Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

≡ Author	Jiehui Xu et al.									
read date	@2022년 6월 22일									
Journal	ICLR									
@ PDF	[2022 ICLR] Anomaly Transformer Time Series Anomaly Detection with Association Discrepancy.pdf									
■ Published Date	2022									
≡ detail										
≡ keyword	ATTENTION Anomaly Detection MTS Unsupervised									
ම link	https://arxiv.org/pdf/2110.02642.pdf									
• status	Finished!									

ABSTRACT

- Unsupervised AD는 모델이 distinguishable criterion(구별 가능한 기준)을 도출해야 한다.
- 최근 트랜스포머는 pointwise presentation및 pairwise 연관의 통합된 모델링에서 힘을 보여줬다.
- 우리는 각 시점의 self-attention weight distribution가 whole series와 풍부한 연관성을 구현(embody rich association)할 수 있다는 것을 발견했다.
- 핵심 관측치는 이상치가 희귀하기 때문에, 이상 지점에서 전체 시리즈로 사소한 연관성을 구축하기가 매우 어려워서 이상 징후 연관성은 주로 인접한 시점(adjacent time points)에 집중되어야 한다.
- adjacent-concentration bias(인접 집중 편향)은 연관성 기반 기준(association-based criterion)을 의미, 우리는 **Association Discrepancy**(연관 불일치)를 강조한다.
- 제안 모델 : 연관 불일치를 계산하는 Anomaly-Attention mechanism 이용 Anomaly Transformer
- A minimax strategy : Association Discrepancy의 정상-비정상 구별 가능성을 증폭 위해 개발
- 3개에서(service monitoring, space & earth exploration, and water treatment) AD에서 비지도 학습 6개 SOTA 결과를 보임

INTRODUCTION

- 이상치는 적고 정상치는 광대하고, 라벨링 작업은 비싸다. → unsupervised setting
- Unsupervised time series AD
 - ∘ 모델은 informative representations을 complex temporal dynamics로 부터 학습해야 함
 - 。 LOF, OC-SVM, SVDD 등 고전적 모델은 temporal information을 고려 X
 - ∘ Deep NN가 좋은 성능을 달성
- 기존 anomaly criterion : reconstruction 또는 prediction error
 - → point by point 기준 score로, temporal context(시간적 맥락)에 대한 포괄적 설명을 제공 못함
 - → Association-based Anomaly Criterion을 제시
- Transfomers
 - o each time에 대한 temporal association를 self-attention map에서 얻을 수 있음
 - 。 모든 시점에 대해 association weights distribution를 제시
 - <u>association distribution는 시계열의 period or trend(주기 또는 추세)와 같은 동적 패턴(dynamic patterns)을 나타내는 시간적</u> 맥락(temporal contex)에 대해 더 유익한 설명 제공 가능

→ association distribution을 "series-association"으로 부르겠음!

qlobal이라고 생각하면 쉬움: 전반적 시계열에 대한 상관관계

- · prior-Association
 - 。 이상치가 전체 시계열과 강한 associations 을 만드는 건 어렵다. (정상패턴이 우세해서)
 - 이상치의 연관성은 연속성 → adjacent time points(인접 시점)에 집중
 - → adjacent-concentration inductive bias를 "prior-association"라고 부르자

prior을 local이라고 생각하면 쉬움 : 인접한 부분만 보자

- Association Discrepancy
 - 。 대조적으로 정상 시점은 인접에 제한되지 않고 전체 시계열과 정보적 연관성 발견 가능
 - normal-abnormal distinguishability of the association distribution
 - : 연관 분포의 정상-비정상 구별 가능성
 - 즉, <u>prior-association</u>과 <u>series-association</u> 사이 distance = "Association Discrepancy"
 - → 새로운 anomaly criterion : "Association Discrepancy(연관 불일치)"

