

THE UNIVERSITY OF TEXAS AT AUSTIN

EE381V LARGE SCALE OPTIMIZATION

Problem Set 1

Edited by \LaTeX

Department of Computer Science

STUDENT
Jimmy Lin

xl5224

COURSE COORDINATOR

Sujay Sanghavi

UNIQUE NUMBER

 $\overline{17350}$

RELEASE DATE

September 12, 2014

DUE DATE

September 18, 2014

TIME SPENT

10 hours

September 12, 2014

Table of Contents

1	Mat	tlab and Computational Assignment	2
	1.1	Gradient Descent on three matrices	2
		$1.1.1 X1, b1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	2
			:
		$1.1.3 X3, b3 \ldots $	4
	1.2	$\gamma=1$ for the second matrix	٦
2	Wri	itten Problems	6
	2.1	Orthogonal Subspaces	6
	2.2	Boyd and Vandenberghe, Ex. 2.10	6
	2.3	Boyd and Vandenberghe, Ex. 2.21	6
	2.4	Form a Half-Space	6
	2.5	Exists C s.t. $CA = B$	6
A	Cod	les Printout	7
	A.1	Gradient Descent Routine	7
	A.2	Running Script	8
		List of Figures	
	1	Illustration for gradient descent on X1, staring with b1 by $\gamma = 0.5$ and 3.0	6
	2		:
	3	Illustration for gradient descent on X3 staring with b3 by $\gamma = 0.005$ and 0.05	4
	4	Plotting figure for gradient descent with $\alpha = 1$ on the second matrix	F

1 Matlab and Computational Assignment

1.1 Gradient Descent on three matrices

Command to get executed:

1.1.1 *X*1, *b*1

- Range of γ that leads to convergence: (0,2)
- Range of γ that leads to divergence: $(2, +\infty)$
- Explanation: if $\gamma = 2$, the program indicates that

$$\forall k, \ f(x^{k+1}) = f(x^k)$$

Since the above equation is constantly true (independent of the minima), we can conclude that gradient descent with $\gamma=2$ goes to the opposite side of that quadratic curve. Intuitively, the program will diverge if we set larger $(\gamma>2)$ and converge if we set smaller $(\gamma<2)$.

• Two illustrative examples: $\gamma = 0.5$ and $\gamma = 3.0$

Figure 1: Illustration for gradient descent on X1, staring with b1 by $\gamma = 0.5$ and 3.0

1.1.2 *X*2, *b*2

- Range of γ that leads to convergence: (0,2)
- Range of γ that leads to divergence: $(2, +\infty)$
- Explanation: if $\gamma = 2$, the program indicates that

$$\forall k, \ f(x^{k+1}) = f(x^k)$$

Since the above equation is constantly true (independent of the minima), we can conclude that gradient descent with $\gamma=2$ goes to the opposite side of that quadratic curve. Intuitively, the program will diverge if we set larger $(\gamma>2)$ and converge if we set smaller $(\gamma<2)$.

• Two illustrative examples: $\gamma = 1.5$ and $\gamma = 3.0$

Figure 2: Illustration for gradient descent on X2, starting with b2 by $\gamma = 1.5$ and 3.0

1.1.3 *X*3, *b*3

- Range of γ that leads to convergence: (0, 0.02)
- Range of γ that leads to divergence: $(0.02, +\infty)$
- Explanation: if $\gamma = 0.02$, the program indicates that

$$\forall k, \ f(x^{k+1}) = f(x^k)$$

Since the above equation is constantly true (independent of the minima), we can conclude that gradient descent with $\gamma = 0.02$ goes to the opposite side of that quadratic curve. Intuitively, the program will diverge if we set larger ($\gamma > 0.02$) and converge if we set smaller ($\gamma < 0.02$).

• Two illustrative examples: $\gamma = 0.005$ and $\gamma = 0.05$

Figure 3: Illustration for gradient descent on X3 staring with b3 by $\gamma = 0.005$ and 0.05

1.2 $\gamma = 1$ for the second matrix

Command to get executed:

```
>> [b2_opt, iters, all_costs] = Gradient_Descent(X2, b2, 1);
```

Plotting: figure for $\gamma = 1$

Figure 4: Plotting figure for gradient descent with $\gamma = 1$ on the second matrix

Explanation: Through the smooth plotted curve, we guess that the gradient descent method got linear convergence when $\gamma = 1$ on X_2 . Hence, we trace convergence rate conv_rate = $f(x^k)/f(x^{k-1})$ as follows:

```
Iter: 2, Cost: 2.254428e-01, Conv_Rate: 1.020304
Iter: 3, Cost: 2.209565e-01, Conv_Rate: 1.020304
Iter: 4, Cost: 2.165594e-01, Conv_Rate: 1.020304
Iter: 5, Cost: 2.122499e-01, Conv_Rate: 1.020304
Iter: 6, Cost: 2.080261e-01, Conv_Rate: 1.020304
Iter: 7, Cost: 2.038864e-01, Conv_Rate: 1.020304
...
Iter: 384, Cost: 1.043098e-04, Conv_Rate: 1.020304
Iter: 385, Cost: 1.022340e-04, Conv_Rate: 1.020304
Iter: 386, Cost: 1.001996e-04, Conv_Rate: 1.020304
Iter: 387, Cost: 9.820558e-05, Conv_Rate: 1.020304
```

