Plano de Trabalho

Dados do plano de trabalho:

Titulo do plano de trabalho: Crescimento e acúmulo de Na⁺ e K⁺ em cultivares do gênero Brachiaria submetidas à salinidade.

Modalidade da Bolsa Solicitada: PIBIC

Projeto de Pesquisa vinculado: Mecanismos de regulação da homeostase iônica em espécies de capim Brachiaria submetidas à salinidade

1. Objetivos:

Geral:

O trabalho do bolsista tem como finalidade a instalação dos experimentos para verificar o crescimento, o acúmulo dos íons Na⁺ e K⁺ e estimativas de parâmetros de absorção e transporte desses íons em cultivares do gênero *Brachiaria* submetidas à salinidade.

Específicos:

- 1. Determinar o crescimento da parte aérea e das raízes de cultivares de *Brachiaria* quando submetidas a níveis moderados e altos de salinidade.
- 2. Estimar os teores dos íons Na⁺ e K⁺ em folhas, colmos e raízes de cultivares de *Brachiaria* quando submetidas a níveis moderados e altos de salinidade.
- 3. Calcular a partir dos parâmetros de crescimento e teores de íons, as taxa de absorção e transporte de Na⁺ e K⁺ em cultivares de *Brachiaria* quando submetidas a níveis moderados e altos de salinidade.
- 4. Análise da seiva para entender a regulação do transporte de íons Na⁺ e K+

2. Metodologia

Material biológico. No presente trabalho serão usadas sementes do gênero *Brachiaria* das espécies *B. decumbens* cv. basilisk, e *B. brizantha* cv. xaraes, marandu e piatã.

Condições de cultivo e coletas. As sementes das espécies e variedades acima indicadas serão germinadas em vermiculita umedecida com água destilada durante dez dias. Nesta etapa, uma solução de CaCl₂ a 0,5 mM será usada ao primeiro e quinto dia de cultivo para irrigar e melhorar a taxa de germinação. As plântulas serão transferidas para solução nutritiva de Hoagland de 1/3 de força iônica e com uma concentração de K⁺ a 0,75 mM. Estes cultivos serão feitos em bacias de 10 litros, onde serão colocadas 15 plantas e mantidas por um período de 10 dias. Após esse tempo, as plantas serão transferidas para baldes (duas plantas/balde) contendo 2,3 litros de solução nutritiva e submetidas aos tratamentos controle (sem salinidade) e de estresse salino com NaCl a 75 mM. Após 7 dias

de cultivo, as plantas serão coletadas para análise de crescimento, quantificação dos íons Na^+eK^+ , análise do fluxo da seiva e absorção de K^+ .

As soluções serão substituídas regularmente por soluções novas para evitar deficiência nutricional. A concentração de K⁺ na solução nutritiva será também monitorada diariamente para mantê-la próxima aos valores estabelecidos. O pH das soluções nutritivas será mantido entre 5,5 - 6,0 e corrigido, quando necessário, com NaOH ou HCl. As plantas serão cultivadas em casa de vegetação com luminosidade, temperatura e umidade relativa do ar naturais.

Medidas de crescimento. O crescimento das plantas será determinado pela pesagem da parte área (PA) e das raízes (R). Após a coleta, as plantas de cada um dos tratamentos terão suas raízes lavadas em água destilada por dez minutos e em seguida, divididas em folhas, colmos e raízes. A massa fresca (MF) será determinada no momento da coleta, enquanto que a massa seca (MS) será determinada após secagem em estufa a 60°C durante 3 dias. Com os dados obtidos será estimada a relação do crescimento da parte aérea e raiz (MFPA/MFR e MSPA/MSR).

Determinação de íons. A quantificação dos íons K⁺ e Na⁺ nos tecidos coletados será realizada em extratos aquosos preparados com 100 mg de material fresco. O homogenato será agitado durante uma hora em mesa de agitação rotatória e em seguida, centrifugado a 3.000 g, durante 10 minutos. O sobrenadante obtido será analisado em um fotômetro de chama e os teores dos íons serão expressos como μmol. g⁻¹ MF.

Com os dados obtidos de massa e do teor de K⁺ e Na⁺ nas diferentes partes da planta será calculada a eficiência de absorção (EA) e de transporte (ET), de acordo com a seguinte fórmula:

EA = Quantidade total do íon na planta / massa fresca total da raiz e expressado nas unidades μ mol. g⁻¹ MF raiz.

ET = Quantidade total do íon na parte aérea / Quantidade total do íon na planta e expressado nas unidades μ mol. μ mol⁻¹.

Coleta e análise da seiva do xilema. A coleta da seiva do xilema será feita em plantas decapitadas, as quais serão obtidas pela remoção da parte aérea através de um corte feito a 1,0 cm acima da interseção entre a raiz e a parte aérea. Com o auxilio de uma micropipeta, será coletado o liquido da seiva do xilema exudado durante um período de uma hora. Após a coleta, a massa fresca das raízes será determinada e os teores de K⁺ e Na⁺ no liquido da seiva será estimado por fotometria de chama.

Com esses dados, calcular-se-á o fluxo da seiva (J_s) para esses íons através da seguinte formula:

 J_s = concentração do íon / massa fresca da raiz.tempo e será expressado como μ mol.g $^{-1}$.h $^{-1}$

Delineamento experimental e análise estatística

O delineamento do experimento será inteiramente casualisado com um arranjo fatorial 4x2, correspondendo a quatro materiais do gênero *Brachiaria* e dois níveis de salinidade (controle e 75 mM). O experimento para verificar o efeito da salinidade no crescimento e acúmulo de K⁺ será conduzido com cinco repetições, sendo cada repetição constituída por duas plantas. O experimento para verificar o efeito da salinidade na concentração de K⁺ e Na⁺ na seiva do xilema será conduzido com cinco repetições, sendo cada repetição constituída por uma planta. Estes últimos ensaios serão repetidos em dois experimentos.

Os resultados serão apresentados como a média ± erro padrão. Os dados serão sujeitos à análise de variância (ANOVA) e serão comparados usando-se o teste de Tukey a 5% de significância.

3. Cronograma de atividades

- **AT1.** Montagem de experimentos para avaliar o efeito da salinidade no crescimento e acúmulo dos íons Na⁺ e K⁺ em cultivares de *Brachiaria*.
- **AT2.** Preparação de extratos aquosos para quantificação dos íons Na⁺ e K⁺. Quantificação de K⁺ e Na⁺ com fotômetro de chama.
- **AT3.** Montagem de experimentos para avaliar o transporte de Na⁺ e K⁺ em cultivares de *Brachiaria* sob condições de estresse salino.
- **AT4.** Análise de íon presentes na seiva por fotometria de chama.
- **AT5.** Processamento de dados e análise estatística. Preparação de resumos para eventos e congressos.
- **AT6.** Elaboração de relatório final

Nº	Ano											
	01	02	03	04	05	06	07	08	09	10	11	12
AT1	X	X					X	X				
AT2		X	X					X	X			
AT3				X						X		
AT4				X	X					X	X	
AT5		X			X			X			X	
AT6												X