第1次作业:有穷自动机参考答案

2.2.5

(a)

将字符串划分为五个一段,每一段都至少有两个0

(b)

$$A=(Q,\Sigma,\delta,q_0,F)$$

$$Q = \{q_i : i \in \{0,1,\cdots,1023\}\}$$

$$\cdot \varSigma = \{0,1\}$$

$$\cdot \, \delta(q_i, a) = q(i \cdot 2 + a) \, mod \, \, 1024$$

$$\cdot F = \{q_i : i \geq 512\}$$

(d)

$$A = \left(Q, \Sigma, \delta, q_{0,0}, F\right)$$

$$\cdot \, Q = \Big\{ q_{i,j} \colon i \in \{0,1,2\}, j \in \{0,1,2,3,4\} \Big\}$$

$$\cdot \Sigma = \{0,1\}$$

$$\cdot \delta(q_{i,j}, 0) = q_{i,(j+1)} \mod 5, \ \delta(q_{i,j}, 1) = q(i+1) \mod 3, j$$

$$\cdot F = \{q_{0,0}\}$$

2.2.6

(a)

(b)

2.2.9

(a)

$$w \neq \epsilon \implies |w| \ge 1$$

Basis: If |w| = 1, then $w = a, a \in \Sigma$.

Because:

•
$$\hat{\delta}(q_0, w) = \delta(\hat{\delta}(q_0, \epsilon), a) = \delta(q_0, a)$$

•
$$\hat{\delta}(q_f, w) = \delta(\hat{\delta}(q_f, \epsilon), a) = \delta(q_f, a)$$

•
$$\delta(q_0, a) = \delta(q_f, a)$$

$$\therefore \hat{\delta}(q_0, w) = \hat{\delta}(q_f, w)$$

Induction: If the proposition is true for $|w| \le k(k \ge 1)$, when |w| = k + 1, w can be written as w = xa, where $x \in \Sigma^k$ and $a \in \Sigma$

$$|x| = k \le k \implies \hat{\delta}(q_0, x) = \hat{\delta}(q_f, x)$$

$$\therefore \hat{\delta}(q_0, w) = \delta(\hat{\delta}(q_0, x), a) = \delta(\hat{\delta}(q_f, x), a) = \hat{\delta}(q_f, w)$$

Conclusion: $\forall w \in \Sigma^*, \hat{\delta}(q_0, w) = \hat{\delta}(q_f, w)$

(b)

$$\forall x \in \Sigma^+ \land x \in L(A)$$

Basis: If k = 1, then $x \in L(A) \implies x^1 = x \in L(A)$

Induction: If $x^k \in L(A)(k \ge 1)$, i.e. $\hat{\delta}(q_0, x^k) = q_f$ (because $F = \{q_f\}$), then

$$\hat{\delta}(q_0, x^{k+1}) = \hat{\delta}(\hat{\delta}(q_0, x), x^k) = \hat{\delta}(q_f, x^k)$$

$$\therefore k > 0 \land |x| > 0 \implies x^k \neq \epsilon, \therefore \hat{\delta}(q_f, x^k) = \hat{\delta}(q_0, x^k) = q_f$$

$$\therefore x^{k+1} \in L(A)$$

Conclusion: $\forall k > 0, x^k \in L(A)$

$$\therefore \forall x \in \Sigma^+ \land x \in L(A) \land k > 0, x^k \in L(A)$$

2.2.10

Claim:

$$L(A) = \{\omega: \omega$$
包含奇数个1 $\}$

Proof:

用归纳法证明以下两个命题:

1. $\hat{\delta}(A, w) = A \iff w$ 中包含偶数个1

2. $\hat{\delta}(A, w) = B \iff w$ 中包含奇数个1

Basis: 若 $|w| = 0 \implies w = \epsilon$

 ϵ 中包含 0 个 1, 0 是偶数, 所以 $\hat{\delta}(A,\epsilon) = A$, 满足命题 1 和命题 2

Induction: 若 $w \in \Sigma^k$ 时命题 1 和命题 2 都满足, 当 $w \in \Sigma^{k+1}$ 时, 把 w 写成 xa, 其中 $x \in \Sigma^k$, $a \in \Sigma$

- 若 x 中包含偶数个 1 且 a = 0,根据归纳假设 $\hat{\delta}(A, x) = A$,所以 $\hat{\delta}(A, w) = \delta(\hat{\delta}(A, x), 0) = \delta(A, 0) = A$. 同时 w = x0 中包含偶数个 1,与命题 1 和命题 2 相容
- 若 x 中包含偶数个 1 且 a=1,根据归纳假设 $\hat{\delta}(A,x)=A$,所以 $\hat{\delta}(A,w)=\delta(\hat{\delta}(A,x),1)=\delta(A,1)=B$. 同时 w=x1 中包含奇数个 1,与命题 1 和命题 2 相容
- 若 x 中包含奇数个 1 且 a=0,根据归纳假设 $\hat{\delta}(A,x)=B$,所以 $\hat{\delta}(A,w)=\delta(\hat{\delta}(A,x),0)=\delta(B,0)=B$. 同时 w=x0 中包含奇数个 1,与命题 1 和命题 2 相容
- 若 x 中包含奇数个 1 且 a=1,根据归纳假设 $\hat{\delta}(A,x)=B$,所以 $\hat{\delta}(A,w)=\delta(\hat{\delta}(A,x),1)=\delta(B,1)=A$. 同时 w=x1 中包含偶数个 1,与命题 1 和命题 2 相容

