# אלקטרוניקה פיסיקלית 044124 סמסטר חורף 2022-2023 מועד א

#### הנחיות

- משך הבחינה 3 שעות.
- במבחן ישנן 2 חלקים חלק 1 : 6 שאלות רב ברירהחלק 2 : 2 שאלות פתוחות
  - בדקו שברשותכם 11 עמודים •
- ניתן להשתמש במחשבון ו- 8 דפי נוסחאות דו-צדדיים.

# בהצלחה!

# חלק 1 (48 נקודות – ניקוד זהה לכל שאלה)

#### שאלה 1

נתונה מערכת בעלת 4 רמות אנרגיה כאשר לרמה ה-n יש  $n\varepsilon$ יש ה-n אנרגיה לרמות אנרגיה בעלת 4 רמות בעלת בעלת ה-n יש ביל בכל פעם משתמשים בחלקיקים שונים י

 $\frac{1}{2}$  ניסוי 1: 4 חלקיקים עם ספין

ניסוי 2: 4 חלקיקים עם ספין 1

 $\frac{1}{2}$ ניסוי 8 : 8 חלקיקים עם ספין

ניסוי 4: 8 חלקיקים עם ספין 1

בכל ניסוי מדדו את האנרגיה של המערכת בטמפרטורה 0 ובטמפרטורה מאוד מאוד גבוה. סמנו את התוצאות שכנראה קבלו בניסוי :

א.

| $T=0$ $4\varepsilon$ $4\varepsilon$ $8\varepsilon$ $8\varepsilon$ $T\to\infty$ $10\varepsilon$ $10\varepsilon$ $20\varepsilon$ $20\varepsilon$ |                | ניסוי 1         | ניסוי 2         | ניסוי 3         | ניסוי 4 |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------|-----------------|---------|
| $T \to \infty$ 10 $\varepsilon$ 10 $\varepsilon$ 20 $\varepsilon$ 20 $\varepsilon$                                                             |                | $4\varepsilon$  | $4\varepsilon$  |                 | 8ε      |
| 1 100 100 100                                                                                                                                  | $T \to \infty$ | $10\varepsilon$ | $10\varepsilon$ | $20\varepsilon$ | 20ε     |

ב.

|                | ניסוי 1         | ניסוי 2         | ניסוי 3         | ניסוי 4         |
|----------------|-----------------|-----------------|-----------------|-----------------|
| T = 0          | 6ε              | $4\varepsilon$  | $20\varepsilon$ | $8\varepsilon$  |
| $T \to \infty$ | $10\varepsilon$ | $10\varepsilon$ | $20\varepsilon$ | $20\varepsilon$ |

٦.

|                | ניסוי 1 | ניסוי 2         | ניסוי 3         | ניסוי 4         |
|----------------|---------|-----------------|-----------------|-----------------|
| T = 0          | 6ε      | $4\varepsilon$  | 20arepsilon     | $8\varepsilon$  |
| $T \to \infty$ | 16ε     | $16\varepsilon$ | $32\varepsilon$ | $32\varepsilon$ |

. 7

|                | וי 2 ניסוי 1    |                 | ניסוי 3         | ניסוי 4         |  |
|----------------|-----------------|-----------------|-----------------|-----------------|--|
| T = 0          | 4ε              | $4\varepsilon$  | $8\varepsilon$  | 8ε              |  |
| $T \to \infty$ | $16\varepsilon$ | $16\varepsilon$ | $32\varepsilon$ | $32\varepsilon$ |  |

ה.

|                | ניסוי 1         | ניסוי 2         | ניסוי 3         | ניסוי 4        |
|----------------|-----------------|-----------------|-----------------|----------------|
| T = 0          | $10\varepsilon$ | $4\varepsilon$  | $20\varepsilon$ | $8\varepsilon$ |
| $T \to \infty$ | $10\varepsilon$ | $10\varepsilon$ | $20\varepsilon$ | 20             |

## שאלה 2

נתון האנרגיה שבה יושב החלקיק הינו 3 נתון בנוסף כי הניוון של רמת האנרגיה שבה נתון 3. נתון אנרגיה (לא כולל  $^{1}/_{2}$  עם אנרגיה  $^{1}/_{2}$  עם אנרגיה בנוסף כי הניוון של רמת האנרגיה שבה יושב החלקיק הינו arepsilonספין). מה מספר החלקיקים הממוצע באנרגיה

