Report Spec

1. Introduction

在 LAB2 中要將初步學掉的 CNN 用法透過 pytorch 學以致用,譬如 model 每層 Layer 的架設與初值設定,另外必須要充分了解到 convolution 的作用,是利用 Parameter sharing、Local connectivity、Equivalent representation ...等特性來達到 CNN 最大的效果。

另外於本次實作中,也是更加熟悉了 pytorch 之使用,並且了解到 cuda 平行運算的強大,順帶一提一些基本的 debug 還是需要化解的。另外由於本次作業有根據 acc 的準確度來判定分數,所以從 accuracy 與 loss 中找到最佳的 hyperparmeter 設定,也是一大挑戰。

2. Experiment setups

A. The detail of your model

- EEGNet

```
eegNet(
  (firstconv): Sequential(
    (0): Conv2d(1, 16, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (depthwiseConv): Sequential(
    (0): Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False)
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (2): ELU(alpha=1.0)
   (3): AvgPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0)
   (4): Dropout(p=0.5, inplace=False)
  (separableConv): Sequential(
    (0): Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)

    BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

   (2): ELU(alpha=1.0)
   (3): AvgPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0)
    (4): Dropout(p=0.5, inplace=False)
   (5): Flatten()
 (classify): Sequential(
    (0): Linear(in_features=736, out_features=2, bias=True)
```

Pooling stage

Pooling stage

Detector stage:
Nonlinearity
e.g., rectified linear

Convolution stage:
Affine transform

其實 Convolution 的架構不外乎就是這些

- 1. 利用 Convolution 的特性,將原本的 input 依照 kernel size 分成對應的 feature map。
- 2. 根據 filter(neurons)數量切割出不同的 channel,再 by channel 做 Normalization 為的是要使 gradient descent 更容易
- 3. 加上 activation function 為的是突破 linear 的限制
- 4. 丟入 Pooling 根據 kernel size 取最佳特徵值

DeepConvNet

```
DeepConvNet(
  (conv1): Sequential(
    (0): Conv2d(1, 25, kernel_size=(1, 5), stride=(1, 1))
  (conv2): Sequential(
    (0): Conv2d(25, 25, kernel_size=(2, 1), stride=(1, 1))
    (1): BatchNorm2d(25, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): MaxPool2d(kernel_size=(1, 2), stride=(1, 2), padding=0, dilation=1, ceil_mode=False)
    (4): Dropout(p=0.5, inplace=False)
  (conv3): Sequential(
    (0): Conv2d(25, 50, kernel_size=(1, 5), stride=(1, 1))
    (1): BatchNorm2d(50, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (2): ELU(alpha=1.0)
    (3): MaxPool2d(kernel_size=(1, 2), stride=(1, 2), padding=0, dilation=1, ceil_mode=False)
    (4): Dropout(p=0.5, inplace=False)
  (conv4): Sequential(
    (0): Conv2d(50, 100, kernel_size=(1, 5), stride=(1, 1))
    (1): BatchNorm2d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): MaxPool2d(kernel_size=(1, 2), stride=(1, 2), padding=0, dilation=1, ceil_mode=False)
    (4): Dropout(p=0.5, inplace=False)
  (conv5): Sequential(
    (0): Conv2d(100, 200, kernel_size=(1, 5), stride=(1, 1))
    (1): BatchNorm2d(200, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (2): ELU(alpha=1.0)
    (3): MaxPool2d(kernel_size=(1, 2), stride=(1, 2), padding=0, dilation=1, ceil_mode=False)
    (4): Dropout(p=0.5, inplace=False)
    (5): Flatten()
  (classify): Sequential(
    (0): Linear(in_features=8600, out_features=2, bias=True)
```


- 5. 最後利用 flatten() 打平 channel、與 softmax 等之類的 activation function,來總結一個推測的結果出來。
- 6. 補充 1: 另外 stride, padding 等應用在 conv 上的作用這邊簡短提個大概,就 是 kernel size 移動的距離、與空位補 0 的意思。
- 7. 還有 dropout 能降低 overfit,另外有趣的是 pooling 其實不是必要,在某些講求精度的 model 其實是做 pooling 會降低 performance 的。(full convonlution)

B. Explain the activation function (ReLU, Leaky ReLU, ELU)

- ReLU

$$f(x) = \max(0, x)$$

Relu 為 nonlinear function,他非常簡單去設定,不會梯度消失問題。但也有個重大的缺點;非常脆弱,當 x < 0 時 梯度為 0。導致不對任何值有反應。(非梯度消失問題)

- Leaky ReLU

$$f(x) = \max(0.01x, x)$$

為了解決 dead relu 現象 使用了一種固定斜率的方法使得 x<0 時梯度也不會變為 0

- ELU

$$f(x) \; = \; \begin{cases} x & \text{if } x > 0 \\ \alpha \; (\exp(x) - 1) & \text{if } x \leq 0 \end{cases}$$

也解決的 dead relu 的現象,利用指數來當基準計算

3. Experimental results

A. The highest testing accuracy

Screenshot with two models

	ELU	RelU	LeakyReLU
EEGNet	83.333333	86.759259	88.88889
DeenConvNet	81 203704	80 370370	81 481481

Best accurancy

- Anything you want to present

loss value

值得一提的是: 這邊在算 acc 時只要除總數 1080 即可得到 accuracy 的% 但是 loss 不一樣,會因為 batch size 的緣故,需要除不同的值。

B. Comparison Figures

下面是我只調整 Ir 所帶來不同的結果。

learning rate 太大並無好的結果且 acc 上下浮動劇烈。(無法進入 opt 區間) lerrning rate 調小果然浮動劇烈消失,且穩定上升

4. Discussion

A. Anything you want to share

在測資時有遇到一個有趣的現象,照理來說當 loss 下降時,通常代表著 accuracy 的上升。但卻發生了 loss 上升 accuracy 也上升的情況 如圖

很明顯的由橘、棕色的線可以看出左圖 acc 為不變且些微上升的情況,右圖 loss 橘、棕線卻有往上的趨勢。

上網查證後發現可以使用一種 flooding 的正規化方法來避免此種反常理的情況發生,以下為公式。

$$\tilde{J}(\boldsymbol{\theta}) = |J(\boldsymbol{\theta}) - b| + b$$

其中 J 代表原始的目標函數, \mathbf{b} 則是一個 hyperparmeter,為了是要設定訓練損失的下限。

下面是我套用後的成果。雖然整體浮動大但是少了 loss acc 同方向的反常理情况

另外由於我 b 值是按照上上圖抓個 0.3 附近,相信再摸索一下能得到更漂亮的數值