

TECHNIQUES OF CLUSTERING

(a short review for students)

Mikhail Alexandrov^{1,2}, Pavel Makagonov³

- ¹ Autonomous University of Barcelona, Spain
- ² Social Network Research Center with UCE, Slovakia
- ³ Mixtec Technological University, Mexico dyner1950@mail.ru, mpp@mixteco.utm.mx

Petersburg 2008

CONTENTS

Introduction

Definitions

Clustering

Discussion

Open Problems

Ideas, Materials, Collaboration

Prof. Dr. Benno Stein Dr. Sven Meyer zu Eissen

Weimar University, Germany

- Structuring and Indexing
- AI search in IR

Dr. Xiaojin Zhu

University of Wisconsin, Madison, USA

- Semi-Supervised Learning

Subject of Grouping

TEXTUAL DATA

US: Good evening. Could you tell me the schedule of trains to Zaragoza for tomorrow?

DI: For tomorrow morning?

US: Yes

DI: There is one train at 7-30 and

another at 8-30

US: And later? DI: At 10-30

US: And till the noon?

DI: At 12

US: Could you tell me the schedule till 4 p.m. more or less?

DI: At 1-00 and at 3-30

US: 1-00 and 3-30

DI: hmm, hmm

US: And the next one?

DI: I will see, one moment.

The next train leaves at 5-30

Example: typical dialog between passenger (US) and railway directory inquires (DI)

NON TEXTUAL DATA

	A_1	A_2	A_3	A_4	A_5	A_6
O_1	3.17	0.43	Si	Medio	Español	Joven
O_2	24.5	0.02	No	Joven	Ingles	No viejo
O_3	2.1	-0.2	No	Viejo	Ruso	Viejo
O_4	50.	0.5	Si	Joven	Ingles	Medio
O_5	-13.	0.51	No	Viejo	Español	Muy viejo
O_6	-0.4	-1.5	Si	Medio	Español	Muy muy joven

Local Terminology

It is not important what is the source of data: textual or non textual.

Data: work in the space of

numerical parameters

Texts: work in the space of

words

Presentation of Textual Data

TEXTS ('indexed')

During four years we have researched methods helping the healthcare professional to continuosly monitor, intelligently retrieve, evaluate and manage medical documents available as electronic texts (e-texts). We developed tools for semi-automatic processing...

Vector model ('parameterized')

Local Terminology

Indexed texts are only parameterized texts in the space of words

healthcare		electronic texts	semi- automatic
12	17	2	1

Presentation of Textual Data

TEXTS ('indexed')

Themes	Doc 1	Doc 2
medicine, pensioners,	4,3,0	2,4,0
privileges		
transport, queue, time-	2,4,3,1	0,0,0,0
table, privileges		
police, security,	2,1,0	0,0,0
corruption		
environment, water,	0,0,0,0	2,1,3,2
air, cleanline		

Local Terminology

Indexed texts are only parameterized texts in the **space of themes**

= > Category/Context Vector Models...

TEXTS ('parameterized')

Example: manually parameterized dialogs in the **space of parameters** (transport service and passenger needs)

Α	В	С	D	Е	F	G	Н		J	K
City_W	UrDef	T/F	To_T	To_Tm	To_Te	Car	Talk	Polite	CITY Name	s
0.25	0	1	0	0	1	1	1	0	Cadiz/Sevi	lla
0.75	0.5	1	0	1	0	1	0.5	0.5	Madrid	
0.5	0.5	1	1	0	0	1	0.5	0	SWISS Pa	blo/Zurikh
0.25		1	1	0	0	0	0	0	Segur Cala	afell
0.5	0.5	1	0	1	0	0	0.5	0	Alicante	
0.25	0.5	0	0	1	0	0	0	0	Monzon	
0	1	0	0	0	1	0	0.25	0.5	Aeropuert	0
0.25	0	0	0	0	1	0	0	0	Orense	
0.5	1	0	0	1	0	0	0.25	0	Valencia	
0.25	0	0	0	1	0	0	0	1	Lerida	
0.75	0.5	0	0	1	0	1	0.75	0	Madrid	

