§ 21. 双対空間

輪講#10

2025-03-24

一次形式と双対空間

Remark もうベクトルを太字にしません.

体 K 上の線型空間 V から,新たな線型空間を作り出す.

線型写像 $f:V\to K$ を,**1次形式(線型形式,線型汎関数)**という.

定義:

$$V^* = \operatorname{Hom}(V, K) = \{$$
線型写像 $f: V \to K\}$

は K 上の線型空間をなし、これを V の $\mathbf{双対空間}(\mathbf{dual\ space})$ という.

Remark 線型空間 V,W に対し,線型写像 $V \to W$ 全体のなす線型空間を $\operatorname{Hom}(V,W)$ と書くことがある.準同型 homomorphic の頭文字.

§ 21. 双対空間 2025-03-24 1/16

一次形式の例

例: $f_a:(x_1,\cdots,x_n)\mapsto a_1x_1+\cdots+a_nx_n;K^n\to K$ は K^n 上の一次形式. $a\in K^n$ に f_a を対応させる写像は可逆.

例: 実関数 f(x) に対して $f(a) \in \mathbb{R}$ を対応させる写像は $C(\mathbb{R})$ 上の一次形式.

§ 21. 双対空間 2025-03-24 2 / 16

双対基底

 $n < \infty$ を V の次元とする.

V の基底 x_1, \dots, x_n に対し, 次によって双対空間 V^* の n 個の元 f_1, \dots, f_n を定める.

$$f_i(x_j) = \delta_{ij}.$$

定理: f_1, \dots, f_n は V^* の基底をなす.特に, $\dim V = \dim^* = n$.

- ・線型独立性: $\sum_i c_i f_i = 0_{V^*}$ とする.両辺を x_j に適用すると $c_j = 0$ を得る.
- ・ 生成すること:任意の $f\in V^*$ に対し, $f=\sum_i f(x_i)f_i$ なる表示が定まる.実際, $x=\sum_j c_j x_j \in V$ を代入すると,

$$f(x) = f\left(\sum_i c_i x_i\right) = \sum_i f(x_i)c_i = \sum_i f(x_i)f_i(x).$$

§ 21. 双対空間 2025-03-24 3 / 16

双対基底

定義: V^* の基底 f_1, \dots, f_n を x_1, \dots, x_n の双対基底(dual basis)という.

Remark V と V^* の次元は等しいから,2 つの線型空間は同型である.つまり,全単射 $V\stackrel{\sim}{\longrightarrow} V^*$ が存在する.

伏線 $V\stackrel{\sim}{\to} V^*$ は基底に依存した同型である.実際, $K=\mathbb{R}$ 上の線形空間 $V=\mathbb{R}$ の基底として 1 をとったとき, $f_1=\mathrm{id}$ だが,基底として 2 をとると, f_2 は 1/2 倍写像になる.

Remark 無限次元線型空間においても双対空間は存在するが,必ずしも基底が存在しないかもしれないので, $\dim V = \dim V^*$ は有限次元でないと言えない.ここまで有限次元を仮定していたが,以降この仮定を取り払う.

§ 21. 双対空間 2025-03-24 4 / 16

双線型形式

V と V^* がいずれも線型空間であるということは,

f(x) という形式において f と x いずれにも線型性があるということ.

 $\sim \sim$ 双線型形式 $b:(f,x)\mapsto f(x)$ を考えることができる.

 $\langle x \rangle > f, x$ は単なるベクトルであり,もはや関数 / 引数という違いは意識されない.

引数がペアなのは扱いにくいので,片方を固定して1変数の線型写像にしてみる.

$$\begin{aligned} \operatorname{app}_f &= b(f,\cdot): V \to K, \\ \operatorname{ev}_x &= b(\cdot,x): V^* \to K. \end{aligned}$$

b が非退化な双線型形式だとすると,

$$f \mapsto \operatorname{app}_f; V^* \to V^*,$$

 $x \mapsto \operatorname{ev}_x; V \to (V^*)^*$

はいずれも同型.前者は恒等写像なので,後者について考察してみる.

§ 21. 双対空間 2025-03-24 5 / 16

第2双対空間

K 上の線型空間 V の双対空間 V^* 自身も線型空間であるから,その「双対空間の双対空間」を考えることができる.

