Session 1: Vector spaces

Optimization and Computational Linear Algebra for Data Science

Marylou Gabrié (based on material by Léo Miolane)

Contents

- 1. Vector Spaces
 - 1.1 Definition and examples
 - 1.2 Subspaces

Vector spaces inside other vector spaces

- 2. Span & Linear Families
 - 2.1 Spans, Linear combinations
 - 2.2 Linear dependency
- 3. Basis & Dimension
 - 3.1 Definitions
 - 3.2 Coordinates
- 4. Why do we care about all these things?

Application to data science: image compression

1. Vector spaces

1. Vector spaces 3/39

So far, « Vectors = arrows »

Two fundamental operations:

1. Add two vectors \vec{u} and \vec{v} to obtain another vector $\vec{u} + \vec{v}$

2. Multiply a vector \vec{u} by a «scalar» (= a real number) λ to get another vector $\lambda \cdot \vec{u}$

1. Vector spaces 4/39

Coordinate representation

- One can represent vectors using coordinates
- lacksquare 2D vectors in the plane $ec{u}=(u_1,u_2)\in\mathbb{R}^2$
- lacksquare 3D vectors in space $\vec{u}=(u_1,u_2,u_3)\in\mathbb{R}^3$
- lacktriangledown n-dimensional vectors $ec{u}=(u_1,u_2,\ldots,u_n)\in\mathbb{R}^n$

- $\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$
- $\lambda \cdot \vec{u} = (\lambda u_1, \lambda u_2, \dots, \lambda u_n)$

1. Vector spaces 5/3

1.1 Vector spaces: Definition

Definition (simplified - see notes)

A vector space consists of a set V (whose elements are called vectors) and two operations + and \cdot such that

- The sum of two vectors is a vector: for $\vec{x}, \vec{y} \in V$, the sum $\vec{x} + \vec{y}$ is a vector, i.e. $\vec{x} + \vec{y} \in V$.
- Multiplying a vector $\vec{x} \in V$ by a scalar $\lambda \in \mathbb{R}$ gives a vector $\lambda \cdot \vec{x} \in V$.
- The operations + and · are "nice and compatible".

« Nice and compatible »?

1. The vector sum is commutative and associative. For all $\vec{x}, \vec{y}, \vec{z} \in V$:

$$\vec{x} + \vec{y} = \vec{y} + \vec{x}$$
 and $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$.

- 2. There exists a zero vector $\vec{0} \in V$ that verifies $\vec{x} + \vec{0} = \vec{x}$ for all $\vec{x} \in V$.
- 3. For all $\vec{x} \in V$, there exists $\vec{y} \in V$ such that $\vec{x} + \vec{y} = \vec{0}$. Such \vec{y} is called the additive inverse of \vec{x} and is written $-\vec{x}$.
- 4. Identity element for scalar multiplication: $1 \cdot \vec{x} = \vec{x}$ for all $\vec{x} \in V$.
- 5. Distributivity: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x}, \vec{y} \in V$,

$$(\alpha+\beta)\cdot\vec{x}=\alpha\cdot\vec{x}+\beta\cdot\vec{y}\qquad\text{and}\qquad\alpha\cdot(\vec{x}+\vec{y})=\alpha\cdot\vec{x}+\alpha\cdot\vec{y}.$$

6. Compatibility between scalar multiplication and the usual multiplication: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x} \in V$, we have

$$\alpha \cdot (\beta \cdot \vec{x}) = (\alpha \beta) \cdot \vec{x}.$$

Example 1: \mathbb{R}^n

The set $V = \mathbb{R}^n$ endowed with the usual vector addition +

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

and the usual scalar multiplication ·

$$\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n)$$

is a vector space.

We will work in \mathbb{R}^n 99% ot the time !

Example 2: functions

The set $V\stackrel{\mathrm{def}}{=}\{f\,|\,f:\mathbb{R}\to\mathbb{R}\}$ of all functions from \mathbb{R} to itself endowed with the addition + and the scalar multiplication \cdot defined by

is a vector space.

Useful in signal processing.

Example 3: random variables

The set of random variables on a given probability space Ω is a vector space:

If X and Y are two random variables and $\alpha \in \mathbb{R}$, X+Y and αX are also random variables.

Important to have this in mind when doing stats/probabilities!

Why do we need all this?

Get geometric intuition.

We will see for instance that the notion of length in \mathbb{R}^n is deeply connected to the notion of variance of random variables.

