PROBLEM SET

1. [10 pts]

Use ordinary induction to prove that for every positive integer $n, n^2 + n$ is even.

Solution:

Let P(n) be " $n^2 + n$ is even."

(BC) $1^2 + 1 = 2$ is even, so P(1) holds.

(IS) Assume P(k) for some arbitrary positive integer k; this is our induction hypothesis (IH). Then

$$(k+1)^2 + (k+1) = k^2 + 2k + 1 + k = (k^2 + k) + 2(k+1)$$
.

Our IH says that $(k^2 + k)$ is even, 2(k+1) is even by definition, and even plus even is even, so $(k+1)^2 + (k+1)$ is even, which is P(k+1). Thus, we have shown that P(k) implies P(k+1).

By ordinary induction, we conclude that P(n) holds for all $n \in \mathbb{Z}^+$, i.e., for every $n \in \mathbb{Z}^+$, $n^2 + n$ is even. \square

2. [10 pts]

Use ordinary induction to prove that for every positive integer $n, n^3 - n$ is a multiple of 6.

Solution:

Let P(n) be " $n^3 - n$ is a multiple of 6."

(BC)
$$1^3 - 1 = 0 = 0 \cdot 6$$
, so $P(1)$ holds.

(IS) Assume P(k) for some arbitrary positive integer k; this is our IH. Then

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1) = (k^3 - k) + 3(k^2 + k)$$

Our IH tells us that $(k^3 - k)$ is a multiple of 6, and the previous problem tells us that $(k^2 + k)$ is even, so $3(k^2 + k)$ is also a multiple of 6. Thus, their sum is a multiple of 6, and P(k + 1) holds. We have shown that P(k) implies P(k + 1).

By ordinary induction, we conclude that P(n) holds for all $n \in \mathbb{Z}^+$, i.e., for every $n \in \mathbb{Z}^+$, $n^3 - n$ is a multiple of 6. \square

3. [10 pts]

Use strong induction to prove that for every integer $n \geq 6$ there are non-negative integers a and b such that n = 3a + 4b.

Solution:

Let P(n) be "there are positive integers a and b such that n = 3a + 4b."

(BC)
$$6 = 3 \cdot 2 + 4 \cdot 0$$
, $7 = 3 \cdot 1 + 4 \cdot 1$, and $8 = 3 \cdot 0 + 4 \cdot 2$, so $P(6)$, $P(7)$, and $P(8)$ all hold.

(IS) Assume for some arbitrary integer $k \geq 8$ that P(j) holds for all $6 \leq j \leq k$ this is our IH. Then in particular, since $k-2 \geq 6$, P(k-2) says that there exist $a, b \in \mathbb{N}$ such that k-2=3a+4b. Now,

$$k+1 = k-2+3 = 3a+4b+3 = 3(a+1)+4b$$
,

so P(k+1) holds. We have shown that $(\forall j \in [6..k] P(j))$ implies P(k+1).

By strong induction, we conclude that P(n) holds for all integers $n \ge 6$, i.e., for every integer $n \ge 6$, there exist $a, b \in \mathbb{N}$ such that n = 3a + 4b.

Homework 6 CIT 592 3

4. [10 pts]

Use ordinary induction to prove that $C(n) = 2^n + 3$ is a solution to the recurrence C(0) = 4 and $C(n) = 2 \cdot C(n-1) - 3$ for all $n \in \mathbb{Z}^+$.

Solution:

Let P(n) be " $C(n) = 2^n + 3$."

(BC)
$$C(0) = 4 = 2^0 + 3$$
, so $P(0)$ holds.

(IS) Assume P(k) for some arbitrary $k \in \mathbb{N}$; this is our IH. Then the recurrence tells us that C(k+1) = 2C(k+1-1) - 3 = 2C(k) - 3, which by our IH is

$$2 \cdot (2^k + 3) - 3 = 2^{k+1} + 6 - 3 = 2^{k+1} + 3$$

so P(k+1) holds. We have shown that P(k) implies P(k+1).

By ordinary induction, we conclude that P(n) holds for all $nin\mathbb{N}$, i.e., $C(n)=2^n+3$ for all $n\in\mathbb{N}$. \square

5. [10 pts]

Use the recursion tree method or the telescopic method to solve the recurrence relation f(0) = 4 and f(n) = f(n-1) + 2n - 1 for all $n \in \mathbb{Z}^+$.

