

JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD

Ultra Fast High PSRR Low Noise CMOS Voltage Regulators

CJ6211 Series

■ INTRODUCTION

The CJ6211 series are a group of positivevoltageregulators manufactured by CMOS technologies with high rejection, ultra low noise, low power consumption and low dropout voltage, which can prolong battery life in portable electronics. The CJ6211 series work with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications. The CJ6211 series consume less than 0.1µA in shutdown mode and have fast turn-on time less than 50µS. The series are very suitable for the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source.

■ APPLICATIONS

- Cellular and Smart Phones
- Laptop, Palmtops and PDA
- Digital Still and Video Cameras

■ FEATURES

- Low Output Noise:
 40µV_{RMS}(10Hz~100kHz)
- Low Dropout Voltage: 50mV@100mA
- Low Quiescent Current: 50µA
- High Ripple Rejection: 80dB@10kHz
- Excellent Line and Load Transient Response
- Operating Voltage Range: 1.8V∼6.0V
- Output Voltage Range: 1.05V ~ 5.0V
- High Accuracy: ±2% (Typ.)
- Built-in Current Limiter, Short-Circuit Protection
- TTL- Logic-Controlled Shutdown Input
- Portable Audio Video Equipments
- Radio control systems
- Battery-Powered Equipments

■ BLOCK DIAGRAM

■ ORDER INFORMATION

CJ6211(1)(2)(3)(4)

DESIGNATOR SYMBOL		DESCRIPTION	
	Α	Standard	
(1)	В	High Active, pull-down resistor built in, with C _{OUT} discharge resistor	
23	Integer	Output Voltage e.g.1.8V=②:1, ③:8	
	N	Package:SOT-23	
4	М	Package:SOT-23-3L/5L	
	F	Package:DFNWB1x1-4L	

■ PIN CONFIGURATION

PIN NUMBER SOT-23 SOT-23-3L				
		PIN NAME	FUNCTION	
N	M			
1	1	V _{SS}	Ground	
2	2	V_{OUT}	Output	
3	3	V_{IN}	Power input	

SOT-23-5L

PIN NUMBER	CVMDOL	FUNCTION	
M	SYMBOL		
1	V _{IN}	Power Input Pin	
2	V_{SS}	Ground	
3	CE	Chip Enable Pin	
4	NC	No Connection	
5	V _{OUT}	Output Pin	

DFNWB1×1-4L

PIN NUMBER	SYMBOL	FUNCTION	
F	STWIDOL	FUNCTION	
1	V _{OUT}	Output Pin	
2	V_{SS}	Ground	
3	CE	Chip Enable Pin	
4	V _{IN}	Power Input Pin	

■ TYPICAL APPLICATION

■ ABSOLUTE MAXIMUM RATINGS⁽¹⁾ (Unless otherwise specified, T_A=25°C)

PARAMETER		SYMBOL	RATINGS	UNITS
Input Voltage ⁽²⁾		V _{IN}	-0.3~7	V
Output Voltage ⁽²⁾		Vout	-0.3~V _{IN} +0.3	V
Output Current		louт	600	mA
	SOT-23		0.3	W
Power Dissipation	SOT-23-3L/SOT-23-5L	P_{D}	0.4	W
Dissipation	DFNWB1×1-4L		0.3	W
Operating free air	temperature range	T _A	-40~85	°C
Operating Junction	n Temperature Range ⁽³⁾	Tj	-40~125	°C
Storage Temperat	ure	T _{stg}	-40~125	°C
Lead Temperature	(Soldering, 10 sec)	T _{solder}	260	°C
ESD rating ⁽⁴⁾		Human Body Model(HBM)	4	kV
LOD failing.		Machine Model(MM)	200	V

- (1) Stresses beyond those listed under *absolute maximum ratings may* cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operatingconditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
- (2) All voltages are with respect to network ground terminal.
- (3)This IC includes overtemperature protection that is intended toprotect the device during momentary overload. Junction temperature willexceed 125°C when overtemperature protection is active. Continuousoperation above the specified maximum operating junction temperaturemay impair device reliability.
- (4)ESD testing is performed according to the respective JESD22 JEDEC standard.

The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pFcapacitor discharged directly into each pin.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER		NOM.	MAX.	UNITS
Supply voltage at V _{IN}	1.8		6	V
Operating junction temperature range, T _j			125	°C
Operating free air temperature range, T _A	0		85	°C

Electrical Characteristics

(V_{IN}=V_{OUT}+1V, C_{IN}=C_{OUT}=1 μ F, T_A=25°C,unless otherwise specified)

