

UTILITY PATENT APPLICATION TRANSMITTAL

Attorney Docket No.

CY-0011

(New Nonprovisional Applications Under 37 CFR § 1.53(b))

JC712 U.S. PTO
06/23/00

06-26-00

JC844 U.S. PTO
09/602938
06/23/00JC844 U.S. PTO
09/602938
06/23/00

TO THE ASSISTANT COMMISSIONER FOR PATENTS:

Transmitted herewith is the patent application of () application identifier or (X) first named inventor, Michael T. Moore, entitled Method and Apparatus for Programmable Logic Device (PLD) Built-In-Self-Test (BIST), for a(n):

(X) Original Patent Application.

() Continuing Application (prior application not abandoned):

() Continuation () Divisional () Continuation-in-part (CIP)
of prior application No: _____ Filed on: _____

() A statement claiming priority under 35 USC § 120 has been added to the specification.

Enclosed are:

(X) Specification; 25 Total Pages. (X) Drawing(s); 8 Total Sheets.

(X) Oath or Declaration:

(X) A Newly Executed Combined Declaration and Power of Attorney:

(X) Signed. () Unsigned. () Partially Signed.

() A Copy from a Prior Application for Continuation/Divisional (37 CFR § 1.63(d)).

() Incorporation by Reference. The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied, is considered as being part of the disclosure of the accompanying application and is hereby incorporated herein by reference.

() Signed Statement Deleting Inventor(s) Named in the Prior Application. (37 CFR § 163(d)(2)).

() Power of Attorney. (X) Return Receipt Postcard.

() Associate Power of Attorney. (X) A Check in the amount of \$ 690.00 for the Filing Fee.

() Preliminary Amendment. () Information Disclosure Statement and Form PTO-1449.

() A Duplicate Copy of this Form for Processing Fee Against Deposit Account.

() A Certified Copy of Priority Documents (if foreign priority is claimed).

() Statement(s) of Status as a Small Entity.

() Statement(s) of Status as a Small Entity Filed in Prior Application, Status Still Proper and Desired.

() Other: _____

CLAIMS AS FILED				
FOR	NO. FILED	NO. EXTRA	RATE	FEE
Total Claims	<u>20</u>	0	\$18.00	\$ 0.00
Independent Claims	<u>3</u>	0	\$78.00	\$ 0.00
Multiple Dependent Claims (if applicable)				\$0.00
Assignment Recording Fee				\$0.00
Basic Filing Fee				\$690.00
			Total Filing Fee	\$ 690.00

Pursuant to 37 CFR § 1.25, at any time during the pendency of this application, please charge any fees required or credit any overpayment to Deposit Account 50-0742.

Respectfully submitted,

By: Bradley T. Sako
Bradley Sako, Attorney of Record, Reg. No.37923

Date: JUNE 23, 2006

Correspondence Address:

Bradley T. Sako, Patent Attorney
3954 Loch Lomand Way
Livermore, CA 94550
Phone: 1-408-839-1082
Fax: 1-925-961-0184

I hereby certify that this is being deposited with the U.S. Postal Service "Express Mail Post Office to Addressee" service under 37 CFR § 1.10 on the date indicated below and is addressed to:

Assistant Commissioner for Patents
Box Patent Application
Washington, D.C. 20231

By: Bradley T. Sako

Typed Name: Bradley Sako

Express Mail Label No.: EK305104938US

Date of Deposit: JUNE 23, 2006

**METHOD AND APPARATUS FOR PROGRAMMABLE LOGIC DEVICE (PLD)
BUILT-IN-SELF-TEST (BIST)**

TECHNICAL FIELD

5 The present invention relates generally to programmable logic devices (PLDs), and more particularly to built-in-self-tests for PLDs.

BACKGROUND OF THE INVENTION

Programmable logic has increasingly become a valued resource for system designers.

10 Programmable logic can allow for a custom logic design to be implemented without the initial cost, delay and complexity of designing and fabricating an application specific integrated circuit (ASIC).

Currently, there are many variations of programmable logic, including simple programmable logic devices (SPLDs), complex PLDs (CPLDs), and field programmable gate arrays (FPGAs). Such devices typically include programmable logic circuits that operate in conjunction with corresponding memory circuits. The particular function of a logic circuit can be determined according to data stored in a corresponding memory circuit. Some programmable logic arrangements can include switching circuits (also called programmable interconnects) that can enable and/or disable switching paths according to data stored in a memory circuit. A memory circuit is typically a nonvolatile memory circuit, such as a programmable read-only-memory (PROM), an electrically programmable ROM (EPROM), and/or electrically erasable and programmable ROM (EEPROM), including “flash” EEPROMs.

