Surname	Other na	ames
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidia Unit 3B: Chemistry	ary	I Alternative
Thursday 13 May 2010 – Time: 1 hour 15 minute:	•	Paper Reference 6CH07/01

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

(ii) In a flame test, compound A gives a red flame. Deduce the formula of the cation present.
(ii) In a flame test, compound A gives a red flame. Deduce the formula of the cation present. (1 (b) On prolonged strong heating, compound A forms a white solid, B , and a gas. The gas turns limewater milky. (i) Identify, by name or formula, the compound that is dissolved in water to make limewater. (1 (ii) Suggest the formula for the anion in compound A . Justify your answer.
cation present. (1) (b) On prolonged strong heating, compound A forms a white solid, B , and a gas. The gas turns limewater milky. (i) Identify, by name or formula, the compound that is dissolved in water to make limewater. (1) (ii) Suggest the formula for the anion in compound A . Justify your answer.
cation present. (1) (b) On prolonged strong heating, compound A forms a white solid, B , and a gas. The gas turns limewater milky. (i) Identify, by name or formula, the compound that is dissolved in water to make limewater. (1) (ii) Suggest the formula for the anion in compound A . Justify your answer.
cation present. (1) (b) On prolonged strong heating, compound A forms a white solid, B , and a gas. The gas turns limewater milky. (i) Identify, by name or formula, the compound that is dissolved in water to make limewater. (1) (ii) Suggest the formula for the anion in compound A . Justify your answer.
gas turns limewater milky. (i) Identify, by name or formula, the compound that is dissolved in water to make limewater. (ii) Suggest the formula for the anion in compound A. Justify your answer.
limewater. (ii) Suggest the formula for the anion in compound A . Justify your answer.

c) When water is added to the white solid R it dissolves completely and	
c) When water is added to the white solid, B , it dissolves completely and exothermically to form solution C .	
(i) Identify, by name or formula, the anion present in B .	(1)
(ii) Identify, by name or formula, the anion present in C .	(1)
(iii) Suggest a test for the anion present in C. Give the result of your test.	(2)
ult	
d) Suggest the formula of compound A .	(1)
(Total for Question 1 = 1	2 marks)

2	This qu	estion is about two isomeric halogenoalkanes, P and Q .	
		ot aqueous solution of silver nitrate is added to each halogenoalkane. Both ogenoalkanes react to form a yellow precipitate.	
	(i)	Identify, by name or formula, this yellow precipitate.	(1)
	(ii)	The isomers have relative molecular mass 169.9. Deduce the molecular formula of the isomers.	1
			(1)
	(iii)	Halogenoalkane \mathbf{P} forms the yellow precipitate faster than halogenoalkane \mathbf{Q} .	
	,	Draw a displayed formula for halogenoalkane P .	(1)
	(iv)	Give the name or structural formula of the alcohol, \mathbf{R} , formed by the reaction of halogenoalkane, \mathbf{P} , with hot aqueous silver nitrate.	
			(1)

(i)	Give the colour change you would expect to see.	
()	Z. J. W. W. L. W.	(2)
	to	
(ii)	Give the name of S .	(1)
(iii)	Give the type of reaction involved in the conversion of ${\bf R}$ to ${\bf S}$.	(1)
	(Total for Question 2 = 8 m	arks)

	BLANK P	AGE	

3 The purity of a sample of potassium iodate(V) was determined by titration.

The steps of the experimental procedure are as follows.

- 1. 0.100 g of the sample was dissolved in water in a beaker and the solution made up to 100 cm³ in an appropriate flask.
- 2. A 10.0 cm³ portion of this solution of potassium iodate(V) was transferred to a conical flask.
- 3. An excess of both potassium iodide solution and sulfuric acid were then added to the conical flask. This produced a solution, **T**, containing iodine.
- 4. Solution **T** was titrated with 0.0200 mol dm⁻³ sodium thiosulfate solution using a suitable indicator.
- 5. Steps 2, 3 and 4 were repeated twice.
- (a) (i) Name the piece of apparatus used to remove the 10.0 cm³ portions of potassium iodate(V) solution (step 2).