Anomaly Transformer

- Anomaly Transformer for association learning
- o Association Discrepancy 계산 위해, Self-attn → Anomaly-Attention으로 개선
 - 모델은 각 time point별 <u>prior-association</u>과 <u>series-association</u> 구조로 나눠짐
- o prior-association
 - : learnable Gaussian kernel 사용 시점 별 adjacent concentration inductive bias를 제시
- series-association
 - : raw series로부터 학습된 self-attention weights에 해당 됨
- minimax strategy
 - : normal-abnormal distinguishability를 증폭, new association-based criterion 도출 가능 연관 불일치 값을 효율적으로 추출하기 위한 기법
- 기여점
 - 1. Association Discrepancy를 구현하기 위해 <u>prior-association</u>과 <u>series-association</u> 를 동시에 모델링할 수 있는 Anomaly-Attention mechanism의 **Anomaly Transformer 제안**

- 2. **Association Discrepancy**의 normal-abnormal 구별가능성을 증폭시키고, new association-based detection criterion를 도출 (최초)
- 3. Anomaly Transformer는 3개의 실제 적용에 대한 6개의 벤치마크에서 sota 달성

METHOD

3.1 ANOMALY TRANSFORMER

Overall Architecture : Anomaly Attention | 한 개 layer

- Anomaly-Attention blocks과 feed-forward layers를 번갈아서 쌓음
 - : 이러한 stacking 구조는 deep multi-level features에서 underlying association 학습에 도움
- Notation

input data
$$\chi = \{x_1, x_2 \cdots, x_N\}, x_t \in R^d, \chi \in R^{N \times d}, l$$
-th layer
$$\mathcal{Z}^l = \text{Layer-Norm}\Big(\text{Anomaly-Attention}(\mathcal{X}^{l-1}) + \mathcal{X}^{l-1}\Big)$$

$$\mathcal{X}^l = \text{Layer-Norm}\Big(\text{Feed-Forward}(\mathcal{Z}^l) + \mathcal{Z}^l\Big),$$

- $\circ \chi^0 = \text{Embedding}(\chi)$
 - χ^0 = token(input c를 d_model로 mapping) + positional(위치 정보)임베딩 수행 됨
- 。 χ^{l-1} = 전 layer의 Output
- Anomaly-Attention은 Association Discrepancy를 계산 함

Anomaly-Attention in the I-th layer

Initialization:
$$\mathcal{Q}, \mathcal{K}, \mathcal{V}, \sigma = \mathcal{X}^{l-1}W_{\mathcal{Q}}^{l}, \mathcal{X}^{l-1}W_{\mathcal{K}}^{l}, \mathcal{X}^{l-1}W_{\mathcal{V}}^{l}, \mathcal{X}^{l-1}W_{\sigma}^{l}$$

Prior-Association: $\mathcal{P}^{l} = \operatorname{Rescale}\left(\left[\frac{1}{\sqrt{2\pi}\sigma_{i}}\exp\left(-\frac{|j-i|^{2}}{2\sigma_{i}^{2}}\right)\right]_{i,j\in\{1,\cdots,N\}}\right)$

Series-Association: $\mathcal{S}^{l} = \operatorname{Softmax}\left(\frac{\mathcal{Q}\mathcal{K}^{T}}{\sqrt{d_{\text{model}}}}\right)$

Reconstruction: $\widehat{\mathcal{Z}}^{l} = \mathcal{S}^{l}\mathcal{V}$,

- prior-association
 - : 가우시안 분포를 이용하여 relative temporal distance에 대한 prior(=local)값을 계산

- o prior-associations을 다양한 time series patterns에 적용 시킴
- 。 learnable scale parameter σ를 가우시안 커널을 위해 사용

$$G(|j-1|;\sigma_1)$$
 $G(|j-2|;\sigma_2)$
 \vdots
 $G(|j-N|;\sigma_N)$

$$G(|j-i|;\sigma_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp(-\frac{|j-i|^2}{2\sigma_i^2})$$

Input:
$$\mathcal{X} \in \mathbb{R}^{N \times d_{\text{model}}}$$
: input; $\mathcal{D} = \left((j-i)^2 \right)_{i,j \in \{1,\cdots,N\}} \in \mathbb{R}^{N \times N}$: relative distance matrix

