## R Notebook

## Escola de Dança



dança

O objetivo deste *script* é fazer consultas utilizando as principais ferramentas da linguagem SQL. O banco de dados utilizado foi criado utilizando o PG Admin do PostgreSQL simulando uma escola de dança.

Os códigos com a criação do banco de dados estão disponíveis neste repositório para replicação.

As consultas foram realizadas na IDE do *R Studio*, mas os mesmos comandos podem ser executados utilizando a biblioteca PANDAS da linguagem Python.

O objetivo é responder perguntas de negócios por meio de consultas com a linguagem SQL com apoio da linguagem R. Serão respondidas as seguintes perguntas:

- 1. Quantas (os) alunas (os) avançados há na escola de dança?
- 2. Quantas (os) alunas (os) são do sexo feminino?
- 3. Quais as Unidades Federativas das (os) alunas (os)?
- 4. Quais os nomes das (os) professoras (es)?
- 5. Quais estilos de forró são ensinados na escola?
- 6. Quais os menores e maiores valores pagos por mês na escola?
- 7. Qual o valor médio que os alunos pagam por mês na escola?
- 8. Quais alunos pagam os maiores e menores valores por mês na escola?

- 9. Qual o valor médio gasto por aluno por nome?
- 10. Quem tem maior média de gastos na escola: homens ou mulheres?

Vamos responder essas perguntas a seguir (a).

## Criando o Banco de Dados no PostgreSQL

O primeiro passo é criar o banco de dados no PG Admin do PostgreSQL. Para criar o banco basta seguir o passo a passo das imagens abaixo:



dança



Basta clicar com o botão direito em **PostgreSQL 14**, depois selecionar a opção **Create** e depois selecionar **DataBase**. Por fim basta colocar o nome **dancasAP** e clicar em **Save**.

Caso você prefira criar via código, seguem abaixo os comandos:

```
Dashboard
                     SQL
                                                    Dependents
            Properties
                            Statistics Dependencies
  1
     -- Database: dancaAP
  2
  3
     -- DROP DATABASE IF EXISTS "dancaAP";
  4
  5
     CREATE DATABASE "dancaAP"
  6
         WITH
  7
         OWNER = postgres
  8
         ENCODING = 'UTF8'
  9
         LC_COLLATE = 'Portuguese_Brazil.1252'
 10
         LC_CTYPE = 'Portuguese_Brazil.1252'
 11
         TABLESPACE = pg_default
 12
         CONNECTION LIMIT = -1;
dança
```

### Alimentando o Banco de Dados

Neste projeto eu criei 5 tabelas: *alunos* (descrição dos alunos da escola de danças), *dancas* (para descrever as danças ensinadas na escola), *instrutores* (base com os instrutores das danças), *itensvenda* (os serviços e produtos vendidos na escola) e *turno* (os turnos em que ocorrem as aulas).

Como o objetivo deste script é fazer consultas, não serão detalhados os comandos para a criação das tabelas, se não ia ficar muito grande. Seguem abaixo os comandos para a criação das tabelas.

```
Dashboard
         Properties SQL Statistics Dependencies
                                                 Dependents
   -- Table: public.alunos
2
3
   -- DROP TABLE IF EXISTS public.alunos;
4
5
    CREATE TABLE IF NOT EXISTS public.alunos
6
7
        idaluno integer NOT NULL DEFAULT nextval('idaluno'::regclass),
8
        cliente character varying(50) COLLATE pg_catalog. "default",
9
        estado character varying(2) COLLATE pg_catalog."default",
10
        sexo character(1) COLLATE pg_catalog."default",
        status character varying(50) COLLATE pg_catalog."default",
11
        CONSTRAINT alunos_pkey PRIMARY KEY (idaluno)
12
13
14
15
    TABLESPACE pg_default;
16
17
    ALTER TABLE IF EXISTS public.alunos
18
        OWNER to postgres;
```

