Introduction to Machine Learning Independent Component Analysis

Barnabás Póczos

MACHINE LEARNING DEPARTMENT

Independent Component Analysis

Independent Component Analysis

$$x_1(t) = a_{11}s_1(t) + a_{12}s_2(t)$$
 $x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$

Model

Independent Component Analysys

Model

$$x_1(t) = a_{11}s_1(t) + a_{12}s_2(t)$$

$$x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)$$

We observe

$$\begin{pmatrix} x_1(1) \\ x_2(1) \end{pmatrix}, \begin{pmatrix} x_1(2) \\ x_2(2) \end{pmatrix}, \dots, \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

We want

$$\begin{pmatrix} s_1(1) \\ s_2(1) \end{pmatrix}, \begin{pmatrix} s_1(2) \\ s_2(2) \end{pmatrix}, \dots, \begin{pmatrix} s_1(t) \\ s_2(t) \end{pmatrix}$$

But we don't know $\{a_{ij}\}$, nor $\{s_i(t)\}$

Goal:

Estimate $\{s_i(t)\}$, (and also $\{a_{ij}\}$)

The Cocktail Party Problem **SOLVING WITH PCA**

The Cocktail Party Problem **SOLVING WITH ICA**

ICA vs PCA, Similarities

- Perform linear transformations
- Matrix factorization

PCA: low rank matrix factorization for compression

$$N \left\{ \begin{bmatrix} \chi \end{bmatrix} = \begin{bmatrix} U \end{bmatrix} S \right\} M < N$$

$$M \quad Columns of U = PCA vectors$$

ICA: full rank matrix factorization to remove dependency among the rows

ICA vs PCA, Similarities

- \square PCA: **X=US, U^TU=I**
- \square ICA: **X=AS**, **A** is invertible
- ☐ PCA **does** compression
 - M<N
- ☐ ICA does **not** do compression
 - same # of features (M=N)
- ☐ PCA just removes correlations, **not** higher order dependence
- ☐ ICA removes correlations, **and** higher order dependence
- ☐ PCA: some components are **more important** than others (based on eigenvalues)
- ☐ ICA: components are **equally important**

ICA vs PCA

Note

- PCA vectors are orthogonal
- ICA vectors are **not** orthogonal

ICA vs PCA

ICA basis vectors extracted from natural images

receptive fields of V1 cells..., deep neural networks

PCA basis vectors extracted from natural images

ICA Application, Removing Artifacts from EEG

- ☐ EEG ~ Neural cocktail party
- ☐ Severe *contamination* of EEG activity by
 - eye movements
 - blinks
 - muscle
 - heart, ECG artifact
 - vessel pulse
 - electrode noise
 - line noise, alternating current (60 Hz)
- ☐ ICA can improve signal
 - effectively detect, separate and remove activity in EEG records from a wide variety of artifactual sources. (Jung, Makeig, Bell, and Sejnowski)
- ☐ ICA weights (mixing matrix) help find **location** of sources

ICA Application, Removing Artifacts from EEG

Independent Components

Fig from Jung

Removing Artifacts from EEG

Summed Projection of Selected Components

ICA for Image Denoising

original

noisy ICA denoised

(Hoyer, Hyvarinen)

Wiener filtered

median filtered

ICA for Motion Style Components

- Method for analysis and synthesis of human motion from motion captured data
- ☐ Provides perceptually meaningful "style" components
- □ 109 markers, (327dim data)
- Motion capture ⇒ data matrix

Goal: Find motion style components.

ICA \Rightarrow 6 independent components (emotion, content,...)

(Mori & Hoshino 2002, Shapiro et al 2006, Cao et al 2003)

walk

walk with sneaky

sneaky

sneaky with walk

ICA Theory

Statistical (in)dependence

Definition (Independence)

 Y_1, Y_2 are independent $\Leftrightarrow p(y_1, y_2) = p(y_1) p(y_2)$

Definition (Shannon entropy)

$$H(\mathbf{Y}) \doteq H(Y_1, \dots, Y_m) \doteq -\int p(y_1, \dots, y_m) \log p(y_1, \dots, y_m) d\mathbf{y}.$$

Definition (KL divergence)

$$0 \le KL(f||g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$

Definition (Mutual Information)

$$0 \le I(Y_1, \dots, Y_M) \doteq \int p(y_1, \dots, y_M) \log \frac{p(y_1, \dots, y_M)}{p(y_1) \dots p(y_M)} d\mathbf{y}$$

Solving the ICA problem with i.i.d. sources

ICA problem: $\mathbf{x} = \mathbf{A}\mathbf{s}$, $\mathbf{s} = [s_1; \dots; s_M]$ are jointly independent.

