МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Розрахункова робота

з дисципліни «Дискретна математика»

Виконав:

Студент групи КН-112

Шкляров Віталій

Викладач:

Мельникова Н. І.

Варіант 15

Завдання № 1

Виконати наступні операції над графами: 1) знайти доповнення до першого графу, 2) об'єднання графів, 3) кільцеву сумму G 1 та G 2 (G1 + G2), 4) розмножити вершину у другому графі, 5) виділити підграф A - що скадається з 3-х вершин в G1 6) добуток графів.

Завдання № 2 Скласти таблицю суміжності для орграфа.

	V1	V2	V3	V4	V5	V6	V7	V8	V9
V1	0	1	0	0	0	0	0	1	1
V2	1	0	1	0	0	0	1	1	0
V3	0	1	0	1	0	0	1	0	0
V4	0	0	1	0	1	0	1	0	0
V5	0	0	0	1	0	1	1	0	0
V6	0	0	0	0	1	0	1	1	0
V7	0	1	1	1	1	1	0	1	0
V8	1	1	0	0	0	1	1	0	0
V9	1	0	0	0	0	0	0	0	0

Завдання № 3 Для графа з другого завдання знайти діаметр.

	V1	V2	V3	V4	V5	V6	V7	V8	V9
V1	0	1	2	3	3	2	2	1	1
V2	1	0	1	2	2	2	1	1	2
V3	2	1	0	1	2	2	1	2	3
V4	3	2	1	0	1	2	1	2	4
V5	3	2	2	1	0	1	1	2	4
V6	2	2	2	2	1	0	1	1	3
V7	2	1	1	1	1	1	0	1	3
V8	1	1	2	2	2	1	1	0	2
V9	1	2	3	4	4	3	3	2	0

Діаметр = 4

Завдання № 4

Для графа з другого завдання виконати обхід дерева **вглиб** (**варіант закінчується на непарне число**) або вшир (закінчується на парне число).

Вершина	DFS-номер	Вміст стеку
V1	1	V1
V2	2	V1 V2
V3	3	V1 V2 V3
V4	4	V1 V2 V3 V4
V5	5	V1 V2 V3 V4 V5
V6	6	V1 V2 V3 V4 V5 V6
V7	7	V1 V2 V3 V4 V5 V6 V7
V8	8	V1 V2 V3 V4 V5 V6 V7 V8
-	-	V1 V2 V3 V4 V5 V6 V7
-	-	V1 V2 V3 V4 V5 V6
-	-	V1 V2 V3 V4 V5
-	-	V1 V2 V3 V4
-	-	V1 V2 V3
-	-	V1 V2
-	-	V1
V9	9	V1 V9
-	-	V1
-	-	Ø

```
#include <iostream>
using namespace std;
bool *visited = new bool[n];
int graph[n][n] =
                 \{0, 1, 0, 0, 0, 0, 0, 1, 1\},\
                 \{1, 0, 1, 0, 0, 0, 1, 1, 0\},\
                 \{0, 1, 0, 1, 0, 0, 1, 0, 0\},\
                 \{0, 0, 1, 0, 1, 0, 1, 0, 0\},\
                 \{0, 0, 0, 1, 0, 1, 1, 0, 0\},\
                 \{0, 0, 0, 0, 1, 0, 1, 1, 0\},\
                 \{0, 1, 1, 1, 1, 1, 0, 1, 0\},\
                 \{1, 1, 0, 0, 0, 1, 1, 0, 0\},\
                 \{1, 0, 0, 0, 0, 0, 0, 0, 0\}
void DFS(int st) {
    cout << st + 1 << " ";
    visited[st] = true;
    for (int r = 0; r <= n; r++)
        if ((graph[st][r] != 0) && (!visited[r])) {
            DFS(r);
int main() {
    int start;
    cout << "Matrix: " << endl;</pre>
    for (int i = 0; i < n; i++) {
        visited[i] = false;
        for (int j = 0; j < n; j++)
             cout << " " << graph[i][j];</pre>
        cout << endl;</pre>
    cout << "First Vertex:";</pre>
    cin >> start;
    bool *vis = new bool[n];
    cout << "Result: ";</pre>
    DFS(start - 1);
    delete[]visited;
```

Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Метод Краскала

 $V: \{1, 2, 9, 11, 3, 4, 6, 7, 5, 10, 8\}$

 $E: \{(1,2); (9,11); (1,3); (4,6); (2,7); (4,7); (2,5); (6,10); (5,8); (10,11)\}$

Метод Прима

 $V: \{1, 2, 3, 7, 5, 4, 6, 10, 8, 11, 9\}$

 $E: \{(1,2); (1,3); (2,7); (2,5); (7,4); (4,6); (6,10); (5,8); (10,11); (11,9)\}$

Метод Прима

```
include <iostream>
   int **g = new int *[v];
       g[j] = new int[v];
          cin >> g[a][j];
                   if (tops[m] == a + 1) {
               if (min == 0 && g[tops[j] - 1][a] > 0) {
                   min = g[tops[j] - 1][a];
               if (g[tops[j] - 1][a] > 0 && g[tops[j] - 1][a] < min) -</pre>
                   min = g[tops[j] - 1][a];
```

```
cout << "V: { ";
  for (int j = 0; j < v; j++) {
      cout << tops[j] << ", ";
  }
  cout << endl << "E:{ ";
  for (int j = 0; j < v - 1; j++) {
      cout << "( " << r[j][0] << ", " << r[j][1] << " ), ";
  }
  cout << "}";

  delete [] tops;
  for (int i = 0; i < v; i++)
      delete [] g[i];
  for (int i = 0; i < v; i++)
      delete [] r[i];

  return 0;
}</pre>
```

Вивід:

```
Enter quantity of vertex :11

0 1 2 4 0 0 0 0 0 0 0

1 0 0 0 3 0 2 0 0 0 0

2 0 0 0 7 5 0 0 0 0 0

4 0 0 0 0 2 3 0 0 0 0

0 3 7 0 0 0 0 4 6 0 0

0 2 0 3 0 0 0 5 7 0

0 0 0 0 4 7 0 0 0 0 4

0 0 0 0 0 0 3 7 0 0 0 4

0 0 0 0 0 0 0 4 1 4 0

V: { 1, 2, 3, 7, 5, 4, 6, 10, 8, 11, 9, }

E:{ (1, 2), (1, 3), (2, 7), (2, 5), (7, 4), (4, 6), (6, 10), (5, 8), (10, 11), (11, 9), }
```

Метод Краскала

```
#include <iostream>
nt create(int n, int A[11][11]) {
   return A[11][11];
oid RemoveDuplicats(int n, int A[11][11]) {
nt NotOne(int n, int A[11][11], int f, int s) {
       tmp = tmp1 = 0;
           if (A[i][j] == f) {
```

```
oid add(int n, int A[11][11], int f, int s) {
                  if (A[tmp][k]) {
                      A[tmp][k] = 0;
  for (int l = 0; l < 11; ++1) {
               if (MS[j - 1][k - 1] == i && NotOne(11, B, j, k)) {
```

Розв'язати задачу комівояжера для повного 8-ми вершинного графа методом «іди у найближчий», матриця вагів якого має вигляд:

	1	2	3	4	5	6	7	8
1	90	3	3 6 ∞ 3 2 1 3	1	2	2	3	2
2	3	90	6	5	4	5	1	2
3	2	6	90	3	2	1	3	3
4	1	5	3	00	5	1	5	1
5	2	4	2	5	90	2	2	2
6	2	5	1	1	2	00	7	5
7	3	1	3	5	2	7	90	5
8	2	2	3	1	2	5	5	00

	Ĺ	2	3	4	5	6	7	8
1		3	2	1	2	2	3	2
2	3	90	6	5	4	5	1	2
3	2	6	90	3	2	1		3
4	1	5	3	00	5	1	5	1
5	2	4	2	5	00			2
6	2	5	1	1	2	00	7	5
7	3	1	3	5	2	7	00	5
8	2	2	3	1	2	5	5	00

	1	2	3	4	5	6	7	8
1	40	3	2		2	2	3	2
2	3	90	6	5	4	5	1	2
3	2	6	90	3	2	1	3	3
4	1	5	3	00	5	1	5	1
5	2	4	2	5	90	2	2	2
6	2	5	1	1	2	00	7	5
7	3	1	3	5	2	7	90	5
8	2	2	3	1	2	5	5	00

