## THE D-SERIES SET 1, FIRST EDITION

Press Release

Friday, 2 December 2022

To the wider scientific community,

Today marks the first release of the full set one of the D-series of scientific datasheets – with one major exclusion. These datasheets have been produced due to a considerable time investment for the betterment of the established physical sciences and the broader community.

There are eight datasheets total in set one of which seven will today be published. They cover topics across two of the scientific disciplines, chemistry and physics, and serve as a valuable companion to any physical scientist. Each datasheet is produced to a high quality with data sourced from the most reputable scientific institutions, including the European Organization for Nuclear Research, the American National Institute of Standards and Technology, the International Bureau of Weights and Measures, the International Union of Pure and Applied Chemistry and the American National Nuclear Data Center.

The eight datasheets in set one are as follows:

- D1 Periodic Table of Elements
- D2 Properties of Elements
- D3 Properties of Nuclides (Excluded)
- D4 Standard Model of Elementary Particles
- D5 Properties of Elementary Particles
- D6 SI Unit Definitions
- D7 SI Defining Physical Constants
- D8 Radioactive Decay Modes
- (Also Present is a Source Document)

Unfortunately, D3 has been omitted from this release due to its current state of completion. Latest estimates indicate that it is only 13.2% complete (by number of nuclides) and that an additional 144 hours would be required to complete the datasheet. For this reason, it has been excluded and will be released at a later date which is to be confirmed.

This project is the result of work solely by one person, and whilst all of the datasheets have been produced to a high standard and Harvard format sources have been provided, there may be errors within this work that have not yet been caught. If any error are found, they are to be reported to the author for correction in the next edition and the author has an obligation to find and correct all mistakes that may arise within the work.

Yours Sincerely,

**Neo Skinner** 

Author of the D-Series Datasheet Collection

# PERIODIC TABLE OF ELEMENTS (D1)





### Key:

### Element Representation:



- 1 Simple Substance Bonding (Symbols are: MT, Metallic; GC, Giant Covalent; MC, Molecular Covalent; A, Single Atom)
- 2 Atomicity (if no number, only 1 atom is present)
- N Neutron Number
- **3** Actinide Type (Symbols are: ●, Major; ●, Minor)
- **A** Mass Number (If bracketed, element is unstable and mass number of the most stable isotope is provided)
- **Z** Atomic/Proton Number
- 4 Ionic Charge
- 5 Natural Occurrence (Symbols are: P, Primordial; F, From Decay; S, Synthetic)
- 6 Additional Properties (Symbols are: M, Ferromagnetic; N, Noble Metal)
- 7 State of Matter/Phase at Standard Temperature and Pressure (Symbols are: ●, Solid; ●, Liquid; ●, Gas)

### **Block Representation:**

# spdf

## **Electron Shell Filling Order:**



Source: User:Atchemey (wikimedia.org) – CC-BY-SA-4.0

- Simple Substance Bonding, 1 [8] [9] [10] [11] [12] [13] [14]
- Atomicity, 2<sup>[25]</sup>
- Neutron Number, N [2] [3] [4] [5] [6] [7]
- Actinide Type, 3<sup>[26]</sup>
- Mass Number, A [1] [4] [3] [5] [7] [23] [24]
- Chemical Symbol [1] [3] [4] [5] [7] [23] [24]
- Element Name [1] [3] [5] [7] [23] [24]
- Atomic/Proton Number, Z [1] [3] [4] [5] [7] [23] [24]
- Ionic Charge, 4 [5] [15] [16] [17]
- Natural Occurrence, 5 [4] [6] [8] [18] [19] [20]
- Additional Properties, 6 [5] [21] [22]
- State of Matter/Phase at Standard Temperature and Pressure, 7 [24]
- Groups [7] [20] [23]
- Electron Configuration Blocks [20] [23] [24]

# PROPERTIES OF ELEMENTS (D2)

| Chemical Element<br>Name | Chemical<br>Symbol | Relative Atomic Mass<br>of Isotope with Highest<br>Isotopic Abundance<br>A <sub>r</sub><br>[u or Da] | Atomic<br>Number<br>Z | Abbreviated<br>Electron<br>Configuration/<br>Ground Shells | State of<br>Matter/Phase<br>at STP | Melting Point/ Liquefaction Point at STP [K] | Boiling<br>Point at STP<br>[K] |
|--------------------------|--------------------|------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|
| Hydrogen                 | Н                  | 1.007 825 032<br>23(9)                                                                               | 1                     | 1s <sup>1</sup>                                            | Gas                                | 14.01                                        | 20.28                          |
| Helium                   | Не                 | 4.002 603 254<br>13(6)                                                                               | 2                     | 1s²                                                        | Gas                                | O<br>[No solid state]                        | 4.22                           |
| Lithium                  | Li                 | 7.016 003 436<br>6(45)                                                                               | 3                     | [He] 2s <sup>1</sup>                                       | Solid                              | 453.69                                       | 1 615                          |
| Beryllium                | Be                 | 9.012 183 065(82)                                                                                    | 4                     | [He] 2s <sup>2</sup>                                       | Solid                              | 1 560                                        | 2 743                          |
| Boron                    | В                  | 11.009 305 36(45)                                                                                    | 5                     | [He] 2s <sup>2</sup> 2p <sup>1</sup>                       | Solid                              | 2 348                                        | 4 273                          |
| Carbon                   | С                  | 12.000 000 0(00)                                                                                     | 6                     | [He] 2s² 2p²                                               | Solid                              | 3 823                                        | 4 300                          |
| Nitrogen                 | N                  | 14.003 074 004<br>43(20)                                                                             | 7                     | [He] 2s <sup>2</sup> 2p <sup>3</sup>                       | Gas                                | 63.1                                         | 77.36                          |
| Oxygen                   | 0                  | 15.994 914 619<br>57(17)                                                                             | 8                     | [He] 2s <sup>2</sup> 2p <sup>4</sup>                       | Gas                                | 54.8                                         | 90.2                           |
| Fluorine                 | F                  | 18.998 403 162<br>73(92)                                                                             | 9                     | [He] 2s <sup>2</sup> 2p <sup>5</sup>                       | Gas                                | 53.5                                         | 85.03                          |
| Neon                     | Ne                 | 19.992 440 176<br>2(17)                                                                              | 10                    | [He] 2s <sup>2</sup> 2p <sup>6</sup>                       | Gas                                | 24.56                                        | 27.07                          |
| Sodium                   | Na                 | 22.989 769 282<br>0(19)                                                                              | 11                    | [Ne] 3s <sup>1</sup>                                       | Solid                              | 370.87                                       | 1 156                          |
| Magnesium                | Mg                 | 23.985 041 697(14)                                                                                   | 12                    | [Ne] 3s <sup>2</sup>                                       | Solid                              | 923                                          | 1 363                          |
| Aluminium                | Al                 | 26.981 538 53(11)                                                                                    | 13                    | [Ne] 3s <sup>2</sup> 3p <sup>1</sup>                       | Solid                              | 933.47                                       | 2 792                          |
| Silicon                  | Si                 | 27.976 926 534<br>65(44)                                                                             | 14                    | [Ne] 3s <sup>2</sup> 3p <sup>2</sup>                       | Solid                              | 1 687                                        | 3 200                          |

| Chemical Element<br>Name | Chemical<br>Symbol | Relative Atomic Mass<br>of Isotope with Highest<br>Isotopic Abundance<br>A <sub>r</sub><br>[u or Da] | Atomic<br>Number<br>Z | Abbreviated Electron Configuration/ Ground Shells | State of<br>Matter/Phase<br>at STP | Melting Point/ Liquefaction Point at STP [K] | Boiling<br>Point at STP<br>[K] |
|--------------------------|--------------------|------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|
| Phosphorus               | Р                  | 30.973 761 998<br>42(70)                                                                             | 15                    | [Ne] 3s <sup>2</sup> 3p <sup>3</sup>              | Solid                              | 317.3<br>[Yellow]                            | 553.6<br>[Yellow]              |
| Sulfur                   | S                  | 31.972 071 174<br>4(14)                                                                              | 16                    | [Ne] 3s <sup>2</sup> 3p <sup>4</sup>              | Solid                              | 388.36                                       | 717.87                         |
| Chlorine                 | CI                 | 34.968 852 682(37)                                                                                   | 17                    | [Ne] 3s <sup>2</sup> 3p <sup>5</sup>              | Gas                                | 171.7                                        | 239.11                         |
| Argon                    | Ar                 | 39.962 383 123<br>7(24)                                                                              | 18                    | [Ne] 3s <sup>2</sup> 3p <sup>6</sup>              | Gas                                | 83.8                                         | 87.4                           |
| Potassium                | К                  | 38.963 706 486<br>4(49)                                                                              | 19                    | [Ar] 4s <sup>1</sup>                              | Solid                              | 336.53                                       | 1 032                          |
| Calcium                  | Ca                 | 39.962 590 863(22)                                                                                   | 20                    | [Ar] 4s²                                          | Solid                              | 1 115                                        | 1 757                          |
| Scandium                 | Sc                 | 44.955 908 28(77)                                                                                    | 21                    | [Ar] 4s <sup>2</sup> 3d <sup>1</sup>              | Solid                              | 1 814                                        | 3 103                          |
| Titanium                 | Ti                 | 47.947 941 98(38)                                                                                    | 22                    | [Ar] 4s² 3d²                                      | Solid                              | 1 941                                        | 3 560                          |
| Vanadium                 | V                  | 50.943 957 04(94)                                                                                    | 23                    | [Ar] 4s² 3d³                                      | Solid                              | 2 183                                        | 3 680                          |
| Chromium                 | Cr                 | 51.940 506 23(63)                                                                                    | 24                    | [Ar] 4s <sup>1</sup> 3d <sup>5</sup>              | Solid                              | 2 180                                        | 2 944                          |
| Manganese                | Mn                 | 54.938 043 91(48)                                                                                    | 25                    | [Ar] 4s <sup>2</sup> 3d <sup>5</sup>              | Solid                              | 1 519                                        | 2 334                          |
| Iron                     | Fe                 | 55.934 936 33(49)                                                                                    | 26                    | [Ar] 4s <sup>2</sup> 3d <sup>6</sup>              | Solid                              | 1 811                                        | 3 134                          |
| Cobalt                   | Со                 | 58.933 194 29(56)                                                                                    | 27                    | [Ar] 4s <sup>2</sup> 3d <sup>7</sup>              | Solid                              | 1 768                                        | 3 200                          |
| Nickel                   | Ni                 | 57.935 342 41(52)                                                                                    | 28                    | [Ar] 4s² 3d <sup>8</sup>                          | Solid                              | 1 728                                        | 3 186                          |
| Copper                   | Cu                 | 62.929 597 72(56)                                                                                    | 29                    | [Ar] 4s <sup>1</sup> 3d <sup>10</sup>             | Solid                              | 1 357.77                                     | 2 835                          |

