

IMPORTANTE:

No se permite realizar consultas una vez comenzado el examen.

Todas las respuestas deben estar debidamente justificadas.

Las calificaciones se subirán a la página de la materia junto con la resolución

Ejercicio 1- Sea $f(x) = x^2 e^{x^2}$, se pide:

a)

- i) Dominio de f(x)
- ii) $\lim_{x\to+\infty} f(x)$, $\lim_{x\to-\infty} f(x)$.
- iii) Co, C+ y C-
- b) Hallar Intervalos de crecimiento, decrecimiento, máximos y mínimos de f(x)

Ejercicio 2- Sea $f(x) = ln(x+1) \vee g(x) = x$, se pide:

- a) Determinar $f \circ g \ y \ (f \circ g)^{-1}$.
- **b)** Hallar la ecuación de la recta tangente a $(f \circ g)^{-1}$ en x = 0.
- c) Graficar $(f \circ g)^{-1}$ y la recta tangente hallada en el ítem b) en un mismo sistema de referencia.

Ejercicio 3- Realizar una gráfica aproximada de f(x) que cumpla con los siguientes requisitos, **indicando**, detalladamente sobre la gráfica, los puntos más relevantes:

i) Dominio R - {4}

ii)
$$\lim_{x \to +\infty} f(x) = +\infty$$
; $\lim_{x \to -\infty} f(x) = I$; $\lim_{x \to 4^+} f(x) = +\infty$; $\lim_{x \to 4^-} f(x) = -\infty$

iii) Co=
$$\{-4,0,3\}$$
, C+ = $(-\infty,-4)$ $U(0,3)$ $U(4,+\infty)$, C- = $(-4,0)$ $U(3,4)$

iv)
$$C'o=\{-2, 2, 6\}$$
, $C'+=(-2, 2)$ $U(6, +\infty)$, $C'-=(-\infty, -2)$ $U(2, 4)$ $U(4, 6)$

v)
$$f(-2) = -1$$
, $f(2) = \frac{1}{2}$; $f(6) = \frac{3}{2}$

Ejercicio 4- Sea:

$$f(x) = \begin{cases} \frac{\sqrt{x+16} - 5}{2x-18} & x < 9\\ \frac{1}{10} & x \ge 9 \end{cases}$$

- a) Determinar si f(x) resulta continua en x=9.
- **b)** Determinar si f(x) resulta derivable en x = 9.

Ejercicio 5- Dada la siguiente gráfica correspondiente a f'(x) (función derivada), se pide:

- a) Calcular $\lim_{x \to +\infty} f'(x)$, $\lim_{x \to -\infty} f'(x)$.
- b) <u>Determinar</u> los intervalos de crecimiento, decrecimiento, máximos y/o mínimos de f(x).
- c) <u>Hallar</u> la pendiente de la recta tangente a f(x) en x = -2.

		Еј 1			Ej 2		Ej 3			Ej 4		Ej 4 Ej 5		Calificacion			
	a		ь	a	b	С	i	ii	iii	iv	V	a	ь	a	ь	С	
0.1	0.4	0.5	1	1	0.5	0.5	0.2	0.4	0.4	0.5	0.5	1	1	1	0.5		

Firma alumno Firma docente

Recuperatorio 2º Parcial - Análisis Matemático I	6/12/2019
Carrera: Bioquímica	
Nombre del Alumno:	Comisión:

IMPORTANTE: No se permite realizar consultas una vez comenzado el examen.

Todas las respuestas deben estar debidamente justificadas.

Las calificaciones se subirán a la página de la materia junto con la resolución

Ejercicio 1- Sea $f(x) = x^2 e^{x^2}$, <u>hallar</u> los intervalos de crecimiento, decrecimiento, máximos y mínimos de f(x).

Ejercicio 2- Sea $f(x) = e^{x}-1$ se pide:

- a) Hallar la ecuación de la recta tangente a la gráfica de f(x) en x = 0.
- b) Graficar f(x) y la recta tangente hallada en el ítem a) todo en un mismo sistema de referencia.

