# Final Project Report

Code ▼

Hide

```
#NAMES: HAOTIAN SHEN, ENUBI KIM, WEI LIAO, RHIANNON ABRAMS
```

#Loading in the libraries we need.

Hide

```
library(rio)
```

```
Registered S3 method overwritten by 'data.table':

method from

print.data.table

The following rio suggested packages are not installed: 'arrow', 'feather', 'fst', 'hexView', 'p

zfx', 'readODS', 'rmatio'

Use 'install_formats()' to install them
```

Hide

```
library(kernlab)
library(caret)
```

```
Loading required package: ggplot2
```

Attaching package: 'ggplot2'

The following object is masked from 'package:kernlab':

alpha

Loading required package: lattice

Hide

```
library(rpart)
library(rpart.plot)
library(imputeTS)
```

```
Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo
```

Hide

library(tidyverse)

```
Registered S3 methods overwritten by 'dbplyr':
  method
                from
  print.tbl_lazy
 print.tbl_sql
— Attaching packages -
———— tidyverse 1.3.2 —√ tibble 3.1.8

√ dplyr

                                                       1.0.9
√ tidyr
          1.2.0

√ stringr 1.4.1

√ readr

√ forcats 0.5.2

          2.1.2
√ purrr
          0.3.4
                    — Conflicts -
                  —— tidyverse conflicts() —
X ggplot2::alpha() masks kernlab::alpha()
x purrr::cross()
                 masks kernlab::cross()
X dplyr::filter() masks stats::filter()
★ dplyr::lag()
                   masks stats::lag()
X purrr::lift()
                   masks caret::lift()
                                                                                             Hide
library(ggplot2)
library(arules)
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
    expand, pack, unpack
Attaching package: 'arules'
The following object is masked from 'package:dplyr':
    recode
The following object is masked from 'package:kernlab':
    size
The following objects are masked from 'package:base':
    abbreviate, write
```

```
Hide
```

```
Google's Terms of Service: https://cloud.google.com/maps-platform/terms/.
Please cite ggmap if you use it! See citation("ggmap") for details.
```

library(ggmap)

#### #DATA CLEANING ##1.Deal with missing data points

```
Hide
 # Download the dataset from url and check for the missing data.
 datafile <- "https://intro-datascience.s3.us-east-2.amazonaws.com/HMO_data.csv"</pre>
 df <- read.csv(datafile)</pre>
 sum(is.na(df$bmi))
 [1] 78
                                                                                             Hide
 sum(is.na(df$hypertension))
 [1] 80
                                                                                             Hide
 #Comment: There are 78 and 80 missing data points in bmi and hypertension respectively.
 df$bmi <- na interpolation(df$bmi)</pre>
 df <- df %>% filter(!is.na(hypertension))
##2.Inspect the dataset
                                                                                             Hide
 str(df)
 'data.frame':
                7502 obs. of 14 variables:
  $ X
                   : int 1 2 3 4 5 7 9 10 11 12 ...
                   : int 18 19 27 34 32 47 36 59 24 61 ...
  $ age
  $ bmi
                  : num 27.9 33.8 33 22.7 28.9 ...
  $ children
                  : int 0130012000...
                          "yes" "no" "no" "no" ...
  $ smoker
                   : chr
                         "CONNECTICUT" "RHODE ISLAND" "MASSACHUSETTS" "PENNSYLVANIA" ...
  $ location
                  : chr
  $ location_type : chr
                         "Urban" "Urban" "Urban" "Country" ...
  $ education level: chr
                         "Bachelor" "Bachelor" "Master" ...
                         "No" "No" "No" "No" ...
  $ yearly_physical: chr
  $ exercise
                         "Active" "Not-Active" "Active" "Not-Active" ...
                  : chr
  $ married
                   : chr
                         "Married" "Married" "Married" ...
  $ hypertension : int 0001000100...
                          "female" "male" "male" ...
  $ gender
                   : chr
                   : int 1746 602 576 5562 836 3842 1304 9724 201 4492 ...
  $ cost
                                                                                             Hide
```

```
summary(df)
```

| x               | age               | bmi           | children      | smoker          | locat     |
|-----------------|-------------------|---------------|---------------|-----------------|-----------|
| on              |                   |               |               |                 |           |
| Min. :          | 1 Min. :18.00     | Min. :15.96   | Min. :0.000   | Length:7502     | Length:   |
| 502             |                   |               |               |                 |           |
| 1st Qu.: 56     | 35 1st Qu.:26.00  | 1st Qu.:26.60 | 1st Qu.:0.000 | Class :characte | r Class:  |
| haracter        |                   |               |               |                 |           |
| Median : 252    | 12 Median :39.00  | Median :30.50 | Median :1.000 | Mode :characte  | r Mode :  |
| haracter        |                   |               |               |                 |           |
| Mean : 7172     |                   | Mean :30.79   | Mean :1.108   |                 |           |
| 3rd Qu.: 1191   |                   | 3rd Qu.:34.70 | •             |                 |           |
| Max. :1311011   | 11 Max. :66.00    | Max. :53.13   | Max. :5.000   |                 |           |
| location_type   | education_level   | yearly_physi  | cal exercis   | se marri        | ed        |
| hypertension    |                   |               |               |                 |           |
| Length:7502     | Length:7502       | Length:7502   | Length:75     | 502 Length:     | 7502      |
| Min. :0.0000    |                   |               |               |                 |           |
| Class :characte | r Class :characte | r Class:chara | cter Class:ch | naracter Class: | character |
| 1st Qu.:0.0000  |                   |               |               |                 |           |
| Mode :characte  | r Mode :characte  | r Mode :chara | cter Mode :ch | naracter Mode : | character |
| Median :0.0000  |                   |               |               |                 |           |
| Mean :0.2005    |                   |               |               |                 |           |
| 3rd Qu.:0.0000  |                   |               |               |                 |           |
| Max. :1.0000    |                   |               |               |                 |           |
| gender          | cost              |               |               |                 |           |
| Length:7502     | Min. : 2.0        |               |               |                 |           |
| Class :characte | r 1st Qu.: 966.5  |               |               |                 |           |
| Mode :characte  | r Median : 2500.0 |               |               |                 |           |
|                 | Mean : 4049.5     |               |               |                 |           |
|                 | 3rd Qu.: 4778.8   |               |               |                 |           |
|                 | Max. :55715.0     |               |               |                 |           |
|                 |                   |               |               |                 |           |
|                 |                   |               |               |                 |           |

[Comments] We are dealing with a data set with 7502 rows and 14 columns. Cost will be our predictive variables, while the other 12 attributes: age, bmi, number of children, smoker or not, locations, education level, exercise yearly or not, married or not, hypertension or not, gender could be our predictors.

##3.Perform binning and transformation on our variables

```
#1. age
df add age <- df %>% mutate(age group = case when(
  df$age < 20 ~ "under 18",
  df$age >= 20 & df$age < 30 ~ "20-29",
  df$age >= 30 & df$age < 40 ~ "30-39",
  df$age >= 40 & df$age < 50 ~ "40-49",
  df$age >= 50 & df$age < 60 ~ "50-59",
  df$age >= 60 ~ 'over 60'
))
#2. bmi
df_add_bmi <- df_add_age %>% mutate(bmi_group = case_when(
  df add age$bmi < 18.5 ~ "Underweight",
  df_add_age$bmi >= 18.5 & df_add_age$bmi < 24.9 ~ "Normal Weight",</pre>
  df add age$bmi >= 24.9 & df add age$bmi < 29.9 ~ "Overweight",
  df_add_age$bmi >= 29.9 ~ "Obesity"
))
df_new <- df_add_bmi</pre>
# Adding new logical (binary) label of some categorical variables
# 1. Education level - is educated (yes, no)
df_add_edu_bin <- df_new %>% mutate(is_educated = case_when(
  df_new$education_level != "No College Degree" ~ "yes",
  TRUE ~ "no"
))
#2. children - have_child (yes, no)
df_add_child_bin <- df_add_edu_bin %>% mutate(have_child = case_when(
  df add edu bin$children == 0 ~ "no",
  TRUE ~ "yes"
))
df new <- df add child bin
df_new$hypertension <- ifelse(df_new$hypertension==1, 'yes', 'no')</pre>
head(df new)
```

|     | <b>a</b><br>i∞int: | <b>bmi</b><br>> <dbl></dbl> | children<br><int></int> | smo<br><chr></chr> | location<br><chr></chr> | location_type<br><chr></chr> | education_level<br><chr></chr> | yearly_physic<br><chr></chr> |
|-----|--------------------|-----------------------------|-------------------------|--------------------|-------------------------|------------------------------|--------------------------------|------------------------------|
| 1 1 | 18                 | 27.900                      | 0                       | yes                | CONNECTICUT             | Urban                        | Bachelor                       | No                           |
| 2 2 | 19                 | 33.770                      | 1                       | no                 | RHODE ISLAND            | Urban                        | Bachelor                       | No                           |
| 3 3 | 27                 | 33.000                      | 3                       | no                 | MASSACHUSET             | Γ <b>S</b> Jrban             | Master                         | No                           |
| 4 4 | 34                 | 22.705                      | 0                       | no                 | PENNSYLVANIA            | Country                      | Master                         | No                           |
| 5 5 | 32                 | 28.880                      | 0                       | no                 | PENNSYLVANIA            | Country                      | PhD                            | No                           |
| 6 7 | 47                 | 33.440                      | 1                       | no                 | PENNSYLVANIA            | Urban                        | Bachelor                       | No                           |

6 rows | 1-10 of 18 columns

##4. Set the boundary for expensive and not expensive

Hide

mean(df\_new\$cost) # Average cost is 4049.5

[1] 4049.492

Hide

range(df\_new\$cost) # (2, 55715)

[1] 2 55715

4

Hide

quantile(df\_new\$cost, probs = 0.8) # 80% people spend less than or equal to 5789.4

80%

5789.4

Hide

 $ggplot(df_new,aes(x=cost))+geom_histogram(bins=100)$  #The cost has long-tailed effects on the rig ht.



Hide

#Expensive means a person spends more than 6000 N(included) on his/her health
df\_new\$Expensive <- ifelse(df\_new\$cost >= 6000, 'yes', 'no')

[Comments] We set the boundary for expensive or not to be 6000. People who were charged more than 6000 dollars will be labeled as "expensive", while people who paid less will be labeled as "not expensive".

