КРАТКИЙ КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ

«Нелинейные уравнения с частными производными, вязкостные решения»

С. В. Шапошников

ОГЛАВЛЕНИЕ

- 1. Примеры задач, приводящих к нелинейным уравнениям...3
- 2. Принцип максимума для оператора Лапласа и метод Перрона...5
- 3. Пространства Соболева и слабые решения эллиптических уравнений...11
- 4. Классические методы теории нелинейных эллиптических уравнений...14
- 5. Уравнения с частными производными первого порядка: метод характеристик...20
- 6. Законы сохранения: появление особенностей и метод исчезающей вязкости...23
- 7. Вязкостные решения: определение и основные свойства...27
- 8. Принцип сравнения для вязкостных решений...35
- 9. Доказательство леммы Иши...44
- 10. Метод Перрона построения вязкостных решений...49
- 11. Литература...51

1. ПРИМЕРЫ ЗАДАЧ, ПРИВОДЯЩИХ К НЕЛИНЕЙНЫМ УРАВНЕНИЯМ

Вариационные задачи

Пусть Ω — ограниченная область. Рассмотрим задачу о поиске экстремума функционала

$$\int_{\Omega} L(x, u(x), Du(x)) \, dx,$$

на множестве функций (достаточно регулярных, например класса $C^2(\Omega) \cap C(\overline{\Omega})$), которые на границе области $\partial\Omega$ равны заданной функции g. Предположим, что экстремум достигается на функции u. Тогда для всякой функции $h \in C_0^\infty(\Omega)$ функция

$$f(t) = \int_{\Omega} L(x, u(x) + th(x), Du(x) + tDh(x)) dx$$

имеет в точке t=0 экстремум. Следовательно, верны равенства

$$0 = f'(0) = \int_{\Omega} \left[\sum_{i=1}^{d} L_{p_i}(x, u, Du) h_{x_i} + L_u(x, u, Du) h \right] dx.$$

Интегрируя по частям, получаем

$$\int_{\Omega} \left[\sum_{i=1}^{d} \partial_{x_i} \left(L_{p_i}(x, u, Du) \right) - L_u(x, u, Du) \right] h \, dx.$$

В силу произвольности h заключаем, что

$$\sum_{i=1}^{d} \partial_{x_i} (L_{p_i}(x, u, Du)) - L_u(x, u, Du) = 0.$$
 (1)

Таким образом, экстремальная функция u является решением задачи Дирихле для нелинейного уравнения (1) и граничного условия u = g на $\partial\Omega$.

Если $L(x,u,p)=\frac{|p|^2}{2}+F(u)$, где F'(u)=f(u), то получаем задачу

$$\Delta u = f(u), \quad u|_{\partial\Omega} = g.$$

Если $L(x, u, p) = \sqrt{1 + |p|^2}$, то получаем задачу

$$\sum_{i=1}^{d} \partial_{x_i} \left(\frac{\partial_{x_i} u}{\sqrt{1 + |Du|^2}} \right) = 0, \quad u|_{\partial\Omega} = g,$$

которая возникает при описании поверхностей минимальной площади.

Задача о переносе меры

Пусть $\mu = \varrho_{\mu}(x) dx$ и $\sigma = \varrho_{\sigma}(x) dx$. Требуется найти такую функцию u, что отображение f(x) = Du(x) переводит меру μ в меру σ , то есть $\sigma = \mu \circ f^{-1}$ и для всякой ограниченной борелевской функции g верно равенство

$$\int g(f(x)) \, \mu(dx) = \int g(y) \, \sigma(dy).$$

Предполагая, что f достаточно регулярное отображение (например диффеоморфизм), применяем классическую формулу замены переменных

$$\int g(f(x))\varrho_{\mu}(x) dx = \int g(y)\varrho_{\mu}(f^{-1}(y))|\det(\mathrm{Df}^{-1}(y))| dy.$$

Следовательно, верно равенство

$$\varrho_{\mu}(f^{-1}(y))|\det (Df^{-1}(y))| = \varrho_{\sigma}(y).$$

Подставляя y = f(x) = Du(x), получаем нелинейное уравнение

$$|\det D^2 u(x)| \varrho_{\sigma}(Du(x)) = \varrho_{\mu}(x).$$

Если $\varrho_{\sigma} = 1$ и u — выпуклая функция (а именно градиенты выпуклых функций обеспечивают наилучший (в определенном смысле) перенос меры), то приходим к классическому уравнению Монжа—Ампера

$$\det D^2 u(x) = \varrho_{\mu}(x).$$

Оптимальное управление

Рассмотрим задачу о нахождении измеримой функции $\alpha \colon [0, +\infty) \to A \subset \mathbb{R}^m$, на которой достигается минимум функционала

$$\int_0^{+\infty} e^{-\lambda t} l(y_x(t), \alpha(t)) dt,$$

где $\lambda > 0$, а функция y_x является решением задачи Коши

$$y'(t) = f(y(t), \alpha(t)), \quad y(0) = x.$$

Векторное поле f и функция l предполагаются достаточно регулярными.

Оказывается, что для построения оптимального контроля α полезно уметь решать нелинейное уравнение Гамильтона-Якоби-Беллмана

$$\lambda u + H(x, Du) = 0,$$

где

$$H(x,p) = \sup_{a \in A} \left\{ -l(x,a) - \langle f(x,a), p \rangle \right\}.$$

Предположим, что $u \in C_b^1(\mathbb{R}^d)$ является решением уравнения Гамильтона–Якоби–Беллмана. Предположим также, что sup достигается в единственной точке a(x,p), причем эта точка непрерывно зависит от x и p. Тогда $\alpha(t) = a(y_x(t), Du(y_x(t)))$, где

$$y'_x(t) = f(y_x(t), a(y_x(t), Du(y_x(t)))), \quad y_x(0) = x,$$

является оптимальным управлением, а минимальное значение функционала равно u(x).

Пусть α — произвольное управление, а y_x — соответствующее ему решение. Тогда

$$-\frac{d}{dt}\Big(e^{-\lambda t}u(y_x(t))\Big) = \lambda u(y_x(t))e^{-\lambda t} - \langle f(y_x(t), \alpha(t)), Du(y_x(t))\rangle.$$

Так как

$$-\langle f(y_x(t), \alpha(t)), Du(y_x(t))\rangle \le H(y_x(t), Du(y_x(t))) + l(y_x(t), \alpha(t))$$

и
$$\lambda u(y_x(t)) + H(y_x(t), Du(y_x(t))) = 0$$
, то

$$-\frac{d}{dt}\left(e^{-\lambda t}u(y_x(t))\right) \le e^{-\lambda t}l(y_x(t),\alpha(t)),$$

Интегрируя это неравенство по промежутку $[0, +\infty)$, получаем

$$u(x) \le \int_0^{+\infty} l(y_x(t), \alpha(t)) dt.$$

Если $\alpha(t) = a(y_x(t), Du(y_x(t)))$ и $y'_x(t) = f(y_x(t), a(y_x(t), Du(y_x(t))))$, то

$$-\frac{d}{dt}\left(e^{-\lambda t}u(y_x(t))\right) = e^{-\lambda t}l(y_x(t), \alpha(t))$$

и верно равенство

$$u(x) = \int_0^{+\infty} l(y_x(t), \alpha(t)) dt.$$

Таким образом, управление $\alpha(t)=a(y_x(t),Du(y_x(t)))$ действительно оптимально. Если $l(x,a)=\frac{|a|^2}{2}+h(x),\, f(x,a)=a,\, A=\mathbb{R}^d,$ то

Если
$$l(x,a) = \frac{|a|^2}{2} + h(x), f(x,a) = a, A = \mathbb{R}^d$$
, то

$$H(x,p) = \frac{|p|^2}{2} - h(x)$$

и получаем уравнение

$$\lambda u(x)+\frac{|Du(x)|^2}{2}=h(x).$$
 Если $l(x,a)=h(x),\ f(x,a)=a,\ A=\{a\colon |a|\le 1\},\ {\rm тo}$
$$H(x,p)=|p|-h(x)$$

и получаем уравнение

$$\lambda u(x) + |Du(x)| = h(x).$$

Во всех рассмотренных выше примерах возникает необходимость исследовать нелинейное уравнение вида

$$F(x, u(x), Du(x), D^2u(x)) = 0.$$

Кроме того, нас интересуют именно эллиптические уравнения, типичным представителем которых является оператор Лапласа $\Delta u = \text{tr} D^2 u$.

2. ПРИНЦИП МАКСИМУМА ДЛЯ ОПЕРАТОРА ЛАПЛАСА И МЕТОД ПЕРРОНА

Теорема 2.1. (принцип максимума) $\Pi y cmb \ \Omega$ — ограниченная область в \mathbb{R}^d и дана функция $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Если $u \leq 0$ на $\partial\Omega$ и $\Delta u \geq 0$, то $u \leq 0$ на Ω .

Доказательство. Предположим, что $\Delta u > 0$ в Ω . В этом случае у функции u нет локальных максимумов в Ω , так как в точке максимума $D^2u \leq 0$ и $\Delta u = \operatorname{tr} D^2u \leq 0$, а это противоречит неравенству $\Delta u > 0$. Следовательно, максимум достигается на границе $\partial\Omega$ и $u\leq 0$.

Рассмотрим теперь общий случай, когда $\Delta u > 0$. Пусть $\varepsilon > 0$ и

$$v(x) = u(x) + \varepsilon(x_1^2 - C),$$

где $C=\max_{\overline{\Omega}}x_1^2$. Тогда $\Delta v\geq 2\varepsilon>0$ в Ω и $v\leq 0$ на $\partial\Omega.$ По доказанному выше $v\leq 0,$ то есть $u(x) \leq \varepsilon (C - x_1^2)$. В силу произвольности ε получаем требуемое неравенство $u \leq 0$.

Из доказанного немедленно следует принцип сравнения.

Следствие 2.1. (принцип сравнения) $Ecnu\ u,v\in C^2(\Omega)\cap C(\overline{\Omega}),\ \Delta u\leq 0,\ \Delta v\geq 0\ в$ Ω и $u \leq v$ на $\partial\Omega$, то $u \leq v$ на Ω .

Функция $u \in C^2(\Omega)$, удовлетворяющая неравенству $\Delta u \geq 0$, называется классической субгармонической функцией, а функция $v \in C^2(\Omega)$, удовлетворяющая неравенству $\Delta v \leq 0$, называется классической супергармонической функцией.

Следствие 2.2. (полезные оценки)

(i) Ecau $u \in C^2(\Omega) \cap C(\overline{\Omega})$ $u \Delta u = 0$, mo

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u, \quad \min_{\overline{\Omega}} u = \min_{\partial \Omega} u.$$

(ii) Ecau $u \in C^2(\Omega) \cap C(\overline{\Omega})$ $u \Delta u = f$, mo

$$\max_{\overline{\Omega}} u \le \max_{\partial \Omega} u^+ + C(d, \Omega) \sup_{\Omega} f^-,$$

 $e de u^+ = \max\{u, 0\} \ u \ f^- = \max\{-f, 0\}.$

(iii) $Ecnu \ u \in C^2(\Omega) \cap C(\overline{\Omega}) \ u \ \Delta u = f, \ mo$

$$\max_{\overline{\Omega}} |u| \leq \max_{\partial \Omega} |u| + C(d,\Omega) \sup_{\Omega} |f|.$$

Доказательство. Достаточно обосновать (ii). Положим

$$v(x) = u(x) - \max_{\partial \Omega} u^{+} + N(x_1^2 - \max_{\Omega} x_1^2),$$

где $N=\frac{1}{2}\sup_{\Omega}f^-$. Тогда $\Delta v=f+\sup_{\Omega}f^-\geq 0$ и $v\leq 0$ на $\partial\Omega$. Следовательно, $v\leq 0$, то есть

$$u(x) \le \max_{\partial \Omega} u^+ + C \sup_{\Omega} f^-, \quad C = \max_{\overline{\Omega}} x_1^2.$$

Оценки С.Н.Бернштейна

С помощью принципа максимума можно получать оценки производных. Через B(a,r) обозначаем шар с центром a и радиуса r. Пусть $\overline{B(a,r)} \subset \Omega$.

Теорема 2.2. Для всякого 0 < r < R и всякого $k \ge 0$ найдется такое число C(k,r), что для всякой функции $u \in C^2(\Omega)$, удовлетворяющей уравнению $\Delta u = 0$ на Ω , выполняется неравенство

$$\sup_{B(a,r)} |D^{(k)}u| \le C(k,r) \sup_{B(a,R)} |u|.$$

Доказательство. Достаточно рассмотреть лишь случай k=1. Пусть ψ — гладкая неотрицательная функция с компактным носителем в B(a,R), причем $\psi=1$ на B(a,r). Положим

$$v(x) = \psi(x)|Du(x)|^2 + \lambda u^2(x),$$

где число $\lambda>0$ будет выбрано позднее. Явным вычислением несложно проверить, что

$$\Delta v \ge (2|D\psi|^2 - 2\psi|\Delta\psi| + 2\lambda)|Du|^2 + 2\psi^2|D^2u|^2 - 8\psi|D\psi||Du||D^2u|.$$

Применим неравенство $ab \leq \frac{a^2}{2} + \frac{b^2}{2}$ с $a = 8|D\psi||Du|$ и $b = \psi|D^2u|$. Получаем неравенство

$$\Delta v \ge \left(-30|D\psi|^2 - 2\psi|\Delta\psi| + 2\lambda \right) |Du|^2 + \frac{3}{2}\psi^2 |D^2u|^2.$$

Выбираем число λ так, что на B(a,R) выполняется неравенство

$$-30|D\psi|^2 - 2\psi|\Delta\psi| + 2\lambda > 0.$$

Тогда $\Delta v \geq 0$ и $v \leq \max_{\partial B(a,R)} v$. Остается заметить, что $v = \lambda u^2$ на $\partial B(a,R)$ и $v = |Du|^2 + \lambda u^2$ на B(a,r).

Следствие 2.3. (компактность множества решений) $\Pi y cm b \ M > 0 \ u \ \Omega - oбласть в \mathbb{R}^d$. Ограничение семейства функций

$$G = \left\{ u \in C^2(\Omega) \colon \Delta u = 0, \, |u| \le M \right\}$$

на всякий замкнутый шар $\overline{B}\subset\Omega$ является вполне ограниченным множеством в пространстве $C(\overline{B}).$

Доказательство. Локальная ограниченность |Du| влечет равностепенную непрерывность, то есть выполняются условия теоремы Арцела–Асколи.

Задача Дирихле на шаре

Рассмотрим задачу Дирихле

$$\begin{cases} \Delta u = f, & x \in \Omega \\ u = g, & x \in \partial \Omega. \end{cases}$$

Предполагается, что $u \in C^2(\Omega) \cap C(\overline{\Omega}), f \in C(\overline{\Omega})$ и $g \in C(\partial\Omega)$.

Из принципа максимума следует единственность решения.

Теорема 2.3. Пусть $\Omega = B(0,1)$. Для всяких многочленов f и g существует решение и задачи Дирихле, которое является многочленом.

 Λ оказательство. Пусть \mathcal{P}_n — многочлены степени не выше n. Линейный оператор $\mathcal{A}\colon \mathcal{P}_n \to \mathcal{P}_n$, заданный формулой

$$\mathcal{A}P(x) = \Delta((1 - |x|^2)P(x)),$$

в силу принципа максимума является инъективным, а значит и сюръективным. Следовательно, для всякого многочлена $f \in \mathcal{P}_n$ существует такой многочлен $P \in \mathcal{P}_n$, что функция $u(x) = (1-|x|^2)P(x)$ является решением уравнения $\Delta u = f$ и удовлетворяет нулевому граничному условию. Заменяя f на $f - \Delta g$ и добавляя к u многочлен g, получаем искомое решение задачи Дирихле.

Следствие 2.4. Пусть $\Omega = B(0,1)$. Для всякой функции $g \in C(\partial B(0,1))$ существует решение и задачи Дирихле c f = 0.

Доказательство. Приближаем функцию g равномерно многочленами G_n . Для каждого n существует функция u_n , которая является решением задачи Дирихле $\Delta u_n = 0$ на B(0,1) и $u_n = 0$ на $\partial B(0,1)$. Так как $\max_{\overline{B(0,1)}} |u_n - u_m| = \max_{\partial B(0,1)} |G_n - G_m|$, то последовательность u_n равномерно сходится к некоторой непрерывной функции u на $\overline{B(0,1)}$. Так как внутри шара B(0,1) производные функции $u_n - u_m$ оцениваются через $\max_{\overline{B(0,1)}} |u_n - u_m|$, то производные $D(k)u_n$ сходятся равномерно внутри B(0,1). Следовательно, функция u гладкая внутри B(0,1) и удовлетворяет уравнению $\Delta u = 0$.

Положим

$$G_d(x) = \begin{cases} \frac{1}{2\pi} \ln|x|, & d = 2\\ -c(d)|x|^{-d+2}, & d > 2 \end{cases}$$

Следствие 2.5. Пусть $\Omega = B(0,1)$. Для всякой функции $f \in C^2(\overline{B(0,1)})$ и всякой функции $g \in C(\partial B(0,1))$ существует решение задачи Дирихле.

Доказательство. Продолжим функцию f до функции класса $C^2(\mathbb{R}^d)$ с компактным носителем. Тогда функция

$$v(x) = \int_{\mathbb{R}^d} G_d(x - y) f(y) \, dy$$

является функцией класса $C^2(\mathbb{R}^d)$ и удовлетворяет уравнению $\Delta v = f$. Используя предыдущее следствие находим такую функцию w, что $\Delta w = 0$ на B(0,1) и w = g - v на границе B(0,1). Тогда функция u = v + w является искомым решением.

Сильный принцип максимума

Следующее утверждение является частным случаем леммы Хопфа.

Лемма 2.1. Пусть $B-uap,\ Q\in\partial B,\ u\in C^2(B)\cap C(\overline{B}).$ Если $\Delta u=0$ в $B,\ u<0$ в B и u(Q)=0, то производная вдоль внешней нормали в точке Q положительна, $m.\ e.\ \frac{\partial u}{\partial \nu}(Q)>0.$

Доказательство. Пусть $d \geq 3$. Достаточно рассмотреть случай, когда B — единичный шар и $Q = (1,0,\ldots,0)$. Рассмотрим вспомогательную функцию

$$v(x) = u(x) + \varepsilon \left(\frac{1}{|x|^{d-2}} - 1\right).$$

Выбираем $\varepsilon>0$ столь малым, чтобы v(x)<0 при $|x|=\frac{1}{2}$. Тогда $v\leq 0$ при |x|=1 и $|x|=\frac{1}{2}$ и $\Delta v=0$ при $\frac{1}{2}<|x|<1$. Следовательно, $v\leq 0$ при $\frac{1}{2}\leq |x|\leq 1$. Для $\frac{1/2}{<}x_1<1$ получаем неравенство

$$\frac{u(1,0,\ldots,0) - u(x_1,0,\ldots,0)}{1 - x_1} \ge \frac{-\varepsilon}{1 - x_1} \left(\frac{1}{|x|^{d-2}} - 1\right).$$

Устремляем x_1 к 1 и получаем оценку

$$\frac{\partial u}{\partial x_1}(Q) \ge (d-2)\varepsilon > 0.$$

Теорема 2.4. (Сильный принцип максимума) Пусть Ω — связная область в \mathbb{R}^d , функция $u \in C^2(\Omega) \cap C(\overline{\Omega})$ и $\Delta u = 0$ в Ω . Если максимум и на $\overline{\Omega}$ достигается во внутренней точке области Ω , то и постоянная функция.

Доказательство. Предположим, что $u \leq 0$ на $\overline{\Omega}$ и u(a) = 0 в некоторой внутренней точке a области Ω . Пусть множество $N = \{x \in \overline{\Omega} \colon u(x) < 0\}$ непусто. Тогда у этого множества есть граничная точка внутри области Ω и, следовательно, существует точка $c \in \Omega$, в которой u(c) < 0 и $\mathrm{dist}(c,\partial N) < \mathrm{dist}(c,\partial \Omega)$. Рассмотрим шар B(c,r), где $r = \mathrm{dist}(c,\partial N)$. Ясно, что этот шар с замыканием лежит в Ω , на его границе есть точка Q, в которой функция u равна нулю, а внутри u < 0. По доказанной выше лемме $\frac{\partial u}{\partial \nu}(Q) > 0$, что приводит к противоречию, так как Q — точка локального максимума функции u и $\nabla u(Q) = 0$.

Суб(супер)гармонические функции

Функция $u \in C(\Omega)$ называется субгармонической, если для всякого шара B, замыкание которого лежит в Ω , и всякой гармонической функции v на B, $v \in C(\overline{B})$, из неравенства $u \leq v$ на ∂B следует $u \leq v$ на B.

Функция $u \in C(\overline{\Omega})$ называется супергармонической, если для всякого шара B, замыкание которого лежит в Ω , и всякой гармонической функции v на $B, v \in C(\overline{B})$, из неравенства $u \geq v$ на ∂B следует $u \geq v$ на B.

Предложение 2.1. Пусть $u \in C^2(\Omega)$. Функция и является субгармонической тогда и только тогда, когда $\Delta u \geq 0$. Функция и является супергармонической тогда и только тогда, когда $\Delta u \leq 0$.

