CHƯƠNG 3-1: TÍNH CHẤT CỦA ENTROPY

TS. TRINH VĂN CHIẾN (SOICT-HUST)

QUY TẮC CHUỖI (1)

• Quy tắc chuỗi cho cặp biến ngẫu nhiên (X, Y)

$$H(X,Y) = H(X) + H(Y \mid X)$$

• Xem xét X trước hay Y trước không làm thay đổi lượng tin chung (joint entropy)

$$H(X,Y) = H(X) + H(Y | X) = H(Y) + H(X | Y)$$

- Ví dụ 1: Xem xét 3 biến ngẫu nhiên độc lập U, V, W có lượng tin riêng tương ứng là H(U), H(V), và H(W). Đặt X=(U,V), Y=(V,W). Tính
 - a) H(X,Y)
 - b) H(X|Y)
 - c) I(X;Y)

QUY TẮC CHUỖI (2)

• Joint entropy-lượng tin riêng của cặp biến ngẫu nhiên (X, Y):

$$H(X) = H(U,V) = H(U) + H(V)$$

$$H(Y) = H(V,W) = H(V) + H(W)$$

$$\Rightarrow H(X,Y) = H(U,V,V,W) = H(U,V,W) = H(U) + H(V) + H(W)$$

Lượng tin riêng có điều kiện

$$H(X | Y) = H(X,Y) - H(Y) = H(U) + H(V) + H(W) - H(V) - H(W) = H(U)$$

Thông tin tương hỗ

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

QUY TẮC CHUỗI (3)

• Ví dụ 2: Cho 2 biến ngẫu nhiên X, Y có xác suất như sau

P(x, y)			P(y)			
		1	2	3	4	
	1	1/8	1/ ₁₆ 1/ ₈ 1/ ₁₆	$1/_{32}$	1/32	1/4
y	2	1/16	$1/_{8}$	1/32	1/32	$1/_{4}$
	3	1/16	1/16	1/16	1/16	$1/_{4}$
	4	$1/_{4}$	0	0	0	$1/_{4}$
P(x)		1/2	1/4	1/8	1/8	

- Chứng minh H(X,Y)=27/8 bits, H(X)=7/4 bits, và H(Y)=2 bits
- Tìm xác suất có điều kiện P(x|y) và tính lượng tin riêng có điều kiện H(X|Y)

$P(x \mid y)$		x				$H(X \mid y)$ /bits
		1	2	3	4	
	1	$1/_{2}$	1/4	1/8	1/8	7/4
y	2	$1/_{4}$	$\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$	$1/_{8}$	$1/_{8}$	$7/_{4}$
	3	$1/_{4}$	$1/_{4}$	$1/_{4}$	$1/_{4}$	2
	4	1	0	0	0	0
					т	7/37/37/

 $H(X \mid Y) = \frac{11}{8}$

ÚNG DỤNG

Nén ảnh sử dụng biên đổi wavelet

$$H(X_{1},...,X_{n}) = \sum_{i=1}^{n} H(X_{i} | X_{i-1},...,X_{1}) = \sum_{i=1}^{n} H(X_{i} | \underbrace{X_{i-1},...,X_{1}}_{Known})$$

Chứng minh: Sử dụng đệ quy ta có

$$H(X_{1}, X_{2}) = H(X_{1}) + H(X_{2} | X_{1})$$

$$H(X_{1}, X_{2}, X_{3}) = H(X_{3}, X_{2} | X_{1}) + H(X_{1})$$

$$= H(X_{3} | X_{2}, X_{1}) + H(X_{2} | X_{1}) + H(X_{1})$$

THÔNG TIN TƯƠNG HỖ CÓ ĐIỀU KIỆN (1)

Thông tin tương hỗ có điều kiện (conditional mutual information)

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

- Ví dụ 3: Biến ngẫu nhiên X: Nắng, Mưa. Biến ngẫu nhiên Y: Đúng, Sai:
 - Thông tin tương hỗ (mutual information) được định nghĩa là: I(X;Y)
 - V Nếu có thông tin Z về độ ẩm thì thông tin tương hỗ có điều kiện là: I(X;Y|Z)
- Trường hợp tổng quát

