

Automated greenhouse

GITAM UNIVERSITY

University should be a place of light, of liberty, and of learning.

Department of Electrical Electronics and Communication Engineering

Project Team:

- N.Varun Kumar [BU21EECE0100534]
 - M.Naga Sai[BU21EECE0100441]
- Mamidi Nivas Reddy[BU21EECE0100481]

*

Project Men

www.gitamedu.com

Project Group - Details

Photo

Track

Roll No

Name

EECE AI/ML

BU21EECE0100 481

Varun kumar N

EECE AI/ML

BU21EECE0100 441

M.Naga sai

BU21EECE0100 481

EECE AI/ML

Mamidi nivas reddy

Abstract:

collects and analyse environmental data to refine cultivation strategies, plant growth through advanced technology. By integrating sensors and enabled remote monitoring and control, allowing users to manage the continuously monitors and adjusts key environmental factors such as temperature, humidity, light, and soil moisture. This ensures optimal agriculture by creating a self-regulating environment that optimizes environment via mobile or web platforms. Additionally, the system improving resource efficiency. The greenhouse also features IoTdemonstrate the potential of technology to make farming more greenhouse sizes. Through this automation, the project aims to making it adaptable for various crops and scalable for different conditions for plant growth, enhancing yield and quality while The Automated Greenhouse project seeks to revolutionize actuators managed by a central processing unit, the system efficient, sustainable, and accessible.

Objective and Goals

Objective

- Design and Development: To design and develop an automated greenhouse that replicate optimal growing conditions for various plants, focusing on temperature and soil moisture
- Temperature Control: To create a reliable temperature control system that can maintain the greenhouse's internal temperature within a specific range suitable for plant growth, regardless of external environmental conditions.
- levels based on real-time soil moisture readings, ensuring plants receive the right amoun Automated Watering: To implement an automated watering system that adjusts water of water for optimal growth.
- maintaining desired conditions, making it cost-effective and environmentally friendly for Energy Efficiency: To optimize the greenhouse's systems to use minimal energy while domestic use

Goals

controlling temperature, humidity, and soil moisture levels, thereby improving plant health Optimize Plant Growth: To create an optimal environment for plant growth by precisely and yield.

- Reduce Environmental Impact: To minimize the environmental footprint associated with growing produce by promoting local cultivation and reducing reliance on imported fruits and vegetables.
- Enhance Home Gardening Accessibility: To make home gardening more accessible and convenient individuals by automating essential greenhouse functions, enabling people to grow plants and vegetables with minimal effort.

Project Plan

Tasks	Start date	Days te complete	Milestones	Tasks t comple
Task 1	19-Aug	2	Platform Design Draft	Develop initial concepts for u interface and experience.
Task 2	26-Aug	7	Experimentation Features	Define and de features for experimentations
Task 3	02-Sep	7	Educational Resources	Create a draft educational gเ tutorials.
Task 4	09-Sep	7	Community Features	Plan and desicommunity enfeatures like fouser profiles.
Task 5	16-Sep	7	Technology Integration	Outline and st integration of like mobile actor lot devices.

Task 6	23-Sep	7	Sustainability Focus	Develop conte features focus sustainable pr and eco-frienc
Task 7	01-Oct		Feedback Mechanism	Implement fee collection syst analyze initial responses.
Task 8	07-Oct	7	Expert Collaboration	Establish part with horticultu and integrate
Task 9	14-Oct	7	Launch and Review	Launch the planeview initial performance, necessary adj
Task 10	21-Oct	7	Final Optimization	Conduct final optimizations user feedback performance censuring all fefully functiona refined for opt experience.

Literature Survey

SL NO.	Title of the paper	Year	Author	Technolo
	Automated greenhouse system	06-07 March 2019	Muhammad Raees Armughan Azhar	 Soil Mois Sensor: National Sensor: National Measure op watering. Light Sen (BH-1750 Measures light levels light level

		Integration w ozone treatm
		ozone treatm
		conserve wa
		and reduce
		fertilizer cost
		Fertilizer
		Managemen
		Handles vari
		feed formula
		improves
		efficiency
		Water
		Purification
		ozone to ster
		irrigation wat
		remove path
		 Climate Con
		Manages hea
		cooling, vent
		lighting, and
		levels.

က	Automation and	30-31 December 2017	Muhammad Faizan	Ventilation
	monitoring of		Siddiqui	Control:
				Managed by
				integrating DC
				fans with
				temperature
				sensors to
				regulate internal
				temperature,
				Light Control:
				Managed by
				integrating
				artificial lights
				with light sensor
				to ensure
				adequate lightin
				Irrigation
				Control:
				Managed using
				moisture sensor
				to activate
				sprinklers and
				maintain soil
				moisture.

system		06-07 March 2019	Muhammad Raees	•	Solar Panels
	tem		Armughan Azhar		(Polycrystallir
					Q Cell, 150W):
					Provides
					renewable ene
					to power the
					greenhouse
					system
				•	Bulbs: Addition
					lighting to
					supplement
					natural light.
				•	Android
					Application:
					Developed usir
					Java and Andre
					Studio to allow
					remote
					monitoring and
					control of the
					greenhouse
					system via
					smartphone.

Strengths

01. Efficiency

02. Scalability

03. Sustainability

01. Market expansion

02. Partnerships 03. Collaborations

04. Educational

Analysis - SWOT

Weaknesses

01. High initial costs02. Technical complexity03. Data security04. Maintenance

Threats

01. Competitive mark 02. Environmental ris

Analysis – 4W1H

Why: The project was created to improve farming by using advanced technology to optimize plant growth, increa and enhance resource efficiency. **What:** An automated greenhouse system that adjusts environmental factors like temperature, humidity, light, and moisture using sensors and a central processing unit.

Where: It can be implemented in various sizes of greenhouses, adaptable to different crops.

When: The project is a modern development, focusing on current agricultural needs.

How: The system integrates IoT-enabled remote monitoring, sensors, and actuators, allowing control via mobile platforms while gathering data to refine strategies Refined Objective: The Automated Greenhouse project aims to develop a self-regulating, sensor-driven system t optimizes environmental conditions to enhance plant growth, increase yield, and improve resource efficiency.

Architecture

Structural Diagram

Behaviour Diagram

Team Progress and Movement

- Execution of code
 - Connection
- Testing Process Improvements
- Adaptability and Flexibility

Contribution

Individual ContributionKey contributions: VARUN KUMAR NLiterature Survey

- - Documentation

Key contributions: M.NIVAS

- Performing TasksDoing Analysis

Key contributions: M.NAGASAI

- **External Work**
 - Mentoring

Conclusion & Future Work

Summary and Conclusion:

The Automated Greenhouse project successfully demonstrates the potential of integrating advanced technology in agriculture, showcasing how automation can revolutionize farming. By leveraging sensors, actuators, and a centr processing system, the project achieved real-time monitoring and optimization of critical environmental factors lil temperature, humidity, light, and soil moisture. This innovation leads to more efficient resource use, higher crop improved quality.

Future Work:

Future work should focus on expanding the system's scalability to larger or more complex agricultural setups. Cu modules could be developed for specific crops, allowing growers to optimize the system for various agricultural ne energy-efficient and environmentally sustainable. Future work can explore optimizing the power consumption of t Incorporating renewable energy sources, such as solar panels, could make the automated greenhouse more for better overall sustainability.

THANK YOU

