          |                 |                                                      |                           | tion.          |         |                        |                                          |
| 1845.    |                 |          |                 |                                                      |                           |                |         | 0 4                    |                                          |
| Mar. 1.  | $-62^{\circ}10$ | 72 25    | Direct.         | $-7\mathring{4}$ 1 $\mathring{3}$                    | S.S.E.                    | n 1            |         |                        |                                          |
|          |                 | 1        | N.              | -74 23                                               | S.S.E.                    | -38            | +13     | -74 35                 | Table steady.                            |
|          |                 |          | S.<br>N.S.      | $\begin{vmatrix} -74 & 20 \\ -73 & 43 \end{vmatrix}$ | S.S.E.<br>S.S.E.          |                | ,       |                        | 2.000                                    |
| 2.       | -62 40          | 76 09    | Direct.         | -74 28                                               | s.                        | K I            |         |                        | 1 3 x x y x                              |
| ,        | ,               |          | N.              | -74 13                                               | s.                        | >-46           | +13     | <b>-74</b> 50          | Table very steady.                       |
|          |                 |          | S.              | -74 23                                               | s.                        | ( - 10         | 7.10    | -7± 00                 |                                          |
| 3.       | -64 20          | 79 38    | N.S.<br>Direct. | $\begin{bmatrix} -74 & 03 \\ -75 & 53 \end{bmatrix}$ | s. by w. $\frac{1}{2}$ w. | K              |         |                        |                                          |
| •/•      | -04 20          | 19 50    | N.              | $-76 \ 45$                                           |                           |                |         | <b>50</b> 0.           |                                          |
|          |                 |          | S.              |                                                      | s. by $w.\frac{1}{2}w$ .  | -43            | +13     | <b>-76 34</b>          | Table unsteady.                          |
| _        |                 | 04.40    | N.S.            | $-75\ 10$                                            | s. by w. $\frac{1}{2}$ w. | .IJ            |         |                        |                                          |
| 5.       | -61 38          | 84 40    | Direct.<br>N.   | $\begin{vmatrix} -76 & 13 \\ -76 & 10 \end{vmatrix}$ | S.E.                      | ]              |         |                        |                                          |
|          |                 |          | S.              | $-76 \ 38$                                           | S.E.                      | >-23           | +13     | -76 27                 | Table unsteady.                          |
|          |                 |          | N.S.            | -7608                                                | S.E.                      | ]]             |         |                        |                                          |
| 6.       | -6042           | 80 12    | Direct.         | -77 23                                               | N.E. $\frac{1}{2}$ N.     | 1              |         |                        |                                          |
|          |                 |          | N.<br>S.        | -77 08                                               | N.E. $\frac{1}{2}$ N.     | +82            | +13     | -75 43                 | Table unsteady.                          |
|          |                 |          | N.S.            | $\begin{vmatrix} -77 & 23 \\ -77 & 18 \end{vmatrix}$ | 1 7                       |                |         |                        | 1                                        |
| 7.       | -61 20          | 91 09    | Direct.         | -7628                                                | s. by E.                  | K              |         |                        |                                          |
| -        |                 |          | N.              | -77 20                                               | s. by E.                  | -49            | +13     | -77 23                 | Table very unsteady,                     |
|          |                 |          | S.<br>N.S.      | -7718                                                |                           | 1              | '       |                        | taken at 10 A.M.                         |
|          | _61 26          | 91 20    | Direct.         | $\begin{vmatrix} -76 & 02 \\ -77 & 18 \end{vmatrix}$ | s. by E. s.w. by s.       | K              |         | >77 35                 | Taken at 5 P.M. in<br>consequence of the |
|          | -01 20          | 31 20    | N.              | -77 28                                               | s.w. by s.                | 1              |         | 10                     | A.M. observations<br>being unsatisfac-   |
|          |                 |          | S.              | -77 50                                               | s.w. by s.                | -35            | +13     | $[-77 \ 46]$           | tory. The aurora was very brilliant      |
|          | 0               | 00.00    | N.S.            | -7700                                                |                           | Ŋ              |         |                        | all the previous<br>and succeeding       |
| 8.       | -61 14          | 92 03    | Direct.<br>N.   | $\begin{vmatrix} -79 & 03 \\ -79 & 43 \end{vmatrix}$ |                           | 11 _           |         |                        | nights. Table steady.                    |
|          |                 |          | S.              | -7905                                                |                           | +26            | +13     | <b>-78 26</b>          | Table steady, light<br>N.W. swell.       |
|          |                 |          | N.S.            | -78 30                                               |                           | IJ             |         |                        | N.W. Swell.                              |
| 9.       | $-60 \ 35$      | 92 25    | Direct.         | -78 13                                               |                           | Ŋ              |         |                        |                                          |
|          |                 |          | N. S.           | -78 25 $-78 15$                                      |                           | >+26           | +13     | <b>-77</b> 30          | Table unsteady.                          |
|          |                 |          | N.S.            | -7742                                                |                           |                |         |                        |                                          |
| 10.      | -60 03          | 95 36    | Direct.         | -76 27                                               |                           | ď.             |         |                        |                                          |
|          |                 |          | N.              | -7730                                                |                           | >-37           | +13     | <b>-77</b> 35          | Table very unsteady.                     |
| 11       | _59 52          | 99 30    | S. Direct.      | $\begin{vmatrix} -77 & 35 \\ -80 & 03 \end{vmatrix}$ |                           | K              |         |                        |                                          |
| - 11.    | - 59 52         | 33 00    | N.              | -80 23                                               |                           |                |         | #0 01D                 | Table very unsteady,                     |
|          |                 |          | S.              | -79 25                                               | $E \cdot \frac{1}{2} S$ . | +15            | +13     | <b>-79 21</b>          | taken at 10 A.M.                         |
|          |                 | 00.00    | N.S.            | -79 23                                               |                           | IJ             |         | >79 36                 | Table steady, taken                      |
|          | -59 59          | 99 39    | Direct.<br>N.   | $\begin{vmatrix} -80 & 28 \\ -81 & 05 \end{vmatrix}$ |                           |                |         |                        | at 6 P.M.                                |
| 1        |                 |          | S.              | -80 50                                               | $E. \frac{1}{2} N.$       | >+30           | +13     | <b>-79 51</b>          |                                          |
| İ        |                 |          | N.S.            | -79 53                                               | E. $\frac{1}{2}$ N.       |                |         |                        |                                          |
| 13       | -57 35          | 99 28    | Direct.         | -7918                                                |                           | 1 +11          | +14     | -78 36                 | Table very unsteady,<br>taken at 6 P.M.  |
| 14       | 56 E            | 101 24   | N.S.            | $\begin{vmatrix} -79 & 03 \\ -78 & 33 \end{vmatrix}$ |                           | K              |         |                        |                                          |
| 14       | 56 53           | 101 24   | Direct.         | $-78 33 \\ -79 38$                                   |                           |                |         | 70.40                  | 1                                        |
|          |                 |          | S.              | -79 22                                               | E. by s.                  | +12            | +13     | <b>-78 40</b>          | Table very unsteady.                     |
|          |                 |          | N.S.            | -7848                                                | E. by s.                  | IJ             |         |                        |                                          |
| 15       | -55 59          | 2 103 06 | Direct.         | -79 18 $-80 28$                                      |                           |                |         | _                      | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -  |
| 1.       |                 |          | S.              | -80 28 $-80 03$                                      |                           | +39            | +13     | <b>-78 56</b>          | Table very unsteady.                     |
| l        |                 |          | N.S.            | -79 23                                               |                           |                |         |                        |                                          |
|          |                 |          |                 |                                                      |                           |                | 1       |                        |                                          |

|            |                 |         |                 |                                                      |                                                    | Corre                       | ctions.     |                        |                                         |
|------------|-----------------|---------|-----------------|------------------------------------------------------|----------------------------------------------------|-----------------------------|-------------|------------------------|-----------------------------------------|
| Date.      | Tet             | Long    | Method          | Observed                                             | Ship's head.                                       | Ship's                      |             | Corrected Inclination. | Remarks.                                |
| Date.      | Lat.            | Long.   | employed.       | Inclination.                                         | omp s nead.                                        | attrac-                     | Index.      | Corrected Inciniation. | Nemarks.                                |
| 1845.      |                 |         |                 | 0 1                                                  |                                                    |                             | ,           | 0 / 0 .                |                                         |
| Mar. 16.   | $-54^{\circ}48$ | 106 04  | Direct.         | -7933                                                | N.E.                                               |                             |             |                        |                                         |
|            |                 |         | N.              | -80 03                                               | N.E.                                               | >+78                        | +13         | -78 09                 | Table very unsteady.                    |
|            |                 |         | S.<br>N.S.      | $\begin{vmatrix} -79 & 25 \\ -79 & 38 \end{vmatrix}$ | N.E.                                               |                             |             |                        |                                         |
| 17.        | -54 17          | 108 05  | Direct.         | -78 23                                               | S.E.                                               | K                           |             | *                      |                                         |
| - ' '      |                 |         | N.              | -79 38                                               | S.E.                                               | >-30                        | +13         | <b>−79</b> 16 )        |                                         |
|            |                 |         | S.              | -78 55                                               | S.E.                                               | ١                           |             | 78 49                  | Table very unsteady,                    |
|            |                 |         | Direct.<br>N.   | -78 38                                               | E.                                                 | $\left  \right\rangle + 24$ | . 19        |                        | ship pitching vio-<br>lently.           |
|            |                 |         | S.              | -78 58  -79 18                                       | E.<br>E.                                           | 7+24                        | +13         | <b>-78 21</b> J        | lentry.                                 |
| 18.        | -53 00          | 110 08  | Direct.         | -79 28                                               | N.N.E. $\frac{1}{2}$ E.                            | Κ Ι                         |             |                        |                                         |
| -0.        |                 |         | N.              | -7855                                                | N.N.E. $\frac{1}{2}$ E.                            | >+82                        | . 19        | 77 00                  |                                         |
|            | 1               |         | S.              | -7848                                                | N.N.E. $\frac{1}{2}$ E.                            | 7+02                        | +15         | <b>-77</b> 28          | Table very unsteady.                    |
|            | F 3 00          | 111 00  | N.S.            | -7900                                                | N.N.E. $\frac{1}{2}$ E.                            |                             |             |                        |                                         |
| 19.        | -51 20          | 111 23  | Direct.<br>S.   | $-78 08 \\ -78 48$                                   | N.N.E. $\frac{1}{2}$ E.<br>N.N.E. $\frac{1}{2}$ E. | >+85                        | <b>⊥</b> 21 | <b>-76 41</b>          | L                                       |
|            |                 |         | N.S.            | -78 25                                               | N.N.E. $\frac{1}{2}$ E.                            | ( 100                       | T 21        | -70 41                 | Table very unsteady,<br>heavy swell.    |
| 20.        | -49 01          | 111 47  | Direct.         | -77 38                                               | N.E. by N.                                         | ň l                         |             |                        |                                         |
|            |                 |         | N.              | -78 38                                               | n.e. by n.                                         | >+82                        | +13         | -76 30                 | Table unsteady, very                    |
|            | Ī               |         | S.              | -78 30                                               | N.E. by N.                                         | ( , 5                       | , 20        | 70 00                  | heavy swell.                            |
| 90         | -47 21          | 115 15  | N.S.<br>Direct. | $-77 33 \\ -76 43$                                   | n.e. by n.                                         | $\forall$ 1                 |             |                        |                                         |
| 22.        | -4/ 21          | 115 15  | N.              | $-70 	 43 \\ -77 	 13$                               | E.N.E.                                             |                             |             |                        |                                         |
|            |                 |         | S.              | -77 03                                               | E.N.E.                                             | >+58                        | +13         | <b>-75</b> 31          | Table steady, light                     |
|            |                 |         | N.S.            | -7548                                                | E.N.E.                                             | J                           |             |                        | swell.                                  |
| 25.        | -43 20          | 116 52  | Direct.         | -73 23                                               | N. $\frac{1}{2}$ E.                                | )                           |             |                        |                                         |
|            |                 |         | N.<br>S.        | <b>-75</b> 45                                        | $N \cdot \frac{1}{2} E \cdot$                      | >+76                        | +13         | -7245                  | Table very unsteady,                    |
|            | l               |         | N.S.            | $-74 	ext{ } 48 \ -72 	ext{ } 58$                    | N. $\frac{1}{2}$ E.<br>N. $\frac{1}{2}$ E.         |                             |             |                        | heavy swell from W.                     |
| 26.        | -41 18          | 116 09  | Direct.         | $-71 \ 33$                                           | N. by w.                                           | ۲ ۱                         |             | ·                      |                                         |
|            |                 |         | N.              | -71 33                                               | N. by w.                                           | >+80                        | ⊥13         | -70 11                 | Table unsteady,light                    |
|            |                 |         | S.              | -72 15                                               | N. by w.                                           | 7+00                        | 1 10        | ,0 11                  | swell.                                  |
| 07         | -38.52          | 116 15  | N.S.<br>Direct. | $-71 \ 33 \ -70 \ 23$                                | N. by w.                                           | 1                           |             |                        |                                         |
| 27.        | - 36 32         | 110 10  | N.              | -70 25 $-70 45$                                      | N. by w.                                           |                             |             |                        |                                         |
|            |                 |         | S.              | -70 50                                               | N. by w.                                           | >+80                        | +13         | -68 49                 | Table steady.                           |
|            |                 | İ       | N.S.            | -6928                                                | n. by w.                                           | J                           |             |                        |                                         |
| 28.        | <b>—37 03</b>   | 116 57  | Direct.         | $-68 \ 33$                                           | N. by E.                                           | )                           |             |                        |                                         |
| <b>j</b> i |                 |         | N.<br>S.        | $-68 \ 48 \ -68 \ 13$                                | n. by E.<br>n. by E.                               | >+83                        | +13         | <b>-66</b> 46          | Table very steady,                      |
|            |                 | - 1     | N.S.            | -67 53                                               | N. by E.                                           | 1                           |             |                        | nearly calm.                            |
| 29.        | -36 12          | -116 50 | Direct.         | -67 30                                               | N.N.E.                                             | <b>ή</b>                    |             |                        |                                         |
|            |                 |         | N.              | -67 13                                               | N.N.E.                                             | >+84                        | +13         | -65 28                 | Table unsteady.                         |
|            |                 | .       | S.              | -66 55                                               | N.N.E.                                             |                             | ,           | 32 70                  |                                         |
| 30         | -35 18          | 117 07  | N.S.<br>Direct. | $-66 	ext{ } 43 \\ -67 	ext{ } 28$                   | N.N.E.<br>N.E. ½ E.                                | ۲ ۱                         |             | ,                      |                                         |
| 50.        | 00 10           | 11, 0,  | N.              | -68 00                                               | N.E. $\frac{1}{2}$ E.                              | 1                           | . 10        | 6r 40                  |                                         |
|            |                 |         | S.              | <b>-67 48</b>                                        | N.E. $\frac{1}{2}$ E.                              | +86                         | +13         | -65 	48                | Table unsteady.                         |
|            | 27.25           |         | N.S.            | -66 30                                               | N.E. $\frac{1}{2}$ E.                              | J                           |             |                        |                                         |
| April 7.   | -35 02          |         | Direct.         | -65 28<br>65 36                                      | Observed                                           | ,                           |             |                        | :                                       |
|            | King G<br>Sou   |         | N.<br>S.        | $-65 36 \\ -65 30$                                   | on shore.                                          | <b>}</b>                    | +13         | -65 11                 |                                         |
|            | Sou             |         | N.S.            | -65 03                                               | ]                                                  | ,                           |             | 6.                     | em 1                                    |
| 11.        | King G          |         | Direct.         | -65 28                                               | <b>)</b>                                           | )                           | . :         | >-65 11                | The observations<br>were made at the    |
|            | Sou             | nd.     | N.              | -65 28                                               | Observed                                           | <b>.</b>                    | +13         | -65 11                 | same place that was<br>used by Captains |
|            |                 | . :     | S.              | $-65 \ 31 \\ -65 \ 09$                               | on shore.                                          | 1                           |             | · · ·                  | FLINDERS and<br>FITZROY.                |
|            |                 |         | N.S.            | -00 09                                               | J                                                  | )                           |             |                        |                                         |

|                             |               |                                                  |                            |                                                                                             |                                                 | Correc                                               | ctions.      |                                                         |                                                            |
|-----------------------------|---------------|--------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|--------------|---------------------------------------------------------|------------------------------------------------------------|
| Date.                       | Lat.          | Long.                                            | Method employed.           | Observed<br>Inclination.                                                                    | Ship's head.                                    | Ship's attraction.                                   | Index.       | Corrected Inclination.                                  | Remarks.                                                   |
| 1845.<br>April 1 <b>9</b> . |               | nor in the und.                                  | Direct.<br>N.S.            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      | s.s.w.<br>s.s.w.                                | } –16                                                | +24          | -64 46) · ·                                             |                                                            |
| ,                           |               |                                                  | Direct.<br>N.S.            | $     \begin{array}{r rrr}     -65 & 49 \\     -65 & 25     \end{array} $                   | s.w.<br>s.w.                                    | $\left.\right\} + 01$                                | +24          | -65 12                                                  |                                                            |
|                             |               |                                                  | Direct.<br>N.S.            |                                                                                             | w.s.w.<br>w.s.w.                                | $\left.\right\} + 23$                                | +24          | -64 57                                                  |                                                            |
|                             | •             | ion.                                             | Direct.<br>N.S.<br>Direct. |                                                                                             | W.<br>W.<br>W.N.W.                              | }+46                                                 | +24          | -64 41                                                  |                                                            |
|                             |               | ttract                                           | N.S.<br>Direct.            | $ \begin{array}{c cccc} -66 & 03 \\ -66 & 35 \end{array} $                                  | W.N.W.<br>N.W.                                  | } +70                                                | +24          | -64 39                                                  |                                                            |
|                             |               | To obtain corrections for the ship's attraction. | N.S.<br>Direct.            | $\begin{vmatrix} -66 & 16 \\ -66 & 50 \end{vmatrix}$                                        | N.W.                                            |                                                      | $+24 \\ +24$ | $-64 \ 30$ $-64 \ 52$                                   |                                                            |
|                             |               | the sh                                           | N.S.<br>Direct.            | -66 29 $-66 29$                                                                             | N.N.W.<br>N.                                    | $\begin{cases} +84 \\ +84 \end{cases}$               | $+24 \\ +24$ | -64 34                                                  |                                                            |
|                             |               | s for 1                                          | N.S.<br>Direct.<br>N.S.    | $     \begin{array}{r}     -66 & 14 \\     -66 & 48 \\     -66 & 26     \end{array} $       | N.<br>N.N.E.                                    | } +83                                                | +24          | $-64\ 50$ $-64\ 51$                                     | The table was very<br>steady during<br>these observations. |
|                             | -             | ection                                           | Direct.<br>N.S.            |                                                                                             | N.N.E.<br>N.E.<br>N.E.                          | +92                                                  | +24          | -64 26                                                  | 1                                                          |
|                             |               | corre                                            | Direct.<br>N.S.            | $\begin{bmatrix} -66 & 27 \\ -66 & 00 \end{bmatrix}$                                        | E.N.E.<br>E.N.E.                                | +70                                                  | +24          | -64 40                                                  |                                                            |
|                             |               | btain                                            | Direct.<br>N.S.            | $\begin{vmatrix} -66 & 37 \\ -66 & 21 \end{vmatrix}$                                        | E.<br>E.                                        | $\left.\right\} + 46$                                | +24          | -65 19                                                  | ÷                                                          |
|                             | ŕ             | To 6                                             | Direct.<br>N.S.<br>Direct. |                                                                                             | E.S.E.<br>E.S.E.<br>S.E.                        | $\left. \left. \left. \right\} +23\right  \right.$   | +24          | <b>-65</b> 11                                           | ·                                                          |
|                             |               |                                                  | N.S.<br>Direct.            | $\begin{bmatrix} -65 & 19 \\ -65 & 13 \end{bmatrix}$                                        | S.E.<br>S.S.E.                                  | $\left.\begin{array}{c} +01 \\ 1 \end{array}\right.$ | +24          | -65 11 C4 50                                            |                                                            |
|                             |               |                                                  | N.S.<br>Direct.            | -64 58 $-65 11$                                                                             | S.S.E.<br>S.                                    | $\begin{cases} -16 \\ -21 \end{cases}$               | $+24 \\ +24$ | $ \begin{array}{c c} -64 & 58 \\ -64 & 57 \end{array} $ |                                                            |
| 23.                         | <b>—35</b> 36 | 114 44                                           | N.S.<br>Direct.            | -64 	 46 $-66 	 53$                                                                         | s.<br>N.W.                                      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                | T 22         | <b>01 01</b> )                                          |                                                            |
| ,                           |               |                                                  | N.<br>S.<br>N.S.           | $     \begin{array}{r}       -67 & 45 \\       -67 & 40 \\       -66 & 33     \end{array} $ | N.W.<br>N.W.                                    | +92                                                  | +13          | <b>-65</b> 28                                           | Table unsteady.                                            |
| 24.                         | <b>-34</b> 16 | 113 01                                           | Direct.<br>N.              | $ \begin{array}{r rrrr} -66 & 33 \\ -66 & 28 \end{array} $                                  | n.w. by n.<br>n.w. by n.                        | }                                                    |              | -64 44                                                  |                                                            |
|                             |               |                                                  | S.<br>N.S.                 |                                                                                             | n.w. by n. n.w. by n.                           | <b>}+88</b>                                          | +13          | -04 44                                                  | Table unsteady.                                            |
| 25.                         | -32 32        | 111 36                                           | Direct.<br>N.<br>S.        | $     \begin{array}{r rrr}     -63 & 48 \\     -64 & 25 \\     -63 & 55     \end{array} $   | n.w. by n.                                      | +88                                                  | +13          | -62 14                                                  | Table unsteady.                                            |
| 27.                         | <b>-29 20</b> | 106 55                                           | N.S.<br>Direct.            |                                                                                             | n.w. by n.<br>n.w. by n.<br>w.n.w.              |                                                      |              |                                                         |                                                            |
|                             |               |                                                  | N.<br>S.                   |                                                                                             | w.n.w.                                          | >+72                                                 | +13          | -59 19                                                  | Table steady.                                              |
| 28.                         | <b>-27</b> 47 | 106 36                                           | N.S.<br>Direct.            | $\begin{bmatrix} -60 & 33 \\ -58 & 28 \end{bmatrix}$                                        | w.n.w.<br>n. by w. ½ w.                         | $\{ \   \ $                                          |              | · · · · · · · · · · · · · · · · · · ·                   | . *                                                        |
|                             |               |                                                  | N.<br>S.<br>N.S.           | -58 25                                                                                      | N. by w. ½ w.<br>N. by w. ½ w.<br>N. by w. ½ w. | +76                                                  | +13          | -57 17                                                  | Table very unsteady,<br>heavy swell.                       |
| 29.                         | <b>—26 00</b> | 105 11                                           | Direct.<br>N.              | -56 38 $-56$ 48                                                                             | N.W.<br>N.W.                                    | 7                                                    | , 10         | 55 00                                                   | (Daldana                                                   |
|                             |               | 1.41                                             | S.<br>N.S.                 | $-57 08 \\ -56 45$                                                                          | N.W.<br>N.W.                                    | +88                                                  | +13          | <b>—55 09</b>                                           | Table very unsteady,<br>very heavy swell.                  |

|                 |                     |        |                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Correc                                           | ctions. | - :                                                          |                                             |
|-----------------|---------------------|--------|-----------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------|--------------------------------------------------------------|---------------------------------------------|
| Date.           | Lat.                | Long.  | Method          | Observed                                             | Ship's head.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ship's                                           |         | Corrected Inclination                                        | Remarks.                                    |
| 24.01           |                     |        | employed.       | Inclination.                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | attrac-<br>tion.                                 | Index.  |                                                              |                                             |
|                 |                     |        |                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |         |                                                              |                                             |
| 1845.<br>Mars 1 | $-2\mathring{4} 00$ | റ്റ് ഒ | Direct.         | -55 <sup>°</sup> 18                                  | 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 4                                              | ,       | 0 / 0                                                        | ,                                           |
| May 1.          | -24 00              | 99 20  | N.              | -55 $55$                                             | w.<br>w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |         | 74.00                                                        |                                             |
|                 |                     |        | S.              | -56 13                                               | w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\rangle + 51$                                   | +13     | -54 28                                                       | Table very unsteady,<br>considerable mo-    |
|                 | 04.08               | 07 90  | N.S.            | -54 	43                                              | w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Į                                                |         |                                                              | tion.                                       |
| 2.              | -24 01              | 97 30  | Direct.<br>N.   | $-55 03 \\ -55 20$                                   | w.<br>w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |         |                                                              |                                             |
|                 |                     |        | S.              | -55 28                                               | w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\rangle + 51$                                   | +13     | -54 03                                                       | Table steady.                               |
| _               |                     | 00.00  | N.S.            | $-54 \ 35$                                           | w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Į                                                |         |                                                              |                                             |
| 3.              | -24 00              | 96 06  | Direct.<br>N.   | -55 	 18                                             | $W \cdot \frac{1}{2} N \cdot W \cdot \frac{1}{2} N \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |         |                                                              |                                             |
|                 |                     |        | S.              | -55 30                                               | $W \cdot \frac{1}{2} N \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | > +56                                            | +13     | -54 16                                                       | Table steady.                               |
|                 |                     |        | N.S.            | -55 38                                               | $W \cdot \frac{1}{2} N \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |         |                                                              |                                             |
| 6.              | $-22 \ 47$          | 91 00  | Direct.<br>N.   | -54 28                                               | N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Π.                                               |         |                                                              |                                             |
|                 |                     |        | S.              | $-54 	40 \\ -54 	28$                                 | N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >+87                                             | +13     | -52 49                                                       | Table very unsteady,<br>heavy swell from W. |
|                 |                     | ,      | N.S.            | -54 18                                               | N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IJ                                               |         |                                                              | neavy swen from w.                          |
| 7.              | -21 50              | 89 44  | Direct.         | -5328                                                | N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n                                                | ·       |                                                              |                                             |
|                 |                     |        | N.<br>S.        | $-53 53 \\ -54 08$                                   | N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >+86                                             | +13     | -52 17                                                       | Table very unsteady,                        |
|                 |                     |        | N.S.            | -54 	 13                                             | N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |         |                                                              | heavy W. swell.                             |
| 8.              | -20 46              | 87 59  | Direct.         | -52 28                                               | n.w. by w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ň.                                               |         |                                                              |                                             |
|                 |                     |        | N.<br>S.        | $\begin{bmatrix} -53 & 03 \\ -52 & 58 \end{bmatrix}$ | n.w. by w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >+82                                             | +13     | -51 067                                                      |                                             |
|                 |                     |        | N.S.            | -52 	 38 $-52 	 13$                                  | n.w. by w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |         |                                                              | _                                           |
|                 |                     |        | Direct.         | -52 13                                               | N.w. by w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K                                                |         | \rightarrow -50 5                                            | 7 Table steady. Observer Mr. Bur-           |
|                 |                     | ·      | N.              | -5233                                                | n.w. by w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +82                                              | +13     | -50 48                                                       | DON, R.N. Table steady.                     |
|                 |                     |        | S.<br>N.S.      | $\begin{vmatrix} -52 & 30 \\ -52 & 15 \end{vmatrix}$ | n.w. by w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |         |                                                              | Table steady.                               |
| 9.              | -20 38              | 85 26  | Direct.         | -52 03                                               | $W \cdot \frac{1}{2} N \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K                                                |         |                                                              |                                             |
|                 |                     |        | N.              | -52 35                                               | $W_{\bullet} = \frac{1}{2} N_{\bullet}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +56                                              | +13     | -51 14                                                       | Table very unsteady,                        |
|                 |                     |        | S.<br>N.S.      | $\begin{vmatrix} -52 & 15 \\ -52 & 38 \end{vmatrix}$ | $W \cdot \frac{1}{2} N \cdot W \cdot \frac{1}{2} N \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ι ( ΄                                            | '       |                                                              | heavy swell.                                |
| 10.             | -20 26              | 82 22  | Direct.         | -5243                                                | $W \cdot \frac{1}{2} N \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K                                                |         | v v de e                                                     |                                             |
|                 | 1.1                 |        | N.              | -53 00                                               | $W \cdot \frac{1}{2} N \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +56                                              | +13     | -51 40                                                       | Table very unsteady.                        |
|                 |                     |        | S.<br>N.S.      | $\begin{vmatrix} -52 & 58 \\ -52 & 33 \end{vmatrix}$ | $\begin{array}{c c} W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{2} N \cdot \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | '       |                                                              |                                             |
|                 |                     |        | Direct.         | -52 	 49                                             | $\begin{array}{c} W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{4} N \cdot \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K                                                | į       | >-51 3                                                       | 9                                           |
|                 |                     |        | N.              | -5247                                                | $W \cdot \frac{1}{4} N \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +53                                              | +13     | _51 37                                                       | Table very unsteady.                        |
|                 |                     | ·      | S.              | -52 25                                               | W. 1 N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16,00                                            | +10     | 1 0. 0,                                                      | Observer Mr. Bur-<br>Don, R.N.              |
| 11.             | -20 36              | 79 22  | N.S.<br>Direct. | $\begin{bmatrix} -52 & 50 \\ -52 & 43 \end{bmatrix}$ | $W \cdot \frac{1}{4} N \cdot W \cdot \frac{1}{4} N \cdot W \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}{4} N \cdot \frac{1}$ | K                                                |         |                                                              |                                             |
| ^^              | ~ 50                |        | N.              | -5245                                                | $\mathbf{W} \cdot \frac{1}{4} \mathbf{N}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{vmatrix} \\ \\ \\ \\ \end{vmatrix} + 53$ | +13     | -51 55                                                       | Table very unsteady.                        |
|                 |                     |        | S.              | -53 05                                               | $\mathbf{W} \cdot \frac{1}{4} \mathbf{N} \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \ + 33                                           | 719     | 01.00                                                        | Observer Mr. Bur-<br>Don, R.N.              |
|                 |                     |        | N.S.<br>Direct. | $\begin{vmatrix} -53 & 30 \\ -52 & 38 \end{vmatrix}$ | $W \cdot \frac{1}{4} N \cdot W \cdot \frac{1}{4} N \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K                                                |         |                                                              | DON, IV.IV.                                 |
|                 |                     | *      | N.              | $-52 \ 40$                                           | $\mathbf{w}. \frac{4}{4} \mathbf{N}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | +13     | -51 44                                                       | Table unsteady.                             |
|                 |                     |        | S.              | -5308                                                | W. 1/4 N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | > + 33                                           | T13     | 01 77                                                        | Lanc unsteady.                              |
| 12.             | -20 44              | 78 31  | N.S.<br>Direct. | $\begin{bmatrix} -52 & 53 \\ -54 & 08 \end{bmatrix}$ | W. 1/4 N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K                                                | 1:      |                                                              |                                             |
| 12.             | 20 44               | 10 01  | N.S.            | -53 	 55                                             | w.<br>w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $+51$                                            | +24     | $ -52 \ 47$                                                  |                                             |
|                 |                     |        | Direct.         | -53 38                                               | w.n.w.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{1}{1} + 72$                               | +24     | -51 55                                                       |                                             |
|                 |                     |        | N.S.<br>Direct. | $\begin{bmatrix} -53 & 23 \\ -53 & 23 \end{bmatrix}$ | W.N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | {                                                |         |                                                              |                                             |
|                 |                     |        | N.S.            | -53 25<br>-53 30                                     | N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $  \} + 86$                                      | +24     | -51 37                                                       |                                             |
|                 |                     |        | Direct.         | -5253                                                | N.N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\left  \right  + 68$                            | +24     | -51 20                                                       |                                             |
|                 |                     | -      | N.S.            | -5250                                                | N.N.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                               | 1       | $\begin{vmatrix} -51 & 20 \\ -51 & 01 \end{vmatrix} -52 & 0$ | 2                                           |
|                 |                     |        | Direct.         | -52 	43                                              | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +70                                              | + 3%    | -01 01 7-02 (                                                |                                             |

|         |                  |       |                  |                                                                           |                                                                                             | Correc                                        | ctions. |                                                      |                                      |
|---------|------------------|-------|------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|---------|------------------------------------------------------|--------------------------------------|
| Date.   | Lat.             | Long. | Method employed. | Observed<br>Inclination.                                                  | Ship's head.                                                                                | Ship's attraction.                            | Index.  | Corrected Inclination.                               | Remarks.                             |
| 1845.   |                  |       |                  | /                                                                         |                                                                                             | ,                                             | ,       | 0 / 0 /                                              |                                      |
| May 12. | $-20^{\circ}$ 44 | 78 31 | Direct.<br>N.S.  | $-5\overset{\circ}{3}4\overset{\circ}{8}$                                 | N.N.E.                                                                                      | $  \} + 68$                                   | +24     | -51 54 > -52 03                                      | <b>1</b>                             |
|         |                  |       | Direct.          | $\begin{bmatrix} -53 & 03 \\ -52 & 48 \end{bmatrix}$                      | N.N.E.<br>S.                                                                                |                                               |         |                                                      |                                      |
|         | l                |       | N.S.             | -52 33                                                                    | s.                                                                                          | +15                                           | +24     | -52 01                                               |                                      |
|         |                  |       | Direct.          | -5348                                                                     | s.s.w.                                                                                      | $\frac{1}{1}$ + 19                            | +24     | -52 46                                               | l leaves                             |
|         |                  |       | N.S.             | -53 10                                                                    | s.s.w.                                                                                      | Į                                             |         | -32 40                                               |                                      |
|         | 1                |       | Direct.<br>N.S.  | $     \begin{array}{r rrr}     -53 & 43 \\     -53 & 03     \end{array} $ | S.W.                                                                                        | +30                                           | +24     | -52 29                                               |                                      |
| '       |                  |       | Direct.          | -53 	 03 $-53 	 48$                                                       | S.W.<br>W.S.W.                                                                              | }                                             | . 24    |                                                      | To obtain correc-                    |
|         |                  |       | N.S.             | -53 38                                                                    | w.s.w.                                                                                      | $\left  \right. \right. \left. \right. + 44$  | +24     | -52 35                                               | tions for the                        |
| 13.     | -20 39           | 77 43 | Direct.          | -5348                                                                     | w.                                                                                          | $\frac{1}{2} + 51$                            | +24     | _52 427                                              | tion. Calm, table very unsteady,     |
|         |                  |       | N.S.             | -54 05                                                                    | w.                                                                                          | 1                                             |         | 0.2 1.2                                              | considerable rolling motion.         |
|         |                  |       | Direct.<br>N.S.  | $\begin{vmatrix} -53 & 28 \\ -53 & 13 \end{vmatrix}$                      | N.W.                                                                                        | +86                                           | +24     | -51 30                                               | I Ioming motion.                     |
|         |                  |       | Direct.          | -52 58                                                                    | N.                                                                                          | , 70                                          | . 04    |                                                      |                                      |
|         |                  |       | N.S.             | -5245                                                                     | N.                                                                                          | $  \} + 70$                                   | +24     | $\begin{vmatrix} -51 & 18 \\ -51 & 59 \end{vmatrix}$ |                                      |
|         |                  |       | Direct.          | -53 23                                                                    | N.E.                                                                                        | } +86                                         | +24     | -51 24                                               |                                      |
|         |                  |       | N.S.<br>Direct.  | -53 05 $-53 53$                                                           | N.E.                                                                                        | ΙĮ                                            |         |                                                      |                                      |
|         |                  |       | N.S.             | -53 30 $-53 30$                                                           | E.<br>E.                                                                                    |                                               | +24     | -52 27                                               |                                      |
|         |                  |       | Direct.          | -5348                                                                     | S.E.                                                                                        | $\frac{1}{2} + 30$                            | 101     | 50.94                                                |                                      |
|         |                  |       | _N.S.            | -53 08                                                                    | S.E.                                                                                        | +30                                           | +24     | -52 34                                               |                                      |
| 14.     | -20 29           | 76 22 | Direct.          | -53 08                                                                    | $W \cdot \frac{1}{2} N \cdot$                                                               | ו                                             |         | 1                                                    |                                      |
|         |                  |       | N.<br>S.         | $\begin{bmatrix} -53 & 00 \\ -53 & 35 \end{bmatrix}$                      | $W \cdot \frac{1}{2} N \cdot W \cdot \frac{1}{2} N \cdot$                                   | >+56                                          | +13     | -52 13                                               | Table very unsteady.                 |
|         |                  |       | N.S.             | -53 	 43                                                                  | W. 1 N.                                                                                     |                                               |         |                                                      |                                      |
|         |                  | 1.    | Direct.          | -53 38                                                                    | $W_{\bullet} = \frac{1}{2} N_{\bullet}$                                                     | ň.                                            |         | \rightarrow -52 20                                   |                                      |
|         |                  |       | N.               | -53 48                                                                    | $W_{\bullet} = \frac{1}{2} N_{\bullet}$                                                     | +56                                           | +13     | -52 27                                               | Table very unsteady.                 |
|         |                  |       | S.<br>N.S.       | -53 50                                                                    | $W. \frac{1}{2} N.$                                                                         |                                               |         | 1                                                    | Observer Mr.<br>Burdon, R.N.         |
| 16      | -20 28           | 70 46 | Direct.          | -53 08 $-54 08$                                                           | $\begin{array}{c c} W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{4} N \cdot \end{array}$ | K                                             |         |                                                      |                                      |
| 10.     | 20 20            | •••   | N.               | -53 48                                                                    | $\mathbf{W} \cdot \frac{1}{4} \mathbf{N}$                                                   | +53                                           | . 19    | -52 51                                               |                                      |
|         |                  |       | S.               | -53 53                                                                    | $W. \frac{1}{4} N.$                                                                         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\        | +13     | -52 51                                               | Table steady.                        |
| ,,      | 27.00            | 68 12 | N.S.             | -53 58                                                                    | W. $\frac{1}{4}$ N.                                                                         | Į                                             |         |                                                      |                                      |
| 18.     | -21 06           | 08 12 | Direct.<br>N.    | $\begin{bmatrix} -54 & 43 \\ -53 & 45 \end{bmatrix}$                      | w.s.w.                                                                                      |                                               |         |                                                      |                                      |
|         |                  |       | S.               | -54 05                                                                    | w.s.w.                                                                                      | +44                                           | +13     | -53 10                                               | Table very unsteady.                 |
|         | 1 to             |       | N.S.             | -53 53                                                                    | w.s.w.                                                                                      | IJ                                            |         |                                                      |                                      |
| 19.     | -21 11           | 67 54 | Direct.          | -54 28                                                                    | n.w. by n.                                                                                  | )                                             |         |                                                      |                                      |
|         |                  |       | N.<br>S.         | $-54 	35 \\ -54 	23$                                                      | n.w. by n.                                                                                  | \\ \+77                                       | +13     | $ -52 54\rangle$                                     | Table steady, nearly                 |
| 1       |                  |       | N.S.             | -54 08                                                                    | n.w. by n.                                                                                  |                                               |         |                                                      | calm.                                |
| Ì       |                  |       | Direct.          | -54 53                                                                    | n.w. by n.                                                                                  | K                                             |         | >-53 02                                              | 2 P.M.                               |
|         |                  |       | N.               | -54 45                                                                    | n.w. by n.                                                                                  | +77                                           | +13     | -53 10                                               | Table steady. Ob-                    |
|         |                  |       | S.<br>N.S.       | -54 38                                                                    | N.w. by N.                                                                                  |                                               | 1       |                                                      | server Mr. Bur-<br>bon, R.N.         |
| 20.     | -21 12           | 67 29 | Direct.          | $\begin{bmatrix} -54 & 23 \\ -55 & 03 \end{bmatrix}$                      | w. by n.                                                                                    | K                                             |         |                                                      | DON, 16.14.                          |
|         | ~                | ٠, ٣٥ | N.               | -54 58                                                                    | w. by N.                                                                                    | $\begin{vmatrix} \\ \\ \\ \end{vmatrix} + 63$ | 19      | 52 467                                               | Table stee 3                         |
|         |                  |       | S.               | -55 08                                                                    | w. by N.                                                                                    | 1>+03                                         | +13     | $[-53 \ 46]$                                         | Table steady.                        |
|         | .                | . 4   | N.S.             | -54 58                                                                    | w. by N.                                                                                    | Ŋ,                                            |         | <b>&gt;−53 39</b>                                    |                                      |
|         | ,                |       | Direct.<br>N.    | -54 58 $-54 45$                                                           | w. by n.<br>w. by n.                                                                        |                                               |         |                                                      |                                      |
|         |                  |       | S.               | -55 00                                                                    | w. by N.                                                                                    | >+63                                          | +13     | $[-53 \ 32]$                                         | Table steady. Ob-<br>server Mr. Bur- |
|         |                  |       | N.S.             | -54 28                                                                    | w. by N.                                                                                    |                                               |         |                                                      | DON, R.N.                            |
|         |                  | -     |                  | l .                                                                       |                                                                                             |                                               |         |                                                      |                                      |

