PRINCIPLE COMPONENT ANALYSIS AND SINGULAR VALUE DECOMPOSITION

吳沛遠 **Pei-Yuan Wu**Dept. Electrical Engineering
National Taiwan University

AGENDA

- Linear Algebra Preliminaries
- Spectral theorem for Symmetric matrices
- Principle Component Analyais (PCA)
- Singular Value Decomposition (SVD)

VECTOR SPACE

Vector space $(V, F, +, \cdot)$

- *V*: A set of objects (called vectors)
- F: Field (e.g., \mathbb{R} or \mathbb{C})
- Addition of vectors $+: V \times V \to V$ (i.e., addition is closed in V)
 - \triangleright Commutativity: x + y = y + x
 - ightharpoonup Associativity: (x + y) + z = x + (y + z)
 - $ightharpoonup \exists \mathbf{0} \in V \text{ such that } \mathbf{0} + x = x + \mathbf{0} = x, \forall x \in V$
 - ✓ Proposition: 0 is unique, called the *zero vector*. (Exercise)
 - $\rightarrow \forall x \in V, \exists (-x) \in V \text{ such that } x + (-x) = 0$
 - ✓ Proposition: $\forall x \in V$, (-x) is unique, called the *additive inverse* of x. (Exercise)
- Scalar multiplication: $:: F \times V \to V$ (i.e., scalar multiplication is closed in V)
 - \triangleright Compatibility: $a(bx) = (ab)x, \forall x \in V, a, b \in F$
 - \triangleright Distributivity: a(x + y) = ax + ay, (a + b)x = ax + bx, $\forall x, y \in V$, $a, b \in F$
 - $\triangleright 1x = x$
- Example: Euclidean space \mathbb{R}^n .

INNER PRODUCT SPACE

• An *inner product space* is a vector space V over the field F (\mathbb{R} or \mathbb{C}) together with an inner product

$$\langle \cdot, \cdot \rangle : V \times V \to F$$

That satisfies the following three axioms for all vectors $x, y, z \in V$ and all scalars $a \in F$:

- ▶ Conjugate symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- Linearity in the first argument

$$\langle ax, y \rangle = a \langle x, y \rangle$$

 $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$

Positive definiteness

$$\langle x, x \rangle \ge 0$$

 $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

EUCLIDEAN SPACE

- Euclidean space $\mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} : x_1, \dots, x_n \in \mathbb{R} \right\}$
- \mathbb{R}^n is a vector space over field \mathbb{R} by defining elementwise addition and scalar multiplication: (Exercise: Prove that vector space axioms hold)

Addition:
$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

- Scalar multiplication: $\alpha \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}, \alpha \in \mathbb{R}$
- \mathbb{R}^n is an inner product space by defining inner (dot) product:
 - ►Inner (dot) product: $\left\langle \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\rangle_{\mathbb{R}^n} = x_1 y_1 + \dots + x_n y_n \in \mathbb{R}$

COMPLEX EUCLIDEAN SPACE

- Complex Euclidean space $\mathbb{C}^n = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} : x_1, \dots, x_n \in \mathbb{C} \right\}$
- \mathbb{C}^n is a vector space over field \mathbb{C} by defining elementwise addition and scalar multiplication: (Exercise: Prove that vector space axioms hold)

Addition:
$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

- Scalar multiplication: $\alpha \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}, \alpha \in \mathbb{C}$
- \mathbb{C}^n is an inner product space by defining inner (dot) product:
 - ▶Inner (dot) product: $\left\langle \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\rangle_{\mathbb{C}^n} = x_1 \overline{y_1} + \dots + x_n \overline{y_n} \in \mathbb{C}$

LINEAR MAPPING

• Let V and W be vector spaces over the same field F. A function $T:V \to W$ is said to be a <u>linear mapping</u> if it preserves the addition and scalar multiplication operations. Namely,

$$T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in M, a, b \in F$$

- Example: Let F be a field (\mathbb{R} or \mathbb{C}). Each matrix $A \in F^{m \times n}$ can be considered as a linear mapping $T: F^n \to F^m$ defined as T(x) = Ax
- Proposition: Let F be a field (\mathbb{R} or \mathbb{C}). Each linear mapping $T: F^n \to F^m$ can be represented by a matrix $A \in F^{m \times n}$ such that $T(x) = Ax, \forall x \in F^n$

EIGEN-VECTOR AND EIGEN-VALUE

• Let V be vector space over the same field $F, T: V \to V$ be a linear mapping. We call $v \in V$ an $\underline{eigenvector}$ of T if $v \neq 0$ and $T(v) = \lambda v$

where $\lambda \in F$. We call λ the <u>eigenvalue</u> associated with v.

