Análisis del terrorismo: Predicción del perpetrador Proyecto de Tesis II

Ingrid F. Ipanaqué C.1

¹Facultad de Ciencias Universidad Nacional de Ingeniería

Asesor: Juan Carlos Espejo Delzo

August 13, 2021

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Modelos de aprendizaje automático
- 5 Resultados
 - Pre-procesamiento de datos
 - Modelos de aprendizaje automático
 - Comparación de los modelos
- 6 Conclusiones y Trabajo a Futuro
 - Conclusiones
 - Trabajo a Futuro

Motivación

Introducción

- Estudio de las actividades terroristas.
- Interés por el estudio de modelos de machine learning.
- Interés por el el manejo de macrodatos.

Introducción Objetivos

- Entender el funcionamiento de los modelos de máquinas de vectores de soporte, Árboles de decisión, Bosques aleatorios y Máquina de aumento de gradiente.
- Implementar los cuatro modelos predictivos mencionados anteriormente.
- Mejorar los resultados esperados aplicando distintas técnicas en el preprocesamiento de datos, y diferentes atributos de entrada mediante el análisis factorial datos mixtos.
- Evaluar el rendimiento del modelo implementado.

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Modelos de aprendizaje automático
- 5 Resultados
 - Pre-procesamiento de datos
 - Modelos de aprendizaje automático
 - Comparación de los modelos
- 6 Conclusiones y Trabajo a Futuro
 - Conclusiones
 - Trabajo a Futuro

Estado del Arte

Conceptos previos

- Aprendizaje automático
 - Máquinas de vectores de soporte
 - Árboles de decisión
 - Bosques aleatorios
 - Máquina de aumento de gradiente
- Métricas de evaluación

Estado del Arte

Trabajos relacionados

- Terrorism Analytics, Learning to Predict the Perpetrator.
 Disha Talreja, et al. (2017).
- TGPM: Terrorist Group Prediction Model for Counter Terrorism. *Abhishek Sachan, et al. (2012).*
- An Experimental Study of Classification Algorithms for Terrorism Prediction. Ghada M. Tolan, et al. (2015).

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Modelos de aprendizaje automático
- 5 Resultados
 - Pre-procesamiento de datos
 - Modelos de aprendizaje automático
 - Comparación de los modelos
- 6 Conclusiones y Trabajo a Futuro
 - Conclusiones
 - Trabajo a Futuro

Recursos y Herramientas

Lenguaje y librerías

Para el desarrollo de este proyecto se utilizó el lenguaje de programación Python.

Librerias principales usadas:

- Pandas
- Scikit-learn (sklearn)
- XGBoost

Recursos y Herramientas

Global Terrorism Database (GTD)

Se hizo uso de la fuente desarrollada por el Consorcio Nacional para el Estudio del Terrorismo y las Respuestas al Terrorismo (START). GTD es la base de datos más completa de ataques terroristas del mundo. Es de código abierto y proporciona información sobre ataques terroristas nacionales e internacionales desde 1970 y a la fecha incluye más de 190,000 eventos.

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Modelos de aprendizaje automático
- 5 Resultados
 - Pre-procesamiento de datos
 - Modelos de aprendizaje automático
 - Comparación de los modelos
- 6 Conclusiones y Trabajo a Futuro
 - Conclusiones
 - Trabajo a Futuro

Preprocesamiento de datos

Orden seguido para el preprocesamiento de los datos.

- Selección de atributos: 105,203 instancias y 17 atributos.
- 2 Limpieza de datos: Eliminación de datos 'Desconocidos' o 'Unknown'.
- 3 Codificación de etiquetas:
 Uso de la clase LabelEncoder de la librería sklearn.
- 4 Manejo de datos faltantes: Uso de la clase SimpleImputer de la librería sklearn. Reemplaza los datos con la media.
- 5 Normalización: Uso de la clase MinMaxScalar de la librería sklearn.

