Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2011 Lösungen der Klausur 10. Oktober 2011

Diskrete Wa	hrsche	einlic	hkei	tsthea	orie
-------------	--------	--------	------	--------	------

Name Hörsaal			Vorname Reihe				Stud	iengai	ng	Matrikelnummer			
							□ Diplom □ Inform. □ Bachelor □ BioInf. □ Lehramt □ WirtInf. Sitzplatz				Unterschrift		
Code:													
							l						
			A	llge	meir	ne H	linw	eise					
• Bitte fül	len Sie o	bige	Felde	r in I	Oruck [†]	buchs	taber	aus	und unt	erschr	eiben Sie!		
• Bitte sch	reiben S	Sie nie	cht m	it Bl	eistift	oder	in ro	ter/gr	rüner Fa	rbe!			
• Die Arbe	eitszeit l	oeträg	gt 150) Min	uten.								
seiten) d	er betre enrechni	ffende ingen	en Au mac	fgabe	en ein: Der S	zutra Schm	gen. <i>A</i> lerbla	Auf de	m Schn	nierbla	en (bzw. Rüc ttbogen könn falls abgegeb		
Hörsaal verla	ssen		von		b	is		/	von .		bis		
Vorzeitig abg	gegeben		um										
Besondere Be	emerkun	gen:											
	A1	A2	A3	A4	A5	A6	A7	Σ	Korre	ktor			
Erstkorrektu													
Zweitkorrekt:	ıır												

Aufgabe 1 (8 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. Es gibt unendliche Markov-Ketten mit diskreter Zeit, für die alle Zustände rekurrent sind.
- 2. Jede abzählbare Teilmenge von \mathbb{R} ist eine Borelsche Menge.
- 3. Für jede erwartungstreue Schätzvariable X ist der Bias gleich dem Erwartungswert von X.
- 4. Falls $X \sim \text{Bin}(n, p)$ und Y := 2X, dann gilt $Y \sim \text{Bin}(2n, p)$.
- 5. Für Ereignisse A und B eines Wahrscheinlichkeitsraumes $W = \langle \Omega, \Pr \rangle$ mit $\Pr[A] = \frac{3}{4}$ und $\Pr[B] = \frac{1}{2}$ gilt stets $\Pr[A \cap B] \neq \frac{1}{5}$. (2 Punkte)
- 6. Sei $G_X(s)=\frac{1}{2-s}$ die wahrscheinlichkeitserzeugende Funktion einer Zufallsvariablen X, dann gilt $\Pr[X=3]=\frac{1}{16}$. (2 Punkte)

Lösung

Für die richtige Antwort und für die richtige Begründung gibt es für Teilaufgaben 1 bis 4 jeweils einen halben Punkt und bei Teilaufgaben 5 und 6 jeweils einen ganzen Punkt.

- 1. Wahr! $p_{i,i} = 1$.
- 2. Wahr! Jedes Element der abzählbaren Menge ist als Intervall eine Borelsche Menge. Abzählbare Vereinigungen Borelscher Mengen sind wiederum Borelsche Mengen.
- 3. Falsch! Nur falls $\mathbb{E}[X] = 0$.
- 4. Falsch! 2X nimmt keine ungeraden Werte an.
- 5. Wahr! Aus $\Pr[A] + \Pr[B] - \Pr[A \cap B] = \Pr[A \cup B] \le 1$ folgt $\frac{1}{4} \le \Pr[A \cap B]$.
- 6. Wahr! $\frac{1}{2-s} = \sum_{i=0}^{\infty} (\frac{1}{2})^{i+1} s^i$.

Aufgabe 2 (9 Punkte)

Die Menge $\Omega = [10] \times [10] \subseteq \mathbb{N} \times \mathbb{N}$ und die Funktion Pr mit $\Pr[e] = \frac{1}{100}$ für alle $e \in \Omega$ definieren einen diskreten Wahrscheinlichkeitsraum $W = \langle \Omega, \Pr \rangle$.

