

MTH8302

Modèles de régression et d'analyse de la variance

Devoir 3

distribution: 13 juin 2018

remise: 23 juin 2018 (au plus tard 23h55)

Ce travail est réalisé individuellement par chaque étudiant inscrit au cours.

Chaque étudiant le fait SEUL sans demander de l'aide à d'autres.

En apposant sa signature ci-dessous, l'étudiant (e) certifie sur son honneur avoir fait ce travail seul. L'obtention des résultats présentés et la rédaction de ce travail ne fait l'objet d'aucun plagiat, partiel ou total.

Information concernant le plagiat à Polytechnique : http://www.polymtl.ca/etudes/ppp/index.php

Exigences pour la rédaction du rapport consulter la page 4 du plan de cours

http://www.groupes.polymtl.ca/mth6301/mth8302/Autres/2018-MTH8302-PlanCours.pdf

Compléter l'information suivante et transmettez cette page comme la page 1 de votre rapport de devoir. Une copie de cette page est disponible sur le site du cours.

MTH8302 Modèles de régression et d'analyse de variance
NOM _BETTACHE____ PRÉNOM _Lyes Heythem__
MATRICULE _1923715__ SIGNATURE

- ► Transmettre votre rapport par courriel à bernard.clement@polymtl.ca
- Nom suggéré pour le fichier à transmettre : NomFamille-matricule-MTH8302-Devoir3.pdf

TABLEAU CORRECTION

	valeur	obtenu	
No 8 - BostonHousing		30	
No 9 - Amphétamine		30	
No 10 - Assurances		30	
Qualité générale		10	
TOTAL		100	

Les données pour la réalisation du devoir sont disponibles sur le site WEB du cours.

http://www.groupes.polymtl.ca/mth6301/MTH8302.htm/

Données = BostonHousing.sta

Réponse

8a)
Modèle de Régression MARS (MARS) sur l'ensemble M

On remarque que la variable X10_Tax plus important par rapport les autres avec une avec une moyenne de 406,35 alors que les autres variables ont des moyennes variantes entre 0 et 69. Le graphique de Box&Whisker confirmer notre remarque.

O cases with missing data were found.

MARSplines Results:
Dependent: Y_MV
Independents: X1_CRIM, X2_NOX, X3_AGE, X4_DIS, X5_RM, X6_LSTAT, X7_RAD, X8_CHAS, X9_NDUS, X10_TAX, X11_PT
Number of terms = 16
Number of basis functions = 23
Order of interactions = 2
Penalty = 2,000000
Threshold = 0,000500
GCV error = 12,366354
Prune = Yes

Après la régression MARS, les variables retenues dans le modèle (7 sur 11) sont X1_CRIM, X2_NOX, X4_DIS, X5_RM, X6_LSTAT, X10_TAX et X11_PT.

	Number of References to Each Predictor (BostonHousi Number of times each predictor is referenced (used) Include condition: GROUP="M"								
	References								
Dependents	(to Basis Functions)								
X1_CRIM	2								
X2_NOX	3								
X3_AGE	0								
X4_DIS	3								
X5_RM	5								
X6_LSTAT	7								
X7_RAD	0								
X8_ CHAS	0								
X9_NDUS	0								
X10_TAX	2								
X11 PT	1								

	Regression statistics (BostonHo				
	Include condition: GROUP='M'				
Regression statistics	Y_MV				
Mean (observed)	22,64568				
Standard deviation (observed)	9,31405				
Mean (predicted)	22,64568				
Standard deviation (predicted)	8,72810				
Mean (residual)	-0,00000				
Standard deviation (residual)	3,25143				
R-square	0,87814				
R-square adjusted	0,87311				

D'après le tableau on remarque que notre modèle prédit est très bon (R² = 87,8% et R²ajusté = 87,3% les moyennes des valeurs observées et prédites

Ce tableau nous donne le nombre le nombre de fois que la variable est présente dans l'expression de l'équation prédictive.

