Chen-Zhu Xie

Portfolio: (in Scholar: []

Preference: 6

Contact: 💟 🛚

Personality: aries INTP ab

EDUCATION

Nanjing University	College of Engineering and Applied Sciences Nanjing, Jiangsu				
Doctor of Philosophy	Optical Engineering	<i>Q.E.</i> − <i>Top 15%</i> □	Nonlinear Fourier Optics 🕤 – 2025.06		
Dissertation: "Analytic 3D vector linear non-uniform & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\epsilon}}, \bar{\bar{\chi}}$ dielectrics"					
Master 's Studies	Quantum Electronics	Courses Score – 93.5 🕠	THz OAM Source – 2022.06		
Northeastern Unive	rsity Scho	ool of Physics, College of Scie	Shenyang, Liaoning		
Northeastern Univer	rsity Scho	ool of Physics, College of Scie GPA Rank – 1/400	DDTank Aimbots – 2020.06		
Bachelor of Science	Applied Physics	GPA Rank – 1/400 👩			

Personal Projects

Behind NLAST $0 \rightarrow 1$: Techniques crafted from scratch in my acedemic project: NLAST 2022.02 –

- ◆ Managed to realize *tree*-print feature in CMD lines without knowing *any tree*-packages
- → in order to visualize run-time *Call Stack* with *buried checkpoints* & display *crucial info*
- → to understand the *hierarchical structure* of my code from a more *abstract* perspective
- Enabled *multi-threads* to accelerate *for loops* in python while preserving the *loops' order*
 - → Implemented through utilizing the *producer-consumer model* (producer = thread pool)
- → Allow users to select which parts of the codes in the *for loops* to *parallelize* in CPU
- → Transform *multi-layer for loops* into *nested multi-threads*: each thread = a new thread pool
- → Future model will move away from *python* as the primary language & shift to GPU
 - → Favoring GPU is driven by "fields in physics = arrays/matrices in math/programs"
- → Haven't decided which to employ: CUDA, Jax, webGL2, webGPU, Mojo or Bend?

 Developed a log file system to track & record the operating status for debugging
 - → to output script parameters (**kwargs) for rapid reproducibility of data in the future
- → to store data files & folders, and their metadata for swift data import and reutilization
- Achieved automatic skipping of functions that return repeated values stored in memory
 - → via @decorators: let precomputation assess whether to execute the decorated function
- Wrap *matplotlib* into plot_1d(, _2d, _3d, .gif ...) for data visualization
 - → sped up by customized multithreading as well ... Python | SiYuan | Mathematica [repo]

DDTank Aimbots An inverse solving toolkit for a projectile game similar to Angry Birds 2017.04 ullet Established an aerodynamic model with air resistance $oldsymbol{R} = -koldsymbol{v}$ for the game DDTank o by solving $v' \propto R + F$, where driving force F = gravity G + wind force W \longrightarrow which ended up with the core transcendental equation $1 - e^{kt} + kt = k^2 M(\mathbf{F}; \Delta \mathbf{r}, \hat{\mathbf{v}}_0)$ \longrightarrow that can be numerically solved by Newton's method for t with given $k, F; \Delta r, \hat{v}_0$ ightharpoonup Finally, for each $\Delta m{r}, \hat{m{v}}_0$, one can obtain corresponding initial velocity $v_0\left(k, m{F}; t, M\right)$ \bullet after k, F are determined (by the game engine itself) $\rightarrow v_0$ is the info needed in the game to accurately hit an enemy at a distance of Δr from you • Software features: multi-OS/end, multi-hit_mode, multi-trajectory supported → Multi-OS: classic Web game on Windows, Mobile game on Android & Android Emulator → Multi-hit_mode: charge-mode for value v_0 , drag_mode (like angry birds) for extended curve \rightarrow Multi-trajectory: predicts up to 6 = $(1+2)^*2$ trajectories for the player: split 3 + backward 3 → Future model will move away from python as the primary language & shift to GPU ● Favoring GPU is driven by "fields in physics = arrays/matrices in math/programs" → Haven't decided which to employ: CUDA, Jax, webGL2, webGPU, Mojo or Bend? • Capturing game data semi-automatically with computer vision → to output script parameters (**kwargs) for rapid reproducibility of data in the future → to store data files & folders, and their metadata for swift data import and reutilization • Achieved automatic skipping of functions that return repeated values stored in memory → via @decorators: let precomputation assess whether to execute the decorated function • Wrap *matplotlib* into plot_1d(, _2d, _3d, .gif ...) for data visualization → sped up by customized multithreading as well ... Python | SiYuan | Mathematica [repo] **DDTank Aimbots Analytic solution** 2023.02 -

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- The next generation of this project will come really close to the exact solution
- logging system
 - o J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R. o JOSA.A. | O.E. #tightly focus $\#\bar{\epsilon}$ anisotropy | Light.Sci.App. | O.E.

