Leçon 204. Connexité. Exemples et applications.

I. Connexité et connexité par arcs

I.1. Espaces connexes et premières propriétés

- 1. DÉFINITION. Un espace topologique X est *connexe* si, pour tous ouverts O_1 et O_2 de X tels que $X = O_1 \sqcup O_2$, on a $O_1 = \emptyset$ ou $O_2 = \emptyset$.
- 2. EXEMPLE. Le segment $[0,1] \subset \mathbf{R}$ est connexe. Un ensemble muni de sa topologie discrète n'est pas connexe. En particulier, l'espace \mathbf{Z} n'est pas connexe.
- 3. Proposition. Soit X un espace topologique. Les points suivants sont équivalents :
 - l'espace X est connexe;
 - pour tous fermés F_1 et F_2 de X tels que $X = F_1 \sqcup F_2$, on a $F_1 = \emptyset$ ou $F_2 = \emptyset$;
 - les seuls parties ouvertes et fermées de X sont X et \emptyset ;
 - toute application continue de X dans \mathbf{Z} est constante.
- 4. DÉFINITION. Une partie $Y \subset X$ est connexe dans l'espace X si l'ensemble Y muni de la topologie induite est connexe.
- 5. Proposition. Soit $A \subset X$ une partie. Alors toute partie connexe $C \subset X$ qui rencontre l'intérieur \mathring{A} et l'extérieur $X \setminus \overline{A}$ de A rencontre la frontière.
- 6. Théorème. Soit X et Y deux espaces topologiques.
 - Soit $f: X \longrightarrow Y$ une application continue. Si l'espace X est connexe, alors l'image f(X) est connexe.
 - Soient $A \subset X$ une partie connexe et $B \subset X$ une partie vérifiant $A \subset B \subset \overline{A}$. Alors cette dernière est connexe.
- 7. Application. Tout segment $[a, b] \subset \mathbf{R}$ est connexe.
- 8. Remarque. L'image réciproque d'un espace connexe n'est pas connexe. En effet, l'image réciproque du segment [1,4], qui est connexe, par l'application $x \longmapsto x^2$ est l'ensemble $[-2,-1] \sqcup [1,2]$, qui n'est pas connexe.
- 9. Proposition. Soit $(X_i)_{i\in I}$ une famille d'espaces topologiques non vide. Alors le produit $\prod_{i\in I} X_i$ est connexe si et seulement si chaque espace X_i l'est.

I.2. Chemins et connexité par arcs

- 10. DÉFINITION. Un *chemin* dans l'espace X reliant deux points $a, b \in X$ est une application continue $\gamma \colon [0,1] \longrightarrow X$ vérifiant $\gamma(0) = a$ et $\gamma(1) = b$.
- 11. DÉFINITION. Un espace topologique X est $connexe\ par\ arcs$ si, pour tout couple de points de X, il existe un chemin dans X les reliant.
- 12. EXEMPLE. Le graphe d'une fonction continue de ${\bf R}$ dans ${\bf R}$ est connexe par arcs. La sphère ${\bf U}\subset {\bf C}$ est connexe par arcs : deux points $e^{i\theta_1}$ et $e^{i\theta_2}$ de la sphère ${\bf U}$ sont reliés par le chemin

$$t \in [0,1] \longmapsto e^{i[(1-t)\theta_1 + t\theta_2]} \in \mathbf{U}.$$

L'ensemble \mathbb{C}^* est connexe par arcs.

- 13. Remarque. Dans un espace vectoriel normé E, toute partie convexe $C \subset E$ est connexe par arcs : deux points $a, b \in C$ sont reliés par le chemin $t \longmapsto (1-t)a + tb$.
- 14. Théorème. Un espace connexe par arcs est connexe.

15. Contre-exemple. La réciproque est fausse : l'ensemble $\overline{\{\sin(1/x) \mid x > 0\}}$ est connexe mais pas connexe par arcs. Toutefois, en géométrie o-minimale, la réciproque est vraie.

