Cryptography

The NTUA_H4CK Workshop

- Γιάννης Κουμπιάς
- Χρόνης Σαπουντζάκης
- Σήλια Κοντοθανάση
- Μάρω Τερζή

Challenge Coded by:

• Στυλιανός Αναστασίου

- 180365595049195148200891720356467438
 65678693730637880926521177193258839662
 25162556300830592478349732059317220418
 546742774683
- 65537
- 613771544420165681333550699569249438
 36485350568482877417571888996991077429
 75145789859295837472746233571784990898
 46261339341

Γιατί κρυπτογραφία;

- Η κρυπτογραφία αποτελεί θεμελιώδη κλάδο της κυβερνοασφάλειας στη σύγχρονη εποχή, προσφέροντας μυστικότητα στη μετάδοση και διατήρηση δεδομένων.
- Οι βασικοί στόχοι της κρυπτογραφίας είναι οι:
 - Εμπιστευτικότητα (Confidentiality)
 - Ακεραιότητα (Integrity)
 - Πιστοποίηση (Authentication)
- Πως όμως πετυχαίνει η κρυπτογραφία τα παραπάνω;

Αλγόριθμοι Κρυπτογράφησης

- Ένα άτομο Α (Alice) επιθυμεί να επικοινωνήσει με ένα άτομο Β (Bob) μέσω ενός μη ασφαλή διαύλου.
- Η Alice κρυπτογραφεί το μήνυμα της m μέσω ενός αλγορίθμου που χρησιμοποιεί ένα κλειδί k_1 .
- Το κρυπτοκείμενο c μεταδίδεται στον Bob μέσω του διαύλου επικοινωνίας.
- Ο Bob αποκρυπτογραφεί το μεταδιδόμενο μήνυμα c χρησιμοποιώντας έναν αλγόριθμο με κάποιο κλειδί k_2 και καταλήγει με το αρχικό μήνυμα m.

Αλγόριθμοι Κρυπτογράφησης

Κλασσικοί Αλγόριθμοι Κρυπτογράφησης

Caesar's Cipher

Ο αλγόριθμος του Καίσαρα είναι ένας πολύ απλός αλγόριθμος αντικατάστασης, ο οποίος κάνει shift το αλφάβητο κατά 3 θέσεις:

- A→D
- CRYPTO→FUBSWR

Αντιστοιχίζοντας τα γράμματα Α-Ζ με αριθμούς 0-25 ο αλγόριθμος μπορεί να υλοποιηθεί προσθέτοντας το 3 mod 26.

Μπορούμε να επεκτείνουμε την κρυπτογράφηση κάνοντας shift n φορές προσθέτοντας n mod 26. Τότε έχουμε ένα rotn cipher με κλειδί k=n.

https://rot13.com

Σύγχρονοι Αλγόριθμοι Κρυπτογράφησης

Advanced Encryption Standard (AES)

- Αλγόριθμος κρυπτογράφησης συμμετρικού κλειδιού.
- Block Cipher: Τα δεδομένα χωρίζονται σε blocks.
- Different modes: ECB, CBC...
- Μπορεί να μετατραπεί σε stream cipher: CTR...

AES – Black Box: Encryption

AES – Black Box: Decryption

AES Modes

Electronic Codebook (ECB) mode encryption

Cipher Block Chaining (CBC) mode encryption

Γιατί όχι ΕСΒ;

- Το ECB είναι το πιο απλό mode του AES.
- Το plaintext χωρίζεται σε blocks των 16 bytes.
- Κάθε block γίνεται encrypt με το black box.
- Γιατί αυτό δεν είναι ασφαλές;
 - LACK OF DIFFUSION!

Before ECB

Γιατί όχι ΕCB;

After ECB

Τι γίνεται με το CBC;

- Στο CBC το plaintext χωρίζεται πάλι σε blocks των 16 bytes.
- PADDING: Αν το τελευταίο block δεν έχει ακριβώς 16 bytes τότε προσθέτω έξτρα bytes μέχρι να συμπληρωθούν!
- Κάθε block του plaintext γίνεται XOR με το προηγούμενο block του ciphertext.
- Το πρώτο block γίνεται XOR με ένα τυχαίο IV (Initialization Vector).
- Ακολουθεί encryption με το black box.
- Γιατί είναι πιο ασφαλές;
 - Κάθε μπλοκ επηρεάζεται από το προηγούμενο.
 - Αλλαγή σε κάποιο bit ενός μπλοκ οδηγεί σε αλλαγές στα bits των επόμενων block!
 - Μοναδικότητα χάρη στο IV.

