Fenwick Tree (Binary Index Tree)

日月卦長

經典題

• 給你一個長度為n的陣列a,再給你q個操作,操作有兩種:

• sum(ql,qr): 查詢 $a_{ql}+a_{ql+1}+\cdots+a_{qr}$ 的值

• $1 \le n, q \le 10^6$

1	0	1	2	3	4	5	6	7
7	1	6	6	5	5	4	1	3

簡單!線段樹

- 4n 的空間
- 多個複雜的遞迴函數(build, query, update,...)

維護前綴和

- 我們對陣列 a 維護他的前綴和陣列 S
- $S_0 = 0$
- $S_1 = a_1$
- $\bullet S_2 = a_1 + a_2$
- $\bullet S_3 = a_1 + a_2 + a_3$
- $S_4 = a_1 + a_2 + a_3 + a_4$

$$S_n = S_{n-1} + a_n$$

$$\sum_{i=ql}^{qr} a_i = S_{qr} - S_{ql-1}$$

Fenwick Tree - 動態維護前綴和

- 又稱為 Binary Index Tree (BIT), 樹狀樹組
- 給定x,有兩種操作:
 - 在 $O(\log n)$ 的時間計算 S_x
 - 在 $O(\log n)$ 的時間修改(增減) a_x 的數值
- 空間複雜度 O(n) ,常數非常小!
- 非常好寫!

BIT操作介紹

• modify(x, val): $將 a_x += val$

• query(x): 計算 $a_1 + a_2 + \cdots + a_x$

• build(n):

沒有這個操作,BIT 假設一開始陣列 a 裡面都是 C

重要函數 lowbit(x)

int lowbit(int x) { return x & -x; }

• lowbit(x): 非負整數 x 在二進位表示時,最靠右邊的 1 所對應的值。

• 範例:

$$20_{(10)} = 10100_{(2)}$$

其中的兩個 bit 分別表示 24 和 22, 因此

$$lowbit(20) = 2^2 = 4$$

BIT結構

- BIT 用編號 1~n 的陣列 bit 紀錄
- bit_x 記錄區間 [x lowbit(x) + 1, x] 的總和,也就是

$$\sum_{i=x-lowbit(x)+1}^{x} a_i$$

ひして下手フリ	bit	陣列
---------	-----	----

1	2	3	4	5	6	7	8	9
[1,1]	[1,2]	[3,3]	[1,4]	[5,5]	[5,6]	[7,7]	[1,8]	[9,9]

BIT結構

• 將紀錄的區間圖像化後 看起來就是沒有右子樹的線段樹

			[1,8]	>
	[1,4]	NA SOL	9-8	>
[1,2]	15	[5,6]	200	
[1,1]	[3,3]	[5,5]	[7,7]	[9,9]

bit 陣列

1	2	3	4	5	6	7	8	9
[1,1]	[1,2]	[3,3]	[1,4]	[5 <i>,</i> 5]	[5,6]	[7,7]	[1,8]	[9,9]

modify(x, val)

•以x=5為例,修改 a_5 後需要更新的塊有: bit_5 , bit_6 , bit_8

• 特殊關係: 5 + lowbit(5) = 6, 6 + lowbit(6) = 8

			[1,8]	٧
	[1,4]	NA SU	8 1 8	٨
[1,2]	15	[5,6]	200	100
[1,1]	[3,3]	[5,5]	[7,7]	[9,9]

bit 陣列

1	2	3	4	5	6	7	8	9
[1,1]	[1,2]	[3,3]	[1,4]	[5,5]	[5,6]	[7,7]	[1,8]	[9,9]

modify(x, val) $O(\log n)$ void modify(int x, int val) { for (; $x \le n$; x += lowbit(x)) bit[x] += val;

query(x)

• 以 x = 7 為例, $a_1 + a_2 + \dots + a_7 = bit_4 + bit_6 + bit_7$

• 特殊關係: 7 - lowbit(7) = 6, 6 - lowbit(6) = 4

			[:	1,8]
	[1,4]	NA SAI	818	7
[1,2]	15	[5,6]	000	7
[1,1]	[3,3]	[5,5]	[7,7]	[9,9]

bit 陣列

1	2	3	4	5	6	7	8	9
[1,1]	[1,2]	[3,3]	[1,4]	[5,5]	[5,6]	[7,7]	[1,8]	[9,9]

$O(\log n)$ long long query(int x) { long long sum = 0; for (; x; $x \rightarrow lowbit(x)$) sum += bit[x]; return sum;

包裝後完整程式碼

```
class BIT {
  int n;
  vector<long long> bit;
public:
  void init(int _n) {
    n = n;
    bit.resize(n);
    for (auto \&b: bit) b = 0;
  long long query(int x) const {
    long long sum = 0;
    for (; x; x \rightarrow lowbit(x))
      sum += bit[x];
    return sum;
  void modify(int x, int val) {
    for (; x \le n; x += lowbit(x))
      bit[x] += val;
```

