Table des matières

Avant-propos							
1 Ensembles et structures							
	1.1	Ensem	ables et relations	1			
		1.1.1	Relations d'équivalences	1			
		1.1.2	Relations d'ordre	2			
		1.1.3	Eléments extrémaux	3			
		1.1.4	L'axiome de Zorn	3			
	1.2	Cardin	naux et entiers naturels	4			
		1.2.1	Notion de cardinal	4			
		1.2.2	Les entiers naturels	4			
	1.3	Group	es	5			
		1.3.1	Définitions et première propriété	5			
		1.3.2	Sous-groupes	6			
		1.3.3	Quotient par un sous-groupe	7			
		1.3.4	Morphisme de groupes	9			
		1.3.5	Le groupe \mathbb{Z}	10			
		1.3.6	Ordre d'un élément	11			
		1.3.7	Groupes finis	11			
		1.3.8	Groupes cycliques	12			
		1.3.9	Groupe opérant sur un ensemble	13			
		1.3.10	Groupe des permutations d'un ensemble fini	14			
	1.4	Annea	ux et corps	16			
		1.4.1	Généralités sur les anneaux	16			
		1.4.2	Idéaux et quotients	17			
		1.4.3	Morphisme d'anneaux	18			
		1.4.4	Corps	18			
		1.4.5	Idéaux maximaux	19			
		1.4.6	Idéaux et anneaux principaux	20			
		1.4.7	Anneaux euclidiens	23			
		1.4.8	L'anneau \mathbb{Z} . Caractéristique d'un anneau $\ldots \ldots \ldots \ldots$	24			
		1.4.9	Théorème chinois, indicateur d'Euler	24			
	1.5	Polyná	ômes à une variable	26			
		151	L'annous des séries formelles à coefficients dans A	26			

		1.5.2	L'anneau des polynômes à coefficients dans A	. 26
		1.5.3	Division euclidienne et racines	
		1.5.4	Dérivation	. 28
		1.5.5	L'anneau principal $K[X]$	
		1.5.6	Formule de Taylor. Multiplicité d'une racine	
		1.5.7	Racines et extensions de corps	
		1.5.8	Polynômes sur $\mathbb C$ et $\mathbb R$	
		1.5.9	Division suivant les puissances croissantes	
	1.6	Polyne	ômes à plusieurs variables	
		1.6.1	Généralités	
		1.6.2	Dérivées partielles, formule de Taylor	
		1.6.3	Degré total, polynômes homogènes	
		1.6.4	Polynômes symétriques	
			•	
2	_		néaire élémentaire	35
	2.1		alités sur les espaces vectoriels	
		2.1.1	Notion de K-espace vectoriel	
		2.1.2	Notion de sous-espace vectoriel	
		2.1.3	Produits, quotients	
		2.1.4	Applications linéaires	
		2.1.5	Somme de sous-espaces	
		2.1.6	Algèbres	
		2.1.7	Familles libres, génératrices. Bases	
		2.1.8	Théorèmes fondamentaux	
	2.2		et dimension	
		2.2.1	Existence de bases	
		2.2.2	Espaces vectoriels de dimension finie. Dimension	
		2.2.3	Résultats sur la dimension	
	2.3	_		
		2.3.1	Rang d'une famille de vecteurs	
		2.3.2	Rang d'une application linéaire	
	2.4		té: approche restreinte	
		2.4.1	Formes linéaires, dual, formes coordonnées	
		2.4.2	Base duale d'un espace vectoriel de dimension finie	
		2.4.3	Orthogonalité 1	
		2.4.4	Hyperplans	
		2.4.5	Orthogonalité 2	. 48
		2.4.6	Application : polynômes d'interpolation de Lagrange	
	2.5	Dualit	té : approche générale	
		2.5.1	Notion de dual. Orthogonalité	
		2.5.2	Hyperplans	
		2.5.3	Bidual	
		2.5.4	Transposée	
		2.5.5	Dualité en dimension finie	. 52
	2.6	Matri	ces	. 53
		2.6.1	Généralités	53

					`	
TA	BI	F	DES	MA	TIER	ES

X	1	1	1	

		2.6.2	Matrices carrées	55
		2.6.3	Transposée	56
		2.6.4	Rang d'une matrice	57
		2.6.5	La méthode du pivot	57
		2.6.6	Changement de bases	59
		2.6.7	Produit des matrices par blocs	31
	2.7	Déter	minants	31
		2.7.1	Formes p -linéaires	31
		2.7.2	Déterminant d'une famille de vecteurs 6	32
		2.7.3	Déterminant d'un endomorphisme	33
		2.7.4	Déterminant d'une matrice 6	34
		2.7.5	Application des déterminants à la recherche du rang 6	37
		2.7.6	Formes p -linéaires alternées 6	38
	2.8	Systèr		39
		2.8.1	Position du problème	39
		2.8.2	Systèmes de Cramer	70
		2.8.3	Théorème de Rouché-Fontené	70
		2.8.4	Méthode du pivot	72
			•	
3	Réd	luctior	n des endomorphismes 7	7 3
	3.1	Valeur	rs propres. Vecteurs propres	73
		3.1.1	Sous-espaces stables	73
		3.1.2	Valeurs propres, vecteurs propres	74
		3.1.3	Polynôme caractéristique	75
		3.1.4	Endomorphismes diagonalisables	77
		3.1.5	Matrices diagonalisables	78
		3.1.6	1	78
	3.2	Polyn	ômes d'endomorphismes	30
		3.2.1	Généralités	30
		3.2.2	Idéal annulateur. Polynôme minimal	31
		3.2.3	Théorème de Cayley-Hamilton	32
		3.2.4	Polynôme annulateur et trigonalisation	32
		3.2.5	Décomposition des noyaux	33
		3.2.6	Sous-espaces caractéristiques	35
		3.2.7	Application : récurrences linéaires d'ordre 2	35
	3.3	A pro	pos de Jordan	37
		3.3.1	Décomposition de Jordan	37
		3.3.2	Applications	38
		3.3.3	Réduction des endomorphismes nilpotents	91
		3.3.4	Première démonstration	92
		3.3.5	Deuxième démonstration	93
		3.3.6	Réduction de Jordan	94

4	Top	ologie	des espaces métriques 95
	4.1	Eléme	nts de topologie générale
		4.1.1	Espaces topologiques
		4.1.2	La topologie de \mathbb{R}
		4.1.3	Fermés et voisinages
		4.1.4	Intérieur, adhérence, frontière
		4.1.5	Topologie induite
	4.2	Espac	es métriques
		4.2.1	Distances
		4.2.2	Topologie définie par une distance
		4.2.3	Points isolés, points d'accumulation
		4.2.4	Propriété de séparation
		4.2.5	Changement de distances
		4.2.6	La droite numérique achevée
	4.3	Suites	
		4.3.1	Suites convergentes, limites
		4.3.2	Sous suites, valeurs d'adhérences
		4.3.3	Caractérisation des fermés d'un espace métrique 106
	4.4	Limite	es de fonctions
		4.4.1	Notion de limite suivant une partie
		4.4.2	Propriétés élémentaires
		4.4.3	Composition des limites
		4.4.4	Limites et suites
	4.5	Contin	nuité
		4.5.1	Continuité en un point
		4.5.2	Continuité sur un espace
		4.5.3	Homéomorphismes
	4.6	Contin	nuité uniforme
		4.6.1	Applications uniformément continues
		4.6.2	Applications lipschitziennes
	4.7	Espac	es complets
		4.7.1	Suites de Cauchy
		4.7.2	Espaces complets
		4.7.3	Propriétés des espaces complets
	4.8	Espac	es et parties compactes
		4.8.1	Propriété de Bolzano-Weierstrass
		4.8.2	Propriété de Borel Lebesgue
		4.8.3	Compacts de \mathbb{R} et \mathbb{R}^n
	4.9	Espac	es et parties connexes
		4.9.1	Notion de connexe
		4.9.2	Propriétés des connexes
		4.9.3	Connexes de \mathbb{R}
		4.9.4	Connexité par arcs

5	Esp		ectoriels normés	$\bf 125$
	5.1	Notion	n d'espace vectoriel normé	. 125
		5.1.1	Norme et distance associée	. 125
		5.1.2	Convexes, connexes	. 126
		5.1.3	Continuité des opérations algébriques	. 127
	5.2	Applie	cations linéaires continues	. 128
		5.2.1	Caractérisations et normes des applications linéaires continues	. 128
		5.2.2	L'espace vectoriel normé des applications linéaires continues de ${\cal E}$	
			dans F	. 129
		5.2.3	Equivalence des normes	. 130
		5.2.4	Caractérisation des applications bilinéaires continues	
	5.3	Espac	es vectoriels normés de dimensions finies	
		5.3.1	Equivalence des normes	
		5.3.2	Propriétés topologiques et métriques des espaces vectoriels normés	
			de dimension finie	. 131
		5.3.3	Continuité des applications linéaires	. 132
	5.4	Comp	léments : le théorème de Baire et ses conséquences	
		5.4.1	Le théorème de Baire	
		5.4.2	Les grands théorèmes	
	5.5	Comp	léments : convexité dans les espaces vectoriels normés	
		5.5.1	Jauge d'un convexe	
		5.5.2	Projection sur un convexe fermé	
		5.5.3	Hahn-Banach (version géométrique)	
		5.5.4	L'enveloppe convexe : Carathéodory et Krein Millman	. 138
6	Cor		son des fonctions	141
	6.1	Relati	ons de comparaison	. 141
		6.1.1	Notations	. 141
		6.1.2	Domination, prépondérance	. 141
		6.1.3	Equivalence	. 142
		6.1.4	Changement de variables	
	6.2	Dévelo	oppements limités	. 144
		6.2.1	Notion de développement limité	
		6.2.2	Opérations sur les développements limités	
		6.2.3	Développements limités classiques	
	6.3	Dévelo	oppements asymptotiques	
		6.3.1	Echelles de comparaison, parties principales	
		6.3.2	Développements asymptotiques	. 149
		6.3.3	Opérations sur les développements asymptotiques	. 149
7	Suit	tes et s	séries	151
	7.1	Conve	ergence des suites	. 151
		7.1.1	Monotonie (suites à termes réels)	. 151
		7.1.2	Critère de Cauchy	
		7.1.3	Valeurs d'adhérences, limites inférieures et supérieures	. 152
		7.1.4	Récurrences d'ordre 1	. 154

	7.2	Généra	alités sur les séries	 	155
		7.2.1	Notion de série	 	155
		7.2.2	Terme général, critère de Cauchy	 	156
	7.3	Séries	à termes réels positifs	 	157
		7.3.1	Convergence des séries à termes réels positifs	 	157
		7.3.2	Comparaison des séries à termes réels positifs	 	158
		7.3.3	Séries de Riemann et de Bertrand	 	159
		7.3.4	Comparaison à des intégrales	 	160
	7.4	Séries	absolument convergentes	 	161
		7.4.1	Notion de convergence absolue	 	161
		7.4.2	Critères de convergence absolue	 	162
		7.4.3	Règles classiques	 	162
		7.4.4	Règles complémentaires	 	164
		7.4.5	Comparaison à une intégrale	 	164
	7.5	Séries	semi-convergentes	 	165
		7.5.1	Séries alternées		
		7.5.2	Etude de séries semi-convergentes	 	165
	7.6	Opéra	tions sur les séries		
		7.6.1	Combinaisons linéaires		
		7.6.2	Sommation par paquets		
		7.6.3	Modification de l'ordre des termes		
		7.6.4	Produit de Cauchy	 	170
	7.7	Séries	doubles		
	7.8	Espace	es de suites	 	174
	7.9	_	léments : développements asymptotiques, analyse numérique		
		7.9.1	Calcul approché de la somme d'une série		
		7.9.2	Accélération de la convergence		
			<u> </u>		
8	Fon		d'une variable réelle		185
	8.1		onie, continuité		
		8.1.1	Limites et monotonie		
		8.1.2	Continuité et monotonie		
	8.2		e		
		8.2.1	Notion de dérivée		
		8.2.2	Opérations sur les dérivées		
		8.2.3	Dérivées d'ordre supérieur		
	8.3		ons réelles d'une variable réelle		
		8.3.1	Théorème de Rolle, formule des accroissements finis $\ \ .$		
		8.3.2	Monotonie et dérivation		
		8.3.3	Difféomorphismes		
		8.3.4	Formule de Taylor Lagrange		
		8.3.5	Extensions du théorème des accroissements finis		
		8.3.6	Fonctions convexes de classe C^1		
	8.4		ons vectorielles d'une variable réelle		
		8.4.1	Inégalité des accroissements finis		
		8.4.2	Applications de l'inégalité des accroissements finis	 	198

		8.4.3	Formules de Taylor	
	8.5		ions classiques	
		8.5.1	Fonctions circulaires réciproques	
		8.5.2	Fonctions hyperboliques directes	
		8.5.3	Fonctions hyperboliques réciproques	
	8.6		se numérique des fonctions d'une variable	
		8.6.1	Interpolation linéaire, interpolation polynomiale	
		8.6.2	Dérivation numérique	
		8.6.3	Recherche des zéros d'une fonction	. 205
9	Inté	égratio		209
	9.1	Subdi	visions, approximation des fonctions	
		9.1.1	Subdivisions d'un segment	. 209
		9.1.2	Propriétés liées aux subdivisions	. 209
		9.1.3	Approximation des fonctions	. 210
	9.2	Intégr	ale des fonctions réglées sur un segment	. 216
		9.2.1	Intégrale des applications en escalier	. 216
		9.2.2	Intégrale des fonctions réglées	. 217
		9.2.3	Convention de Chasles	. 221
		9.2.4	Sommes de Riemann	. 221
		9.2.5	Sommes de Darboux	. 223
	9.3	Primit	tives et intégrales	. 224
		9.3.1	Continuité et dérivabilité par rapport à une borne	. 224
		9.3.2	Primitives	. 224
		9.3.3	Changement de variable, intégration par parties	. 225
		9.3.4	Deuxième formule de la moyenne	. 227
	9.4	Reche	rches de primitives	. 228
		9.4.1	Position du problème	. 228
		9.4.2	Techniques usuelles	. 228
		9.4.3	Primitives usuelles	. 228
		9.4.4	Fractions rationnelles	. 229
		9.4.5	Fractions rationnelles en sinus et cosinus	. 231
		9.4.6	Fractions rationnelles en sinus et cosinus hyperboliques	. 233
		9.4.7	Intégrales abéliennes	. 233
	9.5	Intégr	ation sur un intervalle quelconque : fonctions à valeurs réelles positiv	ves 236
		9.5.1	Fonctions intégrables à valeurs réelles positives	. 236
		9.5.2	Règles de comparaison	. 239
		9.5.3	Exemples fondamentaux	. 241
	9.6	Intégr	ation sur un intervalle quelconque : fonctions à valeurs complexes	. 242
		9.6.1	Fonctions à valeurs complexes intégrables	. 242
		9.6.2	Décomposition des fonctions à valeurs complexes	. 245
		9.6.3	Convention et relation de Chasles	
		9.6.4	Règles de comparaison	
		9.6.5	Espaces de fonctions continues	
		9.6.6	Notion d'intégrale impropre	
	97	Dévelo	oppements asymptotiques et analyse numérique	

		9.7.1	La formule d'Euler-Mac Laurin		 				249
		9.7.2	Calcul approché d'intégrales		 				252
		9.7.3	La méthode de Laplace		 				255
	9.8	Généra	alités sur les intégrales impropres		 				258
		9.8.1	Notion d'intégrale impropre		 				258
		9.8.2	Intégrales plusieurs fois impropres						259
		9.8.3	Opérations sur les intégrales impropres						
		9.8.4	Intégrales et séries : intégration par paquets						261
	9.9	Intégra	ale des fonctions réelles positives						
		9.9.1	Critère de convergence des fonctions réelles positives		 				263
		9.9.2	Règles de comparaison		 				264
		9.9.3	Exemples fondamentaux						266
	9.10	Conver	rgence absolue, semi-convergence						267
			Critère de Cauchy pour les intégrales						
		9.10.2	Convergence absolue						267
			Règles de convergence						
		9.10.4	Semi-convergence						270
10			éries de fonctions						273
	10.1		de fonctions						
			Convergence simple, convergence uniforme						
			Plan d'étude d'une suite de fonctions						
			Critère de Cauchy uniforme						
			Fonctions bornées, norme de la convergence uniforme						
			Opérations sur les fonctions						
			Propriétés de la convergence uniforme						
			Suites de fonctions intégrables sur un intervalle						
	10.2		de fonctions						
			Différents modes de convergence						
			Critères supplémentaires de convergence uniforme .						
			Propriétés de la convergence uniforme						
	400		Séries de fonctions intégrables sur un intervalle						
	10.3		ales dépendant d'un paramètre						
			Position du problème						
			Continuité						
			Dérivabilité						
			Intégration						
			Fonctions intégrables dépendant d'un paramètre						
			La fonction Γ						
		10.3.7	Méthodes directes	 •		•	٠	•	301
11	Séri	es enti	ères						303
			rgence des séries entières						303
	11.1		Notion de série entière						303
			Rayon de convergence						
			Recherche du rayon de convergence		•	•	•	•	304

		11.1.4	Opérations sur les séries entières	306
	11.2	Somme	e d'une série entière	308
		11.2.1	Etude sur le disque ouvert de convergence (domaine complexe)	308
			Etude sur le disque ouvert de convergence (domaine réel)	
			Etude sur le cercle de convergence	
	11.3		oppements en séries entières	
			Problème local, problème global	
			Méthodes de développement	
			Fonction exponentielle. Fonctions trigonométriques	
			Nombres complexes de module 1	
			Fonctions classiques	
			Méthodes de sommation	
	11.4		ation aux endomorphismes continus et aux matrices	
			Calcul fonctionnel et premières applications	
			Exponentielle d'un endomorphisme ou d'une matrice	
			Application aux systèmes différentiels homogènes à coefficients	
		11.1.0	constants	
12			adratiques	331
	12.1	Forme	s bilinéaires	331
			Généralités	
			Formes bilinéaires symétriques, antisymétriques	
		12.1.3	Matrice d'une forme bilinéaire	332
			Changements de bases, discriminant	
		12.1.5	Orthogonalité	334
			Formes non dégénérées	
			Isotropie	
	12.2		s quadratiques	
		12.2.1	Notion de forme quadratique	338
			Formes quadratiques en dimension finie	
			Matrices et déterminants de Gram	
	12.3	Réduc	tion des formes quadratiques en dimension finie	342
			Familles et bases orthogonales	
		12.3.2	Décomposition en carrés. Algorithme de Gauss	344
	12.4		s quadratiques réelles	
			Formes positives, négatives	
			Bases de Sylvester. Signature	
		12.4.3	Inégalités	349
		12.4.4	Espaces préhilbertiens réels	350
		12.4.5	Espaces euclidiens	352
		12.4.6	Algorithme de Gram-Schmidt	352
		12.4.7	Application: polynômes orthogonaux	353
	12.5	Endon	norphismes et formes quadratiques	356
			Notion d'adjoint	
		12.5.2	Adjoint en dimension finie	357
			Endomorphismes symétriques et formes quadratiques	

		12.5.4	Groupe orthogonal		359
		12.5.5	Matrices orthogonales		360
	12.6		norphismes d'un espace euclidien		
			Droites et plans stables		
		12.6.2	Réduction des endomorphismes symétriques		362
		12.6.3	Normes d'endomorphismes		364
		12.6.4	Endomorphismes orthogonaux d'un plan euclidien		366
		12.6.5	Réduction des endomorphismes orthogonaux		367
		12.6.6	Produit vectoriel, produit mixte		368
		12.6.7	Angles		372
13	Forn	nes he	rmitiennes		375
	13.1	Compl	éments sur la conjugaison		375
		_	Applications semi-linéaires		
			Matrices conjuguées et transconjuguées		
			Matrices hermitiennes, antihermitiennes		
	13.2		s sesquilinéaires		
			Généralités		
			Formes sesquilinéaires hermitiennes, antihermitiennes		
			Matrice d'une forme sesquilinéaire		
		13.2.4	Changements de bases		380
			Orthogonalité		
			Formes non dégénérées		
	13.3		s quadratiques hermitiennes		
			Notion de forme quadratique hermitienne		
		13.3.2	Formes quadratiques hermitiennes en dimension finie		384
			Formes quadratiques hermitiennes définies positives		
			Espaces hermitiens		
	13.4		norphismes d'un espace hermitien		
		13.4.1	Notion d'adjoint		386
		13.4.2	Endomorphismes hermitiens		388
		13.4.3	Groupe unitaire		389
		13.4.4	Matrices unitaires		390
		13.4.5	Réduction des endomorphismes normaux		391
		13.4.6	Réduction des matrices normales		393
14	Série	es de I	Fourier		395
	14.1	Introd	uction : transformée de Fourier sur les groupes abéliens finis		395
			Caractères des groupes abéliens finis		395
			Transformée de Fourier sur un groupe abélien fini		397
	14.2		trigonométriques		398
			Rappels d'intégration		398
			Généralités		399
			Un cas de convergence normale		399
	14.3		le Fourier d'une fonction		400
			Log connect of T		400

