

Hi3137V100 地面数字电视信道处理芯片

用户指南

文档版本 01

发布日期 2014-09-26

版权所有 © 深圳市海思半导体有限公司 2014。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式 传播。

商标声明

(上)、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服 务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或 默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导, 本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为总部 邮编: 518129

网址: http://www.hisilicon.com

客户服务邮箱: support@hisilicon.com

_	
	\.V
	7
	7.1

前言

概述

本文档主要介绍 Hi3137V100 地面数字电视信道处理芯片的主要特点、逻辑结构、以及硬件设计信息,提供给用户设计使用参考。

产品版本

与本文档相对应的产品版本如下。

产品名称	版本
Hi3137	V100

读者对象

本文档(本指南)主要适用于以下工程师:

- 电子产品设计维护人员
- 电子产品元器件市场销售人员

约定

寄存器访问类型约定

类型	说明	类型	说明
RO	只读,不可写。 RV		可读可写。
RC	读清零。	WC	可读,写1清零,写0保持不变。

寄存器复位值约定

在寄存器定义表格中:

- 如果某一个比特的复位值 "Reset" (即 "Reset" 行) 为 "?",表示复位值不确定。
- 如果某一个或者多个比特的复位值 "Reset" 为"?",则整个寄存器的复位值 "Total Reset Value" 为 "-",表示复位值不确定。

数值单位约定

数据容量、频率、数据速率等的表达方式说明如下。

类别	符号	对应的数值
数据容量(如 RAM 容量)	1K	1024
	1M	1,048,576
	1G	1,073,741,824
频率、数据速率等	1k	1000
	1M	1,000,000
	1G	1,000,000,000

地址、数据的表达方式说明如下。

符号	举例	说明
0x	0xFE04、0x18	用 16 进制表示的数据值、地址值。
0b	0ь000、0ь00 00000000	表示 2 进制的数据值以及 2 进制序列 (寄存器描述中除外)。
X	00X、1XX	在数据的表达方式中, X表示 0 或 1。例如: 00X表示 000 或 001; 1XX表示 100、101、110 或 111。

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修改日期	版本	修改说明
2013-12-31	00B01	第1个临时版本。

修改日期	版本	修改说明
2014-09-26	01	修改 1.2.1 章节级别, DVB-T 支持到标准的 1.6.1 版本; 修改 1.2.2 章节标题名称。

目 录

1	产品概述	1-1	1
	1.1 概述		1
		1-1	
	1.2.2 特性		1
	1.2.3 系统	1-:	2
	1.2.4 接口	1-5	2
	1.2.5 工艺	1-3	2
	1.3 功能框图	1-3	2
	1.4 应用领域	1-:	3
	15 典型应用	1-1	3

插图目录

图 1-1 Hi3137V100 功能框图	1-	3
图 1-2 前端接收应用框图	1-	4

【 产品概述

1.1 概述

Hi3137V100 是一款集成了 DVB-T2、DVB-T 模式的地面数字电视信道接收芯片。芯片提供高性能的多载波解调能力和前向纠错功能,完成地面数字信号从基带采样到 MPEG-TS 流输出的完整处理,兼容 DVB-T2(ETS 302 755)、DVB-T(ETS 300 744)标准。Hi3137V100 使用芯片内部集成的 12bit 精度的高性能 AD 转换器,保证了信号采样的精度,基带采样后为全数字处理。针对实际信道的复杂情况,提供解调、信道估计均衡、Viterbi、RS、LDPC、BCH 前向纠错的全部必须功能;提供信号强度和质量监控,便于搜台和节目存储。

1.2 主要特点

1.2.1 多标准解调

- 支持 DVB-T2、DVB-T,并能够自动识别
- DVB-T2 支持到标准的 1.3.1 版本, DVB-T 支持到标准的 1.6.1 版本
- DVB-T2 支持 Base、Lite 模式
- 支持 5MHz、6MHz、7MHz、8MHz 和 1.7MHz 输入信号带宽
- DVB-T2 支持单 PLP 和多 PLP 业务、SISO 和 MISO 传输
- DVB-T2 自动完成 Common PLP 和 Data PLP 合并
- DVB-T2 支持 TS 流和通用流(GS),适应数据业务
- DVB-T 支持标准所有参数模式,包括分层和非分层传输

1.2.2 接收性能

- 符合 DTG7.0,NorDig-Unified Test Specification ver2.2.1 和 Digital Europe Ebook 测试要求
- 支持低中频和高中频(36MHz)信号输入
- 快速的信号捕获能力,DVB-T 信号捕获时间典型值小于 250ms,DVB-T2 信号捕获时间典型值小于 500ms,缩短频道更换的等待时间

- 更加优越的高斯、多径和移动接收性能
- 更加优越的抗同频干扰性能
- 自适应频谱反转识别
- 大于±700kHz 的频率误差捕获范围

1.2.3 系统

- 集成高性能 12bit ADC, 确保采样的精度
- 集成 PLL, 外部仅需无源晶振, 频率 10MHz~30MHz, 典型 24MHz, 同时支持 ±100ppm 的频率误差
- 提供信号强度、信号质量和误码率的实时监测
- 外部电路简单,支持两层板布线,BOM成本低

1.2.4 接口

- 支持 I2C 总线协议,实现对芯片灵活控制
- 支持对 Tuner 的 I2C 总线的中继
- 支持串行和并行 TS 输出,方便与解码芯片的配合
- TS 流输出信号管脚号任意配置, PCB 布板更方便

1.2.5 工艺

- 内核供电 1.1V, IO 供电 3.3V, 最大功耗 490mW
- 封装 MQFN48, 尺寸 6mm×6mm, RoHS

1.3 功能框图

Hi3137V100 芯片的逻辑结构如图 1-1 所示。

图1-1 Hi3137V100 功能框图

1.4 应用领域

- 地面数字信号调谐器
- 地面数字电视机顶盒和数字一体电视机
- 调制解调器和数字电视卡

1.5 典型应用

Hi3137V100 芯片的前端接收应用如图 1-2 所示。

图1-2 前端接收应用框图

目录

2 1	Demod	2-1
	2.1 时钟	2-1
	2.2 复位	2-3
	2.3 I2C 控制器	2-4
	2.4 ADC	2-5
	2.5 AGC	2-6
	2.6 时钟恢复	2-7
	2.7 载波恢复	2-7
	2.8 帧同步	2-7
	2.9 信道估计与均衡	2-7
	2.10 DVBT2 FEC 模块	2-8
	2.11 DVBT FEC 模块	2-8
	2.12 TS 输出	2-8
	2.13 信号监测	2-12
	2.14 信号搜索	2-18
	2.15 寄存器概览	2-19
	2 16 Demod 寄存器描述	2-25

插图目录

图 2-1 Demod 内部时钟域示意	2-1
图 2-2 I2C 读时序	2-4
图 2-3 I2C 写时序	2-5
图 2-4 I2C 转发功能	2-5
图 2-5 TS 并行输出时序示意	2-9
图 2-6 TS 串行输出时序示意	2-9
图 2.7 TS 两比特电行输出时序示音	2-10

表格目录

表 2-1 其他主要模块时钟域	2-1
表 2-2 PLL 内部及输入输出时钟范围	2-3
表 2-3 AGC 信号时钟频率选择	2-6
表 2-4 bw[2:0]与输入信号带宽、符号率关系	2-7
表 2-5 TS 输出模式选择	2-9
表 2-6 ts_x_sel 与所控制管脚关系(x 取值 0/1/2/3/4/5/6/7/8/9/a)	2-10
表 2-7 ts_x_sel 取值与输出关系(x 取值 0/1/2/3/4/5/6/7/8/9/a)	2-11
表 2-8 fft_size 取值与 FFT 模式关系	2-12
表 2-9 gi_mode 取值与保护间隔模式关系	2-13
表 2-10 p1_signal_s1 取值说明	2-13
表 2-11 pilotpattern 取值与导频图样关系	2-13
表 2-12 plp_mod 取值与调制模式关系	2-14
表 2-13 plp_cod 取值与码率模式关系	2-14
表 2-14 mod 取值与调制模式关系	2-15
表 2-15 hier 取值与分层模式关系	2-15
表 2-16 cod_rate_H 和 code_rate_L 取值与码率模式关系	2-15
表 2-17 DVBT2 模式下 N 取值	2-17
表 2-18 BER_CTRL[frame_num]与 frams 关系	2-17
表 2-19 Demod 客在哭概览 (基址是 0v00)	2_10

2 Demod

2.1 时钟

Demod 的输入时钟来自外接晶振或外部时钟,经内部 PLL 得到 Demod 工作需要的时钟频率。Demod 内部分四个时钟域,ADC(Analog Digital Converter,模数转换器)工作在 CLK_ADC 时钟域,解调部分工作在 CLK_DEMO 时钟域,Dram 控制器工作在 CLK_SDC 时钟域,信道解码和 TS 输出部分工作在 CLK_FEC 时钟域。Demod 内部时钟如图 2-1 所示。

图2-1 Demod 内部时钟域示意

其他主要模块工作的时钟域如表 2-1 所示。

表2-1 其他主要模块时钟域

模块	时钟域
I2C	上电工作在晶振时钟(或外部时钟)上,待芯片内部 PLL 稳定后可切换到 CLK_DEMO 上以提高 I2C 通信速度。I2C 的通信速率可支持 100kbps 或 400kbps。

PLL0 的输出频率可通过以下 I2C 操作设置。

- 步骤 1 将寄存器 ADC_CTRL1 [i2c_xo_clk]写 0,切换 I2C 时钟到晶振或外部时钟上(如芯片 从上电复位开始,I2C 默认工作在晶振/外部时钟上)。
- 步骤 2 将 PLL0 PD [pll0 pd]置 1, 关闭 PLL0。
- 步骤3 配置 PLL0 的参数。

FVCO0= FREF/refdiv[5:0]* (fbdiv[7:0]+frac[11:0]/2^12)

FOUT0= FVC00/postdiv1[2:0]/postdiv2[2:0]

CLK_DEMO = FOUT0/6

 $CLK_ADC = FOUT0/12$

 $CLK_SDC = FOUT0/4$

其中:

- FREF 为外部晶振/时钟频率,取值 10~30MHz,默认为 24MHz。
- refdiv 由 PLLO_REFDIV[pll0_refdiv]配置, fbdiv 由 PLLO_FBDIV[pll0_fbdiv]配置。
- frac 的值由 PLLO FRAC L[pllO frac 1]、PLLO PD[pllO frac h]配置。
- 要求 postdiv1 大于等于 postdiv2,对于 PLL0, postdiv1=2, postdiv2=1,分别由 PLL0_POSTDIV[pll0_postdiv1]、PLL0_POSTDIV[pll0_postdiv2]配置。
- FVCO0 为 PLL0 的 VCO 频率,建议大于 600MHz。
- FOUT0 即 PLL0 的输出频率。
- 其他参数参考 PLL0 的寄存器说明。

在典型的 24MHz 晶振输入情况下,基于默认配置,CLK_DEMO 的工作频率为 64MHz,CLK ADC 的工作频率为 32MHz,CLK SDC 的工作频率为 96MHz。

- 步骤 4 将 PLL0_PD [pll0_pd]写 0, 重新使能 PLL0。
- 步骤 5 延时等待 PLL_LOCK [pll0_lock]指示,为 1 表示 PLL0 锁定,等待时间小于 1ms。
- 步骤 6 将寄存器 ADC_CTRL1 [i2c_xo_clk]写 1,切换 I2C 时钟到 CLK_DEMO 上。
- 步骤7 对芯片做一次热复位,即 RSTN CTRL [hot rst n]先写0后写1。

----结束

PLL1 的输出频率可通过以下 I2C 操作设置。

步骤 1 将 PLL1_PD[pll1_pd]置 1, 关闭 PLL1。

步骤 2 配置 PLL1 的参数。

FVCO1=FREF /refdiv[5:0]* (fbdiv[7:0]+frac[11:0]/2^12)

FOUT1= FVCO1/postdiv1[2:0]/postdiv2[2:0]

CLK FEC = FOUT1

其中:

● FREF 为外部晶振时钟频率,取值 10~30MHz,默认为 24MHz。

- refdiv 由 PLL1_REFDIV[pll1_refdiv]配置,fbdiv 由 PLL1_FBDIV [pll1_fbdiv]配置。
- frac 的值由 PLL1_FRAC_L [pll1_frac_l]、PLL1_PD [pll1_frac_h]配置。
- 要求 Postdiv1 大于等于 Postdiv2,对于 PLL1, Postdiv1=2, Postdiv2=2。分别由 PLL1_POSTDIV [pll1_postdiv1]、PLL1_POSTDIV [pll1_postdiv2]配置。
- FVCO1 为 PLL1 的 VCO 频率,建议大于 600MHz。
- FOUT1 即 PLL1 的输出频率。
- 其他参数参考 PLL1 的寄存器说明。

在典型的 24MHz 晶振输入情况下,基于默认配置,CLK_FEC 的工作频率为 153MHz。

- 步骤 3 将 PLL1 PD[pll1 pd]清 0, 重新使能 PLL1。
- 步骤 4 延时等待 PLL_LOCK [pll1_lock]指示,为 1 表示 PLL1 锁定,等待时间小于 1ms。
- 步骤 5 对芯片做一次热复位,即 RSTN CTRL[hot rst n]先写 0 后写 1。

----结束

□ 说明

可以在 I2C 切到晶振时钟后,一起完成 CLK_DEMO 和 CLK_FEC 的配置。PLLx(x 取值 0 或 1,下同)输入输出及内部各时钟项允许的频率范围如表 2-2 所示。

表2-2 PLL 内部及输入输出时钟范围

时钟项	频率范围(MHz)
FREF	10~30
FVCOx	>600
CLK_DEMO	≤65
CLK_FEC	≤160

此外,Demod 还提供晶振/外部时钟的环出 CLK_OUT (PIN_19) 供 MPEG 等其它芯片使用,此时需将 IO CTRL4[clkout sel]写 0。

2.2 复位

复位包括硬件复位和软件复位:

- 外部管脚 RSTN 用于上电复位或者主控芯片对 Demod 的硬复位,复位所有寄存器。
- 内部寄存器复位通过 I2C 可支持冷复位 (cool rst n) 和热复位 (hot rst n):

- 冷复位,对RSTN_CTRL [cool_rst_n]先写 0 后写 1,效果同硬件复位,复位所有寄存器。
- 热复位,对 RSTN_CTRL [hot_rst_n]先写 0 后写 1,仅复位逻辑,配置寄存器的值保持不变。

2.3 I2C 控制器

Demod 上的 I2C 控制器实现了 I2C 的 slave 功能,通过 I2C 通信可完成对 Demod 内部配置寄存器的读取/写入,也可实现对 Tuner 的 I2C 通信的转发。

Demod 作为 slave 器件,接受主控芯片的各项 I2C 操作。Demod 的器件地址用 8 位二进制表示为:10111XXY(其中 XX 通过芯片管脚 ADDR[1:0]设定;Y 用于区分读写操作,1 为读,0 为写)。I2C 的操作时序如图 2-2、图 2-3 所示。

结合软件的控制,Demod 的 I2C 控制器可实现连续读/写多个寄存器的操作。对于Tuner 来说,Demod 可以完成 I2C 的转发功能,即当主控芯片需要访问 Tuner 时,打开主控芯片与 Tuner 之间的 I2C 路径,主控芯片随即可像访问 Demod 一样访问 Tuner,当一次 I2C 读或写操作完成后 Demod 会自动关闭转发功能,以防止 I2C 对 Tuner 的干扰。Tuner 的 I2C 地址参见相关 Tuner 器件手册。

I2C 转发功能如图 2-4 所示。

图2-4 I2C 转发功能

打开 I2C 转发功能请参考寄存器 TUNER SEL[tuner sel]说明。

2.4 ADC

Demod 片内集成高性能 12bit ADC(Analog Digital Converter),对前端 Tuner 输出的低中频或中频(36MHz)信号进行采样。通过改变 CLK_ADC 频率可改变实际采样时钟频率,最高可支持到 65MHz。ADC 支持差分或单端输入,满幅峰峰值为 1V。可通过寄存器 ADC CTRL0 [adc clk sel]的最高位选择采样时钟的边沿。

Demod 上电后且 PLL 完成配置后, ADC 的初始化可通过以下 I2C 操作设置。

- 步骤 1. 根据 CLK_ADC 频率完成采样率的配置。将 CLK_ADC 的工作频率值(单位 Hz)除以 1000 后写入 CLK_ADC_L[clk_adc_l]、CLK_ADC_M[clk_adc_m]、 CLK_ADC_H[clk_adc_h]。以 CLK_ADC 频率为 32MHz 为例,CLK_ADC_L[clk_adc_l] 写 0x00,CLK_ADC M [clk adc m]写 0x7D,CLK ADC H[clk adc h]写入 0x00。
- 步骤 2. 通过寄存器 ADC CTRL1[adi2c resetz]先写 0 再写 1 的操作对其做一次初始化。
- 步骤 3. 通过寄存器 ADC_CTRL3[adc_opm]置 3, 进入工作模式。
- 步骤 4. 等待 PLLO_REFDIV[adc_rdy]变高(等待时间小于 1ms)后 ADC 初始化完成,。

----结束

2.5 AGC

AGC 模块接收 ADC 的输出,根据期望功率和实际功率之差,生成 AGC 控制信号 (PDM 或 PWM 波,通过 USE_PWM[use_pwm]设置,默认输出 PDM)。该 AGC 控制信号经过外部简单的 RC 滤波后送往 Tuner,调整 Tuner 信号输出幅度至期望值。AGC 控制信号的时钟频率通过 AGC_CTRL[pdm_div]可调,输出极性可以通过 AGC_CTRL [agc_inverse]配置。

- AGC 期望功率可以通过 AGC_GOAL[agc_goal]设置。
- AGC 调整速度通过 AGC SPEED BOUND[agc speed]控制。

AGC 信号时钟频率选择如表 2-3 所示。

表2-3 AGC 信号时钟频率选择

pdm_div[2:0]	AGC 信号时钟频率
b'000	CLK_ADC
b'001	CLK_ADC/2
b'010	CLK_ADC/4
b'011	CLK_ADC/8
b'100	CLK_ADC/16
b'101	CLK_ADC/32
b'110	CLK_ADC/64
b'111	CLK_ADC/128

2.6 时钟恢复

时钟恢复是要恢复出与发送端符号率完全相同的时钟,并且恢复出准确时钟相位下的采样数据。

为使时钟恢复模块正常工作,Demod 需要通过 I2C 写入 CLK_DEMO 时钟频率值 f_{clk_demo} 。 f_{clk_demo} ,为无符号数,用 18 位表示,最低位(LSB)表示 1kHz。请参考寄存器 CLK_DEMO_L 、 CLK_DEMO_M 和 $RSTN_CTRL[clk_dem_h]$ 。同时 Demod 还需要通过 I2C 配置输入信号的带宽,请参考寄存器 BAND WIDTH[bw]。

表2-4 bw[2:0]与输入信号带宽、符号率关系

bw[2:0]	输入信号带宽(kHz)	符号率 fs(kHz)
b'000	1700	1845
b'001	5000	5714
b'010	6000	6857
b'011	7000	8000
b'100	8000	9143

2.7 载波恢复

载波恢复模块用于跟踪和补偿载波的频率偏移与相位偏移。

为使载波恢复模块正常工作,Demod 需要通过 I2C 写入 Tuner 输出信号的中心频率值 f_{IF} 。 f_{IF} 为无符号数,用 16 为表示,最低位(LSB)表示 1kHz。请参考寄存器 IF_FREQ_L 、 IF_FREQ_H 。

2.8 帧同步

DVBT2/T 信号为按帧组织的,需要可靠界定帧的起始位置并能够根据信道变化实时跟踪最优位置。帧同步完成此功能,支持低信噪比、恶劣多径信道、模拟同频干扰下的快速同步。

2.9 信道估计与均衡

信道估计模块利用 DVBT/T2 信号频域数据中插入的导频估计信道特征并均衡出调制数据。Demod 采用了高性能的信道估计算法,提高了信道估计的准确性。

2.10 DVBT2 FEC 模块

此模块完成以下操作:

- 步骤1 进行解交织并符号解映射,生成的软信息送比特解交织处理;
- 步骤 2 比特解交织完成后存入 RAM, 然后进行 LDPC 译码。LDPC 译码器支持长帧和短帧模式, 并支持 DVBT2 标准中的所有码率选项;
- 步骤 3 LDPC 译码之后的数据输出到 BCH 模块进行 BCH 译码。

----结束

2.11 DVBT FEC 模块

此模块完成以下操作:

- 步骤1 进行符号解交织;
- 步骤 2 进行解删余、解映射和比特解交织操作;
- 步骤 3 Viterbi 译码, 支持码率 1/2、2/3、3/4、5/6、7/8;
- 步骤 4 进行 DVBT 的卷积解交织操作:
- 步骤 5 解交织后数据输入 RS(Reed-Solomon Decoder)模块,完成信道纠错功能。DVB-T 输出包长为 188 字节。

----结束

2.12 TS 输出

Demod 提供 3 种 TS 输出模式,包括并行模式、串行模式和 2bit 串行模式。

TS 输出接口信号包括数据信号 TS_OUT[7:0]、时钟信号 TS_CLK、数据有效信号 TS_VLD、同步头信号 TS_SYNC 和包错误信号 TS_ERR:

- TS_OUT: TS 帧数据。并行模式下用 8 位,串行模式下用 1 位,2bit 串行模式用 2 位。
- TS CLK: 数据时钟。时钟沿可设,在不同 TS 速率下对应不同的时钟频率输出。
- TS VLD: TS 包数据有效指示(并行模式是字节有效,串行模式是比特有效)。
- TS SYNC: TS 包同步头指示(并行模式是字节有效,串行模式是比特有效)。
- TS ERR: TS 包错误指示, 当前 TS 包出错则置 1。

TS 接口的并行/串行/两比特串行输出模式通过寄存器 OUTP_TS_MODE [paral]和 OUTP_TS MODE [serl2]选择。

表2-5 TS 输出模式选择

paral	serl2	TS 输出模式	TS_CLK 最高速率 (MHz)	所支持的最高 TS 流比特速率 (Mbps)
1	0	并行	9	72
0	1	串行两比特	36	72
0	0	串行(1 比特)	76.5	72

图2-5 TS 并行输出时序示意

图2-6 TS 串行输出时序示意

*注: 串行输出情况下 TS_CLK 固定工作在 CLK_FEC 二分频频率,通过 TS_VLD 为低电平屏蔽掉无效的比特位,或者通过 OUTP_TS_MODE[mask_clk]置 1 将 TS_VLD 为低电平时的 TS_CLK 屏蔽掉。图中所示为高位输出优先,通过寄存器 OUTP_TS_MODE [msb_first]写 0 可改成低位输出优先。TS OUT 可实际映射到 TS OUT[7:0]中任意一个管脚,参考后面说明。

图2-7 TS 两比特串行输出时序示意

*注:两比特串行输出情况下TSOUT可实际映射到TSOUT[7:0]的任意两个管脚。

并行和串行两比特输出模式下,TS_CLK 的时钟沿通过 OUTP_TS_MODE [clk_inv]选择,0为上升沿在 TS 数据中间,1为下降沿在 TS 数据中间。

串行输出模式下,TS_CLK 的时钟沿通过 OUTP_TS_MODE [clk_inv]选择,0 为上升沿,1 为下降沿。

并行和串行两比特输出模式下,Demod 可根据 CLK_FEC 的频率、带宽、码率及调制模式自动生成均匀的 TS_CLK 信号。用户也可以指定用 CLK_FEC 的固定分频来作为 TS CLK 信号。方法如下:

- 步骤 1 设置寄存器 OUTP_CLK_SET [clk_div]、 OUTP_CLK_SETH[clk_div_fh]、 OUTP_CLK_SETL [clk_div_f1]来确定系统时钟的分频比。其中 clk_div[5:0]为分频比的整数部分,取值 1~63。clk_div_f[15:0](clk_div_f= clk_div_fh*256+ clk_div_f1)为分频比的小数部分。实际分频比为 clk_div[5:0]+ clk_div_f15:0]/65536。
- 步骤 2 OUTP_MODE_SET [out_mode]置 1, OUTP_CLK_SET[clk_mode]置 1 切换 TS_CLK 到 设定的频率上。

注意

此种情形下的 TS CLK 频率需保证能够传输最高 TS 流速率(72Mbps)的要求。

TS 管脚映射通过以下控制信号来选择输出。

表2-6 ts_x_sel 与所控制管脚关系(x 取值 0/1/2/3/4/5/6/7/8/9/a)