Ejercicio 3- Realizar una gráfica aproximada de f(x) que cumpla con los siguientes requisitos, indicando detalladamente sobre la gráfica los puntos más relevantes:

i) Dominio R - {4}

ii)
$$\lim_{x \to +\infty} f(x) = +\infty$$
; $\lim_{x \to -\infty} f(x) = 1$; $\lim_{x \to 4^+} f(x) = +\infty$; $\lim_{x \to 4^-} f(x) = -\infty$

iii)
$$Co=\{-4,0,3\}$$
, $C+=(-\infty,-4)$ $U(0,3)$ $U(4,+\infty)$, $C-=(-4,0)$ $U(3,4)$

iv)
$$C'o=\{-2, 2, 6\}$$
, $C'+=(-2, 2)U(6, +\infty)$, $C'-=(-\infty, -2)U(2, 4)U(4, 6)$

v)
$$f(-2) = -1$$
, $f(2) = \frac{1}{2}$; $f(6) = \frac{3}{2}$

Ejercicio 4- Sea:

$$f(x) = \begin{cases} \frac{\sqrt{x+16} - 5}{2x-18} & x < 9\\ \frac{1}{10} & x \ge 9 \end{cases}$$

Determinar si f(x) resulta derivable en x=9.

Ejercicio 5- Dada la siguiente gráfica correspondiente a f'(x) (función derivada), se pide:

- a) <u>Determinar</u> los intervalos de crecimiento, decrecimiento, máximos y/o mínimos de f(x).
- **b)** Hallar la pendiente de la recta tangente a f(x) en x = -2.

	E	1		E	2			Е3			E 4	E 5		Calificación
Ic	Id	mov	min	a	b	;	ii	:::	;,,	**		a	b	
IC	Iu	max	min			1	11	111	1V	V				
0.5	0.5	0.5	0.5	1	1	0.1	0.2	0.2	1	0.5	2	1	1	

Firma alumno Firma docente

IMPORTANTE: No se permite realizar consultas una vez comenzado el examen.

Todas las respuestas deben estar debidamente justificadas.

Las calificaciones se subirán a la página de la materia junto con la resolución

Ejercicio 1- Sea $f(x) = x^2 e^{x^2}$, determinar:

- i) Dominio de f(x)
- ii) $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$.
- iii) Co, C+ y C-

Ejercicio 2- Sea f(x) = ln(x+1) y g(x) = x, se pide:

- a) $f \circ g \ y \ (f \circ g)^{-1}$.
- **b)** Graficar $f \circ g$ y $(f \circ g)^{-1}$ en un mismo sistema de referencia.

Ejercicio 3- Realizar una gráfica aproximada de f(x) que cumpla con los siguientes requisitos, indicando, detalladamente sobre la gráfica los puntos más relevantes:

i) Dominio R - {4}

ii)
$$\lim_{x \to +\infty} f(x) = +\infty$$
; $\lim_{x \to -\infty} f(x) = 1$; $\lim_{x \to 4^+} f(x) = +\infty$; $\lim_{x \to 4^-} f(x) = -\infty$

iii) Co=
$$\{-4,0,3\}$$
, C+ = $(-\infty,-4)$ $U(0,3)$ $U(4,+\infty)$, C- = $(-4,0)$ $U(3,4)$

iv)
$$f(-2) = -1$$
, $f(2) = \frac{1}{2}$; $f(6) = \frac{3}{2}$

Ejercicio 4- Sea:

$$f(x) = \begin{cases} \frac{\sqrt{x+16} - 5}{2x-18} & x < 9\\ \frac{1}{10} & x \ge 9 \end{cases}$$

Determinar si f(x) resulta continua en x=9.

Ejercicio 5-

Dada la siguiente gráfica correspondiente a f(x),

se pide:

- a) Dominio e imagen de f(x)
- b) Conjunto de ceros, de negatividad y positividad de f(x)
- c) <u>Calcular</u> $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$.

