SDSC HPC/DS Summer Institute 2024 Deep Learning

Scalable Machine Learning Agenda

- 2:00 2:15 Machine Learning Overview
- 2:15 2:45 R on HPC
- 2:45 3:00 Break
- 3:00 4:30 Spark Concepts & Hands-On
- 4:30 4:45 Q&A

Machine Learning Overview

Mai H. Nguyen, Ph.D.

Machine learning is ...

- "... a subfield of computer science that ... explores the study and construction of algorithms that can learn from and make predictions on data." (wikipedia.org)
- "... a type of artificial intelligence that provides computers with the ability to learn without being explicitly programmed." (whatis.techtarget.com)
- "... a method of data analysis that automates analytical model building and ... allows computers to find hidden insights to produce ... predictions that can guide better decisions and smart actions..." (www.sas.com)

learning from data

no explicit programming

discover hidden patterns

data-driven decisions

learning from data no explicit programming

Working Definition

 The field of machine learning focuses on the study and construction of computer systems that can learn from data without being explicitly programmed. Machine learning algorithms and techniques are used to build models to discover hidden patterns and trends in the data, allowing for data-driven decisions to be made.

Machine Learning as Interdisciplinary Field

- ML combines concepts
 & methods from many disciplines:
 - Mathematics, statistics, computer science, artificial intelligence, etc.
- ML is being used in various fields:
 - Science, engineering, business, medical, law enforcement, etc.

Why the Increased Interest in ML?

- Advances in processing power, storage capacity, mobile computing, and interconnectivity
 - Create unprecedented data
 - Can store and process more data
- Data-driven applications in many areas
 - Science: bioinformatics, image analysis, remote sensing
 - Personal health data from wearable devices
 - Medicine: drug design, healthcare, data from wearable devices
 - Retail: targeted advertisement, dynamic pricing
 - Finance: fraud detection, risk analysis
 - Manufacturing: preventive maintenance, supply chain management
 - Social media data related to customer satisfaction, political trends, health epidemics, law enforcement, terrorist activities

Applications of Machine Learning

- Recommendations on websites
- Targeted ads on mobile apps
- Handwriting recognition
- Fraud detection
- Sentiment analysis
- Network intrusion detection
- Drug effectiveness analysis
- Crime pattern detection
- Self-driving cars

MACHINE LEARNING PROCESS

CRoss Industry Standard Process for Data Mining

ftp://ftp.software.ibm.com/software/analytics/s pss/support/Modeler/Documentation/14/User Manual/CRISP-DM.pdf

https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining

Phase 1: Business Understanding

Define problem or opportunity

What is the problem of interest? Why is it interesting?

Assess situation

- Resources
- Requirements, assumptions, and constraints
- Risks and contingencies; costs and benefits

Formulate goals and objectives

- Goals and objectives
- Success criteria

Create project plan

Steps to achieve goals

Phase 2: Data Understanding

Data Acquisition

- Collect available data related to problem
- Consider all sources: flat files, databases, sensors, websites, etc.
- Integrate data from multiple sources

Exploratory Data Analysis

- Preliminary exploration of data
- To become familiar with data

http://www.greenbookblog.org/2013/08/04/50-ew-tools-democratizing-data-analysis-visualiza

Phase 3: Data Preparation

Goal:

- Prepare data to make it suitable for modeling
- Also referred to as 'data preprocessing', 'data munging', 'data wrangling'

Activities:

- Identify and address quality issues
- Select features to use
- Create data for modeling

http://www.datasciencecentral.com/profiles/blogs/5-data-cleansing-tools

Phase 4: Modeling

- Determine type of problem
 - Classification
 - Regression
 - Cluster analysis
- Build model(s)
 - Select modeling technique(s) to use
 - Construct model(s)
 - Train model(s)

http://phdp.github.io/posts/2013-07-05-dtl.html

Phase 5: Evaluation

Assess model performance

- Determine metrics & methods to assess model results
 - Accuracy measures, confusion matrix, etc.
- Evaluate model results w.r.t. success criteria
 - Does model's performance meet success criteria?
 - Have all requirements been met?

