EMoth mound	Exam in Mathematics	Prepared by: Fredric Al Bayeh
ExaMath groups	Section: G.S.	Edited by: H. Ahmad
Number of superiors E	Sample 02 - 2022	Name:
Number of questions: 5	Duration: 180 min	N°:

- This exam includes five problems. It is inscribed on four pages, numbered from 1 to 4.
- The use of a non-programmable calculator is allowed.

I - (2 points)

In the table below, only one among the proposed answers to each question is correct. Choose, with justification, the correct answer.

\mathbf{N}^o	Question	P	Proposed answers	
	Question	A	В	C
1.	The expression: $A = \ln\left(\frac{1}{e^2}\right) - e^{3\ln(2)} \times e^{-\ln(3)} \text{ can}$ be written as:	$A = -\frac{14}{3}$	A = -26	$A = -\frac{2}{3}$
2.	The domain of definition of the function f defined by $f(x) = \ln \left[(\ln x)^2 - 2 \ln x - 3 \right]$ is:	$]0; +\infty[$	$\begin{bmatrix} 0 ; e^{-1} [\cup \\]e^3 ; +\infty [\end{bmatrix}$	$]0; -1[\cup]3; +\infty[$
3.	In an orthonormal system, A , B and C are three points of the plane of respective affixes z_A , z_B and z_C such that : $\frac{z_A - z_B}{z_A - z_C} = i$. The triangle ABC is:	a right isosceles triangle at A	an equilateral triangle	a triangle right angled at A
4.	An argument of the complex number $z = -2i\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ is:	$\frac{5\pi}{6}$	$-\frac{5\pi}{6}$	$\frac{\pi}{6}$

II - (4 points)

In the plane referred to a direct orthonormal system $(O; \vec{u}; \vec{v})$, consider the points A, B and D of respective affixes i, -2i and 1.

Let f be the mapping that associates, to each point M of affix z such that $z \neq i$, the point M' of affix z' such that $z' = f(z) = \frac{2z-i}{iz+1}$.

- 1) a) Determine in algebraic form the affix $z_{D'}$ of the point D', image of the point D by f.
 - b) For what values of the natural number n, is the complex number $(z_A + z_{D'})^n$ a real number?
- 2) a) Prove that, for every complex number z such that $z \neq i$, we have (z' + 2i)(z i) = 1.
 - b) Deduce that $BM' \times AM = 1$ and $(\overrightarrow{u}; \overrightarrow{BM'}) = -(\overrightarrow{u}; \overrightarrow{AM}) + 2k\pi$ for $k \in \mathbb{Z}$.

- c) Prove that if the point M varies on the circle of center A and radius 2, then the point M' varies on a circle of center and radius are to be determined.
- 3) Let E be the point of affix $z_E = \frac{1+\sqrt{3}}{2}(1+i)$.
 - a) Calculate $|z_A-z_D|$ and prove that $|z_A-z_E|=\sqrt{2}$.
 - b) Deduce that the points D and E belong to the same circle of center and radius are to be determined.
- 4) Let z = x + iy and z' = x' + iy' where x, y, x' and y' are real numbers.
 - a) Prove that $x' = \frac{x}{x^2 + (1 y)^2}$ and $y' = \frac{-2x^2 2y^2 + 3y 1}{x^2 + (1 y)^2}$.
 - b) Deduce the set of points M of affix z when z' is pure imaginary.

III - (4 points)

In the below figure, OAB and OCD are two direct right isosceles triangles at O. I is the midpoint of the segment [BC].

Let r be the rotation of center O and angle $\frac{\pi}{2}$ and h be the dilation of center B and ratio 2.

- 1) Let $S = r \circ h$.
 - a) Determine the image of the point I by S and prove that S(O) = A.
 - b) Show that S is a similitude. Determine its ratio and a mesure of its angle.
 - c) Construct geometrically the center H of S.
 - d) Deduce that AD = 2OI and that the lines (AD) and (OI) are perpendicular.
 - e) Prove that the image of the line (OI) by S is the line (AD).
 - f) Let J be the midpoint of the segment [AB]. Prove that S(J) = B and construct the point F such that F = S(A)
- 2) a) Determine the nature and characteristic elements of the transformation $S \circ S$.
 - b) Deduce that $\overrightarrow{HF} + 4\overrightarrow{HO} = \overrightarrow{0}$.
- 3) The plane is referred to a direct orthonormal system $(O; \vec{u}; \vec{v})$ such that $\overrightarrow{OA} = 3\vec{u}$. Write the complex form of S and determine the affix of the point H.

