第9章 a: 多元函数的基本概念

数学系 梁卓滨

2018-2019 学年 II

We are here now...

平面点集

二元函数

p

• 点p的 δ 邻域: $U(p, \delta) = \{q | |pq| < \delta\}$

- 点 p 的 δ 邻域: $U(p, \delta) = \{q | |pq| < \delta\}$
- 点 p 的去心δ邻域

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p,\delta) = U(p,\delta) \{p\}$

- 点 p 的 δ 邻域: $U(p, \delta) = \{q | |pq| < \delta\}$
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 的 δ 邻域: $U(p, \delta) = \{q | |pq| < \delta\}$
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点
- 点 p 是 E 的外点
- 点 p 是 E 的边界点

- 点 p 的 δ 邻域: $U(p, \delta) = \{q | |pq| < \delta\}$
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点, 指: $\exists \delta > 0$ 使得 $U(p, \delta) \subset E$;
- 点 p 是 E 的外点
- 点 p 是 E 的边界点

- 点 p 的 δ 邻域: $U(p, \delta) = \{q | |pq| < \delta\}$
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指:∃δ > 0 使得 U(p, δ) ⊂ E;
- 点 p 是 E 的外点
- 点 p 是 E 的边界点

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指:∃δ > 0 使得 U(p, δ) ⊂ E;
- 点 p 是 E 的外点
- 点 p 是 E 的边界点

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指:∃δ > 0 使得 U(p, δ) ⊂ E;
- 点 p 是 E 的外点,指:∃δ > 0 使得 U(p, δ) ∩ E = Ø;
- 点 p 是 E 的边界点

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指: ∃δ > 0 使得 U(p, δ) ⊂ E;
- 点 p 是 E 的外点,指:∃δ > 0 使得 U(p, δ) ∩ E = Ø;
- 点 p 是 E 的边界点

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点, 指: $\exists \delta > 0$ 使得 $U(p, \delta) \subset E$;
- 点 p 是 E 的外点,指: $\exists \delta > 0$ 使得 $U(p, \delta) \cap E = \emptyset$;
- 点 p 是 E 的边界点

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指: ∃δ > 0 使得 U(p, δ) ⊂ E;
- 点 p 是 E 的外点,指:∃δ > 0 使得 U(p, δ) ∩ E = Ø;
- 点 p 是 E 的边界点,指:不是内点,也不是外点;

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指: ∃δ > 0 使得 U(p, δ) ⊂ E;
- 点 p 是 E 的外点,指:∃δ > 0 使得 U(p, δ) ∩ E = Ø;
- 点 p 是 E 的边界点,指:不是内点,也不是外点;

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指:∃δ > 0 使得 U(p, δ) ⊂ E;
- 点 p 是 E 的外点,指:∃δ > 0 使得 U(p, δ) ∩ E = Ø;
- 点 p 是 E 的边界点,指:不是内点,也不是外点;

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指: ∃δ > 0 使得 U(p, δ) ⊂ E;
- 点 p 是 E 的外点,指:∃δ > 0 使得 U(p, δ) ∩ E = Ø;
- 点 p 是 E 的边界点,指:不是内点,也不是外点;

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指:∃δ > 0 使得 U(p, δ) ⊂ E;
- 点 p 是 E 的外点,指:∃δ > 0 使得 U(p, δ) ∩ E = Ø;
- $\triangle p \neq E$ 的边界点,指:不是内点,也不是外点;即, $\forall \delta > 0$, $U(p, \delta)$ 同时包含 E 以外、以内的点。

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 p 是 E 的内点,指: ∃δ > 0 使得 U(p, δ) ⊂ E; (内点 ∈ E)
- 点 p 是 E 的外点,指:∃δ > 0 使得 U(p, δ) ∩ E = Ø;
- 点 $p \in E$ 的边界点,指:不是内点,也不是外点;即, $\forall \delta > 0$, $U(p, \delta)$ 同时包含 E 以外、以内的点。

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 $p \in E$ 的内点, 指: $\exists \delta > 0$ 使得 $U(p, \delta) \subset E$; (内点 $\in E$)
- 点p 是E 的外点,指: $\exists \delta > 0$ 使得 $U(p, \delta) \cap E = \emptyset$; (外点 $\notin E$)
- 点 $p \neq E$ 的边界点,指:不是内点,也不是外点;即, $\forall \delta > 0$, $U(p, \delta)$ 同时包含 E 以外、以内的点。

- 点 p 的 δ邻域: U(p, δ) = {q||pq| < δ}
- 点 p 的去心 δ 邻域: $U(p, \delta) = U(p, \delta) \{p\} = \{q \mid 0 < |pq| < \delta\}$

- 点 $p \in E$ 的内点, 指: $\exists \delta > 0$ 使得 $U(p, \delta) \subset E$; (内点 $\in E$)
- 点 p 是 E 的外点,指:∃δ > 0 使得 $U(p, δ) \cap E = Ø$; (外点 $\notin E$)
- 点 $p \in E$ 的边界点,指:不是内点,也不是外点;即, $\forall \delta > 0$, $U(p, \delta)$ 同时包含 E 以外、以内的点。(边界点可能 $\in E$, 也可能 $\notin E$)

- E 是 开集
- E 是 闭集

- E 是 连通集
- E 是 开区域
- E 是 闭区域

- E 是 开集, 指边界点都不属于 E
- E 是 闭集

- E 是 连通集
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集

- E 是 连通集
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集, 指边界点都属于 E

- E 是 连通集
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- $E = \{E \in \mathbb{R}, \text{ $\mathbb{R} \subseteq \mathbb{R}$} \cup \{D \in \mathbb{R}\} \cup \{D \in \mathbb{R}\} \}$

- E 是 连通集
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集,指边界点都属于 E (即,E = {E的内点} U {边界点})

- E 是 连通集
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集,指边界点都属于 E (即,E = {E的内点} U {边界点})

- E 是 连通集, 指 E 中任两点均可用 E 中折线连起来
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集,指边界点都属于 E (即,E = {E的内点} U {边界点})

- E 是 连通集, 指 E 中任两点均可用 E 中折线连起来
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- $E \in$ 闭集,指边界点都属于 E (即, $E = \{E$ 的内点 $\} \cup \{$ 边界点 $\}$)

- E 是 连通集, 指 E 中任两点均可用 E 中折线连起来
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集,指边界点都属于 E (即,E = {E的内点} U {边界点})

