Universität Wien

Fakultät für Informatik

Prof. Wilfried Gansterer, RNDr. CSc. Katerina Schindlerova

Mathematische Grundlagen der Informatik 1 SS 2020

Übungsblatt 3: Algebraische Strukturen II und Vektorräume I

Literatur: Peter Hartmann: Mathematik für Informatiker, Springer, Kapitel 5, 6

Aufgabe 3-1 6P

Berechnen Sie mit Hilfe des Euklid'schen bzw. erweiteren Euklid'schen Algorithmus den größten gemeinsamen Teiler (ggt):

- (a) ggt(168, 74),
- (b) ggt(1723,532) und gleichzeitig die $\lambda, \mu \in \mathbb{Z}$ für welche gilt $ggt = 1723\lambda + 532\mu$. Hinweis: Setzen Sie zunächst $(\lambda_0, \mu_0) = (1,0)$ und $(\lambda_1, \mu_1) = (0,1)$. Dann berechnen Sie jeweils: $(\lambda_{k+1}, \mu_{k+1}) = (\lambda_{k-1}, \mu_{k-1}) - q_k(\lambda_k, \mu_k)$.

Aufgabe 3-2 6P

Zeigen Sie, dass die Menge $V = \mathbb{R}^n$ gemeinsam mit der Vektoraddition

$$x \oplus y = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

eine abelsche (d. h. kommutative) Gruppe bildet!

Aufgabe 3-3 7P

Sind die folgenden Abbildungen linear? Untersuchen Sie, ob sie injektiv, surjektiv bzw. bijektiv sind!

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2, \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \mapsto \left(\begin{array}{c} \sqrt{2}x_1 + x_2 \\ x_1 \end{array}\right)$$

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \cdot x_2 \\ x_1 + x_2 \end{pmatrix}$$

Aufgabe 3-4 8P

Gegeben sei $M = \{a, b, c\}$ sowie die Verknüpfung * definiert als:

Ist (M, *) eine Gruppe? Beweisen oder widerlegen Sie jedes einzelne Gruppengesetz!

Aufgabe 3-5 8P

Beweisen bzw. widerlegen Sie, dass die folgenden Mengen Teilräume des $(\mathbb{Z}/7\mathbb{Z})^3$ sind.

(a)
$$V = \{(x, y, z) \in (\mathbb{Z}/7\mathbb{Z})^3 : 6x - 2y + z = [0]\}$$

(b)
$$W = \{(x, y, z) \in (\mathbb{Z}/7\mathbb{Z})^3 : 2x - 7y + 3z - [7] = [0]\}$$

Aufgabe 3-6 9P

Gegeben sind die folgenden Vektoren aus dem \mathbb{R}^3 ,

$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v = \begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix} \text{ und } w = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}.$$

a) Bildet die Menge u, v, w eine Basis des \mathbb{R}^3 ?

b) Sei $x=\begin{pmatrix} a \\ b \\ 10 \end{pmatrix}$ ein Vektor in \mathbb{R}^3 . Für welche Werte von a und $b\in\mathbb{R}$ kann x als Linearkombination von u, v und w dargestellt werden?

c) Stellen sie den Vektor $x_1 = \begin{pmatrix} 3 \\ 5 \\ 10 \end{pmatrix}$ als Linearkombination von u,v und w dar.

Aufgabe 3-7 10P

Für einen Gruppenhomomorphismus $\phi:G\to H$ sei der Kern $\mathrm{Ker}(\phi)$ definiert durch

$$Ker(\phi) := \{x \in G : \phi(x) = e_H\}.$$

Zeigen Sie: Genau dann ist ϕ injektiv, wenn $Ker(\phi) = \{e_G\}$ gilt.