Masked face detection Using CNN & Machine learning

통계학과 212STG33 황예진

목차

01 Introduction

- 주제 소개
- 선행 연구

02 Modeling

- 전체 모델 구조
- 모델 구성 요소

03 Experiments

- Using DenseNet
- Using MobileNetV2
- Using EfficientNetV2

04Conclusion

- 결론 및 한계점

1. Introduction FM ATM

연구주제

Masked face detection Using CNN & Machine learning

- 2020년 코로나19 바이러스의 발생 이후 유행의 장기화로 인한 마스크 착용의 일상화
- 실외 마스크 필수 착용이 해제된 이후에도 실내에서의 마스크 착용은 필수적
- 실내 시설을 이용하는 사람들이 마스크를 착용하고 있는지에 대해 판별
- 사람의 얼굴 데이터가 주어졌을 때 그 사람이 마스크를 쓰고 있는지 아닌지 예측

1. Introduction 전행 연구

- Boosting Masked Face Recognition with Multi-Task ArcFace (2021)

- ArcFace 방법론을 바탕으로 한 Multi-Task ArcFace(MTArcFace) 제안
- ResNet50을 backbone으로 사용
- ArcFace loss + mask probability logit을 바탕으로 구한 mask probability loss

- A hybrid deep transfer learning model with machine learning methods For face mask detection in the era of the COVID-19 pandemic(2021)

- 딥러닝과 머신러닝 방법론의 하이브리드 모델을 제안
- Feature extraction: cnn 모델을 이용하여 이미지의 feature 추출
- Classification: Decision tree, SVM, ensemble 모델을 통해 각각 마스크 착용 여부를 예측하고 결과를 voting하는 stacking ensemble 사용

1. Introduction 전행 연구

- Boosting Masked Face Recognition with Multi-Task ArcFace (2021)
- A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic(2021)

- Feature extraction을 위해 CNN 모델 사용
- 분류를 위해 CNN이 아닌 다른 구조를 가진 모델을 함께 사용

최근의 CNN 모델을 통해 feature extraction + 머신러닝 방법론 중 boosting을 이용하여 Classification

2. Modeling 전체모델구조

CNN과 boosting 방법을 이용한 stacking ensemble 모델 제안

2. Modeling 모델 구성 요소

DenseNet

각 layer의 feature map 이 모든 다른 레이어의 feature map 과 연결되어 있는 구조.

MobileNetV2

Depthwise separable convolution의 구조를 이용하여 연산량을 크게 감소시킨 CNN 모델 구조

EfficientNetV2

모델의 width, depth, resolution을 최적의 비율을 조합하는 compound scaling을 사용하는 모델 구조

XGBoost

효율성을 높이는 여러 기능을 포함한 gradient boosting 기반의 앙상블 방법

LightGBM

계산 과정을 줄여 학습 속도를 개선한 gradient boosting 기반의 앙상블 방법

2. Modeling 모델구성요소

Stacking Ensemble

여러 모델들을 활용해서 예측 결과를 각각 도출한 뒤, 그 예측 결과들을 결합해 최종 예측 결과를 만드는 방법.

3. Experiments Using DenseNet

Feature extraction by DenseNet

개별 모델 성능

DenseNet					
Accuracy Confusion			Pre	ed	
Accuracy	matrix		no	Yes	
0.859	Truo	No	433	8	
0.009	True	yes	116	325	

		XGBoost						
DenseNet		Accuracy	Confu	usion	Pre	ed		
		Accuracy	matrix		no	Yes		
		0.993	True	No	438	3		
		0.995	Hue	yes	3	438		

LightGBM					
Accuracy Confusion Pre				ed	
Accuracy	matrix		no	Yes	
0.000	Truo	No	438	3	
0.992	True	yes	4	437	

Stacking

Test accuracy: 0.993

Confusion		Pred		
matrix		no	Yes	
True	No	438	3	
	yes	3	438	

3. Experiments Using MobileNetV2

Feature extraction by MobileNetV2

MobileNetV2

개별 모델 성능

MobileNetV2					
\\ \course\\	Confu	usion	Pred		
Accuracy	matrix		no	Yes	
0.5	True	No	0	441	
0.5	iiue	yes	0	441	

XGBoost					
Accuracy	Confusion matrix		Pre	ed	
Accuracy			no	Yes	
0.984	True	No	434	7	
0.904	iiue	yes	6	434	

LightGBM					
Accuracy	Confu	Pred			
Accuracy	matrix		no	Yes	
0.005	Truo	No	435	6	
0.985	True	yes	7	434	

Stacking

Test accuracy: 0.985

Confusion		Pred		
matrix		no	Yes	
True	No	434	7	
	yes	6	435	

3. Experiments Using EfficientNetV2

Feature extraction by EfficientNetV2

EfficientNetV2

개별 모델 성능

EfficientNetV2					
Accuracy Confusion			Pre	ed	
Accuracy	matrix		no	Yes	
0.355	Truo	No	32	409	
0.333	True	yes	160	281	

XGBoost					
Accuracy	Confu	usion	Pre	ed	
Accuracy	matrix		no	Yes	
0.064	Truo	No	397	44	
0.864	True	yes	76	365	

LightGBM					
Accuracy Confusion Pred					
Accuracy	matrix		no	Yes	
0.067	0.007		396	45	
0.867	True	yes	72	369	

Stacking

Test accuracy: 0.863

Confusion		Pred		
mat	rix	no	Yes	
True	No	390	51	
irue	yes	70	371	

3. Experiments Stacking ខ្នាប់ បាល

Stacking 결과 비교

DenseNet					
Test accuracy					
0.993					
Confusion matrix		Pred			
		no	Yes		
True	No	438	3		
	yes	3	438		

MobileNetV2					
Test accuracy					
0.985					
Confusion matrix		Pred			
		no	Yes		
True	No	434	7		
	yes	6	435		

EfficientNetV2						
Test accuracy						
0.863						
Confusion matrix		Pred				
		no	Yes			
True	No	390	51			
	yes	70	371			

DenseNet을 기반으로 한 stacking이 가장 좋은 성능을 보였다.

4. Conclusion 결론및 한계점

- 단일 모델의 결과를 확인하였을 때, CNN 모델을 사용하여 예측까지 진행한 case보다 CNN으로부터 얻은 feature extraction에 부스팅을 적용하여 예측한 case가 더 나은 성능을 보였다.
 - ▶ 선행 연구에서 사용한 ArcFace 등의 face detection 모델을 이용하여 예측을 시도해볼 수 있다.
 - ▶ CNN 모델링 과정에서 epoch을 늘려 학습을 더 길게 하여 예측을 시도해볼 수 있다.
 - ► XGBoost, LightGBM에 대한 gridsearch 과정을 추가하여 더 optimal한 파라미터를 찾는 과정을 시도해볼 수 있다.

- DenseNet based stacking이 가장 좋은 test accuracy를 얻었다.
 - ▶ 하나의 feature extraction에 대해 3개보다 더 많은 방법론으로 예측을 진행하여 3개보다 많은 예측값을 이용한 stacking을 시도해볼 수 있다.

감사합니다.