

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

Klassierung:

12 p, 10/10

Int. Cl.:

C 07 d

Gesuchsnummer:

12731/64

Anmeldungsdatum:

11. Mai 1960, 1734 Uhr

Patent erteilt:

15. August 1965

Patentschrift veröffentlicht: 31. Januar 1966

10

HAUPTPATENT

CIBA Aktiengesellschaft, Basel

Verfahren zur Herstellung von 4-Mercapto-pyrazolo [3,4-d] pyrimidinen

Dr. Paul Schmidt, Therwil, Dr. Kurt Eichenberger und Dr. Max Wilhelm, Basel, sind als Erfinder genannt worden

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Pyrazolo[3,4-d]pyrimidinen der Formel

$$R_{6}$$
 R_{6}
 R_{1}
 R_{2}
 R_{3}
 R_{3}
 R_{3}
 R_{3}
 R_{4}
 R_{4}

oder ihrer tautomeren Formen, worin Re einen Alkyl-15 rest, einen Aralkylrest oder einen Heterocyclylalkylrest, R₃ ein Wasserstoffatom oder einen niederen Alkylrest, R4 eine freie oder durch einen Niederalkyl- oder Amino- bzw. Ammoniumniederalkylrest substituierte Mercaptogruppe bedeutet und R, für einen Halogenalkylrest, einen Oxaalkylrest, einen Cycloalkylrest, einen Cycloalkylalkylrest, einen Aralkylrest oder einen Heterocyclylalkylrest oder einen Alkylrest mit mehr als zwei Kohlenstoffatomen steht, oder ihren Salzen.

Alkylreste sind z. B. niedere Alkylreste, wie Methyl-, Athyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, Pentyl-(1)-, Pentyl-(2)-, Pentyl-(3)-, 2-Methyl-butyl-(3)- oder Hexylreste. Als Oxaalkylreste sind z. B. Oxa - niederalkylreste, wie 3 - Oxa - pentyl-(5)-reste, oder 3-Oxa-heptyl-(6)-reste, und als Halogenalkylreste Halogenniederalkylreste, wie Chloräthylreste, zu nennen. Als Cycloalkylreste bzw. Cycloalkylalkylreste kommen z. B. Cyclopentyl-, oder Cyclohexylreste, Cyclopentyl- oder Cyclohexyl-methyl-, -äthyl- oder 35 -propylreste in Frage. Aralkylreste sind speziell Phenylalkyl-, wie 1- oder 2-Phenyläthyl- oder Phenylmethylreste, in denen die aromatischen Kerne

Substituenten tragen können, wie niedere Alkylreste oder freie oder substituierte Oxy-, Aminooder Mercaptogruppen, Halogenatome, Trifluor- 40 methyl- oder Nitrogruppen. Heterocyclylalkylreste sind z. B. Pyridylmethyl-, Thenyl- oder Furfurylreste, die auch substituiert sein können, z. B. wie für die Aralkylreste angegeben. In den genannten substituierten Oxy-, Mercapto- oder Amino- 45 gruppen sind die Substituenten insbesondere solche der obengenannten Art, vor allem niedere Alkylreste, so daß es sich z. B. um Methoxy-, Athoxy-, Propoxyoder Butoxygruppen, entsprechende Alkylmercaptogruppen, Alkylendioxy-, wie Methylendioxygruppen, 50 Mono- oder Dialkylaminogruppen, wie Mono- oder Dimethyl-, -äthyl-, -propyl-, -butyl- oder -pentylaminogruppen handelt. Als Halogenatome sind vor allem Fluor, Chlor oder Brom zu nennen.

Als Substituenten in einer substituierten Mercapto- 55 gruppe R, kommen beispielsweise Methyl-, Athyl-, gerade oder verzweigte, in beliebiger Stellung verbundene Propyl-, Butyl-, Pentyl- oder Hexylreste und als Aminoniederalkylreste vor allem diejenigen in Frage, in denen der Alkylrest das Schwefelatom vom Stick- 60 stoffatom durch mindestens 2 Kohlenstoffatome trennt und einer der oben genannten ist und worin die Aminogruppe durch Kohlenwasserstoffreste, die auch in der Kette durch Sauerstoff, Stickstoff oder Schwefel unterbrochen sein können, mono- 65 oder disubstituiert ist, R, ist daher z. B. eine Monooder Di-niederalkylamino-, Pyrrolidino-, Piperidino-, Morpholino- oder Piperazino-, -äthyl-, -propyl- oder butyl-mercapto-gruppe. Es kommen auch quaternisierte Aminoalkylreste, das heißt Ammoniumalkyl- 70 reste, in Betracht.

