CS 577 - Dynamic Programming

Marc Renault

Department of Computer Sciences University of Wisconsin – Madison

> Spring 2022 TopHat Join Code: 997116

Dynamic Programming

DP

Dynamic Programming

Richard Bellman

It is "programming" that is "dynamic"!

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA

Dynamic Programming

It is "programming" that is "dynamic"!

Richard Bellman

Why "Dynamic Programming"?

Reasons for the name:

- In the 1950s, "programming" was about "planning" rather than coding.
- "Dynamic" is exciting Air Force director didn't like research and wanted pizzazz.
- "Dynamic" sounds better than "linear" (Re: rival Dantzig).

OP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA

Dynamic Programming

It is "programming" that is "dynamic"!

Richard Bellman

What is it?

- Your new favourite algorithmic technique.
- Extreme Divide and Conquer
- Many sub-problems, but not quite brute-force.
- Dynamic in that it calculates a bunch of solutions from the "smallest" to the "largest".

Weighted Interval Scheduling

Problem Definition

• Requests: $\sigma = \{r_1, \cdots, r_n\}$

Problem Definition

- Requests: $\sigma = \{r_1, \cdots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.

Problem Definition

- Requests: $\sigma = \{r_1, \cdots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.

Problem Definition

- Requests: $\sigma = \{r_1, \cdots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule $S: \forall r_i, r_i \in S, f_i \leq s_i \lor f_i \leq s_i$.

Problem Definition

- Requests: $\sigma = \{r_1, \cdots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule $S: \forall r_i, r_j \in S, f_i \leq s_j \lor f_j \leq s_i$.

TH1: What is the value of the FF heuristic?

Problem Definition

- Requests: $\sigma = \{r_1, \cdots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule $S: \forall r_i, r_j \in S, f_i \leq s_j \lor f_j \leq s_i$.

TH1: What is the value of the FF heuristic? 2.

Weighted Interval Scheduling

Problem Definition

- Requests: $\sigma = \{r_1, \dots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule $S: \forall r_i, r_i \in S, f_i \leq s_i \lor f_i \leq s_i$.

TH1: What is the value of the FF heuristic? 2.

TH2: What is the optimal value?

Weighted Interval Scheduling

Problem Definition

- Requests: $\sigma = \{r_1, \dots, r_n\}$
- A request $r_i = (s_i, f_i, v_i)$, where s_i is the start time, f_i is the finish time, and v_i is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule $S: \forall r_i, r_i \in S, f_i \leq s_i \lor f_i \leq s_i$.

TH1: What is the value of the FF heuristic? 2.

TH2: What is the optimal value? 3.

DP **WIS** LIS Games Max Subarray Subset Edit SP Align* LS* RNA^{*}

RECURSIVE SOLUTION

Recursive Procedure

• Assume σ ordered by finish time (asc).

Recursive Procedure

- **1** Assume σ ordered by finish time (asc).
- **2** Find the optimal value in sorted σ of first j items:

Recursive Procedure

- **1** Assume σ ordered by finish time (asc).
- **2** Find the optimal value in sorted σ of first j items:
 - Find largest i < j such that $f_i \le s_j$.

Recursive Procedure

- **1** Assume σ ordered by finish time (asc).
- **2** Find the optimal value in sorted σ of first j items:
 - Find largest i < j such that $f_i \le s_j$.
 - **2** $\text{OPT}(j) = \max(\text{OPT}(j-1), \text{OPT}(i) + v_j)$

Recursive Procedure

- **1** Assume σ ordered by finish time (asc).
- **2** Find the optimal value in sorted σ of first j items:
 - Find largest i < j such that $f_i \le s_j$.
 - **2** $opt(j) = max(opt(j-1), opt(i) + v_j)$

Proof of optimality.

By strong induction on j.

Recursive Procedure

- **1** Assume σ ordered by finish time (asc).
- **2** Find the optimal value in sorted σ of first j items:
 - Find largest i < j such that $f_i \le s_j$.
 - **2** $\text{OPT}(j) = \max(\text{OPT}(j-1), \text{OPT}(i) + v_j)$

Proof of optimality.

By strong induction on *j*.

Base cases: j = 0 or j = 1: Only 1 possible optimal solution.

Recursive Procedure

- **1** Assume σ ordered by finish time (asc).
- **②** Find the optimal value in sorted σ of first j items:
 - Find largest i < j such that $f_i \le s_j$.
 - **2** $\text{OPT}(j) = \max(\text{OPT}(j-1), \text{OPT}(i) + v_j)$

Proof of optimality.

By strong induction on j.

Base cases: j = 0 or j = 1: Only 1 possible optimal solution.

Inductive step:

- By ind hyp, we have opt for i 1 and opt for i.
- FF assures the dichotomy that the last interval is either in the solution or not.
- Take the max of whether or not a given interval is included.

Consider the Recursion

$$\text{OPT}(j) = \max(\text{OPT}(j-1), \text{OPT}(i) + v_j)$$

Consider the Recursion

$$\text{OPT}(j) = \max(\text{OPT}(j-1), \text{OPT}(i) + v_j)$$

TH3: What is the asymptotic number of recursive calls with n jobs?

Consider the Recursion

$$\text{OPT}(j) = \max(\text{OPT}(j-1), \text{OPT}(i) + v_j)$$

TH3: What is the asymptotic number of recursive calls with n jobs? $O(2^n)$

Memoizing the Recursion

Memoization

- Not a typo.
- Coined in 1989 by Donald Michie.
- Derived from latin "memorandum", meaning "to be remembered".

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA

Memoizing the Recursion

Memoization

- Not a typo.
- Coined in 1989 by Donald Michie.
- Derived from latin "memorandum", meaning "to be remembered".

Basic Technique

- Calculate once: store the value in array and retrieve for future calls.
- Can be implemented recursively, but tends to be more natural as an iterative process.

Algorithm: WeightIntDP

```
Sort \sigma by finish time m[0] := 0

for j = 1 to n do m[i] = \max(m[i-1], m[i] + v_i)

end
```

Algorithm: WeightIntDP

```
Sort \sigma by finish time m[0] := 0 for j = 1 to n do \mid Find index i \mid m[j] = \max(m[j-1], m[i] + v_j) end
```

DP Solutions

- DP algorithms are formulaic.
- We understand how loops work.
- NO Pseudocode.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

Dynamic Program Solution

Algorithm: WEIGHTINTDP

```
Sort \sigma by finish time m[0] := 0 for j = 1 to n do \mid Find index i \mid m[j] = \max(m[j-1], m[i] + v_j) end
```

DP Solutions

- DP algorithms are formulaic.
- We understand how loops work.
- NO Pseudocode.

We want:

- Definitions required for algorithm to work
- Description of matrix
- Bellman Equation
- Location of solution, order to populate the matrix

Definitions required for algorithm to work

Definitions required for algorithm to work

- ullet σ sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that $f_i \le s_j$.

Definitions required for algorithm to work

- ullet σ sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that $f_i \le s_j$.

Description of matrix

Definitions required for algorithm to work

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that $f_i \le s_j$.

Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted σ .

Definitions required for algorithm to work

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that $f_i \le s_j$.

Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted σ .

Bellman Equation

Definitions required for algorithm to work

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that $f_i \le s_j$.

Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted σ .

Bellman Equation

• $m[j] = \max(m[j-1], m[i] + v_j)$

Definitions required for algorithm to work

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that $f_i \le s_i$.

Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted σ .

Bellman Equation

• $m[j] = \max(m[j-1], m[i] + v_j)$

Location of solution, order to populate

DP **WIS** LIS Games Max Subarray Subset Edit SP Align* LS* RNA*

Dynamic Program Solution

Definitions required for algorithm to work

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that $f_i \le s_i$.

Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted σ .

Bellman Equation

• $m[j] = \max(m[j-1], m[i] + v_j)$

Location of solution, order to populate

• The maximum value of a compatible schedule for the n jobs is found at m[n]. Populate from 1 to n.

ANALYZE THE ALGORITHM

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

ANALYZE THE ALGORITHM

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

Analyze the Algorithm

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

Runtime

• Preprocessing:

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.

Analyze the Algorithm

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:

Analyze the Algorithm

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: TopHat 4

Analyze the Algorithm

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: O(n)

ANALYZE THE ALGORITHM

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: O(n)
 - Cost per cell: TopHat 5

ANALYZE THE ALGORITHM

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: O(n)
 - Cost per cell: Finding i: O(n) linear search, $O(\log n)$ binary search

Analyze the Algorithm

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

Runtime

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: O(n)
 - Cost per cell: Finding i: O(n) linear search, $O(\log n)$ binary search

Overall: TopHat 6

Analyze the Algorithm

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

Runtime

- Preprocessing:
 - Sorting jobs: $O(n \log n)$.
- Populate the matrix:
 - Number of cells: O(n)
 - Cost per cell: Finding i: O(n) linear search, $O(\log n)$ binary search

Overall: $O(n^2)$ linear search, $O(n \log n)$ binary search

ANALYZE THE ALGORITHM

DP Solution

- \bullet σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

What about the schedule *S*?

ANALYZE THE ALGORITHM

DP Solution

- σ sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that $f_i \le s_j$.
- Bellman Equation: $m[j] = \max(m[j-1], m[i] + v_j)$

What about the schedule *S*?

Trace back from the optimal value:

• Job j is part of the optimal schedule from 1 to j iff $v_i + \text{OPT}(i) \ge \text{OPT}(j-1)$

BASIC DP OUTLINE

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

BASIC DP OUTLINE

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

Algorithm Guidelines

BASIC DP OUTLINE

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

Algorithm Guidelines

• There are only a polynomial number of subproblems.

BASIC DP OUTLINE

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

Algorithm Guidelines

- There are only a polynomial number of subproblems.
- 2 The solution to the larger problem can be efficiently calculated from the subproblems.

Basic DP Outline

Algorithm Template

- Preprocessing of data
- Populate the matrix:
 - Iterate over the cells in the correct order.
 - Understand the work done per cell.

Algorithm Guidelines

- There are only a polynomial number of subproblems.
- 2 The solution to the larger problem can be efficiently calculated from the subproblems.
- Natural ordering of the subproblems from "smallest" to "largest".

Longest Increasing Subsequence

Longest Increasing Subsequence

Problem

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all k.

Longest Increasing Subsequence

Problem

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all k.

Subsequence

• For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.

Longest Increasing Subsequence

Problem

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all k.

Subsequence

- For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.
- Ex: I like watching the puddles gather rain.
 - puddles: subsequence, substring (contiguous)
 - late train: subsequence, not substring (not contiguous)

Longest Increasing Subsequence

Problem

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all k.

Subsequence

- For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.
- Ex: I like watching the puddles gather rain.
 - puddles: subsequence, substring (contiguous)
 - late train: subsequence, not substring (not contiguous)

TH1: For an array of length *n*, how many subsequences?

Longest Increasing Subsequence

Problem

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have $A[i_k] < A[i_{k+1}]$ for all k.

Subsequence

- For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.
- Ex: I like watching the puddles gather rain.
 - puddles: subsequence, substring (contiguous)
 - late train: subsequence, not substring (not contiguous)

TH1: For an array of length n, how many subsequences? 2^n

Algorithm: LIS

Input: Integer k, and array of integers A[1..n].

Output: Return length of LIS where every value > k.

Exo: Complete the algorithm

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return \max\{skip, take\}
end
```

end

```
Algorithm: LIS

Input: Integer k, and array of integers A[1..n].

Output: Return length of LIS where every value > k. if n = 0 then return 0

else if A[1] \le k then

| return LIS(k, A[2..n])

else

| skip := LIS(k, A[2..n])

take := LIS(A[1], A[2..n]) + 1

return max\{skip, take\}
```

TH2: For an array A[1..n], how would you find the length of the LIS using the LIS(·) algorithm?

end

```
Algorithm: LIS

Input : Integer k, and array of integers A[1..n].

Output: Return length of LIS where every value > k. if n = 0 then return 0

else if A[1] \le k then

| return LIS(k, A[2..n])

else

| skip := LIS(k, A[2..n])

take := LIS(A[1], A[2..n]) + 1

return max\{skip, take\}
```

TH2: For an array A[1..n], how would you find the length of the LIS using the LIS(·) algorithm? LIS($-\infty$, A[1..n])

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return \max\{skip, take\}
end
```

TH3: Run time of the algorithm for a length n array?

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return \max\{skip, take\}
end
```

TH3: Run time of the algorithm for a length n array? $O(2^n)$

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return \max\{skip, take\}
end
```

TH3: Run time of the algorithm for a length n array? $O(2^n)$ TH4: How many distinct recursive calls for a length n array?

