Tell whether the quadratic function is in standard form or vertex form.

1.
$$y = x^2 - 2x - 35$$

1.
$$y = x^2 - 2x - 35$$
 2. $y = 3(x-1)^2 + 3$

3.
$$y = -\frac{2}{3}(x-4)^2 + 7$$

$$4. \ \ y = -2x^2 + 16x - 24$$

Identify the vertex of the quadratic function in VERTEX form.

5.
$$y = 3(x-7)^2 - 1$$

6.
$$y = 3(x+2)^2 - 5$$

7.
$$y = (x-3)^2$$

8.
$$y = -4(x-2)^2 + 4$$

9.
$$y = 2(x+1)^2 - 3$$

10.
$$y = (x+4)^2$$

11.
$$y = \frac{1}{2}(x-5)^2 + 1$$

12.
$$y = -(x+6)^2 + 10$$

Identify the vertex of the quadratic function in STANDARD form. Remember to use $x = \frac{-b}{2a}$

13.
$$y = 2x^2 - 16x + 31$$

$$14. \ \ y = -x^2 - 4x + 1$$

$$15. \ \ y = 3x^2 - 6x + 4$$

Given a quadratic equation in vertex form, find the vertex, axis of symmetry, whether the graph opens up or down, the maximum or minimum, and the y-intercept. Graph it!

16. $y = -2(x+2)^2 + 4$

Vertex:

Axis of symmetry: _____

Opens: up down

Maximum Minimum

Max/Min Value: _____

y-intercept: _____

17	v =	(x -	3) ²	2 + 2
11.	y - y	(n –	ונ	T 4

Vertex: _____

Axis of symmetry: _____

Opens: up down

Maximum Minimum

Max/Min Value: _____

y-intercept: _____

18.
$$y = -\frac{1}{5}(x-5)^2 - 2$$

Vertex: _____

Axis of symmetry: _____

Opens: up down

Maximum Minimum

Max/Min Value: _____

y-intercept: _____

19.
$$y = (x-2)^2$$

Vertex: _____

Axis of symmetry: _____

Opens: up down

Maximum Minimum

Max/Min Value: _____

y-intercept: _____

