Department of Biochemical Engineering & Biotechnology BEL 433: Enzyme Science & Engineering Major Test, 2018

M.M.: 20

Time: 90 Mins

- How droplet microfluidic is used in enzyme screening? Explain how single cell encapsulation per droplet is achieved in this system?
 - 2. What is directed evolution? How can one engineer protein with desired specificity to a particular substrate?
- 3. Sangeeta Bhatia group in har vard designed this novel peptides as non-invasive diagnostic tool for cancer detection. Explain why such a method can be useful compared to existing systems. Principle behind this assay.

- 4 Write short note on Kinetic resolution of alchols. Why this is useful in pharmaceutical industry.
- 5. Write short note on Co-factor regeneration in reactor.
- 6. How can you improve temperature stability of enzyme using protein engineering?
- 7. Write short note on L-DOPA synthesis by enzymatic route. How this process is one most economical compared to chemical synthesis?
- 8. Explain the role of Lipase enzyme in biodiesel production.
- 9. List different enzyme used in conversion of cellulose to ethanol and their use.
- 10. What are the advantage of using enzymatic reaction in non-aqueous media? Give an example.

BEL 433: Enzyme Science & Engineering

Laboratory Quiz – 10 marks

A glucoamylase producer claims that its commercial preparation has an activity of 0.033 katals/Land you have to check the accuracy of such information. To do so, you will follow the procedure recommended by the enzyme producer, which determinesthe glucoamylase activity using maltose as a substrate (maltose + H2O -2glucose) and an enzymatic kit (Glucostat) that quantifies glucose according to:

Glucose
$$+$$
 ATP $\xrightarrow{\text{hexokinase}}$ Glucose 6 -Pi $+$ ADP Glucose 6 -Pi $+$ NAD+ $\xrightarrow{\text{glucose } 6$ -Pi gluconate $+$ NADH $+$ H $^+$

The NADH formed can conveniently be measured spectrophotometrically by recording optical density (OD) at 340nm. The extinction coefficient of NADH is90mL/cm/mmol.According to the stoichiometry, 1mol of glucose reacted yields1mol of NADH. The following results have been obtained with the properly diluted glucoamylasepreparation by putting it in contact with a saturated maltose solution under an excess of ATP, NAD+ and coupling enzyme activities at the conditions recommended by the enzyme producer:

Reaction time (minutes)	OD ₃₄₀ (1:7500 dilution)
0	0.005
1	0.0563
2	0.107
3	0.159
4	0.210
5	0.261

Working with a purified L-malic enzyme (L-malate:TPNoxidoreductasedecarboxylating,EC(1.1.1.40) from 2. Escherichia coli, a KM of 0.15mM and a Vmaxof5µmol/sec/mgwere obtained. The strain was subjected to directed evolution to obtain a mutant L-malic enzyme whose affinity for L-malate was doubled, but the reactivity was reduced by 70% with respect to the native enzyme. The enzyme catalyzes the reaction:

(S)-malate + NADP
$$^+$$
 \rightarrow pyruvate + NADPH + CO₂

In one kinetic experiment, 1 mg of native enzyme and 1 mg of mutant enzymewere added to an L-malate solution and the initial reaction rate obtained was 385 µmoles pyruvate permin. What was the (S)-malate concentration in thesolution?

- State beer-lamberts law. Why an OD above 1 is not taken? Which dye is used in Bradford method, and how does it work? What is a standard curve, and which protein is used to make standard curve in Bradford method?
- Explain the polymerization mechanism of alginate. 4.
- The hexokinase enzyme that uses glucose as substrate was characterized in the presence of 2 inhibitors I_1 (triangle) and $I_2(x)$. The initial rates of the reaction were determined in the presence and absence of the inhibitors as shown below. Identify the type of inhibition by I_1 and I_2 . Determine all the kinetic parameters i.e., V_{max} , K_m , K_{11} , K_{12} .

