

<110>	Ian Hector	Fraze	r										
<120>	A method f	or opt	imising	gene	exp	ress	ion	usin	g sy	nony	mous	codon	optimisation
<130>	21415-0015	US											
<140> <141>	USSN 10/53 2005-05-06												
<150> <151>	PCT/AU2003 2003-11-10	/00148	7										
<150> <151>	USSN 60/42 2002-11-08	5,163											
<160>	126												
<170>	PatentIn v	ersion	3.2										
<210> <211> <212> <213>	1 714 DNA Artificial	Sequer	nce										
<220> <223>	Humanised (GFP											
<220> <221> <222>	CDS (1)(711)												
<400> agc aag ser Lys 1	1 g ggc gag ga s Gly Glu G 5	aa ctg lu Leu	ttc act Phe Thr	ggc Gly	gtg Val 10	gtc Val	cca Pro	att Ile	ctc Leu	gtg Val 15	gaa Glu		48
ctg gat Leu Asp	ggc gat gt Gly Asp Va 20	tg aat al Asn	ggg cac Gly His	aaa Lys 25	ttt Phe	tct Ser	gtc Val	agc Ser	gga Gly 30	gag Glu	ggt Gly		96
gaa ggt Glu Gly	gat gcc ac Asp Ala Th 35	ta tac nr Tyr	gga aag Gly Lys 40	ctc Leu	acc Thr	ctg Leu	aaa Lys	ttc Phe 45	atc Ile	tgc Cys	acc Thr	1	44
act gga Thr Gly 50	aag ctc co Lys Leu Pr	t gtg o Val	cca tgg Pro Trp 55	cca Pro	aca Thr	ctg Leu	gtc Val 60	act Thr	acc Thr	ttc Phe	tct Ser	1	92
tat ggo Tyr Gly 65	gtg cag tg Val Gln Cy	c ttt s Phe 70	tcc aga Ser Arg	tac Tyr	cca Pro	gac Asp 75	cat His	atg Met	aag Lys	cag Gln	cat His 80	2	40
gac ttt Asp Phe	ttc aag ag Phe Lys Se 85	r Ala	atg ccc Met Pro	gag Glu	ggc Gly 90	tat Tyr	gtg Val	cag Gln	gag Glu	aga Arg 95	acc Thr	2	88
atc ttt Ile Phe	ttc aaa ga Phe Lys As 100	t gac p Asp	ggg aac Gly Asn	tac Tyr 105	aag Lys	acc Thr	cgc Arg	gct Ala	gaa Glu 110	gtc Val	aag Lys	3	36

21415-0015US.txt	
ttc gaa ggt gac acc ctg gtg aat aga atc gag ctg aag ggc att gac Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp 115 120 125	384
ttt aag gag gat gga aac att ctc ggc cac aag ctg gaa tac aac tat Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr 130 135 140	432
aac tcc cac aat gtg tac atc atg gcc gac aag caa aag aat ggc atc Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile 145 150 155 160	480
aag gtc aac ttc aag atc aga cac aac att gag gat gga tcc gtg cag Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln 165 170 175	528
ctg gcc gac cat tat caa cag aac act cca atc ggc gac ggc cct gtg Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val 180 185 190	576
ctc ctc cca gac aac cat tac ctg tcc acc cag tct gcc ctg tct aaa Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys 195 200 205	624
gat ccc aac gaa aag aga gac cac atg gtc ctg ctg gag ttt gtg acc Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr 210 215 220	672
gct gct ggg atc aca cat ggc atg gac gag ctg tac aag tga Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235	714
<210> 2 <211> 237 <212> PRT <213> Artificial Sequence	
<220> <223> Humanised GFP	
<400> 2	
Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu 1 5 10 15	
Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly 20 30	
Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr 35 40 45	
Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Ser 50 60	
Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His 65 70 75 80	

21415-0015US.txt Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr 85 90 95 Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys $100 \hspace{1cm} 105 \hspace{1cm} 110$ Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp 115 120 125 Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr 130 135 140 Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile 145 150 155 160 Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln
165 170 175 Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val 180 185 190 Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr 210 215 220 Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235 <210> 18 <211> <212> DNA <213> Artificial Sequence <220> <223> Ala(GCA)x6 <220> <221> CDS <222> (1)..(18)<400> 3 gca gca gca gca gca Ăla Ăla Ăla Ăla Āla Āla 1 5

<210> 4 <211> 6 <212> PRT <213> Artificial Sequence 18

```
<220>
<223> Ala(GCA)x6
<400> 4
Ala Ala Ala Ala Ala
1 5
<210> 5
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ala(GCG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 5
gcg gcg gcg gcg gcg
Ala Ala Ala Ala Ala
1 5
                                                                                        18
<210> 6
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ala(GCG)x6
<400> 6
Ala Ala Ala Ala Ala
1 5
<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ala(GCT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 7
gct gct gct gct gct
Ala Ala Ala Ala Ala
1 5
                                                                                        18
```

<210> 8

```
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ala(GCT)x6
<400> 8
Ala Ala Ala Ala Ala
1 5
<210> 9
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ala(GCC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 9
gcc gcc gcc gcc gcc
                                                                                       18
Ăla Ăla Ăla Ăla Ăla Ăla
<210> 10
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ala(GCC)x6
<400> 10
Ala Ala Ala Ala Ala 1
<210> 11
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Arg(AGA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 11
                                                                                       18
aga aga aga aga aga
Arg Arg Arg Arg Arg 1
```

```
<210> 12
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Arg(AGA)x6
<400> 12
Arg Arg Arg Arg Arg 1
<210>
       13
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Arg(CGA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 13
                                                                              18
cga cga cga cga cga
Arg Arg Arg Arg Arg 1
<210> 14
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Arg(CGA)x6
<400> 14
Arg Arg Arg Arg Arg 1
<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Arg(CGG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 15
```