**#DATA VISUALIZATION #1.bar charts** 

Hide



Hide







Hide



```
ggplot(df_new, aes(fill= Expensive, x = location_type)) + geom_bar(position = "fill")
```







```
ggplot(df_new, aes(fill= Expensive, x = married)) + geom_bar(position = "fill")
```



Hide





[Comments] All the bar charts demonstrate that the percentages of people paying more than 6000 can vary among different groups. They gave us a general ideas on which attribute might be valid predictor. For example, for people who are smokers, the percentage of people paying more than 6000 is significantly higher vs people who are not smokers. However, the differences in percentage is not that significant for people have children vs doesn't, educated vs not educated, live in country or urban, yearly\_physical or not, married or not.

Next, we will look at the attributes independently to get more insights.

## 1. age

200

0

20

30

40

age

50

60



yes

[Comments] 1. According to the above histogram, the age of most people in the data set is under 20. 2. [Expensive - No] The distribution of this group shows a multimodal shape and a peak in the under-20 categories. 3. [Expensive - Yes] As seen in the green area, we would say that the older a person is, the more he/she will pay for healthcare.

```
# grouping (age_group ~ number of observation)
# table
age_group <- df_new %>%
  group_by(age_group, Expensive) %>%
  summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
  arrange(Expensive)
```

`summarise()` has grouped output by 'age\_group'. You can override using the `.groups` argument.

Hide

```
colnames(age_group)[3] <- "count"
age_group <- age_group %>% mutate(prop = round(count/7502, 3))
age_group
```

| age_group<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | sd<br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|--------------------------|-----------------------|----------------------|---------------------|--------------------|-------------------|-------------------------|
| 20-29                    | no                    | 1537                 | 24.23682            | 8.5493462          | 2.9239265         | 0.205                   |
| 30-39                    | no                    | 1169                 | 34.37468            | 8.4964816          | 2.9148725         | 0.156                   |
| 40-49                    | no                    | 1134                 | 44.47972            | 8.8182114          | 2.9695473         | 0.151                   |
| 50-59                    | no                    | 1173                 | 54.24467            | 8.0194362          | 2.8318609         | 0.156                   |
| over 60                  | no                    | 367                  | 61.84741            | 2.0914072          | 1.4461698         | 0.049                   |
| under 18                 | no                    | 674                  | 18.42730            | 0.2450783          | 0.4950538         | 0.090                   |
| 20-29                    | yes                   | 171                  | 23.95322            | 8.7154455          | 2.9521933         | 0.023                   |
| 30-39                    | yes                   | 212                  | 34.77830            | 7.6236028          | 2.7610872         | 0.028                   |
| 40-49                    | yes                   | 384                  | 44.80729            | 7.8478840          | 2.8014075         | 0.051                   |
| 50-59                    | yes                   | 334                  | 54.30240            | 8.6380123          | 2.9390496         | 0.045                   |
| 1-10 of 12 rows          |                       |                      |                     |                    | Previous 1        | 2 Next                  |

```
# plot
ggplot(age_group, aes(age_group, count, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme_classic() +
    theme(legend.position = "top") +
    geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



[Comments] The table and bar chart shows the detailed statistical results of two groups (high and low cost) in terms of age. 1. The age group under 50 accounts for more than half of the entire population in the data set. 2. [Expensive - No] Among the people who pay fewer costs for healthcare, the 20-29 age group has the highest proportion of the whole population. 3. [Expensive - Yes] There are most people in the 40-49 age group with the highest healthcare cost.

`summarise()` has grouped output by 'age group'. You can override using the `.groups` argument.

Hide

```
age_group_cost <- age_group_cost %>% mutate(prop = round(total/30379292 ,3))
age_group_cost
```

| age_group<br><chr></chr> | Expensive <chr></chr> | total<br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | var<br><dbl></dbl> | sd<br><dbl></dbl> | prop<br><dbl></dbl> |
|--------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|--------------------|-------------------|---------------------|
| 20-29                    | no                    | 1801197              | 1171.8913           | 5954               | 2                  | 1565567            | 1251.226          | 0.059               |
| 30-39                    | no                    | 2292248              | 1960.8623           | 5945               | 8                  | 1579157            | 1256.645          | 0.075               |
| 40-49                    | no                    | 3242424              | 2859.2804           | 5968               | 7                  | 1568250            | 1252.298          | 0.107               |
| 50-59                    | no                    | 3694369              | 3149.5047           | 5986               | 18                 | 1621382            | 1273.335          | 0.122               |
| over 60                  | no                    | 1336303              | 3641.1526           | 5900               | 34                 | 1743923            | 1320.577          | 0.044               |
| under 18                 | no                    | 636818               | 944.8338            | 5938               | 4                  | 1458238            | 1207.575          | 0.021               |
| 20-29                    | yes                   | 1775152              | 10381.0058          | 27136              | 6010               | 14595061           | 3820.348          | 0.058               |

| age_group<br><chr></chr> | Expensive <chr></chr> | total<br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | var<br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | prop<br><dbl></dbl> |
|--------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|--------------------|--------------------------|---------------------|
| 30-39                    | yes                   | 2779305              | 13109.9292          | 40336              | 6007               | 37784598           | 6146.918                 | 0.091               |
| 40-49                    | yes                   | 4919178              | 12810.3594          | 40664              | 6004               | 46016943           | 6783.579                 | 0.162               |
| 50-59                    | yes                   | 3860265              | 11557.6796          | 42820              | 6001               | 40944549           | 6398.793                 | 0.127               |
| 1-10 of 12 row           | vs                    |                      |                     |                    |                    | Prev               | ious <b>1</b> 2          | Next                |

```
Hide
```

```
# plot
ggplot(age_group_cost, aes(age_group, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



[Comments] Unlike the above results, as we consider the cost data together, the age group between 40~59 spent a lot of money on their health care. 1) [Overall] The age group 40-49 has the highest total costs and proportion in the entire population. 2) [Expensive - Yes] Among the people with lower healthcare costs, the proportion and total value of the age group 40-49 are the highest with \$4,919,178 (16.2%). 3) [Expensive - No] The age group 50-59 pay the highest costs for healthcare services. (\$3,694,369 - 12.2%)

```
Hide
```

```
# box plot
# without outlier
ggplot(df_new, aes(age_group, cost, fill=Expensive)) +
  geom_boxplot(outlier.shape=NA) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(age_group, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



[Comments] The boxplots are made using the age\_group and cost columns. 1) As seen in the box plot with the outliers, we can find the outliers of \$55,715 on the age group over 60 with the higher healthcare cost. 2) We can also figure out that the age group 50-59 has many outliers in the boxplot with outliers. 3) Without the outliers, the boxplots of each 'Expensive' group show similar shapes. The 'Expensive - yes' group has a more variable range of values than the 'Expensive - no' group in terms of healthcare costs. 4) There are also outliers in the groups: the age group 20-29, 30-39, and under 18 with expensive healthcare cost.

#### 2. bmi

[Comments] 1. The histogram of the overall population in the bmi column shows a normal distribution (a bell shape). 2. [Expensive - No] The distribution with a red color has a bell shape, so we would conclude this is a normal distribution. 3. [Expensive - Yes] As seen in the green area, the shape of this histogram has a right-skewed shape. That means the data would have a higher bmi value than the 'Expensive - yes' group.

```
# grouping (bmi_group ~ number of observation)
# table
bmi_group <- df_new %>%
  group_by(bmi_group, Expensive) %>%
  summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
  arrange(Expensive)
```

`summarise()` has grouped output by 'bmi\_group'. You can override using the `.groups` argument.

Hide

```
colnames(bmi_group)[3] <- "count"
bmi_group <- bmi_group %>% mutate(prop = round(count/7502, 3))
bmi_group
```

| bmi_group<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | <b>var</b><br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | prop<br><dbl></dbl> |
|--------------------------|-----------------------|----------------------|---------------------|---------------------------|--------------------------|---------------------|
| Normal Weight            | no                    | 1053                 | 36.03799            | 190.2267                  | 13.792269                | 0.140               |
| Obesity                  | no                    | 3044                 | 38.14947            | 200.8304                  | 14.171465                | 0.406               |
| Overweight               | no                    | 1866                 | 37.31297            | 182.3685                  | 13.504388                | 0.249               |
| Underweight              | no                    | 91                   | 32.10989            | 160.3878                  | 12.664430                | 0.012               |
| Normal Weight            | yes                   | 122                  | 46.12295            | 100.0922                  | 10.004609                | 0.016               |
| Obesity                  | yes                   | 1080                 | 44.53611            | 204.8106                  | 14.311204                | 0.144               |
| Overweight               | yes                   | 237                  | 47.67089            | 133.1539                  | 11.539235                | 0.032               |
| Underweight              | yes                   | 9                    | 34.66667            | 16.7500                   | 4.092676                 | 0.001               |

```
# plot
ggplot(bmi_group, aes(bmi_group, count, fill=factor(Expensive))) +
  geom_bar(stat="identity", position=position_stack()) +
  theme_classic() +
  theme(legend.position = "top") +
  geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



[Comments] The table and bar chart shows the detailed statistical results of two groups (high and low cost) in terms of bmi. 1. [Overall, Expensive - No] In the data set, people who are in 'Obesity' account for most of the population. We would say these people spent fewer costs on their healthcare. 2. [Expensive - Yes] People who are overweight may pay more costs for healthcare because the red area represents that there are 1,866 people (It accounts for 24.9% of the population)

`summarise()` has grouped output by 'bmi\_group'. You can override using the `.groups` argument.

