Numerical Optimization Methods in Imaging

Part I: Subdifferential and proximity operator

jean-christophe@pesquet.eu

PhD Summer School MMLIA – Bologna

Non-smooth convex optimization

A pioneer

Jean-Jacques Moreau (1923–2014)

The (Moreau) subdifferential of f, denoted by ∂f ,

Let $\mathcal H$ be a real Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

The (Moreau) subdifferential of f, denoted by ∂f ,

Let \mathcal{H} be a real Hilbert space.

Let $f: \mathcal{H} \to [-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$

$$x \to \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \} \end{cases}$$

Let \mathcal{H} be a real Hilbert space.

Let $f: \mathcal{H} \to [-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$

$$x \to \{u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \langle y - x | u \rangle + f(x) \le f(y)\}$$

Let \mathcal{H} be a real Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$

$$x \to \begin{cases} u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \end{cases}$$

Let \mathcal{H} be a real Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$

$$x \to \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \} \end{cases}$$

Let \mathcal{H} be a real Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$

$$x \to \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \} \end{cases}$$

Let \mathcal{H} be a real Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$

$$x \to \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \} \end{cases}$$

Let \mathcal{H} be a real Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$

$$x \to \begin{cases} u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \end{cases}$$

Let \mathcal{H} be a real Hilbert space.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$

$$x \to \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \} \end{cases}$$

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

The (Moreau) subdifferential of f, denoted by ∂f , is such that

$$\begin{split} \partial f : \mathcal{H} &\to 2^{\mathcal{H}} \\ x &\to \{ u \in \mathcal{H} \, | \, (\forall y \in \mathcal{H}) \, \langle y - x | u \rangle + f(x) \leq f(y) \} \end{split}$$

Fermat's rule : $0 \in \partial f(x) \Leftrightarrow x \in \operatorname{Argmin} f$

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

The (Moreau) subdifferential of f, denoted ∂f , is such that

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$
$$x \to \{ u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \}$$

 $u \in \partial f(x)$ is a subgradient of f at x.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$
$$x \to \{ u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \}$$

- $u \in \partial f(x)$ is a subgradient of f at x.
- ▶ If $x \notin \text{dom } f = \{x \in \mathcal{H} \mid f(x) < +\infty\}$, then $\partial f(x) = \emptyset$.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\partial f: \mathcal{H} \to 2^{\mathcal{H}}$$
$$x \to \{ u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \ \langle y - x | u \rangle + f(x) \le f(y) \}$$

- $u \in \partial f(x)$ is a subgradient of f at x.
- ▶ If $x \notin \text{dom } f = \{x \in \mathcal{H} \mid f(x) < +\infty\}$, then $\partial f(x) = \emptyset$.
- For every $x \in \text{dom } f$, $\partial f(x)$ is a closed and convex set.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

Its subdifferential is a monotone operator, i.e.

$$\big(\forall (x_1,x_2)\in \mathcal{H}^2\big)\big(\forall u_1\in \partial f(x_1)\big)\big(\forall u_2\in \partial f(x_2)\big)\ \langle u_1-u_2\mid x_1-x_2\rangle\geq 0.$$

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

Its subdifferential is a monotone operator, i.e.

$$(\forall (x_1,x_2) \in \mathcal{H}^2) (\forall u_1 \in \partial f(x_1)) (\forall u_2 \in \partial f(x_2)) \quad \langle u_1 - u_2 \mid x_1 - x_2 \rangle \geq 0.$$

Proof:

By definition:

$$\langle x_2 - x_1 | u_1 \rangle + f(x_1) \le f(x_2)$$
$$\langle x_1 - x_2 | u_2 \rangle + f(x_2) \le f(x_1)$$

lt results that $\langle x_1 - x_2 | u_1 - u_2 \rangle \geq 0$.

If $f:\mathcal{H}\to]-\infty,+\infty]$ is convex and it is Gâteaux differentiable at x, then

$$\partial f(x) = \{\nabla f(x)\}\$$

If $f\colon \mathcal{H} \to \left]-\infty, +\infty\right]$ is convex and it is Gâteaux differentiable at x, then

$$\partial f(x) = \{\nabla f(x)\}\$$

$$(\forall y \in \mathcal{H}) \qquad \langle \nabla f(x) \mid y \rangle = \lim_{\substack{\alpha \to 0 \\ \alpha \neq 0}} \frac{f(x + \alpha y) - f(x)}{\alpha}.$$

Proof:

For every $\alpha \in [0,1]$ and $y \in \mathcal{H}$,

$$f(x + \alpha(y - x)) \le (1 - \alpha)f(x) + \alpha f(y)$$

$$\Rightarrow \langle \nabla f(x) \mid y - x \rangle = \lim_{\substack{\alpha \to 0 \\ \alpha > 0}} \frac{f(x + \alpha(y - x)) - f(x)}{\alpha} \le f(y) - f(x)$$

Then $\nabla f(x) \in \partial f(x)$.