拓展到二維

```
class BIT2D {
  int m;
  vector<BIT> bit1D;
public:
  void init(int _m, int _n) {
   m = _m;
    bit1D.resize(m);
   for (auto &b : bit1D) b.init(_n);
  long long query(int x, int y) const {
   long long sum = 0;
   for (; x; x \rightarrow lowbit(x))
      sum += bit1D[x].query(y);
    return sum;
  void modify(int x, int y, int val) {
    for (; x \le m; x += lowbit(x))
      bit1D[x].modify(y, val);
```

經典題 - 逆序數對

• 給一個數列 $a_1, a_2, a_3, ..., a_n$ 有多少對 (i,j) ,滿足 $1 \le i < j \le n$ 但 $a_i > a_j$?

• 已知 $n \leq 100000$, $1 \leq a_i \leq n$

方法1:在 merge sort 過程中順便求

- 與本章節無關所以不討論
- 但是要知道有這個方法

方法2:值域 BIT

- 對於每個 $1 \le x \le n$ 計算 $a_1 \sim a_{x-1}$ 中有多少數字**大於** a_x
- 這些數量總和就是逆序數對

• 用一個值域陣列b紀錄 $a_1 \sim a_{x-1}$ 中每個數字出現幾次

• $b_1 \sim b_{a_x}$ 的前綴和 代表**小於等於** a_x 的數字出現幾次

rś	J-TO-V	1 5005 1	1			
٧	1	2	3	4	5	6
	4	3	2 2	2	3	1
ž	A SA	3-1	3 2			

陣列 **b**

d	1	2	3	4
7	0	2	1	1

 $a_1 \sim a_4$ 中小於等於 a_5 的有 3 個大於 a_5 的有 (5-1)-3=1 個

陣列b可以用 BIT 輕易維護

```
vector<int> v(n);
for(int i = 0; i < n; ++i) cin >> v[i];
BIT bit; /* 如果數值範圍太大要記得做離散化 */
bit.init(*max_element(v.begin(), v.end()));
int ans = 0;
for(int i = 0; i < n; ++i) {
   ans += i - bit.query(v[i]);
   bit.modify(v[i], 1);
}
cout << ans << '\n';</pre>
```

經典題 2

• 給你一個長度為n的陣列a,再給你q個操作,操作有兩種:

• sum(ql,qr): 查詢 $a_{ql}+a_{ql+1}+\cdots+a_{qr}$ 的值

• add(ql,qr,val): 將 $a_{ql},a_{ql+1},...,a_{qr}$ 都加上 val

線段樹+懶惰標記?

• $1 \le n, q \le 10^6$

Į	1	2	3	4	5	6	7	8
4	7	တ	6	5	5	4	1	3

維護差分

- 我們對陣列 a 維護他的差分陣列 D
- $D_1 = a_1$
- $\bullet \ D_2 = a_2 a_1$
- $D_3 = a_3 a_2$
- $\bullet \ D_4 = a_4 a_3$

$$D_n = a_n - a_{n-1}$$

$$\sum_{i=1}^{x} D_i = a_i$$

性質

$$\sum_{i=1}^{x} a_i = \sum_{i=1}^{x} \sum_{y=1}^{i} D_y$$

$$= x \times D_1 + (x - 1) \times D_2 + \dots + 1 \times D_x$$

$$= \sum_{i=1}^{x} (x - i + 1) \times D_i$$

$$= (x + 1) \sum_{i=1}^{x} D_i - \sum_{i=1}^{x} i \times D_i$$

性質

•
$$D_2 = a_2 - a_1$$

• $D_3 = a_3 - a_2$

•
$$D_3 = a_3 - a_3$$

區間加值

•
$$a_{al} += x$$

•
$$a_{ql} += x$$
• $a_{ql+1} += x$

•
$$a_{qr} += x$$

$$\bullet \ D_{ql+1} += x - x$$

•
$$D_{qr} += x - x$$

$$\bullet D_{qr+1} += -x$$

$$D_{ql} += x$$

$$D_{qr+1} -= x$$

區間修改+查詢

```
class RangeAddBIT {
 int n;
 BIT D, xD;
public:
 void init(int _n) {
   n = _n;
   D.init(n);
   xD.init(n);
  void add(int ql, int qr, int val) { // [ql, qr] 加值
   D.modify(ql, val);
   xD.modify(ql, ql * val);
   if (qr < n) {
     D.modify(qr + 1, -val);
     xD.modify(qr + 1, -(qr + 1) * val);
 long long query(int x) { // 查詢 [1,x] 總和
   return (x + 1) * D.query(x) - xD.query(x);
```