- E 是 连通集, 指 E 中任两点均可用 E 中折线连起来
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集,指边界点都属于 E (即,E = {E的内点} U {边界点})

- E 是 连通集, 指 E 中任两点均可用 E 中折线连起来
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集,指边界点都属于 E (即,E = {E的内点} U {边界点})

- E 是 连通集, 指 E 中任两点均可用 E 中折线连起来
- E 是 开区域
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集,指边界点都属于 E (即,E = {E的内点} U {边界点})

- E 是 连通集, 指 E 中任两点均可用 E 中折线连起来
- E 是 开区域, 指 E 是开集且连通
- E 是 闭区域

- E 是 开集,指边界点都不属于 E (E = {E的内点})
- E 是 闭集,指边界点都属于 E (即,E = {E的内点} U {边界点})

- E 是 连通集, 指 E 中任两点均可用 E 中折线连起来
- E 是 开区域, 指 E 是开集且连通
- E 是 闭区域、指 E 是闭集且连通

- E 是 有界集
- E 是 无界集

- E 是 有界集,指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

•
$$E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$$
 是 界集;

•
$$E_2 := \{x - y \le 1\}$$
 是 界集;

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

•
$$E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$$
 是 界集;

•
$$E_2 := \{x - y \le 1\}$$
 是 界集;

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

例

•
$$E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$$
 是 界集;

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

例

•
$$E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$$
 是 有 界集;

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

例

•
$$E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$$
 是 有 界集;

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

例

•
$$E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$$
 是 有 界集;

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

例

•
$$E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$$
 是 有 界集;

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

- $E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$ 是 有 界集;
- $E_2 := \{x y \le 1\}$ 是 界集;

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

- $E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$ 是 有 界集;
- $E_2 := \{x y \le 1\}$ 是 界集;

- E 是 有界集, 指 ∃r > 0 使得 E ⊂ U(0, r)
- E 是 无界集, 指 E 不是有界集

- $E_1 := \{(x-2)^2 + \frac{1}{4}(y-1)^2 \le 1\}$ 是 有 界集;
- $E_2 := \{x y \le 1\}$ 是 无 界集;

We are here now...

平面点集

二元函数

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f: D \to \mathbb{R}$

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f: D \to \mathbb{R}$

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f: D \to \mathbb{R}$

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f: D \to \mathbb{R}$ 为定义在 D 上的二元函数

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f: D \to \mathbb{R}$ 为定义在 D 上的二元函数,记为 $z = f(x, y), \qquad (x, y) \in D$

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f: D \to \mathbb{R}$ 为定义在 D 上的二

元函数, 记为

或

$$z = f(x, y), \qquad (x, y) \in D$$

$$z = f(p), p \in D.$$

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f : D \to \mathbb{R}$ 为定义在 D 上的二

元函数,记为

$$z = f(x, y), \qquad (x, y) \in D$$

或

$$z = f(p), p \in D.$$

其中D称为定义域,x和y称为自变量,z称为因变量。

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f : D \to \mathbb{R}$ 为定义在 D 上的二

元函数,记为

$$z = f(x, y), \qquad (x, y) \in D$$

或

$$z = f(p), p \in D.$$

其中 D 称为 定义域,x 和 y 称为 自变量,z 称为因变量。

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f : D \to \mathbb{R}$ 为定义在 D 上的二

元函数,记为

$$z = f(x, y), \qquad (x, y) \in D$$

或

$$z = f(p), p \in D.$$

其中 D 称为 定义域,x 和 y 称为 自变量,z 称为因变量。

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f : D \to \mathbb{R}$ 为定义在 D 上的二

元函数,记为

$$z = f(x, y), \qquad (x, y) \in D$$

或

$$z = f(p), p \in D.$$

其中 D 称为 定义域,x 和 y 称为 自变量,z 称为因变量。

定义 设 $D \in \mathbb{R}^2$ 的一个非空子集,称映射 $f: D \to \mathbb{R}$ 为定义在 D 上的二

元函数, 记为

$$z = f(x, y), \qquad (x, y) \in D$$

$$(x, y) \in I$$

或

$$z = f(p), p \in D.$$

其中 D 称为 定义域, x 和 y 称为 自变量, z 称为因变量。

例
$$1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

例
$$1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

$$D := \{(x, y) | 1 + x + y > 0\}$$

例
$$1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

$$D := \{(x, y) | 1 + x + y > 0\}$$

例
$$1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

$$D := \{(x, y) | 1 + x + y > 0\}$$

例
$$1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

$$D := \{(x, y) | 1 + x + y > 0\}$$

例
$$1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

$$D := \{(x, y) | 1 + x + y > 0\}$$

例
$$1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

$$D:=\{(x,\,y)\,|\,1+x+y>0\}$$

$$D:=\{(x,\,y)\,|\,1+x+y>0\}$$

$$M1z = f(x, y) = \ln(1+x+y)$$
是二元函数。

$$D := \{(x, y) | 1 + x + y > 0\}$$

$$z|_{(e^8,-1)} =$$

$$D := \{(x, y) | 1 + x + y > 0\}$$

$$z|_{(e^8,-1)} = f(e^8,-1) =$$

注 函数
$$z = f(x, y)$$
 在一点 (x_0, y_0) 处的值:

$$f(x_0, y_0)$$
 或 $z|_{(x_0, y_0)}$

例
$$1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

$$D := \{(x, y) | 1 + x + y > 0\}$$

$$z|_{(e^8,-1)} = f(e^8,-1) =$$

注 函数
$$z = f(x, y)$$
 在一点 (x_0, y_0) 处的值:

$$f(x_0, y_0)$$
 或 $z|_{(x_0, y_0)}$

例
$$1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

$$D := \{(x, y) | 1 + x + y > 0\}$$

$$z|_{(e^8,-1)} = f(e^8,-1) = \ln(1+e^8-1) =$$

注 函数
$$z = f(x, y)$$
 在一点 (x_0, y_0) 处的值:

$$f(x_0, y_0)$$
 或 $z|_{(x_0, y_0)}$

$$D := \{(x, y) | 1 + x + y > 0\}$$

$$x + y + 1 = 0$$

$$-1$$

$$z|_{(e^8,-1)} = f(e^8,-1) = \ln(1+e^8-1) = \ln e^8 =$$

注 函数
$$z = f(x, y)$$
 在一点 (x_0, y_0) 处的值:

