회귀분석팀

6팀

조수미 김민지 손재민 박윤아 조웅빈

CONTENTS

- 1. 회귀분석이란?
- 2. 단순선형회귀
- 3. 다중선형회귀
 - 4. 데이터 진단
- 5. 로버스트 회귀

회귀분석이란?

회귀분석이란?

Regression + Analysis "

회귀선을 찾아 관계를 설명!

회귀분석이란?

회귀식

회귀식

종속변수 Y와 독립변수 X의 관계를 **함수식**(f)으로 표현한 모델

$$Y = f(X_1, X_2, \cdots, X_p) + \varepsilon$$

- Y **종속변수** 독립변수에 의해서 설명되는 변수
 - X_k 독립변수 종속변수를 설명하기 위한 변수
- ε 오차항 변수를 측정할 때 발생할 수 있는 오차

단순선형회귀

단순선형회귀 Simple Linear Regression

하나의 종속변수와 하나의 독립변수만을 가짐

두 변수의 관계를 가장 잘 표현하는 직선을 추정하는 것이 목적

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, 2, ..., n$$

 y_i **종속변수** 종속변수 y의 i번째 관측값

 x_i 독립변수 독립변수 x의 i번째 관측값

 ε_i 오차항 i번째 관측값에 의한 랜덤 오차

 $arepsilon_i \sim NID(0,\sigma^2)$ σ^2 σ^2 σ^2 가정 σ^2 가정 σ^2 σ^2 가정 σ^2 σ^2 가정 σ^2 σ^2 σ^2 σ^2 σ^2 σ^2 가정 σ^2 $\sigma^$

최소제곱법

최소제곱법 Least Square Estimator Method

 y_i 와 회귀선 위의 y값의 거리(오차)의 제곱합이 최소가 되도록 하는

 β_0 과 β_1 을 찾는 방법

오차의 제곱합 최소화
$$argmin \ S(\beta_0,\beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = \sum_{i=1}^n \epsilon_i^2$$

$$\frac{\partial S}{\partial \beta_0} | \widehat{\beta_0}, \widehat{\beta_1} = -2\Sigma_{i=1}^n (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i) = 0$$

$$\frac{\partial S}{\partial \beta_1} | \widehat{\beta_0}, \widehat{\beta_1} = -2\Sigma_{i=1}^n (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i) x_i = 0$$

아래로 볼록한 이차함수 형태는 최소값을 가지므로 편미분!

최소제곱법의 가정과 특징

BLUE Best Linear Unbiased Estimator

분산이 제일 작은 선형 불편추정량

분산이 작다는 것은 추정량이 안정적이라는 의미

- ① 오차들의 평균은 0
- ② 오차들의 분산은 σ^2 로 동일
 - ③ 오차간 자기상관이 없음

Independent

세 가지 조건이 만족되면, LSE는 선형불편추정량 중 분산이 가장 작은 안정적인 추정량이 됨

적합성 검정

적합성 검정 Goodness of Fit

회귀직선이 데이터에 얼마나 잘 들어맞는지 모형에 대한 적합성 검정

적합성 검정

결정계수 Coefficient of Determinant

총 변동(SST)에서 회귀식이 설명할 수 있는 비율(SSR)

즉, Y가 X에 의해 설명되는 비율로, 1에 가까울수록 좋음

$$\mathbf{\hat{\uparrow}}\mathbf{R}^2 = \mathbf{\hat{\uparrow}} \frac{\mathbf{SSR}}{\mathbf{SST}} = \mathbf{1} \mathbf{\hat{\downarrow}} \frac{\mathbf{SSE}}{\mathbf{SST}}$$

!! **잔차**와 연관지어 본다면,

잔차제곱합(SSE)은 회귀식이 설명할 수 없는 실제값과 추정값 사이의 오차이므로 총 변동 대비 잔차제곱합이 차지하는 비율이 작을수록 좋음

유의성 검정

유의성 검정 Significance Test

전체 회귀식이 아닌 개별 모수의 추정량이 통계적으로 유의한지를 알아보는 과정

 β_0 도 동일한 방법으로 검정하면 됨

① 가설 설정 :
$$H_0$$
: $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$

② 추정량의 분포 :
$$\widehat{\beta_1} \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right)$$

