# US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

Publication Date

August 14, 2025

Inventor(s)

August 14, 2025

Hung; Ching-Wen et al.

# SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME

#### Abstract

A method for fabricating semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a metal interconnection in the first IMD layer; forming a bottom electrode layer and a pinned layer on the first IMD layer; forming a sacrificial layer on the pinned layer; patterning the sacrificial layer, the pinned layer, and the bottom electrode layer to form a first magnetic tunneling junction (MTJ); forming a second IMD layer around the first MTJ; and removing the sacrificial layer.

Inventors: Hung; Ching-Wen (Tainan City, TW), Feng; Ya-Sheng (Tainan City, TW)

**Applicant: UNITED MICROELECTRONICS CORP.** (Hsin-Chu City, TW)

**Family ID: 70326001** 

Assignee: UNITED MICROELECTRONICS CORP. (Hsin-Chu City, TW)

Appl. No.: 19/176186

Filed: April 11, 2025

## **Foreign Application Priority Data**

CN 201811286628.7 Oct. 31, 2018

# **Related U.S. Application Data**

parent US continuation 18229661 20230802 parent-grant-document US 12310256 child US 19176186

parent US continuation 17900898 20220901 parent-grant-document US 11765982 child US 18229661

parent US division 16207206 20181203 parent-grant-document US 11469368 child US 17900898

#### **Publication Classification**

Int. Cl.: H10N50/80 (20230101); H01L21/768 (20060101); H10N50/01 (20230101)

U.S. Cl.:

CPC **H10N50/80** (20230201); **H01L21/76801** (20130101); **H01L21/76838** (20130101);

H10N50/01 (20230201);

### **Background/Summary**

CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation application of U.S. application Ser. No. 18/229,661, filed on Aug. 2, 2023, which is a continuation application of U.S. application Ser. No. 17/900,898, filed on Sep. 1, 2022, which is a division of U.S. application Ser. No. 16/207,206, filed on Dec. 3, 2018. The contents of these applications are incorporated herein by reference.

#### BACKGROUND OF THE INVENTION

#### 1. Field of the Invention

[0002] The invention relates to a semiconductor device and method for fabricating the same, and more particularly to a magnetoresistive random access memory (MRAM) and method for fabricating the same.

#### 2. Description of the Prior Art

[0003] Magnetoresistance (MR) effect has been known as a kind of effect caused by altering the resistance of a material through variation of outside magnetic field. The physical definition of such effect is defined as a variation in resistance obtained by dividing a difference in resistance under no magnetic interference by the original resistance. Currently, MR effect has been successfully utilized in production of hard disks thereby having important commercial values. Moreover, the characterization of utilizing GMR materials to generate different resistance under different magnetized states could also be used to fabricate MRAM devices, which typically has the advantage of keeping stored data even when the device is not connected to an electrical source. [0004] The aforementioned MR effect has also been used in magnetic field sensor areas including but not limited to for example electronic compass components used in global positioning system (GPS) of cellular phones for providing information regarding moving location to users. Currently, various magnetic field sensor technologies such as anisotropic magnetoresistance (AMR) sensors, GMR sensors, magnetic tunneling junction (MTJ) sensors have been widely developed in the market. Nevertheless, most of these products still pose numerous shortcomings such as high chip area, high cost, high power consumption, limited sensibility, and easily affected by temperature variation and how to come up with an improved device to resolve these issues has become an important task in this field.

#### SUMMARY OF THE INVENTION

[0005] According to an embodiment of the present invention, a method for fabricating semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a metal interconnection in the first IMD layer; forming a bottom electrode layer and a pinned layer on the first IMD layer; forming a sacrificial layer on the pinned layer; patterning the sacrificial layer, the pinned layer, and the bottom electrode layer to form a first magnetic tunneling junction (MTJ); forming a second IMD layer around the first MTJ; and removing the sacrificial layer.

[0006] These and other objectives of the present invention will no doubt become obvious to those

of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.

# **Description**

#### BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIGS. **1-9** illustrate a method for fabricating a MRAM device according to an embodiment of the present invention.

[0008] FIGS. **10-11** illustrate a method for fabricating a MRAM device according to an embodiment of the present invention.

#### **DETAILED DESCRIPTION**

[0009] Referring to FIGS. **1-9**, FIGS. **1-9** illustrate a method for fabricating a semiconductor device, or more specifically a MRAM device according to an embodiment of the present invention. As shown in FIG. **1**, a substrate **12** made of semiconductor material is first provided, in which the semiconductor material could be selected from the group consisting of silicon (Si), germanium (Ge), Si-Ge compounds, silicon carbide (SiC), and gallium arsenide (GaAs), and a MTJ region and a logic region (not shown) are defined on the substrate **12**.