		14.3.2	Coefficients de Fourier d'une fonction continue par morceaux .			401
		14.3.3	Inégalité de Bessel et théorème de Riemann-Lebesgue			402
			Les théorèmes de Dirichlet			
			Coefficients de Fourier des fonctions de classe C^k			
		14.3.6	Le théorème de Parseval			408
	14.4		ons périodiques de période T			
			t de convolution			
			Convolution de fonctions périodiques			
			Produit de convolution et séries de Fourier			
1 -	α 1	1 1.0				41 =
19			érentiel			417
	15.1		es partielles			
			Notion de dérivée partielle			
			Composition des dérivées partielles			
			Théorème des accroissements finis et applications			
			Dérivées partielles successives			
			Formules de Taylor			
	150		Application aux extremums de fonctions de plusieurs variables			
	15.2		ntielle			
			Applications différentiables			
			Exemples d'applications différentiables			
			Opérations sur les différentielles			
			Différentielle et dérivées partielles			
			Matrices jacobiennes, jacobiens			
	150		Inégalité des accroissements finis			
	15.3		s différentielles			
			Rappels sur les formes linéaires alternées			
			Notion de forme différentielle			
			Notion de gradient d'une fonction			
			Invariance de la différentielle			
			Différentielle extérieure			
			Théorème de Poincaré			
	15.4		ons implicites et inversion locale			
			Position du problème des fonctions implicites			
			Théorème des fonctions implicites			
			Applications du théorème des fonctions implicites			
		15.4.4	Difféomorphismes et inversion locale	•	•	447
16	Eau	ations	différentielles			451
			s générales			451
			Solutions d'une équation différentielle			451
			Type de problèmes			-
			Réduction à l'ordre 1			
			Equivalence avec une équation intégrale			
			Le lemme de Gronwall			
	16.2		e de Cauchy-Lipschitz			
			v r			

			Unicité de solutions, solutions maximales	
	16.3		ons différentielles linéaires d'ordre 1	
		16.3.1	Généralités	456
		16.3.2	Equation différentielle linéaire scalaire d'ordre 1	457
		16.3.3	Théorie de Cauchy-Lipschitz pour les équations linéaires	459
		16.3.4	Structure des solutions de l'équation homogène	461
		16.3.5	Méthode de variation des constantes	462
		16.3.6	Systèmes différentiels à coefficients constants	463
	16.4	Equati	on différentielle linéaire d'ordre n	465
		16.4.1	Généralités	465
		16.4.2	Théorie de Cauchy-Lipschitz	466
		16.4.3	Structure des solutions de l'équation homogène. Wronskien	466
			Méthode de variation des constantes	
		16.4.5	Méthode d'abaissement du degré	470
		16.4.6	Equation homogène à coefficients constants	471
		16.4.7	Equation linéaire à coefficients constants	473
		16.4.8	Equations d'Euler	475
	16.5	Equati	ons différentielles non linéaires	476
		16.5.1	Théorie de Cauchy-Lipschitz	476
		16.5.2	Application aux équations d'ordre n	480
		16.5.3	Systèmes différentiels autonomes d'ordre $1 \dots \dots \dots \dots$	481
			Equations différentielles et formes différentielles	
		16.5.5	Equations aux différentielles totales	484
		16.5.6	Equations à variables séparables	485
			Equations se ramenant à des équations à variables séparables $\ . \ . \ .$	
			Equation de Riccati	
	16.6		se numérique des équations différentielles	
			Méthode d'Euler	
			Méthode de Runge et Kutta	
		16.6.3	Equations différentielles d'ordre supérieur	492
17	Fene	aces af	fines	493
Lí			alités sur les espaces affines	
	11.1		Notion d'espace affine	
			Repères affines, bases affines	
			Sous-espace affine	
			Parallélisme, intersection	
			Applications affines	
			Utilisation de repères affines	
			Formes affines et sous-espaces affines	
	17.2		entres	503
			Notion de barycentres	
			Associativité des barycentres	
			Barycentres, sous-espaces affines, applications affines	
			Barycentres et convexité	
	17.3		es affines euclidiens	

	DES		

17.4.1 Généralités sur les sphères 518 17.4.2 Cercles et angles 520 17.4.3 Eléments de géométrie du triangle 521 18 Courbes 525 18.1 Arcs paramétrés 525 18.1.1 Vocabulaire 525 18.1.2 Equivalence des arcs paramétrés 525 18.1.3 Orientation 526 18.1.4 Tangente à un arc paramétré 526 18.1.5 Plan osculateur, concavité 528 18.1.6 Etude locale des arcs plans 529 18.1.7 Branches infinies 532 18.1.8 Plan d'étude d'un arc plan en paramétriques 533 18.1.9 Notion de contact 535 18.1.0 Enveloppes 536 18.2.1 Coordonnées polaires 538 18.2.2 Arcs en polaires 538 18.2.3 Branches infinies et phénomènes asymptotiques 540 18.2.4 Plan d'étude d'un arc plan en polaires 540 18.2.5 Equations polaires remarquables 542 18.3 Problèmes classiques sur les courbes 543 18.3.1 Trajectoires orthogonales 543 18.3.2 Inverse d'une courbe 544 18.3.3 Podaire d'une courbe 545 <tr< th=""><th>17.4</th><th>17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 Cercles</th><th>Notion d'espace affine euclidien Formule de Leibnitz et applications Isométries affines Forme réduite d'une isométrie affine Distance à un sous-espace affine Distance de deux sous-espaces affines s, sphères, triangle</th><th> 509 511 512 514 516 518</th></tr<>	17.4	17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 Cercles	Notion d'espace affine euclidien Formule de Leibnitz et applications Isométries affines Forme réduite d'une isométrie affine Distance à un sous-espace affine Distance de deux sous-espaces affines s, sphères, triangle	 509 511 512 514 516 518
18 Courbes 525 18.1 Arcs paramétrés 525 18.1.1 Vocabulaire 525 18.1.2 Equivalence des arcs paramétrés 525 18.1.3 Orientation 526 18.1.4 Tangente à un arc paramétré 526 18.1.5 Plan osculateur, concavité 528 18.1.6 Etude locale des arcs plans 529 18.1.7 Branches infinies 532 18.1.8 Plan d'étude d'un arc plan en paramétriques 533 18.1.9 Notion de contact 535 18.1.10 Enveloppes 536 18.2 Arcs en polaires 538 18.2.1 Coordonnées polaires 538 18.2.2 Arcs en coordonnées polaires : étude locale 538 18.2.3 Branches infinies et phénomènes asymptotiques 540 18.2.4 Plan d'étude d'un arc plan en polaires 540 18.2.5 Equations polaires remarquables 542 18.3 Problèmes classiques sur les courbes 543 18.3.1 Trajectoires orthogonales 543 18.3.2 Inverse d'une courbe 544 18.3.3 Podaire d'une courbe 545 18.4.4 Conchoïdes d'une courbe 545 18.4.5 Repère de Erénet et courbure des arcs d'un				
18.1.1 Vocabulaire 525 18.1.2 Equivalence des arcs paramétrés 525 18.1.3 Orientation 526 18.1.4 Tangente à un arc paramétré 526 18.1.5 Plan osculateur, concavité 528 18.1.6 Etude locale des arcs plans 529 18.1.7 Branches infinies 532 18.1.8 Plan d'étude d'un arc plan en paramétriques 533 18.1.9 Notion de contact 535 18.1.10 Enveloppes 536 18.2 Arcs en polaires 538 18.2.1 Coordonnées polaires 538 18.2.2 Arcs en coordonnées polaires : étude locale 538 18.2.3 Branches infinies et phénomènes asymptotiques 540 18.2.4 Plan d'étude d'un arc plan en polaires 540 18.2.5 Equations polaires remarquables 542 18.3 Problèmes classiques sur les courbes 543 18.3.1 Trajectoires orthogonales 543 18.3.2 Inverse d'une courbe 544 18.3.3 Podaire d'une courbe 545 18.4.4 Conchoïdes d'une courbe 545 18.4.2 Arcs de classe C¹ 549 18.4.3 Abscisses curvilignes 550 18.4.4 Introduction à la méthode du repè		17.4.3	Eléments de géométrie du triangle	521
18.1.1 Vocabulaire 525 $18.1.2$ Equivalence des arcs paramétrés 525 $18.1.3$ Orientation 526 $18.1.4$ Tangente à un arc paramétré 526 $18.1.5$ Plan osculateur, concavité 528 $18.1.6$ Etude locale des arcs plans 529 $18.1.6$ Etude locale des arcs plans 532 $18.1.7$ Branches infinies 532 $18.1.8$ Plan d'étude d'un arc plan en paramétriques 533 $18.1.9$ Notion de contact 538 $18.1.9$ Notion de contact 535 $18.1.0$ Puneloppes 536 18.2 Arcs en polaires 536 18.2 Arcs en coordonnées polaires 538 $18.2.1$ Coordonnées polaires : étude locale 538 $18.2.2$ Arcs en coordonnées polaires : étude locale 538 $18.2.2$ Arcs en coordonnées polaires : étude locale 538 $18.2.2$ Plan d'étude d'un arc plan en polaires 540 $18.2.4$ Plan d'étude d'un arc plan en polaires 540 $18.2.4$ Plan d'				
18.1.2 Equivalence des arcs paramétrés 525 $18.1.3$ Orientation 526 $18.1.4$ Tangente à un arc paramétré 526 $18.1.5$ Plan osculateur, concavité 528 $18.1.5$ Plan osculateur, concavité 528 $18.1.6$ Etude locale des arcs plans 529 $18.1.7$ Branches infinies 532 $18.1.8$ Plan d'étude d'un arc plan en paramétriques 533 $18.1.9$ Notion de contact 535 $18.1.0$ Enveloppes 536 $18.1.10$ Enveloppes 536 $18.2.1$ Coordonnées polaires 538 $18.2.1$ Coordonnées polaires : étude locale 538 $18.2.2$ Arcs en coordonnées polaires : étude locale 538 $18.2.3$ Branches infinies et phénomènes asymptotiques 540 $18.2.4$ Plan d'étude d'un arc plan en polaires 540 $18.2.4$ Plan d'étude d'un arc plan en polaires 542 18.3 Problèmes classiques sur les courbes 543 18.3 Problèmes classiques sur les courbes 543 <td< td=""><td>18.1</td><td>Arcs p</td><td>aramétrés</td><td>525</td></td<>	18.1	Arcs p	aramétrés	525
18.1.3 Orientation 526 $18.1.4$ Tangente à un arc paramétré 526 $18.1.5$ Plan osculateur, concavité 528 $18.1.6$ Etude locale des arcs plans 529 $18.1.7$ Branches infinies 532 $18.1.8$ Plan d'étude d'un arc plan en paramétriques 533 $18.1.9$ Notion de contact 535 $18.1.10$ Enveloppes 536 $18.2.4$ Arcs en polaires 538 $18.2.1$ Coordonnées polaires 538 $18.2.2$ Arcs en coordonnées polaires : étude locale 538 $18.2.3$ Branches infinies et phénomènes asymptotiques 540 $18.2.4$ Plan d'étude d'un arc plan en polaires 540 $18.2.5$ Equations polaires remarquables 542 18.3 Problèmes classiques sur les courbes 543 18.3 Trajectoires orthogonales 543 18.3 Inverse d'une courbe 544 18.3 Podaire d'une courbe 545 18.4 Etude métrique des arcs 546 18.4 Arcs rectifiables 546 18.4 Arcs rectifiables 546 18.4 Introduction à la méthode du repère mobile 552 $18.4.5$ Repère de Frénet et courbure des arcs d'un plan euclidien orien		18.1.1	Vocabulaire	525
$18.1.4$ Tangente à un arc paramétré 526 $18.1.5$ Plan osculateur, concavité 528 $18.1.6$ Etude locale des arcs plans 529 $18.1.7$ Branches infinies 532 $18.1.8$ Plan d'étude d'un arc plan en paramétriques 533 $18.1.9$ Notion de contact 535 $18.1.10$ Enveloppes 536 18.2 Arcs en polaires 538 $18.2.1$ Coordonnées polaires 538 $18.2.2$ Arcs en coordonnées polaires : étude locale 538 $18.2.3$ Branches infinies et phénomènes asymptotiques 540 $18.2.4$ Plan d'étude d'un arc plan en polaires 540 $18.2.5$ Equations polaires remarquables 542 18.3 Trajectoires orthogonales 543 $18.3.1$ Trajectoires orthogonales 543 $18.3.2$ Inverse d'une courbe 544 $18.3.3$ Podaire d'une courbe 545 18.4 Conchoïdes d'une courbe 545 18.4 Arcs rectifiables 546 $18.4.1$ Arcs rectifiables 546 $18.4.2$ Arcs de classe C^1 549 $18.4.3$ Abscisses curvilignes 550 $18.4.4$ Introduction à la méthode du repère mobile 552 $18.4.5$ Repère de Frénet et courbure des arcs d'un plan euclidien orienté 552 $18.4.6$ Centre de courbure, cercle osculateur 556 $18.4.8$ Equations intrinsèques 550		18.1.2	Equivalence des arcs paramétrés	525
$18.1.4$ Tangente à un arc paramétré 526 $18.1.5$ Plan osculateur, concavité 528 $18.1.6$ Etude locale des arcs plans 529 $18.1.7$ Branches infinies 532 $18.1.8$ Plan d'étude d'un arc plan en paramétriques 533 $18.1.9$ Notion de contact 535 $18.1.10$ Enveloppes 536 18.2 Arcs en polaires 538 $18.2.1$ Coordonnées polaires 538 $18.2.2$ Arcs en coordonnées polaires : étude locale 538 $18.2.3$ Branches infinies et phénomènes asymptotiques 540 $18.2.4$ Plan d'étude d'un arc plan en polaires 540 $18.2.5$ Equations polaires remarquables 542 18.3 Trajectoires orthogonales 543 $18.3.1$ Trajectoires orthogonales 543 $18.3.2$ Inverse d'une courbe 544 $18.3.3$ Podaire d'une courbe 545 18.4 Conchoïdes d'une courbe 545 18.4 Arcs rectifiables 546 $18.4.1$ Arcs rectifiables 546 $18.4.2$ Arcs de classe C^1 549 $18.4.3$ Abscisses curvilignes 550 $18.4.4$ Introduction à la méthode du repère mobile 552 $18.4.5$ Repère de Frénet et courbure des arcs d'un plan euclidien orienté 552 $18.4.6$ Centre de courbure, cercle osculateur 556 $18.4.8$ Equations intrinsèques 550		18.1.3	Orientation	526
18.1.6 Etude locale des arcs plans 529 18.1.7 Branches infinies 532 18.1.8 Plan d'étude d'un arc plan en paramétriques 533 18.1.9 Notion de contact 535 18.1.10 Enveloppes 536 18.2 Arcs en polaires 538 18.2.1 Coordonnées polaires 538 18.2.2 Arcs en coordonnées polaires : étude locale 538 18.2.3 Branches infinies et phénomènes asymptotiques 540 18.2.4 Plan d'étude d'un arc plan en polaires 540 18.2.5 Equations polaires remarquables 542 18.3 Problèmes classiques sur les courbes 543 18.3.1 Trajectoires orthogonales 543 18.3.2 Inverse d'une courbe 544 18.3.3 Podaire d'une courbe 545 18.4.4 Conchoïdes d'une courbe 545 18.4.5 Arcs de classe C^1 546 18.4.1 Arcs rectifiables 546 18.4.2 Arcs de classe C^1 549 18.4.3 Abscisses curvilignes 550 18.				
18.1.7 Branches infinies 532 18.1.8 Plan d'étude d'un arc plan en paramétriques 533 18.1.9 Notion de contact 535 18.1.10 Enveloppes 536 18.2 Arcs en polaires 538 18.2.1 Coordonnées polaires 538 18.2.2 Arcs en coordonnées polaires : étude locale 538 18.2.3 Branches infinies et phénomènes asymptotiques 540 18.2.4 Plan d'étude d'un arc plan en polaires 540 18.2.5 Equations polaires remarquables 542 18.3 Problèmes classiques sur les courbes 543 18.3.1 Trajectoires orthogonales 543 18.3.2 Inverse d'une courbe 544 18.3.3 Podaire d'une courbe 545 18.4.4 Conchoïdes d'une courbe 545 18.4.5 Etude métrique des arcs 546 18.4.2 Arcs de classe C¹ 546 18.4.3 Abscisses curvilignes 550 18.4.4 Introduction à la méthode du repère mobile 552 18.4.5 Repère de Frénet et courbure des arcs d'un plan euclidien orienté 552 18.4.6 Centre de courbure, cercle osculateur 556 18.4.8 Equations intrinsèques 559		18.1.5	Plan osculateur, concavité	528
18.1.8 Plan d'étude d'un arc plan en paramétriques53318.1.9 Notion de contact53518.1.10 Enveloppes53618.2 Arcs en polaires53818.2.1 Coordonnées polaires53818.2.2 Arcs en coordonnées polaires : étude locale53818.2.3 Branches infinies et phénomènes asymptotiques54018.2.4 Plan d'étude d'un arc plan en polaires54018.2.5 Equations polaires remarquables54218.3 Problèmes classiques sur les courbes54318.3.1 Trajectoires orthogonales54318.3.2 Inverse d'une courbe54418.3.3 Podaire d'une courbe54518.3.4 Conchoïdes d'une courbe54518.4 Etude métrique des arcs54618.4.1 Arcs rectifiables54618.4.2 Arcs de classe C^1 54918.4.3 Abscisses curvilignes55018.4.4 Introduction à la méthode du repère mobile55218.4.5 Repère de Frénet et courbure des arcs d'un plan euclidien orienté55218.4.6 Centre de courbure, cercle osculateur55618.4.7 Développée, développantes55718.4.8 Equations intrinsèques559		18.1.6	Etude locale des arcs plans	529
$18.1.9$ Notion de contact 535 $18.1.10$ Enveloppes 536 18.2 Arcs en polaires 538 $18.2.1$ Coordonnées polaires 538 $18.2.2$ Arcs en coordonnées polaires: étude locale 538 $18.2.3$ Branches infinies et phénomènes asymptotiques 540 $18.2.4$ Plan d'étude d'un arc plan en polaires 540 $18.2.5$ Equations polaires remarquables 542 18.3 Problèmes classiques sur les courbes 543 $18.3.1$ Trajectoires orthogonales 543 $18.3.2$ Inverse d'une courbe 544 $18.3.3$ Podaire d'une courbe 545 $18.3.4$ Conchoïdes d'une courbe 545 18.4 Etude métrique des arcs 546 $18.4.1$ Arcs rectifiables 546 $18.4.2$ Arcs de classe C^1 549 $18.4.3$ Abscisses curvilignes 550 $18.4.4$ Introduction à la méthode du repère mobile 552 $18.4.5$ Repère de Frénet et courbure des arcs d'un plan euclidien orienté 552 $18.4.6$ Centre de courbure, cercle osculateur 556 $18.4.7$ Développée, développantes 557 $18.4.8$ Equations intrinsèques 559		18.1.7	Branches infinies	532
$18.1.10 \text{Enveloppes}$ 536 18.2Arcs en polaires 538 $18.2.1 \text{Coordonnées polaires}$ 538 $18.2.2 \text{Arcs}$ en coordonnées polaires : étude locale 538 $18.2.3 \text{Branches}$ infinies et phénomènes asymptotiques 540 $18.2.4 \text{Plan d'étude d'un arc plan en polaires}$ 540 $18.2.5 \text{Equations polaires remarquables}$ 542 $18.3 \text{Problèmes classiques sur les courbes}$ 543 $18.3.1 \text{Trajectoires orthogonales}$ 543 $18.3.2 \text{Inverse d'une courbe}$ 544 $18.3.2 \text{Inverse d'une courbe}$ 545 $18.3.4 \text{Conchoïdes d'une courbe}$ 545 $18.4.4 \text{Conchoïdes d'une courbe}$ 545 $18.4.2 \text{Arcs de classe } C^1$ 549 $18.4.3 \text{Abscisses curvilignes}$ 550 $18.4.4 \text{Introduction à la méthode du repère mobile}$ 552 $18.4.5 \text{Repère de Frénet et courbure des arcs d'un plan euclidien orienté 552 18.4.6 \text{Centre de courbure}, cercle osculateur 556 18.4.7 \text{Développée}, développantes 559 $		18.1.8	Plan d'étude d'un arc plan en paramétriques	533
18.2 Arcs en polaires538 $18.2.1$ Coordonnées polaires538 $18.2.2$ Arcs en coordonnées polaires : étude locale538 $18.2.3$ Branches infinies et phénomènes asymptotiques540 $18.2.4$ Plan d'étude d'un arc plan en polaires540 $18.2.5$ Equations polaires remarquables542 18.3 Problèmes classiques sur les courbes543 $18.3.1$ Trajectoires orthogonales543 $18.3.2$ Inverse d'une courbe544 $18.3.3$ Podaire d'une courbe545 $18.3.4$ Conchoïdes d'une courbe545 18.4 Etude métrique des arcs546 $18.4.1$ Arcs rectifiables546 $18.4.2$ Arcs de classe C^1 549 $18.4.3$ Abscisses curvilignes550 $18.4.4$ Introduction à la méthode du repère mobile552 $18.4.5$ Repère de Frénet et courbure des arcs d'un plan euclidien orienté552 $18.4.6$ Centre de courbure, cercle osculateur556 $18.4.7$ Développée, développantes557 $18.4.8$ Equations intrinsèques559		18.1.9	Notion de contact	535
18.2.1 Coordonnées polaires53818.2.2 Arcs en coordonnées polaires : étude locale53818.2.3 Branches infinies et phénomènes asymptotiques54018.2.4 Plan d'étude d'un arc plan en polaires54018.2.5 Equations polaires remarquables54218.3 Problèmes classiques sur les courbes54318.3.1 Trajectoires orthogonales54318.3.2 Inverse d'une courbe54418.3.3 Podaire d'une courbe54518.4.4 Conchoïdes d'une courbe54518.4.5 Etude métrique des arcs54618.4.1 Arcs rectifiables54618.4.2 Arcs de classe C^1 54918.4.3 Abscisses curvilignes55018.4.4 Introduction à la méthode du repère mobile55218.4.5 Repère de Frénet et courbure des arcs d'un plan euclidien orienté55218.4.6 Centre de courbure, cercle osculateur55618.4.7 Développée, développantes55718.4.8 Equations intrinsèques559		18.1.10	Enveloppes	536
$18.2.2$ Arcs en coordonnées polaires : étude locale 538 $18.2.3$ Branches infinies et phénomènes asymptotiques 540 $18.2.4$ Plan d'étude d'un arc plan en polaires 540 $18.2.5$ Equations polaires remarquables 542 18.3 Problèmes classiques sur les courbes 543 $18.3.1$ Trajectoires orthogonales 543 $18.3.2$ Inverse d'une courbe 544 $18.3.3$ Podaire d'une courbe 545 18.4 Conchoïdes d'une courbe 545 18.4 Etude métrique des arcs 546 $18.4.1$ Arcs rectifiables 546 $18.4.2$ Arcs de classe C^1 549 $18.4.3$ Abscisses curvilignes 550 $18.4.4$ Introduction à la méthode du repère mobile 552 $18.4.5$ Repère de Frénet et courbure des arcs d'un plan euclidien orienté 552 $18.4.6$ Centre de courbure, cercle osculateur 556 $18.4.7$ Développée, développantes 557 $18.4.8$ Equations intrinsèques 559	18.2	Arcs e	n polaires	538
$18.2.3 \text{Branches infinies et phénomènes asymptotiques} \qquad 540 \\ 18.2.4 \text{Plan d'étude d'un arc plan en polaires} \qquad 540 \\ 18.2.5 \text{Equations polaires remarquables} \qquad 542 \\ 18.3 \text{Problèmes classiques sur les courbes} \qquad 543 \\ 18.3.1 \text{Trajectoires orthogonales} \qquad 543 \\ 18.3.2 \text{Inverse d'une courbe} \qquad 544 \\ 18.3.3 \text{Podaire d'une courbe} \qquad 545 \\ 18.3.4 \text{Conchoïdes d'une courbe} \qquad 545 \\ 18.4 \text{Etude métrique des arcs} \qquad 546 \\ 18.4.1 \text{Arcs rectifiables} \qquad 546 \\ 18.4.2 \text{Arcs de classe } C^1 \qquad 549 \\ 18.4.3 \text{Abscisses curvilignes} \qquad 550 \\ 18.4.4 \text{Introduction à la méthode du repère mobile} \qquad 552 \\ 18.4.5 \text{Repère de Frénet et courbure des arcs d'un plan euclidien orienté} \qquad 552 \\ 18.4.6 \text{Centre de courbure, cercle osculateur} \qquad 556 \\ 18.4.7 \text{Développée, développantes} \qquad 559 \\ \end{cases}$		18.2.1	Coordonnées polaires	538
$18.2.4 \ \ Plan \ d'étude \ d'un arc plan en polaires 540 18.2.5 \ \ Equations polaires remarquables 542 18.3 \ \ Problèmes \ classiques sur les courbes 543 18.3.1 \ \ Trajectoires orthogonales 543 18.3.2 \ \ Inverse \ d'une \ courbe 544 18.3.3 \ \ Podaire \ d'une \ courbe 545 18.3.4 \ \ Conchoïdes \ d'une \ courbe 545 18.3.4 \ \ Etude \ métrique \ des \ arcs \\ 18.4.1 \ \ Arcs \ rectifiables \\ 18.4.2 \ \ Arcs \ de \ classe \ C^1 \\ 18.4.3 \ \ Abscisses \ curvilignes \\ 18.4.3 \ \ Abscisses \ curvilignes \\ 18.4.4 \ \ Introduction \ à \ la \ méthode \ du \ repère \ mobile \\ 18.4.5 \ \ Repère \ de \ Frénet \ et \ courbure \ des \ arcs \ d'un \ plan \ euclidien \ orienté \\ 18.4.5 \ \ Repère \ de \ Frénet \ et \ courbure \ des \ arcs \ d'un \ plan \ euclidien \ orienté \\ 18.4.7 \ \ Développée, \ développantes \\ 18.4.8 \ \ Equations \ intrinsèques \\ 18.59$		18.2.2	Arcs en coordonnées polaires : étude locale	538
$18.2.5 \ \ \text{Equations polaires remarquables} \qquad \qquad$		18.2.3	Branches infinies et phénomènes asymptotiques	540
$18.3 \ \text{Problèmes classiques sur les courbes} \qquad \qquad 543 \\ 18.3.1 \ \text{Trajectoires orthogonales} \qquad \qquad 543 \\ 18.3.2 \ \text{Inverse d'une courbe} \qquad \qquad 544 \\ 18.3.3 \ \text{Podaire d'une courbe} \qquad \qquad 545 \\ 18.3.4 \ \text{Conchoïdes d'une courbe} \qquad \qquad 545 \\ 18.4 \ \text{Etude métrique des arcs} \qquad \qquad 546 \\ 18.4.1 \ \text{Arcs rectifiables} \qquad \qquad 546 \\ 18.4.2 \ \text{Arcs de classe} \ C^1 \qquad \qquad 549 \\ 18.4.3 \ \text{Abscisses curvilignes} \qquad \qquad 550 \\ 18.4.4 \ \text{Introduction à la méthode du repère mobile} \qquad 552 \\ 18.4.5 \ \text{Repère de Frénet et courbure des arcs d'un plan euclidien orienté} \qquad 552 \\ 18.4.6 \ \text{Centre de courbure, cercle osculateur} \qquad 556 \\ 18.4.7 \ \text{Développée, développantes} \qquad 557 \\ 18.4.8 \ \text{Equations intrinsèques} \qquad 559$		18.2.4	Plan d'étude d'un arc plan en polaires	540
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18.2.5	Equations polaires remarquables	542
18.3.2 Inverse d'une courbe54418.3.3 Podaire d'une courbe54518.3.4 Conchoïdes d'une courbe54518.4 Etude métrique des arcs54618.4.1 Arcs rectifiables54618.4.2 Arcs de classe C^1 54918.4.3 Abscisses curvilignes55018.4.4 Introduction à la méthode du repère mobile55218.4.5 Repère de Frénet et courbure des arcs d'un plan euclidien orienté55218.4.6 Centre de courbure, cercle osculateur55618.4.7 Développée, développantes55718.4.8 Equations intrinsèques559	18.3	Problè	mes classiques sur les courbes	543
$18.3.3 \ \text{Podaire d'une courbe} $		18.3.1	Trajectoires orthogonales	543
$18.3.4$ Conchoïdes d'une courbe 545 18.4 Etude métrique des arcs 546 $18.4.1$ Arcs rectifiables 546 $18.4.2$ Arcs de classe C^1 549 $18.4.3$ Abscisses curvilignes 550 $18.4.4$ Introduction à la méthode du repère mobile 552 $18.4.5$ Repère de Frénet et courbure des arcs d'un plan euclidien orienté 552 $18.4.6$ Centre de courbure, cercle osculateur 556 $18.4.7$ Développée, développantes 557 $18.4.8$ Equations intrinsèques 559		18.3.2	Inverse d'une courbe	544
$18.4 \ \text{Etude métrique des arcs} \qquad \qquad \qquad 546 \\ 18.4.1 \ \text{Arcs rectifiables} \qquad \qquad \qquad 546 \\ 18.4.2 \ \text{Arcs de classe} C^1 \qquad \qquad \qquad 549 \\ 18.4.3 \ \text{Abscisses curvilignes} \qquad \qquad \qquad \qquad 550 \\ 18.4.4 \ \text{Introduction à la méthode du repère mobile} \qquad \qquad \qquad 552 \\ 18.4.5 \ \text{Repère de Frénet et courbure des arcs d'un plan euclidien orienté} \qquad 552 \\ 18.4.6 \ \text{Centre de courbure, cercle osculateur} \qquad \qquad 556 \\ 18.4.7 \ \text{Développée, développantes} \qquad \qquad 557 \\ 18.4.8 \ \text{Equations intrinsèques} \qquad \qquad 559 \\ $		18.3.3	Podaire d'une courbe	545
18.4.1 Arcs rectifiables54618.4.2 Arcs de classe C^1 54918.4.3 Abscisses curvilignes55018.4.4 Introduction à la méthode du repère mobile55218.4.5 Repère de Frénet et courbure des arcs d'un plan euclidien orienté55218.4.6 Centre de courbure, cercle osculateur55618.4.7 Développée, développantes55718.4.8 Equations intrinsèques559		18.3.4	Conchoïdes d'une courbe	545
$18.4.2 \ \text{Arcs de classe} C^1 $	18.4	Etude	métrique des arcs	546
18.4.3 Abscisses curvilignes18.4.4 Introduction à la méthode du repère mobile18.4.5 Repère de Frénet et courbure des arcs d'un plan euclidien orienté18.4.6 Centre de courbure, cercle osculateur18.4.7 Développée, développantes18.4.8 Equations intrinsèques				
18.4.4 Introduction à la méthode du repère mobile		18.4.2	Arcs de classe C^1	549
18.4.5 Repère de Frénet et courbure des arcs d'un plan euclidien orienté . 55218.4.6 Centre de courbure, cercle osculateur				550
18.4.6 Centre de courbure, cercle osculateur 556 18.4.7 Développée, développantes 557 18.4.8 Equations intrinsèques 559		18.4.4	Introduction à la méthode du repère mobile	552
18.4.7 Développée, développantes		18.4.5	Repère de Frénet et courbure des arcs d'un plan euclidien orienté	552
18.4.8 Equations intrinsèques		18.4.6	Centre de courbure, cercle osculateur	556
		18.4.7	Développée, développantes	557
18.4.9 Courbure des arcs gauches		18.4.8	Equations intrinsèques	559
		18.4.9	Courbure des arcs gauches	560

