

Chapter 3. Packet Switching Networks

- Network Layer Functions
- Virtual Circuit and Datagram Networks
- ATM and Cell Switching
- X.25 and Frame Relay
- Routing

Network Layer Functions

Network Layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two Key Network-layer Functions

- OSI network-layer functions:
- Switching / Routing
 - Determine route taken by packets from source to destination (multiple nodes)
 - Shortest path from source to destination
 - Routing algorithms

Forwarding

- Move packets from input to designated output determined by switching (single node)
- Error handling, queuing and scheduling

analogy: Trip Planning

- routing: planning the route from Nanjing to Shanghai (e.g., Nanjing-Wuxi-Suzhou-Shanghai)
- forwarding: getting through single city (e.g., entering and leaving Suzhou Station)

Switch Functions

Routing determines the forwarding table

- Queuing and scheduling
 - Host to Switch
 - Switch to Host
 - Switch to Switch

Connection setup

- 3rd important function in *some* network architectures:
 - ATM, frame relay, X.25
- Before datagrams flow, two end hosts and intervening routers establish virtual connection
 - Routers get involved
- Network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes

Q: What service model for "channel" transporting datagrams from sender to receiver?

- Network service model
 - Service model for "channel" transporting packets from sender to receiver
 - Called Quality of Service from host perspective

Example services for individual packets

- Guaranteed delivery
- Guaranteed delivery with less than 40 msec delay

Example services for a flow of packets

- In-order packet delivery
- Guaranteed minimum bandwidth to flow
- Restrictions on changes in inter-packet spacing

In decreasing priority

- Constant Bit Rate (CBR) and Variable Bit Rate (VBR)
- Available Bit Rate (ABR) and Unspecified Bit Rate (UBR)

١	letwork	Service	Guarantees ?				Congestion
Architecture		Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Best effort

Network Architecture	Service Model	Bandwidth Guarantee	No-Loss Guarantee	Ordering	Timing	Congestion Indication
Internet	Best Effort	None	None	Any order possible	Not maintained	None
ATM	CBR	Guaranteed constant rate	Yes	In order	Maintained	Congestion will not occur
ATM	ABR	Guaranteed minimum	None	In order	Not maintained	Congestion indication provided

What's Inside a Router/Switch?

Inside a Switch: Architecture Overview

Two key switch functions:

- Run routing algorithms/protocol
- Forwarding packets from incoming to outgoing link

forwarding data plane (hardware)

routing, management control plane (hardware&software)

Decentralized switching

- Lookup output port using forwarding table
- Complete input port processing at "line speed"
- Queuing: if packets arrive faster than forwarding rate into switch fabric

Three Types of Switching Fabrics

- Transfer packet from input buffer to appropriate output buffer
- Switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable

交换结构

Three types of switching fabrics

- First generation routers:
- Traditional computers with switching under direct control of CPU
- Packet copied to system's memory
- Speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a Bus

- Datagram from input port memory to output port memory via a shared bus
- Bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Switching via a Mesh

- Overcome bus bandwidth limitations
- Banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- Advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network

Output Port Functions

Buffering

Required when packets arrive from fabric faster than the transmission rate
Datagram (packets) can be lost due to congestion, lack of buffers

Scheduling discipline

- Chooses among queued packets for transmission
- Select packets to drop when buffer saturates

Priority scheduling – who gets best performance

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- Recent recommendation: with N flows, buffering equal to [Appenzeller 2004]

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

Virtual Circuit and Datagram Networks

Recap: Circuit Switching & Packet Switching

Circuit Switching

- End-to-end resources reserved for "call"
 - Link bandwidth, switch capacity
- Dedicated resources: no sharing
- Guaranteed performance
- Call setup/teardown required

Packet Switching

- Each end-to-end data stream divided into packets
- Application A, B packets share network resources
- Store and forward: packets move one hop at a time, stored (queued) at switches
- Resource contention: aggregate (burst-up) resource demand can exceed amount available
- Congestion: packets queue and wait for link use

- Virtual circuit networks
 - Network service provided on flow of packets
 - VC network provides network-layer connection oriented service
 - E.g., ATM, X.25, Frame Relay
- Datagram networks
 - Network service provided on singular packet
 - Datagram network provides network-layer connectionless service
 - E.g., IP network

Routing in Virtual Circuit

Routing in Datagram Nets

Virtual Circuit Networks

- Connection setup, teardown for each flow of packets
- Each packet carries VC identifier (not destination host address)
- Every switch on source-destination path maintains "state" for each passing connection
- Link, switch resources (bandwidth, buffers) may be allocated to VC
 - Dedicated resources = predictable quality of service

Connection Setup

- Essential function for virtual circuit networks
 - E.g. ATM, frame relay, X.25
- Two end hosts and intervening switches pre-establish a path for virtual connection
- Routing is used for finding a suitable (shortest) path

- A VC consists of
 - Path from source to destination
 - VC numbers, maybe one number for each link along the path
 - Entries in forwarding tables in switches along the path

Note:

- Packet belonging to VC carries VC number (rather than addresses)
- VC number can be changed on each link, forwarding table lists the new VC number

Forwarding table in northwest switch

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
			•••

Table entries constitutes state information of a VC

Virtual Circuits: Signaling Protocols

Used to setup, maintain and teardown VC

信令协议

- Used in ATM, frame-relay, X.25
- Not used in today's Internet

- No call setup at network layer
- No network-level concept of "connection"
- Switches: no state about end-to-end connections
- Packets forwarded using destination host address
- Packets between same source-dest pair may take different paths

A Forwarding Table for Datagram Networks

- Also called routing table
- May reach 4 billion entries
- The destination address prefix may define a switch address or a subnet address

Dest Address Prefix	Address Mask	Link Interface
11001000 00010111 00010	11111111 11111111 11111000 00000000	0
11001000 00010111 00011000	11111111 11111111 11111111 00000000	1
11001000 00010111 000110	11111111 11111111 11111100 00000000	2
default	*	3

Address Prefix	Link Interface
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
otherwise	3

Examples

DA: 11001000 00010111 0001<mark>0110 10100001 Which interface?</mark>

DA: 11001000 00010111 00011000 10101010 Which interface?