I.3. Composantes connexes

- 16. DÉFINITION. Soient $x, y \in X$ deux points. On écrit $x \sim y$ si les points x et y sont contenues dans une même partie connexe de l'espace X. La composante connexe du point x est sa classe d'équivalence pour la relation \sim .
- 17. Proposition. Soit $x \in X$ un point.
 - La composante connexe du point x est la réunion de toutes les parties connexes contenant ce point x, c'est-à-dire la plus grande partie connexe le contenant.
 - Elle est fermé dans l'espace X.
- 18. Remarque. De la même façon, on définit les composantes connexes par arcs.
- 19. EXEMPLE. L'union $[-2, -1] \cup [1, 2]$ possède deux composantes connexes, à savoir les intervalles [-2, -1] et [1, 2].
- 20. Proposition. Soit $(\omega_i)_{i\in I}$ une famille de parties ouvertes et fermées telles que

$$X = \bigsqcup_{i \in I} \omega_i.$$

Alors les composantes connexes de l'espace X sont les parties ω_i .

II. La connexité en analyse réelle et complexe

II.1. Le cas de la droite réelle

- 21. Théorème. Les parties connexes de la droite réelle sont exactement ses intervalles.

 22. Théorème (des valeurs intermédiaires). Soient X un espace topologique connexe
- et $f: X \longrightarrow \mathbf{R}$ une application continue. Soient $x, y \in X$ deux points et $\alpha \in [f(x), f(y)]$ un réel. Alors il existe un point $z \in X$ tel que $f(z) = \alpha$.
- 23. APPLICATION. Un polynôme à coefficients réels et de degré impair admet une racine réelle.
- 24. Théorème (Darboux). Soient $I \subset \mathbf{R}$ un intervalle et $f: I \longrightarrow \mathbf{R}$ une fonction dérivable. Alors l'image f'(I) est un intervalle.
- 25. Théorème. Toute fonction continue d'un segment de la droite réelle dans luimême admet un point fixe.
- 26. PROPOSITION. Soit $\Omega \subset \mathbf{R}$ un ouvert. Alors il existe une unique famille $(a_i, b_i)_{i \in I}$ au plus dénombrables de réels $a_i, b_i \in \overline{\mathbf{R}} \setminus \Omega$ telle que $\Omega = \bigsqcup_{i \in I} a_i, b_i$.
- 27. EXEMPLE. L'ouvert \mathbf{R}^* s'écrit sous la forme $]-\infty,0[\ \sqcup\]0,+\infty[.$

II.2. Passage du local au global

- 28. Proposition. Soient X un espace topologique connexe et Y un espace topologique. Alors toute application continue et localement constante $X \longrightarrow Y$ est constante.
- 29. APPLICATION. Soient E et F deux espaces vectoriels normés et $\Omega \subset E$ une partie ouverte. Soit $f \colon \Omega \longrightarrow F$ une fonction différentiable de gradient nul. Alors cette dernière est constante.

30. Théorème (Cauchy-Lipschitz maximal). Soient $I \subset \mathbf{R}$ un intervalle ouvert et $\Omega \subset \mathbf{R}^n$ un ouvert. Soit $f: I \times \Omega \longrightarrow \mathbf{R}^n$ une fonction continue et lipschitzienne par rapport à la variable d'espace. Soit $(t_0, x_0) \in I \times \Omega$. Alors le problème

$$\begin{cases} x'(t) = f(x,t), \\ x(t_0) = x_0 \end{cases}$$

admet une unique solution maximale définie sur un intervalle ouvert.

31. CONTRE-EXEMPLE. Le caractère lipschitzien est nécessaire : le problème

$$\left\{ x(0) = 0 \right.$$

admet au moins deux solutions maximales distinctes, à savoir la fonction nulle et la fonction cube sur \mathbf{R} .

II.3. En analyse complexe

- 32. THÉORÈME (principe du prolongement analytique). Soient $\Omega \subset \mathbf{C}$ un ouvert connexe et $f, q: \Omega \longrightarrow \mathbb{C}$ deux fonctions holomorphes. Si elle coïncident sur un ouvert non vide de Ω , alors elle sont égales sur Ω .
- 33. THÉORÈME. Soient $\Omega \subset \mathbf{C}$ un ouvert connexe et $f: \Omega \longrightarrow \mathbf{C}$ une fonction holomorphe non identiquement nulle. Soit $a \in \Omega$ un zéro de cette dernière. Alors il existe un unique entier $m \in \mathbb{N}$ et une unique fonction holomorphe $g: \Omega \longrightarrow \mathbb{C}$ telles que

$$\forall z \in \Omega, \quad f(z) = (z - a)^m g(z) \quad \text{et} \quad g(a) \neq 0.$$