19		aces		563
	19.1	Nappe	s paramétrées	563
		19.1.1	Notion de nappe paramétrée. Equivalence	563
		19.1.2	Orientation	565
		19.1.3	Plan tangent à une nappe paramétrée, vecteur normal	565
		19.1.4	Points réguliers et nappes cartésiennes	566
		19.1.5	Intersection de nappes paramétrées	567
		19.1.6	Intersection d'une nappe et de son plan tangent	568
	19.2	Nappe	s réglées	572
		19.2.1	Notion de nappe réglée	572
		19.2.2	Plan tangent à une nappe réglée	573
			Nappes cylindriques. Nappes coniques	
	19.3		ions de surfaces	
			Surfaces cartésiennes et nappes paramétrées	
			Cylindres	
			Cônes	
		19.3.4	Surfaces de révolution	578
	19.4		iques	
			Notion de quadrique	
			Réduction des quadriques	
			Classification des quadriques en dimension 2 et 3	
		19.4.4	Quadriques réglées, quadriques de révolution	583
20	Inté	grales	curvilignes, intégrales multiples	585
	20.1	Intégra	ales curvilignes	585
		20.1.1	Formes différentielles sur un arc paramétré	585
		20.1.2	Intégrale d'une forme différentielle sur un arc	586
		20.1.3	Formes différentielles exactes et champs de gradients	589
	20.2	Intégra	ales multiples	590
		20.2.1	Pavés et subdivisions. Ensembles négligeables	590
			Intégrales multiples sur un pavé de \mathbb{R}^n	
		20.2.3	Intégrales multiples sur une partie de \mathbb{R}^n	593
		20.2.4	Mesure d'un sous-ensemble borné de \mathbb{R}^n	594
	20.3	Calcul	des intégrales doubles et triples	595
		20.3.1	Théorème de Fubini sur une partie de \mathbb{R}^2	595
		20.3.2	Théorème de Fubini sur une partie de \mathbb{R}^3	599
			Théorème de changement de variables dans les intégrales multiples	
		20.3.4	Théorème de Green-Riemann	603
	20.4	Introd	uction aux intégrales de surface	607

Chapitre 7

Suites et séries

7.1 Convergence des suites

7.1.1 Monotonie (suites à termes réels)

Théorème 7.1.1 Soit (x_n) une suite croissante de nombres réels. Alors la suite est convergente si et seulement si elle est majorée. Dans ce cas on a $\lim x_n = \sup x_n$.

Démonstration On sait déjà que toute suite convergente est bornée, donc majorée. Inversement, si la suite est majorée, soit $l = \sup x_n$ et $\varepsilon > 0$. Par définition de la borne supérieure, il existe n_0 tel que $l - \varepsilon < x_{n_0} \le l$. Pour $n \ge n_0$, on a $l - \varepsilon < x_{n_0} \le x_n \le l$ ce qui montre que la suite converge vers l.

Remarque 7.1.1 On a un résultat analogue avec les suites décroissantes et minorées.

Corollaire 7.1.2 Soit (a_n) et (b_n) deux suites de nombres réels vérifiant

- (i) (a_n) est croissante et (b_n) décroissante
- (ii) $\forall n \in \mathbb{N}, \ a_n \leq b_n$
- $(iii) \lim(b_n a_n) = 0$

Alors les suites (a_n) et (b_n) convergent et ont la même limite ℓ qui vérifie

$$\forall n \in \mathbb{N}, \ a_n < \ell < b_n$$

On dit que deux telles suites sont adjacentes.

Démonstration On remarque que $\forall p, q, \ a_p \leq b_q$; en effet si $p \leq q$ on a $a_p \leq a_q \leq b_q$ et si p > q, on a $a_p \leq b_p \leq a_q$. La suite (a_n) est croissante majorée par b_0 , donc converge. De même la suite (b_n) converge et la propriété (iii) implique qu'elles ont la même limite.

Exemple 7.1.1 Posons
$$u_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \log n$$
. On a $u_{n+1} - u_n = \frac{1}{n+1} - \log(n+1) - \log n = \frac{1}{n+1} - \int_{n}^{n+1} \frac{dt}{t} = \int_{n}^{n+1} (\frac{1}{n+1} - \frac{1}{t}) dt \le 0$. Posons $v_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n-1} - \log n$.

On a de même $v_{n+1}-v_n=\int_n^{n+1}(\frac{1}{n}-\frac{1}{t})\ dt\geq 0$. On a donc (u_n) décroissante, (v_n) croissante, $v_n\leq u_n$, $\lim(v_n-u_n)=0$. Donc les suites convergent. Soit γ leur limite commune (la constante d'Euler). On a donc $1+\frac{1}{2}+\ldots+\frac{1}{n}=\log n+\gamma+\varepsilon_n$ avec $\lim \varepsilon_n=0$.

7.1.2 Critère de Cauchy

Dans un espace métrique complet, une suite converge si et seulement si elle vérifie le critère de Cauchy. Cela peut servir aussi bien comme critère de convergence (exemple des suites $x_{n+1} = f(x_n)$ où f est contractante) que comme critère de divergence.

Exemple 7.1.2 Posons
$$x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$
. On a $x_{2n} - x_n = \frac{1}{n+1} + \ldots + \frac{1}{2n} \ge n \times \frac{1}{2n} = \frac{1}{2}$. La suite ne vérifie donc pas le critère de Cauchy (bien que $\lim(x_{n+1} - x_n) = 0$), donc elle ne converge pas.

7.1.3 Valeurs d'adhérences, limites inférieures et supérieures

Proposition 7.1.3 Soit E un espace métrique et (x_n) une suite de E. L'ensemble de ses valeurs d'adhérences est fermé dans E.

Démonstration On a vu dans le chapitre sur les compacts que l'ensemble X des valeurs d'adhérences de la suite (x_n) est $\bigcap_{N\in\mathbb{N}} \overline{X_N}$ avec $X_N=\{x_n\mid n\geq N\}$. Comme

intersection de fermés, c'est un fermé. On peut aussi le redémontrer directement. Soit $x \in \overline{X}$ et $V \in V(x)$. Soit U ouvert tel que $x \in U \subset V$. On a $U \cap X \neq \emptyset$. Soit $y \in U \cap X$. Comme U est ouvert, U est un voisinage de la valeur d'adhérence y et donc $\{n \in \mathbb{N} \mid x_n \in U\}$ est infini; il en est de même a fortiori de $\{n \in \mathbb{N} \mid x_n \in V\}$, donc x est encore valeur d'adhérence de la suite.

Théorème 7.1.4 Soit E un espace métrique compact et (x_n) une suite de E.

- (i) La suite a au moins une valeur d'adhérence
- (ii) La suite converge si et seulement si elle a une unique valeur d'adhérence.

Démonstration L'affirmation (i) n'est autre que la définition d'un compact.

(ii) La condition est évidemment nécessaire. Supposons la remplie et soit ℓ cette unique valeur d'adhérence. Supposons que ℓ n'est pas limite de la suite. Ceci signifie qu'il existe U ouvert contenant ℓ tel que $\forall N \in \mathbb{N}, \exists n \geq N$ tel que $x_n \notin U$. On construit ainsi facilement une sous suite $(x_{\varphi(n)})$ telle que $\forall n, x_{\varphi(n)} \in E \setminus U$ (prendre $\varphi(n)$ le plus petit entier supérieur à $N = \varphi(n-1)+1$ vérifiant la condition). Comme $E \setminus U$ est fermé dans un compact, c'est un compact et la suite $(x_{\varphi(n)})$ doit avoir une valeur d'adhérence $\ell' \in E \setminus U$. Mais alors la suite (x_n) a deux valeurs d'adhérences $\ell \neq \ell'$. C'est absurde.

Soit donc (x_n) une suite de $\overline{\mathbb{R}}$. Soit X l'ensemble de ses valeurs d'adhérences. C'est un fermé non vide de $\overline{\mathbb{R}}$, donc il contient sa borne supérieure et sa borne inférieure.

Définition 7.1.1 Soit (x_n) une suite de $\overline{\mathbb{R}}$. Soit X l'ensemble de ses valeurs d'adhérences. On pose $\limsup x_n = \max X$ et $\liminf x_n = \min X$. La suite converge $(\operatorname{dans} \overline{\mathbb{R}})$ si et seulement si $\limsup x_n = \liminf x_n$.

