0.1 Teorema de Stokes

Enunciamos para la completitud de este documento el teorema de Stokes

Teorema 1 (Stokes). Sea S una superficie orientada, suave por partes y acotada por una curva C la cual es cerrada y simple por partes. Sea $F:A\subset\mathbb{R}^3\to\mathbb{R}^3$ un campo vectorial de clase \mathcal{C}^1 donde A es subconjunto abierto de \mathbb{R}^3 que contiene a S. Entonces

$$\int_C F \cdot dr = \iint_S \nabla \times F dS$$

Problema 1. Usando el teorema de Stokes, calcular la integral de linea $\oint_C x^2 y^3 dx + dy + z dz$ donde C es la curva $x^2 + y^2 = R^2, z = 0$ con R > 0, recorrida en sentido antihorario

Solucion. Notemos que la curva C es cerrada, simple y suave. Esta curva encierra a la superficie $S: x^2 + y^2 \le R^2, z = 0$ entonces por el teorema de Stokes tenemos que

$$\iint_{S} \nabla \times F dS = \oint_{C} F dr$$

Calculemos $\nabla \times F$

$$\nabla \times F = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ x^2 y^3 & 1 & z \end{vmatrix}$$

Consideremos la siguiente \mathcal{C}^{∞} parametrizacion de S

$$\varphi: [0, 2\pi] \times [0, R] \to \mathbb{R}^3$$
$$(\theta, r) \mapsto (r \cos \theta, r \sin \theta, 0)$$

Donde tenemos que

$$\hat{n} = \varphi_{\theta} \times \varphi_{r}$$

$$\varphi_{\theta} = (-r\sin\theta, r\cos\theta, 0)$$
$$\varphi_{r} = (\cos\theta, \sin\theta, 0)$$

Por lo tanto el vector normal es

$$\hat{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -r\sin\theta & r\cos\theta & 0 \\ \cos\theta & \sin\theta & 0 \end{vmatrix} = (0, 0, -r)$$

Por lo tanto tenemos que

$$\oint_C F \cdot dr = \iint_D (0, 0, 3r^2 \cos^2(\theta) r^2 \sin^2(\theta)) \cdot (0, 0, -r) dA$$

Calculemos la integral, donde el dominio es el dominio de la parametrizacion entonces

$$\begin{split} \int_0^{2\pi} \int_0^R -3r^5 \cos^2(\theta) \sin^2(\theta) dr d\theta &= -\frac{R^6}{2} \int_0^{2\pi} \cos^2(\theta) \sin^2(\theta) d\theta \\ &= -\frac{R^6}{2} \int_0^{2\pi} \cos^2(\theta) (1 - \cos^2 \theta) d\theta \\ &= -\frac{R^6}{2} (\pi - \int_0^{2\pi} \cos^4 \theta d\theta) \\ &= -\frac{R^6\pi}{8} \end{split}$$

Problema 2. Calcule $\oint_C x \sin x - 2y^2 dx + y \cos y - 2z dy + \tan z - 2x dz$ donde C es la interseccion de $4x^2 + 5y^2 + z^2 = 36$ con z = 2y

Solucion. Notemos que C es una curva cerrada, simple y suave. Podemos ocupar el teorema de Stokes por lo tanto

$$\oint_C F dr = \iint_S (\nabla \times F) dS$$

Calculemos el rotor

$$\nabla \times F = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ x \sin x - 2y^2 & y \cos y - 2z & \tan z - 2x \end{vmatrix} = (2, 2, 4y)$$

