```
In [67]: # import required Libraries
    import numpy as np
    import pandas as pd
    import sklearn

In [53]: # import the dataset
    df = pd.read_csv('./diabetes-dataset.csv')
Examine the dataset
```

In [54]: df.head()

Out[54]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	1
0	6	148	72	35	0	33.6	0.627	
1	1	85	66	29	0	26.6	0.351	
2	8	183	64	0	0	23.3	0.672	
3	1	89	66	23	94	28.1	0.167	
4	0	137	40	35	168	43.1	2.288	

In [55]: df.describe()

Out[55]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesP€
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							+

In [56]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns): Column Non-Null Count Dtype 0 Pregnancies 768 non-null int64 1 Glucose 768 non-null int64 2 BloodPressure 768 non-null int64 3 SkinThickness 768 non-null int64 4 Insulin 768 non-null int64 5 BMI 768 non-null float64 6 DiabetesPedigreeFunction 768 non-null float64 7 768 non-null int64 8 Outcome 768 non-null int64 dtypes: float64(2), int64(7) memory usage: 54.1 KB In [57]: df.shape Out[57]: (768, 9) In [58]: df.describe().T Out[58]: 25% 50% 75%

Pregnancies 768.0 3.845052 3.369578 0.000 1.00000 3.0000 6.00000 Glucose 768.0 120.894531 31.972618 0.000 99.00000 117.0000 140.25000 1
Glucose 768.0 120.894531 31.972618 0.000 99.00000 117.0000 140.25000 1
BloodPressure 768.0 69.105469 19.355807 0.000 62.00000 72.0000 80.00000 1
SkinThickness 768.0 20.536458 15.952218 0.000 0.00000 23.0000 32.00000
Insulin 768.0 79.799479 115.244002 0.000 0.00000 30.5000 127.25000 8
BMI 768.0 31.992578 7.884160 0.000 27.30000 32.0000 36.60000
DiabetesPedigreeFunction 768.0 0.471876 0.331329 0.078 0.24375 0.3725 0.62625
Age 768.0 33.240885 11.760232 21.000 24.00000 29.0000 41.00000
Outcome 768.0 0.348958 0.476951 0.000 0.00000 0.0000 1.00000

Detecting the null values

```
In [59]:
         df.isnull().sum()
Out[59]: Pregnancies
                                       0
         Glucose
                                       0
         BloodPressure
                                       0
         SkinThickness
                                       0
         Insulin
                                       0
         BMI
                                       0
         DiabetesPedigreeFunction
                                       0
                                       0
         Outcome
                                       0
         dtype: int64
```

important note...

Detecting NaNs In this dataset, as I dived into it, except in 'Outcome' & 'Pregnancies' features, all 0 values are representing NaN. Let's handle it and see how many missing values are there in the dataset.

Out[60]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	1
0	6	148.0	72.0	35.0	NaN	33.6	0.627	
1	1	85.0	66.0	29.0	NaN	26.6	0.351	
2	8	183.0	64.0	NaN	NaN	23.3	0.672	
3	1	89.0	66.0	23.0	94.0	28.1	0.167	
4	0	137.0	40.0	35.0	168.0	43.1	2.288	
4								•

```
In [61]: | df.isnull().sum()
Out[61]: Pregnancies
                                         0
         Glucose
                                         5
         BloodPressure
                                        35
         SkinThickness
                                       227
         Insulin
                                       374
         BMI
                                        11
         DiabetesPedigreeFunction
                                         0
                                         0
         Outcome
                                         0
         dtype: int64
In [62]: # replace NaN values with each feature's mean
          df.fillna(df.mean(), inplace=True)
          df.isnull().sum()
Out[62]: Pregnancies
                                       0
         Glucose
                                       0
         BloodPressure
                                       0
         SkinThickness
                                       0
         Insulin
                                       0
         BMI
                                       0
         DiabetesPedigreeFunction
                                       0
                                       0
         Age
                                       0
         Outcome
         dtype: int64
```

now our dataset is clean

```
In [142]: df.head()
Out[142]:
                 Pregnancies
                              Glucose
                                       BloodPressure
                                                       SkinThickness
                                                                           Insulin BMI
                                                                                        DiabetesPedigreeFunctio
             0
                           6
                                 148.0
                                                  72.0
                                                             35.00000
                                                                       155.548223
                                                                                   33.6
                                                                                                            0.62
                           1
                                  85.0
                                                  66.0
                                                                       155.548223
                                                                                   26.6
                                                                                                            0.35
              1
                                                             29.00000
              2
                           8
                                 183.0
                                                  64.0
                                                             29.15342
                                                                       155.548223 23.3
                                                                                                            0.67
              3
                                  89.0
                                                  66.0
                                                             23.00000
                                                                        94.000000
                                                                                   28.1
                                                                                                            0.16
                           1
                           0
                                 137.0
                                                  40.0
                                                             35.00000 168.000000 43.1
                                                                                                            2.28
```

Logistic regresion & Naive Bayes

```
In [75]: Y = df['Outcome']
X = df.drop(['Outcome'], axis=1)
```

```
In [111]: # Logistic regression
    from sklearn.linear_model import LogisticRegression
    model = LogisticRegression(max_iter=df.shape[0])
    model.fit(X, Y)

# Naive Bayes
# from sklearn.naive_bayes import GaussianNB
# model = GaussianNB()
# model.fit(X, Y) # X is train attributes, Y is train labels
```

Out[111]: LogisticRegression(max_iter=768)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Now Let's check wether or not someone has diabetes

```
In [171]: # 'Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI' 'Insulin', 'BM
```

C:\Python310\lib\site-packages\sklearn\base.py:450: UserWarning: X does not hav
e valid feature names, but LogisticRegression was fitted with feature names
warnings.warn(

Thank you:)

1 = Person-2: Diabetic
