Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 6: Modi di un sistema lineare, risposta libera e forzata (tempo continuo)

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

-	-

Nella scorsa lezione ▶ Forma canonica di Jordan: costruzione ▶ Forma canonica di Jordan: algoritmo generale ▶ Forma canonica di Jordan: osservazioni ▶ Polinomi annullatori e polinomio minimo

In questa lezione

▷ IV	lodi	element	arı e	evoluzione	libera c	lı un	sistema	lineare a	tempo	continuo
------	------	---------	-------	------------	----------	-------	---------	-----------	-------	----------

- ▶ Analisi modale di un sistema lineare a tempo continuo
 - ▶ Evoluzione forzata di un sistema lineare a tempo continuo
 - ▶ Matrice di trasferimento e equivalenza algebrica
 - ightharpoonup Addendum: calcolo di e^{Ft} tramite Laplace

Soluzioni di un sistema lineare autonomo?

Caso vettoriale $x(t) = y(t) \in \mathbb{R}^n$

$$\dot{x}(t) = Fx(t), \qquad x(0) = x_0$$
 $x(t) = e^{Ft}x_0$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019 5 / 22

Usiamo Jordan!

1.
$$F = TF_J T^{-1} \implies e^{Ft} = Te^{F_J} T^{-1}$$

2.
$$F_J = \begin{bmatrix} J_{\lambda_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{\lambda_k} \end{bmatrix} \implies e^{F_J t} = \begin{bmatrix} e^{J_{\lambda_1} t} & 0 & \cdots & 0 \\ 0 & e^{J_{\lambda_2} t} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & e^{J_{\lambda_k} t} \end{bmatrix}$$

$$\mathbf{3.} \ J_{\lambda_{i}} = \begin{bmatrix} J_{\lambda_{i},1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{i},2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{\lambda_{i},\ell_{i}} \end{bmatrix} \implies e^{J_{\lambda_{i}}t} = \begin{bmatrix} e^{J_{\lambda_{i},1}t} & 0 & \cdots & 0 \\ 0 & e^{J_{\lambda_{i},2}t} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & e^{J_{\lambda_{i},\ell_{i}}t} \end{bmatrix}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019 6 / 22

Usiamo Jordan!

$$\textbf{4.} \ J_{\lambda_{i},j} = \begin{bmatrix} \lambda_{i} & 1 & 0 & \cdots & 0 \\ 0 & \lambda_{i} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & \lambda_{i} \end{bmatrix} \in \mathbb{R}^{r_{ij} \times r_{ij}} \Rightarrow e^{J_{\lambda_{i},j}t} = \begin{bmatrix} e^{\lambda_{i}t} & te^{\lambda_{i}t} & \frac{t^{2}}{2}e^{\lambda_{i}t} & \cdots & \frac{t^{t_{ij}-1}}{(r_{ij}-1)!}e^{\lambda_{i}t} \\ 0 & e^{\lambda_{i}t} & te^{\lambda_{i}t} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \frac{t^{2}}{2}e^{\lambda_{i}t} \\ \vdots & \ddots & \ddots & \ddots & te^{\lambda_{i}t} \\ 0 & \cdots & \cdots & 0 & e^{\lambda_{i}t} \end{bmatrix}$$

$$e^{\lambda_i t}$$
, $t e^{\lambda_i t}$, $\frac{t^2}{2} e^{\lambda_i t}$, ..., $\frac{t'^{ij-1}}{(r_{ij}-1)!} e^{\lambda_i t} = \mathsf{modi}$ elementari del sistema

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019 7 / 22

Modi elementari: osservazioni

$$e^{\lambda_i t}$$
, $t e^{\lambda_i t}$, $\frac{t^2}{2} e^{\lambda_i t}$, ..., $\frac{t^{r_{ij}-1}}{(r_{ij}-1)!} e^{\lambda_i t} =$ modi elementari del sistema

- **1.** Numero di modi distinti associati a $\lambda_i = \dim$ del più grande miniblocco in J_{λ_i} $= h_i = \text{molteplicità di } \lambda_i \text{ nel pol. minimo}$
- **2.** Numero di modi distinti complessivi = n (dim. di F) quando F ha un unico miniblocco per ogni autovalore (F ciclica)
- **3.** F diagonalizzabile \implies modi elementari $= e^{\lambda_i t}$ (esponenziali puri)
- **4.** $\lambda \in \mathbb{C}$ autovalore $\Rightarrow \bar{\lambda}$ autovalore \Rightarrow modi reali $t^k e^{\sigma t} \cos(\omega t), t^k e^{\sigma t} \sin(\omega t)$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019 8 / 22

Evoluzione libera

$$\dot{x}(t) = Fx(t) + Gu(t), \quad x(0) = x_0$$

$$y(t) = Hx(t) + Ju(t)$$

$$y(t) = y_{\ell}(t) = He^{Ft}x_0 = \sum_{i,j} t^j e^{\lambda_i t} v_{ij}$$

= combinazione lineare di vettori contenenti i modi elementari!

