目次

無機化学

第Ⅰ部	非金属元素	2
1	水素	2
1.1	同位体	2
1.2	製法	2
1.3	反応	2
2	貴ガス	2
2.1	性質	2
2.2	生成	2
2.3	ヘリウム He	2
2.4	ネオン Ne	2
2.5	アルゴン Ar	2
3	ハロゲン	3
3.1	単体	3
3.2	ハロゲン化水素	4
3.3	ハロゲン化銀	4
3.4	次亜塩素酸塩	4
3.5	水素酸カリウム	4
第Ⅱ部	3 金属元素	5

無機化学 1/5

第I部

非金属元素

1 水素

無色無臭の気体 *1 最も軽く、水に溶けにくい

1.1 同位体

 1 H 99% 以上 2 H ($\underline{\mathbf{D}}$)0.015% 3 H ($\underline{\mathbf{T}}$) 微量

1.2 製法

- ナフサの電気分解 工業的製法
- 赤熱した $\frac{1-\rho_Z}{1}$ に $\frac{1}{N}$ を吹き付ける $\frac{1}{N}$ を吹き付ける $\frac{1}{N}$ の $\frac{1}{N}$
- 水(水酸化ナトリウム水溶液) の電気分解 $2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{H}_2 + \operatorname{O}_2$
- $\underline{\textit{TAVL傾向}}$ が $\underline{\textbf{H}_2}$ より大きい $\underline{\textbf{SAR}}$ 金属と希薄強酸

1.3 反応

• 水素と酸素 (爆鳴気の燃焼)

 $2 H_2 + O_2 \longrightarrow H_2O$

加熱した酸化銅(Ⅱ)と水素
 CuO + H₂ → Cu + H₂O

• 水酸化ナトリウムと水

 $NaH + H_2O \longrightarrow NaOH + H_2$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

- 2.1 性質
 - 無色・無臭
 - 第 18 族元素であり、電子配置がオクテットを満た すため反応性が低い。
 - イオン化エネルギーが極めて大きい。
 - 電子親和力は極めて小さい(ほぼ0)。
 - 電気陰性度は定義されない。
- 2.2 生成

⁴⁰K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム He

浮揚ガス

2.4 ネオン Ne

ネオンサイン

2.5 アルゴン Ar

 N_2 , O_2 に次いで 3 番目に空気中での存在量が多い (約 1%)。

無機化学 2/5

 $^{^{*1}}$ 融点 14K 沸点 20K

3 ハロゲン

3.1 単体

3.1.1 性質

I_2	*	強(弱)	恒	型中	母 <mark>滿蓋</mark>	<u>昇華</u> 様	高温で平衡状態	加熱して触媒により一部反応	<u>反応しない</u> Klag には可溶	ヨウ素デンプン反応で	青紫色													
Br_2	<u> </u>	↑	↑	1	↑	液体	赤褐色	揮発性	加熱して	触媒により反応	一部とけて反応	C=C &	C≡C の検出											
Cl_2		_	+	\	↓	↓	\	\	,	\	\	\	,	\	*	+	気体	黄緑色	刺激臭	<mark>常温</mark> でも <mark>光</mark> で	爆発的に反応	一部とけて反応	CIO_12	殺菌・漂白作用
F_2	Ý	弱(強)	低	気体	淡黄色	特異臭	冷暗所でも	爆発的に反応	水を酸化して酸素を発生 激しく反応	保存が困難	Kr や Xe と反応													
化学式	分子量	分子間力 (反応性)	沸点・融点	常温での状態	色	特徴	ロア色田	112 この人がい	水との反応	∱														

3.1.2 製法

- フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液の電気分解 工業的製法
- 水酸化ナトリウムの電気分解 (工業的製法)
 2 NaCl + 2 H₂O → Cl₂ + H₂ + 2 NaOH
- 酸化マンガン(IV) に<u>濃硫酸</u>を加えて加熱 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$

• 高度さらし粉と塩酸

 $\begin{aligned} &\operatorname{Ca(ClO)_2} \cdot 2\operatorname{H_2O} + 4\operatorname{HCl} \longrightarrow \operatorname{CaCl_2} + 2\operatorname{Cl_2} \uparrow + \\ &4\operatorname{H_2O} \end{aligned}$

● さらし粉と塩酸

 $\begin{aligned} &\operatorname{CaCl}(\operatorname{ClO}) \cdot \operatorname{H}_2\operatorname{O} + 2\operatorname{HCl} \, \longrightarrow \, \operatorname{CaCl}_2 + \operatorname{Cl}_2 \uparrow \, + \\ &2\operatorname{H}_2\operatorname{O} \end{aligned}$