PARAMET	ER	SYMBOL	CONDITIONS	MIN.	TYP. ⁽⁶⁾	MAX.	UNITS
Output Volt	age	V _{OUT} (E) ⁽⁷⁾	I _{OUT} =1mA	V _{OUT} ⁽⁸⁾ *0.98	$V_{\text{OUT}}^{(8)}$	V _{OUT} ⁽⁸⁾ *1.02	V
Supply Cur	rent	I _{SS}	I _{OUT} =0		50	100	μA
Standby Cu	rrent	I _{STBY}	CE = V _{SS}		0.1	1	μΑ
Output Cur	rent	I _{OUT}	_	500			mA
Dropout Vol	tage	V _{DO} ⁽⁹⁾	I _{OUT} =100mA V _{OUT} ≥3.3V		50		mV
Load Regulation		<u>∆</u> V _{OUT}	V _{IN} = V _{OUT} +1V, 1mA≤I _{OUT} ≤100mA		1		mV
Line Regula	Line Regulation		$I_{OUT} = 10 \text{mA}$ $V_{OUT} + 1V \le V_{IN} \le 6V$		0.01	0.2	%/V
Output Voltage Temperature Characteristics		$\frac{\Delta V_{OUT}}{\Delta T \times V_{OUT}}$	I _{OUT} =10mA -40≤T≤+85		50		ppm
Short Curr	ent	I _{Short}	V _{OUT} =V _{SS}		50		mA
Input Volta	age	V _{IN}	_	1.8		6.0	V
Dawar Cumphy	100Hz				75		
Power Supply	1kHz	PSRR	I _{OUT} =50mA		80		dB
Rejection Rate	10kHz				80		
CE "High" Voltage		V _{CE} "H"		1.5		V _{IN}	V
CE "Low" Voltage		V _{CE} "L"				0.3	V
С _{оит} Auto-Disc Resistanc	•	R _{DISCHRG}	$V_{IN}=5V$, $V_{OUT}=3.0V$, $V_{CE}=V_{SS}$		60		Ω

⁽⁶⁾ Typical numbers are at 25°C and represent the mostlikely norm.

⁽⁷⁾ $V_{OUT}(E)$: Effective Output Voltage (Ie. The output voltage when V_{IN} = (V_{OUT} +1.0V) and maintain acertain I_{OUT} Value).

⁽⁸⁾V_{OUT}: Specified Output Voltage.

 $⁽⁹⁾V_{DO}$: The Difference Of Output Voltage And Input Voltage When Input Voltage Is Decreased Gradually Till Output Voltage Equals To 98% Of V_{OUT} (E).

($V_{CE}=V_{IN}=V_{OUT}+1V$, $C_{IN}=C_{OUT}=1\mu F$, $T_A=25$ °C,unless otherwise specified)

Typical Characteristics

COUT Auto-Discharge Function

CJ6211B series can discharge the electric charge in the output capacitor (C_{OUT}), when a low signal to the CE pin, which enables a whole IC circuit turn off, is inputted via the N-channel transistor located between the V_{OUT} pin and the V_{SS} pin (cf. BLOCK DIAGRAM). The C_{OUT} auto-discharge resistance value is set at60 Ω (V_{OUT} =3.0V @ V_{IN} =5.0V at typical). The discharge time of the output capacitor (C_{OUT}) is set by the C_{OUT} auto-discharge resistance (R) and the output capacitor (C_{OUT}). By setting time constant of a C_{OUT} auto-discharge resistance value [$R_{DISCHRG}$] and an output capacitor value (C_{OUT}) as τ (τ =C x $R_{DISCHRG}$), the output voltage after discharge via the N-channel transistor is calculated by the following formulas.

 $V=V_{OUT(E)} \times e^{-t/T} \text{ or } t=\tau ln(V/V_{OUT(E)})$

(V : Output voltage after discharge, $V_{\text{OUT}(\text{E})}$: Output voltage, t: Discharge time,

 $\tau \hbox{: } C_{\mathsf{OUT}} \ auto-discharge \ resistance \ R_{\mathsf{DISCHRG}} \hbox{\times} Output \ capacitor \ (C_{\mathsf{OUT}}) \ value \ C)$

SOT-23 Package Outline Dimensions

Symbol	Dimensions I	n Millimeters	Dimensio	ns In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950	TYP.	0.037	7 TYP.
e1	1.800	2.000	0.071	0.079
L	0.550 REF.		0.02	2 REF.
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

SOT-23 Suggested Pad Layout

- Note:
 1.Controlling dimension:in millimeters.
 2.General tolerance:±0.05mm.
 3.The pad layout is for reference purposes only.

SOT-23-3L Package Outline Dimensions

Complete	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	2.650	2.950	0.104	0.116
E1	1.500	1.700	0.059	0.067
е	0.950(BSC)		0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-23-3L Suggested Pad Layout

- 1.Controlling dimension:in millimeters.
 2.General tolerance:± 0.05mm.
 3.The pad layout is for reference purposes only.

SOT-23-5L Package Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	2.650	2.950	0.104	0.116
E1	1.500	1.700	0.059	0.067
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-23-5L Suggested Pad Layout

- Note:
 1.Controlling dimension:in millimeters.
 2.General tolerance:± 0.05mm.
 3.The pad layout is for reference purposes only.

DFNWB1*1-4L Package Outline Dimensions

BOTTOM VIEW

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
Syllibol	Min.	Max.	Min.	Max.
Α	0.320	0.400	0.013	0.016
A1	0.000	0.050	0.000	0.002
A2	0.10	0.100 REF. 0.004		4 REF.
D	0.950	1.050	0.037	0.041
E	0.950	1.050	0.037	0.041
D1	0.430	0.530	0.017	0.021
E1	0.430	0.530	0.017	0.021
k	0.150	OMIN.	0.006	MIN.
b	0.180	0.280	0.007	0.011
е	0.650TYP.		0.026	TYP.
L	0.200	0.300	0.008	0.012
L1	0.200	0.300	0.008	0.012

DFNWB1*1-4L Suggested Pad Layout

Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

NOTICE

JSCJ reserves the right to make modifications,enhancements,improvements,corrections or other changes without turther notice to any product herein. JSCJ does not assume any liability arising out of the application or use of any product described herein.