Complex Functions and Mappings Special Power Functions

Special Power Functions

Complex Polynomial and Principal Root Functions

- A **complex polynomial function** is a function of the form $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, where n is a positive integer and $a_n, a_{n-1}, \ldots, a_1, a_0$ are complex constants.
- In general, a complex polynomial mapping can be quite complicated, but in many special cases the action of the mapping is easily understood.
- We now study complex polynomials of the form $f(z) = z^n, n \ge 2$.
- Unlike the linear mappings, the mappings $w = z^n$, $n \ge 2$, do not preserve the basic shape of every figure in the complex plane.
- Associated to the function $z^n, n \ge 2$, we also have the *principal nth* root function $z^{1/n}$.
 - The principal nth root functions are inverse functions of the functions z^n defined on a sufficiently restricted domain.

Power Functions

- A real function of the form $f(x) = x^a$, where a is a real constant, is called a **power function**.
- We form a complex power function by allowing the input or the exponent a to be a complex number.
- A complex power function is a function of the form

$$f(z) = z^{\alpha}$$
, α a complex constant.

- If α is an integer, then the power function z^{α} can be evaluated using the algebraic operations on complex numbers seen earlier: Example: $z^2 = z \cdot z$ and $z^{-3} = \frac{1}{z \cdot z \cdot z}$.
- We can also use the formulas for taking roots of complex numbers to define power functions with fractional exponents of the form $\frac{1}{2}$.
- We restrict attention to special complex power functions of the form z^n and $z^{1/n}$, where $n \ge 2$ and n is an integer.
- More complicated complex power functions such as $z^{\sqrt{2}-i}$, will be discussed after the introduction of the complex logarithmic function.

The Power Function z^n

- We consider complex power functions of the form z^n , $n \ge 2$.
- We begin with the simplest of these functions, the **complex squaring** function z^2 .
- Values of the complex power function $f(z) = z^2$ are easily found using complex multiplication.

Example: At z = 2 - i, we have

$$f(2-i) = (2-i)^2 = (2-i) \cdot (2-i) = 3-4i.$$

• We express $w = z^2$ in exponential notation by replacing z with $re^{i\theta}$:

$$w = z^2 = (re^{i\theta})^2 = r^2 e^{i2\theta}.$$

- The modulus r^2 of the point w is the square of the modulus r of the point z;
- The argument 2θ of w is twice the argument θ of z.

The Complex Squaring Function z^2

• If we plot both z and w in the same copy of the complex plane, then w is obtained by magnifying z by a factor of r and then by rotating the result through the angle θ about the origin.

- The figure shows z and $w = z^2$, when r > 1 and $\theta > 0$.
- If 0 < r < 1, then z is contracted by a factor of r, and if $\theta < 0$, then the rotation is clockwise.

Magnification and Rotation in Complex Squaring

- The magnification factor and the rotation angle associated to $w = f(z) = z^2$ depend on where z is located in the complex plane. Example: Since f(2) = 4 and $f(\frac{i}{2}) = -\frac{1}{4}$, the point z = 2 is magnified by 2 but not rotated, whereas the point $z = \frac{i}{2}$ is contracted by $\frac{1}{2}$ and rotated through $\frac{\pi}{2}$.
- The function z^2 does not magnify the modulus of points on the unit circle |z| = 1 and it does not rotate points on the positive real axis.
- \bullet Consider a ray emanating from the origin and making an angle of ϕ with the positive real axis.
 - The images of all points have an argument of 2ϕ . Thus, they lie on a ray emanating from the origin and making an angle of 2ϕ with the positive real axis.
 - The modulus ρ of a point on the ray can be any value in $[0, \infty]$. So the modulus ρ^2 of a point in the image can also be any value in $[0, \infty]$.

Hence, the ray is mapped onto a ray emanating from the origin making an angle 2ϕ with the positive real axis.

Image of a Circular Arc under $w = z^2$

- Find the image of the circular arc defined by |z|=2, $0 \le \arg(z) \le \frac{\pi}{2}$, under the mapping $w=z^2$.
 - Let C be the circular arc defined by |z|=2, $0 \le \arg(z) \le \frac{\pi}{2}$, and let C' denote the image of C under $w=z^2$.
 - Since each point in C has modulus 2, each point in C' has modulus $2^2 = 4$. Thus, the image C' must be contained in the circle |w| = 4.
 - Since the arguments of the points in C take on every value in $[0, \frac{\pi}{2}]$, the points in C' have arguments that take on every value in $[0, \pi]$.

So C' is the semicircle defined by $|w| = 4, 0 \le \arg(w) \le \pi$.

Alternative Solution

- An alternative way to find the image of the circular arc defined by |z|=2, $0 \le \arg(z) \le \frac{\pi}{2}$, under the mapping $w=z^2$ is to use a parametrization.
 - The circular arc C can be parametrized by $z(t)=2e^{it}, 0 \le t \le \frac{\pi}{2}$. Its image C' is given by $w(t)=f(z(t))=4e^{i2t}, 0 \le t \le \frac{\pi}{2}$. By replacing the parameter t with s=2t, we obtain $W(s)=4e^{is}, 0 \le s \le \pi$. This is a parametrization of the semicircle $|w|=4, 0 \le \arg(w) \le \pi$.
- Similarly, the squaring function maps a semicircle

$$|z|=r, -\frac{\pi}{2} \leq \arg(z) \leq \frac{\pi}{2},$$

onto a circle $|w| = r^2$.

