Information Theory and Coding - Prof. Emere Telatar

Jean-Baptiste Cordonnier, Sebastien Speierer, Thomas Batschelet

October 29, 2017

1 Data compression

Definition 1.1 (Information). Abstractly, information can be thought of as the resolution of uncertainty.

Given an alphabet \mathcal{U} (e.g. $\mathcal{U} = \{a, ..., z, A, ..., Z, ...\}$), we want to assign binary sequences to elements of \mathcal{U} , i.e.

$$\mathscr{C}: \mathcal{U} \to \{0,1\}^* = \{\emptyset, 0, 1, 00, 01, ...\}$$

For \mathcal{X} a set

$$\mathcal{X}^n \equiv \{(x_0...x_n), x_i \in \mathcal{X}\}$$
$$\mathcal{X}^* \equiv \bigcup_{n>0} \mathcal{X}^n$$

Definition 1.2. A code \mathscr{C} is called **singular** if

$$\exists (u, v) \in \mathcal{U}^2, u \neq v \quad s.t. \quad C(u) = C(v)$$

Non singular code is defined as opposite

Definition 1.3. A code \mathscr{C} is called **uniquely decodable** if

$$\forall u_1, ..., u_n, v_1, ..., v_n \in \mathcal{U}^* \quad s.t. \quad u_1, ..., u_n \neq v_1, ..., v_n$$

we have

$$\mathscr{C}(u_1)...\mathscr{C}(u_n) \neq \mathscr{C}(v_1)...\mathscr{C}(v_n)$$

 $i.e, \mathcal{C}$ is non-singular

Definition 1.4. Suppose $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$ and $\mathcal{D}: \mathcal{V} \to \{0,1\}^*$ we can define

$$\mathscr{C} \times \mathcal{D} : \mathcal{U} \times \mathcal{V} \to \{0,1\}^* \quad as \quad (\mathscr{C} \times \mathcal{D})(u,v) \to \mathscr{C}(u)\mathcal{D}(v)$$

Definition 1.5. Given $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$, define

$$\mathscr{C}^*: \mathcal{U}^* \to \{0,1\}^*$$
 as $\mathscr{C}^*(u_1...u_n) = \mathscr{C}(u_1)...\mathscr{C}(u_n)$

Definition 1.6. A code $\mathcal{U} \to \{0,1\}^*$ is **prefix-free** is for no $u \neq v \, \mathscr{C}(u)$ is a prefix of $\mathscr{C}(v)$.

Theorem 1.1. If \mathscr{C} is prefix-free then \mathscr{C} is uniquely decodable.

Definition 1.7. $l(\mathscr{C}(u))$ is the length of the code word $\mathscr{C}(u)$ and $l(\mathscr{C})$ is the expected length of the code:

$$l(\mathscr{C}) = \sum_{u} l(\mathscr{C}(u)) p(u)$$

Definition 1.8 (Kraft sum). Given $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$

$$kraftsum(\mathscr{C}) = \sum_{u} 2^{-l(\mathscr{C}(u))}$$

Lemma 1.2. if $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$ and $\mathcal{D}: \mathcal{V} \to \{0,1\}^*$ then

$$kraftsum(\mathscr{C} \times \mathcal{D}) = kraftsum(\mathscr{C}) \times kraftsum(\mathcal{D})$$

Proof.

$$\begin{split} kraftsum(\mathscr{C}\times\mathcal{D}) &= \sum_{u,v} 2^{-(l(\mathscr{C})*l(\mathcal{D}))} \\ &= \sum_{u} 2^{-l(\mathscr{C})} \sum_{v} 2^{-l(\mathcal{D})} \end{split}$$

Corollary 1.2.1. $kraftsum(\mathscr{C}^n) = (kraftsum(\mathscr{C}))^n$

Proposition 1.1. if \mathscr{C} is non-singular, then

$$kraftsum(\mathscr{C}) \leq 1 + \max_{u} l(\mathscr{C}(u))$$

In coding theory, the **Kraft-McMillan inequality** gives a necessary and sufficient condition for the existence of a uniquely decodable code for a given set of codeword lengths.

Wikipedia. Kraft's inequality limits the lengths of codewords in a prefix code: if one takes an exponential of the length of each valid codeword, the resulting set of values must look like a probability mass function, that is, it must have total measure less than or equal to one. Kraft's inequality can be thought of in terms of a constrained budget to be spent on codewords, with shorter codewords being more expensive.

Theorem 1.3. if \mathscr{C} is uniquely decodable, then $kraftsum(\mathscr{C}) < 1$

Proof. \mathscr{C} is uniquely decodable $\equiv \mathscr{C}^*$ is non singular

$$\Rightarrow kraftsum(\mathscr{C}^n) \leq 1 + \max_{u_1, \dots, u_n} l(\mathscr{C}^n)$$
$$\Rightarrow kraftsum(\mathscr{C})^n \leq 1 + nL, \quad L = \max l(\mathscr{C}(n))$$

A growing exp cannot be bounded by a linear function

$$\Rightarrow kraftsum(\mathscr{C}) < 1$$

TODO: something fuzzy with the following theorem

Theorem 1.4. Suppose $\mathscr{C}: \mathcal{U} \to \mathcal{N}$ is such that $\sum_{u} i^{\mathscr{C}(u)} \leq 1$, then, there exists a prefix-free code $\mathscr{C}: \mathcal{U} \to \{0,1\}$ s.t. $\forall u, l(\mathscr{C}(u)) = \mathscr{C}(u)$

Proof. Let $\mathcal{U} = \{u_1, ..., u_n\}$ and $\mathscr{C}(u_1) \leq \mathscr{C}(u_2) \leq ... \leq \mathscr{C}(u_k) = \mathscr{C}_{max}$. Consider the complete binary tree up to depth \mathscr{C}_{max} initially all nodes are available to be used as codewords. For i = 1, 2, ..., n, place $\mathscr{C}(u_i)$ at an available node at level $\mathscr{C}(u_i)$ remove all descendant of $\mathscr{C}(u_i)$ from the available list.

Corollary 1.4.1. Suppose $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$ is uniquely decodable, then there exist an $\mathscr{C}': \mathcal{U} \to \{0,1\}^*$ which is prefix-free and $l(\mathscr{C}'(n)) = l(\mathscr{C}(n))$

Example 1. $\mathcal{U} = \{a, b, c, d\}$, $\mathscr{C} : \{0, 01, 011, 111\}$ and $\mathscr{C}' : \{0, 10, 110, 111\}$ In this case, decoding \mathscr{C} may require delay, while decoding \mathscr{C}' is instanteneous.

2 Alphabet with statistics

Suppose we have an alphabet \mathcal{U} , and suppose we have a random variable U taking values in \mathcal{U} . We denote by $p(u) = Pr(U = u), u \in \mathcal{U}$ with $p(u) \geq 0$ and $\sum_{u} p(u) = 1$.

