WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : A61K 31/70, 45/00, C07H 5/06		(11) International Publication Number:	WO 92/06691
C07D 309/28, 309/30, 309/22	A1	(43) International Publication Date:	30 April 1992 (30.04.92)
C07D 309/20			

(21) International Application Number:

PCT/AU90/00501

(22) International Filing Date:

19 October 1990 (19.10.90)

(71) Applicant: BIOTA SCIENTIFIC MANAGEMENT PTY. LTD. [AU/AU]; Malleson's, Level 28, North Tower. 525 Collins Street, Melbourne, VIC 3000 (AU).

(72) Inventors: COLMAN, Peter, Malcolm; 30a Hawthorn Glen, Hawthorn, VIC 3122 (AU). VON ITZSTEIN, Laurence, Mark; 2/18 Jenkins Street, Northcote, VIC 3070 (AU). VARGHESE, Jose, Noozhumurray; 62 Newry Street, North Fitzroy, VIC 3065 (AU). WU, Wen-Yang; 5/49 Ruskin Street, Elwood, VIC 3184 (AU). PHAN, The, Van; 38 Shane Avenue, Laverton, VIC 3028 (AU). WHITE, Hume, Forrest; 5/348 Riversdale Road, Hawthorn, VIC 3123 (AU).

(74) Agent: SANTER, Vivien; Griffith Hack & Co., 601 St Kilda Road, Melbourne, VIC 3004 (AU).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), GR (European patent), HU, IT (European patent), JP, KR, LU (European patent), NL (European patent), NO, SE (European patent), SU*.

Published

With international search report.

08/735,385

(54) Title: ANTI-VIRAL COMPOUNDS THAT BIND THE ACTIVE SITE OF INFLUENZA NEURAMIDASE AND DIS-PLAY IN VIVO ACTIVITY AGAINST ORTHOMYXOVIRUS AND PARAMYXOVIRUS

(57) Abstract

A pharmacologically active composition of the invention comprises (i) a virus-inhibiting amount of a compound that binds the active site of influenza virus neuraminidase and that displays in vivo activity against orthomyxovirus or paramyxovirus; and (ii) a pharmaceutically-acceptable carrier for the compound which is preferably suitable for intranasal administration. In preferred embodiments, the compound possesses a K_i value, with respect to the active site, of less than 10^{-7} M. Preferably, the compound is a carbocyclic or heterocyclic compound comprised of a 5-, 6- or 7-membered ring carrying a substituent selected from a carboxylate moiety and an analogue thereof, the ring and the substituent being positioned in the same plane.

+ DESIGNATIONS OF "SU"

Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
ΑU	Australia	FI	Finland	ML	Mali
BB	Barhados	FR	France	MN	Mongolia
₿£	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	СB	United Kingdom	MW	Malawi
BC	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	SU+	Soviet Union
CM	Cameroon	LI	Liechtenstein	TO	Chad
cs	Czechoslovakia	LK	Sri Lanka	TG	Tugo
DΕ	Germany	LU	Luxembourg	us	United States of America
DΚ	Denmark	MC	Monaco		

5

10

15

20

25

30

Anti-viral compounds that bind the active site of influenza neuramidase and display in-vivo activity against orthomyxovirus paramyxovirus

Background of the Invention

The present invention relates to a new class of anti-viral compounds, exemplified by certain 2-deoxy and 2,3-dehydro analogues of α -D-neuraminic acid, and to their use, via inhibition of viral neuraminidases, for the prophylaxis and for the treatment of infections such as influenza, Newcastle disease and fowl plaque.

Enzymes with the ability to cleave N-acetyl neuraminic acid (NANA), also known as sialic acid, from other sugars are present in many microorganisms. These include bacteria such as Vibrio cholerae. Clostridium perfringens. Streptococcus pneumoniae, and Arthrobacter sialophilus, and viruses such as influenza virus, parainfluenza virus, mumps virus, Newcastle disease virus, fowl plague virus, and Sendai virus. Most of these viruses are of the orthomyxovirus or paramyxovirus groups, and carry a neuraminidase activity on the surface of the virus particles.

Many of the neuraminidase-possessing organisms are major pathogens of man and/or animals, and some, such as influenza virus, Newcastle disease virus, and fowl plague virus, cause diseases of enormous economic importance.

It has long been thought that inhibitors of neuraminidase activity might prevent infection by neuraminidase-bearing viruses. But while several such inhibitors are known, none has been shown to possess antiviral activity in vivo. Most of the known neuraminidase inhibitors are analogues of neuraminic acid, such as 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA) and its derivatives. See, e.g., Meindl et al., Virology 1974 58 457-63. The most active of these is 2-deoxy-2,3-dehydro-N-trifluoracetyl-neuraminic acid (FANA), which inhibits multicycle replication of influenza and parainfluenza viruses in vitro. See Palese et al., Virology 1974 59 490-498.

Table 1 below presents a listing of known N-acetylneuraminic acid derivatives. Many of these compounds are active against neuraminidase from \underline{V} . Cholerae or Newcastle disease virus as well as that from influenza virus. Neuraminidase in at least some strains of influenza or parainfluenza viruses is also inhibited by 3-aza-2,3,4-trideoxy-4-oxo-D-arabinoctonic acid δ -lactone and O- α -N-acetyl-D-neuraminosyl-(2--->3)-2-acetamido-2-deoxy-D-glucose Zakstel'skaya et al., Vop. Virol. 1972 17 223-28.

Neuraminidase from <u>Arthrobacter sialophilus</u> is inhibited by the glycals 2,3-dehydro-4-epi-N-acetyl-neuraminic acid, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid and 5-acetamido-2,6-anhydro-2,3,5-trideoxy-D-manno-non-2-en-4-ulosonate, and by their methyl esters. See Kumar et al., Carbohydrate Res. 1981 <u>94</u> 123-130; Carbohydrate Res. 1982 <u>103</u> 281-285.

The thio analogues $2-\alpha$ -azido-6-thio-neuraminic acid and 2,3-dehydro-6-thioneuraminic acid, Mack & Brossmer, Tetrahedron Letters 1987 28 191-194, and the fluorinated analogue N-acety1-2,3-difluoro- α -D-neuraminic acid, Nakajima et al., Agric. Biol. Chem. 1988 52 1209-1215, were reported to inhibit neuraminidase, although the type of neuraminidase was not identified. Schmid et al., Tetrahedron Letters 1988 29 3643-3646, described the synthesis of 2-deoxy-N-acety1- α -D-neuraminic acid, but did not report its activity or otherwise against neuraminidase.

5

10

15

20

TABLE 1

Known 2,3-dehydro derivatives on N-acetylneuraminic acid

	R ₆	E	=	E	НО	OH	OH		OH	OH	O	HO	OH	OH
	Rs	Ξ	=	=	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	I	Ξ	Ξ	=
	R ₅	ЭНО		HO	НО	ОН	НО	НО	НО	011	НО	НО	110	HO
		НО	O	ПО	ОН	ОН	ЮН	ЮН	НО	ОН	ОН	ОН	Ю	ОН
$\begin{pmatrix} R_1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	₹:	=	=	=	Ξ	Ι	Ξ	Ξ	Ι	==	1	H	=	
R ₅ R ₄ O R ₇ R ₄ O R ₅ R ₄ I R ₅ R ₅ R ₅ R ₅ I R ₅ R ₅ R ₅ R ₅ I R ₅	R_3	CH ₃ CO-	NII ₂ ('O-	HCO.	FCH2CO.	F ₂ CHCO.	F ₃ CCO-	CICH2CO.	ICH2CO-	CNCH2CO.	NH ₂ CH ₂ CO-	HSCH ₂ CO-	CH ₂ CONHCH ₂ CO-	(CII ₁) ₂ NCII ₂ CO-
	R ₂ '	011	Ö	O	. HO	НО	НО	HO	Ю	НО	OH	HC	O	НО
	R_2	=	Ξ	Ξ	Ξ	Ξ	=	Ξ	Ξ	Ξ	=	Ξ	=	=
	R	=	 -	=	=	Ξ	I	Ξ	=	=	=		Ξ	=
			~	~	-	,,-	ζ.	_	~	•	9	=	1 2	~

TABLE 1 (cont.)

HO II HO	но н но	HO HO	но но	он и	н но	н но	ОН	н но	11 110	но но	н но	н но				н но	ОН И ОН	но н но
ОН	ОН	ОН	0.11	ОН	0H	OH	O		HO	OH	OH	OH	OH	OH	0H	HO	OH	Ö
Ξ	Ξ	I	Ξ	:H ₂ CО-Н	==	Ξ	Ξ	=	=	Ξ	Ξ	-	=	Ξ	Ξ	Ξ	=	
NH,CH,CH,CO-	CH ₃ CONHCH ₂ CHCO-	нооссн,сн,со-	HOOCCH=CHCO-	Neu5Acyl2enNHCOCH2SCH2CO-F	HOCH ₂ CO.	CH ₃ CH ₂ CO-	CH1CH1CH1CO-	C ₆ H ₅ CO-	C ₆ H ₅ CH ₂ CO.	CH ₁ CO.	CH ₃ CO-	CH ₁ CO-	CH ₃ CO.	CH ₁ CO.	CII,CO.	CH ₁ CO.	CH ₃ CO.	CH ₁ CO.
НО	OH	ПО	ПО	HO	HO	Ē	E	Ξ	OH	E	Ξ		=	НО				
I	工	工	工	Ξ	=	Ξ	=	=	Ξ	Ξ	Ю	Ξ	Ю	=	()=	<u>)</u>)=	()-
=	=	I	I	=	=	Ξ	=	=	Ξ	CH,	CH	CH,	CH,	CH	CEL	CH,	CH	=
																_		

TABLE 1 (cont.)

	됬.	\underline{R}_2	R ₂ '	R_3	%	R4.	⊼ \$	R, .	R_{6}
33	Ξ	Ξ	НО	CH ₃ CO-	Ξ	Ξ	OH	Ξ	НО
34	Ξ	Ξ	НО	CH ₃ CO-	Ξ	НО	=	=	НО
35	Ξ	Ξ	НО	CH ₃ CO-	Ξ	НО	НО	=	Ξ
36	Ξ	Ξ	I	CH ₃ CO-	I	Ξ	ОН	Ξ	НО
37	CH	Ξ	CH_1COO	CH ₃ CO-	Ξ	H	CH ₃ COO-	Ξ	CH ₁ COO.
38	CH ₃	Ξ	CH ₃ COO-	CH ₁ CO-	Ξ	CH ₃ COO-	=	Ξ	CH ₁ COO.
39	CH ₃	Ξ	CH ₁ COO-	CH ₃ CO-	Ξ	CH ₁ C00-	CII3COO-		=
40	CH,	=	I	CH ₃ CO-	Ξ	Ξ	CII3COO-	Ξ	CH ₃ COO.
41	CH,	I	C ₆ H ₅ CH ₂ O-	CH ₃ CO-	Ξ	$C_6H_5CH_2O$	C ₆ H ₅ CH ₂ O-	=	C ₆ H ₅ CH ₂ O-
42	CII	Ξ	CH ₁ COO-	CH ₃ CO-	I	CH3C00-	CH ₁ COO-	Ξ	CH ₃ COO.
43	CH,	Ξ	CH ₃ COO-	CH3CO	Ξ	CH ₃ C00-	=	Ξ	CH ₁ COO-
44	CH3	-	CH_3COO	CH ₃ CO	=	CH ₁ COO-	H CH ₃ (CH ₃ COO-	Ξ
45	CH3	Ξ	CH ₃ COO-	CH_3CO	Ξ	CH ₃ COO-	II CH ₃ (CH ₃ COO-	2aNeu5Ac

TABLE 1 (cont.)

 $_{6}^{R}$

46 C₆H₅CH₂ H

٦,

. حک

ď

Ę.

 R_2

 \mathbb{R}_2

СН,СОО- СН,СОО- Н CH₁COO- CH₁CO H P.Meindl, G. Bodo, P. Palese, J. Schulman and H. Tuppy. Inhibition of Neuranninidase Activity by Derivatives of 2-Deoxy-2,3,-dehydro-N-acetylneuraminic Acid. Virology 58, 457-463(1974). Compounds 1-18

und Eigenschaften von 2-Desoxy-2,3-deshydro-N-acylneuraminsaeuren und deren Ueber 2-Desoxy-2,3-deshydro-sialinsaeuren 1. Mitt.: Synthese Methylestern. Mh. Chem. 100 (4) 1295-1306 (1969) P.Meindl and H. Tuppy. Compounds 19-23

M. Flashner et al. Methyl-5-acetannido-2,6-anhydro-3,5 -dideoxy-D-manno-non-2-en-4-ulosonate. Carbohydrare Research 103, 281-285(1982) Compounds 24-32

TABLE 1 (cont.)

Compounds 33-40	E. Zbiral et al. Synthesis of 2,7-, 2,8-, and 2,9-Dideoxy
	and 2,4,7-Trideoxy-2,3-didehydro-N-acetylnemaminic Acids
	and Their Behavior Towards Sialidase from Vibrio cholerac
	Liebigs Ann. Chem 1989, 159-165.
Compounds 41-42	T. Ogawa and Y. Ito. An Efficient Approach to Stereo-
	selective Glycosylation of N-Acetylneuraminic Acid: Use
	of Phenylselenyl Group as a Stereocontrolling Auxillary.
	Tetrahedron Letters 28, (49), 6221-6224(1987).
Compounds 43-45	T. Goto et al. Synthesis of ($\alpha 2-9$) and ($\alpha 2-8$) Linked
	Neuraninylneuraninic Acid Derivatives. Tetrahedron

3-Deoxy-D-glycero-D-galacto-2-nonulopyranosonic Acid (KDN). Chem. Pharm. Bull.36, (12), Compound 46 H. Ogura et al. Studies on Sialic Acids XV. Synthesis of α and β -Q. Glycosides of 4807-4813(1988)

Leners 27, (43), 5229-5232(1986).

Meindl and Tuppy, Hoppe-Seyler's Z. Physiol. Chem. 1969 350 1088, described hydrogenation of the olefinic double bond of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid to produce the 8-anomer of 2-deoxy-N-acetylneuraminic acid. This 8-anomer did not inhibit Vibrio cholerae neuraminidase.

The most potent in vitro inhibitors of viral neuraminidase have thus been identified as compounds that are based on the neuraminic acid framework, and these are thought by some to be transition-state analogues. Miller et al., Biochem. Biophys. Res. Comm. 1978 83 1479. But while many of the aforementioned neuraminic acid analogues are competitive inhibitors of neuraminidases, none is known to have antiviral activity in vivo. For example, although a half-planar, unsaturated 6-member ring system has been asserted to be important for inhibitory activity, <u>see</u> Dernick et al. <u>in</u> ANTIVIRAL CHEMOTHERAPY (K.K. Gauri ed.) Academic Press, 1981, at pages 327-336, some compounds characterized by such a system, notably FANA, have been reported not to possess in vivo anti-viral activity. See Palese and Schulman in CHEMOPROPHYLAXIS AND VIRUS INFECTION OF THE UPPER RESPIRATORY TRACT, Vol. 1 (J.S. Oxford ed.) CRC Press, 1977, at pages 189-205. Accordingly, the conventional wisdom has been that compounds exhibiting in vitro inhibition of viral neuraminidase would not effect an in vivo blockade of virus infection.

Summary of the Invention

5

10

15

20

25

30

35

It is therefore an object of the present invention to provide improved inhibitors of neuraminidase which have anti-viral activity in vivo.

It is also an object of the present invention to provide medicinal compositions which can be used to prevent or ameliorate symptoms of viral infection.

It is a further object of the present invention to provide means for producing such medicinal compositions.

In achieving this object there has been provided, in accordance with one aspect of the invention, a biologically active substance that binds the active site

SUBSTITUTE SHEET

("receptor") of influenza virus neuraminidase such that said substance displays anti-orthomyxovirus or paramyxovirus activity in an animal. In a preferred embodiment, the active substance displays (a) in vitro activity in an assay which measures binding of the active site of influenza virus neuraminidase; and (b) in vivo anti-orthomyxovirus or paramyxovirus activity. Preferably, the in vivo activity is displayed in mice or ferrets challenged intranasally with influenza virus.

10

15

5

According to another aspect, the present invention provides a biologically active substance which possesses stereochemical complementarity to an enzyme active site comprised of amino acids positioned at atomic coordinates enumerated as part of Figure 1 below, or a subset thereof, and said substance displays in vivo activity against an orthomyxovirus or a paramyxovirus. Preferably, the stereochemical complementarity is such that the compound has a K₁ for said active site of less than 10⁻⁷M. More preferably, the K₁ value is less than 0.5 x 10⁻⁸M.

20

It is also preferred, according to either aspect of the present invention, that the substance be a carbohydrate comprising a non-mutarotatable anomeric carbon atom. More preferably, this carbon atom is optionally substituted by a functional group. Even more preferably, the functional group is carried on the C_2 carbon.

25

30

In one preferred embodiment the compound is a novel 2-deoxy derivative of α -D-neuraminic acid of general structural formula I:

and pharmacologically acceptable salts or derivatives thereof, wherein

5

10

15

20

25

30

35

A denotes O,

R denotes hydrogen, CN, CH-NHR 6 , CH $_2$ OR 6 , CH $_2$ F, CH $_3$, Sn(R 6) $_3$, Si(R 6) $_3$ or SR 7 , where R 7 is an alkyl group which has an alkyl chain of 1 to 6 carbons; or an aryl group wherein the aryl moiety is mono-, di- or tri-substituted with halogen, amino, hydroxyl or carboxyl,

 R^1 denotes COOH, $P(O)(OH)_2$, NO_2 , SOOH, SO_3H , tetrazole, CH_2CHO , CHO, $CH(CHO)_2$ or, where R^1 is COOH, $P(O)(OH)_2$, SOOH or SO_3H , an ethyl, methyl or pivaloyl ester thereof,

 $\rm R^2$ denotes H, OR6, F, Cl, Br, CN, NHR6, SR6 or $\rm CH_2X$, wherein X is NHR6, halogen or OR6 and

R⁶ is hydrogen; an acyl group having 1 to 4 carbon atoms; a linear or cyclic alkyl group having 1 to 6 carbon atoms, or a halogen-substituted analogue thereof; or an unsubstituted aryl group or an aryl substituted by a halogen, an allyl group, an OH group, an NO₂ group, an NH₂ group or a COOH group,

 R^3 and $R^{3'}$ are the same or different, and each denotes hydrogen, $N(R^6)_2$, SR^6 or OR^6 ,

0

 R^4 denotes NHC- R^7 , where R^7 is an unsubstituted or halogen-substituted linear or cyclic alkyl group of 1 to 6 carbon atoms, or SR^6 , OR^6 , COOH or alkyl/aryl ester thereof, NO_2 , $C(R^6)_3$, CH_2COOH or alkyl/aryl ester thereof, CH_2NO_2 or CH_2NHR^7 , and

 R^{5} denotes $CH_{2}YR^{6},\ CHYR^{6}CH_{2}YR^{6}$ or $CHYR^{6}CH_{2}YR^{6}$ where Y is O, S or H, and successive Y moieties in an R^{5} group are the same or different, subject to the provisos that

- (i) when R^3 or R^3 is OR^6 or hydrogen, then said compound cannot have both
 - (a) an R2 that is hydrogen and
 - (b) an R⁴ that is NH-acyl,
- (ii) R^7 is not CH_3 , CH_2CH_3 , phenyl, glucosyl, galactosyl, mannosyl, acetyl, benzoyl, cyclohexyl or substituted cyclohexyl and

5

10

ľ

(iii) R⁶ represents a covalent bond when Y is hyd ren. The compound is preferably one selected from the grot consisting of methyl N-acetyl-4,7,8,9-tetra-0-acetyl-2-deoxy-2 α -allylthioneuraminate, and sodium N-acetyl-2-deoxy-2 α -allylthioneuraminate.

In a second preferred embodiment, the compound has general formula II:

where A is oxygen and where R^1 , R^2 , R^3 , R^3 , R^4 , R^5 and R^6 are as defined in general formula I above, subject to the provisos that, in general formula II,

- (i) when R^3 or $R^{3'}$ is OR^6 or hydrogen, then said compound cannot have both
 - (a) an R2 that is hydrogen and
 - (b) an R' that is NH-acyl, and
- (ii) R⁶ represents a covalent bond when Y is 15 hydrogen, and pharmaceutically acceptable salts or derivatives thereof. Preferably, the compound is synthesized using an intermediate selected from the group consisting of 3,4,6-tri-O-acetyl-2-deoxy-B-L-arabinohexapyranosyl thiophenoxide; 4-O-benzyl-3,6-bis (t-butylmethylsilyloxy)-2-20 deoxy-B-L-arabino-hexapyranosyl thiophenoxide; 4-0-benzyl-3,6-bis(t-butylmethylsilyloxy)-2-deoxy-8-L-arabinohexapyranosyl phenylsulphone; α -carboxymethyl- β -phenysulphonyl-4-O-benzyl-3,6-bis(t-butyldimethylsilyloxy)-2-deoxy-Larabinohexapyranose; methyl-4-0-benzyl-3,6-bis(t-25 $\verb|buty|| dimethylsilyloxy|| -2 - deoxy - \alpha - L - arabinohexapyranosyl$ carboxylate and methyl-N-acetyl-4,7,8,9-tetra-O-acetyl-28chloro-2-deoxy-D-neuraminate.
- According to a third aspect of the invention there
 is provided a method of synthesis of a compound according to
 general formula I, comprising the steps of providing an alkyl

- 12 -

N-acetyl neuraminate, reacting said alkyl N-acetyl neuraminate with an alcohol in the presence of an acid catalyst to yield the corresponding ester, acylating and halogenating the ester by reaction with an acyl halide, treating the halogenated and acylated ester with a nucleophile to effect halogen-nucleophile exchange, deacylating and deesterifying the resulting compound under hydrolytic conditions, and recovering the compound of general formula I.

In an alternative embodiment of this aspect of the present invention, there is provided a method of synthesis of a desired compound of general formula I which comprises the steps of:

(a) treating a glycal of formula (i)

5

with hydrogen chloride and then with sodium thiophenoxide to form a thioglycoside of formula (ii) below

and either

(c) reacting the sulphone with lithium diisopropyl amide and then with dimethylcarbonate to form alpha and beta C-l substituted sugars of formula (iv)

$$R^{5}/m_{c} = 0$$
 $C \circ O \circ H$ $(i \lor)$

5 and

10

15

20

25

30

(c') isolating the C-l substituted sugar,
or

(d) reacting the sulphone with lithium diisopropyl amide in the presence of lithium naphthalenide and a compound containing a COOH, P(O)(OH), or SOOH group and

(d') isolating the desired compound of formula I. In step (d) the compound containing the $P(O)(OH)_2$ group is preferably diethyl chlorophosphate. Other compounds of the present invention can be synthesized using the products of step (c') or step (d') as starting materials, as will be readily appreciated by those skilled in the art.

According to a fourth aspect, the invention provides a pharmacologically active composition comprising (i) an orthomyxovirus or paramyxovirus-inhibiting amount of a substance that binds the active site of influenza virus neuraminidase such that said substance displays anti-orthomyxovirus or paramyxovirus activity in an animal and (ii) a physiologically-compatible carrier diluent or excipient for said substance. The substance is preferably a compound that conforms to general formula I or II except for the fact that the exclusionary provisos set out above do not apply.

According to a fifth aspect, the invention provides a method of preventing or ameliorating the symptoms of an orthomyxovirus or paramyxovirus infection, comprising the step of administering to an animal a virus-inhibiting amount of a substance that binds the active site of influenza virus

- 14 -

neuraminidase such that the substance displays antiorthomyxovirus or paramyxovirus activity in an animal. The substance may be administered orally, intranasally, buccally or sublingually.

In each of these five aspects of the invention, the virus is preferably selected from the group consisting of influenza virus, parainfluenza virus, mumps virus, Newcastle disease virus, fowl plague virus, and Sendai virus. In the method according to the fourth aspect of the invention, it is particularly preferable that the virus either

- (A) is selected from the group consisting of influenza virus, parainfluenza virus, Sendai virus and mumps virus, and the animal is a human, or
- (B) is Newcastle disease virus or fowl plague virus, and the animal is a bird.

According to a sixth aspect, the invention provides novel glycosyl halides of general formula III, which are useful as intermediates in the synthesis of compounds of general formula I above:

20 wherein

25

5

10

15

R may be F, Cl or Br when R2 is not H, F, Cl or Br;

if R^3 , $R^{3'}$ is OR^6 or H then R^4 is NH-Acyl; and A, R^1 , R^2 , R^3 , $R^{3'}$, R^4 , R^5 and R^6 are as defined in general formula I above. Formula III compounds can be used as glycosyl donor intermediates in the synthesis of compounds of general formula I.

According to a seventh aspect of the invention, there is provided an improved method of synthesis of glycosyl halides of general formula III comprising the step of

SUBSTITUTE SHEET

- 15 -

treating the corresponding neuraminic acid analogue with excess acetyl halide at room temperature under a nitrogen atmosphere until no starting material is observable by thin layer chromatography, and recovering the desired glycosyl halide compound.

Brief Description of the Drawings

5

10

15

20

25

٥ د

35

Figure 1 depicts an exemplary influenza-viral neuraminidase, that of A/Tokyo/3/67, in terms of refined atomic coordinates in Angstrom units (accuracy: \pm 0.3 Å) for all amino-acid moieties, including the active site, of the enzyme molecule. The coordinates are in relation to a Cartesian system of orthogonal axes.

Figure 2 is a detailed representation, provided in terms of refined atomic coordinates as in Figure 1, of N-acetyl neuraminic acid as observed bound to influenza virus neuraminidase as described in Figure 1.

Figure 3 shows the atomic coordinates in Angstrom units of 3-fluoro-1,1,1,3,5,5,5-heptanitropentane in its predicted mode of binding to the active site of the influenza viral neuraminidase of Figure 1.

Figures 4 and 6 are schematic representations of a general scheme for the synthesis, respectively, of two subclasses of anti-viral agents within the present invention. Each of Figures 5 and 7 represents schematically a particular synthesis according to Figures 4 and 6, respectively.

Detailed Description of Preferred Embodiments

A refined view of the three-dimensional structure of the active site of influenza virus neuraminidase has now been developed (with errors of the order of 0.3 Å) that enables the production of molecules which tightly bind the enzyme active site, something that heretofore could not have been accomplished based, for example, on extant information regarding the crystal structure of N2 influenza virus neuraminidase soaked with neuraminic acid. See Varghese et al., Nature 1983 303 35-40. Notwithstanding expectations to the contrary regarding the import of neuraminidase-binding

capability, it has also been discovered that compounds possessing high affinity for the enzyme active site are also prime candidates for <u>in vivo</u> anti-viral agents, which property is routinely ascertainable by means of a conventional animal assay, as described in greater detail below.

5

10

15

20

25

30

35

The mechanism or mechanisms underlying this beneficial correlation between neuraminidase affinity and in vivo anti-viral activity are not fully clarified. But the tight binding of the active site, preferably with an affinity on the order of 10-8 M, is understood to arise from an enhanced stereochemical complementarity, relative to known in vitro-effective neuraminidase inhibitors, between compounds of the present invention and the active site, which favors desolvation of the compound. Such enhanced complementarity is accomplished, in accordance with the present invention, by assuring that the structure of the receptor-binding molecule correlates, in the manner of the classic "lock-and-key" visualization of ligand-receptor interaction, with the critical features of the active site.

A molecule within the present invention can be designed, based on the atomic-coordinate information set out in Figure 1, so that selected portions of the molecule match surface residues positioned within the substrate binding site on the neuraminidase molecule. By "match" it is meant that the identified portions interact with the surface residues, for example, via hydrogen-bonding and by enthalpy-reducing Van der Waals interactions which promote desolvation of the molecule within the site, in such a way that retention of the molecule in the site is favored energetically.

Such stereochemical complementarity, pursuant to the present invention, is characteristic of a molecule that matches intra-site surface residues located in the vicinity of coordinate point (92, 92, 67 Å) in Figure 1. The latter point is near tyrosine 406 of the neuraminidase molecule, and defines the site where sialic acid has been observed to bind. Tyrosine 406 is surrounded by residues including amino acids 118, 119, 151, 224, 276, 277, 292 and 371, that define a

depression on the surface of the enzyme molecule and that do not vary from strain to strain, as illustrated by the sequence alignments for neuraminidases from different strains of influenza virus. See Colman & Ward, Curr. Topics Microbiol. Immunol., 1985 114 177.

5

10

15

20

25

30

35

This surface depression represents the neuraminidase active site which is highly conserved. According to the present invention, therefore, the effort of matching portions of an anti-viral agent within the present invention should be directed to the invariant residues which define the active site. Chemical entities which are complementary to the shape of an enzyme active site characterized by the aforementioned invariant structural elements are able to bind to the active site and, when the affinity of binding is sufficiently strong — as reflected by a K₁ preferably on the order of 10⁻⁷ or less — will prohibit access of natural substrate to the site.

By way of illustration, for the compound 2-deoxy-N-acetyl- α -D-neuraminic acid (see Examples 1, 4, 18, 24 and 25), a carboxylate substituent on carbon C_2 interacts with the guanidinium moiety of arginine 371 in the neuraminidase active site, while the glycerol side chain makes (i) Van der Waals contacts with the hydrocarbon moiety of arginine 224 and (ii) hydrogen bonds with the carboxylate of glutamic acid 276. By the same token, the carboxylate substituent and glycerol side chain, respectively, of each of the compounds N-acetyl-neuraminic acid, 2,3-dehydro-N-acetyl-neuraminic acid and 2,3-dehydro-N-trifluroacetyl-D-neuraminic acid interact in similar fashion with the same residues of the active site.

In general, the design of a molecule possessing stereochemical complementarity can be accomplished by means of techniques that optimize, either chemically or geometrically, the "fit" between a molecule and a target receptor. Known techniques of this sort are reviewed by Sheridan and Venkataraghavan, Acc. Chem Res. 1987 20 322; Goodford, J. Med. Chem. 1984 27 557; Beddell, Chem. Soc. Reviews 1985, 279; and Hol, Angew. Chem. 1986 25 767, the

respective contents of which are hereby incorporated by reference. See also Blundell et al., Nature 1987 326 347 (drug development based on information regarding receptor structure).

Thus, there are two preferred approaches to designing a molecule, according to the present invention, that complements the active site of influenza virus neuraminidase. By the geometric approach, the number of internal degrees of freedom (and the corresponding local minima in the molecular conformation space) is reduced by considering only the geometric (hard-sphere) interactions of two rigid bodies, where one body (the active site) contains "pockets" or "grooves" that form binding sites for the second body (the complementing molecule, as ligand). The second preferred approach entails an assessment of the interaction of respective chemical groups ("probes") with the active site at sample positions within and around the site, resulting in an array of energy values from which three-dimensional contour surfaces at selected energy levels can be generated.

The geometric approach is illustrated by Kuntz et al., J. Mol. Biol. 1982 161 269, the contents of which are hereby incorporated by reference, whose algorithm for ligand design is implemented in a commercial software package distributed by the Regents of the University of California and further described in a document, provided by the distributor, which is entitled "Overview of the DOCK Package, Version 1.0,", the contents of which are hereby incorporated by reference. Pursuant to the Kuntz algorithm, the shape of the cavity represented by the neuraminidase active site is defined as a series of overlapping spheres of different radii. One or more extant data bases of crystallographic data, such as the Cambridge Structural Database System maintained by Cambridge University (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.) and the Protein Data Bank maintained by Brookhaven National Laboratory (Chemistry Dept. Upton, NY 11973, U.S.A.), is then searched for molecules which approximate the shape thus defined.

5

10

15

20

25

30

5

10

15

20

25

30

Molecules identified in this way, on the basis of geometric parameters, can then be modified to satisfy criteria associated with chemical complementarity, such as hydrogen bonding, ionic interactions and Van der Waals interactions. For example, the compound 3-fluoro-1,1,1,3,5,5,5-heptanitropentane (FHNP) is represented by the structural formula

- 19 -

and has been identified, pursuant to the Kuntz algorithm, as a molecule that complements, as represented according to the aforementioned geometric definition. Based on the orientation predicted using the above-mentioned software package, modifications in the FHNP molecule would be made in order to adjust localized hydrophilicity or hydrophobicity and, thereby, improve the degree of stereochemical complementarity. For example, from the predicted orientation shown in Figure 3 it is apparent that replacement of the nitro group N13, 026, 027 by a methylene amino group could improve the hydrogen bonding complementarity to glutamic acid 277 on the neuraminidase.

The chemical-probe approach to ligand design is described, for example, by Goodford, J. Med. Chem. 1985 28 849, the contents of which are hereby incorporated by reference, and is implemented in several commercial software packages, such as GRID (product of Molecular Discovery Ltd., West Way House, Elms Parade, Oxford OX2 9LL, U.K.). Pursuant to this approach, the chemical prerequisites for a site-complementing molecule are identified at the outset, by probing the active site (as represented via the atomic coordinates shown in Fig. 1) with different chemical probes, e.g., water, a methyl group, an amine nitrogen, a carboxyl oxygen, and a hydroxyl. Favored sites for interaction between the active site and each probe are thus determined,

- 20 -

and from the resulting three-dimensional pattern of such sites a putative complementary molecule can be generated.

The chemical-probe approach is especially useful in defining variants of a molecule known to bind the target receptor. Since sialic acid is such a molecule, vis-a-vis the neuraminidase active site, crystallographic analysis of sialic acid bound to neuraminidase provides useful information regarding the interaction between an archetype ligand and the active site of interest. In particular, it has been found that sialic acid binds to neuraminidase in a distorted conformation, with the carboxylate group pushed into the plane of the sugar (see Figure 2).

Since this carboxylate-planar feature is inherent in the DANA molecule and molecules that are "DANA-like" by virtue of having an sp^2 -hybridized system at C_2/C_3 , no distortion is needed for such molecules to fit — that is, to possess stereochemical complementarity with relation to — the active site. The resulting increased complementarity of DANA and DANA-like molecules is reflected, for example, in a K_i value for DANA that is significantly lower (indicating higher active-site affinity) than the corresponding values for sialic acid and its derivatives. As described in greater detail below, the increased complementarity is also evidenced by in vivo anti-viral activity of DANA.

Accordingly, a preferred subgroup of anti-viral agents suitably used in pharmaceutical formulations of the present invention includes DANA-like molecules, especially those with a K₁ of greater than 10⁻⁷. More generally, 5-, 6- and 7-membered carbocyclic and heterocyclic compounds that possess the structural feature of carboxylate-planarity are preferred candidates for anti-viral agents to use in accordance with the present invention. Exemplary of such compounds are the molecules represented, respectively, by formula II. These molecules comprise a carboxylate moiety that is positioned in the plane of the ring nucleus by virtue of the sp²-hybridized system which includes the heteroatom or C₃, as the case may be, and the carbon that bears the carboxylic-acid moiety or an analogue thereof, where

5

10

15

20

25

30

"analogue" denotes a moiety that can interact either ionically (say, charge-charge interaction) or covalently (via a Schiff reaction, for instance) with a reactable amino moiety in the active site, such as is presented by arginine 371 corresponding to the coordinates for the atoms ARG NH1 371 and ARG NH2 371 (see Figure 1).

5

10

15

20

25

30

35

Another group of preferred candidate anti-viral molecules is comprised of heterocyclic compounds wherein the heteroatom is oxygen, a ring carbon is present that is "anomeric", or positioned for susstituent dipole:dipole interactions with the heterooxygen, and the anomeric carbon carries A-face substituents that are not subject to anomerization, i.e., substituents around this carbon atom are "non-mutarotatable." It has been found that heterocyclic compounds comprising such an anomeric carbon, which cannot undergo anomerization under physiological conditions, are more likely to possess (or to be amenable, as described above, to modifications effecting) stereochemical complementarity with the neuraminidase active site. addition, such non-mutarotatable compounds are expected to be less susceptible to the influence of neuraminic aciddegradation pathways than known in vitro inhibitors of viral neuraminidase.

Exemplary of such heterocyclic compounds are molecules represented by formula I. In this vein, the fact that neuraminic acid has a binding affinity in the millimolar range for viral neuraminidase, and that an equilibrium mixture of neuraminic acid is mostly Å-neuraminic acid (beta:alpha = 98:2), see Kitajima et al., Biochemistry 1984 23 310, indicates that the actual affinity of the alpha form of a formula I molecule (where substituent R on the anomeric carbon extends into the plane of the paper) is on the order of 50 times greater than that of the beta form. Accordingly, a preferred subgroup of anti-viral candidate molecules within formula I includes ~-neuraminic acid analogues that are substituted at the C2 and C3 carbons, respectively, so that the anomeric carbon cannot mutarotate due to steric interference or interactions between substituents and active-

PCT/AU90/00501 WO 92/06691

- 22 -

site moieties which favor the non-mutarotated form. Additional modifications can also be made, for example, at C_3 , C_4 or C_5 .