18

18

```
cgg cgg cgg cgg cgg
Arg Arg Arg Arg Arg 1
<210> 16
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Arg(CGG)x6
<400> 16
Arg Arg Arg Arg Arg 1
<210> 17
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Arg(CGT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 17
cgt cgt cgt cgt cgt
Arg Arg Arg Arg Arg 1
<210> 18
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Arg(CGT)x6
<400> 18
Arg Arg Arg Arg Arg 1
<210> 19
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Arg(AGG)x6
<220>
<221> CDS
```

```
<222> (1)..(18)
<400> 19
                                                                           18
agg agg agg agg agg
Arg Arg Arg Arg Arg Arg 1
<210> 20
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Arg(AGG)x6
<400> 20
Arg Arg Arg Arg Arg 1
<210> 21
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Arg(CGC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 21
                                                                            18
cgc cgc cgc cgc cgc
Arg Arg Arg Arg Arg 1
<210> 22
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Arg(CGC)x6
<400> 22
Arg Arg Arg Arg Arg
1 5
<210> 23
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Asn(AAC)x6
```

```
<220>
<221> CDS
<222> (1)..(18)
<400> 23
                                                                             18
aac aac aac aac aac
Asn Asn Asn Asn Asn
<210> 24
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Asn(AAC)x6
<400> 24
Asn Asn Asn Asn Asn Asn
<210> 25
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Asn(AAT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 25
                                                                             18
aat aat aat aat aat
Asn Asn Asn Asn Asn
<210> 26
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Asn(AAT)x6
<400> 26
Asn Asn Asn Asn Asn Asn 1
<210> 27
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Asp(GAT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 27
                                                                                18
gat gat gat gat gat
Asp Asp Asp Asp Asp Asp 1
<210> 28
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Asp(GAT)x6
<400> 28
Asp Asp Asp Asp Asp 1
<210> 29
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Asp(GAC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 29
                                                                                18
gac gac gac gac gac
Asp Asp Asp Asp Asp 5
<210> 30
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Asp(GAC)x6
<400> 30
Asp Asp Asp Asp Asp 1
<210> 31
<211> 18
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Cys(TGC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 31
                                                                                 18
tgc tgc tgc tgc tgc
Cys Cys Cys Cys Cys Cys
<210> 32
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Cys(TGC)x6
<400> 32
Cys Cys Cys Cys Cys 1 5
<210>
        33
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Cys(TGT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 33
tgt tgt tgt tgt tgt tgt
Cys Cys Cys Cys Cys
1 5
                                                                                  18
<210> 34
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Cys(TGT)x6
<400> 34
Cys Cys Cys Cys Cys 1 5
```

```
<210> 35
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Gln(CAA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 35
                                                                           18
caa caa caa caa caa
Gln Gln Gln Gln Gln
<210> 36
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Gln(CAA)x6
<400> 36
Gln Gln Gln Gln Gln
<210> 37
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Gln(CAG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 37
cag cag cag cag cag
Gln Gln Gln Gln Gln
                                                                           18
<210> 38
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Gln(CAG)x6
```

Page 12

<400> 38

```
Gln Gln Gln Gln Gln
<210> 39
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Glu(GAA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 39
gaa gaa gaa gaa gaa
Glu Glu Glu Glu Glu
1 5
                                                                                             18
<210> 40
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Glu(GAA)x6
<400> 40
Glu Glu Glu Glu Glu
1 5
<210> 41
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Glu(GAG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 41
                                                                                              18
gag gag gag gag gag
Glu Glu Glu Glu Glu
<210> 42
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Glu(GAG)x6
```

```
<400> 42
Glu Glu Glu Glu Glu
1 5
<210> 43
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Gly(GGA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 43
gga gga gga gga gga
Gly Gly Gly Gly Gly
1
                                                                                                18
<210> 44
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Gly(GGA)x6
<400> 44
Gly Gly Gly Gly Gly 5
<210> 45
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Gly(GGG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 45
                                                                                                 18
ggg ggg ggg ggg ggg
Gly Gly Gly Gly Gly
1
<210> 46
<211> 6
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Gly(GGG)x6
<400> 46
Gly Gly Gly Gly Gly
<210> 47
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Gly(GGC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 47
                                                                                     18
ggc ggc ggc ggc ggc
Gly Gly Gly Gly Gly
1 5
<210> 48
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Gly(GGC)x6
<400> 48
Gly Gly Gly Gly Gly 1
<210> 49
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Gly(GGT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 49
ggt ggt ggt ggt ggt
Gly Gly Gly Gly Gly
1 5
                                                                                     18
```

<210> 50

```
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Gly(GGT)x6
<400> 50
Gly Gly Gly Gly Gly 1
<210> 51
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> His(CAC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 51
cac cac cac cac cac
                                                                                  18
His His His His His
<210> 52
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> His(CAC)x6
<400> 52
His His His His His
<210> 53
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> His(CAT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 53
cat cat cat cat cat
                                                                                  18
His His His His His His
```

```
<210> 54
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> His(CAT)x6
<400> 54
His His His His His
<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ile(ATC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 55
atc atc atc atc atc Ile Ile Ile Ile
                                                                               18
<210> 56
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ile(ATC)x6
<400> 56
Ile Ile Ile Ile Ile
<210> 57
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ile(ATT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 57
```

