

Green Latency-aware Data Deployment in Data Centers: Balancing Latency, Energy in Networks and Servers

Yuqi Fan, Hongli Ding, Donghui Hu

School of Computer and Information Hefei University of Technology

August 18, 2014

Model

Motivation

- Two concerns exist in service provisioning by data centers
 - Users require to experience low latency while accessing data from the data centers
 - Reduce the power consumed by network transport and servers in the data centers

Problem

- We tackle the problem of green data deployment in the data centers, taking into account the three factors of latency, energy consumption of the data centers and the network transport
- The cost of deploying data on a server in a data center integrates the three factors above
 - each factor has a coefficient in the cost function

Objective Function

Minimize:

$$\lambda_1 \sum_{u_i, dc_j, s_m, d_k} rep(dc_j, s_m, d_k) p(u_i \mid d_k) l(u_i, dc_j)$$

$$+ \lambda_2 \sum_{dc_j, s_m} rep(dc_j, s_m) e_S(dc_j, s_m)$$

$$+ \lambda_3 \sum_{u_i, dc_j, s_m, d_k} s(d_k) rep(dc_j, s_m, d_k) p(u_i \mid d_k) e_I(u_i, dc_j)$$

Subject to:

$$rep(dc_j,s_m) = \sum_{d_k} rep(dc_j,s_m,d_k)$$

$$\sum_{dc_j, s_m} rep(dc_j, s_m, d_k) = 1$$

$$e_S(dc_j, s_m) = P_{s_m}^{dc_j} * PUE(dc_j)$$

$$\sum_{d_k} rep(dc_j, s_m, d_k) s(d_k) \le C(s_m, dc_j), \forall s_m, dc_j$$

- λ_1 , λ_2 , and λ_3 are the weights of the sub-objectives of the latency, the energy consumption of the data centers and the network transport, respectively.
- $rep(dc_j, s_m, d_k)$ indicates whether data d_k is deployed in server s_m in data center dc_j .
- $p(u_i | d_k)$ is the probability that a given request is asking for data d_k and it comes from user group u_i .
- $l(u_i, dc_j)$ is the latency between user group u_i and data center dc_i .
- rep(dc_j, s_m) is the indicator whether server s_m in data center dc_i has been deployed some data

- $e_s(dc_j, s_m)$ is the energy consumption of server s_m in data center dc_j .
- $s(d_k)$ is the size of data d_k .
- $e_I(u_i, dc_j)$ is the energy required to transport one bit from data center dc_j to user group u_i through the Internet.
- PUE(dc_j) is the PUE of data center dc_j is the power of sever s_m in data center dc_j.
- C(s_m, dc_j) is the capacity of server s_m in data center Dc_i.

GLDD (Green Latency-aware Data Deployment)

- When processing each data chunk d_k , GLDD searches the servers in all the data centers with the least cost to deploy data d_k .
- Each server in each data center is checked to obtain the cost to accommodate data d_k on the server if the server has enough capacity.
- The cost of deploying data d_k on server s_m in data center dc_j integrates the three factors of the latency, the power consumed by the servers and the network transport.

Algorithm 1 GLDD Algorithm

```
Input: Data Request Probability Matrix P(u_i \mid d_k)
Input: Network Latency Cost Matrix L(u_i, dc_i)
Input: Network Transport Energy Cost Matrix E_I(u_i, dc_i)
Input: Servers Power Cost Matrix E_S(u_i, dc_i)
Input: Data Size Queue S(d_k)
Output: Rep(dc_i, s_m, d_k)
  Sort S(d_k) by non-ascending order of data size.
  while Queue of S(d_k) not empty do
     get the head d_k from the Queue S(d_k)
     for each data center dc_i do
       for each server s_m in data center dc_i do
          if server s_m has enough capacity to accommodate
          data d_k then
            Calculate the cost to deploy data d_k on server
            s_m in data center dc_i;
          end if
       end for
     end for
     Obtain the server s_m in the data center dc_i that costs
     the least and has enough capacity to accommodate the
     data d_k.
     C(s_m, dc_i) = C(s_m, dc_i) - S(d_k)
     \operatorname{rep}(dc_i, s_m, d_k)=true
  end while
  Return Rep(dc_i, s_m, d_k)
```


Result

We evaluate the performance of the algorithm GLDD by comparing GLDD with the algorithm FORTE proposed in SIGCOMM'12.

