# Сколько групп Григорчука можно нетривиально вложить в $\operatorname{Aut}(T_m)$

Иван Чиченков, Илья Амехин. Руслан Магдиев

Майская проектная смена

# 1 Определения и мотивировка

**Определение 1** Сплетением группы A и группы B действующей на множестве X, при #X=n называется  $A^n \rtimes B$  и обозначается  $A \wr B$ 

**Определение 2** Деревом называется связный (неориентированный) граф без циклов. Если X - конечное множество, то на  $X^*$  задана структура бесконечного дерева: между словами v и w существует ребро (v, w), если v = xw или w = xv, где  $x \in X$ , при #X = m такое дерево будет называться  $T_m$ . Группа  $\mathrm{Aut}(T_m) = \{\alpha : T_m \to T_m | \alpha - u$ зоморфизм $\}$ 

 $S_X$  - группа перестановок множества X, тогда существует изоморфизм

$$\psi: \operatorname{Aut}(T) \to \operatorname{Aut}(T)^{|X|} \wr S_X$$

**Определение 3** Определим четыре автоморфизма бинарного дерева, что задают группу по композиции:

$$a(0w) = 1w$$
,  $b(0w) = 0a(w)$ ,  $c(0w) = 0a(w)$ ,  $d(0w) = 0w$   
 $a(1w) = 0w$ ,  $b(1w) = 1c(w)$ ,  $c(1w) = 1d(w)$ ,  $d(1w) = 1b(w)$ 

Такая группа называется группой Григорчука

**Определение 4** Назовем вложение  $f:G^n \to \operatorname{Aut}(T_m)$  группы тривиальным, если  $\exists N>1\in\mathbb{N}: \forall m< N$ 

$$\psi_m(f(G^n)) = {\mathrm{id}}$$

Поскольку иначе легко придумать вложение которое заключается в том, чтобы каждой группе определить поддерево на d-том уровне.



В данном случае мы будем рассматривать только те мономорфизмы, что на каждом уровне будут хоть что-то делать

# 2 Первый пример нетривиального вложения

### 2.1 Формальная запись

Рассмотрим вложение  $\varphi$  определенное следующими соотношениями, которые действуют не как id:

Рассмотрим случай, m=2k: Тогда определим автоморфизмы такими рекуррентными соотношениями  $0 \le r \le k-2$ ,  $(g_0,g_1,...,g_{n-1}) \in G^n$ , где  $g_i$  может быть одним из действий  $a_i,b_i,c_i,d_i,\quad a_i=a_{kq+r}$  или  $a_i=a_{kq+(k-1)}$ , также определим перестановку  $\sigma=(0k)(1(k+1))...((k-1)(2k-1))$ 

$$a_{kq+r}(\underbrace{(m-1)...(m-1)}_{q}(2r)w) = \underbrace{(m-1)...(m-1)}_{q}(2r+1)w, \text{ при } 0 \leq r \leq k-2$$
 
$$a_{kq+r}(\underbrace{(m-1)...(m-1)}_{q}(2r+1)w) = \underbrace{(m-1)...(m-1)}_{q}(2r)w, \text{ при } 0 \leq r \leq k-2$$
 
$$a_{kq+(k-1)}(\underbrace{(m-1)...(m-1)}_{q}(m-2)i) = \underbrace{(m-1)...(m-1)}_{q}(m-2)(k+i), \text{ при } 0 \leq i \leq k-1$$
 
$$a_{kq+(k-1)}(\underbrace{(m-1)...(m-1)}_{q}(m-2)(k+i)) = \underbrace{(m-1)...(m-1)}_{q}(m-2)i, \text{ при } 0 \leq i \leq k-1$$
 
$$b_{kq+r}(\underbrace{(m-1)...(m-1)}_{q}(2r+1)w) = \underbrace{(m-1)...(m-1)}_{q}(m-1)\underbrace{(m-1)}_{q}(w)$$
 
$$b_{kq+r}(\underbrace{(m-1)...(m-1)}_{q}(m-2)iw) = \underbrace{(m-1)...(m-1)}_{q}(m-2)i\sigma(w)$$
 
