Лекция 09.11.22

Note 1

a60a9a5778ca41aaabad4a4a7a6c4faa

Какие есть основные виды дифференциальных уравнений?

Обыкновенные; в частных производных.

Note 2

5e9fddb7111e4705aa4a145bb98b111f

 ${\it (с. 2)}$ Обыкновенные дифференциальные уравнения — это ${\it (с. 1)}$ уравнения относительно функции одной переменной и её производных.

Note 3

304a53cb8187428aaba248e942576ea2

" $\{(c): Oбыкновенные дифференциальные уравнения<math>\}$ " сокращается как " $\{(c): OДУ.\}$ "

Note 4

27aba707c8db4ff0aaa02aa522cb353c

 $\{(ca.)$ Уравнения в частных производных — это $\{(ca.)$ уравнения относительно функции нескольких переменных и её частных производных.

Note 5

54188b1d277440558390f93807cf9e7e

 $\{(ca)$ Уравнения в частных производных $\{(ca)$ уравнениями математической физики. $\{(ca)$

Note 6

6ed94a06c0164651bcacf8ee9c9f96fb

" $\{|c|=$ Уравнения в частных производных $\|$ " сокращается как " $\{|c|=$ УрЧ Π . $\|$ "

Note 7

0fd7b116352242aba166bb75e3487f7e

«2 Порядком» дифференциального уравнения называется казывается к

Является ли

$$F(x,y) = 0, \ y = y(x)$$

дифференциальным уравнением?

Нет, потому что нет производных.

Note 9

f8ab33c8a60a4901a4c26ccff8a6fd1a

Множество $G\subset\mathbb{R}^n$ называется (селобластью,)) если (селоно открыто и связно.))

Note 10

1425377052ae4b228fc834d5b4f6318

ОДУ первого порядка называется (се разрешённым относительно производной,)) если оно имеет вид (са:

$$\frac{dy}{dx} = f(x, y),$$

 $_{\mathbb{R}}$ где $f-_{\mathbb{R}^{2}}$ функция на области в \mathbb{R}^{2} . $_{\mathbb{R}}$

Note 11

aa5c740235f848c79fb3bbc39d4a3160

Функция y называется (сетрешением ОДУ на множестве X,)) если (сетв любой точке X её подстановка её значений в ОДУ имеет смысл и приводит к верному равенству.))

Note 12

8515eff1b5844e0cba265de7445cf1a0

Пусть $y-\{\{c\}\}$ решение ОДУ. $\{\{c\}\}$ График $y_{\{\}}\}$ называется $\{\{c\}\}$ интегральной кривой этого уравнения. $\{c\}$

Note 13

01533944715c4477a02b8f21087f96d2

Сколько решений может иметь произвольное ОДУ?

Сколь угодно много.

В чём состоит задача Коши для ОДУ первого порядка?

Найти решение, отвечающее начальным условиям.

Note 15

94e8aha670fa45eah4fae8fee8d2356

Что есть "начальные условия" из формулировки задачи Коши для ОДУ первого порядка?

 $y(x_0) = y_0$ для фиксированных x_0, y_0 .

Note 16

0277eb8d5c00466ca6bb797bd58c8279

Как называются значения (x_0, y_0) в задаче Коши для ОДУ первого порядка?

Начальные данные.

Note 17

1ae5b8ef39d14aab9d038ebe894b7b99

Какие значения могут принимать начальные данные в задаче Коши для ОДУ первого порядка?

Любые, для которых ОДУ имеет смысл.

Note 18

4ecfb902661d484682379f7f0b7b2567

На каком множестве нужно найти решение задачи Коши с начальными данными (x_0, y_0) ?

Интервал, включающий x_0 .

Note 19

c6f2ec8c4ae142118b3840ddb828a96b

Как называется теорема о существовании решения задачи Коши для ОДУ первого порядка, разрешённого относительно производной?

Note 20

623dc3931814e958fe21c89ae0b0c6e

Какое уравнение рассматривается в теореме Пеано?

ОДУ первого порядка, разрешённое относительно производной.

Note 21

5abd317c6b0b4b02ab50a72f0ea7d792

При каком условии можно что-либо заключить из теоремы Пеано?

Функция, задающая разрешённое ОДУ, непрерывна на области.

Note 22

dfdb355bf4d84b1d89e76ebd9e215e4a

Что можно заключить из теоремы Пеано?

Для любой точки существует решение задачи Коши с этими начальными данными.

Note 23

3290d174cc33491e924cbd8ec7137a8a

Каков геометрический смысл теоремы Пеано?

Через любую точку области проходит интегральная кривая.

Note 24

59c04413608e4901a682dfb9a1d29161

Что называют точкой единственности для уравнения

$$\frac{dy}{dx} = f(x,y)$$
?

Точка, для которой любые два решения задачи Коши совпадают (в какой-то окрестности).

В каком именно смысле совпадают любые два решения соответствующей задачи Коши в определении точки единственности уравнения $\frac{dy}{dx}=f(x,y)$?

Они равны на некоторой $V_{\delta}(x_0)$.

Note 26

c197734ceb654182bc3221591296e2f

Пусть f — функция на области в \mathbb{R}^2 ,

$$\frac{dy}{dx} = f(x,y) .$$

Тогда если f и $\frac{\partial f}{\partial y}$ непрерывны, то польобая точка области является точкой единственности.

