CMPS411 Software Engineering Spring 2018

Lecture 14

Software Project Management: Planning

Project Needs Planning

- A plan
- Project teams
- Identification of tasks
- Tasks modelling with various graphs and charts
- Resource analysis
- Organisation structures for software projects
- Budgets and cost control

Software Teams

How to lead a software project?

- Need planning for software project
- Management of activities
- Identify tasks
- Assign tasks
- Develop dependency diagrams
- Structure of organizations

Project Milestones and Deliverables

- Project Milestones are always associated with the following two:
 - Schedule (bounded by time)
 - Deliverables (intermediate products)
- Milestones are points in the schedule against which you can assess progress,
 - For example, within 5 weeks, the design of the interface must be delivered
- Deliverables are work products that are delivered to the customer,
 - For example, a requirements document for the system.

How to Develop an Initial Project Schedule

- ♦ Identify the work (activities/tasks) that needs to be done:
 - » This is the Work Breakdown Structure (WBS)
- ♦ Identify the dependencies between work units (tasks).
 - » Draw a <u>dependency diagram</u> for all identified activities/tasks and relationships
 - » Dependency diagram represents "depends on" relationships between identified activities/tasks
- ♦ Identify the key milestones
- ♦ Estimate the duration of the work to be done for each work unit (task) and add it to the dependency diagram.
- Analyze the diagram to determine <u>critical paths</u> and <u>slack times</u> of noncritical paths.

Definitions: Functions, Activities and Tasks

A Project has a duration and consists of activities and tasks

• <u>Tasks</u>:

- Major Smallest unit of work subject to management
- Small enough for adequate planning and tracking
- Large enough to avoid micro management

Definitions: Critical Path, Non Critical Path, Slack Time, Person-Month

♦ Critical path:

- A sequence of activities that take the longest time to complete
- The length of the critical path(s) defines how long your project will take to complete.

♦ Noncritical path:

A sequence of activities that you can delay and still finish the project in the shortest time possible.

♦ Slack time:

The maximum amount of time that you can delay an activity and still finish your project in the shortest time possible.

♦ Person-Month (Man-Month):

- It is the metric for expressing the effort to complete a task.
 - Example: 10 Person-Month means if 10 persons work the work will be complete in one month. If one person works, it will take 10 months to complete. If 5 persons work, it will take 2 months to complete

Map Tasks onto Time

- ♦ Estimate starting times and durations for each of the activities/tasks in the dependency graph
- Compute the longest path through the graph: This is the estimated duration of the project. That is, total project time
- ♦ Determination of the critical path(s)
- ♦ Determination of slack times
- ♦ Determine activities that are critical to ensure a timely delivery
- ♦ Analyse the diagrams
 - To find ways to shorten the project duration
 - To find ways to do activities in parallel

Example of a Critical Path

The Project Plan – Simple Form

- ♦ How will the project be divided?
 - Work breakdown structure
- ♦ When will the work be carried out?
 - Gantt Chart
- ♦ Who does what?

Work Breakdown Structure (WBS)

- ♦ Work broken down in a hierarchical manner until:
 - Each task is "atomic"
 - Duration can be estimated with reasonable accuracy
 - Can be carried out by one person
- ♦ Concentrates on what is to be done, rather than how it is to be done
- ♦ Each task :
 - Has a well defined beginning and end
 - Will consume resources
 - May be dependent on other tasks

WBS Example

WBS Example

WBS Example

Example Gantt chart

	Week Number													
Activity	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α														
В														
С														
D														
E														
F														
G														

Example Gantt chart

						4	7							
Activity		Week Number												
Activity	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α														
В														
С														
D														
Е														
F														
G														
						4								
							•							

Gantt Chart

Gantt Chart With Milestones

Red texts signify the milestones

Gantt chart components

An Activity/Task is represented as follows:

The length of the bar is proportional to the duration time of the activity

Gantt chart components

Progress on an Activity/Task can be shown as follows:

The length of the bar is proportional to the amount of work completed. This example is approx 50% complete

Example Gantt chart

						4	7							
		Week Number												
Activity	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α														
В														
С														
D														
Е														
F														
G														
							•							

Example Gantt chart

						We	ek N	Numb	oer					
Activity	1	2	3	4	5	6	7	8	9	10	11	12	13	14
А														
В														
С														
D														
Ε														
F														
G														
						4								
							-							

Exercise

Activity	Start (Week No)	Duration (Weeks)	
А	1	5	
В	2	3	
С	1	8	
D	3	4	
E	5	5	
F	2	4	
G	10	6	
Н	6	6	
1	7	2	
J	8	6	

Exercise

Activity	Start (Week No)	Duration (Weeks)	% Complete
Α	1	5	100
В	2	3	100
С	1	8	75
D	3	4	100
E	5	5	60
F	2	4	25
G	10	6	0
Н	6	6	100
	7	2	50
J	8	6	50

