

Clustered Index Internals

Lead Content Developer:

Amit R S Bansal (@A_Bansal | www.amitbansal.net)
Microsoft Certified Master of SQL Server
Microsoft Most Valuable Professional for SQL Server

Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of eDominer Systems.

The names of manufacturers, products, or URLs are provided for informational purposes only and eDominer makes no representations and warranties, either expressed, implied, or statutory, regarding these manufacturers or the use of the products with any Microsoft technologies. The inclusion of a manufacturer or product does not imply endorsement of eDominer of the manufacturer or product. Links are provided to third party sites. Such sites are not under the control of eDominer and eDominer is not responsible for the contents of any linked site or any link contained in a linked site, or any changes or updates to such sites. eDominer is not responsible for webcasting or any other form of transmission received from any linked site. eDominer is providing these links to you only as a convenience, and the inclusion of any link does not imply endorsement of eDominer of the site or the products contained therein.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Copyright © 2014 eDominer Systems Private Limited. All rights reserved.

Microsoft, Excel, Office, and SQL Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

Before You Begin	∠
Estimated time to complete this lab	2
Objectives:	
Prerequisites	
Lab scenario	
Tips to complete this lab successfully	5
Exercise 1: Understanding Clustered Index B-Tree Structure	6
Scenario	θ
Summary	
Exercise 2: Page Splits and Fragmentation in Clustered Index	16
Scenario	16
Summary	20
Exercise 3: Clustered Index Key	21
Scenario	
Summary	32

Before You Begin

Estimated time to complete this lab

40 minutes

Objectives:

After completing this lab, you will be able to:

- Understand the Clustered Index internals in SQL Server
- Understand Clustered index architecture
- Understand Page split and fragmentation
- Understand Clustered index key
- Understand Ordering of data in clustered index

Prerequisites

Before working on this lab, you must have:

Basic administration experience with SQL Server

Lab scenario

In SQL Server, indexes are organized as B-trees. Each page in an index B-tree is called an index node. The top node of the B-tree is called the root node. The bottom level of nodes in an index is called as leaf nodes. Any index levels between the root and the leaf nodes are collectively known as intermediate levels. In a clustered index, the leaf nodes contain the data pages of the underlying table. The root and intermediate level nodes contain index pages holding index rows. Each index row contains a key value and a pointer to either an intermediate level page in the B-tree, or a data row in the leaf level of the index. The pages in each level of the index are linked in a doubly-linked list. In the first exercise we will observe B-Tree structure of a clustered index. In the second exercise we will understand the concept of page split and how page split causes fragmentation in case of clustered index. In exercise we will explore the significance of choosing proper clustered index key and in the fourth exercise we will look at the ordering of data in case of clustered index.

Tips to complete this lab successfully

Following these tips will be helpful in completing the lab successfully in time

- All lab files are located in C:\vLabs\ Clustered_Index_Internals folder
- The script(s) are divided into various sections marked with 'Begin', 'End' and 'Steps'. As per the instructions, execute the statements between particular sections only or for a particular step
- Read the instructions carefully and do not deviate from the flow of the lab
- In case you execute the entire script by mistake or miss a step or get confused midway, simply 'Restart' the VM from the VM control panel to restart/redo the lab

Exercise 1: Understanding Clustered Index B-Tree Structure

Scenario

In this exercise, we will look at clustered index internals, how B-Tree is formed and what kind of data resides in each level of the clustered index.

