Maß 1, Übung 4

March 3, 2020

1 Aufgabe 1

Lemma 1. Wenn μ und ν Maße auf dem Ring \Re sind, so gilt:

(a)
$$(\mu + \nu)^* = \mu^* + \nu^*$$

(b)
$$\mathfrak{M}_{\mu^*} \cap \mathfrak{M}_{\nu^*} \subseteq \mathfrak{M}_{(\mu+\nu)^*}$$

Beweis. Um (a) zu beweisen wählen wir ein beliebiges $A \subseteq \Omega$ und $\epsilon > 0$. Nun gibt es eine Mengenfolge $(E_n)_{n \in \mathbb{N}}$ aus \mathfrak{R} mit $A \subseteq \bigcup_{n \in \mathbb{N}} E_n$, für die

$$(\mu + \nu)^*(A) \ge \sum_{n \in \mathbb{N}} (\mu + \nu)(E_n) = \sum_{n \in \mathbb{N}} \mu(E_n) + \sum_{n \in \mathbb{N}} \nu(E_n)$$

 $\ge \mu^*(A) + \nu^*(A)$

gilt. Außerdem gibt es auch Mengenfolgen $(B_n)_{n\in\mathbb{N}}$ und $(C_n)_{n\in\mathbb{N}}$ aus \mathfrak{R} mit $A\subseteq\bigcup_{n\in\mathbb{N}}B_n\wedge A\subseteq\bigcup_{n\in\mathbb{N}}C_n$, die

$$(\mu + \nu)^*(A) \le \sum_{(n,k)\in\mathbb{N}\times\mathbb{N}} (\mu + \nu)(B_n \cap C_k)$$

$$\le \sum_{n\in\mathbb{N}} \mu(B_n) + \sum_{n\in\mathbb{N}} \nu(C_n) \le \mu^*(A) + \nu^*(A) + \epsilon$$

Da ϵ beliebig war ist die Gleichheit gezeigt.

Teil (b) ist sehr einfach nachzuweisen.

2 Aufgabe 4

Lemma 2. Wenn \mathfrak{C} ein Mengensystem über Ω mit $\emptyset \in \mathfrak{C}$ ist und $f: \mathfrak{C} \to [0, \infty]$ mit $f(\emptyset) = 0$, dann ist

$$\mu^*: 2^{\Omega} \to \overline{\mathbb{R}}: A \mapsto \inf \left\{ \sum_{n \in \mathbb{N}} f(B_n) \mid \forall n \in \mathbb{N}: B_n \in \mathfrak{C} \land A \subset \bigcup_{n \in \mathbb{N}} B_n \right\}$$

eine äußere Maßfunktion.

Beweis. Die erste Eigenschaft einer äußeren Maßfunktion $\mu^*(\emptyset) = 0$ ist wegen $f(\emptyset) = 0$ trivialerweise erfüllt.

Aufgrund des Bildbereichs von f ist auch die zweite Eigenschaft $\forall A \subset \Omega: \mu^*(A) \geq 0$ leicht einzusehen.

Um die Monotonie nachzuweisen wählen wir beliebige $A \subset B \subset \Omega$ und ein beliebiges $\epsilon > 0$. Nun gibt es eine Folge $(C_n)_{n \in \mathbb{N}}$ aus \mathfrak{C} mit $B \subset \bigcup_{n \in \mathbb{N}} C_n$ für die

$$\mu^*(B) + \epsilon \ge \sum_{n \in \mathbb{N}} f(C_n) \ge \mu^*(A)$$

gilt. Die Monotonie ist gezeigt, weil ϵ beliebig war.

Zuletzt ist noch die Sigmasubadditivität nachzuweisen. Dafür wählen wir $A \subset \Omega$ beliebig sowie eine beliebige Folge $(B_n)_{n \in \mathbb{N}}$ aus 2^{Ω} mit $A \subset \bigcup_{n \in \mathbb{N}} B_n$. Für ein beliebiges $\epsilon > 0$ und $n \in \mathbb{N}$ gibt es eine Folge $(C_{nk})_{k \in \mathbb{N}}$ mit $B_n \subset \bigcup_{k \in \mathbb{N}} C_{nk}$ so, dass

$$\sum_{n \in \mathbb{N}} \mu^*(B_n) + \epsilon \ge \sum_{(n,k) \in \mathbb{N} \times \mathbb{N}} f(C_{nk}) \ge \mu^*(A)$$

gilt. Da ϵ beliebig war haben wir die Sigmasubadditivität gezeigt.