- 1. Seien $A=\{(x,y)\in\Omega\,;\,x\leq 2\}$ und $B=\{(x,y)\in\Omega\,;\,y\geq 6\}$ Ereignisse in W. Konstruieren Sie ein Ereignis $C\subseteq\Omega$ mit $\Pr[C]=\frac{1}{5}$, so dass die Ereignisse $A,\,B$ und C unabhängig sind.
- 2. Des Weiteren seien X und Y diskrete Zufallsvariable über W mit X((x,y)) = x+y-1 und Y((x,y)) = y.
 - (a) Bestimmen Sie die diskrete Dichtefunktion f_X .
 - (b) Zeigen Sie, dass X und Y abhängig sind.

Lösung

1.
$$C = \{(x, y); y = 5 \lor y = 6\}.$$
 (3P)

2. (a) Es gilt

$$f_X(i) = \Pr[X = i] = \begin{cases} \frac{i}{100} : 1 \le i \le 10, \\ \frac{20 - i}{100} : 11 \le i \le 19, \\ 0 : \text{sonst.} \end{cases}$$
(3P)

(b)
$$\Pr[X = 2, Y = 2] = \Pr[(1, 2)] = \frac{1}{100}$$
,
 $\Pr[X = 2] = \frac{2}{100}$,
 $\Pr[Y = 2] = \frac{1}{10}$.
Es folgt $\Pr[X = 2, Y = 2] \neq \Pr[X = 2] \cdot \Pr[Y = 2]$. (3P)

Aufgabe 3 (8 Punkte)

1. Ein Kartenstapel mit 27 Karten enthalte genau einen Joker. Zwei Personen A und B ziehen nach dem folgenden 3-schrittigen Verfahren letztendlich genau eine Karte aus dem Stapel.

Wir starten das folgende Verfahren mit x=27 Karten und wiederholen es so lange, bis nur mehr eine Karte auf dem Tisch liegt.

• A teilt die x Karten in zufälliger Weise in einen linken, rechten und mittleren Stapel mit je $\frac{x}{3}$ verdeckten Karten. Dann entfernt B den linken Stapel. Nun sieht A in den verbleibenden 2 Stapeln nach und entfernt einen Stapel, der den Joker nicht enthält. Nun liegt noch ein einziger Stapel mit $\frac{x}{3}$ Karten auf dem Tisch.

Mit welcher Wahrscheinlichkeit liegt am Ende ein Joker auf dem Tisch, wenn wir Laplace-Wahrscheinlichkeiten voraussetzen? (Ergebnis als Bruchzahl angeben!)

2. Wir nehmen an, dass sich unter verschiedenen 27 Karten genau 3 Joker befinden. Eine Person A wählt davon Laplace-zufällig 5 Karten aus und gibt diese einer Person B in die Hand.

Mit welcher Wahrscheinlichkeit hat B mindestens 2 Joker in ihrer Hand?

(Zur Darstellung des Ergebnisses dürfen bekannte Funktionen der Kombinatorik unausgewertet verwendet werden.)

Lösung

1.
$$\Pr[\text{Joker}] = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}$$
. (4P)

2. Hypergeometrische Verteilung und totale Wahrscheinlichkeit:

$$\Pr[\geq 2 \text{ Joker}] = \frac{\binom{3}{2}\binom{24}{5-2}}{\binom{27}{5}} + \frac{\binom{3}{3}\binom{24}{5-3}}{\binom{27}{5}}.$$
 (4P)

Aufgabe 4 (9 Punkte)

Sei $(X_t)_{t\in\mathbb{N}_0}$ eine endliche (zeit)homogene Markov-Kette mit diskreter Zeit über der Zustandsmenge $S=\{0,1,2,3,4\}$. Die positiven Übergangswahrscheinlichkeiten seien durch das folgende Übergangsdiagramm gegeben:

- 1. Sei T_{02} die Übergangszeit vom Zustand 0 in den Zustand 2.
 - (a) Bestimmen Sie $\Pr[T_{02} = n]$ für alle $n \in \{2, 3\}$!
 - (b) Zeigen Sie $Pr[T_{02} = n] > 0$ für alle $n \ge 4$.
- 2. Berechnen Sie die Ankunftswahrscheinlichkeit f_{01} !
- 3. Berechnen Sie die erwartete Übergangszeit h_{34} !