Hide

```
bmi_group_cost <- bmi_group_cost %>% mutate(prop = round(total/30379292 ,3))
bmi_group_cost
```

| bmi_group     | Expensive <chr></chr> | total       | mean        | max         | min         | var         | sd          | prop        |
|---------------|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <chr></chr>   |                       | <int></int> | <dbl></dbl> | <int></int> | <int></int> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| Normal Weight | no                    | 2070638     | 1966.418    | 5986        | 2           | 2352227     | 1533.697    | 0.068       |

| bmi_group<br><chr></chr> | Expensive <chr></chr> | total<br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | <b>var</b><br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | prop<br><dbl></dbl> |
|--------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|---------------------------|--------------------------|---------------------|
| Obesity                  | no                    | 6940975              | 2280.215            | 5968               | 5                  | 2586689                   | 1608.319                 | 0.228               |
| Overweight               | no                    | 3858150              | 2067.605            | 5975               | 12                 | 2111717                   | 1453.175                 | 0.127               |
| Underweight              | no                    | 133596               | 1468.088            | 5809               | 8                  | 1880116                   | 1371.173                 | 0.004               |
| Normal Weight            | yes                   | 1011603              | 8291.828            | 15360              | 6001               | 3993159                   | 1998.289                 | 0.033               |
| Obesity                  | yes                   | 14138257             | 13090.979           | 55715              | 6004               | 44180223                  | 6646.820                 | 0.465               |
| Overweight               | yes                   | 2146989              | 9059.025            | 25738              | 6003               | 8475817                   | 2911.326                 | 0.071               |
| Underweight              | yes                   | 79084                | 8787.111            | 11371              | 6319               | 2014046                   | 1419.171                 | 0.003               |
| 8 rows                   |                       |                      |                     |                    |                    |                           |                          |                     |

```
# plot
ggplot(bmi_group_cost, aes(bmi_group, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



[Comments] Unlike the above results, as we consider the cost data together, the people in the Obesity group with both low and high healthcare costs spent a lot of money on healthcare. These groups also have the highest proportion in terms of costs.

```
# box plot
# without outlier
ggplot(df_new, aes(bmi_group, cost, fill=Expensive)) +
    geom_boxplot(outlier.shape=NA) +
    theme_classic() +
    scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(bmi_group, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



[Comments] According to the boxplots with and without outliers, the Obesity group has a wide range of healthcare cost data, and there are many outliers in the Expensive-yes category.

# 3. location\_type

```
# grouping (location_type ~ number of observations)
# table
location_type_group <- df_new %>%
    group_by(location_type, Expensive) %>%
    summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
    arrange(Expensive)
```

`summarise()` has grouped output by 'location\_type'. You can override using the `.groups` argume  $\mathsf{nt}$ .

Hide

```
colnames(location_type_group)[3] <- "count"
location_type_group <- location_type_group %>% mutate(prop = round(count/7502, 3))
location_type_group
```

| location_type<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | sd<br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|------------------------------|-----------------------|----------------------|---------------------|--------------------|-------------------|-------------------------|
| Country                      | no                    | 1508                 | 37.78780            | 196.5959           | 14.02127          | 0.201                   |

| location_type<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | prop<br><dbl></dbl> |
|------------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------------|---------------------|
| Urban                        | no                    | 4546                 | 37.31610            | 192.6277           | 13.87904                 | 0.606               |
| Country                      | yes                   | 369                  | 45.54472            | 202.7052           | 14.23746                 | 0.049               |
| Urban                        | yes                   | 1079                 | 44.97683            | 179.0282           | 13.38014                 | 0.144               |
| 4 rows                       |                       |                      |                     |                    |                          |                     |

```
# plot
ggplot(location_type_group, aes(location_type, count, fill=factor(Expensive))) +
  geom_bar(stat="identity", position=position_stack()) +
  theme_classic() +
  theme(legend.position = "top") +
  geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



`summarise()` has grouped output by 'location\_type'. You can override using the `.groups` argume nt.

Hide

```
location_type_cost <- location_type_cost %>% mutate(prop = round(total/30379292 ,3))
location_type_cost
```

| location_type<br><chr></chr> | Expensive <chr></chr> | <b>total</b><br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | var<br><dbl></dbl> | sd<br><dbl></dbl> | prop<br><dbl></dbl> |
|------------------------------|-----------------------|-----------------------------|---------------------|--------------------|--------------------|--------------------|-------------------|---------------------|
| Country                      | no                    | 3255019                     | 2158.501            | 5986               | 4                  | 2412796            | 1553.318          | 0.107               |
| Urban                        | no                    | 9748340                     | 2144.377            | 5975               | 2                  | 2411254            | 1552.821          | 0.321               |
| Country                      | yes                   | 4378019                     | 11864.550           | 40388              | 6007               | 33492982           | 5787.312          | 0.144               |
| Urban                        | yes                   | 12997914                    | 12046.259           | 55715              | 6001               | 39834282           | 6311.441          | 0.428               |
| 4 rows                       |                       |                             |                     |                    |                    |                    |                   |                     |

```
# plot
ggplot(location_type_cost, aes(location_type, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



**[Comments]** The location\_type variable has a categorical data type, so we couldn't draw a histogram. The table and bar chart shows the detailed statistical results of two groups (high and low cost) in location\_type categories. 1) In the data set, there are more people who live in urban areas in terms of both the number of observations and total healthcare costs. It accounts for almost 73-75% of the population.

```
# box plot
# without outlier
ggplot(df_new, aes(location_type, cost, fill=Expensive)) +
  geom_boxplot(outlier.shape=NA) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(location_type, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



[Comments] The boxplots that made by the location\_type and cost columns for the 'Expensive-Yes' group has many outliers. Considering healthcare costs, the boxplots of both country and the urban group have almost similar shapes.

#### 4. exercise

```
Hide
```

```
# grouping (exercise ~ numer of observation)
# table
exericse_group <- df_new %>%
  group_by(exercise, Expensive) %>%
  summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
  arrange(Expensive)
```

`summarise()` has grouped output by 'exercise'. You can override using the `.groups` argument.

```
colnames(exericse_group)[3] <- "count"
exericse_group <- exericse_group %>% mutate(prop = round(count/7502, 3))
exericse_group
```

| exercise<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | sd<br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|-------------------------|-----------------------|----------------------|---------------------|--------------------|-------------------|-------------------------|
| Active                  | no                    | 1688                 | 38.25355            | 203.4567           | 14.26383          | 0.225                   |

| exercise<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | sd<br><dbl></dbl> | prop<br><dbl></dbl> |
|-------------------------|-----------------------|----------------------|---------------------|--------------------|-------------------|---------------------|
| Not-Active              | no                    | 4366                 | 37.11658            | 189.5097           | 13.76625          | 0.582               |
| Active                  | yes                   | 185                  | 45.20000            | 175.4000           | 13.24387          | 0.025               |
| Not-Active              | yes                   | 1263                 | 45.11006            | 186.5307           | 13.65762          | 0.168               |
| 4 rows                  |                       |                      |                     |                    |                   |                     |

```
# plot
ggplot(exericse_group, aes(exercise, count, fill=factor(Expensive))) +
  geom_bar(stat="identity", position=position_stack()) +
  theme_classic() +
  theme(legend.position = "top") +
  geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



`summarise()` has grouped output by 'exercise'. You can override using the `.groups` argument.

Hide

```
exercise_group_cost <- exercise_group_cost %>% mutate(prop = round(total/30379292 ,3))
exercise_group_cost
```

| exercise<br><chr></chr> | Expensive <chr></chr> | total<br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | <b>var</b><br><dbl></dbl> | sd<br><dbl></dbl> | prop<br><dbl></dbl> |
|-------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|---------------------------|-------------------|---------------------|
| Active                  | no                    | 2677798              | 1586.373            | 5938               | 2                  | 1855226                   | 1362.067          | 0.088               |
| Not-Active              | no                    | 10325561             | 2364.993            | 5986               | 97                 | 2457658                   | 1567.692          | 0.340               |
| Active                  | yes                   | 1935220              | 10460.649           | 28219              | 6035               | 17120361                  | 4137.676          | 0.064               |
| Not-Active              | yes                   | 15440713             | 12225.426           | 55715              | 6001               | 40905822                  | 6395.766          | 0.508               |
| 4 rows                  |                       |                      |                     |                    |                    |                           |                   |                     |

```
# plot
ggplot(exercise_group_cost, aes(exercise, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



[Comments] The exercise variable has a categorical data type, so we couldn't draw a histogram. The table and bar chart shows the detailed statistical results of two groups (high and low cost) in the exercise categories. 1) In the data set, the number of people who exercise regularly is more than the other group without working out. Also, they have a higher healthcare cost. It accounts for almost 84-85% of the population. 2) The interesting point is that even though there are more people who are not active and have a lower healthcare spending, the actual costs of the people who are not active and have a higher healthcare cost are higher than the other group.

```
# box plot
# without outlier
ggplot(df_new, aes(exercise, cost, fill=Expensive)) +
geom_boxplot(outlier.shape=NA) +
theme_classic() +
scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(exercise, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



[Comments] There are many outliers in the not-active and expensive - yes group.

### 5. smoker

```
Hide
```

```
# grouping (smoker ~ numer of observation)
# table
smoker_group <- df_new %>%
  group_by(smoker, Expensive) %>%
  summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
  arrange(Expensive)
```

`summarise()` has grouped output by 'smoker'. You can override using the `.groups` argument.

```
colnames(smoker_group)[3] <- "count"
smoker_group <- smoker_group %>% mutate(prop = round(count/7502, 3))
smoker_group
```

| smoker<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | sd<br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|-----------------------|-----------------------|----------------------|---------------------|--------------------|-------------------|-------------------------|
| no                    | no                    | 5555                 | 37.80414            | 193.3098           | 13.90359          | 0.740                   |
| yes                   | no                    | 499                  | 33.30862            | 178.9528           | 13.37732          | 0.067                   |

| smoker<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|-----------------------|-----------------------|----------------------|---------------------|--------------------|--------------------------|-------------------------|
| no                    | yes                   | 485                  | 50.70928            | 142.5951           | 11.94132                 | 0.065                   |
| yes                   | yes                   | 963                  | 42.30737            | 182.8389           | 13.52179                 | 0.128                   |
| 4 rows                |                       |                      |                     |                    |                          |                         |

```
# plot
ggplot(smoker_group, aes(smoker, count, fill=factor(Expensive))) +
  geom_bar(stat="identity", position=position_stack()) +
  theme_classic() +
  theme(legend.position = "top") +
  geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



`summarise()` has grouped output by 'smoker'. You can override using the `.groups` argument.

Hide

