

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

V. Országos Magyar Matematikaolimpia XXXII. EMMV

országos szakasz, Arad, 2023. február 20–23.

XI. osztály – I. forduló

- 1. feladat (10 pont). Legyen $A, B \in \mathcal{M}_n(\mathbb{R})$ úgy, hogy $A^3B = I_n B$.
 - a) Igazold, hogy B invertálható!
 - b) Igazold, hogy AB = BA.

Dr. Bencze Mihály, Brassó

Megoldás. Hivatalból (1 pont)

- a) A feltétel alapján $A^3B = I_n B$, ezért $A^3B + B = I_n$, tehát $(A^3 + I_n)B = I_n$. (1 pont) Innen következik, hogy $\det((A^3 + I_n)B) = \det(I_n)$, tehát $\det(A^3 + I_n)\det(B) = 1$. (1 pont) Ebből következik, hogy $\det(B) \neq 0$, így B invertálható, és $B^{-1} = A^3 + I_n$. (1 pont)
- b) Beszorozva az $A^3B = I_n B$ összefüggést balról, illetve jobbról A-val kapjuk, hogy:

$$A^4B = A - AB \quad \text{és} \quad A^3BA = A - BA. \tag{2 pont}$$

Kivonva egymásból a két egyenlet megfelelő oldalát kapjuk, hogy

$$A^4B - A^3BA = A - AB - (A - BA)$$
 (2 pont)

ahonnan következik, hogy $A^3(AB - BA) = -(AB - BA)$, ezért $(A^3 + I_n)(AB - BA) = O_n$. (1 pont)

Az előző pont eredménye alapján következik, hogy $B^{-1}(AB - BA) = O_n$, ahonnan $BB^{-1}(AB - BA) = O_n$, azaz $AB - BA = O_n$ tehát AB = BA. (1 pont)

2. feladat (10 pont). Adottak az $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ különböző sorozatok, amelyekre $a_1,b_1>0$, $a_{n+1}=a_n^2+b_n^2$ és $b_{n+1}=2a_nb_n$, minden $n\geq 1$ esetén. Igazold, hogy az $\left(\frac{a_n}{b_n}\right)_{n\geq 1}$ sorozat konvergens!

Megoldás. Hivatalból Az rekurziók alapján felírható, hogy

$$\frac{a_{n+1}}{b_{n+1}} = \frac{a_n^2 + b_n^2}{2a_n b_n} = \frac{1}{2} \left(\frac{a_n}{b_n} + \frac{b_n}{a_n} \right), \quad \forall n \ge 1.$$
 (1)

(2 pont)

Legyen $\frac{a_n}{b_n} = x_n$, minden $n \ge 1$ esetén. Mivel $a_1, b_1 > 0$, ezért $a_n, b_n > 0$, minden $n \ge 1$ esetén. Innen kapjuk, hogy $x_n > 0$, bármely $n \ge 1$ esetén. (1 pont)

Az (1) összefüggés egyenértékű az
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right), n \ge 1$$
 összefüggéssel. (1 pont)

Mivel $x_n > 0$, ezért $x_n + \frac{1}{x_n} \ge 2$. Így $x_{n+1} \ge 1$, minden $n \ge 1$ esetén, vagyis $x_n \ge 1$, bármely $n \ge 2$ esetén. (1 pont)

Az $x_{n+1} - x_n = \frac{x_n^2 + 1}{2x_n} - x_n = \frac{(1-x_n)(1+x_n)}{2x_n}$. Ugyanakkor $x_n \ge 1$, minden $n \ge 2$ esetén, ahonnan $1 - x_n \le 0$, minden $n \ge 2$ esetén. Tehát $x_{n+1} - x_n \le 0$, vagyis $x_{n+1} \le x_n$, minden $n \ge 2$ esetén következik, hogy az $(x_n)_{n \ge 2}$ sorozat csökkenő. (2 pont)

Mivel az $x_n > 0$, minden $n \ge 1$ esetén, ezért az $(x_n)_{n \ge 1}$ sorozat alulról korlátos. (1 pont)

Tehát Weierstrass tételét felhasználva az $(x_n)_{n\geq 1} = \left(\frac{\overline{a_n}}{b_n}\right)_{n\geq 1}$ sorozat konvergens. (1 pont)