$$f(x_0, y_0)$$
 或 $z|_{(x_0, y_0)}$

$$D := \{(x, y) | 1 + x + y > 0\}$$

$$x + y + 1 = 0$$

$$-1$$

$$-1$$

$$z|_{(e^8,-1)} = f(e^8,-1) = \ln(1+e^8-1) = \ln e^8 = 8$$

注 函数
$$z = f(x, y)$$
 在一点 (x_0, y_0) 处的值:

$$f(x_0, y_0)$$
 或 $z|_{(x_0, y_0)}$

$$M1z = f(x, y) = \ln(1+x+y)$$
 是二元函数。

$$D := \{(x, y) | 1 + x + y > 0\}$$

$$x + y + 1 = 0$$

$$-1$$

$$z|_{(e^8,-1)} = f(e^8,-1) = \ln(1+e^8-1) = \ln e^8 = 8$$

例 2 求
$$z = \sqrt{1-x^2} + \sqrt{1-4y^2}$$
 定义域,画出图形,计算 $z(\frac{1}{2}, -\frac{1}{4})$

例 2 求 $z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$ 定义域, 画出定义域, 计算 $z(\frac{1}{2}, -\frac{1}{4})$

例 2 求
$$z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases}$$

例 2 求
$$z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

 $\mathbf{m} \otimes \mathbf{z}$ 有意义,必须

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \end{cases}$$

例 2 求
$$z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \\ -\frac{1}{2} \le y \le \frac{1}{2} \end{cases}$$

例 2 求
$$z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \\ -\frac{1}{2} \le y \le \frac{1}{2} \end{cases}$$

所以定义域
$$D = \left\{ (x, y) | -1 \le x \le 1, -\frac{1}{2} \le y \le \frac{1}{2} \right\}.$$

例 2 求
$$z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \\ -\frac{1}{2} \le y \le \frac{1}{2} \end{cases}$$

所以定义域
$$D = \{(x, y) | -1 \le x \le 1, -\frac{1}{2} \le y \le \frac{1}{2} \}.$$

例 2 求
$$z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \\ -\frac{1}{2} \le y \le \frac{1}{2} \end{cases}$$

所以定义域
$$D = \left\{ (x, y) | -1 \le x \le 1, -\frac{1}{2} \le y \le \frac{1}{2} \right\}.$$

例 2 求
$$z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \\ -\frac{1}{2} \le y \le \frac{1}{2} \end{cases}$$

所以定义域
$$D = \left\{ (x, y) | -1 \le x \le 1, -\frac{1}{2} \le y \le \frac{1}{2} \right\}.$$

例 2 求
$$z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \\ -\frac{1}{2} \le y \le \frac{1}{2} \end{cases}$$

所以定义域
$$D = \{(x, y) | -1 \le x \le 1, -\frac{1}{2} \le y \le \frac{1}{2} \}.$$

例 2 求
$$z = \sqrt{1-x^2} + \sqrt{1-4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \\ -\frac{1}{2} \le y \le \frac{1}{2} \end{cases}$$

所以定义域 $D = \left\{ (x, y) | -1 \le x \le 1, -\frac{1}{2} \le y \le \frac{1}{2} \right\}.$

$$x = -1 \quad y \quad x = 1$$

$$0.5 \quad y = 0.5$$

$$-1 \quad y = -0.5$$

$$z\left(\frac{1}{2}, -\frac{1}{4}\right) =$$

例 2 求
$$z = \sqrt{1 - x^2} + \sqrt{1 - 4y^2}$$
 定义域,画出定义域,计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \\ -\frac{1}{2} \le y \le \frac{1}{2} \end{cases}$$

所以定义域 $D = \left\{ (x, y) | -1 \le x \le 1, -\frac{1}{2} \le y \le \frac{1}{2} \right\}.$

$$z\left(\frac{1}{2}, -\frac{1}{4}\right) = \sqrt{1 - \left(\frac{1}{2}\right)^2} + \sqrt{1 - 4 \cdot \left(\frac{1}{4}\right)^2}$$

$$\begin{cases} 1 - x^2 \ge 0 \\ 1 - 4y^2 \ge 0 \end{cases} \implies \begin{cases} -1 \le x \le 1 \\ -\frac{1}{2} \le y \le \frac{1}{2} \end{cases}$$

所以定义域 $D = \{(x, y) | -1 \le x \le 1, -\frac{1}{2} \le y \le \frac{1}{2} \}.$

$$\begin{array}{c|cccc}
x = -1 & y & x = 1 \\
\hline
0.5 & & & & \\
\hline
-1 & & & & \\
\hline
-0.5 & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
y = 0.5 \\
\hline
\end{array}$$

例 2 求 $z = \sqrt{1-x^2} + \sqrt{1-4y^2}$ 定义域, 画出定义域, 计算 $z(\frac{1}{2}, -\frac{1}{4})$

$$z\left(\frac{1}{2}, -\frac{1}{4}\right) = \sqrt{1 - \left(\frac{1}{2}\right)^2} + \sqrt{1 - 4 \cdot \left(\frac{1}{4}\right)^2} = \sqrt{3}$$

例 3 求 $z = \sqrt{x - \sqrt{y}}$ 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

m 要 z 有意义, 必须

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases}$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y \\ y \ge 0 \end{cases}$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases}$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases} \implies 0 \le y \le x^2, \ x \ge 0$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases} \implies 0 \le y \le x^2, \ x \ge 0$$

所以定义域

$$D = \left\{ (x, y) | 0 \le y \le x^2, x \ge 0 \right\}.$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases} \implies 0 \le y \le x^2, \ x \ge 0$$

所以定义域

$$D = \left\{ (x, y) | 0 \le y \le x^2, x \ge 0 \right\}.$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases} \implies 0 \le y \le x^2, \ x \ge 0$$

所以定义域

$$D = \left\{ (x, y) | 0 \le y \le x^2, x \ge 0 \right\}.$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases} \implies 0 \le y \le x^2, \ x \ge 0$$

所以定义域

$$D = \left\{ (x, y) | 0 \le y \le x^2, \ x \ge 0 \right\}.$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases} \implies 0 \le y \le x^2, \ x \ge 0$$

所以定义域

$$D = \left\{ (x, y) | 0 \le y \le x^2, x \ge 0 \right\}.$$

$$z\left(1,\frac{1}{4}\right) =$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases} \implies 0 \le y \le x^2, \ x \ge 0$$

