Prénom			
		Note	
Groupe			
	Algorithmique		
	Info-sup (S2)		1
	Contrôle nº 2 (C2	.)	2
	22 février 2017 - 9 :		3
	Feuilles de réponse		4
éponses 1	(Il faut oser $3 points$)		
1. Représe	entation graphique de l'arbre :		

$R\'{e}ponses~2~(Maximum~Gap-5~points)$

${\bf Sp\'{e}cifications}:$

La fonction maxGapMatrix(M) retourne le gap maximum des lignes de la matrice non vide M.

$R\'{e}ponses$ 3 (Synergistic Dungeon – 4 points)

Spécifications:

La fonction $\mathtt{dungeon}(M)$ retourne le nombre minimum de points de vie que doit avoir la princesse pour sauver le chevalier dans le donjon représenté par la matrice non vide M.

$R\'{e}ponses$ 4 (Tests - 8 points)

1. Spécifications: La fonction equal (B1, B2) vérifie si les arbres B1 et B2 sont indentiques.

2. Spécifications : La fonction isSubTree(S, B) vérifie si l'arbre S est un sous-arbre de l'arbre B.

