KDS 47 30 10 : 2019

전철전력설계 일반사항

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복• 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제·개정 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
철도설계기준(시스템편)	일반철도와 고속철도에 모두 적용할 수 있도록 서술 철도관련 상위법령, 기준 및 시방서 등의 개정된 내용을 반영 노반, 궤도, 건축 등 타 분야와의 인터페이스를 고려하였으며 향후 철도관련 기술발전 등의 변화에 대응할 수 있도록 제정	제정 (2011.5)
철도설계기준(시스템편)	• IEC 60850 국제규격 및 국내 KSC IEC 60850규격에 맞게 전압허용범위 설정하되 허용시간은 국제규격으로 통일 • "철도의 건설기준에 관한 규정"개정사항을 반영하여 특정기관명을 삭제 • 목적과 기능에 부합한 기기를 설치할 수 있도록하며, 한정된 기기명칭(LDS) 삭제 • 집전장치의 편마모 방지를 위해 제정취지에 맞도록 기준 명확히 하고, 압상향 기준을 국제 인용규격에 따라 수정 • 파동전차속도에 대한 기본이론 오류를 수정 • 250km/h급(Cako250) 전차선로시스템 개발자재 검증보고서 결과를 반영 • 국내 철도운용기관(도시철도) 및 선진외국기준과같은 수준으로 조도 기준을 합리적으로 조정하고,조도 측정점을 명확히 제시	개정 (2013.12)
철도설계기준(시스템편)	• 향후 국내외 철도건설기술 발전 등 기술적 환경 변화에 대응할 수 있도록 하였으며 안전기준 강화 및 그 동안 변경된 철도관련 상위법령, 규정, 기준 등의 개정된 내용을 반영	개정 (2015.12)
KDS 47 30 20 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)

건설기준	주요내용	제정 또는 개정 (년.월)
KDS 47 30 20 : 2019	• 철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정: 2016년 6월 30일 개 정: 2019년 04월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항	1
	1.1 목적	1
	1.2 적용범위	1
	1.3 참고기준	2
	1.4 용어의 정의	2
	1.5 기호의 정의	4
2.	조사 및 계획	4
3.	재료	4
4.	설계	• 4
	4.1 설계단계	4
	4.2 설계방향	5
	4.3 설계의 조건	5
	4.4 전기방식	٠6

1. 일반사항

1.1 목적

- (1) 이 기준은 철도건설법 제19조에 의거하여 철도의 전철전력설비의 설계기준을 정함을 목적으로 한다.
- (2) 본 설계기준은 한국전력공사 등(이하 "한전 등"이라 한다)로부터 수전하여 철도 차량 및 시설에 필요한 전원을 공급하는 설비와 철도의 운행과 각종 작업의 통제를 위하여 현장 전철전력시설물들의 제어 및 감시가 이루어지도록 하는 원격감시제어설비의 설계기준을 정하는 것을 목적으로 한다.

1.2 적용범위

- (1) 철도 차량의 운행에 필요한 전원공급 및 철도관련시설의 전원공급에 필요한 전철전력 설비에 적용하다.
- (2) 전철전원의 설계는 수전선로로부터 수전된 전기를 철도전기차량 운행에 필요한 전압으로 바꾸어 공급하기 위한 것으로 변전소 인입구부터 변전소 인출구까지의 전선로 및 구조물을 포함한다.
- (3) 전차선로의 설계는 철도전기차량에 전기를 공급하기 위한 것으로 변전소 등의 인출구에서 부터 전차선로까지의 전선로 및 구조물을 포함한다.
- (4) 일반전력(배전선로, 터널전기설비, 건축전기설비)의 설계는 철도의 신호설비, 통신설비, 역사, 차량기지, 터널 등의 전원을 공급하기 위한 것으로, 한전 등의 수전책임분기점에서부터 고압배전선로를 통하여 저압전원을 사용하는 조명, 동력, 각종 부하설비까지의 전선로 및 구조물, 신재생에너지설비를 포함한다.
- (5) 원격감시제어설비의 설계는 현장 전철전력설비를 실시간으로 원격 제어 및 감시가 이루어지도록 하기위한 것으로 전철변전소 등, 전차선설비, 역사전기실 및 배전소 등의 급전계통의 감시와 제어를 위한 SCADA시스템, 소규모 원격감시제어설비, 데이터 통신을 위한 설비를 포함한다.

