

QUESTÃO 1 ALTERNATIVA A

Na imagem que aparece no espelho do Benjamim, o ponteiro dos minutos aponta para o número 3, enquanto que o ponteiro das horas está entre o algarismo 6 e o traço correspondente ao algarismo 5, mais próximo deste último. Deste modo, o relógio marcava 5h 15min.

QUESTÃO 2 ALTERNATIVA C

Podemos decompor a figura no paralelogramo *ABCD* e no triângulo *BEC*. Em cada uma destas figuras a área sombreada corresponde a metade da área, e assim a área sombreada na figura original é a metade da área total.

QUESTÃO 3 ALTERNATIVA B

A quantidade de água que Daniela gastava por semana (isto é, em 7 dias) em cada atividade era:

- lavar roupa: 7×150 = 1050 litros;
- banho de 15 minutos: 7 × 90 = 630 litros:
- lavar o carro com mangueira: 1×100 = 100 litros.

Assim, ela gastava 1050 + 630 + 100 = 1780 litros por semana. Com a economia, Daniela passou a gastar semanalmente em cada atividade:

- lavar roupa no tanque: 3×150 = 450 litros;
- banho de 5 minutos: $7 \times \frac{90}{3} = 7 \times 30 = 210$ litros;
- lavar o carro com balde: 1×10 = 10 litros,

ou seja, um total de 450 + 210 + 10 = 670 litros. Portanto, ela passou a economizar por semana 1780 - 670 = 1110 litros de água.

Podemos também pensar diretamente na economia semanal da Daniela:

- 4 lavagens de roupa: 4×150 = 600 litros;
- $\frac{2}{3}$ banho por dia: $7 \times \frac{2}{3} \times 90 = 420$ litros;
- substituir a mangueira pelo balde: 100-10=90,

o que nos dá o total de 600 + 420 + 90 = 1110 litros.

QUESTÃO 4 ALTERNATIVA E

A primeira torneira enche $\frac{1}{8}$ tanque/hora e a segunda $\frac{1}{4}$ tanque/hora; as duas juntas enchem então $\frac{1}{8} + \frac{1}{4} = \frac{3}{8}$

tanque/hora. A primeira torneira, aberta por 2 horas, encheu $2 \times \frac{1}{8} = \frac{1}{4}$ do tanque, deixando vazio $1 - \frac{1}{4} = \frac{3}{4}$ do

tanque. As duas torneiras juntas levaram então $\frac{\frac{3}{4}}{\frac{3}{8}} = \frac{3}{4} \times \frac{8}{3} = 2$ horas para acabar de encher o tanque, que ficou

cheio 4 horas após o meio dia, ou seja, às 16:00h.

QUESTÃO 5 ALTERNATIVA C

Na figura ao lado, A representa a idade de Arnaldo, C a de Celina e D a de Dalila; a flecha indica o sentido de idade crescente. A ordem das letras C, A e D indica que Arnaldo é mais velho que Celina e mais novo que Dalila. Logo o esposo de Celina é Beto, que é também o mais velho de todos.

QUESTÃO 6 ALTERNATIVA A

Escrevendo 24 como produto de inteiros positivos de todas as maneiras possíveis, podemos investigar todas as possibilidades para $a \in b$ em $a*b = (a+1) \times (b-1) = 24$ e testá-las em $b*a = (b+1) \times (a-1) = 30$ para achar os possíveis valores de $a \in b$. Fazemos isto na tabela a seguir.

24 =	а	b	$(b+1)\times(a-1)$
1×24	0	25	não considerar pois <i>a</i> > 0
2×12	1	13	0
3×8	2	9	10
4×6	3	7	16
6×4	5	5	25
8×3	7	4	30
12×2	11	3	33
24×1	23	2	46

Logo a = 7 e b = 4, donde a + b = 11.

De modo mais algébrico, podemos resolver este problema como segue. Temos a*b=(a+1)(b-1)=ab-a+b-1=24 e b*a=(b+1)(a-1)=ab+a-b-1=30. Somando estas duas expressões, obtemos 2ab-2=54 e segue que ab=28. De modo análogo ao anterior, geramos as possibilidades (1,28), (2,14), (4,7), (7,4), (14,2) e (28,1) para (a,b) e verificamos que apenas a=7 e b=4 satisfazem a*b=24 e b*a=30.

Para aqueles que já sabem resolver equações de segundo grau, notamos que subtraindo ab-a+b-1=24 de ab+a-b-1=30 obtemos 2a-2b=6, ou seja, a-b=3. Logo a=b+3 e, substituindo em ab=28 temos $b^2-3b-28=0$. Esta equação tem raízes b=4 e b=-7; como só nos interessa a raiz positiva, temos b=4 e então a=7.

