

lanagement (BMS)

000

1,00,00 00

3 5

2.800 31,800

28,80

Cash Inflows (f) 1,81,984.40 12,197.80 1,94,182,00 thine is posite

S, Oct. 2011 The investment

audgeting

Capital Business at the end of the year: Cash inflows at the end of the year: Year 1 Year 2 Year 3	7,00,000 10,00,000 9,00,000 8,00,000	8,00,000 8,00,000 8,00,000 8,00,000
Year 4	4,00,000	6,00,000
Just 5	-	2,00,000

Yabro Find which project the company should select on basis of: (a) Pay back Period Method (b) Net

ear 2	Year 3	Vaar A	V	Delicated the restoration review
out w	10010	Year 4	Year 5	Year 6
7.797	0.712	0.636	-	0.507
=	.797			, 00.0

Solution:

Type: Annual Cash Inflows are Not constant.

ALCOHOLD STATE	Pro	ject A	Pro	ject B
Year	Cash Inflows	Cumulative Cash Inflows	Cash Inflows	Cumulative Cash Inflows
-	7	7	8	8
2	10	17	8	16
2	9	26	8	24
4	8	34	8	32
5	4	38	6	38
6	-	-	2	40
Doube	ack Period = 3 + (30) - 26	Payback Period = 3	4 (30 - 24)

6		-	40	
Payback Period	$=3+\left(\frac{30-26}{8}\right)$	Payback Period = 3	$+\left(\frac{30-24}{8}\right)$	
	$=3+\frac{4}{8}$	= 3	+ 6/8	
	= 3 + 0.5	= 3	+ 0.75	
	= 3.5 years	= 3	.75 years	

Suggestion:

On the basis of Payback Period Criterion; Project A should be selected as the Payback is

(h) Net Present Value Meth

Year	PVF @ 12%	Projec	t A	Proj	ct B	
		CI	PV of CI	CI	PV of CI	
1	0.893	7,00,000	6,25,100	8,00,000	7,14,400	
2	0.797	10,00,000	7,97,000	8,00,000	6,37,600	
3	0.712	9,00,000	6,40,800	8,00,000	5,69,600	
4	0.636	8,00,000	5,08,800	8,00,000	5,08,800	
5	0.567	4,00,000	2,26,800	6,00,000	3,40,200	
6	0.507	4,00,000	-	2,00,000	1,01,400	
	0.007	Cases BV at CI	27,98,500		28,72,000	
	1.	Gross PV of CI	30,00,000		30,00,000	
	L	ess: Cost of Asset NPV	(2,01,500)		(1,28,000)	

Based on NPV criteria both the projects are to be rejected as the NPV is negative.

Illustration 51: (M.U., BMS, April 2013)

Asha Ltd. is considering two mutually exclusive machines. Both require an initial outlay of 1,00,000 each and have a life of 5 years. The company's required rate of return is 10% and tax is

Table Valu

Hachine -Year

Summe

(a) Pay (b) Pay (c) Prof

(d) Net

50%. The projects will be depreciated on a straight line basis. The net cash flows before

Year	Machine A	Machine B
1	40,000	6.0
2	40,000	60,000
3	40,000	30,000
4	40,000	20,000
5	40,000	50,000 50,000

- Pay back period.
- (b) Pay back profitability.
- Profitability Index. (c)
- Net Present Value. (d)

Solution:

Machine - A

Year	Net Cash Flows Before Taxes	Income Tax @ 50%	NPAT	Donnact
1 2 3 4 5	40,000 40,000 40,000 40,000 40,000	20,000 20,000 20,000 20,000 20,000	20,000 20,000 20,000 20,000 20,000	Depreciation Cash Inflows 20,000 40,000 20,000 40,000 20,000 40,000 20,000 40,000 20,000 40,000 20,000 40,000