```
smoker_group_cost <- smoker_group_cost %>% mutate(prop = round(total/30379292 ,3))
smoker_group_cost
```

| smoker<br><chr></chr> | Expensive <chr></chr> | total<br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | var<br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | prop<br><dbl></dbl> |
|-----------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|--------------------|--------------------------|---------------------|
| no                    | no                    | 11285148             | 2031.530            | 5968               | 2                  | 2270763            | 1506.905                 | 0.371               |
| yes                   | no                    | 1718211              | 3443.309            | 5986               | 78                 | 2150712            | 1466.530                 | 0.057               |
| no                    | yes                   | 4083996              | 8420.610            | 31542              | 6003               | 6323670            | 2514.691                 | 0.134               |
| yes                   | yes                   | 13291937             | 13802.634           | 55715              | 6001               | 44565594           | 6675.747                 | 0.438               |
| 4 rows                |                       |                      |                     |                    |                    |                    |                          |                     |

```
# plot
ggplot(smoker_group_cost, aes(smoker, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



[Comments] The smoker variable has a categorical data type, so we couldn't draw a histogram. The table and bar chart shows the detailed statistical results of two groups (high and low cost) in the smoker categories. 1) In the data set, the number of people who smoke is more than the non-smoker group. It accounts for almost 84-85% of the population.

```
# box plot
# without outlier
ggplot(df_new, aes(smoker, cost, fill=Expensive)) +
  geom_boxplot(outlier.shape=NA) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(smoker, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



[Comments] There are many outliers in the smoker - yes and expensive - yes group. It also has a variable range of healthcare cost data.

# 6. yearly\_physical

```
Hide
```

```
# grouping (yearly_physical ~ numer of observation)
# table
yearly_physical_group <- df_new %>%
  group_by(yearly_physical, Expensive) %>%
  summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
  arrange(Expensive)
```

`summarise()` has grouped output by 'yearly\_physical'. You can override using the `.groups` argument.

```
colnames(yearly_physical_group)[3] <- "count"
yearly_physical_group <- yearly_physical_group %>% mutate(prop = round(count/7502, 3))
yearly_physical_group
```

| yearly_physical | Expensive <chr></chr> | count       | mean        | var         | sd          | prop        |
|-----------------|-----------------------|-------------|-------------|-------------|-------------|-------------|
| <chr></chr>     |                       | <int></int> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| No              | no                    | 4572        | 37.44641    | 193.0527    | 13.89434    | 0.609       |

| yearly_physical<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | prop<br><dbl></dbl> |
|--------------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------------|---------------------|
| Yes                            | no                    | 1482                 | 37.39406            | 195.5219           | 13.98291                 | 0.198               |
| No                             | yes                   | 1067                 | 45.60825            | 187.4036           | 13.68954                 | 0.142               |
| Yes                            | yes                   | 381                  | 43.75853            | 176.1679           | 13.27282                 | 0.051               |
| 4 rows                         |                       |                      |                     |                    |                          |                     |

```
# plot
ggplot(yearly_physical_group, aes(yearly_physical, count, fill=factor(Expensive))) +
   geom_bar(stat="identity", position=position_stack()) +
   theme_classic() +
   theme(legend.position = "top") +
   geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



`summarise()` has grouped output by 'yearly\_physical'. You can override using the `.groups` argument.

Hide

```
yearly_physical_group_cost <- yearly_physical_group_cost %>% mutate(prop = round(total/30379292
,3))
yearly_physical_group_cost
```

| yearly_physical<br><chr></chr> | Expensive <chr></chr> | <b>total</b><br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | var<br><dbl></dbl> | sd<br><dbl></dbl> | prop<br><dbl></dbl> |
|--------------------------------|-----------------------|-----------------------------|---------------------|--------------------|--------------------|--------------------|-------------------|---------------------|
| No                             | no                    | 9875378                     | 2159.969            | 5975               | 2                  | 2408989            | 1552.092          | 0.325               |
| Yes                            | no                    | 3127981                     | 2110.648            | 5986               | 19                 | 2418127            | 1555.033          | 0.103               |
| No                             | yes                   | 12967312                    | 12153.057           | 55715              | 6001               | 41697438           | 6457.355          | 0.427               |
| Yes                            | yes                   | 4408621                     | 11571.184           | 30334              | 6003               | 28240337           | 5314.164          | 0.145               |
| 4 rows                         |                       |                             |                     |                    |                    |                    |                   |                     |

```
# plot
ggplot(yearly_physical_group_cost, aes(yearly_physical, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



[Comments] The table and bar chart shows the detailed statistical results of two groups (high and low cost) in the yearly\_physical categories. 1) In the data set, there are more people who if the person had a well visit with their doctor during the year in terms of both the number of observations and total healthcare costs. It accounts for almost 75% of the population. 2) The interesting point is that people who usually didn't see their doctor for a year have a higher healthcare cost.

```
# box plot
# without outlier
ggplot(df_new, aes(yearly_physical, cost, fill=Expensive)) +
    geom_boxplot(outlier.shape=NA) +
    theme_classic() +
    scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(yearly_physical, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



[Comments] Even though the boxplots don't have a wider range of data on healthcare costs, there are many outliers in the expensive-yes group (green boxes).

# 7. gender

```
# grouping (gender ~ numer of observation)
# table
gender_group <- df_new %>%
    group_by(gender, Expensive) %>%
    summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
    arrange(Expensive)
```

`summarise()` has grouped output by 'gender'. You can override using the `.groups` argument.

colnames(gender\_group)[3] <- "count"
gender\_group <- gender\_group %>% mutate(prop = round(count/7502, 3))
gender\_group

| gender<br><chr></chr> | <b>Expensive</b> <chr></chr> | count<br><int></int> | <b>mean</b><br><dbl></dbl> | <b>var</b><br><dbl></dbl> | sd<br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|-----------------------|------------------------------|----------------------|----------------------------|---------------------------|-------------------|-------------------------|
| female                | no                           | 3024                 | 37.68585                   | 197.5711                  | 14.05600          | 0.403                   |

| gender<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|-----------------------|-----------------------|----------------------|---------------------|--------------------|--------------------------|-------------------------|
| male                  | no                    | 3030                 | 37.18185            | 189.6246           | 13.77042                 | 0.404                   |
| female                | yes                   | 602                  | 46.70100            | 183.9238           | 13.56185                 | 0.080                   |
| male                  | yes                   | 846                  | 43.99764            | 182.9207           | 13.52482                 | 0.113                   |
| 4 rows                |                       |                      |                     |                    |                          |                         |

```
# plot
ggplot(gender_group, aes(gender, count, fill=factor(Expensive))) +
  geom_bar(stat="identity", position=position_stack()) +
  theme_classic() +
  theme(legend.position = "top") +
  geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



`summarise()` has grouped output by 'gender'. You can override using the `.groups` argument.

Hide

```
gender_group_cost <- gender_group_cost %>% mutate(prop = round(total/30379292 ,3))
gender_group_cost
```

| gender<br><chr></chr> | Expensive <chr></chr> | total<br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | var<br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | prop<br><dbl></dbl> |
|-----------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|--------------------|--------------------------|---------------------|
| female                | no                    | 6570059              | 2172.639            | 5986               | 4                  | 2296344            | 1515.369                 | 0.216               |
| male                  | no                    | 6433300              | 2123.201            | 5968               | 2                  | 2525557            | 1589.200                 | 0.212               |
| female                | yes                   | 6965779              | 11571.061           | 55715              | 6001               | 37587393           | 6130.856                 | 0.229               |
| male                  | yes                   | 10410154             | 12305.147           | 42820              | 6007               | 38457152           | 6201.383                 | 0.343               |
| 4 rows                |                       |                      |                     |                    |                    |                    |                          |                     |

```
# plot
ggplot(gender_group_cost, aes(gender, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



**[Comments]** The table and bar chart shows the detailed statistical results of two groups (high and low cost) in terms of gender. 1. There is no significant difference between the number of observations in female and male groups. 2. However, in terms of healthcare cost, male has a higher healthcare cost than the female.

```
# box plot
# without outlier
ggplot(df_new, aes(gender, cost, fill=Expensive)) +
    geom_boxplot(outlier.shape=NA) +
    theme_classic() +
    scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(gender, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



[Comments] There is no significant difference in both female and male boxplots with healthcare costs.

# 8. education\_level - is\_educated

```
Hide
```

```
# grouping (education_level ~ numer of observation)
# table
education_level_group <- df_new %>%
  group_by(is_educated, Expensive) %>%
  summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
  arrange(Expensive)
```

`summarise()` has grouped output by 'is\_educated'. You can override using the `.groups` argumen t.

```
colnames(education_level_group)[3] <- "count"
education_level_group <- education_level_group %>% mutate(prop = round(count/7502, 3))
education_level_group
```

| is_educated<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|----------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------------|-------------------------|
| no                         | no                    | 592                  | 37.22635            | 198.7913           | 14.09934                 | 0.079                   |

| is_educated<br><chr></chr> | <b>Expensive</b> <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | <b>sd</b><br><dbl></dbl> | prop<br><dbl></dbl> |
|----------------------------|------------------------------|----------------------|---------------------|--------------------|--------------------------|---------------------|
| yes                        | no                           | 5462                 | 37.45606            | 193.0967           | 13.89592                 | 0.728               |
| no                         | yes                          | 160                  | 46.37500            | 199.7075           | 14.13179                 | 0.021               |
| yes                        | yes                          | 1288                 | 44.96584            | 183.0928           | 13.53118                 | 0.172               |
| 4 rows                     |                              |                      |                     |                    |                          |                     |

```
# plot
ggplot(education_level_group, aes(is_educated, count, fill=factor(Expensive))) +
   geom_bar(stat="identity", position=position_stack()) +
   theme_classic() +
   theme(legend.position = "top") +
   geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



`summarise()` has grouped output by 'is\_educated'. You can override using the `.groups` argumen t.