- 3. feladat (10 pont). Jelölje [x] az x valós szám egész részét. Tekintsük az $(a_n)_{n\geq 1}$ valós számsorozatot, amelyre $a_1=\frac{3}{2}$ és $a_{n+1}-a_n=2[a_n]$, minden $n\geq 1$ esetén.
 - a) Határozd meg az $(a_n)_{n\geq 1}$ sorozat általános tagját!
 - b) Igazold, hogy

$$\sum_{k=1}^{n} a_k \cdot a_{k+1} = \frac{2a_{2n+2} + 16a_{n+1} + 4n - 31}{16}.$$

c) Számítsd ki a
$$\lim_{n\to\infty} \left(\frac{1}{2023+a_n} + \frac{1}{2023^2+a_n} + \cdots + \frac{1}{2023^n+a_n} \right)$$
 határértéket!

Dr. Bence Mihály, Brassó

Megoldás. Hivatalból (1 pont)

a) A rekurziót átírhatjuk, mint $a_{n+1} = 2[a_n] + a_n$. Felírjuk a sorozat néhány tagját:

$$a_{1} = \frac{3}{2},$$

$$a_{2} = 2[a_{1}] + a_{1} = 2 \cdot 1 + 1 + \frac{1}{2} = 3 + \frac{1}{2},$$

$$a_{3} = 2[a_{2}] + a_{2} = 2 \cdot 3 + 3 + \frac{1}{2} = 3^{2} + \frac{1}{2}$$

$$a_{4} = 2[a_{3}] + a_{3} = 2 \cdot 3^{2} + 3^{2} + \frac{1}{2} = 3^{3} + \frac{1}{2}.$$
(1 pont)

Észrevesszük, hogy $a_n=3^{n-1}+\frac{1}{2}$. (1 pont) Igazoljuk a matematikai indukció módszerével a sejtést. Az n=1 esetén $a_1=3^0+\frac{1}{2}=1+\frac{1}{2}=\frac{3}{2}$ igaz. Feltételezzük, hogy $a_k=3^{k-1}+\frac{1}{2}$ és ellenőrizzük, hogy $a_{k+1}=3^k+\frac{1}{2}$. A rekurzió és az

indukciós feltevés alapján

$$a_{k+1} = 2[a_k] + a_k$$

$$= 2\left[3^k + \frac{1}{2}\right] + 3^k + \frac{1}{2}$$

$$= 2 \cdot 3^k + 3^k + \frac{1}{2}$$

$$= 3 \cdot 3^k + \frac{1}{2}$$

$$= 3^{k+1} + \frac{1}{2},$$

tehát a sejtés igaz.

(**2 pont**)

b)

$$\sum_{k=1}^{n} a_k a_{k+1} = \sum_{k=1}^{n} \left(3^{k-1} + \frac{1}{2} \right) \left(3^k + \frac{1}{2} \right) = \sum_{k=1}^{n} \left(3^{2k-1} + \frac{1}{2} \cdot 3^k + \frac{1}{2} \cdot 3^{k-1} + \frac{1}{4} \right)$$

$$= \sum_{k=1}^{n} 3^{2k-1} + \frac{1}{2} \sum_{k=1}^{n} 3^k + \frac{1}{2} \sum_{k=1}^{n} 3^{k-1} + \frac{n}{4}$$

$$= 3 \cdot \frac{(3^2)^n - 1}{3^2 - 1} + \frac{1}{2} \cdot 3 \cdot \frac{3^n - 1}{3 - 1} + \frac{1}{2} \cdot \frac{3^n - 1}{3 - 1} + \frac{n}{4}$$

$$= \frac{3^{2n+1} - 3}{8} + \frac{4(3^n - 1)}{4} + \frac{n}{4}$$

$$= \frac{3^{2n+1} + \frac{1}{2} - \frac{1}{2} - 3 + 8(3^n + \frac{1}{2} - \frac{1}{2} - 1) + 2n}{8}$$

$$= \frac{2a_{2n+2} + 16a_{n+1} + 4n - 31}{16}.$$
(1 pont)

c) Felírhatjuk, hogy

$$\frac{1}{2023^n + a_n} \le \frac{1}{2023^k + a_n} \le \frac{1}{2023 + a_n},$$

minden $k=1,\ldots,n$ esetén. Össze
adva az egyenlőtlenségeket a $k=1,\ldots,n$ esetén kapjuk, hogy

$$\frac{n}{2023^n + a_n} \le \sum_{k=1}^n \frac{1}{2023^k + a_n} \le \frac{n}{2023 + a_n}.$$
 (1 pont)

