Seminario de Mecánica Cuántica / Teoría de la Información Cuántica

Práctica IV (Curso 2020)

I. Evolución de sistemas cuánticos abiertos

1) Dado un estado inicial producto $\rho_{AB} = \rho_A \otimes \rho_B$ de un sistema bipartito, y un operador evolución $U_{AB} = \exp[-iH_{AB}t]$, derivar la expresión

$$\rho_A' = \operatorname{Tr}_B \left[U_{AB} \rho_{AB} U_{AB}^{\dagger} \right] = \sum_{\alpha} E_{\alpha} \, \rho_A E_{\alpha}^{\dagger}$$

dando la forma explícita de de E_{α} . Probar también que $\sum_{\alpha} E_{\alpha}^{\dagger} E_{\alpha} = I_{A}$.

2) a) Mostrar que para el caso de la evolución por un operador control not $U_{AB} = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes X$ de un estado producto de dos qubits $\rho_{AB} = \rho_A \otimes |\psi_B\rangle\langle\psi_B|$, se obtiene

$$\rho_A' = (1 - p)\rho_A + pZ\rho_A Z$$

Dar el valor explícito de p e identificar los operadores E_0 y E_1 .

Interpretar el resultado como disminución de elementos no diagonales en una determinada base e indicar para cuales estados iniciales $|\psi_B\rangle$ se obtiene i) p=1/2 (decoherencia completa) ii) p=0 (ausencia de decoherencia). Discutir la variación de la entropía de ρ_A . b) Hallar la evolución de ρ_A para el mismo operador U_{AB} y un estado inicial producto general $\rho_A \otimes \rho_B$. Indicar que sucede si $\rho_B = I_B/d_B$.

- 3) Considerar los operadores $E_1 = |0\rangle\langle 0| + \sqrt{1-p}|1\rangle\langle 1|$, $E_2 = \sqrt{p}|0\rangle\langle 1|$, con $p \in [0,1]$.
- a) Mostrar que satisfacen en general $\sum_{i=1,2} E_i^{\dagger} E_i = I$, pero $\sum_{i=1,2} E_i E_i^{\dagger} \neq I$ si $p \neq 0$.
- b) Dar una expresión de $\rho'_A = \sum_{i=1,2} E_i \rho_A E_i^{\dagger}$ para un operador densidad ρ_A general de un qubit. Interpretar y discutir la variación de la entropía de ρ_A .
- 4) Considerando un átomo de 2 niveles con estados $|0\rangle$, $|1\rangle$ con energías 0 y ε , y los estados de campo $|0\rangle$ y $|1\rangle = a_w^{\dagger}|0\rangle$, con $\hbar\omega = \varepsilon$, mostrar que si

$$U_{AC} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & \sin \theta & 0 \\ 0 & -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

en la base producto estándar, entonces

$$\rho_A' = \operatorname{Tr}_C \left[U_{AC} \, \rho_A \otimes |0\rangle \langle 0| \, U_{AC}^{\dagger} \right] = E_0 \rho_A E_0^{\dagger} + E_1 \rho_A E_1^{\dagger}$$

con

$$E_0 = \begin{pmatrix} 1 & 0 \\ 0 & \cos \theta \end{pmatrix}, \quad E_1 = \begin{pmatrix} 0 & \sin \theta \\ 0 & 0 \end{pmatrix}$$

Hallar también ρ_A' para $\rho_A=p_0|0\rangle\langle 0|+p_1|1\rangle\langle 1|.$

Determinar también un H_{AC} y un tiempo t tal que $\exp[-iH_{AC}t] = U_{AC}$.

II. Algoritmo de Búsqueda de Grover

1) Considerar el estado buscado $|B\rangle = \frac{1}{\sqrt{M}} \sum_{f(j)=1} |j\rangle$, $(M \text{ denota el número de estados } |j\rangle$ tales que f(j)=1), el estado ortogonal $|A\rangle = \frac{1}{\sqrt{N-M}} \sum_{f(j)=0} |j\rangle$ y el estado inicial $(N=2^n)$

$$|\Phi\rangle = H^{\otimes n}|0\rangle = \frac{1}{\sqrt{N}}\sum_{j}|j\rangle = \sqrt{\frac{M}{N}}|B\rangle + \sqrt{\frac{N-M}{N}}|A\rangle$$

Probar que si $O|j\rangle = (-1)^{f(j)}|j\rangle$, la iteración de Grover $G = (2|\Phi\rangle\langle\Phi| - I)\,O$ equivale a una rotación en sentido antihorario de ángulo 2θ , con $\sin\theta = \sqrt{\frac{M}{N}}$, en el subespacio generado por los estados $|A\rangle$ y $|B\rangle$.

2) Si $H = \hbar\omega(|B\rangle\langle B| + |\Phi\rangle\langle \Phi|)$, mostrar que existe un tiempo t independiente de $|B\rangle$ tal que $\exp[-iHt/\hbar]|\Phi\rangle = |B\rangle$. El problema de búsqueda puede pues reducirse al problema de la simulación del Hamiltoniano H.