BÀI TẬP THỰC HÀNH MATLAB CƠ BẨN

1. Làm quen Matlab

- 1.1 Tính bằng tay các biểu thức sau, rồi thử lại bằng Matlab:
- a. 2 / 2 * 3
- b. $6 2 / 5 + 7 ^ 2 1$
- c. $10/2 \setminus 5 3 + 2 * 4$
- d. 3 ^ 2 / 4
- e. 3 ^ 2 ^ 2
- f. 2 + round(6/9 + 3 * 2)/2 3
- g. 2 + floor(6/9 + 3 * 2)/2 3
- h. 2 + ceil(6/9 + 3 * 2)/2 3
- k. fix(4/9)+fix(3*(5/6))
- 1.2 Dùng Matlab tính các biểu thức sau:
- a. $\frac{3+4}{5+\sqrt{2}}$
- b. $2\pi^{2}$
- c. $\sqrt[3]{4.5}$
- $d. \frac{1 \frac{2}{3+2}}{1 + \frac{2}{3-2}}$
- e. $1000(1+0.15/12)^{60}$
- f. $\frac{1+2-e^3+\sin(5)}{\cos 6-7^{-8}}$
- 1.3 Tính các biểu thức sau, làm tròn đến 15 chữ số:
- $a. \ cosh(0.1)$
- b. ln 2
- c. arctan(1/2)

1.4 Tìm a, b, c biết:

$$a = 5x^2 + 6y - 7z$$
; $b = \frac{3y^2}{4x - 5z^3}$; $c = \left(1 + \frac{1}{x^2}\right)^{-1}$ với $x = 10$, $y = -20$ và $z = 30$

- 1.5 Dự đoán kết quả xuất ra màn hình:
- a. 2;4

b. 2 / 4

c. 2 \ 4

d. 2, 4

e. 2:4

1.6 Cho x = 2, y = 3. Dự đoán lần lượt các kết quả tiếp theo:

$$z = x$$

$$y = y +_Z$$

$$x = y + x - z$$

$$x + y - z$$

1.6 Giải phương trình bậc hai sau bằng cách thực hiện từng bước, sau đó kiểm tra với hàm trong Matlab

$$x^2 - 3x + 2 = 0$$
; $x^2 - x + 2 = 0$

1.8 Tạo một số ngẫu nhiên có giá trị từ 0 đến 1

//	0 đến 100
//	n đến m (n <m) (="" n,m="" nhập="" th="" vào)<=""></m)>

1.9 Giải các phương trình sau

a.
$$x^3 - 3x + 1 = 0$$

b.
$$3x^4 - 3x^2 + x - 1 = 0$$

c.
$$\sin x = 2 - x$$

1.10 Giải hệ phương trình sau:

$$\begin{cases} x + 2y = 4 \\ 2x - y = 3 \end{cases}$$

- 1.11 Cho a =36, b =15. Tính bằng tay các biểu thức sau, rồi thử lại bằng Matlab
- a. mod(a,b)
- b. rem(a,b)
- c. gcd(a,b)
- d. lcm(a,b)
- **1.12** Cho số phức N = 13 7i. Dùng Matlab tìm:
- a. Phần thực và ảo của N.
- b. Modun của N.
- c. Góc của N.
- d. Số phức liên hợp của N.

2. Vector

2.1 Tạo một vector chứa các số nguyên từ 31 đến 75.

Tạo một vector có 10 phần tử có giá trị nguyên được lấy ngẫu nhiên trong khoảng [0, 100] Tạo một vector có 10 phần tử có giá trị nguyên được lấy ngẫu nhiên trong khoảng [-20, 10]