Hide

```
education_level_group_cost <- education_level_group_cost %>% mutate(prop = round(total/30379292
,3))
education_level_group_cost
```

| is_educated<br><chr></chr> | Expensive <chr></chr> | total<br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | <b>var</b><br><dbl></dbl> | sd<br><dbl></dbl> | prop<br><dbl></dbl> |
|----------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|---------------------------|-------------------|---------------------|
| no                         | no                    | 1252109              | 2115.049            | 5952               | 5                  | 2394189                   | 1547.317          | 0.041               |
| yes                        | no                    | 11751250             | 2151.456            | 5986               | 2                  | 2413438                   | 1553.524          | 0.387               |
| no                         | yes                   | 1827616              | 11422.600           | 42820              | 6004               | 38629280                  | 6215.246          | 0.060               |
| yes                        | yes                   | 15548317             | 12071.675           | 55715              | 6001               | 38130410                  | 6174.983          | 0.512               |
| 4 rows                     |                       |                      |                     |                    |                    |                           |                   |                     |

```
# plot
ggplot(education_level_group_cost, aes(is_educated, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



**[Comments]** The table and bar chart shows the detailed statistical results of two groups (high and low cost) considering whether a person has a college degree or not. The interesting point is that people with a college degree have a higher healthcare cost than other people without an education degree.

```
# box plot
# without outlier
ggplot(df_new, aes(is_educated, cost, fill=Expensive)) +
    geom_boxplot(outlier.shape=NA) +
    theme_classic() +
    scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(is_educated, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



[Comments] There are more outliers in the is\_educated - yes and expensive - yes group than is\_educated - no and expensive - yes group.

#### 9. married

```
Hide
```

```
# grouping (married ~ numer of observation)
# table
married_group <- df_new %>%
  group_by(married, Expensive) %>%
  summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
  arrange(Expensive)
```

`summarise()` has grouped output by 'married'. You can override using the `.groups` argument.

```
colnames(married_group)[3] <- "count"
married_group <- married_group %>% mutate(prop = round(count/7502, 3))
married_group
```

| married     | Expensive <chr></chr> | count       | mean        | var         | sd          | prop        |
|-------------|-----------------------|-------------|-------------|-------------|-------------|-------------|
| <chr></chr> |                       | <int></int> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| Married     | no                    | 4052        | 37.53702    | 192.8905    | 13.88850    | 0.540       |

| married<br><chr></chr> | <b>Expensive</b> <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | sd<br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|------------------------|------------------------------|----------------------|---------------------|--------------------|-------------------|-------------------------|
| Not_Married            | no                           | 2002                 | 37.22428            | 195.1446           | 13.96942          | 0.267                   |
| Married                | yes                          | 951                  | 45.08412            | 185.2224           | 13.60964          | 0.127                   |
| Not_Married            | yes                          | 497                  | 45.19316            | 184.9021           | 13.59787          | 0.066                   |

4 rows

Hide

```
# plot
ggplot(married_group, aes(married, count, fill=factor(Expensive))) +
  geom_bar(stat="identity", position=position_stack()) +
  theme_classic() +
  theme(legend.position = "top") +
  geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



`summarise()` has grouped output by 'married'. You can override using the `.groups` argument.

Hide

```
married_group_cost <- married_group_cost %>% mutate(prop = round(total/30379292 ,3))
married_group_cost
```

| married<br><chr></chr> | Expensive <chr></chr> | total<br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | <b>var</b><br><dbl></dbl> | sd<br><dbl></dbl> | prop<br><dbl></dbl> |
|------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|---------------------------|-------------------|---------------------|
| Married                | no                    | 8671853              | 2140.141            | 5986               | 2                  | 2402165                   | 1549.892          | 0.285               |
| Not_Married            | no                    | 4331506              | 2163.589            | 5945               | 5                  | 2430561                   | 1559.026          | 0.143               |
| Married                | yes                   | 11398489             | 11985.793           | 42820              | 6001               | 36025237                  | 6002.103          | 0.375               |
| Not_Married            | yes                   | 5977444              | 12027.050           | 55715              | 6048               | 42442181                  | 6514.766          | 0.197               |
| 4 rows                 |                       |                      |                     |                    |                    |                           |                   |                     |

```
# plot
ggplot(married_group_cost, aes(married, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



[Comments] The table and bar chart represents the detailed statistical results of two groups (high and low cost) considering whether a person gets married or not. Both bar plots show that more people are married in the data set, and they have a higher cost than the other people who are not married.

```
# box plot
# without outlier
ggplot(df_new, aes(married, cost, fill=Expensive)) +
    geom_boxplot(outlier.shape=NA) +
    theme_classic() +
    scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(married, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



[Comments] 1) As seen in the box plot with the outliers, we can find the outliers of \$55,715 on the not\_married group with the higher healthcare cost.

# 10. number of children - have\_child

```
# grouping (num of children ~ numer of observation)
# table
children_group <- df_new %>%
    group_by(have_child, Expensive) %>%
    summarise(count=n(), mean=mean(age), var=var(age), sd=sd(age)) %>%
    arrange(Expensive)
```

`summarise()` has grouped output by 'have\_child'. You can override using the `.groups` argument.

```
colnames(children_group)[3] <- "count"
children_group <- children_group %>% mutate(prop = round(count/7502, 3))
children_group
```

| have_child<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | sd<br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|---------------------------|-----------------------|----------------------|---------------------|--------------------|-------------------|-------------------------|
| no                        | no                    | 2682                 | 36.20172            | 258.2827           | 16.07118          | 0.358                   |

| have_child<br><chr></chr> | Expensive <chr></chr> | count<br><int></int> | mean<br><dbl></dbl> | var<br><dbl></dbl> | sd<br><dbl></dbl> | <b>prop</b> <dbl></dbl> |
|---------------------------|-----------------------|----------------------|---------------------|--------------------|-------------------|-------------------------|
| yes                       | no                    | 3372                 | 38.41340            | 140.0925           | 11.83607          | 0.449                   |
| no                        | yes                   | 547                  | 45.13711            | 259.7632           | 16.11717          | 0.073                   |
| yes                       | yes                   | 901                  | 45.11210            | 139.8285           | 11.82491          | 0.120                   |
| 4 rows                    |                       |                      |                     |                    |                   |                         |

```
# plot
ggplot(children_group, aes(have_child, count, fill=factor(Expensive))) +
  geom_bar(stat="identity", position=position_stack()) +
  theme_classic() +
  theme(legend.position = "top") +
  geom_text(aes(label=paste(count,"(",prop*100, "%)")), size = 3, position = position_stack(0.5))
```



`summarise()` has grouped output by 'have\_child'. You can override using the `.groups` argument.

Hide

```
children_group_cost <- children_group_cost %>% mutate(prop = round(total/30379292 ,3))
children_group_cost
```

| have_child<br><chr></chr> | Expensive <chr></chr> | total<br><int></int> | mean<br><dbl></dbl> | max<br><int></int> | min<br><int></int> | <b>var</b><br><dbl></dbl> | sd<br><dbl></dbl> | prop<br><dbl></dbl> |
|---------------------------|-----------------------|----------------------|---------------------|--------------------|--------------------|---------------------------|-------------------|---------------------|
| no                        | no                    | 5049715              | 1882.817            | 5965               | 2                  | 2579601                   | 1606.113          | 0.166               |
| yes                       | no                    | 7953644              | 2358.732            | 5986               | 5                  | 2177752                   | 1475.721          | 0.262               |
| no                        | yes                   | 6272127              | 11466.411           | 40664              | 6003               | 33191303                  | 5761.189          | 0.206               |
| yes                       | yes                   | 11103806             | 12323.869           | 55715              | 6001               | 41003505                  | 6403.398          | 0.366               |
| 4 rows                    |                       |                      |                     |                    |                    |                           |                   |                     |

```
# plot
ggplot(children_group_cost, aes(have_child, total, fill=factor(Expensive))) +
    geom_bar(stat="identity", position=position_stack()) +
    theme(legend.position = "top") +
    theme_classic() +
    geom_text(aes(label=paste(round(total, 0),"(",prop*100, "%)")), size = 3, position = position_
stack(0.5)) +
    scale_y_continuous(labels = scales::comma)
```



[Comments] The table and bar chart shows the detailed statistical results of two groups (high and low cost) considering whether a person has a child. Both bar plots show that more people have at least one child and they have a higher cost than the other people who don't have a child.

```
# box plot
# without outlier
ggplot(df_new, aes(have_child, cost, fill=Expensive)) +
    geom_boxplot(outlier.shape=NA) +
    theme_classic() +
    scale_y_continuous(labels=scales::comma)
```



```
# box plot
# with outlier
ggplot(df_new, aes(have_child, cost, fill=Expensive)) +
  geom_boxplot(outlier.colour="red", outlier.shape=1, outlier.size=2) +
  theme_classic() +
  scale_y_continuous(labels=scales::comma)
```



### 11. mappings

To future investigate the cost in different locations, we created map that summarizes the number of people paying more than 6000.

```
# Create the US map
states <- map_data("state")
bb <- c(left = min(states$long),
bottom = min(states$lat),
right = max(states$lat)) # set limitations of the map
map <- get_stamenmap(bbox = bb, zoom = 4)

Source : http://tile.stamen.com/terrain/4/2/5.png
Source : http://tile.stamen.com/terrain/4/3/5.png
Source : http://tile.stamen.com/terrain/4/5/5.png
Source : http://tile.stamen.com/terrain/4/5/5.png
Source : http://tile.stamen.com/terrain/4/2/6.png
Source : http://tile.stamen.com/terrain/4/2/6.png
Source : http://tile.stamen.com/terrain/4/2/6.png
Source : http://tile.stamen.com/terrain/4/3/6.png
```

Hide

Source : http://tile.stamen.com/terrain/4/4/6.png
Source : http://tile.stamen.com/terrain/4/5/6.png

```
# Show the map of people who are expensive based on their state
df_by_state <- df_new %>% group_by(location,Expensive) %>% summarise(n = n())
```

`summarise()` has grouped output by 'location'. You can override using the `.groups` argument.

Hide

```
df_by_state$State <- tolower(df_by_state$location)
df_by_state_yes <- filter(df_by_state, Expensive == 'yes')
dfMap <- merge(df_by_state_yes, states, by.x = 'State', by.y = 'region')
dfMap <- dfMap %>% arrange(order)
ggmap(map) + geom_polygon(data = dfMap, color = "black", alpha = 0.8, aes(x = long, y = lat, gro
up = group, fill = n))
```



[Comments] The map shows clearly that PENNSYLVANIA have more people paying more than 6000 on their health.

Hide

```
#Show the percentage of people pay more than 6000 in us by state
df_temp <- df_new %>% group_by(location) %>% summarise(n = n())
df_by_state <- df_new %>% group_by(location,Expensive) %>% summarise(n = n())
```

`summarise()` has grouped output by 'location'. You can override using the `.groups` argument.