A nonvolatile memory circuit can be formed on a different integrated circuit than programmable logic. That is, a programmable logic circuit die can receive configuration information from an associated nonvolatile memory circuit that may be on the same die or a

separate die.

In addition to the above basic structure, programmable logic arrangements may have alternate structures. For example, while a system may include a separate programmable logic device and an EEPROM memory circuit, some processes may be capable of forming 5 nonvolatile devices and conventional volatile devices on the same integrated circuit. In such a case, the nonvolatile memory circuit is “on-chip” (or integrated) with a volatile programmable logic circuit.

To configure programmable logic, a memory circuit within the device can be programmed with data values that give the desired functionality. In some arrangements, data 10 can be loaded in a compressed form. The programmable logic may then include a decompression algorithm for decompressing an incoming data bit stream as it is stored within a memory circuit.

Like other integrated circuit devices, the manufacture of programmable logic can include a “front-end” and a “back-end.” The front end of programmable logic manufacturing 15 may include the fabrication of devices on a wafer. The back-end may include slicing wafers into dice, packaging the dice, and testing the resulting packages. With the increasing complexity of programmable devices, testing can become an important step in a manufacturing process.

Back-end testing may include a range of possible tests. For example, at one end of the 20 spectrum, such tests can be basic, checking for opens and shorts in the logic circuits of a programmable logic device. At the other end of the spectrum, such tests can check the particular operation of the logic circuits, including operational speed. Such test can allow non-failing devices to be categorized (binned) according their operating characteristics (e.g., speed).

In some arrangements, a tester can be loaded with a test program that exercises various functions of a programmable logic device. Such an approach can be time consuming as a tester must apply various input signals and wait for the resulting output signals. In addition, between different devices and/or different tests, test program data may have to be loaded into the tester.

5 One way to address the complexity, cost and delay in testing programmable logic has been to include self-test circuitry on the device itself. Such approaches have been referred to as “built-in-self-test” (BIST). Programmable logic with BIST capabilities can reduce test times. Instead of having a tester exercise various tests, such tests can be run on the chip itself, which is typically much faster. Programmable logic with BIST capabilities can further reduce the burden
10 on a tester. Instead of having a tester sequence through various functions, a tester may only have to read a pass or fail indication. Consequently, simpler, less expensive testers can be used.

A drawback to conventional programmable logic BIST has been the resulting area that BIST circuits require. Such additional area can increase the overall size of the resulting devices, increasing manufacturing costs. In particular, a typical BIST approach can include numerous
15 multiplexer circuits formed in the logic circuits that provide certain signal paths in a “normal” mode and different signal paths in a test mode. In addition, BIST circuits may include additional logic gates for logically combining various output signals to generate a test result. In addition to increasing overall area, the incorporation of such “hard” logic circuits into the existing logic circuits can add complexity to the design, complicating circuit layout and routing.

20 Added complexity arises out of the need to include such hard logic BIST circuits without adversely affecting normal mode signal propagation times.

To better understand the operation of the various embodiments of the present invention, the operation of a conventional programmable logic device with BIST capabilities will now be

described.

Referring now to FIG. 8A, a programmable logic assembly **800** is shown that includes a nonvolatile memory **802**, a volatile programmable logic device (PLD) **804**, and a test port **806**. As noted above, a conventional volatile PLD **804** can include area dedicated to normal logic circuits **804-0** and area dedicated to BIST circuits **804-1**. Of course, the areas **804-0** and **804-1** are conceptual representations, as BIST circuits are typically intermixed within the normal logic circuits. Areas **804-0** and **804-1** are provided to illustrate how conventional BIST approaches can result in larger integrated circuit areas.

FIG. 8A shows the initiation of a self-test operation for a programmable logic device **800**. A volatile PLD **804** can receive a self-test command. Such a command could be initiated in a variety of ways, including but not limited to, a particular combination of input values, an “overvoltage” applied to one or more particular pins, and/or upon power-up of the device. A self-test command may be issued by a number of sources. As but of few of the many possible examples, a self-test mode may be initiated by a tester machine, a user, and/or by a system in which a PLD is a part.

FIG. 8B shows a self-test operation result. A volatile PLD **804** can execute a self-test operation with internal BIST hard logic and generate one or more self-test results. In the particular example of FIG. 8B, a self-test result may be output by way of test port **806**. A self-test result could be provided to a tester machine, to a user, or to a system, as but a few examples.

