RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

FCC ID: 2AJ5A-V2

EUT Specification

EUT	Wireless Router					
Frequency band (Operating)	⊠WLAN: 2.412GHz ~ 2.462GHz					
	□ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz					
	☐ WLAN: 5.745GHz ~ 5825GHz					
	Others					
Device category	☐ Portable (<20cm separation)					
	⊠ Mobile (>20cm separation)					
	☐ Others					
Exposure classification	\square Occupational/Controlled exposure (S = 5mW/cm2)					
	⊠ General Population/Uncontrolled exposure (S=1mW/cm2)					
Antenna diversity	⊠ Single antenna					
	☐ Multiple antennas					
	☐ Tx diversity					
	☐ Rx diversity					
	☐ Tx/Rx diversity					
Max. output power	15.76dBm (0.0377W)					
Antenna gain (Max)	2.0 dBi					
Evaluation applied	⋈ MPE Evaluation					
	☐ SAR Evaluation					

Limits for Maximum Permissible Exposure(MPE)

Frequency	Electric Field	Magnetic Field	Power	Average					
Range(MHz)	Strength(V/m)	Strength(A/m)	Density(mW/cm ²)	Time					
(A) Limits for Occupational/Control Exposures									
300-1500			F/300						
1500-100000			5	6					
(B) Limits for General Population/Uncontrol Exposures									
300-1500			F/1500	6					
1500-100000			1	30					

Friis transmission formula: $Pd=(Pout*G)\setminus(4*pi*R2)$

Where

Pd= Power density in mW/cm²

Pout=output power to antenna in Mw

G= gain of antenna in linear scale

Pi=3.1416

R= distance between observation point and center of the radiator in cm Pd the limit of MPE, 1mW/cm2. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Measurement Result

Operating Mode	Channel	Measured	Tune up	Max. Tune	Antenna	Power density	Power density
	Frequency	Power	tolerance	up Power	Gain	at 20cm	Limits
	(MHz)	(dBm)	(dBm)	(dBm)	(dBi)	(mW/cm^2)	(mW/cm ²)
802.11b	2412	15.76	15.76±1	16.76	2	0.0150	1
	2437	14.61	14.61±1	15.61	2	0.0115	1
	2462	15.61	15.61±1	16.61	2	0.0144	1
802.11g	2412	12.50	12.50±1	13.50	2	0.0071	1
	2437	14.50	14.50±1	15.50	2	0.0112	1
	2462	13.82	13.82±1	14.82	2	0.0096	1
802.11n (HT20)	2412	12.28	12.28±1	13.28	2	0.0067	1
	2437	14.31	14.31±1	15.31	2	0.0107	1
	2462	13.21	13.21±1	14.21	2	0.0083	1
802.11n (HT40)	2412	10.45	10.45±1	11.45	2	0.0044	1
	2437	12.20	12.20±1	13.20	2	0.0066	1
	2462	10.83	10.83±1	11.83	2	0.0048	1