MA 205 Tutorial Batch 3 Recap-3

Siddhant Midha

Theorem of the day

Theorem (Cauchy Integral Theorem)

Let Ω be a bounded domain in \mathbb{C} , with piecewise smooth boundary $\partial\Omega$ and $f\in C^1(\bar{\Omega})$ is holomorphic on Ω . Then,

$$\int_{\partial\Omega}f(z)dz=0$$

Theorem of the day

Theorem (Cauchy Integral Theorem)

Let Ω be a bounded domain in \mathbb{C} , with piecewise smooth boundary $\partial\Omega$ and $f\in C^1(\bar{\Omega})$ is holomorphic on Ω . Then,

$$\int_{\partial\Omega}f(z)dz=0$$

Theorem (Cauchy Integral Formula)

Let Ω be a bounded domain in $\mathbb C$ with piecewise smooth boundary $\partial\Omega$, and $f\in C^1(\bar\Omega)$ is holomorphic on Ω . Then for all $z\in\Omega$, we have,

$$f(z) = \frac{1}{2\pi\iota} \int_{\partial\Omega} \frac{f(\eta)}{\eta - z} d\eta$$

Theorem of the day

Theorem (Cauchy Integral Theorem)

Let Ω be a bounded domain in \mathbb{C} , with piecewise smooth boundary $\partial\Omega$ and $f\in C^1(\bar{\Omega})$ is holomorphic on Ω . Then,

$$\int_{\partial\Omega}f(z)dz=0$$

Theorem (Cauchy Integral Formula)

Let Ω be a bounded domain in $\mathbb C$ with piecewise smooth boundary $\partial\Omega$, and $f\in C^1(\bar\Omega)$ is holomorphic on Ω . Then for all $z\in\Omega$, we have,

$$f(z) = \frac{1}{2\pi\iota} \int_{\partial\Omega} \frac{f(\eta)}{\eta - z} d\eta$$

Note that, in these theorems we are dealing with $\partial\Omega$ being traversed anticlockwise. Also, we do *not* need $f\in C^1(\bar{\Omega})$, as holomorphicity of f guarantees holomorphicity and thus continuity of f'.

Another way ...

Another way to state the CIT, which can avoid possible mistakes.

Theorem (CIT - Aliter)

If $f:\Omega\to\mathbb{C}$ is holomorphic, and Ω is a **simply connected** domain, then for every closed piecewise smooth curve γ within Ω we have,

$$\int_{\gamma} f(z)dz = 0$$

• **Holo** \Longrightarrow **Analytic**. If f is holomorphic at a point $z_0 \in \mathbb{C}$, then we have that $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ for all $z : |z-z_0| < r$ for some small r.

• Holo \Longrightarrow Analytic. If f is holomorphic at a point $z_0 \in \mathbb{C}$, then we have that $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ for all $z : |z-z_0| < r$ for some small r. Where,

• **Holo** \Longrightarrow **Analytic**. If f is holomorphic at a point $z_0 \in \mathbb{C}$, then we have that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ for all $z : |z - z_0| < r$ for some small r. Where,

$$a_n = \frac{1}{2\pi \iota} \int_{D(z_0,r)} \frac{f(\eta)}{(\eta - z_0)^{n+1} d\eta}$$

• **Holo** \Longrightarrow **Analytic**. If f is holomorphic at a point $z_0 \in \mathbb{C}$, then we have that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ for all $z : |z - z_0| < r$ for some small r. Where,

$$a_n = \frac{1}{2\pi \iota} \int_{D(z_0,r)} \frac{f(\eta)}{(\eta - z_0)^{n+1} d\eta}$$

Note that any r s.t. $D(z_0, r)$ is contained in the region of holomorphicity gives the same a_n .