• 臭化マグネシウムと塩素

$$MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$$

• ヨウ化カリウムと塩素 $2\,\mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

- 塩素と水素 $H_2 + \operatorname{Cl}_2 \xrightarrow{\text{光を当てると爆発的に反応}} 2\operatorname{HCl}$
- 臭素と水素 $H_2 + \mathrm{Br}_2 \xrightarrow{\bar{\mathrm{All}}\, \mathrm{C}\bar{\mathrm{C}}\bar{\mathrm{C}}} 2\,\mathrm{HBr}$
- ヨウ素と水素 $\mathbf{H}_2 + \mathbf{I}_2 \xrightarrow{\widehat{\mathbf{a}} \\ \exists \mathbf{u} \in \mathbf{T} \\ \mathbf{m}} 2 \, \mathbf{H} \mathbf{I}$
- フッ素と水 $2 \, F_2 + 2 \, H_2 O \longrightarrow 4 \, HF + O_2$
- 塩素と水 $Cl_2 + H_2O \Longrightarrow HCl + HClO$
- 臭素と水
 Br₂ + H₂O ⇒ HBr + HBrO
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応

$$I_2 + I^- \longrightarrow I_3^-$$

3.1.4 塩素発生実験の装置

↓ <mark>水</mark> に通す (HCl の除去)

 Cl_2,H_2O

 \downarrow <u>濃硫酸</u>に通す ($\mathrm{H_2O}$ の除去)

 Cl_2

3.2 ハロゲン化水素 3 ハロゲン

3.1.5 塩素のオキソ酸

3.2 ハロゲン化水素

3.2.1 性質

HI		-35°C		ヨウ化水素酸		インジウムスズ	酸化物の加工
HBr		D°79—		臭化水素酸	強酸 < 強酸	上叫书具木	十等体温上
HCl	無色刺激臭	$-85^{\circ}\mathrm{C}$	よく溶ける	塩酸	≪ 強酸 <	アンモニアの検出	各種工業
HF		$20^{\circ}\mathrm{C}$		フッ化水素酸	弱酸	ガラスと反応	⇒ ポリエチレン瓶
化学式	色・臭い	沸点	水との反応	水溶液	(強弱)	幾田	

3.2.2 製法

- <u>ホタル石</u>に<u>濃硫酸</u>を加えて加熱(<mark>弱酸遊離</mark>) $\operatorname{CaF}_2 + \operatorname{H}_2\operatorname{SO}_4 \xrightarrow{} \operatorname{CaSO}_4 + 2\operatorname{HF}\uparrow$
- 水素と塩素 工業的製法 $H_2 + Cl_2 \longrightarrow 2 HCl \uparrow$
- <u>塩化ナトリウム</u>に<u>濃硫酸</u>に 加 え て 加 熱 (<u>弱酸</u>酸・ <u>揮発性</u>酸の追い出し)

$$NaCl + H_2SO_4 \xrightarrow{} NaHSO_4 + HCl \uparrow$$

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $\mathrm{SiO}_2 + 4\,\mathrm{HF}(\mathrm{g}) \longrightarrow \mathrm{SiF}_4 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 $SiO_2 + 6$ HF (aq) \longrightarrow $H_2SiF_6 \uparrow + 2$ H_2O

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgBr	AgI
固体の色	黄褐色	<u>白</u> 色	淡黄色	黄色
水との反応	よく溶ける	ほとんど溶けない		
光との反応	感光	感う	匕性(→ <u>A</u>	g)

3.3.2 製法

- 酸化銀(Ⅰ)にフッ化水素酸を加えて蒸発圧縮
- ハロゲン化水素イオンを含む水溶液と硝酸銀水溶液

3.4 次亜塩素酸塩

3.4.1 性質

<u>酸化</u>剤として反応(<u>殺菌・漂白</u>作用 $\mathrm{ClO}^- + 2\,\mathrm{H}^+ + 2\,\mathrm{e}^- \longrightarrow \mathrm{H}_2\mathrm{O} + \mathrm{Cl}^-$

3.4.2 製法

- ・水酸化ナトリウム水溶液と塩素2 NaOH + Cl₂ → NaCl + NaClO + H₂O
- 水酸化カルシウムと塩素 ${\rm Ca(OH)_2 + Cl_2 \longrightarrow CaCl(ClO) \cdot H_2O}$

3.5 水素酸カリウム

 $KClO_3$

3.5.1 性質

 $\frac{_$ 酸化マンガン</u>を触媒に加熱 $\frac{\mathrm{MnO_2}}{\mathrm{KClO_3}} \xrightarrow{\mathrm{MnO_2}} \mathrm{KClO} + \mathrm{O_2}$

3.5 水素酸カリウム 3 ハロゲン

第Ⅱ部

金属元素

無機化学 5/5