Maths MCQ and FB questions from the New Revised Edition of Boscoss II PU Text Book to be released shortly

Multiple Choice Questions

Ch. 1: Relations & Functions

Choose the correct answer

1.	Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}.$
	A) $(2,4) \in R$ B) $(3,8) \in R$ C) $(6,8) \in R$ D) $(8,7) \in R$ (NCERT)
2.	Let R be the relation in the set (1, 2, 3, 4) given by
	$R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}.$ Choose the correct answer.
	A) R is reflexive and symmetric but not transitive.
	B) R is reflexive and transitive but not symmetric.
	C) R is symmetric and transitive but not reflexive.
	D) R is equivalence relation. (NCERT)
3.	The relation $R = \{(a, b) : gcd(a, b) = 1, 2a \neq b, a, b \in Z\}$ is
	A) transitive but not reflexive B) symmetric but not transitive
	C) reflexive but not symmetric D) neither symmetric nor transitive (JEE-M 23)
4.	A set A has 4 elements. Then the number of relations on A is
	A) 2 ⁴ B) 2 ¹⁶ C) 16 ² D) 2 ⁸
5.	Let R be a relation on N, the set of all natural numbers given by $R = \{(a, b) : a \le b\}$.
	Then,
	A) R is reflexive and symmetric B) R is symmetric and transitive
	C) R is reflexive and transitive but not symmetric D) R is an equivalence relation.
6.	Divisibility relation on Z is
	A) reflexive B) symmetric C) transitive D) equivalence relation
7.	Let L denote the set of all straight lines in a plane. Let R be the relation on L defined by $R = \{(1, m) : 1 \text{ is perpendicular to } m\}$. Then R is
	A) reflexive B) symmetric C) transitive D) equivalence relation
8.	In the set of all integers z, which of the following relations is not an equivalence relation?
	A) $\{(x, y) : x \le y\}$ B) $\{(x, y) : x = y\}$ C) $\{(x, y) : x - y \text{ is even integer}\}$ D) $Z \times Z$

9.	The relation R in the	ne set $\{1, 2, 3\}$ §	given by $R = \{(1, 2)\}$	(2, 1) is	
	A) reflexive	B) symmetric	C) transitive	D) equivalence	(23-M, MQP)
10.	The function $f: Z$	\rightarrow Z given by	$f(x) = x^2 is$		
	A) bijective		B) one-one but no	t onto	
	C) onto but not 1-1		D) neither 1-1 nor	onto	
11.	The greatest intege	r function f : R	\rightarrow R , given by $f(x)$	= [x], is	
	A) bijective		B) one-one but no	t onto	
	C) onto but not 1-1		D) neither 1-1 nor	onto	
12.	The modulus funct	ion $f: \mathbf{R} \to \mathbf{R}$.	given by $f(x) = x $, i	S	
	A) bijective B) one-one but not onto C) onto but not 1-1 D) neither 1-1 nor onto $ \begin{array}{l} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{array} $ A) bijective B) one-one but not onto C) onto but not 1-1 D) neither 1-1 nor onto B) one-one but not onto C) onto but not 1-1 D) neither 1-1 nor onto Let $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^4$. Choose the correct answer.				N. Committee of the com
	C) onto but not 1-1	D) neit	ther 1-1 nor onto	BO	
			[1,	x >0	
13.	The Signum function	on $f: \mathbf{R} \to \mathbf{R}$, g	iven by $f(x) = \begin{cases} 0, \end{cases}$	x = 0 is.	
		, 8	-1	x < 0	
	A) bijective		B B) one-one but not	onto
	C) onto but not 1-1		D) neither	· 1-1 nor onto	
14.	Let $f: \mathbf{R} \to \mathbf{R} de$	efined by $f(x) =$	x ⁴ . Choose the con	rrect answer.	
	A) f is one-one on	to	B) f is ma	any-one onto	
	C) f is one-one but	not onto	B) f is ma D) f is nei	ther one-one nor o	onto.(NCERT, MQP)
15.	Let $f: \mathbf{R} \to \mathbf{R}$ define	ned by f(x) = 3x	. Choose the correc	t answer.	
	A) f is one-one on	to	B) f is ma	any-one onto	
	C) f is one-one but			ither one-one nor	onto. (NCERT)
16.	If $f = \{(5, 2), (6, 3)\}$				
	A) Domain of $f = N$			n of f is $\{2, 3, 5, 6\}$	5}
	C) Range of $f = \{2, \dots \}$,	of f is {5, 6}	
17.	A set A has 3 element functions that can be			hen the number o	f injective
	A) 4!	B) 3!	C) 12!	D)	64!
18.	The number of all o	ne – one function	ons from the set A =	{a, b, c} to itself	is.
	A) 3	B) 6	C) 27	D)	1
19.	If A contains 3 elem		ains 2 elements, the	en the number of o	one – one
	functions from A to				
	A) 3	B) 0	C) 3^2	D)	3!

20.	Relation R in the se	et $A = \{1, 2, 3,$, 13, 14} defined as R	$= \{(x, y) : 3x - y =$	0}
	Then R is				
	A) reflexive	B) symmetric	C) transitive	D) none o	f these
21.	If $f: R \to S$, defi	ned by $f(x) = s$	in $x - \sqrt{3} \cos x + 1$ is on	to, then the interva	l S is
		B) [-1, 1]		D) [0, 3]	AIEEE 04)
22.	$f: R \to R$ given by	$f(x) = x + \sqrt{x^2}$	is		
	A) one-one	B) onto	C) bijective	D) many one-into	
23. $f: R \to R$ given by $f(x) = 5x + \cos x $ is					
	A) one-one and on	to	B) one-one and into		
	C) many one and in	nto	D) many one and onto		
24.	In the set Z of all in	tegers, which of	the following relation R i	s not an equivalence	e relation?
			B) $x R y if x = y$	BU	
	C) $x R y if x - y is$	an even integer	D) x R y if $ x = y $		
25.	If $A = \{x, y, z\}$, the	n the relation R	$= \{(x, y), (y, x), (x, x)\}$	on A is	
	A) reflexive		B) symmetric and trans	sitive	
	C) symmetric only		D) transitive only		
26.	For $x, y \in R$, define Then R is	e a relation R by	x R y if and only if x - y	$+\sqrt{2}$ is an irration	al number.
	A) an equivalence	relation	B) R is symmetric		
	C) R is reflexive	OIL	D) R is transitive		
27.	Let $A = \{1, 2, 3\}$ at	nd consider the	relation		
	$R = \{(1, 1), (2, 2),$	(3, 3), (1, 2), (2,	$\{3\}, \{1, 3\}$. Then R is		
	A) reflexive but no	t symmetric	B) reflexive but not tra	nsitive	
	C) symmetric and	transitive	D) neither symmetric n	or transitive	
28.	Let $f: R \to R$ be d	efined by $f(x) =$	$e^x - e^{- x }$. Then		
	A) the range of f is	$(-\infty,0]$	B) f is $1 - 1$		
	C) the range of f is	$[0,\infty)$	D) f is onto		
29.	A is a set having 6 which are not bijec		s. The number of distinc		to A CET 18)
	A) 6! – 6	B) $6^6 - 6$	C) $6^6 - 6!$	D) 6!	

30.	If $A = \{x \mid x \in \mathbb{N} , \text{ functions from } A \text{ to} \}$		$x \in \mathbb{Z}, x^2$	$x^2 - 5x + 6 = 0$,	then the	number o	f onto (CET 19)
	A) 30	B) 2	(C) 32		D) 23	
31.	Let x denote the tot B with 5 elements a the set A × B. Then	and y denote the					
	A) $y = 273x$	B) $2y = 91x$	(C) y = 91x		D) $2y = 2$	73x
32.	A) $y = 273x$ If $f: R \rightarrow R$ define	ed by $f(x) = (3 -$	$-x^{3})^{\frac{1}{3}}$, the	en (f o f) (x) =			
	A) $3 - x^3$	B) x	(\mathbb{C}) \mathbf{x}^3		D) – x	
33.	If $f: R \to R$ given	by f(x) = 7x + 8	and f ⁻¹ (1	$2) = \frac{k}{7}, \text{ then then then}$	ne value	of k is	
	A) 7	B) 1		C) 4		D) 8	
34.	If $f(x) = \frac{3x+2}{5x-3}$, x	$\in R - \left\{ \frac{3}{5} \right\}, \text{ then}$	n	PUT	E.P.		
35.	A) $f^{-1}(x) = f(x)$ If a set A has m ele B is 2520, then the	ments and set B					
	A) 2	B) 7	BO	C) 6		D) 5	
36.	For any two real no	umbers θ and ϕ ,	θR iff se	$e^{c^2} \theta - \tan^2 \phi =$	1. Then t	the relation	n R is
	A) reflexive but no	ot transitive	B) symm	netric but not re	eflexive		
	C) an equivalence	relation	D) both 1	reflexive and sy	ymmetric	but not tr	ansitive.
37.	A function f: [0, \infty	$(0, \infty) \rightarrow [0, \infty)$ defin	ned by f(x)	$=\frac{x}{1+x}$ is			
	A) one-one and on	to	B) one-o	ne but not onto)		
	C) onto but not one	e-one	D) neith	er one-one nor	onto		
				$\int 2n, \ n=2,4$	168		
38.	Let a function f : N	$I \rightarrow N$ be defined	d by f(n):				is
	Let a function f: N		, ,	$\frac{n+1}{2}, n=1$,5,9,13,		
	A) one-one but not	onto	B) onto b	out not one-one	e		
	C) neither one-one			one and onto			
39.	Let $f: R \to R$ be d A) one – one	efined by $f(x) =$	$=\frac{1}{x}, \forall x$	$\in \mathbb{R}$, then f is		(0	ET 15)
	A) one – one	B) onto	C) biject	ive	D) f is	not define	d

40.	Let $A = \{x : x \in R\}$; x is not a positiv	ve integer	$\} Define f: A \to R$	$R as f(x) = \frac{2x}{x-1}$, then f is
	A) Injective but no	ot surjective	B) surje	ctive but not injec	tive	
	B) bijective		D) neith	er injective nor su	rjective	
41.	The function $f(x) =$	$= \sqrt{3} \sin 2x - \cos x$	os $2x + 4i$	is one-one in the in	nterval (C	CET 21)
	A) $\left[\frac{-\pi}{6}, \frac{\pi}{3}\right]$	$B)\left(\frac{\pi}{6}, \frac{-\pi}{3}\right]$		C) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	D) $\left[\frac{-\pi}{6},\right]$	$\left(\frac{-\pi}{3}\right)$
42.	Let $f: R \to R$ be deby	fined by $f(x) = 2$	2x + 6 whi	ch is a bijective m	apping then f ⁻¹ (x) is given (CET 16)
	A) $\frac{x}{2} - 3$	B) $2x + 6$		C) $x - 3$	D) $6x + 2$	
43.	If $f: R \to R$ is det	fined by $f(x) = 2x$	x + 3, the	n f $^{-1}(x)$	BO	(CET 12)
	A) is given by $\frac{x-}{2}$	3		B) is given by $\frac{1}{2x}$	1	
	C) does not exist b		injective		c+3	
	D) does not exist b					
44.	The number of bij	ective functions	from the	set A to itself, if A	contains 108 ele	ements is
			BOS		(COME)	DK 15)
	A) 108	B) (108)!	H .	C) $(108)^2$	D) 2^{108}	
45.	The set A has 4 eler that can be defined		B has 5 el	ements then the nu	mber of injective (CET 16	
	A) 144	B) 72		C) 60	D) 120	
46.	If the set x contains	7 elements and s	set y conta	nins 8 elements, the	en the number of	bijections
	from x to y is					(CET 22)
	A) 0	B) 7!		C) 8 P ₇	D) 8!	
47.	If $f(x) = e^X$ and $g(x)$	$= \log e^{X}$, then w	hich of the	e following is TRU	TE ?	
	A) $f\{g(x)\} \neq g\{f(x)\}$)}		B) $f\{g(x)\}=g\{f(x)\}$	x)}	
	C) $f{g(x)} + g{f(x)}$	$)\}=0$		D) $f\{g(x)\} - g\{f(x)\}$	$\langle x \rangle = 1$	
48.	$f:R\to R$ and $g: $	$[0, \infty) \to R$ are d	efined by	$f(x) = x^2 \text{ and } g(x)$	$=\sqrt{X}$. Which	one of the
	following is not tru	ie?			(0	CET 19, 23)
	A) $(fog)(2) = 2$	B) $(gof)(4) = 4$	1	C) $(gof)(-2) = 2$	D) (fog) (– 4) = 4

49. Let
$$f: R \to R$$
 be defined by $f(x) = 3x^2 - 5$ and $g: R \to R$ by $g(x) = \frac{x}{x^2 + 1}$, then gof is

A)
$$\frac{3x^2}{x^4 + 2x^2 - 4}$$
 B) $\frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$ C) $\frac{3x^2}{9x^4 + 30x^2 - 2}$ D) $\frac{3x^2 - 5}{9x^4 - 6x^2 + 26}$

50. Let
$$f(x) = \sin 2x + \cos 2x$$
 and $g(x) = x^2 - 1$, then $g(f(x))$ is invertible in the domain (CET 23)

A)
$$x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
 B) $x \in \left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$ C) $x \in \left[0, \frac{\pi}{4}\right]$ D) $x \in \left[\frac{-\pi}{8}, \frac{\pi}{8}\right]$

Answers

1. (C)

2 = 4 - 2 but 4 < 6 \therefore $(2,4) \notin R$; $(3,8) \notin R$ [$\because 3 \neq 8 - 2$]. $(6,8) \in R$ because 8 > 6 and a = 8 - 2.

2. (B)

(a, a) ∈ R, \forall a ∈ {1, 2, 3, 4}; (1, 2) ∈ R but (2, 1) \notin R \therefore R is not symmetric; it is trivially transitive.

- 3. (D)
- **4.** (B)

No. of relations = $2^{n(A \times A)} = 2^{n(A) \cdot n(A)} = 2^{16}$

5. (C)

 $a \le a \ \forall a; \ 2 \le 3 \ \text{but} \ 3 \not\le 2; \ a \le b \ \text{and} \ b \le c \Rightarrow a \le c$

6. (C)

 $0 \nmid 0$; $4 \mid 2$ but $2 \nmid 4$; $a \mid b$ and $b \mid c \Rightarrow a \mid c$

- 7. **(B)**
- 8. (A)
- 9. (B)
- 10. (D)

$$f(2) = f(-2) = 4 \implies f \text{ is not } 1 - 1$$

range of $f = W \ne Z \implies \text{not on to}$

11. (D)

$$f(1.2) = f(1.9) = 1 \Rightarrow f \text{ is not } 1-1$$

range of $f = Z \neq R \Rightarrow \text{not onto}$

12. (D)

$$f(2) = f(-2) = 2 \Rightarrow f \text{ is not } 1 - 1$$

range of $f = [0, \infty) \neq R \Rightarrow \text{not onto}$

PU TEXT BOOK

$$f(1) = f(2) = 1 \implies \text{not } 1 - 1$$

range of $f = \{-1, 0, 1\} \neq R$

$$f(1) = f(-1)$$
; Range = $\mathbf{R}_* \neq \mathbf{R}$

15. (A)

$$f(a) = f(b) \implies a = b; f\left(\frac{b}{3}\right) = b; \frac{b}{3} \in \mathbf{R} \text{ when } b \in \mathbf{R}.$$

16. (C)

Domain =
$$\{5, 6\}$$
, Range = $\{2, 3\}$

17. (A)

Required =
$${}^{4}P_{3} = 4!$$

18. (B)

Required =
$${}^{3}P_{3} = 3!$$

19. (B)

If
$$n(A) > n(B)$$
 then no one-one functions.

