

Analysis of data Deterministic approach (SPSS)

María J. Vilar Dep. of Food Hygiene and Environmental Health

Lecture 24. 04. 2013

Learning outcomes

At the end of the course, the student should be able to:

- > Differentiate between deterministic and stochastic analysis
- > Identify how variables are associated
- > Define and explain of statistical significance
- Classify the distributions (normal, binomial, Poisson)

Statistical analysis

Objective: identify those factors that cause disease/presence of a foodborne pathogen

Deterministic and Stochastic models

Associations between variables

Discrete: dichotomous, categorical (nominal), ordinal

Continuous

Time to event

Variable: an observable event that can vary

A variable usually is affected (Response variable) by another (Explanatory variable)

Confounding

Random vs Uncertainty

Random or Variability: heterogeneity among individuals

Uncertainty: lack of knowledge

- model uncertainty
- parameter uncertainty

Impact: under or over estimation of output variance

Null hypothesis

Null hypothesis

Statistical significance , p-values

usually significant test at p<0.05 (or p<0.01, p<0.001, ...)

Chi-square test

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Fisher's exact test

A range around a point estimate within which the true value is likely to lie with a specified degree of probability, assuming there is no systematic error

CI of a mean

for n ≥ 30	for n < 30
$\bar{X} = Z \frac{s}{\sqrt{n}}$	$\bar{X} = t \frac{s}{\sqrt{n}}$

CI of a proportion

$$p \pm Z \times \sqrt{\frac{p(1-p)}{n}}$$

CI for two independent samples

$$SD = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

$if \ n1 > 30 \ and \ n2 > 30$	$if \ n1 < 30 \ and \ n2 < 30$
$(\bar{X}_1 - \bar{X}_2) \pm Z SD \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$(\bar{X}_1 - \bar{X}_2) \pm t SD \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	$df = n_1 + n_2 - 2$

CI for two independent samples

Example

	Male			Male Female		
Characteristic	\mathbf{n}_1	\overline{X}_1	s ₁	n ₂	\overline{X}_2	S ₂
C.1	1623	128.2	17.5	1911	126.5	20.1
C.2	1622	75.6	9.8	1910	72.6	9.7
C.3	1544	192.4	35.2	1766	207.1	36.7
C.4	1612	194.0	33.8	1894	157.7	34.6
C.5	1545	68.9	2.7	1781	53.4	2.5
C.6	1545	28.8	4.6	1781	27.6	5.9

$$SD = \sqrt{\frac{(1623 - 1)17.5^2 + (1911 - 1)20.1^2}{1623 + 1911 - 2}}$$

$$(128.2 - 126.5) \pm 1.96 * 19 \sqrt{\frac{1}{1623} + \frac{1}{1911}}$$

$$(0.44, 2.96)$$

CI for two independent samples

Example

							Difference
Characteristic	nı	\overline{X}_1	S1	n ₂	\overline{X}_2	S 2	95% CI
C.1	1623	128.2	17.5	1911	126.5	20.1	(0.44, 2.96)
C.2	1622	75.6	9.8	1910	72.6	9.7	(2.38, 3.67)
C.3	1544	192.4	35.2	1766	207.1	36.7	(-17.16, -12.24)
C.4	1612	194.0	33.8	1894	157.7	34.6	(33.98, 38.53)
C.5	1545	68.9	2.7	1781	53.4	2.5	(5.31, 5.66)
C.6	1545	28.8	4.6	1781	27.6	5.9	(0.76, 1.48)

CI of a mean

for n ≥ 30	for n < 30
$\bar{X} = Z \frac{s}{\sqrt{n}}$	$\bar{X} = t \frac{s}{\sqrt{n}}$

CI of a proportion

$$p \pm Z \times \sqrt{\frac{p(1-p)}{n}}$$

CI for two independent samples

$$SD = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

$if \ n1 > 30 \ and \ n2 > 30$	$if \ n1 < 30 \ and \ n2 < 30$
$(\bar{X}_1 - \bar{X}_2) \pm Z \ SD \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$(\overline{X}_1 - \overline{X}_2) \pm t SD \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	$df = n_1 + n_2 - 2$

CI for two dependent samples

if n > 30	if n > 30
$\bar{X}_d \pm Z \frac{S_d}{\sqrt{n}}$	$\bar{X}_d \pm t \frac{S_d}{\sqrt{n}}$
	df=n-1

