Sammenligning af to normalfordelte datasæt

Læsning:

Jens Ledet Jensen kap. 7

Den centrale grænseværdisætning for gennemsnittet \bar{X}

- Hvis $X_1, X_2, ..., X_n$ er uafhængige med
 - samme fordeling
 - middelværdi $E[X_i] = \mu$
 - og varians $Var(X_i) = \sigma^2$
- så i grænsen $n \to \infty$ har vi, at

$$\Pr\left(\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \le z\right) = \Pr\left(\frac{\frac{1}{n}\sum_{i=1}^{n} X_i - \mu}{\sqrt{\sigma^2/n}} \le z\right) = \Phi(z) \sim N(0,1)$$

• Dvs.

$$z = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/n}} \sim N(0,1)$$

Testkatalog for middelværdien i normalfordelte data (kendt varians)

- Statistisk model
 - $X \sim N(\mu, \sigma^2)$
 - Parameterskøn: $\hat{\mu} = \bar{x} \sim N(\mu, \sigma^2/n)$
 - Hvor observationen \bar{x} er gennemsnittet
- Hypotesetest
 - $H: \mu = \mu_0$
 - Teststørrelse: $z = \frac{\bar{x} \mu_0}{\sqrt{\sigma^2/n}} \sim N(0,1)$
 - P-værdi: $pval = 2 \cdot |1 \Phi(|z|)|$
- 95% konfidensinterval
 - $\left[\mu_{-}(x); \mu_{+}(x)\right] = \left[\bar{x} u \cdot \sqrt{\sigma^2/n}; \bar{x} + u \cdot \sqrt{\sigma^2/n}\right]$
 - Hvor u = 1,96
- Forudsætning: Vi skal kende den sande varians, σ^2 .

Testkatalog for middelværdien i normalfordelte data (<u>u</u>kendt varians)

- Statistisk model
 - $X \sim N(\mu, \sigma^2)$
 - Parameterskøn: $\hat{\mu} = \bar{x}$, $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2$
 - Hvor observationen \bar{x} er gennemsnittet
- Hypotesetest
 - $H: \mu = \mu_0$
 - Teststørrelse: $t = \frac{\bar{x} \mu_0}{\sqrt{s^2/n}} \sim t(n-1)$
 - P-værdi: $pval = 2 \cdot (1 t_{cdf}(|t|, n-1))$
- 95% konfidensinterval
 - $[\mu_{-}(x); \mu_{+}(x)] = \left[\bar{x} t_0 \cdot \sqrt{s^2/n}; \bar{x} + t_0 \cdot \sqrt{s^2/n}\right]$
 - Hvor $t_0 = t_{inv}(0.975, n-1)$

Testkatalog for varians i normalfordelte data

- Statistisk model
 - $X \sim N(\mu, \sigma^2)$
 - Parameterskøn: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2 \sim \frac{\sigma^2}{n-1} \chi^2 (n-1)$
 - Hvor \bar{x} er gennemsnittet.
- Hypotesetest
 - $H: \sigma^2 = \sigma^2_0$
 - Teststørrelse: $v = s^2/\sigma^2$

$$\bullet \quad \text{P-værdi: } pval = \begin{cases} 2 \cdot \chi_{cdf}^2 \big((n-1) \cdot v, n-1 \big) & v \leq 1 \\ 2 \cdot \Big(1 - 2 \cdot \chi_{cdf}^2 \big((n-1) \cdot v, n-1 \big) \Big) & v > 1 \end{cases}$$

• 95% konfidensinterval

•
$$[s_{-}(x); s_{+}(x)] = \left[\frac{(n-1)\cdot s^2}{\chi^2_{inv}(0.975, n-1)}; \frac{(n-1)\cdot s^2}{\chi^2_{inv}(0.025, n-1)}\right]$$

t-fordelingens konvergens mod standard normalfordelingen

- Efterhånden som antallet af datapunkter (n) bliver større, bliver estimatet (s^2) af variansen bedre.
- For små n er 95% konfidensintervallet, beregnet med tinv, bredere end det tilsvarende 95% konfidensinterval beregnet med norminv.
- For store *n* er 95% konfidensintervallerne cirka ens.