所以定义域

$$D = \left\{ (x, y) | 0 \le y \le x^2, \ x \ge 0 \right\}.$$

$$z\left(1,\,\frac{1}{4}\right) = \sqrt{1-\sqrt{\frac{1}{4}}} =$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases} \implies 0 \le y \le x^2, \ x \ge 0$$

所以定义域

$$D = \left\{ (x, y) | 0 \le y \le x^2, x \ge 0 \right\}.$$

$$z\left(1, \frac{1}{4}\right) = \sqrt{1 - \sqrt{\frac{1}{4}}} = \sqrt{1 - \frac{1}{2}}$$

例 3 求
$$z = \sqrt{x - \sqrt{y}}$$
 定义域,画出定义域,计算 $z(1, \frac{1}{4})$

m 要 z 有意义,必须

$$\begin{cases} x - \sqrt{y} \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} x^2 \ge y, \ x \ge 0 \\ y \ge 0 \end{cases} \implies 0 \le y \le x^2, \ x \ge 0$$

所以定义域

$$D = \left\{ (x, y) | 0 \le y \le x^2, \ x \ge 0 \right\}.$$

$$z\left(1, \frac{1}{4}\right) = \sqrt{1 - \sqrt{\frac{1}{4}}} = \sqrt{1 - \frac{1}{2}} = \frac{\sqrt{2}}{2}$$

二元函数的极限: 直观

• $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$

• $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \ \text{\&} \ \pi$:

• $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \ \&normalfont{\pi}$:

注

• 动点 p(x, y) 以任何方式趋于 p_0 ,函数值 f(x, y) 均趋于同一数 A;

• $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \ \&pince{\pi}$:

- 动点 p(x, y) 以任何方式趋于 p_0 ,函数值 f(x, y) 均趋于同一数 A;
- 点 $p_0(x_0, y_0)$ 不必属于定义域 D, 即 $f(x_0, y_0)$ 可能无定义;

• $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \ \&pince{\pi}$:

- 动点 p(x, y) 以任何方式趋于 p_0 ,函数值 f(x, y) 均趋于同一数 A;
- 点 $p_0(x_0, y_0)$ 不必属于定义域 D, 即 $f(x_0, y_0)$ 可能无定义;
- 点 $p_0(x_0, y_0)$ 是定义域 D 的 "聚点":

• $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$ 表示:

- 动点 p(x, y) 以任何方式趋于 p_0 ,函数值 f(x, y) 均趋于同一数 A;
- 点 $p_0(x_0, y_0)$ 不必属于定义域 D, 即 $f(x_0, y_0)$ 可能无定义;
- 点 $p_0(x_0, y_0)$ 是定义域 D 的 "聚点": $\forall \delta > 0$, $\mathring{U}(p_0, \delta) \cap D \neq \emptyset$

• $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \ \&normalfont{\pi}$:

- 动点 p(x, y) 以任何方式趋于 p_0 ,函数值 f(x, y) 均趋于同一数 A;
- 点 $p_0(x_0, y_0)$ 不必属于定义域 D, 即 $f(x_0, y_0)$ 可能无定义;
- 点 $p_0(x_0, y_0)$ 是定义域 D 的 "聚点": $\forall \delta > 0$, $\mathring{U}(p_0, \delta) \cap D \neq \emptyset$

• $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \ \&normalfont{\pi}$:

注

- 动点 p(x, y) 以任何方式趋于 p_0 ,函数值 f(x, y) 均趋于同一数 A;
- 点 $p_0(x_0, y_0)$ 不必属于定义域 D, 即 $f(x_0, y_0)$ 可能无定义;
- 点 p₀(x₀, y₀) 是定义域 D 的 "聚点": ∀δ > 0, Ŭ(p₀, δ) ∩ D ≠ Ø

思考 聚点和边界点的关系是什么?

极限定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点。称

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \qquad (\vec{s} \lim_{p\to p_0} f(p) = A)$$

指:

极限定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点。称

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \qquad (\vec{s} \lim_{p\to p_0} f(p) = A)$$

$$|f(x, y) - A| < \varepsilon$$
, $\forall \triangle p(x, y) \in D$ 且 $0 < |p - p_0| < \delta$

极限定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点。称

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \qquad (\vec{s} \lim_{p\to p_0} f(p) = A)$$

$$|f(x, y) - A| < \varepsilon$$
, $\forall \text{A} p(x, y) \in D \text{ } \text{ } \text{ } 0 < |p - p_0| < \delta$

极限定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点。称

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \qquad (\vec{s} \lim_{p\to p_0} f(p) = A)$$

$$|f(x, y) - A| < \varepsilon$$
, $\forall \text{点} p(x, y) \in D$ 且 $0 < |p - p_0| < \delta$

极限定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点。称

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \qquad (\vec{s} \lim_{p\to p_0} f(p) = A)$$

$$|f(x, y) - A| < \varepsilon$$
, $\forall \land p(x, y) \in D$ 且 $0 < |p - p_0| < \delta$

极限定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点。称

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \qquad (\vec{s} \lim_{p\to p_0} f(p) = A)$$

$$|f(x, y) - A| < \varepsilon$$
, $\forall \text{A} p(x, y) \in D \text{ } \text{ } \text{ } 0 < |p - p_0| < \delta$

例 1 设 $f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$ 。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

例 1 设 $f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$ 。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对 $\forall \varepsilon > 0$,

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对 $\forall \varepsilon > 0$,取 $\delta > 0$,

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对 $\forall \varepsilon > 0$,取 δ > 0,

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对
$$\forall \varepsilon > 0$$
, 取 δ > 0 , 则当 $0 < |p - p_0| < \delta$ 时,成立

$$|f(x, y) - 0|$$

< ε

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对 $\forall \varepsilon > 0$,取 δ > 0,则当 $0 < |p - p_0| < \delta$ 时,成立

$$|f(x, y) - 0| = |f(x, y)|$$

< ε

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对
$$\forall \varepsilon > 0$$
,取 δ