QUESTÃO 7 ALTERNATIVA D

Primeiro observamos que quando o cachorro corre 10 metros o coelho corre 1 metro. Como o cachorro começou 10 metros atrás do coelho, neste momento o coelho está apenas 1 metro à frente. Quando o cachorro corre mais 1 metro, o coelho corre 10 cm, ou seja, o coelho ainda está 10 cm à frente. Finalmente, observamos que se o cachorro corresse mais 1 metro, o coelho correria somente mais 10 cm; logo, em algum momento antes disso, o cachorro alcança o coelho. Assim o coelho é alcançado depois de o cachorro correr 11 metros, mas antes que ele corra 12 metros.

Algebricamente, podemos dizer que se o coelho corre com velocidade v m/s então o cachorro corre com velocidade 10v m/s. No instante T=0, o coelho está 10 metros à frente do cachorro; após T segundos, o cachorro correu 10Tv metros e o coelho Tv metros, ou seja, o coelho estará na posição 10+Tv. O cachorro alcançará o coelho quando 10Tv=10+Tv, ou seja, quando $Tv=\frac{10}{9}$. O cachorro terá então percorrido

$$10 \times \frac{10}{9} = \frac{100}{9} = 11,11...$$
 metros, ou seja, entre 11 e 12 metros.

QUESTÃO 8 ALTERNATIVA B

Como os segmentos AF e ED apontam para o norte, eles são paralelos, e como AB é transversal a AF e a ED segue que $D\widehat{B}A = F\widehat{A}B = 18^\circ$. Logo $A\widehat{B}C = 180^\circ - (44^\circ + 18^\circ) = 118^\circ$. Como AB = BC, o triângulo ABC é isósceles; os ângulos iguais $A\widehat{C}B$ e $C\widehat{A}B$ medem então $\frac{1}{2}(180^\circ - 118^\circ) = 31^\circ$. Concluímos então que $F\widehat{A}C = B\widehat{A}C - B\widehat{A}F = 31^\circ - 18^\circ = 13^\circ$.

QUESTÃO 9 ALTERNATIVA B

Temos $2^{100} \times 5^{103} = 2^{100} \times 5^{100} \times 5^3 = (2 \times 5)^{100} \times 5^3 = 125 \times 10^{100}$, que é 125 seguido de 100 zeros. A soma dos algarismos deste número é 1 + 2 + 5 = 8.

QUESTÃO 10 ALTERNATIVA D

Notamos primeiro que os dois retângulos da parte inferior da figura são congruentes, pois possuem o mesmo perímetro e a mesma altura; logo suas bases medem 6 cm. Chamando de x a altura destes retângulos, podemos marcar as medidas como na figura ao lado. O perímetro do retângulo da parte superior da figura é $2 \times [12 + (12 - x)] = 48 - 2x$ e o perímetro do retângulo sombreado é $2 \times (6 + x) = 12 + 2x$. Como os perímetros são iguais, temos 48 - 2x = 12 + 2x, donde 4x = 36 e então x = 9. Logo a área do retângulo sombreado é $6 \times 9 = 54$ cm².

QUESTÃO 11 ALTERNATIVA E

Vamos calcular mais alguns termos da sequência:

Observamos que a sequência se repete de 10 em 10 termos. Como $2009 = 200 \times 10 + 9$, segue que o 2009° termo da sequência é 15.

QUESTÃO 12 ALTERNATIVA A

seja, 10 cm².

A figura à direita mostra como decompor o retângulo *ABCD* em oito triângulos congruentes. Concluímos que a área do quadrilátero *PQRS* é metade da área do retângulo, ou seja, 20 cm².

QUESTÃO 13 ALTERNATIVA B

Um número com uma determinada quantidade de algarismos, sendo o primeiro à esquerda diferente de zero, é sempre maior que qualquer número que tenha um algarismo a menos. Por exemplo, 1000 (com quatro algarismos) é maior do que 999 (que tem apenas 3 algarismos). Assim, com exatamente 13 palitos, devemos formar um número que tenha a maior quantidade possível de algarismos, sendo o primeiro à esquerda diferente de 0. Como o 1 é formado pelo menor número de palitos entre todos os algarismos, vemos que para obter o maior número possível com 13 palitos devemos usar tantos algarismos 1 quanto possível.

Não é possível usar 6 algarismos 1, pois neste caso já teríamos usado 12 palitos e não há algarismo que possa ser formado com apenas 1 palito. Pelo mesmo motivo, não é possível usar 5 algarismos 1; não há algarismo formado por 3 palitos. Mas é possível usar 4 algarismos 1; neste caso, usamos 8 palitos e podemos completar o número com um entre os algarismos 2 ou 5, que são formados por 5 palitos. Neste caso, devemos escolher o 5, que nos permite formar o número 51111 com 13 palitos. A soma dos algarismos deste número é 5+1+1+1+1=9.