Tasks	Detailed Steps
Launch SQL Server Management Studio	 Click Start All Programs SQL Server 2012 SQL Server Management Studio or Double click SQL Server Management Studio shortcut on the desktop In the Connect to Server dialog box, click Connect
Open 1_UnderstandingClusteredl ndexInternals.sql	 Click File Open File or press (Ctrl + O) Navigate to C:\vLabs\ Clustered_Index_Internals Select 1_UnderstandingClusteredIndexInternals.sql and click Open
Execute the statement(s) in the 'Setup' section to setup the database and table	The setup section performs the following: • SQLMaestros database is created • SQLMaestros schema is created • Table1 table is created with 1000 records In 1_UnderstandingClusteredIndexInternals.sql, Review and execute the statement(s) in section 'Begin: Setup' and 'End: Setup'


```
-- Begin: Setup
-- Create a database named SQLMaestros
USE master;
IF EXISTS(SELECT 1 FROM sys.databases WHERE name='SQLMaestros')
ALTER DATABASE [SQLMaestros] SET SINGLE_USER WITH ROLLBACK IMMEDIATE;
DROP DATABASE SQLMaestros;
CREATE DATABASE SQLMaestros;
GO
USE SQLMaestros;
SET NOCOUNT ON;
GO
-- Create a schema named SQLMaestros
CREATE SCHEMA [SQLMaestros] AUTHORIZATION [dbo];
GO
-- Create Table1 Table in SQLMaestros database
CREATE Table [SQLMaestros].[Table1](
   Column1 INT,
   Column2 VARCHAR(8000),
   Column3 CHAR(10),
   Column4 INT);
GO
-- Insert 1000 records into Table1 table
DECLARE @COUNT INT;
SET @COUNT = 1;
DECLARE @DATA1 VARCHAR(7000)
SET @DATA1 = REPLICATE('bigdata',1000)
WHILE @COUNT < 1001
BEGIN
DECLARE @DATA2 INT;
SET @DATA2 = ROUND(10000000*RAND(),0);
```



```
INSERT INTO [SQLMaestros].[Table1] VALUES(@COUNT,@DATA1,'AAAAA',@DATA2);
                           SET @COUNT = @COUNT + 1;
                           END
                           GO
                           -- End: Setup
CREATE a clustered index
                           Execute the following statement(s) to CREATE a clustered index on Column1 column of Table1 table
                           -- Step 1: Create a clustered index on Column1 column of Table1 table
                           CREATE CLUSTERED INDEX CL Table1 Column1 ON [SQLMaestros].[Table1](Column1);
                           Note: There are many clauses that you can specify during index creation. Many of these clauses are optional. If we don't specify,
                           SQL server will accept the default values. In case, we want to use these clauses, we have to use the syntax WITH (OPTION_NAME
                           = VALUE).
                               PAD_INDEX = { ON | OFF }
                               FILLFACTOR = fillfactor (Integer value between 0 - 100)
                               SORT IN TEMPDB = { ON | OFF }
                               IGNORE_DUP_KEY = { ON | OFF }
                               STATISTICS NORECOMPUTE = { ON | OFF }
                               DROP_EXISTING = { ON | OFF }
                               ONLINE = { ON | OFF }
                               ALLOW_ROW_LOCKS = { ON | OFF }
                               ALLOW PAGE LOCKS = { ON | OFF }
                               MAXDOP = max_degree_of_parallelism (Integer value depending upon the no. of CPU)
                               DATA COMPRESSION = { NONE | ROW | PAGE}
```


View clustered index details

Execute the following statement(s) to view clustered index details of **Table1** table

Note: We can use **sys.dm_db_index_physical_stats()** DMF to get detailed index information. Below is the complete list of parameters that we can pass to this DMF:

Observation: We are using sys.dm_db_index_physical_stats Dynamic Management Object to view index metadata. In the above output, index_level column represents the index depth. Index_level '0' is for leaf level and any subsequent higher value represents the intermediate level and root level. The clustered index has three levels. First row is for the root level (index_level = 2), second row for intermediate level (index_level = 1) and third row for leaf level (index_level = 0). page_count,

avg_record_size_in_bytes and **avg_fragmentation_in_percent** represent no. of pages, average row size in each page and amount of fragmentation in each level respectively.

Note: Fillfactor is only applicable for leaf level pages. If you want to define index fillfactor to intermediate and root level, then we have to specify that by turning **Pad_Index** option 'ON' while creating or rebuilding the index.

View B-Tree structure of the clustered index

Execute the following statement(s) to view the B-Tree structure of the clustered index of **Table1** table

-- Step 5: View clustered index architecture

SELECT allocated_page_page_id,page_type_desc,page_level,next_page_page_id,previous_page_page_id

FROM sys.dm_db_database_page_allocations(DB_ID(N'SQLMaestros'), OBJECT_ID(N'SQLMaestros.Table1'), NULL,

NULL, 'DETAILED')

WHERE page_type IN (1,2)

ORDER BY page_level DESC;

GO

Results Messages									
	allocated_page_page_id	page_type_desc	page_level	next_page_page_id	previous_page_page_id				
1	1307	INDEX_PAGE	2	NULL	NULL				
2	1305	INDEX_PAGE	1	1306	NULL				
3	1306	INDEX_PAGE	1	NULL	1305				
4	1296	DATA_PAGE	0	1297	NULL				
5	1297	DATA_PAGE	0	1298	1296				
6	1298	DATA_PAGE	0	1299	1297				
7	1299	DATA_PAGE	0	1300	1298				

Note: sys.dm_db_database_page_allocations() is an undocumented DMF available only in SQL Server 2012. Below is the parameter list that can be passed into this DMF

View memory dump of root level page

Execute the following statement(s) to view memory dump of clustered index root page (Replace 1307 in the below statement with allocated_page_page_id of the root page from the output of step 5[Note: For root page page_level is 2])

```
-- Step 6: View memory dump of root page DBCC TRACEON(3604); DBCC PAGE('SQLMaestros',1,1307,3); -- Page ID will change in your case GO
```


Note: Clustered index root page dose not contains any user data but only pointers to the intermediate level pages. We can observer that in the Messages section in the output.