$$f = n - 1$$
 f 10 20 40 80 160 ∞ $t_{inv}(0.975, f)$ 2.23 2.09 2.02 1.99 1.97 1.96

Fraktilsammenligning

- Data kan med rimelighed antages normalfordelte, hvis punkterne i QQ-plottet snor sig omkring en ret linje.
- Omvendt, hvis der er store systematiske afvigelser, tror vi ikke på, data er normalfordelte.
- I praksis kan det være svært af afgøre, hvis antallet af datapunkter n er lille.

Eksempel – jordens massefylde

I dag

Sammenligning af to populationer.

Statistisk model

 Vi antager, at den størrelse, vi måler på, er normalfordelt i begge populationer:

$$X_{1,i} \sim N(\mu_1, \sigma_1^2), \qquad i = 1, 2, ..., n_1$$

og

$$X_{2,i} \sim N(\mu_2, \sigma_2^2), \qquad i = 1, 2, ..., n_2$$

- Den statistiske undersøgelse går ud på at undersøge, om $\mu_1 = \mu_2$.
- Dette er ækvivalent med at vurdere, om $\mu_1 \mu_2 = 0$.

Parameterskøn

• Fra den centrale grænseværdisætning ved vi, at

$$\hat{\mu}_1 = \bar{x}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} x_{1i} \sim N(\mu_1, \sigma_1^2/n_1)$$

og

$$\hat{\mu}_2 = \bar{x}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} x_{2i} \sim N(\mu_2, \sigma_2^2/n_2)$$

• Fra Resultat 4.11 får vi, at

$$\bar{x}_1 - \bar{x}_2 \sim N(\mu_1 - \mu_2, \sigma_1^2/n_1 + \sigma_2^2/n_2)$$

Teststørrelse

Vi antager, at varianserne er ens

$$\sigma^2 = \sigma_1^2 = \sigma_2^2$$

• Under hypotesen H: $\mu_1=\mu_2$, er $\mu_1-\mu_2=0$, og således får vi

$$\bar{x}_1 - \bar{x}_2 \sim N(0, \sigma^2/n_1 + \sigma^2/n_2)$$

Den standardiserede teststørrelse bliver derfor

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\sigma^2/n_1 + \sigma^2/n_2}} = \frac{\bar{x}_1 - \bar{x}_2}{\sigma\sqrt{1/n_1 + 1/n_2}} \sim N(0,1)$$

Estimation

 Vi vil endvidere gerne estimere den sande forskel mellem de to middelværdier

$$\delta = \mu_1 - \mu_2$$

Det naturlige valg af parameterskøn er

$$\hat{\delta} = \hat{\mu}_1 - \hat{\mu}_2 = \bar{x}_1 - \bar{x}_2$$

• Præcis som for et normalfordelt datasæt, kan vi lave et 95% konfidensinterval for $\hat{\delta}$:

$$[\delta_{-};\delta_{+}] = \left[\hat{\delta} - u \cdot \sigma \sqrt{1/n_1 + 1/n_2}; \hat{\delta} + u \cdot \sigma \sqrt{1/n_1 + 1/n_2}\right]$$

• Hvor u = 1.96

Testkatalog for sammenligning af to middelværdier (kendt varians)

Statistisk model

- $X_{1,i} \sim N(\mu_1, \sigma^2)$, $i = 1, 2, ..., n_1$ og $X_{2,i} \sim N(\mu_2, \sigma^2)$, $i = 1, 2, ..., n_2$
- Parameterskøn: $\hat{\delta} = \hat{\mu}_1 \hat{\mu}_2 = \bar{x}_1 \bar{x}_2 \sim N(\mu_1 \mu_2, \sigma^2/n_1 + \sigma^2/n_2)$
- Hvor observationenen $\bar{x}_1 \bar{x}_2$ er forskellen i gennemsnittet i de to populationer.