| Chemical Element<br>Name | Chemical<br>Symbol | Relative Atomic Mass<br>of Isotope with Highest<br>Isotopic Abundance<br>A <sub>r</sub><br>[u or Da] | Atomic<br>Number<br>Z | Abbreviated<br>Electron<br>Configuration/<br>Ground Shells | State of<br>Matter/Phase<br>at STP | Melting Point/ Liquefaction Point at STP [K] | Boiling<br>Point at STP<br>[K] |
|--------------------------|--------------------|------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|
| Zinc                     | Zn                 | 63.929 142 01(71)                                                                                    | 30                    | [Ar] 4s <sup>2</sup> 3d <sup>10</sup>                      | Solid                              | 692.68                                       | 1 180                          |
| Gallium                  | Ga                 | 68.925 573 5(13)                                                                                     | 31                    | [Ar] 4s <sup>2</sup> 3d <sup>10</sup><br>4p <sup>1</sup>   | Solid                              | 302.91                                       | 2 477                          |
| Germanium                | Ge                 | 73.921 177 761(13)                                                                                   | 32                    | [Ar] 4s² 3d¹0<br>4p²                                       | Solid                              | 1 211                                        | 3 093                          |
| Arsenic                  | As                 | 74.921 594 57(95)                                                                                    | 33                    | [Ar] 4s <sup>2</sup> 3d <sup>10</sup><br>4p <sup>3</sup>   | Solid                              | 1 090                                        | 887                            |
| Selenium                 | Se                 | 79.916 521 8(13)                                                                                     | 34                    | [Ar] 4s² 3d¹0<br>4p⁴                                       | Solid                              | 494                                          | 958                            |
| Bromine                  | Br                 | 78.918 337 6(14)                                                                                     | 35                    | [Ar] 4s² 3d¹0<br>4p⁵                                       | Liquid                             | 265.8                                        | 332                            |
| Krypton                  | Kr                 | 83.911 497 728<br>2(44)                                                                              | 36                    | [Ar] 4s² 3d¹0<br>4p <sup>6</sup>                           | Gas                                | 115.79                                       | 119.93                         |
| Rubidium                 | Rb                 | 84.911 789 737<br>9(54)                                                                              | 37                    | [Kr] 5s <sup>1</sup>                                       | Solid                              | 312.46                                       | 961                            |
| Strontium                | Sr                 | 87.905 612 5(12)                                                                                     | 38                    | [Kr] 5s <sup>2</sup>                                       | Solid                              | 1 050                                        | 1 655                          |
| Yttrium                  | Y                  | 88.905 840 3(24)                                                                                     | 39                    | [Kr] 5s <sup>2</sup> 4d <sup>1</sup>                       | Solid                              | 1 799                                        | 3 618                          |
| Zirconium                | Zr                 | 89.904 697 7(20)                                                                                     | 40                    | [Kr] 5s² 4d²                                               | Solid                              | 2 128                                        | 4 682                          |
| Niobium                  | Nb                 | 92.906 373 0(20)                                                                                     | 41                    | [Kr] 5s <sup>1</sup> 4d <sup>4</sup>                       | Solid                              | 2 750                                        | 5 017                          |
| Molybdenum               | Мо                 | 97.905 404 82(49)                                                                                    | 42                    | [Kr] 5s <sup>1</sup> 4d <sup>5</sup>                       | Solid                              | 2 896                                        | 4 912                          |
| Technetium               | Тс                 | [96.906 366 7(40),<br>98.906 250 8(10)]                                                              | 43                    | [Kr] 5s <sup>2</sup> 4d <sup>5</sup>                       | Solid                              | 2 430                                        | 4 538                          |
| Ruthenium                | Ru                 | 101.904 344 1(12)                                                                                    | 44                    | [Kr] 5s <sup>1</sup> 4d <sup>7</sup>                       | Solid                              | 2 607                                        | 4 423                          |

| Chemical Element<br>Name | Chemical<br>Symbol | Relative Atomic Mass<br>of Isotope with Highest<br>Isotopic Abundance<br>A <sub>r</sub><br>[u or Da] | Atomic<br>Number<br>Z | Abbreviated<br>Electron<br>Configuration/<br>Ground Shells | State of<br>Matter/Phase<br>at STP | Melting Point/ Liquefaction Point at STP [K] | Boiling<br>Point at STP<br>[K] |
|--------------------------|--------------------|------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|
| Rhodium                  | Rh                 | 102.905 498 0(26)                                                                                    | 45                    | [Kr] 5s <sup>1</sup> 4d <sup>8</sup>                       | Solid                              | 2 237                                        | 3 968                          |
| Palladium                | Pd                 | 105.903 480 4(12)                                                                                    | 46                    | [Kr] 4d <sup>10</sup>                                      | Solid                              | 1 828                                        | 3 236                          |
| Silver                   | Ag                 | 106.905 091 6(26)                                                                                    | 47                    | [Kr] 5s <sup>1</sup> 4d <sup>10</sup>                      | Solid                              | 1 234.9                                      | 2 435                          |
| Cadmium                  | Cd                 | 113.903 365 09(43)                                                                                   | 48                    | [Kr] 5s² 4d¹0                                              | Solid                              | 594.22                                       | 1 040                          |
| Indium                   | In                 | 114.903 878<br>776(12)                                                                               | 49                    | [Kr] 5s <sup>2</sup> 4d <sup>10</sup><br>5p <sup>1</sup>   | Solid                              | 429.8                                        | 2 345                          |
| Tin                      | Sn                 | 119.902 201 63(97)                                                                                   | 50                    | [Kr] 5s <sup>2</sup> 4d <sup>10</sup><br>5p <sup>2</sup>   | Solid                              | 505.08                                       | 2 875                          |
| Antimony                 | Sb                 | 120.903 812 0(30)                                                                                    | 51                    | [Kr] 5s <sup>2</sup> 4d <sup>10</sup><br>5p <sup>3</sup>   | Solid                              | 903.78                                       | 1 860                          |
| Tellurium                | Te                 | 129.906 222<br>748(12)                                                                               | 52                    | [Kr] 5s <sup>2</sup> 4d <sup>10</sup><br>5p <sup>4</sup>   | Solid                              | 722.66                                       | 1 261                          |
| lodine                   | I                  | 126.904 471 9(39)                                                                                    | 53                    | [Kr] 5s² 4d¹0<br>5p⁵                                       | Solid                              | 386.9                                        | 457.5                          |
| Xenon                    | Xe                 | 131.904 155 085<br>6(56)                                                                             | 54                    | [Kr] 5s² 4d¹¹0<br>5p <sup>6</sup>                          | Gas                                | 161.3                                        | 165                            |
| Caesium                  | Cs                 | 132.905 451 961<br>0(80)                                                                             | 55                    | [Xe] 6s <sup>1</sup>                                       | Solid                              | 301.59                                       | 944                            |
| Barium                   | Ва                 | 137.905 247 00(31)                                                                                   | 56                    | [Xe] 6s²                                                   | Solid                              | 1 000                                        | 2 143                          |
| Lanthanum                | La                 | 138.906 356 3(24)                                                                                    | 57                    | [Xe] 6s <sup>2</sup> 5d <sup>1</sup>                       | Solid                              | 1 193                                        | 3 737                          |
| Cerium                   | Ce                 | 139.905 443 1(23)                                                                                    | 58                    | [Xe] 6s² 4f¹<br>5d¹                                        | Solid                              | 1 071                                        | 3 633                          |
| Praseodymium             | Pr                 | 140.907 657 6(23)                                                                                    | 59                    | [Xe] 6s <sup>2</sup> 4f <sup>3</sup>                       | Solid                              | 1 204                                        | 3 563                          |

