Table 1 Comparison of Predictive Methods for d = 2 under different computational budgets Γ .

	kNN					KS					KRR		LR			
Γ	T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE
2000	30	66	2.91×10^{-3}	1.08×10^{-2}	30	66	5.14×10^{-3}	1.98×10^{-2}	12	166	5.64×10^{-3}	2.27×10^{-2}	44	44	2.18×10^{-3}	8.17×10^{-3}
5000	40	125	1.27×10^{-3}	4.65×10^{-3}	40	125	2.53×10^{-3}	9.95×10^{-3}	17	294	2.72×10^{-3}	1.09×10^{-2}	70	70	1.09×10^{-3}	3.96×10^{-3}
10000	50	200	8.81×10^{-4}	3.23×10^{-3}	50	200	1.97×10^{-3}	7.80×10^{-3}	21	476	1.92×10^{-3}	7.19×10^{-3}	100	100	1.80×10^{-4}	6.65×10^{-4}
20000	55	363	7.08×10^{-4}	2.67×10^{-3}	55	363	1.33×10^{-3}	5.42×10^{-3}	27	740	1.26×10^{-3}	4.72×10^{-3}	141	141	1.30×10^{-4}	4.50×10^{-4}
50000	70	714	4.86×10^{-4}	1.86×10^{-3}	70	714	1.14×10^{-3}	4.66×10^{-3}	36	1388	9.72×10^{-4}	3.56×10^{-3}	223	223	1.25×10^{-4}	3.87×10^{-4}

Table 2 Comparison of Predictive Methods for d = 10 under different computational budgets Γ .

	kNN					KS					KRR		LR			
Γ	T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE
2000	5	400	1.41×10^{-1}	5.48×10^{-2}	5	400	1.10×10^{-1}	3.31×10^{-2}	12	166	9.38×10^{-2}	3.68×10^{-2}	44	44	1.72×10^{-2}	6.79×10^{-3}
5000	10	500	8.01×10^{-2}	2.68×10^{-2}	10	500	7.98×10^{-2}	2.58×10^{-2}	17	294	5.36×10^{-2}	2.33×10^{-2}	70	70	1.42×10^{-2}	4.54×10^{-3}
10000	10	1000	7.34×10^{-2}	2.30×10^{-2}	10	1000	6.95×10^{-2}	2.13×10^{-2}	21	476	3.29×10^{-2}	1.59×10^{-2}	100	100	3.88×10^{-3}	2.28×10^{-3}
20000	10	2000	6.23×10^{-2}	2.23×10^{-2}	10	2000	5.68×10^{-2}	1.68×10^{-2}	27	740	2.37×10^{-2}	1.21×10^{-2}	141	141	2.51×10^{-3}	1.15×10^{-3}
50000	10	5000	5.00×10^{-2}	1.92×10^{-2}	10	5000	4.56×10^{-2}	1.35×10^{-2}	36	1388	1.42×10^{-2}	8.46×10^{-3}	223	223	2.06×10^{-3}	8.74×10^{-4}

Table 3 Comparison of Predictive Methods for d = 20 under different computational budgets Γ .

	kNN					KS					KRR		LR			
Γ	T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE
2000	5	400	2.75×10^{0}	4.28×10^{-1}	5	400	2.06×10^{0}	3.02×10^{-1}	12	166	2.27×10^{0}	3.01×10^{-1}	44	44	3.46×10^{-1}	1.11×10^{-1}
5000	5	1000	2.71×10^{0}	4.24×10^{-1}	5	1000	1.94×10^{0}	2.79×10^{-1}	17	294	1.58×10^{0}	2.22×10^{-1}	70	70	1.69×10^{-1}	4.99×10^{-2}
10000	5	2000	2.77×10^{0}	4.37×10^{-1}	5	2000	1.93×10^{0}	2.80×10^{-1}	21	476	1.12×10^{0}	1.68×10^{-1}	100	100	8.35×10^{-2}	3.66×10^{-2}
20000	5	4000	2.61×10^{0}	4.17×10^{-1}	5	4000	1.81×10^{0}	2.58×10^{-1}	27	740	7.64×10^{-1}	1.21×10^{-1}	141	141	3.87×10^{-2}	1.84×10^{-2}
50000	5	10000	2.74×10^{0}	4.33×10^{-1}	5	10000	1.81×10^{0}	2.59×10^{-1}	36	1388	4.78×10^{-1}	8.50×10^{-2}	223	223	1.83×10^{-2}	6.99×10^{-3}

