Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №10

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Директива DATA_PACK

Задание 1

Студенты:

Соболь В.

Темнова А.С.

Группа: 13541/3

Преподаватель:

Антонов А.П.

Содержание

1.	Задание	3
2.	Исходный код	5
3.	Скрипт	6
4.	Моделирование	7
5 .	Решение 1а	8
	5.1. Директивы	8
	5.2. Синтез	9
	5.3. C/RTL моделирование	
6.	Решение 2а	13
	6.1. Директивы	13
	6.2. Синтез	
	6.3. C/RTL моделирование	
7.	Решение За	19
	7.1. Директивы	19
	7.2. Синтез	
	7.3. C/RTL моделирование	25
8.	Решение 4а	2 5
	8.1. Директивы	25
	8.2. Синтез	
	8.3. C/RTL моделирование	
9.	Вывод	31

1. Задание

- 1. Создать проект lab10 1
- 2. Микросхема: xa7a12tcsg325-1q
- 3. Познакомиться с исходным кодом struct port.c
- 4. Познакомиться с исходным кодом struct_port_test.c для проверки функции. Осуществить моделирование (с выводом результатов в консоль)
- 5. Исследование:
- 6. Solution_1a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ПО УМОЛЧАНИЮ
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- 7. Solution 2a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию DATA PACK
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)

- · На скриншоте показать Latency
- · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- 8. Сравнить два решения (solution_1a и solution_2a) и сделать выводы: зависимость от DATA PACK; объяснить (посчитать) число циклов Latency, II...
- 9. Solution_3a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию DATA_PACK with struct_level
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- 10. Сравнить два решения (solution_2a и solution_3a) и сделать выводы: зависимость от типа интерфейса; объяснить (посчитать) число циклов Latency, II...
- 11. Solution 4a
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию DATA PACK with field level
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency

- · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- 12. Сравнить два решения (solution_3a и solution_4a) и сделать выводы: зависимость от типа интерфейса; объяснить (посчитать) число циклов Latency, II...

2. Исходный код

Ниже приведен исходный код устройства и теста.

```
1 #include "struct port.h"
2
3
  data t struct port (
4
     data\_t i\_val,
5
     data t
             *i pt,
6
     data_t *o_pt
7
     ) {
8
9
     data_t o_val;
10
     int i;
11
12
     // Transfer pass-by-value structs
     o val.A = i val.A+2;
13
14
     for (i=0; i<4; i++) {
15
       o_val.B[i] = i_val.B[i]+2;
16
17
     // Transfer pointer structs
18
19
     o pt->A = i pt->A+3;
20
     for (i=0;i<4;i++) {
21
       o_pt-B[i] = i_pt-B[i]+3;
22
23
24
     return o val;
25
```

Рис. 2.1. Исходный код устройства

```
1 #ifndef _STRUCT_PORT_H_
2 #define _STRUCT_PORT_H_
3
4
  #include <stdio.h>
  typedef struct {
6
    unsigned short A;
7
8
    unsigned char B[4];
9
    } data t;
10
11 data t struct port(data t i val, data t *i pt, data t *o pt);
13 #endif
```

Рис. 2.2. Заголовочный файл

```
1 #include "struct port.h"
2
3
  int main () {
     data_t d_ival, d_ipt;
4
5
     data_t d_oval, d_opt;
6
7
     int i, retval=0;
8
     FILE
9
10
     // Create input data
     d_ival.A = 19;
11
12
     d \text{ ipt.A} = 29;
13
     for (i=0; i<4; i++) {
14
       d_ival.B[i] = i+10;
15
       d_{ipt.B[i]} = i+20;
16
17
18
     // Call the function to operate on the data
19
     d_oval = struct_port(d_ival, &d_ipt, &d_opt);
20
21
     // Save the results to a file
     fp = fopen("result.dat", "w");
22
23
     fprintf(fp, "Din_Dout\n");
24
     fprintf(fp, "%d_u_u%d n", d_oval.A, d_opt.A);
25
     \mathbf{for} \ (\,i\!=\!0;i<\!4;i+\!+)\ \{\,
26
27
       fprintf(fp, "%d___\%d\n", d_oval.B[i], d_opt.B[i]);
28
29
     fclose (fp);
30
31
     // Compare the results file with the golden results
     retval = system("diff_—brief_—w_result.dat_result.golden.dat");
32
33
     if (retval != 0) {
       printf("Test_failed__!!!\n");
34
35
       retval=1;
     } else {
36
37
       printf("Test_passed_!\n");
38
39
40
     // Return 0 if the test passed
     return retval;
41
42 }
```

