Chapter

2

실습환경구축 및 OpenCV 개요

OpenCV

OpenCV(Open Computer Vision)

- 오픈소스 컴퓨터비전 C/C++라이브러리
 - 2,500개가 넘는 알고리즘으로 구성
 - 영상 처리, 컴퓨터 비전, 기계 학습과 관련된 전통적인 알고리즘
 - » 얼굴 검출과 인식, 객체 인식, 객체 3D 모델 추출, 스테레오 카메라에서 3D 좌표 생성
 - » 고해상도 영상 생성을 위한 이미지 스티칭, 영상 검색, 적목 현상 제거, 안구 운동 추적
 - » 4만 7천 이상의 사용자 그룹과 1,800만 번 이상의 다운로드 횟수
 - 구글, 야후, 마이크로소프트, 인텔, IBM, 소니, 혼다, 도요다와 같은 대기업부터 Applied Minds, Videosurf 및 Zeitera와 같은 신생 기업들까지 사용
 - C, C++, 파이썬(Python), Java, 매트랩 인터페이스 제공
 - 윈도우즈, 리눅스, 안드로이드, 맥 OS 등 다양한 운영체제 지원
 - MX(Multimedia Extension)와 SSE(streaming SIMD Extensions) 명령어 통해 고속의 알고리즘 구현
 - CUDA와 OpenCL 인터페이스 개발

1	〈표 2.1.1〉 OpneCV 버전별 특징				4.0 버전	
	1.0 버전	2.0 버전	2.2 버전	• 1.x	버전 C API 대량	
	C 언어 기반 API 구조체 기반 데이터 구조 사용 비주얼 스튜디오에서 라이 브러리 컴파일 후 사용 highgui 모듈에서 8비트 PNG, JPEG2000 입출력 지원 샘플 예제 파일 추가 (calibrate.cpp, inpaint.cpp, leter_recog. cpp 등)	C++ 언어 기반 API = 클래스 기반 데이터 구조 도입 CMake를 이용하여 라이브러리 컴파일 후 사용 가능 highgui 모듈에서 스테레오 카메라지원 소스 디렉터리 구조 구성	 템플릿 자료구조 추가 기존 5개 라이브러리를 1½ 모듈로 재구성(opencv_copencv_imgproc, openighgui, opencv_ml 등) 안드로이드 지원 가능 highgui 모듈에서 16비트 L 압축 TIFF 지원 GPU 처리 지원 	리 연 • Ope dnn • 키넥 • QR3	전인 그래픽 기반 네진으로 G-API S enVION 딥러닝 모듈 업데이트 트 퓨전 알고리즘 코드 검출기 추가 적인 광류 알고리	
ı	2.4 버전	3.0 버전	3.4 버전			
	cv::Algorithm 클래스 도입• SIFT와 SURF 모듈 유료화• SIFT 성능 대폭 개선• 컬러 영상 캐니 에지 수행	CV::Algorithm 적극 사용 1500개 패치 github 제출 OpenCL을 사용하는 투명 GPU 가속 레이어 도입 NEON 내장 함수 사용한 OpenCV 함수 가속화 Python & Java 바인딩 확장 및 Matlab 바인딩 도입 Python 3.0 지원 향상 U드로이드 지원 향상 비디오 캡쳐 및 멀티스레팅 함수 개선	dnn 모듈 개선 fast R-CNN 지원 Javascript 바인당 OpenCL 가속화 포함 OpenCL 커널 바이너리에 크 캐시 및 수동 로딩 구현 GSoC 프로젝트 통합으로 라운드 감산 알고리즘 구현			

4.0 버전	4.1 버전	4.2 버전
1.x 버전 C API 대량 제거 효과적인 그래픽 기반 영상처리 엔진으로 G-API 모듈 추가 OpenVION 딥러닝 툴킷으로 dnn 모듈 업데이트 키넥트 퓨전 알고리즘 구현 OR코드 검출기 추가 효과적인 광류 알고리즘 추가	core와 imgproc 모듈 실행 최적화 dnn 모듈 개선 NN Builder API로 교체 인텔 Neural ComputerStick2 지원 안드로이드 미디어 NDK API 지원 Hand-Eye 캘리브레이션 추가	

