Quantitative Analysis HW4

R11922045 陳昱行

1.

The above blue solid line is the line of $D_i=1\,$

2.

(a)

The OLS estimator of \tilde{eta}_1 is calculated by:

$$egin{aligned} ilde{eta}_1 &= rac{\sum (x_{1i} - ar{x}_1)y_i}{\sum (x_{1i} - ar{x}_1)^2} \ &= rac{\sum (x_{1i} - ar{x}_1)(eta_0 + eta_1x_{1i} + eta_2x_{2i} + u_i)}{\sum (x_{i1} - ar{x}_1)^2} \ &= 0 + eta_1 + eta_2 rac{\sum (x_{1i} - ar{x}_1)x_{2i}}{\sum (x_{i1} - ar{x}_1)^2} + rac{\sum (x_{1i} - ar{x}_1)u_i}{\sum (x_{i1} - ar{x}_1)^2} \ &= eta_1 + eta_2 rac{\sum (x_{1i} - ar{x}_1)x_{2i}}{\sum (x_{i1} - ar{x}_1)^2} + rac{\sum (x_{1i} - ar{x}_1)u_i}{\sum (x_{i1} - ar{x}_1)u_i} \end{aligned}$$

Under Modern Assumption I

$$rac{1}{n}\sum (x_{1i}-ar{x}_1)u_i=rac{1}{n}\sum x_{1i}u_i-rac{1}{n}ar{x}_1\sum u_i\stackrel{p}{
ightarrow}\mathbb{E}(x_1u)+\mu_{x_1}\mathbb{E}(u)=0 \quad (1)$$

$$\frac{1}{n} \sum (x_{1i} - \bar{x}_1)^2 \stackrel{p}{\to} Var(x_1) = \sigma_{x_1}^2$$
 (2)

$$rac{1}{n}\sum (x_{1i}-ar{x}_1)x_{2i}=rac{1}{n}\sum (x_{1i}-ar{x}_1)(x_{2i}-ar{x}_2)\stackrel{p}{ o} Cov(x_1,x_2)=\sigma_{x_1x_2} \hspace{0.5cm} (3)$$

With (1)(2)(3),

We can derive,

$$ilde{eta}_1 \stackrel{p}{
ightarrow} eta_1 + rac{\sigma_{x_1 x_2}}{\sigma_{x_1}^2} eta_2$$

Therefore, $\tilde{\beta}_1$ is not consistent.

(b)

It depends on the sign of eta_2 , if $eta_2>0$, $ildeeta_1$ overestimate eta_1 by $rac{\sigma_{x_1x_2}}{\sigma_{x_1}^2}eta_2$

as $n o\infty$. On the other hand, if $eta_2<0$, $ildeeta_1$ underestimates eta_1 by $rac{\sigma_{x_1x_2}}{\sigma_{x_1}^2}eta_2$.

(c)

Since $ilde{eta}_1$ is not a consistent estimator of eta_1 ,

$$ilde{eta}_1 - eta_1 \stackrel{p}{
ightarrow} rac{\sigma_{x_1 x_2}}{\sigma_{x_1}^2} eta_2
eq 0$$

Therefore,

$$\sqrt{n}(\tilde{eta}_1-eta_1) o\infty$$

as $n \to \infty$. This statistic diverges and does not converge to a distribution.

Let $\{x_i\}_{i=1}^n$ be i.i.d random variables with a distribution that exist finite second moment.

(a) False

we can estimate μ_x of the distribution by a biased estimator $rac{1}{n}\sum x_i+rac{1}{n}$

The estimator is biased clearly. However, as $n o \infty$

$$\frac{1}{n}\sum x_i + \frac{1}{n} \stackrel{p}{
ightarrow} \mathbb{E}[x] + 0 = \mu_x$$

therefore the estimator is biased but consistent.

(b) False

We can estimate μ_x with an unbiased estimator given by

$$\hat{\mu}_x = egin{cases} \mu_x + 1, \; p = 0.5 \ \mu_x - 1, \; p = 0.5 \end{cases}$$

Though $\hat{\mu}_x$ does not depend on x_i , it is still an unbiased estimator of μ_x since

$$\mathbb{E}[\hat{\mu}_x] = \mu_x$$

but clearly, as $n \to \infty$,

$$\hat{\mu}_x \stackrel{p}{\nrightarrow} \mu_x$$

since it does not depend on x_i .

Therefore, the estimator is unbiased but not consitent.