Ambiguity:

 $\mathbf{s} = [s_1; \dots; s_M]$ sources can be recovered only up to sign, scale and permutation.

Proof:

- P = arbitrary permutation matrix,
- \bullet $\Lambda =$ arbitrary diagonal scaling matrix.

$$\Rightarrow x = [AP^{-1}\Lambda^{-1}][\Lambda Ps]$$

Solving the ICA problem

Lemma:

We can assume that E[s] = 0.

Proof:

Removing the mean does not change the mixing matrix.

$$\mathbf{x} - E[\mathbf{x}] = \mathbf{A}(\mathbf{s} - E[\mathbf{s}]).$$

In what follows we assume that $E[ss^T] = I_M$, E[s] = 0.

Whitening

• Let $\Sigma \doteq cov(\mathbf{x}) = E[\mathbf{x}\mathbf{x}^T] = \mathbf{A}E[\mathbf{s}\mathbf{s}^T]\mathbf{A}^T = \mathbf{A}\mathbf{A}^T$. (We assumed centered data)

• Do **SVD**: $\Sigma \in \mathbb{R}^{N \times N}$, $rank(\Sigma) = M$, $\Rightarrow \Sigma = \mathbf{U}\mathbf{D}\mathbf{U}^T$, where $\mathbf{U} \in \mathbb{R}^{N \times M}$, $\mathbf{U}^T\mathbf{U} = \mathbf{I}_M$, **Signular vectors** $\mathbf{D} \in \mathbb{R}^{M \times M}$, diagonal with rank M. **Singular values**

Whitening (continued)

- ullet Let $\mathbf{Q} \doteq \mathbf{D}^{-1/2} \mathbf{U}^T \in \mathbb{R}^{M \times N}$ whitening matrix
- Let $A^* \doteq QA$
- $x^* \doteq Qx = QAs = A^*s$ is our new (whitened) ICA task.

We have,

$$E[x^*x^{*T}] = E[Qxx^TQ^T] = Q\Sigma Q^T = (D^{-1/2}U^T)UDU^T(UD^{-1/2}) = I_M$$

$$\Rightarrow E[\mathbf{x}^*\mathbf{x}^{*T}] = \mathbf{I}_M$$
, and $\mathbf{A}^*\mathbf{A}^{*T} = \mathbf{I}_M$.

Whitening solves half of the ICA problem

Note:

The number of free parameters of an N by N orthogonal matrix is (N-1)(N-2)/2.

⇒ whitening solves **half** of the ICA problem

After whitening it is enough to consider orthogonal matrices for separation.

Solving ICA

- ICA task: Given x,
 - \Box find **y** (the estimation of **s**),
 - \Box find **W** (the estimation of A^{-1})
- **ICA** solution: y=Wx
 - \square Remove mean, E[x]=0
 - \Box Whitening, $E[\mathbf{x}\mathbf{x}^{\mathsf{T}}]=\mathbf{I}$
 - ☐ Find an orthogonal **W** optimizing an objective function
 - Sequence of 2-d Jacobi (Givens) rotations

Optimization Using Jacobi Rotation Matrices

$$\mathbf{G}(p,q,\theta) \doteq \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & \cos(\theta) & \dots & -\sin(\theta) & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & \sin(\theta) & \dots & \cos(\theta) & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix} \leftarrow \mathbf{P} \\ \in \mathbf{R}^{M \times M} \\ \leftarrow \mathbf{q}$$

Observation :
$$x = As$$

Estimation :
$$y = Wx$$

$$\mathbf{W} = \arg\min_{\tilde{\mathbf{W}} \in \mathcal{W}} J(\tilde{\mathbf{W}}\mathbf{x}),$$

where
$$\mathcal{W} = \{\mathbf{W} | \mathbf{W} = \prod_i G(p_i, q_i, \theta_i)\}$$

ICA Cost Functions

Let y = Wx, $y = [y_1; ...; y_M]$, and let us measure the dependence using Shannon's mututal information:

$$J_{ICA_1}(\mathbf{W}) \doteq I(y_1, \dots, y_M) \doteq \int p(y_1, \dots, y_M) \log \frac{p(y_1, \dots, y_M)}{p(y_1) \dots p(y_M)} d\mathbf{y},$$

Let
$$H(\mathbf{y}) \doteq H(y_1, \dots, y_m) \doteq -\int p(y_1, \dots, y_m) \log p(y_1, \dots, y_m) d\mathbf{y}$$
.