证明 对 $\forall \varepsilon > 0$,取 δ > 0,则当 $0 < |p - p_0| < \delta$ 时,成立

$$|f(x, y) - 0| = |f(x, y)| = \left| (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) \right|$$

$$< \varepsilon$$

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对
$$\forall \varepsilon > 0$$
,取 δ > 0 ,则当 $0 < |p-p_0| < \delta$ 时,成立

$$|f(x, y) - 0| = |f(x, y)| = \left| (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) \right|$$

$$\leq |x^2 + y^2| \qquad < \varepsilon$$

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对 $\forall \varepsilon > 0$,取 δ > 0,则当 $0 < |p - p_0| < \delta$ 时,成立

$$|f(x, y) - 0| = |f(x, y)| = \left| (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) \right|$$

$$\leq |x^2 + y^2| = |p - p_0|^2 < \varepsilon$$

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对
$$\forall \varepsilon > 0$$
,取 δ > 0 ,则当 $0 < |p - p_0| < \delta$ 时,成立

$$|f(x, y) - 0| = |f(x, y)| = \left| (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) \right|$$

$$\leq |x^2 + y^2| = |p - p_0|^2 < \delta^2 < \varepsilon$$

例 1 设
$$f(x, y) = (x^2 + y^2) \sin(\frac{1}{x^2 + y^2})$$
。证明 $\lim_{(x, y) \to (0, 0)} f(x, y) = 0$

证明 对 $\forall \varepsilon > 0$,取 $\delta = \sqrt{\varepsilon} > 0$,则当 $0 < |p - p_0| < \delta$ 时,成立

$$|f(x, y) - 0| = |f(x, y)| = \left| (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) \right|$$

$$\leq |x^2 + y^2| = |p - p_0|^2 < \delta^2 < \varepsilon$$

第 9 章 a: 多元函数的基本概念

$$f(t, 0) =$$

$$f(t, 0) = \frac{t+0}{t-0} =$$

$$f(t, 0) = \frac{t+0}{t-0} = 1$$

证明

$$f(t, 0) = \frac{t+0}{t-0} = 1$$
$$f(0, t) =$$

证明

$$f(t, 0) = \frac{t+0}{t-0} = 1$$
$$f(0, t) = \frac{0+t}{0-t} =$$

证明

$$f(t, 0) = \frac{t+0}{t-0} = 1$$
$$f(0, t) = \frac{0+t}{0-t} = -1$$

证明

$$f(t, 0) = \frac{t+0}{t-0} = 1$$
$$f(0, t) = \frac{0+t}{0-t} = -1$$

可见,点按不同方式趋于 (0,0)时, 函数值趋于不同的数。故极限不存在。

例 2 证明极限
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$$
 不存在

证明

$$f(t, 0) = \frac{t+0}{t-0} = 1$$
$$f(0, t) = \frac{0+t}{0-t} = -1$$

可见, 点按不同方式趋于(0,0)时,

函数值趋于不同的数。故极限不存在。 例 3 证明极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 不存在

证明

$$f(t,0) = \frac{t+0}{t-0} = 1$$

$$f(0,t) = \frac{0+t}{0-t} = -1$$
可见,点按不同方式趋于 (0,0) 时,

 $(0,t)t \to 0$ $(0,0) \qquad (t,0)t \to 0$

例 3 证明极限
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
 不存在证明

证明

(0,0)

证明

$$f(t,0) = \frac{t+0}{t-0} = 1$$

$$f(0,t) = \frac{0+t}{0-t} = -1$$
可见,点按不同方式趋于 (0,0) 时,

例 3 证明极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 不存在

证明

(0,0) $(t,0)t \rightarrow 0$

证明

$$f(t,0) = \frac{t+0}{t-0} = 1$$

$$f(0,t) = \frac{0+t}{0-t} = -1$$
可见,点按不同方式趋于 (0,0) 时,

例 3 证明极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 不存在

证明

(0,0)

证明

$$f(t,0) = \frac{t+0}{t-0} = 1$$

$$f(0,t) = \frac{0+t}{0-t} = -1$$
 可见,点按不同方式趋于 (0,0) 时,

例 3 证明极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 不存在

证明

$$f(t, 0) =$$

(0,0)

证明

$$f(t,0) = \frac{t+0}{t-0} = 1$$

$$f(0,t) = \frac{0+t}{0-t} = -1$$
 可见,点按不同方式趋于 (0,0) 时,

函数值趋于不同的数。故极限不存在。

例 3 证明极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 不存在

证明

$$f(t, 0) = \frac{t \cdot 0}{t^2 + 0^2} =$$

(0,0)

例 2 证明极限 $\lim_{\substack{(x,y)\to(0,0)}} \frac{x+y}{x-y}$ 不存在

证明

$$f(t,0) = \frac{t+0}{t-0} = 1$$

$$f(0,t) = \frac{0+t}{0-t} = -1$$
可见,点按不同方式趋于 (0,0) 时,

函数值趋于不同的数。故极限不存在。

例 3 证明极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 不存在证明

证明

$$f(t, 0) = \frac{t \cdot 0}{t^2 + 0^2} = 0$$

(0,0)

证明

$$f(t, 0) = \frac{t+0}{t-0} = 1$$

$$f(0, t) = \frac{0+t}{0-t} = -1$$

可见, 点按不同方式趋于(0,0)时, 函数值趋于不同的数。故极限不存在。

例 3 证明极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 不存在 证明

$$f(t, 0) = \frac{t \cdot 0}{t^2 + 0^2} = 0$$
$$f(t, t) =$$

(0,0)

证明

$$f(t, 0) = \frac{t+0}{t-0} = 1$$

$$f(0, t) = \frac{0+t}{0-t} = -1$$

可见, 点按不同方式趋于(0,0)时, 函数值趋于不同的数。故极限不存在。

例 3 证明极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 不存在 证明

$$f(t, 0) = \frac{t \cdot 0}{t^2 + 0^2} = 0$$
$$f(t, t) = \frac{t \cdot t}{t^2 + t^2} = 0$$

(0,0)

证明

$$f(t,0) = \frac{t+0}{t-0} = 1$$

$$f(0,t) = \frac{0+t}{0-t} = -1$$
可见,点按不同方式趋于 (0,0) 时,

函数值趋于不同的数。故极限不存在。

例 3 证明极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 不存在 证明

$$f(t, 0) = \frac{t \cdot 0}{t^2 + 0^2} = 0$$
$$f(t, t) = \frac{t \cdot t}{t^2 + t^2} = \frac{1}{2}$$

(0,0)

$$f(t,0) = \frac{t+0}{t-0} = 1$$

$$f(0,t) = \frac{0+t}{0-t} = -1$$
 可见,点按不同方式趋于 (0,0) 时,

函数值趋于不同的数。故极限不存在。

例 3 证明极限
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
 不存在

证明
$$f(t, 0) = \frac{t \cdot 0}{t^2 + 0^2} = 0$$

$$f(t, t) = \frac{t \cdot t}{t^2 + t^2} = \frac{1}{2}$$

第 9 章 α:多元函数的基本概念

可见,点按不同方式趋于(0,0)时, 函数值趋于不同的数。故极限不存在。

(0,0)

