Examen de Teoría de Percepción - Primer Parcial

ETSINF, Universitat Politécnica de Valéncia, Marzo de 2019

Apellidos:	Nombre:
Profesor: \Box Jorge Civera \Box Carlos Martínez	
Cuestiones (2 puntos, 30 minutos, sin apunte	$\mathbf{s})$
C Dado un problema de clasificación en cuatro clases A, B, C y $D, 0.2$, sobre un espacio binario unidimensional $(x \in \{0,1\})$ y prob $P(0 B) = 0.4$ y $P(0 C) = 0.2$, ¿en qué clase se clasificaría $x = 1$ en	pabilidades condicionadas $P(0 A) = P(0 D) = 0.6$,
A) Clase AB) Clase BC) Clase CD) Clase D	
B ¿Cuál es la característica fundamental de un sistema de reconocim	niento de formas interactivo?
 A) Se realiza aprendizaje incremental de los modelos de clasifica B) Existe una realimentación de usuario C) No es posible su evaluación automática D) Necesita un entrenamiento de modelos convencionales previo 	
Tenemos una imagen en escala de grises de 256 niveles de 128 \times 6 con desplazamiento horizontal de 4 píxeles y vertical de 2 píxeles. A) $x < 0.5$ Mbytes B) $0.5 \le x < 1.0$ Mbytes C) $1.0 \le x < 1.5$ Mbytes D) $x \ge 1.5$ Mbytes	
C ¿Qué frecuencia de corte debe aplicar un filtro de paso bajo a una una frecuencia de 8kHz?	señal que se pretende muestrear correctamente con
 A) 16KHz B) 8KHz C) 4KHz D) Es indiferente, pues ambas frecuencias no están relacionadas. 	

1			
	D	El espacio de almacenamiento que requiere una representación basada en n-gramas de un vocabulario con talla	$V \mid e$
		El espació de almacenamiento que requiere una representación basada en n gramas de un vocastrario con tana	, I C

- A) $n \cdot |V|$
- B) $n \cdot \log |V|$ C) $|V|^{\log n}$ D) $|V|^n$

$$\boxed{\mathbf{A}}$$
 ¿Cuál de los siguientes pares de vectores **no** son vectores propios de la matriz $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$?

- A) $x_1 = (1 \quad 0)$ y $x_2 = (0$ 1)
- B) $x_1 = (1 \quad 1)$ y $x_2 = (-1 \quad 1)$
- C) $x_1 = (1 1)$ y $x_2 = (-1 1)$
- D) $x_1 = (-2 \ 2)$ y $x_2 = (-3 \ -3)$

D ¿Qué caracteriza la matriz de covarianza de los datos proyectados mediante los vectores de proyección PCA?

- A) Es una matriz dispersa
- B) Es una matriz completa
- C) Es la matriz identidad
- D) Es una matriz diagonal
- B Es usual aplicar LDA después de PCA, ¿cuál de las siguientes combinaciones tiene sentido para un problema de clasificación D-dimensional en C clases siendo $D \gg C$?
 - A) Proyección PCA a C/2 seguida de proyección LDA a D/2
 - B) Proyección PCA a D/2 seguida de proyección LDA a C/2
 - C) Proyección PCA a C/2 seguida de proyección LDA a C
 - D) Proyección PCA a D/2 seguida de proyección LDA a C

Examen de Teoría de Percepción - Primer Parcial

ETSINF, Universitat Politécnica de Valéncia, Marzo de 2019

Apellidos:	Nombre:	
Profesor: □Jorge Civera □Carlos Martínez		
Problemas (4 puntos, 90 minutos, con apuntes)	

- 1. (1 punto) Calcula el espacio en memoria de las siguientes representaciones:
 - a) Representación global de una imagen en 1024 niveles de grises, de 640 × 480 píxeles, con representación directa.
 (0.2 puntos)
 - b) Representación por características locales de una imagen de niveles de gris, con 1024 niveles, de tamaño 640 × 480 con ventanas de 17 × 17 y muestreo cada dos píxeles en ambas coordenadas, con representación por histograma. (0.3 puntos)
 - c) Representación de una señal de audio de 8 minutos de alta fidelidad (muestreada a 44100Hz, muestras de 16 bits) en un sistema 3.1 (4 canales). (0.25 puntos)
 - d) Representación de una señal de audio estéreo muestreada a 16 KHz de duración 1 hora y representada por 2 bytes por muestra. (0.25 puntos)

Solución:

- a) 600 Kbytes
- b) 144768 Kbytes
- c) 165375 Kbytes
- d) 225000 Kbytes
- (1 punto) La siguiente tabla muestra distintos lemas electorales empleados en las elecciones generales de España en los últimos 20 años.

