Lab5 Questions

YAO ZHAO

Lab5.A Shopping

- Festival is coming and Andrea decides to buy n gifts for her friends. However, n gifts are sold on different days. So Andrea will buy them **in order**. For the i^{th} gift, the price is c_i .
- In her city, there are only 1 dollar coins and 100 dollar notes. Before shopping, Andrea prepares m coins and plenty of notes (you can assume that she always has enough notes to buy gifts).
- There is only one cashier in the store and his efficiency depends on the gift he sells. For the i^{th} gift, his efficiency is w_i and he needs $x * w_i$ seconds to check out where x is the total number of the notes and coins he needs to give Andrea. The cashier always minimizes x.
- Andrea wants to pay in such a way that the total time she needs to check out should be as small as possible.
- Please help her to find out the minimum time she needs!

price	15	760	755	411	950	
weight	2	2	2	2	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						

total time:
40*2+89*2 = 258

price	15	760	755	411	950	
weight	2	2	2	2	2	
$34 \xrightarrow{-15} 19 \xrightarrow{+40} 59 \xrightarrow{+45} 104 \xrightarrow{-11} 93 \xrightarrow{-50} 43$						

total time: 40*2+45*2 = 170

Output:

170

Input:

5 193 178 887 466 475 10 816 136 880 340 800

price	178	887	466	475	10	
weight	816	136	880	340	800	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

total time: 13*136+25*340=10268

Output:

10268

Lab5.B Voting

- A monitor election is going to be held in your class. There are (n + 1) students in your class. And you want all your n classmates to vote for you.
- There exist two ways to convince each of your classmates to vote for you. The first way to convince your i^{th} classmate is to pay him/her c_i coins. The other way is to make m_i other classmates vote for you, and the i^{th} classmate will vote for you for free.
- It should be noticed that the voting takes places in several steps. For example, if you have four classmates with $m_1 = 1, m_2 = 2, m_3 = m_4 = 3, m_5 = 5$, then if you buy the vote of the 5^{th} classmate, then all your classmates will vote for you. And the set of classmates vote for you changes as: $\{5\} \rightarrow \{5,1\} \rightarrow \{5,1,2\} \rightarrow \{5,1,2,3,4\}$.
- Please calculate the minimum coins you need to spend so that all your classmates will vote for you.

Test case 1

Test case 2

Test case 3