| Chemical Element<br>Name | Chemical<br>Symbol | Relative Atomic Mass<br>of Isotope with Highest<br>Isotopic Abundance<br>A <sub>r</sub><br>[u or Da] | Atomic<br>Number<br>Z | Abbreviated<br>Electron<br>Configuration/<br>Ground Shells | State of<br>Matter/Phase<br>at STP | Melting Point/ Liquefaction Point at STP [K] | Boiling<br>Point at STP<br>[K] |
|--------------------------|--------------------|------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|
| Neodymium                | Nd                 | 141.907 729 0(20)                                                                                    | 60                    | [Xe] 6s² 4f⁴                                               | Solid                              | 1 294                                        | 3 400                          |
| Promethium               | Pm                 | [144.912 755 9(33),<br>146.915 145 0(19)]                                                            | 61                    | [Xe] 6s <sup>2</sup> 4f <sup>5</sup>                       | Solid                              | 1 400                                        | 3 300                          |
| Samarium                 | Sm                 | 151.919 739 7(18)                                                                                    | 62                    | [Xe] 6s² 4f <sup>6</sup>                                   | Solid                              | 1 345                                        | 2 067                          |
| Europium                 | Eu                 | 152.921 238 0(18)                                                                                    | 63                    | [Xe] 6s <sup>2</sup> 4f <sup>7</sup>                       | Solid                              | 1 095                                        | 1 800                          |
| Gadolinium               | Gd                 | 157.924 112 3(17)                                                                                    | 64                    | [Xe] 6s² 4f <sup>7</sup><br>5d¹                            | Solid                              | 1 586                                        | 3 523                          |
| Terbium                  | Tb                 | 158.925 354 7(19)                                                                                    | 65                    | [Xe] 6s² 4f <sup>9</sup>                                   | Solid                              | 1 629                                        | 3 503                          |
| Dysprosium               | Dy                 | 163.929 181 9(20)                                                                                    | 66                    | [Xe] 6s <sup>2</sup> 4f <sup>10</sup>                      | Solid                              | 1 685                                        | 2 840                          |
| Holmium                  | Но                 | 164.930 328 8(21)                                                                                    | 67                    | [Xe] 6s <sup>2</sup> 4f <sup>11</sup>                      | Solid                              | 1 747                                        | 2 973                          |
| Erbium                   | Er                 | 165.930 299 5(22)                                                                                    | 68                    | [Xe] 6s <sup>2</sup> 4f <sup>12</sup>                      | Solid                              | 1 770                                        | 3 141                          |
| Thulium                  | Tm                 | 168.934 217 9(22)                                                                                    | 69                    | [Xe] 6s <sup>2</sup> 4f <sup>13</sup>                      | Solid                              | 1 818                                        | 2 223                          |
| Ytterbium                | Yb                 | 173.938 866 4(22)                                                                                    | 70                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup>                      | Solid                              | 1 092                                        | 1 469                          |
| Lutetium                 | Lu                 | 174.940 775 2(20)                                                                                    | 71                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>1</sup>   | Solid                              | 1 936                                        | 3 675                          |
| Hafnium                  | Hf                 | 179.946 557 0(20)                                                                                    | 72                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>2</sup>   | Solid                              | 2 506                                        | 4 876                          |
| Tantalum                 | Та                 | 180.947 995 8(20)                                                                                    | 73                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>3</sup>   | Solid                              | 3 290                                        | 5 731                          |
| Tungsten                 | w                  | 183.950 930 92(94)                                                                                   | 74                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>4</sup>   | Solid                              | 3 695                                        | 5 828                          |

| Chemical Element<br>Name | Chemical<br>Symbol | Relative Atomic Mass<br>of Isotope with Highest<br>Isotopic Abundance<br>A <sub>r</sub><br>[u or Da] | Atomic<br>Number<br>Z | Abbreviated Electron Configuration/ Ground Shells                         | State of<br>Matter/Phase<br>at STP | Melting Point/ Liquefaction Point at STP [K] | Boiling<br>Point at STP<br>[K] |
|--------------------------|--------------------|------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|
| Rhenium                  | Re                 | 186.955 750 1(16)                                                                                    | 75                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>5</sup>                  | Solid                              | 3 459                                        | 5 896                          |
| Osmium                   | Os                 | 191.961 477 0(29)                                                                                    | 76                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>6</sup>                  | Solid                              | 3 306                                        | 5 285                          |
| Iridium                  | lr                 | 192.962 921 6(21)                                                                                    | 77                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>7</sup>                  | Solid                              | 2 739                                        | 4 701                          |
| Platinum                 | Pt                 | 194.964 791 7(10)                                                                                    | 78                    | [Xe] 6s <sup>1</sup> 4f <sup>14</sup><br>5d <sup>9</sup>                  | Solid                              | 2 041.5                                      | 4 098                          |
| Gold                     | Au                 | 196.966 568 79(71)                                                                                   | 79                    | [Xe] 6s <sup>1</sup> 4f <sup>14</sup><br>5d <sup>10</sup>                 | Solid                              | 1 337.33                                     | 3 129                          |
| Mercury                  | Hg                 | 201.970 643 40(69)                                                                                   | 80                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>10</sup>                 | Liquid                             | 234.32                                       | 629.88                         |
| Thallium                 | TI                 | 204.974 427 8(14)                                                                                    | 81                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>10</sup> 6p <sup>1</sup> | Solid                              | 577                                          | 1 746                          |
| Lead                     | Pb                 | 207.976 652 5(13)                                                                                    | 82                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>10</sup> 6p <sup>2</sup> | Solid                              | 600.61                                       | 2 022                          |
| Bismuth                  | Bi                 | 208.980 399 1(16)                                                                                    | 83                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>10</sup> 6p <sup>3</sup> | Solid                              | 544.4                                        | 1 837                          |
| Polonium                 | Ро                 | [208.982 430 8(20),<br>209.982 874 1(13)]                                                            | 84                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>10</sup> 6p <sup>4</sup> | Solid                              | 527                                          | 1 235                          |
| Astatine                 | At                 | [209.987 147 9(83),<br>210.987 496 6(30)]                                                            | 85                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>10</sup> 6p <sup>5</sup> | Solid                              | 575                                          | -                              |
| Radon                    | Rn                 | [210.990 601 1(73),<br>222.017 578 2(25)]                                                            | 86                    | [Xe] 6s <sup>2</sup> 4f <sup>14</sup><br>5d <sup>10</sup> 6p <sup>6</sup> | Gas                                | 202                                          | 211.4                          |
| Francium                 | Fr                 | 223.019 736 0(25)                                                                                    | 87                    | [Rn] 7s <sup>1</sup>                                                      | Solid                              | -                                            | -                              |
| Radium                   | Ra                 | [223.018 502 3(27),<br>228.031 070 7(26)]                                                            | 88                    | [Rn] 7s <sup>2</sup>                                                      | Solid                              | 970                                          | 2 010                          |
| Actinium                 | Ac                 | 227.027 752 3(25)                                                                                    | 89                    | [Rn] 7s <sup>2</sup> 6d <sup>1</sup>                                      | Solid                              | 1 323                                        | 3 473                          |

| Chemical Element<br>Name | Chemical<br>Symbol | Relative Atomic Mass<br>of Isotope with Highest<br>Isotopic Abundance<br>A <sub>r</sub><br>[u or Da] | Atomic<br>Number<br>Z | Abbreviated<br>Electron<br>Configuration/<br>Ground Shells | State of<br>Matter/Phase<br>at STP | Melting Point/ Liquefaction Point at STP [K] | Boiling<br>Point at STP<br>[K] |
|--------------------------|--------------------|------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|
| Thorium                  | Th                 | 232.038 055 8(21)                                                                                    | 90                    | [Rn] 7s² 6d²                                               | Solid                              | 2 023                                        | 5 093                          |
| Protactinium             | Pa                 | 231.035 884 2(24)                                                                                    | 91                    | [Rn] 7s² 5f²<br>6d¹                                        | Solid                              | 1 845                                        | 4 273                          |
| Uranium                  | U                  | 238.050 788 4(20)                                                                                    | 92                    | [Rn] 7s² 5f³<br>6d¹                                        | Solid                              | 1 408                                        | 4 200                          |
| Neptunium                | Np                 | [236.046 570(54),<br>237.048 173 6(19)]                                                              | 93                    | [Rn] 7s <sup>2</sup> 5f <sup>4</sup><br>6d <sup>1</sup>    | Solid                              | 917                                          | 4 300                          |
| Plutonium                | Pu                 | [238.049 560 1(19),<br>244.064 205 3(56)]                                                            | 94                    | [Rn] 7s² 5f <sup>6</sup>                                   | Solid                              | 913                                          | 3 503                          |
| Americium                | Am                 | [241.056 829 3(19),<br>243.061 381 3(24)]                                                            | 95                    | [Rn] 7s <sup>2</sup> 5f <sup>7</sup>                       | Solid                              | 1 449                                        | 2 284                          |
| Curium                   | Cm                 | [243.061 389 3(22),<br>248.072 349 9(56)]                                                            | 96                    | [Rn] 7s² 5f <sup>7</sup><br>6d¹                            | Solid                              | 1 618                                        | 3 383                          |
| Berkelium                | Bk                 | [247.070 307 3(59),<br>249.074 987 7(27)]                                                            | 97                    | [Rn] 7s <sup>2</sup> 5f <sup>9</sup>                       | Solid                              | 1 323<br>[alpha]                             | -                              |
| Californium              | Cf                 | [249.074 853 9(23),<br>252.081 627 2(56)]                                                            | 98                    | [Rn] 7s <sup>2</sup> 5f <sup>10</sup>                      | Solid                              | 1 173                                        | -                              |
| Einsteinium              | Es                 | 252.082 980(54)                                                                                      | 99                    | [Rn] 7s <sup>2</sup> 5f <sup>11</sup>                      | Solid                              | 1 133                                        | -                              |
| Fermium                  | Fm                 | 257.095 106<br>1(69)                                                                                 | 100                   | [Rn] 7s <sup>2</sup> 5f <sup>12</sup>                      | -                                  | 1 800                                        | -                              |
| Mendelevium              | Md                 | [258.098 431<br>5(50),<br>260.103 65(34#)]                                                           | 101                   | [Rn] 7s <sup>2</sup> 5f <sup>13</sup>                      | -                                  | 1 100                                        | -                              |
| Nobelium                 | No                 | 259.101 03(11#)                                                                                      | 102                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup>                      | -                                  | 1 100                                        | -                              |
| Lawrencium               | Lr                 | 262.109 61(22#)                                                                                      | 103                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>7p <sup>1</sup>   | -                                  | 1 900                                        | -                              |
| Rutherfordium            | Rf                 | 267.121 79(62#)                                                                                      | 104                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>2</sup>   | -                                  | -                                            | -                              |