If $f:\mathcal{H} \to]-\infty,+\infty]$ is convex and it is Gâteaux differentiable at x, then

$$\partial f(x) = \{\nabla f(x)\}\$$

$$(\forall y \in \mathcal{H}) \qquad \langle \nabla f(x) \mid y \rangle = \lim_{\substack{\alpha \to 0 \\ \alpha \neq 0}} \frac{f(x + \alpha y) - f(x)}{\alpha}.$$

Proof:

Conversely, if $u \in \partial f(x)$, then, for every $\alpha \in [0, +\infty[$ and $y \in \mathcal{H}$,

$$f(x + \alpha y) \ge f(x) + \langle u \mid x + \alpha y - x \rangle$$

$$\Rightarrow \langle \nabla f(x) \mid y \rangle = \lim_{\substack{\alpha \to 0 \\ \alpha > 0}} \frac{f(x + \alpha y) - f(x)}{\alpha} \ge \langle u \mid y \rangle.$$

By selecting $y = u - \nabla f(x)$, it results that $||u - \nabla f(x)||^2 \le 0$ and then $u = \nabla f(x)$.

Subdifferential of a convex function: example

Let ${\it C}$ be a nonempty subset of ${\it H}.$

Its indicator function is

$$(\forall x \in \mathcal{H}) \quad \iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise.} \end{cases}$$

For every $x \in \mathcal{H}$, $\partial \iota_{\mathcal{C}}(x)$ is the normal cone to \mathcal{C} at x defined by

$$N_{C}(x) = \begin{cases} \left\{ u \in \mathcal{H} \mid (\forall y \in C) \ \langle u \mid y - x \rangle \leq 0 \right\} & \text{if } x \in C \\ \varnothing & \text{otherwise} \end{cases}$$

Subdifferential of a convex function: example

Let C be a nonempty subset of \mathcal{H} . Its indicator function is

$$(\forall x \in \mathcal{H}) \quad \iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise.} \end{cases}$$

For every $x \in \mathcal{H}$, $\partial \iota_C(x)$ is the normal cone to C at x defined by

$$N_C(x) = \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in C) \ \langle u \mid y - x \rangle \leq 0\} & \text{if } x \in C \\ \emptyset & \text{otherwise.} \end{cases}$$

- ▶ If $x \in \text{int } C$, then $N_C(x) = \{0\}$.
- ▶ If C is a vector space, then for every $x \in C$, $N_C(x) = C^{\perp}$.

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

- Let $f: \mathcal{H} \to]-\infty, +\infty]$ be proper, i.e., $\operatorname{dom} f \neq \emptyset$, then for every $\lambda \in]0, +\infty[\ \partial(\lambda f) = \lambda \partial f$.
- Let $f: \mathcal{H} \to]-\infty, +\infty]$, $g: \mathcal{G} \to]-\infty, +\infty]$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Let L^* denote the adjoint of L.

If $\operatorname{dom} g \cap L(\operatorname{dom} f) \neq \emptyset$, then

$$(\forall x \in \mathcal{H}) \qquad \partial f(x) + L^* \partial g(Lx) \subset \partial (f + g \circ L)(x).$$

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

- Let $f: \mathcal{H} \to]-\infty, +\infty]$ be proper, i.e., $\operatorname{dom} f \neq \emptyset$, then for every $\lambda \in]0, +\infty[\ \partial(\lambda f) = \lambda \partial f$.
- Let $f: \mathcal{H} \to]-\infty, +\infty]$, $g: \mathcal{G} \to]-\infty, +\infty]$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Let L^* denote the adjoint of L. If $\operatorname{dom} g \cap L(\operatorname{dom} f) \neq \emptyset$, then

$$(\forall x \in \mathcal{H}) \qquad \partial f(x) + L^* \partial g(Lx) \subset \partial (f + g \circ L)(x).$$

Proof: Let $x \in \mathcal{H}$

$$\partial f(x) + L^* \partial g(Lx) = \{ u + L^* v \mid u \in \partial f(x), v \in \partial g(Lx) \}$$

