3 - 10 Reduction of order

Reduce to first order and solve, showing each step in detail.

3.
$$y'' + y' = 0$$

Reduction of order is something that Mathematica does not generally need to do.

```
eqn = y''[x] + y'[x] == 0

y'[x] + y''[x] == 0

sol = DSolve[eqn, y, x]

\{\{y \rightarrow Function[\{x\}, -e^{-x}C[1] + C[2]]\}\}
```

eqn /. sol // Simplify
{True}

5.
$$y y'' = 3 (y')^2$$

```
eqn = y[x] y''[x] == 3 y'[x]<sup>2</sup>
y[x] y''[x] == 3 y'[x]<sup>2</sup>
sol = DSolve[eqn, y, x]
```

$$\left\{\left\{y \to Function\left[\left\{x\right\}, \frac{C[2]}{\sqrt{2 \times + C[1]}}\right]\right\}\right\}$$

```
eqn /. sol // Simplify
{True}
```

The text answer is $1/\sqrt{c_1x+c_2}$. So Mathematica and the text answer each have assigned a value to one of their three constants. This leaves leeway for the remaining assignments to be made in such a way that the two solutions become equivalent.

7.
$$y'' + y'^{-3}Sin[y] = 0$$

Clear["Global`*"]

This problem is a topsy-turvy little trip with an inverted domain. The substitution z = y'[x] is made. Afterwards there is the form

Which can be processed by DSolve into the solution

```
sol2 = DSolve[eqn2, z, y]
```

```
\left\{ \left\{ z \to Function\left[ \left\{ y \right\}, \ 0 \right] \right\}, \ \left\{ z \to Function\left[ \left\{ y \right\}, \ \frac{1}{-C[1] - Cos[y]} \right] \right\} \right\}
```

The above green cell agrees with the text, though the text uses the inverted form of the fractional expression, calling it $\frac{dx}{dy}$. Using the terms of the substitution, the solution checks out.

```
eqn2 /. sol2 // Simplify
{True, True}
```

The next step is to reverse the substitution level by solving again.

```
eqn3 = -x'[y] == C[1] + Cos[y]
-x'[y] = C[1] + Cos[y]
sol3 = DSolve[eqn3, x, y]
 \{\{x \rightarrow Function[\{y\}, -yC[1] + C[2] - Sin[y]]\}\}
```

The green cell above matches the final answer in the text, with the provision that the sign on the constant -C[1] is opposite to the constant c_1 in the text. The second use of DSolve also checks out true.

```
eqn3/.sol3
{True}
```

```
9. x^2 y'' - 5x y' + 9 y = 0, y_1 = x^3
```

```
Clear["Global`*"]
```

The substitution $y_1 = x^3$ works as advertised as a singular solution. If it is ignored,

```
eqn = x^2 y''[x] - 5 x y'[x] + 9 y[x] == 0
9 y[x] - 5 x y'[x] + x^2 y''[x] == 0
```

then Mathematica comes up with an equivalent solution, so long as C[1] is assigned the value 0 and C[2] is assigned the value $\frac{1}{3}$.

```
sol = DSolve[eqn, y, x]
 \{\{y \rightarrow Function[\{x\}, x^3C[1] + 3x^3C[2]Log[x]]\}\}
```

The Mathematica solution, neither more nor less general than the text, checks out.

eqn /. sol // Simplify {True}

11 - 14 Applications of reducible ODEs

11. Curve. Find the curve through the origin in the xy-plane which satisfies y'' = 2y' and whose tangent at the origin has slope 1.

```
Clear["Global`*"]
eqn = y''[x] = 2y'[x]
y''[x] = 2 y'[x]
sol = DSolve[{eqn, y'[0] == 1, y[0] == 0}, y, x]
 \left\{\left\{y \rightarrow Function\left[\left\{x\right\}, \frac{1}{2}\left(-1+e^{2x}\right)\right]\right\}\right\}
```

The plot below shows that the text answer meets neither of the two requirements stated for the solution. The function in the yellow cell above meets both.