Доказательство. Если $\Delta u \geq 0$, то требуемое определением свойство функции u следует из принципа сравнения.

Пусть теперь выполняется определение субгармонической функции. Предположим, что существует шар $\overline{B}\subset \Omega$, на котором $\Delta u<0$. Рассмотрим гармоническую функцию v на B, которая совпадает с u на границе. Разность v-u неотрицательна и в какой-то точке $z\in \overline{B}$ достигает максимального значения. Если $z\in \partial B$, то v=u и $\Delta u=0$ на B. Если z— внутренняя точка B, то матрица $D^2(v-u)(z)$ неположительно определена, в частности $\Delta(v-u)(z)\leq 0$, то есть $\Delta u(z)\geq 0$. Противоречие.

Для субгармонических и супергармонических функций выполняются следующие полезные свойства.

1. Принцип сравнения: если $u \in C(\overline{\Omega})$ является субгармонической функцией, $v \in C(\overline{\Omega})$ является супергармонической функцией и $u \leq v$ на $\partial\Omega$, то $u \leq v$ на Ω .

Доказательство. Пусть $M = \max_{\overline{\Omega}}(u-v)$. Предположим, что M>0. Тогда множество $E=\{x\in\Omega\colon u(x)-v(x)=M\}$ непусто и замкнуто в Ω . Покажем, что это множество открыто в Ω . Предположим, что некоторая точка $a\in E$ не является внутренней для E. Тогда найдется шар B=B(a,r), который с замыканием лежит в Ω и $\partial B\cap E\neq \partial B$. Рассмотрим такие функции h и g, что $\Delta h=\Delta g=0$ в Ω и $h=u,\,g=v$ на $\partial\Omega$. Тогда

$$\max_{\overline{B}}(h-g) = \max_{\partial B}(u-v) \le M$$

и $h(a)-g(a) \ge u(a)-v(a) = M$. Согласно сильному принципу максимума h-g=M в B и, следовательно, на ∂B . Это противоречит предположению, что $\partial B \cap E \ne \partial B$. \square

2. Если u и v — субгармонические функции в Ω , то $\max\{u,v\}$ — субгармоническая функция в Ω . Если u и v — супергармонические функции в Ω , то $\min\{u,v\}$ — супергармоническая функция в Ω .

Доказательство. Пусть u и v — субгармонические функции. Пусть B — шар с замыканием в Ω , $\Delta h = 0$ в B и $h \geq \max\{u,v\}$ на ∂B . Тогда $h \geq u$ на B и $h \geq v$ на B. Следовательно, $h \geq \max\{u,v\}$ на B.

3. Пусть u — субгармоническая функция на Ω , B — шар, лежащий с замыканием в Ω , и h — гармоническая функция в B, причем h=u на ∂B . Функция

$$u_B(x) = \begin{cases} h(x), & x \in B \\ u(x), & x \notin B \end{cases}$$

называется гармонической срезкой, является субгармонической на Ω и $u_B \geq u$.

Доказательство. Так как u — субгармоническая функция, то $h \ge u$ и, следовательно, верно неравенство $u_B \ge u$. Пусть шар B' с замыканием лежит в Ω , g — гармоническая функция на B' и $g \ge u_B$ на $\partial B'$. Так как $u_B \ge u$, то $g \ge u$ на $\partial B'$ и по определению субгармонической функции $g \ge u$ на B'. На части границы $B \cap B'$, которая принадлежит ∂B , неравенство $g \ge h$ выполняется, так как h = u на ∂B . На части границы $B \cap B'$, которая принадлежит $\partial B'$, неравенство $g \ge h$ выполняется, так как $h = u_B$ на $h \in B'$ выполняется, так как $h = u_B$ на $h \in B'$ выполняется. По принципу максимума $h \in B'$. Следовательно, $h \in B'$ выполняется. По принципу максимума $h \in B'$ выполняется.

Метод Перрона

Пусть $g \in C(\partial\Omega)$. Положим

$$S_g = \Big\{ u \colon u - \text{субгармоническая функция и } u \le g \text{ на } \partial \Omega \Big\}.$$

Теорема 2.5. Функция

$$v(x) = \sup_{u \in S_g} u(x)$$

является гармонической на Ω .

Если априори известно, что $v \in C^2(\Omega)$, то доказать требуемое можно очень просто. Проверим сначала, что v является субгармонической функцией. Пусть B — шар в Ω , $\Delta h = 0$ на B и $h \geq v$ на ∂B . Тогда $h \geq u$ для всех $u \in S_g$ и, значит, $h \geq v$. Таким образом, $\Delta v \geq 0$ в Ω . Предположим теперь, что $\Delta v(a) > 0$ в некоторой точке $a \in \Omega$. Тогда $\Delta v(x) > \delta > 0$ на некотором шаре B(a,r) для некоторого числа $\delta > 0$. Пусть $\varphi \in C^2(\Omega), \ \varphi \geq 0, \ \varphi(a) > 0$ и $\varphi = 0$ вне B. Положим $v_\varepsilon = v + \varepsilon \varphi$, где $\varepsilon > 0$ столь мало, что $\Delta v_\varepsilon \geq 0$. Тогда $v_\varepsilon \in S_g$ и по определению функции v должно выполняться неравенство $v_\varepsilon \leq v$, что невозможно. Следовательно, $\Delta v = 0$.

Итак, основная трудность связана с тем, что мы не можем априори утверждать даже непрерывность функции v.

Доказательство. Заметим, что множество S_g — непусто, а всякая функция $u \in S_g$ ограничена сверху константой $\max_{\partial\Omega} g$. Фиксируем $y \in \Omega$. Существует такая последовательность $u_n \in S_g$, что $u_n(y)$ сходится к v(y). Заменяя u_n на $\max\{u_n, \min_{\partial\Omega} g\}$ можно считать, что u_n — ограниченная последовательность. Пусть B — некоторый шар с центром y с замыканием лежащий в Ω . Через $u_{n,B}$ обозначим гармоническую срезку функции u_n . Ясно, что $u_{n,B} \in S_g$, $u_{n,B}(y)$ сходится к v(y) и последовательность $u_{n,B}$ ограничена. Переходя к подпоследовательности можно считать, что $u_{n,B}$ сходится локально равномерно на B к некоторой гармонической функции w, причем w(y) = v(y). Кроме того, $w \leq v$ на B. Предположим, что в некоторой точке $z \in B$ функция w строго меньше функции v. Существует $u \in S_g$, для которой выполняется неравенство $w(z) < u(z) \leq v(z)$. Положим $u'_{n,B} = \max\{u_{n,B}, u\}$. Переходя к подпоследовательности можно вновь считать, что $u'_{n,B}$ сходится локально равномерно на B к гармонической функции w', причем w'(y) = w(y) = v(y) и $w' \leq w$. Согласно сильному принципу максимума w' = w на B, но это противоречит неравенствам $w(z) < w(z) \leq w'(z)$. Следовательно, w = v на w =

Назовём точку $p \in \partial \Omega$ регулярной, если существует супергармоническая функция $w \in C(\overline{\Omega})$, для которой w > 0 на $\overline{\Omega} \setminus \{p\}$ и w(p) = 0.

Рассмотрим пример. Пусть $d \geq 3$. Предположим, что существует шар B(y,r), пересекающийся с $\overline{\Omega}$ лишь по точке p. Тогда точка p является регулярной и в качестве функции w можно взять

$$w(x) = \frac{1}{r^{d-2}} - \frac{1}{|x - y|^{d-2}}.$$

Теорема 2.6. Пусть v- построенная в предыдущей теореме гармоническая функция. Предположим, что p- регулярная точка $\partial\Omega$. Тогда $\lim_{x\to p}v(x)=g(p)$. Если все точки границы регулярны, то $v\in(\overline{\Omega})$ и v=g на $\partial\Omega$, т.е. функция v является решением задачи Дирихле $\Delta v=0$ в Ω и v=g на $\partial\Omega$.

Доказательство. Для $\varepsilon>0$ найдется такое $\delta>0$, что $|g(x)-g(p)|<\varepsilon$ для всех $x\in\partial\Omega$ и $|x-p|<\delta$. Пусть $\alpha>0$ выбрано так, что

$$\min_{x \in \partial \Omega, |x-p| \geq \delta} w(x) \geq 2\alpha^{-1} \max_{\partial \Omega} g.$$

Функция $u=g(p)-\alpha w-\varepsilon$ является субгармонической функцией и $u\leq g$. Следовательно, $v\geq u$ на Ω . Функция $u'=g(p)+\alpha w+\varepsilon$ является супергармонической функцией и $u'\geq g$. Следовательно, $v\leq u'$ на Ω . Итак,

$$g(p) - \alpha w(x) - \varepsilon \le g(x) \le g(p) + \alpha w(x) + \varepsilon.$$

С учетом того, что $w(x) \to 0$ при $x \to p$, получаем равенство $\lim_{x \to p} v(x) = v(p)$.

Замечание 2.1. Как и выше в случае шара утверждение о разрешимости задачи Дирихле обобщается на случай задачи $\Delta u = f$ на Ω и u = q на $\partial \Omega$, где $f \in C^2(\overline{\Omega})$.

3. Пространства Соболева и слабые решения эллиптических уравнений

Пусть Ω — открытое, ограниченное и связное множество в \mathbb{R}^d .

Функция $v \in L^2(\Omega)$ называется производной Соболева по x_i функции $u \in L^2(\Omega)$, если для всякой функции $\varphi \in C_0^{\infty}(\Omega)$ справедливо равенство

$$\int_{\Omega} u\varphi_{x_i} \, dx = -\int_{\Omega} v\varphi \, dx.$$

Производную по x_i обозначаем через u_{x_i} .

Множество функций $u \in L^2(\Omega)$, у которых есть все производные Соболева $u_{x_1}, \ldots, u_{x_d} \in L^2(\Omega)$, называется пространством Соболева $W^{1,2}(\Omega)$. Это полное сепарабельное пространство относительно нормы

$$||u||_{W^{1,2}} = ||u||_{L^2(\Omega)} + ||Du||_{L^2(\Omega)}$$

Кроме того, множество $C^{\infty}(\Omega) \cap W^{1,2}(\Omega)$ всюду плотно в $W^{1,2}(\Omega)$.

Замыкание множества $C_0^\infty(\Omega)$ в $W^{1,2}(\Omega)$ обозначаем через $W_0^{1,2}(\Omega)$. Элементы пространства $W_0^{1,2}(\Omega)$ — соболевские функции, которые «равны нулю на границе области».

Теорема 3.1. (Неравенство Фридрихса) Для всякой функции $u \in W_0^{1,2}(\Omega)$ верно неравенство

$$\int_{\Omega} |u(x)|^2 dx \le (2 \mathrm{diam}\Omega)^2 \int_{\Omega} |Du(x)|^2 dx.$$

 \mathcal{A} оказательство. Можно считать, что $\Omega \subset K = [a_1,b_1] \times \ldots \times [a_d,b_d]$, где K — куб с ребром $2\mathrm{diam}\Omega$. Неравенство достаточно обосновать для всякой функции $u \in C_0^\infty(\Omega)$. По формуле Ньютона—Лейбница

$$u(x_1,\ldots,x_d) = \int_{a_1}^{x_1} u_{x_1}(t,x_2,\ldots,x_d) dt.$$

Применяем неравенство Коши-Буняковского-Шварца и получаем

$$|u(x_1,\ldots,x_d)|^2 \le (b_1-a_1) \int_{a_1}^{b_1} |Du(t,x_2,\ldots,x_d)|^2 dt.$$

Теперь интегрируем по переменным x_1, x_2, \dots, x_d и получаем неравенство Фридрихса.

Полезно иметь ввиду, что $W^{1,2}(\Omega) \subset L^q(\Omega)$ при $1 \leq q \leq 2d/(d-2)$, причем при q < 2d/(d-2) вложение компактно.

В силу неравенства Фридрихса выражение

$$\langle u, v \rangle_{W_0^{1,2}(\Omega)} = \int_{\Omega} \langle Du, Dv \rangle dx$$

является скалярным произведением, а соответствующая этому скалярному произведению норма $\|u\|_{W_0^{1,2}} = \|Du\|_{L^2(\Omega)}$ эквивалентна норме $\|u\|_{W^{1,2}(\Omega)}$. Таким образом, $W_0^{1,2}(\Omega)$ является гильбертовым пространством.

Слабые решения эллиптических уравнений

Пусть $f \in L^2(\Omega)$. Рассмотрим задачу Дирихле

$$\begin{cases}
-\Delta u = f, & x \in \Omega, \\
u = 0, & x \in \partial\Omega
\end{cases}$$
(2)

Под слабым решением этой задачи понимаем такую функцию $u \in W_0^{1,2}(\Omega)$, что для всякого $v \in W_0^{1,2}(\Omega)$ верно равенство

$$\int \langle \nabla u, \nabla v \rangle \, dx = \int f v \, dx.$$

Перепишем определение слабого решения следующим образом:

$$\langle u, v \rangle_{W_0^{1,2}(\Omega)} = \langle f, v \rangle_{L^2(\Omega)}.$$

Так как

$$\langle f, v \rangle_{L^2(\Omega)} \le ||f||_{L^2(\Omega)} ||v||_{L^2(\Omega)} \le C ||f||_{L^2(\Omega)} ||v||_{W_0^{1,2}(\Omega)},$$

то отображение

$$v \to \langle f, v \rangle_{L^2(\Omega)}$$

является непрерывным линейным функционалом на $W_0^{1,2}(\Omega)$.

По теореме Рисса существует единственная функция $u\in W^{1,2}_0(\Omega)$ такая, что

$$\langle u, v \rangle_{W_0^{1,2}(\Omega)} = \langle f, v \rangle_{L^2(\Omega)}$$

для всякого v.

Теорема 3.2. Существует единственное слабое решение и задачи (2). Более того, имеет место оценка

$$||u||_{W_0^{1,2}(\Omega)} \le C||f||_{L^2(\Omega)},$$

где C — оценка из неравенства Фридрихса.

Доказательство. Осталось обосновать оценку. Имеем

$$||u||_{W_0^{1,2}(\Omega)}^2 = \langle f, u \rangle_{L^2(\Omega)} \le C||f||_{L^2(\Omega)}||u||_{W_0^{1,2}(\Omega)}.$$

Заметим, что определен линейный ограниченный оператор \mathcal{A} из $L^2(\Omega)$ в $L^2(\Omega)$, который сопоставляет всякой функции $f \in L^2(\Omega)$ слабое решение $u \in W_0^{1,2}(\Omega)$ уравнения $-\Delta u = f$. В силу оценки $\|\mathcal{A}f\|_{W_0^{1,2}(\Omega)} \leq C\|f\|_{L^2(\Omega)}$ и компактности вложения $W_0^{1,2}(\Omega) \subset L^2(\Omega)$ оператор \mathcal{A} является компактным оператором. Более того, \mathcal{A} — самосопряженный оператор. Пусть $f, g \in L^2(\Omega)$. Положим $\mathcal{A}f = u$ и $\mathcal{A}g = v$. Тогда

$$\langle \mathcal{A}f, g \rangle_{L^2(\Omega)} = \langle \nabla v, \nabla u \rangle = \langle f, \mathcal{A}g \rangle_{L^2(\Omega)}.$$

По теореме Гильберта-Шмидта существует такой ортонормированный базис $\{u_k\}$ в $L^2(\Omega)$, что $\mathcal{A}u_k=\mu_k u_k,\ \mu_k\geq \mu_{k+1}$ и $\mu_k\to 0$. Следовательно, существует такой ортонормированный базис $\{u_k\}$ в $L^2(\Omega)$, что $u_k\in W^{1,2}_0(\Omega)$, верны равенства

$$\Delta u_k = \lambda_k u_k$$

и $\lambda_k = -\mu_k^{-1}$. Можно показать, что функции u_k образуют ортогональный базис в пространстве $W_0^{1,2}(\Omega)$.

Совершенно аналогично доказывается существование и единственность слабого решения уравнения

$$-\operatorname{div}(ADu) + cu = f \operatorname{B} \Omega, \quad u|_{\partial\Omega} = 0.$$

Пусть A и c — ограниченны, $A \geq \lambda I$ и $c \geq 0$. Для обоснования существования и единственности слабого решения достаточно ввести в пространстве $W_0^{1,2}(\Omega)$ новое скалярное произведение

$$\langle u, v \rangle_A = \int_{\Omega} \langle ADu, Dv \rangle + cuv \, dx.$$

В случае более общего уравнения

$$-\operatorname{div}(ADu + bu) + \langle \beta, Du \rangle + cu = f$$

соответствующая билинейная форма

$$B(u,v) = \int_{\Omega} \langle ADu, Dv \rangle + \langle b, Dv \rangle u + \langle \beta, Du \rangle v + cuv \, dx$$

не является симметричной и с помощью скалярного произведения и теоремы Рисса обосновать разрешимость задачи Дирихле не получится. В этом случае удобно использовать теорему Лакса-Мильграма.

Теорема 3.3. Пусть на гильбертовом пространстве H задана билинейная форма B(x,y). Предположим, что существуют положительные числа C_1 и C_2 такие, что для всех $x,y \in H$ верны неравенства

- (i) $(nenpepuehocmb) |B(x,y)| \le C_1 ||x|| ||y||,$
- (ii) (коэрцитивность) $B(x,x) \ge C_2 ||x||^2$

Тогда для всякого непрерывного линейного функционала F на H существует единственный вектор $y \in H$ такой, что F(x) = B(x,y) для всякого $x \in H$.

Доказательство. Заметим, что для каждого y отображение $x \mapsto B(x,y)$ является непрерывным линейным функционалом. Следовательно, найдется такой вектор z, для которого B(x,y)=(x,z). Заметим, что оператор $T:y\mapsto z$ является непрерывным оператором с нулевым ядром. Действительно, если B(x,y)=0 для всех y, то B(x,x)=0, а значит x=0 в силу коэрцитивности B.

Покажем, что T(H) = H. Предположим противное. Тогда для некоторого ненулевого вектора z имеем $z \perp T(H)$ и $C_2||z|| \leq B(z,z) = (z,Tz) = 0$, т. е. z = 0.

Таким образом, T является обратимым оператором и, следовательно, $B(x, T^{-1}z) = (x, z)$ для всяких $x, z \in H$. Теперь доказываемое утверждение следует из теоремы Рисса.

Наконец отметим, что в следствии теории Фредгольма задача Дирихле имеет слабое решение для всякой правой части тогда и только тогда, когда задача с нулевой правой частью имеет только нулевое решение.

Утверждение, что задача Дирихле с нулевой правой частью имеет только нулевое решение, обычно является следствием слабого принципа максимума, который также можно использовать для получения априорных оценок решений. Приведем типичный пример утверждения, называемого слабым принципом максимума.

Теорема 3.4. Пусть A и c — ограниченны, $A \geq \lambda I$ и $c \geq 0$. Предположим, что для функции $u \in W^{1,2}(\Omega)$ справедливы неравенства

$$-\operatorname{div}(ADu) + cu \le 0 \text{ B } \Omega, \quad u|_{\partial\Omega} \le 0,$$

то есть

$$\int_{\Omega} \langle ADu, Dv \rangle + cuv \, dx \le 0 \quad \forall v \in W_0^{1,2}(\Omega), \, v \ge 0,$$

 $u u^{+} = \max\{u, 0\} \in W_0^{1,2}(\Omega)$. Torda $u \leq 0$ $\in \Omega$.

Доказательство. Так как $u^+ = \max\{u, 0\} \in W_0^{1,2}(\Omega)$, то

$$\int_{\Omega} \langle ADu, Du^{+} \rangle + cuu^{+} \, dx \le 0.$$

Приходим к неравенству

$$\int_{\Omega} |Du^+|^2 \, dx \le 0,$$

из которого следует, что $u^+ = 0$.

4. Классические методы теории нелинейных эллиптических уравнений

Отсутствие решения нелинейного уравнения

Рассмотрим нелинейные уравнения вида

$$-\Delta u = f(x, u).$$

Начнем с примера:

$$-\Delta u = |u|^p + \varepsilon, \quad p > 1, \ \varepsilon > 0.$$

Теорема 4.1. Существует такое $R_0 > 0$, что на всяком шаре B(0,R) с $R > R_0$ уравнение не имеет решения $u \in L^p(\Omega)$.