18

18

```
att att att att att
Ile Ile Ile Ile Ile
1
<210> 58
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ile(ATT)x6
<400> 58
Ile Ile Ile Ile Ile
<210> 59
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ile(ATA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 59
ata ata ata ata ata
Ile Ile Ile Ile Ile
<210> 60
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ile(ATA)x6
<400> 60
Ile Ile Ile Ile Ile Ile I
<210>
        61
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Leu(CTC)x6
<220>
<221> CDS
```

```
<222> (1)..(18)
<400> 61
                                                                            18
ctc ctc ctc ctc ctc
Leu Leu Leu Leu Leu
<210> 62
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Leu(CTC)x6
<400> 62
Leu Leu Leu Leu Leu
<210> 63
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Leu(TTG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 63
                                                                            18
ttg ttg ttg ttg ttg
Leu Leu Leu Leu Leu Leu 1
<210> 64
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Leu(TTG)x6
<400> 64
Leu Leu Leu Leu Leu
<210> 65
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Leu(CTA)x6
```

```
<220>
<221> CDS
<222> (1)..(18)
<400> 65
                                                                                18
cta cta cta cta cta
Leu Leu Leu Leu Leu 1
<210> 66
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Leu(CTA)x6
<400> 66
Leu Leu Leu Leu Leu
<210> 67
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Leu(CTG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 67
                                                                                18
ctg ctg ctg ctg ctg
Leu Leu Leu Leu Leu Leu 1
<210> 68
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Leu(CTG)x6
<400> 68
Leu Leu Leu Leu Leu
<210> 69
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Leu(TTA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 69
                                                                                          18
tta tta tta tta tta
Leu Leu Leu Leu Leu
<210> 70
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Leu(TTA)x6
<400> 70
Leu Leu Leu Leu Leu 1
<210> 71
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Leu(CTT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 71
ctt ctt ctt ctt ctt ctt
Leu Leu Leu Leu Leu Leu
1
                                                                                          18
<210> 72
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Leu(CTT)x6
<400> 72
Leu Leu Leu Leu Leu 1
<210> 73
<211> 18
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Lys(AAG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 73
                                                                                            18
aag aag aag aag aag
Lys Lys Lys Lys Lys Lys
<210> 74
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Lys(AAG)x6
<400> 74
Lys Lys Lys Lys Lys 1
<210> 75
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Lys(AAA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 75
                                                                                            18
aaa aaa aaa aaa aaa
Lys Lys Lys Lys Lys Lys 1
<210> 76
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Lys(AAA)x6
<400> 76
Lys Lys Lys Lys Lys 1
```

```
<210> 77
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> Phe(TTT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 77
ttt ttt ttt ttt ttt ttt
Phe Phe Phe Phe Phe
1 5
                                                                                  18
<210> 78
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> Phe(TTT)x6
<400> 78
Phe Phe Phe Phe Phe
<210> 79
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Phe(TTC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 79
ttc ttc ttc ttc ttc ttc
Phe Phe Phe Phe Phe
                                                                                  18
<210> 80
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Phe(TTC)x6
<400> 80
```

```
Phe Phe Phe Phe Phe
<210> 81
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Pro(CCC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 81
                                                                                  18
ccc ccc ccc ccc ccc
Pro Pro Pro Pro Pro
<210> 82
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Pro(CCC)x6
<400> 82
Pro Pro Pro Pro Pro
<210> 83
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Pro(CCT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 83
                                                                                   18
cct cct cct cct cct
Pro Pro Pro Pro Pro
<210> 84
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Pro(CCT)x6
```

```
<400> 84
Pro Pro Pro Pro Pro
<210> 85
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Pro(CCG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 85
ccg ccg ccg ccg ccg
Pro Pro Pro Pro Pro
                                                                                              18
<210> 86
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Pro(CCG)x6
<400> 86
Pro Pro Pro Pro Pro
<210> 87
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> Pro(CCA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 87
                                                                                               18
cca cca cca cca cca
Pro Pro Pro Pro Pro
<210> 88
<211> 6
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> Pro(CCA)x6
<400> 88
Pro Pro Pro Pro Pro 1
<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ser(AGC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 89
                                                                                         18
agc agc agc agc agc
Ser Ser Ser Ser Ser
1 5
<210> 90
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
\langle 223 \rangle Ser(AGC)x6
<400> 90
Ser Ser Ser Ser Ser
1
<210> 91
<210> 31
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ser(TCT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 91
                                                                                         18
tct tct tct tct tct
Ser Ser Ser Ser Ser Ser 1
```

<210> 92

```
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ser(TCT)x6
<400> 92
Ser Ser Ser Ser Ser
1 5
<210> 93
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ser(AGT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 93
agt agt agt agt agt
Ser Ser Ser Ser Ser
1
                                                                                            18
<210> 94
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ser(AGT)x6
<400> 94
Ser Ser Ser Ser Ser 1
<210> 95
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ser(TCG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 95
tcg tcg tcg tcg tcg
Ser Ser Ser Ser Ser
1
                                                                                            18
```

```
<210> 96
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ser(TCG)x6
<400> 96
Ser Ser Ser Ser Ser
<210> 97
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ser(TCA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 97
                                                                                      18
tca tca tca tca tca
Ser Ser Ser Ser Ser
<210> 98
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ser(TCA)x6
<400> 98
Ser Ser Ser Ser Ser Ser 1
<210> 99
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Ser(TCC)x6
<220>
<221> CDS
<222> (1)..(18)
```

Page 28

<400> 99

18

18

```
tcc tcc tcc tcc tcc
Ser Ser Ser Ser Ser Ser 1
<210> 100
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Ser(TCC)x6
<400> 100
Ser Ser Ser Ser Ser Ser 1
<210> 101
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Thr(ACA)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 101
aca aca aca aca aca
Thr Thr Thr Thr Thr
1
<210> 102
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Thr(ACA)x6
<400> 102
Thr Thr Thr Thr Thr
<210> 103
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Thr(ACG)x6
<220>
```

