Matrix Calculus Examples

Farrukh Rahman

Agenda

- Prelim
- Examples
- Num vs Denom Layout
- NN

Why?

- NN's approximate functions
- Gradient is response to infinitesimal changes.
 - Gradient based Learning
- Backpropagation workhorse of DL

functions

- f: X -> Y
 - Function f maps X to Y
 - Input X can be Scalar, Vector, Matrix
 - Output Y can be Scalar, Vector, or Matrix
 - Vectors are column vectors.

Scalar Valued Function of Single Variable

$$f: \mathbb{R} \to \mathbb{R} \quad \alpha \in \mathbb{R}$$

$$y = f(\alpha) = \alpha^{2} \ln \alpha^{2}$$

$$\frac{dy}{dx} = \frac{2}{2} 2x + 2x \ln x^{2}$$

Scalar Valued Function of Multiple variables

$$f: \mathbb{R}^3 \to \mathbb{R}$$
 $\vec{x} = \begin{bmatrix} x_1 \\ 2x_2 \\ 3x_3 \end{bmatrix}$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = 2^2 + x_1 \ln x_2 + e^{x_1 x_3} + 2x_3$
 $y = f(\vec{x}) = f(\vec{$

Vector Valued Function of Single Variable

$$f: \mathbb{R} \to \mathbb{R}^{3} \quad y=f(x) = \begin{bmatrix} 3x^{2}+x \\ e^{2} \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} f_{1} \\ f_{2} \\ 7 & 2 \end{bmatrix}$$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x} \\ \frac{\partial f_{2}}{\partial x} \\ \frac{\partial f_{3}}{\partial x} \end{bmatrix} = \begin{bmatrix} 6x+1 \\ e^{x} \\ 1 & 2 \end{bmatrix}$$

$$\frac{\partial f_{3}}{\partial x} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x} \\ \frac{\partial f_{2}}{\partial x} \\ \frac{\partial f_{3}}{\partial x} \end{bmatrix}$$

Vector Valued Function of Multiple Variables

(numerator layout)
$$f \cdot R^{3} \rightarrow R^{2} \qquad \stackrel{\sim}{\times} = \begin{bmatrix} \frac{\pi_{1}}{2} \\ \frac{\pi_{2}}{2} \end{bmatrix} = \begin{bmatrix} \frac{\pi_{1}}{2} \\ \frac{\pi_{2}}{2} \\ \frac{\pi_{2}}{2} + 2\pi_{3} \end{bmatrix}$$

$$\frac{\partial y}{\partial \vec{x}} =
\begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3}
\end{bmatrix}$$
Jaco

$$= \begin{bmatrix} 1+x_2+x_3 & x_1 & x_1 \\ 2x_1 & 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & x_1 \\ 2x_1 & 0 & 2 \end{bmatrix}$$

Vector Valued Function of Multiple Variables

(denominator layout)
$$f: \mathcal{P}^{3} \rightarrow \mathcal{R}^{2} \qquad \lambda = \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \end{bmatrix}$$

$$y = f(x) = \begin{bmatrix} f_{1} \\ f_{2} \end{bmatrix} = \begin{bmatrix} x_{1} + x_{1}x_{2} + x_{1}x_{3} \\ z_{1}^{2} + zx_{3} \end{bmatrix}$$

Scalar valued function of many (matrix)

Matrix valued function of single variable

$$f: \mathbb{R} \to \mathbb{R}^{2\times 2}$$

$$y = f(x) = \begin{bmatrix} f_1 & f_2 \\ f_3 & f_4 \end{bmatrix} = \begin{bmatrix} \cos(x) & \sin(x) \\ e^{x} & \tanh(x) \end{bmatrix}$$

Vector valued function of multiple (matrix)

Vector valued function of multiple (matrix)

Vec
$$(x)$$
 = $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \end{bmatrix} \in \mathbb{R}^6$

$$\frac{\partial y}{\partial y} \in \mathbb{R}^{4 \times 6}$$

$$\frac{\partial y}{\partial y} \in \mathbb{R}^{4 \times 6}$$

$$X = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \end{bmatrix}$$

$$y = f(x) = \begin{cases} f_1 \\ f_2 \\ f_3 \\ f_4 \end{cases} = \begin{cases} \sum_{i=1}^{n} x_i \\ x_1 x_5 x_1 \\ x_2 x_4 \\ x_3 x_4 x_5 \end{cases}$$

Matrix valued function of multiple variables
$$f: \mathbb{R}^{3} \to \mathbb{R}^{2\times 4} \qquad \overrightarrow{\chi} = \left[\begin{array}{ccc} \chi_{1} & \chi_{2} & \chi_{3} \end{array}\right]^{T} \quad y = f(x) = \left[\begin{array}{ccc} \chi_{1} & \chi_{1} \chi_{3} & \chi_{2} \chi_{3} & \chi_{2} \chi_{3} \\ \chi_{1} & \chi_{2} & \chi_{1} \chi_{2} & \chi_{1}^{2} & \chi_{2}^{2} & \chi_{3} \end{array}\right]$$

Elementwise functions (e.g. Identity) f: R -> R -> K

$$f: \mathbb{R}^{3\chi} \rightarrow \mathbb{R}^{3\chi}$$
 $\dot{\chi} = [\alpha_1 \ \alpha_2 \ \alpha_3]^T$

$$I(x) = x ER$$

$$= \begin{bmatrix} I(x_1) \\ I(x_2) \\ I(x_3) \end{bmatrix}$$

$$f_1(x_1)$$

$$f_2(x_2)$$

$$f_3(x_3)$$

$$\int f(x_1) f(x_2)$$

$$f(x_2) f(x_2)$$

$$f(x) = x$$

$$\frac{\partial f(x)}{\partial x} = 1$$

Layout notation.

- Use whichever layout is convenient to make shapes match.
- Why? Update rule

Result of differentiating various kinds of aggregates with other kinds of aggregates

		Scalar y		Column vector y (size <i>m</i> ×1)		Matrix Y (size <i>m</i> × <i>n</i>)	
		Notation	Туре	Notation	Туре	Notation	Туре
Scalar x	Numerator	∂y	Scalar	$\partial \mathbf{y}$	Size-m column vector	$\partial \mathbf{Y}$	<i>m×n</i> matrix
	Denominator	$\overline{\partial x}$		$\overline{\partial x}$	Size-m row vector	$\overline{\partial x}$	
Column vector x	Numerator	∂y	Size-n row vector	$\underline{\partial \mathbf{y}}$	<i>m</i> × <i>n</i> matrix	$\partial \mathbf{Y}$	
(size <i>n</i> ×1)	Denominator	$\overline{\partial \mathbf{x}}$	Size-n column vector	$\overline{\partial \mathbf{x}}$	n×m matrix	$\overline{\partial \mathbf{x}}$	
Matrix X	Numerator	∂y	<i>q</i> × <i>p</i> matrix	$\partial \mathbf{y}$		$\partial \mathbf{Y}$	
(size p×q)	Denominator	$\overline{\partial \mathbf{X}}$	<i>p</i> × <i>q</i> matrix	$\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$		$\overline{\partial \mathbf{X}}$	

The results of operations will be transposed when switching between numerator-layout and denominator-layout notation.

y & R VER Back to NN's -> XER sin(u) X@w WER