It is known that single amino-acid changes can cause major changes in activity of influenza virus neuraminidase which are not predictable on the basis of any Insofar as it may not be necessary for theoretical method. the complementarity between compound and active site to extend over all residues of the active site, compounds that bind atoms comprising fewer than all of the residues of the active site are encompassed by the present invention.

In summary, the general principles of receptorbased drug design can be applied by persons skilled in the art, using the crystallographic data presented above, to produce compounds having sufficient stereochemical complementarity to produce a high-affinity binding of the active site of influenza virus neuraminidase.

The present invention is further described below by reference to the following, non-limiting examples.

2-Deoxy-N-acetyl-α-D-neuraminic acid (DANA) The simplest method of preparing this compound is by catalytic hydrogenation of 2,3-dehydro-N-acetylneuraminic acid using methods previously described by T.W. Greene, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, Wiley and Sons 25 (1981), at pages 29-31. See Example 4 infra. Although it is

possible to prepare 2-deoxy- α -D-neuraminic acid in a one-pot reaction, analogues of the general formula (I) are not so readily synthesized from this template.

General Synthesis of Compounds of Formula I

A general synthetic route to this class of compound is described in Scheme 1, shown in Figure 4. The starting point for the preparation of C-l substituted sugars is the glycal structure which upon treatment with hydrogen chloride followed by reaction with sodium thiophenoxide results in the formation of the thioglycoside. The thioglycoside (structure III) is converted to the corresponding sulphone (structure

5

10

15

20

30

35

Example 1

- 23 -

IV) by oxidation with metachloroperoxybenzoic acid. The sulphone is the key intermediate in the preparation of C-l substituted sugars, because the C-l position is now activated towards electrophiles. Treatment of the sulphone IV with lithium diisopropyl amide followed by reaction with dimethyl carbonate yields respectable quantities of the isolable alpha and beta C-l substituted sugars Ia.

We have extended this synthesis to the preparation of C-l phosphorus sugars Ib by treating sulphone IV with the electrophile diethyl chlorophosphate in the presence of base. This entry into these classes of compounds provides us with very "user-friendly" templates and allows one to functionalize various centers around the carbohydrate ring. Other electrophiles may also be used, for example to make sulphur-based compounds Ic.

Example 3 Specific synthetic strategy according to Scheme 1
Figure 5 summarizes a flow sheet for synthesis of
specific compounds according to the invention, utilizing the
general strategy set out in Scheme 1 (Example 2 above and

20 Figure 4). Abbreviations used are as follows:

DMF N.M-dimethylformamide

TBDMS tertiary butyldimethylsilyl

Ph phenyl

5

10

15

Bn benzyl

The following examples represent typical syntheses utilizing Scheme 1. Roman numerals refer to Figure 5.

Example 4 2-Deoxy-N-acetyl-α-D-neuraminic acid

The compound 2,3-dehydro-N-acetyl-D-neuraminic acid

(5.8 mg) was dissolved in methanol (5 ml) and treated with PtO₂ (3 mg). The mixture was hydrogenated at 1 atmosphere and room temperature. The reaction proceeded quantitatively to yield the title compound, which had Rf on thin layer chromatography in propanol:water (3:1) of approximately 0.3.

The 'H and 'C NMR data were consistent with the proposed

structure (i.e., no definite olefinic proton observed, H_{larger} and $H_{\text{lequatorial}}$ δ 1,8 and 2,3, respectively).

Example 5 3.4.6-tri-O-acety1-2-deoxy-B-L-arabino-hexopyranosyl thiophenoxide

Tri-O-acetyl-L-glucal (10.64 g) was dissolved in toluene (150 ml) and cooled to -5°C. Dry HC1 gas was bubbled through the solution until the starting material had been consumed, as indicated by thin layer chromatography. solution was evaporated and the residue dissolved in N_{N-1} dimethylformamide (DMF)(100 ml), and treated dropwise with a solution of sodium thiophenoxide (11.38 g) in DMF (60 ml) at The mixture was refrigerated overnight and the DMF removed under high vacuum. The residue was partitioned between ice water (200 ml) and CH2Cl2 (200 ml). layer was washed with ice water (3 x 200 ml), dried, and evaporated to give an orange oil (17 g). The crude product VIII was purified by flash chromatography in two 8.5 g batches on a 6 x 15 cm column, eluting with ethyl acetate:hexane 3:7 and taking 150 ml fractions. fractions with a single spot at R:0.27 (in the same solvent) were combined and evaporated to give a yellow oil which crystallized on standing (8.16 g, 54%). $^{1}\text{H-NMR}$ (CDCl,): δ 1.78 (m, 1H, H_{2a}); 2.03 (m, 9H, 3xCH₃); 2.52 (m, 1H, H_{2a}); 3.68 $(m, 1H, H_5)$; 4.18 $(m, 2H, H_6x2)$ 4.79 $(m, 3H, H_1, H_3, H_4)$; 7.18 (m, 5H, ArH).

Example 6 2-Deoxy-B-L-arabinohexopyranosylthiophenoxide (Compound IX)

Compound VIII (9.6 g) was dissolved in dry methanol (200 ml) and treated with sodium (0.1 g). The mixture was left at room temperature for 2 hours and then CO_2 was bubbled through the mixture for 15 minutes. The solvent was removed and the residue crystallized. The solid was isolated by filtration with the aid of some diethyl ether, and dried under vacuum to give a light yellow solid (5.05 g, 78%). 1H -NMR (D_2O): δ 1.92 (m, 2H, H_{2a} , H_{2e}), 3.70 (m, 5H, H_3 , H_4 , H_5 , H_6 X2), 4.95 (m, 1H, H_1), 7.40 (m, 5H, ArH).

5

10

15

20

25

30

5

10

15

20

25

30

35

Example 7 4.0-Benzyl-3.6 bis(t-butyldimethylsilyloxy)-2deoxy-β-L-arabinohexopyranosyl thiophenoxide (Compound XI)

The hydroxy compound, Compound IX (3 g) was dissolved in DMF (60 ml) and treated with imidazole (3.51 g) and t-butyldimethylsilylchloride (3.87 g), and stirred overnight at room temperature. The solvent was removed under high vacuum and the residue partitioned between CH₂Cl₂ (150 ml) and ice water (100 ml). The organic layer was washed with ice water (3 x 100 ml), dried and evaporated to give a yellow oil (6.01 g). The oil is 3,6 bis (t-butyldimethylsilyloxy)-2-deoxy-B-L-arabino-hexopyranosyl thiophenoxide) (Compound X).

This intermediate (5.2 g), dissolved in DMF (30 ml), was added to a suspension of NaH (0.37 g) in DMF (30 ml). The mixture was stirred for 30 min. then benzyl bromide (1.9 ml) in DMF (20 ml) was slowly added. An equivalent amount of benzyl chloride could also suitably be used. The resulting solution was stirred at room temperature for 2 hours. The solvent was removed under high vacuum and the residue dissolved in CH2Cl2 (150 ml) and washed with ice water (3x80 ml). The organic solution was dried and evaporated to give a yellow oil. The oil was purified by flash chromatography (6 x 12 cm), eluting with 3% ethyl acetate in hexane and taking 100 ml fractions. fractions with a single spot at $R_r = 0.67$ (10% ethyl acetate in hexane) were combined and evaporated to give a colorless oil (4.75 g, 81% overall). The intermediate hydroxy Compound X (1.48 g) was also recovered from the column. (R, 0.41 10% Ethyl acetate in hexane)

¹H-NMR δ 0.10 (m, 12H, SiCH₃ x 4); 0.89 (m, 18H, SitBu x 2); 1.70 (ddd, 1H, $J_{2a,1a}$ 11.7, $J_{2a,2a}$ 12.0, $J_{2a,3}$ 5.14, H_{2a}); 2.22 (ddd, 1H, $J_{2a,1a}$ 1.72, $J_{2a,2a}$ 12.0, $J_{2a,3}$ 5.14, H_{2a}); 3.32 (m, 2H, H_4 , H_5); 3.78 (m, 3H, H_3 , H_6 x2); 4.63 (d, 1H, $J_{11.07}$, CH₂Ph); 4.77 (dd, 1H, $J_{1a,2a}$ 11.7, $J_{1a,2a}$ 1.72, H_{1a}); 4.88 (d, 1H, $J_{11.07}$, CH₂Ph); 7.37 (m, 1OH, SPh, CH₂Ph).

- 26 -

Example 8 4-0 Benzyl-3,6 bis (t-butyldimethylsilyloxy)-2-deoxy-8-L-arabinohexopyranosylphenylsulphone (Compound XII)

The sulphide, Compound XI (4.75~g) was dissolved in CH_2Cl_2 (50~ml) and added dropwise to a suspension of m-chloroperoxybenzoic acid (3.8~g) and NaHCO₃ (7.6~g) in CH_2Cl_2 (50~ml) at 0°C. The mixture was stirred for 1 1/2 hours and extracted with ice water (100~ml), 5% $Na_2S_2O_3$ / saturated NaHCO₃ 1:1 (100~ml) and ice water (100~ml). The organic solution was dried and evaporated to give an oil that crystallized on standing (4.62~g,~92%).

¹H-NMR (CDCl₃): δ -0.03 (m, 12H, SiCH₃x4); 0.83 (m, 18H, SitBu x 2); 1.75 (ddd, 1H, J_{2a,2e} 12.0, J_{2a,1a} 12.1, J_{2a,3} 12.0, H_{2a}); 2.39 (ddd, 1H, J_{2a,2e} 12.0, J_{2e,1a} 2.0, J_{2e,3} 5.0, H_{2e}); 3.13 (m, 1H, H₅), 3.33 (dd, 1H, J_{4,5} 9.09, J_{4,3} 9.09, H₄), 3.69 (m, 3H, H₃, H₆x2), 4.34 (dd, 1H, J_{1a,2e} 12.1, J_{1a,2e} 2.0, H_{1a}), 4.55 (d, 1H, J_{qea} 10.9, CH₂Ph), 4.78 (d, 1H, J_{qea} 10.9, CH₂Ph), 7.47 (m, 10H, SPh, CH₂Ph).

Example 9 α-carboxymethyl-β-phenylsulphonyl-4-0-benzyl3.6 bis (t-butyldimethyl-silyloxy)-2-deoxy-Larabinohexopyranose (Compound XIII)

The sulphone, Compound XII (0.5 g), was dissolved in tetrahydrofuran (3 ml) and cooled to -78°C under argon, then treated with lithium diisopropyl amide solution (0.8 ml, 1.24 M) and stirred for 5 minutes. The mixture was treated with dimethylcarbonate (1 ml) and allowed to warm to room temperature over 1 hour, then treated with saturated NH,C1 solution (5 ml). Ether (100 ml) was added and the mixture extracted with saturated NaC1 solution (2x20 ml). The organic solution was dried and evaporated. The crude material was purified on a chromatatron eluting with 5% ethyl acetate in hexane. One main band eluted from the plate after several minor bands. This band was evaporated to give the carboxy compound (0.404 g, 73%) as a colorless oil which crystallized on standing.

IR (neat): 2980, 1770, 1335, 1280, 1160, 1115, 860, 800 cm⁻¹.

5

10

15

20

25

30

5

30

35

 1 H-NMR (CDC1₃) δ -0.04 (m, 12H, SiCH₃x4); 0.86 (m, 18H, SitBu x 2); 1.18 (dd, 1H, J_{2a,2e} 7.2, J_{2a,3} 7.2, H_{2a}); 2.50 (m, 1H, H_{2e}), 2.97 (m, 1H, H₅); 3.38 (s, 3H, OCH₃); 3.39 - 4.88 (m, 6H, H_ex2, H₄, H₃, CH₂Ph); 7.26 (m, 10H, SPh, CH₂Ph).

Example 10 Methyl 4-0-benzyl-3,6 bis (t-butyldimethyl-silyloxy)-2-deoxy-B-L-arabinohexopyranosyl carboxylate (Compound XIV)

Lithium naphthalenide solution was prepared as follows:

- Naphthalene (1 g) was added to a suspension of lithium clippings (0.1 g) in tetrahydrofuran (20 ml) under argon. The mixture was stirred vigorously for 18 hours.

 [LiNap] = 0.393 M.
- (a) From the carboxy sulphone (two step method). The second sulphone Compound XIII (0.35 g) s dissolved in tetrahydrofuran (10 ml), cooled to -90°C and treated with the LiNap solution (3.5 ml). After 10 minutes the mixture was treated with methanol (0.2 ml) at -78°C and allowed to warm to room temperature over 1 hour, then saturated NH₄Cl solution (2 ml) was added. Ether (100 ml) was added to the mixture and the solution was extracted with sat. NaCl (2x20 ml). The organic extract was dried and evaporated to give a viscous yellow oil. The crude product was purified by flash chromatography (2x15 cm) eluting with 5% ethyl acetate in hexane.

Those fractions with a single spot at $R_r = 0.23$ were combined and evaporated to give the alpha methyl carboxylate (0.112 g, 40%). Those fractions with a single spot at $R_r = 0.11$ (5% ethyl acetate in hexane) were combined and evaporated to give the beta methylcarboxylate (0.05 g, 18%).

alpha carboxy: ${}^{1}H-NMR$ (CDC1₃) δ -0.01 (m, 12H, SiCH₃x4); 0.80 (m, 18H, SitBu x 2); 1.76 (ddd, 1H, $J_{2a,2e}$ 13.2, $J_{2a,1e}$ 5.3, $J_{2a,3e}$ 10.4, H_{2a}), 2.27 (ddd, 1H, $J_{2a,2e}$ 13.2, $J_{2a,1e}$ 3.2, $J_{2a,3e}$ 3.6, H_{2a}); 3.32 (dd, 1H, $J_{4a,3e}$ 8.2, $J_{4a,5e}$ 8.2, H_{4e}); 3.58 (m, 1H, H_{5e}); 3.66 (s, 3H, OCH₃) 3.73 (m, 3H, H_{3e} , H_{6} x2); 4.40 (dd, 1H,

 $J_{1a,2a}$ 5.3, $J_{1a,2e}$ 3.2, H_{1e}); 4.56 (d, 1H, J_{gen} 11.13, CH_2Ph); 4.74 (d, 1H, J_{gen} 11.13' CH_2Ph); 7.21 (m, 5H, CH_2Ph). beta carboxy: ${}^{1}H$ -NMR δ -0.02 (m, 12H, SiCH₃x4); 0.78 (m, 18H, SitBu x 2); 1.62 (ddd, 1H, $J_{2a,2e}$ 11.5, $J_{2a,1a}$ 12.1, $J_{2a,3e}$ 11.5, H_{2a}); 2.10 (ddd, 1H, $J_{2a,2e}$ 11.5, $J_{2e,1a}$ 2.17, $J_{2e,3a}$ 5.0, H_{2e}); 3.15 (ddd, 1H, $J_{5a,4a}$ 9.4, $J_{5a,6a}$ 3.0, $J_{5a,6b}$ 3.0, H_{5a}); 3.29 (dd, 1H, $J_{4a,3a}$ 9.4, $J_{4a,5a}$ 9.4, H_{4a}); 3.67 (s, 3H, OCH₃); 3.74 (m, 3H, H_{3a} , H_{6} x2); 4.79 (d, 1H, J_{gen} 10.9, CH_2Ph), 7.21 (m, 5H, CH_2Ph).

10 Example 11 4-O-benzyl-3.6 bis (t-butyldimethylsilyloxy-2-deoxy-α-L-arabinohexepyranosyl carboxylate

As will be readily appreciated by those skilled in the art, the alpha and beta forms of Compound XIV can be deesterified by treatment with base, utilizing conditions previously described. See Greene, op. cit., at pages 158-159.

Example 12 Alternative method of synthesis

The C-1 carbanion generated by reduction of the corresponding C-1 chloro compound can be quenched with an appropriate electrophile to produce a desired compound of general formula I. An exemplary synthesis along these lines is illustrated below:

Compound II -----> Compound VII (Fig. 4) HCl gas (Fig. 5)

25 Compound VII -----> Li salt of VII Li naphthalenide

Li salt of VII -----> 2-deoxy- α -D- electrophile neuraminic acid

Example 13

5

15

20

30

35

(a) <u>Preparation of Methyl N-acetyl-D-neuraminate (2)</u>

N-acetylneuraminic acid (100 mg, 0.32 mmol) was stirred in anhydrous methanol (25 ml) containing Dowex 50X8 (H⁺) (25 mg) at room temperature for 16 hours. Thin layer chromatography of the reaction mixture (ethyl acetate/methanol/water: 10/4/1) indicated that the reaction

- 5

10

15

20

25

30

- 35

was complete (product R. 0.50). The reaction mixture was filtered and the resin washed with methanol (10 ml \times 2). The filtrate and washings were combined and concentrated to dryness to afford a white crystalline powder (102 mg, 98%).

 $^{1}H-NMR$ (D₂O) δ 3.82 (s, 3H, COOCH₃).

The rest of the spectrum was identical to that previously reported. See Ogura et al. (1986), op. cit.

(b) Preparation of Methyl N-Acetyl-4,7,8,9tetra-0-acetyl-2B-chloro-2-deoxy-Dneuraminate (3)

Compound (2) (100 mg, 0.32 mmole) was stirred with acetyl chloride (5 ml) at room temperature for 60 hours. The solution was evaporated to dryness, taken up in anhydrous benzene (20 ml \times 3) and concentrated to a white foam powder (130 mg, 0.255 mole).

TH-NMR indicated the title compound to be the only product present and to be identical with that previously reported by Ogura et. al., Carbohydr. Res. 1986 158 37. The literature also describes other methods for the preparation of certain other glycosyl halides, and these methods are adequate to obtain reasonable amounts of those compounds. See, e.g., Kuhn et al., Chem. Ber. 1966 99 611; Warner & O'Brien, Biochemistry 1979 18 (13) 2783; Ogura et al., loc. cit.; Okamoto et al., Bull. Chem. Soc. Japan 1987 60 631.

Preparation of Methyl N-acetyl-4.7,8,9tetra-0-acetyl-2-deoxy-2α-allylthioneuraminate (4)

Compound (3) (500 mg, 0.98 mmole) was dissolved in anhydrous N.N-dimethylformamide (5 ml), treated with sodium allylthiolate (136 mg, 1.08 mmole), and stirred at room temperature under nitrogen for 48 hours. The reaction mixture was concentrated to dryness under high vacuum. The residue was partitioned between ethyl acetate (50 ml) and 5% sodium hydrogen carbonate solution (25 ml). The organic phase was separated and washed with 10% sodium chloride solution, dried over anhydrous sodium sulphate, then evaporated to dryness to afford a crude product which was

- 30 -

purified by flash-column chromatography (silica gel, ethyl acetate as eluting solvent) to give the title compound (3) (200 mg, 37.3%) ¹H-NMR (CDCl₃): δ 1.86-2.16 (dd, 5_e, H_{3ax'}, NAC, 4xAC, 16H, J_{3ax,eq} 12.7 Hz, H_{3ax,4} 11.4 Hz), 2.72 (dd, 1H, J_{3eq,3ax} 12.7 Hz, H_{3eq,4} 4.68 Hz, H_{3eq}); 3.34 (m, 2H, SCH₂); 3.79 (s, 3H, OCH₃); 3.89 (dd, 1H, J_{6,5} 10.57 Hz, H_{6,7} 2.04 Hz, H₆); 4.07 (ddd, 1H, J_{5,6} 10.57 Hz, H_{5,4} 11.4 Hz, H_{5,MR} 9.95 Hz, H₅); 4.13 (dd, 1H, J_{9,6} 5.46 Hz, H_{9,9}, 12.52 Hz, H₉); 4.35 (dd, 1H, J_{9,9}, 12.52 Hz, H_{9,18}, 2.53 Hz, H_{9,1}); 4.86 (ddd, 1H, J_{4,3ax} 11.4 Hz, H_{4,5} 11.4 Hz, H_{4,5} 4.68 Hz, H₄); 5.09 (d, 1H, olefinic J_{cis} 9.92 Hz); 5.2 (dd, 1H, olefinic J_{trans} 16.97 Hz, allylic 1.43 Hz); 5.33 (dd, 1H, J_{7,6} 1.9 Hz, H_{7,8} 7.8 Hz, H₇); 5.39 (m, 1H, H₈); 5.59 (d, 1H, J_{MR,5} 9.95 Hz, NH); 5.76 (m, 1H J_{CM2}, olefinic, 6.4 Hz)

5

10

15

20

25

30

35

(d) <u>Preparation of Sodium N-acetyl-2-deoxy-2α-allylthioneuraminate(5)</u>

Compound (4) (200 mg, 0.36 mmole) was dissolved in anhydrous methanol (20 ml) containing sodium methoxide (20 mg, 0.37 mmole). The solution was stirred at room temperature for two hours before a mixture of mixed-bed resin AG 501X 8 (50 mg) and Dowex 50X 8 (H⁺) (25 mg) was added. The mixture was stirred for a further 30 minutes and then was filtered. The resins were washed with methanol (5 ml X 2) and the filtrate and washings were combined and concentrated to dryness. The residue was taken up in water (10 ml), adjusted to Ph 13 by the addition of 0.1N NaOH and stirred for 2 hours at room temperature. The solution was then adjusted to ph 6.5 by stirring with Dowex 50 X 8 (H⁺) resin. Following filtration the reaction mixture was lyophilized to afford the title compound (120 mg, 85%).

 1 H-NMR (D₂O) δ 1.79 (dd, 1H, J_{3ax,3eq} 12.6 Hz, J_{3ax,4} 11.4 Hz, H_{3ax}), 2.02 (s, 3H, N-Ac), 2.79 (dd, 1H, J_{3eq,3ex} 12.6 Hz, H_{3eq,4} 4.57 Hz, H_{3eq}), 3.37 (m, 2H, SCH₂); 3.5-3.89 (m, 7H, H₄, H₅, H₆, H₇, H₈, H₉, H₉,), 5.10 (d, 1H, olefinic J_{cis} 9.94 Hz); 5.22 (dd, 1H, olefinic J_{trans}17 Hz, allylic 1.35 Hz); 5.84-6.0 (m, 2H, NH, H, olefinic).

This procedure is summarized in Figure 6.

Example 14 Second General Reaction Scheme

- 5

10

15

20

25

30

35

Example 13 represents a specific instance of the general reaction scheme which is summarized in Figure 3, in which the substituents R¹ to R⁵ are as defined in general formula I, R in compound 3 is as defined in general formula III, while R in compounds 4 and 5 is as defined in general formula I. Designations of compounds in Examples 15 to 17 are as in Figure 5.

The scheme comprises the steps of:

preparing an alkyl N-acetyl neuraminate, reacting said alkyl N-acetyl neuraminate with an alcohol in the presence of an acid catalyst to yield the corresponding ester.

acylating and halogenating the ester by reaction with an acyl chloride,

treating the halogenated and acylated ester with a nucleophile to effect halogen-nucleophile exchange, deacylating and de-esterifying the resulting compound, and recovering the compound of general formula I.

Thus, in Example 13 the treatment of compound (1) with an alcohol in the presence of an acid catalyst yielded the corresponding ester in good yield (compound (2)). Acylation and halogenation of compound (2) was achieved through reaction with the appropriate acyl chloride, resulting in the formation of compound (3). Halogennucleophile exchange was achieved by treatment of compound (3) with the appropriate nucleophile to yield compound (4). Deacylation and deesterification by treatment of compound (4) under hydrolytic conditions resulted in the formation of compound (5).

Example 15 Preparation of Methyl N-Acetyl-4 7,8,9-tetra-O-acetyl-2-deoxy-2α-fluoro-D-neuraminate (4)

Compound (3) (130 mg, 0.255 mmole) was dissolved in anhydrous acetonitrile (50 ml), treated with silver fluoride (130 mg, 1.025 mmole), stirred at room temperature under nitrogen, and protected from light for 72 hours. Two major components were isolated from the reaction mixture (thin

- 32 -

layer chromatography; ethyl acetate, R. 0.45 and 0.30) by flash chromatography. Compound (3) was identified as the slower moving compound by NMR spectroscopy.

Example 16 Preparation of Sodium N-acetyl-2-deoxy-2α-fluoro-neuraminate (5)

Compound (4) was dissolved in anhydrous methanol (5 ml) containing sodium methoxide (2 mg). The solution was stirred at room temperature for 40 min before a mixture of mixed-bed resin AG 501X 8 (5 mg) and Dowex 50X 8 (H*) (2.5 mg) was added. The mixture was stirred for a further 30 minutes and then was filtered. The resins were washed with methanol (2 ml x 2) and the filtrate and washings were combined and concentrated to dryness. The residue was taken up in water (10 ml), adjusted to pH 11.8 by the addition of 0.1N NaOH and stirred for 1 hour at room temperature. The solution was then adjusted to pH 6.5 by stirring with Dowex 50X 8 (H*) resin. Following filtration the reaction mixture was lyophilized to afford the title compound (5 mg) as a white powder.

¹H-NMR (D₂0) δ 1.7-1.9 (m,1H,H_{3ex}), 2.1 (s, 3H, acetyl-Ch₃), 2.9-3.0 (m,1H,H_{3eq}), 3.5-4.1 (m,7H,H₄,H₅,H₅,H₇,H₈,H₉,H₉)

Example 17 Third general method of synthesis

Catalytic hydrogenation of the β -chlorosialic acid can be achieved, as described in Example 18 for a typical case. The β -chloroneuraminic acid is prepared along the lines of Example 13(b) above. The method is modified from

15

20

25

30

5

20

25

30

that of Schmid, Christian and Zbiral, Tetrahedron Letters 1988 29 3643-3646. The N-acetylneuraminic acid or analogues thereof used as starting materials for preparation of the $\ensuremath{\mbox{\,\tiny B-}}$ chloro compounds may be synthesized using N-acetylneuraminic acid aldolase (E.C.4.1.3.3) See, e.g., Bednarski et al., J. Am. Chem. Soc. 1987 109 1283; Augé et al., Tetrahedron Letters 1984 <u>25</u> 4663-4664.

Example 18 Preparation of 2-deoxy-N-acetyl-α-D-neuraminic acid by catalytic hydrogenation

10 Methyl-N-acetyl-4,7,8,9-tetra-O-acetyl-2 chloro-2deoxy-D-neuraminate (2.0 g) was dissolved in toluene (30 ml) and Pd/C (10%, 0.91 g) and pyridine (0.6 ml) were added. The mixture was hydrogenated at 50 psi for 18 hrs. Insoluble solid was filtered off and washed with toluene (40 ml \times 3) and methanol (40 ml x 2). The combined filtrate and washings 15 were evaporated to dryness. The residue was dissolved in ethyl acetate (150 ml), and this solution washed with 5% sodium chloride solution (50 ml), dried over calcium chloride and evaporated affording the crude compound (1.76 g). Purification by column chromatography using ethyl acetate as solvent gave 1.0 g of 2-deoxy-N-acetyl- α -D-neuraminic acid.

Preparation of Sodium 2.3-dideoxy-α-D-galacto-Example 19 2-octulosonate

This compound was prepared using catalytic hydrogenation as described in Examples 17 and 18, followed by deacylation/deesterification as broadly described in Example 13(d).

'H-NMR (D₂O, DSS as internal standard) 1.77 (ddd, 1H, $J_{3a,3e}$ -12.0, $J_{3a,4}$ 11.7, $J_{3a,2}$ 6.4, δ (ppm): H_{3e}); 2.44 (dd, 1H, $J_{3e,3e}$ -12.0, $J_{3e,4}$ 2.6, H_{3e}); 3.4-4.1 (m, 5H, H_5 , H_6 , H_7 , H_8 & H_8); 4.32 (d, 1H, $J_{10,3a}$ 6.4, H_1).

- 34 -

Example 20 Preparation of Sodium 2.3.5-trideoxy-5acetamido-α-D-galacto-2-octulosonate

This compound was prepared using catalytic hydrogenation as described in Examples 17 and 18, followed by deacylation/deesterification as broadly described in Example 13(d).

'H-NMR (D₂O, DSS as internal standard).

5

10

15

20

25

30

35

δ (ppm): 1.82 (ddd, 1H, $J_{3a,3a}$ -13.1, $J_{3a,4}$ 11.9, $J_{3a,e}$ 6.2, H_{3a}); 2.02 (s, 3H, CH₃CO); 2.49 (dd, 1H, $J_{3a,3a}$ - 13.1, $J_{3e,4}$ 4.2, H_{3e}); 3.5-3.9 (m, 5H, H_5 , H_6 , H_7 , H_8 & H_8); 4.44 (d, 1H, $J_{2,3a}$ 6.2, H_2).

Example 21 Inhibition of influenza virus neuraminidase

An <u>in vitro</u> bioassay of the above-described compounds against N2 influenza virus neuraminidase was conducted, following Warner and O'Brien, Biochemistry 1979 <u>18</u> 2783-2787. For comparison, with the same assay the K₁ for the compound of Example 1, 2-deoxy-N-acetyl-α-D-neuraminic acid, was determined to be 3 X 10⁻⁴ M.

Values for K₁ were measured via a spectrofluorometric technique which uses the fluorogenic substrate 4-methylumbelliferyl N-acetylneuraminic acid (MUN), as described by Meyers et al., Anal. Biochem. 1980 <u>101</u> 166-174. For both enzymes, the assay mixture contained test compound at several concentrations between 0 and 2 mM, and approximately 1 mU enzyme in buffer (32.5 mM MES, 4 mM CaCl₂, pH 6.5 for N2; 32.5mM acetate, 4 mM CaCl₂, pH 5.5 for V. cholerae neuraminidase).

The reaction was started by the addition of MUN to final concentrations of 75 or 40 mM. After 5 minutes at 37°C, 2.4 ml 0.1 M glycine-NaOH, pH 10.2 was added to 0.1 ml reaction mixture to terminate the reaction. Fluorescence was read at excitation 365 nm, emission 450 nm, and appropriate MUN blanks (containing no enzyme) were subtracted from readings. The K₁ was estimated by Dixon plots (1/fluorescence versus compound concentration). Results are summarized in Table 2.

WO 92/06691 PCT/AU90/00501

- 35 -

Table 2 Inhibition of influenza virus neuraminidase in vitro

	Compounds	K ₁ (M)
	2-deoxy-N-acetyl- α -D-neuraminic acid	3 x 10 ⁻⁴
5	sodium 2,3-dideoxy-α-D-galacto-	
	2-octulosonate	1 x 10 ⁻³
	sodium 2,3,5-trideoxy-5-acetamido-α-D-ga	alacto-
	2-octulosonate	5 x 10 ⁻⁵
	2,3-dideoxy-α-D-glycero-D-galacto-2-	
10	nonulosonic acid	2 x 10 ⁻²
	2-α-fluoro-N-acetylneuraminic acid	4 x 10 ⁻⁵
	sodium N-acetyl-2-deoxy-2α-allyl-	
	thioneuraminate	1 x 10 ⁻⁵

5

10

15

20

30

Example 22 In vivo anti-viral activity

The compound DANA (2-deoxy-N-acetyl- α -D-neuraminic acid), which was shown in Example 23 to have antineuraminidase activity in vitro, was tested for anti-viral activity in an in vivo assay. When administered intranasally to mice before and during challenge with influenza A virus, this compound reduced the titre of virus in lung tissue 1 to 3 days after infection.

Mice were infected intranasally with 50 ll of 10³ TCID₅₀ units/mouse of H2N2 influenza A virus (A/Sing/1/57). The compound was administered intranasally at a dose rate of either 25 mg/kg body weight or 100 mg/kg body weight (50 ll of aqueous solution/mouse) as follows: 24 hours and 3 hours before infection; 3 hours after infection; then twice daily on each of days 1, 2 and 3 after infection.

The mice were sacrificed on days 1, 2 and 3 after infection, their lungs removed and virus titres in the lungs measured. The titres were plotted graphically and expressed as the areas under the curves (AUC). Results are summarized below.

Table 3

Dose of compound Virus titre (mg/kg body weight) (AUC) compared to untreated infected mice

25 25 57% 100 19%

In light of the fact that FANA was hitherto thought to be inactive in vivo, see Palese and Schulman, op. cit., the high antiviral activity revealed when DANA was administered intranasally to mice is especially surprising. It appears that the route of administration may be significant in this regard, since DANA is rapidly excreted when given by other routes. See Nhle et al., Eur. J. Biochem. 1982 126 543-48.

5

10

15

20

25

30

35

Pharmaceutical Compositions

A pharmaceutical formulation within the present invention combines, with an active agent that binds the viral neuraminidase active site and displays in vivo anti-viral activity, a carrier for the active agent which is pharmaceutically acceptable. A pharmaceutically acceptable carrier is a solid, liquid or gaseous material that can be used as a vehicle for administering a medicament because the material is inert or otherwise medically acceptable, as well as compatible with the active agent, in a particular context of administration. In addition to a suitable excipient, a pharmaceutically acceptable carrier can contain convertional additives like diluents, adjuvants, antioxidants, dispersing agents and emulsifiers, anti-foaming agents, flavor correctants, preservatives, solubilizing agents and colorants.

The nature of the excipient used with an anti-viral agent, pursuant to the present invention, is largely a function of the chosen route of administration, as discussed, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES (E.W. Martin ed.) and in PHARMACEUTICAL DOSAGE FORMS AND THEIR USE (H. Hess ed.) Hans Huber Publ., 1985, the respective contents of which are hereby incorporated by reference. Preferably, the pharmaceutical compositions of the present invention are provided in a unitary-dosage form which is suitable for administration intranasally, orally, buccally or sublingually.

In accordance with the present invention, a pharmaceutical composition is advantageously delivered to the throat, nasal cavity or lungs, the intranasal route of administration being especially preferred. Delivery of an active agent to the nasal cavity can be achieved with preparations of the present invention that take the form, for example, of an aerosol or vapor, a nasal spray or nose drops, or an inhalation powder. For these applications, it may be appropriate for the active agent to be micronized, for example, to a particle size on the order of 5 microns or less.

WO 92/06691 PCT/AU90/00501

- 38 -

Suitable means for effecting delivery by direct application to the mucosal lining or via inhalation are well known to the art, for example, in the context of treating asthma. In this category are squeeze-bottle devices (nebulizers) and pressurized packs, for delivering a solution of the active agent as a spray into the nose, and conventional insufflators like the Spinhaler turbo-inhaler and liquid aerosol "puffers" (Spinhaler is a registered trade mark of Fisons Corporation), which deliver metered doses of a pharmaceutical preparation.

If the active agent is delivered from solution, as would typically be the case for a masal spray or nose drops, the carrier preferably comprises distilled water that is both sterile and substantially free of fever-inducing (pyrogenic) substances, thereby to minimize the incidence of medical complications relating to contamination. Suitable propellants to comprise carriers for use in administration by pressurized aerosol are well known, including halogenated fluorocarbon gases, carbon dioxide, and nitrogen. Lachman et al. in THE THEORY AND PRACTICE OF INDUSTRIAL PHARMACY (Lea and Febiger, Philadelphia), 1976. a carrier for administration via intranasal delivery or insufflation may contain oleic acid or some other pharmaceutically acceptable stabilizer, as well as a surfaceactive agent, e.g., a detergent like Tween 80 or Span 80, in order to enhance uptake of the active agent.

Conventional forms which are favored for oral administration include lozenges and pastilles, sublingual and buccal tablets, and oral sprays. Numerous carriers suitable for these forms are known, including solid pulverulent carriers comprising a simple sugar or corresponding alcohol (lactose, saccharose, sorbitol, mannitol, etc), a starch such as potato starch, corn starch or amylopectin, cyclodextrin, a cellulose derivative, and gelatine. Liquid carriers can also be employed to form suspensions, syrups, elixirs and solutions containing the active agent. Non-aqueous vehicles which are suitable as liquid carriers in this regard include

5

10

15

20

25

30

35

almond oil and other edible oils, fractionated coconut oil, oily esters, propylene glycol and ethyl alcohol.

In formulating a pharmaceutical preparation of the present invention for oral administration, a solid carrier would typically be mixed with a lubricant, such as magnesium stearate, calcium stearate or a polyethylene glycol wax, and then compressed into tablet form. In keeping with common practice, tablets can be coated with a concentrated sugar solution which may contain components like gum arabic, gelatine, talcum and titanium dioxide. Alternatively, tablets can be coated with a lacquer dissolved in a readily volatile organic solvent.

