TS: Fonction Exponentielle: Exercice 2

Sébastien Harinck

www.cours-futes.com

1)
$$e^x - 1 = 0$$

- 1) $e^x 1 = 0$
- 2) $e^x + 1 = 0$

- 1) $e^x 1 = 0$
- 2) $e^x + 1 = 0$
- 3) $e^{2x} = e^{x+4}$

1)
$$e^x - 1 = 0$$

 $e^x - 1 = 0$

1)
$$e^{x} - 1 = 0$$

 $e^{x} - 1 = 0$
 $e^{x} = 1$

1)
$$e^{x} - 1 = 0$$

 $e^{x} - 1 = 0$
 $e^{x} = 1$
 $x = 0$

1)
$$e^{x} - 1 = 0$$

 $e^{x} - 1 = 0$
 $e^{x} = 1$
 $x = 0$

1)
$$e^{x} - 1 = 0$$

 $e^{x} - 1 = 0$
 $e^{x} = 1$
 $x = 0$

1)
$$e^{x} - 1 = 0$$

 $e^{x} - 1 = 0$
 $e^{x} = 1$

$$x = 0$$

1. Vous devez savoir que $e^0 = 1$.

1)
$$e^{x} - 1 = 0$$

 $e^{x} - 1 = 0$
 $e^{x} = 1$

x = 0

Justification:

1. Vous devez savoir que $e^0 = 1$. Il s'agit d'une propriété de la fonction exponentielle.

1)
$$e^x - 1 = 0$$

 $e^x - 1 = 0$

$$e^x = 1$$

$$x = 0$$

- 1. Vous devez savoir que $e^0=1$. Il s'agit d'une propriété de la fonction exponentielle.
- 2. Il n'y a pas d'autres solutions dans \mathbb{R} .

1)
$$e^x - 1 = 0$$

 $e^x - 1 = 0$

$$e^x = 1$$

 $x = 0$

- 1. Vous devez savoir que $e^0 = 1$. Il s'agit d'une propriété de la fonction exponentielle.
- 2. Il n'y a pas d'autres solutions dans \mathbb{R} . Comme la fonction exponentielle est strictement croissante sur \mathbb{R} ,

1)
$$e^x - 1 = 0$$

 $e^x - 1 = 0$

$$e^x = 1$$
$$x = 0$$

- 1. Vous devez savoir que $e^0 = 1$. Il s'agit d'une propriété de la fonction exponentielle.
- 2. Il n'y a pas d'autres solutions dans \mathbb{R} . Comme la fonction exponentielle est strictement croissante sur \mathbb{R} , on en déduit que l'équation $e^x = m$ admet une unique solution dans \mathbb{R} .

1)
$$e^x - 1 = 0$$

 $e^x - 1 = 0$

$$e^x = 1$$
$$x = 0$$

- 1. Vous devez savoir que $e^0 = 1$. Il s'agit d'une propriété de la fonction exponentielle.
- 2. Il n'y a pas d'autres solutions dans \mathbb{R} . Comme la fonction exponentielle est strictement croissante sur \mathbb{R} , on en déduit que l'équation $e^x = m$ admet une unique solution dans \mathbb{R} .

Explication Graphique : ...

1)
$$e^x - 1 = 0$$

 $e^x - 1 = 0$

$$e^x = 1$$
$$x = 0$$

- 1. Vous devez savoir que $e^0 = 1$. Il s'agit d'une propriété de la fonction exponentielle.
- 2. Il n'y a pas d'autres solutions dans \mathbb{R} . Comme la fonction exponentielle est strictement croissante sur \mathbb{R} , on en déduit que l'équation $e^x = m$ admet une unique solution dans \mathbb{R} .

Explication Graphique : ...

2)
$$e^x + 1 = 0$$

 $e^x + 1 = 0$

Comme la fonction exponentielle est toujours positive sur \mathbb{R} , il n'existe aucune solution pour résoudre cette équation dans \mathbb{R} .

2)
$$e^x + 1 = 0$$

 $e^x + 1 = 0$

 $e^{x} = -1$

Comme la fonction exponentielle est toujours positive sur \mathbb{R} , il n'existe aucune solution pour résoudre cette équation dans \mathbb{R} .

$$\Leftrightarrow e^{2x} = e^{x+4}$$

- $\Leftrightarrow e^{2x} = e^{x+4}$
- \Leftrightarrow 2x = x + 4

- $\Leftrightarrow e^{2x} = e^{x+4}$
- \Leftrightarrow 2x = x + 4
- $\Leftrightarrow x = 4$