Problemas recurrentes

Facultad de Informática

October 21, 2024

Indice

1. Problemas coloquiales

Ejemplos

Soluciones recurrentes de los problemas

Tabla de contenidos

1. Problemas coloquiales

Ejemplos

Soluciones recurrentes de los problemas

Problemas coloquiales Con Razonamiento matemático

- 1 Tasa de interés en un banco
 - Un banco tiene una tasa de interés del 6% anual en los depósitos.
- 2 Pareja de Conejos

Saludos en una fiesta

- 4 Torres de Hanoi
- 5 Conjunto con condición

Problemas coloquiales Con Razonamiento matemático

- 1 Tasa de interés en un banco
 - Un banco tiene una tasa de interés del 6% anual en los depósitos.
 - Qué valor obtengo al cabo de n años?
- 2 Pareja de Conejos

3 Saludos en una fiesta

- 4 Torres de Hanoi
- 5 Conjunto con condición

- 1 Tasa de interés en un banco
 - Un banco tiene una tasa de interés del 6% anual en los depósitos.
 - Qué valor obtengo al cabo de n años?
- 2 Pareja de Conejos
 - Una pareja de conejos demora un mes la gestación, gestan otra pareja de conejos. La joven pareja demora un mes en alcanzar la adultez.
- Saludos en una fiesta

- Torres de Hanoi
- 5 Conjunto con condición

- 1 Tasa de interés en un banco
 - Un banco tiene una tasa de interés del 6% anual en los depósitos.
 - Qué valor obtengo al cabo de n años?
- 2 Pareja de Conejos
 - Una pareja de conejos demora un mes la gestación, gestan otra pareja de conejos. La joven pareja demora un mes en alcanzar la adultez.
 - Cuantos conejos habrá al cabo de n meses?
- 3 Saludos en una fiesta

- 4 Torres de Hanoi
- 5 Conjunto con condición

- 1 Tasa de interés en un banco
 - Un banco tiene una tasa de interés del 6% anual en los depósitos.
 - Qué valor obtengo al cabo de n años?
- 2 Pareja de Conejos
 - Una pareja de conejos demora un mes la gestación, gestan otra pareja de conejos. La joven pareja demora un mes en alcanzar la adultez.
 - Cuantos conejos habrá al cabo de n meses?
- 3 Saludos en una fiesta
 - Llega una persona a una fiesta y saluda a todos los que están.
- 4 Torres de Hanoi
- 5 Conjunto con condición

- 1 Tasa de interés en un banco
 - Un banco tiene una tasa de interés del 6% anual en los depósitos.
 - Qué valor obtengo al cabo de n años?
- 2 Pareja de Conejos
 - Una pareja de conejos demora un mes la gestación, gestan otra pareja de conejos. La joven pareja demora un mes en alcanzar la adultez.
 - Cuantos conejos habrá al cabo de n meses?
- Saludos en una fiesta
 - Llega una persona a una fiesta y saluda a todos los que están.
 - Cuántos saludos hubo al cabo de llegar n personas?
- 4 Torres de Hanoi
- 5 Conjunto con condición

- 1 Tasa de interés en un banco
 - Un banco tiene una tasa de interés del 6% anual en los depósitos.
 - Qué valor obtengo al cabo de n años?
- 2 Pareja de Conejos
 - Una pareja de conejos demora un mes la gestación, gestan otra pareja de conejos. La joven pareja demora un mes en alcanzar la adultez.
 - Cuantos conejos habrá al cabo de n meses?
- 3 Saludos en una fiesta
 - Llega una persona a una fiesta y saluda a todos los que están.
 - Cuántos saludos hubo al cabo de llegar n personas?
- 4 Torres de Hanoi
 - Con n discos, cuantos movimientos son necesarios ?
- 5 Conjunto con condición

- 1 Tasa de interés en un banco
 - Un banco tiene una tasa de interés del 6% anual en los depósitos.
 - Qué valor obtengo al cabo de n años?
- 2 Pareja de Conejos
 - Una pareja de conejos demora un mes la gestación, gestan otra pareja de conejos. La joven pareja demora un mes en alcanzar la adultez.
 - Cuantos conejos habrá al cabo de n meses?
- 3 Saludos en una fiesta
 - Llega una persona a una fiesta y saluda a todos los que están.
 - Cuántos saludos hubo al cabo de llegar n personas?
- 4 Torres de Hanoi
 - Con n discos, cuantos movimientos son necesarios ?
- 5 Conjunto con condición
 - Cantidad de elementos de un conjunto que no tiene enteros consecutivos

Tasa de interés: Un banco tiene una tasa de interés del 6% anual en los depósitos. Si inicialmente tengo 1000\$, ¿cuánto dinero tengo en *n* años?

cantidad de dinero

• Sea t_n como la cantidad de dinero luego de n años.