Hypotesetest

- $H: \mu_1 = \mu_2$
- Teststørrelse: $z = \frac{\bar{x}_1 \bar{x}_2}{\sigma \sqrt{1/n_1 + 1/n_2}} \sim N(0,1)$
- P-værdi: $pval = 2 \cdot (1 \Phi(|z|))$

95% konfidensinterval

- $[\delta_-; \delta_+] = [\bar{x}_1 \bar{x}_2 u \cdot \sigma \sqrt{1/n_1 + 1/n_2}; \bar{x}_1 \bar{x}_2 + u \cdot \sigma \sqrt{1/n_1 + 1/n_2}]$
- Hvor u = 1.96
- Forudsætning: Vi skal kende den sande varians, σ^2 .

Matlab eksempel

```
%% Eksempel 1 - sammenligning af to middelværdier (kendt varians)
mu1 = 3;
n1 = 20;
mu2 = 4;
n2 = 10;
sigma = 1;
u = 1.96;
% Simulerede data
x1 = randn(1, n1) * sigma + mu1;
x2 = randn(1,n2)*sigma + mu2;
% Parameterskøn
x1 bar = mean(x1);
x2 bar = mean(x2);
% Teststørrelse (H: mu1 = mu2)
z = (x1 bar-x2 bar)/(sigma*sqrt(1/n1+1/n2))
pval = 2*(1-normcdf(abs(z)))
% 95% konfidensinterval
d nedre = x1 bar-x2 bar - u*sigma*sqrt(1/n1+1/n2)
d oevre = x1 bar-x2 bar + u*sigma*sqrt(1/n1+1/n2)
```

Empirisk varians

• Når vi ikke kender den sande varians, må vi estimere den:

$$s^{2} = \frac{1}{n_{1} + n_{2} - 2} \left((n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2} \right)$$

Hvor

$$s_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_{1i} - \bar{x}_1)^2$$

og

$$s_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (x_{2i} - \bar{x}_2)^2$$

Testkatalog for sammenligning af to middelværdier (<u>u</u>kendt varians)

Statistisk model

•
$$X_{1,i} \sim N(\mu_1, \sigma^2)$$
, $i = 1, 2, ..., n_1$ og $X_{2,i} \sim N(\mu_2, \sigma^2)$, $i = 1, 2, ..., n_2$

• Parameterskøn:
$$\hat{\delta} = \hat{\mu}_1 - \hat{\mu}_2 = \bar{x}_1 - \bar{x}_2 \ \sim N(\mu_1 - \mu_2, \sigma^2/n_1 + \sigma^2/n_2)$$

$$s^2 = \frac{1}{n_1 + n_2 - 2} \Big((n_1 - 1) s_1^2 + (n_2 - 1) s_2^2 \Big)$$

Hypotesetest

•
$$H: \mu_1 = \mu_2$$

• Teststørrelse:
$$t = \frac{\bar{x}_1 - \bar{x}_2}{s\sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$$

• P-værdi:
$$pval = 2 \cdot |1 - t_{cdf}(|t|, n_1 + n_2 - 2)|$$

95% konfidensinterval

•
$$[\delta_-; \delta_+] = [\bar{x}_1 - \bar{x}_2 - t_0 \cdot s\sqrt{1/n_1 + 1/n_2}; \bar{x}_1 - \bar{x}_2 + t_0 \cdot s\sqrt{1/n_1 + 1/n_2}]$$