Metodología de desarrollo

Preprocesamiento de datos

Preprocesamiento de datos

Selección de atributos

Figure: Registro típico en el conjunto de datos.

iyear	2015
imonth	1 (Enero)
iday	1
extended	0
country	113 (Libya)
region	10 (Middle East & North Africa)
latitude	32.069287
longitude	20.151145
vicinity	0
crit1	1
crit1	1
crit3	1 (Outside international humanitarian law)
doubtterr	0
attacktype1	3 (Bombing/Explosion)
targtype1	17 (Terrorists/Non-State Militias)
weaptype1	6 (Explosives)
gname	Shura Council of Benghazi Revolutionaries

Modelos de aprendizaje automático

- Máquina de vectores de soporte: Eliminación de grupos con menos de 10 registros. Uso de la librería SVC de Scikit-learn.
- Árboles de decisión: Uso de la librería DecisionTreeClassifier.
- Bosques aleatorios: Uso de la librería RandomForestClassifier de Scikit-learn.
- Máquina de aumento de gradiente: Uso de la librería XGBClassifier de XGBoost.

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Modelos de aprendizaje automático
- 5 Resultados
 - Pre-procesamiento de datos
 - Modelos de aprendizaje automático
 - Comparación de los modelos
- 6 Conclusiones y Trabajo a Futuro
 - Conclusiones
 - Trabajo a Futuro

Pre-procesamiento de datos

Pre-procesamiento de datos

Table: Comparación de los resultados para los distintos modelos

Conjunto de datos	Cantidad de	Cantidad de	
	atributos	instancias	
GTD	135	201,183	
GTD procesado	17	105,203	

decisión.

Modelos de aprendizaje automático

Modelos de aprendizaje automático Árboles de decisión

Figure: Importancia de las características del modelo de Árboles de

Modelos de aprendizaje automático

Modelos de aprendizaje automático

Bosques aleatorios

Figure: Importancia de las características del modelo de Bosques aleatorios.

Comparación de los modelos

Comparación de los modelos

Figure: Comparación de las métricas resultantes.

(Fuente: Elaboración propia)

Comparación de los modelos

Comparación de los modelos

Table: Comparación de los resultados para los distintos modelos

Algoritmo	Accuracy (%)	Precisión (%)	Recall (%)	F1-Score (%)
MVS	65.63	65.63	65.63	65.63
GBM	71.11	60.90	71.11	64.62
Árbol de decisión	79.9	80.45	79.9	79.87
Bosques aleatorios	84.06	83.09	84.06	82.84
Bosques aleatorios	84.00	83.09	84.00	82.84

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Modelos de aprendizaje automático
- 5 Resultados
 - Pre-procesamiento de datos
 - Modelos de aprendizaje automático
 - Comparación de los modelos
- 6 Conclusiones y Trabajo a Futuro
 - Conclusiones
 - Trabajo a Futuro

Conclusiones

- El análisis de datos y el aprendizaje automático ofrecen un enfoque prometedor para ayudar a los investigadores a determinar rápidamente el autor más probable de un ataque terrorista.
- A comparación de otros modelos, como Máquinas de vectores de soporte, los modelos de Árboles de decisión no se vieron muy influenciados por *outliers*.

Conclusiones

- En comparación con los análisis y resultados de los trabajos previos, el modelo desarrollado de Bosques aleatorios y el preprocesamientos de datos seguido durante el proceso de investigación demostraron ser los más adecuados para la predicción del grupo terrorista usando el Conjunto de Datos Mundial sobre el Terrorismo.
- El Conjunto de Datos Mundial sobre el Terrorismo es un ejemplo para macrodatos, por esta razón se demuestra que el uso de Árboles es adecuado, y su rendimiento mejora, para procesar macrodatos.

└─Trabajo a Futuro

Trabajo Futuro

- mejorar el rendimiento del modelo de Bosques aleatorios mediante técnicas para lidear con clases desbalanceadas en el conjunto de datos de entrada.
- Probar otros métodos, como los clasificadores de conjuntos (ensemble classifiers) y el aprendizaje profundo, para mejorar aún más la precisión de la predicción de grupos terroristas
- Posible aplicación en otros campos.

Análisis del terrorismo: Predicción del perpetrador

Conclusiones y Trabajo a Futuro

Gracias

