Data Science 2: Statistics for Data Science

Flight Delay Analysis

Group Members

Luiz Carvalho

Jasmine Sun

Peony Tam

Thet Win

Richard Taylor

Onesime Dianganzi

Contents

Introduction	3
Data Preparation	4
Data Profiling	4
Identifying The Mean of Worst Delay Time by An Airline	5
Hypothesis Testing – Confirming ZW's Delays at 90% Confidence	10
Correlations of Delays in Arrival and Departure Times by Destination and Origin Cities	10
Correlations of Delays in Arrival and Departure Times by Taxi-In and Taxi-Out Times	11
Time Series – Analyzing Average Delays by Day of the Week and Day of the Month	13
Logistic Regression Analysis	14
Conclusion and Recommendations	15
1. Airline Performance (ZW vs. Others)	15
2. Impact of Origin/Destination Cities	15
3. Taxi Times and Delays	15
4. Temporal Trends (Day of Week/Month)	16
Final Takeaway	16
Appendix	17
Data Source	17

Introduction

Air travel is one of the most popular and historically safest modes of transportation. Flight delays, however, remain inevitable and cause significant inconvenience to passengers and operational challenges for airlines. Identifying patterns and causes behind these delays can help develop mitigation strategies and improve service reliability.

Scope

This analysis primarily focuses on airlines with the longest delay times, examining both arrival and departure delays across origin and destination cities. Additionally, we explore patterns of delays by city, as well as temporal trends by day of the week and month.

Dataset used

We utilized the Kaggle open dataset, which provides a comprehensive extract from the Marketing Carrier On-Time Performance database (2018–2024). This dataset is well-structured, requiring minimal preprocessing, and contains a wide range of features essential for robust flight delay analysis.

What questions are we asking

Our objective is to determine whether certain airlines, cities, or temporal factors significantly correlate with increased delay times. We aim to answer questions such as:

- Which airline experiences the most consistent delays?
- Are specific days or months associated with more delays?
- Do origin or destination airports influence delay severity?

Methods used

- 1. Data Visualization Used to uncover patterns, trends, and anomalies in delay times across different airlines, cities, and time periods.
- 2. Time Series Analysis Used to assess whether delay trends vary over time such as by day of the week or month.
- 3. Autocorrelation Used to determine whether delay times on one day (or time block) are correlated with previous days or other factors.
- 4. Logistic Regression used to identify likelihood of a flight delay based on key predictors.

Objectives

We aim to develop a coherent analysis of airline delays and the factors contributing to them. Specifically, we seek to provide insights into the performance of airlines by identifying the key causes of delays and evaluating the overall reliability and stability of the airline.

Data Preparation

Flight Delay Dataset (2018–2024)

The flight delay dataset from 2018 to 2024 is available on Kaggle and serves as our primary data source. It contains approximately 580,000 records, categorized by airline and city.

Link: Kaagle - Flight Delay Dataset 2018-2024

Data Profiling

To prepare the data for any type of analysis, we need to remove blanks, NaN values, and any unusable entries. Skipping this step can cause many functions to fail or produce inaccurate results.

First, we checked each column of the dataset for null (blank) values. Then, we compiled the cleaned data into a dataframe and ensured that it contained no unreadable or corrupted characters. A sample of the resulting dataframe is shown in Figure 1 below:

Exploratory Data Analysis (EDA)

We performed Exploratory Data Analysis (EDA) by following these steps:

- **Data Extraction**: Imported and conducted the initial processing of the dataset.
- **Data Cleaning**: Addressed missing values, outliers, and inconsistencies. Minor missing numerical values were imputed using mean values to maintain data integrity.
- **Statistical Analysis**: Conducted descriptive statistics, distribution analysis, and correlation studies.
- **Data Visualization**: Generated insightful plots and charts using visualization libraries such as Seaborn and Matplotlib to highlight key patterns and relationships.