Note 27

33930ae47c60424a9e1c3f6f5482f236

Пусть f — функция на области в \mathbb{R}^2 . При каком условии задача Коши для $\frac{dy}{dx} = f(x,y)$ однозначно разрешима в любой точке?

f и $\frac{\partial f}{\partial y}$ непрерывны.

Note 28

785b85c103cb446090843629aba6f66

Пусть f — функция на области в \mathbb{R}^2 . Что называют особым решением уравнения $\frac{dy}{dx}=f(x,y)$?

Решение, любая точка графика которого не является точкой единственности (внутри интервала).

Note 29

37a7853a3e8d43aa9d89f5bb427f5ebc

Пусть f — функция на области в \mathbb{R}^2 . Как называется решение уравнения $\frac{dy}{dx}=f(x,y)$, любая точка графика которого не является точкой единственности?

Особое решение.

Note 30

8c95e3912938472e90263540e560fb33

Пусть f — функция на области в \mathbb{R}^2 . Что называют общим решением уравнения $\frac{dy}{dx}=f(x,y)$?

Параметризованная совокупность решений, содержащая решение задачи Коши для любой точки области.

Note 31

94b869be37d9483ea16e55b821468d6a

Пусть f — функция на области в \mathbb{R}^2 . Как задаётся общее решение уравнения $\frac{dy}{dx} = f(x,y)$?

Отображение $\Phi(x,c)$, где c — параметр, x — переменная.

Note 32

845626784e214307bef975cf77f33ece

Пусть f — функция на области в \mathbb{R}^2 . Что называют частным решением уравнения $\frac{dy}{dx}=f(x,y)$?

Одно из решений, входящих в некоторое общее решение

Note 33

e4f00b810c5346e7883e4848222bac62

 $\{\{c2\}$ Векторное поле $\}$ — это $\{\{c1\}$ отображение из линейного пространства в себя. $\}$

Note 34

c910d42c89d94c0e911e1b327e5b0a3

Для каких ОДУ имеет смысл понятие поля направлений?

ОДУ первого порядка, разрешённое относительно про-изводной.

Пусть f — функция на области в \mathbb{R}^2 . Что называют полем направлений уравнения $\frac{dy}{dx} = f(x,y)$?

Векторное поле нормализованных векторов, задающих направления касательных к интегральным кривым.

Note 36

f47ec07174947169cc1a095d3b5dbd0

Пусть f — функция на области в \mathbb{R}^2 . Как строится визуальное представление поля направлений уравнения $\frac{dy}{dx} = f(x,y)$?

Через каждую точки сетки проводится соответствующе наклонённый отрезок.

Note 37

a9509cb3d319496ca4f8ce25b5b988b

Пусть f — функция на области в \mathbb{R}^2 . Гладкая кривая является пределинтегральной кривой уравнения $\frac{dy}{dx} = f(x,y)$ погда и только тогда, когдар пределений получений получений.

(в терминах поля направлений)

Note 38

1895f43f66e747cc9ce6e8a4dd317258

Пусть f — функция на области в \mathbb{R}^2 . Что называется изоклиной уравнения $\frac{dy}{dx}=f(x,y)$?

Кривая, во всех точках которой значение поля направлений одинаково.

Note 39

efd8be00720a4e449757b00e4434d684

Пусть f — функция на области в \mathbb{R}^2 . Каким уравнением задаётся произвольная изоклина уравнения $\frac{dy}{dx}=f(x,y)$?

f(x,y)=c для $c\in\mathbb{R}.$

Лекция 16.11.22

Note 1

84332aa7764648b3b6b73355b0fb7064

Пусть $\{G^{-1}: G - \text{ область в } \mathbb{R}^2.\}$ Тогда выражение вида

{{c2::}}
$$m(x,y) \cdot dx + n(x,y) \cdot dy = 0$$
 , }} где {{c3::}} $m,n:G o \mathbb{R}$, }}

называется $\{can OДУ первого порядка в симметричной форме.$

Note 2

0a8383be5d30458db9ab476e9ea34e84

Что называется решением ОДУ первого порядка в симметричной форме?

Решение любого из порождённых ОДУ, разрешённых относительно производной.

Note 3

89d64566d77b4dc7b52af28eab7dae35

Какие два уравнения порождает ОДУ первого порядка в симметричной форме?

$$\frac{dy}{dx} = \cdots$$
 и $\frac{dx}{dy} = \cdots$

Note 4

0981a7837c7644328e3f6ccbd939ec02

Всегда ли ОДУ первого порядка в симметричной форме порождает два уравнения?

Нет.

Note 5

0bf3be66da26454f981de93a9f57fdb4

Пусть дано ОДУ в симметричной форме

$$m(x,y)dx + n(x,y)dy = 0.$$

 $\{\{can}$ Точку, в которой и m, и n обращаются в $0, \|$ называют $\{\{can}$ особой точкой этого уравнения. $\|$

Как ставится задача Коши для ОДУ первого порядка в симметричной форме?

Найти решение для любой из порождённых задач Коши для ОДУ, разрешённых относительно производной.