Die neuen Verbindungen besitzen wertvolle pharmakologische Eigenschaften. Insbesondere sind sie coronarerweiternd wirksam. Die neuen Verbin10

15

40

55

dungen können somit als Heilmittel, vor allem bei Durchblutungsstörungen des Herzmuskels, aber auch als Zwischenprodukte zur Herstellung solcher Heilmittel dienen.

Besonders wertvoll sind Verbindungen der Formel

$$R_6$$
 R_6
 R_6
 R_6
 R_6
 R_7

und ihre Salze, worin R, einen Niederalkylrest mit mehr als 2 Kohlenstoffatomen, z. B. Propyl, Isopropyl, Butyl-(2), 3-Methyl-butyl-(2), Pentyl-(2), Pentyl-(3), einen Cycloalkylrest, z. B. Cyclopentyl 20 oder Cyclohexyl, oder einen Oxaniederalkylrest, wie 3-Oxapentyl, bedeutet und R₂ ein Wasserstoffatom oder ein Niederalkylrest ist und R₆ für einen Aralkyl-, wie einen Phenylalkyl-, vor allem Phenylmethylrest, steht, wobei die Arylreste unsubstituiert oder durch 25 Halogenatome, wie Chlor oder Brom, niedere Alkoxygruppen, wie Methoxy oder Äthoxy, niedere Alkylreste, wie Methyl, Äthyl, Propyl, Isopropyl, Butyl, tert.-Butyl, Methylendioxygruppen, Trifluormethylgruppen, Nitro- oder Aminogruppen mono-, 30 di- oder trisubstituiert sein können und worin R4 eine freie oder z. B. wie oben gezeigt substituierte Mercaptogruppe ist.

Ferner sind von Bedeutung die Verbindungen der Formel

$$R_{6}$$
 N
 N
 N
 R_{1}

und ihre Salze, worin R₁, R₃ und R₄ die vorstehend gegebene Bedeutung haben und R₆ einen Alkylrest darstellt, z. B. Methyl, Athyl, Propyl, Isopropyl, Butyl, Isobutyl, Amyl oder Isoamyl bedeutet.

Besonders wertvoll sind die Verbindungen der Formel

$$R_6$$
 N
 N
 N
 N
 R_1

und ihre Salze, worin R_4 die oben gegebene Bedeu-60 tung hat und R_1 einen niederen Alkylrest mit mehr

als 2 Kohlenstoffatomen darstellt, R_3 einen niederen Alkylrest oder vor allem Wasserstoff und R_6 einen unsubstituierten oder im Phenylrest durch Chlor, Methoxy, Methylendioxy, Methyl oder Trifluormethyl mono-, di- oder trisubstituierten Benzylrest darstellt. $_{65}$

In diesen verschiedenen bevorzugten Gruppen von Verbindungen ist R_4 vor allem eine freie Mercaptogruppe oder eine Niederalkylmercaptogruppe, wie Methyl-, Äthyl-, Propyl- oder Butylmercaptogruppe.

Vor allem betrifft die Erfindung die Herstellung des ausgezeichnete coronarerweiternde Wirkung aufweisenden 1-Isopropyl-4-mercapto-6-benzyl-pyrazolo-[3,4-d]pyrimidins sowie des ebenfalls hervorragende coronarerweiternde Wirkung besitzenden 1-Isopropyl-4-mercapto-6-methyl-pyrazolo[3,4-d]pyrimidins, und ihrer Salze.

