# Il crollo del Birchgletscher sul paese di Blatten (Lotschen, Svizzera)

Analisi dell'impatto causato dalla frana

Martina Costa

17 settembre 2025

### Indice

- 1 Il crollo
- 2 Raccolta dat
- 3 Risultati
- 4 Conclusioni
- 5 Links

#### La località



Figure: Area d'indagine

- Valle Lötschental, Canton Vallese, Svizzera
- Fiume Lonza
- 1540 m s.l.m
- Monitoraggio a seguito di frane negli anni '90





- 15 maggio: si stacca un pezzo del monte Nesthorn, formando una frana che travolge il ghiacciaio e si ferma a 500m dal fiume
- 17 maggio: evacuazione del paese di Blatten
- Giorni successivi: continuano a cadere massi e detriti dal Nesthorn, accumulandosi sopra al ghiacciaio
- 27 maggio: primo crollo parziale
- 28 maggio: il ghiacciaio e i detriti sommergono il paese



## II lago



Figure: Formazione di un lago a seguito dello sbarramento del fiume Lonza e dell'accumulo di ghiaccio.



## Obbiettivo del progetto

Lo studio si pone come obbiettivo quello di quantificare le modificazioni del territorio a seguito del crollo del ghiacciaio.

Per avere copertura nivale e situazione vegetazionale simili, sono state selezionate le immagini relative al 23 agosto 2024 e 25 agosto 2025.

L'area analizzata ha un'estensione di 50.96 km<sup>2</sup>.

## Indice

- 1 Il crollo
- 2 Raccolta dati
- 3 Risultati
- 4 Conclusioni
- 5 Links

Links

#### Raccolta dati

Le immagini utilizzate per questo progetto sono state catturate dal satellite Sentinel-2 e scaricate dal Copenicus Browser.

Per avere immagini nitide è stata impostata una copertura di nuvole al 5%.

Sono state scaricate le bande 2, 3, 4 e 8 in formato .TIFF a 16 bit.

#### Pacchetti utilizzati:

- library(terra)
- library(imageRy)
- library(viridis)
- library(ggplot2)
- library(patchwork)



### Codice

Una volta scaricate le varie bande, queste sono state sovrapposte per creare le immagini in True Color.

In seguito è stato sostituito il **NIR** al **rosso**, mettendo in risalto sia la vegetazione che la formazione del lago, in quanto il vicino infrarosso viene riflesso dalla vegetazione e assorbito dagli specchi d'acqua.

```
par(mfrow=c(1,2))
im.plotRGB(G24, 4,2,1)
title("2024 (nir)", line=-2)
im.plotRGB(G25, 4,2,1)
title("2025 (nir)", line=-2)
```

#### NIR on Red



Figure: False Color

#### **NDVI**

Calcolo l'NDVI (Normalized Difference Vegetation Index) seguendo la formula:

$$NDVI = \frac{(NIR - RED)}{(NIR + RED)} \tag{1}$$

Questo indice è un indicatore della presenza di vegetazione, in quanto la vegetazione assorbe la luce nel rosso visibile e riflette fortemente la luce nel vicino infrarosso.

$$NDVI_24 = (G24[[4]]-G24[[3]])/(G24[[4]]+G24[[3]])$$

$$NDVI_25 = (G25[[4]]-G25[[3]])/(G25[[4]]+G25[[3]])$$

#### Classificazione in base all'NDVI



Figure: Visualizzazione delle immagini elaborate attraverso l'NDVI. La colorazione scelta è viridis in modo da evidenziare la vegetazione in giallo mentre il resto del territorio apparirà in una scala di blu.

#### **NDWI**

Calcolo poi l'NDWI (Normalized Difference Water Index) seguendo la formula:

$$NDWI = \frac{(GREEN - NIR)}{(GREEN + NIR)}$$
 (2)

Questo indice sfrutta il fatto che l'acqua assorbe fortemente il NIR e riflette il verde, consentendo di evidenziare il cambiamento nel contenuto di acqua superficiale della valle.

$$NDWI_24 = (G24[[2]]-G24[[4]])/(G24[[2]]+G24[[4]])$$

$$NDWI_25 = (G25[[2]]-G25[[4]])/(G25[[2]]+G25[[4]])$$

#### Classificazione in base all'NDWI



Figure: Visualizzazione delle immagini elaborate attraverso l'NDWI. In questo caso la colorazione scelta è cividis, in modo da evidenziare in giallo l'acqua.

