## Particle spectrograph

## Wave operator and propagator



| $\tau_{1}^{\#2}{}_{\alpha}$          | 0                                     | 0                                          | 0                                           | 0                                | 0                           | 0                           | 0                          |
|--------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------|-----------------------------|-----------------------------|----------------------------|
| $\tau_{1}^{\#1}$                     | 0                                     | 0                                          | 0                                           | 0                                | 0                           | 0                           | 0                          |
| $\sigma_{1^-}^{\#2}$                 | 0                                     | 0                                          | 0                                           | 0                                | 0                           | 0                           | 0                          |
| $\sigma_{1}^{\#1}{}_{lpha}$          | 0                                     | 0                                          | 0 0                                         |                                  | 0                           | 0                           | 0                          |
| $\tau_{1}^{\#1}{}_{+}\alpha\beta$    | $-\frac{i\sqrt{2}}{kr_3+k^3r_3}$      | $\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$ | $\frac{3k^2r_3+2t_2}{(1+k^2)^2r_3t_2}$      | 0                                | 0                           | 0                           | 0                          |
| $\sigma_{1}^{\#_{+}^{2}}\alpha\beta$ | $-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$ | $\frac{3k^2r_3+2t_2}{(k+k^3)^2r_3t_2}$     | $-\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$ | 0                                | 0                           | 0                           | 0                          |
| $\sigma_{1}^{\#1}{}_{\alpha\beta}$   | $\frac{1}{k^2 r_3}$                   | $-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$      | $\frac{i\sqrt{2}}{kr_3+k^3r_3}$             | 0                                | 0                           | 0                           | 0                          |
| •                                    | $\sigma_1^{\#1} + ^{lphaeta}$         | $\sigma_{1}^{\#2} + \alpha^{\beta}$        | $\tau_{1}^{\#1} + \alpha \beta$             | $\sigma_{1}^{\#_{1}} +^{\alpha}$ | $\sigma_{1}^{\#2} +^{lpha}$ | $\tau_{1}^{\#1} +^{\alpha}$ | $\tau_1^{\#2} + ^{\alpha}$ |

| $f_{1}^{\#2}\alpha$                 | 0                                  | 0                                 | 0                                  | 0                                       | 0                           | 0                                  | 0                        |
|-------------------------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------------|-----------------------------|------------------------------------|--------------------------|
| $f_{1^{-}}^{\#1}{}_{\alpha}$        | 0                                  | 0                                 | 0                                  | 0                                       | 0                           | 0                                  | 0                        |
| $\omega_{1}^{\#2}{}_{\alpha}$       | 0                                  | 0                                 | 0                                  | 0                                       | 0                           | 0                                  | 0                        |
| $\omega_{1^{^{-}}\alpha}^{\#1}$     | 0                                  | 0                                 | 0                                  | $k^2 r_3$                               | 0                           | 0                                  | 0                        |
| $f_1^{\#1}$                         | $\frac{1}{3}\bar{l}\sqrt{2}kt_2$   | <u>ikt2</u><br>3                  | $\frac{k^2 t_2}{3}$                | 0                                       | 0                           | 0                                  | 0                        |
| $\omega_1^{\#_+^2}{}_{\alpha\beta}$ | $\frac{\sqrt{2} t_2}{3}$           | \$\frac{t_2}{3}                   | $-\frac{1}{3}$ $\vec{i}$ $k$ $t_2$ | 0                                       | 0                           | 0                                  | 0                        |
| $\omega_1^{\#1}{}_+\alpha\beta$     | $k^2 r_3 + \frac{2t_2}{3}$         | $\frac{\sqrt{2} t_2}{3}$          | $-\frac{1}{3}$ i $\sqrt{2}$ $kt_2$ | 0                                       | 0                           | 0                                  | 0                        |
| ,                                   | $\omega_{1}^{\#1} +^{\alpha\beta}$ | $\omega_{1}^{\#2} + \alpha^{eta}$ | $f_1^{#1} + \alpha^{\beta}$        | $\omega_{1}^{\#_{1}} \dotplus^{\alpha}$ | $\omega_{1}^{\#2} +^{lpha}$ | $f_{1^{\bar{-}}}^{\#1} +^{\alpha}$ | $f_{1}^{\#2} +^{\alpha}$ |