Mapping of a Half-Plane onto the Entire Plane

• Since the right half-plane $\operatorname{Re}(z) \geq 0$ consists of the collection of semicircles |z| = r, $-\frac{\pi}{2} \leq \operatorname{arg}(z) \leq \frac{\pi}{2}$, where r takes on every value in the interval $[0,\infty)$, the image of this half-plane consists of the collection of circles $|w| = r^2$ where r takes on any value in $[0,\infty)$. This implies that $w = z^2$ maps the right half-plane $\operatorname{Re}(z) \geq 0$ onto the entire complex plane.

Image of a Vertical Line under $w = z^2$

• Find the image of the vertical line x = k under the mapping $w = z^2$. In this example it is convenient to work with real and imaginary parts of $w = z^2$ which are

$$u(x, y) = x^2 - y^2, \quad v(x, y) = 2xy.$$

Since the vertical line x=k consists of the points $z=k+iy, -\infty < y < \infty$, it follows that the image of this line consists of all points w=u+iv, where $u=k^2-y^2, v=2ky$. If $k\neq 0$, we get $y=\frac{v}{2k}$ and then $u=k^2-\frac{v^2}{4k^2}, -\infty < v < \infty$. Thus, the image of the line x=k (with $k\neq 0$) under $w=z^2$ is a parabola that opens in the direction of the negative u-axis, has its vertex at $(k^2,0)$, and has v-intercepts at $(0,\pm 2k^2)$. Since the image is unchanged if k is replaced by -k, if $k\neq 0$, the pair of vertical lines x=k and x=-k are both mapped onto the parabola $u=k^2-\frac{v^2}{4k^2}$.

Image of a Vertical Line under $w = z^2$ (Cont'd)

• The action of the mapping $w = z^2$ on vertical lines is depicted below:

- The lines x = 3 and x = -3 are mapped onto the parabola with vertex at (9,0).
- Similarly, the lines $x=\pm 2$ are mapped onto the parabola with vertex at (4,0), and the lines $x=\pm 1$ onto the parabola with vertex at (1,0).
- In the case when k=0, the image of the line x=0 (the imaginary axis) is given by: $u=-y^2, v=0, -\infty < y < \infty$. Therefore, the imaginary axis is mapped onto the negative real axis.

Image of a Horizontal Line under $w = z^2$

• The same method can be used to show that a horizontal line y=k, $k \neq 0$, is mapped by $w=z^2$ onto the parabola

$$u=\frac{v^2}{4k^2}-k^2.$$

- The image is unchanged if k is replaced by -k. So the pair y = k and y = -k, k ≠ 0, are both mapped onto the same parabola.
 If k = 0, then the horizontal line v = 0 (the real axis) is mapped onto
- If k = 0, then the horizontal line y = 0 (the real axis) is mapped onto the positive real axis.

Image of a Triangle under $w = z^2$

- Find the image of the triangle with vertices 0, 1+i and 1-i under the mapping $w=z^2$.
 - Let S denote the triangle with vertices at 0, 1+i and 1-i, and let S' denote its image under $w=z^2$.
 - The side of S containing the vertices 0 and 1+i lies on a ray emanating from the origin and making an angle of $\frac{\pi}{4}$ radians with the positive x-axis. The image of this segment must lie on a ray making an angle of $2\frac{\pi}{4} = \frac{\pi}{2}$ radians with the positive u-axis. Since the moduli of the points on the edge containing 0 and 1+i vary from 0 to $\sqrt{2}$, the moduli of the images of these points vary from 0 to 2i. Thus, the image of this side is a vertical line segment from 0 to 2i contained in the v-axis.
 - In a similar manner, we find that the image of the side of S containing the vertices 0 and 1-i is a vertical line segment from 0 to -2i contained in the v-axis.

Image of a Triangle under $w = z^2$ (Cont'd)

- We continue with the image of the triangle with vertices 0, 1+i and 1-i under the mapping $w=z^2$:
 - The remaining side of S contains the vertices 1-i and 1+i. This side consists of the set of points z=1+iy, $-1 \le y \le 1$. Because this side is contained in the vertical line x=1, its image is a parabolic segment given by: $u=1-\frac{v^2}{4}, -2 \le v \le 2$.

Thus, we have shown that the image of triangle S is the figure S' shown below.

The Function z^n , n > 2

- An analysis similar to that used for the mapping $w=z^2$ can be applied to the mapping $w=z^n, n>2$.
- By replacing the symbol z with $re^{i\theta}$ we obtain:

$$w=z^n=r^ne^{in\theta}.$$

- Consequently, if z and $w = z^n$ are plotted in the same copy of the complex plane, then this mapping can be visualized as the process of
 - magnifying or contracting the modulus r of z to the modulus r^n of w;
 - rotating z about the origin to increase an argument θ of z to an argument $n\theta$ of w.
- Example: A ray emanating from the origin and making an angle of ϕ radians with the positive x-axis is mapped onto a ray emanating from the origin and making an angle of $n\phi$ radians with the positive u-axis.

Image of a Circular Wedge under $w = z^3$

- Determine the image of the quarter disk defined by the inequalities $|z| \le 2$, $0 \le \arg(z) \le \frac{\pi}{2}$, under the mapping $w = z^3$. Let S denote the quarter disk and let S' denote its image under $w = z^3$.
 - Since the moduli of the points in S vary from 0 to 2 the moduli of the points in S' vary from 0 to 8.
 - In addition, because the arguments of the points in S vary from 0 to $\frac{\pi}{2}$, the arguments of the points in S' vary from 0 to $\frac{3\pi}{2}$.

