## ЗАДАЧИ ОД ПРЕТХОДНИ ИСПИТИ

(електрични кола со еднонасочни извори)

**1** Во колото дадено на сликата да се определи моќноста на струјниот извор при отворен и при затворен прекинувач П.

$$E_1=20V, \ E_2=10V, \ R_1=5\ \Omega, \ R_2=20\ \Omega, \ R_3=15\Omega, \ I_S=0.2A$$



**2** Со примена на Кирхофови закони да се определи струјата низ изворот  $E_2$ . Потоа со други постапки на решавање (еквивалентирање на колото) да се провери добиениот резултат.

$$R_1$$
= 13 $\Omega$ ,  $R_2$ = 20 $\Omega$ ,  $R_3$ = 30 $\Omega$ ,  $R_4$ = 15 $\Omega$   $E_1$ =10V,  $E_2$ =20V,  $I_8$ =0.2A



**3** Да се определи еквивалентниот реален напонки извор и еквивалентниот реалне струен извор во однос на приклучоците A и B.

$$R1=20\Omega$$
,  $R2=10\Omega$ ,  $R3=20\Omega$ ,  $E_1=100$  V,  $E_3=200$  V,  $I_S=10$  A



**4** Да се определи еквивалентниот реален напонки извор и еквивалентниот реалне струен извор во однос на приклучоците A и B.



5 Да се определи еквивалентниот реален напонки извор и еквивалентниот реалне струен извор во однос на приклучоците A и B.

$$E_1 = 15 \text{ V}$$
  $I_{S1} = 0.2 \text{ A}$   $I_{S2} = 0.4 \text{ A}$   $R_1 = 6 \Omega$   $R_2 = 5 \Omega$   $R_3 = 12 \Omega$   $R_4 = 4 \Omega$ 



**6** Да се определат струите во сите гранки од колото прикажано на сликата. Потоа да се определат моќностите на  $R_5$  и  $I_{S1}$  и  $E_1$ .

$$R_1 \!\!=\! 10\Omega,\, R_2 \!\!=\! 20\Omega,\, R_3 \!\!=\! 15\Omega,\, R_4 \!\!=\! 25\Omega,\, R_5 \!\!=\! 15\Omega,\, R_6 \!\!=\! 10\Omega,\, R_7 \!\!=\! 10\Omega$$

$$E_1 \!\!=\!\! 100V \ I_{S1} \!\!=\!\! 1\ A \ I_{S2} \!\!=\!\! 2\ A$$



7 Во колото прикажано на сликата познато е дека моќност ана напонскиот звор E изнесува  $P_E$ =80W, и дека струите I'=3A и I''=1A. Да се определи напонот  $U_{AB}$  и еквивалентната отпорност во однос на приклучоците A и B.



8 Со најпогодна постапка да се определи струјата што ја покажува амперметарот.

$$R_1$$
=3 $\Omega$   $R_2$ =2 $\Omega$   $R_3$ =1 $\Omega$   $R_4$ =5 $\Omega$   $R_5$ =10 $\Omega$   $R_6$ =7 $\Omega$   $E_1$ =20 $V$   $E_2$ =10 $V$   $I_S$ =100mA



9 Во колото дадено на сликата кога преклопката е во положба 1 струјата низ отпорникот  $R_1$  е  $I_1$ =10 A во означената насока. Кога преклопката е во положба 2 струјата низ истиот отпорник е  $I'_1$ =8 A. Да се одреди електромоторната сила Е. Колку изнесува промената на напонот на отпорноста  $R_3$  при промена на преклопката  $\Pi$  од положба а) во положба b).  $R_1$ =5  $\Omega$ ,  $R_2$ =20  $\Omega$ ,  $R_3$ =6  $\Omega$ ,  $R_4$ = $R_4$ =10  $\Omega$ 



10 Да се направи анализа и со избор на најпогодна метода (независни потенцијали или контурни струи) да се определат моќностите на генераторите  $E_1$  и  $I_{S1}$  и моќноста на отпорникот  $R_5$  во колото со прикажано на сликата. Резултатот да се провери со Кирхофовите закони.



**11** При отворени прекинувач  $\Pi$  струјата низ отпорникот  $R_8$  изнесува  $I_8$ =1A. Да се одбере вредност за отпорникот  $R_9$  така што по затворањето на прекинувачот  $\Pi$  на него ќе се развива максимална моќност.



- 12 За колото прикажано на сликата познато е дека во при отворен прекинувач  $\Pi$  напонот  $U_{AB1}$ =30V, додека во затворен прекинувач  $\Pi$  напонот изнесува  $U_{AB2}$ =15V.
- а) Да се определи вредноста на електромоторната сила Е2.
- б) Да се определи вредноста на отпорникот  $R_7$ .