Gantt chart advantages

- ♦ It is good at showing timing
- ♦ It shows project progress clearly
- ♦ It is therefore an ideal tool for the summary plan

Gantt chart disadvantages

- ♦ Not ideal for showing inter-relationships
 - MS Project does do this
- ♦ Locating an activity requires three simultaneous decisions:
 - Method
 - Time
 - Resources

Example of Dependency Table:Tasks, Efforts, Durations, and Dependencies

Task/Activity	Effort (person- days)	Duration (days)	Dependencies
T1	15	10	
T2	8	15	
Т3	20	15	T1 (M1)
T4	5	10	
T5	5	10	T2, T4 (M3)
T6	10	5	T1, T2 (M4)
T7	25	20	T1 (M1)
Т8	75	25	T4 (M2)
Т9	10	15	T3, T6 (M5)
T10	20	15	T7, T8 (M6)
T11	10	10	T9 (M7)
T12	20	10	T10, T11 (M8)

Activity Bar Chart

Staff Allocation Chart

Example: Dependency Graph with Time

Critical path from start to T1, M1, T3, T9, M5, T11, M8, and T12

Activity Bar Chart (Gantt Chart)

MS Project – Gantt Chart

MS Project – Pert Chart

A PERT chart is a project management tool used to schedule, organize, and coordinate tasks within a project

Tools Support for Establishing Schedules

- ♦ Tool support for
 - Graphical user interface for entering activity data
 - Automatic computation of critical paths
 - Multiple views (PERT, Gantt, table views) and switching between these views
- ♦ Many products available. Examples
 - Fast Track (Demo) (http://www.aecsoftware.com/downloads/freedemo)
 - Main view: Gantt Charts
 - Microsoft Project (http://www.microsoft.com/office/project/default.asp)
 - PERT Charts, Gantt Charts, combined Milestone/Gantt Charts
- ♦ Some Scheduling Tools:
 - Dependency table
 - Activity bar chart (Gantt chart),
 - Staff allocation chart
 - Dependecy graph

Resources

- ♦ Which resources are needed in the project?
- Which activity needs which resources and when?
- ♦ Examples of resources:
 - People
 - Machine
 - Software
 - Tools and techniques
 - Money
 - Office
 - Etc.
- ♦ The assignment of work to an operator, machine or department
 - When too much work is required of a resource it is overloaded
 - If too little work is assigned to a resource it is underloaded
- ♦ What are the implications if a resource is underloaded?

Limits

- ♦ Time limited projects Projects where time is the overriding factor
- ♦ They must be completed by a certain date
- ♦ Resource limited projects Limited resources are available to complete the project
- Think about the relationship between time and resources in a project?

Units of resource

♦ It is desirable when possible to state the work required in units of time. (i.e. person/machine hours)

♦ Example

- To design a use case will take one person 12 hours.
- So one use case = 12 person hours of design
- One person can complete this in 12 hours.
- ♦ How long would it take 12 persons to dig the hole?

Network Diagrams

- ♦ Splits up the decision making process into
 - Method/logic the order in which tasks have to be completed
 - Time estimates for the time to completion can be added to each task
 - Resources these can be added and then analysis carried out

♦ Two Methods:

- Activity on Arrow (AoA)
 - Traditionally the preferred method
- Activity on Node (AoN)
 - More popular these days
 - Supported by most Project Management software tools (i.e. MS Project)

Activity on Arrow (AoA)

- Arrows are used to represent an activity
- Circles are used to represent the points where activities meet

i.e. the dependency between activities

Activity on Node (AoN)

- Activities are represented by boxes
- Dependencies are represented by arrows joining the boxes

Comparison between AoA and AoN

AoA AoN

Dependency Example in AoA and AoN

Task B cannot start until Task A is complete

Activity on Node

Activity on Arrow

More example

Four activities/tasks:

A, B, K, L

Activity K is dependent on activity A

Activity L is dependent on activities A and B

The problem with AoA

The same example in AoA

Activity K is dependent on activity A

Activity L is dependent on activities A and B

Exercise on AoA

- ♦ Draw the following:
 - Activity K is dependent on activities A and B
 - Activity L is dependent on activities B and C
 - Activity M is dependent on activity B

Drawing the network

- ♦ Direction
 - The flow of work is from left to right
- ♦ Identifying Tasks
 - Each task is given a unique ID number
 - ID number is often given in WBS
 - Estimated task duration in terms of day/hours/week/month
 - Earliest start date and earliest finish date of each task
 - Latest start date and latest finish date of each task.
- ♦ Make dependency
- ♦ Identify critical path of the entire project
- ♦ Recognize slack time of a task

		_									
Earliest	Estimated	Earliest									
Start	Duration	Finish									
	Activity Number Activity Description (Task ID)										
Latest	Float	Latest									
Start	(Slack)	Finish									

Exercise – Resource Analysis

Project 1: Verification of a computer system

The following table shows the required activities and the associated resources for this project.

