2025 秋高等数学 D 第一次习题课讲义

数学科学学院 冯宣瑞 2401110009

2025年9月16日

1 准备内容

1.1 助教信息

冯宣瑞 数学科学学院 2024 级博士生

学号: 2401110009

手机/微信: 13632208341

研究方向: 基础数学-偏微分方程

助教经历: 2024 秋高等数学 D (公共数学课十佳助教), 北大问学高数衔接课第一部分

邮箱 (可以邮件询问/答疑): pkufengxuanrui@stu.pku.edu.cn

个人主页 (可以找到课程资料): fengxuanrui.github.io

1.2 课程信息

正课时间: 1-16 周每周, 周二 1-2 节, 周四 3-4 节.

正课地点: 周二理教 208, 周四理教 207. **习题课时间:** 1-16 周双周, 周二 10-11 节.

习题课地点: 理教 409.

评分标准: 作业 30 分 + 期中考试 30 分 + 期末考试 40 分.

期中考试时间: 2025 年 10 月 30 日周四 3-4 节 (暂定).

期中考试地点: 待定.

期末考试时间: 2026 年 1 月 1 日周四上午 8:30-10:30(暂定).

期末考试地点: 待定.

1.3 关于答疑

线下答疑: 双周周二习题课课后, 理教 409.

线上答疑: 微信/邮件.

注意事项:

• 线上答疑的消息或者邮件我可能不一定能及时回复,但一般来说 24 小时内我一定会回答. 在必要的情况下我会使用语音回复,这样也更容易讲清楚思路,我会尽量使用合适的语速. 如果问题较多,也可以习题课后或者另约时间找我线下答疑.

• 答疑的内容可以包括不清楚的课程信息,不懂的知识点,不会做的题目等.如果涉及到具体的题目请提供出处.请尽量不要让我逐行检查某一个计算或证明是否正确或者哪里出错,如果必要的话,请至少保证书写的工整.请不要询问过于宏大或者抽象的问题,比如"如何学好高数".

1.4 关于习题课

内容: 评讲作业 + 重点难点知识回顾 + 补充习题 + 课后答疑. 基础为重, 不会进行超纲的拓展. **不计考勤**, 允许不影响他人的迟到早退, 不占分数. 如果有事无法上课或者想听其他助教的习题课, 可以自行决定, 这一规则对我们三个习题课班都适用. 课上有任何问题可以随时举手提问.

1.5 关于作业

评分标准:每次作业满分 100 分,错 0-2 题不扣分,错 3-4 题 95 分,依此类推,最后加起来折合成 30 分计入课程总评.如果某次作业的题目过难,会进行适当调整,总体来说作业打分主要看大家的完成态度,不会在这一项分数上为难大家.请大家认真准备好两次考试.

提交方式: 正课提交纸质版作业, 习题课或正课发回. 作业提交时请注意与其他习题课班的同学的作业分开摆放 (我们也会到场组织秩序), 一般来说我会在习题课发回作业, 正课收作业时也会带上, 请大家及时取回.

作业规范:每次作业请标注清楚姓名学号和作业次数. 无需抄题, 但是需要标注清楚题目的序号, 请尽量按照老师布置的顺序写解答, 不会做的题目可以空出来或者写部分解答, 也可以标注上自己的疑点. 请保持基本的书写工整和版面清晰. 最好使用 A4 大小左右的纸张书写, 本子可能不方便携带, 而且无法顺利进行收发衔接, 而纸张过大或者过小也可能不方便携带和保存.

1.6 说在前面的话

2 函数的定义与基本性质回顾

2.1 如何认识函数的概念

中学时期我们已经接触过许多常见的函数,比如指数函数 $f(x) = a^x$,对数函数 $f(x) = \log_a x$,幂函数 $f(x) = x^\alpha$,三角函数 $f(x) = \sin x$, $f(x) = \cos x$, $f(x) = \tan x$ 等等. 这些函数都有着简单具体的形式,同时也是最重要的几种函数,在中学的学习中我们针对这些具体的函数发展了许多技巧,大部分同学结束高考不久,想必还比较熟悉.

但是,无论在科学研究还是在生产生活中,函数所代表的变量之间的相互关系是多种多样的,我们不可能生活在一个只包括上述几种函数的世界当中.所以在高等数学中,我们需要对抽象的未知函数进行系统的研究,甚至从研究某一具体的函数转变成研究具有某一抽象特征的函数(周期性,凹凸性,单调性,连续性等等).