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^{n} I(X_i; Y \mid X_{i-1}, ..., X_1)$$

= $I(X_1; Y) + I(X_2; Y \mid X_1) + ... + I(X_n; Y \mid X_{n-1}, ..., X_1)$

THÔNG TIN TƯƠNG HỖ CÓ ĐIỀU KIỆN (2)

Trường hợp tổng quát

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^{n} I(X_i; Y \mid X_{i-1}, ..., X_1) = I(X_1; Y) + I(X_2; Y \mid X_1) + ... + I(X_n; Y \mid X_{n-1}, ..., X_1)$$

Chứng minh:

✓ Sử dụng định nghĩa của lượng tin riêng

$$I(X_1, X_2, ..., X_n; Y) = H(X_1, X_2, ..., X_n) - H(X_1, X_2, ..., X_n | Y)$$

✓ Sử dụng quy tắc chuỗi

$$H(X_1, X_2, ..., X_n) = H(X_1) + H(X_2, ..., X_n \mid X_1)$$

 $H(X_1, X_2, ..., X_n \mid Y) = H(X_1 \mid Y) + H(X_2, ..., X_n \mid Y, X_1)$

✓ Do đó

$$I(X_1, X_2, ..., X_n; Y) = I(X_1; Y) + H(X_2, ..., X_n | X_1) - H(X_2, ..., X_n | Y, X_1)$$

Tiếp tục sử dụng quy tắc chuỗi chúng ta được kết quả cần phải chứng minh

THÔNG TIN TƯƠNG HỖ CÓ ĐIỀU KIỆN (2)

Trường hợp tổng quát

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^{n} I(X_i; Y \mid X_{i-1}, ..., X_1) = I(X_1; Y) + I(X_2; Y \mid X_1) + ... + I(X_n; Y \mid X_{n-1}, ..., X_1)$$

Chứng minh:

✓ Sử dụng định nghĩa của lượng tin riêng

$$I(X_1, X_2, ..., X_n; Y) = H(X_1, X_2, ..., X_n) - H(X_1, X_2, ..., X_n | Y)$$

✓ Sử dụng quy tắc chuỗi

$$H(X_1, X_2, ..., X_n) = H(X_1) + H(X_2, ..., X_n \mid X_1)$$

 $H(X_1, X_2, ..., X_n \mid Y) = H(X_1 \mid Y) + H(X_2, ..., X_n \mid Y, X_1)$

✓ Do đó

$$I(X_1, X_2, ..., X_n; Y) = I(X_1; Y) + H(X_2, ..., X_n | X_1) - H(X_2, ..., X_n | Y, X_1)$$

Tiếp tục sử dụng quy tắc chuỗi chúng ta được kết quả cần phải chứng minh

THÔNG TIN TƯƠNG HỖ CÓ ĐIỀU KIỆN (3)

Thông tin tương hỗ (mutual information) và thông tin tương hỗ có điều kiện (conditional mutual information) dùng để làm gì? X_{ij}

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^{n} I(X_i; Y \mid X_{i-1}, ..., X_1)$$

• Từ phân tích tín hiệu đầu ra, liệu chúng ta giải mã được bao nhiêu tín hiệu đầu vào?

LƯỢNG TIN RIÊNG TƯƠNG ĐỐI CÓ ĐIỀU KIỆN

Lượng tin riêng có điều kiện (conditional relative entropy)

$$D(p(y|x)||q(y|x)) = \sum_{x} p(x) \sum_{y} p(y|x) \log_2 \frac{p(y|x)}{q(y|x)}$$

Quy tắc chuỗi của lượng tin riêng tương đối có điều kiện

$$D(p(y|x) || q(y|x)) = D(p(x) || q(x)) + D(p(y|x) || q(y|x))$$

Khoảng cách giữa hai hàm mật độ xác suất (PDF) = Khoảng cách giữa margin + Khoảng cách giữa cách giữa xác suất có điều kiện