

深度学习与类脑计算(四)

曹立宏

脑科学与智能媒体研究院

Review

- Universal Approximation Theorem
- MLP with BP

Overfitting Underfitting

Curse of Dimensionality

Homework

- Program BP algorithm in Python
- Pattern classification (ref. p150-153 on Haykin)
- Change the activation function of hidden layers to ReLU
- The MNIST Database (陈雯婕)

7	2	1	ø	4	1	4	٥	4	9	
0	0	9	0	-	S)	9	Ť	$\boldsymbol{\theta}$	4	
9	P	9	5	4	9	7	4	O	-	
3	1	ദ	4	7	α	7	-	2	l	
1	ア	4	7	3	5	/	Z	4	Ì	
₽Ģt	വ	5	Ŗ	9	T O t	4	$^{\mathrm{ni}}t^{\mathrm{l}}$	9	n Ger	ıg
7	6 ∕0	4	4	$\not\vdash$	4	9	J	pp	0	
フ	0	$^{\circ}$	9	1	7	3	2	q	7	
7	G	ス	7	C	4	7	3	ی	1	
3	6	g	3	l	4	1	7	G	q	

最小二乘法

• 假设

$$y = f(x)$$
$$\hat{y}_i = f(x_i)$$

想法1

$$\mathcal{E} = \sum_{i=1}^{N} e_i^2$$

想法2
$$\mathcal{E} = \sum_{i=1}^{N} |e_i|$$

想法n

如果X的观察也不准确呢? 如果我们知道Y的观察比X的准1倍呢?

假设1
$$y = f(x) = ax + b$$

假设2
$$y = f(x) = ax^2 + bx + c$$

如何知道因该用几阶呢?

Regression

g:
$$R^m \to R^1$$
 $\{\vec{x}_i, y_i, |_{i=1, \dots, N}\}$

$$y = g(\vec{x}) = f(\vec{x}, \vec{w})$$

$$\vec{w} = \begin{pmatrix} w_1 \\ \vdots \end{pmatrix}$$

Linear Regression

Perceptron

$$f(\vec{x}, \vec{w}) = \vec{w}^T \vec{x} + w_0$$

General

$$f(\vec{x}, \vec{w}) = \vec{w}^T \vec{x}$$

$$x_0 = 1$$

• Goal is to find $\widehat{\overrightarrow{w}}$, s.t., $y_i - f(\overrightarrow{x}_i, \widehat{\overrightarrow{w}})$ Small for all i=1,...N

More importantly for new \vec{x}

Underfitting and Overfitting

Errors-Overfitting-Underfitting

- Dataset
 - Training set
 - Test set
- Training error
 - Training set

- $\{\vec{x}_i, y_i, \mid_{i=1,2,...,N,N+1,...N+M}\}$
- $MSE_{training} = \frac{1}{N} \sum_{i=1}^{N} (y_i f(\vec{x}_i, \widehat{\vec{w}}))^2$

 $MSE_{test} = \frac{1}{M} \sum_{i=N+1}^{N+M} (y_i - f(\vec{x}_i, \widehat{\vec{w}}))^2$

- Generalization or test error
 - Testing set
- Underfitting
 - MSE_{training} is NOT small
- Overfitting
 - $MSE_{training} \ll MSE_{test}$

Capacity and Structure

- Structure implies capacity
 - Linear form can't make good fit for data generated by non-linear function
 - Can't do much for underfitting
- Expand structures/parameters to increase capacity

$$f(\vec{x}) = \vec{w}^T \vec{x} + \sum_i \sum_j \theta_{ij} x_i x_j$$

We can eliminate or regularize parameters for overfitting!

Non-Parametric model has the highest capacity

Capacity-Overfitting-Underfitting

Typical relationship between capacity and error

REGULARIZATION

Regression with regularization

$$MSE_{training}(\vec{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(\vec{x}_i, \vec{w}))^2$$

$$J(\vec{w}) = MSE_{training}(\vec{w}) + \lambda \nabla f^T \nabla f \qquad \nabla f = \vec{w} \quad \text{Linear Reg}$$

$$J(\vec{w}) = MSE_{training}(\vec{w}) + \lambda \Omega(\vec{w}) \qquad \text{Regularizer}$$

Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error

Estimation, Bias and Variance

Point estimation

$$x_i \sim F(x, \theta), i = 1, \dots m$$

$$\hat{\theta}_m = g(\vec{x}_1, \vec{x}_2 \dots, \vec{x}_m)$$

Random Variable/Vector

$$Bias(\hat{\theta}_m) = E(\hat{\theta}_m) - \theta$$

Unbiased if $Bias(\hat{\theta}_m) = 0$

asymptotically Unbiased if $\lim_{m \to \infty} Bias(\hat{\theta}_m) = 0$

$$Var(\hat{\theta}_m) = E(\hat{\theta}_m - E(\hat{\theta}_m))^2$$

$$SE(\hat{\theta}_m) = \sqrt{Var(\hat{\theta}_m)}$$

Standard error

For Gaussian i.i.d. distribution, $x_i \sim N(\mu, \sigma^2)$, i = 1, ... m

- 1, Sample mean is unbiased.
- 2, Sample variance is biased, but asymptotically unbiased