Note: In order to view DBCC PAGE output in SSMS we have to enable Trace Flag 3604. DBCC PAGE() command can be used to view a page contents. Below is the complete parameter list that we can pass into DBCC PAGE() command:

DBCC PAGE

```
(
    { database_name | database_id | DB_ID() }
    , { file_number }
    , { page_number }
    , { print_option [0 - header | 1 - header + slot array | 2 - header + whole page hex dump | 3 - header + complete page hex dump with row by row interpretation}
)
```


View memory dump of intermediate level page

Execute the following statement(s) to view memory dump of a clustered index intermediate level page (Replace 1305 in the below statement with allocated_page_page_id of a particular intermediate level page from the output of step 5[Note: For Intermediate level page page level is 1])

--Step 7: View memory dump of intermediate level page DBCC PAGE('SQLMaestros',1,1305,3); -- Page ID will change in your case GO

1	Editor	Results	a 1	Message	s					
	FileId	Pageld	Row	Level	ChildFileId	ChildPageld	Column1 (key)	UNIQUIFIER (key)	KeyHashValue	Row Size
1	1	1305	0	1	1	1296	NULL	NULL	NULL	14
2	1	1305	1	1	1	1297	2	0	NULL	14
3	1	1305	2	1	1	1298	3	0	NULL	14
4	1	1305	3	1	1	1299	4	0	NULL	14
5	1	1305	4	1	1	1300	5	0	NULL	14
6	1	1305	5	1	1	1301	6	0	NULL	14
7	1	1305	6	1	1	1302	7	0	NULL	14
	4	1000	7	4	4	1000	0	0	KILILI	4.4

Observation: As in case of root page, intermediate level pages in a clustered index also does not contains any data but pointers to the leaf level pages and clustered index key. We have created a non-unique clustered index, thus to make all the clustered index keys unique SQL Server has added an **UNIQUIFIER** (key).

View memory dump of leaf level page

Execute the following statement(s) to view memory dump of clustered index leaf level page (Replace 1296 in the below statement with allocated_page_page_id of a particular leaf level page from the output of step 5[Note: For leaf level page page_level is 0])

```
--Step 8: View memory dump of leaf level page
DBCC PAGE('SQLMaestros',1,1296,3); -- Page ID will change in your case
GO
```


	Slot 0 Column 0 Offset 0x0 Length 4 Length (physical) 0 UNIQUIFIER = 0
	Slot 0 Column 1 Offset 0x4 Length 4 Length (physical) 4 Column1 = 1
	Slot 0 Column 2 Offset 0x1f Length 7000 Length (physical) 7000
	Column2 = bigdatabigdatabigdatabigdatabigdatabigdatabigdatabigdatabigdatab tabigdatabigdatabigdatabigdatabigdatabigdatabigdatabigdatabi
	Observation: Leaf level pages of a clustered index contain the actual table data itself.
Close all the query windows	Close all the query windows () and if SSMS asks to save changes, click NO

Summary

In this exercise, you have learnt:

- Different clauses that you can specify during the creation\rebuilding of a clustered index
- How to view clustered index B-Tree structure using DMVs & DMFs
- Different levels of clustered index b-tree structure and what they contain
- About Index statistics
- View index information from sys.dm_db_index_physical_stats() DMF

Exercise 2: Page Splits and Fragmentation in Clustered Index

Scenario

In this exercise, we will look at page split in clustered index and how they generate fragmentation.

Tasks	Detailed Steps
Open 2_PageSplitFragmentation.sql	 Click File Open File or press (Ctrl + O) Navigate to C:\vLabs\ Clustered_Index_Internals Select 2_PageSplitFragmentation.sql and click Open
Execute the statement(s) in the 'Setup' section to create a table	The setup section performs the following: • Table2 table is created with 1000 records In 2_PageSplitFragmentation.sql, Review and execute the statement(s) in section 'Begin: Setup' and 'End: Setup'
	Begin: Setup


```
-- Insert 1000 records in Table2 table
                             DECLARE @COUNT INT;
                             SET @COUNT = 1;
                             WHILE @COUNT < 1001
                             BEGIN
                             INSERT INTO [SQLMaestros].[Table2] VALUES(@COUNT, 'smalldata', GETDATE());
                             SET @COUNT = @COUNT + 1;
                             END
                             G0
                              -- End: Setup
CREATE a clustered index
                             Execute the following statement(s) to CREATE a clustered index on Column1 column of Table1 table
                             -- Step 1: Create clustered index on Column1 column of Table2 table
                             CREATE CLUSTERED INDEX CL Table1 Column1 ON [SQLMaestros].[Table2](Column1);
                             G0
View clustered index details
                             Execute the following statement(s) to view clustered index details of Table2 table
                             -- Step 2: View clustered index details
                             SELECT
                             index id, index type desc, index level, page count, avg record size in bytes, avg fragmentation in percent
                             FROM sys.dm db index physical stats
                                 (DB ID(N'SQLMaestros'), OBJECT ID(N'SQLMaestros.Table2'), 1, NULL , 'DETAILED')
                             ORDER BY index level DESC;
                             GO
```