dança

```
Dashboard
         Properties
                   SQL
                          Statistics Dependencies Dependents
1
    -- Table: public.dancas
2
3
    -- DROP TABLE IF EXISTS public.dancas;
4
5
    CREATE TABLE IF NOT EXISTS public.dancas
6
    (
7
        iddance integer NOT NULL DEFAULT nextval('iddance'::regclass),
        forro character varying(100) COLLATE pg_catalog."default".
8
        zouk character varying(100) COLLATE pg_catalog."default",
9
        ventre character varying(100) COLLATE pg_catalog. "default",
10
11
        CONSTRAINT dancas_pkey PRIMARY KEY (iddance)
12
13
14
    TABLESPACE pg_default;
15
16
    ALTER TABLE IF EXISTS public.dancas
17
        OWNER to postgres;
```

dança

```
Dashboard Properties SQL Statistics Dependencies Dependents
     -- Table: public.instrutores
  2
  3
     -- DROP TABLE IF EXISTS public.instrutores;
  4
  5
     CREATE TABLE IF NOT EXISTS public.instrutores
  6
  7
         idinstrutor integer NOT NULL DEFAULT nextval('idinstrutor'::regclass),
         nome character varying(50) COLLATE pg_catalog."default",
  8
         CONSTRAINT instrutores_pkey PRIMARY KEY (idinstrutor)
  9
 10
     )
 11
 12
     TABLESPACE pg_default;
 13
 14 ALTER TABLE IF EXISTS public.instrutores
 15
         OWNER to postgres;
dança
 Dashboard Properties SQL Statistics Dependencies Dependents
 1
    -- Table: public.alunos
  2
  3
    -- DROP TABLE IF EXISTS public.alunos;
  4
  5
     CREATE TABLE IF NOT EXISTS public.alunos
  6
 7
         idaluno integer NOT NULL DEFAULT nextval('idaluno'::regclass),
  8
         cliente character varying(50) COLLATE pg_catalog. "default",
 9
         estado character varying(2) COLLATE pg_catalog."default",
         sexo character(1) COLLATE pg_catalog."default",
 10
         status character varying(50) COLLATE pg_catalog."default",
 11
 12
         CONSTRAINT alunos_pkey PRIMARY KEY (idaluno)
 13
    )
 14
 15
    TABLESPACE pg_default;
 16
     ALTER TABLE IF EXISTS public.alunos
 17
 18
         OWNER to postgres;
dança
```

```
Dashboard
                     SOL
                          Statistics
                                    Dependencies
                                                 Dependents
          Properties
    -- Table: public.itensvenda
2
3
    -- DROP TABLE IF EXISTS public.itensvenda;
4
5
    CREATE TABLE IF NOT EXISTS public.itensvenda
6
    (
7
        iddance integer NOT NULL,
8
        idaluno integer,
9
        quantidade integer,
10
        valorunitario numeric(10,2),
11
        valortotal numeric(10,2),
12
        desconto numeric(10,2),
13
        CONSTRAINT itensvenda_pkey PRIMARY KEY (iddance),
14
        CONSTRAINT itensvenda_idaluno_fkey FOREIGN KEY (idaluno)
15
            REFERENCES public.alunos (idaluno) MATCH SIMPLE
16
            ON UPDATE NO ACTION
17
            ON DELETE CASCADE,
18
        CONSTRAINT itensvenda_iddance_fkey FOREIGN KEY (iddance)
19
            REFERENCES public.dancas (iddance) MATCH SIMPLE
20
            ON UPDATE NO ACTION
21
            ON DELETE RESTRICT
22
23
24
    TABLESPACE pg_default;
25
26
    ALTER TABLE IF EXISTS public.itensvenda
27
        OWNER to postgres;
 1
    -- Table: public.turno
 2
 3
    -- DROP TABLE IF EXISTS public.turno;
 4
 5
    CREATE TABLE IF NOT EXISTS public.turno
 6
 7
        idvenda integer NOT NULL DEFAULT nextval('iddance'::regclass),
 8
        manha character varying(50) COLLATE pg_catalog."default",
 9
        tarde character varying(50) COLLATE pg_catalog."default",
10
        noite character varying(50) COLLATE pg_catalog."default",
11
        CONSTRAINT turno_pkey PRIMARY KEY (idvenda)
12
13
14
    TABLESPACE pg_default;
15
16
    ALTER TABLE IF EXISTS public.turno
17
        OWNER to postgres;
```

### Alimentando as Tabelas

Agora que já criamos as tabelas no banco de dados então vamos colocar nosso tesouro nelas: os dados.