1.3 참고기준

- (1) 이 기준에 적용하는 국내법은 다음 각 호와 같다.
- 개인정보 보호법과 그의 시행령, 시행규칙
- 산업안전보건법과 그의 시행령, 시행규칙
- 소방기본법과 그의 시행령, 시행규칙
- 엔지니어링산업진흥법, 기술사법과 그의 시행령, 시행규칙
- 전기사업법 그의 시행령, 시행규칙
- 전기설비기술기준의 판단기준, 건축전기설비 설계기준
- 전력기술관리법과 그의 시행령, 시행규칙
- 철도의 건설 및 철도시설 유지관리에 관한 법률과 그의 시행령, 시행규칙(국토교통부)
- 철도안전법과 그의 시행령, 시행규칙(국토교통부)
- 폐기물관리법과 그의 시행령, 시행규칙
- 항공안전법과 그의 시행령, 시행규칙
- (2) 이 기준에 준용하는 국외 기준 등은 다음과 같다. 단, 국내 법령, 기준과 국외 기준의 내용이나 항목이 다른 경우 국외 기준이나 항목은 참고사항으로 고려한다.
- 국제전기기술위원회(IEC)
- 전기전자기술자협회(IEEE)
- 국제철도연맹(UIC)
- 유럽표준(EN)
- 미국표준협회(ANSI)
- 유럽전기준표준규격(CENELEC)
- (3) 여기에 명시되지 않은 사항이라 하더라도 국제표준 및 이에 근접한 기술요건, 안전수 준을 확보 할 기술적 근거가 있을 경우 전기분야의 설계에 다른 법규 및 규정을 준용할 수 있다.

• 1.4 용어의 정의

- 가공전차선: 합성전차선과 이에 부속된 곡선당김장치, 건넘선장치, 장력조정장치, 구분 장치, 급전분기장치, 균압장치, 흐름방지장치 등을 총괄한 것을 말한다.
- 건축한계: 차량이 안전하게 운행될 수 있도록 궤도상에 설정한 일정한 공간을 말한다.
- 공동관로: 전력·신호·통신케이블 중 2개 분야 이상을 함께 사용하는 관로를 말한다.
- 공통접지방식: 레일과 병행하여 지중에 매설접지선을 포설하여 변전소로 돌아오는 전류의 귀환을 용이하게 하는 방식으로 모든 전기설비를 등전위 접지망으로 구성하여 레일 및 귀선을 연결시키는 접지방식을 말한다.
- 구분장치: 정전구간을 한정하거나 교류전철화 구간의 M,T상의 이상 전원을 구분하기 위하여 설치하는 장치로서, 전차선로의 운영 및 유지보수를 위하여 전기적으로 구분 하는 장치인 동상구분장치(에어섹션, 애자섹션), 변전소 급전인출구 및 급전구분소의

급전인출구, 교류와 직류를 구분하는 장치인 절연구분장치(Neutral Section), 전차선의 신축 때문에 전차선을 일정길이마다 인류하기 위해 설치한 기계적 구분장치인 에어조 인트(Air Joint), R-Bar조인트(Expansion Element), T-Bar조인트(Expansion Joint)로 나눈다.

- 궤간: 양쪽 레일 안쪽 간의 거리 중 가장 짧은 거리를 말하며, 레일의 윗면으로부터 14 mm 아래 지점을 기준으로 한다.
- 궤도: 레일 침목 및 도상과 이들의 부속품으로 구성된 시설을 말한다.
- 귀선: 운전용 전기를 통하는 귀선레일·중성선·보호선용 접속선 및 변전소 인입귀선 등을 총괄한 것을 말한다.
- 급전구분소(Sectioning Post): 전철변전소간 전기를 구분 또는 연장급전을 하기 위하여 개폐장치와 단권변압기 등을 설치한 장소를 말한다.
- 급전선: 합성전차선에 전기를 공급하는 전선을 말한다.
- 궤간"이란 양쪽 레일 안쪽 간의 거리 중 가장 짧은 거리를 말하며, 레일의 윗면으로부터 14 mm 아래 지점을 기준으로 한다.
- 단말보조급전구분소(Auto Transformer Post): 전차선로의 말단에 전압강하 보상과 통신유도장해의 경감을 위하여 단권변압기 등을 설치한 장소를 말한다.
- 도상: 레일 및 침목으로부터 전달되는 차량 하중을 노반에 넓게 분산시키고 침목을 일 정한 위치에 고정시키는 기능을 하는 자갈 또는 콘크리트 등의 재료로 구성된 구조부 분을 말한다.
- 배전선로: 전철변전소 또는 수전실의 배전반 2차측부터 전기실 등 변압기 1차측까지의 전선로 및 이에 부속되는 개폐장치 등의 설비를 말한다.
- 병렬급전소(Parallel Post): 전압강하의 보상 및 통신유도장해 경감을 목적으로 전차선 로의 상·하선을 병렬로 연결하기 위하여 개폐장치등을 설치한 장소를 말한다.
- 보조급전구분소(Sub Sectioning Post): 작업, 고장, 장애 또는 사고 시에 정전(단전)구 간을 단축하기 위하여 개폐장치와 단권변압기 등을 설치한 장소를 말한다.
- 본선: 열차운행에 상용할 목적으로 설치한 선로를 말한다.
- 선로: 차량을 운행하기 위한 궤도와 이를 받치는 노반 또는 인공구조물로 구성된 시설을 말한다.
- 설계속도: 해당 선로를 설계할 때 기준이 되는 상한속도를 말한다.
- 수전선로: 한전 등 변전소에서 전철변전소 또는 수전실 간의 전선로와 이에 부속되는 설비를 말하다.
- 스카다(SCADA): 원방감시제어시스템으로서 전철변전소, 수전실, 전기실 등 원격지에 설치된 전기설비를 통신망으로 연결하여 전기관제실의 전기관제사 및 변전실에서 개 폐기 등 각종기기를 감시, 제어통제 할 수 있도록 설치한 일체의 설비를 말한다.
- 시운전: 선로를 새로 부설했거나 중대한 선로 보수를 한 경우와 전차선의 이상 유무확인 및 각종설비를 설치하고 사용 개시 전 최종 확인하는 것을 말한다.
- 열차: 동력차에 객차 또는 화차 등을 연결하여 본선을 운행할 목적으로 조성한 차량을