Consideremos la siguiente parametrizacion, con las variaciones por determinar

$$\varphi(x,y) = (x,y,2y)$$

donde sabemos que la normal es

$$\hat{n} = (-f_x, -f_y, 1) = (0, -2, 1)$$

Por lo tanto

$$\iint_{S} (\nabla \times F) \cdot \hat{n} dS = \iint_{D} -4 + 4y dA$$

Intersectando las 2 superficies obtenemos que

$$4x^2 + 9y^2 < 36$$

Con el siguiente cambio de coordenadas se tiene que

$$x(r,\theta) = 3r\cos(\theta)$$

$$y(r, \theta) = 2r\sin(\theta)$$

con $r \in [0, 1], \theta \in [0, 2\pi]$

y el jacobiano es

$$J = \begin{vmatrix} 3\cos(\theta) & -3r\sin(\theta) \\ 2\sin(\theta) & 2r\cos(\theta) \end{vmatrix} = 6r$$

Por el teorema de cambio de coordenadas

$$\iint_{D} -4 + 4y dA = \int_{0}^{2\pi} \int_{0}^{1} (-4 + 8r\sin\theta) 6r dr d\theta = -24\pi$$

Problema 3. Considere C la curva de interseccion entre las superficies $S_1: x+y+z=1$ y $S_2: z=2-x^2-y^2$. Calcule el trabajo efectuado por el campo de fuerzas

$$F(x, y, z) = (yz, e^{y^3}, \cos(z) + y)$$

a lo largo de la curva C.

Solucion. Como ocuparemos el Teorema de Stokes, calcularemos el rotor primero

$$\nabla \times F = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ yz & e^{y^3} & \cos(z) + y \end{vmatrix} = (1, y, -z)$$

Calculemos la curva interseccion

$$1 - x - y = 2 - x^{2} - y^{2}$$
$$x^{2} - x + 1 + y^{2} - y = 2$$
$$(x - \frac{1}{2})^{2} + (y - \frac{1}{2})^{2} = \frac{3}{2}$$

Luego la curva de interseccion esta parametrizada por

$$x(t) = \sqrt{\frac{3}{2}}\cos(t) + \frac{1}{2}$$

$$y(t) = \sqrt{\frac{3}{2}}\sin(t) + \frac{1}{2}$$

$$z(t) = -\sqrt{\frac{3}{2}}(\cos(t) + \sin(t))$$

con $t \in [0, 2\pi]$. Por el teorema de Stokes

Problema 4. Determine el trabajo ejercido por el campo vectorial

$$F(x, y, z) = (\cos(x^2) - 2y, e^y - 2z, \sin(z^6) - 2x)$$

a lo largo de la curva C que se obtiene de la interseccion del elipsoide $9x^2 + 3y^2 + \frac{z^2}{4} = 36$ con el plano z = 2y

Solucion. Ocuparemos el teorema de Stokes

Primero calcularemos el rotacional

$$\nabla \times F = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ \cos(x^2) - 2y & e^y - 2z & \sin(z^6) - 2x \end{vmatrix} = (2, 2, 2)$$

Ocuparemos la parametrizacion natural, luego

$$\Phi(x,y) = (x, y, 2y)$$

Entonces tenemos que

$$\int_C F dr = \iint_S \nabla \times F dS$$

Tenemos que la integral de superficie es

$$\iint_{S} \nabla \times F dS = \iint_{R_{xy}} (2, 2, 2) \cdot (0, -2, 1) dA = \iint_{R_{xy}} -2 dA = -12\pi$$

Problema 5. Dado $F(x, y, z) = (\cosh y, zx^2, x)$ y S la superficie limitada por la curva Γ , obtenida de la intersecion

$$S_1: x + y = 2 \wedge S_2: x^2 + y^2 + z^2 = 2(x + y)$$

orientada contrareloj vista desde el origen. Calcule $\iint_S \nabla \times F dS$

Solucion. Veamos quien es Γ

$$x^{2} + (2 - x)^{2} + z^{2} = 4$$

$$x^{2} + 4 - 4x + x^{2} + z^{2} = 4$$

$$2x^{2} - 4x + z^{2} = 0$$

$$2(x^{2} - 2x) + z^{2} = 0$$

$$2(x - 1)^{2} + z^{2} = 2$$

$$(x - 1)^{2} + \frac{z^{2}}{2} = 1$$

Luego la parametrizacion de esta curva es

$$\Phi(r,\theta) = (r\cos(\theta) + 1, 1 - r\cos(\theta), \sqrt{2}r\sin(\theta))$$

