Inducción y recurrencia.

Ejercicio 1.1. Demuestra $\forall m, n, p \in \mathbb{N}$ las siguientes propiedades:

- 1. Todo número natural es 0 o es el siguiente de un número natural.
- 2. m+0=0+m=m.
- 3. $m+1=1+m=\sigma(m)$.
- 4. (m+n) + p = m + (n+p).
- 5. m + n = n + m.
- 6. Si m + p = n + p, entonces m = n.
- 7. Si m + n = 0, entonces m = n = 0.
- 8. $0 \cdot m = m \cdot 0 = 0$
- 9. $1 \cdot m = m \cdot 1 = m$
- 10. $(m+n) \cdot p = m \cdot p + n \cdot p$
- 11. $m \cdot n = n \cdot m$
- 12. $(m \cdot n) \cdot p = m \cdot (n \cdot p)$
- 13. Si $m \cdot n = 0$, entonces m = 0 o n = 0
- 14. $0^0 = 1$
- 15. $0^n = 0$ para $1 \le n$
- 16. $1^n = 1$
- 17. $m^{n+p} = m^n \cdot m^p$
- 18. $m^{n \cdot p} = (m^n)^p$

Ejercicio 1.2. Demuestra para todo $m, n, p \in \mathbb{N}$ las siguientes propiedades:

- 1. $m \leq m$.
- 2. Si $m \le n$ y $n \le m$, entonces m = n.
- 3. Si $m \le n$ y $n \le p$, entonces $m \le p$.
- 4. $m \le n$ o $n \le m$
- 5. Si $m \leq n$, entonces $\exists_1 p \in \mathbb{N}$ m + p = n y lo llamamos n menos m (n m).
- 6. Si $m \le n$, entonces $m + p \le n + p$.

- 7. Si $m \le n$, entonces $m \cdot p \le n \cdot p$.
- 8. Si $m \cdot p \le n \cdot p$ y $p \ne 0$, entonces $m \le n$
- 9. Si $m \cdot p = n \cdot p$ y $p \neq 0$, entonces m = n.

Ejercicio 1.3. Demuestra por el método de inducción las siguientes propiedades:

1.
$$\forall n \ge 1, \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

2.
$$\forall n \ge 1, \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$\forall n \ge 1, \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

4.
$$\forall n \ge 1, \sum_{k=1}^{n} k^5 + \sum_{k=1}^{n} k^7 = 2\left(\frac{n(n+1)}{2}\right)^4$$
.

5.
$$\forall n \ge 0, \sum_{k=0}^{n} a^k = \frac{a^{n+1} - 1}{a - 1}$$
, siendo $a \ne 1$

6.
$$\forall n \ge 1, \sum_{k=1}^{n} (k \cdot k!) = (n+1)! - 1$$

7.
$$\forall n \ge 2, \ \sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}$$

8.
$$\forall n \geq 4, \ 2^n \geq n^2$$

9.
$$\forall n > 4, \ n! > 2^n$$

Ejercicio 1.4. Demuestra que para todo $n \in \mathbb{N}$:

a)
$$3^{2n} - 2^n$$
 es divisible por 7,

b)
$$3^{2n+1} + 2^{n+2}$$
 es divisible por 7,

c)
$$3^{2n+2} + 2^{6n+1}$$
 es divisible por 11.

c)
$$3^{2n+2} + 2^{6n+1}$$
 es divisible por 11, d) $3 \cdot 5^{2n+1} + 2^{3n+1}$ es divisible por 17,

e)
$$n(n^2+2)$$
 es múltiplo de 3,

f)
$$5^{n+1} + 2 \cdot 3^n + 1$$
 es múltiplo de 8,

g)
$$7^{2n} + 16n - 1$$
 es múltiplo de 64

g)
$$7^{2n}+16n-1$$
 es múltiplo de 64, h) $(n+1)(n+2)\cdots(n+n)$ es múltiplo de 2^n

i)
$$4^{2n} - 2^n$$
 es divisible por 7,

j)
$$2^{3n} - 14^n$$
 es divisible por 6.

Ejercicio 1.5.

- 1. Demuestra que la suma de los n primeros números naturales impares es igual a n^2 .
- 2. Demuestra por inducción que para todo número par k, el resto de dividir 2^k entre 3 es 1.
- 3. Demuestra por inducción que para todo número impar k, el resto de dividir 2^k entre 3 es 2.