• **Holo** \Longrightarrow **Analytic**. If f is holomorphic at a point $z_0 \in \mathbb{C}$, then we have that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ for all $z : |z - z_0| < r$ for some small r. Where,

$$a_n = \frac{1}{2\pi \iota} \int_{D(z_0,r)} \frac{f(\eta)}{(\eta - z_0)^{n+1} d\eta}$$

Note that any r s.t. $D(z_0, r)$ is contained in the region of holomorphicity gives the same a_n .

Also, we had previously seen that power series are holomorphic in their region of convergence.

• **Holo** \Longrightarrow **Analytic**. If f is holomorphic at a point $z_0 \in \mathbb{C}$, then we have that $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ for all $z : |z-z_0| < r$ for some small r. Where,

$$a_n = \frac{1}{2\pi \iota} \int_{D(z_0,r)} \frac{f(\eta)}{(\eta - z_0)^{n+1} d\eta}$$

Note that any r s.t. $D(z_0, r)$ is contained in the region of holomorphicity gives the same a_n .

Also, we had previously seen that power series are holomorphic in their region of convergence. Thus, Analytic \implies Holomorphic.

• **Holo** \Longrightarrow **Analytic**. If f is holomorphic at a point $z_0 \in \mathbb{C}$, then we have that $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ for all $z : |z-z_0| < r$ for some small r. Where,

$$a_n = \frac{1}{2\pi \iota} \int_{D(z_0,r)} \frac{f(\eta)}{(\eta - z_0)^{n+1} d\eta}$$

Note that any r s.t. $D(z_0, r)$ is contained in the region of holomorphicity gives the same a_n .

Also, we had previously seen that power series are holomorphic in their region of convergence. Thus, Analytic \implies Holomorphic. Hence we have the statement.

Holomorphic ⇔ Analytic

•
$$f^{(n)}(z) = \frac{n!}{2\pi\iota} \int_{\partial\Omega} \frac{f(\eta)}{(\eta-z)^{n+1}} d\eta$$
 for all $z \in \Omega$.

•
$$f^{(n)}(z)=rac{n!}{2\pi\iota}\int_{\partial\Omega}rac{f(\eta)}{(\eta-z)^{n+1}}d\eta$$
 for all $z\in\Omega$. Particularly,

• $f^{(n)}(z) = \frac{n!}{2\pi \iota} \int_{\partial\Omega} \frac{f(\eta)}{(\eta-z)^{n+1}} d\eta$ for all $z \in \Omega$. Particularly,

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}$$
 Cauchy's Estimate

• $f^{(n)}(z) = \frac{n!}{2\pi \iota} \int_{\partial\Omega} \frac{f(\eta)}{(\eta-z)^{n+1}} d\eta$ for all $z \in \Omega$. Particularly,

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}$$
 Cauchy's Estimate

• $f^{(n)}(z)=rac{n!}{2\pi\iota}\int_{\partial\Omega}rac{f(\eta)}{(\eta-z)^{n+1}}d\eta$ for all $z\in\Omega$. Particularly,

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}$$
 Cauchy's Estimate

if f is holomorphic in $\{z : |z - z_0| < R\}$ and |f| < M there.

• Louiville's Theorem: A bounded above entire function is a constant.

• $f^{(n)}(z)=rac{n!}{2\pi \iota}\int_{\partial\Omega}rac{f(\eta)}{(\eta-z)^{n+1}}d\eta$ for all $z\in\Omega$. Particularly,

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}$$
 Cauchy's Estimate

if f is holomorphic in $\{z : |z - z_0| < R\}$ and |f| < M there.

• Louiville's Theorem: A bounded above entire function is a constant. Simple proof?