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

- Let $f: \mathcal{H} \to]-\infty, +\infty]$ be proper, i.e., $\operatorname{dom} f \neq \emptyset$, then for every $\lambda \in]0, +\infty[\ \partial(\lambda f) = \lambda \partial f.$
- ▶ Let $f: \mathcal{H} \to]-\infty, +\infty]$, $g: \mathcal{G} \to]-\infty, +\infty]$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Let L^* denote the adjoint of L. If $\operatorname{dom} g \cap L(\operatorname{dom} f) \neq \emptyset$, then

$$(\forall x \in \mathcal{H})$$
 $\partial f(x) + L^* \partial g(Lx) \subset \partial (f + g \circ L)(x).$

<u>Proof</u>: Let $x \in \mathcal{H}$ Let $x \in \mathcal{H}$, $u \in \partial f(x)$ and $v \in \partial g(Lx)$. We have: $u + L^*v \in \partial f(x) + L^*\partial g(Lx)$ and

$$(\forall y \in \mathcal{H}) \qquad f(y) \ge f(x) + \langle y - x \mid u \rangle$$
$$g(Ly) \ge g(Lx) + \langle L(y - x) \mid v \rangle.$$

Therefore, by summing,

$$f(y) + g(Ly) > f(x) + g(Lx) + \langle y - x \mid u + L^*v \rangle$$
.

We deduce that $u + L^*v \in \partial (f + g \circ L)(x)$.

Let $\mathcal H$ and $\mathcal G$ be two real Hilbert spaces.

Let $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

If $\operatorname{int} (\operatorname{dom} g - L(\operatorname{dom} f)) \neq \emptyset$, then

$$\partial f + L^* \circ \partial g \circ L = \partial (f + g \circ L)$$
.

Particular case:

- ▶ If $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{H})$, and g is finite valued, then $\partial f + \partial g = \partial (f + g)$.
- If $g \in \Gamma_0(\mathcal{G})$, $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$, and $\operatorname{int} (\operatorname{dom} g) \cap \operatorname{ran} L \neq \emptyset$ or $\operatorname{ran} L = \mathcal{H}$, then $L^* \circ \partial g \circ L = \partial (g \circ L)$.

Let I be a finite subset of \mathbb{N} .

Let $(\mathcal{H}_i)_{i\in I}$ be Hilbert spaces and let $\mathcal{H}= imes\mathcal{H}_i$.

For every $i \in I$, let $f_i : \mathcal{H}_i \to]-\infty, +\infty]$ be a proper function. Let

$$f: \mathcal{H} \to]-\infty, +\infty]: x = (x_i)_{i \in I} \mapsto \sum_{i \in I} f_i(x_i)$$

Then,

$$(\forall x = (x_i)_{i \in I} \in \mathcal{H})$$
 $\partial f(x) = \underset{i \in I}{\times} \partial f_i(x_i).$

Let I be a finite subset of \mathbb{N} .

Let
$$(\mathcal{H}_i)_{i\in I}$$
 be Hilbert spaces and let $\mathcal{H}=\times\mathcal{H}_i$.

For every $i \in I$, let $f_i : \mathcal{H}_i \to]-\infty, +\infty]$ be a proper function. Let

$$f: \mathcal{H} \to]-\infty, +\infty]: x = (x_i)_{i \in I} \mapsto \sum_{i \in I} f_i(x_i)$$

Then,

$$(\forall x = (x_i)_{i \in I} \in \mathcal{H})$$
 $\partial f(x) = \underset{i \in I}{\times} \partial f_i(x_i).$

<u>Proof</u>: Let $x = (x_i)_{i \in I} \in \mathcal{H}$. We have

$$t = (t_i)_{i \in I} \in \underset{i \in I}{\times} \partial f_i(x_i)$$

$$\Leftrightarrow$$
 $(\forall i \in I)(\forall y_i \in \mathcal{H}_i)$ $f_i(y_i) \geq f_i(x_i) + \langle t_i \mid y_i - x_i \rangle$

$$\Rightarrow (\forall y = (y_i)_{i \in I} \in \mathcal{H}) \sum_{i \in I} f_i(y_i) \ge \sum_{i \in I} f_i(x_i) + \sum_{i \in I} \langle t_i \mid y_i - x_i \rangle$$

$$\Leftrightarrow (\forall y \in \mathcal{H}) \ f(y) \geq f(x) + \langle t \mid y - x \rangle.$$

Let I be a finite subset of \mathbb{N} .

Let $(\mathcal{H}_i)_{i\in I}$ be Hilbert spaces and let $\mathcal{H}=\times\mathcal{H}_i$.

