

User Manual UM2784

CAENDigitizer LabVIEW Library

LabVIEW VI for CAEN Digitizers high level management

Rev. 1 - 15 January 2015

Purpose of this User Manual

This User Manual contains the full description of the CAENDigitizer LabVIEW library.

Change Document Record

Date	Revision	Changes
11 April 2013	00	Initial release
15 January 2015	01	Added support to Demos, updated DPP functions, added HV VI for
		high voltage management

Symbols, abbreviated terms and notation

ADC	Analog to Digital Converte
DPP	Digital Pulse Processing
FFT	Fast Fourier Transform
FSR	Full Scale Range
OS	Operating System
SBC	Single Board Computer

Reference Document

[RD1]	UM1935 - CAENDigitizer User & Reference Manual
[RD2]	GD2783 – First Installation Guide to Desktop Digitizers & MCA
[RD3]	Technical Information Manual of V1718 and VX1718 VME – USB2.0 Bridge
[RD4]	Technical Information Manual of A3818 PCI Express Optical Link Controller
[RD5]	Technical Information Manual of A2818 PCI Optical Link Controller
[RD6]	UM1934 - CAENComm User & Reference Manual
[RD7]	AN2472 - CONET1 to CONET2 migration Application Note
[RD8]	UM2606 – DT5780 Digital MCA
[RD9]	UM3188 - DT5790 Digital Pulse Analyzer User Manual
[RD10]	UM2580 – DPSD User Manual
[RD11]	UM2085 – DPCI User Manual
[RD12]	UM3182 – MC ² Analyzer User Manual

All documents can be downloaded at: http://www.caen.it/csite/LibrarySearch.jsp

Electronic Instrumentation

CAEN S.p.A. Via Vetraia, 11 55049 Viareggio (LU) - ITALY Tel. +39.0584.388.398 Fax +39.0584.388.959 info@caen.it

© CAEN SpA – 2015

Disclaimer

www.caen.it

No part of this manual may be reproduced in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of CAEN SpA.

The information contained herein has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. CAEN SpA reserves the right to modify its products specifications without giving any notice; for up to date information please visit www.caen.it.

Index

	Purpose of this User Manual	
	Change Document Record	2
	Symbols, abbreviated terms and notation	2
	Reference Document	2
Ind	ex	4
	t of Figures	
	t of Tables	
1	Introduction	7
	Drivers & Libraries	8
	Drivers	8
	Libraries	
	Installation	
	Return codes	
2	Communication	12
	OpenDigitizer	12
	CloseDigitizer	
	GetInfo	
	Reset	
	WriteRegister	
	ReadRegister	
	Interrupt configuration	
	Set / GetInterruptConfig	
	IRQWait	
	VMEIRQWait	
	VMEIRQCheck	18
	IACKCycle	18
	VMEIACKCycle	
	RearmInterrupt	
	Data Readout	
	ClearData	
	DisableEventAlignedReadout	
	Set / GetMaxNumEventsBLTReadData	
	GetNumEvents	
	GetEventInfo	
	DecodeEvent	
	LoadDRS4CorrectionData	
	Enable/Disable DRS4Correction	25
3	Trigger configuration	26
	SendSWtrigger	
	Set / GetSWTriggerMode	26
	Set / GetExtTriggerInputMode	27
	Set / GetChannelSelfTrigger	27
	Set / GetGroupSelfTrigger	
	Set / GetChannelGroupMask	
	Set / GetChannelTriggerThreshold	
	Set / GetGroupTriggerThreshold	
	Set / GetChameruserolanty Set / GetRunSynchronizationMode	
	Set / GetiOLevel	
	Set / GetTriggerPolarity	
	Set / GetGroupFastTriggerThreshold	
	Set / GetGroupFastTriggerDCOffset	32
	Set / GetFastTriggerDigitizing	
	Set / GetFastTriggerMode	
	Set / GetDRS4SamplingFrequency	
	Set / GetOutputSignalMode	33

4	Acquisition	34
	Set / GetChannelEnableMask	34
	Set / GetGroupEnableMask	34
	SWStartAcquisition	35
	SWStopAcquisition	35
	Set / GetRecordLength	35
	Set / GetPostTriggerSize	36
	Set / GetAcquisitionMode	36
	Set / GetChannelDCOffset	37
	Set / GetGroupDCOffset	37
	Set / GetDESMode	38
	Set / GetAnalogMonOutput	
	Set / GetAnalogInspectionMonParams	
	Set / GetEventPackaging	39
	Set / GetZeroSuppressionMode	
	Set / GetChannelZSParams	
	Acquisition example	42
5	DPP specific VIs	45
	Set / GetDPPreTriggerSize	45
	GetDPPEvents	
	DecodeDPPWaveforms	47
	SetDPPEventAggregation	48
	Set / GetNumEventsPerAggregate	
	Set / GetMaxNumAggregatesBLT	
	SetDPPParameters	
	Set / GetDPPAcquisitionMode	51
	Set / GetDPPTriggerMode	52
	Set / GetDPP_PHA_VirtualProbe	53
	Set / GetDPP_PSD_VirtualProbe	54
	Set / GetDPP_CI_VirtualProbe	55
6	HV specific VIs	56
	Read HV Status	
	Read_HV_VMon	
	Read HV IMon	
	Read HV VExt	
	Read HV TRes	58
	Set / Get_HV_Power	58
	Set / Get_HV_VSet	
	Set / Get_HV_ISet	59
	Set / Get_HV_RampUp	59
	Set / Get_HV_RampDown	59
	Set / Get_HV_VMax	60
	Set / Get_HV_PWDownMode	60
	Set / Get_HV_MonitorMode	61
	Get_HV_ChannelsInfo	61
	Reset_HV	62
7	DEMOs	63
	Digitizer Demo for firmware standard	
	DPP-PSD / DPP-CI Demos	
	DPP-PHA Demo for 724 series, DT5780, and DT5781	
•		
8	Examples of communication settings	
	Example No.1	
	Example No.2	74
	Example No.3	75
	Example No.4	77
	Example No.5	
9	Technical support	
,	- Cermical Support	······ / 3

List of Figures

Fig. 1.1: Hardware and Software layers	9
Fig. 1.1: Hardware and Software layers Fig. 4.1: Acquisition example control panel	42
Fig. 4.2: Block Diagram Part #1	43
Fig. 4.3: Block Diagram Part #2	44
Fig. 4.4: Block Diagram Part #3	44
Fig. 8.1: Connection example no.1	73
Fig. 8.2: Connection example no.2.	74
Fig. 8.3: Connection example no.3.	75
Fig. 8.4: A2818 network scheme	76
Fig. 8.5: Connection example no.4	77
Fig. 8.6: Connection example no.5	78
List of Tables	
Tab. 1.1: Return codes table	11

1 Introduction

CAEN has developed a family of Sampling ADCs modules with different form factors (VME, NIM and Desktop). They all provide the possibility to be handled and readout by a host PC via different communication link.

CAENDigitizer is a library of functions specifically designed for the digitizer families running both standard firmware and DPP (Digital Pulse Processing) firmware. The library allows the user to connect to the digitizer, program it and manage the data acquisition: simple readout programs can be made with no need to know the details of the registers and the event data format. Indeed the CAENDigitizer library implements a common interface for higher software layers, masking the details of the physical channel and its communication protocol.

A specific version of CAENDigitizer library in C is available for Windows and Linux 32 and 64-bit platforms, and it is documented in [RD1].

Drivers & Libraries

Drivers

In order to deal with the hardware, CAEN provides the drivers for all the different types of physical communication interfaces featured by the specific digitizer and compliant with Windows and Linux OS:

• **USB 2.0 Drivers for NIM/Desktop** boards are downloadable on CAEN website (www.caen.it) in the "Software/Firmware" tab of the digitizer web page (**login required**).

Note: Windows OS USB driver installation for Desktop/NIM digitizers is detailed in [RD2].

• USB 2.0 Drivers for V1718 CAEN Bridge, required for the VME boards interface, is downloadable on CAEN website (www.caen.it) in the "Software/Firmware" tab of the V1718 web page (login required).

Note: For the installation of the V1718 USB driver, refer to the User Manual of the Bridge ([RD3]).

Optical Link Drivers are managed by the A2818 PCI card or the A3818 PCIe card. The driver installation
package is available on CAEN website in the "Software/Firmware" area at the A2818 or A3818 page (login
required)

Note: For the installation of the Optical Link driver, refer to the User Manual of the specific Controller ([RD4], [RD5]).

Libraries

The CAENDigitizer library is based on a set of middleware software also required by CAEN software tools for a correct functioning. These libraries, including also demo and example programs, represent a powerful base for users who want to develop customized applications for the digitizer control (communication, configuration, readout, etc.):

 CAENVMELib is a set of ANSI C functions which allows the user to manage and configure the CAEN Bridges and Controllers V1718/VX1718 (VME-USB2.0 Bridge), V2718/VX2718 (VME-PCI/PCIe Optical Link Bridge), and A2818/A3818 (PCI/PCIe-CONET Controller).

The CAENVMElib installation package is available on CAEN website in the 'Download' area at the CAENVMELib Library page. Reference document: [RD3].

CAENComm library manages the communication at low level (read and write access). The purpose of the
CAENComm is to implement a common interface to the higher software layers, masking the details of the
physical channel and its protocol, thus making the libraries and applications that rely on the CAENComm
independent from the physical layer. Moreover, the CAENComm is based on CAENVMELib and it requires the
CAENVMELib library (access to the VME bus) even in the cases where the VME is not used. This is the reason
why CAENVMELib has to be already installed on your PC before installing the CAENComm.

The CAENComm installation package is available on CAEN website in the 'Download' area at the CAENComm Library page. Reference document: [RD6].

Currently, the CAENComm, and so the CAENDigitizer, supports the following communication interfaces (see Fig. 1.1):

- PC → USB → Digitizer (either Desktop or NIM models)
- PC \rightarrow USB \rightarrow V1718 \rightarrow VME \rightarrow Digitizers (VME models only)
- PC → PCI (A2818) → CONET → Digitizers (all models)
- PC → PCI (A2818) → CONET → V2718 → VME → Digitizers (VME models only)
- PC → PCIe (A3818) → CONET → Digitizers (all models)
- PC → PCIe (A3818) → CONET → V2718 → VME → Digitizers (VME models only)

CONET (Chainable Optical NETwork) indicates the CAEN proprietary protocol for communication on Optical Link. Refer to [RD7] for useful information.

Fig. 1.1: Hardware and Software layers

Installation

CAENDigitizer LabVIEW library works on Windows OS, 32-64 bit, and requires the third-party software LabVIEW 2009 or higher.

Before installing CAENDigitizer LabVIEW library, perform the following steps:

- Make sure that your hardware (Digitizer and/or Bridge, or Controller) is properly installed (refer to the related User Manual for hardware installation instructions).
- Make sure you have installed the driver for your OS and the physical communication layer to be used. Driver
 installation packages are downloadable on CAEN website (login required) as reported in the Drivers
 paragraph.
- Make sure you have installed the required CAEN libraries CAENVMELib and CAENComm.

Then:

• **Download the CAENDigitizer LabVIEW installation package** compliant with your OS from CAEN website under the 'Download' area at the CAENDigitizer Library page (**login required**):

Home / Products / Firmware/Software / Digitizer Software / Software Libraries / CAENDigitizer Library

Note: at this stage, if the required libraries still haven't been installed, it is possible to download them by clicking on the red link under the library packet link.

