

Lanzamiento Proyectil

Ejercicio 8 – Cinemática y Dinámica de la partícula

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

- a) Hallar la expresión del radio de curvatura en el punto más alto de la trayectoria.
- **b)** Calcular dicho radio para los datos: $\alpha = 30^{\circ}$ y $v_0 = 10$ m/s.
- c) Con los datos (b), calcular el radio de curvatura cuando está en la mitad de altura al subir y al bajar, y comprobar que dichos radios son iguales.

Análisis del problema

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

a) Hallar la expresión del radio de curvatura en el punto más alto de la trayectoria.

¿Qué tipo de movimiento describe?

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

a) Hallar la expresión del radio de curvatura en el punto más alto de la trayectoria.

Link animaciones: http://laplace.us.es/wiki/index.php/Movimiento_en_un_tiro_parab%C3%B3lico

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

a) Hallar la expresión del radio de curvatura en el punto más alto de la trayectoria.

Movimiento con aceleración $\vec{a} = -g\hat{\jmath}$

$$d\vec{v} = \int_{t_0}^{t} \vec{a}(t) \cdot dt$$

$$\vec{v}(t) = \vec{v_0} - gt\hat{j}$$

$$\vec{v_0} = v_0 \cos\alpha \hat{i} + v_0 sen\alpha \hat{j}$$
Constante

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

a) Hallar la expresión del radio de curvatura en el punto más alto de la trayectoria.

$$a_n = \frac{|\vec{v}|^2}{\rho} = a_{max} = g$$

$$\rho = \frac{(v_0 \cos \alpha)^2}{g}$$

b) Calcular dicho radio para los datos: $\alpha = 30^{\circ}$ y $v_0 = 10$ m/s.

$$\rho = \frac{(v_o cos \alpha)^2}{g} = 7.5 m$$

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

c) Con los datos (b), calcular el radio de curvatura cuando está en la mitad de altura al subir y al bajar, y comprobar que dichos radios son iguales.

Condiciones iniciales $\alpha \qquad \overrightarrow{v_0} = v_0 cos \alpha \hat{\imath} + v_0 sen \alpha \hat{\jmath}$ $\vec{a} = -g \hat{\jmath}$ $\alpha = 30^\circ$ $v_0 = 10^{\ m}/_S$

En la altura máxima

$$v_{y}(t) = v_{0}sen\alpha - gt = 0$$

$$t = \frac{v_{0}sen\alpha}{g}$$

$$y(t) = v_0 sen\alpha \cdot t - \frac{gt^2}{2} = \frac{v_0^2 sen^2\alpha}{2g}$$

$$y_{med} = \frac{v_0^2 sen^2 \alpha}{4g} = 0,63m$$

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

c) Con los datos (b), calcular el radio de curvatura cuando está en la mitad de altura al subir y al bajar, y comprobar que dichos radios son iguales.

Tiempo al que alcanza la mitad de altura
$$y_{med} = \frac{v_0^2 sen^2 \alpha}{4g} = 0.63m$$

$$y_{med} = v_0 sen\alpha \cdot t_{med} - \frac{gt_{med}^2}{2}$$

$$-5t_{med}^2 + 5t_{med} - 0,63 = 0$$
Resumiendo unidades

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a} = \begin{cases} t = 0.148 \, s \implies \text{subida} \\ t = 0.853s \implies \text{bajada} \end{cases}$$

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

c) Con los datos (b), calcular el radio de curvatura cuando está en la mitad de altura al subir y al bajar, y comprobar que dichos radios son iguales.

Condiciones iniciales $\alpha \qquad \overrightarrow{v_0} = v_0 cos \alpha \hat{\imath} + v_0 sen \alpha \hat{\jmath}$ $\vec{a} = -g \hat{\jmath}$ $\alpha = 30^\circ$ $v_0 = 10^{\,m}/_{S}$

Las componentes de la velocidad a t=0.148 s

Versor tangente

$$\hat{t} = \frac{\vec{v}}{|\vec{v}|} = 0.93 \,\hat{\imath} + 0.37 \,\hat{\jmath}$$

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

c) Con los datos (b), calcular el radio de curvatura cuando está en la mitad de altura al subir y al bajar, y comprobar que dichos radios son iguales.

 χ

Condiciones iniciales $\alpha \quad \overrightarrow{v_0} = v_0 cos \alpha \hat{\imath} + v_0 sen \alpha \hat{\jmath}$ $\vec{a} = -g \hat{\jmath}$ $\alpha = 30^\circ \qquad |\overrightarrow{v_{med}}|^2 = 87.9 \, m^2/_{S^2}$ $v_0 = 10 \, m/_S \qquad \theta = 66^\circ$

$$a_n = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|}$$
 \hat{j}
 \hat{k}
 $v_0 sen \alpha - gt$
 0

$$a_n = \frac{v_0 \cos \alpha \cdot g}{|\vec{v}|} = 9.2 \ \frac{m}{s^2}$$

$$\rho = \frac{|\vec{v}|^2}{a_n} = 9.5 \ m$$

Un proyectil es disparado con un ángulo inicial α con respecto a la horizontal (en el punto máximo, la velocidad es horizontal y la aceleración es vertical y hacia abajo).

Posición \vec{r}

https://www.menti.com/ifyngetar3

Condiciones iniciales $\alpha \qquad \overrightarrow{v_0} = v_0 cos \alpha \hat{\imath} + v_0 sen \alpha \hat{\jmath}$ $\vec{a} = -g \hat{\jmath}$ $\alpha = 30^\circ$ $v_0 = 10^{\,m}/_S \qquad \theta = 66^\circ$

Aceleración \vec{a}

Velocidad \vec{v}

Verdadero o falso