	Results Messages									
	index_id index_type_desc	index_level	page_count	avg_record_size_in_bytes	avg_fragmentation_in_percent					
	1 1 CLUSTERED INC	DEX 1	1	14	0					
	2 1 CLUSTERED INC	DEX 0	5	34	0					
	Observation: Currently the clus	tored index has	: 0% fragmen	tation and there are five	a loaf lovel (data) pages and th	e root na				
	Observation: Currently the clus	tered index has	ow tragmen	itation and there are live	e lear level (data) pages and the	e root pa				
View page split details	Execute the following statemen	t(s) to view the	no of page	enlite in SOI Maastros da	atabase using fn. dblog() functi	ion				
new page spilt details	Execute the following statement	t(s) to view the	iio. oi page	spirts iii SQLiviaestros da	itabase using in_ubiog() functi	.1011				
	Step 3: View page split	: details fro	m log file							
	Select COUNT(1) AS NumberO									
	<pre>From fn_dblog(NULL,NULL)</pre>									
	Where operation = 'LOP_DEL	_								
	Group By AllocUnitName, Co									
	Order by NumberOfSplits de	es c								
	Note: fn_dblog() is an undocumented function that we can use to view transactional log file content. Below is the complete									
	parameter list that we can pass to this function:									
	fn_dblog									
	LII_antoR									
	(start time NULL)									
	{ start_time NULL }									
	,{ end_time NULL }									
	,									
UPDATE records in Table2	Execute the following statemen	t(s) to UPDATE	Column2 co	lumn of Table2 table						
51 = 111	Execute the following statement(s) to UPDATE Column2 column of Table2 table									
	Step 4: Perform update	operation to	split the	pages						
	DECLARE @DATA1 VARCHAR(426		Spire one	F-0-0						
	SET @DATA1 = REPLICATE('bigdata',600)									
	SET @DATA1 = REPLICATE('bi	.gdata',600)								

	WHERE Column1 % 2 = 0
	DECLARE @DATA2 VARCHAR(4200) SET @DATA2 = REPLICATE('bigdata',600) UPDATE [SQLMaestros].[Table2] SET Column2 = @DATA2 WHERE Column1 % 2 = 1
	Explanation: A data page can contain maximum 8060 bytes of data. In the above workload, we are updating Column2 to 4200 bytes, which means all the records need to move to another page in order to successfully UPDATE a single row of Column2 value. Essentially, each page now can only contain a single record. Five leaf level pages will be split into 1000 leaf level pages and subsequent intermediate level page will be created due to a page split in the root page as well.
View page split details	Execute the following statement(s) to view the no. of page splits in SQLMaestros database using fn_dblog() function Step 5: View page split details from log file Select COUNT(1) AS NumberOfSplits, AllocUnitName, Context From fn_dblog(NULL,NULL) Where operation = 'LOP_DELETE_SPLIT' Group By AllocUnitName, Context Order by NumberOfSplits desc Note: Note the number of page splits that occurred
View clustered index details	Execute the following statement(s) to view clustered index details for Table2 table Step 6: View clustered index details SELECT index_id,index_type_desc,index_level,page_count,avg_record_size_in_bytes,avg_fragmentation_in_percent FROM sys.dm_db_index_physical_stats (DB_ID(N'SQLMaestros'), OBJECT_ID(N'SQLMaestros.Table2'), 1, NULL , 'DETAILED') ORDER BY index_level DESC; GO

		Results Messages							
		index_id index_type_desc		index_level	page_count	avg_record_size_in_bytes	avg_fragmentation_in_percent		
		1	1	CLUSTERED INDEX	2	1	14	0	
		2	1	CLUSTERED INDEX	1	3	14	0	
		3	1	CLUSTERED INDEX	0	1000	4225	90.9	
	w ro fo le 80 Al	Observation: Before the UPDATE operation the clustered index had two levels with one root page and five leaf level pages with 0% fragmentation. Due to the UPDATE operation leaf level pages split and 995 new pages are created. Before page split, root page had to hold five records (pointers to 5 pages below it) but due to page splits it has to now hold 1000 records (one for each for leaf level page). But the average row size in root page is 14 bytes. So in order to accommodate all pointers for leaf level pages, the root page had to hold 14 X 1000 = 14000 bytes of data. As we already know that a page can contain maximum 8060 bytes of data root page had to split and intermediate level pages are created to accommodate the UPDATE operation. Also notice that due to page splits, leaf level page fragmentation increased from 0 to 90 percent, approximately. Tips: In order to fix fragmentation, the index can be re-built or de-frag(ed).							
Close all the query windows	Cl	ose a	all the que	ery windows (🔀) ar	nd if SSMS a	isks to save o	changes, click NO		

Summary

In this exercise, you have learnt:

- The concept of page splits and how/when they can occur
- How fragmentation increases due to page splits
- How to use fn_dblog() function to monitor page splits
- How to use sys.dm_db_database_page_allocations DMF to view pages allocated to a table
- How to use sys.dm_db_index_physical_stats DMF to view index metadata

Exercise 3: Clustered Index Key

Scenario

In this exercise, we will look at clustered index key and how important it is to select the perfect key for clustered index.

