信号时域分析

—2022 信号暑期实践(内容1)

信号暑期实习总体安排

- * 6月27日 至 7月6日 (7月3日休息一天) 每天上午 8:30-11:30, 下午 13:30-16:30 进行信号暑期实习。
- *本次实习除上机考试环节外,均线上开展, 在每天早晨 8:30 学生先进入 刘通 老师或 曾晓献 老师的腾讯会议室,等老师讲解完 当天的主要内容后,再进入自己对应老师的 腾讯会议室。

讲解教师的日程安排

日程			
日期	上午 0830-1130	下午 1330-1630	讲解教师
6月27日	实践1	实践1	刘通
6月28日	实践2	实践2	曾晓献
6月29日	实践2	验收1,2	曾晓献
6月30日	实践3	实践3	刘通
7月1日	实践3	实践3	刘通
7月2日	实践4	实践4	刘通
7月3日	休息		
7月4日	实践5	验收3,4	曾晓献
7月5日	实践5	实践5	曾晓献
7月6日	实践5	验收5	曾晓献

信号时域分析

- 一、基本信号的表达:
 - (1) 连续正弦信号举例:

绘制正弦信号,幅度2,频率4Hz,初相位 $\pi/6$

```
相关程序: clc;
clear;
close all;
A = 2;
f = 4;
b = pi/6;
w0 = 2*pi*f;
```

```
t = 0:0.001:2;
x1 = A*sin(w0*t+b);
x2 = A*square(w0*t+b);
subplot(2,1,1), plot(t,x1);
ylim([-6, 6]);
subplot(2,1,2), plot(t,x2);
ylim([-6, 6]);
```

注:可以把x1和x2用不同颜色画在同一个坐标系内,观察 sin 函数与 square 函数的联系。

(2) 矩形脉冲信号举例

clc:

绘制如下图所示的矩形脉冲信号

相关程序:

```
clear;
close all;
Ts = 0.01;
t = 0:Ts:5;
x1 = rectpuls(t-2.5, 3);
x2 = tripuls(t-2.5, 3);
subplot(2,1,1), plot(t,x1);
axis([0,5,-1,2]);
subplot(2,1,2), plot(t,x2);
axis([0,5,-1,2]);
```

说明:通过这个例子和 上一个例子可以看出, 我们在表示连续信号时, 本质上还是用离散的点 来表示的,只不过是利用 plot函数把离散的点连起来。

(3) 离散信号举例: $\delta[n-2]$ 、u[n-2]

相关程序(部分节选):

```
%方法(1)
n = -3:12;
x1 = [zeros(1,5),1,zeros(1,10)];
y1 = [zeros(1,5),ones(1,11)];

figure(1)
subplot(2,1,1), stem(n, x1);
axis([-3,12,-0.1,1.2]);
title(' & [n-2]');
subplot(2,1,2), stem(n, y1);
axis([-3,12,-0.1,1.2]);
title(' u[n-2]');
```

```
%方法(2)
n = -3:12;
x2 = rectpuls(n-2, 0);
y2 = stepfun(n, 2);

figure(2)
subplot(2,1,1), stem(n, x2);
axis([-3,12,-0.1,1.2]);
title(' & [n-2]');
subplot(2,1,2), stem(n, y2);
axis([-3,12,-0.1,1.2]);
title(' u[n-2]');
```

二、离散卷积

离散卷积可以利用conv函数实现,下面将实现序列 A[n] 和 B[n] 的离散卷积:

$$A[n] = \begin{bmatrix} -2, & 0, & 1, & -1, & 3 \end{bmatrix}$$

$$B[n] = \begin{bmatrix} 1, & 2, & 0, & -1 \end{bmatrix}$$

相关程序:

```
clc;
clear;
close all;
a = [-2, 0, 1, -1, 3];
b = [1, 2, 0, -1];
c = conv(a, b);
n = 0:1:4;
m = 0:1:3;
M = length(c)-1;
p = 0:1:M;
```

```
subplot(3,1,1), stem(n, a);
axis([-1,5,-6,6]);
title('A[n]');
subplot(3,1,2), stem(m, b);
axis([-1,5,-6,6])
title('B[n]');
subplot(3,1,3), stem(p, c);
axis([-1,8,-6,6])
title('C[n] (A[n]与B[n]的卷积和)');
```