|                  |                  |                             |                                     |                                                                                                                                                |                                                                                                                                                                                                  | Correc                                                    | tions. |                        |                                           |
|------------------|------------------|-----------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------|------------------------|-------------------------------------------|
| Date.            | Lat.             | Long.                       | Method<br>employed.                 | Observed<br>Inclination.                                                                                                                       | Ship's head.                                                                                                                                                                                     | Ship's attraction.                                        | Index. | Corrected Inclination. | Remarks.                                  |
| 1845.<br>May 21. | —21°02           | 66° 02                      | Direct.<br>N.<br>S.                 | -55 28<br>-55 13<br>-55 23                                                                                                                     | w. by n.<br>w. by n.<br>w. by n.                                                                                                                                                                 | $\left.\begin{array}{c} \\ \\ \\ \end{array}\right. + 63$ | +13    | -54 03                 | Table steady.                             |
| 23.              | -20 31           | 59 42                       | N.S.<br>Direct.<br>N.<br>S.<br>N.S. | $ \begin{array}{r rrrr} -55 & 13 \\ -55 & 28 \\ -55 & 00 \\ -55 & 23 \\ -55 & 07 \end{array} $                                                 | w. by n. w. by n. w. by n. w. by n. w. by n.                                                                                                                                                     | $\left.\right\rangle + 63$                                | +13    | <b>—53 59</b>          | Table very unsteady.                      |
| 27.              | Port<br>Mau      | 57 31<br>Louis,<br>critius. | Direct. N. S. N.S.                  | $ \begin{array}{r rrrr} -54 & 27 \\ -54 & 22 \\ -54 & 59 \\ -54 & 01 \end{array} $                                                             | Observed on shore.                                                                                                                                                                               |                                                           | +13    | -54 14                 | Observed by Lieut.<br>Moore, R.N.         |
|                  | -21 44           | -                           | Direct. N. S. N.S.                  | $ \begin{array}{r rrrr} -55 & 33 \\ -55 & 20 \\ -55 & 28 \\ -55 & 35 \end{array} $                                                             | $ \begin{array}{c} \text{W.S.W.} \frac{1}{2} \text{ W.} \\ \text{W.S.W.} \frac{1}{2} \text{ W.} \\ \text{W.S.W.} \frac{1}{2} \text{ W.} \\ \text{W.S.W.} \frac{1}{2} \text{ W.} \\ \end{array} $ | +38                                                       | +13    | -54 38                 | Table very unsteady,<br>heavy swell.      |
| June 2.          | -26 25<br>-27 12 |                             | Direct. N. S. N.S. Direct.          | $ \begin{array}{rrrr} -60 & 33 \\ -59 & 50 \\ -60 & 05 \\ -60 & 10 \\ -59 & 48 \end{array} $                                                   | N.w. by w. N.w. by w. N.w. by w. N.w. by w. w. by s.                                                                                                                                             | +80                                                       | +13    | -58 36                 | Table very unsteady,<br>heavy swell.      |
| 5.               |                  |                             | N. S. N.S. Direct.                  | $     \begin{array}{r rrr}         -39 & 48 \\         -59 & 18 \\         -59 & 48 \\         -59 & 58 \\         -59 & 43      \end{array} $ | w. by s. w. by s. w. by s. w. by s.                                                                                                                                                              | $\left   ightharpoonup +46$                               | +13    | -58 44                 | Table unsteady,<br>fresh breeze.          |
| 6.               |                  |                             | N. S. N.S. Direct.                  | $ \begin{array}{c cccc} -59 & 53 \\ -60 & 18 \\ -59 & 48 \\ -60 & 33 \end{array} $                                                             | W. W. W. W. N. W.                                                                                                                                                                                | $\left  \right> + 51$                                     | +13    | -58 52                 | Table very unsteady,<br>fresh breeze.     |
| 7                |                  |                             | N. S. N.S. Direct.                  | $ \begin{vmatrix} -60 & 25 \\ -60 & 23 \\ -60 & 23 \\ -59 & 58 \end{vmatrix} $                                                                 | W.N.W.<br>W.N.W.<br>W.N.W.<br>W. 1/2 N.                                                                                                                                                          | +72                                                       | +13    | -59 01                 | Table very unsteady,<br>fresh breeze,     |
|                  | _28 57           | 37 52                       | N. S. N.S. Direct.                  | $ \begin{array}{r rrrr} -59 & 56 \\ -60 & 28 \\ -59 & 50 \\ -60 & 38 \end{array} $                                                             | $\begin{array}{c} W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{2} N \cdot \\ \end{array}$                                       | $\left  \right\rangle + 56$                               | +13    | -58 54                 | Table very unsteady.                      |
| 12               | 30 33            | 33 19                       | N. S. N.S. Direct.                  | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                         | W.<br>W.<br>W.<br>W.N.W.                                                                                                                                                                         | $\left  \right> + 51$                                     | +13    | -59 08                 | Table steady, nearly a calm.              |
| 13               | 31 06            | 31 34                       | N. S. N.S. Direct.                  |                                                                                                                                                | w.n.w.<br>w.n.w.<br>w. by s. ½ s                                                                                                                                                                 |                                                           | +13    | -57 19                 | Table unsteady.                           |
| 14               | 33 01            | 29 36                       | N. S. N.S. Direct.                  |                                                                                                                                                |                                                                                                                                                                                                  | . \ \ \ + 4%                                              | +13    | -57 28                 | Table steady, nearly a calm.              |
| 15               | 34 3             | 27 04                       | N. S. N.S. Direct.                  | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                          | $\begin{array}{c} W \cdot \\ W \cdot \\ W \cdot \frac{1}{2} N \cdot \end{array}$                                                                                                                 | +51                                                       | +13    | -57 34                 | Table unsteady,<br>fresh breeze.          |
|                  |                  |                             | N.<br>S.<br>N.S.                    | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                         | $W. \frac{1}{2} N.$                                                                                                                                                                              | +56                                                       | +13    | <b>-57</b> 06          | Table very unsteady,<br>long heavy swell. |

|          |                          |                               |                             |                                                                                                       |                                  | Correc                                               | tions. |                |                            |                                                |
|----------|--------------------------|-------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|--------|----------------|----------------------------|------------------------------------------------|
| Date.    | Lat.                     | Long.                         | Method<br>employed.         | Observed<br>Inclination.                                                                              | Ship's head.                     | Ship's attraction.                                   | Index. | Correcte       | d Inclination.             | Remarks.                                       |
| 1835.    | 0 /                      |                               |                             | 0 /                                                                                                   |                                  | ,                                                    |        |                | , , ,                      |                                                |
| June 16. | $-35^{\circ} 46^{\circ}$ | 23° 35                        | Direct.<br>N.<br>S.         | $ \begin{vmatrix} -57 & 38 \\ -57 & 23 \\ -57 & 15 \end{vmatrix} $                                    | w. by n.<br>w. by n.<br>w. by n. | $\left.\right\}$ + 63                                |        | _56 O          |                            | Table steady, fresh<br>breeze.                 |
| 17.      | <b>—35 36</b>            | 21 40                         | N.S.<br>Direct.<br>N.       | $     \begin{array}{r rrr}     -57 & 20 \\     -56 & 48 \\     -56 & 43     \end{array} $             | w. by n.<br>w. by n.<br>w. by n. | J<br>]                                               | . 10   |                |                            |                                                |
| 18.      | -35 07                   | 20 46                         | S.<br>N.S.<br>Direct.       | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                | w. by n.<br>w. by n.<br>w. by s. | $\left  \begin{array}{c} +72 \\ \end{array} \right $ | +13    | -55 1          | 8                          | Table steady.                                  |
|          |                          | 30 10                         | N.<br>S.<br>N.S.            | $ \begin{array}{r rrrr} -55 & 45 \\ -56 & 08 \\ -56 & 18 \end{array} $                                | w. by s.<br>w. by s.<br>w. by s. | +46                                                  | +13    | +55 0          | 8                          | Table steady.                                  |
| 23.      | -34 12 $-33 56$          |                               | Direct.<br>N.S.             | $     \begin{array}{r rrr}         -54 & 17 \\         -53 & 45 \\         -54 & 12     \end{array} $ | Observed on shore.               | }                                                    | +24    | -53 3          | 7 —53 37                   | Observed in the<br>dockyard at<br>Simon's Bay. |
| 30.      |                          | ο.                            | Direct. N. S.               |                                                                                                       | Observed on shore.               | }                                                    | +13    | -53 3          | 2                          | Monthly mean dip<br>by Robinson's<br>needles   |
| July 2.  | vatory                   | ic Obser-<br>Cape of<br>Hope. | N.S.<br>Direct.<br>N.<br>S. |                                                                                                       | Observed on shore.               | }                                                    | +13    | -53 3          | $0$ $\left53 \ 34 \right.$ | A 1 53 24<br>A 2 53 24<br>Mean 53 24           |
| June 23. | -34 12                   | 18 26                         | N.S.<br>Direct.<br>N.S.     | $\begin{vmatrix} -53 & 44 \\ -53 & 59 \\ -53 & 46 \end{vmatrix}$                                      | s.<br>s.                         | + 09                                                 | +24    | -53 2          | 0                          |                                                |
|          |                          |                               | Direct.<br>N.S.<br>Direct.  | $\begin{vmatrix} -53 & 50 \\ -53 & 17 \\ -54 & 25 \end{vmatrix}$                                      | S.S.W.<br>S.S.W.<br>S.W.         | $\begin{vmatrix} 1 \\ 1 \end{vmatrix} + 14$          |        | -52 5          |                            |                                                |
|          |                          | pe.                           | N.S.<br>Direct.<br>N.S.     | $     \begin{array}{r rrr}     -53 & 54 \\     -55 & 04 \\     -54 & 46     \end{array} $             | S.W.<br>W.S.W.<br>W.S.W.         | $\begin{vmatrix} 1 \\ +26 \\ +41 \end{vmatrix}$      |        | -53 2 $-53 5$  | 1                          |                                                |
|          |                          | он п                          | Direct.<br>N.S.             | -55 18 $-55$ 01                                                                                       | w.<br>w.                         | $\left  \right  + 51$                                | +24    | -53 5          | 4                          |                                                |
|          |                          | 's Bay, Cape of Good Hope.    | Direct.<br>N.S.             | -55 34 $-54 49$                                                                                       | W.N.W.<br>W.N.W.                 | $\left  \right  + 72$                                |        | -53 3          | 66                         |                                                |
| ľ        |                          | ape c                         | Direct. N.S.                | $     \begin{array}{r rrr}     -55 & 30 \\     -55 & 10 \\     -55 & 07     \end{array} $             | N.W.                             | $\left \right\} + 88$                                | 1      | -53 %          |                            |                                                |
|          |                          | ay, C                         | Direct. N.S. Direct.        | $ \begin{array}{r rrrr} -53 & 07 \\ -54 & 52 \\ -54 & 36 \end{array} $                                |                                  | $\left \right\} + 71$                                |        | -53 2          | >-53 28                    | To obtain corrections for the ship's           |
|          |                          | or's E                        | N.S.<br>Direct.             | $     \begin{array}{r rrr}         & -54 & 14 \\         & -55 & 10     \end{array} $                 |                                  | $\left  \right  +75$                                 |        | -52 4          |                            | attraction.                                    |
|          |                          | Simo                          | N.S.<br>Direct.             | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                | N.N.E.                           | \                                                    |        | -53 1          | į                          |                                                |
|          |                          | or in                         | N.S.<br>Direct.             | -54 46 $-55$ 34                                                                                       | N.E.                             | $\left  \right  + 87$                                |        | -53 1          | 1                          |                                                |
|          |                          | At anchor in Sinon            | N.S.<br>Direct.             | $     \begin{array}{r rrr}     -54 & 59 \\     -55 & 22     \end{array} $                             | E.N.E.                           | $\left  \right  +72$                                 |        | -53 4<br>-53 5 |                            |                                                |
|          |                          | At                            | N.S.<br>Direct.             | -54 58 $-55 05$                                                                                       | E.                               | $\begin{vmatrix} +51 \\ +41 \end{vmatrix}$           |        | -53 4          | į.                         |                                                |
|          |                          |                               | N.S.<br>Direct.             | $\begin{vmatrix} -54 & 31 \\ -54 & 24 \end{vmatrix}$                                                  |                                  | $\left  \right  + 26$                                | 1      | -53 8          | l                          |                                                |
|          |                          |                               | N.S.<br>Direct.             | $\begin{bmatrix} -54 & 07 \\ -54 & 39 \\ 52 & 50 \end{bmatrix}$                                       | S.S.E.                           | $\left  \right  + 14$                                |        |                |                            |                                                |
|          |                          |                               | N.S.                        | -53 50                                                                                                | S.S.E.                           | J                                                    |        |                | _                          |                                                |

Observations of the Magnetic Force made on board Her Majesty's hired Bark "Pagoda," from the 10th of January 1845 to the 20th of June 1845, with Needle A. of C. 9. one hour after Noon.

Observer, Lieut. T. E. L. MOORE, R.N.

| 1845.   Jan. 10.   -3\$\frac{4}{4}\$ 6   17   46   Def. N.   48   17   19   15   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÷ 50                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Jan. 10 34 46 17 46  Def. N. 48 19 64 w. by N. 0.988008 - 000 0.980 Def. S. 49 15 64 w. by N. 0.985008 - 000 0.980 Def. N. 46 11 64 w. by N. 0.988008 - 001 0.979 Def. N. 46 11 64 w. by N. 0.988008 - 001 0.979 Def. N. 46 11 64 w. by N. 0.986008 - 001 0.993 Def. N. 46 11 64 w. by N. 0.960 + -002 - 001 0.991 Def. N. 49 22 68 N.w. by w. 0.960 + -002 - 001 0.994 Def. N. 49 22 68 N.w. by w. 0.973 + -002 - 001 0.997 Mag. N. 47 00 66 N.w. by w. 0.966 + -002 - 001 0.997 Mag. N. 47 00 66 N.w. by w. 0.966 + -002 - 001 0.997 Mag. N. 47 00 66 N.w. by w. 0.928 + -002 + -001 0.995 wt. 1 gr. 19 56 66 N.w. by w. 0.928 + -002 + -001 0.995 tw. 2 grs. 42 14 66 N.w. by w. 0.9928 + -002 + -001 0.993 Def. N. 50 42 78 w. ½ s. 0.990016001 0.933 Def. N. 50 42 78 w. ½ s. 0.994016001 0.933 Mag. N. 48 59 72 s.w. ½ s. 0.995016001 0.933 Mag. N. 48 71 67 78 w. ½ s. 0.995016001 0.933 Mag. N. 48 89 72 s.w. ½ s. 0.995016001 0.933 Mag. N. 48 89 72 s.w. ½ s. 0.995016001 0.933 Mag. N. 48 89 72 s.w. ½ s. 0.995033001 0.937 Mag. N. 48 89 72 s.w. ½ s. 0.952033001 0.937 Mag. N. 48 89 72 s.w. ½ s. 0.966033001 0.937 Mag. N. 48 89 72 s.w. ½ s. 0.966033001 0.937 Mag. N. 47 13 72 s.w. ½ s. 0.966033001 0.932 wt. 1 gr. 19 17 72 s.w. ½ s. 0.966033001 0.932 wt. 1 gr. 30 42 76 s.w. ½ s. 0.966033001 0.936 Def. N. S. 66 86 72 s.w. ½ s. 0.966033001 0.997 Mag. N. 47 18 64 s.by w. ½ w. 1.019033001 0.997 Mag. N. 48 87 70 s.w.by w. w. 1.019033001 0.996 Mag. N. 46 87 70 s.w.by w. w. 1.098024001 0.996 Mag. N. 46 87 70 s.w.by w. w. 1.098024001 0.996 Mag. N. 46 87 70 s.w.by w. w. 1.098024001 0.996 Mag. N. 46 42 45 s.w. by w. w. 1.018033 - 000 0.993 Def. N. S. 66 22 68 s.by w. ½ w. 1.006033 - 001 0.997 Mag. N. 46 49 64 s.by w. ½ w. 1.099024001 0.996 Mag. N. 46 47 58 s.w.by w. w. 1.006032 + -001 0.996 Mag. N. 44 54 48 s.w.by w. w. 1.006032 + -001 0.996 Mag. N. 44 54 48 s.w.by w. w                                                                                                                                                                                                      | Remarks.                       |
| Def. S.   49 15   64   w. by N.   0.975   -008   -000   0.967   0.967   0.968   0.968   -001   0.977   0.998   0.908   0.909   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993   0.993 |                                |
| Def. N. S. 67 36 64   w. by n.   0.988   -008   -001   0.979   0.910   0.979   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910   0.910 |                                |
| Def. N.   46 11   64   w. by n.   1-001  008   -000   0-993   Def. S.   45 42   64   w. by n.   1-014  008   0-001   0-961   Def. S.   49 22   68   n.w. by w.   0-960   +-002  001   0-961   Def. S.   68 57   68   n.w. by w.   0-960   +-002  001   0-961   Def. S.   68 57   68   n.w. by w.   0-960   +-002  001   0-961   Def. S.   Mag. N.   47   00   66   n.w. by w.   0-960   +-002  001   0-967   wt. 1 gr.   19 56   66   n.w. by w.   0-960   +-002  001   0-967   wt. 2 grs.   42 14   66   n.w. by w.   0-962   +-001   0-967   wt. 2 grs.   42 14   66   n.w. by w.   0-978   +-002   +-001   0-967   wt. 2 grs.   42 14   66   n.w. by w.   0-978   +-002   +-001   0-967   wt. 2 grs.   42 14   66   n.w. by w.   0-978   +-002   +-001   0-967   wt. 2 grs.   42 16   66   n.w. by w.   0-978   +-002   +-001   0-967   wt. 2 grs.   42 16   66   n.w. by w.   0-978   +-002   +-001   0-967   wt. 2 grs.   42 16   66   n.w. by w.   0-978   +-002   +-001   0-967   wt. 2 grs.   42 16   66   n.w. by w.   0-978   +-002   +-001   0-967   wt. 2 grs.   48 03   78   w. \frac{1}{2} s.   0-950  016  001   0-913   wt. 2 grs.   48 03   78   w. \frac{1}{2} s.   0-950  016  001   0-913   wt. 2 grs.   47 16   78   w. \frac{1}{2} s.   0-952  016  001   0-913   wt. 2 grs.   46 58   72   s. w. \frac{1}{2} s.   0-952  033  001   0-937   wt. 1 gr.   19 17   72   s. w. \frac{1}{2} s.   0-956  033  001   0-937   wt. 1 gr.   19 17   72   s. w. \frac{1}{2} s.   0-956  033  001   0-936  031   0-920   wt. 1 gr.   19 17   72   s. w. \frac{1}{2} s.   0-956  033  001   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-936  031   0-93                                                                                                                                                    |                                |
| 1135 09 15 09 Def. N. 49 23 68 N.w. by w. 0.956 +002 -001 0.961 Def. N. 49 23 68 N.w. by w. 0.973 +002 -001 0.974 Def. N. 68 57 68 N.w. by w. 0.956 +002 -001 0.974 Def. N. 68 57 68 N.w. by w. 0.956 +002 -001 0.967 Def. N. 47 00 66 N.w. by w. 0.956 +002 -001 0.967 Def. N. 65 00 N.w. by w. 0.966 +002 -001 0.967 Def. N. 65 00 N.w. by w. 0.966 +002 -001 0.967 Def. N. 65 00 N.w. by w. 0.966 +002 -001 0.967 Def. N. Def. N. 65 00 N.w. by w. 0.966 +002 -001 0.967 Def. N. Def. N. 65 00 N.w. by w. 0.966 +002 -001 0.967 Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N. Def. N.   | sh breezes, a                  |
| 1135 09 15 09 Def. N. 49 23 68 N.w. by w. 0.976 +-002001 0.961   Def. S. 49 22 68 N.w. by w. 0.973 +-002001 0.974   Def. S. 68 57 68 N.w. by w. 0.956 +-002001 0.974   Mag. N. 46 54 66 N.w. by w. 0.966 +-002001 0.967   wt. 1 gr. 19 56 66 N.w. by w. 0.966 +-002001 0.967   wt. 2 grs. 42 14 66 N.w. by w. 0.966 +-002001 0.933   Def. N. 69 27 78   Mag. N. 49 55 78   Mag. N. 49 55 78   Mag. N. 49 55 78   Mag. N. 48 59 72   Mag. N. 48 59 72   Mag. S. 47 16 78   Mag. N. 48 59 72   Mag. N. 46 58 72   Mag. N. 46 58 72   Mag. N. 47 13 72   Mag. N. 48 59 72   Mag. N. 49 55 78   Mag. N. 48 59 72   Mag. N. 40 55 78   Mag. N. 40 55 70   Mag. N. 4                    | ead swell.                     |
| Def. N.S.   49   22   68   N.w. by w.   0-973   +-002  001   0-974   0-976   Nag. N.   47   00   66   N.w. by w.   0-966   +-002  001   0-970   0-970   Nag. S.   46   54   66   N.w. by w.   0-966   +-002  001   0-970   0-970   N.w. by w.   0-966   +-002  001   0-970   0-970   N.w. by w.   0-966   +-002  001   0-970   0-970   N.w. by w.   0-978   +-002  001   0-970   0-970   N.w. by w.   0-978   +-002  001   0-928*   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-981   0-9                      |                                |
| Def. N.S.   68   57   68   N.w. by w.   0-966   +-002  001   0-970   N.w. by w.   0-981   N.w. by w.   0-982   N.w. by w.   0-983   N.w. by w.   0-982   N.w. by w.   0-983   N.w. by w.   0-985   N.w. by                |                                |
| Mag. N.   47 00   66   N.w. by w.   0.969   +002   -001   0.970   0.968   december   1.00   0.910   0.925*   wt. 1 gr.   y. 156   66   N.w. by w.   0.978   +002   +001   0.925*   v. 2 grs.   42   46   66   N.w. by w.   0.978   +002   +001   0.925*   v. 2 grs.   42   46   66   N.w. by w.   0.978   +002   +001   0.931   0.933   0.929   N.w. by w.   0.929   +001   0.918   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933   0.933    |                                |
| 1235 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
| 1235 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ttle motion.                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| 1235 17 14 00   Def. N.   49 55 78   W. \frac{1}{2} s.   0.950   -0.16   -0.01   0.933   0.929   0.938   0.929   0.965   0.916   -0.01   0.912   0.933   0.929   0.938   0.930   -0.16   0.916   0.915   0.933   0.929   0.938   0.930   -0.016   0.935   0.935   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.938   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930   0.930      |                                |
| 1335 24   13 23   Def. S.   50 42   78   W. \frac{1}{2} s.   0.924   -0.06   -0.001   0.912   0.923   0.916   -0.001   0.912   0.923   0.916   -0.001   0.935   0.938   0.930   -0.016   -0.001   0.935   0.938   0.930   -0.016   -0.001   0.935   0.938   0.930   -0.016   -0.001   0.935   0.938   0.930   -0.016   -0.001   0.935   0.938   0.938   0.938   0.938   -0.001   0.935   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938   0.938       |                                |
| 1335 24   13 23   Nag. N.   48 03   78   Nag. N.   48 03   Nag. N.   Nag. N.   48 03   Nag. N.   Nag.    |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ttle motion.                   |
| 1335 24 13 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Mag. N.s.   68 30   72   s.w. \frac{1}{2} s.   0.965   -0.033   -0.001   0.927   0.932   s.w. \frac{1}{2} s.   0.966   -0.033   -0.001   0.927   0.932   s.w. \frac{1}{2} s.   0.966   -0.033   -0.001   0.927   0.932   s.w. \frac{1}{2} s.   0.966   -0.033   -0.001   0.920   s.w. \frac{1}{2} s.   0.968   -0.033   -0.001   0.920   s.w. \frac{1}{2} s.   0.968   -0.033   -0.001   0.920   s.w. \frac{1}{2} s.   0.968   -0.033   -0.001   0.920   s.w. \frac{1}{2} s.w. \frac{1}{2} s.   0.968   -0.033   -0.001   0.920   s.w. \frac{1}{2} s.w. \frac{1}{2} s.   0.968   -0.033   -0.001   0.920   s.w. \frac{1}{2} s.w. \frac{1}{2} s.   0.968   -0.033   -0.001   0.920   s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.   0.968   -0.033   -0.01   0.920   s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w. \frac{1}{2} s.w.  | Taring Control                 |
| Mag. N.   47   13   72   s.w. \frac{1}{2} s.   0.961   -0.033   -0.01   0.927   -0.032   -0.033   -0.01   0.927   -0.033   -0.01   0.927   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.033   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024   -0.01   0.920*   -0.024  |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ttle motion.                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| 15. $-38$ 42 14 27 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | le unsteady, a                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ead swell.                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | le very un-                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cauy.                          |
| 21. $-50$ 21 $10$ 31 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eavy nead swell<br>uch motion. |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lanata busansa                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ttle motion.                   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
| $ \left( \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
| $ \left( \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
| Mag. S.   43   42   s.w.byw. $\frac{1}{2}$ w. 1·112   $-\cdot 024$   $+\cdot 001$   1·089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| 2451 44 9 36 Mag. N.   44 15   49   s.w. by w.   1·128   -·024   +·001   1·105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| wt. 1 gr.   17 12   50  s.w.bvw. w.   1.063  024  001   1.038*   1.09   tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mie sieauy.                    |
| wt 9 crs   35 90   50   s w by w 1 1 1 2 9   1004   1001   1 107   P.M. A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . A head swell,<br>uch motion. |

<sup>\*</sup> Omitted in mean.

| Ì        |                  |         |                         |                              | ÷                 |                                                      |                | Corre              | ctions.           |                           |                                            |
|----------|------------------|---------|-------------------------|------------------------------|-------------------|------------------------------------------------------|----------------|--------------------|-------------------|---------------------------|--------------------------------------------|
| Date.    | Lat.             | Long.   | Method<br>employed.     | Angle of<br>deflec-<br>tion. | Tempera-<br>ture. | Ship's head.                                         | Intensity.     | Ship's attraction. | Tempe-<br>rature. | Corrected<br>Intensity.   | Remarks.                                   |
| 1845.    | 0 /              | 0 /     |                         |                              | . 0               |                                                      |                |                    |                   |                           |                                            |
| Jan. 25. | $-53^{\circ} 21$ | 7 32    | Def. N.                 | 43 49                        |                   | s.w.byw. $\frac{1}{2}$ w.                            |                |                    |                   |                           |                                            |
|          |                  |         | Def. S.<br>Def. N.S.    | 43 59<br>61 56               | 41<br>41          | s.w.byw. <del>1</del> w.<br>s.w.byw. <del>1</del> w. |                |                    | +.006             | 1.129                     | Table steady; pass-                        |
|          |                  |         | Mag. N.                 | 42 39                        |                   | s.w.by $w.\frac{1}{2}w$ .                            |                |                    | + 000             |                           | ing through<br>streams of ice.             |
| ,        |                  |         | Mag. S.                 | 42 33                        |                   | s.w.byw. $\frac{1}{2}$ w.                            |                |                    | +.002             |                           | streams of ice.                            |
| 26.      | -5402            | 6 02    | Def. N.                 | 43 43                        | 42                |                                                      | 1.148          |                    | +.001             |                           |                                            |
|          |                  |         | Def. S.                 | 44 14                        | 42                | w. by N.                                             | 1.145          |                    | +.001             | 1.134                     |                                            |
|          |                  |         | Def. N.S.               | 62 09                        | 42                |                                                      | 1.142          |                    | +.006             |                           |                                            |
|          | ·                |         | Mag. N.                 | 43 00                        | 40                | w. by n.                                             | 1.142          | 1                  | +.002             |                           | Very steady, small<br>pieces of loose ice  |
|          |                  |         | Mag. S.                 | 42 44                        | 40                | w. by N.                                             | 1.164          | 1                  | +.002             |                           | about the ship.                            |
|          |                  |         | wt. 1 gr.<br>wt. 2 grs. | 16 40<br>34 23               | 40                |                                                      | 1·096<br>1·164 | 1                  | +.002             | ,                         |                                            |
| 27.      | <b>-55</b> 18    | 5 55    | Def. N.                 | 42 50                        | 39                | S.S.W. $\frac{1}{2}$ W.                              |                |                    | +.001             |                           | Ship pitching                              |
| 31.      |                  |         | Def. N.                 | 39 38                        | 37                |                                                      | 1.324          |                    | +.002             |                           | heavily, fresh                             |
|          |                  |         | Def. S.                 | 40 08                        | 37                | S.S.E.                                               | 1.320          | 1                  | +.002             | 1.280                     | breezes.                                   |
|          |                  |         | Def. N.S.               | 57 04                        | 37                | S.S.E.                                               | 1.331          | 042                | +.008             |                           | Table steady, heavy                        |
|          |                  |         | Mag. N.                 | 39 45                        | 37                | S.S.E.                                               | 1.310          | 1                  |                   |                           | snow, passing various icebergs.            |
|          | 00.00            |         | Mag. S.                 | 39 30                        | 37                | S.S.E.                                               | 1.349          | 1                  | +.003             | 1                         |                                            |
| Feb. 1.  | <b>-62 06</b>    | 12 52   | Def. N.                 | 38 10                        | 37                | s.e. by s.                                           | 1.398          |                    | +.002             |                           | Much motion, table                         |
| 2.       | -61 56           | 16 26   | Def. S.<br>Def. N.      | 38 58<br>39 17               | 37 37             | s.E. by s.                                           | 1·376<br>1·341 |                    | $ +.002 \\ +.002$ |                           | unsteady.                                  |
| 2.       | -01 30           | 10 30   | Def. N.                 | 39 21                        | 36                | S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E.       | 1.357          | 1                  | +.002             |                           | -                                          |
|          |                  |         | Def. N.S.               | 56 28                        | 36                | S.E. ½ E.                                            | 1.358          |                    |                   |                           | Heavy snow, a head                         |
|          |                  |         | Mag. N.                 | 39 21                        | 36                | S.E. $\frac{1}{2}$ E.                                | 1.339          |                    |                   |                           | sea, ship pitching violently.              |
|          |                  | 1.      | Mag. S.                 | 39 08                        | 35                | S.E. $\frac{1}{2}$ E.                                | 1.372          | 036                | +.003             |                           | 110101111                                  |
| 4.       | -63 00           | 20 40   | Def. N.                 | 38 17                        | 39                | $S_{\bullet} \frac{1}{2} E_{\bullet}$                | 1.391          | 051                | 1                 |                           |                                            |
|          |                  |         | Def. S.                 | 38 35                        | 39                | S. $\frac{1}{2}$ E.                                  | 1.395          | 1                  |                   |                           |                                            |
|          |                  |         | Def. N.S.               | 56 04                        | 39                | S. 1/2 E.                                            | 1.406          | 1                  | +.008             |                           | Water very clear                           |
|          |                  |         | Mag. N.                 | 38 17<br>38 35               | 39                | S. $\frac{1}{2}$ E.                                  | 1.406<br>1.405 |                    | $ +.002 \\ +.002$ |                           | Water very clear<br>from ice, a little     |
| ·        |                  |         | Mag. S. wt. 1 gr.       | 13 26                        | 39                | S. $\frac{1}{2}$ E.<br>S. $\frac{1}{2}$ E.           | 1.353          | 1 .                |                   | 1.300*                    | motion.<br>Vibration great.                |
| 7        |                  | 1.      | wt. 2 grs.              | 27 58                        | 39                | S. ½ E.                                              | 1.402          |                    |                   |                           |                                            |
| 5.       | -63 19           | 21 48   | Def. N.                 | 38 36                        | 37                | S.S.E.                                               | 1.376          | 1 -                |                   |                           |                                            |
| l        |                  |         | Def. S.                 | 38 24                        | 37                | S.S.E.                                               | 1.405          |                    |                   |                           |                                            |
|          |                  |         | Def. N.S.               | 55 38                        |                   | S.S.E.                                               | 1.397          | 1                  | -                 |                           | ] ".                                       |
| ľ        |                  |         | Mag. N.                 | 38 27                        | 36                | S.S.E.                                               | 1.396          | 1 -                | 1                 |                           | A heavy swell from<br>S.E., light breezes, |
| l        |                  |         | Mag. S.                 | 38 38<br>13 51               | 36                | S.S.E.                                               | 1·407<br>1·313 | 1 -                |                   | 1.264*                    | table steady.                              |
| l ·      |                  | 1.      | wt. 1 gr.<br>wt. 2 grs. | 26 57                        | 34                | S.S.E.                                               | 1.450          | 1 -                | 1                 |                           |                                            |
| 6        | -64 25           | 5 24 18 | Def. N.                 | 37 17                        |                   | S.S.E. 1/2 E.                                        | 1.447          |                    | +.001             |                           |                                            |
| 1        | 1                |         | Def. S.                 | 37 48                        |                   | S.S.E. $\frac{1}{2}$ E.                              |                | -045               |                   |                           | 8 Water perfectly                          |
| 1        |                  |         | Def. N.S.               | 54 51                        | 39                | S,S,E, $\frac{1}{2}$ E.                              | 1.436          | -045               | +.008             | 1.399                     | smooth, very<br>steady.                    |
| 7        | -65 39           | 9 28 48 | Def. N.                 | 36 34                        | h                 | s. by E. $\frac{1}{2}$ E.                            |                |                    | +.001             |                           |                                            |
| 1        |                  |         | Def. S.                 | 37 11                        |                   | s. by E. $\frac{1}{2}$ E.                            | 1.472          | 051                |                   | 1.422                     |                                            |
| 1        |                  |         | Def. N.S.               | 54 15                        |                   | s. by E. $\frac{1}{2}$ E.                            |                |                    |                   | 1.423                     | O'Takla standar amatan                     |
| 1        |                  | 1       | Mag. N.                 | 37 00<br>37 20               |                   | s. by E. $\frac{1}{2}$ E. s. by E. $\frac{1}{2}$ E.  | 1.495          | 051                |                   | 2 1·450 > 1·43<br>2 1·438 | 2 Table steady, water<br>smooth, no ice in |
| 1        |                  |         | Mag. S. wt. 1 gr.       | 13 03                        |                   | S. by E. 7 E.                                        | 1.392          |                    |                   | 1.340*                    | sight.                                     |
| 1        |                  |         | wt. 2 grs.              | 26 28                        |                   | S.S.E.                                               | 1.47           |                    |                   | 1.423                     |                                            |
| 8        | -66 2            | 7 30 45 | Def. N.                 | 36 27                        |                   |                                                      | 1.494          |                    | 1                 | 1.454                     |                                            |
|          |                  |         | Def. S.                 | 36 58                        | 34                | s.E. by E.                                           | 1.483          | 3 -042             | +.002             | 1.443                     |                                            |
|          | Ī                | 1.      | Def. N.S.               | 54 05                        |                   |                                                      | 1.474          |                    |                   |                           | Fresh breeze, table unsteady.              |
| 1        | 1                | 1       | Mag. N.                 | 37 00                        |                   | 3                                                    | 1.499          |                    |                   | 1.461                     |                                            |
| 1        | 1                |         | Mag. S.                 | 37 39                        | 30                | s.E. by E.                                           | 1.475          | -042               | + 004             | 1.437                     |                                            |

<sup>\*</sup> Omitted in mean.