Tasks	Detailed Steps
Open 3_ClusteredIndexKey.sql	 Click File Open File or press (Ctrl + O) Navigate to C:\vLabs\ Clustered_Index_Internals Select 3_ClusteredIndexKey.sql and click Open
Execute the statement(s) in the 'Setup' section to setup the table Table3	The setup section performs the following: • Table3 table is created with 1000 records • Column6 column of Table3 table is updated to contain some duplicate values. Note: We are purposely inserting duplicate values to demonstrate the concept of UNIQUIFIER(key) In 3_ClusteredIndexKey.sql, review and execute the statements in section 'Begin: Setup' and 'End: Setup'
	USE SQLMaestros; SET NOCOUNT ON; GO Create Table3 table in SQLMaestros database CREATE Table [SQLMaestros].[Table3](


```
Column2 CHAR(15),
                                         Column3 VARCHAR(100),
                                         Column4 UNIQUEIDENTIFIER,
                                         Column5 DATETIME,
                                         Column6 INT);
                                  -- Insert 1000 records in Table3 table
                                  DECLARE @COUNT INT;
                                  SET @COUNT = 1;
                                  DECLARE @DATA1 VARCHAR(100)
                                  SET @DATA1 = REPLICATE('data', 25)
                                  WHILE @COUNT < 1001
                                  BEGIN
                                  DECLARE @DATA2 INT;
                                  SET @DATA2 = ROUND(10000000*RAND(),0);
                                  INSERT INTO [SQLMaestros].[Table3] VALUES(@COUNT, 'SQLMaestros', @DATA1, NEWID(), GETDATE(),
                                  @DATA2);
                                  SET @COUNT = @COUNT + 1;
                                  END
                                  GO
                                  -- Update Column6 column of Table3 table
                                  UPDATE [SQLMaestros].[Table3] SET Column6 = 100
                                  WHERE Column1 % 5 = 0
                                  -- End: Setup
CREATE a clustered index
                                  Execute the following statement(s) to CREATE a clustered index on Column6 column of Table3 table
                                  -- Step 1: Create a clustered index on Column6 column of Table3 table
                                  CREATE CLUSTERED INDEX CL Table3 Column6 ON [SQLMaestros].[Table3](Column6);
                                  G0
                                  Note: Column6 column of Table3 table contains duplicate values.
```


View pages allocations

Execute the following statement(s) to view pages allocated to the clustered index on **Table3** table

```
-- Step 2: View pages allocated to clustered index in Table3 table

SELECT allocated_page_page_id,page_type_desc,page_level,next_page_page_id,previous_page_page_id

FROM sys.dm_db_database_page_allocations(DB_ID(N'SQLMaestros'), OBJECT_ID(N'SQLMaestros.Table3'),

1, NULL, 'DETAILED')

WHERE page_type IN (1,2)

ORDER BY page_level DESC;

GO
```

	Results Messages								
	allocated_page_page_id	page_type_desc	page_level	next_page_page_id	previous_page_page_id				
1	1250	INDEX_PAGE	1	NULL	NULL				
2	1251	DATA_PAGE	0	1252	1249				
3	1252	DATA_PAGE	0	1253	1251				
4	1253	DATA_PAGE	0	1254	1252				
5	1254	DATA_PAGE	0	1255	1253				
6	1255	DATA_PAGE	0	1256	1254				
7	1256	DATA_PAGE	0	1257	1255				
8	1257	DATA_PAGE	0	1258	1256				
_	1000	DATA BACE	0	1050	1057				

View memory dumps of root page

Execute the following statement(s) to view memory dump of the root page of the clustered index (Replace 1250 in the below statement with allocated_page_page_id of the root level page from the output of step 2[Note: For root level page page_level is 1])

```
--- Step 3: View memory dump of the root page DBCC TRACEON(3604);
GO
DBCC PAGE('SQLMaestros',1,1250,3); -- Page ID will change in your case GO
```


	Editor	Results	a	Message	S					
	FileId	Pageld	Row	Level	ChildFileId	ChildPageld	Column6 (key)	UNIQUIFIER (key)	KeyHashValue	Row Size
1	1	1250	0	1	1	1231	NULL	NULL	NULL	14
2	1	1250	1	1	1	1249	100	48	NULL	22
3	1	1250	2	1	1	1251	100	96	NULL	22
4	1	1250	3	1	1	1252	100	144	NULL	22
5	1	1250	4	1	1	1253	100	192	NULL	22
6	1	1250	5	1	1	1254	593329	0	NULL	14
7	1	1250	6	1	1	1255	1195996	0	NULL	14

Explanation: 20 % of **Column6** column data was updated to 100 in the setup section. We then created a clustered index on **Column6** column. In a clustered index, SQL Server database engine needs to identify each value uniquely so that lookups from non-clustered indexes are performed correctly. This unique value is the clustering key. But **Column6** column contains duplicate values so in order to uniquely identify each value; SQL Server inserts an **UNIQUIFIER (key). UNIQUIFIER (key)** is only added for the first duplicate value. Because to the SQL Server the first 100 is unique and then onwards whenever it finds a 100 it will add an **UNIQUIFIER (key)** and will increment that value. Thus in the above output 48 in the **UNIQUIFIER (key)** column represents 49th 100, 96 in the **UNIQUIFIER (key)** column represents 97th 100 and so on.