Statistical significance (p-values) and Confidence intervals

Null hypothesis

Statistical significance , p-values

Errors of inference

Type I error $\alpha = P$ (type I error) = P (reject $H_0 \mid H_0$ is true)

Type II error $\beta = P$ (type II error) = P (do not reject $H_0 \mid H_0$ is false)

Power

Null hypothesis

Statistical significance , p-values

Errors of inference

Type I error $\alpha = P$ (type I error) = P (reject $H_0 \mid H_0$ is true)

Type II error $\beta = P$ (type II error) = P (do not reject $H_0 \mid H_0$ is false)

Null hypothesis

Statistical significance , p-values

Errors of inference

One- or Two tailed test

Independent and related samples

Parametric and non-parametric techniques

Measures of position (location)

Mean (\bar{x})

$$\mu = \sum_{i=1}^{n} x_i \cdot p_i$$

$$\mu = \int_{\min}^{\max} x \cdot f(x) \cdot dx$$

for discrete distributions

for continuous distributions

$$\bar{x} = \frac{\sum x}{n}$$

Median (Q₂)

Mode

Measures of shape (of distributions)

Discrete

Skewness

Continuous

 $S = \frac{\sum_{i=1}^{n} (x_i - \mu)^3 \cdot p_i}{\sigma^3}$ $S = \frac{\int_{\min}^{\max} (x - \mu)^3 \cdot f(x) \cdot dx}{\sigma^3}$ $K = \frac{\sum_{i=1}^{n} (x_i - \mu)^4 \cdot p_i}{\sigma^4}$ $K = \frac{\int_{\min}^{\max} (x - \mu)^4 \cdot f(x) \cdot dx}{\sigma^4}$

Kurtosis

Kurtosis

Measures of spread (deviation)

Variance
$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Standard deviation
$$\sigma^2 = \sqrt{s^2}$$

Measures of spread (deviation)

Variance
$$(s^2)$$

$$V = \sum_{i=1}^{n} (x_i - \mu) . p_i$$
 discrete
$$V = \int_{0}^{\infty} (x - \mu) . f(x) . dx$$
 continuous

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Standard deviation (σ^2) $\sigma^2 = \sqrt{s^2}$

$$\sigma^2 = \sqrt{s^2}$$

Why are important the measures of position, shape and spread?

- $Outcome_i = (model_i) + error_i$
- Indicates which distribution we have

Population mean

$$=\frac{\sum X}{N}$$

$$\mu_{\bar{x}} = \mu$$

Population standard deviation $\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}}$ $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

$$\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}}$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

For large samples, the distribution of the sample means is approx. normally distributed with a and a standard deviation $\sigma_{\bar{r}} = \sigma/\sqrt{n}$ $\mu_{\bar{x}} = \mu$ mean

 $Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$ The Central Limit Theorem for large samples

For standard normal distribution, P(-1.96 < Z < 1.96) = 0.95; there is a 95% probability that a standard normal variable Z will fall between -1,96 and 1.96

$$\bar{x} \pm 1.96 \, \sigma / \sqrt{n}$$

The general confidence interval is

Point estimate $\pm Z \times SD$ (point estimate)

$$\overline{x} = Normal(\mu, \sigma/\sqrt{n})$$

$$\Sigma = n\overline{x} = Normal(n\mu, \sqrt{n}\sigma)$$

$$\Sigma = n\overline{x} = Normal(n\mu, \sqrt{n}\sigma)$$

The general confidence interval is

Point estimate $\pm Z \times SD$ (point estimate)

Desired confidence interval	Z score
90%	1.645
95%	1.96
99%	2.576

t distribution

Point estimate $\pm t \times SD$ (point estimate)

Example

Data from the a study found that subjects over a specific age had a mean level of X = 54 and a standard deviation of 17. Suppose a researcher has 40 individuals over this specific age and wants to determine the probability that the mean levels of X for this sample of 40 individuals is 60 mg/dl or more (i.e., low risk). Probability questions about a sample mean can be addressed with the Central Limit Theorem, as long as the sample size is sufficiently large. In this case n=40, so the sample mean is likely to be approximately normally distributed, so we can compute the probability of levels of X>60 by using the standard normal distribution table.

