Q-Function Learning Methods

February 15, 2017

Value Functions

Definitions (review):

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, a_0 = a \right]$$

Called *Q*-function or state-action-value function

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s \right]$$

= $\mathbb{E}_{a \sim \pi} \left[Q^{\pi}(s, a) \right]$

Called state-value function

$$A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$$

Called advantage function

Bellman Equations for Q^{π}

▶ Bellman equation for Q^{π}

$$Q^{\pi}(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} [r_0 + \gamma V^{\pi}(s_1)]$$

= $\mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} [r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} [Q^{\pi}(s_1, a_1)]]$

• We can write out Q^{π} with k-step empirical returns

$$\begin{split} Q^{\pi}(s_0, a_0) &= \mathbb{E}_{s_1, a_1 \mid s_0, a_0} \left[r_0 + \gamma V^{\pi}(s_1, a_1) \right] \\ &= \mathbb{E}_{s_1, a_1, s_2, a_2 \mid s_0, a_0} \left[r_0 + \gamma r_1 + \gamma^2 Q^{\pi}(s_2, a_2) \right] \\ &= \mathbb{E}_{s_1, a_1, \dots, s_k, a_k \mid s_0, a_0} \left[r_0 + \gamma r_1 + \dots + \gamma^{k-1} r_{k-1} + \gamma^k Q^{\pi}(s_k, a_k) \right] \end{split}$$

Bellman Backups

► From previous slide:

$$Q^{\pi}(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q^{\pi}(s_1, a_1) \right] \right]$$

▶ Define the Bellman backup operator (operating on *Q*-functions) as follows

$$[\mathcal{T}^{\pi}Q](s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)}[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi}[Q(s_1, a_1)]]$$

▶ Then Q^{π} is a *fixed point* of this operator

$$\mathcal{T}^{\pi}Q^{\pi}=Q^{\pi}$$

▶ Furthermore, if we apply \mathcal{T}^{π} repeatedly to any initial Q, the series converges to Q^{π}

$$Q,\; \mathcal{T}^{\pi}Q,\; (\mathcal{T}^{\pi})^2Q,\; (\mathcal{T}^{\pi})^3Q,\; \cdots
ightarrow Q^{\pi}$$

Introducing Q^*

- Let π^* denote an optimal policy
- lacksquare Define $Q^*=Q^{\pi^*}$, which satisfies $Q^*(s,a)=\max_\pi Q^\pi(s,a)$
- \bullet π^* satisfies $\pi^*(s) = \arg\max_a Q^*(s, a)$
- ► Thus, Bellman equation

$$Q^{\pi}(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q^{\pi}(s_1, a_1) \right] \right]$$

becomes

$$Q^*(s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \max_{a_1} Q^*(s_1, a_1)
ight]$$

Another definition

$$Q^*(s_0, a_0) = \mathbb{E}_{s_1}[r + \gamma V^*(s_1)]$$

Bellman Operator for Q^*

Define a corresponding Bellman backup operator

$$[\mathcal{T}Q](s_0,a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0,a_0)} \left[r_0 + \gamma \max_{a_1} Q(s_1,a_1)
ight]$$

• Q^* is a fixed point of \mathcal{T} :

$$\mathcal{T}Q^* = Q^*$$

▶ If we apply $\mathcal T$ repeatedly to any initial Q, the series converges to Q^*

$$Q, \ \mathcal{T}Q, \ \mathcal{T}^2Q, \ \cdots
ightarrow Q^*$$

Q-Value Iteration

Algorithm 1 Q-Value Iteration

Initialize $Q^{(0)}$

for n = 0, 1, 2, ... until termination condition **do** $Q^{(n+1)} = \mathcal{T}Q^{(n)}$

 $Q^{(n+1)} = f Q^{(n)}$

end for

Q-Policy Iteration

Algorithm 2 Q-Policy Iteration

```
Initialize Q^{(0)} for n=0,1,2,\ldots until termination condition do \pi^{(n+1)}=\mathcal{G}Q^{(n)} Q^{(n+1)}=Q^{\pi^{(n+1)}} end for
```

Q-Modified Policy Iteration

Algorithm 3 Q-Modified Policy Iteration

```
Initialize Q^{(0)} for n=0,1,2,\ldots until termination condition do \pi^{(n+1)}=\mathcal{G}Q^{(n)} Q^{(n+1)}=(\mathcal{T}^{\pi^{(n+1)}})^kQ^{(n)} end for
```

Sample-Based Estimates

lacktriangle Recall backup formulas for Q^{π} and Q^*

$$[\mathcal{T}Q](s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \max_{a_1} Q(s_1, a_1) \right] \ [\mathcal{T}^{\pi}Q](s_0, a_0) = \mathbb{E}_{s_1 \sim P(s_1 \mid s_0, a_0)} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q(s_1, a_1) \right] \right]$$