Доказательство. Положим q=p/(p-1). Пусть $\psi\in C_0^\infty(B(0,1)),\,\psi\geq 0$ и

$$C(\psi) = \frac{1}{\int_{B(0,1)} \psi(x) \, dx} \int_{B(0,1)} \frac{|\Delta \psi(x)|^q}{\psi(x)^{q-1}} \, dx < \infty.$$

Предположим, что на шаре B(0,R) существует решение u. Умножим уравнение на функцию $\psi_r(x) = \psi(x/r)$, где 0 < r < R. После интегрирования по частям получаем

$$-\int_{B(0,R)} \Delta \psi_r u \, dx = \int_{B(0,R)} \psi_r |u|^p \, dx + \varepsilon \int_{B(0,R)} \psi_r \, dx.$$

Применим неравенство Юнга $ab \leq \frac{1}{q}a^q + \frac{1}{p}b^p$ к величинам

$$a = \frac{|\Delta \psi_r|}{\psi_r^{1/p}}, \quad b = \psi_r^{1/p}.$$

Имеем

$$-\int_{B(0,R)} \Delta \psi_r u \, dx \le \frac{1}{q} \int_{B(0,r)} \frac{|\Delta \psi_r|^q}{\psi_r^{q-1}} \, dx + \frac{1}{p} \int_{B(0,r)} \psi_r |u|^p \, dx.$$

Следовательно, верно неравенство

$$\frac{1}{q} \int_{B(0,r)} \frac{|\Delta \psi_r|^q}{\psi_r^{q-1}} \, dx \ge \frac{1}{q} \int_{B(0,R)} \psi_r |u|^p \, dx + \varepsilon \int_{B(0,R)} \psi_r \, dx$$

и неравенство

$$\int_{B(0,r)} \frac{|\Delta \psi_r|^q}{\psi_r^{q-1}} \, dx \ge q\varepsilon \int_{B(0,R)} \psi_r \, dx$$

Заметим, что $|\Delta \psi_r|^q = r^{-2q} |\Delta \psi(x/r)|^q$. После замены координат y = x/r получаем $r^{-2q}C(\psi) > q\varepsilon$.

Поскольку это неравенство верно для всех 0 < r < R, то $R^{-2q}C(\psi) \ge q\varepsilon$. Для достаточно большого R данное неравенство выполняться не может.

Метод неподвижной точки. Существование решения на малом шаре.

Теорема 4.2. Существует $R_0 > 0$ такое, что для всех $0 < R < R_0$ существует ограниченное решение $u \in W_0^{1,2}(B(0,R))$ уравнения $-\Delta u = |u|^p + \varepsilon$.

Доказательство. Пусть $v\in L^2(B(0,R))$ и $|v|\leq 1$. Через Tv обозначим решение $u\in W^{1,2}_0(B(0,R))$ уравнения

$$-\Delta u = |v|^p + \varepsilon.$$

По принципу максимума

$$|u| \le \left(\sup_{B(0,R)} x_1^2\right) \sup_{B(0,R)} \left(|v|^p + \varepsilon\right) \le R^2(1+\varepsilon).$$

Для достаточно малого R справедлива оценка $|Tv| \leq 1$. Множество

$$X = \left\{ v \in L^2(B(0,R)) \colon \|v\|_{L^{\infty}(B(0,R))} \le 1 \right\}$$

является полным пространством относительно метрики $\|v_1-v_2\|_{L^2(\Omega)}$. Отображение $T\colon X\to X$ при достаточно малом R является сжимающим. Действительно, по неравенству Фридрихса

$$||Tv_1 - Tv_2||_{L^2(B(0,R))} \le (2R)^2 ||v_1|^p - |v_2|^p ||_{L^2(B(0,R))} \le c(p)(2R)^2 ||v_1 - v_2||_{L^2(B(0,R))}.$$

Если $c(p)(2R)^2 < 1$, то отображение T сжимающее. По теореме Банаха о сжимающем отображении существует единственная функция $u \in X$, для которой u = Tu, то есть $u \in W_0^{1,2}(B(0,R))$ и $-\Delta u = |u|^p + \varepsilon$.

Метод суб и супер-решений

Пусть Ω — открытое ограниченное и связное множество в \mathbb{R}^d . Рассмотрим задачу Дирихле

$$-\Delta u = f(x,u)$$
 в $\Omega, \quad u|_{\partial\Omega} = 0.$

Предполагаем, что функция f непрерывна по совокупности переменных. Решение u — функция из $W_0^{1,2}(\Omega)$, для которой выполнено

$$\int_{\Omega} \langle Du, Dv \rangle \, dx = \int_{\Omega} f(x, u) v \, dx \quad \forall v \in W_0^{1,2}(\Omega).$$

Функция $\underline{u} \in W_0^{1,2}(\Omega)$ называется *субрешением*, если $-\Delta \underline{u} \leq f(x,\underline{u})$, то есть для всякой неотрицательной функции $v \in W_0^{1,2}(\Omega)$ справедливо неравенство

$$\int_{\Omega} \langle Du, Dv \rangle \, dx \le \int_{\Omega} f(x, u) v \, dx.$$

Функция $\overline{u} \in W_0^{1,2}(\Omega)$ называется суперрешением, если $-\Delta \overline{u} \geq f(x, \overline{u})$.

Найти суб и суперрешения сравнительно проще, чем построить решение. Например, для уравнения $-u'' = \sin u + 1$ на $(0,\pi)$ функция $u \equiv 0$ является субрешением, а функция $u(x) = x(\pi - x)$ является суперрешением.

Теорема 4.3. Предположим, что $|f_u'|$ ограничена и существуют ограниченные субрешение \underline{u} и суперрешение \overline{u} , причем $\underline{u}|_{\partial\Omega} \leq 0$ и $\overline{u}|_{\partial\Omega} \geq 0$. Тогда существует решение $u \in W_0^{1,2}(\Omega)$ уравнения $-\Delta u = f(x,u)$.

Доказательство. Для достаточно большого $\lambda > 0$ функция $F(x,u) = f(x,u) + \lambda u$ возрастает по u, а уравнение имеет вид $-\Delta u + \lambda u = F(x,u)$. Положим $u_0 = \underline{u}$, а при $n \geq 1$ функция $u_n \in W_0^{1,2}(\Omega)$ является решение уравнения

$$-\Delta u_n + \lambda u_n = F(x, u_{n-1}).$$

Заметим, что

$$-\Delta u_1 + \lambda u_1 = F(x, u_0) \ge -\Delta u_0 + \lambda u_0.$$

Поскольку $u_1|_{\partial\Omega}=0\geq u_0|_{\partial\Omega}$, то по слабому принципу максимума $u_1\geq u_0$ в Ω . Предположим теперь, что $u_n\geq u_{n-1}$. Тогда

$$-\Delta u_{n+1} + \lambda u_{n+1} = F(x, u_n) \ge F(x, u_{n-1}) = -\Delta u_n + \lambda u$$

и вновь из слабого принципа максимума следует $u_{n+1} \geq u_n$. Кроме того, $u_n \leq \overline{u}$. Таким образом, последовательность u_n почти всюду монотонна и ограничена. Следовательно, почти всюду существует предел $u(x) = \lim_{n\to\infty} u_n(x)$. Существует такое M > 0, что $|f(x, u_n)| \leq M$. Тогда

$$||Du_n||_{L^2(\Omega)} \le C(\Omega)M|\Omega|^{1/2},$$

где $C(\Omega)$ — константа из неравенства Фридрихса. Следовательно, существует подпоследовательность u_{n_k} , которая сходится сильно в $L^2(\Omega)$ и слабо в $W^{1,2}(\Omega)$. Ясно, что u_{n_k} сходится именно к u, причем сходимость почти всюду верна для u_{n_k-1} . Пусть $v \in W_0^{1,2}(\Omega)$. Применяя слабую сходимость в $W^{1,2}(\Omega)$ и теорему Лебега о мажорируемой сходимости, переходим в пределу в равенстве

$$\int_{\Omega} \langle Du_{n_k}, Dv \rangle \, dx = \int_{\Omega} f(x, u_{n_k - 1}) v \, dx$$

и получаем равенство

$$\int_{\Omega} \langle Du, Dv \rangle \, dx = \int_{\Omega} f(x, u) v \, dx,$$

которое и означает, что u — искомое решение.

Вариационный метод

Поскольку во многих примерах нелинейные уравнения с частными производными появляются при решении вариационных задач, то естественно строить решение уравнения, доказывая, что у соответствующего функционала существует точка экстремума.

Задаче Дирихле

$$-\Delta u = f(x, u) \text{ B } \Omega, \quad u|_{\partial\Omega} = 0.$$

соответствует функционал

$$E(u) = \int_{\Omega} \frac{1}{2} |Du|^2 + F(x, u) \, dx$$

на $W_0^{1,2}(\Omega)$, где

$$F(x,u) = \int_0^u f(x,s) \, ds.$$

Предположим, что

$$F(x, u) > -C|u|.$$

Типичный пример:

$$f(x,u) = u^{2k+1} + h(x), \quad F(x,u) = \frac{1}{2k+2}u^{2k+2} + h(x)u,$$

где h — непрерывная и ограниченная функция.

Теорема 4.4. Функционал E имеет глобальный минимум u на $W_0^{1,2}(\Omega)$, причем

$$-\Delta u = f(x, u).$$

Доказательство. Имеет место оценка

$$E(u) + \mu \ge \frac{1}{4} \int_{\Omega} |Du|^2 dx,$$

где константа $\mu > 0$ зависит лишь от C и Ω . Следовательно, функционал E(u) ограничен снизу. Пусть $E(u_n)$ сходится к inf E. Так как $\|Du_n\|_{L^2(\Omega)}$ ограничены, то, переходя к подпоследовательности, можно считать, что u_n сходится к u слабо в $W_0^{1,2}(\Omega)$, сильно в $L^2(\Omega)$ и почти всюду на Ω . По лемме Фату

$$\underline{\lim}_{n\to\infty} \int_{\Omega} F(x, u_n) + C|u_n| \, dx \ge \int_{\Omega} F(x, u) + C|u| \, dx.$$

Так как $|u_n|$ сходится к |u| в $L^1(\Omega)$, то

$$\underline{\lim}_{n\to\infty} \int_{\Omega} F(x, u_n) \, dx \ge \int_{\Omega} F(x, u) \, dx.$$

Теперь рассмотрим интегралы от $|Du_n|^2$. Имеем

$$0 \le \int_{\Omega} \frac{1}{2} |Du_n - Du|^2 dx = \int_{\Omega} \frac{1}{2} |Du_n|^2 dx + \int_{\Omega} \frac{1}{2} |Du|^2 dx - \int_{\Omega} \langle Du, Du_n \rangle dx.$$

В силу слабой сходимости u_n верно равенство

$$\lim_{n \to \infty} \int_{\Omega} \langle Du, Du_n \rangle \, dx = \int_{\Omega} |Du|^2 \, dx.$$

Следовательно, верно неравенство

$$\underline{\lim}_{n\to\infty} \int_{\Omega} \frac{1}{2} |Du_n|^2 dx \ge \int_{\Omega} \frac{1}{2} |Du|^2 dx.$$

Таким образом,

$$\lim_{n \to \infty} E(u_n) \ge E(u)$$

и $E(u) = \inf E$.

Практически без изменений доказательство переносится на функционалы вида

$$E(u) = \int_{\Omega} G(Du) + F(x, u) dx,$$

где G(p) — такая выпуклая функция, что

$$G(p) \ge c_0 |p|^2 - c_1, \quad |G'(p)| \le c_2 (1 + |p|).$$

Условие монотонности

В приведенных выше примерах важную роль играла структура главной части уравнения. Рассмотрим один из самых популярных подходов, позволяющих рассматривать очень общие нелинейные уравнения.

Пусть a(p) — непрерывное векторное поле, удовлетворяющее условиям

$$|a(p)| \le C_1(1+|p|), \quad \langle a(p), p \rangle \ge C_2|p|^2$$

и выполнено условие монотонности

$$\langle a(p) - a(q), p - q \rangle \ge 0.$$

Пусть $f \in L^2(\Omega)$.

Теорема 4.5. Существует решение и задачи Дирихле

$$-\operatorname{div}(a(Du)) = f \operatorname{B} \Omega, \quad u|_{\partial\Omega} = 0,$$

 $m. e. u \in W_0^{1,2}(\Omega)$ и верно равенство

$$\int_{\Omega} \langle a(Du), Dv \rangle \, dx = \int_{\Omega} fv \, dx \quad \forall v \in W_0^{1,2}(\Omega).$$

Доказательство. Пусть $\{w_k\}$ — ортонормированная система функций, образующая базис в $W_0^{1,2}(\Omega)$, например базис из собственных функций оператора Лапласа. Будем строить решение, как предел последовательности функций

$$u_n = \sum_{k=1}^n c_k^n w_k,$$

где $(c_1^n, c_2^n, \dots, c_n^n)$ являются решением нелинейной системы уравнений:

$$\int_{\Omega} \langle a(Du_n), Dw_k \rangle \, dx = \int fw_k \, dx, \quad k = 1, 2, \dots, n.$$

Существование решения этой нелинейной системы будет показано в дополнительном утверждении после доказательства теоремы.

Имеет место оценка

$$C_2 \int_{\Omega} |Du_n|^2 dx \le \int_{\Omega} \langle a(Du_n), Du_n \rangle dx = \int fu_n dx \le C(\Omega) ||f||_{L^2(\Omega)} ||Du_n||_{L^2(\Omega)},$$

где $C(\Omega)$ — константа из неравенства Фридрихса. Получаем

$$\int_{\Omega} |Du_n|^2 dx \le \frac{C(\Omega)}{C_2} ||f||_{L^2(\Omega)}.$$

Переходя к подпоследовательности, далее считаем, что u_n сходится слабо к некоторой функции $u \in W_0^{1,2}(\Omega)$. Ограниченность L^2 – нормы последовательности $a(Du_n)$ позволяет считать, что $a(Du_n)$ сходится слабо в L^2 в некоторому ξ . Переходя к пределу в равенствах

$$\int_{\Omega} \langle a(Du_n), Dw_k \rangle \, dx = \int fw_k \, dx, \quad k = 1, 2, \dots, n,$$

получаем, что для всякого $v \in W_0^{1,2}(\Omega)$ выполнено

$$\int_{\Omega} \langle \xi, Dv \rangle \, dx = \int fv \, dx.$$

Из-за монотонности для всякого $h \in W^{1,2}_0(\Omega)$ справедливо неравенство

$$\int_{\Omega} \langle a(Du_n) - a(Dh), Du_n - Dh \rangle \, dx \ge 0.$$

Используя равенство

$$\int_{\Omega} \langle a(Du_n), Du_n \rangle \, dx = \int_{\Omega} f u_n \, dx,$$

получаем неравенство

$$\int_{\Omega} f u_n \, dx - \int_{\Omega} \langle a(Du_n), Dh \rangle \, dx - \int_{\Omega} \langle a(Dh), Du_n - Dh \rangle \, dx \ge 0.$$

Устремляем $n \to \infty$ и получаем

$$\int_{\Omega} fu \, dx - \int_{\Omega} \langle \xi, Dh \rangle \, dx - \int_{\Omega} \langle a(Dh), Du - Dh \rangle \, dx \ge 0.$$

Так как

$$\int_{\Omega} f u \, dx = \int_{\Omega} \langle \xi, D u \rangle \, dx,$$

то получаем

$$\int_{\Omega} \langle \xi - a(Dh), Du - Dh \rangle \, dx \ge 0.$$

Пусть $h=u-tv,\,v\in W^{1,2}_0(\Omega)$ и t>0. Имеем

$$\int_{\Omega} \langle \xi - a(Du - tDv), Dv \rangle \, dx \ge 0.$$

Устремляя $t \to 0$, приходим к неравенству

$$\int_{\Omega} \langle \xi - a(Du), Dv \rangle \, dx \ge 0,$$

из которого следует равенство

$$\int_{\Omega} \langle \xi, Dv \rangle \, dx = \int_{\Omega} \langle a(Du), Dv \rangle \, dx.$$

С учетом полученного выше приходим к равенству

$$\int_{\Omega} \langle a(Du), Dv \rangle \, dx = \int fv \, dx.$$

Выше в доказательстве мы использовали разрешимость системы уравнений, которую можно обосновать с помощью следующей известной леммы о нуле векторного поля.

Предложение 4.1. Пусть b — непрерывное векторное поле на \mathbb{R}^d , причем для некоторого r>0 верно неравенство

$$\langle b(x), x \rangle \ge 0 \quad npu \quad |x| = r.$$

Тогда существует такая точка x_0 , что $|x_0| \le r$ и $b(x_0) = 0$.

Доказательство. Если b отлично от нуля на $|x| \leq r$, то отображение

$$x \to v(x) = -\frac{rb(x)}{|b(x)|}$$

отображает шар $|x| \le r$ в сферу |x| = r. По теореме Брауэра существует неподвижная точка x = v(x), но на границе сферы $\langle v(x), x \rangle \ge 0$, что приводит к противоречию. \square

Теперь остается заметить, что для векторного поля $b=(b^k)$

$$b^{k}(c_{1},\ldots,c_{n}) = \int_{\Omega} \langle a(Du_{n}), Dw_{k} \rangle dx - \int_{\Omega} fw_{k} dx,$$

верна оценка

$$\langle b(c), c \rangle \ge C_2 |c|^2 - C' |c| \to +\infty, \quad |c| \to +\infty.$$

5. Уравнения с частными производными первого порядка: метод характеристик

Линейные уравнения с частными производными первого порядка

Пусть $\Omega \subset \mathbb{R}^d$, $b(x) = (b^1(x), \dots, b^d(x))$ — гладкое векторное поле на Ω и f — гладкая функция на Ω . Рассмотрим уравнение с частными производными первого порядка

$$\langle b(x), \nabla u(x) \rangle = f(x).$$

Решением мы называем функцию $u \in C^1(\Omega)$, удовлетворяющую данному равенству в каждой точке области Ω .

Предложение 5.1. (i) $Ecnu \ \dot{x} = b(x) \ u \ u - peшение, то$

$$u(x(t)) = u(x(0)) + \int_0^t f(x(s)) ds$$

(ii) Если для всякой точки x_0 найдется такое $\delta > 0$, что на $(-\delta, \delta)$ для функции u(x(t)) выполняется равенство из пункта (i), где $\dot{x} = b(x)$, $x(0) = x_0$, то и является решением.

Пусть M — гладкая (d-1)-мерная поверхность в Ω и g — гладкая функция на поверхности M. Через T_pM обозначаем касательное пространство к M в точке p.

Теорема 5.1. Если $b(p) \notin T_pM$, то найдется окрестность V(p), в которой существует единственное решение и уравнения $\langle b, \nabla u \rangle = f$, удовлетворяющее условию u = g на $M \cap V(p)$.

Доказательство. Пусть $y = (y_1, \dots, y_{d-1})$ — локальные координаты на M в окрестности точки p, причем p = x(0). Рассмотрим отображение

$$\Psi \colon (t, y_1, \dots, y_{d-1}) \to X(t, y_1, \dots, y_{d-1}),$$

где X(t,y) — решение задачи Коши $\dot{X}=b(X)$ и X(0,y)=x(y). Так как $b(p)\notin T_pM$, то Ψ является диффеоморфизмом некоторой окрестности V(p) на окрестность U(0). В новых координатах (t,y_1,\ldots,y_{d-1}) уравнение имеет вид

$$\frac{\partial}{\partial t}w(t,y) = F(t,y), \quad w(t,y) = u(x(t,y)), \quad F(t,y) = f(x(t,y)).$$

Начальное условие имеет вид w(0,y)=g(y). В таком виде задача Коши легко решается:

$$w(t,y) = g(y) + \int_0^t F(s,y) \, ds.$$

Решения системы $\dot{x} = b(x)$ называются xapaкmepucmukamu. Роль характеристик очень наглядна: это кривые, вдоль которых мы знаем поведение решения.

Рассмотрим пример:

$$u_{x_1} + 3u_{x_2} = 0$$
, $u|_{x_1=0} = \sin(x_2)$.

Система для нахождения характеристик имеет вид

$$\dot{x_1} = 1, \quad \dot{x_2} = 3.$$

Находим характеристики:

$$x_1(t) = y_1 + t, \quad x_2(t) = y_2 + 3t.$$

 \Box

По условию $y_1 = 0$. Имеем $y_2 = x_2 - 3x_1$ и

$$u(x_1, x_2) = \sin(x_2 - 3x_1).$$

Квазилинейные уравнения

Рассмотрим уравнение вида

$$\langle b(x, u), \nabla u \rangle = c(x, u).$$

Предложение 5.2. Если функция F(x,z) является решением уравнения

$$\langle b(x,z), \nabla_x F(x,z) \rangle + c(x,z) \frac{\partial}{\partial z} F(x,z) = 0$$

и в точке (x_0, z_0) производная $\frac{\partial}{\partial z} F \neq 0$, то в некоторой окрестности этой точки уравнение $F(x, z) = F(x_0, z_0)$ задает неявную функцию z = u(x), которая является решением уравнения

$$\langle b(x, u), \nabla u \rangle = c(x, u).$$

Доказательство. Достаточно поделить линейное уравнение для функции F на $\frac{\partial}{\partial z}F$ и применить формулы

$$-\frac{\frac{\partial}{\partial x_i}F}{\frac{\partial}{\partial z}F} = \frac{\partial}{\partial x_i}u.$$

Решения системы уравнений

$$\begin{cases} \dot{x} = b(x, z) \\ \dot{z} = c(x, z) \end{cases}$$

называют характеристиками.

Предложение 5.3. Если u — решение u $\dot{x} = b(x, u(x))$, то (x(t), z(t)), где z(t) = u(x(t)) является характеристикой. Таким образом, через каждую точку графика z = u(x) проходит характеристика, лежащая на графике.

Доказательство. Проверяется дифференцированием функции z.

Верно и обратное, если через каждую точку графика непрерывно дифференцируемой функции u проходит характеристика, лежащая на графике, то такая функция является решением.