D'après le tableau les variables X6_LSTAT (7 fois) et X5_RM (5 fois) sont les plus référencées. Et les significatives.

sont égales et leurs écarts-types proches (9,3 et

Coded 0, 1.

Y_MV = 2,19770047540900e+001 - 5,53036467170238e-001*max(0; X6_LSTAT6,72000000000000e+000) + 1,15911619953539e+001*max(0; X5_RM-6,43400000000000e+000)
- 2,55229322508175e+000*max(0; 6,4340000000000e+000-X5_RM) - 1,96290138273353e+002
*max(0; X2_NOX-6,3100000000000e-001)*max(0; X5_RM-6,43400000000000e+000) +
1,57584987036513e-002*max(0; 6,72000000000000e+000-X6_LSTAT)*max(0; X10_TAX3,04000000000000e+002) + 2,50159573202584e-002*max(0; 6,7200000000000e+000-X6
_LSTAT)*max(0; 3,0400000000000e+002-X10_TAX) - 1,35694194791614e-001*max(0; X1
_CRIM-1,52880000000000e+001) + 1,62370332504544e-001*max(0; 1,528800000000000e+001X1_CRIM) + 7,60584716892318e+000*max(0; 1,85890000000000e+000-X4_DIS)*max(0;
6,4340000000000000e+000-X5_RM) - 1,03828989230395e+000*max(0; X2_NOX-

6,1400000000000e-001) *max(0; X6_LSTAT-6,72000000000000e+000) + 2,51683385931161e+
000*max(0; 6,1400000000000e-001-X2_NOX) *max(0; X6_LSTAT-6,7200000000000e+000) 1,73742309174300e-001*max(0; X6_LSTAT-6,7200000000000e+000) *max(0; X11_PT-

1,920000000000000e+001) + 6,87837946114155e-001*max(0; 6,43400000000000e+000-X5_RM)
*max(0; X6_LSTAT-2,6820000000000e+001) - 4,89877160805664e-001*max(0; X4_DIS-3,2628000000000e+000) + 1,97656447281912e+000*max(0; 3,26280000000000e+000-X4_DIS)

NOTE: The following model should be used directly, with categorical variables being

8,7)

L'équation prédictive du modèle avec les variables indépendantes retenues (16 termes différents

pour 23 fonctions de base)

| Model coefficients (BostonHousing.sta in 2018-MTH8302-Devoirs-Data) |
| NOTE: Highlighted cells indicate basis functions of type |
| max(0, independent-knot), otherwise max(0, knot-independent)

	Include condition				. ,							
Coefficients, knots	Coefficients	Knots	Knots	Knots	Knots	Knots	Knots	Knots	Knots	Knots	Knots	Knots
and basis functions	Y_MV	X1_CRIM	X2_NOX	X3_AGE	X4_DIS	X5_RM	X6_LSTAT	X7_RAD	X8_ CHAS	X9_NDUS	X10_TAX	X11_PT
Intercept	21,977											
Term.1	-0,553						6,72000					
Term.2	11,591					6,434000						
Term.3	-2,552					6,434000						
Term.4	-196,290		0,631000			6,434000						
Term.5	0,016						6,72000				304,0000	
Term.6	0,025						6,72000				304,0000	
Term.7	-0,136	15,28800										
Term.8	0,162	15,28800										
Term.9	7,606				1,858900	6,434000						
Term.10	-1,038		0,614000				6,72000					
Term.11	2,517		0,614000				6,72000					
Term.12	-0,174						6,72000					19,20000
Term.13	0,688					6,434000	26,82000					
Term.14	-0,490				3,262800							
Term.15	1,977				3,262800							

Ce tableau nous donne les nœuds employés dans le modèle

Les graphiques qui identifient les nœuds employés dans le modèle :

8b) Réseaux de neurones sur l'ensemble M

D'après les deux graphes (les équations prédictives linéaires de deux modèles retenus avec les valeurs observées) on remarque que le deuxièmes réseau (R²=0,9257) meilleur par rapport au premier (R²=0,8761)

D'après les graphes nous avons confirmé notre remarque président (le second réseau est meilleure par rapport au premier)

8c) Régression MARS VS Régression ANN sur l'ensemble T

MARS sur l'ensemble T

On remarque que la variable X10_Tax plus important par rapport les autres avec une avec une moyenne de 415,77 alors que les autres variables ont des moyennes variantes entre 0 et 68. Le graphique de Box&Whisker confirmer notre remarque

0 cases with missing data were found.