				1.11	
Year	Net Cash Flows Before Taxes	Income Tax @ 50%	NPAT	Depreciation	
1 2	60,000 30,000	30,000 15,000	30,000 15,000	20,000	Cash Inflows 50,000
3 4	20,000 50,000	10,000 25,000	10,000	20,000	35,000 30,000
5	50,000	25,000	25,000	20,000	45,000

Depreciation (SLM) p.a.
$$= \frac{OC - SV}{EL}$$
$$= \frac{1,00,000}{5}$$
$$= Rs. 20,000$$

(a) Pay Back Period:

Machine A:

Type: Annual Cash Inflows are constant

Pay back period	Cost of the Asset
ay back period	Constant Annual Cash Inflows
	1,00,000
	40,000
	= 2.5 years

Machine B:

Type: Annual Cash Inflows are

Year	Cash Inflows	Cumulative Cash Inflows
1	50,000	50,000
2	35,000	85,000
3	30,000	1,15,000
4	45,000	1,60,000
5	45,000	2,05,000

t (BMS) Capital Budgeting

Pay back period = $2 + \left(\frac{1,00,000 - 85,000}{30,000}\right)$ $=2+\frac{15,000}{30,000}$ = 2 + 0.5= 2.5 years

a) Pay back Profitability:

Machine - A:

Pay back Profitability = Constant Annual Cash Inflows × (Life of Pay back)

 $=40,000\times(5-2.5)$ $=40,000 \times 2.5$ = Rs. 1,00,000

Machine - B:

Pay back Profitability = Total Cash Inflows - Cost of Asset

= 2,05,000 - 1,00,000= Rs. 1,05,000

(c) Profitability Index (PI):

Profitability Index = Gross PV of Cash Inflows
PV of Cash Outflows

Machine - A	Machine - B
1,55,570	1,51,640
= 1,00,000	= 1,00,000
= 1.55:1	= 1.51:1

(d) Net Present Value:

Year	PVAF @ 10%	Annual Cl	Gross PV of C
1 to 5	3.791*	40,000	1,51,640
	Less: Cost of Asset	1,00,000	
	NPV		51,640

Table Value of PVAF @ 10% for 5th Year

Machine - B:

Year	PVF @ 10%	CI	PVCI
1	0.909	50,000	45,450
2	0.826	35,000	28,910
3	0.751	30,000	22,530
4	0.683	45,000	30,735
5	0.621	45,000	27,945
	Gross PV of CI		1,55,570
	Less: Cost of Asset		1,00,000
	NPV		55,570

Method	Machine A	Machine B
(a) Pay back period (years) (b) Pay back profitability (Rs.) (c) Profitability Index (d) Net Present Value (Rs.)	2.5 1,00,000 1.55:1 51,640	2.5 1,05,000 1.51:1 55,570

greater in this case.

Illustration 53:

(MU, BMS, April 2014)

A project requires an initial cash outflow of Rs. 10,00,000. It generates a cash inflow as follows:

Year end	1	2	3	4	5
Cash inflow (Rs. lakhs)	6	3	2	5	5

Its cost of capital is 10%. Determine (a) payback period (b) discounted payback period (c) post payback profitability (d) Net Present value (e) Profitability index.

PV Factor @10% is as follows:

Year	Year 1		3	4	5
	0.909	0.826	0.751	0.683	0.621

Solution:

Type: Cash Inflows are not constant.