- Extract files to your host.
- Launch the installer and follow the instructions in the installation wizard.

Note: Installation of the CAENDitizer LabVIEW library also includes a "Demos" folder with a set of VI demo for acquisition with standard and DPP firmware, which are explained in this User Manual.

Return codes

Error code	Value	Meaning
CAEN_DGTZ_Success	0	Operation completed successfully
CAEN_DGTZ_CommError	-1	Communication error
CAEN_DGTZ_GenericError	-2	Unspecified error
CAEN_DGTZ_InvalidParam	-3	Invalid parameter
CAEN_DGTZ_InvalidLinkType	-4	Invalid Link Type
CAEN_DGTZ_InvalidHandler	-5	Invalid device handler
CAEN_DGTZ_MaxDevicesError	-6	Maximum number of devices exceeded
CAEN_DGTZ_BadBoardType	-7	Operation not allowed on this type of board
CAEN_DGTZ_BadInterruptLev	-8	The interrupt level is not allowed
CAEN_DGTZ_BadEventNumber	-9	The event number is bad
CAEN_DGTZ_ReadDeviceRegisterFail	-10	Unable to read the registry
CAEN_DGTZ_WriteDeviceRegisterFail	-11	Unable to write into the registry
CAEN_DGTZ_InvalidChannelNumber	-13	The Channel is busy
CAEN_DGTZ_ChannelBusy	-14	The channel number is invalid
CAEN_DGTZ_FPIOModeInvalid	-15	Invalid FPIO Mode
CAEN_DGTZ_WrongAcqMode	-16	Wrong acquisition mode
CAEN_DGTZ_FunctionNotAllowed	-17	This function is not allowed for this module
CAEN_DGTZ_Timeout	-18	Communication Timeout
CAEN_DGTZ_InvalidBuffer	-19	The buffer is invalid
CAEN_DGTZ_EventNotFound	-20	The event is not found
CAEN_DGTZ_InvalidEvent	-21	The event is invalid
CAEN_DGTZ_OutOfMemory	-22	Out of memory
CAEN_DGTZ_CalibrationError	-23	Unable to calibrate the board
CAEN_DGTZ_DigitizerNotFound	-24	Unable to open the digitizer
CAEN_DGTZ_DigitizerAlreadyOpen	-25	The Digitizer is already open
CAEN_DGTZ_DigitizerNotReady	-26	The Digitizer is not ready to operate
CAEN_DGTZ_InterruptNotConfigured	-27	The Digitizer has not the IRQ configured
CAEN_DGTZ_DigitizerMemoryCorrupted	-28	The digitizer flash memory is corrupted
CAEN_DGTZ_DPPFirmwareNotSupported	-29	The digitizer DPP firmware is not supported in this lib version
CAEN_DGTZ_NotYetImplemented	-99	The function is not yet implemented

Tab. 1.1: Return codes table

2 Communication

The functions described in this chapter allow the user to open and close the connection with the digitizer as well as to get the board information such as the serial number, the model, the firmware revision, etc. To open one board is necessary to set the physical communication channel from the PC to the device (as already indicated in the introduction). Once the device is opened, the function returns a **handle** that becomes the unique identifier of that device; any access operation to the device (except for VME IRQ management) will take place according to its handle, thus not invoking the physical channel.

OpenDigitizer

Desktop and NIM versions can be directly handled via USB, just connecting the digitizer to the host PC via the USB cable (the USB driver is available on Digitizer web page). In case of optical link, the communication is handled by the auxiliary board A2818/A3818, that manages the CAEN protocol communication CONET2. When using VME boards it is possible to directly connect via optical link, or to use the communication bridges V1718 (for USB) or V2718 (for optical link).

Description

Opens the digitizer and gets the device handle. See the examples in Chapter **Examples of communication settings** for the different types of communication channels and the relevant parameters.

LabVIEW VI

Arguments

Aiguments	_	
Name	Type	Description
LinkType	132	Indicates the physical communication channel. It can be CAEN_DGTZ_USB (either direct connection or VME through V1718), CAEN_DGTZ_OpticalLink (A2818/A3818 -> Optical Link, either direct connection or VME through V2718). Note: functions CAEN_DGTZ_PCI_OpticalLink, CAEN_DGTZ_PCIE_OpticalLink, and CAEN_DGTZ_PCIE_EmbeddedDigitizer are now deprecated.
LinkNum	132	Link number: in case of USB, the link numbers are assigned by the PC when you connect the cable to the device; it is 0 for the first device, 1 for the second and so on. There is not a fixed correspondence between the USB port and the link number. For the CONET, the link number indicates which link of A2818 or A3818 is used; Link index start from 0 (1st Optical link port in the 1st slot used). It is not known a priori which is the first slot used (it depends on the motherboard of the PC used.). IMPORTANT NOTE: if A2818 and A3818 are installed together, the A2818 have the lowest index assigned.
ConetNode	132	The CONET node identifies which device in the Daisy chain is being addressed. The node is 0 for the first device in the chain, 1 for the second and so on. In case of USB, <i>ConetNode</i> must be 0.
VMEBaseAddress	U32 l	VME Base Address of the board (rotary switches setting) expressed as a 32-bit number. This argument is used only for the VME models accessed through the VME bus and MUST BE 0 in all other cases.
handle	D	Pointer to the handler returned by the open function

Note

To open multiple connections the user must use one subVI for each connection he wants to open.

CloseDigitizer

Description

This function closes the digitizer.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler

GetInfo

Description

The function reads from the board some information such as serial number, model, number of channels, firmware release and other parameters of the device.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler
Board Info		The structure containing the Board Info filled by the CAEN_DGTZ_GetInfo

BoardInfo Fields

Name	Туре	Description	
ModelName	labc	Model name: for example "V1724"	
Model	₽	See Type Def CAEN_DGTZ_BoardModel.ctl	
Channels	U32	Number of channels	
FormFactor	P ()	Format Factor (VME, NIM, Desktop); see Type Def CAEN_DGTZ_BoardFormFactor.ctl	
FamilyCode	▶ ()	Family (ADC type); see Type Def CAEN_DGTZ_FamilyCode.ctl	
ROC_FirmwareRel	labc	Firmware Revision of the FPGA on the mother board (ROC); for example "01.02"	
AMC_FirmwareRel	labc	Firmware Revision of the FPGA on the daughter board (AMC)	
SerialNumber	U32	Serial number of the board	
PCB_Revision	U32	PCB Revision number	
ADC_NBits	U32	Number of bits of the ADC	
DPPFirmware	M	On-board firmware information: - NotDPPFirmware in case of standard firmware - DPPFirmware_CI/PHA/PSD in case of DPP firmware - DPPFirmwareNotSupported in case of obsolete firmware - DPPFirmware_unknown in case of firmware not compliant	

Reset

Description

This function resets the Digitizer. All internal registers and states are restored to default.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler

WriteRegister

Description

Generic write access to one register of the digitizer. The CAENDigitizer library provides specific functions for most of the parameters settings; in case there is not a specific function for accessing a particular register or the user wants to force the writing of a datum, this function makes it possible to perform a direct access to the registers. It is worth noticing that overwriting of some settings may cause inconsistencies on the operations.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler
Address	U32 I	Register address. For the VME access, this is the lower 16 bit part of the VME address bus
Data	U32 I	32-bit data to write

ReadRegister

Description

Generic read access to one register of the digitizer (see WriteRegister for more details)

LabVIEW VI

Name	Туре	Description
handle		Device handler
Address	U32 I	Register address. For the VME access, this is the lower 16-bit part of the VME address bus
Data	FU32	Data read from the board (32 bit)

Calibrate

Description

Enable the ADC calibration for x730/x731. For the x751/761 this function is automatically implemented in the **OpenDigitizer** function.

LabVIEW VI

Interrupt configuration

All digitizers can generate interrupt requests (IRQ) to the PC to the occurrence of a particular condition: if the memory contains at least Ne events ready for reading, where Ne is a programmable parameter.

This allows to create programs that build the process of readout (read access to the memory buffer) on interrupts: they perform passive wait cycles, until they are awakened by the driver at the arrival of an interrupt from the digitizer; at such point, the process can read data, aware to find at least Ne events in memory, without having to check in advance the presence of data, as in the case of the readout based on polling.

The readout based on the interrupts is therefore more efficient, in terms of employment of the PC resources, compared to the one based on polling.

The interrupt requests are transferred from the digitizer to the PC via the optical link, in one of the following ways:

- Direct connection to the optical link (all models): the digitizer sends the interrupt request on the optical link to the A2818 PCI or A3818 PCIe connected to the PC, and these, in their turn, assert the interrupt request on the PCI bus or PCIe respectively. In this case, the interrupt request coming to the PC is uniquely associated with the digitizer which sent it.
- Connection via VME bus: in this case, the digitizer asserts the interrupt request on the VME bus on one of the 7 IRQ lines, and this request is detected by the VME master (V2718), which sends it via optical link to the PC, in the same manner described above. In this case, since the lines IRQ [7 .. 1] of the VME are shared with all modules on VME bus, it is necessary to identify the module that sent the request, as explained farther.

Note: interrupts cannot be used in case of communication via USB (either directly or through V1718 and VME)

Set / GetInterruptConfig

Description

Enable / Disable the digitizer to generate an interrupt request when the memory contains at least Ne events ready for reading, where Ne is the parameter event_number.

- In the case of VME models, the IRQ level to be activated on VME bus can be set from 1 to 7;
- in the case of the optical link, level should be 1.

The status_id, according to the specifications of the VME bus, is the value returned by the card during the interrupt acknowledge cycle and allows the operator to see which digitizer has asserted the interrupt request on the VME bus; in the programming stage, the user must set different status_id values for each digitizer. In the case of the optical link, the status_id is meaningless.

The mode parameter sets the interrupt release policy of the digitizer: in particular, **Roak** (Release On Acknowledge) mode foresees that the request is issued immediately after the interrupt acknowledge cycle (IACK), while in the case of **Rora** (Release on Register Access) mode, the interrupt request is not released by the digitizer until the user accesses a particular registry to disable it; in the case of the digitizer, the release occurs by setting to zero the level in the VME Control register, by calling the "Set" function of **Set / GetInterruptConfig** with status = disabled.

The methods Rora and Roak, arising from the VME specifications, are implemented also in the CONET protocol of the optical link, with the exception that the Interrupt Acknowledge cycle with CONET is required only to release the interrupt and not to identify the device that has generated it, since this information is already determined from the handle

LabVIEW VI

Name	Type		Description
	(Set)	(Get)	
handle			Device handler
state	U32	U32	Enable/Disable
level	U8 I	▶ U8	VME IRQ Level (from 1 to 7). Must be 1 for direct connection through CONET
status_id	U32 I	FU32	32-bit number assigned to the device and returned by the device during the Interrupt Acknowledge
event_number	U16 I	▶U16	If the number of events ready for the readout is equal to or greater than event_number, then the digitizer asserts the interrupt request
mode	U32 I	JU32	Interrupt release mode: CAEN_DGTZ_IRQ_MODE_RORA (release on register access) or CAEN_DGTZ_IRQ_MODE_ROAK (release on acknowledge)

IRQWait

Description

Once set up the digitizer to generate an interrupt request by the function described above, the reading process can enter a state of passive waiting to be woken up as the interrupt request from the digitizer which is communicating with (the one identified uniquely from the handle passed as a parameter), is sent. This function is valid only for direct connection to link optical digitizer, in the case of communication via the VME, use **VMEIRQWait**. The timeout parameter indicates the maximum waiting time before being forced to wake up even without interrupt. In this case, the value returned by the function is 18.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler
timeout	U32 I	Timeout (max. wait time) in ms

VMEIRQWait

Description

This function, as the one described above, implements the passive waiting from which the waking occurs up in response to an interrupt request from the digitizer. The main difference is that in this case, the digitizer asserts a IRQ (1 to 7) on the VME bus and this is transferred to the PC by the master VME V2718. Since other digitizers could be on the VME bus (and therefore different handles that identify them within the program), and each one can generate interrupts, even on the same IRQ line, the management of interrupts cannot take place through the handle of the digitizer (which cannot be uniquely associated with the request arrived at the PC) but must be performed through the handle of the master VME V2718 which is the unique collector of interrupt requests to the PC. Once awakened from the waiting status, the process of reading can understand what digitizer has actually sent the request via the interrupt acknowledge cycle.