控制信号	所在寄存器	所控制的芯片外部管脚
ts_0_ sel	TS_0_SEL	TS_OUT0
ts_1_ sel	TS_21_SEL	TS_OUT1

控制信号	所在寄存器	所控制的芯片外部管脚
ts_2_ sel	TS_21_SEL	TS_OUT2
ts_3_sel	TS_43_SEL	TS_OUT3
ts_4_ sel	TS_43_SEL	TS_OUT4
ts_5_ sel	TS_65_SEL	TS_OUT5
ts_6_sel	TS_65_SEL	TS_OUT6
ts_7_ sel	TS_87_SEL	TS_OUT7
ts_8_ sel	TS_87_SEL	TS_SYNC
ts_9_ sel	TS_A9_SEL	TS_VLD
ts_ a_sel	TS_A9_SEL	TS_ERR

ts_x_sel 取值与内部 TS 信号的选择关系。

表2-7 ts_x_sel 取值与输出关系(x 取值 0/1/2/3/4/5/6/7/8/9/a)

ts_x_sel 取值	所选择的芯片内部 TS 信号
b'0000	ts_out[0]
b'0001	ts_out[1]
b'0010	ts_out[2]
b'0011	ts_out[3]
b'0100	ts_out[4]
b'0101	ts_out[5]
b'0110	ts_out[6]
b'0111	ts_out[7]
b'1000	ts_sync
b'1001	ts_vld
其他	ts_err

^{*}注:

串行 1bit 输出情况下,如果高位输出优先,芯片内部 TS 数据信号请选择 $ts_out[7]$,如果低位输出优先,芯片内部 TS 数据信号请选择 $ts_out[0]$;

串行 2bit 输出情况下,如果高位输出优先,芯片内部 TS 数据信号请选择 $ts_out[7:6]$,如果低位输出优先,芯片内部 TS 数据信号请选择 $ts_out[1:0]$ 。

----结束

2.13 信号监测

信号强度

Demod 内部提供信号功率统计,可以先后读取 AGC_CTRL_L[agc_ctrl_l]和 AGC_CTRL_H [agc_ctrl_h]来得到信号强度指示。

sig_strength=agc_ctrl_h[7:0]*16+agc_ctrl_l[3:0].

sig_strength 值越大表示信号越弱,不同射频芯片应用,sig_strength 和信号功率的关系曲线会有所不同。

传输制式和频谱反转识别

通过如下操作读取传输制式的信息:

步骤 1 等待 LOCK FLAG [fec ok]为 1。只有 fec ok 为 1 下面读出的信息才可靠。

步骤 2 读取 CHN FFT GI[is dvbt]。如果为 1表示 DVBT 模式,如果为 0表示 DVBT2模式。

• DVBT2

DVBT2 下的 FFT 模式可以通过 CHN_FFT_GI[fft_size]读取。DVBT2 模式下读取 TPS[bw ext],值为1表示带宽扩展,值为0表示带宽未扩展。

表2-8 fft size 取值与 FFT 模式关系

fft_size[2:0]	bw_ext	FFT 及带宽模式
b'000	-	1K
b'001	-	2K
b'010	-	4K
b'011	0	8K, Normal carrier mode
b'011	1	8K, Extend carrier mode
b'100	0	16K, Normal carrier mode
b'100	1	16K, Extend carrier mode
b'101	0	32K, Normal carrier mode
b'101	1	32K, Extend carrier mode
b'110~ b'111	-	reserved

DVBT2模式下读取 TPS[gi_mode]可以获得保护间隔模式。

表2-9 gi_mode 取值与保护间隔模式关系

gi_mode[2:0]	保护间隔模式
b'000	1/32
b'001	1/16
b'010	1/8
b'011	1/4
b'100	1/128
b'101	19/128
b'110	19/256
b'111	reserved

DVBT2 模式下读取 P1_SIGNAL[p1_signal_s1]可以获得 P1 信令的 S1 部分。

表2-10 p1_signal_s1 取值说明

p1_signal_s1[2:0]	说明
b'000	T2_SISO
b'001	T2_MISO
b'010	非 T2 信号
b'011	T2_LITE_SISO
b'100	T2_LITE_MISO
b'101~ b'111	reserved

DVBT2 模式下读取 PP_VERSION[pilotpattern]可以获得导频图样模式。

表2-11 pilotpattern 取值与导频图样关系

pilotpattern[3:0]	导频图样
b'0000	PP1
b'0001	PP2
b'0010	PP3
b'0011	PP4
b'0100	PP5
b'0101	PP6

pilotpattern[3:0]	导频图样
b'0110	PP7
b'0111	PP8
b'1000~ b'1111	Reserved

DVBT2 模式下读取 CHN_FFT_GI [spectrum], 值为 1 表示频谱反转, 值为 0 表示频谱未反转。

DVBT2 模式下读取 PLP_PARAM[plp_cod]、PLP_PARAM[plp_mod]可以获得当前 PLP 的调制模式和 LDPC 码率。

DVBT2 模式下读取 PLP_PARAM[plp_fec_type]可以获得当前 PLP 的 FEC 帧模式, 值为 1 表示长帧(64K LDPC), 为 0 表示短帧(16K LDPC)。

表2-12 plp_mod 取值与调制模式关系

plp_mod[2:0]	调制模式
p,000	QPSK
b'001	16QAM
p,010	64QAM
b'011	256QAM
b'100~ b'111	Reserved

表2-13 plp_cod 取值与码率模式关系

plp_cod[2:0]	码率(T2_base)	码率(T2_lite)
b'000	1/2	1/2
b'001	3/5	3/5
b'010	2/3	2/3
b'011	3/4	3/4
b'100	4/5	Reserved
b'101	5/6	Reserved
b'110	Reserved	1/3
b'111	Reserved	2/5

注: plp_cod 和码率对应关系在 Base 和 Lite 模式下是不同的,因此在确定码率之前需要确定当前 DVBT2 信号是 Base 还是 Lite 模式,通过读 P1_SIGNAL [p1_signal_s1]的值可以确认。

• DVBT

同 DVBT2 可以通过 CHN_FFT_GI[fft_size]读取 FFT 模式,通过读取 TPS [gi mode]可以获得保护间隔模式。

DVBT 模式下读取 CHN_FFT_GI [spectrum],值为 1 表示频谱反转,值为 0 表示频谱未反转。

DVBT 模式下读取 TPS_DVBT[mod]、TPS_DVBT[hier]、TPS_DVBT[cod_rate_H] 可以获得调制模式、分层模式、非分层模式和分层模式高优先级码流的内码码率。读取 CODE_RATE_DVBT[code_rate_L]可以获得分层模式低优先级码流的内码码率。

表2-14 mod 取值与调制模式关系

mod[1:0]	调制模式
p,00	QPSK
b'01	16QAM
b'10	64QAM
b'11	reserved

表2-15 hier 取值与分层模式关系

hier[1:0]	分层模式
b'00	非分层
b'01	分层 α=1
b'10	分层 α=2
b'11	分层 α=4

表2-16 cod rate H和 code rate L取值与码率模式关系

cod_rate_H 或 code_rate_L	码率
b'000	1/2
b'001	2/3
b'010	3/4
b'011	5/6
b'100	7/8

cod_rate_H 或 code_rate_L	码率
b'101~ b'111	reserved

符号率偏差

如前所述,定时恢复需要预先置入输入信号的带宽。当定时环路稳定后,可以从Demod 先读出 TIM_OFFSET[tim_offset],然后读出 TIM_LOOP_L[tim_loop_l]、TIM_LOOP_H[tim_loop_h],tim_offset、tim_loop_h 均为有符号数,最高位为符号位,实际符号率和 fs 的偏差按下式计算:

fs offset =(tim_offset*4 - (tim_loop_h*256+tim_loop_l)/16)/2^10*fs.

计算值为有符号数,如果为正表示实际符号率比设置的符号率大,为负则反之。fs 的值参考表 2-4, fs offset 的单位为 kHz。

注:在LOCK_FLAG [fec_ok]为1后读取的符号率偏差才有效。

载波偏差

当载波环路稳定后,可以从 Demod 先后读取 CAR_OFFSET_L 和 CAR_OFFSET_H, 实际信号中心频率和 Tuner 所设中心频率的偏差按下式计算:

freq_offset=(CAR_OFFSET_H*256+CAR_OFFSET_L)/2^8*fs。

计算值为有符号数,如果为正表示实际载波频率比 Tuner 设置频率高,为负则反之。fs 的值参考表 2-4。freq_offset 的单位也为 kHz。

注:在LOCK FLAG [fec ok]为1后读取的载波偏差才有效。

信号质量

可以从 Demod 先后读出噪声功率统计寄存器 $SNR_L[snr_l]$ 和 $SNR_H[snr_h]$,通过如下公式转成信噪比估计(单位 dB),作为信号质量的指示。SNR 的取值范围为 $0dB \sim 36dB$ 。

 $SNR = 10.0*log10(snr_h[7:0]*256+snr_l))-11.7$

注音

只有当 LOCK_FLAG [tps_ok_t]为 1 (DVBT) 或者 LOCK_FLAG [sig_ok_t2]为 1 (DVBT2) 时,信噪比估计才可靠。

BER 统计

通过 Demod 内部的错误比特统计计数器 FEC_BER_L、FEC_BER_H,可以计算出 RS(DVBT 模式)、BCH(DVBT2 模式)纠错前的 BER(Bit Error Rate,误比特率)。

先后读取 FEC_BER_L 和 FEC_BER_H,则错误比特数 error_cnt= FEC_BER_H*256+FEC_BER_L。误码率较高的情况下,实际错误比特数可能会超过统计计数器最大值,统计计数器将保持最大值,此时 BER 比实际偏小。

DVBT 模式下, RS 译码前 BER 计算公式为:

$$BER = \frac{error_cnt}{8 \times 204 \times frams}$$

frams 表示总统计帧数,通过寄存器 BER_CTRL[frame_num]设置。

DVBT2 模式下 BCH 译码之前 BER 计算公式为:

$$BER = \frac{error_cnt}{N \times frams}$$

- N表示不同帧长模式和码率下的统计基准长度。
- frams 值仍通过寄存器 BER CTRL[frame num]设置。

表2-17 DVBT2 模式下 N 取值

ldpc 码率	吗率 64K LDPC 帧 N 值	
1/3	NA	5400
2/5	NA	6480
1/2	32400	7200
3/5	38880	9720
2/3	43200	10800
3/4	48600	11880
4/5	51840	12600
5/6	54000	13320

表2-18 BER CTRL[frame num]与 frams 关系

BER_CTRL [frame_num]	DVBT 下 frams 值	DVBT2下 frams 值	
		plp_fec_type=1 长 FEC 帧	plp_fec_type=0 短 FEC 帧
b'000	d'16	d'32	d'128

BER_CTRL	DVBT 下 frams 值	DVBT2下 frams 值	
[frame_num]	plp_fec_type=1 长 FEC 帧	plp_fec_type=0 短 FEC 帧	
b'001	d'64	d'64	d'256
b'010	d'256	d'128	d'512
b'011	d'1024	d'256	d'1024
b'100	d'4096	d'512	d'2048
b'101	d'16384	d'1024	d'4096
b'110	d'65536	d'2048	d'8192
b'111	d'262144	d'4096	d'16384

DVBT 模式下 RS 译码后 BER 计算公式为: BER=32*FER。

这里的 FER 参照下面 FER 统计部分, RS 之后 BER 计算为近似计算。

DVBT2 模式下 BCH 译码之后 BER 计算公式为: BER=27*FER。

这里的 FER 参照下面 FER 统计部分, BCH 之后 BER 计算为近似计算。

FER 统计

FER(Frame Error Rate,误帧率统计)用于统计帧出错概率。这里所指的帧,对于 DVBT 来说就是一个 RS 包,对于 DVBT2 信号来说就是一个 BCH 包。

先后读取 FEC_FER_L、FEC_FER_H,则 error_fram=FEC_FER_H*256+FEC_FER_L。 DVBT /DVBT2 模式下总统计帧数 frams 与 BER_CTRL bit [6:4]的关系参照 BER 统计部分。

FER=error_fram/frams.

2.14 信号搜索

信号搜索就是在确定频点通过配置必要参数进行信号搜索、锁定并输出 TS 的过程。确定频点搜索过程如下:

- 步骤1 确认芯片通信是否正常,先后读出 CHIP_ID_L、CHIP_ID_H,读出数据应为 0x31、0x37,若读出数据不正确,确定芯片的 i2c 器件地址和电路连接是否正确。
- 步骤 2 初始化芯片,通过配置寄存器完成 PLL、ADC 的初始化以及时钟和载波恢复模块的初始化。

- 步骤 3 设置搜索模式。通过配置 MAN_RST_CTRL1[cfg_scan]确定搜索 DVBT/T2 信号的方式;通过配置 T2_CHK_CTRL[t2_lite]确定 DVBT2 信号 Base/Lite 模式的搜索方式;
- 步骤 4 设置输出选择。通过配置 AUTO_DLY[prior_low]确定 DVBT 信号在分层传输时输出 TS 的优先级,(prior_low 默认为 0,输出高优先级的码流);通过配置 PLP_CTRL[common_plp]、PLP_ID0 和 PLP_ID1 确定 DVBT2 信号在 MultiPLP 模式时 待输出 PLP 的序号。
- **步骤** 5 给 Tuner 配置 RF 频率,等待一段时间(与 Tuner 相关,参考值为 5~20ms),热复位。
- 步骤 6 等待一段时间(参考值为 20ms);查询 LOCK_FLAG[tps_ok_t],LOCK_FLAG [sig_ok_t2],当 tps_ok_t=1 时表示 DVBT 信号参数捕获成功,sig_ok_t2=1 表示 DVBT2 信号参数捕获成功,进入下一步,否则继续等待和查询,直至最大等待时间 (DVBT 300ms, DVBT2 500ms)。若到达最大等待时间 tps_ok_t 和 sig_ok_t2 依然为 0,表明锁定失败,该频点无信号或信号质量过低。
- 步骤7 继续查询 LOCK FLAG[fec ok], 当 fec ok=1 时表示信号捕获成功, TS 开始输出。
 - 说明 对于 DVBT2 信号 MultiPLP 模式,首次信号搜索首先需要确定 PLP 的个数,每 PLP 的PLP GROUP ID 和 PLP TYPE,这样才能保证通过正确配置 Demod 输出期望的 TS。

----结束

2.15 寄存器概览

当对寄存器进行部分写操作(对寄存器中某几比特写)时,请先读该寄存器,仅改变所需要修改比特,其它用读出的值替代。

当读取某个状态量,而该状态量分布在多个寄存器中,如该寄存器描述中无特别申明,则请先读低地址的寄存器,后读高地址。举例: CAR_OFFSET_L 和 CAR_OFFSET_H 结合对应 car_offset 状态量,应先读 CAR_OFFSET_L,后读 CAR_OFFSET_H。

Demod 寄存器概览如表 2-19 所示。

表2-19 Demod 寄存器概览(基址是 0x00)

偏移地址	名称	描述	页码
0x20	MAN_RST_CTRL0	复位控制寄存器	2-25
0x21	MAN_RST_CTRL1	复位控制使能寄存器	2-26
0x22	STATE_WAITS	超时复位寄存器	2-27
0x23	CLK_DEMO_L	解调时钟低位寄存器	2-27
0x24	CLK_DEMO_M	解调时钟中位寄存器	2-28
0x25	CHIP_ID_L	CHIP ID 低位寄存器	2-28

偏移地址	名称	描述	页码
0x26	CLK_FEC_L	FEC 时钟低位寄存器	2-29
0x27	CLK_FEC_M	FEC 时钟中位寄存器	2-29
0x28	CHIP_ID_H	CHIP ID 高位寄存器	2-29
0x29	CLK_SDC_L	SDC 时钟低位寄存器	2-30
0x2A	CLK_SDC_M	SDC 时钟中位寄存器	2-30
0x2B	SDC_CTRL	SDC 控制寄存器	2-30
0x2C	LOCK_FLAG	锁定指示寄存器	2-31
0x2D	TUNER_SEL	tuner 控制寄存器	2-32
0x2E	RSTN_CTRL	逻辑复位寄存器	2-33
0x2F	ILA_SEL	测试向量选择寄存器	2-33
0x30	AGC_SPEED_BOUND	agc 步长寄存器	2-34
0x31	AGC_GOAL	agc 功率寄存器	2-34
0x32	AGCOK_WAIT	agc 等待寄存器	2-35
0x33	AGC_CTRL	agc 控制寄存器	2-35
0x34	AGC_DC_I	I路直流寄存器	2-36
0x35	AGC_DC_Q	Q路直流寄存器	2-36
0x36	DAGC_CTRL	数字 agc 控制寄存器	2-37
0x37	AGC_CTRL_L	agc 功率高位寄存器	2-37
0x38	AGC_CTRL_H	agc 功率低位寄存器	2-37
0x39	AMP_ERR_IIR	幅度误差寄存器	2-38
0x3A	PDM_CTRL_L	手动 agc 控制字低位寄存器	2-38
0x3B	PDM_CTRL_H	手动 agc 控制字高位寄存器	2-39
0x3C	USE_PWM	AGC 输出波形选择寄存器	2-39
0x40	MF_SEL	匹配滤波器选择寄存器	2-40
0x41	SF_RMV	窄带干扰抑制控制寄存器	2-40
0x42	DAGC_REF	dagc 幅度参考值寄存器	2-41
0x43	DAGC_SPEED	dagc 步长选择寄存器	2-41
0x4A	IF_FREQ_L	输入信号中频频率低位寄存器	2-42

偏移地址	名称	描述	页码
0x4B	IF_FREQ_H	输入信号中频频率高位寄存器	2-42
0x4E	BAND_WIDTH	输入信号带宽寄存器	2-42
0x50	SYN_CTRL0	同步控制寄存器	2-43
0x51	CORR_HIGH_TH	P2 相关检测高门限寄存器	2-43
0x52	CORR_LOW_TH	P2 相关检测低门限寄存器	2-44
0x53	P2_POS_MOD	P2 同步位置修正寄存器	2-44
0x54	P1_THRES	P1 同步控制寄存器	2-45
0x55	CHN_FFT_GI	同步检测参数寄存器	2-45
0x56	P1_SIGNAL	P1 检测信令寄存器	2-46
0x57	TIM_OFFSET	定时误差寄存器	2-47
0x58	CAR_OFFSET_L	载波误差低位寄存器	2-47
0x59	CAR_OFFSET_H	载波误差高位寄存器	2-47
0x5D	T2_CHK_CTRL	DVBT2 检测配置寄存器	2-48
0x5E	SOAC_TH	P1 信令检测门限寄存器	2-48
0x5F	OUTP_RAND	输出 TS 加扰寄存器	2-49
0x60	LOOP_BW	环路带宽选择寄存器	2-49
0x61	FD_GRP	时域插值控制寄存器	2-50
0x64	NP_IIR_SFT	CSI 计算控制寄存器	2-50
0x67	ECHO_THRES	多径检测门限寄存器	2-51
0x69	MIN_THRES	多径检测门限最小值寄存器	2-51
0x6A	NP_GRP	时域插值控制寄存器	2-51
0x6B	TS_A9_SEL	ts 输出控制寄存器	2-52
0x6C	TS_87_SEL	ts 输出控制寄存器	2-52
0x6D	TS_65_SEL	ts 输出控制寄存器	2-53
0x6E	TS_43_SEL	ts 输出控制寄存器	2-53
0x6F	TS_21_SEL	ts 输出控制寄存器	2-54
0x70	TIM_LOOP_L	定时误差低位寄存器	2-54
0x71	TIM_LOOP_H	定时误差高位寄存器	2-55

偏移地址	名称	描述	页码
0x75	TS_0_SEL	ts 输出控制寄存器	2-55
0x76	CIR_DIST_0	多径分布寄存器	2-56
0x77	CIR_DIST_1	多径分布寄存器	2-56
0x78	CIR_DIST_2	多径分布寄存器	2-56
0x79	CIR_DIST_3	多径分布寄存器	2-57
0x7A	SNR_L	信噪比指示低位寄存器	2-57
0x7B	SNR_H	信噪比指示高位寄存器	2-58
0x7C	DOPPLER	多普勒指示寄存器	2-58
0x80	CW_FREQ_L	单频干扰频点低位寄存器	2-58
0x81	CW_FREQ_H	单频干扰频点高位寄存器	2-59
0x85	CLK_ADC_L	ADC 时钟低位寄存器	2-59
0x86	CLK_ADC_M	ADC 时钟中位寄存器	2-59
0x87	CLK_ADC_H	ADC 时钟高位寄存器	2-60
0x88	ATV_STATE	同频干扰标志寄存器	2-60
0x91	ITER_CTRL	迭代控制寄存器	2-61
0x92	BER_CTRL	ber 控制寄存器	2-61
0x93	AUTO_DLY	迭代切换寄存器	2-62
0x94	ITER_NUM	PRE 信令迭代次数寄存器	2-62
0x95	ITER_NUM_POST	POST 信令迭代次数寄存器	2-63
0x96	FEC_BER_L	ber 低位寄存器	2-63
0x97	FEC_BER_H	ber 高位寄存器	2-64
0x98	FEC_FER_L	fer 低位寄存器	2-64
0x99	FEC_FER_H	fer 高位寄存器	2-65
0x9C	SWITCH_DLY	信令码字切换时延寄存器	2-65
0x9E	T2_SUCCESS	T2 译码成功寄存器	2-65
0xA0	OUTP_ISSY	issy 控制寄存器	2-66
0xA1	OUTP_DCAP_SET	DATA PLP 容量设置寄存器	2-66
0xA2	OUTP_CCAP_SET	COMMON PLP 容量设置寄存器	2-67

偏移地址	名称	描述	页码
0xA3	OUTP_PLL0	PLL 控制寄存器	2-67
0xA4	OUTP_PLL1	PLL 控制寄存器	2-68
0xA5	OUTP_PLL2	PLL 控制寄存器	2-68
0xA6	OUTP_PLL3	PLL 控制寄存器	2-68
0xA7	OUTP_PLL4	PLL 控制寄存器	2-69
0xA8	OUTP_CLK_SET	输出时钟设置寄存器	2-69
0xA9	OUTP_CLK_SETH	I2C 时钟设置寄存器	2-70
0xAA	OUTP_CLK_SETL	I2C 时钟设置寄存器	2-70
0xAB	OUTP_MODE_SET	输出模式设置寄存器	2-71
0xAC	OUTP_TS_MODE	TS 输出模式设置寄存器	2-71
0xAE	OUTP_PKT_STA	TS 统计包数设置寄存器	2-72
0xAF	OUTP_LIMIT_EN	限幅和使能寄存器	2-73
0xB0	PLP_CTRL	PLP 控制寄存器	2-73
0xB1	PLP_ID0	DataPLP 序号寄存器	2-74
0xB2	PLP_ID1	CommonPLP 序号寄存器	2-74
0xB3	TPS	信号参数寄存器	2-75
0xB4	STREAM_TYPE	传输数据流类型指示寄存器	2-76
0xB4	CODE_RATE_DVBT	DVBT 内码码率寄存器	2-76
0xB5	TPS_DVBT	DVBT 信号参数寄存器	2-77
0xB6	PAPR_L1MOD	DVBT2 PRE 信令寄存器	2-78
0xB8	PP_VERSION	DVBT2 PRE 信令寄存器	2-79
0xB9	NUM_T2_FRM	DVBT2 PRE 信令寄存器	2-80
0xBA	LDATA_L	DVBT2 PRE 信令寄存器	2-80
0xBB	LDATA_H	DVBT2 PRE 信令寄存器	2-81
0xBF	NUM_PLP	DVBT2 PRE 信令寄存器	2-81
0xC6	PLP_ID	DVBT2 POST 信令寄存器	2-81
0xC7	PLP_TYPE	DVBT2 POST 信令寄存器	2-82
0xC8	PLP_GRP_ID	DVBT2 POST 信令寄存器	2-82

偏移地址	名称	描述	页码
0xC9	PLP_PARAM	DVBT2 POST 信令寄存器	2-83
0x00	ADC_CTRL0	ADC IP 控制寄存器	2-85
0x01	ADC_CTRL1	ADC IP 控制寄存器	2-85
0x02	ADC_CTRL2	ADC IP 控制寄存器	2-86
0x03	ADC_CTRL3	ADC IP 控制寄存器	2-87
0x04	ADC_FSCTRL	ADC IP 控制寄存器	2-88
0x05	PLL_LOCK	PLL 锁定指示寄存器	2-88
0x06	PLL0_FRAC_L	PLL0 分频小数部分低位寄存器	2-89
0x07	PLL0_PD	PLL0 power down 控制寄存器	2-89
0x08	PLL0_POSTDIV	PLL0 post divide 配置寄存器	2-90
0x09	PLL0_FBDIV	PLL0 feedback divide vlaue 寄存器	2-91
0x0A	PLL0_REFDIV	PLL0 reference divide value 寄存器	2-91
0x0B	PLL0_SPREAD	PLL0 扩频模式配置寄存器	2-92
0x0C	PLL_DIVVAL	PLL 扩频模式输出分频控制寄存器	2-92
0x0D	PLL1_FRAC_L	PLL1 分频小数部分低位寄存器	2-93
0x0E	PLL1_PD	PLL1 power down 控制寄存器	2-93
0x0F	PLL1_POSTDIV	PLL1 post divide 配置寄存器	2-94
0x10	PLL1_FBDIV	PLL1 feedback divide vlaue 寄存器	2-95
0x11	PLL1_REFDIV	PLL1 reference divide value 寄存器	2-95
0x12	PLL1_SPREAD	PLL1 扩频模式配置寄存器	2-96
0x13	IO_CTRL0	IO 控制寄存器	2-96
0x14	IO_CTRL1	IO 控制寄存器	2-97
0x15	IO_CTRL2	IO 控制寄存器	2-98
0x16	IO_CTRL3	IO 控制寄存器	2-99
0x17	IO_CTRL4	IO 控制寄存器	2-100
0x18	SDR_CTRL	SDR 控制寄存器	2-101