Tasa de interés: Un banco tiene una tasa de interés del 6% anual en los depósitos. Si inicialmente tengo 1000\$, ¿cuánto dinero tengo en *n* años?

- Sea t_n como la cantidad de dinero luego de n años.
- $t_0 = 1000$ al comienzo y 6% interés.

Tasa de interés: Un banco tiene una tasa de interés del 6% anual en los depósitos. Si inicialmente tengo 1000\$, ¿cuánto dinero tengo en *n* años?

- Sea t_n como la cantidad de dinero luego de n años.
- $t_0 = 1000$ al comienzo y 6% interés.
- $t_1 = 1000 + 0.06 \cdot 1000 = 1000 \cdot (1 + 0.06) = (1.06) \cdot t_0$

Tasa de interés: Un banco tiene una tasa de interés del 6% anual en los depósitos. Si inicialmente tengo 1000\$, ¿cuánto dinero tengo en *n* años?

- Sea t_n como la cantidad de dinero luego de n años.
- $t_0 = 1000$ al comienzo y 6% interés.
- $t_1 = 1000 + 0.06 \cdot 1000 = 1000 \cdot (1 + 0.06) = (1.06) \cdot t_0$
- $t_2 = t_1 \cdot (1,06) = (1,06)^2 \cdot 1000 = (1.06)^2 \cdot t_0$

Tasa de interés: Un banco tiene una tasa de interés del 6% anual en los depósitos. Si inicialmente tengo 1000\$, ¿cuánto dinero tengo en *n* años?

- Sea t_n como la cantidad de dinero luego de n años.
- $t_0 = 1000$ al comienzo y 6% interés.
- $t_1 = 1000 + 0.06 \cdot 1000 = 1000 \cdot (1 + 0.06) = (1.06) \cdot t_0$
- $t_2 = t_1 \cdot (1,06) = (1,06)^2 \cdot 1000 = (1.06)^2 \cdot t_0$
- $t_3 = t_2 + t_2 \cdot 0,06 = t_2 \cdot (1,06) = (1,06)^3 \cdot t_0$

Tasa de interés: Un banco tiene una tasa de interés del 6% anual en los depósitos. Si inicialmente tengo 1000\$, ¿cuánto dinero tengo en *n* años?

- Sea t_n como la cantidad de dinero luego de n años.
- $t_0 = 1000$ al comienzo y 6% interés.
- $t_1 = 1000 + 0.06 \cdot 1000 = 1000 \cdot (1 + 0.06) = (1.06) \cdot t_0$
- $t_2 = t_1 \cdot (1,06) = (1,06)^2 \cdot 1000 = (1.06)^2 \cdot t_0$
- $t_3 = t_2 + t_2 \cdot 0,06 = t_2 \cdot (1,06) = (1,06)^3 \cdot t_0$
- Condición general: $t_n = t_{n-1} \cdot (1,06), t_0 = 1000$

$$t_n = (1,06)^n \cdot t_0, \quad t_0 = 1000$$

Problemas coloquiales Solución pareja de conejos

Crecimiento demográfico: Cada pareja de conejos gesta otra pareja en un mes. La nueva pareja que nace demora un mes en alcanzar la maduración.

- t_i = cantidad de parejas de conejos pasados i meses.
- p = pareja de conejos
- t_0 = cantidad de parejas iniciales de conejos

Meses	Adultos	Jóvenes	a _i
0	0	1	$t_0 = 1p$
1	1	1	$t_1=2p$
2	2	1	$t_2 = t_1 + t_0 = 2p + 1p = 3p$
3	3	2	$t_3 = t_2 + t_1 = 3p + 2p = 5p$

:

n Adultos _{n-1} Jóvenes _{n-2} $t_n =$	$= t_{n-1} + t_{n-2}, t_0 = 1, t_1 = 2$
---	---

Problemas coloquiales Saludos en una fiesta

Fiesta: Llega una persona a una fiesta y saluda a todos los que están en ella. ¿Cuántos saludos hubo al cabo de *n* personas?

• $t_i = n$ úmero de saludos totales al llegar la *i*-ésima persona.

El ti son los saludos dados por la persona más los que dieron antes de su llegada.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Persona	Saludo p	Saludos previos <i>t</i> i	
	1	0	0	$t_1 = 0$
2 2 1 + 2 + 2	2	1	0	$t_2 = 1 + t_1 = 1$
$ 3 2 1 t_3 = 2 + t_2 = 3$	3	2	1	$t_3 = 2 + t_2 = 3$
$\begin{array}{ c c c c c c c }\hline 4 & 3 & 3 & t_4 = 3 + t_3 = 6 \\ \hline \end{array}$	4	3	3	$t_4 = 3 + t_3 = 6$

 t_{n-1} El termino general depende del anterior y sumado con una función de n

n-1

 $t_n = n - 1 + t_{n-1}$

Problemas coloquiales Torres de Hanoi

Hanoi: Seon *n* discos, ¿cuántos movimientos son necesarios para resolver el problema?