LabVIEW VI

Aiguillelits		
Name	Type	Description
LinkType	U32 l	Indicates the physical communication channel used to connect the CAEN VME bridge that handles the interrupts on the VME bus. It can be CAENComm_USB for the V1718 or CAENComm_PCI_OpticalLink for the A2818 -> Optical Link -> V2718) or CAENComm_PCIe_OpticalLink (same as A2818 but using A3818)
LinkNum	1321	Link number: in case of USB, the link numbers are assigned by the PC when you connect the cable to the device; it is 0 for the first device, 1 for the second and so on. There is not a fixed correspondence between the USB port and the link number. For the CONET, the link number indicates which A2818 or A3818 is used; also in this case, it is not known a priori which PCI/PCIe card is assigned to which number.
ConetNode	132	The CONET node identifies which device in the Daisy chain is being addressed. The node is 0 for the first device in the chain, 1 for the second and so on. In case of USB, ConetNode must be 0.
timeout	U32	Timeout (max wait time) in msec
VMEHandle	132	Device handler of the CAEN VME Bridge that received the interrupt request

VMEIRQCheck

Description

This function allows to read the status of interrupt requests on the VME bus (IRQ1-7) and, for this reason, the handle to be passed is the VME master one, not the digitizer one. This function can only be used for digitizer that communicate via the VME bus. The purpose of this function is almost exclusively for debugging.

LabVIEW VI

Arguments

Name	Туре	Description
VMEHandle	132	Device handler of the VME bridge that handles the interrupts
Mask	▶ U8	Mask of the IRQ lines read from the VME bus (1=IRQ active, 0=IRQ not active)

IACKCycle

Description

This function performs an interrupt acknowledge cycle on the digitizer identified by the handle. This function can only be used for direct communications via optical links; in case of communication via the VME, it should be used VMEIACKCycle described farther. Although in the case of direct connection to the optical link there is not need to identify the digitizer that generated the interrupt request, the IACK cycle is still executed in the case of mode ROAK (release on acknowledge) to release the request

LabVIEW VI

Name	Туре	Description
handle		Device handler of the digitizer
board_id	132	Data (status_id) returned by the digitizer that asserted the interrupt request.

VMEIACKCycle

Description

This function performs an interrupt acknowledge cycle to know the board_id of the board that raised an interrupt. As described previously, in the case of interrupt requests on the VME bus, it is not possible to know in advance which digitizer asserted a certain IRQ line. Indeed, it could also happen that a line is asserted by any other slave on the VME bus with which no communication is established. For this reason, when the reading process on hold in a specific IRQ is awakened, it must perform an interrupt acknowledge cycle to see which one generated the interrupt. The identification is as follows: during acknowledge cycle (which is very similar to a read cycle), the slave that caused the interruption puts on his bus status_id, actually the value previously programmed by the user through the "Set" function of Set / GetInterruptConfig function. In the case of multiple cards having different values of the programmed status_id, the user will be able to figure out who sent the request, and then which one is to be read. It should be noted that in the case of multiple cards on the bus (even inhomogeneous), the interrupt management must be centralized, as the acknowledge cycle should be performed only once. It is therefore not recommended (although possible) to have more process waiting on the same IRQ line.

LabVIEW VI

Arguments

Name	Туре	Description
VMEHandle	132	Device handler of the CAEN VME bridge that handles the interrupts
level	U8 I	IRQ level (from 1 to 7) on which to perform the interrupt acknowledge cycle
board_id	132	Data (status_id) returned by the digitizer that asserted the interrupt request

RearmInterrupt

Description

Rearm the Interrupt.

LabVIEW VI

Name	Туре	Description
handle		Device handler

Data Readout

The data reading from the memories of the digitizer is done through BlockRead cycles (although it is possible also to run cycles to read each buffer). In the case of direct communication via USB or optical link, the protocol that manages the blocks transfer is CAEN proprietary and therefore there are no ambiguities or special options to be decided. Conversely, if reading takes place through the VME bus, since the standard provides different types of access and not all VME masters support all modes (or do it differently), the reading mode may need to be adapted according to the master features. The library foresees the use of master CAEN V1718 and V2718 and the readout mode is optimized for these modules.

ClearData

Description

This function Clears the data stored in the buffers of the Digitizer.

Note: this function is automatically run at the StartAcquisition. Do not use during an acquisition unless you are aware that the data has to be cleared.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler

DisableEventAlignedReadout

Description

By default, in the data transfer from the memory of the digitizer to the PC, regardless of the type of link used, events are aligned: the digitizer stop the transfer after transferring an integer number Ne of events, where Ne is user programmable through the "Set" function of **Set / GetMaxNumEventsBLT**, even if the user has requested the transfer of more data. In the case of communication via USB and optical links, the premature termination of the transfer is foreseen by the protocol; instead, for the VME Block Transfer, the transfer is interrupted by the digitizer asserting the bus error (if enabled, see above).

LabVIEW VI

Name	Туре	Description
handle		Device handler

Set / GetMaxNumEventsBLT

Description

Concerning the Digitizers running the standard firmware, this function sets/gets the maximum number of events for each transfer. Regardless of the type of link, during a block transfer cycle, the digitizer stops the transfer after a predetermined number of events (or when the memory is empty). The greater the number of events transferred (and thus the size of the block read), the greater the efficiency of the readout, since the protocol overhead is smaller. In contrast, higher values for **MaxNumEventsBLT** imply the need to allocate a memory buffer for very large the readout.

Note: If using DPP-PHA, DPP-PSD or DPP-CI firmware, you have to refer to the SetDPPEventAggregation function.

LabVIEW VI

Name	Туре	Description
	(Set) (Get)	
handle		Device handler
numEvents	U32 U32	Maximum number of events to transfer in a BlockRead

ReadData

Description

This function performs a block transfer of data from the digitizer to the computer. The size of the block is a function of the programmed parameters. The block can contain one or more events, that can be transferred through *buffers*. The function returns in *bufferSize* the size of the data block read from the card, expressed in bytes.

LabVIEW VI (polymorphic)

Use the selector menu to choose the VI according to the type of the output buffer parameter.

Note: Make sure to select the proper output paramenter according to the input VI. For example, usually firmware standard VI GetNUmEvents/DecodeEvent/GetEventInfo requires arrays of U8, while DPP VI GetDPPEvents/DecodeDPPWaveform requires arrays of U32).

Arguments

Name	Туре	Description	
handle		Device handler	
		CAEN_DGTZ_SLAVE_TERMINATED_READOUT_MBLT	= 0
		CAEN_DGTZ_SLAVE_TERMINATED_READOUT_2eVME	= 1
mode	U32	CAEN_DGTZ_SLAVE_TERMINATED_READOUT_2eSST	= 2
mode	032	CAEN_DGTZ_POLLING_MBLT	= 3
		CAEN_DGTZ_POLLING_2eVME	= 4
		CAEN_DGTZ_POLLING_2eSST	= 5
buffer	[08]	Readout buffer	
bufferSize	FU32	Size of the data block read from the board (expressed in	bytes)

Note:

CAEN DGTZ SLAVE TERMINATED READOUT MBLT for VME accesses:

In this case the digitizer is programmed to assert the VME Bus Error during a Block Transfer cycle to prematurely end the cycle when it no longer has data to transfer or has completed the transfer of the maximum number of events planned (see <code>BLT_EVENT_NUM</code> register, or <code>Set / GetMaxNumEventsBLT</code> function). This use of the Bus Error, though not specifically provided by the VME standard for this purpose, it is actually very common. However, some VME masters have a Bus Error management not suitable for this purpose.

CAEN_DGTZ_POLLING_MBLT for VME accesses:

The VME Bus Error generation is disabled, the transfer always continues until the completion of the number of bytes required and, if there are no data to be transferred, the digitizer will insert filler words (0xFFFFFFFF)

GetNumEvents

Description

This function scans the readout buffer and gets the number of events contained in the data block previously read by the **ReadData** function. The number of events is returned in the parameter *numEvents*.

Note: If using DPP-PHA, DPP-PSD or DPP-CI firmware, you have to refer to the GetDPPEvents function.

LabVIEW VI

Arguments

Name	Туре	Description	
handle		evice handler	
buffer	[88]	eadout buffer	
numEvents	U32	Number of events contained in the readout buffer	
indexEvents	[032]	rray of the event indexes in the readout buffer	

GetEventInfo

Description

This function retrieves the information (trigger time stamp, event number, channel mask, etc.) associated to one event contained in the readout buffer. This function reads the header of the *numEvent* event in the buffer, fills the eventInfo structure and returns in the *eventIndex* its index. This index will be passed to the **DecodeEvent** function described below.

Note: If using DPP-PHA, DPP-PSD or DPP-CI firmware, you have to refer to the **GetDPPEvents** function.

LabVIEW VI

Name	Туре	Description		
handle		Device handler		
buffer	[80]	Readout buffer		
numEvent	132	Number of the requested event in the readout buffer (0 is the first event in the puffer)		
eventInfo	▶=05	The structure that contains the information about the requested event. The allowed fields of this structure (type re: - EventSize - BoardId - Pattern - ChannelMask - TriggerTimeTag See the digitizer User Manual for a detailed description.		
eventIndex	132	The index of the requested event data in the readout buffer		

DecodeEvent

Description

Each type of digitizer has a different event data format. This function decodes (unpacks) the data of a specified event and fills the event structure containing the data of each channel (i.e. the waveform and/or other parameters in case of DPP) separately.

Note: If using DPP-PHA, DPP-PSD or DPP-CI firmware, you have to refer to the GetDPPEvents function.

LabVIEW VI (polymorphic)

Use the selector menu to choose the proper VI according to the *event* parameter.

Note: the menu options are driven by the specific digitizer model (DecodeEvent_u8 used by V1721 and V1731, DecodeEvent_x742 dedicated to 742 series).

Name	Туре	Description		
handle		Device handler		
buffer	[8]	Readout buffer		
evtIndex	132	Index to the event data in the readout buffer (this is the index returned by the GetEventInfo function).		
event		The decoded event structure with the following fields: Event_u8 U32) ChSize U33) DataChannel Event_u16 U32) ChSize [U16) DataChannel Event_x742 [U3] GrPresent [5:1) DataGroup: U32) ChSize [501) DataChannel U32] TriggerTimeTag U16 StartIndexCell		

LoadDRS4CorrectionData

Description

Regarding the x742 series, in order to compensate for unavoidable construction differences in the DRS4 chips, a data correction is required (for details, please refer to the User Manual of the board). This function loads the correction parameters stored on board, while a **DecodeEvent** function is then needed to apply them. The correction parameters to load depend on the operating sampling frequency.

