Zusammenfassung für Analysis I

(Prof. Dr. Schnürer)

Wintersemester 2014/2015

von Dagmar Sorg

Grundlagen: Logik, Mengenlehre

UND REELLE ZAHLEN

KAP. 1

LOGISCHE GRUNDLAGEN

PART 1.1

Definition (Aussage)

- D. 1.1
- (i) Eine Aussage ist etwas, dem der Wahrheitsgehalt "wahr" oder "falsch" zugeordnet ist.
- (ii) Eine **Aussageform** ist eine Aussage, die eine noch unbestimmte oder freie Variable enthält.

Definition (Negation, Verneinung)

D. 1.3

Ist p eine Aussage, so bezeichnet $\neg p$ die Negation dieser Aussage.

Definition (Konjunktion)

D. 1.5

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \wedge q$ ("p und q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & f \end{array}$$

Definition (Disjunktion)

D. 1.6

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \vee q$ ("p oder q") mittels der folgenden Wahrheitstabelle:

p	q	$p \lor q$
w	w	w
w	f	w
f	w	w
f	f	f

Definition (Kontravalenz)

D. 1.7

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \lor q$ ("entweder p oder q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline w & w & f \\ w & f & w \\ f & w & w \\ f & f & f \end{array}$$

Definition (Implikation)

D. 1.8

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \Rightarrow q$ ("p impliziert q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|cccc} p & q & p \Rightarrow q \\ \hline w & w & w \\ w & f & f \\ f & w & w \\ f & f & w \end{array}$$

- (i) p heißt Voraussetzung, Prämisse oder hinreichende Bedingung für q
- (ii) q heißt Behauptung, Konklusion oder notwendige Bedingung

Definition

D. 1.10

(i) Seien p,q Aussagen. Definiere $p\Leftrightarrow q$ ("p und q sind äquivalent", "genau dann, wenn p gilt, gilt auch q") durch

p	q	$p \Leftrightarrow q$
w	w	w
w	f	f
f	w	f
f	f	w

(ii) p_1, p_2, \ldots heißen äquivalent, falls für je zwei dieser Aussagen, p und $q, p \Leftrightarrow q$ gilt.

Proposition

P. 1.11

(Symmetrie)

(Symmetrie) (Symmetrie)

(Idempotenz)

(Idempotenz)

Seien p, q, r Aussagen. Dann gelten

- (i) $\neg \neg p \Leftrightarrow p$
- (ii) $p \lor \neq p$
- (iii) $(p \land q) \Leftrightarrow (q \land p)$

(iv) $(p \lor q) \Leftrightarrow (q \lor p)$

- $(v) (p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p)$
- (vi) $(p \land p) \Leftrightarrow p$
- (vii) $(p \lor p) \Leftrightarrow p$
- (viii) $(p \land q) \Rightarrow p$
- (ix) $p \Rightarrow (p \lor q)$
- (x) $(p \Leftrightarrow q) \Rightarrow ((p \lor r) \Leftrightarrow (q \lor r))$
- (xi) $(p \Leftrightarrow q) \Rightarrow ((p \land r) \Leftrightarrow (q \land r))$
- (xii) $(p \Leftrightarrow q) \Rightarrow ((p \Leftrightarrow r) \Leftrightarrow (q \Leftrightarrow r))$
- (xiii) $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$ (Assoziativität)
- $(xiv) ((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$ (Assoziativität)
- $(xv) (p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$ (Distributivität)
- (xvi) $(p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$ (Distributivität)
- (xvii) $\neg (p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$ (De Morgan)
- $(xviii) \neg (p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$ (De Morgan)
- (xix) $(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$
- $(xx) ((p \Leftrightarrow q) \land (q \Leftrightarrow r)) \Rightarrow (p \Leftrightarrow r)$
- (xxi) $((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
- (xxii) $(p \Rightarrow q) \Leftrightarrow ((\neg p) \lor q)$
- (xxiii) $(p \Rightarrow q) \Leftrightarrow ((\neg q) \Rightarrow (\neg p))$
- (xxiv) $p \Leftrightarrow ((p \land r) \lor (p \land \neg r))$ (Fallunterscheidung)

Erste Mengenlehre

Part 1.2

Definition (naive Definition einer Menge)

D. 1.12

Eine Menge ist eine Zusammenfassung von Objekten, Elemente genannt. Ist A eine Menge, x ein Objekt, so schreiben wir $x \in A$, falls x ein Element von A ist. $x \notin A : \Leftrightarrow \neg(x \in A)$ Für eine Menge A, die genau die Elemente a,b und c enthält, schreiben wir $A = \{a,b,c\}$. Es ist irrelevant, ob a mehrfach auftaucht oder wie die Elemente angeordnet werden.

Definition

D. 1.13

Seien A, B Mengen.

- (i) Dann ist A eine Teilmenge von B ($A \subset B$ oder $A \subseteq B$), falls aus $x \in A$ auch $x \in B$ folgt.
- (ii) A und B heißen gleich (A=B), falls $A\subset B$ und $B\subset A$ gelten. $A\neq B:\Leftrightarrow \neg(A=B)$ (Extensionalitätsaxiom)
- (iii) Schreibe $A \subseteq B$ für $A \subset B$ und $A \neq B$.

