

### <u>Sorozatok összefoglalás</u>

**<u>Definíció:</u>** A sorozat a (pozitív) természetes számokon értelmezett függvény. Az  $a_1$ ;  $a_2$ ;  $a_3$ ; ...  $a_k$  ... sorozatot  $a_n$ -nel jelöljük.

Def: Egy sorozat **korlátos**, ha létezik K, hogy a sorozat minden elemére  $(n \in \mathbb{N})$ ,  $|a_n| \leq K$ .

Def: Egy sorozat **monoton nő**, ha minden  $n \in \mathbb{N}$  esetén  $a_n \le a_{n+1}$ . Szigorú monotonitás esetén az egyenlőség sincs megengedve.

Def: Egy sorozat **monoton csökken**, ha minden  $n \in \mathbb{N}$  esetén  $a_n \ge a_{n+1}$ . Szigorú monotonitás esetén az egyenlőség sincs megengedve.

#### Műveletek sorozatokkal:

$$\lambda(a_n) \coloneqq (\lambda a_n) \quad (a_n) + (b_n) \coloneqq (a_n + b_n) \quad (a_n)(b_n) \coloneqq (a_n \cdot b_n) \quad \text{ ha } b_n \neq 0, \frac{(a_n)}{(b_n)} \coloneqq \left(\frac{a_n}{b_n}\right)$$

#### Sorozat határértéke:

Def: Azt mondjuk, hogy egy  $a_n$  sorozat **konvergens**, ha létezik egy olyan A valós szám, melyre teljesül, hogy bármely  $\varepsilon > 0$  hibakorlát esetén található olyan  $N(\varepsilon)$  küszöbindex, hogy minden  $n > N(\varepsilon)$  esetén  $|a_n - A| < \varepsilon$ . Azt mondjuk, hogy A a sorozat határértéke, jelöléssel:  $\lim a_n = A$ .

Def: Ha  $a_n$  divergens, de bármely K valós számhoz találhatunk olyan N(K) küszöbindexet, hogy bármely n > N(K) esetén  $a_n > K$ , akkor azt mondjuk, hogy **a sorozat határértéke**  $\infty$ . Jelöléssel:  $\lim a_n = \infty$ . (ettől még divergens!!!) Hasonlóan lehet  $-\infty$  határértéket definiálni.

Tétel: A határérték egyértelmű.

Tétel: Ha  $\lim a_n = A$  és  $\lim b_n = B$ , akkor  $\lim (a_n \pm b_n) = A \pm B$ .

Ha  $\lim a_n = A$ , akkor  $\lim c \cdot a_n = c A$ .

Ha  $\lim a_n = 0$  és  $\lim b_n = 0$ , akkor  $\lim a_n b_n = 0$ 

Ha  $\lim a_n = A$  és  $\lim b_n = B$ , akkor  $\lim a_n b_n = AB$ 

Ha  $\lim a_n = 0$  és  $b_n$  korlátos akkor  $\lim a_n b_n = 0$ 

Ha  $\lim a_n = A$ , akkor  $\lim |a_n| = |A|$ 

Ha  $\lim b_n = B \neq 0$ , akkor  $\lim \frac{1}{b_n} = \frac{1}{B}$ 

Ha  $\lim b_n = B \neq 0$  és  $\lim a_n = A$ , akkor  $\lim \frac{a_n}{b_n} = \frac{A}{B}$ 

Ha  $a_n \ge 0$  és  $\lim a_n = A \ge 0$ , akkor  $\lim \sqrt{a_n} = \sqrt{A}$ 

Ha  $\lim a_n = \infty$ , akkor  $\lim \frac{1}{a_n} = 0$ 

Ha  $\lim a_n = 0$ , akkor  $\lim \frac{1}{|a_n|} = \infty$ 

Tétel: Ha  $a_n$   $b_n$  olyanok, hogy minden n esetén  $a_n \le b_n$ , akkor  $\lim a_n \le \lim b_n$ .