Théorème 7.1.5 Soit (x_n) une suite de $\overline{\mathbb{R}}$ et $\ell \in \overline{\mathbb{R}}$. On a équivalence de

- (i) $\ell = \limsup x_n$
- (ii) ℓ est valeur d'adhérence de la suite et $\forall c > \ell$, $\{n \in \mathbb{N} \mid x_n \geq c\}$ est fini.
- $-(iii) \ell = \lim_{p \to +\infty} (\sup_{n \ge p} x_n)$

Démonstration ((i) \Rightarrow (ii)) Soit $\ell = \limsup x_n$. Alors ℓ est valeur d'adhérence de la suite. Si $\{n \in \mathbb{N} \mid x_n \geq c\}$ est infini, on peut construire une sous suite dans $[c, +\infty]$ qui est compact; cette suite doit admettre une valeur d'adhérence $\ell' \in [c, +\infty]$. On a donc $\ell' \in X$ avec $\ell' > \sup X$. C'est absurde.

((ii) \Rightarrow (iii)) Remarquons que la suite $y_p = \sup_{n \geq p} x_n$ est décroissante, donc convergente

dans $\overline{\mathbb{R}}$. Soit ℓ' sa limite. Soit $c > \ell$. Il existe $N \in \mathbb{N}$ tel que $n \geq N \Rightarrow x_n < c$. Donc pour $n \geq N$, on a $y_n \leq c$ et donc $\ell' \leq c$. Comme c est quelconque $(> \ell)$, on a $\ell' \leq \ell$. Mais d'autre part on sait que ℓ est valeur d'adhérence de la suite (x_n) d'où $\ell = \lim x_{\varphi(n)} \leq \lim y_{\varphi(n)} = \ell'$. Donc $\ell = \ell'$.

 $((iii)\Rightarrow(i))$ Posons toujours $y_p = \sup_{n>p} x_n$. Si ℓ' est une valeur d'adhérence de la suite

 (x_n) , on a $\ell' = \lim x_{\varphi(n)} \leq \lim y_{\varphi(n)} = \ell$, donc limsup $x_n \leq \ell$. Mais d'autre part, soit U un ouvert contenant ℓ , on peut trouver un N tel que $p \geq N \Rightarrow y_p \in U$. Pour un tel p, comme $U \in V(y_p)$, on peut trouver un $n \geq p$ tel que $x_n \in U$. Ceci montre que ℓ est valeur d'adhérence de la suite (x_n) soit $\ell \leq \limsup x_n$ et donc l'égalité.

Proposition 7.1.6 – (i) $\limsup(u_n + v_n) \leq \limsup u_n + \limsup v_n$ (avec égalité si l'une des suites est convergente)

- (ii) si (u_n) et (v_n) sont deux suites positives, $\limsup (u_n v_n) \le \limsup u_n \limsup v_n$ (avec égalité si l'une des suites est convergente)
- (iii) si $\lambda > 0$, $\limsup(\lambda x_n) = \lambda \limsup x_n$
- (iv) si f est continue, $f(\limsup x_n) \leq \limsup f(x_n)$ (avec égalité si f est croissante)

Démonstration (i) On pose $\ell = \limsup u_n$, $v = \limsup v_n$. Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que $n \ge N \Rightarrow u_n < \ell + \varepsilon$. De même, il existe N' tel que $n \ge N' \Rightarrow v_n < \ell' + \varepsilon$. Alors $n \ge \max(N, N') \Rightarrow u_n + v_n < \ell + \ell' + 2\varepsilon$, ce qui montre que $\limsup (u_n + v_n) \le \ell + \ell'$. Si la suite u_n converge, on a par exemple $\ell' = \lim v_{\varphi(n)}$, d'où $\ell + \ell' = \lim (u_{\varphi(n)} + v_{\varphi(n)})$ est encore valeur d'adhérence de la suite $(u_n + v_n)$; donc $\limsup (u_n + v_n) = \ell + \ell'$. La démonstration de (ii) est tout à fait similaire.

- (iii) est tout à fait élémentaire.
- (iv) soit $\ell = \limsup x_n$. On a $\ell = \lim x_{\varphi(n)}$, donc $f(\ell) = \lim f(x_{\varphi(n)})$ est valeur d'adhérence de la suite $(f(x_n))$. On en déduit que $f(\ell) \leq \limsup f(x_n)$. Supposons maintenant f croissante et supposons que $f(\ell) < \limsup f(x_n) = \ell'$. Soit α tel que $f(\ell) < \alpha < \ell'$. Le réel ℓ' est valeur d'adhérence de la suite $f(x_n)$, donc on peut trouver N tel que $f(x_n) > \alpha(> f(\ell))$. Le théorème des valeurs intermédiaires assure qu'il existe α

tel que $\alpha = f(a)$. Comme f est croissante, on a $a > \ell$. On a $\ell = \lim f(x_{\varphi(n)})$ donc il existe N' tel que $n \ge N' \Rightarrow f(x_{\varphi(n)}) > \alpha = f(a)$. Mais alors $n \ge N' \Rightarrow x_{\varphi(n)} > a > \ell$. Ceci contredit le fait qu'il n'y a qu'un nombre fini de n tels que $x_n > a$. On a donc $f(\ell) = \ell'$.

Remarque 7.1.2 L'exemple $u_n = (-1)^n$, $v_n = -u_n$ montre que l'on n'a pas généralement d'égalité dans (i). En ce qui concerne (iii), si $\lambda < 0$ on a évidemment $\limsup(\lambda x_n) = \lambda \liminf x_n$. De même pour (iv), si f est décroissante, on a $f(\limsup x_n) = \liminf f(x_n)$, ce qui montre qu'en général on n'a pas d'égalité dans (iv).

Les résultats concernant la limite inférieure sont tout à fait similaires, les inégalités changeant de sens

Exemple 7.1.3 Soit $f:]0, +\infty[\to]0, +\infty[$ continue croissante; on suppose que l'équation $f(x) = \frac{x}{2}$ a une unique solution ℓ , que $x < \ell \Rightarrow f(x) > \frac{x}{2}$ et $x > \ell \Rightarrow f(x) < \frac{x}{2}$; on considère la suite (x_n) définie par $x_{n+1} = f(x_n) + f(x_{n-1})$. On vérifie facilement que si $a = \min(\ell, x_0, x_1), b = \max(\ell, x_0, x_1),$ alors $\forall n \in \mathbb{N}, x_n \in [a, b]$. Posons $M = \limsup x_n$ et $m = \liminf x_n$. On a alors $M = \limsup(f(x_{n-1}) + f(x_{n-2})) \leq \limsup f(x_{n-1}) + \limsup f(x_{n-2}) = 2f(M)$. On en déduit que $M \leq \ell$. On montre de même que $m \geq \ell$ d'où $m = M = \ell$ et la suite converge.

7.1.4 Récurrences d'ordre 1

Soit D une partie de \mathbb{R} et $f: D \to \mathbb{R}$ une fonction continue. On considère $x_0 \in D$ et la suite (x_n) définie par récurrence par $x_{n+1} = f(x_n)$. On note $D' = \{x_0 \in D \mid (x_n)_{n \in \mathbb{N}} \text{ est définie } \}$ (on montre facilement que $D' = \bigcup_{A \subset D, f(A) \subset A} A$). On remarque immédiatement que D contient tous les points fixes de f.

Proposition 7.1.7 Si la suite (x_n) converge vers un point $\ell \in D$, alors $f(\ell) = \ell$.

Démonstration On a alors $\ell = \lim x_{n+1} = \lim f(x_n) = f(\lim x_n) = f(\ell)$ par continuité de f au point ℓ .

Proposition 7.1.8 Soit $\ell \in D^o$ tel que $f(\ell) = \ell$ et supposons f dérivable au point ℓ .

- (i) Si $|f'(\ell)| < 1$ (point fixe attractif), il existe un $\eta > 0$ tel que
 - $-(a) f([\ell-\eta,\ell+\eta[)\subset]\ell-\eta,\ell+\eta[\subset D']$
 - $-(b) (\exists n_0 \in \mathbb{N}, x_{n_0} \in]\ell \eta, \ell + \eta[) \Rightarrow \lim x_n = \ell$
- (ii) Si $|f'(\ell)| > 1$ (point fixe répulsif) et si $\lim x_n = \ell$, alors la suite est stationnaire en ℓ .

Démonstration (i) Soit k tel que $|f'(\ell)| < k < 1$. Comme

$$\lim_{x \to \ell, x \neq \ell} \left| \frac{f(x) - f(\ell)}{x - \ell} \right| = \lim_{x \to \ell, x \neq \ell} \left| \frac{f(x) - \ell}{x - \ell} \right| = |f'(\ell)| < k$$

il existe $\eta > 0$ tel que $|x - \ell| < \eta \Rightarrow |f(x) - \ell| \le k|x - \ell|$. On a alors évidemment $f(]\ell - \eta, \ell + \eta[) \subset]\ell - \eta, \ell + \eta[\subset D']$. Soit n_0 tel que $x_{n_0} \in]\ell - \eta, \ell + \eta[$. Alors pour tout

 $n \ge n_0$ on a $x_n \in]\ell - \eta, \ell + \eta[$ et $|x_{n+1} - \ell| \le k|x_n - \ell|$. On a alors $|x_n - \ell| \le k^{n-n_0}|x_{n_0} - \ell|$ ce qui montre que $\lim x_n = \ell$.

(ii) Une méthode similaire montre que si $|f'(\ell)| > k > 1$, alors il existe $\eta > 0$ tel que $|x-\ell| < \eta \Rightarrow |f(x)-\ell| \geq k|x-\ell|$. Si $\lim x_n = \ell$, il existe n_0 tel que $n \geq n_0 \Rightarrow |x_n-\ell| < \eta$. On a alors $|x_{n+1}-\ell| \geq k|x_n-\ell|$, soit encore $|x_n-\ell| \geq k^{n-n_0}|x_{n_0}-\ell|$ avec k>1. Ce n'est compatible avec le fait que $x_n-\ell$ tend vers 0 que si $x_{n_0}-\ell=0$, et la suite est alors stationnaire.

Les deux propositions précédentes permettent de conclure dans un certain nombre de cas. Une étude plus fine relève en général de propriétés de monotonie de la fonction f.

Proposition 7.1.9 Soit I un intervalle stable par f sur lequel f est monotone. On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que $x_{n_0} \in I$. Alors $\forall n \geq n_0, x_n \in I$ et de plus

- (i) si f est croissante sur I, la suite $(x_n)_{n\geq n_0}$ est monotone (le sens étant déterminé par le signe de $x_{n_0+1}-x_{n_0}=f(x_{n_0})-x_{n_0}$)
- (ii) si f est décroissante sur I, les deux sous suites (x_{2n}) et (x_{2n+1}) sont monotones et de sens contraire à partir de l'indice n_0 .

Démonstration Supposons f croissante et par exemple $f(x_{n_0}) = x_{n_0+1} \le x_{n_0}$, alors $x_n \le x_{n-1} \Rightarrow f(x_n) \le f(x_{n-1}) \Rightarrow x_{n+1} \le x_n$ ce qui montre par récurrence que $\forall n \ge n_0, x_{n+1} \le x_n$ et la suite est décroissante à partir de n_0 . De même, si $f(x_{n_0}) = x_{n_0+1} \ge x_{n_0}$, la suite est croissante à partir de n_0 . Supposons maintenant f décroissante sur I et $f(I) \subset I$. Alors $f \circ f$ est croissante sur I et donc les deux sous suites (x_{2n}) et (x_{2n+1}) sont monotones, car elles vérifient la relation $y_{n+1} = f \circ f(y_n)$. De plus elles sont de sens contraire car $x_{2n+3} - x_{2n+1} = f(x_{2n+2}) - f(x_{2n})$ et f est décroissante.

Remarque 7.1.3 Supposons que l'on est dans la situation de la proposition avec f croissante; soit $\ell \in I$ tel que $f(\ell) = \ell$. On constate immédiatement que le signe de $\ell - x_n = f(\ell) - f(x_{n-1})$ est constant, si bien que ℓ fournit soit un majorant, soit un minorant de la suite.

7.2 Généralités sur les séries

7.2.1 Notion de série

Définition 7.2.1 Soit E un espace vectoriel normé et (x_n) une suite de E. On appelle sommes partielles de la série $\sum x_n$ les $S_n = \sum_{p=0}^n x_p$ (notée $S_n(x)$ s'il y a risque de confusion). On dit que la série converge si la suite des sommes partielles converge dans E; sa limite est alors appelée la somme de la série et notée $\sum_{n=0}^{+\infty} x_n = \lim_{n \to +\infty} \sum_{p=0}^{n} x_p$. Une série non convergente est dite divergente.

Remarque 7.2.1 Soit (a_n) une suite de E. Définissons une suite (x_n) par $x_0 = a_0$ et pour $n \ge 1$, $x_n = a_n - a_{n-1}$. On a immédiatement $S_n(x) = a_n$ et donc la série $\sum_{n=0}^{+\infty} x_n$ converge si et seulement si la suite (a_n) converge; dans ce cas on a d'ailleurs $\lim a_n = \sum_{n=0}^{+\infty} x_n$. Ceci peut permettre dans certains cas de ramener une étude de convergence de suite à une étude de convergence de série.

Proposition 7.2.1 Soit E un espace vectoriel normé, $\sum x_n$ et $\sum y_n$ deux séries d'éléments de E. On suppose qu'il existe $N \in \mathbb{N}$ tel que $n \geq N \Rightarrow x_n = y_n$ (autrement dit les deux suites ne diffèrent que par un nombre fini de termes). Alors les deux séries sont de même nature (simultanément convergentes ou divergentes).

Démonstration Pour $n \ge N$, on a $S_n(x) = S_n(y) + (S_N(x) - S_N(y))$ donc l'une des suites S_n converge si et seulement si l'autre converge.

Remarque 7.2.2 En faisant tendre n vers $+\infty$, on obtient $S(x) = S(y) + (S_N(x) - S_N(y))$.

Définition 7.2.2 Soit E un espace vectoriel normé, $\sum x_n$ une série convergente et $p \in \mathbb{N}$. Alors la série $\sum_{n \geq p+1} x_n$ est convergente; sa somme est notée R_p (ou $R_p(x)$). On a

par définition
$$S_n + R_n = \sum_{n=0}^{+\infty} x_p$$
 et $\lim R_n = 0$.

Proposition 7.2.2 Soit E un espace vectoriel normé. Alors l'ensemble des suites (x_n) telles que la série $\sum x_n$ convergent est un sous-espace vectoriel de $E^{\mathbb{N}}$. L'application $(x_n)_{n\in\mathbb{N}}\mapsto \sum_{n=0}^{+\infty}x_n$ est linéaire de ce sous-espace vectoriel dans E.

Démonstration Il suffit de remarquer que si α et β sont des scalaires, $S_n(\alpha x + \beta y) = \alpha S_n(x) + \beta S_n(y)$.

7.2.2 Terme général, critère de Cauchy

Théorème 7.2.3 Si la série $\sum x_n$ converge, alors la suite (x_n) admet 0 pour limite.

Démonstration $x_n = S_n - S_{n-1}$ et les deux suites ont la même limite $S = \sum_{n=0}^{+\infty} x_n$.

Théorème 7.2.4 (critère de Cauchy pour les séries). Soit E un espace vectoriel normé complet et $\sum x_n$ une série à termes de E. La série $\sum x_n$ converge si et seulement si elle vérifie

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ q \ge p \ge N \Rightarrow \|\sum_{n=p}^{q} x_n\| < \varepsilon$$

Démonstration C'est simplement le critère de Cauchy pour la suite (S_n) des sommes partielles puisque $\sum_{n=p}^{q} x_n = S_q - S_{p-1}$.

Exemple 7.2.1 La série harmonique $\sum_{n\geq 1} \frac{1}{n}$ diverge puisque $\frac{1}{n+1} + \ldots + \frac{1}{2n} \geq n \times \frac{1}{2n} =$ $\frac{1}{2}$. La série ne vérifie donc pas le critère de Cauchy (bien que $\lim \frac{1}{n} = 0$), donc elle diverge.

Séries à termes réels positifs

7.3.1 Convergence des séries à termes réels positifs

Théorème 7.3.1 Soit $\sum x_n$ une série à termes réels positifs. Alors la suite des sommes partielles est une suite croissante; la série converge si et seulement si ses sommes partielles sont majorées : $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ S_n \leq M$.

Démonstration On a $S_n - S_{n-1} = x_n \ge 0$ donc la suite (S_n) est croissante; par suite, elle converge si et seulement si elle est majorée.

Remarque 7.3.1 Si une série à termes positifs diverge, on a donc nécessairement $\lim S_n = +\infty$ (puisque la suite (S_n) est croissante).

Corollaire 7.3.2 Soit $\sum x_n$ et $\sum y_n$ deux séries à termes réels telles que $0 \le x_n \le y_n$.

- (i) si la série $\sum y_n$ converge, la série $\sum x_n$ converge également (ii) si la série $\sum x_n$ diverge, la série $\sum y_n$ diverge

Démonstration On a $S_n(x) \leq S_n(y)$ donc tout majorant de la suite $(S_n(y))$ est aussi un majorant de la suite $(S_n(x))$, d'où (i). L'énoncé (ii) n'en est que la contraposée.

Remarque 7.3.2 Pour que l'énoncé précédent soit valable, il suffit évidemment qu'il existe k > 0 et $N \in \mathbb{N}$ tels que $n \geq N \Rightarrow 0 \leq x_n \leq ky_n$, c'est-à-dire que $x_n \geq 0$, $y_n \geq 0$ et $x_n = O(y_n)$.

7.3.2Comparaison des séries à termes réels positifs

Théorème 7.3.3 Soit $\sum x_n$ et $\sum y_n$ deux séries à termes réels positifs telles que $x_n = O(y_n)$ (resp. $x_n = \overline{o(y_n)}$). Alors

- (i) si la série $\sum y_n$ converge, la série $\sum x_n$ converge également et $R_n(x) = O(R_n(y))$ (resp. $R_n(x) = o(R_n(y))$)
- (ii) si la série $\sum x_n$ diverge, la série $\sum y_n$ diverge et $S_n(x) = O(S_n(y))$ (resp. $S_n(x) = o(S_n(y))$)

Démonstration Les convergences et divergences résultent immédiatement de la remarque qui suit le corollaire précédent et du fait que $x_n = o(y_n) \Rightarrow x_n = O(y_n)$. Montrons par exemple les énoncés sur les relations de comparaison dans le cas $x_n = o(y_n)$ (des modifications évidentes de ε en k ou 2k permettent de traiter le cas $x_n = O(y_n)$).

- (i) Soit $\varepsilon > 0$; il existe $N \in \mathbb{N}$ tel que $n \geq N \Rightarrow 0 \leq x_n \leq \varepsilon y_n$. Alors pour $n \geq N$, on a $0 \le \sum_{n=1}^{+\infty} x_p \le \varepsilon \sum_{n=1}^{+\infty} y_p$, soit $0 \le R_n(x) \le \varepsilon R_n(y)$. On a donc $R_n(x) = o(R_n(y))$.
 - (ii) Soit $\varepsilon > 0$; il existe $N \in \mathbb{N}$ tel que $n \geq N \Rightarrow 0 \leq x_n \leq \frac{\varepsilon}{2}y_n$. Alors pour

$$n > N$$
, on a $0 \le \sum_{p=N+1}^{n} x_p \le \frac{\varepsilon}{2} \sum_{p=N+1}^{n} y_p$, soit $S_n(x) - S_N(x) \le \frac{\varepsilon}{2} (S_n(y) - S_N(y))$

ou encore $0 \le S_n(x) \le \frac{\varepsilon}{2} S_n(y) + (S_N(x) - \frac{\varepsilon}{2} S_N(y))$. Mais comme la série $\sum y_n$ est à termes positifs divergente, ses sommes partielles tendent vers $+\infty$ et donc il existe $N' \in \mathbb{N}$ tel que $n \geq N' \Rightarrow \frac{\varepsilon}{2} S_n(y) \geq S_N(x) - \frac{\varepsilon}{2} S_N(y)$. Alors pour $n > \max(N, N')$, on a $0 \le S_n(x) \le \frac{\varepsilon}{2} S_n(y) + \frac{\varepsilon}{2} S_n(y) = \varepsilon S_n(y)$ et donc $S_n(x) = o(S_n(y))$.