	Î	2	3	4	5	6	7	8
1	-	3	2	$\overline{}$	2	2	3	2
2	3	90	6	5	4	5	1	2
3	2	6	90	3	2	1	3	3
4	1	5	3	00	5	-	5	1
5	2	4	2	5	90	2	2	2
6	2	5	1	1	2	*	7	5
7	3	1	3	5	2	7	00	5
8	2	2	3	1	2	5	5	00

1 4 6 3 5 7 2 8 1 {12}

 $1\; 4\; 8\; 2\; 7\; 5\; 3\; 6\; 1\; \; \{12\}$

148275631 {12}

275364182 {12}

275631482 {12}

364182753 {12}

364827513 {12}

413657284 {12}

4 1 6 3 5 7 2 8 4 {12}

4 1 8 2 7 5 3 6 4 {12}

463157284 {12}

463572814 {12}

482751364 {12}

482753614 {12}

482756314 {12}

Порядок: 146357281

1+1+1+2+2+1+2+2=12

```
using namespace std:
bool check(vector<int> q, int Node) {
   for (auto i = q.begin(); i != q.end(); i++)
nt F_Min(vector<int> *q, int **arr, int n, int i) {
       if (arr[i][j] < min && arr[i][j] != 0 && check((*q), j))min = arr[i][j];</pre>
   return min;
roid Find(vector<int> *q, int **arr, int n, int pos, vector<int> *qq) {
   int min;
   for (int i = pos, k = 0; k < 1; i++, k++) {
       min = F_Min(q, arr, n, i);
            if (arr[i][j] == min && check((*q), j)) {
                (*q).push_back(j);
               Find(q, arr, n, j, qq);
       if (q->size() == n) {
           (*q).push_back((*q)[0]);
                counter += arr[(*q)[1 - 1]][(*q)[1]];
                    (*qq).push_back((*q)[b]);
                (*qq).push_back(counter);
                (*qq).clear();
                    (*qq).push_back((*q)[b]);
                (*qq).push_back(counter);
                Inf = counter;
           q->pop_back();
   q->pop_back();
```

```
int main() {
    int **arr = new int *[n];
        arr[i] = new int[n];
            cin >> arr[i][j];
   vector<int> qq;
   cout << endl;</pre>
        q.clear();
        q.push_back(i);
        Find(&q, arr, n, i, &qq);
    for (int i = 1; i <= qq.size(); i++) {</pre>
        if (i != 0 && i % (n + 2) == 0)
            cout << qq[i - 1] + 1 << " ";
```

Вивід

```
{12} 5 3 6 4 1 8 2 7 5 {12}
1 4 6 3 5 7 2 8 1
                {12} 563148275 {12}
1 4 8 2 7 5 3 6 1
                     572841635 {12}
                {12}
                     572846315 {12}
2 7 5 6 3 1 4 8 2
                {12}
                     6 3 1 4 8 2 7 5 6 {12}
                {12}
3 6 4 1 8 2 7 5 3
                     6 3 5 7 2 8 4 1 6 {12}
3 6 4 8 2 7 5 1 3
                {12}
                     641827536 {12}
4 1 3 6 5 7 2 8 4 {12}
                     6 4 8 2 7 5 1 3 6 {12}
4 1 6 3 5 7 2 8 4 {12}
                     7 2 8 4 1 3 6 5 7 {12}
4 1 8 2 7 5 3 6 4 {12}
                     7 2 8 4 1 6 3 5 7 {12}
463157284 {12}
                     7 2 8 4 6 3 1 5 7 {12}
4 6 3 5 7 2 8 1 4 {12}
                     8 4 1 3 6 5 7 2 8 {12}
482751364 {12}
                     8 4 1 6 3 5 7 2 8 {12}
482753614 {12}
```

За допомогою алгоритму Дейкстри знайти найкоротший шлях у графі між парою вершин $V0\ i\ V^*$.

