## Self-Supervised Representation Learning



#### Contents

- Motivation
  - Sample Efficiency
- Representations
  - The human brain
  - o The machine
  - The properties of a good representation
- Self-Supervision
  - Autoencoding (AE) Methods
  - Autoregressive (AR) Methods
  - Pretext Tasks
- Applications
  - Few-Labels Scenarios
  - Reinforcement Learning

#### A little about myself...

#### Education

- BSc, Computer and Information Sciences Babes-Bolyai University (2015)
- MSc, Applied Computational Intelligence Babes-Bolyai University (2017)

#### Work Experience

- Game Developer (4 years)
- Machine Learning Engineer (3 years)









# cognifeed cognifeed

## Cogni-what?

#### Accessible Machine Teaching:

- Empowers people with the domain knowledge to train models.
- Sample and label efficiency.

### Cogni-what?

#### Accessible Machine Teaching:

- Empowers people with the domain knowledge to train models.
- Sample and label efficiency.
  - Creating new datasets for each task is expensive.
  - Some domains are supervision-starved.
  - There are many unlabelled data samples.

#### Sample Efficiency In Machine Learning

$$\frac{1}{\varepsilon(1-\sqrt{\varepsilon})} \left[ 2d\ln(6/\varepsilon) + \ln(2/\delta) \right]$$

- VC dimension ~ the effective number of parameters (expressiveness).
- In practice, the number of samples = 10 x VC dimension.<sup>2</sup>
- Deep nets => huge VC dimension

- 1. <u>Bounding sample size with the VC dimension</u>, Shawe-Taylor, J. et al, 1993
- 2. The VC Dimension A measure of what it takes a model to learn, Yaser Abu-Mostafa, 2012

## Conditioning is important

- Priors
- Regularization

$$\tilde{O}\left((m+r)/\varepsilon^2\right)$$



- 1. The Model Complexity Myth, Jake VanderPlas, 2015
- 2. How Many Samples are Needed to Estimate a Convolutional Neural Network, Simon S.Du et al, 2018

## We can do better...

## Representations

#### The Human Brain and Representation Learning



#### Some takeaways:

- We store representations, not snapshots.
- We use these representations to reason (predict, classify) new inputs and recall old ones.
- We don't need "supervision" to generate representations.



1. <u>The Human Brain Recalls Visual Features in Reverse Order Than It Detects Them</u>, Zuckerman Institute, 2017

#### Representations in Machine Learning



We can also make models learn representations explicitly.

#### What makes a good representation?

- Smoothness
- Multiple explanatory factors
- Depth
- Shared factors across tasks
- Manifolds

- Natural clustering
- Temporal and spatial coherence
- Sparsity
- Simplicity of factor dependencies





Smoothness

Natural clustering

## Self-Supervision

### Self-supervision?

- A form of unsupervised learning.
- Data itself provides the supervision.

#### Two ways of achieving this:

- We withhold part of the input data and make our model predict it.
- Making up pretext tasks.

## Withholding Data Autoencoding (AE) Methods

#### Autoencoding (AE) Methods



No information withheld (or arguably all the input is withheld from the decoder), representation is quite arbitrary, reconstruction can be poor.

#### Autoencoding (AE) Methods



- Denoising autoencoder (noise = input values set to 0/mask value).
- Works under the assumption that the choice for  $x_2$  is independent from the choice of  $x_4$ .
- Natural Language breaks this assumption but this still works well on NLP tasks.
- Model = Transformer => BERT

#### Study Case: Bidirectional Encoder Representations from Transformers (BERT)



| Fine-tuning approach                           |      |  |
|------------------------------------------------|------|--|
| BERTLARGE                                      | 96.6 |  |
| BERTBASE                                       | 96.4 |  |
| Feature-based approach (BERT <sub>BASE</sub> ) |      |  |
| Embeddings                                     | 91.0 |  |
| Second-to-Last Hidden                          | 95.6 |  |
| Last Hidden                                    | 94.9 |  |
| Weighted Sum Last Four Hidden                  | 95.9 |  |
| Concat Last Four Hidden                        | 96.1 |  |
| Weighted Sum All 12 Layers                     | 95.5 |  |

Results on Named Entity Recognition

<sup>1. &</sup>lt;u>Attention Is All You Need</u>, Ashish Vaswani et. al, 2017

<sup>2.</sup> BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Jacob Devlin et. al, 2018

## Withholding Data Autoregressive (AR) Methods

#### Autoregressive Methods



- Assumes that for the prediction of  $x_t$  all we need is  $x_0$ , ...,  $x_{t-1}$
- Model = Transformer => GPT (OpenAl language model).

