Coal 1. By defintion $v(\varnothing)=0$. If Player I and Player II form a coalition then the game matrix is shown in Table 1.

Table 1: Player I and Player II Form a Coalition

Then the Security Levels

$$v\left(\{1,2\}\right)=5 \qquad v\left(\{3\}\right)=1$$

If Player I and Player III form a coalition then the game matrix is shown in Table 2.

Table 2: Player I and Player III Form a Coalition

Then the Security Levels

$$v(\{1,3\}) = 4$$
 $v(\{2\}) = 2$

If Player I and Player III form a coalition then the game matrix is shown in Table 3.

Table 3: Player II and Player III Form a Coalition

Then the Security Levels

$$v({2,3}) = 3$$
 $v({1}) = -1$

If all 3 players form a coalition then the maximum payoff is

$$v(\{1,2,3\}) = 7 + 5 + 4 = 16$$

The values of the character function is shown in Table 4.

Table 4: The Character Function in Coal1.

Coal2. Let the imputation $x = (x_1, x_2, x_3)$ then x in the core suffices

$$\begin{array}{ll} x_1 + x_2 + x_3 = v\left(N\right) & x_1 \geqslant v\left(\{1\}\right) & x_2 \geqslant v\left(\{2\}\right) & x_3 \geqslant v\left(\{3\}\right) \\ x_1 + x_2 \geqslant v\left(\{1,2\}\right) & x_1 + x_3 \geqslant v\left(\{1,3\}\right) & x_2 + x_3 \geqslant v\left(\{2,3\}\right) \end{array}$$

Then the core is graphed in Figure 1.

Figure 1: The Core of the Game in Coal2.

Its three vertices are (0,3,2), (1,2,2), (1,3,1).

Coal3. Let the imputation $x = (x_1, x_2, x_3)$ then x in the core suffices

$$x_1 + x_2 + x_3 = 3$$
 $x_1, x_2, x_3 \geqslant 0$ $x_1 + x_2, x_1 + x_3, x_2 + x_3 \geqslant a$

The set of conditions have solutions if $0 \le a \le 2$ and have no solutions if $2 < a \le 3$. So the core is non-empty if $a \in [0, 2]$.

Coal4. Let the imputation $x = (x_1, x_2, x_3)$ then x in the core suffices

$$x_1 + x_2 + x_3 = 10$$
 $x_1, x_2, x_3, x_1 + x_2 \ge 0$ $x_1 + x_3, x_2 + x_3 \ge 10$

The only solution is (0,0,10). So the core of this game is $\{(0,0,10)\}$.

Coal5. Proof. Suppose $x = (x_1, x_2, x_3)$ is in the core then

$$v(\{1,2,3\}) = x_1 + x_2 + x_3$$

By the stablity

$$v(\{1\}) + v(\{2\}) + v(\{3\}) \le x_1 + x_2 + x_3$$

$$v(\{1,2\}) + v(\{3\}) \le (x_1 + x_2) + x_3 = x_1 + x_2 + x_3$$

$$v(\{1,3\}) + v(\{2\}) \le (x_1 + x_3) + x_2 = x_1 + x_2 + x_3$$

$$v(\{2,3\}) + v(\{1\}) \le (x_2 + x_3) + x_1 = x_1 + x_2 + x_3$$

and we have that

$$\frac{1}{2}v\left(\{1,2\}\right) + \frac{1}{2}v\left(\{1,3\}\right) + \frac{1}{2}v\left(\{2,3\}\right)$$

$$\leq \frac{1}{2}\left(x_1 + x_2\right) + \frac{1}{2}\left(x_1 + x_3\right) + \frac{1}{2}\left(x_2 + x_3\right)$$

$$= x_1 + x_2 + x_3$$

Coal6. Proof. For any subsets $S_1, S_2 \subset N \setminus T$, since (N, v) is a convex game

$$\begin{split} &v_{T}\left(S_{1} \cup S_{2}\right) + v_{T}\left(S_{1} \cap S_{2}\right) \\ &= v\left(\left(S_{1} \cup S_{2}\right) \cup T\right) + v\left(\left(S_{1} \cup S_{2}\right) \cap T\right) - 2v\left(T\right) \\ &= v\left(\left(S_{1} \cup T\right) \cup \left(S_{2} \cup T\right)\right) + v\left(\left(S_{1} \cup T\right) \cap \left(S_{2} \cup T\right)\right) - 2v\left(T\right) \\ &\geqslant v\left(S_{1} \cup T\right) + v\left(S_{2} \cup T\right) - 2v\left(T\right) \\ &= v_{T}\left(S_{1}\right) + v_{T}\left(S_{2}\right) \end{split}$$

