Specialist Mathematics Exam 1 2007 Solutions

Question 1

The equation has real coefficients therefore the conjugate root theorem applies. So 2 - i is another root.

A1

The two factors can be expressed as a quadratic as follows:

$$(z-2-i)(z-2+i) = z^2-4z+5$$

A1

Divide
$$z^2 - 4z + 5$$
 into $z^4 - 4z^3 + 6z^2 - 4z + 5$ to obtain $z^2 + 1$

M1

$$z^{2} + 1$$

$$z^{2} - 4z + 5 \overline{)z^{4} - 4z^{3} + 6z^{2} - 4z + 5}$$

$$\underline{z^{4} - 4z^{3} + 5z^{2}}$$

$$z^{2} - 4z + 5$$

$$\underline{z^{2} - 4z + 5}$$

$$\therefore (z^2 - 4z + 5)(z^2 + 1) = 0$$

$$(z - 2 - i)(z - 2 + i)(z - i)(z + i) = 0$$

$$\therefore z = 2 + i, 2 - i, i, -i$$

Solutions are: $z = 2 \pm i$ and $z = \pm i$

A1

Ouestion 2

a.
$$\underline{u} = \cos(\theta)\underline{i} + \sin(\theta)j$$
 and $\underline{v} = \sin(\theta)\underline{i} + \cos(\theta)j$

$$|\underbrace{u}| = \sqrt{\cos^2(\theta) + \sin^2(\theta)}$$

$$= \sqrt{1}$$

$$= 1$$

$$|\underbrace{v}| = \sqrt{\sin^2(\theta) + \cos^2(\theta)}$$

$$= \sqrt{1}$$

$$= 1$$

A1

Hence, both u and v are unit vectors.

b.
$$\cos(\alpha) = \frac{\cos(\theta)\sin(\theta) + \sin(\theta)\cos(\theta)}{\sqrt{1} \times \sqrt{1}}$$

 $= 2\sin(\theta)\cos(\theta)$
 $= \sin(2\theta)$

$$\alpha = \cos^{-1}(\sin{(2\theta)}) \text{ or } \alpha = \frac{\pi}{2} - 2\theta$$

$$\mathbf{c.} \quad \alpha = \cos^{-1}\left(\sin\left(\frac{2\times\pi}{6}\right)\right)]$$

$$= \cos^{-1}\left(\sin\left(\frac{\pi}{3}\right)\right)$$

$$= \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

$$= \frac{\pi}{6}$$

d.
$$(v \cdot \hat{u})\hat{u} = \left(\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4}\right)\left(\frac{1}{2}i + \frac{\sqrt{3}}{2}j\right)$$

 $= \frac{\sqrt{3}}{4}i + \frac{3}{4}j \text{ or}$
 $= \frac{1}{4}(\sqrt{3}i + 3j)$

Question 3

a.
$$\frac{x+2}{x^2+x} = \frac{A}{x} + \frac{B}{x+1}$$
 where A and B are constants.

$$\therefore x + 2 = A(x + 1) + B(x)$$

Let
$$x = 0$$
 so $A = 2$

Let
$$x = -1$$
 so $B = -1$ A1 (both A and B correct)

$$\therefore \frac{x+2}{x^2+u} = \frac{2}{x} - \frac{1}{x+1}$$

b.
$$\int_{-4}^{-3} \left(\frac{x+2}{x^2+x}\right) dx = \int_{-4}^{-3} \left(\frac{2}{x} - \frac{1}{x+1}\right) dx$$

$$= \left[2\log_e |x| - \log_e |x+1|\right]_{-4}^{-3}$$

$$= (2\log_e 3 - \log_e 2) - (2\log_e 4 - \log_e 3)$$

$$= \log_e (27/32)$$
A2 for anti-derivatives

Modulus sign missing = -1

$$= \log_e (27/32)$$

Answer: a = 27, b = 12

Note: cannot get this mark from logs of negative numbers. Equivalent multiples of a and b in non-simplified fraction is correct.

Question 4

a. Let
$$u = \sqrt{3x}$$
 and $w = 3x$

$$u = \sqrt{w} \text{ and so } \frac{du}{dw} = \frac{1}{2\sqrt{w}} \text{ and } \frac{dw}{dx} = 3$$

$$\frac{du}{dx} = \frac{du}{dw} \times \frac{dw}{dx}$$

$$= \frac{3}{2\sqrt{3x}}$$

$$y = \cos^{-1}(u)$$
 and so $\frac{dy}{du} = \frac{-1}{\sqrt{1 - u^2}}$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= \frac{-1}{\sqrt{1 - u^2}} \times \frac{3}{2\sqrt{3x}}$$

$$= \frac{-1}{\sqrt{1 - 3x}} \times \frac{3}{2\sqrt{3x}}$$

$$= \frac{-3}{2\sqrt{3x}(1 - 3x)}$$
M1

Hence shown.