20. (D)

$$R = \{(x, y) : 3x - y = 0\}$$
 i.e. $R = \{(x, y) : 3x = y\}$

If R is to be reflexive, $(x, x) \in R$, $\forall x \in A$.

Now, $(x, x) \in R$ if 3x = x, which is true only for x = 0.

In other words, $(1, 1) \notin R$ because $3.1 \ne 1$ \therefore R is not reflexive.

If R is to be symmetric, then $(x, y) \in R \implies (y, x) \in R$.

Now,
$$(x, y) \in R \Rightarrow 3x = y \Rightarrow x = \frac{1}{3}y$$
 i.e. $3y \neq x \Rightarrow (y, x) \notin R$.

For example, $(1, 3) \in R$ but $(3, 1) \notin R$. \therefore R is not symmetric

Let
$$(x, y)$$
 and $(y, z) \in R$. Then $3x = y$ and $3y = z$

Then
$$3x = \frac{1}{3}z \Rightarrow 3x \neq z$$
 i.e. $(x, z) \notin R$.

For example, (1, 3) and $(3, 9) \in R$ but $(1, 9) \notin R$ \therefore R is not transitive.

21. (A)

Max.
$$f = 1 + 2$$
; Min. $f = 1 - 2$

22. (D)

$$f(x) = x + \sqrt{x^2} = x + |x| = \begin{cases} 2x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

$$f(x) = 5x \Rightarrow f'(x) = 5, \forall x \in R$$

 \Rightarrow f(x) is strictly increasing function

 \therefore f(x) = 5x + |cos x| is also strictly increasing function \Rightarrow it is both 1 – 1 and onto

- 24. (A)
- 25. (C)
- 26. (C)

Since $x - x + \sqrt{2} = \sqrt{2}$ which is an irrational number, so xRx, $\forall x \in R$ is possible. R is reflexive.

But R is not symmetric, for, $(\sqrt{2}, 1) \in R$ but $(1, \sqrt{2}) \notin R$

Also R is not transitive, for, $(\sqrt{2}, 1) \in R$ and $(1, 2\sqrt{2}) \in R$

but
$$(\sqrt{2}, 2\sqrt{2}) \notin R$$

27. (1)

Clearly, R is reflexive, for, $(1, 1) \in R$, $(2, 2) \in R$, $(3, 3) \in R$ But R is not symmetric, for, $(2, 3) \in R$ but $(3, 2) \notin R$

When
$$x \ge 0$$
, $f(x) = e^x - e^{-x}$

When
$$x < 0$$
, $f(x) = e^x - e^{-(-x)} = 0$

Clearly f is not 1-1

When x > 0, $e^x > e^{-x}$: f(x) > 0, $\forall x > 0$: The range is $[0, \infty) \neq R$

 \therefore f is not onto.

29. (C)

Required = No. of functions – number of bijective functions = $6^6 - 6!$

$$A = \{1, 2, 3, 4, 5\} \& B = \{2, 3\}$$

Use: If n(A) = n ($n \ge 2$) & n(B) = 2, then the number of onto functions from A to B is $2^{n} - 2 = 2^{5} - 2 = 30$.

31. (B)

$$x = {}^{5}P_{3} = 5.4.3$$

$$y = {}^{15}P_3 = 15.14.13$$
 $\therefore \frac{y}{x} = \frac{15.14.13}{5.4.3} = \frac{91}{2} \Rightarrow 2y = 91x$

- 32. (B)
- 33. (C)

$$f^{-1}(x) = \frac{x-8}{7}$$
; $f^{-1}(12) = \frac{4}{7} \Rightarrow k = 4$

$$f^{-1}(x) = \frac{-3x-2}{-5x+3} = \frac{3x+2}{5x-3} = f(x)$$

35. (D)

$$2520 = {}^{7}P_{m} \Longrightarrow m = 5$$

36. (C)

37. (B)

$$f(x) = \frac{x+1-1}{x+1} = 1 - \frac{1}{x+1}$$

$$f'(x) = \frac{1}{(x+1)^2} > 0 \implies f \text{ is } 1-1$$

38. (D)

39. (D)

40. (A)

Domain = R - N;
$$f(x) = \frac{2}{1 - \frac{1}{x}}$$

Range of
$$f = [0, 1) \neq \text{codomain} \Rightarrow f \text{ is not onto}$$

8. (D)

9. (D)

 $f(0) = \frac{1}{0}$, which is meaningless!

∴ f is not a well defined function.

1. (A)

Domain = $R - N$; $f(x) = \frac{2}{1 - \frac{1}{x}}$
 $a, b \in A \Rightarrow f(a) = f(b) \Rightarrow \frac{2}{1 - \frac{1}{b}} \Rightarrow a = b$ ∴ f is $1 - 1$

Let $y \in R$ be such that $y = f(x)$

Then
$$y = \frac{2}{1 - \frac{1}{x}} \Rightarrow 1 - \frac{1}{x} = \frac{2}{y}$$

$$\frac{1}{x} = 1 - \frac{2}{y} = \frac{y - 2}{y} \quad \therefore \ x = \frac{y}{y - 2} \notin Domain \ if \ y = 2$$

OR

$$f(x) \neq 2$$
 : $\frac{2x}{x-1} \neq 2$ and $2 \in R$

 \therefore Range \neq R (codomain) \therefore It is not onto \therefore (A) is the correct option

$$f(x) = \sqrt{3} \sin 2x - \cos 2x + 4 = 2\left(\frac{\sqrt{3}}{2}\sin 2x - \frac{1}{2}\cos 2x\right) + 4$$

$$= 2\left(\cos\frac{\pi}{6} \cdot \sin 2x - \sin\frac{\pi}{6} \cdot \cos 2x\right) + 4 = 2 \cdot \sin\left(2x - \frac{\pi}{6}\right) + 4$$

$$\sin\left(2x - \frac{\pi}{6}\right) \text{ is } 1 - 1 \text{ in the interval:} \left(2x - \frac{\pi}{6}\right) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$\therefore 2x \in \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right] \quad \therefore x \in \left[-\frac{\pi}{6}, \frac{\pi}{3}\right]$$

Aliter: The options in (B) and (D) are not intervals!!

 \therefore (A) or (C) is the correct answer

Take (C):
$$f\left(\frac{\pi}{2}\right) = 5 = f\left(-\frac{\pi}{2}\right)$$
 : f is not $1-1$

:. (A) should be the correct answer

42. (A)

We have, f(x) = 2x + 6. f is a bijective function \Rightarrow f⁻¹ exists. Let $x \in R$ then there exists $y \in R$ such that $f(x) = y \Rightarrow 2x + 6 = y$

$$\Rightarrow x = \frac{y-6}{2} \Rightarrow f^{-1}(y) = \frac{y-6}{2} :: f^{-1}(x) = \frac{x-6}{2} \text{ for all } x \in R$$

 $x \neq 3$ because $[x]^2 - [x] - 6 = 0$ when x = 3 .: (A) is the correct answer

43. (A)

(A)
Let
$$y = 2x + 3 \implies 2x = y - 3 \implies x = \frac{1}{2}(y - 3)$$
 : $f^{-1}(x) = \frac{1}{2}(x - 3)$

44. (B)

From memory!

45. (D)

Set A has 4 elements and set B has 5 elements, hence the number of injective mappings from A to $B = {}^5P_4 = 120$

46. (A)

An n(X) < n(Y), no onto function is possible and hence bijective function from $X \to Y$ is not possible.

47. (B)

$$f(g(x)) = e^{g(x)} = f(x)$$
; $f(x) = x$; $g(f(x)) = f(x) = f(g(x))$

48. (D)

(fog)
$$(-4) = f(g(-4))$$
; but $g(-4) = \sqrt{-4}$ doesn't exist

49. (B)

$$(gof)(x) = g(f(x)) = \frac{f}{f^2 + 1} = \frac{3x^2 - 5}{(3x^2 - 5)^2 + 1} = \frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$$

50. (D)

$$g(f(x)) = (\sin 2x + \cos 2x)^2 - 1 = 2 \sin 2x \cdot \cos 2x = \sin 4x;$$

It is invertible if
$$4x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 i.e., $x \in \left[-\frac{\pi}{8}, \frac{\pi}{8} \right]$

Remark: sin x is bijective and hence invertible in $\left| -\frac{\pi}{2} \right|$, $\frac{\pi}{2}$

Ch. 2: Inverse Trigonometric Functions

Choose the correct answer

The principal value branch of sin⁻¹ x is

The principal value branch of
$$\sin^{-1} x$$
 is

A) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ B) $(0, \pi)$ C) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ D) $\left[0, \pi\right]$

The domain of $f(x) = \sin^{-1} x$ is

A) $\left[-1, 1\right]$ B) $\left(-1, 1\right)$ C) $\left(-\infty, \infty\right)$ D) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

C)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

D)
$$[0, \pi]$$

2. The domain of $f(x) = \sin^{-1} x$ is

C)
$$(-\infty, \infty)$$

D)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

3. The principal value branch of $f(x) = \cos^{-1} x$ is

A)
$$[-1, 1]$$
 B) $(0, \pi)$

B)
$$(0, \pi)$$

C)
$$[0, \pi]$$

D)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

4. The domain of $f(x) = \cos^{-1} x$ is

C)
$$[0, \pi]$$

D)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

5. The principal value branch of $f(x) = \tan^{-1} x$ is

A)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 B) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$B)\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

C)
$$(0, \pi)$$

C)
$$(0, \pi)$$
 D) $[0, \pi]$ (23-M, 23-J)

6. The domain of $f(x) = tan^{-1} x$ is

A) R -
$$(-1, 1)$$
 B) $(0, \pi)$

$$(0,\pi)$$

C)
$$\left(-\infty,\infty\right)$$
 D) $\left[-1,1\right]$

D)
$$[-1, 1]$$

7. The domain of $f(x) = \cot^{-1} x$ is

A)
$$(-\infty, \infty)$$

A)
$$(-\infty, \infty)$$
 B) R - $(-1, 1)$ C) $[-1, 1]$ D) R - $[-1, 1]$

C)
$$[-1, 1]$$

D)
$$R - [-1, 1]$$

8. The principal value	the branch of $\cot^{-1} x$ is		(MQP)
A) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$\mathrm{B)}\left[-\frac{\pi}{2}\;,\;\frac{\pi}{2}\right]$	C) $(0, \pi)$	D) $[0, \pi]$
9. The domain of se	$c^{-1} x is$		
$\mathrm{A)} \left(- \infty , \infty \right)$	B) R – (– 1 , 1)	C) $[-1, 1]$	D) R - [-1, 1]
10. The principal val	ue branch of sec ⁻¹ x is		
A) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \left\{$	$0\} \mathbf{B}) \left[-\frac{\pi}{2} , \frac{\pi}{2} \right] - \left\{ \right.$	0) C) $(0, \pi) - \left\{\frac{\pi}{2}\right\}$	D) $\left[0,\pi\right]-\left\{\frac{\pi}{2}\right\}$
11. The domain of c	$\cos ec^{-1} x is$		
A) $\left(-\infty,\infty\right)$	B) $R - (-1, 1)$	C) $[-1, 1]$	D) R - [-1, 1]
12. The principal va	lue branch of $\cos ec^{-1}$	x is	
A) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$\{0\}$ B) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$-\{0\}$ C) $(0, \pi) - \{\frac{\pi}{2}\}$	$D) \left[0, \pi\right] - \left\{\frac{\pi}{2}\right\}$
13. The value of sin	$-1\left(-\frac{1}{2}\right)$ is	TI TH	,
A) $-\frac{\pi}{6}$	(2)	C) $\frac{5\pi}{6}$	D) $-\frac{\pi}{3}$
14. Value of \cos^{-1}	$-\frac{1}{2}$ is	BOSC	
A) $\frac{\pi}{3}$	$\begin{bmatrix} -\frac{\pi}{2} \end{bmatrix}^{1S}$ B) $-\frac{\pi}{3}$	C) $\frac{2\pi}{3}$	D) $\frac{5\pi}{6}$
15. The value of tan	$a^{-1}(-1)$ is		
A) $\frac{\pi}{4}$	\mathbf{B}) $\frac{\pi}{4}$	C) $\frac{3\pi}{4}$	$D) - \frac{3\pi}{4}$
16. $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) =$ A) $\frac{2\pi}{3}$	· ·		
A) $\frac{2\pi}{3}$	B) $-\frac{\pi}{3}$	C) $\frac{\pi}{3}$	$D)-\frac{2\pi}{3}$
17. $\sin(\tan^{-1} x) =$			
A) $\frac{x}{\sqrt{1-x^2}}$	$B)\frac{x}{\sqrt{x^2-1}}$	C) $\frac{x}{\sqrt{1+x^2}}$	$D) \pm \frac{x}{\sqrt{1+x^2}}$

18. $tan^{-1} (-\sqrt{3}) =$

A)
$$-\frac{\pi}{3}$$
 B) $-\frac{\pi}{6}$

$$B)-\frac{\pi}{6}$$

C)
$$\frac{5\pi}{6}$$

D)
$$\frac{2\pi}{3}$$

19. If $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$, then the value of x is

A)
$$0, \frac{1}{2}$$
 B) $1, \frac{1}{2}$

B) 1,
$$\frac{1}{2}$$

D)
$$\frac{1}{2}$$

20. If $\sin^{-1} x = y$, then

A)
$$0 \le y \le \pi$$

A)
$$0 \le y \le \pi$$
 B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ C) $0 < y < \pi$ D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

C)
$$0 < y < \pi$$

$$D) - \frac{\pi}{2} < y < \frac{\pi}{2}$$

21. The solution set of the equation $\sin^{-1} x + \sin^{-1} (1 - x) = \cos^{-1} x$ is

C)
$$\left\{0, \frac{1}{2}\right\}$$

C)
$$\left\{0, \frac{1}{2}\right\}$$
 D) $\left\{-1, \frac{1}{2}\right\}$

22. The value of $\sin^{-1} \left| \cos \left\{ \sin^{-1} \left(\frac{1}{2} \tan \frac{\pi}{3} \right) \right\} \right|$ is

A)
$$2 \tan^{-1} \left(2 - \sqrt{3} \right)$$

B)
$$2 \tan^{-1} \left(\sqrt{2} - 1 \right)$$

A)
$$2 \tan^{-1} \left(2 - \sqrt{3} \right)$$
 B) $2 \tan^{-1} \left(\sqrt{2} - 1 \right)$ C) $2 \tan^{-1} \left(\sqrt{2} + 1 \right)$ D) $2 \tan^{-1} \left(2 + \sqrt{3} \right)$

D)
$$2 \tan^{-1} \left(2 + \sqrt{3} \right)$$

23. The value of the expression $2 \sec^{-1} 2 + \csc^{-1} 2$ is equal to

A)
$$\frac{\pi}{6}$$

B)
$$\frac{5\pi}{6}$$

C)
$$\frac{7\pi}{6}$$

24. The principal value of $\sin^{-1} \left| \cos \left(\sin^{-1} \frac{1}{2} \right) \right|$ is

A)
$$\frac{\pi}{4}$$

B)
$$\frac{\pi}{6}$$

C)
$$\frac{\pi}{3}$$

D)
$$\frac{\pi}{2}$$

A) $\frac{\pi}{4}$ B) $\frac{\pi}{6}$ $\cos^{-1}\left(\cos\frac{14\pi}{3}\right)$ is **25.** $\cos^{-1} \left(\cos \frac{14\pi}{3} \right)$ is

A)
$$\frac{\pi}{3}$$

A)
$$\frac{\pi}{3}$$
 B) $\frac{2\pi}{3}$

C)
$$\frac{\pi}{6}$$

D)
$$\frac{5\pi}{6}$$

Fill in the blanks

1.
$$\tan^{-1}\sqrt{3} + \cot^{-1}(-\sqrt{3}) =$$

2.
$$\sin\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right) =$$

3.
$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) =$$

4.
$$\cos ec^{-1}(-\sqrt{2}) = \underline{\hspace{1cm}}$$

5.
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) =$$

The value of $\cos (2\cos^{-1}(0.8))$ is

7.
$$\cos^{-1}\left(\cos\frac{8\pi}{3}\right) =$$

8.
$$\sin^2\left(\tan^{-1}\frac{3}{4}\right) + \sin^2\left(\cos^{-1}\frac{3}{5}\right) =$$

9.
$$\cos^{-1}\left(\cot\frac{\pi}{2}\right) + \cos^{-1}\left(\sin\frac{2\pi}{3}\right) =$$

10.
$$\frac{\tan^{-1}\sqrt{3}-\sec^{-1}(-2)}{\cos ec^{-1}(-\sqrt{2})+\cos^{-1}\left(-\frac{1}{2}\right)} =$$

11.
$$\sin^{-1}(\sin(-600^\circ)) =$$

12. If the inverse trigonometric functions take principal values, then

$$\cos^{-1}\left(\frac{3}{10}\cos\left(\tan^{-1}\frac{4}{3}\right) + \frac{2}{5}\sin\left(\tan^{-1}\frac{4}{3}\right)\right) =$$

13. If $\cos^{-1} \alpha + \cos^{-1} \beta + \cos^{-1} \gamma = 3\pi$, then $\alpha(\beta + \gamma) + \beta(\gamma + \alpha) + \gamma(\beta + \beta) =$ ____

14.
$$\tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right) = \underline{\hspace{1cm}}$$

15. If
$$\frac{x^2+1}{x^2-1} = A + \frac{B}{x^2-1}$$
, then $\tan^{-1} A + \csc^{-1} B =$ _____

$$\sin (\tan^{-1} x) = \sin \left(\sin^{-1} \frac{x}{\sqrt{1+x^2}} \right) = \frac{x}{\sqrt{1+x^2}}$$

21. (C)

Hint: Go from the alternatives

 $x \neq -1$: $\sin^{-1}(1-x)$ would become $\sin^{-1} 2$.