Note: to be used only with x742 series.

LabVIEW VI

Arguments

Name	Type	Description		
handle		Device handler		
frequency	U32	he DRS4 sampling frequency.		

Enable/Disable DRS4Correction

Description

Enables/disables the data correction in the x742 series.

Note: to be used only with x742 series.

Note: If enabled, the data correction through the **DecodeEvent** function only applies if a **LoadDRS4CorrectionData** has been previously called, otherwise the **DecodeEvent** runs the same, but data will be provided out not compensated.

LabVIEW VI

Name	Туре		Description
	(Enable)	(Disable)	
handle			Device handler

3 Trigger configuration

The acquisition in the digitizer is ruled by the trigger, which is a signal that decides when to start the acquisition window and save samples of the ADC or the values of interest calculated on line (DPP) in the digitizer memory.

The digitizer can have the following trigger sources: External Trigger (digital signal from the panel), Software Trigger (write access to the specific register), Self-Trigger Channel (internal signal generated by a digitizer channel under certain conditions, for example when the input signal exceeds a programmable threshold).

All trigger sources can be enabled or not to generate the acquisition trigger for the channels. Similarly, it is possible to decide what triggers should participate in the generation of the Trigger Output (NIM or TTL digital output of the digitizer panel). Trigger Output can not necessarily coincide with the acquisition trigger: for example, in order to trigger multiple cards at once, as one of their channel has "auto triggered"; for this purpose, the auto triggering channel is used only to generate the Trigger Outputs (but not for the acquisition trigger); all Trigger Outputs are ORed externally to the cards and the resulting signal is sent in parallel to all cards Trigger Inputs, which are programmed to enable only the Trigger Input to generate the acquisition Trigger.

Note: in digitizer series x740, the auto trigger channel is divided into two levels: each 8-channel group generates a "group local trigger", given by the OR a of channel triggers enabled to generate them. The group triggers, in their turn, may participate or not to generate the acquisition trigger and / or trigger output.

SendSWtrigger

Description

This function sends a Software trigger to the Digitizer. The SW trigger can be used to save an acquisition window on all channels at the same time and/or to generate a pulse on the Trigger Output of the board, according to the SW trigger mode set by the "Set" function of the **Set / GetSWTriggerMode**.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler

Set / GetSWTriggerMode

Description

This function decides whether the trigger software should only be used to generate the acquisition trigger, only to generate the trigger output, or both.

LabVIEW VI

Name	Туре		Description	
	(Set)	(Get)		
handle			Device handler	
mode	U321	JU32	SW Trigger mode: CAEN_DGTZ_TRGMODE_DISABLED CAEN_DGTZ_TRGMODE_EXTOUT_ONLY CAEN_DGTZ_TRGMODE_ACQ_ONLY CAEN_DGTZ_TRGMODE_ACQ_AND_EXTOUT	= 0, = 2, = 1, = 3,

Set / GetExtTriggerInputMode

Description

This function decides whether the external trigger should only be used to generate the acquisition trigger, only to generate the trigger output, or both.

LabVIEW VI

Arguments

Name	Туре		Description	
	(Set)	(Get)		
handle			Device handler	
mode	U32 l	PU32	External Trigger mode CAEN_DGTZ_TRGMODE_DISABLED CAEN_DGTZ_TRGMODE_EXTOUT_ONLY CAEN_DGTZ_TRGMODE_ACQ_ONLY CAEN_DGTZ_TRGMODE_ACQ_AND_EXTOUT	= 0, = 2, = 1, = 3,

Set / GetChannelSelfTrigger

Description

This function decides whether the trigger of a channel should be used only to generate the acquisition trigger, only to generate the trigger output, or both.

For the x740 series, use the **Set / GetGroupSelfTrigger** function.

LabVIEW VI

Name	Туре		Description	
	(Set)	(Get)		
handle			Device handler	
mode	U32 l	1 032	Channel Self Trigger mode CAEN_DGTZ_TRGMODE_DISABLED CAEN_DGTZ_TRGMODE_EXTOUT_ONLY CAEN_DGTZ_TRGMODE_ACQ_ONLY CAEN_DGTZ_TRGMODE_ACQ_AND_EXTOUT	= 0, = 2, = 1, = 3,
channelmask	U32 I	-	(only for Set): the function applies only to those relevant bit in the mask equal to 1	e channels that have the
channel	_	U32	(only for Get): channel for which the mode is go	et

Set / GetGroupSelfTrigger

Description

This function is valid only for the x740 series. In fact, in this type of digitizer, the channels are grouped 8 by 8. The trigger properties are referred to the groups and cannot be set individually channel by channel. Each group of 8 channels generates one single self-trigger which is the OR of the 8 self-triggers in the group (with a programmable trigger enable mask, see next function). The group self-trigger can generate the acquisition trigger for the board and/or a pulse on the Trigger Output.

Note: to be used only with x740 series.

LabVIEW VI

Arguments

Name	Type		Description	
	(Set)	(Get)		
handle			Device handler	
mode	U32 l	ÞU32	Group Self Trigger mode: CAEN_DGTZ_TRGMODE_DISABLED CAEN_DGTZ_TRGMODE_EXTOUT_ONLY CAEN_DGTZ_TRGMODE_ACQ_ONLY CAEN_DGTZ_TRGMODE_ACQ_AND_EXTOUT	= 0, = 2, = 1, = 3,
groupmask	U32 I	_	(only for Set): the function applies only to those groups that have the relevant bit in the mask equal to 1	
group	-	U32	(only for Get): group for which the mode is get	

Set / GetChannelGroupMask

Description

This function decides which channels in a group of 8 participate to the generation of the self-trigger of that group. The self-trigger is the OR of the channels enabled by this function that are above the threshold. **WARNING:** the channels that are not connected must be disabled here, otherwise it may happen that one channel has a DC offset higher than the threshold and it keeps the OR always active.

Note: to be used only with x740 series.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
group	U32	U32 I	Group for which the mask is set
channelmask	U32	9032	Channels Trigger mask for the group (8 bits)

Set / GetChannelTriggerThreshold

Description

This function sets the Trigger Threshold for a specific channel. The threshold is applied to the digital signal after the ADC and it is expressed in ADC counts. The user should take care of the DC offset adjust when converting the digital threshold in the corresponding voltage level on the analog input.

For the x740 series, use the **Set / GetGroupTriggerThreshold** function. For the DPP firmware, use the **SetDPPParameters** function.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
channel	U32 I	U32 I	Channel to set
Tvalue	U32	JU32	Threshold value (in ADC counts)

Set / GetGroupTriggerThreshold

Description

This function sets/gets the Trigger Threshold for a specified group of channel. The threshold is common to the 8 channels in the group. See the **Set / GetChannelTriggerThreshold** function for further details.

Note: to be used only with x740 series.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
group	U32	U32	Group to set
Tvalue	U32	U32	Threshold value

Set / GetChannelPulsePolarity

Description

Sets/gets the value of the pulse polarity for the specified channel.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
channel	U32 I	U32	The channel to set/get information for
pol	U32 I	U32	Value of the pulse polarity

Set / GetRunSynchronizationMode

Description

Sets/gets the run synchronization mode of the digitizer, used to synchronize an acquisition on multiple boards.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
mode	U32	U32	The run synchronization mode to set/get

Set / GetIOLevel

Description

Sets/gets the I/O level.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
level	U32 I	U32	The I/O level of the digitizer to set/get

Set / GetTriggerPolarity

Description

Sets/gets the trigger polarity of a specified channel.

Note: not to be used with DPP firmware.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
channel	U32	U32	Selects the channel to set/get the trigger polarity for
Polarity	U32	U32	The polarity of the trigger to set/get

Set / GetGroupFastTriggerThreshold

Description

Sets/gets the threshold value on TRn input (used as external trigger) for the local trigger generation in x742 series. As the threshold is an hardware threshold (input of a programmable 16-bit DAC, whose voltage output goes to a comparator), it is not easy to set and the user can refer to the board User Manual for setting examples.

Note: to be used only with x742 series.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
group	U32	U32 I	The channels group the threshold is applied to
Tvalue	U32	U32	The value of the TRn threshold to set/get

Set / GetGroupFastTriggerDCOffset

Description

Regarding the x742 series, sets/gets the TRn signal DC offset when it is sampled in the DRS4 chips in order to make positive, negative or bipolar input signals to be compliant with the DRS4 input dynamics. The DC offset also affects the TRn when used as trigger, in this case it relates to the threshold setting above described (please refer to the board User Manual for setting examples).

Note: to be used only with x742 series.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
group	U32	U32	The channels group the DC offset is applied to
DCvalue	U32	U32	The value of the TRn DC offset to set/get

Set / GetFastTriggerDigitizing

Description

Regarding the x742 series, enables/disables (set) the presence of the TRn signal in the data readout as well as allows for checking the status of the setting (get).

Note: to be used only with x742 series.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
enable	U32	U32	The enable flag to set/get

Set / GetFastTriggerMode

Description

Enables/disables (set) the TRn input as local trigger in x742 series, as wells allows for checking the status of the setting (get).

Note: to be used only with x742 series.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	Get)	
handle		В	Device handler
mode	U32 I	U32	The fast trigger value to set/get.

Set / GetDRS4SamplingFrequency

Description

Regarding the x742 series, sets/gets the sampling frequency of the DRS4 chips which sample the input analog signal and the fast trigger signal.

Note: to be used only with x742 series.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
frequency	U32 l	JU32	The sampling frequency value to set/get: CAEN_DGTZ_DRS4Frequency_t See the LoadCorrectionData function in [RD1].

Set / GetOutputSignalMode

Description

Sets/gets the signal to be provided out over the TRG-OUT output channel in the x742 series.

Note: to be used only with x742 series.

LabVIEW VI

, a guille lites			
Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
mode	U32	U32	The output signal mode to set/get.

4 Acquisition

Set / GetChannelEnableMask

Description

This function enables/disables the channels for the acquisition. Disabled channels don't give any trigger and don't participate to the event data.

For the x740 and x742 series, use the Set / GetGroupEnableMask function

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
mask	U32 I	JU32	Enable Mask. Bit n corresponds to channel n. Please, refer to the User Manual of each specific board for the allowed number of channels.

Examples

If you want to enable channel 0 and channel 1, the binary bit mask is 11 which corresponds to 0x3. If you want to enable only channel 1, the binary bit mask is 10, which corresponds to 0x2.

Set / GetGroupEnableMask

Description

This function enables/disables the groups for the acquisition. This function is valid only for the x740 and x742 series. Disabled groups don't give any trigger and don't participate to the event data. The 8 channel in a group are all enabled/disabled according to the relevant bit in the enable mask.

Note: to be used only with x740 and x742 series.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
mask	U32 I	U32	Enable Mask. Bit n (with 0 <= n <= 7) corresponds to group n.

Examples

If you want to enable group 0 and group 1, the binary bit mask is 11 which corresponds to 0x3. If you want to enable only group 1, the binary bit mask is 10, which corresponds to 0x2.