(a) Payback period

(Rs. in Lakhs)

Year	Cash Inflows	Cumulative Cash Inflows
1	6	6
2	3	9
3	2	11
4	5	16
5	5	21

Pay Back Period =
$$2 + \left(\frac{10 - 9}{2}\right)$$

$$=2+\frac{1}{2}$$

$$= 2 + 0.5$$

Pay Back Period = 2.5 years

(b) Discounted Pay Back Period =
$$3 + \left(\frac{10,00,000 - 9,43,400}{3,41,500}\right)$$

$$=3+\frac{56,600}{3,41,500}$$

$$= 3 + 0.166$$

Discounted PB = 3.166 years (approx)

Post Payback Profitability = Total Cash Inflows - Initial Cash Outflows

= 21 lakhs - 10 lakhs

= Rs. 11 lakhs

Year	PVF @ 10%	Cash inflows	PV of Cash Inflows	Cumulative PV of Cash inflows
1	0.909	6,00,000	5,45,400	5,45,400
2	0.826	3,00,000	2,47,800	7,93,200
3	0.751	2,00,000	1,50,200	9,43,400
4	0.683	5,00,000	3,41,500	12,84,900
5	0.621	5,00,000	3,10,500	15,95,400
PV Cash Inf	lows		15,95,400	
Initial Cash Outflows			10,00,000	
et Present Va			5,95,400	

(8)

Profitability Index = $\frac{\text{Gross PV of Cl}}{\text{PV of Cash Outflows}}$

 $=\frac{15,95,400}{10,00,000}$

PI = 1.595

PI = 1.6 (approx)

Illustration 15:

Speedage Company Ltd. is considering a project which costs Rs. 5,00,000. The estimated salvage value is zero. Tax rate is 55%. The company uses straight line depreciation and the posed project has cash inflows before depreciation and tax (CFBDT) as follows:

Year end	Cash Inflows (Rs.)
1	1,50,000
2	2,50,000
3	2,50,000
4	2,00,000
5	1,50,000

If the cost of capital is 12%, would you recommend the acceptance of the project under Internal Rate of Return Method?

Solution:

Year	CFBDT (Rs.)	Dep. (Rs.)	Net Earnings (Rs.)	Tax @ 55% (Rs.)	Net Earnings – Tax = EAT (Rs.)	CFAT = EAT + Dep (Rs.)
1 2 3 4 5	1,50,000 2,50,000 2,50,000 2,00,000 1,50,000	1,00,000 1,00,000 1,00,000 1,00,000 1,00,000	50,000 1,50,000 1,50,000 1,00,000 50,000	27,500 82,500 82,500 55,000 27,500	22,500 67,500 67,500 45,000 22,500	1,22,500 1,67,500 1,67,500 1,45,000 1,22,500
					Total CEAT	7,25,00

Fake Payback Period

$$=\frac{5,00,000}{\left(\frac{7,25,000}{5 \text{ yrs.}}\right)}=3.448$$

As per Annuity Table the PV Factors closest to 3.448 against 5 years are

3.605 at 14% 3.433

CPAT PV Factor @ 12%	PV of CFAT at 12% (Rs.)	PV Factor @ 14%	PV of CFAT at 14% (Rs.)
Yesr (Rs.) 0.893	1.09.392.50	0.877	1,07,432.50
1,22,500 0.797	1,33,497.50	0.769	1,28,807.50
1 -7 500	1,19,260.00	0.675	1,13,062.50
2	92,220.00	0.592	85,840.00
3 1 45 000	69,457.50	0.519	63,577.50
4 1,22,500 0.567 Total PV of CFAT	5,23,827.50		4,98,720.00

$$\frac{\text{Total PV of CFAT D.} - \text{PV of cash outlays}}{\text{IRR}} = D_1 + \frac{\text{PV of CFAT D.} - \text{PV of CFAT D.}}{\text{PV of CFAT D.} - \text{PV of CFAT D.}} \times (D_2 - D_1)$$

$$= 12\% + \frac{5,23,827.50 - 5,00,000}{5,23,827.50 - 4,98,720} \times (14\% - 12\%)$$

$$= 12\% + \frac{23,827.50}{25,107.50} \times 2\%$$

Suggestion: Since the IRR is higher than the cost of capital, the project is suggested to be accepted.