Calculemos le rotor

$$\nabla \times F = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ \cosh y & zx^2 & x \end{vmatrix} = (-x^2, -1, 2zx - \sinh(y))$$

Ahora calculemos la normal

$$\hat{n} = \Phi_r \times \Phi_\theta = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \cos(\theta) & -\cos(\theta) & \sqrt{2}\sin(\theta) \\ -r\sin(\theta) & r\sin(\theta) & \sqrt{2}r\cos(\theta) \end{vmatrix} = (-\sqrt{2}r, -\sqrt{2}r, 0)$$

Entonces

$$\int_{0}^{2\pi} \int_{0}^{1} (r\cos(\theta) + 1)^{2} \sqrt{2}r + \sqrt{2}r dr d\theta =$$

$$\int_{0}^{2\pi} \int_{0}^{1} \sqrt{2}r (r^{2}\cos^{2}(\theta) + 2r\cos(\theta) + 2) dr d\theta =$$

$$\frac{\pi\sqrt{2}}{4} + 2\sqrt{2}\pi = \frac{9}{4}\sqrt{2}\pi$$

Problema 6 (Certamen MAT024 2016-2). Determine la magnitud de la circulacion del campo

$$F(x, y, z) = (x\cos(x^2) - y, y\sin(y^3) - z, h(z) - x), h \in \mathcal{C}^{\infty}$$

a lo largo de la curva C que se obtiene de la interseccion del elipsoide $\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} = 1$ con el plano y = 2z - x + 1

Solucion. Dado que C es una curva simple podemos usar el teorema de Stokes. Calculemos el rotor

$$\nabla \times F = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ x\cos(x^2) - y & y\sin(y^3) - z & h(z) - x \end{vmatrix} = (1, 1, 1)$$

Dado que la superficie C esta dentro del plano obtenemos que

$$\hat{n} = (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}})$$

Por lo tanto

$$\int_C F dr = \iint_S (1,1,1) \cdot (\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}) dS = 0$$

0.2 Teorema de la divergencia

Enunciamos para la completitud de este documento el teorema de la Divergencia.

Teorema 2 (Divergencia). Sea V una region solida y simple donde S es la superficie frontera de V, definida con orientacion positiva. Sea $F:A\subset\mathbb{R}^3\to\mathbb{R}^3$ un campo vectorial de clase \mathcal{C}^1 donde A es subconjunto abierto de \mathbb{R}^3 que contiene a V. Entonces

$$\iint_{S} F dS = \iiint_{V} \nabla \cdot F dV$$

Problema 1. Usando el teorema de la divergencia calcule $\iint_S F \cdot \hat{n} dS$ donde S es la superficie lateral del tronco del cono $z = \sqrt{x^2 + y^2}$ limitado por los planos z = 1 y z = 4 y $F(x, y, z) = (x^2 + 2z, y^2 + z^2, 1)$ y \hat{n} es la normal exterior.

Solucion. Consideremos la siguiente superficie $S^* = S \cup S^{T_1} \cup S^{T_2}$ donde tenemos que

$$S^{T_1}: x^2 + y^2 \le 16, z = 4$$

 $S^{T_2}: x^2 + y^2 \le 1, z = 1$

Dado que S^{\star} es una superficie cerrada, podemos ocupar el teorema de Gauss el cual dice

$$\iint_{S^*} F \cdot \hat{n} dS = \iiint_V \nabla \cdot F dV$$

Calculemos la divergencia

$$\nabla \cdot F = 2x + 2y$$

Calculemos la integral. Calculemos las variaciones en las coordenadas cilindricas

$$0 \le r \le z$$
$$1 \le z \le 4$$
$$0 \le \theta \le 2\pi$$

Y sabemos que el jacobiano de las cilindricas es r. Calculemos la integral

$$\iiint_{V} \nabla \cdot F dV = \int_{0}^{2\pi} \int_{1}^{4} \int_{0}^{z} (2r\cos\theta + 2r\sin\theta) r dr dz d\theta = 0$$

