PUBH 526

Topic 1, Part 3: Regression Review

Prof. Nilupa Gunaratna

Department of Public Health

Equation for a Line

Simple Linear Regression

 Σ residuals = ? Σ (residuals)² = ? Sum of Squares Why do we care about the latter?

Simple Linear Regression

- A local food bank conducted a workshop on healthy meal planning and family nutrition
- All participants took:
 - A pre-test to assess their prior knowledge
 - A post-test to assess their knowledge after attending the workshop
- For each test, the maximum score was 100 points
- The workshop coordinator expected that participants who started out with better scores on the pre-test would do better on the post-test
 - ➤ Linear regression: Y=post-test score, X=pre-test score

Always Visualize Your Data

Regression Results

Source	DF	Sum of Squares	Mean Square	F value	Pr>F
Model	1	SSR	MSR = SSR/1	F_value = MSR/MSE	P(F>F_value,1,n-2)
Error	n-2	SSE	MSE = SSE/(n-2)		
Total	<u>n</u> 1	SSTotal			

MS	= SS	/ df
		,

 H_0 : slope = 0

Analysis of Variance						
Source	DF	Sum of Squares		F Value	Pr > F	
Model	1	4594.25136	4594.25136	31.45	<.0001	
Error	27	3944.57622	146.09542			
Corrected Total	28	8538.82759				

Regression Results

 How many participants took the workshop? h=29

What is the estimated regression model?

Posttest = 30.2 + 1.2*pretest

Conclusion?

 Was the coordinator correct. that participants who start out with better scores on the pretest do better on the post-test? How do you know? Tes, $\beta_1 > 0$ $\beta_1 = 1.2$, positive p < 0.05Did participants actually learn

anything? How much did they learn? Yes. Bo= 30.2, even when prefest to, final test is

• what does the positive slope actually mean? Do you think the coordinator was happy with this finding? Yes. For every 1 point 1 in pretest, post test 1 by 1.2 points.

How could the coordinator use this information?

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	1	4594.25136	4594.25136	31.45	<.0001	
Error	27	3944.57622	146.09542			
Corrected Total	28	8538.82759				

Root MSE	12.08699	R-Square	0.5380
Dependent Mean	63.37931	Adj R-Sq	0.5209
Coeff Var	19.07088		

Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t		
Intercept	1	30.19458	6.32901	4.77	<.0001		
pretest	1	1.20899	0.21559	5.61	<.0001		

o Turget future norkshops to improve lower-scoring participants.
o show stakeholders that lengagement, 1 baseline knowledge, 1 gains.

Assumptions

iid: independent and identically distributed

- Observations (participants' scores) are independent
- In fitting the model:

posttest_i =
$$\beta_0$$
 + β_1 * pretest_i + ϵ_i , i =1, 2, ..., 29 Samples

all ϵ_i follow the same normal distribution with mean 0 and a constant standard deviation, i.e.,

$$\varepsilon_i \sim \text{iid N}(0,\sigma^2)$$
 for all *i*

• Namality of error terms, not predictors

Should the independent variable be normally distributed? No.

only residuals need to be normal

• Should the dependent variable be normally distributed? No

Model Diagnostics

- Residual plots:
 - No particular pattern
 - Linear model probably ok
 - Constant variance

Model Diagnostics

- Potential outlier?
 - Low leverage (not outlying with regard to its X value)
 - High Cook's D (may be influencing our estimated regression line)
 - Return to your plot of the data to explore further
- Residual quantile plot: errors look normal (except perhaps for one outlier)

Hello, SAS...

• "01 regression example.sas"