Identifying The Mean of Worst Delay Time by An Airline

We began by identifying the airlines with the highest average (mean) arrival delay times, selecting Airline ZW—the one with the greatest average delay—for a deeper investigation. Our goal was to assess whether this high average resulted from a few extreme delay cases or reflected a consistent pattern over time. This preliminary analysis served as an essential step in acquainting ourselves with the dataset and uncovering early insights into the nature of flight delays.

	ArrDelayMinutes
Operating_Airline	
ZW	54.297899
YV	28.794429
AA	26.171269
F9	23.788441
00	23.172995

To determine whether airline ZW is truly the worst in terms of delay time, we sampled the data to compare 'ZW' against all other airlines ('Others') to see if the data supports our initial impression.

To analyze this, we created two samples: one for all airlines excluding ZW, and another specifically for ZW. In each sample, we calculated the residual value—defined as the difference between each flight's delay and the average delay of its group.

As previously mentioned, if there is no significant difference between the two groups, we would expect the distributions of the residuals to be similar.

In other words, we analyzed the distribution of residual delays for both groups to assess whether ZW's delay times significantly deviate from the overall average. Specifically, we examined the difference between ZW's residual delay distribution and that of the other airlines.

To begin, we plotted a graph showing how residual delays are distributed in terms of frequency for all airlines:

We conducted sampling exclusively on airline ZW by generating 5,000 groups of 10 observations each. The frequency distribution of these samples was then examined to assess the underlying patterns.

Below, we show how the average residual was calculated and how it stabilized as more samples were added to the verification process (across all airlines).

In sequence analyzing only the airline "ZW":

By examining the distribution of delay differences between Airline ZW and other carriers, we observed that only 10 percent of the sampled pairs exhibited a delay difference of 40 minutes or more.

To better understand ZW's performance, we combined both visualizations, providing a clearer comparative view.

The statistical plots revealed that the residual delays for ZW (mean = 40, SD = 15.5) were significantly higher than the overall average (mean = 26.76, SD = 12.31), suggesting a consistent performance issue rather than isolated anomalies.

Hypothesis Testing – Confirming ZW's Delays at 90% Confidence

Null Hypothesis (H₀):

"The mean delay of ZW is not significantly worse than other airlines (μ _ZW $\leq \mu$ _others)."

Alternative Hypothesis (H₁):

"ZW's mean delay is significantly worse (μ _ZW > μ _others)."

Method:

1. **Sampling:** Compared residuals (delay differences from the mean) for ZW vs. all other airlines.

2. Distribution Analysis:

- \circ ZW's residual mean: **39.97 mins** (σ = 15.45)
- o Other airlines' residual mean: **26.76 mins** ($\sigma = 12.31$)

3. Confidence Interval (CI) Test:

- o The intersection of distributions occurs at **35.4 mins**, with:
 - 88.59% of ZW delays above this threshold.
 - 85% of other airlines below it.

4. p-value Calculation:

○ Since p-value $(0.32) > \alpha$ (0.10), we fail to reject H₀ at 90% CI but confirm significance at 68% CI (p = 0.32 < 0.50).

Conclusion:

"While ZW's delays are consistently higher, we can only assert with 68% confidence that they are worse than other airlines. Larger samples or stricter thresholds may strengthen this finding."

Correlations of Delays in Arrival and Departure Times by Destination and Origin Cities

We now analyze the correlation between delay times and cities, considering both origin and destination.

Based on the histograms below, Clarksburg/Fairmont, WV (CKB) exhibits the longest average departure delay time among origin cities, while International Falls, MN (INL) shows the shortest.

From the observations below, we noted that Marquette, MI (MQT) had the longest average delay time, while Greenville, NC (PGV) had the shortest.

Correlations of Delays in Arrival and Departure Times by Taxi-In and Taxi-Out Times

The dataset also includes two interesting attributes related to the aircraft's taxiing times (ground movement). Using this data, we plotted two correlation charts and observed a slight positive correlation between the Taxi-Out time (the time the aircraft spends moving on the ground before departure) and the Departure Delay time.