Lemma

$$H(\mathbf{W}\mathbf{x}) = H(\mathbf{x}) + \log|\det \mathbf{W}|$$
 Proof: Homework

Therefore,

$$I(y_1, ..., y_M) = \int p(y_1, ..., y_M) \log \frac{p(y_1, ..., y_M)}{p(y_1) ... p(y_M)}$$

$$= -H(y_1, ..., y_M) + H(y_1) + ... + H(y_M)$$

$$= -H(x_1, ..., x_M) - \log |\det \mathbf{W}| + H(y_1) + ... + H(y_M).$$

ICA Cost Functions

$$I(y_1, ..., y_M) = \int p(y_1, ..., y_M) \log \frac{p(y_1, ..., y_M)}{p(y_1) ... p(y_M)}$$

$$= -H(y_1, ..., y_M) + H(y_1) + ... + H(y_M)$$

$$= -H(x_1, ..., x_M) - \log |\det \mathbf{W}| + H(y_1) + ... + H(y_M).$$

 $H(x_1,\ldots,x_M)$ is constant, $\log |\det \mathbf{W}| = 0$.

Therefore,

$$\int J_{ICA_2}(\mathbf{W}) \doteq H(y_1) + \ldots + H(y_M)$$

The covariance is fixed: I. Which distribution has the largest entropy?

 \Rightarrow go away from normal distribution

Central Limit Theorem

The sum of independent variables converges to the normal distribution

- \Rightarrow For separation go far away from the normal distribution
- ⇒ Negentropy, |kurtozis| maximization

Maximum Entropy

Independent Subspace Analysis

Hidden, independent sources (subspaces)

$$S^1 \in \mathbb{R}^2$$

$$S^2 \in \mathbb{R}^2$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$oldsymbol{X}^1 \in \mathbb{R}^2 \, oldsymbol{X}^2 \in \mathbb{R}^2 \, oldsymbol{X}^3 \in \mathbb{R}^2$$

Observation

$$X^{i} = A_{i1}S^{1} + A_{i2}S^{2} + A_{i3}S^{3}, A_{ij} \in \mathbb{R}^{2 \times 2}$$

 $\mathbf{A} \in \mathbb{R}^{6 \times 6}$ unknown mixing matrix

$$X^1 \in \mathbb{R}^2 X^2 \in \mathbb{R}^2 X^3 \in \mathbb{R}^2$$

$$X = \begin{pmatrix} X^1 \\ X^2 \\ X^3 \end{pmatrix} = AS \in \mathbb{R}^6$$

Goal:

Estimate A and S observing samples from X=AS only

Independent Subspace Analysis

Hidden sources

$$S = egin{pmatrix} S^1 \ S^2 \ S^3 \end{pmatrix} \in \mathbb{R}^6$$

Observation

$$X = \begin{pmatrix} X^1 \\ X^2 \\ X^3 \end{pmatrix} = \mathrm{AS} \in \mathbb{R}^6$$

Estimation

$$\hat{\mathbf{S}} = \mathbf{W}\mathbf{X} = \mathbf{W}\mathbf{A}\mathbf{S} \in \mathbb{R}^6$$
 $\mathbf{W} \in \mathbb{R}^{6 \times 6}$

In case of perfect separation, **WA** is a block permutation matrix.

Objective: $\min_{\mathbf{W} \in \mathbb{R}^{6 \times 6}} I(\hat{S}^1, \hat{S}^2, \hat{S}^3)$

ICA Algorithms

ICA algorithm based on Kurtosis maximization

Kurtosis = 4th order cumulant

Measures

- •the distance from normality
- •the degree of peakedness

•
$$\kappa_4(y) = \mathsf{E}\{y^4\} - \underbrace{3\left(\mathsf{E}\{y^2\}\right)^2}_{= 3 \text{ if } \mathsf{E}\{y\} = 0 \text{ and whitened}}$$

The Fast ICA algorithm (Hyvarinen)

- Given whitened data z
- Estimate the 1^{st} ICA component:

Probably the most famous ICA algorithm

$$\star y = \mathbf{w}^T \mathbf{z}$$
, $\|\mathbf{w}\| = 1$, $\Leftarrow \mathbf{w}^T = 1^{st}$ row of \mathbf{W}

$$\star$$
 maximize kurtosis $f(\mathbf{w}) \doteq \kappa_4(y) \doteq \mathbb{E}[y^4]$ -3 with constraint $h(\mathbf{w}) = \|\mathbf{w}\|^2 - 1 = 0$

* At optimum
$$f'(\mathbf{w}) + \lambda h'(\mathbf{w}) = 0^T$$
 (λ Lagrange multiplier)
$$\Rightarrow 4\mathbb{E}[(\mathbf{w}^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w} = 0$$

Solve this equation by Newton-Raphson's method.