13. Motion. If, in the motion of a small body on a straight line, the sum of the velocity and acceleration equals a positive constant, how will the distance y[t] depend on the initial velocity and position?

Clear["Global`*"]

First, there is an objection against the statement that the sum of velocity and acceleration equals a constant. The two quantities have different units, so they can't be added. The

problem must mean to stipulate that the sum of the coefficients of acceleration and velocity add to a constant. To try to understand this a little bit, I will plot the text answer.

$$y[t_{-}] = c_1 e^{-t} + k t + c_2$$

 $k t + e^{-t} c_1 + c_2$

The grid squares do not appear as squares, but the axes's major ticks seem to be about equal. The problem is supposed to be about travel along a straight line; here the straight line must be the y-axis. With my choice of c_1 , c_2 , and k=1, the starting point must be y=12, and sum of acceleration and velocity must be 1, and the starting velocity must be 1.

$$\begin{split} &\text{Plot}\left[\left\{e^{-t}+t+1,\;e^{-t}\right\},\;\left\{t,\;0,\;5\right\},\\ &\text{AspectRatio} \rightarrow 1.3,\; \text{ImageSize} \rightarrow 300,\; \text{GridLines} \rightarrow \text{All}\right] \end{split}$$


```
tid = N[Table[{t, e^{-t} + t + 1}, {t, 0, 15}]]
\{\{0., 2.\}, \{1., 2.36788\}, \{2., 3.13534\},
 \{3., 4.04979\}, \{4., 5.01832\}, \{5., 6.00674\}, \{6., 7.00248\},
 \{7., 8.00091\}, \{8., 9.00034\}, \{9., 10.0001\}, \{10., 11.\},
 \{11., 12.\}, \{12., 13.\}, \{13., 14.\}, \{14., 15.\}, \{15., 16.\}\}
```

What can be seen from the two cells below is that by the time t=14, acceleration has nearly disappeared, which means that added velocity is also nearly gone, and the travel velocity is at the rate of the starting velocity.

```
tir = Table[tid[[n]][[2]] - tid[[n]][[1]], {n, 15}]
{2., 1.36788, 1.13534, 1.04979, 1.01832, 1.00674, 1.00248,
 1.00091, 1.00034, 1.00012, 1.00005, 1.00002, 1.00001, 1., 1.}
N[e^{-14}]
8.31529 \times 10^{-7}
y'[t]
\mathbf{k} - \mathbf{e}^{-\mathbf{t}} \mathbf{c}_1
```

15 - 19 General solution. Initial value problem (IVP)

(More in the next set.) (a) Verify that the given functions are linearly independent and form a basis of solutions of the given ODE. (b) Solve the IVP. Graph or sketch the solution.

15.
$$4y'' + 25y = 0$$
, $y[0] = 3.0$, $y'[0] = -2.5$, $Cos[2.5x]$, $Sin[2.5x]$

Clear["Global`*"]

By inspection, the two trig expressions are independent. To test whether they are solutions,

eqn = 4 y''[x] + 25 y[x] == 0
25 y[x] + 4 y''[x] == 0
sol = DSolve[{eqn, y[0] == 3.0, y'[0] == -2.5}, y, x]

$$\{\{y \rightarrow Function[\{x\}, 3. Cos[\frac{5 x}{2}] - 1. Sin[\frac{5 x}{2}]]\}\}$$

The solution checks.

The two proposed solutions check.

```
eqn /. Cos[2.5 x] // Simplify
```

ReplaceAltreps:

{Cos(2.5x)} is neithera listof replacementules nor a valid dispatch table and so cannot be used for replacing >>

True /. Cos[2.5 x]

```
eqn /. Sin[2.5 x] // Simplify
```

ReplaceAltreps: {Sin[2.5x]} is neithera listof replacementules nor a valid dispatch table and so cannot be used for replacementules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and so cannot be used for replacement ules nor a valid dispatch table and tab

```
True /. Sin[2.5 x]
```