5

10

15

20

25

30

35

A pharmaceutical composition within the present invention contains a virus-inhibiting amount of an active agent as described above. The optimum dosage of the active compound will vary with the particular case, and can be determined routinely in the clinical context, which may be prophylactic or therapeutic. 'Prophylactic' treatment is to be understood to mean treatment intended to prevent or retard second-cycle infection as defined below, thus preventing the establishment of the complete clinical manifestations of the disease caused by that virus. 'Therapeutic' treatment is to be understood to mean treatment intended to alleviate the symptoms and severity of infection which is already established, by disrupting release of virus particles and thus preventing further cycles of viral replication. Generally, the amount of active agent present in a pharmaceutical composition of the present invention should be sufficient to inhibit at least second-cycle infection by orthomyxovirus or paramyxovirus in an animal. That is, an initial viral infection of a cell culminates in the assembly and budding of virus particles at the cell-membrane surface, which would be followed in the normal course by release of the particles and infection thereby ("second-cycle infection") of other cells. A suitable amount of active agent to include in a pharmaceutical composition of the present invention would thus retard at least this second cycle of infection by virus, it is thought by inhibiting the

WO 92/06691 PCT/AU90/00501

- 40 -

action of neuraminidase that results in release of virus particles from the membrane surface.

For administration by inhalation, the daily dosage as employed for treatment, according to the present invention, of an adult human of approximately 70 kg body weight will range from 1mg to 1000 mg, preferably between 5 mg and 500 mg, and may take the form of single or multiple doses, e.g., one to six times a day. For oral administration, the daily dosage (again, for treatment of a 70 kg adult) will typically range from about 1 mg to 5 g, preferably between 5 mg and 2 g, and may be given, for example, in single to four doses per day. It will therefore be convenient for a pharmaceutical composition of the present invention to contain active (antiviral) agent at a concentration in the range of 0.000001 to 100 mg/ml.

Other objects, features and advantages of the present invention will become apparent from the preceding detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

5

10

15

20

What Is Claimed Is:

- 1. A pharmacologically active composition comprising:
- (i) a virus-inhibiting amount of a compound that binds the active site of influenza virus neuraminidase and that displays in vivo activity against orthomyxovirus or paramyxovirus; and
- (ii) a pharmaceutically-acceptable carrier for said compound.
- 2. A pharmacologically active composition according to Claim 1, wherein said carrier is suitable for intranasal administration.
- 3. A pharmacologically active composition according to Claim 2, wherein (a) said compound is micronised and (b) said carrier comprises a propellant suitable for pressurized aerosol administration.
- 4. A pharmacologically active composition according to Claim 3, wherein said carrier further comprises a fatty acid, a surface-active agent or a detergent.
- 5. A pharmacologically active composition according to Claim 2, wherein said compound and carrier form a solution or a suspension of said compound in said carrier, said solution or suspension being suitable for administration directly to nasal mucosa.
- 6. A pharmacologically active composition according to Claim 1, wherein said carrier is sterile water that is substantially pyrogen-free.
- 7. A pharmacologically active composition according to Claim 1, wherein said compound displays <u>in vivo</u> activity against a virus selected from the group consisting of influenza virus, parainfluenza virus, mumps virus, Newcastle disease virus, fowl plague virus and Sendai virus.
- 8. A pharmacologically active composition according to Claim 7, wherein said virus is an influenza virus.
- 9. A pharmacologically active composition according to Claim 1, wherein said compound possesses a K_1 value, with respect to said active site, of less than 10^{-7} M.

WO 92/06691 PCT/AU90/00501

- 42 -

10. A pharmacologically active composition according to Claim 9, wherein said K_i value is less than about 0.5 x 10^{-6} M.

11. A pharmacologically active composition according to Claim 1, wherein said compound is a carbocyclic or heterocyclic compound comprised of a 5-, 6- or 7-membered ring carrying a substituent selected from a carboxylate moiety and an analogue thereof, said ring and said substituent being positioned in the same plane.

12. A pharmacologically active composition according to Claim 11, wherein said compound is represented by the structural formula

wherein

A denotes O,

 R^1 denotes COOH, $P(O)(OH)_2$, NO_2 , SOOH, SO_3H , tetrazol, CH_2CHO , CHO, $CH(CHO)_2$ or, where R^1 is COOH, $P(O)(OH)_2$, SOOH or SO_3H , an ethyl, methyl or pivaloyl ester thereof,

R² denotes H, OR⁶, F, Cl, Br, CN, NHR⁶, SR⁶ or CH₂X, wherein X is NHR⁶, halogen or OR⁶ and

R⁶ is hydrogen; an acyl group having 1 to 4 carbon atoms; a linear or cyclic alkyl group having 1 to 6 carbon atoms, or a halogen-substituted analogue thereof; or an unsubstituted aryl group or an aryl substituted by a halogen, an allyl group, an OH group, an NO₂ group, an NH₂ group or a COOH group,

 R^3 and $R^{3'}$ are the same or different, and each denotes hydrogen, $N(R^6)_2$, SR^6 or OR^6 ,

 R^4 denotes NHC-R⁷, where R⁷ is an unsubstituted or halogen-substituted linear or cyclic alkyl group of 1 to 6 carbon atoms, or SR⁶, OR⁶, COOH or alkyl/aryl ester thereof, NO₂, C(R⁶)₃, CH₂COOH or alkyl/aryl ester thereof, CH₂NO₂ or CH₂NHR⁷, and

 R^5 denotes CH_2YR^6 , $CHYR^6CH_2YR^6$ or $CHYR^6CH_2YR^6$ where Y is O, S or H, and successive Y moieties in an R^5 group are the same or different.

- 13. A pharmacologically active composition according to Claim 12, wherein said compound is DANA or FANA.
- 14. A pharmacologically active composition according to Claim 1, wherein said compound is a heterocylic compound comprising a heterocygen and an anomeric carbon carrying substituents that are non-mutarotatable.
- 15. A pharmacologically active composition according to Claim 14, wherein said compound is a C9-carbohydrate.
- 16. A pharmacologically active composition according to Claim 1, wherein said compound is represented by the structural formula

wherein

A denotes O,

R denotes hydrogen, CN, CH-NHR 6 , CH $_2$ OR 6 , CH $_2$ F, CH $_3$, Sn(R 6) $_3$, Si(R 6) $_3$ or SR 7 , where R 7 is an alkyl group which has an alkyl chain of 1 to 6 carbons; or an aryl group wherein the aryl moiety is mono-, di- or tri-substituted with halogen, amino, hydroxyl or carboxyl,

 R^1 denotes COOH, $P(O)(OH)_2$, NO_2 , SOOH, SO_3H , tetrazole, CH_2CHO , CHO, $CH(CHO)_2$ or, where R^1 is COOH, $P(O)(OH)_2$, SOOH or SO_3H , an ethyl, methyl or pivaloyl ester thereof,

WO 92/06691 PCT/AU90/00501

- 44 -

 R^2 denotes H, OR^6 , F, Cl, Br, CN, NHR⁶, SR⁶ or CH_2X , wherein X is NHR⁶, halogen or OR^6 and

R⁶ is hydrogen; an acyl group having 1 to 4 carbon atoms; a linear or cyclic alkyl group having 1 to 6 carbon atoms, or a halogen-substituted analogue thereof; or an unsubstituted aryl group or an aryl substituted by a halogen, an allyl group, an OH group, an NO₂ group, an NH₂ group or a COOH group,

 R^3 and $R^{3'}$ are the same or different, and each denotes hydrogen, $N(R^6)_2$, SR^6 or OR^6 ,

Q

 R^4 denotes NHC-R⁷, where R⁷ is an unsubstituted or halogen-substituted linear or cyclic alkyl group of 1 to 6 carbon atoms, or SR⁶, OR⁶, COOH or alkyl/aryl ester thereof, NO₂, C(R⁶)₃, CH₂COOH or alkyl/aryl ester thereof, CH₂NO₂ or CH₂NHR⁷, and

R⁵ denotes CH₂YR⁶, CHYR⁶CH₂YR⁶ or CHYR⁶CH₂YR⁶ where Y is O, S or H, and successive Y moieties in an R⁵ group are the same or different.

- 17. A pharmacologically active composition according to Claim 16, wherein said compound is selected from the group consisting of 2-deoxy-N-acetyl- α -D-neuraminic acid, methyl N-acetyl-4,7,8,9-tetra-0-acetyl-2-deoxy-2 α -allylthio-neuraminate, sodium N-acetyl-2-deoxy-2 α -allylthioneuraminate, methyl N-acetyl-4,7,8,9-tetra-0-acetyl-2-deoxy-2 α -fluoro-D-neuraminate and sodium N-acetyl-2-deoxy-2 α -fluoro-D-neuraminate.
- 18. A compound that binds the active site of influenza virus neuraminidase and that displays in vivo activity against orthomyxovirus or paramyxovirus, wherein said compound is not one selected from the group consisting of the compounds set out in Table 1.
- 19. A compound according to Claim 18, wherein said compound binds said active site with a K_i value of less than 10^{-7} M.

- 20. A compound according to Claim 19, wherein said K_i value is less than about 0.5 x 10⁻⁴ M.
- 21. A compound according to Claim 18, wherein said compound is a carbocyclic or heterocyclic compound comprised of a 5-, 6- or 7-membered ring carrying a substituent selected from a carboxylate moiety and an analogue thereof, said ring and said substituent being positioned in the same plane.
- 22. A compound according to Claim 21, wherein said compound is represented by the structural formula:

wherein

A denotes O,

 R^1 denotes COOH, $P(O)(OH)_2$, NO_2 , SOOH, SO_3H , tetrazol, CH_2CHO , CHO, $CH(CHO)_2$ or, where R^1 is COOH, $P(O)(OH)_2$, SOOH, or SO_3H , an ethyl, methyl or pival-yl ester thereof,

 $\rm R^2$ denotes H, OR°, F, Cl, Br, CN, NHR°, SR° or $\rm CH_2X$, wherein X is NHR°, halogen or OR° and

R⁶ is hydrogen; an acyl group having 1 to 4 carbon atoms; a linear or cyclic alkyl group having 1 to 6 carbon atoms, or a halogen-substituted analogue thereof; or an unsubstituted aryl group or an aryl substituted by a halogen, an allyl group, an OH group, an NO₂ group, an NH₂ group or a COOH group,

 R^3 and $R^{3'}$ are the same or different, and each denotes hydrogen, $N(R^6)_2$, SR^6 or OR^6 ,

0

R⁴ denotes NHC-R⁷, where R⁷ is an unsubstituted or halogen-substituted linear or cyclic alkyl group of 1 to 6 carbon atoms, or SR⁶, OR⁶, COOH or alkyl/aryl ester thereof,

 NO_2 , $C(R^6)_3$, CH_2COOH or alkyl/aryl ester thereof, CH_2NO_2 or CH_2NHR^7 , and

 R^5 denotes CH_2YR^6 , $CHYR^6CH_2YR^6$ or $CHYR^6CH_2YR^6$ where Y is O, S or H, and successive Y moieties in an R^5 group are the same or different, subject to the provisos that

- (i) when R^3 or R^3 is OR^6 or hydrogen, then said compound cannot have both
 - (a) an R2 that is hydrogen and
 - (b) an R4 that is NH-acyl,

and

- (ii) R^6 represents a covalent bond when Y is hydrogen.
- 23. A compound according to Claim 18, wherein said compound is a heterocyclic compound comprising a heterocygen and an anomeric carbon carrying substituents that are non-mutarotatable.
- A compound according to Claim 23, wherein said compound is a C9-carbohydrate.
- 25. A compound according to Claim 18, wherein said compound is represented by the structural formula

wherein

A denotes O,

R denotes hydrogen, CN, CH-NHR⁶, CH₂OR⁶, CH₂F, CH₃, $Sn(R^6)_3$, $Si(R^6)_3$ or SR^7 , where R^7 is an alkyl group which has an alkyl chain of 1 to 6 carbons; or an aryl group wherein the aryl moiety is mono-, di- or tri-substituted with halogen, amino, hydroxyl or carboxyl,

 R^1 denotes COOH, $P(O)(OH)_2$, NO_2 , SOOH, SO_3H , tetrazole, CH_2CHO , CHO, $CH(CHO)_2$ or, where R^1 is COOH,

 $P(O)(OH)_2$, SOOH or SO_3H , an ethyl, methyl or pivaloyl ester thereof,

 R^2 denotes H, OR°, F, Cl, Br, CN, NHR6, SR6 or CH2X, wherein X is NHR6, halogen or OR6 and

R⁶ is hydrogen; an acyl group having 1 to 4 carbon atoms; a linear or cyclic alkyl group having 1 to 6 carbon atoms, or a halogen-substituted analogue thereof; or an unsubstituted aryl group or an aryl substituted by a halogen, an allyl group, an OH group, an NO₂ group, an NH₂ group or a COOH group,

 R^3 and R^{3^\prime} are the same or different, and each denotes hydrogen, $N(R^6)_2,\ SR^6$ or $OR^6,$

0

 R^4 denotes NHC-R⁷, where R⁷ is an unsubstituted or halogen-substituted linear or cyclic alkyl group of 1 to 6 carbon atoms, or SR⁶, OR⁶, COOH or alkyl/aryl ester thereof, NO₂, C(R⁶)₃, CH₂COOH or alkyl/aryl ester thereof, CH₂NO₂ or CH₂NHR⁷, and

R⁵ denotes CH₂YR⁶, CHYR⁶CH₂YR⁶ or CHYR⁶CH₂YR⁶ where Y is O, S or H, and successive Y moieties in an R⁵ group are the same or different, subject to the provisos that

- (i) when R^3 or R^{3^\prime} is OR^6 or hydrogen, then said compound cannot have both
 - (a) an R2 that is hydrogen and
 - (b) an R4 that is NH-acyl,
- (ii) R^7 is not CH_3 , CH_2CH_3 , phenyl, glucosyl, galactosyl, mannosyl, acetyl, benzoyl, cyclohexyl or substituted cyclohexyl and
- (iii) R^6 represents a covalent bond when Y is hydrogen.
- 26. A compound according to Claim 25, wherein said compound is methyl N-acetyl-4,7,8,9-tetra-O-acetyl-2-deoxy- 2α -allylthioneuraminate or sodium N-acetyl-2-deoxy- 2α -allylthioneuraminate.
- 27. A method of preventing or ameliorating the symptoms of an orthomyxovirus or paramyxovirus infection, comprising

the step of administering to an animal a pharmacologically active composition comprising:

- (i) a virus-inhibiting amount of a compound that binds the active site of influenza virus neuraminidase and that displays anti-orthomyxovirus or paramyxovirus activity; and
- (ii) a pharmaceutically acceptable carrier for said compound.
- 28. A method according to Claim 27, wherein the virus is selected from the group consisting of influenza virus, parainfluenza virus, Sendai virus and mumps virus, and the animal is a human.
- 29. A method according to Claim 27, wherein the virus is Newcastle disease virus or fowl plague virus, and the animal is a bird.
- 30. A method according to Claim 27, wherein the substance is administered orally, intranasally, buccally, or sublingually.
- 31. A method according to Claim 27, wherein the substance is administered intranasally.
- 32. A method of synthesis of a compound according to general formula I, as defined in Claim 25, comprising the steps of:

providing an alkyl N-acetyl neuraminate,

reacting said alkyl N-acetyl neuraminate with an alcohol in the presence of an acid catalyst to yield the corresponding ester,

acylating and halogenating the ester by reaction with an acyl halide,

treating the halogenated and acylated ester with a nucleophile to effect halogen-nucleophile exchange,

deacylating and de-esterifying the resulting compound under hydrolytic conditions, and

recovering the compound of general formula I.

- 33. A method of synthesis of a desired compound of general formula I, as defined in Claim 25, which comprises the steps of:
- (a) treating a glycal of formula (i)

with hydrogen chloride and then with sodium thiophenoxide to form a thioglycoside of formula (ii)

(b) oxidizing the thioglycoside with
metachloroperoxybenzoic acid to form a sulphone of formula
(iii)

and thereafter either

(c) reacting the sulphone with lithium diisopropyl
amide and then with dimethylcarbonate to form alpha and beta
C-l substituted sugars of formula (iv)

$$R^{5}$$
 R^{3}
 R^{2}
 R^{3}

and

- (c') isolating the C-l substituted sugar,
 or
- (d) reacting the sulphone with lithium diisopropyl amide in the presence of lithium naphthalenide and a compound containing a COOH, P(O)(OH), or SOOH group and
- (d') isolating the desired compound of formula I.
- 34. A method according to Claim 33, wherein in step (e) the compound containing the $P(O)(OH)_2$ group is diethyl chlorophosphate.
- 35. A glycosyl halide of general formula III

wherein R may be F, Cl or Br, when R^2 is not H, F, Cl or Br;

if R^3 , $R^{3'}$ is OR^6 or H then R^4 is NH-acyl; and A, R^1 , R^2 , R^3 , $R^{3'}$, R^4 , R^5 and R^6 are as defined in Claim 25.

36. A method of synthesis of a compound of general formula I, as defined in Claim 25, which comprises the step of reacting a glycosyl halide of general formula III

wherein R may be F, Cl or Br when R^2 is not H, F, Cl or Br;

if R^3 , $R^{3'}$ is OR^6 or H then R^4 is NH-acyl; and A, R^1 , R^2 , R^3 , $R^{3'}$, R^4 , R^5 and R^6 are as defined in Claim 25, with a nucleophile which is a group which can be converted to a desired functional group R^1 , and recovering said compound of general formula III.

- An improved method of synthesis of glycosyl halides of general formula III as defined in Claim 35, comprising the step of treating the corresponding neuraminic acid analogue with excess acetyl halide at room temperature under a nitrogen atmosphere until no starting material is observable by thin layer chromatography, and recovering the desired glycosyl halide.
- 38. A compound according to Claim 18, synthesised using an intermediate compound selected from the group consisting of 2,3-didehydro- α -D-neuraminic acid; 3,4,6-tri-O-acetyl-2-deoxy- β -L-arabinohexepyranosyl thiophenoxide; 4-O-benzyl-3,6-bis(t-butylmethylsilyloxy)-2-deoxy- β -L-arabino-hexepyranosyl thiophenoxide; 4-O-benzyl-3,6-bis(t-butylmethylsilyloxy)-2-deoxy- β -L-arabinohexepyranosyl phenylsulphone; α -carboxy-methyl- β -phenylsulphonyl-4-O-benzyl-3,6-bis (t-butyldimethyl-silyloxy)-2-deoxy-L-arabinohexepyranose; methyl-4-O-benzyl-3,6-bis(t-butyldimethylsilyloxy)-2-deoxy- α -L-arabinohexepyranosyl-carboxylate, and methyl-N-acetyl-4,7,8,9-tetra-O-acetyl-2- β -chloro-2- β -deoxy-D-neuraminate.

FIGURE 1

TYR CB	0/	84.15	97. 36	31. 61.		TYR CG	84	85.21	85 21	34.87
	84									
TYR CD1	84	85.98	82.90	33.81	:	TYR CEl	84	86.93		33.99
TYR CD2	84	85.38	82 71	36.1.2		TYR CE2	84	86.33	86.33	36.28
TYR CZ	84	87.09	81.36	35.22	:	TYR OH	84	88.02		35.44
TYR C	84	82.21	85.61	35.47	:	TYR O	84	81.78	81.78	34.45
TYR N	84	81.80	83.51	34.56	:	TYR CA	84	82.81	82.81	35.35
ARG N	85	32.11	86.13	36.69	:	ARG CA	85	81.55	81.55	36.96
					·					
ARG CB	35	81.28	87.60	38.43	•	ARG CG	85	80.32	80.32	39.01
ARG CD	85	79.54	87.11	40 19	:	ARG NE	85	80.16	80 16	41.45
ARG CZ	85	79.46	86.85	42.60	:	ARG NH1	85	80.06		43.73
ARG NH2	85	78.16	87.08	42 68	:	ARG C	85	82.60	82.60	36.53
ARG O	35	83.80	38.28	36.84	:	ASN N	86	82.17		35.75
ASN CA	86	83.03	90.53	35.37	•	ASN CB	86	83.09	83.09	33.87
										33.85
ASN CG	86	81.77	91.10	33.23	:			80.88		
ASN ND2	86	81.58	90.77	31.96	:	ASN D22	86	82.34	82.34	31.48
					·		86	83.14		35.73
ASN C	86	82.54		35.97	•					
TRP N	87	81.43	91.88	36.71	:	TRP CA	87	80.82	80.82	37.33
			93.35		i	TRP CG	87	81.56	81 56	39.62
TRP CB	87	81.57			:					
TRP CD2	87	80.61	91.94	40.57	:	TRP CE2	87	81.18	81.18	41.26
		79.39	92.41		:	TRP CD1	87	82.64	82 64	39.70
TRP CE3	87				٠					
TRP NE1	87	82.37	90.59	40.71	:	TRP CZ2	87	80.57	80.57	42.34
		78.76	91.83			TRP CH2	87	79.35	79 35	42.74
TRP CZ3	87				•					
TRP C	87	80.68	94.34	36.53	:	TRP O	87	80.68	80.68	37.12
=		80.53			:	SER CA	88	80.49	80 49	34.49
SER N	88									
SER CB	88	81.04	95.33	33.11	:	SER OG	88	80.50	80.50	32.49
SER C	88	79.08	96 14	34.45		SER O	88	78.37	78 37	33.44
LYS N	89	78.62	96.69	35.55	:	LYS CA	89	77.30		35.60
LYS CB	89	76.27	96.27	36 18	:	LYS CG	89	75.43	75.43	35.10
					-					
LYS CD	89	74.50	94.62	35.78	:	LYS CE	89	73.78		34.72
LYS NZ	89	73.32	92.56	35.32	:	LYS C	89	77.40	77.40	36.51
								76.68		36.21
LYS O	89	78.14	98.43	37.31	:		90			
PRO CD	90	75.82	99.64	35.04	:	PRO CA	90	76.66	76.66	36.98
							90	75.60	75 60	34.88
PRO CB	90		101.54		:					
PRO C	90	76.39	100.42	38.40	:	PRO O	90	75.68	75.68	38.67
GLN N	91		101.12			GLN CA	91	76.51	76 51	40.72
GLN CL	91	77.43	101.77	41.62	:	GLN CG	91	77.11	//.11	43.08
GLN CD	91	78 10	102.47	43 94	٠	GLN OE1	91	79.17	79.17	44.31
GLN NE2	91					GLN E21	91	76.98		44.15
GLN £22	91	78.59	104.13	44.87	•	GLN C	91	75.07	75.07	40.72
										41 52
GLN O	91		102.43				92	74.24		41.53
CYS CA	92	72.89	101.43	41.68	:	CYS C	92	72.97	72.97	42.48
							92	72.03		42.47
CYS 0	92		102.91			CYS CB				
CYS SG	92	71.93	98.76	41.94	:	GLN N	93	72.08	72.08	42.09
			104.93			GLN CB	93		71.17	
GLN CA	93									
GLN CG	93	72.12	106.61	40.92	:	GLN CD	93	73.20	73.20	41.61
GLN OE1	93		107.78			GLN NE2	93	74.24	74.24	40 87
GLN E21	93	74.31	107.45	39.95	:	GLN E22	93	74.89	74.89	41.25
GLN C	93		104.56			GLN O	93	70.09	70.09	43.86
										46.34
ILE N	94					ILE CA	94	70.89		
ILE CB	94	71.77	103.47	47.29	:	ILE CG2	94	72.35	72.35	46.47
								73.31		49.25
ILE CG1	94		104.19			ILE CD1				
ILE C	94	70.57	105.73	47.05	:	ILE O	94	71.22	71.22	46.88
THR N	95		105.57			THR CA	95	68.91	68 91	48.70
THR CB	95	67.42	106.37	48.37	:	THR OG1	95		67.30	
THR CG2	95		107.25			THR C	95	69.24	69.24	50.16
THR O	95	68.93	107.22	50.99		GLY N	96		69.78	
GLY CA	96	70 06	104.81	51.87	•	GLY C	96	69.94	69.94	51.93
	96		102.60				97			53.11
GLY O					-	COE. A	11	57.00	J . UO	44.66

PHE PHE PHE ALA ALA ALA PRO PRO	CD2 CE2 C N CB O CD CB	97 97 98 98 98 99	72.23 72.98 74.07 68.47 68.04 66.04 68.25 65.32 65.83	101.42 102.54 102.93 100.74 99.59 98.47 97.06 97.81 95.92	57.58	: PHE : PHE : PHE : PHE : ALA : ALA : PRO : PRO : PRO	CD1 97 CE1 97 CZ 97 O 97 CA 98 C 98 N 99 CA 99	72.60 73.69 74.43 67.90 66.83 67.24 66.57 66.89 65.32	72.60 52.49 73.69 51.73 74.43 52.10 67.90 54.85 66.83 53.89 67.24 54.70 66.57 55.77 66.89 56.50 65.32 57.69
PRO PHE		99 100	66.98 67.90		55.63 55.89	PRO		66.22 68.01	66.22 54.66 68.01 54.98
PHE		100	69.23		54.11			69.38	69.38 52.97
		100	70.60	91.19	52.78	PHE	CD2 100	68.34	68.34 52 09
		100	70.79		51.72			68.56	68.56 51.03
PHE		100 100	69.78 67.52		50.83 : 55.15 :			68.09	
SER		101	68.89		57.40 :			68.80 69.90	
SER		101	69.78		57.10 :			69.36	
SER		101	69.79		59.05 :		N 102	69.13	69.13 59.67
LYS		102	69.58		61.04 :			68.68	
LYS LYS		102 102	68.94 68.19		63.32 : 65.37 :			68.45	68.45 63.88
LYS		102	69.46		61.44 :			69.34 68.40	69.34 66.16 68.40 61.28
ASP		103	70.56		61.70 :			70.45	70.45 62.23
ASP		103	71.73		61.94 :			73.08	73.08 62.56
ASP ASP			73.15		63.51 :			74.10	74.10 62.09
ASN		103 104	70.28 69.89		63.72 : 64.72 :			70.67 69.85	70.67 64.10 69.85 66.05
ASN		104	68.39		66.54:			67.59	67.59 66.07
ASN			66.98	87.28	64.99 :	ASN N	ID2 104	67.49	67.49 66.85
ASN			67.92		67.73 :			67.03	67.03 66.43
ASN SER		104 105	70.66 71.85		67.01 : 66.49 :			70.25	70.25 68.15
SER		105	74.09		66.22 :			72.80 73.98	72.80 67.13 73.98 64.93
SER		105	73.29		68.40 :			74.25	74.25 68.24
ILE		106	72.67	84.26	69.57 :	ILE C	A 106	73.14	73.14 70.88
ILE		106	73.68	86.25			G2 106	74.13	74.13 72.58
ILE		106 106			70.46 : 71.71 :			76.26	76.26 70.67
ARG				85.29		ARG C	A 107	71.07 69.47	71.87 72.76 69.47 72.00
ARG	CB			85.87		ARG C			68.32 71.04
ARG				87.88		ARG N			66.21 71.68
ARG				88.28			H1 107		64.36 72.89
ARG				87.84 83.12		ARG C LEU N			69.15 71.97 69.26 70.75
LEU (81.70		LEU C			69.38 68.97
LEU (CG	108		81.90		LEU C			68.84 66.56
LEU (81.18		LEU C			70.10 71.26
LEU (79.79		SER N			71.38 71.41
SER (80.39 81.68		SER C		73.72	73.72 72.03
SER (79.38		ALA N		72.03 71.01	72.03 73.57 71.01 74.08
ALA (80.63		ALA C		70.06	70.06 76.00
ALA (79.52	75.49 :	ALA O	110	68.89	68.89 76.53
GLY (78.86	74.36 :	GLY CA		68.31	68.31 74.26
GLY (GLY)		111 112			72.93 : 72.73 :			67.63 70.10	67.63 72.08 70.10 71.49
•				- · • • ·	· · · ·	01		, 0 . 10	, 0 . 10 / 1 . 4 /

GLY	N	112	71.61 72.16	74.90	71.42 70.55	: ASI	P CA	113	72.32 73.61	72.32 72.21 73.61 70.48
	ODI CB	113	73.94 72.65		70.40 71.29			113 2 113	73.36 73.59	73.36 71.55 73.59 72.72
ASF ILE		113 114	74.04 74.51		69.22			113	73.81	73.81 68.09
	CB	114	74.16		69.49 : 68.65 :			114 2 114	74.99 74.62	74.99 68.49 74.62 67.57
	CG1		72.65		68.51				72.14	72.14 67.11
ILE TRP		114 115	76.48 77.24		68.70 : 67.62 :		CA	114 115	76.97 7 8.66	76.97 69.83 78.66 67.61
	CB	115	79.20	78.22	66.21 :	TRE	CG	115	79.43	79.43 65.63
		115 115	80.66 81.91		65.60 : 66.08 :			115	80.41 78.46	80.41 64.88 78.46 65.01
TRP	NEl	115	79.09	75.0 3	64.56 :				81.48	81.48 64.64
TRP TRP	CZ3		82.95					115	82.74	82.74 65.11
VAL		115 116	79.07 80.23		68.20 : 68.86 :			115 116	78.37 80.85	78.37 68.06 80.85 69.31
VAL		116	81.86	80.58	70.42 :	VAL	CG1	116	82.62	82.62 70.70
VAL VAL	CG2	116 116	81.13 82.28	80.24 80.55	71.71 : 67.46 :			116	81.59	81.59 68.10
THR		117	82.11		66.49 :			117 117	81.41 81.18	81.41 67.67 81.18 65.19
	OG1		79.96		65.41 :			117	80.87	80.87 64.76
THR		117 118	82.65 83.36	84.49	66.72 : 65.72 :	THR ARG		117 118	82.54 83.67	82.54 67.83 83.67 65.61
ARG	CB	118	84.73		66.61 :			118	84.02	84.02 67.50
ARG ARG		118 118	84.76 85.81		68.47 :			118	85.90	85.90 67.90
	NH2	118	84.67		66.96 : 66.58 :			118	86.86 84.16	86.86 66.38 84.16 64.17
ARG		118	84.26	85.68	63.37 :	GLU	N	119	84.43	84.43 63.81
GLU GLU		119 119	84.80 87.31		62.47 : 63.11 :			119 119	86.27 87.40	86.27 62.12 87.40 64.36
GLU	OEl		87.27		64.24 :				87.59	87.59 65.47
GLU		119	83.91		61.41 :			119	84.40	84.40 60.53
PRO PRO		120 120	82.57 81.60		61.44 : 60.44 :			120 120	81.86 80.27	81.86 62.43 80.27 61.11
PRO	CG	120	80.45	88.96	61.87 :	PRO	С	120	81.63	81.63 59.16
PRO TYR		120 121	82.10 81.11	89.45 88.65		TYR		121	81.17	81.17 58.04
TYR		121	83.29		56.85 : 55.75 :			121 121	82.46 83.19	82.46 56.17 83.19 54.46
	CEl	121	83.97	86.00	54.05 :	TYR	CD2	121	84.12	84.12 56.66
TYR	CE2 OH	121	84.89 85.51	85.82 84.33	56.27 :	TYR TYR		121 121	84.78 80.09	84.78 54.97 80.09 55.97
TYR	0	121	79.69	86.87		VAL		122	79.53	79.53 54.90
VAL	CA CG1	122	78.66		54.12 :			122	77.07	77.07 54.30
VAL		122	76.84 79.13	88.73 87.91		VAL VAL		122	76.48 79.78	76.48 53.12 79.78 52.36
SER		123	78.98	86.89	51.90 :	SER	ĈA	123	79.38	79.38 50.51
SER SER		123 123	80.78 78.30	86.43 86.24		SER SER		123	81.03	81.03 48.76
CYS		124	78.25	86.37		CYS		123 124	77.58 77.01	77.58 50.45 77.01 47.90
CYS		124	77.32	85.56	46.51 :	CYS		124	78.01	78.01 45.69
CYS ASP		124 125	76.43 76.93	87.50 6 84.32 6		CYS ASP		124 125		74.70 47.89 77.25 44.92
ASP	CB	125	77.25	82.22	45.03 :	ASP	CG	125	75.88	75.88 44.91
ASP ASP		125	75.23	81.36		ASP			75.46	75.46 43.81
PRO		125 126	76.25 76.29	84.22 4 83.97 4		ASP PRO		125 126		75.28 44.33 77.36 41.87
PRO		126	75.30		41.69 :			126		75.84 40.29

DDO 66 126	76 75 97 96 49 59		
PRO CG 126	76.75 83.06 40.50		
PRO 0 126	73.04 84.55 41.06		73.46 73.46 42.80
VAL CA 127	72.04 82.92 43.05		
VAL CG1 127	72.00 81.00 41.49	: VAL CG2 127	72.17 72.17 43.88
VAL C 127	71.70 83.30 44.48	: VAL 0 127	
LYS N 128	72.52 82.99 45.50		72.14 72.14 46.85
LYS CB 128	71.49 82.10 47.52		72.29 72.29 47.49
LYS CD 128	71.71 79.79 48.44		
LYS NZ 128	70.32 77.88 48.75		
LYS 0 128	_	: CYS N 129	· · ·
CYS CA 129			73.01 73.01 48.96
CYS 0 129			74.25 74.25 51.01
CYS SG 129		: CYS CB 129	73.57 73.57 50.47
TYR CA 130		: TYR N 130	75.51 75.51 51.44
		: TYR CB 130	76.99 76.99 52.09
		: TYR CD1 130	75.89 75.89 51.39
TYR CE1 130	75.34 79.14 50.45	: TYR CD2 130	76.42 76.42 49.71
TYR CE2 130	_	: TYR CZ 130	75.34 75.34 49.14
TYR OH 130		: TYR C 130	76.56 76.56 53.61
TYR 0 130	77.17 85.06 53.33	: GLN N 131	76.40 76.40 54.84
GLN CA 131	77.04 84.32 55.91	: GLN CB 131	76.03 76.03 57.02
GLN CG 1:31	75.38 83.28 57.63		74.54 74.54 58.81
GLN OE1 131		: GLN NE2 131	73.48 73.48 58.66
GLN E21 131	73.28 84.91 57.79	: GLN E22 131	
GLN C 131	78.21 83.40 56.34	: GLN 0 131	
PHE N 132	79.39 84.01 56.59		78.08 78.08 56.47
PHE CB 132	81.69 83.59 56.12		80.58 80.58 57.03
PHE CD1 132	81.99 82.12 54.15	_	81.42 81.42 54.68
PHE CE1 132	81.80 81.81 52.83		80.63 80.63 53.92
PHE CZ 132			80.44 80.44 52.59
PHE 0 132			81.01 81.01 58.39
	80.68 84.92 58.79		81.73 81.73 59.19
	82.25 83.59 60.46		81.24 81.24 61.58
ALA C 133	83.39 82.68 60.91 :		83.51 83.51 60.44
LEU N 134		LEU CA 134	85.38 85.38 62.23
LEU CB 134	86.49 83.43 62.44 :		87.75 87.75 61.64
LEU CD1 134	87.48 82.85 60.22 :	LEU CD2 134	88.40 88.40 61 58
LEU C 134	84.88 81.80 63.49 :		84.57 84.57 64.43
GLY N 135	84.70 80.46 63.52 :	GLY CA 135	84.20 84.20 64.71
GLY C 135	85.26 79.67 65.79 :	GLY 0 135 '	86.42 86.42 65.44
GLN N 136	84.99 79.48 67.07 :	GLN CA 136	86.05 86.05 68.02
GLN CB 136	85.76 80.06 69.27 :	GLN CG 136	85.96 85.96 69.10
GLN CD 136	87.41 82.02 69.03 :		88.35 88.35 69.21
GLN NE2 136	87.66 83.29 68.76 :	GLN F21 136	86.91 86.91 68.61
GLN E22 136	88.59 83.57 68.66 :	GLN C 136	
GLN 0 136	86.33 77.36 69.49 :		
GLY CA 137	85.81 75.38 67.67 :		85.85 85.85 67.39
GLY 0 137	85.17 73.90 69.44 :		84.90 84.90 68.82
THR CA 138		THR N 138	83.81 83.81 69.12
THR OG1 138		THR CB 138	83.76 83.76 71.55
THR C 138	_ · · · · ·		83.82 83.82 71.65
THR N 139			81.45 81.45 69.15
	80.70 75.67 70.95 :		79.36 79.36 71.01
THR CB 139	78.25 75.15 71.07 :	THR OG1 139	78.57 78.57 72.10
THR CG2 139	78.01 74.57 69.69 :	THR C 139	79.34 79.34 72.29
THR 0 139	80.27 77.00 73.11 :		78.33 78.33 72.50
LEU CA 140		LEU CB 140	77.43 77.43 73.28
LEU CG 140		LEU CD1 140	77.17 77.17 73.04
LEU CD2 140		LEU C 140	78.05 78.05 74.93
LEU 0 140		ASP N 141	77.08 77.08 74.99
ASP CA 141	76.81 76.57 76.23 :	ASP CB 141	75.33 75.33 76.33

