Classification vs. Prediction

Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Prediction:

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical Applications
 - credit approval
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes or concepts
 - Input:
 - Database tuples described by attributes
 - Each tuple/sample is assumed to belong to a predefined class
 - determined by the class label attribute
 - Thus, it is supervised learning
 - Training data set
 - The set of tuples used for model construction
 - Training samples
 - Randomly selected from the sample polulation
 - The model is represented as classification rules, decision trees, or mathematical formulae

- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model (or classifier)
 - Holdout method
 - Uses a test set of class-labeled samples
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate
 - the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur

Classification Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Classification Process (2): Use the Model in Prediction

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes
Joseph	Assistant Prof	7	yes

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Prediction vs. Classification

- Prediction
 - Assess the class of an unlabeled sample
 - Assess the value (or range) of an attribute of a given sample
- Classification and regression two major types of prediction
 - Classification
 - Predict discrete or nominal values
 - Regression (commonly referred to as Prediction)
 - Predict continuous or ordered values

Classification and Prediction

- What is classification? What is prediction?
- Classification by decision tree induction
- Bayesian Classification
- Prediction
- Classification accuracy

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples (samples) are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that reflect noise or outliers
 - To improve classification accuracy on unseen data

- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree
 - Trace the path from the root to a leaf node
 - The leaf node shows the class prediction for that sample

Training Dataset

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys_computer"

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-andconquer manner
 - ID3 decision tree induction algorithm
 - At start, all the training samples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Samples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning the samples –
 - majority voting is employed for classifying the leaf
 - Label with the class in majority among samples
 - There are no samples left leaf is created with the majority class in samples

How to Split an Attribute?

Multi-way Split

Binary Split

Numeric attribute

Attribute Selection Measure

- Information gain (ID3/C4.5)
 - All attributes are assumed to be categorical
 - Can be modified for continuous-valued attributes
- Gini index
 - All attributes are assumed continuous-valued
 - Assume there exist several possible split values for each attribute
 - May need other tools, such as clustering, to get the possible split values
 - Can be modified for categorical attributes

Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Assume there are two classes, P and N
 - Let the set of samples S contain p elements of class P
 and n elements of class N
 - The amount of information, needed to decide if an arbitrary sample in S belongs to P or N is defined as

$$I(p,n) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

Information Gain in Decision Tree Induction

- Assume that using attribute A that has v distinct values, a set S will be partitioned into sets $\{S_1, S_2, ..., S_v\}$
 - If S_i contains p_i samples of P and n_i samples of N_i , the entropy, or the expected information needed to classify objects in all subtrees S_i is

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

 The encoding information that would be gained by branching on A

$$Gain(A) = I(p,n) - E(A)$$

Attribute Selection by Information Gain Computation

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"
- I(p, n) = I(9, 5) = 0.940
- Compute the entropy for age:

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.69$$

$$Gain(age) = I(p,n) - E(age)$$

$$= 0.25$$

Similarly

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit\ rating) = 0.048$$

Information Gain Example

Before Split

P(C1): P(BuysComputer = yes) = 9/14 P(C2): P(BuysComputer = no) = 5/14

Entropy of the Total Data Set

$$Info(D) = -\frac{9}{14}\log(\frac{9}{14}) - \frac{5}{14}\log(\frac{5}{14}) = -0.643* - 0.637 - 0.357* - 1.485 = 0.94$$

$$Info(N1) = -\frac{2}{5}\log(\frac{2}{5}) - \frac{3}{5}\log(\frac{3}{5}) = -0.4* - 1.322 - 0.6* - 0.737 = 0.971$$

$$Info(N2) = -\frac{4}{4}\log(\frac{4}{4}) - \frac{0}{4}\log(\frac{0}{4}) = -1*0 - 0*\inf = 0$$

$$Info(N3) = -\frac{3}{5}\log(\frac{3}{5}) - \frac{2}{5}\log(\frac{2}{5}) = -0.6* -0.737 - 0.4* -1.322 = 0.971$$

The combined expected information for this split is then:

$$Info_{age}(N) = \frac{5}{14} Info(N1) + \frac{4}{14} Info(N2) + \frac{5}{14} Info(N3) = 0.694$$

The information gain associated with this split is

$$Gain(age) = Info(D) - Info_{age}(N) = 0.94 - 0.694 = 0.246$$

Gini Index

If a data set T contains examples from n classes, gini index, gini(T) is defined as

 $gini(T) = 1 - \sum_{j=1}^{n} p_{j}^{2}$ where p_{j} is the relative frequency of class j in T.

where p_j is the relative frequency of class j in T.

