Домашняя работа к занятию 2

1.1
$$\begin{cases} y' = 2\frac{y}{x} + 1 \\ y(1) = 1 \end{cases}$$

- 1) Найдите формулу общего решения (общего интеграла) уравнения.
- 2) Решите поставленную задачу Коши и укажите максимальный интервал существования полученного решения.
- 3) Найдите решения вида y=kx. Нарисуйте интегральные линии уравнения и выясните, являются ли найденные решения вида y=kx особыми.
 - **1.2** Найдите общее решение уравнения $y' = \frac{y^2 x}{2xy + 2y^3}$.
 - **1.3** Найдите общее решение уравнения (x + 2y 5) dy = (2y 2) dx.
 - **2.1** $xy dx = (x^2 + y^2) dy$
 - 1) Найдите формулу общего решения (общего интеграла) уравнения.
- 2) Найдите решения вида y = kx. Нарисуйте интегральные линии уравнения и выясните, являются ли найденные решения особыми.
- 3) Нарисуйте интегральную кривую, проходящую через точку (2;1). Покажите, что максимальный интервал существования соответствующего непродолжаемого решения вся прямая $(-\infty; +\infty)$.
 - **2.2** Найдите общее решение уравнения $3x^3y^2y' = y^6 + x^4$.
 - **2.3** Найдите общее решение уравнения 2ydx + x(1-xy)dy = 0.
- **3.1** Докажите, что если одна из интегральных линий однородного уравнения замкнута и не проходит через точку (0;0), то все интегральные линии также замкнуты и не проходят через точку (0;0).
- **3.2** Получите дифференциальное уравнение семейства кривых, ортогональных кривым семейства $x^2 + y^2 = Cx$. Решите это уравнение.

Ответы и указания

1.1 1)
$$y = Cx^2 - x$$
 2) $y = 2x^2 - x$, $x \in (0; +\infty)$

- 3) решение y = -x получается из формулы общего решения при C = 0 и не является особым.
- **1.2** Замечание: замена $z=y^2$ приводит уравнение к однородному. Ответ: $2 \arctan \frac{y^2}{x} + \ln(x^2 + y^4) = C$
 - **1.3** $(2y+1-x)^2 = C(y-1)$ и $y \equiv 1$.

3амечание: Решение $y \equiv 1$ не описывается формулой общего решения, однако не является особым.

- **2.1** 1) $2 \ln Cy = \frac{x^2}{y^2}$ или $x^2 = y^2 \ln(C^2 y^2)$; 2) решение $y \equiv 0$ не описывается формулой общего решения, но не является особым;
- 3) подставляя начальные данные в формулу общего интеграла, получаем соотношение $x^2 = y^2(4 + \ln y^2)$, которое определяет решение в неявном виде. Заметим, что полученное соотношение четно относительно x и относительно y, поэтому описываемое им множество точек симметрично относительно оси Ox и оси Oy. Изобразите данное множество точек, используя график функции $u = t(4 + \ln t)$ и учитывая, что $u = x^2 \geqslant 0$, $t = y^2 \geqslant 0$.
- **2.2** Замечание: замена $z=y^3,\,t=x^2$ приводит уравнение к однородному.

Ответ:
$$x^2 = (x^2 - y^3) \ln Cx$$
 и $x^2 = y^3$.

2.3 Замечание: замена $z=y^{-1}$ приводит уравнение к однородному. Возможна потеря решения $y\equiv 0$.

Other:
$$Cx^2y = (1 + xy)^2; y \equiv 0$$

- **3.1** Указание: общее решение однородного уравнения имеет вид $\ln Cx = F(\frac{y}{x})$. Перейдите к полярным координатам.
 - **3.2** Otbet: $2xydx = (x^2 y^2)dy$; $x^2 + y^2 = Cy$.