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

Before CBC

Τι γίνεται με το CBC;

After CBC

Σύγχρονοι Αλγόριθμοι Κρυπτογράφησης

RSA

- Αλγόριθμος κρυπτογράφησης ασύμμετρου κλειδιού
- Στηρίζεται στη δυσκολία του factoring problem
- Ζεύγος Δημοσίου Κλειδιού:
 - Public modulus n
 - Public exponent e
- Ιδιωτικό Κλειδί:
 - Private key d

RSA Προετοιμασία του Bob

- Ο Bob επιλέγει δύο πρώτους : p,q
- Υπολογίζει το public modulus:

$$n = p * q$$

• Υπολογίζει την συν. Euler :

$$\varphi(n) = (p-1) * (q-1)$$

- Επιλέγει public exponent e (συνήθως 3 ή 65537)
- Υπολογίζει το Private Key d από : $ed = 1 \ (mod \ \varphi(\ n\))$
- Τέλος στέλνει το Public Key (n, e) στην Alice.

RSA Κρυπτογράφηση της Alice

- Η Alice θέλει να στείλει ένα μήνυμα m στον Bob
- Έχει τα (n, e)
- Παράγει το κρυπτογραφημένο μήνυμα c ως:

$$c = m^e \pmod{n}$$

• Στέλνει το *c* στον Bob.

RSA Αποκρυπτογράφηση του Bob

• Ισχύει:

$$ed = 1 \pmod{\varphi(n)}$$

• Άρα ο Bob ανακτά το αρχικό μήνυμα m από:

$$m = c^{d} \pmod{n}$$

• Παρατηρούμε λοιπόν πως:

$$c^d = (m^e)^d = m^{ed} = m \pmod{n}$$

RSA Παρατηρήσεις

- Παρατηρούμε πως πρέπει να ξέρουμε το d για να βρούμε το αρχικό μήνυμα.
- Δηλαδή να υπολογίσουμε τον αντίστροφο του $e \pmod{\varphi(n)}$.
- Ορίζουμε αντίστροφο b ενός αριθμού $a \mod n$ ως: $ab = 1 \pmod{n} \Rightarrow b = a^{-1} \pmod{n}$
- Προσοχή! Ο $a^{-1} (mod \ n)$ δεν είναι κλάσμα αλλά ακέραιος: πχ $3*5=1 \ (mod \ 14)$
- Μόνο ο Bob μπορεί να αποκρυπτογραφήσει το μήνυμα της Alice γιατί μόνο εκείνος έχει το Private Key d.
- Μπορεί η Alice να αποκρυπτογραφήσει μήνυμα που της στέλνει ο Bob και αν ναι πώς;

RSA παράδειγμα σε Python

Χρήσιμη βιβλιοθήκη: https://pypi.org/project/pycryptodome/3.17/

```
from Crypto.Util.number import getPrime,bytes_to_long,long_to_bytes
```

Με την getPrime() παίρνουμε 2 πρώτους αριθμούς
 p=getPrime(128)
 q=getPrime(128)

 Τα functions bytes_to_long() και long_to_bytes() χρησιμοποιούνται για την μετατροπή bytes σε ακεραίους και ακεραίους σε bytes

RSA Παράδειγμα σε Python

• Υπολογίζουμε τα $n, \varphi(n), e$:

```
n=p*q
phi=(p-1)*(q-1)
e=0x10001 #65537
```

• Το μήνυμα m της Alice είναι "MERRY CHRISTMAS" και το μετατρέπουμε σε ακέραιο ώστε να βρούμε το c

```
m=bytes_to_long(b'MERRY CHRISTMAS')
c=pow(m,e,n)
```

• Ο Bob αποκρυπτογραφεί το μήνυμα c της Alice

```
d=pow(e,-1,phi)
decrypted=pow(c,d,n)
```

RSA παράδειγμα σε Python

p: 236679713181171811145780765829832668707

q: 223618104108819424186087383969487071937

n: 52925868742592799011568995252988600309792561544334085131689559768415997775459

phi(n): 52925868742592799011568995252988600309332263727044093896357691618616678034816

e: 65537

Plaintext as integer: 401212866564677422498393988526850387

Plaintext as bytes: b'MERRY CHRISTMAS'

Ciphertext as integer: 45148978488253327939936641253294313170997500413148095964175386065146086861073

Decrypted message: b'MERRY CHRISTMAS'

RSA vulnerabilities

- Ο υπολογισμός του ιδιωτικού d προϋποθέτει την γνώση των p,q για τον υπολογισμό του $\varphi(n)$.
- ΔΥΣΚΟΛΟ μόνο με την γνώση του n
 (https://en.wikipedia.org/wiki/Integer factorization)
- Άλλοι τρόποι;
- Θα παρουσιάσουμε μερικές περιπτώσεις όπου το RSA είναι ευάλωτο.