SWStartAcquisition

Description

This function starts the acquisition in a board using a software command. When the acquisition starts, the relevant RUN LED on the front panel lights up. It is worth noticing that in case of multiple board systems, the software start doesn't allow the digitizer to start synchronously. For this purpose, it is necessary to use to start the acquisition using a physical signal, such as the S-IN or GPI as well as the TRG-IN-TRG-OUT Daisy chain. Please refer to Digitizer manual for more details on this issue.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler

SWStopAcquisition

Description

This function stops the acquisition in a board using a software command.

LabVIEW VI

Set / GetRecordLength

handle:

Description

This function sets the size of the acquisition window, that is the number of samples that belong to it. Due to the way the samples are written into the memory (more samples are put in parallel), there is a specific granularity of the record length depending on the board model. For example, in the x720 series, the samples are written 4 by 4, hence the record length must be a multiple of 4. Please, refer to the User Manual of the specific board for the granularity value. The function accepts any value for the parameter size and then takes the closest value multiple of the granularity. The function **GetRecordLength** returns the exact value.

Note: Each time the record length is changed, the post-trigger must be updated (through the SetPostTriggerSize).

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
size	U32	U32	The size of the record (in samples) to set/get
ch	132	132	INT value corresponding to the channel index. Used only for digitizers running DPP firmware, in particular DPP-PSD and DPP-CI.

Set / GetPostTriggerSize

Description

This function sets the post trigger size, that is the position of the trigger within the acquisition window. The size is expressed in percentage of the record length. 0% means that the trigger is at the end of the window, while 100% means that it is at the beginning.

Note: The post-trigger must be updated each time the record length is changed (through the SetRecordLength).

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
percent	U32 I	JU32	Post trigger as percentage of the record length

Set / GetAcquisitionMode

Description

Gets/Sets digitizer acquisition mode.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
mode	U32 l	№32	The acquisition mode: CAEN_DGTZ_AcqMode_t. CAEN_DGTZ_SW_CONTROLLED = 0 CAEN_DGTZ_S_IN_CONTROLLED = 1 See the Set/GetAcquisitionMode function in [RD1].

Set / GetChannelDCOffset

Description

This function sets the 16 bit DAC that adds a DC offset to the input signal in order to adapt it to the dynamic range of the ADC. By default, the DAC is set to middle scale (0x8000) which corresponds to a DC offset of –Vpp/2, where Vpp is the voltage range (peak to peak) of the ADC. This means that the input signal can range from –Vpp/2 to +Vpp/2. If the DAC is set to 0x0000, then no DC offset is added and the range of the input signal goes from 0 to +Vpp. Conversely, when the DAC is set to 0xFFFF, the DC offset is –Vpp and the range goes from –Vpp to 0. The DC offset can be set on channel basis except for the x740 in which it is set on group basis; in this case, you must use the **Set / GetGroupDCOffset** functions.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
channel	U32	U32	Value corresponding to the channel index. Use -1 for all channels
Tvalue	U32	1032	DAC value (from 0x0000 to 0xFFFF)

Set / GetGroupDCOffset

Description

The same as Set/Get ChannelDCoffset, but in this case it is applied to the groups of the x740 series.

Note: to be used only with x740 series.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
group	U32 I	U32 I	Value corresponding to the group index. Use -1 for all groups.
Tvalue	U32 I	U32	DAC value (from 0x0000 to 0xFFFF)

Set / GetDESMode

Description

This function enables or disables the Dual Edge Sampling mode, that is the channel interleaving option to double the sampling frequency. This option is available in the x731 and x751 series only.

WARNING: when the DES mode is enabled, only the odd channels (for the x751) or the even channels (for the x731) will work; the other channels must be left unconnected.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
mode	U32 l	№ 032	Enable/disable mode: CAEN_DGTZ_EnaDis_t. CAEN_DGTZ_ENABLE = 1 to enable the DES mode, CAEN_DGTZ_DISABLE = 0 to disable the DES mode. See the Set/GetDesMode function in [RD1].

Set / GetAnalogMonOutput

Description

Sets/Gets the signal to output on the Analog Monitor Front Panel output in VME digitizers running standard firmware.

Note: the function is not supported by V1742 and digitizers running DPP firmware.

LabVIEW VI

Arguments

Name	Туре		Description	
	(Set)	(Get)		
handle			Device handler	
mode	U321	JU32	Analog Monitor Mode: CAEN_DGTZ_Analo CAEN_DGTZ_AM_TRIGGER_MAJORITY CAEN_DGTZ_AM_TEST CAEN_DGTZ_AM_ANALOG_INSPECTION CAEN_DGTZ_AM_BUFFER_OCCUPANCY CAEN_DGTZ_AM_VOLTAGE_LEVEL See the Set/GetAnalogMonOutput function	= 0 (Trigger Majority Mode), = 1 (Test Mode), = 2 (Analog Inspection Mode), = 3 (Buffer Occupancy Mode), = 4 (Voltage Level Mode).

Supported digitizers and permitted AM modes

Digitizer	0	1	2	3	4
V1720-V1721-V1731- V1740-V1751	х	х		Х	Х
V1724	Χ	Χ	Х	Χ	Χ

Set / GetAnalogInspectionMonParams

Description

Sets/Gets the Analog Inspection Monitor parameters for a V1724 digitizer running standard firmware.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
channelmask	U32	U32	channel enable mask
offset	U32	U32	DC Offset for the analog output signal
mf	U32	U32	Multiply factor
ami	U32 I	U32	Invert Output

Set / GetEventPackaging

Description

This function allows to enable or disable the Pack 2.5 mode of V1720/DT5720 Digitizers

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
mode	U32	1032	Enable/Disable the Pack 2.5 mode

Set / GetZeroSuppressionMode

Description

This function sets/gets the Zero Suppression mode for x720, x721, x731, x724 digitizer models running standard firmware.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
mode	U321	JU32	Zero Suppression Mode: CAEN_DGTZ_ZS_Mode_t. CAEN_DGTZ_ZS_NO = 0 (no Zero suppression), CAEN_DGTZ_ZS_INT = 1 (Full Suppression based on the integral of the signal), CAEN_DGTZ_ZS_ZLE = 2 (Zero Length Encoding), CAEN_DGTZ_ZS_AMP = 3 (Full Suppression based on the signal amplitude). See the Set/GetZeroSuppressionMode function in [RD1]

Supported digitizers and permitted zero suppression modes

Digitizer	0	1	2	3	
x720	X		Х	Х	
V1721/V1731	Х		Х	Х	
x724	Х	Х	Χ	Х	

Set / GetChannelZSParams

Description

Sets/Gets Zero Suppression parameters for a specific channel in the supported digitizers (see the table in the **Set / GetZeroSuppressionMode**functions).

LabVIEW VI

Arguments

Name	Ţ	уре	Description	
	(Set)	(Get)		
handle			Device handler	
channel	U32 I	U32	Channel to which the ZS settings are applied. Use -1 for all channels	
weight	U321	▶U32	Zero Suppression weight(*): CAEN_DGTZ_ThresholdWeight_t. Used in "Full Suppression based on the integral of the signal" supported only by x724 series. CAEN_DGTZ_ZS_FINE = 0 (Fine threshold step; the threshold is the threshold parameter), CAEN_DGTZ_ZS_COARSE = 1 (Coarse threshold step; the threshold is threshold × 64). See the Set/GetChannelZSParams function in [RD1]. For "Full Suppression based on the signal amplitude" and "Zero Length Encoding" algorithms, the value of weight doesn't affect the function working.	
threshold	132	132	Zero Suppression Threshold to be used depending on the ZS algorithm(*).	
nsamp	132	132	Number of samples to be used by the ZS algorithm(*).	

 $\label{eq:continuous} \textit{(*)} Refer to the digitizer User Manual for definition and representation.$

Acquisition example

This section is intended to provide a simple example on how to use the CAENDigitizer LabVIEW library. The example works with any digitizers running standard firmware, apart the 740 and 742 series. More specific examples for both standard firmware and DPP firmware can be found on Chapter **DEMOs**.

The example codes are located in the Examples folder of the main library folder. By default, this corresponds to:

C:\Program Files\CAEN\Digitizers\LabView

Fig. 4.1: Acquisition example control panel

This acquisition example allows the user to perform the following functions:

- open the device;
- set some of the acquisition parameters;
- start and stop the acquisition;
- plot the waveform;
- issue a software trigger.

It is not possible to save data. The example can be modified by the user for his specific needs.

Once connected to the board, the program displays the information into the *BoardInfo* section (left side) and starts automatically the acquisition. If the board is in self-trigger mode, the *eventinfo* and *event* sections update, and the *Waveform Chart* plots the input pulse. The *SW Trigger* (single or continuous) allows the user to force the board to trigger.

The code is structured into three main parts designed as follows:

Part #1: Open the device, Reset and GetInfo functions.

Fig. 4.2: Block Diagram Part #1

Part #2: Acquisition parameters: some of the settings are individual by channel, other are common to all channels. The functions involved are: SetMaxnumBLT, SetRecLength, SetChannelMask, SetChannelSeflTrigger, SetSWTrigger; loop over the N channels of the functions SetChannelDCOffset, SetChannelTriggerThreshold, SetChannelPulsePolarity; finaly there is the SetAcquisitionMode function.

Fig. 4.3: Block Diagram Part #2

Part #3: Acquisition loop.

Fig. 4.4: Block Diagram Part #3

5 DPP specific VIs

handle

samples

ch

U32

I32

U32

132

In order to handle acquisitions with the DPP firmware (PHA, PSD, CI), the LabVIEW VIs described in this chapter can be used.

Device handler

Set / GetDPPPreTriggerSize Description Sets/gets the pre-trigger size, which is the portion of acquisition window visible before a trigger. LabVIEW VI handle: ch handle samples error out ch 🗸 samples · error out error in (no error) 🛁 error in (no error) **Arguments** Description Name Type (Set) (Get)

The size of the record (in samples)

The channel whose pre-trigger has to be set/get

GetDPPEvents

Description

Decodes and returns all the DPP events stored in the acquisition buffers.

LabVIEW VI (polymorphic)

Use the selector menu to choose the proper VI according to the *events* parameter.

Note: the menu options are driven by the specific DPP firmware (DPP-PSD for 720, 751 and 790 series, DPP-PHA for 724 and 780 series, DPP-CI for 720 series). The DPP-PSD and DPP-PHA for 730 are not yet managed by the CAENDigitizer LabVIEW library.

Name	Туре	Description		
handle		Device handler		
buffer	[032]	Readout buffer		
events	905	The decoded event structure with the following fields: DPP-PSD_Events US22 Format US22 TimeTag US22 ChargeShort US23 ChargeLong US24 Baseline US25 Pur US25 Waveforms_index US26 Extras DPP-PHA_Events US27 Format US28 Energy US29 Extras US29 Format US29 TimeTag US29 Extras US29 TimeTag US29 Tormat US29 TimeTag US29 Charge US29 Waveforms_index DPP-CI_Events US29 Format US29 TimeTag US29 Charge US29 Waveforms_index		
numEventsArray	[132]	Array of int which will contain the number of events found per channel		

DecodeDPPWaveforms

Description

Decodes the waveforms of an event.

LabVIEW VI (polymorphic)

Use the selector menu to choose the proper VI according to the event parameter, or set to "Automatic".

SetDPPEventAggregation

Description

Sets event aggregation parameters.

Note: This function is to be used only after the record length parameter has been set (by the "Set" function of the **Set / GetRecordLength**).