Ejercicio 1.6. Dada la sucesión $x_n = \frac{1}{2}(4n+1+(-1)^n)$ para todo $n \ge 0$, demuestra que $x_0 = 1$, $x_1 = 2 \text{ y } x_n = 4 + x_{n-2} \text{ para todo } n \ge 2.$

Ejercicio 1.7. Obtén una recurrencia lineal homogénea para cada una de las sucesiones siguientes definidas para todo $n \geq 0$:

1.
$$x_n = 4n + 1$$
.

2.
$$y_n = 2^n + n$$
.

3.
$$z_n = 2^n + 3^n(n+1)$$
.

Ejercicio 1.8. La sucesión de los números de Fibonacci se define de la siguiente forma:

$$F_0 = 0$$
, $F_1 = 1$ y $F_n = F_{n-1} + F_{n-2}$ para $n \ge 2$.

Demuestra cada una de las siguientes propiedades:

1.
$$F_{n+2} > 2 \cdot F_n$$
 para todo $n \ge 2$

2.
$$\sum_{i=0}^{n} (F_i)^2 = F_n \cdot F_{n+1}$$
 para todo $n \ge 0$

3. 5 divide a
$$F_{5n}$$
 para todo $n \ge 0$

4.
$$F_{n-1} \cdot F_{n+1} = (F_n)^2 + (-1)^n$$
 para todo $n \geq 1$

5.
$$mcd(F_n, F_{n+1}) = 1$$
 para todo $n \ge 0$

Ejercicio 1.9. Resuelve las ecuaciones en recurrencia siguientes:

1.
$$x_0 = 1, x_1 = 1, x_n = 2x_{n-1} - x_{n-2}$$
 para $n \ge 2$.

2.
$$x_0 = 1, x_1 = 2, x_n = 5x_{n-1} - 6x_{n-2}$$
 para $n \ge 2$.

3.
$$x_0 = 1, x_1 = 1, x_n = 3x_{n-1} + 4x_{n-2}$$
 para $n \ge 2$.

4.
$$x_0 = 1, x_1 = 2, x_n = -x_{n-1} + 6x_{n-2}$$
 para $n \ge 2$

5.
$$x_0 = 0, x_1 = 1, x_n = 2x_{n-1} - 2x_{n-2}$$
 para $n \ge 2$.

6.
$$x_0 = 5, x_1 = 12, x_n = 6x_{n-1} - 9x_{n-2}$$
 para $n \ge 2$.

7.
$$x_0 = 1, x_1 = 1, x_2 = 2, x_n = 5x_{n-1} - 8x_{n-2} + 4x_{n-3}$$
 para $n \ge 3$.

8.
$$x_0 = 1, x_1 = 1, x_2 = 2, x_n = x_{n-1} + x_{n-2} - x_{n-3}$$
 para $n \ge 3$.

9.
$$x_0 = 0, x_1 = 1, x_2 = 2, x_n = x_{n-1} + 2x_{n-2} - x_{n-3}$$
 para $n \ge 3$.

10.
$$x_0 = 1, x_1 = 1, x_2 = 3, x_n = 4x_{n-1} - 5x_{n-2} + 2x_{n-3}$$
 para $n \ge 3$.

11.
$$x_0 = 1, x_1 = 3, x_2 = 7, x_n = 3x_{n-1} - 3x_{n-2} + x_{n-3}$$
 para $n \ge 3$.

12.
$$x_0 = 0$$
, $x_n = 2x_{n-1} + 1$ para $n \ge 1$ (Torres de Hanoi).

13.
$$x_0 = 1, x_n = x_{n-1} + n \text{ para } n \ge 1 \text{ (regiones plano)}.$$

14.
$$x_0 = 1$$
, $x_n = 2x_{n-1} + n$ para $n \ge 1$.

15.
$$x_0 = 0$$
, $x_n - 2x_{n-1} = 3^n$ para $n > 1$.

16.
$$x_0 = 0$$
, $x_n - 2x_{n-1} = (n+1)3^n$ para $n \ge 2$.

17.
$$x_0 = 1/2, x_1 = 3, x_n = 2x_{n-1} + x_{n-2} + 3 \text{ para } n > 2.$$

18.
$$x_0 = 0, x_1 = 1, x_n = 3x_{n-1} - 2x_{n-2} + 2^n$$
 para $n \ge 2$.

19.
$$x_0 = 0, x_n - 2x_{n-1} = n + 2^n$$
 para $n \ge 2$.

20.
$$x_0 = 0, x_1 = 1, x_n = 3x_{n-1} - 2x_{n-2} + 2^n + 2n$$
 para $n \ge 2$.