In the event a self-test result indicates that a PLD **804** is functioning properly, the programmable logic device **804** may be configured as desired by a user. FIG. 8C shows a conventional programming operation. Configuration data may be entered that can establish a user-defined functionality for the PLD **804**. In particular, configuration data may be entered by

a user through test port **806** and programmed into a nonvolatile memory **802**. In one particular arrangement, configuration data can be entered in a compressed data stream. A PLD **804** may include hardware for decompressing such a data stream.

While a conventional assembly **600** such as that shown in FIGS. 8A to 8C can provide 5 BIST functionality, it comes at the cost of increased circuit area on a PLD **804**.

In light of the above discussion, it would desirable to arrive at some way of implementing self-test on a programmable logic device that does not result in undue increases in the area dedicated to built-in-self-test circuits.

It would desirable to arrive at some way of implementing self-test on a programmable 10 logic device that can be more economical than conventional approaches.

It would also be desirable to arrive at a way of testing programmable logic devices that does not necessarily require complex tester machines and/or programs.

SUMMARY OF THE INVENTION

The present invention includes a programmable logic assembly that may provide self-15 test capabilities in a compact package. A programmable logic assembly may include a volatile programmable logic device (PLD) and a nonvolatile memory that stores configuration data for the volatile PLD. A nonvolatile memory may be programmed with self-test configuration data that enables the volatile PLD to perform a self-test. If a volatile 20 PLD passes a self-test, user configuration data may then be programmed into the nonvolatile memory.

According to one aspect of the embodiments, a volatile PLD and a nonvolatile memory may be formed on separate integrated circuit dice.

According to another aspect of the embodiments, a volatile PLD and a nonvolatile memory may be formed on the same integrated circuit die.

According to another aspect of the embodiments, one nonvolatile memory on the same die as the volatile PLD may store self-test configuration data, while another nonvolatile
5 memory may store user configuration data.

According to another aspect of the embodiments, self-test configuration data may be stored on a mask programmable read-only-memory integrated with the volatile PLD. User configuration data can be stored on a different nonvolatile memory.

According to another aspect of the embodiments, self-test configuration data may be
10 stored on a particular sector of a nonvolatile memory. User configuration data may be stored in a different sector of the nonvolatile memory.

According to another aspect of the embodiments, a self-test may be executed when power is applied to the assembly.

15

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating a method of operating a programmable logic device according to the present invention.

FIGS. 2A to 2C are block diagrams showing a programmable logic device according to a first embodiment.

20 FIG. 3 is a diagram illustrating the operation of the first embodiment.

FIGS. 4A and 4B are block diagrams showing a programmable logic device according to a second embodiment.

FIG. 5 is a diagram illustrating the operation of the second embodiment.

FIGS. 6A to 6C are block diagrams showing a programmable logic device according to a third embodiment.

FIGS. 7A to 7D are block diagrams showing a programmable logic device according to a fourth embodiment.

5 FIGS. 8A to 8C are block diagrams illustrating the operation of a conventional programmable logic device.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Various embodiments will now be described in conjunction with a number of 10 diagrams. The embodiments set forth a programmable logic assembly that may include a volatile programmable logic device (PLD) that can provide a particular function according to configuration data. Built-in-self-test (BIST) data for a volatile PLD can be stored in a nonvolatile memory. The BIST data can enable a self-test of a volatile PLD circuit. In particular arrangements, when power is first applied to a programmable logic assembly, 15 BIST data is supplied to a volatile PLD to execute a self-test. Once the self-test is complete, a nonvolatile memory may be programmed with user configuration data.

Referring now to FIG. 1, the general operation of an embodiment is set forth in a flow diagram 100. A step 102 may include providing a nonvolatile memory that stores BIST data. BIST data may be configuration data for a PLD that enables the PLD to execute a self-test.

20 A step 104 may include applying BIST data to an associated volatile PLD, thereby placing the volatile PLD into a self-test configuration.

Once in a self-test configuration, a volatile PLD may execute a self-test operation (step 106) and either pass or fail the self-test (step 108). As shown in FIG. 1, if a self-test is

failed, a fail indication may be provided (step 110). If, however, a self-test is passed, user data for configuring the tested volatile PLD can be entered. In particular, user configuration data can be stored into a nonvolatile memory (step 112).

Referring now to FIGS. 2A to 2C and 3, a first embodiment of the present invention 5 will now be described. FIG. 3 is a flow diagram describing a method of testing a PLD according to a first embodiment. FIGS. 2A to 2C are a sequence of block diagrams corresponding to the method illustrated in FIG. 3.

