Program

Dostępna pamięć: 32 MB. OI, Etap III, dzień pierwszy, 06.04.2011

Okresowość

Bajtazar, król Bitocji, zarządził reformę nazwisk swoich poddanych. Nazwiska mieszkańców Bitocji często zawierają powtarzające się frazy, np. w nazwisku Abiabuabiab dwukrotnie występuje fragment abiab. Bajtazar chce zamienić nazwiska swoich poddanych na ciągi bitów takiej samej długości jak ich oryginalne nazwiska. Chciałby przy tym w jakimś stopniu zachować sposób, w jaki w oryginalnych nazwiskach powtarzają się te same frazy.

W dalszej części zadania, dla prostoty, będziemy utożsamiać wielkie i małe litery w nazwiskach. Dla dowolnego ciągu znaków (liter lub bitów) w = $w_1w_1 \dots w_k$ powiemy, że liczba naturalna p (1 \leq p < k) jest okresem w, jeżeli $w_i = w_{i+p}$ dla wszystkich $i=1,\dots,k-p$. Przez Okr(w) będziemy oznaczać zbiór wszystkich okresów w. Na przykład, $Okr({\tt ABIABUABIAB}) = \{6,9\}$, $Okr({\tt O1001010010}) = \{5,8,10\}$ oraz $Okr({\tt O000}) = \{1,2,3\}$. Bajtazar zdecydował, że każde nazwisko ma zostać zamienione na ciąg bitów:

- tej samej długości co oryginalne nazwisko,
- o dokładnie takim samym zbiorze okresów co oryginalne nazwisko,
- ma to być najmniejszy (w porządku leksykograficznym¹) ciąg bitów spełniający powyższe warunki.

 $Na\ przykład,\ nazwisko$ ABIABUABIAB $powinno\ zostać\ zamienione\ na$ 01001101001, BABBAB na 010010, a BABURBAB na 01000010.

Bajtazar poprosił Cię o napisanie programu, który pomógłby w tłumaczeniu dotychczasowych nazwisk jego poddanych na nowe. W nagrodę będziesz mógł zachować swoje oryginalne nazwisko!

Wejście

W pierwszym wejściu standardowego wejścia znajduje się jedna liczba całkowita k — liczba nazwisk do przetworzenia ($1 \le k \le 20$). Nazwiska są podane w kolejnych wierszach, po jednym w wierszu. Każde z nazwisk składa się z od 1 do 200 000 wielkich liter (alfabetu angielskiego). W testach wartych łącznie 30% punktów każde nazwisko składa się z co najwyżej 20 liter.

Wyjście

Twój program powinien wypisać na standardowe wyjście k wierszy. W kolejnych wierszach powinny znajdować się ciągi zer i jedynek (niezawierające odstępów) odpowiadające kolejnym nazwiskom z wejścia. W przypadku, gdy dla danego nazwiska nie istnieje ciąg bitów zgodny z warunkami zadania, należy dla tego nazwiska wypisać "XXX" (bez cudzysłowów).

 $^{^1}$ Ciąg bitów $x_1x_2\dots x_k$ jest mniejszy w porządku leksykograficznym od ciągu bitów $y_1y_2\dots y_k,$ jeżeli dla pewnego $i,\ 1\leqslant i\leqslant k,$ mamy $x_i< y_i$ oraz dla wszystkich $j=1,\dots,i-1$ mamy $x_j=y_j.$

Przykład

Dla danych wejściowych: poprawnym wynikiem jest:

3 01001101001 ABIABUABIAB 010010 BABBAB 01000010

BABURBAB

Rozwiązanie

Informacją wejściową jest słowo w długości n, pierwszym krokiem jest obliczenie zbioru okresów Okr(w) tego słowa, po czym właściwie zapominamy o słowie w. Zbiór ten można łatwo obliczyć, korzystając z algorytmu na wyznaczanie tablicy tzw. prefikso-sufiksów związanej z algorytmem Knutha-Morrisa-Pratta (szukania wzorca). Tablica ta wielokrotnie pojawiała się w zadaniach z Olimpiady Informatycznej, patrz także opracowania zadań Szablon z XII Olimpiady i Palindromy z XIII Olimpiady. W drugim z podanych opisów jest uzasadniona własność, że słowo w ma okres p wtedy i tylko wtedy, kiedy ma prefikso-sufiks długości n-p, tzn. prefiks słowa długości n-p jest również sufiksem słowa. Zakładamy zatem odtąd, że znamy zbiór okresów słowa wejściowego. Inaczej niż w treści zadania przyjmiemy, że $n \in Okr(w)$.

Zbiory okresów mają wiele ciekawych własności, w szczególności zachodzi następująca implikacja (nwd oznacza tutaj najmniejszy wspólny dzielnik).

