机器学习笔记

纳文琪 1

2019年8月30日

1 学习算法的性能度量 [1]

1.1 错误率和精度

错误率 指的是分类错误的样本占总样本数的比例,主要适用于二分类问题,也可用于多分类问题。

精度 指的是分类正确的样本数占总样本数的比例,同意适用于二分类和多分类问题。

错误率和精度简单、常用,但并不能满足所有需求。

1.2 查准率、查全率和 F1

混淆矩阵 对二分类问题,可以将真实类别与预测类别组合划分成 TP、TN、FP、FN 四种情形,分别表示预测正确的正例和反例、预测错误的正例和反例。分类结果可以使用一个"混淆矩阵"表示:

图 1: Confusion Matrix

查准率(准确率, precision) 是从预测结果(其数量作为分母)出发计算的精度,指的是预测为正例的样本中,有多少的预测正确的。其定义是:

$$P = \frac{TP}{TP + FP} \tag{1}$$

查全率(召回率, recall) 是从样本(其数量作为分母)出发计算的精度,指的是所有正例样本中,有多少被预测正确了。其定义是:

$$R = \frac{TP}{TP + FN} \tag{2}$$

查全率与查准率是一对矛盾的度量。

P-R 曲线 用于直观地显示学习器在样本总体上的查全率、查准率。

F1 和 F_{β} F1 是综合考虑查全率和查准率的度量, 定义为:

$$F1 = \frac{2 \times P \times R}{P + R} \tag{3}$$

一些应用中,对查准率和查全率的重视程度不同,此时需要用 F_{β} :

$$F_{\beta} = \frac{(1+\beta^2) \times P \times R}{(\beta^2 \times P) + R} \tag{4}$$

 F_{β} 是 F1 的一般形式, 当 $\beta = 1$ 时就是 F1; 当 $\beta > 1$ 时, 查全率有更大影响; 当 $\beta < 1$ 时, 查全率有更大影响。

1.3 ROC与AUC

ROC 全称是"受试者工作特征",与 P-R 曲线类似,它也有两个坐标,其纵坐标表示的是"真正例率"(TPR),即正例的查全率,横坐标表示的是"假正例率",及反例被判断错误的比率。两者定义为:

$$TPR = \frac{TP}{TP + FN} \tag{5}$$

$$FPR = \frac{FP}{TN + FP} \tag{6}$$

ROC 曲线的对角线对应的是"随机猜想"模型,而点(0,1)则代表"理想模型"。

AUC 进行学习器比较时,与 P-R 曲线类似,若一个学习器的 ROC 曲线被另一个学习器的曲线完全包住,则可断言后者的性能优于前者;若两个学习器的 ROC 曲线有交叉,则需要比较 ROC 曲线下的面积,即 AUC 来进行判断。

2 神经网络

隐层参数 $W_j \in \mathbb{R}^{d \times n}$ 表示 j-th 层的参数,此层有 n 个神经元,接收 d 个来自的 (j-1)-th 层的输入。 W_j 的第 k 列,就是输入到第 k 个神经元的数据对应的参数。

隐层输出 $y_j \in \mathbb{R}^n$ 表示 j-th 层的输出,n 个神经元有 n 个输出,计算公式为: $y_j = W_j^T y_{j-1} + b_j$

3 Deep Neural Networks for Bot Detection[2]

Motivation 现有的系统都是在 account-level 进行 bots 的发现,需要根据特定帐号的一系列历史活动记录来确认帐号是否是 bot。这在进行检测的时候代价非常昂贵。论文希望通过仅仅一条 tweet 来判断是否是 bot。

论文将 bot 发现的方法分为用户级和 tweet 级,进行分类; tweet 级根据

数据集 论文使用的数据集存在不平衡问题,作者分别使用 SMOTE+ENN 和 SOMTE+TOMEK 的方法平衡数据。数据分为用户级和 tweet 级两类,用户级数据 (用户元数据) 包括 statuses count、followers count 等, tweet 级数据包括 retweet count、number of hashtags 等。

4 损失函数

4.1 softmax

下溢 (underflow) 当接近零的数被四舍五入为零后发生下溢。

上溢 (overflow) 当大数量级的数被近似为 ∞ 或 $-\infty$ 时,发生上溢。

softmax 函数 可对下溢和上溢进行数值稳定,定义为:

$$softmax(\mathbf{x})_i = \frac{exp(x_i)}{\sum_{j=1}^n exp(x_j)}$$
 (7)

这个式子同样会产生溢出,例如,当 x 是很小的负数时,分母会变成零;当 x 是很大的数时,一样会发送上溢。这个问题可以通过计算 $softmax((z), z = x - \max_i x_i$ 同时解决。

5 A Discriminative Feature Learning Approach for Deep Face Recognition [3]

5.1 Introduction

动机 一般的物体识别,主要是闭集识别,利用 softmax loss 即可处理,但人脸识别不单需要特征可分离 (separable),也需要可区分 (discriminative),构建一个高效的 loss 可提升可区别性,为此,本文提出 center loss。

Center loss 为每一个 class 的特征维护一个 center,每次进行 SGD 的时候同时更新 center,并最小化 class 中样本特征到中心的距离。

5.2 The Proposed Approach

toy example 本文使用一个 toy example 来演示算法的效果。它最后一个隐层的 维度是 2,以便于我们使用二维图像来显示特征分布。 toy example 使用 softmax loss,最后输出的特征的分布表示为图3:

Fig. 2. The distribution of deeply learned features in (a) training set (b) testing set, both under the supervision of softmax loss, where we use $50\mathrm{K}/10\mathrm{K}$ train/test splits. The points with different colors denote features from different classes. Best viewed in color.

图 2:

Center loss 为增强可区分度,需在保持特征分类的同时,最小化内部 class 的 方差。center loss 定义为:

$$\mathfrak{L}_C = \frac{1}{2} \sum_{i=1}^{m} \|\mathbf{x}_i - \mathbf{c}_{y_i}\|_2^2$$
 (8)

理论上, c_{y_j} 应当随着特征的变化而更新,因此,在每次更新更新参数的时候都要对它进行更新。

(9)

综上,总的损失函数可以表示为:

Fig. 3. The distribution of deeply learned features under the joint supervision of softmax loss and center loss. The points with different colors denote features from different classes. Different λ lead to different deep feature distributions ($\alpha=0.5$). The white dots $(c_0, c_1, ..., c_9)$ denote 10 class centers of deep features. Best viewed in color.

图 3:

参考文献

- [1] 周志华, 机器学习, Qing hua da xue chu ban she, 2016. 1
- [2] Sneha Kudugunta and Emilio Ferrara, "Deep neural networks for bot detection", arXiv preprint arXiv:1802.04289, 2018. 4
- [3] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao, "A discriminative feature learning approach for deep face recognition", in European conference on computer vision. Springer, 2016, pp. 499–515.