As shown in FIG. 3, a method 300 may include providing an assembly that includes a 10 nonvolatile memory and volatile PLD (step 302). FIG. 2A shows an assembly 200 that includes a nonvolatile memory 202, a volatile PLD 204, and a test port 206. In one particular arrangement, a nonvolatile memory 202 may include an electrically erasable and programmable read-only-memory (EEPROM), such as a “flash” EEPROM. In addition, a volatile PLD 204 may be formed on a different integrated circuit die than a nonvolatile memory 202. As but a two of the many possible arrangements, a volatile PLD 204 and 15 nonvolatile memory 202 may be different dice assembled in the same package (e.g., multi-chip module, or the like). Alternatively, a volatile PLD 204 and nonvolatile memory 202 may in different packages on the same circuit board.

A method 300 may further include programming a nonvolatile memory with BIST data (step 304). As in the case of the embodiment of FIG. 1, BIST data in a nonvolatile 20 memory can place a corresponding volatile PLD 204 into a self-test configuration. In the example illustrated by FIG. 2A, BIST data can be initially loaded into a programmable logic device 200 in a compressed form (a BIST bit stream). Compressed BIST data may then be decompressed by a volatile PLD 204. Such an arrangement can allow BIST data to be

entered in a relatively fast fashion. A volatile PLD **204** may already include algorithms for decompressing the received BIST data stream, as such algorithms can be used to decompress conventional configuration data provided by a user.

Alternate approaches to programming BIST data may be possible. As but one
5 example, in the event a volatile PLD **204** and a nonvolatile memory **202** are separately packaged, a nonvolatile memory **202** could be loaded with BIST data before being incorporated into an assembly **200**. As another example, BIST data may be programmed directly from a port, such as a test port **206**, rather than through a volatile PLD **204**.

Referring once again to FIG. 3, BIST data programmed into a nonvolatile memory
10 may be provided to a corresponding volatile PLD (step **306**). FIG. 2B shows stored BIST data being provided to a volatile programmable logic device **204**. BIST data can place a volatile PLD **204** into a self-test configuration. Once in a self-test configuration, a self-test can be performed by a volatile PLD **204** (step **308**). In response to such a self-test, a volatile PLD **204** can generate a test result.

Such a self-test may be executed at various points in the manufacturing process. For
15 example, an assembly **200** may be created and then tested with a BIST function. In another example, an assembly **200** may be shipped to a user, and the user may test the assembly **200** using the BIST function of the invention. Of course, a built-in-self-test may include any of the various range of self-tests previously described (i.e., as simple as a test for opens and
20 shorts, or more complex tests, such as functionality tests and also parametric or performance tests that can rate the device for speed).

A self-test result can ease the burden on a tester machine, as a tester machine may only have to read a test result, rather than apply various test vectors and commands. In one

particular arrangement, a test port may be a JTAG (Joint Test Action Group) port that is compliant with the IEEE 1149.1 standard. Consequently, a volatile PLD **204** may include a JTAG architecture, including boundary scan registers and controller. In such an arrangement, self-test results may be shifted out according to conventional boundary scan techniques.

In other approaches a self-test may be initiated by other conventional means, including but not limited to, entering particular commands, applying one or more overvoltage signals, or when power is first an assembly **300**.

It is noted that while FIG. 2B shows BIST data being provided from a nonvolatile memory **202** to a volatile PLD **204** of the same assembly **200**, a nonvolatile memory **202** could provide BIST data to other devices. As but one example, a system may include a “separate” volatile PLD that may not include an associated nonvolatile memory. In such a case, BIST data from a nonvolatile memory **202** in an assembly **200** can be provided to such a separate volatile PLD placing it in a self-test mode. In addition, BIST data could be provided from a nonvolatile memory **202** in an assembly **200** to another nonvolatile memory.

As shown by step **310**, if a volatile PLD does not pass a self-test, it can provide a fail indication or the like (step **312**). However, if a PLD passes all self-tests, the PLD may then be used in a conventional fashion. More particularly, a nonvolatile memory **302** may be programmed with user configuration data (step **314**) which may overwrite some or all of the BIST data. Of course, such an operation may include an initial erase operation followed by a program operation that supplies configuration data to a nonvolatile memory **202**. Further, as in the case of BIST data, user configuration data may be programmed directly into a nonvolatile memory **202**, instead of through a volatile PLD **204**.

