

Εικονική Μνήμη

(και ο ρόλος της στην ιεραρχία μνήμης)

http://mixstef.github.io/courses/comparch/

Μ.Στεφανιδάκης

Εικονική μνήμη (virtual memory)

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Το πρώτο σύστημα

εικονικής μνήμης

παρουσιάστηκε το

1962 (Atlas

computer)

- Για ποιον λόγο εμφανίστηκε;
 - Στους πρώτους υπολογιστές το μέγεθος της κύριας μνήμης ήταν περιορισμένο
 - Ακόμα και στην περίπτωση του μονοπρογραμματισμού η κύρια μνήμη ήταν ανεπαρκής
 - Εμφάνιση ΛΣ με υποστήριξη πολυπρογραμματισμού:
 αδυναμία ταυτόχρονης διατήρησης πολλών προγραμμάτων στην κύρια μνήμη
 - Η λύση: εικονική μνήμη
 - Μέρος των δεδομένων βρίσκεται στους δίσκους του συστήματος
 - Μεταφορά στην κύρια μνήμη όταν χρειαστεί
 - Πιθανότατα αντικαθιστώντας άλλα τμήματα δεδομένων
 - Τα τελευταία μεταφέρονται πίσω στους δίσκους

Αρχιτεκτονική Υπολογιστών – "Εικονική Μνήμη"

Μεταβαίνοντας σε εικονικές διευθύνσεις

- Ιεραρχία Μνήμης
- Εικονική Μνήμη
- Το προηγούμενο σχήμα
 - Εισήγαγε την αποσύνδεση των λογικών διευθύνσεων των προγραμμάτων από τις φυσικές διευθύνσεις κύριας μνήμης
 - Με απλή αντιστοιχία:
 φυσική διεύθυνση + καταχωρητής βάσης
 - Απαιτείται υποστήριξη από το υλικό (ΚΜΕ)
 - Το πρόγραμμα μπορεί να φορτωθεί σε οποιαδήποτε θέση μνήμης (relocation)
 - Δεν περιέχει αναφορές σε φυσικές διευθύνσεις
 - Εισάγεται η έννοια των ξεχωριστών χώρων διευθύνσεων (κώδικα, δεδομένων...) ανά πρόγραμμα
 - γωρίς περαιτέρω υποστήριξη όμως!

Αρχιτεκτονική Υπολογιστών - "Εικονική Μνήμη"

10

Η εικονική μνήμη (ξανά)

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Η διαχείριση της

εικονικής μνήμης

τη διαχείριση

κρυφής-κύριας

μνήμης. Τα δύο

(μνήμη-δίσκοι)

διαφορές στα

τους!

χαρακτηριστικά

επίπεδα εδώ όμως

έχουν σημαντικές

έχει ομοιότητες με

- Ποιος ο ρόλος της;
 - Η χρήση εικονικής μνήμης, πέρα από όση είναι πραγματικά διαθέσιμη
 - 2. Η αντιστοίχιση εικονικών διευθύνσεων σε φυσικές και η διαχείριση των προνομίων προσπέλασης
 - Σημαντικότερο σήμερα!
- Ποιος τη διαχειρίζεται;
 - Διαχείριση από το λειτουργικό σύστημα
 - Υποστήριξη από το υλικό (ΚΜΕ/κρυφή μνήμη)
- Πώς υλοποιείται;
- Μετακίνηση τμημάτων μνήμης από/προς τους δίσκους
- Εκμετάλλευση αρχής τοπικότητας
 - Μερικά μέρη μόνο των προγραμμάτων είναι "ενεργά" κάθε στιγμή

Αρχιτεκτονική Υπολογιστών - "Εικονική Μνήμη"

12

Χαρακτηριστικά Σελίδων

- Ιεραρχία Μνήμης
 Εικονική Μνήμη
- Σταθερό μέγεθος (4ΚΒ-16ΚΒ)
- Για την προσπέλαση οποιασδήποτε θέσης μνήμης της σελίδας απαιτείται μία λέξη εικονικής διεύθυνσης (page+offset)
- Ευκολία τοποθέτησης και αντικατάστασης σελίδων στην κύρια μνήμη
- Βέλτιστο μέγεθος για μεταφορά από-προς δίσκο
- Ενδεχομένως μέρος σελίδας μένει αχρησιμοποίητο