Suppose we have a code $\mathscr{C}: \mathcal{U} \to \{0,1\}^*$. We then have $\mathscr{C}(u)$ a random binary string and $l(\mathscr{C}(u))$ a random integer.

Example 2. $\mathcal{U} = \{a, b, c, d\}$ $p : \{0.5, 0.25, 0.125, 0.125\}$ $\mathscr{C} : \{0, 01, 110, 111\}$

then we have

$$l(\mathscr{C}(u)) = \begin{cases} 1, & p = 0.5\\ 2, & p = 0.25\\ 3, & p = 0.125 + 0.125 + 0.25 \end{cases}$$

We can measure how efficient $\mathscr C$ represents $\mathcal U$ by considering

$$E[l(\mathscr{C}(u))] = \sum_{u} p(u)l(\mathscr{C}(u))$$
 with $\mathscr{C}(u) = l(\mathscr{C}(u))$

Theorem 2.1. if \mathscr{C} is uniquely decodable, then

$$E[l(\mathscr{C}(u))] \ge \sum_{u} p(u) \log(\frac{1}{p(u)})$$

Proof. let $\mathscr{C}(u) = l(\mathscr{C}(u))$, we know $\sum_{u} 2^{-\mathscr{C}(u)} \leq 1$ because \mathscr{C} is uniquely decodable

$$E[l(\mathscr{C}(u))] = \sum_{u} p(u)\mathscr{C}(u) = \sum_{u} p(u)\log_{2}(\frac{1}{q(u)})$$

$$\equiv \sum_{u} p(u)\log(\frac{q(u)}{p(u)}) \le 0$$

$$\equiv \sum_{u} p(u)\ln(\frac{q(u)}{p(u)}) \le 0$$

$$\leq \sum_{u} p(u)[\frac{q(u)}{p(u)} - 1] = \sum_{u} q(u) - \sum_{u} p(u) \le 0$$

TODO: what's q(u) in the proof above?

Theorem 2.2. For any \mathcal{U} , there exists a prefix-free code \mathscr{C} s.t.

$$E[l(\mathscr{C}(u))] < 1 + \sum_{u \in \mathcal{U}} p(u) \log(\frac{1}{p(u)})$$

Proof. Given \mathcal{U} , let

$$\mathscr{C}(u) = \log(\frac{1}{p(u)}) < 1 + \log(\frac{1}{p(u)})$$

$$\Rightarrow \sum_{u} 2^{-\mathscr{C}(u)} \le \sum_{u} p(u) = 1$$

$$\Rightarrow \sum_{u} p(u)\mathscr{C}(u) < \sum_{u} p(u) \log(\frac{1}{p(u)}) + \underbrace{1}_{\sum p(u)}$$

Definition 2.1 (Entropy). Entropy quantifies the amount of uncertainty involved in the value of a random variable or the outcome of a random process.

Theorem 2.3. The entropy of a random variable $U \in \mathcal{U}$ is

$$H(U) = \sum_{u \in \mathcal{U}} p(u) \log(\frac{1}{p(u)})$$

with p(u) = Pr(U = u)

Wikipedia. The entropy is a lower bound on the optimal expected length

$$H(U) \leq \mathbb{E} l(\mathscr{C}(u))$$

In fact, one can show that there exists a uniquely decodable code such that

$$H(U) \leq \mathbb{E}\,l(\mathscr{C}(u)) < H(U) + 1$$

Note that H(U) is a function of the distribution $\mathscr{C}_u(.)$ of the random variable U, it isn't a function of U.

$$H(U) = E[f(U)]$$
 where $f(U) = \log(\frac{1}{p(u)})$

How to design optimal codes (in the sense of minimizing $E[l(\mathscr{C}(u))]$)? Formally, given a random variable U, find $\mathscr{C}(u) \to \mathcal{N}$ s.t.

$$\sum_{u \in U} 2^{\mathscr{C}(u)} \leq 1 \quad \text{that minimizes} \quad \sum_{u \in U} p(u)\mathscr{C}(u)$$

Properties of optimal prefix-free codes

- if p(u) < p(v) then $\mathscr{C}(u) \ge \mathscr{C}(v)$
- The two longest codewords have the same length
- There is an optimal code such that the two least probable letters are assigned codewords that differ in the last bit.

Observe that if $\{\mathscr{C}(u_1),...,\mathscr{C}(u_{k-1}),\mathscr{C}(u_k)\}$ is a prefix-free collection of the property that

$$\mathcal{C}(u_{k-1}) = \alpha 0$$

 $\mathcal{C}(u_k) = \alpha 1$ with $\alpha \in \{0, 1\}^*$

then $\{\mathscr{C}(u_1),...,\mathscr{C}(u_{k-2}),\alpha\}$ is also a prefix-free collection. Also

$$\begin{split} \sum_{u \in \mathcal{U}} p(u) l(\mathscr{C}(u)) &= p(u_1) l(\mathscr{C}(u_1)) + \ldots + p(u_{k-2}) l(\mathscr{C}(u_{k-2})) + [p(u_{k-1}) + p(u_k)] (l(\alpha) + 1) \\ &= (p(u_{k-1}) + p(u_k)) + \sum_{v \in \mathcal{V}} p(v) l(\mathscr{C}'(v)) \end{split}$$

So we have shown that with

$$E[l(\mathscr{C}(U)] = p(u_{k-1}) + p(u_k) + E[l(\mathscr{C}'(V))]$$

if \mathscr{C} is optimal for U, then \mathscr{C}' is optimal for V

3 Entropy and mutual information

Definition 3.1 (Joint entropy). Suppose U, V are random variables with $p(u, v) = Pr\{U = u, V = v\}$, the joint entropy is

$$H(UV) = \sum_{u,v} p(u,v) \log \frac{1}{p(u,v)}$$

Theorem 3.1.

$$H(UV) \le H(U) + H(V)$$

with equality iff U and V are independents.

Proof. We want to show that

$$\sum_{u,v} p(u,v) \log \frac{1}{p(u,v)} \leq \sum_{u} p(u) \log \frac{1}{p(u)} + \sum_{v} p(v) \log \frac{1}{p(v)} \iff \sum_{u,v} p(u,v) \log \frac{p(u)p(v)}{p(u,v)} \leq 0$$

We use $\{\ln z \le z - 1, \forall z\}$ (with equality iff z = 1):

$$\sum_{u,v} p(u,v) \log \frac{p(u)p(v)}{p(u,v)} \le \sum_{u,v} p(u,v) \left[\frac{p(u)p(v)}{p(u,v)} - 1 \right] = \sum_{u,v} p(u)p(v) - \sum_{u,v} p(u,v) = 1 - 1 = 0$$

Same definitions of entropy holds for n symbols.