By pre-loading BIST data into a nonvolatile memory **202** of an assembly **200**, self-tests can be performed on a volatile PLD **204** which may reduce or eliminate the need for hard logic circuits on a PLD that are present in conventional approaches. In this way, built-in-self-test capabilities can be provided without substantially increasing the size of a 5 programmable logic device assembly.

While BIST data may be programmed into a nonvolatile memory device, such data may be established at an earlier point in the manufacturing process, resulting in BIST data that may be stored in a more permanent fashion. Such an arrangement is illustrated in a second embodiment shown in FIGS. 4A, 4B and 5. FIG. 5 is a flow diagram describing a 10 method of testing a PLD according to a second embodiment. FIGS. 4A and 4B are diagrams corresponding to the method illustrated in FIG. 3.

As shown in FIG. 5, a method **500** may include forming a nonvolatile memory with BIST data on a volatile PLD (step **502**). Referring now to FIGS. 4A and 4B, an assembly 15 **400** according to a second embodiment may include a first nonvolatile memory **402**, a volatile PLD **404**, and test port **406**. Unlike the first embodiment assembly **200** of FIGS. 2A to 2C, in a second embodiment **400**, BIST data **408** may be stored in a second nonvolatile memory **410** that can be different from the first nonvolatile memory **402**.

In one particular arrangement, a second nonvolatile memory **410** may be a mask programmable ROM formed on the same die as a PLD **404**. That is, a second nonvolatile 20 memory **410** may be integrated with a PLD **404**. In one particular configuration, a PLD **404** may include a mask programmable ROM as a second nonvolatile memory device **410**. A mask PROM may be programmed in a manufacturing step when a PLD **404** is initially formed. In many instances, a mask PROM may require less area than other nonvolatile

memories, such as EEPROMs, including flash EEPROMs. Further, mask PROMs may be more easily implemented into an existing manufacturing process for volatile logic circuits, such those included in volatile PLD **404**.

FIG. 4A shows stored BIST data stored in a second nonvolatile memory **410** being provided to the volatile PLD **404** in which it is formed. Such an operation can place a PLD **404** in a self-test configuration. As in the case of the first embodiment **200**, a self-test may then be performed that can carry out any of a number of the self-tests previously described. In one approach, BIST data stored in a second nonvolatile memory **410** may be automatically loaded upon power-up of the assembly **400** or PLD **404**.

Once BIST data from second nonvolatile memory **410** is loaded, a volatile PLD **404** may be placed in a self-test configuration, and a self-test may be executed (step **508**). FIG. 4A shows a volatile PLD **404** providing a test result in response to a self-test.

As noted in conjunction with FIG. 2B, BIST data could also be provided from a second nonvolatile memory **410** to a different volatile PLD or another nonvolatile memory (not shown).

As in the case of a first embodiment, if a volatile PLD does not pass a self-test, it can provide a fail indication or the like (step **512**). However, if a volatile PLD passes all self-tests, the PLD may then be configured in the same general fashion as the second embodiment previously described. More particularly, a first nonvolatile **402** may be programmed with user configuration data. This user configuration data may then be provided to a volatile PLD **404**. Further, as noted in conjunction with FIG. 2C, a first nonvolatile memory **402** may be programmed by way of volatile PLD **402** and/or directly by way of a port, such as test port **406**.

By storing BIST data in a second nonvolatile memory **402**, an assembly **400** according to a second embodiment can provide BIST capabilities with relatively small increases in die size with respect to conventional approaches that include hard logic for BIST capabilities. In this way, built-in-self-test capabilities can be provided without substantially increasing the size of a programmable logic device.

It is further noted that using a mask PROM as a second nonvolatile memory **402** can allow BIST data **408** to be available at all times. Thus, self-test may be performed on a volatile PLD whenever desired. In addition, or alternatively, the speed of various reliability tests, such as burn-in or other cycling test can be improved. If functional tests are required following various reliability stages, BIST data to initiate a test mode after each stage can always be available.

Still further, while the above description indicates that BIST data **408** may be loaded upon power-up, such an operation could also be initiated by other means described in conjunction with the first embodiment (e.g., entry of a particular command, overvoltage at one or more pins, etc.). Of course one test may be initiated at power-up while one or more different tests could be initiated subsequently.

Including BIST data in an on-chip mask PROM can result in faster overall back-end throughput than the first embodiment. In the first embodiment, BIST data would have to be programmed in a nonvolatile memory. In contrast, in the second embodiment, BIST data is present without having to include a programming step.