In terms of above dumps and the fact that $f(x^*) = 0$, we can conclude that when $\gamma = 1$

$$f(x^{k+1}) - f(x^*) = 1.020304 \cdot (f(x^k) - f(x^*))$$

2 Written Problems

- 2.1 Orthogonal Subspaces
- 2.2 Boyd and Vandenberghe, Ex. 2.10
- 2.3 Boyd and Vandenberghe, Ex. 2.21
- 2.4 Form a Half-Space
- **2.5** Exists C s.t. CA = B

A Codes Printout

A.1 Gradient Descent Routine

```
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%%% HW2: Gradient Descent
function [b, iter, all_costs] = Gradient_Descent(X, b_init, gamma)
eps = 10e-5
b = b_init;
last_cost = 0.5 * b' * X * b;
iter = 1;
all_costs = [];
while true,
           %% compute essential numerics and do gradient descent
          gradient = X * b;
          b = b - gamma * gradient;
          cost = 0.5 * b' * X * b;
           rate = (last_cost / cost);
           all_costs = [all_costs cost];
           %% output numeric information of this iteration
           iter_str = sprintf('Iter: %d, Cost: %e, Conv_Rate: %f',iter,cost,rate);
           disp(iter_str);
           %% quadratic optimization converges to zero
           if cost < eps,</pre>
                      disp('Converged to zeros!')
                      break
           end
           %% qudratic optimization diverges
           if cost >= last_cost && iter > 10,
                      disp('Problem diverges!')
                      break
          end
           %% prepare for next iteration
           last_cost = cost;
           iter = iter + 1;
end
%% uncomment following code for plotting individual gradient descent run
%plot f(b^(n)) with regard to n
%plot (1:iter, all_costs)
%title (sprintf ('Gradient Descent with gamma=%f', gamma))
%xlabel ('iteration: n')
%ylabel ('cost of function: f(b^n)')
end
```

A.2 Running Script

```
%%% Running scripts for applying gradient descent
%%% on three given dataset
%% for X1, b1
gamma1\_one = 0.5; gamma2\_two = 3;
[bl_opt_one, iterl_one, costsl_one] = Gradient_Descent(X1, bl, gammal_one);
[bl_opt_two, iter1_two, costs1_two] = Gradient_Descent(X1, b1, gamma2_two);
subplot (1, 2, 1)
plot (1:iter1_one, costs1_one)
axis ([-0.1*iter1_one 1.1*iter1_one -0.05*max(costs1_one) max(costs1_one)])
title (sprintf ('Gradient Descent with gamma=%f', gammal_one))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
subplot (1, 2, 2)
plot (1:iter1_two, costs1_two)
axis ([-0.1*iter1_two 1.1*iter1_two -0.05*max(costs1_two) max(costs1_two)])
title (sprintf ('Gradient Descent with gamma=%f', gamma2_two))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%% for X2, b2
gamma2\_one = 1.5; gamma2\_two = 3;
[b2_opt_one, iter2_one, costs2_one] = Gradient_Descent(X2, b2, gamma2_one);
[b2_opt_two, iter2_two, costs2_two] = Gradient_Descent(X2, b2, gamma2_two);
figure()
subplot (1, 2, 1)
plot (1:iter2_one, costs2_one)
axis ([-0.1*iter2_one 1.1*iter2_one -0.05*max(costs2_one) max(costs2_one)])
title (sprintf ('Gradient Descent with gamma=%f', gamma2_one))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
subplot (1, 2, 2)
plot (1:iter2_two, costs2_two)
axis ([-0.1*iter2_two 1.1*iter2_two -0.05*max(costs2_two) max(costs2_two)])
title (sprintf ('Gradient Descent with gamma=%f', gamma2_two))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
%% for X3, b3
gamma3_one = 0.005; gamma3_two = 0.05;
[b3_opt_one, iter3_one, costs3_one] = Gradient_Descent(X3, b3, gamma3_one);
[b3_opt_two, iter3_two, costs3_two] = Gradient_Descent(X3, b3, gamma3_two);
figure()
subplot (1, 2, 1)
plot (1:iter3_one, costs3_one)
axis ([-0.1*iter3_one 1.1*iter3_one -0.05*max(costs3_one) max(costs3_one)])
title (sprintf ('Gradient Descent with gamma=%f', gamma3_one))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
subplot (1, 2, 2)
plot (1:iter3_two, costs3_two)
axis ([-0.1*iter3_two 1.1*iter3_two -0.05*max(costs3_two) max(costs3_two)])
title (sprintf ('Gradient Descent with gamma=%f', gamma3_two))
xlabel ('iteration: n')
ylabel ('cost of function: f(b^n)')
```