For every $i \in I$, let $f_i : \mathcal{H}_i \to]-\infty, +\infty]$ be a proper function. Let

$$f: \mathcal{H} \to]-\infty, +\infty]: x = (x_i)_{i \in I} \mapsto \sum_{i \in I} f_i(x_i)$$

Then,

$$(\forall x = (x_i)_{i \in I} \in \mathcal{H})$$
 $\partial f(x) = \underset{i \in I}{\times} \partial f_i(x_i).$

Proof: Conversely,

$$t = (t_i)_{i \in I} \in \partial f(x)$$

$$\Leftrightarrow (\forall y = (y_i)_{i \in I} \in \mathcal{H}) \sum_{i \in I} f_i(y_i) \ge \sum_{i \in I} f_i(x_i) + \sum_{i \in I} \langle t_i \mid y_i - x_i \rangle.$$

Let $j \in I$. By setting $(\forall i \in I \setminus \{j\})$ $y_i = x_i \in \text{dom } f_i$, we get

$$(\forall y_j \in \mathcal{H}_j) \ f_j(y_j) \geq f_j(x_j) + \langle t_j \mid y_j - x_j \rangle.$$

Conjugate

Adrien-Marie Legendre (1752–1833)

Werner Fenchel (1905–1988)

Conjugate

Adrien-Marie Legendre (1752–1833)

Werner Fenchel (1905–1988)

Conjugate: reminders

Let \mathcal{H} be a Hilbert space and $f: \mathcal{H} \to]-\infty, +\infty]$.

The conjugate of f is the function $f^*: \mathcal{H} \to [-\infty, +\infty]$ such that

$$(\forall u \in \mathcal{H})$$
 $f^*(u) = \sup_{x \in \mathcal{H}} (\langle x \mid u \rangle - f(x)).$

Moreau-Fenchel theorem

Let \mathcal{H} be a Hilbert space and $f: \mathcal{H} \to [-\infty, +\infty]$ be a proper function.

f is l.s.c. and convex $\Leftrightarrow f^{**} = f$.

Conjugate: properties

Fenchel-Young inequality: If f is proper, then

- 1. $(\forall (x, u) \in \mathcal{H}^2)$ $f(x) + f^*(u) \ge \langle x \mid u \rangle$
- 2. $(\forall (x, u) \in \mathcal{H}^2)$ $u \in \partial f(x) \Leftrightarrow f(x) + f^*(u) = \langle x \mid u \rangle$.

Conjugate: properties

Fenchel-Young inequality: If f is proper, then

- 1. $(\forall (x, u) \in \mathcal{H}^2)$ $f(x) + f^*(u) \ge \langle x \mid u \rangle$
- 2. $(\forall (x, u) \in \mathcal{H}^2)$ $u \in \partial f(x) \Leftrightarrow f(x) + f^*(u) = \langle x \mid u \rangle$.

<u>Proof</u>: Let $(x, u) \in \mathcal{H}^2$. We have

$$f(x) + f^*(u) = \langle x \mid u \rangle$$

$$\Leftrightarrow f(x) + f^*(u) \le \langle x \mid u \rangle$$

$$\Leftrightarrow \sup_{y \in \mathcal{H}} \langle y \mid u \rangle - f(y) \le \langle x \mid u \rangle - f(x)$$

$$\Leftrightarrow (\forall y \in \mathcal{H}) \langle y \mid u \rangle - f(y) \le \langle x \mid u \rangle - f(x)$$

$$\Leftrightarrow (\forall y \in \mathcal{H}) f(y) \ge f(x) + \langle y - x \mid u \rangle$$

$$\Leftrightarrow u \in \partial f(x).$$

Conjugate: properties

Fenchel-Young inequality: If f is proper, then

1.
$$(\forall (x, u) \in \mathcal{H}^2)$$
 $f(x) + f^*(u) \ge \langle x \mid u \rangle$

2.
$$(\forall (x, u) \in \mathcal{H}^2)$$
 $u \in \partial f(x) \Leftrightarrow f(x) + f^*(u) = \langle x \mid u \rangle$.

If
$$f \in \Gamma_0(\mathcal{H})$$
, then

$$(\forall (x,u) \in \mathcal{H}^2)$$
 $u \in \partial f(x) \Leftrightarrow x \in \partial f^*(u)$.

Conjugate: properties

Fenchel-Young inequality: If f is proper, then

1.
$$(\forall (x, u) \in \mathcal{H}^2)$$
 $f(x) + f^*(u) \ge \langle x \mid u \rangle$

2.
$$(\forall (x, u) \in \mathcal{H}^2)$$
 $u \in \partial f(x) \Leftrightarrow f(x) + f^*(u) = \langle x \mid u \rangle$.

If
$$f \in \Gamma_0(\mathcal{H})$$
, then

$$(\forall (x,u) \in \mathcal{H}^2) \qquad u \in \partial f(x) \iff x \in \partial f^*(u) .$$

Proof: Since $f \in \Gamma_0(\mathcal{H})$, we have

$$f^*(u) + f^{**}(x) = \langle x \mid u \rangle$$
.

which is equivalent to $x \in \partial f^*(u)$.