- $\begin{array}{ll} 2 \cdot \frac{1}{e^{\frac{3\varepsilon-\mu}{k_BT}}} & .\aleph \\ e^{\frac{1}{k_BT}} + 1 & . \\ 2 \cdot \frac{1}{e^{\frac{\varepsilon-\mu}{k_BT}}} & . \\ 3 \cdot \frac{1}{e^{\frac{\varepsilon-\mu}{k_BT}}} & . \\ 6 \cdot \frac{1}{e^{\frac{\varepsilon-\mu}{k_BT}}} & . \\ 3 \cdot \frac{1}{e^{\frac{2\varepsilon-\mu}{k_BT}}} & . \\ \end{array}$

### שאלה 3

 $a=1.42 {
m \AA}$  נתונה שרשרת חד ממדית של אטומים זהים בעלי מסה m=12amu מסה בעלי של ממדית חד ממדית של מחדים מחדים מחדים מחדים מחדים אינו נתון שקבוע הקפיץ המחבר בין האטומים הינו  $\kappa = 165 N/m$ , קבלו מהי מהירות הקול בחומר האנרגיה הגבוה ביותר של פונונים.

- 12922 m/sec, 120meV .א
- 22352 m/sec, 1020meV ...
  - $2022 \, m/sec, 100 meV$  .
  - 5345 m/sec, 200meV .т
    - $422 \, m/sec, 20 meV$  .ה

#### שאלה 4

נתון גביש שהושתלו לתוכו N אטומים זרים – סיגים מאותו סוג. לסיגים של מצבים של תנע זוויתי m=1, m=0, m=-1. כשהסיגים מחוץ לגביש, שלושת המצבים מנוונים – בעלי אנרגיה זהה. בתוך הגביש, השדות הפנימיים מסירים את הניוון, כך שמצבים עם תנע זוויתי שלא מתאפס מקבלים תוספת אנרגיה של  $\Delta$ .

חשבו את תרומת הסיגים לאנרגיה של הגביש.

$$E_d = 2\Delta N \frac{1}{\exp\left(\frac{\Delta}{k_B T}\right) + 2}$$
 .

$$E_d = 2\Delta N \; rac{\exp(rac{\Delta}{k_B T})}{\exp\left(rac{\Delta}{k_B T}
ight) + 2} \; .$$
ב

$$E_d = 3\Delta N \, \frac{1}{\exp\left(\frac{\Delta}{k_B T}\right) + 2} \, . \lambda$$

$$E_d = 2\Delta N k_B T$$
 .

$$E_d = 3\Delta N k_B T$$
 .n

#### שאלה 5

חשבו את תרומת הסיגים (משאלה 4) לאנטרופיה של הגביש בגבול של טמפרטורה אפסית ובגבול של טמפרטורה אינסופית . אינסופית .

$$S(T \to 0) = Nk_B \ln(3)$$
,  $S(T \to \infty) = 0.8$ 

$$S(T \to 0) = 0$$
,  $S(T \to \infty) = Nk_B \ln(3)$ .

$$S(T \to 0) = 0$$
,  $S(T \to \infty) = Nk_B \ln(2)$ .

$$S(T \to 0) = 0$$
,  $S(T \to \infty) = -Nkln(3)$ .

$$S(T \to 0) = Nk_B \ln(2)$$
,  $S(T \to \infty) = Nk_B \ln(3)$ .

## שאלה 6

איזה גרף מתאר במטרה נכונה את התלות של התרומה של הסיגים (משאלה 4) לקיבול החום של הגביש - בצורה

ב.



† C(T)



ה.



C(T)

٦.

## <u>חלק 2</u> (52 נקודות)

## שאלה 7 (26 נקודות)

נתון חומר דו-ממדי עם שטח A. נתון 2 פסי אנרגיה אלקטרוניים:

$$\varepsilon_1(\vec{k}) = \frac{\hbar^2}{2m} (k_x^2 + k_y^2)$$

$$\varepsilon_2(\vec{k}) = \frac{\hbar^2}{2m} (k_x^2 + k_y^2) + V$$

. כאשר V הוא קבוע חיובי בעל יחידות של אנרגיה



בתמונה משמאל, אפשר לראות את 2 פסי האנרגיה כפונקציה של התנעים  $(k_x,k_y)$ , כאשר הגרף הכחול הוא הפס התמונה משמאל, אפשר לראות את החתך של שני הפסים על הראשון והכתום הוא הפס השני מוזז ב V למעלה בציר האנרגיה. מצד ימין אפשר לראות את החתך של שני הפסים על ציר  $k_x$ . שימו לב שיש חפיפה בערכי האנרגיה בין 2 הפסים עבור  $k_z$ 

 $g_1(arepsilon), g_2(arepsilon)$  א. חשבו את צפיפות המצבים ליחידת שטח לכל אחד מפסי האנרגיה  $g_{tot}(arepsilon)$ , שבעזרתה סופרים את מספר המצבים מה היא צפיפות המצבים הכוללת של המערכת ליחידת שטח  $g_{tot}(arepsilon)$ , שבעזרתה סופרים את מספר המצבים הכולל במערכת עבור כל (arepsilon)?

