

# 四軸飛行器設計與製作

## The Design and Implementation for Quadcopter

指導教授:陳立文 教授 學生:陳威宇、古致誠、林彥圻

### 摘要

本次專題,主要目的是為了學習打造一台四軸飛行器,了 解其晶片的動作原理及程式的編寫,並利用課堂及實驗室所學, 從中學習抓取訊號、設計控制器等專業知識及團隊之間的合作。 四軸飛行器分為感測、控制、通訊三大系統,感測部分使用九 軸感測器,抓取其加速度、角速度及磁力方位,再學習相關濾 波及校正來調整飛行姿態,配合控制系統做角度轉換及PID參數 設置,並輸出至各馬達和電子調速器。通訊部分則是使用無線 通信模組,用其傳輸遙控器與飛行器之間的訊號,並製作簡易 遥控器,最後再將其整合。

本專題使用DSP晶片作為飛行器之飛控板,搭載mpu9265感 測器、30A馬達驅動器、930KV直流無刷馬達,與無線收發器 CC1101。晶片採新唐公司開發的NUC140、開發工具以Coocox為 主要軟體介面。

近年來四軸飛行器被廣泛使用,不論拍攝、玩樂,甚至救 災、勘查地形等更多元化的使用方式,給予社會大眾新的「習 慣」。想要一張俯瞰圖,不必冒著生命危險搭乘直升機攝影, 也大量使用在運送物資給予災區或偏遠地區。而飛行器所搭載 的模組,例如GPS或量測各物理量的儀器,大部分的市售產品都 以模組化,不利於消費者做部份零件的更換,或是更改晶片內 部的程式,也因為商品的特殊設計,多半無法有第三方的市場 。往往加點設備,就導致荷包大失血。

所以藉由專題,我們想要利用實驗室及課堂所學,了解四 軸飛行器的構造及作動原理, 並打造出一台四軸飛行器, 不但 能分析使消費者能選擇自己想要的部分,也可以讓我們更懂飛 行器,包含晶片的運作、程式的編寫、通訊的解碼、控制器的 設計、感測器的校正等。

### 研究方法

#### 主旨

本專題研究方法主要分為感測訊號處理、控制器設計、通訊協 定及遙控器設計。

#### 感測訊號處理

濾波方式:動平均濾波、互補濾波

陀螺儀校正:靜態偏移量、角度比例校正

加速度計校正:地球重力校正

磁力計校正:圓心校正

 $[q_0^2 + q_1^2 - q_2^2 - q_3^2 \quad 2(q_1 \cdot q_2 + q_0 \cdot q_3) \quad 2(q_1 \cdot q_3 - q_0 \cdot q_2)]$  $M_q = \begin{bmatrix} 2(q_1 \cdot q_2 - q_0 \cdot q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2 \cdot q_3 + q_0 \cdot q_1) \end{bmatrix}$ 高度計校正:溫度補償  $\left[2(q_1\cdot q_3+q_0\cdot q_2)\quad 2(q_2\cdot q_3-q_0\cdot q_1)\quad q_0^2-q_1^2-q_2^2+q_3^2\right]$ 

#### 控制器設計

姿態轉換、融合:四元數 平衡控制、轉速控制:PID控制器 調變方式:PWM及預分頻值

圖1.四元數旋轉矩陣  $-w_x q_1 - w_y q_2 - w_z q_{37}$  $\Delta t + w_x q_0 - w_y q_3 + w_z q_2$  $+\frac{1}{2} \left| +w_x q_3 + w_y q_0 - w_z q_1 \right|$  $= \begin{bmatrix} q_2 \\ q_3 \end{bmatrix}_t$  $\left[ -w_x q_2 + w_y q_1 + w_z q_0 \right]$ 圖2.四元數更新矩陣

#### 通訊協定及遙控器設計

遙控器介面 CC1101作動流程

通部序列資料協定:SPI 飛行器飛行動作控制



#### 整體架構



圖4.飛行器架構圖

圖5.系統功能與接腳圖

### 結果與討論

#### 1. 姿態融合與實際誤差(roll: $\psi$ ; pitch: $\varphi$ ; yaw: $\theta$ )

表1.roll,pitch 實際誤差

| - | 實際角度                 | -40°   | -30°   | -20°   | -10°   | <b>0</b> ° | +10°  | +20°   | +30°   | +40°   |
|---|----------------------|--------|--------|--------|--------|------------|-------|--------|--------|--------|
|   | ψ <sub>act</sub> (°) | -41.92 | -31.52 | -21.36 | -11.12 | +1.09      | +9.27 | +19.42 | +29.24 | +39.45 |
|   | Diff.(%)             | +4.80  | +5.06  | +6.80  | +11.12 | X          | -7.3  | -2.9   | -2.53  | -1.37  |
|   | $\varphi_{act}$ (°)  | -43.26 | -33.29 | -23.39 | -12.82 | -2.66      | +8.64 | +20.56 | +30.62 | +39.57 |
|   | Diff.(%)             | +8.15  | +10.96 | +16.95 | +28.2  | X          | -13.6 | +2.80  | +2.06  | -1.07  |

#### 表2.yaw 實際誤差

| 實際角度                       | +160°  | +140°  | +120°  | +100°  | +80°   | +60°   | +40°   | +20°   | <b>0</b> ° |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|------------|
| <i>θ<sub>act</sub></i> (°) | +164.1 | +140.3 | +117.4 | +100.4 | +84.25 | +65.96 | +45.23 | +23.62 | +4.12      |
| Diff.(%)                   | +2.57  | +0.26  | -2.15  | +0.46  | +5.31  | +9.93  | +13.07 | +18.10 | Х          |
| 實際角度                       | -180°  | -160°  | -140°  | -120°  | -100°  | -80°   | -60°   | -40°   | -20°       |
|                            |        |        |        |        |        |        |        |        |            |
| $\theta_{act}$ (°)         | -171.7 | -152.2 | -135.8 | -120.9 | -102.7 | -83.94 | -64.37 | -43.32 | -21.02     |
| Diff.(%)                   | -4.60  | -4.83  | -2.97  | +0.78  | +2.78  | +4.92  | +7.28  | +8.30  | +5.10      |

|               | 氣壓計轉高度   | (氣壓計+溫度計)轉高度 |  |  |  |  |
|---------------|----------|--------------|--|--|--|--|
| H max (cm)    | 8778.551 | 8446.344     |  |  |  |  |
| H min (cm)    | 8665.474 | 8336.603     |  |  |  |  |
| ΔH (cm)       | 118.1885 | 109.7417     |  |  |  |  |
| Abs H Diff(%) | -3.1604  | 0.75473      |  |  |  |  |
| ΔH Diff(%)    | 13.07739 | 9.741733     |  |  |  |  |

#### 2. PID Adjustment

roll







itch 圖 8. 飛行器與遙控器

#### 結 論

本專題利用九軸感知器及高度計所量測之值,經過 濾波、校正與融合,回授至控制器,計算出姿態角,並 由實際物理系統調整PID參數。且結合通訊系統,做遙控 器與飛行器間之橋梁。其中包含九軸感測器及高度計的 抓取、濾波、校正,及roll、pitch、yaw的PID控制與調 變,姿態轉換及姿態融合,搭配自製遙控器做傳輸。