Por el teorema de Gauss entonces tenemos que

$$\iint_{S} F \cdot \hat{n} dS + \iint_{S^{T_1}} F \cdot \hat{n} dS + \iint_{S^{T_2}} F \cdot \hat{n} dS = 0$$

Calculemos la segunda integral.

$$\iint_{S^{T_1}} F \cdot \hat{n} dS = \int_0^{2\pi} \int_0^1 -r dr d\theta = -\pi$$

Calculemos la tercera integral.

$$\iint_{S^{T_2}} F \cdot \hat{n} dS = \int_0^{2\pi} \int_0^4 r dr d\theta = 16\pi$$

Concluyendo asi que

$$\iint_S F \cdot \hat{n} dS = -15\pi$$

Problema 2. Sea $F(x,y,z)=(y^2-z^2,x^2-y^3,3zy^2+z^2e^{x^2+y^2})$ y S el contorno de la region encerrada por las superficies $x^2+y^2-z^2=1,\,z=0,\,z=3,$ calcule $\iint_S FdS$

Solucion. Cerremos la superficie para poder ocupar el teorema de la divergencia. Definamos la siguiente superficie

$$S^{\star} = S \cup S^{T_1} \cup S^{T_2}$$

donde $S^{T_1}: x^2 + y^2 \le 1, z = 0$ y $S^{T_2}: x^2 + y^2 \le 10, z = 3$

Ahora por la formula de Ostrogradski tenemos que

$$\iint_{S^*} F dS = \iiint_V \nabla \cdot F dV$$

Calculemos la divergencia

$$\nabla \cdot F = 2ze^{x^2 + y^2}$$

Ocupando coordenadas cilindricas

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$
$$z = z$$

con $0, \le z \le 3, 0 \le \theta \le 2\pi, 0 \le r \le \sqrt{1+z^2}$ y el Jacobiano es r entonces

$$\iiint_{V} 2ze^{x^{2}+y^{2}}dV = \int_{0}^{2\pi} \int_{0}^{3} \int_{0}^{\sqrt{1+z^{2}}} 2zre^{r^{2}}drdzd\theta$$
$$= 2\pi \int_{0}^{3} z(e^{1+z^{2}} - 1)dz$$
$$= \mathcal{E}$$

$$\iint_{S} F dS + \iint_{S^{T_1}} F dS + \iint_{S^{T_2}} F dS = \mathcal{E}$$

Problema 3. Si $\Omega = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le a^2, z \ge \sqrt{x^2 + y^2}\}$, donde a > 0. Calcule el flujo a traves de la superficie frontera de Ω en sentido normal exterior a esta del campo, donde el campo es $F(x,y,z) = (x\cos^2(z), y\sin^2(z), e^x\sin(y-x) + z)$

Solucion. Notemos que la frontera del volumen dado es cerrada, simple regular y suave. $F \in \mathcal{C}^{\infty}$, calculemos la divergencia.

$$\nabla \cdot F(x, y, z) = \cos^2(z) + \sin^2(z) + 1 = 2$$

Entonces por el teorema de Gauss tenemos que el flujo es el siguiente

$$\Phi = \iint_{S} F dS = \iiint_{V} \nabla \cdot F dV = 2 \iiint_{V} dV$$

Aplicando coordenadas esfericas obtenemos

$$x = \rho \cos(\theta) \sin(\varphi)$$
$$y = \rho \sin(\theta) \sin(\varphi)$$
$$z = \rho \cos(\varphi)$$
$$J = \rho^2 \sin(\varphi)$$

Entonces Ω queda de la siguiente forma

$$\rho^2 \le a^2 \wedge \cos(\varphi) \ge \sin(\varphi)$$

Luego nuestras variaciones son

$$0 \le \theta \le 2\pi$$
$$0 \le \rho \le a$$
$$0 \le \varphi \le \frac{\pi}{4}$$