| Chemical Element<br>Name | Chemical<br>Symbol | Relative Atomic Mass<br>of Isotope with Highest<br>Isotopic Abundance<br>A <sub>r</sub><br>[u or Da] | Atomic<br>Number<br>Z | Abbreviated Electron Configuration/ Ground Shells                         | State of<br>Matter/Phase<br>at STP | Melting Point/ Liquefaction Point at STP [K] | Boiling<br>Point at STP<br>[K] |
|--------------------------|--------------------|------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|------------------------------------|----------------------------------------------|--------------------------------|
| Dubnium                  | Db                 | 268.125 67(57#)                                                                                      | 105                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>3</sup>                  | -                                  | -                                            | -                              |
| Seaborgium               | Sg                 | 271.133 93(63#)                                                                                      | 106                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>4</sup>                  | -                                  | -                                            | -                              |
| Bohrium                  | Bh                 | 272.138 26(58#)                                                                                      | 107                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>5</sup>                  | -                                  | -                                            | -                              |
| Hassium                  | Hs                 | 270.134 29(27#)                                                                                      | 108                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>6</sup>                  | -                                  | -                                            | -                              |
| Meitnerium               | Mt                 | 276.151 59(59#)                                                                                      | 109                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>7</sup>                  | -                                  | -                                            | -                              |
| Darmstadtium             | Ds                 | 281.164 51(59#)                                                                                      | 110                   | [Rn] 7s <sup>1</sup> 5f <sup>14</sup><br>6d <sup>9</sup>                  | -                                  | -                                            | -                              |
| Roentgenium              | Rg                 | 280.165 14(61#)                                                                                      | 111                   | [Rn] 7s <sup>1</sup> 5f <sup>14</sup><br>6d <sup>10</sup>                 | -                                  | -                                            | -                              |
| Copernicium              | Cn                 | 285.177 12(60#)                                                                                      | 112                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>10</sup>                 | -                                  | -                                            | -                              |
| Nihonium                 | Nh                 | 284.178 73(62#)                                                                                      | 113                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>10</sup> 7p <sup>1</sup> | -                                  | -                                            | -                              |
| Flerovium                | FI                 | 289.190 42(60#)                                                                                      | 114                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>10</sup> 7p <sup>2</sup> | -                                  | -                                            | -                              |
| Moscovium                | Мс                 | 288.192 74(62#)                                                                                      | 115                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>10</sup> 7p <sup>3</sup> | -                                  | -                                            | -                              |
| Livermorium              | Lv                 | 293.204 49(60#)                                                                                      | 116                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>10</sup> 7p <sup>4</sup> | -                                  | -                                            | -                              |
| Tennessine               | Ts                 | 292.207 46(75#)                                                                                      | 117                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>10</sup> 7p <sup>5</sup> | -                                  | -                                            | -                              |
| Oganesson                | Og                 | 294.213 92(71#)                                                                                      | 118                   | [Rn] 7s <sup>2</sup> 5f <sup>14</sup><br>6d <sup>10</sup> 7p <sup>6</sup> | -                                  | -                                            | -                              |

### **Abbreviations and Units:**

- STP: Standard Temperature and Pressure
- K: Kelvins
- u or Da: Unified Atomic Mass Unit

- Chemical Element Name [1] [2] [20] [21]
- Chemical Symbol [1] [2] [20] [21]
- Relative Atomic Mass of Isotope with Highest Isotopic Abundance, A<sub>r</sub> [1] [2] [3] [4] [5] [10] [17]
- Atomic Number, *Z* [1] [2] [20] [21]
- Abbreviated Electron Configuration/Ground Shells [3] [6] [7] [8] [9] [11] [12] [13] [14] [15] [16] [17] [18] [19]
- State of Matter/Phase at STP [3] [10] [17] [21]
- Melting Point/Liquefaction Point at STP [3] [10] [17] [21]
- Boiling Point at STP [3] [10] [17] [21]

# STANDARD MODEL OF ELEMENTARY PARTICLES (D4)

**Z**o Boson

91.19 GeV 0 W\* Boson

80.38 GeV

**W**- W- Boson

80.38 GeV -1 1

| ons<br>Scalar<br>Bosons        | 125.25 GeV     |
|--------------------------------|----------------|
| Elementary Bosons<br>auge Scal | 200            |
| Elemel<br>Gauge<br>Bosons      | Oluon<br>Oluon |

| ntary Fer     | mions      | Element                            | ary Antif              | ermions                                                                     |
|---------------|------------|------------------------------------|------------------------|-----------------------------------------------------------------------------|
|               | Que        | ırks                               |                        |                                                                             |
| =             | ≡          | -                                  | =                      | =                                                                           |
|               | 172.69 GeV |                                    | 1.27 GeV<br>-2%        | 172.69 GeV                                                                  |
|               | *          |                                    | ۱۲                     | <del>+</del>                                                                |
| Charm         | <b>-</b> ф | Antiup                             | Anticharm              | Antitop                                                                     |
|               |            |                                    |                        |                                                                             |
| 93.4 MeV      | 4.18 GeV   | 4.67 MeV                           | 93.4 MeV               | 4.18 GeV                                                                    |
| <b>U</b><br>% | 7,3        | اح                                 | <b>U</b>               | 7.                                                                          |
| Strange       | Bottom     | Antidown                           | Antistrange            | Antibottom                                                                  |
|               |            |                                    |                        |                                                                             |
|               | ntary Fer  | Auany Fermions  Qua  1.27 GeV  2.4 | Charm   Top   Antidown | Quarks  Quarks  III 1  172.89 GeV 2.16 MeV  Top Antiup  A.18 GeV 4.67 MeV 9 |

## Key:

Elementary Particle Representation:

Particle Symbol
Particle Name

- 1 Invariant Mass, m, in GeV/c<sup>2</sup>, MeV/c<sup>2</sup> and eV/c<sup>2</sup> (Units Simplified on Diagram)
- 2 Electric Charge, Q, in Elementary Charge Units
- **3** Spin, s

- Invariant Mass, 1<sup>[1]</sup>
- Electric Charge, 2<sup>[1]</sup>
- Spin, 3<sup>[1]</sup>
- Particle Symbol<sup>[1]</sup>
- Particle Name<sup>[1]</sup>

# PROPERTIES OF ELEMENTARY PARTICLES (D5)

| Particle Name        | Symbol         | Antiparticle                                   | Invariant Mass $m_0$ [MeV/c <sup>2</sup> ] (Uncertainty) | Electric<br>Charge <i>Q</i><br>[ <i>e</i> ] | Type and Sub-type /<br>Generation | Spin S        | Mean Life τ [per<br>eV]                                |
|----------------------|----------------|------------------------------------------------|----------------------------------------------------------|---------------------------------------------|-----------------------------------|---------------|--------------------------------------------------------|
| Up Quark             | u              | Antiup<br>( <del>u</del> )                     | 2.16 + 0.49 - 0.26                                       | + 2/3                                       | Quark: Up-type, Gen.              | 1<br>2        | -                                                      |
| Down<br>Quark        | d              | Antidown (d)                                   | 4.67 <sup>+ 0.48</sup> <sub>- 0.17</sub>                 | $-\frac{1}{3}$                              | Quark: Down-type,<br>Gen. I       | 1<br>2        | -                                                      |
| Charm<br>Quark       | С              | Anticharm (c̄)                                 | 1 270.0 ± 20                                             | + 2/3                                       | Quark: Up-type, Gen.              | <u>1</u><br>2 | -                                                      |
| Strange<br>Quark     | S              | Antistrange<br>(s̄)                            | 93.4 + 8.6 - 3.4                                         | $-\frac{1}{3}$                              | Quark: Down-type,<br>Gen. II      | 1<br>2        | -                                                      |
| Top Quark            | t              | Antitop ( <del>t</del> )                       | 172 690.0 ±<br>300                                       | + 2/3                                       | Quark: Up-type, Gen.              | 1<br>2        | -                                                      |
| Bottom<br>Quark      | b              | Antibottom (b)                                 | 4 180 + 30 - 20                                          | $-\frac{1}{3}$                              | Quark: Down-type,<br>Gen. III     | 1/2           | -                                                      |
| Electron             | е              | Positron (e <sup>+</sup> )                     | 0.510 998 950<br>00 ± 0.000 000<br>000 15                | -1                                          | Lepton: Charged,<br>Gen. I        | 1<br>2        | > 6.6 × 10 <sup>28</sup> a                             |
| Electron<br>Neutrino | Ve             | Electron<br>Antineutrino<br>(v̄ <sub>e</sub> ) | < 0.000 001 1                                            | < 4 × 10 <sup>-35</sup>                     | Lepton: Neutral,<br>Gen. I        | <u>1</u><br>2 | > 300 s                                                |
| Muon                 | μ              | Antimuon<br>(μ <sup>+</sup> )                  | 105.658 375 5<br>± 0.000 002 3                           | -1                                          | Lepton: Charged,<br>Gen. II       | <u>1</u><br>2 | (2.196 981 1<br>± 0.000 002<br>2) × 10 <sup>-6</sup> s |
| Muon<br>Neutrino     | νμ             | Muon<br>Antineutrino $(\overline{ u}_{\mu})$   | < 0.19                                                   | < 4 × 10 <sup>-35</sup>                     | Lepton: Neutral,<br>Gen. II       | <u>1</u><br>2 | > 300 s                                                |
| Tau<br>(Tauon)       | τ              | Antitau (τ <sup>+</sup> )                      | 1 776.86 ±<br>0.12                                       | -1                                          | Lepton: Charged,<br>Gen. III      | <u>1</u><br>2 | (290.3 ± 0.5)<br>× 10 <sup>-15</sup> s                 |
| Tau<br>Neutrino      | ντ             | Tau Antineutrino $(\overline{v}_t)$            | < 18.2                                                   | < 4 × 10 <sup>-35</sup>                     | Lepton: Neutral,<br>Gen. III      | <u>1</u><br>2 | > 300 s                                                |
| Photon               | γ              | -                                              | < 1×10 <sup>-24</sup>                                    | < 1 × 10 <sup>-46</sup>                     | Boson: Gauge                      | 1             | -                                                      |
| Gluon                | g              | -                                              | <b>0</b><br>(Theoretical)                                | 0                                           | Boson: Gauge                      | 1             | -                                                      |
| W <sup>+</sup>       | W <sup>+</sup> | -                                              | 80 377.0 ± 12                                            | 1                                           | Boson: Gauge                      | 1             | -                                                      |

