Chapitre 5 – Isométries en dimension 2 et 3

Dans tout le chapitre, E désigne un espace préhilbertien de dimension $n \in \mathbb{N}^*$.

On rappelle que si $(x_1, ..., x_n)$ est une famille de n vecteurs de E et $B = (e_1, ..., e_n)$ est une base de E, alors $\det_B(x_1, ..., x_n) = \det(\operatorname{Mat}_B(x_1, ..., x_n))$

$$= \det(X_1, \dots, X_n)$$
 où $\forall k \in [1, n], X_k = \operatorname{Mat}_B(x_k)$

Si B' est une autre base de E, si on note, $\forall k \in [1, n], X'_k = \operatorname{Mat}_{B'}(x_k)$ et $P = \operatorname{Pass}_{B \to B'}$

Alors
$$X_k = PX'_k$$
.

$$\operatorname{Donc} \operatorname{det}(X_1, \dots, X_n) = \operatorname{det}(PX_1', \dots, PX_n') = \operatorname{det}(P) \operatorname{det}(X_1', \dots, X_n') = \operatorname{det}(B') \times \operatorname{det}_{B'}(X_1, \dots, X_n)$$

1) Espaces euclidiens orientés

On se fixe une b.o.n $B_0 = (e_1, ..., e_n)$ de E.

Pour toute base orthonormée B de E, on sait que $P = Pass_{B_0 \to B} \in O_n(\mathbb{R})$

Ainsi $det(P) = \pm 1$

Ainsi l'ensemble des bases orthonormées de E peut donc s'écrire comme l'union disjointe :

$$\{B \text{ b.o.n de } E \mid \det(Pass_{B_0 \to B}) = 1\} \cup \{B \text{ b.o.n de } E \mid \det(Pass_{B_0 \to B}) = -1\}$$

On dit que B a la même orientation que B_0 si $\det(Pass_{B_0 \to B}) > 0$.

On dit que B inverse l'orientation de B_0 si $\det(Pass_{B_0 \to B}) < 0$.

La base B_0 est appelée base de référence pour l'orientation de E.

Orienter l'espace euclidien consiste à choisir une b.o.n B_0 de B de référence et adopter le vocabulaire suivant :

<u>Définition</u>: Soit E un espace euclidien orienté par une base <u>orthonormée</u> B_0 . Soit B une b.o.n de E, on dit que la base B est directe si $\det(Pass_{B_0\to B})=+1$ et indirecte si $\det(Pass_{B_0\to B})=-1$

Remarque:

- 1) B_0 est une base directe puisque $Pass_{B_0 \to B_0} = I_n \in SO_n(\mathbb{R})$
- 2) L'ordre des éléments de la base orthonormée B est important
- 3) À partir d'une b.o.n <u>indirecte</u> de E, on peut toujours construire une b.o.n directe de E en multipliant l'un des vecteurs par -1.

Produit mixte

Soit *E* un espace euclidien <u>orienté</u> de dimension $n \in \mathbb{N}^*$.

<u>Propriété</u>: Soit $(x_1, ..., x_n)$ une famille de \underline{n} vecteurs de E. Alors le déterminant $\det_B(x_1, ..., x_n)$ est le même dans n'importe quelle b.o.n <u>directe</u> de E. On le nomme le produit mixte de la famille $(x_1, ..., x_n)$ et on le note $[x_1, ..., x_n] = \det_B(x_1, ..., x_n)$ $\forall B$ b.o.n <u>directe</u> de E.

Remarque:

Par propriétés des déterminants, on a :

$$[x_1, ..., x_n] = 0 \Leftrightarrow \text{la famille } (x_1, ..., x_n) \text{ est liée}$$

2) Classification des isométries en dimension 2

Dans toute cette partie, E désigne un espace euclidien orienté de dimension 2.

Rotation du plan orienté

<u>Théorème</u>: Une isométrie directe du plan orienté E a la même matrice dans n'importe quelle base <u>orthonormée</u> <u>directe</u> de E. Plus précisément, il existe un réel θ , unique modulo 2π , tel que $\forall B$ b.o.n directe de E,

$$Mat_B(u) = R_\theta$$

On dit alors que u est la rotation d'angle θ et on la note $u = Rot_{\theta}$

<u>Remarque</u>: comprendre l'unicité modulo 2π comme suit, si $\exists \theta, \theta' \in \mathbb{R}$ tel que $R_{\theta} = R_{\theta'}$ alors

$$\theta \equiv \theta'[2\pi]$$

<u>Définition</u>: Soient $x,y \in E$ non nuls. Il existe une unique rotation $r \in SO(E)$ qui envoie $\frac{x}{\|x\|} \operatorname{sur} \frac{y}{\|y\|}$. On appelle alors mesure de l'angle orienté de x à y le réel θ unique à 2π près tel que $r = Rot_{\theta}$ et on note $\widehat{(x,y)} \equiv \theta[2\pi]$.

Si de plus, $\theta \in]-\pi;\pi]$, on dit que θ est la mesure principale de l'angle orienté de x à y.

<u>Proposition</u>: pour tous $x, y, z \in E \setminus \{0_E\}$

- (i) $\forall \lambda, \mu \in \mathbb{R}_+^*, (\widehat{\lambda x}, \widehat{\mu y}) \equiv \widehat{(x, y)}[2\pi]$
- (ii) $\widehat{(x,y)} \equiv \widehat{(x,z)} + \widehat{(z,y)} [2\pi]$
- (iii) $\widehat{(y,x)} \equiv -\widehat{(x,y)} [2\pi]$

Proposition: Soient $x, y \in E \setminus \{0_E\}$. Notons $\theta \equiv \widehat{(x,y)} [2\pi]$. Alors

$$\langle x, y \rangle = ||x|| ||y|| \cos(\theta)$$
 et $[x, y] = ||x|| ||y|| \sin(\theta)$

Où [x,y] désigne le produit mixte de x et y. (on a $[x,y]=\det_B(x,y)$ pour toute base orthonormée directe B de E.

<u>Théorème</u>: Soient u une isométrie indirecte du plan E (ie $u \in O(E)$ avec $\det(u) = -1$) et $B = (e_1, e_2)$ une base orthonormée de E. Alors il existe $\theta \in \mathbb{R}$ tel que

$$Mat_B(u) = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

Et u correspond à la réflexion par rapport à la droite vectorielle engendrée par le vecteur

$$a = \cos\left(\frac{\theta}{2}\right)e_1 + \sin\left(\frac{\theta}{2}\right)e_2$$

<u>Théorème</u>: Les endomorphismes orthogonaux directs du plan orienté E sont les rotations vectorielles. Celles-ci commutent entre elles et ont même représentation matricielle dans toute base orthonormée directe de E. Les endomorphismes orthogonaux indirects du plan sont les réflexions.

<u>Corollaire</u>: Dans le plan, la composée de deux rotations est une rotation, la composée de deux réflexions est une rotation, et la composée d'une rotation et d'une réflexion est une réflexion.