Table 4 Comparison of Predictive Methods for d = 50 under different computational budgets Γ .

	kNN					KS					KRR		LR				
Γ	T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE	
2000	5	400	5.56×10^{0}	7.92×10^{-1}	5	400	4.61×10^{0}	6.58×10^{-1}	12	166	2.34×10^{0}	4.19×10^{-1}	44	44	1.46×10^{0}	4.26×10^{-1}	
5000	5	1000	5.55×10^{0}	8.08×10^{-1}	5	1000	4.41×10^{0}	6.31×10^{-1}	17	294	1.53×10^{0}	3.43×10^{-1}	70	70	6.48×10^{-1}	2.93×10^{-1}	
10000	5	2000	5.42×10^{0}	8.02×10^{-1}	5	2000	4.28×10^{0}	6.17×10^{-1}	21	476	1.03×10^{0}	2.94×10^{-1}	100	100	$3.30 \!\times\! 10^{-1}$	1.94×10^{-1}	
20000	5	4000	5.39×10^{0}	7.80×10^{-1}	5	4000	4.10×10^{0}	5.88×10^{-1}	27	740	6.54×10^{-1}	2.54×10^{-1}	141	141	2.03×10^{-1}	1.68×10^{-1}	
50000	5	10000	5.63×10^{0}	8.11×10^{-1}	5	10000	4.08×10^{0}	5.83×10^{-1}	36	1388	3.71×10^{-1}	2.22×10^{-1}	223	223	1.30×10^{-1}	1.38×10^{-1}	

Table 5 Comparison of Predictive Methods in Wireless Networks for d = 4.

kNN					KS					KRR		LR			
T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE	T	n	RelGap	MSE
6	42	1.28×10^{0}	1.55×10^{0}	6	42	1.31×10^{0}	1.35×10^{0}	6	42	1.12×10^{0}	1.16×10^{0}	16	16	2.58×10^{-1}	2.82×10^{-1}
6	85	1.26×10^{0}	1.53×10^{0}	6	85	1.30×10^{0}	1.32×10^{0}	7	73	8.19×10^{-1}	8.39×10^{-1}	22	22	1.42×10^{-1}	1.51×10^{-1}
9	113	6.86×10^{-1}	8.60×10^{-1}	9	113	7.16×10^{-1}	7.28×10^{-1}	10	102	3.79×10^{-1}	3.90×10^{-1}	32	32	7.20×10^{-2}	7.48×10^{-2}
9	227	7.38×10^{-1}	8.43×10^{-1}	9	227	7.18×10^{-1}	7.25×10^{-1}	12	170	2.81×10^{-1}	2.88×10^{-1}	45	45	3.85×10^{-2}	3.95×10^{-2}
9	455	6.47×10^{-1}	7.50×10^{-1}	9	455	6.96×10^{-1}	7.01×10^{-1}	15	273	2.01×10^{-1}	2.06×10^{-1}	64	64	2.05×10^{-2}	2.08×10^{-2}
15	546	2.41×10^{-1}	2.80×10^{-1}	12	682	4.10×10^{-1}	4.13×10^{-1}	20	409	1.23×10^{-1}	1.24×10^{-1}	90	90	1.16×10^{-2}	1.17×10^{-2}
15	1092	2.61×10^{-1}	2.96×10^{-1}	15	1092	2.68×10^{-1}	2.70×10^{-1}	25	655	8.06×10^{-2}	8.13×10^{-2}	128	128	6.57×10^{-3}	6.62×10^{-3}