Esame di Ricerca Operativa del 09/01/15

	(C	ognome))		(No	$\mathbf{me})$		(Co	orso di laurea)	
Esercizio	1. Com	pletare la	a seguent	e tabel	la considerando il p	roblema	di progr	ammazione line	eare:	
				$ \begin{cases} \min \\ 2 y_1 \\ -y_1 \\ y \ge \end{cases} $	$7 y_1 + y_2 + 6 y_3 + + y_3 - y_4 - 2 y_5 y_2 + 2 y_3 + 3 y_4 0$	$-4 y_4 + y_6 = -1$ $-y_5 + y_6$	$y_5 + 7 y_6$ $y_6 = 1$			
	Base	Soluzio	ne di bas	е				Ammissibile (si/no)	Degenere (si/no)	
	{1, 2}	x =								
	$\{1, 4\}$	y =								
Esercizio	2. Effet	tuare du	e iterazio	ni dell'	algoritmo del simp	lesso dua	le per il	problema dell'ε	esercizio 1.	
	ı	D					T., 1:	. I D		T., 1:
		Base	x	'	y		Indic entrar		tapporti	Indice uscent
1° iteraz	zione	{4,6}								
		(-,*)								
2° iteraz	zione									
nei due di	iversi sta		limento	costo	giornaliero (euro)	produz bassa	ione (ton media	nellate/giorno) alta		
			2		350 400	6	3	3 5		
Detern variabili modello:			ni di lavo	oro sono	comandi die			ninimizzare i c	osti.	
C=						<u>iallat</u>	•			
A=						b=				

ub=

1b=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) $(4,6)$ $(6,7)$	(2,3)	x =		
(1,2) (2,5) (3,7)				
(4,3) (5,7) (6,7)	(1,4)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (2,5) (3,5) (3,7) (4,6)	
Archi di U	(5,7)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 11 \ x_1 + 13 \ x_2 \\ 11 \ x_1 + 9 \ x_2 \ge 60 \\ 9 \ x_1 + 15 \ x_2 \ge 56 \\ x_1 \ge 0, \ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =

$$v_I(P) =$$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	9	91	62	42
2		25	54	56
3			9	11
4				13

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo: $v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2$ sull'insieme

$$\{x \in \mathbb{R}^2: x_1 + x_2^2 \le 0, -x_1 + x_2 - 1 \le 0\}.$$

Soluzioni de	el sistema Ll	KT	Mass	imo	Mini	mo	Sella
x	λ	μ	globale	locale	globale	locale	

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \max -10 \ x_1 \ x_2 - 2 \ x_2^2 - 5 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (1,2) , (-4,3) , (4,-4) e (-2,-3). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
(3, -2)						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\left\{\begin{array}{l} \min \ 7 \ y_1 + y_2 + 6 \ y_3 + 4 \ y_4 + y_5 + 7 \ y_6 \\ 2 \ y_1 + y_3 - y_4 - 2 \ y_5 - y_6 = -1 \\ -y_1 - y_2 + 2 \ y_3 + 3 \ y_4 - y_5 + y_6 = 1 \\ y \ge 0 \end{array}\right.$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
{1, 2}	x = (3, -1)	SI	NO
{1, 4}	$y = \left(-\frac{2}{5}, \ 0, \ 0, \ \frac{1}{5}, \ 0, \ 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	$\{4, 6\}$	$\left(-\frac{17}{2}, -\frac{3}{2}\right)$	(0, 0, 0, 0, 0, 1)	2	2	6
2° iterazione	$\{2, 4\}$	(-7, -1)	(0, 2, 0, 1, 0, 0)	5	$\frac{2}{7}, \frac{1}{2}$	2

Esercizio 3.

variabili decisionali:

c=[350 ; 400]

 $x_1 =$ giorni di lavoro nello stabilimento 1

 $x_2 = \text{giorni di lavoro nello stabilimento } 2$

COMANDI DI MATLAB

A=[-6 -2 ; -4 -3 ; -3 -5]

b=[-50 ; -40 ; -60]

Aeq=[]

beq=[]

lb=[0; 0]

ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) $(4,6)$ $(6,7)$	(2,3)	x = (0, -8, 15, 5, 0, 3, 0, 0, 13, 0, 10)	NO	SI
(1,2) (2,5) (3,7)				
(4,3) (5,7) (6,7)	(1,4)	$\pi = (0, 10, 23, 17, 19, 18, 28)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione				
Archi di T	(1,2) $(1,4)$ $(2,5)$ $(3,5)$ $(3,7)$ $(4,6)$	(1,3) (1,4) (2,5) (3,5) (3,7) (4,6)				
Archi di U	(5,7)	(5,7)				
x	(2, 0, 5, 0, 7, 2, 4, 0, 3, 6, 0)	(0, 2, 5, 0, 5, 4, 4, 0, 3, 6, 0)				
π	(0, 10, 13, 8, 19, 17, 18)	(0, 7, 10, 8, 16, 17, 15)				
Arco entrante	(1,3)	(5,7)				
ϑ^+,ϑ^-	2 , 2	2, 4				
Arco uscente	(1,2)	(3,7)				

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	· 2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4	4 6		2		9	}	7	7	Ε.	Ď	
nodo 2	15	1	15	1	15	1	15	1	15	1	15	1	15	1
nodo 3	16	1	15	4	15	4	15	4	15	4	15	4	15	4
nodo 4	6	1	6	1	6	1	6	1	6	1	6	1	6	1
nodo 5	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	34	2	29	3	29	3	29	3
nodo 6	$+\infty$	-1	14	4	14	4	14	4	14	4	14	4	14	4
nodo 7	$+\infty$	-1	$+\infty$	-1	26	6	26	6	24	3	24	3	24	3
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 3	, 6	2, 3	, 7	3, 5	5, 7	5,	7	ţ	5	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	6	(0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0)	6
1 - 2 - 5 - 7	6	(6, 6, 0, 0, 6, 0, 6, 0, 0, 6, 0)	12
1 - 4 - 6 - 7	10	(6, 6, 10, 0, 6, 0, 6, 0, 10, 6, 10)	22

Taglio di capacità minima:
$$N_s = \{1, 2, 3, 5\}$$
 $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 11 \ x_1 + 13 \ x_2 \\ & 11 \ x_1 + 9 \ x_2 \ge 60 \\ & 9 \ x_1 + 15 \ x_2 \ge 56 \\ & x_1 \ge 0 \\ & x_2 \ge 0 \\ & x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{33}{7}, \frac{19}{21}\right)$$
 $v_I(P) = 64$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(5,1)$$
 $v_S(P) = 68$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	9	91	62	42
2		25	54	56
3			9	11
4				13

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:
$$(1,2)(2,3)(3,4)(3,5)(4,5)$$
 $v_I(P)=67$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo:
$$2 - 1 - 5 - 3 - 4$$
 $v_S(P) = 125$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1 + x_2^2 \le 0, -x_1 + x_2 - 1 \le 0\}.$$

Soluzioni del siste	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
$(0, \ 0)$	(0,0)		NO	NO	SI	SI	NO
$\left(-\frac{1}{2},\frac{1}{2}\right)$	(0, -1)		NO	NO	NO	NO	SI
$\left(\frac{\sqrt{5}-3}{2},\ \frac{\sqrt{5}-1}{2}\right)$	(negativo, negativo)		NO	SI	NO	NO	NO
$\left(-\frac{\sqrt{5}+3}{2}, -\frac{\sqrt{5}+1}{2}\right)$	(negativo, negativo)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\left\{ \begin{array}{l} \max \ -10 \ x_1 \ x_2 - 2 \ x_2^2 - 5 \ x_2 \\ x \in P \end{array} \right.$$

dove P è il poliedro di vertici (1,2), (-4,3), (4,-4) e (-2,-3). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
(3, -2)	(2,1)	$\begin{pmatrix} 1/5 & -2/5 \\ -2/5 & 4/5 \end{pmatrix}$	$\left(\frac{74}{5}, -\frac{148}{5}\right)$	$\frac{5}{74}$	$\frac{5}{74}$	(4, -4)