Теорема 5.2. Предположим, что M-(d-1)-мерная гладкая поверхность в \mathbb{R}^d и g – гладкая функция на M. Если в точке $p \in M$ выполнено условие $b(p,g(p)) \neq T_pM$, то в некоторой окрестности U(p) существует единственное решение и задачи Коши

$$\langle b(x,u(x)),\nabla u(x)\rangle = c(x,u(x)), \qquad x\in U(p), \\ u(x) = g(x) \qquad x\in M\cap U(p).$$

Доказательство. Пусть $y=(y_1,\ldots,y_{d-1})$ — локальные координаты на M в окрестности точки p и p=x(0). Положим (X(t,y),z(t,y)) — решение системы $\dot{x}=b(x,z)$, $\dot{z}=c(x,z)$, удовлетворяющее начальному условию X(0,y)=x(y), z=g(y). Рассмотрим отображение

$$\Psi \colon (t,y) \to X(t,y).$$

Матрица Якоби Ψ' в точке (0,0) невырожденна и существует обратное отображение y=y(x), t=t(x). Функция u(x)=z(t(x),y(x)) является искомым решением. Действительно, u(x(y))=z(0,y)=g(y) и через каждую точку графика z=u(x) проходит характеристика, лежащая на графике.

Рассмотрим пример:

$$u_{x_1} + 3u_{x_2} = u$$
, $u|_{x_1=0} = \sin(x_2)$.

Система для нахождения характеристик имеет вид

$$\dot{x}_1 = 1, \quad \dot{x}_2 = 3, \quad \dot{u} = u$$

Находим характеристики:

$$x_1(t) = y_1 + t$$
, $x_2(t) = y_2 + 3t$, $u = u_0 e^t$.

По условию $y_1 = 0$ и $u_0 = \sin(y_2)$ Имеем $y_2 = x_2 - 3x_1$ и

$$u(x_1, x_2) = e^{x_1} \sin(x_2 - 3x_1).$$

Полностью нелинейные уравнения

Рассмотрим полностью нелинейные уравнения:

$$F(x, u, \nabla u) = 0.$$

Мы предполагаем, что F(x, u, p) — гладкая функция. Продифференцируем уравнение по x_i :

$$F_{x_i} + F_u u_{x_i} + F_{p_i} u_{x_i x_j} = 0.$$

Тогда для функции $p_i=u_{x_i}$ получаем квазилинейное уравнение

$$F_{x_i} + F_u p_i + F_{p_j}(p_i)_{x_j} = 0.$$

Следовательно, можно написать систему характеристических уравнений

$$\dot{x} = F_p, \quad \dot{p} = -F_x - F_u p,$$

к которой надо добавить уравнение на функцию u:

$$\dot{u} = p\dot{x} = pF_p.$$

Решения системы

$$\begin{cases} \dot{x} = F_p, \\ \dot{p} = -F_x - F_u p, \\ \dot{u} = p F_p \end{cases}$$

называют характеристиками.

Предложение 5.4. Если u-pешение $u\,\dot{x}=F_p(x,u(x),\nabla u(x),\,mo\,\,\kappa puвая\,(x(t),u(t)=u(x(t)),\,p(t)=\nabla u(x(t)))\,$ является характеристикой.

Доказательство. Проверяется явным дифференцированием с учетом равенства

$$F_{x_i} + F_u u_{x_i} + F_{p_j} u_{x_i x_j} = 0.$$

Как и выше, для таких уравнений можно поставить задачу Коши и доказать локальную теорему существования и единственности.

Рассмотрим пример

$$u_{x_1}u_{x_2} = u, \quad u|_{x_1=0} = x_2^2.$$

Система для нахождения характеристик имеет вид

$$\dot{x}_1 = p_2, \quad \dot{x}_2 = p_1, \quad \dot{u} = 2p_1p_2 = 2u, \quad \dot{p}_1 = p_1, \quad \dot{p}_2 = p_2.$$

С учетом начально условия, находим характеристики:

$$x_1(t) = 2y_2(e^t - 1), \quad x_2(t) = y_2(e^t - 1)/2 + y_2, \quad u = y_2^2 e^{2t}, \quad p_1 = y_2 e^t/2, \quad p_2 = 2y_2 e^t.$$

Исключая y_2 и t, получаем

$$u(x_1, x_2) = (x_2 + x_1/4)^2$$
.

6. Законы сохранения: появление особенностей и метод исчезающей вязкости

Законы сохранения

Равенство вида

$$\partial_t u + \operatorname{div}(F) = 0$$

называют законом сохранения. Рассмотрим несколько примеров.

1) Уравнение Хопфа. Рассмотрим одномерное инертное движение частиц без взаимодействия. Пусть u(x,t) – скорость частицы, которая в момент времени t находится в точке x. Если траектория частицы x=x(t), то $\dot{x}(t)=u(x(t),t)$ и

$$0 = \ddot{x}(t) = u_x(x(t), t)\dot{x}(t) + u_t(x(t), t) = u_x u + u_t.$$

Таким образом, функция u удовлетворяет уравнению $u_t + uu_x = 0$, которое можно записать в виде $u_t + (f(u))_x = 0$ с $f(u) = u^2/2$.

2) Моделирование дорожного движения. Пусть машины двигаются по прямолинейному участку дороги, который отождествляется с осью OX, в положительном направлении. Это движение описывается двумя функциями: u(x,t) – плотность машин в момент времени t и f(x,t) – поток машин в положительном направлении через точку x в момент времени t. Изменение количества машин на отрезке [a,b] за время τ можно записать двумя способами:

$$\int_{a}^{b} u(x, t + \tau) dx - \int_{a}^{b} u(x, t) dx = \int_{s}^{t} f(a, \tau) d\tau - \int_{s}^{t} f(b, \tau) d\tau.$$

Применяя формулу Ньютона-Лейбница и теорему Фубини приходим к равенству

$$\int_{\Pi} (u_t + f_x) dx d\tau = 0, \quad \Pi = [a, b] \times [t, s].$$

В силу произвольности прямоугольника П получаем равенство $u_t + f_x = 0$. Часто предполагается, что f – функция от u, а типичным примерами таких функций являются Au, Au^2 или Au(1-u).

3) Обобщая предыдущие рассуждения на многомерный случай можно получить уравнение $u_t + \text{div}F = 0$. Если F = b(x,t)u(x,t), то уравнение называют уравнением непрерывности. Такие уравнения играют важную роль в механике сплошных сред.

Классические решения

Далее мы обсуждаем уравнение $u_t + (f(u))_x = 0$ в одномерном случае n = 1. Пусть функция f дважды непрерывно дифференцируема и функция u_0 один раз непрерывно дифференцируема на \mathbb{R} . Рассмотрим задачу Коши

$$u_t + (f(u))_x = 0, \quad u|_{t=0} = u_0, \quad (x,t) \in \Pi_\tau = \mathbb{R} \times [0,\tau].$$
 (3)

Применяя обсуждавшийся выше метод характеристик несложно показать, что решение u постоянно вдоль прямых

$$x = f'(u_0(x_0))t + x_0,$$

которые мы также будем называть характеристиками.

Теорема 6.1. Предположим, что $|f''| \leq M_1$, $|u'_0| \leq M_2$ и $\tau M_1 M_2 < 1$. Тогда в полосе Π_{τ} существует единственное непрерывно дифференцируемое решение и задачи Коши (3). Более того, это решение можно найти из неявного уравнения

$$u = u_0(x - f'(u)t).$$

Доказательство. Рассмотрим функцию $\Phi(u,x,t)=u-u_0(x-f'(u)t)$. Заметим, что

$$\partial_u \Phi = 1 + u_0' f''(u)t > 1 - \tau M_1 M_2 > 0.$$

Следовательно, для всяких (x,t) существует единственное значение u, при котором $\Phi(u,x,t)=0$. По теореме о неявной функции u(x,t) – непрерывно дифференцируемая функция и верны равенства

$$u_t = -\frac{\partial_t \Phi}{\partial_u \Phi}, \quad u_x = -\frac{\partial_x \Phi}{\partial_u \Phi}.$$

Так как $\partial_t \Phi + f'(u)\partial_x \Phi = u'_0 f'(u) - f'(u)u'_0 = 0$, то $u_t + f'(u)u_x = 0$. Кроме того, $u(x,0) = u_0(x-f'(u)\cdot 0) = u_0(x)$. Покажем, что построенное решение – единственное непрерывно дифференцируемое решение задачи Коши. Пусть v – какое-то решение. Тогда значение функции v в точке (x,t) совпадает со значением u_0 в точке

$$x_0 = x - f'(v(x, t))t,$$

т.е. $v(x,t) = u_0(x-f'(v(x,t))t)$. Остается заметить, что для всяких (x,t) единственным решением неявного уравнения является u(x,t) и, значит, v(x,t) = u(x,t).

Появление особенностей

В общем случае без ограничений на f, u_0 и τ утверждать существование гладкого решения нельзя. Этому есть несколько причин. Во первых, характеристики $x = f'(u_0(x_0))t + x_0$ для разных точек x_0 имеют различные наклоны и могут пересекаться, что приводит к разрывам первого рода, когда в одну точку по разным характеристикам приходят различные значения. Во вторых, производная $u_x(x,t)$ на характеристике удовлетворяет уравнению

$$\dot{p} = -f''(u_0(x_0))p^2$$
, $p(t) = u_x(x(t), t)$,

решения которого вообще говоря за конечное время уходят в бесконечность. Последнее наблюдение называют «градиентной катастрофой». Таким образом, естественно появляется задача обобщения понятия решения на случай негладких функций.

Обобщенные решения

Будем говорить, что функция $u \in L^{\infty}(\mathbb{R} \times [0, \tau])$ является обобщенным решением уравнения $u_t + (f(u))_x = 0$ в $\Pi_{\tau} = \mathbb{R} \times [0, \tau]$, если для всякой непрерывно дифференцируемой функции φ с компактным носителем в $\mathbb{R} \times (0, \tau)$ выполняется равенство

$$\int_{\Pi_{\tau}} (u\varphi_t + f(u)\varphi_x) \, dx \, dt = 0.$$

Предложение 6.1. Непрерывно дифференцируемая функция и является обобщенным решением тогда и только тогда, когда является классическим решением уравнения $u_t + (f(u))_x = 0$.

Доказательство. Интегрируя по частям получаем

$$\int_{\Pi_{\sigma}} (u_t + (f(u))_x) \varphi \, dx \, dt = -\int_{\Pi_{\sigma}} (u\varphi_t + f(u)\varphi_x) \, dx \, dt.$$

Остается заметить, что если $u_t + (f(u))_x$ отлично от нуля в некоторой точке, то найдется функция φ , с которой правая часть данного равенства отлична от нуля. \square

Условия Ранкина-Гюгонио

Поскольку определение обобщенного решения допускает разрывные функции в качестве решений, то возникает вопрос о виде кривых, на которых возможны разрывы.

Теорема 6.2. Пусть гладкая кривая $x=x(t),\ t\in[0,\tau],\$ делит полосу Π_{τ} на две части

$$\Pi_{\tau}^- = \{(x,t) \colon \, x < x(t), t \in [0,\tau]\}, \quad \Pi_{\tau}^+ = \{(x,t) \colon \, x > x(t), t \in [0,\tau]\}.$$

Предположим, что функция $u \in L^{\infty}_{loc}(\mathbb{R} \times (0,\tau))$ непрерывно дифференцируема на Π^-_{τ} и Π^+_{τ} и продолжается до непрерывной функции u^- на замыкании Π^-_{τ} и до непрерывной функции u^+ на замыкании Π^+_{τ} . Предположим, что $u_t + (f(u))_x = 0$ на Π^-_{τ} и Π^+_{τ} . Функция и является обобщенным решением на Π_{τ} тогда и только тогда, когда на кривой $\gamma(t) = (t, x(t))$ выполняются условия Ранкина-Гюгонио

$$\dot{x}(u^+ - u^-) = f(u^+) - f(u^-).$$

Доказательство. Пусть φ – непрерывно дифференцируемая функция с компактным носителем в $\mathbb{R} \times (0,\tau)$. Обозначим через $\nu = (\nu_x,\nu_t)$ – внешнюю нормаль к границе Π_{τ}^+ в точках кривой γ . Тогда вектор $(-\nu)$ является нормалью к границе Π_{τ}^- в точках кривой γ . По формуле интегрирования по частям

$$\int_{\Pi_{\tau}^+} (u\varphi_t + f(u)\varphi_x) \, dx \, dt = \int_{\gamma} (u^+\nu_t + f(u^+)\nu_x)\varphi \, dS.$$

Аналогичное равенство имеет место и для Π_{τ}^{-} . Следовательно,

$$\int_{\Pi_{\tau}} (u\varphi_t + f(u)\varphi_x) \, dx \, dt = \int_{\gamma} ((u^+ - u^-)\nu_t + (f(u^+) - f(u^-))\nu_x)\varphi \, dS.$$

Функция u является обобщенным решением тогда и только тогда, когда правая часть равна нулю, что в силу произвольности φ равносильно равенству

$$(u^{+} - u^{-})\nu_{t} + (f(u^{+}) - f(u^{-}))\nu_{x} = 0.$$

Остается заметить, что
$$\nu_t = -\dot{x}/\sqrt{1+\dot{x}^2}$$
 и $\nu_x = 1/\sqrt{1+\dot{x}^2}$.

Начальное условие задачи Коши для обобщенного решения можно понимать следующим образом: существует такое множество $I\subset [0,\tau]$ полной меры Лебега, что для всякого отрезка [a,b]

$$\lim_{I \ni t \to 0+} \int_{a}^{b} |u(x,t) - u_0(x)| \, dx = 0.$$

Задача Коши в классе обобщенных решений может иметь несколько решений. Рассмотрим пример:

$$u_t + 2uu_x = 0, \quad u|_{t=0} = 0.$$

Положим u(x,t) = 0 при x < -t, u(x,t) = -1 при -t < x < 0, u(x,t) = 1 при 0 < x < t и u(x,t) = 0 при x > t. Несложно проверить, что условия Ранкина-Гюгонио выполняются и функция u является обобщенным решением. Кроме такой функции u другим решением является тождественно нулевая функция.

Метод исчезающей вязкости

Один из стандартных методов построения обобщенных решений состоит в добавлении к исходному уравнению члена εu_{xx} , отвечающего за вязкое трение, то есть описывающее взаимодействие частиц, которое фактически и объясняет (во всяком случае для уравнения Хопфа) появление разрывов.

Пусть $\varepsilon > 0$. Рассмотрим уравнение

$$u_t^{\varepsilon} + (f(u^{\varepsilon}))_x = \varepsilon u_{xx}^{\varepsilon}.$$

Предположим, что у этого уравнения есть гладкое решение при каждом $\varepsilon > 0$.

Предложение 6.2. Предположим, что семейство решений $\{u^{\varepsilon}\}$ равномерно ограничено и $u^{\varepsilon} \to u$ при $\varepsilon \to 0$ для почти всех $(x,t) \in \Pi_{\tau}$. Тогда и является обобщенным решением уравнения $u_t + (f(u))_x = 0$.

Доказательство. Пусть φ — непрерывно дифференцируемая функция с компактным носителем в $\mathbb{R}^d \times (0, \tau)$. После интегрирования по частям приходим к равенству

$$\int_{\Pi_{\tau}} u^{\varepsilon} \varphi_t + f(u^{\varepsilon}) \varphi_x \, dx \, dt = -\varepsilon \int_{\Pi_{\tau}} u \varphi_{xx} \, d \, dt.$$

Применяя теорему Лебега о мажорируемой сходимости и переходя к пределу при $\varepsilon \to 0$ получаем равенство

$$\int_{\Pi_{\tau}} u\varphi_t + f(u)\varphi_x \, dx \, dt = 0,$$

которое в силу произвольности φ является определением обобщенного решения. \square

Обобщенное решение С.Н.Кружкова

Представляет интерес определение свойств, которые отличают решение, построенное методом исчезающей вязкости, от произвольного обобщенного решения.

Предложение 6.3. Пусть u-pешение, построенное методом исчезающей вязкости. Тогда для всякой гладкой выпуклой функции Ψ и всякой неотрицательной дважды непрерывно дифференцируемой функции φ с компактным носителем в $\mathbb{R}^d \times (0,\tau)$ верно неравенство

$$\int_{\Pi_{-}} \Psi(u)\varphi_{t} + G(u)\varphi_{x} dx dt \ge 0, \quad G'(s) = \Psi'(s)f'(s).$$

Доказательство. Заметим, что

$$(\Psi(u^{\varepsilon}))_t + (G(u^{\varepsilon}))_x = \varepsilon(\Psi(u^{\varepsilon}))_{xx} - \varepsilon \Psi''(u^{\varepsilon})(u_x^{\varepsilon})^2.$$

Так как $\Psi'' \ge 0$, то

$$(\Psi(u^{\varepsilon}))_t + (G(u^{\varepsilon}))_x \le \varepsilon (\Psi(u^{\varepsilon}))_{xx}.$$

Умножая на неотрицательную дважды непрерывно дифференцируемую функцию φ с компактным носителем и интегрируя по частям приходим к неравенству

$$-\int_{\Pi_{\tau}} \Psi(u^{\varepsilon}) \varphi_t + G(u^{\varepsilon}) \varphi_x \, dx \, dt \le \varepsilon \int_{\Pi_{\tau}} \Psi(u^{\varepsilon}) \varphi_{xx} \, dx \, dt.$$

Устремляем теперь $\varepsilon \to 0$ и получаем требуемое неравенство.

В полученном выше неравенстве можно ослабить условие гладкости выпуклой функции Ψ до липшицевости. Пусть $a \in \mathbb{R}$, $\Psi(s) = |s - a|$ и

$$G(s) = sign(s - a)(f(s) - f(a)).$$

Тогда неравенство имеет вид

$$\int_{\Pi_{\tau}} |u - a| \varphi_t + \operatorname{sign}(u - a)(f(u) - f(a)) \varphi_x \, dx \, dt \ge 0. \tag{4}$$

Отметим наконец, что в неравенстве (4) от условия существования вторых производных у функции φ можно отказаться.

Ограниченная измеримая функция u называется обобщенным решением в смысле С.Н.Кружкова, если для всякого $a \in \mathbb{R}$ и всякой неотрицательной дважды непрерывно дифференцируемой функции φ с компактным носителем в $\mathbb{R}^d \times (0,\tau)$ имеет место интегральное неравенство (4).

Можно проверить, что обобщенное решение в смысле Кружкова является обобщенным решением в смысле изначального определения.

Теорема 6.3. Для всякого измеримого ограниченного начального условия u_0 задача Коши $u_t + (f(u))_x = 0$, $u|_{t=0} = u_0$, имеет единственное обобщенное решение в смысле Кружкова.

7. Вязкостные решения: определение и основные свойства

Пример уравнения Гамильтона-Якоби

На первой лекции при обсуждении задачи оптимального контроля ключевую роль играло уравнение вида

$$H(x, u(x), \nabla u(x)) = 0.$$

Рассмотрим интересный пример: найти решение задачи Дирихле

$$|Du| - 1 = 0$$
 при $x \in \Omega$, $u|_{\partial\Omega} = 0$,

где Ω — ограниченное открытое множество в \mathbb{R}^n .

У этой задачи не существует классического решения $u \in C^1(\Omega) \cap C(\overline{\Omega})$. Такое решение не может быть константой. Следовательно, максимум или минимум достигается внутри области, но в точке экстремума градиент равен нулю, что противоречит уравнению.

Однако функция

$$u(x) = \operatorname{dist}(x, \partial\Omega) = \min_{y \in \partial\Omega} |x - y|$$

является липшицевой, почти всюду дифференцируема и во всякой точке дифференцируемости удовлетворяет уравнению |Du|-1=0. Проверим липшицевость. Пусть $\varepsilon>0$. Для точки z найдется такой $y\in\partial\Omega$, что $u(z)\geq |z-y|-\varepsilon$. Имеем

$$u(x) - u(z) \le |x - y| - |z - y| + \varepsilon \le |x - z| + \varepsilon.$$

Устремляя $\varepsilon \to 0$, получаем

$$|u(x) - u(z)| \le |x - z|.$$

Всякая липшицева функция почти всюду дифференцируема. Поскольку константа Липшица равна одному, то в точке дифференцируемости x справедливо неравенство $|Du(x)| \leq 1$. Обоснуем оценку $|Du(x)| \geq 1$. Пусть $\varepsilon > 0$ и $\overline{B}(x, \varepsilon) \subset \Omega$. Тогда

$$u(x) = \varepsilon + \min_{|v|=1} u(x + \varepsilon v).$$

Найдутся последовательности $\varepsilon_j \to 0$ и $v_j \to v$, для которых выполнено

$$|v_j| = 1$$
, $|v| = 1$, $u(x) = u(x + \varepsilon_j v_j) + \varepsilon_j$.

Делим на ε_j и устремляем $j \to \infty$. Получаем равенство

$$\langle Du(x), v \rangle = -1,$$

из которого следует неравенство $|Du(x)| \ge 1$.

Итак, рассматриваемая задача Дирихле не имеет классического решения, но имеет «разумное» решение, которое является липшицевой функцией и удовлетворяет уравнению почти всюду. Однако несложно в одномерном случае, когда $\Omega=(-1,1)$, построить бесконечно много таких решений. Появляется естественный вопрос о выделении «правильного» класса решений.

