Problem 1 (6 points) For each of the following expressions, explain when cancellations can occur and how to avoid them.

- (a) $\sqrt{x+1} 1$
- (b) $(e^x e^{-x})/2$
- (c) $(1-\cos x)/\sin x$
- (a) For $x \approx 0$, $\sqrt{x+1} \approx 1$.

$$\sqrt{x+1} - 1 = (\sqrt{x+1} - 1)\frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1} = \frac{x}{\sqrt{x+1} + 1}$$

(b) For $x \approx 0$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} - \cdots$$

$$(e^{x} - e^{-x}) \approx x + \frac{x^{3}}{3!}$$

(c) For $x \approx 2k\pi$. You can rewrite as

$$\frac{1 - \cos x}{\sin x} = \tan(x/2).$$

You can also derive this using $\cos x = \cos^2(x/2) - \sin^2(x/2) = 1 - 2\sin^2(x/2)$ and $\sin x = 2\sin(x/2)\cos(x/2)$. Then

$$\frac{1 - \cos x}{\sin x} = \frac{2\sin^2(x/2)}{2\sin(x/2)\cos(x/2)} = \tan(x/2).$$

Problem 2 (4 points) The following Matlab program

```
x = 1;
while (x+1)-x == 1
    x = 2*x;
end
x
```

outputs 9.007199254740992e+15. Explain why this loop terminates and explain how this value is produced.

On iteration k of this loop, $x = 2^k$. It terminates when $2^k + 1$ in double precision equals 2^k . In binary

$$2^k = 1. \underbrace{0 \cdots 0}_{52 \text{ zeros}} \times 2^k.$$

When k = 52,

$$x + 1 = 2^{52} + 1 = 1.\underbrace{0 \cdots 0}_{51 \text{ zeros}} 1 \times 2^{52} \neq x.$$

When k = 53,

$$x + 1 = 2^{53} + 1 = 1$$
. $\underbrace{0 \cdots 0}_{52 \text{ zeros}} 1 \times 2^{52}$

This number is in the middle of 1. $\underbrace{0\cdots 0}_{52 \text{ zeros}} \times 2^{53}$ and 1. $\underbrace{0\cdots 0}_{51 \text{ zeros}} 1 \times 2^{53}$ and rounds to the even, which is 1. $\underbrace{0\cdots 0}_{52 \text{ zeros}} = x$, and the loop terminates with $2^{53} = 9.007199254740992e + 15$.

Problem 3 (4 points) Consider $f(x) = x \sin(x)$. Assume that you are given values for f(x) at $x=0,\pi/8,\pi/4,3\pi/8$. Denote by p(x) the polynomial interpolating these values. Derive a bound for |f(x) - p(x)| for any $x \in [0, 3\pi/8]$.

We have n=3 equally spaced subintervals with $h=\pi/8$. $f^{(4)}(x)=x\sin(x)-4\cos(x)$ and

$$|f(x)| \le |x\sin(x) - 4\cos(x)| \le x\sin(x) + 4\cos(x) \le \frac{3\pi}{8}\sin(3\pi/8) + 4 \approx 5.0884.$$

The from the formula for equally spaced points

$$|f(x) - p(x)| \le \frac{M}{4(n+1)} h^{n+1} \approx \frac{5.0884}{4(3+1)} (\pi/8)^{3+1} \approx 7.5631 \times 10^{-3}.$$

A sharper bound is obtained by finding the maximum of $f^{(4)}(x)$ over $[0, 3\pi/8]$. Since

$$f^{(5)}(x) = 5\sin(x) + x\cos(x) \ge 0$$

on this interval, $f^{(4)}(x)$ is increasing on it. f(0) = -4, $f(3\pi/8) \approx -0.4423$ and hence

$$|f^{(4)}(x)| \le 4$$
, for all $x \in [0, 3\pi/8]$.

Then

$$|f(x) - p(x)| \le \frac{4}{4(3+1)} (\pi/8)^{3+1} \approx 5.9454e - 03.$$

Problem 4 (4 points) Let A be an $n \times n$ nonsingular matrix and let B be an $n \times m$ matrix, where $m \geq 1$. How can you compute efficiently an $n \times m$ matrix X such that

$$AX = B$$

What is the complexity of your approach in big-O notation?

Compute the LU factorization of A = LU. This is done in $O(n^3)$. Denote the *i*th column of X by x_i and the *i*th column of B by b_i .

From $LUx_i = b_i$, solve for each i = 1:m,

$$Ly = b_i, \quad O(n^2)$$
$$Ux_i = y \quad O(n^2)$$

We have $O(mn^2)$ for this work. The overall complexity is $O(n^3 + mn^2)$.

Problem 5 (4 points) Let x and y be floating-point numbers. Assume that you have the \log and \exp functions available and you want to compute x^y using them. That is, you compute x^y by evaluating the expression $e^{y \ln x}$ using $\exp(y^* \log(x))$, which is x^y in exact arithmetic.

Assume that $f(\log(x)) = (\ln x)(1 + \epsilon)$, where $|\epsilon| \le \eta$ for some η . Ignore the errors in the multiplication and the exp function, that is, assume they produce exact results.

What is the relative error in exp(y * log(x)). Can this error be large and why?

We have

$$\begin{split} y \cdot \ln x \cdot (1+\epsilon) &= y \cdot \ln x + y \cdot \ln x \cdot \epsilon \\ e^{y \cdot \ln x \cdot (1+\epsilon)} &= e^{y \cdot \ln x + y \cdot \ln x \cdot \epsilon} = e^{y \cdot \ln x} e^{y \cdot \ln x \cdot \epsilon} \\ &= x^y (x^y)^\epsilon. \\ \mathrm{fl}[\exp(\mathsf{y} * \log(\mathsf{x}))] &= e^{y \cdot \ln x \cdot (1+\epsilon)} = x^y (x^y)^\epsilon = x^y (1 + \underbrace{(x^y)^\epsilon - 1}_{\delta}) \\ &= x^y (1+\delta). \end{split}$$

This

$$\delta = (x^y)^{\epsilon} - 1$$

can be large when x^y is very large.