CLAIMS

What is claimed is:

1	1. A method comprising:		
2	stacking an upper die having an upper top surface and upper first, second, third		
3	and fourth edges on top of a lower die having a lower top surface and lower first,		
4	second, third, and fourth edges such that the upper first edge is displaced from the		
5	lower first edge by a first distance, the upper first and third edges being opposite to		
5	each other, the lower first and third edges being opposite to each other, the upper top		
7	surface facing toward the lower top surface; and		
8	attaching the upper die to the lower die with an adhesive layer between the		
9	upper and lower dies.		
1	2. The method of claim 1 further comprising:		
2	attaching upper and lower conductors to upper and lower bond pads of the		
3	upper and lower dies at the upper and lower first edges, respectively, such that the		
4	upper and lower conductors are separated by a conductor distance.		
l	3. The method of claim 1 further comprising:		
2	attaching upper and lower conductors to upper and lower bond pads of the firs		
3	and second dies at the upper third and the lower first edges, respectively.		
l	4. The method of claim 1 wherein stacking the upper die comprises:		
2	stacking the upper die on top of the second die such that the upper second edge		
3	is displaced from the lower second edge by a second distance.		
l	5. The method of claim 4 further comprising:		
2	attaching upper and lower conductors to upper and lower bond pads of the		
3	upper and lower dies at the upper and lower second edges, respectively, such that the		
1	upper and lower conductors are separated by a conductor distance.		
l	6. The method of claim 1 further comprising:		
2	attaching the lower die to a substrate by a second adhesive layer deposited		
3	between the lower die and the substrate.		

1	7. The method of claim 1 further comprising:			
2	depositing an upper redistribution layer to place bond pads on the upper die.			
1	8. The method of claim 7 further comprising:			
2	depositing a lower redistribution layer to place bond pads on the lower die.			
1	9. The method of claim 1 wherein stacking the upper die comprises:			
2	stacking the upper die on top of the lower die, the upper and lower die having			
3	same or substantially similar sizes.			
1	10. The method of claim 1 wherein attaching comprises:			
2	attaching the upper die to the lower die by the first adhesive layer made of a			
3	non-conductive or conductive material.			
1	11. A method comprising:			
2	stacking a plurality of dies on top of one another in a staggering configuration			
3	such that an upper die top surface in a pair of adjacent dies faces downward or upward			
4	and is displaced by a first distance with respect to a lower die in the pair; and			
5	attaching the adjacent dies by an adhesive layer between the adjacent dies.			
1	12. The method of claim 11 further comprising:			
2	attaching conductors to bond pads of the adjacent dies such that the conductors			
3	are separated by a conductor distance.			
1	13. The method of claim 11 wherein stacking comprises:			
2	stacking the plurality of dies in a first stair-case configuration in a first			
3	dimension.			
1	14. The method of claim 13 wherein stacking further comprises:			
2	stacking the plurality of dies in a second stair-case configuration in a second			
3	dimension.			
1	15. The method of claim 11 wherein stacking comprises:			
2	stacking the plurality of dies in a first alternate staggering configuration in a			
3	first dimension.			

1	16. The method of claim 13 wherein stacking further comprises:			
2	stacking the plurality of dies in a second staggering configuration in a second			
3	dimension.			
1	17. The method of claim 11 further comprising:			
2	depositing a redistribution layer to place bond pads on at least one of the			
3	plurality of the dies.			
1	18. The method of claim 11 wherein stacking comprises:			
2	stacking the plurality of dies having same or substantially similar sizes.			
1	19. The method of claim 11 wherein stacking comprises:			
2	stacking the plurality of dies on top of a substrate; and			
3	attaching a bottom die of the plurality of dies to the substrate by an adhesive.			
1	20. The method of claim 11 wherein attaching comprises:			
2	attaching the adjacent dies by the adhesive layer made of a non-conductive or			
3	conductive material.			
1	21. A die assembly comprising:			
2	a plurality of dies stacked on top of one another in a staggering configuration			
3	such that an upper die top surface in a pair of adjacent dies faces downward or upward			
4	and is displaced by a first distance with respect to a lower die in the pair; and			
5	an adhesive layer between the adjacent dies to attach the adjacent dies.			
1	22. The die assembly of claim 21 further comprising:			
2	conductors attached to bond pads of the adjacent dies such that the conductors			
3	are separated by a conductor distance.			
1	23. The die assembly of claim 21 wherein the plurality of dies are stacked in			
2	a first stair-case configuration in a first dimension.			
1	24. The die assembly of claim 23 wherein the plurality of dies are stacked in			
2	a second stair-case configuration in a second dimension.			

1	25. The die assembly of claim 21 wherein the plurality of dies are stack	ted in		
2	a first alternate staggering configuration in a first dimension.			
1	26. The die assembly of claim 25 wherein the plurality of dies are stack	ced in		
2	a second staggering configuration in a second dimension.			
1	27. The die assembly of claim 21 further comprising:			
2	a redistribution layer to place bond pads on at least one of the plurality of the			
3	dies.			
1	28. The die assembly of claim 21 wherein the plurality of dies having s	ame		
2	2 or substantially similar sizes.			
1	29. The die assembly of claim 21 further comprising:			
2	a substrate attached to a bottom die of the plurality of dies by an adhesive.			
1	30. The die assembly of claim 21 wherein the adhesive layer is made o	f a		
2	non-conductive or conductive material.			