| Date.            | Lat.                                                     | Long.          | Method<br>employed.                          | Angle of<br>deflec-<br>tion.              | Tempera-                   | Ship's head.                                                            | Intensity.                                | Ship's attraction.      | Tempe-<br>rature.                         | Corrected<br>Intensity.                                                     | Remarks.                                                           |
|------------------|----------------------------------------------------------|----------------|----------------------------------------------|-------------------------------------------|----------------------------|-------------------------------------------------------------------------|-------------------------------------------|-------------------------|-------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1845.<br>Feb. 9. | 66° 36                                                   | 36 5Ó          | Def. N.<br>Def. S.<br>Def. N.S.              | 36 06<br>36 43<br>53 41                   | 39<br>39<br>36             | s.e. by e. s.e. by e.                                                   | 1.514<br>1.508<br>1.505                   | 042                     | +·001<br>+·010                            | 1·473<br>1·467<br>1·473 \rightarrow 1·470                                   | Light breeze, very                                                 |
| 10.              | <b>67</b> 11                                             | 38 51          | Mag. N.<br>Mag. S.<br>Def. N.<br>Def. S.     | 36 55<br>36 59<br>35 39<br>36 31          | 35<br>34<br>34<br>34       | s.e. by e. s. by w. s. by w.                                            | 1.505<br>1.509<br>1.540<br>1.509          |                         | +·003<br>+·002<br>+·002                   | 1.466   1.470   1.492   1.461                                               | smooth.                                                            |
| 11.              |                                                          |                | Def. N.S.<br>Mag. N.<br>Mag. S.<br>Def. N.   | 52 45<br>36 27<br>37 02<br>36 10          | 34<br>34<br>34<br>35       | s. by w. s. by w. s. by w. N.E.                                         | 1.549<br>1.540<br>1.509<br>1.510          |                         | +·009<br>+·003<br>+·003<br>+·002          | )                                                                           | Steady, water very smooth.  Sailing along a pack of ice, unsteady. |
| 12.              | <b>-67</b> 18                                            | 40 22          | Def. N. Def. S. Def. N.S. Mag. N.            | 35 30<br>36 07<br>53 16<br>36 37          | 32<br>32<br>32<br>32       | S. ½ E.<br>S. ½ E.<br>S. ½ E.<br>S. ½ E.                                | 1.548<br>1.533<br>1.520<br>1.529          | 050<br>050<br>050       | +·003<br>+·003<br>+·013<br>+·004          | 1.483                                                                       | Fresh breeze, table unsteady.                                      |
| 13.              | 66,55                                                    | 14 16          | Mag. S.<br>Def. N.<br>Def. S.<br>Def. N.S.   | 36 03<br>36 00<br>36 37<br>53 29          | 32<br>34<br>34<br>33       | S. ½ E.<br>E.N.E.<br>E.N.E.                                             | 1 (                                       | · 025<br>· 025<br>· 025 | + ·004<br>+ ·002<br>+ ·002<br>+ ·011      |                                                                             | Swell from E., table unsteady.                                     |
| 14.<br>16.       | -66 24 $-64 52$                                          |                | Mag. N. Mag. S. Def. N. Def. S. Def. N.      | 36 43<br>37 06<br>36 18<br>36 24<br>35 59 | 33<br>33<br>34<br>34<br>41 | E.N.E.<br>E.N.E.<br>N.E. by N.<br>N.E. by N.<br>S. by E.                | 1.521<br>1.503<br>1.502<br>1.515<br>1.520 | 025<br>016<br>016       | + 004<br>+ 004<br>+ 002<br>+ 002<br>+ 001 | $egin{array}{c c} 1.500 \\ 1.482 \\ 1.488 \\ 1.501 \\ 1.471 \\ \end{array}$ | Table unsteady, very squally.                                      |
| 10.              | -01 32                                                   | 00 07          | Def. N.<br>Def. N.S.<br>Mag. N.<br>Mag. S.   | 36 56<br>53 48<br>37 07<br>37 15          | 41<br>41<br>40<br>40       | s. by E. s. by E. s. by E.                                              | 1·487<br>1·490<br>1·493                   | 050<br>050<br>050       | +·003<br>+·003<br>+·001                   | 1·438<br>1·448<br>1·446                                                     | Thick weather, a<br>heavy swell, un-<br>steady,                    |
| 17.              | <b>-66</b> 43                                            | 40 12          | Def. N. Def. N.S. Mag. N.                    | 36 34<br>37 08<br>53 18<br>36 53          | 36<br>36<br>38<br>38       | s. by e.<br>N.<br>N.<br>N.                                              | 1·487<br>1·475<br>1·518                   | 018                     | $+002 \\ +002 \\ +010$                    | 1·445  <br>1·471  <br>1·459  <br>1·510   1·482                              | Calm, a heavy sea,<br>not steady.                                  |
| 19.<br>20.       | $ \begin{array}{cccc} -64 & 05 \\ -63 & 19 \end{array} $ | 41 09<br>45 52 | Mag. S. Def. N. Def. N. Def. S.              | 37 13<br>36 35<br>36 12<br>37 10          | 37<br>37<br>45             | N.                                                                      | 1.495<br>1.486<br>1.507                   | 018<br>035<br>040       | + '003<br>+ '002<br>+ '001<br>+ '001      | 1·480<br>1·453 1·453<br>1·468<br>1·435                                      | Very unsteady, a<br>swell from N.                                  |
|                  | -63 22                                                   | 45 58          | Def. N.S.<br>Def. N.<br>Def. S.<br>Def. N.S. | 53 40<br>36 08<br>36 33<br>53 22          |                            | s.e. by e. ½ e.<br>s.e.<br>s.e.                                         | 1·497<br>1·511<br>1·507                   | 040<br>046              | + .001<br>+ .001                          | 1.463                                                                       | A heavy swell, strong<br>breeze, with a<br>heavy sea running.      |
| 21.              | -63 36<br>-63 36                                         |                | Def. N. Def. S. Def. N.S.                    | 36 00<br>36 33<br>53 23<br>36 01          | 40<br>39<br>39<br>40       | S.E.<br>S.E.                                                            | 1·519  -<br>1·507  -<br>1·513  -          | 046  <br>046  <br>046   | + · 001<br>+ · 001<br>+ · 001             | 1·474 \\ 1·462   1·476   1·473                                              |                                                                    |
|                  | 00 00                                                    |                | Def. S.<br>Def. N.S.<br>Mag. N.              | 36 37<br>53 26<br>36 39<br>37 09          | 40<br>39<br>39<br>39       | S.E.<br>S.E.                                                            | 1·505   -<br>1·511   -<br>1·525   -       | 046  <br>046            | + ·003<br>+ ·009<br>+ ·001                | 1·473   1·470   1·474   1·482   1·457                                       | Table unsteady,<br>much motion.                                    |
| 25.              | -61 34                                                   | 53 49          | Def. N. Def. S. Def. N.S.                    | 35 41<br>36 13<br>53 21<br>36 14          | 42<br>42<br>40<br>39       | S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ E. | 1·537  -<br>1·527  -<br>1·515  -          | -·044<br>-·044<br>-·044 | + ·001<br>+ ·009                          | 1·494<br>1·484                                                              | Fresh breeze, table steady.                                        |
|                  |                                                          |                |                                              | 36 19                                     | 39                         |                                                                         |                                           | 044                     | + 003                                     | 1.516                                                                       |                                                                    |

|                   |        |      |     | · · · · · · · · · · · · · · · · · · ·   |                |                   | 1                                                                  |            |                |         |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|--------|------|-----|-----------------------------------------|----------------|-------------------|--------------------------------------------------------------------|------------|----------------|---------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |        | Ì    | 1   |                                         |                | ٤                 |                                                                    |            | Corre          | ctions. |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        | 1    |     | Method                                  | Angle of       | Tempera-<br>ture. |                                                                    | Intensity. |                | ·       | Corre  | Lotor       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Date.             | Lat.   | Lo   | ng. | employed.                               | defiec-        | はは                | Ship's head.                                                       | en         | Ship's         | Tempe-  | Inten  |             | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   |        | 1    | 1   | cmployeds                               | tion.          | Te                |                                                                    | I I        | attrac-        | rature. | Invon  | orty.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     |                                         |                |                   |                                                                    |            | tion.          |         |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1045              |        | -    |     | *************************************** |                |                   |                                                                    |            |                |         |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1845.<br>Feb. 26. | _6i 2  | 6 5% | 29  | Def. N.                                 | 35 11          | 4 <b>0</b>        | S.E. 1/2 E.                                                        | 1.566      | 044            | +.001   | 1.502  | ,           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| reb. 20.          | -01 2  | 9 31 | 99  | Def. S.                                 | 35 46          | 40                |                                                                    | 1.552      |                | +.001   |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        | 1    |     |                                         |                |                   | S.E. ½ E.                                                          |            |                |         |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | Cia    | d    |     | Def. N.S.                               | 52 55          | 40                | S.E. 1/2 E.                                                        | 1.541      | -044           | +.009   |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | -61 2  | 2 57 | 41  | Def. N.                                 | 35 07          | 40                | S.E.                                                               | 1.571      | 046            | +.001   |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     | Def. S.                                 | 35 57          | 40                | S.E.                                                               | 1.540      | 046            | +.001   |        | 1.506       | Fresh breezes, table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |        |      |     | Def. N.S.                               | 52 58          | 40                | S.E.                                                               | 1.540      | 046            | +.009   |        |             | steady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ii<br>Q           |        |      |     | Mag. N.                                 | 36 24          | 39                | S.E.                                                               | 1.543      | 046            | +.003   |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                 |        |      |     | Mag. S.                                 | 36 22          | 38                | S.E.                                                               | 1.553      | 046            | +.003   | 1.210  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     | wt. 1 gr.                               | 12 41          | 38                | S.E.                                                               | 1.432      |                | 003     | 1.383* |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | _      | 1    |     | wt. 2 grs.                              | 25 29          | 38                | S.E.                                                               | 1.528      | -046           | 003     |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 27.               | -61 1  | 0 64 | 20  | Def. N.                                 | 34 35          | 39                | S.S.E. 1 E.                                                        | 1.602      | <b> · 04</b> 8 | +.002   | 1.556  | 1.560       | Von ungtoods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |        |      |     | Def. S.                                 | 34 49          | 39                | S.S.E. 1/2 E.                                                      | 1.610      | 048            | +.002   | 1.564  | T-200       | Very unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 28.               | -614   | 9 71 | 30  | Def. N.                                 | 33 47          | 38                | S.S.E.                                                             | 1.651      |                | +.002   |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | -      | 1.   | -   | Def. S.                                 | 34 15          | 38                | S.S.E.                                                             | 1.644      | <b>•04</b> 9   | +.002   |        |             | Very unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | ĺ      |      |     | Def. N.S.                               | 51 17          | 37                | S.S.E.                                                             | 1.635      | <b> · 049</b>  | +.010   |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        | İ    |     | Mag. N.                                 | 34 35          | 37                | S.S.E.                                                             | 1.680      |                | +.003   | 1.634  | 1.00-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | . "    |      |     | Mag. S.                                 | 35 15          | 35                | S.S.E.                                                             | 1.637      | <b>049</b>     | +.003   | 1.591  | >1.002      | Table steady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | -614   | 9 71 | 32  | Def. N.                                 | 33 26          | 35                | S.S.E.                                                             | 1.675      | <b>•049</b>    | +.002   | 1.628  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        | 1    |     | Def. S.                                 | 34 27          | 35                | S.S.E.                                                             | 1.632      | 049            | +.002   |        | ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ĭ.                |        |      |     | Def. N.S.                               | 51 05          | 35                | S.S.E.                                                             | 1.646      | 049            | +.011   |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mar. 1.           | -621   | 0 72 | 25  | Def. N.                                 | 33 14          | 46                | s.e. by s.                                                         | 1.687      | 047            | +.002   | 1.642  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        | 1    |     | Def. S.                                 | 33 31          | 46                | s.e. by s.                                                         | 1.692      | 047            | +.002   | 1.647  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     | Def. N.S.                               | 50 33          | 46                | s.E. by s.                                                         | 1.680      | 047            | +.006   | 1.639  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     | Mag. N.                                 | 34 24          | 46                | s.e. by s.                                                         | 1.695      | 047            | +.002   | 1.650  | 1.642       | Calm, table steady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |        |      |     | Mag. S.                                 | 34 49          | 46                | s.e. by s.                                                         | 1.673      |                | +.002   | 1.628  | 1 0 2 10    | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |        |      | -   | wt. 1 gr.                               | 10 37          | 46                |                                                                    | 1.706      |                | 002     | 1.657* |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     | wt. 2 grs.                              | 22 49          | 46                |                                                                    | 1.695      |                | 002     | 1.646  | ł           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.                | -62 4  | 7 76 | 14  | Def. N.                                 | 33 15          | 42                | s.e. by E. $\frac{1}{2}$ E.                                        |            |                | +.001   | 1.641  | ,<br>1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7                 | 0~ 1   | 10   | 11  | Def. S.                                 | 33 30          | 42                | s.e. by E. $\frac{1}{2}$ E.                                        | 1.693      | 041            | +.001   | 1.653  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 1      |      |     | Def. N.S.                               | 50 26          | 42                | s.e. by $\mathbf{E} \cdot \frac{1}{2} \mathbf{E}$ .                | 1.686      | 041            | +.008   | 1.653  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     | Mag. N.                                 | 34 15          | 42                | s.e. by $\mathbf{E} \cdot \frac{1}{2} \mathbf{E}$ .                | 1.706      | 041            | +.003   | 1.668  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     | Mag. S.                                 | 34 40          | 42                | s.e. by $\mathbf{E} \cdot \frac{1}{2} \mathbf{E}$ .                | 1.685      | 041            | +.003   |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | l      |      |     | wt. 1 gr.                               | 11 02          | 42                | s.e. by $E \cdot \frac{1}{2} E$ .                                  | 1.643      | 041            | 003     | 1.599* | ≻1•653      | Steady breeze, table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |        |      |     | wt. 2 grs.                              | 22 31          |                   | s.E. by E. ½ E.                                                    | 1.716      | 041            | 003     | 1.679  | !<br>•      | steady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | -62 4  | 0 76 | 16  | Def. N.                                 | 32 46          | 42                | S.E. Dy E. 7 E.                                                    | 1.717      | 056            | +.002   | 1.662  | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | -02 4  | 3 10 | 10  | Def. N.                                 | 33 30          | 42                | s.                                                                 | 1.602      | 056            | +.002   | 1.630  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 1      |      |     | Def. N.S.                               | 50 24          | 42                | s.<br>s.                                                           |            | 056            | +.008   | 1.640  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.                | -64 2  | 0 70 | 20  | Def. N.S.                               | 32 32          | 34                | s. by w. $\frac{1}{2}$ w.                                          |            |                | +.003   | 1.601  | ,<br>1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.                | -04 2  | V 79 | 99  | Def. N.<br>Def. S.                      | 32 58          | 32                | s. by $w \cdot \frac{1}{2} w$ .<br>s. by $w \cdot \frac{1}{2} w$ . | 1.700      |                |         |        | 1.670       | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 1      |      |     |                                         | 32 38<br>49 56 | 31                | s. by $w.\frac{1}{2}w$ .<br>s. by $w.\frac{1}{2}w$ .               | 1.717      | -054           | + 014   | 1.677  | 71-078      | Fresh breeze, un-<br>steady, thick, with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                 | 61 4   | 0 0- | 0.7 | Def. N.S.                               | -              | 1                 |                                                                    | 1.70=      | •040           | + 0114  | 1.740  |             | squalls of snow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.                | -61 4  | 85   | 07  | Def. N.                                 | 31 35          | 36                | S.E. ½ E.                                                          |            | -·049<br>-·049 | 1.000   | 1.796  | 1.790       | Tingtondu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |        |      |     | Def. S.                                 | 32 09          | 37                | S.E. 1 E.                                                          | 1.783      | 1              | +.002   | 1.705  | 1.730       | Unsteady; aurora visible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | Ca     | 0 00 | 00  | Def. N.S.                               | 49 35<br>31 34 | 37                | S.E. ½ E.                                                          | 1.742      |                | +.012   | 1.700  | į           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.                | -60  4 | 88 P | 33  | Def. N.                                 | 1              | 39                | S.E.                                                               | 1.796      |                | +.002   | 1.747  | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     | Def. S.                                 | 32 27          | 39                | S.E.                                                               | 1.762      | 051            | +.002   | 1.713  | ( . <u></u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | ľ      |      |     | Def. N.S.                               | 49 32          | 38                | S.E.                                                               |            | -051           | +.011   | 1.706  | 747ع        | Very unsteady, with<br>thick weather.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |        |      |     | Mag. N.                                 | 32 38          | 37                | S.E.                                                               | 1.833      |                | +.004   | 1.780  | İ           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 50                | C-     |      |     | Mag. S.                                 | 33 01          | 37                | S.E.                                                               | 1.830      | 1              | +.004   | 1.783  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.                | -61 2  | 3 91 | 15  | Def. N.                                 | 31 46          | 41                | s.s.w.                                                             | 1.783      |                | +.002   | 1.732  | )           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   |        |      |     | Def. S.                                 | 32 14          | 42                | s.s.w.                                                             | 1.779      | 053            |         | 1.728  |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |        |      |     | Def. N.S.                               | 49 00          | 42                | s.s.w.                                                             | 1.785      |                | +.009   |        | ≻1•749      | Unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | 1      | 1    |     | Mag. N.                                 | 32 54          | 42                | s.s.w.                                                             | 1.811      |                | +.003   |        |             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| i                 |        |      |     | Mag. S.                                 | 32 57          | 42                | s.s.w.                                                             | 1.834      | -053           | +.003   | 1.784  | )           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| i                 | 1      |      |     |                                         | !              | 1                 | 1                                                                  |            | 1              |         | 1      |             | <u> Lamente de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya del companya del companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya </u> |

<sup>\*</sup> Omitted in mean.

| Date.            | Lat.               | Long.            | Method<br>employed.                 | Angle of<br>deflec-<br>tion.                                  | Tempera-<br>ture. | Ship's head.                                                                | Intensity.              | Ship's attraction.      | Tempe-<br>rature.       | Corrected<br>Intensity.                              | Remarks,                                                         |
|------------------|--------------------|------------------|-------------------------------------|---------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|------------------------------------------------------|------------------------------------------------------------------|
| 1845.<br>Mar. 8. | -61 07             | 92 10            | Def. N.<br>Def. S.                  | 31 13<br>32 04                                                | 41<br>40          | E.S.E.<br>E.S.E.                                                            | 1.824<br>1.790          | 046                     | +·002<br>+·002          | 1.746 >1.758                                         | Unsteady, with                                                   |
| 9.               | -60 30             | 92 34            | Def. N.S.<br>Def. N.<br>Def. S.     | 49 04<br>31 19<br>32 09                                       | 38<br>40<br>41    | E.S.E.<br>s.E. by E.<br>s.E. by E.                                          | 1.782<br>1.817<br>1.784 | 046<br>048<br>048       | +·011<br>+·002<br>+·002 | 1.771                                                | very unsteady.                                                   |
|                  | 00.00              | 20.00            | Def. N.S.                           | 49 08                                                         | 41                | s.E. by E.                                                                  | 1.780                   | 048                     | +.010                   | 1.742                                                |                                                                  |
| 10.              | -60 03             |                  | Def. N.<br>Def. S.<br>Def. N.       | 31 08<br>31 56<br>29 54                                       | 39<br>38<br>35    | E.S.E.<br>E.S.E.<br>E. <sup>1</sup> / <sub>2</sub> N.                       | 1.832<br>1.796<br>1.919 | 046<br>046<br>041       | +·002<br>+·002          | 1.752                                                | Aurora visible,<br>table steady.                                 |
| 11.              | -59 45             | 99 50            | Def. N.<br>Def. N.S.                | 30 31<br>48 58                                                | 34<br>34          | E. $\frac{1}{2}$ N.<br>E. $\frac{1}{2}$ N.<br>E. $\frac{1}{2}$ N.           | 1.908<br>1.788          | <b></b> ·041            | +.002  +.002  +.013     | 1.869                                                | A heavy sea, very                                                |
|                  |                    |                  | Mag. N.<br>Mag. S.                  | 32 21<br>32 23                                                | 34<br>34          | E. $\frac{1}{2}$ N.<br>E. $\frac{1}{2}$ N.                                  | 1.855<br>1.888          | -·041<br>-·041          | $+.004 \\ +.004$        | 1.818<br>1.851                                       | unsteady.                                                        |
|                  | <b>-57</b> 46      |                  | Def. N.<br>Def. S.                  | 30 34<br>31 28                                                | 46<br>46          | E.N.E.                                                                      | 1.870<br>1.831          | -·039<br>-·039          | +.001                   | $\begin{vmatrix} 1.832 \\ 1.793 \end{vmatrix}$ 1.813 | Very unsteady.                                                   |
| 14.              | <b>—56 56</b>      | 101 36           | Def. N. Def. S. Def. N.S.           | $\begin{vmatrix} 30 & 31 \\ 31 & 20 \\ 48 & 35 \end{vmatrix}$ | 40<br>41<br>41    | E. by s.<br>E. by s.<br>E. by s.                                            | 1.876<br>1.842<br>1.816 | 047<br>047<br>047       | +·002<br>+·002<br>+·010 | 1.797 >1.802                                         | A.M. Aurora visible,<br>unsteady.                                |
| 15.              | -55 40             | 103 18           | Def. N.<br>Def. S.                  | 30 30<br>31 10                                                | 41                | E.N.E.<br>E.N.E.                                                            | 1.876<br>1.854          | 039                     | +·002<br>+·002          | 1.839                                                | Squally with snow, unsteady.                                     |
| 16.              | <b>-54 3</b> 8     | 106 15           | Def. N.S.                           | 48 34<br>30 03                                                | 41<br>39          | E.N.E.<br>E.                                                                | 1.817<br>1.909          | 045                     |                         | 1.866 7                                              | Heavy squalls, un-                                               |
| 17               | -54 10             | 100 15           | Def. S.<br>Def. N.S.<br>Def. N.     | 31 18<br>48 34<br>29 59                                       | 38<br>38<br>39    | E.<br>E. by s.                                                              | 1.844<br>1.817<br>1.913 | 045<br>045<br>047       | +.002  +.012  +.002     | 1.784                                                | steady, snow.                                                    |
| 14.              | -9 <del>1</del> 10 | 100 10           | Def. S.<br>Def. N.S.                | 31 05<br>48 34                                                | 40<br>40          | E. by s.<br>E. by s.                                                        | 1.860<br>1.817          | -·047<br>-·047          | +.002                   | 1.815 >1.821                                         | A strong gale, very<br>unsteady.                                 |
| 18.              | <b>—53 00</b>      | 110 30           | Def. N. Def. S.                     | 30 28<br>31 14                                                | 44<br>44          | N.E.                                                                        | 1.878<br>1.849          | -·036<br>-·036          | $+.002 \\ +.002$        | 1.844 5<br>1.815                                     |                                                                  |
|                  |                    | -                | Def. N.S.<br>Mag. N.<br>Mag. S.     | 48 30<br>31 55<br>32 48                                       | 43<br>43<br>43    | N.E.<br>N.E.                                                                | 1.822<br>1.889<br>1.850 | 036<br>036<br>036       | +·009<br>+·003<br>+·003 | 1.856                                                | Unsteady, a heavy<br>swell from west-<br>ward. strong<br>breeze. |
| 20.              | <b>-48 57</b>      | 112 56           | Def. N.<br>Def. S.                  | 30 52<br>31 26                                                | 47<br>48          | N.E. \frac{1}{2} N.  N.E. \frac{1}{2} N.                                    | 1.849<br>1.834          | -·035<br>-·035          | $+001 \\ +001$          | 1.815 7                                              |                                                                  |
|                  |                    |                  | Def. N.S.<br>Mag. N.                | 48 22<br>32 20                                                | 48<br>49          | N.E. $\frac{1}{2}$ N.<br>N.E. $\frac{1}{2}$ N.                              | 1.831<br>1.857          | -·035<br>-·035          | +·006<br>+·002          | 1.802                                                | Fresh breeze, very                                               |
|                  |                    |                  | Mag. S. wt. 1 gr.                   | 32 58<br>9 59<br>20 01                                        | 49<br>50<br>50    | N.E. $\frac{1}{2}$ N.<br>N.E. $\frac{1}{2}$ N.                              | 1.835<br>1.813          | -·035<br>-·035          |                         | 1.776*                                               | unsteady.                                                        |
| 22.              | <b>-47 21</b>      | 115 15           | wt. 2 grs.<br>wt. 3 grs.<br>Def. N. | 31 32<br>30 38                                                | 50<br>50          | N.E. $\frac{1}{2}$ N.<br>N.E. $\frac{1}{2}$ N.<br>N.W. $\frac{1}{2}$ N.     | 1.920<br>1.859<br>1.866 | 035<br>035<br>029       | 002<br>002<br>+-001     | 1.822                                                |                                                                  |
|                  |                    |                  | Def. S.<br>Def. N.S.                | 30 34<br>48 29                                                | 50<br>50          | N.W. $\frac{1}{2}$ N.<br>N.W. $\frac{1}{2}$ N.                              | 1.897<br>1.821          | -·029<br>-·029          | +.001 + .005            | 1.869<br>1.797 1.842                                 | Light breeze, table                                              |
| 24               | 45.00              | 116 50           | Mag. N.<br>Mag. S.                  | 32 07<br>32 26<br>31 01                                       | 50<br>50          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                       | 1.876                   | -·029<br>-·029          | +·002<br>+·002          | 1.858                                                | steady, thick fog.                                               |
| 24.<br>25.       |                    | 116 50<br>116 49 | Def. S.                             | 31 01<br>31 21<br>31 06                                       | 49<br>50<br>55    | N. by E.<br>N. by E.<br>N. \frac{1}{2} E.                                   | 1.840<br>1.838<br>1.833 | -·020<br>-·020<br>-·020 | , ,                     | 1 11821                                              | A heavy swell from<br>westward, un-<br>steady.                   |
|                  |                    | -5               | Def. S.<br>Def. N.S.                | 31 49<br>48 57                                                | 55<br>55          | $N_{\bullet} \frac{1}{2} E_{\bullet}$ $N_{\bullet} \frac{1}{2} E_{\bullet}$ | 1.807<br>1.789          | 020<br>020              | +.002                   | 1·787<br>1·771                                       |                                                                  |
| -                |                    |                  | Mag. N.<br>Mag. S.                  | 32 33<br>33 24                                                | 55<br>56          | N. \frac{1}{2} E.<br>N. \frac{1}{2} E.                                      | 1.840                   |                         | +.001                   | 1.774                                                | A heavy swell, um-<br>steady.                                    |
|                  |                    |                  | wt. 1 gr.<br>wt. 2 grs.             | 10 20<br>20 30                                                | 56<br>56          | N. $\frac{1}{2}$ E. N. $\frac{1}{2}$ E.                                     | 1.753<br>1.877          | -·020<br>-·020          | -·001                   | 1·732*<br>1·856                                      |                                                                  |

<sup>\*</sup> Omitted in mean.

|          | \$ 100 miles  | 4      |                                   | Angle of                                           | ģ               |                           | ty.             | Corre                      | ctions.           |                                                |                                           |
|----------|---------------|--------|-----------------------------------|----------------------------------------------------|-----------------|---------------------------|-----------------|----------------------------|-------------------|------------------------------------------------|-------------------------------------------|
| Date.    | Lat.          | Long.  | Method<br>employed.               | Angle of<br>deflec-<br>tion.                       | Temper<br>ture. | Ship's head.              | Intensity.      | Ship's<br>attrac-<br>tion. | Tempe-<br>rature. | Corrected<br>Intensity.                        | Remarks.                                  |
| 1845.    | 0 00          | 116 42 | D.C.M                             | 31 40                                              | 56              | 1                         | 1.500           | 020                        | -000              | 1-550                                          |                                           |
| Mar. 26. | -41 00        | 116 42 | Def. N.<br>Def. S.                | 31 40                                              | 56              | n. by w.                  | 1·790<br>1·821  | -·020                      | l                 | $\begin{vmatrix} 1.770 \\ 1.801 \end{vmatrix}$ |                                           |
| 1        |               |        | Def. N.S.                         | 49 41                                              | 56              | n. by w.                  | 1.736           | 020                        | +.002             |                                                | A heavy westerly                          |
|          |               |        | Mag. N.                           | 33 19                                              | 56              | n. by w.                  | 1.780           | 020                        | +.001             |                                                | swell.                                    |
|          |               |        | Mag. S.                           | 33 46                                              | 56              | N. by w.                  | 1.759           | 020                        | +.001             | 1.740                                          |                                           |
| 27.      | -3840         | 116 15 | Def. N.                           | 32 33                                              | 62              | n. by E.                  | 1.731           | 012                        |                   | 1.719                                          |                                           |
|          |               |        | Def. S.                           | 32 35                                              | 62              | N. by E.                  | 1.752           | 012                        | •                 |                                                | Table steady.                             |
| 90       | 27 00         | 116 50 | Def. N.S.                         | 49 55                                              | 62<br>63        | 1 .                       | 1·720<br>1·689  | -·012<br>-·012             |                   | 1.677                                          |                                           |
| 28.      | -37 00        | 110 57 | Def. N.<br>Def. S.                | 33 12<br>33 34                                     | 64              | n. by E.<br>n. by E. ½ E. |                 | -012                       | 1                 | 1.675                                          |                                           |
|          |               |        | Def. N.S.                         | 50 42                                              | 64              | N. by E. $\frac{1}{2}$ E. |                 | -012                       |                   | 1.656                                          | ·                                         |
|          |               |        | Mag. N.                           | 34 06                                              | 68              | N. by E. $\frac{1}{2}$ E. |                 |                            |                   | 1.704                                          |                                           |
|          |               |        | Mag. S.                           | 34 41                                              | 68              | N. by E. \frac{1}{2} E.   | 1.681           | -012                       | 001               | 1.009                                          | Unsteady.                                 |
|          |               | 1      | wt. 1 gr.                         | 11 08                                              | 68              | n. by E. ½ E.             |                 |                            |                   | 1.617*                                         |                                           |
|          |               | l      | wt. 2 grs.                        | 22 48                                              | 68              | N. by E. $\frac{1}{2}$ E. |                 | 012                        | +.001             |                                                |                                           |
| 20       | 06.11         |        | wt. 3 grs.                        | 35 19                                              | 65              | N. by E. $\frac{1}{2}$ E. |                 |                            | +.001             |                                                |                                           |
| 29.      | <b>—36</b> 11 | 116 48 | Def. N.<br>Def. S.                | 33 12<br>33 21                                     | 67              | N.N.E.                    | 1.689<br>1.702  | 012<br>012                 | -·001             |                                                | Unsteady.                                 |
|          |               |        | Def. N.S.                         | 50 51                                              | 68              | N.N.E.                    | 1.661           | -012                       | 003               |                                                | onsteauy.                                 |
| 30.      | <b>—35 07</b> | 117 38 | Def. N.                           | 32 54                                              | 66              | N.N.E.                    | 1.708           | 012                        | 001               |                                                |                                           |
| 00.      | 00 0,         |        | Def. S.                           | 33 13                                              | 66              | N.N.E.                    | 1.712           | -012                       | 001               |                                                | Unsteady.                                 |
|          |               |        | Def. N.S.                         | 50 12                                              | 66              | N.N.E.                    | 1.701           | 012                        | 002               | 1.687                                          |                                           |
| April 7. |               |        | Def. N.                           | 33 11                                              | 68              | <b>1</b>                  | 1.690           |                            | 1                 | 1.689                                          | ,                                         |
|          | King G        |        | Def. S.                           | 33 32                                              | 68              |                           | 1.690           |                            |                   | 1.689                                          |                                           |
|          | Sound,        |        | Def. N.S.                         | 50 24                                              | 68<br>68        |                           | 1.689<br> 1.687 | •••••                      | -·003             | 1.686                                          |                                           |
|          | Austr         | ana.   | Mag. N.<br>Mag. S.                | $\begin{vmatrix} 34 & 30 \\ 34 & 34 \end{vmatrix}$ | 69              | Observed                  |                 |                            |                   | 1.600                                          |                                           |
|          |               |        | wt. 1 gr.                         | 10 44                                              | 69              | on shore.                 |                 |                            | +.001             |                                                | On the 8th needle A.<br>was found to have |
|          |               |        | wt. $1\frac{1}{2}$ gr.            | 17 16                                              | 69              |                           | 1.688           |                            | +.001             | 1.689                                          | been injured,<br>needle B. was            |
|          | V             |        | wt. 2 grs.                        | 22 56                                              | 69              |                           | 1.688           |                            | +.001             | 1.689                                          | therefore used                            |
|          |               |        | wt. $2\frac{1}{2}$ grs.           | 28 18                                              | 69              | 1 }                       | 1.688           |                            | +.001             |                                                | subsequently.                             |
|          |               |        | wt. 3 grs.                        | 35 11                                              | 69              | J                         | 1.688           | <u> </u>                   | +.001             | 1.689                                          |                                           |
|          |               |        |                                   |                                                    |                 | Needle B                  | • '             |                            |                   |                                                |                                           |
| 12.      | 25 00         | 117 56 | Def. N.                           | 29 23                                              | 64              | h                         | 1.711           | T                          | •000              | 1.711                                          |                                           |
| 12.      | King G        |        | Def. S.                           | 35 31                                              | 64              |                           | 1.657           |                            |                   | 1.657                                          |                                           |
|          | Sou           |        | Def. N.S.                         | 50 11                                              | 64              | 11                        | 1.679           |                            |                   | 1.679 >1.679                                   | 2                                         |
|          |               |        | Mag. N.                           | 31 37                                              | 64              | Observed                  | 1.658           |                            | .000              | 1.658                                          |                                           |
|          |               |        | Mag. S.                           | 36 25                                              |                 | on shore.                 |                 |                            |                   | 1.653                                          |                                           |
|          |               |        | wt. 1 gr.                         | 16 13                                              |                 |                           | 1.693           |                            |                   | 1.693                                          |                                           |
|          |               |        | wt. $1\frac{1}{2}$ gr. wt. 2 grs. | 24 39<br>33 27                                     | 62              | 11                        | 1.672<br>1.698  |                            |                   | 1.672 \1.688                                   | 8                                         |
| 23.      | -35 30        | 114 25 |                                   | 30 03                                              | 66              | N.W.                      | 1.670           | _··011                     |                   | 1.658                                          |                                           |
| £U.      | -30 30        | 114 00 | Def. S.                           | 35 01                                              | 66              | N.W.                      | 1.687           | 011                        |                   |                                                | Very unsteady,                            |
|          |               |        | Def. N.S.                         | 49 55                                              | 66              | N.W.                      | 1.696           | 011                        |                   | 1.683 ∫                                        | heavy south-west swell.                   |
| 25.      | -32 24        | 111 26 | Def. N.                           | 31 07                                              | 69              | N.w. by N.                |                 |                            |                   |                                                | 1                                         |
| 1        |               |        | Def. S.                           | 36 26                                              | 69              | N.w. by N.                | 1.603           | 011                        | 001               |                                                |                                           |
|          |               |        | Def. N.S.                         | 51 30                                              | 69              | n.w. by n.                |                 |                            | 004               |                                                | Moderate breeze,<br>table steady.         |
|          |               |        | Mag. N.<br>Mag. S.                | 33 14<br>37 23                                     | 69              | n.w. by n.                | 1.547<br>1.577  | -·011                      | -·001<br>-·001    | 1 - 1                                          |                                           |
| 27.      | 20 16         | 106 49 | Def. N.                           | 32 17                                              |                 | w.N.W                     | 1.534           | 1                          |                   |                                                |                                           |
| ~1.      |               | 3      | Def. S.                           | 37 53                                              | 72              | w.n.w.                    | 1.515           | 015                        |                   |                                                | Very unsteady.                            |
| as sign  |               |        | Def. N.S.                         | 53 15                                              |                 | w.N.w.                    | 1.501           |                            |                   |                                                |                                           |
|          |               |        |                                   | L                                                  | <u> </u>        |                           |                 | <u> </u>                   |                   |                                                | <u> </u>                                  |

<sup>\*</sup> Omitted in mean.

|         |                                  |        |                        | <del></del> |                   | 1                                                                |            |             |              |       |                 |                                        |
|---------|----------------------------------|--------|------------------------|-------------|-------------------|------------------------------------------------------------------|------------|-------------|--------------|-------|-----------------|----------------------------------------|
|         |                                  |        |                        | 1           | ا د               |                                                                  | ١.         | Correc      | tions.       |       |                 |                                        |
|         | _                                |        | Method                 | Angle of    | Tempera-<br>ture. |                                                                  | Intensity. |             |              | C     |                 |                                        |
| Date.   | Lat.                             | Long.  | employed.              | deflec-     | 日間                | Ship's head.                                                     | l g        | Ship's      | Tempe-       |       | ected<br>asity. | Remarks.                               |
|         |                                  |        |                        | tion.       | Te                |                                                                  | Ħ          | attrac-     | rature.      | Inter | isity.          |                                        |
|         |                                  |        |                        |             |                   |                                                                  | "          | tion.       |              |       |                 | 4                                      |
| 1045    |                                  |        |                        |             |                   |                                                                  |            |             |              |       |                 |                                        |
| 1845.   | $-2\mathring{7} \ 3\mathring{5}$ | 106 36 | Def. N.                | 33 30       | <b>7</b> 5        | n. by w.                                                         | 1.467      | +.002       | 001          | 1.468 | 1               |                                        |
| Ap. 28. | -21 33                           | 100 32 | Def. S.                |             | 76                | N. by w.                                                         |            |             |              | 1.533 |                 | 1.                                     |
| -       |                                  |        |                        |             |                   |                                                                  | į.         | +.002       | -·001        |       | 1.470           |                                        |
|         |                                  |        | Def. N.S               | 53 30       | 76                | n. by w.                                                         |            | +.002       | 006          | 1.479 | >1.478          | Unsteady, a heavy<br>swell.            |
|         |                                  |        | Mag. N.                | 34 36       | 76                | n. by w.                                                         |            | +.002       | 002          | 1.459 | 1               | swen.                                  |
|         |                                  |        | Mag. S.                | 39 06       | 76                | n. by w.                                                         | 1.451      | 1           | 002          | 1.451 | )               |                                        |
| 29.     | -25 46                           | 104 55 | Def. N.                | 33 47       | 68                | N.W.                                                             | 1.450      |             | <b></b> ·001 | 1.446 | 1.447           | Very unsteady.                         |
|         |                                  |        | Def. S.                | 39 02       | 68                | N.W.                                                             | 1.453      | 003         | 001          | 1.449 | 1 44/           | very unsteady.                         |
| May 1.  | -2358                            | 99 06  | Def. N.                | 34 30       | 68                | w.                                                               | 1.414      | 022         | 001          | 1.391 | )               |                                        |
| .       |                                  |        | Def. S.                | 39 54       | 68                | w.                                                               | 1.407      | 022         | 001          | 1.384 | 1.381           | Unsteady.                              |
|         |                                  |        | Def. N.S.              | 55 14       | 68                | w.                                                               | 1.394      | 022         | 003          | 1.369 | 1               |                                        |
| 2.      | -24 01                           | 97 25  | Def. N.                | 34 32       | 72                | $W_{\bullet} = \frac{1}{2} N_{\bullet}$                          | 1.412      |             | 001          | 1.392 | í               |                                        |
| ~•      | W. V.                            | 3, 20  | Def. S.                | 40 02       | 72                | $W \cdot \frac{1}{2} N \cdot$                                    | •          | 019         | 001          | 1.382 | 1.391           | Unsteady.                              |
| . ]     |                                  | 1      | Def. N.S.              | 55 15       | 72                | $W \cdot \frac{1}{2} N$                                          |            | 019         | <b></b> 005  | 1.370 |                 | l additional to                        |
|         | 00 EV                            | 05 50  |                        | 35 00       | 76                | , -                                                              | ,          |             |              |       |                 |                                        |
| 3.      | -23 50                           | 95 56  |                        |             |                   | $W \cdot \frac{1}{2} N \cdot$                                    | 1.388      |             | 001          | 1.368 |                 |                                        |
|         |                                  |        | Def. S.                | 40 16       | 76                | $W \cdot \frac{1}{2} N \cdot$                                    |            | 019         | 001          | 1.369 | Ì               |                                        |
|         |                                  |        | Def. N.S.              | 55 38       | 76                | $W_{\cdot} \frac{1}{2} N_{\cdot}$                                |            | 019         | <b></b> ∙006 | 1.353 | >1.377          | Steady.                                |
|         |                                  |        | wt. 1 gr.              | 19 28       | 76                | $W_{\bullet} \frac{1}{2} N_{\bullet}$                            |            |             | +.001        | 1.401 | 1.011           | budy.                                  |
| . 1     |                                  | i i    | wt. $1\frac{1}{2}$ gr. | 29 58       | 76                | $W_{\bullet} \frac{1}{2} N_{\bullet}$                            | 1.396      | -019        | +.001        | 1.378 |                 |                                        |
|         |                                  |        | wt. 2 grs.             | 41 30       | 76                | $W. \frac{1}{2} N.$                                              | 1.413      | 019         | +.001        | 1.395 |                 | •                                      |
| 4.      | -24 16                           | 93 48  | Def. N.                | 35 21       | 76                | w.n.w.                                                           | 1.371      | -010        | 001          | 1.360 | )               |                                        |
| [       |                                  |        | Def. S.                | 41 05       | 76                | w.n.w.                                                           | 1.350      | -010        | <b></b> 001  | 1.339 | 1.352           | Unsteady.                              |
|         |                                  |        | Def. N.S.              | 55 45       | 76                | w.n.w.                                                           |            | 010         | 001          | 1.358 |                 |                                        |
| 5.      | -24 02                           | 92 07  | Def. N.                | 35 51       | 73                | N.W.                                                             | 1.347      | 1 1         | 001          | 1.354 | <b>`</b>        |                                        |
| •       | W 1 0 N                          | 5~ 01  | Def. S.                | 40 37       | 73                | N.W.                                                             |            | +.008       | <b></b> 001  | 1.380 | 1.367           | Cross sea, much<br>rolling motion.     |
| 7.      | -21 44                           | 89 38  | Def. N.                | 36 30       | 73                | N.W. $\frac{1}{2}$ W.                                            | 1.316      |             | -·001        | 1.319 | {               | Tolling motion,                        |
| 1.      | -21 44                           | 09 00  |                        | 1           |                   |                                                                  | 1.         | ,           |              |       |                 | Table unsteady.                        |
|         |                                  |        | Def. S.                | 42 13       | 73                | N.W. $\frac{1}{2}$ W.                                            | 1.298      |             | 001          |       | 1.314           | Labic ansociary.                       |
| _       |                                  |        | Def. N.S.              | 56 45       | 73                | N.W. $\frac{1}{2}$ W.                                            | 1.322      | +.004       | 005          | 1.321 | Į               | 1                                      |
| 8.      | -20 38                           | 87 50  |                        | 36 39       | 77                | N.W. $\frac{1}{2}$ W.                                            | 1.309      | +.004       | 001          | 1.312 | 1               | ĺ                                      |
|         |                                  | 1      | Def. S.                | 42 49       | 77                | N.W. $\frac{1}{2}$ W.                                            | 1.270      |             | <b></b> ·001 |       | >1.298          | Unsteady.                              |
|         |                                  |        | Def. N.S.              | 56 58       | 77                | N.W. $\frac{1}{2}$ W.                                            | 1.312      | +.004       | <b>006</b>   | 1.310 | J               |                                        |
| 9.      | -20 37                           | 85 02  | Def. N.                | 36 56       | 77                | $W_{\bullet} = \frac{1}{2} N_{\bullet}$                          | 1.295      | -015        | 001          | 1.279 | )               |                                        |
|         |                                  |        | Def. S.                | 42 49       | 77                | $W_{\bullet} \stackrel{\overline{1}}{\underline{2}} N_{\bullet}$ | 1.270      | 015         | 001          | 1.254 | >1.263          | Heavy swell.                           |
|         |                                  |        | Def. N.S.              | 57 46       | 77                | $W \cdot \frac{1}{2} N \cdot$                                    | 1.276      |             | 006          | 1.255 |                 |                                        |
| 10.     | -20 25                           | 82 10  | Def. N.                | 37 46       | 77                | $W \cdot \frac{3}{4} N$ .                                        | 1.260      | 012         | 001          | 1.247 | ,               |                                        |
|         |                                  |        | Def. S.                | 42 48       | 76                | $W. \frac{3}{4} N.$                                              | 1.270      | 012         | <b></b> 001  | 1.257 | 1               |                                        |
|         |                                  |        | Def. N.S.              | 57 46       | 76                | W. $\frac{3}{4}$ N.                                              | 1.276      | 012         | _·006        |       | 1.948           | Heavy swell.                           |
|         |                                  |        | Mag. N.                | 38 04       | 76                | 4                                                                | 1.256      | 012         | -·001        | 1.243 | ( 250           |                                        |
| 1       |                                  |        | Mag. S.                | 42 13       | 76                | $W_{\bullet} \frac{3}{4} N_{\bullet}$                            | 1 1        |             |              |       | 1               |                                        |
| ,,      | 20.00                            | 70 10  |                        | 1           |                   | $W_{\bullet} \frac{3}{4} N_{\bullet}$                            | 1.249      | 012         | 001          | 1.236 | ,               |                                        |
| 11.     | -20 36                           | 79 10  | Def. N.                | 39 00       | 78                | $W \cdot \frac{3}{4} N \cdot$                                    | 1.207      |             | 001          | 1.194 | -               |                                        |
| l       |                                  |        | Def. S.                | 43 29       | 78                | $W_{\bullet} \frac{3}{4} N_{\bullet}$                            |            | 012         |              | 1.226 | 1.213           | Unsteady.                              |
| 1       |                                  |        | Def. N.S.              | 58 28       | 78                | $W \cdot \frac{3}{4} N \cdot$                                    | 1.247      | 012         | -:007        | 1.228 | 1 - 220         | C.I.Stoway.                            |
|         |                                  |        | Mag. S.                | 42 44       | 78                | $W \cdot \frac{3}{4} N \cdot$                                    | 1.220      | 012         | -002         | 1.206 | j               |                                        |
| 12.     | -2044                            | 78 31  | Def. N.                | 37 23       | 87                | 8.                                                               | 1.275      | -040        | _ 002        | 1.233 | )               |                                        |
| 1       |                                  |        | Def. N.                | 37 12       | 87                | s.s.w.                                                           | 1.283      | 036         | 002          | 1.245 | İ               |                                        |
| ,       |                                  |        | Def. N.                | 37 14       | 87                | s.w.                                                             | 1.282      | 032         | 002          | 1.248 | ĺ               |                                        |
|         |                                  |        | Def. N.                | 38 13       | 87                | w.s.w.                                                           | 1.241      | 023         | 002          | 1.216 |                 |                                        |
|         |                                  |        | Def. N.                | 38 28       | 87                | W.                                                               | 1.229      | 016         | 002          | 1.211 | 1               | Those shows the                        |
| ł       |                                  |        | Def. N.                | 38 27       | 87                |                                                                  | 1.230      | 007         | 002          | 1.221 | 1               | These observations<br>were made to de- |
| 1       | 1                                |        |                        |             | 1                 | W.N.W.                                                           |            |             |              |       | >1.234          | termine the effect                     |
| ļ       |                                  | [      | Def. N.                | 37 47       | 86                |                                                                  | 1.258      | -·001       | 002          | 1.255 |                 | of the ship's iron at sea.             |
| 1       |                                  |        | Def. N.                | 38 14       | 84                | N.N.W.                                                           | 1.240      | .000        | 002          | 1.238 |                 |                                        |
|         |                                  |        | Def. N.                | 38 11       | 80                |                                                                  | 1.242      | +.002       | 001          | 1.243 |                 |                                        |
| ļ       |                                  | .      | Def. N.                | 38 28       | 78                | N.N.E.                                                           | 1.229      | .000        | 001          | 1.228 |                 |                                        |
| -       |                                  |        | Def. N.                | 38 17       | 78                | N.E.                                                             | 1.236      | 001         | 001          | 1.234 |                 | A                                      |
| . [     |                                  |        | Def. N.                | 38 00       | 78                | E.N.E.                                                           | 1.249      | <b> 007</b> | <b></b> ∙001 | 1.241 |                 |                                        |
|         |                                  |        |                        |             |                   |                                                                  |            |             |              |       |                 |                                        |