LabVIEW VI

Arguments

Name	Type	Description
handle		Device handler
threshold	1321	Specifies how many events can be accumulated into the board memory before they are available for readout. A low number maximizes responsiveness, since data are read as soon as it is stored in memory, while a high number maximizes efficiency, since fewer transfers are made. It is recommended to set the value 0 to let the library choose the best value depending on acquisition mode and other parameters.
maxsize	I32	Specifies the maximum size (in bytes) of the event buffer on the PC side. This parameter might be useful in case the computer has very low RAM. Normally it is recommended to set the value 0 to let the library choose the appropriate value automatically.

Set / GetNumEventsPerAggregate

Description

Sets/Gets the number of events that each aggregate will contain.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
numEvents	U32	U32	Number of events oper aggregater.
ch	132	132	INT value corresponding to the channel index (required for DPP-PSD and DPP-CI, ignored by DPP-PHA).

Set / GetMaxNumAggregatesBLT

Description

Sets/Gets the maximum number of aggregates per each transfer.

Note: with DPP-PHA, DPP-PSD and DPP-CI, also the *maxsize* parameter of **SetDPPEventAggregation** can be used.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
numAggr	U32 I	U32	Maximun number of aggregates per transfer

SetDPPParameters

Description

Sets DPP configuration parameters for DPP-PHA, DPP-PSD or DPP-CI.

LabVIEW VI (polymorphic)

Use the selector menu to choose the proper VI according to the *params* parameter, or set to "Automatic".

Arguments		
Name	Туре	Description
handle		Device handler
channel Mask	U32 I	A bit mask indicating to which channels the DPP parameters are applied
params		Structure of the DPP parameters: CAEN_DGTZ_DPP_PHA_Params_t [1322] M - Decay Time (ns) [1323] k - Trapezoid Flat Top (ns) [1324] k - Trapezoid Rise Time (ns) [1325] k - Trapezoid Rise Time (ns) [1326] k - Trigger Fliter smoothing factor (allowed values are 1, 2, 4, 8, 16 and 32) [1327] b - Input Signal Rise time (ns) [1328] thr - Trigger Threshold (LSB) [1329] nsbl - Number of Samples for Baseline Mean (allowed values are from 0 to 6, where 0 = 0, 1 = 16, 2 = 64, 3 = 256, 4 = 1024, 5 = 4096, 6 = 16384) [1320] nspk - Number of Samples for Peak Mean (allowed values are from 0 to 3, where 0 = 1, 1 = 4, 2 = 16, 3 = 64) [1322] Psho - Peak Hold Off (ns) [1323] otrej - N/A (you can use zero) [1323] trgw - Trigger Hold Off (ns) [1324] trgw - N/A [1325] decimation - Decimation (allowed values are from 0 to 3, where 0 = 1, 1 = 2, 2 = 4, 3 = 8) [1326] decimation - Decimation (allowed values are from 0 to 3, where 0 = 0, 1 = 2, 2 = 4, 3 = 8) [1326] end - Trapezoidal Gain (default value to use 1) CAEN_DGTZ_DPP_PSD_Params_t [1327] bithr - Baseline Threshold to be defined when nsbl = 0 (Baseline Fixed) (LSB) [1328] trgho - Trigger Hold-off (samples) [1329] selft - Self-Trigger (options: 0 = Disabled, 1 = Enabled) [1320] sesns - Charge Sensitive (options for x720: 0 = 40, 1 = 160, 2 = 640, 3 = 2560 fC/LSB; options for x751: 0 = 20, 1 = 40, 2 = 80, 3 = 160, 4 = 320, 5 = 640 fC/LSB) [1320] lgate - Long Gate Width (samples) [1321] pgate - Gate Offset (samples)

```
tvaw – Trigger Validation Acceptance Window (samples)
nsbl – Number of Samples for Baseline Mean (options for x720: 0 = FIXED, 1 = 8, 2 = 32, 3 = 8
128; options for x751: 0 = FIXED, 1 = 8, 2 = 16, 3 = 32, 4 = 64, 5 = 128, 6 = 256, 7 = 512)
trgc – must be set to 1 = CAEN_DGTZ_DPP_TriggerConfig_Threshold, the configuration
CAEN_DGTZ_DPP_TriggerConfig_Peak is no longer available
purh – select Pile-Up option: 0 = CAEN DGTZ DPP PSD PUR DetectOnly, 1 =
CAEN DGTZ DPP PSD PUR Enabled
purgap – set the Pile-Up Rejection GAP value (LSB)
CAEN DGTZ DPP CI Params t
blthr – Baseline Threshold to be defined when nsbl = 0 (Baseline Fixed) (LSB)
1321 bltmo – N/A
trgho – Trigger hold-off (samples)
thr – Trigger Threshold (LSB)
selft – Self-Trigger (options: 0 = Disabled, 1 = Enabled)
csens – Charge Sensitive (options 0= 40, 1 = 160, 2= 640, 3 = 2560 fC/LSB)
[132] gate – Gate Width (samples)
pgate – Gate Offset (samples)
[132] tvaw – Trigger Validation Acceptance Window (samples)
nsbl – Number of Samples for Baseline Mean n (options for x720: 0 = FIXED, 1 = 8, 2 = 32, 3 = 32
= 128)
trgc – must be set to 1 = CAEN_DGTZ_DPP_TriggerConfig_Threshold, the configuration
CAEN DGTZ DPP TriggerConfig Peak is no longer available.
For a complete description of the parameters refer to each specific DPP User Manual.
```

Note: one sample corresponds to 4 ns for x720, and 1 ns for x751.

Set / GetDPPAcquisitionMode

Description

Sets/gets the DPP acquisition mode.

LabVIEW VI

Name	Туре		Description
Name	(Set)	(Get)	Description
handle			Device handler
mode	U321	JU32	The DPP acquisition mode to set/get: CAEN_DGTZ_DPP_AcqMode_t. CAEN_DGTZ_DPP_ACQ_MODE_Oscilloscope = 0: enables the acquisition of the samples of the digitized waveforms, CAEN_DGTZ_DPP_ACQ_MODE_List = 1: enables the acquisition of time stamps and energy values in case of DPP-PHA, or charge in case of DPP-CI and DPP-PSD, CAEN_DGTZ_DPP_ACQ_MODE_Mixed = 2: enables the acquisition of both waveforms, energies or charges, and time stamps. See the Set/GetDPPAcquistionMode function in [RD1].
param	U321	▶ U32	The acquisition data to retrieve in acquisition: CAEN_DGTZ_DPP_SaveParam_t. CAEN_DGTZ_DPP_SAVE_PARAM_EnergyOnly = 0, CAEN_DGTZ_DPP_SAVE_PARAM_TimeOnly = 1, CAEN_DGTZ_DPP_SAVE_PARAM_EnergyAndTime = 2, CAEN_DGTZ_DPP_SAVE_PARAM_ChargeAndTime = 4, CAEN_DGTZ_DPP_SAVE_PARAM_None = 3. See the Set/GetDPPAcquistionMode function in [RD1].

Set / GetDPPTriggerMode

Description

Sets/gets the DPP Trigger mode.

Note: to be used only with DPP-PSD and DPP-CI enabled firmware.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
mode	U32	JU32	Concerning SetDPPTriggerMode, it is the desired trigger mode which can be set: CAEN_DGTZ_DPP_TriggerMode_t. CAEN_DGTZ_DPP_TriggerMode_Normal, CAEN_DGTZ_DPP_TriggerMode_Coincidence. Concerning GetDPPTriggerMode, it is the current trigger mode.

Set / GetDPP_PHA_VirtualProbe

Description

Set/gets the information about the output signal of the DPP-PHA acquisition mode.

LabVIEW VI

Name	Тур	e	Description	
	(Set)	(Get)		
handle			Device handler	
mode	U32 l	U32	The Virtual Probe mode to set/get: CAEN_DGTZ_DPP_V CAEN_DGTZ_DPP_VIRTUALPROBE_SINGLE CAEN_DGTZ_DPP_VIRTUALPROBE_DUAL	/irtualProbe_t. = 0, = 1.
vp1	U32)	1 032	The Virtual Probe1 mode to set/get: CAEN_DGTZ_DPP_CAEN_DGTZ_DPP_PHA_VIRTUALPROBE1_Input CAEN_DGTZ_DPP_PHA_VIRTUALPROBE1_Delta CAEN_DGTZ_DPP_PHA_VIRTUALPROBE1_Delta2 CAEN_DGTZ_DPP_PHA_VIRTUALPROBE1_trapezoid	_PHA_VirtualProbe1_t. = 0, = 1, = 2, = 3.
vp2	U321) U32	The Virtual Probe2 mode to set/get: CAEN_DGTZ_DPP_CAEN_DGTZ_DPP_PHA_VIRTUALPROBE2_Input CAEN_DGTZ_DPP_PHA_VIRTUALPROBE2_S3 CAEN_DGTZ_DPP_PHA_VIRTUALPROBE2_DigitalCombot CAEN_DGTZ_DPP_PHA_VIRTUALPROBE2_trapBaseline CAEN_DGTZ_DPP_PHA_VIRTUALPROBE2_None See the Set/GetDPP_PHA_VirtualProbe function in [RD]	= 0, = 1, D = 2, = 3, = 4
dp	U321	PU32	The Digital Probe mode to set/get: CAEN_DGTZ_DPP_PECAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_trgWin CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_Armed CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_PkRun CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_PURFlag CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_Peaking CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_TVAW CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_BLHOIdOFF CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_TRGHOIDOFF CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_TRGHOIDOFF CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_ACQVeto CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_BFMVeto CAEN_DGTZ_DPP_PHA_DIGITAL_PROBE_ExtTRG Check the specific meaning of the probes in the DPP-PH	= 0, = 1, = 2, = 3, = 4, = 5, = 6, = 7, = 8, = 9, = 10, = 11.

Set / GetDPP_PSD_VirtualProbe

Description

Sets/gets the information about the output signal of the DPP-PSD acquisition mode.

LabVIEW VI

Name	Ту	ре	Description	
	(Set)	(Get)		
handle			Device handler.	
mode	U321	JU32	The Virtual Probe mode to set/get: CAEN_DGTZ_DPP_VirCAEN_DGTZ_DPP_VIRTUALPROBE_SINGLE CAEN_DGTZ_DPP_VIRTUALPROBE_DUAL See the Set/GetDPP_PSD_VirtualProbe function in [RD1]	= 0, = 1.
vp	U321	JU32	The Virtual Probe to set/get: CAEN_DGTZ_DPP_PSD_Virt CAEN_DGTZ_DPP_PSD_VIRTUALPROBE_Baseline CAEN_DGTZ_DPP_PSD_VIRTUALPROBE_Threshold See the Set/GetDPP_PSD_VirtualProbe function in [RD1] NOTE: ignored for x751; VirtualProbes are always Input a	ualProbe_t. = 0, = 1
dp1	U321	N U32	The Digital Probe1 to set/get: CAEN_DGTZ_DPP_PSD_Digital Probes Types: CAEN_DGTZ_DPP_PSD_DIGITALPROBE1_R6_ExtTrg CAEN_DGTZ_DPP_PSD_DIGITALPROBE1_R6_OverThr CAEN_DGTZ_DPP_PSD_DIGITALPROBE1_R6_TrigOut CAEN_DGTZ_DPP_PSD_DIGITALPROBE1_R6_CoincWin CAEN_DGTZ_DPP_PSD_DIGITALPROBE1_R6_PileUp CAEN_DGTZ_DPP_PSD_DIGITALPROBE1_R6_Coincidence CAEN_DGTZ_DPP_PSD_DIGITALPROBE1_R6_GateLong	= 11, /* x720 only */ = 12, = 13, = 14, = 15,
dp2	U321	N U32	The Digital Probe2 to set/get: CAEN_DGTZ_DPP_PSD_Digital Probes Types: CAEN_DGTZ_DPP_PSD_DIGITALPROBE2_R6_GateShort CAEN_DGTZ_DPP_PSD_DIGITALPROBE2_R6_OverThr CAEN_DGTZ_DPP_PSD_DIGITALPROBE2_R6_TrgVal CAEN_DGTZ_DPP_PSD_DIGITALPROBE2_R6_TrgHO CAEN_DGTZ_DPP_PSD_DIGITALPROBE2_R6_PileUp CAEN_DGTZ_DPP_PSD_DIGITALPROBE2_R6_Coincidence	= 11, = 12, = 13, = 14, = 15,

Set / GetDPP_CI_VirtualProbe

Description

Sets/gets the information about the output signal of the DPP-CI acquisition mode.