Let \mathcal{H} be a Hilbert space. Let $f \in \Gamma_0(\mathcal{H})$.

▶ The Moreau envelope of f of parameter $\gamma \in]0, +\infty[$ is

$$^{\gamma}f: \mathcal{H} \to \mathbb{R}: x \mapsto \inf_{y \in \mathcal{H}} f(y) + \frac{1}{2\gamma} \|y - x\|^2.$$

 \triangleright The proximity operator of f is

$$\operatorname{prox}_f \colon \mathcal{H} \to \mathcal{H} \colon x \mapsto \underset{y \in \mathcal{H}}{\operatorname{argmin}} \ f(y) + \frac{1}{2} \|y - x\|^2.$$

1.5

Proximity operator: existence and uniqueness

Let $f \in \Gamma_0(\mathcal{H})$ and $\gamma \in]0, +\infty[$.

For every $x \in \mathcal{H}$, there exists a unique vector $p \in \mathcal{H}$ such that

$$f(p) + \frac{1}{2\gamma} ||p - x||^2 = \inf_{y \in \mathcal{H}} f(y) + \frac{1}{2\gamma} ||y - x||^2$$
.

<u>Proof</u>: $f \in \Gamma_0(\mathcal{H}) \Rightarrow f^* \in \Gamma_0(\mathcal{H})$. Thus, there exists $u \in \mathcal{H}$ such that $f^*(u) \in \mathbb{R}$. According to Fenchel-Young inequality, we have

$$(\forall y \in \mathcal{H})$$
 $f(y) \ge \langle u \mid y \rangle - f^*(u).$

Then, $f(y) + (2\gamma)^{-1} ||y - x||^2 \to +\infty$ when $||y|| \to +\infty$. Furthermore $(2\gamma)^{-1} ||\cdot -x||^2$ being strictly convex, $f + (2\gamma)^{-1} ||\cdot -x||^2$ is a strictly convex coercive function.

Proximity operator: characterization

Let \mathcal{H} be a Hilbert space and $f \in \Gamma_0(\mathcal{H})$.

$$(\forall x \in \mathcal{H})$$
 $p = \operatorname{prox}_f(x) \Leftrightarrow x - p \in \partial f(p)$.

Proximity operator: characterization

Let \mathcal{H} be a Hilbert space and $f \in \Gamma_0(\mathcal{H})$.

$$(\forall x \in \mathcal{H})$$
 $p = \operatorname{prox}_f(x) \Leftrightarrow x - p \in \partial f(p)$.

<u>Proof</u>: By using Fermat's rule, for every $x \in \mathcal{H}$, $p = \text{prox}_f(x)$ if and only if

$$p = \underset{y \in \mathcal{H}}{\arg \min} \ f(y) + \frac{1}{2} ||y - x||^2$$

$$\Leftrightarrow 0 \in \partial \left(f + \frac{1}{2} || \cdot -x||^2 \right) (p)$$

$$\Leftrightarrow 0 \in \partial f(p) + p - x$$

$$\Leftrightarrow x \in (\operatorname{Id} + \partial f)(p).$$

Remark:

 prox_f is the resolvent of ∂f :

$$\operatorname{prox}_f = (I + \partial f)^{-1} = J_{\partial f}$$

Projection:

Let $\mathcal H$ be a Hilbert space. Let $\mathcal C$ be a nonempty closed convex subset of $\mathcal H$.

$$(\forall x \in \mathcal{H})$$
 $\operatorname{prox}_{\iota_C}(x) = \underset{y \in C}{\operatorname{argmin}} \frac{1}{2} \|y - x\|^2 = P_C(x).$

Projection:

Let $\mathcal H$ be a Hilbert space. Let $\mathcal C$ be a nonempty closed convex subset of $\mathcal H$.

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\iota_{C}}(x) = \underset{y \in C}{\operatorname{argmin}} \frac{1}{2} \|y - x\|^{2} = P_{C}(x).$$

Remark:

$$p = P_C(x) \Leftrightarrow x - p \in \partial \iota_C(p) = N_C(p)$$

$$\Leftrightarrow p \in C \text{ and } (\forall y \in C) \langle y - p \mid x - p \rangle \leq 0 .$$

Particular case: if C is a vector space:
$$p = P_C(x) \Leftrightarrow \begin{cases} p \in C \\ x - p \in C^{\perp} \end{cases}$$
.