|         |               |       |                        | Angle of            | ra-               |                           | ×              | Corre              | ctions.                                  |                                       |                                        |
|---------|---------------|-------|------------------------|---------------------|-------------------|---------------------------|----------------|--------------------|------------------------------------------|---------------------------------------|----------------------------------------|
| Date.   | Lat.          | Long. | Method<br>employed.    | deflec-<br>tion.    | Tempera-<br>ture. | Ship's head.              | Intensity.     | Ship's attraction. | Tempe-<br>rature.                        | Corrected<br>Intensity.               | Remarks.                               |
| 1845.   |               |       |                        |                     | Â                 |                           |                |                    |                                          |                                       |                                        |
| May 13. | -20 39        | 77 43 | Def. N.                | 37 41               | $ {81}$           | S.E.                      | 1.262          | 032                | 001                                      | , - ,                                 |                                        |
| -       |               |       | Def. N.                | 38 00               | 81                | E.                        | 1.249          | 016                | 001                                      |                                       | Made to determine<br>the effect of the |
|         |               |       | Def. N.                | 37 40               | 81                | 1                         | 1.264          |                    | 001                                      | 1 11933                               | _him!=i=======                         |
|         |               |       | Def. N.                | 38 24               | 80                | 1                         | 1.232          | +.002              | 001                                      | 1.233                                 | A rolling motion,                      |
|         |               |       | Def. N.                | 38 31               | 79                | N.W.                      | 1.228          | 001                | 001                                      | 1 1                                   | not very steady at                     |
| 16.     | -20 26        | 70 26 | Def. N.<br>Def. N.     | 38 20<br>38 40      | 79<br>78          | w.<br>w. by n.            | 1·235<br>1·221 | -·016<br>-·011     | -·001<br>-·001                           | . 2                                   | some points.                           |
| 10.     | -20 20        | 70 30 | Def. S.                | 43 52               | 78                |                           | 1.221          | 011                | 001                                      |                                       | Unsteady.                              |
| -       |               |       | Def. N.S.              | 59 26               | 78                |                           | 1.214          |                    | 007                                      |                                       |                                        |
| 17.     | -20 34        | 69 24 | Def. N.                | 38 37               | 78                | w. by N.                  | 1.222          | 011                | 001                                      |                                       |                                        |
|         |               |       | Def. S.                | 43 59               | 78                |                           | 1.217          | 011                | 001                                      | 1                                     |                                        |
|         |               |       | Def. N.S.              | 59 09               | 78                |                           | 1.222          | 011                | <b>007</b>                               | 1.204                                 | r                                      |
|         | + .           |       | Def. N.                | 38 09               | 79                | s.w.byw. $\frac{1}{2}$ w. | 1.243          | 030                | 001                                      | 1.212 (1.210                          | Unsteady.                              |
|         |               |       | Def. S.                | 43 17               |                   | s.w.byw. $\frac{1}{2}$ w. |                | ÷.030              | 001                                      | 1.21/                                 |                                        |
|         |               |       | Def. N.S.              | 58 34               | 80                | $s.w.byw.\frac{1}{2}w.$   | •              | 030                | 007                                      | 1                                     |                                        |
|         |               |       | Mag. N.                | 38 23               | 80                | s.w.byw. $\frac{1}{2}$ w. |                | 030                | 002                                      | 1 1                                   |                                        |
| 10      | 01 11         | Cm ma | Mag. S.                | 42 07               | 80                | $s.w.byw.\frac{1}{2}w.$   |                | 030                | 002                                      |                                       |                                        |
| 19.     | <b>—21 11</b> | 67 54 | Def. N.<br>Def. S.     | 38 57               | 76<br>76          | 1                         | 1·209<br>1·203 | -·001              | $\begin{bmatrix}001 \\001 \end{bmatrix}$ | 1.207                                 |                                        |
|         |               |       | Def. N.S.              | 44 17<br>59 54      | 76                | I .                       | 1.196          | -·001              | 005                                      | 1 6                                   | Unsteady.                              |
|         |               |       | Mag. N.                | 38 52               | 76                |                           | 1.211          | <b>001</b>         | <b></b> 001                              |                                       | 1                                      |
|         |               |       | wt. 1 gr.              | 22 44               | 76                | 1                         | 1.223          | 001                | +.001                                    | , , , , , , , , , , , , , , , , , , , |                                        |
|         |               |       | wt. $1\frac{1}{2}$ gr. | 35 01               | 76                |                           | 1.215          | 001                | +.001                                    |                                       |                                        |
|         |               |       | wt. 2 grs.             | 51 35               | 76                | 1                         | 1.195          | 001                |                                          | 1.195                                 | Steady.                                |
| 20.     | -21 12        | 67 29 | Def. N.                | 39 02               | 74                | w. by N.                  | 1.205          | 012                | 001                                      | 1.192 5                               |                                        |
|         |               |       | Def. S.                | 44 03               | 77                | w. by N.                  | 1.212          | 012                | 001                                      | 1.199 >1.190                          | Unsteady.                              |
|         |               |       | Def. N.S.              | 59 59               | 77                | w. by N.                  | 1.194          |                    | 004                                      |                                       |                                        |
| 21.     | -21 01        | 66 10 | Def. N.                | 39 03               | 76                | w. by N.                  | 1.204          | 1                  | 001                                      |                                       | :                                      |
|         |               |       | Def. S.                | 44 29               | 76                | w. by N.                  | 1.195          | 012                | 001                                      |                                       |                                        |
|         |               |       | Def. N.S.              | 59 40               | 76                | w. by N.                  | 1.204          |                    | 005                                      | 1 . (                                 | Unsteady.                              |
|         |               |       | Mag. N.                | 39 14               | 76<br>76          | w. by N.                  | 1·194<br>1·163 | -·012<br>-·012     | -·001                                    | 1 1                                   |                                        |
| 22.     | -20 40        | 60 50 | Mag. S.<br>Def. N.     | 43 48<br>39 28      | 74                |                           | 1.189          | -012               | 001                                      |                                       |                                        |
| 22.     | 20 40         | 02 50 | Def. S.                | 45 01               | 74                |                           | 1.173          | -012               | 001                                      | 1.160                                 |                                        |
|         |               |       | Def. N.S.              | 59 41               | 74                |                           | 1.203          | 012                | 005                                      |                                       | Table steady.                          |
|         |               |       | Mag. N.                | 39 28               | 74                |                           | 1.181          | 012                | 001                                      | 1 - 1                                 |                                        |
| 27.     | -20 09        | 57 31 | Def. N.                | 40 07               | 77                |                           | 1.165          |                    |                                          | 1.164                                 |                                        |
|         |               |       | Def. S.                | 45 28               | 77                |                           | 1.153          |                    | 001                                      | 1.152                                 |                                        |
|         |               | ,     | Def. N.S.              | 60 43               | 77                | On shore                  | 1.167          |                    | 006                                      | 1.161 >1.155                          | Steady.                                |
|         |               |       | Mag. N.                | 39 55               | 77                | ot Man                    | 1.158          |                    | 001                                      |                                       |                                        |
|         | 1             |       | Mag. S.                | 44 14               | 77                | 1                         | 1.138          |                    | 001                                      |                                       |                                        |
|         |               |       | wt. 1 gr.              | 23 59               | 80                |                           | 1.163          |                    | +.001                                    | 1.164                                 |                                        |
|         |               |       | wt. 1½ gr.*            | 33 46               | 80                |                           | 1.255          |                    |                                          | 1.256* >1.156                         | Steady.                                |
| 90      | 01 50         | 59 05 | wt. 2 grs.             | 54 42               | 80                |                           | 1.147          | -027               | +.001                                    |                                       |                                        |
| 30.     | -21 50        | 33 25 | Def. N.<br>Def. S.     | $39 \ 41 \ 44 \ 25$ | 81<br>81          | s.w. by w.                | •              | -027               | 001                                      | 1.170 1.161                           | Unsteady.                              |
|         |               |       | Def. N.S.              | 59 59               | 80                | s.w. by w.                |                | -·027              |                                          |                                       | ,                                      |
| June 3. | -26 26        | 48 20 | Def. N.S.              | 39 39               | 79                | N.w. by w.                | 1.187          |                    |                                          |                                       |                                        |
| oune o. | -20 20        | 10 20 | Def. S.                | 45 18               | 78                | N.w. by w.                |                |                    | 001                                      | 1.155 1.164                           | Unsteady.                              |
|         |               |       | Def. N.S.              | 60 41               | 78                | N.w. by w.                |                | 005                | 006                                      | 1.157                                 |                                        |
| 4.      | -27 14        | 45 50 | Def. N.                | 39 44               | 69                | w.                        | 1.179          |                    |                                          | 1.160                                 |                                        |
|         |               |       | Def. S.                | 44 39               | 70                | w.                        | 1.188          |                    | l .                                      |                                       | Unsteady,                              |
|         |               |       | Def. N.S.              | 60 38               | 70                | w.                        |                | 018                | 1                                        |                                       |                                        |
|         |               |       |                        |                     |                   |                           | <u> </u>       | 1                  | <u> </u>                                 |                                       | L                                      |

<sup>\*</sup> This observation is evidently wrong, and is omitted in the mean.

|         |          |          |                                   |                              | -b      |                           | ٠              | Corre          | ctions. |                | ·             |                |
|---------|----------|----------|-----------------------------------|------------------------------|---------|---------------------------|----------------|----------------|---------|----------------|---------------|----------------|
| Date.   | Lat.     | Long.    | Method<br>employed.               | Angle of<br>deflec-<br>tion. |         | Ship's head.              | Intensity.     | Ship's attrac- | Tempe-  | Corre<br>Inter |               | Remarks.       |
|         |          |          |                                   |                              |         |                           | 1              | tion.          |         |                |               |                |
| 1845.   | 0 /      |          |                                   | 0                            |         |                           |                |                |         |                |               |                |
| June 8. | -2857    | 37 55    | Def. N.                           | 40 36                        |         | w.                        | 1.147          | 018            | Į.      | 1.128          | ] -           |                |
|         |          |          | Der. S.                           | 40 11                        |         | w.                        | 1.124          | 018            | 001     | -              | !             |                |
|         |          |          | Def. N.S.                         | 61 44                        | 1       | w.                        | 1.131          | -·018          | -:005   |                | 1111م         | Steady.        |
|         |          |          | Mag. N.<br>Mag. S.                | 40 27<br>44 33               | 1       | w.                        | 1.132 $1.121$  | -·018          | -·001   | 1              | į.            |                |
| 11.     | -30 27   | 33 41    | Def. N.                           | 41 32                        | 1       | w.<br>w.n.w.              | 1.114          | 008            | 001     | } · -          | )<br>1•105    | Very unsteady. |
| 13.     |          |          | Def. N.                           | 41 58                        | 1       | w. by s. $\frac{1}{2}$ s. |                | -024           | 001     |                | . 1;100<br>1  | discounty.     |
| 10.     | -51 00   | 51 20    | Def. S.                           | 47 30                        |         | w. by s. $\frac{1}{2}$ s. | 1.079          | -024           |         | 1.054          | >1.063        |                |
|         |          |          | Def. N.S.                         | 61 41                        |         | w. by s. $\frac{1}{2}$ s. |                | 1              |         | 1.101*         | 1             | 1              |
| 17.     | -35 40   | 21 40    | Def. N.                           | 43 19                        |         | w. by N.                  | 1.053          | 013            |         | 1.040          | Í             |                |
| - • •   | -,       | ,        | Def. N.S.                         | 64 49                        | 62      | w. by N.                  | 1.038          | 013            |         | 1.025          | 1.033         | Unsteady.      |
| 23.     | Simon's  | Bay,     | Def. N.                           | 43 29                        |         | s.                        | 1.047          | 040            | 001     | 1.006          | ĺ             |                |
|         | Cape of  |          | Def. N.                           | 43 4                         |         | S.E.                      | 1.036          | -032           | .000    | 1.004          | 1             |                |
|         | Hope.    |          | Def. N.                           | 44 14                        | - 1 - • | E.                        | 1.117          | -016           | •000    | 1.001          |               |                |
|         | -        |          | Def. N.                           | 44 3                         |         | N.E.                      | 1.004          | 001            |         | 1.003          | 1.001         |                |
|         |          |          | Def. N.                           | 44 40                        |         | N.                        | 1.001          | +.002          |         | 1.003          | ſ. 00.        |                |
|         |          |          | Def. N.                           | 44 40                        | , -     | N.W.                      | 1.997          | 001            |         | 0.996          | 1             |                |
|         |          |          | Def. N.                           | 44 20                        | ,       | w.                        | 1.013          | -016           |         | 0.996          | 1             |                |
|         | a. 1     | <b>T</b> | Def. N.                           | 43 50                        |         | s.w.                      | 1.032          | 032            | 001     | 1 1            | Į             |                |
| 24.     |          |          | Def. N.                           | 44 3                         |         | FaceEast,                 | 1.004          |                |         | 1.003          | 1.00          |                |
|         | at the l | Dock     | Def. S.                           | 50 14<br>66 10               |         | on shore.                 | լս•ցցս∽        |                |         | 0.989*         | <b>≻1.001</b> |                |
| 90      | Yard.    |          | Def. N.S.<br>Needle N.            | i                            |         | K                         | 1.002          |                | -002    | 1.000          | ₹             |                |
| 30.     |          |          | Needle S.                         | 45 0<br>49 5                 |         |                           | 0·989<br>0·996 |                |         | 0.989<br>0.996 | 1             | ,              |
|         |          |          | Mag. N.S.                         | 66 2                         |         | On shore.                 | 0.990          |                | •000    | 0.996          | 1             |                |
|         |          |          | Mag. N.                           | 43 4                         |         | On shore.                 | 0.989          |                |         | 0.989          |               |                |
|         |          |          | Mag. S.                           | 47 2                         |         | 11                        | 0.997          |                |         | 0.997          | 1             | 1              |
| July 2. |          |          | Needle N.                         | 44 3                         |         | K                         | 1.005          |                | 1       | 1.005          | 1             | 1              |
| our, a  |          |          | Needle S.                         | 49 4                         | 1       | 1.1                       | 1.005          |                | •000    |                |               |                |
|         |          |          | Needle N.S.                       | 1 -                          |         | 11                        | 0.998          |                |         | 0.997          | 1             |                |
|         |          |          | Mag. N.                           | 43 1.                        | 63      | On ahama                  | 1.006          |                | •000    |                | 1             |                |
|         |          |          | Mag. S.                           | 47 2                         |         | On shore.                 | 0.999          |                | . 000   | 0.999          |               |                |
|         |          |          | wt. 1 gr.                         | 28 2                         |         |                           | 0.993          |                | •000    |                | >1.000        | )              |
|         |          |          | wt. 1½ gr.                        | 44 1                         |         |                           | 0.999          | ļ              | . 000   | 0.999          | 1             |                |
|         |          |          | wt. 2 grs.                        | 69 1                         |         | Ŋ.                        | 1.001          |                | 1       | 1.001          | j             |                |
| 11.     | Magnet   | ic Ob-   | Def. N.                           | 44 3                         |         | 1)                        | 1.006          |                | 1       | 1.005          | 1             |                |
|         | servator |          | Def. S.                           | 49 4                         |         | 11                        | 1.002          |                |         | 1.001          | 1             |                |
|         | of Good  | Hope.    | Mag. N.S.                         | 66 0                         | 75      |                           | 1.003          | ļ              |         | 0.999          | 1             |                |
|         |          |          | Mag. N.                           | 43 2                         |         | On shore.                 | 1.002          | ļ              | 1       | 1.001          |               |                |
|         |          |          | Mag. S.                           | 47 1                         |         |                           | 1.004          |                |         | 1.003          |               |                |
|         |          |          | wt. 1 gr.                         | 28 0<br>44 1                 | 1       |                           | 1.007          |                | +.001   | 1.008          | }             |                |
|         |          | . *      | wt. $1\frac{1}{2}$ gr. wt. 2 grs. | 69 3                         |         |                           | 1.001          |                | +.001   |                | 1             | 1              |
|         |          |          | we. & grs.                        | 109 3                        | 10      | Υ .                       | 0.999          | }              | . +•001 | 1.000          | J.            | l              |

<sup>\*</sup> Not included in mean.

Observations of the Magnetic Force made on board Her Majesty's hired Bark "Pagoda," from the 1st of December 1844 to the 2nd of July 1845. Needle 1. Fox No. 1.; Face West; time usually two hours before Noon.

Observer, Lieut. H. CLERK, R.A.

|          |               |        |                         |                              |            |                                                    |                | Corre          | ctions.           |                                                        |                 |
|----------|---------------|--------|-------------------------|------------------------------|------------|----------------------------------------------------|----------------|----------------|-------------------|--------------------------------------------------------|-----------------|
| Date.    | Lat.          | Long.  | Method                  | Angle of<br>deflec-<br>tion. | rmo-       | Ship's head.                                       | Intensity.     | Ship's         | m                 | Corrected                                              | Remarks.        |
|          |               |        | employed.               | tion.                        | The        | Ship b noud                                        | Inte           | attrac-        | Tempe-<br>rature. | Intensity.                                             |                 |
| 1844.    |               |        |                         |                              |            |                                                    |                |                |                   |                                                        |                 |
| Dec. 1.  | -33° 56       | 18 29  | Def. N.                 | 39°06                        | 6ŝ         | <b>1</b>                                           | 1.006          |                | -000              | 1.006                                                  |                 |
|          |               |        | Def. S.                 | 40 38                        | 67         |                                                    | 1.001          |                | -·001             | 1.000                                                  | · ·             |
|          |               |        |                         | 59 23<br>21 29               | 68<br>70   |                                                    | 0·981<br>1·009 |                | +.001             | 0.980  <br>  1.010                                     |                 |
|          |               |        |                         | 46 54                        | 71         |                                                    | 0.995          |                | +.001             | 0.996                                                  |                 |
|          | Magneti       |        | wt. $2\frac{1}{2}$ grs. | 65 22                        | 72         | Observed                                           | 1.000          |                | +.001             | 1.001 0.999                                            |                 |
| 5.       | servatory     |        | Def. N.                 | 39 01                        | 72         | on shore.                                          |                |                | 001               | 1.007                                                  |                 |
|          | of Good       | Hope.  |                         | 40 37<br>59 22               | 72<br>73   |                                                    | 1.001<br>0.983 |                | -·001<br>-·003    | 1.000                                                  |                 |
|          |               |        |                         | 21 34                        | 74         |                                                    | 1.006          |                | +.001             |                                                        |                 |
|          |               |        |                         | 46 33                        | 74         |                                                    | 1.001          |                | +.001             | 1.002                                                  |                 |
|          |               |        | wt. $2\frac{1}{2}$ grs. | 65 19                        | 74         | IJ.                                                | 1.001          |                | +.001             | 1.002                                                  |                 |
| 21.      | -34 12        | 18 26  |                         | 39 04                        | 74         | n                                                  | 1.007          |                | 001               | 1.006                                                  |                 |
|          |               |        |                         | 40 25<br>59 11               | 76<br>78   | Observed                                           | 1.007          |                | -·001<br>-·004    | 1.006                                                  |                 |
|          | Dock          |        |                         | 21 04                        | 78         | on shore.                                          |                |                | +.001             | 1.030 >1.005                                           |                 |
|          | Simon's       | s Bay. |                         | 46 30                        | 78         |                                                    | 1.002          |                | +.001             | 1.003                                                  |                 |
|          |               |        | wt. $2\frac{1}{2}$ grs. | 65 49                        | 78         | IJ.                                                | 0.997          |                | +.001             | 0.908                                                  |                 |
| 1845.    | -34 44        | 17 50  | Def. N.                 | 39 42                        | 70         | w. by n.                                           | 0.986          | 009            | 001               | 0.9767                                                 |                 |
| Jan. 10. | -01 11        | 17 00  |                         | 40 39                        | 70         | w. by N.                                           | 1.000          |                |                   |                                                        | Table unsteady. |
| , i      |               |        |                         | 59 11                        | 70         |                                                    | 0.988          |                | 002               | 0.977                                                  | Lusto ansound,  |
| 13.      | -3512         | 13 28  | Def. N.                 | 40 02                        | 72         | s.w. by w.                                         | 0.976          |                |                   | 0.945                                                  |                 |
|          |               |        |                         | 40 40                        | 72         |                                                    | 0.999          |                | 001               | 0.968                                                  |                 |
|          |               |        |                         | 59 25<br>22 00               | 75<br>70   | 1                                                  | 0.980<br>0.987 |                | -·003<br> +·001   | $\begin{vmatrix} 0.937 \\ 0.948 \end{vmatrix} > 0.950$ | Table steady.   |
|          |               |        |                         | 47 02                        | 69         |                                                    | 0.992          | 1              |                   | 0.953                                                  |                 |
|          |               | ·      | wt. $2\frac{1}{2}$ grs. |                              | 68         |                                                    | 0.987          | 1              | +.001             | 0.948                                                  |                 |
| 14.      | -37 25        | 13 24  | Def. N.                 | 38 52                        | 65         | s. by w.                                           | 1.013          |                | .000              | 0.971                                                  |                 |
|          |               |        |                         | 40 22                        | 65         | s. by w.                                           | 1.009          | 1              | 001               | 0.967 >0.965                                           | Table unsteady. |
| 15       | <b>—38 37</b> | 14 27  |                         | 58 50<br>38 55               | 65<br>62   | s. by w.                                           | 1.000          |                | -000              | 1.015                                                  |                 |
| 10.      | 000,          | ~ ~,   |                         | 39 55                        | 62         | N.w. by w.                                         |                |                | •000              |                                                        | Very unsteady.  |
|          |               |        | Def. N.S.               | 59 25                        | 66         | N.W. by W.                                         | 0.980          | +.003          | 001               | 0.982                                                  | ,               |
| 16.      | -39 10        | 14 41  |                         | 38 47                        | 63         | s.w.byw. $\frac{1}{2}$ w.                          | 1.016          | 026            | •000              | 0.990                                                  |                 |
|          |               |        |                         | 39 35                        |            | s.w.byw. $\frac{1}{2}$ w.                          |                |                | -·000<br>-·001    | 1.008                                                  |                 |
|          |               |        |                         | 58 30<br>21 32               |            | s.w.byw. $\frac{1}{2}$ w.s.w.byw. $\frac{1}{2}$ w. |                |                | •000              | $\begin{vmatrix} 0.982 \\ 0.982 \end{vmatrix} > 0.989$ | Table steady.   |
|          |               |        |                         | 45 22                        |            | s.w.by $w.\frac{1}{2}w.$ s.w.by $w.\frac{1}{2}w.$  |                | -026           | .000              | 0.995                                                  |                 |
|          |               |        | wt. $2\frac{1}{2}$ grs. |                              |            | s.w.byw. $\frac{1}{2}$ w.                          | 1.005          | 026            | •000              | 0.979                                                  | ·               |
| 17.      | -40 21        | 14 29  | Def. N.                 | 38 42                        | 64         | s.w. by w.                                         | 1.019          | 029            |                   | 0.9907                                                 | `               |
|          |               |        |                         | 39 25                        | 65         |                                                    |                | 029            | -·000             |                                                        | Much motion.    |
| 12       | <b>-42 50</b> | 13 00  |                         | 58 27<br>38 32               | 65<br>60   |                                                    |                | -·029<br>-·040 | -000              | 0·981                                                  |                 |
| 10.      | 1~ 00         | 10 00  | Def. S.                 | 38 35                        | <b>5</b> 9 |                                                    |                | 040            | .000              | 1.026 >0.997                                           | Much motion.    |
|          |               |        |                         | 58 07                        | 58         |                                                    | 1.021          |                | .000              | 0.981                                                  | *               |
| 19.      | <b>-44</b> 50 | 13 19  |                         | 38 17                        | 48         | s.w. by s.                                         | 1.033          |                | +.001             | 0.997                                                  |                 |
|          | -             |        |                         | 39 02                        | 45         | _ •                                                | 1.051          |                | +.001             | 1.015 >1.007                                           | Much motion.    |
|          |               |        | Def. N.S.               | 57 27                        | 44         | s.w. by s.                                         | 1.044          | 037            | T 003             | 1.010                                                  | ·               |

|          |                               |         |                         |                                                       |                  |                                                       |                | Correc             | tions.            |                                                        |                                         |
|----------|-------------------------------|---------|-------------------------|-------------------------------------------------------|------------------|-------------------------------------------------------|----------------|--------------------|-------------------|--------------------------------------------------------|-----------------------------------------|
| Date.    | Lat.                          | Long.   | Method<br>employed.     | Angle of<br>deflec-<br>tion.                          | Thermo<br>meter. | Ship's head.                                          | Intensity.     | Ship's attraction. | Tempe-<br>rature. | Corrected<br>Intensity.                                | Remarks.                                |
| 1845.    |                               | 0 /     |                         | 0 /                                                   |                  |                                                       |                |                    |                   |                                                        |                                         |
| Jan. 21. | $-4\mathring{7} \ 4\acute{0}$ |         | Def. N.                 | 36 30                                                 | 43               |                                                       | 1.091          |                    | +.001             |                                                        | Very unsteady.                          |
| 22.      | -48 35                        | 10 51   | Def. N.                 | 36 15                                                 | 48               | s.w. by s.                                            | 1.101          | 1                  | +.001             |                                                        | m 11                                    |
|          |                               |         | Def. S.<br>Def. N.S.    | 37 35<br>56 28                                        | 48<br>47         | s.w. by s.                                            | 1.090          | -·037<br>-·037     | +.003             |                                                        | Table steady.                           |
| 23.      | -50 30                        | 10 25   | Def. N.                 | 35 10                                                 | 43               | S.W. $\frac{1}{2}$ S.                                 | 1.140          | 1                  | +.001             | 1.105                                                  |                                         |
| ~~.      | -00 00                        | 10 20   | Def. S.                 | 36 37                                                 | 43               | $s.w. \frac{1}{2} s.$                                 | 1.141          |                    | +.001             |                                                        | Table steady.                           |
|          |                               |         | Def. N.S.               | 55 47                                                 | 43               | $s.w. \frac{1}{2} s.$                                 | 1.105          | 1                  | +.003             | 1.072                                                  |                                         |
| 24.      | <b>-51 48</b>                 | 9 33    | Def. N.                 | 34 47                                                 | 48               | s.w. by w.                                            | 1.154          | 029                | +.001             | 1.126                                                  |                                         |
|          |                               |         | Def. S.                 | 36 10                                                 | 47               | s.w. by w.                                            |                |                    | +.001             |                                                        | Table steady.                           |
|          |                               |         | Def. N.S.               | 55 07                                                 | 47               | s.w. by w.                                            | 1.131          |                    | +.003             |                                                        |                                         |
| 25.      | -5253                         | 7 53    | Def. N.<br>Def. S.      | 34 57                                                 | 41               | s.w. by w.                                            | 1.148          |                    | +.001             | 1.120                                                  | D 0                                     |
|          |                               |         | Def. N.S.               | 35 47<br>55 17                                        | 40               | s.w. by w.                                            | 1·173<br>1·125 |                    | +.001 + .004      |                                                        | Rather unsteady.                        |
| 26.      | -53 52                        | 6 07    | Def. N.                 | 34 22                                                 | 43               | w. by s.                                              | 1.171          |                    | +.001             | 1.152                                                  |                                         |
| ""       | 00 0%                         |         | Def. S.                 | 35 42                                                 | 43               | w. by s.                                              | 1.175          | }                  | +.001             | 1.156                                                  | į                                       |
|          |                               |         | Def. N.S.               | 54 30                                                 | 42               | w. by s.                                              | 1.155          | 020                | +.003             | 1.138                                                  | Very steady.                            |
| ļ        |                               | *       | wt. 1 gr.               | 18 12                                                 | 41               | w. by s.                                              | 1.185          |                    | 001               | 1.104                                                  | very steady.                            |
| Ì        |                               |         | wt. 2 grs.              | 39 40                                                 | 40               | w. by s.                                              | 1.138          |                    | 001               | 1.117                                                  |                                         |
| 07       | FF 00                         | F 50    | wt. $2\frac{1}{2}$ grs. | 51 50                                                 | 39               | w: by s.                                              | 1.155          |                    | $ 001 \\ +.002$   | 1.134                                                  |                                         |
| 27.      | -55 08                        | 5 50    | Def. N.<br>Def. S.      | $\begin{vmatrix} 33 & 05 \\ 35 & 52 \end{vmatrix}$    | 38               | S.S.W. $\frac{1}{2}$ W.S.S.W. $\frac{1}{2}$ W.        | 1.221<br>1.201 |                    | +.002             | $\begin{vmatrix} 1.185 \\ 1.165 \end{vmatrix}$ $1.161$ | Very unsteady.                          |
|          |                               |         | Def. N.S.               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 37               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.167          | ,                  | +.005             | 1.134                                                  | very unsteady.                          |
| 30.      | $-60 \ 43$                    | 4 00    | Def. N.S.               | 51 57                                                 | 35               | s.                                                    | 1.262          |                    |                   | 1.219                                                  |                                         |
| 1        |                               |         | Def. N.S.               | 51 35                                                 | 34               | s.e. by e.                                            | 1.282          |                    |                   |                                                        | Table unsteady.                         |
| 1        |                               |         | Def. N.S.               | 52 22                                                 | 34               | N.                                                    | 1.246          |                    | +.006             | 1.248                                                  |                                         |
| 31.      | -61 05                        | 9 03    | Def. N.                 | 30 57                                                 | 42               | s.E. by s.                                            | 1.320          |                    | +.002             | 1.278                                                  |                                         |
|          |                               |         | Def. S.                 | 31 55                                                 |                  | s.E. by s.                                            | 1.339          |                    | +.002             | 1.297                                                  |                                         |
|          |                               |         | Def. N.S.               | $\begin{vmatrix} 51 & 22 \\ 16 & 02 \end{vmatrix}$    |                  | s.E. by s.                                            | 1.340          |                    | +·005<br>-·001    | $\begin{vmatrix} 1.255 \\ 1.295 \end{vmatrix}$ 1.285   | Table steady.                           |
|          |                               |         | wt. 1 gr.<br>wt. 2 grs. | 32 22                                                 | 1                | s.e. by s.                                            | 1.343          |                    | 1                 | 1.298                                                  |                                         |
|          |                               |         | wt. $2\frac{1}{2}$ grs. | 43 02                                                 | 1 .              | s.E. by s.                                            | 1.332          |                    |                   | 1.287                                                  |                                         |
| Feb. 2   | -61 54                        | 16 23   | Def. N.                 | 29 57                                                 | 40               | E.S.E.                                                | 1.368          | -032               | +.003             | 1.339                                                  |                                         |
|          | }                             |         | Def. S.                 | 30 57                                                 |                  | E.S.E.                                                | 1.384          | -032               | +.003             |                                                        | Table unsteady.                         |
|          | 0                             | 10.10   | Def. N.S.               | 50 45                                                 |                  | E.S.E.                                                | 1.325          |                    | +.006             | 1.299                                                  |                                         |
| 3.       | -61 50                        | 19 13   |                         | 30 10                                                 | 1                | E.S.E.                                                | 1.348          |                    | +.002             | 1.318                                                  |                                         |
| 1        |                               |         | Def. S.<br>Def. N.S.    | 31 20<br>50 20                                        |                  | E.S.E.                                                | 1.366 $1.346$  | -032               | +·002<br>+·006    | 1.336                                                  |                                         |
|          |                               |         | wt. 1 gr.               | 15 05                                                 | 1 -              | E.S.E.                                                | 1.420          |                    |                   |                                                        | Very steady.                            |
| 1        |                               |         | wt. 2 grs.              | 31 55                                                 |                  | E.S.E.                                                | 1.376          |                    | 1 .               | 1                                                      |                                         |
| 1        |                               |         | wt. $2\frac{1}{2}$ grs. | 42 57                                                 |                  | E.S.E.                                                | 1.336          | -032               | +.002             | 1.302                                                  |                                         |
| 4        | -62 00                        | 0 20 25 | Def. N.                 | 29 30                                                 |                  | S.S.E.                                                |                | -046               | +.003             | 1.345                                                  |                                         |
| 1        |                               |         | Def. S.                 | 30 37                                                 |                  | S.S.E.                                                | 1.401          | -046               | + 003             | 1.358 >1.353                                           | Very steady.                            |
| 6        | _ GA 0                        | 0 24 05 | Def. N.S.<br>Def. N.    | 49 27<br>28 00                                        |                  | S.S.E.                                                | 1.396          | -·046<br>-·050     |                   |                                                        |                                         |
|          | -04 2                         | 24 03   | Def. S.                 | 29 57                                                 |                  | S.S.E.<br>S.S.E.                                      | 1.435          |                    | +.003             | 1.388                                                  |                                         |
|          |                               |         | Def. N.S.               | 49 02                                                 |                  | S.S.E.                                                | 1.422          |                    |                   | 11.270                                                 |                                         |
|          |                               |         | wt. 1 gr.               | 14 17                                                 |                  | S.S.E.                                                | 1.499          | 1                  |                   |                                                        | Very steady.                            |
|          |                               | 1       | wt. 2 grs.              | 30 00                                                 | 36               | S.S.E.                                                | 1.454          | 3                  | 1                 | 1.402                                                  |                                         |
|          | 0                             | 1 20 22 | wt. $2\frac{1}{2}$ grs. | 39 40                                                 |                  | S.S.E.                                                | 1.425          |                    |                   |                                                        |                                         |
| 7        | -65 3                         | 4 28 30 |                         | 27 3                                                  |                  | S.S.E. $\frac{1}{2}$ E.                               | 1.481          |                    | +.002             |                                                        | *************************************** |
|          |                               |         | Def. S. Def. N.S.       | 28 57                                                 | 7 42<br>7 42     | S.S.E. $\frac{1}{2}$ E. S.S.E. $\frac{1}{2}$ E.       | 1.486          |                    |                   |                                                        | Very steady.                            |
| 9        | -663                          | 0 36 46 | Def. N.                 | 26 59                                                 |                  | E.                                                    | 1.519          |                    |                   |                                                        |                                         |
| 1        |                               |         | Def. S.                 | 28 3                                                  |                  | E.                                                    | 1.506          |                    |                   | 1.484 >1.482                                           | Very steady.                            |
| 1        |                               | 1       | Def. N.S.               | 48 00                                                 | 32               | E.                                                    | 1.483          |                    | +.008             | 1.465                                                  |                                         |
| 10       | $ -66 \ 4$                    | 3 38 49 |                         | 26 1                                                  |                  | s.s.w.                                                | 1.553          |                    | 1 -               |                                                        |                                         |
| 1 .      | 1                             | 1       | Def. S.                 | 28 00                                                 |                  | s.s.w.                                                | 1.538          |                    |                   |                                                        | Very steady.                            |
|          | <u> </u>                      |         | Def. N.S.               | 47 30                                                 | 34               | S.S.W.                                                | 1.516          | 090                | +.007             | 1.473                                                  |                                         |