#### Calcolo delle classi

I risultati ottenuti con il calcolo di NDVI e NDWI per entrambi gli anni sono stati suddivisi in 2 cluster, calcolando poi la percenutale di copertura per ogni cluster.

```
cG24 <- im.classify(NDVI_24, num_clusters=2)
cG25 <- im.classify(NDVI_25, num_clusters=2)
wG24 <- im.classify(NDWI_24, num_clusters=2)
wG25 <- im.classify(NDWI_25, num_clusters=2)
```

Cluster per NDVI: vegetazione, altro (suolo nudo/neve/acqua) Cluster per NDWI: acqua, altro (vegetazione/rocce)

#### Creazione dei dataframe

Esempio di calcolo delle percentuali:

```
f24 <- freq(cG24)
tot24 <- ncell(cG24)
prop24 = f24 / tot24
perc24 = prop24 * 100
perc24
```

Le percentuali sono state utilizzate per creare due Dataframe, uno per anno, e ognuno con la rispettiva percentuale di vegetazione e acqua:



| @ Data: anno2025 |             |                 |  |
|------------------|-------------|-----------------|--|
|                  | elemento    | estensione_2025 |  |
| 1                | vegetazione | 54.6            |  |
| 2                | acqua       | 45.7            |  |
|                  |             |                 |  |

## Esempio di classificazione



Figure: Classificazione NDVI



Figure: Classificazione NDWI



#### Relazione tra NDVI e NDWI

Plottando la classificazione non si coglie molto la differenza tra i 2 cluster calcolati usando l'NDVI e i 2 cluster ottenuti usando l'NDWI, in quanto le percentuali hanno valori simili.

Quindi, per visualizzare meglio i cambiamenti e per avere nello stesso plot i due indici, questi possono essere messi in relazione calcolando la loro differenza per entrambi gli anni, secondo la formula:

$$Diff = NDVI - NDWI \tag{3}$$

In questo caso il range andrà da +2 a -2 perchè entrambi gli indici sono normalizzati compresi tra +1 e -1.

#### Differenza NDVI-NDWI

A valori positivi corrisponde dominanza di vegetazione e a valori negativi corrisponde una dominanza di acqua.

Esempio: caso estremo in cui vegetazione è +1 e acqua assente quindi -1, diff(NDVI-NDWI) = +1 - (-1) = +2



Figure: Differenza NDVI - NDWI. La colorazione usata è plasma.

## Indice

- Il crollo
- 2 Raccolta dat
- 3 Risultati
- 4 Conclusioni
- 6 Links

### Grafico a barre



Valori di vegetazione e acqua nell'area di indagine rispettivamente in agosto 2024 e agosto 2025.



## Indice

- 1 Il crollo

- 4 Conclusioni

#### Conclusioni

 I risultati ottenuti mediante le analisi su R risultano rappresentativi dell'impatto che il crollo del ghiacciaio ha avuto sulla morfologia della valle;

#### Conclusioni

- I risultati ottenuti mediante le analisi su R risultano rappresentativi dell'impatto che il crollo del ghiacciaio ha avuto sulla morfologia della valle;
- Dal calcolo delle percentuali, si può osservare come la frana abbia portato ad una diminuzione circa del 5% della vegetazione;

#### Conclusioni

- I risultati ottenuti mediante le analisi su R risultano rappresentativi dell'impatto che il crollo del ghiacciaio ha avuto sulla morfologia della valle;
- Dal calcolo delle percentuali, si può osservare come la frana abbia portato ad una diminuzione circa del 5% della vegetazione;
- Mentre l'ostruzione del fiume e la conseguente formazione del lago hanno portato ad aumento di acqua superficiale nell'area circa del 4%.

## Indice

- 1 Il crollo

- 6 Links

## Github e fonti

Il mio account Github: https://github.com/MartinaCoast

#### Sitografia:

- https://www.rsi.ch/
- https://www.rsi.ch/info/svizzera/ Blatten-quando-la-montagna-croll--2875870.html
- https://it.wikipedia.org/wiki/Blatten

Links



In immagine: Il cono di detrito causato dalla frana, visto dal versante opposto. Si può intravedere il lago.

Grazie dell'attenzione!