③ 검정 통계량 :
$$t_0 = \frac{\widehat{\beta_1}}{se(\widehat{\beta_1})} \sim t_{(n-2)}$$

⑤ 검정(양측) :
$$|f|t_0| > t_{(1-\alpha/2,n-2)}$$
, reject H_0 at α

다중선형회귀

다중선형회귀 Multiple Linear Regression

2개 이상의 독립변수를 가짐

단순회귀분석에 비해 복잡한 관계 설명에 용이

설명변수가 p개로 확장

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon, \ \epsilon \sim NID(0, \sigma^2)$$

유의성 검정

F-test

전체 회귀계수에 관한 검정

가설 설정

$$H_0$$
: $\beta_0 = \beta_1 = \cdots = \beta_p = 0$

 H_1 : $not H_0$ (β_0 , β_1 , …, β_p 중 적어도 하나는 0이 아니다.)

검정통계량

$$\boldsymbol{F_0} = \frac{(SST - SSE)/p}{SSE/(n-p-1)} = \frac{SSR/p}{SSE/(n-p-1)} = \frac{MSR}{MSE}$$

유의성 검정

Partial F-test

일부 회귀계수에 관한 검정

가설 설정

Full model (FM) = 모든 변수를 사용한 회귀모형

Reduced Model (RM) = 일부 계수를 특정 값으로 둔 축소모형

$$H_0: \beta_j = \beta_{j+1} = \cdots = \beta_{j+q-1} = 0$$

 H_1 : not H_0 $(\beta_I, \beta_{I+1}, \dots, \beta_{j+q-1}$ 중 적어도 하나는 0이 아니다)

검정통계량

$$\mathbf{F_0} = \frac{(SSE(RM) - SSE(FM))/(p-q)}{SSE(FM)/(n-p-1)}$$

$$=\frac{(SSR(FM)-SSR(RM))/(p-q)}{SSE(FM)/(n-p-1)} \sim \mathbf{F}_{p-q,n-p-1}$$

유의성 검정

T-test

개별 회귀계수에 대한 검정

회귀계수 추가의 유의성을 판단하기 위해 사용

가설 설정

 $\mathbf{H_0}$: β_i =0 다른 변수들이 다 적합된 상태에서 설명변수 \mathbf{x}_i 는 유의하지 않음

 $\mathbf{H_1}$: $\beta_j \neq 0$ 다른 변수들이 다 적합된 상태에서 설명변수 \mathbf{x}_j 는 유의함

검정통계량

$$\boldsymbol{t_j} = \frac{\widehat{\beta_j}}{s.\,e.\,(\widehat{\beta_j})}$$

데이터 진단

데이터 진단의 필요성

데이터 진단, 왜 필요해?

이상치, 지렛값, 영향점 등

일반적인 경향에서 벗어나는 데이터 존재

회귀 모형에 큰 영향을 미침

데이터가 일반적인 경향에서 벗어나는지 1) 판단 2) 처리

잔차를 이용해 데이터 진단을 할 수 있을까?

데이터 진단

영향점

영향점 Influential Point

회귀직선의 기울기에 상당한 영향을 주는 점

이상치와 지렛값을 동시에 고려하는 지표

Cook's Distance

영향점을 확인하는 표준적인 지표

특정 데이터를 지웠을 때 **회귀선이 변하는 정도**를 나타냄

이상치
$$C_i = \frac{r_i^2}{p+1} \times \frac{h_{ii}}{1-h_{ii}}$$
 지렛값

 $C_i > 1$ 이면 영향점으로 판단 !

데이터 진단

영향점 처리의 필요성

영향점은 추정량의 분산을 크게 만듦

잘못된 모델의 해석과 예측 성능 저하

영향점 처리를 통해 이상치에 강건한(robust) 모델링

로버스트 회귀

로버스트 회귀

로버스트 회귀 모형 Robust Regression

이상치의 영향을 크게 받지 않는 회귀모형

Median Regression

Huber's M-estimation

Least Trimmed Square