Formulario di Elettronica dello stato solido

Lorenzo Rossi

Anno Accademico 2020/2021

Email: lorenzo14.rossi@mail.polimi.it

GitHub: https://github.com/lorossi

Quest'opera è distribu
ita con Licenza Creative Commons Attribuzione

Non commerciale 4.0 Internazionale $\textcircled{\textcircled{6}}\textcircled{\textcircled{6}}$

Versione aggiornata al 15/04/2021

Indice

1	Riguardo al formulario				
2	Struttura cristallina 2.1 Indici di Miller				
3	Radiazione di corpo nero 3.1 Cavità di corpo nero all'equilibrio				
4	Onde e particelle 4.1 Onde				
5	Meccanica quantistica				
	5.1 Operatori				
	5.2 Tunneling				
	5.3 Incidenza				
	5.4 Buca di potenziale				
	5.4.1 A pareti infinite				
	5.4.2 A pareti finite				
	5.4.3 Parabolica				
	5.4.4 Coppie di buche				
6	Teoria semiclassica del trasporto				

1 Riguardo al formulario

Quest'opera è distribuita con Licenza Creative Commons - Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet}(\textcircled{\bullet})$

Questo formulario verrà espanso (ed, eventualmente, corretto) periodicamente fino a fine corso (o finché non verrà ritenuto completo).

Link repository di GitHub:

L'ultima versione può essere scaricata direttamente cliccando su questo link.

2 Struttura cristallina

- Packing factor $PF = \frac{4/3 \cdot \pi r^3}{a^3}$
- Densità del reticolo $l = \frac{\text{n}^{\circ} \text{atomi / cella}}{\text{area cella}}$
- Interferenza del passo reticolare (diffrazione alla Bragg) $2a\sin\theta=n\lambda$ con n ordine di diffrazione

Struttura	Metalli che la presentano in natura	Packing Factor
Cubico	Po	$\frac{\pi}{6} \approx 0.52$
GBB	Cr, Fe, Mo, Ta	$\pi \frac{\sqrt{3}}{8} \approx 0.68$
FCC	Ag, Au, Cu, Ni, Pb	$\pi \frac{\sqrt{2}}{6} \approx 0.74$

2.1 Indici di Miller

Ipotesi: il piano interseca in $\{m, n, 0\}$

- Indici di Miller $\{n,m,0\}$
- Distanza interplanare $d = \frac{a}{\sqrt{n^2 + m^2}}$

3 Radiazione di corpo nero

- Legge di Wien $\lambda_{ma} \cdot T = K_{\text{wien}}$
- Legge di Stefan $\int_0^{\inf} R_T d\nu = \sigma T^4$

3.1 Cavità di corpo nero all'equilibrio

3.1.1 Cavità monodimensionale

• Lunghezze d'onda permesse $a=n\frac{\lambda}{2}$

• Frequenze permesse $\nu = \frac{c}{2a} n$ con n intero e non nullo

• Free spectral range FSR = $\frac{c}{2a}$

4 Onde e particelle

4.1 Onde

- Frequenza / lunghezza d'onda $\nu = \frac{c}{\lambda}$

- Energia associata ad un'onda $E=h\nu$

• Vettore d'onda $k = \frac{2\pi}{h}$

• Velocità di fase $v_f = \frac{d\omega}{dt}$

• Velocità di gruppo $v_g = \frac{\partial \omega}{\partial k} = \frac{1}{\hbar} \frac{\partial E}{partialkS} = \frac{\hbar k}{m}$

4.2 Particelle

• Energia $E = E_k + U$

– Energia cinetica $E_k = \frac{1}{2} m v^2$

– Principio di equipartizione dell'energia, particella con l gradi di libertà: $E_k = \frac{l}{2}kT$

2

– Energia potenziale di una particella in un potenziale $V\colon U=qV$

• Relazione di De Broglie $\lambda = \frac{h}{p}, \, p = \hbar k$

• Relazione di dispersione $E = \frac{h^2 k^2}{2m}$

• Vettore d'onda $k = \frac{\sqrt{2mE}}{\hbar}$

• Lunghezza d'onda $\lambda = \frac{h}{\sqrt{2mE}}$

5 Meccanica quantistica

- Principio di indeterminazione di Heisenberg $\Delta x \Delta p \geq \frac{\hbar}{2}$
- Equazione di Schrödinger $i\hbar\frac{\partial\Psi}{\partial t}(x,t)=\hat{H}\Psi(x,t)$
- Flusso quantistico $J = \frac{\hbar k}{m} |\Psi|^2$

