Multiple Linear Regression by Hand (Step-by-Step)

Suppose we have the following dataset with one response variable y and two predictor variables X_1 and X_2 :

у	X ₁	X ₂
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11

The estimated linear regression equation/Hypothesis is:

$$\hat{\mathbf{y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}_1 + \mathbf{b}_2 \mathbf{x}_2$$

<u>Where</u>

$$b_0$$
 is: $y - b_1X_1 - b_2X_2$

for MLR, b₁ is:
$$[(\Sigma x_{2^2})(\Sigma x_1y) - (\Sigma x_1x_2)(\Sigma x_2y)] / [(\Sigma x_{1^2})(\Sigma x_{2^2}) - (\Sigma x_1x_2)^2]$$

for MLR The formula to calculate
$$b_2$$
 is: $[(\Sigma x_{1^2})(\Sigma x_2 y) - (\Sigma x_1 x_2)(\Sigma x_1 y)] / [(\Sigma x_{1^2})(\Sigma x_{2^2}) - (\Sigma x_1 x_2)^2]$

Please note: in b1and b2 the Σx_{1^2} , Σx_{2^2} , $\Sigma x_{1}y$, $\Sigma x_{2}y$, $\Sigma x_{1}x_{2}$ are Regression Sums and calculated from the following formulas:

•
$$\Sigma X_{1^2} = \Sigma X_{1^2} - (\Sigma X_1)^2 / n$$

•
$$\Sigma X_{2^2} = \Sigma X_{2^2} - (\Sigma X_2)^2 / n$$

•
$$\Sigma X_1 y = \Sigma X_1 y - (\Sigma X_1 \Sigma y) / n$$

•
$$\Sigma \mathbf{X}_2 \mathbf{y} = \Sigma \mathbf{X}_2 \mathbf{y} - (\Sigma \mathbf{X}_2 \Sigma \mathbf{y}) / \mathbf{n}$$

•
$$\Sigma X_1 X_2 = \Sigma X_1 X_2 - (\Sigma X_1 \Sigma X_2) / n$$

Use the following steps to fit a multiple linear regression model to this dataset.

Step 1: Calculate X_{1^2} , X_{2^2} , X_1y , X_2y and X_1X_2 and their cumulative sum.

У	X ₁	X ₂
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11
181.5	69.375	18.125
1452	555	145

X_2^2	X ₁ y	X ₂ y	X_1X_2
484	8400	3080	1320
625	9610	3875	1550
576	10653	3816	1608
400	12530	3580	1400
225	13632	2880	1065
196	14400	2800	1008
196	15900	2968	1050
121	16770	2365	858
2823	101895	25364	9859
	484 625 576 400 225 196 196	484 8400 625 9610 576 10653 400 12530 225 13632 196 14400 196 15900 121 16770	484 8400 3080 625 9610 3875 576 10653 3816 400 12530 3580 225 13632 2880 196 14400 2800 196 15900 2968 121 16770 2365

Mean Sum Sum

Step 2: Calculate Regression Sums.

Next, make the following regression sum calculations:

•
$$\Sigma X_1^2 = \Sigma X_1^2 - (\Sigma X_1)^2 / n = 38,767 - (555)^2 / 8 = 263.875$$

•
$$\Sigma X_2^2 = \Sigma X_2^2 - (\Sigma X_2)^2 / n = 2.823 - (145)^2 / 8 = 194.875$$

•
$$\Sigma X_1 y = \Sigma X_1 y - (\Sigma X_1 \Sigma y) / n = 101,895 - (555*1,452) / 8 = 1,162.5$$

•
$$\Sigma X_2 y = \Sigma X_2 y - (\Sigma X_2 \Sigma y) / n = 25,364 - (145*1,452) / 8 = -953.5$$

•
$$\Sigma X_1 X_2 = \Sigma X_1 X_2 - (\Sigma X_1 \Sigma X_2) / n = 9,859 - (555*145) / 8 = -200.375$$

у	X ₁	X ₂
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11
181.5	69.375	18.125
1452	555 145	

X ₁ ²	X_2^2	X ₁ y	X ₂ y	X_1X_2
3600	484	8400	3080	1320
3844	625	9610	3875	1550
4489	576	10653	3816	1608
4900	400	12530	3580	1400
5041	225	13632	2880	1065
5184	196	14400	2800	1008
5625	196	15900	2968	1050
6084	121	16770	2365	858
38767	2823	101895	25364	9859

Mean Sum Sum

Reg Sums	263.875	194.875	1162.5	-953.5	-200.375

Step 3: Calculate b₀, b₁, and b₂.

The formula to calculate b_1 is: $[(\Sigma x_{2^2})(\Sigma x_1y) - (\Sigma x_1x_2)(\Sigma x_2y)] / [(\Sigma x_{1^2})(\Sigma x_2^2) - (\Sigma x_1x_2)^2]$

Thus, $\mathbf{b}_1 = [(194.875)(1162.5) - (-200.375)(-953.5)] / [(263.875)(194.875) - (-200.375)^2] =$ **3.148**

The formula to calculate b_2 is: $[(\Sigma x_{1^2})(\Sigma x_2 y) - (\Sigma x_1 x_2)(\Sigma x_1 y)] / [(\Sigma x_{1^2})(\Sigma x_2 y) - (\Sigma x_1 x_2)^2]$

Thus, $\mathbf{b}_2 = [(263.875)(-953.5) - (-200.375)(1152.5)] / [(263.875)(194.875) - (-200.375)^2] = -1.656$

The formula to calculate b_0 is: $y - b_1X_1 - b_2X_2$

Thus, $\mathbf{b}_0 = 181.5 - 3.148(69.375) - (-1.656)(18.125) = -6.867$

Step 5: Place b_0 , b_1 , and b_2 in the estimated linear regression equation.

The estimated linear regression equation is: $\hat{y} = b_0 + b_1 x_1 + b_2 x_2$

In our example, it is $\hat{y} = -6.867 + 3.148x_1 - 1.656x_2$

How to Interpret a Multiple Linear Regression Equation

Here is how to interpret this estimated linear regression equation: $\hat{y} = -6.867 + 3.148x_1 - 1.656x_2$

 \mathbf{b}_0 = -6.867. When both predictor variables are equal to zero, the mean value for y is -6.867.

 \mathbf{b}_1 = 3.148. A one unit increase in \mathbf{x}_1 is associated with a 3.148 unit increase in y, on average, assuming \mathbf{x}_2 is held constant.

 \mathbf{b}_2 = -1.656. A one unit increase in \mathbf{x}_2 is associated with a 1.656 unit decrease in y, on average, assuming \mathbf{x}_1 is held constant.