1 Stabilité et instabilité des noyaux

nombre de neutrons N vallée de stabilité N = Z

Lois de conservation pour l'équation d'une réaction nucléaire

nombre de protons Z

$${}^{A}_{Z}X \, \rightarrow \, {}^{A'}_{Z}X \, + \, {}^{A''}_{Z}X$$

conservation de la charge électrique nombre de nucléons

$$Z = Z' + Z''$$

$$A = A' + A''$$

2 Décroissance radioactive

Évolution temporelle d'une population de noyaux radioactifs

3 Applications de la radioactivité

- imagerie
- radiothérapie

protection contre les rayonnements

Temps de demi-vie $t_{1/2}$

Loi et courbe de décroissance radioactive

nombre de noyaux radioactive (en s⁻¹) $N(t) = N_0 \cdot e^{-\lambda \cdot t}$ temps (en s)

Activité A

1 Stabilité et instabilité des noyaux

	A	В	C
Le diagramme (N, Z):	permet de connaître les isotopes radioactifs.	porte en ordonnée le nombre de nucléons.	porte en ordonnée le nombre de neutrons.
2 Les noyaux radioactifs :	sont instables.	peuvent se désintégrer.	sont des noyaux lourds.
3 La radioactivité :	est toujours naturelle.	permet de transformer un élément en un autre.	nécessite un apport d'énergie
$^{30}_{15}P \rightarrow ^{30}_{14}Si + ^{0}_{1}e$ est l'équation d'une :	désintégration $lpha$.	désintégration β ⁺ .	désintégration β^- .
5 Une désintégration α 4 nucléons.		4 protons.	4 neutrons.

2 Décroissance radioactive

	A	В	C	
6 Le nombre moyen de désintégrations est proportionnel :	au nombre de noyaux radioactifs.	à la température de l'échantillon.	à la durée de mesure.	
7 La loi d'évolution temporelle d'une population de noyaux radioactifs est :	une courbe croissante.	une courbe décroissante.	une courbe exponentielle.	
B La constante radioactive λ et le temps de demi-vie t _{1/2} sont liées par :	$t_{1/2} = \frac{\log 2}{\lambda}$	$t_{1/2} = \frac{\ln 2}{\lambda}$	$t_{1/2} = \frac{\lambda}{\ln 2}$	
L'activité d'une source proportionnelle à la masse de la source.		le nombre de désintégrations par seconde.	mesurée à l'aide d'un becquerelmètre.	

3 Applications de la radioactivité

	A	В	C
10 Pour réaliser une datation, on peut :	mesurer l'activité d'un échantillon.	mesurer le nombre de noyaux radioactifs restants dans un échantillon.	utiliser du carbone 12.
Dans le domaine médical, une application de la radioactivité peut être :	la radiothérapie.	la chimiothérapie.	la curiethérapie.
Les rayonnements ionisants absorbés complètement par la matière sont :	sants absorbés $lpha$		γ
13 On se protège mieux des rayons γ avec un écran :	épais.	fin.	composé d'un élément lourd.

Problème de stabilité

Un novau est instable s'il présente :

- soit un excès de protons par rapport aux neutrons ;
- soit un excès de neutrons par rapport aux protons ;
- soit un excès de protons et de neutrons.
- 1. Donner la définition de la radioactivité.
- 2. Sur le diagramme ci-dessous, on retrouve tous les noyaux connus à ce jour.

Les noyaux en bleu sont les noyaux stables, ils sont situés dans ce que l'on nomme la *vallée de la stabilité*.

- a. Comment sont classés les noyaux dans ce diagramme?
- **b.** Attribuer aux zones rouges, rose et verte leur cause d'instabilité parmi celles citées dans l'énoncé.
- c. Pourquoi parle-t-on de vallée de la stabilité?

🔟 Transformation nucléaire 🅻

Le diagramme (N, Z) représenté ici est très simplifié, Z étant le nombre de protons et N le nombre de neutrons.

- 1. Que représente la zone grisée dans le diagramme?
- 2. Soit la réaction nucléaire indiquée par la flèche ci-dessous entre un noyau père et son noyau fils.

- a. Sachant qu'une seule particule est émise en plus du noyau fils, écrire la réaction de désintégration nucléaire du samarium Sm et indiquer les lois de conservation qui régissent toute réaction nucléaire.
- b. De quel type de radioactivité s'agit-il?
- **c.** Où seront situés sur le diagramme (*N*, *Z*) les noyaux concernés par ce type de désintégration ?
- 3. Un isotope du noyau néodyme Nd peut-il subir *a priori* une désintégration β^- pour devenir du prométhium Pm ? Si oui, lequel ?

🔢 Carbone 14

L'activité d'un échantillon *A(t)* est le nombre de désintégrations produites par unité de temps, soit :

$$A(t) = -\frac{dN(t)}{dt}$$

A(t) est proportionnelle à N(t) qui est le nombre de noyaux radioactifs présents, soit $A(t) = \lambda \cdot N(t)$.

On peut lire l'information suivante sur Internet au sujet du carbone 14 :

Pour obtenir une quinzaine de désintégrations par minute avec un matériau récent, il faut 1 g de carbone, c'est-à-dire que l'on doit disposer de 10 g de bois, de tissu ou de cuir, 20 g de coquillage ou 200 g d'os.

