COL352 Lecture 22

Contents

1	Recap	1
2	Definitions	1
3	Content	1

1 Recap

Proof that PDA = grammars completed.

2 Definitions

Definition 1

We define a simple PDA P to be a PDA such that

- 1. $\Delta = \Delta_{push} \uplus \Delta_{pop}$, where
 - (a) Δ_{push} contains transitions (q, a, ϵ, q', B) where $q, q' \in Q, a \in \Sigma_{\epsilon}, B \in \Gamma$ (i.e., not allowed to pop, must push), and
 - (b) Δ_{pop} contains transitions (q, a, B, q', ϵ) where $q, q' \in Q, a \in \Sigma_{\epsilon}, B \in \Gamma$ (i.e., must pop, not allowed to push).
- 2. |A| = 1, i.e., unique accepting state.
- 3. If x is accepted, then x is accepted with an empty stack, i.e., $(q_{init}, x, \epsilon) \vdash^* (q_{acc}, \epsilon, \alpha)$ for some $\alpha \in \Sigma^*$ iff $q_{init}, x, \epsilon) \vdash^* (q_{acc}, \epsilon, \epsilon)$.

3 Content

Question 1

What kinds of closure properties can we think of for context free languages? Union? Intersection? Complementation? Concatenation? *?

```
Answer. Let G = (N, \Sigma, R, S).

For *: G' = (N \uplus \{T\}, \Sigma, R \cup \{T \to TT, T \to S, T \to \epsilon\}) generates L^*.

Let G = (N, \Sigma, R, S).

For \cup : G_1 = (N_1, \Sigma, R_1, S_1) generates L_1 and G_2 = (N_2, \Sigma, R_2, S_2) generates L_2, then (N_1 \uplus N_2 \uplus T, \Sigma, R_1 \cup R_2 \cup \{T \to S_1, T \to S_2\}, T) generates L_1 \cup L_2.

(N_1 \uplus N_2 \uplus T, \Sigma, R_1 \cup R_2 \cup \{T \to S_1S_2\}, T) generates L_1L_2.
```

Not closed under intersection (would imply complementation by contradiction and contrapositive).

Let $L_1 = \{a^n b^n c^* \mid n \in \mathbb{N} \cup \{0\}\}$, and $L_2 = \{a^* b^n c^n \mid n \in \mathbb{N} \cup \{0\}\}$. Then $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N} \cup \{0\}\}$, which is probably not context free. We'll use a version of the pumping lemma for the DFA.

Note 1

Suppose L is a context free language generated by a grammar G. Suppose $w \in L$ is a "long enough" string. Consider a smallest parse tree T of w. Since w is "long enough", T is "tall enough". Look at the longest root-to-leaf path in T, say p.

Since p is long enough, some two nodes on P are labelled by the same non-terminal, say $A \in N$. Let uw'z be w such that the upper A derives w', and let vxy be w'. Look at tree (very helpful). Break it into S, A's tree (having u, z), A, A's tree (having v, y) and A's tree (having x).

By copy pasting the second tree into itself again and again, we can get $\forall i : uv^i xy^i z \in L$. This doesn't give us anything if $y = v = \epsilon$, so we enforce smallest tree constraints.

How tall is tall enough? If number of non-terminals is k, then we need height $\geq k+1$.

How long is long enough? If $d = \max(\{|\alpha| \mid A \to \alpha \in R\})$, then we need d^{k+1} .

Theorem 1

(Pumping lemma for Context-free languages)

For every context-free language $L \subseteq \Sigma^*$, there exists $p \in \mathbb{N}$ such that for every $w \in L$ with $|w| \geq p$, there exist strings $u, v, x, y, z \in \Sigma^*$ such that

- 1. w = uvxyz
- 2. |vy| > 0
- $3. |vxy| \leq p$
- 4. $\forall i \in \mathbb{N} \cup \{0\}$, we have $uv^i x y^i z \in L$.

Proof. $L = \mathcal{L}(G)$ for some grammar $G = (N, \Sigma, R, S)$. Let $k = |N|, d = \max(\{|\alpha| \mid A \to \alpha \in R\})$.

