Mathematics 300 Homework, October 18, 2017.

We have proven the following two theorems.

Theorem 1. Let n be a positive integer and a and b any integers. If a and b have the same remainder when divided by n, then $a \equiv b \pmod{n}$.

Theorem 2. Let n be a positive integer and a and b any integers. If $a \equiv b \pmod{n}$, then a and b have the same remainder when divided by n.

It is convenient to combine these as one theorem:

Theorem 3. Let n be a positive integer and a and b any integers. Then $a \equiv b \pmod{n}$ if and only if a and b have the same remainder when divided by n.

The division algorithm tells us that if a and n are integers with n > 0 then there are unique integers q and r such that

$$a = qn + r$$
 where $0 \le r < n$.

Thus the only possible remainders are when a number is divided by n are $0, 1, \ldots, (n-1)$.

Combining all these facts gives

Theorem 4. If n is a positive integer, then for any integer a exactly one of the following n cases holds:

$$a \equiv 0 \pmod{n}$$

$$a \equiv 1 \pmod{n}$$

$$\vdots \quad \vdots$$

$$a \equiv n - 1 \pmod{n}$$

Here is what this means for some small values of n.

Proposition 5. For any integer a exactly one of the following two cases holds

$$a \equiv 0 \pmod{2}$$
 (that is a is odd)
 $a \equiv 1 \pmod{2}$ (that is a is even)

(Whence is a is even if and only if $a \equiv 0 \pmod{2}$ and a is odd if and only if $a \equiv 1 \pmod{2}$.)

Proposition 6. For any integer a exactly one of the following 3 cases holds

$$a \equiv 0 \pmod{3}$$

 $a \equiv 1 \pmod{3}$
 $a \equiv 2 \pmod{3}$

Proposition 7. For any integer a exactly one of the following 4 cases holds

$$a \equiv 0 \pmod{4}$$

 $a \equiv 1 \pmod{4}$
 $a \equiv 2 \pmod{4}$
 $a \equiv 3 \pmod{4}$

and at this point you have gotten idea.

Here are some examples of how these results can be used to simplify some proofs we have done earlier.

Proposition 8. For any integer n the number $n^3 + 13n$ is even.

Proof. There are two cased $n \equiv 0 \pmod{2}$ and $n \equiv 1 \pmod{n}$.

Case 1.
$$n \equiv 0 \pmod{2}$$
. Then, using that $13 \equiv 1 \pmod{2}$,

$$n^3 + 13n \equiv 0^3 + 13 \cdot 0 \tag{mod 2}$$

$$\equiv 0 \pmod{2}$$
.

Case 2. $n \equiv 1 \pmod{2}$. Then

$$n^3 + 13n \equiv 1^3 + 1 \cdot 1 \tag{mod 2}$$

$$\equiv 2 \pmod{2}$$

$$\equiv 0 \pmod{2}$$
.

So in all cases $n^3 + 13n \equiv 0 \pmod{2}$ and thus $n^3 + 13n$ is always even. \square

Problem 1. Use the idea of the last proof to show that for any integer n, the number $n^4 + 11n - 3$ is odd.

Here is anther one we did earlier:

Proposition 9. For any integer n we have $3 \mid n(n+1)(n+2)$.

Proof. Showing that $3 \mid n(n+1)(n+2)$ is the same as showing $n(n+1)(n+2) \equiv \pmod{3}$.

There are three cases:

Case 1. $n \equiv 0 \pmod{3}$. Then

$$n(n+1)(n+2) \equiv (0)(0+1)(0+2)$$

 $\equiv 0.$

Case 2. $n \equiv 1 \pmod{3}$. Then, using that $3 \equiv 0 \pmod{3}$, we have

$$n(n+1)(n+2) \equiv (1)(1+1)(1+2)$$
 (mod 3)
 $\equiv (1)(2)(3)$ (mod 3)
 $\equiv (1)(2)(0)$ (mod 3)
 $\equiv 0$ (mod 3).

Case 3. $n \equiv 2 \pmod{3}$. Then, again using that $3 \equiv 0 \pmod{3}$, we have

$$n(n+1)(n+2) \equiv (2)(2+1)(2+2)$$
 (mod 3)
 $\equiv (2)(3)(4)$ (mod 3)
 $\equiv (2)(0)(4)$ (mod 3)
 $\equiv 0$ (mod 3).

Thus in all cases $n(n+1)(n+2) \equiv 0 \pmod{3}$ and thus $3 \mid n(n+1)(n+2)$ for all integers n.

Problem 2. Use the idea of the last proof this show that for all integers n that n(n+1)(n+2)(n+3) is dividable by 4.

Problem 3. Show that there are no integers x and y such that

$$x^2 + 3y^4 = 2$$
.

Hint: Consider problem $\pmod{3}$. Then $3y^4 \equiv 0y^4 \equiv 0 \pmod{3}$ holds for all y. So you only need consider the three cases $x \equiv 0 \pmod{3}$, $x \equiv 1 \pmod{3}$, and $x \equiv 2 \pmod{3}$.

Problem 4. Do Problems 3, 5, and 10 on Page 129 of the text.