Αρχιτεκτονική Υπολογιστών - "Εικονική Μνήμη"

15

Σελίδες και εικονικές διευθύνσεις

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Η μετάφραση γίνεται στον επεξεργαστή, άρα εκεί (δηλ. στο υλικό) καθορίζεται το μέγεθος της σελίδας

Ο επεξεργαστής παράγει εικονική διεύθυνση N-1 Μ (M-1) 0 αριθμός σελίδας μετατόπιση (offset) (μέσα στη σελίδα) μετάφραση ως έχει Κ-1 Μ (M-1) 0 αριθμός φυσικής σελίδας μετατόπιση (offset)

Στη μνήμη στέλνεται φυσική διεύθυνση

- Ο επεξεργαστής μπορεί να παράγει έως και 2^N εικονικές διευθύνσεις
- Η φυσική μνήμη μπορεί να έχει έως 2^κ διευθύνσεις
- Το μέγεθος σελίδας είναι 2^M bytes

Αρχιτεκτονική Υπολογιστών - "Εικονική Μνήμη"

14

Σελιδοποίηση κατ' απαίτηση

• Ιεραρχία Μνήμης

Η μεγάλη

επιβάρυνση για τη

μετακίνηση των σελίδων από και

προς τον δίσκο

είναι καθοριστική

για την απόδοση

ενός συστήματος

- Εικονική Μνήμη
- Οι σελίδες των προγραμμάτων (κώδικας-δεδομένα)
 βρίσκονται αρχικά μόνο στον δίσκο
- Το ΛΣ τις σημειώνει ως "απούσες" από τη μνήμη
- Οταν προσπελαστεί μια "απούσα" σελίδα, δημιουργείται ένα σφάλμα σελιδοποίησης (page fault)...
- ...και το ΛΣ τη φορτώνει σε ένα πλαίσιο στη μνήμη
- Ενδεχομένως εκτοπίζοντας πίσω στον δίσκο μια άλλη σελίδα από τη μνήμη
 - Η τελευταία σημειώνεται ως "απούσα"
- Page faults: μεγάλο κόστος σε κύκλους αναμονής
 - 1-10Μκύκλοι

Αρχιτεκτονική Υπολογιστών - "Εικονική Μνήμη"

16

Κρίσιμα σημεία στη σχεδίαση εικονικής μνήμης

- Ιεραρχία Μνήμης
- Εικονική Μνήμη

Ακόμα και μικρή

μείωση στην

εμφάνιση page

faults μπορεί να

έχει σημαντικό

όφελος για την

απόδοση του συστήματος

- Οι σελίδες πρέπει να έχουν ικανό μέγεθος
 - Για εξισορρόπηση του κόστους προσπέλασης του
- Η μείωση των page faults είναι επιβεβλημένη
- Οι σελίδες τοποθετούνται οπουδήποτε μέσα στη μνήμη
 - Σχήμα ανάλογο των fully-associative κρυφών
- Η διαχείριση της εικονικής μνήμης γίνεται από λογισμικό (ΛΣ)
 - Μικρή επιβάρυνση συγκρινόμενη με χρόνο μετακίνησης σελίδων στους δίσκους
 - Δυνατότητα χρήσης πολυπλοκότερων αλγορίθμων για τοποθέτηση-αντικατάσταση σελίδων στη μνήμη
- Δεν είναι δυνατή η ενημέρωση στον δίσκο με κάθε εγγραφή νέων δεδομένων στη σελίδα

Αρχιτεκτονική Υπολογιστών – "Εικονική Μνήμη"

17

Πίνακας σελίδων

- Ιεραρχία Μνήμης

Τι συμβαίνει στην

πολλαπλών

προγραμμάτων;

- Εικονική Μνήμη
- Πού βρίσκεται;
 - Στην κύρια μνήμη!
- Πόσες θέσεις διαθέτει;
 - Θεωρητικά: ίσες με τον μέγιστο αριθμό σελίδων Για 2²⁰ σελίδες με 4 bytes ανά γραμμή, απαιτούνται 4MB
 - Πρακτικά: πίνακες πολλαπλών επιπέδων
 - Πιθανόν: σελιδοποίηση πινάκων (!)
 - Αρκεί να υπάρχει πάντα στη μνήμη ένα μέρος του πίνακα