Definition 3.2 (Joint Entropy). Suppose U_1, U_2, \ldots, U_n are RVs and we are given $p(u_1 \ldots u_n)$, the joint entropy is

$$H(U_1, \dots, U_n) = \sum_{u_1 \dots u_n} p(u_1 \dots u_n) \log \frac{1}{p(u_1 \dots u_n)}$$

Theorem 3.2.

$$H(U_1 \dots U_n) \le \sum_{i=1}^n H(U_i)$$

with equality iff Us are independents

Corollary 3.2.1. if U_1, \ldots, U_n are i.i.d. then $H(U_1, \ldots, U_n) = nH(U_1)$

Definition 3.3 (Conditional entropy).

$$\begin{split} H(U|V) &= \sum_{u,v} p(u,v) \log \frac{1}{p(u|v)} \\ &= \sum_{v} H(U|V=v) Pr\left\{V=v\right\} \end{split}$$

Theorem 3.3.

$$H(UV) = H(U) + H(V|U) = H(V) + H(U|V)$$

Theorem 3.4.

$$H(U) + H(V) \ge H(UV) = H(V) + H(U|V)$$

Definition 3.4 (Mutual information). Mutual information measures the amount of information that can be obtained about one random variable by observing another.

$$I(U; V) = I(V; U) = H(U) - H(U|V)$$

= $H(V) - H(V|U)$
= $H(U) + H(V) - H(UV)$

We can apply the chain rule on the entropy as follow

$$H(U_1U_2...U_n) = H(U_1) + H(U_2|U_1) + \dots + H(U_n|U_1U_2...U_{n-1}) = \sum_{i=1}^n H(U_i|U^{i-1})$$

Definition 3.5 (Conditional mutual information).

$$\begin{split} I(U;V|W) &= H(U|W) - H(U|VW) \\ &= H(V|W) - H(V|UW) \\ &= \mathbb{E}_{u,v,w} \left[\log \frac{p(uv|w)}{p(u|w)p(v|w)} \right] \end{split}$$

Theorem 3.5.

$$I(V; U_1 \dots U_n) = I(V; U_1) + I(V; U_2|U_1) + \dots + I(V; U_n|U_1 \dots U_{n-1})$$

We can apply the chain rule on the mutual information as follows

$$I(U_1, U_2, ...; V) = I(U_1; V) + I(U_2; V|U_1) + ...$$

Theorem 3.6. Data processing inequality Let $X \to Y \to Z$ be a Markov chain, then

$$I(X;Y) \ge I(X;Z)$$

Notation 1.

$$U^n \triangleq (U_1 U_2 \dots U_n)$$

Theorem 3.7.

$$I(U; V|W) \ge 0$$

equality iff conditioned on w, u and v are independent, that is iff U - V - W is a Markov chain. Proof.

$$\begin{split} I(U;V|W) &= \frac{1}{\ln 2} \sum_{u,v,w} p(uvw) \ln \frac{p(u|w)p(v|w)}{p(uv|w)} \\ &\geq \frac{1}{\ln 2} \sum_{u,v,w} p(uvw) \left[\frac{p(u|w)p(v|w)}{p(uv|w)} - 1 \right] \\ &= \frac{1}{\ln 2} \sum_{u,v,w} (p(w)p(u|w)p(v|w) - p(uvw)) \\ &= \frac{1}{\ln 2} (1-1) \\ &= 0 \end{split}$$

Data processing

Theorem 4.1. U - V - W is a $MC \iff I(U; W|V) = 0$

Corollary 4.1.1. $I(U;V) \ge I(U;W)$ and by symetry of $MCI(W;V) \ge I(U;W)$

Proof.

$$I(U; VW) = I(U; V) + I(U; W|V) = I(U; V)$$

and

$$I(U;VW) = I(U;W) + I(U;V|W) \ge I(U;W)$$

Theorem 4.2. Given U a RV taking values in U then $0 \le H(U) \le \log |\mathcal{U}|$. H(U) = 0 iff U is constant, $H(U) = \log |\mathcal{U}| \text{ iff } U \text{ is } p(u) = 1/|\mathcal{U}| \text{ for all } u.$

Proof. For the lower bound,

$$H(U) = \sum_{u} \underbrace{p(u)}_{\geq 0} \underbrace{\log \frac{1}{p(u)}}_{> 0} \geq 0$$

For the upper bound,

$$H(U) - \log |\mathcal{U}| = \sum_{u} p(u) \log \frac{1}{p(u)} - \sum_{u} p(u) \log |\mathcal{U}|$$

$$= \frac{1}{\ln 2} \sum_{u} p(u) \ln \frac{1}{|\mathcal{U}| p(u)}$$

$$\leq \frac{1}{\ln 2} \sum_{u} p(u) \left(\frac{1}{|\mathcal{U}| p(u)} - 1 \right)$$

$$= \frac{1}{\ln 2} \left[\sum_{u} \frac{1}{|\mathcal{U}|} - \sum_{u} p(u) \right]$$

$$= 0$$

Theorem 4.3. $I(U;V) = 0 \iff U \perp V$

Definition 4.1 (Entropy rate of a stochastic process).

$$r = \lim_{n \to \infty} \frac{1}{n} H(U^n)$$
 if the limit exists

Theorem 4.4. For stationary stochastic process U^n , the sequences

$$a_n = \frac{1}{n} H(U^n) \text{ and } b_n = H(U_n | U^{n-1})$$

are positive and non increasing. Then $a = \lim_{n \to \infty} a_n$ and $b = \lim_{n \to \infty} b_n$ exists and a = b.

Proof.

$$\begin{split} b_{n+1} &= H(U_{n+1}|U_1, U_2, \dots, U_n) \\ &\leq H(U_{n+1}|U_2, \dots, U_n) \\ &= H(U_n|U_1, U_2, \dots, U_{n-1}) \\ &= b_n \text{ , because } U_1 \dots U_n \sim U_2 \dots U_{n+1} \text{ (Stationarity)}. \end{split}$$

Hence, it is non-increasing.

For the $\{a_n\}$, observe that

$$a_n = \frac{1}{n}H(U^n) = \frac{1}{n}\left[H(U_1) + H(U_2|U_1) + H(U_3|U^2) + \dots + H(U_n|U^{n-1})\right]$$
$$= \frac{1}{n}\left[b_1 + b_2 + \dots + b_n\right]$$

and by the "Lemma", whenever $b_n \to b$, $a_n \to b$

Lemma 4.5 (Cesaro). Suppose $b_n \to b$,

then,

$$a_n = \frac{1}{n} \left[b_1 + b_2 + \dots + b_n \right]$$
 also converges and to 1.

