Quota Distortions in General Equilibrium

David Baqaee and Kunal Sangani

January 2025

Quota Distortions

- Standard approach models misallocation using implicit taxes or "wedges."
 Harberger (1954), Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Baqaee and Farhi (2020).
- Wedges natural in some contexts (ad valorem taxes, markups, sticky prices).
- However, in other contexts, distortions apply directly to quantities.
 - Government quotas (import quotas/licenses, taxicab medallions, land ceilings).
 - Missing markets (land markets, credit markets, insurance markets).
 - Size-based penalties (based on e.g., number of employees).
 - Cournot competition (producers directly implement quantity decisions).
- This paper: A general framework for analyzing economies with quota-like distortions.

Preview of Results

- Result: Any feasible allocation can be implemented as the decentralized equilibrium of an economy with quotas.
- Implication 1: Can study any distorted allocation of resources using (implicit) quotas.
- Implication 2: Can use tools for efficient economies (e.g., Hulten's theorem) to analyze economies with quota distortions.
 - Tractable comparative statics. Low information requirements when quotas are primitives.
 - Can characterize distance to frontier, nonlinearities even far from the frontier.

Preview of Results

- Response of output to quota changes and productivity shocks.
 - Key statistic: Profits earned by quota holders.
 - Don't need elasticities of substitution / production, full input-output structure, etc.
 - Examples: Relaxing H1-B visa cap, zoning restrictions on single-family housing.

Preview of Results

- Response of output to quota changes and productivity shocks.
 - Key statistic: Profits earned by quota holders.
 - Don't need elasticities of substitution / production, full input-output structure, etc.
 - Examples: Relaxing H1-B visa cap, zoning restrictions on single-family housing.
- Distance to the frontier.
 - In terms of profits and size of distortion, $\approx 1/2 \times \text{profits} \times \text{quantity distortion}$.
 - Alternatively, $\approx 1/2 \times \text{profits} / \text{elasticity of profits to quota changes}$.
- Nonlinearities even far from the frontier.
 - How quotas change profits determine whether output is concave / convex in shocks.
 - Example: NYC taxicab medallions.

Table of Contents

Quantity Distortions: Framework

Comparative Statics

Distance to Frontie

Nonlinearities Far from the Frontier

General Framework

- Representative household, N goods indexed by i, F factors indexed by f.
- Real output Y maximizes constant-returns aggregator \mathcal{D} ,

$$Y = \max_{\{c_1,...,c_N\}} \mathscr{D}(c_1,...,c_N),$$

subject to the budget constraint,

$$\sum_{i}^{N} \rho_{i} c_{i} = \sum_{f=1}^{F} w_{f} L_{f} + \sum_{i=1}^{N} \Pi_{i},$$

where c_i final demand, p_i prices, L_f factor supplies, w_f wages, and Π_i profits.

General Framework: Quotas

Each good i produced using constant returns production technology

$$y_i = A_i F_i(x_{i1},...,x_{iN},L_{i1},...,L_{iF}),$$

where x_{ij} is use of intermediate good j, L_{if} use of factor f, and A_i productivity shifter.

A quota restricts the production of good i at a quantity y_{i*},

$$y_i = \min\{y_{i^*}, A_i F_i(x_{i1}, ..., x_{iN}, L_{i1}, ..., L_{iF})\}.$$

Profits for producers of i are revenues less intermediate and factor costs,

$$\Pi_i = \rho_i y_i - \sum_{i=1}^N \rho_j x_{ij} - \sum_{f=1}^F w_f L_{if}.$$

Equilibrium

- Given quotas y_{i^*} , productivities A_i , production functions F_i , and factor supplies L_f ,
- An equilibrium consists of prices p_i , wages w_f , outputs y_i , final demands c_i , and intermediate / factor input choices x_{ij} and L_{if} such that:
 - Final demands c_i maximizes real output subject to the budget constraint.
 - Each producer minimizes costs taking prices as given.
 - For all goods with quotas, $y_i \leq y_{i^*}$.
 - Resource constraints satisfied:

$$c_i + \sum_{j=1}^N x_{ji} \le y_i$$
 for all i and $\sum_{i=1}^N L_{if} \le L_f$ for all f .