말하다.

- 이중화 전원계통: 각종 사고의 경우에도 전원공급이 가능하도록 2회선으로 구성된 전용배전선로 전력계통을 말한다.
- 전기관제실: 원격감시제어(이하 "원제장치"라 한다.)에 의하여 전철변전소, 전기실 등의 감시제어와 동시에 설비의 유지관리 및 운용을 위한 감시·제어 및 계통운용과 보호계전기 세팅치 정정 등에 대하여 지시와 통제를 하는 장소를 말한다.
- 전기설비: 수전·변전·전철·배전 또는 전기사용을 위하여 설치하는 기계·기구·전 선로·보안 통신선로 기타의 설비를 말한다.
- 전기실 등: 전기수용설비 중 개폐기 기타의 장치에 의하여 고압 또는 특별고압 전로를 개폐할 수 있는 설비와 변압기 등이 설치되어 있는 옥내·외 장소를 말한다. 다만, 변압기만 설치되어 있는 장소는 제외한다.
- 전선로: 전기사용장소 상호간의 전선 및 이를 지지하거나 또는 보장하는 시설물을 말하다.
- 전차선: 전기차량의 집전장치에 접촉·동작하여 이에 전기를 공급하는 가공전선을 말 한다.
- 전차선로: 전기차량에 전기에너지를 공급하기 위하여 선로를 따라 설치한 시설물로서 전선, 지지물 및 관련 부속 설비를 총괄하여 말한다.
- 전차선로: 전기차량에 전기에너지를 공급하기 위하여 선로를 따라 설치한 시설물로서 전선, 지지물 및 관련 부속 설비를 총괄하여 말한다.
- 전철변전소등: 전철변전소·급전구분소·보조급전구분소·단말보조급전구분소·병렬 급전소를 말한다.
- 전철전력설비: 전기철도에서 수전선로 · 변전설비 · 스카다(SCADA) · 전차선로 · 배전선로 · 건축전기설비와 이에 부속되는 설비를 총괄한 것을 말한다.

1.5 기호의 정의

내용 없음

2. 조사 및 계획

내용 없음

3. 재료

내용 없음

4.설계

4.1 설계단계

(1) 설계는 기본설계, 실시설계로 구분하여 단계별로 시행하는 것을 원칙으로 한다.

4.2 설계방향

설계 수행 시에는 다음 각 호의 사항을 고려하여야 한다.

- (1) 설비, 기기, 시스템 등이 설계조건 하에서 생애주기 동안 요구된 기능을 적정하게 수행되도록 한다.
- (2) 열차운행과 시설물, 사람의 안전을 확보하고 경제적인 설비가 되도록 한다.
- (3) 성능향상 및 기술진보에 따른 호환성을 갖는 설비가 되도록 한다.
- (4) 내구성이 양호하고 유지보수가 용이한 설비가 되도록 한다.
- (5) 에너지이용의 효율성 및 환경친화성을 고려한 설비가 되도록 한다.
- (6) 공익적 기능 및 국민편익을 고려한 설비가 되도록 한다.