QUESTÃO 14 ALTERNATIVA B

Temos $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} = \frac{29}{30}$. Como a fração $\frac{29}{30}$ é irredutível, segue que bd é um múltiplo de 30. Por outro

lado, o único múltiplo de 30 que é o produto de dois fatores entre 1 e 9 é o próprio 30, que é igual a 5×6 . Podemos então supor que b=5 e d=6; voltando à expressão original, obtemos 6a+5b=29. A única solução desta equação em inteiros entre 1 e 9 é a=4 e b=1, e temos a+b+c+d=4+5+1+6=16.

QUESTÃO 15 ALTERNATIVA C

Nesta solução vamos usar repetidamente o resultado de geometria elementar que diz que o ângulo externo de um triângulo é igual à soma dos dois ângulos internos não adjacentes. Este resultado está ilustrado na figura ao lado e diz que $\alpha = \beta + \gamma$.

Vamos indicar por δ a medida do ângulo \hat{BAC} . Como o triângulo ADE é isósceles, temos $\hat{DEA}=\delta$. O ângulo \hat{EDF} é externo ao triângulo ADE, e pelo resultado mencionado acima temos $\hat{EDF}=\delta+\delta=2\delta$. Como o triângulo DEF é isósceles temos também $\hat{EFD}=2\delta$; o ângulo \hat{FEC} , externo ao triângulo FEA, mede então $2\delta+\delta=3\delta$. Analogamente, concluímos que $\hat{CBA}=4\delta$, e como o triângulo ABC é isósceles segue que $\hat{BCA}=4\delta$. Logo $180^\circ=4\delta+4\delta+\delta=9\delta$, donde $\delta=20^\circ$.

QUESTÃO 16 ALTERNATIVA A

Lembramos que a soma dos ângulos internos de um polígono de n lados é $(n-2)\times180^\circ$. Podemos ver a figura do enunciado como um polígono de 6 lados (em traço mais grosso na figura ao lado); a soma de seus ângulos internos é então $(6-2)\times180^\circ=720^\circ$. Por outro lado, como os trapézios são congruentes, a soma destes ângulos internos é igual a 10 vezes a medida do ângulo marcado, que

vale então $\frac{720^{\circ}}{10} = 72^{\circ}$.

QUESTÃO 17 ALTERNATIVA D

Há cinco algarismos ímpares: 1, 3, 5, 7 e 9. Contando apenas números inteiros positivos, existem então 5 números formados por apenas um algarismo ímpar, $5 \times 5 = 25$ números formados por dois algarismos ímpares e $5 \times 5 \times 5 = 125$ números formados por três algarismos ímpares. Assim, existem 5 + 25 + 125 = 155 números inteiros positivos menores que 1000 formados por algarismos ímpares. O 156º é então 1111 e o 157º é 1113.

QUESTÃO 18 ALTERNATIVA B

Para achar a soma das áreas dos triângulos, basta calcular a área do paralelogramo ABCD e subtrair as áreas dos trapézios ABFE e CDFE. Seja h a altura do trapézio ABFE; sua área é então $\frac{AB+EF}{2}h=3h\,\mathrm{cm}^2$. Como a altura do paralelogramo ABCD é 4 cm, a altura do trapézio CDFE é 4-h e sua área é $\frac{CD+EF}{2}(4-h)=12-3h\,\mathrm{cm}^2$. A área do paralelogramo ABCD é 16 cm²; a soma das áreas dos triângulos é então $16-(3h+12-3h)=4\,\mathrm{cm}^2$.

QUESTÃO 19 ALTERNATIVA E

Na figura abaixo mostramos as 9 figuras diferentes que contém o vértice superior do pentágono. Observamos que nenhuma destas figuras pode ser obtida a partir de outra através de rotações do pentágono.

Cada uma destas figuras dá origem, através de rotações do pentágono, a outras 4 figuras diferentes, como ilustramos abaixo.

Segue que o número de figuras diferentes que podemos fazer com dois segmentos é $9 \times 5 = 45$.

QUESTÃO 20 ALTERNATIVA E

Vamos imaginar que o torneio acabou. Para os 56 times que foram eliminados após perder 2 partidas cada um, contamos $56 \times 2 = 112$ derrotas. Como o campeão perdeu uma vez, o número total de derrotas foi 112 + 1 = 113. Além disso, como não houve empates, em cada partida um time ganhou e o outro perdeu; logo, o número total de derrotas é igual ao número total de partidas.