When
$$x = 1$$
, LHS = $\frac{\pi}{2} \neq 0$ = RHS

When
$$x = \frac{1}{2}$$
, LHS = $\sin^{-1} \frac{1}{2} + \sin^{-1} \frac{1}{2} = \cos^{-1} \frac{1}{2}$

22. (A)

$$\sin^{-1} \left[\cos \left\{ \sin^{-1} \frac{\sqrt{3}}{2} \right\} \right] = \sin^{-1} \left[\cos \frac{\pi}{3} \right] = \sin^{-1} \frac{1}{2} = \frac{\pi}{6} = 2 \tan^{-1} (2 - \sqrt{3})$$

23. (B)

G.E. =
$$2 \cdot \frac{\pi}{3} + \frac{\pi}{6} = \frac{5\pi}{6}$$

24. (C)

G.E. =
$$\sin^{-1} \left[\cos \frac{\pi}{6} \right] = \frac{\pi}{3}$$

25. (B)

G.E. =
$$2 \cdot \frac{\pi}{3} + \frac{\pi}{6} = \frac{5\pi}{6}$$

(C)

G.E. = $\sin^{-1} \left[\cos \frac{\pi}{6} \right] = \frac{\pi}{3}$

(B)

 $\cos \frac{14\pi}{3} = \cos \frac{2\pi}{3} \quad \therefore \cos^{-1} \cos \frac{2\pi}{3} = \frac{2\pi}{3}$

Lin the blanks

 $\left(\frac{5\pi}{6} \right)$

2. (1)

3. $\frac{5\pi}{6}$

4. $\left(-\frac{\pi}{4} \right)$

5. $\left(\frac{\pi}{6} \right)$

Fill in the blanks

1.
$$\left(\frac{5\pi}{6}\right)$$
 2. (1) 3. $\frac{5\pi}{6}$

3.
$$\frac{5\pi}{6}$$

4.
$$\left(-\frac{\pi}{4}\right)$$

5.
$$\left(\frac{\pi}{6}\right)$$

6.
$$\cos\left(2\cos^{-1}\frac{8}{10}\right) = \cos\left(2\cos^{-1}\frac{4}{5}\right) = \cos 2\alpha = 2\cos^{2}\alpha - 1$$

$$= 2\left(\frac{4}{5}\right)^2 - 1\left(\alpha = \cos^{-1}\frac{4}{5}\right) = \frac{7}{25} = 0.28$$

7.
$$\frac{8\pi}{3} = 2\pi + \frac{2\pi}{3} \Rightarrow \text{Re quired} = \cos^{-1}\cos\left(2\pi + \frac{2\pi}{3}\right) = \frac{2\pi}{3}$$

8.
$$\tan^{-1} \frac{3}{4} = \sin^{-1} \frac{3}{5}$$
, $\cos^{-1} \frac{3}{5} = \sin^{-1} \frac{4}{5}$: Required = $\frac{9}{25} + \frac{16}{25} = 1$

:. Required =
$$\frac{9}{25} + \frac{16}{25} = \frac{1}{25}$$

9. G.E. =
$$\cos^{-1} 0 + \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{2} + \frac{\pi}{6} = \frac{2\pi}{3}$$

10. G.E. =
$$\frac{\frac{\pi}{3} - \left(\pi - \frac{\pi}{3}\right)}{-\frac{\pi}{4} + \pi - \frac{\pi}{3}} = \frac{\frac{-\pi}{3}}{\frac{5\pi}{12}} = -\frac{4}{5}$$

11.
$$\frac{\pi}{3}$$

12.
$$\tan^{-1}\frac{4}{3} = \sin^{-1}\frac{4}{5} = \cos^{-1}\frac{3}{5}$$
 :: Required = $\cos^{-1}\left(\frac{3}{10}\cdot\frac{3}{5} + \frac{2}{5}\cdot\frac{4}{5}\right) = \cos^{-1}\frac{1}{2} = \frac{\pi}{3}$

13. Max. value of $\cos^{-1} x = \pi \Rightarrow \alpha = \beta = \gamma = -1$

:. Required =
$$2 + 2 + 2 = 6$$

14.
$$\frac{1+\sqrt{3}}{3+\sqrt{3}} = \frac{1}{\sqrt{3}}; \frac{8+4\sqrt{3}}{6+3\sqrt{3}} = \frac{4}{3}$$

:. Required =
$$\tan^{-1} \frac{1}{\sqrt{3}} + \sec^{-1} \frac{2}{\sqrt{3}} = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$$

15.
$$\frac{x^2+1}{x^2-1} = \frac{x^2-1+2}{x^2-1} = 1 + \frac{2}{x^2-1} \Rightarrow A = 1, B = 2$$

$$\therefore \text{ Required} = \frac{\pi}{4} + \frac{\pi}{6} = \frac{5\pi}{12}$$

Ch.3: Matrices

Choose the correct answer

If O (A) = 4×3 , O (B) = 4×5 , then O((A'B)') is A) 3×5 B) 3×4 C) 4×3

A)
$$3 \times 5$$

C)
$$4 \times 3$$

D)
$$5 \times 3$$

If a matrix has 8 elements, then the total number of possible different matrices is

For any square matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$, with $a_{ij} = 0$ when $i \neq j$, then A is a

- A) Unit matrix
- B) Scalar matrix
- C) Diagonal matrix D) Zero matrix

The number of all possible different matrices of order 3×3 with each entry 0 or 1 is

- D) 512

(MQP)

5. If $\begin{bmatrix} 3x + 7 & 5 \\ y + 1 & 2 - 3x \end{bmatrix} = \begin{bmatrix} 5 & y - 2 \\ 8 & 4 \end{bmatrix}$, then x and y are respectively

A)
$$-\frac{2}{3}$$
, 7

B)
$$\frac{2}{3}$$
, $\frac{7}{3}$

A)
$$-\frac{2}{3}$$
, 7 B) $\frac{2}{3}$, $\frac{7}{3}$ C) $-\frac{2}{3}$, -7 D) $-\frac{1}{3}$, 7

D)
$$-\frac{1}{3}$$
, 7

				17
6.	If $X + Y = \begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix}$, X	$X - Y = \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}$, then the	he matrix X is	
	$A)\begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}$	$B)\begin{bmatrix} 2 & -4 \\ 0 & 10 \end{bmatrix}$	C) $\begin{bmatrix} 1 & -2 \\ 0 & 5 \end{bmatrix}$	$D)\begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}$
7.	Let X be a matrix of o	order $2 \times n$ and Z is r	matrix of order 2 × p	o. If $n = p$, then the
	order of the matrix is	S		
	A) $p \times 2$	B) $2 \times n$	C) $n \times 3$	D) $p \times n$
8.	If A and B are matrices	of order $m \times n$ and n	× n respectively, then	which of the following
	are defined?			
	A) Both AB and BA	B) AB, A^2	C) A^2 , B^2	D) AB, B^2
9.	If $A = \begin{bmatrix} 3 & x \\ y & 0 \end{bmatrix}$ and	A = A', then		
	A) $x = 0, y = 3$	B) $x + y = 3$	C) $x = y$	D) x = -y
10.	If A and B are symme	etric matrices of same of	order then AB – BA is	
	A) Symmetric matrix		B) Skew symmetric r	natrix
	C) Unit matrix		D) Null matrix	OK.
	$\int 2 x - 3$	x-2	4	BOU
11.	If $A = \begin{vmatrix} 3 & -2 \end{vmatrix}$	$\begin{bmatrix} x - 2 \\ -1 \\ -5 \end{bmatrix}$ is a symmetry B) 3	etric matrix, then x	
	$\begin{vmatrix} 4 & -1 \end{vmatrix}$	-5		
	A) 0	B) 3	C) 6	D) 8

- 12. If A is a square matrix then A A' is
 - A) Unit matrix

A) Unit matrix
C) Symmetric matrix
D) Skew symmetric matrix

13. If
$$A = \begin{bmatrix} 1 & -2 \\ -4 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$, then $3A - 2B = A$

$$A) \begin{bmatrix} -5 & -8 \\ -6 & 5 \end{bmatrix}$$

$$B) \begin{bmatrix} -5 & -8 \\ 6 & -5 \end{bmatrix}$$

$$C) \begin{bmatrix} 5 & -8 \\ -6 & 5 \end{bmatrix}$$

$$D) \begin{bmatrix} 5 & 8 \\ 6 & 5 \end{bmatrix}$$

A) $\begin{bmatrix} -5 & -8 \\ -6 & 5 \end{bmatrix}$ B) $\begin{bmatrix} -5 & -8 \\ 6 & -5 \end{bmatrix}$ C) $\begin{bmatrix} 5 & -8 \\ -6 & 5 \end{bmatrix}$ D) $\begin{bmatrix} 5 & 8 \\ 6 & 5 \end{bmatrix}$ 14. If $2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$, then the value of x and y are

A) x = 3, y = 3 B) x = -3, y = 3 C) x = 3, y = -3 D) x = -3, y = -315. If $\begin{bmatrix} 4 & x + 2 \\ 2x - 3 & x + 2 \end{bmatrix}$ is a symmetric matrix, then x = A, y = -3 B) y = -3

15. If
$$\begin{bmatrix} 4 & x+2 \\ 2x-3 & x+2 \end{bmatrix}$$
 is a symmetric matrix, then $x = A$) 2 B) 5 C) -1 D) 3

16. If
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
, then the value of α for which $A + A' = I$ is

- 17. Let $O(X) = 2 \times n$, $O(Y) = 3 \times k$, $O(Z) = 2 \times p$, $O(W) = n \times 3$, $O(P) = p \times k$ respectively. Then the restriction on n, k, p so that PY + WY will be defined are
 - A) k = 3, p = n

B) k is arbitrary, p = 2

C) p is arbitrary

- 18. Values of x and y for which $\begin{bmatrix} x-4 & 3 & 5 \\ -3 & 0 & 2-y \\ -5 & 2y-3 & 0 \end{bmatrix}$ is a skew symmetric matrix is
- A) x = 0, y = 1 B) x = 4, y = 2 C) x = -4, y = 2 D) x = 4, y = 1
- 19. If $\begin{bmatrix} 3+x & 0 \\ y-1 & 2 \end{bmatrix}$ is a scalar matrix, then the values of x and y are respectively

- A) -1, 1 B) -1, -1 C) -3, 1 D) -3, -120. If $\begin{bmatrix} 5 & 0 & y 7 \\ 0 & 4 x & 0 \\ 0 & 0 & 5 \end{bmatrix}$ is a scalar matrix, then the values of x and y are respectively A) 5, -7 B) -1, 7 C) -1, -7 D) 1, 7
- 21. If A is a square matrix such that $A^2 = A$, then $(I + A)^3 7A$ is equal to

- 22. If $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is such that $A^2 = I$, then
 - A) $1 + \alpha^2 + \beta \gamma = 0$
- B) $1 \alpha^2 + \beta \gamma = 0$
- C) $1 \alpha^2 \beta \gamma = 0$

- D) $1 + \alpha^2 \beta \gamma = 0$
- 23. Which of the given values of x and y make the following pair of matrices equal

$$\begin{bmatrix} 3x+7 & 5 \\ y+1 & 2-3x \end{bmatrix}, \begin{bmatrix} 0 & y-2 \\ 8 & 4 \end{bmatrix}$$

A) $x = -\frac{1}{3}, y = 7$

B) Not possible to find

C) y = 7, $x = -\frac{2}{3}$

D) $x = -\frac{1}{3}$, $y = -\frac{2}{3}$

24. If
$$\begin{bmatrix} x-2 & y-3 \\ 0 & 4 \end{bmatrix}$$
 is a scalar matrix, then

A)
$$x = 2$$
, $y = 3$ B) $x = 6$, $y = 3$

B)
$$x = 6, y = 3$$

C)
$$x = 4, y = -3$$
 D) $x = 6, y \in R$

$$D) x = 6, y \in R$$

25. If
$$\cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $a + b + c + d = b$

26. The values of x and y if
$$2\begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$$
 are given by

A)
$$x = 2$$
, $y = 9$

B)
$$x = 2, y = 8$$

B)
$$x = 2$$
, $y = 8$ C) $x = 3$, $y = 6$ D) $x = 4$, $y = 7$

D)
$$x = 4$$
, $y = 7$

27. If
$$2\begin{bmatrix} x & z \\ y & t \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$$
, then $x + y + z + t =$

28. If
$$\begin{bmatrix} 2x+y & 3y \\ 6 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 6 & 4 \end{bmatrix}$$
, then $x+y=$
A) 3 B) 4

29. The matrix
$$A = \begin{bmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{bmatrix}$$
 is

A) a symmetric matrix

B) scalar matrix

C) skew symmetric matrix

D) a non-square matrix

30. The matrix
$$\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
 is A) a skew symmetric matrix C) a non-singular matrix D)

- B) symmetric matrix

- C) a non-singular matrix
- D) both symmetric and skew symmetric matrix

31. If
$$A = \begin{bmatrix} 0 & -1 \\ 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix}$, then $AB = \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix}$

$$A)\begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix} \qquad B)\begin{bmatrix} 0 & 2 \\ 0 & 3 \end{bmatrix} \qquad C)\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad D)\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$B)\begin{bmatrix} 0 & 2 \\ 0 & 3 \end{bmatrix}$$

$$C)\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$D)\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

32. If
$$\begin{bmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{bmatrix}$$
 is a symmetric matrix, then $x = 1$

- A) 3
- B) 5
- C) 4
- D) 2

Answer

- 22. (C) 23. (B) 24. (B) 25. (C) 26. (A) 27. (D) 28. (A) 29. (A) 30. (A) 21. (C)
- 31. (D) 32. (A)

