5. Find the equivalent partition of the following machine.

	Next State, z	
Present State	X=0	X = 1
A	C, 1	D, 0
В	D, 1	$\mathrm{E},\mathtt{0}$
C	B, 1	$\mathrm{E}, 1$
D	B, 1	A, 0
Е	D, 1	B, 1

Solution: The partitions are

 $P_0 = (ABCDEF)$

 $P_1 = (AD)(BCE)$ (Depending on o/p for $i/p\ 1$)

 $P_2 = (\mathrm{AD})(\mathrm{BE})(\mathrm{C})$ (For i/p 0, the next state of C goes to another set)

 $P_3 = (A)(D)(BE)(C)$ (For i/p0, the next state of A and D goes to a different set)

$$P_4 = (A)(D)(BE)(C)$$

As P_3 and P_4 are the same, P_3 is the equivalent partition.

Minimization: We know that the cquivalent partition is unique. So,

 $P_4 = (A)(D)(BE)(C)$ is the unique combination. Here, every single set represents one state of the minimized machine.

Let us rename these partitions for simplifi cation.

Rename (A) as S_1 , (BE) as S_2 , (C) as S_3 , and (D) as S_4

The minimized machine becomes

	Next State,z		
Present State	X = 0	X = 1	
$S_1(A)$	$S_3, 1$	$S_4, 1$	
$S_2(BE)$	$S_4, 1$	$S_2, 0$	
$S_3(C)$	$S_2, 1$	$S_2, 1$	
$S_4(D)$	$S_2, 1$	$S_1, 0$	

6, Simplify the following incompletely specifi ed machine.

	Next State,z		
Present State	I_1	<i>I</i> ₂	<i>I</i> ₃
A	D, 1	E,1	_
В	B, 0	E,-	C,-
C	C, -	C,0	В, -
D	B, 0	D,-	E,-
E	_	B,0	А, -

Solution: Put a temporary state T in the next state place, where the next states are not specifi ed. If the output is not mentioned, there is no need to put any output.

As a temporary state T is considered, T is put in the present state column with the next state T for all inputs with no output.

The simplifi ed machine becomes

	Next State,z		
Present State	I_1	I_2	<i>I</i> ₃
A	D, 1	$\mathrm{E}, 1$	T, -
В	$\mathrm{B}, 0$	$\mathrm{E},-$	C, -
\mathbf{C}	C, -	$\mathrm{C},0$	B, -
D	$\mathrm{B}, \mathrm{0}$	D, -	$\mathrm{E}, -$
E	T, -	$\mathrm{B}, 0$	A, -
Т	$\mathrm{T}, 0$	T, 0	$\mathrm{T}, 0$