(a) (10 points) Find the inverse of the matrix

$$A = \left[\begin{array}{rrrr} 2 & 0 & 0 & -1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 2 & -1 \\ -1 & -1 & -1 & 2 \end{array} \right].$$

(b) (2 points) Use A^{-1} to solve the linear system of equations $A\mathbf{x} = (1, -1, 1, -1)$.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1/2 & 1/2 & 1 \\ 0 & 1 & 0 & 0 & 1/2 & 1 & 1/2 & 1 \\ 0 & 0 & 1 & 0 & 1/2 & 1/2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 2 \end{bmatrix} \xrightarrow{A^{-1} = \begin{bmatrix} 1/2 & 1/2 & 1 \\ 1/2 & 1/2 & 1 & 1 \\ 1/2 & 1/2 & 1 & 1 \\ 1/2 & 1/2 & 1 & 1 \\ 1/2 & 1/2 & 1 & 1 \\ 1/2 & 1/2 & 1 & 1 \end{bmatrix}}$$

(b)
$$\overrightarrow{X} = \overrightarrow{A}^{-1} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 1 \\ 1/2 & 1/2 & 1 \\ 1/2 & 1/2 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \\ -1 \end{bmatrix}$$

$$\frac{1}{X} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$

2. (10 points) Find the determinants of the following matrices:

$$A = \begin{bmatrix} 101 & 201 & 301 \\ 102 & 202 & 302 \\ 103 & 203 & 303 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & t & t^2 \\ t & 1 & t \\ t^2 & t & 1 \end{bmatrix}$$

Also determine whether A is invertible or not, and find all values of t such that B is not invertible.

$$det B = \begin{vmatrix} t & t \\ t^2 & t \end{vmatrix} = 1 \begin{vmatrix} t & t \\ t^2 & t \end{vmatrix} + t^2 \begin{vmatrix} t & t \\ t^2 & t \end{vmatrix}$$

$$=1(1-t^{2})-t(t-t^{3})+t^{2}(t^{2}+t^{2})$$

$$=(1-t^2)(1-t^2)=[(1-t^2)^2, \text{ not invertible if } t=\pm 1$$

3. (14 points) Consider the matrix

$$A = \left[\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ -1 & 1 & 0 & 1 \\ 4 & -2 & 2 & -2 \end{array} \right].$$

- (a) Find the reduced row echelon form R of A.
- (b) Find bases for the null space, row space, column space, and left null space of A.

(b) Null space: Solve
$$\begin{cases} x_1 + x_3 = 0 \\ x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\overrightarrow{X} = \begin{bmatrix} -x_3 \\ -x_3 - x_4 \\ x_3 \\ x_1 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$
Bosis for N(A)

Column space: Linearly independent pivot columns in A: Basis of C(A): { []] } Row Space: Non-zero rows of R Left null spoce: dim = 4-ronk(A) = 2, N(AT) = C(A)T If $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ is a column space vector, calculations for part (a) show that $\begin{cases} -2b_1 + b_2 + b_3 = 0 \\ 6b_1 - 4b_2 + b_4 = 0 \end{cases}$ ore two linearly independent vectors in ((A)T =N(AT), so they are a basis for MAT).

4. (10 points) Choose a basis for \mathbb{R}^4 from among the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf{v}_5 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Then show how to write the remaining vector as a linear combinations of your basis vectors.

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
-1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & -1 & 0 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0$$

- 5. (a) (5 points) If all entries of A and A^{-1} are integers, prove that $\det A = 1$ or -1. Find a 2×2 example of such an A with no zero entries. *Hint*: What is $\det A$ times $\det A^{-1}$?
 - (b) (5 points) Suppose (x, y, z) and (1, 1, 0) and (1, 2, 1) lie on the same plane that goes through the origin. What determinant must be zero, and what equation does this give for the plane?

(a)
$$(\det A)(\det A^{-1}) = \det(AA^{-1}) = \det I = 1$$
, so $\det A^{-1} = \det A$. Also, $\det A$ is so and $\det A^{-1}$ are both integers since A , A^{-1} have integer entries. The only integers with integer reciprocals are ± 1 , so $\det A = \pm 1$ or ± 1 .

 2×2 example: $A = \begin{bmatrix} +3 \\ 1 & 1 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} 1 & -3 \\ +(1) & -3(1) \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ -1 & 4 \end{bmatrix}$

(b) Since they are in the same plans, they are linearly dependent, so $\begin{bmatrix} x & y & z \\ 1 & 1 & 0 \end{bmatrix}$ is not invertible, and $\begin{bmatrix} x & y & z \\ 1 & 1 & 0 \end{bmatrix}$ This gives the equation:

$$\times \left| \frac{10}{21} \right| - \left| \frac{10}{11} \right| + \left| \frac{11}{12} \right| = 0$$

- 6. (a) (8 points) Find the best least squares line C + Dt to fit the data points (-1, 2), (0, 2), (1, -1), (2, 0), and (3, -2).
 - (b) (2 points) Sketch a graph of the data points and your least squares line.
 - (c) (2 points) Find the least squares error $\|\mathbf{e}\|$ of the best fit line.

