Statistik Ubung Aufgabe 21

Aufgabenstellung:

Sie spielen mit einem (stochastisch unbedarften) Kollegen um die letzte Flasche Bier. Sie werfen abwechselnd mit einem Würfel. Derjenige, der zuerst eine 6 würfelt, gewinnt. Sollten Sie anfangen mit Würfeln oder dem Kollegen den ersten Wurf überlassen? Mit welcher Wahrscheinlichkeit gewinnen Sie?

Lösung:

Wir sollten beginnen und gewinnen mit einer Wahrscheinlichkeit von $\frac{6}{11} = 54,5\%$

Begründung:

Zufallsvariable X: Beim X-ten Wurf kommt das erste Mal eine sechs. $X \sim \text{Geo}(\frac{1}{6})$

Indikator-Zufallsvariable E: Es kommt bereits bei den ersten beiden Versuchen eine sechs.

Indikator-Zufallsvariable
$$S$$
: X ist ungerade, also wir gewinnen.
$$P(S=1\mid E=1) = \frac{P(S=1,E=1)}{P(E=1)} = \frac{P(X=1)}{P(X\leq 2)} = \frac{1/6}{1-(5/6)^2} = \frac{6}{11}$$

Wegen der Gedächtnislosigkeit der geometischen Verteilung gilt, dass S und E unabhängig sind und somit P(S = 1) = P(S = 1|E = 1)

Begründung Unabhängigkeit:
$$P(S=1) = P(X \text{ ungerade}) = \sum_{2 \nmid x \wedge x \in \mathbb{N}} P(X=x) =$$
 (immer erfüllte Nebenbedingung)
$$= \sum_{2 \nmid x \wedge x \in \mathbb{N}} P(X=x \mid X \geq 1) =$$
 (Gedächtnislosigkeit)
$$= \sum_{2 \nmid x \wedge x \in \mathbb{N}} P(X=x+2 \mid X \geq 1+2) =$$
 (Summen-Index-Shift um 2)
$$= \sum_{2 \nmid x \wedge x \in \mathbb{N}_{x \geq 3}} P(X=x \mid X > 2) = P(X \text{ ungerade} \wedge X > 2 \mid X > 2) =$$

 $= P(X \text{ ungerade}, E = 0 \mid E = 0) = P(S = 1, E = 0 \mid E = 0) = P(S = 1 \mid E = 0)$

Statistik Ubung Aufgabe 22

Aufgabenstellung:

Geben Sie zu den folgenden Merkmalen an, welche Ausprägungen sie besitzen und ob sie nominal, ordinal oder metrisch (= numerisch) sind.

	Merkmal	nom.	ord.	metr.	Ausprägungen
a	Wasserhärtegrad	-	X	_	weich, mittel, hart
b	Lebensalter von Elefanten	-	-	Х	Alter in Jahren $\in \mathbb{N}_0$
c	Parteizugehörigkeit	X	-	-	keine, Partei1, Partei2,
d	Stammumfänge von zehnjährigen Fichten	-	X	X	Umfang in mm $\in \mathbb{R}_0^+$ oder Kategorien
е	Gewichtsklasse von Eiern	-	X	-	A, B, C,
f	Anzahl der Blütenblätter von B-w-röschen	-	-	X	$Anzahl \in \mathbb{N}_0$
g	Temperatur	-	X	Х	kalt, warm, heiß oder in $^{\circ}C \in \mathbb{R}$
h	Verkehrsdichte auf einer Straße	-	X	Х	frei, zäh, Stau oder in Autos / l / t $\in \mathbb{N}_0$
i	Berufswunschangaben von Abiturenten	X	-	-	Pilot, Manager,
j	Noten	-	X	X	als enum oder int oder float

Statistik Übung Aufgabe 23

Aufgabenstellung:

Es soll eine neugezüchtete Kartoffelsorte gestetet werden. Dazu wird ein Testfeld ausgewählt, das auf der gesamten Fläche gleiche Wachstumsvoraussetzungen (Bodenqualität, Sonneneinstrahlung, ...) bietet. Nachdem eine gleichmäßige Pflege der Pflanzen erfolgte (Bewässerung, Düngung, ...) wurde von der ersten Ernte auf dem Versuchsfeld eine Stichprobe entnommen, die die folgende Urliste lieferte:

j	1	2	3	4	5	6	7	8	9	10
x_j	132	145	172	151	152	136	143	112	159	152

a) Bestimmen Sie die geordnete Stichprobe

,									
$x_{(1)}$	$x_{(2)}$	$x_{(3)}$	$x_{(4)}$	$x_{(5)}$	$x_{(6)}$	$x_{(7)}$	$x_{(8)}$	$x_{(9)}$	$x_{(10)}$
112	132	136	143	145	151	152	152	159	172

b) Klassenhistogramm

Klasse]110, 140]]140, 150]]150, 180]	
Anzahl Datensätze	3	2	5	
Klassenbreite	30	10	30	
Hoch	60	120	100	

c) empirische Verteilungsfunktion unklassiert und d) klassiert

e) arithmetisches Mittel
$$\bar{x} = \frac{\sum_{i=1}^{10} x_i}{10} = \frac{1454}{10} = 145, 4$$

f) Median
$$x_{0,5} = \frac{x_{(5)} + x_{(6)}}{2} = \frac{145 + 151}{2} = 148$$

g) unteres Quartil
$$x_{0,25} = x_{(3)} = 136$$

h) oberes Quartil
$$x_{0,75} = x_{(8)} = 152$$

i) Quartilsabstand
$$x_{0,75} - x_{0,25} = 152 - 136 = 16$$

j) 30%-Quantil
$$x_{0,3} \in [x_{(3)}, x_{(4)}] = [136, 143]$$

Statistik Übung Aufgabe 24

Anzahl Bücher: 90 + 55 = 145

Median der Seitenzahl: $x_{0.5} \in [350, 450]$ Mittelwert der Seitenzahl: $\overline{x} = \frac{400*90+500*55}{90+55} = \frac{63.500}{145} = 437, 9$

95\%-Quantil $x_{0,95} \in [710, 800]$

Statistik Übung Aufgabe 25

- a) Binomialverteilung B(100M,p) mit $p=\frac{1}{\binom{49}{6}}=\frac{1}{13.983.816}=71,5*10^{-9}$ b) Binomialverteilung mit grossem n und kleinem $p\Longrightarrow$ Poissonverteilung geeignet. $\alpha=np=7,15$
- c)