Choose $p = d^{k+1}$.

For any $w \in L$ with $|w| \ge p$, consider the smallest parse tree T of w. Height of T is at least k+1. Let P be a longest root-to-leaf path in T, so P has $\ge k+1$ non-leaf vertices. Consider the bottom-most k+1 non-leaf vertices of P. There exist two vertices l_1, l_2 among those, whose label is the same non-terminal, say $A \in N$.

The yield of l_1 in this tree is some substring w' of w, i.e., w = uw'z for some $u, z \in \Sigma^*$.

The yield of l_2 in this tree is some substring x of w', i.e., w' = vxy for some $v, y \in \Sigma^*$.

So, we have w = uw'z = uvxyz. |vy| > 0 by the minimality of T.

The height of the tree rooted at l_1 is at most $\leq k+1$. Therefore, $|vxy|=|w'|\leq d^{k+1}=p$.

Observe that $S \stackrel{*}{\Longrightarrow} uAz$ (chop off the children of l_1 in T) and $A \stackrel{*}{\Longrightarrow} vAy$ (let T' be the subtree of T rooted at l_1 , and chop off the children of l_2 in T'), and $A \stackrel{*}{\Longrightarrow} x$ (let T'' be the subtree of T rooted at l_2).

 $\forall i \in \mathbb{N} \cup \{0\}$, we have $S \stackrel{*}{\Longrightarrow} uAz \implies uv^iAy^iz$ (by repeated application of the second relation), and using the last relation, we have $S \stackrel{*}{\Longrightarrow} uv^ixy^iz$.

 $i \in \mathbb{N} \cup \{0\}$

The pumping game for context free languages $L \subseteq \Sigma^*$.

Your opponent $p\in\mathbb{N}$ You $p\in\mathbb{N}$ String w with $|w|\geq p$, and $w\in L$ $u,v,x,y,z\in\Sigma^* \text{ such that } w=uvxyz,|vy|>0,|vxy|\leq p$

You win if $uv^i xy^i z \notin L$, else your opponent wins.

The pumping lemma says that if L is context-free, then your opponent has a winning strategy. And if you have a winning strategy, then L is not context-free.

Example 1

Your opponent p	You		
$\left \ u,v,x,y,z \in \Sigma^* \text{ such that } w = uvxyz, vy > 0, vxy \leq p \right $ Cho	$a^pb^pc^p$ so vxy is either a substring of a^pb^p or b^pc^p ose any $i \neq 1$ and reach a contradiction wr		
Claim 1.1 $L = \{a^n b^n c^n \mid n \in \mathbb{N} \cup \{0\}\} \text{ is not context free.}$			
Proof. As above.			
Corollary 1 The class of context-free languages is not closed under intersection.			
<i>Proof.</i> Let $L_1 = \{a^m b^m c^n \mid m, n \in \mathbb{N} \cup \{0\}\}$ and $L_2 = \{a^m b^n c^n \mid m, n \in \mathbb{N} \cup \{0\}\}$. Both are context-free but $L_1 \cap L_2 = L$ is not context-free.			
Corollary 2 The class of context-free languages is not closed under complementary complementary and the complementary complementary context-free languages is not closed under context-free languages is not closed under context-free languages is not closed under context-free languages in the closed under context-free languages is not closed under context-free languages in the closed under closed under context-free languages in the closed under clo	entation.		
<i>Proof.</i> (Indirect): $L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$, and we are done using the previous lemma.			
(Direct): Directly show that L^c is not context free for some language L .			
Note 2 Note that the language $\{w \cdot rev(w) \mid w \in \Sigma^*\}$ is context-free (can	n make a PDA for this).		
Claim 1.2			
Your opponent	You		
Proof. $ u, v, x, y, z \in \Sigma^* \text{ such that } w = uvxyz, vy > 0, vxy \le p $	$a^pb^pa^pb^p$ so vxy is either a substring of a^pb^p or b^pa^p Choose any $i \neq 1$ and reach a contradiction.		