Ποια πρόσθετη πληροφορία γρειάζεται;

- Βρίσκεται η σελίδα στη μνήμη; Έχει αλλάξει;
- Αν όχι, σε ποιο σημείο του δίσκου είναι;
 - Συχνά η πληροφορία αυτή φυλάσσεται μέσα στον πίνακα σελίδων
- Ποια σελίδα βρίσκεται σε κάθε πλαίσιο μνήμης;
- Πόσο πρόσφατα χρησιμοποιήθηκε;
 - Δομές του ΛΣ για αλγόριθμο αντικατάστασης σελίδων

Αρχιτεκτονική Υπολογιστών – "Εικονική Μνήμη"

19

Μετάφραση εικονικών διευθύνσεων • Ιεραρχία εικονική διεύθυνση Κύρια μνήμη Μνήμης 0x3000 0x000013F0 • Εικονική Μνήμη D 0x4000 В φυσική (1) 0x2000 0x5000 0x63F0 (1) 0x6000 0x6000 Α 2 (0) ?? (1) 0x3000 Presence bit: βρίσκεται η σελίδα στην κύρια μνήμη; πίνακας σελίδων (page table) δίσκος Αρχιτεκτονική Υπολογιστών - "Εικονική Μνήμη" 18

Translation-Lookaside Buffer

- Ιεραρχία Μνήμης
- Εικονική Μνήμη
- Το πρόβλημα με τους πίνακες σελίδων
 - Βρίσκονται στην κύρια μνήμη
 - Για κάθε προσπέλαση μνήμης απαιτείται μια δεύτερη!
 - Για τον πίνακα σελίδων
 - Μη αποδεκτή χρονική επιβάρυνση!

Translation-Lookaside Buffer (TLB)

- Μικρή "κρυφή μνήμη" για πρόσφατες μεταφράσεις εικονικών διευθύνσεων
 - Μέσα στον επεξεργαστή
 - 16-512 θέσεις, 1-2 γραμμές του πίνακα σελίδων ανά θέση
 - Προσπέλαση < 1 κύκλο ρολογιού
 - Παρατηρούμενο Miss rate: 0.01% 1%
 - Σε περίπτωση miss: ενημέρωση από ΛΣ ή από την ίδια την ΚΜΕ (page table walker)

Αρχιτεκτονική Υπολογιστών - "Εικονική Μνήμη"

21

Εικονική Μνήμη και Προστασία Προσπέλασης

- Ιεραρχία Μνήμης
- Εικονική Μνήμη
- Προστασία προσπέλασης σελίδων
 - Με διαφορετικούς πίνακες σελίδων ανά διεργασία είναι αδύνατη η προσπέλαση "ξένων" σελίδων
 - Δικαιώματα προσπέλασης ανά σελίδα
 - User mode και Supervisor Mode
 - Σε user mode δεν είναι δυνατή η προσπέλαση του TLB, του πίνακα σελίδων και των αντίστοιχων καταχωρητών συστήματος
 - Υπάρχουν αρχιτεκτονικές με περισσότερα από 2 επίπεδα προνομίων
 - Ελεγχόμενη προσπέλαση συναρτήσεων ΛΣ
 - Call gates: ελεγχόμενη εκτέλεση συναρτήσεων ΛΣ από χρήστη, στο επίπεδο όμως των προνομίων του χρήστη → δεν είναι δυνατή η προσπέλαση "ξένων" δεδομένων!

Αρχιτεκτονική Υπολογιστών - "Εικονική Μνήμη"

23

Προσπέλαση μνήμης: η συνολική εικόνα • Ιεραρχία Μνήμης • Εικονική Μνήμη TLB Κρυφή μνήμη δεδομένα, cache hit δεδομένα, cache miss KME Στο σχήμα η κρυφή μνήμη δέχεται φυσικές μετάφραση, TLB miss διευθύνσεις. Υπάρχουν αρχιτεκτονικές με εικονική κρυφή μνήμη ή συνδυασμό εικονικής-φυσικής πίνακας σελίδων (στην κύρια μνήμη) κρυφής μνήμης Κύρια μνήμη Αρχιτεκτονική Υπολογιστών – "Εικονική Μνήμη" 22