Entonces nuestra solucion es

$$2\int_0^{2\pi} \int_0^a \int_0^{\frac{\pi}{4}} \rho^2 \sin(\varphi) dV = 4\pi \frac{a^3}{3} (1 - \frac{1}{\sqrt{2}})$$

Problema 4. Considere la superficie $S = S_1 \cup S_2$ donde

$$S_1: x^2 + y^2 + 2(x - 2y) + 4 \le 0, z = x + 2$$

 $S_2: x^2 + y^2 + 2(x - 2y) + 4 = 0, x + 2 \le z \le 4 + 2x$

Calcule el flujo de F(x, y, z) = (z, y, x) a traves de la superficie S.

Solucion. Escribamos de otra forma la primera superficie

$$x^{2} + y^{2} + 2x - 4y + 4 \le 0 \implies x^{2} + y^{2} + 2z - 4y \le 0 \implies x^{2} + (y - 2)^{2} + 2z \le 4$$

La cual queda de la siguiente forma

$$-\frac{1}{2}(x^2 + (y-2)^2) + 2 \le z$$

$$2x + 4 = -x^2 - y^2 + 4y$$

Por lo tanto

$$-\frac{1}{2}(x^2+y^2-4y) \le z \le -(x^2+y^2-4y)$$

Problema 5. Calcular $\iint_S F dS$ donde S es la superficie $x^2+y^2+z^2-2\sqrt{x^2+y^2}=0$ con $z\geq 0$ y F(x,y,z)=(x,y,z)

Solucion. Veamos quien es en verdad S mediante el uso de coordenadas esfericas

$$\rho^2 - 2\sin(\varphi) = 0 \implies \rho = 2\sin(\varphi)$$

Dado que

$$z \ge 0 \implies \cos(\varphi) \ge 0 \implies \varphi \in [0, \frac{\pi}{2}]$$

0.3 Sturm-Liouville

Problema 1. Resuelva el siguiente problema de Sturm-Liouville

$$\begin{cases} x''(x) - 2x'(x) + \lambda x(x) = 0\\ x(0) = 0\\ x'(1) = x(1) \end{cases}$$

Solucion. La ecuacion caracteristica asociada al problema es

$$m^2 - 2m + \lambda = 0$$

Luego las soluciones vienen dadas por

$$m_{1,2} = \frac{2 \pm \sqrt{4 - 4\lambda}}{2} = 1 \pm \sqrt{1 - \lambda}$$

1. Caso $\lambda < 1$. Tenemos que $1 - \lambda > 0$ por lo tanto la solución a la EDO viene dada por

$$x(x) = Ae^{(1+\sqrt{1-\lambda})x} + Be^{(1-\sqrt{1-\lambda})x}$$

Derivamos

$$x'(x) = A(1 + \sqrt{1 - \lambda})e^{(1 + \sqrt{1 - \lambda})x} + B(1 - \sqrt{1 - \lambda})e^{(1 - \sqrt{1 - \lambda})x}$$

Aplicando condiciones iniciales obtenemos

$$A+B=0$$

$$A(1+\sqrt{1-\lambda})e^{1+\sqrt{1-\lambda}}+B(1-\sqrt{1-\lambda})e^{1-\sqrt{1-\lambda}}=Ae^{1+\sqrt{1-\lambda}}+Be^{1-\sqrt{1-\lambda}}$$