Рис. 2.3. Исходный код теста

3. Скрипт

Ниже приводится скрипт, для автоматизации выполнения лабораторной работы.

```
open\_project - reset \ lab10 \ 1
2
3 add_files struct_port.c
4 add_files -tb struct_port_test.c
  add\_files\ -tb\ result.golden.dat
  set_top struct_port
7
8
  set solutions [list 1a 2a 3a 4a]
9
10
  foreach sol $solutions {
    open solution solution sol -reset
11
    set part \{xa7a12tcsg325-1q\}
12
13
    create clock -period 10ns
14
    set_clock_uncertainty 0.1
15
16
    if \{\$sol = "2a"\}
17
      set_directive_data_pack struct_port i_val
18
       set_directive_data_pack struct_port i_pt
19
      set_directive_data_pack struct_port o_pt
20
    if \{ sol = "3a" \} 
21
22
      set_directive_data_pack -byte_pad struct_level struct_port i_val
23
      set_directive_data_pack -byte_pad struct_level struct_port i_pt
24
       set directive data pack -byte pad struct level struct port o pt
25
    if \{\$sol = "4a"\}
26
27
       set_directive_data_pack -byte_pad field_level struct_port i_val
          __directive_data_pack -byte_pad field_level struct_port i_pt
28
29
       set_directive_data_pack -byte_pad field_level struct_port o_pt
30
31
32
    csim design
33
    csynth design
34
    cosim design -trace level all
35
36
37
  exit
```

Рис. 3.1. Скрипт

4. Моделирование

Ниже приведены результаты моделирования.

```
INFO: [SIM 211-4] CSIM will launch GCC as the compiler.
  Compiling(apcc) ../../../struct_port_test.c in debug mode
INFO: [HLS 200-10] Running '/opt/Xilinx/Vivado/2018.2/bin/unwrapped/lnx64.o/apcc'
INFO: [HLS 200-10] For user 'sobol' on host 'gadolinium.local' (Linux_x86_64 version 5.3.12-arch1-1
12:19:08 MSK 2019
INFO: [HLS 200-10] On os "Arch Linux"
INFO: [HLS 200-10] In directory '/home/sobol/Downloads/labs_from_8/lab10_z1/source/lab10_1/solution
INFO: [APCC 202-3] Tmp directory is /tmp/apcc_db_sobol/1443291575883148925223
INFO: [APCC 202-1] APCC is done.
  Compiling(apcc) ../../../struct_port.c in debug mode
INFO: [HLS 200-10] Running '/opt/Xilinx/Vivado/2018.2/bin/unwrapped/lnx64.o/apcc'
INFO: [HLS 200-10] For user 'sobol' on host 'gadolinium.local' (Linux_x86_64 version 5.3.12-arch1-1
12:19:14 MSK 2019
INFO: [HLS 200-10] On os "Arch Linux"
INFO: [HLS 200-10] In directory '/home/sobol/Downloads/labs_from_8/lab10_z1/source/lab10_1/solution_
INFO: [APCC 202-3] Tmp directory is /tmp/apcc_db_sobol/1443841575883154086776
INFO: [APCC 202-1] APCC is done.
  Generating csim.exe
Test passed !
INFO: [SIM 211-1] CSim done with 0 errors.
INFO: [SIM 211-3] ************ CSIM finish ***********
```

Рис. 4.1. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

5. Решение 1а

5.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 5.1. Директивы

5.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

∃ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	6.419	0.10

□ Latency (clock cycles)