Proof. Since $b_n \to b$, $\left(\equiv \forall \epsilon > 0 , \exists n(\epsilon) \text{ s.t } \forall n > n(\epsilon) |b_n - b| < \epsilon \right)$

 $\exists B \text{ s.t. } |b_n| < B \text{ for all n.}$

Take $n > n_1(\epsilon) \triangleq \dots$ then

$$|a_n - b| \le \frac{|b_1 - b| + |b_2 - b| + |b_3 - b| + \dots + |b_n - b|}{n}$$

so
$$|a_n - b| \le \frac{1}{n} \left[\sum_{i=1}^{n_0(\epsilon)} \underbrace{|b_i - b|}_{2B} + \sum_{i=n_0(\epsilon)+1}^n \underbrace{|b_i - b|}_{\le \epsilon} \right] \le \frac{n_0(\epsilon)2B}{n} + \epsilon < 2\epsilon$$

for
$$n > n_1(\epsilon) \triangleq \max_{\epsilon} \{n_0(\epsilon) \frac{1}{\epsilon} n_0(\epsilon) 2B\}$$

Theorem 4.6. Given a stationary process with entropy rate r:

$$r = \lim_{n \to \infty} \frac{1}{n} H(U^n)$$

then

1. for every source coding scheme

$$\mathscr{C}_n: U^n \to \{0,1\}^*$$

the expected number of bits / letter is given by

$$\frac{1}{n}E[l(\mathscr{C}(U^n))] \ge r$$

2. for any $\epsilon > 0$, there exists a source coding scheme $\mathscr{C}_n : U^n \to \{0,1\}^*$ s.t.

$$\frac{1}{n}E[l(\mathscr{C}_n(U^n))] < r + \epsilon$$

Proof. 1. we already know

$$\frac{1}{n}E[l(\mathscr{C}_n(U^n))] \ge \frac{1}{n}H(U^n)$$

and the right term is decreasing

2. we also know that for each $n, \exists \mathscr{C}_n$ that is prefix-free s.t.

$$E[l(\mathscr{C}_n(U^n))] < \underbrace{\frac{1}{n}H(U^n)}_r + \underbrace{\frac{1}{n}}_0$$

we can find n large enough s.t. the right hand side $< r + \epsilon$

5 Typicality and typical set

Suppose we have a sequence $U_1, U_2, ...$ of i.i.d. random variables taking values in an alphabet \mathcal{U} . Suppose we observe $u_1, u_2, ..., u_n$. We will call it to be typical- (ϵ, p) if

$$p(u)(1-\epsilon) \le \frac{\text{\# of times } u \text{ appears in } u_1, ..., u_n}{n} \le p(u)(1+\epsilon)$$

Theorem 5.1. u^n is (ϵ, p) -typical then

$$2^{-nH(u)(1+\epsilon)} < Pr(U^n = u^n) < 2^{-nH(u)(1+\epsilon)}$$

Proof.

$$Pr(U^n = u^n) = \prod_{i=1}^n Pr(U_i = u_i) = \prod_{i=1}^n p(u_i) = \prod_{u \in \mathcal{U}} p(u)^{\#_u}$$

with $\#_u$ the number of times u appears in $u_1, ..., u_n$ where

$$n(1-\epsilon)p(u) < \#_u < n(1+\epsilon)p(u)$$

consequently

$$p(u)^{(np(u)(1-\epsilon))} > p(u)^{\#_u} > p(u)^{np(u)(1+\epsilon)}$$

then

$$(\prod_n p(u)^{p(u)})^{(1-\epsilon)n} \ge Pr(U^n = u^n) \ge (\prod_n p(u)^{p(u)})^{(1+\epsilon)n}$$

but

$$p(u)^{p(u)} = 2^{-p(u)\log(\frac{1}{p(u)})} \Rightarrow \prod p(u)^{p(u)} = 2^{-H(u)}$$

Definition 5.1 (Typical set).

$$T(n, \epsilon, p) = \{u^n \in \mathcal{U}^n : u^n \text{ is } (\epsilon, p)\text{-typical}\}$$

Wikipedia. Typical sets provide a theoretical means for compressing data, allowing us to represent any sequence X^n using nH(X) bits on average, and, hence, justifying the use of entropy as a measure of information from a source.

Theorem 5.2. 1. if $u^n \in T(n, \epsilon, p)$ then

$$p(u^n) = Pr(U^n = u^n) = 2^{-nH(u)(1 \pm \epsilon)}$$

when U_i i.i.d.

2.

$$\lim_{n \to \infty} Pr(U^n \in T(n, \epsilon, p)) = 1$$

3.

$$|T(n,\epsilon,p)| \le 2^{n(H(u)(1+\epsilon))}$$

4.

$$|T(n,\epsilon,p)| \ge (1-\epsilon)2^{nH(u)(1-\epsilon)}$$

Proof. 1. Fix $u \in \mathcal{U}$ let $X_i = 1$ if $U_i = u$ and 0 otherwise

$$\frac{\text{\# of times } u \text{ appears in } U_1...U_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

observe that $\{X_i\}$ are i.i.d.

$$\begin{split} X_i &= \left\{ \begin{array}{ll} 1 & \text{w.p. } p(u) \\ 0 & \text{w.p. } 1 - p(u) \end{array} \right. \\ \Rightarrow E\left[X_i\right] &= p(u) \quad \text{and} \quad Var[X_i] = p(u) - p(u) \\ \end{split}$$

$$Pr\left\{ \underbrace{\left|\frac{1}{n}\sum_{i+1}^{n}X_{i}-p(u)\right|}_{u^{n} \text{ fails the test for letter } u} \ge \epsilon p(u) \right\} \le \frac{Var(\frac{1}{n}\sum X_{i})}{(\epsilon p(u))^{2}} = \frac{(1-p(u))}{\epsilon^{2}p(u)}$$

2.

$$\begin{split} \Pr\left\{U^n \not\in T(n,\epsilon,p)\right\} &= \Pr\left\{\bigcup_{u \in U} \{u^n \text{ fails the test for u}\}\right\} \\ &\leq \sum_{u \in U} \Pr\left\{U^n \text{ fails the test for } u\right\} \\ &\leq \frac{1}{n} \sum_{u \in U} \frac{(1-p(u))}{p(u)\epsilon} \quad \text{which goes to 0 as } n \text{ gets large} \end{split}$$

3.

$$1 \ge Pr\left\{U^n \in T(n,\epsilon,p)\right\} = \sum_{u^n \in T(n,\epsilon,p)} Pr\left\{U^n = u^n\right\}$$
$$\ge \sum_{u^n \in T(n,\epsilon,p)} 2^{-n(1+\epsilon)H(u)}$$
$$= 2^{n(1+\epsilon)H(u)} |T(n,\epsilon,p)|$$

4.

$$\begin{split} 1-\epsilon & \leq \Pr\left\{U^n \in T(n,\epsilon,p)\right\} = \sum_{u^n \in T(n,\epsilon,p)} \Pr\left\{(\right\} U^n = u^n) \\ & \geq \sum_{u^n \in T(n,\epsilon,p)} 2^{nH(u)(1-\epsilon)} \\ & = 2^{nH(u)(1-\epsilon)} |T(n,\epsilon,p)| \end{split}$$

Definition 5.2 (Kullback-Leiber divergence (information gain)). If we compress data in a manner that assumes q(u) is the distribution underlying some data, when, in reality, p(u) is the correct distribution, the Kullback-Leiber divergence is the number of average additional bits per datum necessary for compression.