Therefore, S' is given by the inequalities $|w| \le 8$, $0 \le \arg(w) \le \frac{3\pi}{2}$:

The Power Function $z^{1/n}$

- We now investigate complex power functions of the form $z^{1/n}$, where n is an integer and $n \ge 2$. We begin with n = 2.
- We have seen that the *n n*-th roots of a nonzero complex number $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$ are given by:

$$\sqrt[n]{r}\left[\cos\frac{\theta+2k\pi}{n}+i\sin\frac{\theta+2k\pi}{n}\right]=\sqrt[n]{r}e^{i(\theta+2k\pi)/n},$$

for
$$k = 0, ..., n - 1$$
.

• For n = 2, we get

$$\sqrt{r}\left[\cos\frac{\theta+2k\pi}{2}+i\sin\frac{\theta+2k\pi}{2}\right]=\sqrt{r}e^{i(\theta+2k\pi)/2},\quad k=0,1.$$

• By setting $\theta = \text{Arg}(z)$ and k = 0, we can define a function that assigns to z the unique principal square root.

The Principal Square Root Function

Definition (The Principal Square Root Function)

The function $z^{1/2}$ defined by

$$z^{1/2} = \sqrt{|z|}e^{i\operatorname{Arg}(z)/2}$$

is called the principal square root function.

• If we set $\theta = \text{Arg}(z)$ and replace z with $re^{i\theta}$, then we obtain an alternative description of the principal square root function for |z| > 0:

$$z^{1/2} = \sqrt{r}e^{i\theta/2}$$
, $r = |z|$ and $\theta = \text{Arg}(z)$.

• Note that the symbol $z^{1/2}$, as used in the definition, represents something different from the same symbol as used previously.

Values of the Principal Square Root Function

- Example: Find the values of the principal square root function $z^{1/2}$ at the following points: (a) z = 4 (b) z = -2i (c) z = -1 + i.
- (a) For z = 4, |z| = |4| = 4 and Arg(z) = Arg(4) = 0. Thus, $4^{1/2} = \sqrt{4}e^{i(0/2)} = 2e^{i(0)} = 2$.
- (b) For z=-2i, |z|=|-2i|=2 and ${\rm Arg}(z)={\rm Arg}(-2i)=-\frac{\pi}{2},$ whence $(-2i)^{1/2}=\sqrt{2}{\rm e}^{i(-\pi/2)/2}=\sqrt{2}{\rm e}^{-i\pi/4}=1-i.$
- (c) For z = -1 + i, $|z| = |-1 + i| = \sqrt{2}$ and $Arg(z) = Arg(-1 + i) = \frac{3\pi}{4}$, and, hence, $(-1 + i)^{1/2} = \sqrt{(\sqrt{2})}e^{i(3\pi/4)/2} = \sqrt[4]{2}e^{i(3\pi/8)}$.

One-to-One Functions

- The principal square root function $z^{1/2}$ is an inverse function of the squaring function z^2 .
- A real function must be one-to-one in order to have an inverse function. The same is true for a complex function.
- A complex function f is **one-to-one** if each point w in the range of f is the image of a unique point z, called the **pre-image** of w, in the domain of f. That is, f is one-to-one if whenever $f(z_1) = f(z_2)$, then $z_1 = z_2$. Equivalently, if $z_1 \neq z_2$, then $f(z_1) \neq f(z_2)$. Example: The function $f(z) = z^2$ is not one-to-one because
 - f(i) = f(-i) = -1.
- If f is a one-to-one complex function, then for any point w in the range of f there is a unique pre-image in the z-plane, which we denote by $f^{-1}(w)$.
- This correspondence between a point w and its pre-image $f^{-1}(w)$ defines the inverse function of a one-to-one complex function.

Inverse Functions

Definition (Inverse Function)

If f is a one-to-one complex function with domain A and range B, then the **inverse function** of f, denoted by f^{-1} , is the function with domain B and range A defined by

$$f^{-1}(z) = w$$
 if $f(w) = z$.

- If a set S is mapped onto a set S' by a one-to-one function f, then f^{-1} maps S' onto S.
- If f has an inverse function, then $f(f^{-1}(z)) = z$ and $f^{-1}(f(z)) = z$. I.e., the two compositions $f \circ f^{-1}$ and $f^{-1} \circ f$ are the identities.
- Example: Show that the complex function f(z) = z + 3i is one-to-one on the entire complex plane and find a formula for its inverse function. $f(z_1) = f(z_2)$ implies $z_1 + 3i = z_2 + 3i$ which implies $z_1 = z_2$. The inverse function of f can often be found algebraically by solving the equation z = f(w) for the symbol w: z = w + 3i implies w = z 3i. Therefore, $f^{-1}(z) = z 3i$.

