# **Machine Learning**

OLYMPICS

1896 - 2016

Aastha | Dianne | Duong Ritika | Swarna







Data Source - Kaggle Olympics Dataset (Link to dataset)

102 Tools Used - Python Pandas, Python Matplotlib,Tableau, HTML/CSS/Bootstrap

ML models - Linear Regression, ARIMA, Logistic Regression



# **Objective**

The goal of this project was calculate predictions on our existing Olympic data



### Medal prediction For Top 25 Countries

Linear Regression ARIMA



**Logistic Regression** 

### X Dataset

Dataset from Kaggle had data for individual athletes (Total Rows: 271,116)

#### Columns:

- Athlete Name
- Sex
- Age
- Height
- Weight
- Country
- Olympic Year of participation
- Olympic Season (Summer/ Winter)
- Sport
- Event
- Medal (Medal won- Gold, Silver, Bronze or NaN (if medal not won)



# × Dataset (Data Transformation)

For predicting medals won by a country, data was transformed to show aggregate values country wise for different years

Columns in transformed dataset: (Possible features for ML model- Medal prediction)

- Year
- Country
- Total medals won
- Gold medal won
- Silver Medals won
- Athletes participated
- Events in which country participated
- Sports in which country participated
- Host (1 if country was host nation for Olympics, 0 otherwise)

Medal predictions were made for **Summer** Olympics for **25** Countries.



### × Models used

- Linear Regression
- ARIMA Model
- Logistic Regression
- KNN
- Random Forests







# **Linear Regression Model**

Predicted Summer Olympic Gold, Silver, Bronze and Total Medals for the Top 25 countries for the years 2004, 2008, 2012, 2016 and 2020

Training Set for 2020 Predictions: 'Year' <= 2020

Features: 'Year', 'Host', 'Athletes', 'Events', 'Sports', 'Athletes/Sport'

### R-squared (R2) for Training data:

Gold: 0.769302651944956
 Silver: 0.7426667887063532
 Bronze: 0.8011844979516292

Total Medals: 0.8372685664251086

### R-squared (R2) for Testing data:

Gold: 0.7513879821564176
Silver: 0.7047764327585497
Bronze: 0.719818759648077

Total Medals: 0.7704399769927465



# **Linear Regression Model 1**

For USA, data available for years 1896 to 2016

Training Set 'Year' <= 2000 Test Set 'Year' > 2000

#### Features:

'Year', 'Athletes', 'Event', 'Host'

Prediction 'Total\_Medals'
Mean Squared Error (MSE): 81.60
R-squared (R2): -0.333

Prediction **'Silver**'
Mean Squared Error (MSE): 31.03
R-squared (R2): -0.499

Prediction **'Gold'** Mean Squared Error (MSE): 28.46 R-squared (R2): -0.138

Prediction 'Bronze' Mean Squared Error (MSE): 25.59 R-squared (R2): -0.137



# **Linear Regression Model 2**

For USA, data available for years 1896 to 2016

Training Set 'Year' <= 2000 Test Set 'Year' > 2000

#### Features:

'Year', 'Athletes per Event', 'Sport', 'Host'

Prediction 'Total\_Medals'
Mean Squared Error (MSE): 48.79
R-squared (R2): 0.202

Prediction **'Silver**'
Mean Squared Error (MSE): 42.33
R-squared (R2): -1.046

Prediction **'Gold'** Mean Squared Error (MSE): 21.01 R-squared (R2): 0.159

Prediction 'Bronze' Mean Squared Error (MSE): 17.67 R-squared (R2): 0.214



# Linear Regression Model 3 (Bad)

For USA, data available for years 1896 to 2016

Training Set 'Year' <= 2000 Test Set 'Year' > 2000

#### Features:

'Year', 'Athletes per Event', 'Participation Event/ Total Events', 'Host'

Prediction 'Total\_Medals'
Mean Squared Error (MSE): 544.95
R-squared (R2): -7.90

Prediction **'Silver'** Mean Squared Error (MSE): 130.43 R-squared (R2): -5.305 Prediction 'Gold' Mean Squared Error (MSE): 142.45 R-squared (R2): -4.69

Prediction 'Bronze' Mean Squared Error (MSE): 12.67 R-squared (R2): 0.437



# Linear Regression Model 4 (Best)

For USA, data available for years 1896 to 2016

Training Set 'Year' <= 2000 Test Set 'Year' > 2000

#### Features:

'Year', 'Athletes per Event', 'Host'