例 1 求极限 $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 =
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x} \cdot y$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$

解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$
 $\frac{\diamondsuit t = xy}{t} \lim_{x \to t} \frac{\sin t}{t}$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 =
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$$

$$\frac{\Rightarrow t=xy}{t} \lim_{t\to 0} \frac{\sin t}{t}$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 =
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$$

$$\frac{\Rightarrow t = xy}{t\to 0} \lim_{t\to 0} \frac{\sin t}{t} \cdot 0$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{e^{t=xy}}{t} \lim_{t\to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 2 求极限
$$\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy}$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 2 求极限
$$\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy}$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 2 求极限
$$\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy}$$
解 原式 $\frac{\Rightarrow u=xy}{}$ $\lim \frac{2-\sqrt{u+4}}{u}$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 2 求极限
$$\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy}$$
解 原式 $\frac{\Rightarrow u=xy}{u\to 0}$ $\lim_{u\to 0} \frac{2-\sqrt{u+4}}{u}$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 2 求极限
$$\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy}$$
解 原式 $\frac{\Rightarrow u=xy}{y} \lim_{x\to 0} \frac{2-\sqrt{u+4}}{y}$

$$= \lim_{u \to 0} \frac{\left[2 - (u+4)^{1/2}\right]'}{u'}$$

___洛必达法则

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$

$$\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$$

例 1 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$

解 原式 = $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot y = \lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy} \cdot \lim_{(x,y)\to(0,0)} y$
 $\frac{\Rightarrow t = xy}{t \to 0} \lim_{t \to 0} \frac{\sin t}{t} \cdot 0 = 1 \cdot 0 = 0$

例 3 求极限 $\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$

例 3 求极限
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$$

解

原式 =
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2} \cdot \lim_{(x,y)\to(0,0)} \frac{1}{e^{x^2y^2}}$$

例 3 求极限
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$$

解

原式 =
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2} \cdot \lim_{(x,y)\to(0,0)} \frac{1}{e^{x^2y^2}}$$

$$\frac{\underline{t}:=x^2+y^2}{\underline{s}:=x^2}$$

例 3 求极限
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$$

原式 =
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2} \cdot \lim_{(x,y)\to(0,0)} \frac{1}{e^{x^2y^2}}$$

$$\frac{t:=x^2+y^2}{s:=xy} \lim_{x\to\infty} \frac{1-\cos t}{t} \cdot \lim_{x\to\infty} \frac{1}{e^{s^2}}$$

例 3 求极限
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$$

原式 =
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2} \cdot \lim_{(x,y)\to(0,0)} \frac{1}{e^{x^2y^2}}$$

$$\frac{t:=x^2+y^2}{s:=xy} \lim_{t\to 0} \frac{1-\cos t}{t} \cdot \lim_{t\to 0} \frac{1}{e^{s^2}}$$

例 3 求极限
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$$

原式 =
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2} \cdot \lim_{(x,y)\to(0,0)} \frac{1}{e^{x^2y^2}}$$

$$\frac{t:=x^2+y^2}{s:=xy} \lim_{t\to 0} \frac{1-\cos t}{t} \cdot \lim_{s\to 0} \frac{1}{e^{s^2}}$$

例 3 求极限
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$$

原式 =
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2} \cdot \lim_{(x,y)\to(0,0)} \frac{1}{e^{x^2y^2}}$$

$$\frac{t:=x^2+y^2}{s:=xy} \lim_{t\to 0} \frac{1-\cos t}{t} \cdot \lim_{s\to 0} \frac{1}{e^{s^2}}$$

$$= \lim_{t\to 0} \frac{\sin t}{1} \cdot 1$$

例 3 求极限
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}$$

原式 =
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2} \cdot \lim_{(x,y)\to(0,0)} \frac{1}{e^{x^2y^2}}$$

$$\frac{t:=x^2+y^2}{s:=xy} \lim_{t\to 0} \frac{1-\cos t}{t} \cdot \lim_{s\to 0} \frac{1}{e^{s^2}}$$

$$= \lim_{t\to 0} \frac{\sin t}{1} \cdot 1$$

$$= 0$$

定义

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

则称 z = f(x, y) 在点 (x_0, y_0) 处连续。

定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点,且 $p_0 \in D$ 。若

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

则称 z = f(x, y) 在点 (x_0, y_0) 处连续。

定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点,且 $p_0 \in D$ 。若

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

则称 z = f(x, y) 在点 (x_0, y_0) 处连续。若 z = f(x, y) 在定义域上每一点处连续,则称 z = f(x, y) 是连续函数。

定义 设 $f(x, y), (x, y) \in D; p_0(x_0, y_0)$ 为 D 的聚点,且 $p_0 \in D$ 。若

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

则称 z = f(x, y) 在点 (x_0, y_0) 处连续。若 z = f(x, y) 在定义域上每一点处连续,则称 z = f(x, y) 是连续函数。

注

• 二元初等函数在其定义域内是连续函数

定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点,且 $p_0 \in D$ 。若

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

则称 z = f(x, y) 在点 (x_0, y_0) 处连续。若 z = f(x, y) 在定义域上每一点处连续,则称 z = f(x, y) 是连续函数。

- 二元初等函数:由 x 和 y 的基本初等函数经有限次的四则运算、复合运算所得的表达式
- 二元初等函数在其定义域内是连续函数

定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点,且 $p_0 \in D$ 。若

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

则称 z = f(x, y) 在点 (x_0, y_0) 处连续。若 z = f(x, y) 在定义域上每一点处连续,则称 z = f(x, y) 是连续函数。

- 二元初等函数:由x和y的基本初等函数经有限次的四则运算、复合运算所得的表达式
- 二元初等函数在其定义域内是连续函数
- 二元初等函数在定义域内一点 (x_0, y_0) 的极限值,等于该点处的函数值

定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点,且 $p_0 \in D$ 。若

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

则称 z = f(x, y) 在点 (x_0, y_0) 处连续。若 z = f(x, y) 在定义域上每一点处连续,则称 z = f(x, y) 是连续函数。

- 二元初等函数:由 x 和 y 的基本初等函数经有限次的四则运算、复合运算所得的表达式
- 二元初等函数在其定义域内是连续函数
- 二元初等函数在定义域内一点 (x_0, y_0) 的极限值,等于该点处的函数值

