Curve41417: fast, highly secure and implementation-friendly curve

Chitchanok Chuengsatiansup

Technische Universiteit Eindhoven

June 12, 2014

Joint work with Daniel J. Bernstein and Tanja Lange

Existing deployment of Curve41417

What is the goal of new crypto?

- Example of old crypto:
 - OpenSSL secp160r1 (security level only 2⁸⁰)
 - least secure option supported by OpenSSL
 - ullet pprox 2.1 million Cortex-A8 cycles (not constant time)

What is the goal of new crypto?

- Example of old crypto:
 - OpenSSL secp160r1 (security level only 280)
 - least secure option supported by OpenSSL
 - ullet pprox 2.1 million Cortex-A8 cycles (not constant time)
- Best speed with acceptable security?
 - Curve25519 (security level 2¹²⁵)
 - $\bullet \approx 0.5$ million Cortex-A8 cycles (constant time)
 - Kummer (hyperelliptic, security level 2¹²⁵)
 - ullet pprox 0.3 million Cortex-A8 cycles (constant time)

What is the goal of new crypto?

- Example of old crypto:
 - OpenSSL secp160r1 (security level only 2⁸⁰)
 - least secure option supported by OpenSSL
 - ullet pprox 2.1 million Cortex-A8 cycles (not constant time)
- Best speed with acceptable security?
 - Curve25519 (security level 2¹²⁵)
 - \approx **0.5 million** Cortex-A8 cycles (constant time)
 - Kummer (hyperelliptic, security level 2¹²⁵)
 - ullet pprox 0.3 million Cortex-A8 cycles (constant time)
- Best security with acceptable speed?
 - Curve41417 (security level above 2²⁰⁰)
 - ullet pprox 1.8 million Cortex-A8 cycles (constant time)

Design of Curve41417

- High-security elliptic curve (security level above 2²⁰⁰)
- Defined over prime field \mathbf{F}_p where $p = 2^{414} 17$
- In Edwards curve form

$$x^2 + y^2 = 1 + 3617x^2y^2$$

Design of Curve41417

- High-security elliptic curve (security level above 2²⁰⁰)
- Defined over prime field \mathbf{F}_p where $p = 2^{414} 17$
- In Edwards curve form

$$x^2 + y^2 = 1 + 3617x^2y^2$$

- IEEE P1363 criteria (large embedding degree, etc.)
- Large prime-order subgroup (cofactor 8)
- Twist secure (twist cofactor 8)
- 3617 is smallest value satisfying these criteria

Prime 2⁴¹⁴ – 17

- Extremely close to a power of 2
- Difference 17 has just two bits set
- $2^{414}x \mod p$ computed as 16x + x with single shift-and-add
- 414 is divisible by 9, 18, 23, 46
- 416 (for 4p) is divisible by 8, 13, 16, 26, 32, 52
- With 32-bit words, wasted bandwidth under 1% (13·32=416) allowing two extra bits for extension e.g., sign bit in a compressed point

Importance of prime choice

- NIST P-384
 - $p = 2^{384} 2^{128} 2^{96} + 2^{32} 1$
 - reduction requires 4 additions for radix 2³²
 - for other radix, implementor has a choice:

Note: count subtraction as addition

Importance of prime choice

- NIST P-384
 - $p = 2^{384} 2^{128} 2^{96} + 2^{32} 1$
 - reduction requires 4 additions for radix 2³²
 - for other radix, implementor has a choice:
 - slower and much more complicated
 - more complicated and much slower

Note: count subtraction as addition

Importance of prime choice

NIST P-384

•
$$p = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1$$

- reduction requires 4 additions for radix 2³²
- for other radix, implementor has a choice:
 - slower and much more complicated
 - more complicated and much slower
- Curve41417
 - $p = 2^{414} 17$
 - reduction requires 1 shift and 2 additions

Note: count subtraction as addition

Importance of curve choice

Curve	DBL	ADD	mADD	
Short Weierstrass	8	16	11	
Twisted Hessian	8	11	9	
Twisted Edwards	7	8	7	

