Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 14.04.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 25

Wyznaczanie współczynnika rozszerzalności cieplnej metali za pomocą dylatometru

Spis treści

1	Wstęp teoretyczny	2
2	Opis doświadczenia	2
3	Opracowanie wyników pomiarów 3.1 Tabele pomiarowe	2 2 2 2 3 3
4	Ocena niepewności pomiaru 4.1 Niepewności wzorcowania	4 4 4 4 4 4 5
5	Wnioski	6
6	Wykresy	6

- 1 Wstęp teoretyczny
- 2 Opis doświadczenia
- 3 Opracowanie wyników pomiarów
- 3.1 Tabele pomiarowe

Nr	\mathbf{Kolor}
1	złota
2	miedziana
3	szara
4	srebrna

Tabela 1: Oznaczenie rurek

Nr	L_1 [cm]	L_2 [cm]	L_3 [cm]	L_4 [cm]
1	75,5	75,5	75,5	75,5
2	75,5	75,5	75,5	75,5
3	75,5	75,5	75,5	75,5
4	75,5	75,5	75,5	75,5
5	75,5	75,5	75,5	75,5
6	75,5	75,5	75,5	75,5

Tabela 2: Początkowe długości rurki.

Nr	L_{11}	L_{12}	L_{21}	L_{22}	L_{31}	L_{32}	L_{41}	L_{42}
	[mm]	$\mid [\mathrm{mm}] \mid$	[mm]	$\mid [\mathrm{mm}] \mid$	[mm]	$\mid [\mathrm{mm}] \mid$	[mm]	$\lfloor [\mathrm{mm}] \rfloor$
1	8,87	9,93	8,96	9,91	9,13	10,07	8,88	9,56
2	8,94	10,01	8,90	9,85	8,93	9,87	8,84	9,49

Tabela 3: Pomiary długości rurki x przed (L_{x1}) i po (L_{x2}) ogrzaniu.

Nr	$\Delta L_1 [\mathrm{mm}]$	$\Delta L_2 [\mathrm{mm}]$	$\Delta L_3 \text{ [mm]}$	$\Delta L_4 [\mathrm{mm}]$
1	1,06	0,95	0,94	0,68
2	1,07	$0,\!95$	0,94	0,65

Tabela 4: Pomiary wydłużenia rurki ($\Delta L_x = L_{x2} - L_{x1}$).

3.2 Średnia wartość początkowej długości rurki

Długości początkowe rurek nie wykazały rozrzutu wszystkie pomiary wyniosły 0.755 m.

3.3 Średnia wartość wydłużenia rurki

Na podstawie tabeli 4 obliczono średnie wydłużenie rurki dla każdej z czterech rurek i zapisano w tabeli 5.

ΔL_1 [m]	ΔL_2 [m]	ΔL_3 [m]	$\Delta L_4 [\mathrm{m}]$
0,001065	0,000950	0,000940	0,000665

Tabela 5: Średnie wydłużenie rurki.

Przykładowe obliczenia:

$$\Delta L_1 = \frac{1,06+1,07}{2} \cdot 10^{-3} = 0,001065 \,\mathrm{m}$$

3.4 Współczynnik rozszerzalności cieplnej

Współczynnik rozszerzalności cieplnej obliczono na podstawie wzoru:

$$\alpha = \frac{\Delta L}{L_0 \cdot (T_2 - T_1)} \tag{1}$$

gdzie:

- ΔL średnie wydłużenie rurki
- $L_0 = 0.755 \,\mathrm{m}$ długość początkowa rurki
- $T_1 = 24.0$ °C temperatura początkowa
- $T_2 = 100^{\circ}\mathrm{C}$ temperatura końcowa

Wyniki obliczeń zapisano w tabeli 6.

Rurka	$\alpha \left[\frac{1}{\mathrm{K}}\right]$
1	0,000018560
2	0,000016556
3	0,000016382
4	0,000011589

Tabela 6: Współczynnik rozszerzalności cieplnej dla poszczególnych rurek.

Przykładowe obliczenia:

$$\alpha_1 = \frac{0,001065}{0,755 \cdot (100 - 24)} = 0,000018560 \frac{1}{K}$$
 (2)

3.5 Określenie materiału rurek

Porównując wartości współczynnika rozszerzalności cieplnej z wartościami tablicowymi określono materiał rurek (biorąc pod uwagę najbliższą wartość oraz zgodność z kolorami rurek), który został zapisany w tabeli 7.

Materiał	Współczynnik rozszerzalności cieplnej $\left[\frac{1}{K}\right]$		
	Wartość tablicowa	Wartość zmierzona	
Mosiądz	$19,0 \cdot 10^{-6}$	$18,560 \cdot 10^{-6}$	
Miedź	$17.0 \cdot 10^{-6}$	$16,556 \cdot 10^{-6}$	
Stal nierdzewna	$17.3 \cdot 10^{-6}$	$16,382 \cdot 10^{-6}$	
Żelazo	$11.8 \cdot 10^{-6}$	$11,589 \cdot 10^{-6}$	

Tabela 7: Tablicowe wartości współczynnika rozszerzalności cieplnej dla różnych materiałów (źródło: [1]) oraz wartości zmierzone.

4 Ocena niepewności pomiaru

4.1 Niepewności wzorcowania

Niepewności wzorcowania na podstawie użytych przyrządów zostały zapisane w tabeli 8.

Wielkość	Niepewność wzorcowania
Długość początkowa rurki $(\Delta_d L)$	$0.01\mathrm{m}$
Długość rurki (przed i po ogrzaniu) ($\Delta_d L_{xx}$)	$0.00001\mathrm{m}$
Temperatura $(\Delta_d T)$	0.1°C

Tabela 8: Niepewności wzorcowania.

4.2 Niepewność standardowa początkowej długości rurki

Niepewność standardowa początkowej długości rurki obliczono na podstawie wzoru na niepewność typu B, ze względu na to, że nie wystąpił rozrzut wyników pomiarów.

$$u(L_0) = \frac{\Delta_d L_0}{\sqrt{3}} = \frac{0.01}{\sqrt{3}} = 0.00578 \,\mathrm{m}$$

4.3 Niepewność standardowa długości rurki

Niepewność standardowa długości rurki obliczono na podstawie wzoru:

$$u(L_{xx}) = \frac{\Delta_d L_{xx}}{\sqrt{3}} = \frac{0.00001}{\sqrt{3}} = 5.8 \cdot 10^{-6} \,\mathrm{m}$$

4.4 Niepewność wydłużenia rurki

Wydłużenie rurki określa wzór:

$$\Delta L_{xx} = L_{x2} - L_{x1}$$

Stąd niepewność standardowa wydłużenia rurki wynosi z prawa przenoszenia niepewności:

$$u(\Delta L_{xx}) = 2u(L_{xx}) = 2 \cdot 5.8 \cdot 10^{-6} = 1.2 \cdot 10^{-5} \,\mathrm{m}$$

4.5 Niepewność standardowa temperatury

Niepewność standardowa temperatury obliczono na podstawie wzoru:

$$u(T) = \frac{\Delta_d T}{\sqrt{3}} = \frac{0.1}{\sqrt{3}} = 0.058 \,\mathrm{K}$$

4.6 Niepewność standardowa różnicy temperatur

Niepewność standardowa różnicy temperatur obliczono na podstawie wzoru:

$$u(T_2 - T_1) = 2 \cdot u(T) = 2 \cdot 0.058 = 0.12 \,\mathrm{K}$$

4.7 Niepewność standardowa współczynnika rozszerzalności cieplnej

Współczynnik rozszerzalności cieplnej obliczono na podstawie wzoru 4.7.

$$\alpha = \frac{\Delta L}{L_0 \cdot \Delta T}$$

Stąd korzystając z prawa przenoszenia niepewności otrzymujemy:

$$u(\alpha) = \sqrt{\left(\frac{\partial \alpha}{\partial \Delta L}\right)^2 u^2(\Delta L) + \left(\frac{\partial \alpha}{\partial L_0}\right)^2 u^2(L_0) + \left(\frac{\partial \alpha}{\partial \Delta T}\right)^2 u^2(\Delta T)}$$

Obliczając pochodne cząstkowe otrzymujemy:

$$\begin{split} \frac{\partial \alpha}{\partial \Delta L} &= \frac{1}{L_0 \cdot \Delta T} \\ \frac{\partial \alpha}{\partial L_0} &= -\frac{\Delta L}{L_0^2 \cdot \Delta T} \\ \frac{\partial \alpha}{\partial \Delta T} &= -\frac{\Delta L}{L_0 \cdot \Delta T^2} \end{split}$$

Ostatecznie otrzymujemy:

$$u(\alpha) = \sqrt{\left(\frac{1}{L_0 \cdot \Delta T}\right)^2 u^2(\Delta L) + \left(-\frac{\Delta L}{L_0^2 \cdot \Delta T}\right)^2 u^2(L_0) + \left(-\frac{\Delta L}{L_0 \cdot \Delta T^2}\right)^2 u^2(\Delta T)}$$

Dla wszystkich rurek obliczono wartości i zapisano w tabeli 9.

Rurka	$u(\alpha) \ [\cdot 10^{-6} \ \frac{1}{K}]$
1	0,21
2	0,21
3	0,21
4	0,21

Tabela 9: Niepewność standardowa współczynnika rozszerzalności cieplnej.

Przykładowe obliczenia dla rurki nr 1:

$$u(\alpha_1) = \sqrt{\left(\frac{1}{0,755 \cdot 76}\right)^2 \cdot (1,2 \cdot 10^{-5})^2 + \left(-\frac{0,001065}{(0,755)^2 \cdot 76}\right)^2 \cdot (0,00578)^2 + \left(-\frac{0,001065}{0,755 \cdot (76)^2}\right)^2 \cdot (0,0578)^2 = 0,21 \cdot 10^{-6} \cdot \text{K}^{-1}$$

- 5 Wnioski
- 6 Wykresy

Literatura

[1] Wikipedia. Rozszerzalność cieplna. https://pl.wikipedia.org/wiki/Rozszerzalno%C5% 9B%C4%87_cieplna, 2024. Dostęp: 14.04.2024.