		E 1		1	E 2	E 3		E 4		4 E 5		Calificacion		
	a		b	a	ь	i	ii	iii	iv		a	ь	С	
0.1	0.4	0.5	1	1	1	0.2	0.8	0.6	0.4	2	0.6		0.7	

Firma alumno Firma docente

1 Resolución del Recuperatorio del primero y segundo parcial, segundo cuatrimestre de 2019.

1. Ejercicio 1

(a) (i)
$$Dom(f(x)) = \mathbb{R}$$
 (1)

(ii)

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 e^{x^2} = +\infty \tag{2}$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 e^{x^2} = +\infty \tag{3}$$

Notar que el límite en ambos caso da ' $\infty \cdot \infty$ '.

(iii) Aplicamos el teorema de Bolzano porque es una función continua. Calculamos las raices,

$$f(x) = x^2 e^{x^2} = 0 (4)$$

y obtenemos $x^2=0 \to x=0$ (recordar que la función exponencial no se anula). El conjunto $C_0=\{0\}.$

Para el C_+ y C_- aplicamos teorema de bolzano (ver tabla 1) y obtenemos los siguentes resultados,

$$C_{+} = (-\infty, 0) \cup (0, +\infty) \tag{5}$$

$$C_{-} = \emptyset \tag{6}$$

	$(-\infty,0)$	0	$(0,+\infty)$
f(x)	f(-1) > 0	0	f(1) > 0
f(x)	+	0	+

Table 1: Análisis de C_+ y C_- aplicando teorema de Bolzano

(b) Para analizar el crecimiento y extremos analizamos el signo de la derivada.

$$f'(x) = (x^2 e^{x^2})' = (x^2)' e^{x^2} + x^2 (e^{x^2})' = 2x e^{x^2} + x^2 e^{x^2} 2x$$
 (7)

$$= 2xe^{x^2}(1+x^2) (8)$$

Obtenemos c_0' calculando las raices de la derivada $f'(x) = 2xe^{x^2}(1+x^2) = 0$.

La exponencial no se anula y $1 + x^2 > 0$, por lo tanto tiene una sola raiz en x = 0.

El conjunto de ceros de la derivada es $c_0' = \{0\}$. Aplicamos Bolzano y obtenemos información del crecimiento de la función (ver tabla 2). Los intervalos de crecimiento y decrecimiento son $I^+ = \{(0, +\infty)\}$ y $I^- = \{(-\infty, 0)\}$. Tiene un un mínimo local en x = 0

	$(-\infty,0)$	0	$(0,+\infty)$
f'(x)	f'(-1) < 0	0	f'(1) > 0
f(x)	7	Mín	7

Table 2: Análisis de C_+^\prime y C_-^\prime aplicando teorema de Bolzano

(a) Calculemos fog(x)

$$fog(x) = f(g(x)) = \ln(x+1) \tag{9}$$

Calculamos la inversa

$$y = \ln(x+1) \tag{10}$$

$$e^y = e^{\ln(x+1)} = x+1$$
 (11)

$$e^y - 1 = x \tag{12}$$

por lo tanto $(fog)^{-1} = e^x - 1$.

(b) La recta tangente al punto de absisa $x_0=0$ tiene la forma $y=m_Tx+b.$

Se puede obtener la pendiente m_T evaluando la derivada $((fog)^{-1})' = e^x$ en $x_0 = 0$, $m = f'(0) = e^0 = 1$. La ordenada al origen b se obtiene del punto de la gráfica $P = (0, (fog)^{-1}(0)) = (0, 0)$.

$$0 = 1 * 0 + b \tag{13}$$

$$0 = b \tag{14}$$

La recta tangente tiene ecuación y = x.

Las dos gráficas en el mismo sistema de coordenadas es

(a) La gráfica se observa a continuación marcando los puntos importantes y las asíntotas.