▶ We can compute unbiased estimator of RHS of both equations using a single sample. Does not matter what policy was used to select actions!

$$egin{aligned} [\widehat{\mathcal{T}Q}](s_0,a_0) &= r_0 + \gamma \max_{a_1} Q(s_1,a_1) \ [\widehat{\mathcal{T}^{\pi}Q}](s_0,a_0) &= r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q(s_1,a_1)
ight] \end{aligned}$$

▶ Backups still converge to Q^{π} , Q^* with this noise¹

¹T. Jaakkola, M. I. Jordan, and S. P. Singh. "On the convergence of stochastic iterative dynamic programming algorithms". Neural computation (1994); D. P. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 2012.

Multi-Step Sample-Based Estimates

Expanding out backup formula

$$egin{aligned} [\mathcal{T}^{\pi}Q](s_0,a_0) &= \mathbb{E}_{a_0 \sim \pi} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[Q(s_1,a_1)
ight] \ [(\mathcal{T}^{\pi})^2 Q](s_0,a_0) &= \mathbb{E}_{a_0 \sim \pi} \left[r_0 + \gamma \mathbb{E}_{a_1 \sim \pi} \left[r_1 + \gamma \mathbb{E}_{a_2 \sim \pi} \left[Q(s_2,a_2)
ight]
ight] \ &= \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 Q(s_2,a_2)
ight] \ &\cdots \ [(\mathcal{T}^{\pi})^k Q](s_0,a_0) &= \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \cdots + \gamma^{k-1} r_{k-1} + \gamma^k Q(s_k,a_k)
ight] \end{aligned}$$

 \Rightarrow can get unbiased estimator of $[(\mathcal{T}^{\pi})^k Q](s_0, a_0)$ using trajectory segment $(s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{k-1}, a_{k-1}, r_{k-1}, s_k)$

Q-function Backups vs V-function Backups

$$egin{aligned} [\mathcal{T}Q](s_0,a_0) &= \mathbb{E}_{s_1}\left[r_0 + \gamma \max_{a_1} Q(s_1,a_1)
ight] \ [\mathcal{T}^\pi Q](s_0,a_0) &= \mathbb{E}_{s_1}\left[r_0 + \gamma \mathbb{E}_{a_1\sim\pi}\left[Q(s_1,a_1)
ight] \end{aligned}$$

VS

$$[\mathcal{T}V](s_0) = \max_{s_1} [E_{s_1}[r_0 + \gamma V^{\pi}(s_0)]]$$

 $[\mathcal{T}^{\pi}V](s_0) = E_{s_0 \sim \pi}[E_{s_1}[r_0 + \gamma V^{\pi}(s_0)]]$

max and \mathbb{E} swapped: can get unbiased estimate for $Q(s_0, a_0)$ but not $V(s_0)$ using (s_0, a_0, r_0, s_1) .

Why Q Rather than V?

- ▶ Can compute greedy action $\max_a Q(s, a)$ without knowing P
- Can compute unbiased estimator of backup value $[\mathcal{T}Q](s, a)$ without knowing P using single transition (s, a, r, s')
- ▶ Can compute unbiased estimator of backup value $[\mathcal{T}Q](s,a)$ using off-policy data

Sampling-Based Algorithms

- Start with Q-value iteration or Q-policy iteration
- Replace backup by estimator

$$egin{aligned} [\mathcal{T}Q](s_t,a_t) &
ightarrow \widehat{\mathcal{T}Q}_t = r_t + \max_{a_{t+1}} Q(s_{t+1},a_{t+1}) \ [\mathcal{T}^\pi Q](s_t,a_t) &
ightarrow \widehat{\mathcal{T}^\pi Q}_t = r_t + \mathbb{E}_{a_{t+1} \sim \pi} \left[Q(s_{t+1},a_{t+1})
ight] \end{aligned}$$

ightharpoonup Can also replace $[(\mathcal{T}^{\pi})^k Q](s_t, a_t)$ (from MPI) by sample-based estimate

Sampling-Based Q-Value Iteration

Algorithm 4 Sampling-Based Q-Value Iteration

```
Initialize Q^{(0)} for n=0,1,2,\ldots until termination condition do Interact with the environment for K timesteps (including multiple episodes) for (s,a) \in \mathcal{S} \times \mathcal{A} do Q^{(n+1)}(s,a) = \operatorname{mean} \left\{ \widehat{\mathcal{T}Q}_t, \forall t \text{ such that } (s_t,a_t) = (s,a) \right\} where \widehat{\mathcal{T}Q}_t = r_t + \gamma \max_{a_{t+1}} Q^{(n)}(s_{t+1},a_{t+1}) end for end for
```

$$Q^{(n+1)} = \mathcal{T}Q^{(n)} + noise$$

Least Squares Version of Backup

- ▶ Recall $Q^{(n+1)}(s,a) = ext{mean} \Big\{ \widehat{\mathcal{T}Q}_t, orall t ext{ such that } (s_t,a_t) = (s,a) \Big\}$

