TD 3 - Estimation ponctuelle

Exercice 1 Loi normale à un paramètre

Soit (X_1, \ldots, X_n) un échantillon de loi parente $X \sim \mathcal{N}(\theta, \theta(1-\theta))$, où $\theta \in [0, 1]$ est un paramètre inconnu. On considère l'estimateur :

$$T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

Montrer que T est un estimateur sans biais et convergent du paramètre θ , sachant que $V(X^2) = 2\theta^2(1-\theta^2)$.

Exercice 2 Autre loi normale à un paramètre

Les éléments d'une population possèdent un caractère X qui suit une loi de densité $f_{\theta}(x) = \sqrt{\frac{\theta}{2\pi}}e^{-\frac{\theta x^2}{2}}$ où $\theta > 0$. Pour estimer le paramètre θ à partir d'un échantillon $X_1, ..., X_n$, on propose d'utiliser l'estimateur $\hat{\theta} = \frac{n}{\sum_{i=1}^n X_i^2}$. On peut montrer que $E(\hat{\theta}) = \frac{n}{n-2}\theta$ et $V(\hat{\theta}) = \frac{2n^2\theta^2}{(n-2)^2(n-4)}$.

- 1. Calculer le biais de l'estimateur $\hat{\theta}$.
- 2. Calculer son erreur quadratique movenne.
- 3. L'estimateur $\hat{\theta}$ est-il convergent?
- 4. Déduire de $\hat{\theta}$ un estimateur $\tilde{\theta}$ non biaisé.
- 5. Ce nouvel estimateur est-il convergent?
- 6. Lequel des deux estimateurs est le meilleur (pour n > 2)?

Exercice 3 Densité triangulaire

Soit X une variable aléatoire continue de support [0,1] définie par :

$$f(x,\theta) = \begin{cases} \frac{2}{\theta}x & \text{si } x \in [0,\theta] \\ \frac{2}{\theta-1}(x-1) & \text{si } x \in [\theta,1] \\ 0 & \text{sinon} \end{cases}$$

- 1. Faire le dessin de cette loi continue triangulaire pour $\theta = 0$, $\theta = \frac{1}{2}$ et $\theta = \frac{2}{3}$.
- 2. Calculer l'espérance $\mathbb{E}[X]$
- 3. A partir du calcul de l'espérance, proposer un estimateur non biaisé du paramètre θ pour un échantillon $X_1,...,X_n$
- 4. Calculer l'erreur quadratique moyenne et dire si cet estimateur est convergent