MARSplines Results:

Dependent: Y_MV

Independents: X1_CRIM, X2_NOX, X3_AGE, X4_DIS, X5_RM, X6_LSTAT, X7_RAD, X8_CHAS, X9_NDUS,

X10_TAX, X11_PT

Number of terms = 13

Number of basis functions = 18

Order of interactions = 2

Penalty = 2,000000

Threshold = 0,000500 GCV error = 7,510701

Prune = Yes

Après la régression MARS, les variables retenues dans le modèle (7 sur 11) sont X1_CRIM, X2_NOX, X4_DIS, X5_RM, X6_LSTAT, X10_TAX et X11_PT.

	Number of References to Each Predictor (B Number of times each predictor is reference Include condition: GROUP='T						
	References						
Dependents	(to Basis Functions)						
X1_CRIM	1						
X2_NOX	0						
X3_AGE	1						
X4_DIS	2						
X5_RM	4						
X6_LSTAT	5						
X7_RAD	0						
X8_ CHAS	0						
X9_NDUS	0						
X10_TAX	2						
X11 PT	3						

Ce tableau nous donne le nombre le nombre de fois que la variable est présente dans l'expression de l'équation prédictive.

D'après le tableau les variables X6_LSTAT (5 fois) et X5_RM (4 fois) sont les plus référencées. Et les significatives.

	Regression statistics (Bostonh				
	Include condition: GROUP=T				
Regression statistics	Y_MV				
Mean (observed)	22,08020				
Standard deviation (observed)	8,74232				
Mean (predicted)	22,08020				
Standard deviation (predicted)	8,49311				
Mean (residual)	-0,00000				
Standard deviation (residual)	2,07249				
R-square	0,94380				
R-square adjusted	0,93540				

D'après le tableau on remarque que notre modèle prédit est très bon (R² = 94,38% et R²ajusté = 93,5%), les moyennes des valeurs observées et prédites sont égales

L'équation prédictive du modèle avec les variables indépendantes retenues

	Iviodei coemicien					ata)						
	NOTE: Highlight	DTE: Highlighted cells indicate basis functions of type										
	max(0, independ	nax(0, independent-knot), otherwise max(0, knot-independent)										
	Include condition	n: GROUP=T	•									
Coefficients, knots	Coefficients	Knots	Knots	Knots	Knots	Knots	Knots	Knots	Knots	Knots	Knots	Knots
and basis functions	Y_MV	X1_CRIM	X2_NOX	X3_AGE	X4_DIS	X5_RM	X6_LSTAT	X7_RAD	X8_ CHAS	X9_NDUS	X10_TAX	X11_PT
Intercept	25,40373											
Term.1	-0,79551						6,360000					
Term.2	1,42300						6,360000					
Term.3	11,53364					6,431000						
Term.4	-2,85796					6,431000						
Term.5	-0,93411											15,20000
Term.6	-2,23975					6,750000						15,20000
Term.7	0,05722	7,672020					6,360000					
Term.8	9,87471				2,021800	6,431000						
Term.9	-0,18696				3,102500		6,360000					
Term.10	0,03571										287,0000	
Term.11	0,01113			95,40000			6,360000					
Term.12	0,00777										287,0000	19,20000

Ce tableau nous donne les nœuds employés dans le modèle

On remarque que la plupart des valeurs prédites sont proches de la droite obtenue (l'équation prédictive linéaire du modèle avec les valeurs observées)

D'après le graphe de l'analyse des résidus avec les valeurs prédites on remarque que le modèle obtenu avec la régression MARS est globalement bon.