- 34. COROLLAIRE (principe des zéros isolés). Les zéros d'une fonction holomorphe non identiquement nulle sur un ouvert connexe sont isolés.
- 35. Application. La fonction Γ : {Re > 0} \longrightarrow C se prolonge en une fonction méromorphe sur **C**.
- 36. Définition. Un ouvert $\Omega \subset \mathbf{C}$ est simplement connexe s'il est connexe et si tout lacet dans Ω est homotope dans Ω à un lacet constant.
- 37. Remarque. Intuitivement, un ouvert simple connexe est un ouvert sans trou.
- 38. Exemple. Tout disque est un ouvert simplement connexe. Cependant, l'ouvert C* n'est pas simplement connexe.
- 39. Théorème. Soient $\Omega \subset \mathbf{C}$ un ouvert simplement connexe.
 - pour tout lacet γ dans Ω et toute fonction holomorphe $f:\Omega\longrightarrow \mathbf{C}$, on a

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0 \; ;$$

- toute fonction holomorphe sur Ω admet une primitive holomorphe;
- toute fonction holomorphe $\Omega \longrightarrow \mathbf{C}^*$ admet un logarithme holomorphe.
- 40. Théorème (de la représentation conforme de Riemann). Tout ouvert simplement connexe $\Omega \subset \mathbf{C}$ distinct de \mathbf{C} est conformément équivalent au disque unité $\mathbf{D} \subset \mathbf{C}$, c'est-à-dire qu'il existe un biholomorphisme $\Omega \longrightarrow \mathbf{D}$.

III. Connexité dans les espaces de matrices

III.1. Quelques groupes topologiques de matrices

41. PROPOSITION. Soit $n \ge 1$ un entier. L'ensemble $\mathscr{S}_n^{++}(\mathbf{R})$ des matrices symétriques réelles définies positives est connexe par arcs. L'ensemble SO(n) des matrices réelles orthogonales positives est connexe par arcs.

42. COROLLAIRE. Le groupe topologique $GL_n(\mathbf{R})$ possède deux composantes connexes, à savoir les ensembles

$$\operatorname{GL}_{n}^{+}(\mathbf{R}) := \{ A \in \operatorname{GL}_{n}(\mathbf{R}) \mid \det A > 0 \}$$

et
$$\operatorname{GL}_{n}^{-}(\mathbf{R}) := \{ A \in \operatorname{GL}_{n}(\mathbf{R}) \mid \det A < 0 \}.$$

- 43. Proposition. Le groupe topologique $GL_n(\mathbf{C})$ est connexe par arcs.
- 44. PROPOSITION. Pour $\mathbf{K} = \mathbf{R}$ ou $\mathbf{K} = \mathbf{C}$, le groupe topologique $\mathrm{SL}_n(\mathbf{K})$ est connexe par arcs.
- 45. Proposition. Le groupe topologique O(n) possède deux composantes connexes, à savoir les ensemble SO(n) et $O^{-}(n) := \{P \in O(n) \mid \det P = -1\}.$

III.2. Application de la connexité à la surjectivité de l'exponentielle

- 46. PROPOSITION. Soit $A \in \mathcal{M}_n(\mathbf{C})$ une matrice à coefficients complexes. Alors le groupe topologique $\mathbb{C}[A]^{\times}$ est un ouvert connexe de $\mathbb{C}[C]$.
- 47. Théorème. L'exponentielle matricielle complexe réalise un surjection

$$\exp : \mathscr{M}_n(\mathbf{C}) \longrightarrow \mathrm{GL}_n(\mathbf{C}).$$

48. COROLLAIRE. L'image de l'exponentielle matricielle réelle est l'ensemble

$$\exp \mathcal{M}_n(\mathbf{R}) = \mathrm{GL}_n(\mathbf{R})^{\times 2} := \{ A^2 \mid A \in \mathrm{GL}_n(\mathbf{R}) \}.$$

Éric Amar et Étienne Matheron. Analyse complexe. Cassini, 2004.

Hervé Queffelec. Topologie. 5° édition. Dunod, 2016.

^[1] [2] [3] [4] Hervé Queffélec et Claude Zuily. Analyse pour l'agrégation. 5e édition. Dunod, 2020.

Maxime Zavidovique. Un Max de Math. Calvage & Mounet, 2013.