IV - (3 points)

Part A

Consider a perfect cubic die A having one green side, two black sides and three red sides.

A game consists of throwing the die twice in a row and denoting the obtained color after each

For $i \in \{1; 2\}$, consider the following events:

 G_i : « The obtained side at the i^{th} throw is green »; B_i : « The obtained side at the i^{th} throw is black »;

 R_i : « The obtained side at the i^{th} throw is red ».

- 1) Show that $P(G_1 \cap G_2) = \frac{1}{36}$ then calculate $P(B_1 \cap B_2)$ and $P(R_1 \cap R_2)$.
- 2) Deduce that the probability of obtaining two sides of the same color by the end of the game

Part B

Consider now a second cubic die B having four green sides and two black sides. A second game consists of throwing the die **B**:

- If the obtained side is green, we throw again the die **B** and we denote the obtained color.
- If the obtained side is black, we throw the die A and we denote the obtained color.

For $i \in \{1; 2\}$, consider the following events:

 G_{Ai} : « The obtained side at the i^{th} throw of the die **A** is green »;

 G_{Bi} : « The obtained side at the i^{th} throw of the die **B** is green ».

1) Complete the following probability tree representing the situation.

- 2) Verify that $P(G_{B_1} \cap G_{B_2}) = \frac{4}{9}$.
- 3) Calculate the probability of the event L: « The obtained side during the 2^{nd} throw is green ».

V - (7 points)

Part A

Let h be the function defined over]0; $+\infty[$ by $h(x) = x^3 - 1 + 2 \ln x$.

- 1) Calculate h'(x) and set up the table of variations of h.
- 2) Calculate h(1) and deduce the sign of h over $]0; +\infty[$.

Part B

Let f be the function defined over]0; $+\infty[$ by $f(x) = x - 2 - \frac{\ln x}{x^2}.$

Denote by (C) the representative curve of f in an orthonormal system $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1) Calculate $\lim_{x\to 0^+} f(x)$ and deduce the equation of an asymptote (d) to (C).
- 2) a) Calculate $\lim_{x \to +\infty} f(x)$.
 - b) Prove that the line (D) of equation y = x 2 is an asymptote to (C).
 - c) Study the relative position of (C) and (D).
- 3) Prove that for every $x \in]0$; $+\infty[$, $f'(x) = \frac{h(x)}{x^3}$ and set up the table of variations of f.
- 4) Show that the equation f(x) = 0 admits over]0; $+\infty[$ two solutions α and β such that $0.59 < \alpha < 0.61$ and $2.15 < \beta < 2.17$.
- 5) a) Prove that for every $x \in]0$; $+\infty[$, $f''(x) = \frac{5-6\ln x}{x^4}$.
 - b) Deduce that the curve (C) admits an inflection point I where the coordinates are to be determined.
- 6) Draw (d), (D) and (C).

Part C

Consider the function g defined by $g(x) = e^{f(x)}$.

- 1) Determine the domain of definition of the function g.
- 2) Show that the function g is strictly increasing over the interval $]\beta$; $+\infty[$.

QI	Answers	Grade
1.	$A = -2 - 8 + \frac{1}{3} = -\frac{14}{3}$.	1/2
2.	$x > 0 \text{ and } (\ln x)^2 - 2\ln x - 3 > 0; x \in]0; e^{-1}[\cup]e^3; +\infty[.$	1/2
3.	$\begin{vmatrix} z_{\overrightarrow{BA}} \\ z_{\overrightarrow{CA}} \\ \text{at } A. \end{vmatrix} = i; BA = CA \text{ and } \left(\overrightarrow{CA}; \overrightarrow{BA}\right) = \frac{\pi}{2}(2\pi); ABC \text{ is a right isosceles triangle at } A.$	1/2
4.	$z = 2e^{-i\frac{\pi}{2}} \times e^{-i\frac{\pi}{3}} = 2e^{-i\frac{5\pi}{6}}; \arg z = -\frac{5\pi}{6}(2\pi).$	1/2