Lemma		L. 1.14
Seien A, B, C Mengen. Dann gelten:		
(i) $A \subset A$	(Reflexivität)	
(ii) $x \in A$ und $A \subset B$ implizieren $x \in B$	(-	
(iii) $A \subset B \subset C \Rightarrow A \subset C$	(Transitivität)	A 1 1F
Axiom (Aussonderungsaxiom) Sei A eine Menge und $a(x)$ eine Aussageform. Dann gibt es eine M genau die $x \in A$ sind, die $a(x)$ erfüllen. Schreibe $B = \{x \in A : a(x)\}$.	Ienge B , deren Elemente	A. 1.15
Bemerkung		Bem. 1.17
Zu jeder Menge A gibt es eine Menge B und eine Aussageform $a($ Nehme $B = A, a(x) = (x \in A).$	$(x): A = \{x \in B : a(x)\}.$	
Bemerkung (Russelsche Antinomie)		Bem. 1.18
Nimmt man im Aussonderungsaxiom statt A die "Allmenge" (Menbekommt man Probleme: Sei $A =$ Allmenge, $B = \{X \in A : X \notin X\}$. Es gilt $y \in B \Leftrightarrow (y \in Gilt B \in B? \to Widerspruch.$		
Lemma (Existenz der leeren Menge) Es gibt eine Menge \emptyset , die leere Menge, die kein Element enthält. (i) $\emptyset \subset A$ für alle Mengen A	Sie erfüllt:	L. 1.19
QUANTOREN		Part 1.3
Definition		
Definition		D 1 20
Sei A eine Menge $a(x)$ eine Aussageform		D. 1.20
Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder $\exists a$	(x) für "Es gibt ein x in	D. 1.20
(i) Existenzquantor: Wir schreiben $\exists x \in A : a(x) \text{ oder } \underset{x \in A}{\exists} a$ der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$). Dies zeigt man, indem	D. 1.20
 (i) Existenzquantor: Wir schreiben ∃x ∈ A : a(x) oder ∃ a der Menge A, sodass dieses x a(x) erfüllt." Schreibe ∃!x ∈ A : a(x) für es gibt genau ein x ∈ A mit a(x) man ∃x ∈ A : a(x) und für alle x, y ∈ A mit a(x), a(y) : x = (ii) Allquantor: Schreibe ∀x ∈ A : a(x) oder ∀ a(x) manch). Dies zeigt man, indem $= y$ zeigt.	D. 1.20
 (i) Existenzquantor: Wir schreiben ∃x ∈ A : a(x) oder ∃ a der Menge A, sodass dieses x a(x) erfüllt." Schreibe ∃!x ∈ A : a(x) für es gibt genau ein x ∈ A mit a(x) man ∃x ∈ A : a(x) und für alle x, y ∈ A mit a(x), a(y) : x = (ii) Allquantor: Schreibe ∀x ∈ A : a(x) oder ∀ a(x) manchrangen. Für alle x ∈ A gilt a(x)."). Dies zeigt man, indem $= y$ zeigt.	D. 1.20
 (i) Existenzquantor: Wir schreiben ∃x ∈ A : a(x) oder ∃ a der Menge A, sodass dieses x a(x) erfüllt." Schreibe ∃!x ∈ A : a(x) für es gibt genau ein x ∈ A mit a(x) man ∃x ∈ A : a(x) und für alle x, y ∈ A mit a(x), a(y) : x = (ii) Allquantor: Schreibe ∀x ∈ A : a(x) oder ∀ a(x) manchm "Für alle x ∈ A gilt a(x)." Lemma). Dies zeigt man, indem $= y$ zeigt.	D. 1.20 L. 1.22
(i) Existenzquantor: Wir schreiben $\exists x \in A : a(x) \text{ oder } \underset{x \in A}{\exists} a$ der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$ man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit $a(x), a(y) : x =$ (ii) Allquantor: Schreibe $\forall x \in A : a(x) \text{ oder } \underset{x \in A}{\forall} a(x) \text{ manchre}$ "Für alle $x \in A$ gilt $a(x)$." Lemma Seien A, B Mengen. $p(x), p(x, y)$ Aussageformen. Dann gelten (1.1) $\underset{x \in A}{\forall} \underset{y \in B}{\forall} p(x, y) \Longleftrightarrow \underset{y \in B}{\forall} \underset{x \in A}{\forall} p(x, y)$). Dies zeigt man, indem $= y$ zeigt.	D. 1.20
 (i) Existenzquantor: Wir schreiben ∃x ∈ A : a(x) oder ∃ a der Menge A, sodass dieses x a(x) erfüllt." Schreibe ∃!x ∈ A : a(x) für es gibt genau ein x ∈ A mit a(x) man ∃x ∈ A : a(x) und für alle x, y ∈ A mit a(x), a(y) : x = (ii) Allquantor: Schreibe ∀x ∈ A : a(x) oder ∀ a(x) manchr "Für alle x ∈ A gilt a(x)." Lemma Seien A, B Mengen. p(x), p(x, y) Aussageformen. Dann gelten). Dies zeigt man, indem $= y$ zeigt.	D. 1.20
(i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder $\exists a$ der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$ man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit $a(x), a(y) : x =$ (ii) Allquantor: Schreibe $\forall x \in A : a(x)$ oder $\forall a(x)$ manching. Für alle $x \in A$ gilt $a(x)$." Lemma Seien A, B Mengen. $p(x), p(x, y)$ Aussageformen. Dann gelten (1.1) $\forall a \in A \in A \in A$ $\forall a \in A \in $). Dies zeigt man, indem $= y$ zeigt.	D. 1.20
(i) Existenzquantor: Wir schreiben $\exists x \in A : a(x) \text{ oder } \underset{x \in A}{\exists} a$ der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$ man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit $a(x), a(y) : x =$ (ii) Allquantor: Schreibe $\forall x \in A : a(x) \text{ oder } \underset{x \in A}{\forall} a(x)$ manching. "Für alle $x \in A$ gilt $a(x)$." Lemma Seien A, B Mengen. $p(x), p(x, y)$ Aussageformen. Dann gelten (1.1) $\underset{x \in A}{\forall} y \underset{y \in B}{\forall} p(x, y) \iff \underset{y \in B}{\forall} x \underset{x \in A}{\forall} p(x, y)$ (1.2) $\underset{x \in A}{\exists} p(x, y) \iff \underset{y \in B}{\exists} x \underset{x \in A}{\exists} p(x, y)$). Dies zeigt man, indem $= y$ zeigt.	D. 1.20