Layer params: $\text{MLP}_{\text{input}}$: linear projector for input; $\text{MLP}_{\text{output}}$: linear projector for output

1: $\mathcal{Q}, \mathcal{K}, \mathcal{V}, \sigma = \text{Split}\left(\text{MLP}_{\text{input}}(\mathcal{X}), \text{dim}=1\right)$

2: $\text{for } (\mathcal{Q}_m, \mathcal{K}_m, \mathcal{V}_m, \sigma_m) \text{ in } (\mathcal{Q}, \mathcal{K}, \mathcal{V}, \sigma)$:

3: $\sigma_m = \text{Broadcast}(\sigma_m, \text{dim}=1)$

4: $\mathcal{P}_m = \frac{1}{\sqrt{2\pi}\sigma_m} \exp\left(-\frac{\mathcal{D}}{2\sigma_m^2}\right)$

5: $\mathcal{P}_m = \mathcal{P}_m/\text{Broadcast}\left(\text{Sum}(\mathcal{P}_m, \text{dim}=1)\right)$

6: $\mathcal{S}_m = \text{Softmax}\left(\sqrt{\frac{h}{d_{\text{model}}}}\mathcal{Q}_m\mathcal{K}_m^{\mathsf{T}}\right)$

7: $\widehat{\mathcal{Z}}_m = \mathcal{S}_m\mathcal{V}_m$

8: $\widehat{\mathcal{Z}} = \text{MLP}_{\text{output}}\left(\text{Concat}([\widehat{\mathcal{Z}}_1, \cdots, \widehat{\mathcal{Z}}_h], \text{dim}=1)\right)$

9: $\text{Return } \widehat{\mathcal{Z}}$

Expression of the projector for output input; $\text{MLP}_{\text{output}}$ input; $\text{MLP}_{$

series-association

: raw series로 부터 전체 시계열에 대한 연관성을 학습 (기존 Transformer 구조와 동일)

- \circ 얻어진 Attention map을 Softmax를 통해 정규화 ightarrow 각 S^l 의 열은 이산 분포 형식
 - S_m = attention distribution(ex. 0.2, 0.4 \cdots), \hat{Z}_m = attention value

Input:
$$\mathcal{X} \in \mathbb{R}^{N \times d_{\mathrm{model}}}$$
: input; $\mathcal{D} = \left((j-i)^2 \right)_{i,j \in \{1,\cdots,N\}} \in \mathbb{R}^{N \times N}$: relative distance matrix

Layer params: $\mathrm{MLP_{input}}$: linear projector for input; $\mathrm{MLP_{output}}$: linear projector for output

1: $\mathcal{Q}, \mathcal{K}, \mathcal{V}, \sigma = \mathrm{Split} \left(\mathrm{MLP_{input}}(\mathcal{X}), \mathrm{dim} = 1 \right)$

2: $\mathrm{for} \; (\mathcal{Q}_m, \mathcal{K}_m, \mathcal{V}_m, \sigma_m) \; \mathrm{in} \; (\mathcal{Q}, \mathcal{K}, \mathcal{V}, \sigma)$:

3: $\sigma_m = \mathrm{Broadcast}(\sigma_m, \mathrm{dim} = 1)$

4: $\mathcal{P}_m = \frac{1}{\sqrt{2\pi}\sigma_m} \exp\left(-\frac{\mathcal{D}}{2\sigma_m^2}\right)$

5: $\mathcal{P}_m = \mathcal{P}_m/\mathrm{Broadcast} \left(\mathrm{Sum}(\mathcal{P}_m, \mathrm{dim} = 1) \right)$

6: $\mathcal{S}_m = \mathrm{Softmax} \left(\sqrt{\frac{h}{d_{\mathrm{model}}}} \mathcal{Q}_m \mathcal{K}_m^{\mathrm{T}} \right)$