- **2.2** Cho $x = \begin{bmatrix} 3 & 1 & 5 & 7 & 9 & 2 & 6 \end{bmatrix}$, dự đoán kết quả các dòng lệnh sau và thử lại bằng Matlab:
- a. x(3)
- b. x(1:7)
- c. x(1:end)
- d. x(1:end-1)
- e. x(6:-2:1)
- f. x([1 6 2 1 1])
- g. sum(x)
- 2.3 Dự đoán kết quả của các câu lệnh sau và kiểm tra lại bằng Matlab:
- a. x = ones(1,10)
- b. y = zeros(5,1)
- c. z = linspace(1,4,4)
- d. t = logspace(1,3,3)
- e. u = rand(1,7)
- **2.4** Cho x = [2 5 1 6].
- a. Cộng thêm 16 vào tất cả các phần tử.
- b. Cộng thêm 3 vào các phần tử ở vị trí lẻ.
- c. Lấy căn bậc 2 tất cả các phần tử.
- d. Bình phương tất cả các phần tử.
- **2.5** Cho x, y lần lượt là các vector cột. $x = [3 \ 2 \ 6 \ 8]$, $y = [4 \ 1 \ 3 \ 5]$.
- a. Lấy tổng các phần tử của x cộng thêm vào từng phần tử của y.
- b. Luỹ thừa mỗi phần tử của x với số mũ tương ứng là các phần tử của y.
- c. Chia các phần tử của y với các phần tử tương ứng của x.
- d. Nhân các phần tử của x với các phần tử tương ứng của y, đặt trong vector z.
- e. Tính tổng các phần tử của z, gán cho w.
- f. Tính x.* y w.
- g. Tích vô hướng của ${\bf x}$ và ${\bf y}$

Lưu ý: x' là ma trận chuyển vị của x

- 2.6 Tạo các vector x sau
- a. [2, 4, 6, 8,2n]
- b. [10, 8, 6, 4, 2, 0, -2, -4.....-2n]
- c. [1, 1/2, 1/3, 1/4, 1/5,1/n]
- d. [0, 1/2 2/3, 3/4, 4/5,(n-1)/n]

Lưu ý: nhập vào giá trị n

- **2.7** Tạo vector x với các phần tử là $x_n = (-1)^{n+1}/(2n-1)$. Tính tổng 100 phần tử đầu tiên của x.
- **2.8** Cho 2 đa thức $f = 15x^3 7x^2 + 2x + 4$ và $g = 9x^2 17x + 3$. Sử dụng mảng để tính:
- a. Tích của f.g
- b. Phần dư và phần thương của f/g
- c. Căn bậc 2 của f.

3. Ma trận

3.1 Cho ma trận
$$C = \begin{bmatrix} 6 & 9 & 5 & 1 \\ 8 & 7 & 2 & 3 \\ 1 & 3 & 4 & 4 \\ 5 & 2 & 8 & 2 \end{bmatrix}$$
 và $D = \begin{bmatrix} 4 & 8 \\ 3 & 7 \\ 2 & 3 \\ 5 & 1 \end{bmatrix}$, dùng Matlab:

- a. Tạo ma trận E1 là 2 cột nằm giữa của ma trận C sử dụng toán tử ':'
- b. Tạo ma trận E2 từ hàng 1 và 2 và cột 2 và 3 của ma trận C sử dụng toán tử ':'
- c. Tạo ma trận E3 bằng cách ghép 2 ma trận E1 và D với nhau.
- d. Tìm tích C_{24} và D_{12} .
- **3.2** Cho các mảng sau $F = [3\ 21\ 6\ 17], G = [4\ 27\ 9\ 3] và H = [1\ 2\ 9\ 15]$
- a. Tạo ma trận K1 từ F, G, H mà F là hàng đầu tiên, G là hàng thứ hai, H là hàng thứ ba.
- b. Tạo ma trận K1 từ F, G, H mà F là cột đầu tiên, G là cột thứ hai, H là cột thứ ba.
- 3.3 Dự đoán kết quả và kiểm tra những lệnh sau trong Matlab:
- a. A = zeros(2,3)
- b. B = ones(3,3)/2
- c. C = rand(3,4)
- d. D = randn(3,3)
- e. E = eye(3,3)
- **3.1** Cho $x = [1\ 4\ 8], y = [2\ 1\ 5]$ và $A = [3\ 1\ 6\ ;\ 5\ 2\ 7].$ Xét xem dòng lệnh nào hợp lệ, dự đoán kết quả, giải thích; rồi thử lại bằng Matlab :
- a. x + y
- b. x + A
- c. x' + y
- $d.\ A-[x'\ y']$
- e. [x; y']
- f. [x ; y]
- g. A 3
- h. x*A; x.*A; A*x; A.*x
- i. A/y; A./y

```
3.3 Cho A = [2 7 9 7; 3 1 5 6; 8 1 2 5], dự đoán kết quả, giải thích; rồi thử lại bằng Matlab: a. A'
b. A(:,[1 4])
c. A([2 3], [3 1])
d. reshape(A, 2, 6)
e. A(:)
f. flipud(A)
g. fliplr(A)
h. [A; A(end,:)]
i. A(1:3,:)
j. [A; A(1:2,:)]
k. sum(A)
l. sum(A')
m. sum(A, 2)
```

