Wykład 5 Własności przekształceń liniowych cd.

Wniosek 1 Przekształcenie liniowe $\phi: V \to W$ jest nieosobliwe \Leftrightarrow

$$\ker \phi = \{ \mathbb{O}_V \}$$

 $\Leftrightarrow r(\phi) = dimV \ (je\dot{z}eli\ V\ ma\ skończony\ wymiar).$

Definicja 1 Przekształcenie liniowe nieosobliwe $\phi: V \to W$ nazywamy **izomorfizmem**, jeśli jest "na", tzn. Im $\phi = W$. V i W nazywamy wtedy przestrzeniami **izomorficznymi**.

Uwaga. Jeżeli przestrzenie liniowe V i W są izomorficzne, to $\dim V = \dim W$. Jeśli $\phi: V \to W$ - izomorfizm przestrzeni liniowych i $\{v_1, \ldots, v_n\}$ - baza przestrzeni V, to $\{\phi(v_1), \ldots, \phi(v_n)\}$ - baza przestrzeni W. **Uwaga.** Jeżeli $\dim V = \dim W < \infty$ (przestrzenie skończonego wymiaru), to dla każdego przekształcenia liniowego $\phi: V \to W$ następujące warunki są równoważne:

- 1. ϕ jest nieosobliwe,
- 2. ϕ jest izomorfizmem.

Twierdzenie 2 Każda przestrzeń liniowa wymiaru n nad ciałem $\mathbb K$ jest izomorficzna z przestrzenią $\mathbb K^n$.

Macierze

Niech V, W - przestrzenie liniowe skończonego wymiaru nad tym samym ciałem \mathbb{K} : (v_1, \ldots, v_n) - baza $V, (w_1, \ldots, w_m)$ - baza W.

 $\phi: V \to W$ - dowolne przekształcenie liniowe, jest ono wyznaczone (jednoznacznie) przez $\phi(v_1), \ldots, \phi(v_n)$. Każdy z wektorów $\phi(v_i) \in W$ jest kombinacją liniową wektorów z bazy W:

$$\phi(v_1) = a_{11}w_1 \oplus a_{21}w_2 \oplus \cdots \oplus a_{m1}w_m$$

$$\phi(v_2) = a_{12}w_1 \oplus a_{22}w_2 \oplus \cdots \oplus a_{m2}w_m$$

$$\vdots$$

$$\phi(v_n) = a_{1n}w_1 \oplus a_{2n}w_2 \oplus \cdots \oplus a_{mn}w_m$$

Ze współczynników a_{ij} tworzymy tablicę prostokatną o m wierszach i n kolumnach:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Nazywamy ją macierzą przekształcenia ϕ w bazach $\mathcal{A} = (v_1, \dots, v_n)$ i $\mathcal{B} = (w_1, \dots, w_m)$, ozn. $M_{\mathcal{B}}^{\mathcal{A}}(\phi)$.

Kolumny macierzy $M_{\mathcal{B}}^{\mathcal{A}}(\phi)$ są złożone ze współrzędnych wektorów $\phi(v_i)$ w bazie \mathcal{B} .

Definicja 2 Macierzą o m wierszach i n kolumnach o elementach z ciała \mathbb{K} nazywamy funkcję $A: \{1, \ldots, m\} \times \{1, \ldots, n\} \to \mathbb{K}, (i, j) \mapsto a_{ij}.$

Oznaczenie. Macierz wymiaru $m \times n$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}]_{m \times n} = [a_{ij}]_{i} = 1, \dots, m$$

$$j = 1, \dots, n$$

Jeśli m=n, to A macierz kwadratowa stopnia n. Macierz zerowa: $a_{ij}=0, \forall i=1,\ldots,m \ \forall j=1,\ldots,n$.

Określamy działania na macierzach tak, aby odpowiadały działaniom na przekształceniach liniowych.

Definicja 3 Sumą macierzy $A = [a_{ij}]_{m \times n}$ i $B = [b_{ij}]_{m \times n}$ nazywamy macierz

$$A + B = [a_{ij} + b_{ij}]_{m \times n}.$$

Definicja 4 *Iloczynem macierzy* $A = [a_{ij}]_{m \times n}$ *przez element* $\alpha \in \mathbb{K}$ *nazywamy macierz*

$$\alpha \cdot A = [\alpha \cdot a_{ij}]_{m \times n}.$$

Uwaga. Zbiór macierzy wymiaru $m \times n$ o elementach z ciała \mathbb{K} (ozn. $M_{m \times n}(\mathbb{K})$) z dodawaniem i mnożeniem przez skalar zdefiniowanymi jak wyżej jest przestrzenią liniową nad ciałem \mathbb{K} .

Jest ona izomorficzna z przestrzenią liniową $\mathbb{K}^{m \cdot n}$ nad ciałem \mathbb{K} .

 $M_n(\mathbb{K})$ - zbiór macierzy kwadratowych stopnia n o elementach z ciała \mathbb{K} .