Tétel: (rendőrelv/szendvics szabály, stb...) Ha  $a_n, b_n$  és  $c_n$  olyanok, hogy minden n esetén  $a_n \le b_n \le c_n$ , továbbá tudjuk, hogy  $\lim a_n = \lim c_n = A$ , akkor  $\lim b_n = A$  szintén.

Tétel: Ha  $a_n$  monoton és korlátos, akkor konvergens.

Tétel: (nevezetes határértékek)

$$\lim a^n = \begin{cases} 0, & ha \ |a| < 1 \\ 1, & ha \ a = 1 \\ \infty, & ha \ a > 1 \\ divergens \ egy\'ebk\'ent \end{cases} \qquad \begin{aligned} \lim n^k = \infty, & \text{ha } k \ge 1 \\ \lim \frac{1}{n} = 0, & \lim \frac{1}{n^k} = 0, & \text{ha } k \ge 1 \\ \lim n^k a^n = 0, & \text{ha } |a| < 1\'es \ k \in \mathbf{N} \end{aligned}$$

#### BME Bevezető Matematika BMETE90AX40



Czirók Emese

$$\lim \sqrt[n]{p} = 1, \quad ha \ p > 0$$

$$\lim \sqrt[n]{n} = 1$$

$$\lim \frac{n^n}{n!} = \infty$$

$$\lim \frac{n!}{2^n} = \infty$$

$$\lim \frac{2^n}{n^k} = \infty \quad k \ge 1$$

$$\lim \frac{n^l}{n^{\frac{1}{k}}} = \infty \quad k, l \ge 1$$

$$\lim \frac{n^{\frac{1}{k}}}{\log n} = \infty$$

$$\lim \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim \left(1 + \frac{\alpha}{n}\right)^n = e^{\alpha}$$

Tehát a nagyságrendi sorrend:

$$n^n \gg n! \gg 2^n \gg n^k \gg n^{\frac{1}{k}} \gg \log n$$

Tétel: Ha  $\lim a_n = A$  létezik, akkor  $a_n$  bármely részsorozata is A –hoz tart.

Tétel: Minden sorozatnak van monoton részsorozata.

Tétel: Korlátos sorozatnak van konvergens részsorozata.

Tétel: (Cauchy-féle konvergencia kritérium). Az  $a_n$  sorozat akkor és csak akkor konvergens, ha minden  $\varepsilon > 0$  számhoz létezik egy  $N(\varepsilon)$  küszöbindex, hogy minden  $n, m > N(\varepsilon)$  esetén  $|a_n - a_m| < \varepsilon$ .

Def: Egy  $a_n$  számsorozat Cauchy-sorozat, ha minden  $\varepsilon > 0$  számhoz létezik egy  $N(\varepsilon)$  küszöbindex, hogy minden  $n, m > N(\varepsilon)$  esetén  $|a_n - a_m| < \varepsilon$ . (Vagyis egy sorozat akkor és csak akkor konvergens, ha Cauchysorozat.)

### Sorozat torlódási pontjai:

Def: A  $t \in \mathbf{R}$  vagy a  $t = \pm \infty$  az  $a_n$  sorozat torlódási pontja, ha a t minden környezete a sorozat végtelen sok elemét tartalmazza. (Tehát létezik az  $a_n$  sorozatnak egy részsorozata, amely t-hez tart. )

Tétel: Egy valós számsorozat akkor és csak akkor konvergens, ha egy valós szám az egyetlen torlódási pontja. ( $\lim a_n = \infty$ , ha  $t = \infty$  az egyetlen torlódási pontja,  $-\infty$  hasonlóan.)

Def:  $S := az \ a_n$  sorozat torlódási pontjainak halmaza.

Tétel: Ha a torlódási pontok halmaza korlátos, akkor van ezek közül legnagyobb, vagyis legnagyobb torlódási pont.