Ch. 4: Determinants

Choose the correct answer

- If A = kB, where A and B are square matrices of order n, then $\left|A\right|$ =
- B) $k^n |B|$
- C) $k^{n+1} |B|$
- D) nk B

- 2. If $\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix} = \begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix}$ then the value of x is
- B) $\pm \sqrt{6}$
- D) $\sqrt{6}$
- If A is a matrix of order 3×3 , then |k A| is equal to
 - A) k|A|
- B) $k^2 |A|$

- A) 2|A| B) 3|A| C) 4|A| D) |A|5. If $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$, then |3A| is equal to

 A) 27
- B) 4 C) 54
- 6. If $A_n = \begin{bmatrix} 1-n & n \\ n & 1-n \end{bmatrix}$, then $|A_1| + |A_2| + \dots + |A_{2021}| = 1$

- A) -2021 B) $(2021)^2$ C) $-(2021)^2$ If there are two values of 'a' which makes determinant $\Delta = \begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix} = 86$, then 7.

the sum of these numbers is

- A) 4
- B) 4
- C) 9

- D) 5 (CET 22)
- 8. If $A = \begin{pmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{pmatrix}$ and $\det \left(A^2 \frac{1}{2}I \right) = 0$, then a possible value of α is
 - A) $\frac{\pi}{2}$ B) $\frac{\pi}{3}$ C) $\frac{\pi}{4}$

- D) $\frac{\pi}{6}$ (JEE-M 21)

D) 12 (JEE-M 21)

10.	,	$\begin{vmatrix} a+x & b+x \\ x^2-x & c+x \\ x-c & 0 \end{vmatrix}$, then		D) ((1) 0
11.			C) $f(-1) = 0$ Q where P is a symmetric	D) $f(1) = 0$ (CET 2020) c matrix and Q is skew
	symmetric matri determinant of P A) 36		e modulus of the sum of C) 45	all possible values of D) 18 (JEE-M 21)
12 .	If $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$,	then adjA is		OOK
	A) $\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$	$B)\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$	$C)\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$	$D)\begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$
13.	If A is a non-singu	ular matrix of order 3, th	nen adj A is equal to	
	A) A	B) $ A ^2$	C) A	D) 3 A
14.	If A is an invertib	le matrix of order 3, the	n det (A ⁻¹) is	
	A) det A	B) $\frac{1}{\det A}$	C) $\frac{1}{\left(\det A\right)^2}$	D) $(\det A)^2$
15.	If A is a square ma	atrix of order 3 with ad	j A = 25, then $ A =$	
	A) $\frac{1}{25}$	B) 25 ²	C) ± 5	D) $\pm \frac{1}{5}$ (MQP)
16.	The inverse of the	e matrix $\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$ is		
	$A)\begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}$	$ \begin{array}{c c} \begin{bmatrix} 4 & 6 \end{bmatrix} \\ \hline \begin{bmatrix} 6 & -3 \\ \hline 4 & 2 \end{bmatrix} \end{array} $	$C)\begin{bmatrix}2 & 4\\3 & 6\end{bmatrix}$	D) does not exist
17.	If $A = \begin{bmatrix} a & 0 \\ 0 & a \\ 0 & 0 \end{bmatrix}$ $A) a^{27}$	0 0 , then det (adj A) is a B) a ⁹	C) a ⁶	D) a ²

Let A be a symmetric matrix of order 2 with integer entries. If the sum of the

C) 6

diagonal elements of A^2 is 1, then the possible number of such matrices is

B) 1

9.

A) 4

18.	If A is a matrix of order 3	such that A	(adi A) = 10I	then adi A	_
10.	II I Is a man ix of order 5	, such mai 11	$(aa_1 II) - IUI$, mon ad 11 -	

- A) 1
- B) 10

- C) 100

19. If
$$A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$
, then A (adj A) is equal to

$$A) \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} B) \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

A)
$$\begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$
 B) $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ C) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ D) $\begin{bmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{bmatrix}$

20. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, then $A^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

A)
$$\frac{1}{2}\begin{bmatrix}4 & -2\\ -3 & 1\end{bmatrix}$$
 B) $\frac{-1}{2}\begin{bmatrix}4 & -2\\ -3 & 1\end{bmatrix}$ C) $\begin{bmatrix}2 & 4\\ 1 & 3\end{bmatrix}$ D) $\begin{bmatrix}-2 & 4\\ 1 & 3\end{bmatrix}$

B)
$$\frac{-1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$

$$C)\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$$

D)
$$\begin{bmatrix} -2 & 4 \\ 1 & 3 \end{bmatrix}$$

21. If
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then the matrix A is
$$A) \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \qquad B) \begin{bmatrix} -2 & 1 \\ 3 & -2 \end{bmatrix} \qquad C) \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \qquad D) \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$

$$A)\begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$$

B)
$$\begin{bmatrix} -2 & 1 \\ 3 & -2 \end{bmatrix}$$

C)
$$\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$$

$$D)\begin{bmatrix}2&1\\3&2\end{bmatrix}$$

22. If
$$A = [a_{ij}]$$
 is a 3 x 3 matrix and A_{ij} is the cofactor of element a_{ij} then,

$$a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = A) |A| B) -|A|$$

$$a_{13}A_{13} - A_{13}$$

23. If x, y, z are non-zero real numbers, then the inverse of the matrix
$$A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$
 is

$$A) \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$$

A)
$$\begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$$
 B) $xyz \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$ C)
$$\frac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$
 D)
$$\frac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

C)
$$\frac{1}{x y z} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$

D)
$$\frac{1}{x y z} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

24. The system of equations
$$x + y + z = 5$$
, $x + 2y + 3z = 9$, $x + 3y + 4z = 2$ has

A) Unique solution

- B) No solution
- C) Infinitely many solutions
- D) Exactly two solutions
- **25.** If A is a 3×3 square matrix and |A| = 6, then |2| adj A is equal to
 - A) 48
- B) 8

- C) 288
- D) 12

Fill in the blanks

1. If
$$\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$$
 then x _____

$$\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{vmatrix} = \underline{\hspace{1cm}}$$

- 3. If A(adj A) = 5I, where I is the identity matrix of order 3, then |adj A| =____
- 4. If $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is a 3 × 3 matrix and A_{ij} is the cofactor of element a_{ij} then,
- **6.** A square matrix A is singular if |A| =
- If A is a matrix of order 3 and $B = |A|A^{-1}$. If |A| = -5, then |B| is equal to 7.
- 8.
- If $B = \begin{bmatrix} p & 3 \\ 3 & p \end{bmatrix}$ and $|B^7| = 128$, then $p = \underline{\hspace{1cm}}$ If the system of equations x + ky z = 0, 3x ky z = 0 and x 3y + z = 0, has non-zero 9.
- solution, then k is equal to _____

 If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then |A| |adj. A| is equal to
- If A is a 3 × 3 non-singular matrix and if |A| = 3, then $|(5A)^{-1}| =$
- 12. If $A = \begin{bmatrix} x & 1 & -x \\ 0 & 1 & -1 \\ x & 0 & 7 \end{bmatrix}$ and det $(A) = \begin{bmatrix} 3 & 0 & 1 \\ 2 & -1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$, then the value of x is _____
- 13. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$, then the value of the determinant $|A^{2020} 5 A^{2019}|$ is _____

14. If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} -4 & 1 \\ 0 & 6 \end{bmatrix}$ and $C = \begin{bmatrix} 8 & -5 \\ -7 & 3 \end{bmatrix}$, then $|BAC| = \underline{\qquad}$

15. For any
$$2 \times 2$$
 matrix A, if A. adj.(A) = $\begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$, then |A| is equal to ____

Answer

$$|A_n| = (1-n)^2 - n^2 = -(2n-1)$$

 $\Sigma |An| = -\Sigma(2n-1) = -n^2 = -(2021)^2$

$$1(2a^2+4)+2(4a-0)+5(8)=86 \Rightarrow 2a^2+8a+()=0 \Rightarrow a_1+a_2=-\frac{8}{2}=-4$$

$$A^2 = \sin^2 \alpha \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (\sin^2 \alpha) I \implies A^2 - (\sin^2 \alpha) I = O \implies |A^2 - \sin^2 \alpha I| = 0$$

$$\therefore \text{ Comparing with } \left| A^2 - \frac{1}{2} I \right| = 0, \text{ we get } \sin^2 \alpha = \frac{1}{2} \qquad \therefore \alpha = \frac{\pi}{4} \in \left[0, \frac{\pi}{2} \right]$$

9. (A)

$$A^{2} = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} = \begin{pmatrix} a^{2} + b^{2} & b(a+c) \\ b(a+c) & b^{2} + c^{2} \end{pmatrix}$$

The sum of the diagonal entries of A^2 is $a^2 + 2b^2 + c^2$

As
$$a^2 + 2b^2 + c^2 = 1$$
, a, b, $c \in Z$

$$\Rightarrow b = 0 \text{ and } a^2 + c^2 = 1 \quad \therefore \quad a = \pm 1 \text{ and } c = 0 \text{ or } a = 0 \text{ and } c = \pm 1$$

10. (B)

$$\Rightarrow b = 0 \text{ and } a^2 + c^2 = 1 \quad \therefore \quad a = \pm 1 \text{ and } c = 0 \text{ or } a = 0 \text{ and } c = \pm 1$$
Number of matrices = 2 + 2 = 4

(B)

Clearly $f(0) = \begin{vmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{vmatrix} = 0$, being a determinant of a skew symmetric matrix of order 3.

$$P = \frac{1}{2}(A + A') = \frac{1}{2}\begin{pmatrix} 4 & 3 + a \\ a + 3 & 0 \end{pmatrix}$$

Q =
$$\frac{1}{2}$$
(A - A') = $\frac{1}{2}$ $\begin{pmatrix} 0 & 3-a \\ a-3 & 0 \end{pmatrix}$

Now,
$$|Q| = \frac{1}{4}(a-3)^2 = 9 \implies (a-3)^2 = 36$$
 $\therefore a = 9 \text{ or } -3$

Now,
$$|P| = -\frac{1}{4}(a+3)^2$$

When
$$a = -3$$
, $|P| = 0$

When
$$a = 9$$
, $|P| = -\frac{1}{4}.144 = -36$

Required =
$$|0 + (-36)| = 36$$

25. (C)

$$|2 \text{ adj.A}| = 2^3 |\text{adjA}| = 8|\text{A}|^2 = 8(36) = 288$$

Fill in the blanks

1.
$$(\pm 2\sqrt{2})$$
 2. (0) 3. (25) 4. (0) 5. (4) 6. (0)

7.
$$B = |A|A^{-1} \Rightarrow |B| = ||A|A^{-1}| = |A|^n |A^{-1}| = |A|^n \frac{1}{|A|} = |A|^{n-1} = (-5)^2 = 25$$

8.
$$|B^7| = 128 \Rightarrow |B^7| = 2^7 \Rightarrow |B| = 2 \Rightarrow p^2 - 9 = 2 \Rightarrow p = \pm \sqrt{11}$$

9. The system has non-zero solution, if

The system has non-zero solution, if
$$\begin{vmatrix}
1 & k & -1 \\
3 & -k & -1 \\
1 & -3 & 1
\end{vmatrix} = 0 \Rightarrow (-k-3)-k(4)-1(-9+k)=0 \; ; \quad -6k = -6 \Rightarrow k = 1$$

$$|A||adjA| = a^{3}|A|^{2} = a^{3}(a^{3})^{2} = a^{9} \quad (\because |adjA| = |A|^{n-1})$$

10.
$$|A||adjA| = a^3 |A|^2 = a^3 (a^3)^2 = a^9 (:|adjA| = |A|^{n-1})$$

11.
$$|(5A)^{-1}| = \frac{1}{|5A|} = \frac{1}{5^3 |A|} = \frac{1}{125 \times 3} = \frac{1}{375}$$

12.
$$|A| = \begin{vmatrix} x & 1 & -x \\ 0 & 1 & -1 \\ x & 0 & 7 \end{vmatrix} = 7x - 1(x) - x(-x) = x^2 + 6x \implies \det(A) = \begin{vmatrix} 3 & 0 & 1 \\ 2 & -1 & 2 \\ 0 & 0 & 3 \end{vmatrix} = -9$$

$$\therefore x^2 + 6x = -9 \implies x^2 + 6x + 9 = 0 \implies x^2 + 3x + 3x + 9 = 0$$

$$\implies x(x+3) + 3(x+3) = 0 \implies x = -3$$

13.
$$|A^{2020} - 5A^{2019}| = |A^{2019}(A - 5I)| = |A^{2019}| |A - 5I|$$

$$= |A|^{2019}|A - 5I| = (-1)^{2019}(-6) = 6$$

$$A - 5I = \begin{bmatrix} -4 & 2\\ 3 & 0 \end{bmatrix}$$

14.
$$|BAC| = |B| |A| |C| = \begin{vmatrix} -4 & 1 & 2 & 3 & 8 & -5 \\ 0 & 6 & 4 & -2 & -7 & 3 \end{vmatrix} = (-14)(-16)(-11) = -4224$$

15. A.adj(A) =
$$\begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$$

$$\Rightarrow |A|I = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} (\because A.adj(A) = |A|I) \therefore |A| \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 7 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow |A| = 7$$

Ch. 5: Differentiation

Choose the correct answer

1.	Number of points in $(0, 2)$ in which $f(x) = [x]$, where [,] denotes the greatest integer
	functions is not differentiable is

- A)0B) 1 C) 2 D) 3
- The function f(x) = [x] where [,] denotes the greatest integer function is continuous at B) 1.5 C) 2
- 3. The function f(x) = [x] is
 - B) differentiable at x = 0A) continuous at x = 0
 - C) both continuous and differentiable D) discontinuous at x = 0
- The derivative of f(x) = |x| at x = 0 is
- C)-F A)0B) 1 D) not existing
- Let f(x) = [x]. Then f(x) is
 - A) continuous for all $x \in R$ B) both continuous and differentiable for all $x \in$
- C) differentiable for all $x \in R$ D) differentiable for all non integral points.
- Left hand derivative of f(x) = |x| at x = 0 is
- C) 0D) not existing
- If $y = \log (\log x)$, then y' =
 - D) $\frac{1}{x \log x} \cdot \frac{1}{x}$ $C)\frac{\log x}{x}$
- 8. If $y = e^{\log x}$, then $\frac{d^2y}{dx^2} =$
- A) 1 B) 0 C) e log x
- 9. $\frac{d}{dx}(\cos^{-1}(\sin x))$, $0 \le x \le \frac{\pi}{2}$, is equal to A) tan x B) 1 (C) -1 $D) - \tan x$