Weitere Mengenlehre	Part 1.4
Axiom (Existenz einer Obermenge) Sei \mathcal{M} eine Menge von Mengen. Dann gibt es eine Menge M (=Obermenge) mir $\mathcal{M} \Rightarrow A \subset M$. Bemerkung: M ist eindeutig bestimmt.	
Definition (Vereinigung und Durchschnitt) Seien A, B Mengen mit Obermenge X . (i) Dann ist die <i>Vereinigung</i> von A und B $(A \cup B)$ definiert durch $A \cup B := \{x \in X : x \in A \lor x \in B\}$ (ii) der <i>(Durch-) Schnitt</i> von A und B $(A \cap B)$ ist definiert durch $A \cap B := \{x \in X : x \in A \land x \in B\}$	D. 1.25
Sei \mathcal{M} eine Menge von Mengen mit Obermenge X . (i) Vereinigung: $\bigcup_{A \in \mathcal{M}} A := \{x \in X : (\exists A \in \mathcal{M} : x \in A)\}$	
(ii) Schnitt: $\bigcap_{A \in \mathcal{M}} A := \{ x \in X : (\forall A \in \mathcal{M} : x \in A) \}$	
Bemerkung Enthält \mathcal{M} keine Menge, so gelten $\bigcup_{A\in\mathcal{M}}A=\emptyset$ sowie $\bigcap_{A\in\mathcal{M}}A=X$	Bem. 1.26
Definition (Disjunkte Mengen)	D. 1.27
Seien A, B Mengen. (i) A und B heißen disjunkt, falls $A \cap B = \emptyset$. Schreibe in diesem Fall $A \cup B$ statt (ii) Sei \mathcal{M} eine Menge von Mengen. Dann heißen die Mengen in \mathcal{M} disjunkt, fall $A, B \in \mathcal{M}, A \neq \emptyset$ stets $A \cap B = \emptyset$ gilt. Schreibe $\bigcup_{A \in \mathcal{M}} A$ statt $\bigcup_{A \in \mathcal{M}} A$.	
 Definition (Komplement) Seien A, B Mengen mit fester Obermenge X. (i) Definiere das Komplement von A in B durch B \ A := {x ∈ B : x ∉ A} 	D. 1.28
(ii) Definiere das Komplement von A durch $\mathcal{C}A \equiv A^{\mathcal{C}} := \{x \in X : x \notin A\}$	5.4.00
Proposition	P. 1.29
Seien A, B, C Mengen mit Obermenge X . Dann gelten: (i) $A \cup B = B \cup A$ (Kommutati	::::::::::::::::::::::::::::::::::::::
(i) $A \cap B = b \cap A$ (Kommutati	,
(iii) $(A \cup B) \cup C = A \cup (B \cup C)$ (Assoziati	,
(iv) $(A \cap B) \cap C = A \cap (B \cap C)$ (Assoziati	<i>'</i>
$(v) (A \cap B) \cup C = (A \cup C) \cap (B \cup C) $ (Distribution)	<i>'</i>
$(vi) (A \cup B) \cap C = (A \cap C) \cup (B \cap C) $ (Distribution)	,
(vii) $C(A \cup B) = CA \cap CB$ (De Morgansche I	Regel)
(viii) $C(A \cap B) = CA \cup CB$ (De Morgansche I	Regel)
(ix) $CCA = A$	
(x) $A \cup CA = X$	
(xi) $A \setminus B = A \cap \complement B$	
Axiom (Potenzmenge)	A. 1.30
Sei A eine beliebige Menge. Dann gibt es die Menge $\mathcal{P}(A)$ (oder 2^A), die Potenzr	nenge
von A. Die Elemente von $\mathcal{P}(A)$ sind genau die Teilmengen von A.	A 4 00
Axiom (Kartesisches Produkt)	A. 1.32
Seien A, B Mengen. Dann gibt es eine Menge, das Kartesische Produkt von A u $(A \times B)$, die aus allen geordneten Paaren (a,b) mit $a \in A, b \in B$ besteht. a heißt er heißt zweite Komponente des Paares (a,b) . $A \times B := \{(a,b) : a \in A \land b \in B\}$	

Bemerkung (Control of the Prince of the Prin	Bem. 1.33
$(a,b) \equiv \{a,\{a,b\}\} \in \mathcal{P}(A \cup \mathcal{P}(A \cup B))$ Definition (Funktion, Abbleitung)	D. 1.34
Seien A, B Mengen.	D. 1.54
(i) Eine Funktion (oder Abbildung) f von A nach B , $f:A\to B$, ist eine Teilmenge von $A\times B$, sodass es zu jedem $a\in A$ genau ein $b\in B$ mit $(a,b)\in f$ gibt: $\forall a\in A\exists b\in B:(a,b)\in f$. Schreibe $b=f(a),a\mapsto b$. Definiere den Graphen von f :	
$graph \ f := \{(x, f(x)) \in A \times B : x \in A\} = f \subset A \times B$	
(ii) A heißt Definitionsbereich von f , $D(f)$. $f(A) := \{f(x) : x \in A\} \equiv \{y \in B : (\exists x \in A : \underbrace{f(x) = y})\} = im \ f = R(f)$	
heißt $Bild$ oder $Wertebereich$ von f .	
(iii) Sei $M \subset A$ beliebig. $f(M) := \{y \in B : (\exists x \in M : f(x) = y)\} \equiv \{f(x) : x \in M\}$ Somit induziert $f : A \to B$ eine Funktion $\mathcal{P}(A) \to \mathcal{P}(B)$, die wir wieder mit f bezeichnen.	
(iv) Zu einer beliebigen Funktion $f:A\to B$ definieren wir die $Urbildabbildung$ $f^{-1}:\mathcal{P}(B)\to\mathcal{P}(A)$ mit $F^{-1}(M):=\{x\in A:f(x)\in M\},M\subset B$ beliebig. $f^{-1}(M)$ heißt $Urbild$ von M unter f .	
Bemerkung	Bem. 1.35
$f:A\to B$ und $g:C\to D$ sind gleich, falls sie als Teilmengen von $A\times B$ bzw. $C\times D$ gleich sind, insbesondere $B=D$.	
Definition	D. 1.36
Sei $f: A \to B$.	
 (i) f heißt injektiv, falls für alle x, y ∈ A aus f(x) = f(y) auch x = y folgt. (ii) f heißt surjektiv, falls f(A) = B. Wir sagen, dass f die Menge A auf B abbildet. Bei nicht-surjektiven Abbildungen sagt man A wird nach oder in B abgebildet. (iii) f heißt bijektiv, falls f injektiv und surjektiv ist. f ist eine Bijektion. (iv) ist f injektiv, so definieren wir die Inverse von f durch f⁻¹: R(f) → A mit f(x) ↦ x. Es gilt f⁻¹(f(x)) = x 	
	Bem. 1.37
Bemerkung (i) $\mathcal{I}(f(x))$ bezeichnet die <i>Inverse</i> von $f(x)$. (ii) $U(\{f(x)\})$ bezeichnet die Umkehrabbildung der Menge $\{f(x)\}$, sie ist definiert durch	Delli. 1.37
$U: \mathcal{P}(B) \to \mathcal{P}(A) \text{ mit } M \subset B \mapsto \{x \in A : f(x) \in M\}$ (iii) $f: A \to B \text{ induziert } g: \mathcal{P}(A) \to \mathcal{P}(B)$ $\Rightarrow \{f(x)\} = g(\{x\})$	
Definition (Komposition von Abbildungen)	D. 1.38
Seien $f:A\to B, g:B\to C$ Abbildungen. Dann heißt	2.1.00
$g \circ f : A \to C \text{ mit } x \mapsto g(f(x)) \text{ Komposition von } f \text{ und } g.$	- 440
Bemerkung Seien $f: A \to B, g: B \to C, h: C \to D$ Abbildungen. Dann gilt $h \circ (g \circ f) = (h \circ g) \circ f$ Sowie für Inverse und Umkehrabbildungen: $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$	Bem. 1.40