Common Modulus Attack

- Έστω ότι ο Bob και η Alice θέλουν να συνεννοηθούν για την διανομή των δώρων των Χριστουγέννων.
- O Bob στέλνει το public key (n, e₁)
- Η Alice στέλνει το public key (n, e₂)
- Για να επικοινωνήσουν στέλνουν και οι δύο το μήνυμα:

m = "the presents shall be delivered by dawn"

Common Mod Attack

Common Modulus Attack

Common Modulus Attack

- Η Alice και ο Bob έχουν:
 - ❖ το ίδιο n και
 - ❖ διαφορετικό e!
- 2η σημαντική προϋπόθεση:

$$\gcd(e_1, e_2) = 1$$

• Αν ισχύει κάτι τέτοιο ο Grinch έχει:

$$c_1 = m^{e_1} \pmod{n}$$

$$c_2 = m^{e_2} \pmod{n}$$

οπού c_1 και c_2 το κρυπτογραφημένο μήνυμα με δύο διαφορετικά e.

Common Modulus Attack

Ιδέα επίθεσης:

• Έστω ακέραιοι x, y.

Υπολογίζω το :
$$c_1^x * c_2^y \pmod{n}$$

• Τότε θα ισχύει:

$$c_1^x * c_2^y = m^{xe_1} * m^{ye_2} = m^{xe_1 + ye_2} \pmod{n}$$

ΕΡΩΤΗΣΗ: Πώς βρίσκω κατάλληλα x, y ώστε $xe_1 + ye_2 = 1$;

- ο Επεκτεταμένος Αλγόριθμος Ευκλείδη (Extended Euclidean Algorithm)
- ο Ιδέα αλγορίθμου: Αξιοποίηση των πηλίκων στον Κλασσικό Αλγόριθμο Ευκλείδη
- https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Common Modulus Attack - Python

```
e1=11
e2=13
p=getPrime(256)
q=getPrime(256)
n=p*q
```

- Στήνουμε ένα RSA με $e_1 = 11, e_2 = 13$
- Κρυπτογραφούμε το μήνυμα m δύο φορές.
- Υπολογίζουμε τα x, y με το function egcd().

```
m=bytes_to_long(b'the presents shall be delivered by dawn')
c1=pow(m,e1,n)
c2=pow(m,e2,n)

gcd,y,x=egcd(e2,e1)
print(f"Bezout Coefficients: {x} , {y}")
```

• Βρίσκουμε το μήνυμα.

```
decrypted=(pow(c1,x,n)*pow(c2,y,n))%n
```

Common Modulus Attack - Python

Cipher1: 266033196102433028311526874687001314998080451972339365162473549281979921418695890166304024626460594

Cipher2: 574004371965150056801737118675528823918550912030191733991438773687675455365930923389038602625974131

197486294910466455301531071419651529480787626200132943

Bezout Coefficients: 6, -5

Grinch knows that the presents shall be delivered by dawn

Παράδειγμα:

```
Έστω ότι γνωρίζω ότι :
                      x = 0 \pmod{3}
                       x = 0 \pmod{5}
```

10 15 20 Πόσο είναι το χ; "There are certain things whose number is unknown. If we count them by threes, we have two left over;

by fives, we have three left over; and by sevens, two are left over. How many things are there?" - Sunzi

Παράδειγμα:

Έστω ότι γνωρίζω ότι:

$$x = 0 \pmod{3}$$
$$x = 0 \pmod{5}$$

Πόσο είναι το x;

$$x = 0$$
 $\dot{\eta}$ $x = 15$ $\dot{\eta}$ $x = 30$

Γενικά:

$$x = 15k + 0$$

<u>Παρατήρηση</u>: 15 = 3 * 5, ΚΑΘΟΛΟΥ τυχαίο

"There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?" - Sunzi

Λίγο πιο δύσκολο παράδειγμα:

Έστω ότι γνωρίζω ότι:

$$x = 1 \pmod{3}$$
$$x = 0 \pmod{5}$$

• Μπορείτε να βρείτε το x;

Λίγο πιο δύσκολο παράδειγμα:

Έστω ότι γνωρίζω ότι:

$$x = 1 \pmod{3}$$
$$x = 0 \pmod{5}$$

• Μπορείτε να βρείτε το x;

$$x = 10 \text{ } \acute{\eta} x = 25$$

Γενικά:

$$x = 15k + 10$$

Γενικά, με k εξισώσεις:

```
x = a_1 \pmod{p_1}
x = a_2 \pmod{p_2}
\vdots
x = a_k \pmod{p_k}
```

όπου : α_i το υπόλοιπο τα διαίρεσης του αριθμού x με το αντίστοιχο $\mathbf{p_i}$.