Solution

$$z = \frac{60-54}{11/\sqrt{40}} = 2.22$$
 $P(Z>2.22) = 1 - 0.9868 = 0.0132$

The probability that the mean level in these 40 patients will exceed 60 is 1.32%.

Normal distribution

Normal distribution

$$P(r) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

Binomial distribution

$$Pr(r) = \frac{n!}{r!(n-r)!}p^r(1-p)^{n-r}$$

Mean
$$\mu = np$$

Standard deviation $\sigma = \sqrt{np(1-p)}$

Assumptions

- Two possible outcomes (success or failure)
- Probability of success is the same for each trial
- Trials are independent

Basic statistics

Poisson distribution

$$\Pr(r) = \frac{e^{-\lambda}\lambda^r}{r!}$$

Classical statistics (Deterministic, Frequentist)

A frequentist approach

Uses the information in the data

Software: SPSS, STATA, SAS, R, etc.

Table 14.1 Summary of some parametric statistical techniques for testing hypotheses relating to means of Normally distributed data.

Level of Variance		selen, the	Parametric statistical test				Parametric
	One-sample case	Two-sample case		Case with three or more samples		measure of association	
		Related samples	Independent samples	Related samples	Independent samples		
Interval and ratio	Known	Normal test	Normal test	Normal test			Correlation coefficient, ρ
Interval and ratio	Unknown	t-test	t-test	t-test* (equal variance)	F-test (equal variance)	F-test (equal variance)	Correlation coefficient, ρ
				Welch t-test* (unequal variances)	Welch F-test (unequal variances)	Welch F-test (unequal variances)	

Classical statistics (Deterministic, Frequentist)

		Parametric test	Non-parametric test
Comparison of two means	Two experimental conditions and different participants	independent t-test	Wilcoxon rank-sum test or Mann-Whitney test
	Two experimental conditions and same participants	dependent t-test or repeated measure	Wilcoxon signed-rank test
Comparison of several means		ANOVA	Kruskal-Wallis test
		GLM: linear, multipe, logistic regression	

<u>Categorical variables</u>

Pearson's chi square test

Likelihood ratio (two variables)

Loglinear analyses (several variables)

Correlation

Pearson and Spearman

Level of	· 图图 · 图图 图		Non-parametric measure of correlation			
measurement One-sample case		Two-sample case		Case with three or more samples		
	Related/matched samples	Independent samples	Related samples	Independent samples		
Nominal	Binomial test	McNemar change test	Fisher exact test for 2 × 2 contingency tables*	Cochran Qtest	χ^2 test for $r \times k$ tables	Cramer coefficient, C Phi coefficient, r_{ϕ}
						The kappa coefficient of agreement, K*
	$\chi^2\text{goodness-of-fit test}$		χ^2 test for: 2 × 2 contingency tables* r × 2 contingency tables			Asymmetrical association, the lambda statistic, L_B
Ordinal	Kolmogorov–Smirnov one-sample test, $D_{m,n}$	Sign test	Median test		Extension of the median test	Spearman rank-order correlation coefficient, r_s
	One-sample runs test	Wilcoxon signed ranks test, T+*	Wilcoxon–Mann–Whitney test, W_x^*	Friedman two-way analysis of variance by ranks, F_r	Kruskal–Wallis one-way analysis of variance, <i>KW</i>	Kendall rank-order correlation coefficient, T
	Change-point test		Robust rank-order test, U	Page test for ordered alternatives, L	Jonckheere test for ordered alternatives, J	Kendall partial rank-order correlation coefficient, T_{xy}
			Kolmogorov–Smirnov two-sample test, $D_{m,n}$			Kendall coefficient of concordance, W
			Siegel–Tukey test for scale differences			Kendall coefficient of agreement, U
						Correlation between k judges and a criterion, T_c
Interval and ratio	Test for distributional symmetry	Permutation test for paired replicates	Permutation test for two independent samples			Gamma statistic, G
			Moses rank-like test for scale differences			Somers' index of asymmetric association, d_l

References

Field, A. Discovering statistics using SPSS. 2nd edn. SAGE pulbications., 2005.

Rosner B. Fundamentals of Biostatistics. Belmont, CA: Duxbury-Brooks/Cole; 2006.

IBM SPSS Statistics Information Center

 $http://publib.boulder.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=\%2Fcom.ibm.spss.statistics.help \%2Fidh_glmm.htm$

StatSoft, Inc. (2013). Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/.