### 1. Tabela alunos

```
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(1, Bruno Amante de Brasíli
a', 'DF', 'M', 'Avançado');
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(2, 'Rock Lee', 'DF', 'M', 'A
vançado');
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(3, 'Adriana Guedelha', 'RO',
'F', 'Intermediário');
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(4, 'Aida Dorneles', 'RN',
'F', 'Iniciante');
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(5, Márcio da Silva Força da
Juventude', 'DF', 'M', 'Avançado');
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(6, 'Alberto Cezimbra', 'AM',
'M', 'Iniciante');
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(7, 'Alberto Monsanto', 'RN',
'M', 'Avançado');
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(8, 'Albino Canela', 'AC',
'M', 'Iniciante');
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(9, 'Alceste Varanda', 'RR',
'F', 'Iniciante');
INSERT INTO alunos(idaluno, cliente, estado, sexo, status) VALUES(10, 'Alcides Carvalhais', 'R
O', 'M', 'Iniciante');
```

#### 2. Tabela dancas

```
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(1, 'Classico', 'Basico', 'Avançado');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(2, 'Universitário', 'Intermediario',
'Basico');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(3, 'Classico', 'Basico', 'Avançado');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(4, 'Classico', 'Basico', 'Avançado');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(5, 'Classico', 'Basico', 'Avançado');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(6, 'Classico', 'Basico', 'Avançado');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(8, 'Classico', 'Basico', 'Basico');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(9, 'Classico', 'Basico', 'Avançado');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(9, 'Classico', 'Avancado', 'Avançado');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(9, 'Classico', 'Basico', 'Avançado');
INSERT INTO dancas(iddance, forro, zouk, ventre) VALUES(10, 'Classico', 'Basico', 'Avançado');
```

### 3. Tabela instrutores

```
INSERT INTO instrutores(idinstrutor, nome) VALUES(1,'Chuck Norris');
INSERT INTO instrutores(idinstrutor, nome) VALUES(2,'Bruce Lee');
INSERT INTO instrutores(idinstrutor, nome) VALUES(3,'Karin Abdul Jabar');
INSERT INTO instrutores(idinstrutor, nome) VALUES(4,'Mestre Miag');
INSERT INTO instrutores(idinstrutor, nome) VALUES(5,'Pai Mey');
```

### 4. Tabela itensvendas

```
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (1, 5, 1, 100, 100, 0.00);
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (2, 6, 1, 97.75, 97.75, 0.98);
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (1, 7, 1, 135.00, 135.00, 1.35);
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (2, 4, 1, 150.40, 150.40, 1.50);
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (3, 3, 2, 2966.00, 5932.00, 0.00);
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (1, 2, 1, 155.00, 155.00, 0.00);
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (2, 8, 1, 7820.85, 7820.85, 0.00);
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (3, 6, 2, 2955.00, 5910.00, 59.10);
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (1, 1, 1, 97.75, 97.75, 0.98);
INSERT INTO itensvenda(iddance, idaluno, quantidade, valorunitario, valortotal, desconto) VAL
UES (1, 10, 1, 8852.00, 8852.00, 0.00);
```