Corollaire 7.3.4 Soit $\sum x_n$ et $\sum y_n$ deux séries à termes réels strictement positifs telles que

$$\exists N \in \mathbb{N}, \ n \ge N \Rightarrow \frac{x_{n+1}}{x_n} \le \frac{y_{n+1}}{y_n}$$

Alors $x_n = O(y_n)$ et en particulier

- (i) si la série $\sum y_n$ converge, la série $\sum x_n$ converge (ii) si la série $\sum x_n$ diverge, la série $\sum y_n$ diverge

Démonstration On vérifie immédiatement par récurrence que pour $n \geq N$ on a $x_n \leq \frac{x_N}{y_N} y_n$ et donc $x_n = O(y_n)$.

Théorème 7.3.5 Soit $\sum x_n$ et $\sum y_n$ deux séries à termes réels telles que $y_n \ge 0$ et $x_n \sim y_n$. Alors les deux séries sont de même nature et

- (i) si la série $\sum y_n$ converge, la série $\sum x_n$ converge également et $R_n(x) \sim R_n(y)$
- (ii) si la série $\sum y_n$ diverge, la série $\sum x_n$ diverge et $S_n(x) \sim S_n(y)$

Démonstration Soit $\varepsilon < 1$. Il existe $N \in \mathbb{N}$ tel que $n \ge N \Rightarrow (1-\varepsilon)y_n \le x_n \le (1+\varepsilon)y_n$ et donc $x_n \ge 0$ pour $n \ge N$. On a à la fois $x_n = O(y_n)$ et $y_n = O(x_n)$ ce qui d'après le théorème précédent montre que les deux séries convergent ou divergent simultanément. Supposons alors les séries convergentes. On a $|x_n - y_n| = o(y_n)$, on en déduit donc la convergence de $\sum |x_n - y_n|$ et que $R_n(|x - y|) = o(R_n(y))$. Mais $|R_n(x) - R_n(y)| \le R_n(|x - y|)$ donc $|R_n(x) - R_n(y)| = o(R_n(y))$ et donc $R_n(x) \sim R_n(y)$. Supposons maintenant les séries divergentes. Alors, soit la série $\sum |x_n - y_n|$ converge et comme $\lim S_n(y) = +\infty$ on a $S_n(|x - y|) = o(S_n(y))$, soit elle diverge et le théorème précédent assure que $S_n(|x - y|) = o(S_n(y))$. Mais alors $|S_n(x) - S_n(y)| \le S_n(|x - y|) = o(S_n(y))$, soit $S_n(x) \sim S_n(y)$.

7.3.3 Séries de Riemann et de Bertrand

Théorème 7.3.6 (séries de Riemann). Soit $\alpha \in \mathbb{R}$. La série $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

$$Si \ \alpha > 1, \ on \ a \ R_n \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}} \ ; \ si \ \alpha < 1, \ on \ a \ S_n \sim \frac{n^{1 - \alpha}}{1 - \alpha} \ ; \ si \ \alpha = 1, \ S_n \sim \log n.$$

Démonstration Soit $\alpha \neq 1$. Posons $x_n = \frac{1}{n^{\alpha}}$ et $y_n = \frac{1}{n^{\alpha-1}} - \frac{1}{(n+1)^{\alpha-1}}$. On a

$$\frac{y_n}{x_n} = -\frac{(1+\frac{1}{n})^{1-\alpha} - 1}{\frac{1}{n}}$$

qui admet pour limite l'opposé de la dérivée en 0 de $x\mapsto (1+x)^{1-\alpha}$ soit $\alpha-1$. On a donc $x_n\sim \frac{1}{\alpha-1}y_n>0$. Les deux séries sont donc de même nature. Or $S_n(y)=1-\frac{1}{(n+1)^{\alpha-1}}$ admet une limite finie si et seulement si $\alpha>1$. Si $\alpha>1$, on a $R_n(x)\sim \frac{1}{\alpha-1}R_n(y)=\frac{1}{\alpha-1}\frac{1}{n^{\alpha-1}}$. Si $\alpha<1$, on a $S_n(x)\sim \frac{1}{\alpha-1}S_n(y)=\frac{1}{1-\alpha}((n+1)^{1-\alpha}-1)\sim \frac{n^{1-\alpha}}{1-\alpha}$. Enfin, si $\alpha=1$, on aboutit à une étude similaire avec $y_n=\log(n+1)-\log n=\log(1+\frac{1}{n})\sim \frac{1}{n}$.

Corollaire 7.3.7 (séries de Bertrand). Soit $\alpha, \beta \in \mathbb{R}$. La série $\sum_{n \geq 2} \frac{1}{n^{\alpha} (\log n)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou $\alpha = 1, \beta > 1$.

Démonstration Soit $x_n = \frac{1}{n^{\alpha}(\log n)^{\beta}}$. Si $\alpha > 1$, soit γ tel que $\alpha > \gamma > 1$ et $y_n = \frac{1}{n^{\gamma}}$. La série $\sum y_n$ converge et $\frac{x_n}{y_n} = \frac{1}{n^{\alpha - \gamma}(\log n)^{\beta}}$ tend vers 0 car $\alpha - \gamma > 0$. On a donc $x_n = o(y_n)$ et la série $\sum x_n$ converge. Si $\alpha < 1$, soit γ tel que $\alpha < \gamma < 1$ et $y_n = \frac{1}{n^{\gamma}}$. La

série $\sum y_n$ diverge et $\frac{y_n}{x_n} = \frac{(\log n)^{\beta}}{n^{\gamma - \alpha}}$ tend vers 0 car $\gamma - \alpha > 0$. On a donc $y_n = o(x_n)$ et la série $\sum x_n$ converge. Le cas $\alpha = 1$ résulte facilement du paragraphe suivant.

7.3.4 Comparaison à des intégrales

Théorème 7.3.8 Soit $f: [0, +\infty[\to \mathbb{R} \ continue \ par \ morceaux, \ décroissante, \ positive.$ Posons $w_n = \int_{r-1}^n f(t) \ dt - f(n)$. Alors la série $\sum w_n$ est convergente.

Démonstration On a $w_n = \int_{n-1}^n (f(t) - f(n)) dt$. Comme f est décroissante, $\forall t \in [n-1, n], f(t) \ge f(n)$ et donc $w_n \ge 0$. Mais d'autre part

$$0 \le w_n \le \int_{n-1}^n f(n-1) \ dt - f(n) = f(n-1) - f(n)$$

On a $\sum_{p=1}^{n} (f(p-1) - f(p)) = f(0) - f(n)$ qui admet une limite quand p tend vers $+\infty$ (car f admet une limite en $+\infty$: elle est décroissante et positive). Ceci montre que la série $\sum (f(p-1) - f(p))$ converge. Il en est donc de même de la série $\sum w_n$.

Corollaire 7.3.9 Soit $f: [0, +\infty[\to \mathbb{R} \ continue \ décroissante positive.$ Alors la série $\sum f(n)$ converge si et seulement si f est intégrable sur $[0, +\infty[$.

Démonstration En effet, on déduit du théorème précédent que les deux séries $\sum f(n)$ et $\sum \int_{n-1}^n f(t) \ dt$ convergent ou divergent simultanément, car leur différence est une série convergente. Mais on a $\sum_{p=1}^n \int_{p-1}^p f(t) \ dt = \int_0^n f(t) \ dt = \int_{[0,n]} f$. Si f est intégrable, comme la suite $([0,n])_{n\in\mathbb{N}}$ est une suite croissante de segments dont la réunion est $[0,+\infty[$, la suite $(\int_{[0,n]} f)$ est convergente de limite $\int_{[0,+\infty[} f,$ donc la série $\sum \int_{n-1}^n f(t) \ dt$ converge et il en est de même de $\sum f(n)$. Si $\sum f(n)$ converge, il en est de même de $\sum \int_{n-1}^n f(t) \ dt$, et si [a,b] est un segment contenu dans $[0,+\infty[$ les majorations

$$\int_{[a,b]} f \le \int_0^{[b]+1} f = \sum_{p=0}^{[b]+1} \int_{p-1}^p f(t) \ dt \le \sum_{p=0}^{+\infty} \int_{p-1}^p f(t) \ dt$$

et le fait que f soit positive, montrent que f est intégrable sur $[0, +\infty]$.

Remarque 7.3.3 Bien entendu, il suffit que la condition de décroissance soit vérifiée sur un certain $[t_0, +\infty[$.

Dans le cas d'une série divergente, l'encadrement

$$\int_0^{n+1} f(t) dt \le \sum_{p=0}^n f(p) \le f(0) + \int_0^n f(t) dt$$

permet souvent d'obtenir un équivalent de la somme partielle de la série. Dans le cas d'une série convergente, on a de même

$$\int_{n+1}^{+\infty} f(t) dt \le \sum_{n=n+1}^{+\infty} f(n) \le \int_{n}^{+\infty} f(t) dt$$

ce qui permet souvent d'obtenir une majoration ou un équivalent du reste de la série.

Exemple 7.3.1 Dans le cas limite des séries de Bertrand, $\sum \frac{1}{n(\log n)^{\beta}}$, la fonction $f(t) = \frac{1}{t(\log t)^{\beta}}$ est continue décroissante (pour t assez grand) de limite 0. Donc la série est de même nature que l'intégrale $\int_3^{+\infty} \frac{dt}{t(\log t)^{\beta}}$. Mais on a $\int_3^x \frac{dt}{t(\log t)^{\beta}} = \int_{\log 3}^{\log x} \frac{du}{u^{\beta}}$ (poser $u = \log t$) qui admet une limite finie quand x tend vers $+\infty$ si et seulement si $\beta > 1$. Ceci achève la démonstration du critère de convergence des séries de Bertrand.

7.4 Séries absolument convergentes

7.4.1 Notion de convergence absolue

Définition 7.4.1 Soit E un espace vectoriel normé. On dit que la série $\sum x_n$ est absolument convergente si la série à termes réels positifs $\sum ||x_n||$ converge.

Théorème 7.4.1 Soit E un espace vectoriel normé complet. Alors toute série absolument convergente à terme général dans E est convergente.

Démonstration On a $\|\sum_{n=p}^q x_n\| \le \sum_{n=p}^q \|x_n\|$. Si la série $\sum \|x_n\|$ converge, elle vérifie le critère de Cauchy, il en est donc de même de la série $\sum x_n$ et donc celle-ci converge.

Remarque 7.4.1 L'avantage est bien entendu de ramener l'étude à celle d'une série à termes réels positifs.

7.4.2 Critères de convergence absolue

Théorème 7.4.2 Soit $\sum x_n$ et $\sum y_n$ deux séries telles que $x_n = O(y_n)$ et $\sum y_n$ est absolument convergente. Alors $\sum x_n$ converge absolument.

Démonstration On a $x_n = O(y_n) \iff ||x_n|| = O(||y_n||)$ et il suffit d'appliquer le théorème de comparaison pour les séries à termes réels positifs.

Remarque 7.4.2 Le théorème ci-dessus reste valable même si les termes généraux x_n et y_n ne sont pas dans le même espace vectoriel normé. En particulier, la série étalon $\sum y_n$ sera le plus souvent une série à termes réels positifs.

En ce qui concerne les équivalents, on a un résultat plus fort

Théorème 7.4.3 Soit $\sum x_n$ une série à terme général dans l'espace vectoriel normé E et $\sum y_n$ une série à termes réels positifs. On suppose qu'il existe $\ell \in E \setminus \{0\}$ tel que $x_n \sim \ell y_n$. Alors les deux séries sont simultanément convergentes ou divergentes.

Démonstration Si $\sum y_n$ converge, on a $x_n = O(y_n)$ et $y_n \ge 0$, donc la série $\sum x_n$ est absolument convergente. Inversement, supposons que la série $\sum x_n$ converge. Puisque $x_n - \ell y_n = o(\ell y_n)$, il existe $N \in \mathbb{N}$ tel que $n \ge N \Rightarrow \|x_n - \ell y_n\| \le \frac{1}{2} \|\ell y_n\| = \frac{1}{2} \|\ell\| y_n$. En sommant on obtient $\|\sum_{n=n}^q x_n - \ell\sum_{n=n}^q y_n\| \le \frac{1}{2} \|\ell\| \sum_{n=n}^q y_n$. On en déduit

$$\|\ell\| \sum_{n=p}^{q} y_n = \|\ell \sum_{n=p}^{q} y_n\| \le \|\ell \sum_{n=p}^{q} y_n - \sum_{n=p}^{q} x_n\| + \|\sum_{n=p}^{q} x_n\|$$

$$\le \frac{1}{2} \|\ell\| \sum_{n=p}^{q} y_n + \|\sum_{n=p}^{q} x_n\|$$

d'où en définitive $\sum_{n=p}^q y_n \leq \frac{2}{\|\ell\|} \|\sum_{n=p}^q x_n\|$. La série $\sum x_n$ converge, donc vérifie le critère de Cauchy. Il en est donc de même de la série $\sum y_n$, qui est par suite convergente.

7.4.3 Règles classiques

Il suffit maintenant d'appliquer ces résultats à des séries étalons, comme les séries de Riemann ou les séries géométriques.

Lemme 7.4.4 Soit a un nombre complexe. La série $\sum a^n$ converge si et seulement si |a| < 1.

Démonstration La condition est évidemment nécessaire puisque le terme général doit tendre vers 0. Supposons la vérifiée. On a $\sum_{p=0}^{n} a^p = \frac{1-a^{n+1}}{1-a}$ qui admet la limite $\frac{1}{1-a}$. Donc la série converge.

Théorème 7.4.5 (règle de d'Alembert). Soit E un espace vectoriel normé complet. Soit $\sum x_n$ une série à termes dans E telle que pour tout $n \in \mathbb{N}$, $x_n \neq 0$ et telle que la suite $\left(\frac{\|x_{n+1}\|}{\|x_n\|}\right)$ admet une limite $\ell \in \mathbb{R} \cup \{+\infty\}$. Alors

- (i) si ℓ < 1, la série converge absolument (ii) si ℓ > 1, la série diverge

Démonstration (i) Si ℓ < 1, soit ρ tel que ℓ < ρ < 1; il existe $N \in \mathbb{N}$ tel que $n \ge N \Rightarrow \frac{\|x_{n+1}\|}{\|x_n\|} \le \rho$ soit $\|x_{n+1}\| \le \rho \|x_n\|$. On a donc alors par récurrence $\|x_n\| \le \rho^{n-N} \|x_N\| = O(\rho^n)$. Comme la série $\sum \rho^n$ converge, la série $\sum x_n$ converge

(ii) Si $\ell > 1$, il existe $N \in \mathbb{N}$ tel que $n \ge N \Rightarrow \frac{\|x_{n+1}\|}{\|x_n\|} > 1$ soit $\|x_{n+1}\| > \|x_n\|$. On a donc alors par récurrence $||x_n|| > ||x_N||$. La suite (x_n) ne peut donc pas avoir 0 pour limite et la série diverge.

Remarque 7.4.3 Si $\ell=1$ on ne peut rien conclure comme le montre l'exemple des séries de Riemann. Lorsque la règle de d'Alembert s'applique, elle conduit à des convergences rapides (de type exponentielle) ou des divergences grossières (le terme général ne tend pas vers 0).

Théorème 7.4.6 (règle de Riemann). Soit E un espace vectoriel normé. Soit $\sum x_n$ une série à termes dans E.

- (i) S'il existe $\alpha > 1$ tel que $x_n = O(\frac{1}{n^{\alpha}})$, alors la série converge absolument
- (ii) S'il existe $\alpha \in \mathbb{R}$ et $\ell \in E \setminus \{0\}$ tels que $x_n \sim \frac{\ell}{n^{\alpha}}$ alors la série converge absolument si $\alpha > 1$ et diverge si $\alpha \leq 1$.
- (iii) Si $E = \mathbb{R}$ et $x_n \geq 0$, et s'il existe $\alpha \leq 1$ et $\ell > 0$ (y compris $+\infty$) tel que $\lim n^{\alpha} x_n = \ell$, alors la série diverge.

Démonstration (i) et (ii) résultent de ce qui précède. Pour (iii), il suffit de remarquer que les hypothèses impliquent que $\frac{1}{n^{\alpha}} = O(x_n)$. Comme $\alpha \leq 1$, la série $\sum \frac{1}{n^{\alpha}}$ diverge et donc aussi la série $\sum x_n$.

7.4.4 Règles complémentaires

Théorème 7.4.7 (règle de Cauchy). Soit E un espace vectoriel normé complet. Soit $\sum x_n$ une série à termes dans E telle que la suite $\left(\sqrt[n]{\|x_n\|}\right)$ admet une limite $\ell \in \mathbb{R} \cup \{+\infty\}$. Alors

- (i) si $\ell < 1$, la série converge absolument
- (ii) si $\ell > 1$, la série diverge

Démonstration (i) Si $\ell < 1$, soit ρ tel que $\ell < \rho < 1$; il existe $N \in \mathbb{N}$ tel que $n \ge N \Rightarrow \sqrt[n]{\|x_n\|} \le \rho$ soit $\|x_n\| \le \rho^n$. Comme la série $\sum \rho^n$ converge, la série $\sum x_n$ converge absolument.

(ii) Si $\ell > 1$, il existe $N \in \mathbb{N}$ tel que $n \ge N \Rightarrow \sqrt[n]{\|x_n\|} > 1$ soit $\|x_n\| > 1$. La suite (x_n) ne peut donc pas avoir 0 pour limite et la série diverge.

Théorème 7.4.8 (règle de Duhamel). Soit $\sum x_n$ une série à termes dans \mathbb{R}^+ telle que pour tout $n \in \mathbb{N}$, $x_n \neq 0$ et telle que $\frac{x_{n+1}}{x_n} = 1 - \frac{\lambda}{n} + o(\frac{1}{n})$. Alors

- (i) si $\lambda > 1$, la série converge
- (ii) si $\lambda < 1$, la série diverge

Démonstration Posons $y_n = \frac{1}{n^{\alpha}}$. On a $\frac{y_{n+1}}{y_n} = 1 - \frac{\alpha}{n} + o(\frac{1}{n})$. On en déduit que si $\alpha \neq \lambda$, $\frac{x_{n+1}}{x_n} - \frac{y_{n+1}}{y_n} \sim \frac{\alpha - \lambda}{n}$ est pour n assez grand du signe de $\alpha - \lambda$. Si $\lambda < 1$, soit α tel que $\lambda < \alpha < 1$. On a donc pour $n \geq N$, $\frac{x_{n+1}}{x_n} \geq \frac{y_{n+1}}{y_n}$ et comme la série $\sum y_n$ diverge (car $\alpha < 1$), la série $\sum x_n$ diverge. Si $\lambda > 1$, soit α tel que $\lambda > \alpha > 1$. On a donc pour $n \geq N$, $\frac{x_{n+1}}{x_n} \leq \frac{y_{n+1}}{y_n}$ et comme la série $\sum y_n$ converge (car $\alpha > 1$), la série $\sum x_n$ converge.

7.4.5 Comparaison à une intégrale

Théorème 7.4.9 Soit $f: [0, +\infty[\to \mathbb{C} \ de \ classe \ C^1 \ telle \ que \ f' \ soit \ intégrable sur <math>[0, +\infty[$. Posons $w_n = \int_{n-1}^n f(t) \ dt - f(n)$. Alors la série $\sum w_n$ est absolument convergente.

Démonstration On a par une intégration par parties

$$\int_{n-1}^{n} (t - n + 1) f'(t) dt = [(t - n + 1) f(t)]_{n-1}^{n} - \int_{n-1}^{n} f(t) dt$$
$$= -w_{n}$$

On en déduit que

$$|w_n| \le \int_{n-1}^n (t-n+1)|f'(t)| dt \le \int_{n-1}^n |f'(t)| dt$$

et donc

$$\sum_{n=1}^{n} |w_p| \le \int_0^n |f'(t)| \ dt \le \int_0^{+\infty} |f'(t)| \ dt$$

ce qui montre la convergence de la série à termes positifs $\sum |w_n|$ et donc la convergence absolue de la série.

Corollaire 7.4.10 Soit $f:[0,+\infty[\to\mathbb{C}\ de\ classe\ C^1\ telle\ que\ f\ et\ f'\ soient\ intégrables sur <math>[0,+\infty[$. Alors la série $\sum f(n)$ est absolument convergente.

