Predict H1N1 and Seasonal Flu Vaccines

From backgrounds, opinions, and health behaviors - Multi target classification case

Predict H1N1 and Seasonal Flu Vaccines

Predecir si las personas se vacunaron contra la gripe H1N1 y la Gripe Estacional usando la información que compartieron sobre sus antecedentes, opiniones y conductas de salud.

https://www.drivendata.org/competitions/66/flu-shot-learning/page/210/

Datos claves del dataset

- Contexto: Data Science for social good
- 2. Dataset público
- 3. Origen, United States National Center for Health Statistics
- 4. 26707 rows, 36 cols
- 5. Variables numéricas: 24
- 6. Variables categóricas: 12
- 7. Variables target: 2

2 Variables target H1N1 / Seasonal

La mitad de la población recibió la vacuna de gripe estacional (clases balanceadas), pero solo un 20% la de H1N1 (clases moderadamente desbalanceadas).

EDA y calidad del dato

- → Número final de variables: 49
- → Label/One-Hot Encoder para convertir las variables categóricas en numéricas.
- → Eliminadas variables con datos irrelevantes o baja correlación con las variables target.

Hyperparameters tuning with GridSearchCV

- → Scoring: roc_auc
- → Algoritmos evaluados:
 - 1. Logistic Regression
 - 2. Random Forest
 - 3. SVM (Support Vector Machines)
 - 4. Naive Bayes
 - 5. Decision Tree
 - 6. K-Neighbors

Training Results

 ${\it Manejo\ desbalance\ con\ class_weight}$

Algoritmos TOP 3

- 1. H1N1 / Seasonal: SVM
- 2. H1N1 / Seasonal: Random Forest
- 3. HINI: Logistic Regression / Seasonal: K-Neighbors

HIGHEST SCORES		
SPLIT	HINI	SEASONAL
80-20%	SVM balanced AUC = 0.862754	SVM balanced AUC = 0.855847
70-30%	SVM balanced AUC = 0.858395	SVM balanced AUC = 0.858624

* SVM balanced = Ejecución con class_weight='balanced'.

Conclusiones

→ EDA es muy importante para lograr un dataset óptimo para el training.

Predicted label

- → Mejor algoritmo, SVM(C=1, gamma=0.01, kernel=RBF), por su versatilidad y robustez ante la presencia de outliers.
- → El desbalance fue tratado con class_weight=balanced, mejorando el score logrado con SVM.

Capstone - Grupo 3
Máster Online Data Science 2022-23