[0010] Active devices such as metal-oxide semiconductor (MOS) transistors, passive devices, conductive layers, and interlayer dielectric (ILD) layer **18** could also be formed on top of the substrate **12**. More specifically, planar MOS transistors or non-planar (such as FinFETs) MOS transistors could be formed on the substrate 12, in which the MOS transistors could include transistor elements such as gate structures (for example metal gates) and source/drain region, spacer, epitaxial layer, and contact etch stop layer (CESL). The ILD layer 18 could be formed on the substrate **12** to cover the MOS transistors, and a plurality of contact plugs could be formed in the ILD layer **18** to electrically connect to the gate structure and/or source/drain region of MOS transistors. Since the fabrication of planar or non-planar transistors and ILD layer is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity. [0011] Next, metal interconnect structures **20**, **22** are sequentially formed on the ILD layer **18** on the MTJ region and the edge region to electrically connect the aforementioned contact plugs, in which the metal interconnect structure 20 includes an inter-metal dielectric (IMD) layer 24 and metal interconnection **26** embedded in the IMD layer **24**, and the metal interconnect structure **22** includes a stop layer **28**, an IMD layer **30**, and metal interconnection **32** embedded in the stop layer **28** and the IMD layer **30**.

[0012] In this embodiment, the metal interconnection **26** from the metal interconnect structure **20** preferably includes a trench conductor and the metal interconnection **32** from the metal interconnect structure **22** on the MTJ region **14** includes a via conductor. Preferably, each of the metal interconnections **26**, **32** from the metal interconnect structures **20**, **22** could be embedded within the IMD layers **24**, **30** and/or stop layer **28** according to a single damascene process or dual damascene process. For instance, each of the metal interconnections **26**, **32** could further includes a barrier layer **34** and a metal layer **36**, in which the barrier layer **34** could be selected from the group consisting of titanium (Ti), titanium nitride (TiN), tantalum (Ta), and tantalum nitride (TaN) and the metal layer **36** could be selected from the group consisting of tungsten (W), copper (Cu), aluminum (Al), titanium aluminide (TiAl), and cobalt tungsten phosphide (CoWP). Since single damascene process and dual damascene process are well known to those skilled in the art, the details of which are not explained herein for the sake of brevity. In this embodiment, the metal layers **36** are preferably made of copper, the IMD layers **24**, **30** are preferably made of silicon oxide, and the stop layers **28** is preferably made of nitrogen doped carbide (NDC), silicon nitride, silicon carbon nitride (SiCN), or combination thereof.

[0013] Next, a bottom electrode layer 38, a pinned layer 40, a sacrificial layer 42, and a mask layer

**44** are formed on the IMD layer **30**. In this embodiment, the bottom electrode layer **38** is preferably made of conductive material including but not limited to for example Ta, Pt, Cu, Au, Al, or combination thereof. The pinned layer **40** could be made of antiferromagnetic (AFM) material including but not limited to for example ferromanganese (FeMn), platinum manganese (PtMn), iridium manganese (IrMn), nickel oxide (NiO), or combination thereof, in which the pinned layer **40** is formed to fix or limit the direction of magnetic moment of adjacent layers. The sacrificial layer 42 could include semiconductor or dielectric material including but not limited to for example polysilicon, silicon oxide, or silicon nitride. The mask layer **44** could include a single-layered mask or composite mask having multiple layers. In this embodiment, the mask layer **44** is preferably a dual-layered structure having a mask layer **46** made of silicon nitride disposed on the surface of the sacrificial layer **42** and a mask layer **48** made of silicon oxide disposed on the mask layer **46**. [0014] Next, as shown in FIG. 2, a photo-etching process could be conducted by first forming a patterned mask (not shown) made of patterned resist on the mask layer 44, and then using the patterned resist as mask to sequentially remove part of the patterned mask 44, part of the sacrificial layer **42**, part of pinned layer **40**, and part of the bottom electrode layer **38** to form a magnetic tunneling junction (MTJ) **50**. The patterned mask **44** is removed thereafter.

[0015] It should be noted that an ion beam etching (IBE) process is preferably conducted to remove part of the sacrificial layer **42**, part of the pinned layer **40**, part of the bottom electrode layer **38**, and part of the IMD layer **30** to form the MTJ **50**. Due to the characteristics of the IBE process, the top surface of the remaining IMD layer **30** is slightly lower than the top surface of the metal interconnections **32** after the IBE process and the top surface of the IMD layer **30** also reveals a curve or an arc.

