Name	Muhammad Anas Hassaan
CMS_ID	410555
Instructor	Sir Alamgir

Assignment #4

1. Pseudocode and Algorithm Design

Approach A: Basic (Textbook) RSA

Key Generation:

- 1. Choose two large prime numbers p and q
- 2. Compute n = p * q
- 3. Compute $\varphi(n) = (p-1)*(q-1)$
- 4. Choose e such that $1 < e < \varphi(n)$ and $gcd(e, \varphi(n)) = 1$
- 5. Compute $d \equiv e^{-1} \mod \varphi(n)$
- 6. Public Key: (e, n), Private Key: (d, n)

Encryption:

- 1. Convert plaintext M to integer m
- 2. Compute ciphertext $c = m^e \mod n$

Decryption:

- 1. Compute $m = c^d \mod n$
- 2. Convert m back to plaintext M

Approach B: CRT-Based RSA

Decryption (Optimized):

- 1. Precompute $dp = d \mod (p-1)$, $dq = d \mod (q-1)$, $qinv = q^{-1} \mod p$
- 2. Compute $m1 = c^dp \mod p$
- 3. Compute $m2 = c^dq \mod q$
- 4. h = qinv * (m1 m2) mod p
- 5. Compute m = m2 + h * q

2. Computational Complexity Analysis

Operation	Basic RSA	CRT-Optimized RSA	
Key Generat	ion O(log²n)	Same	
Encryption	O(log e)	Same	
Decryption	O(log d)	~4x faster using CRT	

CRT Speedup: Decryption with CRT is ~4x faster due to reduced operand size.

3. Implementation Overview (Python)

Key Modules Used:

- Crypto.Util.number for prime generation and inverse
- pow(a, b, c) for efficient modular exponentiation

Key Generation:

```
p = getPrime(512)
q = getPrime(512)
n = p * q
phi = (p - 1) * (q - 1)
e = 65537
d = inverse(e, phi)
```

Encryption/Decryption:

```
c = pow(m, e, n)

m = pow(c, d, n)
```

CRT Decryption:

```
dp = d % (p - 1)
dq = d % (q - 1)
qinv = inverse(q, p)
m1 = pow(c, dp, p)
m2 = pow(c, dq, q)
h = (qinv * (m1 - m2)) % p
m = m2 + h * q
```

4. Attack Simulations

Low Public Exponent Attack (Håstad's Attack):

- Use e = 3, encrypt same message for 3 recipients.
- Use CRT to combine ciphertexts.
- Extract plaintext with cube root.
- # Simulate CRT + nth root m = int(nth root(c combined, 3))

Wiener's Attack:

- Use d small relative to n.

- Use continued fraction attack (via wiener attack.py).
- Successful if $d \le n^0.25$.

Chosen Ciphertext Attack:

- Let $c' = c * r^e \mod n$, decrypt c'.
- Factor out r from result.

5. Evaluation and Results

Metric	Basic RSA	CRT-Based		
Decryption	1	Significantly lower		
Security	Vulnerable	Same		
Resilience	Weak with r	euse Same		
Overall	Slower, simp	ler Faster, need	ls care	

6. Conclusion

- 1. CRT-Based RSA is faster, especially in decryption.
- 2. Both implementations are vulnerable without padding.
- 3. Adding padding (e.g., OAEP) is recommended for security.
- 4. Attack simulations confirm textbook vulnerabilities.