5.1 Operatori

- Operatore Hamiltoniano $-\frac{\hbar^2}{2mi}\frac{\partial^2}{\partial x^2} + V$
- Operatore quantità di moto (momento) $\hat{p} = -i\hbar \frac{\partial}{\partial x}$
- Operatore energia cinetica $\hat{E}_{tot} = -i \frac{\hbar^2}{2m} \frac{\partial^2}{\partial t^2}$
- Operatore energia totale $\hat{E}_k = i\hbar \frac{\partial}{\partial t}$
- Operatore potenziale $\hat{V} = V$
- Commutatore $H = [\hat{A}, \hat{B}] = \hat{A}\hat{B} \hat{B}\hat{A} = \hat{C}$

5.2 Tunneling

- Probabilità di tunneling $|T|^2 \approx 16 \left(\frac{\alpha k}{\alpha^2 + k^2}\right)^2 \exp\left\{-2\alpha a\right\} \approx \exp\left\{-2\alpha a\right\}$
- Tempo medio di tunneling $\langle t \rangle = \frac{t_{a/r}}{p_t} = \frac{2a}{v p_{\rm tun}}$
- Approssimazione WKB
 - Probabilità $|T|^2 = P_T = \exp\{-2\alpha a\}$
 - Penetrazione media $x_p = \frac{\hbar}{\sqrt{2m(V_0 E)}} = \frac{1}{\alpha}$
 - L'approssimazione è valida se e solo se $\alpha a \gg 1$
 - Caso particolare: barriera triangolare $P_T = \exp\left\{-\frac{4}{3}\frac{\sqrt{2m}}{\hbar}\frac{\Phi^{3/2}}{qF}\right\}$
- Approssimazione di Follower-Nonditeim

5.3 Incidenza

- Coefficiente di riflessione $R = \left(\frac{k_1 k_2}{k_1 + k_2}\right)^2$
- Coefficiente di trasmissione $T = \left(\frac{2k_1}{k_1 + k_2}\right)^2 = 1 R^2$

5.4 Buca di potenziale

5.4.1 A pareti infinite

• Autovalori $E_n = \frac{h^2}{8ma^2}n^2$

5.4.2 A pareti finite

• Funzioni pari $\tan\left(\frac{a}{2\hbar}\sqrt{2mE}\right) = \sqrt{\frac{V_0 - E}{E}}$

• Funzioni dispari $\tan\left(\frac{a}{2\hbar}\sqrt{2mE}\right) = -\sqrt{\frac{E}{V_0 - E}}$

• La soluzione delle equazioni avviene per via grafica

5.4.3 Parabolica

• Profilo di potenziale $U = \frac{1}{2}\alpha x^2$

• Pulsazione caratteristica $\omega = \sqrt{\frac{\alpha}{m}}$

• Autovalori $E_n = (n + \frac{1}{2})\hbar\omega$

5.4.4 Coppie di buche

• Funzione degli autovalori $\tan\left(k\frac{a}{2}\right) = -\frac{\hbar^2 k}{mU_0}$

• Proporzionalità della ddp $|\psi|^2 \propto \cos\left(\frac{E_2-E_1}{\hbar}t\right) = \cos\left(2\pi\frac{E_2-E_1}{\hbar}t\right)$

4

– Oscillazione degli autovalori $\omega = \frac{E_2 - E_1}{\hbar}$

– Frequenza degli autovalori $\nu = \frac{E_2 - E_1}{h}$

6 Teoria semiclassica del trasporto

• Formula fondamentale $\frac{dk}{dt} = \frac{\mathfrak{F}}{\hbar}$, \mathfrak{F} forza applicata

• Massa efficace $m^* = \frac{\mathfrak{F}}{a} = \frac{\hbar^2}{\frac{\partial^2 E}{\partial t^2}}$