定義: $V^{**} = (V^*)^*$ を V の第 2 双対空間(bidual space)という.

$$e_V: x \mapsto \operatorname{ev}_x$$
 は同型 $V \stackrel{\sim}{\to} V^{**}$ を定める.

$$e_V: \qquad V \longrightarrow V^{**}$$

$$x \longmapsto \operatorname{ev}_x : V^* \longrightarrow K$$

$$f \longrightarrow f(x)$$

§ 21. 双対空間 2025-03-24 6 / 16

 $\operatorname{ev}_r:V^*\to K$

(さすがに線型写像でしょう)と思いながらここまで来たので,このあたりで証明.

定理: $\operatorname{ev}_x:V^* o K$ は線型写像である.

Proof:

和について 任意に $f,g \in V^*$ をとる.このとき,

$$\operatorname{ev}_x(f+g) = (f+g)x = f(x) + g(x) = \operatorname{ev}_x(f) + \operatorname{ev}_x(g).$$

スカラー倍について 任意に $c \in K, f \in V^*$ をとる.このとき,

$$\operatorname{ev}_x(cf) = (cf)(x) = c \cdot f(x) = c \cdot \operatorname{ev}_x(f).$$

§ 21. 双対空間 2025-03-24 7 / 16

$$e_V:V\to V^{**}$$

定理: $e_V: x \mapsto \operatorname{ev}_x$ は線型写像である.

Proof:

和について 任意に $x,y \in V$ をとる.このとき,

$$\begin{split} e_V(x+y) &= \operatorname{ev}_{x+y} = f \mapsto f(x+y) = f \mapsto (f(x)+f(y)) \\ &= (f \mapsto f(x)) + (f \mapsto f(y)) = \operatorname{ev}_x + \operatorname{ev}_y = e_V(x) + e_V(y). \end{split}$$

スカラー倍について 任意に $c \in K, x \in V$ をとる. このとき,

$$\begin{split} e_V(cx) &= \operatorname{ev}_{cx} = f \mapsto f(cx) = f \mapsto c \cdot f(x) \\ &= c \cdot (f \mapsto f(x)) = c \cdot \operatorname{ev}_x = c \cdot e_V(x). \end{split}$$

§ 21. 双対空間 2025-03-24 8 / 16

 $e_V:V\to V^{**}$

定理: e_V は単射である. V が有限次元ならば,さらに同型でもある.

Proof: $x \neq 0$ に対して $\operatorname{ev}_x \neq 0$ を示す. 直和分解 $V = Kx \oplus V'$ をとり,一次形式 p を部分空間 Kx への射影 $V \to Kx$ と $Kx \ni kx \mapsto k \in K$ の合成とすると, $\operatorname{ev}_x(p) = 1$ だから, $\operatorname{ev}_x \neq 0$ である.

また,V が有限次元なら e_V は基底を基底にうつすから同型である.実際,V の基底 x_1, \cdots, x_n の双対基底 f_1, \cdots, f_n に対し, $e_V(x_i)(f_j) = f_j(x_i) = \delta_{ij}$ だから, $e_V(x_1), \cdots, e_V(x_n)$ は f_1, \cdots, f_n の双対基底になっている.

§ 21. 双対空間 2025-03-24 9 / 16

標準的な同型

線型空間に対して基底をとるときはつねに恣意性が伴う.

Remark K^n に対しては標準基底が"全会一致"の基底なように思われるが,例えば関数空間や多項式の空間を考えてみると"全開一致"の基底をとるのは自明でない.

 $V \to V^*$ の同型は基底に依存していたという意味で,**標準的**でない.

一方, $e_V:V\stackrel{\sim}{\to} V^{**}$ は基底に依存せず,**標準的(自然,cannonical)な同型**である.

V と V^{**} は集合論的に等しいわけではないが,二つの集合の間に標準的な同型があるという意味で,リベラルに $V=V^{**}$ と書くこともある.

§ 21. 双対空間 2025-03-24 10 / 16

標準的な同型による同一視

例: 有限次元線型空間 V,W とその基底 E,F がある. 線型写像と行列は異なるものだが,「E,F に関する表現行列をとる」という標準的な同型 $\operatorname{Hom}(V,W)\stackrel{\sim}{\to} M_{mn}$ が存在するため,これらを同一視したりする.