Note: assuming best known coordinates

mADD = mixed addition

mDADD = mixed differential addition

Importance of curve choice

Curve	DBL	ADD	mADD	mDADD
Short Weierstrass	8	16	11	-
Twisted Hessian	8	11	9	-
Twisted Edwards	7	8	7	-
Montgomery	4	-	-	5

Note: assuming best known coordinates

mADD = mixed addition

mDADD = mixed differential addition

Side-Channel Attack

- Prevent software side-channel attack:
 - constant-time
 - no input-dependent branch
 - no input-dependent array index
- Constant-time table-lookup:
 - read entire table
 - select via arithmetic if c is 1, select tbl[i] if c is 0, ignore tbl[i]

$$t = (t \cdot (1-c)) + (tbl[i] \cdot (c))$$

$$t = (t \text{ and } (c-1)) \text{ xor } (\text{tbl}[i] \text{ and } (-c))$$

ECC Arithmetic

- Mix coordinate systems:
 - doubling: projective X, Y, Z
 - addition: extended X, Y, Z, T

```
(See https://hyperelliptic.org/EFD/)
```

- Scalar multiplication:
 - signed fixed windows of width w = 5Example: 2345 = 10 01001 01001 2
 - precompute $0P, 1P, 2P, \dots, 16P$ also multiply d = 3617 to T coordinate
 - compute T only before addition

Understanding ECC scalability to large primes

• Example: scaling from 255-bit to 414-bit scalar multiplication

Understanding ECC scalability to large primes

- Example: scaling from 255-bit to 414-bit scalar multiplication
- Schoolbook field multiplication expected scalar multiplication scaling $(414/255)^3 \approx 4.3$

Understanding ECC scalability to large primes

- Example: scaling from 255-bit to 414-bit scalar multiplication
- Schoolbook field multiplication expected scalar multiplication scaling $(414/255)^3 \approx 4.3$
- 2-level reduced refine Karatsuba actual performance scaling $(1.8/0.5) \approx 3.6$

Curve41417

- Very fast
 - ullet pprox 1.6 million cycles on FreeScale i.MX515
 - ullet pprox 1.8 million cycles on TI Sitara
- Very high security (above 2²⁰⁰)
 - also twist-secure
- Very flexible radix
 - support different sizes of limbs
- Very easy modular reduction

Curve41417

- Very fast
 - ullet pprox 1.6 million cycles on FreeScale i.MX515
 - ullet pprox 1.8 million cycles on TI Sitara
- Very high security (above 2²⁰⁰)
 - also twist-secure
- Very flexible radix
 - support different sizes of limbs
- Very easy modular reduction
- Real world deployment
 - "Blackphone has been added to the permanent collection at the world-renowned International Spy Museum in the gallery Weapons of Mass Disruption"

Cost Comparison (Karatsuba)

Level	Level Mult		dd	Cost
2010.		64-bit	32-bit	3333
0-level	256	15	0	256+8+0=264
1-level	192	59	16	192+30+ 4 = 226
2-level	144	119	40	144+60+10=214
3-level	108	191	76	108 + 96 + 19 = 223

Note: use multiply-add instructions

Recall:

- 1 cycle per multiplication
- 0.5 cycle per 64-bit addition
- 0.25 cycle per 32-bit addition

Cost Comparison (refined Karatsuba)

l evel	Mult	Add		Cost
2000.	mare.	64-bit	32-bit	2032
0-level	256	15	0	256+8+0=264
1-level	192	52	16	192+26+ 4 = 222
2-level	144	103	40	144+52+10 = 206
3-level	108	166	76	108 + 83 + 19 = 210

Note: use multiply-add instructions

Recall:

- 1 cycle per multiplication
- 0.5 cycle per 64-bit addition
- 0.25 cycle per 32-bit addition

Cost Comparison (reduced refined Karatsuba)

l evel	Mult	Add		Cost
2000.	iviait.	64-bit	32-bit	2032
0-level	256	15	0	256+8+0=264
1-level	192	45	16	192+23+ 4 = 219
2-level	144	96	40	144 + 48 + 10 = 202
3-level	108	159	76	108+80+19=207

Note: use multiply-add instructions

Recall:

- 1 cycle per multiplication
- 0.5 cycle per 64-bit addition
- 0.25 cycle per 32-bit addition