• Hvor
$$t_0 = t_{inv}(0.975, n_1 + n_2 - 2)$$

Matlab eksempel

```
%% Eksempel 2 - sammenligning af to middelværdier (ukendt varians)
% Simulerede data
x1 = randn(1, n1) * sigma + mu1;
x2 = randn(1,n2) * sigma + mu2;
% Parameterskøn
x1 bar = mean(x1);
x2_bar = mean(x2);
s2 1 = var(x1)
s2_2 = var(x2)

s2 = 1/(n1+n2-2)*((n1-1)*s2_1+(n2-1)*s2_2)
s = sqrt(s2)
% Teststørrelse (H: mu1 = mu2)
t = (x1 bar-x2 bar)/(s*sqrt(1/n1+1/n2))
pval = 2*(1-tcdf(abs(t), n1+n2-2))
% 95% konfidensinterval
t0 = tinv(0.975, n1+n2-2)
d nedre = x1 bar-x2 bar - t0*s*sqrt(1/n1+1/n2)
d oevre = x1 bar-x2 bar + t0*s*sqrt(1/n1+1/n2)
```

Placebo effekten

- Antag, vi vil afprøve effekten af en medicinsk behandling.
- En population af tilfældigt udvalgte personer opdeles i to grupper.
- Den ene gruppe får behandlingen, den anden gør ikke.
- Kan vi uden videre sammenligne disse to grupper?

Placebo effekten

- Svaret er NEJ!
- Det, at en person deltager i et medicinsk forsøg, kan i sig selv have en effekt, uanset om personen modtager behandling eller ej.
- Den korrekte fremgangsmåde
 - Opdel personerne i to grupper, men hold det hemmeligt for både læger og forsøgspersoner, hvilken gruppe de enkelte personer tilhører.
 - Den ene gruppe får den rigtige behandling den anden får placebo behandling (fx en kalktablet).
 - Først efter forsøgets afslutning afsløres det, hvilken gruppe de enkelte forsøgspersoner tilhører.

Eksempel – læs!

- Vi betragter et datasæt fra artiklen "Acupuncture for dyspnea in advanced cancer: a randomized, placebo-controlled pilot trial" fra BMC Palliative Care, 2005, 4:5, skrevet af A.J. Vickers, M.B. Feinstein, G.E. Deng og B.R. Cassileth.
- Folk, der er i en kræftbehandling, lider ofte af åndenød.
- Undersøgelsen her går ud på at se, om akupunktur hjælper på selvoplevelsen af åndenød.
- Lige før behandlingen og lige efter behandlingen angiver personen graden af åndenød på en skala fra 0 til 10 (gennemsnit af 4 eller 5 kvartersangivelser).
- I undersøgelsen deltog 33 personer, hvoraf 19 fik akupunktur, og de resterende 14 fik en placebobehandling.
- Ved placebobehandlingen stikkes akupunkturnålen ikke ind i huden, og der anvendes punkter på kroppen, som normalt ikke anvendes til akupunktur.

Data – grad af åndenød

Akupunkt	ur									
Før	0.25	1.00	1.33	2.00	2.25	2.33	3.00	3.33	3.75	4.00
Efter	0.00	1.00	2.00	1.00	3.00	0.50	3.00	2.25	2.25	3.00
Ændring	0.25	0.00	-0.67	1.00	-0.75	1.83	0.00	1.08	1.50	1.00
Før	4.25	5.00	5.00	5.50	5.67	6.00	6.50	7.25	9.25	
Efter	4.00	5.00	4.50	3.67	2.75	5.25	6.00	5.67	9.00	
Ændring	0.25	0.00	0.50	1.83	2.92	0.75	0.50	1.58	0.25	
Placebo										
Før	0.00	0.50	0.67	1.00	1.33	2.00	2.50	3.25	4.33	4.33
Efter	0.00	0.00	0.00	0.00	0.00	2.50	2.50	1.00	2.75	3.50
Ændring	$\bigcirc 0.00$	0.50	0.67	1.00	1.33	-0.50	0.00	2.25	1.58	0.83
Før	4.50	7.33	7.75	8.25						
Efter	1.33	7.25	7.00	6.00						
Ændring	3.17	0.08	0.75	2.25						

