Decompilare fără goto cu DREAM

Adrian Manea

510, SLA

Problema și soluția propusă

Articolul: No More Gotos: Decompilation Using Pattern-Independent Control Flow Structuring and Semantics-Preserving Transformations, K. Yakdan et al., NDSS 2015

Decompilatoarele, bazate pe analiză structurală pe baza grafului de control (CFG), generează instrucțiuni goto atunci cînd nu găsesc o continuare așteptată în graf.

DREAM elimină goto prin transformări care păstrează semantica și alte prelucrări logice pe graf.

Concurența: Hex-Rays și Phoenix.

Benchmark: GNU coreutils.

Procedura de ansamblu

Eliminarea goto se va putea face ținînd cont că:

- Structurile de control din program au un singur punct de intrare şi un singur punct succesor ⇒ se pot simplifica;
- Tipul și posibilele ramificații ale structurilor de control se pot analiza folosind *logică* pe CFG.

Etape, în mare:

- Se alcătuiește CFG;
- Se structurează CFG folosind și transformări invariante semantic;
- Se obține AST (arborele de sintaxă abstractă);
- Se fac optimizări post-structurare (redenumiri de variabile, evidențierea funcțiilor pe șiruri de caractere, simplificarea ramificațiilor).

Etapele DREAM

- Dezasamblează binarul folosind IDA Pro ⇒ CFG;
- Analiza fluxului de date, inclusiv propagarea constantelor și eliminarea codului mort (inaccesibil);
- Inferă tipurile variabilelor, folosind TIE;
- Structurează CFG:
 - Nu folosește pattern matching ("pattern independent");
 - Folosește DFS (depth-first search);
 - Tratează separat zonele cu cicluri de cele fără cicluri;
 - Aplică transformări care păstrează semantica;
 - Aplică optimizări finale.

Transferul controlului (Reaching Condition)

Fie $G(N, E, n_{in})$ graful de control.

Cu DFS între n_{src} și n_{exit} fixate obținem un subgraf aciclic $S_G(n_s, n_e)$ ("slice") și drumurile *simple* între n_s și n_e (similar: Cifuentes).

```
Algorithm 1: Graph Slice
  Input: Graph G = (N, E, h); source
            node n_s; sink node n_e
  Output: S_G(n_s, n_e)
1 S_G \leftarrow \emptyset;
2 dfsStack \leftarrow \{n_s\};
3 while E has unexplored edges do
      e := DFSNextEdge(G);
      n_t := target(e);
      if n_t is unvisited then
          dfsStack.push(n_t);
          if n_t = n_e then
              AddPath (S_C, dfsStack)
          end
10
      else if n_t \in S_G \wedge n_t \notin \mathsf{dfsStack}
11
      then
          AddPath (S_G, dfsStack)
12
      end
13
       RemoveVisitedNodes()
15 end
```

Exemplu

(a) CFG - exemplu de lucru

(b) $S_G(d_1, n_9)$

$$d_1 \rightarrow n_9 \Leftrightarrow (d_1 \wedge \neg d_3) \vee (\neg d_1 \wedge \neg d_2)$$

Structurarea zonelor aciclice

Ideea: Putem ordona un graf orientat aciclic inversînd ordinea parcurgerii DF (ordine topologică);

Calculăm condiția de accesibilitate de la intrare la fiecare nod;

Obținem un AST al nodurilor în ordine topologică, ne-optim;

Rafinăm acest AST folosind logică (condiții complementare, switch pentru clustere de control) și eventuale if-then-else în cascadă.

Exemplu: În regiunea R_2 , avem condițiile complementare

if (b1 AND b2) then n6 \pm i if (\tilde{b} 1 OR \tilde{b} 2) then n4 or n5.

Putem structura sub forma if (b1 AND b2) then n6 else n5.

Structurarea zonelor cu cicluri

- Găsim nodurile care conduc la bucle;
- ② Refacem zonele ciclice ⇒ o singură intrare, un singur succesor;
- Obţinem AST pentru buclă;
- Determinăm tipul buclei și condiția de intrare prin analiza AST;

```
Algorithm 2: Loop Successor Refinement
    Input: Initial sets of loop nodes N_{loop} and successor
                 nodes N_{succ}; loop header n_h
   Output: Refined N_{loop} and N_{succ}
 1 N_{new} \leftarrow N_{succ};
 2 while |N_{succ}| > 1 \wedge N_{new} \neq \emptyset do
         N_{new} \leftarrow \emptyset;
         for all the n \in N_{succ} do
              if preds (n) \subseteq N_{loop} then
                   N_{loop} \leftarrow N_{loop} \cup \{n\};
                   N_{succ} \leftarrow N_{succ} \setminus \{n\};
                   N_{new} \leftarrow N_{new} \cup
                    \{u: u \in [\operatorname{succs}(n) \setminus N_{loop}] \wedge \operatorname{dom}(n_h, u)\};
              end
         end
         N_{encc} \leftarrow N_{encc} \cup N_{new}
12 end
```