#### **Autoregressive Methods**



- Assumes the whole bidirectional context.
- Model = LSTM => ELMO.

#### Autoregressive Methods



Factorization order: 2□1□3□0



Factorization order: 0 □ 3 □ 1 □ 2



Factorization order: 1 □ 3 □ 2 □ 0



Factorization order: 3 □ 2 □ 0 □ 1

#### Case Study: XLNet



- 1. <u>Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context</u>, Zihang Dai et. al, 2019
- 2. XLNet: Generalized Autoregressive Pretraining for Language Understanding, Zhilin Yang et. al, 2019

#### Other Autoregressive Models





WaveNet PxelRNN

- 1. <u>WaveNet: A Generative Model for Raw Audio</u>, Aaron van den Oord et. al, 2016
- 2. Pixel Recurrent Neural Networks, Aaron van den Oord et. al, 201

## **Pretext Tasks**

#### Brainstorming Exercise - Pretext Tasks For Visual Representation Learning



#### Rotation



#### Exemplar





#### **Relative Patch Location**



#### Comparison

| Model           | Rotation  |      |             | Exemplar    |           |      | RelPatchLoc |           | Jigsaw |           |            |
|-----------------|-----------|------|-------------|-------------|-----------|------|-------------|-----------|--------|-----------|------------|
|                 | $4\times$ | 8×   | $12 \times$ | $16 \times$ | $4\times$ | 8×   | $12\times$  | $4\times$ | 8×     | $4\times$ | $8 \times$ |
| RevNet50        | 47.3      | 50.4 | 53.1        | 53.7        | 42.4      | 45.6 | 46.4        | 40.6      | 45.0   | 40.1      | 43.7       |
| ResNet50 v2     | 43.8      | 47.5 | 47.2        | 47.6        | 43.0      | 45.7 | 46.6        | 42.2      | 46.7   | 38.4      | 41.3       |
| ResNet50 v1     | 41.7      | 43.4 | 43.3        | 43.2        | 42.8      | 46.9 | 47.7        | 46.8      | 50.5   | 42.2      | 45.4       |
| RevNet50 (-)    | 45.2      | 51.0 | 52.8        | 53.7        | 38.0      | 42.6 | 44.3        | 33.8      | 43.5   | 36.1      | 41.5       |
| ResNet50 v2 (-) | 38.6      | 44.5 | 47.3        | 48.2        | 33.7      | 36.7 | 38.2        | 38.6      | 43.4   | 32.5      | 34.4       |
| VGG19-BN        | 16.8      | 14.6 | 16.6        | 22.7        | 26.4      | 28.3 | 29.0        | 28.5      | 29.4   | 19.8      | 21.1       |

<sup>1.</sup> Revisiting Self-Supervised Visual Representation Learning, Alexander Kolesnikov et. al, 2019

## Putting Representations to Good Use

#### Representations In Few-Labels Scenarios

- Pretrain on vast amounts of data in a self-supervised manner and then:
  - Fine-tune on known labels.
  - Use learned representations to train a shallow model.
- Use representations' properties (natural clustering) for label propagation.
- Active Learning
  - Representations are learned.
  - Estimator is trained on available labels.
  - Estimator predicts labels for unlabeled instances.
  - Forwards the most uncertain instances to the user to be corrected.

#### Co-Training

- Learn two different representations for each data point => two views.
- Train an estimator on each view.
- Each estimator predicts labels for unlabeled instances and adds the most confident prediction to the label pool of the other estimator.

#### Self-Supervised Representations in Reinforcement Learning



Agents learning in their own "dreams" 1



Curiosity-driven exploration<sup>2</sup>

- 1. World Models, David Ha and JÜRGEN SCHMIDHUBER, 2018
- 2. <u>Curiosity-driven Exploration by Self-supervised Prediction</u>, Deepak Pathak et. al, 2017

## Question Time