C++기반 OpenCV 프로그래밍의 예


```
#include <opencv2\imgproc.hpp>
#include <opencv2\highgui.hpp>
using namespace cv;
void main()
   Mat img = imread("lena.jpg");
   Mat gray_img, edge_img;
   imshow("Input Image", img);
   cvtColor(img, gray_img, COLOR_BGR2GRAY);
   imshow("Gray Image", gray_img);
   GaussianBlur(gray_img, gray_img, Size(7, 7), 1.5, 1.5);
   Canny(gray_img, edge_img, 0, 30);
   imshow("Edge Image", edge_img);
   waitKey(0);
```

EmguCV

EmguCV

- 크로스플랫폼 영상처리 라이브러리
 - 윈도우, Mac, Android, iPhone 등
- OpenCV의 .NET wrapper
 - Intel이 개발한 OpenCV와 같은 기능을 사용
- C#, VB, Python, VC++ 등의 언어를 지원

❖ 장점

- 크로스 플랫폼 지원
- 범용 컬러와 깊이영상 클래스 제공
- 자동 메모리 관리
- XML 직렬화 영상

OpenCV-Python

OpenCV-Python

- Python언어를 기반으로 사용가능한 OpneCV
- Tutorial
 - https://opencv-python-tutroals.readthedocs.io/en/latest/index.html

❖ Python은 속도가 느리다?

- 성능이 필요한 부분은 C/C++로 구현한 후, Python Wrapper를 생성하여 해결
- 장점
 - Python코드가 C/C++에 비해 성능이 떨어지지 않게 함
 - Python으로 쉽게 코딩이 가능함

실습을 위한 환경구축

❖ 실습환경

- Python 3.8.x(64-bit)
- IDE: Jupyter Notebook, Visual Studio Code 등을 이용

❖ 설치순서

- 1. Python 3.8.x 설치
- 2. Command Prompt에서... 라이브러리 설치
 - numpy, matplotlib, seaborn,
 - scikit-learn, Pandas,
 - opency-python 등
- 3. IDE 설치

파이썬 및 라이브러리 설치

- ❖ python 3.8.x 64-bit 버전 설치
 - python 3.9는 아직 tensorflow 지원 안됨.
- ❖ cmd prompt에서... 다음을 차례로 입력 (참고: anaconda가능)

```
python -m pip install --upgrade pip
pip install jupyter
pip install numpy
pip install matplotlib
pip install seaborn
pip install pandas
pip install scikit-learn
pip install opency-python
```

통합개발환경(IDE) 설치

❖ 가능한 IDE

- Python Shell(Python IDLE)
 - python과 동시에 설치됨(반드시 PATH 확인)
- PyCharm Community
 - https://www.jetbrains.com/ko-kr/pycharm/
 - 많이 사용됨
- Visual Studio Code
 - 크로스 플랫폼을 지원하는 editor
 - Windows, macOS, Linux(Ubuntu)를 모두 지원
- jupyter notebook(또는 colab)
 - command prompt에서 server 실행 후, Chrome에서 해당 주소로 연결하여 사용 > jupyter notebook
 - Code와 Markdown 입력 가능

❖ Vscode 설치

- https://code.visualstudio.com/
- 설치시에 반드시 PATH에 경로 추가

❖ Vscode 환경설정

- Extentions(Ctrl+Shift+X)에서 'python'으로 검색 후, Python Extention, Korean Language Pack, Beauty 등을 설치
- 글꼴설정
 - 필요시 D2Coding 폰트 설치
 - 설정 텍스트편집기 폰트에서 글꼴, 크기 설정

참고: setting.json

```
{
    "terminal.integrated.fontSize": 16,
    "terminal.integrated.fontFamily": "Consolas, D2Coding",
    "editor.fontSize": 18,
    "editor.fontFamily": "Consolas, D2Coding, 'Courier New', monospace",
    "editor.mouseWheelZoom": true
}
```


❖ Vscode 사용방법

- 폴더를 선택/생성
- 파일을 추가(예: test.py)