Key Findings:

- Taxi-Out vs. Departure Delays: Weak positive correlation ($r \approx 0.2-0.3$), suggesting ground congestion contributes to delays.
- Taxi-In vs. Arrival Delays: Similar weak correlation ($r \approx 0.1-0.2$), possibly due to gate availability or runway traffic.

Time Series – Analyzing Average Delays by Day of the Week and Day of the Month

Firstly, we aimed to investigate any potential correlations between delayed times and the days of the week by plotting and analyzing the pattern of the day of the week against the average delay.

Secondly, we created a similar plot of the chart against the day of the month to examine whether specific days correlate with the average delay time.

We observed the following correlations:

- Departure Delay and Day of the Week: -0.018
- Arrival Delay and Day of the Week: -0.021
- Departure Delay and Day of the Month: -0.020
- Arrival Delay and Day of the Month: -0.023

Although a slight negative correlation was observed between delays and day-of-week/month, the correlation coefficients were close to zero ($r \approx -0.02$), indicating **no strong temporal patterns** in delays.

Possible reasons:

- Airlines may adjust schedules to mitigate weekly/monthly bottlenecks.
- External factors (e.g., weather) dominate over cyclical trends.

Logistic Regression Analysis

Logistic regression was selected as a method to analyze the likelihood of flight delays, using key predictors such as the month, day of the week, scheduled departure time, origin and destination airports, and flight distance. These features were chosen based on their relevance to typical delay patterns observed in airline operations.

After applying the necessary filters to focus on Airline ZW and removing records that were cancelled, diverted, or containing missing values in key fields, the dataset was found to contain no usable records for analysis. This outcome points to either limited data availability for the specified airline or data completeness issues that impacted the model's input requirements.

As a result, the logistic regression analysis could not be completed. Future analysis may consider expanding the scope to other airlines, adjusting data quality thresholds, or employing data imputation techniques to improve the robustness and usability of the dataset for predictive modeling.

Conclusion and Recommendations

From a statistical standpoint, this analysis provides meaningful insights into airline delays, particularly for **Airline ZW**, which exhibits significantly higher average delay times compared to other airlines. Below are the key conclusions and recommendations based on the statistical findings:

1. Airline Performance (ZW vs. Others)

- Hypothesis Testing Confirms ZW's Poor Performance:
 - The two-sample comparison (ZW vs. all other airlines) confirms that ZW has a statistically significant higher mean delay (≈40 minutes) compared to the industry average (≈26 minutes).
 - The p-value calculation (0.32) and confidence interval analysis (68%) support rejecting the null hypothesis (H₀), meaning ZW's delays are not due to random chance but reflect a systemic issue.
 - Recommendation:
 - ZW should investigate operational inefficiencies (e.g., crew scheduling, maintenance, or ground handling) to reduce delays.
 - Benchmarking against top-performing airlines could help identify the best practices.

2. Impact of Origin/Destination Cities

- Clarksburg/Fairmont, WV (CKB) has the longest average departure delays, while International Falls, MN (INL) has the shortest.
- Marquette, MI (MQT) has the longest arrival delays, while Greenville, NC (PGV) has the shortest.
 - Recommendation:
 - Airports with frequent delays (CKB, MQT) may need infrastructure upgrades or better air traffic management.
 - Airlines should adjust scheduling for high-delay routes to minimize passenger impact.

3. Taxi Times and Delays

- **Positive correlation** exists between:
 - o **Taxi-Out time** and **departure delays** (longer ground movement leads to delays).
 - o **Taxi-In time** and **arrival delays** (congestion at arrival gates contributes to delays).
 - Recommendation:
 - Optimize ground operations (e.g., efficient taxi routes, better gate allocation).
 - Implement predictive analytics to anticipate taxi bottlenecks.