Def (limesz szuperior): 
$$\limsup a_n = \overline{\lim} \ a_n \coloneqq \begin{cases} legnagyobb \ torlódási \ pont, & ha S \ felülről \ korlátos \\ -\infty, & ha S = \emptyset \ vagy \ S = \{-\infty\} \\ \infty, & különben \end{cases}$$
Def (limesz inferior):  $\liminf a_n = \underline{\lim} \ a_n \coloneqq \begin{cases} legkisebb \ torlódási \ pont, & ha S \ alulról \ korlátos \\ \infty, & ha S = \emptyset \ vagy \ S = \{\infty\} \\ -\infty, & különben \end{cases}$ 

Tétel: Ha a sorozatnak létezik határértéke, akkor  $\underline{\lim} a_n = \overline{\lim} a_n = \lim a_n$ .

### Mintapéldák:

### 1. Számoljuk (definíció szerint) a határértéket!

a. 
$$a_n = \frac{n^3 + 3n}{n^2 + 2}$$

Megoldás:

$$\lim \frac{n^3 + 3n}{n^2 + 2} = \infty, \text{ mivel}$$

$$\frac{n^3 + 3n}{n^2 + 2} \ge \frac{n^3}{n^2 + 2} \ge \frac{n^3}{n^2 + 2n^2} = \frac{n^3}{3n^2} = \frac{n}{3} > K \qquad \rightarrow \quad n > 3K \qquad N(K) \ge [3K]$$
Vagyis bármely  $K$  értékhez találtunk egy küszöbindexet  $(3K)$  –t, hogy az annál nagyottagala mén histos nagyokhala mint  $K$ . Egyerint lim  $a = -\infty$ 

Vagyis bármely K értékhez találtunk egy küszöbindexet (3K) –t, hogy az annál nagyobb indexű tagok, már biztos nagyobbak, mint K. Eszerint  $\lim a_n = \infty$ .

b. 
$$-n^2 + 3\sqrt{n} - 9$$

Megoldás:

$$\lim_{n \to \infty} -n^2 + 3\sqrt{n} - 9 = -\infty$$
, mivel

$$-n^2 + 3\sqrt{n} - 9 \le -n^2 + 3\sqrt{n} \le^* - n^2 + \frac{n^2}{2} = -\frac{n^2}{2} \le K \qquad \to -n^2 \le 2K \qquad \to n \ge \sqrt{-2K}$$

A \* egyenlőtlenség akkor igaz, ha  $3\sqrt{n} < \frac{n}{2}$ . Ezt könnyű belátni, hogy a 37. tagtól teljesül:

$$3\sqrt{n} < \frac{n}{2} \leftrightarrow 6 < \frac{n}{\sqrt{n}} \leftrightarrow 6 < \sqrt{n} \leftrightarrow 36 < n$$
.

Tehát a fenti becslés működik, ha  $n \ge 37$ . Nézzük, tehát hogy K-hoz milyen N(K) küszöbindex kell.

$$N(K) \ge \max\{37, \left[\sqrt{-2K}\right]\}$$

### 2. Adj meg egy megfelelő küszöbindexet!

a. 
$$a_n = \frac{3n^2 + 4n + 7}{n^2 + n + 1} \to 3$$
,  $N(\varepsilon) = ?$ 

Megoldás:

Valaki megmondta, hogy a határérték 3. Tehát a határérték definíciója szerint minden  $\varepsilon$ -hoz van egy küszöbindex melyre:

$$|a_n - A| \le \varepsilon$$

$$\left| \frac{3n^2 + 4n + 7}{n^2 + n + 1} - 3 \right| = \left| \frac{3n^2 + 4n + 7}{n^2 + n + 1} - \frac{3n^2 + 3n + 3}{n^2 + n + 1} \right| = \left| \frac{3n^2 + 4n + 7 - (3n^2 + 3n + 3)}{n^2 + n + 1} \right|$$

$$= \left| \frac{n + 4}{n^2 + n + 1} \right| =^* \frac{n + 4}{n^2 + n + 1} \le \frac{n + 4n}{n^2 + n + 1} \le \frac{5n}{n^2} \le \frac{5n}{n^2} \le \frac{5}{n} \le \varepsilon \quad \to \quad \frac{5}{\varepsilon} \le n$$

A \* egyenlőség teljesül, hiszen minden  $n \in \mathbb{N}$  esetén mind a számláló, mind a nevező pozitív.