• Let F be a field (\mathbb{R} or \mathbb{C}). A matrix $A \in F^{n \times n}$ can be viewed as a linear mapping $T: F^n \to F^n$, T(x) = Ax. Hence we call λ the eigenvalue (of A) associated with eigenvector (of A) $v \in F^n$ if $v \neq 0$ and $Av = \lambda v$

Exercise: Eigenvector and eigenvalue of

$$A = \begin{bmatrix} -1 & 6 \\ 3 & 2 \end{bmatrix}$$

SPECTRAL THEOREM FOR SYMMETRIC MATRICES

In this lecture, we want to prove that

SYMMETRIC MATRIX IS DIAGONALIZABLE

Theorem 5: If $A \in \mathbb{R}^{n \times n}$ is *symmetric*, then there exists diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ and *orthogonal* matrix $U \in \mathbb{R}^{n \times n}$ such that $A = U\Lambda U^T$

$$U = (v_1)(v_2)...(v_n)$$
eigenvectors

$$A\boldsymbol{v}_k = \lambda_k \boldsymbol{v}_k$$

Symmetric:

$$A = [a_{ij}] \in \mathbb{C}^{n \times n}$$
 is symmetric if $a_{ij} = a_{ji}$

Orthogonal matrix:

 $U = [v_1 \dots v_n] \in \mathbb{R}^{n \times n}$ is an orthogonal matrix if v_1, \dots, v_n are orthogonal and have unit length

$$\boldsymbol{v}_{k}^{T}\boldsymbol{v}_{\ell} = \begin{cases} 1 & \text{if } k = \ell \\ 0 & \text{if } k \neq \ell \end{cases}$$

That is, $U^TU = I$, namely, $U^{-1} = U^T$.

We would also want to prove that

HERMITIAN MATRIX IS DIAGONALIZABLE

■ **Theorem 4:** If $A \in \mathbb{C}^{n \times n}$ is *Hermitian*, then there exists diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ and *unitary* matrix $U \in \mathbb{C}^{n \times n}$ such that $A = U \Lambda U^H$

$$U = (v_1)(v_2)..., (v_n)$$
eigenvectors

$$A\boldsymbol{v}_k = \lambda_k \boldsymbol{v}_k$$

Conjugate transpose:

The conjugate transpose of $A \in \mathbb{C}^{m \times n}$ is denoted as $A^H = \overline{A^T} \in \mathbb{C}^{n \times m}$

Hermitian:

$$A = [a_{ij}] \in \mathbb{C}^{n \times n}$$
 is Hermitian if $a_{ij} = \overline{a_{ji}}$

Unitary Matrix:

 $U = [v_1 \dots v_n] \in \mathbb{C}^{n \times n}$ is an unitary matrix if v_1, \dots, v_n are orthogonal and have unit length

$$\boldsymbol{v}_{k}^{H}\boldsymbol{v}_{\ell} = \begin{cases} 1 & \text{if } k = \ell \\ 0 & \text{if } k \neq \ell \end{cases}$$

That is, $U^H U = I$

INVARIANT SUBSPACE

• M is called a <u>subspace</u> of vector space (V, F), if it is closed under vector addition and multiplication. Namely,

$$ax + by \in M, \forall x, y \in M, a, b \in F$$

- Let V be a vector space, $T: V \to V$ be a linear mapping. M is called an *invariant subspace* of T if $T(x) \in M$, $\forall x \in M$.
- Let F be a field (\mathbb{R} or \mathbb{C}). A matrix $A \in F^{m \times n}$ can be viewed as a linear mapping $T: F^n \to F^m$, T(x) = Ax. We call M an invariant subspace of A if $Ax \in M$, $\forall x \in M$.