### 5. Turno

```
INSERT INTO public.turno(iddance, idinstrutor, idaluno, horario) VALUES (1, 4, 3, 'Manhã');
INSERT INTO public.turno(iddance, idinstrutor, idaluno, horario) VALUES (1, 2, 2, 'Noite');
INSERT INTO public.turno(iddance, idinstrutor, idaluno, horario) VALUES (2, 3, 4, 'Noite');
INSERT INTO public.turno(iddance, idinstrutor, idaluno, horario) VALUES (1, 2, 5, 'Noite');
INSERT INTO public.turno(iddance, idinstrutor, idaluno, horario) VALUES (1, 3, 6, 'Noite');
INSERT INTO public.turno(iddance, idinstrutor, idaluno, horario) VALUES (4, 2, 7, 'Noite');
INSERT INTO public.turno(iddance, idinstrutor, idaluno, horario) VALUES (2, 1, 8, 'Noite');
INSERT INTO public.turno(iddance, idinstrutor, idaluno, horario) VALUES (1, 5, 9, 'Manhã');
INSERT INTO public.turno(iddance, idinstrutor, idaluno, horario) VALUES (1, 5, 10, 'Manhã');
```

O banco de dados já está criado e alimentado. Agora podemos conduzir as consultas e responder as perguntas de negócios utilizando a linguagem SQL. Vamos lá!

## Introdução: Carregando os pacotes e conectando-se ao Banco de Dados

Neste caso vamos instalar os pacotes necessários e nos conectar ao banco de dados. Seguem abaixo os códigos e o acesso ao PostgreSQL.

```
# Pacotes para a analise

# 1. Instalando pacotes necessarios
# install.packages("RPostgreSQL") # instala o pacote RPostgreSQL
# install.packages("RPostgres") # Instala o pacote RPostgres
# install.packages("DBI") # Instala o pacote DBI

# 2. Carregando os pacotes necessario
library(RPostgreSQL) # acessando o banco de dados
```

```
## Warning: package 'RPostgreSQL' was built under R version 4.1.3
## Carregando pacotes exigidos: DBI
## Warning: package 'DBI' was built under R version 4.1.3
library(DBI) # organizando o banco
library(RPostgres) # pacote mais antigo caso o RPostgreSQL nao funcione
## Warning: package 'RPostgres' was built under R version 4.1.3
library(tidyr) # pacote para organizacao dos dados
## Warning: package 'tidyr' was built under R version 4.1.1
library(dplyr) # pacote para acesso e organizacao e tratamento dos dados
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(tinytex) # pacote para construir o portfolio na WEB
## Warning: package 'tinytex' was built under R version 4.1.1
# 3. Conectando o banco de dados
conexao = dbConnect(RPostgres::Postgres(), dbname = "dancaAP",
                    host = "localhost", port = 5432, user = "postgres",
                    password = "Info@1234")
```

```
# 4. Acessando o banco de dados
dancas = "SELECT *
FROM dancas
alunos = "SELECT *
FROM alunos
instrutores = "SELECT *
FROM instrutores
itensvenda = "SELECT *
FROM itensvenda
turno = "SELECT *
FROM turno
dancas = dbGetQuery(conexao, dancas)
alunos = dbGetQuery(conexao, alunos)
instrutores = dbGetQuery(conexao, instrutores)
itensvenda = dbGetQuery(conexao, itensvenda)
turno = dbGetQuery(conexao, turno)
# 4.1. Visualizando partes do banco dancas
class(dancas) # clalsse dos dados
```

```
## [1] "data.frame"
```

dim(dancas) # dimensao do banco

## [1] 10 4

head(dancas) # primeiras linhas e colunas

|   | iddance     | forro         | zouk          | ventre      |
|---|-------------|---------------|---------------|-------------|
|   | <int></int> | <chr></chr>   | <chr></chr>   | <chr></chr> |
| 1 | 1           | Classico      | Basico        | Avançado    |
| 2 | 2           | Universitário | Intermediario | Basico      |
| 3 | 3           | Classico      | Basico        | Avançado    |
| 4 | 4           | Classico      | Basico        | Avançado    |
| 5 | 5           | Classico      | Basico        | Avançado    |
| 6 | 6           | Classico      | Basico        | Avançado    |

tail(dancas) # ultimas linhas e colunas

|        | iddance<br><int></int> | forro<br><chr></chr> | <b>zouk</b><br><chr></chr> | ventre<br><chr></chr> |
|--------|------------------------|----------------------|----------------------------|-----------------------|
| 5      | 5                      | Classico             | Basico                     | Avançado              |
| 6      | 6                      | Classico             | Basico                     | Avançado              |
| 7      | 7                      | Classico             | Basico                     | Avançado              |
| 8      | 8                      | Classico             | Basico                     | Basico                |
| 9      | 9                      | Classico             | Avancado                   | Avançado              |
| 10     | 10                     | Classico             | Basico                     | Avançado              |
| 6 rows |                        |                      |                            |                       |

Agora vamos responder as perguntas de negócio.

