

Documents interdits. Durée: 1 heure 30. La qualité de la rédaction sera prise en compte dans la notation. Toute réponse doit être soigneusement justifiée.

Exercice 1

Soit $\theta \in \mathbb{R}$.

- 1. (Question de cours). Rappeler et démontrer la formule de Moivre.
- 2. (Application). Développer $\cos(3\theta)$ et $\sin(3\theta)$.
- 3. En déduire une expression de $tan(3\theta)$ en fonction de $tan(\theta)$.

Exercice 2

Déterminer la forme trigonométrique des nombres complexes suivants :

(a)
$$z_1 = \sqrt{2}(1 + i\sqrt{3})$$

(b)
$$z_2 = \frac{(1+i\sqrt{3})^2}{1-i}$$

Exercice 3

On cherche à résoudre l'équation

$$z^{3} + (1 - 5i)z^{2} - (7 + 4i)z + 3i - 3 = 0 \quad (E).$$

- 1. Montrer que i est solution de l'équation (E).
- 2. Déterminer $a, b \in \mathbb{C}$ tels que

$$z^{3} + (1 - 5i)z^{2} - (7 + 4i)z + 3i - 3 = (z - i)(z^{2} + az + b).$$

3. En déduire toutes les solutions de l'équation (E).

Exercice 4

Résoudre dans C l'équation

$$z^4 = \frac{-4}{1 - i\sqrt{3}}.$$

On détaillera les solutions.

Exercice 5

On munit le plan complexe \mathcal{P} d'un repère orthonormé $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$.

Déterminer et représenter l'ensemble des points M d'affixe z tels que :

(a)
$$|3 - iz| = 2$$

(b)
$$|\bar{z} + 2 - i| = |z - 4|$$

(b)
$$|\bar{z} + 2 - i| = |z - 4|$$
 (c) $\arg(z + 2 - 2i) = -\frac{\pi}{2} [2\pi].$

Exercice 6

Soit T une transformation du plan complexe qui à un point d'affixe z associe le point d'affixe z' = (1+i)z + 2-2i.

- 1. Déterminer l'image de $\Omega(2+2i)$ par T.
- 2. Déterminer la nature et les caractéristiques de T.
- 3. Soit \mathcal{D} la droite passant par les points A(1-i) et B(3). Déterminer l'équation cartésienne (de la forme y = ax + b) de la droite \mathcal{D}' image de la droite \mathcal{D} par T. Indication: on pourra commencer par déterminer A' et B' les images des points A et B par T.

Exercice 7 (Bonus)

Soit $z \in \mathbb{C} \setminus \{-3i\}$. Montrer que

$$\frac{3iz-1}{z+3i}$$

est un imaginaire pur si et seulement si z est un imaginaire pur.