QII	Answers	Grade
1.a.	$z_{D'} = \frac{1}{2} - \frac{3}{2}i.$	1/2
1.b.	$(z_A + z_{D'})^n = \left(c\frac{\sqrt{2}}{2}e^{-i\frac{\pi}{4}}\right)^n = \left(\frac{\sqrt{2}}{2}\right)^n e^{-i\frac{n\pi}{4}}, \text{ is real if } -n\frac{\pi}{4} = k\pi \text{ where } k \in \mathbb{Z} \text{ ; As } n \in \mathbb{N} \text{ then } n \text{ is a positive multiple of } 4.$	1/2
2.a.	$(z'+2i)(z-i) = \left(\frac{2z-i-2z+2i}{iz+1}\right)(z-i) = \frac{i}{i(z-i)}(z-i) = 1;$	1/2
2.b.	$\begin{aligned} z_{\overrightarrow{BM'}} \times z_{\overrightarrow{AM}} &= 1; \\ z_{\overrightarrow{BM'}} \times z_{\overrightarrow{AM}} &= 1 \text{ then } BM' \times AM = 1; \\ \arg\left(z_{\overrightarrow{BM'}} \times z_{\overrightarrow{AM}}\right) &= \arg(1) ; \left(\overrightarrow{u}; \overrightarrow{BM'}\right) + \left(\overrightarrow{u}; \overrightarrow{AM}\right) = 0 + 2k\pi \text{ with } k \in \mathbb{Z}. \end{aligned}$	1/2
2.c.	$BM' \times AM = 1$ with $AM = 2$ so $BM' = \frac{1}{2}$; M varies on the circle of center B and radius $\frac{1}{2}$.	1/2
3.a.	$ z_A - z_D = \sqrt{2};$ $ z_A - z_E = \sqrt{2};$ $DA = EA = \sqrt{2};$ D and E belong to the circle of center A and radius $\sqrt{2}$.	1/2
4.a.	$x' + iy' = \frac{2(x+iy) - i}{i(x+iy) + 1};$ $x' = \frac{x}{x^2 + (1-y)^2};$ $y' = \frac{-2x^2 - 2y^2 + 3y - 1}{x^2 + (1-y)^2}.$	1/2
4.b.	z' is pure imaginary if $x' = 0$ and $y' \neq 0$; $x = 0$ and $-2x^2 - 2y^2 + 3y - 1 \neq 0$; The set of points M is the line of equation $x = 0$ deprived of points of coordinates $(0; 1)$ and $\left(0; \frac{1}{2}\right)$.	1/2

QIII	Answers	Grade
1.a.	$S(I) = r[h(I)] = r(C) = D;$ $S(O) = r[h(O)] = r(O') \text{ where } O' \text{ is the symmetric of } B \text{ with respect to } O;$ so $S(O) = A$ as $OO' = OA$ and $\overrightarrow{OO'}$; $\overrightarrow{OA} = \frac{\pi}{2}(2\pi)$.	1/2
1.b.	$S = r\left(O; \frac{\pi}{2}\right) \circ h\left(B; 2\right); S \text{ is a similarity of ratio 2 and angle } \frac{\pi}{2}.$	1/2
1.c.	$S(I) = D \text{ so } \left(\overrightarrow{HI}; \overrightarrow{HD}\right) = \frac{\pi}{2}(2\pi);$ $S(O) = A \text{ so } \left(\overrightarrow{HO}; \overrightarrow{HA}\right) = \frac{\pi}{2}(2\pi);$ $H \text{ is one of the points of intersection of two circles of diameters } [ID] \text{ and } [OA]$ $\text{such that } \left(\overrightarrow{HI}; \overrightarrow{HD}\right) = \frac{\pi}{2}(2\pi).$	1/2
1.d.	$S(I) = D$ and $S(O) = A$ so $DA = 2OI$ and $(\overrightarrow{IO}; \overrightarrow{DA}) = \frac{\pi}{2}(2\pi);$ Then $DA = 2OI$ and (DA) and (IO) are perpendicular.	1/2
1.e.	S((OI)) is the line passing through A and perpendicular to (OI) ; So $S((OI)) = (AD)$.	1/2
1.f	S(J) = r[h(J)] = r(A) = B; JOA is a direct right isosceles triangle at J ; $S(J) = B$ and $S(O) = A$ then F is the 3^{rd} vertex of the direct triangle BAF right isosceles at B .	1/2
2.a	$S \circ S = S\left(H; 2; \frac{\pi}{2}\right) \circ S\left(H; 2; \frac{\pi}{2}\right) = S\left(H; 4; \pi\right);$ $S \circ S = h\left(H; -4\right).$	1/2
2.b	$S \circ S(O) = S[S(O)] = S(A) = F \text{ and } S \circ S = h(H; -4), \text{ so } \overrightarrow{HF} = -4\overrightarrow{HO}.$	1/2
2.c	$S: z' = az + b; \ a = 2e^{i\frac{\pi}{2}} = 2i; \ S(O) = A \text{ so } b = 3;$ $S: z' = 2iz + 3;$ $z_H = \frac{b}{1-a} = \frac{3}{5} + \frac{6}{5}i.$	1/2

