HMM (1): Definition and two types of HMM

LING 570 Fei Xia

HMM

- Definition and properties of HMM
 - Two types of HMM

Three basic questions in HMM

Definition of HMM

Hidden Markov Models

- There are n states $s_1, ..., s_n$ in an HMM, and the states are connected.
- The output symbols are produced by the states or edges in HMM.
- An observation $\mathbf{O}=(o_1, ..., o_T)$ is a sequence of output symbols.
- Given an observation, we want to recover the hidden state sequence.
- An example: POS tagging
 - States are POS tags (in a bigram POS tagger)
 - Output symbols are words
 - Given an observation (i.e., a sentence), we want to discover the tag sequence.

An example: Ice Cream-Weather HMM

Highlights of HMM

- Can't directly observe states
 - Those states are said to be "hidden"
 - Distinguished from observations: ice cream vs weather
- Allows us to capture ambiguity
- Characteristic of many real-world problems
 - POS Tagging:
 - Observe words, not the underlying tag sequence
 - Speech recognition:
 - Observe acoustic signal, not underlying word/meaning sequence
- Widely used sequence labeler

Same observation, different state sequences

HMM assumptions

- Independence assumptions:
 - Markov assumption: Finite history
 - Typically, 1st order
 - $P(q_i | q_1...q_{i-1}) = P(q_i | q_{i-1})$
 - Output independence:
 - Output probability depends only on state that produced it
 - $P(o_i | q_1...q_i...q_T, o_1...o_i...o_T) = P(o_i | q_i)$
- Typically:
 - Ergodic: Fully connected; every state transition to all others
 - Stationary: All probabilities are independent of time step

Two types of HMMs

- State-emission HMM (Moore machine):
 - The output symbol is produced by states:
 - By the from-state
 - By the to-state
- Arc-emission HMM (Mealy machine):
 - The output symbol is produce by the edges; i.e., by the (from-state, to-state) pairs.

State-emission HMM

Definition of state-emission HMM

- A HMM is a tuple: (S, Σ, Π, A, B) _ A set of states $S=\{s_1, s_2, ..., s_N\}$.
 - _ A set of output symbols $\Sigma = \{w_1, ..., w_M\}$.
 - Initial state probabilities: $\Pi = \{\pi_i\}$
 - _ Transition prob: A={a_{ii}}
 - $_$ Emission prob: B={b_{ik}}

- We use s_i and w_k to refer to what is in an HMM structure.
- We use X_i and O_i to refer to what is in a particular HMM path and its output

An example: the HMM structure

Two kinds of parameters:

- Transition probability: $P(s_i | s_i)$
- Emission probability: $P(w_k | s_i)$
 - \rightarrow # of Parameters: O(NM+N²)

Constraints in a state-emission HMM

$$\sum_{i=1}^{N} \pi_i = 1$$

$$\forall i \quad \sum_{j=1}^{N} a_{ij} = 1$$

$$\forall i \quad \sum_{k=1}^{M} b_{ik} = 1$$

For any integer n and any HMM

$$\sum_{|O|=n} P(O \mid HMM) = 1$$

Output symbols are generated by the from-states

- State sequence: X_{1,n+1}
- Output sequence: O_{1,n}

$$P(O_{1,n}, X_{1,n+1}) = \pi(x_1) \prod_{i=1}^{n} (P(x_{i+1} | x_i) P(o_i | x_i))$$

$$P(O_{1,n}) = \sum_{X_{1,n+1}} P(O_{1,n}, X_{1,n+1})$$

Output symbols are generated by the to-states

- State sequence: X_{1,n+1}
- Output sequence: O_{1,n}

$$P(O_{1,n}, X_{1,n+1}) = \pi(x_1) \prod_{i=1}^{n} (P(x_{i+1} | x_i) P(o_i | x_{i+1}))$$

$$P(O_{1,n}) = \sum_{X_{1,n+1}} P(O_{1,n}, X_{1,n+1})$$

A path in a state-emission HMM

Output symbols are produced by the from-states:

Output symbols are produced by the to-states:

Properties of HMM

Markov assumption (Limited horizon):

$$P(X_{t+1} | X_1, X_2, ...X_t) = P(X_{t+1} | X_t)$$

 Stationary distribution (Time invariance): the probabilities do not change over time:

$$P(X_{t+1} \mid X_t) = P(X_{t+1+m} \mid X_{t+m})$$

 The states are hidden because we know the structure of the machine (i.e., S and Σ), but we don't know which state sequences generate a particular output.