 $^{\gamma}\iota_{\mathcal{C}} = (2\gamma)^{-1}d_{\mathcal{C}}^{2}$ where $d_{\mathcal{C}}$ distance to the convex set \mathcal{C} is defined by $d_{\mathcal{C}}: x \mapsto \inf_{y \in \mathcal{C}} \|y - x\| = \|x - P_{\mathcal{C}}x\|$.

Power q function with $q \ge 1$:

Let $\chi > 0$, $q \in [1, +\infty[$ and $\varphi : \mathbb{R} \to]-\infty, +\infty[$: $\xi \mapsto \chi |\xi|^q$.

Then, for every
$$\xi \in \mathbb{R}$$
,

$$\text{Then, for every } \xi \in \mathbb{R},$$

$$\text{if } q = 1$$

$$\xi + \frac{4\chi}{3 \cdot 2^{1/3}} \left((\epsilon - \xi)^{1/3} - (\epsilon + \xi)^{1/3} \right)$$

$$\text{where } \epsilon = \sqrt{\xi^2 + 256\chi^3/729}$$
 if $q = \frac{4}{3}$
$$\xi + \frac{9\chi^2 \text{sign}(\xi)}{8} \left(1 - \sqrt{1 + \frac{16|\xi|}{9\chi^2}} \right)$$
 if $q = \frac{3}{2}$ if $q = 2$
$$\frac{\xi}{1+2\chi}$$
 if $q = 2$
$$\text{sign}(\xi) \frac{\sqrt{1+12\chi|\xi|}-1}{6\chi}$$
 if $q = 3$
$$\left(\frac{\epsilon + \xi}{8\chi} \right)^{1/3} - \left(\frac{\epsilon - \xi}{8\chi} \right)^{1/3}$$
 where $\epsilon = \sqrt{\xi^2 + 1/(27\chi)}$ if $q = 4$

Plot of the graphs of these proximity operator on the same figure. Power q function with $q \ge 1$ and $\chi = 2$.

Quadratic function:

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces.

Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$, $\gamma \in]0, +\infty[$ and $z \in \mathcal{G}$.

$$f = \gamma \|L \cdot -z\|^2 / 2 \quad \Rightarrow \quad \operatorname{prox}_f = (\operatorname{Id} + \gamma L^* L)^{-1} (\cdot + \gamma L^* z).$$

Exercise : Prove this property.

Quadratic function:

Let $\mathcal H$ and $\mathcal G$ be two Hilbert spaces.

Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$, $\gamma \in]0, +\infty[$ and $z \in \mathcal{G}$.

$$f = \gamma \|L \cdot -z\|^2 / 2 \quad \Rightarrow \quad \operatorname{prox}_f = (\operatorname{Id} + \gamma L^* L)^{-1} (\cdot + \gamma L^* z).$$

▶ Proof: We have, for every $x \in \mathcal{H}$,

$$p = \text{prox}_f x \quad \Leftrightarrow \quad x - p \in \partial f(p).$$

In addition, f is Gâteaux differentiable and its gradient at p is

$$\nabla f(p) = \gamma L^*(Lp - z).$$

Therefore,

$$x - p = \gamma L^*(Lp - z)$$
 \Leftrightarrow $p = (\mathrm{Id} + \gamma L^*L)^{-1}(x + \gamma L^*z).$

Let \mathcal{H} be a Hilbert space, $x \in \mathcal{H}$ and $f \in \Gamma_0(\mathcal{H})$.

Properties	g(x)	$\mathrm{prox}_{g} x$
Translation	$f(x-z), z \in \mathcal{H}$	$z + \operatorname{prox}_f(x - z)$
Quadratic perturbation	$f(x) + \alpha \parallel x \parallel^2 / 2 + \langle z \mid x \rangle + \gamma$ $z \in \mathcal{H}, \alpha > 0, \gamma \in \mathbb{R}$	$\operatorname{prox}_{\frac{f}{\alpha+1}}\left(\frac{x-z}{\alpha+1}\right)$
Scaling	$f(ho x), ho \in \mathbb{R}^*$	$\frac{1}{\rho} \operatorname{prox}_{\rho^2 f}(\rho x)$
Reflection	f(-x)	$-\operatorname{prox}_f(-x)$
Moreau enveloppe	${}^{\gamma}f(x) = \inf_{y \in \mathcal{H}} f(y) + \frac{1}{2\gamma} x - y ^2$ $\gamma > 0$	$\frac{1}{1+\gamma} \left(\gamma x + \operatorname{prox}_{(1+\gamma)f}(x) \right)$

For every $i \in \{1, ..., n\}$, let \mathcal{H}_i be a Hilbert space and let $f_i \in \Gamma_0(\mathcal{H}_i)$. If

$$(\forall x = (x_1, \ldots, x_n) \in \mathcal{H}_1 \times \cdots \times \mathcal{H}_n) \quad f(x) = \sum_{i=1}^n f_i(x_i),$$

then

$$(\forall x = (x_1, \dots, x_n) \in \mathcal{H}_1 \times \dots \times \mathcal{H}_n) \quad \operatorname{prox}_f(x) = (\operatorname{prox}_{f_i}(x_i))_{1 \leq i \leq n}$$

Let \mathcal{H} be a separable Hilbert space.

