Remote Keyless Entry (RKE) system

Table of contents:

Chapter Number	Title	Page Number
1.	Introduction	3
2.	Abstract	3
	i. Problem description	4
3.	Requirements	4
	i. High level requirements	5
	ii. Low-level requirements	6
4.	SWOT Analyse	7
5.	4 W's and 1H	8

6.	Test plan and output	9
		· .

7.	Design	9
8.	Structural design	9
9.	i. Flowcharts i. Use case diagram	10
10.	Results and conclusion	12

Remote keyless entry (RKE) is an electronic access system that can be controlled from a distance. RKEs, which are typically used to remotely lock or unlock doors, require the end user to initiate an action that will cause a physical or software key fob to transmit a radio signal to a receiver that controls an electronic lock. Typically, the action is to press a button on a physical fob or mobile app.

1.2 Abstract

Remote Keyless Entry (RKE) systems are the successors to the traditional method of opening car doors by inserting physical keys. Keys with RKE-capabilities allow key-holders to remotely lock and unlock car doors, start or stop engines, or turn on and off anti-theft alarms.

1.3 Description

BiCom System: This system aims to achive the goal of displaying Window Status, Alarm Status, Battery Information and Door Status. There are particular led signaling for particular functionalities. Lets consider if we press a button 1 time all the LED will be on which means the Window status of car will be displayed, and so on.

2. 5 W's and 1 H

3. SWOAT Analyzes

4.Requirements

4.1 High level requirements

Test ID	Description	Categor y
HLR_01	System shall be showing window status	Technical
HLR_02	System shall be showing Alarm status	Technical
HLR_03	System shall be showing car's battery status	Technical
HLR_04	ystem shall be showing door's status	Technical

4.2 Low level requirements

Test ID Description HLR ID Cat	egory
--------------------------------	-------

LLR_01	Pressing a particular button shall switch on the all LED's at a same time	HLR_0 1	Functional
LLR_02	Pressing a button twice shall turn LED's on in clockwise manner	HLR_0 3	Functional
LLR_03	Pressing a particular button shall switch off the LED'sat a same time	HLR_0 2	Functional
LLR_04	Pressing a button twice shall turn LED's on in Green -> Orange -> Red -> Blue fashion	HLR_0 3	Functional
LLR_05	Pressing a button four times shall turn LED's on in clockwise manner	HLR_0 4	Functional
LLR_06	Pressing a button twice shall turn LED's on in Green -> Orange -> Red -> Blue fashion	HLR_0 4	Functional

5. Test Plan and Output:

5.1 High level test plan:

Test ID	Description	Input	Expected output	Actual Output
HLTP_0 1	Display the window status	User input button press onced	Window status	Window status
HLTP_0 2	Display the alarm Status	User input button presses twiced	Alarm status	Alarm status
HLTP_0 3	Display car battery Information	User input button presses trice	Battery status	Battery status

HLTP_0	Display the door	User input	Door status	Door
4	status of car	button presses		status
		four times		

1.2 LOW LEVEL TEST PLAN

Test ID	Description	Input	Expected output	Actual Output	Statu s
LLTP_0 1	check for BTN_Presse d Enable	User Button Presse s once	All LEDs turned on	All LEDs turned on	
LLTP_0 2	Check for BTN_Presse d disable	User Button Presse s twice	All LEDs turned off	All LEDs turned off	
LLTP_0 3	Check for BTN_Presse d Enable	User Button Presse s thrice	LED is on with clockwise rotation	LED is on clockwise rotation	V
LLTP_0 4	Check for BTN_Presse d disable	User Button Presse s thrice	LED is On with anticlockwis e rotation	LED is on with anticlockwis e rotation	
Test ID	Description	Input	Expected output	Actual Output	Status
LLTP_0 1	check for BTN_Pressed Enable	Button pressed once	Window status	Window status	V
LLTP_0 2	Check for BTN_Pressed disable	Button pressed twice	Alarm status	Alarm status	V

LLTP_0 3	check for BTN_Pressed Enable	Button pressed thrice	Battery status	Battery status	V
LLTP_0 5	Check for BTN_Pressed disable	Button pressed four times	Door status	Door status	V