WHAT IS CLAIMED IS:

1		1.	A method of treating an aneurysm, comprising the steps of:
2		provid	ling a device having a cover and a lateral extension, the cover and
3	extension beir	ng mov	able from a collapsed position to an expanded position;
4		advan	cing the device through a patient's vascular system to an aneurysm with
5	the cover in th	ne colla	psed position;
6		movir	ng the lateral extension into the neck of the aneurysm and the cover over
7	the neck of the	e aneur	rysm to isolate the aneurysm from the parental vessel.
1	·	2.	The method of claim 1, wherein:
2		the pr	oviding step is carried out with the cover being a substantially flat
3	element; and		
4		the m	oving step is carried out with the cover being positioned against a wall of
5	the parental ve	essel ar	ound the neck of the aneurysm.
1		3.	The method of claim 1, wherein:
2		the me	oving step is carried out with the lateral extension extending laterally
3	outward from	a side	of the device.
1		4.	The method of claim 1, wherein:
2		the pr	oviding step is carried out with the lateral extension forming at least one
3	loop extendin	g into t	he aneurysm.
1		5.	The method of claim 1, wherein:
2		the pr	oviding step is carried out with the lateral extension forming 1-8 loops.
1		6.	The method of claim 1, wherein:
2		the pr	oviding step is carried out with the cover extending around no more than
3	half the circur	mfereno	ce of the vessel.
1		7.	The method of claim 1, wherein:
2		the pr	roviding step is carried out with the cover extending around no more than
2	one third the	oironmé	farance of the vessel

1	•	8.	The method of claim 1, further comprising the steps of:	
2		coupli	ing at least the lateral extension to a source of energy; and	
3		delive	ring the energy to the lateral extension after the introducing step.	
1		9.	The method of claim 8, wherein:	
2		the co	upling and delivering steps are carried out with the source of energy	
3	being RF energ	gy.		
1		10.	The method of claim 1, wherein:	
2		the pr	oviding step is carried out with the cover being wrapped around the	
3	expandable ele	ment.		
1		11.	The method of claim 10, wherein:	
2		the pr	oviding step is carried out with the cover being wrapped around the	
3	expandable element without overlapping folds.			
1		12.	A device for treating an aneurysm, comprising:	
2	•		a cover which covers the neck of the aneurysm to isolate the aneurysm	
3	from a parenta	arental vessel; and		
4		a later	ral extension coupled to the cover, the lateral extension extending from	
5	the cover and i	nto the	e aneurysm when the cover is positioned over the neck of the aneurysm.	
1		13.	The device of claim 12, further comprising:	
2		the co	ver comprises a mesh; and	
3		the lat	eral extension comprises a loop.	
1		14.	The method of claim 12, wherein:	
2		the co	ver is a substantially flat element which is positioned against a wall of	
3	the parental ve	ssel ar	ound the neck of the aneurysm when the lateral extension is positioned	
4	in the aneurysr	n.		
1		15.	The device of claim 12, wherein:	
2		the lat	teral extension forms 1-8 loops.	
1	÷	16.	The device of claim 12, wherein:	

2		the providing step is carried out with the lateral extension forming only one	
3	loop.		
1		17. The device of claim 12, wherein:	
2		the loop has a first side attached to the cover.	
1		18. The device of claim 12, wherein:	
2		the loop is slidable relative to the cover when the loop expands.	
1		19. The device of claim 12, wherein:	
2		the cover extends no more than about 180 degrees around a longitudinal axis	
3	of the device when expanded so that side branch vessels are not occluded by the cover.		
1		20. The device of claim 12, wherein:	
2		the cover extends no more than about 120 degrees around the longitudinal axis	
3	when expanded so that side branch vessels are not occluded by the cover.		
1		21. The device of claim 12, further comprising:	
2	•	a source of energy coupled to at least the lateral extension.	
1		22. The device of claim 21, wherein:	
2		the source of energy is RF energy.	
1		23. The device of claim 21, wherein:	
2		the cover does not conduct the energy when the lateral extension conducts	
3 .	energy from	the source of energy.	
1		24. The device of claim 12, wherein:	
2		the cover comprises a mesh.	
1		25. The device of claim 12, further comprising:	
2		a delivery catheter having at least one lumen; and	
3		a first manipulator extending through the at least one lumen and releasably	
4	coupled to the	ne lateral extension.	
I		26. The device of claim 12, further comprising:	
2		a second manipulator releasably coupled to the cover.	

}

ı	A method of treating an aneurysm, comprising the steps of:
2	providing a cover which is positioned around an expandable element in a
3	collapsed position, the cover being covered by a sheath;
4	advancing the cover to an aneurysm in a patient with the cover in the collapsed
5	position;
6	withdrawing the sheath to expose the cover;
7	expanding the expandable member thereby expanding the cover, the cover
8	expanding to an expanded condition, the cover being positioned over a neck of the aneurysm.
1	28. The method of claim 27, wherein:
2	the providing step is carried out with the cover being wrapped around the
3	expandable element without creating folds when collapsed.
1	29. The method of claim 27, wherein:
2	the expanding step is carried out with the cover engaging a wall of the parental
3	vessel around the neck of the aneurysm.
1	30. The method of claim 27, wherein:
2	the expanding step is carried out with the cover being attached to the wall.
	and onputating step is earried out with the cover being attached to the wall.
1	31. The method of claim 30, wherein:
2	the providing step is carried out with an adhesive positioned on an outer
3	surface of the cover and protected by the sheath during the advancing step.
1	32. The method of claim 27, wherein:
2	the expanding step is carried out with the cover extending no more than half
3	the circumference of the vessel.
1	33. The method of claim 27, wherein:
2	the expanding step is carried out with the cover extending no more than one
3	third the circumference of the vessel.
1	34. The method of claim 27, wherein:

2	the providing step is carried out with the cover having a metallic frame		
3	structure and an impermeable portion mounted to the frame, the impermeable portion being		
4	positioned to cover the neck of the aneurysm after the inflating step.		
1	35. The method of claims 27, wherein:		
2	the providing step is carried out with the sheath being folded over itself at a		
3	distal end; and		
4	the exposing step is carried out with the sheath being pulled back over itself.		
1	36. The method of claim 27, wherein:		
2	the providing step is carried out with the sheath comprising PTFE.		
1	37. The method of claim 27, wherein:		
2	the cover is mounted to a delivery catheter, the delivery catheter having a		
3	single lumen; and		
4	the advancing step is carried out with the device being advanced over a		
5	guidewire extending through the single lumen.		
1	38. A device for treating an aneurysm, comprising:		
2	a cover for covering a neck of an aneurysm		
3	a delivery catheter having an expandable element and a sheath, the cover being		
4	mounted around the expandable element, the sheath being retractable and overlying the cover		
5	thereby trapping the cover between the sheath and expandable element, the sheath being		
6	movable to a position in which the cover is exposed to permit expansion of the expandable		
7	element and the cover.		
1	39. The device of claim 38, wherein:		
2	the delivery catheter has a longitudinal axis; and		
3	the cover is wrapped around the balloon in the collapsed position without		
4	folds.		
1	40. The device of claim 38, further comprising:		
2	an adhesive on an outer surface of the cover.		
1	41. The method of claim 38, wherein:		

)

~		die (cover has a metamic frame and an impermeable portion mounted to the
3	frame which	covers	s the neck of the aneurysm.
1		42.	The method of claims 38, wherein:
2		the s	heath is folded over itself at a distal end, the sheath being pulled back
3	when exposin		
1		43.	The method of claim 38, wherein:
2		the s	heath comprises PTFE.
1		44.	The method of claim 38, wherein:
2		the d	lelivery catheter has a single lumen which receives a guidewire:
1		45.	A device for treating an aneurysm, comprising:
2		a pro	oximal hub;
3		a dis	tal hub; and
4		a plu	rality of filaments extending between the proximal and distal hubs, the
5	filaments bias		e proximal and distal hubs towards one another when moving from a
6			o an expanded position.
1		46.	The device of claim 45, wherein:
2		the p	lurality of filaments are 2-16 filaments.
1		47.	The device of claim 45, wherein:
2		the p	lurality of filaments form a generally concave surface which covers a
3	neck of an an		n when positioned in the aneurysm.
1		48.	The device of claim 45, wherein:
2		the p	lurality of filaments form a generally convex surface opposite the concave
3	surface.		
1		49.	The device of claim 45, further comprising:
2		a cath	neter having a lumen; and
3		a mai	nipulator extending through the lumen and contacting the proximal hub.
1		50.	The device of claim 45, further comprising:
2		a sou	rce of power coupled to the manipulator.

1	51. The device of claim 50, wherein:		
2	the source of power is an RF generator.		
1	52. A device for filling an aneurysm, comprising:		
2	a catheter having a lumen;		
3	a plurality of filaments each having a proximal end and a distal end, the		
4	plurality of filaments being coupled together at the proximal ends and each of the filaments		
5	extending to a free end at the distal end, the plurality of filaments being in a collapsed		
6	condition when positioned in the lumen of the catheter, the plurality of filaments expanding		
7	to occupy a space in an aneurysm when advanced out of the lumen in the catheter.		
1	53. The device of claim 52, wherein:		
2	the plurality of filaments are in a straightened configuration when collapsed		
3	within the catheter.		
1	54. The device of claim 52, wherein:		
2	each of the plurality of filaments forms a coil in the expanded position.		
1	55. The device of claim 54, wherein:		
2 .	the coils formed by the plurality of filaments each have a central axis with the		
3	central axes of the coils generally lying in a plane.		
1	56. The device of claim 54, wherein:		
2	the coils formed by the plurality of filaments each have a central axis with the		
3	central axis of the coils being angled relative to one another by about 90-120 degrees.		
1	57. The device of claim 52, wherein:		
2	the plurality of filaments are 2-4 filaments.		
1	58. A method of treating a cerebral aneurysm, comprising the steps of:		
2	providing an expandable structure movable from a collapsed shape to an		
3	expanded shape;		
4	introducing the expandable structure into a blood vessel of a patient;		
5	advancing the expandable structure through the patient's vasculature to a		
6	cerebral aneurysm while the expandable structure is in the collapsed position:		

7		moving the expandable structure into the cerebral aneurysm;
8		expanding the expandable structure to the expanded position in the cerebral
9	aneurysm;	
10		shrinking the wall of the aneurysm; and
11		leaving the expandable structure in the aneurysm after the shrinking step.