Tehát az  $\left[\frac{5}{\varepsilon}\right]$  épp jó küszöbindex lesz. Tehát  $N(\varepsilon) \ge \left[\frac{5}{\varepsilon}\right]$ .

b. 
$$a_n = \frac{10^9 - n^3}{4n^5 + 2n^3 - 6n} \to 0$$
,  $N(\varepsilon) = ?$ 

Megoldás:

Megint valaki "megsúgta", hogy mi a határérték. Tehát a definíció alapján:

$$|a_n - A| \leq \varepsilon$$

$$\left| \frac{10^9 - n^3}{4n^5 + 3n^3 - 6n} - 0 \right| = \left| \frac{10^9 - n^3}{4n^5 + 3n^3 - 6n} \right| = \frac{n^3 - 10^9}{4n^5 + 3n^3 - 6n} \le \frac{n^3}{4n^5 + 3n^3 - 6n} \le \frac{n^3}{4n^5} \le \frac{1}{4n^2} \le \varepsilon$$

$$\rightarrow \frac{1}{4\varepsilon} \le n^2 \quad \rightarrow \quad \sqrt{\frac{1}{4\varepsilon}} \le n$$

A \* teljesül abban az esetben, ha  $10^9 < n^3$  azaz ha  $10^3 < n$ , hiszen ebben az esetben a számláló negatív, a nevező pozitív. Vigyázzunk arra, hogy a küszöbindex legalább ekkora legyen.

Tehát a küszöbindexnek épp megfelel a  $\sqrt{\frac{1}{4\varepsilon}}$  és a  $10^3$  közül a nagyobbik.

Tehát: 
$$N(\varepsilon) \ge \max \left\{ \sqrt[5]{\frac{10^9}{4\varepsilon}}, 10^3 \right\}$$
.

### Adjuk meg a határértéket!

a. 
$$\lim \frac{2n^4 + 3n + 6}{3n^4 - 8n^2 + 5n} = ?$$

Megoldás:

 $\frac{polinom}{polinom}$  típusú sorozat határértékének vizsgálatakor mindig egyszerűsítsünk a legnagyobb kitevőjű n hatvánnyal!



Ez ebben az esetben  $n^4$ 

$$\lim \frac{2n^4 + 3n + 6}{3n^4 - 8n^2 + 5n} = \lim \frac{2\frac{n^4}{n^4} + 3\frac{n}{n^4} + 6\frac{1}{n^4}}{3\frac{n^4}{n^4} - 8\frac{n^2}{n^4} + 5\frac{n}{n^4}} = \lim \frac{2 + 3\frac{1}{n^3} + 6\frac{1}{n^4}}{3 + 8\frac{1}{n^2} + 5\frac{1}{n^3}} = \frac{2 + 3 \cdot 0 + 6 \cdot 0}{3 + 8 \cdot 0 + 5 \cdot 0} = \frac{2}{3}$$

Az utolsó előtti lépésben kihasználtuk, hogy  $\frac{1}{n^k} \to 0$ , ha  $k \ge 1$ . Szintén kihasználjuk, hogy a határértékek ha léteznek, akkor összeadódnak.

b. 
$$\lim \frac{n^2 + 8n - 3}{5n^5 + 3n^3 + 1} = ?$$

Megoldás:

Ismét egyszerűsítsünk a legnagyobb kitevőjű n hatvánnyal, ez most  $n^5$ .

$$\lim \frac{n^2 + 8n - 3}{5n^5 + 3n^3 + 1} = \lim \frac{\frac{n^2}{n^5} + 8\frac{n}{n^5} - 3\frac{1}{n^5}}{5\frac{n^5}{n^5} + 3\frac{n^3}{n^5} + 1\frac{1}{n^5}} = \lim \frac{\frac{1}{n^3} + 8\frac{1}{n^4} - 3\frac{1}{n^5}}{5 + 3\frac{1}{n^2} + 1\frac{1}{n^5}} = \frac{0 + 8 \cdot 0 - 3 \cdot 0}{5 + 3 \cdot 0 + 0} = 0$$