Conclusion: 命题 1 和命题 2 成立

又因为 A 是起始状态, $F = \{B\}$, 所以 $L(A) = \{w : w$ 中包含奇数个1}

2.2.11

Claim:

 $L(A) = \{w : w$ 不包含子串00 $\}$

Proof:

用归纳法证明以下三个命题:

- 1. $\hat{\delta}(A, w) = A \iff w$ 不包含 00 且 w 不以 0 结尾
- 2. $\hat{\delta}(A, w) = B \iff w$ 不包含 00 且 w 以 0 结尾
- 3. $\hat{\delta}(A, w) = C \iff w$ 包含00

Basis: 若 $|w| = 0 \implies w = \epsilon$

 ϵ 不包含 00 而且不以 0 结尾, 所以 $\hat{\delta}(A,\epsilon) = A$, 满足以上三个命题

Induction: 若 $w \in \Sigma^k$ 时以上三个命题都满足, 当 $w \in \Sigma^{k+1}$ 时, 把 w 写成 xa, 其中 $x \in \Sigma^k$, $a \in \Sigma$

• w 包含 00

$$\iff$$
 $(x$ 包含 00) \vee $(x$ 不包含 00 且以 0 结尾, 同时 $a=0$)

$$\iff (\hat{\delta}(A, x) = C) \lor (\hat{\delta}(A, x) = B \land a = 0)$$

$$\Longrightarrow (\hat{\delta}(A,w) = \delta(\hat{\delta}(A,x),a) = \delta(C,a) = C) \vee (\hat{\delta}(A,w) = \delta(\hat{\delta}(A,x),0) = \delta(B,0) = C)$$

$$\implies \hat{\delta}(A, w) = C$$

如果 $\hat{\delta}(A, w) = C$, 即 $\delta(\hat{\delta}(A, x), a) = C$, 因为只有 $\delta(B, 0), \delta(C, 0), \delta(C, 1)$ 等于 C, 所以能推出:

$$(\hat{\delta}(A, x) = C) \lor (\hat{\delta}(A, x) = B \land a = 0)$$

因此命题 3 成立

• w 不包含 00 且 a = 0

 \iff x 不包含 00 且 x 不以 0 结尾且 a=0

$$\iff \hat{\delta}(A, x) = A \land a = 0$$

 \iff $\hat{\delta}(A,w) = \delta(\hat{\delta}(x),0) = \delta(A,0) = B$ (" \iff " 是因为状态 B 只有一条来自状态 A 的字母为 0 的入边)

因此命题 2 成立

w 不包含 00 且 a ≠ 0

 $\iff x$ 不包含 00 且 a=1 (因为 |w|>0)

$$\iff (\hat{\delta}(A, x) = A \vee \hat{\delta}(A, x) = B) \wedge a = 1$$

 $\iff \hat{\delta}(A,w) = \delta(\hat{\delta}(x),1) = \delta(A,1) = \delta(B,1) = A$ (" \iff " 是因为状态 A 只有来自状态 A,B 的字母为 1 的入边且 |w|>1)

因此命题 1 成立

Conclusion: 命题 1,2,3 都成立

又因为 A 是起始状态, $F = \{A, B\}$, 所以 $L(A) = \{w : w$ 不包含子串00 $\}$

2.3.3

$$\cdot q_{11} = \{q\}$$

$$\cdot \left\{ q_{10} = \left\{ p, q \right\} \right\}$$

$$\cdot \left\{ q_{01} = \left\{ p, t \right\} \right\}$$

$$\cdot \left\{ q_{00} = \left\{ p, q, r, s \right\} \right\}$$

 $L(A) = \{\omega: \omega$ 长度至少为2且 ω 的倒数第二位是0 $\}$

2.3.4

(a)

 $A = (Q, \Sigma, \delta, q_s, F)$

- $Q = \{q_s, q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_f\}$
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\forall i \in \{0, 1, \dots, 9\}, \delta(q_s, i) = \{q_s, q_i\}$ $\forall i \in \{0, 1, \dots, 9\}, \delta(q_i, i) = \{q_f\}$ $\forall i, j \in \{0, 1, \dots, 9\} \land i \neq j, \delta(q_i, j) = \{q_i\}$
- $F = \{q_f\}$

(b)