Moviendo las cosas

$$A\sqrt{1-\lambda}e^{1+\sqrt{1-\lambda}} - B\sqrt{1-\lambda}e^{1-\sqrt{1-\lambda}} = 0$$

$$A(\sqrt{1-\lambda}e^{1+\sqrt{1-\lambda}} + \sqrt{1-\lambda}e^{1-\sqrt{1-\lambda}}) = 0$$

$$A = 0 \implies B = 0$$

2. Caso $\lambda > 1$. Tenemos que $1 - \lambda < 0$ por lo tanto la solución a la EDO viene dada por

$$x(x) = e^{x} (A\cos(\sqrt{\lambda - 1}x) + B\sin(\sqrt{\lambda - 1}x))$$

Aplicando la primera condicion inicial

$$A = 0$$

entonces

$$x(x) = Be^x \sin(\sqrt{\lambda - 1}x)$$

luego

$$x'(x) = Be^{x} \sin(\sqrt{\lambda - 1}x) + Be^{x} \sqrt{\lambda - 1} \cos(\sqrt{\lambda - 1}x)$$

ocupando la segunda condicion inicial

$$Be^x\sqrt{\lambda-1}\cos(\sqrt{\lambda-1})=0$$

Como estamos buscando soluciones no nulas

$$\cos(\sqrt{\lambda - 1}) = 0 \implies \sqrt{\lambda - 1} = \frac{\pi}{2} + k\pi$$

Por lo tanto los valores propios son

$$\lambda_n = (\frac{(1+2n)\pi}{2})^2 + 1$$

y las funciones propias son

$$x_n(x) = A_n \sin(\sqrt{\lambda_n - 1}x)$$

3. Caso $\lambda = 1$. Luego la solucion a la edo es

$$x(x) = Ae^x + Bxe^x$$

Aplicando la primera condicion inicial

$$A = 0$$

Por lo tanto

$$x(x) = Bxe^x \implies x'(x) = Be^x + Bxe^x$$

Con la segunda condicion inicial tenemos

$$B = 0$$

Soluciones triviales.

Por lo tanto las soluciones son

$$x_n(x) = A_n \sin(\sqrt{\lambda_n - 1}x)$$

$$\lambda_n = (\frac{(1+2n)\pi}{2})^2 + 1$$

0.4 EDP

Problema 1. Resuelva la siguiente EDP mediante la tecnica de separacion de variables

$$\begin{cases} v_t &= v_{xx} \\ v(0,t) &= 0 \\ v_x(2,t) &= 0 \\ v(x,0) &= 5\sin(\frac{3\pi x}{4}) \end{cases}$$

Solucion. Por el metodo de separacion de variables planteamos la siguiente solucion.

$$v(x,t) = X(x)T(t)$$

Reemplazamos en la primera ecuacion

$$XT' = X''T \implies \frac{T'}{T} = \frac{X''}{X} = -\lambda$$

Entonces tenemos la siguiente EDO.

$$\frac{T'}{T} = -\lambda \implies T_n(t) = A_n e^{-\lambda_n t}$$

Y obtenemos el siguiente problema de Sturm-Liouville

$$\begin{cases} X'' + \lambda X = 0 \\ X(0) = 0 \\ X'(2) = 0 \end{cases}$$

Donde la solucion vienen dada por

$$\lambda_n = \left(\frac{\left(n - \frac{1}{2}\right)\pi}{2}\right)^2$$
$$X_n(x) = \sin\left(\frac{\left(n - \frac{1}{2}\right)\pi}{2}x\right)$$

Entonces la solucion formal a nuestra EDP es

$$v(x,t) = \sum_{n=1}^{\infty} A_n e^{-\left(\frac{(n-\frac{1}{2})\pi}{2}\right)^2 t} \sin\left(\frac{(n-\frac{1}{2})\pi}{2}x\right)$$

Aplicando la condicion inicial obtenemos que

$$5\sin(\frac{3\pi}{4}x) = \sum_{n=1}^{\infty} A_n \sin(\frac{(n-\frac{1}{2})\pi}{2}x)$$

Por la ortogonalidad de las eigenfunciones obtenemos que todos los $A_n=0$ excepto cuando

$$\frac{3\pi}{4} = \frac{(n - \frac{1}{2})\pi}{2} \implies n = 2$$

en cuyo caso tenemos que $A_2 = 5$. Por lo tanto la solucion a nuestra EDP es

$$v(x,t) = 5e^{-\frac{9\pi^2}{16}t}\sin(\frac{3\pi}{4}x)$$

Problema 2. Resuelva la siguiente EDP mediante la tecnica de separacion de variables

$$\begin{cases} u_{tt} &= u_{xx} - u_t \\ u_x(0,t) &= 0 \\ u(\pi,t) &= 0 \\ u(x,0) &= 0 \\ u_t(x,0) &= 3\cos(\frac{5\pi}{2}) \end{cases}$$