Definition (Relationen) Seien A, B Mengen. (i) $R \subset A \times B$ heißt **Relation**. Statt $(x,y) \in R$ sagen wir R(x,y) gilt. (ii) $R \subset A \times A$ heißt (a) **reflexiv**, falls R(x,x) für alle $x \in A$ gilt (b) **symmetrisch**, falls $R(x,y) \Rightarrow R(y,x)$ für alle $x,y \in A$ (c) antisymmetrisch, falls $R(x,y) \wedge R(y,x) \Rightarrow x = y$ für alle $x,y \in A$ (d) **transitiv**, falls $R(x,y) \wedge R(y,z) \Rightarrow R(x,z)$ für alle $x,y,z \in A$ (iii) $R \subset A \times A$ heißt \ddot{A} quivalenzrelation, falls R reflexiv, symmetrisch und transitiv ist. Schreibweise bei Äquivalenzrelationen: $x \sim y$ statt R(x,y)Definition Sei $R \subset A \times A$ eine Äquivalenz relation. Sei $x \in A$. dann heißt $[x] := \{y \in A : R(x,y)\}$ \ddot{A} quivalenzklasse von x. Schreibe $y \equiv x \pmod{R}$ für $y \in [x]$. $A/R := \{[x] : x \in A\}$ ist die Menge aller Äquivalenzklassen von R. DIE REELLEN ZAHLEN Part 1.5 **Definition** Die reellen Zahlen, R, sind eine Menge mit den folgenden Eigenschaften: (A) R ist ein Körper, d.h. es gibt die Abbildung (i) $+: \mathbb{R} \times \mathbb{R}$, die **Addition**, schreibe x + y für x(x, y)(ii) $\cdot : \mathbb{R} \times \mathbb{R}$, die Multiplikation, mit $(x,y) \mapsto x \cdot y \equiv xy$ bezeichnet und zwei ausgezeichneten Elementen: $0, 1 \text{ mit } 0 \neq 1$ Es gilt, soweit nicht anders angegeben, für alle $x, y, z \in \mathbb{R}$: (K1) x + (y + z) = (x + y) + z(K2) x + y = y + x(K3) 0 + x = x(K4) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = 0$, Schreibe -x für y : x + (-x) = 0(K5) (xy)z = x(yz)(K6) xy = yx(K7) 1x = x(K8) $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : xy = 1$, Schreibe x^{-1} für $y : xx^{-1} = 1$ (K9) x(y+z) = xy + xz(B) \mathbb{R} ist ein angeordneter Körper, d.h. es gibt eine Relation $R \subset \mathbb{R} \times \mathbb{R}$ (schreibe $x \leq y$ für R(x,y), die für alle $x,y,z\in\mathbb{R}$ folgendes erfüllt: (O1) $x \le y \land y \le z \Rightarrow x \le z$ (Transitivität) (Antisymmetrie) (O2) $x \le y \land y \le x \Rightarrow x = y$

D. 1.45

D. 1.41

D. 1.42

D. 1.44

Definition (Ordnung)

(O3) es gilt $x \le y$ oder $y \le x$ (O4) aus $x \le y$ folgt $x + z \le y + z$ (O5) aus $0 \le x$ und $0 \le y$ folgt $0 \le xy$.

besitzt ein Supremum in \mathbb{R} .

Eine transitive, antisymmetrische Relation \leq , für die stets $x \leq y$ oder $y \leq x$ gilt, heißt (totale) Ordnung.

(C) \mathbb{R} ist vollständig, d.h. jede nicht-leere nach oben beschränkte Teilmenge von \mathbb{R}

Schreibe $y \ge x$ statt $x \le y$ und x < y bzw. y > x für $x \le y$ und $x \ne y$

