

Az Rⁿ vektortér

Összeállította: dr. Leitold Adrien egyetemi docens

2008.09.08. R^n vektortér/1

Rendezett szám n-esek

- Rendezett szám n-esek:
 - $\underline{a} = (a_1, a_2, \dots, a_n)$
 - $a_1, a_2, ..., a_n \in R$, a rendezett szám n-es komponensei
- Rⁿ: a valós számokból képezett rendezett szám nesek halmaza
- Két rendezett szám n-es egyenlő, ha a megfelelő komponenseik megegyeznek.

Műveletek rendezett n-esekkel

- Alapműveletek:
 - Két rendezett n-es összege:

Ha
$$\underline{a} = (a_1, a_2, ..., a_n)$$
 és $\underline{b} = (b_1, b_2, ..., b_n) \in \mathbb{R}^n$, akkor $\underline{a} + \underline{b} = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$.

Egy rendezett n-es λ-szorosa:

Ha
$$\underline{a} = (a_1, a_2, ..., a_n) \in R^n$$
 és $\lambda \in R$, akkor $\lambda \cdot \underline{a} = (\lambda \cdot a_1, \lambda \cdot a_2, ..., \lambda \cdot a_n)$.

 Két rendezett n-es különbsége: (származtatott művelet)

$$\underline{a} - \underline{b} = \underline{a} + (-1) \cdot \underline{b} = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n).$$

4

Az alapműveletek tulajdonságai

- Legyenek \underline{a} , \underline{b} és $\underline{c} \in R^n$ tetszőleges rendezett n-esek, valamint $\lambda, \mu \in R$ tetszőleges valós számok. Ekkor:
- 1. $(\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$ (asszociativitás)
- 2. $\underline{a} + \underline{b} = \underline{b} + \underline{a}$ (kommutativitás)
- 3. Létezik olyan $\underline{o} \in R^n$ rendezett n-es, hogy bármely $\underline{a} \in R^n$ esetén $\underline{a} + \underline{o} = \underline{a}$. (nullelem létezése)
- 4. Bármely $\underline{a} \in R^n$ esetén létezik olyan $\underline{a}' \in R^n$, hogy $\underline{a} + \underline{a}' = \underline{o}$, ahol $\underline{a}' = (-1) \cdot \underline{a}$, az \underline{a} ellentettje. (ellentett létezése)
- 5. $(\lambda + \mu) \cdot \underline{a} = \lambda \cdot \underline{a} + \mu \cdot \underline{a}$
- **6.** $\lambda \cdot (\underline{a} + \underline{b}) = \lambda \cdot \underline{a} + \lambda \cdot \underline{b}$
- 7. $\lambda \cdot (\mu \cdot \underline{a}) = (\lambda \cdot \mu) \cdot \underline{a}$
- $8. \quad 1 \cdot \underline{a} = \underline{a}$

Az Rⁿ vektortér

Megjegyzés:

Mivel az (Rⁿ,+,·) algebrai struktúrában teljesül a vektorterekre jellemző előző nyolc alaptulajdonság (vektortér-axiómák), ezért Rⁿ-t n-dimenziós valós vektortérnek vagy n-dimenziós euklideszi vektortérnek nevezzük, Rⁿ elemeit n-dimenziós vektoroknak hívjuk.

Lineáris kombináció

Vektorok lineáris kombinációja

Legyenek $\underline{a}_1, \underline{a}_2, \ldots, \underline{a}_k$ n-dimenziós vektorok és $\lambda_1, \lambda_2, \ldots, \lambda_k$ skalárok.

Ekkor a $\lambda_1 \cdot \underline{a}_1 + \lambda_2 \cdot \underline{a}_2 + \dots + \lambda_k \cdot \underline{a}_k \in R^n$ vektort az $\underline{a}_1, \dots, \underline{a}_k$ vektorok $\lambda_1, \dots, \lambda_k$ skalárokkal vett lineáris kombinációjának nevezzük.

Triviális lineáris kombináció

Ha a lineáris kombinációban az összes skalár nulla, akkor triviális lineáris kombinációról beszélünk.

Triviális lineáris kombináció eredménye (bármilyen $\underline{a}_1, ..., \underline{a}_k$ vektorok esetén) mindig nullvektor.

