ARCHITECTURE MLOPS docker Continous Monitoring test_fetch_arxiv.py Continous Article Serialization FastAPI API training Streamlit UI Classified Documents Airflow Training Pipeline Airflow Classification Pipeline arXiv Fetcher arXiv Fetcher Continous training Local Queue [push] Local Queue [push] Redis Pusher [push_to_redis_train] arXiv Fetcher arXiv Fetcher [fetch_arxiv] DAG [arxiv_to_redis] Redis Pusher [arxiv_to_redis_train] [fetch_arxiv_train] **EVIDENTLY AI** Training Queue [push_to_redis] Local Queue arXiv Trainer arXiv Classifier check_drift.py Local Queue Classifier Queue [pop] ML tracking > flow Continous DAG [arxiv_training] ML Training [train_model_from_redis] MLFlow Pusher [push_to_mlflow] Monitoring [store_article] Continous Monitoring arXiv Publication Classifier Pipeline

Une architecture développée selon 5 axes

1. Choix d'une double orchestration :

- Airflow pour orchestration et répartition du traitement global et lien avec MLOps :
 - o gestion des **dépendances complexes** (arxiv_training ne se lance que si Redis a des données),
 - o des longues exécutions (entraînement, embedding)
 - o de la **gestion des états** des pipelines ML (CT et CM).
- Jenkins : CI/CD de l'Infrastructure par vérification de qualité des données précoce via l'exécution des tests unitaires
 - sur le code d'extraction
 - o l'upload vers S3

2. Surveillance Proactive avec Evidently:

- **Génération** des rapports HTML explicites et des alertes binaires (drift/no-drift), ce qui boucle la boucle du Continuous Monitoring vers un potentiel Continuous Training.

3. Tracabilité via MLFLOW: afin que le modele puisse être reproduit et tracé grâce aux artefacts

- Log des métriques de performance (accuracy) et les hyperparamètres (Tracking).
- Stock des artefacts critiques, y compris le modèle, le LabelEncoder et de manière cruciale pour le monitoring, le fichier de données de référence Evidently (reference_data.csv).
- L'utilisation de la variable LATEST_TRAINING_RUN_ID garantit que le pipeline de monitoring et d'inférence charge toujours le bon modèle et les bonnes données de référence de manière automatique.

4. Découplage et scalabilité : 2 bases de données distinctes

- MongoDB (Feature/Data Store): Choisi pour stocker des documents JSON (non structurés) contenant des informations complexes comme les Embeddings (vecteurs de caractéristiques) et les prédictions.
- **Redis (Message Queue):** utilisé pour le découplage asynchrone (Data Buffer), la collecte de données rapide, tandis que le traitement lourd (embedding/classification) peut consommer à son propre rythme.
 - → Cela gère les pics de charge et augmente la robustesse du pipeline.

5. Reproductibilité de l'Environnement (Docker)

- Ensemble de **l'environnement containerisé** (développement, testing, production)
- Pour une indépendance des différents services, et de chaque étape MLOPS
- Garant d'une **réproductibilité** des modèles et des tests