|          |                  |         | Mathad                   | Angle of         | 00-<br>2r.        |                                                | sity.            | Corre                      | ctions.           | ()                      |                 |
|----------|------------------|---------|--------------------------|------------------|-------------------|------------------------------------------------|------------------|----------------------------|-------------------|-------------------------|-----------------|
| Date.    | Lat.             | Long.   | Method<br>employed.      | deflec-<br>tion. | Thermo-<br>meter. | Ship's head.                                   | Intensity.       | Ship's<br>attrac-<br>tion. | Tempe-<br>rature. | Corrected<br>Intensity. | Remarks.        |
| 1845.    | م د              | 000     | T) ( ) ]                 | -2 -4            | 0                 |                                                |                  | 0.0                        |                   |                         |                 |
| Feb. 11. | $-67^{\circ}$ 35 | 39 31   | Def. N.                  | 26 35            | 33                | i i                                            | 1.534            |                            |                   |                         |                 |
|          |                  |         | Def. S.                  | 27 55            | 32                | N.E.                                           | 1.544            | 016                        | , .               |                         | Very unsteady.  |
| 10       | <b></b> 66 45    | 20 00   | Def. N.S.                | 47 35            | 31                | N.E.                                           | 1.510            | -016                       |                   | 1.50%                   |                 |
| 12.      | 00 40            | 39 23   | Def. N.<br>Def. S.       | 26 12<br>28 17   | 37                | S.S.E.                                         | 1.556<br>1.522   | 049                        | +·003             |                         | Very unsteady.  |
|          |                  |         | Def. N.S.                | 28 17<br>47 12   | 37<br>37          | S.S.E.<br>S.S.E.                               | 1.537            |                            | +.007             |                         | cry unsteady.   |
| 13.      | -67 00           | 40 07   | Def. N.                  | 26 22            | 37                | E.N.E.                                         | 1.547            | 025                        |                   |                         | 2.5             |
| 01       | 0, 00            | 20 0,   | Def. S.                  | 28 10            | 36                | E.N.E.                                         | 1.529            | 025                        | +.003             |                         |                 |
|          |                  |         | Def. N.S.                | 47 42            | 35                | E.N.E.                                         | 1.504            | 025                        |                   | 1.486                   |                 |
|          |                  |         | wt. 1 gr.                | 14 00            | 32                | E.N.E.                                         | 1.529            | 025                        | -002              |                         | Table steady.   |
|          |                  |         | wt. 2 grs.               | 28 17            | 32                | E.N.E.                                         | 1.534            |                            |                   |                         |                 |
|          | ,                |         | wt. $2\frac{1}{2}$ grs.  | 37 27            | 32                | E.N.E.                                         | 1.496            | -025                       | 002               | 1.469                   | l               |
| 16.      | -64 52           | 38 37   | Def. N.                  | 27 10            | 37                | S. 3/4 E.                                      | 1.504            |                            |                   |                         | Very unsteady.  |
|          | _                |         | Def. S.                  | 28 02            | 37                | S. $\frac{3}{4}$ E.                            | 1.536            |                            | +.003             | 1.480                   | very unsteady.  |
| 17.      | -6452            | 40 12   | Def. N.                  | 27 34            | 38                | N. by w.                                       | 1.488            | 019                        |                   |                         |                 |
|          |                  | 1       | Def. S.                  | 29 12            | 38                | n. by w.                                       | 1.473            |                            |                   |                         | Very unsteady.  |
| 10       | C4 ac            | 1       | Def. N.S.                | 48 10            | 38                | N. by w.                                       | 1.473            |                            |                   |                         |                 |
| 18.      | -64 22           | 40 49   |                          | 26 52            | 38                | s. by E.                                       | 1.519            |                            |                   |                         | Very unsteady.  |
| 10       | -63 49           | 10 00   | Def. S.<br>Def. N.       | 28 42            | 37                | s. by E.                                       | 1.500  $ 1.431 $ |                            | +.003             |                         |                 |
| 19.      | -03 49           | 42 00   | Def. N.                  | 28 35<br>29 47   | 39<br>37          | E. by s.                                       | 1.443            |                            | +·003             |                         | Very unsteady.  |
|          |                  |         | Def. N.S.                | 48 15            | 36                | E. by s.                                       | 1.468            |                            | +.006             |                         | very unsteady.  |
| - 20.    | -63 22           | 45 35   |                          | 29 02            | 44                | s.e. by $E \cdot \frac{1}{2}E$ .               |                  |                            |                   | 1.425 3                 |                 |
| ~00      | -05 22           | 10 00   | Def. N.S.                | 48 00            | 45                | s.E. by E. $\frac{1}{2}$ E.                    |                  |                            |                   | 1 - 1.437               | Very unsteady.  |
| 21.      | -63 36           | 46 41   | Def. N.                  | 27 00            | 42                | S.S.E.                                         | 1.512            |                            |                   | 1                       |                 |
|          |                  | 1       | Def. S.                  | 28 37            | 41                | S.S.E.                                         | 1.505            | 1                          |                   |                         | Table unsteady. |
|          |                  |         | Def. N.S.                | 47 52            | 41                | S.S.E.                                         | 1.491            | 049                        |                   |                         |                 |
| 24.      | $-62 \ 36$       | 51 40   |                          | 47 54            | 36                | E.                                             | 1.490            | 031                        | +.007             | 1.466                   | į               |
|          |                  | 1       | Def. N.                  | 26 45            | 36                | E.                                             | 1.526            |                            |                   |                         | Very unsteady.  |
|          |                  |         | Def. S.                  | 29 27            | 34                | E.                                             | 1.460            | 031                        | +.004             | 1.433                   |                 |
| 25       | -61 25           | 53 38   |                          | 27 05            | 40                | E.S.E.                                         | 1.507            |                            | +.003             | 1.471                   |                 |
|          |                  |         | Def. S.                  | 28 32            | 39                | E.S.E.                                         | 1.510            |                            | +.003             |                         | Unsteady.       |
| ~ 0      | C                | -       | Def. N.S.                | 47 30            | 38                | E.S.E.                                         | 1.516            |                            | +.006             |                         | }               |
| 26.      | -61 17           | 7 57 28 |                          | 25 30            | 41                | S.E. 1 E.                                      | 1.595            |                            | +.002             |                         |                 |
|          | 1                | 1       | Def. S. Def. N.S.        | 27 30            | 42                | S.E. ½ E.                                      | 1.566<br>1.567   |                            | +·002<br>+·005    |                         | Table unsteady. |
| 27       | 61 0             | 64 03   |                          | 46 45<br>25 17   | 37                | S.E. $\frac{1}{2}$ E.                          | 1.607            |                            | +.003             |                         |                 |
| 21       | -01 0            | 04 03   | Def. S.                  | 26 30            | 36                | S.E. $\frac{1}{2}$ S.<br>S.E. $\frac{1}{2}$ S. | 1.622            | -050                       | +.004             | 1.576                   | Table steady.   |
|          |                  |         | Def. N.S.                | 46 47            | 35                | S.E. $\frac{1}{2}$ S.                          | 1.564            | 050                        | +.008             | 1.522                   | , and a sound y |
| 28       | $-61 \ 30$       | 6 70 46 |                          | 24 22            | 40                | S.S.E.                                         |                  | -052                       | +.003             | 1:611 5                 |                 |
|          | 0                | 1.      | Def. S.                  | 25 57            | 39                | S.S.E.                                         | 1.654            | -052                       | +.003             | 1.605 1.604             | Table unsteady. |
|          | ĺ                |         | Def. N.S.                | 45 42            | 38                | S.S.E.                                         | 1.640            | 052                        | +.007             | 1.595                   |                 |
| Mar. 1   | -62 10           | 72 25   | Def. N.                  | 23 10            |                   | S.S.E.                                         | 1.731            | -052                       | +.002             | 1.681                   |                 |
|          |                  |         | Def. S.                  | 25 37            | 44                | S.S.E.                                         | 1.674            | -052                       | +.002             | 1.624                   | 1               |
|          |                  | ļ       | Def. N.S.                | 44 50            | 44                | S.S.E.                                         | 1.705            |                            | +.005             |                         | Table steady.   |
|          |                  |         | wt. 1 gr.                | 11 37            | 44                | S.S.E.                                         | 1.837            |                            |                   | 1.784*                  | Table steady.   |
|          |                  | 1       | wt. 2 grs.               | 25 00            | 43                | S.S.E.                                         | 1.719            |                            |                   | 1.666                   |                 |
| _        |                  | 1 -0 01 | wt. $2\frac{1}{2}$ grs.  | 32 12            | 43                | S.S.E.                                         | 1.602            | 1                          |                   | 1.655                   |                 |
| 2        | -02 4            | 0 76 09 |                          | 23 50            | 42                | s.                                             | 1.693            |                            |                   | 1.639                   |                 |
|          |                  |         | Def. S.                  | 25 10            | 42                | s.                                             | 1.699            |                            | +.002             | 11.660                  | 1               |
|          |                  | 1       | Def. N.S.                | 44 45            | 41                | S.                                             | 1.710 $ 1.838$   |                            | +.006             | 1.781*                  | Very steady.    |
|          | 1                | 1       | wt. 1 gr. wt. 2 grs.     | 11 35<br>24 47   | 1                 | S.                                             | 1.733            |                            |                   | 1.676                   | -               |
|          |                  | 1       | wt. $2 \frac{1}{2}$ grs. | 32 00            |                   | S.<br>S.                                       | 1.718            |                            |                   | 1.661                   |                 |
|          | 1                |         | 1 " " ~ 2 818.           | 52 00            | 1 33              | 6.                                             | - •              | 1 000                      | ""                | ر ۱۰۰۰                  | 1               |

<sup>\*</sup> Not included in the mean; angle of deflection become too small.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |               | 1      |             |           |      |                         |       | C      |               |              |                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|--------|-------------|-----------|------|-------------------------|-------|--------|---------------|--------------|----------------------|
| 1845.   Mar. 364 20   79 38   Def. N.   22 38   33   s. by w. \frac{1}{2} w.   1.764   -0.55   +0.04   1.712   1.706   Table unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        |             | A mode of | ٠. ٥ | :                       | ty.   | Correc | ctions.       |              |                      |
| 1845.   Mar. 364 20   79 38   Def. N.   22 38   33   s. by w. \frac{1}{2} w.   1.764   -0.55   +0.04   1.712   1.706   Table unsteady.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D = 4 = |               | . 1    | Method      |           | E ii | Shin's head             | ısı   | Chi.   | Tomana        | Corrected    | Remarks              |
| 1845   Mar. 363 20   79 36   Def. N.   22 38   33   s. by w. \frac{1}{2} w.   1.764   -0.55   +0.04   1.712   1.706   Table unsteady   1.706   Def. N.   24 17   32   s. by w. \frac{1}{2} w.   1.764   -0.55   +0.04   1.703   1.706   Table unsteady   1.706   Def. N.   24 20   40   s. k.   1.706   -0.55   +0.04   1.703   1.706   Table unsteady   1.706   Def. N.   24 20   40   s. k.   1.706   -0.55   +0.04   1.703   1.706   Table unsteady   1.706   Def. N.   24 20   40   s. k.   1.706   -0.55   +0.04   1.703   1.706   Table unsteady   1.706   Def. N.   24 20   40   s. k.   1.706   -0.55   +0.04   1.703   1.706   Table unsteady   1.706   Def. N.   24 20   40   s. k.   1.706   -0.55   +0.04   1.703   1.706   Table unsteady   1.706   Def. N.   24 20   40   s. k.   1.706   -0.55   +0.04   1.703   1.706   Table unsteady   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   40   s. k.   1.706   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   Def. N.   24 20   De                                                                                                        | Date.   | Lat.          | Long.  | employed.   |           | ner  | Ship's neau.            | ţe.   |        |               | Intensity.   | itemarks.            |
| Bis45.   Mar. 3.   -64 20   79   38   Def. N.   22   38   38   s. by w. \frac{1}{2} w.   1.763   -0.055   +0.04   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.712   1.706   Table unsteady   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706   1.706                                                                                                      |         |               |        | - •         | tion.     | E    |                         | l a   |        | rature.       |              |                      |
| Mar. 3. −64 20 79 38 Def. N. 22 38   38   s. by w. ½ w.   -763 −055 +004   -712   Def. S. 24 17 32   s. by w. ½ w.   -763 −055 +004   -703   -706   Def. S. 32 22 39   Def. S. 34 19   Def. S. 34 29   Def. S. 32 39   Def. S. 32 39   Def. S. 32 39   Def. S. 34 30   Def. S. 32 35   Def. N. 34 40   Def. N. 34 40   Def. S. 32 35   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S                                                                                                    |         |               |        |             |           |      |                         |       | non.   |               |              |                      |
| Mar. 3. −64 20 79 38 Def. N. 22 38   38   s. by w. ½ w.   -763 −055 +004   -712   Def. S. 24 17 32   s. by w. ½ w.   -763 −055 +004   -703   -706   Def. S. 32 22 39   Def. S. 34 19   Def. S. 34 29   Def. S. 32 39   Def. S. 32 39   Def. S. 32 39   Def. S. 34 30   Def. S. 32 35   Def. N. 34 40   Def. N. 34 40   Def. S. 32 35   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S. 32 55   Def. S                                                                                                    | 1945    |               |        |             |           |      |                         |       |        | 4             |              |                      |
| Def. S.   24   17   32   s. by w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2} \) w. \( \frac{1}{2}                                                                                                      | Mon 2   | 62 00         | 70 20  | Dof M       | 00 20     | လို  | a by w 1 w              | 1.769 | .055   | 1.004         | 1.710        |                      |
| Def. N.S.   44   12   32   32   32   32   33   34   32   32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mai. 9. | -04 20        | 19 30  |             |           |      |                         |       |        |               |              | Table unsteads       |
| 561 38 8 44 40   Def. N.   23 02   39   S.E.   1.740   -0.61   1.903   1.704   Def. N.   24 20 40   Def. N.   24 20 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   25 40   Def. N.   26 40   Def. N.   26 40   Def. N.   26 40   Def. N.   27 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28 40   Def. N.   28                                                                                                        |         |               |        |             |           |      | s. by w. \frac{1}{2} w. | 1.754 | - 055  | + 004         |              | Table unsteady,      |
| Def. S.   24   20   40   S.E.   1.752   -0.051   -0.031   7.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |               |        |             |           | 32   |                         |       |        | +.009         | 1.704        | 1                    |
| Def. S.   24   20   40   S.E.   1.752   -0.51   +0.03   1.704   1.704   Def. N.   29   40   36   N.E.   2   N.   1.761   -0.95   +0.04   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.749   1.7                                                                                                     | 5.      | -61 38        | 84 40  | Def. N.     | 23 02     | 39   | S.E.                    | 1.740 | 051    | +.003         | 1.692        |                      |
| Def. N.S.   44 40   41   S.E.   1716   -051   +007   1672   Def. N.S.   22 40   36   N.E. \frac{1}{2} \text{ N.   1760   -052   +004   1759   1729   Table unsteady   Def. N.S.   43 50   35   N.E. \frac{1}{2} \text{ N.   1760   -025   +004   1759   1729   Table unsteady   Def. N.S.   43 50   35   N.E. \frac{1}{2} \text{ N.   1765   -025   +004   1759   1779   1779   1761   Def. N.S.   43 30   42   S. by E.   1831   -055   +003   1779   1779   1770   Def. N.S.   43 30   42   S. by E.   1831   -055   +003   1779   1770   Def. N.S.   43 30   42   S. by E.   1830   -055   +003   1779   1770   Def. N.S.   43 30   42   S. by E.   1830   -055   +003   1779   1770   Def. N.S.   43 30   42   S. by E.   1800   -055   +003   1770   1770   Def. N.S.   43 30   42   S. by E.   1830   -055   +003   1770   1770   Def. N.S.   43 30   42   S. by E.   1830   -055   +003   1770   Def. N.S.   43 30   42   S. by E.   1800   -055   +003   1770   Def. N.S.   43 30   42   S. by E.   1800   -055   +004   1751   Def. N.S.   43 30   42   S. by E.   1800   -045   +004   1751   Def. N.S.   43 30   42   S. by E.   1800   -045   +004   1751   Def. N.S.   43 40   38   E.   1870   -045   +004   1758   Def. N.S.   43 40   38   E.   1870   -045   +004   1758   Def. N.S.   43 40   38   E.   1870   -045   +004   1758   Def. N.S.   43 40   38   E.   1870   -045   +004   1760   Def. N.S.   43 45   36   E. \frac{1}{2} S.   1867   -055   +004   1760   Def. N.S.   43 45   36   E. \frac{1}{2} S.   1867   -055   +004   1760   Def. N.S.   43 45   36   E. \frac{1}{2} S.   1867   -055   +004   1760   Def. N.S.   43 45   36   E. \frac{1}{2} S.   1867   -055   +004   1760   Def. N.S.   43 45   36   E. \frac{1}{2} S.   1867   -055   +004   1760   Def. N.S.   43 45   36   E. \frac{1}{2} S.   1867   -055   +004   1760   Def. N.S.   43 45   36   E. \frac{1}{2} S.   1867   -055   +004   1760   Def. N.S.   43 45   36   E. \frac{1}{2} S.   1867   -055   +004   1760   Def. N.S.   43 45   36   E. \frac{1}{2} S.   1860   Def. N.S.   43 45   36   E. \frac{1}{2} S.   181                                                                                                     |         |               |        | Def. S.     | 24 20     |      | S.E.                    | 1.752 | 051    | +.003         | 1.704 >1.689 | Table unsteady.      |
| Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care                                                                                                        |         |               |        |             |           |      |                         |       | 051    | +.007         | 1.672        |                      |
| Def. S.   23 55   36   N.E. \( \frac{1}{2} \) N.   1.780   -0.025   +-0.04   1.759   -0.795   -0.024   1.759   -0.025   -0.004   1.759   -0.025   -0.004   1.759   -0.025   -0.004   1.759   -0.025   -0.004   1.759   -0.025   -0.004   1.750   -0.025   -0.004   1.751   -0.025   -0.025   -0.004   1.751   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.025   -0.02                                                                                                     | 6.      | _60 42        | 88 19  |             |           |      |                         |       |        | +.004         | 1.740 5      |                      |
| Def. N.S.   44   50   35   So.   N.E.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.765   N.   1.                                                                                                     | 9.      | 00 12         | 00 12  |             |           |      |                         |       |        |               |              | Table unsteady       |
| 761 20 91 09 Def. N. 22 02 40 s. by E. 1-800055 +-003 1.748 Def. N. Def. N. S. 43 30 42 s. by E. 1-831055 +-003 1.779 1.761 Def. N. 22 00 40 s. by E. 1-835055 +-007 1.757 Def. N. S. 43 30 42 s. by E. 1-805055 +-007 1.757 Def. N. S. 32 32 40 s. by S. 1-800054 +-004 1.762 Def. N. S. 43 37 39 s. b. by S. 1-800054 +-004 1.762 Def. N. S. 43 37 39 s. b. by S. 1-800054 +-004 1.755 Def. N. S. 43 32 37 s. d. 1-796042 +-004 1.755 Def. N. S. 43 32 37 s. d. 1-796042 +-004 1.755 Def. N. S. 43 32 37 s. d. 1-804042 +-004 1.755 Def. N. 2 95 34 E. 1-801045002 1.843* wt. 2 grs. 29 05 35 E. 1-801045002 1.843* wt. 2 grs. 29 05 34 E. 1-870045002 1.843* dw. 2 grs. 29 05 34 E. 1-870045002 1.843* dw. 2 grs. 29 05 34 E. 1-870045002 1.843* dw. 2 grs. 29 05 34 E. 1-870045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045002 1.754* dw. 2 grs. 23 50 35 E. 1-801045003 1.753* dw. 2 grs. 23 42 35 G. 1-810047004 1.759 Def. N. 22 57 37 E. 5 s. 1-810047 +-004 1.759 Def. N. 22 32 42 35 E. § N. 1-810042003 1.763* dw. 2 grs. 23 42 35 G. E. § N. 1-810042003 1.765* dw. 2 grs. 23 42 35 G. E. § N. 1-810042003 1.765* dw. 2 grs. 23 42 35 G. E. § N. 1-810042003 1.765* dw. 2 grs. 23 42 35 G. E. § N. 1-810042003 1.765* dw. 2 grs. 23 42 35 G. E. § N. 1-810042003 1.765* dw. 2 grs. 23 42 35 G. E. § N. 1-810042003 1.765* dw. 2 grs. 23 42 35 G. E. § N. 1-810042003 1.765* dw. 2 grs. 23 42 35 G. E. § N. 1-810042003 1.765* dw. 2 grs. 23 42 35 G. E. § N. 1-810042003 1.765* dw. 2 grs. 23 42 35 G. E. § N.                                                                                                                                                                                                                                                                                                               |         | *             |        |             |           |      |                         |       |        | 7.000         |              | Table unsecauy.      |
| Def. N.S.   23 05   41   s. by E.   1-831   -055   +003   1-779   1-757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,       | 0. 00         |        |             |           |      |                         |       |        | + 000         | 1.088        |                      |
| Def. N.S.   43 30   42   S. b. by E.   1-805   -055   +-007   1-757   1-751   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756   1-756                                                                                                      | 7.      | -61 20        | 91 09  |             |           |      |                         |       |        |               |              |                      |
| Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo                                                                                                     | -       |               |        | Def. S.     | 23 05     | 41   | s. by E.                | 1.831 | -055   | +.003         | 1.779 >1.761 |                      |
| Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo                                                                                                     |         |               |        | Def. N.S.   | 43 30     |      | s. by E.                | 1.805 | 055    | +.007         | 1.757        | 1 .                  |
| Second   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue                                                                                                        | •       | -61 26        | 91 20  |             |           |      |                         | 1.801 | 054    | +.004         | 1.751        |                      |
| 861 14 92 03 Def. N. 22 05 39 Def. N. 22 05 39 Def. N. 22 05 39 Def. N. 23 37 38 E. 1795042 +-004 1758 Def. N. 24 33 32 37 E. 1796042 +-004 1758 Def. N. 25 35 35 Def. N. 22 17 41 E. 1780045002 1754 Def. N. 22 17 41 Def. N. 23 55 37 Def. N. 23 55 37 Def. N. 24 35 58 37 Def. N. 24 35 58 37 Def. N. 26 57 36 Def. N. 20 57 36 Se. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{2}\$S. \frac{1}{ |         |               | J. 7.  |             |           |      |                         |       | 054    | +.004         | 1.762 >1.756 | Table unsteady.      |
| 861 14 92 03 Def. N. 22 05 36 Def. N. 23 37 38 Def. N. S. 23 37 38 Def. N. S. 43 32 37 wt. 1 gr. 11 17 36 E. 1:890042 +-004 1:757 wt. 2 grs. 23 50 35 E. 1:890045002 1:823* Def. N. S. 43 32 37 E. 1:870045002 1:823* Def. N. S. 21 7 41 E. 1:870045002 1:823* Def. N. S. 23 55 37 Def. N. S. 23 55 37 Def. N. S. 24 05 36 E. 1:870045002 1:823* Def. N. S. 24 17 41 E. 1:783045 +-003 1:741 Def. S. 23 57 36 S.E. \frac{1}{2} \text{ N. S. 1045} \text{ -004 1:739} \text{ -1.45 Table unsteady.} \text{ 1:70045} \text{ -004 1:739} \text{ -045 +-004 1:739} \text{ -1.45 Table unsteady.} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -1.45004 1:739} \text{ -045 +-004 1:739} \text{ -045 +-004 1:739} \text{ -1.45004 1:739} \text{ -045 +-004 1:739} \text{ -1.45004 1:739} \text{ -045 +-004 1:739} \text{ -1.45004 1:739} \text{ -045 +-004 1:739} \text{ -1.45004 1:739} \text{ -045 +-004 1:739} \text{ -1.45004 1:739} \text{ -045 +-004 1:739} \text{ -1.45004 1:739} \text{ -045 +-004 1:739} \text{ -1.45004 1:739} \text{ -045 +-004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739} \text{ -1.45004 1:739}                                                                                                                                                                                                                                         |         |               |        |             |           |      |                         | 1     | .054   | 1.008         | 1.754        |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0       | 61 14         | 00.00  | Del. N.S.   |           |      | 1                       |       |        |               |              |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٥.      | -01 14        | 92 03  | Der. N.     |           |      |                         |       | 042    | + 004         | 1.737        |                      |
| Wt. 1 gr.   11 17 36   E.   1.890   -0.45   -0.02   1.843*   1.702   1.003 according to the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the co                                                                                                     |         |               |        |             |           |      | 1                       |       |        |               |              |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |               |        | Def. N.S.   | 43 32     | 37   | E.                      | 1.804 | -042   | +.008         | 1.770 \1.769 | Table steady.        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |               |        | wt. 1 gr.   | 11 17     | 36   | E.                      | 1.890 |        |               | 1.843*       | , and a second       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |               |        | wt. 2 grs.  | 23 50     |      | Е.                      | 1.801 | 045    | 002           | 1.754*       |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |               |        | wt. 21 grs. |           |      | 1                       | 1     |        |               |              |                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g.      | 60_35         | 00 05  | Def N       |           |      | 1                       | 1     |        |               |              |                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , ,,    | -00 <b>00</b> | 32 20  |             |           |      | 3                       |       | -045   | -004          | 1.720 1.745  | Table unsteady       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        |             |           |      | 1                       |       |        |               |              | Table unsteady.      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10      | 00.00         | 0      |             |           |      |                         |       |        |               | 1 0 -        |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.     | -60 03        | 95 36  |             |           |      |                         | 1     |        |               |              | Very unsteady.       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        | Def. S.     | 23 07     | 36   | S.E. $\frac{1}{2}$ S.   | 1.831 | 055    | +.004         | 1.780        |                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.     | -5952         | 99 30  | Def. N.     | 21 05     | 38   | E. 1/2 S.               | 1.810 | 047    | +.004         | 1.767 )      |                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5       |               |        |             |           |      |                         |       |        |               |              | Very unsteady.       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        |             |           |      |                         | 1     |        |               |              |                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 50 50         | 00 30  |             |           |      |                         |       | .040   | .004          | 1.790        |                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | - 53 53       | 99 09  |             |           | 1    |                         |       |        |               |              | İ                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ä       | -             |        |             |           |      |                         | 1 -   |        |               |              |                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        |             |           |      |                         |       |        |               |              | Table unsteady       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        | wt. 1 gr.   | 11 20     | 35   | E. 1 N.                 | 1.884 | -042   |               | 1.839*       | 5 P.M.               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        | wt. 2 grs.  | 23 42     | 35   | E. $\frac{1}{2}$ N.     | 1.810 | -042   | 003           | 1.763        |                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        |             |           |      |                         |       |        |               |              |                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.     | -57 35        | 99 28  |             |           |      |                         | 1 ^   |        |               |              | Very unsteady 6 P.M. |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |               |        |             |           |      | E. by S.                | 1     |        |               |              |                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       | 55 00         |        |             |           |      |                         | }     |        |               |              | Very unsteady        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        |             |           |      |                         | 1 . 1 |        |               |              | , i or ansocaty.     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               | 100 00 |             |           |      |                         |       | -·047  | 1+.00/        | 1.700        |                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.     | -5552         | 103 06 | 1           |           |      |                         | 1.848 | -·042  | +.004         | 1.810        | <u>.</u>             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E C     |               |        |             | 22 35     | 39   | E. by N.                | 1.864 | -042   | <b> +.004</b> |              | Very unsteady.       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        | Def. N.S.   | 43 00     |      | E. by N.                | 1.845 | 042    | +.008         | 1.811        |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.     | -5448         | 106 04 |             | 1         |      |                         |       | 036    | +.004         | 1.800 5      | 1                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        |             |           |      | 1                       | 1     | 036    | +.004         | 1.812 1.801  | Very unsteady.       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |               | 1      |             |           | •    | i .                     |       |        |               |              |                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7     | EA 15         | 100 0  |             | 3         | 1 .  | 1                       | 1 .   |        |               |              |                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/.     | -54 17        | 100 09 |             |           | 1    | ī                       | 1     |        |               | 1- 000 1     |                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |               |        |             |           |      | 1                       |       |        |               |              | Very unsteady, ship  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |               |        |             |           |      | E.                      |       |        |               | 1.785        | pitching heavily.    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |               |        | Def. S.     | 23 10     | 40   | E.                      | 1.830 |        |               |              |                      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.     | -53 00        | 110 08 | Def. N.     |           | 40   | N.N.E. 1 E.             |       |        |               |              |                      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T. C.   | 1             |        | Def. S.     |           |      |                         |       |        |               |              | Very unsteady, a     |
| 1951 20 111 23 Def. S.   23 20   41   N.N.E. \(\frac{1}{2}\) E.   1.816  034   +.004   1.786   1.787   Very Insteady                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |               |        |             |           |      |                         |       | 024    | 1.008         |              | heavy swell.         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10      | E1 00         | 111 00 |             |           |      |                         |       |        |               |              | 1                    |
| I TO CATO LAB GOLLAND TO STAND CALL MADE TO 17/07/Very unsteady,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.     | - 31 20       | 111 23 |             |           | 1 '  |                         |       |        |               |              | Very unsteady, a     |
| Def. N.S. 43 22 41 N.N.E. $\frac{1}{2}$ E. 1.818 $-0.034$ $+0.04$ 1.788 $\frac{1}{2}$ 1.707 heavy swell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1       | ,             |        | Det. N.S.   | 43 22     | 41   | N.N.E. $\frac{1}{2}$ E. | 1.818 | -034   | +.004         | 1.488        | heavy swell.         |

<sup>\*</sup> Not included in the mean.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.798             | Remarks.  Table unsteady, swell from west. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.798             | Table unsteady,                            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | Table unsteady, swell from west.           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Table unsteady,<br>swell from west.        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | Table unsteady,<br>swell from west.        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Table unsteady,<br>swell from west.        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Table unsteady,<br>swell from west.        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.825             | swen nom west.                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.825             | 1 1                                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.825             |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.825             |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 - 020           | Steady, light swell from west.             |
| Def. N.S. 43 20 48 E.N.E. 1.821035 +.005 1.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Į                 | Hom west.                                  |
| 2543 20 16 52 Def. N.   23 27*   51   N. $\frac{1}{2}$ E.   $1 \cdot 712$   $- \cdot 025$   $+ \cdot 002$   $1 \cdot 689 \uparrow$   Def. S.   23 35   51   N. $\frac{1}{2}$ E.   $1 \cdot 799$   $- \cdot 025$   $+ \cdot 002$   $1 \cdot 776$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                 |                                            |
| wt. 1 gr. $\begin{vmatrix} 12 & 07 \\ 12 & 07 \end{vmatrix}$ $\begin{vmatrix} 50 \\ 50 \end{vmatrix}$ N. $\frac{1}{2}$ E. $\begin{vmatrix} 1783 \\ -025 \end{vmatrix}$ $\begin{vmatrix} -003 \\ -001 \end{vmatrix}$ $\begin{vmatrix} 1783 \\ 1\cdot784 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >1.760            | Very unsteady, heavy<br>swell from west.   |
| wt. 2 grs. $\begin{vmatrix} 23 & 32 \\ 23 & 32 \end{vmatrix}$ 50 N. $\frac{1}{2}$ E. $\begin{vmatrix} 1.823 \\025 \end{vmatrix}$ 001 $\begin{vmatrix} 1.797 \\ 1.797 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Sweet I on west                            |
| wt. $2\frac{1}{2}$ grs.  31 17   50   N. $\frac{1}{2}$ E.  1.752  025  001  1.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ]                 |                                            |
| 2641 18 116 09  Def. N.  22 30   54   N. by w.  1·771   -·020   +·001  1·752 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                 |                                            |
| Def. S.   23 57   54   N. by w. $ 1.776 020  + .001  1.757$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>&gt;1·74</b> 6 | Unsteady, light swell.                     |
| Def. N.S.   44   15   54   N. by w.   1.747  020   +.002   1.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                 | Swc.ii.                                    |
| 2738 52 116 15 Def. N.   22 37   58   N. by w.   1.765  012   .000   1.753   Def. S.   23 52   58   N. by w.   1.770  012   .000   1.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.720             | Table steady.                              |
| Def. N.S.   23 52   58   N. by w.   1.770  012   .000   1.758   0.00   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   1.704   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >1.738            | Table steady.                              |
| 2837 03 116 57 Def. N. 23 25 59 N. by E. 1.718 -012 000 1.706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                 |                                            |
| Def. S. 24 45 60 N. by E. 1.725012 .000 1.713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                            |
| Def. N.S. 44 30 61 N. by E. 1.728012 .000 1.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00              |                                            |
| wt. 1 gr.   12 45   62   N. by E.   1.678  012   .000   1.666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | >1.099            | Table very steady,<br>nearly a calm.       |
| wt. 2 grs. $ 25 \ 40  \ 62 $ N. by E. $ 1.678  - 012  \ 000  1.666 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                            |
| wt. $2\frac{1}{2}$ grs. $32$ 07   63   N. by E. $ 1.714 012  .000   1.702 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                 |                                            |
| 2936 12 116 50 Def. N. 23 40 66 N.N.E. 1.701 -012 -001 1.688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.000             | (II-1-1 / I                                |
| Def. S.   25 37   67   N.N.E.   1.673  012  001   1.660   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670   1.670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >1.673            | Table unsteady.                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                 |                                            |
| Def. S. $\begin{vmatrix} 24 & 45 \end{vmatrix} & 66 \begin{vmatrix} \text{N.E.} & \frac{1}{2} & \text{E.} \end{vmatrix} \begin{vmatrix} 1 \cdot 725 \end{vmatrix} = \cdot 012 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \begin{vmatrix} -\cdot 001 \end{vmatrix} \cdot 712 \end{vmatrix} \cdot 71$ | 1.702             | Table unsteady.                            |
| Def. N.S. $ 44 52 66$ N.E. $\frac{1}{2}$ E. $ 1.701 012 002 1.687$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( - <b>,</b>      | ,                                          |
| April 735 02 117 56 Def. N. 23 50 68 7 1.692001 1.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i ·               |                                            |
| Def. S.   25 18   68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                            |
| Def. N.S. 45 06   69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                            |
| 11. King George's Def. N. 23 42 82 On shore $1.700$ $002$ $1.698$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>≻¹·6</b> 88    | The observations<br>were made on the       |
| Sound, West   Def. S.   25 12   82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | same spot where<br>Captains Flin-          |
| Australia.   Def. N.S.   44 59   83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | DERS and FITZ-                             |
| wt. 1 gr.   12 37   84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | ROY had pre-<br>viously observed.          |
| wt. 2 grs. 25 30 84 1 1.689 + .001 1.690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                            |
| wt. $2\frac{1}{2}$ grs. $33 \ 01 \ 85 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                 |                                            |
| 19. At Anchor in Def. N.S. $ 44 09 $ 54 s.s.w. $ 1.754 056  +.001  1.699$ 1.699 54 s.w. $ 1.740 051  +.001  1.690$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . :               |                                            |
| the Sound Def. N.S. 44 20 54 s.w. 1.740051 +.001 1.690 Swinging the Def. N.S. 44 30 54 w.s.w. 1.728041 +.001 1.688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ľ                                          |
| ship for local Def. N.S. 44 44 54 w. 1.710032 +.001 1.679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                            |
| attraction. Def. N.S. 44 50 54 w.n.w. 1.702022 +.001 1.681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                            |
| Def. N.S. $ 45\ 04\  54\  $ N.W. $ 1\cdot687\  -\cdot012\  +\cdot001\  1\cdot676\  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                            |
| Def. N.S. $ 45\ 01 $ 54   N.N.W. $ 1.691 012  + .001  1.680 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                            |
| Def. N.S.  44 59   57   N.  1.692  012   +.001  1.681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | The table was very<br>steady during        |
| Def. N.S. 45 03   58   N.N.E.   1.688  012   .000   1.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >1·683            | these observations.                        |

<sup>\*</sup> The degree should probably be 22°; not included.

