NE451 Solution: Homework assignment 2

Fall 2019. Instructor: Dr. Jeff Chen

Prob. 1. [3-3. Computational] [Pseudo code] N=10 XL=20DEFINE X(N), Y(N), ISEED * J LOOP FROM 1 TO N ************ X0=RAN(ISEED)*XLY0=RAN(ISEED)*XL IF(J.EQ.1)GOTO NEXT J K LOOP FROM 1 TO J-1 R2=(X0-X(K))**2+(Y0-Y(K))**2IF (R2 is less or equal to 1.5**2)GO BACK TO 5 END K LOOP ********** X(J)=X0Y(J)=Y0WRITE X0,Y0 FOR PLOTTING TH=RAN(ISEED)*2PI COSTH = COS(TH)SINTH = SIN(TH)WRITE COSTH, SINTH FOR PLOTTING * END J LOOP ************

[Plot]

FIG. 1: Generating 10 positions randomly in a xy box. The arrows represent u_x and u_y required.

Prob. 2. [3-4. Computational] [Pseudo code] Initializing XL = 20, X0 = XL/2.0, V=1, M=10**5, H = 0.001X1=X0+V*H************ J LOOP from 1 to M T=T+HF = 10.0/X1**11 - 10.0/(XL-X1)**11X=2.0*X1-X0 + F*H*HV=(X-X1)/H $POT = 1/X1^{**}10 + 1/(XL-X1)^{**}10$ EN=0.5*V*V+POTWRITE T,X WRITE T,EN X0=X1X1=XEND J LOOP ************

[Plot]

FIG. 2: Trajectory x(t) and the total energy E(t) as functions of t in 10^5 steps.

Prob. 3. [3-7. Computational]

[Pseudo code] (Brief version)

Initialization: same as in the previous two.

Add: Loop through I = 1, N to obtain

$$\vec{r}_1(i) = \vec{r}_0(i) + h\vec{v}(i)$$

J LOOP from 1 to M (time loop)

T=T+H

I LOOP from 1 to N (particle loop)

FX calculated, FY calculated (need another loop to go through all particles and all walls)

Then

$$\vec{r}_{\text{new}}(i) = 2\vec{r}_1(i) - \vec{r}_0(i) + h^2 \vec{F}$$

END I Loop (particle loop)

WRITE the coordinates as required.

END J Loop (time loop)

[Plot]

FIG. 3: Trajectories of the particles in $t \le 0.1$ and $0.1 \le t \le 2$.

Prob. 4. [3-9. Analytical]

[Write down...] From a statistical mechanics book, one has

$$f(\vec{v}) = \exp\left(-m\vec{v}^2/2k_BT\right). \tag{1}$$

[Reduced version]

Using the reduced temperature, then

$$m\vec{v}^2/2k_BT = \frac{mk_B\sigma^2\vec{\tilde{v}}^2}{2\tau^2\epsilon\tilde{T}}$$

Now $\tau^2 = \sigma^2 m/\epsilon$, hence

$$f(\vec{\tilde{v}}) = \exp\left(-\vec{\tilde{v}}^2/2\tilde{T}\right).$$
 (2)

FIG. 4: Comparison of the distribution functions. The solid curve is plotted according to the Maxwell speed distribution for a 2D system. The cyan circles, green squares, blue diamonds, and grey triangles are the historgrams collected for this distribution when $M=10^6,10^5,10^4,10^3$, respectively. Added to the top of the graph are the results for \bar{v} (unfilled) and $\sqrt{\bar{v}^2}$ (yellow), where again, $M=10^6,10^5,10^4,10^3$ are represented by circles, squares, diamonds, and triangles.

Prob. 5. [3-10, Numerical] [Pseudo code 1: running MD]

- 1. **Initialization**. Declare array sizes for \mathbf{r}_0 (old-old coordinates), \mathbf{r}_1 (old coordinates), \mathbf{v} (velocity), and H (histogram); set M (total steps), L (box size), N (number of particles), h (time step), γ (Berendson coefficient), Δ (used in collecting histogram; I set $\Delta = 0.2$) and \tilde{T} (temperature).
- 2. **Preparation**. Set \mathbf{r}_0 ; Based on \tilde{T} , estimate v2, set \mathbf{v} to magnitude $\sqrt{v2}$ according to Prob. 3-3; Define K_0 using \tilde{T} ; Initializing H to zero if needed. Set \mathbf{r}_1 by using one-step Euler.
- 3. Start time loop.
- 4. **First particle loop**. Start first particle loop; calculate **v**; add to K (kinetic energy); collect average for \bar{v} and \bar{v}^2 ; collect statistics for H based on each molecule's speed. End first particle loop. Calculate $B = \gamma(K_0/K 1)$ as a coefficient.
- 5. **Second particle loop**. Start second particle loop; Calculate auxiliary forces (wall and Berendson force). Start another particle loop to calculate

interaction force based on LJ expression. End of another particle loop. Update the coordinates \vec{r}_{new} using Verlet. Let $\mathbf{r}_0 = \mathbf{r}_1$ and $\mathbf{r}_1 = \mathbf{r}_{\text{new}}$. End of second particle loop.

- 6. End time loop.
- 7. **Finalizing...** Calculate \bar{v} , $\bar{v^2}$; write these and the histogram.

[Pseudo code 2: Normalization of the histogram]

- 1. **Initialization**. Define Δ ; read the H histogram; Define a function $f = v \exp(-v^2/2\tilde{T})$ note the equal sign and the extra v.
- 2. Finding the area. Adding $H * \Delta$ to produce A_H . Adding $f * \Delta$ to produce A_f .
- 3. Normalization. Let H/A_H and $f = f/A_f$. Record your data for plotting.