AS F		141 ! 141 141 142	74.84 73.63 77.24 79.95	75.96 74.24	77.75 77.90 75.62 76.35	: ASP C : ASN N	141 142	75.61 77.65 78.91 80.36	77.65 76.11 78.91 76.49
ASN ASN	CG ND2 D22	142 142 142	81.20 82.13 82.45	73.32 72.80 71.95	74.44 75.21 74.83	: ASN OE : ASN D2 : ASN C	1 142 1 142 142	81.06 82.34	81.06 73.37
	CA CG	142 143 143	81.46 32.72 82.17	73.01	77.04 79.0 81.10	: LYS CB	143	81.69 83.21 82.84	81.69 78.24 83.21 80.15 82.84 82.43
LYS LYS	CE C	143 143	82.18 83.93	72.08 75.53	83.36 78.29	: LYS NZ : LYS O	143 143	92.77 84.70	82.77 83.18 84.70 78.74
HIS HIS HIS	CB	144 144 144	84.07 85.32 86.76	74.46	77.04 74.92 75.88	HIS CG	144	85.16 85.66 84.94	85.16 76.14 85.66 75.20 84.94 74.90
HIS		144	85.55 84.92	70.87 76.79	75.39 : 75.54 :	HIS NE	2 144 144	86.64 85.72	86.64 75.99 85.72 74.70
SER SER SER	CB	145 145 145	83.82 82.16 84.40	79.13	75.81 : 75.30 : 76.18 :	SER OG	145	83.64 81.61 84.65	83.64 75.30 81.61 76.58 84.65 75.79
ASN ASN		146 146 146	84.76 85.74	79.41 79.44	77.40 : 79.63 :	ASN CA ASN CG	146 146	85.51 86.38	85.51 78.35 86.38 80.74
	D22		86.80 86.25 87.70	78.71	80.56 : 81.96 : 77.53 :		2 146 146 147	86.42 86.85 86.99	86.42 81.93 86.85 77.82 86.99 77.73
ASP ASP ASP		147 147 147	88.15 90.64 90.64	83.03	77.24 : 78.12 : 77.90 :	ASP OD	147 1 147 147	89.42 91.65 88.29	89.42 77.88 91.65 78.52 88.29 75.73
ASP THR	O CA	147 148	89.39 87.23	82.79 82.88	75.16 : 73.57 :	THR N THR CB	148 148	87.17 85.90	87.17 75.02 85.90 73.00
THR VAL	N	148 148 149	84.82 87.50 87.95	84.30	73.77 : 73.06 : 73.93 :	THR O	148 148 149	85.94 87.20 88.37	85.94 72.96 87.20 71.89 88.37 73.50
VAL VAL VAL	CG2	149 149 149	88.94 88.99 89.68	86.94	74.58 : 75.97 : 71.61 :		149 149 150	88.07 89.54 90.41	88.07 74.54 89.54 72.53 90.41 72.74
HIS HIS	CA CG	150 150	91.61 92.72	85.30 84.28	71.93 : 73.88 :	HIS CB	150 ! 150	92.43 92.33	92.43 72.40 92.33 74.75
	ND1 NE2 O		92.68	83.72	74.60 : 75.93 : 70.08 :	HIS C	. 150 150 151	91.29	93.26 75.87 91.29 70.48 91.96 69.70
ASP ASP		151 151	91.70 91.87 91.66	85.84 88.46	68.29 : 68.15 : 67.33 :	ASP CB ASP OD1	151 151	92.28 91.80	92.28 67.60 91.80 69.37
ASP ARG	O CA	151 152	91.83 93.94	84.31 82.93	66.53 : 67.36 :	ARG N ARG CB	151 152 152	92.29 93.31 95.26	92.29 67.62 93.31 68.16 95.26 66.82
ARG ARG ARG	NE	152 152 152	95.19 96.78 97.53	84.52 86.43 87.85		ARG CD ARG CZ ARG NH2	152 152 152	97.41	96.57 65.41 97.41 67.16 97.94 67.90
ARG ILE ILE	C N	152 153 153	94.17 93.55 92.66	81.64 80.51	68.10 : 67.71 : 69.37 :	ARG O ILE CA	152 153	94.84 93.77	94.84 69.12 93.77 68.34
ILE	CG1 C	153 153	91.25 93.76	79.00 78.20	68.83 : 67.20 :	ILE CD1		90.19 93.20	92.89 70.63 90.19 69.74 93.20 66.14
PRO PRO PRO	CA	154 154 154	94.35 94.33 95.93		67.24 : 66.10 : 67.78 :		154 154 154	94.92 95.26 92.91	94.92 68.42 95.26 66.52 92.91 65.72
PRO		154	92.64	74.92		HIS R	155	91.95	91.95 66.59

HIS CA 155 HIS CG 155 HIS ND1 155	91.18 74.14 68.55 91.95 73.19 68.01	: HIS CD2 155 : HIS CE1 155	91.52 91 52 69 87
HIS NE2 155 HIS O 155	92.43 73.29 70.02 88.43 75.90 65.78		89.61 89.61 65.77
ARG CA 156	88.43 75.90 65.78 89.12 78.27 64.53		
ARG CG 156		: ARG CB 156 : ARG CD 156	***************************************
ARG NE 156		: ARG CZ 156	89.90 89.90 66.12 88.09 88.09 65.80
ARG NH1 156	86.79 83.57 65.74	: ARG NH2 156	88.95 88.95 65.68
ARG C 156 THR N 157	89.07 77.74 63.10		90.09 90.09 62.50
THR CB 157	87.84 77.76 62.59 86.80 75.86 61.51	: THR CA 157 : THR OG1 157	87.48 87.48 61.28
THR CG2 157	_ · · · ·	: THR C 157	85.94 85.94 62.65 86.53 86.53 60.62
THR 0 157	85.74 78.89 61.30	: LEU N 158	86.53 86.53 59.31
LEU CA 158		: LEU CB 158	86.14 86.14 57.26
LEU CG 158 LEU CD2 158		: LEU CD1 158	84.98 84.98 56.85
LEU 0 158	01 10	: LEU C 158 : LEU N 159	84.23 84.23 58.55
LEU CA 159		: LEU CB 159	83.13 83.18 59.24 81.07 81.07 60.31
LEU CG 159	81.71 78.36 61.58	: LEU CD1 159	80.92 30.92 62.78
LEU CD2 159		: LEU C 159	81.18 81.18 57.86
LEU 0 159 MET CA 160	81.49 80.21 57.56		80.34 80.34 57.08
MET CG 160	79.63 78.99 55.95 79.53 79.07 53.42		80.27 80.27 54.65
MET CE 160	79.66 78.88 50.47	: MET C 160	80.47 80.47 51.99 78.16 78.16 55.95
MET 0 160	77.91 77.27 55.88	: ASN N 161	77.14 77.14 55.97
ASN CA 161 ASN CG 161	75.74 78.98 56.00	: ASN CB 161	75.11 75.11 57.34
ASN CG 161 ASN ND2 161	75.03 77.92 58.15 : 74.95 76.74 57.56 :	ASN OD1 161	74.99 74.99 59.38
ASN D22 161	74.95 76.74 57.56 : 74.96 75.97 58.15 :	ASN D21 161 ASN C 161	74.88 74.88 56.59 75.00 75.00 55.05
ASN 0 161	75.57 80.83 54.54 :	GLU N 162	75.00 75.00 55.05 73.75 73.75 54.69
GLU CA 162	72.96 80.54 53.96 :	GLU CB 162	71.65 71.65 53.48
GLU CG 162 GLU OE1 162	71.75 79.01 52.38 : 69.98 77.60 51.72 :		70.39 70.39 51.75
GLU C 162	69.98 77.60 51.72 : 72.65 81.65 54.96 :		69.74 69.74 51.23
LEU N 163	72.61 82.86 54.39 :		72.49 72.49 56.19 72.27 72.27 55.12
LEU CB 163	72.26 85.25 54.14 :	LEU CG 163	72.03 72.03 54.70
LEU CD1 163 LEU C 163	73.02 86.97 55.83 :	LEU CD2 163	72.12 72.12 53.55
- · -	70.88 83.83 55.74 : 70.97 83.89 57.04 :	LEU 0 163	69.89 69.89 55.09
GLY C 164	69.72 82.50 58.55 :	GLY 0 164	69.78 69.78 57.79 69.12 69.12 59.65
VAL N 165	70.33 81.41 58.06 :	VAL CA 165	69.12 69.12 59.65 70.32 70.32 58.95
VAL CB 165	70.28 78.85 58.10 :	VAL CG1 165	70.22 70.22 56.60
VAL CG2 165 VAL O 165	71.39 77.94 58.53 : 72.65 80.69 59.47 :		71.53 71.53 59.89
PRO CD 166	72.65 80.69 59.47 : 70.02 80.18 61.83 :	PRO N 166 PRO CA 166	71.33 71.33 61.21
PRO CB 166	71.61 80.87 63.44 :	PRO CG 166	72.39 72.39 62.18 70.37 70.37 63.30
PRO C 166	73.39 79.42 62.28 :	PRO 0 166	73.13 73.13 61.82
PHE N 167 PHE CB 167	74.51 79.62 62.99 :	PHE CA 167	75.58 75.58 63.00
PHE CB 167 PHE CD1 167	76.93 79.35 63.24 : 77.31 79.90 60.80 :	PHE CG 167	77.27 77.27 62.12
PHE CEL 167	77.31 79.90 60.80 : 77.61 80.79 59.78 :	PHE CD2 167	77.54 77.54 62.44 77.84 77.84 61.41
PHE CZ 167	77.88 82.10 60.10 :	PHE C 167	77.84 77.84 61.41 75.32 75.32 64.04
PHE 0 167	75.74 77.66 65.18 :	HIS N 168	74.48 74.48 63.59
HIS CA 168 HIS CG 168	74.02 75.56 64.44 :		72.54 72.54 64.07
HIS ND1 168	72.40 74.78 62.65 : 72.67 73.58 62.17 :		72.07 72.07 61.60
HIS NE2 168	72.16 74.83 60.51 :	HIS C 168	72.52
		- 100	14.31 14.31 04.23

HIS 0 168	75.89 74.50 63.41		2
LEU CA 169			
LEU CG 169			
LEU CD2 169			
LEU 0 169	76.63 70.41 63.29		
GLY CA 170			
GLY 0 170		: GLY C 170	75.76 75.76 60.21
THR CA 171		: THR N 171	76.43 76.43 60.76
		: THR CB 171	77.32 77.32 60.78
THR OG1 171 THR C 171		: THR CG2 171	78.09 78.09 60.04
		: THR 0 171	79.20 79.20 60.24
ARG N 172 ARG CB 172		: ARG CA 172	80.02 80.02 57.72
ARG CD 172		: ARG CG 172	80.98 80.98 55.60
ARG CD 172		: ARG NE 172	81.61 81.61 53.68
ARG 02 172		: ARG NH1 172	83.48 83.48 52.41
ARG 0 172		: ARG C 172	81.19 81.19 58.13
GLN CA 173		: GLN N 173	82.26 82.26 58.64
GLN CG 173		: GLN CB 173	84.27 84.27 59.96
GLN OE1 173			83.89 83.89 62.32
GLN E21 173		: GLN NE2 173	83.49 83.49 62.76
GLN C 173	82.79 71.07 62.29		83.98 83.98 63.56
VAL N 174	84.30 73.96 57.54		84.82 84.82 57.25
VAL CB 174	84.36 75.00 56.73		84.99 84.99 55.42
VAL CG2 174	84.46 76.33 54.74		85.10 85.10 53.40
VAL 0 174	83.02 76.10 54.42		86.54 86.54 55.38
CYS CA 175	87.10 74.61 54.32		87.27 87.27 56.44
CYS 0 175	88.72 75.21 56.45 88.38 76.15 58.63		89.18 89.18 57.81
CYS SG 175			89.33 89.33 55.45
ILE CA 176		ILE N 176	90.49 90.49 58.06
ILE CG2 176			92.31 92.31 59.73
ILE CD1 176	_ · _ · ·		92.10 92.10 59.41
ILE 0 176			91.50 91.50 59.02
ALA CA 177			91.09 91.09 59.83
ALA C 177	91.09 80.50 60.79 :	ALA CB 177	90.42 90.42 58.46
TRP N 178	92.05 81.32 61.22 :		90.07 90.07 61.45
TRP CB 178			91.79 91.79 62.24
TRP CD2 178	92.82 82.24 63.42 : 95.21 82.93 62.51 :		94.35 94.35 63.21
TRP CE3 178	95.20 84.08 61.74 :		96.43 96.43 62.76
TRP NEI 178	96.24 81.23 63.51 :		94.98 94.98 63.82
TRP CZ3 178	96.39 84.55 61.23 :	TRP CH2 178	97.63 97.63 62.25
TRP C 178	91.81 83.68 61.56 :		97.60 97.60 61.47 91.75 91.75 62.23
SER N 179	91.89 83.74 60.22 :	SER CA 179	
SER CB 179	92.99 85.72 59.37 :		91.68 91.68 59.45 92.93 92.93 58.45
SER C 179	91.24 84.42 58.08 :	SER 0 179	91.74 91.74 57.73
SER N 180	90.40 85.09 57.25 :		89.85 89.85 55.99
SER CB 180	88.69 83.68 56.23 :		87.47 87.47 56.65
SER C 180	89.32 85.70 55.03 :	SER 0 180	89.21 89.21 55.37
SER N 181	88.93 85.24 53.85 :	SER CA 181	88.24 88.24 52.86
SER CB 181	89.17 86.96 52.10 :	SER OG 181	88.58 88.58 50.90
SER C 181	87.68 85.00 51.90 :	SER 0 181	88.37 88.37 51.58
SER N 182		SER CA 182	85.87 85.87 50.46
SER CB 182		SER OG 182	85.53 85.53 52.29
SER C 182		SER 0 182	84.89 84.89 49.53
CYS N 183		CYS CA 183	84.49 84.49 47.08
CYS C 183	4. 4.	CYS O 183	84.79 84.79 45.99
CYS CB 183		CYS SG 183	87.08 87.08 45.92
HIS N 184		HIS CA 184	82.97 82.97 44.11
HIS CB 184	81.51 83.24 44 53	HIS CG 184	80.85 80 85 43.64

HIS ASP ASP ASP GLY GLY LYS	CEI C N CB ODI C N C N	184 185 185 185 185 186 186 187	79.99 83.17 83.99 85.53 86.23 82.19 81.09 82.19 83.36	80.3 84.14 83.56 83.49 81.42 84.03 83.36 81.59 79.00	38.51	: HI : HI : AS : AS : AS : GL : GL : LYS : LYS	S NES S O P CA P CG P ODS P O Y CA Y O S CA S CG	2 184 184 185 185 185 186 186 187	80.13 82.53 84.26 85.45 84.62 83.44 81.15 80.04 82.19	3 80.13 41.90 82.52 42.42 84.26 40.57 85.45 39.82 84.62 40.44 83.44 38.28 81.15 38.94 80.04 39.16 82.19 38.42 83.51 36.21	
LYS LYS		187 187	84.60 86.68			: LYS		187 187	85.61 82.21		
LYS ALA		187	81.50			: ALA		188	82.97	82.97 40.82	
ALA		188 188	82.96 83.50		42.14	: ALA		188 188	83.83 83.78		
TRP	N	189	83.53		44.49		CA	189	84.00		
TRP		189	83.36		46.95		CG	189	81.91	81.91 47.16	
	CD2 CE3		81.51 82.11		47.72 48.32		CE2		80.14		
	NEI		79.79		46.96		CD1		80.86 79.36	- · · · •	
TRP		189	81.32		48.74		CH2		79.96	79.96 48.57	
TRP		189	85.51		45.85			189	86.03	86.03 45.58	
LEU LEU		190 190	86.22 88.42		46.27 45.99			190	87.62	87.62 46.69	
LEU			90.75		46.37			190 190	89.81 90.35	89.81 46.60 90.35 46.00	
LEU		190	87.55			: LEU		190	86.73	86.73 48.52	
HIS		191	88.31		49.06			191	88.35	88.35 50.44	
HIS HIS		191	87.72 85.98		51.37 50.25			191	86.28	86.28 51.02	
HIS			84.15		50.72				85.12 84.69	85.12 51.29 84.69 50.10	
HIS		191	89.85		50.73			191	90.61	90.61 50.19	
VAL		192	90.33			VAL		192	91.74	91.74 51.75	
VAL VAL		192 192	92.43 92.28			VAL			91.87	91.87 49.83	
VAL		192	90.90		52.16 : 53.89 :			192 193	91.63 92.24	91.63 53.24	
CYS		193	92.07	80.52		CYS		193	93.48	92.24 53.78 93.48 55.67	
CYS		193	94.40			CYS		193	91.49	91.49 55.26	
CYS ILE		193			54.29					93.70 56.85	
ILE			95.02 96.63	81.33	57.41 : 58.12 :	ILE	CB CC1	194	95.31 95.38	95.31 57.44 95.38 56.03	
ILE			95.50			ILE		194	95.11	95.11 58.80	
ILE (194	94.30	81.04	59.67 :			195	95.96	95.96 59.09	
THR (195		79.26				195	95.61	95.61 60.81	
THR (195		77.24 79.12		THR THR	CG2		94.57	94.57 61.92	
GLY I		196		78.77		GLY		195 196	98.43 99.30	98.43 59.74 99.30 62.15	
GLY (С	196	99.81	79.28	63.22 :	GLY	0			99.11 63.99	
ASP 1		197	101.12		63.25 :			197	101.82	101.82 64.21	
ASP (197			64.27 : 65.32 :			197		103.39 65.24	
ASP (197		81.45	63.82 :	ASP		197 197		102.47 66.00 101.83 62.63	
ASP 1	4	198	101.82		64.82 :			198		101.85 64.56	
ASP (198			65.86 :		CG	198	100.67	100.67 66.72	
ASP (84.28	66.20 :					100.75 67.91	
LYS 1					63.72 : 64.27 :			198 199		102.92 62.60 105.45 63.67	
LYS C		199			64.70 :			199		106.32 66.04	

LYS CD 106.35 199 86.11 66.02 : LYS CE 199 107.79 107.79 65.96 LYS NZ 199 107.84 87.99 65.34 : LYS C 199 105.67 105.67 62.43 LYS 0 199 106.57 83.50 61.67 : ASN N 104.86 104.86 62.13 200 105.08 ASN CA 200 81.36 60.91 : ASN CB 200 106.14 106.14 61.24 ASN CG 200 106.87 79.75 60.03 : ASN OD1 200 106.75 106.75 58.87 **ASN ND2 200** 107.67 78.73 60.36 : ASN D22 200 107.67 107.67 61.29 80.73 60.31 : ASN O ASN C 200 103.79 200 103.67 103.67 59.97 ALA N 201 102.75 81.56 60.19 : ALA CA 201 101.48 101.48 59.64 100.52 ALA CB 201 82.30 59.82 : ALA C 101.52 101.52 58.18 201 ALA O 201 102.43 81.08 57.40 : THR N 100.47 100.47 57.79 202 THR CA 202 100.31 79.51 56.44": THR CB 202 100.84 100.84 56.46 THR OG1 202 100.18 77.28 55.40 : THR CG2 202 100.74 100.74 57.87 79.76 55.99 : THR O THR C 202 98.85 202 97.86 97.86 56.73 98.77 ALA N 203 80.32 54.78 : ALA CA 203 97.55 97.55 54.13 ALA CB 203 97.62 81.95 53.42 : ALA C 203 97.21 97.21 53.06 ALA O 203 98.01 79.39 52.10 : SER N 204 96.07 96.07 53.11 SER CA 204 95.74 77.88 52.02 : SER CB 204 95.24 95.24 52.59 SER OG 204 95.81 76.32 53.88 : SER C 204 94.68 94.68 51.11 SER O 204 93.78 79.18 51.58 : PHE N 205 94.82 94.82 49.82 PHE CA 205 93.88 78.71 48.82 : PHE CB 205 94.66 94.66 47.67 PHE CG 205 95.39 80.58 48.21 : PHE CD1 205 96.69 96.69 48.74 PHE CD2 205 94.71 81.79 48.26 : PHE CE1 205 97.29 97.29 49.31 PHE CE2 205 95.32 82.90 48.83 : PHE CZ 205 96.60 96.60 49.36 PHE C 205 93.10 77.48 48.39 : PHE O 205 93.61 93.61 47.71 ILE N 206 91.86 77.39 48.88 : ILE CA 206 90.95 90.95 48.62 ILE CB 206 90.21 75.94 49.92 : ILE CG2 206 89.07 89.07 49.73 ILE CG1 206 91.24 75.32 50.82 : ILE CD1 206 90.96 90.96 52.30 ILE C 206 90.02 76.83 47.57 : ILE O 206 89.43 89.43 47.79 TYR N 207 89.91 76.22 46.42 : TYR CA 207 89.06 89.06 45.35 TYR CB 207 89.83 77.19 44.20 : TYR CG 207 88.98 88.98 43.00 TYR CD1 207 88.98 76.79 41.90 : TYR CE1 207 88.27 88.27 40.77 TYR CD2 207 88.24 78.78 42.98 : TYR CE2 207 87.52 87.52 41.87 TYR CZ 207 87.55 78.32 40.78 : TYR OH 207 86.85 86.85 39.65 TYR C 207 88.34 75.43 44.87 : TYR O 207 88.92 88.92 44.46 ASP N 208 87.03 75.66 44.79 : ASP CA 208 86.05 86.05 44.42 ASP CB 208 86.36 74.17 43.05 : ASP CG 208 85.21 85.21 42.43 ASP OD1 208 85.07 73.51 41.22 : ASP OD2 208 84.50 84.50 43.15 ASP C 208 86.23 73.62 45.49 : ASP O 208 86.04 86.04 46.66 GLY N 209 86.57 72.37 45.31 : GLY CA 209 86.76 86.76 46.50 GLY C 209 88.18 71.51 47.07 : GLY 0 209 88.41 88.41 48.27 ARG N 210 89.10 71.61 46.12 : ARG CA 210 90.51 90.51 46.29 ARG CB 210 91.23 71.29 44.94 : ARG CG 210 90.50 90.50 43.67 ARG CD 210 69.60 43.81 : ARG NE 89.78 210 89.07 89.07 42.61 ARG CZ 210 87.81 69.58 42.33 : ARG NH1 210 87.27 87.27 41.21 ARG NH2 210 87.10 70.42 43.12 : ARG C 210 91.22 91.22 47.07 210 ARG 0 90.79 73.58 47.17 : LEU N 211 92.44 92.44 47.50 LEU CA 211 93.37 73.07 48.08 : LEU CB 211 94.15 94.15 49.18 LEU CG 211 73.40 50.09 : LEU CD1 211 94.86 94.78 94.78 51.55 73.46 49.61 : LEU C LEU CD2 211 96.27 211 94.21 94.21 46.82 LEU 0 211 94.75 72.23 46.38 : VAL N 94.25 212 94.25 46.12 VAL CA 212 95.03 74.54 44.87 : VAL CB 212 94.19 94,19 43,84 VAL CG1 212 94.91 75.55 42.51 : VAL CG2 212 92.93 92.93 43.50 VAL C 212 96.40 75.23 45.10 : VAL O 212 97.23 97.23 44.20 ASP N 213 75.81 46.28 : ASP CA 96.73 97.93 97.93 46.53 213 ASP CB 213 97.89 77.90 45.73 : ASP CG 99.24 45.21 213 99.24 ASP OD1 213 99.29 78.88 44.09 : ASP OD2 213 100.24 100.24 45.91 76.97 47.99 : ASP O ASP C 213 98.08 213 97.15 97.15 48.75 SER N 214 77.53 48.41 : SER CA 99.20 214 99.39 99.39 49 76

SE	R CE	214	99.70	76.86	50.71		: SEF	OG S	214	100.7	3 100.7	3 50.13
SE	R C	214	100.59		49.74		: SER		214			8 48.70
	E N	215	100.81		50.86		: ILE		215			7 50.98
	E CB	215	101.38		50.35				2 215			2 51.29
		215	102.64		49.83				215			
	E C	215	102.20									5 49.05
					52.45		: ILE		215			0 53.28
	YN	216	103.45		52.84		: GLY		216			8 54.26
	Y C	216	103.97		54.64				216	104.02	104.0	2 53.77
	R N	217	104.04	82.97	55.94	:	SER	CA	217	104.28	104.28	3 56.54
SE	R CB	217	104.50	84.09	58.01	:	SER	OG	217	104.24	104.24	4 58.80
SE	₹C	217	105.50	84.99	55.95	:	SER	0	217			56.08
TRI	N S	218	105.42		55.26	:			218			L 54.75
	P CB	218	106.32		53.49				218			7 53.48
		218	103.87		52.87				218			53.14
		218	103.34		52.15		TDD		218			
		218	103.83			•						54.08
					53.85				218			52.69
	CZ3		102.04		51.69				218		101.28	
TRE		218	107.25		55.76				218		108.39	
SER		219	106.63		56.84				219	107.28	107.28	57.77
	CB	219	106.61	90.43	57.88	:	SER	OG	219	106.58	106.58	56.70
SER	C	219	107.22	88.40	59.15	:	SER	0	219		107.45	
GLN	l N	220	106.92	87.11	59.25	:	GLN	CA	220		107.01	
GLN	СВ	220	108.51			:			220		109.36	
	CD	220	109.53		58.44				220		109.30	
	NE2		109.96		58.09							
	E22		109.97		57.12						110.20	
GLN		220							220		106.27	
			106.61		62.82				221		105.17	
	CA	221	104.38		62.35				221		105.03	
ASN		221	104.42		64.04						104.34	
	ND2		103.85		64.20					103.72	103.72	63.43
	D22		103.57		65.11				221	102.94	102.94	61.87
ASN		221	102.63		61.15			N	222	102.13	102.13	62.20
ILE	CA	222	100.71	87.40	61.95	:	ILE	CB	222	99.92	99.92	63.00
ILE	CG2	222	98.46	87.77	62.89	:	ILE	CG1	222		100.42	
ILE	CDI	222	99.91		65.52				222		100.21	
ILE	.0	222	99.71			:			223		100.39	
LEU		223	99.89				LEU		223		100.33	
LEU		223	99.90		56.06							
	CD2		100.43				LEU				100.38	
		223		04.10	55.70				223	98.36	98.36	58.36
LEU			97.78	86.37			ARG		224	97.68		57.74
ARG		224	96.27	88.42			ARG		224	95.98		58.80
ARG		224	96.76	89.92			ARG		224	97.22	97.22	59.96
ARG		224	98.35	91.42		:	ARG		224	99.30	99.30	60.98
ARG	NH1	224	100.27	92.07	61.85	:	ARG	NH2	224	99.35	99.35	60.31
ARG	С	224	95.68	88.85	56.64	:	ARG	0	224	96.41		55.77
THR	N	225	94.35	88.75		:	THR		225	93.64		55.35
THR	CB	225	93.50	88.05		:	THR		225	93.09		53.13
	CG2		92.60	87.00		:	THR		225	92.29		55.69
THR		225	91.93	90.18		:	GLN		226			
GLN		226	90.31							91.56		54.59
GLN				91.02			GLN		226	89.61	89.61	
		226	89.11	91.48			GLN		226	90.18	90.18	
	OEl		90.11		49.88					91.27	91.27	
	E21		91.29		52.67				226	92.04	92.04	51.13
GLN		226	89.34	90.87					226	8 9 .05	89.05	56.37
GLU		227	88.88	89.65	56.02	:	GLU	CA	227	87.81		56.94
GLU		227	87.95	89.87	58.32		GLU		227	89.33	89.33	
GLU	CD	227	89.81		59.17		GLU			89.31	89.31	58.60
GLU	OE2	227	90.70	88.16			GLU			86.48	86.48	
										JJ. 70	~ ~ . ~ 0	J J U

GLU 0 22 SER CA 22 SER CA 22 SER OG 22 SER 0 22 GLU CA 22 GLU CG 22 GLU OE1 22 GLU C 23 CYS C 23 VAL N 23 VAL CB 23 VAL CG2 23 VAL O 23 CYS CA 23 CYS CA 23 CYS CA 23 CYS CA 23 CYS SG 232 ILE CA 233	8 85.2 8 85.7 8 86.6 9 84.6 9 82.9 9 81.5 9 85.8 9 86.3 1 86.5 8 87.0 8 88.2 8 87.0 8 88.2 8 88.2 8 86.7 8 86.7	2 90.05 54.34 1 92.50 53.68 0 89.13 52.58 1 89.29 50.71 6 89.54 48.75 8 91.42 48.46 0 89.80 49.87 1 88.93 49.03 2 89.55 46.76 8 88.06 47.89 7 89.88 45.59 91.70 44.32 4 92.30 43.06 8 9.50 43.29 2 88.46 41.09 8 9.32 39.78 8 6.12 42.83	SER CB 228 SER C 228 SER CB 229 SER CB 229 SER CB 229 SER CB 230 SER CB 230 SER CB 231 SER CB 231 SER CB 231 SER CB 232 SER CB 233	84.91 84.91 54.40 85.52 85.52 52.91 84.51 84.51 52.09 83.26 83.26 50.18 81.66 81.66 48.38 80.72 80.72 47.99 86.16 86.16 49.90 97.31 87.31 48.04 85.28 85.28 46.75 87.72 87.72 47.82 36.24 86.24 44.43 86.20 86.20 45.53 87.03 87.03 43.24 86.34 86.34 42.18 86.29 86.29 39.85 86.56 86.56 41.21 87.12 87.12 38.87
ILE CG2 233 ILE CD1 233	86.36 86.81	92.07 36.32 93.83 38.58	: ILE CG1 233	87.02 87.02 37.55 36.56 86.56 38.75 87.28 87.28 36.55
ILE 0 233 ASN CA 234 ASN CG 234	88.49 86.86 86.59	89.06 36.51 87.70 34.65	: ASN N 234 : ASN CB 234	86.47 86.47 35.78 87.61 87.61 33.60
ASN ND2 234 ASN D22 234	86.64 85.90	90.78 33.64 91.38 33.44	: ASN D21 234 : ASN C 234	85.67 85.67 32.33 87.42 87.42 34.20 87.68 87.68 34.96
ASN 0 234 GLY CA 235 GLY 0 235	38.18 88.46 89.84	84.86 36.54	: GLY C 235	87.69 87.69 36.21 89.50 89.50 37.58
THR CA 236 THR OG1 236	91.05 92.25	86.67 38.67	THR N 236 THR CB 236 THR CG2 236	90.00 90.00 37.70 92.02 92.02 38.01 93.31 93.31 38.79
THR C 236 CYS N 237	90.44 90.66	87.23 39.93 : 86.63 41.07 :	THR 0 236 CYS CA 237	89.68 89.68 39.84 90.18 90.18 42.32
CYS C 237 CYS CB 237	91.35 89.73	87.87 42.95 : 86.07 43.26 :	CYS SG 237	92.49 92.49 42.61 88.45 88.45 42.49
THR N 238 THR CB 238	91.19 92.35	88.79 43.86 : 90.88 43.55 :		92.32 92.32 44.36 93.60 93.60 43.84
THR CG2 238 THR O 238	91.22	91.86 43.87 : 89.90 46.20 :	THR C 238	91.99 91.99 45.82
VAL CA 239	92.71	89.49 48.09 :	VAL N 239 VAL CB 239	92.94 92.94 46.66 92.75 92.75 48.78
VAL CG1 239 VAL C 239	94.09 93.85	87.39 48.48 :	VAL CG2 239	92.71 92.71 50.29
VAL N 240	93.80	90.43 48.51 : 91.13 49.65 :	VAL O 239 VAL CA 240	94.80 94.80 47.75 94.93 94.93 50.07
VAL CB 240	94.64	93.56 50.20 :	VAL CG1 240	93.67 93.67 49.12
VAL CG2 240 VAL 0 240	94.19 94.29	93.95 51.59 : 90.98 52.19 :	VAL C 240	95.22 95.22 51.43
MET CA 241	96.97		MET N 241 MET CB 241	96.51 96.51 51.77 97.49 97.49 52.64
MET CG 241	96.47	88.09 52.29 :	MET SD 241	97.22 97.22 52.41
MET CE 241 MET O 241	96.97 98.82		MET C 241	98.12 98.12 53.54
THR CA 242	99.44		THR N 242 THR CB 242	98.31 98.31 54.86 99.03 99.03 55.95
THR OG1 242	98.78	93.30 57.34 :	THR CG2 242	97.76 97.76 55.33
THR C 242 ASP N 243	100.09 101.41		THR 0 242	99.43 99.43 57.23
ASP CB 243			ASP CA 243 ASP CG 243	102.21 102.21 57.67 103.55 103.55 57.72
ASP OD1 243	103.79	87.44 57.00 :	ASP OD2 243	103.75 103.75 58.94
ASP C 243 GLY N 244	103.09 103.31	91.66 58.21 : 91.83 59.50 :		103.63 103.63 57.37 104.13 104.13 59 94

GLY C 244 SER N 245 SER CB 245 SER C 245 ALA N 246 ALA CB 246 ALA O 246 SER CA 247 SER OG 247	103.92 94.67 61.60	: SER CA 245 : SER OG 245 : SER O 245 : ALA CA 246 : ALA C 246 : SER N 247 : SER CB 247	104.33 104.33 64.75 101.63 101.63 61.71 99.98 99.98 64.01 99.94 99.94 64.10 100.64 100.64 65.07 100.20 100.20 66.56
SER 0 247 GLY CA 248	103.04 99.67 66.04	: SER C 247 : GLY N 248 : GLY C 248	102.26 102.26 65.09 102.60 102.60 63.81 103.85 103.85 61.81
GLY 0 248		: ARG N 249	104.92 104.92 61.05
ARG CA 249		: ARG CB 249	106.21 106.21 59.01
ARG CG 249 ARG NE 249		: ARG CD 249	107.22 107.22 56.76
ARG NH1 249		: ARG CZ 249 : ARG NH2 249	109.32 109.32 57.77 108.73 108.73 58.17
ARG C 249		: ARG 0 249	105.24 105.24 60.25
ALA N 250	104.15 97.74 58.35	: ALA CA 250	103.92 103.92 58.09
ALA CB 250	102.53 95.96 58.56		104.02 104.02 56.59
ALA 0 250 ASP CA 251	104.03 97.10 55.81 104.22 94.49 54.83	: ASP N 251	104.07 104.07 56.21
ASP CG 251	105.88 93.14 53.41		105.25 105.25 54.76 106.99 106.99 53.44
ASP OD2 251	105.29 93.44 52.36		102.90 102.90 54.26
ASP 0 251	102.42 92.92 54.64	: THR N 252	102.37 102.37 53.33
THR CA 252	101.10 94.54 52.69		100.22 100.22 52.81
THR OG1 252 THR C 252	100.03 96.13 54.20 101.32 94.19 51.24	: THR CG2 252	98.88 98.88 52.13
ARG N 253	100.68 93.13 50.75		102.05 102.05 50.54 100.74 100.74 49.34
ARG CB 253	101.65 91.57 49.05	: ARG CG 253	102.73 102.73 50.03
ARG CD 253	104.12 91.57 49.69		104.97 104.97 49.57
ARG CZ 253 ARG NH2 253		: ARG NH1 253	106.74 106.74 50.14
ARG 0 253	106.47 90.98 51.28 98.49 92.06 49.88		99.31 99.31 49.01 99.09 99.09 47.70
ILE CA 254	97.84 92.18 47.02		97.46 97.46 46.26
ILE CG2 254	96.34 93.22 45.27	: ILE CG1 254	97.06 97.06 47.26
ILE CD1 254	98.25 95.43 47.68		98.10 98.10 46.04
ILE O 254 LEU CA 255	98.85 91.18 45.06 97.58 88.78 45.56		97.40 97.40 46.32
LEU CG 255	98.31 87.44 47.81		97.60 97.60 46.46 98.79 98.79 47.83
	99.56 88.28 48.03	LEU C 255	96.42 96.42 44.62
LEU 0 255	95.28 88.91 44.99	PHE N 256	96.76 96.76 43.40
PHE CA 256 PHE CG 256	95.89 88.12 42.29		96.42 96.42 41.05
PHE CG 256 PHE CD2 256	96.51 90.27 41.20 : 95.48 91.05 40.69 :	PHE CD1 256	97.58 97.58 41.87
PHE CE2 256	95.55 92.42 40.87 :		97.63 97.63 42.04 96.62 96.62 41.54
PHE C 256	95.92 86.61 42.11 :		97.00 97.00 41.98
ILE N 257	94.76 85.96 42.05 :	ILE CA 257	94.69 94.69 42.01
ILE CB 257 ILE CG1 257	94.56 84.00 43.52 : 93.72 82.76 43.52 :		94 04 94 04 44 47
ILE C 257	93.72 82.76 43.52 : 93.64 83.95 41.08 :		93.70 93.70 44.97 92.48 92.48 41.08
GLU N 258	94.04 83.00 40.26 :		92.48 92.48 41.08 93.19 93.19 39.25
GLU CB 258	93.83 82.52 37.90 :	GLU CG 258	93.64 93.64 37.50
GLU CD 258 GLU OE2 258	94.37 84.40 36.25 :		94.34 94.34 35.22
GLU 0E2 258 GLU 0 258	94.97 85.47 36.35 : 93.95 80.23 39.81 :		92.99 92.99 39.60
GLU CA 259		GLU N 259 GLU CB 259	91.72 91.72 39.74 91.41 91.41 38.97
GLU CG 259	90.42 78.89 38.00 :		
GLU 0E1 259		GLU 0E2 259	

