Теорема Гёделя и теория алгоритмов

В. А. Успенский

Доклады Академии Наук СССР, 1953, том 91, № 4, с. 737–740 (Представлено академиком А. Н. Колмогоровым 8 VI 1953)

1. Предварительные замечания В работе [3] Гёдель показал, что попытка аксиоматического построения арифметики неизбежно приводит к дедуктивно-неполному исчислению, т.е. к исчислению, в котором существует формула, интерпретируемая как содержательно-истинное высказывание о натуральных чисел и вместе с тем недоказуемая в этом исчислении. Более того в [3] был указан эффективный способ построения такой формулы. Настоящая заметка содержит результаты предпринятого по инициативе А. Н. Колмогорова выяснения общих причин такого положения вещей. При этом обнаруживается роль теории алгоритмов в вопросах дедуктивной полноты.

Мы скажем, что множество натуральных чисел R порождается функцией φ , если R есть множество значений φ . Каждой системе равенств, задающей частично-рекурсивную функцию φ , можно отнести некоторое натуральное число, по которому система равенств однозначно восстанавливается; это число называется номером функции φ [5]. Номером рекурсивно-перечислимого множества R мы назовем любое число, являющееся одним из номеров одной из частично-рекурсивных функций, порождающих R.

2. Эффективная неотделимость. Говорят, что множества E_1 и E_2 отделяются множествами H_1 и H_2 , если $E_1 \subseteq H_1$, $E_2 \subseteq H_2$, $H_1 \cap H_2 = \varnothing$. Множества E_1 и E_2 называются рекурсивно-неотделимыми [2], а короче — *неотделимыми*, если они не отделяются никаким рекурсивными множествами. Можно построить два непересекающихся рекурсивно-перечислимых множества, являющихся неотделимыми (впервые такие множества построены П. С. Новиковым; дальнейшие примеры принадлежат Б. А. Трахтенброту [2]).

Введем понятие эффективной неотделимости. Множества E_1 и E_2 назовем эффективно-неотделимыми, коль скоро существует такая частично-рекурсивная функция $\nu(x,y)$, что если n_1 и n_2 суть номера рекурсивно-перечислимых множеств H_1 и H_2 , отделяющих E_1 и E_2 , то $\nu(n_1,n_2)$ существует, но не принадлежит $H_1 \cup H_2$.

Теорема 1. Существуют два эффективно-неотделимых непересекающихся рекурсивно-перечислимых множества

Более того, эффективно-неотделимыми являются все известные до сего времени неотделимые множества.

3. Дедуктивные исчисления. Для любого конечного множества \mathcal{Z} «знаков» будем обозначать через $\mathcal{S}(\mathcal{Z})$ множество всевозможных конечных строчек, составленных из этих знаков («слов в алфавите \mathcal{Z} » по А. А. Маркову [1]). Знаки из \mathcal{Z} занумеруем числами $1,2,\ldots,n$, где n — число знаков в \mathcal{Z} ; каждой строчке $A=\alpha_1\alpha_2\ldots\alpha_j$, где α_μ суть знаки из \mathcal{Z} , отнесем в качестве номера число $N(A)=2^{b(\alpha_1)}\cdot 3^{b(\alpha_2)}\cdot \ldots \cdot p_j^{b(\alpha_j)}$, где p_j есть j-е простое число, а $b(\alpha)$ — номер знака α .

Дедуктивное исчисление П есть совокупность следующих образований:

- 1) конечного множества \mathcal{Z} элементарных знаков (строчки из $\mathcal{S}(\mathcal{Z})$ называются «формулами» исчисления Π);
- 2) конечного множества A_1,\ldots,A_p формул из $\mathcal{S}(\mathcal{Z})$, называемых «аксиомами»;
- 3) конечного множества $\Gamma_1, \dots, \Gamma_q$ алгоритмов, называемых «правилами вывода».

При этом алгоритм Γ_i $(i=1,2,\ldots,q)$ способен «перерабатывать» лишь строчки вида

$$X_1, X_2, \ldots, X_{k_i}, Y_1, Y_2, \ldots, Y_{l_i},$$

где k_i и l_i — формулы из $\mathcal{S}(\mathcal{Z})$, а запятая «,» — знак, не входящий в \mathcal{Z} . Для любой строчки описанного сейчас вида алгоритм Γ_i или дает формулу из $\mathcal{S}(\mathcal{Z})$ или ничего не дает. В целях уточнения термина «алгоритм» примем следующее основное допущение:

если
$$Z = \Gamma_i(X_1,\dots,X_{k_i},Y_1,\dots,Y_{l_i}),$$
 то $N(Z) = \varphi_i(N(X_1),\dots,N(X_{k_i}),N(Y_1),\dots,N(Y_{l_i})),$

где φ_i — частично-рекурсивная функция.

