```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

df=pd.read_csv("https://gist.githubusercontent.com/netj/8836201/raw/6f9306ad21398ea43cba4f

df.head()

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa

df.tail()

₽		sepal.length	sepal.width	petal.length	petal.width	variety	1
	145	6.7	3.0	5.2	2.3	Virginica	
	146	6.3	2.5	5.0	1.9	Virginica	
	147	6.5	3.0	5.2	2.0	Virginica	
	148	6.2	3.4	5.4	2.3	Virginica	
	149	5.9	3.0	5.1	1.8	Virginica	

df.shape

(150, 5)

df.columns

```
df["sepal.length"].unique()
```

```
array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.4, 4.8, 4.3, 5.8, 5.7, 5.2, 5.5, 4.5, 5.3, 7. , 6.4, 6.9, 6.5, 6.3, 6.6, 5.9, 6. , 6.1, 5.6, 6.7, 6.2, 6.8, 7.1, 7.6, 7.3, 7.2, 7.7, 7.4, 7.9])
```

```
df["sepal.width"].unique()
     array([3.5, 3., 3.2, 3.1, 3.6, 3.9, 3.4, 2.9, 3.7, 4., 4.4, 3.8, 3.3,
            4.1, 4.2, 2.3, 2.8, 2.4, 2.7, 2., 2.2, 2.5, 2.6])
df["petal.length"].unique()
     array([1.4, 1.3, 1.5, 1.7, 1.6, 1.1, 1.2, 1., 1.9, 4.7, 4.5, 4.9, 4.,
            4.6, 3.3, 3.9, 3.5, 4.2, 3.6, 4.4, 4.1, 4.8, 4.3, 5., 3.8, 3.7,
            5.1, 3., 6., 5.9, 5.6, 5.8, 6.6, 6.3, 6.1, 5.3, 5.5, 6.7, 6.9,
            5.7, 6.4, 5.4, 5.2])
df["petal.width"].unique()
     array([0.2, 0.4, 0.3, 0.1, 0.5, 0.6, 1.4, 1.5, 1.3, 1.6, 1., 1.1, 1.8,
            1.2, 1.7, 2.5, 1.9, 2.1, 2.2, 2., 2.4, 2.3])
df["sepal.length"].value_counts().sum()
     150
df["sepal.length"].value_counts()
     5.0
            10
     5.1
             9
     6.3
             9
             8
     5.7
     6.7
             8
     5.8
             7
             7
     5.5
     6.4
             7
     4.9
             6
     5.4
             6
     6.1
             6
     6.0
             6
     5.6
             6
             5
     4.8
             5
     6.5
             4
     6.2
     7.7
             4
     6.9
             4
             4
     4.6
     5.2
             4
     5.9
             3
     4.4
             3
     7.2
             3
     6.8
             3
             2
     6.6
     4.7
             2
     7.6
             1
             1
     7.4
     7.3
             1
     7.0
             1
     7.1
             1
```

1

5.34.3

```
4.5 1
7.9 1
```

Name: sepal.length, dtype: int64

```
df["sepal.width"].value_counts()
```

```
3.0
       26
2.8
       14
3.2
       13
3.4
       12
3.1
       11
2.9
       10
2.7
        9
2.5
        8
        6
3.5
        6
3.3
3.8
        6
        5
2.6
2.3
        4
3.6
        4
3.7
        3
```

2.4 3

2.2 3

3.9

4.4 1

2

4.0 1

4.1 1 4.2 1

2.0

Name: sepal.width, dtype: int64

df["petal.length"].value_counts()

```
1.4
       13
1.5
       13
5.1
        8
4.5
        8
1.6
        7
        7
1.3
5.6
        6
4.7
        5
        5
4.9
        5
4.0
4.2
        4
5.0
        4
4.4
        4
```

4.8 4 1.7 4

3.9 3

4.6 3

5.7 3

4.1 3

5.5 3

6.1 3

5.8 3

3.3 2

5.4 2

6.7

5.3

5.9

6.0

2

2

```
2
     1.2
             2
     4.3
             2
     1.9
             2
     3.5
     5.2
             2
             1
     3.0
             1
     1.1
     3.7
             1
     3.8
             1
     6.6
             1
     6.3
             1
     1.0
             1
     6.9
     3.6
             1
     6.4
     Name: petal.length, dtype: int64
df["petal.width"].value_counts()
     0.2
            29
     1.3
            13
     1.8
            12
     1.5
            12
     1.4
             8
     2.3
             8
     1.0
             7
             7
     0.4
             7
     0.3
     2.1
             6
     2.0
             6
             5
     0.1
             5
     1.2
             5
     1.9
     1.6
             4
     2.5
             3
             3
     2.2
     2.4
             3
             3
     1.1
     1.7
             2
     0.6
             1
     0.5
             1
     Name: petal.width, dtype: int64
df["sepal.length"].dtype
     dtype('float64')
df["sepal.width"].dtype
     dtype('float64')
df["petal.length"].dtype
```

```
dtype('float64')

df["petal.width"].dtype

dtype('float64')
```

▼ PART 1

```
#LIST DOWN THE FEATURES AND THEIR TYPES
df.columns
     Index(['sepal.length', 'sepal.width', 'petal.length', 'petal.width',
            'variety'],
           dtype='object')
df["sepal.length"].dtype
     dtype('float64')
df["sepal.width"].dtype
     dtype('float64')
df["petal.length"].dtype
     dtype('float64')
df["petal.width"].dtype
     dtype('float64')
sns.countplot(data=df,x="variety")
plt.title("Species Count")
```

Text(0.5, 1.0, 'Species Count')

▼ PART 2

70.

#CREATE HISTOGRAM FOR EACH FEATURE IN DATASET TO ILLUSTRATE FEATRURE DISTRIBUTION

sns.histplot(data=df,x="sepal.length",kde=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a501310>

sns.histplot(data=df,x="sepal.width",kde=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a544690>

sns.histplot(data=df,x="petal.length",kde=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a3a7410>

sns.histplot(data=df,x="petal.width",kde=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a3d0a90>

▼ PART 3

#CREATE A BOX PLOT FOR EACH FEATURE IN THE DATASET

sns.boxplot(data=df,x="sepal.length")

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a2b2e90>

sns.boxplot(data=df,x="sepal.width")

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a7b7050>

sns.boxplot(data=df,x="petal.length",y="variety")

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a6e6910>

sns.boxplot(data=df,x="petal.width",y="variety")

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a162ad0>

▼ PART 4

#COMPARE DISTRIBUTIONS AND OUTLIERS

sns.boxplot(data=df,x="sepal.length")

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a10f690>

sns.boxplot(data=df,x="sepal.width")

<matplotlib.axes._subplots.AxesSubplot at 0x7feb1a0744d0>

sns.boxplot(data=df,x="petal.length")

<matplotlib.axes._subplots.AxesSubplot at 0x7feb19fe0e50>

sns.boxplot(data=df,x="petal.width")

<matplotlib.axes._subplots.AxesSubplot at 0x7feb19fcf450>

✓ 0s completed at 10:03 PM