10.	If $y = \frac{e^{\log x}}{x}$, the	en y'=		
		B) $\frac{1}{x}$	C) 0	D) 1
11.	If $y = \log x$, then	$\frac{d^2y}{dx^2} =$		
	A) $\frac{1}{x}$	B) $\frac{1}{x^2}$	C) $-\frac{1}{x^2}$	D) x ²
12.	Derivative of e^{x^3}	w.r.t. x is		
	A) $3e^{x^3}$	B) $3x^2e^{x^3}$	C) e^{3x^2}	D) e^{x^3}
13.	If $y = \cos \sqrt{x}$, then	hen $y' =$		(CET)
	A) $-\sin\sqrt{x}$	B) $\frac{-\sin\sqrt{x}}{\sqrt{x}}$	C) $\frac{-\sin\sqrt{x}}{2\sqrt{x}}$	D) $\frac{\sin\sqrt{x}}{2\sqrt{x}}$
14.	Derivative of cos	(1-x) w.r.t. x is		BO
15.		B) – $\sin (1 - x)$ $\sin^{-1} x$ exists in the interv	C) $\sin(1-x)(1-x)$	(23-M)
	A) [-1, 1]	B) (-1, 1)	C) R	D) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
16.		f given by $f(x) = \cos^{-1} x$ e	xists, if x∈	
	A) $(-1, 1)$	B) [-1, 1]	(C) $(-\infty,\infty)$	D) $R - (1, 1)$
17.	If $y = \sin(\cos x)$), then $\frac{dy}{dx} =$	exists, if $x \in C$ $(-\infty, \infty)$	
	A) $\cos(\cos x)$	DIFILE	B) cos (cos x)sin x	
	C) – $\cos \cos x$) $\sin x$	1 X	$D) - \cos(\cos x) \cos x$	
18.	If $y = e^x + e^{x^2}$	$e^{x^3} + e^{x^4} + e^{x^5}$, then	$\frac{dy}{dx}$ value at $x = 1$	
	A) 5e	B) 15e C) 1	5	D) 5
19.	•	ints in R in which the fur	nction f(x) = x + x + 1	is not differentiable
	1S A) 0	B)10	C)2	D) infinite
20.	If $y = A \sin x + 1$	$B\cos x$, then $\frac{d^2y}{dx^2}$ =		
	A) y	В) -у	C) x	D) y ²

21.	1. If $f(x) = \sec^{-1} x$, $f'(-2) =$					
	A) $\frac{1}{2\sqrt{3}}$	B) $-\frac{1}{2\sqrt{3}}$	C) $\frac{1}{6}$	D) doesn't exist		
22.	If $y = \sec(\tan^{-1} $	(x), then $\frac{dy}{dx}$ at $x = 1$ is				
	A) $\frac{1}{2}$	B) $\frac{1}{\sqrt{2}}$	C) 1	D) $\sqrt{2}$		
23.	Derivative of 5 ^{log}	$\sin x$ w.r.t. x is				
	A) sin x	B) cos x	C) $5^{\sin x}$	D) 5 ^{cos x}		
24.	If $f(x) = \begin{cases} [x] + [-1] \\ K, x = 2 \end{cases}$	$[-x], x \neq 2$ then $f(x)$ is cor	ntinuous at $x = 2$, provid	ed K is equal to		
	A) 2	B) 1	C) -1	D) 0		
25.	$f(x) = \begin{cases} 3x - 8 \\ 2k \end{cases}$	if $x \le 5$ if $x > 5$ is continuous	, find k	(CET 15)		
	A) $\frac{2}{7}$	B) $\frac{3}{7}$	(c) $\frac{4}{7}$	D) $\frac{7}{2}$		
26.	If $f(x) = \begin{cases} Kx^2 & \text{if} \\ 3 & \text{if} \end{cases}$	$\begin{cases} x \le 2 \\ x > 2 \end{cases}$ is continuous at $x = 1$	= 2, then the value of K	is		
	(CET 17) A) 4	B) 3	C) $\frac{4}{3}$	D) $\frac{3}{4}$		
27.	. 1	= cot x is discontinuous	on every point of the se	t (CET 23)		
	$A) \left\{ x = (2n+1) - \frac{1}{2} \right\}$	$\left\{\frac{\pi}{2}; \ n \in Z\right\}$	B) $\{x = n\pi; n \in Z\}$			
	C) $\left\{ x = \frac{n\pi}{2}; \ n \in \mathbb{R} \right\}$	Z	D) $\{x = 2np ; n \in Z\}$			
28.	If the function is	$f(x) = \frac{1}{x+2}$, then the po	oint of discontinuity of the	he composite func-		
	tion $y = f(f(x))$ is			(CET 23)		
	A) $\frac{2}{5}$	B) $\frac{-5}{2}$	$C)\frac{1}{2}$	D) $\frac{5}{2}$		

		_			
29.	If $y = f(x^2 + 2)$ an	$d f'(3) = 5$, then $\frac{dy}{dx}$ at	x = 1 is	(CET 13,	15)
	A) 5	B) 25	C) 15	D) 10	
30.	If $f(x) = \cos x -$	$\sin x$, then $f'\left(\frac{\pi}{6}\right)$ equal	l to		(CET 18)
	A) $-\frac{1}{2}(1+\sqrt{3})$	B) $\frac{1}{2}(1+\sqrt{3})$	C) $-\frac{1}{2}(1-\sqrt{3})$	D) $\frac{1}{2}(1-$	$-\sqrt{3}$)
31.	If [x] represents t	he greatest integer functi	on and $f(x) = x - [x] - c$	cos x then	$f'\left(\frac{\pi}{2}\right) =$
	A) 2	B) 0	C) does not exist	D) 1	(CET 19)
32.	If $y = (\cos x^2)^2$, the	en $\frac{dy}{dx}$ is equal to		1	(CET 21)
	$A) - 4x \sin 2x^2$	B) $-x \sin x^2$	$C) - 2x \sin 2x^2$	D) -x c	os $2x^2$
33.		= 3 then the derivative of	$f(f(f(x))) + (f(x))^2$ at $x = $	= 1 is	(CET 22)
	(A) 10	(B) 35	(C) 33	(D) 12	
34.	If $y = e^{\log_e[1+x+x^2+]}$	$\frac{dy}{dx} =$	SCOSS II PU TE		(CET 12)
	$A) \frac{1}{(1+x)^2}$	B) $\frac{1}{(1-x)^2}$	$C) \frac{-1}{(1+x)^2}$	D) $\frac{-}{(1-}$	$\frac{1}{x)^2}$
	_	$\left \frac{2+x}{2-x}\right $ is			(CET 11)
	A) $\frac{-3}{4}$	B) $\frac{-1}{2}$ $\frac{2x}{+x^2}$, then $f'(\sqrt{3})$ is	C) $\frac{1}{2}$	D) $\frac{1}{4}$	
36.	If $f(x) = \sin^{-1}\left(\frac{1}{1}\right)$	$\left(\frac{2x}{+x^2}\right)$, then $f'(\sqrt{3})$ is			(CET 2020)
	A) $\frac{1}{2}$	$B) \frac{1}{\sqrt{3}}$	C) $-\frac{1}{\sqrt{3}}$	D) $-\frac{1}{2}$	
37.	If $\sec\left(\frac{x+y}{x-y}\right) = c$	t, then $\frac{dy}{dx} =$			
	A) x – y	B) $\frac{y}{x}$	C) $y - x$	D) $\frac{x}{y}$	

38. If $2^x + 2^y = 2^{x+y}$, then $\frac{dy}{dx}$ is

39. If
$$x = \text{ct}$$
 and $y = \frac{c}{t}$, find $\frac{dy}{dx}$ at $t = 2$ (CET 15)

40. The derivative of $\tan^{-1}\left[\frac{\sin x}{1 + \cos x}\right]$ with respect to $\tan^{-1}\left[\frac{\cos x}{1 + \sin x}\right]$ is (CET 11)

1) -2 2) 0 3) -1 4) 2

41. If $u = \sin^{-1}\left(\frac{2x}{1 + x^2}\right)$ and $v = \tan^{-1}\left(\frac{2x}{1 - x^2}\right)$, then $\frac{du}{dv}$ is (CET 23)

A) $\frac{1 - x^2}{1 + x^2}$ B) $\frac{1}{2}$ C) 1 D) 2

42. If $y = x^{\sin x} + (\sin x)^x$, then $\frac{dy}{dx}$ at $x = \frac{\pi}{2}$ is (CET 22)

A) $\frac{4}{\pi}$ B) 1 C) $\pi \log \frac{\pi}{2}$ D) $\frac{\pi^2}{2}$

43. If the three functions $f(x)$, $g(x)$ and $h(x)$ are such that $h(x) = f(x)$. $g(x)$ and $f'(x)$. $g'(x) = c$, where c is a constant, then $\frac{f''(x)}{f(x)} + \frac{g''(x)}{g(x)} + \frac{2c}{f(x)g(x)}$ is equal to (CET 10)

A) $h'(x)$. $h(x)$ B) $\frac{h(x)}{h''(x)}$ C) $\frac{h''(x)}{h(x)}$ D) $\frac{h(x)}{h'(x)}$

44. If $f(x) = be^{ax} + ae^{bx}$, then $f''(0) = (CET 08)$
A) $2ab$ B) 0 C) ab D) ab $(a + b)$

45. If $f(x) = 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3 + \dots + x^n$, then $f''(1) = (CET 09. 22)$
A) $n(n-1)2^{n-1}$ B) $(n-1)2^{n-1}$ C) $n(n-1)2^{n-2}$ D) $n(n-1)2^n$

(CET 2020)

46. If
$$y = 2x^{n+1} + \frac{3}{x^n}$$
, then $x^2 \frac{d^2y}{dx^2}$ is

A)
$$n(n+1)$$
 y

A)
$$n(n+1) y$$
 B) $x \frac{dy}{dx} + y$

D)
$$6n (n + 1)y$$

47. If
$$y = \log(\log x)$$
 then $\frac{d^2y}{dx^2}$ is equal to

(CET 17)

$$A) \frac{(1 + \log x)}{(x \log x)^2}$$

B)
$$\frac{(1+\log x)}{x^2\log x}$$

C)
$$\frac{-(1+\log x)}{x^2 \log x}$$

A)
$$\frac{(1 + \log x)}{(x \log x)^2}$$
 B) $\frac{(1 + \log x)}{x^2 \log x}$ C) $\frac{-(1 + \log x)}{x^2 \log x}$ D) $\frac{-(1 + \log x)}{(x \log x)^2}$

48. If
$$y = e^{\sqrt{x\sqrt{x\sqrt{x}}}....}$$
, $x > 1$ then $\frac{d^2y}{dx^2}$ at $x = \log_e 3$ is

(CET 22)

A) 3 B) 0 C) 5 D) 1

49. If
$$x + y = \tan^{-1} y$$
 and $\frac{d^2y}{dx^2} = f(y) \frac{dy}{dx}$, then $f(y) =$

A) $\frac{-2}{y^3}$ B) $\frac{2}{y^3}$ C) $\frac{1}{7}$ D) $\frac{-1}{7}$

50. If $x = a \sec^2 \theta$, $y = a \tan^2 \theta$ then $\frac{d^2y}{dx^2} =$

A) 0 B) 2a C) 4 D) 1

Answer

1. (B) 2. (B) 3. (D) 4. (D) 5. (D) 6. (B) 7. (B) 8. (B) 9. (C)

11. (C) 12. (B) 13. (C) 14. (A) 15. (B) 16. (C) 17. (C) 18. (C) 19. (C)

(CET 13)

A)
$$\frac{-2}{y^3}$$

B)
$$\frac{2}{y^3}$$

C)
$$\frac{1}{7}$$

D)
$$\frac{-1}{7}$$

50. If
$$x = a \sec^2 \theta$$
, $y = a \tan^2 \theta$ then $\frac{d^2 y}{dx^2}$

(CET 19)

10. (C)

(A)

$$f'(x) = \frac{1}{|x|\sqrt{x^2 - 1}} = \frac{1}{2\sqrt{4 - 1}} = \frac{1}{2\sqrt{3}}$$

$$[x] + [-x] = 0$$
 if $x \in Z$ and $[x] + [-x] = -1$ if $x \notin Z$

Now
$$f(2) = k$$
; when x is close to 2, $f(x) = -1$ $\therefore L = -1 = k$

LHL = RHL = f(5)
$$\Rightarrow$$
 2k = 15 - 8 \therefore k = $\frac{7}{2}$

Continuous at $x = 2 \implies LHL = f(2) = RHL$ $\therefore k.2^2 = 3 \implies k = \frac{3}{4}$

27. (B), (D)

cot x is continuous at every multiple of π

(B) is the correct answer

But the set in (D) is a subset of the set in (B)

i.e. (D) is also a correct answer

28. (B)

(B)

$$f(f(x)) = \frac{1}{\frac{1}{x+2} + 2} = \frac{x+2}{2x+5} \text{ is discontinuous at } x = \frac{-5}{2}$$
(D)

$$\frac{dy}{dx} = f'(x^2 + 2).2x = f'(3).2 = 5.2 = 10$$
(A)
Around $x = \frac{\pi}{6}$, $f(x) = \cos x - \sin x$ because $\cos x > \sin x$

$$f'(x) = -\sin x - \cos x \quad \therefore f\left(\frac{\pi}{2}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2} = -\frac{1}{2}(1 + \sqrt{3})$$

$$\frac{dy}{dx}$$
 = f'(x² + 2).2x = f'(3).2 = 5.2 = 10

$$f'(x) = -\sin x - \cos x \quad \therefore f\left(\frac{\pi}{6}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2} = -\frac{1}{2}(1 + \sqrt{3})$$

31. (A)

Around
$$x = \frac{\pi}{2}$$
, $[x] = 1$ \therefore $f(x) = x - 1 - \cos x$

$$f'(x) = 1 + \sin x$$
 : $f'(\frac{\pi}{2}) = 2$
32. (C)

$$y = \cos^2 x^2$$
 : $\frac{dy}{dx} = 2 \cos(x^2) (-\sin(x^2)) \cdot 2x = -2x \sin(2x^2)$

Let F(x) be the given function

$$F'(x) = f'(f(f(x)) \cdot f'(f(x)) \cdot f'(x) + 2f(x) \cdot f'(x)$$

$$F'(1) = f'(f(f(1))) \cdot f'f(1) \cdot f'(1) + 2f(1) \cdot f'(1)$$

$$= f'(1) \cdot f'(1) \cdot f'(1) + 2f'(1) = 27 + 6 = 33$$

$$y = 1 + x + x^2 + \dots$$

This infinite sum of the Geometric Series will exist if |x| < 1.

Then
$$y = \frac{"a"}{1-r} = \frac{1}{1-x} \Rightarrow \frac{dy}{dx} = -\frac{1}{(1-x)^2}.(-1) = \frac{1}{(1-x)^2}$$
Remark: As $|x| < 1$ was not mentioned in the question, it was considered as a faulty

question.

35. (D)

Put
$$x=2\cos\theta$$
. Then $\sqrt{\frac{2+x}{2-x}}=\cot\frac{\theta}{2}$ \therefore $\cot^{-1}\sqrt{\frac{2+x}{2-x}}=\frac{\theta}{2}$

$$\therefore \text{ Required} = \frac{d}{dx} \left[\cos^2 \frac{\theta}{2} \right] = \frac{d}{dx} \cdot \left[\frac{1}{2} (1 + \cos \theta) \right] = \frac{d}{dx} \left[\frac{1}{2} \left(1 + \frac{x}{2} \right) \right] = \frac{1}{4}$$

36. (D)

Recall:
$$\sin^{-1} \frac{2x}{1+x^2} = \begin{cases} -\pi - 2\tan^{-1} x, & x < -1 \\ 2\tan^{-1} x, & -1 \le x \le 1 \\ \pi - 2\tan^{-1} x, & x > 1 \end{cases}$$

Here $x = \sqrt{3} > 1$ \therefore $f(x) = \sin^{-1} \frac{2x}{1+x^2} = \pi - 2\tan^{-1} x$ \therefore $f'(x) = -2 \cdot \frac{1}{1+x^2}$

Here
$$x = \sqrt{3} > 1$$
 :: $f(x) = \sin^{-1} \frac{2x}{1+x^2} = \pi - 2\tan^{-1} x$:: $f'(x) = -2 \cdot \frac{1}{1+x^2}$

$$f'(\sqrt{3}) = -2 \cdot \frac{1}{1+3} = -\frac{1}{2}$$

37. (B)

$$f'(\sqrt{3}) = -2 \cdot \frac{1}{1+3} = -\frac{1}{2}$$
(B)
$$\sec\left(\frac{x+y}{x-y}\right) = c \Rightarrow \sec\left(\frac{1+\frac{y}{x}}{1-\frac{y}{x}}\right) = c$$

$$\div f\left(\frac{x}{x}\right) - c \Rightarrow d\left(\frac{x}{x}\right) - 0 \Rightarrow \frac{y \cdot 1 - x \cdot \frac{dy}{dx} - 0 \Rightarrow 0}{2}$$

$$\therefore f\left(\frac{x}{y}\right) = c \Rightarrow \frac{d}{dx}\left(\frac{x}{y}\right) = 0 \Rightarrow \frac{y.1 - x.\frac{dy}{dx}}{y^2} = 0 \Rightarrow \frac{dy}{dx} = \frac{y}{x}$$

38. (A)
$$2^{x} + 2^{y} = 2^{x+y} \Rightarrow 2^{-y} + 2^{-x} = 1$$

$$\frac{dy}{dx} = -\frac{f_x}{f_y} = -\frac{2^{-x} \log 2(-1)}{2^{-y} \log 2 (-1)} = -2^{y-x}$$

$$\frac{dy}{dx} = \frac{-\frac{c}{t^2}}{c} = -\frac{1}{4}$$
 at $t = 2$.