例
$$\lim_{(x,y)\to(1,2)} 2xy + e^{x+y}$$

定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点,且 $p_0 \in D$ 。若

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

则称 z = f(x, y) 在点 (x_0, y_0) 处连续。若 z = f(x, y) 在定义域上每一点处连续,则称 z = f(x, y) 是连续函数。

- 二元初等函数:由 x 和 y 的基本初等函数经有限次的四则运算、复合运算所得的表达式
- 二元初等函数在其定义域内是连续函数
- 二元初等函数在定义域内一点 (x_0, y_0) 的极限值,等于该点处的函数值

例
$$\lim_{(x,y)\to(1,2)} 2xy + e^{x+y} = 2 \cdot 1 \cdot 2 + e^{1+2}$$

定义 设 f(x, y), $(x, y) \in D$; $p_0(x_0, y_0)$ 为 D 的聚点,且 $p_0 \in D$ 。若

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

则称 z = f(x, y) 在点 (x_0, y_0) 处连续。若 z = f(x, y) 在定义域上每一点处连续,则称 z = f(x, y) 是连续函数。

- 二元初等函数:由 x 和 y 的基本初等函数经有限次的四则运算、复合运算所得的表达式
- 二元初等函数在其定义域内是连续函数
- 二元初等函数在定义域内一点 (x_0, y_0) 的极限值,等于该点处的函数值

例
$$\lim_{(x,y)\to(1,2)} 2xy + e^{x+y} = 2 \cdot 1 \cdot 2 + e^{1+2} = 4 + e^3$$

例1求极限 $\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$

$$\lim_{(x,y)\to(1,0)}\frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2}$$

$$\lim_{(x,y)\to(1,0)}\frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2} = 1$$

$$\lim_{(x,y)\to(1,0)}\frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2} = 1$$

$$\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}} = \frac{\ln(1+e^0)}{\sqrt{1^2+0^2}}$$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2} = 1$$

$$\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}} = \frac{\ln(1+e^0)}{\sqrt{1^2+0^2}} = \ln 2$$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2} = 1$$

$$\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}} = \frac{\ln(1+e^0)}{\sqrt{1^2+0^2}} = \ln 2$$

例 2 求极限
$$\lim_{(x,y)\to(1,-1)} \frac{x+y}{x^2-y^2}$$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2} = 1$$

$$\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}} = \frac{\ln(1+e^0)}{\sqrt{1^2+0^2}} = \ln 2$$

例 2 求极限
$$\lim_{(x,y)\to(1,-1)} \frac{x+y}{x^2-y^2}$$

$$\lim_{(x,y)\to(1,-1)}\frac{x+y}{x^2-y^2} =$$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2} = 1$$

$$\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}} = \frac{\ln(1+e^0)}{\sqrt{1^2+0^2}} = \ln 2$$

例 2 求极限
$$\lim_{(x,y)\to(1,-1)} \frac{x+y}{x^2-y^2}$$

$$\lim_{(x,y)\to(1,-1)}\frac{x+y}{x^2-y^2}=\lim_{(x,y)\to(1,-1)}\frac{x+y}{(x+y)(x-y)}$$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2} = 1$$

$$\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}} = \frac{\ln(1+e^0)}{\sqrt{1^2+0^2}} = \ln 2$$

例 2 求极限 $\lim_{(x,y)\to(1,-1)} \frac{x+y}{x^2-y^2}$

 $\lim_{(x,y)\to(1,-1)} \frac{x+y}{x^2-y^2} = \lim_{(x,y)\to(1,-1)} \frac{x+y}{(x+y)(x-y)}$ $= \lim_{(x,y)\to(1,-1)} \frac{1}{x-y}$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2} = 1$$

$$\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}} = \frac{\ln(1+e^0)}{\sqrt{1^2+0^2}} = \ln 2$$

例 2 求极限 $\lim_{(x,y)\to(1,-1)} \frac{x+y}{x^2-y^2}$

 $\lim_{(x,y)\to(1,-1)} \frac{x+y}{x^2-y^2} = \lim_{(x,y)\to(1,-1)} \frac{x+y}{(x+y)(x-y)}$ $= \lim_{(x,y)\to(1,-1)} \frac{1}{x-y} = \frac{1}{1-(-1)}$

例 1 求极限
$$\lim_{(x,y)\to(2,1)} \frac{2x^2-3y^2}{x^2+y^2}$$
, $\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$

$$\lim_{(x,y)\to(2,1)} \frac{2x^2 - 3y^2}{x^2 + y^2} = \frac{2 \cdot 2^2 - 3 \cdot 1^2}{2^2 + 1^2} = 1$$

$$\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}} = \frac{\ln(1+e^0)}{\sqrt{1^2+0^2}} = \ln 2$$

例 2 求极限 $\lim_{(x,y)\to(1,-1)} \frac{x+y}{x^2-y^2}$

 $\lim_{(x,y)\to(1,-1)}\frac{x+y}{x^2-y^2}=\lim_{(x,y)\to(1,-1)}\frac{x+y}{(x+y)(x-y)}$ $= \lim_{(x,y)\to(1,-1)} \frac{1}{x-y} = \frac{1}{1-(-1)} = \frac{1}{2}$

回忆 有界闭区间 上的 连续函数 y = f(x) 有界,并且能取到最大值和最小值。

回忆 <u>有界闭区间</u> 上的 <u>连续函数</u> y = f(x) 有界,并且能取到最大值和最小值。

定理 <u>有界闭区域</u> 上的 <u>连续函数</u> z = f(x, y) 一定有界,并且能取到最大值和最小值。

回忆 <u>有</u>界闭区间 上的 <u>连续函数</u> y = f(x) 有界,并且能取到最大值和最小值。

定理 <u>有界闭区域</u> 上的 <u>连续函数</u> z = f(x, y) 一定有界,并且能取到最大值和最小值。

回忆 <u>有</u>界闭区间 上的 <u>连续函数</u> y = f(x) 有界,并且能取到最大值和最小值。

定理 <u>有界闭区域</u> 上的 <u>连续函数</u> z = f(x, y) 一定有界,并且能取到最大值和最小值。

例 1 设
$$z = f(x, y) = \frac{1}{1-x^2-y^2}$$
,则

- 在有界闭区域 $D_1 = \{(x, y) | x^2 + y^2 \le \frac{1}{2} \}$
- 在有界开区域 $D_2 = \{(x, y) | x^2 + y^2 < 1\}$