| Particle Name | Symbol         | Antiparticle | Invariant Mass<br>m <sub>0</sub> [MeV/c <sup>2</sup> ]<br>(Uncertainty) | Electric<br>Charge Q<br>[e] | Type and Sub-type /<br>Generation | Spin S | Mean Life τ [per<br>eV]   |
|---------------|----------------|--------------|-------------------------------------------------------------------------|-----------------------------|-----------------------------------|--------|---------------------------|
| w             | W <sup>-</sup> | -            | 80 377.0 ± 12                                                           | -1                          | Boson: Gauge                      | 1      | -                         |
| Z             | Z              | -            | 91 187.6 ± 2.1                                                          | 0                           | Boson: Gauge                      | 1      | -                         |
| Higgs         | Hº             | -            | 125 250.0 ±<br>170                                                      | 0                           | Boson: Scalar                     | 0      | 1.6 × 10 <sup>-22</sup> s |

## **Units:**

- MeV/c<sup>2</sup>: Megaelectronvolts/Speed of Light<sup>2</sup> (Mass)

- e: Elementary Charge

- a: Year - s: Second

- Particle Name [1] [2]
- Symbol [1] [2]
- Invariant Mass,  $m_0$  [1] [2]
- Electric Charge, Q [1] [2]
- Type and Sub-type/Generation [1] [2]
- Spin, S [1] [2]
- Mean Life,  $au^{[1][2][3]}$

# SI UNIT DEFINITIONS (D6)

# Base Units

| Base Unit | Base<br>Symbol | Base Quantity                | Typical<br>Symbol | Formal Definition                                                                                                                                                                                                                                                                                                                         | Equation                                                                                                     |
|-----------|----------------|------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Second    | S              | Time                         | t                 | The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, $\Delta v_{Cs}$ , the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to $s^{-1}$ .                          | $1 \text{ s} = \frac{9  192  631  770}{\Delta v_{\text{Cs}}}$                                                |
| Metre     | m              | Length                       | l, x, r,<br>etc.  | The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum, c, to be 299 792 458 when expressed in the unit m s $^{-1}$ , where the second is defined in terms of the caesium frequency $\Delta v_{Cs}$ .                                                           | $1 \text{ m} = \left(\frac{c}{299792458}\right) \text{s}$                                                    |
| Kilogram  | kg             | Mass                         | m                 | The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant, h, to be $6.626~070~15 \times 10^{-34}$ when expressed in the unit J s, which is equal to kg m <sup>2</sup> s <sup>-1</sup> , where the metre and the second are defined in terms of $c$ and $\Delta v_{Cs}$ . | $1 \text{ kg} = \left(\frac{h}{6.62607015 \times 10^{-34}}\right) \text{m}^{-2} \text{s}$                    |
| Ampere    | A              | Electric Current             | I, i              | The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge, e, to be $1.602\ 176\ 634\times 10^{-19}\ \text{when}$ expressed in the unit C, which is equal to A s, where the second is defined in terms of $\Delta v_{Cs}$ .                                    | $1 A = \left(\frac{e}{1.602 \ 176 \ 634 \times 10^{-19}}\right) s^{-1}$                                      |
| Kelvin    | К              | Thermodynamic<br>Temperature | Т                 | The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant, k, to be $1.380\ 649\times 10^{-23}$ when expressed in the unit J K <sup>-1</sup> , which is equal to kg m <sup>2</sup> s <sup>-2</sup>                                                   | $1 \text{ K} = \left(\frac{1.380 \text{ 649} \times 10^{-23}}{\text{k}}\right) \text{kg m}^2 \text{ s}^{-2}$ |

| Base Unit | Base<br>Symbol | Base Quantity          | Typical<br>Symbol | Formal Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Equation                                                                                             |
|-----------|----------------|------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|           |                |                        |                   | $K^{-1}$ , where the kilogram, metre and second are defined in terms of $h$ , $c$ and $\Delta v_{Cs}$ .                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |
| Mole      | mol            | Amount of<br>Substance | n                 | The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly $6.022\ 140\ 76\times 10^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant, $N_A$ , when expressed in the unit $mol^{-1}$ and is called the Avogadro number.  The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles. | $1 \text{ mol} = \left(\frac{6.02214076 \times 10^{23}}{N_A}\right)$                                 |
| Candela   | cd             | Luminous<br>Intensity  | Ι <sub>V</sub>    | The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency $540\times10^{12}$ Hz, $K_{cd}$ , to be $683$ when expressed in the unit lm $W^{-1}$ , which is equal to cd sr $W^{-1}$ , or cd sr $kg^{-1}$ m <sup>-2</sup> s <sup>3</sup> , where the kilogram, metre and second are defined in terms of h, c and $\Delta \nu_{Cs}$ .                                                         | $1 \text{ cd} = \left(\frac{K_{\text{cd}}}{683}\right) \text{kg m}^2 \text{ s}^{-3} \text{ sr}^{-1}$ |

- Base Unit [1]
- Base Symbol [1]
- Base Quantity [1]
- Typical Symbol [1]
- Formal Definition [1]
- Equation [1]

# Derived Units

| Derived<br>Unit | Unit<br>Symbol | Derived<br>Quantity                 | Equation Expressed in Terms of SI Base<br>Units | Equation Expressed in Terms of Other SI Units |
|-----------------|----------------|-------------------------------------|-------------------------------------------------|-----------------------------------------------|
| Radian          | rad            | Plane Angle                         | rad = m/m                                       | -                                             |
| Steradian       | sr             | Solid Angle                         | $sr = m^2/m^2$                                  | -                                             |
| Hertz           | Hz             | Frequency                           | $Hz = s^{-1}$                                   | -                                             |
| Newton          | N              | Force                               | $N = kg m s^{-2}$                               | -                                             |
| Pascal          | Pa             | Pressure,<br>Stress                 | $Pa = kg m^{-1} s^{-2}$                         | -                                             |
| Joule           | J              | Energy, Work,<br>Amount of<br>Heat  | $J = kg m^2 s^{-2}$                             | J = N m                                       |
| Watt            | W              | Power,<br>Radiant Flux              | $W = kg m^2 s^{-3}$                             | W = J/s                                       |
| Coulomb         | С              | Electric<br>Charge                  | C = A s                                         | -                                             |
| Volt            | V              | Electric<br>Potential<br>Difference | $V = kg m^2 s^{-3} A^{-1}$                      | V = W/A                                       |
| Farad           | F              | Capacitance                         | $F = kg^{-1} m^{-2} s^4 A^2$                    | F = C/V                                       |
| Ohm             | Ω              | Electric<br>Resistance              | $\Omega = kg m^2 s^{-3} A^{-2}$                 | $\Omega = V/A$                                |
| Siemens         | S              | Electric<br>Conductance             | $S = kg^{-1} m^{-2} s^3 A^2$                    | S = A/V                                       |
| Weber           | Wb             | Magnetic Flux                       | Wb = kg $m^2 s^{-2} A^{-1}$                     | Wb = V s                                      |
| Tesla           | Т              | Magnetic Flux<br>Density            | $T = kg s^{-2} A^{-1}$                          | $T = Wb/m^2$                                  |
| Henry           | Н              | Inductance                          | $H = kg m^2 s^{-2} A^{-2}$                      | H = Wb/A                                      |

| Derived<br>Unit   | Unit<br>Symbol | Derived<br>Quantity                       | Equation Expressed in Terms of SI Base<br>Units                              | Equation Expressed in Terms of Other SI Units |
|-------------------|----------------|-------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|
| Degree<br>Celsius | °C             | Celsius<br>Temperature                    | $^{\circ}\text{C} = \text{K},$ where $-273.15 ^{\circ}\text{C} = 0 \text{K}$ | -                                             |
| Lumen             | lm             | Luminous<br>Flux                          | lm = cd sr                                                                   | lm = cd sr                                    |
| Lux               | lx             | Illuminance                               | $lx = cd sr m^{-2}$                                                          | $lx = lm/m^2$                                 |
| Becquerel         | Bq             | Activity<br>Referred to a<br>Radionuclide | $Bq = s^{-1}$                                                                | -                                             |
| Gray              | Gy             | Absorbed<br>Dose, Kerma                   | $Gy = m^2 s^{-2}$                                                            | Gy = J/kg                                     |
| Sievert           | Sv             | Dose<br>Equivalent                        | $Sv = m^2 s^{-2}$                                                            | Sv = J/kg                                     |
| Katal             | kat            | Catalytic<br>Activity                     | $kat = mol s^{-1}$                                                           | -                                             |