7: $\widehat{\mathcal{Z}}_m = \mathcal{S}_m \mathcal{V}_m$

8: $\widehat{\mathcal{Z}} = \mathrm{MLP_{output}} \left(\mathrm{Concat}([\widehat{\mathcal{Z}}_1, \cdots, \widehat{\mathcal{Z}}_h], \mathrm{dim} = 1) \right)$

9: Return $\widehat{\mathcal{Z}}$

New York in the projector for output of the projector for output in the projector for input; MLP_output in the projector for input;

- → 위 두 가지 형태는 각 시점의 시간적 의존성을 유지함
- \hat{Z} = l-th layer Anomaly Attention 이후 hidden representation

- Reconstruction
 - : Reconstruction Loss 및 다음 layer input으로 사용 됨

Association Discrepancy (연관성끼리의 유사도)

$$\operatorname{AssDis}(\mathcal{P}, \mathcal{S}; \mathcal{X}) = \left[\frac{1}{L} \sum_{l=1}^{L} \left(\operatorname{KL}(\mathcal{P}_{i,:}^{l} || \mathcal{S}_{i,:}^{l}) + \operatorname{KL}(\mathcal{S}_{i,:}^{l} || \mathcal{P}_{i,:}^{l}) \right) \right]_{i=1,\dots,N}$$

Algorithm 2 Association Discrepancy AssDis($\mathcal{P}, \mathcal{S}; \mathcal{X}$) Calculation (multi-head version).

Input: time series length N; layers number L; heads number h; prior-association $\mathcal{P}_{all} \in \mathbb{R}^{L \times h \times N \times N}$; series-association $\mathcal{S}_{all} \in \mathbb{R}^{L \times h \times N \times N}$;

- 1: $\mathcal{P}' = \text{Mean}(\mathcal{P}, \text{dim}=1)$ $\triangleright \mathcal{P}' \in \mathbb{R}^{L \times N \times N}$
- 2: $\mathcal{S}' = \text{Mean}(\mathcal{S}, \text{dim}=1)$ $\triangleright \mathcal{S}' \in \mathbb{R}^{L \times N \times N}$
- $\mathbf{3:}\ \mathcal{R}' = \mathrm{KL}\Big((\mathcal{P}',\mathcal{S}'), \mathrm{dim} = -1\Big) + \mathrm{KL}\Big((\mathcal{S}',\mathcal{P}'), \mathrm{dim} = -1\Big) \\ \rhd \mathcal{R}' \in \mathbb{R}^{L \times N}$
- 4: $\mathcal{R} = \text{Mean}(\mathcal{R}', \text{dim} = 0)$ $\Rightarrow \mathcal{R} \in \mathbb{R}^{N \times 1}$
- 5: **Return** \mathcal{R} \triangleright Represent the association discrepancy of each time point
- symmetrized KL divergence
 - : 대칭적으로 prior- and series- associations 분포 차이(=유사도)구하는 KL divergence를 사용함
 - \circ 모든 P^l 과 S^l 의 row에 대응되는 이산 분포를 KL divergence 계산
 - o point-wise별(=each time point) AssDis을 구할 수 있음
 - 이상치는 정상치보다 smaller AssDis를 가지며, 이를 통해 구분할 수 있음
 - : 이상치의 경우 P^l 와 S^l 가 유사한 분포를 띄지만 ightarrow Smaller AssDis

정상의 경우 가우시안 때문에 P^l 이 S^l 보다 Peak를 보일 것이다. ightarrow bigger AssDis

3.2 MINIMAX ASSOCIATION LEARNING

$$\mathcal{L}_{Total}(\widehat{\mathcal{X}}, \mathcal{P}, \mathcal{S}, \lambda; \mathcal{X}) = \|\mathcal{X} - \widehat{\mathcal{X}}\|_F^2 - \lambda \times \|\mathrm{AssDis}(\mathcal{P}, \mathcal{S}; \mathcal{X})\|_1$$