Save time.

A theorem that applies to vector spaces will in particular be true for all the examples we listed before.

1.2 Subspaces: Definition

Definition

We say that a non-empty subset S of a vector space V is a *subspace* if it is closed under addition and multiplication by a scalar, that is if

- 1. for all $x, y \in S$ we have $x + y \in S$,
- 2. for all $x \in S$ and all $\alpha \in \mathbb{R}$ we have $\alpha x \in S$.

Remark: a subspace is a also vector space.

1. Vector spaces Subspaces 12/

Examples

 $ightharpoonup \mathbb{R}^n$ is a subspace of \mathbb{R}^n .

 $ightharpoonup \{0\}$ is a subspace of \mathbb{R}^n .

ightharpoonup Any line that contains the origin is subspace of \mathbb{R}^2 .

Remarks, questions?

1. Vector spaces Subspaces

Remarks, questions?

1. Vector spaces Subspaces

2. Span & linear dependency

Linear combination

Let V be a vector space (think for instance $V = \mathbb{R}^n$).

Definition

We say that $y \in V$ is a *linear combination* of the vectors $x_1, \ldots, x_k \in V$ if there exists $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ such that

$$y = \sum_{i=1}^{k} \alpha_i x_i = \alpha_1 x_1 + \dots + \alpha_k x_k.$$

Remarks

- A linear combination is always a finite sum.
- If S is a subspace of V, then any linear combination of vectors x_1, \ldots, x_k of S is also in S:

$$\alpha_1 x_1 + \dots + \alpha_k x_k \in S$$
, for all $\alpha_1, \dots, \alpha_k \in \mathbb{R}$.

« Subspaces are closed under linear combinations. »

Exercise: Prove it!

Span

Definition

Let x_1, \ldots, x_k be vectors of V. We define the *linear span* of x_1, \ldots, x_k as the set of all linear combinations of these vectors:

$$\operatorname{Span}(x_1,\ldots,x_k) \stackrel{\text{def}}{=} \left\{ \alpha_1 x_1 + \cdots + \alpha_k x_k \,\middle|\, \alpha_1,\ldots,\alpha_k \in \mathbb{R} \right\}.$$

2.2 Linear dependency

Definition

Vectors $x_1, \ldots x_k \in V$ are linearly dependent is there exists $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ that are not all zero such that

$$\alpha_1 x_1 + \dots + \alpha_k x_k = 0.$$

They are said to be *linearly independent* otherwise. **Abuse of language:** Instead of saying $\langle x_1, \ldots, x_k \rangle$ are linearly dependent, we should say $\langle x_1, \ldots, x_k \rangle$ is linearly dependent.

Key observation: « x_1, \ldots, x_k are linearly dependent » *is* equivalent to « one of the vectors x_1, \ldots, x_k can be obtained as a linear combination of the others.»

Why?

A useful lemma

Lemma

Let $v_1, \ldots, v_n \in V$ and let $x_1, \ldots, x_k \in \operatorname{Span}(v_1, \ldots, v_n)$. Then, if $k > n, x_1, \ldots, x_k$ are linearly dependent.

3. Basis & Dimension

3. Basis & Dimension 22/39

3.1 Basis definition

Definition

A family (x_1, \ldots, x_n) of vectors of V is a basis of V if

- 1. x_1, \ldots, x_n are linearly independent,
- 2. Span $(x_1, ..., x_n) = V$.

This means that (x_1, \ldots, x_n) is a basis of V if

- 1. None of the x_i is a linear combination of the others $(x_j)_{j\neq i}$.
- 2. Any vector of V can be expressed as a linear combination of (x_1, \ldots, x_n) .

Example: the canonical basis of \mathbb{R}^n

Let us define the vectors $e_1, \ldots, e_n \in \mathbb{R}^n$ by

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

One can verify (homework!) that the family (e_1, \ldots, e_n) is a basis of \mathbb{R}^n . This basis is called the "canonical basis" of \mathbb{R}^n .

3.2 Dimension

Theorem

Let V be a vector space.

- If V admits a basis (v_1,\ldots,v_n) , then every basis of V has also n vectors. We say that V has dimension n and write $\dim(V)=n$.
- Otherwise, we say that V has infinite dimension: $\dim(V) = +\infty$.