Prediction 'Total\_Medals'
Mean Squared Error (MSE): 38.02
R-squared (R2): 0.378

Prediction **'Silver**'
Mean Squared Error (MSE): 34.85
R-squared (R2): -0.68

Prediction **'Gold'** Mean Squared Error (MSE): 20.63 R-squared (R2): 0.17

Prediction 'Bronze' Mean Squared Error (MSE): 15.47 R-squared (R2): 0.312



### × Predictions Model 4

### Prediction 'Total\_Medals'

|   | Year | Predicted | Actual | Error  |  |
|---|------|-----------|--------|--------|--|
| 0 | 2004 | 98.64     | 101    | -2.36  |  |
| 1 | 2008 | 106.30    | 110    | -3.70  |  |
| 2 | 2012 | 104.29    | 103    | 1.29   |  |
| 3 | 2016 | 109.54    | 121    | -11.46 |  |

#### Prediction 'Silver'

|   | Year | Predicted | Actual | Error |  |
|---|------|-----------|--------|-------|--|
| 0 | 2004 | 30.34     | 39     | -8.66 |  |
| 1 | 2008 | 32.88     | 39     | -6.12 |  |
| 2 | 2012 | 32.20     | 28     | 4.20  |  |
| 3 | 2016 | 33.94     | 37     | -3.06 |  |

#### Prediction 'Gold'

|   | Year | Predicted | Actual | Error |
|---|------|-----------|--------|-------|
| 0 | 2004 | 40.58     | 36     | 4.58  |
| 1 | 2008 | 42.68     | 36     | 6.68  |
| 2 | 2012 | 42.43     | 46     | -3.57 |
| 3 | 2016 | 43.95     | 46     | -2.05 |

#### Prediction 'Bronze'

|        | Year | Predicted | Actual | Error |  |
|--------|------|-----------|--------|-------|--|
| 0 2004 |      | 27.73     | 26     | 1.73  |  |
| 1      | 2008 | 30.73     | 35     | -4.27 |  |
| 2      | 2012 | 29.66     | 29     | 0.66  |  |
| 3      | 2016 | 31.65     | 38     | -6.35 |  |



# **Model 4 (Changing Train/ Test Set)**

Prediction 'Total\_Medals'

Train Set 'Year' <= 1988 Test Set 'Year' > 1988

MSE: 589.62 R2:-6.906

Train Set 'Year' <= 1992 Test Set 'Year' > 1992

MSE: 709.34 R2:-7.32

Train Set 'Year' <= 1996 Test Set 'Year' > 1996

MSE: 45.43 R2:0.542

Train Set 'Year' <= 2000 Test Set 'Year' > 2000

MSE: 38.02

R2:0.378

Prediction for 2020: 95.77

Train Set 'Year' <= 2004 Test Set 'Year' > 2004

MSE: 45.04

R2:0.179

Prediction for 2020: 96.21

Train Set 'Year' <= 2008 Test Set 'Year' > 2008

MSE: 57.09

R2:0.29

Prediction for 2020: 96.75

**Total Medal Prediction** for 2020: **97.85** 

(using data till 2016 in training set and information about U.S. participation in 2020)

### × ARIMA

An ARIMA model is a class of statistical models for analyzing and forecasting time series data.

**ARIMA** is an acronym that stands for **AutoRegressive Integrated Moving Average**.

This acronym is descriptive, capturing the key aspects of the model itself. Briefly, they are:

- AR: Autoregression. A model that uses the dependent relationship between an observation and some number of lagged observations.
- I: Integrated. The use of differencing of raw observations (e.g. subtracting an observation from an observation at the previous time step) in order to make the time series stationary.
- MA: Moving Average. A model that uses the dependency between an observation and a residual error from a moving average model applied to lagged observations.