Das erfindungsgemäße Verfahren zur Herstellung der neuen Verbindungen ist dadurch gekennzeichnet, daß man in $1\text{-}R_1\text{-}3\text{-}R_3\text{-}6\text{-}R_6\text{-}X\text{-pyrazolo}[3,4\text{-d}]pyrimidinen, worin X ein austauschbarer Rest ist, X durch Umsetzung mit Thioharnstoff, Metallsalzen von Schwefelwasserstoff oder von Niederalkyl- oder Amino- bzw. Ammoniumniederalkylmercaptanen in die Mercaptogruppe <math>R_4$ überführt.

Der Substituent X ist vor allem eine reaktionsfähige, veresterte Oxygruppe, z. B. ein Halogenatom, wie Chlor.

Die für das erfindungsgemäße Verfahren als Ausgangsstoffe dienenden 4-Halogen-pyrazolo[3,4-d]-pyrimidine können durch Behandlung der entsprechenden 4-Hydroxyverbindungen mit halogenierenden Mitteln, insbesondere Phosphorhalogeniden, wie Phosphoroxychlorid oder Phosphorpentachlorid erhalten werden.

Die Umsetzung kann in üblicher Weise, vorzugsweise bei erhöhter Temperatur, in Abwesenheit oder Anwesenheit eines Verdünnungs- und/oder Kondensationsmittels, im geschlossenen oder offenen Gefäß, durchgeführt werden.

Erhaltene tertiäre Amine lassen sich in üblicher Weise, z. B. mit reaktionsfähigen Estern, z. B. Estern mit starken anorganischen Säuren, z. B. einer Halogenwasserstoffsäure oder organischen Sulfonsäuren, z. B. einer Benzol-, wie Toluolsulfonsäure, 105 von Alkanolen oder Phenylalkanolen quaternisieren.

Je nach den vorhandenen Substituenten in den Verfahrensprodukten lassen sich verschiedene Salze herstellen. Besitzen sie saure Mercaptogruppen, so können Salze von Basen, wie z. B. Metallsalze, ge- wonnen werden, z. B. durch Behandeln mit Basen wie z. B. Alkalifaugen. Verbindungen von basischem Charakter bilden Salze mit anorganischen oder organischen Säuren. Als salzbildende Säuren kommen beispielsweise therapeutisch anwendbare in Frage, wie Halogenwasserstoffsäuren, Schwefelsäuren, Phosphorsäuren, Salpetersäure, Perchlorsäure; aliphatische, alicyclische, aromatische oder heterocyclische Carbonoder Sulfonsäuren, wie Ameisen-, Essig-, Propion-,

100

105

110

115

Oxal-, Bernstein-, Glykol-, Milch-, Äpfel-, Wein-, Zitronen-, Ascorbin-, Hydroxymalein-, Dihydroxymalein- oder Brenztraubensäure; Phenylessig-, Benzoe-, p-Aminobenzoe-, Anthranil-, p-Hydroxybenzoe-, Salicyl- oder p-Aminosalicylsäure, Methansulfon-, Äthansulfon-, Oxyäthansulfon-, Äthylensulfonsäure; Toluolsulfon-, Naphthalinsulfonsäuren oder Sulfanilsäure; Methionin, Tryptophan, Lysin, Arginin, Cystein oder Glutaminsäure. Erhaltene Salze lassen sich im üblicher Weise in die freien Basen, freie Basen in ihre Salze überführen.

Die neuen pharmakologisch wertvollen Verbindungen, ihre Salze oder entsprechende Gemische können z. B. in Form pharmazeutischer Präparate Verwendung finden, welche die genannten Verbindungen in Mischung mit einem für die enterale, parenterale oder topicale Applikation geeigneten pharmazeutischen organischen oder anorganischen Trägermaterial enthalten.

Die für die Herstellung der 4-Halogen-Verbindungen verwendeten 4-Hydroxy-Verbindungen können erhalten werden, wenn man 2-R₁-3-Amino-5-R₃-pyrazol-4-carbonsäure-alkylester mit Nitrilen der Formel R₆-CN in Gegenwart von Natrium kondensiert.

Als Ausgangsstoffe werden gemäß der vorliegenden Erfindung vorzugsweise diejenigen verwendet, die zu den eingangs als besonders wertvoll geschilderten Endstoffen führen. Die Ausgangsstoffe können gegebenenfalls auch in Form ihrer quaternären Ammoniumverbindungen bzw. Salze verwendet werden. Sie können in an sich bekannter Weise erhalten werden.