Lineáris kombináció geometriai szemléltetése 1.

A $\underline{v} = \lambda \cdot \underline{a}$ alakú vektorok egy origón átmenő \underline{a} irányvektorú egyenesre esnek.

Lineáris kombináció geometriai szemléltetése 2.

A $\underline{v} = \lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b}$ alakú vektorok egy origón átmenő \underline{a} és \underline{b} által kifeszített síkra esnek.

Lineáris kombináció geometriai szemléltetése 3.

Lineáris kombináció geometriai szemléltetése 4.

A $\underline{v} = \lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} + \lambda_3 \cdot \underline{c}$ alakú vektorok kitöltik a teljes teret.

Lineáris kombináció geometriai szemléltetése 5.

A $\underline{v} = \lambda_1 \cdot \underline{a} + \lambda_2 \cdot \underline{b} + \lambda_3 \cdot \underline{c}$ alakú vektorok az origón átmenő a és b által kifeszített síkra esnek.

-

Lineáris függetlenség és összefüggőség

Lineárisan független vektorok:

Az $\underline{a}_1, ..., \underline{a}_k \in R^n$ vektorokat lineárisan függetleneknek nevezzük, ha belőlük csak triviális lineáris kombinációval (csupa nulla együtthatóval) állítható elő a nullvektor.

Lineárisan összefüggő vektorok:

Az $\underline{a}_1, ..., \underline{a}_k \in R^n$ vektorokat lineárisan összefüggőeknek hívjuk, ha belőlük nem triviális lineáris kombinációval is előállítható a nullvektor.

1 vektor esetén

lineárisan független

lineárisan összefüggő

2 vektor esetén

lineárisan független

lineárisan összefüggő

3 vektor esetén

4 vagy több vektor esetén

Az R³ térben 4 vagy több vektor mindig lineárisan összefüggő.

Lin. függetlenség ill. összefüggőség: állítások

- 1. Az $\underline{a}_1, ..., \underline{a}_k \in R^n$ vektorok pontosan akkor lineárisan összefüggőek, ha valamelyikük előáll a többi vektor lineáris kombinációjaként.
- 2. Az $\underline{a}_1, ..., \underline{a}_k \in R^n$ vektorok pontosan akkor lineárisan függetlenek, ha egyikük sem áll elő a többi vektor lineáris kombinációjaként.
- 3. Ha egy vektorhalmazban szerepel a nullvektor, akkor az lineárisan összefüggő.
- 4. Lin. független vektorhalmaz részhalmaza is lin. független.
- 5. Lin. összefüggő vektorhalmazt bővítve az összefüggőség megőrződik.
- 6. Az *R* ⁿ vektortérben n+1 db vektor mindig lin. összefüggő.

Vektorhalmaz rangja

• Vektorhalmaz rangja: Az $\{\underline{a}_1, ..., \underline{a}_k\} \subseteq R^n$ vektorhalmaz rangja r, ha a vektorok közül kiválasztható r darab lin. független vektor, de bármely r+1 darab vektor már lin. összefüggő.

Megjegyzések:

- A rang megmutatja, hogy az adott vektorok közül maximálisan hány darab lin. független vektort tudunk kiválasztani.
- Az Rⁿ vektortérben bármely vektorhalmaz rangja kisebb vagy egyenlő, mint n.
- Lineárisan független vektorhalmaz rangja megegyezik a vektorhalmazban lévő vektorok számával.

Generátorrendszer, bázis

- Generátorrendszer: Legyen $G \subseteq R^n$ egy vektorhalmaz. G generátorrendszer az R^n vektortérben, ha G elemeiből lineáris kombinációval az R^n vektortér bármely vektora előállítható.
- Bázis: Legyen $B \subseteq R^n$ egy vektorhalmaz, amely
 - lineárisan független és
 - generátorrendszer.

Ekkor a B-t az R^n vektortér egy bázisának hívjuk.