```
df_by_state$State <- tolower(df_by_state$location)
df_by_state_yes <- filter(df_by_state, Expensive == 'yes')
df_by_state_yes$percentage <- df_by_state_yes$n / df_temp$n
dfMap <- merge(df_by_state_yes, states, by.x = 'State', by.y = 'region')
dfMap <- dfMap %>% arrange(order)
ggmap(map) + geom_polygon(data = dfMap, color = "black", alpha = 0.8, aes(x = long, y = lat, gro
up = group, fill = percentage))
```



[Comments] The map shows clearly that people who live on New York have higher chances of paying more than 6000 on their health. Both of the maps indicate that which state people live in might make a difference.

#MODEL BUILDING ##1) linear model

```
#1)linear model

#Building linear model using numeric predictors

#visualize the relationship between each predictor and cost

ggplot(data=df_new,aes(x=age, y=cost))+geom_point()
```



ggplot(data=df\_new,aes(x=bmi, y=cost))+geom\_point()



ggplot(data=df\_new,aes(x=children, y=cost))+geom\_point()



Hide

#Build a multiple regression model using age, bmi and number of children
lmOut <- lm(cost~age+bmi+children, data=df)
summary(lmOut)</pre>

```
Call:
lm(formula = cost ~ age + bmi + children, data = df)
Residuals:
  Min
          1Q Median
                        3Q
                              Max
 -7810 -2381 -1278
                       531 48755
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -5888.645
                        302.160 -19.489
                                          <2e-16 ***
             103.896
                          3.721 27.920
                                          <2e-16 ***
age
                          8.807 20.537
                                          <2e-16 ***
bmi
             180.873
children
             293.975
                         43.123 6.817
                                           1e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4539 on 7498 degrees of freedom
Multiple R-squared: 0.1572,
                               Adjusted R-squared: 0.1569
F-statistic: 466.3 on 3 and 7498 DF, p-value: < 2.2e-16
```

```
#Comment : Although all of the predictors in this case are significant, the model only explains
15.69% of the dataset, which is quite low.However, we will further use cross validation to test
the model's accuracy and sensitivity.

#Divide the data into training and testing dataset for lm
set.seed(1)
trainList <- createDataPartition(y=df$cost, p=.70, list=FALSE)
trainData <- df[trainList,]
testData <- df[-trainList,]
lmOut2 <- lm(cost~age+bmi+children, data=trainData)
lmPred <- predict(lmOut2, newdata=testData)

#getting our confusion matrix for linear model
PredictValues <- as.factor(ifelse(lmPred >= 6000, 'yes', 'no'))
testData$Expensive <- as.factor(ifelse(testData$cost >= 6000, 'yes', 'no'))
confusionMatrix(PredictValues,testData$Expensive)
```

```
Confusion Matrix and Statistics
         Reference
Prediction
            no yes
       no 1578 290
      yes 227 153
              Accuracy: 0.77
                95% CI: (0.7521, 0.7873)
    No Information Rate: 0.8029
    P-Value [Acc > NIR] : 0.999947
                 Kappa : 0.2321
Mcnemar's Test P-Value: 0.006396
            Sensitivity: 0.8742
            Specificity: 0.3454
        Pos Pred Value: 0.8448
        Neg Pred Value : 0.4026
             Prevalence: 0.8029
        Detection Rate: 0.7020
   Detection Prevalence: 0.8310
      Balanced Accuracy: 0.6098
       'Positive' Class : no
```

[Comments] As we can see, the sensitivity here is 0.8705. The accuracy is below No Information Rate. The linear model is not a good model in general.

##2) Decision Tree Model We then turn to more complicated machine learning models.

```
#Decision tree model 1:
#Use all the predictors(exclude location) to construct a decision tree model
dfX <- data.frame(age = (df_new$age),</pre>
                  bmi = (df_new$bmi),
                  education = (df_new$education_level),
                  children = (df new$children),
                  smoker = (df_new$smoker),
                  location = (df_new$location),
                  location type = (df new$location type),
                  yearly physical = (df new$yearly physical),
                  exercise = (df new$exercise),
                  married = (df_new$married),
                  hypertension = (df new$hypertension),
                  gender = (df new$gender),
                  Expensive = (df new$Expensive))
#Divide dataframe into train set and test set
set.seed(250)
trainList <- createDataPartition(y=dfX$Expensive, p=0.70, list=FALSE)
trainSet <- dfX[trainList,]</pre>
testSet <- dfX[-trainList,]</pre>
# Define train control factors, use repeatedcv for 10 times
trctrl <- trainControl(method = "repeatedcv", number = 10)</pre>
#Build rpart tree model
tree model1 <- train(Expensive~., data = trainSet, method = 'rpart', trControl=trctrl, tuneLengt</pre>
h = 10
rpart.plot(tree model1$finalModel)
```



#test our tree model 1 on test set:
treePred1 <- predict(tree\_model1, newdata = testSet)
confusionMatrix(treePred1, as.factor(testSet\$Expensive))</pre>

```
Confusion Matrix and Statistics
          Reference
Prediction
             no yes
                154
       no 1764
             52 280
       yes
               Accuracy : 0.9084
                 95% CI: (0.8958, 0.92)
    No Information Rate : 0.8071
    P-Value [Acc > NIR] : < 2.2e-16
                  Kappa : 0.6771
Mcnemar's Test P-Value : 1.964e-12
            Sensitivity: 0.9714
            Specificity: 0.6452
         Pos Pred Value : 0.9197
         Neg Pred Value : 0.8434
             Prevalence: 0.8071
         Detection Rate: 0.7840
   Detection Prevalence: 0.8524
      Balanced Accuracy: 0.8083
       'Positive' Class : no
```

[Comments] As we can see, the sensitivity is 0.9714, which has been significantly improved compared with linear model. The accuracy is also higher than No Information Rate. Considering the cost of that putting all predictors into a business model is high, as well as there will be problems in overfitting, we are looking for ways to simplify the model by turning numeric variables into categorical variables and hoping to see the changes in performances.

```
#Decision tree model 2:
#Turning numeric variables into categorical ones
dfX2 <- data.frame(age_group = as.factor(df_new$age_group),</pre>
                 bmi group = as.factor(df new$bmi group),
                 is_educated = as.factor(df_new$is_educated),
                 have child = as.factor(df new$have child),
                 smoker = as.factor(df new$smoker),
                 location = as.factor(df_new$location),
                 location type = as.factor(df new$location type),
                 yearly physical = as.factor(df new$yearly physical),
                 exercise = as.factor(df new$exercise),
                 married = as.factor(df new$married),
                 hypertension = as.factor(df new$hypertension),
                 gender = as.factor(df new$gender),
                 Expensive = as.factor(df new$Expensive))
#Divide dataframe into train set and test set
set.seed(250)
trainList <- createDataPartition(y=dfX2$Expensive, p=0.70, list=FALSE)</pre>
trainSet <- dfX2[trainList,]</pre>
testSet <- dfX2[-trainList,]</pre>
# Define train control factors, use repeatedcv for 10 times
trctrl <- trainControl(method = "repeatedcv", number = 10)</pre>
#Build rpart tree model
tree model2 <- train(Expensive~., data = trainSet, method = 'rpart', trControl=trctrl, tuneLengt
h = 10
rpart.plot(tree model2$finalModel)
```



#test out tree model 2 on test set
treePred2 <- predict(tree\_model2, newdata = testSet)
confusionMatrix(treePred2, as.factor(testSet\$Expensive))</pre>

```
Confusion Matrix and Statistics
          Reference
Prediction
            no yes
                145
       no 1766
             50 289
      yes
              Accuracy : 0.9133
                 95% CI: (0.9009, 0.9246)
    No Information Rate : 0.8071
    P-Value [Acc > NIR] : < 2.2e-16
                  Kappa: 0.6964
Mcnemar's Test P-Value: 1.679e-11
            Sensitivity: 0.9725
            Specificity: 0.6659
         Pos Pred Value : 0.9241
         Neg Pred Value : 0.8525
             Prevalence: 0.8071
         Detection Rate: 0.7849
   Detection Prevalence: 0.8493
      Balanced Accuracy: 0.8192
       'Positive' Class : no
```

[Comments] The sensitivity rate goes up to 0.9725 when we simplified some of our predictors and the accuracy was significantly improved compared to No Information Rate. Binning all the numeric variables improve the performance of our tree model. Furthermore, we can also rule out some of the predictors that are less important in the tree model to make it more general.

```
#Decision Tree Model 3: Predictor Selection
varImp(tree_model2)
```

```
rpart variable importance
only 20 most important variables shown (out of 30)
```

|                    | Overall <dbl></dbl> |
|--------------------|---------------------|
| smokeryes          | 100.0000000         |
| bmi_groupObesity   | 40.0633439          |
| exerciseNot-Active | 24.1260923          |
| age_groupover 60   | 19.1034540          |

|                     | Overall <dbl></dbl> |
|---------------------|---------------------|
| bmi_groupOverweight | 15.2111534          |
| age_group40-49      | 12.0627992          |
| age_groupunder 18   | 10.2777382          |
| age_group50-59      | 5.5205105           |
| have_childyes       | 1.8734008           |
| locationNEW YORK    | 1.4782605           |
| 1-10 of 20 rows     | Previous 1 2 Next   |

#We then excluded some of the predictors that are less important according the the result

trainSet <- select(trainSet, -gender, -have\_child, -hypertension, -yearly\_physical, -location\_ty
pe, -married, -is\_educated)</pre>

tree\_model3 <- train(Expensive~., data = trainSet, method = 'rpart', trControl=trctrl, tuneLengt
h = 10)</pre>

rpart.plot(tree\_model3\$finalModel)



```
#test out tree model 3 on test set
treePred3 <- predict(tree_model3, newdata = testSet)
confusionMatrix(treePred3, as.factor(testSet$Expensive))</pre>
```

```
Confusion Matrix and Statistics
         Reference
Prediction
            no yes
                158
      no 1772
            44 276
      yes
              Accuracy : 0.9102
                95% CI: (0.8976, 0.9217)
   No Information Rate: 0.8071
   P-Value [Acc > NIR] : < 2.2e-16
                 Kappa: 0.6796
Mcnemar's Test P-Value : 1.855e-15
           Sensitivity: 0.9758
           Specificity: 0.6359
         Pos Pred Value : 0.9181
        Neg Pred Value: 0.8625
            Prevalence: 0.8071
         Detection Rate: 0.7876
  Detection Prevalence: 0.8578
     Balanced Accuracy: 0.8059
       'Positive' Class : no
```

#Comment: The sensitivity rate goes up to 0.9758 with selected predictors.

[Comments] The sensitivity rate goes up to 9758 when we simplified some of our predictors. This is the best performing decision tree model we have so far.

##3)SVM Model Apart from decision tree, support vector machine is also a good machine learning technique in supervised learning. We use the same process with decision trees and compare the performances between each model. First, we included all the predictors as they were without transferring numeric ones into categorical ones.

