安徽大学 20 19 — 20 20 学年第 二 学期

《线性代数 A》期末考试试卷(A 卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	_	=	三	四	五.	六	七	总分
得 分								
阅卷人								

一、选择题(每小题2分,共10分)

得 分

- 1. 向量组(I) α_1 , α_2 ,……, α_r 与向量组(II) β_1 , β_2 ,……, β_s 等价,则下列结论一定错 误的是(
 - A. 向量组(I)可由向量组(II)线性表示
 - B. 向量组(II)可由向量组(I)线性表示
 - C. 向量组(I)和向量组(II)有相同的秩
 - D. 向量组(I)和向量组(II)有相同的极大线性无关组
- 2. A为3×4的矩阵,非齐次方程组 $AX = \beta$ 的导出组为AX = 0,下列说法正确的是(
- A. $AX = \beta$ 必有无穷多解
- B. $AX = \beta$ 必有唯一解
- C. AX = 0 必有无穷多解
- D. AX = 0 必有唯一解
- 3. 若n阶矩阵A与B相似,则以下说法错误的是(
- A. A^T 与 B^T 相似
- B. A⁻¹与B⁻¹相似
- C. |A| = |B|

- D. r(A) = r(B)
- 4. 若n阶矩阵A可逆,则下列说法错误的是(
- A. A 的列向量组线性无关 B. A 可以表示成若干个初等矩阵的乘积 C. A 的特征值均不为零 D. 齐次方程组 AX = 0 有非零解

- 5. 对于矩阵 $A = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 0 & -4 \end{pmatrix}$, 以下说法正确的是(
- A. A, B 相似

- B. A,B 等价
- C. A, B 在实数域上合同
- D. A,B在复数域上不合同

亭

#

江

装

二、填空题(每小题2分,共10分)

得分

- 7. 己知 $A \in \mathbb{R}^{n \times n}$, |A| = 3, 则 $|3(A^*)^{-1}| =$ ______
- 8. 已知矩阵 $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 1 \\ 4 & 3 & -1 \end{pmatrix}$, 则矩阵 A 的秩等于______
 - 9. 已知向量 $\alpha_1 = (1,t,3)^T$, $\alpha_2 = (4,5,6)^T$, $\alpha_3 = (7,4t,9)^T$, 线性相关,则t =______
- 10. 实对称矩阵 $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ 对应二次型的正惯性指数为______
- 三、计算题(每小题10分,共70分)

得 分

$$11. 计算n 阶行列式 $D_n = \begin{vmatrix} a & 0 & 0 & \cdots & 0 & a \\ a & a & 0 & \cdots & 0 & 0 \\ 0 & a & a & \cdots & 0 & 0 \\ & \cdots & & \cdots & & \\ 0 & 0 & 0 & 0 & a & a \end{vmatrix}$$$

12. 已知
$$A = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, $A - 2B = AB$, 求矩阵 B .

在 4 次 次 次

海るが

年级

死/%

$$13. 求齐次方程组 \begin{cases} x_1 + x_2 = 0 \\ 2x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$
的通解。
$$5x_1 + 3x_2 + 2x_3 + 2x_4 = 0$$

14. 求向量组 α_1 = (3,2,1,1), α_2 = (1,-2,11,-5), α_3 = (-8,-3,-12,2), α_4 = (2,-7,34,-16) α_5 = (1,2,-5,3) 的秩。

15. 在 R^3 中,求由基底 α_1 = (1,1,0) , α_2 = (1,0,1) , α_3 = (0,1,1) 到基底 β_1 = (1,0,0) , β_2 = (1,1,0) , β_3 = (1,1,1) 的过渡矩阵。

16. 已知
$$A = \begin{pmatrix} 3 & 4 & -2 \\ 4 & 3 & 2 \\ -2 & 2 & 6 \end{pmatrix}$$
, 求正交矩阵 Q , 使 $Q^T A Q$ 为对角矩阵。

17. 求
$$a$$
的值,使得 $A = \begin{pmatrix} 2-a & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & a+3 \end{pmatrix}$ 是正定矩阵。

四、证明题(每小题5分,共10分)

得 分

18. 已知向量 α_1 , α_2 , α_3 是方程组AX = 0的基础解系,证明: α_1 , $\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_2 + \alpha_3$ 也是方程组的基础解系。

19. 已知
$$A = \begin{pmatrix} 2 & -1 & 3 \\ 4 & -2 & 5 \\ 2 & -1 & 4 \end{pmatrix}$$
,若存在矩阵 B ,使得 $AB = 0$,证明: $r(B) \le 1$ 。