Démonstration En effet la série $\sum \int_{n-1}^{n} |f(t)| dt$ est convergente car

$$\sum_{n=1}^{n} \int_{n-1}^{n} |f(t)| dt = \int_{0}^{n} |f(t)| dt \le \int_{0}^{+\infty} |f(t)| dt$$

et comme $\left|\int_{n-1}^n f(t) \ dt\right| \leq \int_{n-1}^n |f(t)| \ dt$, la série $\sum \int_{n-1}^n f(t) \ dt$ est absolument convergente. Comme $\sum w_n$ est également absolument convergente, il en est de même de la série $\sum f(n)$.

7.5 Séries semi-convergentes

7.5.1 Séries alternées

Théorème 7.5.1 (convergence des séries alternées). Soit (a_n) une suite de nombres réels, **décroissante**, de limite 0. Alors la série $\sum (-1)^n a_n$ converge; le reste d'ordre n est du signe de son premier terme (c'est-à-dire $(-1)^{n+1}$) et sa valeur absolue est majorée par la valeur absolue de ce premier terme (c'est-à-dire a_{n+1}).

Démonstration On a $S_{2n+2} - S_{2n} = a_{2n+2} - a_{2n+1} \le 0$ et $S_{2n+3} - S_{2n+1} = a_{2n+2} - a_{2n+3} \ge 0$. La suite (S_{2n}) est donc décroissante, la suite S_{2n+1} est croissante; comme $S_{2n} - S_{2n+1} = a_{2n+1}$ est positif et tend vers 0, ces deux suites forment un couple de suites adjacentes; elles admettent donc une limite commune S qui est limite de la suite S_n . On a pour tout n, $S_{2n-1} \le S_{2n+1} \le S \le S_{2n}$. Ceci nous montre que $0 \le -R_{2n} = S_{2n} - S \le S_{2n} - S_{2n+1} = a_{2n+1}$ et que $0 \le R_{2n-1} = S - S_{2n-1} \le S_{2n} - S_{2n-1} = a_{2n}$ d'où les assertions sur le reste.

7.5.2 Etude de séries semi-convergentes

Les théorèmes de comparaison ne s'appliquent pas aux séries quelconques. Ainsi on a $\frac{(-1)^n}{\sqrt{n}} \sim \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$ alors que la première est convergente et la deuxième divergente

(somme d'une série convergente et d'une série divergente). Pour une série à termes réels, on peut envisager le plan suivant

- (i) regarder si le critère de convergence des séries alternées s'applique $(a_n = (-1)^n |a_n|$ avec $|a_n|$ décroissant de limite 0).
- (ii) si $a_n = (-1)^n |a_n|$ mais si on ne peut pas appliquer le critère de convergence des séries alternées, on peut essayer de trouver une série alternée $\sum b_n$ qui relève de ce critère telle que $a_n \sim b_n$; alors, comme la série $\sum b_n$ converge, la nature de la série $\sum a_n$ sera la même que celle de la série $\sum (a_n b_n)$, avec $a_n b_n = o(a_n)$; on essayera de poursuivre le processus jusqu'à tomber soit sur une série divergente, soit sur une série absolument convergente
- (iii) si a_n n'est pas alterné en signes, on peut utiliser une sommation par paquets (cf plus loin) : en regroupant les termes consécutifs de même signe, on aboutira à une série alternée en signe à laquelle on pourra appliquer l'une des méthodes précédentes

Enfin, pour une série à termes non réels ou qui ne relève pas d'une des méthodes précédentes, on pourra utiliser un théorème d'Abel comme le suivant

Théorème 7.5.2 Soit (a_n) une suite de nombres réels et (x_n) une suite de l'espace vectoriel normé complet E telles que

$$-(i) \exists M \ge 0, \ \forall n \in \mathbb{N}, \ \|\sum_{p=0}^{n} x_p\| \le M$$

- (ii) la suite (a_n) tend vers θ en décroissant.

Alors la série $\sum a_n x_n$ converge.

Démonstration On a

$$\sum_{n=p}^{q} a_n x_n = \sum_{n=p}^{q} a_n (S_n(x) - S_{n-1}(x))$$

$$= \sum_{n=p}^{q} a_n S_n(x) - \sum_{n=p}^{q} a_n S_{n-1}(x)$$

$$= \sum_{n=p}^{q} a_n S_n(x) - \sum_{n=p-1}^{q-1} a_{n+1} S_n(x)$$
(changement d'indices $n-1 \mapsto n$)
$$= a_q S_q(x) - a_p S_{p-1}(x) + \sum_{n=p}^{q-1} (a_n - a_{n+1}) S_n(x)$$

On a effectué ici une transformation dite transformation d'Abel.

Comme $\forall n, \|S_n(x)\| \leq M$ on a

$$\|\sum_{n=p}^{q} a_n x_n\| \le M(|a_q| + |a_p| + \sum_{n=p}^{q-1} |a_n - a_{n+1}|) = 2Ma_p$$

en tenant compte de $a_n \ge 0$ et $a_n - a_{n+1} \ge 0$. Comme $\lim a_p = 0$, la série $\sum a_n x_n$ vérifie le critère de Cauchy, donc elle converge.

7.6 Opérations sur les séries

7.6.1 Combinaisons linéaires

Proposition 7.6.1 Soit E un espace vectoriel normé, $\sum a_n$ et $\sum b_n$ deux séries à termes dans E, α et β deux scalaires. Si $\sum a_n$ et $\sum b_n$ sont convergentes (resp. absolument convergentes), il en est de même de la série $\sum (\alpha a_n + \beta b_n)$ et alors

$$\sum_{n=0}^{+\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=0}^{+\infty} a_n + \beta \sum_{n=0}^{+\infty} b_n$$

Démonstration Le résultat a déjà été vu pour la convergence; pour la convergence absolue, il résulte de $\|\alpha a_n + \beta b_n\| \le |\alpha| \|a_n\| + |\beta| \|b_n\|$

Corollaire 7.6.2 Soit (z_n) une suite de nombres complexes, $z_n = x_n + iy_n$, $x_n, y_n \in \mathbb{R}$. Alors la série $\sum z_n$ est convergente (resp. absolument convergente) si et seulement si les deux séries $\sum x_n$ et $\sum y_n$ le sont.

Démonstration Le sens direct résulte de $x_n = \frac{1}{2}(z_n + \overline{z_n})$ et $y_n = \frac{1}{2i}(z_n - \overline{z_n})$. La réciproque est évidente.

7.6.2 Sommation par paquets

Théorème 7.6.3 (Sommation par paquets) Soit E un espace vectoriel normé, $\sum x_n$ une série à termes dans E, φ une application strictement croissante de $\mathbb N$ dans $\mathbb N$. On

pose
$$y_0 = \sum_{k=0}^{\varphi(0)} x_k$$
 et pour $n \ge 1$, $y_n = \sum_{k=\varphi(n-1)+1}^{\varphi(n)} x_k$. Alors

- (i) si la série $\sum x_n$ converge, la série $\sum y_n$ converge et a même somme
- (ii) la réciproque est vraie dans les deux cas suivants
 - (a) la suite x_n tend vers 0 et la suite $\varphi(n+1) \varphi(n)$ (la taille des "paquets") est majorée
 - (b) $E = \mathbb{R}$ et à l'intérieur de chaque "paquet" ($k \in [\varphi(n-1)+1, \varphi(n)]$), tous les x_k , sont de même signe.

Démonstration On a d'abord

$$S_n(y) = \sum_{p=0}^n (\sum_{k=\varphi(n-1)+1}^{\varphi(n)} x_k) = \sum_{k=0}^{\varphi(n)} x_k = S_{\varphi(n)}(x)$$

(en convenant que $\varphi(-1) = -1$). La suite $S_n(y)$ est donc une sous suite de la suite $S_n(x)$, ce qui montre l'assertion (i).

(ii.a) Soit $S = \sum_{n=0}^{+\infty} y_n$ et K tel que $\forall n, \ \varphi(n+1) - \varphi(n) \leq K$. Soit $n \in \mathbb{N}$ et p l'unique entier tel que $\varphi(p-1) < n \leq \varphi(p)$. On a alors

$$S_p(y) - S_n(x) = S_{\varphi(p)}(x) - S_n(x) = \sum_{k=n+1}^{\varphi(p)} x_k$$

Soit alors $\varepsilon > 0$ et $N \in \mathbb{N}$ tel que $n \geq N \Rightarrow \|x_n\| < \frac{\varepsilon}{2K}$. Alors pour $n \geq N$, on a $\|S_p(y) - S_n(x)\| \leq \sum_{k=n+1}^{\varphi(p)} \|x_k\| \leq (\varphi(p) - n) \frac{\varepsilon}{2K} \leq \frac{\varepsilon}{2}$. Mais il existe N' tel que $q \geq N' \Rightarrow \|S - S_q(y)\| < \frac{\varepsilon}{2}$. Si on choisit $n \geq \max(N, \varphi(N'))$, on a $p \geq N'$ et donc

$$||S - S_n(x)|| \le ||S - S_p(y)|| + ||S_p(y) - S_n(x)|| < \varepsilon$$

ce qui montre que la série $\sum x_n$ converge.

(ii.b) La démonstration est similaire mais on remarque que

$$|S_{p}(y) - S_{n}(x)| = |\sum_{k=n+1}^{\varphi(p)} x_{k}| = \sum_{k=n+1}^{\varphi(p)} |x_{k}|$$

$$\leq \sum_{k=\varphi(p-1)+1}^{\varphi(p)} |x_{k}| = |\sum_{k=\varphi(p-1)+1}^{\varphi(p)} x_{k}|$$

$$= |y_{p}|$$

(car tous les x_k sont de même signe). Comme la série $\sum y_q$ converge, pour $q \geq N$ on a $|y_q| < \frac{\varepsilon}{2}$. Alors pour $n \geq \varphi(N)$, on a $p \geq N$ et donc $|S_p(y) - S_n(x)| \leq |y_p| < \frac{\varepsilon}{2}$. On achève alors la démonstration comme dans le cas précédent.

Remarque 7.6.1 La réciproque de (i) n'est pas valable en toute généralité comme le montre l'exemple de la série $\sum (-1)^n$ et de $\varphi(n)=2n$. On a alors $y_n=0$, la série $\sum y_n$ converge alors que la série $\sum x_n$ est divergente. La réciproque (ii.b) est particulièrement intéressante pour le cas de séries de nombres réels qui ne sont pas de signe constant; en regroupant ensemble les termes consécutifs de même signe, on obtient une série de même nature que la série initiale et dont les termes sont alternés en signe.

7.6.3 Modification de l'ordre des termes

Nous allons ici étudier l'effet d'une permutation sur les termes d'une série convergente. Pour cela nous aurons besoin du lemme suivant.

Théorème 7.6.4 Soit $\sum x_n$ une série à termes réels ou complexes absolument convergente et soit $\sigma: \mathbb{N} \to \mathbb{N}$ bijective, une permutation de \mathbb{N} . Alors la série $\sum x_{\sigma(n)}$ est absolument convergente et $\sum_{n=0}^{+\infty} x_{\sigma(n)} = \sum_{n=0}^{+\infty} x_n$.

Démonstration Premier cas : série à termes réels positifs. Pour $n \in \mathbb{N}$, soit N_n le plus grand élément de $\sigma([0, n])$. On a alors

$$\sum_{k=0}^{n} x_{\sigma(k)} \le \sum_{p=0}^{N_n} x_p \le \sum_{p=0}^{+\infty} x_p$$

ce qui montre que la série à termes réels positifs $\sum x_{\sigma(k)}$ converge et que $\sum_{n=0}^{+\infty} x_{\sigma(n)} \le$

 $\sum_{n=0}^{+\infty} x_n$. Mais les deux séries jouent un rôle symétrique puisque $x_n = x_{\sigma^{-1}(\sigma(n))}$, et donc on

a aussi $\sum_{n=0}^{+\infty} x_n \le \sum_{n=0}^{+\infty} x_{\sigma(n)}$ ce qui nous donne l'égalité.

Deuxième cas : séries à termes réels On introduit, comme d'habitude, pour $x \in \mathbb{R}, \ x^+ = \max(x,0) \in \mathbb{R}^+$ et $x^- = \max(-x,0) \in \mathbb{R}^+$ si bien que $x = x^+ - x^-$, $|x| = x^+ + x^-$. On a alors $0 \le x_n^+ \le |x_n|$ et $0 \le x_n^- \le |x_n|$, ce qui montre que les deux séries à termes positifs $\sum x_n^+$ et $\sum x_n^-$ sont convergentes. D'après le premier cas de la démonstration, les deux séries $\sum x_{\sigma(n)}^+$ et $\sum x_{\sigma(n)}^-$ sont convergentes et on a

$$\sum_{n=0}^{+\infty} x_{\sigma(n)}^+ = \sum_{n=0}^{+\infty} x_n^+, \quad \sum_{n=0}^{+\infty} x_{\sigma(n)}^- = \sum_{n=0}^{+\infty} x_n^-$$

Comme $|x_{\sigma(n)}|=x_{\sigma(n)}^++x_{\sigma(n)}^-$, la série $\sum |x_{\sigma(n)}|$ converge, donc la série $\sum x_{\sigma(n)}$ est absolument convergente, et comme $x_{\sigma(n)}=x_{\sigma(n)}^+-x_{\sigma(n)}^-$, on a

$$\sum_{n=0}^{+\infty} x_{\sigma(n)} = \sum_{n=0}^{+\infty} x_{\sigma(n)}^+ - \sum_{n=0}^{+\infty} x_{\sigma(n)}^- = \sum_{n=0}^{+\infty} x_n^+ - \sum_{n=0}^{+\infty} x_n^- = \sum_{n=0}^{+\infty} x_n$$

Troisième cas : séries à termes complexes On travaille de la même façon avec les parties réelles et parties imaginaires. On a $0 \le |\operatorname{Re}(x_n)| \le |x_n|$ et $0 \le |\operatorname{Im}(x_n)| \le |x_n|$, ce qui montre que les deux séries $\sum \operatorname{Re}(x_n)$ et $\sum \operatorname{Im}(x_n)$ sont absolument convergentes. D'après le deuxième cas de la démonstration, les deux séries $\sum \operatorname{Re}(x_{\sigma(n)})$ et $\sum \operatorname{Im}(x_{\sigma(n)})$ sont absolument convergentes et on a

$$\sum_{n=0}^{+\infty} \text{Re}(x_{\sigma(n)}) = \sum_{n=0}^{+\infty} \text{Re}(x_n), \quad \sum_{n=0}^{+\infty} \text{Im}(x_{\sigma(n)}) = \sum_{n=0}^{+\infty} \text{Im}(x_n)$$

Comme $|x_{\sigma(n)}| \leq |\operatorname{Re}(x_{\sigma(n)})| + |\operatorname{Im}(x_{\sigma(n)})|$, la série $\sum |x_{\sigma(n)}|$ converge, donc la série $\sum x_{\sigma(n)}$ est absolument convergente, et comme $x_{\sigma(n)} = \operatorname{Re}(x_{\sigma(n)}) + i\operatorname{Re}(x_{\sigma(n)})$, on a

$$\sum_{n=0}^{+\infty} x_{\sigma(n)} = \sum_{n=0}^{+\infty} \operatorname{Re}(x_{\sigma(n)}) + i \sum_{n=0}^{+\infty} \operatorname{Re}(x_{\sigma(n)}) = \sum_{n=0}^{+\infty} \operatorname{Re}(x_n) + i \sum_{n=0}^{+\infty} \operatorname{Im}(x_n) = \sum_{n=0}^{+\infty} x_n$$

Remarque 7.6.2 La condition de convergence absolue est indispensable à la validité du théorème. Considérons la série semi convergente $\sum x_n$ avec $x_n = \frac{(-1)^{n-1}}{n}$ et soit S sa somme (on peut montrer que $S = \log 2$). Soit $\varphi : \mathbb{N}^* \to \mathbb{N}^*$ définie par $\varphi(3k+1) = 2k+1$, $\varphi(3k+2) = 4k+2$ et $\varphi(3k+3) = 4k+4$. On vérifie facilement que φ est une bijection de \mathbb{N} dans \mathbb{N} (la bijection réciproque est définie par des congruences modulo 4). Sommons alors par paquets de 3 la série $\sum x_{\varphi(n)}$. On a

$$\begin{split} x_{\varphi(3k+1)} + x_{\varphi(3k+2)} + x_{\varphi(3k+3)} \\ &= \frac{1}{2k+1} - \frac{1}{4k+2} - \frac{1}{4k+4} = \frac{1}{4k+2} - \frac{1}{4k+4} \\ &= \frac{1}{2} \left(x_{2k+1} + x_{2k+2} \right) \end{split}$$

Ceci montre (réciproque du théorème de sommation par paquets, la taille des paquets étant bornée et le terme général tendant vers 0) que la nouvelle série converge encore, mais que sa somme est la moitié de la somme de la série initiale.

7.6.4 Produit de Cauchy

Définition 7.6.1 Soit $\sum a_n$ et $\sum b_n$ deux séries à termes réels ou complexes. On appelle produit de Cauchy (ou produit de convolution) des deux séries, la série $\sum c_n$ avec

$$\forall n \in \mathbb{N}, \ c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{p+q=n} a_p b_q$$

Théorème 7.6.5 Soit $\sum a_n$ et $\sum b_n$ deux séries à termes réels ou complexes, absolument convergentes. Alors leur produit de Cauchy $\sum c_n$ est une série absolument convergente et on a

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$$

Démonstration Cas particulier : les deux séries sont à termes réels positifs. Notons $K_n = [0, n] \times [0, n] \subset \mathbb{N}^2$ et $T_n = \{(p, q) \in \mathbb{N}^2 \mid p + q \leq n\}$. On a évidemment

 $T_n \subset K_n \subset T_{2n}$. On a alors

$$\sum_{k=0}^{n} c_k = \sum_{k=0}^{n} \sum_{p+q=k} a_p b_q = \sum_{(p,q)\in T_n} a_p b_q \le \sum_{(p,q)\in K_n} a_p b_q$$
$$= \sum_{p=0}^{n} a_p \sum_{q=0}^{n} b_q \le \sum_{p=0}^{+\infty} a_p \sum_{q=0}^{+\infty} b_q$$

La série $\sum c_n$ est une série à termes réels positifs dont les sommes partielles sont majorées, donc elle converge. De plus les inclusions $T_n \subset K_n \subset T_{2n}$ se traduisent par $S_n(c) \leq S_n(a)S_n(b) \leq S_{2n}(c)$ et en faisant tendre n vers $+\infty$, on obtient S(c) = S(a)S(b) ce qui est la formule souhaitée.

Cas général Posons $a'_n = |a_n|, b'_n = |b_n|$ et $c'_n = \sum_{p+q=n} |a_p||b_q|$ leur produit de Cauchy, et désignons par $S_n(a'), S_n(b')$ et $S_n(c')$ les sommes partielles d'indice n de ces trois séries.

Puisque les séries $\sum a'_n$ et $\sum b'_n$ sont convergentes, le cas particulier ci dessus montre que la série $\sum c'_n$ est convergente et que sa somme est le produit des sommes de ces deux séries. Mais, comme $|c_n| \leq c'_n$, on en déduit la convergence absolue de la série $\sum c_n$. On a alors

$$\begin{split} |S_n(a)S_n(b) - S_n(c)| &= \left| \sum_{(p,q) \in K_n} a_p b_q - \sum_{(p,q) \in T_n} a_p b_q \right| = \left| \sum_{(p,q) \in K_n \setminus T_n} a_p b_q \right| \\ &\leq \sum_{(p,q) \in K_n \setminus T_n} |a_p| |b_q| = \sum_{(p,q) \in K_n} |a_p| |b_q| - \sum_{(p,q) \in T_n} |a_p| |b_q| = S_n(a') S_n(b') - S_n(c') \end{split}$$

Puisque la somme de la série $\sum c'_n$ est le produit des sommes des deux séries $\sum a'_n$ et $\sum b'_n$, on a $\lim_{n\to+\infty} (S_n(a')S_n(b')-S_n(c'))=0$ et donc par la majoration ci-dessus $\lim_{n\to+\infty} (S_n(a)S_n(b)-S_n(c))=0$, ce qui montre que la somme de la série $\sum c_n$ est le produit des sommes des deux séries $\sum a_n$ et $\sum b_n$ et achève la démonstration.

