Wintersemester 2023/24

7. Übung zur Vertiefung Analysis

29. November 2023

Abgabe bis spätestens Mittwoch 6. Dezember 2023 um 18 Uhr per WueCampus (maximal zu dritt).

Aufgabe 7.1 (Konvergenz, 5 Punkte) Sei (X, \mathcal{A}, μ) ein Maßraum und $f: X \to \mathbb{R}$ integrierbar. Zeigen Sie:

(a) Für $(E_j) \subseteq \mathcal{A}$ paarweise disjunkt mit $E := \bigcup_{j=1}^{\infty} E_j$ gilt

$$\int_{E} f \, \mathrm{d}\mu = \sum_{j=1}^{\infty} \int_{E_{j}} f \, \mathrm{d}\mu.$$

(b) Sei nun $X := \mathbb{R}$ und $A_n := \{x \in \mathbb{R} \mid |x| \ge n\} = (-\infty, -n] \cup [n, \infty)$. Für alle $\varepsilon > 0$ existiert ein $N \in \mathbb{N}$, sodass

$$\left| \int_{A_n} f \, \mathrm{d}\mu \right| < \varepsilon$$

für alle $n \geq N$ gilt.

Aufgabe 7.2 (gleichmäßiger Grenzwert, 5 Punkte) Sei (X, \mathcal{A}, μ) ein endlicher Maßraum, $f_k : X \to \mathbb{R}$ eine Folge integrierbarer Funktionen, die gleichmäßig gegen eine Funktion $f : X \to \mathbb{R}$ konvergiert.

(a) Zeigen Sie, dass f integrierbar ist mit

$$\int f \, \mathrm{d}\mu = \lim_{k \to \infty} \int f_k \, \mathrm{d}\mu.$$

(b) Zeigen Sie, dass auf die Voraussetzung $\mu(X) < \infty$ im Allgemeinen nicht verzichtet werden kann.

Aufgabe 7.3 (σ -endliche Maßräume, 4 Punkte)

- (a) Sei (X, \mathcal{A}, μ) ein σ -endlicher Maßraum mit $\mu(X) > 0$. Zeigen Sie, dass dann eine messbare Funktion $f: X \to \overline{\mathbb{R}}$ existiert mit f > 0 auf X und $0 < \int |f| \, \mathrm{d}\mu < \infty$.
- (b) Geben Sie einen Maßraum an, für den $\mathcal{L}^1(\mu) = \{0\}$ gilt.

Aufgabe 7.4 (Hilfsresultate, 3 Punkte)

- (a) Sei (X, \mathcal{A}, μ) ein Maßraum und $A, B \in \mathcal{A}$ mit $\mu(A) < \infty$ und $\mu(B) < \infty$. Zeigen Sie, dass dann $|\mu(A) \mu(B)| \le \mu(A \triangle B)$ gilt.
- (b) Seien (X, \mathcal{A}) und (Y, \mathcal{B}) messbare Räume und $f: X \times Y \to \overline{\mathbb{R}}$ sei $\mathcal{A} \otimes \mathcal{B}$ -messbar. Zeigen Sie, dass dann für jedes $x \in X$ die Funktion $f_x(y) := f(x, y)$ \mathcal{B} -messbar ist.