If a data set T is split into two subsets T_1 and T_2 with sizes

 N_1 and N_2 respectively, the *gini* index of the split data contains examples from n classes, the *gini* index *gini*(T) is

defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

The attribute provides the smallest gini_{split}(T) is chosen to split the node (need to enumerate all possible splitting points for each attribute).

Gini Example

Before Split

```
P(C1): P(BuysComputer = yes) = 9/14
P(C2): P(BuysComputer = no) = 5/14
```

Gini of the Total Data Set

$$Gini(D) = 1 - (\frac{9}{14})^2 - (\frac{5}{14})^2 = 0.459$$

- For the child node N1, P(C1) = 2/5 and P(C2) = 3/5
 - Hence, $Gini(N1) = 1 (2/5)^2 (3/5)^2 = 0.48$
- For the child node N2, P(C1) = 4/4 and P(C2) = 0/4
 - Hence, $Gini(N2) = 1 (1)^2 (0)^2 = 0$
- For the child node N3, P(C1) = 3/5 and P(C2) = 2/5
 - Hence, Gini(N3) = $1 (3/5)^2 (2/5)^2 = 0.48$
- Now, the weighted Gini for the attribute "age" is:
 - Gini(age) = (5/14) * Gini(N1) + (4/14) * Gini(N2) + (5/14) * Gini(N3) = 0.343
- The information gain association with this split is
 - Gain(age) = Gini(Before split) Gini(age) = 0.459 0.343 = 0.116

Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easier for humans to understand
- Example

```
IF age = "<=30" AND student = "no" THEN buys_computer = "no"
IF age = "<=30" AND student = "yes" THEN buys_computer =
    "yes"

IF age = "31...40" THEN buys_computer = "yes"

IF age = ">40" AND credit_rating = "excellent" THEN
    buys_computer = "no"

IF age = ">40" AND credit_rating = "fair" THEN buys_computer =
    "yes"
```

Bayesian Classification

- Statistical classifiers
 - Predict class membership probabilities
 - Probability that a given sample belongs to a particular class
 - Naïve Bayesian classifier
 - Effect of an attribute value on a given class is independent of the values of the other attributes
 - Class conditional independence
 - Computationally simple
 - Comparable in performance with decision tree classifiers
 - Bayesian belief networks
 - Allow representation of dependencies among attributes

Bayesian Theorem

- X a data sample whose class label is unknown
- H a hypothesis that the data sample X belongs to a specified class C
- To determine P(H | X)
 - The probability that the hypothesis H holds given the observed data sample X
 - Also called the posterior probability (a posteriori probability) of H conditioned on X
- P(H) prior probability (a priori probability)
- Example: X (red and round); H (X is an apple)
 - P(H|X) confidence that X is an apple given X is read and round
 - P(H) probability that any given data sample is an apple

- P(X|H) posterior probability of X conditioned on H
 - Probability that X is red and round given that we know that X is an apple
- P(X) prior probability of X
 - Probability that a data sample is red and round
- Estimate P(X), P(H), and P(X|H) from the given data
- Using Bayes theorem $P(H|X) = \frac{P(X|H)P(H)}{P(X)}$

Naïve Bayesian Classification

- Given n attributes A₁, A₂, ..., A_n
- Each data sample is an n-dimensional vector
 - $X = (x_1, x_2, ..., x_n)$
- Given m classes, C₁, C₂, ..., C_m
- Given an unknown data sample X
 - Predict that X belongs to the class having the highest posterior probability, conditioned on X
- X belongs to class C_i if and only if
 - $P(C_i \mid X) > P(C_j \mid X)$ for all $1 \le j \le m$, $j \ne i$