Lemma 5.3. if $U_1 \dots U_n$ are i.i.d. with distribution q and $u_1 \dots u_n$ is (ϵ, p) -tipycal, then

$$\begin{split} \Pr\left\{U^n = u^n\right\} &= \left[\prod_u q(u)^{p(u)}\right]^{n(1+\epsilon)} \\ &= 2^{-n(1\pm\epsilon)} \sum_u p(u) \log \frac{1}{q(u)} \end{split}$$

We know that $Pr\{U^n \in T(n,\epsilon,p)\} \to 1$ as $n \to \infty$ and

$$(1 - \epsilon)2^{nH(U)(1 - \epsilon)} < |T(n, \epsilon, p)| < 2^{nH(U)(1 + \epsilon)}$$

Observation 5.1. Suppose $U_1 \dots U_n$ are i.i.d. following q and $u^n \in T(n, \epsilon, p)$

$$\left[\prod_{u} q(u)^{p(u)}\right]^{n(1+\epsilon)} \le Pr\left\{U^n = u^n\right\} \le \left[\prod_{u} q(u)^{p(u)}\right]^{n(1-\epsilon)}$$

and

$$\prod_{u} q(u)^{p(u)} = 2^{-\sum p(u) \log \frac{1}{q(u)}}$$

$$\sum_{u} p(u) \log \frac{1}{q(u)} = \underbrace{\sum_{u} p(u) \log \frac{1}{p(u)}}_{H(p)} + \underbrace{\sum_{u} p(u) \log \frac{p(u)}{q(u)}}_{D(p||q)}$$

Observation 5.2.

$$D(p||q) = \sum_{u} p(u) \log \left(\frac{p(u)}{q(u)}\right) \ge 0$$
 with equality iff $p = q$

Wikipedia. The KullbackLeibler divergence (also called relative entropy) is a measure of how one probability distribution diverges from a second, expected probability distribution.

Corollary 5.3.1. if $U_1 \dots U_n$ are i.i.d. following distribution q, then

$$2^{-n[(1+\epsilon)D(p||q)+2\epsilon H(p)]} \leq Pr\left\{U^n \in T(n,\epsilon,p)\right\} \leq 2^{-n[(1-\epsilon)D(p||q)-2\epsilon H(p)]}$$

Proof.

$$Pr\left\{U^n \in T(n,\epsilon,p)\right\} = \sum_{u^n \in T(n,\epsilon,p)} Pr\left\{U^n = u^n\right\}$$

We have

$$2^{-n[H(p)+D(p||q)](1+\epsilon)} \le Pr\left\{U^n = u^n\right\} \le 2^{-n[H(p)+D(p||q)](1-\epsilon)}$$
$$2^{nH(p)(1-\epsilon)} \le |T(n,\epsilon,p)| \le 2^{nH(p)(1+\epsilon)}$$

Example 3. $U \in \{0,1\}, p = \frac{1}{2}, \frac{1}{2}, q = \frac{1}{2} - \delta, \frac{1}{2} + \delta$

$$D(p||q) = \frac{1}{2}\log\frac{1}{1-2\delta} + \frac{1}{2}\log\frac{1}{1+2\delta} = \frac{1}{2}\log\frac{1}{1-4\delta^2} = -\frac{1}{2}\log(1-4\delta^2) \approx \frac{1}{2}4\delta^2 + o(\delta^4)$$

So if we want $2^{-nD(p||q)}$ small $n = \Omega(1/\delta^2)$

Example 4. Suppose we are told that U is p distributed and p(u) are powers of 2. We design a prefix-free code \mathscr{C} to minimize $\sum_{u} p(u)l(\mathscr{C}(u))$. We have been misinformed and $U \sim q$, then:

$$E\left[l(\mathscr{C}(u))\right] = \sum_{u} q(u) \log \frac{1}{p(u)}$$

$$= \underbrace{H(q)}_{\text{length for optimal code}} + \underbrace{D(q||p)}_{\text{penalty for misbelief}}$$

5.1 Universal data compression

Suppose we know that the distribution p of U is either $p_1, p_2 \dots p_k$, can we design a code $\mathscr{C}: U \to \{0,1\}^*$

$$E[l(\mathscr{C}(U))] \leq H(U) + \text{small for every } p$$

$$E\left[\frac{1}{n}l(\mathscr{C}(U))\right] \le o(n) + E\left[h_2\left(\frac{K}{n}\right)\right]$$

with
$$K = \sum_{i=1}^{n} u_i$$

We have $\frac{E[K]}{n} = \theta_1$ and $E\left[h_2\left(\frac{K}{n}\right)\right] \le h_2\left(E\left[\frac{K}{n}\right]\right) = h_2(\theta)$

Design \mathscr{C} Because the probability of a bit string is only dependant of the number of 1s (or 0s), it makes sense to encode two strings with the same numbers of 1 with code words of same lengths. Given $u_1 \dots u_n \in \{0,1\}^n$, first count the number of 1, call it k.

$$\mathscr{C}(u_1 \dots u_n) = \underbrace{\operatorname{describe} k}_{\lceil \log(n+1) \rceil} \underbrace{\operatorname{describe} u_1 \dots u_n}_{\lceil \log \binom{n}{k} \rceil}$$

We now want to evaluate

$$\frac{1}{n}E\left[l(\mathscr{C}(U))\right]$$

when $U_1 \dots U_n$ are i.i.d with $p_1 = \theta$ and $p_0 = 1 - p_1$

Observation 5.3. for any $0 \le \alpha \le 1$

$$1 = 1^n = (\alpha + (1 - \alpha))^n = \sum_{i=0}^n \binom{n}{i} \alpha^i (1 - \alpha)^{n-i}$$
$$\geq \binom{n}{k} \alpha^k (1 - \alpha)^{n-k}$$

Then for all α

$$\binom{n}{k} \le \alpha^{-k} (1-\alpha)^{-(n-k)} = 2^{-n(\frac{k}{n}\log\frac{1}{\alpha} + (1-\frac{k}{n})\log\frac{1}{1-\alpha})}$$

We pick $\alpha = \frac{k}{n}$, and we get

$$\binom{n}{k} < 2^{nh_2\left(\frac{k}{n}\right)}$$

Using this bound we have

$$\frac{1}{n}l(\mathscr{C}(u_1 \dots u_n)) \le \frac{2}{n} + \frac{\log(n+1)}{n} + h_2\left(\frac{k}{n}\right)$$
$$E\left[\frac{1}{n}l(\mathscr{C}(U))\right] \le o(n) + E\left[h_2\left(\frac{k}{n}\right)\right]$$

Claim 5.1. Suppose U_i are i.i.d. with $Pr\{U_1 = 1\} = \theta$. We have $E\left[\frac{k}{n}\right] = \theta$ and $E\left[h_2\left(\frac{k}{n}\right)\right] \leq h_2(E\left[\frac{k}{n}\right]) = h_2(\theta)$. So

$$\lim_{n\to\infty} \frac{1}{n} E\left[l(\mathscr{C}(u_1 \dots u_n))\right] \le h_2(\theta)$$

consequently this scheme is asymptotically optimal.