Ітерація	Мітки	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
16	L	0	6	12	13	17	∞	3	8	9	14	16	∞	10	11	13	16	∞	00	13	13	14	19	∞	∞	14	18	17	∞	00	∞
10	Q		1	9	3	4		1	2	8	4	10		7	13	9	15			13	14	20	21			19	25	21			
17	L	0	6	12	13	17	∞	3	8	9	14	16	17	10	11	13	16	20	00	13	13	14	19	∞	∞	14	18	17	∞	00	∞
1/	Q		1	9	3	4		1	2	8	4	10	11	7	13	9	15	11		13	14	20	21			19	25	21			
18	L	0	6	12	13	17	∞	3	8	9	14	16	17	10	11	13	16	20	00	13	13	14	19	000	00	14	18	17	∞	00	000
10	Q		1	9	3	4		1	2	8	4	10	11	7	13	9	15	16		13	14	20	16			19	25	21			
19	L	0	6	12	13	17	18	3	8	9	14	16	17	10	11	13	16	20	∞	13	13	14	19	∞	∞	14	18	17	∞	∞	∞
10	Q		1	9	3	4	5	1	2	8	4	10	11	7	13	9	15	16		13	14	20	16			19	25	21			
20	L	0	6	12	13	17	18	3	8	9	14	16	17	10	11	13	16	20	24	13	13	14	19	∞	00	14	18	17	00	00	00
	Q		1	9	3	4	5	1	2	8	4	10	11	7	13	9	15	16	12	13	14	20	16			19	25	21			
21	L	0	6	12	13	17	18	3	8	9	14	16	17	10	11	13	16	20	24	13	13	14	19	∞	∞	14	18	17	20	∞	∞
	Q		1	9	3	4	5	1	2	8	4	10	11	7	13	9	15	16	12	13	14	20	16			19	25	21	27		
22	L	0	6	12	13	17	18	3	8	9	14	16	17	10	11	13	16	20	24	13	13	14	19	∞	∞	14	18	17	20	00	∞
	Q		1	9	3	4	5	1	2	8	4	10	11	/	13	9	15	16	12	13	14	20	16			19	25	21	27		
23	L	0	6	12	13	1/	18	3	8	9	14	16	1/	10	11	13	16	20	24	13	13	14	19	∞	∞	14	18	17	20	00	∞
	Q	0	1	9	3	4	5	1	2	8	4	10	11	10	13	9	15	16	12	13	14	20	16	22		19	25	21	27		
24	L	0	6	12	13	Δ	18 5	3	8	9	14	16	1/	10	11	13 9	16	20	24	13	13	14	19	22	000	14	18	17	20	00	00
	Q	0	1	9	3	4		1	2	8	4	10	11	10	13		15	16	12	13	14	20	16	22		19	25	21	27		
25	Q	0	6 1	9	13 3	1/	18 5	3	_		14	16	17	10	11	13 9	16	20	22	13	13	14	19 16	22	∞	14 19	18 25	17 21	20	∞	∞
	ı	0		12	12	17	10	л Т	2 8	8	4	10	11	10	13	13	15 16	16 20	17 22	13	14	20 14	19	22	00	19	18	17	27	27	000
26	Q	U	1	9	3	1/	10	1	2	9	4	10	11	7	13	9	15	16	17	13	14	20	16	22		19	25	21	27	28	
	L	0	6	12	13	17	18	3	8	9	14	16	17	10	11	13	16	20	22	13	13	14	19	22	27	14	18	17	20	27	∞
27	Q	U	1	9	3	1/	5	1	2	8	14	10	11	7	13	9	15	16	17	13	14	20	16	22	18	19	25	21	27	28	
	ı	0	6	12	13	17	18	3	8	9	14	16	17	10	11	13	16	20	22	13	13	14	19	22	27	14	18	17	20	23	∞
28	Q	0	1	9	3	Δ	5	1	2	8	4	10	11	7	13	9	15	16	17	13	14	20	16	22	18	19	25	21	27	23	
	L	0	6	12	13	17	18	3	8	9	14	16	17	10	11	13	16	20	22	13	13	14	19	22	27	14	18	17	20	23	29
29	Q	0	1	9	3	4	5	1	2	8	4	10	11	7	13	9	15	16	17	13	14	20	16	22	18	19	25	21	27	23	29
	L	0	6	12	13	17	18	3	8	9	14	16	17	10	11	13	16	20	22	13	13	14	19	22	27	14	18	17	20	23	29
30	Q	U	1	9	3	4	5	1	2	8	4	10	11	7	13	9	15	16	17	13	14	20	16	22	18	19	25	21	27	23	29
T	~		-	, ,	,	7	,	-	-	U	7	10	11	,	13	,	13	10	17	13	17	20	10	~~	10	10	23	21	21	23	23