ADJOINT OPERATOR

• Let H_1, H_2 be inner product spaces, $T: H_1 \to H_2$ be a linear mapping. If a linear mapping $T^*: H_2 \to H_1$ satisfies

$$\langle T\mathbf{x}, \mathbf{y} \rangle_{H_2} = \langle \mathbf{x}, T^*\mathbf{y} \rangle_{H_1}, \forall \mathbf{x} \in H_1, \mathbf{y} \in H_2$$

Then we call T^* the **adjoint** of T.

- **Proposition:** T^* is unique (if it does exist) (Exercise)
- Proposition: $(T^*)^* = T$

$$\underline{Proof:} \quad \langle T^*y, x \rangle_{H_1} = \overline{\langle x, T^*y \rangle_{H_1}} = \overline{\langle Tx, y \rangle_{H_2}} = \langle y, Tx \rangle_{H_2}, \forall x \in H_1, y \in H_2$$

• Example: Suppose linear mapping $T:\mathbb{C}^n\to\mathbb{C}^m$ is represented by $A\in\mathbb{C}^{m\times n}$. Since

$$\langle Tx, y \rangle = \langle Ax, y \rangle = y^H (Ax) = (A^H y)^H x = \langle x, A^H y \rangle,$$

therefore T has adjoint $T^*: \mathbb{C}^m \to \mathbb{C}^n$, which is represented by $A^H \in \mathbb{C}^{m \times n}$.

SELF ADJOINT

■ Let H be inner product space, $T: H \to H$ be a linear mapping. We call T self-adjoint if T^* exists and

$$T = T^*$$

- Example: If linear mapping $T: \mathbb{C}^n \to \mathbb{C}^n$ is self-adjoint and represented by $A \in \mathbb{C}^{n \times n}$, then $A = A^H$, i.e., A is Hermitian.
- **Proposition:** If λ is an eigenvalue of self-adjoint mapping T, then $\lambda \in \mathbb{R}$.

<u>Proof:</u> Let x be an eigenvector associated with λ , then

$$\lambda\langle x,x\rangle=\langle Tx,x\rangle=\langle x,T^*x\rangle=\langle x,Tx\rangle=\bar{\lambda}\langle x,x\rangle$$

Therefore $\lambda = \bar{\lambda}$.

NORMAL OPERATOR

- Let H be inner product space, $T: H \to H$ be a linear mapping. We call T normal if T^* exists and $TT^* = T^*T$.
- Example: Suppose linear mapping $T: \mathbb{C}^n \to \mathbb{C}^n$ is represented by $A \in \mathbb{C}^{n \times n}$, then T is normal iff $AA^H = A^HA$.
- **Proposition:** If $A \in \mathbb{C}^{n \times n}$ is normal, then

$$||Ax - \lambda x||^2 = ||A^H x - \bar{\lambda} x||^2, \forall x \in \mathbb{C}^n, \lambda \in \mathbb{C}$$

Proof:

$$\overline{\|Ax - \lambda x\|^2} = x^H (A^H A - \lambda A^H - \overline{\lambda} A + |\lambda|^2 I) x = x^H (AA^H - \overline{\lambda} A - \lambda A^H + |\lambda|^2 I) x = \|A^H x - \overline{\lambda} x\|^2$$

• **Proposition:** Let $A = U\Lambda U^H$ for which $\Lambda \in \mathbb{C}^{n \times n}$ is diagonal and $U \in \mathbb{C}^{n \times n}$ is unitary, then A is normal

Proof:
$$AA^H = U\Lambda\Lambda^HU^H = U\Lambda^H\Lambda U^H = A^HA$$

• **Lemma 1:** If $v_1, v_2, ..., v_k$ are eigenvectors of a linear mapping T on inner product space H, then $M_k = \{x \in H | \langle x, v_i \rangle = 0, \forall i = 1, 2, ..., k\}$ is an invariant subspace of T^* .