CLY C 260 94 92 27 79, 44 42 41 CLY CA 260 93.00 93.00 43.55 CLY C 260 94.1 79.15 43.49 CLY C 260 95.08 95.18 44.54 54 LYS CB 261 95.98 79.36 42.31 LYS CA 261 98.42 98.42 40.85 LYS CD 261 98.45 76.86 40.31 LYS CC 261 98.42 98.42 40.85 LYS CD 261 98.73 81.81 41.38 LYS CC 261 99.55 99.85 41.61 LYS CA 261 100.09 76.25 43.08 LYS C 261 96.90 96.90 42.15 LYS CD 261 96.90 76.90 42.15 LYS CD 261 96.90 76.90 42.15 LYS CD 261 99.91 39.37 32.69 43.14 138 LILE CA 262 99.33 99.33 44.31 LLE CA 262 99.95 82.60 46.83 LLE CA 262 99.39 99.56 82.60 46.83 LLE CA 262 99.31 99.31 40.31 LLE CA 263 99.99 84.10 39.72 VAL CB 263 98.61 98.61 45.62 VAL CA 263 99.29 84.10 39.72 VAL CB 263 99.11 99.11 41.85 LLE CA 263 99.29 84.10 39.72 VAL CB 263 99.31 99.31 83.77 VAL CB 263 100.13 85.38 39.76 VAL CA 263 99.29 84.10 38.39 97.61 VAL CA 263 100.13 85.38 39.76 VAL CA 263 100.85 38.79 HIS CB 264 100.26 88.50 39.86 HIS CA 264 101.24 101.24 39.65 HIS CD 264 101.89 88.88 38.47 HIS CA 264 101.24 101.24 39.65 HIS CB 264 100.67 88.00 42.22 HIS CD 264 101.69 101.69 40.52 HIS CE 264 100.67 88.00 42.22 HIS CD 265 102.54 160.80 HIS CB 264 100.67 88.00 42.22 HIS CD 265 102.53 100.85 38.70 HIS CB 264 100.67 88.00 42.22 HIS CD 265 102.54 102.69 38.70 HIS CB 265 102.53 88.64 44.99 LILE CA 265 101.61 101.61 44.03 LLE CB 265 102.53 88.64 44.99 LILE CA 265 101.61 101.61 44.03 LLE CB 265 102.53 88.64 44.99 LILE CA 265 101.09 100.99 100.99 41.92 SER C 266 101.99 38.87 43.21 SER O 266 100.99 100.99 41.92 SER C 266 101.99 103.87 43.21 SER O 266 100.99 100.99 41.92 SER C 266 101.59 103.87 43.51 SER O 266 100.99 100.99 41.92 SER C 266 101.51 91.83 44.26 SER C 266 101.90 101.07 46.24 DROW 267 102.20 96.98 45.80 PRO CD 267 104.36 10.99 100.99 41.92 SER C 266 101.51 91.83 44.26 SER C 266 101.99 100.99 41.92 SER C 266 100.86 93.87 43.21 SER O 266 100.99 100.99 41.92 SER C 266 100.89 38.87 43.51 SER O 266 100.99 100.99 41.92 SER C 266 100.99 38.87 43.21 SER O 266 100.99 100.99 41.92 SER C 266 100.99 38.87 43.21 SER O 266 100.99 38.99 39.99 39.99 39.99 39.99 39.99 39.99	GLU C 259	9 92.07 78.68 41.33 :	GLU 0 259	92.51 92.51 41.30
CLYS N. 261 95.08 79.36 42.31 : LYS CA 261 96.50 96.50 42.16 LYS CB 261 96.96 78.88 40.81 : LYS CC 261 98.42 40.85 LYS CD 261 98.45 76.86 41.33 : LYS CC 261 99.85 99.85 41.63 LYS NZ 261 100.09 76.25 43.08 : LYS C 261 99.85 99.85 41.63 LYS NZ 261 96.37 81.81 41.38 : LIE N 262 97.82 97.82 43.06 LYS NZ 261 96.37 81.81 41.38 : ILE C 262 99.93 99.33 44.33 LEC CG 262 99.91 84.21 44.37 : ILE CG 262 98.61 98.61 45.62 LEC CG 262 99.91 84.21 44.37 : ILE CG 262 98.61 98.61 45.62 LEC CG 262 99.91 84.21 44.37 : ILE CG 262 99.91 99.11 41.85 LEC CG 263 99.56 82.60 46.83 : ILE C 262 99.91 99.11 41.85 LEC CG 263 99.56 82.90 41.61 : VAL N 263 98.61 98.62 40.96 VAL CG 263 99.56 82.90 41.61 : VAL CG 263 98.13 98.31 38.54 VAL CG 263 99.97 82.80 38.37 : VAL CG 263 98.31 98.31 38.77 VAL C 263 100.13 85.38 39.76 : VAL CG 263 98.31 98.31 38.77 VAL C 263 100.04 85.29 40.78 : HIS CG 264 100.81 100.85 30.79 HIS N 264 100.26 88.50 39.86 : HIS CG 264 101.24 101.24 39.65 HIS CG 264 101.89 89.88 38.47 : HIS NDI 264 101.69 101.69 40.52 HIS CG 264 102.59 91.32 39.93 : HIS ND 264 101.69 101.69 40.52 HIS CG 264 100.67 88.00 42.22 : HIS C 265 102.61 102.61 46.37 LIE CG 265 102.53 88.64 44.99 : ILE CG 265 102.51 102.61 46.37 LIE CG 265 102.53 88.64 44.99 : ILE CG 265 102.51 102.61 46.37 LIE CG 265 102.53 88.64 44.99 : ILE CG 265 102.51 102.61 46.37 LIE C 265 102.53 88.64 49.91 : LE CG 265 102.51 102.61 46.37 LEC C 266 100.86 93.87 43.21 : SER CG 266 100.99 100.99 41.92 SER C 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 100.89 93.87 45.43 : SER CG 266 100.99 100.99 41.92 SER C 266 101.51 91.83 54.26 : FRO CD 267 104.36 102.54 46.28 FRO CG 267 103.18 95.53 45.77 : PRO C 267 104.36 102.54 46.38 LEU CA 268 101.25 98.99 48.51 : LEU CD 268 98.73 98.73 49.57 LEU CD 268 100.10 99.61 51.68 : LEU CD 268 98.73 98.73 49.57 LEU CD 268 100.13 99.76 50.17 : LEU CD 268 98.73 98.73 49.57 LEU CD 268 100.13 99.76 50.17 : LEU CD 268 98.73 98.73 49.57 LEU CD 268 100.13 99.76 50.17 : LEU CD 268 98.73 98.73 49.57 LEU CD 279 101.00 103.64 46.94 : SER		0 92.27 79.44 42.41 :	GLY CA 260	
LYS CB 261 95.08 79.36 42.31 LYS CA 261 96.50 96.50 42.14 LYS CB 261 98.45 76.86 41.33 LYS CC 261 99.50 99.85 41.63 LYS CD 261 100.09 76.25 43.08 LYS CC 261 99.95 99.85 41.63 LYS CD 261 100.09 99.85 41.63 LYS CC 261 11.6 CD 262 99.37 32.69 43.14 LEC CB 262 99.33 99.33 44.33 LEC CG 262 99.91 48.41 44.37 LEC CB 262 99.33 99.33 44.33 LEC CG 262 99.91 48.41 44.37 LEC CB 262 99.13 99.11 41.85 LLE CD 262 100.16 82.39 41.61 VAL CB 263 98.61 98.61 45.62 LLE CD 262 199.56 82.60 46.83 LEC CG 263 99.13 99.11 41.85 LYS CA 261 100.13 85.38 39.76 LYAL CB 263 99.31 97.31 87.74 VAL C 263 100.13 85.38 39.76 LYAL CB 263 100.85 100.85 100.85 18.79 LYAL CG 263 100.13 85.38 39.76 LYAL CO 264 101.24 101.24 39.65 HIS CB 264 100.26 88.50 39.86 HIS CB 264 101.24 101.24 39.65 HIS CB 264 100.67 88.00 42.22 HIS CB 264 101.24 101.24 39.65 HIS CB 264 100.67 88.00 42.22 HIS CB 264 101.24 101.69 101.69 40.52 HIS CB 264 100.67 88.00 42.22 HIS CB 265 102.59 88.70 HIS CB 265 102.53 88.64 44.99 LILE CG 265 102.69 38.70 HIS CB 265 102.53 88.64 44.99 LILE CB 265 102.65 102.13 90.77 43.73 LILE CB 265 100.99 100.99 41.92 SRR CB 266 100.86 93.87 43.21 SER CB 266 100.99 93.87 43.21 SER CB 266 100.99 93.87 44.26 SER CB 266 100.99 100.99 41.92 SER CB 266 100.86 93.87 43.21 SER CB 266 100.99 100.99 41.92 SER CB 266 100.86 93.87 43.21 SER CB 266 100.99 100.99 41.92 SER CB 266 100.89 93.87 43.21 SER CB 266 100.99 100.99 41.92 SER CB 266 100.89 93.87 43.21 SER CB 266 100.99 100.99 41.92 SER CB 266 100.81 99.38 44.26 SER CB 266 100.99 100.99 41.92 SER CB 266 100.80 93.87 43.21 SER CB 266 100.99 100.99 41.92 SER CB 266 100.89 93.87 43.21 SER CB 266 100.90 93.87 43.21 SER CB 267 100.90 100.90 44.06 SER CB 267 100.89 100.89 100.89 100.90 93.87 43.21 SER CB 267 100.90 100.90 100.90 93.16 SER CB 268 100.13 99.56 SO.17 SER CB 267 100.9		0 94.51 79.15 43.49		
LYS CB 261 96.96 78.88 40.81 : LYS CC 261 98.42 98.42 40.85 LYS CD 261 98.45 76.86 41.33 : LYS CC 261 99.35 99.85 41.63 LYS NZ 261 100.09 76.25 43.08 : LYS CC 261 96.99 99.85 41.63 LYS NZ 261 96.37 81.81 41.38 : ILE N 262 99.33 99.85 41.63 LEC CG 262 99.91 81.81 41.38 : ILE CG 262 99.33 99.33 44.33 LEC CG 262 99.91 44.21 44.37 : ILE CG 262 99.33 99.33 44.33 LEC CG 262 99.91 84.21 44.37 : ILE CG 262 99.31 99.33 44.33 LEC CG 262 99.91 84.21 44.37 : ILE CG 262 99.31 99.11 41.85 LEC CG 262 99.91 84.21 44.37 : ILE CG 262 99.31 99.11 41.85 LEC CG 263 99.29 84.10 39.72 : VAL CG 263 98.61 98.61 45.62 LEC CG 263 99.29 84.10 39.72 : VAL CG 263 98.31 98.31 38.54 VAL CG 263 100.13 85.38 39.76 : VAL CG 263 97.31 97.31 38.54 VAL CG 263 100.13 85.38 39.76 : VAL CG 263 97.31 97.31 38.77 VAL C 263 100.04 86.24 40.78 : HIS CG 264 101.24 39.65 HIS CG 264 101.89 89.88 38.47 : HIS ND 264 101.24 101.24 39.65 HIS CG 264 101.89 89.88 38.47 : HIS ND 264 101.24 101.24 39.65 HIS CG 264 100.67 88.00 42.22 : HIS O 264 102.69 101.69 40.52 HIS CG 264 100.66 88.72 42.73 : ILE CG 265 102.69 40.29 38.70 HIS N 265 101.66 88.72 42.73 : ILE CG 265 102.54 46.28 LEC CG 265 102.53 88.64 44.99 : ILE CG 265 102.54 46.28 LEC CG 265 102.03 88.64 44.99 : ILE CG 265 102.54 46.28 LEC CG 266 100.86 93.87 43.21 : SER CG 266 100.99 100.99 41.92 SER C 266 100.86 93.87 43.21 : SER CG 266 100.99 100.99 41.92 SER C 266 100.86 93.87 43.21 : SER CG 266 100.09 100.99 41.92 SER C 266 100.86 93.87 45.43 : SER CG 266 100.09 100.09 41.92 SER C 266 100.86 93.87 45.43 : SER CG 266 100.09 100.09 41.92 SER C 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 104.36 45.04 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CG 267 105.18 95.53 45.77 : PRO C 267 102.47 102.47 46.98 PRO CG 267 105.18 95.53 45.77 : PRO C 267 102.47 102.47 40.77 7.21 PRO CG 267 105.10 99.55 50.17 : LEU CD 268 98.73 98.73 98.73 99.55 LEU CD 268 100.09 96.15 16.88 : SER CG 271 100.09 100.09 50.16 SER CB 271 90.00 108.44 68.50 : GLN O 273 100.09 100.09 50.16 SER CB 271 90.00 108.44 68.50		1 95.08 79.36 42.31 :		1 - 1 - 2 - 3 - 4 - 1 - 3 - 4
LYS NZ 261 100.09 76.25 43.08 : LYS CZ 261 99.85 99.85 41.63 LYS NZ 261 100.09 76.25 43.08 : LYS CZ 261 96.90 96.90 42.15 LYS NZ 261 262 99.37 81.81 41.38 : ILE NZ 262 99.33 99.33 44.33 ILE CGZ 262 99.91 34.21 44.37 : ILE CGZ 262 99.11 99.11 41.85 ILE CDZ 262 99.56 82.60 46.83 : ILE CZ 262 99.11 99.11 41.85 ILE CDZ 262 99.56 82.60 46.83 : ILE CZ 262 99.11 99.11 41.85 ILE CZ 263 99.29 84.10 39.72 : VAL CZ 263 98.61 98.31 38.54 VAL CAZ 263 99.29 84.10 39.72 : VAL CZ 263 98.31 98.31 38.54 VAL CZ 263 100.16 82.89 38.37 : VAL CZ 263 98.31 97.31 85.37 VAL CZ 263 100.13 85.18 39.76 : VAL CZ 263 98.31 97.31 85.37 VAL CZ 263 100.13 85.18 39.76 : VAL CZ 263 100.85 100.85 100.85 18.79 HIS NZ 264 100.24 86.24 40.78 : HIS CZ 264 101.24 101.24 39.65 HIS CDZ 264 101.89 89.88 39.86 : HIS CZ 264 101.24 101.24 39.65 HIS CDZ 264 101.89 89.88 38.47 : HIS NDI 264 101.69 101.69 40.52 HIS CZ 264 100.67 88.00 42.22 : HIS 0Z 264 101.24 101.24 39.65 ILE CZ 264 100.67 88.00 42.22 : HIS 0Z 264 101.24 101.24 39.65 ILE CZ 265 102.53 88.64 44.99 : ILE CZ 265 102.54 102.54 46.28 ILE CZ 265 102.53 88.64 44.99 : ILE CZ 265 102.54 102.54 46.28 ILE CZ 265 102.51 89.74 45.15 : ILE CZ 265 102.54 102.54 46.28 ILE CZ 265 102.13 90.77 43.73 : ILE CZ 265 102.54 102.54 46.28 ILE CZ 265 102.13 90.77 43.73 : ILE CZ 265 102.54 102.54 46.28 SER CZ 266 101.99 93.87 45.43 : SER 0Z 266 101.99 101.90 44.06 SER CZ 267 103.28 95.20 47.07 : PRO CZ 267 104.36 100.99 41.92 SER CZ 268 100.13 99.56 50.17 : LEU NZ 268 101.61 101.07 46.24 PRO CZ 267 103.12 94.49 45.80 : PRO CZ 267 104.36 102.16 48.18 LEU CZ 268 100.13 99.56 50.17 : LEU CZ 268 101.53 101.53 47.74 ILE CZ 268 100.13 99.56 50.17 : LEU CZ 268 101.59 101.99 40.99 45.80 : PRO CZ 267 102.29 96.98 45.87 : LEU CZ 268 101.19 100.09 40.00 99.11 92.40 45.80 : PRO CZ 267 102.29 96.98 45.87 : LEU CZ 268 101.19 100.09 100.09 50.16 SER CZ 271 99.00 108.41 50.18 : SER CZ 271 100.09 100.09 50.16 SER CZ 271 99.00 108.41 50.18 : SER CZ 271 100.09 100.09 50.16 SER CZ 271 99.00 108.41 50.18 : SER CZ 271 100.09 100.09 50.16 SE		1 96.96 78.88 40.81 :		
LYS NZ 261 100.09 76.25 43.08 : LYS C 261 96.90 96.90 42.15 LYS O 261 96.37 81.81 41.38 : ILE N 262 97.82 97.82 43.06 ILE CA 262 98.37 32.69 43.14 : ILE C 262 262 99.33 99.33 44.21 LLE CD 262 99.91 34.21 44.37 : ILE CC 262 99.13 99.33 44.33 ILE CD 262 99.96 82.60 46.83 : ILE C 262 99.13 99.33 44.33 ILE CD 262 100.16 82.39 41.61 : VAL N 263 98.62 98.62 40.96 VAL CA 263 99.29 84.10 39.72 : VAL CB 263 98.61 98.61 45.62 ILE O 262 100.16 82.39 41.61 : VAL N 263 98.62 98.62 40.96 VAL CA 263 100.13 85.38 39.76 : VAL CG 263 97.31 98.31 38.54 VAL C 263 100.13 85.38 39.76 : VAL CG 263 97.31 97.31 38.54 VAL C 263 100.04 86.24 40.78 : HIS CA 264 100.85 100.85 18.79 ILS N 264 100.04 86.24 40.78 : HIS CA 264 101.24 101.24 39.65 ILE CD 264 101.89 89.88 38.47 : HIS ND 264 101.69 101.69 40.52 ILE CD 264 101.89 89.88 38.47 : HIS ND 264 101.69 101.69 40.52 ILE CD 265 101.66 88.72 42.73 : ILE CA 265 101.61 101.64 101.24 39.65 ILE CD 265 101.66 88.72 42.73 : ILE CA 265 102.64 102.69 38.70 ILE CD 265 101.66 88.72 42.73 : ILE CA 265 102.54 102.54 46.28 ILE CD 265 102.07 87.17 45.15 : ILE CD 265 102.54 102.54 46.28 ILE CD 265 102.07 87.17 45.15 : ILE CD 265 102.54 102.54 46.28 ILE CD 265 102.07 87.17 45.15 : ILE CD 265 102.54 102.54 46.28 ILE CD 265 102.99 93.87 43.21 : SER OC 266 101.99 100.99 41.92 SER N 266 101.51 91.83 44.26 : SER CA 266 101.99 100.99 41.92 SER C 266 101.99 93.87 43.21 : SER OC 266 101.90 10.99 44.06 SER C 266 101.99 93.87 43.21 : SER OC 266 101.90 100.99 41.92 SER C 266 101.99 93.87 43.21 : SER OC 266 101.90 100.99 41.92 SER C 266 100.98 95.53 45.77 : PRO CB 267 104.36 104.36 45.04 PRO CA 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.18 95.53 45.77 : PRO CB 267 104.77 104.77 47.21 PRO CB 267 105.18 95.53 45.77 : PRO CB 267 104.77 104.77 47.21 SER CB 271 100.09 93.87 43.21 : SER OC 266 101.09 100.09 40.95 SER C 266 100.98 95.55 50.77 : SER OC 271 100.99 100.99 41.99		l 98.45 76.86 41.33 :		
LIE CG 262 99.91 81.81 41.38 : ILE N 262 97.82 97.82 43.06 ILE CG 262 99.91 84.21 44.37 : ILE CG 262 99.33 99.33 49.33 ILE CG 262 99.91 84.21 44.37 : ILE CG 262 99.33 99.31 44.33 ILE CG 262 99.96 82.60 46.83 : ILE C 262 98.61 98.61 46.562 ILE O 262 100.16 82.99 41.61 : VAL N 263 88.62 40.96 VAL CA 263 99.29 84.10 39.72 : VAL CB 263 98.31 99.31 38.54 VAL CA 263 99.29 84.10 39.72 : VAL CB 263 98.31 99.31 38.54 VAL CG 263 100.13 85.38 39.76 : VAL CG 263 98.31 99.31 38.54 VAL CG 263 100.13 85.38 39.76 : VAL CG 263 100.85 100.85 180.85 ILE O 264 100.62 88.50 39.86 : HIS CG 264 100.81 100.81 100.81 ILE CB 264 100.62 88.50 39.86 : HIS CG 264 101.24 101.24 39.65 HIS CB 264 100.67 88.00 42.22 : HIS CG 264 101.24 101.24 39.65 HIS CB 264 100.55 88.64 44.99 : ILE CG 265 102.69 102.69 38.70 ILE CB 265 102.53 88.64 44.99 : ILE CG 265 102.54 102.59 38.70 ILE CB 265 102.53 88.64 44.99 : ILE CG 265 102.54 102.54 66.28 ILE CG 265 102.13 90.77 43.73 : ILE CG 265 102.54 102.54 46.28 ILE CG 265 102.13 90.77 43.73 : ILE CG 265 102.54 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE CG 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE CG 265 102.01 100.90 44.06 SER N 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER C 266 101.99 93.87 45.43 : SER O 266 101.07 101.07 46.24 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.36 104.36 45.04 PRO CA 268 100.13 99.56 50.17 : LEU CD 268 100.10 10.07 46.24 PRO CA 267 103.89 95.50 47.07 : PRO CB 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.36 104.36 45.04 PRO CA 268 100.13 99.56 50.17 : LEU CD 268 100.07 101.07 46.24 PRO CA 267 103.89 95.00 47.07 : PRO CB 267 104.36 104.36 45.04 PRO CA 268 100.13 99.56 50.17 : LEU CD 268 100.07 100.07 54.71 PRO CB 268 100.13 99.56 50.17 : LEU CD 268 100.07 100.07 54.71 PRO CB 268 100.10 99.61 51.68 : LEU C 268 101.07 100.07 54.71 PRO CB 271 100.05 106.44 88.99 : SER C 271 100.09 100.09 50.16 PRO				
ILE CG 262 99.3 37 32.69 43.14 : ILE CG 262 99.33 99.33 44.33 ILE CG 262 99.9 1			ILE N 262	
ILE CGI 262 99.95 84.10 39.77 ILE CGI 262 98.61 98.61 45.62 ILE O 262 100.16 82.39 41.61 VAL N 263 98.62 98.62 40.96 VAL CA 263 99.29 84.10 39.72 VAL CB 263 98.31 98.31 38.54 VAL CG 263 100.13 85.38 39.76 VAL O 263 100.85 100.85 38.79 VAL C 263 100.13 85.38 39.76 VAL O 263 100.85 100.85 38.79 VAL C 263 100.13 85.38 39.76 VAL O 263 100.85 100.85 38.79 HIS N 264 100.26 88.50 39.86 HIS CG 264 101.24 101.24 39.65 HIS CB 264 100.26 88.50 39.86 HIS CG 264 101.24 101.24 39.65 HIS CB 264 100.67 88.00 42.22 HIS O 264 101.69 101.69 40.52 HIS CEI 264 102.59 91.32 39.93 HIS NEZ 264 102.69 102.69 38.70 HIS C 264 100.67 88.00 42.22 HIS O 264 99.66 99.66 42.86 ILE C 265 102.07 87.17 45.15 HIE CGI 265 102.54 102.69 104.06 SER N 266 101.51 91.83 44.26 SER CA 266 101.90 101.90 44.06 SER C 266 101.99 93.87 43.21 SER OC 266 101.90 101.90 44.06 PRO N 267 103.12 94.49 45.80 PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 PRO CB 267 104.37 102.47 46.98 PRO CA 267 105.18 95.53 45.77 PRO C 267 102.47 102.47 46.98 FRO O 267 105.18 99.38 45.87 LEU N 268 101.09 101.07 44.99 LEU CG 268 100.10 99.56 50.17 LEU CDI 268 87.3 98.73 49.57 LEU CD 268 100.10 99.56 50.17 LEU CDI 268 87.3 98.73 49.57 SER N 271 100.05 106.47 48.94 SER O 271 100.07 101.07 49.79 SER N 271 100.05 106.47 48.94 SER O 271 100.09 100.99 40.16 SER C 271 99.00 108.41 50.18 SER O 271 100.09 100.99 50.16 SER C 271 100.05 106.47 48.94 SER O 271 100.09 100.99 50.16 SER C 272 100.01 105.44 SER O 271 100.09 100.99 50.16 SER C 273 100.41 102.57 47.10 ALA O 269 100.03 100.03 47.55 SER N 271 100.05 106.47 48.94 SER O 271 100.09 100.99 50.16 SER C 271 99.00 108.41 50.18 SER OC 271 100.09 100.99 50.16 SER C 271 99.00 108.41 50.18 SER OC 271 100.09 100.99 50.16 SER C 273 100.44 104.06 55.75 GIN NEZ 273 104.41 104.41 54.92 GLIN C 273 100.44 104.06 55.75 GIN NEZ 273 104.41 104.41 54.92 GLIN C 273 100.44 104.06 55.75 GIN NEZ 273 104.41 104.41 54.92 GLIN C 273 100.44 104.06 55.75 GIN NEZ 273 104.41 104.41 54.92 GLIN C 273 100.44 106.06 55.75 GIN			ILE CB 262	,
TLE OD 262 100.16 82.39 41.61 : VAL N 263 98.62 40.96 VAL CA 263 99.29 84.10 39.72 : VAL CB 263 98.31 98.31 38.54 VAL CG 263 99.29 84.10 39.72 : VAL CB 263 98.31 98.31 38.54 VAL CG 263 99.29 84.10 39.72 : VAL CB 263 97.31 97.31 38.54 VAL CG 263 100.13 85.38 39.76 : VAL CB 263 100.85 100.85 38.79 VAL CB 264 100.24 100.24 86.24 40.78 : HIS CA 264 100.81 100.81 40.83 VAL CB 265 102.54 101.89 89.88 38.47 : VAL CB 264 101.24 101.24 39.65 VAL CB 264 101.24 101.24 39.65 VAL CB 265 102.54 101.89 89.88 38.47 : HIS CB 264 101.24 101.24 39.65 VAL CB 265 102.55 VAL CB 265 102.56 VAL CB 265 102.57 VAL CB 265 102.58 VAL CB 265 102.58 VAL CB 265 102.58 VAL CB 265 102.58 VAL CB 265 102.59 VAL CB 265 102.51 VAL CB 265 102.51 VAL CB 265 102.51 VAL CB 265 102.53 VAL CB 265 102.53 VAL CB 265 102.53 VAL CB 265 102.54 VAL CB 265 102.54 VAL CB 265 102.54 VAL CB 265 102.55 VAL CB 265 102.55 VAL CB 265 102.55 VAL CB 265 102.55 VAL CB 265 VAL CB			ILE CG1 262	
VAL CA 263 99.29 84.10 39.72 VAL CB 263 98.62 40.966 VAL CA 263 97.61 82.89 38.37 VAL CG2 263 97.31 97.31 38.77 VAL C 263 100.13 85.38 39.76 VAL C 263 100.85 100.85 38.79 HIS N 264 100.04 86.24 40.78 HIS CC 264 100.81 100.81 40.83 HIS CB 264 100.26 88.50 39.86 HIS CC 264 101.24 101.24 39.65 HIS CD2 264 101.89 89.88 38.47 HIS ND 1264 101.69 101.69 40.52 HIS CEL 264 102.59 91.32 39.93 HIS NEZ 264 102.69 102.69 38.70 HIS C 264 100.67 88.00 42.22 HIS ND 1264 101.69 101.69 40.52 HIS CEL 265 102.53 88.64 44.99 ILE CCZ 265 102.61 102.61 44.03 ILE C 265 102.53 88.64 44.99 ILE CCZ 265 102.61 46.37 ILE C 265 102.13 90.77 43.73 HIE CD 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 HIE CD 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 HIE CD 265 103.03 103.03 42.90 SER N 266 101.51 91.83 44.26 SER CA 266 101.09 101.09 94.06 SER C 266 101.99 93.87 45.43 SER OC 266 100.09 100.99 41.92 SER C 266 101.99 93.87 45.43 SER OC 266 100.09 100.99 41.92 FRO N 267 103.12 94.49 45.80 FRO CD 267 104.36 104.36 45.04 PRO C 267 105.18 95.53 45.77 FRO C 267 102.47 46.98 PRO O 267 103.28 95.20 47.07 FRO CB 267 104.36 104.36 45.04 PRO C 268 100.13 99.65 50.17 LEU CD 268 100.07 101.07 46.24 PRO C 268 100.13 99.65 50.17 LEU CD 268 100.07 101.07 49.79 LEU CD 268 100.13 99.65 46.91 LEU C 268 100.07 101.07 49.79 LEU CD 268 100.10 99.61 51.68 LEU C 268 100.07 101.07 49.79 LEU CD 268 100.10 99.61 51.68 LEU C 268 101.07 101.07 49.79 LEU CD 268 100.10 99.61 51.68 LEU C 268 100.07 100.07 40.05 SER N 271 100.05 106.47 48.94 SER C 271 100.09 100.09 50.16 SER C 271 99.07 101.59 103.86 46.91 CLA C 272 98.66 98.66 52.69 ALA C 269 102.21 102.57 47.10 ALA C 272 99.66 99.66 52.69 CLY N 270 101.59 103.86 46.91 CLA C 272 99.66 99.69 50.84 CLY N 270 101.59 103.86 46.91 CLA C 272 99.66 99.69 50.84 CLY N 270 101.59 103.86 50.55 S. SER C 271 100.09 100.09 50.16 SER C 271 99.07 101.59 103.68 52.33 ALA C 272 99.66 99.69 50.85 SER C 271 99.07 101.59 103.68 52.33 CLN C 273 100.69 100.99 50.16 SER C 273 100.64 106.45 SER C 274 99.77 99.75 53.56 SER C 273 100.6				
VAL CG 263 99.29 84.10 39.72 : VAL CG 263 98.31 98.31 38.54 VAL CG 1263 100.13 85.38 39.76 : VAL O 263 100.85 100.85 38.79 VAL CG 263 100.81 100.81 40.83 MIS CB 264 100.04 86.24 40.78 : HIS CA 264 100.81 100.81 40.83 MIS CB 264 101.89 89.88 38.47 : HIS ND1 264 101.69 101.69 40.52 MIS CD 264 101.89 89.88 38.47 : HIS ND1 264 101.69 101.69 40.52 MIS CD 264 100.67 88.00 42.22 : HIS O 264 102.69 102.69 38.70 MIS CD 264 100.67 88.00 42.22 : HIS O 264 99.66 99.66 42.86 MIS CD 265 102.53 88.64 44.99 : HIS CD 265 102.54 46.28 MIS CD 265 102.53 88.64 44.99 : ILE CG 265 102.54 46.28 MIS CD 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 100.86 93.87 43.21 : SER O 266 101.90 101.90 44.06 SER CB 266 100.86 93.87 43.21 : SER O 266 101.90 101.90 44.06 SER CB 266 100.88 93.87 43.21 : SER O 266 101.90 101.90 44.06 MRO CA 267 103.28 95.20 47.07 : PRO CD 267 104.36 104.36 45.04 MRO CA 267 103.28 95.20 47.07 : PRO CD 267 104.36 104.36 45.04 MRO CA 267 103.28 95.20 47.07 : PRO CD 267 104.37 104.77 47.21 MRO CA 268 101.59 99.68 93.83 is SER O 266 100.13 99.56 50.17 : LEU CD 268 100.01 99.61 51.68 : LEU CD 268 100.01 99.61 51.68 : LEU CD 268 100.01 99.61 51.68 : LEU CD 268 100.03 190.03 99.56 50.17 : LEU CD 268 100.03 100.03 49.57 MRO CA 270 100.05 100.50 48.30 : LEU CD 268 100.10 99.61 51.68 : LEU CD 268 100.03 100.03 100.03 47.28 MRD MRO CA 270 100.05 100.50 48.50 : MRO MRO CA 270 100.05 105.64 48.50 : GLY N 270 100.05 100.50 44.96 55.75 : GLN CB 271 100.05 100.95 50.16 SER CB 271 99.07 106.54 51.48 : SER CO 271 100.05 100.09 100.99 50.16 SER CB 271 99.07 100.69 103.53 53.08 : GLN N 273 100.99 100.99 50.16 SER CB 271 99.07 100.69 103.53 53.08 : GLN N 273 100.99 100.99 50.16 SER CB 271 99.07 100.65 54.46 55.99 HIS CA 272 99.76 99.69 54.85 GLN CC 273 100.69 103.53 53.08 : GLN CC 273 100.05 100.05 54.86 52.33 : ALA C 272 99.69 99.69 54.85 GLN CC 273 100.69 103.53 53.08 : GLN CC 273 100.09 100.09 50.16 SER CB 271 99.07 100.69 103.53 53.08 : GLN CC 273 100.44 1100.41 54.92 GLN CC 273 100.69 103.53 53.08 : GLN CC 273 1				
VAL C 263 100.13 83.87; VAL CG2 263 97.31 97.31 38.77 VAL C 263 100.01 38.38 39.76; VAL CG2 263 100.85 100.85 38.79 HIS N 264 100.04 86.24 40.78; HIS CA 264 100.81 100.81 40.83 HIS CB 264 101.89 88.80 39.86; HIS CG 264 101.24 101.24 39.65; HIS CD2 264 101.89 88.88 38.47; HIS ND1 264 101.69 101.69 40.52 HIS CB 264 100.67 88.00 42.22; HIS NE2 264 102.69 102.69 38.70 HIS C 264 100.67 88.00 42.22; HIS NE2 264 100.61 101.61 44.03 ILE CB 265 101.66 88.72 42.73; ILE CA 265 101.61 101.61 44.03 ILE CB 265 102.53 88.64 44.99; ILE CG2 265 102.54 102.54 46.28 ILE CG1 265 102.13 90.77 43.73; ILE C 265 102.51 102.54 46.28 ILE CG1 265 102.13 90.77 43.73; ILE C 265 102.51 102.54 46.28 SER N 266 101.51 91.83 44.26; SER CA 266 101.90 101.90 44.06 SER CB 266 101.99 93.87 45.43; SER O 266 101.90 101.90 44.06 SER C 266 101.99 93.87 45.43; SER O 266 101.07 101.07 46.24 PRO N 267 103.12 94.49 45.80; PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.12 94.49 45.80; PRO CD 267 104.77 104.77 47.71 FRO CG 267 105.18 95.53 45.77; PRO C 267 104.77 104.77 47.74 LEU CA 268 100.13 99.56 50.17; LEU CD1 268 98.73 88.73 49.57 LEU CA 268 100.13 99.56 50.17; LEU CD1 268 98.73 88.73 49.57 LEU CD 268 100.11 99.42 46.56; ALA N 269 100.03 100.03 47.28 LEU CD 268 100.13 99.56 50.17; LEU CD1 268 98.73 88.73 49.57 LEU CD 268 100.13 99.56 50.17; LEU CD1 268 98.73 98.73 49.57 LEU CD 268 100.10 99.61 51.68; LEU C 268 101.53 101.53 47.54 LEU CD 268 100.10 105.64 48.50; CILY O 270 101.99 100.99 49.16 SER C 271 99.87 106.54 51.48; SER O 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48; SER O 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48; SER O 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48; SER O 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48; SER O 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48; SER O 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48; SER O 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48; SER O 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18; SER C 271 100.09 100.09 50.16				
HIS N 264 100.04 86.24 40.78 : HIS CA 264 100.85 100.85 38.79 HIS CB 264 100.26 88.50 39.86 : HIS CG 264 101.24 101.24 39.65 HIS CD2 264 101.89 89.88 38.47 : HIS ND1 264 101.69 101.69 40.52 HIS CEI 264 102.59 91.32 39.93 : HIS NE2 264 102.69 102.69 38.70 HIS C 264 100.67 88.00 42.22 : HIS O 264 99.66 99.66 42.86 ILE N 265 101.66 88.72 42.73 : ILE CA 265 101.61 101.61 44.03 ILE CB 265 102.53 88.64 44.99 : ILE CG2 265 102.54 102.54 46.28 ILE CG1 265 102.07 87.17 45.15 : ILE CD1 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE O 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE O 265 102.61 102.61 46.37 ILE C 365 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER N 266 101.99 93.87 43.21 : SER O 266 101.90 101.90 44.06 SER C 266 101.99 93.87 45.43 : SER O 266 101.90 101.90 44.06 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CD 267 104.36 104.36 45.04 PRO C 267 105.18 95.53 45.77 : PRO C 267 104.36 102.61 48.18 LEU CA 268 100.13 99.66 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CD 268 100.19 99.61 51.68 : LEU C 268 101.07 101.07 46.98 PRO O 267 102.20 96.98 45.87 : LEU N 268 101.51 101.53 47.54 LEU CD 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 45.36 ALA C 269 101.29 101.59 103.86 46.94 : ALA C 269 100.31 101.53 47.54 LEU CD 268 100.81 99.42 46.56 : ALA N 269 100.03 100.03 47.28 SER C 271 99.87 106.54 51.48 : SER CO 271 100.09 100.09 50.16 SER N 271 100.05 106.47 48.94 : SER C 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER C 271 100.09 100.09 50.16 SER C 271 100.05 106.47 48.94 : SER C 271 100.09 100.09 50.16 SER C 271 100.06 103.53 53.08 : GLN N 273 100.89 100.89 56.84 SER C 271 100.06 103.53 53.08 : GLN N 273 100.89 100.89 56.84 SER C 271 100.06 103.55 52.34 : ALA C 272 100.69 103.53 53.08 : GLN N 273 100.41 100.41 54.99 SER C 273 100.61 102.74 56.42 : SER CC 274 100.41 100.41 54.99 SER C 273 100.61 102.75 56.59 : HIS CC 274 99.17 99.17 57.25 SER C 271 100.06 103.53 53.08 : GLN N 273 100.41 100.41 54.99 SER C 273 100.61 102				97.31 97.31 38.77
HIS CB 264 100.26 88.50 39.86 : HIS CG 264 101.24 101.24 39.65 HIS CD 264 101.89 89.88 38.47 : HIS ND 264 101.69 101.69 40.52 HIS CB 1264 102.59 91.32 39.93 : HIS NE2 264 102.69 102.69 38.70 HIS C 264 100.67 88.00 42.22 : HIS 0 264 99.66 99.66 99.66 42.86 ILE N 265 101.66 88.72 42.73 : ILE CA 265 101.61 101.61 44.03 ILE C 82 655 102.53 88.64 44.99 : ILE CG 265 102.54 102.54 46.28 ILE CG1 265 102.07 87.17 45.15 : ILE CD 1265 102.61 102.61 46.37 ILE C 85 102.13 90.77 43.73 : ILE O 265 103.03 103.03 42.90 SER N 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 100.86 93.87 43.21 : SER O 266 100.99 100.99 41.92 SER C 266 101.99 93.87 45.43 : SER O 266 101.90 101.07 46.24 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CD 267 104.36 104.36 45.04 PRO C 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 100.13 99.56 50.17 : LEU CD 268 102.47 102.77 47.21 PRO CC 268 100.19 99.61 51.68 : LEU C 268 101.50 101.53 47.54 LEU CD 268 100.81 99.42 46.56 : ALA N 269 100.31 101.53 47.54 LEU CD 268 100.81 99.42 46.56 : ALA N 269 100.31 100.3 47.28 LEU CA 269 101.21 102.57 47.10 : ALA CB 269 100.03 100.03 47.28 SER C 271 99.87 106.54 51.48 : SER CO 271 100.09 100.99 50.16 SER C 271 99.87 106.54 51.48 : SER CO 271 100.09 100.99 50.16 SER C 271 99.87 106.54 51.48 : SER CO 271 100.09 100.99 50.16 SER C 271 100.05 106.47 48.94 : SER CO 271 100.09 100.09 50.16 SER C 271 100.05 106.47 48.94 : SER CO 271 100.09 100.09 50.16 SER C 271 100.05 106.47 48.94 : SER CO 271 100.09 100.09 50.16 SER C 271 100.05 106.47 48.94 : SER CO 271 100.09 100.09 50.16 SER C 271 100.05 106.47 48.94 : SER CO 271 100.09 100.09 50.16 SER C 271 100.05 106.47 48.94 : SER CO 271 100.09 100.09 50.16 SER C 271 100.06 9103.53 53.08 : GLN N 273 99.69 99.69 54.85 SER C 271 100.06 100.74 56.42 : SER CC 271 100.09 100.09 50.16 SER C 273 100.61 102.74 56.42 : SER CC 273 100.41 100.41 54.92 SER N 274 99.30 102.21 56.59 : HIS CC 274 99.31 99.31 59.51 SER C 274 99.20 101.55 68.81 : HIS CO 274 99				100.85 100.85 38.79
HIS CD2 264 101.89 89.88 38.47 : HIS ND1 264 101.69 40.52 HIS CE1 264 102.59 91.32 39.93 : HIS NE2 264 102.69 102.69 38.70 HIS C 264 100.67 88.00 42.22 : HIS O 264 99.66 99.66 42.86 ILE N 265 101.66 88.72 42.73 : ILE CA 265 101.61 101.61 44.03 ILE CB 265 102.53 88.64 44.99 : ILE CG2 265 102.54 102.54 46.28 ILE CG1 265 102.13 90.77 43.73 : ILE CD 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE CD 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE CD 265 101.07 101.07 46.24 PRO R 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 101.99 93.87 45.43 : SER O 266 101.90 101.90 44.06 PRO R 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CC 267 105.18 95.53 45.77 : PRO C 267 104.77 104.77 47.21 PRO CC 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CD 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU C 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU C 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU C 270 101.09 101.59 101.58 46.91 : ALA N 269 102.40 102.40 45.36 ALA CA 269 102.39 101.58 46.91 : ALA CA 269 102.40 102.40 45.36 ALA CA 269 102.10 105.64 48.50 : GLY C 270 101.00 105.64 48.50 : GLY C 270 101.00 105.64 48.50 : GLY C 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY C 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY C 270 100.75 100.75 47.12 GLN C 273 100.41 100.51 106.47 48.94 : SER CA 271 100.09 100.99 50.16 SER C 271 99.87 106.54 51.48 : SER OC 271 100.09 100.99 50.16 SER C 271 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN C 273 100.61 107.40 105.80 52.33 : ALA C 272 99.76 99.76 53.56 HIS C 273 100.61 107.40 105.80 52.33 : ALA C 272 99.76 99.76 53.56 HIS C 273 100.61 102.74 56.55 : HIS C 274 99.31 100.41 100.41 59.75 HIS C 274 99.39 102.21 56.59 : HIS C 274 99.31 100.41 100.41 59.75 HIS C 274 99.39 102.21 56.59 : HIS C 274 99.31 199.31 59.51 HIS C 274 99.39 102.21 56				100.81 100.81 40.83
HIS CEI 264 102.59 91.32 39.93 : HIS NEZ 264 102.69 102.69 38.70 HIS C 264 100.67 88.00 42.22 : HIS O 264 99.66 99.66 42.86 ILLE N 265 101.66 88.72 42.73 : ILE CA 265 101.61 101.61 44.03 ILLE CB 265 102.53 88.64 44.99 : ILE CGZ 265 102.54 46.28 ILLE CGI 265 102.07 87.17 45.15 : ILE CDI 265 102.61 102.61 46.37 ILLE CG 265 102.07 87.17 45.15 : ILLE CDI 265 102.61 102.61 46.37 ILLE CG 265 102.01 90.77 43.73 : ILLE CG 265 102.61 102.61 46.37 ILLE CG 265 102.13 90.77 43.73 : ILLE CG 265 102.61 102.61 46.37 ILLE CG 265 102.13 90.77 43.73 : ILLE CG 265 102.01 102.61 46.37 ILLE CG 265 102.01 90.77 43.73 : ILLE CG 265 102.01 102.61 46.37 ILLE CG 268 102.01 102.61 46.37 ILLE CG 268 102.01 102.61 46.36 45.04 PRO CG 267 103.28 95.20 47.07 : PRO CG 267 104.36 104.36 45.04 PRO CG 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 ILLE CG 268 100.13 99.56 50.17 : LEU CD 268 100.10 99.61 51.68 : LEU C 269 102.40 102.40 45.36 ALA C 269 102.39 101.58 46.91 : ALA C 269 102.40 102.40 45.36 ALA C 269 102.39 101.58 46.91 : ALA C 269 102.40 102.40 45.36 ALA C 269 102.39 101.58 46.91 : ALA C 269 102.40 102.40 45.36 ALA C 269 101.00 105.64 48.50 : GLY N 270 100.07 500.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SCR C 271 99.87 106.54 51.48 SER CA 271 100.09 100.09 50.16 SCR C 271 99.87 106.54 51.48 SER CA 271 100.09 100.09 50.16 SCR C 271 99.87 106.54 51.48 SER C 271 99.80 108.41 50.18 : SER C 271 99.80 108.41 50.18 : SER C 271 99.80 108.41 50.18 : SER C 271 99.87 106.54 51.48 SER C 271 99.87 100.99 109.99 109.99 109.99 109.99 109.99 109.99				
HIS C 264 100.67 88.00 42.22 : HIS O 264 199.66 99.66 42.86 ILE N 265 101.66 88.72 42.73 : ILE CA 265 101.61 101.61 44.03 ILE CB 265 102.53 88.64 44.99 : ILE CG2 265 102.61 102.64 46.28 ILE CG1 265 102.07 87.17 45.15 : ILE CD1 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE O 265 103.03 103.03 42.90 SER N 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 100.86 93.87 43.21 : SER OC 266 101.90 101.90 44.06 SER CB 266 100.32 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.36 104.36 45.04 PRO CA 267 103.28 95.53 45.77 : PRO CB 267 102.47 102.47 46.98 PRO 0 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CG 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU CD 268 102.90 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA C 269 102.40 102.40 47.75 ALA C 269 102.39 101.58 46.94 : GLY CA 270 101.59 103.86 46.94 : GLY CA 270 100.07 101.07 45.36 ALA C 269 102.27 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY C 270 101.00 105.64 48.94 : SER CA 271 100.09 100.09 50.16 SER C 271 99.07 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.45 51.48 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.45 51.48 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.66 SER C 271 99.87 100.89 100.89 56.84 SER C 271 99.87 100.89 100.89 56.84 SER C 271 99.87 100.89 100.89 56.84 SE				
ILE N 265 101.66 88.72 42.73 : ILE CA 265 101.61 101.61 44.03 ILE CB 265 102.53 88.64 44.99 : ILE CG2 265 102.54 102.54 46.28 ILE CG1 265 102.07 87.17 45.15 : ILE CD1 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE CD1 265 103.03 103.03 42.90 SER N 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 100.86 93.87 43.21 : SER OG 266 101.90 101.90 44.06 SER CB 266 101.99 93.87 45.43 : SER O 266 101.90 101.90 44.06 SER CB 266 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.77 104.77 47.21 PRO CG 267 105.18 95.53 45.77 PRO C 267 104.77 104.77 47.21 PRO CG 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 45.36 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 : ALA C 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY C 270 101.99 101.99 49.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 274 99.01 101.15 58.75 : GLN CB 273 100.41 10				
ILE CB 265 102.53 88.64 44.99 : ILE CG2 265 102.54 46.28 ILE CG1 265 102.07 87.17 45.15 : ILE CD1 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE CD1 265 102.61 102.61 46.37 ILE C 265 102.13 90.77 43.73 : ILE CD1 265 103.03 103.03 42.90 SER N 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 100.86 93.87 43.21 : SER OC 266 100.99 100.99 41.92 SER C 266 101.99 93.87 45.43 : SER O 266 101.07 101.07 46.24 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.77 104.77 47.21 PRO CG 267 105.18 95.53 45.77 : PRO C 267 102.47 102.47 46.98 PRO 0 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 100.13 99.56 50.17 : LEU CD 268 98.73 98.73 49.57 LEU CG 268 100.13 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU C 268 100.19 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU O 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA C 269 101.21 102.57 47.10 : ALA CB 269 100.03 100.3 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.03 47.28 GLY C 270 101.00 105.64 48.50 : GLY C 270 100.09 100.09 50.16 SER C 271 99.07 106.54 51.48 : SER O 271 100.09 100.09 50.16 SER C 273 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CG 273 100.61 102.74 56.42 : GLN C 273 100.89 100.89 56.84 GLN CG 273 100.61 102.74 56.42 : GLN C 273 100.89 100.89 56.84 GLN C 273 100.61 102.74 56.42 : GLN C 273 100.41 104.41 54.92 GLN C 274 99.99 100.15 56.28 : GLN N 273 99.69 99.69 54.85 GLN C 273 100.61 102.74 56.42 : GLN C 273 100.41 104.41 54.92 GLN C 274 99.99 100.01 1.55 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 104.41 54.92 VAL R 275 97.73 99.23 56.22 : VAL CA 275 95.54 95.54 53.71				
ILE CGI 265 102.07 87.17 45.15 : ILE CDI 265 102.03 102.34 46.28 ILE C 265 102.13 90.77 43.73 : ILE C 265 103.03 103.03 42.90 SER N 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 100.86 93.87 43.21 : SER OC 266 100.99 100.99 41.92 SER C 266 101.99 93.87 45.43 : SER OC 266 101.90 101.07 46.24 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.12 94.49 45.80 : PRO CD 267 104.77 104.77 47.21 PRO CG 267 105.18 95.53 45.77 : PRO C 267 102.47 102.47 46.98 PRO O 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD 268 98.73 98.73 49.57 LEU CD 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 101.21 102.57 47.10 : ALA CB 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER C 271 99.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER C 271 99.05 106.54 51.48 : SER O 271 100.09 100.09 50.16 SER C 273 100.69 103.53 53.08 : GLN N 273 100.89 100.89 56.84 GLN CG 273 100.40 103.58 52.33 : ALA CA 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 100.89 100.89 56.84 GLN CG 273 100.40 103.58 56.28 : GLN N 273 100.89 100.99 55.56 SER C 271 99.05 106.54 51.48 : SER O 271 100.09 100.99 50.16 SER C 273 100.69 103.53 53.08 : GLN N 273 100.89 100.99 56.16 GLN C 273 100.61 102.74 56.42 : GLN CE 273 100.44 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN CE 273 100.44 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN CE 273 100.44 104.41 54.92 GLN C 274 99.39 102.21 56.59 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS NDL 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS NDL 274 96.82 96.82 57.01 VAL C 275 96.71 98.33 54.27 : VAL CGI 275 96.52 96.52 55.74 VAL C 275 96.71 98.33 54.27 : VAL CGI 275 95.54 95.54 53.71	•			101.61 101.61 44.03
ILE C 265 102.13 90.77 43.73 : ILE O 265 103.03 103.03 42.90 SER N 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 100.86 93.87 43.21 : SER OG 266 100.99 100.99 41.92 SER C 266 101.99 93.87 45.43 : SER O 266 101.07 101.07 46.24 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.76 104.77 47.21 PRO CG 267 105.18 95.53 45.77 : PRO C 267 102.47 102.47 46.98 PRO 0 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD 268 98.73 98.73 49.57 LEU CD 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU CD 268 100.13 99.56 50.17 : LEU CD 268 100.53 49.45 46.91 : ALA C 269 102.39 101.58 46.91 : ALA C 269 102.40 47.75 ALA C 269 101.21 102.57 47.10 : ALA C 269 102.40 47.75 ALA C 269 101.21 102.57 47.10 : ALA C 269 102.40 102.40 47.58 ALA C 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY C 270 101.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER C 271 99.87 106.54 51.48 : SER C 271 100.09 100.09 50.16 SER C 273 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN C 273 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN C 273 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN C 273 100.61 102.74 56.42 : GLN N 273 100.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN N 273 100.41 100.41 100.41 59.75 HIS C 274 99.76 100.69 81.16 00.42 56.81 : HIS C 274 99.76 100.69 91.15 58.75 : HIS C 274 99.76 99.76 53.56 HIS C 274 99.20 101.15 58.75 : HIS C 274 99.76 99.76 53.51 HIS C 274 99.20 101.15 58.75 : HIS C 274 99.79 99.91 100.42 56.52 : VAL C 275 96.52 55.74 VAL C 275 96.52 75.74 VAL C 275 97.73 99.23 56.22 : VAL C 275 95.54 95.54 5				102.54 102.54 46.28
SER N 266 101.51 91.83 44.26 : SER CA 266 101.90 101.90 44.06 SER CB 266 100.86 93.87 43.21 : SER OC 266 100.99 100.99 41.92 SER C 266 101.99 93.87 45.43 : SER O 266 101.07 101.07 46.24 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.77 104.77 47.21 PRO CG 267 105.18 95.53 45.77 : PRO CB 267 102.47 102.47 46.98 PRO 0 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CD2 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU C 268 100.39 101.58 46.91 : ALA CA 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 : ALA C 269 102.40 102.40 45.36 ALA C 269 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY C 270 101.09 105.64 48.50 : GLY C 270 101.09 105.64 48.50 : GLY C 270 101.09 105.64 48.50 : GLY C 270 101.99 101.99 49.16 SER C 271 99.87 106.54 51.48 : SER CG 271 99.86 69 8.66 52.69 ALA C 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA C 273 100.07 104.06 55.75 : GLN C 273 100.09 100.99 50.16 GLN C 273 100.61 102.74 56.42 : GLN C 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN C 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 97.80 100.42 56.81 : HIS CO 274 96.82 96.82 57.01 VAL CB 275 96.51 98.33 54.27 : VAL CG 275 95.54 95.54 53.71				102.61 102.61 46.37
SER CB 266 100.86 93.87 43.21 : SER OG 266 100.99 100.99 41.92 SER C 266 101.99 93.87 45.43 : SER OG 266 101.07 101.07 46.24 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.77 104.77 47.21 PRO CG 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CD2 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU C 268 100.23 9101.58 46.91 : ALA CB 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 ALA CB 269 102.40 102.40 47.75 ALA CB 270 101.09 105.64 48.50 : GLY C 270 101.09 105.64 48.50 : GLY C 270 101.09 105.64 48.50 : GLY C 270 101.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CG 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CG 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CG 271 100.09 100.09 50.16 SER C 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER CG 271 100.09 100.09 50.16 SER C 271 100.09 103.53 53.08 : GLN C 273 100.69 103.53 53.08 : GLN C 273 100.89 100.89 56.84 SER CA 273 100.61 102.74 56.42 : GLN CD 273 102.92 102.92 56.12 GLN C 273 103.64 106.68 57.06 : GLN CD 273 104.41 104.41 54.92 GLN CC 273 101.42 106.39 56.28 : GLN CD 273 102.92 100.29 25.54 HIS CB 274 99.39 102.21 56.59 : HIS CG 274 99.31 100.41 100.41 59.75 HIS CG1 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CG1 274 97.80 100.42 56.81 : HIS CG 274 99.37 99.77 69.55 57.74 VAL CB 275 96.51 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71		• • • • • •		
SER C 266 101.99 93.87 45.43 : SER O 266 101.07 101.07 46.24 PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.77 104.77 47.21 PRO CG 267 105.18 95.53 45.77 : PRO CB 267 102.47 102.47 46.98 PRO O 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD 268 98.73 98.73 49.57 LEU CD 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU CD 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 47.75 ALA CB 269 101.21 102.57 47.10 : ALA CB 269 100.03 100.03 47.28 CLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER CB 271 99.00 108.41 50.18 : SER CB 271 99.00 108.41 50.18 : SER CB 271 99.87 106.54 51.48 : SER O 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER O 271 100.09 100.09 50.16 SER CB 271 99.87 106.54 51.48 : SER O 271 100.09 100.09 50.16 SER CB 271 99.87 106.54 51.48 : SER O 271 100.09 100.99 52.54 ALA CB 272 97.64 103.68 52.33 : ALA C 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA CB 273 100.69 103.53 53.08 : GLN N 273 99.69 54.85 GLN CB 273 100.69 103.53 53.08 : GLN N 273 99.69 54.85 GLN CB 273 100.69 103.53 53.08 : GLN N 273 99.69 54.85 GLN CB 273 100.69 103.53 53.08 : GLN CD 273 104.41 104.41 54.92 GLN CB 273 100.61 102.74 56.42 : GLN CB 273 104.41 104.41 54.92 GLN CB 273 100.61 102.74 56.42 : GLN CB 273 104.41 104.41 54.92 GLN CB 274 99.39 102.21 56.59 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.39 102.21 56.59 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.37 98.77 60.66 HIS NC 275 96.52 96.52 55.74 VAL CB 275 96.52 96.52 55.74 VAL CB 275 96.52 95.54 53.71				101.90 101.90 44.06
PRO N 267 103.12 94.49 45.80 : PRO CD 267 104.36 104.36 45.04 PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.77 104.77 47.21 PRO CG 267 105.18 95.53 45.77 : PRO CB 267 102.47 102.47 46.98 PRO CO 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.10 107 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CD 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU CD 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 47.75 ALA CA 269 101.21 102.57 47.10 : ALA CB 269 102.40 102.40 47.75 ALA CB 270 101.00 105.64 48.50 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY CA 270 101.99 101.99 49.16 SER CB 271 99.00 108.41 50.18 : SER CB 271 99.00 108.41 50.18 : SER CB 271 99.87 106.54 51.48 : SER CB 271 99.87 105.41 50.48 : SER CB 271 99.87 106.54 51.48 : SER CB 271 99.69 50.16 SER CB 273 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CB 273 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CB 273 103.64 106.68 57.06 : GLN CB 273 104.41 104.41 54.92 GLN CB 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN CB 273 103.64 106.68 57.06 : GLN NE2 273 104.41 104.41 54.92 GLN CB 274 99.39 102.21 56.59 : HIS CB 274 99.31 109.41 56.42 : GLN CB 273 104.41 104.41 54.92 GLN CB 274 99.39 102.21 56.59 : HIS CB 274 99.31 99.31 59.51 HIS CB 274 99.39 102.21 56.59 : HIS CB 274 99.39 102.21 56.59 : HIS CB 274 99.31 99.31 59.51 HIS CB 274 99.39 102.21 56.59 : HIS CB 274 99.31 99.31 59.51 HIS CB 274 97.80 100.42 56.81 : HIS ND 274 98.77 98.77 60.66 HIS CB 274 97.80 100.42 56.81 : HIS ND 274 98.77 98.77 60.66 HIS CB 274 97.80 100.42 56.81 : HIS ND 274 98.77 98.77 60.66 HIS CB 274 97.80 100.42 56.81 : HIS ND 274 98.77 98.77 60.66 HIS CB 275 97.73 99.23 56.22 : VAL CB 275 96.52 96.52 55.74 VAL CB 275 96.52 95.54 53.71				100.99 100.99 41.92
PRO CA 267 103.28 95.20 47.07 : PRO CB 267 104.77 104.77 47.21 PRO CG 267 105.18 95.53 45.77 : PRO C 267 102.47 102.47 46.98 PRO O 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CD2 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU O 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 : ALA O 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER CB 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.07 108.41 50.18 : SER OC 271 100.09 100.09 50.16 ALA O 272 99.76 40.368 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN C 273 100.61 102.74 56.42 : GLN CD 273 102.92 102.92 56.12 GLN C 273 102.67 105.80 54.16 : GLN E2 273 103.43 103.43 54.94 GLN CB 274 99.39 102.21 56.59 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.80 100.42 56.81 : HIS ND 274 99.39 102.21 56.59 : HIS CA 275 96.52 55.74 VAL CB 275 96.52 55.74 VAL CB 275 96.51 98.33 54.27 : VAL CG 275 95.54 95.54 53.71				101.07 101.07 46.24
PRO CG 267 105.18 95.53 45.77 : PRO C 267 102.47 102.47 46.98 PRO 0 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CD2 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU O 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 47.75 ALA C 269 101.21 102.57 47.10 : ALA O 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.94 : SER CA 271 100.07 101.99 49.16 SER CB 271 99.00 108.41 50.18 : SER CA 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER O 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER O 271 100.09 100.29 52.54 ALA O 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.40 103.68 52.33 : ALA C 272 98.66 98.66 52.69 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.42 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CB 273 100.61 102.74 56.42 : GLN CB 273 104.41 104.41 54.92 GLN CB 274 99.20 101.15 58.75 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.37 99.37 59.55 HIS CB 274 99.20 101.15 58.75 : HIS CB 274 99.37 99.37 59.55 HIS CB 274 99.39 102.21 56.59 : HIS ND1 274 100.41 100.41 59.75 HIS CB 274 99.20 101.15 58.75 : HIS CB 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CB 274 99.37 99.37 59.55 55.76 99.59 59.59 55.54 55.74 99.50 55.51 99.59 55.54 55.74 99.50 55.54 55	PRO CA 267	- · ·		104.36 104.36 45.04
PRO 0 267 102.20 96.98 45.87 : LEU N 268 102.16 102.16 48.18 LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CD2 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU O 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 : ALA C 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER N 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.00 108.41 50.18 : SER OG 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER OG 271 98.66 98.66 52.69 ALA CB 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 100.43 103.43 54.94 GLN CG 273 103.64 106.68 57.06 : GLN NE2 273 100.41 104.41 54.92 GLN C 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN CB 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.39 102.21 56.59 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.39 102.21 56.59 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.39 102.21 56.59 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.39 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CB 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 96.52 96.52 55.74 VAL CB 275 96.52 475.74 PS. CA 275 PS. CA 2				
LEU CA 268 101.25 98.09 48.31 : LEU CB 268 101.07 101.07 49.79 LEU CG 268 100.13 99.56 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CD2 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU O 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 : ALA O 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER N 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.00 108.41 50.18 : SER OG 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER O 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN CB 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN CB 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN CB 274 99.20 101.15 58.75 : HIS CG 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.37 98.77 60.66 HIS NB 275 99.79 39.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 96.52 96.52 55.74 VAL CB 275 96.52 475 495.54 53.71		100		102 16 102 16 48 18
LEU CG 268 100.13 99.56 50.17 : LEU CD1 268 98.73 98.73 49.57 LEU CD2 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU O 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 : ALA O 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER N 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.00 108.41 50.18 : SER OG 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER O 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 GLN CE 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CA 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 96.52 96.52 55.74		101.25 98.09 48.31 :		
LEU CD2 268 100.10 99.61 51.68 : LEU C 268 101.53 101.53 47.54 LEU O 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 : ALA O 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER N 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.00 108.41 50.18 : SER OG 271 100.09 100.09 50.16 SER C 271 99.87 106.54 51.48 : SER OG 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 98.66 98.66 52.69 ALA CB 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN CE 273 100.61 102.74 56.42 : GLN CB 273 100.61 102.74 56.42 : GLN CB 273 100.61 102.74 56.42 : GLN CB 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CB 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 95.54 95.54 53.71		100.13 99.56 50.17 : 1		
LEU O 268 100.81 99.42 46.56 : ALA N 269 102.40 102.40 47.75 ALA CA 269 102.39 101.58 46.91 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 : ALA CB 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER N 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.00 108.41 50.18 : SER OG 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER O 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN CE 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN E21 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 GLN CD 274 99.27 99.27 99.27 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 95.54 95.54 53.71		100.10 99.61 51.68 : 1		
ALA CA 269 101.21 102.57 47.10 : ALA CB 269 102.40 102.40 45.36 ALA C 269 101.21 102.57 47.10 : ALA O 269 100.03 100.03 47.28 GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER N 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.00 108.41 50.18 : SER OC 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER O 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 100.89 100.89 56.84 GLN CG 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN CE 273 100.61 102.74 56.42 : GLN CB 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN CB 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CE 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CB 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 95.54 95.54 53.71			ALA N 269	
GLY N 270 101.59 103.86 46.94 : GLY CA 270 100.03 100.03 47.28 GLY C 270 101.59 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER N 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.00 108.41 50.18 : SER OG 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER O 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 95.54 95.54 53.71	•	102.39 101.58 46.91 : 4	ALA CB 269	
GLY C 270 101.39 103.86 46.94 : GLY CA 270 100.75 100.75 47.12 GLY C 270 101.00 105.64 48.50 : GLY O 270 101.99 101.99 49.16 SER N 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.00 108.41 50.18 : SER OG 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER OG 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 95.54 95.54 53.71				
SER N 271 100.05 106.47 48.94 : SER CA 271 100.09 100.09 50.16 SER CB 271 99.00 108.41 50.18 : SER OG 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER O 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 GLN CA 273 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN OE1 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN 0 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.31 99.31 59.51 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71		101.59 103.86 46.94 : (GLY CA 270	100.75 100.75 47.12
SER CB 271 99.00 108.41 50.18 : SER OG 271 98.46 98.46 49.00 SER C 271 99.87 106.54 51.48 : SER O 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 95.54 95.54 53.71		101.00 105.64 48.50 : 0		101.99 101.99 49.16
SER C 271 99.87 106.54 51.48 : SER O 271 100.29 100.29 52.54 ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71		100.05 106.47 48.94 : 5		100.09 100.09 50.16
ALA N 272 99.15 105.41 51.46 : ALA CA 272 98.66 98.66 52.69 ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71	_	99.00 108.41 50.18 : \$	SER OG 271	
ALA CB 272 97.64 103.68 52.33 : ALA C 272 99.76 99.76 53.56 ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71		99.07 106.34 31.48 ; S	SER 0 271	
ALA O 272 100.69 103.53 53.08 : GLN N 273 99.69 99.69 54.85 GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 95.54 95.54 53.71				98.66 98.66 52.69
GLN CA 273 100.74 104.06 55.75 : GLN CB 273 100.89 100.89 56.84 GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 95.54 95.54 53.71		• • • • • •		
GLN CG 273 101.42 106.39 56.28 : GLN CD 273 102.92 102.92 56.12 GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CG 275 95.54 95.54 53.71				
GLN OE1 273 103.64 106.68 57.06 : GLN NE2 273 103.43 103.43 54.94 GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL CB 275 96.71 98.33 54.27 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71				
GLN E21 273 102.87 105.80 54.16 : GLN E22 273 104.41 104.41 54.92 GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71				
GLN C 273 100.61 102.74 56.42 : GLN O 273 101.63 101.63 56.86 HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71		102 .87 105 .80 54 16 + 6		
HIS N 274 99.39 102.21 56.59 : HIS CA 274 99.17 99.17 57.25 HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71		100.61 102.74 56 42 + 6		104.41 104.41 54.92
HIS CB 274 99.20 101.15 58.75 : HIS CG 274 99.31 99.31 59.51 HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71				101.03 101.63 56.86
HIS CD2 274 98.25 99.19 60.09 : HIS ND1 274 100.41 100.41 59.75 HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71	HIS CB 274			
HIS CE1 274 100.06 98.11 60.46 : HIS NE2 274 98.77 98.77 60.66 HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71				
HIS C 274 97.80 100.42 56.81 : HIS O 274 96.82 96.82 57.01 VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71			IS NE2 274	
VAL N 275 97.73 99.23 56.22 : VAL CA 275 96.52 96.52 55.74 VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71				
VAL CB 275 96.71 98.33 54.27 : VAL CG1 275 95.54 95.54 53.71		97.73 99.23 56.22 : V	AL CA 275	
941 (CC) 775 57 65 66 77 57 57 57 57 5 5 5 5 5 5		96.71 98.33 54.27 : V	AL CG1 275	
	VAL CGZ 275	96.82 99.66 53.54 : V		· · -