❖ Vscode 편집을 위한 유용한 단축키

- Ctrl+C / Ctrl+V / Ctrl+X
 - 현재라인 복사하기/붙이기/잘라내기(선택하지 않은 상태)
- Ctrl+Shift+K
 - 현재라인 삭제하기(선택하지 않은 상태)
- Ctrl+Enter(아래) / Ctrl+Shift+Enter(위)
 - 현재라인의 아래 / 위에 빈 라인 추가
- Alt+ ↑ / Alt+ ↓
 - 현재라인을 위 / 아래로 이동
- Ctrl+D
 - 현재 커서의 단어와 같은 단어를 차례로 선택하여 한꺼번에 바꾸기
- Alt+클릭 : 멀티 커서

jupyter notebook 설치

❖ 준비

- jupyter notebook은 웹브라우저(IEE, Chrome 등)에서 실행됨
- 가급적 Chrome Browser 설치 권장

❖ 설치

- 검색창(Win+R)에 cmd 입력한 후, "명령 프롬프트"에서 설치
- pip install jupyter

❖ 실행방법

- 1. 명령 프롬프트 열기(cmd)
- 2. 노트북파일(*.ipynb)을 저장하기 원하는 디스크로 이동(필요시)
- 3. jupyter notebook 입력
 - 주의: 명령 프롬프트는 절대 종료시키면 안됨

- 노트북 만들기
 - 오른쪽 New 버튼을 클릭한 뒤 Python 3을 클릭
 - 노트북이름을 클릭하여, 노트북의 이름을 변경
- Cell에 Code 또는 Markdown 입력
- 유용한 단축키
 - 편집모드 : 녹색(cell 클릭 / Enter)
 - Ctrl+Enter: 현재 cell 실행
 - Shift+Enter: 현재 cell 실행하고, 다음 cell로 이동(없으면 새로 만듦)
 - 명령모드 : 청색(cell 바깥쪽 클릭 / ESC)
 - m: markdown, y: code
 - a: 현재 cell 위에 추가, b: 현재 cell 아래에 추가
 - dd: 현재 cell 삭제, z: 현재 cell 삭제 취소

참고: Jupyter notebook extentions

- ❖ 설치
 - pip install jupyter_contrib_nbextensions && jupyter contrib nbextension install

- ❖ jupyter notebook에 Nbextensions 탭 생성됨
- ❖ 유용한 확장기능
 - ExecuteTime
 - Hinterland
 - Variable Inspector

참고: Google Colab

❖ colab 사용하기

- colab 사이트에 접속
 - https://colab.research.google.com/
- google 로그인
- 새노트
 - 새노트 만들기
 - coding 후, 실행(Ctrl+Enter)

Colab 사용시 꼭 알아야 할 것들

❖ 경고안내문 무시하기

```
import warnings
warnings.filterwarnings("ignore")
```

❖ 한글폰트 설치하기

```
!sudo apt-get install -y fonts-nanum
!sudo fc-cache -fv
!rm ~/.cache/matplotlib -rf
```

❖ matplotlib에서 한글폰트 사용하기

```
import matplotlib.pyplot as plt
plt.rc('font', family='NanumBarunGothic')
```


❖ Google drive로 로컬파일 업로드하기

```
from google.colab import files
uploaded = files.upload()
```


❖ Google drive로 부터 csv파일 불러오기

```
import io
import pandas as pd

data = pd.read_csv(io.BytesIO(uploaded['tips.csv']))
data
```

이미지 읽고 출력하기


```
import cv2
import numpy as np
def showImage():
    filename = "lena.jpg"
    img = cv2.imread(filename, cv2.IMREAD_COLOR)
    cv2.imshow('image', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
showImage()
```

- cv2.IMREAD_COLOR
- cv2.IMREAD_GRAYSCALE
- cv2.IMREAD_UNCHANGED

크기조절이 가능한 윈도우창 만들기


```
import cv2
import numpy as np
def showImage():
    filename = "lena.jpg"
    img = cv2.imread(filename, cv2.IMREAD_COLOR)
    cv2.namedWindow('image', cv2.WINDOW_NORMAL)
    cv2.imshow('image', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
showImage()
```

- cv2.WINDOW_AUTOSIZE
- cv2.WINDOW_NORMAL

imread

- ❖ cv2.imread()함수
 - 이미지를 읽은 후, numpy의 ndarray 형식으로 리턴
- ❖ 각 픽셀들의 값은 [B, G, R]의 값