• $f^{(n)}(z)=rac{n!}{2\pi \iota}\int_{\partial\Omega}rac{f(\eta)}{(\eta-z)^{n+1}}d\eta$ for all $z\in\Omega$. Particularly,

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}$$
 Cauchy's Estimate

- Louiville's Theorem: A bounded above entire function is a constant. Simple proof?
- ullet FTC: A non-constant complex polynomial has atleast one root in $\mathbb C.$

• $f^{(n)}(z)=rac{n!}{2\pi\iota}\int_{\partial\Omega}rac{f(\eta)}{(\eta-z)^{n+1}}d\eta$ for all $z\in\Omega$. Particularly,

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}$$
 Cauchy's Estimate

- Louiville's Theorem: A bounded above entire function is a constant. Simple proof?
- \bullet FTC: A non-constant complex polynomial has atleast one root in $\mathbb{C}.$
- Morera's Theorem: For some domain Ω , if $f:\Omega\to\mathbb{C}$ is continuous and $\int_{\gamma}f(z)dz=0$ for all $\gamma=\partial R$ for $R\subset\Omega$ being a rectangle, then f is holomorphic on Ω .

• $f^{(n)}(z) = \frac{n!}{2\pi \iota} \int_{\partial\Omega} \frac{f(\eta)}{(\eta-z)^{n+1}} d\eta$ for all $z \in \Omega$. Particularly,

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}$$
 Cauchy's Estimate

- Louiville's Theorem: A bounded above entire function is a constant. Simple proof?
- \bullet FTC: A non-constant complex polynomial has atleast one root in $\mathbb{C}.$
- Morera's Theorem: For some domain Ω , if $f:\Omega\to\mathbb{C}$ is continuous and $\int_{\gamma}f(z)dz=0$ for all $\gamma=\partial R$ for $R\subset\Omega$ being a rectangle, then f is holomorphic on Ω . Converse of Cauchy much?

Theorem

Suppose $f:\Omega\to\mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0)=0$.

Theorem

Suppose $f:\Omega\to\mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0)=0$. Then, we have

1 $f \equiv 0$ on Ω , or,

Theorem

Suppose $f:\Omega\to\mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0)=0$. Then, we have

- \bullet $f \equiv 0$ on Ω , or,
- ② $\exists m \in \mathbb{N}$ and a holomorphic function $g : \Omega \to \mathbb{C}$ such that $g(z_0) \neq 0$ and $f(z) = (z z_0)^m g(z)$ in $D(r, z_0)$ for some small r.

Theorem

Suppose $f:\Omega\to\mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0)=0$. Then, we have

- \bullet $f \equiv 0$ on Ω , or,
- ② $\exists m \in \mathbb{N}$ and a holomorphic function $g : \Omega \to \mathbb{C}$ such that $g(z_0) \neq 0$ and $f(z) = (z z_0)^m g(z)$ in $D(r, z_0)$ for some small r.

This shows some interesting things:

• **Isolated Zeros**: Zeros of a non constant analytic function on a domain Ω are *isolated*.

Theorem

Suppose $f:\Omega\to\mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0)=0$. Then, we have

- **1** $f \equiv 0$ on Ω , or,
- ② $\exists m \in \mathbb{N}$ and a holomorphic function $g : \Omega \to \mathbb{C}$ such that $g(z_0) \neq 0$ and $f(z) = (z z_0)^m g(z)$ in $D(r, z_0)$ for some small r.

- **Isolated Zeros**: Zeros of a non constant analytic function on a domain Ω are *isolated*.
- Vanishing Behaviour

Theorem

Suppose $f:\Omega\to\mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0)=0$. Then, we have

- **1** $f \equiv 0$ on Ω , or,
- ② $\exists m \in \mathbb{N}$ and a holomorphic function $g : \Omega \to \mathbb{C}$ such that $g(z_0) \neq 0$ and $f(z) = (z z_0)^m g(z)$ in $D(r, z_0)$ for some small r.

- **Isolated Zeros**: Zeros of a non constant analytic function on a domain Ω are *isolated*.
- Vanishing Behaviour
 - Vanishes at a sequence of points with a limit point in $\Omega \implies f \equiv 0$ on Ω .

Theorem

Suppose $f:\Omega\to\mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0)=0$. Then, we have

- **1** $f \equiv 0$ on Ω , or,
- ② $\exists m \in \mathbb{N}$ and a holomorphic function $g : \Omega \to \mathbb{C}$ such that $g(z_0) \neq 0$ and $f(z) = (z z_0)^m g(z)$ in $D(r, z_0)$ for some small r.

