Heap Abstraction

Lorenzo Gazzella, Roberto Bruni

Overview

	(Fwd) Program analysis	Heap Manipulation
Correctness	Hoare Logic	Separation Logic

Overview

	(Fwd) Program analysis	Heap Manipulation
Correctness	Hoare Logic	Separation Logic
Incorrectness	Incorectness Logic	Incorrectness Separation Logic

Overview

	(Fwd) Program analysis	Heap Manipulation
Correctness	Hoare Logic	Separation Logic
Incorrectness	Incorectness Logic	Incorrectness Separation Logic
Correctness + Incorrectness	LCL _A	??

Language

$$r ::= e$$

$$| r_1; r_2$$

$$| r_1 + r_2$$

$$| r^*$$

```
e ::= skip
     | b?
      |x := a|
     |x := [a]
     |[x] := a
     |x := alloc()
     |free(x)|
```

Separation Logic

- Hoare Logic's extension to Pointer Analysis
- Correctness: $\{P\} \ r \ \{Q\} \Rightarrow \llbracket r \rrbracket P \subseteq Q$
- Assertion Language:

$$Ast \ni p, q ::= false \mid \neg p \mid p \land q \mid a_1 \asymp a_2 \mid \exists x.p \qquad \text{(Pure part)}$$
$$\mid emp \mid x \mapsto a \mid p * q \qquad \text{(Spatial Part)}$$

Incorrectness Separation Logic

- Incorrectness Logic + Separation Logic
- Correctness and completeness: $[P] \ r \ [Q] \iff Q \subseteq [r] P$
- Assertion language:

$$Ast \ni p, q ::= false \mid \neg p \mid p \land q \mid a_1 \asymp a_2 \mid \exists x.p \qquad \text{(Pure part)}$$
$$\mid emp \mid x \mapsto a \mid \boldsymbol{x} \not\mapsto \mid p * q \qquad \text{(Spatial Part)}$$

Local Completeness Logic

- Correctness + Incorrectness + Abstract Interpretation
- Correctness:

$$\vdash_A [P] r [Q] \Rightarrow Q \subseteq \llbracket r \rrbracket P \subseteq A(Q)$$

Parametric on the domain A

Heap abstraction

- Abstract domain for shape analysis
- Loosely based on the idea of [1]:
 - Divides the array into a sequence of possibly empty segments delimited by a set of segment bounds.
 - The content of each segment is uniformly abstracted
 - Fully automatic

[1] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. "A parametric segmentation functor for fully automatic and scalable array content analysis"

Heap Manipulation Language for Lists

```
e ::= skip \mid x := a \mid b?
\mid x := new(e, y) \qquad (allocation)
\mid x := [y.data] \mid x := [y.next] \qquad (lookup)
\mid [x.data] := e \mid [x.next] := y \qquad (mutation)
\mid free(x) \qquad (deallocation)
```


Concrete Domain

- Stores: $\mathbb{S} \stackrel{\triangle}{=} \mathbb{X} \to (\mathbb{Z} \cup \mathbb{L})$
- Heaps: $\mathbb{H} \stackrel{\triangle}{=} \mathbb{L} \rightharpoonup (\mathbb{Z} \cup \mathbb{L} \cup \bot)$
- Memories: $\mathbb{M} \stackrel{\triangle}{=} \mathbb{S} \times \mathbb{H}$
- Concrete domain: $\mathcal{P}(\mathbb{M})$

Concrete Semantics

- Regular commands: as usual
- Basic expressions:
 - Allocation:

$$(s,h) \xrightarrow{new(a,y)} (s[x \mapsto l], h[l \mapsto (a,y)s])$$

o Mutation:

$$(s, h[s(x) \mapsto (v, _)]) \xrightarrow{[x.next] := y} (s, h[s(x) \mapsto (v, s(y))])$$

$$\vdash_A [P] r [Q] \Rightarrow Q \subseteq \llbracket r \rrbracket P \subseteq A(Q)$$

Assertion Language

•
$$Ast \ni p, q := false \mid true \mid p \land q \mid p \lor q \mid a_1 \asymp a_2 \mid \exists x.p$$
 (Pure part)
 $\mid emp \mid x \mapsto a \mid x \not\mapsto \mid p * q$ (Spatial Part)

- Same as ISL
- Abstracts from locations

•
$$\mathcal{P}(\mathbb{M}) \xrightarrow{\gamma} Ast \xrightarrow{\gamma_{\mathbb{M}}} \mathbb{M}^{\#}$$

Assertion Language

 $\bullet \quad listseg(x,y,[3,2,6,1,10,-1]) \quad \text{acyclic}$

• Stores: $\mathbb{S}^{\#} \stackrel{\triangle}{=} \mathbb{V}^{\#} \times Eq^{\#}$