[0016] It should also be noted that when the IBE process is conducted to remove part of the IMD layer **30**, part of the metal interconnection **32** is removed at the same time so that a first slanted sidewall **52** and a second slanted sidewall **54** are formed on the metal interconnection **32** adjacent to the MTJ **62**, in which each of the first slanted sidewall **52** and the second slanted sidewall **54** could further include a curve (or curved surface) or a planar surface.

[0017] Next, as shown in FIG. **3**, a liner **56** is formed on the MTJ **50** to cover the surface of the IMD layer **30**. In this embodiment, the liner **56** is preferably made of silicon oxide. Nevertheless, according to other embodiment of the present invention, the liner **56** could also be made of other dielectric material including but not limited to for example silicon oxide, silicon oxynitride (SiON), or silicon carbon nitride (SiCN).

[0018] Next, as shown in FIG. **4**, an etching process is conducted to remove part of the liner **56** to form a spacer **58** adjacent to the MTJ **50**, in which the spacer **58** is disposed to directly contact the sidewalls of the MTJ **50** and covering and directly contacting the first slanted sidewall **52** and second slanted sidewall **54** at the same time. Preferably, the top surface of the spacer **58** is also even with the top surface of the sacrificial layer **42**.

[0019] Next, as shown in FIG. **5**, another IMD layer **60** is formed on the surface of the IMD layer **30** and covering the MTJ **50**, and a planarizing process such as chemical mechanical polishing (CMP) process is conducted so that the top surface of the IMD layer **60** is even with the top surface of the MTJ **50**.

[0020] Next, as shown in FIG. **6**, an etching process is conducted by using the IMD layer **60** as mask to remove the sacrificial layer **42** to form a recess **62** and expose the pinned layer **40** underneath.

[0021] Next, as shown in FIG. **7**, a barrier layer **64** and a free layer **66** are formed on the IMD layer **60** and the spacer **58** and filled into the recess **62**, in which the barrier layer **64** and the free layer **66** preferably fills the recess **62** completely. In this embodiment, the barrier layer **64** could include oxide containing insulating material such as but not limited to for example aluminum oxide (AlO.sub.x) or magnesium oxide (MgO). The free layer **66** could be made of ferromagnetic material including but not limited to for example iron, cobalt, nickel, or alloys thereof such as

cobalt-iron-boron (CoFeB), in which the magnetized direction of the free layer **50** could be altered freely depending on the influence of outside magnetic field.

[0022] Next, as shown in FIG. **8**, another planarizing process such as CMP could be conducted to remove part of the free layer **66** and part of the barrier layer **64** so that the top surface of the free layer **66** and barrier layer **64** is even with the top surface of the spacer **58** and IMD layer **60**. [0023] Next, as shown in FIG. **9**, a top electrode layer **68** is formed on the IMD layer **60**, the barrier layer **64**, and the free layer **66**, and a photo-etching process is conducted to remove part of the top electrode layer **68** so that the patterned top electrode layer **68** and the free layer **66**, barrier layer **64**, pinned layer **40**, and bottom electrode layer **38** together form another MTJ **70**. In this embodiment, the top electrode layer **68** and the bottom electrode layer **38** could be made of same or different conductive materials while the two layers **68** and **38** could all include Ta, Pt, Cu, Au, Al, or combination thereof.

[0024] Next, another IMD layer **72** could be formed on the IMD layer **60** to cover the MTJ **70**, and another metal interconnection (not shown) could be formed in the IMD layer **72** according to the aforementioned metal interconnective process to electrically connect to the MTJ **70**. This completes the fabrication of semiconductor device according to an embodiment of the present invention.

[0025] Referring again to FIG. **9**, FIG. **9** illustrates a structural view of a semiconductor device according to an embodiment of the present invention. As shown in FIG. **9**, the semiconductor device preferably includes an IMD layer **30** disposed on the substrate **12**, a metal interconnection **32** disposed in the IMD layer **30**, a MTJ **70** disposed on the metal interconnection **32**, a spacer **58** surrounding the MTJ **70**, and another IMD layer **60** disposed on the IMD layer **30** to surround the spacer **58**.

[0026] In this embodiment, the MTJ 70 preferably includes a pinned layer 40 disposed on the bottom electrode layer 38, a barrier layer 64 disposed on the pinned layer 40, a free layer 66 disposed on the barrier layer 64, and a top electrode layer 68 disposed on the free layer 66. Preferably, the barrier layer 64 includes a U-shape or U-shaped profile, the top surfaces of the free layer 66, the barrier layer 64, the spacer 58, and the IMD layer 60 are coplanar, and the bottom surface of the top electrode layer 68 not only contacts the free layer 66 and barrier layer 64 directly but also contacts the spacer 58 and the IMD layer 60 directly. Viewing from a more detailed perspective, the barrier layer 64 further includes a first vertical portion 74 and a second vertical portion 76 disposed adjacent to two sides of the free layer 66 and a horizontal portion 78 connecting the first vertical portion 74 and the second vertical portion 76, in which the sidewalls of each of the first vertical portion 74 and the second vertical portion 76 are aligned with edges or sidewalls of the pinned layer 40.

