2 Heuristic Search

Strategy	Frontier Selection	Halts?	Space	Time
Depth-first	Last node added	No	Linear	Exp
Breadth-first	First node added	Yes	Exp	Exp
Lowest-cost-first	$min \ cost(n)$	Yes	Exp	Exp
Greedy Best-first	$\min h(n)$	No	Ехр	Exp
A*	$\min \ cost(n) + h(n)$	Yes	Ехр	Exp

2 Heuristic Search-20250525140945825.webp

TL;DR

For A*:

- the heuristic h(n) is an estimate of the cost from n to the goal node
- any heuristic must at least be admissible -> it must never overestimate the true cost
- if a heuristic is consistent, then $h(a) h(b) \leq edge(a, b)$ for all a, b
 - · this is the monotone condition
 - · consistency -> admissibility
 - · A* no longer revisits nodes
- the algorithm itself is just Dijkstra's with a heuristic

Heuristic function h(n)

A search heuristic h(n) is an estimate of the cost of the cheapest path from node n to a goal node.

A good h(n) has these properties:

- 1. Problem specific
- 2. Non-negative
- 3. h(goal node) = 0
- 4. h(n) must be easy to compute

Lowest Cost First Search (LCFS)

Prioritize expanding the node with the lowest path cost g(n) from the start.

This is just Dijkstra's algorithm. See Dijkstra's algorithm.

Greedy Best First Search

BFS but the queue is a heap ordered by the heuristic h(n).

```
def greedy_best_first_search(start, goal, neighbors_fn, h_fn):
    # Priority queue with (h(n), node)
    open_set = [(h_fn(start), start)]
```

```
came_from = {start: None}
visited = set()

while open_set:
    _, current = heapq.heappop(open_set)

if current == goal:
    return reconstruct_path(came_from, current)

visited.add(current)

for neighbor in neighbors_fn(current):
    if neighbor not in visited:
        visited.add(neighbor)
        came_from[neighbor] = current
        heapq.heappush(open_set, (h_fn(neighbor), neighbor))

return None # No path found
```

Pros:

- Super easy to implement and fast if the heuristic is accurate
- Can use less memory than regular BFS or A* (not guaranteed)

Cons:

- Not optimal if the heuristic is misleading it may pick a worse path
- · Not complete may end up in a cycle or dead end

A*

"It's just Dijkstra's but we also factor in the heuristic so that we don't explore paths that are obviously farther away from the goal."

A* is similar to Dijkstra's but when we calculate costs we also factor in a heuristic so c(n) = g(n) + h(n). Where g(n) is the normal Dijkstra's cost.

```
open_heap = []
g_score = default_inf()
g_score[start] = 0
heapq.heappush(open_heap, (h(start, goal), start)) # f = g + h = h at start

while open_heap:
    f_curr, current = heapq.heappop(open_heap)

if current == goal:
    return reconstruct_path(...)

# stale entry check: if f_curr > g_score[current] + h(current, goal): continue

for neighbor in neighbors(current):
    tentative_g = g_score[current] + cost(current, neighbor)
    if tentative_g < g_score[neighbor]:</pre>
```

```
g_score[neighbor] = tentative_g
came_from[neighbor] = current
f_neighbor = tentative_g + h(neighbor, goal)
heapq.heappush(open_heap, (f_neighbor, neighbor))
```

Implementation notes:

- f_cost is used only to order the min heap
- We compare only g cost scores when deciding to update path parents
- In practice, a minimum g_cost tracker is needed as well to detect stale heap entries (this must be in a dict and in each heap entry)
 - We may push multiple entries of the same node into the heap
 - Only the lowest cost one is up to date (valid)

How do we choose a heuristic function?

- 1. The heuristic MUST be admissible.
- 2. The heuristic SHOULD be consistent.

The heuristic function h(n) is always defined as an estimate of the cheapest cost from n to the goal node.

Admissibility

The heuristic function $must\ be\ admissible$ - it must never **over** estimate the cost of the cheapest path from n to the goal.

```
In other words: h(n) \leq \text{true\_optimal\_cost}(n, \text{goal node}) = h^*(n)
```

If the heuristic is admissible, then A* is optimal. (Theorem of A* Optimality)

What happens if it over estimates?

- · A* thinks a good path is bad
- Explores a bad path first, ignoring a good one

Constructing an admissible heuristic

- 1. Define a relaxed problem simplify or remove constraints on the original
- 2. Solve the relaxed problem without search
- 3. The cost of the optimal solution to the relaxed problem is an admissible heuristic for the original problem
 - Why? The cost of a solution with less constraints should usually be smaller than that of the original problem, which satisfies the admissibility requirement $h(n) \le h^*(n)$
 - · We should also prefer heuristics that are very different for different states

Some Heuristic Functions for 8-Puzzle

► Manhattan Distance Heuristic:

The sum of the Manhattan distances of the tiles from their goal positions

► Misplaced Tile Heuristic:

The number of tiles that are NOT in their goal positions

Both heuristic functions are admissible.

Initial State

5	3	
8	7	6
2	4	1

Goal State

1	2	3
4	5	6
7	8	

2 Heuristic Search-20250526175602959.webp

Dominating heuristic

Assume we have two admissible heuristics $h_a(n)$ and $h_b(n)$.

 $h_a(n)$ dominates $h_b(n)$ if the heuristic output for $h_a(n)$ is \geq the output from $h_b(n)$ for all possible n.

If a heuristic A dominates another heuristic B, the dominating heuristic A is better.

Consistency

A heuristic is consistent if it satisfies the *monotone condition* - for any two neighbor nodes n and m:

$$h(m) - h(n) \le \text{edge_cost(m,n)}$$

A* with multi-path pruning is only optimal if there is consistent heuristic function.

Consistency => admissibility

Admissibility != consistency (but usually, admissible heuristics are consistent)

Implications of consistency

If you find a heuristic which is consistent (and thus also admissible), then you get the following guarantees:

- 1. A* never needs to revisit nodes
- 2. A* becomes simpler and much more optimal

Cycle pruning

Check that the nodes we are trying to visit are not already on the path.

• Time complexity: Linear if using a list, O(1) using a list and stack

Multipath pruning

Discard new paths to a node if we already found one.

- Use a visited set for O(1) pruning
- · Saves computation but increases space consumption

Can multipath pruning cause a search algorithm to fail to find the optimal solution? Say we keep the first path and prune the rest, but the first path is not the most optimal.

- LCFS NO. Dijkstra's will always find the least cost path first
- A* YES. The first path may not be optimal A* with multi-path pruning is NOT optimal

Making A* work with multipath pruning

To make A* work with multipath pruning, the heuristic must be consistent (satisfies the monotone condition)

Monotone condition: for all neighbor pairs m and n,

$$h(m) - h(n) \le edge_cost(m,n)$$

Why this is the case:

When does multi-path pruning not work?

Assuming we have a frontier $(s \to n, \cdots, s \to n')$, and we are exploring node n.

- ▶ If there exists another path through n' to n with lower f-value.
- ▶ 1) we have h(n) + cost(n) > h(n) + cost(n') + cost(n', n), e.g. cost(n) cost(n') > cost(n', n)
- ▶ 2) node n is already explored, so $h(n) + cost(n) \le h(n') + cost(n')$
- Combine these two, we have $h(n') h(n) \ge cost(n) cost(n') > cost(n', n)$
- Such scenario only happens when there exists two nodes n and n' with h(n') h(n) > cost(n', n).

2 Heuristic Search-20250526181534955.webp