Scores	
1.	
2.	
3.	
4.	
5.	
Total:	

ANA-I Foundations of Analysis 1st Midterm Examination – 19 November 2021

Name _____

General Instructions: Please answer the following, showing all your work and writing neatly. You may have 1 handwritten A4-sized sheet of paper, but no other notes, books, or calculators.

76 total points.

1. (6 points each) Limit calculations. For each real-valued sequence, explain whether it is convergent, divergent to $\pm \infty$, or otherwise divergent (not to $\pm \infty$). If it is convergent, find its limit. If it is divergent, find its lim sup and liminf. You may use any theorems we have proved in class or on homework.

(a)
$$s_n = \frac{3n+1}{4n-1}$$

(b)
$$s_n = \frac{(-1)^n + n}{2n - 6}$$

(c)
$$s_n = \frac{(-1)^n n^2 - n}{3n - 2}$$

(d)
$$s_n = \frac{2\sin n - \cos n}{n+2}$$

- 2. (6 points each) Examples. Justify your answers briefly.
 - (a) Give an example of a nonconstant complex sequence that converges to 5+2i.
 - (b) Let A|B be the Dedekind cut for $\sqrt[3]{30}$. Which of the following numbers are in A? $1, \sqrt{2}, 2, 5/2, 7/2, 30$?
 - (c) Explain why, if a_n is an increasing sequence of positive real numbers, then $1/a_n$ is a decreasing sequence of positive real numbers.
 - (d) Give an example of a real sequence with accumulation points at $-\infty$, 0, 17, and ∞ .
- 3. (6 points) Either find the limit of $z_n = \frac{n^2}{n 2n^2i}$, or else explain why the sequence diverges. Write your answer in the standard form z = a + bi.
- 4. (12 points) Working directly from definition, prove that if z_n and w_n are sequences of complex numbers with

$$\lim_{n \to \infty} z_n = 4 + 3i, \quad \text{and} \quad \lim_{n \to \infty} w_n = 4 - 3i,$$

then $\lim_{n\to\infty} z_n \cdot w_n = 25$. (You may use the fact that convergent complex sequences are bounded.)

5. (10 points) Let a_n be recursively defined by $a_0 = 1/2$, $a_{n+1} = \frac{a_n^2 + 1}{2}$ for $n \ge 0$. Show that a_n converges, and find its limit.