2.16 Demod 寄存器描述

MAN_RST_CTRL0

MAN_RST_CTRL0 为复位控制寄存器。

		Offset A			Register MAN_RS			Total Reset Value 0xFF			
Bit	7		6	5	4	3	2	1	0		
Name	rstn_sig	g rsti	n_tdp	rstn_fec	rstn_tps	rstn_fbl	rstn_ceq	rstn_sync	rstn_agc		
Reset	1		1	1	1	1	1	1	1		
	Bits	Access	Name	:	Description						
	[7]	RW	rstn_si	g	sig 的复位控制。 1: 取消复位; 0: 复位。						
	[6]	RW	rstn_td	lp	tdp 的复位控制。 1: 取消复位; 0: 复位。						
	[5]	RW	rstn_fe	ec	fec 的复位控 1: 取消复位 0: 复位。						
	[4]	RW	rstn_tp	os	tps 的复位控 1: 取消复位 0: 复位。						
	[3]	RW	rstn_ft	ol	fbl 的复位控制。 1: 取消复位; 0: 复位。						
	[2]	RW	rstn_ce	eq	ceq 的复位控制。 1: 取消复位; 0: 复位。						
	[1]	RW	rstn_sy		sync 的复位控制。 1: 取消复位; 0: 复位。						

		Offset Address 0x20					Register Name MAN_RST_CTRL0			Total Reset Value 0xFF		
Bit	7	6		5	4	3	2	1	0			
Name	rstn_sig	,	rstn	_tdp	rstn_fec	rstn_tps	rstn_fbl	rstn_ceq	rstn_sync	rstn_agc		
Reset	1	1		1	1	1	1	1	1	1		
	Bits	Sits Access		Name		Description						
	[0]	RW	V	rstn_aş	gc	agc 的复位挖 1:取消复位 0:复位。						

MAN_RST_CTRL1

MAN_RST_CTRL1 为复位控制使能寄存器。

			et Address 0x21		Register Name MAN_RST_CTRL1			Total Reset Value 0x5F			
Bit	7		6	5	4	3	2	1	0		
DIL					4	3	2	1	U		
Name	cfg_tcl		cfg_	scan	outp_rst_ena	auto_rst_ena	rstn_catch	rstn_sdc	rstn_outp		
Reset	0	0		0	1	1	1	1	1		
	Bits	Acce	ss Name	:	Description						
					sdram TCL 酉	记置值。					
	[7]	RW	cfg_tc	[1: TCL=3;						
					0: TCL=2。						
					信道扫描选打	季配置值。					
					00: 只搜索	DVBT2 信号	;				
	[6:5]	RW	cfg_sc	an	01: 只搜索 1	DVBT 信号;					
					10: 自适应搜索 DVBT2/DVBT 信号;						
					11: 保留。						
					outp 自复位值	吏能信号。					
	[4]	[4] RW outp_rst_ena				1: 允许自复位;					
					0: 不允许自复位。						
					fec 自复位时能信号。						
	[3]	RW	auto_r	st_ena	1: 允许自复位;						
					0:不允许自	复位。					

		Of	ffset Ad	dress		Register Name			Total Reset Value		
			0x21			MAN_RST_CTRL1			0x5F	0x5F	
Bit	7 6			6	5	4	3	2	1	0	
Name	cfg_tcl			cfg_	scan	outp_rst_ena	auto_rst_ena	rstn_catch	rstn_sdc	rstn_outp	
Reset	0	1		1	0	1	1	1	1	1	
	Bits	Bits Access			:	Description					
	[2] RW rstn_catch					catch 的复位控制。 1: 取消复位; 0: 复位。					
	[1] RW rs			rstn_so	de	sdc 的复位控制。 1: 取消复位; 0: 复位。					
	[0] RW rstn_outp				utp	outp 的复位打 1:取消复位 0:复位。					

STATE_WAITS

STATE_WAITS 为超时复位寄存器。

		Of	ffset Ad	dress		Registe	r Name		Total Reset Value		
			0x22	,		STATE_WAITS			0x16		
Bit	7		6		5	4 3		2	1	0	
Name						state_wait					
Reset	0	0 0			0	1 0 1 1 0				0	
	Bits Access			Name		Description					
	[7:0]	RW	I	state_v		等待 ok 信号 当计数器的[当 state_wait	28:21]比特大		_	位系统。	

CLK_DEMO_L

CLK_DEMO_L 为解调时钟低位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x23			CLK_DI	EMO_L		0x00		
Bit	7		6		5	4	3	2	1	0	
Name						clk_demo_l					
Reset	0		0		0	0	0	0	0	0	
	Bits Access Name					Description					
	[7:0] RW clk_demo_l				mo_l	解调时钟 CLK_DEMO 频率低位,LSB=1KHz。					

CLK_DEMO_M

CLK_DEMO_M 为解调时钟中位寄存器。

		Of	ffset Ad	dress		Register		Total Reset Value			
			0x24			CLK_DE	EMO_M		0xFA		
Bit	7		6		5	4 3		2	1	0	
Name						clk_demo_m					
Reset	1		1		1	1	1	0	1	0	
	Bits Access Name					Description					
	[7:0] RW clk_demo_m				mo_m	解调时钟 CLK_DEMO 频率中位。					

CHIP_ID_L

CHIP_ID_L 为 CHIP ID 低位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x25			CHIP_	ID_L	0x37			
Bit	7	7 6 5				4	3	2	2 1 0		
Name		chip_id_1									
Reset	0			0	1	1	0	1	1	1	
	Bits Access Name Description										
	[7:0] RO chip_id_1 CHIP ID(0x3137)数值低 8 位。										

CLK_FEC_L

CLK_FEC_L 为 FEC 时钟低位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x26			CLK_F	FEC_L	0xA8			
Bit	7			6	5	4	3	2	2 1 0		
Name						clk_i	fec_l				
Reset	1		0		1	0	1	0	0	0	
	Bits Access Name					Description					
	[7:0] RW clk_fec_l				c_l	解码时钟 CLK_FEC 频率低位,LSB=1kHz。					

CLK_FEC_M

CLK_FEC_M 为 FEC 时钟中位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x27			CLK_F	EC_M	0x55			
Bit	7 6 5					4	3	2	1	0	
Name	clk_fec_m										
Reset	0 1 0					1	0	1	0	1	
	Bits	Ac	cess	Name		Description					
	[7:0] RW clk_fec_m					解码时钟 CLK_FEC 频率中位。					

CHIP_ID_H

CHIP_ID_H 为 CHIP ID 高位寄存器。

		Of	ffset Ad	dress		Register	r Name	Total Reset Value				
			0x28			CHIP_	ID_H	0x31				
Bit	7	7 6 5				4	3	2	1	0		
Name	chip_id_h											
Reset	0	0 0 1			1	1	0	0	0	1		
	Bits	Ac	cess	Name		Description						
	[7:0] RW chip_id_h				d_h	CHIP ID(0x3137)数值高 8 位。						

CLK_SDC_L

CLK_SDC_L 为 SDC 时钟低位寄存器。

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
			0x29			CLK_S	SDC_L	0x 0 0			
Bit	7 6 5				5	4	3	2	1	0	
Name						clk_s	sdc_1				
Reset	0	0 0			0	0	0	0	0	0	
	Bits Access Name				Description						
	[7:0] RW clk_sdc_l			c_1	SDC 时钟 CLK_SDC 频率低位,LSB=3KHz。						

CLK_SDC_M

CLK_SDC_M 为 SDC 时钟中位寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0x2A	L		CLK_S	DC_M		0x7D			
Bit	7 6 5					4	3	2	1	0		
Name	elk_sde_m											
Reset	0			1	1	1	1	1	0	1		
	Bits	Aco	cess	Name		Description						
	[7:0] RW clk_sdc_m					SDC 时钟 CLK_SDC 频率中位。						

SDC_CTRL

SDC_CTRL 为 SDC 控制寄存器。

			t Address		Register			Total Reset Value 0x18		
Bit	7		6	5	4	3	2	1	0	
Name	sdr_slfchk	_ok sdr	_slfchk_ena		sdr_fix_num			reserved	clk_sdc_h	
Reset	0		0	0	1	1	0	0	0	
	Bits	Acces	s Name		Description					
	[7]	RO	sdr_slf	chk_ok	sdram 自检结 0: 自检正确 1: 自检错误	l;				
	[6]	RW	sdr_slf	chk_ena	sdram 自检例 0:开启; 1:关闭。	范能 。				
	[5:3]	RW	sdr_fix	_num	sdc 固定时间]片个数。				
	[2] RW stop_ad			ddrinc	内部采数模均 1: 关闭采数 0: 开启采数	地址自增;	·关。			
	[1] - reserved			ed	保留。					
	[0]	RW	clk_sd	c_h	SDC 始终 CI	LK_SDC 频率	≝ msb。			

LOCK_FLAG

LOCK_FLAG 为锁定指示寄存器。

	Offset Address					Register	r Name	Total Reset Value			
			0x2C	;		LOCK_	_FLAG	0x00			
Bit	7					4	3	2	1	0	
Name		reserved			fec_ok	tps_ok_t	sig_ok_t2	syn_pre_ok_t	syn_ok	agc_ok	
Reset	0			0	0	0	0	0	0	0	
	Bits			Name		Description	Description				
	[7:6]			reserved		保留。					
	5] RO fec_o			fec_ok		fec 锁定标志 1:锁定; 0:不锁定。	信号。				

		Offset A			Register LOCK_			Total Reset Value 0x00			
Bit	7		6	5	4	3	2	1	0		
Name		reserved		fec_ok	tps_ok_t	sig_ok_t2	syn_pre_ok_t	syn_ok	agc_ok		
Reset	0		0	0	0	0	0	0	0		
	Bits	Access	Name		Description						
					DVBT 传输参	参数锁定标志	信号。				
	[4]	RO	tps_ok	t	1: 锁定;						
					0: 不锁定。						
					DVBT2 信令	锁定标志信	号。				
	[3]	RO	sig_ok	_t2	1: 锁定;						
					0: 不锁定。						
					DVBT 初同步锁定标志信号。						
	[2]	RO	syn_pı	re_ok_t	1: 锁定;						
					0: 不锁定。						
					sync 锁定标法	志信号。					
	[1]	RO	syn_ol	ζ	1: 锁定;						
					0: 不锁定。						
					agc 锁定标志信号。						
	[0]	RO	agc_ol	ζ.	1: 锁定;						
					0: 不锁定。						

TUNER_SEL

TUNER_SEL 为 tuner 控制寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x2D	1		TUNEI	R_SEL		0x00		
Bit	7		(5	5	4	3	2	1	0	
Name			rese	rved			man_state				
Reset	0	0 0			0	0	0				
	Bits	Access Name				Description					
	[7:5]	5] - reserved			ed	保留。					
	[4:1]	RO man_state			tate	主控状态机的状态。					

		Of	fset Ad 0x2D			Register TUNEI			Total Reset Value 0x00		
Bit	7		(6	5	4	0				
Name			rese	rved			tuner_sel				
Reset	0		(0	0	0	0	0	0	0	
	Bits	Aco	cess	Name	:	Description					
	[0]	RW	7	tuner_	sel		置 tuner,需要 写操作后,该	要将该寄存器 逐寄存器自清	部置为 1,x 为 0;如果继		

RSTN_CTRL

RSTN_CTRL 为逻辑复位寄存器。

		Offset A			Registe RSTN_			Total Reset Value 0x83		
Bit	7		6	5	4 3 2 1 0					
Name	(clk_fec_h		clk_d	lem_h	rese	rved	hot_rstn	cool_rstn	
Reset	1		0	0	0 0 0 1 1					
	Bits	Access	Name	!	Description					
	[7:6]	RW	clk_fe	c_h	解码时钟 CI	K_FEC 频率	高位。			
	[5:4]	RW	clk_de	m_h	解调时钟 CI	K_DEMO 頻	率高位。			
	[3:2]	-	reserv	ed	保留。					
	[1]	RW	hot_rs		逻辑复位信号,只复位逻辑,不复位系统寄存器。 1:不复位; 0:复位。					
	[0] RW cool_rstn				复位信号,目 1:不复位; 0:复位。	即复位逻辑,	又复位系统	寄存器。		

ILA_SEL

ILA_SEL 为测试向量选择寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x2F			ILA_	SEL	0x00			
Bit	7	7 6			5	4	3	2	0		
Name						ila_	_sel				
Reset	0	0		0	0 0		0	0	0	0	
	Bits	Access Name		Name		Description					
	[7:0]	7:0] RW ila_sel			ila 和 catch 村	莫块测试向量	选择信号。				

AGC_SPEED_BOUND

AGC_SPEED_BOUND 为 agc 步长寄存器。

		Of	fset Ad	dress		Register Name			Total Reset Value			
			0x30			AGC_SPEE						
Bit	7		(6	5	4	3	2	1	0		
Name			agc_	speed				err_bound				
Reset	0	0 1			1	0 0 1 1 1						
	Bits	s Access Name				Description						
	[7:5]	5] RW agc_speed			eed	agc 步长寄存	芒器,agc_spe	eed+2(限到 7)	0			
	[4:0]	l:0] RW err_bound			und	幅度误差边界值。						

AGC_GOAL

AGC_GOAL 为 agc 功率寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0x31			AGC_0	GOAL		0x0D			
Bit	7 6 5					4	3	2	1	0		
Name						agc_	goal					
Reset	0			0	0	0 1 1 0 1						
	Bits	Ac	cess	Name		Description						
	[7:0] RW agc_goal				oal	agc 功率目标值。						

AGCOK_WAIT

AGCOK_WAIT 为 agc 等待寄存器。

		Off	set Ad	dress		Register	r Name	Total Reset Value			
			0x32			AGCOK	_WAIT	0x0C			
Bit	7	7 6			5	4	0				
Name						agcok	_wait				
Reset	0	0 0			0	0	1	1	0	0	
	Bits	its Access Name				Description					
	[7:0] RW agcok_wait			_wait	agc 幅度异常等待时间。						

AGC_CTRL

AGC_CTRL 为 agc 控制寄存器。

		Offset A			Registe			Total Reset Value 0x11				
Bit	7		6	5	4	3	2	1	0			
Name		pdi	n_div		adc_twos	iq_swap	agc_hold	agc_inverse	dagc_on			
Reset	0		0	0	1 0 0 1							
	Bits	Access	Name		Description							
	[7:5]	RW	pdm_d	liv	agc 的 pdm \$ pdm_div+1 /		度。					
	[4]	RW	adc_tw	vos	输入数据类型。 1: 补码; 0: 原码。							
	[3]	RW	iq_swa	ap	iq 路数据交射 1: iq 交换; 0: iq 不交换							
	[2]	RW	agc_ho	old	agc 工作类型 1: agc 保持 0: agc 正常	,输出 pdm	为固定值;					
	[1]	RW	agc_in	verse	pdm 输出控制。 1: pdm 信号取反; 0: pdm 不取反,正常输出。							

		Offset Ac			Register AGC_			Total Reset Value 0x11		
Bit	7		6	5	4	3	2	1	0	
Name		pdn	n_div		adc_twos	iq_swap	agc_hold	agc_inverse	dagc_on	
Reset	0		0	0	0 1 0 0					
	Bits	Access	Name	!	Description					
	[0] RW		dagc_c	on	数字 agc 开启信号。 1: 开启数字 agc; 0: 关闭数字 agc。					

AGC_DC_I

AGC_DC_I为I路直流寄存器。

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
			0x34			AGC_	DC_I	0x00			
Bit	7	7 6 5			5	4 3 2 1 0					
Name						agc_	_dc_i				
Reset	0	0 0 0				0	0	0	0	0	
	Bits	Bits Access Name				Description					
	[7:0] RO agc_dc_i			e_i	I 路数据的直流量。						

AGC_DC_Q

AGC_DC_Q为Q路直流寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x35			AGC_1	DC_Q	0x 0 0			
Bit	7	7 6 5				4	3	2	1	0	
Name						agc_dc_q					
Reset	0		0			0	0	0	0	0	
	Bits	Access Name				Description					
	[7:0] RO agc_dc_q			:_q	Q路数据的直流量。						

DAGC_CTRL

DAGC_CTRL 为数字 agc 控制寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x36			DAGC	_CTRL	0x00			
Bit	7 6			5	4	3	2	1	0		
Name						dagc_ctrl					
Reset	0	0 0			0	0	0	0	0	0	
	Bits	Bits Access Name			Description						
	[7:0] RO dagc_ctrl			etrl	数字 agc 的控制字。						

AGC_CTRL_L

AGC_CTRL_L 为 agc 功率低位寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Va	alue	
			0x37			AGC_CTRL_L 0x00					
Bit	7		(5	5	4	3	2	1	0	
Name	agc_ok	agc_ok		reserved				agc_	ctrl_l		
Reset	0				0	0	0	0	0	0	
	Bits	its Access		Name		Description					
	[7]	RO		agc_ok	ζ	agc 锁定标志 1:agc 锁定; 0:agc 没有4	;				
	[6:4]	reserved			ed	保留。					
	[3:0]	:0] RO agc_ctrl_l			rl_l	agc 控制字的低 4 位,表示当前信号的功率。					

AGC_CTRL_H

AGC_CTRL_H为 agc 功率高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x38			AGC_C	TRL_H	0x00			
Bit	7 6 5				5	4	3	2	1	0	
Name						agc_c	trl_H				
Reset	0	0 0 0			0	0	0	0	0	0	
	Bits	Access Name				Description					
	[7:0] RO agc_ctrl_H			rl_H	agc 控制字的高 8 位,表示当前信号的功率。						

AMP_ERR_IIR

AMP_ERR_IIR 为幅度误差寄存器。

		Of	fset Ad 0x39			Register Name AMP_ERR_IIR			Total Reset Value 0x00		
Bit	7			6	5	4	3	2	1	0	
Name						amp_	err_iir				
Reset	0	0 0				0	0	0	0	0	
	Bits	s Access Name				Description					
	[7:0] RO amp_err_iir				rr_iir	adc 输入信号幅度和目标值的误差。					

PDM_CTRL_L

PDM_CTRL_L 为手动 agc 控制字低位寄存器。

		Of	fset Ad	dress		Register Name			Total Reset Value		
			0x3A	<u>.</u>		PDM_CTRL_L 0x00					
Bit	7		(6	5	4	3	2	1	0	
Name			rese	rved		pdm_ctrl_sel pdm_ctrl_h					
Reset	0		(0	0	0	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:5]	+				保留。					
	[4] RW pdm_ctrl_sel					手动 agc 控制 1: 手动模式 0: 自动 agc	, pdm_ctrl_s	sel 作为控制	字;		

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x3A			PDM_C	TRL_L		0x 0 0			
Bit	7 6 5				5	4	3	2	1	0		
Name			rese	rved		pdm_ctrl_sel		pdm_	ctrl_h			
Reset	0 0 0				0	0	0	0	0	0		
	Bits Access Name				Description							
	[3:0] RW pdm_ctrl_l					在手动 agc 模式下,可配置的 agc 控制字的低 4 位。				•		

PDM_CTRL_H

PDM_CTRL_H 为手动 agc 控制字高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x3B	1		PDM_C	TRL_H	0x 0 0			
Bit	7			6	5	4	3	2	1	0	
Name						pdm_	ctrl_l				
Reset	0			0	0	0	0	0	0	0	
	Bits Access Name Description										
	[7:0] RW pdm_ctrl_h					在手动 agc 模式下,可配置的 agc 控制字的高 8 位。					

USE_PWM

USE_PWM 为 AGC 输出波形选择寄存器。

		Off	fset Ad	dress		Register	r Name	Total Reset Value			
			0x3C			USE_	PWM	0x00			
Bit	7		(5	5	4	3	2	1	0	
Name		0 0				reserved				use_pwm	
Reset	0)	0	0	0	0	0	0	
	Bits					Description					
	[7:1]	-		reserve	ed	保留。					
						agc 输出波形选择。					
	[0]	RW use_pwr			vm	0: pdm;					
						1: pwm _o					

MF_SEL

MF_SEL 为匹配滤波器选择寄存器。

		Of	ffset Ad	dress		Registe	r Name		Total Reset Va	alue		
			0x40	ı		MF_	SEL		0xC9			
Bit	7			6	5	4	3	2	1	0		
Name	dagc_en	dagc_ena auto_atvfreq				erved mf_sel						
Reset	1					0	1	0	0	1		
	Bits	its Access Name				Description						
	[7]	RW	I	dagc_6	ena	内部数字 AGC 开启选择。 1: 开启; 0: 关闭。						
	[6]	[6] RW auto_atvfreq				内部 ATV 频率选择。 1: 自动选择; 0: 配置输入。						
	[5:4] - reserved			ed	保留。							
	[3:0]	3:0] RW mf_sel				匹配滤波器选择,对于 DVBT/T2,缺省值为 9。						

SF_RMV

SF_RMV 为窄带干扰抑制控制寄存器。

		Of	fset Ad	dress		Registe	r Name		Total Reset Value		
			0x41			SF_R	RMV		0xCC		
Bit	7	, ,				4	3	2	1	0	
Name	sf_rmv	sf_rmv atv_on			pll_thres						
Reset	1 1			1	0	0	1	1	0	0	
	Bits	Bits Access Name				Description					
						内部单频抑制	制模块开启选	择。			
	[7] RW sf_		sf_rmv	7	1: 开启;						
						0: 关闭。					

		Of	fset Ad	dress		Registe	r Name		Total Reset Value				
			0x41			SF_RMV				0xCC			
Bit	7		(6	5	4	3	2	1	0			
Name	sf_rmv	sf_rmv atv					pll_t	thres	res				
Reset	1	1		1	0	0	1	1	0	0			
	Bits	its Access Nam				Description							
		110000 1 (0111)				内部同频抑制	择。						
	[6]	6] RW atv_0				1: 开启;							
						0:关闭。							
	[5:0]	5:0] RW pll_thres				单频检测门限设置值。							

DAGC_REF

DAGC_REF 为 dagc 幅度参考值寄存器。

		Of	ffset Ad	dress		Register	r Name	Total Reset Value			
			0x42			DAGC	_REF	0x5A			
Bit	7			6	5	4	3	2	1	0	
Name						dago	_ref				
Reset	0			1	0	1	1	0	1	0	
	Bits Access Name					Description					
	[7:0] RW dagc_ref					dagc 幅度参考值。					

DAGC_SPEED

DAGC_SPEED 为 dagc 步长选择寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0x43			DAGC_	SPEED		0x20			
Bit	7		(6	5	4	3	2	1	0		
Name						dagc_	speed					
Reset	0		(0	1	0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RW dagc_speed					dagc 步长。						

IF_FREQ_L

IF_FREQ_L 为输入信号中频频率低位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x4A	L		IF_FR	EQ_L		0x04			
Bit	7		(6	5	4	3	2	1	0		
Name						if_fr	req_l					
Reset	0		(0	0	0	0	1	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RW if_freq_1					输入信号中频频率值的低 8 位,1LSB=1kHz。						

IF_FREQ_H

IF_FREQ_H 为输入信号中频频率高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x4B			IF_FR	EQ_H	0x15				
Bit	7		(5	5	4	3	2	1	0		
Name						if_fr	eq_h					
Reset	0		()	0	1	0	1	0	1		
	Bits	Aco	cess	Name		Description	Description					
	[7:0] RW if_freq_h					输入信号中频频率值的高8位。						

BAND_WIDTH

BAND_WIDTH 为输入信号带宽寄存器。

			t Address)x4E		Register Name Total R BAND_WIDTH (alue
Bit	7		6	5	4	3	2	1	0
Name			b	W			rese	rved	
Reset	0		1	0	0	0	0	0	0
	Bits	Acces	s Name		Description				
	[7:4]	RW	bw		信号带宽配5 000: 1.7MH 001: 5MHz; 010: 6MHz; 011: 7MHz; 100: 8MHz; 其它: 保留。	z;			
	[3:0]	-	reserve	ed	保留。				