CONTENTS

Introduction

Definitions

Clustering

Discussion

Open Problems

Types of Grouping

Unsupervised Learning

Supervised Learning

Semi-Supervised Learning

We know nothing about data sructure

We know well data sructure

We know something about data sructure

Types of Grouping

Clustering

Characteristics:

of classes, so the results are defined by the **nature** of the data themselves (N > 1)

Synonyms:

Classification without teacher **Unsupervised** learning

Number of clusters

[] is known **exactly** [x] is known approximately [] is not known => searching

Classification

Characteristics:

Absence of patterns or descriptions Presence of patterns or descriptiones of classes, so the results are defined by the user ($N \ge 1$)

Synonyms:

Classification with teacher **Supervised** learning

Specials terms:

Categorization (of documents) **Diagnostics** (technics, medicine) **Recognition** (technics, science)

Types of Grouping

"Semi Clustering/Classification" (

Classification

Characteristics:

Presence of **limited number** of patterns, so the results are defined both by the **user** or by the **data** themselves (N > 1)

Synonyms:

Semi-Classification
Semi Supervised learning

Number of clusters/categories

[] is known exactly
[x] is known approximately
[] is not known => searching

Characteristics:

Presence of **patterns** or **descriptiones** of classes, so the results are defined by the **user** (N>=1)

Synonyms:

Classification with teacher Supervised learning

Specials terms:

Categorization (of documents)
Diagnostics (technics, medicine)
Recognition (technics, science)

Objectives of Grouping

1. Organization (structuring) of an object set

Process is named data structuring

2. Searching interesting patterns

Process is named **navigation**

3. Grouping for other applications:

- **Knowledge** discovery (clustering)
- **Summarization** of documents

Note:

Do not mix the **type** of grouping and its **objective**

Classification of methods

Based on belonging to cluster/category

Exclusive methods

Every object belongs only to one cluster/category. Methods are named hard grouping methods

Non-exclusive methods

Every object can belong to several clusters/categories. Methods are named **soft** grouping methods.

Based on data presentation

Methods oriented on free metric space

Every object is presented as a point in a free space

Methods oriented on graphs

Every object is presented as an element on graph

Fuzzy Grouping

Hard grouping

Hard clustering

Hard categorization

Soft grouping

Soft clustering

Soft categorization

Example

The distribution of letters of Moscovites to the Government is **soft categorization** (numbers in the table reflect the relative weight of each theme)

		Letter 1	Letter 2	Letter 3
Rubric	1	1.0	1.0	0.2
Rubric	2	0.55	0.9	0.1
Rubric	3	0.2	0.15	1.0

General Scheme of Clustering Process - I

Here:

Both rude and good matrixes are matrix **Object/Attributes**

Preprocessing <=
Processing

Principal idea:

To transform texts to **numerical** form in order to use **matematical** tools

Remember: our problem is grouping textual documents but not undestanding

General Scheme of Clustering Process - II

Preprocessing

Processing <=

Here:

matrix Attribute/Attribute
can be used instead of matrix
Object/Object

Matrixes to be Considered

	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6
Doc 1	1	3	4	6	7	8
Doc 2	1	2	5	5	8	7
Doc 3	0	0	7	3	9	8
Doc 4	0	4	12	2	3	4
Doc 5	5	12	13	6	2	3

	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6
Word 1	1	0.13	0	0	0.76	0.1
Word 2	0.13	1	0	0	0.35	1
Word 3	0	0	1	1	0	0
Word 4	0	0	1	1	0	0.11
Word 5	0.76	0.35	0	0	1	0.97
Word 6	0.1	1	0	0.11	0.97	1

	Doc.1	Doc.2	Doc.3	Doc.4
Doc 1	1	0.67	0.70	0.63
Doc 2	0.67	1	0.55	0.34
Doc 3	0.70	0.55	1	0.03
Doc 4	0.63	0.34	0.03	1

Clustering for Categorization

Colour matrix "words-words"

before clustering

Matrix contains the value of word cooccurrences in texts.

Red: if value more than some threshold.

White: if less.

Clustering for Categorizatión

Colour matriz "words-words"

after clustering

Words are groupped.