Definimos

• t_i = el número de movimientos de discos mínimos necesarios hasta resolver el problema.

Problemas coloquiales Torres de Hanoi

Hanoi: Seon *n* discos, ¿cuántos movimientos son necesarios para resolver el problema?

- t_i = el número de movimientos de discos mínimos necesarios hasta resolver el problema.
- $t_1 = 1$. Con un sólo disco hay un sólo movimiento

Hanoi: Seon *n* discos, ¿cuántos movimientos son necesarios para resolver el problema?

- t_i = el número de movimientos de discos mínimos necesarios hasta resolver el problema.
- $t_1 = 1$. Con un sólo disco hay un sólo movimiento
- $t_2 = 2 \cdot t_1 + 1 = 3$

Hanoi: Seon *n* discos, ¿cuántos movimientos son necesarios para resolver el problema?

- t_i = el número de movimientos de discos mínimos necesarios hasta resolver el problema.
- $t_1 = 1$. Con un sólo disco hay un sólo movimiento
- $t_2 = 2 \cdot t_1 + 1 = 3$
- $t_3 = 2 \cdot t_2 + 1 = 7$

Problemas coloquiales Torres de Hanoi

Hanoi: Seon *n* discos, ¿cuántos movimientos son necesarios para resolver el problema?

- t_i = el número de movimientos de discos mínimos necesarios hasta resolver el problema.
- $t_1 = 1$. Con un sólo disco hay un sólo movimiento
- $t_2 = 2 \cdot t_1 + 1 = 3$
- $t_3 = 2 \cdot t_2 + 1 = 7$
- $t_4 = 2 \cdot t_3 + 1 = 15$

Hanoi: Seon *n* discos, ¿cuántos movimientos son necesarios para resolver el problema?

- t_i = el número de movimientos de discos mínimos necesarios hasta resolver el problema.
- $t_1 = 1$. Con un sólo disco hay un sólo movimiento
- $t_2 = 2 \cdot t_1 + 1 = 3$
- $t_3 = 2 \cdot t_2 + 1 = 7$
- $t_4 = 2 \cdot t_3 + 1 = 15$
- ...

Hanoi: Seon n discos, ¿cuántos movimientos son necesarios para resolver el problema?

- t_i = el número de movimientos de discos mínimos necesarios hasta resolver el problema.
- $t_1 = 1$. Con un sólo disco hay un sólo movimiento
- $t_2 = 2 \cdot t_1 + 1 = 3$
- $t_3 = 2 \cdot t_2 + 1 = 7$
- $t_4 = 2 \cdot t_3 + 1 = 15$
-
- $t_n = 2 \cdot t_{n-1} + 1$ movimientos

Problemas coloquiales Torres de Hanoi

Hanoi: Seon *n* discos, ¿cuántos movimientos son necesarios para resolver el problema?

- t_i = el número de movimientos de discos mínimos necesarios hasta resolver el problema.
- $t_1 = 1$. Con un sólo disco hay un sólo movimiento
- $t_2 = 2 \cdot t_1 + 1 = 3$
- $t_3 = 2 \cdot t_2 + 1 = 7$
- $t_4 = 2 \cdot t_3 + 1 = 15$
-
- $t_n = 2 \cdot t_{n-1} + 1$ movimientos
- El termino general:

$$t_n = 2 \cdot t_{n-1} + 1$$

Problemas coloquiales Subconjunto de números

 I_n Subconjuntos de números $\mathbb N$ menores o iguales a n sin valores consecutivos

•
$$I_0 = \{\emptyset\}, I_1 = \{\emptyset, \{1\}\}, I_2 = \{\emptyset, \{1\}, \{2\}\},\$$

 $I_3 = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 3\}\}, ...,$

• t_n como el número de subconjuntos de I_n sin enteros consecutivos

Entonces

•
$$t_0 = 1$$
, $l_0 = \{\emptyset\}$

•
$$t_1 = 2,$$
 $I_1 = \{\emptyset, \{1\}\}$

•
$$t_2 = t_0 + t_1 = 3$$
, $l_2 = \{\emptyset, \{1\}, \{2\}\}$

•
$$t_3 = t_1 + t_2 = 5$$
, $l_3 = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 3\}\}$

•
$$t_4 = t_2 + t_3 = 8$$
, $l_4 = \{..., \{4\}, \{1, 4\}, \{2, 4\}\}$

$$t_n = t_{n-1} + t_{n-2}$$