Throughout this homework, coefficients are in a field  $\mathbf{k}$ , ie.  $H_n(X) = H_n(X, \mathbf{k})$  and  $C_n(X) = C_n(X, \mathbf{k})$ . I roughly follow the (terse!) proofs in *Infinite Cyclic Coverings* by John Milnor.

## 1. (i) We consider the sequence

$$0 \longrightarrow C_*(\widehat{X}) \xrightarrow{t-1} C_*(\widehat{X}) \xrightarrow{p_*} C_*(X) \longrightarrow 0 \tag{1}$$

where  $p_*$  is induced from the covering map  $\widehat{X} \xrightarrow{p} X$ . First we show exactness of each row. As mentioned in class,  $\Pi$  acts on  $C_n(\widehat{X})$  by permuting generators, so the map  $C_n(\widehat{X}) \xrightarrow{t-1} C_n(\widehat{X})$  induced by the action of t-1 must be injective. As  $\widehat{X}/\Pi \cong X$ , the covering map  $\widehat{X} \xrightarrow{p} X$  is cellular, so the induced map  $C_n(\widehat{X}) \to C_n(X)$  is surjective. Finally, if  $e_i^n \in C_n(\widehat{X})$  then

$$(t-1)e_i^n = te_i^n - e_i^n = e_{i+1}^n - e_i^n \in \ker p_*$$

as  $e_i^n$  and  $e_{i+1}^n$  project to the same cell in X, and conversely if  $p_*(z) = 0$  for some  $z \in C_n(\widehat{X})$  then z must be of the form  $\sum_j (t-1)e_j^n$  as  $\widehat{X}/\Pi \cong X$ , so  $\ker(p_*) = \operatorname{im}(t-1)$ .

To show (1) is exact it remains to show each square in the diagram below commutes (for each n). I don't know how to do this.

$$0 \longrightarrow C_n(\widehat{X}) \xrightarrow{t-1} C_n(\widehat{X}) \xrightarrow{p_*} C_n(X) \longrightarrow 0$$

$$\downarrow^{d_{\widehat{X}}} \qquad \downarrow^{d_{\widehat{X}}} \qquad \downarrow^{d_X}$$

$$0 \longrightarrow C_{n-1}(\widehat{X}) \xrightarrow{t-1} C_{n-1}(\widehat{X}) \xrightarrow{p_*} C_{n-1}(X) \longrightarrow 0$$

Here is a statement of the Snake Lemma.

**Lemma** (snek) Let A be a commutative ring, and let

$$P \xrightarrow{\varphi} Q \xrightarrow{\psi} R \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow P' \xrightarrow{\varphi'} Q' \xrightarrow{\psi'} R'$$

$$(2)$$

be a commutative diagram of A-modules with exact rows. Then there is an A-linear map  $\delta : \ker \gamma \to \operatorname{coker} \alpha$  such that the sequence

$$\ker \alpha \longrightarrow \ker \beta \longrightarrow \ker \gamma \xrightarrow{\delta} \operatorname{coker} \alpha \longrightarrow \operatorname{coker} \beta \longrightarrow \operatorname{coker} \gamma$$
(3)

is exact. Moreover, if  $\varphi$  is injective then the first map  $\ker \alpha \to \ker \beta$  is injective, and if  $\psi'$  is surjective, the last map  $\operatorname{coker} \beta \to \operatorname{coker} \gamma$  is surjective. The exact sequence (3) is functorial in the diagram (2).

Expanding (1) to make things more visually clear

we apply the snake lemma to the 0<sup>th</sup> row to get an exact sequence

$$0 \to Z_0(\widehat{X}) \xrightarrow{t-1} Z_0(\widehat{X}) \to Z_0(X) \xrightarrow{\partial} C_1(\widehat{X})/B_0(\widehat{X}) \xrightarrow{t-1} C_1(\widehat{X})/B_0(\widehat{X}) \to C_1(X)/B_0(X) \to 0$$

and in general apply the snake lemma to the  $n^{\text{th}}$  row to get an exact sequence

$$0 \to Z_n(\widehat{X}) \xrightarrow{t-1} Z_n(\widehat{X}) \to Z_n(X) \xrightarrow{\partial}$$

$$C_{n+1}(\widehat{X})/B_n(\widehat{X}) \xrightarrow{t-1} C_{n+1}(\widehat{X})/B_n(\widehat{X}) \to C_{n+1}(X)/B_n(X) \to 0$$