PPT <u>1 2 3</u> ... •

Three Books Closed-form
$$E_3(\mathbf{r})$$
 in $\left[\nabla^2 + k_3^2\right] E_3(\mathbf{r}) = -k_{03}^2 \chi(\mathbf{r}) E_1(\mathbf{r}) E_2(\mathbf{r})$ 2022.02 –

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Developed a log file system to record and output script runtime parameters**kwargs,
 - o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
 - L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
 - O.L. | P.R.A.

SCIENTIFIC ACTIVITIES

[0] The 4th Nanjing University Doctoral Interdisciplinary Innovation Forum Nanjing, Jiangsu "Analytic vector linear & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\varepsilon}}, \bar{\bar{\bar{\chi}}}$ dielectrics" | Oral [PPT] 2024.05.29

[-1] 2023 CSOE-NJU¹ Book Club Meeting & Sharing Session

Nanjing, Jiangsu

PPT 1234 ... 😱

¹ The Nanjing University student branch of the Chinese Society for Optical Engineering

[-2] Academic Café Salon of the Research Group

Nanjing, Jiangsu

"Bi-directional notes on Nonlinear Optics in a roam-like app: RoamEdit" | Oral [PDF]

2021.05.21

PUBLICATIONS

- [0] P. Chen, X. Xu, T. Wang, C. Zhou, D. Wei, J. Ma, J. Guo, X. Cui, X. Cheng, **C. Xie**, S. Zhang, S. Zhu, M. Xiao, and Y. Zhang, Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing, Nature Communications **14**, 5523 (2023)
- [-1] J. Guo, Y. Zhang, H. Ye, L. Wang, P. Chen, D. Mao, C. Xie, Z. Chen, X. Wu, M. Xiao, and Y. Zhang, Spatially Structured-Mode Multiplexing Holography for High-Capacity Security Encryption, ACS Photonics 10, 757–763 (2023)

ACADEMIC FOCUS

Next generation high N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics 😱			
!Paraxial k_0^{ω} High N.A. 3D vector non-uniform analytic line	ear & nonlinear Fourier crystal optics 😱	2024.03 -	
Emphasizing G_{xyz}^{ω} 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics \mathbb{Q}			
Involving $\bar{\bar{\chi}}^{(2)}_{\omega}$ anisotropy Vector non-uniform analytic linear & nonlinear Fourier crystal optics \square			
!Unitary $G^\pm_\omega \Leftarrow$!Hermitian $\bar{\bar{\varepsilon}}^\omega_{\mathrm{r}} \Rightarrow$ Non-uniform analytic linear & nonlinear Fourier crystal optics \P			
Solution E_{ω}^{\pm} to $(\nabla^2 + k_{\omega\pm}^2) E_{\omega}^{\pm} \propto P_{\omega\pm}^{(2)}$ Analytic linear & nonlinear Fourier crystal optics \Box			
Solution $\mathcal{F}[E_3] = \mathcal{F}[f(\mathcal{F}^{-1}[\cdot])]$ to the Eq. below Nonlin	ear angular spectrum theory for SFG 😱	2022.06 -	
Solution $\mathcal{F}[E_3] = \iiint$ to $(\nabla^2 + k_3^2)E_3(r) \propto P_3^{(2)}(r)$	onlinear convolution solution to SFG 😱	2022.03 -	
Nonlinear THz LiNbO ₃ -based metasurface Quit THz project formally COMSOL			
BWOPO + THz optical parametric amplification Mathematica BookxNote Pro		- 2021.12	
THz backward optical parametric oscillator (BWOPO) Mathematica VBA Excel			
Multi-cycle THz orbital angular momentum (OAM) source RoamEdit Blender		- 2021.11	
Narrow-band THz OAM source via Optical Rectification (OR)	Python Blender	- 2021.10	
\bigcirc Electricity $\xrightarrow{\text{produce}}$ Acoustics $\xrightarrow{\text{modulate}}$ Optics	RoamEdit VBA Excel	- 2021.07	
\bigcirc Visible Photons $\xrightarrow{\text{SPDC}}$ THz Spectroscopy	BookxNote Pro GeoGebra VBA Excel	- 2021.06	
Cavity Phase Matching = Sheet OPO	Paint 3D RoamEdit GeoGebra VBA Excel	- 2021.05	
THz Holography via Optical Rectification	Matlab GeoGebra VBA Excel	- 2021.01	
\square Femtosecond laser $\xrightarrow{\text{Optical Rectification}}$ Terahertz (THz)	GeoGebra VBA Excel	- 2020.12	
Multicycle THz pulse generation by OR in LiNbO ₃ crystals VBA PowerPoinT			