Lemat 1 (o okresowości).
$$p, q \in Okr(w)$$
 oraz $p + q \leq n \implies nwd(p, q) \in Okr(w)$.

Lemat ten wystąpił już poprzednio w rozwiązaniach zadań olimpijskich, np. w drugim z wyżej wymienionych.

Tekst u nazywamy **pierwotnym** albo nierozkładalnym, gdy u nie ma okresu będącego jego właściwym dzielnikiem (mniejszym od długości u), zapisujemy to jako funkcję logiczną Pierwotny(u). Na przykład Pierwotny(1010) = **false**, Pierwotny(1011) = **true**. Pozostawiamy Czytelnikowi jako proste ćwiczenie wyprowadzenie z lematu o okresowości następującego faktu.

Lemat 2 (o słowach pierwotnych). Jeśli słowo nie jest pierwotne, to zmiana pojedynczego symbolu na dowolnej pozycji zamienia to słowo na pierwotne.

Zamiast przetwarzać okresy, wygodniej robić to dla niepustych prefikso-sufiksów tekstu. Zakładamy, że cały tekst też jest swoim prefikso-sufiksem.

Oznaczmy ciąg długości kolejnych prefikso-sufiksów słowa w, posortowany rosnąco, przez $PS(w) = (p_1, p_2, \dots, p_k)$, w szczególności $p_k = n$. Ciąg PS(w) łatwo obliczyć, znając zbiór okresów, zachodzi bowiem: $Okr(w) = Okr(v) \Leftrightarrow PS(w) = PS(v)$.

Przykład 1.
$$Okr(w) = \{10, 20, 25, 27\} \implies PS(w) = (2, 7, 17, 27).$$

Oznaczmy leksykograficznie minimalne słowo, którego ciągiem długości prefiksosufiksów jest (p_1, p_2, \dots, p_i) , przez:

$$P_i = MinLex(p_1, p_2, \dots, p_i).$$

Słowo to jest prefikso-sufiksem wyniku długości p_i .

Opis algorytmu

Zasadnicza koncepcja algorytmu jest naturalna: ze względu na leksykograficzną minimalność narzuca się dopychanie tekstu jak największą liczbą zer. Takie podejście łatwo wymyślić na intuicję i zastosować, pomimo tego, że poprawność nie jest oczywista.

Algorytm opiera się na zachłannym leksykograficznie wpisywaniu fragmentów postaci 0^j lub $0^{j-1}1$ w te fragmenty tekstu, które nie są jednoznacznie wyznaczone przez prefikso-sufiksy w następującym sensie: każdy P_{i+1} musi zaczynać się od słowa P_i i kończyć się słowem P_i .

Początkowo mamy tekst długości n, którego wszystkie pola są "puste". Wypełniamy kolejne puste pola od końca, wpisując prefikso-sufiksy, poczynając od najkrót-szego z nich, tzn. P_1 .

Dla $PS = (p_1, p_2, \dots, p_k)$, słowo P_{i+1} konstruujemy, startując od P_i i dopisując na początku P_i lub jego prefiks, jeśli jest za mało miejsca na całe P_i , patrz rysunek 1. Niezapełnione pola tekstu zastępujemy leksykograficznie pierwszym ciągiem bitów Δ , który nie wygeneruje nadmiarowego prefikso-sufiksu.

Obserwacja 1. Najdziwniejszą własnością algorytmu jest to, że wystarczy zawsze sprawdzić tylko dwie możliwości na brakujący fragment: $\Delta \in \{0^j, 0^{j-1}1\}$ dla $j = p_{i+1} - 2p_i$.

Dzięki tej obserwacji możliwy jest algorytm działający w czasie liniowym. Podstawowym elementem algorytmu jest sprawdzenie, którą z opcji na Δ wybrać. Można to zrealizować na wiele sposobów, w naszej wersji korzystamy z funkcji Pierwotny, inną możliwością jest sprawdzenie dla każdej alternatywy wprost, czy nie generuje się nadmiarowy prefikso-sufiks.

Rys. 1: Konstrukcja kolejnego prefikso-sufiksu w sytuacji, gdy $2p_i < p_{i+1}$. Końcową częścią tekstu jest P_i , zapełniamy P_{i+1} , z definicji prefikso-sufiksu prefiks P_{i+1} długości p_i jest równy P_i , wolne pola (fragment aktywny) zapełniamy jak największą liczbą zer, w miejsce '?' wstawiamy 0 lub 1.

Przykład 2. Opiszemy, w jaki sposób konstruujemy minimalne leksykograficznie słowo MinLex(PS(w)) dla naszego przykładowego ciągu prefikso-sufiksów PS(w) = (2, 7, 17, 27):

Krok 1. Konstruujemy MinLex(2) = 01.