Метод исчезающей вязкости

Предположим, что d=1 и решение u удалось построить методом исчезающей вязкости, как предел решений u^{ε} уравнения

$$H(x, u^{\varepsilon}, u_x^{\varepsilon}) = \varepsilon u_{xx}^{\varepsilon}.$$

Пусть φ — гладкая функция. Предположим, что функция φ сверху касается u^{ε} в точке x_0 , т.е. точка x_0 является точкой локального максимума функции $u^{\varepsilon} - \varphi$. Имеем

$$u_x^{\varepsilon}(x_0) = \varphi_x(x_0), \quad u_{xx}^{\varepsilon}(x_0) \le \varphi_{xx}(x_0).$$

Следовательно, верно неравенство

$$H(x_0, u^{\varepsilon}(x_0), \varphi_x(x_0)) \leq \varepsilon \varphi_{xx}(x_0).$$

Если функция φ снизу касается u^{ε} в точке x_0 , т.е. точка x_0 является точкой локального минимума функции $u^{\varepsilon} - \varphi$, то

$$H(x_0, u^{\varepsilon}(x_0), \varphi_x(x_0)) \ge \varepsilon \varphi_{xx}(x_0).$$

После предельного перехода при $\varepsilon \to 0$ эти неравенства приведут к следующему свойству предельного решения u: если гладкая функция φ касается сверху в точке x_0 функции u, то выполняется неравенство $H(x_0, u(x_0), \varphi_x(x_0)) \leq 0$, а если φ касается снизу в точке x_0 функции u, то выполняется неравенство $H(x_0, u(x_0), \varphi_x(x_0)) \geq 0$. Именно эти наблюдения лежат в основании определения вязкостного решения.

Пусть $\Omega \subset \mathbb{R}^d$ — открытое множество. Функция $u \in C(\Omega)$ называется вязкостным решением уравнения

$$F(x, u, Du, D^2u) = 0,$$

если для всякой дважды непрерывно дифференцируемой функции φ и всякой точки $x_0 \in \Omega$ верны утверждения: 1) если x_0 — точка локального максимума функции $u-\varphi$, то $F(x_0,u(x_0),D\varphi(x_0),D^2\varphi(x_0))\leq 0$, 2) если x_0 — точка локального минимума функции $u-\varphi$, то $F(x_0,u(x_0),D\varphi(x_0),D^2\varphi(x_0))\geq 0$.

Свойство точек касания

Предложение 7.1. Пусть $u \in C(\Omega)$. Предположим, что для $x_0 \in \Omega$ существуют такие дифференцируемые функции φ и ψ , что x_0 является точкой локального максимума функции $u - \varphi$ и точкой локального минимума функции $u - \psi$. Тогда и дифференцируема в точке x_0 .

Доказательство. Можно считать, что $\varphi(x_0) = \psi(x_0) = u(x_0)$. Имеет место цепочка неравенств

$$\psi(x) - \psi(x_0) \le u(x) - u(x_0) \le \varphi(x) - \varphi(x_0).$$

Так как функции ψ и φ дифференцируемы, то

$$\langle D\psi(x_0), x - x_0 \rangle + o(|x - x_0|) \le u(x) - u(x_0) \le \langle D\varphi(x_0), x - x_0 \rangle + o(|x - x_0|).$$

В частности верна оценка

$$\langle D\psi(x_0) - D\varphi(x_0), x - x_0 \rangle \le o(|x - x_0|),$$

из которой следует равенство $D\psi(x_0) = D\varphi(x_0)$. Таким образом, выполнено

$$u(x) - u(x_0) - \langle D\psi(x_0), x - x_0 \rangle = o(|x - x_0|).$$

Если в $x_0 \in \Omega$ существуют такая дважды непрерывно дифференцируемая функция φ , что x_0 является точкой локального максимума функции $u - \varphi$, то будем говорить, что в точке x_0 функцию u можно коснуться сверху гладкой функцией.

Если в $x_0 \in \Omega$ существуют такая дважды непрерывно дифференцируемая функция φ , что x_0 является точкой локального минимума функции $u - \varphi$, то будем говорить, что в точке x_0 функцию u можно коснуться снизу гладкой функцией.

Поскольку существуют нигде не дифференцируемые непрерывные функции, то множество точек, в которых можно коснуться данную непрерывную функцию гладкой функцией, в общем случае не может быть слишком большим.

Предложение 7.2. Пусть $u \in C(\Omega)$. Множество точек, в которых можно коснуться и сверху гладкой функцией, всюду плотно в Ω .

 $\@ifnextchar[{\it Доказательство}]{\it Спусть} \@ifnextchar[{\it B}(a,r)\@ifnextchar[{\it C}]{\it C}$ и r>0. Пусть $\varepsilon>0.$ Рассмотрим функцию

$$v(x) = u(x) - \frac{|x - a|^2}{\varepsilon^2}.$$

При достаточно малом ε выполнено

$$v(a) > \max_{|x-a|=r} v(x).$$

Следовательно, при таком ε точка максимума v на $\overline{B(a,r)}$ лежит внутри B(a,r) и является точкой локального максимума v, то есть в этой точке функцию u можно коснуться сверху функцией $|x-a|^2/\varepsilon^2$.

Связь вязкостных и классических решений

Пусть F(x, u, p, X) — непрерывная функция и Ω — открытое множество в \mathbb{R}^d .

Теорема 7.1. (i) Если функция и является вязкостным решением уравнения

$$F(x, u, Du, D^2u) = 0$$

 $u\;u\in C^2(\Omega),\;mo\;\phi y$ нкция $u\;$ является классическим решением уравнения

$$F(x, u, Du, D^2u) = 0.$$

(ii) Предположим, что выполнено условие эллиптичности

$$X \le Y \implies F(x, u, p, X) \ge F(x, u, p, Y).$$

Если функция $u \in C^2(\Omega)$ является классическим решением уравнения

$$F(x, u, Du, D^2u) = 0,$$

то функция и является вязкостным решением

$$F(x, u, Du, D^2u) = 0.$$

Доказательство. Для обоснования первого утверждения заметим, что функция u-u в каждой точке имеет локальный максимум и минимум и, следовательно, верны неравенства

$$F(x,u,Du,D^2u) \leq 0 \quad \text{if} \quad F(x,u,Du,D^2u) \geq 0.$$

Проверим второе утверждение. Пусть $\varphi \in C^2(\Omega)$. Если в точке x функция $u-\varphi$ имеет локальный максимум, то $Du(x)=D\varphi(x)$ и $D^2u(x)\leq D^2\varphi(x)$. Следовательно, получаем неравенство

$$F(x, u(x), D\varphi(x), D^2\varphi(x)) \le F(x, u(x), Du(x), D^2u(x)) = 0.$$

Если в точке x функция $u-\varphi$ имеет локальный минимум, то $Du(x)=D\varphi(x)$ и $D^2u(x)\geq D^2\varphi(x)$. Следовательно, получаем неравенство

$$F(x, u(x), D\varphi(x), D^2\varphi(x)) \ge F(x, u(x), Du(x), D^2u(x)) = 0.$$

Если уравнение не содержит вторых производных, то классическое решение всегда является вязкостным решением и при проверке определения вязкостного решения в точках дифференцируемости функции надо просто проверить, что после подстановки значения функции и значения производной в уравнение получается верное равенство.

Рассмотрим пример. Функция u(x) = 1 - |x| является вязкостным решением уравнения |u'(x)| - 1 = 0. Так как $u'(x) = \pm 1$ при $x \neq 0$, то надо проверить определение вязкостного решения лишь в точке x = 0. Пусть $\varphi \in C^2(\mathbb{R})$ и у функции $u - \varphi$ в точке x = 0 локальный максимум. Тогда

$$-|x| = u(x) - u(0) \le \varphi(x) - \varphi(0) = \varphi'(0)x + o(x).$$

Следовательно, $-1 \le \varphi'(0) \le 1$ и $|\varphi'(0)| - 1 \le 0$. Пусть теперь у функции $u - \varphi$ в точке x = 0 локальный минимум. Тогда

$$-|x| = u(x) - u(0) \ge \varphi(x) - \varphi(0) = \varphi'(0)x + o(x).$$

Следовательно, $\varphi'(0) \le -1$ и $\varphi'(0) \ge 1$, что невозможно, то есть невозможно гладкой функцией коснуться снизу в точке x = 0 функции u.

Можно проверить, что -u(x) = |x|-1 не является вязкостным решением уравнения |u'(x)|-1=0, а функция u(x)=1-|x| не является вязкостным решением уравнения 1-|u'(x)|=0.

Предел вязкостных решений является вязкостным решением

Лемма 7.1. Если последовательность функций $u_n \in C(\Omega)$ локально равномерно сходится к функции $u \in C(\Omega)$ и $a \in \Omega$ — точка строгого локального максимума функции u, то найдется такая последовательность номеров n_k и точек $a_{n_k} \in \Omega$, что a_{n_k} — локальный максимум функции u_{n_k} , $a_{n_k} \to a$ и $u_{n_k}(a_{n_k}) \to u(a)$.

Доказательство. Пусть $\overline{B}(a,r)$ — замкнутый шар, на котором u(x) < u(a) при $x \neq a$. Положим $m = u(a) - \max_{|x-a|=r} u(x) > 0$. Найдется норме N, начиная с которого $|u-u_n| < m/3$. Тогда при |x-a|=r и n>N выполнено

$$u_n(a) \ge u(a) - \frac{m}{3} > u(x) + m - \frac{m}{3} \ge u_n(x) + m - \frac{2m}{3} > u_n(x).$$

Следовательно, точка a_n максимума функции u_n , где n > N, на $\overline{B}(a,r)$ не может принадлежать границе и является точкой локального максимума. Выбираем подпоследовательность a_{n_k} , сходящуюся к некоторой точке b. Поскольку $u_{n_k}(a) \le u_{n_k}(a_{n_k})$, то $u(a) \le u(b)$, что возможно лишь в случае a = b.

Напомним, что в определении вязкостного решения локальный экстремум можно заменить на строгий локальный экстремум.

Теорема 7.2. Если при $\varepsilon \to 0$ функции $F_{\varepsilon}(x,u,p,X)$ локально равномерно сходятся κ F(x,u,p,X), функции u_{ε} локально равномерно на Ω сходятся κ u u u_{ε} — вязкостные решения уравнения $F_{\varepsilon}(x,u,Du,D^2u)=0$ на Ω , то u — вязкостное решение уравнения $F(x,u,Du,D^2u)=0$ на Ω .

Доказательство. Пусть $\varphi \in C^2(\Omega)$ и в точке a у функции $u-\varphi$ строгий локальный максимум. Тогда существуют такие последовательности $\varepsilon_k \to 0$ и $a_k \to a$, что $a_k -$ точка локального экстремума u_{ε_k} . Поскольку u_{ε_k} является вязкостным решением, то

$$F_{\varepsilon_k}(a_k, u_{\varepsilon_k}(a_k), D\varphi(a_k), D^2\varphi(a_k)) \le 0.$$

Устремляя $k \to \infty$, получаем неравенство $F(a, u(a), D\varphi(a), D^2\varphi(a)) \le 0$. Аналогичные рассуждения позволяют обосновать неравенство $F(a, u(a), D\varphi(a), D^2\varphi(a)) \ge 0$ в случае, когда a является точкой минимума функции $u - \varphi$.

Доказанная теорема доставляет обоснование метода исчезающей вязкости. Предположим, что для каждого $\varepsilon > 0$ построено классическое решение u_{ε} уравнения

$$H(x, u_{\varepsilon}, Du_{\varepsilon}) - \varepsilon \Delta u_{\varepsilon} = 0$$

и обосновано существование такой последовательности $\varepsilon_k \to 0$, что последовательность функций u_{ε_k} сходится локально равномерно к некоторой функции u. Поскольку для функции $F(x,u,p,X) = H(x,u,p) - \varepsilon \mathrm{tr}\, X$ выполнено условие эллиптичности, то классическое решение u_{ε} является вязкостным решением. Следовательно, функция u является вязкостным решением уравнения H(x,u,Du) = 0, так как u — предел вязкостных решений.

Полунепрерывные функции, вязкостные суб и супер-решения

Пусть Ω — непустое подмножество \mathbb{R}^d . Функция $f:\Omega\to\mathbb{R}$ называется полунепрерывной снизу (LSC), если

$$x_n \to x \implies \underline{\lim}_{n \to \infty} f(x_n) \ge f(x).$$

Функция $f: \Omega \to \mathbb{R}$ называется полунепрерывной сверху (USC), если

$$x_n \to x \implies \overline{\lim}_{n \to \infty} f(x_n) \le f(x).$$

Предложение 7.3. Если функция полунепрерывна сверху и снизу, то функция непрерывна.

Доказательство. Достаточно заметить, что при $x_n \to x$

$$f(x) \le \underline{\lim}_{n \to \infty} f(x_n) \le \overline{\lim}_{n \to \infty} f(x_n) \le f(x).$$

Предложение 7.4. Функция f полунепрерывна снизу тогда и только тогда, когда надграфик $\{(x,y): y \geq f(x)\}$ замкнут в $\Omega \times \mathbb{R}$. Функция f полунепрерывна сверху тогда и только тогда, когда подграфик $\{(x,y): y \leq f(x)\}$ замкнут в $\Omega \times \mathbb{R}$.

Доказательство. Пусть функция f полунепрерывна снизу, $x_n \to x, \ y_n \to y$ и $y_n \ge f(x_n)$. Тогда

$$y = \lim_{n \to \infty} y_n \ge \underline{\lim}_{n \to \infty} f(x_n) \ge f(x),$$

то есть точка (x, y) принадлежит надграфику.

Предположим теперь, что надграфик замкнут и $x_n \to x$. Если $\varliminf_{n\to\infty} f(x_n) = y$, то существует такая подпоследовательность $x_{n_k} \to x$, что $f(x_{n_k}) \to y$. Из-за замкнутости надграфика $y \ge f(x)$, то есть $\varliminf_{n\to\infty} f(x_n) \ge f(x)$.

Предложение 7.5. Если функция f полунепрерывна снизу на компакте K тогда функция f ограничена снизу на K и существует такая точка $a \in K$, что $f(a) = \inf_K f$. Если функция f полунепрерывна сверху на компакте K тогда функция f ограничена сверху на K и существует такая точка $a \in K$, что $f(a) = \sup_K f$.

Доказательство. Доказательство дословно повторяет обоснование теоремы Вейерштрасса из стандартного курса анализа. □

Для полунепрерывных функций существует удобный способ приближения их лип-шицевыми функциями.

Пусть Ω — непустое подмножество \mathbb{R}^d и f — ограниченная функция на Ω . Выражение

$$f_{\varepsilon}(x) = \inf_{y \in \Omega} \left\{ \frac{|x - y|^2}{2\varepsilon} + f(y) \right\}$$

называется inf – свёрткой.

Выражение

$$f^{\varepsilon}(x) = \sup_{y \in \Omega} \left\{ -\frac{|x-y|^2}{2\varepsilon} + f(y) \right\}$$

называется sup - свёрткой.

Предложение 7.6. (i) Функция $f_{\varepsilon}(x) - \frac{|x|^2}{2\varepsilon}$ является вогнутой, а функция $f^{\varepsilon}(x)$ + $\frac{|x|^2}{2\varepsilon}$ является выпуклой. (ii) Функции f_ε и f^ε локально липшицевы, почти всюду дифференцируемы и по-

чти всюду дважды дифференцируемы в том смысле, что для почти всех точек x_0 существуют такие p, Q, что

$$f(x) = f(x_0) + \langle p, x - x_0 \rangle + \frac{1}{2} \langle Q(x - x_0), x - x_0 \rangle + o(|x - x_0|^2), \quad x \to x_0.$$

(ii) Если f полунепрерывна снизу на Ω , то $f_{\varepsilon}(x)$ монотонно не возрастает при $\varepsilon \to 0$ и стремится κ f(x) для всякого $x \in \Omega$. Если f полунепрерывна сверху на Ω . то $f^{\varepsilon}(x)$ монотонно не убывает при $\varepsilon \to 0$ и стремится к f(x) для всякого $x \in \Omega$.

Доказательство. Обоснуем лишь (i) и (iii), так как (ii) является следствием теорем Радемахера и Александрова. Для доказательства (i) достаточно заметить, что

$$f_{\varepsilon}(x) - \frac{|x|^2}{2\varepsilon} = \inf_{y \in \Omega} \left\{ -\langle x, y \rangle + \frac{|y|^2}{2\varepsilon} + f(y) \right\}$$

и отображение $x\to -\langle x,y\rangle+\frac{|y|^2}{2\varepsilon}+u(y)$ является аффинной функцией. Докажем утверждение (iii). Пусть $x\in\Omega$. Ясно, что $f_{\varepsilon}(x)\leq f(x)$. Если $0<\delta<\varepsilon$, TO

$$\frac{|x-y|^2}{2\varepsilon} + f(y) \le \frac{|x-y|^2}{2\delta} + f(y)$$

и $f_{\varepsilon}(x) \leq f_{\delta}(x)$. Для $\varepsilon = 1/n$ найдется такая точка $y_n \in \Omega$, что

$$f_{1/n}(x) \ge \frac{n|x-y_n|^2}{2} + f(y_n) - \frac{1}{n}$$

Из ограниченности f следует, что $y_n \to 0$, а из полунепрерывности снизу получаем

$$\lim_{n \to \infty} f_{1/n}(x) \ge \underline{\lim}_{n \to \infty} f(y_n) \ge f(x).$$

Таким образом, $f_{\varepsilon}(x) \to f(x)$ при $\varepsilon \to 0$.

Отметим, что если функция f непрерывна на Ω , то по признаку Дини на каждом компакте $K \subset \Omega$ Функции f_{ε} сходятся к f равномерно при $\varepsilon \to 0$.

Полунепрерывная сверху функция u на открытом множестве Ω является eязкостным суб-решением уравнения $F(x, u, Du, D^2u) = 0$, если для всякой функции $\varphi \in C^2(\Omega)$ в точке x_0 локального максимума функции $u-\varphi$ справедливо неравенство

$$F(x_0, u(x_0), D\varphi(x_0), D^2\varphi(x_0)) \le 0.$$

Полунепрерывная снизу функция u на открытом множестве Ω является вязкостным супер-решением уравнения $F(x, u, Du, D^2u) = 0$, если для всякой функции $\varphi \in$ $C^2(\Omega)$ в точке x_0 локального минимума функции u-arphi справедливо неравенство

$$F(x_0, u(x_0), D\varphi(x_0), D^2\varphi(x_0)) \ge 0.$$

Если функция u одновременно является вязкостным суб- и супер-решением, то функция u является вязкостным решением.

Джеты

Пусть Ω — произвольное непустое открытое подмножество в \mathbb{R}^d и $u \colon \Omega \to \mathbb{R}$.

Через $J^{2,+}u(x_0)$ обозначим множество таких пар (p,A), что p — вектор, A — симметричная матрица и

$$u(x) \le u(x_0) + \langle p, x - x_0 \rangle + \frac{1}{2} \langle A(x - x_0), x - x_0 \rangle + o(|x - x_0|^2), \quad x \to x_0, \ x \in \Omega.$$

Отметим, что последнее неравенство означает, что

$$\frac{u(x) - u(x_0) - \langle p, x - x_0 \rangle - \frac{1}{2} \langle A(x - x_0), x - x_0 \rangle}{|x - x_0|^2} \le \alpha(x)$$

 $\operatorname{u} \lim_{x \to x_0} \alpha(x) = 0.$

Предложение 7.7. *Если* $u \in C^2(\Omega)$, *mo*

$$J^{2,+}u(x_0) = \left\{ (Du(x_0), A) \colon A \ge D^2 u(x_0) \right\}.$$

Доказательство. Если $A \geq D^2 u(x_0)$, то

$$u(x) = u(x_0) + \langle Du(x_0), x - x_0 \rangle + \frac{1}{2} \langle D^2 u(x_0)(x - x_0), x - x_0 \rangle + o(|x - x_0|^2) \le u(x_0) + \langle Du(x_0), x - x_0 \rangle + \frac{1}{2} \langle A(x - x_0), x - x_0 \rangle + o(|x - x_0|^2).$$

Пусть теперь $(p,A)\in J^{2,+}u(x_0).$ Тогда для всякого вектора ξ и t>0 выполнено

$$\langle Du(x_0), \xi \rangle + \frac{t}{2} \langle D^2 u(x_0)\xi, \xi \rangle \le \langle p, \xi \rangle + \frac{t}{2} \langle A\xi, \xi \rangle + o(t), \quad t \to 0.$$

Устремляя $t \to 0$, получаем неравенство

$$\langle Du(x_0), \xi \rangle \le \langle p, \xi \rangle,$$

из которого следует, что $p = Du(x_0)$. Следовательно, выполнено

$$\langle D^2 u(x_0)\xi, \xi \rangle \le \langle A\xi, \xi \rangle + o(1), \quad t \to 0.$$

Устремляя $t \to 0$, получаем неравенство $A \ge D^2 u(x_0)$.

Теорема 7.3. Множесство $J^{2,+}u(x_0)$ состоит из пар $(D\varphi(x_0), D^2\varphi(x_0))$, где $\varphi \in C^2(\Omega)$ и x_0 является точкой локального максимума функции $u-\varphi$.