### **ARIMA**

```
from sklearn.metrics import mean_squared_error
def parser(x):
    #return datetime.strptime('190'+x, '%Y-%m')
    return datetime.strptime(x, '%Y')
series = read_csv('usa_total_data.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
df4 = pd.read csv("usa total data.csv")
error = []
X = series.values
#print(df4['Year'][0])
size = int(len(X) * 0.85)
train, test = X[0:size], X[size:len(X)]
history = [x for x in train]
predictions = list()
#print(test)
for t in range(len(test)):
    model = ARIMA(history, order=(1,1,0))
    #print(model)
    model_fit = model.fit(disp=0)
   #print(model fit)
    output = model_fit.forecast()
   yhat = output[0]
    predictions.append(yhat)
   obs = test[t]
   history.append(obs)
    print('Year=%i, predicted=%i, actual=%i' % (df4['Year'][size],yhat, obs))
    size +=1
print(len(test))
test_value = test[:-1]
predictions_value = predictions[:-1]
error = mean_squared_error(test_value, predictions_value)
```







### **ARIMA Predictions**

- ARIMA, short for 'AutoRegressive Integrated Moving Average' is actually a class of models that 'explains' a given time series based on its own past values (ref: https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/)
- We used Gold, Silver, Bronze and total medals won by USA for summer olympics between 1896 to 2016 to predict 2020 medals count for USA.
- Used 85-15 training and test model to predict medal count for 2004 onwards.
- Compared prediction and actual values (2004-2016) to fine tune ARIMA model by changing dpq values (used 1,1,0)
   (ref: https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/)
- The MSE value for 2004-2016 predictions are Gold 29.77, Silver - 26.13, Bronze - 21.09 and total - 62.82.
- There are few outliers in gold (1904 76 and 1984 82).
   If we replace these values with average gold medal won, predictions for 2004 onwards had better accuracy.

# **Logistic Regression**

- In sports, the difference between success and failure is having the right body to suit that particular sport.
- Logistic regression is basically a supervised classification algorithm.
- We use the athlete body composition data to predict whether a particular athlete going to win medal in the next Olympic.
- Used 75-25 training and test data of the 1896 2016 Olympic.



| Sport      | Age  | Height | Weight | Medal |
|------------|------|--------|--------|-------|
| Basketball | 24.0 | 180.0  | 80.0   | 0.0   |
| Judo       | 23.0 | 170.0  | 60.0   | 0.0   |
| Badminton  | 31.0 | 172.0  | 70.0   | 0.0   |
| Sailing    | 30.0 | 159.0  | 55.5   | 0.0   |
| Sailing    | 34.0 | 159.0  | 55.5   | 0.0   |
|            |      |        | 377    |       |
| Hockey     | 27.0 | 168.0  | 76.0   | 0.0   |
| Football   | 21.0 | 175.0  | 75.0   | 0.0   |
| Rowing     | 24.0 | 183.0  | 72.0   | 0.0   |
| Rowing     | 28.0 | 183.0  | 72.0   | 0.0   |
| Basketball | 33.0 | 171.0  | 69.0   | 0.0   |
|            |      |        |        |       |

# Logistic Regression Predictions ××

#### Team Sports:

Basketball

Training Data Score: 0.7550135501355013 Testing Data Score: 0.737012987012987

Football

Training Data Score: 0.776792598303778 Testing Data Score: 0.7641618497109827

Water Polo

Training Data Score: 0.7423789599521817 Testing Data Score: 0.7455197132616488

Hockey

Training Data Score: 0.748491879350348 Testing Data Score: 0.760778859527121 Individual Sports:

Gymnastics

Training Data Score: 0.9396659187235104 Testing Data Score: 0.9367988032909499

Shooting

Training Data Score: 0.9306647605432452 Testing Data Score: 0.9242315939957112

Archery

Training Data Score: 0.892 Testing Data Score: 0.9

Swimming

Training Data Score: 0.8717054263565891 Testing Data Score: 0.8736923672994963





# DEMONSTRATION **TIME**



### **ARIMA Vs Linear Regression Vs Logistic Regression**



The choice between ARIMA and regression for times series models comes down to a few issues:

- ARIMA generally requires at least 50 data points but > 100 is preferred.
- It is also a rather complex model to estimate and the reliability between experts in determining the right model is very low.
- It is also limited to a single series, unless more complex models are pieced together.
- On the other hand, regression models require as few as 4 observations, the model specification and estimation are much more straightforward, and multiple series can be estimated within the same model.



### × Limitations

- Linear Regression Model
  - The model which gave the best results for USA could not be used to make predictions for other countries.
  - MSE was high while using the same model for other countries
- ARIMA
  - Could only use one feature to predict
- Logistic Regression
  - Do not have high accuracy rate for the team sports.