Illustration 16:

Chingari Ltd. is currently under examination of a project which yield the following returns over a

ne sainte ation and is

project use

period of time:	Gross Yield (Rs.)
Year end	
1	8,000
	8,000
2	9,000
3	9,000
4	7,500
0	- as ass I the machine is to he

The cost of the machinery to be installed works out to Rs. 20,000 and the machine is to be depreciated at 20% on Written Down Value (WDV) basis. Income Tax Rate is 50%. If the average cost of raising capital is 18%, would you recommend accepting the project under IRR Method.

Solution:

Assuming that the scrap value will be zero at the end of 5th year, therefore the entire remaining

depreciable value of the asset in the 5th year will be charged as depreciation.

Year	CFBDT (Rs.)	Dep. @ 20% on WDV (Rs.)	Earnings After Dep. (Rs.)	Tax @ 50% (Rs.)	EAT (Rs.)	CFAT (Rs.)
1	2	3	2-3=4	5	4-5=6	2-5=7
1	8,000	4,000	4,000	2,000	2,000	6,000
2	8,000	3,200	4,800	2,400	2,400	5,600 5,780
3	9,000	2,560	6,440	3,220	3,220	5,780
4	9,000	2,048	6,952	3,476	3,476	7,500
5	7,500	8,192	(692)	-	(692)	30,404
TOTAL	41,500	20,000	21,500	11,096	10,404	30,404

Fake Payback Period

Investment Outlays = Average Annual Cash Inflows

$$=\frac{20,000}{\left(\frac{30,404}{5}\right)}$$

60,000

9,00,000

$$=\frac{20,000}{6,080.80}=3.289$$

Annuity Table the PV Factors closest to 3.289 across the line of 5th year are

PVF	Discount R	ate
3.352	16%	
3.274		D

	3.274	T 0 4EOL	PV of CFAT @ 15%	PVF @ 16%	DV
Year	CFAT	PVF @ 15%	(Rs.)		PV of CFAT @
	(Rs.) 5,220.00	5,220.00	0.862	1718.	
1	6,000	0.870	4,233.60	0.743	5,172.00
2	5,600	0.756	3,803.24	0.641	4,180,80
3	5,780	0.658	3,159.73	0.552	3,704.98
4	5,524	0.572	3,727.50	0.476	3,049.25
5	7,500	0.437	20,144.00		19,857.0
	TOTAL		1/01		10,000

IRR = D₁ +
$$\frac{PV CFAT D_1 - PV OI}{PV CFAT D_2} \times (D_2 - D_1)$$

= 15% + $\frac{20,144 - 20,000}{20,144 - 19,657} \times (16\% - 15\%)$
= 15% + $\frac{144}{487} \times 1\%$

= 15.30%

Suggestion: Since the IRR is lower than the average cost of raising capital therefore the project should be rejected.

Illustration 17:

Calculate the IRR for the following projects and decide which is the most profitable project.

Cash Inflows (CFAT) Project Z Project Y Project X Rs. Rs. 7,20,000 Initial Cost 6,60,000 6,00,000 End of Year 1,20,000 30,000 3,60,000 1,80,000 1,20,000 2,40,000 1,20,000 1,80,000 3.00,000 2,40,000 1,20,000 3,00,000 1,80,000

1,20,000

9,00,000

Solution:

TOTAL

Project X Fake Payback Period Initial Outlay Average Annual Cash Inflows 6,00,000 8,10,000 = 4.444

(60,000)

8,10,000

As per Annuity Table across the line of 6th year: PVF

Discount Rate 4.623 8% 4.355 10%

				- 2	-	"
	-	-	×	ŧ١	n	ĸ
m.1	и	ø	۳	50	**	0
яu	и	ø				

CFAT CFAT	PVF @ 8%	PV CFAT @ 8% (Rs.)	PVF @ 10%	PV CFAT @ 10% (Rs.)
Yes (Rs.)	0.926	27,780	0.909	27,270
30,000	0.857	1,02,840	0.826	99,120
1,20,000	0.794	1,42,920	0.751	1,35,180
1,80,000	0.735	1,76,400	0.683	1,63,920
2,40,000 3,00,000	0.681	2,04,300	0.621	1,86,300
5 (60,000)	0.630	(37,800)	0.564	(33,840)
6 Total CFAT		6,16,440		5,77,950

