## CE 3372 Water Systems Design Fall 2016

1. Figure 1 is a portion of an engineering drawing of a gravity-flow wastewater conduit.



Figure 1: Engineering drawing of sanitary sewer system

- (a) What object is located at station 10+38.48?
- (b) What is the invert elevation of the pipe at station 13+00?
- (c) What is the diameter of the pipe in inches?
- (d) What direction is sewage intended to flow?

REVISION A Page 1 of 9

 $2.\,$  Equation 1 is the Hazen-Williams discharge model for U.S. Customary units.

$$Q = 1.318 \ A \ C_h \ R^{0.63} \ S^{0.54} \tag{1}$$

where;

Q is the discharge in  $ft^3/sec$ ;

A is the cross section area of pipe in  $ft^2$  ( $A = \frac{\pi D^2}{4}$ ; D is the pipe diameter.);  $C_h$  is the Hazen-Williams friction coefficient (depends on pipe roughness);

R is the hydraulic radius in ft; and

S is the slope of the energy grade line  $(\frac{h_f}{L})$ ; L is the length of pipe.

(a) Rearrange the equation in terms of head loss  $(h_f = \dots)$ .

REVISION A Page 2 of 9

| Name:     |
|-----------|
| 1 (01110) |

(b) Estimate the head loss in a 12,000 foot length of 6-foot diameter, enamel coated steel pipe that carries carries  $60^{o}$ F water at a discharge of 295 cubic-feet per second (cfs), using the Hazen-Williams head loss model. Use a Hazen-Williams loss coefficient of  $C_h=150$ .

REVISION A Page 3 of 9

3. Equation 2 is an explicit formula (based on the Darcy-Weisbach head loss model and the Colebrook-White frictional loss equation) for estimating discharge from head loss and material properties.

$$Q = -2.22D^{5/2} \times \sqrt{gh_f/L} \times \left[log_{10}\left(\frac{k_s}{3.7D} + \frac{1.78\nu}{D^{3/2}\sqrt{gh_f/L}}\right)\right]$$
 (2)

where;

Q is the discharge in  $L^3/T$ ;

D is the pipe diameter;

 $h_f$  is the head loss in the pipe;

g is the gravitational acceleration constant;

L is the length of pipe;

 $k_s$  is the pipe roughness height;

 $\nu$  is the kinematic viscosity of liquid in the pipe;

Water at 50°F has kinematic viscosity of  $1.45\times 10^{-5}~ft^2/s$ . The sand roughness of ductile iron is  $8.5\times 10^{-4}~ft$ .

Determine:

(a) Depth of a column of water if the pressure at the bottom of the column is 21 psi?

REVISION A Page 4 of 9

(b) Estimate the discharge in the 3.2 mile long, 24-inch diameter, ductile iron pipeline connecting points A and B depicted in Figure 2. Point A is 28 feet higher in elevation than point B. The pressure at point B is 21 pounds per square-inch (psi) greater than the pressure at point A.



Figure 2: Pipeline Schematic

REVISION A Page 5 of 9

4. Figure 3 is an aerial image of a parallel pipeline system in California.



Figure 3: Parallel Pipeline System

The left pipeline is a 96-inch diameter steel pipe, whereas the right pipeline is a 108-inch diameter steel pipe. Water at  $50^o\mathrm{F}$  has kinematic viscosity of  $1.45\times10^{-5}~ft^2/s$ . The sand roughness of ductile iron is  $1.64\times10^{-4}~ft$ . If the head loss for the two one-mile long pipelines between the thrust blocks is 100 feet, determine the discharge in each pipe in cubic-feet-persecond.

REVISION A Page 6 of 9

Name:\_\_\_\_\_

Problem 3 (continued)

REVISION A Page 7 of 9

Figure 4 is a pipe network with the following properties:



Figure 4: Pipe network

Table 1: Network properties for Figure 4

| Node         | Demand (cts) | Elevation(ft) |
|--------------|--------------|---------------|
| A            | -0.60        | 0.00          |
| В            | 0.15         | 0.00          |
| $\mathbf{C}$ | 0.15         | 0.00          |
| D            | 0.30         | 0.00          |
| Pipe         | Length (ft)  | Diameter (ft) |
| 1            | 1000         | 3/12          |
| 1            | 1000         | 0/12          |
| 2            | 1000         | 3/12          |
| _            |              | ,             |
| 2            | 1000         | 3/12          |
| 2 3          | 1000<br>1000 | 3/12<br>3/12  |

REVISION A Page 8 of 9

- 5. Referring to Figure 4, the discharge in pipe 5 is closest to
  - (A) 0.00 cfs, from Node B to Node C
  - (B) 0.15 cfs, from Node C to Node B
  - (C) 0.66 cfs, from Node C to Node B
  - (D) 0.66 cfs, from Node B to Node C
- 6. Referring to Figure 4, if the demands at all nodes are those in Table 1, and pipe 2 is decreased to a diameter of 2/12, the discharge in pipe 5 is closest to
  - (A) 0.00 cfs, from Node C to Node B
  - (B) 0.15 cfs, from Node B to Node C
  - (C) 0.30 cfs, from Node C to Node B
  - (D) 0.60 cfs, from Node B to Node C
- 7. Referring to Figure 4, assuming the average friction factor is 0.018, the head loss, in feet, from Node A to Node C (when all pipes are the same diameter) is closest to
  - (A) 12 feet
  - (B) 25 feet
  - (C) 50 feet
  - (D) 75 feet
- 8. Referring to Figure 4, and Table 1 the flow distribution is:
  - (A)  $[Q_1, Q_2, Q_3, Q_4, Q_5] = [0.30, 0.15, 0.15, 0.30, 0.00]$  CFS
  - (B)  $[Q_1, Q_2, Q_3, Q_4, Q_5] = [0.30, 0.15, 0.15, 0.30, 0.30]$  CFS
  - (C)  $[Q_1, Q_2, Q_3, Q_4, Q_5] = [0.30, 0.15, 0.15, 0.00, 0.50]$  CFS
  - (D)  $[Q_1, Q_2, Q_3, Q_4, Q_5] = [0.30, -0.15, -0.15, 0.30, -0.60]$  CFS
- 9. An EPANET model must have which of the following components to run
  - (A) A pipe, a node, and a pump
  - (B) A pipe, a node, and a valve
  - (C) A pipe, a tank, and a pump
  - (D) A pipe, a node, and a reservoir

REVISION A Page 9 of 9