Solving Non-Linear SVM in Linear Time

 A Nyström Approximated SVM with Applications to Image Classification

> Ming-Hen Tsai Academia Sinica (now at Google Inc.)

Joint work with Yi-Ren Yeh, Yuh-Jye Lee and Yu-Chiang Wang

- Introduction
- Nyström Method for Kernel Approximation
- Nyström Method for Linear Representation
- Experiment
- Conclusion and Application Areas

- Introduction
- Nyström Method for Kernel Approximation
- Nyström Method for Linear Representation
- Experiment
- Conclusion and Application Areas

- Introduction
- Nyström Method for Kernel Approximation
- Nyström Method for Linear Representation
- Experiment
- Conclusion and Application Areas

We Have Known...

- Non-linear SVM: powerful but slow
- Linear SVM: simple but fast

Paper: "Training Linear SVMs in Linear Time" by Joachims

Software: LIBLINEAR, VW, etc.

 But we want something powerful and fast: train faster than non-linear SVM and generate a more accurate model than linear SVM.

 But we want something powerful and fast: train faster than non-linear SVM and generate a more accurate model than linear SVM.

What should we do?

- But we want something powerful and fast: train faster than non-linear SVM and generate a more accurate model than linear SVM.
 - What should we do?
- Can we save some computations (for speed) and still get non-linearity (for more power)?

- But we want something powerful and fast: train faster than non-linear SVM and generate a more accurate model than linear SVM.
 - What should we do?
- Can we save some computations (for speed) and still get non-linearity (for more power)?
 Yes. Do approximation!

- Introduction
- Nyström Method for Kernel Approximation
- Nyström Method for Linear Representation
- Experiment
- Conclusion and Application Areas

Definitions and a Brief Review (1/2)

- Input Data: $\{(\mathbf{y}, X)\} = \{(y_i, \mathbf{x}_i)\}_{i=1}^{\ell}$. y_i : label, \mathbf{x}_i : feature vector.
- (Non-zero) dimension of x_i : n
- Non-linear mapping $\phi(\mathbf{x})$ (e.g. bi-gram features)
- Kernel function: $K(\mathbf{u}, \mathbf{v}) = \phi(\mathbf{u})^T \phi(\mathbf{v})$, usually computed in linear time.

Definitions and a Brief Review (1/2)

- Input Data: $\{(\mathbf{y}, X)\} = \{(y_i, \mathbf{x}_i)\}_{i=1}^{\ell}$. y_i : label, \mathbf{x}_i : feature vector.
- (Non-zero) dimension of x_i : n
- Non-linear mapping $\phi(\mathbf{x})$ (e.g. bi-gram features)
- Kernel function: $K(\mathbf{u}, \mathbf{v}) = \phi(\mathbf{u})^T \phi(\mathbf{v})$, usually computed in linear time.
- Lower bound for data storage and training: $\Omega(\ell n)$.

Definitions and a Brief Review (2/2)

Primal:

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{\ell} \max(1 - y_i \mathbf{w}^T \phi(\mathbf{x}_i), 0)$$

• Dual:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$

s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

• Primal-Dual Correspondence: $\mathbf{w} = \sum_{i=1}^{\ell} y_i \alpha_i \phi(\mathbf{x}_i)$

Kernel in Non-linear SVM

• Dual form:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$
s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

• Kernel matrix Q with $Q_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$.

Kernel in Non-linear SVM

• Dual form:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$

s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

• Kernel matrix Q with $Q_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$. Computational time: $O(\ell^2)$ times kernel products $\sim O(\ell^2 n) \sim \ell$ times data size. Space: $O(\ell^2)$.

Kernel in Non-linear SVM

• Dual form:

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$

s.t. $0 \le \alpha_{i} \le C \quad \forall i$.

- Kernel matrix Q with $Q_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$. Computational time: $O(\ell^2)$ times kernel products $\sim O(\ell^2 n) \sim \ell$ times data size. Space: $O(\ell^2)$.
- 1M images, 1k dimensional features: 1M times more computational time, and 1M/1k = 1k times more space than the linear counterpart.

Nyström Method

- Sample k feature vectors from X to a set $B = \{\mathbf{b}_i\}_{i=1}^k$.
- The apprxoimated kernel: $\tilde{Q} \sim CW^{-1}C^T$, where $C_{ij} = K(\mathbf{x}_i \mathbf{b}_j)$ and $W_{ij} = K(\mathbf{b}_i, \mathbf{b}_j)$. so C is ℓ by k, W is k by k. Usually $n \sim k \ll \ell$.
- Different studies on how to get a small and representative basis B.

Nyström Method

- Sample k feature vectors from X to a set $B = \{\mathbf{b}_i\}_{i=1}^k$.
- The apprxoimated kernel: $\tilde{Q} \sim CW^{-1}C^T$, where $C_{ij} = K(\mathbf{x}_i \mathbf{b}_j)$ and $W_{ij} = K(\mathbf{b}_i, \mathbf{b}_j)$. so C is ℓ by k, W is k by k. Usually $n \sim k \ll \ell$.
- Different studies on how to get a small and representative basis *B*.
- Time and space complexity:

Time: $O(\ell kn)$ for C, $O(k^2n) + O(k^3)$ for W^{-1} , and $O(\ell^2 k)$ for \tilde{Q} . $O(\ell^2 k)$ overall. (Alright...) Space: $O(\ell k)$. (Good!)

- Introduction
- Nyström Method for Kernel Approximation
- Nyström Method for Linear Representation
- Experiment
- Conclusion and Application Areas

An Equivalent Representation

The Equivalent Representation in Nyström Method

- Introduction
- Nyström Method for Kernel Approximation
- Nyström Method for Linear Representation
- Experiment
- Conclusion and Application Areas

- Introduction
- Nyström Method for Kernel Approximation
- Nyström Method for Linear Representation
- Experiment
- Conclusion and Application Areas

Conclusion and Future Work