Proof: For
$$x \in M_k$$
, holds $\langle T^*x, v_i \rangle = \langle x, Tv_i \rangle = \overline{\lambda_i} \langle x, v_i \rangle = 0, \forall x \in M_k, i = 1, 2, ..., k$

Lemma 2: If M is a non-trivial invariant subspace of linear mapping $T: \mathbb{C}^n \to \mathbb{C}^n$, then there exists $\lambda \in \mathbb{C}$, $v \in M$, $v \neq 0$ such that $Tv = \lambda v$

<u>Proof:</u> Take $A \in \mathbb{C}^{n \times n}$ which represents T. Take $U \in \mathbb{C}^{n \times m}$ whose columns $u_1, ..., u_m$ form an orthonormal basis of M. Define $\psi : \mathbb{C}^m \to M$ as

$$\psi\left(\begin{bmatrix}c_1\\\vdots\\c_m\end{bmatrix}\right) = \sum_{i=1}^m c_i \boldsymbol{u}_i$$

Then ψ is a one-to-one onto linear mapping. Consider linear mapping $\psi^{-1} \circ T \circ \psi$: $\mathbb{C}^m \to \mathbb{C}^m$ which can be represented by $U^H A U \in \mathbb{C}^{m \times m}$, it is evident that there exists some $\lambda \in \mathbb{C}$, $c \in \mathbb{C}^m$, $c \neq 0$ such that $U^H A U c = \lambda c$. (Hint: Take λ sastisfying $\det(U^H A U - \lambda I) = 0$ and nonzero vector $c \in Null(U^H A U - \lambda I)$). Note that $\psi^{-1} \circ T \circ \psi(c) = U^H A U c = \lambda c \Rightarrow T(\psi(c)) = \psi(\lambda c) = \lambda \psi(c)$

Therefore $v = \psi(c) \in M$ is a nonzero vector satisfying $Tv = \lambda v$. Q.E.D.

Theorem 3: If $A \in \mathbb{C}^{n \times n}$ is normal, then there exists diagonal matrix $\Lambda \in \mathbb{C}^{n \times n}$ and unitary matrix $U \in \mathbb{C}^{n \times n}$ such that $A = U\Lambda U^H$.

<u>Proof:</u> We will construct pairwise-orthogonal eigenvectors $v_1, ..., v_n$ with associating eigenvalues $\lambda_1, ..., \lambda_n$ of A as follows:

For k = 1, 2, ..., n, suppose $v_1, ..., v_{k-1}$ are pairwise-orthogonal eigenvectors of A. By Lemma 1,

$$M_{k-1} = \{ x \in \mathbb{C}^n | \langle x, v_i \rangle = 0, \forall i = 1, ..., k-1 \}$$

is a non-trivial invariant subspace of A. Therefore, by Lemma 2, there exists $\lambda_k \in \mathbb{C}$, $v_k \in M_{k-1}, v_k \neq 0$ such that $A^H v_k = \overline{\lambda_k} v_k$, which implies $A v_k = \lambda_k v_k$. In other words, v_k is an eigenvector of A with associating eigenvalue λ_k which is orthogonal to v_1, \ldots, v_{k-1} . Hence v_1, \ldots, v_k are pairwise-orthogonal eigenvectors of A.

The above procedure thus constructs pairwise-orthogonal eigenvectors $v_1, ..., v_n$ with associating eigenvalues $\lambda_1, ..., \lambda_n$ of A.

Theorem 3: If $A \in \mathbb{C}^{n \times n}$ is normal, then there exists diagonal matrix $\Lambda \in \mathbb{C}^{n \times n}$ and unitary matrix $U \in \mathbb{C}^{n \times n}$ such that $A = U\Lambda U^H$.

