

Disaggregation of static ODmatrices for dynamic MATSim simulations

Franz-Xaver Rupprecht¹, Gunnar Flötteröd², Yusak Susilo¹

- 1 Department of Landscape, Spatial and Infrastructure Sciences, Institute of Transport Studies (IVe),
 - BOKU University, Vienna, Austria.
- 2 Department of Communication and Transport Systems, Linköping University, Linköping, Sweden &
 - The Swedish National Road and Transport Research Institute, Stockholm, Sweden.

Corresponding author:

Introduction and motivation

What do we do?

- Synthesizing coherent, distinguishable round trips from static OD matrices.
- Considering five sociodemographic groups.
- Reproducing data on the spatial distribution of home and work locations.
- Adding correct temporal structure to the round trips
 by reproducing activity start times and durations.

Why do we do it?

- Activity-based demand models are well-suited for demand synthesis of downstream agent-based models.
- However, they are data-intensive, especially up-to-date survey data is costly or sometimes unavailable.
- We bridges demand data from widespread four-step models with agent-based simulation to enable a fully disaggregated analysis.

Terminology and scenario

Round trip

- Round trip = home-based sequence of trips
- Defined by a list of departure locations and the according departure times

Vienna Scenario

- Population of 10,000 car drivers (2%)
- Spatial resolution: 250 zones
- Temporal resolution: 24 hours

Vienna scenario: Traffic analysis zones

Method

- Measurement model
 - Error function: $R(x) = \sum_{n} |t_i s_i(x)|$
 - x ... list of n round trips
 - t ... target value
 - s(x) ... sample value
 - Likelihood of a sample: $b(x) \sim e^{-\mu \cdot R(x)}$
 - R(x) ... error function
 - μ ... weighting of the error function

- Sampling from the probability distribution
 - Probability function: $\pi(x) = \frac{b(x)}{B}$
 - b(x) ... sampling weight of x
 - lacksquare B ... normalizing constant

$$...B = \sum_{x} b(x)$$

- \rightarrow Metropolis-Hastings: $\pi(x) \sim b(x)$
- Flötteröd (2025) provides a detailed specification of the approach

Model specification

Likelihood function:

$$b(x) \sim e^{-E_{prior}(x)} \cdot e^{-[\mu_{OD} \cdot E_{OD}(x) + \mu_{Location} \cdot E_{Location}(x) + \mu_{Time} \cdot E_{Time}(x)]$$

Maximum entropy prior

- The mean number of visited locations = 3.
- Includes plausibility constraints
 - Round trips must be completed within 24 hours.
 - Arrival time must be before departure time.

Reproduced data sets

- Static 24h car OD matrices of all population groups with car access (PTV VISUM Modell Verkehrsverbund Ostregion).
- Spatial distribution of home and work locations (PTV VISUM Modell Verkehrsverbund Ostregion).
- Activity durations and end times of home and work activities (Österreich Unterwegs 2014).

OD data reproduction quality

Likelihood function:

$$b(x) \sim e^{-\left[E_{prior}(x) + \mu_{OD} \cdot E_{OD}(x) + \mu_{Location} \cdot E_{Location}(x) + \mu_{Time} \cdot E_{Time}(x)\right]}$$

Increased OD data reproduction quality due to a larger

population (50k plans) versus 2% (10k plans).

Home and work location data reproduction quality

Likelihood function:

$$b(x) \sim e^{-\left[E_{prior}(x) + \mu_{OD} \cdot E_{OD}(x) + \frac{\mu_{Location} \cdot E_{Location}(x)}{E_{Location}(x)} + \mu_{Time} \cdot E_{Time}(x)\right] }$$

Time structure reproduction quality

Likelihood function:

 $b(x) \sim e^{-\left[E_{prior}(x) + \mu_{OD} \cdot E_{OD}(x) + \mu_{Location} \cdot E_{Location}(x) + \mu_{Time} \cdot E_{Time}(x)\right]}$

7500 10000 12500 15000 17500 20000

x1000 Iterations

-0.25

-0.50

-0.75 -

Reproduction quality of time structure data for work activities

Comparing link volumes in MATSim to link volumes in VISUM

Comparing link volumes in MATSim to the VISUM model

Summary

- Data reproduction is precise and adjustable
- Population yields plausible simulation results
- Runtime depends largely on spatial resolution and population size
- Successfully transferred VISUM demand to MATSim
 - Spatially disaggregated
 - Enabling dynamic simulation
 - Enabling individual-level analysis

Digression: Score as a measure for convergence

Disaggregation of static OD-matrices for dynamic MATSim simulations

Franz-Xaver Rupprecht¹, Gunnar Flötteröd², Yusak Susilo¹

- 1 Department of Landscape, Spatial and Infrastructure Sciences, Institute of Transport Studies (IVe), BOKU University, Vienna, Austria.
- 2 Department of Communication and Transport Systems, Linköping University, Linköping, Sweden & The Swedish National Road and Transport Research Institute, Stockholm, Sweden.

Corresponding author: franz.rupprecht@boku.ac.at

References

Flötteröd, G. (2025). An operational alternative to origin/destinarion matrices. 13th Symposium of the European Associarion for Research in Transportation, Munich, Germany, 2025

Prior sampling (no reproduction of data sets)

Likelihood function:

$$b(x) \sim e^{-E_{prior}(x)}$$

Using Gaussian distributed sampling weights

- Up to this point, all results were based on sampling weights that were two-sided exponentially distributed
 - $b(x) \sim e^{-[\mu \cdot R(x)]}$
- Gaussian distributed sampling weight provide some advantages
 - $b(x) \sim e^{-[0.5 \cdot \mu \cdot R(x) \cdot R(x)]}$

Backup slide

Error function of OD repro:

$$E_{OD}(x) = \sum_{rs} |t_{rs} - h \cdot s_{rs}|$$

- t_{rs} ... trips from zone r to s in the target OD matrix
- s_{rs} ... trips from zone r to s in the sample OD matrix
- h ... scaling factor; $h = \frac{\sum_{rs} t_{rs}}{\sum_{rs} s_{rs}}$

Population groups:

pop group 06	19-35 years	working	Car access
pop group 07	19-35 years	other	Car access
pop group 08	35-65 years	working	Car access
pop group 09	35-65 years	other	Car access
pop group 14	>65years	Not specified	Car access