❖ 모드

- cv2.IMREAD_COLOR
 - 컬러 이미지로 읽음
- cv2.IMREAD_GRAYSCALE
 - 그레이 이미지로 읽음
- cv2.IMREAD_UNCHANGED
 - 알파채널을 포함하여 그대로 읽음

비디오 캡쳐

❖ 종료 : ESC

```
import cv2
import numpy as np
def showVideo():
    try:
        cap = cv2.VideoCapture(0)
    except:
        return
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        cv2.imshow('Video', frame)
        key = cv2.waitKey(1) & 0xFF
        if key == 27:
            break
    cap.release()
    cv2.destroyAllWindows()
showVideo()
```


기존의 Video를 캡쳐하려면 여기에 filename넣어준다.

이미지 픽셀에 접근하기

❖ 픽셀의 값에 직접접근

- img[340, 200] = [100, 150, 200]
 - 340, 200위치의 픽셀을 B=100, G=150, R=200의 값으로 변경
- 상대적으로 느림

❖ numpy의 item(), itemset()함수로 접근

- 최적화되어 있어 빠르다
- B, G, R 각각의 값에 개별적으로 접근해야 함
- (예)
 - b = img.item(340, 200, 0)
 - g = img.item(340, 200, 1)
 - r = img.item(340, 200, 2)

❖ itemset()함수로 픽셀값 변경하기

- B, G, R 각각의 변경해야 함
- **-** (예)
 - img.itemset((340, 200, 0), 100) # B = 100
 - img.itemset((340, 200, 1), 150) # G = 150
 - img.itemset((340, 200, 2), 200) # R = 200

이미지의 속성 얻기

❖ 주요 이미지 속성

- img.shape
 - 이미지의 (높이, 너비, 채널수)
- img.size
 - 이미지의 크기(바이트)
- img.dtype
 - 이미지 픽셀의 데이터타입

᠅ (예)

```
print(img.shape)
print(img.size)
print(img.dtype)

(512, 512, 3)
786432
uint8
```

이치화(픽셀처리)


```
import cv2
import numpy as np
def showImage():
    filename = "lena.jpg"
    img = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)
    cv2.imshow('image', img)
    ysize = img.shape[0]
    xsize = img.shape[1]
    for y in range(ysize):
        for x in range(xsize):
            if img.item(y, x) < 128:
                img.itemset((y, x), 0)
            else:
                img.itemset((y, x), 255)
    cv2.imshow('bin-image', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
showImage()
```


이미지에 ROI 설정하기

❖ ROI(Region Of Image)는 numpy의 indexing과 slicing을 이용

```
import cv2
import numpy as np
def showImage():
    filename = "lena.jpg"
    img = cv2.imread(filename, cv2.IMREAD COLOR)
    subimg = img[250:400, 200:350]
    cv2.imshow('subimage', subimg)
    img[0:150, 0:150] = subimg
    cv2.imshow('image', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
showImage()
```

채널 분리와 합성


```
import cv2
import numpy as np
def showImage():
    filename = "lena.jpg"
    img = cv2.imread(filename, cv2.IMREAD_COLOR)
    b, g, r = cv2.split(img)
    cv2.imshow('B image', b)
    cv2.imshow('G image', g)
    cv2.imshow('R image', r)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
showImage()
```


❖ numpy를 이용한 채널분리

■ 매우 효율적임

```
b = img[:, :, 0]g = img[:, :, 1]r = img[:, :, 2]
```

❖ 채널의 합성

- cv2.split()함수와 반대로 cv2.merge()함수 사용
- (예)
 - mergedimg = cv2.merge((b, g, r))

Color의 개요

❖ 컬러 표현

- 1802년, Tomas Young이 제안한 3색 이론
- 컬러는 세가지 기본 컬러를 적당한 비율로 조합하여 만들어진다고 주장(사람의 색인식구조와 일치)

$$C = aC_1 + bC_2 + cC_3$$

❖ 삼중자극(tristimulus)

- 인간의 컬러 인지 능력은 세가지 추상체들의 반응에 의해 나타남
 - 휴먼 망막(retina) 내부: 색을 감지하는 추상체(cone)이 3개 존재
 - 추상체: 빛을 감지하는 3개의 센서로 각각 적(red),녹(green),청(blue)영역 감지