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return \max\{skip, take\}
end
```

TH3: Run time of the algorithm for a length n array? $O(2^n)$ TH4: How many distinct recursive calls for a length n array? $O(n^2)$

Dynamic Program for LIS

Description of matrix

TH5: Number of dimensions of array?

Dynamic Program for LIS

Description of matrix

TH5: Number of dimensions of array? 2

Dynamic Program for LIS

Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

Dynamic Program for LIS

Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

Bellman Equation

$$L[i,j] = \begin{cases} 0, & \text{if } j \ge n \\ L[i,j+1], & \text{if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, & \text{otherwise} \end{cases}$$

Dynamic Program for LIS

Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

Bellman Equation

$$L[i,j] = \begin{cases} 0, & \text{if } j \ge n \\ L[i,j+1], & \text{if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, & \text{otherwise} \end{cases}$$

Solution and populating L

- Solution in L[0][1]; add $A[0] = -\infty$.
- Populate j from n to 1; i from 0 to j 1 or j 1 to 0.

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

Dynamic Program for LIS

Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

Bellman Equation

$$L[i,j] = \begin{cases} 0, & \text{if } j \ge n \\ L[i,j+1], & \text{if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, & \text{otherwise} \end{cases}$$

Solution and populating *L*

- Solution in L[0][1]; add $A[0] = -\infty$.
- Populate j from n to 1; i from 0 to j 1 or j 1 to 0.
- TH6: Run time:

Dynamic Program for LIS

Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

Bellman Equation

$$L[i,j] = \begin{cases} 0, & \text{if } j \ge n \\ L[i,j+1], & \text{if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, & \text{otherwise} \end{cases}$$

Solution and populating *L*

- Solution in L[0][1]; add $A[0] = -\infty$.
- Populate j from n to 1; i from 0 to j 1 or j 1 to 0.
- Run time: $O(n^2)$

Dynamic Programming for Games

Dynamic Programming for Games

Games

- Some number of players (1 to many).
- Set of rules with some objective.
- Huge domain, started by Von Neumann, that spans many fields such as Economics, Math, Biology, and Computer Science.

Dynamic Programming for Games

Games

- Some number of players (1 to many).
- Set of rules with some objective.
- Huge domain, started by Von Neumann, that spans many fields such as Economics, Math, Biology, and Computer Science.

DP for Games

In many games, DP is a natural paradigm for an optimal strategy.

Coins in a Line

Coins in a Line

Players

Two players:

Alice (Player A)

Bob (Player B)

Rules

- *n* (even) coins in a line; each coin has a value.
- Starting with Alice, each player will pick a coin from the head or the tail.

Coins in a Line

Players

Two players:

Alice (Player A)

Bob (Player B)

Rules

- *n* (even) coins in a line; each coin has a value.
- Starting with Alice, each player will pick a coin from the head or the tail.
- Winner: Player with the max value at the end; winning player keeps the coins.

GREEDY APPROACHES

Largest Coin

TopHat D1: Give a counter-example.

GREEDY APPROACHES

Largest Coin

[1,3,6,3]

A: 3; [1,3,6]

B: 6; [1,3]

A: 6; [1]

B: 7; []

GREEDY APPROACHES

Largest Coin

Even or Odd

```
[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3]
A: 6; [1,3,6]
B: 7; [1,3]
A: 9; [1]
B: 8; []
```

GREEDY APPROACHES

Largest Coin

Even or Odd

```
[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3]
A: 6; [1,3,6]
B: 7; [1,3]
A: 9; [1]
B: 8; []
```

GAMES

GREEDY APPROACHES

Largest Coin

Even or Odd

```
[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3]
```

A: 6; [1,3,6]

B: 7; [1,3]

A: 9; [1]

B: 8; []

- Alice can always win.
- But are we optimal?

GAMES

GREEDY APPROACHES

Largest Coin

Even or Odd

[1,3,6,3,1,3]

A: 3; [1,3,6,3,1]

B: 1; [1,3,6,3]

A: 6; [1,3,6]

B: 7; [1,3]

A: 9; [1]

B: 8; []

• Alice can always win.

• But are we optimal? No

[1,3,6,3,1,3]

A: 3; [1,3,6,3,1]

B: 1; [3,6,3,1]

A: 4; [3,6,3]

B: 4; [6,3]

A: 10; [3]

B: 7; []

TH D2: What is the natural dichotomy?

Head or Tail?

• Two players: Assume that Bob will play optimally.

Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
 - Coin array: C[i..j]
 - $\max\{c[i] + \text{BobOpt}(c[i+1..j]), c[j] + \text{BobOpt}(c[i..j-1])\}$

Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
 - Coin array: C[i..j]
 - $\max\{c[i] + \text{BobOpt}(c[i+1..j]), c[j] + \text{BobOpt}(c[i..j-1])\}$
- BobOpt(c[i..j]) := min{AliceOpt(c[i+1..j]), AliceOpt(c[i..j-1])}

Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
 - Coin array: C[i..j]
 - $\max\{c[i] + \text{BobOpt}(c[i+1..j]), c[j] + \text{BobOpt}(c[i..j-1])\}$
- BobOpt(c[i..j]) := min{AliceOpt(c[i+1..j]), AliceOpt(c[i..j-1])}

TH1: How many dimensions for DP array?

NATURAL DICHOTOMY

Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
 - Coin array: C[i..j]
 - $\max\{c[i] + \text{BobOpt}(c[i+1..j]), c[j] + \text{BobOpt}(c[i..j-1])\}$
- BobOpt(c[i..j]) := min{AliceOpt(c[i+1..j]), AliceOpt(c[i..j-1])}

TH1: How many dimensions for DP array? 2

HEAD OR TAIL DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.

Head or Tail DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation: TopHat 2

HEAD OR TAIL DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$

$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

HEAD OR TAIL DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.

Head or Tail DP

- 2D array *M*:
 - M[i, j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate i from n 2 to 1; j from n to 3.

HEAD OR TAIL DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: TH3

Head or Tail DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: M[1, n]

Head or Tail DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: M[1, n]
- Runtime: TH4

Head or Tail DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: *M*[1, *n*]
- Runtime: $O(n^2)$

Head or Tail DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: M[1, n]
- Runtime: $O(n^2)$
- Proof of correctness:

Head or Tail DP

- 2D array *M*:
 - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$

$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$ for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: M[1, n]
- Runtime: $O(n^2)$
- Proof of correctness: Strong induction on the cell population order.

Max Subarray

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

Max Subarray

Problem

Given an array *A* of integers, find the contiguous subarray of *A* of maximum sum.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA

Max Subarray

Problem

Given an array *A* of integers, find the contiguous subarray of *A* of maximum sum.

Exercise – Teams of 3 or so

- Solve the problem in $\Theta(n^2)$.
- Solve the problem in $O(n \log n)$.
- Prove correctness and complexity.

Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRAYS
Input : Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
      if sum(A[i..j]) > sum(M) then
        M := A[i..j]
       end
   end
end
return M
```

Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRA
Input: Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
      if sum(A[i..j]) > sum(M
          M := A[i..j]
       end
   end
end
return M
```

Analysis

 Correct: Checks all possible contiguous subarrays.

Part 1: Give a $\Theta(n^2)$ solution.

Algorithm: CHECKALLSUBARRA **Input** : Array A of n ints. **Output:** Max subarray in *A*. Let M be an empty array **for** i := 1 to len(A) **do for** j := i to len(A) **do if** sum(A[i..j]) > sum(MM := A[i..j]end end end return M

Analysis

- Correct: Checks all possible contiguous subarrays.
- Complexity:
 - Re-calculating the sum will make it $O(n^3)$. Key is to calculate the sum as you iterate.
 - For each i, check n i + 1 ends. Overall:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSubarray

Input: Array *A* of *n* ints. **Output:** Max subarray in *A*.

 $A_1 := \text{MaxSubarray}(\text{Front-half of } A)$

 $A_2 := MaxSubarray(Back-half of A)$

M := MidMaxSubarray(A)

return *Array with max sum of* $\{A_1, A_2, M\}$

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSubarray

Input: Array A of n ints.

Output: Max subarray in *A*.

 $A_1 := MaxSubarray(Front-half of A)$

 $A_2 := MaxSubarray(Back-half of A)$

M := MidMaxSubarray(A)

return *Array with max sum of* $\{A_1, A_2, M\}$

Algorithm: MIDMAXSUBARRAY

Input : Array A of n ints.

Output: Max subarray that crosses midpoint *A*.

m := mid-point of A

 $L := \max \text{ subarray in } A[i, m-1] \text{ for } i = m-1 \rightarrow i$

 $R := \max \text{ subarray in } A[m, j] \text{ for } j = m \rightarrow n$

 $\textbf{return}\; L \cup R\; \textit{//} \; \; \textbf{subarray formed by combining} \; L \; \, \textbf{and} \; \; R.$

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

Part 2: Give an $O(n \log n)$ solution.

Algorithm: MaxSubarray

Input: Array *A* of *n* ints. **Output:** Max subarray in *A*.

 $A_1 := MaxSubarray(Front-half of A)$ $A_2 := MaxSubarray(Back-half of A)$

M := MidMaxSubarray(A)

return *Array with max sum of* $\{A_1, A_2, M\}$

Analysis

- Correctness: By induction, A_1 and A_2 are max for subarray and M is max mid-crossing array.
- Complexity: Same recurrence as MergeSort.

WIS LIS Games Max Subarray Subset Edit SP Align* LS* RNA

Max Subarray

Problem

Given an array *A* of integers, find the contiguous subarray of *A* of maximum sum.

Exercise – Teams of 3 or so

- Solve the problem in $\Theta(n^2)$.
- Solve the problem in $O(n \log n)$.
- Prove correctness and complexity.
- With dynamic programming, solve the problem in O(n)!

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA

Part 3: Give an O(n) solution.

DP Solution

- 1D array s, where s[i] contains the value of the max subarray ending at i. (O(n) cells)
- Bellman equation: $s[i] = \max(s[i-1] + A[i], A[i])$. (O(1) time)
- Solutions is: $\max_{j} \{s[j]\}$. (O(n) time)

Part 3: Give an O(n) solution.

DP Solution

- 1D array s, where s[i] contains the value of the max subarray ending at i. (O(n) cells)
- Bellman equation: $s[i] = \max(s[i-1] + A[i], A[i])$. (O(1) time)
- Solutions is: $\max_{j} \{s[j]\}$. (O(n) time)

But we need the subarray not the value!

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA

Part 3: Give an O(n) solution.

DP Solution

- 1D array s, where s[i] contains the value of the max subarray ending at i. (O(n) cells)
- Bellman equation: $s[i] = \max(s[i-1] + A[i], A[i])$. (O(1) time)
- Solutions is: $\max_{j} \{s[j]\}$. (O(n) time)

But we need the subarray not the value!

• Use a parallel array that memoizes the starting index of the subarray ending at *i*:

$$start[i] = \begin{cases} start[i-1] & \text{if } s[i-1] + a[i] > a[i] \\ i & \text{, otherwise} \end{cases}$$

DP WIS LIS GAMES **Max Subarray** Subset Edit SP Align* LS* RNA*

Part 3: Give an O(n) solution.

DP Solution

- 1D array s, where s[i] contains the value of the max subarray ending at i. (O(n) cells)
- Bellman equation: $s[i] = \max(s[i-1] + A[i], A[i])$. (O(1) time)
- Solutions is: $\max_{j} \{s[j]\}$. (O(n) time)

But we need the subarray not the value!

• Use a parallel array that memoizes the starting index of the subarray ending at *i*:

$$start[i] = \begin{cases} start[i-1] & \text{if } s[i-1] + a[i] > a[i] \\ i & \text{, otherwise} \end{cases}$$

• Or, trace back from max value at index j until s[i] = A[i].

Subset and Knapsack

Problem Definition

• A single machine that we can use for time *W*.

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: $1, 2, \ldots, n$.

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: $1, 2, \ldots, n$.
- Each job has a run time: w_1, w_2, \ldots, w_n .

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, ..., n.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, ..., n.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, ..., n.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

• Decreasing weights: TopHat D1

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, ..., n.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

• Decreasing weights: $\{W/2 + 1, W/2, W/2\}$

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, ..., n.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

- Decreasing weights: $\{W/2 + 1, W/2, W/2\}$
- Increasing weights: TopHat D2

Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, ..., n.
- Each job has a run time: w_1, w_2, \ldots, w_n .
- What is the subset *S* of jobs to run that maximizes $\sum_{i \in S} w_i \leq W$?

Greedy Heuristics

- Decreasing weights: $\{W/2 + 1, W/2, W/2\}$
- Increasing weights: {1, W/2, W/2}

1D Approach

• if $n \notin S$, then v[n] = v[n-1]

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?
 - Accepting *n* does automatically exclude other items.

1D Approach

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?
 - Accepting *n* does automatically exclude other items.

Need to consider more

To solve v[n], we need to consider:

1D Approach

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?
 - Accepting *n* does automatically exclude other items.

Need to consider more

To solve v[n], we need to consider:

• the best solution with n-1 previous items restricted by W, and

1D Approach

- if $n \notin S$, then v[n] = v[n-1]
- if $n \in S$, then v[n] = ?
 - Accepting *n* does automatically exclude other items.

Need to consider more

To solve v[n], we need to consider:

- the best solution with n-1 previous items restricted by W, and
- the best solution with n-1 previous items restricted by $W-w_n$

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - *w*: Max weight from 0 to *W*.

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

2D Approach

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

• v[0, w] := 0 for all w and v[i, 0] := 0 for all i

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i, w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

WIS LIS GAMES MAX SUBARRAY **Subset** Edit SP Align* LS* RNA*

Dynamic Programming Approach

2D Approach

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

TH7: Running time to populate the matrix:

2D Approach

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

TH7: Running time to populate the matrix: O(nW)

WIS LIS GAMES MAX SUBARRAY **Subset** Edit SP Align* LS* RNA

Dynamic Programming Approach

2D Approach

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

TH7: Running time to populate the matrix: O(nW)

TH8: Is this polynomial?

Dynamic Programming Approach

2D Approach

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

TH7: Running time to populate the matrix: O(nW) TH8: Is this polynomial? No, *pseudo-polynomial* because of W which is unbounded.

Matrix Visualization:

Example Run:

$$W = 6$$
, items $w_1 = 2$, $w_2 = 2$, $w_3 = 3$

Initial values

Example Run:

$$W = 6$$
, items $w_1 = 2$, $w_2 = 2$, $w_3 = 3$

Filling in values for i = 1

Example Run:

$$W = 6$$
, items $w_1 = 2$, $w_2 = 2$, $w_3 = 3$

Initial values

Filling in values for i = 1

Filling in values for i = 2