$$|RR (Project X)| = 8\% + \frac{6,16,440 - 6,00,000}{6,16,440 - 5,77,950} \times (10\% - 8\%)$$

$$= 8\% + \frac{16,440}{38,490} \times 2\%$$

$$= 8.85\%$$

Project Y

Fake Payback Period

$$=\frac{\frac{6,60,000}{\left(\frac{9,00,000}{6}\right)}=4.4$$

As per Annuity Table across the line of 6th year;

PVF Discount Rate 4.623 8% 4.355 10%

NPV at both 8% and 10% will be positive.

Since IRR will be between a negative and a positive NPV; therefore using 12% and 14%

Year	CFAT (Rs.)	PVF @ 12%	PV CFAT @ 12% (Rs.)	PVF @ 14%	PV CFAT @ 14% (Rs.)
1 2 3 4 5 6	3,60,000 2,40,000 - 1,80,000 1,20,000	0.893 0.797 0.712 0.636 0.567 0.507	3,21,480 1,91,280 - - 1,02,060 60,840	0.877 0.769 0.675 0.592 0.519 0.456	3,15,720 1,84,560 - 93,420 54,720
	Total CFAT	0.507	6,75,660		6,48,420

Total CFAT
$$6,75,660 - 6,60,000$$

$$= 12\% + \frac{6,75,660 - 6,60,000}{6,75,660 - 6,48,420} \times (14\% - 12\%)$$

$$= 12\% + \frac{15,660}{27,240} \times 2\%$$

IRR (Project Y) $= 13.14\%$ (approximately)

Project Z

Initial Outlay = Average Annual Cash Inflows Fake Payback Period

As per Annuity Table across the line of 6th year;

Discount Rate
6%
8%

Year CFAT (Rs.)	PVF @ 6%	PV CFAT @ 6% (Rs.)	PVF @ 8%	PV CFAT
1 1,20,000 2 1,80,000 3 1,20,000 4 3,00,000 5 1,20,000 6 60,000 Total CFAT	0.943 0.890 0.840 0.792 0.747 0.705	1,13,160 1,60,200 1,00,800 2,37,600 89,640 42,300 7,43,700	0.926 0.857 0.794 0.735 0.681 0.630	(Rs.) 1,11,12 1,54,28 95,28 2,20,50 81,77 37,80

IRR (Project Z) =
$$6\% + \frac{7,43,700 - 7,20,000}{7,43,700 - 7,00,680} \times (8\% - 6\%)$$

= $6\% + \frac{23,700}{43,020} \times 2\%$
= $\boxed{7.10\%}$

Summary:	Project	IRR
	X	8.85%
	Y	13.14%
	Z	7.10%

Suggestion: Since the IRR of Project Y is higher than Project X and Project Z, hence Project Y is the most profitable project.

Illustration 18:

A company is considering the two mutually exclusive projects. The finance director considers that the project with higher NPV should be chosen; whereas the Managing Director thinks that one with higher rate of return should be considered. Both the projects have got an useful life of 5 years and the cost of capital is 10%. The initial outlay is Rs. 2 lakhs.

The future cash inflow from Project X and Y are as under:

Year	Project X (Rs.)	Project Y (Rs.)	PV Factor @ 10%	PV Factor @ 20%
1	35,000	1,18,000	0.91	0.83
2	80,000	60,000	0.83	0.69
3	90,000	40,000	0.75	0.58
4	75,000	14,000	0.68	0.48
5	20,000	13,000	0.00	0.40

You are required to evaluate the projects on PB, ARR, NPV, PI and IRR and explain the inconsistency, if any, in the ranking of the projects.