4.3 설계의 조건

4.3.1 설계속도

(1) 설계속도란 해당 선로를 설계할 때 기준이 되는 상한속도로서, 전기설비의 설계속도 는 동일선구에서 노반과 궤도의 최고설계속도를 기준으로 하되 필요시 경제성과 유지 보수성 등 효과 분석 및 향후 속도향상계획을 고려하여 결정한다.

4.3.2 기상조건

(1) 온도조건은 기상청의 기상관측 자료를 참조하여, 최저값과 최고값, 그리고 표준값을 다음과 같이 적용한다. 단 설계대상 지역과 설비의 특성에 따라 온도조건을 별도로 정할 수 있다.

구분	최저온도 ℃	표준온도 ℃	최고온도 ℃
내륙	-25	10	40
해 해 안	-20	15	40
터널	-5	15	30

(2) 풍속조건은 그 지역의 최근 40년간의 최대 풍속(10분 평균값)의 기록 중에서 1번째 ~ 3번째 순위에 있는 풍속의 평균값을 기준으로 하거나, 다음 표의 값에 따른다. 다만,

전철전력설계 일반사항

KDS 47 30 10 : 2019

터널은 최대풍속을 초속 40 m로 적용한다.

지표면으로부터 높이	일반지구 m/s	해안지구 m/s
- 10 m 이하	35	40
30 m 이하	40	45
30 m 초과	45	50

- (3) 강수량과 홍수위는 그 지역의 최근 40년 동안의 여름철의 태풍 중 가장 큰 값을 적용하며, 적설량은 그 지역의 최근 40년 동안의 겨울철의 최대 적설량을 기준으로 한다.
- (4) 설계대상지역의 지형상태에 따라 공해 및 염해, 지진, 착빙 등의 환경조건을 고려하여 야 한다.
- (5) 설계대상지역의 지형상태에 따라 공해 및 염해, 지진, 착빙 등의 환경조건을 고려하여 야 한다.

4.3.3 건축한계 및 차량한계

- (1) 건축한계는 철도건설규칙 제14조 및 철도의 건설기준에 관한 규정 제13조에 따라야 한다.
- (2) 건축한계 내에서 시설할 수 있는 전기분야 시설물도 차량한계에 저촉되지 않도록 설계하여야 한다.

4.3.4 선로조건

- (1) 궤간의 표준치수는 1,435 mm이다.
- (2) 궤간 외에도 궤도의 방식, 선로곡선반경, 기울기, 시공기면의 폭, 도상두께, 궤도중심 간격 등을 고려하여 설계한다.

4.3.5 차량조건

(1) 차량속도, 차량제원, 전기차량 방식, 집전장치 등 차량조건을 고려하여 설계한다.

4.3.6 시공조건

- (1) 신설선의 경우 지형에 따른 적절한 공법, 시공가능성, 시공안전, 지장물 조치계획 등을 고려하여 경제적이고 효율적으로 설계한다.
- (2) 운행선 개량의 경우 열차운행현황, 차단현황, 선행공정의 단계별 시공계획 등을 고려 하여 열차의 운행에 대한 지장이 최소화 되도록 하며 작업자의 안전을 고려하여 설계 한다.

4.4 전기방식

4.4.1 수전전압

수전전압은 한전 등과 협의하여 다음 표의 공칭전압으로 선정한다. 단, 운행선 개량 및 주위 수전전압이 본 공칭전압을 만족하지 못하는 경우는 66 kV 수전을 받을 수 있다.

공칭 전압kV	22.9, 154, 345
---------	----------------

4.4.2 전기방식

(1) 전기철도는 AC 25 kV 60 Hz AT 전기방식을 원칙으로 한다.

4.4.3 급전전압

- (1) 급전선과 전차선간의 공칭전압은 50 kV 로 한다.
- (2) 급전선과 레일간 및 전차선과 레일간의 공칭전압은 25 kV 를, 정격전압(연속 최고 전압)은 27.5 kV 를, 연속 최저전압은 19 kV 를 기준으로 한다. 단, 5분간 허용되는 최고 전압은 29 kV 로 하고, 2분간 허용되는 최저전압은 17.5 kV 로 한다. 또한 직류방식으로 시행할 경우에는 1.5 kV 를 기준으로 한다.

4.4.4 배전전압

(1) 배전선로는 AC 3상4선식 22.9 kV 60Hz 방식을 원칙으로 하되, 개량선의 경우 6.6 kV 를 적용할 수 있다.

집필위원

성 명	소 속	성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

국토교통부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KDS 47 30 10 : 2019

전철전력설계 일반사항

2019년 04월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 031-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr