Correction interrogation IE2 18/12/2014

Question	Résultat						
I	Dissociation du phosgène						
1	$COCl_{2(g)} \longleftrightarrow CO_{(g)} + Cl_{2(g)}$						
2	A P fixée, effet de T dépend du signe de $\Delta_r H_{298}$. $\Delta_r H_{298}^0 = \Delta_f H_{298(CO_g)}^0 + \Delta_f H_{298(CO_{2g})}^0 - \Delta_f H_{298(COCl_{2g})}^0 = -110,5 + 0 + 220,1 = 109,6 \text{kJ/mol}$ Si T augmente, sens direct A T constante, V diminue, évolue dans le sens qui favorise la diminution du nb de mol de gaz, sens indirect						
3	$\begin{split} & \Delta_{r} H_{T}^{0} = \Delta_{r} H_{298}^{0} + \int_{298}^{T} \Delta C_{p} dT = \Delta_{r} H_{298}^{0} + \Delta C_{p} \left(T - 298 \right) \\ & \Delta_{r} S_{T}^{0} = \Delta_{r} S_{298}^{0} + \int_{298}^{T} \Delta C_{p} dT = \Delta_{r} S_{298}^{0} + \Delta C_{p} \ln \frac{T}{298} \\ & \text{avec } \Delta C_{p} = C_{P(CO_{g})} + C_{P(Cl_{2g})} - C_{P(COCl_{2g})} = 6J.K^{-1}.mol^{-1} \end{split}$						
4	Calcul de $\int_{298}^{700} \Delta C_{\rm p} dT = 2412 \text{ J.mol}^{-1}$ Calcul de $\Delta_{\rm r} S_{298}^0 = 197.7 + 223.1 - 283.8 = 137 \text{ J.mol}^{-1}$ Calcul de $\int_{298}^{700} \frac{\Delta C_{\rm p}}{T} dT = 5.12 \text{ J.K}^{-1} . \text{mol}^{-1}$ Sur l'intervalle de T, $\int_{298}^{T} \Delta C_{\rm p} dT <<\Delta_{\rm r} H_{298}^0 \text{ et } \int_{298}^{T} \frac{\Delta C_{\rm p}}{T} dT <<\Delta_{\rm r} S_{298}^0$						
5	Approximations validées $\Delta_r G_{673}^0 = \Delta_r H_{298}^\circ - T \Delta_r S_{298}^\circ = -RT \ln K_{673} = 109600 - 673*137 = 17400 J.mol^{-1}$ $K_{673} = 0,045$						
6		$ \begin{array}{c c} & COCl_{20} \\ \hline & n_0 \\ \hline & -x \\ \hline & n_0 - x \\ \hline & n_0 - x \\ \hline & \frac{1 - \alpha}{1 + \alpha} \\ \hline & \frac{1 - \alpha}{1 + \alpha} \\ \end{array} $ $ \begin{array}{c} & -\alpha \\ \hline & $		$ \begin{array}{c} +x \\ x \\ n_0 \alpha \\ \hline \frac{\alpha}{1+\alpha} \end{array} $	Nb moles n_0 n_0+x $n_0(1+\alpha)$		
7	et à 673 K sous P_T = 1 bar, α = 0.21 V=N-r-r'+ n- ϕ =3-1-1+2-1=2 Expression + def des variables + valeur						

8	$P_{CO} = P_{Cl_2}$									
	$P_{\text{CO}} + P_{\text{Cl}_2} + P_{\text{COCl}_2} = P_{\text{T}} \text{ et donc } P_{\text{COCl}_2} = P_{\text{T}} - 2P_{\text{CO}}$									
	$P_{CO}P_{CL}$ $(P_{CO})^2$									
	$K_{P(T)} = \frac{P_{\text{CO}}P_{\text{Cl}_2}}{P_{\text{COCL}}} = \frac{(P_{\text{CO}})^2}{P_{\text{T}} - 2.P_{CO}}$									
	Soit 3 équations	CO								
	Variables intensives: T,	P_T , P_{CO} , P_{C12}	et P _{COC12} : 5 in	connues						
	En fixant 2 paramètres ().					
9	Pour $\alpha = 0.25$, $P_T = K_P \frac{1}{2}$	$\frac{-\alpha^2}{\alpha^2} = 0.045.$	$\frac{1 - 0.25^2}{0.25^2} = 0.67$	75bar						
	Pour α < 0,25, P_T > 0,67		*							
	1001 0 0,23,11 0,07	3 our (et lie (chatcher)							
10	Le châtelier : somme de	Pi des réacta	nts diminue al	ors que T et I	ont ident	iques au cas				
	précédent : évolution da	ns le sens dire	ect : α '> α							
11	Etat	COCl	$CO_{(g)} \longrightarrow CO_{(g)}$	$+Cl_{2(g)}$	Air	Nb moles				
	Initial	1			1	2				
	T.	-α'	+ α'	+α'	0					
	Eq.	1- α' 1-α'	α' α'	α' α'	1	2+α'				
	Xi	$\frac{1}{2+\alpha'}$	$\frac{\alpha}{2+\alpha'}$	$\frac{\alpha}{2+\alpha'}$	$\frac{1}{2+\alpha'}$					
	$(\alpha')^2$									
	$K_{P} = \frac{\left(\alpha'\right)^{2}}{\left(2 + \alpha'\right)^{2}}.P_{T}$									
	$K_P = \frac{1 - \alpha'}{1 - \alpha'} P_T$									
	$\overline{2+\alpha'}$									
	$(P_T + K_P)(\alpha')^2 + K_P\alpha' - 2H$	$K_P = 0$								
	Soit $1.045(\alpha')^2 + 0.045\alpha'$	-0.09 = 0								
	$\Delta = 0.045^2 + 4 * 1.045 * 0.09$	0 = 0.378225								
	$\alpha_1' = \frac{-0.045 - \sqrt{\Delta}}{2*1.045} \langle 0$									
	$\alpha'_2 = \frac{-0.045 + \sqrt{\Delta}}{2*1.045} = 0.27(3)$	$\alpha_2' = \frac{-0.045 + \sqrt{\Delta}}{2*1.045} = 0.27(3)$								
	2 1.043	2*1.045								
	$x_{COCl_2} = \frac{1 - 0.27}{2.27} = 0.322$	$x_{cocl_2} = \frac{1 - 0.27}{2.27} = 0.322$								
	$x_{CO} = x_{Cl_2} = \frac{0.27}{2.27} = 0.119$									
	$x_{air} = \frac{1}{2.27} = 0.440$									
	$x_{N_2} = 0.8 * x_{air} = 0.352$									
	$x_{0_2} = 0.2 * x_{air} = 0.088$									
	-									

Question	Résultat									
II	Décomposition de BaO ₂									
1	$2 \text{ BaO}_{2(s)} \leftrightarrow 2 \text{ BaO}_{(s)} + O_{2(\text{gaz})}$									
	$V = N - r - r' + n - \varphi = 3 - 1 - 0 + 2 - 3 = 1$									
	Variables: T, $P_T = P_{O_2}$ Si 1 paramètre (P ou T) est fixé, l'autre l'est aussi : 1 relation particulière entre T et P :									
	$K = P_{O_2}$									
2	$n_{BaO_2} = \frac{m_{BaO_2}}{M_{BaO_3}} = \frac{9}{169.3} = 0.0532$ mole									
	2									
	Pour créer la pression d'éq à 737°C = 1010K, il faut :									
	$n_{O_2} = \frac{P_{O_2} \cdot V}{RT} = \frac{0.186^{\frac{1}{2}}}{2.3}$	$\frac{10^5 * 2 * 10^{-3}}{14 * 1010} = 0.00441$	nole							
	K1 6.5	14 1010								
	Il faut au moins	n = 2 n = 0.0088 m	ole: il y a	assez de B	aO ₂ , l'équilibre est établi.					
	,	$n_{BaO_2} - 2.n_{O_2} - 0.0000111$	oic							
	Tr									
	Etat	$2 \text{ BaO}_{2(s)} \leftrightarrow 1$	$2 \text{ BaO}_{(s)} +$	$- O_{2(gaz)}$						
	Initial	$n_{BaO_{\gamma}}$								
		-2x	+2x	+x						
	Eq.	$n_{BaO_2} - 2x$	2x	$x = n_{O_2}$						
		0.0532-2*0.0044= 0.044	0.0088	0.0044						
3	Si on aioute du C		t : P angn	nente donc	il se reformera du BaO ₂ pour					
	Si on ajoute du O ₂ à volume constant : P augmente donc il se reformera du BaO ₂ p consommer O ₂ et ramener PO ₂ à 0.186 bar. (Le Chatelier)									
	_	_	`		,					
	Si on ajoute du B	aO: rien ne se pas	20							
II	•	ge d'acide et de bas								
1	<u> </u>	,								
	Etat CH CO	OOH+H,O 	-1 COO.+	H O+						
	Initial C _A		13000 1	$\frac{10^{-7}}{10^{-7}}$						
	$\begin{array}{ c c c c c c }\hline \text{Imital} & C_A & \text{IO} \\ \hline & -x & +x & +x \\ \hline \end{array}$									
	Eq. C_{A} - x x $x + \varepsilon$									
	Etot									
	Etat 2H ₂ O	\longleftrightarrow OH ⁻ +H ₃ O ⁺								
	Initial Excès	10 ⁻⁷ 10 ⁻⁷								
	Eq.	10^{-7} - a 10^{-7} + x	_a							
	24.	=x + i								
	4 inconnues : [CH ₃ COOH] _{eq} , [CH ₃ CO ₂ ⁻] _{eq} , [OH ⁻] _{eq} , [H ₃ O ₊] _{eq}									
	4 équations : $C_A = [CH_3COOH]_{eq} + [CH_3COO^-]_{eq}$									
	$\left[\left[\mathbf{H}_{3}\mathbf{O}^{+}\right] _{\mathrm{eq}}=\left[\mathbf{O}\mathbf{H}^{-}\right] $	$_{\text{eq}}^{} + [\text{CH}_{3}\text{COO}^{\text{-}}]_{\text{eq}}^{}$								
	$K_e = [OH^-]_{eq}$. [F									
	1	•								
	$K_{A} = \frac{[CH_{3}COC]}{[CH_{3}COC]}$	J _{eq} .[Π ₃ U J _{eq}								
	[CH ₃ 0	COOH] _{eq}								
	Colution saids	on cumpace [II O ⁺]	- w (an	Saliga Paret	a protalusa da l'assa)					
	Solution acide : on suppose $[H_3O^+] = x$ (on néglige l'auto-protolyse de l'eau)									

$$K_A = \frac{x^2}{C_A - x}$$
 soit $x^2 + K_A x - K_A C_A = 0$

Résolution équation du 2nd ordre :

$$\Delta = K_A^2 + 4.K_A.C_A$$

$$x_2 = \frac{-K_A - \sqrt{\Delta}}{2} \langle 0 \text{ et } x_1 = \frac{-K_A + \sqrt{\Delta}}{2} \rangle$$

 $x_2 = \frac{-K_A - \sqrt{\Delta}}{2} \langle 0 \text{ et } x_1 = \frac{-K_A + \sqrt{\Delta}}{2}$ Or $K_A << 4C_A$; solution est peu diluée, acide peu dissociée :

$$K_A \approx \frac{x^2}{C_A}$$

$$x = (K_A.C_A)^{1/2} = 1,33.10^{-3} \text{ mol/L}$$

 $pH = -\log(x) = 2.87$

On vérifie bien que l'acide est peu dissocié : $\frac{x}{C} = 1.33\%$ et x>> 10^{-7}

