ONE-PAGE REVIEW

§7.7 (L'Hôspital's Rule), §7.8 (Inverse Trig)

MATH 1910 Recitation October 13, 2016

(1)	L'Hôspital's Rule: If $f(a) = g(a) = 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$	(1))
	$\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$		

- (2) What are all the indeterminate forms? There are seven of them.
- (3) To evaluate the limit involving an indeterminate form 0^0 , 1^∞ , or ∞^0 , first and then apply L'Hôspital's rule.
- (4) Domain and range of inverse trigonometric functions.
 - (a) What is the domain of \sin^{-1} ? What is the range of \sin^{-1} ?
 - (b) What is the domain of \cos^{-1} ? What is the range of \cos^{-1} ?
 - (c) What is the domain of \tan^{-1} ? What is the range of \tan^{-1} ?
 - (d) What is the domain of \cot^{-1} ? What is the range of \cot^{-1} ?
 - (e) What is the domain of \sec^{-1} ? What is the range of \sec^{-1} ?
 - (f) What is the domain of \csc^{-1} ? What is the range of \csc^{-1} ?
- (5) Derivatives of inverse trigonometric functions.

(a)
$$\frac{d}{dx}\sin^{-1}(x) =$$
 (16)

$$(d) \frac{d}{dx}\cos^{-1}(x) =$$

(b)
$$\frac{d}{dx} \tan^{-1}(x) =$$
 (17)

(e)
$$\frac{d}{dx}\cot^{-1}(x) =$$

(c)
$$\frac{d}{dx}\sec^{-1}(x) =$$

(f)
$$\frac{d}{dx}\csc^{-1}(x) =$$
 (21)

(6) Integrals of inverse trigonometric functions.

(a)
$$\int \frac{1}{\sqrt{1-x^2}} dx =$$

(b)
$$\int \frac{1}{x^2 + 1} dx =$$
 (23)

(c)
$$\int \frac{1}{|x|\sqrt{x^2-1}} =$$

PRACTICE PROBLEMS

§7.7 (L'Hôspital's Rule), §7.8 (Inverse Trig)

MATH 1910 Recitation October 13, 2016

(1) Use L'Hôspital's Rule to calculate the limit

(a)
$$\lim_{x \to \infty} \frac{x^{2/3} + 3x}{x^{5/3} - x}$$

(b)
$$\lim_{x \to \infty} \frac{3x^3 + 4x^2}{4x^3 - 7}$$

(c)
$$\lim_{x \to 8} \frac{x^{5/3} - 2x - 16}{x^{1/3} - 2}$$

(d)
$$\lim_{x \to 0} \frac{\tan 4x}{\tan 5x}$$

(e)
$$\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$$

(f)
$$\lim_{x \to \pi/2} \left(x - \frac{\pi}{2} \right) \tan x$$

$$(g) \lim_{x \to 0} \frac{x^2}{1 - \cos x}$$

(2) Find the derivative.

(a)
$$y = \arctan(x/3)$$

(b)
$$y = \sec^{-1}(x+1)$$

(c)
$$y = e^{\cos^{-1}(x)}$$

(d)
$$y = \csc^{-1}(x^{-1})$$

(3) Evaluate the integral

(a)
$$\int_0^4 \frac{1}{4x^2 + 9} \, dx$$

(b)
$$\int_{-1/5}^{1/5} \frac{1}{\sqrt{4 - 25x^2}} \, dx$$

(c)
$$\int_{\sqrt{2}/4}^{1/2} \frac{1}{x\sqrt{16x^2 - 1}} dx$$

(h)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \csc^2 x \right)$$

(i)
$$\lim_{x\to 2} \frac{e^{x^2}-e^4}{x-2}$$

(j)
$$\lim_{x\to 1} \frac{x(\ln x - 1) + 1}{(x-1)\ln x}$$

(k)
$$\lim_{x \to \infty} \frac{e^x - e}{\ln x}$$

(1)
$$\lim_{x \to \infty} \frac{e^{2x} - 1 - x}{x^2}$$

(m)
$$\lim_{x\to\infty} x^{1/x^2}$$

(n)
$$\lim_{x \to 0^+} x^{\sin x}$$

(e)
$$y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$$

(f)
$$y = \frac{\cos^{-1}(x)}{\sin^{-1}(x)}$$

(g)
$$y = \cos^{-1}(x + \sin^{-1}(x))$$

(h)
$$y = \ln(\arcsin(x))$$

(d)
$$\int \frac{1}{x\sqrt{x^4-1}} dx$$

(e)
$$\int \frac{(x+1)}{\sqrt{1-x^2}} dx$$

$$(f) \int \frac{\tan^{-1}(x)}{1+x^2} dx$$

(g)
$$\int \frac{1}{\sqrt{5^{2x}1}} dx$$