Data i Matlab

```
% Akupunktur gruppe
  x1 before = [ 0.25 1.00 1.33 2.00 2.25 2.33 3.00 3.33 3.75 4.00 ...
                  4.25 5.00 5.00 5.50 5.67 6.00 6.50 7.25 9.25 ];
  x1 \text{ after} = [0.00 \ 1.00 \ 2.00 \ 1.00 \ 3.00 \ 0.50 \ 3.00 \ 2.25 \ 2.25 \ 3.00 \ \dots]
                  4.00 5.00 4.50 3.67 2.75 5.25 6.00 5.67 9.00 ];
  x1 effect = x1 before - x1 after;
  % Placebo gruppe
  x2 \text{ before} = [ 0.00 \ 0.50 \ 0.67 \ 1.00 \ 1.33 \ 2.00 \ 2.50 \ 3.25 \ 4.33 \ 4.33 \ \dots ]
                  4.50 7.33 7.75 8.25 ];
  x2 after = [ 0.00 0.00 0.00 0.00 0.00 2.50 2.50 1.00 2.75 3.50 ...
                  1.33 7.25 7.00 6.00 1;
x2_effect = x2 before - x2 after;
  n1 = length(x1 effect);
  n2 = length(x2 effect);
  % Parameterskøn
  x1 bar = mean(x1 effect)
  x2_bar = mean(x2_effect)
  s2 1 = var(x1 effect)
  s2_2 = var(x2_effect)

s2 = 1/(n1+n2-2)*((n1-1)*s2_1+(n2-1)*s2_2)
           = sart(s2)
```

Test og konfidensinterval i Matlab

```
% Teststørrelse (H: mu1 = mu2)
t = (x1_bar-x2_bar)/(s*sqrt(1/n1+1/n2))
pval = 2*(1-tcdf(abs(t),n1+n2-2))

% 95% konfidensinterval
t0 = tinv(0.975,n1+n2-2)
d_nedre = x1_bar-x2_bar - t0*s*sqrt(1/n1+1/n2)
d_oevre = x1_bar-x2_bar + t0*s*sqrt(1/n1+1/n2)
```

Resultat:

Hvordan man ikke skulle have designet akupunktur eksperimentet...

- Punkterne ligger omkring en ret linje med hældning 1, hvilket viser, at hver person har sit eget niveau for åndenød.
- Ved at se på differensen før og efter behandlingen, fjernes personeffekten.
- How not to do!
 - Måle graden af åndenød <u>efter</u> behandling i én gruppe.
 - Måle graden af åndenød <u>uden</u> behandling i en anden gruppe.
 - Umuligt at afgøre, om en evt. forskel i graden af åndenød i de to grupper skyldes behandlingen eller personeffekten...

Eksempel – læs!

- Data i dette eksempel stammer fra artiklen "Statistics in Agricultural Research" af J. Wishart, publiceret i Suppl. Journ. Roy. Stat. Soc. 1934.
- Eksperimentet går ud på at sammenligne to såmaskiner, en nyudviklet maskine og en gængs maskine.
- Tyve områder af samme størrelse blev tilsået, ti af disse med den nyudviklede maskine og de ti andre med den gængse maskine.
- De tyve områder var valgt <u>i par</u>, således at de to områder i et par var naboer, og inden for et par blev det ene område tilsået med den nye maskine og det andet område med den gængse maskine.
- Ved at parre observationerne fjernes eventuelle "områdeeffekter".