<u>Proof: (cont'd)</u> We have shown the existence of pairwise-orthogonal eigenvectors $v_1, ..., v_n$, normalized to unit length $||v_i|| = 1$, with associating eigenvalues $\lambda_1, ..., \lambda_n$. Set $U = [v_1 ... v_n] \in \mathbb{C}^{n \times n}$, then $U^H U = I$, i.e., U is unitary. Since for every $c \in \mathbb{C}^n$, one has

$$AU\mathbf{c} = A\sum_{i=1}^{m} c_i \mathbf{v}_i = \sum_{i=1}^{m} c_i A \mathbf{v}_i = \sum_{i=1}^{m} c_i \lambda_i \mathbf{v}_i = U \Lambda \mathbf{c}$$

Where $\Lambda = diag(c_1, ..., c_n)$. Therefore $AU = U\Lambda$ which implies $A = U\Lambda U^{-1} = U\Lambda U^H$. **Q.E.D.**

That is, a normal matrix A can always be written as $A = U\Lambda U^H$, where U is an unitary matrix of eigenvectors, and Λ is a diagonal matrix of the associated eigenvalues.

HERMITIAN MATRIX IS DIAGONALIZABLE

Since every Hermitian matrix is normal (so is diagonizable) and self-adjoint (so eigenvalues are real), one immediately obtains Theorem 4, as restated below:

Theorem 4: If $A \in \mathbb{C}^{n \times n}$ is *Hermitian*, then there exists diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ and *unitary* matrix $U \in \mathbb{C}^{n \times n}$ such that $A = U\Lambda U^H$.

REAL SYMMETRIC MATRIX IS DIAGONALIZABLE WITH REAL EIGENVECTORS

Lemma 3: If M is a non-trivial invariant subspace of self-adjoint operator $T: \mathbb{R}^n \to \mathbb{R}^n$, then there exists $\lambda \in \mathbb{R}$, $v \in M$, $v \neq 0$ such that $Tv = \lambda v$

<u>Proof:</u> Take symmetric matrix $A \in \mathbb{R}^{n \times n}$ which represents T. Take $U \in \mathbb{R}^{n \times m}$ whose columns $u_1, ..., u_m$ form an orthonormal basis of M. Define $\psi : \mathbb{R}^m \to M$ as

$$\psi\left(\begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix}\right) = \sum_{i=1}^m c_i \boldsymbol{u}_i$$

Then ψ is a one-to-one onto linear mapping. Consider linear mapping $\psi^{-1} \circ T \circ \psi \colon \mathbb{R}^m \to \mathbb{R}^m$ which can be represented by $U^TAU \in \mathbb{R}^{m \times m}$. Note that U^TAU is self-adjoint, so it has eigenvalue $\lambda \in \mathbb{R}$ and there is non-zero $c \in \mathbb{R}^m$ for which $U^TAUc = \lambda c$. Note that $\psi^{-1} \circ T \circ \psi(c) = U^TAUc = \lambda c \Rightarrow T(\psi(c)) = \psi(\lambda c) = \lambda \psi(c)$

Therefore $v = \psi(c) \in M$ is a nonzero vector satisfying $Tv = \lambda v$. Q.E.D.

REAL SYMMETRIC MATRIX IS DIAGONALIZABLE WITH REAL EIGENVECTORS

Theorem 5: If $A \in \mathbb{R}^{n \times n}$ is symmetric, then there exists diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ and orthogonal matrix $U \in \mathbb{R}^{n \times n}$ such that $A = U\Lambda U^T$.

<u>Proof:</u> We will construct pairwise-orthogonal eigenvectors v_1 , ..., v_n with associating eigenvalues λ_1 , ..., λ_n of A as follows:

For k = 1, 2, ..., n, suppose $v_1, ..., v_{k-1}$ are pairwise-orthogonal eigenvectors of A. By Lemma 1,

$$M_{k-1} = \{ \mathbf{x} \in \mathbb{R}^n | \langle \mathbf{x}, \mathbf{v}_i \rangle = 0, \forall i = 1, ..., k-1 \}$$

is a non-trivial invariant subspace of $A^T = A$. Therefore, by Lemma 3, there exists $\lambda \in \mathbb{R}$, $v_k \in M_{k-1}$, $v_k \neq 0$ such that $Av_k = \lambda_k v_k$. In other words, v_k is an eigenvector of A with associating eigenvalue λ_k which is orthogonal to v_1, \dots, v_{k-1} . Hence v_1, \dots, v_k are pairwise-orthogonal eigenvectors of A.

