Nonstationary Extremes, II Heteroscedastic Extremes in Practice

Manuele Leonelli

First LARS-IASC School on Computational Statistics and Data Science Federal University of Bahia, Salvador, Brazil November 15th, 2018

Plan for this session

- Overview of available sofware
- 2 Implement univariate methods in R:
 - (a) Block maxima approach
 - (b) r-largest observations appraoch
 - (c) Peaks over threshold
 - (d) Heteroscedastic extensions
- Oiscuss assumptions, diagnostics and model selection criteria

All code to implement the methods is available at

github.com/manueleleonelli.

Why R?

Three main reasons:

- R is free!
- R is open-source
- Largest set of functions for extreme value analysis (EVA)

Other sofware is available:

- In Matlab: EVIM and WAFO
- GUI software: Xtremes and EXTREMES
- Specialized software: HYFRAN, GLSNet

M. Leonelli

E. Gilleland, M. Ribatet, A.G. Stephenson (2013) A software review for extreme value analysis. *Extremes* 16:103-119.

R packages

Most functions for EVA are stored in R packages to perform a wide array of analyses:

- Univariate: ismev, extRemes, evmix, POT ...
- Bayesian: evdbayes, revdbayes, MCMC4extremes ...
- Multivariate: evd, copula, extremis, texmex ...
- Spatial: spatialExtremes, spatialADAI ...

See this guide.

All these require at least some programming, as usual in R. One notable exception is in2extremes.

Let's get started!

```
> library(ismev)
                       > plot(fremantle[,1:2], pch=19,cex=0.5)
> data(fremantle)
> head(fremantle)
  Year SeaLevel
                   SOI
           1.58 - 0.67
1 1897
                        SeaLevel
                             1.6
           1.71 0.57
2 1898
           1.40 0.16
3 1899
4 1900
           1.34 - 0.65
5 1901
           1.43 0.06
 1903
           1.19 0.47
                                  1900
                                           1940
                                                     1980
```

Southern Oscillation Index (SOI)

```
> ggplot(fremantle,aes(x=SOI,y=SeaLevel,
+ color=Year))+geom_point()
```


Fitting GEV distributions

- > library(extRemes)
- > ?fevd

Let's look at the help

Another possibility is to use the ismev package.

M. Leonelli

E. Gilleland, R.W. Katz (2016) extRemes 2.0: An extreme value analysis package in R. Journal of Statistical Software 72:1-39.

- > fremantle_fit <- fevd(fremantle\$SeaLevel,type="GEV")</pre>
- > summary(fremantle_fit)

fevd(x = fremantle\$SeaLevel, type = "GEV")

[1] "Estimation Method used: MLE"

Negative Log-Likelihood Value: -43.56663

Estimated parameters:

location scale shape 1.4823417 0.1412723 -0.2174282

Standard Error Estimates:

location scale shape 0.01672527 0.01149706 0.06378114

Diagnostics: qq-plot

> plot(fremantle_fit,type=c("qq"),main="")

Diagnostics: densities

> plot(fremantle_fit,type=c("density"),main="")

Diagnostics: return levels

> plot(fremantle_fit,type=c("rl"),main="")

Inference: confidence intervals

> ci(fremantle_fit,type="parameter")

fevd(x = fremantle\$SeaLevel, type = "GEV")

```
[1] "Normal Approx."

95% lower CI Estimate 95% upper CI location 1.4495608 1.4823417 1.51512265 scale 0.1187385 0.1412723 0.16380615 shape -0.3424370 -0.2174282 -0.09241948
```

Inference: return levels

```
c(2.10.20.50.100.500).do.ci=TRUE)
+
fevd(x = fremantle$SeaLevel, type = "GEV")
[1] "Normal Approx."
                    95% lower CI Estimate 95% upper CI
                        1.498259 1.532110
2-year return level
                                            1.565962
10-year return level 1.689876 1.733753 1.777631
20-year return level 1.739108 1.791463 1.843817
50-year return level 1.785590 1.853927 1.922265
100-year return level 1.810194 1.893106 1.976017
500-year return level
                       1.843731 1.963815
                                            2.083900
```

> return.level(fremantle_fit,return.period=

Bayesian GEV fitting

Let's look at the help again.

```
> fremantle_fit_Bayes <- fevd(fremantle$SeaLevel,
+ type="GEV",method="Bayesian")
> summary(fremantle_fit_Bayes)
```

[1] "Quantiles of MCMC Sample from Posterior Distribution"

```
2.5% Posterior Mean 97.5% location 1.4432050 1.4806897 1.51878531 scale 0.1225513 0.1451410 0.17234688 shape -0.3333519 -0.2014116 -0.05050336
```