Note: this function is supported only by DPP-CI firmware from release 3.4_130.16 on.

LabVIEW VI

Name	Ту	pe	Description
	(Set)	(Get)	
handle			Device handler
mode	U321	JU32	The Virtual Probe mode to set/get: CAEN_DGTZ_DPP_VirtualProbe_t. CAEN_DGTZ_DPP_VIRTUALPROBE_SINGLE = 0, CAEN_DGTZ_DPP_VIRTUALPROBE_DUAL = 1. See the Set/GetDPP_CI_VirtualProbe function in [RD1].
vp	U32 l	1032	The Virtual Probe to set/get: CAEN_DGTZ_DPP_CI_VirtualProbe_t. CAEN_DGTZ_DPP_CI_VIRTUALPROBE_Baseline = 0. See the Set/GetDPP_CI_VirtualProbe function in [RD1].
dp1	U321	JU32	The Digital Probe1 to set/get: CAEN_DGTZ_DPP_CI_DigitalProbe1_t. CAEN_DGTZ_DPP_CI_DIGITALPROBE1_R22_ExtTrg = 4, CAEN_DGTZ_DPP_CI_DIGITALPROBE1_R22_OverThr = 5, CAEN_DGTZ_DPP_CI_DIGITALPROBE1_R22_TrigOut = 6, CAEN_DGTZ_DPP_CI_DIGITALPROBE1_R22_CoincWin = 7, CAEN_DGTZ_DPP_CI_DIGITALPROBE1_R22_Coincidence = 9,
dp2	U321	№ 032	The Digital Probe2 to set/get: CAEN_DGTZ_DPP_CI_DigitalProbe2_t. CAEN_DGTZ_DPP_CI_DIGITALPROBE2_R22_OverThr = 5, CAEN_DGTZ_DPP_CI_DIGITALPROBE2_R22_TrgVal = 6, CAEN_DGTZ_DPP_CI_DIGITALPROBE2_R22_TrgHO = 7, CAEN_DGTZ_DPP_CI_DIGITALPROBE2_R22_Coincidence = 9,

6 HV specific VIs

Among the different digitizer family of CAEN, the DT5780 and DT5790 desktop digitizers integrate also two High Voltage (HV) channels. In this chapter the specific functions to control the HV are described.

Read_HV_Status

Description

This function allows the user to read the status of a HV channel. The status is represented both as integer value, as well as an array of bool, where each bit returns true or false, according to the following table.

Note: the user must set in advance the IVMon monitor from function Set / Get_HV_MonitorMode.

LabVIEW VI

Name	Туре	Description
handle		Device handler
HV channel	U32	The HV channel
Status	V16	The integer word identifying the HV channel status
		Array of Boolean bits, which have the following meaning:
		Bit 0 = 1 -> ON
		Bit 1 = 1 -> Ramp UP
		Bit 2 = 1 -> Ramp DOWN
		Bit 3 = 1 -> OVER CURRENT (IMON > ISET)
		Bit 4 = 1 -> OVER VOLTAGE (VMON > VSET + 2%)
		Bit 5 = 1 -> UNDER VOLTAGE (VMON < VSET - 2%)
		Bit 6 = 1 -> MAX VOLTAGE (VOUT > VMAX)
Status bit		Bit 7 = 1 -> MAX CURRENT (IOUT > Absolute Max lout)
		Bit 8 = 1 -> TEMPERATURE WARNING(TEMP > 80°C)
		Bit 9 = 1 -> OVER TEMPERATURE (TEMP > 125°C)
		Bit 10 = 1 -> DISABLED (Active External Inhibit)
		Bit 11 = 1 -> CALIBRATION ERROR
		Bit 12 = 1 -> Resetting
		Bit 13 = 1 -> Going Off
		Bit 14 = 1 -> MAX POWER (OUTPUT POWER > 4W)
		Bit 15 = 1 -> FAN SPEED HIGH

Read_HV_VMon

Description

This function allows the user to read the monitoring voltage of a specific HV channel.

Note: the user must set in advance the IVMon monitor from function Set / Get_HV_MonitorMode.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler
HV channel	U32	The HV channel
VMon	DBL	Value in Volt of the voltage for the specific HV channel

Read_HV_IMon

Description

This function allows the user to read the monitoring current of a specific HV channel.

Note: the user must set in advance the IVMon monitor from function **Set / Get_HV_MonitorMode**.

LabVIEW VI

Arguments

Name	Туре	Description
handle		Device handler
HV channel	U32 I	The HV channel
IMon	DBL	Value in uA of the current for the specific HV channel

Read_HV_VExt

Description

This function allows the user to read the external voltage of a device connected to the PREAMP connectors. Refer to **[RD8]** and **[RD9]** for more details about the PREAMP pin-out.

 $\textbf{Note}: the user must set in advance the ExtMon monitor from function \textbf{Set / Get_HV_MonitorMode}.$

LabVIEW VI

Name	Туре	Description
handle		Device handler
HV channel	U32	The PREAMP channel
VExt	DBL	Value in Volt of the voltage of the external device connected to the PREAMP connector

Read_HV_TRes

Description

This function allows the user to read the value of the resistance from temperature probe of type pt100/pt1000. The probe has to be connected to the PREAMP connector. Refer to [RD8] and [RD9] for more details about the PREAMP pin-out.

Note: the user must set in advance the ExtMon monitor from function Set / Get_HV_MonitorMode.

LabVIEW VI

Arguments

Name	Туре	Description	
handle		Device handler	
HV channel	U32	The PREAMP channel	
TRes	DBL	Value in Ohm of the resistance of the temperature probe	

Set / Get_HV_Power

Description

The Set function allows the user to provide the power ON/shut down command to the board. In case of Power ON the HV channel will reach the voltage value set on function **Set / Get_HV_VSet**. The Get function returns the power status.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
HV channel	U32	U32 I	The HV channel
power	U32 I	U32	Power status: 1 = ON, 0 = OFF

Set / Get_HV_VSet

Description

This function allows the user to set the desired value of voltage for a specific HV channel or to retrieve the corresponding information.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
HV channel	U32 I	U32 I	The HV channel
VSet	DBL	DBL	Value in Volt of the voltage for the specific HV channel

Set / Get_HV_ISet

Description

This function allows the user to set the maximum value of current that the HV channel might supply. In case of overcurrent the channel will give an OVCURR error and it automatically shuts down.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
HV channel	U32	U32	The HV channel
ISet	DBL	DBL	Value in uA of the current for the specific HV channel

Set / Get_HV_RampUp

Description

This function allows the user to set the desired value of voltage/sec of voltage ramp up for a specific HV channel. The Get function retrieves the corresponding information.

LabVIEW VI

Arguments

Name	Type		Description
	(Set)	(Get)	
handle			Device handler
HV channel	U32	U32 I	The HV channel
RampUp	DBL	DBL	Value in Volt/s for the voltage ramp up of the specific HV channel

Set / Get_HV_RampDown

Description

This function allows the user to set the desired value of voltage/sec of voltage ramp down for a specific HV channel. The Get function retrieves the corresponding information.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
HV channel	U32 I	U32 I	The HV channel
RampDown	DBL	DBL	Value in Volt/s for the voltage ramp down of the specific HV channel

Set / Get_HV_VMax

Description

This function allows the user to set the maximum value of voltage, beyond that the HV channel gives the MAXV error and automatically shuts down. The Get function retrieves the corresponding information.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
HV channel	U32	U32	The HV channel
VMax	DBL	DBL	Value in Volt of the maximum voltage for the specific HV channel

Set / Get_HV_PWDownMode

Description

This function allows the user to set/get the power down mode, choosing between RAMP and KILL. In the RAMP mode the HV channel turns off with the voltage/sec speed as defined in the **Set / Get_HV_RampDown** function. In the KILL mode the HV channel turns off the voltage instantaneously. In case of alarm (OVCURR, OVTEMP, MAXPW bit status) or External Inhibit (DISABLE bits status) the HV channel automatically shuts down with the set Power Down mode.

LabVIEW VI

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
HV channel	U32 I	U32 I	The HV channel
Power Down mode	U32	U32	Power Down mode: 0 = Ramp, 1 = Kill

Set / Get_HV_MonitorMode

Description

This function allows the user to set/get the HV monitor mode, choosing between IVMon or ExtMon.

LabVIEW VI

Arguments

Name	Туре		Description
	(Set)	(Get)	
handle			Device handler
HV channel	U32	U32 I	The HV channel
Monitor mode	U32	U32	Monitor Mode: 0 = IVMon, 1 = ExtMon

Note: according to the programmed HV monitor mode, the following board registers will change their specific value.

Register	IVMon	ExtMon
0x1n40 (n=2 forHV channel 0; n=3 for HV channel 1)	VMon value	VExt value
0x1n38 (n=2 forHV channel 0; n=3 for HV channel 1)	Status	A639 Firmware Release
0x1n44 (n=2 forHV channel 0; n=3 for HV channel 1)	IMon value	TRes value

Get_HV_ChannelsInfo

Description

This function gives to the user the HV channels list. For each channel the function retrieves the Max, Min, and Res value for the VSet, ISet, RampUp, RampDown, and VMax settings.

Note: Res is the resolution step for the specific parameter.

LabVIEW VI

Reset_HV

Description

This function reset the HV channels to the following default configuration:

- VSet = 0 V
- ISet = ISetMAX / 10
- RampUp = RampUpMAX / 10
- RampDown = RampDownMAX / 10
- VMax = VMaxMAX
- PWDownMode = Ramp

LabVIEW VI

Name	Туре	Description		
handle		Device handler		
HV channel	U32 I	The HV channel		

7 DEMOs

This chapter provides some demo LabVIEW GUI to handle with digitizers with standard and DPP firmware. The user can take those LabVIEW codes for free and modify them to implement specific functionalities. For any information refer to the support mailing list at Chapter **Technical support**.

Digitizer Demo for firmware standard

The following demo is compliant with digitizers running standard firmware. The demo allows the user to configure the board and to acquire and visualize the waveforms. The following functionalities are not implemented:

- Save and reload the configuration file;
- Save of data event

The demo can manage up to eight channels per board. In case of x730 the demo can manage the first eight channels, while for x740 and x742 the user can select one group of eight channels.