A kanonikus (standard) bázis

Példa bázisra

kanonikus (standard) bázis:

$$\underline{e}_1 = (1, 0, \dots, 0), \ \underline{e}_2 = (0, 1, \dots, 0), \dots, \underline{e}_n = (0, 0, \dots, 1)$$

Megjegyzés

Egy $\underline{x} = (x_1, x_2, \dots, x_n) R^n$ —beli vektornak a kanonikus bázisra vonatkozó előállítása:

$$\underline{x} = x_1 \cdot \underline{e}_1 + x_2 \cdot \underline{e}_2 + \dots + x_n \cdot \underline{e}_n$$

Bázis, dimenzió, koordináták

Bázisokra vonatkozó állítások:

- Rⁿ-ben minden bázis n darab vektorból áll.
 Ezt a számot hívjuk az Rⁿ vektortér dimenziójának.
- 3. Rⁿ-ben bármely n darab lineárisan független vektor bázist alkot.
- 4. Legyen $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ bázis R^n -ben . Ekkor bármely $\underline{x} \in R^n$ vektor *egyértelműen* előállítható a bázisvektorok lineáris kombinációjával:

$$\underline{x} = \lambda_1 \underline{b}_1 + \lambda_2 \underline{b}_2 + \dots + \lambda_n \underline{b}_n$$

Ekkor a $\lambda_1, \lambda_2, \dots, \lambda_n$ számokat az \underline{x} vektor B bázisra vonatkozó koordinátáinak nevezzük.

Megjegyzés: Bármely $\underline{x} = (x_1, x_2, \dots, x_n) R^n$ -beli vektornak a kanonikus bázisra vonatkozó koordinátái maguk a vektorkomponensek.

 Lineárisan független vektorhalmaz vektorainak száma ≤ bázis vektorainak száma ≤ generátorrendszer vektorainak száma

Elemi bázistranszformáció

Elemi bázistranszformáció

Legyen $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ egy bázis R^n -ben, $\underline{c} \in R^n$, $\underline{c} \neq \underline{o}$.

Ekkor a B bázis vektorai között van olyan, amely kicserélhető a \underline{c} vektorral úgy, hogy a vektorcsere után is bázist kapjunk.

Az új bázisra vonatkozó koordináták számolásának algoritmusát elemi bázistranszformációnak nevezzük.

Az új koordináták számolása

Legyen az <u>x</u> vektor B bázisra vonatkozó előállítása:

$$\underline{x} = \lambda_1 \underline{b}_1 + \lambda_2 \underline{b}_2 + \dots + \lambda_n \underline{b}_n$$

Legyen a c vektor B bázisra vonatkozó előállítása:

$$\underline{c} = \gamma_1 \, \underline{b}_1 + \gamma_2 \, \underline{b}_2 + \dots + \gamma_n \, \underline{b}_n$$

Tegyük fel, hogy $\gamma_i \neq 0$.

Cseréljük ki a B bázisban a \underline{b}_{i} vektort a \underline{c} vektorral.

Ekkor az <u>x</u> vektor új bázisra vonatkozó koordinátái:

$$\hat{\lambda}_{j} = \lambda_{j} - \frac{\lambda_{i}}{\gamma_{i}} \cdot \gamma_{j} \qquad j \neq i$$

$$\hat{\lambda}_{i} = \frac{\lambda_{i}}{\gamma_{i}} = \delta$$

Bázistranszformációs táblázat

A régi és az új koordináták táblázatos elrendezése:

	<u>c</u>	\underline{x}		c	\underline{x}
$\overline{\underline{b}}_1$	γ_1	λ_1	\underline{b}_1	0	$\lambda_1 - \delta \cdot \gamma_1$
\underline{b}_2	γ_2	λ_2	\underline{b}_2	0	$\lambda_2 - \delta \cdot \gamma_2$
•	$\left \begin{array}{c} {\gamma _2} \\ {\vdots} \end{array} \right $	•	•	•	•
\underline{b}_i	$\begin{vmatrix} \gamma_i \\ \vdots \end{vmatrix}$	$\lambda_{_i}$	<u>C</u>	1	δ
•		•	•	•	$ \begin{array}{ccc} \lambda_1 & \delta & \gamma_1 \\ \lambda_2 - \delta \cdot \gamma_2 \\ \vdots \\ \delta \\ \vdots \\ \lambda_n - \delta \cdot \gamma_n \end{array} $
\underline{b}_n	γ_n	λ_n	\underline{b}_n	$\mid 0 \mid$	$\lambda_n - \delta \cdot \gamma_n$

A γ_i számot generálóelemnek hívjuk.