QIV	Answers	Grade
A.1.	$P(G_1 \cap G_2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36};$ $P(B_1 \cap B_2) = \frac{2}{6} \times \frac{2}{6} = \frac{1}{9};$ $Pp(R_1 \cap R_2) = \frac{3}{6} \times \frac{3}{6} = \frac{1}{4}.$	1/2
A.2.	$p(G_1 \cap G_2) + p(B_1 \cap B_2) + p(R_1 \cap R_2) = \frac{7}{18}.$	1/2
B.1.	G_{B_1} G_{B_2} G_{B_2} G_{B_2} $G_{G_{B_2}}$ $G_{G_{A_2}}$ $G_{G_{A_2}}$ $G_{G_{A_2}}$ $G_{G_{A_2}}$	1/2
B.2.	$P(G_{B_1} \cap G_{B_2}) = P(G_{B_2}/G_{B_1}) \times P(G_{B_1}) = \frac{4}{9}.$ $P(I) = P(G_{B_1} \cap G_{B_2}) + P(G_{B_1} \cap G_{B_2}) = \frac{4}{9}.$	$ \hspace{.05cm} 1/2 \hspace{.05cm} $
B.3.	$P(L) = P(G_{B_1} \cap G_{B_2}) + P(G_{A_2} \cap \overline{G_{B_1}}) = \frac{4}{9} + \frac{1}{18} = \frac{1}{2}.$	1/2

QV	Answers	Grade
A.1.	$h'(x) = 3x^2 + \frac{2}{x} > 0$ for every $x \in]0$; $+\infty[$; Table of variations of h : $x = 0 + \infty$ $h'(x) = 0$ $h'(x) = $	1/2
A.2.	$h(1) = 0;$ • $h(x) > 0 \text{ if } x \in]1; +\infty[;$ • $h(x) < 0 \text{ if } x \in]0; 1[;$ • $h(x) = 0 \text{ if } x = 1$	1/2
B.1.	$\lim_{x\to 0^+} f(x) = +\infty;$ The line of equation $x=0$ is a vertical asymptote to (C) .	1/2

$\overline{\mathrm{QV}}$	Answers	Grade
B.2.a.	$\lim_{x \to +\infty} f(x) = +\infty.$	1/2
B.2.b	$\lim_{x \to +\infty} [f(x) - (x - 2)] = \lim_{x \to +\infty} \left(-\frac{\ln x}{x^2} \right) = 0;$ The line (D) of equation $y = x - 2$ is an oblique asymptote to (C) at $+\infty$.	1/2
B.2.c	$f(x) - (x - 2) = -\frac{\ln x}{x^2} \text{ has the same sign as } -\ln x \text{ over }]0; +\infty[;$ $\bullet (C) \text{ is above } (D) \text{ if } x \in]0; 1[;$ $\bullet (C) \text{ is below } (D) \text{ if } x \in]1; +\infty[;$ $\bullet (C) \text{ cuts } (D) \text{ at the point of coordinates } (1; -1).$	1/2
B.3.	$f'(x) = \frac{x^3 - 1 + 2 \ln x}{x^3} = \frac{h(x)}{x^3};$ Table of variations of f : $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2
B.4.	 over]0; 1[, f is continuous and strictly decreasing and changes the sign, so the equation f(x) = 0 admits a unique solution α; In addition f(0.59) ≈ 0.11 > 0 and f(0.61) ≈ -0.06 < 0 so: 0.59 < α < 0.61; Over]1; +∞[, f is continuous and strictly increasing and changes the sign, so the equation f(x) = 0 admits a unique solution β; In addition f(2.15) ≈ -0.02 < 0 and f(2.17) ≈ 0.01 > 0 so: 2.15 < β < 2.17. 	1/2
B.5.a.	$f''(x) = \frac{5 - 6 \ln x}{x^4}.$ $f''(x) = 0 \text{ if } x = e^{\frac{5}{6}} \text{ and changes the sign, so the curve } (C) \text{ admits an inflection}$	1/2
B.5.b.	$f''(x) = 0$ if $x = e^{\frac{5}{6}}$ and changes the sign, so the curve (C) admits an inflection point I of coordinates $\left(e^{\frac{5}{6}}; e^{\frac{5}{6}} - 2 - \frac{5}{6e^{\frac{5}{3}}}\right)$.	1/2

$\mathbf{Q}\mathbf{V}$	Answers	Grade
B.6.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2
C.1.	The domain of g is $]0; +\infty[$.	1/2
C.2.	$g'(x) = f'(x)e^{f(x)} > 0$ for every $x \in]\beta$; $+\infty[$, then g is strictly increasing over $]\beta$; $+\infty[$.	1/2