IT'S A SMALL WORLD!

Apon the recommendation of the Faculty and by the authority of the

Board of Trustees, this Institution has conferred upon

Devon Carlisle Estes

the degree of

Master of Music

with all the rights, privileges and honors thereunto appertaining.

In witness whereof, the authorities of the Manhattan School of Music have affixed their signatures

this thirty-first day of May, two thousand and nine.

Duncan Watts

Steven Strogatz

$$C_i = rac{2|\{e_{jk}: v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i-1)}.$$

$$C_i = rac{2|\{e_{jk}: v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i-1)}.$$

$$ar{C} = rac{1}{n} \sum_{i=1}^n C_i.$$

@devoncestes

$$C_i = rac{2|\{e_{jk}: v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i-1)}.$$

$$ar{C} = rac{1}{n} \sum_{i=1}^n C_i.$$

For a single node:

- For a single node:
 - How many neighbors do I have?

- For a single node:
 - How many neighbors do I have?
 - How many possible connections are there between my neighbors?

- For a single node:
 - How many neighbors do I have?
 - How many possible connections are there between my neighbors?
 - How many actual connections are there between my neighbors?

- For a single node:
 - How many neighbors do I have?
 - How many possible connections are there between my neighbors?
 - How many actual connections are there between my neighbors?
 - Clustering coefficient = Actual connections / Possible connections

Devon Estes Lambda Days 2018

Devon Estes Lambda Days 2018 @devoncestes

Take all possible pairs of nodes in a graph

- Take all possible pairs of nodes in a graph
- For each pair, find the shortest path length

- Take all possible pairs of nodes in a graph
- For each pair, find the shortest path length
- Average all shortest path lengths

"Models of dynamical systems with small-world coupling display enhand signal-propagation speed, computational power, and synchronizability."	
— "Collective dynamics of 'small-world' networks" by Duncan J. Watts & Steven H. Strogatz	Z

facebook Generation >500 MW Coal Natural gas Nuclear Renewable A Hydro Major transmission 230-300 kv 300-400 kv >400 kv ys 2018 DC line (wdevoncestes

facebook Generation >500 MW Coal Natural gas Nuclear Renewable A Hydro Major transmission 230-300 kv 300-400 kv >400 kv DC line (wdevoncestes

ARETHEY IN OUR SOFTWARE?

ARETHEY IN OUR CODE?

Home Features Learn Develop Plugins Services Consortium

The Open Graph Viz Platform

Gephi is the leading visualization and exploration software for all kinds of graphs and networks. Gephi is open-source and free.

Runs on Windows, Mac OS X and Linux.

Learn More on Gephi Platform »

Release Notes | System Requirements

ScreenshotsVideos

Support us! We are non-profit. Help us to innovate and empower the community by donating only 8€:

APPLICATIONS

- Exploratory Data Analysis: intuition-oriented analysis by networks manipulations in real time.
- Link Analysis: revealing the underlying structures of associations between objects.
- Social Network Analysis: easy creation of social data connectors to map community organizations and small-world networks.
- Biological Network analysis: representing patterns of biological data.
- Poster creation: scientific work promotion with hi-quality printable maps.

Learn More »

Like Photoshop™ for graphs.

— the Community

See All »

0

LATEST NEWS

- Gephi updates with 0.9.2 version
- Gephi updates with 0.9.1 version
- A close look at the Gephi user community
- Gephi 0.9 released: Play with network data again
- Gephi boosts its performance with new "GraphStore" core

Tweets by @Gephi

PAPERS

Bastian M., Heymann S., Jacomy M. (2009). Gephi:

5 Phoenix web applications

5 Phoenix web applications

9 libraries

5 Phoenix web applications

9 libraries

* I am not a real scientist

Parameters:

Network Interpretation: undirected

Results:

Average Clustering Coefficient: 0.104

Total triangles: 275

The Average Clustering Coefficient is the mean value of individual coefficients.