Cluster => Subdictionary

Absence of blocks means
absence of Subthemes

Importance of Preprocessing (it takes 60%-90% of efforts)

process for business managers and anyone new

CONTENTS

Introduction

Definitions

Clustering

Discussion

Open Problems

Definitions

Def. 1 "Let us V be the set of objects. Clustering $C = \{ Ci \mid Ci \in V \} \text{ of V is division of V on subsets, for which we have : <math>U_iCi = V \text{ and } Ci \cap Cj = 0 \quad i \neq j$ "

Def. 2 "Let us V be the set of nodes, E be arcs, φ is weight function that reflects the distance between objects, so we have weighted graph $G = \{V, E, \varphi\}$. In this case C is named as clustering of G."

Set

In the framework of the second definition every Ci produced subgraph G(Ci). Both subsets Ci and subgraphs G(Ci) are named clusters.

Clique

Graph

Definitions

Principal note

Both definitions **SAYS NOTHING**:

- about quality of clusters
- about **numbers of** clusters

Reason of difficulties

Nowadays there is no any general agreement about any universal defintion of the term 'cluster'

What means that clustering is good?

- 1. Closeness between objets **inside clusters** is essentially more than the closeness **between clusters** themselves
- 2. Constructed clusters correspond to **intuitive presentations** of users (they are **natural** clusters)

Classification of methods

Based on the way of grouping

1. Hierarchy based methods

Any neighbors

N = ? N is not given

K-means

N = ? N is given

3. Density based methods

MajorClust

N = ? N is calculated automatically

Hierarchy based methods

General algorithm

- 3. Initially every object is one cluster
- 5. The series of steps are performed. On every step the pair of cluster being the closest ones are merged.
- 6. At the end we have one cluster.

Neighbors.

Every object is cluster

Hierarchy based methods

Nearest neighbor method (NN)

Exemplar based methods

K - means, centroid

Exemplar based methods

Method K-means

General algorithm

- 3. Initially K centers are selected by any random way
- 5. Series of steps are performed. On every step the objects are distributed between centers according the criterion of the nearest center. Then all centers are recalculated.
- 7. The end is fixed when the centers are not changed.

Exemplar based methods

Method X-means (Dan Pelleg, Andrew Moor)

Approach

Using evaluation of object distribution Selection of the most likely points

Advantage

- More rapid
- Number of cluster is not fixed (in all cases it tends to be less)

Density based methods

MajorClust method

Principal idea

Total closeness to the objects of his own cluster exceeds the closeness to any other cluster

Suboptimal solution

Only part of neighbors are considered on every step (to save time, to avoid mergence)

Density based methods

MajorClust method

General algorithm

- 5. Initially every object is one cluster and it joins to the nearest neighbor
- 7. Every object evaluates the total closeness to his own cluster and separately to all other clusters.

 After such evaluation the objects change its belonging and go off to the closest one
- 9. The end of searching is fixed when clusters do not change.

Preprocessing for MajorClust

Many weak links can be stronger than the several strongest ones that disfigures results.

So: weak links should be **eliminated** before clustering

Cluster Validity

Definition

It reflects cluster **separability** and formally depends on :

- Scatters inside clusters
- Separation between clusters

Indexes

It is formal characteristics of structure

- **Dunn** index
- Davies Bouldin index
- Hypervolume criterion (Andre Hardy)
- Density expected measure DEM (Benno Stein)

Dunn index (to be max)

$$I(\mathcal{C}) = \frac{\min_{i \neq j} \{\delta(C_i, C_j)\}}{\max_{1 \leq l \leq k} \{\Delta(C_l)\}}$$

Cluster Validity

Number of clusters

Geometrical approach, two variants:

- Optimum (min, max) of curve
- Jump of curve

Dunn index (to be **max**) is too sensible to extremal cases

$$I(\mathcal{C}) = \frac{\min_{i \neq j} \{ \delta(C_i, C_j) \}}{\max_{1 \leq l \leq k} \{ \Delta(C_l) \}}$$

Cluster Usability

Definition

It reflects user's opinion and formally expresses the difference between:

- Classes selected manually by a user
- Clusters constructed by a given method

Cluster F-measure (Benno Stein)

$$F_{i,j} = \frac{2}{\frac{1}{prec(i,j)} + \frac{1}{rec(i,j)}}$$

$$F = \sum_{i=1}^{l} \frac{|C_i^*|}{|D|} \cdot \max_{j=1,\dots,k} \{F_{i,j}\}$$

Here: i, j are indexes of clusses and clusters C^*_i , C_j are classes and clusters prec(i,j), rec(i,j) are precision and recall

Validity and Usability

Conclusion

Density expected measure corresponds to *F*-measure reflecting expert's opinion.

