Relatório trabalho final

Gabriel Rodrigues Chaves Carneiro, João Paulo Silva, Lucas Rômulo Souza, Thiago Souza

Julho 2022

1 Introdução

A cidade de São João del-Rei possui apenas uma empresa de transporte coletivo, e possui uma cláusula de contrato que impede até mesmo que o ônibus da universidade para nos pontos de ônibus da cidade, fazendo com que seja possível apenas que os campus sejam utilizados como paradas. O presente trabalho tem como objetivo desenvolver uma meta-heuristica bioinspirada para resolver um problema real, o de encontrar a melhor rota entre os campus Santo Antônio(CSA), Dom Bosco(CDB) e Tancredo Neves(CTAN). O problema de encontrar o caminho mínimo de um grafo é comumente resolvido por aplicativos de GPS(sistema de posicionamento global), porém, este desafio será abordado com a utilização do algoritmo colônia de formigas.

2 Metodologia

O trabalho proposto tem o intuito de abordar de uma maneira diferente o famoso problema de caminhos mínimos. A ideia é conseguir realizar o mesmo problema com um algoritmo diferente em um tempo aceitável e que o trabalho seja aplicado em um ambiente real.

Para conseguir efetuar esta ideia, foi preciso seguir algumas etapas para o desenvolvimento do algoritmo. A base de dados foi construída manualmente a partir do mapa da cidade de São João del-Rei no Google Maps, criando um grafo no qual os vértices são as esquinas, as arestas são as ruas e os pesos são as distâncias entre as esquinas (não necessariamente o tamanho da rua).

O algoritmo bioinspirado escolhido para resolver este problema é a colônia de formigas e foi desenvolvido em Python. Ele foi construído de forma que a performance individual de cada formiga (fitness) é avaliada com o somatório do custo dos vértices visitados, quanto menor o custo, melhor a performance. O percurso de cada formiga é determinado por 2 fatores: o custo, e aleatoriedade. O custo é calculado a partir do peso da aresta, e da quantidade de feromônios presente nela. O fator aleatório escolhe uma cidade ao acaso sem nenhum viés. O peso de cada um dos fatores é determinado pelas variáveis α e β respectivamente. Foi determinada uma regra de que as formigas não podem criar um loop no

caminho, de forma que caso um aconteça, o *loop* é apagado do caminho e um novo percurso é tomado, e foi imposto um limite de nós que ela pode visitar até que "morra" de fome, para que o algoritmo não fique estagnado em candidatos ruins.

3 Resultados

Após a coleta, a base foi testada variando os parâmetros α , β , ρ , onde α indica a chance de escolher o caminho baseado no feromônio, β é a chance de escolher o caminho aleatoriamente e o ρ indica a evaporação do feromônio. Portanto, será possível observar em vários parâmetros o funcionamento do algoritmo.

O algoritmo criado gerou um arquivo representado pela Fig. 2 com o melhor caminho que conseguiu encontrar, o algoritmo do Google Maps conseguiu fazer a rota com 10,8km e o algoritmo proposto da Colônia de Formigas realizou em 11,004km e observando as rotas, foram um pouco diferentes.

Infelizmente não foi possível gerar um gráfico com as coordenadas do melhor caminho, pois o Google Maps só aceita no máximo 10 pontos de rotas.

A figura 1 apresenta o caminho que o algoritmo do Google Maps consegue alcançar como melhor rota partindo do CTAN-CDB-CSA-CDB-CTAN.

Figure 1: Gráfico mostrando a rota total - CTAN-CDB-CSA-CDB-CTAN

	alpha	beta	ro	fitness	deviation
0	1	1	0.3	11694	220.093071
1	1	1	0.5	11430	302.569926
2	1	1	0.7	11484	186.438837
3	1	2	0.3	11432	148.625166
4	1	2	0.5	11213	322.070427
5	1	2	0.7	11004	284.258615
6	2	1	0.3	11891	270.988118
7	2	1	0.5	11804	227.083245
8	2	1	0.7	11830	106.573167
9	2	2	0.3	11227	398.554689
10	2	2	0.5	11789	261.796409
11	2	2	0.7	11680	238.075114

Figure 2: Gráfico mostrando a rota total - CTAN-CDB-CSA-CDB-CTAN