<221> CDS

```
<222> (1)..(18)
<400> 103
acg acg acg acg acg
Thr Thr Thr Thr Thr
                                                                                18
<210> 104
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Thr(ACG)x6
<400> 104
Thr Thr Thr Thr Thr
<210> 105
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Thr(ACT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 105
                                                                                 18
act act act act act 
Thr Thr Thr Thr Thr
<210> 106
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Thr(ACT)x6
<400> 106
Thr Thr Thr Thr Thr
<210>
        107
<211>
<212>
        18
        DNA
<213> Artificial Sequence
<220>
<223> Thr(ACC)x6
```

```
<220>
<221> CDS
<222> (1)..(18)
<400> 107
acc acc acc acc acc
Thr Thr Thr Thr Thr
1
                                                                              18
<210> 108
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Thr(ACC)x6
<400> 108
Thr Thr Thr Thr Thr
<210> 109
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Tyr(TAC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 109
                                                                               18
tac tac tac tac tac
Tyr Tyr Tyr Tyr Tyr Tyr 1
<210> 110
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Tyr(TAC)x6
<400> 110
Tyr Tyr Tyr Tyr Tyr Tyr 1
<210> 111
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Tyr(TAT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 111
tat tat tat tat tat tat
Tyr Tyr Tyr Tyr Tyr Tyr
1
                                                                                                 18
<210> 112
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Tyr(TAT)x6
<400> 112
Tyr Tyr Tyr Tyr Tyr Tyr 1
<210> 113
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Val(GTG)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 113
gtg gtg gtg gtg gtg
Val Val Val Val Val
1
                                                                                                  18
<210> 114
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Val(GTG)x6
<400> 114
Val Val Val Val Val 1
<210> 115
 <211> 18
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> val(GTT)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 115
gtt gtt gtt gtt gtt gtt
Val Val Val Val Val
                                                                                             18
<210> 116
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Val(GTT)x6
<400> 116
Val Val Val Val Val 1
<210> 117
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Val(GTC)x6
<220>
<221> CDS
<222> (1)..(18)
<400> 117
                                                                                             18
gtc gtc gtc gtc gtc yal val val val
<210> 118
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Val(GTC)x6
<400> 118
val val val val val 1
```

									_				
<210> <211> <212> <213>	119 18 DNA Artifi	cial Se	quence										
<220> <223>	Val(GTA)x6												
<220> <221> <222>	CDS (1)((18)											
<400> gta gt Val Va 1	119 a gta g l Val V	gta gta /al Val 5	gta Val										18
<210> <211> <212> <213>	120 6 PRT Artifi	icial Se	equence										
<220> <223>	Val (GT	ΓΑ) x6											
<400>	120		,										
Val Va 1	l Val v	/al Val 5	Val										
<210> <211> <212> <213>	121 2583 DNA Mouse												
<220> <221> <222>	CDS (1)((2166)											
<400> gaa ct Glu Le 1	121 it cgg g iu Arg A	gac gag Asp Glu 5	caa act Gln Thr	ccg Pro	ggc Gly	cac His 10	agg Arg	aag Lys	aac Asn	cca Pro	tcg Ser 15	aac Asn	48
caa ag Gln Se	r Ser L	tta gaa Leu Glu 20	tct gac Ser Asp	tcc Ser	aat Asn 25	tac Tyr	ccc Pro	tcc Ser	att Ile	tcc ser 30	act Thr	tcc Ser	96
gaa at Glu Il	c gga g e Gly A 35	gac act Asp Thr	gag gat Glu Asp	gcc Ala 40	ctt Leu	cag Gln	cag Gln	gtg Val	gag Glu 45	gag Glu	att Ile	ggc Gly	144
ata ga Ile Gl 50	ŭ Lys A	gca gcc Ala Ala	atg gac Met Asp 55	atg Met	acc Thr	gtc Val	ttc Phe	ctg Leu 60	aag Lys	ctg Leu	cag Gln	aag Lys	192
aga gt Arg Va	g cgc g	gaa ctt Glu Leu	gag cag Glu Gln	gag Glu	agg Arg	Lys	aag Lys age	Leu	cag Gln	gcg Ala	cag Gln	cta Leu	240