Núm	Lema	Núm	Lema
1	Gobierno para todos	2	La alternativa necesaria
3	Con la nueva mayoría	4	España en positivo
5	Decide	6	Vamos a más
7	Merecemos una España mejor	8	Juntos vamos a más
9	Con cabeza y corazón	10	Vota con todas tus fuerzas
11	Súmate al cambio	12	Pelea por lo que quieres
13	Rebélate	14	España en serio
15	Un futuro para la mayoría	16	Con ilusión
17	Por un nuevo país	18	Ahora más que nunca
19	Un sí para la mayoría	20	Tiempo de acuerdo, tiempo de cambio

Considerando que no hay diferencia entre mayúsculas y minúsculas, se pide:

- a) Realizar la representación bag-of-words por term frequency de los lemas con los términos: todos, mayoría, España, más, cambio, futuro, vota, tiempo. (0.3 puntos)
- b) Calcula el valor de la función global GfIdf para los mismos términos (0.4 puntos)
- c) Indica en qué cambiaría la representación final de todos los documentos aplicando dicha función global (0.3 puntos)

Solución:

					1 .							1			1						
	Token/Doc	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	todos	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mayoría	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
	España	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0
a)	más	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0
	cambio	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
	futuro	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	vota	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	tiempo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2

	Token	GfIdf
	todos	1
	mayoría	1
b)	España	1
	más	1
	cambio	1
	futuro	1
	vota	1
	tiempo	2

- c) Sería la misma excepto para el lema 20, donde el valor para "tiempo" se multiplica por 2
- 3. (2 puntos) Dado el conjunto de entrenamiento $\mathcal{X} = \{(\mathbf{x}_1, A), (\mathbf{x}_2, A), (\mathbf{x}_3, A), (\mathbf{x}_4, B), (\mathbf{x}_5, B), (\mathbf{x}_6, B), (\mathbf{x}_7, C), (\mathbf{x}_8, C), (\mathbf{x}_9, C)\}$ con

$$\mathbf{x}_{1} = \begin{pmatrix} 2 \\ 3 \\ 5 \\ -3 \end{pmatrix} \mathbf{x}_{2} = \begin{pmatrix} -1 \\ -3 \\ 2 \\ 0 \end{pmatrix} \mathbf{x}_{3} = \begin{pmatrix} 2 \\ -3 \\ -1 \\ 0 \end{pmatrix} \mathbf{x}_{4} = \begin{pmatrix} -2 \\ -1 \\ 1 \\ -1 \end{pmatrix} \mathbf{x}_{5} = \begin{pmatrix} 2 \\ 0 \\ 2 \\ 5 \end{pmatrix} \mathbf{x}_{6} = \begin{pmatrix} -3 \\ -2 \\ 0 \\ 2 \end{pmatrix} \mathbf{x}_{7} = \begin{pmatrix} -2 \\ 2 \\ -5 \\ 2 \end{pmatrix} \mathbf{x}_{8} = \begin{pmatrix} -1 \\ 3 \\ 1 \\ -5 \end{pmatrix} \mathbf{x}_{9} = \begin{pmatrix} 3 \\ 1 \\ -5 \\ 0 \end{pmatrix}$$

Se pide:

- a) Calcular las matrices S_b y S_w que se emplearían para aplicar la técnica LDA de reducción de dimensionalidad (1 punto)
- b) El cálculo de los valores y vectores propios generalizados para las matrices S_b y S_w da los siguientes resultados (aproximados hasta el segundo decimal):

$$\mathbf{w}_1 = \begin{pmatrix} -0.17 \\ -0.16 \\ -0.06 \\ -0.13 \end{pmatrix} \mathbf{w}_2 = \begin{pmatrix} -0.12 \\ 0.15 \\ 0.11 \\ -0.04 \end{pmatrix} \mathbf{w}_3 = \begin{pmatrix} 0.25 \\ -0.16 \\ -0.03 \\ -0.26 \end{pmatrix} \mathbf{w}_4 = \begin{pmatrix} 0.06 \\ -0.45 \\ 0.46 \\ 0.16 \end{pmatrix} \qquad \begin{aligned} \lambda_1 &= -5.10 \cdot 10^{-16} \\ \lambda_2 &= 1.77 \cdot 10^{-16} \\ \lambda_3 &= 2.32 \\ \lambda_4 &= 27.01 \end{aligned}$$

Realizar la proyección LDA a dimensión 2 (0.5 puntos)

- c) Representa gráficamente la proyección obtenida (0.25 puntos)
- d) A la vista de los resultados obtenidos, ¿tendría sentido hacer una reducción de dimensionalidad PCA a una sola dimensión sobre los puntos ya proyectados con LDA? Razona la respuesta (0.25 puntos)