So, **DEM** can be an indicator of expert **opinion**

Tecnologies of Clustering

Meta methods

They construct separated data sets using criteria of optimization and <u>limitations</u>:

- Neither much nor small **number** of clusters
- Neither large nor small size of clusters etc.

Visual methods

They present visual images to a user in order to select **manually** the clusters

- Using **different** methods
- Comparing results

Meta Methods

Algorithm (example)

Notations:

N is the number of objects in a given cluster D is the diagonal of a given cluster Initially N_0 and their centers Ci are given

Steps

- 1. Method K-medoid (or any other one) is performed
- 2. If $N > N \max$ or $D > D \max$ (in any cluster), then this cluster is divided on 2 parts. Go to p.1
- 3. If $N < N \min$ or $D < D \min$ (in any cluster), then this and the closest clusters are joined. Go to p.1
- 4. When the number of iteration $I > I \max$, Stop Otherwise go to p.1

Visual Clustering

Clustering on dendrite

Clustering in space of factors

Authorship

Problem

Authorship of Molier dramatic works (comedies, dramas,...). Corneille and/or Molier?

Approach

Style based indexing (**NooJ** can be used)
Clustering all dramatic works
Well-known dramatic works should be marked

Style

- Formal style estimations
- Informal style estimations

Formal style indicators

- Text Complexity
- Text Harmonicity

References:

Labbe C., Labbe D.
Inter-textual distance and authorship attribution Corneille and Molier.
Journ. of Quantitative Linguistics.
2001. Vol.8, N 3, pp.213-331

Authorship

Clustering

Note:

During a certain time Molier and Corneille were friends

Results

- 1) 18 comedies of Molier should be belonged to Corneille
- 2) 15 comedies of Mollier are weak connected with all his other works. So, they can be written by two authors
- 3) 2 comedies of Corneille now are considered as works of Molier. etc.

Learning

Journals and Congresses about Clustering

- 1. Journal "Journal of Classification", Springer
- **2. IFCS** International Federation of Classification Societies, Conferences
- 3. CSNA Classification Society of North America, Seminars, Workshops

Special and Universal packages with algorithms of Clustering

- 1. ClustAn (Scotland) www. clustan.com Clustan Graphics-7 (2006)
- 2. MatLab Descriptions are in Internet
- **3. Statistica** Descriptions are in Internet

CONTENTS

Introduction

Definitions

Clustering

Discussion

Open Problems

Certain Observations

The numbers of methods for grouping data is a little bit more than the numbers of researchers working in this area.

Problem does not consist in searching the **best method** for all cases.

Problem consists in searching the **method being relevant** for your data.

Only you know what methods are the best for you own data.

Principal problems consist in choice of indexes (parameters) and measure of closeness to be adecuate to a given problem and given data

Frecuently the results are bad because of the **bad indexes** and **bad measure** but not the **bad method**!

Certain Observations

Antipodal methods

To be sure that results are really good and do not depend on the method used one should test these results using any antipodal methods

Solomon G, 1977: "The most antipodes are: NN-method and K-means"

Sensibility

To be sure that results **do not depend** essentially on the **method's parameters** one should perform the analysis of sensibility by changing parameters of adjustment.

CONTENTS

Introduction

Definitions

Clustering

Conclusions

Open Problems

Some Problems

Question 1

How to reveal alien objects?

Solution (idea)

Revealing **a stable** structure on different sets of objects.
They are subsets of a given set.

Object distribution reflects: real structure (nature) + noise (alien objects)

Some Problems

Question 2

How to accelerate classification?

Solution (idea)

Filtering objects, which give a minimum contribution to decisive function

Representative objects of each cluster

CONTACT INFORMATION

Mikhail Alexandrov^{1,2}, Pavel Makagonov³

- ¹ Autonomous University of Barcelona, Spain
- ² Social Network Research Center with UCE, Slovakia
- ³ Mixtec Technological University, Mexico dyner1950@mail.ru, mpp@mixteco.utm.mx

Petersburg 2008