 $A = (Q, \Sigma, \delta, q_s, F)$

- $Q = \{q_s, q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_e, q_f\}$
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\forall i \in \{0, 1, \dots, 9\}, \delta(q_s, i) = \{q_e\} \cup \{q_j : j \in \{0, 1, \dots, 9\} \land j \neq i\}$ $\forall i \in \{0, 1, \dots, 9\}, \delta(q_i, i) = \{q_f\}$ $\forall i, j \in \{0, 1, \dots, 9\} \land i \neq j, \delta(q_i, j) = \{q_i\}$
- $F = \{q_e, q_f\}$

2.3.7

Let us define w_{-i} to be the *i*-th symbol from the end of w when i > 0. 我们要证明:

- 1. $\forall w \in \Sigma^*, q_0 \in \hat{\delta}(q_0, w)$
- 2. $\forall i > 0, \forall w \in \Sigma^*, q_i \in \hat{\delta}(q_0, w) \iff w_{-i} = 1$

Basis: 对于 $|w|=0 \implies w=\epsilon, \ \hat{\delta}(q_0,\epsilon)=\{q_0\}$. 因此该命题对 |w|=0 成立.

Induction: 若对于任意的 $w \in \Sigma^k$ 都成立, 则 $w = xa \in \Sigma^{k+1}$ 时 $(x \in \Sigma^k, a \in \Sigma)$:

此时有 $w_{-1} = a, \forall i > 1, w_{-i} = x_{-(i-1)}$

• 如果 i = 1, 则 $q_1 \in \hat{\delta}(q_0, w) = \delta(\hat{\delta}(q_0, x), a)$

$$\iff \exists q' \in \hat{\delta}(q_0, x), q_1 \in \delta(q', a)$$

 $\iff q_0 \in \hat{\delta}(q_0,x) \land a=1$ (因为 q_0 是唯一有连向 q_1 的边的节点, 且边上字母为 1)

 $\iff a=1$ (根据归纳假设 1, $q_0 \in \hat{\delta}(q_0,x)$ 必定成立)

$$\iff w_{-1} = 1$$

• 如果 $i > 1, q_i \in \hat{\delta}(q_0, w) = \delta(\hat{\delta}(q_0, x), a)$

$$\iff \exists q' \in \hat{\delta}(q_0, x), q_i \in \delta(q', a)$$

 $\iff q_{i-1} \in \hat{\delta}(q_0,x)$ (因为 q_{i-1} 是唯一有连向 q_i 的边的节点, 且边上字 母为 0,1)

 $\iff x_{-(i-1)} = 1(根据归纳假设 2)$

 $\iff w_{-i} = 1$

• $q_0 \in \hat{\delta}(q_0, x)$ (归纳假设 1)

$$\implies \delta(q_0, a) \subset \delta(\hat{\delta}(q_0, x), a) = \hat{\delta}(q_0, w)$$

 $\implies q_0 \in \hat{\delta}(q_0, w)$

Conclusion: 假设 1,2 都成立

2.4.1

(a)

(b)

2.4.2

(a)

$$\cdot \ q_0' = \{q_0\}$$

$$\cdot \ q_1' = \{q_0, q_1\}$$

$$q_2' = \{q_0, q_1, q_2\}$$

$$q_3' = \{q_0, q_3\}$$

$$q_4' = \{q_0, q_4\}$$

$$q_5' = \{q_0, q_5\}$$

(b)

- $q_0' = \{q_0\}$
- $q_1' = \{q_0, q_1\}$
- $q_2' = \{q_0, q_2, q_4\}$
- $q_3' = \{q_0, q_4, q_6\}$
- $q_4' = \{q_0, q_4\}$
- $q_5' = \{q_0, q_1, q_5\}$ or $\{q_0, q_1, q_3, q_5\}$
- $q_6' = \{q_0, q_2, q_4, q_6\}$

	a	b	\mathbf{c}
$\rightarrow q'_0$	q_1'	q_2'	q_3'
q_1'	q_1'	q_4'	q_3'
q_2'	q_1'	q_2'	q_5'
$q_3' \\ *q_4'$	q_6'	q_2'	q_3'
	q_1'	q_2'	q_5'
$*q_5'$	q_6'	q_2'	q_3'
$*q_6'$	q_1'	q_4'	q_3'

- $q_0' = \{q_0\}$
- $q_1' = \{q_0, q_1\}$
- $q_2' = \{q_0, q_2\}$
- $q_3' = \{q_0, q_4\}$
- $q_4' = \{q_0, q_2, q_3\}$
- $q_5' = \{q_0, q_3, q_4\}$
- $q_6' = \{q_0, q_1, q_3\}$
- **2.** 用JFLAP构建接受下列语言的FA, 其中, $\Sigma = \{0, 1\}$:
 - 1) 包含偶数个0和奇数个1;
 - 2) 包含偶数个0,且至少2个1;
 - 3) 0和1的个数要么都是偶数,要么都是奇数;
 - 4) 任意个0后面跟随偶数个1;

2.1

2.2

2.3

2.4

理解1: 0,1不能交错出现(只接受0011,不接受00110011)

理解2: 0,1可以交错出现(既接受0011,也接受00110011)

3.

理解1: 不考虑进位(相当于异或)

理解2: 考虑进位

