Using tm package for a dendrogram and associations

Rodrigo Esteves de Lima-Lopes State University of Campinas rll307@unicamp.br

Contents

1	Introduction	1
	What will you need 2.1 Packages	1
	2.2 Customised functions	
3	Doing some analysis	2

1 Introduction

Like we have already discussed, the package tm is a impressive tool for text processing. In this tutorial we are going to use it for calculating word clusters towards a corpus of tweets.

2 What will you need

2.1 Packages

For this tutorial we are going to need the following packages:

```
library(tm)
## Text processing
library(stats)
## Statistical analysis
library(rtweet)
## Twitter scraping
```

2.2 Customised functions

In this tutorial we will need a couple of customised functions:

```
removeURL <- function(x) gsub("http[[:alnum:][:punct:]]*", "", x)
remove.users <-function(x) gsub("@[[:alnum:][:punct:]]*","",x)
colLab <- function(n) {
   if (is.leaf(n)) {
      a <- attributes(n)
      labCol <- labelColors[clusMember[which(names(clusMember) == a$label)]]
      attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
   }
   n
}</pre>
```

I will download Guilherme Boulos' Twitter timeline:

```
boulos <- get_timelines("GuilhermeBoulos", n = 3200)</pre>
```

3 Doing some analysis

First we will extract the text vector represented by Boulos' timeline and, then, creating the corpus

```
boulos.v <- boulos$text
corpus.cluster <- Corpus(VectorSource(boulos.v))</pre>
```

Now we are going to make a series of transformations, using tm_map, which applies changes into the corpus and a series of self-explaining functions:

```
corpus.cluster <- tm_map(corpus.cluster, content_transformer(tolower))
corpus.cluster <- tm_map(corpus.cluster, content_transformer(removeURL))
corpus.cluster <- tm_map(corpus.cluster,content_transformer(remove.users))
corpus.cluster <- tm_map(corpus.cluster, stripWhitespace)
corpus.cluster <- tm_map(corpus.cluster, removePunctuation)
corpus.cluster <- tm_map(corpus.cluster, function(x)removeWords(x,stopwords("pt")))</pre>
```

Now we are going to create a dtm for using in the calculations

```
cluster.tdm <- TermDocumentMatrix(corpus.cluster)</pre>
```

Now we are going to remove the sparse words and zero word tweets

```
cluster.m <- as.matrix(cluster.tdm)
cluster.wf <- rowSums(cluster.m)
cluster.m1 <- cluster.m[cluster.wf>quantile(cluster.wf,probs=0.99), ]
#removing 0 columns
cluster.m1<-cluster.m1[,colSums(cluster.m1)!=0]</pre>
```

Transforming the relationship in Binary

```
cluster.m1[cluster.m1 > 1] <- 1
cluster.m1dist <- dist(cluster.m1, method="binary")</pre>
```

Finally creating the cluster using Ward's method

```
clus1 <- hclust(cluster.m1dist, method="ward.D2")</pre>
```

Creating the cluster

```
plot(clus1, cex=0.9)
```

Now, improving it:

```
rect.hclust(clus1,k=10,border = "blue")
```

Let us make our cluster colourful

Cluster Dendrogram

cluster.m1dist hclust (*, "ward.D2")

Figure 1: Cluster 1

Cluster Dendrogram

cluster.m1dist hclust (*, "ward.D2")

Figure 2: Cluster 2

```
plot(clusDendro,cex=1)
rect.hclust(clusDendro,k=2)
```

The result should be something like this:

Now let us find some associates:

```
findAssocs(cluster.tdm, "boulos", corlimit = .1)
```

<pre>> findAssocs(c \$boulos</pre>	luster.tdm,"bo	ulos",corlimit	= .1)	
guilherme	erundina	1992	fesp	mantêlos
0.35	0.22	0.15	0.14	0.14
vínculo	receita	manchete	via	frança
0.14	0.14	0.13	0.12	0.12
faculdade	datena	ibope	amp	feminicídio
0.12	0.12	0.11	0.11	0.11
aparece	anuncia	inclusiva	questiona	numericamente
0.10	0.10	0.10	0.10	0.10
indenizar	responde			
0.10	0.10			

Figure 3: Associates

```
findAssocs(cluster.tdm, "fake", corlimit = .16)
```

> findAssocs(cluster.tdm,"fake",corlimit = .16) \$fake

jatinho	criaram	surpreendente	news
0.21	0.21	0.23	0.96
desmentindo	gabinete	bolsonarista	verdade
0.18	0.18	0.19	0.20

Figure 4: Associates