## **Review Questions**

Thursday, May 3, 2018 8:55 AM

## CS 211 Review Questions

1. [3] Show the result of quicksort after one iteration of the quicksort algorithm (until

| I >= J | and pi | vot is | swapped | back). | سر       | •  | -3 | u  | a  | 145 |    | 17 | 17   |
|--------|--------|--------|---------|--------|----------|----|----|----|----|-----|----|----|------|
| 0      |        |        |         | - 4    | <u> </u> | _  |    | Υ  | -( | (0  |    | 12 | . 15 |
| 3      | 9      | 12     | 1       | 2      | 15       | 11 | 8  | 10 | 17 | 4   | 6  | 5  | 13   |
| 3      | 5      | 6      | 1       | 2      | 4        | 8  | 13 | 10 | 17 | 15  | 12 | 9  | 11   |

じつじつに ついっぱ (シェ)

2. [3] Perform radix sort on the following numbers:

101, 98, 27, 15, 333, 234, 531, 503, 122, 432, 199, 200, 155, 188, 79, 631

|   | 1000          | $\delta$                   | 102                     |
|---|---------------|----------------------------|-------------------------|
| 0 | 200           | 200, 101, 503              | 15, 27, 79, 98          |
| 1 | 101, 531, 631 | 15                         | 101, 122, 155, 188, 199 |
| 2 | 122, 432      | 122, 27                    | 200, 234                |
| 3 | 333, 503      | 531, 631, 432,<br>333, 234 | 333                     |
| 4 | 234,          |                            | 432                     |
| 5 | 15, 155       | 155                        | 503, 513                |
| 6 |               |                            | 631                     |
| 7 | 27            | 79                         |                         |
| 8 | 98, 188       | 188                        |                         |
| 9 | 199, 79       | 98, 199                    |                         |

3. [3] Order the following sorting algorithms from worst to best case algorithmic complexity:

Merge Sort, Bubble Sort, Radix Sort, Quick Sort, Shell Sort, Insertion Sort, Heap Sort, Selection Sort, Tree Sort, Shaker Sort

Bubble Sort ( $N^2$ ), Insertion Sort ( $N^2$ ), Shaker Sort ( $N^2$ ), Selection Sort ( $N^2$ )

Heap Sort (NlogN), Tree Sort (NlogN), QuickSort (NlogN), Merge Sort (NlogN), Shell Sort (NLogN)

Radix Sort (N\*M)

4. [3] Draw the BFS search tree for the following graph starting at vertex 7.

1 2 7

4. [3] Draw the BFS Search tree for the following graph Starting at vertex /.



5. [3] Articulation Points. Draw the <u>DFS articulation</u> tree for the following graph starting at vertex 7. Circle any articulation points in your tree.



- 6. [1] What data structure allow us to perform a DFS on a graph? Stack
- 7. [1] What data structure allows us to perform a BFS on a graph? Queue

Construct an MST for the following graph starting at  ${\bf A}$ 







Consider the following partial MST (solid edges = accepted edges). What was the last edge added to the MST? What edge will be added next?



## Also on the exam (probably)

- Comprehensive exam
- Algorithm analysis questions
  - o What runtime complexity of code fill in loop count (similar to E1 & E2)
  - How does the following data structure affect runtime complexity
- Tree questions
  - o "Build this tree given 2 traversals" question
  - AVL rotation question
- Heap Questions
  - Work through an add / remove / merge on binary, binomial, skew heaps
- Hash table questions
  - o Where will the next insert place value X in a linear, quadratic, cuckoo, hopscotch heap
- · Graph questions
  - o Build MST
  - o Interpret or build DFS articulation tree
- · Sorting questions
  - Given the following partially sorted graph, which sorting algorithm is currently running.
  - o Conceptual questions related to algorithm analysis
    - E.g. What causes insertion sort to run in its best case time complexity?
    - E.g. What causes quicksort to run its worst case time complexity?