SYN_CTRL0

SYN_CTRL0 为同步控制寄存器。

		Of	ffset Ad	dress		Register	r Name	Total Reset Value			
			0x50			SYN_C	CTRL0	0x89			
Bit	7			5	5	4	3	2	1	0	
Name		rgn_scope					th	r_t	reserved	p1_frac_sel	
Reset	1	1 0			0	0	1	0	0	1	
	Bits	ts Access Name			:	Description					
	[7:4]	RW	I	rgn_sc	ope	P2 相关扫描范围选择。					
	[3:2]					DVBT 相关标	<u></u> 俭测门限选择				
	[1]] - reserved			ed	保留。					
	[0]	0] RW p1_frac_sel				P1 载波检测方式选择。					

CORR_HIGH_TH

CORR_HIGH_TH 为 P2 相关检测高门限寄存器。

		Of	ffset Ad 0x51			Register CORR H		Total Reset Value 0x40			
Bit	7			6	5	4	3	2	1	0	
Name	,						igh_th		•		
Reset	0			1	0	0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0] RW corr_high_th					P2 相关检测高门限配置值。					

CORR_LOW_TH

CORR_LOW_TH 为 P2 相关检测低门限寄存器。

		Of	fset Ad 0x52			Register CORR_L			Total Reset Va 0x18	alue	
Bit	7			6	5	4	3	2	1	0	
Name						corr_l	ow_th				
Reset	0	0 0 0				1	1	0	0	0	
	Bits	its Access Name				Description					
	7:0] RW corr_low_th			ow_th	P2 相关检测低门限配置值。						

P2_POS_MOD

P2_POS_MOD 为 P2 同步位置修正寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x53			P2_POS	S_MOD		0x64			
Bit	7		(6	5	4	3	2	1	0		
Name												
Reset	0			1	1	0	0	1	0	0		
	Bits Access Name Description											
	[7:0]	RW	I	p2_pos	s_mod	P2 同步位置检测值调整量。						

P1_THRES

P1_THRES 为 P1 同步控制寄存器。

		Of	fset Ad 0x54			Register P1_TF	Total Reset Va 0xD0	alue		
Bit	7			5	5	4	3	2	1	0
Name	fscan_th	can_th p1			_sel			p1_min_th		
Reset	1	1		1	0	1	0	0	0	0
	Bits	s Access Name		Name		Description	Description			
	[7]	RW	I	fscan_	th	P1 载波扫描有效判断门限选择。				
	[6:5]	[5:5] RW p1th_sel			el	P1 频域数据	限幅门限选择	羊。		
	4:0] RW p1_min_th			n_th	P1 时域相关检测门限最小值。					

CHN_FFT_GI

CHN_FFT_GI 为同步检测参数寄存器。

		Of	fset Ad 0x55			Register Name Total Reset Value CHN_FFT_GI 0x00				ılue	
Bit	7		(6	5	4	3	2	1	0	
Name	is_dvbt	is_dvbt spectro				fft_size			gi_mode		
Reset	0				0	0	0	0	0	0	
	Bits					Description					
	[7]				t	信号指示。 1: DVBT信 0: DVBT2亻					
	[6]	6] RO spectrum			ım	频谱指示。 1:输入信号 0:输入信号		0			

		Off	set Ad	dress		Registe	r Name		Total Reset Va	alue		
			0x55			CHN_F	FT_GI		0x00			
Bit	7		(6	5	4	3	2	1	0		
Name	is_dvbt		spec	trum		fft_size			gi_mode			
Reset	0		(0	0	0	0	0	0	0		
	Bits Access			Name		Description						
						FFT 模式指示	示。					
						000: 1K;						
						001: 2K;						
	[5:3] RO			fft_siz	e	010: 4K;						
	[5.5]			_512		011: 8K;						
						100: 16K;						
						101: 32K;						
						其它:保留。						
						保护间隔。						
	[2:0]	RO		gi mo	da	000: 1/32;	001: 1/16;	010: 1/8; 01	11: 1/4;			
	[∠.∪]	KU		g1_11100	uc	100: 1/128;	101: 19/12	8; 110: 19/2	256; 其它: /	保留。		
						当 FFT 模式指示为 100 或者 101 时,保护间隔指示无效。						

P1_SIGNAL

P1_SIGNAL 为 P1 检测信令寄存器。

		Of	fset Ad	ldress		Register	r Name	Total Reset Value			
			0x56	Ó		P1_SIG	GNAL		0x00		
Bit	7			6	5	4	3	2	1	0	
Name	reserved	1			p1_signal_s1		p1_signal_s2				
Reset	0	0 0		0	0	0	0	0	0	0	
	Bits	Aco	access Name			Description					
	[7]	-		reserve	ved 保留。						
	[6:4]	RO		p1_sig	nal_s1	P1 信令 S1 音	邓分。				
	[3:0]	:0] RO p1_signal_s2			nal_s2	P1 信令 S2 部分。					

TIM_OFFSET

TIM_OFFSET 为定时误差寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x57			TIM_O	FFSET	0x00			
Bit	7		(5	5	4	3	2	1	0	
Name						tim_c	offset				
Reset	0	0 0			0	0	0	0	0	0	
	Bits	Access Name				Description					
	[7:0]	7:0] RO tim_offset			fset	定时误差,1LSB=4ppm。					

CAR_OFFSET_L

CAR_OFFSET_L 为载波误差低位寄存器。

		Of	fset Ad	dress		Registe	r Name		Total Reset Value			
			0x58			CAR_OF	FSET_L		0x00			
Bit	7			6	5	4	3	2	1	0		
Name						car_o	ffset_l					
Reset	0		(0	0	0	0	0	0	0		
	Bits	Ac	cess	Name		Description						
	[7:0] RO car_offset_l					载波误差低位寄存器,1LSB=32Hz。						

CAR_OFFSET_H

CAR_OFFSET_H 为载波误差高位寄存器。

		Of	ffset Ad	dress		Register	r Name	Total Reset Value				
			0x59			CAR_OF	FSET_H		0x00			
Bit	7			6	5	4	3	2	1	0		
Name						fset_h						
Reset	0			0	0	0	0	0	0	0		
	Bits	Ac	cess	Name		Description						
	[7:0]	7:0] RO car_offset_h				载波误差高位寄存器。						

T2_CHK_CTRL

T2_CHK_CTRL 为 DVBT2 检测配置寄存器。

		Of	ffset Ad	dress		Register	r Name		Total Reset Va	alue	
			0x5E)		T2_CHK	CTRL		0x02		
Bit	7			6	5	4	3	2	1	0	
Name		rese	rved		t2_	lite	ite reserved t			_t2	
Reset	0			0	0	0 0 0 1 0					
				Name		Description					
	7:6] - reserve				ed	保留。					
	[7:6] - reso [5:4] RW t2_1					t2_lite 模式式 0: 只支持 t2 1: 只支持 t2 2: 同时支持 t2_base/t2_lit 种模式,搜索 式。	2_base 模式; 2_lite 模式; 5两种模式,作 te 两种模式的	为 T2 帧时, 🤊	系统只能随机	L捕获其中一	
	[3:2]	-		reserve	ed	保留。					
	[1:0] RW thr_t2					T2 信号检测门限选择。					

SOAC_TH

SOAC_TH 为 P1 信令检测门限寄存器。

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
			0x5E	E		SOAC	C_TH	0x34			
Bit	7			6	5	4	3	2	1	0	
Name	reserved	reserved		fequ_param				soa	c_th		
Reset	0		0 1		1	0	1	0	0		
	Bits	Ac	cess	Name		Description					
	[7]	-		reserved		保留。					
	[6:4] RW		fequ_param		内部保留寄存器。						
	[3:0] RW soac_			soac_t	h	P1 信令检测	门限选择。				

OUTP_RAND

OUTP_RAND 为输出 TS 加扰寄存器。

		Offset	Address		Registe	r Name		Total Reset Value		
		0	x5F		OUTP_	RAND		0x08		
Bit	7		6	5	4	3	2	1	0	
Name		reserved	i	rand_no_hold		clk_min_wid		clk_	rand	
Reset	0		0	0	0	1	0	0	0	
	Bits	Acces	s Name		Description					
	[7:6]	-	reserve	ed	保留。					
	[5]	RW	rand_n	o hold	1: 时钟宽度 0: 一定条件	和周期始终加 下不加扰。	扣扰;			
	[4:2]	RW	clk_mi	n_wid	TS 流时钟高	电平和低电	平最小宽度。			
	[1:0]	RW	clk_raı	nd	10: 打开加持	沈模块; 沈模块,最大 沈模块,最大 沈模块,最大	泛延时 9;			

LOOP_BW

LOOP BW 为环路带宽选择寄存器。

	Offset	Address		Registe	r Name	Total Reset Value			
	0)x60		LOOP_BW					
7		6	5	4	3	2	1	0	
cpe_on	<u>I</u>		tim_loop			car_	loop		
1	1		1	0	0	0	1	1	
Bits	Acces	s Name		Description					
				CPE 校正开	关。				
[7]	RW	cpe_or	1	1: 开启;					
				0: 关闭。					
[6:4]	4] RW tim_loop			定时环路带领	宽选择,值越ス	大则选定带宽	越窄。		
[3:0]	:0] RW car_loop			载波环路带宽选择,值越大则选定带宽越窄。					
	cpe_on 1 Bits [7]	7 cpe_on 1 Bits Acces [7] RW [6:4] RW	cpe_on 0 1 0 Bits Access Name [7] RW cpe_or [6:4] RW tim_loc	0x60 7 6 5 cpe_on tim_loop 1 0 1 Bits Access Name [7] RW cpe_on [6:4] RW tim_loop	0x60 LOOF 7	Dodd Dodd	Toop_BW Too	Name LOOP_BW OxA3 OxA3 OxA3 OxA3 OxA3 Ox	

FD_GRP

FD_GRP 为时域插值控制寄存器。

		Offset Ad	dress		Registe	r Name		Total Reset Value		
		0x61			FD_0	GRP		0x81		
Bit	7		6	5	4 3 2 1 0					
Name			div	_p2	man_fd_grp fd_grp					
Reset	1		0	0	0	0	0	0	1	
	Bits	Access	Name		Description					
	[7:4]	RW	div_p2		选定 P2 符号的多径分界线。					
	[3]	RW	man_f	d_grp	时域插值系数 1: 自适应关 0: 自适应开	:闭;	适应开关。			
	[2:0]	RW	fd_grp		man_fd_grp= 大。	-1 时,系统说	选择的插值带	宽,值越大师	则带宽越	

NP_IIR_SFT

NP_IIR_SFT 为 CSI 计算控制寄存器。

		Of	fset Ad			Registe			Total Reset Value			
			0x64			NP_III	R_SFT	0x65				
Bit	7			6	5	4	4 3 2 1 0					
Name		dop	_th		sp_cell_on		np_para_sft np_iir_sft					
Reset	0			1	1	0	0	1	0	1		
	Bits	Aco	cess	Name		Description						
	[7:6]	RW	I	dop_th	ı	多普勒检测。 概率越大。	多普勒检测灵敏度选择,越大则检测越灵敏,同时检测虚警 概率越大。					
	[5]] RW sp_cell_on				CSI 抑制窄带干扰手动开关。 1: 开启; 0: 关闭。						
	[4:2]	RW	I	np_par	a_sft	噪声系数计算平滑滤波器带宽选择。						
	[1:0]	RW	I	np_iir_	sft	窄带干扰计算平滑滤波器带宽选择。						

ECHO_THRES

ECHO_THRES 为多径检测门限寄存器。

		Of	fset Ad 0x67			Register Name Total Reset Value ECHO_THRES 0x10					
Bit	7		(6	5	4	3	2	1	0	
Name				th_i	mid						
Reset	0	0 0 0				1 0 0 0 0					
	Bits	Aco	cess	Name		Description					
	[7:4]	RW	ī	th_mic	I	多径检测中门]限选择 0,	值越大则检测	则灵敏度越高		
	[3:0] RW th_high					多径检测高门限选择,值越大则检测灵敏度越高。					

MIN_THRES

MIN_THRES 为多径检测门限最小值寄存器。

		Of	fset Ad 0x69			Register Name Total Reset Value MIN_THRES 0x08						
Bit	7		(5	5	4 3 2 1 0						
Name		th_min										
Reset	0		()	0	0	1	0	0	0		
	Bits	Ac	cess	Name		Description						
	[7:0] RW th_min					多径检测门限最小值。						

NP_GRP

NP_GRP 为时域插值控制寄存器。

		Of	fset Ad 0x6A			Register			Total Reset Value 0x00		
Bit	7			6	5	4	4 3 2 1 0				
Name	isi_ena				fd_max		man_np_grp		np_grp		
Reset	0			0	0	0 0 0 0					
	Bits	Aco	cess	Name		Description					
	[7] RW isi_ena					符号间干扰》 1:开启; 0:关闭。	肖除使能开关	Ĉ.			
	[6:4]	RW	7	fd_ma	x	最大时域插值带宽。					
	[3] RW man_np_gr				p_grp	时域插值系数 1: 自适应关 0: 自适应开	闭;	适应开关。			
	[2:0] RW np_grp					man_np_grp=1 时,系统选择的噪声系数,值越大则噪声功率越大。					

TS_A9_SEL

TS_A9_SEL为 ts 输出控制寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value					
			0x6B			TS_A9_SEL 0xA9							
Bit	7			6	5	4	3	2	1	0			
Name				ts_a	_sel			ts_9	ts_9_sel				
Reset	1		0		1	0	1	0	0	1			
	Bits	Ac	cess	Name		Description							
	[7:4]			ts_a_sel		控制管脚 TS_ERR 的输出。选择 {ts_err,ts_vld,ts_sync,ts_dat[7:0]}中的相应 bit 位信号输出。							
	[3:0]	:0] RW ts_9_sel				控制管脚 TS {ts_err,ts_vld	_		相应 bit 位信·	号输出。			

TS_87_SEL

TS_87_SEL 为 ts 输出控制寄存器。

		Of	fset Ad			Register		Total Reset Value			
			0x6C			TS_87_SEL 0x87					
Bit	7			6	5	4	3 2 1 0				
Name				ts_8	_sel			ts_7	_sel		
Reset	1	1 0			0	0	0	1	1	1	
	Bits	Access Nam				Description					
	[7:4]	RW	T	ts_8_s	el		TS_SYNC 的输出。选择 vld,ts_sync,ts_dat[7:0]}中的相应 bit 位信号输出。				
	[3:0]	RW	ī	ts_7_s	el	控制管脚 TS {ts_err,ts_vld	_		相应 bit 位信·	号输出。	

TS_65_SEL

TS_65_SEL为 ts 输出控制寄存器。

		Of	fset Ad 0x6D			Register Name TS_65_SEL			Total Reset Value 0x65			
Bit	7			6	5	4	3	3 2 1 0				
Name				ts_6	_sel			ts_5	_sel			
Reset	0				1	0	0	1	0	1		
	Bits	s Access				Description						
	[7:4] RW			te 6 cel		控制管脚 TS_OUT6 的输出。选择 {ts_err,ts_vld,ts_sync,ts_dat[7:0]}中的相应 bit 位信号输出。						
	[3:0] RW ts_5_sel				ا ح	控制管脚 TS {ts_err,ts_vld	_		相应 bit 位信·	号输出。		

TS_43_SEL

TS_43_SEL为 ts 输出控制寄存器。

		Of	ffset Ad 0x6E			Register TS_43			Total Reset Value 0x43			
Bit	7			6	5	4	3	2	1	0		
Name				ts_4	_sel			ts_3	_sel			
Reset	0				0	0	0	0 0 1				
	Bits	Access				Description						
	[7:4] RW		I	ts_4_sel		控制管脚 TS_OUT4 的输出。选择 {ts_err,ts_vld,ts_sync,ts_dat[7:0]}中的相应 bit 位信号输出。						
	[3:0] RW ts_3				el	控制管脚 TS {ts_err,ts_vld	_	出。选择 at[7:0]}中的材	相应 bit 位信·	号输出。		

TS_21_SEL

TS_21_SEL 为 ts 输出控制寄存器。

		Of	ffset Ad			Register		Total Reset Value			
			0x6F			TS_21	_SEL		0x21		
Bit	7			6	5	4	3	2	1	0	
Name				ts_2	_sel			ts_1	_sel		
Reset	0				1	0	0	0	0	1	
	Bits	s Access				Description					
	[7:4] RW		7	ts_2_sel		控制管脚 TS_OUT2 的输出。选择 {ts_err,ts_vld,ts_sync,ts_dat[7:0]}中的相应 bit 位信号输出。					
	[3:0] RW ts_1_sel			el	控制管脚 TS_OUT1 的输出。选择 {ts_err,ts_vld,ts_sync,ts_dat[7:0]}中的相应 bit 位信号输出。						

TIM_LOOP_L

TIM_LOOP_L 为定时误差低位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x70	ı		TIM_LC	OOP_L	0x 0 0			
Bit	7		(6	5	4	3	2	1	0	
Name	tim_loop_l										
Reset	0		0 0			0	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:0] RO tim_loop_l					定时环路输出的定时误差低位,1LSB=1/16ppm。					

TIM_LOOP_H

TIM_LOOP_H 为定时误差高位寄存器。

		Of	fset Ad 0x71			Register			Total Reset Value 0x00			
Bit	7 6			6	5	4 3 2				0		
Name		resei	rved			tim_loop_h						
Reset	0		0		0 0 0		0	0	0			
	Bits Access Nar		Name		Description							
	[7:6] - reserv			reserv	red 保留。							
	[5:0] RO tim_loc				op_h	定时环路输出的定时误差高位。						

TS_0_SEL

TS_0_SEL为 ts 输出控制寄存器。

		Of	ffset Ad	dress		Register	r Name		Total Reset Value			
			0x75			TS_0_	_SEL	0x50				
Bit	7			6	5	4	3 2		1	0		
Name				cpado	d_ena	ts_0_sel						
Reset	0		1		0	1	0 0		0	0		
	Bits Ac		ccess Name		Name Descrip		ption					
	[7:4] RV		1] RW cpadd_ena		ena	内部关键技术寄存器,主要用于开启大保护间隔模式下提到性能的模块。						

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x75			TS_0_SEL			0x50		
Bit	7			6	5	4	3 2		1	0	
Name				cpado	d_ena	ts_0_sel					
Reset	0		1		0	1	0	0	0	0	
	Bits Acces		cess Name			Description					
	[3:0] RW		RW ts_0_sel		<u> </u>	控制管脚 TS_OUT0 的输出。选择 {ts_err,ts_vld,ts_sync,ts_dat[7:0]}中的相应 bit 位信号输出					

CIR_DIST_0

CIR_DIST_0 为多径分布寄存器。

		Of	fset Ad	dress		Registe	r Name		Total Reset Value			
			0x76			CIR_D	OIST_0	0x00				
Bit	7		(5	5	4	3	2	1	0		
Name						cir_d	cir_dist_0					
Reset	0		0		0	0	0	0	0	0		
	Bits Ac		ess Name		:	Description						
	[7:0] RC		P] RO cir_dist_0			多径分布寄存器,用于表征当前的信道冲激响应(CIR)的分布特征。CIR 一共用 32bit 表示,表示 bit7-0。						

CIR_DIST_1

CIR_DIST_1 为多径分布寄存器。

		Offs	set Ado	dress		Register	r Name		Total Reset Value			
			0x77			CIR_DIST_1			0x00			
Bit	7		6		5	4	3	2	1	0		
Name						cir_d						
Reset	0		0		0	0	0 0		0	0		
	Bits Acces		ess Name			Description						
	[7:0] RO		RO cir_dist_1		T I	多径分布寄存器,用于表征当前的信道冲激响应(CIR)的特征。CIR 一共用 32bit 表示,表示 bit15-8。						

CIR_DIST_2

CIR_DIST_2 为多径分布寄存器。

		Of	ffset Ad	dress		Registe	r Name		Total Reset Value			
			0x78	}		CIR_D	IST_2	0x00				
Bit	7		6		5	4	3	2	1	0		
Name						cir_d	list_2					
Reset	0			0	0	0 0		0	0	0		
	Bits Access			Name		Description						
	[7:0]	RO)	cir_dis		多径分布寄存器,用于表征当前的信道冲激响应(CIR)的分布特征。CIR 一共用 32bit 表示,表示 bit23-16。						

CIR_DIST_3

CIR_DIST_3 为多径分布寄存器。

		Of	fset Ad	dress		Registe	r Name		Total Reset Value					
			0x79	ı		CIR_D	DIST_3	0x 0 0						
Bit	7		6		6		6		5	4	3	2	1	0
Name						cir_dist_3								
Reset	0		0		0	0	0	0	0	0				
	Bits Acces		cess	ess Name		Description								
	[7:0] RC		RO cir_dist_3		多径分布寄存器,用于表征当前的信道冲激响应(CIR)的分特征。CIR 一共用 32bit 表示,表示 bit31-24。									

SNR_L

SNR_L 为信噪比指示低位寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x7A			SNF	R_L	0x 0 0			
Bit	7	7 6 5				4	3	2	1	0	
Name						sn	r_1				
Reset	0 0 0				0	0 0 0 0					
	Bits	Bits Access Name				Description					
	7:0] RO snr_l				信噪比寄存智 SNR=10*log		R _°				

SNR_H

SNR_H 为信噪比指示高位寄存器。

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
	0x7B					SNF	R_Н	0x00			
Bit	7 6 5			5	4	3	2	1	0		
Name						snr_h					
Reset	0 0 0			0	0	0	0	0	0		
	Bits Access Name					Description					
	[7:0] RO snr_h				信噪比寄存器高位。						

DOPPLER

DOPPLER 为多普勒指示寄存器。

		Off	fset Ad	dress		Register	r Name	Total Reset Value			
			0x7C			DOPF	PLER	0x00			
Bit	7		(5	5	4	3	2	1	0	
Name	dopple					rela_fd_grp					
Reset	0 0 0				0	0 0 0 0					
	Bits Access Name				Description						
	[7:3] RO doppler				r	demo 计算出	的 doppler。				
	[2:0] RO rela_fd_grp				l_grp	demo 实际计算出的时域插值系数计算带宽。					

CW_FREQ_L

CW_FREQ_L 为单频干扰频点低位寄存器。

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
			0x80			CW_FF	REQ_L	0x00			
Bit	7	7 6 5				4	3	2	1	0	
Name						cw_f	req_l				
Reset	0 0 0			0	0	0	0	0	0		
	Bits Access Name					Description					
	[7:0] RO cw_freq_l				eq_l	单频干扰频点低位寄存器,1LSB=9kHZ。					

CW_FREQ_H

CW_FREQ_H 为单频干扰频点高位寄存器。

		Offset A	ddress		Registe	r Name		Total Reset Va	alue	
		0x8	1		CW_FI	REQ_H		0x00		
Bit	7		6	5	4	3	2	1	0	
Name	cw_lock	C			reserved			cw_freq_H		
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name	9	Description					
	[7]	RO	cw_lo		单频干扰是7 1:存在单频 0:不存在单	行光;				
	[6:2]	-	reserv	ed	保留。					
	[1:0] RW c		cw_fre	eq_H	单频干扰频点高位寄存器。					

CLK_ADC_L

CLK_ADC_L 为 ADC 时钟低位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x85			CLK_A	ADC_L	0x00			
Bit	7	7 6 5				4	3	2	1	0	
Name						clk_a	adc_1				
Reset	0	0 0 0			0	0	0	0	0	0	
	Bits	its Access Name				Description					
	7:0] RW clk_adc_l				c_1	ADC 时钟 C	LK_ADC 频	8=1KHz∘			

CLK_ADC_M

CLK_ADC_M 为 ADC 时钟中位寄存器。

		Of	ffset Ad			Register		Total Reset Value			
			0x86	ı		CLK_A	.DC_M		0x7D		
Bit	7 6 5					4	3	2	1	0	
Name						clk_a	dc_m				
Reset	0 1 1				1	1	1	1	0	1	
	Bits	Ac	cess	Name		Description					
	[7:0] RW clk_adc_m					ADC 时钟 CLK_ADC 频率中位。					

CLK_ADC_H

CLK_ADC_H 为 ADC 时钟高位寄存器。

		Off	fset Ad	dress		Register Name				alue		
			0x87			CLK_ADC_H				0x00		
Bit	7		(5	5	4	3	2	1 0			
Name					rese	rved		clk_a	ndc_h			
Reset	0 0				0	0 0 0 0						
	Bits Access Name					Description						
	[7:2] - reserved				ed	保留。						
	[1:0] RW clk_adc_h				c_h	ADC 时钟 C						