Definition (Supremum, Infin	•		D. 1.46
(i) $A \subset \mathbb{R}$ heißt $nach \ oben \ beschröden$			
(ii) $x_0 \in \mathbb{R}$ ist eine <i>obere Schranke</i>			
(iii) $x_0 \in \mathbb{R}$ ist das $Supremum$ von A A stets $x \geq x_0$ gilt. x_0 heißt $klei$			
(iv) Ist $\sup A \in A$, so heißt $\sup A$ Ma		none.	
(v) Ist $A \subset \mathbb{R}$ nicht nach oben beschrä		$=+\infty$. Für alle $x\in\mathbb{R}$ vereinbaren	
	, 0 1		
(vi) Entsprechend: nach unten bes untere Schranke), Minimum.	·		
	so gilt inf $A = -$	∞ . Alternativ: $-A = \{-a : a \in$	
A }, $A \subset \mathbb{R}$. A heißt nach unten beschränkt $-x = \sup -A$.	, falls $-A$ nach ob	en beschränkt ist. $x = \inf A$, falls	
(vii) Ist $A \subset \mathbb{R}$ nach oben und unten b	eschränkt, so heiß	st A $beschränkt$.	
Bemerkung	.,,		Bem. 1.47
$\sup \emptyset = -\infty \text{ und inf } \emptyset = +\infty$			20 1111
Definition			D. 1.49
Seien $a, b \in \mathbb{R}, a < b$.			2.1.13
(i) $(a, b) := \{x \in \mathbb{R} : a < x < b\}$		(offenes Intervall)	
(ii) $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$		(halboffenes Intervall)	
(iii) $[a, b) := \{x \in \mathbb{R} : a \le x < b\}$		(halboffenes Intervall)	
(iv) $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$		(abgeschlossenes Intervall)	
a,b heißen ${\it Endpunkte}$ der Intervalle	. .		
Lemma			L. 1.50
Sei $x \in \mathbb{R}$. Dann gilt $x0 = 0x = 0$.			
Lemma			L. 1.51
Sei $x \in \mathbb{R}$. Dann gelten			
(i) $(-1)x = -x$			
(ii) -(-x) = x			
(iii) $(-1)(-1) = 1$			
Lemma			L. 1.52
Sei $x \in \mathbb{R}$. Dann ist die additive Inve	erser $-x$ eindeutig	bestimmt.	
Lemma			L. 1.53
Es gelten $0 < 1$ und $-1 < 0$.			
Lemma			L. 1.54
Seien $x, y \in \mathbb{R}$. Dann gilt genau ein d	ler drei folgenden	Aussagen:	
x < y,	x = y,	x > y	
Lemma			L. 1.55
Gelte $0 < x < y$. Dann gelten:			
(i) $0 < x^{-1}$			
(ii) $0 < y^{-1} < x^{-1}$			1 1 50
Lemma			L. 1.56
$x, y \in \mathbb{R}$. Gilt $xy = 0 \Rightarrow x = 0$ oder y	y=0.		1 1 57
Lemma			L. 1.57
Seien $a, b \in \mathbb{R}$.			
 (i) Aus 0 ≤ a ≤ b folgt a² ≤ b² (ii) Aus a² ≤ b² und b ≥ 0 folgt a ≤ 	- h		
(ii) Aus $a \leq b^2$ und $b \geq 0$ folgt $a \leq b^2$	≥ 0 .		
9			

 $Mit \ a^2 = a \cdot a.$

Definition (Natürliche Zahlen) Die natürlichen Zahlen $\mathbb N$ sind die kleinste Teilmenge $A \subset \mathbb R$ mit (N1) = $\in A$ (N2) $a+1 \in A, \forall a \in A$		D. 1.58
$\mathbb N$ ist die kleinste Menge mit (N1), (N2) in dem Sinn, dass für alle (N1) und (N2) auch $\mathbb N\subset\mathcal N$ gilt. Lemma	e $\mathcal{N}\subset\mathbb{R}$ mit \mathcal{N} erfüllt	L. 1.59
Es gibt die natürlichen Zahlen. Sie sind eindeutig bestimmt.		L. 1.55
Lemma (Peanoaxiome)		L. 1.60
Es gelten: (i) $0 \in \mathbb{N}$		
(ii) jedes $a \in \mathbb{N}$ besitzt genau einen Nachfolger $a^+ \in \mathbb{N}$ (iii) 0 ist kein Nachfolger einer natürlichen Zahl (iv) $\forall n, m \in \mathbb{N} : m^+ = n^+ \Rightarrow n = m$		
(v) Sei $X \subset \mathbb{R}$ beliebig mit $0 \in X$ und $n^+ \in X, \forall n \in X$. Es folgt	$\mathbb{N} \subset X$	
Der Nachfolger von $a \in \mathbb{N}$ ist die Zahl $a^+ := a + 1 \in \mathbb{N}$.		
Theorem	n alla N > n > n ayah	T. 1.61
\mathbb{R} ist archimedisch , d.h. zu jedem $x \in \mathbb{R}$ gibt es $n_0 \in \mathbb{N}$, sodass fü $n \geq x$ gilt.	Tane $\mathbb{N} \ni n \geq n_0$ auch	
Korollar		K. 1.62
Sei $x \in \mathbb{R}$ beliebig und sei $a > 0$. (i) Dann gibt es $n \in \mathbb{N}$ mit $an \ge x$		
(ii) Dann gibt es $m \in \mathbb{N}$ mit $0 < \frac{1}{n} \le a$		
(iii) Ist $a \leq \frac{1}{n}$ für alle $n \in \mathbb{N}$ (oder alle $n \in \mathbb{N}$ mit $n \geq n_0$), so ist	$a \leq 0$.	
Theorem (Vollständige Induktion)		T. 1.63
Erfüllt $M \subset \mathbb{N}$ die Bedingungen		
(i) $0 \in M$	(Induktionsanfang)	
(ii) $n \in M \Rightarrow n+1 \in M$	(Induktionsschritt)	
so gilt $M = \mathbb{N}$. Theorem		T. 1.64
Sei p eine Aussageform auf \mathbb{N} . Gelten		1.1.04
(i) $p(0)$ und		
(ii) $p(n) \Rightarrow p(n+1)$ für alle $n \in \mathbb{N}$,		
so gilt $p(n)$ für alle $n \in \mathbb{N}$.		- 4 6-
Definition (Familie, Folge)		D. 1.67
 (i) Seien \(\mathcal{I}, X \) Mengen, \(f : \mathcal{I} \rightarrow X \) eine Abbildung. Dann heißt \(f \) a mit \(x_i = f(i), \forall i \in \mathcal{I} \) (\mathcal{I} \) bezeichnet die Indexmenge). (ii) Ist \(\mathcal{I} = \mathbb{N} \), so heißt \((x_i)_{i \in \mathcal{I}} \) Folge: \((x_i)_{i \in \mathbb{N}} \) \(\mathcal{I} \). (iii) Ist \(J \subseteq \mathcal{I} \), so heißt \((x_j)_{j \in J} \) Teilfamilie von \((x_i)_{i \in \mathcal{I}} \), falls die Weigen \((x_i)_{i \in \mathcal{I}} \), falls die Weigen \((x_i)_{i \in \mathcal{I}} \). 	, , , <u>-</u>	
men. (iv) Ist $\mathcal{I} = \mathbb{N}, J \subset \mathbb{N}$ unendlich, so heißt $(x_j)_{j \in J}$ Teilfolge von $(x_j)_{j \in J}$ eine Folge mit $j_{k+1} > j_k, \forall k$ und $J = \bigcup_{k \in \mathbb{N}} \{j_k\}$, so schreibe $(x_{j_k})_{j \in J}$		
(v) Sei $(x_i)_{i\in\mathcal{I}}$ eine Familie. Ist $\mathcal{I} = \{1, 2, \dots, n\} \ (\to (x_i)_{1\leq i\leq n})$:		
(a) $n=2$: Die Familie heißt $\operatorname{\textbf{\it Paar}}(x_1,x_2)$ (b) $n=3$: Die Familie heißt $\operatorname{\textbf{\it Triple}}(x_1,x_2,x_2)$		