Donnée: $\lambda = 3.93 \times 10^{-12} \text{ s}^{-1} \text{ pour }^{14}\text{C}.$

- 1. Quelle est, en becquerel, l'activité des 200 g d'os prélevés sur un individu mort récemment ?
- **2. a.** Établir l'équation différentielle donnant le nombre de noyaux N(t) en fonction du temps.
- **b.** Vérifier que l'expression $N(t) = N_0 \cdot e^{-\lambda \cdot t}$ est solution de l'équation différentielle établie précédemment.
- **3.** Calculer le nombre de noyaux radioactifs présents dans l'échantillon d'os.

Dangerosité des sources radioactives

Le document ci-dessous récapitule les différents types de rayonnements issus de la radioactivité.

- 1. Quels sont les rayonnements les plus pénétrants?
- **2.** Pourquoi les rayonnements α sont-ils facilement absorbés par les matériaux et les tissus humains ?

25 Du lait radioactif!

Le lait de vache contient du césium 137, un élément radioactif β^- dont l'activité est de l'ordre de 0,22 Bq pour un litre de lait. La constante radioactive du césium 137 est $\lambda=2,3\times10^{-2}$ an⁻¹. On considère que la radioactivité du lait de vache est due uniquement à la présence de césium 137.

Données :

Élément X	iode I	xénon Xe	césium Cs	baryum Ba
Z	53	54	55	56

- Préciser ce qu'est la radioactivité β⁻.
- 2. Écrire l'équation de désintégration du césium 137. On admet que le noyau fils n'est pas obtenu dans un état excité.
- 3. Combien de désintégrations par seconde se produit-il dans un litre de lait ?
- Déterminer le nombre de noyaux radioactifs de césium 137 présents dans un litre de lait.
- 5. On prend comme origine des temps l'instant où on mesure l'activité d'un litre de lait de vache. En déduire au bout de combien de temps il ne restera plus que 1 % de cette activité.

LES CLÉS DE L'ÉNONCÉ

- L'activité est proportionnelle au nombre moyen de noyaux radioactifs présents dans un échantillon.
- Les données permettent d'écrire l'équation d'une réaction de désintégration.

LES VERBES D'ACTION

- Préciser: apporter une information nouvelle.
- **Déterminer:** mettre en œuvre une stratégie pour trouver un résultat.
- **En déduire:** intégrer la donnée précédente pour répondre.

26 Séisme californien

Avant le séisme qui a touché San Francisco (photo) en 1989, on a prélevé à proximité de la faille de San Andreas en Californie un échantillon de végétal enseveli ; l'activité mesurée était alors A = 0,223 SI.

On admet que cette activité est due uniquement à la présence de 14 C. Le carbone 14 C est un noyau radioactif émetteur β^- . Sa constante radioactive λ vaut $1,22\times 10^{-4}$ an $^{-1}$.

Données :

- Numéros atomiques : Z(Be) = 4; Z(B) = 5; Z(C) = 6; Z(N) = 7; Z(O) = 8.
- Écrire l'équation de la réaction nucléaire correspondant à la désintégration du carbone 14 en la justifiant. On admet que le noyau fils n'est pas obtenu dans un état excité.
- 2. Définir l'activité d'un échantillon radioactif et donner son unité dans le Système international.
- 3. L'activité A_0 d'un échantillon du même végétal vivant et de même masse est A_0 = 0,255 SI. On note t la durée écoulée entre l'instant t_0 = 0 s du séisme et la mesure. Déterminer cette durée.
- 4. En déduire la date approximative à laquelle s'est produit le séisme.

27 Datation isotopique

Les éléments radioactifs sont utilisés pour évaluer le temps. Selon la nature et la durée de vie de ces éléments, ils renseignent sur l'âge de l'Univers ou de la Terre, les processus géologiques et même l'histoire de l'humanité. On donne l'équation différentielle:

 $\frac{dN(t)}{dt} = -\lambda \cdot N(t)$ où N(t) est le nombre de

noyaux radioactifs d'un échantillon à un instant de date t et N_0 le nombre de noyaux radioactifs à un instant pris comme origine des dates ($t_0 = 0$ s) pour ce même échantillon. λ est la constante radioactive.

- 1. Établir la loi de décroissance radioactive.
- 2. Donner la définition du temps de demi-vie d'un échantillon radioactif que l'on notera $t_{1/2}$.
- **3. Préciser** l'allure de la courbe N = f(t) et expliquer comment obtenir graphiquement la valeur de $t_{1/2}$.
- **4.** Déterminer l'expression littérale du temps de demi-vie $t_{1/2}$ en fonction de la constante radioactive λ .
 - 5. Le temps de demi-vie de l'isotope du carbone 14 C est $5,70 \times 10^3$ ans. En déduire la valeur de sa constante radioactive λ en an $^{-1}$.

LES CLÉS DE L'ÉNONCÉ

- L'équation différentielle est linéaire du premier ordre, à coefficients constants.
- N₀ est la **condition initiale** sur le nombre de noyaux.

LES VERBES D'ACTION

- **Établir:** donner l'expression en la justifiant.
- **Préciser:** apporter une information nouvelle.
- Déterminer: mettre en œuvre une stratégie pour trouver un résultat.
- ▶ En déduire : intégrer la donnée précédente pour répondre.