在研究这些性质之前, 我们首先要弄清楚什么是函数. 大家此前往往将函数与它的图象等同起来, 说到 $\sin x$ 就会想到正弦波的样子, 说到 x^2 则会想到一条向上开口的抛物线. 这样的几何直观当然有利于理解这些特殊函数的性质, 但对于抽象函数, 图象并不能给予我们足够的信息, 部分信息也不能反映在图象上 (下面会提到存在一个画不出图象的函数), 更不用说对于多元函数, 我们是无法想象高维空间中的图象的. 所以我们需要建立起一个新的认知: 函数就是一个映射, 一个作用机制, 一台吃进去 x 变出来 f(x) 的机器 (函数的原文 function 本来就是作用的意思).

2.2 周期函数

定义 1. 周期, 周期函数, 最小周期.

问题 1. 指出下列函数中哪些是周期函数, 哪些不是; 若是周期函数, 指出其周期.

(1)
$$y = \sin ax (a > 0)$$
. (2) $y = 4$. (3) $y = \sin 2x + \sin \pi x$. (4) $y = \sin x + \cos x$.

注 1. 在未加说明的情况下,应当指出其全部周期.

以上的函数仍然是我们熟悉的几种具体函数作四则运算可以得到的,并没有跳出中学数学处理问题的框架,大家只需熟悉周期的定义即可. 但我们前面已经提到,函数的本质是一个作用机制,所以所谓周期函数,不只是说它的图象呈现周期性变化,更重要的是其定义 $f(x+T)=f(x), \forall x \in \mathbb{R}$,也就是说, f 把距离为 T 的两个 x 打到同一个 y 上.

思考 1. 指出以下定义的 Dirichlet 函数的全部周期.

$$D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}.$$

注 2. 面对无法画出图象观察, 且并不熟悉的函数时, 要研究它的周期 (乃至任何性质), 都必须回到基本的定义. 大家要习惯这种跳出几何直观, 回归基本定义的思考方式.

有时即使是熟悉的函数之间的复合, 我们也没有办法通过简单的观察得到它们的性质, 最后还是要落在回归定义这一步.

思考 2. 证明 $f(x) = \cos x^2$ 不是周期函数.

注 3. 对于周期性这种非常强的性质,如果要证明某个函数不满足这一性质,通常都是使用反证法,然后利用周期性推导矛盾.

2.3 反函数

反函数是一个相对抽象的概念. 中学时期大家可能熟悉的定义是图象沿着 y = x 直线作对称. 但对于一般的函数, 我们怎么样思考它的反函数的机制, 或者如何利用映射的观点来思考什么是反函数.

前面我们提到,一个函数 f 就是一台机器,喂给它一个自变量 x,它就会根据自己的作用机制变出来一个函数值 y = f(x). 那么它的反函数 f^{-1} 就可以看成是一台反向的机器,它负责把这个 y = f(x) 吃进去,变出来原来这个 x. 当然这里有一个要求就是,原来的机器 f 是单射,也就是不会把两个不同的 x_1 和 x_2 都变成同一个 y,不然的话这个反向的机器就会故障,因为它不知道要变出来 x_1 和 x_2 中的哪一个了.

如何求 y = f(x) 的反函数: 到底是先互换 x 和 y 的位置, 还是先解方程, 要做哪步不要做哪步. 这些问题或许曾经困扰过大家, 但是一旦我们想清楚了下面这些事情, 就会轻松很多: 函数就是一个作用机制, 而 x 和 y 其实只是代表 f 这台机器的原料和产物的两个符号, 它们之间并没有天然的函数关系, 反函数的身份就是以 f 的产物为原料, 以 f 的原料为产物的一台反向机器. 所以互换 x 和 y 的位置, 就相当于改用 x 表示 f 的产物,也就是 f^{-1} 的原料(自变量),用 y 表示 f 的原料,也就是 f^{-1} 的产物(因变量),解方程也就是确定反向机器的具体形状. 这两步的先后顺序可以互换.

问题 2. 已知
$$f(x) = x + 1$$
, 求 $f^{-1}\left(\frac{1}{x}\right)$.

错误解答. 由于 f(x) = x + 1, 所以 $f\left(\frac{1}{x}\right) = \frac{1}{x} + 1$. 令 $y = \frac{1}{x} + 1$, 则 $x = \frac{1}{y-1}$. 所以

$$f^{-1}\left(\frac{1}{x}\right) = \frac{1}{x-1}.$$

正确解答. 令 y = x + 1, 则 x = y - 1, 即 $f^{-1}(x) = x - 1$. 代入 $\frac{1}{x}$ 得

$$f^{-1}\left(\frac{1}{x}\right) = \frac{1}{x} - 1.$$

注 4. 错误解答中求出来的实际上是 $h(x)=f\left(\frac{1}{x}\right)$ 这个函数的反函数, 而题中所求则是 f(x) 的反函数代入 $\frac{1}{x}$ 这个自变量得到的函数.

思考 3. 如何确定反函数的定义域.