Formulae:

$$P = \frac{1}{3} \frac{mNC^2}{V} \qquad P = \frac{1}{3} \rho C^2 \quad C = \sqrt{\frac{3P}{\rho}} \quad P = HDg$$

1. Calculate number of molecules per cm³ (Per C.C.) of a gas at 760 mm of mercury, when mass of each molecule of gas is 6.8×10^{-26} kg & R.M.S. velocity of gas molecule is 420 m/sec.

Given: Density of mercurty $D = 13.6 \times 10^3 \text{ kg/m}^3$ and Acceleration due to gravity, $g = 9.8 \text{ m/sec}^2$. (Ans: $N = 2.531 \times 10^{19}$)

2. Calculate RMS velocity of oxygen molecule at NTP. Density of oxygen at NTP is 1.43 gm/lit

Given: H = 0.76 m of Hg $D = 13.6 \times 10^3 \text{ kg/m}^3$ $g = 9.8 \text{m / sec}^2$

(Ans: $C = 4.609 \times 10^2 \ m/\text{sec}$)

3. The kinetic energy of 1 kg of oxygen at 300 K is $1.356 \times 10^6 J$, Find the kinetic energy of 4 kg of oxygen at 400 k. (Ans: $E_2 = 7.232 \times 10^6 J$)

Formulae: $C_{rms} = \sqrt{\frac{3RT}{M}}$

4. Calculate the rms speed of oxygen molecule at 225°C Density of oxygen at $NTP = 1.42kg / m^3$ and one atomsphere = $1.013 \times 10^5 \text{ N/m}^2$ (Ans: $C_T = 624.51 \text{ m/sec}$)

5. Find the temperature at which RMS speed of gas molecule is four times its value at NTP (Ans: T = 4368K or $T = 4095^{\circ}C$)

6. If RMS speed of Hydrogen molecule at NTP is $1.84 \times 10^3 m/\text{sec}$, find the RMS speed of oxygen molecule at NTP molecular weight of hydrogen is 2 and that of oxygen is 32. (Ans: $C_{O_2} = 460 \ m/\text{sec}$)

7. RMS velocity of oxygen molecule at NTP is 460.9 m/sec. Find the RMS velocity of hydrogen molecule at same temperature. (Ans: $C_{H_2} = 1843.6 \ m/\text{sec}$)

8. Two tanks of equal volume contain equal mases of oxygen and nitrogen at 127°C. Find the ratio of i) number of molecules in two tanks. ii) Pressure in two tanks (Ans:i) 7/8 ii) 7/8)

Type -II: Stefan's Law of radiation:

Formulae: $R = \sigma T^4$, $R = A\sigma T^4$, $R = A\sigma \left[T^4 - T_0^4\right]$

9. Compare rate of radiation of metal sphere at 627° C and 327° C (Ans: $R_1: R_2 = 5.0625:1$)

10. Compare rates of emission of heat by black body maintained at 727° C and 227° C (Ans: $R_1: R_2 = 16:1$)

11. Compare rate of emission of heat by a black body maintained at 727° C with 227° C, if black body is surrounded by an endosure 27° C. What would be ratio of their rate of loss of heat ? [Ans: i) $R_1: R_2 = 16:1$, ii) 1]

12. At what temperature will black body radiates heat at the rate of 5.67×10^4 watt / m^2 . Stefan's constant = $\sigma = 5.67 \times 10^{-8}$ SI unit (Ans: $T = 727^{\circ}C$)

13. A 40 watt filament lamp losses all its power by radiation when it is heated to 2500 K. If the surface emissivity is 0.5 & its radius of cross section is 0.1 mm, Calcuate its length. $\sigma = 5.67 \times 10^{-8} \text{ watt/m}^2 \text{k}^4$. (Ans: l = 5.748cm)

14. Show that rms velocity of an oxygen molecule is $\sqrt{2}$ times that of a sulfur dioxide molecule at S.T.P. Ans: $C_1 = \sqrt{2}C_2$

15. At what teperature will oxygen molecules have same rms speed as helium molecules at S.T.P.? (Molecular masses of oxygen and helium are 32 and 4 respectively) Ans : $T_1 = \boxed{2184K}$

16. Compare the rms speed of hydrogen molecules at 127°C with rms speed of oxygen molecules at 27°C given that molecular mases of hydrogen and oxygen are 2 and 32 respectively.

Ans:
$$C_1: C_2 = 8\sqrt{3}$$

17. Find kinetic energy of 5 litre of a gas at S.T.P. given standard pressure is $1.013 \times 10^5 \, N / m^2$.

Ans: $E = 7.5975 \times 10^{+2} J$

- 18. Calculate the average molecular kinetic energy (i) per kmol (ii) per kg (iii) per molecule of oxygen at 127° C, given that molecular weightef oxygen is 32, R is 8.31 J mol⁻¹ K⁻¹ and Avogadro's number N_A is 6.02×10^{23} molecules mol⁻¹. Ans := 8.28×10^{-21} J
- 19. Calcuclate the energy radiated in one minute by a blackbody of surfacce area $100 \, cm^2$ when it is maintained at 227° C Ans: $\boxed{Q = 2126J}$

20. Energy is emitted from a hole in an electric furnace at the rate of 20 W, when the temperature of the furnace is 7270C. What is the area of the hole? (Take Stefan's constant σ to be $5.7 \times 10^{-8} J s^{-1} m^{-2} K^{-4}$ Ans: $A = 3.52 \times 10^{-4} m^2$

21. The emissive power of a sphere of area 0.02 m^2 is $0.5 \text{ kcal s}^{-1} \text{m}^{-2}$. What is the amount of heat radiated by the spherical surface in 20 second?

Ans: Q = 0.2 K cal

- 22. Compare the rates of emission of heat by a blackbody maintained at 727°C and at 227°C, if the blackbodies are surrounded by an enclosure (black) at 27°C. What would be the ratio of their rates of loss of heat?

 Ans: $R_1: R_2 = 18.23:1$
- 23. Earth's mean temperature can be assumed to be 280 K. How will the curve of blackbody radiation look like for this temperature? Find out λ_{max} . In which part of the electromagnetic spectrum, does this value lie?

 Ans: $\lambda = 1.035 \times 10^{-5} m$

24. A small-blackened solid copper sphere of radius 2.5 cm is placed in an evacuated cchamber. The temperature of the chamber is maintained at 100° C. At what rate energy must be supplied to the copper sphere to maintain its temperature at 110° C? (Take Stefan's constant σ to be $5.76 \times 10^{-8} J_S^{-1} m^{-2} K^{-4}$ and treat the sphere as blackbody)

Ans: P = 0.96Watt

25. Find the temperature of a blackbody if its spectrum has a peak at $(a)\lambda_{max} = 700 \text{nm} \text{ (visible)}$, (b) $\lambda_{max} = 3 \text{cm} \text{ (microwave region)}$ and (c) $\lambda_{max} = 3 \text{m} \text{ (FM radio waves)}$ (Take Wien's constant b = $2.897 \times 10^{-3} \text{ mK}$) Ans: a) $\boxed{T_1 = 4138 \text{ K}}$ b) $\boxed{T_2 = 0.0966 \text{ K}}$ c) $\boxed{T_3 = 0.966 \times 10^3 \text{ K}}$