Examples: m = 4.

	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))
$\rightarrow x_0$		x_1	x_2	x_3	x_4	y	
	1	2104	5	1	45	460	\neg
	1	1416	3	2	40	232	1
	1	1534	3	2	30	315	- \
	1	852	2	_1	36	178	٧
		$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $534 3 2$ $852 2 1$ $\mathbf{M} \times \mathbf{M} \times \mathbf{M} \times \mathbf{M}$	2 40 2 30 36	$y = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	460 232 315 178	√est o

Matrix form to be fitted

- For convenience of writing the expressions introduce zeroth variable x_0 ; which always takes the value 1
- Hypothesis function is $y = y(x_1, x_2, ..., x_n) = b_0 x_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$;

•
$$\boldsymbol{b} = \begin{pmatrix} b_0 \\ b_1 \\ \cdots \\ b_n \end{pmatrix} \in \mathcal{R}^{n+1}$$
, $\boldsymbol{x} = \begin{pmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{pmatrix}$ $\in \mathcal{R}^{n+1}$; $\boldsymbol{b}^T = (b_0, b_1, \ldots, b_n)$ is $1 \times (n+1)$ vector and \boldsymbol{x} is $(n+1) \times 1$ vector

•
$$\boldsymbol{b^Tx}$$
 is 1x1 vector : = (b_0, b_1, \ldots, b_n) . $\begin{pmatrix} x_0 \\ x_1 \\ \cdots \\ x_n \end{pmatrix}$

- = $b_0 x_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$
- $y = b^T x$ is the hypothesis function

x_0	x_1	x_2	x_3	 x_n	y
1	<i>x</i> ₁₁	<i>x</i> ₂₁	<i>x</i> ₃₁	 x_{n1}	y_1
1	<i>x</i> ₁₂	x_{22}	x_{32}	 x_{n2}	y_2
1				 	
1	x_{1i}	x_{2i}	x_{3i}	 x_{ni}	y_i
1				 	
1	x_{1m}	x_{2m}	x_{3m}	 x_{nm}	y_m

Least Square method

- $e_i = y_i \widehat{y}_i = y_i \sum_i b_i x_{ii} \text{ for } i = 1, 2, ..., m$
- $e_i^2 = (y_i \hat{y}_i)^2 = (y_i \sum_i b_i x_{ii})^2$ for i = 1, 2, ..., m
- SSE = $\sum_{i} e_{i}^{2} = \sum_{i} (y_{i} \sum_{j} b_{j} x_{ji})^{2}$
- Observations in n+1 dimensional space
- For least square fit, need to find b_j for $j=0,1,\ldots,n$ so that SSE is minimum. Denote SSE as S.
- Partial derivatives of S with respect to each of the parameters must be zero.

$$\frac{\partial S}{\partial b_j} = 0$$
; for $j = 0, 1, ..., n$

Normal Equations

- $\frac{\partial S}{\partial b_j} = 0$; for j = 0, 1, ..., n
- $S = \sum_{i} (y_i \sum_{i} b_i x_{ji})^2;$
- $\frac{\partial S}{\partial b_i} = \frac{\partial}{\partial b_i} \sum_i (y_i \sum_j b_j x_{ji})^2$
- $\frac{\partial S}{\partial b_j} = \sum_i \frac{\partial}{\partial b_j} (y_i \sum_j b_j x_{ji})^2$
- $\frac{\partial S}{\partial b_i} = 2\sum_i (y_i \sum_j b_j x_{ji}) (-x_{ji}) = 0$ for j = 0, 1, ..., n
- $\sum_i (y_i \sum_j b_j x_{ji}) (x_{ji}) = 0$ for j = 0, 1, ..., n are n+1 simultaneous linear equations in b_j 's for j = 0, 1, ..., n called normal equations
- For example for j = 0:
- $\sum_{i} y_{i} = b_{0} \sum_{i} x_{0i} + b_{1} \sum_{i} x_{1i} + b_{2} \sum_{i} x_{2i} + \dots + b_{n} \sum_{i} x_{ni}$

Normal Equations

• 3.8 = 5
$$b_0$$
 + 40 b_1 + 45 b_2

• 33 = 40
$$b_0$$
 + 338 b_1 + 342 b_2

• 27.9 = 45
$$b_0$$
 + 342 b_1 + 549 b_2

Solve by elimination manually (H.W.)

