Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Комплексная защита информации»

ОТЧЕТ

По дисциплине «Электродинамика и распространение радиоволн»

Практическая работа №2

Выполнили студенты гр. БИТ-181: Белый В.Е., Шабанов В.С.

Проверил: доц., канд. физ-мат.н. Михеев В.В. **Задание 2.** Плоская гармоническая ЭМВ с частотой f, располагается вдоль оси z в проводящей среде с параметрами $\varepsilon=1,\,\mu,\,\sigma.$ Амплитуда вектора E в начале координат равна E_m .

Найти $\tan \delta$, коэффициент затухания и фазы $\lambda_{\rm B}, v_{\rm \phi}, v_{\rm rp}$, волновое сопротивление среды, глубину проникновения ЭМВ в вещество. Определить амплитуду плотности тока проводимости и смещения, а также плотность потока мощности волны в начале координат и на расстоянии z от начала координат. Рассчитать, на каком расстоянии от начала координат амплитуда поля уменьшится в m раз.

Сравнить полученные результаты с заданием 1, сделать выводы.

Вариант	f , М Γ ц	μ	σ , CM/M	E_m , B/M	Z, MM	m
45	1,2	8,0	$1 \cdot 10^6$	$1 \cdot 10^{-1}$	2,4	5000

Таблица 1: Исходные данные.

$\varepsilon_0, \Phi/_{\mathrm{M}}$	μ_0 , Γ_H/M	Z_0 , Om
$\frac{10^{-9}}{36\pi}$	$4\pi \cdot 10^{-7}$	120π

Таблица 2: Постоянные величины.

Решение:

Найдем тангенс потерь, для того чтобы определить классификацию среды.

$$tg\delta = \frac{\sigma}{2 \cdot \pi \cdot \varepsilon \cdot f \cdot \varepsilon_0};$$
$$tg\delta = 1, 5 \cdot 10^{10};$$

Поскольку, значение $tg\delta$ находится в интервале от 10 до ∞ , можно классифицировать среду как — проводник.

$$\omega = 2\pi \cdot f = 2\pi \cdot 1, 2 \cdot 10^6 = 7,54 \cdot 10^6$$
 рад/с;
$$\alpha = \beta = \sqrt{\pi f \sigma \mu_0 \mu} = 6,156 \cdot 10^3 \text{ 1/м};$$

Находим характеристики ЭМВ:

• длину волны:

$$\lambda = \frac{2\pi}{\beta} = 1,02 \cdot 10^{-3} \text{ m};$$

• фазовую скорость, групповую скорость:

$$v_{\Phi} = \frac{\omega}{\beta} = 1,225 \cdot 10^3 \text{ m/c}, \ v_{rp} = 0 \text{ m/c};$$

• волновое сопротивление проводника:

$$Z_{\rm B} = \sqrt{\frac{\omega\mu_0\mu}{\sigma}} \exp\left(i\frac{\pi}{4}\right) = 0.00615 + 0.00615i$$
 Om;

• глубину проникновения:

$$\Delta^{\circ} = \frac{1}{\alpha} = 1,624 \cdot 10^{-4} \text{ m};$$

Рассчитаем амплитуду плотности тока проводимости и смещения:

$$j_{\text{пр}} = \sigma E_m = 1 \cdot 10^5 \text{ A/m}^2,$$

 $j_{\text{см}} = \frac{j_{\text{пр}}}{t \, a \, \delta} = 6,667 \cdot 10^{-6} \text{ A/m}^2;$

Рассчитаем плотность потока мощности ЭМВ:

$$\Pi_0 = \frac{E_m^2}{2 \cdot Z_B} = 0.40650 - 0.40650i \text{ BT/M}^2,$$

$$\Pi(z) = \Pi_0 \cdot e^{-2 \cdot \alpha z} = 0 \text{ BT/M}^2;$$

Рассчитаем на каком расстоянии от начала координат амплитуда поля уменьшается в 5000 раз:

$$A = e^{\alpha z} \to m = e^{\alpha z} \to z = \frac{\ln m}{\alpha} = 1,384 \cdot 10^{-3} \text{ m};$$

Вывод: Сравнительный анализ полупроводящей среды и проводника:

Параметры	Полупроводящая среда	Проводник
$tg\delta$	0,27	$1,5 \cdot 10^{10}$
α , 1/M	0,193	$6,156\cdot 10^3$
β, 1/M	1,634	$6,156\cdot 10^3$
λ, м	3,845	$1,02\cdot 10^{-3}$
υ _φ , м/с	$3,845 \cdot 10^7$	$1,225 \cdot 10^3$
$v_{\rm rp}$, m/c	$3,845 \cdot 10^7$	0
$Z_{\rm B}$, Om	47,70720-5,29937i	0,00615+0,00615i
Δ °, Μ	5,181	$1,624 \cdot 10^{-4}$
$j_{\rm np}, A/{\rm M}^2$	$18 \cdot 10^{-5}$	$1 \cdot 10^5$
$j_{\rm cm}, A/{\rm m}^2$	$6,667 \cdot 10^{-4}$	$6,667 \cdot 10^{-6}$
$\Pi(z)$, BT/M ²	$6,116\cdot 10^{-9}$	0
Z, M	22,013	$1,384 \cdot 10^{-3}$

Таблица 3: Сравнение параметров.

Из таблицы 3 можно увидеть, что ...