The main graphical interface appears as in the following figure:

1. Press OPEN to connect the demo software to the digitizer. The "Open Digitizer Dialog" window will appear.

Set the correct connection parameters and press "Connect".

2. If the connection succeeded the following window will appear: only the available channels will be active in the GUI. In the following example we connected to a DT5724 which has 4 channels.
In case of x740 and x742 a pop-up will appear asking for the group to acquire. In case of x730 it is possible to select only the first eight channels.

3. Press the **INFO** button to retrieve a summary of the board and firmware info

4. Press the "Global Settings" button to set all the common parameters of the board, as the Record Length and the Post-Trigger size.

5. For each channel it is possible to enable/disable through the **ON/OFF** button, and to set the individual settings through the **SET** button, which opens the following dialog window.

Note: set the polarity only for the first channel, than the same value will be copied for all channels.

6. Press "Start/stop acquisition" to enable the waveform visualization of the enabled channels.

- It is possible to enable the Software trigger through the "Single SW TRG" for a single trigger, and "Repeat SW TRG" for a continuous software trigger.
- 8. **Stop** the acquisition before closing the application. Also, stop the acquisition before changing any setting.
- 9. Press **CLOSE** to disconnect from the device.

The demo software for firmware standard does not save any configuration nor the data; any time you connect to the device you have to program again the previous settings.

DPP-PSD / DPP-CI Demos

The DPP-PSD demo is compliant with x720 and x751 digitizers running DPP-PSD firmware, while the DPP-CI demo is compliant with x720 digitizers running DPP-CI firmware. The DPP-CI demo has the same functionalities of the DPP-PSD demo apart from the Short/Long Gate management, since the DPP-CI firmware only has one gate option.

The DPP-PSD and DPP-CI demos allow the user to:

- Save and reload the configuration file;
- Visualize the waveform and histogram plots of a single selected channel (though the acquisition can start/stop for all channels simultaneously);
- Save of data events in the waveform, histogram, and list modes. All enabled channels can be saved simultaneously.

Note: the demo software does not work with DPP-PSD of x730.

The main graphical interface appears as in the following figure:

1. Press OPEN to connect the demo software to the digitizer. The "Open Digitizer Dialog" window will appear.

Set the correct connection parameters and press "Connect".

2. If the connection succeeded the following window will appear. The user can visualize only one channel at a time.

- 3. Press the **INFO** button to retrieve a summary of the board and firmware info
- 4. Press the "Program Settings" button to:
 - a. Select the output directory for data saving;
 - b. Set the number of bins of the energy histogram;
 - c. Set the time for data refresh in the plots.
- 5. Press the "Device Settings" button to configure the board settings, and the individual channel settings.

For any details about the DPP-PSD (DPP-CI) settings refer to the specific DPP-PSD User Manual [RD10], DPP-CI User Manual [RD11].

Once ready press "Save" to save and load the configuration settings.

 Press "Start/stop acquisition" to start the acquisition of the enabled channels. In our example we enable the Mixed acquisition mode, therefore we can visualize both the waveform and the energy spectrum.

You can only visualize one channel at a time. Change the channel through the top right menu

Once you start the acquisition, the demo automatically enables the **list data** saving. To save the energy histogram press "Start Save Histogram" button.

Note: the list data writing overwrites the files previously created.

7. Press "Stop Plot" to stop the waveform plotting. Press "Single Forward" for a single event visualization, "Continue Forward" to check consecutive plots.

Press "SAVE" to save the waveform and histogram plots in a image format.

It is possible to enable the Software trigger through the "Single SW TRG" for a single trigger, and "Repeat SW TRG" for a continuous software trigger.

In case of acquisition though DT5790 it is possible to also manage the HV channels, through the "HV Control" panel:

Through this panel the user can monitor the two HV channels. Press "HV Settings" to configure the HV channels. Once done, press "Power HV 0/1" to power ON/OFF the HV channels.

- 10. Stop the acquisition before closing the application. Also, stop the acquisition before chaging any setting.
- 11. Press **CLOSE** to disconnect from the device.

DPP-PHA Demo for 724 series, DT5780, and DT5781

The DPP-PHA demo is compliant with x724 digitizers running DPP-PHA firmware, as well as DT5780, and DT5781 (N6781).

The DPP-PHA demo allows the user to:

- Save and reload the configuration file;
- Visualize the waveform and histogram plots of a single selected channel (though the acquisition can start/stop all the channels simultaneously);
- Save of data events in the waveform, histogram, and list modes. All enabled channels can be saved simultaneously.

Note: the demo software does not work with DPP-PHA of x730.

The main graphical interface appears as in the following figure:

1. Press OPEN to connect the demo software to the digitizer. The "Open Digitizer Dialog" window will appear.

Set the correct connection parameters and press "Connect".

2. If the connection succeeded the following window will appear. The user can visualize only one channel at a time.

- 3. Press the **INFO** button to retrieve a summary of the board and firmware info
- 4. Press the "Program Settings" button to:
 - a. Select the output directory for data saving;
 - b. Set the number of bins of the energy histogram;
 - c. Set the time for data refresh in the plots.
- 5. Press the "Device Settings" button to configure the board settings, and the individual channel settings.

For any details about the DPP-PHA settings refer to the specific DPP-PHA User Manual [RD12]. Once ready press "Save" to save and load the configuration settings.

6. Press "Start/stop acquisition" to start the acquisition of the enabled channels. In our example we enable the Mixed acquisition mode, therefore we can visualize both the waveform and the energy spectrum.

You can only visualize one channel at a time. Change the channel through the top right menu

Once you start the acquisition, the demo automatically enables the **list data** saving. To save the energy histogram press "Start Save Histogram" button.

Note: the list data writing overwrites the files previously created.

7. Press "Stop Plot" to stop the waveform plotting. Press "Single Forward" for a single event visualization, "Continue Forward" to check consecutive plots.

Press "SAVE" to save the waveform and histogram plots in a image format.

- 8. It is possible to enable the Software trigger through the "Single SW TRG" for a single trigger, and "Repeat SW TRG" for a continuous software trigger.
- 9. In case of acquisition though DT5780 it is possible to also manage the HV channels, through the "HV Control" and "HV Settings" panels. Refer to point 9 of the DPP-PSD / DPP-CI Demos section.
- 12. Stop the acquisition before closing the application. Also, stop the acquisition before chaging any setting.
- 13. Press **CLOSE** to disconnect from the device.

8 Examples of communication settings

The examples in this chapter are intended to show how to implement through the LabVIEW's VIs the board access, the board info getting and the board closing in different hardware configuration. Examples of such connection cases are included in the CAENDigitizer LabVIEW at the destination path: CAEN\Digitizers\LabView\Examples.

Example No.1

Fig. 8.1: Connection example no.1.

The host PC is connected via 2 USB ports to two desktop digitizer:

- Dev#1: DT5724 4 Channel 14 bit 100 MS/s Digitizer
- Dev#2: DT5720 4 Channel 12 bit 250 MS/s Digitizer

The computer is first connected to DT5724 then to the DT5720.

Example No.2

Fig. 8.2: Connection example no.2.

The host PC is connected via USB ports to one V1718 VME-USB2.0 Bridge housed in a VME crate. The crate contains also the following boards

- Dev#1: V1724 8 Channel 14 bit 100 MS/s Digitizer (Base address = 0x33010000)
- Dev#2: V1724 8 Channel 14 bit 100 MS/s Digitizer (Base address = 0x33020000)
- Dev#3: V1740 64 Channel 12 bit 62.5 MS/s Digitizer (Base address = 0x44030000)

Example No.3

Fig. 8.3: Connection example no.3.

The host PC houses two CAEN A2818 PCI CONET Controllers; the VME crate houses the following boards:

- Two V1724 Digitizer connected in a Daisy chain between them end to the A2818 #0: Dev#1 (first in Daisy chain) and Dev#2 (second in Daisy chain)
- Two V1724 Digitizer connected in a Daisy chain between them end to the A2818 #1: Dev#3 (first in Daisy chain) and Dev#4 (second in Daisy chain)

Note: The A2818 number refers to the PCI slot and depends on the motherboard of the PC used. **It is not known which PCI card is assigned to which number a priori.** In this example we assume that the A2818 connected to Dev#1 and Dev#2, is inserted into the first PCI slot and get Link Number = 0.

Fig. 8.4: A2818 network scheme.

Example No.4

Fig. 8.5: Connection example no.4

The host PC houses one CAEN A3818C PCIe CONET Controller with 4 Optical Link;

- port#3 is connected to Dev#3 (DT5751 2/4 Channel 10 bit 2/1 GS/s Digitizer)
- port#2 is connected to a V2718 VME-PCI Optical Link Bridge housed in a VME crate that contains the following boards:
 - Dev#1: V1724 8 Channel 14 bit 100 MS/s Digitizer (Base address = 0x55010000)
 - o Dev#2: V1724 8 Channel 14 bit 100 MS/s Digitizer (Base address = 0x55020000)

Example No.5

Fig. 8.6: Connection example no.5

The host PC houses

- one A2818 PCI CONET Controller connected to Dev#3 (DT5751 2/4 Channel 10 bit 2/1 GS/s Digitizer)
- one CAEN A3818C PCIe CONET Controller with 4 Optical Link; with port#2 connected to a V2718 VME-PCI Optical Link Bridge housed in a VME crate that contains the following boards:
 - o Dev#1: V1724 8 Channel 14 bit 100 MS/s Digitizer (Base address = 0x55010000)
 - o Dev#2: V1724 8 Channel 14 bit 100 MS/s Digitizer (Base address = 0x55020000)

9 Technical support

CAEN makes available the technical support of its specialists at the e-mail addresses below:

support.nuclear@caen.it (for questions about the hardware)

support.computing@caen.it (for questions about software and libraries)

Electronic Instrumentation

CAEN SpA is acknowledged as the only company in the world providing a complete range of High/Low Voltage Power Supply systems and Front-End/Data Acquisition modules which meet IEEE Standards for Nuclear and Particle Physics. Extensive Research and Development capabilities have allowed CAEN SpA to play an important, long term role in this field. Our activities have always been at the forefront of technology, thanks to years of intensive collaborations with the most important Research Centres of the world. Our products appeal to a wide range of customers including engineers, scientists and technical professionals who all trust them to help achieve their goals faster and more effectively.

CAEN S.p.A.
Via Vetraia, 11
55049 Viareggio
Italy
Tel. +39.0584.388.398
Fax +39.0584.388.959
info@caen.it
www.caen.it

CAEN GmbH

Klingenstraße 108
D-42651 Solingen
Germany
Tel. +49 (0)212 254 4077

Mobile +49 (0)151 16 548 484
Fax +49 (0)212 25 44079
info@caen-de.com
www.caen-de.com
CAEN GmbH

CAEN Technologies, Inc. 1140 Bay Street - Suite 2 C Staten Island, NY 10305 USA Tel. +1.718.981.0401 Fax +1.718.556.9185 info@caentechnologies.com www.caentechnologies.com

CAEN
Tools for Discovery

Electronic Instrumentation

User Manual UM2784 - CAENDigitizer LabVIEW Library User Manual rev. 1 - 15 January 2015

00118-09-DLAB-MUTX

Copyright © CAEN Sp.A. All rights reserved. Information in this publication supersedes all earlier versions. Specifications subject to change without notice.