| -                      | $\sigma_{0}^{\#1}$    | $\tau_{0}^{\#1}$ | $\tau_{0}^{#2}$ | $\sigma_0^{\#1}$          | •                       | #1                 | c#1  | c#2  | #1               |
|------------------------|-----------------------|------------------|-----------------|---------------------------|-------------------------|--------------------|------|------|------------------|
| $\sigma_{0}^{\#1}$ †   | $\frac{1}{6 k^2 r_3}$ | 0                | 0               | 0                         | ĺ                       | $\omega_{0}^{\#1}$ | J 0+ | J 0+ | $\omega_0^{\#1}$ |
|                        | 6 k - r3              |                  |                 |                           | $\omega_{0^{+}}^{#1}$ † | $6 k^2 r_3$        | 0    | 0    | 0                |
| $\tau_{0}^{\#1}$ †     | 0                     | 0                | 0               | 0                         | $f_{o+}^{\#1}$ †        | 0                  | 0    | 0    | 0                |
| $\tau_{0^{+}}^{\#2}$ † | 0                     | 0                | 0               | 0                         | f#2 +                   | 0                  | 0    | _    |                  |
| 41                     |                       |                  |                 | 1                         | ) <sub>0</sub> + 1      | U                  | 0    | U    | U                |
| $\sigma_0^{\#1}$ †     | 0                     | 0                | 0               | $\frac{1}{k^2 r_2 + t_2}$ | $\omega_{0}^{#1}$ †     | 0                  | 0    | 0    | $k^2 r_2 + t_2$  |

| Source constraints/gauge generators                                            |                |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| SO(3) irreps                                                                   | Multiplicities |  |  |  |  |  |  |
| $\tau_{0^{+}}^{\#2} == 0$                                                      | 1              |  |  |  |  |  |  |
| $\tau_{0+}^{\#1} == 0$                                                         | 1              |  |  |  |  |  |  |
| $\tau_1^{\#2\alpha} == 0$                                                      | 3              |  |  |  |  |  |  |
| $\tau_{1}^{\#1\alpha} == 0$                                                    | 3              |  |  |  |  |  |  |
| $\sigma_{1}^{\#2\alpha} == 0$                                                  | 3              |  |  |  |  |  |  |
| $\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$ | 3              |  |  |  |  |  |  |
| $\sigma_2^{\#1\alpha\beta\chi} == 0$                                           | 5              |  |  |  |  |  |  |
| $\tau_{2^{+}}^{\#1\alpha\beta} == 0$                                           | 5              |  |  |  |  |  |  |
| $\sigma_{2^{+}}^{\sharp 1 \alpha \beta} == 0$                                  | 5              |  |  |  |  |  |  |
| Total constraints:                                                             | 29             |  |  |  |  |  |  |

| $\sigma_{2}^{\#_{\perp}}\alpha\beta\chi$                 | 0                             | 0                                 | 0                                  | $\omega_{2^{-}}^{\#1}{}_{lphaeta\chi}$           | 0                                | 0                         | 0                                |
|----------------------------------------------------------|-------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------|----------------------------------|---------------------------|----------------------------------|
| $\tau_2^{*+}\alpha\beta$                                 | 0                             | 0                                 | 0                                  | $^{1}_{\alpha\beta} f_{2}^{\#1}_{\alpha\beta} G$ | 0                                | 0                         | 0                                |
| $\sigma_{2}^{*+}\alpha_{\beta} t_{2}^{*+}\alpha_{\beta}$ | 0                             | 0                                 | 0                                  | $\omega_{2}^{\#1}{}_{\alpha\beta}$               | 0                                | 0                         | 0                                |
| •                                                        | $\sigma_2^{\#1} + ^{lphaeta}$ | $\tau_{2}^{\#1} + ^{\alpha\beta}$ | $\sigma_{2}^{\#1} +^{lphaeta\chi}$ |                                                  | $\omega_2^{#1} + ^{\alpha\beta}$ | $f_2^{#1} + \alpha \beta$ | $\omega_2^{\#1} +^{lphaeta\chi}$ |

## Massive and massless spectra



(No massless particles)

## **Unitarity conditions**