Use
$$\frac{\sin x}{1 + \cos x} = \tan \frac{x}{2}$$
 and $\frac{\cos x}{1 + \sin x} = \tan \left(\frac{\pi}{4} - \frac{x}{2}\right)$

$$\therefore$$
 Required = Derivative of $\frac{x}{2}$ w.r.t. $\left(\frac{\pi}{4} - \frac{x}{2}\right)$ which is -1

41. (C)

Required is derivative of 2 tan⁻¹ x w.r.t. 2 tan⁻¹ x and hence it is 1

42. (B)

$$\frac{dy}{dx} = x^{\sin x} \cdot \frac{d}{dx} (\sin x \cdot \log x) + (\sin x)^{x} \cdot \frac{d}{dx} (x \log (\sin x))$$

$$= x^{\sin x} [\sin x \cdot \frac{1}{x} + \cos x \cdot \log x] + (\sin x)^{x} [1 \cdot \log \sin x + x \cot x]$$
At $x = \frac{\pi}{2}$, $\frac{dy}{dx} = \frac{\pi}{2} \left[\frac{2}{\pi} + 0 \right] + 1[0 + 0] = 1$
(C)
$$h = f.g \Rightarrow h' = f'.g + f \cdot g' \Rightarrow h'' = f''.g + 2f'.g' + f.g''$$

43. (C)

$$h = f.g \Rightarrow h' = f'.g + f.g' \Rightarrow h'' = f''.g + 2f'.g' + f.g'$$

G.E. =
$$\frac{f''g + fg'' + 2c}{fg}$$
 = $\frac{f''g + fg'' + 2f'g'}{fg}$ = $\frac{h''}{h}$

44. (D)

$$f'(x) = b.ae^{ax} + a.be^{bx}$$
; $f''(x) = ab.ae^{ax} + ab.be^{bx}$

$$f''(0) = ab.a + ab.b = ab (a + b)$$

$$f(x) = {}^{n}C_{0} + {}^{n}C_{1} x + {}^{n}C_{2} x^{2} + \dots + {}^{n}C_{n} x^{n} = (1 + x)^{n}$$

$$f(x) = {}^{n}C_{0} + {}^{n}C_{1} x + {}^{n}C_{2} x^{2} + \dots + {}^{n}C_{n} x^{n} = (1 + x)^{n}$$

$$\therefore f'(x) = n (1 + x)^{n-1}; f''(x) = n (n-1) (1 + x)^{n-2} \therefore f''(1) = n (n-1) (2)^{n-2}$$

Aliter: Put n = 2. Then $f(x) = 1 + 2x + x^2$

:.
$$f'(x) = 2 + 2x$$
 and $f(x) = 2$:. $f''(1) = 2$

Now go to the alternatives and put n = 2 and detect (3) as the correct answer

46. (A)

$$\frac{dy}{dx} = 2.(n+1)x^{n} + 3\left(-\frac{n}{x^{n+1}}\right)$$

$$\frac{d^2y}{dx^2} = 2(n+1) \cdot nx^{n-1} + 3n \cdot \frac{(n+1)}{x^{n+2}}$$

$$\therefore \frac{x^2 d^2 y}{dx^2} = 2(n+1)n \cdot x^n + \frac{3n(n+1)}{x^n} = n(n+1) \left(2x^n + \frac{3}{x^n}\right) = n(n+1)y$$

$$\frac{dy}{dx} = \frac{1}{\log x} \cdot \frac{1}{x} = \frac{1}{x \log x} \; ; \; \frac{d^2y}{dx^2} = -\frac{1}{(x \log x)^2} \; . \; \frac{d}{dx} \; (x \log x)$$

i.e.,
$$\frac{d^2y}{dx^2} = -\frac{1}{(x \log x)^2} \cdot \left(1 \cdot \log x + x \cdot \frac{1}{x}\right) = -\frac{1}{(x \log x)^2} \left(\log x + 1\right)$$

Let
$$z = \sqrt{x\sqrt{x\sqrt{x}...}} \Rightarrow z = \sqrt{xz}$$

$$\therefore z^2 = xz \Rightarrow z = x$$

$$\therefore y = e^x \quad \therefore \frac{d^2y}{dx^2} = e^x = e^{\log_e 3} = 3(at \ x = \log_e 3)$$

49. (B)

$$\frac{dx}{dy} + 1 = \frac{1}{1+y^2} \implies \frac{dx}{dy} = \frac{1}{1+y^2} - 1 = -\frac{y^2}{1+y^2}$$

$$\therefore \frac{dy}{dx} = -\frac{1+y^2}{y^2} = -\frac{1}{y^2} - 1 \quad \therefore \quad \frac{d^2y}{dx^2} = -\left(-\frac{2}{y^3}\right) \cdot \frac{dy}{dx} \quad \therefore \quad f(y) = \frac{2}{y^3}$$

50. (A)

$$x - y = a (\sec^2 \theta - \tan^2 \theta) = a^2$$
 $\therefore 1 - y' = 0 \Rightarrow y'' = 0$

Ch. 6: Application of Derivatives

Choose the correct answer

- A) 10π
- C) 8π
- D) 11π
- 2. The total revenue Rupees received from the sale of x units of a product is given by $R(x) = 13x^2 + 26x - 15$, then the marginal revenue when x = 1 in Rupees is
 - A) 26
- C) 52
- D) 104
- 3. The radius of an air bubble is increasing at the rate of 1 cm/s, then the volume of the bubble increasing when the radius is 1cm is cc/sec
 - A) 4π
- B) 2
- D) 8π
- 4. The function f(x) = 3x + 17 is strictly increasing on
 - A) $(-\infty, \infty)$
- B) $(0, \infty)$
- C) $(-\infty, 0)$
- D)(0,3)
- 5. If a function f is such that f'(c) = 0 and f'(c) < 0 for some 'c' on an interval 'I', then at c the function f attains its
 - A) absolute maximum value
- B) absolute minimum value

C) local maximum value

D) local minimum value

		ne function f given by f					
	A) 1	B) 2	C) 0	D) does not exist			
7.		he function f given by f					
	A) 0	B) 1	C) 2	D) does not exist			
8.	Which of the followi	ng function is decreasing	ng on $\left(0,\frac{\pi}{2}\right)$	$\left(0,\frac{\pi}{2}\right)$			
	A) sin x	B) tan x	C) cos x	D) cos 3x			
9.	The critical point of	the function $f(x) = 3 +$	x is				
	A) $(0, 0)$	B) (0, 3)	C)(1,4)	D) not existing			
10.	Point of inflection of x ³ is						
	A) $(0, 0)$	B) (1,1)	C)(0,1)	D) not existing			
11.	Point of inflection of sin x is						
	A) $x = n\pi$	$B) x = (2n + 1)\frac{\pi}{2}$	C) $\frac{\pi}{2}$	D) not existing			
12.		ertically upwards and the total distance travelly	- 7	ed in time 't' is given by (CET 12)			
	A) 44 units	B) 33 units	C) 11 units	D) 22 units			
13.	At that instant, when increasing?	•	wave is 8 cm, how	at the speed of 5 cm/sec. fast is the enclosed area (CET 14)			
			7				
	1. The point on the circle $x^2 + y^2 = 2$ at which the abscissa and ordinate increase at the same rate is						
	A) $(-1, -1)$	B) $(1, -1)$	C) (1, 1)	D) $(-1, 4)$			
	. A particle starts from rest and its angular displacement (in radians) is given by $\theta = \frac{t^2}{20} + \frac{t}{5}$.						
	the angular velocity at the end of $t = 4$ is k, then the value of 5k is (CET 21)						
	A) 0.6	B) 5	C) 5k	D) 3			
16.	A circular plate of i	radius 5 cm is heated.	Due to expansion,	its radius increases at the			
0.05 cm/sec. The rate at which its area is increasing when radius is 5.2 cm is (CET							
	A) $5.05 \pi \text{cm}^2/\text{sec}$	B) $5.2 \pi \text{cm}^2/\text{sec}$	C) $0.52 \pi \text{ cm}^2/\text{sec}$	D) 24.4 π cm ² /sec			
17.			=	t' seconds is given by			
	$s = \frac{2t^3}{3} - 18t + \frac{5}{3}$. The acceleration when the particle comes to rest is (CET 23)						
	A) $12 \text{ m}^2/\text{sec}$	B) 3 m ² /sec	C) $18 \text{ m}^2 / \text{sec}$	D) 10 m ² /sec			

			$\mathbf{x}^2 \mathbf{v}^2$					
18. A particle moves along the curve $\frac{x^2}{16} + \frac{y^2}{4} = 1$. When the rate of change of abscissa is 4								
	times that of its or	rdinate, then the	quadrant i	n which the par	rticle lies	s is	(CET 23)	
	A) III or IV	B) I or III		C) II or III	D)	II or IV		
19.	. The function $f(x) = x^2 - 2x$ is strictly decreasing in the interval (CET 21)							
	A) $(-\infty, 1)$	B) $(1, \infty)$	(C) R	D)	$(-\infty,\infty)$		
20.	The function $f(x) = 4 \sin^3 x - 6 \sin^2 x + 12 \sin x + 100$ is strictly (CET 22)							
	A) decreasing in	$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$		B) increasing	g in $\left[\pi,\right]$	$\frac{3\pi}{2}$		
	C) decreasing in	$\left[0,\frac{\pi}{2}\right]$		D) decreasin	$\frac{\pi}{2}$, π]		
21.	If x is real, then A) 1	the minimum val B) 2	lue of x ² –	8x + 17 is C) 3		D) 4	(CET 15)	
22.	The maximum v	alue of xe-x is				Be	(CET 12)	
	A) e	B) $\frac{1}{e}$		C) – e	TEL	D) $-\frac{1}{e}$		
23.	The maximum s	lope of the curve	$y = -x^3 +$				(CET 21)	
	A) 1	B) 23	Ċ	C) 5		D) –23		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							CET 16, 18)	
	A) e	B) e ^e	C) $e^{\frac{1}{e}}$	I	D) $\left(\frac{1}{e}\right)^{e}$			
25.	An enemy fighter jet is flying along the curve given by $y = x^2 + 2$. A soldier is placed at (3,							
2) wants to shoot down the jet when it is nearest to him. Then the nearest distance is (CET								
	23)	P						
	A) 2 units	B) $\sqrt{3}$ units		C) $\sqrt{5}$ units	1	D) $\sqrt{6}$ 11	ınits	
A) 2 units B) $\sqrt{3}$ units C) $\sqrt{5}$ units D) $\sqrt{6}$ units Answer								
1.	(A) 2. (C) 3. (A	4. (A) 5. (C)	6. (D)	7. (B) 8. (C)	9. (B)	10. (A)		
11.	(A)							
12. (D)								
$\frac{\mathrm{ds}}{\mathrm{dt}} = 22 - 22t \Rightarrow 0 \Rightarrow t = 1$								
	\therefore Greatest height attained = s (at t = 1) = 22 – 11 = 11 units							
\therefore Total distance travelled by the ball = $2s = 22$ units								

13. (D)

$$A = \pi a^2 \Rightarrow \frac{dA}{dt} = 2\pi a \frac{da}{dt} = 2\pi .5.8 = 80\pi \text{ cm}^2/\text{s}$$

14. (B)

$$2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$$
; $\frac{dy}{dt} = \frac{dx}{dt} \Rightarrow x + y = 0$... (2) is the correct answer

15. (D)

$$\frac{d\theta}{dt}$$
 at $t = 4$ is $k \Rightarrow \frac{2t}{20} + \frac{1}{5} = k$ at $t = 4$

i.e.,
$$\frac{2}{5} + \frac{1}{5} = k \Rightarrow k = \frac{3}{5} \Rightarrow 5k = 3$$

16. (C)

$$A = \pi r^2$$

$$i.e., \frac{2}{5} + \frac{1}{5} = k \Rightarrow k = \frac{3}{5} \Rightarrow 5k = 3$$
16. (C)
$$A = \pi r^{2}$$

$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt} \quad \therefore \frac{dA}{dt}\Big|_{r=5.2} = 2\pi \times 5.2 \times 0.05 = 0.52 \pi$$
17. (A)
$$\frac{ds}{dt} = 2t^{2} - 18; \quad \frac{ds}{dt} = 0 \Rightarrow t = 3$$

$$\frac{d^{2}s}{dt^{2}} = 4t \quad \therefore \text{ Required} = 12 \text{ m}^{2}/\text{s}$$
18. (D)
$$2x \frac{dx}{dt} = 2y \frac{dy}{dt}$$

17. (A)

$$\frac{ds}{dt} = 2t^2 - 18$$
; $\frac{ds}{dt} = 0 \Rightarrow t = 3$

$$\frac{d^2s}{dt^2} = 4t \quad \therefore \text{ Required} = 12 \text{ m}^2/\text{s}$$

18. (D)

(D)
$$\frac{2x\frac{dx}{dt}}{16} = -\frac{2y\frac{dy}{dt}}{4} ; Given \frac{dx}{dt} = 4\frac{dy}{dt} \Rightarrow \frac{x \cdot \frac{4 dy}{dt}}{16} = \frac{-y\frac{dy}{dt}}{4} \Rightarrow x = -y$$

As x and y are of opposite signs, (D) is the correct answer.

19. (A)

20. (D)

$$f'(x) = (12 \sin^2 x - 12 \sin x + 12) \cos x$$

$$12 \sin^2 x - 12 \sin x + 12 > 0, \ \forall x$$

The sign of f'(x) depends on the sign of $\cos x$

$$\therefore$$
 f'(x) < 0 when $x \in \left(\frac{\pi}{2}, \pi\right)$

21. (1)

$$x^2 - 8x + 17 = (x - 4)^2 + 1 \ge 1$$

22. (2)

$$f(x) = xe^{-x} \Rightarrow f'(x) = 1.e^{-x} + x (-e^{-x}) = 0 \Rightarrow 1 - x = 0 \Rightarrow x = 1$$

∴ Max. value = $1.e^{-1} = \frac{1}{e}$. Is it a risky solution ?!

