

Observações: Teste sem consulta. Justificar as respostas, apresentando todos os cálculos efectuados.

1.	Considere a variável d={9600: 'ana', 9300: 'bruno', 9100: 'catia'}. Diga qual o tipo e o resultado da avaliação das expressões:
	(a) len(d)
	(b) 'catia' in d
	(c) d[9300]
	(d) d2={'ana':'Evora','catia':'Faro'}; x=9600; d2.get(d[x])
	(e) z=list(d.values()); z.sort(); z
	(6) = ====0(1.14=205(7), =====0(1.14=205(7), =======0(1.14=205(7), ====================================
	Suponha que os professores, em número que se desconhece, são identificados por um nome e um número, e os distritos por um nome. O programa deve permitir a colocação de um professor num dado distrito e a listagem dos professores colocados num dado distrito. Indique, justificando , qual o tipo de dados multi-valor mais adequado – lista, tuplo, dicionário – para manter a informação: (a) de um professor, (b) do conj de professores colocados no mesmo distrito (c) do conj de distritos e respetivo conj. de professores

3.	$Implemente a função \ \mathbf{recursiva} \ \mathtt{mdc(x,y)} \ \mathbf{que} \ \mathbf{calcula} \ \mathbf{m\'aximo} \ \mathbf{divisor} \ \mathbf{comum} \ \mathbf{entre} \ \mathbf{dois} \ \mathbf{n\'umeros} \ \mathbf{inteiros}.$	O máximo
	divisor comum pode ser calculado da seguinte forma:	

$$mdc(x,y) = \begin{cases} x & \text{se } y = 0 \\ mdc(y, mod(x,y)) & \text{caso contrário} \end{cases}$$

Assuma que x>y. mod(x,y) é a função m'odulo que calcula o resto da dicisão inteira entre x e y.

4. Considere a função:

```
def processa(vetor):
    size = len(vetor)
    for i in range(1, size):
        el = vetor[i]
        ia = i-1
        while ia>=0 and vetor[ia]<el:
            vetor[ia+1] = vetor[ia]
        ia = ia-1
        vetor[ia+1] = el
        return vetor</pre>
```

Se A=[6,3,7,1] e executarmos processa(A), qual o conteúdo final de A? Justifique indicando o valor das variáveis ao longo da execução do programa (dry run).

linha	A[0]	A[1]	A[2]	A[3]	size	i	el	ia
_	6	3	7	1				
2					4			

5.	Α	entropia	de	Shannon	sobre	uma	sequência	Xέ	é calculada	da	seguinte:	forma:

$$H(X) = -\sum_{i=1}^{N} \frac{count(i)}{N} * log_{2}(\frac{count(i)}{N})$$

onde i é cada um dos símbolos que compõem a sequência X.

(a) Implemente a função frequencia(str) que devolve um dicionário com a frequência de cada uma das letras que compõem a string str. Por exemplo, se str="feliz ano novo" irá devolver um dicionário com 10 items:

(b) Utilizando a função implementada na alínea anterior, implemente a função shannon(str) que calcula a entropia de Shannon da string str, . A função $log_2(x)$ pode ser calculada através da função Python math.log(x, 2).

6. Considere que as notas de das frequências são mantidas numa lista de tuplos, onde cada tuplo tem 4 elementos (número, nota1,nota2, nota3). Um exemplo de tal lista seria

p1=[(70003,11.5,12.0,13.0),(2004,15.0,12.0,10.0),(7100,14.5,8.0,8.0),(7040,10.5,12.0,16.0)].

(a) Implemente a função media_aluno(notas) que processa a lista notas e, para cada aluno, mostra a média das notas com uma casa decimal (um aluno por linha). Para o exemplo, a função deveria imprimir:

7003 - 12.2

2004 - 12.3

7100 - 10.2

7040 - 12.8

mplemente :	a funcão stat_	freq(notas) q	ue processa a list	a notas e devolve	uma lista, onde ca	da elemento
nformação e	estatística de u		ormação estatísti		ue deve ser guarda	