- **3.4** Cho ma trận A = [2 4 1 ; 6 7 2 ; 3 5 9], viết lệnh Matlab để
- a. Gán cho vector x là dòng thứ nhất của A.

n. [A : sum(A)] [sum(A,2) : sum(A(:))]

- b. Gán cho ma trận y là hai dòng còn lại (cuối) của A.
- c. Tính tổng theo dòng ma trận A.
- d. Tính tổng theo cột ma trận A.
- e. Tìm giá trị lớn nhất và nhỏ nhất của ma trận.
- f. Tính tổng các phần tử của A
- 3.5 Hãy tạo ra ma trận 4x4 có giá trị nguyên nằm trong khoảng [-10,10], Sau đó:
- a. Cộng mỗi phần tử của ma trận cho 15
- b. Bình phương mỗi phần tử của ma trận
- c. Cộng thêm 10 vào các phần tử ở dòng 1 và dòng 2
- d. Cộng thêm 10 vào các phần tử ở cột 1 và cột 4
- **3.6** Cho vecto x=[2 4 1 6], y=[5 9 1 0]. Hãy tạo ra ma trận
- a. 4x6 toàn là số 0,b. 4x5 toàn là số 1, ma trận đơn vị 5x5
- b. B có tính chất: dòng 1 và 4 có giá trị là vectơ x, dòng 2 và 3 có giá trị là vectơ y
- c. C có tính chất: cột 1 và 3 có giá trị là vecto x, cột 2 và 4 có giá trị là vecto y
- **3.7** Cho A = [2 7 9 7 ; 3 1 5 6 ; 8 1 2 5; 1 2 3 5], viết lệnh Matlab để
- a. Gán cho ma trận B là các cột ở vị trí chẵn
- b. Gán cho ma trận C là các dòng ở vị trí lẻ
- c. Gán lại A thành chuyển vị của nó
- d. Tính nghịch đảo mọi phần tử của A
- e. Lấy căn bậc hai mọi phần tử của A
- f. Xóa cột thứ 3 của A
- g. Xóa hàng thứ 2 của A

3.8 Cho ma trận
$$A = \begin{bmatrix} 12.11 & -7.9 & 9.23 \\ 5.06 & 6.35 & 21.7 \\ -3.34 & 2.67 & 14.38 \end{bmatrix}$$
, viết lệnh Matlab để:

- a. Tìm ln của giá trị tuyệt đối tất cả các phần tử của A
- b. Tìm log cơ số 10 của giá trị tuyệt đối tất cả các phần tử của A
- c. Tìm sin, cos của tất cả các phần tử của A.
- d. Làm tròn những phần tử của A đến số nguyên gần nhất.
- e. Làm tròn những phần tử của A đến số nguyên lớn hơn.
- f. Tìm giá trị lớn nhất và nhỏ nhất của mỗi cột của A.
- g. Sắp xếp những phần tử trong mỗi cột của A theo thứ tự tăng dần.
- h. Sắp xếp những phần tử trong mỗi cột của A theo thứ tự giảm dần.
- i. Tìm cỡ của ma trân A.
- 3.9 Giải các phương trình tuyến tính sau:

$$\begin{cases} 2x_1 + x_2 + 5x_3 + x_4 = 5 \\ x_1 + x_2 - 3x_3 - 4x_4 = -1 \\ 3x_1 + 6x_2 - 2x_3 + x_4 = 8 \\ 2x_1 + 2x_2 + 2x_3 - 3x_4 = 2 \end{cases} \begin{cases} x_1 + x_2 + x_3 + x_4 = 2 \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 2 \\ 2x_1 + 3x_2 + 5x_3 + 9x_4 = 2 \\ x_1 + x_2 + 2x_3 + 7x_4 = 2 \end{cases}$$