- (1) (1.0 pt.) In the hard-margin SVM we have the constraints $y_i \mathbf{w}^T \mathbf{x}_i \ge 1$ for all i = 1, ..., m. For a pair, (y, \mathbf{x}) , of a new sample example we have $y_i \mathbf{w}^T \mathbf{x}_i < 1$ but $y_i \mathbf{w}^T \mathbf{x}_i > 0$. What does it mean?
 - 1- This example is wrongly classified.
 - 2- This example is classified correctly but it is within the margin.
 - 3. We can not decide on which class contains this example.
- (2) (1.0 pt.) In the soft-margin SVM we have the constraints $y_i \mathbf{w}^T \mathbf{x}_i \geq 1 \xi_i$ for all i = 1, ..., m. If a pair, (y, \mathbf{x}) , of a new sample example is classified correctly what could be the value of the corresponding slack variable ξ ?
 - 1- $0 \le \xi < 1$
 - $2 \xi = 0$
 - 3. $\xi < 0$
- (3) (3.0 pt.) What happens if all labels are positive in an SVM problem? It is called as one-class classification problem. What does the SVM do in this case?

Hint: Think about what the constraints could force in this case.

- 1- It separates all the examples from the origin.
- 2- The result has no any meaning.
- 3. All slacks will be 0.
- (4) (5.0 pt.)

Let 6 points be given in the plane, $X = \{(0,1), (2,1), (2,-1), (0,-1), (-2,-1), (-2,1)\}$, and the corresponding labels in the same order $y = \{1,1,1,-1,-1,-1\}$. Compute \mathbf{w} by the algorithm given by Slide 20 of Lecture 7 by taking the examples in the given fix order instead of randomly drawing them. Let $\lambda = 1$, and the learning speed $\eta = 0.1$. Which of these coordinates can give the solution for \mathbf{w} ? Round the numbers up to 2 decimals, and take the closest one.

- 1 (0.54, -0.07)
- 2. (0.66, 0.12)
- 3- (-0.66, -0.12)