

Olimpiada Națională de Matematică Etapa Natională, Bucuresti, 7 aprilie 2015

CLASA a VI-a - Soluții și bareme orientative

Problema 1. Determinați numerele naturale care au proprietatea că admit exact 8 divizori pozitivi, dintre care trei sunt numere prime de forma a, \overline{bc} şi \overline{cb} şi $a + \overline{bc} + \overline{cb}$ este pătrat perfect, unde a, b și c sunt cifre cu b < c.

Soluție. Notăm cu x un număr cu proprietățile din enunț. x are exact 8 divizori, a, \overline{bc} și \overline{cb} trei divizori numere prime, rezultă că x se divide cu $y = a \cdot \overline{bc} \cdot \overline{cb}$, iar y are exact 8 divizori, deci x = y

Numerele \overline{bc} şi \overline{cb} sunt numere prime distincte, deci $\overline{bc} \in \{13, 17, 37, 79\}$ 1 p Din condiția că $a + \overline{bc} + \overline{cb}$ este pătrat perfect și a prim, rezultă a = 5, $\overline{bc} = 13$ și $\overline{cb} = 31$, deci

Problema 2. a) Determinați numerele naturale a pentru care

$$\frac{1}{4} < \frac{1}{a+1} + \frac{1}{a+2} + \frac{1}{a+3} < \frac{1}{3}$$
.

b) Demonstrați că pentru orice număr natural $p \geq 2$ există p numere naturale consecutive a_1, a_2, \dots, a_p astfel încât

$$\frac{1}{p+1} < \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_p} < \frac{1}{p}.$$

Soluție. a) Dacă $S = \frac{1}{a+1} + \frac{1}{a+2} + \frac{1}{a+3}$, atunci $\frac{3}{a+3} < S < \frac{3}{a+1}$ și cum $\frac{1}{4} < S < \frac{1}{3}$, rezultă $\frac{1}{4} < \frac{3}{a+1}$ şi $\frac{3}{a+3} < \frac{1}{3}$.

Rezultă că 6 < a < 11, deci $a \in \{7, 8, 9, 10\}$.

Pentru a = 7 rezultă $S = \frac{1}{8} + \frac{1}{9} + \frac{1}{10} = \frac{121}{360} > \frac{1}{3}$.

Pentru a = 8 rezultă $S = \frac{1}{9} + \frac{1}{10} + \frac{1}{11}$, iar $\frac{1}{4} < \frac{3}{11} < S < \frac{3}{9} = \frac{1}{3}$.

Pentru a = 9 rezultă $S = \frac{1}{10} + \frac{1}{11} + \frac{1}{12}$, iar $\frac{1}{4} = \frac{3}{12} < S < \frac{3}{10} < \frac{1}{3}$.

Pentru a = 10 rezultă $S = \frac{1}{11} + \frac{1}{12} + \frac{1}{13} < \frac{3}{9} = \frac{1}{3}$ şi $S = \frac{1}{12} + \frac{24}{143} > \frac{1}{12} + \frac{24}{144} = \frac{1}{4}$.

Soluțiile sunt a = 8, a = 9 și a = 10.

...... 2 p

b) Pentru $a_1 = p^2 + 1$, $a_2 = p^2 + 2$, ..., $a_p = p^2 + p$, avem $S = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = \frac{1}{n^2 + 1} + \dots$

 $\frac{1}{n^2+2}+\cdots+\frac{1}{n^2+n} \text{ și cum } \frac{1}{n^2+1} > \frac{1}{n^2+2} > \cdots > \frac{1}{p^2+p}, \text{ rezultă că } \frac{p}{p^2+p} < S < \frac{p}{p^2+1}.$

Problema 3. Arătați că dacă x, y și n sunt numere naturale astfel încât

$$n = \frac{x^2 - 1}{2} = \frac{y^2 - 1}{3},$$

atunci

- a) $n = y^2 x^2$;
- b) n este multiplu de 20.

Problema 4. Se consideră un triunghi ABC în care $m(\not \subset BAC) = \frac{4}{3} \cdot m(\not \subset ABC) < 90^\circ$. Fie (AE) bisectoarea unghiului BAC, cu $E \in (BC)$ și punctul $F \in (AE)$ astfel încât $m(\not \subset ABF) = \frac{1}{2}m(\not \subset BAC)$ și $[AF] \equiv [AC]$. Determinați măsura unghiului BCF.

Soluție