Proof. To prove the claim we need to show that if $\beta_1 \dots \beta_k$ are in [0,1] and $q_1 \dots q_k$ are non negative numbers that sum to 1 then

$$\sum_{i=1}^{k} q_i h_2(\beta_i) \le h_2 \left(\sum_{i=1}^{k} q_i \beta_i \right)$$

Let U and V be random variables with $U \in \{0,1\}$ and $V \in \{1,\ldots,k\}$ with

$$Pr \{V = i\} = q_i$$

$$Pr \{U = 1 | V = i\} = \beta_i$$

$$Pr \{U = 0 | V = i\} = 1 - \beta_i$$

Then,

$$Pr \{U = 1\} = \sum_{i} q_{i}\beta_{i}$$

$$H(U) = h_{2} \left(\sum_{i} q_{i}\beta_{i}\right)$$

$$H(U|V) = \sum_{i} q_{i}h_{2}(\beta_{i})$$

And we already know that $H(U) \geq H(U|V)$

TODO: THOMAS SCRIBE ICI

Suppose we have an infinite string $u_1u_2..., u_i \in \mathcal{U}$, and

$$u_1u_2... = v_1v_2...$$
 with $v_i \in \mathcal{U}^*, v_i \neq v_j$ when $i \neq j$

for any k we have

$$\lim_{m \to \infty} \frac{length(v_1...v_m)}{m} \geq k \Rightarrow \lim_{m \to \infty} \frac{length(v_1...v_m)}{m} = \infty$$

Definition 5.3. Given an infinite string $u_1u_2...$ and a machine M, let

$$\rho_M(u_1u_2...) = \overline{\lim_{n \to \infty}} \frac{length \ of \ the \ output \ M \ after \ reading \ u_1u_2...}{n}$$

also given s > 0, define

• The compressibility of U^* be s-state machines

$$\rho_s(u_1 u_2 ...) = \min_{M} \rho_M(u_1 u_2 ...)$$

with M an s'-state machine with $s' \leq s$

ullet Compressibility of \mathcal{U}^* by finite state machines

$$\rho_{FSM}(u_1 u_2 ...) = \lim_{s \to \infty} \rho_s(u_1 u_2 ...)$$

Definition 5.4. Suppose $u_1u_2...$ an infinite sequence, define m(n) as the largest m for which $u_1...u_n = v_1...v_m$ with distinct $v_1...v_m$

Example 5.

$$u = aaaaaaaaa, \quad \underbrace{\emptyset}_{v_1} \underbrace{a}_{v_2} \underbrace{aa}_{v_3} \underbrace{aaa}_{v_4} \underbrace{aaaa}_{v_5} \quad \Rightarrow m(10) = 5$$

So far we know that

$$\frac{\text{ length of the output of any s-state IL machine when it reads } u_1u_2...}{n} \geq \frac{m(n)\log(\frac{m(n)}{8s^2})}{n}$$

with

$$\frac{m(n)\log(\frac{m(n)}{8s^2})}{n} = \frac{m(n)\log(m(n))}{n} - \frac{m(n)\log(8s^2)}{length(v_1...v_m)}$$

hence if M is a s-state machine

$$\rho_M(u_1u_2...) \geq \overline{\lim_{n \to \infty}} \frac{m(n)\log(m(n))}{n} \quad \text{ then } \quad \rho_{FSM}(u_1u_2...) \geq \overline{\lim_{n \to \infty}} \frac{m(n)\log m(n)}{n}$$

6 Lemple-Ziv data compression method

Given some alphabet \mathcal{U} to both encoder and decoder, they also agree an order on \mathcal{U} :

- 1. Start with a dictionary $\mathcal{D} = \mathcal{U}$
- 2. To each word $w \in \mathcal{D}$, assign a $\lceil \log |\mathcal{D}| \rceil$ -bit binary description in the dictionary order
- 3. Parse the first word w in $u_1u_2...$ in the dictionary, output its binary description
- 4. replace w in \mathcal{D} by $\{wu, \forall u \in \mathcal{U}\}$.
- 5. Go to 2.

Example 6. Define an alphabet $\mathcal{U} = \{a, b, c\}$ with $a \leq b \leq c$ and an input message

$$u = abacac$$

- Create the dictionary $\mathcal{D} = \{a, b, c\}$ and its corresponding binary description $\mathcal{D}_{bin} = \{00, 01, 10\}$
- The first word in the message is 'a', output its binary description

$$output = 01$$

• Update the dictionary:

$$\mathcal{D} = \{a, ba, bb, bc, c\}$$
 $\mathcal{D}_{bin} = \{000, 001, 010, 011, 100\}$

 \bullet Parse the next word 'ba' and output its binary description

$$output=01001$$

• Update the dictionary

$$\mathcal{D} = \{a, baa, bab, bac, bb, bc, c\}$$
 $\mathcal{D}_{bin} = \{000, 001, ...\}$

• Continue until the end of the input data...

The decoder can proceed in a similar way to iteritavely update the dictionary while decoding the message.

6.1 Analysis of LZ

Observe that LZ parses the string $u_1u_2...$ into $v_1v_2...$ with $v_i \in \mathcal{U}^*$ or $v_i \in \mathcal{D}_i$ where \mathcal{D}_i is the dictionary at step i.

When going from iteration $i \to i+1$, v_i is removed from \mathcal{D} , consequently v_1, v_2, v_3 are distinct.

The length of the output of LZ after reading $u_1...u_m$ is given by

LZ output's length =
$$\lceil \log |\mathcal{U}| \rceil + \lceil \log(2|\mathcal{U}|-1) \rceil + \lceil \log(3|\mathcal{U}|-2) \rceil + \dots + \lceil \log(m|\mathcal{U}|-m+1) \rceil$$

we observe that

LZ output's length
$$< m(\log(m|\mathcal{U}|) + 1) = m\log(2m|\mathcal{U}|)$$

Also we have

bits / letter
$$< \frac{m \log(2m|\mathcal{U}|)}{length(u_1...u_m)}$$

$$= \frac{m \log(m)}{length(u_1...u_m)} + \frac{m \log(2|\mathcal{U}|)}{length(u_1...u_m)}$$

therefore

$$\rho_{LZ}(u_1u_2...) = \lim_{m \to \infty} \frac{\text{\# bits}}{\text{letter}} \leq \lim_{m \to \infty} \frac{m \log(m)}{lenqth(u_1...u_m)} \leq \lim_{n \to \infty} \frac{m(n) \log(m(n))}{n} \leq \rho_{FSM}(u_1u_2...)$$

So we have proved the following theorem:

Theorem 6.1. for every $u_1u_2...$

$$\rho_{LZ}(u_1u_2...) \le \rho_{FSM}(u_1u_2...)$$

Corollary 6.1.1. if $u_1u_2...$ is stationary

$$\rho_{LZ}(u_1u_2...) = entropy rate of u_1u_2...$$

7 Transmission of data

Interesting in the case of unreliable transmission media.