- By Bayes theorem $P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$
- P(X) is constant for all classes
- So, maximize P(X | C_i)P(C_i)
- If the class prior probabilities are not known
 - Assume that the classes are equally likely

•
$$P(C_1) = P(C_2) = ... = P(C_m)$$

- So, maximize P(X | C_i)
- Otherwise, estimate P(C_i) = s_i / s,
 - s_i is the number of training samples of class C_i
 - s is the total number of training samples

- How to compute $P(X|C_i)$
 - Computationally expensive for datasets with many attributes
 - Assuming class conditional independence
 - No dependence relationships among attributes
 - $P(X \mid C_i) = \Pi P(x_k \mid C_i)$
 - P(x₁|C_i), P(x₂|C_i), ..., P(x_n|C_i) are estimated from the training samples
 - If A_k is categorical, then $P(x_k|C_i) = s_{ik} / s_i$
 - s_{ik} is the number of training samples of class C_i having the value x_k for A_k
 - s_i is the number of training samples belonging to C_i

4

- Finally, the unknown sample X is assigned to class C if and only if
 - $P(X \mid C_i)P(C_i) > P(X \mid C_j) P(C_j)$ for all $1 \le j \le m, j \ne I$
- Example
 - Attributes
 - age, income, student, credit_rating
 - Class label attribute
 - buys_computer
 - Two distinct values {yes, no}
 - Class C1 corresponds to the class buys_computer = "yes"
 - Class C2 corresponds to the class buys_computer = "no"

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

4

- To classify the unknown sample
 - X = (age = "<=30", income="medium", student="yes", credit_rating="fair")
- To do
 - Find maximum of P(X|C₁)P(C₁) and P(X|C₂)P(C₂)
- Prior probabilities of each class
 - $P(C_1) = P(buys_computer="yes") = 9/14 = 0.643$
 - $P(C_2) = P(buys_computer="no") = 5/14 = 0.357$

Conditional probabilities P(x_k|C_i)

- $P(age="<=30" | buys_computer="yes") = 2/9 = 0.222$
- P(age="<=30" | buys_computer="no") = 3/5 = 0.600</p>
- P(income="medium" | buys_computer="yes") = 4/9 = 0.444
- P(income="medium" | buys_computer="no") = 2/5 = 0.400
- P(student="yes" | buys_computer="yes") = 6/9 = 0.667
- P(student="yes" | buys_computer="no") = 1/5 = 0.200
- P(credit_rating="fair" | buys_computer="yes") = 6/9 = 0.667
- P(credit_rating="fair" | buys_computer="no") = 2/5 = 0.400
- So,
 - $P(X| buys_computer="yes") = 0.222 * 0.444 * 0.667 * 0.667 = 0.044$
 - $P(X| buys_computer="no") = 0.6 * 0.4 * 0.2 * 0.4 = 0.019$
- Hence
 - P(X| buys_computer="yes") P(buys_computer="yes") = 0.044 * 0.643 = 0.028
 - P(X| buys_computer="no") P(buys_computer="no") = 0.019 * 0.357 = 0.007
- Prediction: buys_computer = "yes"

Naive Bayesian Classifier (II)

Given a training set, we can compute the probabilities

Outlook	Р	N	Humidity	Р	N
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Tempreature			Windy		
hot	2/9	2/5	true	3/9	3/5
m ild	4/9	2/5	false	6/9	2/5
cool	3/9	1/5			

Play-tennis example: estimating

_	
$P(x_i $	C)

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	Z
sunny	hot	high	true	Ν
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	Ν
overcast	cool	normal	true	Р
sunny	mild	high	false	Ν
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	Ν

$$P(p) = 9/14$$

$$P(n) = 5/14$$

Outlook		
P(sunny p) = 2/9	P(sunny n) = 3/5	
P(overcast p) = 4/9	P(overcast n) = 0	
P(rain p) = 3/9	P(rain n) = 2/5	
temperature		
P(hot p) = 2/9	P(hot n) = 2/5	
P(mild p) = 4/9	P(mild n) = 2/5	
P(cool p) = 3/9	P(cool n) = 1/5	
humidity		
P(high p) = 3/9	P(high n) = 4/5	
P(normal p) = 6/9	P(normal n) = 2/5	
windy		
P(true p) = 3/9	P(true n) = 3/5	
P(false p) = 6/9	P(false n) = 2/5	