- Derived Unit [2]
- Unit Symbol [2]
- Derived Quantity [2]
- Equation Expressed in Terms of SI Base Units [2]
- Equation Expressed in Terms of Other SI Units [2]

# SI DEFINING PHYSICAL CONSTANTS (D7)

| Defining Constant                    | Symbol          | Numerical Value                   | Unit              |
|--------------------------------------|-----------------|-----------------------------------|-------------------|
| Hyperfine Transition Frequency of Cs | $\Delta v_{Cs}$ | 9 192 631 770                     | Hz                |
| Speed of Light in Vacuum             | с               | 299 792 458                       | $m s^{-1}$        |
| Planck Constant                      | h               | $6.62607015 \times 10^{-34}$      | J s               |
| Elementary Charge                    | e               | $1.602\ 176\ 634 \times 10^{-19}$ | С                 |
| Boltzmann Constant                   | k               | $1.380\ 649 \times 10^{-23}$      | J K <sup>−1</sup> |
| Avogadro Constant                    | $N_A$           | $6.022\ 140\ 76 \times 10^{23}$   | $mol^{-1}$        |
| Luminous Efficacy                    | $K_{cd}$        | 683                               | $lm W^{-1}$       |

- Defining Constant [1]
- Symbol [1]
- Numerical Value [1]
- Unit [1]

# RADIOACTIVE DECAY MODES (D8)

| Decay Mode                               | Symbol            | Equation                                                                                                                                                                         | Nucleus Changes          |
|------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Alpha Emission                           | α                 | ${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}X + {}_{2}^{4}\alpha$                                                                                                                     | (A-4,Z-2)                |
| Proton Emission 2-Proton Emission        | $p \ 2p$          | $ \begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A-1}_{Z-1}X + {}^{1}_{1}p \\ {}^{A}_{Z}X \rightarrow {}^{A-2}_{Z-2}X + 2{}^{1}_{1}p \end{array} $                                 | (A-1, Z-1)<br>(A-2, Z-2) |
| Neutron Emission 2-Neutron Emission      | n<br>2n           | $ \begin{array}{c}     \stackrel{A}{Z}X \to {}^{A-1}_{Z}X + {}^{1}_{0}n \\     \stackrel{A}{Z}X \to {}^{A-2}_{Z}X + 2{}^{1}_{0}n \end{array} $                                   | (A-1,Z) $(A-2,Z)$        |
| Electron Capture                         | ε                 | ${}_{Z}^{A}X + {}_{-1}^{0}e \rightarrow {}_{Z-1}^{A}X + {}_{0}^{0}\nu_{e}$                                                                                                       | (A, Z - 1)               |
| Positron Emission                        | e <sup>+</sup>    | ${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}X + {}^{0}_{+1}e + {}^{0}_{0}\nu_{e}$                                                                                                       | (A,Z-1)                  |
| Beta-Plus Decay                          | β+                | $eta^+ = arepsilon + e^+$ (Combined rate of $arepsilon$ and $e^+$ )                                                                                                              | Variable                 |
| Beta-Minus Decay                         | β-                | ${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X + {}_{-1}^{0}e + {}_{0}^{0}\overline{\nu}_{e}$                                                                                            | (A, Z + 1)               |
| Double Beta-Minus Decay                  | 2β-               | ${}_{Z}^{A}X \rightarrow {}_{Z+2}^{A}X + 2{}_{-1}^{0}e + 2{}_{0}^{0}\overline{\nu}_{e}$                                                                                          | (A, Z + 2)               |
| Double Beta-Plus Decay                   | 2β+               |                                                                                                                                                                                  | (A, Z-2)                 |
| Beta-Minus-Delayed Neutron<br>Emission   | $\beta^-n$        | $\begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X + {}^{0}_{-1}e + {}^{0}_{0}\overline{\nu}_{e} \\ {}^{A}_{Z+1}X \rightarrow {}^{A-1}_{Z+1}X + {}^{1}_{0}n \end{array}$    | (A-1,Z+1)                |
| Beta-Minus-Delayed 2-Neutron<br>Emission | $\beta^-2n$       | $ \begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X + {}^{0}_{-1}e + {}^{0}_{0}\overline{\nu}_{e} \\ {}^{A}_{Z+1}X \rightarrow {}^{A-1}_{Z+1}X + 2{}^{1}_{0}n \end{array} $ | (A-2,Z+1)                |
| Beta-Minus-Delayed 3-Neutron<br>Emission | β <sup>-</sup> 3n | $ \begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X + {}^{0}_{-1}e + {}^{0}_{0}\overline{\nu}_{e} \\ {}^{A}_{Z+1}X \rightarrow {}^{A-1}_{Z+1}X + 3{}^{0}_{0}n \end{array} $ | (A-3,Z+1)                |
| Beta-Plus-Delayed Proton Emission        | β+p               | $\begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}X + {}^{0}_{+1}e + {}^{0}_{0}\nu_{e} \\ {}^{A}_{Z-1}X \rightarrow {}^{A-1}_{Z-2}X + {}^{1}_{1}p \end{array}$               | (A-1,Z-2)                |
| Beta-Plus-Delayed 2-Proton Emission      | β <sup>+</sup> 2p | $ \begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}X + {}^{0}_{+1}e + {}^{0}_{0}\nu_{e} \\ {}^{A}_{Z-1}X \rightarrow {}^{A-2}_{Z-3}X + 2{}^{1}_{1}p \end{array} $            | (A-2,Z-3)                |
| Beta-Plus-Delayed 3-Proton Emission      | β <sup>+</sup> 3p | $ \begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}X + {}^{0}_{+1}e + {}^{0}_{0}\nu_{e} \\ {}^{A}_{Z-1}X \rightarrow {}^{A-3}_{Z-4}X + 3{}^{1}_{1}p \end{array} $            | (A-3,Z-4)                |

| Decay Mode                              | Symbol               | Equation                                                                                                                                                                      | Nucleus Changes |
|-----------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Beta-Minus-Delayed Alpha Emission       | $\beta^-\alpha$      | $ \begin{array}{c} {}^{A}ZX \rightarrow {}^{A}Z+{}^{A}X+{}^{0}e+{}^{0}\overline{\nu}_{e} \\ {}^{A}Z+{}^{A}X \rightarrow {}^{A-4}Z+{}^{4}2\alpha \end{array} $                 | (A-4,Z-1)       |
| Beta-Plus-Delayed Alpha Emission        | β+α                  | $ \begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}X + {}^{0}_{+1}e + {}^{0}_{0}\nu_{e} \\ {}^{A}_{Z-1}X \rightarrow {}^{A-4}_{Z-3}X + {}^{4}_{2}\alpha \end{array} $     | (A-4,Z-3)       |
| Beta-Minus-Delayed Deuteron<br>Emission | $\beta^-d$           | $ \begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X + {}^{0}_{-1}e + {}^{0}_{0}\overline{\nu}_{e} \\ {}^{A}_{Z+1}X \rightarrow {}^{A-2}_{Z}X + {}^{2}_{1}d \end{array} $ | (A-2,Z)         |
| Beta-Minus-Delayed Triton Emission      | β <sup>-</sup> t     | $\begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X + {}^{0}_{-1}e + {}^{0}_{0}\overline{\nu}_{e} \\ {}^{A}_{Z+1}X \rightarrow {}^{A-3}_{Z}X + {}^{3}_{1}t \end{array}$   | (A-3,Z)         |
| Internal (Isomeric) Transition          | IT                   | ${}^{Am}_{Z}X \rightarrow {}^{A}_{Z}X + {}^{0}_{0}\gamma$                                                                                                                     | (A,Z)           |
| Spontaneous Fission                     | SF                   | Variable                                                                                                                                                                      | Variable        |
| Beta-Plus-Delayed Fission               | $\beta^+SF$          | $ \begin{array}{c} {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}X + {}^{0}_{+1}e + {}^{0}_{0}\nu_{e} \\ \text{Variable} \end{array} $                                                  | Variable        |
| Beta-Minus-Delayed Fission              | β <sup>-</sup> SF    | ${}^{A}_{Z}X \rightarrow {}_{Z} + {}^{A}_{1}X + {}^{0}_{-1}e + {}^{0}_{0}\overline{\nu}_{e}$ Variable                                                                         | Variable        |
| Heavy Cluster Emission<br>Cluster Decay | A <sub>X</sub><br>CD | Variable                                                                                                                                                                      | Variable        |

- Decay Mode [1]
- Symbol [1] [2]
- Equation<sup>[2] [3]</sup>
- Nucleus Changes [2] [3]