(1)

(ii) Name the indicator you would use for the titration and give the colour change you would expect to see (step 4).

(2)

Indicator

Colour change from ______ to ____

(b) The following results were obtained for the titrations.

Titration number	1	2	3
Final burette reading / cm ³	19.50	33.20	46.95
Initial burette reading / cm ³	5.00	19.50	33.20
Titre / cm ³			

(i) Complete the table by calculating the titres.

(1)

(ii)	Explain	why	the correct	value	for the	mean	titre is	13.73 cm^3	
------	---------	-----	-------------	-------	---------	------	----------	----------------------	--

(1)

(iii) Calculate the number of moles of sodium thiosulfate in the mean titre.

(1)

(c) The ionic equation for the reaction between iodine and sodium thiosulfate in the titration is shown below.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

Calculate the number of moles of iodine in solution **T** using this equation and your answer to (b)(iii).

(1)

(d) The ionic equation for the reaction of iodate(V) ions with iodide ions is shown below.

$$IO_3^-(aq) + 5I^-(aq) + 6H^+(aq) \rightarrow 3I_2(aq) + 3H_2O(1)$$

Using this equation and your answer to (c), calculate the number of moles of iodate(V) ions which reacted to produce solution **T**.

(1)

(e) (i)	Name the appropriate flask used in step 1.	(1)
(ii)	Describe how you would make up exactly 100 cm ³ of potassium iodate(V) solution in this flask, ready for step 2.	(3)
(iii)	Calculate the number of moles of potassium iodate(V) in 100 cm ³ of the solution, using your answer to (d).	(1)
(iv)	Calculate the mass of potassium iodate(V) in the sample. [Assume the molar mass of potassium iodate(V) is 214g mol^{-1}]	(1)
(v)	Calculate the percentage purity of the sample.	(1)
(f) Sug	gest the most significant hazard in step 3.	(1)
	(Total for Question 3 = 16 m	arks)

4 An experiment to prepare 0.100 mol of 1-bromobutane uses the reaction of butan-1-ol with hydrogen bromide.

Hydrogen bromide is formed in the reaction mixture from potassium bromide and moderately concentrated sulfuric acid.

The process has an 80 % yield after purification of the 1-bromobutane.

$$KBr \ + \ H_2SO_4 \ \rightarrow \ KHSO_4 \ + \ HBr$$

$$CH_3CH_2CH_2CH_2OH \ + \ HBr \ \rightarrow \ CH_3CH_2CH_2CH_2Br \ + \ H_2O$$

The steps of the experimental procedure are as follows.

- 1. Add measured amounts of potassium bromide and butan-1-ol to 10 cm³ of water into a 50 cm³ two-necked flask.
- 2. Fit the two-necked flask with a reflux condenser and a tap funnel.
- 3. Immerse the flask in a beaker of cold water and add 10 cm³ of concentrated sulfuric acid from the tap funnel, a few drops at a time.
- 4. Remove the flask from the cold water and close the tap on the tap funnel. Heat the mixture under reflux for 30 minutes.
- 5. Allow the mixture to cool. Then set up the apparatus for distillation. Boil the mixture and collect the distillate in a measuring cylinder.
- 6. Transfer the distillate to a separating funnel. The distillate consists of two layers, an aqueous layer and impure 1-bromobutane. Separate the two layers.
- 7. Wash the impure 1-bromobutane with concentrated hydrochloric acid and separate the two layers.
- 8. Wash the 1-bromobutane layer with sodium hydrogencarbonate solution, releasing any gas formed.
- 9. Collect the 1-bromobutane layer in a conical flask and add anhydrous sodium sulfate.
- 10. Decant the 1-bromobutane into a 50 cm³ flask.