65	70	21415-0015us.txt 75	80
gaa aag gga cag cag Glu Lys Gly Gln Glr 85	gac agc aag Asp Ser Lys	aaa ggg cag gta gaa caa Lys Gly Gln Val Glu Gln 90	cag aac 288 Gln Asn 95
aat ggc tta gat gtc Asn Gly Leu Asp Va 100	gac cag gac Asp Gln Asp	gca gat ata gcc tac aat a Ala Asp Ile Ala Tyr Asn 105 110	agt ctg 336 Ser Leu
aag aga cag gag ctt Lys Arg Gln Glu Led 115	gag tca gag Glu Ser Glu 120	aac aag aag ctg aag aat g Asn Lys Lys Leu Lys Asn 125	gac ctg 384 Asp Leu
aat gag ctg agg aad Asn Glu Leu Arg Asn 130	ggt gtc gct Gly Val Ala 135	gac caa gcc atg cag gat Asp Gln Ala Met Gln Asp 140	aac tcc 432 Asn Ser
		agc ctc cta ctg aac cag Ser Leu Leu Leu Asn Gln 155	
ctg gcc aat gag gag Leu Ala Asn Glu Glu 169	ıLeu Glu Val	cgc aaa gag gag gcg ctg Arg Lys Glu Glu Ala Leu 170	atc ctc 528 Ile Leu 175
agg acc cag atc atg Arg Thr Gln Ile Med 180	g aat gcc gac Asn Ala Asp	cag cgc cgc ctg tct ggc Gln Arg Arg Leu Ser Gly 185	aag aac 576 Lys Asn
atg gag ccg aac ato Met Glu Pro Asn Ilo 195	aat gcc aga Asn Ala Arg 200	aca agt tgg ccc aac agt Thr Ser Trp Pro Asn Ser 205	gag aag 624 Glu Lys
cac gtg gac cag gaa His Val Asp Gln Glo 210	gac gcc att Asp Ala Ile 215	gag gcc tat cac ggg gtc Glu Ala Tyr His Gly Val 220	tgc cag 672 Cys Gln
aca aac agg ttg ctg Thr Asn Arg Leu Leu 225	g gag gcc cag I Glu Ala Gln 230	ctg cag gcc cag agc ctg Leu Gln Ala Gln Ser Leu 235	gag cat 720 Glu His 240
	ı His Leu Lys	gcc cag gtg gaa gcc ctg Ala Gln Val Glu Ala Leu 250	
gag atg gac aaa ca Glu Met Asp Lys Gli 260	g cag cag acc n Gln Gln Thr	Phe Cys Gln Thr Leu Leu 265 270	ctc tcc 816 Leu Ser
cca gag gcc cag gt Pro Glu Ala Gln Va 275	gaa ttt ggt Glu Phe Gly 280	gtc cag cag gag ata tcc Val Gln Gln Glu Ile Ser 285	cgg ctg 864 Arg Leu
		gaa ttg gtg gaa aag ctg Glu Leu Val Glu Lys Leu 300	
aat gag agg aag ct Asn Glu Arg Lys Le 305	g aag aag cag u Lys Lys Gln 310	ctg aag att tac atg aag Leu Lys Ile Tyr Met Lys 315	aag gtc 960 Lys Val 320
cag gac tta gaa gc	gcc cag gcg	ttg gca cag agt gac agg Page 35	agg cac 1008

Gln	Asp	Leu	Glu	Ala 325	Ala	Gln	Αla	21 Leu		-0015 Gln			Arg	Arg 335	His	
cat His	gaa Glu	ctc Leu	aca Thr 340	aga Arg	cag Gln	gtc Val	aca Thr	gtc Val 345	caa Gln	cga Arg	aaa Lys	gag Glu	aag Lys 350	gac Asp	ttc Phe	1056
caa Gln	ggc Gly	atg Met 355	ctg Leu	gag Glu	tac Tyr	cac His	aaa Lys 360	gag Glu	gtc Val	gaa Glu	gcc Ala	ctc Leu 365	ctc Leu	atc Ile	cgg Arg	1104
aac Asn	ctg Leu 370	gtg Val	aca Thr	gac Asp	ctg Leu	aag Lys 375	cct Pro	cag Gln	atg Met	ctg Leu	ctg Leu 380	ggc Gly	acc Thr	gtg Val	ccc Pro	1152
tgt Cys 385	ctg Leu	cct Pro	gca Ala	tac Tyr	ata Ile 390	ctc Leu	tat Tyr	atg Met	tgc Cys	atc Ile 395	agg Arg	cac His	gcg Ala	gat Asp	tac Tyr 400	1200
acc Thr	aac Asn	gat Asp	gac Asp	ctc Leu 405	aag Lys	gtg Val	cac His	tcg Ser	ttg Leu 410	ctg Leu	agc Ser	tcc Ser	acc Thr	atc Ile 415	aac Asn	1248
ggc Gly	att Ile	aag Lys	aaa Lys 420	gtc Val	ctc Leu	aag Lys	aag Lys	cac His 425	aat Asn	gac Asp	gac Asp	ttt Phe	gag Glu 430	atg Met	acg Thr	1296
tca Ser	ttc Phe	tgg Trp 435	tta Leu	tcc Ser	aac Asn	acc Thr	tgc Cys 440	cgc Arg	ttc Phe	ctt Leu	cac His	tgt Cys 445	ctg Leu	aag Lys	caa Gln	1344
tac Tyr	agt Ser 450	ggt Gly	gat Asp	gag Glu	ggt Gly	ttc Phe 455	atg Met	aca Thr	cag Gln	aac Asn	atc Ile 460	gcg Ala	aag Lys	cag Gln	aat Asn	1392
gag Glu 465	cac His	tgt Cys	ctc Leu	aag Lys	aac Asn 470	ttt Phe	gac Asp	ctc Leu	act Thr	gaa Glu 475	tac Tyr	cgc Arg	cag Gln	gta Val	cta Leu 480	1440
agc Ser	gac Asp	ctt Leu	tcc Ser	att Ile 485	cag Gln	atc Ile	tat Tyr	cag Gln	cag Gln 490	ctc Leu	att Ile	aaa Lys	atg Met	ccc Pro 495	gag Glu	1488
ggc Gly	ttg Leu	cta Leu	cag Gln 500	cct Pro	atg Met	ata Ile	gtt Val	tct Ser 505	gcc Ala	atg Met	ttg Leu	gaa Glu	aat Asn 510	gag Glu	agt Ser	1536
atc Ile	cag Gln	ggg Gly 515	ctg Leu	tct Ser	ggt Gly	gtg Val	aga Arg 520	cca Pro	act Thr	ggt Gly	tac Tyr	cgg Arg 525	aag Lys	cgc Arg	tcc Ser	1584
tcc Ser	agc Ser 530	atg Met	gtg Val	gat Asp	gga Gly	gag Glu 535	aat Asn	tct Ser	ttc Phe	cat His	aca Thr 540	gtc Val	ctg Leu	tgt Cys	gac Asp	1632
cag Gln 545	ggc Gly	ctg Leu	gac Asp	ccc Pro	gag Glu 550	att Ile	atc Ile	ctg Leu	cag Gln	gtg Val 555	ttc Phe	aaa Lys	cag Gln	ctc Leu	ttc Phe 560	1680
tac Tyr	atg Met	atc Ile	aat Asn	gct Ala 565	gtg Val	act Thr	ctt Leu	aac Asn	aac Asn 570	cta Leu	ctc Leu	ctg Leu	cgg Arg	aaa Lys 575	gac Asp	1728