Newton method for finding a root

Example: Finding a Root

http://en.wikipedia.org/wiki/Newton%27s_method

Newton Method for Finding a Root

Goal:
$$\phi: \mathbb{R} \to \mathbb{R}$$

$$\phi(x^*) = 0$$

$$x^* = ?$$

Linear Approximation (1st order Taylor approx):

$$\phi(x + \Delta x) = \phi(x) + \phi'(x)\Delta x + o(|\Delta x|)$$

$$0 \approx \phi(x) + \phi'(x)\Delta x$$
$$x^* - x = \Delta x = -\frac{\phi(x)}{\phi'(x)}$$
$$x_{k+1} = x_k - \frac{\phi(x)}{\phi'(x)}$$

Illustration of Newton's method

Goal: finding a root

$$\widehat{f}(x) = f(x_0) + f'(x_0)(x - x_0)$$

Newton Method for Finding a Root

This can be generalized to multivariate functions

$$F:\mathbb{R}^n\to\mathbb{R}^m$$

$$0_m = F(x^*) = F(x + \Delta x) = F(x) + \nabla F(x) \Delta x + o(|\Delta x|)$$

Therefore,

$$0_m = F(x) + \nabla F(x) \Delta x$$

$$\Delta x = -[\nabla F(x)]^{-1}F(x)$$

[Pseudo inverse if there is no inverse]

$$\Delta x = x_{k+1} - x_k$$
, and thus

$$x_{k+1} = x_k - [\nabla F(x_k)]^{-1} F(x_k)$$

Newton method: Start from x_0 and iterate.

Newton method for FastICA

The Fast ICA algorithm (Hyvarinen)

Solve: $F(\mathbf{w}) = 4\mathbb{E}[(\mathbf{w}^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w} = 0$

Note:

$$y = \mathbf{w}^T \mathbf{z}$$
, $\|\mathbf{w}\| = 1$, \mathbf{z} white $\Rightarrow \mathbb{E}[(\mathbf{w}^T \mathbf{z})^2] = 1$

The derivative of F:

$$F'(\mathbf{w}) = 12\mathbb{E}[(\mathbf{w}^T \mathbf{z})^2 \mathbf{z} \mathbf{z}^T] + 2\lambda \mathbf{I}$$

$$\sim 12\mathbb{E}[(\mathbf{w}^T \mathbf{z})^2]\mathbb{E}[\mathbf{z} \mathbf{z}^T] + 2\lambda \mathbf{I}$$

$$= 12\mathbb{E}[(\mathbf{w}^T \mathbf{z})^2]\mathbf{I} + 2\lambda \mathbf{I}$$

$$= 12\mathbf{I} + 2\lambda \mathbf{I}$$

The Fast ICA algorithm (Hyvarinen)

The Jacobian matrix becomes diagonal, and can easily be inverted.

$$\mathbf{w}(k+1) = \mathbf{w}(k) - [F'(\mathbf{w}(k)]^{-1} F(\mathbf{w}(k))$$

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \frac{4\mathbb{E}[(\mathbf{w}(k)^T \mathbf{z})^3 \mathbf{z}] + 2\lambda \mathbf{w}(k)}{12 + 2\lambda}$$

$$(12+2\lambda)\mathbf{w}(k+1) = (12+2\lambda)\mathbf{w}(k) - 4\mathbb{E}[(\mathbf{w}(k)^T\mathbf{z})^3\mathbf{z}] - 2\lambda\mathbf{w}(k)$$

$$-\frac{12+2\lambda}{4}\mathbf{w}(k+1) = -3\mathbf{w}(k) + \mathbb{E}[(\mathbf{w}(k)^T\mathbf{z})^3\mathbf{z}]$$

Therefore,

Let
$$\mathbf{w}_1$$
 be the fix pont of:
$$\tilde{\mathbf{w}}(k+1) = \mathbb{E}[(\mathbf{w}(k)^T\mathbf{z})^3\mathbf{z}] - 3\mathbf{w}(k)$$

$$\mathbf{w}(k+1) = \frac{\tilde{\mathbf{w}}(k+1)}{\|\tilde{\mathbf{w}}(k+1)\|}$$

• Estimate the 2^{nd} ICA component similarly using the $\mathbf{w} \perp \mathbf{w}_1$ additional constraint... and so on ...

Thanks for your Attention