В $\mathcal{S}(\mathcal{Z})$ образуется подмножество выводимых формул по следующему закону: все аксиомы выводимы; далее, если X_1,\ldots,X_{k_i} выводимы и $Z=\Gamma_i(X_1,\ldots,X_{k_i},Y_1,\ldots,Y_{l_i})$, то и Z выводима. Понятие дедуктивного исчисления можно несколько сузить, потребовав, чтобы для каждого правила вывода Γ_i существовал алгоритм Δ_i , позволяющий для всякой строчки $X_1,\ldots,X_{k_i},Y_1,\ldots,Y_{l_i}$ определять, принадлежит ли она области применимости Γ_i или нет. Для дальнейшего безразлично, как понимать термин «дедуктивное исчисление» — в широком смысле или в узком: все утверждения, которые будут высказаны, остаются справедливыми при обоих пониманиях.

Ниже мы будем рассматривать лишь исчисления «с отрицанием», т.е. удовлетворяющие условию

4) в $\mathcal Z$ выделен некоторый определенный знак, для которого примем стандартное обозначение \neg .

Если A — формула, то формулу ¬A назовем отрицанием A; формулу ¬ \dots ¬A назовем n-кратным отрицанием A.

Рассмотрим произвольное подмножество $\mathcal{B} \subseteq \mathcal{S}(\mathcal{Z})$, обладающее следующими свойствами:

- а) существует алгоритм, позволяющий для всякой формулы $A \in \mathcal{S}(\mathcal{Z})$ определить, принадлежит A к \mathcal{B} или нет;
- б) если $A \in \mathcal{B}$, то и $\neg A \in \mathcal{B}$.

Можно показать, что эти свойства множества \mathcal{B} не зависят от того, в каком объемлющем множестве $\mathcal{S}(\mathcal{Z})$ мы его рассматриваем. Исчисление Π высекает в \mathcal{B} подмножество $\mathcal{K}_{\mathcal{B}}(\Pi)$ выводимых формул и подмножество $\mathcal{L}_{\mathcal{B}}(\Pi)$ формул, отрицания которых выводимы. В применении к \mathcal{B} исчисление Π называется непротиворечивым, если $\mathcal{K}_{\mathcal{B}}(\Pi) \cap \mathcal{L}_{\mathcal{B}}(\Pi) = \mathcal{D}$, и полным, если $\mathcal{K}_{\mathcal{B}}(\Pi) \cup \mathcal{L}_{\mathcal{B}}(\Pi) = \mathcal{B}$. Исчисление Π' назовем усилением исчисления Π в применении к \mathcal{B} , если $\mathcal{K}_{\mathcal{B}}(\Pi') \supseteq \mathcal{K}_{\mathcal{B}}(\Pi)$. Исчисление Π назовем непополнимым в применении к \mathcal{B} , если оно не допускает полного и непротиворечивого усиления. Множества номеров, соответствующие множествам $\mathcal{K}_{\mathcal{B}}(\Pi)$ и $\mathcal{L}_{\mathcal{B}}(\Pi)$, обозначим через $\mathcal{K}_{\mathcal{B}}(\Pi)$ и $\mathcal{L}_{\mathcal{B}}(\Pi)$; легко показать, что оба эти множества рекурсивно-перечислимы. Исчисление Π назовем эффективно-пепополнимым в применении к \mathcal{B} , коль скоро существует такая частично-рекурсивная функция $\gamma(x)$, что если η есть номер рекурсивно-перечислимого множества η неразрешимой в η непротиворечивое усиление исчисления η , то η есть номер формулы из η , неразрешимой в η . При этом формула называется неразрешимой в исчислении, если ни она, ни ее отрицание не выводимы в этом исчислении. В дальнейшем множество η будет всегда фиксированным, поэтому слова «в применении к η », равно как и индекс η будут для краткости в большинстве случаев опускаться.

4. Регулярные исчисления. Дедуктивное исчисление Π назовем D_1 -исчислением в применении к \mathcal{B} , если для всякой формулы $A \in \mathcal{B}$ из выводимости A следует выводимость $\neg \neg A$. Дедуктивное исчисление Π назовем *регулярным* в применении к \mathcal{B} , если оно есть D_1 -исчисление и для всякой формулы $A \in \mathcal{B}$ из выводимости $\neg \neg \neg A$ следует выводимость $\neg A$.