ATV_STATE

ATV_STATE 为同频干扰标志寄存器。

		Of	fset Ad	dress		Registe	r Name		Total Reset Value			
			0x88			ATV_STATE			0x00			
Bit	7		(6	5	4	3	2	1	0		
Name						reserved						
Reset	0	0 0 0				0	0	0	0	0		
	Bits	Acc	cess	Name		Description						
	[7:1]	-		reserve	ed	描述信息						
	[0]	RO		atv_sta	ate	同频干扰是7 1:存在同频 0:不存在同	〔干扰;					

ITER_CTRL

ITER_CTRL 为迭代控制寄存器。

		Of	fset Ad 0x91			Registe ITER_			Total Reset Value 0xA4		
Bit	7		(5	5	4	3	2	1	0	
Name	fix_iter		fix_ite	r_man			fix_ite	r_num			
Reset	1)	1	0 0 1 0 0					
	Bits	its Access Name				Description					
	[7]					指示配置固第 1: 固定最大 0: 自动精确	迭代次数;				
	[6]	6] RW fix_			r_man	指示手动配引 1: 手动配置 0: 自动简略		数;			
	[5:0]	5:0] RW fix_iter_num				手动精确配置	置的最大迭代	次数值。			

BER_CTRL

BER_CTRL 为 ber 控制寄存器。

		Off	fset Ad	dress		Registe	r Name		Total Reset Value		
			0x92			BER_0	CTRL		0xB4		
Bit	7		(5	5	4	3	2	1	0	
Name	stop_se	stop_sel frame				high_err					
Reset	1	1 0			1	1	0	1	0	0	
	Bits	its Access Name				Description					
	[7] RW			stop_s	el	指示校验迭位 1: 自动校验 0: 迭代到最	迭代停止;	停止。			
	[6:4]	6:4] RW frame_num				统计 BER 周期长度。					
	3:0] RW high_err			err	高误码复位门限。						

AUTO_DLY

AUTO_DLY 为迭代切换寄存器。

		Offset A			Registe AUTO			Total Reset Value 0x01		
Bit	7		6	5	4	3	2	1	0	
Name				rese	rved			prior_low	auto_dly	
Reset	0		0	0	0	0	0	0	1	
	Bits	Access	Name		Description					
	[7:2]	-	reserv	ed	保留。					
	[1]	RW	prior_	low		模式码流输出 比先级码流;(]选择。):输出高优 _:	先级码流。		
	[0]	RW	auto_c	lly	信令码字切 1: 自动选择 0: 选择配置		6择。			

ITER_NUM

ITER_NUM 为 PRE 信令迭代次数寄存器。

		Off	fset Ad	dress		Register Name			Total Reset Value		
			0x94			ITER_NUM 0x18					
Bit	7		(6	5	5 4 3 2 1					
Name	gate_of	<u> </u>		erved			iter_num_pre				
Reset	0		(0	0	1	1	0	0	0	
	Bits	Acc	ess	Name		Description					
	[7] RV		V gate_c			门控开关。 1:关闭门控 0:开启门控					
	[6] -		reserve	ed	保留。						
	[5:0] RW i		iter_nu	ım_pre	L1pre 译码最	是大迭代次数	值。				

ITER_NUM_POST

ITER_NUM_POST 为 POST 信令迭代次数寄存器。

		Of	fset Ad	dress		Register			Total Reset Value		
			0x95	i	ITER_NUM_POST				0x18		
Bit	7			6	5	4	3	2	1	0	
Name		reserved					iter_nu	m_post			
Reset	0		0		0	1 1		0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:6] - re		reserve	ed	保留。						
	[5:0] RW iter_1		iter_nu	ım_post	L1post 译码最大迭代次数值。						

FEC_BER_L

FEC_BER_L 为 ber 低位寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x96			FEC_E	BER_L	0x00			
Bit	7 6			5	4	3	2	1	0		
Name						fec_1	ber_l				
Reset	0		(0	0	0	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:0] RO fec_ber_l			r_l	BER 统计的	低 8 位。					

FEC_BER_H

FEC_BER_H 为 ber 高位寄存器。

		Of	ffset Ad 0x97			Register Name FEC_BER_H			Total Reset Value 0x00		
Bit	7 6			5	4	3	2	0			
Name	ne fec_ber_h										
Reset	0			0	0	0	0	0	0	0	
	Bits Access Name		:	Description							
	[7:0] RO fec_ber_h		r_h	BER 统计的高 8 位。							

FEC_FER_L

FEC_FER_L 为 fer 低位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x98			FEC_F	ER_L	0x00				
Bit	7	7 6			5	4 3 2 1				0		
Name						fec_	fer_l					
Reset	0		0 0		0 0 0		0					
	Bits Access Name					Description						
	[7:0] RO fec_fer_l			:_1	错误帧数统计的低 8 位。							

FEC_FER_H

FEC_FER_H为fer高位寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
	0x99					FEC_F	ER_H	0x00			
Bit	7	7 6 5			5	4	3	2	0		
Name	Name fec_fer_h										
Reset	0		(0	0	0	0	0	0	0	
	Bits Access Name			Description							
	[7:0] RO fec_fer_h			_h	错误帧数统计的高8位。						

SWITCH_DLY

SWITCH_DLY 为信令码字切换时延寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x9C			SWITCH_DLY			0x00		
Bit	7	7 6			5	4 3 2 1					
Name	reserved					1	7				
Reset	0		0		0	0 0		0	0	0	
			cess Name		Description						
	[7]	-		reserve	ed	保留。					
	[6:0] RW man_switch_c			witch_dly	信令码字切换时延手工精确值。						

T2_SUCCESS

T2_SUCCESS 为 T2 译码成功寄存器。

		Off	set Ado	dress		Register	r Name		Total Reset Value		
			0x9E			T2_SUCCESS			0x00		
Bit	7	7 6			5	4	3	2	1	0	
Name					iter_	num		bch_cancorr	ldpc_badly		
Reset	0		()	0	0	0	0	0	0	
	Bits	Acc	ess	Name		Description					
	[7:2]	7:2] RO iter_num			ım	LDPC 实际设	译码迭代次数		·		

		Offset Ad			Register T2_SU0		Total Reset Value 0x00		
Bit	7		6	5	4	3	2	1	0
Name				iter_	num		bch_cancorr	ldpc_badly	
Reset	0 Bits Access		0	0	0	0	0	0	0
	Bits	Access	Name	!	Description				
	[1]				指示 BCH 译 1:译码成功 0:译码失败	J;			
	[0] RO ldpc_badly			adly	指示 LDPC i 1:LDPC 译 0:LDPC 译	码失败;			

OUTP_ISSY

OUTP_ISSY 为 issy 控制寄存器。

		Of	ffset Ad	dress		Register Name			Total Reset Value		
			0xA0)		OUTP	_ISSY		0x10		
Bit	7			6	5	5 4 3 2 1					
Name	issy_lon	issy_long issy_rmv 0 0					tto_a	ıdjust			
Reset	0			0	0	1	0	0	0	0	
	Bits	Ac	cess	Name		Description					
						ISSY 长度选	择。				
	[7]	RW	V	issy_lo	ong	1: gcs 和 gs	e流 issy为3	byte;			
						0:gcs和gs	e 流 issy 为 2	byte.			
						ISSY 删除选	择。				
	[6]	RW	V	issy_rı	nv	1: gcs和gs	e 流包长包括	issy;			
						0:gcs和gs	e 流包长不包	l括 issy。			
	[5:0] RW tto_adjust			just	TTO 调整量。						

OUTP_DCAP_SET

OUTP_DCAP_SET 为 DATA PLP 容量设置寄存器。

	Of	ffset Add	ress	Regis	ter Name	Total Reset Value				
		0xA1		OUTP_I	DCAP_SET	0xC9				
Bit	7	6	5	4	3	2	1	0		
Name	vol_dset									
Reset	1	1	0	0	1	0	0	1		
	Bits	Access	Name	Description						
	[7:0]	RW	vol_dset	设置 data plp 容量 OUTP_DCAP_SI	量,大小为 ET[7:4]< <outp_< td=""><td>DCAP_SET[3:0]l</td><td>kbit,OUTP_DCAI</td><td>P_SET[7:4]>=8。</td></outp_<>	DCAP_SET[3:0]l	kbit,OUTP_DCAI	P_SET[7:4]>=8。		

OUTP_CCAP_SET

OUTP_CCAP_SET 为 COMMON PLP 容量设置寄存器。

	Of	ffset Add	ress	Regis	ter Name	Total Reset Value				
		0xA2		OUTP_0	CCAP_SET	0x88				
Bit	7	6	5	4	3	2	1	0		
Name	ame vol_cset									
Reset	1	0	0	0	1	0	0	0		
	Bits	Access	Name	Description						
	[7:0]	RW	vol_cset	设置 common plp OUTP_CCAP_SI	o 容量,大小为 ET[7:4]< <outp_< td=""><td>CCAP_SET[3:0]</td><td>kbit,OUTP_CCAI</td><td>P_SET[7:4]>=8。</td></outp_<>	CCAP_SET[3:0]	kbit,OUTP_CCAI	P_SET[7:4]>=8。		

OUTP_PLL0

OUTP_PLL0 为 PLL 控制寄存器。

		Offset	Address		Registe	r Name	Total Reset Value			
		02	:A3		OUTP	_PLL0	0x83			
Bit	7		6	5	4	3	2	1	0	
Name				cent_point			cent_speed			
Reset	1		0	0	0	0	0	1	1	
	Bits	Access	Name	2	Description					
	[7:3]	RW	cent_p	oint	设置 OUTP]	RAM 中心区	位置。			
	[2:0]	RW	cent_s	peed	指定中心区反馈系数。					

OUTP_PLL1

OUTP_PLL1 为 PLL 控制寄存器。

		Offs	et Add	Iress		Register	r Name	Total Reset Value				
			0xA4			OUTP_	_PLL1	0x9B				
Bit	7		6		5	4	3	2	1	0		
Name					slow_high			fast_speed				
Reset	1 0				0	1 1 0 1 1						
	Bits	Bits Access Name				Description						
	[7:3]	7:3] RW slow_high				设置 OUTP RAM 慢调区上限。						
	[2:0] RW fast_speed				eed	指定快调区反馈系数。						

OUTP_PLL2

OUTP_PLL2 为 PLL 控制寄存器。

		Of	fset Ad			Register OUTP_		Total Reset Value 0x40			
Bit	7		(5	5	4	3	2	1	0	
Name					slow_slow			iscr_ted_gain	pll_sp	peed_i	
Reset	0				0	0	0	0	0	0	
	Bits	Access Name				Description					
	[7:3]	RW	I	slow_s	low	设置 OUTP RAM 慢调区下限。					
	[2]	RW iscr_ted_gain			d_gain	选择 ISCR 反	反馈系数。				
	[1:0]] RW pll_speed_i				设置 ISCR 反馈值增益。					

OUTP_PLL3

OUTP_PLL3 为 PLL 控制寄存器。

		Offs	et Address		Registe	r Name	Total Reset Value			
			0xA6		OUTP	_PLL3	0xBF			
Bit	7		6	5	4 3 2 1			0		
Name				fast_high			auto_vol	pll_sp	eed_r	
Reset	1		0	1	1	1	1	1	1	
	Bits	Acce	ess Name		Description					
	[7:3]	RW	fast_hi	gh	设置 OUTP RAM 快调区上限。					
					DJB 容量自动选择开关。					
	[2]	RW	auto_v	ol	1: OUTP RAM 中 data plp 和 common plp 容量自动设置;					
					0:根据 OU	TP_DCAP_S	ET 和 OUTP_	_CCAP_SET	设置容量。	
	[1:0]	RW	pll_spe	eed_r	无 iscr 根据容量反馈调整系数。					

OUTP_PLL4

OUTP_PLL4 为 PLL 控制寄存器。

		Offset Ad	ldress		Registe		Total Reset Value				
		0xA	7		OUTP	_PLL4		0x23			
Bit	7		6	5	4 3 2 1						
Name				fast_low			out_mode_auto	ted_	shift		
Reset	0		0	1	0	0	0	1	1		
	Bits	Access	Name		Description						
	[7:3]	RW	fast_lc) W	设置 OUTP I	设置 OUTP RAM 快调区下限。					
	[2]	RW	out_m	ode_auto	TS 输出模式 1:开启 TS ² 0:关闭 TS ² out_mode 确	输出模式自る 输出模式自る	边选择; 边选择,此时	根据 clk_mo	de 和		
	[1:0]	RW	ted_sh	ift	指定 PLL 反	馈系数。					

OUTP_CLK_SET

OUTP_CLK_SET 为输出时钟设置寄存器。

		Offset A			Registe OUTP_C		Total Reset Value 0x00			
Bit	7		6	5	4 3 2 1					
Name				clk	_div			clk_mode		
Reset	0			0	0	0	0	0	0	
	Bits	its Access		!	Description					
	7:2] RW		clk_div		系统时钟频率与 I2C 配置时钟频率比值的整数部分。					
	[1:0]	RW	clk_m	ode	TS 输出时钟 00:选择 PL 01:I2C 配置 10:基本单元 11:保留。	L均匀时钟; 置时钟;				

OUTP_CLK_SETH

OUTP_CLK_SETH 为 I2C 时钟设置寄存器。

		Of	ffset Ad	dress		Register	r Name		Total Reset Value			
			0xA9)		OUTP_CL	LK_SETH		0x00			
Bit	7			6	5	4	3	2	2 1 0			
Name						clk_d	liv_fh					
Reset	0	0 0			0	0 0 0 0						
	Bits	Ac	cess	Name		Description						
	7:0] RW clk_div_fh				v_fh	系统时钟频率	率与 I2C 配置	时钟频率比	值的小数部分	分高 8bit。		

OUTP_CLK_SETL

OUTP_CLK_SETL 为 I2C 时钟设置寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0xAA			OUTP_CI	LK_SETL	0x00			
Bit	7	7 6 5				4	3	2	1	0	
Name						clk_c	div_fl				
Reset	0	0 0			0	0	0	0	0	0	
	Bits					Description					
	[7:0]	7:0] RW clk_div_fl				系统时钟频率	率与 I2C 配置	置时钟频率比值的小数部分低 8bit。			

OUTP_MODE_SET

OUTP_MODE_SET 为输出模式设置寄存器。

		Of	fset Ac	ldress		Register Name			Total Reset Value			
			0xAI	3		OUTP_MODE_SET						
Bit	7			6	5	4	1	0				
Name		out_ı	node				ram_thres			serl_sync8		
Reset	0			0	0	1 0 0 0						
	Bits	Ac	cess	Name		Description						
	[7:6]	RW	7	out_m	ode	TS 输出模式选择。 00: TS 完全均匀输出; 01: 根据 I2C 配置时钟输出; 10: 根据基本单元时钟输出; 11: 有完整包即输出。						
	[5:1]	RW	1	ram_tl	nres	设置 OUTP I	RAM 开始输	出阈值。				
	[0]	RW	I	serl_sy	ync8	TS 同步头时间长度选择。 1: 串行模式下同步字占 8 个 bit 宽度; 0: 串行 1bit 时占 1bit, 串行 2bit 时占 2bit 宽度。						

OUTP_TS_MODE

OUTP_TS_MODE 为 TS 输出模式设置寄存器。

		Offset Ac			Registe			Total Reset Value 0x05					
Bit	7		6	5	4	3	2	1	0				
Name		wait	t_time		mask_clk	clk_inv	msb_1st	serl2	paral				
Reset	0		0	0	0	0	1	0	1				
	Bits	Access	Name		Description								
					设置 TS 输出	1等到时间。							
					000:10ms;								
					001:20ms;								
					010:40ms;								
	[7:5]	RW	wait_ti	ime	011:80ms;								
					100:160ms;								
					101:320ms;								
					110:640ms;								
					111:1000ms								
					TS 时钟屏蔽	开关。							
	[4]	RW	mask_	clk	1: 当无 TS	流时屏蔽 TS	输出时钟;						
					0: 不屏蔽 TS 输出时钟。								
					TS 时钟沿选择。								
	[3]	RW	clk_in	V	1: TS 时钟负沿在数据中间;								
					0: TS 时钟ī	E沿在数据中	间。						
					串行输出顺用	亨选择 。							
	[2]	RW	msb_1	st	1: 串行输出	时高位先出;	;						
					0: 串行输出时低位先出。								
					串行模式选择, paral 为 0 时, serl2 的配置才生效。								
	[1]	RW	serl2		1: TS 串行 2bit 输出模式;								
					0: TS 串行 1bit 输出。								
					TS 输出串并	行输出选择。)						
	[0]	RW	paral		1: TS 并行 8bit 输出模式;								
					0: 串行输出	模式。							
		1											

OUTP_PKT_STA

OUTP_PKT_STA 为 TS 统计包数设置寄存器。

		Off	fset Ado	dress		Register			Total Reset Value			
			0xAE	,		OUTP_P	KT_STA		0x20			
Bit	7		(5	5	4	3	2	2 1 0			
Name	ame sta_pkt_set											
Reset	0	0 0 1				0	0	0	0	0		
	Bits	Acc	ess	Name		Description						
	7:0] RW sta_pkt_set					在计算 TS 初	」始速率时设	置需要统计的	的包的个数。			

OUTP_LIMIT_EN

OUTP_LIMIT_EN 为限幅和使能寄存器。

		Of	fset Ad 0xAF			Register Name Total Reset Value OUTP_LIMIT_EN 0x64					
Bit	7		(6	5	4	3	2	1	0	
Name	tei_en		ctrl_	limit	iscr_limit	discard_num					
Reset	0			1	1	0	0	1	0	0	
	Bits	Aco	cess	Name		Description					
	[7]	RW	7	tei_en		TS 错误标志位产生复位信号开关。 1: 开启 TS 错误标志位产生复位信号; 0: 关闭 TS 错误标志位产生复位信号。					
	[6] RW ctrl_limi				nit	PLL 控制字限幅使能。 1: 限幅到 32767; 0: 不限幅。					
	[5]	RW	7	iscr_li	mit	ISCR 反馈处 1:对 ISCR 0:不对 ISC	反馈值限幅;	豆 田 o			
	[4:0]	RW	I	discaro	l_num	设置统计复位阈值,当 BBFrame(baseband frame)中存在错误 bit 且统计包数小于该值时,重新开始统计。					

PLP_CTRL

PLP_CTRL 为 PLP 控制寄存器。

			Address xB0		Register Name PLP_CTRL			Total Reset Value 0x10			
Bit	7		6	5	4	3	2	1	0		
Name		:	reserved		post_	static	reserved	common_plp	plp_read		
Reset	0		0	0	1	0	0	0	0		
	Bits	Acces	s Name		Description						
	[7:5]	-	reserve	ed	保留。						
					Post 信令跟踪	宗方式选择。					
					0: Single PL	P 模式时,云	动态跟踪信令	变化;			
	[4:3]	RW	post_s	tatic	1: Single PL 动态跟踪信 ⁴		post 信令中的	的 static 参数	为0时,则		
					2: Single PLP 模式时,不跟踪信令变化;						
					3: 保留。						
	[2]	-	reserve	ed	保留。						
	[1]	RW	comm		Common PLP 使能开关,只在存在 common PLP 时有效,若信号中没有 common plp,该 bit 保持为 0。						
					PLP 参数读取开关,只在多 PLP 模式下有效。						
	[0]	RW	plp_re	ad	1: 只读取不同 PLP 的参数, demod 解调不切换 PLP;						
					0:demod 解调切换不同的 PLP。						

PLP_ID0

PLP_ID0 为 DataPLP 序号寄存器。

	Offset Address 0xB1					Č	ster Name Total Reset Value LP_ID0 0x00				
Bit	7		(5	5	4	3	2	1	0	
Name						data_p	lp_idx				
Reset	0		(0	0	0	0	0	0	0	
	Bits	Access Name				Description					
	7:0] RW data_plp_idx				lp_idx	系统处理 Data PLP 的序号。					

PLP_ID1

PLP_ID1为 CommonPLP 序号寄存器。

		O	ffset Ad	dress		Register	r Name	Total Reset Value				
			0xB2			PLP_	_ID1		0x04			
Bit	7 6 5			5	4	3	2	1	0			
Name						common_plp_idx						
Reset	0	0 0		0	0	0	0	1	0	0		
	Bits Access Name				Description							
	[7:0] RW common_plp_idx			on_plp_idx	系统处理 Common PLP 的序号。							

TPS

TPS 为信号参数寄存器。

		Off	fset Ad			Register Name Total Reset Value TPS 0x00				
Bit	7 6 5 t_tps_ok 11_pre_ok bw_ext					4	3	2	1	0
Name	t_tps_ol	k	11_pı	re_ok	bw_ext		gi_mode		t2_base_lite	11_post_scr
Reset	0		(0	0	0	0	0	0	0
	Bits	Acc	ess	Name	:	Description				
	[7]	RO		t_tps_o	ok	DVBT 信号印	付信道参数检	浏完成指示	0	
	[6]	RO		11_pre	_ok	DVBT2 信号	时 PRE 信令	检测完成指	示。	
	[5]	RO		bw_ex	t	带宽模式。 1:扩展带宽 0:普通带宽				
	[5] RO			gi_mo	de	保护间隔模式 000: 1/32; 001: 1/16; 010: 1/8; 011: 1/4; 100: 1/128; 101: 19/128 110: 19/256 其它: 保留。	;			

		Of	fset Ad	dress		Register Name			Total Reset Value		
			0xB3			TF	TPS 0x00				
Bit	7	7 6 5 t tps ok 11 pre ok bw				4	3	2	1	0	
Name			11_pı	re_ok bw_ext			gi_mode		t2_base_lite	11_post_scr	
Reset			(O	0	0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[1]	RO	1	t2_bas	e_lite	T2_base_lite 有效。	指示。只在村	示准 1.3.1 版	且当前信号为	y lite 模式时	
			11_pos	t_scr	POST 信令是 1: POST 信 0: POST 信	令加扰;	o				

STREAM_TYPE

STREAM_TYPE 为传输数据流类型指示寄存器。

		Of	fset Ad 0xB4			Register Name Total STREAM_TYPE				ılue		
Bit	7		(5	5	4 3 2 1 0						
Name						stream_type						
Reset	0		()	0	0	0	0	0	0		
	Bits	s Access Name				Description						
						DVBT2 输入数据流类型。						
						0x00: TS;						
	[7:0]	0] RO stream_type			_type	0x01: GS:						
						0x02: TS 和 GS;						
						0x03~0xFF: 保留。						

CODE_RATE_DVBT

CODE_RATE_DVBT 为 DVBT 内码码率寄存器

		Offs	set Ado			Register Name Total Reset Value CODE_RATE_DVBT 0x00			alue		
Bit	7		6	5	5	4 3 2 1				0	
Name					reserved			code_rate_l			
Reset	0		0)	0	0	0 0 0 0				
	Bits	its Access Name				Description					
	[7:3]	-]	reserve	ed	保留。					
	[2:0]	RO	ı	code_r	rate_l	DVBT 分层框 000: 1/2; 001: 2/3; 010: 3/4; 011: 5/6; 100: 7/8; 其它: 保留。		码流和非分	层模式内码码	马率。	

TPS_DVBT

TPS_DVBT 为 DVBT 信号参数寄存器。

		Of	fset Ad			Register			Total Reset Value 0x00		
Bit	7		(5	5	4 3 2 1			1	0	
Name		mod			hi	er	indepth		code_rate		
Reset	0)	0	0	0	0	0	0	
	Bits				Description						
	[7:6]	[7:6] RO mod		mod		星座。 00: QPSK; 01: 16QAM 10: 64QAM 其它: 保留。	· ;				

		Offset A			Registe TPS_I		Total Reset Va	alue				
Bit	7		6	5	4	3	2	1	0			
Name		mod		h	nier indepth code_rate							
Reset	0		0	0	0	0	0	0	0			
	Bits	Access	Name	:	Description							
					分层模式。							
					00: 不分层;							
	[5:4]	RO	hier		01: alpha=1;							
					10: alpha=2;							
					11: alpha=4	0						
					交织模式。							
	[3]	RO	indeptl	h	1: indepth 交织;							
					0: normal 交织。							
					分层模式高值	尤先级码流或	就非分层模式	内码码率。				
					000: 1/2;							
					001: 2/3;							
	[2:0]	2:0] RO code_rate_H			010: 3/4;							
					011: 5/6;							
					100: 7/8;							
					其它:保留。	•						

PAPR_L1MOD

PAPR_L1MOD 为 DVBT2 PRE 信令寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0xB5	;		PAPR_I	1MOD		0x00			
Bit	7	7 6 5				4	3	2	1	0		
Name				pa	pr		11_mod					
Reset	0	0 0		0	0	0 0 0						
	Bits Access Name				Description							
	[7:4] RO papr				PAPR 参数。	· ≽数。						