The above procedure thus constructs pairwise-orthogonal eigenvectors $v_1, ..., v_n$ with associating eigenvalues $\lambda_1, ..., \lambda_n$ of A.

REAL SYMMETRIC MATRIX IS DIAGONALIZABLE WITH REAL EIGENVECTORS

Theorem 5: If $A \in \mathbb{R}^{n \times n}$ is symmetric, then there exists diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ and orthogonal matrix $U \in \mathbb{R}^{n \times n}$ such that $A = U\Lambda U^T$.

<u>Proof: (cont'd)</u>: We have shown the existence of pairwise-orthogonal eigenvectors $v_1, ..., v_n$, normalized to unit length $||v_i|| = 1$, with associating eigenvalues $\lambda_1, ..., \lambda_n$. Set $U = [v_1 ... v_n] \in \mathbb{R}^{n \times n}$, then $U^T U = I$, i.e., U is orthogonal. Since for every $c \in \mathbb{R}^n$, one has

$$AU\mathbf{c} = A\sum_{i=1}^{m} c_i \mathbf{v}_i = \sum_{i=1}^{m} c_i A \mathbf{v}_i = \sum_{i=1}^{m} c_i \lambda_i \mathbf{v}_i = U \Lambda \mathbf{c}$$

Where $\Lambda = diag(c_1, ..., c_n)$. Therefore $AU = U\Lambda$ which implies $A = U\Lambda U^{-1} = U\Lambda U^T$. **Q.E.D.**

PRINCIPIE COMPONENT ANALYRIS (PCA)

DIMENSIONALITY REDUCTION

- Mapping the original high-dimensional data onto a lower-dimensional subspace.
- Pros for dimensionality reduction
 - Clarity of representation, ease of understanding (e.g., visualization in 2D or 3D)
 - Data compression, computational cost reduction.
 - Noise reduction, prevention of overfitting
- Cons for dimensionality reduction
 - > oversimplification: loss of important or relevant information

PRINCIPAL COMPONENT ANALYSIS (PCA)

- PCA's target: finding the best lower dimensional sub-space that conveys most of the variance in the original data
- Example: If we were to compress 2-D data to 1-D subspace, then PCA prefers projecting to the **black** line, since it preserves more variance comparing to **blue** line.

PRINCIPLE AXES

- Objective of PCA: Given data in \mathbb{R}^M , want to <u>rigidly rotate</u> the axes to new positions (principle axes) with the following properties:
 - ➤ Ordered such that principle axis 1 has the highest variance, axis 2 has the next highest variance, ..., and axis M has the lowest variance.
 - Covariance among each pair of the principal axes is zero.
- The k'th *principle component* is the projection to the k'th principle axis.
- Keep the first m < M principle components for dimensionality reduction.

PRINCIPLE COMPONENT COMPUTATION

• Given N data $x_1, ..., x_N \in \mathbb{R}^M$, PCA first compute the covariance matrix for the data

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^T = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^T$$

where $\mu \in \mathbb{R}^M$ is the data mean.

- Since Σ is symmetric, Σ can be written as $\Sigma = U \Lambda U^T$, where $U = [v_1 \dots v_n]$ is unitary matrix of eigenvectors (of Σ), $\Lambda = diag(\lambda_1, \dots, \lambda_M)$ is diagonal matrix of the associated eigenvalues arranged in non-ascending order $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_M \geq 0$. (Note that all eigenvalues are non-negative real scalars since Σ is **semi-positive definite**.)
- For data $x \in \mathbb{R}^M$, compute its 1st principle component as $v_1^T x$, 2nd principle component as $v_2^T x$,..., M'th principle component as $v_M^T x$

Positive definite:

 $A \in \mathbb{R}^{n \times n}$ is semi-positive definite if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$. If the equality holds only when x = 0, then A is positive definite.