Plot
$$\left[3.\right] \cos \left[\frac{5 x}{2}\right] - 1.\right] \sin \left[\frac{5 x}{2}\right], \{x, -3, 3\},$$

AspectRatio → Automatic, ImageSize → 200, GridLines → All]

17.
$$4x^2y''-3y=0$$
, $y(1)=-3$, $y'(1)=0$, $x^{3/2}$, $x^{-1/2}$

Clear["Global`*"]

eqn =
$$4 x^2 y''[x] - 3 y[x] == 0$$

- $3 y[x] + 4 x^2 y''[x] == 0$

$$sol = DSolve[{eqn, y[1] == -3, y'[1] == 0}, y, x]$$

$$\left\{\left\{y \rightarrow Function\left[\left\{x\right\}, -\frac{3\left(3+x^2\right)}{4\sqrt{x}}\right]\right\}\right\}$$

eqn /. sol

{True}

Although they look a little different due to their format, the green cell above and the text answer are equivalent.

PossibleZeroQ
$$\left[-\frac{3(3+x^2)}{4\sqrt{x}} - (-0.75x^{3/2} - 2.25x^{-1/2}) \right]$$

True

Checking the proposed solutions is a little more complicated than usual.

$$d2 = D[x^{3/2}, \{x, 2\}]$$

$$\frac{3}{4\sqrt{x}}$$

eqn /.
$$\{y[x] \rightarrow x^{3/2}, y''[x] \rightarrow d2\}$$

$$d22 = D[x^{-1/2}, \{x, 2\}]$$

$$\frac{3}{4 x^{5/2}}$$

eqn /.
$$\{y[x] \rightarrow x^{-1/2}, y''[x] \rightarrow d22\}$$

True

Plot
$$\left[-\frac{3(3+x^2)}{4\sqrt{x}}, \{x, -2, 4\}, \text{ AspectRatio} \rightarrow \text{Automatic},\right]$$

 $ImageSize \rightarrow 200, \; GridLines \rightarrow All, \; PlotRange \rightarrow \left\{ \left\{ -2 \,,\; 4 \right\}, \; \left\{ -10 \,,\; -2 \right\} \right\} \Big]$

19.
$$y'' + 2y' + 2y = 0$$
, $y(0) = 0$, $y'(0) = 15$, $e^{-x} \cos[x]$, $e^{-x} \sin[x]$

```
Clear[eqn, sol]
eqn = y''[x] + 2y'[x] + 2y[x] == 0;
sol = DSolve[{eqn, y[0] == 0, y'[0] == 15}, y, x]
\{\{y \rightarrow Function[\{x\}, 15 e^{-x} Sin[x]]\}\}
eqn /. sol // Simplify
{True}
f1[x_] = e^{-x} Cos[x]
e^{-x} \cos[x]
```

$$\begin{split} &d1 = D[f1[x], \ x] \\ &-e^{-x} \, Cos[x] - e^{-x} \, Sin[x] \\ &d2 = D[f1[x], \ \{x, \ 2\}] \\ &2 \, e^{-x} \, Sin[x] \\ &eqn \ /. \ \{y[x] \to f1[x], \ y'[x] \to d1, \ y''[x] \to d2\} \ // \, Simplify \\ &True \\ &f2[x_{_}] = e^{-x} \, Sin[x] \\ &e^{-x} \, Sin[x] \\ &d11 = D[f2[x], \ x] \\ &e^{-x} \, Cos[x] - e^{-x} \, Sin[x] \\ &d22 = D[f2[x], \ \{x, \ 2\}] \\ &-2 \, e^{-x} \, Cos[x] \\ &eqn \ /. \ \{y[x] \to f2[x], \ y'[x] \to d11, \ y''[x] \to d22\} \ // \, Simplify \\ &True \end{split}$$

Plot[15 e^{-x} Sin[x], {x, -1, 2}, AspectRatio \rightarrow Automatic, $ImageSize \rightarrow 150, \; GridLines \rightarrow All, \; PlotRange \rightarrow \{\{-1, 2\}, \; \{-1, 5\}\}]$