		Offset A			Register Name Total Reset Value PAPR_L1MOD 0x00				alue		
Bit	7		6	5	4	3	2	1	0		
Name			pa	npr			11_1	mod			
Reset	0		0	0	0	0 0 0 0					
	Bits	Access	Name	?	Description						
		3its Access Name			POST 信令星座。						
					0000: BPSK;						
	[3:0]	3:01 RO 11 mod			0001: QPSK	ζ;					
	[5.0]	3:0] RO 11_mod			0010: 16QA						
					0011: 64QA						
					其它:保留。)					

PP_VERSION

PP_VERSION 为 DVBT2 PRE 信令寄存器。

		Offset A	ddress		Register	r Name	Total Reset Value		
		0xB	8		PP_VE	RSION		0x00	
Bit	7		6	5	4	3	2	1	0
Name			pilotp	oattern			t2_ve	ersion	
Reset	0		0	0	0	0	0	0	0
	Bits	Access	Name		Description				
	[7:4]	RO	pilotpa	attern	导频图样。 0000: PP1; 0001: PP2; 0010: PP3; 0011: PP4; 0100: PP5; 0101: PP6; 0110: PP7; 0111: PP8; 其它: 保留。				

		Offs	set Add			Register Name Total Reset Value PP_VERSION 0x00				alue	
Bit	7		ϵ	5	5	4	3	2	1	0	
Name				pilotp	attern	t2_version					
Reset	0 0 0					0	0	0	0	0	
	Bits	Асс	ess	Name		Description					
						T2 标准版本					
						0000: 1.1.1;					
	[3:0] RO t2_version			sion	0001: 1.2.1;						
						0010: 1.3.1;					
						其它:保留。	,				

NUM_T2_FRM

NUM_T2_FRM 为 DVBT2 PRE 信令寄存器。

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0xB9	1		NUM_T	2_FRM	0x 0 0			
Bit	7	7 6 5			5	4	3	2	1	0	
Name						num_t2_frm					
Reset	0	0 0			0	0	0	0	0	0	
	Bits	Access Name				Description					
	7:0] RO num_t2_frm			2_frm	T2 信号每个						

LDATA_L

LDATA_L 为 DVBT2 PRE 信令寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0xBA	1		LDAT	TA_L		0x00			
Bit	7			6	5	4	3	2	1	0		
Name						num_da	t_sym_l					
Reset	0	0 0 0				0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RO num_dat_sym_1			at_sym_l	每 T2 帧中数据符号数的低位值。							

LDATA_H

LDATA_H 为 DVBT2 PRE 信令寄存器。

		Of	fset Ad 0xBE			Register Name Total Reset Value LDATA_H 0x00						
Bit	7			6	5	4	3	2	1	0		
Name				rese	rved			num_da	num_dat_sym_h			
Reset	0			0	0	0 0 0 0						
	Bits	Aco	cess	Name		Description						
	7:4] RO reserved				ed	保留。						
	[3:0] RO num_dat_sym_h					每 T2 帧中数据符号数的高位值。						

NUM_PLP

NUM_PLP 为 DVBT2 PRE 信令寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0xBF	,		NUM	_PLP		0x 0 0			
Bit	7		(6	5	4	3	2	1	0		
Name						num_plp						
Reset	0		(0	0	0	0	0	0	0		
	Bits	Aco	cess	Name		Description						
	[7:0] RO num_plp					T2 信号中 PLP 的个数。						

PLP_ID

PLP_ID 为 DVBT2 POST 信令寄存器。

		Of	fset Ad			Register PLP			Total Reset Value 0x00		
Bit	7		(6	5	4	3	2 1 0			
Name						plp	_id				
Reset	0		(0	0	0	0	0	0	0	
	Bits	s Access Name				Description					
	[7:0] RO plp_id					当前选定 PLP 的 ID,有 0xB1 指定 PLP。					

PLP_TYPE

PLP_TYPE 为 DVBT2 POST 信令寄存器。

		Offset Ad			Register PLP_7	alue			
Bit	7		6	5	4	3	2	1	0
Name		plp_	type		plp_pay_load				
Reset	0		0	0	0	0	0	0	0
	Bits	Access	Name		Description				
	[7:5]	RO	plp_ty	pe	当前选定 PL 000: Commo 001: Type 1 010: Type 2 其它: 保留。	on PLP; PLP; PLP;			
	[4:0]	RO	plp_pa	y_load	当前选定 PL 00000: GFP 00001: GCS 00010: GSE 00011: TS; 其它: 保留。	;	0		

PLP_GRP_ID

PLP_GRP_ID 为 DVBT2 POST 信令寄存器。

		Of	fset Ad			Register PLP G		Total Reset Value 0x00			
Bit	7	7 6 5				4	3	2	1	0	
Name						plp_g	rp_id				
Reset	0	0 0 0				0	0	0	0	0	
	Bits	its Access Name									
	[7:0] RO plp_grp_id			p_id	当前选定 PLP 的 GROUP ID。						

PLP_PARAM

PLP_PARAM 为 DVBT2 POST 信令寄存器。

		Offset A			Registe PLP_P			Total Reset Va 0x00	alue			
Bit	7		6	5	4	3	2	1	0			
Name		plp	_cod			plp_mod		plp_rotation	plp_fec_type			
Reset	0		0	0	0 0 0 0							
	Bits	Access	Name		Description							
						P的 LDPC 和	冯率。					
					Base 模式。							
					000: 1/2;							
					001: 3/5;							
					010: 2/3;							
					011: 3/4;							
					100: 4/5;							
					101: 5/6,							
	[7:5]	RO	plp_cc	od	其它:保留。							
					Lite 模式。							
					000: 1/2;							
					001: 3/5;							
					010: 2/3;							
					011: 3/4;							
					110: 1/3;							
					111: 2/5;							
					其它:保留。	,						
					当前选定 PL	P 的星座。						
					000: QPSK;							
	[4:2]	RO	nln m	od	001: 16QAN	Λ ;						
	[7.2]	4:2] RO plp_mod			010: 64QAM;							
					011: 256QAM;							
				其它:保留。								
				当前选定 PLP 的星座旋转模式。								
	[1] RO plp_rotation			0: 标准星座;								
					1: 旋转星座。							

			et Ado			Register			Total Reset Value 0x00			
Bit	7		6	5	5	4	4 3 2 1					
Name			plp_	cod		plp_mod			plp_rotation	plp_fec_type		
Reset	0		C)	0	0 0 0 0						
	Bits	Sits Access Name				Description						
	[0]	RO		plp_fe	c_type	当前选定 PL 0:16K LDP 1:64KLDPC	С;	类型。				

ADC_CTRL0

ADC_CTRL0 为 ADC IP 控制寄存器。

		Of	fset Ad	ldress		Registe	Register Name Tota			
			0x00)		ADC_CTRL0 0x41				
Bit	7			6	5	4	3	2	1	0
Name	adi2c_en adc_clk_on			clk_on			adc_c	lk_sel		
Reset	0 Bits Access		1 0		0 0 0 1				1	
	Bits Access Name			Name		Description				
	[7] RW adi2c_en			en	ADC的i2c1 repeater上。 c_adi2c_en ラ 时,repeater	与1时,repea	ater与 adc 通			
	[6] RW			adc_cl	k_on	ADC 时钟输 1: 开启 adc 0: 关断 adc	的时钟输入;			
	[5:0] RW adc_clk_sel				k_sel	ADC 时钟选择。				

ADC_CTRL1

ADC_CTRL1 为 ADC IP 控制寄存器。

		Of	fset Ad 0x01			Register ADC_C			Total Reset Value 0xC0			
Bit	7			6	5	4	3	2	1	0		
Name	adc_enavc	min	adi2c_	_resetz	adi2c_addr1	adi2c_addr0	pllout_sel	ts_testout	test_clk_en	i2c_xo_clk		
Reset	1			1	0	0 0 0			0	0		
	Bits	Aco	cess	Name		Description						
	[7] RW			adc_en	navemin	ADC 共模电压模块使能信号。 1: 使能 ADC 共模电压产生; 0: 旁路 ADC 共模电压模块。						
	[6] RW			adi2c_	resetz	0: 复位 ADC 模块; 1: 解除复位。						
	[5]	RW	7	adi2c_	addr1	配置 adc 的 i	2c 地址。					
	[4]	RW	I	adi2c_	addr0	配置 adc 的 i2c 地址。						
	[3]	RW	I	pllout_	sel	0: 正常功能 1: fec_err/ts		PLL 的分频信	苦号。			
	[2] RW ts_testout			out	0: TS 管脚I 1: 输出测试							
	[1] RW test_clk_en			k_en	0: 正常功能 1: 使能内部 输出。		可通过 c_pll	out_sel 选择:	fec_err/ts_err			
	[0] RW i2c_xo_clk			clk	0: i2c 工作在晶振时钟上; 1: i2c 工作在 clk_dem 时钟上。							

ADC_CTRL2

ADC_CTRL2 为 ADC IP 控制寄存器。

		Of	ffset Ad	dress		Register	r Name	Total Reset Value			
			0x02			ADC_0	CTRL2	0x29			
Bit	7		(6	5	4	3	2	1	0	
Name					adc_bctrl			adc_endoutz	adc_endcr	adc_chsel	
Reset	0		(0	1	0	1	0	0	1	
	Bits	Ac	cess	Name		Description					
	[7:3] RW ade_betrl					ADC 偏置电流控制,默认值 0x05。					

		Offset Ad	dress		Registe	r Name		Total Reset Va	alue		
		0x02	,		ADC_0	CTRL2		0x29			
Bit	7		6	5	4	3	2	1	0		
Name				adc_bctrl			adc_endoutz	adc_endcr	adc_chsel		
Reset	0		0	1	0 1 0 0				1		
	Bits	Access	Name		Description						
	[2]	RW	adc_er	ıdoutz	0:输出正常 1:输出 0。	' I/Q 数据;					
	[1]	RW	adc_er		1: 使能 duty cycle restorer(采样率 Fs 大于等于 40M 情况下才能用); 0: 关闭 duty cycle restorer。						
	[0] RW adc_chsel				{adc_ppsel,ad 00: 单通道 01: 单通道 10: 双通道 11: 双通道	dc_chsel} I 路; Q 路; I/Q interleave 独立。	c 的通道工作		Ţ o Ţ		

ADC_CTRL3

ADC_CTRL3 为 ADC IP 控制寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
_			0x03			ADC_C	CTRL3		0x01		
Bit	7			5	5	4	3	2	1	0	
Name	adc_pps	adc_ppsel adc_		prevf adc_		opm	adc_	bcal	adc_startcal	adc_selof	
Reset	0	0)	0	0	0	0	0	1	
	Bits	Aco	cess	Name		Description					
	[7]	RW	I	adc_ppsel		参考 adc_chsel。					
		1				ADC 自校正模块使能信号。					
	[6]] RW adc_					C自校正模均				
						1:关闭 AD	C自校正模均	₹.			

		Of	fset Ad 0x03			Register ADC_0		Total Reset Value 0x01				
Bit	7			6	5	4	3	2	1	0		
Name	adc_ppse	el	adc_	prevf	adc_	adc_opm		adc_bcal		adc_selof		
Reset	0 Bits Access			0 0		0 0 0 1				1		
	Bits Access		Name	:	Description							
						ADC 工作模式。						
	[5:4]	RW	I	adc_or		00: Power d	own;					
	[3.4]	17.44		auc_or)III	01/10: Standby;						
						11: 正常工作。						
	[3:2]	RW	7	adc_bo	cal	ADC backgro	ound calibration	on 控制。				
			adc_st	artcal	ADC start car	rlibration。						
	[0] RW			adc_se	elof	0: ADC 原码输出; 1: ADC 补码输出。						

ADC_FSCTRL

ADC_FSCTRL 为 ADC IP 控制寄存器。

	Offset Address 0x04					Register Name ADC_FSCTRL			Total Reset Value 0x00		
Bit	7 6 5					4	3	2	1	0	
Name						adc_	fsctrl				
Reset	0 0 0				0	0	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:0] RW adc_			adc_fs	ctrl	ADC 输出数 gain = 1+adc					

PLL_LOCK

PLL_LOCK 为 PLL 锁定指示寄存器。

		Of	ffset Ad	dress		Registe	r Name		Total Reset Value			
			0x05			PLL_I	LOCK		0x00			
Bit	7			6	5	4	3	2	1	0		
Name	pll1_loc	pll1_lock pll0_lock			adc_rflagi				adc_rflagq			
Reset	0				0	0 0 0 0						
	Bits	its Access Name				Description						
	[7]	RO	1	pll1_lc		PLL1 锁定指示。 1: 锁定; 0: 未锁定。						
	6] RO pll0_l			pll0_lc		PLL0 锁定指 1:锁定; 0:未锁定。	示。					
	[5:3]	5:3] RO adc_rflagi			lagi	ADCI路输入信号溢出指示。						
	[2:0]	RO	1	adc_rf	lagq	ADC Q 路输入信号溢出指示。						

PLL0_FRAC_L

PLL0_FRAC_L 为 PLL0 分频小数部分低位寄存器。

		Ot	ffset Ad 0x06			Register PLL0_F		Total Reset Value 0x00			
Bit	7			6	5	4	3	2	1	0	
Name						p110_1	frac_1				
Reset	0			0	0	0	0	0	0	0	
	Bits Access N			Name	!	Description					
	[7:0] RW pll0_frac_l			ac I	LSB of the Fi	livide					

PLL0_PD

PLL0_PD 为 PLL0 power down 控制寄存器。

		Offset A			Register Name Total Reset Value PLL0_PD 0x40				alue		
Bit	7		6	5	4	3	2	1	0		
Name	pll0_foutpost	divpdpll0_	fout4phasepd	pll0_foutvcopd	pll0_pd		pl10_	frac_h			
Reset	0		1	0	0 0 0 0						
	Bits	Access	Name		Description	า					
					PLL0 foutpo	ostdiv power	down 开关	0			
	[7]	RW	pll0_for	utpostdivpd	1: power d	own;					
					0: power u	p _°					
					PLL0 fout4	phase power	down 开关。	,			
	[6]	RW	pll0_fo	ut4phasepd	1: power d	own;					
					0: power u	p _°					
					PLL0 foutvco power down 开关。						
	[5]	RW	pll0_fo	utvcopd	1: power down;						
					0: power u	p _°					
					PLL0 power	r down 开关	0				
	[4]	RW	pll0_pd		1: power d	own;					
					0: power up.						
	[3:0]	RW	pll0_fra	.c_h	MSB of the Fractional portion of the PLL0 feedback divide value.						

PLL0_POSTDIV

PLL0_POSTDIV 为 PLL0 post divide 配置寄存器。

		Of	fset Ado			Register	llue				
Bit	7		(6	5	4	3	2	1	0	
Name	pll0_dsmpd pll0_			dacpd		pll0_postdiv2		pll0_postdiv1			
Reset	0)	0	1 0 0 0					
	Bits	Bits Acces		Name		Description					
						PLL0 down Delta-Sigma modulator power down 开关。					
	[7] RW p			pll0_ds	smpd	1: power down;					
						0: power up	0				

		Offs	set Ad	dress		Registe	r Name		Total Reset Value		
			0x08			PLL0_PC	OSTDIV		0x11		
Bit	7		(6	5	4	3	2	1 0		
Name	pll0_dsm			dacpd		pll0_postdiv2			pll0_postdiv1		
Reset	0				0	1	0	0	0	1	
	Bits	Bits Access		Name		Description					
		71000				PLL0 noise cancelling DAC power down 开关。					
	[6]	RW		pll0_dacpd		1: power down;					
						0: power up.					
	[5:3]	5:3] RW pl			ostdiv2	PLL0 post divider2.					
	[2:0] RW p		pll0_p	ostdiv1	PLL0 post divider1 o						

PLL0_FBDIV

PLL0_FBDIV 为 PLL0 feedback divide vlaue 寄存器。

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x09			PLL0_I	FBDIV	0x20			
Bit	7 6 5					4	3	2	1	0	
Name						pll0_fbdiv					
Reset	0 0 1					0	0	0	0	0	
	Bits Access Name					Description					
	[7:0] RW pll0_fbdiv				odiv	PLL0 feed back divide value.					

PLL0_REFDIV

PLL0_REFDIV 为 PLL0 reference divide value 寄存器。

		Off	fset Ad 0x0A			Register Name Total Reset Value PLL0_REFDIV 0x01				
Bit	7					4	3	2	1	0
Name	adc_rdy			pypass			pll0_	refdiv		
Reset	0			0 0		0	0	0	0	1
	Bits	its Access		Name		Description				
	[7]				у	Indication of not ready.	the ADC wor	king state, 1	: ADC ready	7; 0: ADC
	[6] RW		pll0_b	ypass	PLL0 bypass 1: Bypass th 0: PLL at the	ne PLL;	0			
	[5:0]	5:0] RW pll0_		pll0_re	efdiv	PLL0 refrenence divide value。				

PLL0_SPREAD

PLL0_SPREAD 为 PLL0 扩频模式配置寄存器。

	Offset Address 0x0B				Č	ter Name SPREAD	Total Reset Value 0x01				
Bit	7	7 6		5	4	3	2	1	0		
Name	reserved	i		pll0_spread		pll0_downspread	pll0_disable_sscg	pll0_rst_req	pll0_cken		
Reset	0 (0	0	0	0	0	0	1		
	Bits	Access	Name	2	Description	Description					
	[7] - reserved 保留。										
	[6:4]	RW	pll0_s	pread	PLLO 扩频模式选择。						
	RW pll0_downspread				PLL0 downspread 模式选择。						
	[2] RW pll0_disable_sscg PLL0 synchronization clock gate 开						gate 开关。				
	[1]	RW pll0		st_req	PLL0 扩频模式复位请求。 1: 复位; 0: 取消复位。						
PLL0 扩频模式时钟开关。 [0] RW pll0_cken 1: 开启; 0: 关闭。											

PLL_DIVVAL

PLL_DIVVAL 为 PLL 扩频模式输出分频控制寄存器。

		Offset A	ldress		Register	r Name	Total Reset Value			
		0x00	C		PLL_DI	IVVAL	0x00			
Bit	7	7		5	4	3	2	1	0	
Name			pll1_c	divval		pll0_divval				
Reset	0		0	0	0	0	0	0	0	
	Bits Access Name			:	Description					
	[7:4] RW pll1_divval			ivval	PLL1 扩频模式 VCO 输出分频值。					
	[3:0] RW pll0_divval PLL0 扩频模式 VCO 输出分						出分频值。			

PLL1_FRAC_L

PLL1_FRAC_L 为 PLL1 分频小数部分低位寄存器。

	Offset Address					Registe	r Name	Total Reset Value			
	0x0D					PLL1_F	RAC_L	0x00			
Bit	7			6	5	4	3	2	1	0	
Name	pll1_frac_l										
Reset	0		0		0	0	0	0	0	0	
	Bits Acce		cess	ss Name		Description					
	[7:0]	RW	I	pll1_frac_l		LSB of the Fractional portion of the PLL1 feedback divide value 。					

PLL1_PD

PLL1_PD 为 PLL1 power down 控制寄存器。

		Of	fset Addr 0x0E	ress		Register Name Total Reset Value PLL1_PD 0x48				alue	
Bit	7		(6	5	4	3	2	1	0	
Name	pll1_foutpostc	livpd	pll1_fout	4phasepd	pll1_foutvcopd						
Reset	0			1	0	0	1	0	0	0	
	Bits Access			Name		Description	า				
	[7]	RW		pll1_fou	ıtpostdivpd	PLL1 foutpole 1: power d 0: power u		down 开关。	0		
	[6] RW			pll1_fou	ıt4phasepd	PLL1 fout4 1: power d 0: power u		down 开关。	,		
				pll1_fou	ıtvcopd	PLL1 foutvco power down 开关。 1: power down; 0: power up。					
	[4] RW pll1_pd					PLL1 powe 1: power d 0: power u		o			
	[3:0]	RW		pll1_fra	c_h	MSB of the Fractional portion of the PLL1 feedback divide value.					

PLL1_POSTDIV

PLL1_POSTDIV 为 PLL1 post divide 配置寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x0F			PLL1_PO	OSTDIV		0x12		
Bit	7	, 0				4	3	2	1	0	
Name	pll1_dsm	pll1_dsmpd pll1_dacpd				pll1_postdiv2		pll1_postdiv1			
Reset	0	0 0)	0 1 0			0	1	0	
	Bits	Ac	cess	Name		Description					
	[7]	RW	I	pll1_d	smpd	1: power do	wn;	nodulator pov	ver down 开关	ç o	
						0: power up	0				

		Of	fset Ad 0x0F			Register PLL1_PC		Total Reset Value 0x12			
Bit	7		(6	5	4 3 2 1 0					
Name	pll1_dsmpd pll1_dacpd 0 0				pll1_postdiv2			pll1_postdiv1			
Reset				0	0	1	0	0	1	0	
			cess	Name		Description					
	[6]	RW	7	pll1_da		PLL1 noise c 1: power do 0: power up	wn;	C power dow	n 开关。		
	[5:3] RW pll1_			pll1_p	ostdiv2	PLL1 post di	vider2。				
	[2:0]				ostdiv1	PLL1 post divider1 o					

PLL1_FBDIV

PLL1_FBDIV 为 feedback divide vlaue 寄存器。

		Of	fset Ad	dress		Register	r Name		Total Reset Value		
			0x10			PLL1_I	FBDIV	0x19			
Bit	7 6 5				5	4	3	2	2 1 0		
Name						p111_	fbdiv				
Reset	0 0		0	1 1 0				1			
	Bits Access Name				Description						
	[7:0] RW pll1_fbdiv			odiv	PLL1 feed back divide value.						