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019 9 / 22

Carattere dei modi elementari

$$\lambda_i \in \mathbb{C}: t^{k_i} e^{\lambda_i t} = t^{k_i} e^{(\sigma_i + i\omega_i)t} = t^{h_i} e^{\sigma_i t} (\cos(\omega_i t) + i \sin(\omega_i t))$$

→ limitato o divergente

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

Comportamento asintotico

 $F \in \mathbb{R}^{n \times n}$ con autovalori $\{\lambda_i\}_{i=1}^k$

$$\Re[\lambda_i] < 0, \forall i$$
 \iff $e^{Ft} \xrightarrow{t \to \infty} 0 \implies y(t) = He^{Ft} x_0 \xrightarrow{t \to \infty} 0$

$$\Re[\lambda_i] \le 0, \ \forall i \ e$$
 $\nu_i = g_i \ \text{se} \ \Re[\lambda_i] = 0$
 $\iff e^{Ft} \ \text{limitata} \ \Rightarrow \ y(t) = He^{Ft} x_0 \ \text{limitata}$

$$\exists \lambda_i \text{ tale che } \Re[\lambda_i] > 0$$

o $\Re[\lambda_i] = 0$ e $\nu_i > g_i$ \iff e^{Ft} non limitata $\Rightarrow y(t) = He^{Ft}x_0$?

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

Evoluzione forzata

$$\dot{x}(t) = Fx(t) + Gu(t), \qquad x(0) = x_0$$

$$y(t) = Hx(t) + Ju(t)$$

$$x(t) = x_{\ell}(t) + x_{f}(t), \qquad x_{\ell}(t) = e^{Ft}x_{0}, \qquad x_{f}(t)$$
 ??

$$y(t) = y_{\ell}(t) + y_{f}(t), \qquad y_{\ell}(t) = He^{Ft}x_{0}, \qquad y_{f}(t) ??$$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

Evoluzione forzata

$$\dot{x}(t) = Fx(t) + Gu(t), \qquad x(0) = x_0$$

$$y(t) = Hx(t) + Ju(t)$$

$$x(t) = \underbrace{e^{Ft}x_0}_{=x_{\ell}(t)} + \underbrace{\int_0^t e^{F(t-\tau)}Gu(\tau)\,d\tau}_{=x_{f}(t)}$$

$$y(t) = \underbrace{He^{Ft}x_0}_{=y_{\ell}(t)} + \underbrace{\int_0^t [He^{F(t-\tau)}G + J\delta(t-\tau)]u(\tau)\,d\tau}_{=y_{f}(t)}$$

$$w(t) = He^{Ft}G + J\delta(t) =$$
risposta impulsiva

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

13 / 22

Evoluzione forzata (con Laplace)

$$sX(s) - x_0 = FX(s) + GU(s)$$

$$V(s) \triangleq \mathcal{L}[v(t)] = \int_{0^{-}}^{\infty} v(t)e^{-st}dt$$

$$Y(s) = HX(s) + JU(s)$$

$$X(s) = \underbrace{(sl - F)^{-1}x_0}_{=X_{\ell}(s)} + \underbrace{(sl - F)^{-1}G}_{=X_{\ell}(s)}$$

$$Y(s) = \underbrace{H(sI - F)^{-1}x_0}_{=Y_{\ell}(s)} + \underbrace{[H(sI - F)^{-1}G + J]U(s)}_{=Y_{f}(s)}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

Equivalenze dominio temporale/Laplace

1.
$$W(s) = \mathcal{L}[w(t)] = H(sI - F)^{-1}G + J = \text{matrice di trasferimento}$$

2.
$$\mathcal{L}[e^{Ft}] = (sI - F)^{-1} = \text{metodo alternativo per calcolare } e^{Ft}$$
!!

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019 15 /

Equivalenza algebrica

$$\dot{x}(t) = Fx(t) + Gu(t), \qquad x(0) = x_0$$

$$y(t) = Hx(t) + Ju(t)$$

Sia $z \triangleq T^{-1}x$ dove $T \in \mathbb{R}^{n \times n}$ rappresenta una matrice di cambio di base

Equazioni del sistema espresse nella nuova base?

