

EMC Test Data

Client:	Visiplex, Inc.	Job Number:	JD101398			
Model:	VNS22xx	T-Log Number:	T101482			
		Project Manager:	Deepa Shetty			
Contact:	Ben Agam	Project Coordinator:	-			
Standard:	FCC Part 90.217, Part 15	Class:	N/A			

Maximum Permissible Exposure / SAR Exclusion

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/2/2016 Test Engineer: David Bare

General Test Configuration

Calculation uses the free space transmission formula:

 $S = (PG)/(4 \pi d^2)$

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

Summary of Results

Device complies with Power Density requirements at 20cm separation:	Yes
If not, required separation distance (in cm):	-

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	Visiplex, Inc.	Job Number:	JD101398
Model:	VNS22xx	T-Log Number:	T101482
		Project Manager:	Deepa Shetty
Contact:	Ben Agam	Project Coordinator:	-
Standard:	FCC Part 90.217, Part 15	Class:	N/A

FCC MPE Calculation Use: General

Antenna:

USE THIS FOR 300-1500 MHz single transmitters (General use)

\mathbf{j}								
	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 20 cm	at 20 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm ²	mW/cm ²
450	18.0	63.1	0	3	18.0	125.89	0.025	0.300
460	18.2	66.1	0	3	18.2	131.83	0.026	0.307
470	17.2	52.5	0	3	17.2	104.71	0.021	0.313

For the cases where S > the MPE Limit

	Power Density (S)	MPE Limit	Distance where
Freq.	at 20 cm	at 20 cm	S <= MPE Limit
MHz	mW/cm^2	mW/cm^2	cm
450	0.025	0.300	5.8
460	0.026	0.307	5.8
470	0.021	0.313	5.2