4

Play-tennis example: classifying X

- An unseen sample X = <rain, hot, high, false>
- P(X|p)'P(p) = P(rain|p)'P(hot|p)'P(high|p)'P(false|p)'P(p) = 3/9'2/9'3/9'6/9'9/14 = 0.010582
- P(X|n)·P(n) = P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) = 2/5·2/5·4/5·2/5·5/14 = 0.018286
- Sample X is classified in class n (don't play)

Avoiding the Zero-Probability Problem

Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case
 Prob(income = low) = 1/1003
 Prob(income = medium) = 991/1003
 Prob(income = high) = 11/1003
 - The "corrected" prob. estimates are close to their "uncorrected" counterparts

Classification and Prediction

- What is classification? What is prediction?
- Classification by decision tree induction
- Bayesian Classification
- Prediction
- Classification accuracy

What Is Prediction?

- Prediction is similar to classification
 - First, construct a model
 - Second, use model to predict unknown value
 - Major method for prediction is regression
 - Linear and multiple regression
 - Non-linear regression
- Prediction is different from classification
 - Classification refers to predict categorical class label
 - Prediction models continuous-valued functions

Regress Analysis and Log-Linear Models in Prediction

Linear regression:

- Data modeled using a straight line
 - Model a response variable (Y) as a linear function of a predictor variable (X)

$$Y = \alpha + \beta X$$

- Two parameters , α and β , specify the line and are to be estimated by using the data at hand.
 - using the least squares criterion to minimize the error between the actual data and the estimate of the line
- Given s samples of data (x₁, y₁), (x₂, y₂), ..., (x_s, y_s),

$$eta = rac{\displaystyle\sum_{i=1}^{S} (x_i - \overline{x})(y_i - \overline{y})}{\displaystyle\sum_{i=1}^{S} (x_i - \overline{x})^2}$$

$$\alpha = \overline{y} - \beta \overline{x}$$

 \overline{x} is the average of x_1 , x_2 , ..., x_s and \overline{y} is the average of y_1 , y_2 , ..., y_s .

Example

- X (years of experience)
 - **(**3,8,9,13,3,6,11,21,1,16)
- Y (Salary in \$1000s)
 - **(**30,57,64,72,36,43,59,90,20,93)
- $\beta = 3.5, \alpha = 23.6$
- Y = 23.6 + 3.5 X
- Predict the salary with 10 years of experience to be \$58.6K

- Multiple regression: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2$
 - More than one predictor variable
- Nonlinear regression
 - $Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3$
 - transformed into linear form and solved by the method of least squares

Classification and Prediction

- What is classification? What is prediction?
- Classification by decision tree induction
- Bayesian Classification
- Prediction
- Classification accuracy

Classification Accuracy: Estimating Error Rates

- From randomly sampled portions of the given data
- Holdout method
- Partition the data into two independent sets
 - training set (2/3 of the data),
 - test set(1/3 of the data)
- Use the training set to derive the classifier
- Estimate the accuracy using the test set
 - used for data set with large number of samples
- Random subsampling
 - The holdout method is repeated k times
 - Overall accuracy = average of the accuracies from each iteration

k-fold Cross-validation

- divide the data set randomly into k subsamples or folds
- use k-1 subsamples as training data and one subsample as test data
 - Training and testing is repeated k times
- for data set with moderate size

Stratified Cross-validation

 Class distribution of the samples in each fold is approximately the same as that in the initial data

Bootstrapping

- Sample the given training instances uniformly with replacement
 - Leave one out
 - Like the k-fold cross-validation with k set to s, the number of initial samples
- for small size data
- Recommended method to estimate classifier accuracy
 - 10-fold cross validation
 - Low bias and variance