VAL 0 275	97.11 96.44 56	3.77 : GLU N	276 95.0	7 05 07 57 0:
GLU CA 276	94.63 96.10 57			
GLU CG 276	95.02 95.96 60			
GLU OE1 276				
		.87 : GLU OE		
	93.16 95.88 57	.42 : GLU O	276 92.54	
GLU N 277	92.57 94.69 57	.47 : GLU CA	277 91.13	7 91.17 57.15
GLU CB 277	90.41 94.51 58	.45 : GLU CG	277 90.95	90.95 59.50
GLU CD 277	90.61 94.02 60	.92 : GLU DE	1 277 90.89	
GLU 0E2 277	90.11 95.12 61	.13 : GLU C	277 90.42	
GLU 0 277	89.41 95.74 56		278 90.86	
CYS CA 278	90.14 95.67 53			
CYS 0 278	88.42 94.01 53			
CYS SG 278			278 90.94	
	92.42 96.65 52		279 87.90	
SER CA 279	86.54 95.94 52	.5/ : SER CB	279 85.70	
SER OG 279	85.61 96.26 54	.74 : SER C	279 86.60	86.60 51.13
SER 0 279	86.66 97.54 50	.81 : CYS N	280 86.71	
CYS CA 280	86.92 95.67 48.	.86 : CYS C	280 85.61	
CYS 0 280	84.69 94.89 48.	.72 : CYS CB	280 88.04	
CYS SG 280		.35 : TYR N	281 85.49	
TYR CA 281	84.25 95.94 46.	.17 : TYR CB	281 83.19	
TYR CG 281		.72 : TYR CD1		
TYR CEL 281		./2 . IIR CDI	. 281 83.97	
TYR CE2 281		88 : TYR CD2		
		51 : TYR CZ	281 84.13	
TYR OH 281	84.40 102.55 46.	59 : TYR C	281 84.56	
TYR 0 281		39 : PRO N	282 83.86	83.86 43.76
PRO CD 282	82.89 94.50 43.		282 84.11	84.11 42.36
PRO CB 282	83.31 94.69 41.	67 : PRO CG	282 82.19	
PRO C 282	83.71 97.18 41.	94 : PRO O	282 82.66	
ARG N 283	84.55 97.77 41.	10 : ARG CA	283 84.36	
ARG CB 283	85.16 100.13 41.	25 : ARG CG	283 84.36	
ARG CD 283	85.38 102.26 42.	36 · ARG NE	283 85.79	85.79 41.22
ARG CZ 283	85.14 104.16 40.	RS . APC NUI	283 85.53	
ARG NH2 283	84.09 104.60 41.	54 : ARC C		85.53 39.79
ARG 0 283	85.86 99.63 38.	76 : TYR N	283 84.90	84.90 39.10
TYR CA 284			284 84.36	84.36 38.34
TYR CG 284			284 83.56	83.56 36.15
	84.04 96.61 34.	88 : TYR CD1		84.08 33.71
TYR CEL 284	84.61 96.72 32.			84.53 34.92
TYR CE2 284	85.07 94.72 33.8		284 85.11	85.11 32.65
TYR OH 284	85.70 94.89 31.		284 85.40	85.40 36.25
TYR 0 284	84.72 99.90 36.3	10 : PRO N		86.63 35.74
PRO CD 285	87.22 99.90 34.9	95 : PRO CA	285 87.44	
PRO CB 285		36 : PRO CG	285 88.53	88.53 34.48
PRO C 285		83 : PRO O	285 89.15	89.15 36.72
GLY N 286		95 : GLY CA	286 89.09	89.09 39.05
GLY C 286		23 : GLY 0		
VAL N 287		33 : VAL CA		87.13 40.17
VAL CB 287		OO . VAL CA	287 88.51	88.51 42.61
VAL CG2 287		00 : VAL CG1		88.77 44.37
			287 88.96	88.96 43.51
	90.03 98.52 43.2		288 88.26	88.26 44.58
ARG CA 288	88.71 99.41 45.4		288 87.87	87.87 45.03
ARG CG 288	87.68 101.70 46.1		288 88.13	88.13 45.78
ARG NE 288	87.16 103.85 45.0		288 87.53	87.53 43.96
ARG NH1 288	86.64 105.38 43.3	3 : ARG NH2		88.75 43.47
ARG C 288	88.49 98.95 46.8		288 87.47	87.47 47.15
CYS N 289			289 89.11	89.11 49.17
CYS C 289			289 89.86	89.86 49.90
CYS CB 289				
ILE N 290				
-22 275	33.30 31.2	7 I ILL UA	290 38.54	88.54 52.33