Solution:

(a) Pay Back Period Method:

Year C		Project X		Project Y
	Cash Inflows (Rs.)	Cumulative Cash Inflows (Rs.)	Cash Inflows	Cumulative Cash Inflor
1 2 3 4 5	35,000 80,000 90,000 75,000 20,000	35,000 1,15,000 2,05,000 2,80,000 3,00,000	(Rs.) 1,18,000 60,000 40,000 14,000 13,000	1,18,000 1,78,000 2,18,000 2,32,000 2,45,000

Pay Back Period = 2 years + (2,00,000 - 1,15,000)

2 years and 11.33 months or 2 years, 11 months and 10 days $= 2 \text{ years} + \left(\frac{2,00,000 - 1,78,000}{40,000}\right)$

= 2.55 years or

= 2 years and 6.6 months or

= 2 years, 6 months and 18 days

Accept: Project Y

ARR:		Project X		Project Y			
Year	Cash Inflows (Rs.)	Depreciation (Rs.)	Profit After Tax (Rs.)	Cash Inflows (Rs.)	Depreciation (Rs.)	Profit After Tax (Rs.)	
1	2	3	2-3=4	5	6	5-6=7	
+	35,000	40,000	(5,000)	1,18,000	40,000	78,000	
0	80,000	40,000	40,000	60,000	40,000	20,000	
9	90,000	40,000	50,000	40,000	40,000	Nil	
4	75,000	40,000	35,000	14,000	40,000	(26,000)	
5	20,000	40,000	(20,000)	13,000	40,000	(27,000)	
			1,00,000			45,000	

Assumption: Depreciation has been charged by Straight Line Method (SLM).

ARR = Average Annual Profit After Tax
Original Investment

(Based on Original Investment)

Project X	Project Y
1,00,000	45,000
$=\frac{5}{2.00,000} \times 100 = \boxed{10\%}$	$=\frac{5}{2.00.000}\times100=4.5\%$

ARR = Average Annual Profit After Tax
Average Investment

(Based on Average Investment)

Project X	Project Y
1,00,000	45,000
= <u>2,00,000</u> × 100	$=\frac{5}{2,00,000}\times100$
2	2
= 20%	= 9%

Accept: Project X

Tresent Val		1.17	Project Y		
Year PV Factor @ 10%	Cash Inflows	PV of Cash Inflows (Rs.)	Cash Inflows (Rs.)	PV of Cash Inflows (Rs.)	
0.91 0.83 0.75 0.68 0.68	(Rs.) 35,000 80,000 90,000 75,000	31,850 66,400 67,500 51,000 12,400	1,18,000 60,000 40,000 14,000 13,000	1,07,380 49,800 30,000 9,520 8,060	

note 18

PV of Cash Inflows	2,29,150	12/8/2)
Less: PV of Cash Outflows	2,00,000	2,04,760
Net Present Value	29,150	2,00,000
146111000111		4,760

Accept: Project X

PV of Cash Inflows (d) Profitability Index = PV of Cash Outflows

> Project X $=\frac{2,29,150}{2,00,000}$ = 1.146

Project Y

= 1.024

Accept: Project X

(e) Internal Rate of Return (IRR):

Since two discounting factors are given in the question, we will find out IRR using the given

Year	Cash Inflows (Rs.)	PV Factor @ 10%	PV Cash Inflows @ 10% (Rs.)	PV Factor @ 20%	PV Cash Inflows @ 20% (Rs.)
1	35,000	0.91	31,850	0.83	29,050
2	80,000	0.83	66,400	0.69	55,200
3	90,000	0.75	67,500	0.58	52,200
4	75,000	0.68	51,000	0.48	36,000
5	20,000	0.62	12,400	0.41	8,200
-		of Cash Inflows	2,29,150		1,80,650
Less: PV of Cash Outflows		2,00,000		2,00,000	
		let Present Value	29,150		(19,350)

IRR = D₁ +
$$\frac{PV_{CFATD_1} - PV_{cash outlaye}}{PV_{CFATD_1} - PV_{CFATD_2}} \times (D_2 - D_1)$$

= 10% + $\frac{2,29,150 - 2,00,000}{2,29,150 - 1,80,650} \times (20 - 10)$
= 10% + $\frac{29,150}{48,500} \times 10$
= 16.01% (approx.)

