Comoscemze per passare la parte in R 1) Il primo punto consiste sempre mel premdere la popolazione e un campione casuale di Essa. setvid) = per settare la cartella di lavoro: read. Table (Nome file. txt) = per caricare i dati della appolazione set seed (Numero Matricola) + per generare i mumeri random, sample (Intervallo Ex: 100:110, Numero di estrazioni) Eper premdere Numero di estrazioni mumeri dall'intervallo Infine per premdere il campione dalla popolazione si fai campione <- popolazionel sample (mron (popolazione), m),] 2)Ora agmi prova ha um ordine diverso ma tutto sommato ci somo sempre le stesse cose. -Se vieme richiesto di creare delle classi bisogma creare prima um array C(Co,C1,C2,C3,-Cm) delle classi e poi usare cut (campiones svar, breaks = Arrag sopra, include lowest = TRUE or FALSE, ordered = ToF) oppare si puó Fare um hist com i breaks giusti -La mediama im um caso semza classi è semplice da trovare (basta usare mediam()), però se si ha uma divisione im class; bisogna usave la Formula + Ci* dove i rappresta la classe a cui appartiene la mediana Quindi da codice dobbiamo farte table (campione diviso in classi)/mi per frequenze relative fore cum sum (tabella di prima) po: Trovare i*= mim (which (F>0.5)) e imfine tramite hist trovo Rix= hist \$demsity[i] -Come la mediama la Media, nel caso semza class; basta fare meam () mel caso delle class; bisogmerà pri ma fare um istogramma com hist (compione, breaks=c(co,cx--,cm)) poi premdere i mids (hist\$mids)e i counit (hist\$count) mids = rep (hist smids, hist scounts) e ooi fare a media quindi media = meam (mids) -Amone la Varianza mel caso base ha la sua funzione var () mentre mel caso della divisione in classi riprendiamo la variabile mids come sopra esi fa var $(mids) \times ((m-1)/m) e$ troviamo la variamza distorta. -Per i Quantili la stessa cosa, cè la famzione quantile () ma mel caso della distribuzione in classi dobbiamo fare im um altro modo. Per imiziare diciamo che dobbiamo trovare il boesimo quantile (×=0.6) ⇒riutilizzo cose usate sopra: i = mim(which (F>= x)) allora q= (x - F[i*-1])/Ri* + Anay Classi[i*] - Valore della tymzione di ripartizione empirica mel caso by se bastera fare edit (campione) (x) mentre mel caso delle class; premdiamo 3*= max(which (Arrclass; =x)) c*=Arrclass; [3:*] h= hist &demsity[3*] = Troyo Fa=F[3*-4]+(x-c*) x h*

- Dipendenza im base al X² ovvigmente viene verificala dipendenza di 2 variabili quindi per prima										
cosa creo uma tabella com: due dat: table (compiones lung, campionescolore) = + premco il 22 com metodo										
symmony (+) statistic = 22 poi calcolo 22max = mim(dim(+)-1) xm e amalizzo X2 più è piccolo e più										
summary (†) \$\frac{1}{2}\$\$ \$1										
- Regressione limeare: si usa per vedere se 2 variabili somo correlate, uma delle 2 dipemberà dall'altra										
ora diciamo che vz dipenda da vz => dovremo fare Im (Vz ~ Vz campione) ora dobbiamo ve dere se										
somo carrelate tranite R2 e la distr. dei residai summary (Im) e vediamo R2 plot (campionesty, Imsresiduals)										
abline (h=0) e guardo come somo i residui, devomo essere distribuit: casualmente. Essemo amche fare										
delle predizion. com predict (1m, data frame (V1=10)) Faccio uma predizione di Va guando V1-10.										
- Cambiamento di scala su Regr. lin. possiamo fare dei cambi di scala guando Rº è basso e si Fai										
Im (Cg(V3) ~ V1, campione) in caso di esponemziale, e ricordarsi che po la predizione và fatta:										
exp(predict (Im, data frame (V_= 10)). Altro cambio di scala è con la radice Im (V3^(1/2)~VI, campione)										
e la predizione diventa: (predict (Im, data frame (V1=10)) 12										
Oss: R ² >0.7 = Accettabile										
- Intervalle di confidenza Intervalle di confidenza al 20% per la media di Vz t. test (compione\$vz,										
Intervallo di confidenza 90% di VI > 0. b = X = sum(VI > 0.6) confilevel = 0.9)										
bimom.test(X , m , comf. [evel =0.9)										
4 \$comf. int 1> as. mumer:c();										
- Livello di Significatività:										

Test comoscemze pre-esque 15/01/2025 one 8:30 Mediama im class: cut(), hist(), F= table(cut)/m F= cumsum (F)
i-star=mim(which(F>0.5)) m=(1/2-F[i-star-1]/histsdemsity[i-star]+c[istar] Per quantile stessa cosa solo che X=quantile i-stor=mim(Nhich(F>X))

mean

g=(X-F[i-stor-1])/hist stemsity [i stor] + C[i-stor]

Media hist() (rep(hist smids, hist scounts))

**-max(Nhich(Class: > X))

Varianza - Var(rep) X(m-1) F. Emp. d: X c*-Class: [5*] FE= F[5-1]+(x-c*) xhs Indip table (vorz, varz) summary (table) \$ statistic max(which (dim (table)-1) × m opp roon test chisq. test (table) & p. value > 0.05? => Indip Regr. lin Im(arb, campione) summary(Im) vedo R2 >0.7 è ok plot (campione \$ b, Im \$ residuals) quardo come somo distribuiti: residui oblime (h=0) gred: ct (Im, data. Frame (b=150))

Inter	Intervallo di	vollo c comf o	omf f	test(c v1 > 0.6	campione, X-sun (bimom.te ciene rich	omf. lev (V170.6) est(X, M, iesta prob	el = %)\$ comf.level=	comf. into	ind
		bimom.t	est(X, m, alternm	P=0.5)	\$p.volue > ess°	l:v.sigm	=t> accette semonò	otto H1	
							o.5 com s}')\$p.va		
OK con	ques	ste somo i: app.	le cos	e che	ho impa	irato	⇒ rif sem	into Ho no Accett	otto