Example Run:

$$W = 6$$
, items $w_1 = 2$, $w_2 = 2$, $w_3 = 3$

Initial values

Filling in values for i = 1

Filling in values for i = 2

Filling in values for i = 3

WIS LIS GAMES MAX SUBARRAY **Subset** Edit SP Align* LS* RNA*

Dynamic Programming Approach

2D Approach

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

How can we recover the subset itself?

Dynamic Programming Approach

2D Approach

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

How can we recover the subset itself?

TH9: Running time of recovery of subset:

Dynamic Programming Approach

2D Approach

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

How can we recover the subset itself?

TH9: Running time of recovery of subset: O(n)

KNAPSACK EXTENSION

Problem Definition

• You are a thief with a knapsack that can carry *W* weight of goods.

KNAPSACK EXTENSION

Problem Definition

- You are a thief with a knapsack that can carry *W* weight of goods.
- A set of items: $1, 2, \ldots, n$.

P WIS LIS GAMES MAX SUBARRAY **SUBSET** EDIT SP ALIGN* LS* RNA*

KNAPSACK EXTENSION

Problem Definition

- You are a thief with a knapsack that can carry *W* weight of goods.
- A set of items: $1, 2, \ldots, n$.
- Each item has a weight: w_1, w_2, \ldots, w_n .
- Each item has a value: v_1, v_2, \ldots, v_n .

DP WIS LIS GAMES MAX SUBARRAY **Subset** Edit SP Align* LS* RNA*

KNAPSACK EXTENSION

Problem Definition

- You are a thief with a knapsack that can carry *W* weight of goods.
- A set of items: $1, 2, \ldots, n$.
- Each item has a weight: w_1, w_2, \dots, w_n .
- Each item has a value: v_1, v_2, \ldots, v_n .
- What is the subset *S* of items to steal that maximizes $\sum_{i \in S} v_i$ with the constraint that $\sum_{i \in S} w_i \leq W$?

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + v_i))$$

DP Solution

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + v_i))$$

• v[0, w] := 0 for all w and v[i, 0] := 0 for all i

WIS LIS GAMES MAX SUBARRAY **Subset** Edit SP Align* LS* RNA*

Exercise: Solve this with DP in O(nW).

- 2D Matrix:
 - *i*: Item indices from 0 to *n*.
 - w: Max weight from 0 to W.
- Indicator: $x_{i,w} := 0$ if $w_i > w$ and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + v_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

Edit

EDIT DISTANCE

WIS LIS GAMES MAX SUBARRAY SUBSET **Edit** SP Align* LS* RNA*

EDIT DISTANCE

Problem

Minimum number of letter

- insertions: adding a letter,
- deletions: removing a letter,
- substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

EDIT DISTANCE

Problem

Minimum number of letter

- insertions: adding a letter,
- deletions: removing a letter,
- substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY \rightarrow THUESDAY \rightarrow THURSDAY

P WIS LIS GAMES MAX SUBARRAY SUBSET **Edit** SP Align* LS* RNA*

EDIT DISTANCE

Problem

Minimum number of letter

- insertions: adding a letter,
- deletions: removing a letter,
- substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY \rightarrow THUESDAY \rightarrow THURSDAY

Or, align and count mismatched letters

T UESDAY THURSDAY

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..i]:
 - Insertion: Edit(i, j) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: Edit(i, j) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: Edit(i, j) = TH1

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: Edit(i, j) = Edit(i 1, j) + 1.
 - Substitution: Edit(i, j) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: Edit(i, j) = Edit(i 1, j) + 1.
 - Substitution: Edit(i, j) = TH2

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: Edit(i, j) = Edit(i 1, j) + 1.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + 1$.

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: Edit(i, j) = Edit(i 1, j) + 1.
 - Substitution: Edit $(i, j) = \text{Edit}(i 1, j 1) + A[i] \neq B[j]$

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$
 - i = 0: Edit(i, j) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$
 - i = 0: Edit(i, j) = TH3

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$.
 - Substitution: Edit $(i,j) = \text{Edit}(i-1,j-1) + A[i] \neq B[j]$
 - i = 0: Edit(i, j) = j.

RECURSIVE APPROACH

Smaller Subproblems

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
 - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
 - Deletion: Edit(i, j) = Edit(i 1, j) + 1.
 - Substitution: $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$
 - i = 0: Edit(i, j) = j.
 - j = 0: Edit(i, j) = i.

WIS LIS GAMES MAX SUBARRAY SUBSET **Edit** SP Align* LS* RNA*

Dynamic Program for Edit Distance

Description of matrix

TH4: Number of dimensions of array?

P WIS LIS GAMES MAX SUBARRAY SUBSET **Edit** SP Align* LS* RNA*

Dynamic Program for Edit Distance

Description of matrix

TH4: Number of dimensions of array? 2

P WIS LIS GAMES MAX SUBARRAY SUBSET **Edit** SP Align* LS* RNA*

Dynamic Program for Edit Distance

Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

DYNAMIC PROGRAM FOR EDIT DISTANCE

Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

DP WIS LIS GAMES MAX SUBARRAY SUBSET **Edit** SP Align* LS* RNA*

Dynamic Program for Edit Distance

Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

Solution and populating *L*

- Solution in TopHat 5
- Set E[0,j] = i; E[i,0] = j; populate from 1 to n, 1 to m.

DP WIS LIS GAMES MAX SUBARRAY SUBSET **Edit** SP Align* LS* RNA*

Dynamic Program for Edit Distance

Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

Solution and populating *L*

- Solution in E[m, n]
- Set E[0,j] = i; E[i,0] = j; populate from 1 to n, 1 to m.
- TH6: Run time:

DP WIS LIS GAMES MAX SUBARRAY SUBSET **Edit** SP Align* LS* RNA*

Dynamic Program for Edit Distance

Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

Solution and populating *L*

- Solution in E[m, n]
- Set E[0,j] = i; E[i,0] = j; populate from 1 to n, 1 to m.
- Run time: O(mn)

WIS LIS GAMES MAX SUBARRAY SUBSET **Edit** SP Align* LS* RNA

SPACE SAVINGS

Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

How much space do we need?

- Notice that E[i][j] depends on E[i, j-1], E[i-1, j], and E[i-1, j-1].
- We only need previous and current row of matrix for calculations.

SHORTEST PATH

SHORTEST PATH

Going Negative

Problem Definition

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node s that has a path to every other node in V. For each edge e = (i, j), c_{ij} is the weight of the edge, and the are no cycles with negative weight.

• What is the shortest path from *s* to each other node?

SHORTEST PATH

Going Negative

Problem Definition

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node s that has a path to every other node in V. For each edge e = (i, j), c_{ij} is the weight of the edge, and the are no cycles with negative weight.

• What is the shortest path from *s* to each other node?

Richard Bellman

L R Ford Jr.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT **SP** ALIGN* LS* RNA

SHORTEST PATH

Going Negative

Problem Definition

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node s that has a path to every other node in V. For each edge e = (i, j), c_{ij} is the weight of the edge, and the are no cycles with negative weight.

• What is the shortest path from *s* to each other node?

Why no negative cycles?

Dijkstra's

Algorithm: *Dijkstra's*

Let *S* be the set of explored nodes.

For each $u \in S$, we store a distance value d(u).

Initialize $S = \{s\}$ and d(s) = 0

while $S \neq V$ do

Choose $v \notin S$ with at least one incoming edge originating from a node in S with the smallest

$$d'(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e$$

Append v to S and define d(v) = d'(v).

end return S

Dijkstra's

Negative Problem

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT **SP** ALIGN* LS* RNA

Dijkstra's

Negative Problem

• Lose guarantee that minimum edge between S and $V \setminus S$ is part of minimum path.

Dijkstra's

Negative Problem

