Example 14.1: Consider the following time series,

$$(x_1 \cdots, x_{10}) = (1.1, 0.6, 1.5, 0.8, 0.9, 1.2, 0.5, 1.3, 0.8, 1.2).$$

- a) Construct the time series plot, sample autocorrelation and partial autocorrelation plots for the data.
- b) Indentify an appropriate model for the data and fit the model to the data.
- c) Check adequacy of the fitted model by residual analysis.
- d) Is Z_t normally distributed? Justify your answer.
- e) Does the model overfit the data? Justify your answer.

Note: Use the significance level $\alpha = 0.05$ for each hypothesis test.

Model: ARMA(1, 1)

Model Summary

DF 7 Stable

0.18504817 Invertible Yes Sum of Squared Errors Variance Estimate 0.02643545 Standard Deviation 0.16258983 Akaike's 'A' Information Criterion -1.9653074 Schwarz's Bayesian Criterion -1.0575521 RSquare 0.7155567 RSquare Adj 0.63428719 MAPE 17.3927319 MAE 0.14228725 -2LogLikelihood -7.9653074

Parameter Estimates

-0.3

Constant

Term	Lag	Estimate	Std Error	t Ratio	Prob> t	Estimate
AR1	1	-0.5448764	0.2440603	-2.23	0.0607	1.50370317
MA1	1	0.9999414	0.3239964	3.09	0.0177*	
Intercept	0	0.9733485	0.0093310	104.31	< 0001*	

6

10

Normal(0.01606,0.17051)

Fitted Normal

Parameter Estimates

 Type
 Parameter
 Estimate
 Lower 95%
 Upper 95%

 Location
 μ
 0.0160578
 -0.105919
 0.1380348

 Dispersion
 σ
 0.1705121
 0.1172842
 0.3112886

-2log(Likelihood) = -8.00021317937994

Goodness-of-Fit Test

Shapiro-Wilk W Test

W Prob<W

0.949422 0.6617

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

	T	T	T	T	Т	т	Υ
	Actual X	t	Predicted X	Std Err Pred	Residual X	Upper CL	Lower CL
1	1.1	1	0.9733485092	0.1625898281	0.1266514908	1.2920187165	0.6546783018
2	0.6	2	0.8755180579	0.1625898281	-0.275518058	1.1941882652	0.5568478505
3	1.5	3	1.3322231005	0.1625898281	0.1677768995	1.6508933078	1.0135528931
4	0.8	4	0.5695364136	0.1625898281	0.2304635864	0.888206621	0.2508662062
5	0.9	5	0.8910019902	0.1625898281	0.0089980098	1.2096721976	0.5723317828
6	1.2	6	1.0060158417	0.1625898281	0.1939841583	1.3246860491	0.6873456343
7	0.5	7	0.6866848392	0.1625898281	-0.186684839	1.0053550466	0.3680146318
8	1.3	8	1.3923576017	0.1625898281	-0.092357602	1.711027809	1.0736873943
9	8.0	9	0.8765867492	0.1625898281	-0.076586749	1.1952569566	0.5579165418
10	1.2	10	1.136148857	0.1625898281	0.063851143	1.4548190644	0.8174786496
11		11	0.7922027029	0.1625898281		1.1108729103	0.4735324955
12		12	1.072050589	0.2992033755		1.6584784289	0.485622749
13		13	0.9195680726	0.3290176914		1.564430898	0.2747052472
14		14	1.0026522013	0.3373624037		1.6638703623	0.3414340404
15		15	0.9573816181	0.3398004184		1.6233782	0.2913850361
16		16	0.9820484918	0.3405208809		1.6494571543	0.3146398292

Example 14.1: (Continued) Using the fitted model

$$(X_t - 0.9733) = -0.5449(X_{t-1} - 0.9733) + Z_t - Z_{t-1}$$

- f) Find $\hat{X}_{10}(1)$ and $\hat{X}_{10}(2)$.
- g) Find a 95% prediction interval for X_{12} and interpret the interval.