$$y'(t) = \frac{4}{1+2+} \cdot y(t) + 6 \cdot (1+2+)$$

$$= \begin{cases} \frac{1}{\gamma(t)}, & \text{cly} = \begin{cases} 4 & \text{old} \end{cases}$$

$$y(4) = (1+2+)^{2} \cdot (1+2+)^{2}$$

$$C = Ce1$$

3)
$$y(t) = \frac{4}{1+2t} \cdot y(t) + 6 \cdot 6 + 2t$$

3) $y(t) = (1+2t)^2 \cdot (4)$

(4) $y'(t) = (1+2t)^2 \cdot (4)$

(5) $y(t) = (1+2t)^2 \cdot (4)$

(6) $y'(t) = (1+2t)^2 \cdot (4)$

(7) $y'(t) = (1+2t)^2 \cdot (4)$

(8) $y'(t) = (1+2t)^2 \cdot (4)$

(9) $y'(t) = (1+2t)^2 \cdot (4)$

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)

(1421)