<sup>†</sup> Not included in the mean.

|                          |                                         |         |                                        |                              |             |                                                                                           |                | Corre          | ctions.        |                                                |                                    |
|--------------------------|-----------------------------------------|---------|----------------------------------------|------------------------------|-------------|-------------------------------------------------------------------------------------------|----------------|----------------|----------------|------------------------------------------------|------------------------------------|
| _                        |                                         | _       | Method                                 | Angle of<br>deflec-<br>tion. | no-<br>er.  |                                                                                           | Intensity.     |                |                | Corrected                                      |                                    |
| Date.                    | Lat.                                    | Long.   | employed.                              | deflec-                      | heri<br>net | Ship's head.                                                                              | ıten           | Ship's attrac- | Tempe-         | Intensity.                                     | Remarks.                           |
| 1 .                      |                                         |         |                                        | aon.                         | T           |                                                                                           | H              | tion.          | rature.        |                                                |                                    |
| 7045                     | ļ                                       | <b></b> | ************************************** |                              |             |                                                                                           |                |                |                |                                                |                                    |
| 1845.<br><b>A</b> pr. 19 | . Swingin                               | ng the  | Def. N.S.                              | 45° 01                       | 5 <u>9</u>  | N.E.                                                                                      | 1.691          | 012            | -000           | 1.679 >1.683                                   | Inton-it- b- D-C                   |
| 11p1.13                  | ship for                                | r local | Def. N.S.                              | 44 49                        | 60          | E.N.E.                                                                                    | 1.702          | 022            | .000           | 1.680                                          | Intensity by Def.<br>N.S. on shore |
| 1                        | attrac                                  |         | Def. N.S.                              | 44 47                        | 60          | E.                                                                                        | 1.705          | 032            | .000           | 1.673                                          | 1.685.                             |
|                          | 1                                       |         | Def. N.S.                              | 44 33                        | 63          | E.S.E.                                                                                    | 1.723          | 041            | 001            | 1.681                                          |                                    |
|                          |                                         |         | Def. N.S.                              | 44 20                        | 63          | S.E.                                                                                      | 1.740          | 051            | 001            | 1.688                                          |                                    |
| l                        | 1                                       |         | Def. N.S.                              | 44 14                        | 63          | S.S.E.                                                                                    | 1.748          | 056            | 001            | 1.691                                          |                                    |
|                          |                                         | ]       | Def. N.S.                              | 44 11                        | 63          | s.                                                                                        | 1.751          | <b></b> 061    | 001            | 1.689                                          |                                    |
| 23                       | -35 36                                  | 114 44  | Def. N.                                | 23 57                        | 64          | N.W.                                                                                      | 1.686          | -012           | •000           | 1.6747                                         |                                    |
|                          |                                         |         | Def. S.                                | 24 47                        | 64          | N.W.                                                                                      | 1.722          | 012            | •000           | 1.710 >1.688                                   | Table unsteady.                    |
|                          |                                         | 1       | Def. N.S.                              | 45 00                        | 64          |                                                                                           | 1.692          | 012            | 001            | 1.679                                          |                                    |
| 24                       | <b>-34</b> 16                           | 113 01  | Def. N.                                | 24 40                        | 67          | n.w. by n.                                                                                |                | 012            | 001            | 1.630                                          |                                    |
| ł                        |                                         |         | Def. S.                                | 25 37                        | 69          | n.w. by n.                                                                                |                | 012            | 001            | 1.661 >1.641                                   | Table unsteady.                    |
| 25                       | 00.00                                   |         | Def. N.S.                              | 45 37                        | 70          | n.w. by n.                                                                                |                | -012           | 002            | 1.633                                          |                                    |
| 25                       | -32 32                                  | 111 36  | Def. N.                                | 25 02                        | 67          | N.w. by N.                                                                                |                | 008            | 001            | 1.614                                          |                                    |
|                          |                                         |         | Def. S.<br>Def. N.S.                   | 26 17<br>46 05               | 69          | n.w. by n.                                                                                | 1.634          | -·008          | -·001          | 1.625 >1.613                                   | Table unsteady.                    |
| 27                       | 90 90                                   | 106 55  | Def. N.                                | 25 07                        | 70<br>72    | w.n.w.                                                                                    | 1.612          | 016            | 002            | 1.601                                          |                                    |
| ~1                       | -29 20                                  | 100 55  | Def. S.                                | 27 32                        | 72          |                                                                                           | 1.566          | <b>016</b>     |                |                                                | Table steady.                      |
| ŀ                        |                                         |         | Def. N.S.                              | 47 15                        | 72          |                                                                                           | 1.531          | 016            | 004            | 1.511                                          | Table steady.                      |
| 28                       | _27 47                                  | 106 36  |                                        | 27 17                        |             | N. by $w \cdot \frac{1}{2} w$ .                                                           |                | .000           | 001            | 1.4967                                         | ·                                  |
| _~~                      | 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |         | Def. S.                                | 29 02                        |             | N. by $w.\frac{1}{2}w$ .                                                                  |                | .000           |                | 1.481 >1.490                                   | Very unsteady,                     |
|                          | 1                                       | 1       | Def. N.S.                              | 47 47                        | 69          | N. by $w \cdot \frac{1}{2} w$ .                                                           |                | •000           | 003            | 1.494                                          | heavy swell.                       |
| 29                       | -2600                                   | 105 11  | Def. N.                                | 27 30                        | 72          | N.W.                                                                                      | 1.486          | 005            | <b></b> 001    | 1.4807                                         |                                    |
| 1                        |                                         |         | Def. S.                                | 29 10                        | 74          | N.W.                                                                                      | 1.474          | 005            | 001            | 1.468 >1.470                                   | Very unsteady,                     |
|                          |                                         |         | Def. N.S.                              | 48 12                        | 75          | N.W.                                                                                      | 1.471          | -005           | <b></b> • 004  | 1.462                                          | heavy swell.                       |
| May 1                    | -24 00                                  | 99 23   | Def. N.                                | 29 07                        | 69          | w.                                                                                        | 1.396          | 021            | <b></b> 001    | 1.374)                                         |                                    |
|                          |                                         |         | Def. S.                                | 31 00                        | 69          | ţ.                                                                                        | 1.381          | 021            | 001            | 1.359 >1.367                                   | Very unsteady,                     |
|                          |                                         |         | Def. N.S.                              | 49 30                        | 70          | w.                                                                                        | 1.393          | 021            | 003            | 1.369                                          | much motion.                       |
| 2                        | -24 01                                  | 97 30   | Def. N.                                | 29 02                        | 70          | $W \cdot \frac{1}{2} N \cdot$                                                             | 1.410          | 017            | 001            | 1.392                                          |                                    |
|                          |                                         |         | Def. S.<br>Def. N.S.                   | 30 50                        | 71          | $W_{\bullet} \stackrel{1}{\stackrel{1}{2}} N_{\bullet}$                                   | 1.390          | -·017<br>-·017 | -·001<br>-·003 | 1.372 >1.379                                   | Table steady, little motion.       |
| 3                        | _24 00                                  | 96 06   |                                        | 49 32<br>29 40               | 71<br>76    | $W. \frac{1}{2} N.$<br>$W. \frac{1}{2} N.$                                                | 1·392<br>1·381 | 017            | 001            | $\begin{pmatrix} 1.372 \\ 1.363 \end{pmatrix}$ | motion.                            |
| ľ                        | -24 00                                  | 90 00   | Def. S.                                | 29 40<br>31 02               | 76          | $\begin{array}{c} W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{2} N \cdot \end{array}$ | 1.380          | -017           | 001            | 1.362                                          |                                    |
|                          |                                         | 1       | Def. N.S.                              | 50 15                        | 77          | $\begin{array}{c} W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{2} N \cdot \end{array}$ | 1.350          | 017            | 004            | 1.300                                          |                                    |
|                          |                                         |         | wt. 1 gr.                              | 15 02                        | 77          | $W \cdot \frac{1}{2} N$ .                                                                 | 1.423          |                | +.001          | $\binom{1329}{1\cdot407}$ > 1·365              | Table steady, no                   |
|                          | 1                                       |         | wt. 2 grs.                             | 31 47                        | 76          | $W.\frac{1}{2}N.$                                                                         | 1.380          | 1 -            |                | 1.364                                          | swell.                             |
| 1                        |                                         |         | wt. $2\frac{1}{2}$ grs.                | 41 10                        | 76          | $W_{\bullet} \stackrel{1}{\stackrel{1}{2}} N_{\bullet}$                                   | 1.383          | , -            | +.001          | 1.367                                          |                                    |
| 6                        | -22 47                                  | 91 00   | Def. N.                                | 30 57                        | 76          | N.W.                                                                                      | 1.320          |                |                | 1.327                                          |                                    |
|                          | 1                                       |         | Def. S.                                | 32 25                        | 79          | N.W.                                                                                      | 1.315          | +.008          | 002            | 1.321 >1.324                                   | Very unsteady,                     |
| 1                        |                                         |         | Def. N.S.                              | 60 50                        | 80          | N.W.                                                                                      | 1.321          | +.008          | 005            | 1.324                                          | heavy westerly<br>swell.           |
| 7                        | -21 50                                  | 89 44   |                                        | 30 45                        | 72          | t                                                                                         | 1.329          |                | 001            |                                                |                                    |
| I                        |                                         |         | Def. S.                                | 32 15                        | 74          | N.W.                                                                                      | 1.322          |                | 001            |                                                |                                    |
|                          |                                         |         | Def. N.S.                              | 51 10                        | 75          | N.W.                                                                                      | 1.308          |                |                |                                                |                                    |
| 8                        | $-20 \ 46$                              | 87 59   |                                        | 31 45                        | 75          | N.w. by w.                                                                                |                |                |                | 1.282                                          |                                    |
| -                        | 1                                       |         | Def. S.                                | 32 20                        | 76          | N.w. by w.                                                                                |                | +.004          |                | 1.321                                          |                                    |
| l                        |                                         | 1       | Def. N.S.                              | 51 25                        | 77          | N.w. by w.                                                                                |                | +.004          | 004            | 1 - 110004                                     | W. Burdon, Esq.,                   |
|                          | Ì                                       |         | Def. N.                                | 32 00                        | 78          | N.w. by w.                                                                                |                |                | -:002          | 1.2/0                                          | R.N., observer.                    |
| I                        |                                         | 1       | Def. S. Def. N.S.                      | 32 37<br>51 27               | 77          | N.w. by w.                                                                                |                |                | -·001<br>-·004 | 1.309                                          |                                    |
|                          | 20 38                                   | 85 26   |                                        | 51 27<br>31 42               | 77          | W. $\frac{1}{2}$ N.                                                                       | 1.286          |                |                | 1·291 J<br>1·271 \                             | 1                                  |
| 1                        |                                         | 1 00 20 | Def. S.                                | 33 02                        | 77          | $\begin{array}{c} W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{2} N \cdot \end{array}$ | 1.286          |                |                | 1.271 >1.265                                   | Very unsteady.                     |
|                          | 1                                       | 1       | Def. N.S.                              | 51 50                        |             | $W \cdot \frac{1}{2} N \cdot$                                                             | 1.270          |                |                |                                                | heavy swell.                       |
|                          | <u> </u>                                | 1       | 1                                      | 1                            | <u> </u>    | 1 2 2                                                                                     |                |                |                | 1                                              | <u> </u>                           |

|              |        |       |                         |          |                   |                                                                                                            | T          | <del></del>   |         |                                       | T                                   |
|--------------|--------|-------|-------------------------|----------|-------------------|------------------------------------------------------------------------------------------------------------|------------|---------------|---------|---------------------------------------|-------------------------------------|
| 1            |        | 1     |                         |          |                   |                                                                                                            | <u>;</u>   | Corre         | ctions. |                                       |                                     |
| 1            |        |       | Method                  | Angle of | Thermo-<br>meter. |                                                                                                            | Intensity. | I             | ı       | Corrected                             |                                     |
| Date.        | Lat.   | Long. | employed.               | deflec-  | ete               | Ship's head.                                                                                               | en         | Ship's        | Tempe-  | Intensity.                            | Remarks.                            |
| <b>i</b> . 1 |        | -     | employeu.               | tion.    | E a               | _                                                                                                          | l t        | attrac-       | rature. | intensity.                            |                                     |
|              |        |       |                         |          |                   |                                                                                                            |            | tion.         | 100000  |                                       |                                     |
|              |        |       |                         |          |                   |                                                                                                            |            |               |         |                                       |                                     |
| 1845.        | 0 4    | 0 /   |                         | 0 /      | ٥                 | _                                                                                                          | ĺ          |               |         |                                       |                                     |
| May 10.      | -20 26 | 82 22 | Def. N.                 | 31 37    | 77̈́              | $W_{\bullet} \frac{1}{2} N_{\bullet}$                                                                      | 1.288      | -014          | 001     | 1.273                                 | 1                                   |
| 1            |        | 1     | Def. S.                 | 33 15    | 78                | $W_{\bullet} \frac{1}{2} N_{\bullet}$                                                                      | 1.277      | -014          | 001     | 1.262                                 |                                     |
|              |        |       | Def. N.S.               | 52 10    | 80                | $W_{\bullet} \frac{1}{2} N_{\bullet}$                                                                      | 1.260      | 014           | 005     | 1.241                                 | 77 J.                               |
| 1            |        | 1     | Def. N.                 | 31 35    | 75                | $W \cdot \frac{1}{4} N \cdot$                                                                              | 1.289      | 016           | 001     | $ \frac{1.272}{1.272}\rangle^{1.257}$ | Very unsteady.                      |
| 1            |        |       | Def. S.                 | 33 27    | 75                | $W. \frac{1}{4} N.$                                                                                        | 1.269      | <b>-</b> ⋅016 | 001     | 1.252                                 | W. Burdon, Esq.,                    |
|              |        |       | Def. N.S.               | 52 07    | 74                | $W_{\bullet} \stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{\stackrel{1}{1$ | 1.260      | 016           | 003     | 1.241                                 | R.N., observer.                     |
| 11.          | -20 36 | 79 22 | Def. N.                 | 31 52    | 77                | $W. \frac{1}{4} N.$                                                                                        | 1.274      | 016           | 001     | 1.257                                 |                                     |
| 1            | -20 50 | 19 22 | Def. S.                 | 33 37    |                   |                                                                                                            | 1 -        | _·016         | -·001   | 1 1                                   | W D Fl.                             |
| 1            |        |       |                         |          | 77                | $W_{\bullet} \frac{1}{4} N_{\bullet}$                                                                      | 1.262      |               | }       | 1.245                                 | W. Burdon, Esq.,<br>R.N., observer. |
| 1.           |        |       | Def. N.S.               | 52 07    | 78                | $W_{\bullet} \frac{1}{4} N_{\bullet}$                                                                      | 1.260      | 016           | 005     | 1.239                                 | Table unsteady.                     |
|              |        |       | Def. N.                 | 31 52    | 78                | W. $\frac{1}{4}$ N.                                                                                        | 1.274      | 016           | 002     | 1.250                                 |                                     |
|              |        |       | Def. S.                 | 33 40    | 77                | $W_{\bullet} \frac{1}{4} N_{\bullet}$                                                                      | 1.260      | 016           | 002     | 1.242                                 |                                     |
|              |        |       | Def. N.S.               | 52 00    | 78                | $W_{\bullet} \frac{1}{4} N_{\bullet}$                                                                      | 1.262      | 016           | 005     |                                       |                                     |
| 12.          | -2044  | 78 31 | Def. N.S.               | 52 17    | 84                | w.                                                                                                         | 1.249      | 018           | 006     | 1.225                                 |                                     |
| 4            |        |       | Def. N.S.               | 52 20    | 86                | w.n.w.                                                                                                     | 1.248      | 004           | 006     | 1.238                                 |                                     |
|              |        |       | Def. N.S.               | 52 32    | 88                | N.W.                                                                                                       | 1.239      | +.008         | 006     | 1.241                                 |                                     |
| 1            |        |       | Def. N.S.               | 52 50    | 91                | N.N.W.                                                                                                     | 1.226      | +.006         | 008     | 1.224                                 |                                     |
|              |        |       | Def. N.S.               | 51 20    | 80                | s.                                                                                                         | 1.296      | 046           | 005     |                                       | Table very unsteady,                |
|              |        |       | Def. N.S.               | 51 22    | 82                | l                                                                                                          | 1.294      | 043           | 005     | 1.246                                 | calm.                               |
| 1            |        |       | Def. N.S.               | 51 30    |                   | s.s.w.                                                                                                     |            | _·037         | 005     | 1.245                                 |                                     |
|              |        |       |                         |          | 82                | s.w.                                                                                                       | 1.287      |               | i       | 1 - 1                                 |                                     |
| l            |        |       | Def. N.S.               | 51 55    | 83                | w.s.w.                                                                                                     | 1.267      | -026          | 005     | 1.236                                 |                                     |
|              |        |       | Def. N.S.               | 52 25    | 82                | N.N.E.                                                                                                     | 1.242      | +.006         | 005     | 1.243                                 |                                     |
| 13.          | -20 39 | 77 43 |                         | 52 42    | 77                | w.                                                                                                         | 1.227      | -018          | -004    | 1.205                                 |                                     |
| 1            |        |       | Def. N.S.               | 52 15    | 77                | N.W.                                                                                                       | 1.250      | +.008         | 004     | 1.254                                 |                                     |
| l .          |        |       | Def. N.S.               | 52 32    | 77                | Ň.                                                                                                         | 1.239      | +.008         | 004     | 1.243                                 | Very unsteady ;                     |
| 1.           |        |       | Def. N.S.               | 52 22    | 77                | N.E.                                                                                                       | 1.247      | +.008         | 004     | 1.251                                 | calm.                               |
| 1            |        |       | Def. N.S.               | 52 07    | 78                | Е.                                                                                                         | 1.260      | 018           | 005     | 1.237                                 |                                     |
| Í            |        |       | Def. N.S.               | 51 45    | 77                | S.E.                                                                                                       | 1.275      | 037           | 004     | 1.234                                 |                                     |
| 14.          | -20 29 | 76 22 | Def. N.                 | 32 27    | 76                | $W_{\bullet} \frac{1}{2} N_{\bullet}$                                                                      | 1.249      | 1 0           | 001     | 1.232                                 |                                     |
| 1            |        |       | Def. S.                 | 33 52    | 76                | $W \cdot \frac{1}{2} N$                                                                                    | 1.252      |               | 001     | 1.235                                 |                                     |
| l            |        |       | Def. N.S.               | 52 50    | 76                | $W. \frac{1}{2} N.$                                                                                        | 1.226      | 1             | 004     | 1.206                                 |                                     |
| i            |        |       | Def. N.                 | 33 20    | 76                | $W \cdot \frac{1}{2} N$ .                                                                                  | 1.212      | 1 -           | 001     | 1.195                                 | Very unsteady.                      |
| 1            |        |       | Def. S.                 | 33 37    | 76                | $W. \frac{1}{2} N.$                                                                                        | 1.262      | 1 _           | 001     | 1.245                                 | 1                                   |
| 1            |        |       | Def. N.S.               | 52 30    |                   |                                                                                                            | 1.238      |               |         | 1.218                                 | W. Burdon, Esq.,<br>R.N., observer. |
| 16           | 00 00  | 70 46 | ;                       | 1        | 75                | $W \cdot \frac{1}{2} N \cdot$                                                                              |            |               |         |                                       | Ti.Iv., Observer.                   |
| 16.          | -20 28 | 70 46 |                         | 1 .      | 78                | $W \cdot \frac{1}{4} N \cdot$                                                                              | 1.236      | 1             | 3       | 1.217                                 |                                     |
| I            |        |       | Def. S.                 | 34 05    | 78                | $W \cdot \frac{1}{4} N \cdot$                                                                              | 1.200      | 1             | 002     | 1.181 >1.199                          | Table steady.                       |
|              | 0- 00  | Co    | Def. N.S.               | 52 55    | 78                | W. $\frac{1}{4}$ N.                                                                                        | 1.222      | 1             | 005     | 1.200                                 |                                     |
| 18.          | -21 06 | 68 12 |                         | 32 57    | 80                | w.s.w.                                                                                                     | 1.227      |               | 002     | 1.199                                 |                                     |
| 1            |        | 1 .   | Def. S.                 | 34 37    | 80                | w.s.w.                                                                                                     | 1.221      | 1             | 002     | 1.193 >1.191                          | Very unsteady.                      |
|              |        |       | Def. N.S.               | 53 10    | 83                | w.s.w.                                                                                                     | 1.212      |               |         | 1.181                                 |                                     |
| 19.          | -21 11 | 67 54 | Def. N.                 | 33 12    | 75                | n.w. by n.                                                                                                 |            | 001           |         | 1.215                                 |                                     |
| 1            | 1      |       | Def. S.                 | 34 45    | 76                | N.w. by N.                                                                                                 | 1.215      | <b></b> 001   | 001     | 1.213                                 |                                     |
| 1            |        |       | Def. N.S.               | 53 10    | 75                | N.W. by N.                                                                                                 | 1.212      | 001           | 004     | 1.207                                 | ,                                   |
| 1            |        |       | wt. 1 gr.               | 18 00    |                   | N.W. by N.                                                                                                 |            | 001           | +.001   | 1.197                                 |                                     |
| 1            |        |       | wt. 2 grs.              | 37 52    |                   | n.w. by n.                                                                                                 | 1.183      |               | +.001   | 1.183 >1.203                          | Table steady, nearly                |
| 1            |        |       | wt. $2\frac{1}{2}$ grs. | 49 32    |                   | N.w. by N.                                                                                                 | 1.196      |               |         | 1.196                                 | a calm.                             |
| 1            | 1      |       | Def. N.                 | 33 37    |                   | n.w. by n.                                                                                                 | 1.202      |               | _·001   | 1.200                                 |                                     |
| 1            | 1      |       | Def. S.                 | 34 45    | 76                |                                                                                                            | 1.215      | 1             | 001     | 1.213                                 |                                     |
| 1            |        |       | Def. N.S.               |          |                   | N.W. by N.                                                                                                 |            |               |         |                                       | W. Burdon, Esq.,                    |
|              | 01.10  | C# 00 |                         | 53 20    | 75                | n.w. by n.                                                                                                 | 1.204      |               |         | ()                                    | R.N., observer.                     |
| 20.          | -21 12 | 67 29 |                         | 33 25    | 76                | w. by N.                                                                                                   | 1.200      |               |         | 1.186                                 |                                     |
|              |        |       | Def. S.                 | 34 45    |                   | w. by N.                                                                                                   | 1.215      |               |         | 1.201                                 | 1                                   |
| 1            | ,      |       | Def. N.S.               | 53 05    | 1                 | w. by n.                                                                                                   | 1.214      | 1             |         | 1.196                                 | Table steady.                       |
| 1            |        |       | Def. N.                 | 33 32    | 1                 | w. by N.                                                                                                   | 1.205      |               |         | 1.190                                 | - word steady!                      |
| 1            |        |       | Def. S.                 | 34 02    |                   | w. by N.                                                                                                   | 1.243      |               |         |                                       | W. Burdon, Esq.,                    |
| 1            |        |       | Def. N.S.               | 52 55    | 81                | w. by N.                                                                                                   | 1.223      | -013          | -005    | 1.205                                 | R.N., observer.                     |
| *            | I      | 1     | 1                       | 1        | 1                 | 1                                                                                                          | 1          |               | 1       | 1 -                                   | 1                                   |

## Observations of the Magnetic Force. (Continued.)

|         |                 |             |                         |                  |                   |                                |                | Corre          | ctions.       |              |                            |
|---------|-----------------|-------------|-------------------------|------------------|-------------------|--------------------------------|----------------|----------------|---------------|--------------|----------------------------|
|         | _               | 7           | Method                  | Angle of         | Thermo-<br>meter. |                                | Intensity.     |                |               | Corrected    |                            |
| Date.   | Lat.            | Long.       | employed.               | deflec-          | net               | Ship's head.                   | ten            | Ship's         | Tempe-        | Intensity.   | Remarks.                   |
|         |                 |             |                         | tion.            | Ε.                |                                | 1 1            | attrac-        | rature.       |              |                            |
|         |                 | <u> </u>    | <del></del>             |                  |                   | <u> </u>                       |                |                |               |              |                            |
| 1845.   | -21°02          | ငင္ငံ ဝင္ခံ | D.C.N                   | 33° 40′          | <b>7</b> 6        |                                | 1.001          | .012           | .001          | 1.107        |                            |
| May 21. | -21 UZ          | 00 02       | Def. N.<br>Def. S.      | 33 40<br>34 40   | 76<br>76          | w. by n. w. by n.              | 1·201<br>1·216 | _·013          | 001           |              |                            |
|         |                 |             |                         | 53 15            | 76                | w. by N.                       | 1.201          | -013           |               | 1.184        |                            |
|         | ٠               |             |                         | 18 22            | 76                | w. by n.                       | 1.175          |                | +.001         |              | Table steady.              |
| '       |                 |             |                         | 37 37            | 76                | w. by N.                       | 1.191          |                | +.001         |              |                            |
|         |                 |             |                         | 50 20            | 76                | w. by N.                       | 1.182          |                | +.001         |              |                            |
| 23.     | $-20 \ 31$      | 59 42       |                         | 33 47            | 77                | w. by n.                       | 1.194          | 013            |               |              |                            |
|         |                 |             |                         | 35 30            | 77                | w. by n.                       | 1.185          | 1              | 001           |              | Very unsteady.             |
| / 05    | 20.05           |             |                         | 53 55            | 78                | w. by n.                       | 1.179          | 013            | 004           |              |                            |
| 27.     |                 |             |                         | 34 58            | 81                |                                | 1.147          |                | 002           | 1 _ 1        |                            |
|         | Port I<br>Mauri |             |                         | 35 52<br>55 32*  | 81<br>81          | Observed                       | 1·170<br>1·115 | ••••           | 002           |              | Lieut. Moore,              |
|         | Maur            | ittus.      |                         | 19 01            | 81                | on shore.                      | 1.135          |                | +.001         |              | R.N., observer.            |
|         |                 |             |                         | 38 12            | 81                | -                              | 1.175          |                | +.001         |              |                            |
| 30.     | -21 44          | 53 34       |                         | 33 27            | 80                | w.s.w. ½ w.                    |                | 024            |               |              | 1                          |
|         |                 |             |                         | 34 40            | 82                | $w.s.w. \frac{1}{2} w.$        |                |                |               |              | Very unsteady.             |
|         |                 |             |                         | 53 37            | 82                | w.s.w. $\frac{1}{2}$ w.        |                | -024           | <b></b> ∙005  | 1.163        |                            |
| June 2. | -26 25          | 49 12       |                         | 34 27            | 79                | n.w. by w.                     |                |                | 002           |              |                            |
|         | .               |             |                         | 35 47            | 79                | n.w. by w.                     |                |                | 002           |              | Very unsteady.             |
|         | 05.10           | 46 00       |                         | 54 22            | 79                | N.w. by w.                     |                | 005            | 004           |              |                            |
| 4.      | -27 12          | 40 09       |                         | 34 45            | 68                |                                | 1.156          | 024            | 001           |              | Timetee du                 |
|         |                 | 1           |                         | 36 20<br>54 30   | 68<br>68          |                                | 1·152<br>1·155 | -·024<br>-·024 | 001           |              | Unsteady.                  |
| 5.      | -28 24          | 43 00       | I                       | 34 55            | 74                | w. by s.<br>w.                 | 1.150          | -·020          | _·001         |              |                            |
|         | ~ ~ ~ ~         | 10 00       |                         | 36 30            | 74                | w.                             | 1.145          | 020            | 001           |              | Very unsteady.             |
|         | ĺ               | 1           |                         | 54 45            | 76                |                                |                | 020            | <b></b> ·003  |              |                            |
| 6.      | -28 44          | 42 01       |                         | 35 47            | 73                | w.n.w.                         | 1.116          | 009            | <b>_</b> .001 |              |                            |
|         |                 | . [         | Def. S.                 | 36 55            | 76                | w.n.w.                         | 1.129          | 009            | <b>001</b>    |              | Very unsteady.             |
|         |                 |             |                         | 54 55            | 78                | w.n.w.                         | 1.139          | 009            | 003           |              |                            |
| 7-      | -28 35          | 40 24       |                         | 34 47            | 73                |                                | 1.156          | 017            | <b>-</b> .001 |              |                            |
|         | 1               | . 1         | Def. S.                 | 36 40            | 74                |                                | 1.138          | 017            |               |              | Very unsteady.             |
| 8.      | <b>—28</b> 57   | 37 59       |                         | 54 47  <br>35 42 | 74<br>72          | W. ½ N.<br>W.                  | 1·145<br>1·120 | -·017<br>-·020 | 003<br>001    |              |                            |
|         | -20 07          | 0, 02       |                         | 37 47            | 76                |                                | 1.095          | -·020          | 001           |              |                            |
|         |                 |             |                         | 55 10            | 78                | 1.                             | 1.128          | 020            | 004           | 1.104        |                            |
|         | l               | I           |                         | 19 45            | 80                |                                | 1.100          | 020            | +.002         | 1.082 >1.094 | Table steady, nearly calm. |
|         | ł               | 1           | wt. 2 grs.              | 40 30            | 80                | l i                            | 1.118          | -020           | +.002         | 1.100        | .*                         |
|         |                 |             | wt. $2\frac{1}{2}$ grs. | 53 57            | 82                |                                | 1.125          | <b>020</b>     | +.002         | 1.107        |                            |
| 12.     | -30 33          | 33 19       |                         | 36 17            | 66                |                                | 1.098          |                | 001           |              |                            |
|         | .               |             |                         | 37 40            | 66                |                                |                | 009            |               |              | Table unsteady.            |
| 12      | -31 06          | 21 94       |                         | 56 15            | 65                |                                |                | 009            |               |              |                            |
| 10.     | -91 00          | 01 04       |                         | 36 27  <br>37 52 | _ 1               | w. by s. $\frac{1}{2}$ s.      |                | -·026          | 001<br>001    |              | Table steady.              |
| l . I   |                 | -           |                         | 56 32            | 1                 | w. by s. ½ s.<br>w. by s. ½ s. |                | 026            | 001           |              | - ante areatif.            |
| 14.     | -33 01          | 29 36       |                         | 36 57            | 71                |                                | 1.075          | 020            | 001           |              |                            |
| - "     |                 |             |                         | 38 35            | 72                |                                | 1.067          | 020            | 001           |              | Table unsteady.            |
|         |                 |             |                         | 56 57            | 73                |                                | 1.062          | 020            | <b></b> ·003  | 1.039        |                            |
| 15.     | -34 31          | 27 04       | Def. N.                 | 36 40            | 74                |                                | 1.085          | 014            | 001           |              |                            |
|         |                 |             |                         | 38 42            | 76                | · ·                            | 1.063          | 014            | <b></b> ·001  | 1.048        |                            |
|         | . [             |             |                         | 56 47            | 78                |                                | 1.067          |                | 004           |              | Table very unsteady,       |
|         |                 |             |                         | 19 47            | 80                | = 1                            | 1.092          | 014            | +.001         | 1013 ) )     | long heavy swell.          |
|         |                 | . 1         |                         | 45 02            | 80                | ~ 1                            | 1.027          | 014            | +.001         | 1.014        |                            |
|         |                 |             | wt. 2½ grs.             | 00 01            | 82                | W. $\frac{1}{2}$ N.            | 1.063          | 014            | +.001         | 1.090 )      | _                          |
|         |                 |             |                         |                  |                   |                                |                |                |               |              |                            |

<sup>\*</sup> Probably the degree is erroneous; the result is not included in the mean.

<sup>†</sup> Not included.

## Observations of the Magnetic Force. (Continued.)

|                                         |                               |         |                         |                              | <u>.</u>          | ·            | y.             | Correc             | ctions.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|-----------------------------------------|-------------------------------|---------|-------------------------|------------------------------|-------------------|--------------|----------------|--------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Date.                                   | Lat.                          | Long.   | Method employed.        | Angle of<br>deflec-<br>tion. | Thermo-<br>meter. | Ship's head. | Intensity.     | Ship's attraction. | Tempe-<br>rature.                        | Corrected<br>Intensity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks.                   |
| 1845.                                   |                               |         |                         | -                            |                   |              |                |                    |                                          | PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH |                            |
| June 16.                                | $-3\mathring{5} \ 4\acute{6}$ | 23 35   | Def. N.                 | 38 0Ó                        | <b>7</b> Š        | w. by n.     | 1.042          | 012                | 001                                      | 1.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. S.                 | 39 17                        | 77                | w. by n.     | 1.043          | 012                | 001                                      | 1.030 >1.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table steady.              |
|                                         |                               |         | Def. N.S.               | 57 02                        | 78                | w. by n.     | 1.057          | 012                | 004                                      | 1.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 17.                                     | -35 36                        | 21 40   | Def. N.                 | 38 45                        | 67                | W.N.W.       | 1.020          | <b></b> 007        | <b></b> ·001                             | 1.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 1                                       |                               |         | Def. S.                 | 39 47                        | 67                | W.N.W.       | 1.026          | 007                | 001                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table steady.              |
|                                         |                               |         | Def. N.S.               | 57 12                        | 67                | W.N.W.       | 1.053          | <b></b> 007        | 001                                      | 1.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 18.                                     | -35 07                        | 20 46   | Def. N.                 | 38 22                        | 64                |              | 1.031          | <b>019</b>         | .000                                     | 1.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. S.                 | 39 50                        | 63                |              | 1.024          | 019                | .000                                     | 1.005 >1.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table steady, nearly calm. |
| 600                                     | 0.4 - 0                       |         | Def. N.S.               | 57 30                        | 63                |              | 1.042          | 019                | 001                                      | 1.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 23.                                     | -34 12                        |         | Def. N.S.               | 57 01                        | 62                | S.           | 1.060          | 040                | .000                                     | 1.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         | At anc                        |         | Def. N.S.               | 57 08                        | 66                |              | 1.056          | 037                | 001                                      | 1.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| ĺ                                       | Simon'                        | s Bay.  | Def. N.S.               | 57 29                        | 68                | s.w.         | 1.042          | -·031<br>-·022     | 001                                      | 1.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.               | 57 52                        | 68                | w.s.w.       | 1.030          |                    | 002                                      | 1.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.               | 58 07                        | 70                | w.           | 1·021<br>1·019 | -·014<br>-·003     | 002                                      | 1.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         | _                             |         | Def. N.S.               | 58 11                        | 70                |              | 1.020          | -·002              | 002                                      | 1.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.               | 58 07                        | 82                | N.W.         | 1.020          | -000               | $\begin{bmatrix}004 \\004 \end{bmatrix}$ | 1.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.               | 58 16<br>58 09               | 82<br>83          | N.N.W.       | 1.020          | +.002              | 004                                      | $\begin{vmatrix} 1.014 \\ 1.017 \end{vmatrix} > 1.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Swinging ship for          |
|                                         |                               |         | Def. N.S.               | 58 10                        | 84                | N.           | 1.020          | + 002              | 005                                      | 1.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | local attraction.          |
|                                         |                               |         | Def. N.S.               | 58 09                        | 85                | N.N.E.       | 1.020          | 002                | 005                                      | 1.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.<br>Def. N.S.  | 58 07                        | 85                | N.E.         | 1.021          | 002                | 005                                      | 1.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.               | 57 58                        | 86                | E.N.E.       | 1.026          | 014                | 005                                      | 1.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.               | 57 53                        | 87                | E.S.E.       | 1.030          | 022                | 005                                      | 1.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         | ,                             |         | Def. N.S.               | 57 30                        | 88                | S.E.         | 1.042          | 031                | 006                                      | 1.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.               | 57 10                        | 90                | S.S.E.       | 1.055          |                    | 006                                      | 1.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.               | 58 08                        | 68                | On shore.    | 1.021          |                    | 001                                      | 1.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In the Dock Yard.          |
| 30.                                     | -33 56                        | 18 90   | Def. N.                 | 39 31                        | 59                | Sin sinoite. | 0.992          |                    |                                          | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         | 35 50                         | 10 29   | Def. S.                 | 40 39                        | 61                |              | 1.000          |                    |                                          | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | Def. N.S.               | 58 16                        | 62                |              | 1.016          |                    |                                          | 1.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | wt. 1 gr.               | 21 38                        | 63                |              | 1.004          |                    |                                          | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| <b>3</b>                                |                               |         | wt. 2 grs.              | 46 31                        | 64                | 11           | 1.001          |                    |                                          | 1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | wt. $2\frac{1}{2}$ grs. | 65 30                        | 65                | Observed     | 0.999          |                    |                                          | 0.999 >1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| July 2                                  | Magnet                        | tic Ob- | Def. N.                 | 39 22                        | 59                | on shore.    | 0.997          |                    |                                          | 0.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| and and and and and and and and and and | servator                      |         | Def. S.                 | 40 39                        | 60                |              | 1.000          |                    |                                          | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                          |
| 1                                       | of Good                       |         | Def. N.S.               | 58 21                        | 61                |              | 1.013          |                    |                                          | 1.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | wt. 1 gr.               | 22 06                        | 63                |              | 0.986          |                    |                                          | 0.986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               |         | wt. 2 grs.              | 46 21                        | 64.               |              | 1.004          |                    |                                          | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                         |                               | 1       | wt. 2½ grs.             | 65 30                        | 64                | IJ           | 0.999          |                    |                                          | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                          |
|                                         |                               |         | 1 ~ 0                   | <u> </u>                     |                   |              |                |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          |

General Table of the Declinations observed on board Her Majesty's hired Bark "Pagoda."

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No of                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No. of                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Long.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No. of observations.                                                                                                                                                                                                                                              | Declination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Long.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | observations.                                                    | Declination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1845. Jan. 10. 11. 12. 13. 15. 16. 17. 19. 20. 22. 23. 24. 25. 26. 27. 29. 31. Feb. 1. 12. 13. 14. 16. 17. 18. 19. 20. 21. 22. 25. 26. 27. 28. March 1. 22. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 16. 17. 18. 19. 20. 21. 22. 25. 26. 27. 28. March 1. 20. 21. 22. 25. 26. 27. 28. March 1. 12. 13. 14. 15. 16. 17. 18. 20. 21. 22. 25. 26. 27. 28. March 1. 22. 25. 26. 27. 28. 28. March 1. 29. 20. 21. 22. 25. 26. 27. 28. 28. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20 | -34 42<br>-35 26<br>-35 17<br>-35 10<br>-38 43<br>-39 18<br>-40 24<br>-46 24<br>-46 24<br>-46 27<br>-51 47<br>-52 56<br>-53 52<br>-55 52<br>-55 52<br>-61 12<br>-62 05<br>-61 54<br>-62 05<br>-63 18<br>-64 52<br>-63 67 54<br>-67 06<br>-67 52<br>-63 52<br>-63 52<br>-63 43<br>-61 18<br>-61 23<br>-61 16<br>-60 46<br>-60 93<br>-58 30<br>-58 30<br>-58 30<br>-58 30<br>-58 30<br>-58 45<br>-59 05<br>-48 59<br>-48 59<br>-48 59<br>-48 40<br>-41 02<br>-88 40 | 17 36<br>15 08<br>14 00<br>13 25<br>14 28<br>14 28<br>14 35<br>13 19<br>13 34<br>10 51<br>10 51 | 4<br>4<br>3<br>3<br>1<br>11<br>11<br>4<br>3<br>4<br>8<br>17<br>4<br>10<br>4<br>8<br>27<br>9<br>6<br>9<br>9<br>11<br>3<br>5<br>7<br>3<br>5<br>2<br>6<br>6<br>6<br>4<br>7<br>1<br>1<br>1<br>1<br>7<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7 | +29 51<br>+28 39<br>+27 15<br>+25 40<br>+25 99<br>+27 40<br>+26 34<br>+25 54<br>+26 34<br>+21 33 46<br>+21 33 47<br>+23 55<br>+23 55<br>+23 55<br>+23 57<br>+23 11<br>+26 16<br>+28 56<br>+31 37 43<br>+37 43<br>+37 43<br>+37 43<br>+37 43<br>+37 43<br>+37 34<br>+36 59<br>+37 34<br>+36 59<br>+37 34<br>+37 34<br>+36 59<br>+37 34<br>+37 37<br>+45 51<br>+46 01<br>+45 51<br>+47 47<br>+49 02<br>+48 01<br>+47 47<br>+49 02<br>+49 02<br>+49 02<br>+49 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+42 15<br>+43 15<br>+44 10<br>+45 17<br>+45 51<br>+47 47<br>+49 02<br>+48 01<br>+47 47<br>+49 02<br>+49 02<br>+49 02<br>+49 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+41 03<br>+43 03<br>+43 03<br>+44 03<br>+44 03<br>+45 03<br>+46 01<br>+47 47<br>+47 47<br>+49 02<br>+48 01<br>+47 63<br>+48 01<br>+46 01<br>+46 01<br>+46 01<br>+47 63<br>+47 04<br>+47 05<br>+47 04<br>+47 05<br>+47 04<br>+47 04<br>+47 05<br>+47 | 1845. March 28. 29. 30. 31. April 11. 14. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. May 1. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 30. June 1. 24. 27. 29. 30. 31. June 1. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 27. 29. 30. 30. 31. June 1. 22. 23. 24. 27. 29. 30. 31. June 1. 22. 23. 24. 27. 29. 30. 31. June 1. 22. 23. 24. 27. 29. 30. 31. June 1. 22. 23. 24. 27. 29. 30. 31. June 1. 22. 23. 24. 27. 29. 30. 31. June 1. 22. 23. 24. 27. 29. 30. 31. June 2. 24. 27. 29. 30. 31. June 1. 22. 23. 24. 27. 29. 30. 31. June 2. 24. 27. 29. 30. 30. 31. June 2. 24. 27. 29. 30. 30. 31. June 2. 24. 27. 29. 30. 30. 31. June 2. 24. 27. 29. 30. 30. 31. June 2. 24. 27. 29. 30. 30. 31. June 2. 24. 27. 29. 30. 30. 31. June 2. 24. 27. 29. 30. 30. 31. June 2. 24. 27. 29. 30. 30. 31. June 2. 24. 27. 29. 30. 30. 31. June 2. 24. 25. 66. 77. 88. 99. 91. 91. 92. 92. 92. 92. 92. 92. 92. 92. 92. 92 | -36 51 -36 10 -35 12 -35 28 -35 02 -35 10 -35 33 -34 18 -35 32 -35 33 -34 18 -32 42 -30 25 -29 20 -27 41 -24 07 -23 58 -24 07 -23 58 -24 17 -24 05 -22 46 -21 53 -20 36 -20 37 -20 25 -20 36 -20 34 -20 39 -20 28 -20 27 -20 34 -20 39 -20 28 -21 11 -21 12 -21 01 -20 39 -20 39 -20 30 -21 54 -20 39 -20 30 -21 54 -21 54 -23 44 -25 47 -26 30 -27 12 -28 19 -28 49 -28 36 -28 19 -28 49 -28 36 -36 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -37 30 -3 | 116 36<br>116 43<br>117 41<br>117 04<br>117 56<br>118 06<br>115 40<br>114 42<br>113 12<br>111 43<br>109 07<br>106 55<br>106 35<br>105 16<br>102 28<br>99 21<br>97 346<br>94 06<br>92 11<br>90 40<br>88 06<br>85 32<br>82 32<br>79 20<br>78 34<br>77 45<br>76 23<br>73 20<br>70 49<br>66 24<br>67 29<br>68 12<br>67 55<br>57 31<br>55 30<br>51 48<br>49 40<br>49 20<br>40 14<br>37 45<br>57 31<br>55 32<br>53 34<br>55 32<br>57 34<br>68 53<br>73 20<br>70 49<br>69 37<br>68 12<br>67 54<br>68 24<br>69 37<br>68 12<br>67 54<br>68 24<br>69 37<br>68 12<br>67 29<br>68 31<br>59 40<br>69 37<br>68 55<br>32 32<br>53 30<br>53 42<br>55 30<br>51 48<br>49 40<br>49 20<br>40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>37 40 14<br>38 31 31<br>31 31<br>31 31<br>31 31<br>31 31<br>31 31<br>32 40 12<br>33 35<br>21 37 40<br>20 24<br>19 33<br>18 27 | 3851 3 113454223244641925357213312225323122432353457261949521236 | $\begin{array}{c} 4 & 31 \\ 2 & 4 & 52 \\ 2 & 55 \\ 3 & 4 \\ 4 & 52 \\ 2 & 55 \\ 4 & 5 \\ 5 & 57 \\ 5 & 51 \\ 4 & 6 \\ 6 & 36 \\ 6 & 20 \\ 6 & 30 \\ 3 & 30 \\ 2 & 4 \\ 6 & 36 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 30 \\ 6 & 20 \\ 6 & 30 \\ 6 & 30 \\ 6 & 20 \\ 6 & 30 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 6 & 20 \\ 7 \\ 7 \\ 8 & 20 \\ 7 \\ 8 & 20 \\ 8 \\ 8 & 20 \\ 8 \\ 8 & 20 \\ 8 \\ 8 & 20 \\ 8 \\ 8 & 20 \\ 8 \\ 8 & 20 \\ 8 \\ 8 & 20 \\ 8 \\ 8 & 20 \\ 8 \\ 8 \\ 8 & 20 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ $ |

<sup>\*</sup> On shore at King George's Sound.