Доказательство. Если x_0 точка локального максимума функции $u-\varphi$ и $\varphi\in C^2(\Omega)$, то в некоторой окрестности точки x_0 выполнено

$$u(x) \le u(x_0) + \varphi(x) - \varphi(x_0) = u(x_0) + \langle D\varphi(x_0), x - x_0 \rangle + \frac{1}{2} \langle D^2 \varphi(x_0)(x - x_0), x - x_0 \rangle + o(|x - x_0|^2).$$

Следовательно, пара $(D\varphi(x_0), D^2\varphi(x_0))$ принадлежит $J^{2,+}u(x_0)$.

Пусть теперь $(p,A) \in J^{2,+}u(x_0)$. Тогда найдутся такие шар $B(x_0,r_0)$ и ограниченная функция α , что для всякого $x \in B(x_0,r_0)$ справедливо неравенство

$$u(x) \le u(x_0) + \langle p, x - x_0 \rangle + \frac{1}{2} \langle A(x - x_0), x - x_0 \rangle + \alpha(x) |x - x_0|^2$$

и $\lim_{x\to x_0}\alpha(x)=0$. Заменим $\alpha(x)$ на $\max\alpha(x),0$ и далее считаем, что функция α неотрицательна. Перейдем к функции $\sup_{|x|\le r}\alpha(x)$, то есть теперь $\alpha(x)=\alpha(|x-x_0|)$

и $\alpha(r)$ неубывает на $[0, r_0)$. Увеличивая α , можно считать, что функция α непрерывна. Итак, далее считаем, что функция α неотрицательна, монотонно не убывает, непрерывна и $\alpha(0) = 0$.

Положим

$$\beta(r) = \int_{r}^{\sqrt{3}r} \int_{s}^{2s} \alpha(t) dt ds.$$

Функция β дважды непрерывно дифференцируема на $[0, r_1)$, где $r_1 = r/\sqrt{3}$, причем

$$\alpha(r)r^2 \le \beta(r) \le \alpha(\sqrt{3}r)r^2$$
.

Следовательно, $\beta(r)=o(r^2)$ при $r\to 0$. Рассмотрим функцию $\beta(|x|)$. При $0<|x|< r_1$ функция $\beta(|x|)$ дважды непрерывно дифференцируема. Проверим, что $\beta(|x|)$ дважды непрерывно дифференцируема в точке x=0. Так как $\beta(|x|)=o(|x|^2)$, то функция $\beta(|x|)$ дифференцируем в точке x=0 и ее градиент равен нулю. Кроме того, при $x\neq 0$ выполнено

$$\partial_{x_i}\beta(|x|) = \beta'(|x|)|x|^{-1}x_i \to 0, \quad x \to 0.$$

Таким образом, функция $\beta(|x|)$ непрерывно дифференцируема в нуле. Имеем

$$\partial_{x_j} \beta'(|x|)|x|^{-1} x_i \Big|_{x=0} = \lim_{x_j \to 0} \beta'(|x_j|)|x_j|^{-1} \delta_{ij} = 0.$$

При $x \neq 0$ выполнено

$$\partial_{x_j}\beta'(|x|)|x|^{-1}x_i = \beta''(|x|)|x|^{-2}x_ix_j - \beta'(|x|)|x|^{-3}x_ix_j + \beta'(|x|)|x|^{-1}\delta_{ij}.$$

Поскольку $\beta'(r) = o(r)$ и $\beta''(r) = o(1)$, то $\partial_{x_j}\beta'(|x|)|x|^{-1}x_i \to 0$ при $x \to 0$. Следовательно, функция $\beta(|x|)$ дважды непрерывно дифференцируема.

Пусть ψ — такая гладкая функция, что носитель ψ лежит в $B(x_0,r_1)$ и $\psi=1$ в окрестности точки x_0 . Положим

$$\varphi(x) = \psi(x) \Big(u(x_0) + \langle p, x - x_0 \rangle + \frac{1}{2} \langle A(x - x_0), x - x_0 \rangle + \beta(|x - x_0|^2) \Big).$$

Функция φ дважды непрерывно дифференцируема, $\varphi(x_0) = u(x_0)$ и в некоторой окрестности точки x_0 справедливо неравенство $u(x) \leq \varphi(x)$. Остается заметить, что $p = D\varphi(x_0)$ и $A = D^2\varphi(x_0)$.

Через $J^{2,-}u(x_0)$ обозначим множество таких пар (p,A), что p — вектор, A — симметричная матрица и

$$u(x) \ge u(x_0) + \langle p, x - x_0 \rangle + \frac{1}{2} \langle A(x - x_0), x - x_0 \rangle + o(|x - x_0|^2), \quad x \to x_0, \ x \in \Omega.$$

Множество $J^{2,-}u(x_0)$ состоит из пар $(D\varphi(x_0), D^2\varphi(x_0))$, где $\varphi \in C^2(\Omega)$ и x_0 является точкой локального минимума функции $u-\varphi$.

Множество $\overline{J^{2,+}}u(x_0)$ состоит из пар (p,A), для которых найдутся такие последовательности

$$x_n \to x_0, \quad p_k \to p, \quad A_k \to A,$$

что $u(x_k) \to u(x_0)$ и $(p_k, A_k) \in J^{2,+}u(x_k)$.

Аналогичным образом определяется $\overline{J^{2,-}}u(x_0)$.

Определение вязкостного решения в терминах джетов

С помощью джетов $J^{2,\pm}u(x_0)$ и $\overline{J^{2,\pm}}u(x_0)$ можно дать эквивалентное определение вязкостного решения.

Пусть задана непрерывная функция F(x, u, p, X).

Полунепрерывная сверху функция u на Ω называется вязкостным суб-решением уравнения $F(x,u,Du,D^2u)=0$, если для всяких $x_0\in\Omega$ и $(p,X)\in J^{2,+}u(x_0)$ (или $\overline{J^{2,+}}u(x_0)$) верно неравенство

$$F(x_0, u(x_0), p, X) \le 0.$$

Полунепрерывная снизу функция u на Ω называется вязкостным супер-решением уравнения $F(x,u,Du,D^2u)=0$, если для всяких $x_0\in\Omega$ и $(p,X)\in J^{2,-}u(x_0)$ (или $\overline{J^{2,-}}u(x_0)$) верно неравенство

$$F(x_0, u(x_0), p, X) \ge 0.$$

Если функция u одновременно является вязкостным суб и супер-решением, то u называется вязкостным решением.

8. ПРИНЦИП СРАВНЕНИЯ ДЛЯ ВЯЗКОСТНЫХ РЕШЕНИЙ

Почти классический принцип сравнения

Пусть Ω — ограниченное открытое множество в \mathbb{R}^d .

Теорема 8.1. Предположим, что

$$F(x, u, p, X) - F(x, v, p, X) \ge \lambda(u - v), \quad \lambda > 0.$$

Пусть и полунепрерывна сверху на $\overline{\Omega}$ и является вязкостным суб-решением уравнения $F(x,u,Du,D^2u)=0$ в Ω . Пусть v полунепрерывна снизу на $\overline{\Omega}$, дважды непрерывно дифференцируема на Ω и является классическим супер-решением уравнения $F(x,u,Du,D^2u)=0$. Тогда неравенство $u\leq v$ на $\partial\Omega$ влечет $u\leq v$ на Ω .

Доказательство. Поскольку функция u-v полунепрерывна сверху, то она достигает в некоторой точке $x_0 \in \overline{\Omega}$ максимального значения на $\overline{\Omega}$. Если $x_0 \in \partial \Omega$, то $u(x)-v(x) \leq u(x_0)-v(x_0) \leq 0$. Если x_0 — внутренняя точка Ω , то по определению вязкостного суб-решения

$$F(x_0, u(x_0), Dv(x_0), D^2v(x_0)) \le 0.$$

Поскольку $F(x_0, v(x_0), Dv(x_0), D^2v(x_0)) \ge 0$, то

$$\lambda(u(x_0) - v(x_0)) \le F(x_0, u(x_0), Dv(x_0), D^2v(x_0)) - F(x_0, v(x_0), Dv(x_0), D^2v(x_0)) \le 0.$$

Таким образом, $u(x_0)-v(x_0)\leq 0$ и $u\leq v$ на $\Omega.$

Принцип сравнения для уравнений с производными первого порядка

Пусть Ω — произвольное непустое открытое подмножество в \mathbb{R}^d и функция F(x,u,p) непрерывна.

Структурные условия: существуют такие положительное число λ и непрерывная возрастающая неотрицательная функция ω на $[0, +\infty)$, что $\omega(0) = 0$ и

$$F(x, u, p) - F(x, v, p) \ge \lambda(u - v)$$
 при $u \ge v$,
 $F(x, u, p) - F(y, u, p) \le \omega(|x - y|(1 + |p|)).$

Структурные условия выполняются, например, для функций вида

$$F(x, u, p) = \lambda u + H(u, p) - g(x),$$

где $\lambda > 0$ и $|g(x) - g(y)| \le C|x - y|$.

Теорема 8.2. (принцип сравнения) Предположим, что для функции F выполняются структурные условия, функция и полунепрерывна сверху на $\overline{\Omega}$ и является вязкостным суб-решением уравнения F(x,u,Du)=0, а функция v полунепрерывна снизу на $\overline{\Omega}$ и является вязкостным супер-решением уравнения F(x,u,Du)=0. Тогда

$$u < v$$
 на $\partial \Omega \implies u < v$ на Ω .

Доказательство. Предположим, что $\max_{\overline{\Omega}}(u(x)-v(x))=m>0$. Пусть $\varepsilon>0$. Рассмотрим функцию

 $\Phi_{\varepsilon}(x,y) = u(x) - v(y) - \frac{|x-y|^2}{2\varepsilon}.$

Поскольку Φ_{ε} полунепрерывна сверху, то найдется точка $(x_{\varepsilon}, y_{\varepsilon}) \in \overline{\Omega} \times \overline{\Omega}$, в которой функция Φ_{ε} достигает максимума. Ясно, что

$$\Phi_{\varepsilon}(x_{\varepsilon}, y_{\varepsilon}) \ge \max_{\overline{\Omega}} \Phi_{\varepsilon}(x, x) = m > 0.$$

Так как функция u(x)-v(y) полунепрерывна сверху на $\overline{\Omega} \times \overline{\Omega}$, то для некоторого положительного числа C выполнено

$$u(x) - v(y) \le C \quad \forall x, y \in \overline{\Omega} \times \overline{\Omega}.$$

Заметим, что

$$u(x_{\varepsilon}) - v(y_{\varepsilon}) - \frac{|x_{\varepsilon} - y_{\varepsilon}|^2}{2\varepsilon} > 0 \implies |x_{\varepsilon} - y_{\varepsilon}| \le \sqrt{2C\varepsilon}.$$

Переходя к подпоследовательности, можно считать, что $x_{\varepsilon} \to x_0$ при $\varepsilon \to 0$. Поскольку разность $x_{\varepsilon} - y_{\varepsilon}$ стремится к нулю, то $y_{\varepsilon} \to x_0$ при $\varepsilon \to 0$. Так как

$$u(x_{\varepsilon}) - v(y_{\varepsilon}) \ge m,$$

TO

$$u(x_0) - v(x_0) \ge \overline{\lim}_{\varepsilon \to 0} u(x_\varepsilon) - v(y_\varepsilon) \ge m.$$

Следовательно, $u(x_0) - v(x_0) = m$ и

$$\lim_{\varepsilon \to 0} u(x_{\varepsilon}) - v(y_{\varepsilon}) = m.$$

Поскольку

$$\frac{|x_{\varepsilon} - y_{\varepsilon}|^2}{2\varepsilon} \le u(x_{\varepsilon}) - v(y_{\varepsilon}) - m,$$

то выражение

$$\frac{|x_{\varepsilon} - y_{\varepsilon}|^2}{\varepsilon}$$

стремится к нулю.

Точка x_0 не может лежать на границе области Ω . Следовательно, при достаточно малом ε точка $(x_{\varepsilon}, y_{\varepsilon})$ является внутренней точкой $\Omega \times \Omega$.

Точка x_{ε} является точкой локального максимума функции

$$x \to \Phi(x, y_{\varepsilon}) = u(x) - v(y_{\varepsilon}) - \frac{|x - y_{\varepsilon}|^2}{2\varepsilon}$$

и по определению вязкостного суб-решения

$$F(x_{\varepsilon}, u(x_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}) \leq 0.$$

Точка y_{ε} является точкой локального максимума функции

$$y \to -\Phi(x_{\varepsilon}, y) = v(y) - u(x_{\varepsilon}) + \frac{|x_{\varepsilon} - y|^2}{2\varepsilon}$$

и по определению вязкостного супер-решения

$$F(y_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}) \ge 0.$$

Имеет место неравенство

$$F\left(x_{\varepsilon}, u(x_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}\right) - F\left(x_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}\right) \le$$

$$\le F\left(y_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}\right) - F\left(x_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}\right).$$

Применяя структурные условия, приходим к неравенству

$$\lambda (u(x_{\varepsilon}) - v(y_{\varepsilon})) \le \omega (|x_{\varepsilon} - y_{\varepsilon}| + \frac{|x_{\varepsilon} - y_{\varepsilon}|^2}{\varepsilon}).$$

Устремляя $\varepsilon \to 0$, получаем неравенство $\lambda m \le 0$, которое противоречит предположению m>0.

Исследование функции $u(x)-v(y)-\frac{|x-y|^2}{2\varepsilon}$ называется методом удвоения переменных

Проблемы обобщения метода удвоения переменных на случай уравнения с производными второго порядка

Рассмотрим уравнение $\lambda u - \Delta u = 0$. Пусть u и v — классические (а значит и вязкостные, так как выполнено условие эллиптичности) суб и супер-решения на Ω , причем $u, v \in C(\overline{\Omega})$. Повторяя рассуждения, получаем точку $(x_{\varepsilon}, y_{\varepsilon})$ локального максимума функции

$$\Phi_{\varepsilon}(x,y) = u(x) - v(y) - \frac{|x-y|^2}{2\varepsilon}.$$

Поскольку x_{ε} — точка локального максимума функции

$$x \to u(x) - v(y_{\varepsilon}) - \frac{|x - y_{\varepsilon}|^2}{2\varepsilon},$$

ТО

$$\lambda u(x_{\varepsilon}) - \frac{d}{\varepsilon} \le 0.$$

Поскольку y_{ε} — точка локального максимума функции

$$x \to v(y) - u(x_{\varepsilon}) + \frac{|x_{\varepsilon} - y|^2}{2\varepsilon},$$

TO

$$\lambda v(y_{\varepsilon}) + \frac{d}{\varepsilon} \ge 0.$$

Следовательно, справедливо неравенство

$$\lambda(u(x_{\varepsilon}-v(y_{\varepsilon}))) \leq \frac{2d}{\varepsilon},$$

но к противоречию оно не приводит.

В этом рассуждении используется не вся информация о точке $(x_{\varepsilon}, y_{\varepsilon})$, а только наблюдение, что у функций

$$x \to \Phi_{\varepsilon}(x, y_{\varepsilon}), \quad y \to \Phi_{\varepsilon}(x_{\varepsilon}, y)$$

в точках x_{ε} и y_{ε} локальные максимумы. Фактически, в рассмотренном выше доказательстве используются лишь условия экстремум первого порядка, да и то лишь по направлениям, параллельным осям координат.

Попробуем использовать условия на вторые производные функции Φ_{ε} . Напомним, что сейчас мы рассматриваем классические суб и супер-решения u и v. В точке максимума $(x_{\varepsilon}, y_{\varepsilon})$ матрица вторых производных $D^2\Phi_{\varepsilon} \leq 0$, что можно записать следующим образом:

$$\begin{pmatrix} D^2 u(x_{\varepsilon}) & 0 \\ 0 & -D^2 u(y_{\varepsilon}) \end{pmatrix} \leq \frac{1}{\varepsilon} \begin{pmatrix} I & -I \\ -I & I \end{pmatrix}.$$

Предложение 8.1. Пусть $A\ u\ B\ -\ c$ имметричные матрицы, число $\theta > 0$. Тогда неравенство

$$\left(\begin{array}{cc} A & 0 \\ 0 & -B \end{array}\right) \le \theta \left(\begin{array}{cc} I & -I \\ -I & I \end{array}\right).$$

равносильно тому, что для всех $\xi, \eta \in \mathbb{R}^d$ справедливо неравенство

$$\langle A\xi, \xi \rangle - \langle B\eta, \eta \rangle \le \theta |\xi - \eta|^2.$$

B частности, $npu \xi = \eta$ получаем

$$\langle A\xi, \xi \rangle \leq \langle B\xi, \xi \rangle$$
,

то есть $A \leq B$.

Доказательство. Проверяется непосредственным вычислением.

Таким образом, $D^2u(x_{\varepsilon}) \leq D^2v(y_{\varepsilon})$ и верно неравенство

$$\lambda u(x_{\varepsilon}) \le \Delta u(x_{\varepsilon}) \le \Delta v(y_{\varepsilon}) \le \lambda v(y_{\varepsilon}),$$

из которого выводим неравенство $\lambda \big(u(x_{\varepsilon})-v(y_{\varepsilon})\big) \leq 0$, приводящее при $\varepsilon \to 0$ к противоречию.

Итак, для доказательства принципа сравнения в случае уравнения со вторыми производными надо использовать необходимые условия экстремума второго порядка.

Лемма Иши и принцип сравнения в общем случае

Следующее утверждение играет ключевую роль в обосновании принципа сравнения для всязкостных решений.

Лемма 8.1. (Иши) Пусть функции и и v полунепрерывны сверху на $\overline{\Omega}$, функция φ дважды непрерывно дифференцируема на $\overline{\Omega} \times \overline{\Omega}$ и $(x_0, y_0) \in \Omega \times \Omega$ — точка локального максимума функции $u(x) + v(y) - \varphi(x, y)$. Тогда для всякого числа $\gamma > 0$ найдутся такие симметричные матрицы X и Y, что

$$(D_x \varphi(x_0, y_0), X) \in \overline{J}^{2,+} u(x_0), \quad (D_y \varphi(x_0, y_0), Y) \in \overline{J}^{2,+} v(y_0),$$
$$-\left(\frac{1}{\gamma} + \|A\|\right) I \le \begin{pmatrix} X & 0\\ 0 & Y \end{pmatrix} \le A + \gamma A^2$$

 $r\partial e \ A = D^2 \varphi(x_0, y_0).$

Лемма Иши далее применяется к функции

$$\Phi_{\varepsilon}(x,y) = u(x) - v(y) - \frac{|x-y|^2}{2\varepsilon}$$

в точке максимума $(x_{\varepsilon},y_{\varepsilon})$ и для $\gamma=\varepsilon$ дает симметричные матрицы X и Y, для которых выполняется

$$\begin{pmatrix} \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, X \end{pmatrix} \in \overline{J}^{2,+} u(x_{\varepsilon}), \quad \begin{pmatrix} \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, Y \end{pmatrix} \in \overline{J}^{2,-} v(y_{\varepsilon}), \\
-\frac{3}{\varepsilon} \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \leq \begin{pmatrix} X & 0 \\ 0 & -Y \end{pmatrix} \leq \frac{3}{\varepsilon} \begin{pmatrix} I & -I \\ I & I \end{pmatrix}$$

Пусть F(x, u, p, X) — непрерывна.

Структурные условия: существуют такие положительное число λ и непрерывная возрастающая неотрицательная функция ω на $[0, +\infty)$, что $\omega(0) = 0$,

$$F(x,u,p,X)-F(x,v,p,X)\geq \lambda(u-v)$$
 при $u\geq v$

и для всякого $\alpha > 1$ и всяких симметричных матриц X и Y из неравенств

$$-3\alpha \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \le \begin{pmatrix} X & 0 \\ 0 & -Y \end{pmatrix} \le 3\alpha \begin{pmatrix} I & -I \\ I & I \end{pmatrix}$$

следует неравенство

$$F(x, u, \alpha(x - y), Y) - F(y, u, \alpha(x - y), X) \le \omega(|x - y|(1 + \alpha|x - y|)).$$

Можно показать, что из структурных условий следует эллиптичность функции F. Более того, если существуют такие положительное число λ и непрерывная возрастающая неотрицательная функция ω на $[0, +\infty)$, что $\omega(0) = 0$,

$$F(x, u, p, X) - F(x, v, p, X) \ge \lambda(u - v)$$
 при $u \ge v$, $F(x, u, p, X) - F(y, u, p, X) \le \omega(|x - y|(1 + |p|))$

и F удовлетворяет условию эллиптичности, то структурные условия выполнены. Например, структурные условия выполняются для

$$F(x, u, p, X) = \lambda u + H(u, p) - \operatorname{tr} X + g(x),$$

где
$$\lambda > 0$$
 и $|g(x) - g(y)| \le C|x - y|$.

Теорема 8.3. (принцип сравнения) Предположим, что для функции F выполняются структурные условия, функция u полунепрерывна сверху на $\overline{\Omega}$ u является вязкостным суб-решением уравнения $F(x,u,Du,D^2u)=0$, а функция v полунепрерывна снизу на $\overline{\Omega}$ u является вязкостным супер-решением уравнения $F(x,u,Du,D^2u)=0$. Тогда

$$u \le v$$
 на $\partial \Omega \implies u \le v$ на Ω .

