Module 2 : Electrostatics

Lecture 10: Poisson Equations

Objectives

In this lecture you will learn the following

- Poisson's equation and its formal solution
- Equipotential surface
- Capacitors calculation of capacitance for parallel plate, spherical and cylindrical capacitors
- · Work done in charging a capacitor

Poisson Equation

Differential form of Gauss's law.

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

Using $ec{E}=abla\phi$,

$$ec{
abla}ec{E}=-
abla\cdot(
abla\phi)=-
abla^2\phi$$

so that

$$abla^2 \phi = -rac{
ho}{\epsilon_0}$$

This is Poisson equation. In cartesian form,

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = -\frac{\rho}{\epsilon_0}$$

A formal soltion to Poisson equation can be written down by using the property Dirac - function discussed earlier. It can be seen that

$$\phi(r) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(r')}{\mid \vec{r} - \vec{r'} \mid} d\tau'$$

Operating with ∇^2_r operator on both sides (The subscrpt r indicates that ∇ here is to be taken with respect to variable r)

$$\nabla_r^2 \phi(r) = \frac{1}{4\pi\epsilon_0} \int \rho(r') \nabla_r^2 \frac{1}{\mid \vec{r} - \vec{r'} \mid} d\tau'$$

We had shown that

$$\nabla^2 \frac{1}{\mid r-r'\mid} = -4\pi \, \delta(\vec{r}-\vec{r}')$$

substituting which the expression follows.

Equipotential surface

Equipotential surfaces are defined as surfaces over which the potential is constant

$$\phi(\vec{r}) = \text{constant}$$

At each point on the surface, the electric field is perpendicular to the surface since the electric field, being the gradient of potential, does not have component along a surface of constant potential.

- We have seen that any charge on a conductor must reside on its surface. These charges would move along the surface if there were a tangential component of the electric field. The electric field must therefore be along the normal to the surface of a conductor. The conductor surface is, therefore, an equipotential surface.
- Electric field lines are perpendicular to equipotential surfaces (or curves) and point in the direction from higher potential to lower potential.
- In the region where the electric field is strong, the equipotentials are closely packed as the gradient is large.

Click here for Animation

The electric field strength at the point P may be found by finding the slope of the potential at the point P. If Δx is the distance between two equipotential curves close to P,

$$E = -\frac{\Delta \phi}{\Delta x}$$

where $\Delta\phi$ is the difference between the two equipotential curves near P.

Example 17

Determine the equipotential surface for a point charge.

Solution:

Let the point charge $\it q$ be located at the origin. The equation to the equipotential surface is given by

$$\phi(x,y,z) = \frac{1}{4\pi\epsilon_0} \frac{q}{\sqrt{x^2 + y^2 + z^2}} = \phi_0 = \text{constant}$$

Click here for Animation

Thus the surfaces are concentric spheres with the origin (the location of the charge) as the centre and radii given by

$$R = \frac{q}{4\pi\epsilon_0\phi_0}$$

The equipotential surfaces of an electric dipole is shown below.

Click here for Animation

Determine the equipotential surface of an infinite line charge carrying a positive charge density λ .

Solution:

Let the line charge be along the z- axis. The potential due to a line charge at a point P is given by

$$\phi(r) = -\frac{\lambda}{2\pi\epsilon_0} \ln r$$

where r is the distance of the point P from the line charge. Since the line charge along the z-axis, $r=\sqrt{x^2+y^2}$ so that

$$\phi(r) = -rac{\lambda}{4\pi\epsilon_0}\ln(x^2+y^2)$$

The surface $\phi = {
m constant} = \phi_0$ is given by

$$\ln(x^2 + y^2) = -\frac{4\pi\epsilon_0\phi_o}{\lambda}$$

i.e.

$$x^2 + y^2 = e^{-\frac{4\pi\epsilon_0\phi_0}{\lambda}}$$

which represent cylinders with axis along the z-axis with radii

Click here for Animation

As ϕ_0 increases, radius becomes smaller. Thus the cylinders are packed closer around the axis, showing that the field is stronger near the axis.

Exercise 1

Determine the equipotential surface of an infinite plane with charge density σ

Capacitance

Consider a spherical conductor of radius $\,R\,$ carrying a charge $\,Q\,$. The potential of the sphere is given by

$$\phi = \frac{Q}{4\pi\,\epsilon_0 R}$$

The potential of the conductor is proportional to the charge it contains. This linear relationship is true in general, independent of the shape of the conductor,

$$Q = C\phi$$

The constant of proportionality C is called the capacitance of the conductor. For the conducting sphere the capacitance is $4\pi\epsilon_0 R$.

Unit of capacitance:

The M.K.S. unit of capacitance is Coulomb/Volt which is called a Farad. However, one Farad turns out to be very large capacitance (the capacitance of the Earth is approximately 700 micro-Farad). A more practical unit of capacitance is a micro-Farad (μF) or a pico- Farad (pF) :

$$1\mu F = 10^{-6} F$$
$$1pF = 10^{-12} F$$

Capacitor:

A capacitor is essentially a device consisting of an arrangement of conductors for storing charges. As a consequence, it also stores electrostatic energy. The simplest capacitor consists of two conductors, one carrying a charge Q and the other a charge -Q. Let ϕ_1 be the potential of the first conductor and ϕ_2 that of the

second. Since the conductor is an equipotential surface, the potential difference between the conductors $\phi_1-\phi_2$ is also constant, and is given by

$$\phi_1 - \phi_2 = -\int_2^1 ec E \cdot ec d l$$

where the line integral is carried out along any path joining the two conductors. The electric field is proportional to the charge Q since if the charge on each conductor is multiplied by a constant α , the charge density and

hence the electric field also gets multiplied by the same factor. Thus Q is proportional to the potential

difference $\phi=\phi_1-\phi_2$

$$Q = C\phi$$

where C is the capacitance of the conductor pair.