Data

Property	Butan-1-ol	1-bromobutane	Water
Density/g cm ⁻³	0.81	1.3	1.0
Molar mass/g mol ⁻¹	74	137	18
Boiling temperature / °C	117.3	101.7	100.0

(a) (i)	Show, by calculation, that 0.125 mol of butan-1-ol is needed to make 0.100 mol
	of 1-bromobutane.

(2)

(ii) Calculate the volume of 0.125 mol of butan-1-ol, in cm³.

(2)

(iii) Calculate the minimum mass of potassium bromide required in step 1.

[The molar mass of potassium bromide is 119 g mol⁻¹]

(1)

(b) Complete and label the diagram below of the apparatus assembled in steps 1, 2 and 3.

[You may assume that the apparatus is suitably clamped.]

(4)

c) (i)	State, with a reason, whether the upper or lower layer contains 1-bromobutane is step 6.	n
		(1)
(ii)	The product is washed with concentrated hydrochloric acid in step 7 to remove unreacted butan-1-ol. In step 8, why is the product then washed with sodium hydrogencarbonate solution and what causes a build up of gas?	(2)
d) (i)	What further step is necessary to purify the 1-bromobutane obtained in step 10?	(1)
(ii)	How does the step in (d)(i) give information about the purity of the product?	(1)
	(Total for Question 4 = 14 mar	rks)

BLANK PAGE

BLANK PAGE

÷	(1)	6.9 Li lithium ba	Na Sodium m	39.1 K potassium c	Rb Rb rubidium st	132.9 Cs caesium 55	[223] [Fr francium ra 87	* Lanthanide ser	
7	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	Ca Calcium 3	87.6 Sr strontium 38	137.3 Ba barium L	[226] Ra radium 88	* Lanthanide series * Actinide series	
			(3)	45.0 Sc scandium 21	88.9 Y yttrium 39	138.9 La* anthanum 57	[227] Ac* actinium 89	5	
		relat ato	(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104	140 Ce cerium 58	232 Th
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	NB niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105	141 Pr praseodymium 59	[231] Pa
		mass Ibol	(9)	52.0 Cr chromium 24	95.9 Mo molybdenum 42	183.8 W tungsten 74	Sg seaborgium 106	Nd Nd neodymium 60	
			8	52.0 54.9 Cr Mn chromium manganese 24 25	95.9 [98] Mo Tc molybdenum technetium 42 43	186.2 Re rhenium 75	[264] Bh bohrium 107	141 144 [147] Pr Nd Pm præsedymium neodymium promethium 59 60 61	238 [237] [242] [243] U Np Pu Am
	1.0 H hydrogen 1		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[242] Pu
			(6)	58.9 Co cobalt 27	102.9 Rh rhodium 45	192.2 	[268] Mt meitnerlum 109	152 Eu europium 63	[243] Am
			(10)	58.7 Ni nicket 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[268] [271] Mt Ds metinerium damstatium 109 110	157 Gd gadotinium 64	[247] Cm
			(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	Rg roentgenium 111	159 Tb terbium 65	[245] BK
			(12)	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80		163 Dy dysprosium 66	Cf Es
2	(13)	10.8 B boron 5	27,0 Al aluminium 13	69.7 Ga gallium 31	114.8 In indium 49	204.4 T1 thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	165 Ho holmium 67	[254] Es
4	(14)	12.0 C carbon 6	28.1 Si silicon 14	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb lead 82	atomic nu but not f	167 Er erbium 68	[253] Fm
2	(15)	14.0 N nitrogen	31.0 P phosphorus 15	74.9 As arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thullium 69	Md
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	116 have	173 Yb ytterbium 70	[254] No
7	(77)	19.0 F fluorine 9	35.5 CI chlorine 17	79.9 Br bromine 35	126.9 	[210] At astatine 85	been repor	175 Lu Lutetium 71	[257] Lr
0 (8)	4.0 He helium 2	20.2 Ne	Ar argon 18	83.8 Krypton 36	Xe xenon 54	[222] Rn radon 86	ted		