Chapter 14: Statistics and Probability

A. STATISTICS

Statistics involves collecting, organizing, and analyzing numerical data.

Key Definitions

- Data: A collection of numerical facts.
- **Primary Data:** Collected directly by the investigator.
- Secondary Data: Collected from already existing sources.
- Raw Data: Unorganized data (just numbers).
- Range: Difference between the highest and lowest value in data.

Range = Maximum - Minimum

Organizing Data

- 1. **Frequency:** Number of times a value occurs.
- 2. Frequency Distribution Table: A table that organizes data into classes and shows frequencies.
- 3. Class Interval: A group like 10-20, 20-30, etc.
- 4. Class Width: Difference between upper and lower class limits.

Width = Upper Limit - Lower Limit

5. Class Mark (Mid-point): Average of lower and upper limits of a class.

Class Mark = (Lower Limit + Upper Limit) / 2

M Graphical Representation

1. Bar Graph:

- Uses rectangles to represent data.
- Suitable for discrete data.

2. Histogram:

- Bars touch each other.
- For continuous frequency distribution.
- Height represents frequency.
- When class widths are unequal, we adjust heights using:

Adjusted height = (Frequency / Width) × Common Width

3. Frequency Polygon:

- Uses midpoints (class marks) plotted and joined by lines.
- Can be drawn with or without histogram.

📌 Measures of Central Tendency

These are the values that represent the entire data set.

✓ Mean (Average):

• For ungrouped data:

Mean =
$$(x_1 + x_2 + ... + x_n) / n$$

• For frequency data:

Mean =
$$(\Sigma f_i x_i) / \Sigma f_i$$

(where f_i = frequency, x_i = data value)

✓ Median:

- Arrange data in ascending order.
- If n is odd: Median = value at (n + 1)/2 position.
- If n is even: Median = average of n/2 and (n/2 + 1)th values.

✓ Mode:

- The value that appears most frequently.
- No mode if all values are different.
- Can have one, two (bimodal), or multiple modes.

_

B. PROBABILITY

Probability is the measure of the chance of an event happening.

Key Concepts:

- Experiment: An action like tossing a coin, rolling a die.
- Outcome: Result of an experiment.
- Trial: Each performance of an experiment.

Empirical (Experimental) Probability:

P(E) = (Number of trials in which event E happened) / (Total number of trials)

Notes:

- Probability of any event lies between 0 and 1.
- $P(E) = 0 \rightarrow Impossible event$
- P(E) = 1 → Certain event

Example:

If a die is rolled 200 times and number 6 appears 40 times:

P(rolling a 6) = 40 / 200 = 0.2

_

Summary Table

Concept	Formula / Rule
Mean (ungrouped data)	$(x_1 + x_2 + + x_n) / n$
Mean (frequency table)	Σf _i x _i / Σf _i
Median (odd n)	Value at (n+1)/2 position
Median (even n)	Average of (n/2)th and (n/2 + 1)th values
Mode	Most frequent observation
Probability	P(E) = successful trials / total trials
Range	Max value – Min value
Class mark (midpoint)	(Lower limit + Upper limit) / 2
Adjusted height (histogram)	Frequency / Class width × Common width

Example Explanation:

Q: Find mean of: 6, 14, 15, 17, 19

Mean = (6 + 14 + 15 + 17 + 19) / 5 = 71 / 5 = 14.2

Q: What is the probability of getting head if coin tossed 400 times, and head appears 210 times? P(head) = 210 / 400 = 0.525