Data – markforsøg

Par nummer	Nyudviklet maskine	Gængs maskine	Forskel
1	8.0	5.6	2.4
2	8.4	7.4	1.0
3	8.0	7.3	0.7
4	6.4	6.4	0.0
5	8.6	7.5	1.1
6	7.7	6.1	1.6
7	7.7	6.6	1.1
8	5.6	6.0	-0.4
9	5.6	5.5	0.1
10	6.2	5.5	0.7

Statistisk model for parrede data

Vi antager, at data er parrede:

$$X_{1,i} \leftrightarrow X_{2,i} \quad i = 1,2,\ldots,n$$

- forstået på den måde, at datapunkterne $x_{1,i}$ og $x_{2,i}$ stammer fra den samme mark (i), men to forskellige såmaskiner.
- Vi ser på forskellen $d_i = X_{1,i} X_{2,i}$ og antager, at

$$d_i \sim N(\delta, \sigma^2)$$

• Hvor δ er den sande forskel på X_1 og X_2 .

Parameterskøn for parrede data

• Estimatet af forskelsparameteren δ er

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} x_{1i} - x_{2i}$$

• Idet $d_i \sim N(\delta, \sigma^2)$, ved vi fra den centrale grænseværdisætning, at

$$\bar{d} \sim N(\delta, \sigma^2/n)$$

Teststørrelse for parrede data

- Generelt vil vi antage, at vi ikke kender variansen σ^2 .
- Så vi bruger den empiriske varians

$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (x_{1i} - x_{2i})^2$$

• Under hypotesen H: $\delta = 0$, bliver den standardiserede teststørrelse

$$t = \frac{\bar{d} - \delta}{s_d / \sqrt{n}} = \frac{\bar{d}}{s_d / \sqrt{n}} \sim t(n - 1)$$

Estimation for parrede data

- Vi vil gerne estimere den sande forskelsparameter δ .
- Parameterskønnet er som nævnt

$$\hat{\delta} = \frac{1}{n} \sum_{i=1}^{n} x_{1i} - x_{2i} = \bar{d} \sim N(\delta, \sigma^2/n)$$

• Præcis som for et normalfordelt datasæt, kan vi lave et 95% konfidensinterval for $\hat{\delta}$:

•
$$[\delta_-; \delta_+] = \left[\bar{d} - t_0 \cdot s_d \sqrt{1/n}; \bar{d} + t_0 \cdot s_d \sqrt{1/n}\right]$$

• Hvor $t_0 = t_{inv}(0.975, n-1)$

Testkatalog for parrede data

Statistisk model

•
$$d_i = X_{1i} - X_{2i} \sim N(\delta, \sigma^2), i = 1, 2, ..., n$$

• Parameterskøn:
$$\bar{d} = \frac{1}{n} \sum_{i=1}^n x_{1i} - x_{2i} \sim N(\delta, \sigma^2/n)$$
 $s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (x_{1i} - x_{2i})^2$

Hypotesetest

•
$$H: \delta = 0$$

• Teststørrelse:
$$t = \frac{\bar{d}}{s_d/\sqrt{n}} \sim t(n-1)$$

• P-værdi:
$$pval = 2 \cdot |1 - t_{cdf}(|t|, n-1)|$$

• 95% konfidensinterval

•
$$[\delta_-; \delta_+] = \left[\bar{d} - t_0 \cdot s_d \sqrt{1/n} ; \bar{d} + t_0 \cdot s_d \sqrt{1/n} \right]$$

• Hvor
$$t_0 = t_{inv}(0.975, n-1)$$

Data – markforsøg

Par nummer	Nyudviklet maskine	Gængs maskine	Forskel
1	8.0	5.6	2.4
2	8.4	7.4	1.0
3	8.0	7.3	0.7
4	6.4	6.4	0.0
5	8.6	7.5	1.1
6	7.7	6.1	1.6
7	7.7	6.6	1.1
8	5.6	6.0	-0.4
9	5.6	5.5	0.1
10	6.2	5.5	0.7

