

TRACK B AOI & OAI GATE

by ChipiChapa Team

Background

- In this chipaton, our team will make 4 standard cells library, that is AOI211, OAI211, AOI221, and OAI221.
- We make these AOI dan OAI cells for fundamental cell of further macro cells like arithmatic cells and multiplexer.
- For the reference of performaces (delay, power, etc), we use performance from standard cells gf180mcu with 5v VDD, and make some goal prediction from those 5v standard cells (tweaking the delay time, power, etc from 5v and predict how it works for 3v3).

Functionality

In this chipaton, our team will make 4 standard cells library, that is AOI211, OAI211, AOI31, and OAI221.

A01211

AOI211 is a standard cells with 4 input that has boolean expression:

Y = !((A1 & A2) | B1 | C1)

A01221

AOI221 is a standard cells with 5 input that has boolean expression:

Y = !((A1 & A2) | (B1 & B2) | C1)

OAI211

OAI211 is a standard cells with 4 input that has boolean expression:

Y = !((A1 | A2) & B1 & C1))

OAI221

OAI221 is a standard cells with 5 input that has boolean expression:

Y = !((A1 | A2) & (B1 | B2) & C1)

General Format & Specification

LIBRARY	gf180mcu_osu_sc_9t3v3					
CELLS	1. AOI 211: gf180mcu_osu_sc_gp9t3v3_aoi211_1 2. OAI211: gf180mcu_osu_sc_gp9t3v3_oai211_1 3. AOI221: gf180mcu_osu_sc_gp9t3v3_aoi221_1 4. OAI221: gf180mcu_osu_sc_gp9t3v3_oai221_1					
DRIVE STRENGTH	1X					
TRACK	9 Track					
VDD	3.3V					

Block Diagram & Schematic - A01211

Specification	Target					
Area	<35 μm²					
Input Capacitance	<0.01 pF					
Delay	<0.40 ns					
Output Load	0.001 pF					
Dynamic Energy	<0.4 µW/MHz					
Leakage Power	<0.2 nW					

Block Diagram & Schematic - OAI211

Specification	Target				
Area	<35 μm²				
Input Capacitance	<0.01 pF				
Delay	<0.40 ns				
Output Load	0.001 pF				
Dynamic Energy	<0.4 µW/MHz				
Leakage Power	<0.2 nW				

Block Diagram & Schematic - A01221

Specification	Target					
Area	<40 μm²					
Input Capacitance	<0.01 pF					
Delay	<0.90ns					
Output Load	0.001 pF					
Dynamic Energy	<0.4 μW/MHz					
Leakage Power	<0.2 nW					

Block Diagram & Schematic - OAI221

Specification	Target					
Area	<40 μm²					
Input Capacitance	<0.01 pF					
Delay	<0.90ns					
Output Load	0.001 pF					
Dynamic Energy	<0.4 µW/MHz					
Leakage Power	<0.2 nW					

Task Distribution

Member Name	Rafi Ihsan Alfathin	Saputra Yudika Marpaung	Adrian Sami Pratama	Muhammad Nabil Raihan		
Block will be working on	AOI211	OAI211	AOI221	OAI221		
Task Detail	 1. Design schematic with XSchem 2. Simulation with ngspice 3. Layouting, DRC, and LVS with Klayout/Magic 4. Generate parasitic RC with Magic 5. Characterizing the cell with Charlib/Libretto 	1. Design schematic with XSchem 2. Simulation with ngspice 3. Layouting, DRC, and LVS with Klayout/Magic 4. Generate parasitic RC with Magic 5. Characterizing the cell with Charlib/Libretto	 1. Design schematic with XSchem 2. Simulation with ngspice 3. Layouting, DRC, and LVS with Klayout/Magic 4. Generate parasitic RC with Magic 5. Characterizing the cell with Charlib/Libretto 	1. Design schematic with XSchem 2. Simulation with ngspice 3. Layouting, DRC, and LVS with Klayout/Magic 4. Generate parasitic RC with Magic 5. Characterizing the cell with Charlib/Libretto		

Project Timeline

Our Team Task	Chipathon's Plan (Week)												
	Team Formation and Project Planning		Design and Simulation		Layout and Verification								
	28	29	30	31	32	33	34	35	36	37	38	39	40
Design schematic with XSchem													
Simulation with ngspice													
Layouting, DRC, and LVS with Klayout/Magic													
Generate parasitic RC with Magic													
Characterizing the cell with Charlib/Libretto, revision, and finalization													

THANKYOU

link to our github: ChipiChapa Github Repo Link: https://github.com/AdrianSPratama/SSCS-Chipaton-2025_ChipiChapa?tab=readme-ov-file

