	Practice Test 1	- MTH 5102 -	· Linear Algebr	a - Dr. Kanish	ıka Perera -	Fall 2024
Namos	Name:					

Each problem is worth 20 points. You may refer to your book/notes. Calculators and cell phones are not allowed.

1. Let V be a vector space and let W_1 and W_2 be subspaces of V. Show that if $W_1 \cup W_2$ is a subspace of V, then either $W_1 \subset W_2$ or $W_2 \subset W_1$.

2. Let V and W be vector spaces and let $S: V \to W$ and $T: V \to W$ be nonzero linear transformations. Show that if $R(S) \cap R(T) = \{0\}$, then $\{S, T\}$ is a linearly independent subset of $\mathcal{L}(V, W)$.

3. Let F be a field and define the trace of $A = (a_{ij})$ in $M_{n \times n}(F)$ by $tr(A) = \sum_{i=1}^{n} a_{ii}$. Show that the function $f: M_{n \times n}(F) \to F$ defined by f(A) = tr(A) is a linear functional on $M_{n \times n}(F)$. 4. Let V, W, and Z be a vector space of the same dimension and let $S: V \to W$ and $T: W \to Z$ be linear transformations. Show that if TS is an isomorphism, then S and T are isomorphisms.

5. Let V and W be vector spaces and let $T:V\to W$ be a linear transformation. Show that $N(T^t)=\{g\in W^*:g(w)=0 \text{ for all } w\in R(T)\}.$