Доказательство. Обоснование состоит в повторении рассуждений, которые использовались в случае уравнения с производными первого порядка. Поэтому остановимся лишь на заключительной части доказательства, в которой применяется лемма Иши. Пусть $\varepsilon \in (0,1)$. Предположим, что $(x_{\varepsilon}, y_{\varepsilon})$ стремится к (x_0, x_0) при $\varepsilon \to 0$, выражение $|x_{\varepsilon} - y_{\varepsilon}|^2/\varepsilon$ стремится к нулю,

$$u(x_{\varepsilon}) - v(y_{\varepsilon}) \to \max_{\overline{O}} (u(x) - v(x)) = m > 0,$$

точка $(x_{\varepsilon}, y_{\varepsilon})$ является точкой локального максимума функции

$$\Phi_{\varepsilon}(x,y) = u(x) - v(y) - \frac{|x-y|^2}{2\varepsilon}.$$

По лемме Иши найдутся такие симметричные матрицы X и Y, что

$$\left(\frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, X\right) \in \overline{J}^{2,+} u(x_{\varepsilon}), \quad \left(\frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, Y\right) \in \overline{J}^{2,-} v(y_{\varepsilon}),
-\frac{3}{\varepsilon} \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \le \begin{pmatrix} X & 0 \\ 0 & -Y \end{pmatrix} \le \frac{3}{\varepsilon} \begin{pmatrix} I & -I \\ I & I \end{pmatrix}$$

Согласно определению вязкостных суб и супер-решений, справедливы неравенства

$$F(x_{\varepsilon}, u(x_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, X) \le 0 \le F(y_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, Y).$$

Применяя структурные условия, получаем

$$\lambda (u(x_{\varepsilon}) - v(y_{\varepsilon})) \le \omega (|x_{\varepsilon} - y_{\varepsilon}| + \frac{|x_{\varepsilon} - y_{\varepsilon}|^2}{\varepsilon}).$$

Устремляя $\varepsilon \to 0$, приходим к неравенству $\lambda m \le 0$, которое противоречит предположению m>0.

Следствия из принципа сравнения

Пусть (как и выше)F(x, u, p, X) — непрерывна и Ω — открытое ограниченное множество. Напомним *структурные условия*:

1) (условие монотонности) существует такое положительное число λ , что

$$F(x, u, p, X) - F(x, v, p, X) \ge \lambda(u - v)$$
 при $u \ge v$

2) (условие непрерывности) существует непрерывная возрастающая неотрицательная функция ω на $[0,+\infty)$, что $\omega(0)=0$ и для всякого $\alpha>1$ и всяких симметричных матриц X и Y из неравенств

$$-3\alpha \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \le \begin{pmatrix} X & 0 \\ 0 & -Y \end{pmatrix} \le 3\alpha \begin{pmatrix} I & -I \\ I & I \end{pmatrix}$$

следует неравенство

$$F(x, u, \alpha(x - y), Y) - F(y, u, \alpha(x - y), X) \le \omega(|x - y|(1 + \alpha|x - y|)).$$

Теорема 8.4. (принцип сравнения) Предположим, что для функции F выполняются структурные условия, функция u полунепрерывна сверху на $\overline{\Omega}$ u является вязкостным суб-решением уравнения $F(x,u,Du,D^2u)=0$, а функция v полунепрерывна снизу на $\overline{\Omega}$ u является вязкостным супер-решением уравнения $F(x,u,Du,D^2u)=0$. Тогда

$$u \le v$$
 на $\partial \Omega \implies u \le v$ на Ω .

Следствие 8.1. Предположим, что для функции F выполняются структурные условия, функция и полунепрерывна сверху на $\overline{\Omega}$ и является вязкостным суб-решением уравнения $F(x,u,Du,D^2u)=0$, а функция v полунепрерывна снизу на $\overline{\Omega}$ и является вязкостным супер-решением уравнения $F(x,u,Du,D^2u)=0$. Тогда

$$\sup_{\Omega} (u - v) \le \sup_{\partial \Omega} (u - v)^+, \quad (u - v)^+ = \max\{0, u - v\}.$$

 \mathcal{A} оказательство. Пусть $M=\sup_{\partial\Omega}(u-v)^+$. Заметим, что $J^{2,+}(u-M)(x_0)=J^{2,+}u(x_0)$. Следовательно, для всех $(p,X)\in J^{2,+}(u-M)(x_0)$ верны неравенства

$$F(x_0, u(x_0) - M, p, X) \le F(x_0, u(x_0), p, X) \le 0$$

Таким образом, функция u-M является вязкостным суб-решением и $u-M \le v$ на $\partial\Omega$ (благодаря выбору константы M). По принципу сравнения $u-M \le v$ в Ω .

Следствие 8.2. Пусть функция G(x, u, p, X) монотонно не убывает по и и удовлетворяет условию непрерывности, а функции f, g липшицевы на $\overline{\Omega}$. Предположим, что функция и полунепрерывна сверху на $\overline{\Omega}$ и является вязкостным суб-решением уравнения

$$u + G(x, u, Du, D^2u) + f(x) = 0,$$

а функция v полунепрерывна снизу на $\overline{\Omega}$ и является вязкостным супер-решением уравнения

$$u + G(x, u, Du, D^2u) + g(x) = 0.$$

Tог ∂a

$$\sup_{\Omega} (u - v) \le \sup_{\partial \Omega} (u - v)^{+} + \sup_{\Omega} (f - g)^{-}, \quad (f - g)^{-} = \max\{0, g - f\}.$$

Доказательство. Пусть

$$M = \sup_{\partial \Omega} (u - v)^{+} + \sup_{\Omega} (f - g)^{-}.$$

Заметим, что $J^{2,+}(u-M)(x_0) = J^{2,+}u(x_0)$ и для всех $(p,X) \in J^{2,+}(u-M)(x_0)$ верны неравенства

$$u(x_0) - M + G(x_0, u(x_0) - M, p, X) + g(x_0) \le$$

$$u(x_0) + G(x_0, u(x_0), p, X) + f(x_0) + (g(x_0) - f(x_0) - M) \le 0.$$

Таким образом, функция u-M является вязкостным суб-решением уравнения

$$u + G(x, u, Du, D^2u) + g(x) = 0$$

и $u-M \leq v$ на $\partial\Omega$. По принципу сравнения $u-M \leq v$ в Ω .

Условие монотонности

Следующие утверждения позволяют в некоторых случаях ослабить условие монотонности.

Предложение 8.2. Пусть функция F(x,u,p,X) непрерывна по всем переменным, монотонно не убывает по и и удовлетворяет условию непрерывности. Предположим, что функция и полунепрерывна сверху на $\overline{\Omega}$ и является вязкостным субрешением уравнения $F(x,u,Du,D^2u)+\delta=0$, где $\delta>0$, а функция v полунепрерывна снизу на $\overline{\Omega}$ и является вязкостным супер-решением уравнения $F(x,u,Du,D^2u)=0$. Тогда

$$u < v$$
 на $\partial \Omega \implies u < v$ на Ω .

Доказательство. Повторяя рассуждения из доказательства принципа сравнения, строим последовательность $(x_{\varepsilon}, y_{\varepsilon})$ точек локального максимума функции

$$u(x) - v(y) - |x - y|^2 / 2\varepsilon,$$

которые сходятся к точке (x_0, x_0) и

$$u(x_{\varepsilon}) - v(y_{\varepsilon}) \to u(x_0) - v(x_0) = \max_{\overline{\Omega}} (u - v) = m > 0.$$

Более того, существуют такие симметричные матрицы X и Y, что

$$F(x_{\varepsilon}, u(x_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, X) \le -\delta, \quad F(y_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, Y) \ge 0,$$

$$F(y_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, Y) - F(x_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, X) \leq \omega \Big(|x_{\varepsilon} - y_{\varepsilon}| + \frac{|x_{\varepsilon} - y_{\varepsilon}|^2}{\varepsilon} \Big).$$

Поскольку $u(x_{\varepsilon}) \geq v(y_{\varepsilon})$ при достаточно малом $\varepsilon > 0$, то

$$\delta \leq F(y_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, Y) - F(x_{\varepsilon}, v(y_{\varepsilon}), \frac{x_{\varepsilon} - y_{\varepsilon}}{\varepsilon}, X).$$

Переходя к пределу при $\varepsilon \to 0$, получаем неравенство $\delta \le 0$, которое противоречит условию $\delta > 0$.

Предложение 8.3. Пусть функция F(x,u,p,X) непрерывна по всем переменным, монотонно не убывает по и и удовлетворяет условию непрерывности. Предположим, что для кажсдого k функция u_k полунепрерывна сверху на $\overline{\Omega}$ и является вязкостным суб-решением уравнения $F(x,u,Du,D^2u)+\delta_k=0$, где $\delta_k>0$. Предположим, что функция v полунепрерывна снизу на $\overline{\Omega}$ и является вязкостным суперрешением уравнения $F(x,u,Du,D^2u)=0$, причем $u_k\leq v$ на $\partial\Omega$ для всякого k. Если последовательность u_k сходится поточечно κ функции u на Ω , то $u\leq v$.

Доказательство. По предыдущему предложению $u_k \leq v$. Следовательно, $u \leq v$. \square

Рассмотрим пример. Пусть функция F(x,u,p,X) монотонно не убывает по u и удовлетворяет условию непрерывности. Предположим, что для некоторого положительного числа λ , некоторого ненулевого вектора η и всякого $h \ge 0$ выполнено

$$F(x, u, p + h\eta, X) - F(x, u, p, X) \ge \lambda h.$$

Тогда для вязкостных суб и супер-решений уравнения $F(x, u, Du, D^2u) = 0$ выполняется принцип сравнения. Такое условие выполнено, например, для уравнения вида

$$u_{x_1} + G(x, u, u_{x_2}, \dots, u_{x_d}, D^2 u) = 0.$$

Обоснуем выполнение принципа сравнения. Положим

$$u_k(x) = u(x) - \frac{1}{k} (\langle x, \eta \rangle + M), \quad M = \max_{\overline{\Omega}} |\langle x, \eta \rangle|.$$

Если $(p,X)\in J^{2,+}u_k(x_0),$ то $(p+k^{-1}\eta,X)\in J^{2,+}u(x_0)$ и верны оценки

$$F(x_0, u_k(x_0), p, X) \le F(x_0, u(x_0), p + k^{-1}\eta, X) - \frac{\lambda}{k} \le -\frac{\lambda}{k}.$$

Функция u_k является суб-решением уравнения $F(x,u,Du,D^2u)+\frac{\lambda}{k}=0$. Если v- супер-решение уравнения $F(x,u,Du,D^2u)=0$ и $u\leq v$ на $\partial\Omega$, то $u_k\leq v$ на $\partial\Omega$. Согласно доказанным выше предложениям $u\leq v$.

Условие непрерывности и эллиптичности

Предложение 8.4. Из условия непрерывности следует эллиптичность функции F.

Доказательство. Пусть $X \leq Y$. Для всякого $\varepsilon > 0$ имеет место неравенство

$$\langle Y\xi, \xi \rangle - \langle (Y + \varepsilon I)\eta, \eta \rangle \le (\|Y\| + \varepsilon^{-1}\|Y\|^2)|\xi - \eta|^2.$$

Пусть $\alpha_{\varepsilon} \to +\infty$ при $\varepsilon \to 0$ и

$$3\alpha_{\varepsilon} > ||X|| + ||Y|| + \varepsilon^{-1}||Y||^2 + \varepsilon.$$

Поскольку $X \leq Y$, то

$$\langle X\xi, \xi \rangle - \langle (Y + \varepsilon I)\eta, \eta \rangle \le 3\alpha_{\varepsilon} |\xi - \eta|^2.$$

Таким образом, выполнено

$$-3\alpha_{\varepsilon} \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \leq \begin{pmatrix} X & 0 \\ 0 & -Y \end{pmatrix} \leq 3\alpha_{\varepsilon} \begin{pmatrix} I & -I \\ I & I \end{pmatrix}$$

Пусть $x_{\varepsilon} = y + \frac{p}{\alpha_{\varepsilon}}$. Тогда

$$F(y, u, p, Y + \varepsilon I) - F(x_{\varepsilon}, u, p, X) \le \omega \left(\frac{p}{\alpha_{\varepsilon}} + \frac{p^2}{\alpha_{\varepsilon}}\right).$$

Устремляя $\varepsilon \to 0$, приходим к неравенству

$$F(y, u, p, Y) \le F(y, u, p, X).$$

В некоторых случаях условие эллиптичности влечет условие непрерывности. Рассмотрим уравнение

$$G(u, Du, D^2u) + f(x) = 0,$$

где $|f(x)-f(y)| \leq L|x-y|$. Если функция G удовлетворяет условию эллиптичности, то для данного уравнения выполнено условие непрерывности. Действительно, из неравенств

$$-3\alpha \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \le \begin{pmatrix} X & 0 \\ 0 & -Y \end{pmatrix} \le 3\alpha \begin{pmatrix} I & -I \\ I & I \end{pmatrix}$$

следует, что $X \leq Y$. Тогда

$$G(u, \alpha(x - y), Y) + f(y) - G(u, \alpha(x - y), X) - f(x) \le f(y) - f(x) \le L|x - y| \le L(|x - y| + \alpha|x - y|^2).$$

Однако в общем случае условие непрерывности учитывает не только эллиптичность уравнения, но и непрерывность коэффициентов. Рассмотрим еще несколько примеров.

Линейное уравнение первого порядка

Пусть

$$F(x, u, Du, D^2u) = \lambda u - \langle b(x), Du \rangle.$$

В этом случае условие непрерывности означает, что для всех $\alpha>1$

$$\langle b(x) - b(y), \alpha(x - y) \rangle \le \omega (|x - y| + \alpha |x - y|^2).$$

Пусть $\omega(t)=Lt$. Тогда для всех $\alpha>1$ должно быть выполнено

$$\langle b(x) - b(y), \alpha(x - y) \rangle \le L|x - y| + \alpha L|x - y|^2,$$

что равносильно условию

$$\langle b(x) - b(y), x - y \rangle \le L|x - y|^2.$$

Линейное уравнение второго порядка

Пусть

$$F(x, u, Du, D^2u) = \lambda u - \operatorname{tr}(A(x)D^2u), \quad A(x) = \sigma(x)\sigma^t(x).$$

Предположим, что для матриц X и Y выполнено неравенство $C < 3\alpha D$, где

$$= \left(\begin{array}{cc} X & 0 \\ 0 & -Y \end{array}\right), \quad D = \left(\begin{array}{cc} I & -I \\ I & I \end{array}\right).$$

Tогда для всякой матрицы B верно неравенство

$$\operatorname{tr}(CBB^t)$$
 $\leq 3\alpha \operatorname{tr}(DBB^t)$.

Положим

$$B = \left(\begin{array}{cc} \sigma(x) & \sigma(x) \\ \sigma(y) & \sigma(y) \end{array}\right).$$

Тогда

$$BB^{t} = \begin{pmatrix} 2\sigma(x)\sigma^{t}(x) & 2\sigma(x)\sigma^{t}(y) \\ 2\sigma(y)\sigma^{t}(x) & 2\sigma(y)\sigma^{t}(y) \end{pmatrix}.$$

и верны равенства

$$\operatorname{tr}(CBB^t) = 2\operatorname{tr}(A(x)X) - 2\operatorname{tr}(A(y)Y), \quad \operatorname{tr}(DBB^t) = 2\operatorname{tr}((\sigma(x) - \sigma(y))(\sigma(x) - \sigma(y))^t).$$

На пространстве матриц размера $d \times d$ определено скалярное произведение

$$\langle Q, R \rangle = \text{tr}QR^t$$

и соответствующая норма

$$||Q|| = \sqrt{\langle Q, Q \rangle}.$$

Итак, выполнено неравенство

$$\operatorname{tr}(A(x)X) - 2\operatorname{tr}(A(y)Y) \le 3\alpha \|\sigma(x) - \sigma(y)\|^2.$$

Если

$$\|\sigma(x) - \sigma(y)\| \le L|x - y|,$$

то для функции $F(x, u, p, X) = -\text{tr}(A(x)X) + \lambda u$ выполнено условие непрерывности с функцией $\omega(t) = Lt$.

Объединяя эти примеры, получаем, что структурные условия выполнены для

$$F(x, u, p, X) = -\operatorname{tr}(A(x)X) + \langle b(x), p \rangle + \lambda u,$$

если

$$\lambda > 0, \quad A(x) = \sigma(x)\sigma(x)^t, \quad \|\sigma(x) - \sigma(y)\| \le L|x - y|, \quad \langle b(x) - b(y), x - y \rangle \le L|x - y|^2.$$

При этих предположениях структурное условие выполнено и для функции

$$F(x, u, p, X) = -\sup_{\theta} \left\{ \operatorname{tr}(A_{\theta}(x)X) + \langle b_{\theta}(x), p \rangle \right\} + \lambda u,$$

которые появляются при исследовании уравнений Гамильтона-Якоби-Беллмана.

9. Доказательство леммы Иши

Лемма 9.1. (Иши) Пусть функции и и v полунепрерывны сверху на $\overline{\Omega}$, функция φ дважды непрерывно дифференцируема на $\overline{\Omega} \times \overline{\Omega}$ и $(x_0, y_0) \in \Omega \times \Omega$ — точка локального максимума функции $u(x) + v(y) - \varphi(x, y)$. Тогда для всякого числа $\gamma > 0$ найдутся такие симметричные матрицы X и Y, что

$$(D_x \varphi(x_0, y_0), X) \in \overline{J}^{2,+} u(x_0), \quad (D_y \varphi(x_0, y_0), Y) \in \overline{J}^{2,+} v(y_0),$$
$$-\left(\frac{1}{\gamma} + \|A\|\right) I \le \begin{pmatrix} X & 0\\ 0 & Y \end{pmatrix} \le A + \gamma A^2$$

 $e \partial e A = D^2 \varphi(x_0, y_0).$

Доказательство этой леммы разбивается на несколько этапов.

Упрощение функции φ и области Ω

После переноса начала координат в точку (x_0, y_0) и добавления константы к функции φ можно считать, что $(x_0, y_0) = (0, 0)$ и

$$u(0) + v(0) - \varphi(0, 0) = 0.$$

Переходя к функциям $u(x)-u(0),\ v(x)-v(0),\ \varphi(x,y)-\varphi(0,0),$ далее считаем, что $u(0)=v(0)=\varphi(0,0)=0.$ Запишем функцию $u(x)+v(y)-\varphi(x,y)$ в виде

$$(u(x) - \langle D_x \varphi(0,0), x \rangle) + (v(y) - \langle D_y \varphi(0,0), y \rangle) + (\varphi(x,y) - \langle D_x \varphi(0,0), x \rangle - D_y \varphi(0,0), y \rangle).$$

Заменим функцию u на $u(x)-\langle D_x\varphi(0,0),x\rangle$, функцию v на $v(y)-\langle D_y\varphi(0,0),y\rangle$ и функцию φ на

$$\varphi(x,y) - \langle D_x \varphi(0,0), x \rangle - D_y \varphi(0,0), y \rangle.$$

Теперь можно считать, что

$$\varphi(x,y) = \frac{1}{2} \langle A \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \rangle + o(x^2 + y^2),$$

точка (0,0) является локальным максимумом функции $u(x)+v(y)-\varphi(x,y)$, выполнены равенства u(0)=v(0)=0, а в лемме Иши надо найти такие матрицы X,Y, что они удовлетворяют требуемым неравенствам с матрицей A и $(0,X)\in \overline{J}^{2,+}u(0),$ $(0,X)\in \overline{J}^{2,+}v(0).$ Заметим, что для всякого $\varepsilon>0$ в некоторой окрестности точки (0,0) выполнено неравенство

$$u(x) + v(y) \le \frac{1}{2} \langle (A + \varepsilon I) \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \rangle.$$

Если в такой ситуации (для $A+\varepsilon I$) лемма Иши уже доказана, то, устремляя $\varepsilon\to 0$, можно получить утверждение леммы Иши для случая, когда в правой части неравенства стоит матрица A и есть $o(x^2+y^2)$. Следовательно, далее $o(x^2+y^2)$ отбрасываем. Пусть $\overline{B}(0,R)$ — такой замкнутый шар положительного радиуса, что на $\overline{B}(0,R)\times \overline{B}(0,R)$ выполнено неравенство

$$u(x) + v(y) \le \frac{1}{2} \langle A \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \rangle.$$

Положим $u=-\infty$ и $v=-\infty$ вне $\overline{B}(0,R)$. Отметим, что такое переопределение не портит полунепрерывность сверху функций u и v. Итак, пришли к следующей упрощенной форме леммы Иши. Для всех $x,y\in\mathbb{R}^d$ выполнено неравенство

$$u(x) + v(y) \le \frac{1}{2} \langle A \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \rangle,$$

причем u(0)=v(0)=0 и функции u,v полунепрерывны сверху. Надо для всякого числа $\gamma>0$ найти такие симметричные матрицы X и Y, что $(0,X)\in \overline{J}^{2,+}u(0),$ $(0,X)\in \overline{J}^{2,+}v(0)$ и выполнены неравенства

$$-\left(\frac{1}{\gamma} + \|A\|\right)I \le \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \le A + \gamma A^2.$$

Переход к sup-свёрткам

Для всякого числа $\gamma > 0$ и векторов u и v выполнено неравенство

$$\langle Au, u \rangle \le \left(\frac{1}{\gamma} + ||A||\right) |u - v|^2 + \langle (A + \gamma A^2)v, v \rangle.$$

Положим

$$\lambda = \frac{1}{\gamma} + ||A||, \quad B = A + \gamma A^2.$$

Применяя данное неравенство к векторам

$$u = \begin{pmatrix} x \\ y \end{pmatrix}, \quad v = \begin{pmatrix} \xi \\ \eta \end{pmatrix},$$

получаем

$$u(x) - \frac{\lambda}{2}|x - \xi|^2 + v(y) - \frac{\lambda}{2}|y - \eta|^2 \le \frac{1}{2}\langle B\begin{pmatrix} \xi \\ \eta \end{pmatrix}, \begin{pmatrix} \xi \\ \eta \end{pmatrix} \rangle.$$

Через \widehat{u} и \widehat{v} обозначим \sup – свёртки

$$\widehat{u}(\xi) = \sup_{x \in \mathbb{R}^d} \Big\{ u(x) - \frac{\lambda}{2} |x - \xi|^2 \Big\}, \quad \widehat{v}(\eta) = \sup_{y \in \mathbb{R}^d} \Big\{ v(y) - \frac{\lambda}{2} |y - \eta|^2 \Big\}.$$

Итак, получаем неравенство

$$\widehat{u}(\xi) + \widehat{v}(\eta) \leq \frac{1}{2} \langle B \left(\begin{array}{c} \xi \\ \eta \end{array} \right), \left(\begin{array}{c} \xi \\ \eta \end{array} \right) \rangle.$$

Согласно свойствам sup-свёрток, функция $f(\xi,\eta) = \widehat{u}(\xi) + \widehat{v}(\eta)$ непрерывна, локально липшицева, а функция

$$f(\xi,\eta) + \frac{\lambda}{2}|\xi|^2 + \frac{\lambda}{2}|\eta|^2$$

является выпуклой. Имеет место следующее утверждение, доказательство которого мы дадим в самом конце обоснования леммы Иши.

