Projet pratique Algorithme / Complexité / Calculabilité

Jean-Marc Lagniez, Viktor Lesnyak, Pierre-Alexandre Cimbe, Ahmed Rafik

Master Informatique - Université Montpellier II

2013

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
 - Temps d'execution en fonction du nombre de sommets
 - Temps d'execution en fonction de la capacité maximale
 - Espace Memoire utilise
- 3 Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
 - Temps d'execution en fonction du nombre de sommets
 - Temps d'execution en fonction de la capacité maximale
 - Espace Memoire utilise
- 3 Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
 - Temps d'execution en fonction du nombre de sommets
 - Temps d'execution en fonction de la capacité maximale
 - Espace Memoire utilise
- 3 Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

- 1 Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
 - Temps d'execution en fonction du nombre de sommets
 - Temps d'execution en fonction de la capacité maximale
 - Espace Memoire utilise
- 3 Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

Graphe initiale

Soit G = (V,E) un graphe,avec V-ensemble des arcs et Eensemble des sommets.

AlgoFF-Suite

Graphe d'ecart

Pour passer de notre graphe G au Graphe d'ecart G_e on applique un flot null sur toutes les arcs et on ajout un arc qui va de la source(S) vers le puit(T).

Chemin ameliorant

Ensuite on choisi un chemin ammeliorant sur le graphe d'ecart obtenue grace a un parcour en largeur.

Chemin ameliorant

En utilisant le flotle plus petit de ce chemin on met a jour le graphe d'ecart.

Chemin ameliorant

Une foi tout les chemin ameliorants sont parcouru, on obtien un graphe d'ecart complet avec le flot maximal (das notre cas c'est 6).

Ford-Fulkerson Edmonds-Karp Dinic Cacity Scaling

AlgoEK

Ford-Fulkerson Edmonds-Karp Dinic Cacity Scaling

AlgoD

Ford-Fulkerson Edmonds-Karp Dinic Cacity Scaling

AlgoCS

- 1 Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinio
 - Capacity Scaling
- Experimentation et Performance
 - Temps d'execution en fonction du nombre de sommets
 - Temps d'execution en fonction de la capacité maximale
 - Espace Memoire utilise
- 3 Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

???????

????bis?????

???

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
 - Temps d'execution en fonction du nombre de sommets
 - Temps d'execution en fonction de la capacité maximale
 - Espace Memoire utilise
- 3 Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

Démo