## **SOURCES**

### D1 – PERIODIC TABLE OF ELEMENTS

- <sup>[1]</sup> T. Prohaska et al (N/A). Atomic weights of the elements 2020. *Pure and Applied Chemistry*. In press.
- [2] KONDEV, F.G., WANG, M., HUANG, W.J., NAIMI, S. AND AUDI, G. (2021). THE NUBASE2020 EVALUATION OF NUCLEAR PHYSICS PROPERTIES \*. CHINESE PHYSICS C, [ONLINE] 45(3), p.030001. AVAILABLE AT: DOI.ORG/10.1088/1674-1137/ABDDAE [ACCESSED 21 NOV. 2021].
- [3] MEIJA, J., COPLEN, T.B., BERGLUND, M., BRAND, W.A., DE BIÈVRE, P., GRÖNING, M., HOLDEN, N.E., IRRGEHER, J., LOSS, R.D., WALCZYK, T. AND PROHASKA, T. (2016). ATOMIC WEIGHTS OF THE ELEMENTS 2013 (IUPAC TECHNICAL REPORT). PURE AND APPLIED CHEMISTRY, [ONLINE] 88(3), PP.265–291. AVAILABLE AT: DOI.ORG/10.1515/PAC-2015-0305 [ACCESSED 21 Nov. 2021].
- [4] MEIJA, J., COPLEN, T.B., BERGLUND, M., BRAND, W.A., DE BIÈVRE, P., GRÖNING, M., HOLDEN, N.E., IRRGEHER, J., LOSS, R.D., WALCZYK, T. AND PROHASKA, T. (2016). ISOTOPIC COMPOSITIONS OF THE ELEMENTS 2013. *Pure and Applied Chemistry*, [Online] 88(3), pp.293–306. Available at: doi.org/10.1515/pac-2015-0503 [Accessed 21 Nov. 2021].
- Wolfram Research (2007-2014). *ElementData, Wolfram Language Function*. [Online] Wolfram | Alpha. Available at: wolframalpha.com [Accessed 25 Nov. 2021].
- WOLFRAM RESEARCH (2007-2014). *ISOTOPEDATA, WOLFRAM LANGUAGE FUNCTION*. [ONLINE] WOLFRAM ALPHA. AVAILABLE AT: WOLFRAMALPHA.COM [ACCESSED 25 NOV. 2021].
- [7] INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY (2018). IUPAC PERIODIC TABLE OF THE ELEMENTS. [ONLINE] INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY. AVAILABLE AT: IUPAC.ORG/PERIODIC-TABLE [ACCESSED 26 Nov. 2021].
- [8] GONICK, L. AND CRIDDLE, C. (2005). *THE CARTOON GUIDE TO CHEMISTRY*. [ONLINE] NEW YORK: COLLINS (HARPERCOLLINSPUBLISHERS). AVAILABLE AT: ARCHIVE.ORG/DETAILS/CARTOONGUIDETOCHOOGONIRICH [ACCESSED 2 DEC. 2021].
- <sup>[9]</sup> CLARK, J. (2018). *INTERMOLECULAR BONDING VAN DER WAALS FORCES*. [ONLINE] CHEMGUIDE. AVAILABLE AT: CHEMGUIDE.CO.UK/ATOMS/BONDING/VDW.HTML [ACCESSED 2 DEC. 2021].
- [10] CLARK, J. (2019). *METALLIC BONDING*. [ONLINE] CHEMGUIDE. AVAILABLE AT: CHEMGUIDE.CO.UK/ATOMS/BONDING/METALLIC.HTML [ACCESSED 2 DEC. 2021].
- [11] SMITH, J.D. (1975). THE CHEMISTRY OF ARSENIC, ANTIMONY AND BISMUTH. OXFORD PERGAMON PRESS.
- [12] CLARK, J. (2012). *METALLIC STRUCTURES*. [ONLINE] CHEMGUIDE. AVAILABLE AT: CHEMGUIDE.CO.UK/ATOMS/STRUCTURES/METALS.HTML [ACCESSED 2 DEC. 2021].
- [13] CLARK, J. (2021). ATOMIC AND PHYSICAL PROPERTIES OF THE PERIOD 3 ELEMENTS. [ONLINE] CHEMGUIDE. AVAILABLE AT: CHEMGUIDE.CO.UK/INORGANIC/PERIOD3/ELEMENTSPHYS.HTML [ACCESSED 2 DEC. 2021].
- CLARK, J. (2015). THE TREND FROM NON-METAL TO METAL IN THE GROUP 4 ELEMENTS. [ONLINE] CHEMGUIDE. AVAILABLE AT: CHEMGUIDE.CO.UK/INORGANIC/GROUP4/PROPERTIES.HTML [ACCESSED 2 DEC. 2021].
- [15] GREENWOOD, N.N. AND EARNSHAW, A. (2012). *CHEMISTRY OF THE ELEMENTS*. AMSTERDAM ETC.: ELSEVIER BUTTERWORTH-HEINEMANN, , COP, P.371.

- [16] ALLAN, A. AND WEINER, J. (N.D.). COMMON IONS AND THEIR CHARGES. [ONLINE] SCIENCEGEEK. SCIENCEGEEK ON BEHALF OF DR. JOEL WEINER OF EVANSTON TOWNSHIP HIGH SCHOOL. AVAILABLE AT:

  SCIENCEGEEK.NET/CHEMISTRY/CHEMPDFS/COMMONIONS.PDF [ACCESSED 2 DEC. 2021].
- [17] BRUNNING, A. (2019). *THE PERIODIC TABLE OF COMMON IONIC CHARGES*. [ONLINE] COMPOUND INTEREST. AVAILABLE AT: COMPOUNDCHEM.COM/2019ADVENT/DAY10/ [ACCESSED 2 DEC. 2021].
- [18] Infoplease Team and Columbia University Press (2012). Synthetic Elements (The Columbia Electronic Encyclopedia). [online] Infoplease (on behalf of Columbia University Press). Available at: Infoplease.com/encyclopedia/science/chemistry/elements/synthetic-elements [Accessed 2 Dec. 2021].
- [19] KULKARNI, M. (2018). A COMPLETE LIST OF MAN-MADE SYNTHETIC ELEMENTS. [ONLINE] SCIENCESTRUCK. AVAILABLE AT: SCIENCESTRUCK.COM/SYNTHETIC-ELEMENTS [ACCESSED 2 DEC. 2021].
- WINTER, M.J. (1993). *The periodic table of the elements by WebElements*. [Online] WebElements. Available at: webelements.com [Accessed 26 Nov. 2021].
- [21] JACKSON, M. (2000). WHEREFORE GADOLINIUM? MAGNETISM OF THE RARE EARTHS. *THE IRM QUARTERLY*, [ONLINE] 10(3), p.6. AVAILABLE AT:

  WEB.ARCHIVE.ORG/WEB/20170712151422/HTTP://www.irm.umn.edu/Quarterly/irmq10-3.pdf [Accessed 2 Dec. 2021].
- [22] CULLITY, B.D. AND GRAHAM, C.D. (2009). INTRODUCTION TO MAGNETIC MATERIALS. HOBOKEN, N.J.: WILEY.
- [23] CONNELLY, N.G., DAMHUS, T., HARTSHORN, R.M. AND HUTTON, A.T. (2005). NOMENCLATURE OF INORGANIC CHEMISTRY: IUPAC RECOMMENDATIONS 2005. [ONLINE] IUPAC. INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY. AVAILABLE AT: OLD.IUPAC.ORG/PUBLICATIONS/BOOKS/RBOOK/RED\_BOOK\_2005.PDF [Accessed 3 Dec. 2021].
- [24] D2 PROPERTIES OF ELEMENTS

#### D2 - PROPERTIES OF FLEMENTS

- <sup>[1]</sup> T. Prohaska et al (N/A). Atomic weights of the elements 2020. *Pure and Applied Chemistry*. In press.
- [2] MEIJA, J., COPLEN, T.B., BERGLUND, M., BRAND, W.A., DE BIÈVRE, P., GRÖNING, M., HOLDEN, N.E., IRRGEHER, J., LOSS, R.D., WALCZYK, T. AND PROHASKA, T. (2016). ISOTOPIC COMPOSITIONS OF THE ELEMENTS 2013. *Pure and Applied Chemistry*, [Online] 88(3), pp.293–306. Available at: doi.org/10.1515/pac-2015-0503 [Accessed 21 Nov. 2021].
- Wolfram Research (2007-2014). *ElementData, Wolfram Language Function*. [Online] Wolfram | Alpha. Available at: wolframalpha.com [Accessed 26 Nov. 2021].
- [4] WOLFRAM RESEARCH (2007-2014). *ISOTOPEDATA, WOLFRAM LANGUAGE FUNCTION*. [ONLINE] WOLFRAM ALPHA. AVAILABLE AT: WOLFRAMALPHA.COM [ACCESSED 26 NOV. 2021].
- [5] COURSEY, J.S., SCHWAB, D.J., TSAI, J.J., DRAGOSET, R.A. AND OTHER MEMBERS OF THE NIST: PHYSICAL MEASUREMENT LABORATORY TEAM (2009). *ATOMIC WEIGHTS AND ISOTOPIC COMPOSITIONS WITH RELATIVE ATOMIC MASSES*. [ONLINE] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY: PHYSICAL MEASUREMENT LABORATORY. AVAILABLE AT: PHYSICS.NIST.GOV/COMP [ACCESSED 21 NOV. 2021].
- FUGER, J., KATZ, J.J., MORSS, L.R. AND EDELSTEIN, N.M. EDS., (2006). THE CHEMISTRY OF THE ACTINIDE AND TRANSACTINIDE ELEMENTS. 3RD ED. [ONLINE] DORDRECHT; LONDON: SPRINGER NETHERLANDS, PP.1–698. AVAILABLE AT: BOOKS.GOOGLE.CO.UK/BOOKS?ID=3UTVAAAAMAAJ [ACCESSED 21 NOV. 2021].