A capacitor consisting of a single conductor (like the spherical conductor described above) may be considered to be one part of a conductor pair where the second conductor containing the opposite charge is at infinity.

Parallel Plate Capacitor:

A parallel plate capacitor consists of two parallel metal plates, each of area A separated by a distance d. A potential difference ϕ is maintained between the two plates. If the charge on the positive plate is +Q and that

on the negative plate is -Q , the electric field in the region between the two plates is $\,\sigma/\epsilon_0=Q/A\epsilon_0$.

Click here for Animation

The potential difference between the plates is

$$\phi = -\int_{2}^{1} ec{E} \cdot ec{dl} = Ed = rac{Qd}{A\epsilon_{0}}$$

The capacitance C is

$$C = rac{Q}{\phi} = \epsilon_0 rac{A}{d}$$

Spherical Capacitor:

The spherical capacitor consists of two concentric spherical conducting shells of radii $\,R_1\,$ and $\,R_2\,$.

Click here for Animation

The electric field at a distance r from the centre is calculated by using the Gaussian surface shown. The fileld is radial and is given by

$$\vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{r}$$

The voltage drop between the shells is obtained by integrating the electric field along a radial path (the electric field being conservative, the path of integration is chosen as per our convenience) from the negative plate to the positrive plate.

$$\phi = -\int_{R_2}^{R_1} \vec{E} \cdot d\vec{r} = \frac{Q}{4\pi\epsilon_0} \int_{R_1}^{R_2} \frac{dr}{r^2}$$
$$= \frac{Q}{4\pi\epsilon_0} \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

The capacitance is

$$C = \frac{Q}{\phi} = \frac{4\pi\epsilon_0 R_1 R_2}{R_2 - R_1}$$

Cylindrical Conductor:

A cylindrical capacitor consists of two long coaxial conducting cylinders of length L and radii R_1 and R_2 . The electric field in the space between the cylinders may be calculated by Gauss Law, using a pillbox in the shape of a short coaxial cylinder of length $l \ll L$ and radius r. Neglecting edge effects, the field is in the radial

direction and depends only on the distance au from the axis.

Click here for Animation

The contribution to the flux from the end caps of the pillbox is zero as the field is along the surface. The field at a distance τ is given by

$$\vec{E} \cdot \vec{dS} = 2\pi r l E = \frac{q}{\epsilon_0}$$

where q is the charged enclosed by the pillbox, which is given in terms of the surface charge density σ on the inner cylinder by

$$q = 2\pi R_1 l \sigma$$

The field at a distance T is given by

$$\vec{E} = \frac{R_1 \sigma}{\epsilon_0 r} \hat{r}$$

The potential difference between the cylindrical conductors is

$$\phi = -\int_{R_2}^{R_1} \vec{E} \cdot d\vec{r} = \frac{R_1 \sigma}{\epsilon_0} \int_{R_1}^{R_2} \frac{dr}{r}$$
$$= \frac{R_1 \sigma}{\epsilon_0} \ln \frac{R_2}{R_1}$$

Substituting

$$\sigma = \frac{Q}{2\pi R_1 L}$$

the capacitance is given by

$$C = \frac{Q}{\phi} = \frac{2\pi\epsilon_0 L}{\ln\frac{R_2}{R_1}}$$

Work Done in Charging a Capacitor:

Consider a parallel plate capacitor. The process of charging a capacitor consists of removing negative charges (electrons) from the positive plate and depositing them on the negative plate.

Suppose at a particular instant, the charge on the plates are $\pm q$, so that the potential difference between the

plates is q/C. To transport an infinitisimal charge dq from the positive plate to the negative plate, the work done by an external agency is

$$dW = \frac{q}{C}dq$$

Total work done in charging the plates from $\,q=0\,$ to $\,q=Q\,$ is

$$W = \frac{1}{C} \int_{0}^{Q} q dq = \frac{Q^2}{2C}$$

In terms of potential difference ϕ ,

$$W = \frac{1}{2}C\phi^2$$

This is the amount of energy stored in the capacitor.

One can also get the same expression by using the expression for the energy of a charge distribution derived earlier

$$W = \frac{\epsilon_0}{2} \int_{\text{all space}} E^2 d\tau$$

For a parallel plate capacitor $E=Q/A\epsilon_0$ within the volume $\,Ad\,$ of the capacitor and zero outside. Hence

$$W = \frac{\epsilon_0}{2} \left(\frac{Q}{A\epsilon_0} \right)^2 \cdot Ad$$
$$= \frac{Q^2 d}{2\epsilon_0 A} = \frac{Q^2}{2C}$$

Exercise 1

[Ans.
$$(Q^2/8\pi\epsilon_0)[1/R_1-1/R_2]$$
]

Recap

In this lecture you have learnt the following

- Poisson's equation relates the potential to charge density. A formal solution to Poisson's equation was obtained.
- A equipotential surface is one on which the potential is constant. The electric field on an equipotential surface can only have component normal to the surface.
- The potential of a conductor is proportional to the charge it contains, the constant of proportionality is known as the capacitance of the conductor. A capacitor is a device to store charges and hence it also stores electrostatic energy.
- The capacitance for a parallel plate capacitor is proportional to the surface area and inversely proportional to the separation between its plates.
- Capacitance for spherical and cylindrical capacitors were calculated. The work done in charging a capacitor was also calculated.