 \circ Integer part: $\mathbb{V}^\# \in Abs([\mathbb{X} o \mathbb{Z}])$

 \circ Address part: $Eq^{\#}$

- Stores: $\mathbb{S}^{\#} \stackrel{\triangle}{=} \mathbb{V}^{\#} \times Eq^{\#}$
 - o Integer part: $\mathbb{V}^\# \in Abs([\mathbb{X} \to \mathbb{Z}])$
 - \circ Address part: $Eq^{\#}$
- Heaps: $\mathbb{H}^{\#} \stackrel{\triangle}{=} \mathbb{P}^{\#} \times \mathbb{C}^{\#}$
 - $_{\circ}$ Shape predicates: $\mathbb{P}^{\#}\ni p^{\#}::=emp\mid LS(\alpha,\beta,v^{\#})\mid p_{1}^{\#}*p_{2}^{\#}$
 - \circ Length constraints: $\mathbb{C}^{\#}$

- Stores: $\mathbb{S}^{\#} \stackrel{\triangle}{=} \mathbb{V}^{\#} \times Eq^{\#}$
 - o Integer part: $\mathbb{V}^\# \in Abs([\mathbb{X} \to \mathbb{Z}])$
 - \circ Address part: $Eq^{\#}$
- Heaps: $\mathbb{H}^\# \stackrel{\triangle}{=} \mathbb{P}^\# \times \mathbb{C}^\#$
 - \circ Shape predicates: $\mathbb{P}^\#\ni p^\#::=emp\mid LS(lpha,eta,v^\#)\mid p_1^\#*p_2^\#$
 - \circ Length constraints: $\mathbb{C}^{\#}$
 - \blacksquare **Is(x):** the length of the segment starting from x
 - **I(x):** the length of the list starting from x and ending in null

- Stores: $\mathbb{S}^{\#} \stackrel{\triangle}{=} \mathbb{V}^{\#} \times Eq^{\#}$
 - o Integer part: $\mathbb{V}^\# \in Abs([\mathbb{X} \to \mathbb{Z}])$
 - \circ Address part: $Eq^{\#}$
- Heaps: $\mathbb{H}^{\#} \stackrel{\triangle}{=} \mathbb{P}^{\#} \times \mathbb{C}^{\#}$
 - \circ Shape predicates $\mathbb{P}^\#\ni p^\#::=emp\mid LS(lpha,eta,v^\#)\mid p_1^\#*p_2^\#$
 - \circ Length constraints: $\mathbb{C}^{\#}$
 - \blacksquare **Is(x):** the length of the segment starting from x
 - I(x): the length of the list starting from x and ending in null
- Memories: $\mathbb{M}^{\#} \stackrel{\triangle}{=} \mathbb{S}^{\#} \times \mathbb{H}^{\#}$

Abstraction function

listseg(x, y, [3, 2, 6, 1, 10, -1])

Example

Example

Example - shape

$$LS(\{\hat{x},\hat{y}\},\{\hat{z}\},[1,8])*LS(\{\hat{w}\},\{\hat{z}\},[-2,9])*LS(\{\hat{z}\},\{null\#\},[-3,7])$$

Example - lengths constraint

Heap-induced ordering

$$\{x,y\} \le \{z\}$$
 and $\{w\} \le \{z\}$ and $\{z\} \le \text{null}$

$$\{x,y\} \le \{null\}$$

$$\{x\} \le \{y\} \le \{\text{null}\}$$

Heap Join

- $p_1^{\#} = LS(x, y, \bot) * LS(y, null, [1, 8])$
- $p_2^{\#} = LS(x, y, [5, 5]) * LS(y, null, [0, 8])$
- $p_1^{\#} \sqcup p_2^{\#} = LS(x, y, [5, 5]) * LS(y, null, [0, 8])$

Allocation:

$$(x := new(e, y))^{\#}(p^{\#} * LS(\alpha, \beta, v_1^{\#})) =$$

$$= p^{\#} * LS(\{x\}, \alpha, v^{\#}) * LS(\alpha, \beta, v_1^{\#})$$

• $y \in \alpha$

$$\alpha$$
 $v_1^\#$ β

Allocation:

$$(x := new(e, y))^{\#}(p^{\#} * LS(\alpha, \beta, v_1^{\#})) =$$

$$= p^{\#} * LS(\{x\}, \alpha, v^{\#}) * LS(\alpha, \beta, v_1^{\#})$$

• $y \in \alpha$

Mutation:

$$\begin{aligned}
&([x.next] := y)^{\#}(p^{\#} * LS(\alpha, null^{\#}, v_1^{\#}) * LS(\delta, \beta, v_2^{\#})) = \\
&= p^{\#} * LS(\alpha, \delta, v_1^{\#}) * LS(\delta, \beta, v_2^{\#})
\end{aligned}$$