Lösung

1.
$$\Pr[T_{02} = 2] = \frac{1}{24} \cdot \frac{1}{2} = \frac{1}{8},$$

 $\Pr[T_{02} = 3] = \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{2} = \frac{11}{32}.$ (2P)

Für alle übrigen n gilt $\Pr[T_{02} = n] > 0$, da auf jedem Weg nach 2 der Zustand 1 passiert werden muss und dort die Schleife ausgeführt werden kann.

(1P)

2. Es gilt

$$f_{01} = p_{01} + p_{03}f_{31}$$

$$= \frac{1}{4} + \frac{3}{4}f_{31},$$

$$f_{31} = \frac{3}{4}.$$
(2P)

3. Mit Hilfe des Gleichungssystem

Es folgt $f_{01} = \frac{13}{16}$.

folgt $h_{34} = 13$.

$$h_{34} = 1 + \frac{3}{4}h_{14}$$

$$h_{14} = 1 + \frac{1}{2}h_{14} + \frac{1}{2}h_{24}$$

$$h_{24} = 1 + h_{34}$$
(4P)

Aufgabe 5 (9 Punkte)

Sei X eine binomialverteilte Zufallsvariable mit Parametern n=4 und $p=\frac{1}{2}$, d.h. $X \sim \text{Bin}(4,\frac{1}{2})$.

- 1. Geben Sie die erzeugende Funktion $G_X(s)$ in geschlossener Form an.
- 2. Berechnen Sie den Erwartungswert der bedingten Variablen $X|X \neq 2$.
- 3. Ein Experiment bestehe darin, dass die Zufallsvariable X wiederholt ausgewertet wird, und zwar so oft, bis bei der n-ten Wiederholung der Wert 2 erstmalig erscheint. Dann wird die Summe der aufgetretenen Werte $\neq 2$ gebildet.

Sei X_i für $i \in \mathbb{N}$ die *i*-te Wiederholung von X, sei N die Zufallsvariable, die die Nummer n der letzten Wiederholung darstellt, und sei $S = \sum_{i=1}^{N-1} X_i$.

Berechnen Sie den Erwartungswert $\mathbb{E}[S]$ von S.

Lösung

1.
$$G_X(s) = (1 - \frac{1}{2} + \frac{1}{2}s)^4 = \frac{1}{16}(1+s)^4 =$$

= $\frac{1}{16} + \frac{4}{16}s + \frac{6}{16}s^2 + \frac{4}{16}s^3 + \frac{1}{16}s^4$. (2P)

2.

$$\Pr[X = x | X \neq 2] = \begin{cases} \frac{\Pr[X = x]}{\Pr[X \neq 2]} : \text{falls } x \neq 2\\ 0 : \text{sonst} \end{cases}$$
$$= \begin{cases} \frac{1}{10} : \text{falls } x = 0 \ \lor \ x = 4\\ \frac{2}{5} : \text{falls } x = 1 \ \lor \ x = 3\\ 0 : \text{sonst} \end{cases}$$

(2P)

Es folgt:
$$\mathbb{E}[X|X \neq 2] = \frac{1}{10} \cdot 0 + \frac{2}{5} \cdot 1 + \frac{2}{5} \cdot 3 + \frac{1}{10} \cdot 4 = 2$$
. (1P)

3. N ist geometrisch verteilt mit $p = \frac{3}{8}$. (1P)

Es folgt
$$\mathbb{E}[N] = \frac{8}{3}$$
, mithin $\mathbb{E}[N-1] = \frac{8}{3} - 1 = \frac{5}{3}$. (1P)

Es folgt $\mathbb{E}[S] = \mathbb{E}[N-1] \cdot \mathbb{E}[X|X \neq 2] = \frac{5}{3} \cdot 2 = \frac{10}{3}$.