Arc-emission HMM

Definition of arc-emission HMM

- A HMM is a tuple: (S, Σ, Π, A, B)
 - $_$ A set of states S={s₁, s₂, ..., s_N}
 - $_$ A set of output symbols $\Sigma = \{w_1, ..., w_M\}$

- Initial state probabilities $\Pi = \{\pi_i\}$
- _ Transition prob: A={ a_{ii} }
- $_$ Emission prob: B={ b_{ijk} }

Constraints in an arc-emission HMM

$$\sum_{i=1}^{N} \pi_i = 1$$

$$\forall i \quad \sum_{j=1}^{N} a_{ij} = 1$$

$$\forall i, j \quad \sum_{k=1}^{M} b_{ijk} = 1$$

For any integer n and any HMM

$$\sum_{|O|=n} P(O \mid HMM) = 1$$

An example: HMM structure

Same kinds of parameters but the emission probabilities depend on both states: $P(w_k \mid s_i, s_j)$

 \rightarrow # of Parameters: O(N²M + N²).

A path in an arc emission HMM

State sequence: X_{1,n+1}

Output sequence: O_{1,n}

$$P(O_{1,n}, X_{1,n+1}) = \pi(x_1) \prod_{i=1}^{n} P(x_{i+1} \mid x_i) P(o_i \mid x_i, x_{i+1})$$

$$P(O_{1,n}) = \sum_{X_{1,n+1}} P(O_{1,n}, X_{1,n+1})$$

Arc-emission vs. state-emission

Are the two types of HMMs equivalent?

• For each state-emission HMM_1 , there is an arc-emission HMM_2 , such that for any sequence O, $P(O|HMM_1)=P(O|HMM_2)$.

The reverse is also true.

How to prove that?

Applications of HMM

- N-gram POS tagging
 - \perp Bigram tagger: o_i is a word, and s_i is a POS tag.
- Other tagging problems:
 - Word segmentation
 - Chunking
 - NE tagging
 - Punctuation predication
 - **—** ...
- Other applications: ASR,

Additional slides

PFA recap

Formal definition of PFA

```
A PFA is (Q, \Sigma, I, F, \delta, P)
```

- Q: a finite set of N states
- Σ: a finite set of input symbols
- I: Q →R+ (initial-state probabilities)
- F: Q →R+ (final-state probabilities)
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$: the transition relation between states.
- P: $\delta \rightarrow R^+$ (transition probabilities)

Constraints on function:

$$\sum_{q \in Q} I(q) = 1$$

$$\forall q \in Q \quad F(q) + \sum_{\substack{a \in \Sigma \cup \{\varepsilon\} \\ q' \in Q}} P(q, a, q') = 1$$

Probability of a string:

$$P(w_{1,n}, q_{1,n+1}) = I(q_1) * F(q_{n+1}) * \prod_{i=1}^{n} p(q_i, w_i, q_{i+1})$$

$$P(w_{1,n}) = \sum_{q_{1,n+1}} P(w_{1,n}, q_{1,n+1})$$

An example of PFA

$$F(q_0)=0$$

 $F(q_1)=0.2$

$$I(q_0)=1.0$$

 $I(q_1)=0.0$

$$P(ab^n)=I(q_0)*P(q_0,ab^n,q_1)*F(q_1)$$

=1.0 * 1.0*0.8ⁿ *0.2

$$\sum_{x} P(x) = \sum_{n=0}^{\infty} P(ab^{n}) = 0.2 * \sum_{n=0}^{\infty} 0.8^{n} = 0.2 * \frac{0.8^{0}}{1 - 0.8} = 1$$

PFA vs. Arc-emission HMM

```
A PFA is (Q,Σ,I,F,δ,P)
Q: a finite set of N states
Σ: a finite set of input symbols
I: Q →R+ (initial-state probabilities)
F: Q →R+ (final-state probabilities)
```

- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon:\}^t) \times \mathcal{D}^{\text{sition relation between states.}}$
- P: $\delta \rightarrow R^{\text{mansition probabilities}}$

```
A HMM is a tuple (S, \Sigma, \Pi, A, B)
```

- A set of states S={s₁, s₂, ..., s_N}
- A set of output symbols $\Sigma = \{w_1, ..., w_M\}$

• Initial state prob:
$$\Pi = \{\pi_i\}$$

- Transition prob: A={a_{ii}}
- Emission prob: B={b_{ijk}}