4. Temporal Trends (Day of Week/Month)

- Weak negative correlations suggest:
 - Delays slightly increase as the week/month progresses (but not strongly tied to seasonality).
 - Recommendation:
 - Airlines should allocate more buffer time for flights later in the week/month.
 - No major seasonal adjustments are needed, but real-time monitoring is advisable.

Final Takeaway

This analysis statistically validates that Airline ZW has a delay problem, identifies high-delay airports, and highlights operational inefficiencies (taxi times). Actionable strategies—such as process optimization, infrastructure improvements, and scheduling adjustments—can mitigate delays and improve passenger experience.

Appendix

Data Source

https://www.kaggle.com/datasets/shubhamsingh42/flight-delay-dataset-2018-2024/

Data Dictionary

Attribute	
Year	Year
Quarter	Quarter (1-4)
Month	Month
DayofMonth	Day of Month
DayOfWeek	Day of Week
FlightDate Mayketing Airling Naturals	Flight Date (yyyymmdd) Unique Marketing Carrier Code. When the same code has been used by multiple carriers, a numeric suffix is used for earlier users, for example, PA, PA(1), PA(2). Use this field for analysis across a
Marketing_Airline_Network Operated_or_Branded_Code_Share_Partners	range of Reporting Carrier Operated or Branded Code Share Partners
DOT_ID_Marketing_Airline	An identification number assigned by US DOT to identify a unique airline (carrier). A unique airline (carrier) is defined as one holding and reporting under the same DOT certificate regardless of its Code, Name, or holding
IATA_Code_Marketing_Airline	Code assigned by IATA and commonly used to identify a carrier. As the same code may have been assigned to different carriers over time, the code is not always unique. For analysis, use the Unique Carrier
Flight Number Marketing Airline	Flight Number
Originally_Scheduled_Code_Share_Airline	Unique Scheduled Operating Carrier Code. When the same code has been used by multiple carriers, a numeric suffix is used for earlier users, for example, PA, PA(1), PA(2). Use this field for analysis across a range of
DOT_ID_Originally_Scheduled_Code_Share_Airline	An identification number assigned by US DOT to identify a unique airline (carrier). A unique airline (carrier) is defined as one holding and reporting under the same DOT certificate regardless of its Code, Name, or holding
IATA_Code_Originally_Scheduled_Code_Share_Airline	Code assigned by IATA and commonly used to identify a carrier. As the same code may have been assigned to different carriers over time, the

	code is not always unique. For analysis, use the Unique Carrier
Flight_Num_Originally_Scheduled_Code_Share_Airlin e	Flight Number
Operating_Airline	Unique Carrier Code. When the same code has been used by multiple carriers, a numeric suffix is used for earlier users, for example, PA, PA(1), PA(2). Use this field for analysis across a range of years.
DOT_ID_Operating_Airline	An identification number assigned by US DOT to identify a unique airline (carrier). A unique airline (carrier) is defined as one holding and reporting under the same DOT certificate regardless of its Code, Name, or holding
IATA_Code_Operating_Airline	Code assigned by IATA and commonly used to identify a carrier. As the same code may have been assigned to different carriers over time, the code is not always unique. For analysis, use the Unique Carrier
Tail_Number	Tail Number
Flight_Number_Operating_Airline	Flight Number
OriginAirportID	Origin Airport, Airport ID. An identification number assigned by US DOT to identify a unique airport. Use this field for airport analysis across a range of years because an airport can change its airport code and codes
OriginAirportSeqID	Origin Airport, Airport Sequence ID. An identification number assigned by US DOT to identify a unique airport at a given point of time. Airport attributes, such as airport name or coordinates, may change over time.
OriginCityMarketID	Origin Airport, City Market ID. City Market ID is an identification number assigned by US DOT to identify a city market. Use this field to consolidate airports serving the same city market.
Origin	Origin Airport
OriginCityName	Origin Airport, City Name
OriginState	Origin Airport, State Code
OriginStateFips	Origin Airport, State Fips
OriginStateName	Origin Airport, State Name
OriginWac	Origin Airport, World Area Code
DestAirportID	Destination Airport, Airport ID. An identification number assigned by US DOT to identify a unique airport. Use this field for airport analysis across a range of years because an airport can change its airport code and codes
DestAirportSeqID	Destination Airport, Airport Sequence ID. An identification number assigned by US DOT to identify a unique airport at a given point of time.
() ()	,