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

Equivalenza algebrica

$$\dot{z}(t) = T^{-1}FTz(t) + T^{-1}Gu(t), \quad z(0) = Tx_0$$

$$y(t) = HTz(t) + Ju(t)$$

$$(F, G, H, J) \xrightarrow{z=T^{-1}x} (F' = T^{-1}FT, G' = T^{-1}G, H' = HT, J' = J)$$

Matrice di trasferimento nella nuova base?

$$W'(s) = H'(sI - F')^{-1}G' + J' = H(sI - F)^{-1}G + J = W(s)!!$$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019 17

Struttura della matrice di trasferimento

 $T \in \mathbb{R}^{n \times n} = \mathsf{base} \; \mathsf{di} \; \mathsf{Jordan}$

$$(F, G, H, J) \xrightarrow{z=T^{-1}X} (F_J = T^{-1}FT, G_J = T^{-1}G, H_J = HT, J_J = J)$$

$$W(s) = W_J(s) = H_J(sI - F_J)^{-1}G_J + J_J$$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

Struttura della matrice di trasferimento

$$F_{J} = \begin{bmatrix} \frac{J_{\lambda_{1},1}}{0} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{1},2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k},\ell_{k}} \end{bmatrix}, \quad G_{J} = \begin{bmatrix} \frac{G_{\lambda_{1},1}}{G_{\lambda_{1},2}} \\ \vdots \\ \hline G_{\lambda_{k},\ell_{k}} \end{bmatrix}, \quad H_{J} = \begin{bmatrix} H_{\lambda_{1},1} \mid H_{\lambda_{1},2} \mid \cdots \mid H_{\lambda_{k},\ell_{k}} \end{bmatrix}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

19 / 22

Struttura della matrice di trasferimento

$$F_{J} = \begin{bmatrix} \frac{J_{\lambda_{1},1}}{0} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{1},2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k},\ell_{k}} \end{bmatrix}, \quad G_{J} = \begin{bmatrix} \frac{G_{\lambda_{1},1}}{G_{\lambda_{1},2}} \\ \vdots \\ G_{\lambda_{k},\ell_{k}} \end{bmatrix}, \quad H_{J} = \begin{bmatrix} H_{\lambda_{1},1} \mid H_{\lambda_{1},2} \mid \cdots \mid H_{\lambda_{k},\ell_{k}} \end{bmatrix}$$

$$W(s) = H_{\lambda_1,1}(sI - J_{\lambda_1,1})^{-1}G_{\lambda_1,1} + H_{\lambda_1,2}(sI - J_{\lambda_1,2})^{-1}G_{\lambda_1,2} + \dots + H_{\lambda_k,\ell_k}(sI - J_{\lambda_k,\ell_k})^{-1}G_{\lambda_k,\ell_k} + J$$

$$= W_{\lambda_1,1}(s) + W_{\lambda_1,2}(s) + \dots + W_{\lambda_k,\ell_k}(s) + J$$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

Struttura della matrice di trasferimento

$$\text{miniblocco } J_{\lambda_i,j} \in \mathbb{R}^{r_{ij} \times r_{ij}} \implies W_{\lambda_i,j}(s) = \frac{A_1}{s - \lambda_i} + \frac{A_2}{(s - \lambda_i)^2} + \dots + \frac{A_{r_{ij}}}{(s - \lambda_i)^{r_{ij}}}$$

$$y_f(t) = \mathcal{L}^{-1} \left[\sum_{i,j} W_{\lambda_i,j}(s) U(s) + JU(s)
ight]$$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019 20 / 2

Calcolare l'esponenziale di matrice con Laplace

$$\mathcal{L}[e^{Ft}] = (sI - F)^{-1} \implies e^{Ft} = \mathcal{L}^{-1}[(sI - F)^{-1}]$$

Esempio:
$$F = \begin{bmatrix} 00 & -1 \\ 1 - 1 & 00 \end{bmatrix}$$
, $e^{Ft} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$

Giacomo Baggio

IMC-TdS-1920: Lez. 6

October 21, 2019

Condizioni "pratiche" su ciclicità e polinomio minimo

1. F ciclica \iff non ci sono semplificazioni tra num. e den. nel calcolo di

$$(sI - F)^{-1} = \frac{\operatorname{adj}(sI - F)}{\det(sI - F)}$$

2. $\Psi_F(s) = \text{polinomio a den. in } (sl - F)^{-1}$, dopo tutte le possibili semplificazioni

Giacomo Baggio	IMC-TdS-1920: Lez. 6	October 21, 2019	22 / 22	