Let $(b_i)_{i \in I}$ be an orthonormal basis of \mathcal{H} .

For every $i \in I$, let $\varphi_i \in \Gamma_0(\mathbb{R})$ such that $\varphi_i \geq 0$. For every $x \in \mathcal{H}$, if

$$f(x) = \sum_{i \in I} \varphi_i(\langle x \mid b_i \rangle)$$

then

$$\operatorname{prox}_f(x) = \sum_{i \in I} \operatorname{prox}_{\varphi_i}(\langle x \mid b_i \rangle) b_i.$$

Remark: The assumption $(\forall i \in I)$ $\varphi_i \geq 0$ can be relaxed if \mathcal{H} is finite dimensional.

Let \mathcal{H} be a separable Hilbert space.

Let $(b_i)_{i \in I}$ be an orthonormal basis of \mathcal{H} .

For every $i \in I$, let $\varphi_i \in \Gamma_0(\mathbb{R})$ such that $\varphi_i \geq 0$. For every $x \in \mathcal{H}$, if

$$f(x) = \sum_{i \in I} \varphi_i(\langle x \mid b_i \rangle)$$

then

$$\operatorname{prox}_f(x) = \sum_{i \in I} \operatorname{prox}_{\varphi_i}(\langle x \mid b_i \rangle) b_i.$$

Example: $\mathcal{H} = \mathbb{R}^N$, $(b_i)_{1 \leq i \leq N}$ canonical basis of \mathbb{R}^N , $f = \lambda \| \cdot \|_1$ with $\lambda \in [0, +\infty[$.

$$(\forall x = (x^{(i)})_{1 \le i \le N} \in \mathbb{R}^N) \qquad \operatorname{prox}_{\lambda \| \cdot \|_1}(x) = (\operatorname{prox}_{\lambda | \cdot |}(x^{(i)}))_{1 \le i \le N}$$

Moreau decomposition formula

Let \mathcal{H} be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\gamma \in]0, +\infty[$.

$$(\forall x \in \mathcal{H})$$
 $\operatorname{prox}_{\gamma f^*} x = x - \gamma \operatorname{prox}_{\gamma^{-1} f} (\gamma^{-1} x)$.

Proof:

$$\begin{split} p &= \mathrm{prox}_{\gamma f^*} x \Leftrightarrow x - p \in \gamma \partial f^*(p) \\ &\Leftrightarrow p \in \partial f \left(\frac{x - p}{\gamma} \right) \\ &\Leftrightarrow \frac{x}{\gamma} - \frac{x - p}{\gamma} \in \frac{1}{\gamma} \partial f \left(\frac{x - p}{\gamma} \right) \\ &\Leftrightarrow \frac{x - p}{\gamma} = \mathrm{prox}_{\gamma^{-1} f}(\gamma^{-1} x) \\ &\Leftrightarrow p = x - \gamma \mathrm{prox}_{\gamma^{-1} f}(\gamma^{-1} x). \end{split}$$

Moreau decomposition formula

Let \mathcal{H} be a Hilbert space, $f \in \Gamma_0(\mathcal{H})$ and $\gamma \in]0, +\infty[$.

$$(\forall x \in \mathcal{H})$$
 $\operatorname{prox}_{\gamma f^*} x = x - \gamma \operatorname{prox}_{\gamma^{-1} f} (\gamma^{-1} x)$.

Example: If
$$\mathcal{H}=\mathbb{R}^N$$
, $f=\frac{1}{q}\|\cdot\|_q^q$ with $q\in]1,+\infty[$, then $f^*=\frac{1}{q^*}\|\cdot\|_{q^*}^{q^*}$ with $1/q+1/q^*=1$, and

$$(\forall x \in \mathbb{R}^N) \qquad \operatorname{prox}_{\frac{\gamma}{q^*} \| \cdot \|_{q^*}^{q^*}} x = x - \gamma \operatorname{prox}_{\frac{1}{\gamma q} \| \cdot \|_{q}^{q}} (\gamma^{-1} x).$$