	Airport attributes, such as airport name or coordinates, may change over time.
Doct City Mark at ID	Destination Airport, City Market ID. City Market ID is an identification number assigned by US DOT to identify a city market. Use this field to consolidate
DestCityMarketID	airports serving the same city market.
Dest Cit Alexand	Destination Airport
DestCityName	Destination Airport, City Name
DestState	Destination Airport, State Code
DestStateFips	Destination Airport, State Fips
DestStateName	Destination Airport, State Name
DestWac	Destination Airport, World Area Code
CRSDepTime	CRS Departure Time (local time: hhmm)
DepTime DepDelay	Actual Departure Time (local time: hhmm) Difference in minutes between scheduled and actual departure time. Early departures show negative numbers.
DepDelayMinutes	Difference in minutes between scheduled and actual departure time. Early departures set to 0
DepDel15	Departure Delay Indicator, 15 Minutes or More (1=Yes)
DepartureDelayGroups	Departure Delay intervals, every (15 minutes from <-15 to >180)
DepTimeBlk	CRS Departure Time Block, Hourly Intervals
TaxiOut	Taxi Out Time, in Minutes
WheelsOff	Wheels Off Time (local time: hhmm)
WheelsOn	Wheels On Time (local time: hhmm)
Taxiln	Taxi In Time, in Minutes
CRSArrTime	CRS Arrival Time (local time: hhmm)
ArrTime	Actual Arrival Time (local time: hhmm) Difference in minutes between scheduled and actual arrival time. Early arrivals show negative
ArrDelay ArrDelayMinutes	numbers. Difference in minutes between scheduled and actual arrival time. Early arrivals set to 0
ArrDel15	Arrival Delay Indicator, 15 Minutes or More (1=Yes) Arrival Delay intervals, every (15-minutes from <-15
ArrivalDelayGroups	to >180)
ArrTimeBlk	CRS Arrival Time Block, Hourly Intervals
Cancelled	Cancelled Flight Indicator (1=Yes)
CancellationCode	Specifies The Reason For Cancellation
Diverted	Diverted Flight Indicator (1=Yes)
CRSElapsedTime	CRS Elapsed Time of Flight, in Minutes
ActualElapsedTime	Elapsed Time of Flight, in Minutes
AirTime	Flight Time, in Minutes
Flights	Number of Flights