2

Etat	$NH_3+H_2O \longrightarrow NH_4^++OH^-$						
Initial	C_{B}			10-7			
	-у		+y	+y			
Eq.	C _B -y		у	y + ε			

Etat	$2H_2O \longrightarrow OH^- + H_3O^+$				
Initial	Excès	10 ⁻⁷			
		+y 10 ⁻⁷ +y - a			
Eq.	Eq. C_A -x		10 ⁻⁷ - a		
		$= y + \varepsilon$			

4 inconnues : $[NH_3]_{eq}$, $[NH_4^+]_{eq}$, $[OH^-]_{eq}$, $[H_3O^+]_{eq}$

4 équations : $C_B = [NH_3]_{eq} + [NH_4^+]_{eq}$

$$[H_3O^+]_{eq} + [NH_4^+]_{eq} = [OH^-]_{eq}$$

$$K_e = [OH^-]_{eq} \cdot [H_3O^+]_{eq}$$

$$K_{B} = \frac{[OH^{-}]_{eq}.[NH_{4}^{+}]_{eq}}{[NH_{3}]_{eq}} = \frac{K_{e}}{K_{A}} = 10^{-4.8}$$

Solution basique : on suppose [OH⁻] = y (on néglige l'auto-protolyse de l'eau)

$$K_B = \frac{y^2}{C_B - y}$$
 soit $y^2 + K_B y - K_B C_B = 0$

Résolution équation du 2nd ordre :

$$\Delta = K_B^2 + 4.K_B.C_B$$

$$y_2 = \frac{-K_B - \sqrt{\Delta}}{2} \langle 0 \text{ et } y_1 = \frac{-K_B + \sqrt{\Delta}}{2}$$

Or $K_B \ll 4C_B$; solution est peu diluée, base peu dissociée :

$$K_B \approx \frac{y^2}{C_B}$$

$$K_{\rm B} \approx \frac{y^2}{C_{\rm B}}$$

 $y = (K_{\rm B}.C_{\rm B})^{1/2} = 1,26.10^{-3} \,\text{mol/L}$

$$[H_3O^+]_{eq} = \frac{K_e}{[OH^-]_{eq}} = \frac{K_e}{y}$$
 et pH = 14 + log(y) = 11.1

On vérifie bien que la base est peu dissociée : $\frac{y}{C_R} = 1.26\%$ et y>>10⁻⁷ M

3a)	$CH_{3}COOH+NH_{3} \longleftrightarrow CH_{3}COO^{-}+NH_{4}^{+}$ $K = \frac{[CH_{3}CO_{2}^{-}]_{eq}.[NH_{4}^{+}]_{eq}}{[CH_{3}CO_{2}H]_{eq}.[NH_{3}]_{eq}} = \frac{K_{A(CH_{3}CO_{2}H/CH_{3}CO_{2}^{-})}}{K_{A(NH_{4}^{+}/NH_{3})}} = 10^{4.45}$ Réaction très déplacée vers la droite : presque totale							
3b)		Etat $CH_3COOH+NH_3 \rightleftharpoons CH_3COO^-+NH_4^+$						
	-	Initial	0.05 -x	0.05 -x	+x	+x		
		Eq.	0.05-x	0.05-x	X	X		
	$K = \frac{x^2}{(0.05 - x)^2}$ Solution: x=0.04970 M $\left[H_3O^+\right] = \frac{K_A(0,05-x)}{x} = 1,05.10^{-7} \text{ et pH} = 6.97$ $\frac{\left[CH_3COOH\right]}{\left[CH_3COO^-\right]} = 5,9.10^{-3} \text{ et } \frac{\left[NH_4^+\right]}{\left[NH_3\right]} = 166$							