- GLOTZEL, D. (1978). GROUND-STATE PROPERTIES OF F BAND METALS: LANTHANUM, CERIUM AND THORIUM. *JOURNAL OF PHYSICS F: METAL PHYSICS*, [ONLINE] 8(7), PP.L163–L168. AVAILABLE AT: DOI.ORG/10.1088/0305-4608/8/7/004 [ACCESSED 21 Nov. 2021].
- [8] MEEK, T.L. AND ALLEN, L.C. (2002). CONFIGURATION IRREGULARITIES: DEVIATIONS FROM THE MADELUNG RULE AND INVERSION OF ORBITAL ENERGY LEVELS. *CHEMICAL PHYSICS LETTERS*, [ONLINE] 362(5-6), PP.362–364. AVAILABLE AT: DOI.ORG/10.1016/S0009-2614(02)00919-3 [ACCESSED 21 Nov. 2021].
- [9] MELROSE, M.P. AND SCERRI, E.R. (1996). WHY THE 4S ORBITAL IS OCCUPIED BEFORE THE 3D. *Journal of Chemical Education*, [ONLINE] 73(6), pp.498–503. AVAILABLE AT: DOI.ORG/10.1021/ED073p498 [Accessed 21 Nov. 2021].
- [10] RUMBLE, J.R. (2021). CRC HANDBOOK OF CHEMISTRY AND PHYSICS: A READY-REFERENCE BOOK OF CHEMICAL AND PHYSICAL DATA. 102ND ED. [ONLINE] CRC PRESS, COP, PP.1–1624. AVAILABLE AT:

  HBCP.CHEMNETBASE.COM/FACES/CONTENTS/CONTENTS/SEARCH.XHTML [ACCESSED 21 Nov. 2021].
- Scerri, E.R. (2013). The trouble with the Aufbau Principle. *Education in Chemistry*, [Online] 50(6), Pp.24–26. Available at: Edu.rsc.org/feature/the-trouble-with-the-aufbau-principle/2000133.article [Accessed 21 Nov. 2021].
- [12] SCERRI, E.R. (2019). FIVE IDEAS IN CHEMICAL EDUCATION THAT MUST DIE. *FOUNDATIONS OF CHEMISTRY*, [ONLINE] 21, PP.61–69. AVAILABLE AT: DOI.ORG/10.1007/s10698-018-09327-y [ACCESSED 21 Nov. 2021].
- UMEMOTO, K. AND SAITO, S. (1996). ELECTRONIC CONFIGURATIONS OF SUPERHEAVY ELEMENTS. *JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN*, [ONLINE] 65(10), PP.3175–3179. AVAILABLE AT: DOI.ORG/10.1143/JPSJ.65.3175 [ACCESSED 21 Nov. 2021].
- WEISSTEIN, E.W. (1996). *ELECTRON ORBITAL -- FROM ERIC WEISSTEIN'S WORLD OF PHYSICS*. [ONLINE] SCIENCEWORLD.WOLFRAM.COM. AVAILABLE AT: SCIENCEWORLD.WOLFRAM.COM/PHYSICS/ELECTRONORBITAL.HTML [ACCESSED 21 Nov. 2021].
- WICKLEDER, M.S., FOUREST, B. AND DORHOUT, P.K. (2016). THORIUM. *THE CHEMISTRY OF THE ACTINIDE AND TRANSACTINIDE ELEMENTS*, [ONLINE] 3, PP.52–160. AVAILABLE AT: DOI.ORG/10.1007/1-4020-3598-5\_3 [ACCESSED 21 Nov. 2021].
- [16] MARTIN, W.C., MUSGROVE, A., KOTOCHIGOVA, S., SANSONETTI, J.E., KRAMIDA, A., RALCHENKO, YU., READER, J. AND OTHER MEMBERS OF THE NIST: PHYSICAL MEASUREMENT LABORATORY TEAM (1998-2013). *Ground Levels and Ionization Energies for the Neutral Atoms (Version 5.9)*. [online] National Institute of Standards and Technology: Physical Measurement Laboratory. Available at: doi.org/10.18434/T42P4C [Accessed 26 Nov. 2021].
- [17] WINTER, M.J. (1993). THE PERIODIC TABLE OF THE ELEMENTS BY WEBELEMENTS. [ONLINE] WEBELEMENTS. AVAILABLE AT: WEBELEMENTS.COM [ACCESSED 26 Nov. 2021].
- [18] DEAN, J.A. AND NORBERT ADOLPH LANGE (1999). LANGE'S HANDBOOK OF CHEMISTRY. 15TH ED. [ONLINE] NEW YORK: MCGRAW-HILL, INC., PP.4.2–4.5. AVAILABLE AT: FPTL.RU/BIBLIOTEKA/SPRAVO4NIKI/DEAN.PDF [ACCESSED 26 Nov. 2021].
- [19] PETRUCCI, R.H. AND HILL, J.W. (2005). *General Chemistry: An Integrated Approach*. 3rd ed. [Online] Upper Saddle River, New Jersey: Prentice-Hall, Inc., pp.853–965. Available at: ARCHIVE.ORG/DETAILS/GENERALCHEMISTRY00HILL [Accessed 26 Nov. 2021].
- [20] INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY (2018). IUPAC PERIODIC TABLE OF THE ELEMENTS. [ONLINE] INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY. AVAILABLE AT: IUPAC.ORG/PERIODIC-TABLE [ACCESSED 26 Nov. 2021].

[21] ROYAL SOCIETY OF CHEMISTRY (2019). RSC PERIODIC TABLE. [ONLINE] ROYAL SOCIETY OF CHEMISTRY. AVAILABLE AT: RSC.ORG/PERIODIC-TABLE [ACCESSED 26 NOV. 2021].

## D4 – STANDARD MODEL OF ELEMENTARY PARTICLES

[1] D5 – PROPERTIES OF PARTICLES

#### D5 – PROPERTIES OF FLEMENTARY PARTICLES

- WORKMAN, R.L., BURKERT, V.D., CREDE, V., KLEMPT, E., THOMA, U., TIATOR, L., AGASHE, K., AIELLI, G., ALLANACH, B.C., AMSLER, C., ANTONELLI, M., ASCHENAUER, E.C., ASNER, D.M., BAER, H., BANERJEE, S., BARNETT, R.M., BAUDIS, L., BAUER, C.W., BEATTY, J.J. AND BELOUSOV, V.I. (PARTICLE DATA GROUP) (2022). REVIEW OF PARTICLE PHYSICS. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, [ONLINE] 2022(8), pp.25—32. AVAILABLE AT: DOI.ORG/10.1007/1-4020-3598-5\_3 [ACCESSED 25 OCT. 2022].
- WORKMAN, R.L., BURKERT, V.D., CREDE, V., KLEMPT, E., THOMA, U., TIATOR, L., AGASHE, K., AIELLI, G., ALLANACH, B.C., AMSLER, C., ANTONELLI, M., ASCHENAUER, E.C., ASNER, D.M., BAER, H., BANERIEE, S., BARNETT, R.M., BAUDIS, L., BAUER, C.W., BEATTY, J.J. AND BELOUSOV, V.I. (PARTICLE DATA GROUP) (2022). PDGLIVE. [ONLINE] PARTICLE DATA GROUP. AVAILABLE AT: PDGLIVE.LBL.GOV [ACCESSED 29 Oct. 2022].
- [3] CMS COLLABORATION (2021). LIFE OF THE HIGGS BOSON. [ONLINE] THE CMS EXPERIMENT AT CERN. AVAILABLE AT: CMS.CERN/NEWS/LIFE-HIGGS-BOSON [ACCESSED 29 OCT. 2022].

#### D6 - SI UNIT DEFINITIONS

- Bureau International des Poids et Mesures (2019). The International System of Units (SI). 9th ed. [Online] Bureau International des Poids et Mesures, pp.129-135. Available at: Bipm.org/en/publications/si-brochure [Accessed 25 Oct. 2022].
- BUREAU INTERNATIONAL DES POIDS ET MESURES (2019). THE INTERNATIONAL SYSTEM OF UNITS (SI). 9TH ED. [ONLINE]
  BUREAU INTERNATIONAL DES POIDS ET MESURES, PP.137-138. AVAILABLE AT: BIPM.ORG/EN/PUBLICATIONS/SI-BROCHURE [ACCESSED 25 OCT. 2022].

### D7 – SI DEFINING PHYSICAL CONSTANTS

Bureau International des Poids et Mesures (2019). The International System of Units (SI). 9th ed. [Online] Bureau International des Poids et Mesures, pp.128-129. Available at: Bipm.org/en/publications/si-brochure [Accessed 25 Oct. 2022].

### D8 - RADIOACTIVE DECAY MODES

- [1] KONDEV, F.G., WANG, M., HUANG, W.J., NAIMI, S. AND AUDI, G. (2021). THE NUBASE2020 EVALUATION OF NUCLEAR PHYSICS PROPERTIES. CHINESE PHYSICS C, [ONLINE] 45(3), PP.18-19. AVAILABLE AT: DOI.ORG/10.1088/1674-1137/ABDDAE [ACCESSED 27 Oct. 2022].
- [2] ABDULLA, S. AND CLARKE, C. (2017). RADIOACTIVE DECAY. [ONLINE] RADIOLOGY CAFÉ. AVAILABLE AT: RADIOLOGYCAFE.COM/FRCR-PHYSICS-NOTES/BASIC-SCIENCE/RADIOACTIVE-DECAY [ACCESSED 27 Oct. 2022].
- Western Oregon University (2016). CH103 CHAPTER 3: RADIOACTIVITY AND NUCLEAR CHEMISTRY. [ONLINE] Western Oregon University. Available at: wou.edu/chemistry/courses/online-chemistry-textbooks/ch103-allied-health-chemistry/ch103-chapter-3-radioactivity/ [Accessed 27 Oct. 2022].