Réseaux de neurones sur l'ensemble T

Ce tableau nous donne les informations sur les deux meilleurs réseaux retenus dans le modéle

D'après les deux graphes (les équations prédictives linéaires de deux modèles retenus avec les valeurs observées) on remarque que le deuxièmes réseau (R²=0,9200) meilleur par rapport au premier (R²=0,9155)

D'après les graphes nous avons confirmé notre remarque président (le second réseau est meilleure par rapport au premier)

Comparaison MARS et Réseaux de neurones

<u>MARS</u>: pouvoir prédictif excellent ($R^2 = 94,38\%$ et R^2 ajusté = 93,5%) et analyse des résidus excellente sur les variables prédites (aucun résidu supérieur à 6 en valeur absolue, 93 sur 101 ont des résidus inférieurs à 4 en valeur absolue.

Réseaux de neurones avec le meilleur réseau : pouvoir prédictif excellent (R² = 92%) et analyse des résidus très bonne sur les variables prédites (aucun résidu supérieur à 12 en valeur absolue, 99 sur 101 ont des résidus inférieurs à 6 en valeur absolue.

→ D'après les deux on conclure le modèle de MARS est le meilleur choix par rapport au Réseaux de neurones pour ces données

(Backward Stepwise) (MRB) vs MARS et ANN

Dack	waru Stepwi	Se) (IVIRD) VS IVIA	INO EL AIVIN
Var	Nom	coefficient	MRB sélection arrière
Х0	GENÉRAL intercepte	b0	27,50599
X1	CRIM	b1	
X2	NOX	b2	
ХЗ	AGE	b3	
X4	DIS	b4	
X5	RM	b5	4,35412
X6	LSTAT	b6	-0,45228
Х7	RAD	b7	
X8	CHAS	b8	
Х9	INDUS	b9	
X10	TAX	b10	
X11	PT	b11	-1,45293
		SS resid résiduelle	1769,708
		MSE = sigma ² (ANOVA)	18,244
		R ²	0,76844831

On remarque que la méthode de Régression avec Backward Stepwise a éliminé les variables qui ne sont pas significatives

On remarque que la plupart des valeurs prédites sont proches de la droite obtenue (l'équation prédictive linéaire du modèle avec les valeurs observées)

D'après le graphe de l'analyse des résidus avec les valeurs prédites on remarque que le modèle obtenu avec la régression MRB est globalement bon.

R²ajusté			Regression Su R= ,87661183 F(3,97)=107,36 Include conditi	R2= ,768448 0 p<0,0000 S	31 Adjusted old Error of e	R2= ,7612869	91	ising.sta in Workboo	k1_(Recovered	
		N=	=101	b*	Std.Err. of b*	ь	Std.Err. of b	t(97)	p-value	
	107.30	In	tercept 5 RM	0.347496	0.066119	27,50599 4,35412	7,645390 0.828469	3,59772 5,25562		
F	107,30	X6	6_LSTAT	-0,369334		-0,45228	0,020469		0.000000	
		X1	11_PT	-0,372500	0,054104	-1,45293	0,211030	-6,88492	0,000000	

MRB : pouvoir prédictif bon (R^2 = 76,8% et R^2 ajusté = 76,1%) et analyse des résidus quand même bonne sur les variables prédites,97 sur 101 ont des résidus inférieurs à 10 en valeur absolue.

8d)

Comparasion MRB(*Backward Stepwise*) MARS et Réseaux de neurones

Modèle	R ²	Prédiction	Analyse des résidus	Complexité du modéle
MRB	76,8%	Bon	Moyenne bon	Facile (les étapes et la compréhension de résultats de modèle)
MARS	94,38%	Excellent	Excellent	Moyenne (les étapes et la compréhension de résultats de modèle un peu facile)
Réseaux de neurones	92%	Excellent	Très bonne	Étapes moyenne et la compréhension de résultats est difficile

D'après le tableau on remarque que MARS est meilleur

8e)

