La forme de la solution particulière d'une équation différentielle linéaire du 2^{ème} ordre.

Forme du 2 ^{ème} membre	Racine ou pas de l'équation	Forme de la solution narticulière y
	caractéristique EC	d A Company
	Si 0 n'est pas une racine de l'EC	$y_p = R_n(x)$, polynôme de degré n .
$f(x) = P_n(x)$, polynôme de degré n .	Si 0 est une racine de l'EC de multiplicité k	$y_p = x^k R_n(x)$
	Si eta n'est pas une racine de l'EC	$y_p = R_n(x).e^{\beta x}$
$f(x) = P_n(x).e^{\beta x}$	Si β est une racine de l'EC de multiplicité k	$y_p = x^k R_n(x). e^{\beta x}$
$f(x) = P_n(x)\cos\omega x + Q_m(x)\sin\omega x$	Si $i\omega$ et $-i\omega$ ne sont pas des racines de l'EC	$y_p = R_j(x)cos\omega x + S_j(x)sin\omega x$ où $j = \max(n, m)$ et R_j et S_j des polynômes de degré j
ou P_n est un polynôme de degré n et Q_m un polynôme de degré m .	Si $i\omega$ et $-i\omega$ sont des racines de l'EC de multiplicité k	$y_p = x^k [R_j(x)cos\omega x + S_j(x)sin\omega x]$ où $j = \max(n, m)$ et R_i et S_i des polynômes de degré j
$f(x) = [P_n(x)\cos\omega x + Q_m(x)\sin\omega x]e^{\beta x}$	Si $eta + i \omega$ n'est pas une racine de l'EC	y_p = $[R_j(x)cos\omega x + S_j(x)sin\omega x]e^{\beta x}$ où $j = \max(n, m)$ et R_i et S_j des polynômes de degré j
où P_n est un polynôme de degré n et Q_m un polynôme de degré m .	Si $eta + i \omega$ est une racine de l'EC de multiplicité k	$y_p = x^k [R_j(x) \cos \omega x + S_j(x) \sin \omega x] e^{\beta x}$ où $j = \max(n, m)$