(a) Try to solve:
$$C + (-1)D = 2$$

 $C + 0D = 2$
 $C + 1D = -1$
 $C + 1D = 0$
 $C + 1D = 0$

No solution, instead solve normal equations:

$$\begin{bmatrix} 65 \\ 515 \end{bmatrix} \begin{bmatrix} 0 \\ D \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ D \end{bmatrix} = \frac{1}{5(15)-5(5)} \begin{bmatrix} 15 - 5 \\ -9 \end{bmatrix}$$

$$=\frac{1}{10}\begin{bmatrix}3 & -1\\-1\end{bmatrix}\begin{bmatrix}1\\-9\end{bmatrix}=\frac{1}{10}\begin{bmatrix}12\\-10\end{bmatrix}=\begin{bmatrix}6/6\\-1\end{bmatrix}$$

(c) Eyror
$$\|\hat{\mathbf{R}}\| = \| \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} = \| \begin{bmatrix} 1/5 \\ -1/5 \\ 6/5 \\ -4/5 \\ -1/5 \end{bmatrix} \| \begin{bmatrix} 1/5 \\ -4/5 \\ -2/5 \end{bmatrix} \| \begin{bmatrix} 1/5 \\ -4/5 \\ -2/5 \end{bmatrix} \| \begin{bmatrix} 1/5 \\ -4/5 \\ -2/5 \end{bmatrix} \| \begin{bmatrix} 1/5 \\ -4/5 \end{bmatrix} \| \begin{bmatrix} 1/5 \\ -4/5$$

7. Consider the symmetric matrix
$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$
.

- (a) (10 points) Find all eigenvalues of A and an orthonormal basis of \mathbf{R}^3 consisting of eigenvectors for A.
- (b) (2 points) Show how to write $A = Q\Lambda Q^T$ where Q is an orthogonal matrix and Λ is diagonal.
- (c) (4 points) Calculate $A^N \mathbf{x}$ for any vector $\mathbf{x} = (x, y, z)$ and any positive integer N.

(a)
$$\begin{vmatrix} 1-\lambda & -1 \\ -1 & 1-\lambda & -1 \end{vmatrix} = (1-\lambda) \left((1-\lambda)^2 - 1 \right) - (-1) \left(-1+\lambda + 1 \right) + 1 \left(1-1+\lambda \right)$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda \right) + 2\lambda = 1$$

$$= (1-\lambda) \left(\lambda^2 - 2\lambda$$

Bosis:
$$\vec{q}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\vec{q}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{q}_3 : Gram-Schmidt$

$$\vec{q}_4 = \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}$$

$$= \frac{1}{\sqrt{6}} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \text{Bosis:} \quad \begin{cases} 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}$$

$$= \frac{1}{\sqrt{6}} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \text{Bosis:} \quad \begin{cases} 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1/\sqrt{2} \end{bmatrix} \quad \text{whit} \quad \vec{q}_3 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1/2 \\ 1$$

- 8. Consider the matrix $A = \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix}$.
 - (a) (5 points) Show that A is not diagonalizable.
 - (b) (9 points) Find the singular value decomposition $A = U\Sigma V^T$.
 - (c) (2 points) What is the maximum amount by which A stretches vectors in \mathbb{R}^2 , and what is one vector that A stretches the most? That is, find the maximum value of $||A\mathbf{x}||/||\mathbf{x}||$, and find one vector \mathbf{x} such that this ratio reaches the maximum value.

(a) Eigenvalues:
$$\left| \frac{-2-\lambda}{-1} \right|^{2} = -(\lambda+2)(2-\lambda) - (-4) = -(\lambda+2)(2-\lambda) - (-4) = 0$$

Eigenvectors:
$$\begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \sim x_1 = 2x_2 \xrightarrow{9} x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

only one independent eigenvector, not enough for a basis of 182, so A is not diagonalizable.

(b) Singular values =
$$\sqrt{0}$$
 of Figenvalues of ATA
ATA = $\begin{bmatrix} -2 & -1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & -10 \\ -10 & 20 \end{bmatrix}$ = $\begin{bmatrix} 5 & -10 \\ -10 & 20 - \lambda \end{bmatrix}$ =

$$(5-1)(20-1)-100=12-251=0 \rightarrow 1=0,25$$

 $\sigma=0,5$

 $\sigma_1 = 5$, $\nabla_1 = \text{eigenvector for } \lambda = 25$:

$$\begin{bmatrix} -20 & -10 \\ -10 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \sim 2x_1 + x_2 = 0 \sim \vec{Y}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$\sigma_{2}=0$$
, $\vec{\nabla}_{2}=\text{elgenvector for } \lambda=0^{29}$

$$\begin{bmatrix} 5 & -10 \\ -10 & 20 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{} x_{1}-2 \times_{2}=0 \xrightarrow{} 0 \xrightarrow{} \vec{\nabla}_{2}=\frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\vec{U}_{1} = \frac{1}{\sqrt{15}} A \vec{V}_{1} = \frac{1}{\sqrt{15}} \left[-\frac{2}{\sqrt{15}} \frac{4}{\sqrt{15}} \right] = \frac{1}{\sqrt{15}} \left[-\frac{10}{\sqrt{15}} \right] = \frac{1}{\sqrt{15}} \left[-\frac{2}{\sqrt{15}} \right] = \frac{1}{\sqrt{15}} \left[$$

$$So A = \begin{bmatrix} \overline{u}_1 \ \overline{u}_2 \end{bmatrix} \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} \overline{v}_1 \\ \overline{v}_2 \end{bmatrix} = \begin{bmatrix} -2/45 \ 1/45 \end{bmatrix} \begin{bmatrix} 1/45 \ 0 \end{bmatrix} \begin{bmatrix} 1/45 \ -2/45 \end{bmatrix}$$

(c) Max stretch foctor = max singular value = 5
Vectors that are stretched the most: span(
$$\overrightarrow{V_1}$$
), so
$$\overrightarrow{X} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 would be an example