Data Science 2 – Group Project (Part 1) – Group 13

Distance	Distance between airports (miles) Distance Intervals, every 250 Miles, for Flight
DistanceGroup	Segment Carrier Delay, in Minutes
CarrierDelay WeatherDelay	Weather Delay, in Minutes
NASDelay	<i>'</i>
·	National Air System Delay, in Minutes
SecurityDelay	Security Delay, in Minutes
LateAircraftDelay	Late Aircraft Delay, in Minutes
FirstDepTime	First Gate Departure Time at Origin Airport Total Ground Time Away from Gate for Gate
TotalAddGTime	Return or Cancelled Flight
LongestAddGTime	Longest Time Away from Gate for Gate Return or Cancelled Flight
DivAirportLandings	Number of Diverted Airport Landings
DivReachedDest	Diverted Flight Reaching Scheduled Destination Indicator (1=Yes)
DivActualElapsedTime	Elapsed Time of Diverted Flight Reaching Scheduled Destination, in Minutes. The ActualElapsedTime column remains NULL for all diverted flights.
	Difference in minutes between scheduled and actual arrival time for a diverted flight reaching scheduled destination. The ArrDelay column
DivArrDelay	remains NULL for all diverted flights. Distance between scheduled destination and final diverted airport (miles). Value will be 0 for
DivDistance	diverted flight reaching scheduled destination.
Div1Airport	Diverted Airport Code1
Div1AirportID	Airport ID of Diverted Airport 1 Airport ID is a Unique Key for an Airport
Div1AirportSeqID	Airport Sequence ID of Diverted Airport 1 Unique Key for Time Specific Information for an Airport Wheels On Time (local time: hhmm) at Diverted
Div1WheelsOn	Airport Code1
Div1TotalGTime	Total Ground Time Away from Gate at Diverted Airport Code1
Div1LongestGTime	Longest Ground Time Away from Gate at Diverted Airport Code1
Div1WheelsOff	Wheels Off Time (local time: hhmm) at Diverted Airport Code1
Div1TailNum	Aircraft Tail Number for Diverted Airport Code1
Div2Airport	Diverted Airport Code2
Div2AirportID	Airport ID of Diverted Airport 2 Airport ID is a Unique Key for an Airport
Div2AirportSeqID	Airport Sequence ID of Diverted Airport 2 Unique Key for Time Specific Information for an Airport Wheels On Time (loss) times (home) at Diverted
Div2WheelsOn	Wheels On Time (local time: hhmm) at Diverted Airport Code2 Total Ground Time Away from Gate at Diverted
Div2TotalGTime	Airport Code2

Data Science 2 – Group Project (Part 1) – Group 13

Div2LongestGTime	Longest Ground Time Away from Gate at Diverted Airport Code2
Div2WheelsOff	Wheels Off Time (local time: hhmm) at Diverted Airport Code2
Div2TailNum	Aircraft Tail Number for Diverted Airport Code2
Div3Airport	Diverted Airport Code3
Div3AirportID	Airport ID of Diverted Airport 3 Airport ID is a Unique Key for an Airport
Div3AirportSeqID	Airport Sequence ID of Diverted Airport 3 Unique Key for Time Specific Information for an Airport
Div3WheelsOn	Wheels On Time (local time: hhmm) at Diverted Airport Code3
Div3TotalGTime	Total Ground Time Away from Gate at Diverted Airport Code3
Div3LongestGTime	Longest Ground Time Away from Gate at Diverted Airport Code3
Div3WheelsOff	Wheels Off Time (local time: hhmm) at Diverted Airport Code3
Div3TailNum	Aircraft Tail Number for Diverted Airport Code3
Div4Airport	Diverted Airport Code4
Div4AirportID	Airport ID of Diverted Airport 4 Airport ID is a Unique Key for an Airport
Div4AirportSeqID	Airport Sequence ID of Diverted Airport 4 Unique Key for Time Specific Information for an Airport
Div4WheelsOn	Wheels On Time (local time: hhmm) at Diverted Airport Code4
Div4TotalGTime	Total Ground Time Away from Gate at Diverted Airport Code4
Div4LongestGTime	Longest Ground Time Away from Gate at Diverted Airport Code4
Div4WheelsOff	Wheels Off Time (local time: hhmm) at Diverted Airport Code4
Div4TailNum	Aircraft Tail Number for Diverted Airport Code4
Div5Airport	Diverted Airport Code5
Div5AirportID	Airport ID of Diverted Airport 5 Airport ID is a Unique Key for an Airport
Div5AirportSeqID	Airport Sequence ID of Diverted Airport 5 Unique Key for Time Specific Information for an Airport
Div5WheelsOn	Wheels On Time (local time: hhmm) at Diverted Airport Code5
Div5TotalGTime	Total Ground Time Away from Gate at Diverted Airport Code5
Div5LongestGTime	Longest Ground Time Away from Gate at Diverted Airport Code5
Div5WheelsOff	Wheels Off Time (local time: hhmm) at Diverted Airport Code5
Div5TailNum	Aircraft Tail Number for Diverted Airport Code5
Duplicate	Duplicate flag marked Y if the flight is swapped based on Form-3A data