<sup>†</sup> On shore at Port Louis, Mauritius.

General Table of the Inclinations observed on board Her Majesty's hired Bark "Pagoda."

| -                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         | Y 1'                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date.                      | Lat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Long.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inclina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lat.                    | Long.   | Inclinat                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fox, F. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fox, C. 9. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |         | Fox, F. 1.                                           | Fox, C. 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11<br>13<br>14<br>15<br>16 | -33 56 -34 12 -34 14 -34 45 -35 29 -35 17 -35 18 -37 25 -38 40 -40 31 -42 50 -44 50 -49 01 -48 35 -50 39 -51 49 -53 07 -55 13 -60 43 -61 10 -62 06 -61 55 -61 50 -62 30 -63 19 -64 23 -65 37 -66 27 -66 33 -66 57 -67 37 -67 02 -66 58 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -64 48 -64 52 -65 36 -61 19 -61 05 -61 19 -61 05 -61 10 -62 44 -64 20 -61 40 -63 36 -62 36 -61 19 -61 05 -61 43 -62 44 -64 52 -64 52 -65 56 -61 50 -65 56 -61 50 -61 50 -62 44 -64 52 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -63 56 -6 | 18 29<br>18 29<br>18 29<br>18 26<br>18 32<br>17 48 32<br>17 48 32<br>17 49 40<br>13 26<br>13 26<br>13 27<br>14 40<br>14 23<br>13 09<br>11 28<br>10 51<br>10 22<br>9 7 43<br>6 05<br>5 5 5<br>5 4 00<br>9 05<br>12 52<br>16 30<br>9 05<br>17 6 05<br>18 40<br>19 14<br>10 40<br>10 40<br>10 40<br>10 53<br>10 54<br>10 55<br>10 56<br>10  -53 31<br>-53 31<br>-53 30<br>-53 39<br>-52 56<br>* -51 35<br>-51 35<br>-52 56<br>* -51 35<br>-52 56<br>-53 39<br>-54 14<br>-55 10<br>-55 10<br>-56 14<br>-57 02<br>-57 03<br>-57 01<br>-57 26<br>-57 03<br>-57 01<br>-57 26<br>-63 35<br>-64 55<br>-64 55<br>-68 16<br>-69 22<br>-69 49<br>-70 12<br>-69 39<br>-68 40<br>-69 36<br>-70 03<br>-70 02<br>-72 01<br>-73 27<br>-74 02<br>-74 02<br>-74 02<br>-74 03<br>-77 35<br>-77 35<br>-78 42‡<br>-77 35<br>-78 49<br>-78 59<br>-78 49 | -7741      | \begin{array}{c} -53 & 31* \\ -53 & 30* \\ -53 & 50† \\ -53 & 15 \\ -51 & 27 \\ -51 & 16 \\ -51 & 27 \\ -51 & 16 \\ -55 & 53 \\ -55 & 54 \\ 13 \\ -55 & 05 \\ -56 & 14 \\ -57 & 39 \\ -57 & 14 \\ -57 & 49 \\ -57 & 57 \\ 14 \\ -57 & 49 \\ -63 & 17 \\ -63 & 17 \\ -63 & 17 \\ -63 & 17 \\ -63 & 17 \\ -64 & 20 \\ -64 & 40 \\ -65 & 35 \\ -66 & 41 \\ -67 & 61 \\ 30 \\ -67 & 28 \\ -68 & 31 \\ -68 & 49 \\ -69 & 38 \\ -70 & 16 \\ -69 & 35 \\ -69 & 13 \\ -70 & 08 \\ -69 & 13 \\ -70 & 09 \\ -70 & 08 \\ -71 & 44 \\ -72 & 53 \\ -73 & 50 \\ -74 & 38 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -77 & 37 \\ -78 & 20 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -78 & 31 \\ -79 & 31 \\ -78 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 & 31 \\ -79 | 1845. March 18. 19. 20. 222. 244. 255. 266. 27. 28. 299. 300. April 7. 11. 12. 20. 23. 244. 255. 277. 28. 299. May 1, 2. 3. 44. 55. 66. 77. 88. 99. 100. 111. 122. 133. 144. 166. 177. 188. 199. 200. 211. 222. 233. 247. 300. June 2. 33. 44. 55. 66. 77. 88. 11. 12. 13. 14. 155. 166. 77. 88. 111. 122. 133. 144. 155. 166. 77. 88. 111. 122. 133. 144. 155. 166. 77. 88. 111. 121. 138. 149. 240. 251. 252. 253. 277. 300. June 12. 233. 241. 253. 354. 455. 66. 77. 88. 811. 112. 113. 114. 115. 115. 116. 117. 118. 233. Magnetic Obegood Hopulith of Julith | servatory,<br>e, on the | Cape of | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | - 77 39 / - 77 36 / - 76 32 / - 77 36 / - 76 32 / - 77 36 / - 77 32 / - 77 36 / - 77 32 / - 77 36 / - 77 36 / - 77 36 / - 77 36 / - 77 36 / - 77 36 / - 77 36 / - 77 36 / - 77 36 / - 77 36 / - 77 36 / - 68 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 66 21 / - 67 30 / - 67 30 / - 67 30 / - 67 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 30 / - 57 3 | -77 34<br>-77 09<br>-76 17<br>-75 32<br>-72 28<br>-70 43<br>-68 27<br>-66 38<br>-65 36<br>-65 36<br>-65 14<br>-65 51<br>-65 51<br>-65 51<br>-65 51<br>-65 14<br>-65 51<br>-65 11<br>-64 44<br>-62 18<br>-59 22<br>-51 22<br>-51 15<br>-51 12<br>-51 15<br>-51 12<br>-51 22<br>-51 20<br>-52 49<br>-52 01<br>-51 15<br>-51 12<br>-51 22<br>-51 30<br>-53 36<br>-53 36<br>-53 36<br>-53 36<br>-58 38<br>-58 38<br>-59 01<br>-57 06<br>-58 38<br>-58 37<br>-57 06<br>-58 37<br>-57 06<br>-58 37<br>-57 06<br>-58 37<br>-57 06<br>-58 37<br>-57 06<br>-58 37<br>-57 39<br>-57 39 |

<sup>\*</sup> Magnetic Observatory, Cape of Good Hope.

<sup>‡</sup> Probably a wrong degree; omitted in the mean.

<sup>|</sup> King George's Sound.

<sup>†</sup> Dock Yard, Simon's Bay.

<sup>§</sup> Needle A. ¶ Needle B.

<sup>\*\*</sup> Port Louis, Mauritius.

General Table of the Intensities of the Magnetic Force observed on board Her Majesty's hired Bark "Pagoda."

|                      |                                                                         |                                                     | Inter            | isity.           |                  |                                                    |                                                            |                                                                             | Inter          | isity.                                          |                  |
|----------------------|-------------------------------------------------------------------------|-----------------------------------------------------|------------------|------------------|------------------|----------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|----------------|-------------------------------------------------|------------------|
| Date.                | Lat.                                                                    | Long.                                               | Fox, F. 1.       | Fox, C. 9.       | Mean.            | Date.                                              | Lat.                                                       | Long.                                                                       | Fox, F. 1.     | Fox, C. 9.                                      | Mean.            |
| Dec. 1 and 5.<br>21. | -33 56<br>-34 12                                                        | 18 29<br>18 26                                      | 0·999*<br>1·005† |                  | 0·999<br>1·005   | 1845.<br>March 19.<br>20.                          | -51 10<br>-48 59                                           | 111 26<br>112 22                                                            | 1·787<br>1·798 | 1.821                                           | 1·787<br>1·810   |
| 1845.<br>January 10. | -34 45                                                                  | 17 48                                               | 0.981            | 0.985            | 0.983            | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{vmatrix} -47 & 21 \\ -45 & 08 \end{vmatrix}$       | 115 15<br>116 50                                                            | 1.825          | 1.842                                           | 1·834<br>1·820   |
| 11.<br>12.           | $-35 29 \\ -35 17$                                                      | 15 09<br>14 00                                      | •••••            | 0.968<br>0.923   | $0.968 \\ 0.923$ | 25.                                                | $ \begin{array}{r rrrr} -43 & 21 \\ -41 & 09 \end{array} $ | 116 50                                                                      | 1·760<br>1·746 | 1.804<br>1.758                                  | 1.782            |
| 13.                  | -35 18                                                                  | 13 26                                               | 0.950            | 0.933            | 0.942            | 26.<br>27.                                         | -38 	46                                                    | 116 26<br>116 15                                                            | 1.738          | 1.722                                           | 1·752<br>1 730   |
| 14.<br>15.           | $\begin{vmatrix} -37 & 25 \\ -38 & 40 \end{vmatrix}$                    | $13 24 \\ 14 27$                                    | 0.965<br>1.008   | 0.978            | 0·965<br>0·993   | 28.                                                | -37 02                                                     | 116 57                                                                      | 1.695          | 1.677                                           | 1.686            |
| 16.                  | -39 10                                                                  | 14 40                                               | 0.989            | 0.964            | 0.977            | 29.<br>30.                                         | $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$      | 116 49<br>117 18                                                            | 1·673<br>1·702 | 1.670<br>1.694                                  | 1.672<br>1.698   |
| 17.<br>18.           | $-40 \ 31 \\ -42 \ 50$                                                  | $\begin{array}{ccc} 14 & 23 \\ 13 & 00 \end{array}$ | 0.994            | 0.984            | 0·989<br>0·997   | April 7.                                           | -35 02                                                     | 117 56                                                                      | 1.688          | 1.688                                           | ]                |
| 19.                  | -42 50 $-44 50$                                                         | 13 19                                               | 0·997<br>1·007   |                  | 1.007            | 11.<br>12.                                         | $ \begin{array}{c cccc} -35 & 02 \\ -35 & 05 \end{array} $ | 117 56<br>117 56                                                            | 1.688          | 1.688                                           | 1.688§           |
| 21.                  | -49 01                                                                  | 11 28                                               | 1.051            | 1.051            | 1.051            | 23.                                                | -35 33                                                     | 114 40                                                                      | 1.688          | 1.672                                           | 1.680            |
| 22.<br>23.           | $-48 \ 35 \ -50 \ 39$                                                   | $10 51 \\ 10 22$                                    | 1·060<br>1·094   | 1.093            | $1.060 \\ 1.094$ | 24.<br>25.                                         | $\begin{vmatrix} -34 & 16 \\ -32 & 28 \end{vmatrix}$       | 113 01<br>111 31                                                            | 1.641<br>1.613 | 1.573                                           | $1.641 \\ 1.593$ |
| 24.                  | -51 49                                                                  | 9 33                                                | 1.120            | 1.109            | 1.115            | 27.                                                | -29 18                                                     | 106 52                                                                      | 1.553          | 1.499                                           | 1.526            |
| 25.<br>26.           | $-53 07 \\ -53 57$                                                      | 7 43<br>6 05                                        | 1·122<br>1·143   | 1·134<br>1·141   | 1·128<br>1·142   | 28.<br>29.                                         | $\begin{vmatrix} -27 & 41 \\ -25 & 53 \end{vmatrix}$       | 106 34<br>105 03                                                            | 1·490<br>1·470 | 1·478<br>1·447                                  | 1·484<br>1·459   |
| 27.                  | -55 13                                                                  | 5 53                                                | 1.161            | 1.143            | 1.152            | May 1.                                             | -23 59                                                     | 99 15                                                                       | 1.367          | 1.381                                           | 1.374            |
| 30.<br>31.           | $-60 \ 43$ $-61 \ 10$                                                   | 4 00<br>9 05                                        | 1·240<br>1·285   | 1.288            | $1.240 \\ 1.287$ | 2.                                                 | -24 01                                                     | 97 28                                                                       | 1.379          | 1.381                                           | 1.380            |
| February 1.          |                                                                         | 12 52                                               |                  | 1.349            | 1.349            | 3.<br>4.                                           | $ \begin{array}{r rrrr} -23 & 55 \\ -24 & 17 \end{array} $ | 96 01<br>93 50                                                              | 1.365          | $\begin{array}{c c} 1.377 \\ 1.352 \end{array}$ | 1·371<br>1·352   |
| 2.<br>3.             | $-61 55 \\ -61 50$                                                      | 16 30                                               | 1.331            | 1.321            | 1.326            | 5.                                                 | -24 02                                                     | 92 07                                                                       |                | 1.367                                           | 1.367            |
| 4.                   | $-62 \ 30$                                                              | $\frac{19}{20} \frac{14}{33}$                       | 1·334<br>1·353   | 1.347            | 1·334<br>1·350   | 6.<br>7.                                           | $\begin{vmatrix} -22 & 47 \\ -21 & 47 \end{vmatrix}$       | 91 00<br>89 41                                                              | 1·324<br>1·326 | 1.314                                           | $1.324 \\ 1.320$ |
| 5.                   | -63 19                                                                  | 21 48                                               | 1.401            | 1.362            | 1.362            | 8.                                                 | -20 42                                                     | 87 55                                                                       | 1.294          | 1.298                                           | 1.296            |
| 6.<br>7.             | $-64 23 \\ -65 37$                                                      | $\frac{24}{28} \frac{12}{39}$                       | 1·401<br>1·432   | 1·398<br>1·432   | $1.400 \\ 1.432$ | 9.<br>10.                                          | $\begin{bmatrix} -20 & 38 \\ -20 & 26 \end{bmatrix}$       | 85 14<br>82 11                                                              | 1·265<br>1·257 | 1·263<br>1·248                                  | $1.264 \\ 1.253$ |
| 8.                   | -66 27                                                                  | 30 45                                               | •••••            | 1.448            | 1.448            | 11.                                                | $\begin{bmatrix} -20 & 20 \\ -20 & 36 \end{bmatrix}$       | 79 16                                                                       | 1.247          | 1.213                                           | 1.230            |
| 9.<br>10.            | $-66 33 \\ -66 57$                                                      | $\frac{36}{38} \frac{48}{50}$                       | 1·482<br>1·491   | 1·47()<br>1·483  | 1·476<br>1·487   | 12.                                                | -20 44                                                     | 78 31                                                                       | 1.238          | 1·234<br>1·233                                  | 1·236<br>1·235   |
| 11.                  | -67 37                                                                  | 40 00                                               | 1.519            | 1.496            | 1.508            | 13.<br>14.                                         | $\begin{bmatrix} -20 & 39 \\ -20 & 29 \end{bmatrix}$       | 77 43<br>76 22                                                              | 1·237<br>1·222 | 1 200                                           | 1.222            |
| 12.<br>13.           | $-67 02 \\ -66 58$                                                      | $\frac{39}{40} \frac{53}{12}$                       | 1·494<br>1·499   | 1·496<br>1·490   | 1·495<br>1·495   | 16.                                                | $-20 \ 27$                                                 | 70 41                                                                       | 1.199          | 1.205                                           | 1.202            |
| 14.                  | -6624                                                                   | 40 01                                               |                  | 1.494            | 1.494            | 17.<br>18.                                         | $ \begin{array}{r rrrr} -20 & 34 \\ -21 & 07 \end{array} $ | 69 24 68 08                                                                 | 1.191          | 1.210                                           | 1·210<br>1·191   |
| 16.<br>17.           | $     \begin{array}{r rrr}     -64 & 52 \\     -64 & 48   \end{array} $ | 38 37<br>40 12                                      | 1·470<br>1·463   | 1·450<br>1·482   | 1.460            | 19.                                                | -21 11                                                     | 67 54                                                                       | 1.203          | 1.206                                           | 1.205            |
| 18.                  | -64 22                                                                  | 40 49                                               | 1.460            | 1.402            | 1·473<br>1·460   | 20.<br>21.                                         | $\begin{bmatrix} -21 & 12 \\ -21 & 02 \end{bmatrix}$       | 67 29<br>66 26                                                              | 1·201<br>1·181 | 1·190<br>1·178                                  | 1·196<br>1·180   |
| 19.                  | -63 56                                                                  | 41 35                                               | 1.416            | 1.453            | 1.434            | 22.                                                | -20 40                                                     | 62 58                                                                       |                | 1.173                                           | 1.173            |
| $\frac{20.}{21.}$    | $     \begin{array}{r}     -63 & 20 \\     -63 & 36     \end{array} $   | $\begin{array}{c} 45 & 44 \\ 46 & 46 \end{array}$   | 1·437<br>1·457   | $1.462 \\ 1.470$ | 1·450<br>1·464   | 23.<br>27.                                         | $\begin{bmatrix} -20 & 31 \\ -20 & 09 \end{bmatrix}$       | 59 42<br>57 31                                                              | 1·171<br>1·156 | 1.156                                           | 1·171<br>  1·156 |
| 24.                  | $-62 \ 36$                                                              | 51 40                                               | 1.466            | ••••             | 1.466            | 30.                                                | -21 47                                                     | 53 30                                                                       | 1.179          | 1.161                                           | 1.170            |
| 25.<br>26.           | $-61 30 \\ -61 19$                                                      | 53 44<br>57 34                                      | 1·476<br>1·535   | 1·498<br>1·506   | 1·487<br>1·521   | June 2.<br>3.                                      | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$     | 49 12                                                                       | 1.160          | 1.164                                           | 1.160            |
| 27.                  | -61 05                                                                  | 64 12                                               | 1.553            | 1.560            | 1.557            | 4.                                                 | $-20 \ 20$ $-27 \ 13$                                      | 48 20<br>46 00                                                              | 1.129          | 1·164<br>1·159                                  | 1·164<br>1·144   |
| 28.<br>March 1.      | $     \begin{array}{r r}     -61 & 43 \\     -62 & 10     \end{array} $ | $71 08 \\ 72 25$                                    | 1·604<br>1·657   | 1.605<br>1.642   | 1.605<br>1.650   | 5.                                                 | -28 13                                                     | 42 50                                                                       | 1.125          |                                                 | 1.125            |
| 2.                   | -6244                                                                   | 76 12                                               | 1.656            | 1.653            | 1.655            | 6.<br>7.                                           | $-28 	44 \\ -28 	35$                                       | $\begin{array}{ c c c c c }\hline 42 & 01 \\ 40 & 24 \\ \hline \end{array}$ | 1·117<br>1·128 |                                                 | 1·117<br>1·128   |
| 3.<br>5.             | -64 20<br>61 40                                                         | 79 38<br>84 54                                      | 1.706            | 1.678            | 1.692            | 8.                                                 | -28 57                                                     | 37 49                                                                       | 1.094          | 1.111                                           | 1.103            |
| 6.                   | $-60 \ 45$                                                              | 88 23                                               | 1.689<br>1.729   | 1·730<br>1·747   | 1·710<br>1·738   | 11.<br>12.                                         | -30 33                                                     | 33 41<br>33 19                                                              | 1.085          | 1.105                                           | 1·105<br>1·085   |
| 7.<br>8.             | $ \begin{array}{rrr} -61 & 22 \\ -61 & 10 \end{array} $                 | 91 14                                               | 1.759            | 1.749            | 1.754            | 13.                                                | -31 06                                                     | 31 30                                                                       | 1.061          | 1.063                                           | 1.062            |
| 9.                   | $-60 \ 33$                                                              | 92 07<br>92 30                                      | 1·762<br>1·745   | 1·758<br>1·750   | 1·760<br>1·748   | 14.<br>15.                                         | -33 01 $-34 31$                                            | 29 36<br>27 04                                                              | 1·046<br>1·059 |                                                 | 1.046<br>1.059   |
| 10.                  | -60 03                                                                  | 95 50                                               | 1.798            | 1.770            | 1.784            | 16.                                                | $-35 \ 46$                                                 | 23 35                                                                       | 1.033          | •••••                                           | 1.033            |
| 11.<br>13.           |                                                                         | 99 40<br>99 23                                      | 1.772<br>1.968‡  | 1.836<br>1.813   | 1·804<br>1·813   | 17.<br>18.                                         | -35 38                                                     | 21 40<br>20 46                                                              | 1·025<br>1·013 | 1.033                                           | 1·029<br>1·013   |
| 14.                  | -56 55                                                                  | 101 30                                              | 1.786            | 1.802            | 1.794            | 23.                                                | $ -34 \ 12$                                                | 18 26                                                                       | 1 012          | 1.001                                           | 1.0079           |
| 15.<br>16.           | -54 43                                                                  | 103 12<br>106 10                                    | 1.816<br>1.801   | 1.815<br>1.817   | 1·816<br>1·809   | Magnetic Ob<br>Good Hope, 2                        | servatory,                                                 | Cape of                                                                     | } 1.001        | 1.000                                           | 1.000            |
| 1 <b>7</b> .         | -54 14                                                                  | 108 10                                              | 1.816            | 1.821            | 1.819            | Good Hope, 2                                       | na ana 11t                                                 | n or July.                                                                  | J              |                                                 |                  |
| 18.                  | -53 00                                                                  | 110 22                                              | 1.814            | 1.825            | 1.820            |                                                    |                                                            |                                                                             |                |                                                 |                  |

<sup>\*</sup> Observed on shore, Magnetic Observatory, Cape of Good Hope.

<sup>†</sup> Observed on shore, Dock-yard, Simon's Bay.

<sup>‡</sup> Not included in the mean.

<sup>§</sup> King George's Sound; observed on shore.

<sup>||</sup> Port Louis, Mauritius; observed on shore.

<sup>¶</sup> Simon's Bay, on board.

Observations of the Magnetic Inclination between the Cape of Good Hope and Van Diemen Island, by Lieut. Alexander Smith, R.N.

| Date.                                                                                 | Lat.                                                                                                                                                                                           | Long.                                                                                                                                                                     | Corrected Inclination.                                                                                                                                                                     | Date.                                                                                                                             | Lat.                                                                                                                                 | Long.                                                                                                                                                                                        | Corrected Inclination.                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1844. July 29. 30. 31. August 1. 2. 4. 5. 6. 7. 8. 9. 10. 11. 13. 14. 15. 16. 17. 18. | -38 00<br>-38 28<br>-39 06<br>-39 42<br>-39 33<br>-39 33<br>-39 50<br>-40 01<br>-40 32<br>-41 06<br>-41 00<br>-40 43<br>-40 56<br>-39 34<br><br>-39 00<br>-38 31<br>-38 22<br>-38 08<br>-38 10 | 4 20<br>7 45<br>12 00<br>15 44<br>23 05<br>26 52<br>28 36<br>32 22<br>36 40<br>41 40<br>46 13<br>49 12<br>53 30<br>60 55<br><br>65 44<br>68 45<br>70 10<br>73 35<br>75 22 | -52 00<br>-53 03<br>-55 42<br>-57 06<br>-59 32<br>-61 47<br>-62 08<br>-62 56<br>-64 09<br>-64 42<br>-65 19<br>-66 08<br>-67 27<br>-67 18<br>-67 19<br>-66 45<br>-67 06<br>-66 45<br>-66 42 | 1844.<br>Aug. 20.<br>21.<br>22.<br>23.<br>24.<br>25.<br>26.<br>27.<br>28.<br>30.<br>31.<br>Sept. 1.<br>2.<br>3.<br>4.<br>5.<br>6. | -38 25 -38 48 -39 04 -39 58 -40 06 -40 02 -39 52 -39 54 -40 08 -40 31 -41 16 -41 54 -41 58 -42 17 -42 35 -43 00 -43 16 -43 28 -44 06 | 76 44<br>77 50<br>79 45<br>84 00<br>87 00<br>90 52<br>95 10<br>99 22<br>102 00<br>105 55<br>109 06<br>113 25<br>117 40<br>119 00<br>122 30<br>125 40<br>129 36<br>133 44<br>137 10<br>141 37 | $\begin{array}{c} -6\mathring{6} & 5\mathring{4} \\ -67 & 14 \\ -67 & 17 \\ -67 & 43 \\ -68 & 13 \\ -68 & 41 \\ -69 & 08 \\ -69 & 00 \\ -69 & 22 \\ -70 & 02 \\ -70 & 02 \\ -70 & 30 \\ -71 & 20 \\ -71 & 33 \\ -71 & 45 \\ -72 & 08 \\ -72 & 13 \\ -71 & 55 \\ -72 & 14 \\ \end{array}$ |

Observations of the Magnetic Force between the Cape of Good Hope and Van Diemen Island, by Lieut. Alexander Smith, R.N.

| Date.             | Lat.                                                 | Long.                                                | Method<br>employed.      | Angle of deflection.                               | Thermo-<br>meter. | Ship's head.                               | Intensity. Hobarton = $1.800$ .                                    | Remarks.           |
|-------------------|------------------------------------------------------|------------------------------------------------------|--------------------------|----------------------------------------------------|-------------------|--------------------------------------------|--------------------------------------------------------------------|--------------------|
| 1844.<br>July 30. | $-38\ 28$                                            | 2 <sup>°</sup> 7 45                                  | wt. 2 grs.               | 20° 13′                                            | 5°2               | S.E. ½ E.                                  | 0.953 0.953                                                        |                    |
| Aug. 5.           | -39 50                                               | 28 36                                                | wt. 2 grs.               | 17 04                                              | 60                | s.e. by e.                                 | $1.121 \} 1.117$                                                   |                    |
|                   | -3950                                                | $\begin{array}{c} 28 & 36 \\ 46 & 13 \end{array}$    | wt. 3 grs.               | 26 35                                              | 59<br>60          | s.e. by e.                                 | 1.119]                                                             |                    |
| 9.                | $-41 00 \\ -41 00$                                   | 46 13<br>46 13                                       | wt. 2 grs.<br>wt. 3 grs. | $\begin{array}{cc} 14 & 50 \\ 22 & 46 \end{array}$ | 61                | E. $\frac{1}{2}$ S.<br>E. $\frac{1}{2}$ S. | $\left\{\begin{array}{c} 1.288 \\ 1.289 \end{array}\right\}$ 1.288 |                    |
| 15.               | -39 00                                               | $\begin{array}{c} 40 & 13 \\ 65 & 44 \end{array}$    | wt. 2 grs.               | 13 35                                              | 47                | s.e. by e.                                 | 1.4031                                                             |                    |
|                   | -39 00                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | wt. 3 grs.               | 21 26                                              | 44                | s.e. by e.                                 | 1.364 1.383                                                        | Much motion.       |
| 18.               | -38 08                                               | 73 35                                                | wt. 2 grs.               | 12 57                                              | 58                | E.                                         | 1.471 1.454                                                        | Smooth water.      |
|                   | <b>-38 08</b>                                        | 73 35                                                | wt. 3 grs.               | 20 18                                              | 59                | Ε.                                         | 1.437                                                              |                    |
| 19.               | $-38\ 10$                                            | 75 22                                                | wt. 2 grs.               | 13 28                                              | 66                | S.E. \(\frac{1}{2}\) E.                    | $\{\begin{array}{c} 1.415 \\ 1.450 \\ \end{array}\} 1.435$         | Smooth.            |
| 24.               | -38 10 $-40 06$                                      | 75 22<br>87 00                                       | wt. 3 grs.<br>wt. 2 grs. | 20 02<br>12 14                                     | 66<br>64          | S.E. ½ E.                                  | 1.456 $1.555$                                                      |                    |
| 24.               | -40 06                                               | 87 00<br>87 00                                       | wt. 2 grs. wt. 3 grs.    | 17 42                                              | 60                | E.S.E.                                     | $\begin{array}{c c} 1.333 \\ 1.640 \end{array}$ 1.597              |                    |
| 28.               | -39 54                                               | 102 00                                               | wt. 2 grs.               | 11 13                                              | 51                | E.S.E.                                     | 1.6045                                                             |                    |
|                   | -39 54                                               | 102 00                                               | wt. 3 grs.               | 16 31                                              | 51                | E.S.E.                                     | $\begin{vmatrix} 1.094 \\ 1.754 \end{vmatrix} 1.724$               |                    |
| 30.               | $-40 \ 31$                                           | 109 06                                               | wt. 2 grs.               | 11 04                                              | 58                | E.S.E.                                     | 1.717 1 1.751                                                      |                    |
| 1                 | $-40 \ 31$                                           | 109 06                                               | wt. 3 grs.               | 16 14                                              | 59                | E.S.E.                                     | 1.789 ]                                                            |                    |
| Sept 3.           | $-42 \ 35$                                           | 125 40                                               | wt. 2 grs.               | 10 04                                              | 56                | E. by s.                                   | 1.886 } 1.894                                                      |                    |
| _                 | $-42 \ 35$                                           | 125 40                                               | wt. 3 grs.               | 15 12<br>10 21                                     | 55                | E. by s.                                   | 1.834                                                              | ·                  |
| 5.                | $\begin{vmatrix} -43 & 14 \\ -43 & 14 \end{vmatrix}$ | $133 22 \\ 133 22$                                   | wt. 2 grs.<br>wt. 3 grs. | 15 11                                              | 49                | E. by s.                                   | 1.904                                                              |                    |
| 6.                | $-43 \ 28$                                           | 137 10                                               | wt. 2 grs.               | 10 06                                              | 51                | E. by S. E. $\frac{1}{2}$ S.               | 1.0705                                                             |                    |
|                   | -43 28                                               | 137 10                                               | wt. 3 grs.               | 15 36                                              | 51                | E. ½ S.                                    | $\begin{vmatrix} 1.879 \\ 1.854 \end{vmatrix}$ 1.866               |                    |
| Oct. 2.           | -4252                                                | 147 24                                               | wt. 2 grs.               | 10 33                                              | 54                | On shore.                                  | 1.800 1.800                                                        | Hobarton: Magnetic |
|                   | -42 52                                               | 147 24                                               | wt. 3 grs.               | 16 05                                              | 54                | I Shore.                                   | 1.800                                                              | Observatory.       |

Hobarton is taken as the base station; no correction has been applied for the effect of the ship's iron. In the results entered in the map of the Magnetic Force from Lieut. SMITH's observations on the 24th, 28th, and 30th of August, the determinations with 2 grains only have been used; those with 3 grains are so discordant with other results as necessarily to indicate an error in them.

Observations of the Magnetic Inclination between Van Diemen Island and the Cape of Good Hope, by Lieut. Joseph Dayman, R.N.

| Date.                                                                                                                                                 | Lat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Long. | Corrected<br>Inclination. | Date.                                                                                                                                         | Lat.                                                                                                                                                                                                                            | Long.                                                                                                                                                                                                                                                                                                          | Corrected<br>Inclination.                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1844. Dec. 6. 16. 17. 18. 19. 20. 21. 23. 24. 26. 27. 28. 30. 31. 1845. Jan. 1. 2. 3. 4. 6. 7. 9. 10. 11, 13. 14. 15. 16. 17. 18. 20. 21. 22. 23. 24. | Hobarton O  -44 48  -44 30  -44 34  -44 34  -43 21  -42 24  -41 46  -42 02  -41 24  -42 08  -40 05  -38 21  -37 52  -37 14  -37 13  -36 28  -35 22  -36 42  -36 58  -36 96  -36 24  -37 00  -35 46  -36 24  -37 00  -35 46  -36 24  -37 00  -35 46  -36 24  -37 00  -35 46  -36 24  -37 00  -35 46  -36 42  -37 00  -35 46  -36 42  -37 00  -35 46  -36 42  -37 00  -35 46  -36 44  -37 00  -35 46  -36 44  -37 00  -38 47  -32 37  -29 40  -28 04  -26 44  -25 52  -24 50 | 0 /   | Trelination.              | 1845.  Jan. 25. 27. 28. 29. 30. 31. Feb. 1. 5. 6. 7. 8. 10. 11. 12. 13. 14. 15. 17. 18. 19. 20. 21. 22. 24. 25. 26. 27. 28. March 1. 3. 4. 5. | -24 00 -23 11 -22 54 -22 19 -22 17 -22 11 -22 08 -22 34 -22 35 -22 38 -22 38 -22 38 -22 41 -23 52 -24 23 -24 50 -24 43 -24 45 -25 13 -25 42 -26 54 -28 15 -29 21 -30 10 -31 19 -32 17 -34 02 -34 35 -34 36 -34 40 -34 29 -34 48 | 99 33<br>95 40<br>93 48<br>91 16<br>89 57<br>86 30<br>84 17<br>80 10<br>78 08<br>76 10<br>74 18<br>72 00<br>69 54<br>64 59<br>62 54<br>61 11<br>59 46<br>58 37<br>57 03<br>51 29<br>49 06<br>45 47<br>42 18<br>39 06<br>36 17<br>32 21<br>29 34<br>26 53<br>25 31<br>25 23<br>24 16<br>22 45<br>21 44<br>19 33 | -54 20 -53 44 -53 26 -53 11 -53 11 -53 11 -53 52 -54 26 -54 26 -54 26 -54 41 -55 04 -55 54 -56 52 -57 57 -58 15 -57 59 -58 17 -59 13 -58 34 -58 34 -58 34 -59 37 -60 01 -59 08 -58 32 -56 45 -56 32 -56 35 -56 32 -56 32 -56 35 -56 32 -56 35 -56 35 -56 35 -56 35 -56 35 -56 35 -56 35 -56 35 -56 35 -56 35 -56 35 |

Observations of the Magnetic Force between Van Diemen Island and the Cape of Good Hope, by Lieut. Joseph Dayman, R.N.

| Date.         |       | Lat.         |     | Lon | g. | Weights.    | Angle<br>deflecti | of  | Thermo-<br>meter. | Ship's head.                    | Intensity. | Correction<br>for ship's<br>attraction. | Corrected Intensity. Hobarton = 1.800. | Remarks.                             |
|---------------|-------|--------------|-----|-----|----|-------------|-------------------|-----|-------------------|---------------------------------|------------|-----------------------------------------|----------------------------------------|--------------------------------------|
| 1944          | -     |              |     |     |    |             |                   | _   |                   |                                 |            |                                         |                                        |                                      |
| 1844.<br>Dec. |       | -42°         | 50  | 149 | 01 | grs.        | 10 4              | 3   | 71°               | <b>1</b>                        | 1.800      | 1                                       |                                        |                                      |
| Dec.          | ٠.    |              |     | 147 |    | 2           |                   |     |                   | On shore.                       | 1.800      | }                                       | 1.800                                  | Magnetic Observa-<br>tory, Hobarton. |
| ١,            | 6     | -42          |     | 147 |    | 3           | 16 1              |     | 71                | J                               |            | {                                       |                                        | tory, Hobarton.                      |
| 1             | 16.   | -44          |     | 144 |    | 2           | 10 2              |     | 55                | w. by s.                        | 1.863      | <b>}</b> •041                           | 1.827                                  |                                      |
| ١.            |       | -44          |     | 144 |    | 3           | 15 3              |     | 55                | w. by s.                        | 1.873      | ₹.                                      |                                        |                                      |
| 1 1           | 17.   | -44          |     | 143 |    | 2           | 10 3              |     | 67                | w. by s.                        | 1.834      | <b>-041</b>                             | 1.815                                  |                                      |
| Ι.            |       | -44          |     | 143 |    | 3           | 15 2              |     | 67                | w. by s.                        | 1.879      | Į                                       | -                                      |                                      |
|               | 18.   | 44           |     | 142 |    | 2           | 10 2              |     | 69                | w. by s.                        | 1.866      | -041                                    | 1.818                                  |                                      |
| _             |       | <b>-44</b>   |     | 142 |    | 3           | 15 4              |     | 70                | w. by s.                        | 1.851      | )                                       |                                        |                                      |
|               | 19.   |              | 34  | 139 |    | 3           | 15 1              | - ( | 63                | s.w. by s.                      | 1.901      | <b>—·05</b> 3                           | 1.848                                  |                                      |
| 2             | 21.   |              | 24  | 137 |    | 2           |                   | 9   | 69                | w.                              | 1.840      | -037                                    | 1.828                                  |                                      |
| 1             | - 1   | <b>42</b>    |     | 137 |    | 3           |                   | 4   | 70                | w.                              | 1.889      | )                                       | - 0.00                                 |                                      |
| 2             | 23.   | -41          | 46  | 133 | 26 | 2           | 10 3              | 2   | <b>58</b>         | N.                              | 1.831      | }020                                    | 1.846                                  |                                      |
| 1             | j     | -41          | 46  | 133 | 26 | 3           | 15 1              | 8   | 57                | N.                              | 1.901      | )                                       | 1010                                   |                                      |
| 2             | 28.   | -40          | 05  | 128 |    | 2           | 10 0              | 5   | 63                | n.w. by n.                      | 1.912      | }020                                    | 1.856                                  | A long heavy swell.                  |
| l             | 1     | <b> 40</b>   | 05  | 128 |    | 3           | 15 4              | 9   | 63                | n.w. by n.                      | 1.840      | \[ \]                                   | 1 000                                  | long neavy swell.                    |
| 3             | 30.   | -39          |     | 124 |    | 2           | 10 3              | 8   | 65                | n. by w.                        | 1.814      | $\frac{1}{2} - 020$                     | 1.793                                  | A long heave and?                    |
| 1             |       |              | 25  | 124 |    | 3           | 16 0              | 4   | 65                | м. by w.                        | 1.813      | -020                                    | 1.790                                  | A long heavy swell.                  |
| 3             | 31.   | -38          |     | 123 |    | 2           | 10 2              |     | 62                | N.N.W.                          | 1.852      | 1 .000                                  | 1,700                                  | A long bears                         |
| ĺ             |       | -38          |     | 123 |    | 3           | 16 1              |     | 62                | N.N.W.                          | 1.786      | <b>}</b> 020                            | 1.799                                  | A long heavy swell.                  |
| 1845.         | . 1   | 00           |     |     |    |             |                   | ١ ١ |                   |                                 | •          | ,                                       |                                        |                                      |
| Jan.          | 1.    | -38          | 21  | 122 | 46 | 2           | 10 4              | 9   | 71                | n.w. by w.                      | 1.783      | 1 .005                                  | 1.777                                  |                                      |
| ŀ             | 1     | -38          |     | 122 | 46 | 3           | 15 5              | 9   | 72                | n.w. by w.                      | 1.822      | -025                                    | 1.777                                  |                                      |
| 1.            | 3.    | -37          |     | 124 |    | 2           | 10 5              |     | 69                | N.W.                            | 1.767      | 1 .000                                  | 1.77                                   |                                      |
| ľ             | - 1   | -37          |     | 124 |    | 3           | 16 0              |     | 69                | N.W.                            | 1.815      | \ \rightarrow \cdot \cdot 020           | 1.771                                  |                                      |
| ľ             | 6.    | -36          |     | 118 |    | 2           | 11 1              |     | 67                | N.N.W.                          | 1.725      | 1 000                                   |                                        |                                      |
|               |       | -36          |     | 118 | 57 | 3           | 16 4              |     | 67                | N.N.W.                          | 1.747      | <b>  }020</b>                           | 1.716                                  |                                      |
| · .           | 7.    | -35          |     | 117 |    | 2           | 11 0              |     |                   | N.N.W. $\frac{1}{2}$ W.         | 1.743      | 1                                       | 7 500                                  |                                      |
| ,             | •     |              | 22  | 117 |    | $\tilde{3}$ | 16 4              |     |                   | N.N.W. $\frac{1}{2}$ W.         | 1.742      | <b>}</b> 020                            | 1.722                                  |                                      |
| ١,            | 11.   | -36          | . 1 | 116 |    | 2           | 10 5              |     | 68                | s.s.w.                          | 1.767      | 1                                       |                                        |                                      |
| 1 1           | • • • | -36          |     | 116 |    | 3           |                   | 6   | 68                | s.s.w.                          | 1.773      | <b>}</b> - •055                         | 1.715                                  |                                      |
| ,             | 16.   | $-30 \\ -34$ |     | 112 |    | 2           |                   | 24  | 66                | N.W.                            | 1.693      | 1                                       |                                        |                                      |
| 1 1           | 10.   | -34          |     | 112 |    |             | 17 0              |     | 66                | N.W.                            | 1.704      | <b>}</b> • 012                          | 1.686                                  |                                      |
| ١,            |       |              |     |     |    | 3           |                   |     |                   | 1                               | 1.623      | 1                                       |                                        |                                      |
| 1 1           | 17.   | -33          |     | 111 |    | 2           | •                 | 64  | 67                | N.W. by W.                      |            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \   | 1.609                                  |                                      |
| Ι,            |       | -33          |     | 111 |    | 3           | 17 5              |     | 67                | N.w. by w.                      | 1.629      | {                                       |                                        |                                      |
| 1             | 18.   | -33          | - 1 | 108 |    | 2           |                   | 7   | 69                | n.w. by w.                      | 1.616      | \ \ \017                                | 1.603                                  |                                      |
| ١ .           | 20    | -33          | - 1 | 108 |    | 3           | 17 5              |     | <b>69</b>         | n.w. by w.                      | 1.624      | ΙĮ                                      |                                        |                                      |
| 1 2           | 90.   |              | 40  | 105 |    | 2           | 1                 | 30  | 72                | N.W. $\frac{1}{2}$ N.           | 1.546      | ·007                                    | 1.537                                  |                                      |
| 1 ,           | .     | -29          |     | 105 |    | 3           | 1                 | 8   | 72                | N.W. $\frac{1}{2}$ N.           | 1.543      | Ĭ,                                      |                                        |                                      |
| 1 2           | 21.   | -28          |     | 105 |    | 2           | 13 0              |     | 73                | N.                              | 1.484      | -004                                    | 1.493                                  |                                      |
| ۱ .           | ا ء   | -28          |     | 105 |    | 3           | 19 2              | 1   | 73                | N.                              | 1.510      | Į.                                      |                                        | ]                                    |
| , ,           | 22.   | -26          |     |     |    | 2           | 13 0              |     | <b>76</b>         | N.W.                            | 1.483      | }007                                    | 1.466                                  |                                      |
| l .           | ا ء   | -26          |     | 104 |    | 3           | 20 0              |     | 76                | N.W.                            | 1.462      | ĮĮ.                                     | -                                      | (                                    |
| 1 2           | 23.   |              | 52  | 102 |    | 2           | 13 3              |     | 75                | N.W.                            | 1.418      | }007                                    | 1.421                                  |                                      |
| l             |       | -25          |     | 102 |    | 3           | 20 2              |     | 75                | N.W.                            | 1.439      | ]                                       |                                        |                                      |
| 2             | 24.   | -24          | 50  | 101 |    | 2           | 13 3              |     | 76                | N.W.                            | 1.432      | }006                                    | 1.415                                  |                                      |
|               |       | -24          |     | 101 |    | 3           | 20 5              |     | 76                | N.W.                            | 1.410      |                                         |                                        |                                      |
| 2             | 25.   | -24          |     | 99  |    | 2           | 13 3              |     | <b>75</b>         | w.n.w.                          | 1.435      | }010                                    | 1.407                                  |                                      |
| ł             |       | -24          |     | 99  |    | 3           | 21 0              |     | 75                | w.n.w.                          | 1.400      | }                                       |                                        |                                      |
| 2             | 27.   | -23          |     | 95  |    | 2           | 14 2              |     | 78                | w. by $n \cdot \frac{1}{3} n$ . | 1.350      | \(\frac{1}{2}012                        | 1.334                                  |                                      |
| 1             | 1     | -23          | 11  | 95  | 40 | 3           | 21 5              | 8   | 78                | w. by n. ½ n.                   |            | 17 - 012                                | 1 301                                  |                                      |
| 2             | 28.   | -22          | 54  | 93  | 48 | 2           | 14 1              | 6   | 78                | w. by n. $\frac{1}{2}$ n.       |            | J012                                    | 1.337                                  |                                      |
|               | 1     |              | 54  | 93  |    | 3           | 22 0              |     | 79                | w. by N. $\frac{1}{2}$ N.       | 1.338      | 7-012                                   | 1 991                                  |                                      |
| 2             | 29.   |              | 19  | 91  |    | 2           | 15 0              |     | 77                | W. 1 N.                         | 1.291      | 1) .017                                 | 1.077                                  | ·                                    |
|               | -     | -22          |     | 91  |    | 3           | 22 4              |     | 77                | $W_{1} = \frac{1}{2} N_{1}$     | 1.297      | \017                                    | 1.277                                  |                                      |
| 3             | 30.   | -22          | 17  | 89  |    | 2           | 14 5              |     | 80                | $\hat{W} \cdot \frac{1}{2} N$ . | 1.296      | 15                                      | 1.000                                  |                                      |
| 1             |       | -22          |     | 89  |    | 3           | 22 2              |     | 81                | $W \cdot \frac{1}{2} N \cdot$   | 1.314      | -017                                    | 1.288                                  |                                      |
|               | 31.   | -22          |     | 86  |    | 2           | 15 1              |     | 80                | $W \cdot \frac{1}{2} N \cdot$   | 1.278      | 1                                       | 1.074                                  | 1                                    |
| ľ             |       | -22          |     | 86  |    | $\tilde{3}$ | 22 3              |     | 80                | $W \cdot \frac{1}{2} N$         | 1.304      | -017                                    | 1.274                                  |                                      |
|               |       | ~~           |     |     |    |             | 1                 |     |                   | 2 2.0                           |            | J                                       |                                        |                                      |

