Where Will the Ball Fall (View)

You have a 2-D grid of size $m \times n$ representing a box, and you have n balls. The box is open on the top and bottom sides.

Each cell in the box has a diagonal board spanning two corners of the cell that can redirect a ball to the right or to the left.

- A board that redirects the ball to the right spans the top-left corner to the bottom-right corner and is represented in the grid as 1.
- A board that redirects the ball to the left spans the top-right corner to the bottom-left corner and is represented in the grid as -1.

We drop one ball at the top of each column of the box. Each ball can get stuck in the box or fall out of the bottom. A ball gets stuck if it hits a "V" shaped pattern between two boards or if a board redirects the ball into either wall of the box.

Return an array answer of size n where answer[i] is the column that the ball falls out of at the bottom after dropping the ball from the ith column at the top, or -1 if the ball gets stuck in the box.

Example 1:


```
Input: grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1],[1,1,1,1,-1],[-1,-1,-1,-1],
1,-1]]
```

Output: [1,-1,-1,-1,-1]

Explanation: This example is shown in the photo.

Ball b0 is dropped at column 0 and falls out of the box at column 1.

Ball b1 is dropped at column 1 and will get stuck in the box between column 2 and 3 and row 1.

Ball b2 is dropped at column 2 and will get stuck on the box between column 2 and 3 and row θ .

Ball b3 is dropped at column 3 and will get stuck on the box between column 2 and 3 and row 0.

Ball b4 is dropped at column 4 and will get stuck on the box between column 2 and 3 and row 1.

Example 2:

Input: grid = [[-1]]

Output: [-1]

Explanation: The ball gets stuck against the left wall.

Example 3:

Input: grid = [[1,1,1,1,1,1],[-1,-1,-1,-1,-1],[1,1,1,1,1],[-1,-1,-1,-1,-1,-1]]

Output: [0,1,2,3,4,-1]

Constraints:

- m == grid.length
- n == grid[i].length
- $1 \le m$, $n \le 100$
- grid[i][j] is 1 or -1.