Порядок проходження вершин

$$1 \rightarrow 2 \rightarrow 8 \rightarrow 9 \rightarrow 15 \rightarrow 16 \rightarrow 22 \rightarrow 23 \rightarrow 29 \rightarrow 30$$

```
#include <iostream>
using namespace std;
int main() {
    int SIZE = 30;
    int a[SIZE][SIZE]; // матриця
    int d[SIZE]; // мінімальна відстань
    int v[SIZE]; // відвідані вершини
    int temp, minindex, min;
    int begin_index;
    cin >> begin_index;
    --begin_index;
    int end;
    cin >> end;
    --end;
    for (int i = 0; i < SIZE; ++i) {</pre>
        for (int j = 0; j < SIZE; ++j) {</pre>
            cin >> a[i][j];
```

```
int ver[SIZE];
ver[0] = end + 1;
int k = 1;
int weight = d[end];

while (end != begin_index) {
    for (int i = 0; i < SIZE; i++) {
        if (a[end][i] != 0) {
            int temp = weight - a[end][i];
            if (temp == d[i]) {
                weight = temp;
                end = i;
                ver[k] = i + 1;
                k++;
                }
        }
    }
}

for (int i = k - 1; i >= 0; i--) {
    cout << ver[i];
    if (i != 0)
        cout << " -> ";
}

return 0;
```

```
1 -> 2 -> 8 -> 9 -> 15 -> 16 -> 22 -> 23 -> 29 -> 30

Process finished with exit code 0
```

Знайти ейлеровий цикл в ейлеровому графі двома методами: а) Флері; б) елементарних циклів.

a) (V1,V2); (V2,V3); (V3,V*); (V*,V6); (V6,V2); (V2,V*); (V*,V4); (V4,V5); (V5,V8); (V8,V10); (V10,V9); (V9,V8); (V8,V6); (V6,V9); (V9,V7); (V7,V6); (V6,V5); (V5,V3); (V3,V6); (V6,V10); (V10,V*); (V*,V7); (V7,V1).

З'єднаємо їх

$$V1 -> a -> V^* -> V4 -> V5 -> 6 -> (V6 -> V9 -> V7 -> (V6) -> V5 -> -> V3 -> V6) -> V10 -> V^* -> V7 -> V1$$

```
#include <iostream>
#include <vector>
using namespace std;
int main() {
   cout << "Quantity :";</pre>
   cin >> v;
   cout << "Matrix:" << endl;</pre>
   int **graph = new int *[v];
   for (int j = 0; j < v; j++) {
        graph[j] = new int[v];
        for (int j = 0; j < v; j++) {
            cin >> graph[a][j];
   vector<int> Stack;
   vector<int> path;
   int m, ver;
   Stack.push back(1);
   while (!Stack.empty()) {
        ver = Stack[Stack.size() - 1];
        for (int i = 0; i < v; i++) {
            if (graph[ver - 1][i]) {
                graph[ver - 1][i] = 0;
                graph[i][ver - 1] = 0;
                Stack.push_back(m);
            path.push_back(ver);
            Stack.pop_back();
    for (int i = path.size() - 1; i > 0; i--) {
        cout << path[i] << "->";
    cout << path[0];</pre>
```

Спростити формули (привести їх до скороченої ДНФ).

 $x\bar{z} \vee xy \vee yz$

X	у	Z	$\overline{\mathbf{Z}}$	ху	yz	ΧZ	x z v xy	*	
0	0	0	1	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	
0	1	0	1	0	0	0	0	0	
0	1	1	0	0	1	0	0	1	$\bar{x}yz$
1	0	0	1	0	0	1	1	1	$x \bar{y} \bar{z}$
1	0	1	0	0	0	0	0	0	
1	1	0	1	1	0	1	1	1	$xy\bar{z}$
1	1	1	0	1	1	0	1	1	хуz

 $x\bar{y}\bar{z}\vee\bar{x}yz\vee xy\bar{z}\vee xyz$

СДНФ $x\bar{z} \lor yz$