- loss function
 - \circ 왼쪽 식 : χ 의 reconstruction loss $\hat{\chi}$
 - 오른쪽 식 : trade off the loss terms으로 AssDis를 Maximize함
 - → AssDis를 직접 maximizing 하면 문제 발생 → minimax strategy 전략이 제안 됨

Minimax Strategy

- : AssDis를 직접 maximizing 하면
- → 가우스 커널의 scale 파라미터가 극단적으로 감소하여 prior-association이 무의미해짐
- → minimax strategy 전략이 제안 됨 (detach = stop gradient backpropagation)

Minimize Phase: $\mathcal{L}_{Total}(\widehat{\mathcal{X}}, \mathcal{P}, \mathcal{S}_{detach}, -\lambda; \mathcal{X})$

Maximize Phase: $\mathcal{L}_{Total}(\widehat{\mathcal{X}}, \mathcal{P}_{detach}, \mathcal{S}, \lambda; \mathcal{X}),$

- minimize phase (S^l \equiv detach)
 - : P^l 를 raw series로 부터 학습된 S^l 에 근사 ightarrow P^l 를 다양한 시간 패턴에 적응하게 함
- maximize phase ($P^l \equiv$ detach)
 - : AssDis 최대화를 위해 S^l 를 최적화, S^l 이 더 attention을 하게 함

Association-based Anomaly Criterion

$$\operatorname{AnomalyScore}(\mathcal{X}) = \operatorname{Softmax}\Big(- \operatorname{AssDis}(\mathcal{P}, \mathcal{S}; \mathcal{X}) \Big) \odot \left[\|\mathcal{X}_{i,:} - \widehat{\mathcal{X}}_{i,:}\|_2^2 \right]_{i=1,\cdots,N}$$

: temporal representation(시간 표현) and the distinguishable AssDis를 둘 다 취함

AnomalyScore(
$$\mathcal{X}$$
) $\in \mathbb{R}^{N \times 1}$

: Point-wise AnomalyScore(χ) \neq lower AssDis → higher anomaly score

EXPERIMENTS

dataset

Benchmarks	Applications	Dimension	Window	#Training	#Validation	#Test (labeled)	AR (Truth)
SMD	Server	38	100	566,724	141,681	708,420	0.042
PSM	Server	25	100	105,984	26,497	87,841	0.278
MSL	Space	55	100	46,653	11,664	73,729	0.105
SMAP	Space	25	100	108,146	27,037	427,617	0.128
SWaT	Water	51	100	396,000	99,000	449,919	0.121
NeurIPS-TS	Various Anomalies	1	100	20,000	10,000	20,000	0.018

Implementation

- non-overlapped sliding window to sub-series
- sliding window fixed size = 100
- Anomaly Transformer contains 3 layers
- hidden states d_{model} = 512
- number of heads h = 8
- λ = 3 (trade-off two parts of the loss function)

Result

Table 1: Quantitative results for Anomaly Transformer (Ours) in five real-world datasets. The P, R and F1 represent the precision, recall and F1-score (as %) respectively. F1-score is the harmonic mean of precision and recall. For these three metrics, a higher value indicates a better performance.