PLL1_REFDIV

PLL1_REFDIV 为 reference divide value 寄存器。

		Of	ffset Ad 0x11			Register Name Total Reset Value PLL1_REFDIV 0x01				
Bit	7		(6	5	4 3 2 1				
Name	reserved	reserved pll1_bypass 0 0				pll1_refdiv				
Reset	0			0	0	0	0	0	0	1
	Bits	Ac	cess	Name		Description				
	[7]	-		reserve	ed	保留。				
	[6]	RW	7	pll1_bypass		PLL1 bypass。 1: Bypass the PLL; 0: PLL at the work mode。				
	[5:0]	RW	I	pll1_re	efdiv	PLL1 refrene	ence divide va	lue。		

PLL1_SPREAD

PLL1_SPREAD 为扩频模式配置寄存器。

		Offset Address 0x12				Register Name PLL1_SPREAD			Total Reset Value 0x01				
Bit	7		6	,	5	4	3	2	1	0			
Name	reserved	1			pll1_spread		pll1_downspread	pll1_disable_sscg	pll1_rst_req	pll1_cken			
Reset	0		0)	0	0	0 0 0 1						
	Bits			Name		Description							
	[7]			reserved		保留。							
	[6:4]			pll1_spread		PLL1 扩频模式选择。							
·	[3]	RW		pll1_d	ownspread	PLL1 downs	pread 模式选择	Z F∘					
	[2]	RW		pll1_d	isable_sscg	PLL1 synchr	onization clock	gate 开关。					
	[1]	RW		pll1_rst_req		PLL1 扩频模式复位请求。 1: 复位; 0: 取消复位。							
	[1] RW			pll1_c	ken	PLL1 扩频t 1: 开启; 0: 关闭。	莫式时钟开关。						

IO_CTRL0 为 IO 控制寄存器。

	Offset Address 0x13					Register Name IO_CTRL0			Total Reset Value 0x00		
Bit	7		(6	5	4	3	2	1	0	
Name	ts_sync_	_sl			ts_sync_ds		ts_data_sl		ts_data_ds		
Reset	0		(0	0	0	0	0	0	0	
	Bits	Acc	ess	Name		Description					
	[7]	RW		ts_sync	e_sl	ts_sync IO 速 1:高速; 0:低速。	率控制。				
	[6:4] RW ts_sync_ds			e_ds	ts_sync IO						
	[3]	RW		ts_data	_sl	ts_data IO 速 1:高速;0:					
	[2:0] RW ts_data_d		_ds	ts_data IO 驱 000: 4mA; 001: 7mA; 010: 10mA; 011: 12mA; 100: 14mA; 101: 16mA; 110: 18mA;							

IO_CTRL1 为 IO 控制寄存器。

		Offset A	ddress		Register Name			Total Reset Value		
		0x :	14		IO_C	ΓRL1		0x00		
Bit	7		6	5	4	3	2	1	0	
Name	ts_err_s	sl		ts_err_ds			ts_vld_sl		ts_vld_ds	
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name	:	Description					
					ts_err IO 速率	室控制。				
	[7]	RW	ts_err_	sl	1: 高速;					
					0: 低速。					
					ts_err IO 驱动	力电流配置。				
					000: 4mA;					
					001: 7mA;					
					010: 10mA;					
	[6:4]	RW	ts_err_	ds	011: 12mA;					
					100: 14mA;					
					101: 16mA;					
					110: 18mA;					
					111: 20mA					
	[3:1]	RW	ts_vld	cl	ts_vld IO 速 ²	率控制。				
	[3.1]	IC VV	ts_vid_	_31	1: 高速; 0:	低速。				
					ts_vld IO 驱氢	动电流配置。				
					000: 4mA;					
					001: 7mA;					
					010: 10mA;					
	[0]	RW	ts_vld	_ds	011: 12mA;					
					100: 14mA;					
					101: 16mA;					
					110: 18mA;					
				111: 20mA _o						

IO_CTRL2 为 IO 控制寄存器。

		Offset Ac			Registe IO_C			Total Reset Va 0x00	lue	
Bit	7		6	5	4	3	2	1	0	
Name	clkout_s	sl		clkout_ds		ts_clk_sl		ts_clk_ds		
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name		Description					
	[7]	RW	clkout_	_sl	clkout IO 速 1:高速; 0:低速。	率控制 。				
	[6:4] RW clkou		clkout_	_ds	clkout IO 驱动电流配置。 000: 4mA; 001: 7mA; 010: 10mA; 011: 12mA; 100: 14mA; 101: 16mA; 111: 20mA。					
	[3]	RW	ts_clk_	sl	ts_clk IO 速 ² 1:高速; 0:低速。	×控制。				
	[2:0] RW ts_clk_		_ds	ts_clk IO 驱z 000: 4mA; 001: 7mA; 010: 10mA; 011: 12mA; 100: 14mA; 101: 16mA; 110: 18mA; 111: 20mA。						

IO_CTRL3 为 IO 控制寄存器。

		Offset A			Registe		Total Reset Value				
		0x1	.6		IO_C	FRL3		0xC0			
Bit	7		6	5	4	3	2	1	0		
Name		sdc	_clk_sel		fec_err_hiz	fec_err_sl		fec_err_ds			
Reset	1		1	0	0 0 0 0						
	Bits	Access	Name	:	Description	Description					
	[7:5]	RW	sdc_cl	k_sel	sdc 时钟相位	选择。					
		[4] RW fec err hiz			fec_err IO 输出模式选择。						
	[4] RW fec_err_			r_hiz	1: fec_err IC						
					0: fec_err IO 正常工作。						
					fec_err IO 速	率控制。					
	[3]	RW	fec_er	r_sl	1: 高速;						
					0: 低速。						
					fec_err IO 驱	动电流配置。	000: 4mA	;			
					001: 7mA;						
					010: 10mA;						
	[2:0]	RW	fec er	r ds	011: 12mA;						
	[2:0] RW fec_err_ds			_ 	100: 14mA;						
					101: 16mA;						
					110: 18mA;						
					111: 20mA						

IO_CTRL4

IO_CTRL4 为 IO 控制寄存器。

		Offset Ac			Register Name Total Reset Value IO_CTRL4 0x00							
Bit	7		6	5	4	3	2	1	0			
Name		lock_sel		lock_val	clkout_sel clkout_hiz lock_hiz ts_hiz							
Reset	0		0	0	0 0 0 0							
	Bits	Access	Name		Description							
					lock 管脚输出							
	[7 .7]	DW	11	-1	00: demo 锁定指示;							
	[7:6]	RW	lock_s	ei	01: TXD; 10: FEF 区域指示;							
					10: FEF 区域指示; 11: lock_val 值。							
	[5]	PW/	lock v		lock 管脚输出信号配置值。							
	[5] RW lock_val			aı								
					clkout IO 输出信号选择。 00: 晶振时钟;							
	[4:3]	RW	clkout	cel	00: 間 派的针; 01: FEF 区域指示;							
	[4.5]	IX VV	CIKOUL	_501	10: demo 锁定指示;							
					11: gpio val 值。							
					clkout IO 输出							
	[2]	RW	clkout	hiz	1: clkout IO							
					0: clkout IO							
					LOCK IO 输	出模式选择。						
	[1] RW lock_hiz			iz	1: LOCK IO	高阻;						
					0: LOCK IO 正常工作。							
				TS IO 输出模式选择。								
	[0] RW ts_hiz				1: TS IO 高阻;							
					0: TS IO 正常工作。							

SDR_CTRL

SDR_CTRL 为 SDR 控制寄存器。

		Offset Ad			Register			Total Reset Value 0x24			
Bit	7		6	5	4	3	2	1	0		
Name	sdr_dq_s	sl	sdr_c	lq_ds	sdr_addr_sl	sdr_ac	ddr_ds	sdr_etron	gpio_val		
Reset	0		0 1		0	0	1	0	0		
	Bits	Access	Name	:	Description						
	[7] RW		sdr_dq_sl		sdr_dq IO 速率控制。 1:高速; 0:低速。						
	[6:5] RW				sdr_dq IO 驱 00: 4mA; 01: 7mA; 10: 10mA; 11: 12mA。	动电流配置。					
	[4]	RW	sdr_addr_sl		sdr_addr IO i 1:高速; 0:低速。	東率控制。					
	[3:2] RW				sdr_addr IO 驱动电流配置。 00: 4mA; 01: 7mA; 10: 10mA; 11: 12mA。						
	[1] RW		sdr_etron		合封 sdram 选择。 1:sdram 为 Etron; 0:sdram 为 Winbond。						
	[0]	RW	gpio_v	al	gpio 输出信号	号控制寄存器	<u>.</u> 				

目 录

3 硬件设计	3-2
3.1 封装与管脚	3-2
3.1.1 封装与管脚分布	3-2
3.1.2 管脚描述	3-5
3.1.3 IO 功能配置寄存器概览	3-11
3.1.4 IO 功能配置寄存器描述	3-11
3.1.5 软件复用管脚	3-13
3.2 电性能参数	3-14
3.2.1 功耗分布	3-14
3.2.2 极限工作条件	3-14
3.2.3 推荐工作条件	3-15
3.2.4 上下电顺序	3-15
3.2.5 DC 电气参数	3-15
3.3 原理图设计建议	3-16
3.3.1 小系统设计建议	3-16
3.3.2 电源设计建议	3-21
3.3.3 未使用管脚处理	
3.4 PCB 设计建议	3-23
3.4.1 层叠和布局	3-23
3.4.2 小系统 PCB 设计建议	
3.4.3 数字、模拟接口 PCB 设计建议	
3.5 热设计建议	3-27
3.5.1 封装热阻	
3.5.2 导热介质材料推荐	
3.5.3 原理图设计	
3.5.4 PCB 设计	3-28
3.6 焊接工艺建议	3-28
3.6.1 概述	
3.6.2 加工准备	3-29
3.7 潮敏参数	3-29

3.7.1 存放与使用	3-29
3.7.2 重新烘烤	3-30
3.8 接口时序	3-3
3.8.1 输出接口时序	3-3
3.8.2 输出时序参数	3-3

插图目录

图 3-1 心片封装图	3-3
图 3-2 封装参数说明表	3-4
图 3-3 Hi3137V100 封装管脚分布示意图	3-5
图 3-4 Hi3137V100 应用推荐晶体连接方式及器件参数	3-16
图 3-5 复位典型设计电路	3-17
图 3-6 Hi3137V100 与 DECODER 并接的拓扑结构图	3-18
图 3-7 Hi3137V100 与 DECODER 串接的拓扑结构图	3-19
图 3-8 Hi3137V100 AGC 接口与 Tuner 的拓扑结构图	3-19
图 3-9 Hi3137V100 I2C 接口与 Hi3xxx 的拓扑结构图	3-20
图 3-10 多层板设计中,TS_OUT[0:7]和 DECODER 芯片互联拓扑结构	3-20
图 3-11 多层板设计中,TS_CLK/TS_SYNC/TS_VALID 和 DECODER 芯片互联拓扑结构	3-21
图 3-12 两层板设计中,TS_OUT[0:7]和 DECODER 芯片互联拓扑结构	3-21
图 3-13 两层板设计中,TS_VAILD、TS_SYNC、TS_CLK 和 DECODER 芯片互联拓扑结构	3-21
图 3-14 Hi3137V100 VDD33_IO 拓扑结构图	3-22
图 3-15 Hi3137 AVDD11_ADC 拓扑结构图	3-22
图 3-16 单板结构图	3-24
图 3-17 焊接温度曲线图	3-29
图 3-18 TS 并行输出时序示意	3-32
图 3-19 TS 一比特串行输出时序示意	3-32
图 3-20 TS 两比特串行时序示意	3-33
图 3-21 TS CLK 输出时序图	3-33

表格目录

表 3-1 官脚排列表	3-5
表 3-2 管脚 I/O 类型说明	3-6
表 3-3 ADC 管脚	3-7
表 3-4 I2C 管脚	3-8
表 3-5 TS 管脚	3-8
表 3-6 PLL 管脚	3-9
表 3-7 OSC 管脚	3-10
表 3-8 PG 管脚	3-10
表 3-9 SYS 管脚	3-11
表 3-10 IO 功能配置寄存器概览(复用寄存器基地址为 0x00)	3-11
表 3-11 LOCK、CLK_OUT 的管脚复用选择	3-13
表 3-12 管脚复用信号描述	3-13
表 3-13 功耗参数	3-14
表 3-14 Hi3137V100 极限工作条件	3-14
表 3-15 推荐工作条件	3-15
表 3-16 DC 电气参数表	3-15
表 3-17 地址配置一	3-17
表 3-18 地址配置二	3-17
表 3-19 Hi3137V100 的封装热阻	3-27
表 3-20 导热介质材料推荐表	3-27
表 3-21 回流焊工艺参数表	3-29
表 3-22 floor life 参照表	3-30
表 3-23 重新烘烤参考表	3-31
表 3-24 TS 输出方向时序参数表	3-33

3 硬件设计

- 3.1 封装与管脚
- 3.1.1 封装与管脚分布

封装

Hi3137V100 芯片 MQFN(Mapped Quad Flat Non-leaded package)封装,封装尺寸为6mm×6mm,管脚间距为0.4mm,管脚总数为48个,详细封装及其参数如图 3-1、图 3-2 所示。

图3-1 芯片封装图

图3-2 封装参数说明表

	Dimen	sion in	mm	Dimer	nsion in	inch
Symbol	MIN	МОИ	MAX	MIN	NOM	MAX
Α	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
А3		0.20 REF			0.008 RE	F
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E	5.90	6.00	6.10	0.232	0.236	0.240
D2/E2	3.85	4.00	4.15	0.152	0.157	0.163
е		0.40 BSC	,	0.016 BSC		С
L	0.30	0.40	0.50	0.012	0.016	0.020
K	0.20			0.008		
R	0.075			0.003		
aaa		0.10			0.004	
bbb		0.07			0.003	
ссс	0.10				0.004	
ddd	0.05				0.002	
eee	0.08				0.003	
fff		0.10			0.004	

NOTE:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. REFERENCE DOCUMENT: JEDEC MO-220.

管脚分布图

Hi3137V100 封装管脚分布如图 3-3 所示。

图3-3 Hi3137V100 封装管脚分布示意图

3.1.2 管脚描述

管脚排列表

Hi3137V100的管脚按位置排列如表 3-1 所示。

表3-1 管脚排列表

位置	管脚名称	位置	管脚名称
1	DVDD11	25	DVDD33
2	TS_DATA0	26	SCLT
3	TS_DATA1	27	DVDD11
4	TS_DATA2	28	AVDD11_PLL

位置	管脚名称	位置	管脚名称
5	TS_DATA3	29	AVSS_PLL
6	TS_DATA4	30	AVDD33_PLL
7	DVDD33	31	AVDDREF
8	TS_DATA5	32	AGNDREF
9	TS_DATA6	33	AVDD11_ADC
10	TS_DATA7	34	AVSS_ADC
11	TS_ERR	35	VINP
12	DVDD11	36	VINN
13	FEC_ERR	37	DVDD11
14	FUNC_SEL	38	ADDR1
15	RSTN	39	AGC
16	LOCK	40	ADDR0
17	DVDD33	41	DVDD33
18	DVDD11	42	SDA
19	CLK_OUT	43	SCL
20	DVDD33	44	DVDD11
21	DVDD11	45	DVDD33
22	XOUT	46	TS_SYNC
23	XIN	47	TS_VALID
24	SDAT	48	TS_CLK

管脚类型说明

管脚 I/O 类型说明如表 3-2 所示。

表3-2 管脚 I/O 类型说明

I/O	说明
I	输入信号。
I_{PD}	输入信号,内部下拉。
I_{PU}	输入信号,内部上拉。
I_S	输入信号,带施密特触发器。

I/O	说明			
I_{SPD}	输入信号,带施密特触发器,内部下拉。			
I_{SPU}	输入信号,带施密特触发器,内部上拉。			
О	输出信号。			
O _{OD}	输出,漏极开路。			
I/O	双向输入/输出信号。			
I _{PD} /O	双向,输入下拉。			
I _{PU} /O	双向,输入上拉。			
I _{SPU} /O	双向,输入上拉,带施密特触发器。			
I_{PD}/O_{OD}	双向,输入下拉,输出漏极开路。			
I _{PU} /O _{OD}	双向,输入上拉,输出漏极开路。			
I _S /O	双向,输入带施密特触发器。			
I _S /O _{OD}	双向,输入带施密特触发器,输出漏极开路。			
XIN	Crystal Oscillator,晶振输入。			
XOUT	Crystal Oscillator,晶振输出。			
P	电源。			
G	地。			

ADC 管脚

ADC 管脚如表 3-3 所示。

表3-3 ADC 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
34	AVSS_ADC	G	ı	-	模拟/数字转换地
33	AVDD11_ ADC	P	1	1.1	模拟/数字转换 1.1V 电源
35	VINP	Ι	-	1.1	ADC 差分输入,单端差分输入范围均为 1Vpp
36	VINN	Ι	-	1.1	ADC 差分输入,单端差分输入范围均为 1Vpp

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
32	AGNDREF	Ι	-	-	ADC 负向参考信号,接地 需要串接 22ohm 电阻至地
31	AVDDREF	Ι	-	1.1	ADC 正向参考信号,接模拟 1.1V 电源

I2C 管脚

I2C 管脚如表 3-4 所示。

表3-4 I2C 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
40	ADDR0	I	3	3.3	Hi3137V100 设备地址选择 0
38	ADDR1	I	3	3.3	Hi3137V100 设备地址选择 1
26	SCLT	O _{OD}	3	3.3/5	I2C 总线时钟输出,控制 tuner 通讯接口,OD 门输出,需外接上拉电阻至 3.3/5V,具体电压需要由 tuner 的 I2C 电平决定
24	SDAT	I _S /O _{OD}	3	3.3/5	I2C 总线数据输出,控制 tuner 通讯接口, OD 门输出,需外接上拉电阻至 3.3/5V, 具体电压需要由 tuner 的 I2C 电平决定
43	SCL	I_S	3	3.3	I2C 总线的时钟输入总线,外部接上拉电阻至 3.3V
42	SDA	I _S /O _{OD}	3	3.3	I2C 总线的数据总线, OD 输出, 外部接上拉电阻至 3.3V

AGC、TS 管脚

TS 管脚如表 3-5 所示。

表3-5 TS 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
39	AGC	O _{OD}	8	3.3/5	AGC 输出,控制 Tuner 增益。OD 输出, 支持 3.3V/5V 上拉。

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
48	TS_CLK	О	4	3.3	Demod 输出的 TS 时钟
2	TS_DATA0	О	4	3.3	TS_DATA0 Demod 输出的数据
3	TS_DATA1	О	4	3.3	TS_DATA1 Demod 输出的数据
4	TS_DATA2	О	4	3.3	TS_DATA2 Demod 输出的数据
5	TS_DATA3	О	4	3.3	TS_DATA3 Demod 输出的数据
6	TS_DATA4	О	4	3.3	TS_DATA4 Demod 输出的数据
8	TS_DATA5	О	4	3.3	TS_DATA5 Demod 输出的数据
9	TS_DATA6	О	4	3.3	TS_DATA6 Demod 输出的数据
10	TS_DATA7	О	4	3.3	TS_DATA7 Demod 输出的数据
11	TS_ERR	О	4	3.3	TS_ERR TS 错误指示
46	TS_SYNC	О	4	3.3	TS_SYNC Demod 输出的同步信号
47	TS_VALID	О	4	3.3	TS_VALID Demod 输出的数据有效信号,高电平有效

PLL 管脚

PLL 管脚如表 3-6 所示。

表3-6 PLL 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
28	AVDD11_PLL	P	-	1.1	PLL 1.1V 模拟电源

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
30	AVDD33_PLL	P	-	3.3	PLL 3.3V 模拟电源
29	AVSS_PLL	G	-	-	PLL 模拟地

OSC 管脚

OSC 管脚如表 3-7 所示。

表3-7 OSC 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
19	CLK_OUT	О	4	3.3	晶振时钟环通输出
23	XIN	I	-	3.3	晶振输入
24	XOUT	О	-	3.3	晶振输出

PG 管脚

PG 管脚如表 3-8 所示。

表3-8 PG 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
7、17、20、 25、41、45	DVDD33	P	-	3.3	3.3V IO 电源
1、12、18、 21、27、37、44	DVDD11	P	-	1.1	1.1V CORE 电压

SYS 管脚

SYS 管脚如表 3-9 所示。

表3-9 SYS 管脚

Pin	管脚名称	类型	驱动 (mA)	电压 (V)	描述
14	FUNC_SEL	I_{SPD}	8	3.3	功能模式选择:
					0: 功能模式
					1: 保留
15	RSTN	I_{SPU}	8	3.3	系统复位信号输入,低电平有效
16	LOCK	О	4	3.3	系统锁定指示
13	FEC_ERR	О	4	3.3	系统误码指示

3.1.3 IO 功能配置寄存器概览

IO 功能配置寄存器概览如表 3-10 所示。

表3-10 IO 功能配置寄存器概览(复用寄存器基地址为 0x00)

寄存器名称	偏移地址	描述	页码
IO_CTRL4	0x17	IO 控制寄存器	3-11
SDR_CTRL	0x18	IO 控制寄存器	3-12

3.1.4 IO 功能配置寄存器描述

IO_CTRL4

IO_CTRL4为IO控制寄存器。

	Offset Address 0x17		Registe IO_C			Total Reset Value 0x00					
	7		6	5	4	4 3 2 1 0					
e		lock_sel		lock_val	clkou	ıt_sel	clkout_hiz	lock_hiz	ts_hiz		
t	0		0	0	0	0	0	0	0		
	Bits	Access	Name	!	Description						
					LOCK 管脚车	俞出信号选择	Z = 0				
					00: demod 4	锁定指示;					
	[7:6]	RW	lock_s	el	01: TXD;						
					10: FEF 区域指示;						
				11: lock_val 值。							
I	[5]	RW	lock_v	al	LOCK 管脚可编程输出电平配置值。						
-					CLK_OUT 管脚输出信号选择。						
					00: 晶振时钟;						
	[4:3]	RW	clkout	_sel	01: FEF 区域指示;						
					10: demo 锁定指示;						
					11: gpio_val 值。						
Ī	[2]	RW	allraut	h:-	1: CLK_OUT IO 高阻;						
	[2]	KW	clkout	_niz	0: CLK_OUT IO 正常工作。						
	[1]			:_	1: LOCK IO 高阻;						
	[1]	l] RW lock_hiz		0: LOCK IO 正常工作。							
	[0]	DW	4- 1-1		1: TS IO 高阻;						
ļ	[0]	RW	ts_hiz		0: TS IO 正常工作。						

SDR_CTRL

SDR_CTRL 为 IO 控制寄存器。

		Offset Address 0x18			Register		Total Reset Va 0x24	alue		
Bit	7	7 6 5			5	4	3	2	1	0
Name	reserved gpio_v						gpio_val			
Reset	0			0	1	0 0 1 0 0				
	Bits	Bits Access Name			;	Description				
	[0]	0] RW gpio_val		CLK_OUT 管 V _{OH} ≤3.3V,	F 2.7V≤					

3.1.5 软件复用管脚

LOCK、CLK_OUT 的管脚复用选择如表 3-11 所示。

表3-11 LOCK、CLK_OUT 的管脚复用选择

Pin	Pad 信号	复用控制 寄存器	复用信号 0	复用信号 1	复用信号 2	复用信号3
16	LOCK	IO_CTRL4	LOCK	TXD	FEF	GPO
19	CLK_OUT	IO_CTRL4	XO	FEF	LOCK	GPO

管脚复用信号描述如表 3-12 所示。

表3-12 管脚复用信号描述

信号名	方向	说明
LOCK	О	信道锁定指示
TXD	О	串口输出
FEF	О	FEF 指示
GPO	О	可编程输出
XO	О	晶振时钟
FEF	О	FEF 指示
LOCK	О	信道锁定指示
GPO	О	可编程输出

3.2 电性能参数

3.2.1 功耗分布

Hi3137V100的功耗分布如表 3-13所示。

表3-13 功耗参数

符号	参数	最小值	典型值	最大值	单位
DVDD33	3.3V I/O 电源	-	50	60	mA
AVDD33_PLL	PLL 3.3V 模拟电源	-	3	5	mA
DVDD11	1.1V 内核电压	-	150	300	mA
AVDD11_ADC	ADC 1.1V 电源	-	7	15	mA
AVDD11_PLL	PLL 1.1V 模拟电源	-	1	3	mA
AVDDREF	ADC 1.1V 参考电源		1	3	mA

3.2.2 极限工作条件

警告

极限工作电压参数如表 3-14 所示,超过这些数值,可能导致芯片损坏,可能导致 Hi3137V100 可靠性问题。

Hi3137V100 极限工作条件如表 3-14 所示。

表3-14 Hi3137V100 极限工作条件

符号	参数	最小值	最大值	单位
T_{OPT}	芯片工作温度	-40	125	$^{\circ}$
T_{STG}	存储温度	-65	150	${\mathbb C}$
VI	输入电压	-0.5	4.6	V
VO	输出电压	-0.5	4.6	V
DVDD11	内核电压	-0.5	1.8	V
DVDD33	I/O 电源	-0.5	4.6	V

3.2.3 推荐工作条件

Hi3137V100的推荐工作条件如表 3-15 所示。

表3-15 推荐工作条件

符号	参数	最小值	典型值	最大值	单位
T _{OPT}	操作环境温度	0	25	70	$^{\circ}\! \mathbb{C}$
DVDD11	内部核电压	1.045	1.1	1.155	V
DVDD33	I/O 电源	2.97	3.3	3.63	V
AVDD33_PLL	PLL 电源	2.97	3.3	3.63	V
AVDD11_PLL	PLL 电源	1.045	1.1	1.155	V
AVDD11_ADC	ADC 电源	1.045	1.1	1.155	V
AVDDREF	ADC 1.1V 参考电源	1.045	1.1	1.155	V

3.2.4 上下电顺序

Hi3137V100 供电 3.3V 与 1.1V 无上下电先后顺序要求。

3.2.5 DC 电气参数

Hi3137V100 DC 电气参数如表 3-16 所示。

表3-16 DC 电气参数表

符号	参数	最小值	典型值	最大值	单位	说明
V_{IH}	高电平输入电压	2.0	-	DVDD33+0.3	V	不支持 5V tol
$V_{\rm IL}$	低电平输入电压	-0.3	-	0.8	V	-
$I_{\rm L}$	输入漏电流	-	-	±10	μΑ	-
I_{OZ}	三态输出漏电流	-	-	±10	μΑ	-
V_{OH}	高电平输出电压	2.4	-	-	V	-
V _{OL}	低电平输出电压	-	-	0.4	V	-
R _{PU}	内部上拉电阻	27	40	64	kΩ	-
R _{PD}	内部下拉电阻	31	46	78	kΩ	-

3.3 原理图设计建议

3.3.1 小系统设计建议

3.3.1.1 Clocking 电路

通过芯片内部的反馈电路与外部的 24MHz 晶体振荡电路一起构成系统时钟。推荐选 24MHz, ESR_{max} =40ohm, C_{L} =20pF。

推荐晶体连接方式及器件参数如图 3-4 所示。

图3-4 Hi3137V100 应用推荐晶体连接方式及器件参数

晶振负载电容与外挂电容的计算公式如下:

$C_L = C1 * C2/(C1 + C2) + C$

- C: 为 IC 内部电容, 一般在 5~7pF。
- C1、C2: 在图中分别为 30pF。
- C₁: 为晶振内部负载电容,一般为20~22pF之间,具体由厂家提供的参数为准。

3.3.1.2 复位电路

Hi3137V100 的 RSTN 管脚为复位信号输入管脚,要求的复位有效信号为低电平(V_{IL} $\leq 0.8V$)脉冲,脉冲宽度大于 12 个 XIN 管脚输入的时钟周期(一般复位脉冲宽度为 $10 \text{ms} \sim 100 \text{ms}$)。