3 Aufgabe 5

Lemma 3. Wenn $(\mu_i^*)_{i\in I}$ eine Familie von äußeren Maßen auf Ω ist, so ist auch $\mu^*: 2^{\Omega} \to \overline{\mathbb{R}}: A \mapsto \sup\{\mu_i^*(A) \mid i \in I\}$ ein äußeres Maß.

Beweis. Die erste Eigenschaft eines äußeren Maßes $\mu^*(\emptyset) = 0$ ist offensichtlich erfüllt.

Auch die zweite Eigenschaft $\forall A \subset \Omega : \mu^*(A) \geq 0$ überträgt sich direkt auf das Supremum.

Die Monotonie ist ebenfalls leicht nachzuweisen.

Um die Sigmasubadditivität nachzuweisen wählen wir $A \subset \Omega$ und eine beliebige Folge $(B_n)_{n \in \mathbb{N}}$ aus 2^{Ω} , welche $A \subset \bigcup_{n \in \mathbb{N}} B_n$ erfüllt. Für ein beliebiges $\epsilon > 0$ gibt es ein $j \in I$ das

$$\mu^*(A) - \epsilon \le \mu_j^*(A) \le \sum_{n \in \mathbb{N}} \mu_j^*(B_n) \le \sum_{n \in \mathbb{N}} \mu^*(B_n)$$

erfüllt.

4 Aufgabe 7

Lemma 4. Wenn Ω_1 und Ω_2 nichtleere Mengen sind und $f:\Omega_1\to\Omega_2$, dann gelten folgende Aussagen:

- (a) Für alle $A \subset \Omega_2 : f(f^{-1}(A)) = A \cap f(\Omega_1)$
- (b) Wenn μ_2^* ein äußeres Maß über Ω_2 ist, dann ist $\mu_1^*: 2^{\Omega_1} \to \overline{\mathbb{R}}: A \mapsto \mu_2^*(f(A))$ ein äußeres Maß über Ω_1 und für eine μ_2^* -messbare Menge $A \subset \Omega_2$ gilt, dass $f^{-1}(A)$ eine μ_1^* -messbare Menge ist.

Beweis. Es ist schnell nachzuweisen, dass (a) gilt.

Nun weisen wir nach, dass μ_1^* ein äußeres Maß ist. Da $f(\emptyset) = \emptyset$, gilt klarerweise $\mu_1^*(\emptyset) = 0$.

Die Nichtnegativität von μ_1^* folgt sofort aus der Nichtnegativität von μ_2^* .

Ist $A \subset B \subset \Omega_1$ so ist $f(A) \subset f(B) \subset \Omega_2$ und die Monotonie von μ_1^* ist klarerweise erfüllt.

Für $A \subset \bigcup_{n \in \mathbb{N}} B_n \subset \Omega_1$ gilt

$$\mu_1^*(A) = \mu_2^*(f(A)) \le \sum_{n \in \mathbb{N}} \mu_2^*(f(B_n)) = \sum_{n \in \mathbb{N}} \mu_1^*(B_n)$$

Sei zuletzt $A\subset\Omega_2$ eine beliebige μ_2^* -messbare Menge. Wir wählen $B\subset\Omega_1$ beliebig und erhalten unter Benützung von (a), dass

$$\begin{split} \mu_1^*(B) &= \mu_2^*(f(B)) = \mu_2^*(f(B) \cap A) + \mu_2^*(f(B) \setminus A) \\ &= \mu_2^*\left(f(B) \cap f\left(f^{-1}(A)\right)\right) + \mu_2^*\left(f(B) \cap f\left(f^{-1}\left(A^C\right)\right)\right) \\ &= \mu_1^*\left(B \cap f^{-1}(A)\right) + \mu_1^*\left(B \setminus f^{-1}(A)\right) \end{split}$$

gilt, also $f^{-1}(A)$ eine μ_1^* -messbare Menge ist.