Solucion. Por el metodo de separacion de variables tenemos que

$$u(x,t) = X(x)T(t)$$

Reemplazando en la primera ecuacion obtenemos

$$XT'' = X''T - XT' \implies XT'' + XT' = X''T \implies \frac{T''}{T} + \frac{T'}{T} = \frac{X''}{X} = -\lambda$$

Resolvamos primero la EDO que nos queda en T

$$T'' + T' + \lambda T = 0$$

esto es una EDO lineal de segundo orden, resolveremos mediante el polinomio caracteristico.

$$m^2 + m + \lambda = 0$$

donde las soluciones son

$$m = \frac{-1 \pm \sqrt{1 - 4\lambda}}{2}$$

Por lo tanto necesitamos saber el valor de λ . Resolvamos el problema de Sturm-Liouville

$$\begin{cases} X'' + \lambda X &= 0 \\ X'(0) &= 0 \\ X(\pi) &= 0 \end{cases}$$

Donde la solucion viene dada por

$$\lambda_n = (n - \frac{1}{2})^2$$

$$X_n(x) = \cos((n - \frac{1}{2})x)$$

Volviendo a la EDO anterior obtenemos que dado que $\lambda_n \geq \frac{1}{4}$ las soluciones son

$$T_1(t) = Ae^{-\frac{1}{2}t} + Bxe^{-\frac{1}{2}t}$$
$$T_n(t) = e^{-\frac{1}{2}t} (A\cos(\sqrt{n^2 - nt}) + B\sin(\sqrt{n^2 - nt}))$$

Luego la solucion formal a nuestra EDP es

Problema 3 (Precertamen 2020 MAT024). Resuelva mediante el metodo de separación de variables la siguiente EDP.

$$\begin{cases} u_t = u_{xx} - u, & 0 \le x \le \pi, t \ge 0 \\ u_x(0, t) = u(\pi, t) = 0, & t > 0 \\ u(x, 0) = \sin(x) & 0 < x < \pi \end{cases}$$

Solucion. Por el metodo de separación de variables tenemos que

$$u(x,t) = X(x)T(t)$$

Luego nuestra EDP es

$$XT' = X''T - XT \implies \frac{T'}{T} + 1 = \frac{X''}{X} = -\lambda$$

Resolvamos primero la EDO lineal en T

$$T' + (\lambda + 1)T = 0 \implies T_n(t) = A_n e^{-(\lambda + 1)t}$$

Ahora resolvamos el siguiente problema de Sturm-Liouville que nos queda en X

$$\begin{cases} X'' + \lambda X = 0 \\ X'(0) = 0 \\ X(\pi) = 0 \end{cases}$$

Donde nosotros sabemos que la solucion viene dada por

$$\lambda_n = (n - \frac{1}{2})^2$$

$$X_n(x) = \cos((n - \frac{1}{2})x)$$

Entonces nuestra solucion formal a la EDP es

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-(\lambda+1)t} \cos((n-\frac{1}{2})x)$$

Aplicamos la condicion inicial y obtenemos

$$\sin(x) = \sum_{n=1}^{\infty} A_n \cos((n - \frac{1}{2})x)$$

Aplicamos Fourier

$$A_n = \frac{2}{\pi} \int_0^{\pi} \sin(x) \cos((n - \frac{1}{2})x) = \frac{8}{(-4n^2 + 4n + 3)\pi}$$

Por lo tanto la solucion a nuestra EDP es

$$u(x,t) = \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{-4n^2 + 4n + 3} e^{-(\lambda+1)t} \cos(\frac{2n-1}{2}x)$$