(2P)

Aufgabe 6 (8 Punkte)

Sei a > 0, und seien X, Y kontinuierliche Zufallsvariablen mit gemeinsamer Dichtefunktion

$$f_{X,Y}(x,y) = \begin{cases} a \cdot (1 - x \cdot y) & : & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 & : & \text{sonst} \end{cases}$$

- 1. Berechnen Sie die Randdichten $f_X(x)$ und $f_Y(y)$.
- 2. Bestimmen Sie a.
- 3. Sind die Variablen X und Y unabhängig? Beweisen Sie Ihre Antwort.

Lösung

1. $f_X(x) = a \cdot (1 - \frac{x}{2})$. Berechnung:

$$f_X(x) = \int_0^1 a \cdot (1 - x \cdot y) \, dy$$
$$= a \cdot \left[y - \frac{xy^2}{2} \right]_{y=0}^{y=1} = a \cdot (1 - \frac{x}{2}).$$
 (2P)

Entsprechend gilt $f_Y(y) = a \cdot (1 - \frac{y}{2}).$ (1P)

2. Aus der Form des Gebiets, in dem die Dichte ungleich Null ist, ergibt sich die Gleichung

$$1 = F_{X,Y}(1,1) = \int_0^1 f_X(x) dx = \int_0^1 a \cdot (1 - \frac{x}{2}) dx$$
$$= a \cdot \left[x - \frac{x^2}{4} \right]_{y=0}^{y=1} = \frac{3}{4} \cdot a$$

Mithin
$$a = \frac{4}{3}$$
. (3P)

3. Nein! I.A. gilt

$$f_{X,Y}(x,y) = a(1-xy) \neq a(1-\frac{x}{2}) \cdot a(1-\frac{y}{2}) = f_X(x) \cdot f_Y(y).$$
 (2P)

Aufgabe 7 (9 Punkte)

An der Kasse eines Kaufhauses werden Waren in Pakete verpackt. Die benötigte Zeit T_i für die Fertigstellung eines Pakets i sei exponentialverteilt, und die Zufallsvariablen T_i seien unabhängig für alle i mit jeweils demselben Erwartungswert von 0,5 Minuten.

- 1. Wir interessieren uns für die zur Fertigstellung von 60 Paketen benötigte Zeit $S = \sum_{i=1}^{60} T_i$. Wie groß ist die Varianz von S?
- 2. Berechnen Sie die Wahrscheinlichkeit p, dass die Fertigstellung von 2 Paketen länger als 2 Minuten benötigt.
- 3. Nun interessieren wir uns für die Anzahl P(t) der bis zum Zeitpunkt t fertiggestellten Pakete. Die Zeit wird wieder in Minuten gemessen. Für jedes t ist P(t) eine Zufallsvariable.

Bestimmen Sie für t=2 die Dichtefunktion $f_{P(t)}$ und geben Sie für $f_{P(t)}(5)$ einen arithmetischen Ausdruck an.

<u>Hinweis:</u> Es dürfen bekannte Funktionen der Kombinatorik und die Exponentialfunktion unausgewertet verwendet werden.

Lösung

1. Es gilt $\lambda = \frac{1}{0.5} = 2$.

$$Var[T_i] = \frac{1}{\lambda^2} = 0, 25,$$

 $Var[S] = 60 \cdot 0, 25 = 15.$

(3 P.)

2. (siehe Übungsblatt 10)

$$p = 1 - F_{T_1 + T_2}(2) = 1 - (1 - e^{-\lambda t} - \lambda t e^{-\lambda t})\Big|_{t=2} = e^{-4} + 4e^{-4} = 5e^{-4}.$$
(3 P.)

3. P(2) ist Poisson-verteilt mit Parameter $\lambda t = 4$.

$$\Pr[P(2) = 5] = \frac{(\lambda t)^5}{5!} e^{-\lambda t} \Big|_{\lambda t = 4} = \frac{(4)^5}{5!} e^{-4}.$$
(3 P.)