Definition 7.1 (Communication channel). A communication channel W is a device with an input alphavet \mathcal{X} and an output alphabet \mathcal{Y} . Its behavior is described by

$$W_i(y_i|x^i, y^{i-1}) = Pr\{Y_i = y_i|X^i = x^i, Y^{i-1} = y^{i-1}\}$$

Definition 7.2 (Memoryless channel). a channel W is said to be memoryless if

$$W_i(y_i|x^i, y^{i-1}) = W(y_i|x_i)$$

Definition 7.3 (Stationary channel). a channel W is said to be stationary if

$$W_i(y|x) = W(y|x)$$

Example 7 (Binary erasure channel - BEC). $\mathcal{X} = \{0,1\}$ and $\mathcal{Y} = \{0,1,?\}$, then

$$W(0|0) = 1 - p$$
$$W(?|0) = p$$

$$W(1|0) = 0$$

and same for $x_i = 1$.

Example 8 (Binary symetric channel - BSC).

$$W(0|0) = 1 - p = W(1|1)$$

$$W(1|0) = p = W(0|1)$$

The input $X_1, X_2 \dots X_n$ to a channel might have memory

$$Pr\{X^n = x^n\} = p(x_1)p(x_2|x_1)\dots p(x_i|x^{i-1})\dots p(x_n|x^{n-1})$$

$$Pr \{X^{n} = x^{n}, Y^{n} = y^{n}\} = p(x_{1})W_{1}(y_{1}|x_{1})p(x_{2}|x_{1}, y_{1})W(y_{2}|x_{1}, x_{2}, y_{1}) \dots$$

$$= \prod_{i} p(x_{i}|\underbrace{x^{i-1}}_{\text{feedback memory}})W_{i}(y_{i}|x^{i}y^{i-1})$$

Lemma 7.1. if there is no feedback and the channel is memoryless and stationary, then

$$Pr\{Y^n = y^n | X^n = x^n\} = \prod_{i=1}^n W(y_i | x_i)$$

Proof.

$$Pr \{Y^n = y^n, X^n = x^n\} = \prod_{i=1}^n p(x_i|x^{i-1}y^{i-1})W_i(y_i|x^iy^{i-1})$$

$$= \prod_{i=1}^n p(x_i|x^{i-1})W(y_i|x_i)$$

$$= \prod_{i=1}^n W(y_i|x_i)Pr \{X^n = x^n\}$$

Example 9. Suppose W is BSC(1/2) but we have feedback, defined by $X_1 = 0$ and $X_i = Y_{i-1}$.

$$Pr\left\{Y^2 = 00|X^2 = 01\right\} = 0$$
$$W(0|0)W(0|1) = \frac{1}{4}$$

Lemma 7.2. if W is stationary memoryless and there is no feedback, then

$$H(Y^n|X^n) = \sum_{i=1}^n H(Y_i|X_i)$$

Proof.

$$H(Y^{n}|X^{n}) = E\left[\log\frac{1}{Pr\left\{Y^{n}|X^{n}\right\}}\right] = E\left[\log\prod_{i=1}^{n}\frac{1}{Pr\left\{Y_{i}|X_{i}\right\}}\right] = \sum_{i=1}^{n}E\left[\log\frac{1}{Pr\left\{Y_{i}|X_{i}\right\}}\right] = \sum_{i=1}^{n}H(Y_{i}|X_{i})$$

For a memoryless stationary channel W(Y|X) we can compute, for any distribition p(x), p(x,y) = p(x)W(y|x) and I(X;Y), we can also compute

$$C(W) = \max_{p(x)} I(X;Y)$$

TODO: is c a typo in the formula below? should it be n?

Lemma 7.3. for a stationary memoryless W without feedback, we have

$$I(X^n; Y^n) \le cC(W)$$

Proof.

$$I(X^n; Y^n) = H(Y^n) - H(Y^n|X^n)$$

$$= H(Y^n) - \sum_i H(Y_i|X_i)$$

$$\leq \sum_i H(Y_i) - \sum_i H(Y_i|X_i)$$

$$= \sum_i I(X_i; Y_i)$$

Note that the joint distribution $Pr\{X_i, Y_i\}$ is of the form p(x)W(y|x), then $I(X_i; Y_i) \leq C(W)$

Notation 2. for simplicity

$$p * q = (1 - q)p + q(1 - p)$$

Example 10. Let *W* be a BSC(*p*), $Pr\{X = 0\} = 1 - q \text{ and } Pr\{X = 1\} = q$. Then

$$Pr \{Y = 0\} = (1 - q)(1 - p) + qp$$
$$Pr \{Y = 1\} = (1 - q)p + q(1 - p)$$

$$H(Y|X = 0) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$$

$$H(Y|X = 1) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$$

$$H(Y|X) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$$

$$I(X;Y) = H(Y) - H(Y|X)$$

$$= (p*q)\log\frac{1}{p*q} + (1 - (p*q))\log\frac{1}{1 - (p*q)} - \left[p\log\frac{1}{p} + (1-p)\log\frac{1}{1-p}\right]$$

We maximize I(X;Y) for q=1/2

$$C(W) = \log 2 - h_2(p)$$

Example 11. Let W be $\mathrm{BEC}(p)$ and $\Pr\left\{X=1\right\}=q$

$$H(X) = h_2(q)$$

 $H(X|Y = 0) = 0$
 $H(X|Y = 1) = 0$
 $H(X|Y = ?) = h_2(q)$

$$I(X;Y) = h_2(q) - ph_2(q) = (1-p)h_2(q)$$

 $C(W) = (1-p)\log 2$

7.1 Fano's inequality

Suppose U and V take values in the same alphabet \mathcal{U} , then

$$H(U|V) \le p_e \log(|\mathcal{U}| - 1) + h_2(p_e)$$

with

$$p_e = Pr\{U \neq V\}$$
 and $h_2(p) = p\log(\frac{1}{p}) + (1-p)\log(\frac{1}{(1-p)})$

Proof. Define

$$Z = \begin{cases} 1 & U \neq V \\ 0 & U = V \end{cases}, \quad H(Z) = h_2(p_e)$$

$$H(UZ|V) = H(U|V) + H(Z|UV)$$
$$= H(Z|V) + H(U|VZ)$$
$$\leq H(Z) + H(U|VZ)$$

but

$$H(U|VZ) = \underbrace{H(U|V,Z=0)}_{0} \Pr\left\{Z=0\right\} + \underbrace{H(U|V,Z=1)}_{\leq \log(|\mathcal{U}|-1)} \underbrace{\Pr\left\{Z=1\right\}}_{p_{e}}$$