• Lose guarantee that minimum edge between S and $V \setminus S$ is part of minimum path.

Why not just boost all edges by max negative value plus a bit (β) ?

Dijkstra's

Negative Problem

• Lose guarantee that minimum edge between S and $V \setminus S$ is part of minimum path.

Why not just boost all edges by max negative value plus a bit (β) ?

• A path with x edges: Cost increases $x \cdot \beta$.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT **SP** ALIGN* LS* RNA

Dijkstra's

Negative Problem

• Lose guarantee that minimum edge between S and $V \setminus S$ is part of minimum path.

Why not just boost all edges by max negative value plus a bit (β) ?

- A path with x edges: Cost increases $x \cdot \beta$.
- Solution in new graph is not guaranteed to be optimal in original graph.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT **SP** ALIGN* LS* RNA

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

Dynamic Program

• 2D matrix M of # edges in path \times vertices.

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path \times vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT **SP** ALIGN* LS* RNA*

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path \times vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - TH23: Where is the solution?

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path \times vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: M[n-1][s]

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT **SP** ALIGN* LS* RNA

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path \times vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: M[n-1][s]
- Dichotomy:

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT **SP** ALIGN* LS* RNA

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path \times vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: M[n-1][s]
- Dichotomy:
 - Use $\leq i 1$ edges.
 - Use $\leq i$ edges.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

Dynamic Program

- 2D matrix M of # edges in path \times vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: M[n-1][s]
- Dichotomy:
 - Use $\leq i 1$ edges.
 - Use $\leq i$ edges.

TH24: Build the Bellman equation.

Bellman-Ford

Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

Dynamic Program

- 2D matrix M of # edges in path \times vertices.
 - M[i][v] is the shortest path from v to t using $\leq i$ edges.
 - Solution: M[n-1][s]
- Dichotomy:
 - Use $\leq i 1$ edges.
 - Use $\leq i$ edges.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\},\$$

where $c_{vw} = \infty$ if no edge from v to w.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

• TH25: # of Cells:

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

• # of Cells: $O(n^2)$.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- TH26: Cost per cell:

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- Cost per cell: O(n).

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- Cost per cell: O(n).
- Overall: $O(n^3)$.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes

- # of Cells: $O(n^2)$.
- Cost per cell: O(n).
- Overall: $O(n^3)$.

Worst Case: *n* nodes, *m* edges

- For each node v, we only need to consider outgoing edges to w (denoted by η_v).
- For every node v, we need to do this calculation for $0 \le i \le n-1$ lengths.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: n nodes

- # of Cells: $O(n^2)$.
- Cost per cell: O(n).
- Overall: $O(n^3)$.

Worst Case: n nodes, m edges

- For each node v, we only need to consider outgoing edges to w (denoted by η_v).
- For every node v, we need to do this calculation for $0 \le i \le n-1$ lengths.
- Overall: $O(n \sum_{v \in V} \eta_v) = O(mn)$.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes, *m* edges

• Overall: $O(n \sum_{v \in V} \eta_v) = O(mn)$.

Space Saving: O(n).

- To build row *i*:
 - We only need i 1 values for each node.
 - $M[v] = \min\{M[v], \min_{w \in V}\{M[w] + c_{vw}\}\}$ for each *i*.

Bellman-Ford Analysis

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes, *m* edges

• Overall: $O(n \sum_{v \in V} \eta_v) = O(mn)$.

Space Saving: O(n).

- To build row *i*:
 - We only need i 1 values for each node.
 - $M[v] = \min\{M[v], \min_{w \in V}\{M[w] + c_{vw}\}\}$ for each *i*.
- Recovery of actual path:

Bellman-Ford Analysis

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

Worst Case: *n* nodes, *m* edges

• Overall: $O(n \sum_{v \in V} \eta_v) = O(mn)$.

Space Saving: O(n).

- To build row *i*:
 - We only need i 1 values for each node.
 - $M[v] = \min\{M[v], \min_{w \in V}\{M[w] + c_{vw}\}\}$ for each *i*.
- Recovery of actual path: An additional array *first*[v] that maintains the first hop from v to t.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT **SP** ALIGN* LS* RNA*

NEGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is $-\infty$.

NEGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is $-\infty$.

Observation 3

M[i][v] = M[n-1][v] for all i > n-1 and all nodes v if there are no negative cycles on the paths to t.

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT **SP** ALIGN* LS* RNA*

NEGATIVE CYCLES

Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is $-\infty$.

Observation 3

M[i][v] = M[n-1][v] for all i > n-1 and all nodes v if there are no negative cycles on the paths to t.

Augmented Graph for Negative Cycle Finding

- Add a node *t* with an incoming edge from all other nodes with cost 0.
- Run Bellman-Ford from any node *s* to *t* until number of edges *n*.
- If, for some v, $M[n][v] \neq M[n-1][v]$, then there is a negative cycle.

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from S.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from S.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from S.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

 $\delta = 3$; $\alpha_{pp} = 0$; $\alpha_{pq} = 1$ TopHat Q16: What is the cost of the matching: o-currance occurrence

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from S.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

 $\delta = 3$; $\alpha_{pp} = 0$; $\alpha_{pq} = 1$ TopHat Q17: What is the cost of the matching: o-curr-ance occurre-nce

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from S.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{vq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

$$\delta = 1$$
; $\alpha_{pp} = 0$; $\alpha_{pq} = 4$
TopHat Q18: What is the cost of the matching: o-currance occurrence

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from S.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{pq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

 $\delta = 1$; $\alpha_{pp} = 0$; $\alpha_{pq} = 4$ TopHat Q19: What is the cost of the matching: o-curr-ance occurre-nce

- An alphabet *S*.
- Strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ from S.
- A matching $M = \{(i, j)\}$ of pairs without crossings, where $i \in [1, m]$ and $j \in [1, n]$.
- Cost:
 - Gaps (unmatched indexes) have a cost of δ .
 - For each symbol pair $p, q \in S$, α_{vq} is the matching cost.
- Goal: Find the matching that minimizes the cost.

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA

DESIGNING NEEDLEMAN-WUNSCH ALGORITHM

Basic Dichotomy

In optimal alignment M, either $(m, n) \in M$ or $(m, n) \notin M$.

Basic Dichotomy

In optimal alignment M, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let M be any alignment of X and Y. If $(m, n) \notin M$, then either the mth position of X, or the nth position of Y is not matched in M.

Basic Dichotomy

In optimal alignment M, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let M be any alignment of X and Y. If $(m, n) \notin M$, then either the mth position of X, or the nth position of Y is not matched in M.

Basic Dichotomy

In optimal alignment M, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let M be any alignment of X and Y. If $(m, n) \notin M$, then either the mth position of X, or the nth position of Y is not matched in M.

Proof.