Since

$$v_T(\varnothing) = v(T) - v(T) = 0$$

When $S_1 \cap S_2 = \emptyset$ we have that

$$v_T\left(S_1 \cup S_2\right) \geqslant v_T\left(S_1\right) + v_T\left(S_2\right)$$

So v_T is a characteristic function on $N \setminus T$ and $(N \setminus T, v_T)$ is a convex game. \Box

Coal7. The game can be divided into simple games

$$v = w_{\{1\}} + w_{\{1,2\}} + \dots + w_{\{1,\dots,n\}}$$

So the Shapley value is

$$\varphi_i(v) = \sum_{j=1}^n \varphi_i\left(w_{\{1,\dots,j\}}\right) = \sum_{j=i}^n \frac{1}{j} \qquad i = 1,\dots,n$$

Coal8. By definition

$$w(\varnothing) = v(\varnothing) = 0$$

For any non-empty distinct $S, T \subset N$ we have that $S, T \neq N$ then

$$w\left(S\right)+w\left(T\right)=v\left(S\right)+v\left(T\right)\leqslant v\left(S\cup T\right)\leqslant w\left(S\cup T\right)$$

So w satisfies the superadditivity property. Since $w = v + aw_N$

$$\varphi(w) = \varphi(v) + \frac{a}{n}(1,\ldots,1)$$

Coal9. Suppose the n players join the coalition in a random order. Then Player 1 has the same probability to be the jth player to join and contributes j where $j = 1, \ldots, n$. So Player 1's expected contribution is

$$\varphi_{1}\left(v\right) = \sum_{i=1}^{n} \frac{1}{n} \cdot j = \frac{n+1}{2}$$

By the Symmetry Axiom, the Shapley value of the other players is

$$\varphi_{i}\left(v\right)=rac{1}{n-1}\left(v\left(N
ight)-arphi_{1}\left(v
ight)
ight)=rac{1}{2}\qquad i=2,\ldots,n$$

Coal10. Since 30+30>10+40, a coalition is a winning one if and only if it contains at least 2 of 3 in II, III and IV, while I is a dummy. By the Symmetry Axiom and the Dummy Axiom, the Shapley value is

$$\varphi\left(v\right)=\left(0,\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$$

Coall1. Suppose the n players join the coalition in a random order. Then Player 1 has the same probability to be the jth player to join where $j = 1, \ldots, n$ and contributes 1 only if j < n. So Player 1's expected contribution is

$$\varphi_1\left(v\right) = \sum_{j=1}^{n-1} \frac{1}{n} = \frac{n-1}{n}$$

By the Symmetry Axiom, the Shapley value of the other players is

$$\varphi_{i}\left(v\right) = \frac{1}{n-1}\left(v\left(N\right) - \varphi_{1}\left(v\right)\right) = \frac{1}{n\left(n-1\right)} \qquad i = 2, \dots, n$$

Coal12. *Proof.* Since there are no veto players, For any i = 1, ..., n we have that $v(N - \{i\}) = 1$ then v(N) = 1. Assume that $x = (x_1, ..., x_n)$ is in the core. By the group rationality

$$\sum_{i=j}^{n} x_j = 1 \implies \sum_{j \in N - \{i\}} x_j = 1 - x_i$$

By the stability, for any i = 1, ..., n

$$1 - x_i \geqslant v(N - \{i\}) = 1 \implies x_i \leqslant 0$$

Then $x_1 + \cdots + x_n \leq 0$, which leads a contradiction. So the core of this game is empty.