❖ 컬러 스펙트럼(spectrum)

❖ 가시광선 영역

컬러모델

❖ 컬러모델

■ 색상을 표현하는 체계

❖ 종류

- OpenCV에서는 150여개의 컬러모델을 지원
- 주요 컬러모델
 - RGB
 - CMY
 - HSI
 - YIQ

RGB모델

- ❖ 개인용 PC의 컬러 CRT 모니터, 컴퓨터 그래픽스
- ❖ "빛"의 삼원색
- ❖ 각각을 더해 원하는 컬러를 만들어 냄
- ❖ 더하기 삼원색(additive primaries)라고 부름

- ❖ 각각의 좌표축은 R,G,B축을 나타냄
- ❖ 좌표 (0,0,0): 검은색
- ❖ 좌표 (1,0,0): 빨강
- ❖ (0,0,0)-(1,1,1) 연결 대각선: R,G,B 비율이 동일한 회색(gray) 등급

CMY모델

- ❖ '색'의 삼원색이며, 청록(Cyan), 자홍(Magenta), 노랑(Yellow)로 구성
- ❖ RGB모형과 반대의 공간, C,M,Y는 각기 R,G,B의 보색(complement)
- ❖ 빼기 삼원색(subtractive primaries): 백색광에서 특정색을 뺌에 의해 원하는 색깔을 만듬
- ❖ 컬러 복사기, 프린트와 같은 출력장치에 사용

C = 1-R M = 1-G Y = 1-B

(R흡수 = Cyan)

(G흡수=Magenta)

(B흡수=Yellow)

❖ CMYK 모델

- CMY 모델 + 검정색(black) K = CMYK
- 검정색을 만들기 위해 CMY를 조합하는 것은 문제
- 비용 증가, 검정색의 질적 수준이 떨어지는 것을 방지
- 실용적 프린트 모델

```
C = 1-R

M = 1-G

Y = 1-B

K = min(C,M,Y)
```

HSI모델

- ❖ 인간의 색인지에 기반한 모델
- ❖ (RGB,YIQ,CMY,CMYK는 시스템이나 하드웨어에서 사용을 위한 모델)
- ❖ 색상(Hue: H), 채도(Saturation: S), 명도(Intensity: I) 모델
- ❖ 구체적 컬러를 만들기 위해 색 조합이 불필요(H 좌표값 자체가 바로 색상값)

- H(색상): 0~360° 범위, 빨강,파랑, 노랑 등의 색을 부별하는 축

- S(채도): 0~1 범위, 순색에 첨가된 백색광의 비율

- I(명도): 0~1의 범위,0은 검정, 1은 흰색

YIQ모델

- ❖ TV방송국에서 사용하는 모델
- ❖ 방송국에서는 가정의 TV가 흑백,컬러 인지 무관하게 YIQ신호 발송
- ❖ 흑백TV는 Y신호만 취함, 컬러TV는 YIQ모두 취함
- ❖ Y: 명암도(Luminance), I,Q: 색신호로 색상(hue)과 채도(saturation)

$$\begin{pmatrix} Y \\ I \\ Q \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.528 & 0.311 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 1.000 & 0.956 & 0.621 \\ 1.000 & -0.273 & -0.647 \\ 1.000 & -1.104 & 1.701 \end{pmatrix} \begin{pmatrix} Y \\ I \\ Q \end{pmatrix}$$

- 사람 눈은 컬러값 보다 밝기값에 더 민감
- 신호 전송 시, Y값은 덜 압축 I,Q값은 많이 압축하여 전송 가능

컬러모델 바꾸기

OpenCV

■ cv2.cvtColor()함수를 이용

❖ cv2.cvtColor()함수의 사용 예

hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

■ 주요모드

cv2.COLOR_BGR2GRAY

cv2.COLOR_BGR2HSV

cv2.COLOR BGR2LAB

• cv2.COLOR_BGR2RGB

• cv2.COLOR GRAY2RGB

cv2.COLOR_HSV2RGB

cv2.COLOR_GRAY2BGR

cv2.COLOR_HSV2BGR

cv2.COLOR_LAB2BGR