

Department of Electrical & Computer Engineering

Software-Controlled Analog Waveform Generator

Project Description

- Analog waveform generator with digitally controllable:
 - Amplitude
 - Frequency
 - Phase

Constraints

- Cost
 - Maximum budget of \$100
- · Scalability
 - Able to function well when adding new controlled parameters
- · Ease of design
 - · Can easily rebuild the circuit

Applications

- · Educational institutions
- · Response testing
- · Signal generation
- · Research and development
- · Electrical repair

Market Research

- BitScope DWG100 & EVAL-AD9833SDZ
 - Software-controlled waveform generators

	Supply Voltage	Frequency	Amplitude	Phase	Cost
1. BitSc ope DWG 100	-12V to +12V	1Hz-1.5MHz	40mVpp- 10Vpp	NA	\$85
EVAL- AD9833 SDZ	2.3V to 5.5V	1Hz-12.5MHz	NA	0-180°	\$111

Engineering Characteristics

- Frequency: 100Hz-10kHz
 Resolution: 0.1Hz
- Resolution: 0.1H
- Phase : 0° to 180°
- Resolution: 2π/4096 ≈ 0.1°
- Amplitude : 2.5V-5V
- Resolution: 0.16V
- Waveform types : Sine, Triangle, Square
- · USB-Powered & two 9V batteries
- · Input current: 10 μA
- · Output current: 25 mA
- Digitally controlled through GUI capable of running on Linux, Windows, Mac

Challenges

- Components issues (e.g. overheated digital potentiometer and op amp)
- Adjusting voltage supply requirements for digital potentiometer and op amp

Design Process

Schematic Diagram

Arduino Code

Testina

- Subsystem Testing
 - 1. AD9833 breakout board
 - 2. MCP4131 digiPot
 - 3. UA741CP op amp
 - 4. GUI
- Integration Testing
 - 1. UA741CP op amp & MCP4131 digiPot
 - 2. AD9833 breakout board & GUI
 - 3. Entire system

Results

Conclusion

- Built a cost-effective software-controlled waveform generator
- Total cost: \$50
 Lessons learnt:

How to understand trade-offs

· Time management

Retrospect:

- · Achieved more tasks in parallel individually
- Thoroughly read specifications in the datasheets
- Account for any potential hardware/software failures

Future Plans

- Implement additional parameters
- Implement additional waveform types
- Add a second waveform channel
- · Find alternative to 9V batteries
- Improve accuracy of amplitude
- Reduce noise
- Increase range of frequency and amplitude

Project Management