Coal13. The Airport Game is equivalent to the following Road Game.

$$\operatorname{Town} \xrightarrow{40} \operatorname{A} \xrightarrow{10} \operatorname{B} \xrightarrow{10} \operatorname{C} \xrightarrow{10} \operatorname{D} \xrightarrow{10} \operatorname{E} \xrightarrow{10} \operatorname{F}$$

By the Additivity Axiom, the Shapley value is shown in Table 1.

	A	В	$^{\rm C}$	D	\mathbf{E}	\mathbf{F}
$\varphi\left(v_{1}\right)$	-40/6	-40/6	-40/6	-40/6	-40/6	-40/6
$arphi\left(v_{2} ight)$		-10/5	-10/5	-10/5	-10/5	-10/5
$arphi\left(v_{3} ight)$			-10/4	-10/4	-10/4	-10/4
$\varphi\left(v_{4}\right)$				-10/3	-10/3	-10/3
$arphi\left(v_{5} ight)$					-10/2	-10/2
$arphi\left(v_{6} ight)$						-10/1
$\varphi\left(v\right)$	-20/3	-26/3	-67/6	-29/2	-39/2	-59/2

Table 1: Shapley value of the Road Game

14 Answer:

The nucleolus is ((v(1, 2) v(1)-v(2))/2, (v(1, 2)+v(2)-v(1))/2).

15 Answer:

	1	2	3
123	1	1	4
132	1	7	-2
213	2	0	4
231	3	0	3
312	3	7	-4
321	3	7	-4
	13/6	11/3	1/6

The Shapley value is (13/6, 11/3, 1/6).

S	e(x, S)	(2, 4, 0)	(2, 7/2, 1/2)
{1}	1-x1	-1	-1
{2}	-x ₂	-4	-7/2
{3}	-4-x ₃	-4	-9/2
{1,2}	$2-x_1-x_2=x_3-4$	-4	-7/2
{1,3}	$-1-x_1-x_3=x_2-7$	-3	-7/2
{2,3}	3-x ₂ -x ₃ =x ₁ -3	-1	-1

The nucleolus is (2, 7/2, 1/2).

16 Answer:

S	v(S)	e(x, S)	(100/3, 200/3, 100)	(50, 50, 100)	(50, 75, 75)
{1}	0	-x ₁	-100/3	-50	-50
{2}	0	-x ₂	-200/3	-50	-75
{3}	0	-x ₃	-100	-100	-75
{1,2}	0	$-x_1-x_2=x_3-200$	-100	-100	-125
{1,3}	0	$-x_1-x_3=x_2-200$	-400/3	-150	-125
{2,3}	100	100- <i>x</i> ₂ - <i>x</i> ₃ = <i>x</i> ₁ - 100	-200/3	-50	-50

The nucleolus is (50, 75, 75).

17 Answer:

By symmetry axiom, we have $x_2=\cdots=x_n=t$. We have $x_1+(n-1)t=n$. For set S_k , which has k elements. If $1\in S_k$, e(x, S_k)=k-x₁-(k-1)t=(k-n)(1-t). Else, e(x, S_k)=-kt. Since {-k} = {k-n}, we

```
can get 1-t=t. So, t=1/2 and x_1=(n+1)/2.
```

```
18 Answer:
```

$$\begin{split} &\text{v(\{1\})} = \text{val(A), v(\{2\})} = \text{val(B), v(\{1,2\})} = \max(a_{ij} + b_{ij}). \\ &d_1 = (x_2 - \text{val(B)}) / (x_1 - \text{val(A)}), \ d_2 = (x_1 - \text{val(A)}) / (x_2 - \text{val(B)}) \\ &\text{So, the Gately point satisfies} \ d_1 = d_2, \ \text{meaning} \ x_1 - \text{val(A)} = \ x_2 - \text{val(B)}. \\ &\text{Since} \ x_1 + x_2 = \max(a_{ij} + b_{ij}), \\ &x_1 = (\max(a_{ij} + b_{ij}) + \text{val(A)} - \text{val(B)}) / 2 \ \text{and} \ x_2 = (\max(a_{ij} + b_{ij}) - \text{val(A)} + \text{val(B)}) / 2. \end{split}$$