```
#SVM Model 1
#Divide dataframe into train set and test set
set.seed(250)
trainList <- createDataPartition(y=dfX$Expensive, p=0.70, list=FALSE)
trainSet <- dfX[trainList,]
testSet <- dfX[-trainList,]
# Define train control factors, use repeatedcv for 10 times
trctrl <- trainControl(method = "repeatedcv", number = 10)
svm_model1 <- train(Expensive~., data = trainSet, method = "svmRadial",trCotrol=trctrl, preProc=
c("center","scale"))
setwd("C:/Users/73457/Desktop/final project GROUP 1")</pre>
```

```
#test out svm model 1 on test data
svmPred1 <- predict(svm_model1, newdata = testSet)
confusionMatrix(svmPred1, as.factor(testSet$Expensive))</pre>
```

```
Confusion Matrix and Statistics
          Reference
Prediction
            no yes
       no 1759 170
       yes
            57 264
              Accuracy : 0.8991
                95% CI: (0.8859, 0.9113)
   No Information Rate: 0.8071
    P-Value [Acc > NIR] : < 2.2e-16
                 Kappa: 0.6403
Mcnemar's Test P-Value: 1.056e-13
            Sensitivity: 0.9686
            Specificity: 0.6083
         Pos Pred Value : 0.9119
         Neg Pred Value: 0.8224
             Prevalence: 0.8071
         Detection Rate: 0.7818
   Detection Prevalence: 0.8573
      Balanced Accuracy: 0.7885
       'Positive' Class : no
```

[Comments] The sensitivity rate is 0.9686 and the accuracy is 89.91%. However, it's not better than the best performing decision tree model. We then used binning techniques to see if the performance improved.

```
#SVM Model 2
#Divide dataframe into train set and test set
set.seed(250)
trainList <- createDataPartition(y=dfX2$Expensive, p=0.70, list=FALSE)
trainSet <- dfX2[trainList,]
testSet <- dfX2[-trainList,]
# Define train control factors, use repeatedcv for 10 times
trctrl <- trainControl(method = "repeatedcv", number = 10)
svm_model2 <- train(Expensive~., data = trainSet, method = "svmRadial",trCotrol=trctrl, preProc=
c("center","scale"))</pre>
```

```
#test out svm model 2 on test data
svmPred2 <- predict(svm_model2, newdata = testSet)
confusionMatrix(svmPred2, as.factor(testSet$Expensive))</pre>
```

```
Confusion Matrix and Statistics
         Reference
Prediction
            no ves
      no 1773 168
            43 266
      yes
              Accuracy : 0.9062
                95% CI: (0.8934, 0.918)
   No Information Rate: 0.8071
    P-Value [Acc > NIR] : < 2.2e-16
                 Kappa: 0.6617
Mcnemar's Test P-Value : < 2.2e-16
           Sensitivity: 0.9763
           Specificity: 0.6129
         Pos Pred Value: 0.9134
        Neg Pred Value: 0.8608
            Prevalence: 0.8071
         Detection Rate: 0.7880
  Detection Prevalence: 0.8627
     Balanced Accuracy: 0.7946
       'Positive' Class : no
```

Hide

#The sensitivity rate is 0.9763 , which is less than the best performing decision tree model.

[Comments] We saw improvements in both sensitivity and accuracy. However, it's not better than the best performing decision tree model.

## **#Associate Mining**

| ,    |                                                                                          |    |                 | ,          | '          |            |          |       |  |
|------|------------------------------------------------------------------------------------------|----|-----------------|------------|------------|------------|----------|-------|--|
| Г1 Т | lhs                                                                                      |    | rhs             | support    | confidence | coverage   | lift     | count |  |
| [1]  | {bmi_group=Obesity,<br>smoker=yes}                                                       | => | {Expensive=yes} | 0.09610770 | 0.9035088  | 0.10637163 | 4.681024 | 721   |  |
| [2]  | <pre>{bmi_group=Obesity,   is_educated=yes,   smoker=yes}</pre>                          | => | {Expensive=yes} | 0.08637697 | 0.9025070  | 0.09570781 | 4.675834 | 648   |  |
| [3]  | <pre>{bmi_group=Obesity, smoker=yes,</pre>                                               |    | (5              | 0.07677050 | 0.0762742  | 0.07064560 | 5 050000 | F7.   |  |
| [4]  | <pre>exercise=Not-Active} {bmi_group=Obesity, smoker=yes,</pre>                          | => | {Expensive=yes} | 0.0/6//953 | 0.9/62/12  | 0.07864569 | 5.058002 | 576   |  |
| [5]  | <pre>hypertension=no} {bmi_group=Obesity, smoker=yes,</pre>                              | => | {Expensive=yes} | 0.07517995 | 0.8952381  | 0.08397761 | 4.638174 | 564   |  |
| [6]  | <pre>yearly_physical=No} {bmi_group=Obesity, smoker=yes,</pre>                           | => | {Expensive=yes} | 0.07251400 | 0.8976898  | 0.08077846 | 4.650876 | 544   |  |
| [7]  | <pre>location_type=Urban} {bmi_group=Obesity, is_educated=yes,</pre>                     | => | {Expensive=yes} | 0.07144761 | 0.8903654  | 0.08024527 | 4.612929 | 536   |  |
| [8]  | <pre>smoker=yes, exercise=Not-Active} {bmi_group=Obesity, is_educated=yes,</pre>         | => | {Expensive=yes} | 0.06878166 | 0.9735849  | 0.07064783 | 5.044084 | 516   |  |
| [9]  | <pre>smoker=yes, hypertension=no} {bmi_group=Obesity,</pre>                              | => | {Expensive=yes} | 0.06704879 | 0.8918440  | 0.07517995 | 4.620589 | 503   |  |
| [10] | <pre>smoker=yes, married=Married} {bmi_group=Obesity, is_educated=yes, smoker=yes,</pre> | => | {Expensive=yes} | 0.06544921 | 0.9059041  | 0.07224740 | 4.693434 | 491   |  |
| [11] | yearly_physical=No} {bmi_group=Obesity, is_educated=yes, smoker=yes,                     | => | {Expensive=yes} | 0.06478272 | 0.8933824  | 0.07251400 | 4.628560 | 486   |  |
| [12] | <pre>location_type=Urban} {bmi_group=Obesity, smoker=yes,</pre>                          | => | {Expensive=yes} | 0.06384964 | 0.8886827  | 0.07184751 | 4.604211 | 479   |  |
| [13] | <pre>gender=male} {bmi_group=Obesity, smoker=yes, exercise=Not-Active,</pre>             | => | {Expensive=yes} | 0.06238336 | 0.8897338  | 0.07011464 | 4.609657 | 468   |  |
| [14] | <pre>hypertension=no} {bmi_group=Obesity, have_child=yes,</pre>                          | => | {Expensive=yes} | 0.06118368 | 0.9724576  | 0.06291656 | 5.038244 | 459   |  |
| [15] | <pre>smoker=yes} {bmi_group=Obesity, is_educated=yes, smoker=yes,</pre>                  | => | {Expensive=yes} | 0.05918422 | 0.9192547  | 0.06438283 | 4.762603 | 444   |  |
| [16] | <pre>married=Married} {bmi_group=Obesity,</pre>                                          | => | {Expensive=yes} | 0.05865103 | 0.9034908  | 0.06491602 | 4.680931 | 440   |  |

| [17] | <pre>smoker=yes, yearly_physical=No, exercise=Not-Active} {bmi_group=Obesity, smoker=yes,</pre>        | => | {Expensive=yes} | 0.05851773 | 0.9799107 | 0.05971741 | 5.076858 | 439 |
|------|--------------------------------------------------------------------------------------------------------|----|-----------------|------------|-----------|------------|----------|-----|
| [18] | location_type=Urban,<br>exercise=Not-Active}<br>{bmi_group=Obesity,<br>smoker=yes,                     | => | {Expensive=yes} | 0.05798454 | 0.9688196 | 0.05985071 | 5.019395 | 435 |
| [19] | <pre>yearly_physical=No, hypertension=no} {bmi_group=Obesity, smoker=yes,</pre>                        | => | {Expensive=yes} | 0.05678486 | 0.8912134 | 0.06371634 | 4.617322 | 426 |
| [20] | <pre>location_type=Urban, hypertension=no} {bmi_group=Obesity, is_educated=yes,</pre>                  | => | {Expensive=yes} | 0.05545188 | 0.8832272 | 0.06278326 | 4.575946 | 416 |
| [21] | <pre>smoker=yes, gender=male} {bmi_group=Obesity, is_educated=yes,</pre>                               | => | {Expensive=yes} | 0.05505199 | 0.8881720 | 0.06198347 | 4.601565 | 413 |
| [22] | <pre>smoker=yes, exercise=Not-Active, hypertension=no} {bmi_group=Obesity,</pre>                       | => | {Expensive=yes} | 0.05438550 | 0.9691211 | 0.05611837 | 5.020958 | 408 |
| [23] | <pre>is_educated=yes, have_child=yes, smoker=yes} {bmi_group=Obesity, smoker=yes,</pre>                | => | {Expensive=yes} | 0.05385231 | 0.9160998 | 0.05878432 | 4.746257 | 404 |
| [24] | location_type=Urban, yearly_physical=No} {bmi_group=Obesity, smoker=yes,                               | => | {Expensive=yes} | 0.05371901 | 0.8837719 | 0.06078379 | 4.578769 | 403 |
| [25] | exercise=Not-Active, married=Married} {bmi_group=Obesity, smoker=yes,                                  | => | {Expensive=yes} | 0.05358571 | 0.9781022 | 0.05478539 | 5.067488 | 402 |
| [26] | location=PENNSYLVANIA} {bmi_group=Obesity, is_educated=yes, smoker=yes,                                | => | {Expensive=yes} | 0.05345241 | 0.9051919 | 0.05905092 | 4.689744 | 401 |
| [27] | yearly_physical=No,<br>exercise=Not-Active}<br>{bmi_group=Obesity,<br>is_educated=yes,<br>smoker=yes,  | => | {Expensive=yes} | 0.05198614 | 0.9774436 | 0.05318582 | 5.064076 | 390 |
| [28] | location_type=Urban,<br>exercise=Not-Active}<br>{bmi_group=Obesity,<br>smoker=yes,<br>married=Married, | => | {Expensive=yes} | 0.05171954 | 0.9651741 | 0.05358571 | 5.000509 | 388 |
|      | mai i Ica-iiai i Ica,                                                                                  |    |                 |            |           |            |          |     |