Теорема 2. Необходимым и достаточным условием непополнимости регулярного исчисления Π является неотделимость множесть $K(\Pi)$ и $L(\Pi)$.

Следуя Тарскому [6], назовем исчисление Π разрешимым в применении к \mathcal{B} , если $K(\Pi)$ есть рекурсивное множество, и существенно неразрешимым, если Π непротиворечиво и не допускает непротиворечивого разрешимого усиления.

 $^{^{1}}$ Аналог замкнутой формулы, или npedложения. — Прим. наборщика.

Теорема 3. Регулярное исчисление тогда и только тогда существенно неразрешимо, когда оно непротиворечиво и непополнимо (ср. [6]).

Теорема 4. Эффективная неотделимость $K(\Pi)$ и $L(\Pi)$ необходима и достаточна для эффективной непополнимости регулярного исчисления Π .

Отнесем к множеству 2 $\mathcal{X}(\mathcal{B})$ всякую формулу $A \in \mathcal{B}$, для которой не существует формулы $B \in \mathcal{B}$ такой, что $\neg B = A$.

Теорема 5. Пусть D_1 -исчисление Π эффективно-непополнимо в применении к \mathcal{B} . Тогда существует такая частично-рекурсивная функция $\tilde{\gamma}(x)$, что если n есть номер рекурсивно-перечислимого множества $K_{\mathcal{B}}(\Pi')$, где Π' — непротиворечивое усиление Π , то $\tilde{\gamma}(n)$ есть номер формулы из $\mathcal{X}(\mathcal{B})$, неразрешимой в Π' .

- **5.** Применение к теореме Гёделя. Пусть для каждого натурального m определена формула $F(m) \in \mathcal{S}(\mathcal{Z})$, причем выполняются следующие условия:
 - а) существует обще-рекурсивная функция f(x) такая, что f(m) есть номер формулы F(m);
 - б) множество номеров формул F(m) рекурсивно.

Пусть, далее, E_1 и E_2 — эффективно-неотделимые множества. Образуем множество \mathcal{B} , состоящее из всех формул вида $\neg\neg\ldots\neg F(m)$. Можно построить дедуктивное исчисление Π_0 такое, что $\mathcal{K}(\Pi_0)$ состоит из четнократных отрицаний формул F(m) при $m\in E_1$ и нечетнократных отрицаний F(m) при $m\in E_2$. Легко показать, что $K(\Pi_0)$ и $L(\Pi_0)$ эффективно-неотделимы. Применяя последовательно теоремы 4 и 5, получаем, что для всякого непротиворечивого исчисления Π' , являющегося усилением исчисления Π_0 , алгоритмически строится формула F(m), неразрешимая в Π' ; более точно, существует такая частично-рекурсивная функция $\zeta(x)$, что если n — номер $K(\Pi')$, где Π' — непротиворечивое усиление Π_0 , то $F(\zeta(n))$ неразрешима в Π' .

Отсюда легко следует теорема Гёделя. В качестве E_1 и E_2 возьмем какие-нибудь непересекающиеся эффективно-неотделимые рекурсивно-перечислимые множества (см. теорему 1). Известно [4], что всякое рекурсивно-перечислимое множество может быть порождено примитивно-рекурсивной функцией. Пусть $\theta_1(x)$ и $\theta_2(x)$ — примитивно-рекурсивные функции, порождающие, соответственно, E_1 и E_2 . Положим

$$F(m) = \exists x [\theta_1(x) = m \& \forall y (y \leqslant x \rightarrow \neg(\theta_2(y) = m))].$$

Формула F(m) содержательно эквивалентна утверждению $m \in E_1$. Построим, как указано, множество формул \mathcal{B} и исчисление Π_0 . Обычно дедуктивные исчисления, описывающие арифметику, являются усилениями Π_0 , поэтому для каждого из них алгоритмически указывается неразрешимая формула F(m). Нам остается заметить, что для всякого m из неразрешимости F(m) вытекает, что $\neg F(m)$ истинна, но невыводима.

6. Нерегулярные исчисления.

Теорема 6. Неотделимость $K(\Pi)$ и $L(\Pi)$ достаточна для непополнимости произвольного исчисления Π .

Теорема 7. Если \mathcal{B} таково, что $\mathcal{X}(\mathcal{B})$ бесконечно, то существует непротиворечивое исчисление, являющееся непополнимым разрешимым D_1 -исчислением в применении к \mathcal{B} .

Из теоремы 7 следует, что теоремы 2 и 3 перестают быть верными при замене слов «регулярное исчисление» словами « D_1 -исчисление».