Referring now to FIG. 6A to 6C and FIG. 2, a block diagram shows an assembly **600** according to a third embodiment. An assembly **600** may include a device having both a volatile circuit elements and nonvolatile circuit elements. Such a device will be referred to

herein as a mixed volatile/nonvolatile device **602**. Within a mixed volatile/nonvolatile device **602**, volatile circuit elements may form a programmable logic device while nonvolatile circuit elements may include storage circuits that can store user programmed configuration data. Volatile circuit elements may further provide a particular function based
5 upon the stored user configuration data.

The particular example of FIG. 6 also includes a test port **604**.

In one arrangement, a mixed volatile/nonvolatile device **602** may be fabricated with a process that is capable of forming both volatile logic circuits and re-programmable nonvolatile circuits. This is in contrast to particular versions of the second embodiment,
10 which include a mask PROM that is not re-programmable. Such an arrangement can allow for a more compact overall assembly **600** than the first and second embodiments previously described. In particular, first and second embodiments may include a PLD and nonvolatile memory formed on different dice. Consequently, such arrangements may include additional circuit board and/or multichip module wiring.

15 A mixed volatile/nonvolatile device **602** may take a variety of forms. As but one example, re-programmable nonvolatile circuits may include a nonvolatile memory cell array “embedded” within an associated volatile PLD. As another example, nonvolatile circuits may be distributed within volatile logic circuits. More particularly, some programmable logic approaches include unit cells with both volatile and nonvolatile circuit elements.
20 Nonvolatile elements are diagrammatically represented in FIGS. 6A to 6C by a dashed area **606**. Of course, as noted above, because nonvolatile elements may take a variety of forms, such a representation should not be construed as limiting to the present invention.

A third embodiment **600** may undergo a self-test and be configured in the same

general fashion as the method shown in FIG. 3. However, because a programmable logic and re-programmable nonvolatile logic can be formed on a single die, a step **302** may not be included.

In a third embodiment **600**, BIST data can be programmed into nonvolatile elements 5 of a mixed volatile/nonvolatile device **602**. Such a programming step may occur at various points in a manufacturing process. As one example, BIST data can be programmed before a die containing a mixed volatile/nonvolatile device **602** is packaged. As another example, if a test port **604** is not integrated with a mixed volatile/nonvolatile device **602**, BIST data may be programmed after a packaging step through test port **604**. Such a programming step may 10 occur in the same general fashion as described with reference to a first embodiment of FIGS. 2A to 2C. In particular, a mixed volatile/nonvolatile device **602** may include circuitry for decompressing a compressed bit stream.

FIG. 6B shows stored BIST data being provided from nonvolatile elements to volatile circuit elements, both of which are within a mixed volatile/nonvolatile device **602**. In this 15 way, a mixed volatile/nonvolatile section **602** can be configured for a self-test. In one arrangement, such BIST data can be provided upon power-up. In alternate arrangements, one or a number of tests can be initiated by any of a number of methods, including those described in conjunction with the other embodiments (command entry, overvoltage signals, etc.). In addition, as noted in conjunction with other embodiments, BIST data could be 20 provided to a another PLD (which may be a volatile PLD or a mixed volatile/nonvolatile PLD) or to another non volatile memory.

FIG. 6B also shows a self-test result data that may be provided from a mixed volatile/nonvolatile device **602**. Such self-test result data can indicate if a self-test is passed

or failed. If data indicates a failed self-test, an error indication or the like can be provided. However, if data indicates a self-test is passed, a third embodiment **600** may then be used in a conventional fashion.

As shown in FIG. 6C, having established that programmable logic has passed a self-
5 test, a user may program the programmable logic device with desired configuration data. In one embodiment, such an operation may overwrite all or a portion of the previously programmed BIST data.

In this way, a third embodiment **600** may include a mixed volatile/nonvolatile device
10 **602** that can provide BIST capabilities without necessarily increasing the overall size of an assembly **600**. A third embodiment **600** may be more compact than a first or second embodiment, as a separate nonvolatile memory (such as **102** and **202**) is not necessarily included.

As noted above, alternate embodiments could include more than one self-test. FIGS.
15 7A-7D illustrate a fourth embodiment that can include multiple tests and multiple nonvolatile memory sectors having different properties.

A fourth embodiment **700** may include a nonvolatile memory **702**, a volatile PLD
20 **704**, and a test port **706**. A nonvolatile memory **702** may include multiple sectors, two of which are shown as **708-0** and **708-1**. Sectors (**708-0** and **708-1**) may have different properties. In particular, such sectors may be separately erasable and one may be a “boot” sector. Boot sectors are well understood in the art and may include various protection features that prevent boot data from being erased and/or overwritten.