Solution:

We use the telescopic method.

$$f(n) = f(n-1) + 2n - 1$$

$$f(n-1) = f(n-2) + 2(n-1) - 1$$

$$\vdots$$

$$f(2) = f(1) + 2(2) - 1$$

$$f(1) = f(0) + 2(1) - 1$$

$$f(0) = 4$$

Looking at the terms that appear on only one side of these equations, we can see that

$$f(n) = (2n-1) + (2(n-1)-1) + \dots + (2(2)-1) + (2(1)-1) + 4$$

$$= 2n + 2(n-1) + \dots + 2(2) + 2(1) - n + 4$$

$$= 2(n + (n-1) + \dots + 2 + 1) - n + 4$$

$$= 2(1 + 2 + \dots + (n-1) + n) - n + 4$$

$$= 2\frac{n^2 + n}{2} - n + 4 \qquad \text{(using the summation formula)}$$

$$= n^2 + n - n + 4$$

$$= n^2 + 4.$$

Therefore our closed formula for f is $f(n) = n^2 + 4$.

6. [10 pts]

Use strong induction to prove that $F_n < 2^n$ for all $n \in \mathbb{N}$.

Solution:

Let P(n) be " $F_n < 2^n$."

(BC)
$$F_0 = 0 < 1 = 2^0$$
 and $F_1 = 1 < 2 = 2^1$, so $P(0)$ and $P(1)$ hold.

(IS) For some arbitrary positive integer $k \in \mathbb{Z}$, assume that P(k-1) and P(k) hold; this is our IH. Then

$$F_{k+1} = F_k + F_{k-1} < 2^k + 2^{k-1} < 2^k + 2^k = 2^{k+1}$$
.

Thus, P(k-1) and P(k) together imply P(k+1).

By strong induction, we conclude that P(n) holds for all $n \in \mathbb{N}$, i.e., that $F_n < 2^n$ for all $n \in \mathbb{N}$. \square

7. [6 pts] EXTRA CREDIT CHALLENGE PROBLEM

There are some real numbers x such that $x + \frac{1}{x}$ is an integer. For example, $2 + \sqrt{3} + \frac{1}{2+\sqrt{3}} = 4$, $1 + \frac{1}{1} = 2$, and $2\sqrt{6} - 5 + \frac{1}{2\sqrt{6} - 5} = -10$.

Prove for all $x \in \mathbb{R}$ that if $x + \frac{1}{x}$ is an integer, then $x^n + \frac{1}{x^n}$ also is an integer for all $n \in \mathbb{N}$.

Solution:

We prove this by strong induction. Assume that $x + \frac{1}{x}$ is an integer, and let P(n) be " $x^n + \frac{1}{x^n}$ is an integer."

(BC) $P(0) = x^0 + \frac{1}{x^0} = 2$ is an integer, and P(1) holds by our assumption.

(IS) Assume that P(k) and P(k-1) hold for some arbitrary $k \in \mathbb{N}$; this is our IH. Now,

$$\left(x^k + \frac{1}{x^k}\right)\left(x + \frac{1}{x}\right) = x^{k+1} + x^{k-1} + \frac{1}{x^{k-1}} + \frac{1}{x^{k+1}}.$$

Rearranging, we have

$$x^{k+1} + \frac{1}{x^{k+1}} = \left(x^k + \frac{1}{x^k}\right)\left(x + \frac{1}{x}\right) - \left(x^{k-1} + \frac{1}{x^{k-1}}\right).$$

Our IH tells us that $x^k + \frac{1}{x^k}$ and $x^{k-1} + \frac{1}{x^{k-1}}$ are integers, and our BC tells us that $x + \frac{1}{x}$ is an integer. Hence, the entire RHS of the equation is an integer, and therefore the LHS is as well. We have shown that P(k-1) and P(k) together imply P(k+1).

By strong induction, we conclude that P(n) holds for all $n \in \mathbb{N}$, i.e., that $x^n + \frac{1}{x^n}$ is an integer for all $n \in \mathbb{N}$. \square