Identificarea logică a buclelor

$$\frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Seq \left[n_{i}\right]^{i \in 1..k}\right] \quad n_{1} = \mathcal{B}_{r}^{c}}{n_{\ell} \sim Loop \left[\tau_{\mathbf{while}}, \neg c, Seq \left[n_{i}\right]^{i \in 1..k}\right]} \quad \mathbf{While} } \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Seq \left[n_{i}\right]^{i \in 1..k}\right]}{n_{\ell} \sim Loop \left[\tau_{\mathbf{dowhile}}, \neg c, Seq \left[n_{i}\right]^{i \in 1..k}\right]} \quad \mathbf{Mille} } \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Seq \left[n_{i}\right]^{i \in 1..k}\right]}{\mathbf{Mille}} \quad \mathbf{Mille} } \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Seq \left[n_{i}\right]^{i \in 1..k}\right]}{\mathbf{Mille}} \quad \mathbf{Mille} } \quad \mathbf{Mille} \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Seq \left[n_{i}\right]^{i \in 1..k}\right]}{\mathbf{Mille}} \quad \mathbf{Mille} } \quad \mathbf{Mille} \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Seq \left[n_{i}\right]^{i \in 1..k}\right]}{\mathbf{Mille}} \quad \mathbf{Mille} } \quad \mathbf{Mille} \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Seq \left[n_{i}\right]^{i \in 1..k}\right]}{\mathbf{Mille}} \quad \mathbf{Mille} } \quad \mathbf{Mille} \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Seq \left[n_{i}\right]^{i \in 1..k}\right]}{\mathbf{Mille}} \quad \mathbf{Mille} } \quad \mathbf{Mille} \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Cond \left[c, n_{\ell}, n_{\ell}\right]\right]}{\mathbf{Mille}} \quad \mathbf{Mille} \quad \mathbf{Mille} \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Cond \left[c, n_{\ell}, n_{\ell}\right]\right]}{\mathbf{Mille}} \quad \mathbf{Mille} \quad \mathbf{Mille} \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Cond \left[c, n_{\ell}, n_{\ell}\right]\right]}{\mathbf{Mille}} \quad \mathbf{Mille} \quad \mathbf{Mille} \\ \frac{n_{\ell} = Loop \left[\tau_{\mathbf{endless}}, -, Cond \left[c, n_{\ell}, n_{\ell}\right]\right]}{\mathbf{Mille}} \quad \mathbf{Mille} \quad \mathbf{Mille$$

+ Transformări care *păstrează semantica* buclei prin înregistrarea punctelor de intrare.

Optimizări finale (pentru lizibilitate)

- Simplificarea structurilor de control:
 - if (c) then (x = v) else $(x = w) \rightsquigarrow x = c ? v : w;$
 - Se transformă while în for oricît de des este posibil;
- Identificarea funcțiilor pe șiruri de caractere:
 - strcpy, strlen, strcmp sînt înlocuite de definițiile lor de compilator, așa că DREAM le evită sau le evidențiază în mod special;
- Redenumirea variabilelor, e.g. cele corespunzătoare API-urilor folosite.

Teste și comparații

Considered Functions F	F	Number of goto Statements			Lines of Code			Compact Functions		
		DREAM	Phoenix	Hex-Rays	DREAM	Phoenix	Hex-Rays	DREAM	Phoenix	Hex-Rays
coreutils functions with duplicates										
$T_1: F_p^r \cap F_h^r$	8,676	0	40	47	93k	243k	120k	81.3%	0.3%	32.1%
$T_2: F_d \cap F_p \cap F_h$	10,983	0	4,505	3,166	196k	422k	264k	81%	0.2%	30.4%
coreutils functions without duplicate	s									
$T_3: F_p^r \cap F_h^r$	785	0	31	28	15k	30k	18k	74.9%	1.1%	36.2%
$T_4: F_d \cap F_p \cap F_h$	1,821	0	4,231	2,949	107k	164k	135k	75.2%	0.7%	31.3%
Malware Samples										
ZeusP2P	1,021	0	N/A	1,571	42k	N/A	53k	82.9%	N/A	14.5%
SpyEye	442	0	N/A	446	24k	N/A	28k	69.9%	N/A	25.7%
Cridex	167	0	N/A	144	7k	N/A	9k	84.8%	N/A	12.3%

TABLE III: Structuredness and compactness results. For the correctiles benchmark, we denote by F_x the set of functions decompiled by compiler x. F_x is the set of recompilable functions decompiled by compiler x. d represents DREAM, p represents Phoenix, and h represents Hex-Rays.

11 / 11