Теорема 8. Эффективная неотделимость $K(\Pi)$ и $L(\Pi)$ достаточна для эффективной непополнимости произвольного исчисления Π .

²Замкнутых формул, не начинающихся с отрицания. — *Прим. наборщика*.

Отнесем к множеству $\mathcal{K}^+(\Pi)$ всякую формулу A, обладающую следующими свойствами:

- a) $A \in \mathcal{X}(\mathcal{B})$;
- б) существует такое четное число s, что s-кратное отрицание A принадлежит $\mathcal{K}(\Pi)$.

Аналогично строится множество $\mathcal{L}^+(\Pi)$. Соответствующие множества номеров обозначим $K^+(\Pi)$ и $L^+(\Pi)$. Исчисление Π назовем согласованным в применении к \mathcal{B} , если $K^+(\Pi) \cap L^+(\Pi) = \emptyset$. Из согласованности исчисления следует его непротиворечивость; в регулярном случае эти понятия совпадают.

Теорема 9. Всякое несогласованное исчисление непополнимо.

Теорема 10. Необходимым и достаточным условием непополнимости согласованного исчисления Π является неотделимость множеств $K^+(\Pi)$ и $L^+(\Pi)$.

Назовем исчисление Π слабо эффективно-непополнимым в применении к \mathcal{B} , коль скоро существует такая частично-рекурсивная функция $\delta(x)$, что если n — номер множества $K(\Pi')$, где Π' — согласованное усиление исчисления Π , то $\delta(n)$ есть номер формулы из \mathcal{B} , неразрешимой в Π' .

Теорема 11. Необходимым и достаточным условием слабой эффективной непополнимости согласованного исчисления Π является эффективная неотделимость множеств $K^+(\Pi)$ и $L^+(\Pi)$.

- **7. Проблемы.** В заключение сформулируем несколько нерешенных, связанных с изложенным выше, проблем:
 - І. Существуют ли неотделимые множества, не являющиеся эффективно-неотделимыми?
 - II. Существует ли непополнимое исчисление, не являющееся эффективно-непополнимым?
 - III. Является ли эффективная неотделимость $K(\Pi)$ и $L(\Pi)$ необходимой для эффективной непополнимости нерегулярных исчислений?
 - IV. Существует ли слабо эффективно-непополнимое исчисление, не являющееся эффективно-непополнимым?
 - V. Существует ли непополнимое исчисление, не являющееся слабо эффективно-непополнимым?

Автор благодарен А. Н. Колмогорову за ряд советов. В частности, А. Н. Колмогорову принадлежит определение «исчисления» и указание на достаточность условия теоремы 2.

Поступило 22 V 1953

Список литературы

- [1] Марков А.А. Теория алгорифмов. *Труды Математического института им. Стеклова АН СССР*, т. 38 (1951), с. 176–189.
- [2] Трахтенброт Б.А. О рекурсивной отделимости. Доклады АН СССР, т. 88 (1953), № 6, с. 953–956.
- [3] Gödel K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. *Monatshefte für Mathematik und Physik*, vol. 38 (1931), num. 1, 173–198. DOI: 10.1007/BF01700692.
- [4] Rosser J.B. Extensions of some theorems of Gödel and Church. *Journal of Symbolic Logic*, vol. 1 (1936), num. 3, pp. 87–91. DOI: 10.2307/2269028.
- [5] Kleene S.C. Recursive predicates and quantifiers. *Transactions of the American Mathematical Society*, vol. 53 (1943), pp. 41–73. DOI: 10.1090/S0002-9947-1943-0007371-8.
- [6] Tarski A. On essential undecidability. *Journal of Symbolic Logic*, vol. 14 (1949), num. 1, p. 75 (abstract). DOI: 10.2307/2269014.

Набрано 13.11.2018 (ezolin@yandex.ru). Изменения, внесенные при наборе текста:

- термины выделяем *курсивом*, а не разрядкой.
- в библиографии даны полные названия статей и журналов.
- пустое множество обозначаем \varnothing , а не Λ .
- ссылки на библиографию указываем как [1], [2], а не $\binom{1}{2}$.
- некоторые перечисления 1) 2) 3) сделаны в виде списков.
- в тексте неразборчиво, как обозначается исчисление: П или II; мы используем первое (можно: I).
- кванторы пишем $\exists x$ и $\forall x$, а не (Ex) и (y).
- мы пишем $\mathcal{ABC}\dots$ вместо готических букв $\mathfrak{ABC}\dots$
- указанная замена шрифта сделана макрокомандой.