Ornaçue d=(x,y,m). Pro lib. proocisto p ruaci V, p-adický exponent, Symbol prílm značí prím, pr+1/m. Cislo men rozloime na soucin tri podwou ne soucietuy de cisel: M = M1. M2. M2, priton do m3 prispejí prvocísla plm splinjící uiu { vp(x), vp(y)} > vp(u). Do m2 Ostatuí splunjící navíc vp(y) >vp(x). Konecně clushá zbytková věta dá $a \in \mathbb{Z}$, $a \equiv 0 \pmod{m_1}$, $a \equiv 1 \pmod{m_2}$ do un ta zbyla. Protore d1x, d1y, existuje VEZ, re ax+y=d·v. Cíuska zytková veta dá u EZ tak, ře $u \equiv v \pmod{m_1 m_2}, u \equiv 1 \pmod{m_3}$

 $du \equiv dv = \alpha x + y \pmod{u_1 u_2},$ $du \equiv 0 \equiv \alpha x + y \pmod{u_3},$ $du \equiv 0 \equiv \alpha x + y \pmod{u_3}, \quad \text{Whatene, ie } (u_1 u_1) = 1.$ $a + edy du \equiv \alpha x + y \pmod{u}.$

1) $p(u_1 =) v_p(dv) = v_p(ax+y) = v_p(y)$, we lot $v_p(y) = v_p(a)$, tedy $v_p(dv) = v_p(y) = v_p(d)$, and tend $p+v_1h_1$. $p+u_1$

2) $P^{1}m_{2} = v_{p}(du) = v_{p}(ax+y) = v_{p}(x)$, nebot $v_{p}(ax) = v_{p}(x) < v_{p}(y)$ $v_{p}(du) = v_{p}(x) = v_{p}(d)$, add pt v_{1} fi. Ptu $v_{p}(dv) = v_{p}(dv) = v_{p}(dv) = v_{p}(dv)$

3) plu3 => ptu 2 définice.