Functions of z^n , $n \ge 2$, Not One-to-One

- The function $f(z)=z^n, n\geq 2$, is not one-to-one: Consider the points $z_1=re^{i\theta}$ and $z_2=re^{i(\theta+2\pi/n)}$ with $r\neq 0$. Because $n\geq 2$, the points z_1 and z_2 are distinct. Note $f(z_1)=r^ne^{in\theta}$ and $f(z_2)=r^ne^{i(n\theta+2\pi)}=r^ne^{in\theta}e^{i2\pi}=r^ne^{in\theta}$. Therefore, f is not one-to-one.
- In fact, the n distinct points $z_1 = re^{i\theta}$, $z_2 = re^{i(\theta+2\pi/n)}$, $z_3 = re^{i(\theta+4\pi/n)}, \ldots, z_n = re^{i(\theta+2(n-1)\pi/n)}$ are all mapped onto the single point $w = r^n e^{in\theta}$ by $f(z) = z^n$.
- This fact is illustrated for n = 6:

Restricting the Domain

- Recall that even though the real functions $f(x) = x^2$ and $g(x) = \sin x$ are not one-to-one and, thus, appear not to have inverses, yet we still have the inverse functions $f^{-1}(x) = \sqrt{x}$ and $g^{-1}(x) = \arcsin x$.
- The key is to appropriately restrict the domains of $f(x) = x^2$ and $g(x) = \sin x$ to sets on which the functions are one-to-one. Example: Whereas $f(x) = x^2$ defined on $(-\infty, \infty)$ is not one-to-one, the same function defined on $[0, \infty)$ is one-to-one. Similarly, $g(x) = \sin x$ is not one-to-one on $(-\infty, \infty)$, but it is

Similarly, $g(x) = \sin x$ is not one-to-one on $(-\infty, \infty)$, but it is one-to-one on the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

The function $f^{-1}(x) = \sqrt{x}$ is the inverse of $f(x) = x^2$ defined on the interval $[0,\infty)$. Since $\mathsf{Dom}(f) = [0,\infty)$ and $\mathsf{Range}(f) = [0,\infty)$, the domain and range of $f^{-1}(x) = \sqrt{x}$ are both $[0,\infty)$ as well.

Similarly, $g^{-1}(x) = \arcsin x$ is the inverse function of the function $g(x) = \sin x$ defined on $[-\frac{\pi}{2}, \frac{\pi}{2}]$. The domain and range of g^{-1} are [-1,1] and $[-\frac{\pi}{2}, \frac{\pi}{2}]$, respectively.

A Restricted Domain for $f(z) = z^2$

Show that $f(z)=z^2$ is a one-to-one function on the set A defined by $-\frac{\pi}{2}<\arg(z)\leq\frac{\pi}{2}$ We show that f is one-to-one by demonstrating that if z_1 and z_2 are in A and if $f(z_1)=f(z_2)$, then $z_1=z_2$. If $f(z_1)=f(z_2)$, then $z_1^2=z_2^2$, or, equivalently, $z_1^2-z_2^2=0$. By factoring this expression, we obtain $(z_1-z_2)(z_1+z_2)=0$. It follows that either $z_1=z_2$ or $z_1=-z_2$. By definition of the set A, both z_1 and z_2 are nonzero. The complex points z and -z are symmetric about the origin.

Inspection shows that if z_2 is in A, then $-z_2$ is not in A. This implies that $z_1 \neq -z_2$, since z_1 is in A. Therefore, we conclude that $z_1 = z_2$, and this proves that f is a one-to-one function on A.

An Alternative Approach

- The preceding technique does not extend to the function z^n , n > 2.
- We present an alternative approach.
- We prove that $f(z) = z^2$ is one-to-one on A by showing that if $f(z_1) = f(z_2)$ for two complex numbers z_1 and z_2 in A, then $z_1 = z_2$. Suppose that z_1 and z_2 are in A. Then we may write $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$ with $-\frac{\pi}{2} < \theta_1 \le \frac{\pi}{2}$ and $-\frac{\pi}{2} < \theta_2 \le \frac{\pi}{2}$. If $f(z_1) = f(z_2)$, then it follows $r_1^2 e^{i\bar{2}\theta_1} = r_2^2 e^{i\bar{2}\theta_2}$. We conclude that the complex numbers $r_1^2 e^{i2\theta_1}$ and $r_2^2 e^{i2\theta_2}$ have the same modulus and principal argument: $r_1^2 = r_2^2$ and $Arg(r_1^2 e^{i2\theta_1}) = Arg(r_2^2 e^{i2\theta_2})$. Because both r_1 and r_2 are positive, we get $r_1 = r_2$. Moreover, since $-\frac{\pi}{2} < \theta_1 \le \frac{\pi}{2}$ and $-\frac{\pi}{2} < \theta_2 \le \frac{\pi}{2}$, it follows that $-\pi < 2\theta_1 \le \pi$ and $-\pi < 2\theta_2 \le \pi$. This means that $Arg(r_1^2e^{i2\theta_1})=2\theta_1$ and $Arg(r_2^2e^{i2\theta_2})=2\theta_2$. This fact combined with the second equation implies that $2\theta_1 = 2\theta_2$, or $\theta_1 = \theta_2$. Therefore, z_1 and z_2 are equal because they have the same modulus and principal argument.

An Inverse of $f(z) = z^2$

• The squaring function z^2 is one-to-one on the set A defined by $-\frac{\pi}{2} < \arg(z) \le \frac{\pi}{2}$. Thus, this function has a well-defined inverse function f^{-1} . We show this inverse function is the principal square root function $z^{1/2}$.