(c) n beliebig: Die Familie heißt n-Tupel (x_1, x_2, \ldots, x_n)

Definition	D. 1.68
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen mit Obermenge X . (i) $\bigcup A_i := \{x \in X : (\exists i \in \mathcal{I} : x \in A_i)\}$	
(ii) $\bigcap_{i\in\mathcal{I}}^{i\in\mathcal{I}}A_i:=\{x\in X: (\forall i\in\mathcal{I}:x\in A_i)\}$	
(iii) $\mathcal{I} = \{1, 2, \dots, n\} : \bigcup_{i=1}^{n} A_i = \bigcup_{i \in \mathcal{I}} A_i$, sowie $\bigcap_{i=1}^{n} A_i = \bigcap_{i \in \mathcal{I}} A_i$	
	D. 1.69
Ist $(x_i)_{i\in\mathcal{I}}$ eine Familie reeller Zahlen, so gilt $\sup_{i\in\mathcal{I}} x_i := \sup\{x_i : i\in\mathcal{I}\}$, sowie	
$\inf_{i \in \mathcal{I}} x_i := \inf\{x_i : i \in \mathcal{I}\}.$	
Proposition	P. 1.70
 (i) Seien A, B ⊂ R, A ⊂ B. ⇒ sup A ≤ sup B, inf A ≥ inf B. (ii) Sei (A_i)_{i∈I} eine Familie von Mengen A_i ⊂ R, ∀i ∈ I. Dann definiere A := ∪ A_i 	
$\Rightarrow \sup_{i \in \mathcal{I}} A = \sup_{i \in \mathcal{I}} \sup_{i \in \mathcal{I}} A_i \text{ und inf } A = \inf_{i \in \mathcal{I}} \inf_{i \in \mathcal{I}} A_i.$	
Definition	D. 1.71
(i) Sei A eine Menge, $f: A \to \mathbb{R}$ eine Funktion. f heißt $nach oben (unten) beschränkt$, falls für $f(A)$ gilt:	
(a) $\sup f(A) = \sup_{x \in A} f(x)$	
(b) $\inf f(A) = \inf_{x \in A} f(x)$	
(ii) Sei A eine Menge und $f_i: A \to \mathbb{R}$ eine Familie von Funktionen. Gilt für alle $x \in A$, dass $\sup_{i \in \mathcal{I}} f_i(x) < \infty$, so definieren wir die Funktion	
$\sup_{i\in\mathcal{I}}f_i:A\to\mathbb{R}$	
$(\sup_{i\in\mathcal{I}}f_i)(x):=\sup_{i\in\mathcal{I}}f_i(x)$	
(iii) Ohne $\sup f_i(x) < \infty$ erhalten wir mit derselben Definition $\sup f_i : A \to \mathbb{R} \cup \{+\infty\}$	
(iv) Analog für $\inf_{i \in \mathcal{I}} f_i$.	
(v) Ist $\mathcal{I} = \{1, \dots, n\}$ gilt $\sup_{i \in \mathcal{I}} f_i = \sup(f_1, \dots, f_n) = \max(f_1, \dots, f_n).$	
Entsprechend für Infimum/Minimum.	- 4
Definition (Kartesisches Produkt)	D. 1.72
(i) Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Definiere das kartesische Produkt wie folgt:	
$\prod_{i \in \mathcal{I}} A_i := \{ (x_i)_{i \in \mathcal{I}} : (\forall i \in \mathcal{I} : x_i \in A_i) \}$	
(ii) Zu $j \in \mathcal{I}$ definieren wir die j -te Projektionsabbildung $\pi_j : \prod_{i} A_i \to A_j \text{ mit } \pi_j((x_i)_{i \in \mathcal{I}}) := x_j$	
Axiom	A. 1.74
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen $A_i\neq\emptyset, \forall i\in\mathcal{I}$. Dann gilt $\prod A_i\neq\emptyset$, d.h. es gibt	
eine Familie $(x_i)_{i\in\mathcal{I}}$ mit $x_i\in A_i, \forall i\in\mathcal{I}.$	