Предложение 9.1. Если $f(x) + \Lambda |x|^2/2$ является выпуклой функцией для некоторого $\Lambda > 0$ и x = 0 является точкой локального максимума функции

$$f(x) - \frac{1}{2}\langle Bx, B \rangle,$$

то найдется такая симметричная матрица C, что $(0,C)\in \overline{J}^2f(0)$ и

$$-\Lambda I < C < B$$
.

Джет $J^2f(a)$ состоит из таких пар (p,X), что

$$f(x) = f(a) + \langle p, x - a \rangle + \frac{1}{2} \langle X(x - a), x - a \rangle + o(|x - a|^2).$$

Джет $\overline{J}^2 f(0)$ состоит из таких пар (p,X), что найдутся $b_k \to a, p_k \to p, X_k \to X,$ удовлетворяющие условиям

$$(p_k, X_k) \in J^2 f(b_k), \quad f(b_k) \to f(a).$$

Применяя это предложение к функции $f(\xi,\eta)$ и учитывая, что f является суммой двух функций, одна из которых зависит только от ξ , а вторая зависит только от η , получаем матрицу C вида

$$C = \left(\begin{array}{cc} X & 0 \\ 0 & Y \end{array}\right),$$

причем $(0,X)\in \overline{J}^2\widehat{u}(0),\,(0,Y)\in \overline{J}^2\widehat{v}(0).$ Более того, выполнены неравенства

$$-\left(\frac{1}{\gamma} + ||A||\right)I = -\lambda I \le C \le B = A + \gamma A^2.$$

Магические свойства $\sup -$ свёртки

Способ вернуться от \widehat{u} к u и от \widehat{v} к v доставляет следующее утверждение.

Предложение 9.2. Eсли $(p,X) \in J^{2,+}\widehat{u}(a), \ mo\ (p,X) \in J^{2,+}u(z), \ \emph{ede}$

$$z = a + \frac{1}{\lambda}p$$
, $u(z) = \widehat{u}(a) + \frac{|p|^2}{2\lambda}$.

Доказательство. По определению джета

$$\widehat{u}(\xi) \le \widehat{u}(a) + \langle p, \xi - a \rangle + \frac{1}{2} \langle X(\xi - a), \xi - a \rangle + o(|\xi - a|^2).$$

Так как u полунепрерывна сверху и вне компакта $\overline{B}(0,R)$ равна $-\infty$, то существует такое z, что

$$\widehat{u}(a) = u(z) - \frac{\lambda}{2}|z - a|^2.$$

Кроме того, для всех x и ξ верно неравенство

$$u(x) - \frac{\lambda}{2}|x - \xi|^2 \le \widehat{u}(\xi).$$

Следовательно, справедливо неравенство

$$u(x) - \frac{\lambda}{2}|x - \xi|^2 \le u(z) - \frac{\lambda}{2}|z - a|^2 + \langle p, \xi - a \rangle + \frac{1}{2}\langle X(\xi - a), \xi - a \rangle + o(|\xi - a|^2).$$
 (5)

Положим $\xi = a + x - z$ в неравенстве (5). Тогда

$$u(x) \le u(z) + \langle p, x - z \rangle + \frac{1}{2} \langle X(x - z), x - z \rangle + o(|x - z|^2)$$

и по определению $(p,X) \in J^2u(z)$.

Пусть $v \in \mathbb{R}^d$ и $\varepsilon > 0$. Положим x = z и $\xi = a + \varepsilon v$ в неравенстве (5). Приходим к неравенству

$$-\frac{\lambda}{2}|z-a-\varepsilon v|^2 \le -\frac{\lambda}{2}|z-a|^2 + \varepsilon \langle p,v \rangle + o(\varepsilon),$$

из которого получаем оценку $\langle \lambda(z-a)-p,v\rangle \leq o(1)$. Устремляя $\varepsilon \to 0$, приходим к неравенству $\langle \lambda(z-a)-p,v\rangle \leq 0$. В силу произвольности v получаем равенство $z=a+\lambda^{-1}p$.

Поскольку $(0,X) \in \overline{J}^2\widehat{u}(0)$, то существуют последовательности $\xi_k \to 0$, $p_k \to 0$, $X_k \to X$, удовлетворяющие условиям

$$(p_k, X_k) \in J^2 \widehat{u}(\xi_k), \quad \widehat{u}(\xi_k) \to \widehat{u}(0) = 0.$$

По доказанному выше предложению

$$(p_k, X_k) \in J^2 u(z_k), \quad z_k = \xi_k + \frac{1}{\lambda} p_k, u(z_k) = \widehat{u}(\xi_k) + \frac{1}{2\lambda} |p_k|^2.$$

Следовательно, $z_k \to 0$, $u(z_k) \to 0 = u(0)$ и $(0, X) \in \overline{J}^2 u(0)$. Аналогичным образом обосновывается, что $(0, Y) \in \overline{J}^2 v(0)$. Доказательство леммы Иши завершено.

Осталось лишь одно недоказанное утверждение про выпуклые функции.

Лемма Йенсена

Осталось доказать следующее утверждение.

Предложение 9.3. Если $f(x) + \Lambda |x|^2/2$ является выпуклой функцией для некоторого $\Lambda > 0$ и x = 0 является точкой локального максимума функции

$$f(x) - \frac{1}{2}\langle Bx, B \rangle,$$

то найдется такая симметричная матрица C, что $(0,C)\in \overline{J}^2f(0)$ и

$$-\Lambda I < C < B$$
.

Доказательство опирается на лемму Йенсена и теорему А.Д.Александрова, что выпуклые функции почти всюду дважды дифференцируемы, то есть у выпуклой функции f множество $J^2f(a)$ непусто для почти всех a.

Предложение 9.4. (лемма Йенсена) Если функция $g(x)+\Lambda|x|^2/2$ выпукла в окрестности нуля и x=0 является точкой строгого локального максимума, то для всех r>0 и $\delta>0$ имеет положительную меру Лебега множество K, состоящее из таких точек $z\in B(0,r)$, что для некоторого $p\in \overline{B}(0,\delta)$ функция $g(x)-\langle p,x\rangle$ имеет в точке z локальный максимум.

Доказательство. Пусть число $r_0 > 0$ такого, что x = 0 — строгий глобальный максимум g на $B(0, r_0)$. Пусть $0 < r < r_0$. Тогда $g(0) - \max_{|x|=r} g > 0$. Найдем такое $\delta_0 > 0$, что

$$r\delta_0 < g(0) - \max_{|x|=r} g.$$

Пусть $0 < \delta < \delta_0, \, p \in \overline{B}(0,\delta)$ и $h(x) = g(x) - \langle p, x \rangle$. Поскольку

$$h(0) = g(0) > \max_{|x|=r} g + r\delta_0 > g(x) - \langle p, x \rangle = h(x),$$

то точка z абсолютного максимума h на $\overline{B}(0,r)$ лежит внутри B(0,r). Предположим, что g — гладкая функция. Тогда Dg(z)=p. Обозначим через K' множество таких

точек $z \in B(0,r)$, что для некоторого $p \in \overline{B}(0,\delta)$ точка z является точкой абсолютного максимума $g(x) - \langle p, x \rangle$ на $\overline{B}(0,r)$. Поскольку $Dg(K') = \overline{B}(0,\delta)$, то по формуле площади

$$|\overline{B}(0,\delta)| = |Dg(K')| \le \int_{K'} |\det D^2 g(x)| dx.$$

Так как $-\Lambda I \leq D^2 g$ всюду, а в точках K' выполнено $D^2 g \leq 0$, то $|\det D^2 g| \leq \Lambda^d$ на K'. Следовательно, получаем оценку

$$|K| \ge |K'| \ge |\overline{B}(0,\delta)|\Lambda^{-d}$$
.

Предположим теперь, что функция g не является гладкой, а лишь непрерывна. Найдется последовательность таких гладких функций g_j , что функции $g_j(x) + \Lambda |x|^2/2$ выпуклы и g_j равномерно сходятся к g на замкнутом шаре $\overline{B}(0,r)$. Пусть K'_j — множество таких точек $z \in B(0,r)$, что для некоторого $p \in \overline{B}(0,\delta)$ точка z является точкой абсолютного максимума $g_j(x) - \langle p, x \rangle$ на $\overline{B}(0,r)$. Покажем, что

$$K' \supset \bigcap_{m} \bigcup_{j>m} K'_j.$$

Если $z \in \bigcap_m \bigcup_{j>m} K_j'$, то существует такая последовательность номеров $j_m \to +\infty$, что $z \in K_{j_m}'$, то есть для некоторого $p_{j_m} \in \overline{B}(0,\delta)$ функция $g_{j_m}(x) - \langle p_{j_m}, x \rangle$ имеет в точке z глобальный максимум на $\overline{B}(0,r)$. Можно считать, что $p_{j_m} \to p \in \overline{B}(0,\delta)$. Переходя к пределу, получаем, что функция $g(x) - \langle p, x \rangle$ в точке z имеет глобальный максимум на $\overline{B}(0,r)$. Остается заметить, что

$$|K| \ge |K'| \ge \lim_{m \to \infty} |\bigcup_{j>m} K'_j| \ge |\overline{B}(0,\delta)|\Lambda^{-d}.$$

Докажем теперь интересующее нас утверждение.

Доказательство. Рассмотрим функцию

$$g(x) = f(x) - \frac{1}{2} \langle Bx, x \rangle - |x|^4.$$

Ясно, что x=0 является точкой строгого локального максимума g и во всякой окрестности нуля функция $g(x)+\Lambda'|x|^2/2$ выпукла для некоторого $\Lambda'>0$. Применяя лемму Йенсена и теорему Александрова получаем для всякого $\delta>0$ такие точку z_δ и вектор p_δ , что $|z_\delta| \leq \delta, \ |p_\delta| \leq \delta, \ z_\delta$ — точка локального максимума функции $g(x)-\langle p_\delta, x\rangle$ и множество $J^2f(z_\delta)$ непусто. Пусть $(q_\delta, C_\delta) \in J^2f(z_\delta)$. Заметим, что $q_\delta=p_\delta+O(\delta)$ и

$$-\Lambda I \le C_{\delta} \le B + o(\delta).$$

Можно считать, что $C_{\delta} \to C$ при $\delta \to 0$, причем $-\Lambda I \le C \le B$. Кроме того, $z_{\delta} \to 0$, $q_{\delta} \to 0$. Таким образом, $(0, C) \in \overline{J}^2 f(0)$.

Пусть Ω — открытое ограниченное множество в \mathbb{R}^d . Рассмотрим задачу Дирихле

$$\begin{cases}
F(x, u, Du, D^2u) = 0, & x \in \Omega \\
u|_{\partial\Omega} = 0.
\end{cases} (6)$$

Под решением понимаем функцию $u \in C(\overline{\Omega})$, которая на границе Ω равна нулю, а внутри Ω является вязкостным решением уравнения $F(x, u, Du, D^2u) = 0$.

Теорема 10.1. Предположим, что функция F(x, u, p, X) непрерывна, удовлетворяет условию эллиптичности и для вязкостных суб и супер-решений на Ω выполнен принцип сравнения. Если существуют вязкостное суб-решение $\underline{u} \in C(\overline{\Omega})$ и вязкостное супер-решение $\overline{u} \in C(\overline{\Omega})$, причем $\underline{u} = \overline{u} = 0$ на $\partial\Omega$, то задача Дирихле (6) имеет единственное решение.

Для доказательства теоремы нам потребуются дополнительные обозначения. Положим

$$u^*(x) = \lim_{r \to 0} \sup_{B(x,r) \cap \overline{\Omega}} u(y), \quad u_*(x) = \lim_{r \to 0} \inf_{B(x,r) \cap \overline{\Omega}} u(y).$$

Следующие свойства этих функций проверяются непосредственно:

1) $u_* \leq u \leq u^*$, 2) функция u^* полунепрерывна сверху на $\overline{\Omega}$, а функция u_* полунепрерывна снизу на $\overline{\Omega}$, 3) если функция u полунепрерывна сверху, то $u = u^*$, а если функция u полунепрерывна снизу, то $u = u_*$, 4) для всякого $x \in \overline{\Omega}$ существует такая последовательность $x_n \to x$, что $u(x_n) \to u^*(x)$ (аналогичное утверждение верно для функции u_*).

Докажем теорему.

Доказательство. Положим

$$w(x) = \sup \{u(x) : \underline{u} \le u \le \overline{u}, u - \text{суб-решение} \}.$$

Ясно, что w непрерывна в точках $\partial\Omega$ и равна на $\partial\Omega$ нулю. Покажем, что w является вязкостным суб-решением. Достаточно проверить это для w^* . Пусть $\varphi\in C^2(\Omega)$ и $w^*=\varphi$ в точке x_0 имеет локальный максимум. Положим

$$\psi(x) = w^*(x_0) + \varphi(x) - \varphi(x_0) - |x - x_0|^4.$$

Тогда $\psi(x_0) = w^*(x_0)$, $D\psi(x_0) = D\varphi(x_0)$, $D^2\psi(x_0) = D^2\varphi(x_0)$ и в некотором шаре $\overline{B}(x_0,r)$ справедливо неравенство

$$w^*(x) - \psi(x) \le -|x - x_0|^4.$$

Пусть $x_n \to x_0$ и $w(x_n) \to w^*(x_0)$. Найдутся суб-решения u_n , для которых выполнено $w(x_n) - u_n(x_n) \to 0$. Пусть y_n — точка максимума $u_n - \psi$ на $\overline{B}(x_0, r)$. Имеет место цепочка неравенств

$$u_n(x_n) - \psi(x_n) \le u_n(y_n) - \psi(y_n) \le w^*(y_n) - \psi(y_n) \le -|y_n - x_0|^4$$
.

Поскольку $u_n(x_n)-\psi(x_n) o w^*(x_0)-\psi(x_0)=0$ и

$$|y_n - x_0|^4 \le \psi(x_n) - u_n(x_n) \to 0,$$

то $y_n \to 0$ и $u_n(y_n) - \psi(y_n) \to 0$, причем $\psi(y_n) \to w^*(x_0)$. Таким образом, точка y_n — точка локального максимума $u_n - \psi$ и по определению суб-решения справедливо неравенство

$$F(y_n, u_n(y_n), D\psi(y_n), D^2\psi(y_n)) \le 0.$$

Переходя к пределу, получаем

$$F(x_0, w^*(x_0), D\psi(x_0), D^2\psi(x_0)) \le 0.$$

Итак, функция w^* является суб-решением и $w = w^*$.

Покажем, что w является супер-решением. Достаточно проверить это для w_* . Предположим противное. Тогда существуют такие точка x_0 и функция $\varphi \in C^2(\Omega)$, что $w_*(x_0) = \varphi(x_0)$, $w_*(x) - \varphi(x) \ge 0$ в окрестности точки x_0 и

$$F(x_0, \varphi(x_0), D\varphi(x_0), D^2\varphi(x_0)) < 0.$$

Заметим, что

$$\overline{u}(x) - \varphi(x) \ge w(x) - \varphi(x) \ge w_*(x) - \varphi(x) \ge 0.$$

Пусть $\varphi(x_0) = \overline{u}(x_0)$. Тогда x_0 — точка локального минимума функции $\overline{u} - \varphi$. Поскольку функция \overline{u} является вязкостным супер-решением, то

$$F(x_0, \varphi(x_0), D\varphi(x_0), D^2\varphi(x_0)) \ge 0,$$

что противоречит сделанному выше предположению.

Пусть теперь $\varphi(x_0) < \overline{u}(x_0)$. Тогда найдутся такие числа $\varepsilon > 0$ и r > 0, что

$$\varphi(x) + \varepsilon < \overline{u}(x), \quad F(x, \varphi(x), D\varphi(x), D^2\varphi(x)) + \varepsilon < 0$$

для всех $x \in B(0,r)$. Положим

$$\psi(x) = \varphi(x) + \delta \left(\frac{r^4}{16} - |x - x_0|^4\right), \quad \delta > 0.$$

При достаточно малом δ для функции ψ в шаре $B(x_0, r)$ выполнено

$$\psi(x) < \overline{u}(x), \quad F(x, \psi(x), D\psi(x), D^2\psi(x)) < 0.$$

Так как для F выполнено условие эллиптичности, то ψ — вязкостное суб-решение в шаре $B(x_0,r)$. Пусть $v(x) = \max\{w(x),\psi(x)\}$ при $x \in B(x_0,r)$ и v(x) = w(x) при $x \notin B(x_0,r)$. Функция v является вязкостным суб-решением на Ω и $\underline{u} \leq v \leq \overline{u}$. Следовательно, $v \leq w$. Пусть теперь $x_n \to x_0$ и $w(x_n) \to w_*(x_0) = \psi(x_0)$. Так как $x_n \in B(x_0,r)$ и $w(x_n) < \psi(x_n)$ для достаточно большого номера n, то при таком n выполнено неравенство $v(x_n) > w(x_n)$, что противоречит установленному выше неравенству $v \leq w$. Таким образом, w_* является супер-решением и $w = w_*$.

Рассмотрим несколько примеров.

1) Пусть H(x,p) — непрерывная функция на $\overline{B}(0,1) \times \mathbb{R}^d$, причем

$$H(x,0) \le 0$$
, $\lim_{|p| \to +\infty} \inf_{|x| \le 1} H(x,p) = +\infty$.

Тогда задача Дирихле

$$\begin{cases} u + H(x, Du) = 0, \ x \in B(0, 1) \\ u = 0, \ x \in \partial B(0, 1) \end{cases}$$

имеет единственное решение.

Действительно, функция $\underline{u}=0$ является вязкостным суб-решением, а функция $M(1-|x|^2)$ является вязкостным супер-решением для достаточно большого числа M>0, несложно проверить, что для такого уравнения выполнен принцип сравнения (задача из листка для семинаров).

2) Пусть

$$A(x) = \sigma(x)\sigma^t(x), \quad \|\sigma(x) - \sigma(y)\| \le L\|x - y\|, \quad \langle b(x) - b(y), x - y \rangle \le L|x - y|^2.$$

Предположим, что на $\overline{B}(0,1)$ справедливо неравенство

$$tr A(x) + \langle b(x), x \rangle > 0$$

Пусть $\lambda > 0$. Тогда для всякой ограниченной и липшицевой функции f задача Дирихле

рихле
$$\begin{cases} -\mathrm{tr}\big(AD^2u\big) - \langle b,Du\rangle + \lambda u + f = 0,\ x \in B(0,1) \\ u = 0,\ x \in \partial B(0,1) \end{cases}$$
 имеет единственное решение.

Мы уже знаем, что для такого уравнения выполнен принцип сравнения. В качестве суб и супер-решений можно взять функции $M(|x|^2-1)$ и $M(1-|x|^2)$ с достаточно большим коэффициентом M > 0.

ЛИТЕРАТУРА

- 1. Crandall M.G., Ishii H., Lions P.L. User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, N.1 (1992), 1-67.
- 2. M. Bardi, I. Capuzzo Dolcetta. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston, 1997.
- 3. Fleming W.H., Soner H.M. Controlled Markov Processes and Viscosity Solutions. Stochastic Modelling and Applied Probability, Series Volume 25, Springer-Verlag New York, 2006.
- 4. Evans L.C. Partial Differential Equations: second edition. Graduate Series in Mathematics, vol. 19.R. American Mathematical Society, 2010.