Teoría de la Comunicación Examen extraordinario de 5 de septiembre de 2014

Nombre:

1) Sea (A, B) una variable aleatoria bidimensional con distribución Gaussiana cuyo vector de medias es (1, 1) y su matriz de covarianzas es:

$$\begin{pmatrix}
2 & 1 \\
1 & 2
\end{pmatrix}$$
(1)

Se construye el proceso aleatorio $X(t) = A\cos(t) + B$.

- a) (1 punto) Determine la media y la varianza del proceso aleatorio X(t).
- b) $(1.5 \ puntos)$ La función de autocorrelación del proceso aleatorio X(t).
- 2) Sea S3 la extensión de tercer orden de una fuente binaria sin memoria cuya probabilidad de emitir un cero es igual a 0,2. Otra fuente SD observa las salidas de S3, emitiendo 0, 1, 2 o 3 según la salida de S3 contenga 0, 1, 2 o 3 ceros. Determine:
 - a) (1.25 puntos) La entropia de la fuente SD.
 - b) (1.25 puntos) Construya un código de Huffman para la fuente S3.
- 3) (0.75 puntos)Obtenga la expresión de la media del proceso aleatorio de salidad de un sistema lineal e invariante con el tiempo en función de la media del proceso aleatorio de entrada cuando dicha entrada es un proceso aleatorio estacionario en sentido amplio. (Aclaración: lo que se pide no es la expresión final sino cómo se llega a la expresión final)
- 4) (0.75 puntos) Enuncie y demuestre la regla de la cadena de la entropía.
- 5) (1 punto). Explique en detalle (funciones de MATLAB utilizadas, bucles implementados, etc) cómo ha obtenido en el apartado 3 de la práctica 1, la densidad de potencia espectral del proceso aleatorio usando la relación que hay entre la respuesta en frecuencia del filtro y la densidad de potencia espectral del proceso de entrada. Como se indicaba en el guión el filtro era un filtro lineal todo polos con coeficiente $a_1 = -0.9$ y en el fichero signalENTRADA se encontraba una única realización muestreada en 128000 instantes de tiempo de la señal de entrada.
- 6) (1 punto). Explique en detalle cómo ha construido la matriz de probabilidades condicionales del segundo modelo probabilístico de la practicas 2. ¿Qué contiene la fila 64 de dicha matriz de probabilidades condicionales?.
 - NOTA: En los ejercicios 1 y 2 no vale con dar sólo la respuesta correcta sino que hay que mostrar cómo se ha obtenido el resultado. Si no se da una explicación el valor del ejercicio será de cero puntos.

VARCA] = FCA2] - F2[A]; ECA2] = VARCA] + E2[A]

Be ignal forma

ECR2] = UARCR] + E2[B] = 2 + 12 = 3

COV(B,B) = ECA.B] - ECA7. ECB7; ECA.B] = COV(B,B)

+ ECA7[ECR] =

 $E[(X(t)-mx(t))^{2}]=E[x^{2}(t)+m_{x}^{2}(t)-2x(t)m_{x}(t)]$ $= E[X_s(t)] + E[w_s(t)] - E[s x(t) w x(t)]$ = E[(Arost+B)(Arost+B)] + mx2(+) - 2mx(+)E[X(1)) Veamos cada te'rmino * E[A²cost +ZABcost *BArost +B²]= = E[A]] cost +ZE[AB] cost + E[B] sabrunos de la matriz de conación 201 que (IRR[A] COV(A,B) = (2) (COV(B,A) VAR(B) = (1)VARCAJ = ECAZJ - EZCAJ MA ECA3] = NAR[A] + E3[A] = 2+13=3 De : qui) forma E[B2] = VAR[B) + ± 3[B] = 2+12=3

ECA-B] = COV(A, B) + ECA7. ECB7=1+1=2 ECA-B] = COV(A, B) + ECA7. ECB7=1+1=2

Evedo el jeunino Déregalia; (5) 3. cos2t+3+2.2. cost = 3 cos2t+4 cost+3 (S) mx2(+) = (cost+1) = cost+2cost+1 3 2 m x (4) E (X (4)] = 2 m x (4) m x (4) = 2 m x (4) Liedo finalmense VAR[X(f)] = 3 cos2t + 4 cost + 3 + mx (+) - 2 mx(+) = 3 (05 t + 4 (05 t + 3 - mx2(t) = = 3 cos2t + 4 cost+3 - cos2t - 2 cost - 1 = $= 2\cos^2 t + 2\cos t + 2 = 2(\cos^2 t + \cos t + 1)$

b) Rx(t1,t2) = E[X(t1) X(t2)] = E[(Acost1+B)(Acost2+B)] =

= E[A^2 cost1 cost2 + AB cost1 + BA cost2 + B^2] =

= E[A^2] cost1 cost2 + E[AB] cost1 + E[AB] cost2 + E[B^2]

= 3. cost1 cost2 + 2. cost1 + 2 cost2 + 3 a

= 3. cost1 cost2 + 2. cost1

$$S' = \{0, 1\} \quad \text{tzt que} \quad P(0) = 0'Z \quad P(1) = 0'P$$

$$S' = \{(000), (001), (100), (101), (010), (011), (110), (111)\}$$

$$Prostzhicidods de les multips de S'^2 :
$$P(111) = P(1)^3 = 0'512$$

$$P(011) = P(1)^2 \cdot P(0) = 0'128$$

$$P(101) = P(1)^2 \cdot P(0) = 0'128$$

$$P(100) = P(1) \cdot P(0)^2 = 0'032$$

$$P(100) = P(1) \cdot P(0)^2 = 0'032$$

$$P(100) = P(1) \cdot P(0)^2 = 0'032$$$$

$$P(000) = P(0)^{3} = 0'008$$

$$P(000) = P(0)^{3} = 0'008$$

$$P(001) + P(010) + P(010) + P(000) = $48402$$

$$P(001) + P(011) + P(101) = $6'384$$

$$P(001) = P(011) + P(101) + P(101) = $6'384$$

$$P(001) = P(011) + P(010) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(011) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(001) + P(001) + P(0101) = $6'384$$

$$P(001) = P(001) + P(001) + P(0101) = $6'384$$

$$P(001) = P(001) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(001) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(001) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(001) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(001) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(001) + P(0101) + P(0101) = $6'384$$

$$P(001) = P(001) + P(0101) +$$

51MBOK	, Phosabilidan				(400)	la		
111	01512	-0512	_0'512 -		0'512	— O'S	1256	1
410	0'128	-0128	-0'128 ~	512	T6232	To	0 488	y
101	0128	-01128	0'128		10128	06256	0232	
OH	0128 -	0'128	0'128 -	10 0 0	10128-	1	(404)	
100	0'032	r 0'04	T 0'0647	0 104-10	232		(001)9	
010	0'032	1003270	10'04-	0 = (0)	9 5(1)9		(110)9	
aol	00320	0'032 1-0064	180		pch) pc		10000	
000	0,008-1-0,00	47			09 (1)9		(100) 9	
							9(000)	

SiMbolo	Lá DIGO	
5=111	M 2+ (010) 9 + (100) 9 - (5) 9 + (000) 9 - (6)	
S2 = 110	100 (000) 1 (000) 1 (000) 1 (000) 1 (000)	
53 = 101	101	
54-011	110 1 100 100 31 (010) 3 + (110) 3 = (1)	7
S5 = 100	1 + 100 = 69 (111) = 0,015	
56 =010	11101	
5- =001	1 1 1 1 0 00 1 200 10 800 0 = 1 (8)	
Sg = 000	40'884 Log 4 4. COPIZION - 1400 A 4 4 4 4	