ILE	Е СВ	290	87 19	5 101.	64	52	57		TTE	cos	290	86.98	86 08	54.02
	CG1			102.						CDI	-	87.05		50.18
ILE		290		100.							290	88.31		53.84
CYS	S N	291		100.							291	90.74		55.01
CYS	C	291		100.					CYS		291	90.36		56.57
CYS	CB	291	92.05	99.	00	54	.42	:	CYS	SG	291	91.90		52.65
ARG	N	292	91.64	99.4	49	57	. 30	:	ARG	CA	292	91.80		58.64
ARG	CB	292	91.51	98.9	94	59	. 66	:	ARG	CG	292	91.64		61.04
ARG	CD	292	92.33	98.5	55	62	. 02	:	ARG	NE	292	91.57		62.32
	CZ	292	91.52					:	ARG	NHl	292	90.76	90.76	63.81
	NH2		92.19					:	ARG	С	292	93.26	93.26	58.72
ARG		292	94.12						ASP		293	93.51	93.51	59.39
	CA	293		102.0					ASP		293	95.10	95.10	59.15
	CG	293		103.9								96.82	96.82	60.61
	OD2			104.2				:			293	94.81	94.81	
ASP		293		102.7					ASN		294	95.83	95.83	
	CA	294		100.8					ASN		294	96.36	96.36	
	CG	294	95.75							OD1		94.53	94.53	
	ND2		96.49							D21		97.43	97.43	
	D22		96.06								294	97.27	97.27	
ASN		294		101.3				:			295	97.96	97.96	
TRP TRP		295		103.1				:			295		100.41	
_	CE2	295	101.77 103.73										102.57	
	CD1		103.73										102.49	
	CZ2		104.80							CZ3			103.59	
	CH2		104.71								295	99.04	103.56	
TRP		295		104.6					LYS		296	98.75	99.04 98.75	
LYS		296		106.9							296	99.94	99.94	
LYS		296	101.32								296		102.64	
LYS		296	102.86								296		102.53	
LYS	С	296	97.40								296	97.28	97.28	
GLY	N	297		106.5							297	95.11	95.11	
GLY	С	297	93.75	106.5	0 6	61.	91	:	GLY	0	297	93.48	93.48	
SER		298	92.96	107.5	8 (61.	84	:	SER	CA	298	91.53	91.53	
SER		298		108.7				:	SER	OG	298	91.73	91.73	
SER		298		107.8				:	SER	0	298	89.68	89.68	60.70
ASN		299		108.3					ASN		299	90.83	90.83	58.46
ASN		299		109.5								92.87	92.87	57.58
	OD1		93.54									93.45	93.45	56.51
	D21		92.89										94.43	
ASN		299	91.13								299		92.07	
ARG		300	90.34								300		90.46	
ARG		300	89.04								300		88.17	
ARG ARG		300	86.94						ARG		300	87.43	87.43	
	NH2	300	87.46							NH1			88.21	
ARG		300	86.71						ARG		300	91.26	91.26	
PRO		301	91.03 92.79						PRO		301		92.25	
PRO		301	93.94						PRO PRO		301		93.07	
PRO		301	92.28						PRO		301		94.09	
VAL		302	92.65						VAL		301 302		91.28	
VAL		302	91.52							CG1		91.93	91.93 5 91.01 4	
	CG2		90.51						VAL		302	92.95	92.95	
VAL		302	94.11						VAL		303	92.67	92.67	
VAL		303	93.62						VAL		303	93.95	93.95	
	CG1			98.70						CG2		94.63	94.63	
VAL		303	92.93						VAL		303	91.83	91.83 4	
												·		

ASP	N	304	93.55	100.94	45.72	:	ASP	CA	304	93.00	93.00	44.42
ASP		304		102.12				CG	304	91.58	91.58	43.98
	ODl			103.49				OD2		90.67		43.19
ASP	C	304	93.82		43.61		ASP		304	95.04		43.47
ILE	N	305	93.16	98.80	43.01	:	ILE	CA	305	93.80	93.80	42.36
ILE	CB	305	93.29	96.41	43.09	:	ILE	CG2	305	93.67	93.67	42.39
	CG1		93.85		44.50			CD1		92.88		45.63
		305	93.43		40.89				305	92.25		40.55
ILE												
ASN	N	306	94.41		39.99				306	94.16		38.56
ASN	CB	306	95.24	98.50	37.83	:	ASN	CG	306	95.09	95.09	36.31
ASN	ODl	306	94.74	97.63	35.64	:	ASN	ND2	306	95.38	95.38	35.65
	D21	306		100.47	36 17		ASN	D22	306	95.22		34.69
		306	94.23		38.09				306	95.31		38.01
ASN												
MET		307	93.10		37.70				307	93.11		37.42
MET	CB	307	91.69		37.31	:	MET	CG	307	90.80		38.52
MET	SD	307	91.50	93.06	39.98	:	MET	CE	307	90.92	90.92	39.81
MET	С	307	93.85	93.97	36.14	:	MET	0	307	94.36	94.36	36.03
GLU		308	93.96		35.20		GLU		308	94.74		33.99
GLU		308	94.29		32.92	:			308	92.87		32.45
GLU		308	91.93		32.22	:		OEl	308	91.26		31.17
GLU	OE2	3 Q 8	91.86	97.41	33.10	:	GLU	С	308	96.25		34.21
GLU	0	308	97.01	93.91	33.82	:	ASP	N	309	96.79	96.79	34.84
ASP	CA	309	98.23	95.95	35.02	:	ASP	CB	309	98.76	98.76	35.29
ASP		309	98.32		34.53					98.07	98.07	
	OD2	309	98.27		35.15				309	98.76	98.76	
		309	99.96		36.32	:			310	97.92	97.92	
ASP												
TYR		310	98.28			:	TYR		310	99.26	99.26	
TYR		310	98.76		37.77	:	TYR		310	99.53	99.53	
TYR	CEl	310	99.08	90.41	36.05	:		CD2	310	97.55	97.55	
TYR	CE2	310	97.09	90.39	37.37	:	TYR	CZ	310	97.86	97.86	36.37
TYR	OH	310	97.42	88.73	35.70	:	TYR	С	310	98.94	98.94	39.40
TYR	0	310	99.62	95.29	40.41	:	SER	N	311	98.74	98.74	38.97
SER		311	99.22		39.69	•	SER		311	99.39	99.39	
SER		311	98.40		37.73	:	SER		311	98.32	98.32	
										98.93	98.93	
SER		311	97.09		40.75	:	ILE		312			
ILE		312	98.25		43.16	:	ILE		312	98.84	98.84	
ILE	CG2	312	98.02	98.76	45.60	:	ILE		312	98.85	98.85	
ILE	CD1	312	97.55	96.35	43.56	:	ILE	С	312	98.47	98.47	
ILE	0	312	99.34	101.37	42.61	:	ASP	N	313	97.59	97.59	44.04
ASP		313		102.83		•			313	96.79		
ASP		313		105.22					313	97.53	97.53	
ASP		313		105.93					313	96.96	96.96	
										97.23	97.23	
ASP		313		101.98		:			314			
SER		314		103.88					314	97.30	97.30	
SER	OG	314		103.65		:			314	96.46	96.46	
SER	0	314	97.36	106.12	47.84	:	SER	N	315	95.50	95.50	49.10
SER	CA	315	95.18	107.15	49.52	:	SER	CB	315	94.11	94.11	48.66
SER	OG	315	94.10	107.40	47.29	:	SER	С	315	94.56	94.56	50.89
SER		315		105.99		:	TYR		316	93.88	93.88	
TYR		316		108.03		:			316	93.56	93.56	
											94.37	
TYR		316		108.00		:			316	94.37		
	CE1			106.69			TYR			95.92	95.92	
TYR		316		107.15		:			316		96.57	
TYR	OH	316	97.46	105.75	56.23	:	TYR	С	316	91.67	91.67	52.12
TYR		316		109.47		:	VAL	N	317	90.51	90.51	52.72
VAL		317		108.81					317	87.98	87.98	
	CGl			106.59						88.07	88.07	
									317	89.41	89.41	
VAL	U	317	02.17	110.29	14.54	•	VAL	J	J L /	U) . 4 L	J > . → L	55.05

CYS N 318	88.79 111.12 51.55 : CYS CA 318	88.77 88.77 51.74
CYS C 318	87.94 113.14 52.88 : CYS O 318	
CYS CB 318		
	86.72 112.65 53.11 : SER CA 319	
SER CB 319	84.87 111.88 54.51 : SER OG 319	84.27 84.27 55.83
SER C 319	86.50 113.49 55.45 : SER O 319	
GLY N 320	86.15 114.67 55.94 : GLY CA 320	
GLY C 320	25 24 444 22 55	
	84.79 113.73 57.95 : LEU CA 321	
LEU CB 321	82.56 112.84 58.39 : LEU CG 321	
LEU CD1 321	80.31 113.95 57.97 : LEU CD2 321	81.58 81.58 60.12
LEU C 321	84.61 111.67 59.24 : LEU O 321	
VAL N 322	25 15 155 25 25	
VAL CB 322	85.49 110.93 58.58 : VAL CA 322	86.30 86.30 59.29
	87.29 110.79 60.24 : VAL CG1 322	87.95 87.35 61.34
VAL CG2 322	88.44 111.35 59.37 : VAL C 322	85.64 85.64 60.02
VAL 0 322	84.99 108.80 61.06 : GLY N 323	86.05 86.05 59.53
GLY CA 323	85.40 106.30 59.81 : GLY C 323	86.00 86.00 60.88
GLY 0 323	85.29 104.49 61.28 : ASP N 324	
ASP CA 324		87.22 87.22 61.37
		89.25 89.25 62.33
	90.01 103.38 62.16 : ASP OD1 324	89.61 89.61 62.80
ASP OD2 324	90.97 103.37 61.38 : ASP C 324	87.22 87.22 63.72
ASP 0 324	86.61 105.91 63.96 : THR N 325	87.51 87.51 64.64
THR CA 325	87.25 104.14 66.07 : THR CB 325	
THR OG1 325	85.06 103.57 65.54 : THR CG2 325	
THR C 325	99 54 103 50 66 60 THE 062 325	85.59 85.59 67.88
	88.54 103.59 66.69 : THR O 325	88.94 88.94 66.28
PRO N 326	89.33 104.25 67.58 : PRO CD 326	90.52 90.52 68.20
PRO CA 326	89.14 105.63 68.02 : PRO CB 326	90.20 90.20 69.06
PRO CG 326	90.53 104.41 69.53 : PRO C 326	89.22 89.22 66.91
PRO 0 326	89.83 106.47 65.85 : ARG N 327	88.57 88.57 67.21
ARG CA 327	88.32 108.87 66.29 : ARG CB 327	
ARG CG 327		
ARG NE 327	0/ /7 100 10 11 17	85.04 85.04 64.27
ARG NH1 327		83.40 83.40 64.99
	82.98 106.54 65.00 : ARG NH2 327	82.68 82.68 65.69
ARG C 327	88.25 110.10 67.21 : ARG O 327	87.92 87.92 68.39
ASN N 328	88.45 111.32 66.71 : ASN CA 328	88.50 88.50 67.55
ASN CB 328	89.27 113.63 66.85 : ASN CG 328	90.64 90.64 67.46
ASN OD1 328	91.03 113.31 68.50 : ASN ND2 328	91.43 91.43 66.79
ASN D21 328	91.09 115.07 65.97 : ASN D22 328	
ASN C 328	07 10 110 11 40 41	
ASP N 329	04 00 000 00	87.00 87.00 69.22
	86.30 113.50 67.09 : ASP CA 329	85.00 85.00 67.33
	85.00 115.14 68.54 : ASP CG 329	84.48 84.48 68.41
ASP OD1 329	85.27 117.48 68.62 : ASP OD2 329	83.30 83.30 68.11
ASP C 329	84.89 114.91 66.03 : ASP 0 329	85.91 85.91 65.46
ASP N 330	83.68 115.14 65.55 : ASP CA 330	83.56 83.56 64.22
ASP CB 330		·
ASP OD1 330	82.13 115.49 63.72 : ASP CG 330	81.71 81.71 63.52
ASP C 330	82.47 113.08 63.72 : ASP OD2 330	80.56 80.56 63.14
	83.94 117.12 64.10 : ASP O 330	84.15 84.15 62.99
ARG N 331	83.98 117.82 65.23 : ARG CA 331	84.44 84.44 65.21
ARG CB 331	84.26 119.94 66.53 : ARG CG 331	82.87 82.87 67.10
ARG CD 331	32.75 121.50 67.67 : ARG NE 331	
ARG CZ 331	00 56 100 00 11	
ARG NH2 331		82.55 82.55 65.75
ARG 0 331	04	85.93 85.93 64.99
	86.43 119.77 64.07 : SER N 332	86.64 86.64 65.80
SER CA 332	88.08 118.35 65.70 : SER CB 332	88.57 88.57 67.13
SER OG 332	87.90 117.25 67.86 : SER C 332	88.65 88.65 64.81
SER 0 332	89.66 116.65 65.23 : SER N 333	88.13 88.13 63.62
SER CA 333	88.72 115.79 62.93 : SER CB 333	
SER OG 333	24 4	
	86.64 114.60 62.13 : SER C 333	39.08 89.08 61.52

SER 0 333	88.50 117.0	7 60.92 : A	SN N 334	90.01	90.01 60.87
ASN CA 334	90.50 115.8	7 59.58 : A	SN CB 334	91.68	
ASN CG 334					
ASN ND2 334 ASN D22 334	90.87 119.11				
ASN 022 334 ASN 0 334	90.64 119.98 91.40 113.69		SN C 334 ER N 335		
SER CA 335	91.53 114.13		ER CB 335		
SER OG 335	91.28 112.13				
SER 0 335	90.99 115.96		SN N 336		
ASN CA 336	93.34 115.67		SN CB 336		
ASN CG 336	95.85 115.26				95.73 53.78
ASN ND2 336 ASN D22 336	97.06 115.75				97.18 54.17
ASN 022 336	97.78 115.12 94.00 115.14			93.41 92.90	93.41 52.38 92.90 52.51
CYS CA 337	92.90 112.49			94.24	94.24 51.11
CYS 0 337	94.30 110.89			92.37	92.37 50.15
CYS SG 337	91.00 114.22			95.34	95.34 51.65
ARG CA 338	96.69 111.95		G CB 338	97.51	97.51 50.88
ARG CG 338	97.49 113.92			98.07	98.07 49.36
ARG NE 338 ARG NH1 338	99.39 115.57 100.76 115.62			99.55	99.55 51.30
ARG C 338	97.41 111.25			98.51 98.02	98.51 52.08 98.02 52.23
ASP N 339	97.36 111.68		P CA 339	98.23	98.23 54.70
ASP CB 339	99.29 112.14			99.87	99.87 54.09
ASP OD1 339	100.37 112.53			99.79	99.79 54.24
ASP C 339 PRO N 340	97.40 110.60			96.29	96.29 56.03
PRO N 340 PRO CA 340	97.81 109.66 97.22 109.45			99.00	99.00 56.59
PRO CG 340	99.46 108.72			98.17 97.07	98.17 58.78 97.07 58.71
PRO 0 340	98.00 111.54			95.87	95.87 59.10
ASN CA 341	95.58 112.31		N CB 341	94.07	94.07 60.05
ASN CG 341	93.39 111.48				93.97 61.69
ASN ND2 341 ASN D22 341	92.08 111.52			91.61	91.61 60.57
ASN 0 341	91.67 110.94 96.30 113.46			96.31 96.90	96.31 61.11 96.90 61.64
ASN CA 342	97.59 111.37			98.80	98.80 62.87
ASN CG 342	100.04 111.56				100.66 63.35
ASN ND2 342	100.42 111.57			99.86	99.86 60.53
ASN D22 342	101.25 111.11	60.96 : ASI	1 C 342		
ASN O 342 GLU CA 343	97.32 111.95 94.55 112.36				95.43 63.92
GLU CG 343	93.04 114.17			93.18 92.49	93.18 64.47 92.49 63.05
GLU OE1 343	91.46 114.02			93.10	93.10 62.35
GLU C 343	94.39 111.38			95.10	95.10 67.06
ARG N 344	93.54 110.36			93.60	93.60 67.18
ARG CB 344	92.25 109.52			92.53	92.53 69.29
ARG CD 344 ARG CZ 344	91.28 110.04			90.98	90.98 71.07
ARG NH2 344	89.72 108.83 88.66 109.33			89.54 93.98	89.54 72.42 93.98 66.58
ARG 0 344	93.37 107.05			95.06	95.06 65.81
GLY CA 345	95.63 107.18				95.46 65.14
GLY 0 345	94.95 104.82			95.76	95.76 66.35
THR CA 346	96.10 103.90				97.42 67.38
THR OG1 346 THR C 346	98.36 104.17 95.00 103.10				97.79 68.36
GLN N 347	95.06 101.89				94.21 68.08 94.06 66.83
GLN CB 347	93.36 100.81				94.14 69.53
GLN CD 347	93.59 101.13				92.98 71.70

GLN	NE2	347	93.74	4 102.4	5 70.99	: GL	N E2	1 347	94.13	94.13 70.26
GLN	E22	347			1 71.84			347	93.08	
GLN	0	347			5 64.86			348	91.97	
	CA	348	91.02		7 64.64			348	89.86	
GLY		348	89.64		4 65.89			349	89.07	
VAL	. CA	349	87.98		63.71			349	86.71	86.71 64.44
	. CG1				63.82			349	85.64	85.64 64.40
VAL		349	87.74		9 62.23			349	87.99	87.99 61.46
LYS		350	87.40		61.76			350	97.10	
LYS		350	86.83		60.04			350	86.64	
LYS		350	86.41		2 58.35			350	85.88	85.88 56.95
LYS		350	86.88		55.94			350	85.86	85.86 60.02
LYS		350	84.88		60.77			351	85.89	85.89 58.88
GLY		351	84.79		58.46			351	84.81	84.81 56.95
GLY		351	85.69		56.35			352	83.98	83.98 56.29
TRP		352			54.87			352	82.59	82.59 54.50
TRP	CE2	352	81.20			: TRE			80.21	80.21 54.52
		352	80.88		55.56				79.99	79.99 53.29
		352			56.42 55.36				79.73	79.73 56.65
	CH2				54.12				78.86	78.86 53.10
TRP		352			55.43			352 353	83.28	83.28 54.54
ALA		353			52.69			353	83.22 83.59	83.22 53.23 83.59 52.98
ALA		353			51.19			353	83.24	83.24 50.72
PHE		354			50.35			354	82.04	82.04 48.92
PHE		354			48.31			354	79.59	
		354			49.60				78.86	78.86 47.29
		354			49.66				77.49	
PHE		354			48.55			354	81.67	81.67 48.34
PHE	0	354			48.91			355	82.28	82.28 47.21
ASP		355			46.54			355	83.38	83.38 45.68
ASP	CG	355	83.37	105.68	44.43	ASP	OD1	355	82.96	82.96 43.38
ASP	OD2	355	83.75	104.52	44.51	ASP	С	355	80.87	80.87 45.71
ASP		355			45.38			356	80.43	80.43 45.31
ASN		356			44.45			356	77.97	77.97 45.26
ASN		356			44.44				76.05	76.05 44.80
ASN					43.31 :				76.93	76.93 42.91
ASN					42.97 :			356	79.52	79.52 43.91
					44.57 :					80.07 42.70
GLY		357			42.11 :			357		81.50 43.05
GLY		357			43.42 :			358		81.15 43.61
ASN ASN		358 358			44.47 :			358		82.22 44.23
		358			42.80 :				83.84	83.84 42.45
		358			41.84 : 40.96 :				80.81	80.81 42.03
ASN		358			46.84 :			358	81.68	81.68 45.89
ASP		359			47.47 :			359	80.63	80.63 46.12
ASP					46.75 :			359	78.58 77.44	78.58 47.47
ASP				114.14		ASP		359		77.44 45.75
ASP		359		109.41		LEU		360		80.49 48.02 80.31 49.31
LEU		360		109.10		LEU		360	81.89	81.89 50.97
LEU		360		108.26		LEU				83.53 50.56
LEU				108.62		LEU		360	79.63	79.63 50.90
LEU		360		109.29		TRP		361	79.31	79.31 50.74
TRP	CA	361		106.58		TRP		361	77.58	77.58 50.91
TRP		361		106.17		TRP			75.23	75.23 50.89
TRP					49.84 :	TRP	CE3	361	74.73	74.73 52.16
TRP	CDl				48.88 :				75.16	75.16 48.69

TRP CZ2 361
MET CA 362 79.85 105.21 54.93 : MET N 362 78.95 78.95 54.00 MET CG 362 80.71 107.51 55.72 : MET SD 362 82.15 82.15 56.38 MET CE 362 82.08 108.03 58.13 : MET C 362 79.15 79.15 56.21 MET O 362 78.03 105.33 56.42 : GLY N 363 79.77 79.77 57.07 GLY CA 363 79.19 103.80 58.35 : GLY C 363 80.28 80.28 59.36 GLY O 363 81.45 103.99 58.99 : ARG N 364 79.99 79.99 60.63 ARG CA 364 81.02 103.97 61.64 : ARG CB 364 81.69 81.69 61.82
MET CA 362 79.85 105.21 54.93 : MET CB 362 81.05 81.05 55.26 MET CG 362 80.71 107.51 55.72 : MET SD 362 82.15 82.15 56.38 MET C 362 79.15 79.15 56.21 MET O 362 78.03 105.33 56.42 : GLY N 363 79.77 79.77 57.07 GLY CA 363 79.19 103.80 58.35 : GLY C 363 80.28 80.28 59.36 GLY O 363 81.45 103.99 58.99 : ARG N 364 79.99 79.99 60.63 ARG CA 364 81.02 103.97 61.64 : ARG CB 364 81.69 81.69 61.82
MET CE 362 82.08 108.03 58.13 : MET C 362 79.15 56.38 MET O 362 78.03 105.33 56.42 : GLY N 363 79.77 79.77 57.07 GLY CA 363 79.19 103.80 58.35 : GLY C 363 80.28 80.28 59.36 GLY O 363 81.45 103.99 58.99 : ARG N 364 79.99 79.99 60.63 ARG CA 364 81.02 103.97 61.64 : ARG CB 364 81.69 81.69 61.82
MET O 362 78.03 105.03 58.13 : MET C 362 79.15 79.15 56.21 GLY CA 363 79.19 103.80 58.35 : GLY C 363 80.28 80.28 59.36 GLY O 363 81.45 103.99 58.99 : ARG N 364 79.99 79.99 60.63 ARG CA 364 81.02 103.97 61.64 : ARG CB 364 81.69 81.69 61.82
GLY CA 363 79.19 103.80 58.35 : GLY C 363 80.28 80.28 59.36 GLY O 363 81.45 103.99 58.99 : ARG N 364 79.99 79.99 60.63 ARG CA 364 81.02 103.97 61.64 : ARG CB 364 81.69 81.69 61.82
GLY 0 363 81.45 103.99 58.99 : ARG N 364 79.99 79.99 60.63 ARG CA 364 81.02 103.97 61.64 : ARG CB 364 81.69 81.69 61.82
ARG CA 364 81.02 103.97 61.64 : ARG CB 364 81.69 81.69 61.82
ARG CG 364 81 00 106 62 61 22
ARG NE 364 81.50 109.05 61.55 : ARG CZ 364 81 04 81 04 62 00
ARG NHI 364 81.18 111.30 61.39 : ARG NH2 364 80 48 80 48 62 22
ARG C 364 80.31 103.68 62.93 : ARG O 364 79.08 79.08 62.93
THR CR 365 81 29 103 68 66 23 THR CA 365 80.32 80.32 65.27
THR CG2 365 81 77 101 34 65 73 101 365 82.46 82.46 66.49
THR 0 365 80 33 105 73 65 10 79.82 79.82 65.67
ILE CA 366 78.30 106.14 66.83 TIF CR 366 76.85 76.05 77.05
ILE CG2 366 76.43 107.26 68.20 : ILE CG1 366 75 95 75 05 66 17
ILE CD1 366 74.50 105.42 66.44 : ILE C 366 79 30 70 30 67 8/
1LE 0 366 79.66 107.82 67.79 : SER N 367 79 79 79 79 70 70
SER OG 367 81.00 105 /1 71 72 81.07 81.07 70.66
SER 0 367 82 28 100 05 67 70 82.12 82.12 68.87
LYS CA 368 84 38 107 30 68 72 LIS N 368 83.07 83.07 69.43
LYS CG 368 8/ 69 100 61 60 00 113 CB 368 84.64 84.64 68.58
LYS CE 368 84.73 111.66 71.26 : LYS NZ 368 85 82 85 82 72 07
LYS C 368 85.46 106.76 69.65 : LYS O 368 86 63 86 63 69 20
ASP N 369 85.05 106.19 70.78 : ASP CA 369 85 96 85 96 71 72
ASP ODI 369 86 63 108 28 72 46 ASP CG 369 85.83 85.83 73.18
ASP C 369 85 77 104 10 71 76 ASP 0D2 369 85.10 85.10 73.97
LEUN 370 84 52 103 (0 71.77 AST 0 369 86.73 86.73 71.70
LEU CB 370 83.14 102.19 73.06 : LEU CG 370 83 62 83 62 74 40
LEU CDI 3/0 85.07 102.06 74.71 : LEU CD2 370 82 63 82 63 75 30
LEU C 370 83.49 101.91 70.64 : LEU O 370 83.04 83.04 69.89
711 03.38 100.63 /0.32 : ARG CA 371 82 62 92 62 60 11
ARG CD 371 85 23 08 06 60 26 ARG CG 371 84.10 84.10 68.94
ARG C7 371 87 02 06 20 67 76 ARG NE 3/1 85.96 85.96 68.38
ARG NH2 371 87.72 96.93 66 82 ARG C 371 81.20 81.40 68.14
ARG 0 3/1 80.84 98.77 69.73 : SER N 372 80.43 80.43 60.63
SER CA 372 79.02 100.98 70.02 : SER CB 372 78.85 78.85 71.30
SER OG 3/2 79.63 100.86 72.34 : SER C 372 78.24 78.24 60.02
GLY CA 372 76.77 102.79 68.45 : GLY N 373 76.99 76.99 68.81
GLY 0 373 77 74 101 51 66 07 GLT C 373 76.57 76.57 66.47
11R CA 1/4 76 36 100 16 6/ 12 mm
11R CG 3/4 77.25 100.60 62.38 : TYR CD1 374 76 76 76 76 76 76 76 76 76 76 76 76 76
TYR CEI 374 77.61 100.63 60.01 : TYR CD2 374 78.61 78.61 62.60
TYR CEZ 3/4 /9.49 100.23 61.52 : TYR CZ 374 78.97 78.97 60.25
TYR 0 374 79.84 100.29 59.17 : TYR C 374 75.44 75.44 63.38
GIU CA 375 75 10 104 05 61 00 GIV 7 375 75.97 75.97 62.52
GLU CG 375 76.74 107.19 62 21 : CIU CD 375 77.25 77.25
GLU OE1 375 76.52 108.49 64.27 : GLU OE2 375 78.45 78.45
GLU C 375 75.64 104.91 60.37 : GLU O 375 76.76 76.76 60.13

```
THR N
          376
                74.85 105.28 59.37 : THR CA
                                               376
                                                     75.33
                                                            75.33 58.00
 THR CB
         376
                74.74 104.36 57.01 : THR OG1 376
                                                     73.32
                                                            73.32 57.13
 THR CG2 376
                75.23 103.00 57.33 : THR C
                                               376
                                                     74.91
                                                            74.91 57.52
         376
 THR O
                73.97 107.42 58.10 : PHE N
                                               377
                                                     75.56
                                                            75.56 56.52
         377
                75.16 108.70 55.94 : PHE CB
 PHE CA
                                               377
                                                     75.47
                                                            75.47 56.88
 PHE CG
         377
                76.79 109.89 57.66 : PHE CD1 377
                                                     76.78
                                                            76.78 58.99
 PHE CD2 377
                77.97 110.29 57.05 : PHE CE1 377
                                                     77.94
                                                            77.94 59.73
 PHE CE2 377
                79.12 110.32 57.80 : PHE CZ
                                              377
                                                     79.11
                                                            79.11 59.13
         377
                75.90 108.93 54.65 : PHE O
 PHE C
                                               377
                                                     76 83
                                                            76.83 54.36
                75.44 109.87 53.81 : LYS CA
         378
 LYS N
                                              378
                                                     76.17
                                                            76.17 52.62
 LYS CB
         378
                75.25 110.71 51.49 : LYS CG
                                              378
                                                     75.77
                                                            75.77 50.06
 LYS CD
         378
                74.73 111.51 49.29 : LYS CE
                                              378
                                                     74.19
                                                            74.19 47.91
 LYS NZ
         378
                75.16 111.19 46.81 : LYS C
                                              378
                                                     76.97
                                                            76.97 53.08
 LYS O
         378
                76.61 112.20 54.06 : VAL N
                                              379
                                                     78.13
                                                            78.13 52.50
VAL CA
         379
                78.92 112.97 52.77 : VAL CB
                                              379
                                                     80.31
                                                           80.31 53.35
VAL CGl 379
               80.95 114.00 53.73 : VAL CG2 379
                                                     80.25
                                                            80.25 54.63
VAL C
         379
               79.06 113.59 51.39 : VAL O
                                                            79.53 50.42
                                              379
                                                     79.53
ILE N
         380
               78.52 114.82 51.28 : ILE CA
                                              380
                                                     78.62
                                                           78.62 50.02
ILE CB
         380
               77.63 116.70 49.97 : ILE CG2 380
                                                     77.58
                                                            77.58 48.52
ILE CG1 380
               76.20 116.36 50.32 : ILE CD1 380
                                                    75.80
                                                           75.80 51.79
ILE C
         380
               80.07 116.01 49.93 ; ILE O
                                              380
                                                    80.73
                                                            80.73 50.91
GLY N
               30.58 115.71 48.74 : GLY CA
         381
                                              381
                                                    81.99
                                                            81.99 48.44
GLY C
         381
               82.92 114.92 49.13 : GLY O
                                              381
                                                    84.08
                                                           84.08 48.74
GLY N
         382
               82.34 114.05 49.98 : GLY CA
                                              382
                                                    83.04
                                                           83.04 50.85
GLY C
         382
               84.11 112.31 50.18 : GLY O
                                              382
                                                    85.04
                                                           85.04 50.87
TRP N
         383
               83.97 112.08 48.88 : TRP CA
                                              383
                                                    84.94
                                                           84.94 48.17
               84.35 110.52 46.96 : TRP CG
TRP CB
         383
                                              383
                                                    85.39
                                                           85.39 46.25
TRP CD2 383
               86.15 108.63 46.79 : TRP CE2 383
                                                    86.95
                                                           86.95 45.70
TRP CE3 383
               86.29 107.95 48.00 : TRP CD1 383
                                                    85.69
                                                           85.69 44.93
TRP NE1 383
               86.64 109.06 44.63 : TRP CZ2 383
                                                    87.88
                                                           87.88 45.83
TRP CZ3 383
               87.21 106.91 48.11 : TRP CH2 383
                                                    88.01
                                                           88.01 47.04
TRP C
         383
               86.04 112.19 47.66 : TRP O
                                              383
                                                    87.21
                                                           87.21 47.97
SER N
               85.68 113.18 46.83 : SER CA
         384
                                              384
                                                    86.63
                                                           86.63 46.21
SER CB
               86.07 114.49 44.88 : SER OG
         384
                                              384
                                                    86.07
                                                           86.07 44.02
SER C
         384
               87.07 115.35 46.94 : SER O
                                              384
                                                    87.95
                                                           87.95 46.40
THR N
         385
               86.61 115.79 48.10 : THR CA
                                              385
                                                    87.15
                                                           87.15 48.53
THR CB
         385
               86.05 118.17 48.41 : THR OG1 385
                                                    85.19
                                                           85.19 49.52
THR CG2 385
               85.18 118.02 47.17 : THR C
                                              385
                                                    87.73
                                                           87.73 49.91
THR O
               87.15 116.37 50.84 : PRO N
         385
                                              386
                                                    88.97
                                                           88.97 50.03
PRO CD
         386
               89.78 117.94 48.94 : PRO CA
                                              386
                                                    89.70
                                                           89.70 51.27
PRO CB
               90.94 118.06 51.03 : PRO CG
         386
                                              386
                                                    91.15
                                                           91.15 49.53
PRO C
         386
               88.85 117.76 52.40 : PRO O
                                              386
                                                    88.24
                                                           88.24 52.26
ASN N
               88.69 117.01 53.47 : ASN CA
         387
                                              387
                                                    88.00
                                                           88.00 54.68
ASN CB
               88.83 118.51 55.25 : ASN CG
         387
                                              387
                                                    88.92
                                                           88.92 56.75
ASN OD1 387
               89.24 119.37 57.42 : ASN ND2 387
                                                    88.83
                                                           88.83 57.45
ASN D21 387
               88.81 116.43 56.97 : ASN D22 387
                                                    88.67
                                                           88.67 58.42
ASN C
         387
               86.51 117.80 54.68 : ASN O
                                              387
                                                    86.00
                                                           86.00 55.70
SER N
         388
               85.75 117.52 53.61 : SER CA
                                              388
                                                    84.31
                                                           84.31 53.57
SER CB
        388
               83.71 117.10 52.32 : SER OG
                                              388
                                                    84.46
                                                           84.46 51.73
SER C
        388
               83.63 117.08 54.76 : SER O
                                              388
                                                    83.85
                                                           83.85 55.01
LYS N
        389
               82.90 117.85 55.58 : LYS CA
                                              389
                                                    82.18
                                                           82.18 56.71
LYS CB
        389
               82.68 117.90 58.02 : LYS CG
                                              389
                                                    84.16
                                                           84.16 58.24
LYS CD
        389
               84.32 118.29 59.71 : LYS CE
                                             389
                                                    85.79
                                                           85.79 59.95
LYS NZ
        389
               86.11 118.14 61.32 : LYS C
                                              389
                                                    80.67
                                                           80.67 56.62
LYS O
        389
               80.02 117.61 57.66 : SER N
                                              390
                                                    80.09
                                                           80.09 55.42
SER CA
        39
               78.67 117.99 55.30 : SER CB
                                             390
                                                    78.35
                                                           78.35 53.82
SER OG
        390
               78.64 116.87 53.15 : SER C
                                             390
                                                    77.67
                                                           77.67 55.94
SER O
        390
               77.18 117.31 57.06 : GLN N
                                             391
                                                    77.35
                                                          77.35 55.26
```

GLN CA 391 GLN CG 391 GLN OE1 391 GLN E21 391 GLN C 391 ILE N 392 ILE CB 392 ILE CG1 392 ILE C 392 ASN N 393 ASN CB 393 ASN OD1 393 ASN D21 393	75.64 113. 74.72 112. 77.54 114. 74.95 115. 74.29 114. 72.52 114. 71.01 114. 72.47 112. 71.18 112. 70.87 110. 70.64 110.	79 53.24 : ILE CI 50 54.71 : ILE O	D 391 75. E2 391 76.7 22 391 76.7 391 74.4 A 392 72.8 G2 392 73.0 D1 392 70.5 392 73.3 A 393 70.6 G 393 70.1	76.76 59.85 71.76.71 60.81 71.76.71 60.81 72.85 54.68 72.85 54.68 73.02 52.19 70.57 52.28 73.37 54.62 470.64 54.82 870.18 52.35 69.06 52.53
ASN C 393	71.24 109.9	93 55.89 : ASN 0	22 393 68.6 393 71.6	
ARG N 394	71.37 110.4	8 57.09 : ARG CA	394 71.8	
ARG CB 394	72.17 110.5	54 59.31 : ARG CG		8 72.18 60.61
ARG CD 394 ARG CZ 394	73.20 110.1	11 61.60 : ARG NE		
ARG NH2 394	73.91 108 8	66 63.94 : ARG NH 82 63.97 : ARG C	1 394 72.1 394 70.8	
ARG 0 394		30 58.23 : GLN N		
GLN CA 395	70.37 106.2	9 59.48 : GLN CB	395 70.2	_
GLN CG 395		0 57.26 : GLN CD		9 69.29 56.26
GLN 0E1 395 GLN E21 395	69.65 104.6	0 55.09 : GLN NE 1 57.55 : GLN E2		
GLN C 395	71.03 105.7	1 60.68 : GLN 62	2 395 68.31 395 72.25	
VAL N 396		7 61.74 : VAL CA		
VAL CB 396	70.22 105.0	8 64.12 : VAL CG		
VAL CG2 396		9 64.50 : VAL C	396 70.56	
VAL 0 396 ILE CA 397	69.48 102.8 71.38 100.8	0 62.05 : ILE N		
ILE CG2 397		7 62.38 : ILE CB 3 61.28 : ILE CG	397 72.51 1 397 72.59	
ILE CD1 397	71.39 101.1		397 71.40	
ILE 0 397	70.58 99.4	0 64.10 : VAL N	398 72.25	
VAL CA 398	72.29 100.1	1 66.06 : VAL CB	398 73.53	73.53 66.33
VAL CG1 398 VAL C 398	73.49 98.6	2 67.77 : VAL CG2		
ASP N 399	72.42 101.30	6 66.92 : VAL O 6 67.89 : ASP CA		
ASP CB 399		2 69.58 : ASP CG	399 71.61 399 70.17	
ASP OD1 399	70.66 101.7	L 71.67 : ASP OD2		69.54 70.14
ASP C 399	72.84 102.73	3 69.61 : ASP 0	399 73.37	
SER N 400 SER CB 400	73.20 103.92			· · · · · · · · · · · · · · · · · · ·
SER C 400	74.41 105.68 74.46 103.43		400 73.13	73.13 71.64
ASP N 401	73.36 102.86		400 75.51 401 73.48	75.51 72.81 73.48 73.82
ASP CB 401		3 74.63 : ASP CG	401 72.49	72.49 75.43
ASP OD1 401	72.78 103.46	76.63 : ASP OD2	401 72.48	72.48 74.86
ASP C 401	73.78 100.65	73.64 : ASP O	401 73.94	73.94 74.60
ASN N 402 ASN CB 402		72.39 : ASN CA	402 74.18	74.18 72.10
ASN OD1 402		71.29 : ASN CG 73.00 : ASN ND2	402 71.86	71.86 72.16
ASN D21 402		71.20 : ASN D22	402 70.78 402 70.04	70.78 71.93 70.04 72.55
ASN C 402	75.47 98.72	71.33 : ASN O	402 75.91	75.91 70.59
ARG N 403		71.47 : ARG CA	403 77.29	77.29 70.88
ARG CB 403 ARG CD 403		71.50 : ARG CG	403 77.86	77.86 73.00
ARG CZ 403		73.18 : ARG NE 74.02 : ARG NH1	403 79.50	79.50 74.11
ARG NH2 403		73.07 : ARG C	403 80.83 403 77.24	80 [.] .83 74.92 77.24 69.40
ARG 0 403		68.89 : SER N	404 78.32	78.32 68.69