- Krok 2. Wiemy, że MinLex(2,7) = 01???01. Próbujemy wstawić minimalny leksykograficznie ciąg 000, zastępując znaki '?'. Otrzymujemy MinLex(2,7) = 0100001, tekst ten jest zgodny z ciągiem prefikso-sufiksów 2,7.
- Krok 3. MinLex(2,7,17) = MinLex(2,7)???MinLex(2,7). Jeśli zastąpimy znaki '?' przez 000, to otrzymany tekst 01000 01000 01000 01 ma nadmiarowy prefiksosufiks długości 12. Zatem próbujemy zastąpić '???' przez następny w kolejności minimalnej ciąg 001. Tym razem otrzymany tekst jest zgodny z ciągiem prefiksosufiksów 2,7,17. Zatem MinLex(2,7,17) = 01000010010100001.
- **Krok 4.** Ponieważ 27 17 < 17, więc wiemy, że wynikiem jest tekst, którego prefiksem i sufiksem jest $MinLex(p_1, \ldots, p_{i+1})$. Zatem końcowym wynikiem jest:

```
MinLex(2,7,17,27) = 0100001001 \ MinLex(2,7,17)
= 0100001001 01000010010100001.
```

Podaną metodę ilustruje poniższy pseudokod.

```
1: function MinLex(p_1, p_2, \dots, p_k)
 2: begin
      if p_1 = 1 then P_1 := 0 else P_1 := 0^{p_1 - 1}1;
 3:
      for i := 1 to k-1 do begin
         j := p_{i+1} - 2p_i;
 5:
         if j \leq 0 then P_{i+1} := vP_i { v jest prefiksem P_i długości p_{i+1} - p_i }
 6:
         else if Pierwotny(P_i \ 0^j) then P_{i+1} := P_i \ 0^j \ P_i
 7:
         else P_{i+1} := P_i \ 0^{j-1} 1 \ P_i;
 8:
9:
      return P_k;
10:
11: end
```

Poprawność algorytmu

Chcemy pokazać indukcyjnie (po i), że zbiorem prefikso-sufiksów skonstruowanego przez nas słowa P_i jest właśnie $\{p_1, p_2, \ldots, p_i\}$. Zauważmy, że w kroku indukcyjnym dla P_{i+1} wystarczy pokazać, że to słowo ma prefikso-sufiks długości p_i oraz że nie ma dłuższych nietrywialnych prefikso-sufiksów.

Na początku rozważmy przypadek j>0. Załóżmy, że wówczas P_i zawiera co najmniej jedną jedynkę — w przeciwnym przypadku $P_i=0^{p_i}$ i nie ma czego dowodzić. Poprawność algorytmu wynika z dwóch następujących faktów.

Fakt 1. Niech j > 0 oraz P będzie dowolnym binarnym tekstem zawierającym co najmniej jedną jedynkę. Słowo u = P $0^j P$ ma (nadmiarowy) prefikso-sufiks o długości q, |P| < q < |u|, wtedy i tylko wtedy, gdy P 0^j nie jest pierwotny.

Dowód: Przypuśćmy, że słowo u ma nadmiarowy prefikso-sufiks P' długości q. Ten prefikso-sufiks nie może się zacząć wewnątrz aktywnego fragmentu 0^j , bo P zawiera

jedynkę. Faktycznie, wówczas mielibyśmy $P' = P \ 0^i = 0^i P$ dla i = q - |P|, czyli P' miałoby okres długości i złożony z samych zer.

Z drugiej strony, jeśli P' zaczyna się w prefiksie P słowa u, to, na mocy lematu o okresowości, słowo u ma (mały) okres, który jest krótszy od P 0^j i jest dzielnikiem długości tego słowa. Wynika to stąd, że tekst u miałby okresy o długościach |P $0^j|$ oraz $|u|-q\leqslant |P|$. Długość tekstu u jest nie mniejsza od sumy tych okresów i można wtedy zastosować lemat o okresowości.

Zatem jeśli $P0^j P$ ma nadmiarowy prefikso-sufiks, to $P0^j$ nie jest pierwotne. Łatwo widać implikację odwrotną, wtedy u ma nadmiarowy prefikso-sufiks o długości |u| - p, gdzie p jest (małym) pełnym okresem $P0^j$. To kończy uzasadnienie faktu.

Fakt 2. Jeśli $P 0^j$ nie jest pierwotny, to $P 0^{j-1} 1$ jest pierwotny.

Dowód: Wynika to z lematu o tekstach pierwotnych.

Aby zakończyć uzasadnienie w tym przypadku, wystarczy zauważyć, że fakt 1 zachodzi także dla słów postaci $u' = P \ 0^{j-1} 1 \ P$.