Bayesian return levels

> plot(fremantle_fit_Bayes,type="rl",main="")

Convergence checking

> plot(fremantle_fit_Bayes,type="trace")

Estimated location of maximum Sea Level

- > plot(fremantle[,1:2],pch=19,cex=0.5)
- > abline(h=fremantle_fit\$results\$par[1],lwd=2)

Non-stationary fitting

```
> fremantle$Time <- fremantle$Year-min(fremantle$Year)</pre>
> fremantle_fit_time <- fevd(SeaLevel,data=fremantle,
                                location.fun = ~Time)
+
 summary(fremantle_fit_time)
Estimated parameters:
          m<sub>11</sub>O
                        mıı 1
                                     scale
                                                   shape
 1.382225781 0.002032151
                              0.124326256 - 0.125309664
 Standard Error Estimates:
          m<sub>11</sub>O
                                     scale
                        mıı1
                                                   shape
0.0288458801 0.0004982185 0.0103749710 0.0682389684
```

Is there a time effect?

```
> ci(fremantle_fit_time,type="parameter")
fevd(x = SeaLevel, data = fremantle, location.fun = ~Time)
[1] "Normal Approx."
     95% lower CI
                      Estimate 95% upper CI
mu0
       1.32568889 1.382225781 1.438762667
mu1 0.00105566 0.002032151 0.003008641
scale 0.10399169 0.124326256 0.144660825
shape -0.25905558 -0.125309664 0.008436257
```

Time-varying return levels

> plot(fremantle_fit_time, "rl", rperiods=c(5,10,50))

fevd(x = SeaLevel, data = fremantle, location.fun = ~Time)

Time-varying location of Sea Level

```
> plot(fremantle[,1:2],pch=19,cex=0.5)
> abline(a=fremantle_fit_time$results$par[1],
+ b=fremantle_fit_time$results$par[2])
```


Year

Model selection via hypothesis testing

Model	AIC	BIC
Stationary	-81.1	-73.8
Non-Stationary	-91.8	-82.0

A quadratic time effect?

Deviance test has p-value 0.2231935 - No significant quadratic effect

Adding SOI to the model

```
95% lower CI Estimate 95% upper CI mu0 1.328079958 1.384328499 1.44057704 mu1 0.016019518 0.054519871 0.09302022 mu2 0.001141007 0.002114038 0.00308707 scale 0.101075964 0.120733366 0.14039077 shape -0.276802887 -0.149992773 -0.02318266
```

Time and SOI dependent returns

> plot(fremantle_fit_SOI, type="rl", rperiod=c(5,10,50))

Deviance test has p-value 5.47286e-06 - Significant SOI effect

What about an interaction?

We can test this easily using location.fun = SOI+Time.

However the deviance test has p-value 0.6162236, thus no interaction effect.

Extracting maxima

```
> data(Fort)
> head(Fort)
  obs tobs month day year Prec
                      1900
                    2 1900
3
    3
                    3 1900
                    4 1900
5
    5
       5
                    5 1900
6
    6
         6
                    6 1900
```

Extracting maxima

```
> bmFort <- blockmaxxer(Fort,
+ blocks = Fort$year, which="Prec")</pre>
```


Venice sea levels

- > data(venice)
- > head(venice)

```
Year
            r2
                r3
                         r5 r6 r7 r8 r9 r10
                     r4
1 1931 103
            99
                 98
                     96
                         94 89 86 85 84
                                          79
            78
                     73
2 1932
        78
                 74
                         73 72 71 70 70
                                          69
3 1933 121 113 106
                    105
                        102 89
                               89
                                   88 86
                                          85
4 1934 116 113
                 91
                     91
                         91 89
                               88 88 86
                                          81
5 1935 115 107 105 101
                         93 91
                               NA NA NA
                                          NA
 1936 147 106
                93
                     90
                         87 87 87 84 82
                                          81
```

Venice sea levels

Fitting r-largest observations

r	β_0	eta_1	σ	ξ
1	96.7 (4.3)	0.59 (0.14)	14.6 (1.6)	-0.022 (0.084)
5	104.1 (2.0)	0.47 (0.06)	12.3 (0.8)	-0.033 (0.043)
10	104.54 (1.7)	0.49 (0.04)	11.75 (0.7)	-0.06 (0.028)

Time-dependent location

Various diagnostics can be plotted using rlarg.diag

Perhaps a "seasonal" effect?