7/27

Implementing an Allocation Using Quotas

Definition (Feasible allocation)

An allocation $(\{c_i\}, \{x_{ij}\}, \{L_{if}\})$ is feasible if:

- c_i , x_{ij} , and L_{if} are non-negative for all i, j, and f,
- $y_i \le A_i F_i(x_{i1},...,x_{iN},L_{i1},...L_{iF})$ for all i,
- Resource constraints are satisfied.

Proposition

Consider some feasible allocation ${\mathscr X}$. Then:

- there exists a vector quotas, $\{y_{i*}\}$, such that the decentralized eqm. has allocation \mathcal{X}
- $oldsymbol{arrho}$ given these quotas, the allocation $\mathscr X$ is efficient.

Implementing an Allocation Using Quotas

Proposition

Suppose an allocation ${\mathscr X}$ is feasible. Then:

- lacktriangledown There is an economy with quotas in which the decentralized eqm. has allocation ${\mathscr X}$.
- **②** Given these quotas, the allocation \mathcal{X} is efficient.

- Add nodes/quotas to guarantee that competitive eqm. yields desired allocation.
- First Welfare Theorem implies allocation is constrained efficient.
- Implication 1: Recast any distorted allocation as eqm. of economy with implicit quotas.
- Implication 2: Analyze eqm. using tools for efficient economies (e.g., Hulten's Thm).

Implementing an Allocation Using Quotas: Example

• Round-about economy. Feasible allocations: $\{(y_1, c_1, x_{11}) | c_1 + x_{11} \le y_1 = F_1(L, x_{11})\}.$

• In fact, more general than wedges: can implement allocation when L, x_{11} are perfect substitutes / complements.

Table of Contents

Quantity Distortions: Framework

Comparative Statics

Distance to Frontie

Nonlinearities Far from the Frontier

Comparative Statics

Proposition

To a first order, the effect of changes in quotas y_{i*} and productivities A_i on output is

$$d \log Y = \sum_{i} \prod_{i} d \log y_{i^*} + \sum_{i} (\lambda_i - \prod_i) d \log A_i,$$

where λ_i and Π_i are sales and profits of i divided by GDP.

If all quotas are non-binding, then $d \log Y = \sum_i \lambda_i d \log A_i$.

- Profits of constrained producers are sufficient statistic for effect of quota changes.
- Removing a quota always improves welfare.
 - Conditional on other quotas, no Theory of Second Best.
 - If quotas adjust endogenously, Theory of Second Best returns.
- When all quotas are non-binding, profits are zero ⇒ Hulten's Theorem.

Empirical Example 1: H-1B Visa Quota

- H-1B visa for high-skill foreign workers: 85,000 visas per year since mid-2000s.
- To a first order, gains from increasing quota equal to rents earned by visa winners:

$$d \log Y = \prod_i d \log y_{i^*} \approx \frac{\prod_i}{y_{i^*}} dy_{i^*}.$$

- Clemens (2013) compares earnings of winners vs. losers of 2007 H-1B lottery.
 - Earnings for workers who won lottery were \$12,641 higher two years after the lottery.
- Doubling number of visas in 2007 would have increased world output \$1.07B.

Empirical Example 2: Zoning Restrictions on Single-Family Housing

- Gains from easing zoning restrictions equal to profits earned by permit holders.
 - Gyourko and Krimmel (2021) isolate permit "rents" by comparing vacant parcels to nearby parcels with existing housing.

Table of Contents

Quantity Distortions: Framework

Comparative Statics

Distance to Frontier

Nonlinearities Far from the Frontier

Distance to the Frontier

Proposition

Let $\Pi_i(\mathbf{y}_*)$ be profits of producer i given the vector of quotas \mathbf{y}_* . The distance to the frontier to a second order is

$$\Delta \log Y \approx \frac{1}{2} \sum_{i} \Pi_{i}(\mathbf{y}_{*}) d \log y_{i^{*}},$$

where $d \log y_{i^*} = \log y_{i^*} - \log y_i^{eff}$ is the quantity distortion on producer i relative to its efficient level of production.