So if
$$H(U|V) > \lambda \Rightarrow \exists f(\lambda) > 0, p_e > f(\lambda)$$

Corollary 7.3.1. Suppose U^L , V^L are random sequences with common alphabet \mathcal{U} , define :

$$p_{e,i} = Pr\{U_i \neq V_i\}, \quad \bar{p_e} = \frac{1}{L} \sum_{i=1}^{L} p_{e,i}$$

then

$$\frac{1}{L}H(U^L|V^L) \le h_2(\bar{p_e}) + \bar{p_e}\log(|\mathcal{U}| - 1)$$

Proof.

$$\frac{1}{L}H(U^{L}|V^{L}) = \frac{1}{L}\sum_{i=1}^{L}H(U_{i}|U^{i-1}V^{L})$$

$$\leq \frac{1}{L}\sum_{i=1}^{L}H(U_{i}|V_{i})$$

$$\leq \frac{1}{L}\sum_{i=1}^{L}(p_{e,i}\log(|\mathcal{U}|-1) + h_{2}(p_{e,i}))$$

$$= \bar{p}_{e}\log(|\mathcal{U}|-1) + \frac{1}{L}\sum_{i=1}^{L}h_{2}(p_{e,i})$$

$$\leq \bar{p}_{e}\log(|\mathcal{U}|-1) + h_{2}(\frac{1}{L}\sum_{i=1}^{L}p_{e,i})$$

$$= \bar{p}_{e}\log(|\mathcal{U}|-1) + h_{2}(\bar{p}_{e})$$

Theorem 7.4. "Bad news" theorem, converse to the coding theorem

- ullet Suppose we have a stationary source $U_1U_2...$ with entropy rate H and produces a letter every au_s seconds.
- Suppose also that we have a channel W that accepts input $X_1X_2...$ once every τ_c seconds.
- Suppose also

$$\frac{H}{\tau_s} > \frac{C(W)}{\tau_c}$$

then there is a $\lambda > 0$ such that $\bar{p_e} > \lambda$

Definition 7.4. stable suppose the encoder works by taking blocks of L letters

$$(U_1...U_L)(U_{L+1}...U_{2L})...$$

and outputs

$$(X_1...X_n)(X_{n+1}...U_{2n})...$$

then the encoder is stable if

$$L\tau_s \ge n\tau_c$$

Proof. Recall that for a stationary source $\frac{H(U_1...U_L)}{L}$ tends to H so

$$H(U_1...U_L) \ge LH$$

We also have

$$I(U^2; V^2) \le nC(W)$$

therefore, since $\frac{n}{L} \leq \frac{\tau_s}{\tau_c}$

$$\begin{split} H(U^2|V^2) &= \frac{1}{L}(H(U^2) - I(U^2;V^2)) \ge H - \frac{n}{L}C(W) \\ &\ge H - \frac{\tau_s}{\tau_c}C(W) \\ &= \tau_s(\frac{H}{\tau_s} - \frac{C(W)}{\tau_c}) \end{split}$$

The right hand side is

$$\epsilon(\tau_c, \tau_s, H, C) > 0$$

so for every stable encoder, decoder, we have

$$\bar{p_e}\log(|\mathcal{U}|-1) + h_2(\bar{p_e}) > \epsilon(\tau_s, \tau_c, H, C)$$

then

$$\bar{p_e} \ge \epsilon(\tau_s, \tau_c, H, C, |\mathcal{U}|)$$

Example 12. Suppose $\mathcal{U} = \{0,1\}$ and $U_1U_2...$ is a Markov process with

$$U_1 = \begin{cases} 0 & \text{with } p = 0.5 \\ 1 & \text{with } p = 0.5 \end{cases}, \quad p(U_{n+1}|U_n) = \begin{cases} 1-p & u_{n+1} = u_n \\ p & u_{n+1} \neq u_n \end{cases},$$

$$H = \lim_{n \to \infty} H(U_n | U^{n-1})$$

$$= \lim_{n \to \infty} H(U_n | U_{n_1})$$

$$= H(U_2 | U_1) = h_2(p)$$

suppose $w = BEC(q), c(w) = (1-q)\log(2)$ and $\tau_s = \tau_c = 1$

$$h_2(\bar{p_e}) \ge h_2(p) - (1-q)\log(2) \Rightarrow \bar{p_e} \ge \lambda$$

What we want to do next is to show a matching "Good news" theorem:

We could show that if $\frac{H}{\tau_s} \leq \frac{c(w)}{\tau_c}$ then for any $\lambda > 0$, we can find a stable encoder and decoder such that $p_e < \lambda$. Instead, we will show stronger results:

- 1. **Separation theorem** The encoder can be designed in a modular way:
 - A **source encoder** which encoder message words in bits. The design of this encoder is strongly dependent of the type of the input.
 - A channel encoder which encoder the bits to maximize the performance with a specific channel.

2. We will show that

$$Pr\left\{U^L \neq V^L\right\} < \lambda$$

using the fact that

$$(U_i \neq V_i) \Rightarrow (U^L \neq V^L)$$
 so $p_{e,i} \leq Pr\{U^L \neq V^L\} \Rightarrow \bar{p_e} \leq Pr\{U^L \neq V^L\}$

We will now show that good channel encoders and channel decoders exist

Definition 7.5. Given a channel W with input alphabet \mathcal{X} , a block encoder is a function

$$Enc: \{1, ..., M\} \to \mathcal{X}^n$$

with n the block length.

Enc(1),...,Enc(M) are each called codewords and M is equal to the number of codewords. The rate of the code can be defined by

 $R = \frac{\log M}{n}$

Definition 7.6. Given a channel W with outure alphabet Y, a block decoder is a function

$$Dec: \mathcal{Y}^n \to \{?, 1, ..., M\}$$

Definition 7.7.

$$p_{error}(m) = Pr\{\hat{m} \neq m|m\}$$

$$\bar{p}_{error}(m) = \frac{1}{M} \sum_{m=1}^{M} p_{error}(m)$$

$$\hat{p}_{error}(m) = \max_{m} p_{error}(m)$$

Appendices

A Markov chains

 $U_1 - U_2 - \cdots - U_n$ forms a Markov chain if the joint probability distribution of the RVs is

$$p(a, b, c, d) = p(a)p(b|a)p(c|b)p(d|c)$$

which is equivalent to (U_1, \ldots, U_{k-1}) are independent of (U_{k+1}, \ldots, U_n) when conditionned on U_k for any k.

Theorem A.1. The reverse of a MC is a MC

B Stochastic processes

A stochastic process is a collection $U_1, U_2 \dots U_n$ of RVs each taking values in \mathcal{U} . It is described by its joint probability

$$p(u^n) = P(U_1 \dots U_n = u_1 \dots u_n) = P(U^n = u^n)$$

Definition B.1 (Stationary stochastic process). A process U_1, U_2, \ldots is called stationary if for every n and k and $u_1 \ldots u_n$, we have

$$p(u^n) = p(U_1 \dots U_n = u_1 \dots u_n) = p(U_{1+k} \dots U_{n+k} = u_1 \dots u_n)$$

In other words, the process is time shift invariant.