山东大学 计算机科学与技术 学院

计算机组成与设计 课程实验报告

学号: 202000130143 | 姓名: 郑凯饶 | 班级: 2020 级 1 班

实验题目:

RAM 拓展实验

实验学时:2

实验日期:

2022-5-19

实验目的:

- 1. 了解半导体静态随机读写存储器 RAM 的工作原理及其使用方法;
- 2. 掌握半导体存储器的字、位拓展技术。

实验软件和硬件环境:

软件环境:

Quartus II 软件

硬件环境:

- 1. 实验室台式机
- 2. 计算机组成与设计实验箱

实验原理和方法:

隔离部件采用三态门 TRI。

(一) 按位拓展

位拓展是增加存储字长。具体设计是采用 1K*4 的 LPM_RAM 构成 1K*8 的存储器, 2 片 RAM 的地址线、读写控制线相连,不设片选线,数据线低 4 位接 1 片,高 4 位接 1 片。

(二) 按位字拓展

字拓展是增加存储器字的数量。具体设计是采用 1K*4 的 LPM_RAM 构成 2K*4 的存储器,设置片选信号及其非和两路读写控制、TRI 相与,达到片选效果。

实验步骤:

(一) 按位拓展

连接电路原理图:

引脚分配:

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pair
ad[9]	Input	PIN_110	7	87_N0	PIN_110	2.5 V (default)		8mA (default)		
_ ad[8]	Input	PIN_106	6	B6_N0	PIN_106	2.5 V (default)		8mA (default)		
_ ad[7]	Input	PIN_39	3	B3_N0	PIN_39	2.5 V (default)		8mA (default)		
_ ad[6]	Input	PIN_42	3	B3_N0	PIN_42	2.5 V (default)		8mA (default)		
_ ad[5]	Input	PIN_83	5	B5_N0	PIN_83	2.5 V (default)		8mA (default)		
_ ad[4]	Input	PIN_77	5	B5_N0	PIN_77	2.5 V (default)		8mA (default)		
_ ad[3]	Input	PIN_74	5	B5_N0	PIN_74	2.5 V (default)		8mA (default)		
_ ad[2]	Input	PIN_70	4	B4_N0	PIN_70	2.5 V (default)		8mA (default)		
_ ad[1]	Input	PIN_65	4	B4_N0	PIN_65	2.5 V (default)		8mA (default)		
_ ad[0]	Input	PIN_60	4	B4_N0	PIN_60	2.5 V (default)		8mA (default)		
altera_reserved_tck	Input				PIN_16	2.5 V (default)		8mA (default)		
_ altera_reserved_tdi	Input				PIN_15	2.5 V (default)		8mA (default)		
altera_reserved_tdo	Output				PIN_20	2.5 V (default)		8mA (default)	2 (default)	
_ altera_reserved_tms	Input				PIN_18	2.5 V (default)		8mA (default)		
_ dk	Input	PIN_53	3	B3_N0	PIN_53	2.5 V (default)		8mA (default)		
da_high[3]	Input	PIN_84	5	B5_N0	PIN_84	2.5 V (default)		8mA (default)		
_ da_high[2]	Input	PIN_34	2	B2_N0	PIN_34	2.5 V (default)		8mA (default)		
da_high[1]	Input	PIN_75	5	B5_N0	PIN_75	2.5 V (default)		8mA (default)		
_ da_high[0]	Input	PIN_67	4	B4_N0	PIN_67	2.5 V (default)		8mA (default)		
_ da_low[3]	Input	PIN_66	4	B4_N0	PIN_66	2.5 V (default)		8mA (default)		
_ da_low[2]	Input	PIN_64	4	B4_N0	PIN_64	2.5 V (default)		8mA (default)		
_ da_low[1]	Input	PIN_55	4	84_N0	PIN_55	2.5 V (default)		8mA (default)		
_ da_low[0]	Input	PIN_52	3	B3_N0	PIN_52	2.5 V (default)		8mA (default)		
Sout_high[3]	Output	PIN_80	5	B5_N0	PIN_80	2.5 V (default)		8mA (default)	2 (default)	
S out_high(2)	Output	PIN_85	5	B5_N0	PIN_85	2.5 V (default)		8mA (default)	2 (default)	
S out_high[1]	Output	PIN_73	5	B5_N0	PIN_73	2.5 V (default)		8mA (default)	2 (default)	
Sout_high[0]	Output	PIN_76	5	B5_N0	PIN_76	2.5 V (default)		8mA (default)	2 (default)	
Sout_low[3]	Output	PIN_71	4	B4_N0	PIN_71	2.5 V (default)		8mA (default)	2 (default)	
5 out_low[2]	Output	PIN_72	4	B4_N0	PIN_72	2.5 V (default)		8mA (default)	2 (default)	
S out_low[1]	Output	PIN_68	4	84_N0	PIN_68	2.5 V (default)		8mA (default)	2 (default)	
S out_low[0]	Output	PIN_69	4	B4_N0	PIN_69	2.5 V (default)		8mA (default)	2 (default)	
_ wren	Input	PIN_58	4	B4_N0	PIN_58	2.5 V (default)		8mA (default)		
<new node="">></new>										

测试、调试:

通过 In-System Memory Content Editor 实时调试:

读取 1 号内存单元为 FC,和上面串口获取数据进行比较:低 4 位为 C,高 4 位为 F,无误。

写 1 号内存单元为 05.

读取 1 号内存单元为 05, 成功写!

读取 2 号内存单元为 F8.

写 2 号内存单元为 13.

读取 2 号内存单元为 13, 成功写!

(二)按字拓展:

连接电路原理图:

测试、调试:

通过 In-System Memory Content Editor 实时调试:

由于是由两片 1K*4 的 RAM 拓展成 2K*4 的存储器。因此,0-1023 单元存储于第 1 片 RAM, 1024-2047 单元存储于第 2 片。

测试第1片:

读取 1 号内存单元为 C.

写 1 号地址单元为 2.

读取 1 号内存单元为 2.

测试第2片:

读取 0x401(1025)号内存单元为 F.

写 0x401(1025)号内存单元为 3.

读取 0x401(1025)号内存单元为 3.

结论分析与体会:

这次实验在之前 ROM、RAM 了解的基础上进行存储器的拓展,包括按位拓展和按字拓展。虽然这些拓展设计对于顶层使用者而言是透明的,但是直接决定了存储器的物理性能,往往很多时候,底层设计的效率不足以满足上层的设计需求时,我们可以尝试学习一些硬件设计知识优化底层设计,帮助我们更好地完成应用。目前为止,我们完成了存储器、时序系统的设计,期待之后 CU 以及 CPU 综合的设计。