Activity			Duration	
ID	Activity	Immediate Predecessor	(Days)	Resource ID
1	Test Module A	none	4	5
2	Test Module B	Test Module A	6	5
3	Test Module C	none	7	10
4	Test Combined Modules	Test Module B, Test Module C	4	15
5	Check User Documents	Test Combined Modules	5	10
6	Print User Documents	Check User Documents	2	5
7	Final Systems Check	Test Combined Modules	9	5
8	Prepare Invoice	Final Systems Check	1	5
9	Ship to Customer	Print User Documents, Final	2	5
		Systems Check		

- Example of Resources:
 - ID 5: Testing tool (e.g., JUnit) and test programmer
 - ID 10: Model checker for verification and verifier
 - ID 15: Test programmer

Exercise on AoN

- Resources are not shown in the AoN diagram.
- Draw a Gantt Chart for the resources required by the tasks

Gantt Chart

• Earliest Start Time

Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	5																											
2					5																							
3	10																											
4											15																	
5															10													
6																				5								
7															5													
8																								5				
9																								5				

• Now add the resource usage histogram

Gantt Chart with Resource analysis

• Earliest Start Time

Role of Organization in Project Planning

- ♦ Definition Organization: A set of organizational units and their different relationships with each other.
- ♦ Organizational units can be organized according to many different categories, for example by function or by project type. Typical examples of organizational units:
 - Functional organization: Research, Development, Marketing, Sales
 - <u>Project organization</u>: Project 1, Project 2,
- ♦ An organization usually has 3 different types of relationships between organizational units.
 - Reporting structure: To report status information
 - Decision structure: To propagate decisions
 - Communication structure: To exchange information

Example of a Functional Organization

Functional organization of a "traditional business"

Matrix Organization

- Participants from different departments of the functional organization are assigned to work on projects.
- → The project manager and team members may be assigned to the project for <= 100 % of their time
 </p>

Matrix Organization Example

Ma	atrix -	Project									
	ization	Airline reserv. project	Bank accountg. project	Airline Control project	Stock Market project						
	Project manage-ment dpt	Abdelkarim Erradi Full time	Osama Shatta Half time	Khaled Khan Full time	Jihad Jaam Full time						
Func- tional Unit	Marketing dpt	Ali Jaoua Full time	Adel Cherif Full time	Mohamad Samaka Half time	Abu Bakr Taha Full time						
	Engineering dpt	Hassan Krad 	Tarek Al Fouly 	Khaled Shaban 	Mohamad Salah 						

Use a Functional, Project or Matrix Organization?

Functional organization: Projects with high degree of certainty, stability, uniformity and repetition. Requires little communication; Role definitions are clear

When?

- The more people on the project, the more need for a formal structure
- Client requires test team independent from design team
- Project manager insists on previous successful structure
- Project or Matrix organization: Project with degree of uncertainty. Open communication needed among members; Roles are defined on project basis

When?

- Requirements change during development
- New technology develops during project

Definition: Role

- ♦ A role is a set of responsibilities. A role is instantiated during a project and assigned to one or more persons.
- Instances of roles are often also called players ("who are the key players?") or stakeholders
- **♦ Key Roles in Organizations:**
 - Project Manager: The person ultimately responsible for the successful completion of the project
 - Project Team Member: Participants who are responsible for performing individual activities and tasks (in a project or matrix organization)
 - Functional Manager: The team member's supervisor in the department (in a functional organization)
 - Upper management: People in charge of the departments or projects

Assigning Responsibilities To People

Project To Do List (from project template)

Linear Responsibility Chart

- ♦A linear responsibility chart is a matrix that depicts the role that each project participant will play in different activities identified in the work breakdown structure.
- **♦ Rows:** Project activities **Columns:** Roles/Project participants
- **♦**Entries: Type of responsibility
 - P (Primary responsibility): Committed to ensure that the desired result is achieved
 - S (Secondary responsibility): Committed to some portion of the result
 - A (Approval): Not doing the work, but will approve work
 - R (Review): Will review and comment on the work product of an activity
 - O (Output): Will receive the work product of an activity
 - I (Input): Will provide input for a task or activity

Example of a Responsibility Chart

	Project Manager	Team Leader	Team Member A	Team Member B
Develop Plan	P			
Run weekly meeting		A	P	S
Write SDD	P	S	S	S

Legend:

P = Primary responsibility

S = Secondary responsibility)

A = Approval

References

- R. Pressman: Software Engineering: A practitioner's approach
- Hughes and Cotterell: Software Project Management
- Cadle and Yeates: Project Management for Information Systems
- Lockyer and Gordon: Project Management and Project Network Techniques