Probability theory

Kristian Wichmann

August 17, 2016

This is an overview of probability theory expressed in the language of measure theory.

1 Probability spaces

Definition 1.1. A probability space is a measure space (Ω, \mathcal{F}, P) for which $P(\Omega) = 1$. The elements of Ω are called outcomes, the elements of \mathcal{F} events and P(F) is the probability of the event $F \in \mathcal{F}$.

2 Random variables

Definition 2.1. An E-valued random variable X on a probability space (Ω, \mathcal{F}, P) is a measurable function $X : \Omega \to E$. Here (E, \mathcal{E}) is a measurable space. Often this measurable space is (\mathbb{R}, \mathbb{B}) , so that $X : \Omega \to \mathbb{R}$. Such a real-valued random variable is usually simply denoted a random variable for brevity.

2.1 Distribution

Billedmlet giver pdf

3 Statistical models

4 Likelihood