K-Means Clustering Algorithm

}

Problem Statement: given a two-dimensional dataset *X*, create two clusters.

Initialize 2 centroids, e.g., randomly take 2 instances from X centroid $0 = x^{(i)}$, centroid $1 = x^{(j)}$

Repeat until convergence (e.g., no change in cluster assignments or centroids) {

- Compute the Euclidean distance between every instance x^(k) and centroids 0 & 1
 Assign instance x^(k) to cluster 0 if it is closer to centroid 0
 Assign instance x^(k) to cluster 1 if it is closer to centroid 1
- Recompute centroids 0 and 1
 centroid 0 = the average of all instances assigned to cluster 0
 centroid 1 = the average of all instances assigned to cluster 1

Recall: Euclidean distance between $a^T = [a_1, a_2]$ and $b^T = [b_1, b_2]$ is $\sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$