例: 線型空間 V とその部分空間 W_1,W_2 について,**集合論的な直和** $W_1 \oplus W_2 = \{(w_1,w_2)\}$ と和 $W_1+W_2=\{w_1+w_2\}$ はいずれも線型空間をなす.

 $W_1 \cap W_2 = \{0\}$ が成り立っているとき, $+: (w_1,w_2) \to w_1 + w_2$ は標準的な同型 $W_1 \oplus W_2 \overset{\sim}{\to} W_1 + W_2$ を与えるから,二つの空間を同一視して**部分空間のとして の直和** $W_1 \oplus W_2$ が定義される.

§ 21. 双対空間 2025-03-24 11 / 16

双対写像

定理: V, W を K 上の線型空間とし, $f \in \text{Hom}(V, W)$ とする.このとき, $\varphi \in W^*$ を $\varphi \circ f \in V^*$ に対応させる写像 $f^*:W^* \to V^*$ は線型写像である.

Proof:

和について 任意に $\varphi, \psi \in W^*$ をとる.このとき,

$$f^*(\varphi + \psi) = (\varphi + \psi) \circ f = \varphi \circ f + \psi \circ f = f^*(\varphi) + f^*(\psi).$$

スカラー倍について 任意に $c \in K, \varphi \in W^*$ をとる.このとき,

$$f^*(c\varphi) = (c\varphi) \circ f = c(\varphi \circ f) = cf^*(\varphi).$$

12 / 16 2025-03-24

双対写像

定義: 線型写像 $f:V\to W$ に対し,先の線型写像 $f^*:W^*\to V^*$ を**双対写像** (dual mapping)という.

§ 21. 双対空間 2025-03-24 13 / 16

双対写像の基本的な性質

定理:

- 1. $*:(V \to W) \to (V^* \to W^*)$ は線型写像.
- 2. $(id_V)^* = id_{V^*}$.
- 3. $(g \circ f)^* = f^* \circ g^*$. (反変性 contravariant)

Proof:

- 1. 略.
- 2.

3. $(g \circ f)^*(\varphi) = \varphi \circ g \circ f = f^*(g \circ \varphi) = f^*(g^*(\varphi)).$

§ 21. 双対空間 2025-03-24 14 / 16

線型写像の転置

定理: V, W の各基底 E, F に対し, E^*, F^* をそれぞれの双対基底とする. 線型 写像 $f: V \to W$ の E, F に関する表現行列を A とすると, $f^*: W^* \to V^*$ の F^*, E^* に関する表現行列は A^T である.

Proof: 次の図式が可換であることによる.

§ 21. 双対空間 2025-03-24 15 / 16

線型写像の転置

実際,それぞれの可換性は次のようにして示される.

上側の台形 表現行列の定義から $(A \times) \circ \varphi_E = \varphi_F \circ f$ で,両辺の双対をとる.

右側の三角形 $E=(x_1,\cdots,x_n), E^*=(f_1,\cdots,f_n)$ とする. $a^{\mathsf{T}}\in (K^n)^*$ に対して,

$$(\varphi_{E^*} \circ (\varphi_E)^*)(a^\mathsf{T}) = \varphi_{E^*}(a^\mathsf{T} \circ \varphi_E) = \varphi_{E^*}\left(\sum_i a_i f_i\right) = a.$$

左側の三角形 右側の三角形と同様.

下側の三角形 $a^{\mathsf{T}} \in (K^m)^*$ として, K^n 上の等式 $(A^{\mathsf{T}} \circ \mathsf{T})(a^{\mathsf{T}}) = (\mathsf{T} \circ (A \times)^*)(a^{\mathsf{T}})$ であればよい.両辺は $A^{\mathsf{T}}a$ において一致する.

Point 上・右・左の可換性により $V=K^n, W=K^m$ で基底が標準基底の場合に帰着できるということを示している.

Remark この性質に由来して,双対写像のことを転置写像と呼ぶこともある.

§ 21. 双対空間 2025-03-24 16 / 16