# 1. Quantas (os) alunas (os) avançados há na escola de dança?

```
sql2 = "SELECT COUNT(alunos)
FROM alunos WHERE status = 'Avançado'"

nivel = dbGetQuery(conexao, sql2)
nivel
```

```
| count | <int64> | 5 | 1 row |
```

Como observado, existem 5 alunos no nível avançado na escolca.

## 2. Quais são as (os) alunas (os) são do sexo feminino?

```
sql3 = "SELECT cliente, sexo
FROM alunos WHERE sexo = 'F'
"
feminino = dbGetQuery(conexao, sql3)
feminino
```

| cliente <chr></chr> | sexo<br><chr></chr> |
|---------------------|---------------------|
| Adriana Guedelha    | F                   |

| cliente<br><chr></chr> | sexo<br><chr></chr> |
|------------------------|---------------------|
| Aida Dorneles          | F                   |
| Alceste Varanda        | F                   |
| Nicolle                | F                   |
| 4 rows                 |                     |

Como observado, são 4 mulheres: a Adriana Gadelha, Aida Dorneles, Alceste Varanda e Nicolle.

# 3. Quais as Unidades Federativas das (os) alunas (os)?

```
sql4 = "SELECT cliente, estado
FROM alunos
"

uf = dbGetQuery(conexao, sql4)
uf
```

| cliente<br><chr></chr>             | estado<br><chr></chr> |
|------------------------------------|-----------------------|
| Bruno Amante de Brasília           | DF                    |
| Rock Lee                           | DF                    |
| Adriana Guedelha                   | RO                    |
| Aida Dorneles                      | RN                    |
| Márcio da Silva Força da Juventude | DF                    |
| Alberto Cezimbra                   | AM                    |
| Alberto Monsanto                   | RN                    |
| Albino Canela                      | AC                    |
| Alceste Varanda                    | RR                    |
| Alcides Carvalhais                 | RO                    |
| 1-10 of 11 rows                    | Previous 1 2 Next     |

### 3.1. Quais as (os) alunas (os) do DF?

```
sql4_1 = "SELECT cliente, estado
FROM alunos WHERE estado = 'DF'
"

df = dbGetQuery(conexao, sql4_1)
df
```

| cliente<br><chr></chr>             | estado<br><chr></chr> |
|------------------------------------|-----------------------|
| Bruno Amante de Brasília           | DF                    |
| Rock Lee                           | DF                    |
| Márcio da Silva Força da Juventude | DF                    |
| 3 rows                             |                       |

Como observado, existem 3 alunos do DF e todos do sexo masculino: Bruno, Rock Lee e Márcio.

## 4. Quais os nomes das (os) professoras (es)?

```
sql5 = "SELECT *
FROM instrutores
"
nomes = dbGetQuery(conexao, sql5)
nomes
```

| idinstrutor<br><int></int> | nome<br><chr></chr> |
|----------------------------|---------------------|
| 1                          | Chuck Norris        |
| 2                          | Bruce Lee           |
| 3                          | Karin Abdul Jabar   |
| 4                          | Mestre Miag         |
| 5                          | Pai Mey             |
| 5 rows                     |                     |

Os nomes dos intrutores são Chuck Norris, Bruce Lee, Karin Abdul Jabar, Mestre Miag e Pai Mey. É uma homenagem aos mestres de artes marciais e ex jogador de basquete Karin Abdul Jabar.