נקודות) בטאו ו-  $\varepsilon > V$  - ביפויות בעזרת 2 ביפויות המצבים שחישבתם, עבור 2 בטאו אותה בעזרת 2 צפיפויות בעזרת אותה בעזרת 2 ביפויות המצבים שחישבתם, עבור 2 ביפויות ביפויות המצבים שחישבתם, עבור 2 ביפויות ביפוית ביפויות ביפוית ביפ

$$g_{tot}(\varepsilon) = \left\{ \begin{array}{cc} ? & , \varepsilon \leq V \\ ? & , \varepsilon > V \end{array} \right.$$

(הדרכה- תחשבו איך מאכלסים את האלקטרונים ב 2 הפסים עבור 2 תחומי האנרגיה).

ב. נגדיר את כל מצבי האנרגיה המקיימים שבה האלקטרונים שבה האלקטרונים שבה האנרגיה המקיימים ב. נגדיר את  $n_0$  את חשבו את  $.0 \leq \varepsilon \leq V$ 

יו-  $n>n_0$  : עבור 2 עבור  $arepsilon_F$  עבור את אנרגיית פרמי .n חשבו האלקטרונים בחומר היא אנרגיית פרמי פרמי (8 נקודות) או. ווא מקודות

$$\varepsilon_F = \left\{ \begin{array}{cc} ? & , n \leq n_0 \\ ? & , n > n_0 \end{array} \right.$$

ג. (סעיף זה לא קשור לשני הסעיפים הקודמים) נתון פס אנרגיה של אלקטרונים בחומר דו-ממדי:

$$\varepsilon(\vec{k}) = \frac{\hbar^2}{2m_x} k_x^2 + \frac{\hbar^2}{2m_y} k_y^2$$

 $ec{E} = E_{\chi} \hat{\chi} + E_{y} \hat{y}$ : אינים על המערכת שדה חשמלי סטטי בכיוון כללי במישור

מה הוא היחס  $\frac{m_x}{m_y}$  שהמסות האפקטיביות צריכות לקיים כדי שהזרם החשמלי יהיה באותו כיוון של השדה החשמלי י (8 נקודות)

au מזכרו שלפי מודל דרודה, המוליכות החשמלית היא  $\sigma=ne^2 au m^{-1}$ , כאשר המוליכות המוליכות שלפי מודל דרודה, המוליכות החשמלית היא  $m^{-1}$  הוא טנזור המסה האפקטיבית ההופכי.

## שאלה 8 (26 נקודות)

נתון הגביש הבא



המורכב משני אטומים כאשר



A מסמן אטום מסוג B מסמן אטום מסוג

עם מסוג B עם מסוג אטומים של אטומים מסוג Aעם מרחק בין שכנים קרובים, ובמרכז של כל משושה אטום מסוג א זהו גביש מרחק Aמהשכנים הקרובים שלו מסוג A.

- א. רשמו וקטורים ראשוניים ווקטורי הבסיס. (4 נקודות)
- ב. ציירו על גבי השריג שבחרתם את תא Wigner-Seitz. (4 נקודות)
- ג. מצאו את הווקטורים של השריג ההופכי וציירו אותו. ציירו את איזור Brillouin הראשון. (4 נקודות)
- ד. מבלי לפתור את הבעיה הסבירו מהו מספר פסי אנרגיה הצפוי להתקבל בהנחה שכל אטום תורם אורביטל אחד בלבד. הצדיקו את תשובתכם. (4 נקודות)

#### כעת נניח שיש גביש הבא



נתונים פסי האנרגיה עבור המבנה שלעיל שהתקבל מפתרון משוואות הקשירה ההדוקה:

$$E_{\pm}(k_x, k_y) = E_0 \pm |\gamma| \sqrt{1 + 4\cos^2(k_y a\sqrt{3}/2) + 4\cos(k_x a\sqrt{3}/2)\cos(k_y a\sqrt{3}/2)}$$

- ה. ציירו איכותית את פסי האנרגיה לאורך הקו  $k_x=0$  ולאורך ולאורך פער האנרגיה עבור שני הכיוונים האלו. (4 נקודות)
- ו. הסבירו איך משתנה צפיפות המצבים כפונקציה של האנרגיה בקצה איזור Brillouin עבור שני הכיוונים מסעיף הקודם. אין צורך לחישוב מפורש של צפיפות המצבים. (6 נקודות)