23. (C)

$$\frac{dy}{dx} = -3x^2 + 6x + 2 = m = slope$$

$$\frac{dm}{dx} = -6x + 6;$$
 $\frac{d^2m}{dx^2} = -6 < 0$

$$\frac{dm}{dx} = 0 \Rightarrow x = 1$$

 \therefore m is maximum when x = 1 \therefore max. value of m = -3 + 6 + 2 = 5

24. (3)

Hint: The maximum value of $x^{-x} = \frac{1}{\text{The minimum value of } x^x} = e^{\frac{1}{e}}$

Aliter: $y = x^{-x} \Rightarrow \log_{e} y = -x \log_{e} x$

Let $z = -x \log_e x$

$$\Rightarrow \frac{dz}{dx} = -x\frac{1}{x} + \log_e x(-1) = -1 - \log_e x \Rightarrow \frac{dz}{dx} = 0 \Rightarrow -(1 + \log_e x) = 0 \Rightarrow x = e^{-1} = \frac{1}{e}$$

Now $\frac{d^2z}{dx^2} = -\frac{1}{x} \Rightarrow \frac{d^2z}{dx^2} < 0$ at $x = \frac{1}{e}$... Maximum value of $\frac{1}{x^x}$ is $e^{\frac{1}{e}}$

25. (C)

z = Distance between (3, 2) and (x, $x^2 + 2$) = $\sqrt{(x-3)^2 + x^4}$

z is min \Leftrightarrow z² is min : let f(x) = z² = (x - 3)² + x⁴

$$f'(x) = 2(x-3) + 4x^3 \Rightarrow f'(1) = 0$$

 \therefore z is min at x = 1 and min z = $\sqrt{4+1} = \sqrt{5}$

Ch.7: Integration

Choose the correct answer

$$1. \int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx =$$

A)
$$\tan x - \cot x + c$$

B)
$$\tan x + \cot x + c$$

C)
$$\tan x - \sec x + c$$

D)
$$\sec x - \tan x + c$$

2.
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx =$$

A)
$$\frac{2}{3} \times x^{\frac{3}{2}} + 2\sqrt{x} + c$$

C)
$$\frac{3}{2} \times x^{\frac{3}{2}} - 2\sqrt{x} + c$$

B)
$$\frac{3}{2} \times x^{\frac{2}{3}} + 2\sqrt{x} + c$$

D)
$$\frac{3}{2} \times x^{\frac{3}{2}} + 2\sqrt{x} + c$$

3.
$$\int \cos 2x \, dx =$$

A)
$$\frac{\sin 2x}{2} + c$$

B)
$$\frac{\cos 2x}{2} + c$$

C)
$$\frac{-\sin 2x}{2} + c$$

A)
$$\frac{\sin 2x}{2} + c$$
 B) $\frac{\cos 2x}{2} + c$ C) $\frac{-\sin 2x}{2} + c$ D) $\frac{-\cos 2x}{2} + c$

4.
$$\int \sin^{-1}(\cos x) dx$$
, $0 < x < \frac{\pi}{2}$, is equal to

A)
$$\frac{\pi}{2}x - \frac{x^2}{2} + c$$
 B) $\frac{\pi}{2} + \frac{x^2}{2} + c$ C) $\frac{\pi}{2}x + \frac{x^2}{2} + c$ D) $\frac{\pi}{2}x + \frac{\pi}{2} + c$

B)
$$\frac{\pi}{2} + \frac{x^2}{2} + c$$

C)
$$\frac{\pi}{2}x + \frac{x^2}{2} + 6$$

D)
$$\frac{\pi}{2}x + \frac{\pi}{2} + c$$

$$5. \quad \int \sqrt{ax+b} \ dx =$$

A)
$$\frac{1}{a} \times \frac{2}{3} (ax + b)^{\frac{3}{2}} + c$$

C)
$$\frac{1}{b} \times \frac{3}{2} (ax + b)^{\frac{5}{2}} + c$$

B)
$$\frac{1}{b} \times \frac{2}{3} (ax + b)^{\frac{3}{2}} + c$$

D)
$$\frac{1}{a} \times \frac{3}{2} (ax + b)^{\frac{2}{3}} + c$$

6.
$$\int e^{x} \left(\tan^{-1} x + \frac{1}{1+x^{2}} \right) dx =$$

A)
$$e^{x} \tan^{-1} x + c$$
 B) $-e^{x} \tan^{-1} x + c$

C)
$$e^x \tan^{-1} (1 + x^2) + c$$
 D) $-e^x \cot^{-1} x + c$

7.
$$\int e^{x} \left(\sin^{-1} x + \frac{1}{\sqrt{1 - x^{2}}} \right) dx =$$

A)
$$e^{x} \sin^{-1} x + c$$
 B) $e^{x} \cos^{-1} x + c$

C)
$$e^{x} (-\sin^{-1} x) + c$$

8.
$$\int e^x \sec x (1 + \tan x) dx =$$

C)
$$e^x \sec^2 x + c$$

D)
$$e^x \sin x + c$$

(23-M)

A)
$$e^x \sec x + c$$

9. $\int e^{2x} dx =$

A)
$$e^{2x} + c$$
 B) $2e^{2x} + c$

B)
$$2e^{2x} + 6$$

B) $e^x \tan x + c$

C)
$$\frac{e^{2x}}{2} + c$$

D)
$$\frac{e^x}{2} + c$$

10.
$$\int_{0}^{\pi} \left(\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx =$$

B)
$$\frac{-\pi}{2}$$

11.
$$\int_{-1}^{1} e^{x} dx =$$

A)
$$e - \frac{1}{e}$$
 B) $e + \frac{1}{e}$

B)
$$e + \frac{1}{e}$$

C)
$$-e + \frac{1}{e}$$
 D) $e + \frac{2}{e}$

D)
$$e + \frac{2}{e}$$

12.
$$\int_{1}^{\sqrt{3}} \frac{dx}{1+x^2}$$
 equals

A)
$$\frac{\pi}{3}$$

A)
$$\frac{\pi}{3}$$
 B) $\frac{2\pi}{3}$

C)
$$\frac{\pi}{6}$$

D)
$$\frac{\pi}{12}$$

13.
$$\int_{2}^{3} x^{2} dx =$$

C)
$$\frac{19}{2}$$

D)
$$\frac{19}{3}$$

14.
$$\int x^2 \left(1 - \frac{1}{x^2} \right) dx =$$

A)
$$\frac{x^3}{3} - 1 + c$$

$$B) 2x + c$$

C)
$$\frac{x^3}{3} - x + 6$$

D)
$$\frac{x^3}{3} + c$$

15.
$$\int_{-1}^{1} \sin^{-1} x \, dx =$$

A)
$$\frac{\pi}{2}$$

C)
$$\frac{\pi}{2}$$

14.
$$\int x^{2} \left(1 - \frac{1}{x^{2}}\right) dx =$$

A) $\frac{x^{3}}{3} - 1 + c$

B) $2x + c$

C) $\frac{x^{3}}{3} - x + c$

D) $\frac{x^{3}}{3} + c$

15. $\int_{-1}^{1} \sin^{-1} x dx =$

A) $\frac{\pi}{2} - 1$

B) π

C) $\frac{\pi}{2}$

D) 0

A)
$$\frac{x^2}{2} - \frac{1}{x} + c$$
 B) $\frac{x^2}{2} + \frac{1}{x} + c$ C) $\frac{x^2}{2} + \frac{2}{x} + c$ D) $\frac{x^2}{2} - \frac{2}{x} + c$

$$(x)^{\frac{x^2}{2}} + \frac{2}{x} + 6$$

D)
$$\frac{x^2}{2} - \frac{2}{x} + c$$

17.
$$\int \left(x^{\frac{3}{2}} + 2e^x - \frac{1}{x}\right) dx =$$

A)
$$\frac{2x^{\frac{5}{2}}}{5} + 2e^x + \log|x| + c$$

B)
$$\frac{2x^{\frac{5}{2}}}{5} + 2e^{x} - \log|x| + c$$

C)
$$\frac{5x^{\frac{5}{2}}}{2} + 2e^x - \log|x| + c$$

D)
$$\frac{5x^{\frac{5}{2}}}{2} + 2e^x + \log|x| + c$$

18.
$$\int \left(x^{\frac{2}{3}} + 1\right) dx =$$

A)
$$\frac{3x^{\frac{5}{3}}}{5} + 6$$

$$B \frac{3x^{\frac{5}{3}}}{5} + x + c$$

A)
$$\frac{3x^{\frac{5}{3}}}{5} + c$$
 B $\frac{3x^{\frac{5}{3}}}{5} + x + c$ C) $\frac{5x^{\frac{5}{2}}}{3} + x + c$ D) $\frac{5x^{\frac{5}{2}}}{3} + c$

D)
$$\frac{5x^{\frac{5}{2}}}{3} + 6$$

19.
$$\int (\sin x + \cos x) dx$$

A)
$$\sin x - \cos x + c$$

B)
$$\sin x + \cos x + c$$

C)
$$\cos x - \sin x + c$$

$$D) - (\sin x + \cos x) + c$$

20.
$$\int \cos \cot x (\cos \cot x + \cot x) dx =$$

A)
$$-\cot x - \csc x + c$$

B)
$$\cot x - \csc x + c$$

$$C) - \cot x + \csc x + c$$

D)
$$\cot x + \csc x + c$$

21.
$$\int \tan^2 2x \, dx$$
 is

A)
$$\sec 2x - x + c$$
 B) $\sec 2x + x + c$

A)
$$\sec 2x - x + c$$
 B) $\sec 2x + x + c$ C) $\frac{\tan 2x}{2} - x + c$ D) $\frac{\tan 2x}{2} + x + c$

22.
$$\int \frac{1-x}{\sqrt{x}} dx is$$

A)
$$2\sqrt{x} + \frac{3x^{\frac{3}{2}}}{2} + c$$

B)
$$2\sqrt{x} - \frac{2x^{\frac{3}{2}}}{3} + c$$

C)
$$2\sqrt{x} + \frac{3x^{\frac{3}{2}}}{2} + c$$

D)
$$2\sqrt{x} - \frac{3x^{\frac{3}{2}}}{2} + c$$

$$23. \int \frac{\left(1-\sin x\right) dx}{\cos^2 x} =$$

A)
$$\sec x - \tan x + c$$
 B) $\sec x + \tan x + c$

C)
$$\tan x - \sec x + c$$

$$D) - (\sec x + \tan x) + c$$

$$24. \int \frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}} + \mathrm{e}^{-\mathrm{x}}}$$

A)
$$tan^{-1}(e^x) + c$$

B)
$$\tan^{-1}(e^{-x}) + c$$

$$C) \log \left| e^{x} + e^{-x} \right| + c$$

D)
$$\log \left| e^x - e^{-x} \right| + c$$

$$25. \int \frac{\sec^2 x}{\cos \sec^2 x} dx =$$

A)
$$\sec x - x + c$$

D) top
$$y \perp y \perp c$$

B)
$$\tan x + x + c$$
 C) $\sec x + x + c$ D) $\tan x - x + c$

D)
$$\tan x - x + c$$

$$26. \int \frac{dx}{1 + \cos x} dx =$$

A)
$$\frac{1}{2} \tan \frac{x}{2} + c$$
 B) $\tan \frac{x}{2} + c$ C) $\cot \frac{x}{2} + c$ D) $\sec \frac{x}{2} + c$

B)
$$\tan \frac{x}{2} + \epsilon$$

C) cot
$$\frac{x}{2} + c$$

D)
$$\sec \frac{x}{2} + c$$

27.
$$\int \frac{\cos^2 x}{1 + \sin x} dx =$$

A)
$$x - \sin x + c$$
 B) $x + \sin x + c$

B)
$$x + \sin x + c$$

C)
$$x + \cos x + c$$

D)
$$x - \cos x + c$$

28.
$$\int \frac{1}{\sin^2 x \cos^2 x} dx =$$

A)
$$\tan x - \cot x + c$$
 B) $\tan x + \cot x + c$ C) $\cot x - \tan x + c$ D) $-\cot x - \tan x + c$

29.
$$\int \frac{2 \sin x - 3 \cos x}{2 \cos x + 3 \sin x} dx =$$

A)
$$\log |2 \cos x + 3 \sin x| + c$$

B)
$$\log |2 \cos x - 3 \sin x| + c$$

C)
$$-\log |2 \cos x + 3 \sin x| + c$$

$$D) - \log |2 \sin x - 3 \cos x| + c$$

$$30. \int \frac{(\log x)^2}{x} dx =$$

A)
$$\frac{\left(\log x\right)^3}{3} + c$$

B)
$$\frac{\left(\log x\right)^3}{3x} + \log x + c$$

$$C)\frac{\left(\log x\right)^2}{2}+c$$

D) 2
$$(\log x)^3 + \frac{1}{x} + c$$

31.
$$\int x^x (1 + \log x) dx =$$

A)
$$x^x + c$$

B)
$$x^{-x} + \frac{1}{2}$$

$$C$$
) $x \log x + c$

D)
$$\log x + c$$

32. The value of
$$\int \frac{e^{6\log x} - e^{5\log x}}{e^{4\log x} - e^{3\log x}} dx$$
 is equal to

(CET 16)

B)
$$\frac{x^3}{3}$$

C)
$$\frac{3}{x^3}$$

D)
$$\frac{1}{x}$$

33.
$$\int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} dx$$
 is equal to

(CET 17, 22)

A)
$$2 (\sin x + x \cos \theta) + c$$

B)
$$2 (\sin x - x \cos \theta) + c$$

C)
$$2 (\sin x + 2 x \cos \theta) + c$$

D)
$$2 (\sin x - 2x \cos \theta) + c$$

$$34. \int \frac{\sin^2 x}{1 + \cos x} dx =$$

A)
$$x + \sin x + c$$
 B) $x - \sin x + c$

C)
$$\sin x + c$$

D)
$$\cos x + c$$

35.
$$\int \frac{\sin 2x}{\sin^2 x + 2\cos^2 x} dx =$$

A)
$$-\log(1 + \sin^2 x) + c$$

B)
$$\log (1 + \cos^2 x) + c$$

$$C) - \log \left(1 + \cos^2 x\right) + c$$

D)
$$\log (1 + \tan^2 x) + c$$

36.
$$\int_{0}^{\pi/2} \sqrt{\sin \theta} \cos^{3} \theta \ d\theta \text{ is equal to}$$

(CET 22)

A)
$$\frac{8}{23}$$

B)
$$\frac{8}{21}$$

C)
$$\frac{7}{23}$$

D)
$$\frac{7}{21}$$

37.
$$\int_{0}^{\pi/2} \frac{\cos x \sin x}{1 + \sin x} dx$$
 is equal to

(CET 22)

A)
$$\log 2 - 1$$

$$B) - \log 2$$

D)
$$1 - \log 2$$

38.
$$\int \frac{x^3 \sin (\tan^{-1}(x^4))}{1+x^8} dx$$
 is equal to

(CET 21)