In the example of FIGS. 7A to 7D it will be assumed that sector **708-0** may be a boot sector that includes BIST data for a particular test **BIST0**. Sector **708-1** may be a non-boot

sector that includes BIST data for a second test BIST1. Such an arrangement may be advantageous when the frequency of test are different. For example, a test BIST1 may be a test that is performed once or only a few times, while test BIST0 may be a basic functional test that can be performed more many times throughout the life of the device. More particularly, a BIST1 test could be used to quantify the operation of a fourth embodiment (i.e., provide a speed rating etc.), while a BIST0 test may be a functional self-test that could be periodically performed, either upon power-up, or at various times while in a system.

A fourth embodiment **700** may follow the general method shown in FIG. 3. However, due to the multiple test capability some steps may vary. In particular, as shown in FIG. 7A, programming a nonvolatile memory with BIST data (step **304**) may include programming BIST0 and BIST1 data. Further, because BIST0 is in a boot sector, particular access procedures may have to be executed to access this sector. That is, in some arrangements programming sector **708-0** may require more and/or different steps than programming sector **708-1**. As noted in conjunction with other embodiments, a nonvolatile memory **702** may be programmed through a volatile PLD **704** or directly by way of a port, such as test port **706**.

Executing a self-test (step **308**) may also be different. As shown in FIGS. 7B and 7C and as noted above, a BIST0 test may be performed at different times than a BIST1 test.

Programming a nonvolatile memory with user configuration data (step **314**) may also vary from previous embodiments. As but one example, because sector **708-0** may be a boot sector, such a sector may be protected from being erased or overwritten with user data. Thus, user data may be programmed into non-protected sector **708-1**, overwriting the BIST1 data but preserving the BIST0 data. User data may be programmed in the same general fashion as

BIST data.

Of course, while a boot sector can provide greater protection for BIST0 test data, alternate embodiments could include different non-protected sectors and a user may be instructed not to write into a sector storing BIST0 test data.

5 A fourth embodiment **700** may be configured to automatically load configuration data from one sector and then from another, to advantageously execute a self-test. More particularly, in a fourth embodiment, upon boot up, a volatile PLD **702** can automatically store BIST0 test data by loading from a base address of sector **708-0**. A BIST0 self-test may then be executed. Subsequently, a volatile PLD **702** may then load from the base address of
10 sector **708-1**. If sector **708-1** stores BIST1 data, a BIST1 self-test may then be executed. If sector **708-1** stores user configuration data, a volatile PLD **704** can be configured for use.

In this way, multiple nonvolatile sectors can provide different areas for storing different tests, and may be configured to store both user data and a self-test data. In one particular embodiment, one or more self-tests may be preserved in a protected sector for use
15 at various times during the lifetime of the device.

In other operations, BIST data for one or more self-tests could be provided to other PLDs or to other nonvolatile memories.

It is understood that while particular nonvolatile structures have been described (i.e., EEPROMs and PROMs), other nonvolatile elements could be used in alternate embodiments,
20 including but not limited to ferroelectric random access memories (FRAMs) and “anti-fuse” technology.

Thus, it is understood that while the various particular embodiments have been set forth herein, methods and structures according to the present invention could be subject to

various changes, substitutions, and alterations without departing from the spirit and scope of the invention. Accordingly, the present invention is intended to be limited only as defined by the appended claims.

IN THE CLAIMS

What is claimed is:

- 1 1. A programmable logic device assembly, comprising:
 - 2 a programmable logic circuit that provides functions according to
 - 3 configuration data including a self-test function; and
 - 4 at least one nonvolatile store coupled to the programmable logic circuit
 - 5 that provides self-test configuration data for the programmable logic circuit
 - 6 and can subsequently store user configuration data.

- 1 2. The programmable logic device assembly of claim 1, wherein:
 - 2 the programmable circuit can provide a self-test result when
 - 3 configured for self-test function.

- 1 3. The programmable logic device assembly of claim 2, further including:
 - 2 a test port for providing the self-test result in a predetermined format.

- 1 4. The programmable logic device assembly of claim 1, wherein:
 - 2 the at least one nonvolatile store includes a first nonvolatile store
 - 3 formed with the programmable logic circuit on a single integrated circuit die.

- 1 5. The programmable logic device assembly of claim 4, wherein:
 - 2 the first nonvolatile store includes re-programmable nonvolatile circuit

3 elements.