□ Summary

Latency		Inte	rval	
min	max	min	max	Туре
19	19	19	19	none

Рис. 5.2. Performance estimates

Utilization Estimates

□ Summary

Name	BRAM_18	C DSP48	E FF	LUT
DSP	-	-	-	-
Expression	-	-	0	118
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	116
Register	-	-	71	-
Total	(0	0 71	234
Available	40	0 4	016000	8000
Utilization (%)	(0	0 ~0	2

Рис. 5.3. Utilization estimates

Рис. 5.4. Performance profile

nterface					
⊡ Summary					
RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs		return value
ap_rst	in	1	ap_ctrl_hs		return value
ap_start	in	1	ap_ctrl_hs	struct_port	return value
ap_done	out	1	ap_ctrl_hs	struct_port	return value
ap_idle	out	1	ap_ctrl_hs	struct_port	return value
ap_ready	out	1	ap_ctrl_hs	struct_port	return value
agg_result_A	out	16	ap_vld	agg_result_A	pointe
agg_result_A_ap_vld	out	1	ap_vld	agg_result_A	pointe
agg_result_B_address0	out	2	ap_memory	agg_result_B	array
agg_result_B_ce0	out	1	ap_memory	agg_result_B	array
agg_result_B_we0	out	1	ap_memory	agg_result_B	array
agg_result_B_d0	out	8	ap_memory	agg_result_B	array
agg_result_B_address1	out	2	ap_memory	agg_result_B	array
agg_result_B_ce1	out	1	ap_memory		
agg_result_B_we1	out	1	ap_memory	agg_result_B	array
agg_result_B_d1	out	8	ap_memory	agg_result_B	array
i_val_A	in	16	ap_none	i_val_A	scala
i_val_B_address0	out	2	ap_memory	i_val_B	array
i_val_B_ce0	out	1	ap_memory	i_val_B	array
i_val_B_q0	in	8	ap_memory		
i_pt_A	in				pointe
i_pt_B_address0	out	2	ap_memory	i_pt_B	array
i_pt_B_ce0	out	1	ap_memory		
i_pt_B_q0	in	8	ap_memory		array
o_pt_A	out	16	ap_vld	o_pt_A	pointe
o_pt_A_ap_vld	out	1	ap_vld	o_pt_A	pointe
o_pt_B_address0	out		ap_memory		array
o_pt_B_ce0	out		ap_memory		array
o_pt_B_we0	out	1	ap_memory	o_pt_B	array
o_pt_B_d0	out	8	ap_memory	o_pt_B	array

Рис. 5.5. Interface estimates

Рис. 5.6. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3	C4	C5
1	⊡I/O Ports						
2	i_val_A	read					
3	o_pt_A		write				
4	i_pt_A		read				
5	i_val_B(p0)		re	ad			
6	agg_result_B(pl)				write		write
7	agg_result_B(p0)				write		write
8	i_pt_B(p0)				re	ad	
9	agg_result_A				write		
10	o_pt_B(p0)					write	
11	⊡Memory Ports						
12	i_val_B(p0)		re	ad			
13	agg_result_B(pl)				write		write
14	agg_result_B(p0)				write		write
15	i_pt_B(p0)				re	ad	
16	o_pt_B(p0)					write	
17	-Expressions						
18	o_val_A_fu_210	+					
19	i_phi_fu_192		phi_mux				
20	i_2_fu_222		+				
21	tmp_1_fu_237		+				
22	exitcondl_fu_216		icmp				
23	o_val_B_0_fu_244			+			
24	i_1_phi_fu_203				phi_mux		
25	i_3_fu_276				+		
26	exitcond_fu_270				icmp		
27	tmp_6_fu_295					+	

Рис. 5.7. Resource viewer

5.3. C/RTL моделирование

Рис. 5.8. Временная диаграмма

К портам были применены стандартные интерфейсы — ар_темогу. В функции присутствуют 2 цикла по 4 итерации. Для выполнения итерации первого цикла требуется 2 такта, для выполнения второго — 2 такта. Также нужен 1 такт на подготовку данных и 2 такта для записи результатов, в итоге имеем Latency = 4*2 + 4*2 + 1 + 2 = 19. Еще через 1 такт данные будут готовы на выходе II = 20.

