User-level Checkpointing Through Exportable Kernel State

Patrick Tullmann, Jay Lepreau, Bryan Ford, Mike Hibler

October 28, 1996

Flux Project University of Utah

http://www.cs.utah.edu/projects/flux

Key Points

- □ Always exportable/settable kernel state:
 - Allows interesting user-level OS services
 - Has not been provided before
 - Can be done: Fluke does it
- □ Flexible checkpointing is an example service

Visible Kernel State

- □ State exported from or imported to kernel
 - Encapsulated in kernel objects, e.g. threads, ports, ...
- □ State must *always* be available
- □ Enables user-level services
 - Process migration, distributed memory, debugging, memory management
 - Checkpointing

Checkpointing: Key Issues

☐ Find the associated kernel objects

Extract state from those objects

Checkpointing: The Rest

- □ Pickle the object state
- □ Save it
- □ Bring it back and re-create the target

Sample Kernel Object State

- Thread State
 - Registers
 - IPC state
 - Exception handlers
 - References:
 - · Scheduler thread
 - · IPC Client
 - · IPC Server
 - · Address space

- Memory Map State
 - Offset in source
 - Size
 - Start address
 - Protection
 - References:
 - · Source space
 - · Address space

Hasn't This Been Done?

☐ Amoeba

Restrictions on when export is feasible,
 e.g., not during IPC operations

□ Mach

Restrictions on when export is feasible,
 e.g., not during long-term IPC operations

□ V++ Cache Kernel

Strict ordering restrictions on export,
e.g., all "dependent" objects *must* be exported

How Fluke Does It

- □ All necessary kernel state is in objects
 - All implicit kernel state is re-createable
- □ All operations on objects *appear* atomic
 - Hides implicit kernel state
 - Simplifies object state

Atomic & Restartable Operations

- Atomic operations
 - avoid intermediate state
- □ "Short" operations
 - undo changes if interrupted
- □ "Long" operations
 - break into valid intermediate states

Status

- □ Implemented on x86 PCs
- □ Checkpointer checkpoints and restores arbitrary subsystems
- □ Kernel hosts many user-level services
 - Virtual memory, debugging, process management
 - Many Unix utilities including GCC
- □ Expected release within 2 months

Conclusion

- □ Cleanly Visible Kernel State:
 - Enables user-level OS services
 - Is tricky to provide
 - Is feasible Fluke does it

More papers on Fluke at OSDI'96