Im nachfolgenden Beispiel sind die Temperaturen in Celsiusgraden angegeben.

Beispiel

10 g 1-Isopropyl-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin werden zusammen mit 100 cm³ Phosphoroxychlorid während 5 Stunden in einem Bade von 110° erhitzt. Man dampft dann im Vakuum ein, bringt den Rückstand in Wasser, zieht mit Chloroform aus, wäscht mit 1n Natronlauge aus und dampft das mit wasserfreiem Natriumsulfat getrocknete Chloroform im Vakuum ein.

Eine Lösung des Chloroformrückstandes mit 8,5 g Thioharnstoff in 150 cm³ Alkohol wird während 12 Stunden zum Sieden erhitzt. Man dampft dann im Vakuum auf 60 cm³ ein und läßt erkalten.

1-Isopropyl-4-mercapto-6-benzyl-pyrazolo-[3,4-d]pyrimidin der Formel

50

55

wird so in gelben Kristallen vom F. 145-147° er- 60 halten

In analoger Weise kann man das 1-Isopropyl-4-mercapto-6-methyl-pyrazolo[3,4-d]pyrimidin, F. 226 bis 228°, und das 1,6-Di-isopropyl-4-mercapto-pyrazolo[3,4-d]pyrimidin, F. 170–171°, erhalten.

Das 1-Isopropyl-4-hydroxy-6-benzyl-pyrazolo[3,4]-pyrimidin kann z. B. auf folgende Weise erhalten werden:

In 50 cm³ Benzylcyanid werden 2,3 g Natrium fein zerkleinert und 9,9 g 2-Isopropyl-3-amino-4-70 carbäthoxy-pyrazol eingetragen. Man erhitzt dann während 4 Stunden unter Rühren auf 110–120°, versetzt nach dem Erkalten mit 100 cm³ Alkohol und dampft im Vakuum zur Trockene ein. Der Rückstand wird in 150 cm³ 2n Natronlauge aufgenommen, die alkalische Lösung wird zur Abtrennung von Ungelöstem mit Chloroform ausgeschüttelt und dann mit 6n Salzsäure auf pH = 5–6 gestellt, wobei ein festes Produkt ausfällt. Letzteres wird aus wenig Alkohol umkristallisiert. Man erhält so 1-Isopropyl-4-hydroxy-6-benzyl-pyrazolo[3,4-d]pyrimidin der Formel

in farblosen Kristallen vom F. 165-166°.

In ähnlicher Weise kann man durch Umsetzung der entsprechenden 4-Halogen-pyrazolo[3,4-d]pyrimidine mit dem Natriumsalz der entsprechenden Alkylbzw. Ammoniumalkylmercaptane die folgenden Verbindungen erhalten:

- a) 1-Isopropyl-4-methyl-mercapto-6-methyl-pyrazolo[3,4-d]-pyrimidin,
 F. 66-67° (aus Petroläther).
- b) 1-Isopropyl-4-(β-diäthylaminoäthylmercapto)-6-benzyl-pyrazolo[3,4-d]pyrimidin-hydrochlorid,
 F. 160° (aus Essigester).
- c) 1-Isopropyl-4-methylmercapto-6-benzylpyrazolo[3,4-d]pyrimidin,
 F. 84-85° (aus Petroläther).
- d) 1,6-Di-isopropyl-4-methylmercapto-pyrazolo-[3,4-d]pyrimidin,
 Kp. 106–109° (0,05 Torr).
- e) 1,6-Di-isopropyl-4-(β-diäthylaminoäthyl-mercapto)-pyrazolo[3,4-d]pyrimidin,
 Kp. 138–140° (0,05 Torr).
- f) 1,6-Di-isopropyl-4-(γ-diāthylaminopropyl-mercapto)-pyrazolo[3,4-d]pyrimidin,
 Kp. 149–151° (0,02 mm Torr).
- g) 1,6-Di-isopropyl-4-(β-piperidinoäthylmercapto)pyrazolo[3,4-d]pyrimidin-hydrochlorid,
 F. 163–165°.