- Option 1: Estimate distance using $1/2 \times \text{profits} \times \text{size of distortion}$.
- Intuition: Average of first-order at inefficient point $(\Pi_i d \log y_{i^*})$ and at efficient point (0).
- Unlike wedges, note that we don't need to consider "interactions" between quotas.

Distance to Frontier Example: Round-about Economy

• Round-about economy with quota on the use of input x_{11} .

Distance to Frontier Example: Round-about Economy

• Option 1: $\Delta \log Y \approx 1/2 \times \text{profits} \times \text{size of distortion} = 1/2 \prod_i d \log y_i$.

Distance to the Frontier: Option 2

- Option 1 uses profits at distorted allocation: $\Delta \log Y \approx \frac{1}{2} \sum_{i} \prod_{i} (\mathbf{y}_{*}) d \log y_{i^{*}}$.
- Option 2: Estimate distance to frontier using elasticities of profits to quotas.

Proposition

Equivalently, the distance to the frontier to a second order is

$$\Delta \log Y \approx \frac{1}{2} \sum_{i^*} \left[\sum_{k^*} \frac{\partial \Pi_i}{\partial \log y_{k^*}} d \log y_{k^*} \right] d \log y_{i^*}.$$

Expresses distance in terms of input-output structure and elasticities of substitution.

Distance to Frontier Example: Round-about Economy

• Option 2: $\Delta \log Y \approx 1/2 \frac{\partial \Pi_i}{\partial \log y_{i^*}} (d \log y_{i^*})^2 = -\frac{1}{2\theta_1} \frac{\lambda_1 - 1}{\lambda_1} (d \log y_{i^*})^2$.

Distance to the Frontier

- Both formulas require knowing the efficient level of output $d \log y_{i^*} = \log y_{i^*} \log y_i^{\text{eff}}$.
- Option 3: Estimate distance using elasticity of profits to quota changes.

Proposition

To a second order, the output gain from removing the quota y_{i*} is

$$\Delta \log Y \approx \frac{1}{2} \Pi_i \left[-\frac{d \log \Pi_i}{d \log y_{i^*}} \right]^{-1}.$$

• Intuition: If profits fall quickly with output, close to efficient level \Rightarrow smaller gains.

Distance to Frontier Example: Round-about Economy

• Option 3: Use elasticity of profits to quota: $\Delta \log Y \approx 1/2 \, \Pi_i [-\frac{d \log \Pi_i}{d \log V_{i*}}]^{-1}$.

Table of Contents

Quantity Distortions: Framework

Comparative Statics

Distance to Frontie

Nonlinearities Far from the Frontier

Nonlinearities Far from the Frontier

Proposition

To a second order, the effect of a change in quota y_{i*} on output is

$$\Delta \log Y \approx \prod_i d \log y_{i^*} + \frac{1}{2} \frac{d \prod_i}{d \log y_{i^*}} (d \log y_{i^*})^2.$$

- Profits = income of a "fixed factor," quota changes = shocks to its productivity.
 - Can use existing results to calculate elasticity of profits to quota. (Baqaee and Farhi 2019).
- Elasticity of profits to quota determines concavity / convexity:
 - Output always concave around efficiency ($\Pi_i = 0$).
 - Away from efficiency, may be convex (nonlinearities mitigate costs, amplify benefits).

Illustration: Nonlinearities in Horizontal Economy

- Second-order effect $d\Pi_i/d\log y_{i^*}$ depends on whether profits rising/falling in y_{i^*} .
- Always concave near efficient point. May be convex away from frontier.

Nonlinearities Far from the Frontier: Monopolist

- In general, computing non-linearities requires knowing production network, elasticities.
- Special case where monopolist chooses output quota to maximize real profits.
 - Low info requirements to calculate nonlinear effects of change in monopolist's output!