Solución:

$$\bar{\mathbf{x}}_A = \begin{pmatrix} 1 \\ -1 \\ 2 \\ -1 \end{pmatrix} \quad \bar{\mathbf{x}}_B = \begin{pmatrix} -1 \\ -1 \\ 1 \\ 2 \end{pmatrix} \quad \bar{\mathbf{x}}_C = \begin{pmatrix} 0 \\ 2 \\ -3 \\ -1 \end{pmatrix} \quad \bar{\mathbf{x}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$S_b = \sum_{c \in \mathbb{C}} n_c (\bar{\mathbf{x}}_c - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_c - \bar{\mathbf{x}})^t = 3 \begin{pmatrix} 1 \\ -1 \\ 2 \\ -1 \end{pmatrix} (1 \quad -1 \quad 2 \quad -1) + 3 \begin{pmatrix} -1 \\ -1 \\ 1 \\ 2 \end{pmatrix} (-1 \quad -1 \quad 1 \quad 2) + 3 \begin{pmatrix} 0 \\ 2 \\ -3 \\ -1 \end{pmatrix} (0 \quad 2 \quad -3 \quad -1) = \begin{pmatrix} 6 & 0 & 3 & -9 \\ 0 & 18 & -27 & -9 \\ 3 & -27 & 42 & 9 \\ -9 & -9 & 9 & 18 \end{pmatrix}$$

$$\Sigma_A = \frac{1}{3} \sum_{\mathbf{x}_i \in A} (\mathbf{x}_i - \bar{\mathbf{x}}_A) (\mathbf{x}_i - \bar{\mathbf{x}}_A)^t = \begin{pmatrix} 2 & 2 & 0 & -1 \\ 2 & 8 & 6 & -4 \\ 0 & 6 & 6 & -3 \\ -1 & -4 & -3 & 2 \end{pmatrix} \\ \Sigma_B = \frac{1}{3} \sum_{\mathbf{x}_i \in A} (\mathbf{x}_i - \bar{\mathbf{x}}_A) (\mathbf{x}_i - \bar{\mathbf{x}}_A)^t = \begin{pmatrix} \frac{14}{3} & \frac{5}{3} & \frac{5}{3} & 4 \\ \frac{5}{3} & \frac{2}{3} & \frac{3}{3} & 1 \\ \frac{5}{3} & \frac{2}{3} & \frac{2}{3} & 1 \\ 4 & 1 & 1 & 6 \end{pmatrix}$$

$$\Sigma_C = \frac{1}{3} \sum_{\mathbf{x}_i \in A} (\mathbf{x}_i - \bar{\mathbf{x}}_A) (\mathbf{x}_i - \bar{\mathbf{x}}_A)^t = \begin{pmatrix} \frac{14}{3} & -\frac{4}{3} & -2 & \frac{1}{3} \\ -\frac{4}{3} & \frac{2}{3} & 2 & -\frac{5}{3} \\ -2 & 2 & 8 & -8 \\ \frac{1}{3} & -\frac{5}{3} & -8 & \frac{26}{3} \end{pmatrix} S_w = \Sigma_A + \Sigma_B + \Sigma_C = \begin{pmatrix} \frac{34}{3} & \frac{7}{3} & -\frac{1}{3} & \frac{10}{3} \\ \frac{7}{3} & \frac{28}{3} & \frac{26}{3} & -\frac{14}{3} \\ -\frac{1}{3} & \frac{26}{3} & \frac{44}{3} & -10 \\ \frac{10}{3} & -\frac{14}{3} & -10 & \frac{50}{3} \end{pmatrix}$$

b) La matriz de proyección sería la conformada por \mathbf{w}_4 y \mathbf{w}_3 en ese orden, al presentar los mayores valores propios generalizados, de forma que:

$$W = \left(\begin{array}{cc} 0.06 & 0.25 \\ -0.45 & -0.16 \\ 0.46 & -0.03 \\ 0.16 & -0.26 \end{array}\right)$$

Al ser $\mathbf{x}_i' = W^t \mathbf{x}$, las proyecciones quedan:

$$\mathbf{x}_{1}' = \begin{pmatrix} 0.59 \\ 0.65 \end{pmatrix} \quad \mathbf{x}_{2}' = \begin{pmatrix} 2.21 \\ 0.17 \end{pmatrix} \quad \mathbf{x}_{3}' = \begin{pmatrix} 1.01 \\ 1.01 \end{pmatrix} \quad \mathbf{x}_{4}' = \begin{pmatrix} 0.63 \\ -0.11 \end{pmatrix} \quad \mathbf{x}_{5}' = \begin{pmatrix} 1.84 \\ -0.86 \end{pmatrix}$$

$$\mathbf{x}_{6}' = \begin{pmatrix} 1.04 \\ -0.95 \end{pmatrix} \quad \mathbf{x}_{7}' = \begin{pmatrix} -3.00 \\ -1.19 \end{pmatrix} \quad \mathbf{x}_{8}' = \begin{pmatrix} -1.75 \\ 0.54 \end{pmatrix} \quad \mathbf{x}_{9}' = \begin{pmatrix} -2.57 \\ 0.74 \end{pmatrix}$$

c)

d) Se ve claramente que proyectar sobre el eje de mayor varianza, sobre el que se proyectaría usando PCA (dado por el vector propio $\mathbf{w} = (-1 \ 0)^t$), no permitiría distinguir las muestras de las clases A y B apropiadamente, con lo que no tiene sentido aplicar PCA sobre estas muestras.