Year	Cash Inflows (Rs.)	PV Factor @ 10%	PV Cash Inflows @ 10% (Rs.)	PV Factor @ 20%	PV Cash Inflows @ 20% (Rs.)
1	1,18,000	0.91	1,07,380	0.83	97,940
2	60,000	0.83	49,800	0.69	41,400
3	40,000	0.75	30,000	0.58	23,200
4	14,000	0.68	9,520	0.48	6,720
5	13,000	0.62	8,060	0.41	5,330
	P	V of Cash Inflows	2,04,760		1,74,590
Less: PV of Cash Outflows		2,00,000		2,00,000	
	1	let Present Value	4,760	No. of the last of	(25,410)

IRR =
$$10\% + \frac{2,04,760 - 2,00,000}{2,04,760 - 1,74,590} \times (20 - 10)$$

capital Budgeting
=
$$10\% + \frac{4,760}{30,170} \times 10$$

= 11.58% (approx.)

Accept: Project X

Summary: Methods	P	Project X		
	Rank		Rank	roject Y
Pay Back Period ARR NPV PI		2.944 years 10% Rs. 29,150 1.146 16.01%	 - - - -	2.55 years 4.5% Rs. 4,760 1.024 11.58%

Suggestion: Based on the above analysis Project X is suggested to be selected and Project Y to be rejected.

Illustration 19:

A company can make either of two investments at period t_o. Assuming a required rate of return of 10%, determine for each project:

- (a) the pay back period,
- (b) the discounted pay back period,
- (c) the profitability index, and
- (d) the internal rate of return.

You may assume straight line depreciation.

	P	Q
Cost of investment (Rs.)	2,00,000	2,80,000
Expected life (no salvage)	5 years	5 years
Projected net income (after depreciation, interest and taxes)		
Year	Rs.	Rs.
1	10,000	24,000
2	10,000	24,000
3	20,000	24,000
4	20,000	24,000
5	20,000	24,000

Solution:

(a) Pay Back Period:

Depreciation (Rs.)	CFAT (Rs.)	Cumulative CFAT (Rs.)
		50,000
		1,00,000
		1,60,000
		2,20,000
40,000		2,80,000
	Depreciation (Rs.) 40,000 40,000 40,000 40,000	(Rs.) (Rs.) 40,000 50,000 40,000 60,000 40,000 60,000

Pay Back Period = 3 years + $\left(\frac{2,00,000 - 1,60,000}{60,000}\right)$

= 3.67 years or

3 years and 8 months

Year	PAT (Rs.)	Depreciation (Rs.)	CFAT (Rs.)	Cumulative C
	24,000	56,000	80,000	(Ra.)
1	24,000	56,000	80,000	80,000
2	24,000	56,000	80,000	1,60,000
3	24,000	56,000	80,000	2,40,000
4	24,000	56,000	80,000	3,20,000
5	24,000	(2.80,000 - 2,		4,00,000

Pay Back Period

= 3 years + 80,000

= 3.5 years or

3 years and 6 months

Suggestion: Based on pay back period Project Q is suggested since it has a shorter pay to period.

