

Lecture 04 Divide and Conquer

CSE373: Design and Analysis of Algorithms

Sorting Revisited

So far we've talked about three algorithms to sort an array of numbers

What is the advantage of merge sort?

Answer: O(n lg n) worst-case running time

What is the advantage of insertion sort?

Answer: sorts in place

Also: When array "nearly sorted", runs fast in practice

Next on the agenda: *Heapsort*

Combines advantages of both previous algorithms

A complete binary tree

Each of the elements contains a value that is less than or equal to the value of each of its children (Min-heap)

Each of the elements contains a value that is greater than or equal to the value of each of its children (Max-heap)

A complete binary tree

- Each of the elements contains a value that is less than or equal to the value of each of its children (Min-heap)
- Each of the elements contains a value that is greater than or equal to the value of each of its children (Max-heap)

A complete binary tree Shape property

Each of the elements contains a value that is less than or equal to the value of each of its children (Min-heap)

Each of the elements contains a value that is greater than or equal to the value of each of its children (Max-heap)

The shape of all heaps with a given number of elements is the same.

A complete binary tree Shape property

Each of the elements contains a value that is less than or equal to the value of each of its children (Min-heap)

Each of the elements contains a value that is greater than or equal to the value of each of its children (Max-heap)

- The shape of all heaps with a given number of elements is the same.
- The root node always contains the largest value in the max-heap (in addition, the subtrees are heaps as well).

Heaps (Implementation Issue)

Heap elements can be stored as array elements (since the tree is complete, there are not any "holes" in the tree)

Heaps (Implementation Issue)

Heap elements can be stored as array elements (since the tree is complete, there are not any "holes" in the tree)

Map from array elements to tree nodes and vice versa

Root -A[1]Left[i] -A[2i]Right[i] -A[2i+1]Parent[i] $-A[\lfloor i/2 \rfloor]$

Index	Value
1	11
2	9
3	4
4	7
5	8
6	3
7	1
8	2
9	5
10	6

Heaps (Implementation Issue)

Heap elements can be stored as array elements (since the tree is complete, there are not any "holes" in the tree)

length[A] – number of elements in array A. heap-size[A] – number of elements in heap stored in A. $heap\text{-size}[A] \leq length[A]$

No. of leaves = $\lceil n/2 \rceil$ Height of a heap = $\lfloor \lg n \rfloor$

Index	Value
1	11
2	9
3	4
4	7
5	8
6	3
7	1
8	2
9	5
10	6

Heap Operations: Heapify()

Heapify(): maintain the heap property

- Given: a node i in the heap with children I and r
- Given: two subtrees rooted at I and r, assumed to be heaps
- Problem: The subtree rooted at i may violate the heap property Action: let the value of the parent node "float down" so subtree at i satisfies the heap property
 - May lead to the subtree at the child not being a heap.
 - Recursively fix the children until all of them satisfy the max-heap property.

Suppose that, the order property is violated by the **root node** only (not any other node, they are in place)

Suppose that, the order property is violated by the **root node** only (not any other node, they are in place)

Suppose that, the order property is violated by the **root node** only (not any other node, they are in place)

Suppose that, the order property is violated by the **root node** only (not any other node, they are in place)

Suppose that, the order property is violated by the **root node** only (not any other node, they are in place)

Suppose that, the order property is violated by the **root node** only (not any other node, they are in place)

Suppose that, the order property is violated by the **root node** only (not any other node, they are in place)

Suppose that, the order property is violated by the **root node** only (not any other node, they are in place)

Procedure MaxHeapify

MaxHeapify(A, i)

- 1. $1 \leftarrow left(i)$
- 2. $r \leftarrow right(i)$
- 3. **if** $1 \le \text{heap-size}[A]$ and A[1] > A[i]
- 4. **then** largest $\leftarrow 1$
- 5. else largest \leftarrow i
- 6. if $r \le \text{heap-size}[A]$ and A[r] > A[largest]
- 7. **then** largest \leftarrow r
- 8. **if** largest≠ i
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. MaxHeapify(A, largest)

Assumption:

Left(i) and Right(i) are max-heaps.

Procedure MaxHeapify

MaxHeapify(A, i)

- 1. $1 \leftarrow left(i)$
- 2. $r \leftarrow right(i)$
- 3. if $1 \le \text{heap-size}[A]$ and A[1] > A[i]
- 4. **then** largest $\leftarrow 1$
- 5. else largest \leftarrow i
- 6. if $r \le \text{heap-size}[A]$ and A[r] > A[largest]
- 7. **then** largest \leftarrow r
- 8. **if** largest≠ i
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. MaxHeapify(A, largest)

Time to fix node i and its children = $\Theta(1)$

PLUS

Time to fix the subtree rooted at one of i's children = T(size of subree at largest)

Running Time for MaxHeapify(A, n)

$$T(n) = T(largest) + \Theta(1)$$

largest ≤ 2n/3 (worst case occurs when the last row of tree is exactly half full)

$$T(n) \leq T(2n/3) + \Theta(1) \Rightarrow T(n) = O(\lg n)$$

Alternately, MaxHeapify takes O(h) where h is the height of the node where MaxHeapify is applied

Building a heap

Use *MaxHeapify* to convert an array A into a max-heap.

How?

Call MaxHeapify on each element in a bottom-up manner.