Parrede data i Matlab

```
%% Eksempel 6 - Markforsøg: parret test
data = [
    8.0 5.6 2.4
    8.4 7.4 1.0
    8.0 7.3 0.7
    6.4 6.4 0.0
    8.6 7.5 1.1
    7.7 6.1 1.6
    7.7 6.6 1.1
    5.6 6.0 -0.4
    5.6 5.5 0.1
    6.2 5.5 0.7 ];
x1 = data(:,1);
x2 = data(:,2);
d = x1-x2;
n = length(d);
```

Høstudbyttet på 10 marker med nyudviklet maskine

x1(1)	x1(2)	 x1(10)
x2(1)	x2(2)	 x2(10)

Høstudbyttet på 10 marker med gængs maskine

Differens:

x1(1)-x2(1)	x1(2)-x2(2)		x1(10)-x2(10)
-------------	-------------	--	---------------

Her er en eventuel "områdeeffekt" fjernet.

Parret test og konfidensinterval i Matlab

```
% Parameterskøn
d_bar = mean(d)
sd2 = var(d)
sd = sqrt(s2)

% Teststørrelse (H: delta = 0)
t = d_bar/(sd*sqrt(1/n))
pval = 2*(1-tcdf(abs(t),n-1))

% 95% konfidensinterval
t0 = tinv(0.975,n-1)
d_nedre = d_bar - t0*sd*sqrt(1/n)
d_oevre = d_bar + t0*sd*sqrt(1/n)
```

Resultat:

```
t = 3.2143

pval = 0.0106

t0 = 2.2622

d nedre = 0.2459
```

d oevre = 1.4141

Der er signifikant forskel på de to såmaskiner

Uparrede data i Matlab

```
%% Eksempel 6 - Markforsøg: uparret test
data = [
    8.0 5.6 2.4
                                  Høstudbyttet på 10 marker med nyudviklet maskine
    6.2 5.5 0.7 1;
                                      x1(1)
                                                  x1(2)
                                                                         x1(10)
x1 = data(:,1);
x2 = data(:,2);
                                  Høstudbyttet på 10 marker med gængs maskine
n1 = length(x1);
n2 = length(x2);
                                      x2(1)
                                                  x2(2)
                                                                         x2(10)
% Parameterskøn
                                    Her er data uparrede, så en eventuel
x1 bar = mean(x1);
                                    "områdeeffekt" fjernes ikke!
x2 bar = mean(x2);
s2 1 = var(x1)
s2_2 = var(x2)
s2 = 1/(n1+n2-2)*((n1-1)*s2_1+(n2-1)*s2_2)
        = sqrt(s2)
S
```

Uparret test og konfidensinterval i Matlab

```
% Teststørrelse (H: mu1 = mu2)
t = (x1_bar-x2_bar)/(s*sqrt(1/n1+1/n2))
pval = 2*(1-tcdf(abs(t),n1+n2-2))

% 95% konfidensinterval
t0 = tinv(0.975,n1+n2-2)
d_nedre = x1_bar-x2_bar - t0*s*sqrt(1/n1+1/n2)
d_oevre = x1_bar-x2_bar + t0*s*sqrt(1/n1+1/n2)
```

Resultat:

d oevre =

1.7566

```
t =
    1.8820
pval =
    0.0761

t0 =
    2.1009
d_nedre =
    -0.0966
```

Der er <u>ikke</u> signifikant forskel på de to såmaskiner!

Parret vs. uparret test

Parret sammenligning: $H: \delta = 0$

Her er en eventuel "områdeeffekt" fjernet.

Uparret sammenligning: $H: \mu_1 = \mu_2$

Høstudbyttet på 10 marker med nyudviklet maskine.	x1(1)	x1(2)	 x1(10)	$\rightarrow \bar{x}_1$
Høstudbyttet på 10 marker med gængs maskine.	×2(1)	x2(2)	 x2(10)	\bar{x}_2

Her er en eventuel "områdeeffekt" ikke fjernet.