(b) Discounted Pay Back Period:

Year	PV Factor @ 10% (Re.)	Cash Inflows (Rs.)	PV Cash Inflows (Rs.)	Cumulative PV Cash inflows (Rs.)
0	1.000	(2,00,000)	(2,00,000)	(2,00,000)
1	0.909	50,000	45,450	(1,54,550)
2	0.826	50,000	41,300	(1,13,250)
3	0.751	60,000	45,060	(68,190)
4	0.683	60,000	40,980	(27,210)
5	0.621	60,000	37,260	10,050

 $= 4 \text{ years} + \left(\frac{27,210}{37,260}\right)$ Pay Back Period

= 4.73 years

Year	PV Factor @ 10% (Re.)	Cash Inflows (Rs.)	PV Cash Inflows (Rs.)	Cumulative PV Cash inflows (Rs.)
0	1.000	(2,80,000)	(2,80,000)	(2,80,000)
1	0.909	80,000	72,720	(2,07,280)
2	0.826	80,000	66,080	(1,41,200)
3	0.751	80,000	60,080	(81,120)
4	0.683	80,000	54,640	(26,480)
5	0.621	80,000	49,680	23,200

Pay Back Period $= 4 \text{ years} + \left(\frac{26,480}{49,680}\right)$

= 4.53 years Suggestion: Based on discounted pay back period Project Q is suggested, since it has a ter pay back period shorter pay back period.

Year	DV Factor O con	Pro	ect P	Proje	PV
1	PV Factor @ 10%	CFAT (Rs.)	PV CFAT (Rs.)	CFAT (Rs.)	
2 3 4	0.909 0.826 0.751 0.683	50,000 50,000 60,000 60,000	45,450 41,300 45,060 40,980	80,000 80,000 80,000 80,000	66 60 54

BOX.

BUUS				
capital Buda - 0.621	60,000	37,260	80,000	1
Prese	nt Value of Cash Inflows	2,10,050	00,000	49,680
, L	ess: PV of Cash Outlays	2,00,000		3,03,200
	Net Present Value	10,050		2,80,000
/	PV Cash Inflows			23,200

Project Q

= 1.08

3,03,200 2,80,000

politability Index = PV Cash Outflows

Project P $=\frac{2,10,050}{2,00,000}$ = 1.05

Suggestion: Based on PI Project Q is suggested, since the PI is greater than Project P. Internal Rate of Return (IRR):

Fake Pay Back Period = Initial Outlay

Average Annual Cash Inflows

$$\mathbb{A}^{p} = \frac{2,00,000}{\left(\frac{2,80,000}{5}\right)} = 3.571$$

As per Annuity table across the line of 5th year;

PVF Discount Rate 3.791 10% 3.605 12% 14% 3.433

NPV at both 12% and 14% will be positive.

But since IRR will lie between a positive and negative NPV; therefore using 10% and 12% discount factors; IRR will be computed as follows:

on Trial and Error Method

Year	CFAT (Rs.)	PVF @ 10%	PV CFAT @ 10% (Rs.)	PVF @ 12%	PV CFAT @ 12% (Rs.)
1	50,000	0.909	45,450	0.893	44,650
2	50,000	0.826	41,300	0.797	39,850
3	60,000	0.751	45,060	0.712	42,720 38,160
4	60,000	0.683	40,980	0.636	34,020
0	60,000	0.621	37,260	0,501	1,99,400
Total CEAT			2,10,050		.,00

IRR (P) =
$$10\% + \frac{2,10,050 - 2,00,000}{2,10,050 - 1,99,400} \times (12\% - 10\%)$$

$$= 10 + \frac{10,050}{10,650} \times 2 = 11.88\%$$
 (approx.)

Fake Pay Back Period

As per Annuity table across the line of 5th year;

PVF 3.605 3.433 Discount Rate 12% 14%

Year	CFAT (Rs.)	PV Annulty Factor @ 12%	PV CFAT @ 12% (Rs.)	PV Annuity Factor @ 14%	PV CFA
1-5		3.605	2,88,400	3,433	2,7
IRR (C	= 13.22	% (approx.)	$\frac{200}{40} \times (14\% - 12\%)$ is suggested, since	it has a higher l	BD as as