Matrix Method to derive normal Equations

•
$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{21} & \dots & x_{n1} \\ 1 & x_{12} & x_{22} & \dots & x_{n2} \\ \dots & \dots & \dots & \dots \\ 1 & x_{1m} & x_{2m} & \dots & x_{nm} \end{bmatrix}$$
 is m X (n+1) matrix; $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_m \end{pmatrix}$ is m X 1 vector

•
$$\boldsymbol{b} = \begin{pmatrix} b_0 \\ b_1 \\ \cdots \\ b_n \end{pmatrix} \in \mathcal{R}^{n+1}$$
 is (n+1) X 1 vector; $\widehat{\boldsymbol{y}} = \begin{pmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \cdots \\ \widehat{y_m} \end{pmatrix}$ is m X 1 vector; X^T is $(n+1)x$ m

•
$$X^T \mathbf{y} \mathbf{i} \mathbf{s} ((n+1)xm) X (m X 1)$$
 giving $(n+1) X 1 = \begin{pmatrix} k_0 \\ k_1 \\ \cdots \\ k_n \end{pmatrix}$ (say)

• $b^T = (b_0, b_1, ..., b_n)$ is 1 x (n+1) vector; $b^T X^T y = b_0 k_0 + b_1 k_1 + b_2 k_2 + ... + b_n k_n$

Predicted Values

•
$$b_0 x_{01} + b_1 x_{11} + b_2 x_{21} + \dots + b_n x_{n1} = \widehat{y_1}$$

•
$$b_0 x_{02} + b_1 x_{12} + b_2 x_{22} + \dots + b_n x_{n2} = \widehat{y_2}$$

- •
- $b_0 x_{0i} + b_1 x_{1i} + b_2 x_{2i} + \dots + b_n x_{ni} = \widehat{y}_i$
- •
- $b_0 x_{0m} + b_1 x_{1m} + b_2 x_{2m} + \dots + b_n x_{nm} = \widehat{y_m}$
- $b_0 x_{0i} + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_n x_{ni} = \hat{y_i} \text{ for } i = 1, 2, \ldots, m$
- $\sum_{i} b_{i} x_{ji} = \widehat{y}_{i} fori = 1, 2, ..., m; j = 0, 1, ..., n$

• SSE =
$$\sum_{i} e_{i}^{2}$$
; $\mathbf{e} = \begin{pmatrix} e_{1} \\ e_{2} \\ ... \\ e_{m} \end{pmatrix}$; $\mathbf{e}^{T} = (e_{1}, e_{2}, ..., e_{m})$; \mathbf{e}^{T} $\mathbf{e} = (e_{1}, e_{2}, ..., e_{m}) \begin{pmatrix} e_{1} \\ e_{2} \\ ... \\ e_{m} \end{pmatrix}$

•
$$e^T e = e_1^2 + e_2^2 + \dots + e_m^2 = \sum_i e_i^2 = SSE$$
; $SSE = e^T e$

•
$$e_i = y_i - \hat{y}_i = y_i - \sum_j b_j x_{ji} \text{ for } i = 1, 2, ..., m$$

•
$$X = \begin{bmatrix} 1 & x_{11} & x_{21} & \dots & x_{n1} \\ 1 & x_{12} & x_{22} & \dots & x_{n2} \\ \dots & \dots & \dots & \dots \\ 1 & x_{1m} & x_{2m} & \dots & x_{nm} \end{bmatrix}; \mathbf{b} = \begin{pmatrix} b_0 \\ b_1 \\ \dots \\ b_n \end{pmatrix}$$

