Задача к собеседованию на ИППИ

задача предложена Бурнаевым Е.В.

23 апреля 2018

Задача

Задача классификации заключается в том, что по выборке данных

$$\{(\mathbf{x}_i, y_i = y(\mathbf{x}_i))\}_{i=1}^n, \ \mathbf{x}_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}$$

необходимо построить модель зависимости $\hat{y}(\mathbf{x})$ такую, что $\hat{y}(\mathbf{x}) \in \{-1,1\}$ и для большинства значений \mathbf{x} прогноз метки класса $\hat{y}(\mathbf{x})$ совпадает с настоящей меткой класса $y(\mathbf{x})$.

Рассматривается модель линейной разделяющей гиперплоскости

$$\hat{y}(\mathbf{x}) = sign(\mathbf{x}_i^T \mathbf{w} + w_0 > 0)$$

Для оценки вектора параметров \mathbf{w} , w_0 максимизируется отступ разделяющей гиперплоскости от объектов обучающей выборки:

$$\max_{\mathbf{w}, w_0, ||\mathbf{w}||=1} M,$$
s. t. $y_i(\mathbf{x}_i^T \mathbf{w} + w_0) \ge M, i = \overline{1, n}.$

Нужно описать, как решать такую задачу оптимизации и какими свойствами обладает ее решение.

Решение

1. Классы разделимы

Вместо использования ограничений, поделим обе части неравенства на модуль вектора весов. Эквивалентное неравенство:

$$\dfrac{1}{||\mathbf{w}||}y_i(\mathbf{x}_i^T\mathbf{w}+w_0)\geq M,$$
 или, взяв $||\mathbf{w}||=\dfrac{1}{M},$ $\dfrac{\min\limits_{\mathbf{w},w_0}||\mathbf{w}||^2,}{s.\ t.\ y_i(\mathbf{x}_i^T\mathbf{w}+w_0)\geq 1,\ i=\overline{1,n}.$

Функция Лагранжа:

$$L = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \lambda_i (y_i(\mathbf{x}_i^T \mathbf{w} + w_0) - 1),$$

условия Каруша-Куна-Таккера:

- стационарности: $\max_{\mathbf{x}} L = L(\hat{\mathbf{x}})$
- дополняющей нежесткости: $\lambda_i(y_i(\mathbf{x}_i^T\mathbf{w} + w_0) 1) = 0, \ i = \overline{1,N}$
- неотрицательности: $\lambda_i \geq 0, i = \overline{1, N}$

Из условия стационарности мы должны приравнять производные к нулю по ${f w}$ и w_0 .

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$$

$$0 = \sum_{i=1}^{N} \lambda_i y_i$$

Подставив эти значения в функцию Лагранжа, получим

$$L = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \lambda_i \lambda_k y_i y_k \mathbf{x}_i^T \mathbf{x}_k,$$

и теперь нужно минимизировать -L при $\lambda_i \geq 0$.

Условие дополняющей нежесткости:

$$\lambda_i(y_i(\mathbf{x}_i^T\mathbf{w} + w_0) - 1) = 0, \ i = \overline{1, N}$$

Либо $(y_i(\mathbf{x}_i^T\mathbf{w}+w_0)=1$ при $\lambda_i>0$, то есть \mathbf{x}_i лежит на *границе* разделяющей области, либо $(y_i(\mathbf{x}_i^T\mathbf{w}+w_0)>1$ при $\lambda_i=0$, и тогда объект на границе не лежит.

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$$

Вектор **w** есть линейной комбинацией так называемых **опорных объектов**, для которых выполнено условие $\lambda_i \neq 0$.

Чтобы найти w_0 , нужно решить условие дополнительной нежесткости для одного из опорных объектов.

2. Неразделимые классы Разрешаем классификатору допускать ошибки, но будем за них ругать.

Аналогичным образом получаем следюущую задачу с переменными ${\bf w}, w_0, \xi,$ а также ценой ошибки C:

$$\min_{\mathbf{w}, w_0} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i,$$

s. t. $\xi_i \ge 0$, $y_i(\mathbf{x}_i^T \mathbf{w} + w_0) \ge 1 - \xi_i$, $i = \overline{1, n}$.

Функция Лагранжа для данной задачи примет вид

$$L = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \lambda_i (y_i(\mathbf{x}_i \mathbf{w} + w_0) - (1 - \xi_i)) - \sum_{i=1}^{N} \mu_i \xi_i$$

Приравняв к нулю производные, получим

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$$
$$0 = \sum_{i=1}^{N} \lambda_i y_i$$
$$\lambda_i = C - \mu_i$$

Функция Лагранжа может быть записана в таком виде:

$$L = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \lambda_i \lambda_k y_i y_k \mathbf{x}_i^T \mathbf{x}_k$$

Вновь добавляем КТ-условия:

• дополняющей нежесткости:

•
$$\lambda_i(y_i(\mathbf{x}_i^T\mathbf{w} + w_0) - (1 - \xi_i)) = 0, \ i = \overline{1, N}$$

$$\mu_i \xi_i = 0$$

• неотрицательности: $\lambda_i \geq 0, i = \overline{1, N}$

Результат: w есть линейная комбинация опорных векторов.

3. У объектов есть веса

Мы продолжаем разрешать классификатору допускать ошибки, но теперь их стоимость различается для всех объектов выборки.

Запишем задачу:

$$\min_{\mathbf{w}, w_0} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} W_i \xi_i,$$

$$s. t. \xi_i \ge 0, \ y_i(\mathbf{x}_i^T \mathbf{w} + w_0) \ge 1 - \xi_i, \ i = \overline{1, n}.$$

За W_i обозначен вес i-го объекта.

Функция Лагранжа для данной задачи примет вид

$$L = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} W_i \xi_i - \sum_{i=1}^{N} \lambda_i (y_i (\mathbf{x}_i \mathbf{w} + w_0) - (1 - \xi_i)) - \sum_{i=1}^{N} \mu_i \xi_i$$

Приравняв к нулю производные, получим

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$$
$$0 = \sum_{i=1}^{N} \lambda_i y_i$$
$$\lambda_i = CW_i - \mu_i$$

КТ-условия не изменятся.

Единственная разница по сравнению с предыдущим случаем - другое ограничение на λ_i

При C o 0 или $C o +\infty$ $CW_i = C$ \Rightarrow влияние весов учтено не будет.