6. Решение 2а

6.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

struct_port
i_val
A
B
% HLS DATA_PACK variable=i_val
i_pt
A
B
% HLS DATA_PACK variable=i_pt
O_pt
A
B
% HLS DATA_PACK variable=o_pt
for Statement
for Statement

Рис. 6.1. Директивы

6.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates : Timing (ns) : Summary Clock Target Estimated Uncertainty ap_clk 10.00 8.331 0.10 : Latency (clock cycles) : Summary

Latency		Inte		
min	max	min	max	Туре
6	6	6	6	none

Рис. 6.2. Performance estimates

Utilization Estimates

∃ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	508
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	90
Register	-	-	54	-
Total	0	0	54	598
Available	40	40	16000	8000
Utilization (%)	0	0	~0	7

Рис. 6.3. Utilization estimates

Рис. 6.4. Performance profile

Interface

■ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	struct_port	return value
ap_rst	in	1	ap_ctrl_hs	struct_port	return value
ap_start	in	1	ap_ctrl_hs	struct_port	return value
ap_done	out	1	ap_ctrl_hs	struct_port	return value
ap_idle	out	1	ap_ctrl_hs	struct_port	return value
ap_ready	out	1	ap_ctrl_hs	struct_port	return value
agg_result_A	out	16	ap_vld	agg_result_A	pointer
agg_result_A_ap_vld	out	1	ap_vld	agg_result_A	pointer
agg_result_B_address0	out	2	ap_memory	agg_result_B	array
agg_result_B_ce0	out	1	ap_memory	agg_result_B	array
agg_result_B_we0	out	1	ap_memory	agg_result_B	array
agg_result_B_d0	out	8	ap_memory	agg_result_B	array
agg_result_B_address1	out	2	ap_memory	agg_result_B	array
agg_result_B_ce1	out	1	ap_memory	agg_result_B	array
agg_result_B_we1	out	1	ap_memory	agg_result_B	array
agg_result_B_d1	out	8	ap_memory	agg_result_B	array
i_val	in	48	ap_none	i_val	scalar
i_pt	in	48	ap_none	i_pt	pointer
o_pt	out	48	ap_vld		
o_pt_ap_vld	out	1	ap_vld	o_pt	pointer

Рис. 6.5. Interface estimates

Рис. 6.6. Scheduler viewer

	Resource\Control Step	C0	C1	C2
1	⊡I/O Ports			
2	i_val	read		
3	agg_result_A		write	
4	agg_result_B(p0)		write	write
5	agg_result_B(pl)		write	write
6	o_pt			write
7	i_pt			read
8	⊡Memory Ports			
9	agg_result_B(pl)		write	write
10	agg_result_B(p0)		write	write
11	⊡Expressions			
12	o_val_A_fu_190	+		
13	i_1_fu_202		+	
14	o_val_B_0_fu_336		+	
15	i_phi_fu_179		phi_mux	
16	tmp_17_fu_270		-	
17	tmp_21_fu_300		-	
18	tmp_15_fu_258		-	
19	tmp_19_fu_284		select	
20	tmp_20_fu_292		select	
21	tmp_18_fu_276		select	
22	tmp_9_fu_229		1	
23	tmp_24_fu_314		lshr	
24	tmp_25_fu_320		lshr	
25	tmp_26_fu_326		&	
26	tmp_16_fu_264		^	
27	tmp_11_fu_235		icmp	
28	exitcondl_fu_196		icmp	
29	tmp_6_2_fu_430			+
30	tmp_6_3_fu_446			+
31	tmp_1_fu_382			+
32	tmp_6_1_fu_414			+
33	tmp_6_fu_398			+

Рис. 6.7. Resource viewer

6.3. C/RTL моделирование

Рис. 6.8. Временная диаграмма

Как видно, директива успешно применилась к аргументами функции сделав из них один порт длинной 48 бит, это позволило получить параллельный доступ ко всем элементам структуры. Однако структуру о_val развернуть не удалось т.к. мы не можем применить директиву к return. В итоге не получилось распараллелить первый цикл и зачение Latency = 1*4+1 на подготовку +1 на запись = 6 тактов. Initiation interval = Latency +1=7 тактов.