Proposition

Suppose producer i is a monopolist that chooses output quantity y_i to maximize real profits. Then, the effect of changes in the monopolist's quantity on output to a second order are

$$\Delta \log Y \approx \prod_i d \log y_i - \frac{1}{2} \prod_i^2 (d \log y_i)^2.$$

Illustration: Monopolist

- Monopolist always chooses quantity in concave region.
- ullet As monopolist becomes infinitesimal, nonlinearities o zero.

ullet Since 1937, quota on NYC taxicab medallions restricting total supply to pprox 14k.

- ullet Since 1937, quota on NYC taxicab medallions restricting total supply to pprox 14k.
- Use arrival of rideshare apps in NYC to quantify gains from relaxing quota on cabs.

- Assume that medallion transaction prices reflect rents accruing to owners.
- Gains from relaxing taxicab quota are $\Delta \log Y_t \approx \left(\Pi_{it} + \frac{1}{2} d \Pi_{it} \right) d \log y_{i^*t}$.

- Assume that medallion transaction prices reflect rents accruing to owners.
- Gains from relaxing taxicab quota are $\Delta \log Y_t \approx \left(\Pi_{it} + \frac{1}{2} d \Pi_{it} \right) d \log y_{i^*t}$.

- Assume that medallion transaction prices reflect rents accruing to owners.
- Gains from relaxing taxicab quota are $\Delta \log Y_t \approx \left(\Pi_{it} + \frac{1}{2} d \Pi_{it} \right) d \log y_{i^*t}$.

- Gains from relaxing quota over 2014–2019.
 - Cumulating gains over each year: $\Delta \log Y \approx \sum_{t} \left(\prod_{it} + \frac{1}{2} d \prod_{it} \right) d \log y_{i^*t}$.
- Not efficient at the end. What is the remaining distance to frontier?
 - Use elasticity of profits to quantity in final year: $\Delta \log Y \approx \frac{1}{2} \Pi_i \left[-\frac{d \log \Pi_i}{d \log y_i^*} \right]^{-1}$.

	Change from 2014–2019	Distance to frontier
Output gains	\$44.1B	\$1.8B
Gains per New York MSA household % of NPV of transportation expenditures (incl. vehicles/gas)	\$6,029 2.61%	\$246 0.11%

Conclusion

- General framework for analyzing economies with quota distortions.
- Two lessons:
 - 1. Any distorted allocation can be recast as equilibrium of an economy with quotas.
 - 2. Economies with quotas are constrained efficient, and thus highly tractable.
- Comparative statics: quota changes, productivity shocks.
- Distance to frontier, nonlinearities even far from the frontier.
- Examples of how to apply results (zoning restrictions, H-1B visas, taxicabs).

- Baqaee, D. R. and E. Farhi (2019). The macroeconomic impact of microeconomic shocks: beyond hulten's theorem. *Econometrica* 87(4), 1155–1203.
- Baqaee, D. R. and E. Farhi (2020). Productivity and misallocation in general equilibrium. *The Quarterly Journal of Economics* 135(1), 105–163.
- Clemens, M. A. (2013). Why do programmers earn more in houston than hyderabad? evidence from randomized processing of us visas. *American Economic Review 103*(3), 198–202.
- Gyourko, J. and J. Krimmel (2021). The impact of local residential land use restrictions on land values across and within single family housing markets. *Journal of Urban Economics* 126, 103374.
- Harberger, A. C. (1954). Monopoly and resource allocation. *American Economic Review 44*(2), 77–87.
- Hsieh, C.-T. and P. J. Klenow (2009). Misallocation and manufacturing tfp in china and india. *The Quarterly Journal of Economics* 124(4), 1403–1448.
- Restuccia, D. and R. Rogerson (2008). Policy distortions and aggregate productivity with heterogeneous establishments. *Review of Economic Dynamics* 11(4), 707–720.