Foundations of Data Science & Analytics Association Rule Mining

Ezgi Siir Kibris

Introduction to Data Mining, 2nd Edition bv Tan, Steinbach, Karpatne, Kumar

Tasks

Association Rule Mining

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

```
\{Diaper\} \rightarrow \{Beer\},\
\{Milk, Bread\} \rightarrow \{Diaper\},\
{Beer, Bread} → {Milk, Diaper}
```

co-occurrence, not causality

Frequent Itemset

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Itemset

- A collection of one or more items
 - {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count

- Frequency of occurrence of an itemset
 - $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
 - s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

Association Rules

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- $\{Milk, Diaper\} \rightarrow \{Beer\}$
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Association Rules

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow \{Beer\}$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Given a set of transactions T, the goal of association rule mining is to find all rules having

- support ≥ *minsup* threshold
- confidence ≥ minconf threshold

How?

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Two-step approach:

- **Frequent Itemset Generation**
 - Generate all itemsets whose support >= *minsup*

Rule Generation

Generate high confidence (>= minconf) rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

How?

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Two-step approach:

- **Frequent Itemset Generation**
 - Generate all itemsets whose support >= *minsup*

Rule Generation

Generate high confidence (>= *minconf*) rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent Itemset Generation

Given d items, there are 2^d possible candidate itemsets

Frequent Itemset Generation

Apriori principle:

 If an itemset is frequent, then all of its subsets must also be frequent

Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the *anti-monotone* property of support

Apriori Principle

Apriori Algorithm

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - Support Counting: Count the support of each candidate in L_{k+1} by scanning the DB
 - Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Generate 1-Itemset

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Count and Elimination

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Generate 2-Itemset and prune

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset
{Bread,Milk}
{Bread, Beer }
{Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Count and Elimination

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Generate 3-Itemset and prune

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

6 + 6 + 4 = 16

Triplets (3-itemsets)

Count and Elimination

Items (1-itemsets)

8	Itemset
	{Bread,Milk}
	{Bread,Beer}
	{Bread,Diaper
	{Milk,Beer}
	{Milk,Diaper}

{Beer, Diaper}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Count

3

3

Triplets (3-itemsets)

More Efficient Candidate Generation

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

How?

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Two-step approach:

- **Frequent Itemset Generation**
 - Generate all itemsets whose support >= *minsup*

Rule Generation

Generate high confidence (>= minconf) rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

If {A,B,C,D} is a frequent itemset, candidate rules:

```
ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A,
A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC
AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD,
BD \rightarrow AC, CD \rightarrow AB,
```

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \phi$ and $\phi \rightarrow L$)

- Confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) = \sigma(ABCD) / \sigma(ABC)$$

>= $c(AB \rightarrow CD) = \sigma(ABCD) / \sigma(AB)$
>= $c(A \rightarrow BCD) = \sigma(ABCD) / \sigma(A)$

Confidence is *anti-monotone* w.r.t. number of items on the RHS of the rule

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3
	. 4

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

Minconf = 0.8

c(Bread \rightarrow Milk) = 3 / 4

 $c(Milk \rightarrow Bread) = 3 / 4$

 $c(Bread \rightarrow Diaper) = 3 / 4$

 $c(Diaper \rightarrow Bread) = 3 / 4$

 $c(Milk \rightarrow Diaper) = 3/4$

 $c(Diaper \rightarrow Milk) = 3/4$

 $c(Beer \rightarrow Diaper) = 3 / 3$

 $c(Diaper \rightarrow Beer) = 3/4$

Apply Rules

Rules: {Beer → **Diaper}**

- When a customer buys Beer, suggest Diaper also.
- Put Beer and Diaper close.