View memory dump of a leaf level page

Execute the following statement(s) to view the leaf level page of the clustered index (Replace 1251 in the below statement with allocated_page_page_id of a leaf level page from the output of step 2[Note: For leaf level page page_level is 0])

```
-- Step 4: View memory dump of a particular leaf page (data page)

DBCC PAGE('SQLMaestros',1,1251,3); -- Page ID will change in your case

GO
```



```
Slot 0 Offset 0x60 Length 164
Record Type = PRIMARY_RECORD
                               Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 164
Memory Dump @0x000000006F95A060
000000000000000: 30003300 64000000 e5010000 53514c4d 61657374 0.3.d...å...SQLMaest
000000000000014: 726f7320 20202046 bf356c48 5a764888 937c5446 ros
                                                                    F&51HZvH. | TF
000000000000028: abffc0e0 32e300e4 a2000007 00000200 4000a400 «ÿÀà2ã.ä¢......@.¤.
00000000000003C: 6000000 64617461 64617461 64617461 64617461 `...datadatadatadata
00000000000000050:
                  64617461 64617461 64617461 64617461 datadatadatadata
000000000000064: 64617461 64617461 64617461 64617461 64617461 datadatadatadata
000000000000078: 64617461 64617461 64617461 64617461 64617461 datadatadatadata
                  64617461 64617461 64617461 64617461 datadatadatadata
0000000000000008C:
000000000000000A0: 64617461
                                                              data
Slot 0 Column 0 Offset 0x3c Length 4 Length (physical) 4
UNIQUIFIER = 96
Slot 0 Column 6 Offset 0x4 Length 4 Length (physical) 4
Column6 = 100
Slot 0 Column 1 Offset 0x8 Length 4 Length (physical) 4
```

Explanation: Scroll down and locate the **UNIQUIFIER**

Note: If we create clustered index on a column with duplicate value, there will be 4 bytes extra required per row to include the **UNIQUIFIER** (key).

CREATE a non-clustered index	Execute the following statement(s) to CREATE a non-clustered index on Column5 column of Table3 table Step 5: Create a non-clustered index on Column5 column of Table3 table CREATE NONCLUSTERED INDEX NCL_Table3_Column5 ON [SQLMaestros].[Table3](Column5); GO
View index id of non-clustered index	Execute the following statement(s) to view index id of the non-clustered index Step 6: Find the index id of non-clustered index SELECT name, index_id FROM sys.indexes WHERE name = 'NCL_Table3_Column5'; GO Note: In case of a clustered index, index_id will always be '1' and non-clustered indexes will have their index_ids starting from 2 onwards
View page allocation	Execute the following statement(s) to view the pages allocated to the non-clustered index on Table3 table(Replace <index_id> in the below statement with index_id we get in step 6) Step 7: View pages allocated to non-clustered index on Table3 table SELECT allocated_page_page_id,page_type_desc,page_level,next_page_page_id,previous_page_page_id FROM sys.dm_db_database_page_allocations(DB_ID(N'SQLMaestros'), OBJECT_ID(N'SQLMaestros.Table3'), <index_id>, NULL, 'DETAILED') WHERE page_type IN (1,2) ORDER BY page_level DESC; GO</index_id></index_id>

	allocated_page_page_id	page_type_desc	page_level	next_page_page_id	previous_page_page_id
	1225	INDEX_PAGE	1	NULL	NULL
2	1226	INDEX_PAGE	0	NULL	1224
	1311	INDEX_PAGE	0	1224	NULL
	1224	INDEX_PAGE	0	1226	1311

Observation: Four pages are allocated to the non-clustered index (One root page and three leaf page).

View memory dump leaf level page

Execute the following statement(s) to view non-clustered index leaf level page memory dump (Replace 1226 in the below statement with allocated_page_page_id of a leaf level page from the output of step 7[Note: For leaf level page page_level is 0])

```
-- Step 8: View non-clustered index leaf level page DBCC PAGE('SQLMaestros',1,1226,3); -- Page ID will change in your case GO
```