So, for each n we have a commutative diagram with exact rows

$$C_{n+1}(\widehat{X})/B_n(\widehat{X}) \longrightarrow C_{n+1}(\widehat{X})/B_n(\widehat{X}) \longrightarrow C_{n+1}(X)/B_n(X) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow Z_n(\widehat{X}) \longrightarrow Z_n(\widehat{X}) \longrightarrow Z_n(X)$$

$$(5)$$

and applying the snake lemma to (5) for each n yields the long exact sequence

$$\dots \xrightarrow{\partial} H_n(\widehat{X}) \xrightarrow{t-1} H_n(\widehat{X}) \xrightarrow{p_*} H_n(X) \xrightarrow{\partial} H_{n-1}(\widehat{X}) \xrightarrow{t-1} \dots$$
(6)

(ii) Suppose that X has the homology of a circle. First, we have  $H_0(\widehat{X}) \cong \mathbf{k}$  since  $\widehat{X}$  is connected, so  $H_0(\widehat{X})$  has no  $\mathbf{k}\Pi$ -free summands. If  $i \geq 2$  then  $H_i(X) = 0$ , so we get an exact sequence

$$H_i(\widehat{X}) \xrightarrow{t-1} H_i(\widehat{X}) \to 0$$

which means we can write each  $x \in H_i(\widehat{X})$  as (t-1)y for some  $y \in H_i(\widehat{X})$ , so  $H_i(\widehat{X})$  does not have any  $\mathbf{k}\Pi$ -free summand.

For i = 1, as X is a  $\mathbf{k}HS^1$  the long exact sequence (6) ends like

$$\dots \xrightarrow{0} H_1(X) \xrightarrow{\sim} H_0(\widehat{X}) \xrightarrow{0} H_0(\widehat{X}) \xrightarrow{\sim} H_0(X) \xrightarrow{\sim} 0$$

so the situation is similar to the one described for  $i \geq 2$  above. From this  $H_i(\widehat{X})$  is finitely generated as a **k**-vector space for all i.

(iii) As the maps induced on chains by t-1 and p are injective and surjective, respectively, we break up the long exact sequence (6) into short exact sequences

:

$$0 \longrightarrow H_i(\widehat{X}) \xrightarrow{t-1} H_i(\widehat{X}) \longrightarrow H_i(X) \longrightarrow 0$$

$$0 \longrightarrow H_{i+1}(\widehat{X}) \xrightarrow{t-1} H_{i+1}(\widehat{X}) \longrightarrow H_{i+1}(X) \longrightarrow 0$$

:

which split as the homology modules are finitely generated  $\mathbf{k}$ -vector spaces by (ii). So, for each i we have

$$\operatorname{rank} H_i(\widehat{X}) = \operatorname{rank} H_i(\widehat{X}) + \operatorname{rank} H_i(X)$$

thus 
$$\chi(\widehat{X}) = \chi(\widehat{X}) + \chi(X)$$
, so  $\chi(X) = 0$ .

2. (i) We write  $\pi_1 X$  with the presentation  $\pi_1 X = \langle a, b \mid a^2 b^{-2} \rangle$ , with a and

b pictured below. We define a surjective homomorphism  $\pi_1 X \xrightarrow{\varphi} \Pi$  by  $a \mapsto t$  and  $b \mapsto t$ . From this we see that

$$\pi_1 \widehat{X} \cong \ker \varphi = \langle a^i b^{-i} \rangle_{i \in \mathbb{Z}}.$$





If we tile  $\mathbb{R}^2$  with these squares to get the universal cover of X, we note that  $a^ib^{-i}$  corresponds to moving the basepoint down by i squares. From covering space theory this means that  $\widehat{X}$  corresponds to a 1-by- $\mathbb{Z}$  vertical strip in the tiling, which we can think of as a Mobius strip with infinite width, thus having homotopy type  $S^1$ . Therefore  $H_i(\widehat{X}) = 0$  for i > 1. As a  $k\Pi$  module

$$H_0(\widehat{X}) \cong \mathbf{k}[t, t^{-1}]/(t-1)$$

and

$$H_1(\widehat{X}) \cong \mathbf{k}[t, t^{-1}]/(t+1).$$

(ii) We know  $\pi_1 X = \langle a \rangle$  where a is a generator for  $\pi_1 S^1 \cong \mathbb{Z}$ . So, we get the identity map  $\pi_1 X \to \Pi = \langle a \rangle$ , thus  $\pi_1 \widehat{X}$  is trivial so  $\widehat{X}$  is the universal cover of X, thus  $\widehat{X}$  has homotopy type  $S^2$ . As X has the homology of  $S^1$  and  $\Pi$  acts trivially on X we must have

$$H_0(\widehat{X}) \cong \mathbf{k}[a, a^{-1}]/(a-1) \cong H_1(\widehat{X})$$

as  $\mathbf{k}\Pi$ -modules.