Proposition Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Dann gilt $\prod A_i = \emptyset \iff \exists i \in \mathcal{I} : A_i \neq \emptyset$.	P. 1.75
Lemma (Zornsches Lemma) Sei $M \neq \emptyset$ mit einer Teilordnung (= partielle Ordnung) \leq . Nehme an, jede total geordnete Teilmenge $\Lambda \subset M$ (= Kette) besitzt eine obere Schranke $b \in M$, d.h. $x \leq b, \forall x \in \Lambda$. Dann	L. 1.76
 enthält M ein maximales Element x₀, d.h. ∃x₀ ∈ M : x ≥ x₀ ⇒ x = x₀. Definition (Ausschöpfung, Partition, Überdeckung) Sei A eine Menge. (i) Eine Überdeckung von A ist eine Familie (A_i)_{i∈I} mit ∪ ⊃ A. (ii) Eine Partition von A ist eine Überdeckung (A_i)_{i∈I} mit A_i ⊂ A und A_i ∩ A_j = 	D. 1.77
(iii) Eine $Ausschöpfung$ von A ist eine aufsteigende Folge $(A_n)_{n\in\mathbb{N}}$ von Teilmengen von A , die $A_m \subset A_n, \forall m \leq n$ und $\bigcup_{n\in\mathbb{N}} A_n = A$ erfüllt.	
Proposition	P. 1.78
 (i) Sei ~ eine Äquivalenzrelation auf A. Dann bilden die Restklassen von ~ eine Partition von A. (ii) Sei (A_i)_{i∈I} eine Partition von A. Dann ist ~ mit x ~ y :⇔ ∃i ∈ I : x, y ∈ A_i eine Äquivalenzrelation auf A. 	
Lemma Seien A, B Mengen. Sei $(A_n)_{n \in \mathbb{N}}$ eine Ausschöpfung von A . Sei $(f_n)_{n \in \mathbb{N}}$ eine Familie von Abbildungen $f_n : A_n \to B$ mit $f_n _{A_m} = f_m$ für alle $m \le n$. Dann gibt es genau eine Funktion $f : A \to B$ mit $f(x) = f_n(x), \forall x \in A_n$ oder $f _{A_n} = f_n, \forall n \in \mathbb{N}$.	L. 1.79
Proposition (Rekursive Definition) Sei $B \neq \emptyset$ eine Menge, $x_0 \in B$ und $F : \mathbb{N} \times B \to B$ eine Funktion. Dann gibt es genau eine Funktion $f : \mathbb{N} \to B$ mit den Ergebnissen: (i) $f(0) = x_0$ und (ii) $f(n+1) = F(n, f(n))$ für alle $n \in \mathbb{N}$.	P. 1.80
f ist eine rekursiv definierte Funktion.	
Kardinalität	Part 1.6
Definition (Mächtigkeit) Seien A, B Mengen. (i) A, B heißen $gleich$ $mächtig$ $(A \sim B)$, falls es eine Bijektion $f: A \to B$ gibt. (ii) B heißt $mächtiger$ als A $(B \succ A)$ oder A $weniger$ $mächtig$ als B $(A \prec B)$, falls es eine injektive Abbildung $f: A \to B$ gibt. (iii) A heißt $abz\ddot{a}hlbar$, falls $A \sim \mathbb{N}$. (iv) A heißt $\ddot{u}berabz\ddot{a}hlbar$, falls A nicht höchstens $abz\ddot{a}hlbar$ ist. (vi) Sei A abz $\ddot{a}hlbar$, so heißt die Folge $(x_i)_{i\in\mathbb{N}}$ eine $Abz\ddot{a}hlung$ von A , falls $x_i \neq x_j$ für $i \neq j$ und $\bigcup_{i \in \mathbb{N}} \{x_i\} = A$.	D. 1.84

Bemerkung	Bem. 1.85
(i) \sim ist Äquivalenzrelation	
(ii) $A \prec B \prec C \Rightarrow A \prec C$	
(iii) $A \prec A$	
(iv) $G := \{2n : n \in \mathbb{N}\}, G \prec \mathbb{N} : 2n \mapsto 2n \text{ und } \mathbb{N} \prec G : n \mapsto 2n. \text{ Bijektiv: } \mathbb{N} \sim G$	T 1 06
Theorem (Schröder-Bernstein) Aus $A \prec B$ und $B \prec A$ folgt $A \sim B$.	T. 1.86
Proposition	P. 1.87
A,B,C sind Mengen. Seien $\varphi:A\to B,\psi:B\to C$ Abbildungen. Sei $f:A\to B$	1.1.01
Abbildung. Dann gelten:	
(i) Ist $\psi \circ \varphi$ injektiv, so ist φ injektiv	
(ii) Ist $\psi \circ \varphi$ surjektiv, so ist ψ surjektiv	
(iii) f surjektiv $\Leftrightarrow \exists g : B \to A, f \circ g = id_B$ (iv) f injektiv $\Leftrightarrow \exists g : B \to A, g \circ f = id_A$	
Korollar	K. 1.88
$A \prec B \Leftrightarrow \exists f: B \to A, f \text{ ist surjektiv.}$	111 2100
Definition	D. 1.89
Sei A eine Menge.	
(i) A heißt endlich , falls es eine injektive Abbildung $f:A\to\mathbb{N}$ und $m\in\mathbb{N}$ mit $f(a)ym, \forall a\in A$ gibt.	
(ii) A heißt unendlich , falls A nicht endlich ist.	
(iii) Gibt es eine bijektive Abbildung $f:A\to\{0,1,\ldots,m-1\}\subset\mathbb{N},$ so hat A die Kardinalität $m(A =m)$. Gibt es keine solche Abbildung, so gilt $ A =\infty$.	
(iv) Sei P eine Aussageform auf A . Dann gilt P für fast alle $i \in A$, falls $\{i \in A : \neg P(i)\}$	
endlich ist.	1 1 01
Lemma	L. 1.91
(i) Für jede endliche Menge A gilt $ A < \infty$, d.h. es gibt ein $m \in \mathbb{N}$ und eine Bijektion $f: A \to \{0, \dots, m-1\}$.	
(ii) Seien $m, n \in \mathbb{N}$ und $f : \{0, \dots, m\} \to \{0, \dots, n\}$ eine Bijektion. Dann gilt $n = m$. (\Rightarrow Kardinalität ist wohldefiniert).	
Lemma	L. 1.92
Sei $m \in \mathbb{N} \setminus \{0\}$ und $(a_i)_{1 \leq i \leq m}$ eine endliche Familie natürlicher Zahlen (oder reeller). Dann gibt es ein $i \in \{a, \dots, m\} : a_i \leq a_j, \forall 1 \leq j \leq m$. Schreibe $a_i = \min\{a_1, \dots, a_m\} \equiv \min(a_1, \dots, a_n)$.	
Entsprechend $\max\{a_1,\ldots,a_m\} \equiv \max(a_1,\ldots,a_n).$	1 1 02
Lemma Die netüwlichen Zehlen eind wehltgeerdnet, d.h. iede Menge M. C. N. M. 4.0. hegitet ein	L. 1.93
Die natürlichen Zahlen sind wohlgeordnet, d.h. jede Menge $M \subset \mathbb{N}, M \neq \emptyset$, besitzt ein kleinstes Element, d.h. $\exists a \in M : a \leq b, \forall b \in M$.	1 10
Lemma	L. 1.94
Sei A eine unendliche Menge. Dann besitzt A eine abzählbare Teilmenge.	L. 1.95
Lemma Sei A eine Menge. Dann ist A genau dann höchstes abzählbar, wenn A endlich ist oder	L. 1.95
$A \sim \mathbb{N}$.	
Lemma	L. 1.96
Sei A eine Menge. Dann ist A genau dann höchstens abzählbar, wenn es eine surjektive Abbildung $f:\mathbb{N}\to A$ gibt.	
$\begin{array}{c} \textbf{Proposition} \\ \mathbb{N} \times \mathbb{N} \sim \mathbb{N}. \end{array}$	P. 1.97