Sampling-Based Value Iteration

Algorithm 5 Sampling-Based Q-Value Iteration (v2)

Initialize $Q^{(0)}$

for $n = 0, 1, 2, \ldots$ until termination condition do Interact with the environment for K timesteps (including multiple episodes)

$$Q^{(n+1)}(s,a) = \mathop{\mathsf{arg\,min}}_Q \sum_{t=1}^K \left\| \widehat{\mathcal{T}Q}_t - Q(s_t,a_t)
ight\|^2$$

end for

$$Q^{(n+1)} = \mathcal{T}Q^{(n)} + noise$$

Partial Backups

- ▶ Full backup: $Q \leftarrow \widehat{\mathcal{T}Q}_t$
- ▶ Partial backup: $Q \leftarrow \epsilon \widehat{\mathcal{T}Q}_t + (1 \epsilon)Q$
- Equivalent to gradient step on squared error

$$egin{aligned} Q &
ightarrow Q - \epsilon
abla_Q igg| Q - \widehat{\mathcal{T}Q}_t igg|^2 / 2 \ &= Q - \epsilon (Q - \widehat{\mathcal{T}Q}_t) \ &= (1 - \epsilon)Q + \epsilon \widehat{\mathcal{T}Q}_t \end{aligned}$$

▶ For sufficiently small ϵ , expected error $\left\|Q - \widehat{\mathcal{T}Q}\right\|^2$ decreases

Sampling-Based Q-Value Iteration

Algorithm 6 Sampling-Based Q-Value Iteration (v3)

Initialize $Q^{(0)}$

for n = 0, 1, 2, ... until termination condition do Interact with the environment for K timesteps (including multiple episodes)

$$Q^{(n+1)} = Q^{(n)} + \epsilon \nabla_Q \sum_{t=1}^K \left\| \widehat{\mathcal{T}Q}_t - Q(s_t, a_t) \right\|^2 / 2$$

end for

$$Q^{(n+1)} = Q^{(n)} + \epsilon \left(\nabla_Q \left\| \mathcal{T} Q^{(n)} - Q \right\|^2 / 2 \big|_{Q = Q^{(n)}} + noise \right)$$

$$= \arg \min_{Q} \left\| (1 - \epsilon) Q^{(n)} + \epsilon (\mathcal{T} Q^{(n)} + noise) \right\|^2$$

- $ightharpoonup K = 1 \Rightarrow Watkins' Q-learning^2$
- ► Large K: batch Q-value iteration

Convergence

Consider partial backup update:

$$Q^{(n+1)} = Q^{(n)} + \epsilon \Big(
abla_Q ig\| \mathcal{T} Q^{(n)} - Q ig\|^2 / 2 ig|_{Q = Q^{(n)}} + ext{noise} \Big)$$

- ▶ Gradient descent on $L(Q) = ||TQ Q||^2/2$, converges?
- ▶ No, because objective is changing, $\mathcal{T}Q^{(n)}$ is a moving target.
- ► General stochastic approximation result: do "partial update" for contraction + appropriate stepsizes ⇒ converge to contraction fixed point³
- ▶ Given appropriate schedule, e.g. $\epsilon = 1/n$, $\lim_{n \to \infty} Q^{(n)} = Q^*$

³T. Jaakkola, M. I. Jordan, and S. P. Singh. "On the convergence of stochastic iterative dynamic programming algorithms". Neural computation (1994).

Function Approximation / Neural-Fitted Algorithms

- lacktriangle Parameterize Q-function with a neural network $Q_{ heta}$
- ▶ To approximate $Q \leftarrow \widehat{\mathcal{T}Q}$, do

$$\min_{ heta} \sum_{t} \left\| Q_{ heta}(s_t, a_t) - \widehat{\mathcal{T}Q}(s_t, a_t)
ight\|^2$$

Algorithm 7 Neural-Fitted Q-Iteration (NFQ)⁴

Initialize $\theta^{(0)}$.

for
$$n = 1, 2, ...$$
 do

Sample trajectory using policy $\pi^{(n)}$.

$$heta^{(n)} = \mathsf{minimize}_{ heta} \sum_t \Bigl(\widehat{\mathcal{TQ}}_t - Q_{ heta}(s_t, a_t)\Bigr)^2$$

end for

⁴M. Riedmiller. "Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning method". Machine Learning:
ECML 2005. Springer, 2005.