МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота № 9

з дисципліни «Математичні методи дослідження операцій»

Виконав: студент групи КН-208 Келемен С. Й. Викладач: Пелецишин О. П.

Завдання

Розв'язати задачу оптимального розподілу капіталовкладень за умов:

- кількість компаній три;
- одна компанія один проект;
- якщо кілька проектів для однієї компанії мають однакову вартість оцінити реалізацію проекту з найбільшим прибутком.

Варіант 8

Варіант 8 Інвестиції 9

	Comp	any 1	Comp	any 2	Company 3		
Project	Cost	Cost Profit		Profit	Cost	Profit	
1	3	0,8	2	0,5	1	0,3	
2	2	0,4	2	0,4	4	0,8	
3	3	1,1	1	0,4	1	0,4	
4	3	0,9	2	0,6	4	1,2	
5	3	0,8	5	1,3	3	0,8	

Розв'язання

Кількість компаній дорівнює 3, значить в нас буде 3 кроки.

 D_i – дохід;

 K_i – витрати;

 C_i – витрати;

Для початку позначимо $f'_4(x_4)$

При $k_i > x_i$ функцію не обраховуєм, бо не можна вкласти менше ніж дано інвестицій.

Крок 3.

При $k_3 = 0$ та $x_3 = 0$

 $f_3(x_3,k_3) = 0$, бо для компанії 3 нема проєкту, в який можна вкласти 0.

(Аналогічно при $x_3 = (1; 2; 3; ...; 9)$

X3	Дохід $f_3(x_3,k_3) = D_3(k_3) + f'_4(x_3)$								Оптимальний розв'язок	
	$k_3 = 0$	$k_3 = 1$	$k_3 = 2$	$k_3 = 3$	$k_3 = 4$	$k_3 = 5$		$f'_{3}(x_{3})$	k' ₃	
0	0							0	0	
1	0	0,4					•••	0,4	1	
2	0	0,4	0				•••	0,4	1	
3	0	0,4	0	0,8				0,8	3	
4	0	0,4	0	0,8	1,2			1,2	4	
5	0	0,4	0	0,8	1,2	0		1,2	4	
6	0	0,4	0	0,8	1,2	0		1,2	4	
7	0	0,4	0	0,8	1,2	0	•••	1,2	4	
8	0	0,4	0	0,8	1,2	0		1,2	4	
9	0	0,4	0	0,8	1,2	0		1,2	4	

При $k_3 = 1$ та $x_3 = 1$

$$f_3(x_3,k_3) = 0,4+0=0$$

(Аналогічно при $x_3 = (2; 3; 4; ...; 9)$

При $k_3 = 2$ та $x_3 = 2$

 $f_3(x_3,k_3) = 0$, бо для компанії 3 нема проєкту, в який можна вкласти 2.

(Аналогічно при $x_3 = (3; 4; 5; ...; 9)$

При $k_3 = 3$ та $x_3 = 3$

 $f_3(x_3,k_3) = 0.8$

(Аналогічно при $x_3 = (4; 5; 6; ...; 9)$

При $k_3 = 4$ та $x_3 = 4$

 $f_3(x_3,k_3) = 1,2$

(Аналогічно при $x_3 = (5; 6; 7; ...; 9)$

При $k_3 = 5$ та $x_3 = 5$

 $f_3(x_3,k_3)=0$, бо для компанії 3 нема проєкту, в який можна вкласти 5.

(Аналогічно при $x_3 = (6; 7; 8; ...; 9)$

Далі аналогічно.

Результат: $f'_3(0) = 0$; $f'_3(1) = 0,4$; $f'_3(2) = 0,4$; $f'_3(3) = 0,8$; $f'_3(4) = 1,2$; $f'_3(5) = 1,2$; $f'_3(6) = 1,2$; $f'_3(7) = 1,2$; $f'_3(8) = 1,2$; $f'_3(9) = 1,2$;

Крок 2.

	Дохід $f_2(x_2,k_2) = D_2(k_2) + f'_3(x_2 - C_2(k_2))$								Оптимальний	
X ₂									розв'язок	
	$k_2 = 0$	$k_2 = 1$	$k_2 = 2$	$k_2 = 3$	$k_2 = 4$	$k_2 = 5$	• • •	$f'_{2}(x_{2})$	k'2	
0	0							0	0	
1	0,4	0,4						0,4	1	
2	0,4	0,8	0,6					0,8	1	
3	0,8	0,8	1,0	0,8				1,0	2	
4	1,2	1,2	1,0	1,2	1,2			1,2	4	
5	1,2	1,6	1,4	1,2	1,2	1,3		1,6	1	
6	1,2	1,6	1,8	1,2	1,2	1,7		1,8	2	
7	1,2	1,6	1,8	1,2	1,2	1,7	•••	1,8	2	
8	1,2	1,6	1,8	1,2	1,2	2,1	•••	2,1	5	
9	1,2	1,6	1,8	1,2	1,2	2,5		2,5	5	

При $k_2 = 0$ та $x_2 = 0$

$$f_2(x_2,k_2) = 0 + 0 = 0$$

При
$$k_2 = 0$$
 та $x_2 = 1$

$$f_2(x_2,k_2) = 0 + 0,4 = 0,4$$

При
$$k_2 = 0$$
 та $x_2 = 2$

$$f_2(x_2,k_2) = 0 + 0,4 = 0,4$$

(Аналогічно при $x_3 = (3; 4; 5; ...; 9)$

При
$$k_2 = 1$$
 та $x_2 = 1$

$$f_2(x_2,k_2) = 0,4 + 0 = 0,4$$

При
$$k_2 = 1$$
 та $x_2 = 2$

$$f_2(x_2,k_2) = 0,4 + 0,4 = 0,8$$

При
$$k_2 = 1$$
 та $x_2 = 3$

$$f_2(x_2,k_2) = 0,4 + 0,4 = 0,8$$

При
$$k_2 = 1$$
 та $x_2 = 4$

$$f_2(x_2,k_2) = 0.4 + 0.8 = 1.2$$

(Аналогічно при
$$x_3 = (5; 6; 7; ...; 9)$$

Далі аналогічно.

Крок 3. Виконуємо розрахунки лише при $x_1 = 9$

X ₁	Дохід $f_1(x_1,k_1) = D_1(k_1) + f'_2(x_1 - C_1(k_1))$							Оптимальний розв'язок	
	$k_1 = 0$	$k_1 = 1$	$k_1 = 2$	$k_1 = 3$	$k_1 = 4$	$k_1 = 5$		$f'_{1}(x_{1})$	k' ₁
9	2,5	2,5	2,2	2,9	2,5	2,5	• • •	2,9	3

Отже, дохід буде становити 2,9 млн., якщо в компанію 1 вкласти 3 млн. (проєкт 3), тоді для компанії 2 та 3 залишається 6 млн. Найбільш оптимальним розв'язком буде: вкласти 2 млн. в компанію 2 (проєкт 4), тоді для філії 3 залишається 4 млн. (проєкт 4).