```
hypertension=no} => {Expensive=yes} 0.05091975 0.8967136 0.05678486 4.645819 382

[29] {bmi_group=Obesity,
    smoker=yes,
    exercise=Not-Active,
    gender=male} => {Expensive=yes} 0.05065316 0.9718670 0.05211943 5.035184 380
```

[Comments] The most supported association here indicated that expensiveness relates to bmi and smoker.

#Further Exploration with Unsupervised Machine Learning Since we manually picked the boundary for determining expensive or not, we now used unsupervised learning and performed k-means clustering to get more insights on cost. According to associate mining and the bar graph, bmi might be a most significant predictor of cost. We used bmi and cost to create clusters.

```
Hide

df_kmeans <- select(df_new,bmi,cost)

Hide

set.seed(250)
kmeans_model <- kmeans(df_kmeans,5, iter.max = 10, nstart = 1)

Hide

plot(df_kmeans, col = kmeans_model$cluster)
```



Final Project Report

Hide

aggregate(df\_kmeans, by=list(cluster=kmeans\_model\$cluster), mean)

| cost                | bmi         | cluster     |
|---------------------|-------------|-------------|
| cost<br><dbl></dbl> | <dbl></dbl> | <int></int> |
| 8483.428            | 31.83869    | 1           |
| 16039.874           | 35.31261    | 2           |
| 27066.702           | 36.17955    | 3           |
| 1101.031            | 29.89095    | 4           |
| 3880.329            | 30.79415    | 5           |

Hide

dd <- cbind(df\_kmeans, cluster = kmeans\_model\$cluster)
lowest\_cost\_cluster\_2 <- dd %>% filter(cluster==2) %>% arrange(by=cost) %>% head(1)
lowest\_cost\_cluster\_2

|       | <b>bmi</b><br><dbl></dbl> | cost<br><int></int> | cluster<br><int></int> |
|-------|---------------------------|---------------------|------------------------|
| 1     | 37.525                    | 12282               | 2                      |
| 1 row |                           |                     |                        |

[Comments] When we divided the cost into five groups, the lowest cost of the first cluster at the top could be considered as the boundary. We then changed the boundary to 12282 and tested it out with the tree models we have.

```
#Decision Tree Model 2
df new$Expensive <- ifelse(df new$cost >= 12282, 'yes', 'no')
dfX2 <- data.frame(age_group = as.factor(df_new$age_group),</pre>
                 bmi_group = as.factor(df_new$bmi_group),
                 is educated = as.factor(df new$is educated),
                 have_child = as.factor(df_new$have_child),
                 smoker = as.factor(df_new$smoker),
                 location = as.factor(df new$location),
                 location type = as.factor(df new$location type),
                 yearly physical = as.factor(df new$yearly physical),
                 exercise = as.factor(df new$exercise),
                 married = as.factor(df new$married),
                 hypertension = as.factor(df new$hypertension),
                 gender = as.factor(df new$gender),
                 Expensive = as.factor(df_new$Expensive))
#Divide dataframe into train set and test set
set.seed(250)
trainList <- createDataPartition(y=dfX2$Expensive, p=0.70, list=FALSE)</pre>
trainSet <- dfX2[trainList,]</pre>
testSet <- dfX2[-trainList,]</pre>
# Define train control factors, use repeatedcv for 10 times
trctrl <- trainControl(method = "repeatedcv", number = 10)</pre>
#Build rpart tree model
tree model2 <- train(Expensive~., data = trainSet, method = 'rpart', trControl=trctrl, tuneLengt
rpart.plot(tree model2$finalModel)
```



#test out tree model 2 on test set
treePred2 <- predict(tree\_model2, newdata = testSet)
confusionMatrix(treePred2, as.factor(testSet\$Expensive))</pre>

```
Confusion Matrix and Statistics
          Reference
Prediction
            no yes
       no 2072
                  51
            25 102
      yes
              Accuracy : 0.9662
                95% CI: (0.9579, 0.9733)
    No Information Rate: 0.932
    P-Value [Acc > NIR] : 9.847e-13
                 Kappa : 0.7107
Mcnemar's Test P-Value: 0.004135
            Sensitivity: 0.9881
            Specificity: 0.6667
         Pos Pred Value: 0.9760
         Neg Pred Value : 0.8031
             Prevalence: 0.9320
         Detection Rate: 0.9209
   Detection Prevalence: 0.9436
      Balanced Accuracy: 0.8274
       'Positive' Class : no
```

**[Comments]** After adjusting for the boundary, sensitivity and accuracy have improved for the same tree model 2. We would later go through the predictor selection again to get better performance.

```
VarImp(tree_model2)
```

```
rpart variable importance
only 20 most important variables shown (out of 32)
```

| Overall <dbl></dbl> |
|---------------------|
| 100.00000000        |
| 92.77190883         |
| 50.64399763         |
| 32.59837826         |
| 26.93864328         |
|                     |

|                    |              | verall<br><dbl></dbl> |
|--------------------|--------------|-----------------------|
| age_groupunder 18  | 21.7125      | 3774                  |
| age_group40-49     | 19.3321      | 8443                  |
| have_childyes      | 15.7960      | 4425                  |
| age_group50-59     | 11.7463      | 37826                 |
| location_typeUrban | 11.5390      | 5654                  |
| 1-10 of 20 rows    | Previous 1 2 | Next                  |

#There are only 20 out of 32 variables are important. We then excluded some of the predictors that are less important.

Hide

```
#Decision Tree Model 3
trainSet <- select(trainSet, -gender, -have_child, -hypertension, -yearly_physical, -location_ty
pe, -married, -is_educated)
tree_model3 <- train(Expensive~., data = trainSet, method = 'rpart', trControl=trctrl, tuneLengt
h = 10)
rpart.plot(tree_model3$finalModel)</pre>
```



Hide

treePred3 <- predict(tree\_model3, newdata = testSet)
confusionMatrix(treePred3, as.factor(testSet\$Expensive))</pre>

```
Confusion Matrix and Statistics
          Reference
Prediction
            no yes
       no 2072
                  46
                107
             25
       yes
              Accuracy : 0.9684
                 95% CI: (0.9604, 0.9753)
    No Information Rate: 0.932
    P-Value [Acc > NIR] : 2.036e-14
                  Kappa : 0.7341
Mcnemar's Test P-Value : 0.01762
            Sensitivity: 0.9881
            Specificity: 0.6993
         Pos Pred Value: 0.9783
         Neg Pred Value : 0.8106
             Prevalence : 0.9320
         Detection Rate: 0.9209
   Detection Prevalence : 0.9413
      Balanced Accuracy: 0.8437
       'Positive' Class : no
```

[Comments] The decision tree model 3 returned to significant accuracy of 0.9684 and sensitivity of 0.9881. This is considered our final model with age\_group, bmi\_group, smoker, location and exercise as the predictors.

#Storing the model for shinny apps

```
#storing the model
datafile <- "https://intro-datascience.s3.us-east-2.amazonaws.com/HMO data.csv"</pre>
df raw <- read.csv(datafile)</pre>
df raw$bmi <- na interpolation(df raw$bmi)</pre>
df raw <- df raw %>% filter(!is.na(hypertension))
df_add_age <- df_raw %>% mutate(age_group = case_when(
  df raw$age < 20 ~ "under 18",
  df rawage >= 20 \& df raw{age} < 30 ~ "20-29",
  df rawage >= 30 & df raw{age} < 40 ~ "30-39",
  df rawage >= 40 \& df raw{age} < 50 ~ "40-49",
  df rawage >= 50 \& df raw{age < 60 ~ "50-59"}
  df raw$age >= 60 \sim 'over 60'
))
df_add_bmi <- df_add_age %>% mutate(bmi_group = case_when(
  df add age$bmi < 18.5 ~ "Underweight",
  df_add_age$bmi >= 18.5 & df_add_age$bmi < 24.9 ~ "Normal Weight",</pre>
  df add age$bmi >= 24.9 & df add age$bmi < 29.9 ~ "Overweight",
  df add age$bmi >= 29.9 ~ "Obesity"
))
df_new <- df_add_bmi</pre>
df add edu bin <- df new %>% mutate(is educated = case when(
  df_new$education_level != "No College Degree" ~ "yes",
  TRUE ~ "no"
))
df add child bin <- df add edu bin %>% mutate(have child = case when(
  df add edu bin$children == 0 ~ "no",
  TRUE ~ "yes"
))
df new <- df add child bin
df new$hypertension <- ifelse(df new$hypertension==1, 'yes', 'no')</pre>
df_new$Expensive <- ifelse(df_new$cost >= 12282, 'yes', 'no')
df <- data.frame(age group = as.factor(df new$age group),</pre>
                  bmi group = as.factor(df new$bmi group),
                  smoker = as.factor(df new$smoker),
                  location = as.factor(df new$location),
                  yearly physical = as.factor(df new$yearly physical),
                  exercise = as.factor(df_new$exercise),
                  Expensive = as.factor(df new$Expensive))
trctrl <- trainControl(method = "repeatedcv", number = 10)</pre>
our model <- train(Expensive~., data = df, method = 'rpart', trControl=trctrl, tuneLength = 10)
save(our model, file="our model.rda")
```