7. Решение 3а

7.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

struct_port
v i_val
A
B
% HLS DATA_PACK variable=i_val struct_level
v i_pt
A
B
% HLS DATA_PACK variable=i_pt struct_level
v o_pt
A
B
% HLS DATA_PACK variable=o_pt struct_level
i_pt
A
B
% HLS DATA_PACK variable=o_pt struct_level
i_y for Statement
i_n for Statement

Рис. 7.1. Директивы

7.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates Timing (ns) Summary Clock Target Estimated Uncertainty ap_clk 10.00 8.331 0.10 Latency (clock cycles) Summary

Latency		Inte		
min	max	min	max	Туре
6	6	6	6	none

Рис. 7.2. Performance estimates

Utilization Estimates

∃ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	508
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	90
Register	-	-	54	-
Total	0	0	54	598
Available	40	40	16000	8000
Utilization (%)	0	0	~0	7

Рис. 7.3. Utilization estimates

Рис. 7.4. Performance profile

Interface

■ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	struct_port	return value
ap_rst	in	1	ap_ctrl_hs	struct_port	return value
ap_start	in	1	ap_ctrl_hs	struct_port	return value
ap_done	out	1	ap_ctrl_hs	struct_port	return value
ap_idle	out	1	ap_ctrl_hs	struct_port	return value
ap_ready	out	1	ap_ctrl_hs	struct_port	return value
agg_result_A	out	16	ap_vld	agg_result_A	pointer
agg_result_A_ap_vld	out	1	ap_vld	agg_result_A	pointer
agg_result_B_address0	out	2	ap_memory	agg_result_B	array
agg_result_B_ce0	out	1	ap_memory	agg_result_B	array
agg_result_B_we0	out	1	ap_memory	agg_result_B	array
agg_result_B_d0	out	8	ap_memory	agg_result_B	array
agg_result_B_address1	out	2	ap_memory	agg_result_B	array
agg_result_B_ce1	out	1	ap_memory	agg_result_B	array
agg_result_B_we1	out	1	ap_memory	agg_result_B	array
agg_result_B_d1	out	8	ap_memory	agg_result_B	array
i_val	in	48	ap_none	i_val	scalar
i_pt	in	48	ap_none	i_pt	pointer
o_pt	out	48	ap_vld	o_pt	pointer
o_pt_ap_vld	out	1	ap_vld	o_pt	pointer

Рис. 7.5. Interface estimates

Рис. 7.6. Scheduler viewer

	Resource\Control Step	C0	C1	C2
1	⊡I/O Ports			
2	i_val	read		
3	agg_result_B(p1)		write	write
4	agg_result_B(p0)		write	write
5	agg_result_A		write	
6	i_pt			read
7	o_pt			write
8	⊡Memory Ports			
9	agg_result_B(p0)		write	write
10	agg_result_B(pl)		write	write
11	⊡Expressions			
12	o_val_A_fu_190	+		
13	o_val_B_0_fu_336		+	
14	i_1_fu_202		+	
15	i_phi_fu_179		phi_mux	
16	tmp_15_fu_258		-	
17	tmp_21_fu_300		-	
18	tmp_17_fu_270		-	
19	tmp_25_fu_320		lshr	
20	tmp_24_fu_314		lshr	
21	tmp_18_fu_276		select	
22	tmp_20_fu_292		select	
23	tmp_19_fu_284		select	
24	tmp_9_fu_229		T	
25	tmp_26_fu_326		&	
26	tmp_16_fu_264		^	
27	tmp_11_fu_235		icmp	
28	exitcondl_fu_196		icmp	
29	tmp_1_fu_382			+
30	tmp_6_3_fu_446			+
31	tmp_6_1_fu_414			+
32	tmp_6_2_fu_430			+
33	tmp_6_fu_398			+

Рис. 7.7. Resource viewer

7.3. C/RTL моделирование

Рис. 7.8. Временная диаграмма

Данное решение полностью совпадает с предыдущим.