Remarque 7.6.3 On aurait pu passer aussi du cas réel positif au cas complexe en utilisant, comme dans le théorème de permutation des termes, les parties positives x^+ et x^- d'un réel x, puis les parties réelle et imaginaire d'un nombre complexe, mais la démonstration n'aurait pas pu se généraliser comme nous le ferons ci-dessous au cas d'une application bilinéaire plus générale.

Remarque 7.6.4 Le théorème ci dessus n'est plus valable pour des séries convergentes : posons $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}$. On a $|c_n| = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}$. Mais pour $k \in [0,n], \ (k+1)(n-k+1) \le (\frac{n}{2}+1)^2$ (facile). Donc $|c_n| \ge \frac{n+1}{\frac{n}{2}+1}$ qui tend vers 2; donc la suite (c_n) ne tend pas vers 0 et la série $\sum c_n$ diverge.

On a une généralisation du théorème précédent sous la forme suivante qui nous sera utile quand nous considérerons des séries d'endomorphismes.

Théorème 7.6.6 Soit E, F et G sont trois espaces vectoriels normés, $u: E \times F \rightarrow$ G une application bilinéaire continue, $\sum a_n$ une série à termes dans E absolument convergente, $\sum b_n$ une série à termes dans F absolument convergente, et si l'on pose $c_n = \sum_{p+q=n} u(a_p, b_q)$, alors la série $\sum c_n$ est absolument convergente et on a

$$\sum_{n=0}^{+\infty} c_n = u \left(\sum_{n=0}^{+\infty} a_n, \sum_{n=0}^{+\infty} b_n \right)$$

Démonstration La démonstration est tout à fait similaire : utiliser l'existence d'un réel positif K tel que $||u(x,y)|| \le K||x|| \ ||y||$ pour montrer que $|S_n(a)S_n(b) - S_n(c)| \le K||x||$ $K\left(S_n(a')S_n(b') - S_n(c')\right)$ en posant $a'_n = \|a_n\|, \ b'_n = \|b_n\|$ et $c'_n = \sum_{p+q=n} \|a_p\| \|b_q\|$

7.7 Séries doubles

En anticipant un peu sur le chapitre concernant les séries de fonctions, nous ferons appel au lemme suivant pour la démonstration du théorème fondamental sur les séries doubles.

Lemme 7.7.1 (Weierstrass : théorème de convergence dominée pour les séries) Soit $(x_{n,q})_{(n,q)\in\mathbb{N}\times\mathbb{N}}$ une famille de nombres réels ou complexes indexée qur $\mathbb{N} \times \mathbb{N}$. On fait les hypothèses suivantes

- il existe une séries à termes réels positifs $\sum \alpha_n$ convergente telle que $\forall q \in \mathbb{N}, |x_{n,q}| \leq \alpha_n$ - pour chaque $n \in \mathbb{N}, \lim_{q \to +\infty} x_{n,q}$ existe (on appelle y_n cette limite)

Alors, pour chaque $q \in \mathbb{N}$, la série $\sum x_{n,q}$ est absolument convergente ainsi que la série

$$\sum_{n} y_{n}, \ la \ suite \left(\sum_{n=0}^{+\infty} x_{n,q}\right)_{q \in \mathbb{N}} \ admet \ une \ limite \ quand \ q \ tend \ vers + \infty \ et \ on \ a$$

$$\lim_{q \to +\infty} \sum_{n=0}^{+\infty} x_{n,q} = \sum_{n=0}^{+\infty} y_n$$

autrement dit

$$\lim_{q \to +\infty} \sum_{n=0}^{+\infty} x_{n,q} = \sum_{n=0}^{+\infty} \lim_{q \to +\infty} x_{n,q}$$

(interversion de la limite et du signe somme)

7.7. Séries doubles 173

Démonstration L'inégalité $|x_{n,q}| \leq \alpha_n$, celle qui s'en déduit par passage à la limite $|y_n| \leq \alpha_n$ et la convergence de la série $\sum \alpha_n$ montrent les convergences absolues des séries $\sum_n x_{n,q}$ et $\sum_n y_n$. Prenons donc $\varepsilon > 0$ et choisissons M tel que $\sum_{n=M+1}^{+\infty} \alpha_n < \frac{\varepsilon}{4}$. On

$$\left| \sum_{n=0}^{+\infty} y_n - \sum_{n=0}^{+\infty} x_{n,q} \right| \leq \sum_{n=0}^{+\infty} |y_n - x_{n,q}| \leq \sum_{n=0}^{M} |y_n - x_{n,q}| + \sum_{n=M+1}^{+\infty} (|y_n| + |x_{n,q}|)$$

$$\leq \sum_{n=0}^{M} |y_n - x_{n,q}| + 2 \sum_{n=M+1}^{+\infty} \alpha_n \leq \sum_{n=0}^{M} |y_n - x_{n,q}| + \frac{\varepsilon}{2}$$

Maintenant, on a $\lim_{q\to+\infty}\sum_{n=0}^{M}|y_n-x_{n,q}|=0$ (chacun des termes de cette somme admet 0

pour limite), et donc il existe $N \in \mathbb{N}$ tel que $q \ge N \Rightarrow \sum_{n=0}^{M} |y_n - x_{n,q}| < \frac{\varepsilon}{2}$. On a donc

$$q \ge N \Rightarrow \left| \sum_{n=0}^{+\infty} y_n - \sum_{n=0}^{+\infty} x_{n,q} \right| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

ce qui montre que la suite $\left(\sum_{n=0}^{+\infty} x_{n,q}\right)_{q\in\mathbb{N}}$ admet la limite $\sum_{n=0}^{+\infty} y_n$ quand q tend vers $+\infty$.

Remarque 7.7.1 Le lecteur qui a déjà des connaissances sur les séries de fonctions, remarquera qu'il s'agit là tout simplement du théorème d'interversion des limites dans le cas de convergence normale (donc uniforme) d'une série de fonctions.

Nous pouvons maintenant démontrer le théorème d'interversion des signes somme dans les séries doubles.

Théorème 7.7.2 Soit $u=(u_{n,p})_{(n,p)\in\mathbb{N}\times\mathbb{N}}$ une famille de nombres réels ou complexes indexée par $\mathbb{N}\times\mathbb{N}$. On suppose que

- pour tout entier n la série $\sum_{p} u_{n,p}$ est absolument convergente
- la série $\sum_{n}\sum_{n=0}^{+\infty}|u_{n,p}|$ est convergente

Alors les séries $\sum_{n} \left(\sum_{p=0}^{+\infty} u_{n,p} \right)$ et $\sum_{p} \left(\sum_{n=0}^{+\infty} u_{n,p} \right)$ sont convergentes et on a

$$\sum_{n=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{n,p} \right) = \sum_{p=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,p} \right)$$

Démonstration Nous allons appliquer le lemme précédent en posant $x_{n,q} = \sum_{p=0}^{q} u_{n,p}$ et $\alpha_n = \sum_{p=0}^{+\infty} |u_{n,p}|$ et bien entendu $y_n = \sum_{p=0}^{+\infty} u_{n,p} = \lim_{q \to +\infty} x_{n,q}$. Les hypothèses du lemme étant évidemment vérifiées, on sait que $\sum_{n=0}^{+\infty} x_{n,q}$ admet la limite $\sum_{n=0}^{+\infty} y_n$ quand q tend vers $+\infty$. Mais, puisque l'on a l'égalité $|u_{n,p}| \leq \sum_{p=0}^{+\infty} |u_{n,p}|$, la série $\sum_{n=0}^{+\infty} u_{n,p}$ est absolument convergente pour tout $p \in \mathbb{N}$ et donc, par linéarité de la somme,

$$\sum_{n=0}^{+\infty} x_{n,q} = \sum_{n=0}^{+\infty} \sum_{p=0}^{q} u_{n,p} = \sum_{p=0}^{q} \sum_{n=0}^{+\infty} u_{n,p}$$

L'existence de $\lim_{q \to +\infty} \sum_{n=0}^{+\infty} x_{n,q}$ montre donc que la série $\sum_{p} \sum_{n=0}^{+\infty} u_{n,p}$ est convergente et a pour somme $\sum_{n=0}^{+\infty} y_n = \sum_{n=0}^{+\infty} \sum_{n=0}^{+\infty} u_{n,p}$ autrement dit que

$$\sum_{n=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{n,p} \right) = \sum_{p=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,p} \right)$$

Remarque 7.7.2 En appliquant le théorème à la suite $u' = (|u_{n,p}|)_{(n,p)\in\mathbb{N}\times\mathbb{N}}$, on constate que la série $\sum_{p} \left(\sum_{n=0}^{+\infty} |u_{n,p}|\right)$ est convergente, ce qui implique la convergence absolue de la série $\sum_{p} \sum_{n=0}^{+\infty} u_{n,p}$.

Remarque 7.7.3 On pourra retenir le théorème précédent sous la forme suivante

$$\sum_{n=0}^{+\infty} \left(\sum_{p=0}^{+\infty} |u_{n,p}| \right) < +\infty \Rightarrow \sum_{n=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{n,p} \right) = \sum_{p=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,p} \right)$$

7.8 Espaces de suites

Définition 7.8.1 On dit qu'une suite $(x_n)_{n\in\mathbb{N}}$ de nombres réels ou complexes est sommable si la série $\sum x_n$ est absolument convergente.

Proposition 7.8.1 L'ensemble $\ell^1(\mathbb{N})$ des suites sommables de nombres complexes est un sous espace vectoriel de $\mathbb{C}^{\mathbb{N}}$. L'application $u = (u_n)_{n \in \mathbb{N}} \mapsto \|u\|_1 = \sum_{n=0}^{+\infty} |u_n|$ est une norme sur cet espace vectoriel. L'application $u \mapsto \sum_{n \in \mathbb{N}} u_n$ est linéaire de $\ell^1(\mathbb{N})$ dans \mathbb{C} .

Démonstration Si (u_n) et (v_n) sont deux suites sommables et $\alpha, \beta \in \mathbb{C}$, les suites $(|u_n|)$ et $(|v_n|)$ sont sommables; il en est donc de même de la suite $(|\alpha||u_n| + |\beta||v_n|)$ (résultat sur les séries à réels positifs) et donc de la suite $(|\alpha u_n + \beta v_n|)$ puisque $|\alpha u_n + \beta v_n| \le |\alpha||u_n| + |\beta||v_n|$. Donc la suite $(\alpha u_n + \beta v_n)$ est sommable. La suite nulle étant de surcroît sommable, l'ensemble $\ell^1(\mathbb{N})$ des suites sommables de nombres complexes est un sous espace vectoriel de $\mathbb{C}^{\mathbb{N}}$. La vérification des propriétés d'une norme est élémentaire. On a alors

$$\sum_{n=0}^{+\infty} (\alpha u_n + \beta v_n) = \lim_{p \to +\infty} \sum_{n=0}^{p} (\alpha u_n + \beta v_n)$$

$$= \alpha \lim_{p \to +\infty} \sum_{n=0}^{p} u_n + \beta \lim_{p \to +\infty} \sum_{n=0}^{p} v_n$$

$$= \alpha \sum_{n=0}^{+\infty} u_n + \beta \sum_{n=0}^{+\infty} v_n$$

d'où la linéarité de $u \mapsto \sum_{n=0}^{+\infty} u_n$.

Proposition 7.8.2 L'ensemble $\ell^2(\mathbb{N})$ des suites de nombres complexes dont les carrés forment une suite sommable est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{N}}$. L'application $(u,v)=((u_n)_{n\in\mathbb{N}},(v_n)_{n\in\mathbb{N}})\mapsto (u\mid v)=\sum_{n=0}^{+\infty}\overline{u_n}v_n$ est un produit scalaire hermitien sur cet espace; en conséquence l'application $u=(u_n)_{n\in\mathbb{N}}\mapsto \|u\|_2=\left(\sum_{n=0}^{+\infty}|u_n|^2\right)^{1/2}$ est une norme sur cet espace vectoriel.

Démonstration Il est clair que si (u_n) est de carré sommable, il en est de même de $\alpha(u_n) = (\alpha u_n)$. Si (u_n) et (v_n) sont de carré sommable, l'inégalité élémentaire $|u_n+v_n|^2 \leq 2|u_n|^2+2|v_n|^2$ montre que la suite (u_n+v_n) est de carré sommable. La suite nulle étant de surcroît de carré sommable, les suites de carrés sommables forment donc bien un sous-espace vectoriel de $\mathbb{C}^{\mathbb{N}}$. Si (u_n) et (v_n) sont de carré sommable, l'inégalité élémentaire $|\overline{u_n}v_n| \leq \frac{1}{2}|u_n|^2+\frac{1}{2}|v_n|^2$ montre que la suite $(\overline{u_n}v_n)$ est sommable. On peut donc poser $(u\mid v)=\sum_{n=0}^{+\infty}\overline{u_n}v_n$. Il est clair que $(u,v)\mapsto (u\mid v)$ est sesquilinéaire

hermitienne. De plus, si $u \neq 0$, $(u \mid u) \in \mathbb{R}^{+*}$ ce qui montre que cette forme sesquilinéaire est définie positive; on a donc un produit scalaire hermitien et la norme associée est $||u||_2^2 = (u \mid u)$.

Remarque 7.8.1 Le théorème ci dessus n'est plus valable pour des séries convergentes : posons $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}$. On a $|c_n| = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}$. Mais pour $k \in [0,n], (k+1)(n-k+1) \le (\frac{n}{2}+1)^2$ (facile). Donc $|c_n| \ge \frac{n+1}{\frac{n}{2}+1}$ qui tend vers 2; donc la suite (c_n) ne tend pas vers 0 et la série $\sum c_n$ diverge.

7.9 Compléments : développements asymptotiques, analyse numérique

7.9.1 Calcul approché de la somme d'une série

L'idée naturelle est d'approcher la somme S de la série convergente $\sum x_n$ par une somme partielle $S_N = \sum_{n=0}^N x_n$. L'erreur de méthode est évidemment égale à $R_N =$

 $\sum_{n=N+1}^{+\infty} x_n$. Bien entendu, à cette erreur de méthode vient s'ajouter une erreur de calcul de

la somme S_N que l'on peut estimer majorée par $N\varepsilon$ où ε est la précision de l'instrument de calcul. Entre la valeur cherchée S et la valeur calculée $\overline{S_N}$ il y a donc une erreur du type $|S - \overline{S_N}| \leq |R_N| + N\varepsilon = \delta(N)$ que l'on cherchera donc à minimiser (la fonction δ tend manifestement vers $+\infty$ quand N croît indéfiniment).

Etudions pour cela deux cas. Dans le premier cas, la série est à convergence géométrique : $|x_n| \leq A\rho^n$ avec $\rho < 1$. Alors $R_N \leq B\rho^N$ et $\delta(N) \leq \delta_1(N) = B\rho^N + N\varepsilon$. On a $\delta_1'(t) = B(\log \rho)\rho^t + \varepsilon$ qui s'annule pour $t = t_0 = \frac{1}{\rho}\log\left|\frac{\varepsilon}{B\log\rho}\right|$. On a intérêt à choisir N aussi proche que possible de t_0 où la fonction δ_1 atteint son minimum.

Exemple 7.9.1 : $\varepsilon = 10^{-8}$, B = 1, $\rho = \frac{9}{10}$. On trouve un N de l'ordre de 150 pour une erreur de l'ordre de 10^{-5} . C'est parfaitement raisonnable.

Dans le second cas, la série est à convergence polynomiale : $|x_n| \leq \frac{A}{n^{\alpha}}$ avec $\alpha > 1$. Alors $R_N \leq \frac{B}{n^{\alpha-1}}$ et $\delta(N) \leq \delta_1(N) = \frac{B}{N^{\alpha-1}} + N\varepsilon$. On a $\delta_1'(t) = B(1-\alpha)t^{-\alpha} + \varepsilon$ qui s'annule pour $t = t_0 = \left(\frac{B(\alpha-1)}{\varepsilon}\right)^{\frac{1}{\alpha}}$. On a intérêt à choisir N aussi proche que possible de t_0 où la fonction δ_1 atteint son minimum. **Exemple 7.9.2** : $\varepsilon = 10^{-8}$, B = 1, $\alpha = \frac{11}{10}$. On trouve un N de l'ordre de 10^7 pour une erreur de l'ordre de 0, 25. On voit que la méthode fournit un résultat très médiocre en un temps très long ; elle demande donc à être améliorée par une accélération de convergence.

7.9.2 Accélération de la convergence

Supposons que x_n admet un développement asymptotique de la forme

$$x_n = \frac{a_o}{n^K} + \frac{a_1}{n^{K+1}} + \ldots + \frac{a_N}{n^{K+N}} + \varepsilon_n$$

avec $|\varepsilon_n| \leq \frac{A}{n^{K+N+1}}$. Posons $u_n = \frac{b_o}{n^{K-1}} + \ldots + \frac{b_N}{n^{K+N-1}}$ (où b_o, \ldots, b_N sont des coefficients à déterminer) puis $y_n = u_n - u_{n+1}$, et cherchons à déterminer les b_i de telle sorte que $|x_n - y_n| \leq \frac{B}{n^{K+N+1}}$ (pour une certaine constante B), c'est-à-dire, $x_n - y_n = O(\frac{1}{n^{K+N+1}})$. On a $u_n = \sum_{i=0}^{N} \frac{b_i}{n^{K+i-1}}$, d'où

$$y_n = \sum_{i=0}^{N} b_i \left(\frac{1}{n^{K+i-1}} - \frac{1}{(n+1)^{K+i-1}} \right)$$
$$= \sum_{i=0}^{N} b_i \frac{1}{n^{K+i-1}} \left(1 - (1 + \frac{1}{n})^{1-K-i} \right)$$

On sait que la fonction $f_{\alpha}(x)=(1+x)^{\alpha}$ admet au voisinage de 0 un développement limité $f_{\alpha}(x)=1+\sum_{k=1}^{p}c_{k}^{(\alpha)}x^{k}+O(x^{p+1})$ avec $c_{k}^{(\alpha)}=\frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}$. On en déduit que

$$1 - (1 + \frac{1}{n})^{1 - K - i} = -\sum_{k=1}^{N+1-i} c_k^{(1-K-i)} \frac{1}{n^k} + O(\frac{1}{n^{N+2-i}})$$

soit

$$\frac{1}{n^{K+i-1}} \left(1 - \left(1 + \frac{1}{n} \right)^{1-K-i} \right) = -\sum_{k=1}^{N+1-i} c_k^{(1-K-i)} \frac{1}{n^{k+K+i-1}} + O\left(\frac{1}{n^{N+K+1}} \right) \\
= -\sum_{k=i}^{N} c_{k+1-i}^{(1-K-i)} \frac{1}{n^{k+K}} + O\left(\frac{1}{n^{N+K+1}} \right)$$

après changement d'indices. On en déduit

$$y_n = -\sum_{i=0}^{N} b_i \sum_{k=i}^{N} c_{k+1-i}^{(1-K-i)} \frac{1}{n^{k+K}} + O(\frac{1}{n^{N+K+1}})$$
$$= -\sum_{k=0}^{N} \frac{1}{n^{k+K}} \sum_{i=0}^{k} b_i c_{k+1-i}^{(1-K-i)} + O(\frac{1}{n^{N+K+1}})$$

Donc

$$x_n - y_n = O(\frac{1}{n^{K+N+1}}) \iff \forall k \in [0, n], \ a_k + \sum_{i=0}^k b_i c_{1-k-i}^{(1-K-i)} = 0$$

Il s'agit d'un système triangulaire en les inconnues b_i qui admet une unique solution. En faisant le changement d'indice j = k + 1 - i, on obtient le système

$$\forall k \in [0, n], \ a_k + \sum_{j=1}^{k+1} b_{k+1-j} c_j^{(-K-k+j)} = 0$$

On calcule donc les b_k à l'aide de la formule de récurrence $c_1^{(-K-k+1)}b_k = -a_k - \sum_{j=2}^{k+1}b_{k+1-j}c_j^{(-K-k+j)}$ où les $c_j^{(t+j)}$ sont définis par récurrence par $c_1^{(t+1)} = t+1$ et $c_{j+1}^{(t+j+1)} = \frac{t+j+1}{j+1}c_j^{(t+j)}$. Supposons les b_i déterminés. Il existe une constante B telle que $|x_n-y_n| \leq \frac{B}{n^{K+N+1}}$. L'erreur faite en approchant la somme de la série $\sum (x_n-y_n)$ par sa somme partielle d'indice n est donc majorée par $\frac{B}{K+N}\frac{1}{n^{K+N}}$. Mais la somme partielle d'indice n de la série est

$$\sum_{k=1}^{n} (x_k - y_k) = \sum_{k=1}^{n} x_k - \sum_{k=1}^{n} (u_k - u_{k+1}) = S_n + u_1 - u_{n+1}$$

et la somme de la série est

$$\sum_{n=1}^{+\infty} (x_n - y_n) = \sum_{n=1}^{+\infty} x_n - \sum_{n=1}^{+\infty} (u_n - u_{n+1}) = S - u_1$$

(puisque $\lim u_n = 0$). On a donc $|S - S_n + u_{n+1}| \le \frac{B}{K + N} \frac{1}{n^{K+N}}$ et $S_n - u_{n+1}$ est donc une bien meilleure valeur approchée de S que S_n .