Clustering Coefficient Distribution

Algorithm:

Parameters: Network Interpretation: undirected Results: Average Clustering Coefficient: 0.104 Total triangles: 275 The Average Clustering Coefficient is the mean value of individual coefficients. **Clustering Coefficient Distribution** 240 220 200 180 **8** 120 100 80 60 40 20 Value

Algorithm:

Parameters:

Network Interpretation: undirected

Results:

Average Clustering Coefficient: 0.211 Total triangles: 277

The Average Clustering Coefficient is the mean value of individual coefficients.

Clustering Coefficient Distribution

Algorithm:

Parameters:

Network Interpretation: undirected

Results:

Average Clustering Coefficient: 0.207

Total triangles: 143

The Average Clustering Coefficient is the mean value of individual coefficients.

Clustering Coefficient Distribution

Algorithm:

Parameters:

Network Interpretation: undirected

Results:

Average Clustering Coefficient: 0.337

Total triangles: 249

The Average Clustering Coefficient is the mean value of individual coefficients.

Parameters:

Network Interpretation: undirected

Results:

Average Clustering Coefficient: 0.319

Total triangles: 262

The Average Clustering Coefficient is the mean value of individual coefficients.

Clustering Coefficient Distribution 30 25 20 15 10 5 0 1 1 2

Value

Parameters:

Network Interpretation: undirected

Results:

Average Clustering Coefficient: 0.315

Total triangles: 87

The Average Clustering Coefficient is the mean value of individual coefficients.

Clustering Coefficient Distribution

Parameters:

Network Interpretation: undirected

Results:

Average Clustering Coefficient: 0.207

Total triangles: 319

The Average Clustering Coefficient is the mean value of individual coefficients.

Clustering Coefficient Distribution

SMALL-WORLD NETWORK NOT FOUND


```
defmodule Benchee do
  def run(jobs, config_opts) do
    # convert user config_opts into structured data
    # get information about the system on which the benchmarks are running
    # convert user given benchmarking jobs into structured data
    # take benchmarking measurements
    # calculate statistics from measurements
    # output results to terminal
    end
end
```

```
defmodule Benchee do
 def run(jobs, config_opts) do
    config
    > convert_user_opts()
    > get_system_info()
    > add_benchmarking_jobs(jobs)
    > measure_runtimes()
    > calculate_statistics()
    > output_results()
  end
 def convert user opts(config opts) do
   # ...
  end
 def get_system_info(benchmarking_suite) do
   # ...
  end
end
```

```
defmodule Benchee do
 # ...
 def convert_user_opts(config_opts) do
   config_opts
    > step_1
    > step_2
    > step_3
    > step_4
    > step_5
  end
 defp step_1(data) do
   # ...
  end
 defp step_2(data) do
   # ...
  end
 #
end
```

```
defmodule Benchee do
  def run(jobs, config_opts) do
    config
     > Benchee.Options.convert()
     > Benchee.System.info()
     > Benchee.Benchmark.add(jobs)
     > Benchee.Runner.run()
     > Benchee.Statistics.calculate()
     > Benchee.ConsoleFormatter.output_results()
  end
end
defmodule Benchee.Options do
 # ...
end
defmodule Benchee.System do
  # ...
end
# ...
```


"We hope that our work will stimulate further studies of small world networks... Although small-world architecture has not received much attention, we suggest that it will probably turn out to be widespread in biological, social and man-made systems, often with important dynamical consequences."

- "Collective dynamics of 'small-world' networks" by Duncan J. Watts & Steven H. Strogatz

Relationships between types?

- Relationships between types?
- Message sending in a large scale OTP application?

- Relationships between types?
- Message sending in a large scale OTP application?
- Relationships between services in a microservice architecture?

- Relationships between types?
- Message sending in a large scale OTP application?
- Relationships between services in a microservice architecture?
- Consensus seeking algorithms in distributed systems?

- Relationships between types?
- Message sending in a large scale OTP application?
- Relationships between services in a microservice architecture?
- Consensus seeking algorithms in distributed systems?
- Blockchain?