- **Isolated Zeros**: Zeros of a non constant analytic function on a domain Ω are *isolated*.
- Vanishing Behaviour
 - **1** Vanishes at a sequence of points with a limit point in $\Omega \implies f \equiv 0$ on Ω .
 - **2** Vanishes on an open subset $A \subset \Omega \implies f \equiv 0$ on Ω .

Theorem

Suppose $f:\Omega\to\mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0)=0$. Then, we have

- **1** $f \equiv 0$ on Ω , or,
- ② $\exists m \in \mathbb{N}$ and a holomorphic function $g : \Omega \to \mathbb{C}$ such that $g(z_0) \neq 0$ and $f(z) = (z z_0)^m g(z)$ in $D(r, z_0)$ for some small r.

- **Isolated Zeros**: Zeros of a non constant analytic function on a domain Ω are *isolated*.
- Vanishing Behaviour
 - Vanishes at a sequence of points with a limit point in $\Omega \implies f \equiv 0$ on Ω .
 - **2** Vanishes on an open subset $A \subset \Omega \implies f \equiv 0$ on Ω .

Theorem

Suppose $f:\Omega\to\mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0)=0$. Then, we have

- **1** $f \equiv 0$ on Ω , or,
- ② $\exists m \in \mathbb{N}$ and a holomorphic function $g : \Omega \to \mathbb{C}$ such that $g(z_0) \neq 0$ and $f(z) = (z z_0)^m g(z)$ in $D(r, z_0)$ for some small r.

- **Isolated Zeros**: Zeros of a non constant analytic function on a domain Ω are *isolated*.
- Vanishing Behaviour
 - **1** Vanishes at a sequence of points with a limit point in $\Omega \implies f \equiv 0$ on Ω .
 - **2** Vanishes on an open subset $A \subset \Omega \implies f \equiv 0$ on Ω .
- **Identity Principle**: If f, g holomorphic agree on a 'suitable' set of points, then $f \equiv g$ on Ω .

Let $f = u + \iota v$ be holomorphic on a simply connected domain.

Let $f = u + \iota v$ be holomorphic on a simply connected domain. Then,

Let $f = u + \iota v$ be holomorphic on a simply connected domain. Then,

• Holomorphicity of integral For any z_0 in the domain if we define $F(z) := \int_{z_0}^{z} f(\eta) d\eta$, then F is holomorphic on the domain and F' = f.

Let $f = u + \iota v$ be holomorphic on a simply connected domain. Then,

- **Holomorphicity of integral** For any z_0 in the domain if we define $F(z) := \int_{z_0}^{z} f(\eta) d\eta$, then F is holomorphic on the domain and F' = f.
- **Derivatives are Holomorphic** Using the CIF, we see that f', f'', ... all are holomorphic in the domain.

Let $f = u + \iota v$ be holomorphic on a simply connected domain. Then,

- Holomorphicity of integral For any z_0 in the domain if we define $F(z) := \int_{z_0}^z f(\eta) d\eta$, then F is holomorphic on the domain and F' = f.
- **Derivatives are Holomorphic** Using the CIF, we see that f', f'', ... all are holomorphic in the domain.
- Partial derivatives are nice Since f', f''... all are holomorphic, partial derivatives of u, v of all orders are continuous.

Let $f = u + \iota v$ be holomorphic on a simply connected domain. Then,

- Holomorphicity of integral For any z_0 in the domain if we define $F(z) := \int_{z_0}^z f(\eta) d\eta$, then F is holomorphic on the domain and F' = f.
- **Derivatives are Holomorphic** Using the CIF, we see that f', f'', ... all are holomorphic in the domain.
- Partial derivatives are nice Since f', f''... all are holomorphic, partial derivatives of u, v of all orders are continuous.

With this and properties like the CIF, one can surely ponder about the rigidity of holomorphic functions.