Vector Spaces

Definition of Vector Spaces

 $(S, \oplus, \otimes, \overrightarrow{0_s})$

Let $\overrightarrow{S_1}, \overrightarrow{S_2} \in S$

If:

- Closed under \oplus (S₁ + S₂ \in S)
- Closed under \otimes $(\lambda S_1 \in S)$
- $O_s + x = x$

Then $(S, \oplus, \otimes, 0_{\overrightarrow{s}})$ is a vector space.

Another Example

 $(R^+$, 'x' (usual multiplication, used as vector addition), exp (scalar multiplication), 1)

Take $x, y \in R^+$

- $x \oplus y = xy \in R^+$
- $\lambda \otimes x = x^{\lambda} \in \mathbb{R}^+$
- $1 \oplus x = x \in R^+$

Another example 2

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

$$(P, +, \times, 0)$$