Box and Whisker Plot? No. More Like Cat and Flexor Bot!

By: Caitlyn Meaker and Forest Ray

Presentation Outline

- Project Goal
- Background
- The flex sensors
 - o Circuit Diagram on Robot
 - Sensor Code
- Code
 - Other Robot Functions
 - Data Collection
- The Set Up
 - Construction of the Robot and Tunnel
- Results
 - Video
 - o Data
 - O Did We Achieve Our Goal?
- Discussion
 - Limitations
 - Future Experiments
- Questions

Goal

- Utilizing the flex sensors, build a robot that is able to navigate tight spaces
 - Inspiration: Cat whiskers

Cat whiskers. 16 Nov. 2023. https://www.nasc.cc/cat/a-cats-whiskers-how-do-they-work/. Accessed 19 Apr. 2025.

 $\label{lem:approx} A\ Flex\ Sensor\ and\ Arduino\ Uno\ .$ $\ https://peppe8o.com/wp-content/uploads/2023/04/flex-sensor-arduino-featured-image.jpg.$

Background (What Does the Circuit Do?)

- Voltage divider
 - Read through Analog Pins
 - Two Resistors
 - One fixed and one variable
- Variable resistor = Flex sensor
 - Resistance changes when flexed
 - Ohm's Law: V=IR
- Monitor with Arduino
 - The change in voltage is measured by the analog pins
 - The Arduino monitors and responds

Voltage Divider Equation

Background (Continued)

- Our robot's voltage divider
 - Four flex sensors
 - The Variable
 - Four constant resistors

Cleaning Up the Sensor Data

Calibration

```
int number_of_readings = 10;
float sum_1 = 0; float sum_2 = 0;

for(int ii = 0; ii < number_of_readings; ii++){
    sum_1 = sum_1 + analogRead(FLEX_PIN_1);
    sum_2 = sum_2 + analogRead(FLEX_PIN_2);
}

baseline_1 = sum_1/float(number_of_readings);
baseline_2 = sum_2/float(number_of_readings);</pre>
```

- 1. Average 10 readings to get a baseline
- 2. Subtract baseline readings from subsequent readings

Filtering


```
filtered_flex_1 = (0.90 * previous_flex_1) + (0.10 * flex_reading_1);
filtered_flex_2 = (0.90 * previous_flex_2) + (0.10 * flex_reading_2);
```


	A	В	С	D
Α	State 1 (move forward)	State 2 (default adjust)	State 3 (weighted adjust)	State 4 (turn)
В	State 2 (default adjust)	State 2 (default adjust)	State 3 (weighted adjust)	State 4 (turn)
С	State 3 (weighted adjust)	State 3 (weighted adjust)	State 2 (default adjust)	State 5 (Stop)
D	State 4 (turn)	State 4 (turn)	State 5 (Stop)	State 5 (Stop)

Building a Cat Robot

2. 3D Modeling

3. Assembly

Results

- Tunnel
 - Right and left turn→ change direction
 - Can reverse
 - Narrows at end → stops
- Goal
 - Achieved

But.... Limitations

- Accumulating error
 - Sensors are calibrated at rest position
 - Once bent and released their position can change. However, this is not accounted for
 - Though small, overtime the error collects

But.... Limitations (Continued)

- Tunnel needed many adjustments
 - If a turn was too narrow and the Cat could not adjust, it would just stop even if the other set of sensors were not being touched
 - If an area was too wide the Cat would head straight for the next wall and crash
- Robot's speed
 - If it went too fast it would crash and/or try to climb the walls
- Sensors
 - Could get overwhelmed and need to be recalibrated

What Could be Done in Future Experiments

- More time and more/better equipment
 - Fine tune the code to allow for better adjustment of direction and velocity.
 - Determine more precise baselines
 - i.e be able to account for the change in position of the sensors
- Build a better/more sturdy tunnel
- Improved code
 - Improve range
 - Navigate more aggressive turns and other barriers

FutureCat.

https://www.gematsu.com/companies/future-ca t-games. Accessed 19 Apr. 2025.

Questions?