10

PATENTANSPRUCH I

s Verfahren zur Herstellung neuer Mercaptopyrazolo[3,4-d]pyrimidine der Formel

$$R_{4}$$

$$R_{6}$$

$$N$$

$$N$$

$$N$$

$$R_{1}$$

oder ihrer tautomeren Formen, worin R₆ einen Alkylrest, einen Aralkylrest oder einen Heterocyclylalkylrest, R₃ ein Wasserstoffatom oder einen niederen Alkylrest, R₄ eine freie oder durch einen Niederalkylrest, einer Amino- bzw. Ammoniumniederalkylrest substituierte Mercaptogruppe bedeutet und R₁ für einen Halogenalkylrest, einen Oxaalkylrest, einen Cycloalkylrest, einen Aralkylrest oder einen Heterocyclylalkylrest oder einen Alkylrest mit mehr als zwei Kohlenstoffatomen steht, oder ihren Salzen, dadurch gekennzeichnet, daß man in einem

 $1-R_1-3-R_3-6-R_6-4-X$ -pyrazolo[3,4-d]pyrimidin, worin X einen austauschbaren Rest darstellt, X durch Umsetzung mit Thioharnstoff, Metallsalzen von Schwefelwasserstoff oder von Niederalkyl- oder Amino- bzw. Ammoniumniederalkyl-mercaptanen in die Mercaptogruppe R_4 umwandelt.

UNTERANSPRÜCHE

- 1. Verfahren nach Patentanspruch I, dadurch gekennzeichnet, daß man von obigen Verbindungen ausgeht, worin X ein Halogenatom ist.
 - 2. Verfahren nach Patentanspruch I oder Unteranspruch 1, dadurch gekennzeichnet, daß man von

obigen Pyrazolo[3,4-d]pyrimidinen ausgeht, worin R_1 40 einen Niederalkylrest mit mehr als 2 Kohlenstoff-atomen, einen Cycloalkylrest oder einen Oxaniederalkylrest darstellt, R_3 Wasserstoff oder ein Niederalkylrest ist und R_6 einen Aralkylrest bedeutet.

3. Verfahren nach Patentanspruch I oder Unteranspruch 1, dadurch gekennzeichnet, daß man von obigen Pyrazolo[3,4-d]pyrimidinen ausgeht, worin R_1 und R_3 die in Unteranspruch 2 angegebenen Bedeutungen haben und R_6 einen Alkylrest darstellt.

- 4. Verfahren nach Patentanspruch I oder Unteranspruch 1, dadurch gekennzeichnet, daß man von obigen Pyrazolo[3,4-d]pyrimidinen ausgeht, worin R_1 einen niederen Alkylrest mit mehr als 2 Kohlenstoffatomen darstellt, R_3 Wasserstoff oder Niederalkyl bedeutet und R_6 einen unsubstituierten oder im 55 Phenylrest durch Chlor, Methoxy, Methylendioxy, Methyl oder Trifluormethyl mono-, di- oder trisubstituierten Benzylrest darstellt.
- 5. Verfahren nach Patentanspruch I oder Unteranspruch 1, dadurch gekennzeichnet, daß man mit 60 Thioharnstoff, Metallsalzen des Schwefelwasserstoffes oder von Niederalkylmercaptanen umsetzt.
- 6. Verfahren nach Patentanspruch I oder Unteranspruch 1, dadurch gekennzeichnet, daß man erhaltene Säureadditionssalze von Aminoalkylmercaptoverbindungen in die freien Verbindungen umwandelt.
- 7. Verfahren nach Patentanspruch I oder Unteranspruch 1, dadurch gekennzeichnet, daß man erhaltene Aminoalkylmercaptoverbindungen in ihre Säureadditionssalze umwandelt.

PATENTANSPRUCH II

Verwendung von nach dem Verfahren gemäß Patentanspruch I hergestellten tert.-Aminoalkylmercaptoverbindungen zur Herstellung entsprechender quaternärer Ammoniumsalze, dadurch gekennzeichnet, daß man die tertiären Amine mit Quaternisierungsmitteln behandelt.

CIBA Aktiengesellschaft