21415-0015US.txt	
gcc tgc tcc tgg agc aca ggc atg caa ctc agg tac aac ata agt caa Ala Cys Ser Trp Ser Thr Gly Met Gln Leu Arg Tyr Asn Ile Ser Gln 580 585 590	1776
ctg gaa gag tgg ctt cgg ggc aaa aac ctt cac cag agt gga gca gtt Leu Glu Glu Trp Leu Arg Gly Lys Asn Leu His Gln Ser Gly Ala Val 595 600 605	1824
cag acc atg gag ccc ctg atc cag gca gcc cag ctc ctc cag ctg aag Gln Thr Met Glu Pro Leu Ile Gln Ala Ala Gln Leu Leu Gln Leu Lys 610 615 620	1872
aag aaa acc cac gag gat gct gag gcc atc tgc tct ctg tgc acc tcc Lys Lys Thr His Glu Asp Ala Glu Ala Ile Cys Ser Leu Cys Thr Ser 625 630 635 640	1920
ctc agc acc cag cag att gtc aaa att tta aac ctc tac act ccc ttg Leu Ser Thr Gln Gln Ile Val Lys Ile Leu Asn Leu Tyr Thr Pro Leu 645 650 655	1968
aat gaa ttt gag gaa cgg gtc aca gtg tcc ttc atc aga aca atc cag Asn Glu Phe Glu Glu Arg Val Thr Val Ser Phe Ile Arg Thr Ile Gln 660 665 670	2016
gct cag cta caa gag agg aat gac cct cag cag ctc ctg ctg gac tcc Ala Gln Leu Gln Glu Arg Asn Asp Pro Gln Gln Leu Leu Leu Asp Ser 675 680 685	2064
aag cac gtg ttc cca gtt ctg ttt cca tat aac cca tct gct ctg acc Lys His Val Phe Pro Val Leu Phe Pro Tyr Asn Pro Ser Ala Leu Thr 690 695 700	2112
atg gac tcg atc cac atc ccg gcc tgt ctc aac ctg gag ttt ctc aat Met Asp Ser Ile His Ile Pro Ala Cys Leu Asn Leu Glu Phe Leu Asn 705 710 715 720	2160
gaa gtc tgaggatgcg tgtttccgag gcgagcgaga aggaagcatg tgctgtcagc Glu Val	2216
cgagagaatg ctaggtgtgt taaatattcc agcgtagatc aaaccatgtt agagactggc	2276
gggacgacag aactaaacag cggggtgcac agttgtcgcc aatgctgctc agaaaacacc	2336
cggaagtgga tttgttaaag ctgtgctttc aggttaaacc aagacacgtc agaacgaaca	2396
gccactctgc agctccagtc gccatataaa aatgccagtt ctacagagtg gaagtgccta	2456
gctttgatct ttgtatatat cttgagaatg ttcaaactga gataatatta aaaacacatg	2516
acgtaaattg cctttgtggg tctttcaaga aatgatggga ctaataacca taagattgac	2576
aggaatt	2583

¹²² 722 PRT

Glu Leu Arg Asp Glu Gln Thr Pro Gly His Arg Lys Asn Pro Ser Asn Page 37

<210> <211> <212> <213> Mouse

<400> 122

1

Gln Ser Ser Leu Glu Ser Asp Ser Asn Tyr Pro Ser Ile Ser Thr Ser 20 25 30 Glu Ile Gly Asp Thr Glu Asp Ala Leu Gln Gln Val Glu Glu Ile Gly 35 40 45 Ile Glu Lys Ala Ala Met Asp Met Thr Val Phe Leu Lys Leu Gln Lys 50 60 Arg Val Arg Glu Leu Glu Gln Glu Arg Lys Lys Leu Gln Ala Gln Leu 65 70 75 80 Glu Lys Gly Gln Gln Asp Ser Lys Lys Gly Gln Val Glu Gln Gln Asn 85 90 95 Asn Gly Leu Asp Val Asp Gln Asp Ala Asp Ile Ala Tyr Asn Ser Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$ Lys Arg Gln Glu Leu Glu Ser Glu Asn Lys Lys Leu Lys Asn Asp Leu 115 120 125 Asn Glu Leu Arg Asn Gly Val Ala Asp Gln Ala Met Gln Asp Asn Ser 130 135 140 Thr His Ser Ser Pro Asp Ser Tyr Ser Leu Leu Leu Asn Gln Leu Lys 145 150 155 160 Leu Ala Asn Glu Glu Leu Glu Val Arg Lys Glu Glu Ala Leu Ile Leu 165 170 175 Arg Thr Gln Ile Met Asn Ala Asp Gln Arg Arg Leu Ser Gly Lys Asn 180 185 190 Met Glu Pro Asn Ile Asn Ala Arg Thr Ser Trp Pro Asn Ser Glu Lys 195 200 · 205 His Val Asp Gln Glu Asp Ala Ile Glu Ala Tyr His Gly Val Cys Gln 210 215 220 Thr Asn Arg Leu Leu Glu Ala Gln Leu Gln Ala Gln Ser Leu Glu His 225 230 235 240 Glu Glu Glu Val Glu His Leu Lys Ala Gln Val Glu Ala Leu Lys Glu 245 250 255