Let $z = re^{i\theta}$ and $w = \rho e^{i\phi}$, where θ and ϕ are the principal arguments of z and w, respectively. Suppose that $w = f^{-1}(z)$. Since the range of f^{-1} is the domain of f, the principal argument ϕ of wmust satisfy: $-\frac{\pi}{2} < \phi \le \frac{\pi}{2}$. On the other hand, $f(w) = w^2 = z$. Hence, w is one of the two square roots of z, i.e., either $w = \sqrt{r}e^{i\theta/2}$ or $w = \sqrt{r}e^{i(\theta+2\pi)/2}$. Assume that w is the latter, i.e., assume that $w = \sqrt{r}e^{i(\theta+2\pi)/2}$. Because $\theta = \text{Arg}(z)$, we have $-\pi < \theta \le \pi$, and so, $\frac{\pi}{2} < \frac{\theta + 2\pi}{2} \le \frac{3\pi}{2}$. We conclude that the principal argument ϕ of w must satisfy either $-\pi < \phi \le -\frac{\pi}{2}$ or $\frac{\pi}{2} < \phi \le \pi$. However, this cannot be true since $-\frac{\pi}{2} < \phi \le \frac{\pi}{2}$. So $w = \sqrt{r}e^{i\pi/2}$, which is the value of the principal square root function $z^{1/2}$.

Domain and Range of $f^{-1}(z) = z^{1/2}$

• Since $z^{1/2}$ is an inverse function of $f(z) = z^2$ defined on the set $-\frac{\pi}{2} < \arg(z) \le \frac{\pi}{2}$, it follows that the domain and range of $z^{1/2}$ are the range and domain of f, respectively. In particular, Range($z^{1/2}$) = A, that is, the range of $z^{1/2}$ is the set of complex w satisfying $-\frac{\pi}{2} < \arg(w) \le \frac{\pi}{2}$. In order to find $Dom(z^{1/2})$ we need to find the range of f. We saw that $w=z^2$ maps the right half-plane $Re(z) \ge 0$ onto the entire complex plane. The set A is equal to the right half-plane $Re(z) \ge 0$ excluding the set of points on the ray emanating from the origin and containing the point -i. That is, A does not include the point z=0 or the points satisfying $arg(z) = -\frac{\pi}{2}$. However, we have seen that the image of the set $arg(z) = \frac{\pi}{2}$, the positive imaginary axis, is the same as the image of the set $arg(z) = -\frac{\pi}{2}$. Both sets are mapped onto the negative real axis. Since the set $arg(z) = \frac{\pi}{2}$ is contained in A, it follows that the only difference between the image of the set A and the image of the right half-plane $Re(z) \ge 0$ is the image of the point z=0, which is the point w=0. Since A is mapped onto the entire complex plane excluding the point w = 0, the domain of $f^{-1}(z) = z^{1/2}$ is the entire complex plane \mathbb{C} excluding 0.

The Mapping $w = z^{1/2}$

- \bullet As a mapping, z^2 squares the modulus of z and doubles its argument.
- Thus, the mapping $w=z^{1/2}$ takes the square root of the modulus of a point and halves its principal argument, i.e., if $w=z^{1/2}$, then we have $|w|=\sqrt{|z|}$ and $\operatorname{Arg}(w)=\frac{1}{2}\operatorname{Arg}(z)$.
- Example (Image of a Circular Sector under $w=z^{1/2}$): Find the image of the set S defined by $|z| \leq 3$, $\frac{\pi}{2} \leq \arg(z) \leq \frac{3\pi}{4}$, under $w=z^{1/2}$. Let S' denote the image of S under $w=z^{1/2}$.
 - Since $|z| \le 3$ for points in S, we have that $|w| \le \sqrt{3}$ for points w in S'.
 - Since $\frac{\pi}{2} \le \arg(z) \le \frac{3\pi}{4}$ for points in S, $\frac{\pi}{4} \le \arg(w) \le \frac{3\pi}{8}$ for points w in S'.

Principal *n*-th Root Function

- The complex power function $f(z)=z^n, n>2$, is one-to-one on the set defined by $-\frac{\pi}{n}<\arg(z)\leq\frac{\pi}{n}$.
- It can be seen that the image of this set under the mapping $w = z^n$ is the entire complex plane \mathbb{C} excluding w = 0.
- ullet Therefore, there is a well-defined inverse function for f.
- Analogous to the case n = 2, this inverse function of z^n is called the **principal** n-th root function $z^{1/n}$.
- The domain of $z^{1/n}$ is the set of all nonzero complex numbers, and the range of $z^{1/n}$ is the set of w satisfying $-\frac{\pi}{n} < \arg(w) \le \frac{\pi}{n}$.

Definition (Principal *n*-th Root Functions)

For $n \ge 2$, the function $z^{1/n}$ defined by

$$z^{1/n} = \sqrt[n]{|z|} e^{i\operatorname{Arg}(z)/n}$$

is called the **principal** *n*-th root function.

• By setting $z = re^{i\theta}$, with $\theta = \text{Arg}(z)$, we have $z^{1/n} = \sqrt[n]{r}e^{i\theta/n}$.