- 1. heap-size[A] \leftarrow length[A]
- 2. for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	1	3	2	16	9	10	14	8	7

1	2	3	4	5	6	7	8	9	10
4	1	3	2	16	9	10	14	8	7

1	2	3	4	5	6	7	8	9	10
4	1	3	2	16	9	10	14	8	7

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	1	3	2	16	9	10	14	8	7

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	1	3	2	16	9	10	14	8	7

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	1	3	14	16	9	10	2	8	7

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	1	3	14	16	9	10	2	8	7

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	1	10	14	16	9	3	2	8	7

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	1	10	14	16	9	3	2	8	7

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	16	10	14	1	9	3	2	8	7

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	16	10	14	7	9	3	2	8	1

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
4	16	10	14	7	9	3	2	8	1

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
16	4	10	14	7	9	3	2	8	1

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
16	14	10	4	7	9	3	2	8	1

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

BuildMaxHeap(A)

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

BuildMaxHeap(A)

- 1. $heap-size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1
- 3. **do** MaxHeapify(A, i)

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

Time complexity: O(N logN) [upper bound]

O(N) [tighter bound]

- 1. Build-Max-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
4	1	3	2	16	9	10	14	8	7

1	2	3	4	5	6	7	8	9	10
4	1	3	2	16	9	10	14	8	7

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap-size[A] \leftarrow heap-size[A] 1$
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
4	1	3	2	16	9	10	14	8	7

- 1. Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap-size[A] \leftarrow heap-size[A] 1$
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

- 1. Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap-size[A] \leftarrow heap-size[A] 1$
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
1	14	10	8	7	9	3	2	4	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
1	14	10	8	7	9	3	2	4	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
14	1	10	8	7	9	3	2	4	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
14	8	10	1	7	9	3	2	4	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
14	8	10	4	7	9	3	2	1	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
14	8	10	4	7	9	3	2	1	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
10	8	9	4	7	1	3	2	14	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
9	8	3	4	7	1	2	10	14	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
8	7	3	4	2	1	9	10	14	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
7	4	3	1	2	8	9	10	14	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
4	2	3	1	7	8	9	10	14	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
3	2	1	4	7	8	9	10	14	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
2	1	3	4	7	8	9	10	14	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
1	2	3	4	7	8	9	10	14	16

- Build-Max-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] \leftarrow heap-size[A] 1
- 5. MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
1	2	3	4	7	8	9	10	14	16

HeapSort(A)

5.

Build-Max-Heap(A)

2. **for** $i \leftarrow length[A]$ **downto** 2

3. **do** exchange $A[1] \leftrightarrow A[i]$

4. heap-size[A] \leftarrow heap-size[A] – 1

MaxHeapify(A, 1)

1	2	3	4	5	6	7	8	9	10
1	2	3	4	7	8	9	10	14	16

Priority Queues

MAX-HEAP / MIN-HEAP

Data structure

```
Operations

HEAP-EXTRACT-MAX / HEAP-EXTRACT-MIN

HEAP-DECREASE-KEY / HEAP-INCREASE-KEY

MAX-HEAP-INSERT / MIN-HEAP-INSERT

One application: Schedule jobs on a shared resource

PQ keeps track of jobs and their relative priorities

When a job is finished or interrupted, highest priority job is selected from those pending using HEAP-EXTRACT-MAX

A new job can be added at any time using

MAX-HEAP-INSERT
```

Implementation of Priority Queue

Sorted linked list: Simplest implementation

INSERT

O(n) time

Scan the list to find place and splice in the new item

EXTRACT-MAX

O(1) time

Take the first element

► Fast extraction but slow insertion

Implementation of Priority Queue

Unsorted linked list: Simplest implementation

INSERT

O(1) time

Put the new item at front

EXTRACT-MAX

O(n) time

Scan the whole list

► Fast insertion but slow extraction

Heap Implementation of PQ

HEAP-EXTRACT-MAX implements EXTRACT-MAX

```
HEAP-EXTRACT-MAX(A)
```

- 1. if A.heap-size < 1
- 2. then error "heap underflow"
- 3. $\max \leftarrow A[1]$
- 4. $A[1] \leftarrow A[A.heap-size]$
- 5. A.heap-size \leftarrow A.heap-size 1
- 6. MaxHeapify(A, 1)
- 7. return max

Running time: Dominated by the running time of MaxHeapify which is $O(\lg n)$

Heap Implementation of PQ

INSERT: Insertion is like that of Insertion-Sort.

```
MAX-HEAP-INSERT(A, key)
```

- 1 A.heap-size = A.heap-size[A] + 1
- 2 $A[A.heap-size] = -\infty$
- 3. HEAP-INCREASE-KEY(A, A.heap-size, key)

Running time of MAX-HEAP-INSERT on an n-element heap is O(lg n)

Heap Implementation of PQ

HEAP-INCREASE-KEY increases key at position i (max-heap)

HEAP-INCREASE-KEY(A, i, key)

- 1. if key < A[i]
- 2. error "new key is smaller than the current key"
- 3. A[i] = key
- 4. while i > 1 and A[Parent(i)] < A[i]
- 5. exchange A[i] and A[Parent(i)]
- 6. i = Parent(i)

Running time is O(*lg n*)

The path traced from the new increased node to the root has at most length $O(lg\ n)$