21415-0015US.txt Glu Met Asp Lys Gln Gln Gln Thr Phe Cys Gln Thr Leu Leu Leu Ser 260 265 270 Pro Glu Ala Gln Val Glu Phe Gly Val Gln Glu Ile Ser Arg Leu 275 280 285 Thr Asn Glu Asn Leu Asp Phe Lys Glu Leu Val Glu Lys Leu Glu Lys 290 295 300 Asn Glu Arg Lys Leu Lys Lys Gln Leu Lys Ile Tyr Met Lys Lys Val 305 310 315 320 Gln Asp Leu Glu Ala Ala Gln Ala Leu Ala Gln Ser Asp Arg Arg His 325 330 335 His Glu Leu Thr Arg Gln Val Thr Val Gln Arg Lys Glu Lys Asp Phe 340 345 350 Gln Gly Met Leu Glu Tyr His Lys Glu Val Glu Ala Leu Leu Ile Arg 355 360 365 Asn Leu Val Thr Asp Leu Lys Pro Gln Met Leu Leu Gly Thr Val Pro 370 380 Cys Leu Pro Ala Tyr Ile Leu Tyr Met Cys Ile Arg His Ala Asp Tyr 385 390 395 400 Thr Asn Asp Asp Leu Lys Val His Ser Leu Leu Ser Ser Thr Ile Asn 405 410 415 Gly Ile Lys Lys Val Leu Lys Lys His Asn Asp Asp Phe Glu Met Thr 420 425 430 Ser Phe Trp Leu Ser Asn Thr Cys Arg Phe Leu His Cys Leu Lys Gln 435 440 445 Tyr Ser Gly Asp Glu Gly Phe Met Thr Gln Asn Ile Ala Lys Gln Asn 450 455 460 Glu His Cys Leu Lys Asn Phe Asp Leu Thr Glu Tyr Arg Gln Val Leu 465 470 475 480 Ser Asp Leu Ser Ile Gln Ile Tyr Gln Gln Leu Ile Lys Met Pro Glu 485 490 495 Gly Leu Leu Gln Pro Met Ile Val Ser Ala Met Leu Glu Asn Glu Ser 500 510

21415-0015us.txt

Ile Gln Gly Leu Ser Gly Val Arg Pro Thr Gly Tyr Arg Lys Arg Ser 515 520 525

Ser Ser Met Val Asp Gly Glu Asn Ser Phe His Thr Val Leu Cys Asp 530 540

Gln Gly Leu Asp Pro Glu Ile Ile Leu Gln Val Phe Lys Gln Leu Phe 545 550 555 560

Tyr Met Ile Asn Ala Val Thr Leu Asn Asn Leu Leu Leu Arg Lys Asp 565 570 575

Ala Cys Ser Trp Ser Thr Gly Met Gln Leu Arg Tyr Asn Ile Ser Gln
580 585 590

Leu Glu Glu Trp Leu Arg Gly Lys Asn Leu His Gln Ser Gly Ala Val 595 600 605

Gln Thr Met Glu Pro Leu Ile Gln Ala Ala Gln Leu Leu Gln Leu Lys 610 620

Lys Lys Thr His Glu Asp Ala Glu Ala Ile Cys Ser Leu Cys Thr Ser 625 630 635 640

Leu Ser Thr Gln Gln Ile Val Lys Ile Leu Asn Leu Tyr Thr Pro Leu 645 650 655

Asn Glu Phe Glu Glu Arg Val Thr Val Ser Phe Ile Arg Thr Ile Gln
660 665 670

Ala Gln Leu Gln Glu Arg Asn Asp Pro Gln Gln Leu Leu Leu Asp Ser 675 680 685

Lys His Val Phe Pro Val Leu Phe Pro Tyr Asn Pro Ser Ala Leu Thr 690 695 700

Met Asp Ser Ile His Ile Pro Ala Cys Leu Asn Leu Glu Phe Leu Asn 705 710 715 720

Glu Val

<220>

<210> 123

<211> 549

<212> DNA

<213> Artificial Sequence

21415-0015US.txt <223> BAR gene
<220> <221> CDS <222> (1)(549)
<pre><400> 123 agc cca gaa cga cgc ccg gcc gac atc cgc cgt gcc acc gag gcg gac 48 Ser Pro Glu Arg Arg Pro Ala Asp Ile Arg Arg Ala Thr Glu Ala Asp 1 5 10 15</pre>
atg ccg gcg gtc tgc acc atc gtc aac cac tac atc gag aca agc acg Met Pro Ala Val Cys Thr Ile Val Asn His Tyr Ile Glu Thr Ser Thr 20 25 30
gtc aac ttc cgt acc gag ccg cag gaa ccg cag gag tgg acg gac gac Val Asn Phe Arg Thr Glu Pro Gln Glu Pro Gln Glu Trp Thr Asp Asp 35 40 45
ctc gtc cgt ctg cgg gag cgc tat ccc tgg ctc gtc gcc gag gtg gac Leu Val Arg Leu Arg Glu Arg Tyr Pro Trp Leu Val Ala Glu Val Asp 50 55 60
ggc gag gtc gcc ggc atc gcc tac gcg ggc ccc tgg aag gca cgc aac 240 Gly Glu Val Ala Gly Ile Ala Tyr Ala Gly Pro Trp Lys Ala Arg Asn 65 70 75 80
gcc tac gac tgg acg gcc gag tcg acc gtg tac gtc tcc ccc cgc cac 288 Ala Tyr Asp Trp Thr Ala Glu Ser Thr Val Tyr Val Ser Pro Arg His 85 90 95
cag cgg acg gga ctg ggc tcc acg ctc tac acc cac ctg ctg aag tcc Gln Arg Thr Gly Leu Gly Ser Thr Leu Tyr Thr His Leu Leu Lys Ser 100 105 110
ctg gag gca cag ggc ttc aag agc gtg gtc gct gtc atc ggg ctg ccc 384 Leu Glu Ala Gln Gly Phe Lys Ser Val Val Ala Val Ile Gly Leu Pro 115 120 125
aac gac ccg agc gtg cgc atg cac gag gcg ctc gga tat gcc ccc cgc 432 Asn Asp Pro Ser Val Arg Met His Glu Ala Leu Gly Tyr Ala Pro Arg 130 135 140
ggc atg ctg cgg gcc ggc ttc aag cac ggg aac tgg cat gac gtg Gly Met Leu Arg Ala Ala Gly Phe Lys His Gly Asn Trp His Asp Val 145 150 155 160
ggt ttc tgg cag ctg gac ttc agc ctg ccg gtg ccg ccc cgt ccg gtc Gly Phe Trp Gln Leu Asp Phe Ser Leu Pro Val Pro Pro Arg Pro Val 165 170 175
ctg ccc gtc acc gaa atc tga Leu Pro Val Thr Glu Ile 180
<210> 124 <211> 182 <212> PRT <213> Artificial Sequence
<220>