8e)		
	forces	faiblesses
MRB	-résous le problème de multicolinéarité (élimine les variables explicatives les moins importantes dans les données) -les résultats donnent directement l'imporance relative des variables d'entrée sur le modèle a partir de leurs effets significatifs -le meilleur choix par rapport MRO et MRF -Facile a applique	-Pouvoir prédictif et analyse des résidus faible par rapport MARS et Réseaux de neurones -résultat peut etre biaisés (résultats aberrants, manque de robustesse) pour une très grande quantité des données (manque des données)Incapable de découvrir la structure locale des données
MARS	-Facilement a utilisé pour exploiter une très grande quantité des données complexe -Capable de découvrir la structure locale des données -Pouvoir prédictif et analyse des résidus très bon par rapport à la régression multiple	-les étapes et la compréhension de résultats de modèle sont un peu difficile par rapport MRB -méthode un peu complexe par rapport MRB

éseaux d	

-Facilement a utilisé pour exploiter une très grande quantité des données complexe -Pouvoir prédictif et analyse des résidus très bon par rapport à la régression multiple -les étapes et la compréhension de résultats de modèle sont difficile par rapport MRB et MARS -méthode un peu complexe par rapport MRB

8f) conclusion

Le processus de modélisation statistique à l'aide de modèles de régression incluant la méthode les réseaux de neurones serait définir le problème et identifier et préparer es données, et nous permit de construire, tester et évaluer le modèle en choisissant la technique la plus optimale et trouver le meilleur réseau. Et pour aide au traitement la méthode de MARS nous permit a exploiter une très grande quantité des données complexe et utilise l'algorithme itératif adaptif utile pour aider le réseau à effectuer le traitement.

No 9 Modèles d'analyse de la variance

Données = Amphétamine.sta

voir 2018-MTH8302-Devoirs-data.stw

Réponse

9a)

	nature	rôle
Étude 1	XB_vitesse : Qualitatif XC_dose :Quantitatif (fixe)/ catégorique	XB_vitesse : Facteur Inter XC_dose : Facteur Intra
Étude1 et Étude2 combinées	XA_levier : Quantitatif (fixe)/ catégorique XB_vitesse : Qualitatif XC_dose : Quantitatif (fixe)/ catégorique	XA_levier : Facteur Inter XB_vitesse : Facteur Inter XC_dose : Facteur Intra

9b

les souris initialement sont classées en catégories de vitesse pour étudie l'évolution des souries en fonction de vitesse et pour faciliter le regroupement et les calcules des moyenne et aussi pour limiter les coûts (utiliser les statistiques pour prédit une résultat pour une expérience).

9c)

Les souris reçoit la dose d'amphétamine dans un ordre dicté par le hasard pour réalisé une expérience qui approcher a la réalité

Et on sait que dans l'expérimentation les modalités sont affectés au hasard aux unités

9d)

Pour faire l'analyse de l'étude 1 on utilise le modèles d'analyse de la variance avec la Méthode approche à mesures répétées

Au début pour faire l'analyse avec la méthode approche à mesures répétées on doit d'abord organiser nos données :

Y1,0=1,05-0,218*lente+0,0016*moyenne						Υ	Y1,0=0,77-0,23*lente+0,0016*moyenne					
On remarque que la variable moyenne de vitesse est non significative et on remarque aussi que la									e la			
variable vite de vitesse n'apparaître pas dans notre modéle												
	Test of SS Whole Model vs. SS Residual (Amphetamine sta in 2018-MTH8302-Devoirs-Data)											
Dependent	Multiple	Multiple	Adjusted	SS	df	MS	SS	df	MS	F	р	
Variable	R	R ²	R ²	Model	Model	Model	Residual	Residual	Residual			
Y_0,0	0,930923	0,866618	0,853915	0,780808	2	0,390404	0,120175	21	0,005723	68,22124	0,000000	
Y_0,5	0,914503	0,836316	0,820727	0,751900	2	0,375950	0,147163	21	0,007008	53,64784	0,000000	
Y_0,5 Y_1,0	0,924822	0,855296	0,841515	0,756933	2	0,378467	0,128062	21	0,006098	62,06188	0,000000	
Y_1,8	0,922772	0,851508	0,837366	0,893058	2	0,446529	0,155737	21	0,007416	60,21101	0,000000	

