MATH2033 Mathematical Analysis Problem Set 1

Problem 1

Write down the negation of the following statements:

- (a) x is divisible by 3 or 4.
- **(b)** If x and y are positive, then x + y > 0.
- (c) There exists a differentiable function f(x) such that $\frac{df}{dx} + 2x = 0$ for all $x \in \mathbb{R}$.
- (d) For any $\varepsilon > 0$, there exists a positive integer K such that $|x_n L| < \varepsilon$ for all $n \ge K$ (*In this problem, $\{x_1, x_2, x_3, ...\}$ denotes a sequence of real number)

Problem 2

- (a) We let $\{x_1, x_2, x_3, ...\}$ be a sequence of real numbers defined by $x_1 = 2$ and $x_{n+1} = 2x_n + 1$. Is it true that x_n is prime number for all positive integers n. Explain your answer. (3) Hint: Calculate x_2, x_3, x_4, x_5, x_6)
- **(b)** We let n be a positive integer.
 - (i) If n^2 is multiple of 4, is it true that n is multiple of 4? Explain your answer.
 - (ii) If n^2 is multiple of 3, is it true that n is multiple of 3? Explain your answer.
- (c) We let f(x) be a function. Prove or disprove the following statement

(d) "If
$$f(0) = 0$$
, then $f'(0) = 0$."

Problem 3

We let f(x) be a function.

Determine if each of the following statements is correct or not.

- (a) Suppose that f(x) > 0 for all $x \in (1,4)$ (i.e. 1 < x < 4), then f(2)f(3) > 0.
- **(b)** Suppose that f(x) > 0 for some $x \in (1,4)$, then f(2)f(3) > 0.

Problem 4

Prove that $\sqrt[3]{3}$ is an irrational number.

Problem 5

Prove that there does *not* exist integers a and b such that 21a + 30b = 1.

Problem 6

We let a and b be two real numbers. Prove that if a, b > 0, then $\frac{2}{a} + \frac{2}{b} \neq \frac{4}{a+b}$.

Problem 7

We let x be a non-zero rational number and y be an irrational number, show that x + y and xy are both irrational.

Problem 8 (Harder)

We let x, y, z be three positive integers satisfying $x^2 + y^2 = z^2$. Show that if x and y are relatively prime (i.e. H.C.F. of x and y is 1), then one of them is odd and another one is even.

Problem 9

We let f(x) be a function satisfying f(ax + by) = af(x) + bf(y) for all real numbers a, b, x, y. Show that $f(z_1) = 0$ and $f(z_2) = 0$ if and only if $f(z_1 + z_2) = 0$ and $f(z_1 - z_2) = 0$.

Problem 10

Prove that a positive integer n is divisible by 9 if and only if the sum of digits of n is divisible by 9.

(6 Hint: We write $n=d_rd_{r-1}\dots d_1d_0$ in decimal representation, where each d_i represents a digit of n. Then n can be expressed as

$$n = d_r \times 10^r + d_{r-1} \times 10^{r-1} + \dots + d_1 \times 10 + d_0.)$$