A financial application: the Dow Jones Index

- > data(dowjones)
- > plot(dowjones,type='1')

The negative log-returns

dowjones\$Date

The returns' distribution

> hist(dowjones\$returns)

Choosing the threshold: MRL plot

> mrl.plot(dowjones\$returns)

Choosing the threshold: MRL plot

```
> library(evmix)
> mrlplot(dowjones$returns,
+ try.thresh=c(quantile(dowjones$returns,0.9),2),
+ ylim = c(-2,4))
```


Choosing the threshold: stability plots

> tshapeplot(dowjones\$returns,ylim=c(-2,2),try.thresh = 2)

Choosing the threshold: stability plots

> tscaleplot(dowjones\$returns,ylim=c(-8,4),try.thresh = 2)

Choosing the threshold: hill plot

This is only valid for heavy-tailed distributions $\xi>0$

- > hillplot(dowjones\$returns,orderl=c(1,150),
- + try.thresh= 2,xlab="Order Statistic")

Fitting the GPD to exceedances

```
> dow_fit <- fevd(dowjones$returns,type="GP",threshold = 2)
> summary(dow_fit)

Estimated parameters:
    scale    shape
0.6183804 0.2941935
```

Standard Error Estimates: scale shape 0.1496571 0.1918915

Fitting the GPD to exceedances

```
> dow_fit2 <- fevd(dowjones$returns,type="GP",</pre>
                   threshold=quantile(dowjones$returns,0.9))
+
> summary(dow_fit2)
Estimated parameters:
              shape
    scale
0.6593380 0.1490148
 Standard Error Estimates:
     scale
               shape
```

0.08408249 0.09380125

Estimated densities

Estimated parameters and return levels

Thresh $= 2$		Thresh = q(0.9)				
scale shape	lower 0.325 -0.081		scale	lower 0.494 -0.034	mean 0.659 0.194	upper 0.824 0.333
2-year	lower 3.43 1.35	7.00	2-year 20-year	3.77	mean 5.22 8.56	upper 7.00 12.86
•	r -5.74		100-year		11.7	19.97

Quantile plots

Are returns independent?

Extremal index

The extremal index θ measures the level of clustering of extreme events $(\theta = 1 \text{ corresponding to independence})$

M. Leonelli Nonstationary Extremes

C.A.T. Ferro, J. Segers (2003) Inference for clusters of extreme values . Journal of the Royal Statistical Society Series B 65:545-556.

Declustering

We can use the function decluster to extract the cluster maxima.

Results after declustering

Thresh. r		σ	ξ	Ext.Index
2	0	0.62 (0.15)	0.29 (0.19)	0.74
2	5	0.61 (0.15)	0.31 (0.20)	0.76
2	7	0.79 (0.23)	0.24 (0.22)	1
q(0.9)	0	0.66 (0.08)	0.15 (0.09)	0.57
q(0.9)	4	0.72 (0.10)	0.12 (0.09)	0.70
q(0.9)	7	1.10 (0.22)	0.07 (0.14)	1

Heteroscedasticity

- Extremes may also not be identically distributed.
- The scedasis function gives a representation of tail risk.
- To compute this we need to restrict ourselves to the case $\xi>0$ and constant.
- The extremis package gives an easy implementation for the scedasis.

M. Leonelli Nonstationary Extremes 50 / 55

J.H.J Einmahl, L. de Haan, C. Zhou (2016) Statistics of heteroscedastic extremes. Journal of the Royal Statistical Society Series B 78:31-51.

Testing for constant ξ

Here we implement the following test

- Compute the Hill estimator $\hat{\xi}$ over the full time series using the k highest observations
- ② Divide the time series into *m* blocks of equal length
- **3** Compute the Hill estimator $\hat{\xi}_l$ over each block using the $\lfloor k/m \rfloor + 1$ highest observations
- Compute the test statistics

$$T = \frac{1}{m} \sum_{l=1}^{m} \left(\frac{\hat{\gamma}_l}{\hat{\gamma}} - 1 \right)^2$$

5 Compare kT with the quantile $\chi^2_{m-1}(1-\alpha)$ for a confidence level α

Results for the Dow Jones series

The values *k* were chosen to match the threshold used till now.

m	k	p-value		
4	42	0.99		
4	130	0.67		
3	42	0.87		
3	130	0.99		

The assumption of constant ξ looks tenable.

Fitting the scedasis function

We can use the function cdensity to estimate the scedasis.

Figure: Scedasis function: threshold=2 (left), threshold=q(0.9) (right)

Fitting the scedasis cdf

Figure: Scedasis cdf: threshold=2 (left), threshold=q(0.9) (right)

Conclusions

- R provide a set of packages to carry out a large number of inferential routines for extremes, including non-stationary, heteroscedastic extensions.
- Tomorrow we will look at the implementation of multivariate methods
- On Saturday you will actively fit extreme models to data.