

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-26, 23-03-2018

Notice

Students are hereby instructed to submit the mid-sem answer sheet immediately (not later than Monday, 26-03-2018, 17.30 hrs) to the tutorial instructor.

Summary of lecture 25

Distortions are more pronounced if the degeneracy occurs in an \mathbf{e}_{g} orbital

Summary of lecture 25

Summary of lecture 25

Natural distortion due to different kinds of bondings: No Jahn-Teller Distortion

Example: $[MnF_2Cl_4]^{4-}$

Example: [MnF₄Cl₂]⁴-

Oh vs. square planar geometry

Energy levels of the d-orbitals in common stereochemistries

Square planar system: example

$$d^4$$
 Cr^{2+} 4 unpaired electrons $(d_{yz}, d_{zx})^2 (d_z^2)^1 (d_{xy})^1$

$$d^6$$
 Fe²⁺ 2 unpaired electrons $(d_{yz}, d_{zx})^4 (d_z^2)^1 (d_{xy})^1$

$$d^7$$
 Co^{2+} 1 unpaired electron $(d_{yz}, d_{zx})^4 (d_z^2)^2 (d_{xy})^1$

Square planar system: example

d ⁸	0 unpaired electrons	
$(d_{yz}, d_{zx})^4 (d_z^2)^2 (d_{xy})^2$		
Ni ²⁺ , Rh ⁺ , Ir ⁺	Strong ligands	
Au ⁺³ , Pt ²⁺ , Pd ²⁺	Strong or weak ligands.	

$$d^9$$
 Cu²⁺ 1 unpaired electron $(d_{yz}, d_{zx})^4 (d_{xy})^2 (d_z^2)^2 (d_{x-y}^2)^1$

Example: d⁸ system

 $d_{x^2+y^2}$

 $Ni(NH_3)_4(NO_3)_2(H_2O)_2$ - diamagnetic

$$Ni^{+2} \rightarrow d^8 + dia \rightarrow Square Planar$$

$$[Ni(NH_3)_4](NO_3)_2.2H_2O$$
; water is only lattice component.

$$d_z^2$$
 is occupied and d_{x-y}^2 is vacant;

Ligands approach Only in x, -x, y, -y directions

are diamagnetic

Example: d⁸ system

 $Ni(NH_3)_4(NO_3)_2(H_2O)_2$ - paramagnetic $[Ni(NH_3)_4(H_2O)_2](NO_3)_2$

Here also Ni⁺² \rightarrow d⁸ but para \rightarrow Octahedral

d⁸ configuration in a strong/weak field is $t_{2g}^{6}e_{g}^{2}$

Symmetric distribution

Example: d⁸ system

$$[Ni(CN)_4]^{2-}$$
 - diamagnetic

Here Nickel is in oxidation state +2;

$$Ni^{+2} \rightarrow d^8 + dia \rightarrow Square Planar;$$

Here this is entirely due to CN⁻ being a strong ligand.

High
$$\Delta_o \rightarrow$$
 high δ_1

Here $Ni^0 \rightarrow d^{10}$ (No 4s electrons) Therefore it has to be diamagnetic as there is no unpaired electron in the metal orbitals.

Question

<u>Are Jahn-Teller distortions possible in tetrahedral environments?</u> Do you think such distortions are likely to occur? Justify your answer.

Jahn-Teller distortions are possible whenever there is a partially filled degenerate set of energy levels. This can of course occur here if either the e or t_2 levels are only partially filled. However, since neither set of orbitals is oriented directly towards the ligands, the relative amount of stabilization gained is smaller than when the e_g set is partially occupied in an octahedron so such distortions are much less likely to occur in a tetrahedral environment

Electronic spectra of octahedral complexes

Transition metal complexes

One of the most characteristic chemical properties of these elements is the occurrence of *multiple oxidation* states.