## 5. Quais estilos de forró são ensinados na escola?

```
sql6 = "SELECT DISTINCT forro
FROM dancas
"

estilos = dbGetQuery(conexao, sql6)
estilos
```

```
forro
<chr>
Universitário
```

| forro<br><chr></chr> |  |
|----------------------|--|
| Classico             |  |
| 2 rows               |  |

No caso a escola oferta 2 estilos de forró: o clássico e universitário.

# 6. Quais os menores e maiores valores pagos por mês na escola?

```
min <dbl>
97.75

1 row
```

O valor máximo pago por mês é R\$ 8.852,00 e o mínimo de R\$ 97,75. Vamos descobrir quem são as (os) alunos que pagam estes valores.

```
sql7_2 = "SELECT alunos.cliente, itensvenda.valorunitario
FROM alunos JOIN itensvenda on alunos.idaluno = itensvenda.idaluno
ORDER BY itensvenda.valorunitario DESC
"
maximo_aluno = dbGetQuery(conexao, sql7_2)
maximo_aluno
```

| cliente<br><chr></chr>             | valorunitario<br><dbl></dbl> |
|------------------------------------|------------------------------|
| Alcides Carvalhais                 | 8852.00                      |
| Albino Canela                      | 7820.85                      |
| Adriana Guedelha                   | 2966.00                      |
| Alberto Cezimbra                   | 2955.00                      |
| Rock Lee                           | 155.00                       |
| Aida Dorneles                      | 150.40                       |
| Alberto Monsanto                   | 135.00                       |
| Márcio da Silva Força da Juventude | 100.00                       |
| Bruno Amante de Brasília           | 97.75                        |
| Alberto Cezimbra                   | 97.75                        |
| 1-10 of 10 rows                    |                              |

sql7\_3 = "SELECT alunos.cliente, itensvenda.valorunitario
FROM alunos JOIN itensvenda on alunos.idaluno = itensvenda.idaluno
ORDER BY itensvenda.valorunitario
...

minimo\_aluno = dbGetQuery(conexao, sq17\_3)
minimo\_aluno

| cliente<br><chr></chr>             | valorunitario<br><dbl></dbl> |
|------------------------------------|------------------------------|
| Alberto Cezimbra                   | 97.75                        |
| Bruno Amante de Brasília           | 97.75                        |
| Márcio da Silva Força da Juventude | 100.00                       |
| Alberto Monsanto                   | 135.00                       |
| Aida Dorneles                      | 150.40                       |
| Rock Lee                           | 155.00                       |
| Alberto Cezimbra                   | 2955.00                      |
| Adriana Guedelha                   | 2966.00                      |
| Albino Canela                      | 7820.85                      |
| Alcides Carvalhais                 | 8852.00                      |
| 1-10 of 10 rows                    |                              |

Quem paga o maior valor mensal na academia é o Alcides Carvalhais e os menores são o Alberto Cezimbra e Bruno.

## 7. Qual o valor médio que os alunos pagam por mês na escola?

```
sql8 = "SELECT AVG(valorunitario)
from itensvenda
"
media = dbGetQuery(conexao, sql8)
media
```

```
avg

<dbl>
2332.975

1 row
```

A média gasta por aluno foi de R\$ 2.332,98. Vamos analisar a mediana e comparar com a média

```
mediana = median(itensvenda$valorunitario)
mediana
```

```
## [1] 152.7
```

A mediana foi de R\$ 152,70, bem distante da média. Neste caso, há uma certa dispersão de pagamentos entre os clientes.

#### 10. Quem tem maior média de gastos na escola: homens ou mulheres?

```
sq19 = "SELECT alunos.sexo, AVG(itensvenda.valorunitario)
FROM alunos JOIN itensvenda on alunos.idaluno = itensvenda.idaluno
GROUP BY alunos.sexo
"
media_sexo = dbGetQuery(conexao, sq19)
media_sexo
```

| sexo<br><chr></chr> | avg<br><dbl></dbl> |
|---------------------|--------------------|
| M                   | 2526.669           |
| F                   | 1558.200           |
| 2 rows              |                    |

Os homens gastam em média R\$ 2526,67 e as mulheres R\$ 1558,00. Neste caso, os homens tiveram um gasto maior na escola.