1 **6.** The programmable logic device assembly of claim 5, wherein:

2 the first nonvolatile store includes electrically erasable programmable
3 read-only-memory cells.

1 **7.** The programmable logic device assembly of claim 4, wherein:

2 the self-test configuration data in the at least one nonvolatile store is
3 set by at least one manufacturing process step.

1 **8.** The programmable logic device assembly of claim 7, wherein:

2 the at least one nonvolatile store includes a mask programmable read-
3 only-memory that stored self-test configuration data and a separate
4 nonvolatile memory that can store user configuration data.

1 **9.** The programmable logic device assembly of claim 1, wherein:

2 the at least one nonvolatile store includes at least two sectors and self-
3 test configuration data is stored in a first sector.

1 **10.** The programmable logic device assembly of claim 9, wherein:

2 the first sector is a boot sector.

1 **11.** A method, comprising the steps of:

2 performing a self-test on a programmable logic circuit according to

3 self-test configuration data in a self-test nonvolatile store; and

4 storing user configuration data in a user nonvolatile store if the

5 programmable logic circuit passes the self-test.

1 **12.** The method of claim 11, wherein:

2 the self-test nonvolatile store is the same as the user nonvolatile store.

1 **13.** The method of claim 12, wherein:

2 storing user configuration data includes programming user

3 configuration data in locations that stored self-test configuration data.

1 **14.** The method of claim 12, wherein:

2 storing user configuration data includes programming user

3 configuration data in locations that are different than those that store self-test

4 configuration data.

1 **15.** The method of claim 11, further including:

2 forming the self-test nonvolatile on the same die as the programmable

3 logic circuit.

1 **16.** The method of claim 11, further including:

2 assembling the programmable logic circuit one die with the
3 nonvolatile store on another die into one package.

1 **17.** The programmable logic circuit of claim 16, wherein:
2 the one package is a multi-chip module.

1 **18.** A programmable logic self-test method, comprising the steps of:
2 storing self-test information in a first nonvolatile store that places a
3 programmable logic circuit into a self-test configuration;
4 executing a self-test on the programmable logic circuit; and
5 providing user configuration information that places the programmable
6 logic circuit in a user configuration.

1 **19.** The method of claim 18, wherein:
2 the user configuration data is stored in the first nonvolatile store.

1 **20.** The method of p claim 18, wherein:
2 the user configuration data is stored in a second nonvolatile store that
3 is different than the first nonvolatile store.

1 **ABSTRACT OF THE DISCLOSURE**

2 According to one embodiment, a programmable logic assembly (**200**) may include a
3 nonvolatile memory (**202**) may be coupled to an associated volatile programmable logic
4 device (PLD) (**204**). Built-in-self-test (BIST) data (**208**) may be stored in a nonvolatile
5 memory (**202**) that places the volatile PLD (**204**) in a self-test configuration. If a volatile
6 PLD (**204**) passes a self-test, user data (**210**) may be stored in a nonvolatile memory (**202**)
7 that places a volatile PLD (**204**) into a user determined configuration.

FIG. 1

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 3

FIG. 4A

FIG. 4B

FIG. 5

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7D

FIG. 8A

FIG. 8B

FIG. 8C

PATENT APPLICATION

**DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION**

ATTORNEY DOCKET NO. CY-001

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

Method and Apparatus for Programmable Logic Device (PLD) Built-In-Self-Test (BIST)

the specification of which is attached hereto unless the following box is checked:

(was filed on _____ as US Application Serial No. or PCT International Application Number _____ and was amended on _____ (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s) certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of the application on which priority is claimed:

COUNTRY	APPLICATION NUMBER	DATE FILED	PRIORITY CLAIMED UNDER 35 U.S.C. 119
			YES: <input type="checkbox"/> NO: <input type="checkbox"/>
			YES: <input type="checkbox"/> NO: <input type="checkbox"/>

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER	FILING DATE

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

APPLICATION SERIAL NUMBER	FILING DATE	STATUS(patented/pending/abandoned)

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

Bradley Sako, Reg. No. 37923

Send Correspondence to:	Direct Telephone Calls To:
Bradley T. Sako 3954 Loch Lomond Way Livermore, CA 94550	Bradley Sako 1-408-839-1082

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full Name of Inventor: Michael T. Moore

Citizenship: Ireland

Residence: 3433 Benton Street, Santa Clara, CA USA 95051

Post Office Address: Same

Michael T. Moore
Inventor's Signature

6/22/00
Date