Spectra arise because electrons may be promoted from one energy level to another

The spectrum of a colored solution may be measured quite easily using a spectrophotometer

$$\log(I_0/I) = A$$
$$A = \varepsilon.c.I$$

Absorption of radiation leading to electronic transitions within a molecule or complex

- Visible = lower energy transitions
- higher energy transitions between ligand orbitals
 - between d-orbitals of transition metals
 - between metal and ligand orbitals

Absorption maxima in a visible spectrum have three important characteristics

- 1. number (how many)
- This depends on the electron configuration of the metal centre
- 2. position (what wavelength/energy)
- This depends on the ligand field splitting parameter, Δ_{oct} or Δ_{tet} and on the degree of inter-electron repulsion
- 3. intensity

This depends on the "allowedness" of the transitions, which is described by two selection rules

The energy of the absorption by $[Ti(OH_2)_6]^{3+}$ is the ligand-field splitting, Δ_o

complex in electronic ground state (GS) ———— d-d transition ————

complex in electronic excited state (ES)

 $[Ti(OH_2)_6]^{3+}$ $\lambda_{max} = 510 \text{ nm } \Delta_o \text{ is } 243 \text{ kJ mol}^{-1} \text{ or } 20 300 \text{ cm}^{-1}$ (3d¹ system)

Color of $[Ti(H_2O)_6]^{3+}$ complex

Absorption at 520 nm gives the complex its purple color

A more resolved absorption spectrum of the complex has a shoulder

Color and CFT

 $[V(H_2O)_6]^{3+}$ V(III) = d² configuration

Violet light absorbed complex appears yellow

 $[V(H_2O)_6]^{2+}$ V(II) = d³ configuration

Yellow light absorbed complex appears violet

Why different colors??

The color of the aqueous solution is due to the <u>transition of electrons</u> <u>from one d level to another d level</u>.....why not only one color?? different colors are seen for different compounds because,

- ✓ The d orbitals are at different energy levels and hence there are many transition
- ✓ The splitting of d orbitals in different environments
- ✓ The splitting depends upon the geometry of the complex, the nature of the ligands, and the oxidation state of the central metal atom

The energy gap between the e_g and t_{2g} orbitals, Δ_0 , (the crystal field splitting) equals the energy of a photon:

$$\Delta_0 = h\nu = \Delta E$$

As Δ_0 , varies, hv will also vary and the color of the compound will change

Absorption of a photon causes a jump from a t_{2g} to an e_g orbital

- **A** Laporte 'orbital' selection rule: Transitions which involve a change in the subsidiary quantum number $\Delta l = \pm 1$ are "Laporte allowed" and therefore have a high absorbance.
- ❖ Thus, for Ca, $s^2 = s^1p^1$, l changes by +1 and ε is very high. In contrast d-d transitions are "Laporte forbidden" and ε is less. Transition metal ion forms a complex and surrounded by ligands, *mixing of d and p orbitals*.
- **Spin selection rule**: During transitions between energy levels, an electron does not change its spin, i.e., $\Delta S = 0$ (why Mn²⁺ high spin complexes are off white or pale flesh colored?)

Ground terms for d¹-d¹⁰ configurations

Configuration	Example	Ground term	m_l	M_L	S
he only permise	ned transin	in is the retired o	2 1 0 -1 -2	wef de	hiet
d^1	Ti ³⁺	^{2}D	1	2	1/2
$-d^2$	V ³⁺	✓ ³ F	\uparrow	3	1
d ³ ble	Cr3+	4F	\uparrow \uparrow \uparrow \uparrow	3	$1\frac{1}{2}$
d ⁴ medica a turii s	Cr ²⁺	5D	.	2	2
d^5	Mn ₂ +.	65	<u> </u>	0	$2\frac{1}{2}$
d ⁶	Fe ²⁺	5D 2000	↑↓↑ ↑ ↑ ↑	2	2
d^7	Co ²⁺	anstru 4F		3	11/2
d [×]	Ni ²⁺	$\frac{1}{2}$	$\begin{bmatrix} \downarrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \uparrow $	3	1
d ⁹	Cu ²⁺	pinlid 2D	11111111	2	$\frac{1}{2}$

Discussed topics.....

- ✓ Octahedral vs. square planar geometry
- ✓ Electron distribution in square planar system
- ✓ Example of square planar system
- ✓ Electronic spectra of octahedral complex
- ✓ Different colors in octahedral complexes

Color of Transition metal comp. (supporting slide)

Absorbed Color	λ (nm)	Observed Color	λ (nm)	
Violet	400	Green-yellow	560	
Blue	450	Yellow	600	
Blue-green	490	Red	620	
Yellow-green	570	Violet	410	
Yellow	580	Dark blue	430	
Orange	600	Blue	450	
Red	650	Green	520	