Values of $z^{1/n}$

- Find the value of the given principal *n*th root function $z^{1/n}$ at the given point z: (a) $z^{1/3}$; z=i (b) $z^{1/5}$; $z=1-\sqrt{3}i$.
- (a) For z = i, |z| = 1 and $Arg(z) = \frac{\pi}{2}$. Thus, we obtain:

$$i^{1/3} = \sqrt[3]{1}e^{i(\pi/2)/3} = e^{i\pi/6} = \frac{\sqrt{3}}{2} + \frac{1}{2}i.$$

(b) For $z=1-\sqrt{3}i$, we have |z|=2 and ${\rm Arg}(z)=-\frac{\pi}{3}.$ Thus, we get $(1-\sqrt{3}i)^{1/5}=\sqrt[5]{2}e^{i(-\pi/3)/5}=\sqrt[5]{2}e^{-i(\pi/15)}.$

Multiple-Valued Functions

- A nonzero complex number z has n distinct n-th roots in the complex plane. Thus, the process of "taking the n-th root" of a complex number z does not define a complex function. We introduced the symbol $z^{1/n}$ to represent the set consisting of the n n-th roots of z.
- Similarly, arg(z) represents an infinite set of values.
- These types of operations on complex numbers are examples of multiple-valued functions.
 - When representing multiple-valued functions with functional notation, we will use uppercase letters such as $F(z)=z^{1/2}$ or $G(z)=\arg(z)$. Lowercase letters such as f and g will be reserved for functions.
- Example: $g(z)=z^{1/3}$ refers to the principal cube root function whereas $G(z)=z^{1/3}$ represents the multiple-valued function that assigns the three cube roots of z to the value of z. Thus, $g(i)=\frac{1}{2}\sqrt{3}+\frac{1}{2}i$ and $G(i)=\{\frac{1}{2}\sqrt{3}+\frac{1}{2}i,-\frac{1}{2}\sqrt{3}+\frac{1}{2}i,-i\}$.

Riemann Surface of $f(z) = z^2$

• $f(z)=z^2$ is not one-to-one. $f(z)=z^2$ is one-to-one on A defined by $|z|\leq 1, -\frac{\pi}{2}<\arg(z)\leq \frac{\pi}{2}.$

- $w=z^2$ is a one-to-one mapping of the set B defined by $|z| \le 1$, $\frac{\pi}{2} < \arg(z) \le \frac{3\pi}{2}$, onto the closed unit disk $|w| \le 1$.
- Since the unit disk $|z| \le 1$ is the union of the sets A and B, the image of the disk $|z| \le 1$ under $w = z^2$ covers the disk $|w| \le 1$ twice (once by A and once by B).
- We visualize this "covering" by considering two image disks for $w = z^2$.

Riemann Surface of $f(z) = z^2$ (Cont'd)

- Let A' denote the image of A under f and B' the image of B under f.
- Imagine the disks A' and B' cut open along the negative real axis:

- We construct a Riemannn surface for $f(z) = z^2$ by stacking the cut disks A' and B' one atop the other in xyz-space and attaching them by gluing together their edges.
 - After attaching in this manner we obtain the **Riemann surface**:
- Although $w=z^2$ is not a one-to-one mapping of the closed unit disk $|z| \le 1$ onto the closed unit disk $|w| \le 1$, it is a one-to-one mapping of the closed unit disk $|z| \le 1$ onto the Riemann surface.

Riemann Surface of $G(z) = \arg(z)$

• Another interesting Riemann surface is one for the multiple valued function $G(z) = \arg(z)$ defined on $0 < |z| \le 1$. We take a copy A_0 of the punctured disk $0 < |z| \le 1$ and cut it open along the negative real axis. Let A_0 represent the points $re^{i\theta}$, $-\pi < \theta \le \pi$.

Take another copy A_1 and let it represent $re^{i\theta}$, $\pi < \theta \leq 3\pi$. Let A_{-1} represent the points $re^{i\theta}$, $-3\pi < \theta \leq -\pi$. We have an infinite set of cut disks ..., A_{-2} , A_{-1} , A_0 , A_1 , A_2 , Place A_n in xyz-space so that $re^{i\theta}$, with $(2n-1)\pi < \theta \leq (2n+1)\pi$, lies at height θ above the point $re^{i\theta}$ in the xy-plane. The collection of all the cut disks in xyz-space forms the Riemann surface for the multiple-valued function G(z).

Complex Functions and Mappings Reciprocal Func

Reciprocal Function

The Reciprocal Function

- Analogous to real functions, we define a **complex rational function** to be a function of the form $f(z) = \frac{p(z)}{q(z)}$ where both p(z) and q(z) are complex polynomial functions.
- The most basic complex rational function is the reciprocal function.
- The function $\frac{1}{z}$, whose domain is the set of all nonzero complex numbers, is called the **reciprocal function**.
- Given $z \neq 0$, if we set $z = re^{i\theta}$, we obtain: $w = \frac{1}{z} = \frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta}$.
 - The modulus of w is the reciprocal of the modulus of z;
 - The argument of w is the negative of the argument of z.
- Therefore, the reciprocal function maps a point in the z-plane with polar coordinates (r, θ) onto a point in the w-plane with polar coordinates $(\frac{1}{r}, -\theta)$.

Inversion in the Unit Circle

- The function $g(z) = \frac{1}{r}e^{i\theta}$, whose domain is the set of all nonzero complex numbers, is called **inversion in the unit circle**.
- We consider separately the images of points on the unit circle, points outside the unit circle, and points inside the unit circle.
 - Consider, first, a point z on the unit circle. Since $z=1\cdot e^{i\theta}$, $g(z)=\frac{1}{1}e^{i\theta}=z$. So each point on the unit circle is mapped onto itself by g.
 - If, on the other hand, z is a nonzero complex number that does not lie on the unit circle, then $z = re^{i\theta}$, with $r \neq 1$.
 - When r>1 (z is outside of the unit circle), we have that $|g(z)|=|\frac{1}{r}e^{i\theta}|=\frac{1}{r}<1$. So, the image under g of a point z outside the unit circle is a point inside the unit circle.
 - Conversely, if r < 1 (z is inside the unit circle), then $|g(z)| = \frac{1}{r} > 1$. Thus, if z is inside the unit circle, then its image under g is outside the unit circle.

