สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

รหัสวิชา 30127-2004 (2-3-3) ดิจิทัลและไมโครคอนโทรลเลอร์

Digital And Microcontroller

สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

- 1. วงจรกำเนิดสัญญาณนาฬิกา
 - 1.1 วงจรโมโนสเตเบิลมัลติไวเบรเตอร์
 - 1.2 วงจรไบสเตเบิลมัลติไวเบรเตอร์
 - 1.3 วงจรอะสเตเบิลมัลติไวเบรเตอร์
- 2. วงจรฟลิบฟลอบ
 - 2.1 RS-Flipflop
 - 2.2 JK-Flipflop
 - 2.3 D-Flipflop
 - 2.4 T-Flipflop

Digital And Microcontroller

2

สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

- 3. อุปกรณ์ 7-Segment
 - 3.1 7-Segment ชนิดคอมมอน Cathode
 - 3.2 7-Segment ชนิดคอมมอน Anode
- 4. การออกแบบวงจรนับ
 - 4.1 วงจรนับแบบอะชิงโครนัส
 - 4.2 วงจรนับแบบซิงโครนัส

Digital And Microcontroller

สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

1. วงจรกำเนิดสัญญาณนาฬิกา

วงจรกำเนิดสัญญาณนาฬิกา มีพื้นฐานมาจากวงจรมัลติไวเบรเตอร์ แบบอะสเต เบิลมัลดิไวเบรเตอร์ โดยวงจรมัลดิไวเบรเตอร์อาจจะสร้างมาจากอุปกรณ์ทรานซิสเตอร์ ใอชี 555 ไอซีดิจิทัล หรือไอซีดิจิทัลทำงานร่วมกับอุปกรณ์คริสตัล หรือไอซีออปแอมป์ ทำงานร่วมกับอุปกรณ์ RC เป็นต้น ซึ่งวงจรมัลติไวเบรเตอร์จะมี 3 ประเภทใหญ่ ๆ ดังนี้

1.1 วงจรโมโนสเตเบิลมัลติไวเบรเตอร์

1.1.1 วงจรโมโนสเตเบิลมัลติไวเบรเตอร์จากไอซี 555

รูปที่ 1.1 แสดงตำแหน่งขาการต่อใช้งานของไอชี 555

Digital And Microcontroller

4

Digital And Microcontroller

สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

1.2 วงจรไบสเตเบิลมัลติไวเบรเตอร์

วงจรไบสเตเบลิมัลติไวเบรเตอร์ คือวงจรมัลติไวเบรเตอร์ประเภทหนึ่ง ซึ่งมีสถานะการทำงานของเอาต์พุตที่แน่นอนได้สองลักษณะ ปกติวงจรพื้นฐานของ วงจรไบสเตเบลิมัลติไวเบรเตอร์จะประกอบด้วยอุปกรณ์อิเล็กทรอนิกส์ประเภทแอค ทีฟ (active element) จำนวน 2 ตัว เช่น อุปกรณ์ทรานชิสเตอร์ หรือเจเฟต เป็นต้น โดยวงจรนี้ถูกนำไปใช้งานในลักษณะของวงจรฟลิบฟลอบ (Flipflop circuit) เพื่อเก็บ สถานะของสัญญาณ หรืออาจจะประยุกต์เป็นอุปกรณ์หน่วยความจำตามคุณสมบัติ

Digital And Microcontroller

สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

1.3 วงจรอะสเตเบิลมัลติไวเบรเตอร์

1.3.1 วงจรอะสเตเบิลมัลติไวเบรเตอร์ที่สร้างจากไอซี 555 มีค่า Duty Cycle หรือค่าความ กว้างพัลส์ที่มีค่าไม่เท่ากับ 50%

 t_1 คือช่วงเวลาที่เกิดสัญญาณลอจิก '1'

 t_2 คือช่วงเวลาที่เกิดสัญญาณลอจิก '0'

รปที่ 1.7 รปแสดงสัญญาณการทำงานของวงจร อะสเตเบิลมัลติไวเบรเตอร์ของไอซี 555

 $T = t_1 + t_2 = 0.693(R_A + 2R_B)C$ $t_1 = 0.693(R_A + R_B)C$

 $t_2 = 0.693 R_B C$

 $D = \frac{t_1}{T}$

สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

1.3.2 วงจรอะสเตเบิลมัลติไวเบรเตอร์ที่สร้างจากไอซี 555 มีค่า Duty Cycle หรือ ค่าความกว้างพัลส์ที่มีค่าเท่ากับ 50%

 $T = t_1 + t_2 = 2(0.693)RC$

เมื่อ $t_1=t_2$

รูปที่ 1.9 รูปแสดงวงจรอะสเตเบิลมัลติไวเบรเตอร์ที่ใช้ไอชี 555 และ Duty Cycle มีค่าเท่ากับ 50%

Digital And Microcontroller

สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

2. วงจรฟลิบฟลอบ

เมื่อ T คาบเวลาทั้งหมด

D คือ Duty Cycle

2.1 RS-Flipflop

รูปที่ 1.11 สัญลักษณ์ อาร์-เอส ฟลิบฟลอบ ที่ไม่มีสัญญาณนาฬิกาควบคุม

(ก) ทำงานที่ขอบขาขึ้นของสัญญาณนาฬิกา (ข) ทำงานที่ขอบขาลงของสัญญาณนาฬิกา รูปที่ 1.12 สัญลักษณ์ อาร์-เอส ฟลิบฟลอบ ที่มีสัญญาณนาฬิกาควบคุม

Digital And Microcontroller

11

สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

2.1.1 อาร์-เอส ฟลิบฟลอบ แบบนอร์เกต (Cross-NOR R-S Flip-Flop)

รูปที่ 1.13 วงจรลอจิกและสัญลักษณ์ อาร์-เอส ฟลิบฟลอบแบบนอร์เกต

โหมดการทำงาน	อินพุต		เอาต์พุต		
	R	S	(Q)	(Q)	ผลของเอาต์พุต (Q)
Hold	0	0	(Q)	(Q)	ไม่เปลี่ยนแปลง
Set	0	1	1	0	เซ็ตให้ (Q) เป็น 1
Reset	1	0	0	1	รีเซ็ตให้ (Q) เป็น 0
Prohibited	1	1	0	0	งล้างเริงเรางเ

รูปที่ 1.14 แสดงรูปตารางความจริงของ อาร์-เอส ฟลิบฟลอบ แบบนอร์เกต

Digital And Microcontroller

12

10