Make Go/No-Go decision

- Go: Deploy model
- No-Go: Determine next steps

http://www.impactptac.com/?id=10

Phase 6: Deployment

Documentation

Summarize findings and recommend uses

Model Deployment

- Optimize model for inference
- Integrate model into decision-making process in production
- Package model
- Make model available for inference

Model monitoring & maintenance

- Monitor model performance
- Plan for updating/correcting model

Machine Learning Process

Main Machine Learning Approaches

- Classification
- Regression
- Cluster Analysis

CLASSIFICATION

- Goal: Predict category given input data
 - Target is categorical variable

Examples

- Classify tumor as benign or malignant
- Determine if credit card transaction is legitimate or fraudulent
- Identify customer as residential, commercial, public
- Predict if weather will be sunny, cloudy, windy, or rainy

REGRESSION

- Goal: Predict numeric value given input data
 - Target is numeric variable

www.wallstreetpoint.com

Examples

- Predict price of stock
- Estimate demand for a product based on time of year
- Determine risk of loan application
- Predict amount of rain

CLUSTER ANALYSIS

Goal: Organize similar items into groups

http://www.bostonlogic.com/blog/2014/01/seg ment-your-leads-to-get-better-results/

Examples

- Group customer base into segments for effective targeted marketing
- Identify areas of similar topography (desert, grass, etc.)
- Categorize different types of tissues from medical images
- Discover crime hot spots

Supervised vs. Unsupervised

Supervised Approaches

- Target (what you're trying to predict) is provided
 - 'Labeled' data
- Classification and regression approaches are supervised

Unsupervised Approaches

- Target is unknown or unavailable
 - 'Unlabeled' data
- Cluster analysis is unsupervised

BUILDING VS APPLYING MODEL

Adjust model parameters "Train"

Test model on new data "Inference"

GENERALIZATION

Goal: Want model to perform well on data it was not trained on, i.e., to **generalize** well to unseen data

OVERFITTING

http://stats.stackexchange.com/questions/192007/what-measures-you-look-at-the-determine-over-fitting-in-linear-regression

Underfitting

Model has not learned structure of data

High training error High test error

Just Right

Model has learned distribution of data

Low training error Low test error

Overfitting

Model is fitting to noise in data

Low training error High test error

ADDRESSING OVERFITTING

Model complexity

- Number of parameters in model
- Chance of overfitting increases with model complexity

Validation set

- Monitor error on training and validation data
- To determine when to stop training

Regularization

- Constrain or shrink ("regularize") model parameters
- Add penalty term to error function used to train model
 - e.g., Add L1-norm and/or L2-norm regularization to linear regression model

Scalable Machine Learning

- What is scalable machine learning?
- Applying machine learning to 'big data'

https://infocus.emc.com/scott_burgess/15350/

Big Data

http://www.digitalzenway.com/2011/12/data-diet-a-resolution-you-can-stick-to/

- "Growing torrent" of data
- Data
 - Comes in large volumes
 - Continuous
 - Complex

DSE 230 - Spring 2022 M. H. Nguyen 53

V's of Big Data

V's of Big Data (Doug Laney of Gartner)

Volume

- Vast amounts of data being generated
- Petabytes (10¹⁵ bytes), exabytes (10¹⁸ bytes), and even more

Velocity

- Speed at which data is being generated
- Data is being generated continously

Variety

- Different forms of data
- Numeric, text, images, voice, geospatial, etc.

Veracity

Quality of data

Fifth 'V' of Big Data: Value

- Goal of processing Big Data is to extract value from data
 - Fifth 'V' of Big Data: Value
- Not sufficient to collect Big Data
- Need to analyze data to gain insights for decision-making

Scalable Machine Learning

- Extracting value is at the heart of analyzing any data
 - This is done using machine learning
- New technologies and approaches needed to address challenges (the V's) of Big Data
 - Parallel processing
 - Scalable algorithms
 - Distributed platforms

http://www.dreamstime.com/stock-photos-data-mining-image35154223

Scalable Machine Learning Agenda

- 2:00 2:15 Machine Learning Overview
- 2:15 2:45 R on HPC
- 2:45 3:00 Break
- 3:00 4:30 Spark Concepts & Hands-On
- 4:30 4:45 Q&A

Questions?