3,
$$SE(\hat{\mu}) = \sigma/\sqrt{m}$$

$$\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

Mean Squared Error (MSE)

• Which one is better?

$$MSE(\hat{\theta}_m) = E\left[\left(\hat{\theta}_m - \theta\right)^2\right] = Bias^2(\hat{\theta}_m) + Var(\hat{\theta}_m)$$

$$Bias(\hat{\theta}_m) = E(\hat{\theta}_m) - \theta$$

$$Var(\hat{\theta}_m) = E(\hat{\theta}_m - E(\hat{\theta}_m))^2$$

Tradeoff of Bias and Variance

Maximum Likelihood Estimation

$$\vec{x}_i \sim p(\vec{x}; \theta), \quad i = 1, \dots m \text{ i.i.d.}$$

$$\theta_{ML} = arg \max_{\theta} \prod_{i=1}^{m} p(\vec{x}_i; \theta)$$

$$\theta_{ML} = arg \max_{\theta} \sum_{i=1}^{m} Log p(\vec{x}_i; \theta)$$

Maximum Likelihood Estimation for Regression

$$\hat{y}_i = f(x_i, \vec{\theta}) \sim N(y_i, \sigma)$$
 i.i.d.

$$\sum_{i=1}^{m} Log \, p(\vec{x}_i; \, \theta) = -mlog \sigma - \frac{m}{2} \log(2\pi) - \sum_{i=1}^{m} \frac{(\hat{y}_i - y_i)^2}{2\sigma^2}$$

$$\sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{m} (f(x_i, \vec{\theta}) - y_i)^2 = m * MSE_{Train}$$

- In this case ML estimation is as same as minimizing MSE for training set
- In general, ML estimation has consistency and efficiency

Bayesian Statistics

- Bayesian View
 - Given observations, what's the probability of parameters?

The Prior

$$p(\vec{\theta} | \vec{x}_1, \vec{x}_2, ..., \vec{x}_m) = \frac{p(\vec{x}_1, \vec{x}_2, ..., \vec{x}_m | \vec{\theta}) p(\vec{\theta})}{p(\vec{x}_1, \vec{x}_2, ..., \vec{x}_m)}$$

• The estimation of parameters is the one

s.t.
$$\vec{\theta}_{MAP} = Arg \max_{\vec{\theta}} p(\vec{\theta} | \vec{x}_1, \vec{x}_2, ..., \vec{x}_m)$$

Maximum A Posteriori (MAP) estimation

MAP estimation justify ML estimation by the prior

$$\begin{split} \vec{\theta}_{MAP} &= Arg \max_{\vec{\theta}} p(\vec{\theta} | \vec{x}_1, \vec{x}_2, ..., \vec{x}_m) \\ &= Arg \max_{\vec{\theta}} \left[\log \left(p(\vec{x}_1, \vec{x}_2, ..., \vec{x}_m | \vec{\theta}) \right) + \log (p(\vec{\theta})) \right] \end{split}$$

Bayesian Linear Regression

$$\hat{y}_i = f(\vec{x}_i, \vec{w}) = \vec{w}^T \vec{x}_i \sim N(y_i, \sigma) \text{ i.i.d.}$$

$$Y = \vec{w}^T X \quad p(Y|\vec{w}, X) \sim N(\vec{w}^T X, I)$$

$$p(Y|\vec{w}, X) \propto exp(-\frac{1}{2}(Y - X\vec{w})^T (Y - X\vec{w}))$$
IF
$$p(\vec{w}) \sim N(\vec{0}, \frac{1}{\sigma}I) \qquad \alpha \text{ 越大,先验性越强! w越小}$$

Then
$$p(\vec{w}|Y,X) = p(Y|\vec{w},X)p(\vec{w}) = \cdots$$

$$\overrightarrow{w}_{MAP} = (X^TX + \alpha I)^{-1}(X^TY)$$

相当于 Regularization

$$J(\vec{w}) = MSE_{training}(\vec{w}) + \lambda \nabla f^{T} \nabla f \qquad \nabla f = \vec{w}$$

Lagrange Multiplier

- Maximize f(x, y)
- Subject to: g(x, y) = 0

 $L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$

KKT

From Regression to Categorization

- Discrete responses
- Supervised Learning
 - Logistic Regression
 - SVM
- Unsupervised Learning
 - Dimension Reduction
 - K-mean Clustering
 - Kernel Method
 - RBF Network

Homework

- Finishing up the last homework
- How to write a technical report?
- Prove: Bayesian or MAP estimation for linear regression is equivalent to regularization of MSE
- We(陈雯婕)will give you a dataset RegData2D $\{x_i, y_i \mid_{i=1,2,...,N,N+1,...N+M}\}$

use whatever you have learnt to find the best relationship between x and y. Write a report, and specifically pay attention to underfitting and overfitting and how you come up with your best solutions.

• (optional) We(陈雯婕)will give you another dataset RegData3D, $\{x_i, y_i, z_i |_{i=1,2,...,N,N+1,...N+M} \}$ do the same.