Case 1:

Write a Monte Carlo program to calculate the view factor with the location of dA_1 is at (x, y) where $0 < x < D_x$ and $0 < y < D_y$

$$F_{d1-2} = \frac{1}{2\pi} \left\{ \frac{A}{\left(1 + A^2\right)^{1/2}} \tan^{-1} \left[\frac{B}{\left(1 + A^2\right)^{1/2}} \right] + \frac{B}{\left(1 + B^2\right)^{1/2}} \tan^{-1} \left[\frac{A}{\left(1 + B^2\right)^{1/2}} \right] \right\}$$

Definitions: A=a/c; B=b/c

Use the following notation:

$$a=D_x$$
, $b=D_y$, $c=D_z$

Case 2:

Write a Monte Carlo program to calculate the view factor with the location of dA_1 is at (x, y) where $0 < x < D_x$ and $0 < y < D_y$

$$F_{d1-2} = \frac{1}{2\pi} \left[\tan^{-1} \left(\frac{1}{C} \right) - \frac{C}{Y} \tan^{-1} \left(\frac{1}{Y} \right) \right]$$

Definitions: A=a/b; C=c/b; $Y=(A^2+C^2)^{1/2}$

Use the following notation:

$$a=D_z, b=D_y, c=D_x$$