回忆 <u>有</u>界闭区间 上的 <u>连续函数</u> y = f(x) 有界,并且能取到最大值和最小值。

定理 <u>有界闭区域</u> 上的 <u>连续函数</u> z = f(x, y) 一定有界,并且能取到最大值和最小值。

例 1 设
$$z = f(x, y) = \frac{1}{1-x^2-y^2}$$
,则

- 在有界闭区域 $D_1 = \{(x, y) | x^2 + y^2 \le \frac{1}{2} \}$ 上取得最值
- 在有界开区域 $D_2 = \{(x, y) | x^2 + y^2 < 1\}$

回忆 有界闭区间 上的 连续函数 y = f(x) 有界,并且能取到最大值和最小值。

定理 <u>有界闭区域</u> 上的 <u>连续函数</u> z = f(x, y) 一定有界,并且能取到最大值和最小值。

例 1 设
$$z = f(x, y) = \frac{1}{1-x^2-y^2}$$
,则

- 在有界闭区域 $D_1 = \{(x, y) | x^2 + y^2 \le \frac{1}{2} \}$ 上取得最值
- 在有界开区域 $D_2 = \{(x, y) | x^2 + y^2 < 1\}$ 上取不到最大值

例 2 设
$$z = f(x, y) = x^2 - y^2$$
,定义在无界闭区域

$$D = \{(x, y) \, | \, x + y \leq 1 \}$$

例 2 设 $z = f(x, y) = x^2 - y^2$,定义在无界闭区域 $D = \{(x, y) | x + y \le 1\}$

例 2 设 $z = f(x, y) = x^2 - y^2$, 定义在无界闭区域

 $D = \{(x, y) | x + y \le 1\}$,可证明 f(x, y) 既取不到最小值,也取不到

最大值。

例 2 设 $z = f(x, y) = x^2 - y^2$, 定义在无界闭区域

 $D = \{(x, y) | x + y \le 1\}$,可证明 f(x, y) 既取不到最小值,也取不到

最大值。

 \mathbf{H} 在边界 x + y = 1 上, y = 1 - x, 此时

 $D = \{(x, y) | x + y \le 1\}$,可证明 f(x, y) 既取不到最小值,也取不到

最大值。

解 在边界
$$x + y = 1$$
 上, $y = 1 - x$, 此时
$$f(x, y) = x^2 - y^2 = x^2 - (1 - x)^2$$

 $D = \{(x, y) | x + y \le 1\}$,可证明 f(x, y) 既取不到最小值,也取不到

最大值。

 \mathbf{H} 在边界 x + y = 1 上, y = 1 - x, 此时

$$f(x, y) = x^2 - y^2 = x^2 - (1 - x)^2 = 2x - 1$$

 $D = \{(x, y) | x + y \le 1\}$,可证明 f(x, y) 既取不到最小值,也取不到

最大值。

$$\mathbf{m}$$
 在边界 $x + y = 1$ 上, $y = 1 - x$,此时

$$f(x, y) = x^2 - y^2 = x^2 - (1 - x)^2 = 2x - 1$$

• 当 $x \to +\infty$ 时, 函数值 $f \to +\infty$

 $D = \{(x, y) | x + y \le 1\}$,可证明 f(x, y) 既取不到最小值,也取不到

最大值。

$$\mathbf{H}$$
 在边界 $x + y = 1$ 上, $y = 1 - x$, 此时

$$f(x, y) = x^2 - y^2 = x^2 - (1 - x)^2 = 2x - 1$$

- 当 $x \to +\infty$ 时,函数值 $f \to +\infty$
- 当 $x \to -\infty$ 时, 函数值 $f \to -\infty$

回忆 有界闭区间 上的 连续函数 的介值定理是什么说?

回忆 有界闭区间 上的 连续函数 的介值定理是什么说?

定理 设

• z = f(x, y) 是 有界闭区域 D 上的 连续函数;

回忆 有界闭区间 上的 连续函数 的介值定理是什么说?

定理 设

- z = f(x, y) 是 有界闭区域 D 上的 连续函数;
- C 是介于 f(x, y) 最大值与最小值之间的任意一个数。

回忆 有界闭区间 上的 连续函数 的介值定理是什么说?

定理 设

- z = f(x, y) 是 有界闭区域 D 上的 连续函数;
- C 是介于 f(x, y) 最大值与最小值之间的任意一个数。

则至少存在一点 $(\xi, \eta) \in D$,使得 $f(\xi, \eta) = C$ 。

• 三元函数: u = f(x, y, z),

• 三元函数:
$$u = f(x, y, z)$$
, 如
$$f(x, y, z) = \frac{z}{x^2 + y + 1} + \sin(xyz)$$

• 三元函数: u = f(x, y, z), 如

$$f(x, y, z) = \frac{z}{x^2 + y + 1} + \sin(xyz)$$

例 设长方体的长宽高分别为x, y, z, 则体积为

• 三元函数: u = f(x, y, z), 如

$$f(x, y, z) = \frac{z}{x^2 + y + 1} + \sin(xyz)$$

例 设长方体的长宽高分别为x, y, z, 则体积为

$$V = xyz$$

• 三元函数: u = f(x, y, z), 如

$$f(x, y, z) = \frac{z}{x^2 + y + 1} + \sin(xyz)$$

M 设长方体的长宽高分别为x,y,z,则体积为

$$V = xyz$$

是关于x, y, z 的三元函数,

• 三元函数: u = f(x, y, z), 如

$$f(x, y, z) = \frac{z}{x^2 + y + 1} + \sin(xyz)$$

例 设长方体的长宽高分别为x,y,z,则体积为

$$V = xyz$$

是关于x, y, z 的三元函数, 定义域是

$$D = \{(x, y, z) | x, y, z > 0\}.$$

• 三元函数: u = f(x, y, z), 如

$$f(x, y, z) = \frac{z}{x^2 + y + 1} + \sin(xyz)$$

例 设长方体的长宽高分别为x, y, z, 则体积为

$$V = xyz$$

是关于x, y, z的三元函数, 定义域是

$$D = \{(x, y, z) | x, y, z > 0\}.$$

• n 原函数: $u = f(x_1, x_2, ..., x_n)$

