

Fisica 2

TP 1 Calorimetria

Nieto Tiago 89859
Alexis Angle Castro Vico 401998
Tosellis Gabriel 403313
Gustavo Giménez 407852
Diego Gallardo 405800
Bruno Germani 401623
Carosotto Matias 401523
Gabriel Bustos 82848
Sofía Díaz 99751
Tissera Mauro 401187
Tomás Posleman 400366

1 Parte 1

1)Calcular π :

- 1. $m_1 = 100g$
- 2. $m_2 = 75g$
- 3. $m_T = 175g$
- 4. $T_i = 21C$
- 5. $T_F = 45C$

$$C_e h2o = 4190 \frac{J}{Kg.K} = 1 \frac{cal}{g.C} \tag{1}$$

$$m_2 = m_t - m_i \tag{2}$$

$$\pi = \frac{-m_2 \cdot (T_f - 86C)}{T_f - t_i} - m_1 = 28,125g \tag{3}$$

$T^{o}C$	$t_i{}^{\underline{o}}C$	$t_f{}^{\Omega}$ C	$M_a g(g)$	$M_a g(g)$	$\pi(g)$
45 °C	$21^{\circ}\mathrm{C}$	$86^{\circ}\mathrm{C}$	100g	75g	28,125g

Table 1: 1

2 Parte 2

Determinar el calor especifico de la muestra Cuerpos:

1.
$$T_c i = 97C$$

2.
$$m_c = 218g$$

 ${\bf Calor\'imetro:}$

1.
$$T_a i = 20C$$

2.
$$m_c = 141g$$

$$T_f = 29C$$

$$C_c = \frac{-(m_i + \pi).C_c.(T_f - T_i)}{m_c.(T_F - T_ci)} = 0,1026 \frac{cal}{g.C}$$
(4)

Este calor especifico coincide con el de Laton.

$C_a g$	$M_a g(g)$	$\pi(g)$	$t_i{}^{\underline{o}}C$	$M_c(g)$	$t_i{}^{\underline{o}}C$	$t_i{}^{\underline{o}}C$	$C_c \frac{cal}{gC}$
1	141g	28,125g	$20^{\circ}\mathrm{C}$	218g	97ºC	$29^{\circ}\mathrm{C}$	0,1026

Table 2: 2