13 Да се определат јачините на струите низ отпорниците  $R_2$  и  $R_5$ , ако струјата на струјниот генератор се намали за  $\Delta I_S$ = 30A. Да се определи за колку ќе се променат моќностите на отпорниците  $R_2$  и  $R_5$ .

$$R_1 = R_2 = R_3 = R_5 = 30\Omega$$



14 Во колото прикажано на сликата кога преклопката  $\Pi_1$  е во положба 2 и прекинувачот  $\Pi_2$  е затворен струјата  $I_4$  изнесува 1,7A додека напонот  $U_{R3}$ =18V. Да се определи колку ќе изнесува струјата  $I_3$  и напонот на кондензаторот  $U_{R3}$  кога преклопката е  $\Pi_1$  е во положба 1 и перкинувачот  $\Pi_2$  е отворен?

| Ω   |
|-----|
| !   |
| 0mA |
|     |
|     |



15 За колото прикажано на сликата познато е дека кога преклопката  $\Pi$  е во положба 1 струјата низ отпорниот R' изнесува I'=0.8A. Да се определи отпорноста на отпорникот R'. Да се определи струјата низ отпорникот R"=R'/2 кога преклопката  $\Pi$  се наоѓа во положба 2.

$$E_1$$
=15 V  $E_2$ =2 V  $E_3$ =5 V  $I_{S1}$ =0.2 A  $I_{S2}$ =0.4 A  $R_1$ =6  $\Omega$   $R_2$ =5  $\Omega$   $R_3$ =12  $\Omega$   $R_4$ =4  $\Omega$   $R_5$ =5  $\Omega$   $R''$ = $R'/2$ 



**16** Да се определат моќностите на генераторот  $E_1$ ,  $I_S$  и  $E_5$  во колото со примена на методата на независни потенцијали во јазли.

 $R_2 = R_3 = R_7 = 10\Omega$ ;  $R_4 = R_5 = R_6 = 20\Omega$ 

 $R_8 \!\! = 30\Omega \; ; \qquad E_1 \!\! = \!\! E_4 \!\! = \!\! 100 \; V \; ; \; E_5 \!\! = \!\! 200 \; V \; \label{eq:R8}$ 

 $E_3=50 \text{ V}$ ;  $I_S=20 \text{ A}$ 



- 17 При затворен прекинувач  $\Pi$  јачината на струјата низ отпорникот  $R_4$  изнесува  $I_4$ =100mA, а напонот на отпорникот  $R_1$  изнесува  $U_{R1}$ =5V.
- а) Да се определи колку изнесува придонесот во вредноста на струјата  $I_4$  и на напонот  $U_{R1}$  од работењето само на напонскиот

генератор  $E_3$ .

б) Да се определи колку ќе изнесува промената на јачината на струјата која што тече низ отпорникот  $R_4$  и на напонот на отпорникот  $R_1$  по отворање на прекинувачот  $\Pi$ .

$$R_1=7\Omega$$
  $R_2=5\Omega$   $R_3=3\Omega$ 

$$R_4=6\Omega$$
  $R_5=10\Omega$   $R_6=10\Omega$ 

$$E_3 = 7V$$
  $I_S = 300 \text{mA}$ 



18 За колото прикажано на сликата да се определи струјата низ отпорникот  $R_5$  при затворен прекинувач? П. Колку изнесува струјата низ генераторот  $E_1$  при отворен прекинувач? Колку изнесува напонот на кондензаторот во стационарна состојба при затворен и при отворен прекинувач?

 $R_1=10\Omega, R_2=8\Omega, R_3=15\Omega, R_4=8\Omega, R_5=11\Omega,$ 

 $E_1 = 20V, E_2 = 800V$ 



- 19 Кога прекинувачот  $\Pi_1$  е отворен напонот помеѓу точките A и B изнесува 10V. Кога прекинувачот  $\Pi_1$  е затворен и преклопката  $\Pi_2$  е во во положба "1" јачината на струјата низ преклопката  $\Pi_2$  е I=1A со означената насока.
- а) Да се определи вредноста на отпорникот  $R_3$ .
- б) Да се определи јачината на струјата низ отпорникот  $R_5$  кога прекинувачот  $\Pi_1$  е затворен и прекопката  $\Pi_2$  е во положба "2".
- в) Да се определат вредностите на струјата низ отпорникот  $R_4$  за следните 3 случаи: кога прекинувачот  $\Pi_1$  е отворен; кога прекинувачот  $\Pi_1$  е затворен и преклопката  $\Pi_2$  е во положба "1"; кога прекинувачот  $\Pi_1$  е затворен и преклопката  $\Pi_2$  е во положба "2".
- г) Со користење на формулите за еквивалентирање без пресметки да се определи изразот за параметрите на еквивалентниот реален напонски генератор  $(E_g,R_g)$  во однос на приклучните точки A и B.

 $R_1=10\Omega$   $R_2=20\Omega$   $R_4=60\Omega$   $R_5=30\Omega$ 



**20** Да се определи отпорноста на отпорникот  $R_1$  така што на него да се развива максимална моќност, и да се определи колку изнесува максималната моќност.

 $R_{2}=3\Omega$   $R_{3}=5\Omega$   $R_{4}=15\Omega$   $R_{5}=20\Omega$   $R_{6}=20\Omega$   $E_{1}=20V$   $E_{2}=10V$   $E_{3}=15V$   $E_{5}=15V$   $I_{S}=2 A$ 