Lieut. Dayman's observations of the Magnetic Force. (Continued.)

| Date.            | Lat.                                                                      | Long.                                              | Weights. | Ángle of<br>deflection. | Thermo-<br>meter. | Ship's head.                                                                                                                | Intensity.     | Correction<br>for ship's<br>attraction.                    | Corrected Intensity. Hobarton = 1.800. | Remarks. |
|------------------|---------------------------------------------------------------------------|----------------------------------------------------|----------|-------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------|----------------------------------------|----------|
| 1845.<br>Feb. 1. |                                                                           | 84 17                                              | grs.     | 15° 13′                 | 81                | $W \cdot \frac{1}{2} N \cdot$                                                                                               | 1.275          | }017                                                       | 1.251                                  |          |
| . 3.             |                                                                           | 84 17 80 10                                        | 3 2      | 23 25<br>15 16          | 81<br>83          | $\begin{array}{c c} W \cdot \frac{1}{2} N \cdot \\ W \cdot \frac{1}{4} N \cdot \end{array}$                                 | 1.262          | } -:019                                                    | 1.261                                  |          |
| 4.               |                                                                           | 80 10<br>78 08                                     | 3 2      | 22 55<br>15 42          | 83<br>83          | $W \cdot \frac{1}{4} N \cdot W \cdot \frac{3}{4} N \cdot$                                                                   | 1.288          | $\left.\right\} - 015$                                     | 1.237                                  |          |
| 5.               |                                                                           | 78 08<br>76 10                                     | 3 2      | 23 20<br>15 31          | 83<br>82          | $W. \frac{3}{4} N.$ $W. \frac{3}{4} N.$                                                                                     | 1.267<br>1.252 | $\left\{015 \right\}$                                      | 1.236                                  | ,        |
| 6.               |                                                                           | 76 10<br>74 18                                     | 3 2      | 23 41<br>15 50          | 82<br>82          | $W. \frac{3}{4} N.$ $W. \frac{3}{4} N.$                                                                                     | 1·250<br>1·227 | $\left.\right\}015$                                        | 1.216                                  |          |
| 7.               |                                                                           | 74 18 72 20                                        | 3 2      | 23 58<br>15 49          | 82<br>81          | $W \cdot \frac{3}{4} N \cdot W \cdot \frac{1}{2} N \cdot$                                                                   | 1·236<br>1·229 | }016                                                       | 1.211                                  |          |
| 8.               | $\begin{bmatrix} -22 & 33 \\ -22 & 41 \end{bmatrix}$                      | $\begin{array}{cc} 72 & 20 \\ 69 & 54 \end{array}$ | 3<br>2   | 24 11<br>15 38          | 81 ·              | $\mathbf{W} \cdot \frac{1}{2} \mathbf{N} \cdot \mathbf{W}$                                                                  | 1·225<br>1·240 | $\left. \begin{array}{c}018 \end{array} \right.$           | 1.215                                  |          |
| 10.              | $     \begin{array}{r rrr}     -22 & 41 \\     -23 & 52     \end{array} $ | 69 54<br>64 59                                     | 3 2      | 24 13<br>15 58          | 81<br>84          | w.<br>w. ½ s.                                                                                                               | 1·223<br>1·217 | $\left\{ \begin{array}{c} -013 \\022 \end{array} \right\}$ | 1.196                                  |          |
|                  | $     \begin{array}{rrr}     -23 & 52 \\     -24 & 23     \end{array} $   | $\begin{array}{c} 64 & 59 \\ 62 & 54 \end{array}$  | 3<br>2   | 24 20<br>16 13          | 84<br>83          | $W. \frac{1}{2} S.$<br>$W. \frac{1}{2} S.$                                                                                  | 1·218<br>1·199 | $\begin{cases} -022 \\ -022 \end{cases}$                   | 1.177                                  |          |
| 12.              | $     \begin{array}{r rrr}     -24 & 23 \\     -24 & 50     \end{array} $ | 62 54<br>61 11                                     | 3<br>2   | 24 44<br>16 01          | 83<br>84          | $W. \frac{1}{2} S.$<br>$W. \frac{1}{2} N.$                                                                                  | 1·199<br>1·214 | 1                                                          |                                        |          |
|                  | $     \begin{array}{r}       -24 & 50 \\       -24 & 43     \end{array} $ | 61 11<br>59 46                                     | 3 2      | 24 22<br>16 17          | 84<br>85          | $\begin{array}{c c} w \cdot \frac{1}{2} & N \cdot \\ w \cdot by & N \cdot \frac{1}{2} & N \cdot \end{array}$                | 1·216<br>1·194 | }018                                                       | 1.197                                  |          |
|                  | $     \begin{array}{r}     -24 & 43 \\     -24 & 36     \end{array} $     | $59 	ext{ } 46 \\ 58 	ext{ } 37$                   | 3 2      | 24 47<br>16 23          | 85°<br>85         | w. by N. $\frac{1}{2}$ N. w. by N. $\frac{1}{2}$ N.                                                                         | 1.197          | }011                                                       | 1.184                                  |          |
|                  | -24 36 $-25 13$                                                           | 58 37<br>51 29                                     | 3<br>2   | 24 55<br>16 46          | 84<br>84          | w. by N. $\frac{1}{2}$ N. w. $\frac{1}{2}$ N.                                                                               | 1·191<br>1·160 | }011                                                       | 1.178                                  |          |
|                  | $-25 	 13 \\ -25 	 42$                                                    | 51 29<br>49 06                                     | 3 2      | 25 49<br>17 09          | 84<br>82          | $W \cdot \frac{1}{2} N \cdot W \cdot$                                                                                       | 1·152<br>1·135 | -017                                                       | 1.139                                  |          |
| 20.              | -25 42                                                                    | 49 06<br>42 18                                     | 3 2      | 26 16<br>17 43          | 81<br>81          | W∙<br>W• ½ S•                                                                                                               | 1·133<br>1·100 | -020                                                       | 1.114                                  |          |
| 21.              | -28 15                                                                    | 42 18<br>39 06                                     | 3 2      | 26 44<br>17 46          | 81<br>81          | $\mathbf{W} \cdot \frac{1}{2} \mathbf{S} \cdot \mathbf{W} \cdot$                                                            | 1·116<br>1·097 | $\Big \Big\} - \cdot 022$                                  | 1.086                                  |          |
| 22.              | -29 21                                                                    | 39 06<br>36 17                                     | 3 2      | 26 59<br>17 55          | 81<br>82          | w.<br>w. <u>1</u> n.                                                                                                        | 1·106<br>1·088 | $\left  \right\} - 020$                                    | 1.081                                  |          |
| 24.              | -30 10                                                                    | 36 17<br>32 21                                     | 3 2      | 27 07<br>18 29          | 82<br>83          | $\begin{array}{c c} W \cdot \frac{1}{4} N \cdot \\ W \cdot \frac{1}{2} N \cdot \\ \end{array}$                              | 1.101          | 018                                                        | 1.076                                  | •        |
| 25.              | $-31\ 19$                                                                 | 32 21<br>29 34                                     | 3 2      | 28 01<br>18 59          | 83<br>82          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                       | 1.068<br>1.029 | 016                                                        | 1.046                                  |          |
| 26.              | -32 17                                                                    | 29 34                                              | 3 2      | 28 28<br>18 57          | 82<br>74          | $\begin{array}{c c}  & 3 & N \\  & \frac{3}{4} & N \\  & W \\ \end{array}$                                                  | 1.052          | $\begin{vmatrix} \\ \\014 \\ \\018 \end{vmatrix}$          | 1.026                                  |          |
| 28.              | -34 02                                                                    | 26 53                                              | 3 2      | 28 37<br>18 38          | 74<br>71          | S.W. 1/2 W.                                                                                                                 | 1.047          | <b>0</b> 35                                                | 1.012                                  | *        |
| Mar. 1.          | $ -34 \ 36$                                                               | 25 23                                              | 3 2      | 28 22<br>19 27          | 71<br>79          | S.W. $\frac{1}{2}$ W. W.N.W.                                                                                                | 1.056          | }030                                                       | 1.021                                  |          |
| 5.               | -34 40                                                                    | 24 16                                              | 3 2      | 29 35<br>19 51          | 79<br>79<br>71    | W.N.W.<br>W.N.W. 1/2 N.                                                                                                     | 1.016<br>0.986 | -007                                                       | 1.004                                  |          |
| ı .              | $\begin{bmatrix} -34 & 48 \\ -34 & 48 \end{bmatrix}$                      |                                                    | 3        | 30 46                   | 70                | $\begin{array}{c c} \text{N.W.} \ \overline{2} \ \text{N.} \\ \text{N.W.} \ \overline{\frac{1}{2}} \ \text{N.} \end{array}$ | 0.981          | -000                                                       | 0.984                                  |          |

Observations of the Magnetic Declination, made on board Her Majesty's Ship Erebus, by Captain Sir James Clark Ross, between the Cape of Good Hope and Van Diemen Island.

| Date.             | Lat.                                                 | Long.  | Observer.                  | Declination observed.                                                                                  | Ship's head.                                                                        | Inclination.                                                                | Correction for ship's attraction.                                         | Corrected Declination.                                                                             | Remarks.           |
|-------------------|------------------------------------------------------|--------|----------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------|
| 1840.<br>April 8. | $-35^{\circ}52^{\circ}$                              | 18° 41 | T.<br>T.<br>O.             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                   | W.<br>E.S.E.<br>E.S.E.                                                              | -53 30                                                                      | -2 13                                                                     | $\begin{vmatrix} +30 & 33 \\ +29 & 39 \\ +29 & 37 \\ +29 & 37 \\ +30 & 08 \end{vmatrix}$           | Compass C. H. used |
| 10.               | -36 11 $-36$ 20                                      | 20 28  | T.  <br>S.  <br>R.  <br>T. | +32 	 13  +30 	 44  +31 	 50  +31 	 39  +32 	 23                                                       | s.e. by e.<br>s.<br>s.e. $\frac{1}{2}$ s.<br>s.e. $\frac{1}{2}$ s.                  | $egin{bmatrix} -53 & 40 \ -55 & 00 \end{bmatrix}$                           | $\begin{vmatrix} 0 & 00 \\ -1 & 45 \\ -1 & 48 \end{vmatrix}$              | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                 | Į.                 |
| 11.               | -36 12<br>-36 21                                     |        | T. S. O. T. T.             | +32 02 $+30 03$ $+30 41$ $+29 56$ $+30 26$                                                             | s.s.e. $\frac{1}{2}$ e.<br>s.w.<br>s. by w.<br>s. by w.                             |                                                                             | $\begin{vmatrix} +2 & 00 \\ +0 & 37 \\ +0 & 37 \end{vmatrix}$             | $\begin{vmatrix} +30 & 39 \\ +32 & 03 \\ +31 & 18 \end{vmatrix}$                                   |                    |
|                   | —36 28                                               | 21 15  | S.<br>T.<br>R.<br>T.       | +30 20 $+30 17$ $+30 20$ $+30 14$ $+30 19$                                                             | S.<br>S.<br>S.<br>S. $\frac{1}{2}$ E.                                               | -55 30                                                                      | 0 00<br>0 00<br>0 00                                                      | $ \begin{vmatrix} +30 & 17 \\ +30 & 17 \\ +30 & 20 \\ +30 & 14 \\ +30 & 00 \end{vmatrix} +30 & 40$ |                    |
|                   |                                                      |        | O. S. T. R. T.             | $     \begin{array}{rrrr}     +31 & 00 \\     +30 & 41 \\     +31 & 11 \\     +31 & 29   \end{array} $ | S. $\frac{1}{2}$ E.<br>S. $\frac{1}{2}$ E.<br>S. $\frac{1}{2}$ E.<br>S.             |                                                                             | $ \begin{vmatrix} -0 & 19 \\ -0 & 19 \\ -0 & 19 \\ 0 & 00 \end{vmatrix} $ | $egin{array}{c c} +30 & 41 \\ +30 & 22 \\ +30 & 52 \\ +31 & 29 \\ \hline \end{array}$              |                    |
| 12.               | <b>—37</b> 10                                        | 21 31  | R. T. T. T.                | +31 02  +30 01  +31 53  +32 09  +32 10                                                                 | S. $\frac{1}{2}$ E.<br>S.<br>S. $\frac{1}{2}$ W.<br>S. $\frac{1}{2}$ E.<br>S. by E. |                                                                             | $\begin{vmatrix} 0 & 00 \\ + 0 & 19 \\ - 0 & 19 \end{vmatrix}$            | +30 01                                                                                             |                    |
|                   |                                                      |        | T. O. S. T.                | +31 50 $+31 09$ $+31 16$ $+31 14$                                                                      | s. by E. s. by E. s. by E. s. by E.                                                 | <b>-56 00</b>                                                               | $\begin{bmatrix} -0 & 38 \\ -0 & 38 \\ -0 & 38 \end{bmatrix}$             | $\begin{vmatrix} +31 & 12 \\ +30 & 31 \\ +30 & 38 \\ +30 & 36 \\ +30 & 10 \end{vmatrix}$           |                    |
| 13.               | -37 27 $-38 11$ $-38 20$                             | 21 27  | R.<br>S.<br>T.<br>T.       | +28 	57 $+32 	43 $ $+31 	10 $ $+30 	04 $ $+30 	20$                                                     | s. by E. s.E. $\frac{1}{2}$ E. s.w. by w. s.w. s.w.                                 | $\left.\begin{array}{c} \\ \\ \\ \end{array}\right\} -57 \ 30$              | -2 16                                                                     |                                                                                                    |                    |
| 14.<br>15.        | -39 55 $-41 00$ $-41 15$                             | 22 01  | T.<br>T.<br>S.             | +30 20 $+29 51$ $+32 30$ $+31 20$                                                                      | s.s.w.<br>s.e. by s.<br>s.e. by s.                                                  | $\left.\begin{array}{c} -59 & 30 \\ -59 & 40 \end{array}\right.$            | $\begin{vmatrix} +1 & 18 \\ -2 & 04 \end{vmatrix}$                        | $\begin{vmatrix} +31 & 09 & +31 & 09 \\ +30 & 26 \\ +29 & 16 \end{vmatrix} +29 & 51$               | 1 .                |
| 16.               | -41 24                                               | 24 32  | T.<br>T.<br>S.             | $+32 09 \\ +32 35 \\ +31 00$                                                                           | S.S.E. $\frac{1}{2}$ E.<br>S.E. $\frac{1}{2}$ S.<br>S.E. by S.                      | $\left  \right _{-62\ 00}$                                                  | $\begin{bmatrix} -2 & 17 \\ -2 & 03 \end{bmatrix}$                        | $\begin{vmatrix} +30 & 23 \\ +30 & 18 \\ +28 & 57 \\ +20 & 50 \\ \end{vmatrix} +30 & 25$           |                    |
| 17.               | -41 32 $-41 28$ $-41 50$                             |        | T.<br>R.<br>R.<br>S.       | +32 	45  +32 	41  +32 	00  +31 	48                                                                     | S.S.E. \(\frac{1}{2}\) E.<br>S.S.E.<br>S.S.E.<br>S.S.E.                             |                                                                             | $\begin{bmatrix} -1 & 24 \\ -1 & 24 \end{bmatrix}$                        | +30 39<br>+31 17<br>+30 36                                                                         |                    |
| 1,8.              |                                                      |        | T.<br>T.<br>S.             | +34 43<br>+34 27<br>+34 43                                                                             | S.S.E.<br>S.S.E.<br>S.S.E.                                                          |                                                                             | $\begin{vmatrix} -1 & 26 \\ -1 & 26 \\ -1 & 26 \end{vmatrix}$             | $\begin{vmatrix} +33 & 17 \\ +33 & 01 \\ +33 & 17 \\ +33 & 37 \end{vmatrix}$                       |                    |
| 25                | $\begin{bmatrix} -43 & 24 \\ -46 & 31 \end{bmatrix}$ |        | O.<br>R.<br>T.<br>R.       | +35 58  +33 58  +33 39  +35 44                                                                         | s.s.e.<br>s.s.e.<br>s. by e.<br>s.e.                                                | $ \begin{vmatrix} 1 & 0 & 0 \\ -62 & 40 & 0 \\ -67 & 00 & 0 \end{vmatrix} $ | $\begin{vmatrix} -1 & 26 \\ -0 & 45 \end{vmatrix}$                        | $egin{array}{c cccc} +34 & 32 \ +32 & 32 \ +32 & 54 \ +32 & 41 \ +32 & 41 \ \end{array} +32 & 41$  | l                  |
|                   | $-46 \ 34$                                           |        | T.<br>T.                   | +31 	44  +31 	53                                                                                       | N.W.<br>N.N.W.                                                                      | $\left  \begin{array}{c} -67 & 66 \\ -67 & 30 \end{array} \right $          | +212                                                                      | $\left  \begin{array}{ccc} +33 & 16 \\ +33 & 56 \\ +33 & 00 \end{array} \right  +33 \ 28$          | 1                  |

## Observations of Declination. (Continued.)

| Date.                              | Lat.                         | Long.                   | Observer.                  | Declination observed.                                                                                              | Ship's head.                                                                                                                   | Inclination.                                                                                                                                | Correction for ship's attraction.                                    | Corrected Declination.                                                                                                                                                      | Remarks. |
|------------------------------------|------------------------------|-------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1840.<br>April 30.<br>May 1.<br>2. | -46 32                       | 52 01<br>56 17<br>56 28 | R. S. T. R. T.             | $\begin{vmatrix} +37 & 06 \\ +36 & 34 \\ +33 & 48 \\ +33 & 34 \\ +32 & 21 \end{vmatrix}$                           | N. by E. ½ E. S.E. S.E. S.E. S.E.                                                                                              | $ \begin{cases} -6\mathring{7} & 30 \\ -67 & 30 \end{cases} $ $ \begin{cases} -67 & 50 \end{cases} $ $ \begin{cases} -68 & 30 \end{cases} $ | +0 53<br>-3 07<br>-3 07<br>-3 07<br>-3 07<br>-3 15                   | $ \begin{vmatrix} +32 & 33 \\ +33 & 59 \end{vmatrix} + 33 & 16 \\ +33 & 27 \\ +30 & 41 \\ +30 & 27 \end{vmatrix} + 31 & 32 \\ +29 & 06 \\ +29 & 55 \end{vmatrix} + 29 & 00$ |          |
|                                    | -47 18                       |                         | R.<br>R.<br>R.             | $\begin{vmatrix} +31 & 50 \\ +30 & 32 \\ +29 & 39 \\ +29 & 34 \end{vmatrix}$                                       | s.e. by e. ½ e.<br>s.e. by e. ½ e.<br>s.e. by e. ½ e.<br>s.e. by e. ½ e.<br>s.e. by e. ½ e.                                    | -72 30                                                                                                                                      | -3 15<br>-4 41<br>-5 10                                              | +25 38                                                                                                                                                                      |          |
| 31.<br>Aug. 2.<br>4.               | $-47 34 \\ -47 45 \\ -47 40$ | 113 49                  | T.<br>T.<br>R.             | $\begin{vmatrix} +16 & 39 \\ +17 & 58 \\ +15 & 26 \\ +15 & 11 \end{vmatrix}$                                       | s.e. by $e. \frac{1}{2}e.$<br>e. by $s. \frac{1}{2}s.$<br>e. by $s. \frac{1}{2}s.$<br>e. $\frac{1}{2}s.$<br>e. $\frac{1}{2}s.$ |                                                                                                                                             | -5 49<br>-5 51                                                       | +18 59<br>+11 29<br>+ 9 34                                                                                                                                                  |          |
| 7.                                 | <b>—46 36</b>                | 131 48                  | R. T. T. T. R. R. R. R. R. | +15 39<br>+ 1 58<br>+ 3 44<br>+ 3 08<br>+ 5 43<br>+ 5 58<br>+ 6 30<br>+ 4 29                                       | E. $\frac{1}{2}$ S.<br>E. $\frac{1}{2}$ N.<br>E. by N.<br>E. $\frac{1}{2}$ N.<br>E. $\frac{1}{2}$ N.<br>E.                     | -75 00                                                                                                                                      | -5 35<br>-5 27<br>-5 35<br>-5 35<br>-5 43<br>-5 43<br>-5 43<br>-5 43 | - 1 00                                                                                                                                                                      |          |
|                                    | -46 13<br>-46 06             | 132 00<br>132 12        | R.                         | $ \begin{vmatrix} + & 5 & 16 \\ + & 2 & 09 \\ + & 6 & 17 \\ + & 6 & 53 \\ + & 7 & 25 \\ - & 3 & 06 \end{vmatrix} $ | E.<br>E. $\frac{1}{2}$ N.<br>E. $\frac{1}{2}$ N.<br>E. $\frac{1}{2}$ N.                                                        | \right\}-75 00                                                                                                                              | -5 43<br>-5 35<br>-5 35<br>-5 35<br>-5 35<br>0 00                    | - 0 34                                                                                                                                                                      |          |
| 10.                                | <b>-44 23</b>                | 141 11                  |                            | - 4 19 - 3 12 - 3 12 - 4 01 - 3 39 - 4 24 - 2 01                                                                   | E.N.E. E.N.E. E.N.E. E.N.E. E.N.E. E.N.E.                                                                                      | -73 00                                                                                                                                      | <b>—4 20</b>                                                         |                                                                                                                                                                             |          |

The observers are distinguished by their initials as follows:-

R., Sir James Ross; S., Lieut. Sibbald; T., Mr. Tucker, Master; O., Mr. Oakley, Mate.

Observations of the Magnetic Inclination taken on board Her Majesty's Ship Erebus, by Captain Sir James Clark Ross, with Needle F. 1., between the Cape of Good Hope and Kerguelen Island.

|            | Lat.                                          | Long. | Method<br>employed.         | Observed<br>Inclination.                                                                                      | Ship's head.       | Corrections.               |        | ·                                                             | ·            |
|------------|-----------------------------------------------|-------|-----------------------------|---------------------------------------------------------------------------------------------------------------|--------------------|----------------------------|--------|---------------------------------------------------------------|--------------|
| Date.      |                                               |       |                             |                                                                                                               |                    | Ship's<br>attrac-<br>tion. | Index. | Corrected<br>Inclination.                                     | Remarks.     |
| -          | $-3\overset{\circ}{5}$ $1\overset{\prime}{4}$ |       | Direct.                     | $-5\overset{\circ}{4} \ 2\overset{\circ}{3} \\ -54 \ 30$                                                      | s. by E.           | -04                        | -2.0   | $\left. ight\} -54  32$                                       |              |
| 8.         | -35 48                                        | 18 47 | Direct. S. Direct.          |                                                                                                               | E.S.E.<br>w. by s. | +23                        | -2.0   | $\left  \begin{array}{c} \\ \\ \end{array} \right  = 54 \ 18$ |              |
|            | -36 00                                        |       | S. Direct. S.               | $ \begin{vmatrix} -54 & 47 \\ -55 & 42 \\ -56 & 10 \end{vmatrix} $                                            |                    | +34                        | -2.0   | igg  igg  -55 24                                              |              |
|            | -36 07                                        |       | Direct.                     | -55 	49 $-55 	51$                                                                                             | s.e. by s.         | +02                        | -2.0   | $\left.\begin{array}{c} -55 & 50 \end{array}\right.$          |              |
| 11.        | -36 29<br>·                                   | 21 16 | Direct.<br>S.<br>S.N.<br>N. | $     \begin{array}{r}       -55 & 30 \\       -55 & 36 \\       -55 & 26 \\       -55 & 14     \end{array} $ | s.                 | -10                        | -2.0   | $\left  \begin{array}{c} -55 & 38 \end{array} \right $        |              |
| 12.        | -37 19                                        | 21 37 | Direct. S. Direct.          | $ \begin{vmatrix} -55 & 27 \\ -56 & 01 \\ -55 & 42 \end{vmatrix} $                                            | s.                 | -10                        | -2.0   |                                                               |              |
|            |                                               |       | S. Direct.                  |                                                                                                               |                    | -10                        | -20    |                                                               | -            |
|            | -38 11                                        |       | Direct.<br>S.               | $-55 	ext{ } 41 \\ -56 	ext{ } 09$                                                                            | w.s.w.             | +22                        | -2.0   | $\left.\right\} -55 35$                                       | Much motion. |
|            | -40 05                                        |       | Direct.                     | $\begin{bmatrix} -56 & 27 \\ -56 & 19 \end{bmatrix}$                                                          | S.S.E.             | -08                        | -2.0   | $\left.\right\}$ -56 33                                       |              |
|            | -40 29 $-41 24$                               |       | Direct. S. Direct.          |                                                                                                               | s.e. by s.         | -06                        | -2.0   | $\left.\right\}$ -57 28                                       |              |
| 4          | _11 &1                                        | 20 00 | S. S.N. N.                  | $ \begin{array}{r rrrr} -58 & 24 \\ -58 & 11 \\ -58 & 11 \end{array} $                                        | Sille by Si        | -08                        | -2.0   | -58 21                                                        |              |
|            | -41 47                                        |       | Direct.<br>S.               |                                                                                                               | S.S.E.             | -15                        | -2.0   | $\left  \begin{array}{c} \\ \\ \end{array} \right  = 58 43$   |              |
| 18.        | -43 02                                        |       | Direct. S.                  | -59 01 $-59 20$                                                                                               | s.s.e.             | -19                        | -2.0   | $\left.\begin{array}{ c c c c c c c c c c c c c c c c c c c$  |              |
|            | <b>-43 07</b>                                 | 28 43 | S.N.<br>N.<br>Direct.       |                                                                                                               |                    | -20                        | -2.0   | $\left  \begin{array}{c} -59 & 37 \end{array} \right $        |              |
|            | -44 19                                        |       | Direct.<br>S.               | $ \begin{array}{r rrrr} -60 & 30 \\ -60 & 13 \end{array} $                                                    | s. by E.           | -29                        | -2.0   | $\left.\begin{array}{c} -60 & 52 \end{array}\right.$          |              |
|            | <b>-45 40</b>                                 |       | Direct.                     | $ \begin{array}{r rrrr} -61 & 41 \\ -62 & 01 \end{array} $                                                    | S.S.E.             | -30                        | -2.0   | $\left  \right\} -62 \ 23$                                    |              |
| 21.        | <b>-46 59</b>                                 |       | Direct. S.                  | $\begin{bmatrix} -63 & 28 \\ -63 & 32 \\ 62 & 50 \end{bmatrix}$                                               | s.e. by s.         | -28                        | -2.0   | $\left  \frac{1}{2} - 64 \ 00 \right $                        | -            |
| 22.<br>23. | -47 00 $-46 46$                               |       | Direct. S. Direct.          |                                                                                                               | s.e. by s.         | 29                         | -2.0   | $\left.\begin{array}{c} -64 & 30 \\ \end{array}\right.$       | Much motion. |
|            |                                               |       | S. Direct.                  |                                                                                                               | 2.2. NJ 2.         | -32                        | -2.0   | -65 47                                                        | Very steady. |
|            |                                               |       | Direct.                     | $\begin{vmatrix} -66 & 18 \\ -66 & 20 \end{vmatrix}$                                                          | S.E. ½ E.          | -15                        | -2.0   | $\left  \begin{array}{c} \\ \end{array} \right  -66 \ 36$     | roly secany. |
| 26.        | -46 41                                        | •     | Direct.                     | $\begin{bmatrix} -67 & 00 \\ -67 & 06 \\ 67 & 21 \end{bmatrix}$                                               | s.e. by s.         | -36                        | -2.0   | $\left.\right\} -67 \ 41$                                     |              |
| 28.        | <b>-46 28</b>                                 | əz 31 | Direct.<br>S.               | $\begin{vmatrix} -67 & 31 \\ -67 & 32 \end{vmatrix}$                                                          | W.S.W.             | +03                        | -2.0   | $\left  \right\} -67 30$                                      |              |

|                   |                 |       |                                |                                                                                           |                           | Corre              | ctions.      |                                                              |          |
|-------------------|-----------------|-------|--------------------------------|-------------------------------------------------------------------------------------------|---------------------------|--------------------|--------------|--------------------------------------------------------------|----------|
| Date.             | Lat.            | Long. | Method<br>employed.            | Observed<br>Inclination.                                                                  | Ship's head.              | Ship's attraction. | Index.       | Corrected<br>Inclination.                                    | Remarks. |
| 1840.<br>Apr. 29. |                 |       | Direct.                        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                    | ľ                         |                    | -2.0         | $\left67  29  \right $                                       |          |
|                   | -46 17 $-46 25$ |       | Direct. S. Direct.             | $     \begin{array}{r rrr}     -66 & 20 \\     -66 & 27 \\     -66 & 26     \end{array} $ | s.s.w.<br>s. by E. ½ E.   | -45                | -2.0         | $\left.\right\} -67 \ 10$                                    |          |
|                   | 23 %            |       | S.<br>S.N.                     | $ \begin{array}{r rrrr} -66 & 39 \\ -66 & 40 \end{array} $                                |                           | -47                | -2.0         | -67 30                                                       |          |
| 2.                | <b>—46</b> 57   | 55 34 | N.<br>Direct.<br>S.            | $\begin{vmatrix} -67 & 00 \\ -67 & 37 \\ -67 & 51 \end{vmatrix}$                          | S.E.                      | -26                | -2.0         | $\left. \begin{array}{c} 1 \\ -68 \\ 12 \end{array} \right $ |          |
| 3.                | <b>-47</b> 19   | 59 10 | Direct.<br>S.<br>S.N.<br>N.    |                                                                                           | S.E.                      | -27                | -2.0         | $\left. \begin{array}{c} -68 & 42 \end{array} \right $       |          |
| 4.                | <b>-47 40</b>   | 62 25 | Direct.                        | $\begin{bmatrix} -69 & 09 \\ -69 & 13 \\ -69 & 02 \end{bmatrix}$                          | S.E.                      | -28                | -2.0         | $\left.\right\} - 69 \ 37$                                   |          |
|                   | -48 36          |       | Direct.                        |                                                                                           | N.N.W.                    | +69                | -2.0         | $\rightarrow$ -70 12                                         |          |
|                   | <b>-48</b> 36   |       | Direct.                        | $\begin{vmatrix} -69 & 12 \\ -69 & 25 \\ 60 & 10 \end{vmatrix}$                           | s.w. by s.                | -42                | -2.0         |                                                              |          |
|                   | -48 24          | _     | Direct.                        | -69 28                                                                                    | s.w.byw. $\frac{1}{2}$ w. | -08                | -2.0         | $\left.\right\} -69 \ 33$                                    |          |
| 12.               | -48 40          | 08 58 | Direct.<br>S.<br>Direct.<br>S. | $ \begin{array}{rrrrr} -71 & 47 \\ -72 & 03 \\ -69 & 46 \\ -69 & 59 \end{array} $         | s.w.byw.½w.               | -72<br>-08         | -2·0<br>-2·0 |                                                              |          |

Abstract of Observations of the Magnetic Force between the Cape of Good Hope and Kerguelen Island, made in Her Majesty's Ships Erebus and Terror in 1840\*.

| Position.                                                                                                                                          |                                                                                                                                                                                                    | Intensity.                                                                                                                                                                                         |                                                                                                                                | Posi                                                                                                                                        | tion.                                                                                                                                                                                     | Intensity.                                                                                                                          |                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Lat.                                                                                                                                               | Long.                                                                                                                                                                                              | Cape = 0.981.                                                                                                                                                                                      | Cape =1.000.                                                                                                                   | Lat.                                                                                                                                        | Long.                                                                                                                                                                                     | Cape = 0.981.                                                                                                                       | Cape = 1.000.                                                                                                                       |
| -34 11 -37 44 -35 14 -36 04 -37 16 -36 16 -36 11 -35 48 -38 47 -36 35 -38 58 -40 05 -40 45 -38 13 -42 40 -41 24 -42 56 -40 29 -41 58 -44 28 -46 41 | 18 26<br>16 36<br>18 27<br>19 19<br>17 24<br>20 04<br>18 25<br>20 42<br>18 47<br>17 00<br>21 20<br>17 26<br>20 38<br>19 20<br>21 30<br>22 02<br>25 00<br>23 12<br>22 22<br>26 38<br>24 55<br>29 00 | 0.981<br>0.983<br>0.984<br>0.988<br>0.989<br>0.995<br>0.995<br>0.997<br>0.998<br>0.999<br>1.010<br>1.020<br>1.021<br>1.036<br>1.045<br>1.058<br>1.063<br>1.073<br>1.079<br>1.088<br>1.096<br>1.122 | 1.000† 1.003 1.004 1.008 1.009 1.015 1.016 1.017 1.018 1.019 1.030 1.040 1.041 1.057 1.066 1.079 1.084 1.100 1.110 1.118 1.114 | -43 07 -47 00 -45 44 -46 45 -47 00 -46 46 -47 50 -47 01 -46 41 -46 28 -46 29 -46 25 -46 57 -46 18 -47 19 -47 41 -48 41 -48 39 -48 36 -48 36 | 28 43<br>38 48<br>34 16<br>40 05<br>37 14<br>43 48<br>42 41<br>45 20<br>46 10<br>50 52<br>52 43<br>52 26<br>52 01<br>55 39<br>52 04<br>59 10<br>62 59<br>68 54<br>68 57<br>69 07<br>69 21 | 1·134 1·170 1·171 1·183 1·186 1·230 1·232 1·261 1·269 1·277 1·288 1·314 1·323 1·326 1·328 1·377 1·459 1·465 1·471 1·488 1·489 1·490 | 1·157 1·193 1·194 1·206 1·209 1·255 1·257 1·286 1·294 1·302 1·316 1·340 1·349 1·352 1·354 1·404 1·487 1·493 1·499 1·517 1·518 1·520 |
| $-46 00 \\ -44 19$                                                                                                                                 | 26 12<br>31 06                                                                                                                                                                                     | 1·128<br>1·131                                                                                                                                                                                     | 1·150<br>1·154                                                                                                                 | -48 30                                                                                                                                      | 69 52                                                                                                                                                                                     | 1.497                                                                                                                               | 1.527                                                                                                                               |

<sup>\*</sup> Philosophical Transactions, 1842, p. 41. † On shore in Simon's Bay. ‡ On shore at Kerguelen Island.