SER CA 96.79 67.32 : SER CB 404 404 78.48 78.40 78.40 66.37 SER OG 404 79.29 98.93 66.88 : SER C 404 79.85 79.85 67.22 SER O 404 80.25 95.37 68.17 : GLY N 405 80.68 80.68 66.20 GLY CA 405 95.57 66.09 : GLY C 81.99 405 82.37 82.37 64.66 GLY 0 405 96.99 64.18 : TYR N 82.16 406 82.91 82.91 63.98 TYR CA 406 94.99 62.61 : TYR CB 83.36 406 84.08 84.08 62.21 TYR CG 406 85.50 93.54 62.73 : TYR CD1 406 86.41 86.41 62.02 TYR CE1 406 87.72 92.67 62.44 : TYR CD2 406 85.91 85.91 63.86 TYR CE2 406 94.12 64.28 : TYR CZ 406 87.21 88.11 88.11 63.57 TYR OH 406 39.42 93.29 64.00 : TYR C 406 82.27 82.27 61.62 TYR O 406 81.13 94.98 61.94 : SER N 407 82.53 82.53 60.41 SER CA 407 95.85 59.43 : SER CB 81.51 407 80.85 80.85 59.51 SER OG 407 81.73 98.36 59.63 : SER C 407 82.23 82.23 58.12 SER O 407 83.44 95.88 58.08 : GLY N 408 81.56 81.56 57.03 GLY CA 408 82.27 95.36 55.80 : GLY C 408 81.19 54.77 81.19 GLY 0 408 80.00 95.21 55.06 : ILE N 409 81.61 81.61 53.53 ILE CA 409 80.70 95.76 52.44 : ILE CB 409 81.31 81.31 51.61 ILE CG2 409 82.45 96.36 50.76 : ILE CG1 409 80.26 80.26 50.75 ILE CD1 409 80.74 98.67 49.80 : ILE C 409 80.54 80.54 51.67 ILE O 409 81.41 93.57 51.80 : PHE N 410 79.46 79.46 50.90 PHE CA 410 79.40 93.20 49.95 : PHE CB 410 78.82 78.82 50.60 PHE CG 410 77.38 91.82 51.06 : PHE CD1 410 77.06 77.06 52.35 PHE CD2 410 91.34 50.20 : PHE CE1 410 76.42 75.76 75.76 52.78 PHE CE2 410 75.11 91.18 50.63 : PHE CZ 410 74.79 74.79 51.92 PHE C 410 78.56 93.70 48.80 : PHE 0 410 77.76 77.76 48.97 SER N 93.12 47.64 : SER CA 411 78.69 411 78.04 78.04 46.47 SER CB 411 94.04 45.44 : SER OG 79.08 411 79.93 79.93 45.90 SER C 411 77.13 92.58 45.85 : SER O 411 77.56 77.56 45.78 VAL N 412 75.89 92.88 45.42 : VAL CA 412 75.10 44.74 75.10 VAL CB 412 73.82 91.48 45.62 : VAL CG1 412 74.13 74.13 47.13 VAL CG2 412 72.65 92.40 45.30 : VAL C 412 74.73 43.34 74.73 VAL 0 412 74.34 93.53 43.11 : GLU N 413 74.99 74.99 42.35 GLU CA 74.65 413 91.88 40.97 : GLU CB 413 75.09 75.09 40.12 GLU CG 413 75.99 90.95 38.93 : GLU CD 413 75.27 75.27 37.69 GLU OE1 413 74.40 92.30 37.85 : GLU OE2 413 75.58 75.58 36.58 GLU C 413 73.13 92.06 40.88 : GLU O 72.41 413 72.41 41.50 GLY N 414 72.56 93.06 40.21 : GLY CA 414 71.11 71.11 40.10 GLY C 414 70.80 93.18 38.62 : GLY O 414 71.73 71.73 37.82 LYS N 415 69.54 93.26 38.15 : LYS CA 415 69.25 69.25 36.71 LYS CB 415 67.76 93.34 36.51 : LYS CG 415 67.19 67.19 35.57 LYS CD 415 65.70 92.50 35.18 : LYS CE 415 64.72 64.72 36.38 LYS NZ 415 64.57 91.16 36.94 : LYS C 415 69.94 69.94 35.88 LYS O 415 70.44 94.15 34.76 : SER N 416 69.91 69.91 36.55 SER CA 416 70.24 96.74 36.09 : SER CB 416 69.14 69.14 36.69 SER OG 416 68.81 97.04 37.99 : SER C 416 71.63 71.63 36.41 SER 0 416 72.38 97.82 35.60 : CYS N 417 71.91 71.91 37.68 CYS CA 417 73.07 97.77 38.27 : CYS C 417 73.64 73.64 39.37 CYS O 417 72.94 95.90 39.75 : CYS CB 417 72.60 72.60 38.84 CYS SG 417 71.28 98.82 40.04 : ILE N 418 74.85 74.85 39.92 ILE CA 418 75.24 96.25 41.05 : ILE CB 418 76.71 76.71 40.89 ILE CG2 418 76.97 95.19 39.43 : ILE CG1 418 77.79 77.79 41.39 ILE CD1 418 78.39 95.65 42.54 : ILE C 418 75.12 75.12 42.27 ILE 0 418 75.43 98.37 42.26 : ASN N 419 74.50 74.50 43.29 ASN CA 419 74.17 97.30 44.52 : ASN CB 419 72.75 72.75 44.92 ASN CG 419 72.18 97.51 46.17 : ASN OD1 419 71.53 71.53 46.97 ASN ND2 419 98.78 46.47 : ASN D21 419 72.42 72.96 72.96 45.87 ASN D22 419 71.97 99.14 47.26 : ASN C 419 75.20 75.20 45.59 ASN 0 419 75.99 96.05 45.38 : ARG N 420 75.19 75.19 46.76

ARG CA 420	76.21 97.50 47.76		
ARG CG 420			
ARG NE 420		: ARG CZ 420	80.01 80.01 44.21
ARG NH1 420	80.30 99.42 43.14	: ARG NH2 420	80.50 80.50 44.31
ARG C 420	75.42 97.29 49.00	: ARG 0 420	74.44 74.44 49.24
CYS N 421	75.87 96.40 49.85	: CYS CA 421	75.12 75.12 51.05
CYS C 421		: CYS 0 421	
CYS CB 421			77.37 77.37 51.78
PHE N 422		: CYS SG 421	73.31 73.31 49.39
		: PHE CA 422	76.97 76.97 54.38
		: PHE CG 422	76.27 76.27 55.68
PHE CD1 422		: PHE CD2 422	75.32 75.32 55.09
PHE CEL 422		: PHE CE2 422	74.44 74.44 55.90
PHE CZ 422	74.48 99.42 57.28	: PHE C 422	76.46 76.46 55.56
PHE 0 422	75.25 94.98 55.82	: TYR N 423	77.30 77.30 56.35
TYR CA 423	76.82 93.63 57.56		77.39 77.39 57.68
TYR CG 423		: TYR CD1 423	79.54 79.54 56.31
TYR CE1 423		: TYR CD2 423	
TYR CE2 423	81.13 92.20 58.61		
TYR OH 423	83.03 92.16 57.16		81.68 81.68 57.35
TYR 0 423			77.35 77.35 58.72
VAL CA 424			76.84 76.84 59.92
	77.61 94.74 61.04		77.20 77.20 61.57
VAL CG1 424	75.98 96.79 60.90		77.05 77.05 63.05
VAL C 424	77.47 93.69 62.11		76.41 76.41 62.37
GLU N 425	78.65 93.37 62.62		78.87 78.87 63.66
GLU CB 425	80.33 92.01 63.63	: GLU CG 425	80.81 80.81 64.91
GLU CD 425	82.28 90.98 64.89	: GLU OE1 425	83.11 83.11 64.48
GLU 0E2 425	82.61 89.88 65.32	GLU C 425	78.52 78.52 64.96
GLU 0 425	78.91 94.22 65.14 :		77.88 77.88 65.88
LEU CA 426	77.43 92.90 67.17		75.90 75.90 67.27
LEU CG 426	75.14 93.13 65.97 :		73.68 73.68 66.10
LEU CD2 426		LEU C 426	78.07 78.07 68.16
LEU 0 426	77.57 90.84 68.37 :		
ILE CA 427	79.91 91.42 69.55 :		
ILE CG2 427	82.01 92.58 68.38 :		81.56 81.56 69.38
ILE CD1 427	82.57 90.67 71.37 :		82.19 82.19 70.64
ILE 0 427		ILE C 427	79.36 79.36 70.97
		ARG N 428	79.40 79.40 71.70
		ARG CB 428	77.56 77.56 73.10
		ARG CD 428	76.21 76.21 72.98
ARG NE 428	74.81 91.62 73.24 :	ARG CZ 428	74.26 74.26 74.44
ARG NH1 428	72.97 91.52 74.48 :	ARG NH2 428	74.91 74.91 75.59
	79.85 89.53 73.82 :	ARG 0 428	80.52 80.52 73.28
GLY N 429	79.77 89.76 75.12 :		80.62 80.62 76.03
GLY C 429	81.89 89.80 76.38 :		82.01 82.01 76.31
ARG N 430	82.82 88.96 76.80 :		84.03 84.03 77.38
ARG CB 430	84.73 88.22 78.05 :		84.56 84.56 79.57
ARG CD 430	85.49 87.48 80.32 :		85.76 85.76 81.73
ARG CZ 430	84.87 87.64 82.72 :		
ARG NH2 430	83.60 87.33 82.50 :		
ARG 0 430			85.01 85.01 76.55
LYS CA 431			85.36 85.36 77.64
LYS CG 431		LYS CB 431	87.02 87.02 76.59
LYS CE 431			88.99 88.99 77.94
	90.47 91.56 78.24 :		91.23 91.23 77.11
	85.22 93.02 78.29 :		85.02 85.02 79.50
GLN N 432		GLN CA 432	83.44 83.44 77.87
GLN CB 432		GLN CG 432	81.71 81.71 77.09
GLN CD 432	81.29 97.28 76.03 :	GLN OE1 432	81.93 81.93 74.98
GLN NE2 432	80.24 98.05 76.30 :	GLN E21 432	79.81 79.81 77.18
GLN E22 432	79.94 98.65 75.58 :	GLN C 432	82.35 82.35 78.76
			=

GLN 0 432	82.14 94.52 79.85	: GLU N 43	3 81.62 81.62 78 36
GLU CA 433	80.59 92.37 79.21	: GLU CB 43	01.02 /0.30
GLU CG 433	3 78.90 93.03 77.70	: GLU CD 43:	
GLU 0E1 433	77.85 92.17 75.76	: GLU OE2 433	
GLU C 433		: GLU 0 433	
THR N 434	80.90 91.16 81.26	: THR CA 434	
THR CB 434	82.43 91.51 82.94	: THR OG1 434	83.73 83.73 82.38
THR CG2 434	82.40 91.50 84.46	: THR C 434	
THR 0 434	81.43 88.71 83.92	: ARG N 435	
ARG CA 435	78.85 88.20 83.62	: ARG CB 435	
ARG CG 435	76.70 87.64 84.63	: ARG CD 435	
ARG NE 435	74.75 86.98 83.49	: ARG CZ 435	74 49 74 49 92 56
ARG NH1 435	74.13 85.04 82.47	: ARG NH2 435	74.55 74.55 84.67
ARG C 435	79.25 86.81 83.11	: ARG 0 435	11.55 04,07
VAL N 436	79.41 86.81 81.78	: VAL CA 436	79.73 79.73 80.00
VAL CB 436	78.94 85.69 79.68	: VAL CG1 436	77.46 77.46 80.04
VAL CG2 436	79.32 86.91 78.82	: VAL C 436	
VAL 0 436	81.82 86.72 80.47	: TRP N 437	
TRP CA 437	83.20 84.34 80.23	: TRP CB 437	
TRP CG 437	83.87 83.56 82.43	: TRP CD2 437	85.01 85.01 83.07
TRP CE2 437	84.58 84.00 84.38	: TRP CE3 437	86.30 86.30 82.72
TRP CD1 437	82.80 83.39 83.26		83.28 83.28 84.44
TRP CZ2 437	85.46 84.36 85.39	: TRP CZ3 437	87.17 87.17 83.72
TRP CH2 437	86.75 84.68 85.04	TRP C 437	83.56 83.56 78.79
TRP 0 437	84.75 83.99 78.47		82.59 82.59 77.88
TRP CA 438	82.80 83.88 76.46 :		81.68 81.68 75.90
TRP CG 438	80.26 83.41 76.28 :		79.45 79.45 75.66
TRP CE2 438 TRP CD1 438	78.32 84.30 76.46 :		79.51 79.51 74.56
TRP CZ2 438	79.68 82.86 77.37 :	TRP NE1 438	78.50 78.50 77.46
TRP CH2 438	77.22 85.09 76.19 :		78.42 78.42 74.30
TRP 0 438	77.29 85.93 75.10 :		82.81 82.81 75.73
THR CA 439	82.51 86.23 76.31 :		83.01 83.01 74.44
THR OG1 439	83.00 86.39 73.63 : 85.03 87.11 74.66 :		84.45 84.45 73.39
THR C 439			84.54 84.54 72.46
SER N 440	01 22 06 26 25 25		82.88 82.88 71.92
SER CB 440			80.83 80.83 70.45
SER C 440	• • • • •	SER OG 440	79.47 79.47 69.50
ASN N 441	79.51 86.90 68.59 :	SER 0 440	80.07 80.07 70.31
-	79.65 88.60 66.93 :	ASN CA 441	78.79 78.79 67.97
	80.44 86.71 65.69 :	ASN CG 441	79.77 79.77 65.68
	78.62 88.90 64.53 :	ASN NDZ 441	79.17 79.17 64.54
ASN C 441	77.51 87.46 67.29 :	ASN 0 22 441	79.23 79.23 63.79
SER N 442	76.60 88.38 66.91 :	SER CA 441	77.34 77.34 67.15
SER CB 442	74.18 88.18 66.64	SER OG 442	75.53 75.53 65.98
SER C 442	75.67 89.00 64.81 :	SER 0 442	73.72 73.72 67.04
ILE N 443	74.83 89.01 63.79 :	ILE CA 443	76.65
ILE CB 443	75.58 89.25 61.37 :	ILE CG2 443	
ILE CG1 443	74.69 88.27 60.67 :	ILE CD1 443	
ILE C 443	/3.63 90.52 62.39 :	ILE 0 443	
VAL N 444	73.67 91.68 61.72 :	VAL CA 444	72.57 72.57 62.70 72.52 72.52 61.15
VAL CB 444	72.11 93.54 62.09 :	VAL CG1 444	73.07 73.07 62.12
VAL CG2 444	70.78 94.01 61.59 :	VAL C 444	73.04 73.04 59.79
VAL 0 444	74.25 92.95 59.66 :		72.30 72.30 58.70
VAL CA 445	72.85 93.21 57.42 :	VAL CB 445	73.41 73.41 56.56
VAL CG1 445	73.09 90.61 57.19 :	VAL CG2 445	72.89 72.89 55.16
VAL C 445	71.76 93.99 56.74 : 1	VAL 0 445	70.57 70.57 56.96
PHE N 446	72.13 95.03 56.01 :	PHE CA 446	71.21 71.21 55.32

PHE C	B 446	71.20	97.3	32 55.91	: PHE C	G 446	70.42	70.42	57 1
PHE CI	01 446	69.45	5 98 4	8 57.18		D2 446		_	
	E1 446			3 58.27					
PHE CZ						E2 446			
				9 59.35					53.88
PHE O	446	72.85		5 53.60			70.76	70.76	52.92
CYS CA	447	71.22	96.4	4 51.57	: CYS C	447			
CYS O	447	70.05			: CYS C				
CYS SO	447	71.77			: GLY N				
GLY CA				6 10.66	: GLY N	448	71.49		
		71.18		6 49.55	: GLY C	448			48.89
GLY O		69.39	98.5	0 48.29	: THR N	449	69.10	69.10	49.09
THR CA	449	67.84	100.7	2 48.43	: THR CE	3 449			
THR OG	1 449	65.56	100.8		: THR CO				
THR C	449				: THR O	449			
SER N	450								
SER CB					: SER CA				
		67.09	103.0	3 44,49	: SER OG				43.97
SER C	450	65.47	103.8	9 46.15	: SER O	450	65.06	65.06	
GLY N	451	64.67	103.3	2 47.04	: GLY CA	451	63.30		
GLY C	451	63.27	104.3	7 48.65	: GLY 0	451	64.26		
THR N	452	62.27	104.18	3 49 48	: THR CA	452	62.12		
THR CB	452	60 72	105 5	7 50 06	: THR OG	1 452			
THR CG		(0.72	105.5	, 50.86			59.99		
				51.31		452	62.27	62.27	51.90
THR O	452	62.17	102.82	2 51.71	: TYR N	453	62.36	62.36	
TYR CA	453	62.60	103.71	54.28	: TYR CB	453	64.09	64.09	54 35
TYR CG	453	65.15	104.39	54.17	: TYR CD	1 453	65.58	65.58	
TYR CE	1 453	66.52	106.10	55.07			65.59	65.59	
TYR CE	2 453			52.69			66.97		
TYR OH	453	67 90	107 /3	53.58	. TIN 02			66.97	
TYR O	453	61 00	107.43	55.30	: TYR C		62.23	62.23	
GLY CA	454	(1.99	100.70	55.33	: GLY N		62.25		
GLY O		61.63	104.//	57.78	: GLY C	454		63.02 5	8.65
	454	64.17	104.82	58.19	: THR N	455	62.76	62.76 5	9.88
THR CA	455	63./3	104.42	60.95	THR CB	455	63.31	63.31 6	1.56
THR OG1		64.24	106.74	61.00	THR CG2	455	63.19	63.19 6	3.04
THR C	455	63.60	103.14	61.82	THR O	455	62.63	62.63 6	
GLY N	456	64.59	102.92	62.69	GLY CA	456	64.59	64.59 6	
GLY C	456	65.99	101.75	64.27	GLY O	456	66.80	66.80 6	
SER N	457	66 23	100 68	65.04 :	SED CA	457			
SER CB	457	67 72	100.00	67.01 :	SER CA		67.53	67.53 6	
SER C	457	(7.72	100.00	67.01	SER UG	457	00.74	68.74 6	
		67.45		65.73 :		457	66.53	66.53 6	
TRP N	458	68.37	98.03	65.16 :	TRP CA	458	68.31	68.31 6	5.27
TRP CB	458	68.13	96.02	63.83 :	TRP CG	458	66.88	66.88 6	3.10
TRP CD2		66.75	97.75	62.42 :	TRP CE2	458	65.47	65.47 6	
TRP CE3		67.53	98.87	62.17 :	TRP CD1	458	65.75	65.75 6	
TRP NE1	458	64.92		62.27 :			64.94	64.94 6	
TRP CZ3	458	67.00		61.40 :					
TRP C	458	69.54		65.98 :			65.72	65.72 60	
PRO N	459					458	70.50	70.50 6	
PRO CA		69.62		67.31 :		459	68.67	68.67 68	3.21
	459	70.73	95.52			459	70.63	70.63 69	9.39
PRO CG	459	69.16		69.61 :	PRO C	459	70.71	70.71 68	3.25
PRO O	459	69.71	93.32	67.92 :	ASP N	460	71.75	71.75 68	
ASP CA	460	71.82	92.02	69.07 ·	ASP CB	460	73.08	73.08 69	
ASP CG	460	73.14	90.33	70 43 .	ASP OD1				
ASP OD2		72.94	90.17				73.37	73.37 69	
ASP O	460		90.56		ASP C	460	70.56	70.56 69	
GLY CA					GLY N	461	70.19	70.19 70	
	461		91.46		GLY C	461	69.10	69.10 72	. 80
GLY O	461	68.15	90.52		ALA N	462		70.25 73	
ALA CA	462	70.33	89.14		ALA CB	462		71.58 74	
ALA C	462	70.31	89.83	_	ALA O	462		70.92 75	
ASN N	463	69.52	89.38		ASN CA	463		69.67 77	
		-				, , ,	09.07	09.0/ //	. 17

ASN CB 463	(0.00
	37.74 70.30 NSN CG 463 68 51 40 51 00 55
ASN ODI 463	69.45 89.94 80.74 : ASN ND2 463 67.56 67.56
ASN D21 463	66.78 91.24 79.94 : ASN D22 463 67.71
ASN C 463	70.79 89.09 78.38 : ASN 0 763 70.65 30.41
ILE N 464	71.89 89 77 78 68 - 715 61 70.03 70.03 78.57
ILE CB 464	74.16 90 31 79 28 : TIE CR 404 /3.10 /3.10 79.20
ILE CG1 464	75 35 80 00 70 70 10 1EE CG2 464 74.59 74.59 80 71
ILE C 464	72 80 88 38 00 50 TEE CDI 464 76.36 76.36 78 97
ASN N 465	73.71 73.71 80 84
	71.52 58.53 81.24 : ASN CA 465 71 57 71 57 00 17
	70.00 88.75 83.43 : ASN CG 465 71 55 71 55 83.43
ASN OD1 465	71.19 91.11 83.40 : ASN ND2 465 72 60 72 60 03.63
ASN D21 465	72.86 89.06 85.00 : ASN D22 465 73.07 73.07
ASN C 465	/0 /8 86 63 82 10
PHE N 466	70 40 86 33 90 05 . DUD 01
PHE CB 466	68 62 85 30 70 63
PHE CD1 466	67 30 86 60 81 73 PHE CG 466 67.46 67.46 80.09
PHE CEI 466	00.30 01.43 . PHE CD2 466 66.58 66.58 70.15
	00.20 87.30 81.81 : PHE CE2 466 65 53 (5.53 70
	65.38 87.78 80.87 : PHE C 466 70.72 10.73 20.10
PHE 0 466	70.39 82.92 79.88 : MET N 467 71.02 71.02 70.72
MET CA 467	72.90 83.73 79 04 · MET CR 467 72.92 /1.92 /9.71
MET CG 467	73.48 85 57 77 45 4 457 69 73.99 73.99 78.45
MET CE 467	73 77 83 94 75 36 1477 3 72.52 72.52 76.08
MET 0 467	73.59 82.07 83.10 467 73.55 73.55 79.98
PRO CD 468	72.34 St.19 : PRO N 468 74.01 74.01 79.49
PRO CB 468	75 06 76.31 : PRO CA 468 74.96 74 96 80 22
PRO C 468	73.00 /9.34 /9.39 : PRO CG 468 7/ 66 7/ 66
	70.27 81.37 80.39 : PRO 0 468 76 64 76 64 76
	76.90 81.03 81.43 : ILE CA 469 78.20 78.20 20 20
ILE CB 469	79.31 81.72 80.98 : ILE CG2 469 80.61 80.61
ILE CG1 469	79.46 80.82 79.75 : ILE CD1 469 70.20 70.20
ILE C 469	/8.U3 8/ 4/ 83 03 . TTP om: 445
ILE OT2 469	78.42 82 16 84 16 . NAC CT
NAG C2 86A	80 66 91 34 30 93
NAG C7 86A	82 54 93 90 30 37 HAG NZ 86A 81.23 81.23 29.81
NAG C8 86A	22.07 : NAG O/ 86A 83.35 83.35 20.06
NAG 03 86A	70.00 94.35 29.82 : NAG C3 86A 79.45 79.45 28 93
1110 01	73.30 91.39 27.60 : NAG C4 864 78 60 78 60 78
11.0	77.31 90.10 28.30 : NAG C5 864 78 20 78 20 78
	79.50 89.81 31.32 : NAG C6 864 77 /3 77 /3 30.30
	//.90 87.56 30.01 · NAC CL 1/64 26 73
NAG C2 146A	86 32 79 61 84 41 340 49
NAG C7 146A	83.86 79 69 84 35 . 34.5 07
NAG C8 146A	82.53 79.00.84.60 : 140.02 140.4 83.89 83.89 83.93
	86 20 80 01 06 02 146A 86.67 86.67 85.59
17.00	88 54 81 40 06 70 NAG C4 146A 88.16 88.16 85.62
	10 10 01.72 . NAG C5 146A 88.69 88 69 84 32
	00 CO 00 110 . NAG CO 146A 90.22 90 22 84 15
	79.77 84.27 : NAG C1 2004 108 62 108 62 62
	11.30 00.20 NAG N/ 700A 110 /2 110 /2 /2 /2
NAG C7 200A 11	10.11 78.83 62 38 · NAC 07 200: 100 110.43 01.09
NAG C8 200A 11	10.8/ 79.90 63 17 · NAC C2 200: 110 -1 10 02.93
NAG 03 200A 11	11./1 76.31 60.21 · NAC C/ 2004 110 25
NAG 04 200A 11	.0.95 75.17 57 51 : NAC CS 2004 100.05 110.05 58.50
NAG 05 200A 10	NR 02 77 06 50 11 1 14AG C3 200A 108.87 108.87 57 75
NAG G6 200A 10	17 52 7/ 10 50 NAG CB 200A 108.04 108.04 57 00
NAG C2 200B 11	1 86 77 13 57 1846 CI 2008 111.16 111.16 57.67
NAG C7 200B 11	1 21 73 00 51 NAG N2 2008 111.04 111.04 55 31
NAG C8 200B 110	0 40 73 60 54 34 2008 111.95 111.95 54.34
	2 24 112 20 112 20 112 20 56 70
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	3.10 70.17 58.29 : NAG C5 2008 112 12 12 12 12 12
NAG 05 200B 111	1.91 73.53 58.89 · NAG C6 2008 112 69 112 69 60 66
	-000 112 59 117 NY AN AA

H20	OH2	182	82.72	101.43	58.30	:	H20	OH2	183	87.58	87 58	57.43
H20	OH2	184		102.15			H20			94.73		40.55
H20	OH2	187	78.28	117.08	59.75		H20			82.63		62.08
H20	OH2	190	83.42	101.41	61.07		H20			87.87		68.82
H20	0.112	192	84.85	98.37	72.05			OH2		85.07		62.47
H20	OH2	195	89.81	111.68				OH2		78.79		61.44
H20	OH2	198	88.42	110.10	56.24	:		OH2		94.26		50.76
H20	OH2	204	94.76	113.64	56.53	:				83.93		57.60
H20	OH2	206		108.68						81.33		70.75
H20	OH2	209		106.06			H20			68.10		55.92
H20	OH2	211	73.97	95.00	70.32		H20			74.40		73.04
H20	OH2	215	65.93	94.45			H20			71.63		65.29
H20	OH2	217	69.94	100.28	45.21	:	H20	OH2	221	85.83	85.83	
		224		106.89			H20			66.97	66.97	-
H20	OH2	226	67.37	107.99	59.65	:	H20	OH2	227	76.93	76.93	
H20			77.12	82.17	66.21	:	H20	OH2	229	77.08	77.08	
H20			75.89	74.57	73.14	:	H20	OH2	233	70.51	70.51	
H20	OH2	234	75.33	88.62	42.44	:	H20	OH2	236	76.59	76.59	
CA	XA	CA	93 46	103 91								

WO 92/06691 FIGURE 2 PCT/AU90/00501

SIA	Cl	SIAL	90.06	93.33	66.69	:	SIA	01A	SIAL	89.98	89.98	66.22
SIA	OlB	SIAL	89.34	92.99	67.63	:	SIA	C2	SIAL	91.05	91.05	66.09
SIA	02	SIAL	91.97	91.94	67.10	:	SIA	C3	SIAL	90.23	90.23	65.63
SIA	C4	SIAL	90.97	90.20	64.61	:	SIA	04	SIAL	90.80	90.80	64.86
SIA	C5	SIAL	92.47	90.55	64.64	:	SIA	N5	SIAL	93.17	93.17	63.65
SIA	C10	SIAL	94.07	88.77	63.9?	:	SIA	010	SIAL	94.43	94.43	65.07
SIA	Cll	SIAL	94.62	88.08	62.€	:	SIA	111	SIAL	94.28	94.28	61.77
SIA	112	SIAL	94.31	87.03	62.6	:	SIA	113	SIAL	95.70	95.70	62.71
SIA	C6	SIAL	92.68	92.06	64.25	:	SIA	06	SIAL	91.78	91.78	64.99
SIA	C7	SIAL	94.11	92.50	64.57	:	EIA	07	SILL	94.38	94.38	65.93
SIA	С8	SIAL	94.35	93.97	64.21	:	SIA	80	SIAL	94.10	94.10	62.82
STA	C9	STAL	95.83	94.35	64.50	:	SIA	09	SIAL	96.59	96 59	63 33

FIGURE 3

3-Fluoro-1,1,1,3,5,	5,5-heptanitropentane
---------------------	-----------------------

PEN	Fl	5	95.14	90.03	63.25	:	PEN	C2	5	94.67	94.67	63.89
PEN	C3	5	94.26	91.59	64.87	:	PEN	C4	5	94.46	94.46	64.42
PEN	C5	5	93.14	89.33	64.38	:	PEN	C6	5	93.11	93.11	63.60
PEN	N 7	5	91.68	87.43	63.72	:	PEN	N8	5	94.06	94.06	64.09
PEN	N9	5	93.35	88.24	62.12	:	PEN	N10	5	95.42	95.42	65.50
PEN	NII	5	94.59	94.05	64.55	:	PEN	N12	5	96.14	96.14	
PEN	N13	5	93.76	92.76	62.65	:	PEN	014	5	91.16	91.16	
PEN	015	5	91.25	86.88	62.74	:	PEN	016	5	93.61	93.61	
PEN	017	5	95.23	87.27	64.19	:	PEN	018	5	92.68	92.68	
PEN	019	5	94.19	87.51	61.57	:	PEN	020	5	96.61	96.61	65.25
PEN	021	5	94.90	89.16	66.51	:	PEN	022	5	93.10	93.10	
PEN	023	5	95.43	94.85	64.23	:	PEN	024	5	96.38	96.38	
PEN	025	5	96.92	92.28	64.35	:	PEN	026	5	93.83	93.83	
PEN	027	5	93.09	91.82	62.41	:						

Figure 4

Ph = phenyl; $E = CO_2H$ (1a), $PO(OH)_2$ (1b) or SO_2H (1c).

Figure 5

TBDMS-O

14

O

OH.

TBDMS-O

15

Figure 5 (cont.)

Figure 6

Figure 7

General Reaction Scheme

Q= $\sec R^2$ in text X= halogen e.g. Cl, Br , $\sec R$ in general formula I R= R^4 in text [C]-D= electron-withdrawing group, $\sec E$ in text AR/= R^1 in text, general formula II

INTERNATIONAL SEARCH REPORT

International Application No. PCT/AU 90/00501

		on No. PCT/AU 90/0050
I. CLASSIFICATION OF SUBJECT MATTER (if several ct	assification symbols apply	, indicate all) 6
According to International Patent Classification (IP	C) or to both National Clas	ssification and IPC
Int. Cl. 5 A61K 31/70, 45/00, C07H 5/06, C07D 309/2	28, 309/30, 309/22, 309/20	
II. FIELDS SEARCHED		
	um Documentation Searched	7
Classification System Classifica	tion Symbols	
IPC		ZA VIRUS NEURAMIN:
Documentation Searched other than to the Extent that such Documents are Inc.		ed 8
AU : IPC as above CHEM ABS using Keywords above		
III. DOCUMENTS CONSIDERED TO BE RELEVANT 9		
Category* Citation of Document, with indication of the relevant passages	n, where appropriate, s 12	Relevant to
X Virology, Volume 58, issued 1974, P. Meind Neuraminidase Activity by Derivatives of 2- acetyl neuraminic acid", pages 457-463		(1,7-15)
X Virology, Volume 59, issued 1974, P. Palese Influenza and Parainfluenza Virus Replicati 2-deoxy-2,3-dehydro-N-trifluoroacetylneuran pages 490-498	ion in Tissue Culture by	(1,7-15)
X Biochemical and Biophysical Research Commun. Number 4, issued 1978, C.A. Miller et al, " Arthrobacter Sialophilus Neuraminidase: The and Transition-state Analogs", pages 1479-1	Mechanism of Binding of Substrates	(1,7-15)
* Special categories of cited documents: 10 "T"		1
* Special categories of cited documents: 10 "T" "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or after special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "%"	claimed invention cannot or cannot be considered inventive step document of particular reclaimed invention cannot involve an inventive step is combined with one or modocuments, such combination a person skilled in the accombination of the second combination of the second constitution of the	e or priority date the application but principle or theory elevance; the be considered novel to involve an elevance; the be considered to be when the document incre other such ion being obvious to int.
IV. CERTIFICATION		
Date of the Actual Completion of the	Date of Mailing of thi	s International
International Search 24 January 1991 (24.01.91)	Search Report	1004
International Searching Authority	16 tebruary 1	441
Australian Patent Office	Sibnature of Authorize	JOHN G. HANSON

X	Tetrahedron Letters, Volume 29, Number 30, issued 1988, W. Schmid et al. "Synthesis of both Epimeric 2-deoxy-N-acetylneuraminic acids and their Behaviour towards CMP-Sialate Synthetase-A Comparison with 2-\$\beta\$-methylketoside of N-acetylneuraminic acid", pages 3643-3646	(1,14-21)
	Carbohydrate Research, Volume 127, issued 1984, M.N. Sharma and R. Eby, "Synthesis and Conformational Studies of 2-\(\beta\)-chloro, 2-\(\alpha\)-fluoro and 2-\(\beta\)-fluoro Derivatives of 2-deoxy-N-acetylneuraminic acid", pages 201-210	(1,17-21)
,P	AU,A, 34798/89 (MECT CORPORATION) 16 November 1989 (16.11.89), see claims, page 4 lines 15-26	(1,18-21)
(,P	US,A, 4914195 (H. OGURA et al) 3 April 1990 (03.04.90), see claims	(37)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

- 1.[] Claim numbers ..., because they relate to subject matter not required to be searched by this Authority, namely:
- 2.[] Claim numbers , because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
- 3.[] Claim numbers ..., because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4 (a):

VI. [] OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2

This International Searching Authority found multiple inventions in this international application as follows:

- | 1.[] As all required additional search fees were timely paid by the applicant, this international | search report covers all searchable claims of the international application.
 - 2.[] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:
- | 3.[] No required additional search fees were timely paid by the applicant. Consequently, this
 international search report is restricted to the invention first mentioned in the claims;
 it is covered by claim numbers:
- | 4. [] As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

| Remark on Protest

- [] The additional search fees were accompanied by applicant's protest.
- [] No protest accompanied the payment of additional search fees.

$\begin{array}{cccc} \underline{\text{ANNEX TO THE}} & \underline{\text{IMIERNATIONAL}} & \underline{\text{SEARCH REPORT ON}} \\ \underline{\text{INIERNATIONAL}} & \underline{\text{APPLICATION NO.}} & \underline{\text{PCT/AU}} & \underline{90/00501} \\ \end{array}$

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report		Patent Family Members					
US	4914195	DE HK US	3219209 275/89 4447600	FR JP	2506313 58000992	GB SG	2101588 112/88
au	34798/89	DK JP	2329/89 1287029	EP	341735	ПL	90271

END OF ANNEX

This Page Blank (uspro)

TO STANLEY