A)
$$\frac{-\cos(\tan^{-1}(x^4))}{4} + c$$

$$B) \frac{\cos(\tan^{-1}(x^4))}{4} + c$$

C)
$$\frac{-\cos(\tan^{-1}(x^3))}{3} + c$$

D)
$$\frac{\sin (\tan^{-1}(x^4))}{4} + c$$

39. The value of $\int \frac{x^2 dx}{\sqrt{x^6 + a^6}}$ is equal to

B)
$$\log |x^3 - \sqrt{x^6 + a^6}| + c$$

A)
$$\log |x^3 + \sqrt{x^6 + a^6}| + a$$

B)
$$\log |x - \sqrt{x^2 + a^2}| + c$$

C)
$$\frac{1}{3}\log|x^3 + \sqrt{x^6 + a^6}| + a^6$$

A)
$$\log |x^{3} + \sqrt{x^{6} + a^{6}}| + c$$

B) $\log |x^{3} - \sqrt{x^{6} + a^{6}}| + c$

C) $\frac{1}{3} \log |x^{3} + \sqrt{x^{6} + a^{6}}| + c$

D) $\frac{1}{3} \log |x^{3} - \sqrt{x^{6} + a^{6}}| + c$

40. $\int \frac{1}{1+3\sin^{2} x + 8\cos^{2} x} dx = 0$

A) $\frac{1}{6} \tan^{-1} \left(\frac{2 \tan x}{3} \right) + c$

B) $\frac{1}{6} \tan^{-1} \left(2 \tan x \right) + c$

$$40. \int \frac{1}{1+3\sin^2 x + 8\cos^2 x} \, dx =$$

$$A) \frac{1}{6} \tan^{-1} \left(\frac{2 \tan x}{3} \right) + c$$

B)
$$\frac{1}{6} \tan^{-1} (2 \tan x) + c$$

C)
$$6 \tan^{-1} \left(\frac{2 \tan x}{3} \right) + c$$

D)
$$\tan^{-1}\left(\frac{2\tan x}{3}\right) + c$$

41.
$$\int \frac{1}{\sqrt{3-6x-9x^2}} dx$$
 is equal to

$$(3v \pm 1)$$

A)
$$\sin^{-1}\left(\frac{3x+1}{2}\right)+c$$

B)
$$\sin^{-1}\left(\frac{3x+1}{6}\right) + c$$

C)
$$\frac{1}{3}\sin^{-1}\left(\frac{3x+1}{2}\right) + c$$

D)
$$\sin^{-1}\left(\frac{2x+1}{3}\right)+c$$

42.
$$\int_{1}^{e} \log x \, dx =$$

C)
$$e + 1$$

(CET 18)

43. The value of
$$\int_{0}^{4} |x-1| dx$$
 is (CET 11)

A) 1 B) 4 C) 5 D) $\frac{5}{2}$

44. $\int_{0.2}^{2.5} [x] dx$ is equal to (CET 17)

A) 4.5 B) 3.5 C) 4 D) 3

45. The value of the integral $\int_{-\pi}^{\pi} d \log (\sec \theta - \tan \theta) d\theta$ is (CET 14)

A) 0 B) $\frac{\pi}{4}$ C) π D) $\frac{\pi}{2}$

46. The value of $\int_{-\pi}^{\pi} \sin^{103} x \cdot \cos^{101} x dx$ is

A) $\left(\frac{\pi}{4}\right)^{101}$ B) 0 C) $\left(\frac{\pi}{4}\right)^{103}$ D) 2

47. $\int_{-\pi}^{4} \frac{dx}{1 + \cos 2x}$ is equal to (CET 16)

48. The value of $\int_{-1/2}^{1/2} \cos^{-1} x dx$ is (CET 20)

49. $\int_{-2}^{0} (x^3 + 3x^2 + 3x + 3 + (x + 1) \cos (x + 1)) dx = (CET 23)$

A) 4 B) 0 C) 1 D) 3

50. $\int_{-2}^{8} \frac{5^{\sqrt{10} - x}}{5^{\sqrt{10} - x}} dx = (CET 23)$

A) 4 B) 5 C) 3 D) 6

Answer

1. (B) 2. (A) 3. (A) 4. (A) 5. (A) 6. (A) 7. (A) 8. (A) 9. (C) 10. (D) 11. (A) 12. (D) 13. (D) 14. (C) 15. (D) 16. (B) 17. (B) 18. (A) 19. (A) 20. (A) 21. (C) 22. (B) 23. (C) 24. (A) 25. (A) 26. (B) 27. (C) 28. (A) 29. (C) 30. (A) 31. (B)

$$\frac{d}{dx} [x^x] = x^x (1 + \log x) \Rightarrow \int x^x (1 + \log x) dx = x^x + c$$

46

$$I = \int \frac{e^{\log(x^6)} - e^{\log(x^5)}}{e^{\log(x^4)} - e^{\log(x^3)}} \, dx = \int \frac{x^6 - x^5}{x^4 - x^3} \, dx = \int \frac{x^5 (x - 1)}{x^3 (x - 1)} \, dx = \int x^2 \, dx = \frac{x^3}{3} + c$$

$$\cos 2x - \cos 2\theta = (2\cos^2 x - 1) - (2\cos^2 \theta - 1) = 2(\cos^2 x - \cos^2 \theta)$$

$$\therefore \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} = \frac{2(\cos^2 x - \cos^2 \theta)}{\cos x - \cos \theta} = 2(\cos x + \cos \theta)$$

$$I = 2 \int (\cos x + \cos \theta) dx = 2(\sin x + (\cos \theta) x) + c$$

34. (B)

$$I = \int (1 - \cos x) \, dx = x - \sin x + C$$

35. (C)

(C)
$$\frac{d}{dx} \left[\sin^2 x + 2 \cos^2 x \right] = \sin 2x + 2 \cdot (-\sin 2x) = -\sin 2x$$

$$\therefore I = -\int \frac{f'}{f} dx = -\log f = -\log (\sin^2 x + 2 \cos^2 x) = -\log (1 + \cos^2 x) + c$$
(B)

36. (B)

$$I = \int_{0}^{\pi/2} (\sin \theta)^{1/2} \cdot (1 - \sin^2 \theta) d(\sin \theta) = \int_{0}^{1} (t^{1/2} - t^{5/2}) dt = \frac{2}{3} - \frac{2}{7} = \frac{8}{21}$$

37. (D)

$$I = \int_{0}^{1} \frac{t}{1+t} dt \text{ where } t = \sin x \text{ ; } \frac{t}{1+t} = 1 - \frac{1}{1+t}$$
$$= \left[t - \log(1+t)\right]_{0}^{1} = 1 - \log 2$$
38. (A)

$$I = \frac{1}{4} \int \sin(\tan^{-1}(x^4)) \cdot d(\tan^{-1}(x^4)) = -\frac{1}{4} \cos(\tan^{-1}x^4) + c$$

39. (C)

$$I = \frac{1}{3} \int \frac{d(x^3)}{\sqrt{(x^3)^2 + a^6}} = \frac{1}{3} \log \left| x^3 + \sqrt{x^6 + a^6} \right| + c$$

40. (A)

$$\int \frac{\sec^2 x}{\sec^2 x + 3\tan^2 x + 8} dx = \int \frac{\sec^2 x}{3^2 + (2\tan x)^2} dx \begin{vmatrix} 2\tan x = t \\ \sec^2 x dx = \frac{1}{2} dt \end{vmatrix}$$
$$= \int \frac{\frac{1}{2} dt}{3^2 + t^2} = \frac{1}{2} \times \frac{1}{3} \tan^{-1} \frac{t}{3} = \frac{1}{6} \tan^{-1} \left(\frac{2\tan x}{3}\right) + C$$

$$3-6x-9x^2 = -[9x^2+6x-3] = -[(3x+1)^2-4] = 4-(3x+1)^2$$

$$\therefore I = \frac{1}{3} \int \frac{d(3x+1)}{\sqrt{4-(3x+1)^2}} = \frac{1}{3} \sin^{-1} \frac{3x+1}{2} + c$$

42. (A)

$$I = (x \log x - x)|_1^e = 1$$

43. (C)

$$I = \int_{0}^{4} |x - 1| d(x - 1) = \frac{1}{2}(x - 1) |x - 1| \Big|_{0}^{4} = \frac{1}{2} (9 + 1) = 5$$

Aliter:
$$I = \int_{0}^{1} -(x-1) dx + \int_{1}^{4} (x-1) dx$$
 etc.

$$I = \int_{0.2}^{1} 0 \, dx + \int_{1}^{2} 1 \, dx + \int_{2}^{3} 2 \, dx + \int_{3}^{3.5} 3 \, dx = 0 + 1 + 2 + 3 \, (0.5) = 3 + 1.5 = 4.5$$

45. (A

$$f(-\theta) = \log \left[\sec (-\theta) - \tan (-\theta) \right] = \log \left(\sec \theta + \tan \theta \right) = \log \left(\sec \theta - \tan \theta \right)^{-1}$$
$$= -\log \left(\sec \theta - \tan \theta \right) = -f(\theta)$$

$$\therefore f(\theta) \text{ is odd} \qquad \therefore \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(\theta) d\theta = 0$$

46. (B)

From memory !
$$\sin^{103} x \cdot \cos^{101} x$$
 is an odd function $\therefore I = 0$

47. **(B)**

$$I = 2\int_0^{\frac{\pi}{4}} \frac{1}{1 + \cos 2x} dx = 2\int_0^{\frac{\pi}{4}} \frac{1}{2\cos^2 x} dx = \int_0^{\frac{\pi}{4}} \sec^2 x dx = \tan x \Big|_0^{\frac{\pi}{4}} = 1$$

$$\int_{-1/2}^{1/2} \cos^{-1} x \, dx = \int_{-1/2}^{1/2} \left(\frac{\pi}{2} - \sin^{-1} x \right) dx = \frac{\pi}{2} x \Big|_{-1/2}^{1/2} - 0 \quad [\because \sin^{-1} x \text{ is odd}]$$
$$= \frac{\pi}{4} - \left[-\frac{\pi}{4} \right] = \frac{\pi}{2}$$

Aliter: $\int_{a}^{a} f(x) dx = \int_{a}^{a} [f(x) + f(-x)] dx$

$$\int_{-1/2}^{1/2} \cos^{-1} x \ dx = \int_{0}^{1/2} \left[\cos^{-1} x + \cos^{-1}(-x)\right] dx = \int_{0}^{1/2} \left[\cos^{-1} x + \pi - \cos^{-1} x\right] dx = \int_{0}^{1/2} \pi \ dx = \pi x \Big|_{0}^{1/2} = \frac{\pi}{2}$$

$$I = x \cdot \cos^{-1} x \Big|_{-1/2}^{1/2} - \int_{-1/2}^{1/2} - \frac{x}{\sqrt{1 - x^2}} dx = \frac{1}{2} \cos^{-1} \frac{1}{2} + \frac{1}{2} \cos^{-1} \left(-\frac{1}{2} \right) + 0 \quad \because \frac{x}{\sqrt{1 - x^2}} \text{ is odd}$$
$$= \frac{1}{2} \left(\frac{\pi}{3} + \frac{2\pi}{3} \right) = \frac{\pi}{2}$$

$$\int_{-2}^{0} ((x+1)^3 + 2) dx + \int_{-2}^{0} (x+1) \cos(x+1) dx$$

$$= \left[\frac{(x+1)^4}{4} + 2x \right]_{-2}^{0} + \int_{-1}^{1} t \cos t dt = \left(\frac{1}{4} + 0 \right) - \left(\frac{1}{4} - 4 \right) + 0 = 4$$

Aliter: Put t = x + 1

$$\therefore I = \int_{-1}^{1} (t^3 + 2 + t \cos t) = \int_{-1}^{1} 2 dt = 4$$

50. (C)

 $I = \frac{1}{2}(8-2) = 3$. From memory!

Remark:
$$\int_a^b \frac{f(a+b-x)}{f(x)+f(a+b-x)} dx = \frac{1}{2}(b-a)$$

Ch. 9: Diffential Equation

Fill in the blanks by choosing the appropriate answer from given in brackets.

$$(2, \frac{1}{4}, 3, \frac{1}{4}, 0, -1, \frac{1}{2}, 6, 4, \frac{15}{4}, 1, -2, 4, 7, -\frac{1}{2}, \frac{1}{\sqrt{2}}, \sqrt{2})$$

- 1. The number of independent arbitrary constabts in a differential equation of order 4 and degree 2 is _____
- 2. The number of arbitrary constants in the particular solution of a differential equation of fourth order is
- 3. The number of arbitrary constants in the general solution of a differential equation of fourth order is
- 4. The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right) + \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = 0$ is ____ (CET)
- 5. The degree of the differential equation $\frac{d^2y}{dx^2} = \sqrt[3]{1 + \left(\frac{dy}{dx}\right)^2}$ is _____ (CET 18)
- 6. If m and n are degree and order of $(1 + y_1^2)^{\frac{2}{3}} = y_2$ then the value of $\frac{m+n}{m-n}$ is ____ (CET 11)
- 7. The sum of the degree and order of the differential equation $(1 + y_1^2)^{2/3} = y_2$ is _____ (CET 22)
- 8. The product of the degree and order of the D.E. $\left(\frac{d^2y}{dx^2}\right)^2 \left(\frac{dy}{dx}\right)^3 = y^3$ is _____

- 9. The order of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right)\right]^{\frac{3}{4}} = \frac{d^2y}{dx^2}$ is ____ (CET 16)
- 10. The degree of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^2 = \frac{d^2y}{dx^2}$ is ____ (CET 17)
- 11. The degree of the differential equation $1 + \left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^2 = \sqrt[3]{\frac{d^2y}{dx^2} + 1}$ is ____ (CET 23)
- 12. The order of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$ is _____
- 13. If the integrating factor of the D.E. $\frac{dy}{dx} + \frac{y}{x} = x^2$ is f(x), then $f(\sqrt{2})$ is _____
- 14. The general solution of $\frac{dx}{dy} = xy$ is $f(x) = \frac{y^2}{2} + c$, then f(1) is
- 15. The sum of the order and degree of the differential equation $\left(\frac{dy}{dx}\right)^2 + x = 0$ is _____
- 16. The number of independent arbitrary constants in the solution of $y' + y = e^x$ is ____
- 17. If the integrating factor of the differential equation $x \frac{dy}{dx} y = 2x^2$ is f(x), then f(2)
- 18. The integrating factor of the differential equation $\frac{dy}{dx} y = \cos x$ is e^{kx} , then k is ____
- 19. The integrating factor of the differential equation $x \frac{dy}{dx} + 2y = x^2$ is x^k , then k is ____
- 20. The integrating factor of the differential equation $\frac{dy}{dx} = x + xy$ is e^{kx^2} , then k is _____
- 21. If $\frac{dy}{dx} = y + 3 > 0$ and y(0) = 2, then y (log 2) is equal to ____ (AIEEE 11)
- **22.** If y' = y + 1 and y(0) = 1, then find $y(\log 2)$ ____ (IIT 09)
- 23. If f(x) is the I.F. of the differential equation $(x \log x) \frac{dy}{dx} + y = 2x \log x, (x \ge 1)$. Then $f(e^2) =$
- 24. If $\frac{dy}{dx} + \frac{y}{x} = x^2$, then 2y(2) y(1) =_____ (CET 22)

Answer

11. (6) 12. (2) 13.
$$(\sqrt{2})$$
 14. (0) 15. (3) 16. (1)17. $(\frac{1}{2})$

21. (7)

Hint:
$$\frac{dy}{y+3} = dx \Rightarrow \log(y+3) = x + c \text{ or } y+3 = Ae^x$$

 $y(0) = 2 \Rightarrow 5 = A$: When $x = \log 2$, $y = 10 - 3 = 7$

22. (3)

23. (2)

$$f(x) = e^{\int \frac{1}{x \log x} dx} = e^{\int \frac{\frac{1}{x}}{\log x} dx} = e^{\log (\log x)} = \log x \quad \therefore f(e^2) = \log e^2 = 2$$

24. $(\frac{15}{4})$

$$(x) = e^{\int x \log x} = e^{\int \log x} = e^{\log (\log x)} = \log x \quad \therefore f(e^2) = \log e^2 = 2$$

$$(x) = \int \frac{5}{4}$$

$$(x) = \int \frac{5}{4} = \int \frac{5}{4$$

25. $(\frac{1}{4})$

$$(2 + \sin x) \, dy + (y + 1) \cos x \, dx = 0 \quad i.e., (2 + \sin x) \, d(y + 1) + (y + 1) \, d(\sin x) = 0$$

$$\Rightarrow (2 + \sin x) \, (y + 1) = c \; ; \; y(0) = 1 \Rightarrow 2(2) = c$$

$$\therefore$$
 (2 + sin x) (y + 1) = 4; when x = $\frac{\pi}{2}$, 3(y+1) = 4