4. Ejercicio 4

Para que f(x) sea derivable en x_0 , primero debemos verificar que se continua y luego que los límites laterales de las derivadas existan y coincidan. Para que sea continua en x_0 se debe satisfacer que exista $f(x_0)$ y tome el mismo valor que los límites laterales L_+ y L_- .

$$L_{-} = \lim_{x \to 9^{-}} f(x) = \lim_{x \to 9^{-}} \frac{\sqrt{x+16}-5}{2(x-9)} = \lim_{x \to 9^{-}} \frac{\sqrt{x+16}-5}{2(x-9)} \frac{\sqrt{x+16}+5}{\sqrt{x+16}+5}$$

$$= \lim_{x \to 9^{-}} \frac{x-9}{2(x-9)(\sqrt{x+16}+5)} = \lim_{x \to 9^{-}} \frac{1}{2(\sqrt{x+16}+5)} = \frac{1}{20}$$

$$L_{+} = \lim_{x \to 9^{+}} f(x) = \lim_{x \to 9^{+}} \frac{1}{10} = \frac{1}{10}$$
(15)

$$= \lim_{x \to 9^{-}} \frac{x-9}{2(x-9)(\sqrt{x+16}+5)} = \lim_{x \to 9^{-}} \frac{1}{2(\sqrt{x+16}+5)} = \frac{1}{20}$$
 (16)

$$L_{+} = \lim_{x \to 9^{+}} f(x) = \lim_{x \to 9^{+}} \frac{1}{10} = \frac{1}{10}$$
(17)

$$f(9) = \frac{1}{10} \tag{18}$$

imponemos la condición de continuidad en $x_0 = 9$.

$$f(9) = L_{+} = \frac{1}{10} \neq 1/20 = L_{-} \tag{19}$$

No es continua en x_0 y por lo tanto tampoco derivable en $x_0 = 9$.

(a)

$$\lim_{x \to +\infty} f'(x) = \frac{1}{3} \tag{20}$$

$$\lim_{x \to +\infty} f'(x) = \frac{1}{3}$$

$$\lim_{x \to -\infty} f'(x) = \frac{1}{3}$$
(20)

(b) Analizamos los conjuntos de positividad, negatividad y raices de las derivadas y obtenemos información del crecimiento y extremos de la función (ver tabla 3).

	$(-\infty, -2)$	-2	(-2,2)	2	$(2,\infty)$
f'(x)	+	0	_	0	+
f(x)	7	Máx	7	Mín	7

Table 3: Análisis de C'_+ y C'_- aplicando teorema de Bolzano

$$I^{+} = \{(-\infty, -2); (2, \infty)\}$$
 (22)

$$I^{-} = \{(-2,2)\} \tag{23}$$

Tiene un máximo local en x = -2 y un mínimo local en x = 2.

(c) La derivada evaluada en x = -2 vale 0 y por lo tanto la pendiente de la recta tangente m = 0.

Resolución del Recuperatorio del segundo parcial, segundo cu- $\mathbf{2}$ atrimestre de 2019.

1. Ejercicio 1 Para analizar el crecimiento y extremos analizamos el signo de la derivada.

$$f'(x) = (x^2 e^{x^2})' = (x^2)' e^{x^2} + x^2 (e^{x^2})' = 2x e^{x^2} + x^2 e^{x^2} 2x$$
 (24)

$$= 2xe^{x^2}(1+x^2) (25)$$

Obtenemos c'_0 calculando las raices de la derivada $f'(x) = 2xe^{x^2}(1+x^2) = 0$.

La exponencial no se anula y $1 + x^2 > 0$, por lo tanto tiene una sola raiz en x = 0.

El conjunto de ceros de la derivada es $c_0' = \{0\}$. Aplicamos Bolzano y obtenemos información del crecimiento de la función (ver tabla 4). Los intervalos de crecimiento y decrecimiento son I⁺ = $\{(0,+\infty)\}$ y $I^-=\{(-\infty,0)\}$. Tiene un un mínimo local en x=0 y no tiene máximos.