M 1	Editor	Results	b	Message	s				
	FileId	Pageld	Row	Level	Column5 (key)	Column6 (key)	UNIQUIFIER (key)	KeyHashValue	Row Size
1	1	1226	0	0	2014-03-04 13:47:12.387	5451902	0	(1350837b9074)	16
2	1	1226	1	0	2014-03-04 13:47:12.387	5791375	0	(64e2ce826395)	16
3	1	1226	2	0	2014-03-04 13:47:12.387	6473184	0	(eac91ec3e522)	16
4	1	1226	3	0	2014-03-04 13:47:12.387	6556188	0	(3235c52c08e8)	16
5	1	1226	4	0	2014-03-04 13:47:12.387	6771834	0	(26bcef93f54c)	16
6	1	1226	5	0	2014-03-04 13:47:12.387	7551410	0	(7d3bc256ad11)	16
7	1	1226	6	0	2014-03-04 13:47:12.387	8852476	0	(2fae23df59f5)	16
8	1	1226	7	0	2014-03-04 13:47:12.387	9653310	0	(f75a72209f02)	16
9	1	1226	8	0	2014-03-04 13:47:12.390	100	166	(e3c54d3436f4)	24
10	1	1226	9	0	2014-03-04 13:47:12.390	100	167	(1a8926a3d3f8)	24
11	1	1226	10	0	2014-03-04 13:47:12.390	100	168	(938f2326ef1e)	24
12	1	1226	11	0	2014-03-04 13:47:12.390	100	169	(6ac348b10a12)	24
13	1	1226	12	0	2014-03-04 13:47:12.390	100	170	(8af7663eceae)	24
14	1	1226	13	0	2014-03-04 13:47:12.390	574919	0	(6dd1fc8bc46f)	16
15	1	1226	14	0	2014-03-04 13:47:12.390	3045831	0	(32473f216341)	16
4.0		4000	45		00410001404740000	0000047		///00 T T/01 0	40

Explanation: Every non-clustered index on a table will include the row id (in case of heap) or clustered index key in case there is one. Since our clustered index contains **UNIQUIFIER** (key), it will also be included in the non-clustered index. Assuming you have multiple non-clustered indexes on a single table, all of them will include **UNIQUIFIER** (key) and will require 4 bytes extra storage per row.

DROP clustered index

Execute the following statement(s) to **DROP** the clustered index on **Table3** table

```
-- Step 9: Drop Clustered Index on Table3
DROP INDEX CL_Table3_Column6 ON [SQLMaestros].[Table3];
GO
```


Step 10: Create clustered index on Column1 column of Table3 table CREATE UNIQUE CLUSTERED INDEX UNCL_Table3_Column1 ON [SQLMaestros].[Table3](Column1); GO Nata: We are creating a UNIQUE clustered index on the column can not have any duplicate values.								
Execute the following statement(s) to view pages allocated to the UNIQUE clustered index on Table3 table Step 11: View pages allocated to clustered index Table3 table SELECT allocated_page_page_id,page_type_desc,page_level,next_page_page_id,previous_page_page_id FROM sys.dm_db_database_page_allocations(DB_ID(N'SQLMaestros'), OBJECT_ID(N'SQLMaestros.Table3'), 1, NULL, 'DETAILED') WHERE page_type IN (1,2) ORDER BY page_level DESC; GO								
1	<u>`</u>							
2	1225	_	0	1226	287			
3	1226	DATA_PAGE	0	1240	1225			
4	1240	DATA_PAGE	0	1241	1226			
5	12/11	DATA PAGE	n	12/12	1240			
	CREAT GO Note: Execu St SELEC FROM 1, NU WHERE ORDER GO	CREATE UNIQUE CLUSTERED IGO Note: We are creating a UNIQ Execute the following stateme Step 11: View pages all SELECT allocated_page_page FROM sys.dm_db_database_p 1, NULL, 'DETAILED') WHERE page_type IN (1,2) ORDER BY page_level DESC; GO Editor Results N allocated_page_page_id 1 1224 2 1225 3 1226 4 1240	CREATE UNIQUE CLUSTERED INDEX UNCL_Tab GO Note: We are creating a UNIQUE clustered index Step 11: View pages allocated to cl SELECT allocated_page_page_id,page_typ FROM sys.dm_db_database_page_allocatio 1, NULL, 'DETAILED') WHERE page_type IN (1,2) ORDER BY page_level DESC; GO	CREATE UNIQUE CLUSTERED INDEX UNCL_Table3_Column GO Note: We are creating a UNIQUE clustered index so the co Execute the following statement(s) to view pages allocated or clustered in SELECT allocated_page_page_id,page_type_desc,page_FROM sys.dm_db_database_page_allocations(DB_ID(I1, NULL, 'DETAILED') WHERE page_type IN (1,2) ORDER BY page_level DESC; GO Column	CREATE UNIQUE CLUSTERED INDEX UNCL_Table3_Column1 ON [SQLMaestr GO Note: We are creating a UNIQUE clustered index so the column can not have Execute the following statement(s) to view pages allocated to the UNIQUE clustered index Table3 tables tables. Step 11: View pages allocated to clustered index Table3 tables. SELECT allocated_page_page_id,page_type_desc,page_level,next_page_record from the column of the UNIQUE clustered index Table3 tables. SELECT allocated_page_page_id,page_type_desc,page_level,next_page_record from the column of the UNIQUE clustered index Table3 tables. SELECT allocated_page_page_id,page_type_desc,page_level,next_page_page_id. NULL, 'DETAILED') WHERE page_type IN (1,2) ORDER BY page_level DESC; GO INDEX_PAGE 1 NULL 2 1224 INDEX_PAGE 1 NULL 2 1225 DATA_PAGE 0 1226 3 1226 DATA_PAGE 0 1240 4 1240 DATA_PAGE 0 1241	CREATE UNIQUE CLUSTERED INDEX UNCL_Table3_Column1 ON [SQLMaestros].[Table3](Column1 GO Note: We are creating a UNIQUE clustered index so the column can not have any duplicate values. Execute the following statement(s) to view pages allocated to the UNIQUE clustered index on Table3 to Step 11: View pages allocated to clustered index Table3 table SELECT allocated_page_page_id,page_type_desc,page_level,next_page_page_id,previous_FROM sys.dm_db_database_page_allocations(DB_ID(N'SQLMaestros'), OBJECT_ID(N'SQLMaestros'), NULL, 'DETAILED') WHERE page_type IN (1,2) ORDER BY page_level DESC; GO		

