3 exercises - each 2 pts

6.1 Knapsack

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Recall the knapsack problem: Given a set of n items, each with a weight w_i and a value v_i , determine the items to include in a collection so that the total weight is less than or equal to a given limit W and the total value is as large as possible. Each item can be taken at most once (i.e., there is a single copy of every item).

Input

The first line contains two integers n and W ($1 \le n \le 100, 0 \le W \le 1000$), the number of items and maximal total weight of items in a knapsack.

Each of the next n lines contains two integers w_i and v_i ($1 \le w_i \le 1000$, $0 \le v_i \le 1000$), the weight and the value of the i-th item.

Output

The first line should contain an integer k ($0 \le k \le n$), the number of items in a collection.

The second line should contain k different integers from 1 to n, the indices of included items.

In case of several optimal solutions, output any of them.

Examples

standard input	standard output
2 2	1
2 2	2
1 4	
5 5	2
1 1	1 5
2 3	
3 2	
5 4	
4 5	
3 100	2
52 99	2 3
51 50	
49 50	

6.2 Chain Matrix Multiplication

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Given a sequence of n matrices $A_0, ..., A_{n-1}$ to be multiplied. The size of the matrix A_i is $m_i \times m_{i+1}$.

Find an order of multiplication minimizing the total cost of multiplication. Assume that the cost of multiplying $p \times q$ and $q \times r$ matrices is equal to $p \cdot q \cdot r$ (this is the number of integer multiplications of a straightforward matrix multiplication algorithm).

Input

The first line contains one integer n ($2 \le n \le 150$), the number of matrices to be multiplied.

The second line contains (n+1) integers m_0, m_1, \ldots, m_n $(1 \le m_i \le 1000)$, the size of the *i*-th matrix is $m_i \times m_{i+1}$.

Output

The minimum cost of multiplying the given n matrices.

Examples

standard input	standard output
2	2000
10 20 10	
3	1500
50 20 1 10	
10	138
1 2 3 4 5 6 5 4 3 2 1	

6.4 Maximal Sum Square

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Given an $n \times n$ matrix A of integers and an integer k.

Find a $k \times k$ submatrix of A with maximum sum of elements.

Input

The first line contains two integers n and k ($1 \le k \le n \le 700$), dimensions of the input matrix and submatrix, respectively.

The *i*-th of next *n* lines contains *n* integers a_{ij} ($0 \le a_{ij} \le 1000$), the elements of the *i*-th row of *A*.

Output

The maximum sum of elements of a $k \times k$ submatrix.

Examples

standard input	standard output
3 2	16
10 2 10	
1 1 1	
10 1 13	
2 1	4
4 1	
1 2	
5 3	21
1 2 3 4 5	
5 4 3 2 1	
1 1 1 1 1	
2 1 2 1 2	
6 3 4 1 5	