		$(-\infty,0)$	0	$(0,+\infty)$
	f'(x)	f'(-1) < 0	0	f'(1) > 0
ĺ	f(x)	7	Mín	7

Table 4: Análisis de C'_+ y C'_- aplicando teorema de Bolzano

(a) La recta tangente al punto de absisa $x_0 = 0$ tiene la forma $y = m_T x + b$.

Se puede obtener la pendiente m_T evaluando la derivada $f(x)' = (e^x - 1)' = e^x$ en $x_0 = 0$, $m = f'(0) = e^0 = 1$. La ordenada al origen b se obtiene del punto de la gráfica P = (0, f(0)) = (0, 0).

$$0 = 1 * 0 + b \tag{26}$$

$$0 = b \tag{27}$$

La recta tangente tiene ecuación y = x.

(b) Las dos gráficas en el mismo sistema de coordenadas es

3. Ejercicio 3

(a) La gráfica se observa a continuación marcando los puntos importantes y las asíntotas.

Para que f(x) sea derivable en x_0 , primero debemos verificar que se continua y luego que los límites laterales de las derivadas existan y coincidan. Para que sea continua en x_0 se debe satisfacer que exista $f(x_0)$ y tome el mismo valor que los límites laterales L_+ y $L_-.$

$$L_{-} = \lim_{x \to 9^{-}} f(x) = \lim_{x \to 9^{-}} \frac{\sqrt{x+16}-5}{2(x-9)} = \lim_{x \to 9^{-}} \frac{\sqrt{x+16}-5}{2(x-9)} \frac{\sqrt{x+16}+5}{\sqrt{x+16}+5}$$

$$= \lim_{x \to 9^{-}} \frac{x-9}{2(x-9)(\sqrt{x+16}+5)} = \lim_{x \to 9^{-}} \frac{1}{2(\sqrt{x+16}+5)} = \frac{1}{20}$$

$$L_{+} = \lim_{x \to 9^{+}} f(x) = \lim_{x \to 9^{+}} \frac{1}{10} = \frac{1}{10}$$
(28)
$$(29)$$

$$= \lim_{x \to 9^{-}} \frac{x-9}{2(x-9)(\sqrt{x+16}+5)} = \lim_{x \to 9^{-}} \frac{1}{2(\sqrt{x+16}+5)} = \frac{1}{20}$$
 (29)

$$L_{+} = \lim_{x \to 9^{+}} f(x) = \lim_{x \to 9^{+}} \frac{1}{10} = \frac{1}{10}$$
(30)

$$f(9) = \frac{1}{10} \tag{31}$$

imponemos la condición de continuidad en $x_0 = 9$.

$$f(9) = L_{+} = \frac{1}{10} \neq 1/20 = L_{-} \tag{32}$$

No es continua en x_0 y por lo tanto tampoco derivable en $x_0 = 9$.

5. Ejercicio 5

(a) Analizamos los conjuntos de positividad, negatividad y raices de las derivadas y obtenemos información del crecimiento y extremos de la función (ver tabla 5).

	$(-\infty, -2)$	-2	(-2,2)	2	$(2,\infty)$
f'(x)	+	0	_	0	+
f(x)	7	Máx	×	Mín	7

Table 5: Análisis de C'_+ y C'_- aplicando teorema de Bolzano

$$I^{+} = \{(-\infty, -2); (2, \infty)\}$$
(33)

$$I^{-} = \{(-2,2)\} \tag{34}$$

Tiene un máximo local en x = -2 y un mínimo local en x = 2.

(b) La derivada evaluada en x=-2 vale 0 y por lo tanto la pendiente de la recta tangente m=0.

Resolución del Recuperatorio del primer parcial, segundo cu-3 atrimestre de 2019.

1. Ejercicio 1

(i)
$$Dom(f(x)) = \mathbb{R} \tag{35}$$

(ii)

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 e^{x^2} = +\infty \tag{36}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 e^{x^2} = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 e^{x^2} = +\infty$$
(36)

Notar que el límite en ambos caso da ' $\infty \cdot \infty$ '.