板级设计时,建议 RSTN 引脚采用典型的 RC 上电复位电路设计,通过上拉电阻 $4.7k\Omega$ 接 3.3V 电源,并连接 4.7uF 对地电容,实现上电复位操作。该 PIN 也可和 Hi3xxx 等 STB DECODER 主芯片连接,正常工作以后根据协议,由主芯片给出复位信号。

工作异常时,可以通过主芯片的 GPIO 管脚产生低电平脉冲,进行软复位。

复位典型设计电路如图 3-5 所示。

图3-5 复位典型设计电路

3.3.1.3 Hi3137V100 硬件初始化系统配置电路

Hi3137V100 硬件初始化系统配置电路采用 I2C 总线来实现内部寄存器的初始化,需要通过外部 ADDR0、ADDR1 设置 Hi3137V100 的 I2C 地址。

地址配置描述如下表 3-17、表 3-18 所示。

表3-17 地址配置一

ADDR1	ADDR0		7-	bit.	Adc	lres	s		R/W	Write Address(in
		MSB						LSB	bit	Hex)
Low	Low	1	0	1	1	1	0	0	0	0xB8
Low	High	1	0	1	1	1	0	1	0	0xBA
High	Low	1	0	1	1	1	1	0	0	0xBC
High	High	1	0	1	1	1	1	1	0	0xBE

表3-18 地址配置二

ADDR1	ADDR0		7-	bit.	Adc	lres	s		R/W	Read Address(in
		MSB						LSB	bit	Hex)
Low	Low	1	0	1	1	1	0	0	1	0xB9
Low	High	1	0	1	1	1	0	1	1	0xBB
High	Low	1	0	1	1	1	1	0	1	0xBD
High	High	1	0	1	1	1	1	1	1	0xBF

3.3.1.4 数字/模拟信号接口电路设计

接口介绍

数字接口电平标准为 LVCMOS33, Hi3137V100 的数字接口有如下特点:

- 提供1个TS流串行/并行接口,并行和串行工作方式可配。
 - 1bit 串行工作最高时钟频率为 76.5MHz, 位宽为 1bit;
 - 2bit 串行工作最高时钟频率为 36MHz, 位宽为 2bit;
 - 并行工作时钟频率最高可达 9MHz, 位宽为 8bit。
- 提供 1 个 I2C 接口, 通过 I2C 接口来对访问 Hi3137V100 和 I2C 转发控制 Tuner 的 内部寄存器, I2C 工作频率最高为 400kHz。
- 提供一个 AGC 输出接口, AGC 输出采用 PDM 或 PWM 调制的方式, 默认情况下 采用 PDM 输出, 通过一 RC 低通滤波电路控制前端 Tuner 的增益。
- 提供 1 个 RSTN,可由硬件 RC 电路进行复位,或由 STB DECODER 芯片进行复位操作,低电平有效。

TS 流拓扑结构

Hi3137V100 典型并行外接 STB DECODER 芯片拓扑结构如图 3-6 所示。典型串行外接 STB DECODER 拓扑结构如图 3-7 所示。

图3-6 Hi3137V100与 DECODER 并接的拓扑结构图

□ 说明

并行 TS 接口 TS 输出管脚中,除 TS_CLK 不能任意配置外,其余均可根据实际 Layout 需要任意配置 TS 数据线。

图3-7 Hi3137V100 与 DECODER 串接的拓扑结构图

₩ 说明

串行 TS 接口 TS 输出管脚中,除 TS_CLK 不能任意配置外,其余均可根据实际 Layout 需要任意配置 TS 数据线。

AGC 拓扑结构

Hi3137V100 AGC 模块默认采用 PDM 输出的方式(可选 PWM,通过内部寄存器配置),通过外部 RC 低通滤波器实现数字信号到模拟信号的转换,控制前端 Tuner 的增益,达到在外部环境信号质量变化时自动控制 Tuner 的增益,保证良好的信号质量输出。PCB Layout 时 RC 滤波电路需要靠近 Hi3137V100 AGC 输出,避免 AGC 的高频分量对模拟 RF 的干扰。Hi3137V100 AGC 模块与外围的电路拓扑结构为如图 3-8 所示。

图3-8 Hi3137V100 AGC 接口与 Tuner 的拓扑结构图

I2C 设计建议

Hi3137V100 与 DECODER 芯片之间的 I2C 总线,需要接上拉电阻,上拉电压为 3.3V,上拉电阻选 $2k\Omega$,具体可以根据 I2C 总线速率来确定。并分别加不大于 100pF 旁路滤波电容,靠近 Hi3137V100 管脚放置。

图3-9 Hi3137V100 I2C 接口与 Hi3xxx 的拓扑结构图

TS 流匹配方式设计建议

TS 流匹配设计分两种情况,多层板设计和二层板设计。

- 多层板设计时, 走线特征阻抗为 50Ω。
 - TS OUT[0:7]采用串行匹配电阻为 33Ω, 拓扑结构如图 3-10 所示。
 - TS_CLK、TS_SYNC、TS_VALID 也采用串行匹配电阻为 33Ω, 拓扑结构如图 3-11 所示。
- 两层板设计时, 走线特征阻抗为 140Ω。
 - TS OUT[0:7]采用串行匹配电阻为 75Ω ,拓扑结构如图 3-12 所示。
 - TS_CLK、TS_VALID、TS_SYNC 采用串行匹配电阻为 75Ω, 拓扑结构如图 3-13 所示。

□ 说明

下图中的 4500mil 长度为最长的走线长度,实际走线一般小于该长度值。

图3-10 多层板设计中,TS_OUT[0:7]和 DECODER 芯片互联拓扑结构

图3-11 多层板设计中, TS CLK/TS SYNC/TS VALID 和 DECODER 芯片互联拓扑结构

图3-12 两层板设计中, TS OUT[0:7]和 DECODER 芯片互联拓扑结构

图3-13 两层板设计中,TS_VAILD、TS_SYNC、TS_CLK 和 DECODER 芯片互联拓扑结构

AGC电路设计建议

PDM 调制信号经过低通滤波器后,模拟信号的交流成分得到了明显的削弱,在 RC 滤波网络中 RC 值越大,模拟信号的交流成分越少,而响应速度则变慢,因此需合理的选取 RC 值,使得交流成分的大小和响应速度都能满足实际应用的需求。Hi3137V100 AGC 电路建议 R 选择 4.7kΩ,C 选择 100nF。

3.3.2 电源设计建议

说明 系统电源的设计,详细请参见 Hi3137 板原理图。

3.3.2.1 CORE 电源设计

CORE 电源(管脚名 DVDD11): 连接数字 1.1V 电源。设计建议如下:

● 若单板上无 1.1V, 电源芯片的选型上, 优选 LDO, 要求其供电能力≥500mA。

- CORE 电源典型电流为 150mA,最大电流为 300mA。
- CORE 电源管脚放置一个 10uF 对地滤波旁路电容,而且每个 CORE 电源管脚处放置一组 10nF 和 100pF 去耦电容组合,并紧靠供电管脚摆放。

3.3.2.2 IO 电源设计

IO 电源管脚名 DVDD33: 连接数字 3.3V 电源。

- VDD IO 的最大电流为 60mA 电源供电,优选 LDO。
- IO 电源管脚处放置一组 10nF 和 100pF 去耦电容组合,并紧靠供电管脚摆放。
- IO 电源管脚的输入建议通过 BEAD 隔离, 拓扑结构如图 3-14。

图3-14 Hi3137V100 VDD33 IO 拓扑结构图

3.3.2.3 ADC 电源设计

ADC 电源 (管脚名 AVDD11 ADC): 连接 1.1V 模拟电源。

- ADC 电源的最大电流为 15mA, 通过磁珠隔离和 CORE 电源共用一个 1.1V 电源。
- 通过 BEAD 和 1.1V 电源隔离,并放置一个 10uF 对地滤波旁路电容。
- ADC 电源管脚处放置一组 10nF 和 100pF 去耦电容组合,并紧靠供电管脚摆放。
- 1.1V 电源电平偏差控制在±5%以内。拓扑结构如图 3-15。

图3-15 Hi3137 AVDD11_ADC 拓扑结构图

3.3.2.4 注意事项

电源设计的其他注意事项如下:

- Hi3137V100 的电源芯片优选 LDO,数字和模拟电源通过 BEAD 隔离,并增加 10nf 和 100pf 去藕电容组合。
- 各模块电源的要求请参考芯片手册中的电性能参数,保证电源输出电压加上纹波噪声仍然满足芯片的需求。

3.3.3 未使用管脚处理

未使用管脚处理建议如下:

直接 NC,可以通过寄存器配置关闭相应电路。

3.4 PCB 设计建议

3.4.1 层叠和布局

3.4.1.1 层叠

Hi3137V100 的封装为 MQFN48, 管脚间距 0.4mm。在 PCB 设计时,可以采用四层 PCB 板的设计,建议如下分层:

- TOP 层: 信号走线
- 内一层: 地平面层
- 内二层:电源平面层
- BOTTOM 层:信号走线

在成本非常敏感的应用方案中,也可以采用二层 PCB 板的设计, PCB 分层建议如下:

- TOP 层: 信号走线和部分电源走线
- BOTTOM 层: 地平面层和部分电源走线

PCB 设计注意事项:

- 元器件布局在 TOP 层,信号线尽量走 TOP 层。
- 电源管脚走粗线。
- 尽量保持 BOTTOM 层为一个完整的地平面层。
- 主芯片出线推荐过孔大小为 8mill。
- 特殊信号线注意阻抗要求。

PCB 材料 FR-4, PCB 板厚度为 1.6mm, 表层铜箔厚度为 1 盎司。

3.4.1.2 单板布局

Hi3137DMO 解决方案参考设计的单板尺寸信息如图 3-16 所示。

图3-16 单板结构图

Hi3137V100 Demod 参考设计的应充分考虑射频,模拟,和数字信号,以及 ESD 保护器件的布局。如射频接口 F 头、晶体谐振器、射频环路滤波器等。

Hi3137V100 的电源管脚 3.3V, 1.1V 都尽可能通过 BEAD 和数字部分隔离。器件尽量选择小的封装。

3.4.2 小系统 PCB 设计建议

3.4.2.1 小系统电源

数字电源

Hi3137V100 的数字电源包括: DVDD33(3V3)和 DVDD11(1V1)建议与单板数字 3.3V和 1.1V电源用磁珠隔离,均以 Hi3137的 exposed pad 为参考地。在保证通流能力的前提下,走线尽量宽。DVDD33最小线宽 15mil, DVDD11最小线宽 25mil。避免和模拟电源重叠。去藕电容靠近芯片放置。

射频/模拟电源

除了上述的数字电源外,其他属于射频/模拟电源,都必须和其他电源通过磁珠隔离,Hi3137以 exposed pad 为参考地,具体建议如下:

- 模拟电源区域禁止有数字信号走线,尤其是高速数字信号。
- 每个电源 pin 要加去耦电容且走线尽量宽,去耦电容靠近芯片放置。

3.4.2.2 时钟和复位电路

时钟

Hi3137V100 的 PLL 功能单元的供电电源和地为 AVDD11_PLL(1.1V)、AVDD33_PLL 和 AVSS PLL。建议 PCB 设计时采用如下原则:

- AVDD11_PLL 为 1.1V 的 PLL 电源,建议保证通流能力的前提下,线宽需要保证在 12mil。
- AVDD33_PLL 的 PLL 电源,建议在保证通流能力的前提下,线宽需要保证在 12mil。
- AVSS_PLL 为 Hi3137V100 的 PLL 功能单元的参考地,建议将地线连接至 exposed pad 下,并置地孔保证完整地平面。
- 系统时钟的晶振电路走线长度须尽量短,需做包地处理,晶体的地采用局部地处理,与大片地隔离设计,避免耦合。
- 晶振相关匹配电容应靠近晶体排布;晶振紧靠 Hi3137V100 放置,与板边缘至少保持 1000mil;晶振下面避免走高速时钟等重要走线,并保证晶体底部平面信号的完整性。

复位

PIN15 为复位管脚,复位信号线为关键信号,易受干扰。

- 多层板建议走内层,紧邻地层走线,线宽要求8mil以上,双层板建议加保护地处理。
- 要求远离接口与电源输入,至少30mil。

3.4.3 数字、模拟接口 PCB 设计建议

3.4.3.1 数字接口设计

TS 流信号

TS 流信号的长度要求如下:

- 信号走线长度最长不能超过 5000mil。
- 所有以信号线的走线长度均以 TS CLK 作为参考,允许偏差范围为±250mil。
- 串联匹配电阻应尽量靠近 Hi3137V100 放置。
- 双层板 TS 流信号线特性阻抗控制为 140Ω, 匹配电阻值建议: TS_OUT[0:7]串联 匹配电阻为 75Ω; TS_CLK 、TS_SYNC, TS_VALID 串联匹配电阻 75Ω。
- 多层板 TS 流信号线特性阻抗控制为 50Ω , 匹配电阻值建议为 33Ω 。

AGC 信号

AGC 信号的总线长度要求如下:

● 信号走线长度最长不能超过 5000mil,最小线宽要求 12mil,并保证 AGC 走线有地保护,防止 AGC 信号干扰外部信号走线,也避免本身受外部噪声的干扰。

● AGC 输出通过的 RC 低通滤波器需要靠近 Hi3137 AGC 输出管脚,防止 AGC 高频噪声传导至板级,造成信道性能恶化问题。

I2C 总线的长度建议如下:

- SCL 信号走线长度最长不能超过 5000mil。
- SDA 走线以 SCL 为参照进行走线,允许的偏差为±250mil。

PCB 布线建议

建议 PCB 布线设计采用以下原则:

信号走线尽量不要破坏 TS 流信号走线的参考地平面,并做好保护地处理,串联电阻尽量靠近 Hi3137V100 放置,详细设计请参见 Hi3137EVA 板 PCB 设计文件。

- 所有 TS 流信号走线必须分布在邻近地平面的走线层,避免信号走线穿越电源或地分割区域,必须保证信号走线都有完整的参考平面。
- 信号走线及换层过孔附近放置与地连通的过孔,保持良好的信号回流路径。
- 信号线尽量短,走线路径上尽量少打过孔,保证走线阻抗的连续性。多层板单端信号 PCB 走线特性阻抗 50Ω±10%;双层板单端信号 PCB 走线特性阻抗 140Ω±10%。串联匹配电阻靠近 Hi3137V100 放置。
- 使用排阻时,尽量避免 TS CLK 与其他 TS 流中的信号线在同一个组排上。
- 相邻信号走线间距保持在 2~3 倍线宽, 即满足"3W"原则。
- 避免时钟信号紧邻数据、地址总线,对于 TS CLK 增加包地处理。

3.4.3.2 其它

PCB 信号完整性仿真设计建议

PCB设计人员可以使用板级仿真工具,根据 Hi3137V100 接口 IBIS 模型、对接器件 IBIS 模型、传输线模型以及板上拓扑结构完成信号完整性仿真分析。通过对仿真结果的分析,不断调整拓扑结构,以达到所需的信号质量要求,包括过冲、下冲、振铃、单调性等。

其它 PCB 设计注意事项

时钟信号如果带多个负载,无论频率高低,都需要特别注意其信号质量,应保证信号 边沿单调。

3.5 热设计建议

3.5.1 封装热阻

注音

热阻基于 JEDEC JESD51-2 标准给出,应用时的系统设计及环境可能与 JEDEC JESD51-2 标准不同,需要根据应用条件作出分析。

Hi3137V100的封装热阻如表 3-19所示。

表3-19 Hi3137V100 的封装热阻

参数	符号	数值	单位
Junction-to-ambient thermal resistance	$\theta_{ m JA}$	37	°C/W
Junction-to-case thermal resistance	θ _{JC}	20.684	°C/W
Junction-to-top center of case thermal resistance	$\Psi_{ m JT}$	-	°C/W
Junction-to-board thermal resistance	θ ЈВ	17.41	°C/W

3.5.2 导热介质材料推荐

导热介质材料推荐表如表 3-20 所示。

表3-20 导热介质材料推荐表

散热器固定 方式	型号	导热系数 (w/m·k)	应用环境温 度(℃)	胶体类型	绝缘强度 (V/mil)	阻燃性	承重能 力(g)
需机械固定	GF2000	2	-60~+200	硅橡胶	500	UL9V0	-
无需机械固 定	Locotite 315	0.808	-	丙烯酸树 脂	6000	UL9V2	-

3.5.3 原理图设计

3.5.3.1 电源

整个单板电源树在保证稳定性的前提下效率最高,即要合理设计单板电源负载,少采用高压差 LDO 器件,减少电源自身在电源转换过程中所产生的热量。芯片底部采用 EPAD 设计,将 PCB 底部地平面进行开窗设计,利于芯片的热传导。

3.5.4 PCB 设计

3.5.4.1 器件布局

结合产品结构和热设计,器件布局建议如下:

- 单板上功耗大且产生热量大的器件不能分布在同一个风道上。
- 单板上大功耗且易产生热量器件要均匀分布,以保证单板利用 PCB 有效散热,在 这些器件正下方和周边尽量增大铜皮面积以利于散热。

3.5.4.2 PCB 热设计

PCB 热设计建议如下:

- Hi3137V100 芯片底下的 EPAD 过孔采用 FULL 孔连接,而不是普通的花孔连接, 并且 EPAD 对应的 PCB 底层的铜皮开窗,以提高单板散热效率。
- Hi3137V100的 1.1V/3.3V 电源和地信号在保证过流能力的前提下尽量走宽。
- Hi3137V100 周边避免放置发热量大的器件。

3.6 焊接工艺建议

3.6.1 概述

客户在使用本产品焊接时,参考所有的元器件/IC/PCB 单板所承受 reflow profile,依据 锡膏的供应商推荐的 reflow profile 平衡制定合适的回流焊接温度,本章节仅仅是给出 本产品能承受的回流焊接温度范围。

3.6.1.1 框架材料

● OFN 镀层成份: 电镀锡

3.6.1.2 元器件包装及存储

元器件包装及存储如下:

- 表贴元器件包装类型: tray
- 存储期限(60%相对湿度以下): 12moths@40℃
- 包装材料: 防静电材料

3.6.1.3 焊接工艺

可应用的焊接方法: reflow

本产品可以承受的 reflow profile 范围如下(客户也可以参考 JEDEC020D),并非推荐的实际焊接的 reflow profile。客户实际焊接时的 reflow profile 要参考锡膏的 reflow profile 并平衡 PCB/所有 IC/元器件而定。

图3-17 焊接温度曲线图

表3-21 回流焊工艺参数表

区域	时间	升温速率	峰值温度	降温速率
预热区(40-150℃)	60-150Sec	≤2.0°C/Sec	-	-
均温区(150-200℃)	60-120Sec	<1.0°C/Sec	-	-
回流区(>217℃)	30-90Sec	-	230-260℃	-
冷却区 (Tmax-180°C)	-	-	-	1.0°C/Sec≤Slope≤4.0°C/Sec

3.6.2 加工准备

客户在加工前,确认所使用的产品未受潮;原物料在有效周期内。

正式批量生产前,要做首样检验(比如要先首检锡膏厚度),首样检验结果通过,才能 批量生产。

3.7 潮敏参数

3.7.1 存放与使用

【使用范围】

海思所有 IC (潮敏产品) 的存放和使用

【存放环境】

建议产品真空包装存放,存放在<30°C/60% RH下。

【shelf life】(存储期限)

存放环境<30°C/60% RH下,真空包装存放,shelf life(存储期限)是≥12个月。

[floor life]

在环境条件<30°C/60%下, floor life 参照下表

表3-22 floor life 参照表

Level	Floor life(out of bag) at factory ambient≦30°C/60% RH or as stated
1	Unlimited at $\leq 30^{\circ}$ C/85% RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use, must be reflowed within the time limit specified on the label

【潮敏产品的使用】

- 产品在≦30℃/60%RH下连续或累计暴露超过2个小时,建议进行 rebake 后再真空干燥包装。
- 产品在≤30℃/60%RH下暴露累计没有超过2个小时,可以不用 rebake,但要更换新的干燥剂,进行真空干燥包装。

本文没有提到的存储及使用原则,请直接参考 JEDEC J-STD-033A

3.7.2 重新烘烤

【适用产品】

海思所有 IC (潮敏产品)

【使用范围】

需要重新烘烤的 IC (潮敏产品)

【重新烘烤参考表】

表3-23 重新烘烤参考表

Body thickness	level	bake@125℃	bake@90°C≦5% RH	bake@40°C≦5% RH	
≦1.4mm	2a	3 hours	11 hours	5 days	
	3	7hours	23 hours	9 days	
	4	7 hours	23 hours	9 days	
	5	7 hours	24 hours	10 days	
	5a	10 hours	24 hours	10 days	
≤2.0mm	2a	16 hours	2 days	22 days	
	3	17 hours	2 days	23 days	
	4	20 hours	3 days	28 days	
	5	25 hours	4 days	35 days	
	5a	40 hours	6 days	56 days	
≤ 4.5mm	2a	48 hours	7 days	67 days	
	3	48 hours	8 days	67 days	
	4	48 hours	10 days	67 days	
	5 48 hours		10 days	67 days	
	5a	48 hours	10 days	67 days	

说明:

- 此表中显示的均是受潮后,必须的最小的烘烤时间。
- 重新烘烤优先选择低温烘烤。
- 详细情况请参考 JEDEC。

3.8 接口时序

3.8.1 输出接口时序

Hi3137V100 提供 3 种 TS 输出模式,包括并行模式、串行模式和两比特串行模式。 TS 输出接口信号包括数据信号 TS_OUT[7:0]、时钟信号 TS_CLK、数据有效信号 TS_VLD、同步头信号 TS_SYNC 和包错误信号 TS_ERR:

- TS_OUT: TS 帧数据。并行模式下用 8 位,串行模式下用 1 位,两比特串行模式 用 2 位。
- TS_CLK:数据时钟。时钟沿可设,在不同模式下,芯片默认自适应时钟输出。

- TS_VLD: TS 包数据有效指示(并行模式是字节有效,串行模式是比特有效)。
- TS SYNC: TS 包同步头指示(并行模式是字节有效,串行模式是比特有效)。
- TS_ERR: TS 包错误指示, 当前 TS 包出错则置 1。

图3-18 TS 并行输出时序示意

图3-19 TS 一比特串行输出时序示意

图3-20 TS 两比特串行时序示意

3.8.2 输出时序参数

TS 输出时序图见图 3-16 所示。

图3-21 TS_CLK 输出时序图

注:请使用如图所示的 TS_CLK 输出为上升沿模式。

表3-24 TS 输出方向时序参数表

参数	符号	最小值	典型值	最大值	单位
TS_CLK 占空比	-	-	50	-	%
TS_CLK 时钟频率	TS_Freq	-	-	80	MHz
输出数据信号建立时间	Tdp	-	(1/ TS_Freq)/2	(1/TS_Freq)/2+1.7	ns
输出数据信号保持时间	Tdh	(1/ TS_Freq)/2-1.8	(1/ TS_Freq)/2	-	ns

Н	
\blacksquare	Ж
_	7.1

A 缩略语

 \mathbf{A}

AAF Anti-aliasing Filter 抗镜像滤波器

ADC Analog Digital Converter 模数转换器

AGC Automatic Gain Control 自动增益控制

В

BCH Bose-Chaudhuri-Hocquenghem multiple error correction binary block code —种循环纠错码

0110011011 0111111) 010011 0000

BER Bit Error Rate 误比特率

 \mathbf{C}

CLK Clock 时钟

CR Carrier Recovery 载波恢复

D

DAGC Digital Automatic Gain Control 数字自动增益控制

 \mathbf{E}

EQU Equalizer 均衡器

ERR Error 错误

F

FEC Forward Error Correction 前向纠错

FER Frame Error Rate 误帧率

 \mathbf{G}

GS Generic Stream 通用流

L

LDPC Low Density Parity Check Code 低密度奇偶校验码

 \mathbf{M}

MISO Multiple input single output 多入单出

 MPLP
 Multiple Physical Layer Pipe
 多物理层管道

P

PER Packet Error Rate 误包率

PLL Phase Locked Loop 锁相环

 PLP
 Physical Layer Pipe
 物理层管道

 PDM
 Pulse Density Modulation
 脉冲密度调制

 PWM
 Pulse Width Modulation
 脉冲宽度调制

PP Pilot Pattern 导频图样

Q

Q Quadrant 正交

QPSK Quaternary Phase Shift Keying 四相相移键控

 QAM
 Quadrature Amplitude Modulation
 正交幅度调制

 \mathbf{R}

RS Reed Solomon 里德所罗门,一种信道编码方式。

 \mathbf{S}

SNR Signal Noise Ratio 信噪比

用户指南 A 缩略语

SYNC Synchronization 同步

SISO 单入单出

 \mathbf{T}

TR Timing Recovery 定时恢复

TS Transport Stream 传输流

 ${f v}$

VLD Valid 有效