PRINCIPLE COMPONENTS ARE UNCORRELATED

• The covariance of the k'th and ℓ 'th principle components of data x_1, \dots, x_N is

$$\frac{1}{N} \sum_{i=1}^{N} \left[\boldsymbol{v}_{k}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right] \left[\boldsymbol{v}_{\ell}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right] = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{v}_{k}^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{v}_{\ell}$$

$$= \boldsymbol{v}_{k}^{T} \boldsymbol{\Sigma} \boldsymbol{v}_{\ell} = \boldsymbol{v}_{k}^{T} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T} \boldsymbol{v}_{\ell} = \boldsymbol{e}_{k}^{T} \boldsymbol{\Lambda} \boldsymbol{e}_{\ell} = \begin{cases} \lambda_{k} & \text{if } k = \ell \\ 0 & \text{if } k \neq \ell \end{cases}$$

Therefore

- The variance of the k'th principle components is λ_k .
 - \Rightarrow principle axis 1 has the highest variance, axis 2 has the next highest variance, ..., and axis M has the lowest variance.
- > The covariance of different principle components is zero.
- \Rightarrow Covariance among each pair of the principal axes is zero.

31

SINGULAR VALUE DECOMPOSITION (SVD)

THEOREM OF SVD

• Theorem: Suppose $A \in \mathbb{R}^{m \times n}$, then there exists a factorization, called *singular* value decomposition of A, of the form

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with non-negative numbers on the diagonal.

<u>Proof:</u> Since $A^TA \in \mathbb{R}^{n \times n}$ is symmetric and semi-positive definite, it can be factorized in the form

$$A^T A = V \Lambda V^T$$

where $V = [v_1, ..., v_n] \in \mathbb{R}^{n \times n}$ is orthogonal matrix, $\Lambda = diag(\lambda_1, ..., \lambda_n) \in \mathbb{R}^{n \times n}$ is a diagonal matrix of eigenvalues arranged in non-ascending order

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge 0$$

THEOREM OF SVD

<u>Proof (cont'd):</u> Let $p = \max\{i: \lambda_i > 0\}$ be the rank of A. Define $\mathbf{u}_i = \frac{A\mathbf{v}_i}{\sqrt{\lambda_i}} \in \mathbb{R}^m$ for i = 1, ..., p. Then $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \langle \frac{A\mathbf{v}_i}{\sqrt{\lambda_i}}, \frac{A\mathbf{v}_j}{\sqrt{\lambda_j}} \rangle = \frac{\langle \mathbf{v}_i, A^T A \mathbf{v}_j \rangle}{\sqrt{\lambda_i} \sqrt{\lambda_j}} = \frac{\sqrt{\lambda_j}}{\sqrt{\lambda_i}} \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$

That is, $u_1, ..., u_p$ are pairwise orthogonal unit vectors in \mathbb{R}^m . By Gram-Schmidt process we can construct $u_{p+1}, ..., u_m \in \mathbb{R}^m$ (if p < m) such that $u_1, ..., u_m$ are pairwise orthogonal unit vectors. This gives orthogonal matrix $U = [u_1, ..., u_m] \in \mathbb{R}^{m \times m}$.

We have the following claim:

Claim:
$$\boldsymbol{u}_i^T A \boldsymbol{v}_j = \sqrt{\lambda_j} \delta_{ij}$$
 for $i = 1, ..., m, j = 1, ..., n$

Proof: If
$$j \le p$$
, then $Av_j = \sqrt{\lambda_j} u_j$, therefore $u_i^T A v_j = \sqrt{\lambda_j} u_i^T u_j = \sqrt{\lambda_j} \delta_{ij}$.

If j > p, since v_j is an eigenvector of A^TA with associating eigenvalue $\lambda_j = 0$, therefore $(Av_j)^T(Av_j) = v_j^TA^TAv_j = v_j^T\lambda_jv_j = 0$

Hence
$$Av_j = \mathbf{0}$$
 and $u_i^T Av_j = 0 = \sqrt{\lambda_i} \delta_{ij}$. Q.E.D.

Therefore $\Sigma = U^T A V = diag(\sqrt{\lambda_1}, ..., \sqrt{\lambda_p}, 0, ... 0) \in \mathbb{R}^{m \times n}$ is a diagonal matrix.

Therefore $A = U\Sigma V^T$. **Q.E.D.**