Μπορούμε να βρούμε το :

$$x \pmod{\prod_{i=1}^k p_i}$$
!!!

Με την προϋπόθεση ότι οι αριθμοί \mathbf{p}_i είναι πρώτοι μεταξύ τους.

DISQUISITIONES

ARITHMETICAE

AVCTORE

D. CAROLO FRIDERICO GAVSS

LIPSIAE

IN COMMISSIS APVD GERH. FLEISCHER, Jum.
1801.

RSA Hastad's Broadcast Attack

Έστω ότι έχουμε τρία public keys όλα με ίδιο e = 3 αλλά διαφορετικό n

$$(3, n_1), (3, n_2), (3, n_3)$$

Αν η Alice στείλει το ίδιο μήνυμα m και με τα τρία αυτά public keys.

•
$$c_1 = m^3 \pmod{n_1} \Rightarrow c_1 = m^3 - k_1 n_1$$

•
$$c_2 = m^3 \pmod{n_2} \Rightarrow c_2 = m^3 - k_2 n_2$$

•
$$c_3 = m^3 \pmod{n_3} \Rightarrow c_3 = m^3 - k_3 n_3$$

όπου: c_i το i κρυπτογραφημένο μήνυμα

Αν είχαμε το m^3 (και όχι reduced mod κάποιο n) θα μπορούσαμε απλά να υπολογίσουμε την **κυβική ρίζα** του και θα παίρναμε το m.

Μααα ... αυτό είναι CRT

Το x είναι το m^3 και έχουμε τις τρεις εξισώσεις:

- $x = c_1 \pmod{n_1}$
- $x = c_2 \pmod{n_2}$
- $x = c_3 \pmod{n_3}$

Λίγες λεπτομέρειες

Γιατί χρειαζόμαστε 3 public keys(όσα το e)?

Αν m αρκετά μικρό τότε $m^3 < n_i$ οπότε μπορούμε κατευθείαν να βρούμε την κυβική ρίζα

Αλλά για μεγάλο m δεν μπορούμε. Όμως ξέρουμε ότι:

- $m < n_1$
- $m < n_2$
- $m < n_3$

Άρα $m^3 < n_1 n_2 n_3$, (πολλαπλασιάζοντας κατά μέλη)

Λίγες ακόμα λεπτομέρειες

Είπαμε για να κάνουμε CRT πρέπει τα n_1, n_2, n_3 να είναι μεταξύ τους πρώτα.

• Αν δεν είναι;

Left as an exercise to the reader.

Το παράδειγμα σε python

• Φτιάχνουμε 3 κλειδιά

```
from Crypto.Util.number import getPrime, long_to_bytes, bytes_to_long

def KeyGen():
    p, q = getPrime(512), getPrime(512)
    n = p*q
    return (n, 3)

n1, e = KeyGen()
n2, e = KeyGen()
n3, e = KeyGen()
```

• Κάνουμε encrypt το ίδιο μήνυμα και με τα 3

```
msg = b"Wow really long message hopefully long enough so you can't immediatelly take the cubic root but smaller than n1, n2, n3"
m = bytes_to_long(msg)

c1 = pow(m, e, n1)
c2 = pow(m, e, n2)
c3 = pow(m, e, n3)
```

```
from sympy.ntheory.modular import crt # import crt from sympy
recovered_m_raised_to_3, n1n2n3 = crt([n1, n2, n3], [c1, c2, c3]) # returns (m^3, n1*n2*n3)
```

Το παράδειγμα σε python

- Με CRT βρίσκουμε το m^3
- ullet Βρίσκουμε κυβική ρίζα του m^3 (δηλαδή το m!)

Άλλες επιθέσεις...

- Low private exponent (Wiener Attack) https://pypi.org/project/owiener/1.0.6/
- Low public exponent
- Coppersmith related attacks
 https://en.wikipedia.org/wiki/Coppersmith
 %27s attack
- Implementation Attacks
- Βλ. Χρήσιμο pdf στο υλικό

When all else fails...

- Αν θέλουμε να παραγοντοποιήσουμε το n χρησιμοποιούμε τα παρακάτω:
- http://factordb.com/ : Database με factorings αριθμών.
- https://www.alpertron.com.ar/ECM.H
 TM : Web app που κάνει factor με
 ECM και SIQS.