Mivel
$$\lim_{n \to \infty} \frac{n}{2023^n + a_n} = \lim_{n \to \infty} \frac{n}{2023^n + 3^{n-1} + \frac{1}{2}} = 0$$
 és $\lim_{n \to \infty} \frac{n}{2023 + a_n} = \lim_{n \to \infty} \frac{n}{2023 + 3^{n-1} + \frac{1}{2}} = 0$, ezért a fogó tétel alapján $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{2023^k + a_n} = 0$. (1 pont)

- **4. feladat** (10 pont). Adottak az $A, B \in \mathcal{M}_2(\mathbb{C})$ mátrixok úgy, hogy $(A B)^2 = O_2$.
 - a) Igazold, hogy Tr(A) = Tr(B).
 - b) Ha AB = BA, akkor bizonyítsd be, hogy det(A) = det(B).

(***)

Megoldás. Hivatalból

(1 pont)

a) Mivel $(A - B)^2 = O_2$, ezért $\det(A - B) = 0$. (1 pont) A Cayley–Hamilton-tétel felírva az (A - B) mátrixra kapjuk, hogy

$$(A-B)^2 - \text{Tr}(A-B) \cdot (A-B) + \det(A-B)I_2 = O_2.$$
 (1 pont)

Felhasználva az $(A - B)^2 = O_2$ és $\det(A - B) = 0$ összefüggéseket következik, hogy

$$\operatorname{Tr}(A-B)\cdot(A-B) = O_2. \tag{1 pont}$$

Innen
$$\operatorname{Tr} (\operatorname{Tr} (A - B) \cdot (A - B)) = 0$$
, így $[\operatorname{Tr} (A - B)]^2 = 0$. De $\operatorname{Tr} (A - B) = \operatorname{Tr} (A) - \operatorname{Tr} (B)$, ezért $[\operatorname{Tr} (A) - \operatorname{Tr} (B)]^2 = 0$, tehát $\operatorname{Tr} (A) = \operatorname{Tr} (B)$. (1 pont)

b) Mivel AB = BA, ezért fennáll az $A^2 - B^2 = (A + B)(A - B)$, így az előző alpont alapján

$$\det(A^2 - B^2) = \det[(A + B)(A - B)] = \det(A + B)\det(A - B) = 0.$$
 (1 pont)

Bevezetjük a $t=\operatorname{Tr}(A)=\operatorname{Tr}(B),\ \alpha=\det A$ és $\beta=\det(B)$ jelöléseket. A Cayley–Hamiltontétel alapján $A^2-tA+\alpha I_2=O_2$ és $B^2-tB+\beta I_2=O_2$, amelyeket kivonva egymásból kapjuk, hogy $A^2-B^2=t(A-B)-(\alpha-\beta)I_2$. (1 pont) Két esetet különböztetünk meg.

- I. Ha t = 0, akkor $A^2 B^2 = -(\alpha \beta)I_2$, így $0 = \det(A^2 B^2) = (\alpha \beta)^2 \cdot 1$, tehát $\det(A) = \alpha = \beta = \det(B)$. (1 pont)
- II. Ha $t \neq 0$, akkor

$$\det(A^2 - B^2) = \det[t(A - B) - (\alpha - \beta)I_2] = \det\left(t\left[(A - B) - \frac{\alpha - \beta}{t}I_2\right]\right). \quad (1 \text{ pont})$$

Ismeretes, hogy $\det[(A-B)-xI_2]=x^2-\operatorname{Tr}(A-B)x+\det(A-B)$, továbbá a korábbról ismert $\operatorname{Tr}(A-B)=0$ és $\det(A-B)=0$ összefüggések alapján $\det[(A-B)-xI_2]=x^2$. Innen következik, hogy

$$\det(A^2 - B^2) = t^2 \det\left((A - B) - \frac{\alpha - \beta}{t}I_2\right) = t^2 \left(\frac{\alpha - \beta}{t}\right)^2 = (\alpha - \beta)^2,$$

de mivel $\det(A^2 - B^2) = 0$, ezért $(\alpha - \beta)^2 = 0$, tehát $\det(A) = \alpha = \beta = \det(B)$. (1 pont)

4/4