Example:

- Arr has dimension 2, because the canonical basis (e_1, e_2) is a basis of Arr2 with 2 vectors.
- $\{f \mid f: \mathbb{R} \to \mathbb{R}\}$ has infinite dimension.

The dimension is well defined!

Theorem

If V admits a basis (v_1, \ldots, v_n) , then every basis of V has also n vectors.

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

1. Any family of vectors of V that spans V contains at least n vectors.

i.e. if
$$x_1, \ldots, x_k \in V$$
 are such that $\operatorname{Span}(x_1, \ldots, x_k) = V$, then $k \geq n$.

2. Any family of vectors of *V* that are linearly independent contains at most *n* vectors.

i.e. if $x_1, \ldots, x_k \in V$ are linearly independent, then $k \leq n$.

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

1. Any family of vectors of V that spans V contains at least n vectors.

i.e. if
$$x_1, \ldots, x_k \in V$$
 are such that $\operatorname{Span}(x_1, \ldots, x_k) = V$, then $k \geq n$.

2. Any family of vectors of *V* that are linearly independent contains at most *n* vectors.

i.e. if $x_1, \ldots, x_k \in V$ are linearly independent, then $k \leq n$.

Properties of the dimension

Proposition

Let V be a vector space of dimension n and let $x_1, \ldots, x_n \in V$.

- 1. If x_1, \ldots, x_n are linearly independent, then (x_1, \ldots, x_n) is a basis of V.
- 2. If $\operatorname{Span}(x_1,\ldots,x_n)=V$, then (x_1,\ldots,x_n) is a basis of V.

Very useful to show that a family of vector forms a basis:

Example: $x_1 = (12, 37)$ and $x_2 = (-9, 17)$ form a basis of \mathbb{R}^2 .

An inequality

Proposition

Let U and V be two subspaces of \mathbb{R}^n . Assume that $U \subset V$. Then

$$\dim(U) \le \dim(V) \le n.$$

If **moreover** $\dim(U) = \dim(V)$, then U = V.

Subspaces dimensions: Vocabulary

Definition

Let S be a subspace of \mathbb{R}^n .

- We call S a line if $\dim(S) = 1$.
- We call S an hyperplane if $\dim(S) = n 1$.

3.3 Coordinates of a vector in a basis

Definition & Theorem

If (v_1,\ldots,v_n) is a basis of V, then for every $x\in V$ there exists a unique vector $(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

We say that $(\alpha_1, \ldots, \alpha_n)$ are the coordinates of x in the basis (v_1, \ldots, v_n) .

3.3 Coordinates of a vector in a basi															is					

32/39

3. Basis & Dimension 3.3 Coordinates

Exercise

- 1. Show that the vectors $v_1=(1,1)$ and $v_2=(1,-1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u=(x,y) in the basis (v_1,v_2) in terms of x and y.

Exercise

- 1. Show that the vectors $v_1=(1,1)$ and $v_2=(1,-1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u=(x,y) in the basis (v_1,v_2) in terms of x and y.

4. Why do we care about this?

Application to image compression

- Image = Grid of pixels
- Represented as a vector $v \in \mathbb{R}^n$, for some large n.
- One needs to store n numbers.

Can we do better?

If we want to store an arbitrary image, NO!

«Random» image

Can we do better?

- If we want to store an arbitrary image, NO!
- However, we are mainly storing images coming from the « real world »
- These images have some structure.

«Random» image

Can we do better?

- If we want to store an arbitrary image, NO!
- However, we are mainly storing images coming from the « real world »
- These images have some structure.

«Real» image

What do we mean by « structure »?

Neighboring pixels are very likely to have similar colors.

- There exists a basis (w_1, \dots, w_n) of \mathbb{R}^n in which «real» images $v \in \mathbb{R}^n$ are (approximately) **sparse**.
- This means that the coordinates $(\alpha_1, \ldots, \alpha_n)$ of v in the basis (w_1, \ldots, w_n) contains a lot of zeros.

Store only the $k \ll n$ non-zero coordinates of v (in the w_i 's basis')!

A toy example

Consider n=2, that is images $v \in \mathbb{R}^2$ with only 2 pixels. Take $v_1 = (1, 1)$ and $v_2 = (1, -1)$:

38/39

4. Why do we care about this?

Examples of good bases

Fourier bases (used in .jpeg, .mp3)

- JPEG2000 uses wavelet bases, and achieves better performance than JPEG.
- The course DS-GA 1013 deepens these concepts!

