Application No. 09/678,202 Amendment dated November 24, 2004 Reply to Office Action of May 26, 2004

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (currently amended) A method of reducing the damage done by reactive oxygen species (ROS) in an animal comprising administering to the animal an effective amount of a metal-binding peptide which does not have a metal ion bound to it, and the peptide binds a metal ion present in the animal, with the result that the damage done by the ROS is reduced, the sequence of the peptide being:

$$P_1 - P_2$$

wherein:

P₁ is:

Xaa₁ Xaa₂ His or

Xaa, Xaa, His Xaa,;

 P_2 is $(Xaa_4)_n$;

Xaa₁ is the N-terminal amino acid of the peptide, Xaa₁ has an unsubstituted α -amino group, and Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

Xaa₂ is glycine, alanine, β -alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

Xaa₃ is glycine, alanine, valine, lysine, arginine, ornithine, aspartic acid, glutamic acid, asparagine, glutamine or tryptophan;

Xaa₄ is any amino acid; and n is 0-100;

Application No. 09/678,202 Amendment dated November 24, 2004 Reply to Office Action of May 26, 2004

or a physiologically-acceptable salt thereof.

- 2. (original) The method of Claim 1 wherein Xaa_1 is aspartic acid, glutamic acid, arginine, or α -hydroxymethylserine.
- 3. (original) The method of Claim 1 wherein Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, methionine, histidine or α -hydroxymethylserine.
 - 4. (original) The method of Claim 1 wherein Xaa, is lysine.
- 5. (original) The method of Claim 1 wherein Xaa_1 is aspartic acid, glutamic acid, arginine, or α -hydroxymethylserine, Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, methionine, histidine or α -hydroxymethylserine, and Xaa_3 is lysine.
- 6. (original) The method of Claim 5 wherein Xaa_1 is aspartic acid or glutamic acid and Xaa_2 is alanine, glycine, valine, threonine, serine, or α -hydroxymethylserine.
- 7. (original) The method of Claim 6 wherein Xaa_2 is alanine, threonine or α -hydroxymethylserine.
 - 8. (original) The method of Claim 7 wherein Xaa₁ is aspartic acid and Xaa₂ is alanine.
 - 9. (original) The method of Claim 1 wherein n is 0-10.
 - 10. (original) The method of Claims 9 wherein n is 0-5.
 - 11. (original) The method of Claim 10 wherein n is 0.
- 12. (withdrawn) The method of Claim 1 wherein P₂ comprises a metal-binding sequence.
- 13. (withdrawn) The method of Claim 12 wherein P₂ comprises one of the following sequences: (Xaa₄)_m Xaa₃ His Xaa₂ Xaa₅,

$$(Xaa_4)_m$$
 His Xaa_2 Xaa_5 ,
 $(Xaa_4)_m$ Xaa_5 Xaa_2 His Xaa_3 , or
 $(Xaa_4)_m$ Xaa_5 Xaa_2 His,

wherein Xaa₅ is an amino acid having a free side-chain -NH₂ and m is 0-5.

14. (withdrawn) The method of Claim 13 wherein Xaa₅ is Orn or Lys.

- 15. (withdrawn) The method of Claim 1 wherein at least one of the amino acids of P_1 other than β -alanine is a D-amino acid.
- 16. (withdrawn) The method of Claim 15 wherein Xaa₁ is a D-amino acid, His is a D-amino acid, or both Xaa₁ and His are D-amino acids..
- 17 (withdrawn) The method of Claim 16 wherein all of the amino acids of P_1 other than β -alanine are D-amino acids.
- 18. (withdrawn) The method of Claim 15 wherein at least 50% of the amino acids of P₂ are D-amino acids.
- 19. (withdrawn) The method of Claim 16 wherein at least 50% of the amino acids of P₂ are D-amino acids.
- 20. (withdrawn) The method of Claim 17 wherein at least 50% of the amino acids of P₂ are D-amino acids.
- 21. (original) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because of the need to reperfuse an ischemic tissue or organ of the animal.
- 22. (original) The method of Claim 21 wherein the animal is suffering from cerebrovascular ischemia and the ischemic tissue is located in the brain of the animal.
- 23. (original) The method of Claim 21 wherein the animal is suffering from cardiovascular ischemia and the ischemic tissue is located in the heart of the animal.
- 24. (original) The method of Claim 21 wherein the peptide is administered prior to reperfusion, simultaneously with reperfusion, after reperfusion, or combinations thereof.
- 25. (withdrawn) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because of neurological trauma.
- 26. (withdrawn) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because it is suffering from a neurodegenerative disease.
 - 27. (canceled)

- 28. (previously presented) The method of any one of Claims 1-20 wherein the peptide is administered to an animal exhibiting symptoms of possible cerebrovascular ischemia or possible cardiovascular ischemia while the animal is being diagnosed.
- 29. (previously presented) The method of any one of Claims 1-20 wherein the peptide is administered to an animal prior to surgery, during surgery, after surgery, or combinations thereof.
- 30. (original) The method of Claim 29 wherein the surgery is open-heart surgery or surgery to transplant an organ into the animal.
- 31. (withdrawn) The method of any one of Claims 1-20 wherein the peptide is administered to an animal prior to radiation therapy, during radiation therapy, after radiation therapy, or combinations thereof.

Claims 32 - 374 (canceled)

- 375. (previously presented) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because it is suffering from ischemia.
- 376. (previously presented) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because it is suffering from ischemia of the central nervous system.
- 377. (previously presented) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because it is suffering from a stroke.
- 378. (previously presented) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because it is suffering from cardiovascular ischemia.
- 379. (previously presented) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because it is suffering from myocardial ischemia.
- 380. (previously presented) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because it is suffering from acute myocardial infarction.
- 381. (previously presented) The method of any one of Claims 1-20 wherein the animal is in need of the peptide because it is suffering from angina pectoris.