A1

b.
$$\int_{\frac{1}{12}}^{\frac{1}{6}} \frac{1}{\sqrt{3x(1-3x)}} dx$$

$$= -\frac{2}{3} \int_{\frac{1}{12}}^{\frac{1}{6}} \frac{-3}{2\sqrt{3x(1-3x)}} dx$$

$$= -\frac{2}{3} [\cos^{-1}(\sqrt{3x})]_{\frac{1}{12}}^{\frac{1}{6}}$$

$$= -\frac{2}{3} (\cos^{-1}(\frac{1}{\sqrt{2}}) - \cos^{-1}(\frac{1}{2}))$$

$$= -\frac{2}{3} (\frac{\pi}{4} - \frac{\pi}{3})$$

$$= \frac{\pi}{18}$$
A1 for $-\frac{2}{3}$ in front

M1 for recognition

Question 5

a.
$$2a = 2g - 0.05v^2$$
 : $a = g - \frac{v^2}{40}$

b. Using $a = v \frac{dv}{dx}$ in the equation of motion gives:

$$v\frac{dv}{dx} = \frac{2g - 0.05v^2}{2}$$

$$\frac{dv}{dx} = \frac{2g - 0.05v^2}{2v}$$

$$\frac{dx}{dv} = \frac{2v}{2g - 0.05v^2}$$
A1

Multiplying numerator and denominator by 20 gives

$$\frac{dx}{dv} = \frac{40v}{40g - v^2}$$
 as required.

c. The required distance is given by the integral:
$$\int_{0}^{10} \frac{40v}{40g - v^2} dv$$

Note: The integral must have correct limits and dv. Does not need to have a modulus of $\frac{40v}{40g-v^2}$, since we are after distance and the graph was not asked for.

$$x = -20 \int_{0}^{10} \frac{-2v}{-v^{2} + 40g} dv$$

$$= \left[-20 \log_{e} (40g - v^{2}) \right]_{0}^{10}$$

$$= -20 \log_{e} (40g - 100) + 20 \log_{e} (40g)$$

$$= 20 \log_{e} \left(\frac{40g}{40g - 100} \right)$$

$$= 20 \log_{e} \left(\frac{2g}{2g - 5} \right)$$

Note:
$$20\log_e\left(\frac{40g}{40g-100}\right)$$
 can get the last A1 mark.

Question 6

a.

x-intercept
$$(-1,0)$$

y-intercept
$$\left(0, \frac{\pi}{4}\right)$$

Asymptotes
$$y = -\frac{\pi}{4}$$
 and $y = \frac{3\pi}{4}$ and shape.

b.
$$\arctan(x) + \frac{\pi}{4} = \frac{5\pi}{12}$$

 $\arctan(x) = \frac{\pi}{6}$

$$x = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

Question 7

a. Differentiating r with respect to t:

$$r = (-3\sin(t) - 2\cos(2t))_{i} + (3\cos(t) - 2\sin(2t))_{j}$$
 A2 (1 each i , j term)

b. Speed = |v|

$$= \sqrt{(3\sin(t) + 2\cos(2t))^2 + (3\cos(t) - 2\sin(2t))^2}$$

$$= \sqrt{9\sin^2(t) + 12\sin(t)\cos(2t) + 4\cos^2(2t) + 9\cos^2(t) - 12\cos(t)\sin(2t) + 4\sin^2(2t)}$$

$$= \sqrt{(9\sin^2(t) + 9\cos^2(t)) + 12(\sin(t)\cos(2t) - 12\cos(t)\sin(2t)) + (4\cos^2(2t) + 4\sin^2(2t))}$$

$$= \sqrt{9 + 4 + 12\sin(t - 2t)}$$
M1 for using the compound angle formula
$$= \sqrt{13 - 12\sin(t)}$$

 \therefore Maximum speed is $\sqrt{13+12}$ when $\sin(t) = -1$

A1

c.
$$\sqrt{13 - 12\sin(t)}$$

 $-1 \le \sin(t) \le 1$
 $\therefore -12 \le 12\sin(t) \le 12$

$$\therefore \sqrt{13 - 12} = 1, \sqrt{13 + 12} = 5$$

∴ speed will always be between 1 and 5

∴ it never stops

Question 8

a.
$$\frac{x}{2} = \tan(t)$$
 and $y = \sec(t)$
 $1 + \tan^2(t) = \sec^2(t)$
 $1 + \frac{x^2}{4} = y^2$
 $1 = \frac{y^2}{1} - \frac{x^2}{4}$

b.

2 marks: A1 shape and asymptotes $y = \pm \frac{x}{2}$; A1 y-intercepts $(0, \pm 1)$

A1

c.
$$\int_{1}^{2} \pi x^{2} dy = \int_{1}^{2} 4\pi (y^{2} - 1) dy$$

$$= \left[4\pi \left(\frac{y^{2}}{3} - y \right) \right]_{1}^{2}$$

$$= 4\pi \left[\left(\frac{8}{3} - 2 \right) - \left(\frac{1}{3} - 1 \right) \right]$$

$$= \frac{16\pi}{3} \text{ cubic units}$$
A1