Teraz pozostał nam do rozpatrzenia przypadek, że $j \leq 0$. W tym celu wystarczy wykazać następujący fakt, implikujący krok indukcyjny w tym przypadku. W jego dowodzie wykorzystujemy to, że wyjściowy zbiór prefikso-sufiksów $\{p_1, p_2, \ldots, p_k\}$ odpowiada jakiemuś istniejącemu słowu, tj. początkowemu słowu w.

Fakt 3. Zalóżmy, że słowo P_i ma zbiór prefikso-sufiksów $\{p_1, p_2, \ldots, p_i\}$. Jeśli $p_{i+1} - 2p_i \leq 0$, to słowo $P_{i+1} = vP_i$ ma prefiks P_i oraz nie ma nadmiarowych prefikso-sufiksów długości $q, p_i < q < p_{i+1}$.

Dowód: Najpierw pokażemy pierwszą część tezy, czyli że P_{i+1} ma prefikso-sufiks P_i . Niech w_i i w_{i+1} oznaczają sufiksy słowa w długości, odpowiednio, p_i i p_{i+1} . Wystarczy przeprowadzić następujące rozumowanie. Jeśli chcemy pokazać, że P_{i+1} ma prefikso-sufiks P_i , czyli równoważnie, że P_{i+1} ma okres $p_{i+1} - p_i$, to wystarczy uzasadnić, że P_i ma taki właśnie okres, gdyż P_{i+1} zaczyna się prefiksem słowa P_i długości $p_{i+1} - p_i$. Na mocy założenia faktu, słowo P_i ma dokładnie taki sam zbiór okresów jak w_i , więc wystarczy pokazać, że w_i ma okres $p_{i+1} - p_i$. Tak jednak jest, gdyż w_i jest prefikso-sufiksem słowa w_{i+1} , które całe ma, w związku z tym, okres $p_{i+1} - p_i$. Rozumowanie zakończone sukcesem.

Musimy jeszcze pokazać, że P_{i+1} nie może mieć nadmiarowego prefikso-sufiksu o długości $q, q > p_i$. Wówczas P_{i+1} miałoby okresy $p_{i+1} - q$ oraz $p_{i+1} - p_i$, więc na mocy lematu o okresowości (ponieważ $j \leq 0$) P_{i+1} miałoby okres d będący dzielnikiem tych dwóch wartości. Stąd, stosując rozumowanie takie jak w pierwszej części dowodu, pokazujemy, że d byłoby także okresem słowa u_{i+1} , a więc także $p_{i+1} - q$ byłoby okresem tego słowa, czyli q byłoby jego prefikso-sufiksem, co daje sprzeczność.

Złożoność algorytmu

Podstawowym problemem jest sprawdzenie, czy tekst P_i 0^j jest pierwotny. W miarę konstruowania coraz dłuższych prefikso-sufiksów, a więc jednocześnie prefiksów całego tekstu wynikowego, budujemy on-line tablicę wszystkich najdłuższych prefikso-sufiksów z algorytmu Knutha-Morrisa-Pratta. Dzięki tej tablicy znamy najkrótszy

170 Okresowość

okres i możemy sprawdzić, czy dany prefiks jest pierwotny — za pomocą lematu o okresowości można pokazać, że słowo jest pierwotne wtedy i tylko wtedy, gdy jego najkrótszy okres jest nim samym lub nie dzieli jego długości (patrz także wspomniane już opracowanie zadania *Palindromy* w książce [13]).

Jeśli obliczyliśmy już tablicę prefikso-sufiksów dla P_i 0^{j-1} , to sprawdzenie, czy P_i 0^j jest niepierwotne, wykonujemy w czasie stałym: można pokazać, że jeśli P_i 0^j jest niepierwotne, to najdłuższy prefikso-sufiks słowa P_i 0^{j-1} przedłuża się do prefikso-sufiksu słowa P_i 0^j . Jeśli odpowiedź jest pozytywna, to obliczamy prefikso-sufiks online dla P_i 0^{j-1} 1, a jeśli negatywna, to dla P_i 0^{j-1} 0. Inaczej mówiąc, koszt "cofania się" jest za każdym razem O(1), w sumie liniowy. Pozostaje "na czysto" koszt liczenia on-line tablicy prefikso-sufiksów dla całego słowa, jest on liniowy.

Testy

Każdy test składał się z 20 przypadków testowych. W poniższej tabeli n to maksymalna długość słowa w teście.

Nazwa	n	Opis
okr1.in	14	mały test poprawnościowy, 10 pkt
okr2.in	17	mały test poprawnościowy, 10 pkt
okr3.in	20	mały test poprawnościowy, 10 pkt
okr4.in	200	średni test, 20 pkt
okr5.in	2 000	średni test, 20 pkt
okr6.in	200 000	duży test, 30 pkt