Illustration of the Inversion in the Unit Circle

• The mapping $w = \frac{1}{r}e^{i\theta}$ is represented below:

- The arguments of z and g(z) are equal. So, if $z_1 \neq 0$ is a point with modulus r in the z-plane, then $g(z_1)$ is the unique point in the w-plane with modulus $\frac{1}{r}$ lying on a ray emanating from the origin making an angle of $arg(z_1)$ with the positive u-axis.
- The moduli of z and g(z) are inversely proportional: the farther a point z is from 0 in the z-plane, the closer its image g(z) is to 0 in the w-plane, and, the closer z is to 0, the farther g(z) is from 0.

Complex Conjugation

- The second complex mapping that is helpful for describing the reciprocal mapping is a reflection across the real axis.
- Under this mapping the image of the point (x, y) is (x, -y).
- This complex mapping is given by the function $c(z) = \overline{z}$, called the **complex conjugation function**.
- The relationship between z and its image c(z) is shown below:

• If $z = re^{i\theta}$, then $c(z) = \overline{re^{i\theta}} = \overline{re^{i\theta}} = re^{-i\theta}$.

Reciprocal Mapping

- The reciprocal function $f(z) = \frac{1}{z}$ can be written as the composition of inversion in the unit circle and complex conjugation.
- Since $c(z) = re^{-i\theta}$ and $g(z) = \frac{1}{r}e^{i\theta}$, we get

$$c(g(z)) = c(\frac{1}{r}e^{i\theta}) = \frac{1}{r}e^{-i\theta} = \frac{1}{z}.$$

- Thus, as a mapping, the reciprocal function
 - first inverts in the unit circle.
 - then reflects across the real axis.
- In summary: Given z_0 a nonzero point in the complex plane the point $w_0 = f(z_0) = \frac{1}{z_0}$ is obtained by:
 - (i) inverting z_0 in the unit circle, then
 - (ii) reflecting the result across the real axis.

Image of a Semicircle under $w = \frac{1}{z}$

• Find the image of the semicircle |z|=2, $0 \le \arg(z) \le \pi$, under the reciprocal mapping $w=\frac{1}{z}$.

Let C denote the semicircle and let C' denote its image under $w = \frac{1}{z}$. In order to find C', we first invert C in the unit circle, then we reflect the result across the real axis.

- Under inversion in the unit circle, points with modulus 2 have images with modulus $\frac{1}{2}$. Moreover, inversion in the unit circle does not change arguments. The image is the semicircle $|w|=\frac{1}{2}$, $0\leq \arg(w)\leq \pi$.
- Reflecting this set across the real axis negates the argument of a point but does not change its modulus. Hence, the image is the semicircle given by $|w|=\frac{1}{2}$, $-\pi \leq \arg(w) \leq 0$.

Image of a Line under $w = \frac{1}{z}$

Find the image of the vertical line x=1 under the mapping $w=\frac{1}{z}$. The vertical line x=1 consists of z=1+iy, $-\infty < y < \infty$. After replacing z with 1+iy in $w=\frac{1}{z}$ and simplifying, we obtain: $w=\frac{1}{1+iy}=\frac{1}{1+y^2}-\frac{y}{1+y^2}i$. It follows that the image of x=1 under $w=\frac{1}{z}$ consists of all points u+iv satisfying: $u=\frac{1}{1+y^2}, \ v=-\frac{y}{1+y^2}, \ -\infty < y < \infty$. We eliminate y: We have v=-yu. The first equation implies that $u\neq 0$, so we get $y=-\frac{v}{u}$. Thus, we obtain the quadratic equation $u^2-u+v^2=0$.

Complete the square to get $(u-\frac{1}{2})^2+v^2=\frac{1}{4}$, $u\neq 0$. It defines a circle centered at $(\frac{1}{2},0)$ with radius $\frac{1}{2}$. However, because $u\neq 0$, the point (0,0) is not in the image. Using the complex variable w=u+iv, we can describe this image by $|w-\frac{1}{2}|=\frac{1}{2}$, $w\neq 0$.

Reverting to the Extended Complex Number System

- The image of x=1 is not the entire circle $|w-\frac{1}{2}|=\frac{1}{2}$ because points on the line x=1 with extremely large modulus map onto points on the circle $|w-\frac{1}{2}|=\frac{1}{2}$ that are extremely close to 0, but there is no point on the line x=1 that actually maps onto 0.
- To obtain the entire circle as the image, we must consider the reciprocal function defined on the extended complex number system.
- The extended complex number system consists of all the points in the complex plane adjoined with the ideal point ∞ .
- In the context of mappings this set of points is commonly referred to as the extended complex plane.
- The important property of the extended complex plane is the correspondence between points on the extended complex plane and the points on the complex plane.
 - In particular, points in the extended complex plane that are near the ideal point ∞ correspond to points with extremely large modulus in the complex plane.

Extending the Reciprocal Function

- We use this correspondence to extend the reciprocal function to a function whose domain and range are the extended complex plane.
- Since $w = \frac{1}{r}e^{-i\theta}$ already defines the reciprocal function for all points $z \neq 0$ or ∞ in the extended complex plane, we extend this function by specifying the images of 0 and ∞ .
 - If $z=re^{i\theta}$ is a point close to 0, then r is small, whence w is a point whose modulus $\frac{1}{r}$ is large. In the extended complex plane, if z is a point that is near 0, then $w=\frac{1}{z}$ is a point that is near the ideal point ∞ . So we define the reciprocal function $f(z)=\frac{1}{z}$ on the extended complex plane so that $f(0)=\infty$.
 - If z is a point that is near ∞ , in the extended complex plane, then f(z) is a point that is near 0. Thus, we define the reciprocal function on the extended complex plane so that $f(\infty) = 0$.