Support function: reminders

Let \mathcal{H} be a Hilbert space and $C \subset \mathcal{H}$. σ_C is the support function of C if

$$(\forall u \in \mathcal{H}) \qquad \sigma_C(u) = \sup_{x \in C} \langle x \mid u \rangle$$
$$= \iota_C^*(u).$$

Support function: reminders

Let \mathcal{H} be a Hilbert space and $C \subset \mathcal{H}$. σ_C is the support function of C if

$$(\forall u \in \mathcal{H}) \qquad \sigma_{C}(u) = \sup_{x \in C} \langle x \mid u \rangle$$
$$= \iota_{C}^{*}(u).$$

Support function: reminders

Let \mathcal{H} be a Hilbert space and $C \subset \mathcal{H}$. σ_C is the support function of C if

$$(\forall u \in \mathcal{H}) \qquad \sigma_C(u) = \sup_{x \in C} \langle x \mid u \rangle$$
$$= \iota_C^*(u).$$

Support function:

Let \mathcal{H} be a Hilbert space and $\mathcal{C} \subset \mathcal{H}$ be nonempty closed convex.

$$(\forall x \in \mathcal{H}) \quad \operatorname{prox}_{\sigma_C} = \operatorname{Id} - P_C.$$

 $\underline{\mathsf{Soft}\text{-}\mathsf{thresholding}}:\,\mathcal{H}=\mathbb{R},\;\delta_1=\mathsf{inf}\;\mathsf{C}\;\mathsf{and}\;\delta_2=\mathsf{sup}\;\mathsf{C}.\;\mathsf{For}\;\mathsf{every}\;x\in\mathbb{R},$

$$\sigma_C(x) = \begin{cases} \delta_1 x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \Rightarrow \operatorname{prox}_{\sigma_C}(x) = \operatorname{soft}_C(x) = \begin{cases} x - \delta_1 & \text{if } x < \delta_1 \\ 0 & \text{if } x \in C \\ x - \delta_2 & \text{if } x > \delta_2. \end{cases}$$

Let \mathcal{H} be a Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ be unitary. Then

$$\mathrm{prox}_{f \circ L} = L^* \circ \mathrm{prox}_f \circ L.$$

Let \mathcal{H} be a Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ be unitary. Then

$$\mathrm{prox}_{f \circ L} = L^* \circ \mathrm{prox}_f \circ L.$$

Proof:
$$LL^* = Id \Rightarrow ran L = \mathcal{H}$$
.

Thus $(\forall x \in \mathcal{H}) \ p = \operatorname{prox}_{f \circ L} x \Leftrightarrow x - p \in \partial (f \circ L)(p) = L^* \partial f(Lp)$. This yields

$$Lx - Lp \in \partial f(Lp)$$

$$\Leftrightarrow Lp = \operatorname{prox}_f(Lx)$$

$$\Rightarrow p = L^* Lp = L^* \operatorname{prox}_f(Lx).$$

Let \mathcal{H} be a Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ be unitary. Then

$$\mathrm{prox}_{f \circ L} = L^* \circ \mathrm{prox}_f \circ L.$$

Let $\mathcal H$ and $\mathcal G$ be two Hilbert spaces. Let $f\in \Gamma_0(\mathcal H)$ and $L\in \mathcal B(\mathcal G,\mathcal H)$ such that $LL^*=\mu\mathrm{Id}$ where $\mu\in]0,+\infty[$. Then

$$\operatorname{prox}_{f \circ L} = \operatorname{Id} - \mu^{-1} L^* \circ (\operatorname{Id} - \operatorname{prox}_{\mu f}) \circ L.$$

<u>Illustration</u>: $L \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ unitary, $\operatorname{prox}_{f \circ L} = L^* \operatorname{prox}_f L$.

Application: denoising using an ℓ_1 penalty on the coefficients resulting from an orthogonal wavelet transform L.

Proximity operator: Bayesian interpretation

▶ If $\mathcal{H} = \mathbb{R}^N$ and

$$x = \overline{y} + w$$

where \overline{y} is a realization of a random vector with probability density function $\exp(-f)$ and w is a realization of a $\mathcal{N}(0, I)$ noise, then $\operatorname{prox}_f(x)$ is a Maximum A Posteriori estimate of \overline{y} .

- Explicit form for objective functions associated with usual log-concave probability densities
 - ➤ Laplace
 - ➤ Generalized Gaussian
 - ➤ maximum entropy
 - ➤ gamma
 - ➤ uniform
 - ➤ Weibull
 - VVeibull
 - ➤ Generalized inverse Gaussian

- ➤ Gaussian
- ➤ Huber
- ➤ Smoothed Laplace
- ➤ chi
- ➤ triangular
- ➤ Pearson type I

And many other functions! http://proximity-operator.net