<223> BAR gene

<400> 124

Ser Pro Glu Arg Arg Pro Ala Asp Ile Arg Arg Ala Thr Glu Ala Asp 1 10 15

Met Pro Ala Val Cys Thr Ile Val Asn His Tyr Ile Glu Thr Ser Thr 20 25 30

Val Asn Phe Arg Thr Glu Pro Gln Glu Pro Gln Glu Trp Thr Asp Asp 35 40 45

Leu Val Arg Leu Arg Glu Arg Tyr Pro Trp Leu Val Ala Glu Val Asp 50 55 60

Gly Glu Val Ala Gly Ile Ala Tyr Ala Gly Pro Trp Lys Ala Arg Asn 65 70 75 80

Ala Tyr Asp Trp Thr Ala Glu Ser Thr Val Tyr Val Ser Pro Arg His
85 90 95

Gln Arg Thr Gly Leu Gly Ser Thr Leu Tyr Thr His Leu Leu Lys Ser 100 105 110

Leu Glu Ala Gln Gly Phe Lys Ser Val Val Ala Val Ile Gly Leu Pro 115 120 125

Asn Asp Pro Ser Val Arg Met His Glu Ala Leu Gly Tyr Ala Pro Arg 130 135 140

Gly Met Leu Arg Ala Ala Gly Phe Lys His Gly Asn Trp His Asp Val 145 150 155 160

Gly Phe Trp Gln Leu Asp Phe Ser Leu Pro Val Pro Pro Arg Pro Val 165 170 175

Leu Pro Val Thr Glu Ile 180

<210> 125

<211> 366 DNA

<212> <213> Human

<220>

CDS

<221> <222> (1)..(363)

<400> 125

atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg tat gag acc atg gga aag tca cgc tat gag acc atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg gga aaa ggt gtg aaa tcc ccg ggg gag aag tca cgc tat gag acc atg gag acc atg gag acc at	48
tca ctg aat ctg acc acc aag cgc ttc ctg gag ctg ctg agc cac tcg tca ctg aat ctg acc acc aag cgc ttc ctg gag ctg ctg agc cac tcg tca ctg aat ctg acc acc aag cgc ttc ctg gag ctg ctg agc cac tcg tca ctg aat ctg acc acc aag cgc ttc ctg gag ctg ctg agc cac tcg tca ctg aat ctg acc acc aag cgc ttc ctg gag ctg ctg agc cac tcg 25	96
gct gac ggt gtc gtc gac ctg aac tgg gct gcc gag gtg ctg aag gtg gct gac ggt gtc gtc gac ctg aac tgg gct gcc gag gtg ctg aag gtg Ala Asp Gly Val Val Asp Leu Asn Trp Ala Ala Glu Val Leu Lys Val Ala Asp Gly Val Val Asp Leu Asn Trp Ala Ala Glu Val Leu Lys Val	144
Ala Asp Gly van 40	192
SO STATE OF	240
Leu Tie Ala 193 - 70	288
Thr IIII var 3.5 85	336
Arg Gill Lea 310	366
tgt act acg cag ctg cgc ctg ctc tcc tga Cys Thr Thr Gln Leu Arg Leu Leu Ser 115	
<210> 126 <211> 121 <212> PRT <213> Human	
<400> 126	
<pre><400> 126 Met Gly Lys Gly Val Lys Ser Pro Gly Glu Lys Ser Arg Tyr Glu Thr 15 1</pre>	
Ser Leu Asn Leu Thr Thr Lys Arg Phe Leu Glu Leu Leu Ser His Ser 30 20	
Ala Asp Gly Val Val Asp Leu Asn Trp Ala Ala Glu Val Leu Lys Val 45 35	
Gln Lys Arg Arg Ile Tyr Asp Ile Thr Asn Val Leu Glu Gly Ile Gln 50	
Leu Ile Ala Lys Lys Ser Lys Asn His Ile Gln Trp Leu Gly Ser His 80 65	
Thr Thr Val Gly Val Gly Gly Arg Leu Glu Gly Leu Thr Gln Asp Leu 90	

Arg Gln Leu Gln Glu Ser Glu Gln Gln Leu Asp His Leu Met Asn Ile $100 \hspace{1cm} 105 \hspace{1cm} 110$

Cys Thr Thr Gln Leu Arg Leu Leu Ser 115 120