Počítačové videnie - Úvod do deep learningu

Ing. Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

5.12.2018

- Inštalácia
- 2 Evaluácia
 - Evaluácia
- Tensorboard
 - Tensorboard
- 4 Konvolučné neurónové siete
 - Konvolučné vrstvy
 - Poolingové vrstvy
- Transfer learning
 - Rozdelenie dát.

Inštalacia

Verzie

Na Windowsoch v škole je python 3.7, ale ten nieje supported tensorflowom. Preto budeme odteraz pracovať v Linuxe, ale ak máte vlastný počítač je to jedno. Kto má grafickú kartu od nvidia, môže si na stránkach tensorflowu nájsť inštalačné inštukcie a inštalovať tensorflow s podporou gpu.

pip3

```
pip3 install --user tensorflow
pip3 install --user tensorboard
pip3 install --user keras
```

Keras - kód

Ak nemáte tak si stiahnite trénovací kód k minulému cviku.

Evaluácia

Evaluácia

Väčšinou chceme model overiť na celom datasete. Preto musíme testovaciu množinu dostať do rovnakej formy ako trénovaciu množinu.

Kód

Tensorboard

Tensorboard

Tensorboard je nástroj na sledovanie vývoja učenia, kontrolovanie grafu neurónovej siete a ďalšie užitočné veci.

Kód - pred model.fit

```
tb_callback = keras.callbacks.TensorBoard(
    log_dir='./logs')
callbacks.append(tb_callback)
```

Cez shell spustíme

tensorboard --logdir=logs

Conv2D

Maticové usporiadanie

Keďže prejdeme na konvolučné neurónové siete, tak chceme mať na vstupe obrázok v tvare 28x28.

Úloha

Upravte trénovacie dáta tak, aby obrázky mali tvar (počet, 28, 28, 1). Pozrito si dokumentáciu koras lavors Conv2D v korasa. Použito

1). Pozrite si dokumentáciu keras.layers.Conv2D v kerase. Použite na začiatku modelu Conv2D vrstvy.

Riešenie

Riešnie

model.add(Dense(128, activation='relu'))
model.add(Dense(n_cls, activation='softmax'))

Poolingové vrstvy

Úloha

Pozrite si dokumentáciu a keras.layers.MaxPooling2D a pridajte ju do konvolučného modelu.

Úloha

V dokumentácii sa pozrite aj na iné poolingové vrstvy.

Riešenie

```
Riešnie
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(n_cls, activation='softmax'))
```

DropOut a BarchNorm

Úloha

Pozrite si dokumentáciu a keras.layers.Dropout a pridajte ju na vhodné miesto do konvolučného modelu.

Úloha

Pozrite si v dokumentácii BatchNorm. Síce na tak malú sieť to asi nieje dobrá vrstva skúste ju pridať do modelu.

Riešenie

```
Riešnie
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_cls, activation='softmax'))
```

Transfer learning

Nedostatok dát

Ak máme málo dát, tak je veľmi malá šanca, že sa nám podarí natrénovať hlbokú sieť z inicializácie. Naštastie môžeme použiť sieť natrénovanú na iných dátach!

transfer_train.py

V zipe s kódom k dnešnému cvičeniu je súbor transfer_train.py Ten si teraz zanalyzujeme. Dataset k úlohe si taktiež stianite zo stránky. Originálne pochádza z https://www.kaggle.com/huan9huan/walk-or-run

Úloha

Modifikujte kód tak, aby sa dali trénovať aj nejaké posledné konvolučné vrstvy, alebo aj celá sieť. Skúste upraviť augmentáciu. Dá sa dosiahnúť lepší výsledok?