• By way of contradiction, assume that

Designing Needleman–Wunsch Algorithm

Basic Dichotomy

In optimal alignment M, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let M be any alignment of X and Y. If $(m, n) \notin M$, then either the mth position of X, or the nth position of Y is not matched in M.

Proof.

• By way of contradiction, assume that $(m, n) \notin M$, and $(m, j), (i, n) \in M$ for i < m and j < n.

Basic Dichotomy

In optimal alignment M, either $(m, n) \in M$ or $(m, n) \notin M$.

Lemma 1

Let M be any alignment of X and Y. If $(m, n) \notin M$, then either the mth position of X, or the nth position of Y is not matched in M.

- By way of contradiction, assume that $(m, n) \notin M$, and $(m, j), (i, n) \in M$ for i < m and j < n.
- Contradicts the non-crossing requirement.

Key Concepts for Optimality

- **1** $(m, n) \in M$; or
- 2 the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.

Key Concepts for Optimality

- $(m,n) \in M; or$
- 2 the *m*th position of *X* is not matched; or
- the *n*th position of Y is not matched.
 - TH20: How many dimensions for the matrix?

Key Concepts for Optimality

- **1** $(m, n) \in M$; or
- **2** the *m*th position of *X* is not matched; or
- **3** the *n*th position of *Y* is not matched.
 - 2D matrix called A, where A[i][j] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_j$.

Key Concepts for Optimality

- **1** $(m, n) \in M$; or
- 2 the *m*th position of *X* is not matched; or
- **3** the *n*th position of *Y* is not matched.
 - 2D matrix called A, where A[i][j] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_j$.
 - TH21: Build the Bellman equation.

Key Concepts for Optimality

- **1** $(m, n) \in M$; or
- 2 the *m*th position of *X* is not matched; or
- **3** the *n*th position of *Y* is not matched.
- 2D matrix called A, where A[i][j] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_i$.
- $\bullet \ A[i][j] = \min\{\alpha_{x_iy_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$

Key Concepts for Optimality

- **1** $(m, n) \in M$; or
- 2 the *m*th position of *X* is not matched; or
- **3** the *n*th position of *Y* is not matched.
- 2D matrix called A, where A[i][j] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_j$.
- $\bullet \ A[i][j] = \min\{\alpha_{x_iy_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$
- Runtime: TH22

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA

DESIGNING NEEDLEMAN-WUNSCH ALGORITHM

Key Concepts for Optimality

- **1** $(m, n) \in M$; or
- 2 the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.
 - 2D matrix called A, where A[i][j] is alignment of minimum cost for $x_1x_2...x_i$ and $y_1y_2...y_i$.
 - $A[i][j] = \min\{\alpha_{x_iy_i} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$
 - Runtime: O(mn).

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i,j f(i,j) = A[i][j]$.

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i,j f(i,j) = A[i][j]$.

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i,j f(i,j) = A[i][j]$.

Proof.

By strong induction on

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i,j f(i,j) = A[i][j]$.

Proof.

• By strong induction on (i + j).

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i,j f(i,j) = A[i][j]$.

- By strong induction on (i + j).
- Base case:

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i,j f(i,j) = A[i][j]$.

- By strong induction on (i + j).
- Base case: i + j = 0. We have f(0,0) = 0 = A[0][0].
- Induction hypothesis: The claim holds for all pairs (i', j') such that i' + j' < i + j.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP **Align*** LS* RNA

GRAPHING THE ALGORITHM

Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then, $\forall i,j f(i,j) = A[i][j]$.

- By strong induction on (i + j).
- Base case: i + j = 0. We have f(0, 0) = 0 = A[0][0].
- Induction hypothesis: The claim holds for all pairs (i', j') such that i' + j' < i + j.
- Inductive step:

$$f(i,j) = \min\{\alpha_{x_i y_j} + f(i-1,j-1), \delta + f(i-1,j), \delta + f(i,j-1)\}$$

$$= \min\{\alpha_{x_i y_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

$$= A[i,j]$$

SEQUENCE ALIGNMENT EXAMPLE

$$A[i][j] = \min\{\alpha_{x_i y_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

- "mean" vs "name"
- $\delta = 2$; $\alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 1 & \text{otherwise} \end{cases}$
 - n a e m a n m

SEQUENCE ALIGNMENT EXAMPLE

$$A[i][j] = \min\{\alpha_{x_i y_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

• "mean" vs "name"

•
$$\delta = 2$$
; $\alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 1 & \text{otherwise} \end{cases}$

	n	8	6	5	4	6
	a	6	5	3	5	5
	e	4	3	2	4	4
•	m	2	1	3	4	6
٠	-	0	2	4	6	8
		-	n	a	m	e

SEQUENCE ALIGNMENT EXAMPLE

$$A[i][j] = \min\{\alpha_{x_i y_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

- "mean" vs "name"
- $\delta = 2$; $\alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 2 & \text{otherwise} \end{cases}$

n					
a					
e					
m					
-					
	-	n	a	m	e
	a e	a e	a e m -	a e m -	a e m -

SEQUENCE ALIGNMENT EXAMPLE

$$A[i][j] = \min\{\alpha_{x_i y_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

• "mean" vs "name"

•
$$\delta = 2$$
; $\alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 2 & \text{otherwise} \end{cases}$

•	n	8	6	6	6	8
	a	6	6	4	6	6
	e	4	4	4	6	4
	m	2	2	4	4	6
	-	0	2	4	6	8
•		-	n	a	m	e

Least Squares

SEGMENTED LEAST SQUARES

Problem Setup

- Set of n points: $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ on the plane.
- Suppose $x_1 < x_2 < \cdots < x_n$.
- Find L: y = ax + b that minimizes: $\operatorname{Error}(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$.

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* **LS*** RNA*

SEGMENTED LEAST SQUARES

Problem Setup

- Set of n points: $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ on the plane.
- Suppose $x_1 < x_2 < \cdots < x_n$.
- Find L: y = ax + b that minimizes: $\operatorname{Error}(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$.

Problem Formulation

- Partition the points (by *x*) into contiguous subsets.
- Minimize the sum of $Error(L, p_i) + C$ for all subsets, where C is a fixed cost per subset.

SEGMENTED LEAST SQUARES

Problem Setup

- Set of n points: $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ on the plane.
- Suppose $x_1 < x_2 < \cdots < x_n$.
- Find L: y = ax + b that minimizes: $\operatorname{Error}(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$.

Problem Formulation

- Partition the points (by *x*) into contiguous subsets.
- Minimize the sum of $Error(L, p_i) + C$ for all subsets, where C is a fixed cost per subset.

DP WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* **LS*** RNA*

SEGMENTED LEAST SQUARES

Problem Setup

- Set of n points: $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ on the plane.
- Suppose $x_1 < x_2 < \cdots < x_n$.
- Find L: y = ax + b that minimizes: $\operatorname{Error}(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$.

Problem Formulation

- Partition the points (by *x*) into contiguous subsets.
- Minimize the sum of $Error(L, p_i) + C$ for all subsets, where C is a fixed cost per subset.

DP Solution

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

LS*

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

• $e_{i,j}$ is the min error for a partition from i to j.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

Complexity

• Preprocess error calc $e_{i,j}$ can be done in $O(n^2)$.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

- Preprocess error calc $e_{i,j}$ can be done in $O(n^2)$.
- Number of cells: TH10

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

- Preprocess error calc $e_{i,j}$ can be done in $O(n^2)$.
- Number of cells: O(n).

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

- Preprocess error calc $e_{i,j}$ can be done in $O(n^2)$.
- Number of cells: O(n).
- Work done for cell *j*: TH11

DP Solution

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