(iii) Aplicamos el teorema de Bolzano porque es una función continua. Calculamos las raices,

$$f(x) = x^2 e^{x^2} = 0 (38)$$

y obtenemos $x^2=0 \rightarrow x=0$ (recordar que la función exponencial no se anula). El conjunto $C_0 = \{0\}$

Para el C_+ y C_- aplicamos teorema de bolzano(ver tabla 6) y obtenemos los siguentes resultados,

$$C_{+} = (-\infty, 0) \cup (0, +\infty) \tag{39}$$

$$C_{-} = \emptyset \tag{40}$$

	$(-\infty,0)$	0	$(0,+\infty)$
f(x)	f(-1) > 0	0	f(1) > 0
f(x)	+	0	+

Table 6: Análisis de C_+ y C_- aplicando teorema de Bolzano

(a) Calculemos fog(x)

$$fog(x) = f(g(x)) = \ln(x+1) \tag{41}$$

Calculamos la inversa

$$y = \ln(x+1) \tag{42}$$

$$e^y = e^{\ln(x+1)} = x+1$$
 (43)

$$e^y - 1 = x (44)$$

por lo tanto $(fog)^{-1} = e^x - 1$.

(b) Las dos gráficas en el mismo sistema de coordenadas es

3. Ejercicio 3

(a) La gráfica se observa a continuación marcando los puntos importantes y las asíntotas.

Para que f(x) sea derivable en x_0 , primero debemos verificar que se continua y luego que los límites laterales de las derivadas existan y coincidan. Para que sea continua en x_0 se debe satisfacer que exista $f(x_0)$ y tome el mismo valor que los límites laterales L_+ y $L_-.$

$$L_{-} = \lim_{x \to 9^{-}} f(x) = \lim_{x \to 9^{-}} \frac{\sqrt{x+16}-5}{2(x-9)} = \lim_{x \to 9^{-}} \frac{\sqrt{x+16}-5}{2(x-9)} \frac{\sqrt{x+16}+5}{\sqrt{x+16}+5}$$

$$= \lim_{x \to 9^{-}} \frac{x-9}{2(x-9)(\sqrt{x+16}+5)} = \lim_{x \to 9^{-}} \frac{1}{2(\sqrt{x+16}+5)} = \frac{1}{20}$$

$$L_{+} = \lim_{x \to 9^{+}} f(x) = \lim_{x \to 9^{+}} \frac{1}{10} = \frac{1}{10}$$

$$(45)$$

$$= \lim_{x \to 9^{-}} \frac{x-9}{2(x-9)(\sqrt{x+16}+5)} = \lim_{x \to 9^{-}} \frac{1}{2(\sqrt{x+16}+5)} = \frac{1}{20}$$
 (46)

$$L_{+} = \lim_{x \to 9^{+}} f(x) = \lim_{x \to 9^{+}} \frac{1}{10} = \frac{1}{10}$$

$$\tag{47}$$

$$f(9) = \frac{1}{10} \tag{48}$$

analizamos la condición de continuidad en $x_0 = 9$.

$$f(9) = L_{+} = \frac{1}{10} \neq 1/20 = L_{-} \tag{49}$$

No es continua en $x_0 = 9$.

5. Ejercicio 5

(a)

$$Dom(f(x)) = \mathbb{R} \tag{50}$$

$$Im(f(x)) = \left[-\frac{7}{10}, \frac{1}{3}\right)$$
(51)

(b)

$$C_0 = \{-2, 2\} \tag{52}$$

$$C_{-} = (-2, 2)$$
 (53)

$$C_{+} = (-\infty, -2) \cup (2, \infty)$$

$$\tag{54}$$

(c)

$$\lim_{x \to +\infty} f'(x) = \frac{1}{3}$$

$$\lim_{x \to -\infty} f'(x) = \frac{1}{3}$$
(55)

$$\lim_{x \to -\infty} f'(x) = \frac{1}{3} \tag{56}$$