Honors & Awards

A 1	Doctor's Qualification Exam (Oral)		Excellent	(<i>Top 15%</i>	Nanjing	U.	2024.01
Academia	Bachelar Thesis 😱 & Defense		Excellent	0	1/90	Northeaster	n U.	2020.06
Commotition	Three Provinces Achievement Expo	(Exhibition		Leader	Three	Prov.	2019.10
Competition	"Challenge Cup" Tech Competition	(Grand prize	e (7)	Leader	Liaoning	Prov.	2019.06
Scholarships	Academic Fellowship		1st class		¥40,000	Nanjing	U.	2020-24
&	"Jinchuan" Scholarship		1st place		¥5,000	Northeaster	n U.	2019.04
Fellowships	Academic Scholarship		1st place		¥2,000	Northeaster	n U.	2018.06
renowships	Entrance Scholarship		3rd place		¥5,000	Leshan No.1	H.S.	2013.09
Honors	Graduation with Honor	(Outstandin	g		Northeaster	n U.	2020.07
&	League Member	(Excellent			Northeaster	n U.	2019.11
Titles	Undergraduate Student		Excellent	0		Northeaster	n U.	2018.12
Manulandina	Chinese Society for Optical Engineeri	ng	Member			Nanjing	U.	2021-25
Memberships	"Qian Sanqiang" Talent Class		Head	(I.H.E.P.		2017-20

RESEARCH PROJECTS

3D Vector Nonlinear

Fourier Crystal Optics

Solving $\left[\left[(\nabla \times)^2 - k_0^2 \bar{\bar{\varepsilon}} \cdot \right] \underline{\boldsymbol{E}}(\boldsymbol{r}) = k_0^2 \bar{\bar{\chi}} : \mathcal{F}_{\omega}^{-1} \left[\widetilde{\boldsymbol{E}}_{\mathrm{p}} \widetilde{\boldsymbol{E}}_{\mathrm{p}} \right] (\boldsymbol{r}) \right]$ analytically 2023.05 –

- The first & fastest white box solver ever for this inhomogeneous wave equation
 or other similar equations, with unprecedented efficiency-accuracy product
- No competitors for the time being: other methods or software including
 k-space RK4, pseudo-spectral, SSF, Green's Function methods, FDTD, COMSOL...
- Reproduced well-known papers, all of which provide either zero or wrong theory:
 - o Nat.Photo. #proven theoratically wrong by this project #femtosecond pump
 - O.E. #Bloembergen's legacy2 #experiment | O.M.E. #z-component
 - \circ O.E. | Q.E. #high N.A. # $\bar{\chi}$ anisotropy

Complex Vector Linear

Fourier Crystal Optics

Analytic solution
$$E(r)$$
 to $\left[(\nabla \times)^2 - k_0^2 \bar{\bar{\epsilon}} \cdot \right] E(r) = 0$ where $\varepsilon_{ij} \in \mathbb{C}$ 2023.02 –

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- The next generation of this project will come really close to the exact solution
- Reproduced well-known papers, some are purely experimental (too hard to model):
 J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.
 - \circ JOSA.A. | O.E. #tightly focus # $\bar{\bar{\epsilon}}$ anisotropy | Light.Sci.App. | O.E.

PPT <u>1 2 3</u> ... •

PPT 123 ... 😱

Real Scalar Nonlinear

Fourier Crystal Optics

Closed-form
$$E_3(r)$$
 in $\left[\nabla^2 + k_3^2\right] E_3(r) = -k_{03}^2 \chi(r) E_1(r) E_2(r)$ 2022.02 –

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Reproduced well-known papers & models with maximum accuracy & efficiency: • P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
 - L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump O.L. | P.R.A.

PPT <u>1 2 3 4</u> ... •

Extracurricular Activities

Member at Some Club	2017-Current
Detailed explanation of what you do at this club	
Member at Some Club	2016-2017
Detailed explanation of what you do at this club	
Volunteer at Some Event	Fall 2019
Detailed explanation of what you do in this event	
Volunteer at Some Event	Winter 2015
Detailed explanation of what you do in this event	

Skills Languages

Skill Group: List of technologies	Language: language proficiency level
• Skill Group: List of technologies	- EXAM: details
• Skill Group: List of technologies	Language: language proficiency level
• Skill Group: List of technologies	Language: language proficiency level