思考: 如果A'[n] = [-2, 0, 1, -1, 3], B'[n] = [1, 2, 0, -1], 如何处理

$$A[n] = \begin{bmatrix} -2, & 0, & 1, & -1, & 3 \end{bmatrix}$$
 $B[n] = \begin{bmatrix} 1, & 2, & 0, & -1 \end{bmatrix}$
 $A'[n] = \begin{bmatrix} -2, & 0, & 1, & -1, & 3 \end{bmatrix}$ $B'[n] = \begin{bmatrix} 1, & 2, & 0, & -1 \end{bmatrix}$

$$A'[n] = [-2, 0, 1, -1, 3]$$
 $B'[n] = [1, 2, 0, -1]$

则 $A'[n] = A[n] * \delta[n-2]$ A[n] 左移2个位置得到A'[n] $B'[n] = B[n] * \delta[n-1]$ B[n] 左移1个位置得到B'[n]

故
$$A'[n]*B'[n]=A[n]*\delta[n-2]*B[n]*\delta[n-1]$$

= $\{A[n]*B[n]\}*\delta[n-3]$

即: A'[n]*B'[n]为A[n]*B[n]左移3个单位得到

总结: 若序列 a[n]从 x_1 处开始有非零值 $n_a = x_1:1:y_1$

序列b[n]从 x_2 处开始有非零值 $n_b = x_2:1:y_2$

则 a[n]*b[n]从 (x_1+x_2) 处开始有非零值。 $n=(x_1+x_2):1:(y_1+y_2)$

思考: 截止位置为何是 $(y_1 + y_2)$?

$$a[n] \qquad n_a = x_1 : 1 : y_1$$

$$b[n] \qquad n_b = x_2 : 1 : y_2$$

$$a[n] * b[n] \qquad n = (x_1 + x_2) : 1 : R$$

$$a[n]*b[n]$$
 $n = (x_1 + x_2):1:E$

$$(y_1 - x_1) + (y_2 - x_2) = E - (x_1 + x_2)$$

故:
$$E = (y_1 + y_2)$$

注:对于连续信号线性卷积 该结论也成立。

三、线性卷积

连续信号的线性卷积同样可以应用conv函数实现, 但应用时需要乘以采样间隔加以校正。

证明:

思路:将积分运算转化为离散序列求和的运算。

设选取时间间隔为 ΔT , 连续时间信号 $f_1(t)$ 和 $f_2(t)$ 分别变为离散序列 $f_1(n\Delta T)$ 和 $f_2(n\Delta T)$, 卷积积分的运算则表示为:

$$y(t) = f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t - \tau) d\tau = \sum_{k = -\infty}^{\infty} \int_{k\Delta T}^{k\Delta T + \Delta T} f_1(\tau) f_2(t - \tau) d\tau$$

将 t 分割成间隔为 ΔT 的一系列区间,当 ΔT 足够小时,区间 $k\Delta T \leq \tau < k\Delta T + \Delta T$ 内 $\tau \approx k\Delta T$,令 $t = n\Delta T$,得到

$$\begin{split} y\left(t\right) &\approx y\left(n\Delta T\right) = \sum_{k=-\infty}^{\infty} \int_{k\Delta T}^{k\Delta T + \Delta T} f_1\left(k\Delta T\right) f_2\left(n\Delta T - k\Delta T\right) d\tau = \sum_{k=-\infty}^{\infty} f_1\left(k\Delta T\right) f_2\left(n\Delta T - k\Delta T\right) \int_{k\Delta T}^{k\Delta T + \Delta T} d\tau \\ &= \sum_{k=-\infty}^{\infty} f_1\left(k\Delta T\right) f_2\left(n\Delta T - k\Delta T\right) \Delta T \end{split}$$

$$y(t) \approx y(n\Delta T) = \sum_{k=-\infty}^{\infty} f_1(k\Delta T) f_2(n\Delta T - k\Delta T) \Delta T$$