Bien entendu ces méthodes peuvent se généraliser à d'autres types de développements asymptotiques : l'idée générale étant de trouver une suite u_n telle que la série $x_n - (u_n - u_{n+1})$ ait une décroissance vers 0 aussi rapide que possible. Alors $S_n - u_{n+1}$ est donc une bien meilleure valeur approchée de S que S_n . Cette méthode fournira également des développements asymptotiques de restes de séries car si $x_n - (u_n - u_{n+1}) = o(v_n)$, on aura $R_n(x) + u_{n+1} = o(R_n(v))$ et donc le développement $R_n(x) = -u_{n+1} + o(R_n(v))$.

En ce qui concerne les développements asymptotiques de sommes partielles de séries divergentes, on se ramènera à la situation précédente en remplaçant la série x_n par une série du type $y_n = x_n - (v_n - v_{n-1})$ de telle sorte que la série $\sum y_n$ converge. On aura alors $S_n(x) = v_n - v_0 + S_n(y) = v_n + A + R_n(y)$ où $A = S(y) - v_0$ est une constante (sa valeur ne pourra pas être obtenue directement par cette méthode). Il suffira ensuite d'appliquer la méthode précédente pour obtenir un développement asymptotique de $R_n(y)$ à la précision souhaitée, et donc aussi un développement asymptotique de $R_n(x)$.

Nous allons traiter deux exemples importants des techniques ci dessus.

Exemple 7.9.3 On recherche un développement asymptotique de $\sum_{k=1}^{n} \frac{1}{k}$. Posons $x_n = \frac{1}{n}$ et $y_n = \log(n) - \log(n-1) = -\log(1-\frac{1}{n})$. On a $z_n = x_n - y_n = \frac{1}{n} - \log(1-\frac{1}{n}) = -\frac{1}{2n^2} + O(\frac{1}{n^3})$. On en déduit que la série $\sum z_n$ converge. On a alors

$$\sum_{k=1}^{n} x_k = 1 + \sum_{k=2}^{n} z_k + \sum_{k=2}^{n} y_k = 1 + \sum_{k=2}^{n} z_k + \sum_{k=2}^{n} (\log k - \log(k-1))$$

$$= \log n + (1 + \sum_{k=2}^{+\infty} z_k) - R_n(z)$$

Mais les théorèmes de comparaison des séries à termes de signes constants assurent que puisque $z_n \sim -\frac{1}{2n^2}$, on a $R_n(z) \sim -\frac{1}{2} \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \sim -\frac{1}{2n}$. Posons alors $\gamma = 1 + \sum_{k=2}^{+\infty} z_k$ (la constante d'Euler); on obtient

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + \frac{1}{2n} + o(\frac{1}{n})$$

(en fait il est clair que les techniques ci dessus permettent d'obtenir un développement à un ordre arbitraire).

Exemple 7.9.4 Nous allons maintenant montrer la formule de Stirling, $n! \sim \sqrt{2\pi n} \frac{n^n}{e^n}$ Pour cela posons $a_n = \frac{n!e^n}{n^{n+1/2}}$ et $b_n = \log a_n - \log a_{n-1}$ (pour $n \ge 2$). On a

$$b_n = \log \frac{a_n}{a_{n-1}} = \log \frac{n!e^n(n-1)^{n-1/2}}{(n-1)!e^{n-1}n^{n+1/2}}$$
$$= \log \left(e^{\frac{(n-1)^{n-1/2}}{n^{n-1/2}}}\right) = 1 + (n - \frac{1}{2})\log(1 - \frac{1}{n})$$

d'où $b_n=1+(n-\frac{1}{2})(-\frac{1}{n}-\frac{1}{2n^n}-\frac{1}{3n^3}+O(\frac{1}{n^4}))=-\frac{1}{12n^2}+O(\frac{1}{n^3})$ On en déduit que la série $\sum b_n$ converge. Soit S sa somme. On a alors $\sum_{k=1}^n b_k=S-R_n(b)$, mais

comme
$$b_n \sim -\frac{1}{12n^2}$$
, on a $R_n(b) \sim -\frac{1}{12} \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \sim -\frac{1}{12n}$. On a d'autre part $\sum_{k=2}^{n} b_k = \frac{1}{n} \sum_{k=2}^{n} b_k = \frac{1}{n} \sum_{k=2}^{$

 $\log a_n - \log a_1, \text{ d'où finalement } \log a_n = \sum_{k=2}^n b_k + \log a_1 = S + \log a_1 + \frac{1}{12n} + o(\frac{1}{n}) \text{ et donc}$

 $a_n = e^{S + \log a_1} \exp(\frac{1}{12n} + o(\frac{1}{n})) = \ell(1 + \frac{1}{12n} + o(\frac{1}{n}))$ en posant $\ell = e^{S + \log a_1} > 0$, soit encore

$$n! = \ell \frac{n^{n+1/2}}{n!} \left(1 + \frac{1}{12n} + o(\frac{1}{n}) \right)$$

La méthode précédente ne permet pas d'obtenir la valeur de ℓ ; on obtient celle ci classiquement à l'aide des intégrales de Wallis : $I_n = \int_0^{\pi/2} \sin^n x \ dx$. Pour $n \geq 2$, on écrit à l'aide d'une intégration par parties, en intégrant $\sin x$ et en dérivant $\sin^{n-1} x$

$$I_n = \int_0^{\pi/2} \sin^{n-1} x \sin x \, dx$$

$$= \left[-\cos x \sin^{n-1} x \right]_0^{\pi/2} + (n-1) \int_0^{\pi/2} \sin^{n-2} x \cos^2 x \, dx$$

$$= (n-1) \int_0^{\pi/2} \sin^{n-2} x (1 - \sin^2 x) \, dx = (n-1)(I_{n-2} - I_n)$$

d'où $I_n = \frac{n-1}{n}I_{n-2}$. En tenant compte de $I_0 = \frac{\pi}{2}$ et $I_1 = 1$, on a alors

$$I_{2p} = \frac{(2p-1)(2p-3)\dots 3.1}{(2p)(2p-2)\dots 4.2} \frac{\pi}{2} = \frac{(2p)!}{2^p(p!)^2} \frac{\pi}{2}$$

en multipliant numérateur et dénominateur par $(2p)(2p-2)\dots 4.2$ de manière à rétablir les facteurs manquant au numérateur. De même

$$I_{2p+1} = \frac{(2p)(2p-2)\dots 4.2}{(2p+1)(2p-1)\dots 3} = \frac{2^p(p!)^2}{(2p+1)!}$$

On en déduit en utilisant $n! \sim \ell \sqrt{n} \frac{n^n}{n!}$

$$\frac{I_{2p}}{I_{2p+1}} = \frac{(2p+1)(2p)!^2}{2^{4p}p!^4} \frac{\pi}{2} \sim \frac{(2p+1)\ell^2(2p)(2p)^{4p}e^{4p}}{2^{4p}e^{4p}\ell^4p^2p^{4p}} \frac{\pi}{2} \sim \frac{2\pi}{\ell^2}$$

Mais d'autre part, on a $\forall x \in [0, \frac{\pi}{2}]$, $0 \le \sin^{n+1} x \le \sin^n x \le \sin^{n-1} x$, soit en intégrant $0 \le I_{n+1} \le I_n \le I_{n-1}$ et en tenant compte de $\frac{I_{n-1}}{I_{n+1}} = \frac{n+1}{n}$, on obtient $1 \le \frac{I_n}{I_{n+1}} \le \frac{n+1}{n}$ soit encore $\lim \frac{I_n}{I_{n+1}} = 1$. On en déduit que $\frac{2\pi}{\ell^2} = 1$ et comme $\ell > 0$, $\ell = \sqrt{2\pi}$ ce qui achève la démonstration.

Index

Abel, 271, 287, 312 transformation, 287 abscisse curviligne, 550 accroissements finis, 191, 197, 420, 435 accumulation, 102 adhérence, 97 adjacentes, 151 adjoint, 356, 386 affine application, 498 base, 495 espace, 493 forme, 501 hyperplan, 502, 516 repère, 494, 500 sous-espace, 495 affine par morceaux, 209 aire, 607 algèbre, 38 alternée, 61, 68, 165, 286 analytique, 309 angle, 372 mesure, 373 anneau, 16 caractéristique, 24 euclidien, 23, 28	Bézout, 21, 28 Baire, 132 Banach, 126, 134 Banach-Steinhaus, 133 banal, 530, 540 barycentre, 126, 504 associativité, 504 base, 39, 573, 576, 577 duale, 45 existence, 41 incomplète, 41 Bernoulli, 249 Bertrand, 159, 241, 242, 266 Bessel, 403, 411 bidual, 51 bilinéaire, 331 birégulier, 528, 535, 539, 542, 554 bissectrice, 374, 522 Bolzano-Weierstrass, 115 Borel-Lebesgue, 117 borné, 100 borne inférieure, 3 supérieure, 3 boule, 99
euclidien, 23, 28 intègre, 17, 28 morphisme, 18	branche infinie, 532
principal, 20, 23, 28 quotient, 18 antihermitienne, 376, 378 antisymétrique, 61, 332, 357 arc paramétré, 525 asymptote, 532, 534, 540 autoadjoint, 357, 388 automorphismes, 39 autonome, 481	caractéristique polynôme, 75 sous-espace, 85 caractère, 395 Carathéodory, 138, 508 cardinal, 4 carrés, 344 Cauchy, 112, 114, 152, 157, 164, 178, 267, 276, 284, 309

C 1 1: 1:4 215 454 457 450	1 507
Cauchy-Lipschitz, 315, 454, 457, 459,	corde, 527
466, 476, 477, 479, 480	corps, 18
Cayley-Hamilton, 82	courbure, 553, 561
centre, 6	Cramer, 70
cercle, 520, 542	cycle, 14, 15
cercle de convergence, 312	cylindre, 574, 576, 582
changement de variable, 144, 225	elliptique, 582
changement de variables, 600	hyperbolique, 582
Chasles, 221, 246, 374, 549	parabolique, 582
chinois, 24	1141 1 4 400 005
choix, 3	d'Alembert, 163, 305
circulation, 588	dédoublement, 340
classe	définie, 337
d'équivalence, 1	dégénérée, 335, 381
formule des classes, 13	dénombrable, 173
cocycliques, 520	dérivée, 186, 189, 204, 281, 290
compact, 115, 118, 119, 132, 152	partielle, 32, 417, 421
comparaison, 239, 247, 264	dérivable, 296, 299, 301, 311
échelle, 148	déterminant
complet, 113, 129, 132, 161, 198	développement, 66
conchoïde, 545	endomorphisme, 63
conditions initiales, 452	famille, 62
cône, 574, 577	matrice, 64
conique, 580	développée, 557
conjugué	développable, 313
éléments, 6	développante, 559
conjugués	développement
cycles, 14	asymptotique, 149
connexe, 120, 122, 126	limité, 144, 147
contact, 535	Darboux, 223
continue, 109–111, 127, 132, 186, 278,	degré, 26
288, 295, 298, 301, 308	dense, 98
contractante, 115, 198	diagonalisable, 77, 78, 80, 84, 85, 329
convergence	diamètre, 100
absolue, 267, 284, 303	difféomorphisme, 192, 447
dominée, 283	différentiable, 431
monotone, 281, 292	différentielle, 431
normale, 285, 303, 399	extérieure, 438
simple, 273, 284	dimension, 42, 496
uniforme, 273, 284	finie, 42
convergente, 104, 151	directrice, 573, 576, 577
absolument, 161	Dirichlet, 397, 404, 407, 411
semi-, 165	discriminant, 334
convexe, 121, 126, 135, 139, 194, 507	distance, 99, 125
convexité, 532	divergente, 104
convolution, 178, 412	division

euclidienne, 10, 27	Fubini, 595, 597, 599, 600
puissances croissantes, 31	gánáratrias 572
domination, 141	génératrice, 573
drapeau, 74	Gamma, 300
droite, 542	Gauss, 21, 22, 28, 346
dual, 45	gradient, 437, 590
dimension, 46	Gram, 341, 351, 352, 369
Duhamel, 164	graphe fermé, 135
11. 801	Green-Riemann, 606
ellipse, 581	Gronwall, 453
ellipsoïde, 582	groupe, 5
elliptique, 569	abélien, 5
endomorphismes, 39	commutatif, 5
entier, 4	cyclique, 12
enveloppe, 536	opérant, 13
équivalent, 142	quotient, 8, 11
escalier, 209	
espace métrique, 99	Hölder, 196
espace vectoriel, 35	Hadamard, 305
Euclide, 23	Hahn-Banach, 137
euclidien	hauteur, 522
anneau, 23	Heine, 117
Euler, 33, 475, 488	hermitien, 385, 388, 392, 401
Euler-Mac Laurin, 250, 253	hermitienne, 376, 378
excentricité, 543	homéomorphisme, 111
extrémal, 139	homogène
extremum, 428	équation, 456, 462, 466, 471, 487
	polynôme, 32
factorisation	système, 70
canonique, 9, 18	homotope, 322
famille	hyperbole, 582
génératrice, 39	hyperbolique, 569
liée, 39	hyperboloïde, 582
libre, 39, 75	hyperplan, 47, 51
fermé, 96, 106, 114	J. P. S. P. S. J. J. J. S.
Fermat, 12	idéal, 17
forme différentielle, 436, 483, 585	annulateur, 81
forme normale, 451	maximal, 19
forme polaire, 338	principal, 20
forme quadratique, 338, 383	image, 9, 525, 563
Fourier	implicite, 443, 575
coefficients, 401	incomplète, 486
série, 402	index, voir base
Frénet, 552, 556, 560	indicateur d'Euler, 25
fraction rationnelle, 229	inductif, 3
frontière, 98	induit, 73
Homoro, 50	mant, 10

inflexion, 530, 535 intégrable, 236, 242, 247 intégrale, 217, 280, 289, 292, 297 abélienne, 233 curviligne, 586 de surface, 607 impropre, 248, 258	Mac Laurin, 314 majorant, 3 massique, 504 matrice, 53 équivalente, 60 adjointe, 376 base canonique, 55
multiple, 592	centre, 55
intégration par parties, 226	conjuguée, 376
intérieur, 97	passage, 59
interpolation, 203	principale, 67
intrinsèque, 559	produit, 54
inverse, 5	semblable, 61
inversible, 16	transconjuguée, 376
inversion, 544	transposée, 56
inversion locale, 448	maximal, 3
irréductible	mesure, 590
élément, 22	minimal, 3
polynôme, 29, 30	Minkowski, 196, 349, 385
isolé, 102	minorant, 3
isométrie, 100, 511	Morse, 570
isotrope, 337	moyenne, 220, 227
. ,	multiple, 525, 535, 542, 563
jacobien, 435	multiplicité, 76, 525, 563
jacobienne, 434	d'une racine, 29
jauge, 135	,
Jordan, 87, 94	négligeable, 141, 590
, ,	nappe
Krein-Millman, 140	équivalente, 564
,	cartésienne, 563
Lagrange, 11, 203, 205	paramétrée, 563
polynômes, 49	réglée, 573, 583
Laplace, 255	neutre, 5
Leibnitz, 509	Newton, 206
limite, 104, 106, 108, 109, 185	nilpotent, 91
interversion, 279, 288	Noether, 20, 22
linéaire	normal, 391
application, 36	normale, 565
forme, 45	norme, 125, 129, 131, 276, 364
semi-, 375	noyau, 9, 335
système, 69	110yau, 5, 555
lipschitzienne, 112, 198, 476	opérations élémentaires, 57
mádiana 220 E22	orbite, 13
médiane, 338, 522	d'une permutation, 14
médiatrice, 522	ordre, 11
méridien, 578	d'un cycle, 14

orientation, 372, 526, 565	projection, 514
orthogonal, 334, 380	Pythagore, 339, 383, 403
endomorphisme, 359, 366, 367	quadrique, 580
polynôme, 354	
orthogonale	quotient
famille, 342	ensemble, 2
matrice, 361	espace vectoriel, 36
trajectoire, 543	par un sous-groupe, 7
orthonormée, 342, 386	récurrence
osculateur, 528, 535, 557	faible, 5
ouvert, 95	forte, 5
,	réglée, 210, 211
paquets, 167, 261	
parabole, 582	régulier, 525, 539, 563
parabolique, 569	révolution, 578
paraboloïde	racine, 28
elliptique, 582	rang
hyperbolique, 582	d'une application linéaire, 44
parallèle, 497, 578	d'une famille, 44
Parseval, 398, 409, 412	matrice, 57, 67
pavé, 590	théorème du rang, 43
Peano, 4	rayon de convergence, 304
	rayon de courbure, 556
permutation, 14, 171	rebroussement, 531, 540
PGCD, 21, 28	rectifiable, 547
pivot, 57, 72	relèvement, 322, 554
plan tangent, 565, 573	relation, 1
plus grand élément, 3	antisymétrique, 1
plus petit élément, 3	d'équivalence, 1
podaire, 545	d'ordre, 2
Poincaré, 441	partielle, 2
point fixe, 115	strict, 2
polaire, 538, 552	totale, 2
polarisation, 338	réflexive, 1
polyèdre, 140	symétrique, 1
polynôme, 26	transitive, 1
caractéristique, 75	repère mobile, 552
homogène, 32	représentant, 1
symétrique, 33	Riccati, 488
polynôme minimal, 81	Riemann, 159, 163, 290, 404, 596
positive, 347, 385	somme, 221
PPCM, 21, 28	Rolle, 190, 197
préhilbertien, 350, 385	Romberg, 255
prépondérance, 141	<u> </u>
primitive, 224	Rouché-Fontené, 71 Runge-Kutta, 491
usuelle, 228	runge-Kuwa, 491
produit vectoriel, 369	séparation, 102
r	- · · · · · · · · · · · · · · · · · · ·

/	W 145 000 405
série, 155	Young, 145, 200, 427
formelle, 26	topologie, 95, 100
trigonométrique, 399	induite, 98
série entière, 303	torsion, 561
séries	totalement singulier, 526
entières, 464	transposée, 52, 56
Schmidt, 352	transposition, 15
Schwarz, 32, 349, 385, 423	trapèze, 252
scindé, 29, 30	trigonalisable, 78, 82
segment, 507	
sesquilinéaire, 377	unitaire
signature, 15, 348	endomorphisme, 389, 392
simple, 525, 563	groupe, 389
Simpson, 255	matrice, 390
singulier, 525, 534, 563	
sommable, 169, 174	valeur d'adhérence, 105
sommation, 326	valeur propre, 74, 78
sous suite, 105	valeurs intermédiaires, 122
sous-anneau, 17	valuation, 26
sous-espace propre, 74	variables séparables, 485
sous-espace vectoriel	variation des constantes, 463, 468, 473
caractérisation, 35	vecteur propre, 74, 78
engendré, 36	voisinage, 96
somme, 37	Wallis, 183
somme directe, 37	Weierstrass, 213, 215
supplémentaire, 38, 41	wronskien, 466, 469
sous-groupe, 6	
distingué, 8, 9	zéros isolés, 308
sphère, 518	Zorn, 3, 19
stabilisateur, 13	
stable, 73	
Stirling, 183	
subdivision, 209	
substitution, 27, 31	
successeur, 5	
support, 525, 563	
surface, 446	
Sylvester, 348	
symétrique, 332, 357, 362	
système différentiel, 330	
tangente, 527	
Taylor	
Lagrange, 192, 199, 427	
polynômes, 29, 32	
reste intégral, 201, 226, 426	