	Results	Mess	ages						
	FileId	Pageld	Row	Level	ChildFileId	ChildPageId	COL1 (key)	KeyHashValue	Row Size
1	1	1224	0	1	1	1250	NULL	NULL	14
2	1	1224	1	1	1	287	51	NULL	14
3	1	1224	2	1	1	1225	101	NULL	14
4	1	1224	3	1	1	1226	151	NULL	14
5	1	1224	4	1	1	1240	201	NULL	14
6	1	1224	5	1	1	1241	251	NULL	14
7	1	1224	6	1	1	1242	301	NULL	14
8	1	1224	7	1	1	2304	351	NULL	14
9	1	1224	8	1	1	2305	401	NULL	14
10	1	1224	9	1	1	2306	451	NULL	14
11	1	1224	10	1	1	2307	501	NULL	14

Observation: Since the clustered index is **UNIQUE**, **UNIQUIFIER** (key) is not included this time.

View page allocation

Execute the following statement(s) to view pages allocated to the non-clustered index (Replace the <index_id> parameter in the below statement with index_id we get from step 6)

```
-- Step 13: View pages allocated to non-clustered index on Table3
SELECT allocated_page_page_id,page_type_desc,page_level,next_page_page_id,previous_page_page_id
FROM sys.dm_db_database_page_allocations(DB_ID(N'SQLMaestros'),
OBJECT_ID(N'SQLMaestros.Table3'),<index_id>, NULL, 'DETAILED')
WHERE page_type IN (1,2)
ORDER BY page_level DESC;
```


Results Messages						
	allocated_page_page_id	page_type_desc	page_level	next_page_page_id	previous_page_page_id	
1	1246	INDEX_PAGE	1	NULL	NULL	
2	1247	INDEX_PAGE	0	NULL	1245	
3	1243	INDEX_PAGE	0	1245	NULL	
4	1245	INDEX_PAGE	0	1247	1243	

View memory dump of non-clustered index leaf level page

Execute the following statement(s) to view memory dump of non-clustered index leaf level page (Replace 1243 in the below statement with allocated_page_page_id of a leaf level page [Note: Choose allocated_page_page_id with lowest value having page_level '0'])

-- Step 13: View non-clustered index leaf page
DBCC PAGE('SQLMaestros',1,1243,3); -- Page ID will change in your case
GO

1	Editor	Results	1	Messages	3			
	FileId	Pageld	Row	Level	Column5 (key)	Column1 (key)	KeyHashValue	Row Size
1	1	1243	0	0	2014-03-04 13:47:12.200	1	(c369eed771c9)	16
2	1	1243	1	0	2014-03-04 13:47:12.217	2	(74af380810c8)	16
3	1	1243	2	0	2014-03-04 13:47:12.217	3	(8de3539ff5c4)	16
4	1	1243	3	0	2014-03-04 13:47:12.217	4	(b5c6641699b1)	16
5	1	1243	4	0	2014-03-04 13:47:12.217	5	(4c8a0f817cbd)	16
6	1	1243	5	0	2014-03-04 13:47:12.217	6	(acbe210eb801)	16
7	1	1243	6	0	2014-03-04 13:47:12.217	7	(55f24a995d0d)	16

Note: Since the clustered index does not contain any **UNIQUIFIER (key)**, it's absent in non-clustered index as well and so will be the case with all non-clustered indexes on this table.

Cleanup	Execute the script provided in the cleanup section
	USE [master] GO ALTER DATABASE [SQLMaestros] SET SINGLE_USER WITH ROLLBACK IMMEDIATE; GO DROP DATABASE [SQLMaestros]; GO
Close all the query windows	Close all the query windows (and if SSMS asks to save changes, click NO

Summary

In this exercise, you have learnt:

- Significance of Clustered Index Key
- Concept of UNIQUIFIER (key) in case of non-unique clustered index