- Preprocess error calc $e_{i,j}$ can be done in $O(n^2)$.
- Number of cells: O(n).
- Work done for cell j: O(j).

DP Solution

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

Notes

- $e_{i,j}$ is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

- Preprocess error calc $e_{i,j}$ can be done in $O(n^2)$.
- Number of cells: O(n).
- Work done for cell j: O(j).
- Overall: $O(n^2)$.

RNA SECONDARY STRUCTURE

RNA SECONDARY STRUCTURE

Problem Definition

- RNA tends to loop back on itself, forming base pairs.
- RNA alphabet: $\{A, C, G, U\}$.
- Valid pairs: (A, U) or (C, G).

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

RNA SECONDARY STRUCTURE

Problem Definition

- RNA tends to loop back on itself, forming base pairs.
- RNA alphabet: $\{A, C, G, U\}$.
- Valid pairs: (A, U) or (C, G).
- Input: n length string: $B = b_1 b_2 \dots b_n$
- Output: Determine a secondary structure with maximum number of base pairs.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

RNA SECONDARY STRUCTURE

Secondary Structure

 $S = \{(i,j)\}$, where i < j and $i, j \in \{1, \dots, n\}$, such that:

- No Sharp turns: i < j d for some constant d.
- 2 All pairs are valid.
- **S** is a matching: no base appears more than once.
- **●** Non-crossing: For any $(i,j), (i',j') \in S$, we cannot have i < i' < j < j'.

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

FIRST DYNAMIC PROGRAMMING ATTEMPT

1D Approach

• 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.

- 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.

- 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: m[n].

1D Approach

- 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: m[n].

Recursive Sub-problems

1D Approach

- 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: m[n].

Recursive Sub-problems

Dichotomy:

• *j* is not a pair: m[j] = m[j-1].

1D Approach

- 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: m[n].

Recursive Sub-problems

- *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
 - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].

1D Approach

- 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: m[n].

Recursive Sub-problems

- **1** *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
 - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
 - Sub-problems:

1D Approach

- 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: m[n].

Recursive Sub-problems

- *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
 - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
 - Sub-problems:
 - Max pairs in [1, t 1]: m[t 1].

1D Approach

- 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: m[n].

Recursive Sub-problems

- **1** *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
 - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
 - Sub-problems:
 - Max pairs in [1, t 1]: m[t 1].
 - **2** Max pairs in [t + 1, j 1]:

1D Approach

- 1D array m, where m[j] is the maximum # of pairs among: $b_1b_2...b_j$.
- No sharp turns: m[j] = 0 for $j \le d + 1$.
- Solution: m[n].

Recursive Sub-problems

- **1** *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
 - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
 - Sub-problems:
 - Max pairs in [1, t 1]: m[t 1].
 - **2** Max pairs in [t+1, j-1]: Restricted to $b_{t+1}b_{t+2} \dots b_{j-1}$ which current DP does not calculate.

2D Approach

• 2D array m, where m[i][j] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.

- 2D array m, where m[i][j] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.

- 2D array m, where m[i][j] is the maximum # of pairs among: $b_ib_{i+1}...b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: TopHat 12

- 2D array m, where m[i][j] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: m[1][n].

2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: m[1][n].

Recursive Sub-problems

2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among: $b_ib_{i+1}...b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: m[1][n].

Recursive Sub-problems

Dichotomy:

1 *j* is not a pair: m[i][j] = m[i][j-1].

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

SECOND DYNAMIC PROGRAMMING ATTEMPT

2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among: $b_ib_{i+1}...b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: m[1][n].

Recursive Sub-problems

- **1** *j* is not a pair: m[i][j] = m[i][j-1].
- 2 j is paired with $i \le t < j d$
 - v_{ij} as indicator: 1 if valid pair, 0 otherwise
 - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].

WIS LIS GAMES MAX SUBARRAY SUBSET EDIT SP ALIGN* LS* RNA*

SECOND DYNAMIC PROGRAMMING ATTEMPT

2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: m[1][n].

Recursive Sub-problems

- **1** *j* is not a pair: m[i][j] = m[i][j-1].
- 2 j is paired with $i \le t < j d$
 - v_{ij} as indicator: 1 if valid pair, 0 otherwise
 - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].
 - Sub-problems:
 - Max pairs in [i, t 1]: m[i][t 1].

2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.
- No sharp turns: m[i][j] = 0 for $i \ge j d$.
- Solution: m[1][n].

Recursive Sub-problems

- **1** *j* is not a pair: m[i][j] = m[i][j-1].
- **2** j is paired with $i \le t < j d$
 - v_{ij} as indicator: 1 if valid pair, 0 otherwise
 - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].
 - Sub-problems:
 - Max pairs in [i, t 1]: m[i][t 1].
 - **2** Max pairs in [t+1, j-1]: m[t+1][j-1].

2D Approach

• 2D array m, where m[i][j] is the maximum # of pairs among: $b_ib_{i+1}...b_j$.

Recursive Sub-problems

Dichotomy:

- **1** *j* is not a pair: m[i][j] = m[i][j-1].
- 2 j is paired with $i \le t < j d$
 - v_{ij} as indicator: 1 if valid pair, 0 otherwise
 - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].
 - Sub-problems:
 - **1** Max pairs in [i, t 1]: m[i][t 1].
 - **2** Max pairs in [t+1, j-1]: m[t+1][j-1].

TopHat 13: What is the Bellman equation?

2D Approach

• 2D array m, where m[i][j] is the maximum # of pairs among: $b_i b_{i+1} \dots b_j$.

Recursive Sub-problems

- **1** *j* is not a pair: m[i][j] = m[i][j-1].
- **2** j is paired with $i \le t < j d$
 - v_{ij} as indicator: 1 if valid pair, 0 otherwise
 - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].
 - Sub-problems:
 - **1** Max pairs in [i, t 1]: m[i][t 1].
 - **2** Max pairs in [t+1, j-1]: m[t+1][j-1].

$$m[i][j] = \max (m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\})$$

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max\left(m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\}\right)$$

• B = ACCGGUAGU and d = 4

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

- # of cells: TH14
- Work per cell:

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

• B = ACCGGUAGU and d = 4

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

- # of cells: $O(n^2)$.
- Work per cell:

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

• B = ACCGGUAGU and d = 4

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

- # of cells: $O(n^2)$.
- Work per cell: TH15

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

• B = ACCGGUAGU and d = 4

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

- # of cells: $O(n^2)$.
- Work per cell: O(n).

$$m[i][j] = \max \left(m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

• B = ACCGGUAGU and d = 4

i				
4	0	0	0	0
3	0	0	1	1
2	0	0	1	1
1	1	1	1	2
j	6	7	8	9

- # of cells: $O(n^2)$.
- Work per cell: O(n).
- Overall: $O(n^3)$.

Appendix Reference

Appendix

Appendix References

REFERENCES

PPENDIX REFERENCES

IMAGE SOURCES I

https://medium.com/neurosapiens/ 2-dynamic-programming-9177012dcdd

https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/

http://www.sequence-alignment.com/

https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035

https://brand.wisc.edu/web/logos/

Appendix References

IMAGE SOURCES II

https://www.pngfind.com/mpng/mTJmbx_ spongebob-squarepants-png-image-spongebob-cartoo

https://www.pngfind.com/mpng/xhJRmT_cheshire-cat-vintage-drawing-alice-in-wonderland