•
$$X\boldsymbol{b} = \widehat{y}_i \ e_i = y_i - \widehat{y}_i \ for i=1,2,...,m; \boldsymbol{e} = \boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}$$

•
$$S = (y - Xb)^T (y - Xb) = (y^T - (Xb)^T) (y - Xb)$$

•
$$S = (y^T - b^T X^T) (y - Xb) = (y^T y - y^T Xb - b^T X^T y + b^T X^T Xb)$$

- $y^T X b$ is a scalar ((1xm)X(mx(n+1)X((n+1)x1):1x1)
- $(y^T X b)^T = b^T X^T y = y^T X b$ being scalar
- $S = \mathbf{y}^T \mathbf{y} 2\mathbf{b}^T X^T \mathbf{y} + \mathbf{b}^T X^T X \mathbf{b}$
- $\boldsymbol{b}^T X^T \ \boldsymbol{y} = b_0 k_0 + b_1 k_1 + b_2 k_2 + \ldots + b_n k_n$; k's are constant with respect to b's
- $\bullet \frac{\partial b^T X^T y}{\partial b_i} = k_j ;$

- Contribution of $b^T X^T X b$ is $b_0^2 d_0 + b_1^2 d_1 + b_2^2 d_2 + ... + b_n^2 d_n$
- $\bullet \frac{\partial b^T X^T X b}{\partial b_i} = 2b_j d_j$
- $\bullet \frac{\partial S}{\partial b_j} = -2 k_j + 2b_j d_j$
- ullet S is scalar and a function of b_0 , b_1 , ..., b_n
- $\nabla f(x, y, z) = (f_x, f_y, f_z)$ called Grad f, gradient of a function
- In order that S is minimum, necessary condition is $\nabla S = \mathbf{0}$ (zero vetor)

•
$$\nabla S = \frac{\partial S}{\partial b} = \begin{pmatrix} \frac{\partial S}{\partial b_0} \\ \frac{\partial S}{\partial b_1} \\ \vdots \\ \frac{\partial S}{\partial b_n} \end{pmatrix}; \frac{\partial S}{\partial b} = \begin{pmatrix} -2k_0 + 2b_0 d_0 \\ -2k_1 + 2b_1 d_1 \\ \vdots \\ -2k_n + 2b_n d_n \end{pmatrix} = \mathbf{0}$$

$$\bullet \frac{\partial S}{\partial \boldsymbol{b}} = 0 - 2X^T \, \boldsymbol{y} + 2 \, X^T \, X \boldsymbol{b} = 0 \Rightarrow X^T \, X \boldsymbol{b} - X^T \, \boldsymbol{y} = 0$$

- $X^T X b = X^T y$ represent normal e
- $b = (X^T X)^{-1} X^T y$

$$X^T \ \mathsf{X} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ x_{11} & x_{12} & x_{13} & \dots & x_{1m} \\ x_{n1} & x_{n2} & x_{n3} & \dots & x_{nm} \end{bmatrix} \begin{bmatrix} 1 & x_{11} & x_{21} & \dots & x_{n1} \\ 1 & x_{12} & x_{22} & \dots & x_{n2} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{1m} & x_{2m} & \dots & x_{nm} \end{bmatrix}$$

The Matrix form

y ₁	1	X _{1,1}	X _{2,1}		X _{k,1}
y_2	1	X _{1,2}	X _{2,2}		X _{k,2}
	1	•••		•••	
y _n	1	X _{1,n}	X _{2,n}		X _{k,n}

$$\beta = (X'X)^{-1}X'y$$

Comparison between analytical and numerical method Analytical Numerical

Normal Equations

Direct formula/Matrix Formula

No requirement of choosing learning rate

Does not require feature scaling

Becomes slow, when n is large; involves calculation of inverse of $(X^TX)^{-1}$;nxn matrix, $O(n^3)$,upto n=10,000 fine, n \geq 10000, gradient descent advisable

Iterative: many iterations

Gradient Descent Method

Need to choose learning rate appropriately

Requires feature scaling

Works well when n is large $O(n^2)$