式中,n 和k 都是整数。将 ΔT 理解为采样间隔,则上式中信号y(t)、 $f_1(t)$ 、 $f_2(t)$ 被离散化后得到:

$$y[n] = \sum_{k=-\infty}^{\infty} f_1[k] f_2[n-k] T_s$$

上式的含义是: 若利用采样后的离散序列<u>卷积和</u>来代替采样前连续信号的<u>卷积积分</u>,则需要对信号幅值信息进行调整,调整方式是乘以采样间隔。若要近似还原连续的卷积积分的结果,还需要将卷积和离散序列(幅值调整后)按采样间隔 T_s 排列。

举例:对下面两信号进行线性卷积

相关程序:

```
clc;
clear;
close all;
Ts=0.01;

T1S=-2;
T1E=5;
T2S=1;
T2E=6;

t1=T1S: Ts: T1E;
x1=rectpuls(t1-2.5,3);
t2=T2S: Ts: T2E;
x2=rectpuls(t2-3,2);
```

```
y=conv(x1, x2)*Ts;
t3=(T1S+T2S):Ts:(T1E+T2E);

subplot(3,1,1),plot(t1,x1);
axis([-2.5,5.5,-0.5,1.5]);
subplot(3,1,2),plot(t2,x2);
axis([0.5,6.5,-0.5,1.5]);
subplot(3,1,3),plot(t3,y);
axis([T1S+T2S-0.5,T1E+T2E+0.5,-0.5,2.5]);
```

结果:

四、循环卷积与周期卷积

要理解循环卷积的概念, 先要理解周期卷积,

如下图,两信号x(t)和y(t)均以 T 为周期(参与周期卷积的信号周期相等)

可定义周期卷积

$$z(t) = \int_0^T x(\tau) y(t-\tau) d\tau = \int_{-\infty}^\infty x_T(\tau) y(t-\tau) d\tau$$

其中:
$$x_T(t) = \begin{cases} x(t), & 0 < t < T \\ 0, & 其他 \end{cases}$$

将周期卷积的被卷信号 x(t)和y(t),各截取一个周期进行循环卷积,即得到一段长度等于x(t)和y(t)周期的信号,这里记为C(t),而C(t)即为周期卷积z(t)的一个周期。

对于连续信号,循环卷积和线性卷积的区别:

- (1)进行循环卷积的两信号长度必须相等,且卷积结果的长度也与他们相等;进行线性卷积的两信号长度不必相等, 卷积结果的长度是被卷两信号的长度和。
- (2) 循环卷积有可能发生时域混叠;线性卷积不会发生时域混叠。

混叠的原因: 周期性

周期的范围是固定的,当要表达的信息超过了这个范围,就会"溢出"到其他周期,产生混叠。

所以要计算循环卷积,就一定要抓住循环卷积的"隐含"周期性,我们知道,离散傅里叶变换DFT在计算过程中具有"隐含"周期性,所以我们可以利用fft 函数(DFT 的快速算法)来计算循环卷积。

即利用时域的卷积等于频域的乘积来进行计算。

循环卷积举例:

求右图中两信号的循环卷积

相关程序:

```
clc;
clear;
close all;
Ts=0.01;
T=7;
T1S=-1;
T2S=2;

t1=T1S:Ts:T1S+T;
t2=T2S:Ts:T2S+T;

x1=rectpuls(t1-1,3);
x2=rectpuls(t2-4,2);
```

```
L=length(t1);
t3=(T1S+T2S):Ts:((L-1)*Ts+(T1S+T2S));
F1=fft(x1)*Ts:
F2=fft(x2)*Ts:
v=ifft(F1.*F2)/Ts:
figure(1)
subplot (3, 1, 1), plot (t1, x1);
axis([T1S-1, T1S+T+1, -0.5, 1.5]):
subplot (3, 1, 2), plot (t2, x2);
axis([T2S-1, T2S+T+1, -0.5, 1.5]);
subplot (3, 1, 3), plot (t3, y);
axis([T1S+T2S-1, (L-1)*Ts+(T1S+T2S)+1, -0.5, 4]);
```

结果:

结论: 循环卷积是周期卷积的主值序列,

周期卷积是循环卷积的周期延拓。

作业:用至少两种方法在Matlab中实现周期卷积。

说明:用数个周期(比如5个)表示周期信号。