D'après les tableaux et les graphes on remarque que le facteur vitesse et DOSE sont significatifs Et l'interaction DOSE*vitesse est non significatif (p_valeu), et on remarque que la variable vite de vitesse n'apparaître pas dans notre modèle

Les données répétées sont considérées comme plusieurs variables de réponse dépendantes ; dans ce cas il est préférable d'organiser les données avec autant de variables de réponse Y qu'il y a de mesures répétées. La variabilité inter sujet est exclue de l'erreur expérimentale, donc il est plus facile de comparer les traitements entre eux

Chaque sujet sert comme son propre contrôle Économie du nombre de sujets

9e) Répondez aux mêmes questions que 9d) pour les 2 études combinées.

au début pour faire l'analyse avec la méthode approche à mesures répétées on doit d'abord organiser nos données :

_vitesse	XA_levier	Y_0,0	Y_0,5	Y_1,0	Y_1,8	lente	5		2,18	2,18 2,44	2,18 2,44 1,92
lente	2	0,81	0,80	0,82	0,50	lente	5		2,02	2,02 2,20	2,02 2,20 1,75
lente	2	0,77	0,78	0,79	0,51	lente	5		2,06	2,06 2,28	2,06 2,28 1,86
lente	2	0,80	0,82	0,83	0,52	lente	5		2,28	2,28 2,46	2,28 2,46 1,90
lente	2	0,95	0,95	0,91	0,60	moyenne	5		2,62	2,62 2,58	2,62 2,58 2,21
moyenne	2	1,03	1,13	1,04	0,82	moyenne	5		2,60	2,60 2,60	2,60 2,60 2,34
moyenne	2	0,96	0,93	1,02	0,63	moyenne	5		2.39		
moyenne	2	0,98	1,00	0,98	0,74	moyenne	5		2,70		
moyenne	2	1,17	1,20	1,18	0,91	vite	5		2,98		
vite	2	1,20	1,24	1,27	0,96	vite	5		3,10		
vite	2	1,25	1,23	1,30	1,01	vite	5	2,8			
vite	2	1,23	1,20	1,18	0,95	vite	5	3,21		2,92	
vite	2	1,31	1,42	1,41	1,08	lente					
lente	2	0,84	0,85	0,88	0,58		5	2,26		2,40	
lente	2	0,72	0,73	0,74	0,42	lente	5	1,96		2,18	
lente	2	0,73	0,76	0,75	0,48	lente	5	2,10		2,24	
lente	2	0,89	0,90	0,97	0,67	lente	5	2,35		2,49	2,49 1,95
moyenne	2	1,11	1,02	1,12	0,75	moyenne	5	2,68		2,64	2,64 2,17
moyenne	2	1,01	1,05	0,95	0,72	moyenne	5	2,66		2,62	2,62 2,28
moyenne	2	1,05	1,07	1,05	0,79	moyenne	5	2,43		2,48	2,48 2,16
moyenne	2	1,12	1,13	1,11	0,83	moyenne	5	2,66		2,70	2,70 2,27
vite	2	1,28	1,17	1,21	0,91	vite	5	2,94		2,70	2,70 2,44
vite	2	1,21	1,31	1,22	0,93	vite	5	3,20		2,91	2,91 2,45
vite	2	1,16	1,15	1,23	1,02	vite	5	2,84		2,53	2,53 2,23
vite	2	1,40	1,33	1,35	1,20	vite	5	3,31		2,98	2,98 2,47