Longest prefix matching rule: when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Datagram (Internet)

- Data exchange among computers
 - "Elastic" service, no strict timing
- "Smart" end systems (computers)
 - Can adapt, perform control, error recovery
 - Simple inside network, complexity at "edge"
- Many link types
 - Different characteristics
 - Uniform service difficult

Virtual Circuit (ATM)

- Evolved from telephony
- Human conversation:
 - Strict timing, reliability requirements
 - Need guaranteed service
- "Dumb" end systems
 - Telephones
 - Complexity inside network (switches)
- Link type standardized

X.25, Frame Relay, and ATM

X.25

- A packet-switching wide area network developed by ITU-T in 1976 (第一个面向连接的网络,第一个公共数据网络,一 种使用电话或者ISDN设备作为网络硬件设备来架构广域网的 ITU-T网络协议)
- Defines how a packet-mode terminal can be connected to a packet network
- Defines how a user's DTE (Data Terminal Equipment) communicates with DCEs (Data Communications Equipments) in a packet switching network

Defines how packets are sent thru the virtual circuit established

between DTEs

X.25Network

DCE

DTE

X.25 Layers

Frame Relay

- Frame Relay
 - Packet-switching with virtual-circuit technology
 - An enhancement of X.25, due to improved transmission media
 - Interconnect LANs, instead of terminals
- Improvement of X.25, taking advantage of high-speed new links with lower error-rates
 - Operate only at the Physical and Data link layer (提供数据链路 层和物理层的协议规范,任何高层协议都独立于帧中继协议)
 - Not provide error checking or require ACK in data link layer
- Layers in FR
 - Physical layer, any protocols recognized by ANSI, up to 44.376 Mbps
 - Data link layer, a simplified version of HDLC called core LAPF, no error and flow control fields

ANSI: American National Standards Institute

LAPF: Link Access Procedure for Frame Mode Services

ATM and Cell Switching

- ATM: Asynchronous Transfer Mode
 - 1990's/2000 standard for high-speed Broadband Integrated Service Digital Network (ISDN, 综合业务数字网) architecture
 - 155Mbps to 622 Mbps and higher

Features

- Meeting timing/QoS requirements of voice and video, also support "burst" data
- "Next generation" telephony: technical roots in telephone world
- Packet-switching (fixed length packets, called "cells") using virtual circuits

ATM Architecture

- Adaptation layer: only at edge of ATM network
 - Data segmentation/reassembly, different service models
 - Roughly analogous to Internet transport layer
- ATM layer: "network" layer
 - Cell switching, routing
- Physical layer: SDH/SONET

ATM Adaptation Layer

- ATM Adaptation Layer (AAL)
 - "Adapts" upper layers (IP or native ATM applications) to ATM layer below
 - Present only in end systems, not in switches
- Different types of AALs
 - AAL1, Constant Bit Rate (CBR), e.g. circuit emulation
 - AAL2, Variable Bit Rate (VBR), e.g. voice and video
 - AAL3/4, Connection-oriented data service, e.g. X.25 and Frame Relay
 - AAL5, Connectionless data service, e.g IP datagram

ATM Layer: Virtual Circuits

- VC transport: cells carried on VC from source to destination
- Permanent VCs (PVC)
 - Long lasting connections
- Switched VCs (SVC)
 - Dynamically set up on per-connection basis
- A VC consists of virtual paths and virtual channels
 - Virtual Path Identifier (VPI) + Virtual Channel Identifier (VCI)

信元路由信息:

虚通道(virtual paths): 由VPI指定,一个VPI

包含一组VCI

虚通路(virtual channels): 由VCI指定

ATM Cells

- 5 octet header + 48 octet payload
- Small payload → short cell-creation delay and switching delay
- 48 = halfway between 32 (Europe) and 64 (North America), a compromise

2 sublayers

- Transmission Convergence (TC) sublayer
 - Header checksum generation: 8 bits CRC
 - Cell delineation to signal representation
 - Transmission of idle cells when no data cells to send
- Physical Medium Dependent (PMD) sublayer: depends on physical medium being used
 - E.g., SONET/SDH, TI/T3, etc

传输聚合子层:

在发送方,它从ATM层接收信元,组装成特定形式的帧(SONET帧或FDDI数据帧). 在接收方,它从PMD子层提取信元,交付ATM层. 类似于链路层功能物理介质相关子层: 指定物理特性

Summary

- ■网络层基本功能
 - 交换/路由, 转发, 建立连接
- ■路由器的构成
- 两种分组交换网络
 - 虚电路网络
 - ATM(面向连接,信元: 固定长度的分组,支持CBR, VBR, ABR, UBR)
 - X.25 (面向连接,流控制和错误检测),帧中继(面向连接,无错误控制, 无流控制)
 - ■数据报网络
 - IP网络

Homework

■ 第四章: R1, R2, P1, P2