The Reciprocal Function on the Extended Complex Plane

Definition (The Reciprocal Function on the Extended Complex Plane)

The **reciprocal function on the extended complex plane** is the function defined by

$$f(z) = \begin{cases} \frac{1}{z}, & \text{if } z \neq 0 \text{ or } \infty \\ \infty, & \text{if } z = 0 \\ 0, & \text{if } z = \infty \end{cases}$$

- We use the notation $\frac{1}{z}$ to represent both the reciprocal function and the reciprocal function on the extended complex plane.
- Whenever the ideal point ∞ is mentioned, it will be assumed that $\frac{1}{z}$ represents the reciprocal function defined on the extended complex plane.

Image of a Line under $w = \frac{1}{z}$

- Find the image of the vertical line x = 1 under the reciprocal function on the extended complex plane.
 - Since the line x=1 is an unbounded set in the complex plane, the ideal point ∞ is on the line in the extended complex plane.
 - We already saw that the image of the points $z \neq \infty$ on the line x = 1 is the circle $|w \frac{1}{2}| = \frac{1}{2}$ excluding the point w = 0.
 - We have that $f(\infty) = 0$, and so w = 0 is the image of the ideal point. This "fills in" the missing point in the circle $|w \frac{1}{2}| = \frac{1}{2}$.

Therefore, the vertical line x=1 is mapped onto the entire circle $|w-\frac{1}{2}|=\frac{1}{2}$ by the reciprocal mapping on the extended complex plane.

Mapping Lines to Circles with $w = \frac{1}{z}$

Mapping Lines to Circles with $w = \frac{1}{z_1}$

The reciprocal function on the extended complex plane maps:

- (i) The vertical line x = k with $k \neq 0$ onto the circle $\left| w \frac{1}{2k} \right| = \left| \frac{1}{2k} \right|$;
- (ii) The horizontal line y=k with $k\neq 0$ onto the circle $\left|w+\frac{1}{2k}i\right|=\left|\frac{1}{2k}\right|$.

Mapping of a Semi-infinite Strip

• Find the image of the semi-infinite horizontal strip defined by $1 \le y \le 2$, $x \ge 0$, under $w = \frac{1}{2}$.

Let S denote the semi-infinite horizontal strip defined by $1 \le y \le 2$, $x \ge 0$. The boundary of S consists of the line segment x = 0, $1 \le y \le 2$, and the two half-lines y = 1 and y = 2, $0 \le x < \infty$. We first determine the images of these boundary curves.

• The line segment x=0, $1 \le y \le 2$, can also be described as the set $1 \le |z| \le 2$, $\arg(z) = \frac{\pi}{2}$. Since $w = \frac{1}{z}$, $\frac{1}{2} \le |w| \le 1$. In addition, we have that $\arg(w) = \arg(1/z) = -\arg(z)$, and so, $\arg(w) = -\frac{\pi}{2}$. Thus, the image of x=0, $1 \le y \le 2$, is the line segment on the v-axis from $-\frac{1}{2}i$ to -i.

Mapping of a Semi-infinite Strip (Cont'd)

- Now consider $y=1,\ 0\leq x<\infty$. The image is an arc in $|w+\frac{1}{2}i|=\frac{1}{2}$. The arguments satisfy $0<\arg(z)\leq\frac{\pi}{2}$, so $-\frac{\pi}{2}\leq\arg(w)<0$. Moreover, ∞ is on the half-line, and so w=0 is in its image. Thus, the image of $y=1,\ 0\leq x<\infty$, is $|w+\frac{1}{2}i|=\frac{1}{2},\ -\frac{\pi}{2}\leq\arg(w)\leq0$.
- Similarly, the image of y=2, $0 \le x < \infty$, is the circular arc $|w+\frac{1}{4}i|=\frac{1}{4}, -\frac{\pi}{2} \le \arg(w) \le 0.$

Every half-line y=k, $1 \le k \le 2$, between the boundary half-lines maps onto $|w+\frac{1}{2k}i|=\frac{1}{2k}$, $-\frac{\pi}{2} \le \arg(w) \le 0$, between these circular arcs:

The Inverse Mapping of $\frac{1}{z}$

- The reciprocal function $f(z) = \frac{1}{z}$ is one-to-one.
- Thus, f has a well-defined inverse function f^{-1} .
- Solving the equation z = f(w) for w, we get $f^{-1}(z) = \frac{1}{z}$.
- This observation extends our understanding of the complex mapping $w = \frac{1}{z}$.
 - We have seen that the image of the line x=1 under $\frac{1}{z}$ is the circle $|w-\frac{1}{2}|=\frac{1}{2}$. Since $f^{-1}(z)=\frac{1}{z}=f(z)$, the image of the circle $|z-\frac{1}{2}|=\frac{1}{2}$ under $\frac{1}{z}$ is the line u=1.
 - Similarly, we see that the circles $|w \frac{1}{2k}| = |\frac{1}{2k}|$ and $|w + \frac{1}{2k}i| = |\frac{1}{2k}|$ are mapped onto the lines x = k and y = k, respectively.