Mestrado Integrado em Engenharia Informática e Computação EIC0004 ANÁLISE MATEMÁTICA – 2016/2017 – 1° Semestre

3º Mini-Teste -Recurso - 26 Janeiro 2017

Duração da prova : 1h30m

Teste sem consulta. Faça cada GRUPO em folhas separadas.

Não é permitida a utilização de máquina de calcular com capacidade gráfica.

Apresente e justifique convenientemente todos os cálculos que efetuar.

Durante a realização da prova não é permitida a saída da sala.

A desistência só é possível 30 minutos após o início do teste.

GRUPO I

1. Utilizando as técnicas das transformadas de Laplace, resolva os seguintes problemas de valores iniciais:

a)
$$y'' - 5y' + 6y = 0$$
, $y(0) = 1$ e $y'(0) = -2$

b)
$$y'' - y = \begin{cases} 4e^t, & 0 < t < \pi \\ 0, & t > \pi \end{cases}$$
, $y(0) = y'(0) = 0$

GRUPO II

2. Considere a função

$$f(x) = \frac{1 + x \ln(x)}{x}$$

Escreva o polinómio de Taylor de grau n que aproxima a função f(x) numa vizinhança do ponto a=1.

3. Investigue a convergência das seguintes séries, justificando de forma conveniente:

a)
$$\sum_{n=1}^{\infty} \left(\frac{3+n}{2^n} \right)$$

b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\sqrt{n-1}}{n+1}$$

GRUPO III

4. Considere a função f(x) de período 2π ,

$$f(x) = x^2, \quad -\pi < x < \pi$$

- a) Esboce o gráfico da função no intervalo $-3\pi < x < 3\pi$.
- **b)** Calcule os coeficientes da série de Fourier de f(x): a_0 , a_n e b_n ; escreva a fórmula geral da série de Fourier de f(x).

Tabela de Transformadas de Laplace

	f(t)	$\mathcal{L}\left\{f\right\}$	Domínio		(-1)	s	- 0
1	1	$\frac{1}{s}$	s > 0	7	$\cos(wt)$	$s^2 + w^2$	s > 0
_	-		0.7.0	8	$\sin(wt)$	$\frac{w}{2}$	s > 0
2	t	$\frac{1}{s^2}$	s > 0	-		$\overline{s^2 + w^2}$	
				9	$\cosh\left(at\right)$	$\frac{s}{s^2 - a^2}$	s > a
3	t^2	$\frac{2}{s^3}$	s > 0	10	ainh (at)	a	- 3- Ial
		n!		10	$\sinh\left(at\right)$	$\overline{s^2 - a^2}$	s > a
4	$t^n, n \in \mathbf{N}_0$	s^{n+1}	s > 0	11	$e^{at}t^n$	n!	s > a
	-at c(+)	77/	2020 224 11 224			$\frac{(s-a)^{n+1}}{s-a}$	
5	$e^{at}f(t)$	F(s-a)	$s > \gamma + a$	12	$e^{at}\cos(wt)$	$\frac{s-a}{(s-a)^2+w^2}$	s > a
6	e^{at}	$\frac{1}{s-a}$	s > a	13	$e^{at}\sin(wt)$	$\frac{w}{(s-a)^2 + w^2}$	s > a

$$\mathcal{L}[t^nf(t)]=(-1)^n[F(s)]^{(n)}$$

$$\mathcal{L}[f'(t)] = s\mathcal{L}[f(t)] - f(0) \qquad \qquad \mathcal{L}[f''(t)] = s^2\mathcal{L}[f(t)] - sf(0) - f'(0)$$

Docentes: Catarina Castro, Luísa Sousa, Mariana Seabra, Alexandre Afonso