	Si	Repeated Measures Analysis of Variance (Amphetamine.sta in Sigma-restricted parameterization Effective hypothesis decomposition							
Effect		SS	Degr. of Freedom	MS	F	р			
Intercept		453,5011	1	453,5011	11036,05	0,000000			
XAlevier		59,7417	1	59,7417	1453,83	0,000000			
XBvitesse		7,9959	2	3,9979	97,29	0,000000			
XAlevier*XBv	itesse	0,0946	2	0,0473	1,15	0,325890			
Error		1,7259	42	0,0411					
DOSE_ET1		25,9021	3	8,6340	3844,04	0,000000			
DOSE_ET1*xAI	levier	12,3610	3	4,1203	1834,46	0,000000			
DOSE_ET1*xB	vitesse	0,3517	6	0,0586	26,09	0,000000			
DOSE_ET1*xai	evier*XBvitesse	0,3704	6	0,0617	27,48	0,000000			
Error		0,2830	126	0,0022					
	Mauchley Sp	pherici	ity Test	(Ampl	netamin	e.sta			
	Sigma-restricted parameterization								
	Effective hypothesis decomposition								
Effect	W	Ch	i-Sqr.	df	р				
DOSE	0,686060	15	,34372	5	0,00	8990			

On remarque que les facteurs XB_vitesse, XA_levier, et DOSE et l'interaction DoSE*XA_levier,, DoSE*XB_vetesse, DoSE*XA_levier*XB_vetesse sont significatifs Et l'interaction XA_levier*XB_vitesse sont non significatif

Données = Assurances.sta

2018-MTH8302-Devoirs-data.stw voir

Réponse

10a) L'analyse statistique des données peut se faire selon plusieurs modèles. Proposer 4 modèles statistiques sans effet d'interaction que l'on peut considérer pour faire l'analyse. Présenter vos modèles en complétant le tableau

Modèle	Nom statistique (*)	Définir le rôle de chacune des variables impliquées
M1	Multiple regression	-Continu : age / nombre interventions&procédures /nombre autres maladies/nombre médicaments prescrits/nombre visites unités soins intensifs/nombre complications/durée traitement (jr) -Dependent (continu) : Y_coûtTotal
M2	Factorial ANOVA	-catégorique (facteur) :genre/ v4_record / v6_record -Dependent (continu) : Y_coûtTotal
М3	One-way ANOVA	-catégorique (facteur) : genre / v4_record / v6_record -Dependent (continu) : Y_coûtTotal
M4	Analysis of covariance (ANCOVA)	-Qualitatif: genre/ v4_record / v6_record -Quantitatif (Continu): age / nombre interventions&procédures /nombre autres maladies/nombre médicaments prescrits/nombre visites unités soins intensifs/nombre complications/durée traitement (jr) -Dependent (continu): Y_coûtTotal

10b)

Factorial ANOVA

Avec ces modéles on peut trouver les variables qui sont la plus effet sur notre réponse

Remrque : nous avons aussi éssayer d'analyse juste avec les facteurs qui sont significatifs et nous avons obtenu presque les mémes résultats (R^2)

10c) Comparer les résultats de 2 modèles. Y - a-t-il des différences d'interprétations?

	R ²	F
Multiple regression	54,94%	135,9
Factorial ANOVA	33,29%	16,57

D'après le tableau on remarque que la méthode Multiple regression ($R^2 = 54,94$) et F(135,9) meilleure par rapport Factorial ANOVA si on veut trouver un modèle prédit, mais pour analyser la signification des données la méthode ANOVA (Factorial ANOVA) est la meilleure

10d)

Oui, la variable de réponse devrait être transformée, puisque si on veux faciliter l'analyse et trouver un bon effet on transformée la réponse continu au variable catégorique (pour minimiser la taille des données et faciliter l'analyse).

Conclusion générale

Dans cette devoir nous avons appris et étudie la modélisation avec MARS et réseaux de neurones et nous avons fait la comparasion avec eux et MRB(*Backward Stepwise*), et on a trouvé que la méthode MARS est meilleur par rapport réseaux de neurones et MBR. Et nous avons étudié le modèles d'analyse de la variance avec la Méthode approche à mesures répétées pour traiter les données et nous aussi étudié l'analyse statistique des données avec plusieurs méthodes.

Dans notre étude on a montré que l'analyse de variance est peu sensible à la non-normalité des sujets et à l'inégalité des variances.

Et on a conclure que on peut transformée la variable de réponse au variable catégorique pour faciliter l'analyse.