P. 1.97

Sei $k\in\mathbb{N}_{\geq0}$. Dann ist $\prod\limits_{i=1}^k\mathbb{N}=\mathbb{N}^k$ abzählbar. Dies gilt auch, wenn wir \mathbb{N} überall durch $A \sim \mathbb{N}$ ersetzen. L. 1.99 Sei $(A_i)_{i\in\mathbb{N}}$ eine Folge abzählbarer Mengen. Dann ist $A:=\bigcup_{i\in\mathbb{N}}A_i$ abzählbar. Bem. 1.100 Bemerkung P. 1.98 und L. 1.99 gelten auch mit "höchstens abzählbar" statt abzählbar. T. 1.101 Theorem (Cantor) Sei A eine Menge $\Rightarrow \mathcal{P}(A) \succ A$ und $\mathcal{P}(A) \not\sim A$. Betrag und Wurzel Part 1.7 **Definition** D. 1.102 (i) Sei $x \in \mathbb{R}$. Definiere den $\textbf{\textit{Betrag}}$ von x wie folgt: $|x| := \left\{ \begin{array}{ll} x, & x \geq 0 \\ -x, & x \leq 0 \end{array} \right.$ (ii) Ist $I \subset \mathbb{R}$ ein Intervall mit Endpunkten a und b, so heißt |a-b| $\textbf{\textit{Länge von }} I$. P. 1.104 **Proposition** Seien $x, a \in \mathbb{R}$. Dann gelten

Weitere Zahlen und Mächtigkeit

P. 1.98

PART 1.8

12 von 13

Proposition

(i) $x \leq |x|$

(ii) $|x| \le a \Leftrightarrow -a \le x \le a$ (iii) $|x| < a \Leftrightarrow -a < x < a$

<u>Konvergenz</u>	KAP. 2
Metrische Räume	Part 2.1
Folgen	Part 2.2
Definition Sei E ein metrischer Raum. Sei $x \in E, \varepsilon > 0$. Definiere $B_{\varepsilon}(x) := \{y \in E : d(y, x) < \varepsilon\}$	D. 2.1
die ε -Kugel. $B_{\varepsilon}(x)$ heißt auch ε -Umgebung von x Definition (Konvergenz)	D. 2.2
 Sei (x_n)_{n∈ℕ} ⊂ E eine Folge in einem metrischen Raum E. (i) Dann konvergiert (x_n)_{n∈ℕ} gegen a ∈ E, falls für beliebige ε > 0 <u>fast alle</u> (nur endlich viele liegen außerhalb) Folgeglieder in B_ε(a) liegen (ii) Konvergiert (x_n)_{n∈ℕ} gegen a ∈ E, so heißt a Limes oder Grenzwert der Folge (x_n)_{n∈ℕ}: 	
$a = \lim_{n \to \infty} x_n \text{ oder } x_n \to a \text{ für } n \to \infty \text{ oder } x_n \xrightarrow[n \to \infty]{} a.$	D 0.2
Bemerkung Die Definition von Konvergenz ist äquivalent zu (i) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $x_n \in B_{\varepsilon}(a)$ gilt. (ii) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $d(x_n, a) < \varepsilon$ gilt.	Bem. 2.3
Korollar (Bolzano-Weierstraß) Sei $(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$ eine beschränkte Folge, d.h. $\exists r>0:x_k\in B_r(0), \forall k\in\mathbb{N}$. Dann besitzt $(x_k)_{k\in\mathbb{N}}$ eine konvergente Teilfolge mit Grenzwert a und $ a \leq r$.	K. 2.4
Bemerkung	Bem. 2.5
In \mathbb{R}^n gilt: $(x_k)_{k\in\mathbb{N}}$ konvergiert $\Leftrightarrow (x_k^i)_{k\in\mathbb{N}}$ konvergiert für alle i .	
Definition (Cauchyfolge, Vollständigkeit)	D. 2.6
 (i) Eine Folge (x_n)_{n∈ℕ} in einem metrischen Raum E heißt Cauchyfolge (CF), falls es zu jedem ε > 0 ein n₀ ∈ ℕ mit d(x_k, x_l) < ε, ∀k, l ≥ n₀ gibt. (ii) Ein metrischer Raum, in dem jede CF konvergiert, heißt vollständiger metrischer Raum. 	
 (iii) Ein normierter Raum, in dem jede CF konvergiert, heißt vollständiger normierter Raum oder Banachraum (BR). (iv) Ein vollständiger Skalarproduktraum heißt Hilbertraum (HR). 	
Lemma	L. 2.7
Sei E ein metrischer Raum. Sei $(x_n)_{n\in\mathbb{N}}\subset E$ konvergent. Dann ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge.	
REIHEN	Part 2.3
Gleichmässige Konvergenz	Part 2.4