• $x \in \alpha$, $y \in \delta$

$$\delta$$
 $v_2^\#$ β

Mutation:

$$\begin{aligned}
&([x.next] := y)^{\#}(p^{\#} * LS(\alpha, null^{\#}, v_1^{\#}) * LS(\delta, \beta, v_2^{\#})) = \\
&= p^{\#} * LS(\alpha, \delta, v_1^{\#}) * LS(\delta, \beta, v_2^{\#})
\end{aligned}$$

• $x \in \alpha$, $y \in \delta$


```
i = 0, len = 5;
      elem := new(0, null#);
      head := elem;
      curr := elem;
(1:) while (2:) (i<len) {
(3:) \qquad \text{elem} := \text{new}(0, \text{null#});
         [curr.next] := elem;
(4:)
(5:) curr := elem;
(6:) i := i+1;
(7:) }
```



```
h = head
e = elem
c = curr
```

```
i = 0, len = 5;
elem := new(0, null#);
head := elem;
curr := elem;
(1:) while (2:) (i<len) {
    (3:) elem := new(0, null#);
    (4:) [curr.next] := elem;
    (5:) curr := elem;
    (6:) i := i+1;
    (7:) }</pre>
h,e,c

[0,0]

1
```



```
h = head
e = elem
c = curr
```

```
i = 0, len = 5;
elem := new(0, null#);
head := elem;
curr := elem;
(1:) while (2:) (i<len) {
    (3:) elem := new(0, null#);
    (4:) [curr.next] := elem;
    (5:) curr := elem;
    (6:) i := i+1;
    (7:) }</pre>
h,e,c

[0,0]

1
```


h = head e = elem c = curr


```
h = head
e = elem
c = curr
```

```
i = 0, len = 5;
elem := new(0, null#);
head := elem;
curr := elem;
(1:) while (2:) (i<len) {
    (3:) elem := new(0, null#);
    (4:) [curr.next] := elem;
    (5:) curr := elem;
    (6:) i := i+1;
    (7:) }</pre>
```



```
h = head
e = elem
c = curr
```

```
i = 0, len = 5;
elem := new(0, null#);
head := elem;
curr := elem;
(1:) while (2:) (i<len) {
    (3:) elem := new(0, null#);
    (4:) [curr.next] := elem;
    (5:) curr := elem;
    (6:) i := i+1;
    (7:) }</pre>
```



```
i = 0, len = 5;
elem := new(0, null#);
head := elem;
curr := elem;
(1:) while (2:) (i<len) {
    elem := new(0, null#);
(4:)    [curr.next] := elem;
(5:)    curr := elem;
(6:)    i := i+1;
(7:) }</pre>
```



```
i = 0, len = 5;
elem := new(0, null#);
head := elem;
curr := elem;
(1:) while (2:) (i<len) {
    elem := new(0, null#);
(4:)    [curr.next] := elem;
(5:)    curr := elem;
(6:)    i := i+1;
(7:) }</pre>
```

Reshaping


```
i = 0, len = 5;
elem := new(0, null#);
head := elem;
curr := elem;
(1:) while (2:) (i<len) {
    elem := new(0, null#);
(4:)    [curr.next] := elem;
(5:)    curr := elem;
(6:)    i := i+1;
(7:) }</pre>
```

Join


```
i = 0, len = 5;
elem := new(0, null#);
head := elem;
curr := elem;
(1:) while (2:) (i<len) {
    elem := new(0, null#);
(4:)    [curr.next] := elem;
(5:)    curr := elem;
(6:)    i := i+1;
(7:) }</pre>
```

Invariant

Conclusions

- Developed an abstract domain for shape analysis
- Able to automatically infer invariants on data structures like precedence graph without split
- $\alpha(p*q) = \alpha(p)*\alpha(q)$

Future work

- Local completeness of Ast w.r.t. the concrete domain
 - $\circ \quad \mathcal{P}(\mathbb{M}) \xrightarrow{\gamma} Ast \xrightarrow{\gamma_{\mathbb{M}}} \mathbb{M}^{\#}$
 - $\circ \quad x \not\mapsto$
 - $x := new(e, y) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := new(e, y) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.next] := y \mid free(x) \mid x := [y.field] \mid [x.data] := e \mid [x.data] := e$
- Extending the assertion language to negation and universal quantification
- Extending the proof system of LCL with rules for heap manipulation
 - Frame rule soundness

Thank you for your attention!