$$b_{kq+(k-1)}(\underbrace{(m-1)...(m-1)}_{q}(m-2)(k+i)w) = \underbrace{(m-1)...(m-1)}_{q}(m-2)(k+i)c_{k-1}(w)$$
 
$$a_{kq+r}(\underbrace{(m-1)...(m-1)}_{q}(m-2)(k+i)w) = \underbrace{(m-1)...(m-1)}_{q}(m-2)(k+i)c_{k-1}(w)$$
 
$$a_{kq+r}(\underbrace{(m-1)...(m-1)}_{q}(2r+1)w) = \underbrace{(m-1)...(m-1)}_{q}(m-2)(k+i)d_{r}(w)$$
 
$$a_{kq+r}(\underbrace{(m-1)...(m-1)}_{q}(m-2)iw) = \underbrace{(m-1)...(m-1)}_{q}(m-2)i\sigma(w)$$
 
$$a_{kq+r}(\underbrace{(m-1)...(m-1)}_{q}(m-2)iw) = \underbrace{(m-1)...(m-1)}_{q}(m-2)iw + \underbrace{(m-1)...(m-1)}_{q}(m-2)iw$$



Рис. 1: Прим.  $(a_0, a_1, a_2, id, id, ...)$ 

$$d_{kq+r}(\underbrace{(m-1)...(m-1)}_{q}(2r+1)w) = \underbrace{(m-1)...(m-1)}_{q}(2r+1)b_{r}(w)$$

$$d_{kq+(k-1)}(\underbrace{(m-1)...(m-1)}_{q}(m-2)(k+i)w) = \underbrace{(m-1)...(m-1)}_{q}(m-2)(k+i)b_{k-1}(w)$$

B случае при m=2k+1 мы убираем каждую 4-ю строку.

## 2.2 Рекуррентный вид

Теперь перепишем действия описанные выше в терминах рекурсивных формул для удобства чтения.

$$w = \underbrace{(m-1)...(m-1)}_{q-2} w'; w' = (2r)w''$$

$$a_{kq+r}((m-1)w) = (m-1)a'_{kq+r}(w)$$

$$a'_{kq+r}((m-1)w) = (m-1)a''_{kq+r}(w)$$

$$\vdots$$

$$a^{(q-1)}_{kq+r}((m-1)w') = (m-1)a^{(q)}_{kq+r}(w')$$

$$a^{(q)}_{kq+r}((2r)w'') = (2r+1)w''$$

$$(1)$$

Аналогичным образом записываем в рекуррентном виде и для m=2k, для  $a_{kq+(k-1)}$ 

## 2.3 Проверка гомоморфизма

Ссылаясь на результат в работе Григорчука, мы говорим, что группа григорчука задана такими соотношениями

$$G = \langle a, b, c, d | a^2, b^2, c^2, d^2, bcd, \sigma^i(ad)^4, \sigma^i(adacac)^4 (i \in \mathbb{N}) \rangle$$

где  $\sigma$  это перестановка  $\{a, b, c, d\}^*$  определенная

$$\sigma(a) = aca, \quad \sigma(b) = d, \quad \sigma(c) = b, \quad \sigma(d) = c$$

Проверим, что всякое [w] = 1 при гомоморфизме  $\varphi(w) = 1$ , при условии, что всякое такое слово раскладывается в произведение соотношений, проверим что такие соотношения при вложение действительно тривиальны. Для начала рассмотрим как действуют  $a_i$ : по формуле 1 мы можем сказать что на всяком поддереве оно действует либо как id, либо как a из группы Григорчука, аналогично и всякие другие так же выполняются ввиду того, что поддеревья на которых они действуют тривиально либо совпадают на для  $b_i$ ,  $c_i$ ,  $d_i$ , либо являются образами нейтральных элементов группы Григорчука, значит так как в изначальной группе G такие элементы тривиальны, то и при вложении они будут тривиальными

## 2.4 Замечание о самоподобии

Легко видеть, что наша группа самоподобна, покажем что для всякого  $a_i^{(j)}$  тождество самоподобия выполняется:

- 1) Пусть  $x \neq m-1$ . Тогда  $a_i^{(j)}(xw) = x \operatorname{id}(w)$
- 2) Пусть x=m-1. Тогда  $a_i^{(j)}((m-1)w)=(m-1)a_i^{(j+1)}(w)$ , по формуле 1

Так как всякие другие элементы представляются либо как id, либо выражаются через рекурренту то и всякий другой элемент самоподобен

#### 2.5 Инъективность вложения

Введем понятие индексированного вложения, при заданном  $f: G^n \to \operatorname{Aut}(T_m)$  - гомоморфизме  $g \in G^n, v_i \in X^*, w \in X^*$ 

$$f^{(v_i)}(g):f^{(v_i)}(g)(v_jw)=\mathrm{id}$$
 при  $j
eq i$  и  $f^{(v_i)}(g)(v_iw)=f(g)(v_iw)$ 

Понятно, что из того как мы определили наше вложение, то всякое отображение можно разложить в произведение индексированных вложений поскольку для i-того элемента из набора  $(g_1,g_2,...,g_n)\in G^n$  соответствует действие на поддереве, что не пересекается с остальными  $f((g_1,g_2,...,g_n))=f^{(v_1)}(g_1)f^{(v_2)}(g_2)...f^{(v_n)}(g_n)$ . При этом понятно что если  $i\neq j$  то для любых элементов  $g_i,h_j\in G$  верно что  $f^{(v_i)}(g_i)\neq f^{(v_j)}(h_j)$ , значит что для того чтобы показать инъективность осталось сказать, что так как мы ни одно действие из группы григорчука не "склеиваем то из равенства  $f^{(v_i)}(g_i)=f^{(v_i)}(h_i)$  следует  $g_i=h_i$ , из чего следует что и все отображение является мономорфизмом

## **2.6** Пример вложения $G^4$ в $Aut(T_4)$

Рассмотрим 4-регулярное дерево и группу  $G^4$ , на котором перестановка имеет вид  $\sigma = (02)(13)$ :

$$a_0(0w) = 1w, \quad a_0(1w) = 0w \quad b_0(0w) = 0a_0(w), \quad b_0(1w) = 1c_0(w) \quad c_0(0w) = 0a_0(w)$$
 (2)

$$c_0(1w) = 1d_0(w), \quad d_0(1w) = 1b_0(w) \quad a_1(2w) = 2\sigma(w) \quad a_2(30w) = 31w \quad a_2(31w) = 30w \quad (3)$$

$$a_3(320w) = 322w$$
  $a_3(321w) = 323w$   $a_3(322w) = 320w$   $a_3(323w) = 321w$  (4)

# 3 Свойства нетривиальных вложений $G^n$ в $\operatorname{Aut}(T_m)$

## 3.1 Количество вложенных копий G на уровень m-тый уровень

Покажем, что в m-регулярном дереве на n-том уровне количество вложенных групп григорчука не превосходит  $\left[\frac{m}{2}\right]^n$ . Так как мы рассматриваем m-регулярное дерево, на n-том уровне находятся  $m^n$  вершин. Заметим, что группа Григорчука действует на двух поддеревьях, поэтому при условии, что мы пытаемся на уровень вложить более  $\left[\frac{m}{2}\right]^n$  групп, то как минимум две группы  $\varphi(G_1), \varphi(G_2)$  будут действовать на одном и том же поддереве xw, что плохо, так как произведение двух перестановок  $a_i = (i,x)$  и  $a_j = (x,j)$  не коммутативно, где iw, jw - вторые поддеревья на которые действуют группы. Поскольку в прообразе  $(id, ..., id, a_i, id, ...)$   $(id, ..., id, a_j, id, ...)$   $(id, ..., id, a_j, id, ...)$  = id, а в образе нет противоречие

#### 3.2 Сколько всего таких вложений

Всего нетривиальных гомоморфизмов несчетное количество, так как для каждого поддерева на котором мы определяем  $a_i$ , мы можем несколькими образами задать на каких поддеревьях  $a_i$  будет действовать, то есть как минимум на двух. Так как всего уровней бесконечное количество, то всего гомоморфизмов не менее  $2^{\mathbb{N}}$  то бишь несчетное множество.