8. Решение 4а

8.1. Директивы

В данном решения были установлены директивы, приведённые ниже.

Рис. 8.1. Директивы

8.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Рис. 8.2. Performance estimates

Utilization Estimates

∃ Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	508
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	-	-	-	-
Multiplexer	-	-	-	90
Register	-	-	54	-
Total	0	0	54	598
Available	40	40	16000	8000
Utilization (%)	0	0	~0	7

Рис. 8.3. Utilization estimates

Рис. 8.4. Performance profile

Interface

■ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	struct_port	return value
ap_rst	in	1	ap_ctrl_hs	struct_port	return value
ap_start	in	1	ap_ctrl_hs	struct_port	return value
ap_done	out	1	ap_ctrl_hs	struct_port	return value
ap_idle	out	1	ap_ctrl_hs	struct_port	return value
ap_ready	out	1	ap_ctrl_hs	struct_port	return value
agg_result_A	out	16	ap_vld	agg_result_A	pointer
agg_result_A_ap_vld	out	1	ap_vld	agg_result_A	pointer
agg_result_B_address0	out	2	ap_memory	agg_result_B	array
agg_result_B_ce0	out	1	ap_memory	agg_result_B	array
agg_result_B_we0	out	1	ap_memory	agg_result_B	array
agg_result_B_d0	out	8	ap_memory	agg_result_B	array
agg_result_B_address1	out	2	ap_memory	agg_result_B	array
agg_result_B_ce1	out	1	ap_memory	agg_result_B	array
agg_result_B_we1	out	1	ap_memory	agg_result_B	array
agg_result_B_d1	out	8	ap_memory	agg_result_B	array
i_val	in	48	ap_none	i_val	scalar
i_pt	in	48	ap_none	i_pt	pointer
o_pt	out	48	ap_vld	o_pt	pointer
o_pt_ap_vld	out	1	ap_vld	o_pt	pointer

Рис. 8.5. Interface estimates

Рис. 8.6. Scheduler viewer

	Resource\Control Step	C0	C1	C2
1	⊡I/O Ports			
2	i_val	read		
3	agg_result_B(p1)		write	write
4	agg_result_B(p0)		write	write
5	agg_result_A		write	
6	i_pt			read
7	o_pt			write
8	⊡Memory Ports			
9	agg_result_B(p0)		write	write
10	agg_result_B(pl)		write	write
11	⊡Expressions			
12	o_val_A_fu_190	+		
13	o_val_B_0_fu_336		+	
14	i_1_fu_202		+	
15	i_phi_fu_179		phi_mux	
16	tmp_15_fu_258		-	
17	tmp_21_fu_300		-	
18	tmp_17_fu_270		-	
19	tmp_25_fu_320		lshr	
20	tmp_24_fu_314		lshr	
21	tmp_18_fu_276		select	
22	tmp_20_fu_292		select	
23	tmp_19_fu_284		select	
24	tmp_9_fu_229		T	
25	tmp_26_fu_326		&	
26	tmp_16_fu_264		^	
27	tmp_11_fu_235		icmp	
28	exitcondl_fu_196		icmp	
29	tmp_1_fu_382			+
30	tmp_6_3_fu_446			+
31	tmp_6_1_fu_414			+
32	tmp_6_2_fu_430			+
33	tmp_6_fu_398			+

Рис. 8.7. Resource viewer

8.3. С/RTL моделирование

Рис. 8.8. Временная диаграмма

Данное решение полностью совпадает с предыдущим.

9. Вывод

В ходе работы было исследовано влияние директивы DATA_PACK на функции использующие структуры. Данная директива позволяет развернуть структуру в один порт соответствующей длины, однако это требует большого количество ресурсов. Изменения параметра byte_pad в данной лабораторной работе не возымело никакого эффекта в связи с тем, что исследуемая функция оказалась непоказательной.