# טבלת נוסחאות שימושיות:

# גדלים פיזיקליים שימושיים:

| Atomic Weight Conversion | $1amu = 1.661 \times 10^{-27} kg$           |
|--------------------------|---------------------------------------------|
| Plank's Constant         | $h = 6.626 \times 10^{-34}  J \cdot sec$    |
| Reduced Plank's Constant | $\hbar = 1.055 \times 10^{-34} J \cdot sec$ |
| Avogadro Constant        | $N_A = 6.022 \times 10^{23}$                |
| Gas Constant             | $R = 8.314 J K^{-1} mol^{-1}$               |
| Boltzmann's Constant     | $k_b = 1.381 \times 10^{-23} J/K$           |
| Electron Mass            | $m_e = 9.109 \times 10^{-31} kg$            |
| Electron Charge          | $q = 1.602 \times 10^{-19}$                 |
| Bohr Radius              | $a_0 = 5.292 \times 10^{-11} m$             |
| Speed of Light           | $c = 2.997 \times 10^8 m/sec$               |

## זהויות אלגבריות/טריגונומטריות שימושיות:

| Trigonometric Identities                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------|
| $\cos(a)\cos(b) = 1/2(\cos(a+b) + \cos(a-b))$                                                                                    |
| $\sin(a)\sin(b) = 1/2(\cos(a-b) - \cos(a+b))$                                                                                    |
| $\sin(a)\cos(b) = 1/2(\sin(a+b) + \sin(a-b))$                                                                                    |
| $\sin(2a) = 2\sin(a)\cos(b)$                                                                                                     |
| $\cos(2a) = \cos^2 a - \sin^2 b$                                                                                                 |
| $\sin^2 a = 1/2(1 - \cos(2a))$                                                                                                   |
| $\cos^2 a = 1/2(1 + \cos(2a))$                                                                                                   |
| $\sin(\pi - a) = \sin(a)$                                                                                                        |
| $\cos(\pi - a) - \cos(a)$                                                                                                        |
| $\sin(\pi/2 - a) = \cos(a)$                                                                                                      |
| $\cos(\pi/2 - a) = \sin(a)$                                                                                                      |
| $\sin(-a) = -\sin(a)$                                                                                                            |
| $\cos(-a) = \cos(a)$                                                                                                             |
| $\cos(a) = 1/2(e^{ia} + e^{-ia})$                                                                                                |
| $\sin(a) = 1/(2i) \left(e^{ia} - e^{-ia}\right)$                                                                                 |
| $\cosh(a) = \frac{1}{2}(e^a + e^{-a})$                                                                                           |
| $\sin(a) = 1/(2i) \left(e^{ia} - e^{-ia}\right)$ $\cosh(a) = \frac{1}{2} (e^a + e^{-a})$ $\sinh(a) = \frac{1}{2} (e^a - e^{-a})$ |

## אינטגרליים שימושיים:

#### **Gaussian Distribution**

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
  
תוחלת הקו $\sigma$ 

# Gaussian Integral $\alpha > 0$

$$\int_{a}^{b} e^{-\alpha(x+b)^2} dx = \sqrt{\pi/\alpha}$$

#### **Gamma Function**

$$\Gamma(n) \equiv \int_0^\infty x^{n-1} e^{-x} dx = n - 1!$$

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

| 3 | 5/2             | 2 | 3/2            | 1 | 1/2          | n           |
|---|-----------------|---|----------------|---|--------------|-------------|
| 2 | $3\sqrt{\pi}/4$ | 1 | $\sqrt{\pi}/2$ | 1 | $\sqrt{\pi}$ | $\Gamma(n)$ |

# More Gaussian Integrals $\alpha > 0, n \ge 0$

$$I(n) \equiv \int_0^\infty x^n e^{-\alpha x^2} dx = \frac{1}{2} \Gamma\left(\frac{n+1}{2}\right) \alpha^{-\frac{n+1}{2}}$$

$$\int_{-\infty}^{\infty} x^n e^{-\alpha x^2} dx = \begin{cases} 2I(n) & n \in Even \\ 0 & n \in Odd \end{cases}$$

| 5                    |   | 4                                        | 3                     | 2                                        | 1                   | 0                                      | n    |
|----------------------|---|------------------------------------------|-----------------------|------------------------------------------|---------------------|----------------------------------------|------|
| $\frac{1}{\alpha^3}$ | 3 | $\frac{3}{8}\sqrt{\frac{\pi}{\alpha^5}}$ | $\frac{1}{2\alpha^2}$ | $\frac{1}{4}\sqrt{\frac{\pi}{\alpha^3}}$ | $\frac{1}{2\alpha}$ | $\frac{1}{2}\sqrt{\frac{\pi}{\alpha}}$ | I(n) |