[0027] Referring to FIGS. **10-11**, FIGS. **10-11** illustrate a method for fabricating a semiconductor device according to an embodiment of the present invention. As shown in FIG. **10**, after the sacrificial layer **42** is removed in FIG. **6** to form the recess **62**, it would also be desirable to sequentially form a barrier layer **64** and a free layer **66** on the IMD layer **60** and spacer **58** and fill the recess **62** completely, and then form a top electrode layer **68** on the free layer **66** immediately afterwards. Next, as shown in FIG. **11**, a photo-etching process is then conducted to pattern the top electrode layer **68**, the free layer **66**, and the barrier layer **64** to form another MTJ **70**. Next, another IMD layer **72** could be formed on the IMD layer **60** to cover the MTJ **70** depending on the demand of the product, and another metal interconnection (not shown) could be formed in the IMD layer **72** according to the aforementioned metal interconnective process to electrically connect to the MTJ **70**. This completes the fabrication of semiconductor device according to an embodiment of the present invention.

[0028] Referring to FIG. **11**, which further illustrates a structural view of a semiconductor device according to an embodiment of the present invention. As shown in FIG. **11**, the semiconductor device preferably includes an IMD layer **30** disposed on the substrate **12**, a metal interconnection

**32** disposed in the IMD layer **30**, a MTJ **70** disposed on the metal interconnection **32**, a spacer **58** surrounding the MTJ **70**, and another IMD layer **60** disposed on the IMD layer **30** to surround the spacer **58**.

[0029] In this embodiment, the MTJ **70** preferably includes a pinned layer **40** disposed on the bottom electrode layer **38**, a barrier layer **64** disposed on the pinned layer **40**, a free layer **66** disposed on the barrier layer **64**, and a top electrode layer **68** disposed on the free layer **66**, in which the barrier layer **64** is extended to contact a top surface of the spacer **58** and a top surface of the IMD layer **60** and the free layer **66** preferably includes a T-shape or T-shaped cross-section. Viewing from a more detailed perspective, the barrier layer **64** further includes a first vertical portion **80** and a second vertical portion **82** disposed adjacent to two sides of the free layer **66**, a first horizontal portion **84** connected to the first vertical portion **80**, a second horizontal portion **86** connected to the second vertical portion **82**, and a third horizontal portion **88** connected to the first vertical portion **84** and the second horizontal portion **86** is extended from two sides of the free layer **66** to contact the top surface of the spacer **58** directly, and the sidewalls of the first horizontal portion **84** and second horizontal portion **86** are also aligned with sidewalls of the top electrode layer **68** and free layer **66** on both left and right sides.

[0030] Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

#### **Claims**

- 1. A method for fabricating semiconductor device, comprising: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a metal interconnection in the first IMD layer; forming a bottom electrode layer and a pinned layer on the first IMD layer; forming a sacrificial layer on and directly contacting the pinned layer; patterning the sacrificial layer, the pinned layer, and the bottom electrode layer to form a first magnetic tunneling junction (MTJ); forming a liner on the MTJ; removing part of the liner to form a spacer adjacent to the MTJ, wherein top surfaces of the spacer and the sacrificial layer are coplanar and a sidewall of the spacer is connected to a sidewall of the metal interconnection; and forming a second IMD layer around and directly contacting the spacer after removing part of the liner and after the top surfaces of the spacer and the sacrificial layer are coplanar.
- **2**. The method of claim 1, further comprising: forming the liner on the first IMD layer and the sacrificial layer; removing part of the liner to form the spacer around the first MTJ; and forming the second IMD layer around the spacer.
- **3**. The method of claim 1, wherein top surfaces of the spacer and the sacrificial layer are coplanar.
- **4.** The method of claim 1, wherein top surface of the second IMD layer, the spacer, and the sacrificial layer are coplanar.
- **5.** The method of claim 1, further comprising: removing the sacrificial layer to form a recess; forming a barrier layer and a free layer on the second IMD layer, the spacer, and into the recess; planarizing the free layer and the barrier layer; forming a top electrode layer on the second IMD layer, the barrier layer, and the free layer; and patterning the top electrode layer to form a second MTJ.
- **6**. The method of claim 5, wherein top surfaces of the free layer, the barrier layer, and the second IMD layer are coplanar.
- **7**. The method of claim 1, further comprising: removing the sacrificial layer to form a recess; forming a barrier layer and a free layer on the second IMD layer, the spacer, and into the recess;