Dataset	SMD			MSL			SMAP			SWaT			PSM		
Metric	P	R	F1												
OCSVM	44.34	76.72	56.19	59.78	86.87	70.82	53.85	59.07	56.34	45.39	49.22	47.23	62.75	80.89	70.67
IsolationForest	42.31	73.29	53.64	53.94	86.54	66.45	52.39	59.07	55.53	49.29	44.95	47.02	76.09	92.45	83.48
LOF	56.34	39.86	46.68	47.72	85.25	61.18	58.93	56.33	57.60	72.15	65.43	68.62	57.89	90.49	70.61
Deep-SVDD	78.54	79.67	79.10	91.92	76.63	83.58	89.93	56.02	69.04	80.42	84.45	82.39	95.41	86.49	90.73
DAGMM	67.30	49.89	57.30	89.60	63.93	74.62	86.45	56.73	68.51	89.92	57.84	70.40	93.49	70.03	80.08
MMPCACD	71.20	79.28	75.02	81.42	61.31	69.95	88.61	75.84	81.73	82.52	68.29	74.73	76.26	78.35	77.29
VAR	78.35	70.26	74.08	74.68	81.42	77.90	81.38	53.88	64.83	81.59	60.29	69.34	90.71	83.82	87.13
LSTM	78.55	85.28	81.78	85.45	82.50	83.95	89.41	78.13	83.39	86.15	83.27	84.69	76.93	89.64	82.80
CL-MPPCA	82.36	76.07	79.09	73.71	88.54	80.44	86.13	63.16	72.88	76.78	81.50	79.07	56.02	99.93	71.80
ITAD	86.22	73.71	79.48	69.44	84.09	76.07	82.42	66.89	73.85	63.13	52.08	57.08	72.80	64.02	68.13
LSTM-VAE	75.76	90.08	82.30	85.49	79.94	82.62	92.20	67.75	78.10	76.00	89.50	82.20	73.62	89.92	80.96
BeatGAN	72.90	84.09	78.10	89.75	85.42	87.53	92.38	55.85	69.61	64.01	87.46	73.92	90.30	93.84	92.04
OmniAnomaly	83.68	86.82	85.22	89.02	86.37	87.67	92.49	81.99	86.92	81.42	84.30	82.83	88.39	74.46	80.83
InterFusion	87.02	85.43	86.22	81.28	92.70	86.62	89.77	88.52	89.14	80.59	85.58	83.01	83.61	83.45	83.52
THOC	79.76	90.95	84.99	88.45	90.97	89.69	92.06	89.34	90.68	83.94	86.36	85.13	88.14	90.99	89.54
Ours	89.40	95.45	92.33	92.09	95.15	93.59	94.13	99.40	96.69	91.55	96.73	94.07	96.91	98.90	97.89

• 성능이 타 모델 대비 뛰어나게 좋은 것을 확인할 수 있다.

• 이상치 유형 별 시각화 (빨간 박스는 탐지에 실패) → Anomaly Transformer는 전부 잡아냄

Ablation study

	0	a	<u> </u>	1	, ·		-		
Architecture	Anomaly Criterion	Prior- Association	Optimization Strategy	SMD	MSL	SMAP	SWaT	PSM Avg F1 (as %)	
Transformer	Recon	×	×	79.72	76.64	73.74	74.56	78.43 76.62	-
	Recon	Learnable	Minmax	71.35	78.61	69.12	81.53	80.40 76.20) (
Anomaly	AssDis	Learnable	Minmax	87.57	90.50	90.98	93.21	95.47 91.55	K
Transformer	Assoc	Fix \	Max	83.95	82.17	70.65	79.46	79.04 79.05	2
	Assoc	Learnable	Max	88.88	85.20	87.84	81.65	93.83 87.48	Y O
*final	Assoc	Learnable	Minmax	92.33	93.59	96.90	94.07	97.89 94.96	10
									_

1. AssDis 사용 : 15.35% 향상

2. Prior-Association 사용 : 8.43% 향상

3. Optimization Strategy 사용 : 7.48% 향상

Figure 6: Learned scale parameter σ for different types of anomalies (highlight in red).

• 가우시안 분포의 σ 파라미터가 작은 값(=뾰족) 일 때 이상치를 나타낸다. (시그마의 중요도)

코드 실행 결과

https://github.com/thuml/Anomaly-Transformer

: Dataset - MSL / SMAP / SMD / PSM (SWaT 제외하고 有)

코드도 잘 돌아가고 직관적으로 볼 수 있지만, minmax 전략이 너무 간단하게 보여서 이해가 안감..

Minimax strategy
loss1.backward(retain_graph=True)
self.optimizer.step()
loss2.backward()
self.optimizer.step()

[참고] 시계열 이상치 유형

Figure 3: Examples of point (left), contextual (middle), and collective (right) outliers.

Figure 1. Illustration of three types of nottern outliers