Felhasználtuk, hogy  $\frac{1}{n^k} \to 0$ , ha  $k \ge 1$ , hogy a határértékek ha léteznek, akkor összeadódnak.

c. 
$$\lim \frac{n^4 + 8n^2 - 1}{n^2 + 2n + 3} = ?$$

Megoldás:

Ismét egyszerűsíthetünk a legnagyobb kitevővel, ami jelen esetben  $n^4$ .

$$\lim \frac{n^4 + 8n^2 - 1}{n^2 + 2n + 3} = \lim \frac{\frac{n^4}{n^4} + 8\frac{n^2}{n^4} - 1\frac{1}{n^4}}{\frac{n^2}{n^4} + 2\frac{n}{n^4} + 3\frac{1}{n^4}} = \lim \frac{1 + 8\frac{1}{n^2} - 1\frac{1}{n^4}}{\frac{1}{n^2} + 2\frac{1}{n^3} + 3\frac{1}{n^4}} = \frac{1 + 8 \cdot 0 - 1 \cdot 0}{0 + 2 \cdot 0 + 3 \cdot 0} = \frac{1}{0} = \infty$$

Felhasználtuk, hogy  $\frac{1}{n^k} \to 0$ , ha  $k \ge 1$ , hogy a határértékek ha léteznek, akkor összeadódnak. Figyelni kell, hogy az  $\frac{1}{0}$  határérték nem automatikusan  $\infty$ !!! Onnan tudjuk, hogy  $+\infty$  (és nem  $-\infty$ ), hogy minden  $n \in \mathbb{N}$  esetén mind a számláló, mind a nevező pozitív, így a tört értéke is pozitív!

d. 
$$\lim \frac{-n^5+6n^2+1}{n^3-2n+5} = ?$$

Megoldás:

Ismét egyszerűsíthetünk a legnagyobb kitevővel, ami jelen esetben  $n^5$ .

$$\lim \frac{-n^5 + 6n^2 + 1}{n^3 - 2n + 5} = \lim \frac{\frac{-n^5}{n^5} + 6\frac{n^2}{n^5} + 1\frac{1}{n^5}}{\frac{n^3}{n^5} - 2\frac{n}{n^5} + 5\frac{1}{n^5}} = \lim \frac{-1 + 6\frac{1}{n^3} + 1\frac{1}{n^5}}{\frac{1}{n^2} - 2\frac{1}{n^4} + 5\frac{1}{n^5}} = \frac{-1 + 6 \cdot 0 + 1 \cdot 0}{0 - 2 \cdot 0 + 5 \cdot 0} = \frac{-1}{0} = -\infty$$

Felhasználtuk, hogy  $\frac{1}{n^k} \to 0$ , ha  $k \ge 1$ , hogy a határértékek ha léteznek, akkor összeadódnak.

Figyelni kell, hogy az  $\frac{1}{0}$  határérték nem automatikusan  $\infty$ !!! Onnan tudjuk, hogy itt - $\infty$  hogy "elég nagy"  $n \in \mathbb{N}$  esetén (az elég nagy jelen esetben akkora, hogy  $n^5 > 6n^2 + 1$ , vagyis ha n > 2) a számláló negatív, míg a nevező pozitív, így a tört értéke is a második tagtól kezdve mindig negatív!

e. 
$$\lim \frac{n^{\frac{2}{3}} - 3\sqrt{2n} + 1}{n^2 + n^{\sqrt{3}}} = ?$$

Megoldás:

Ha jobban megnézzük, akkor ebben a kifejezésben is csak n hatványok, szerepelnek, mind a nevezőben, mind a számlálóban. Itt is a legnagyobb kitevőjű n hatvánnyal érdemes egyszerűsíteni. Ahhoz, hogy könnyen látsszon, hogy melyik is ez érdemes mindent valóban n hatványként felírni!



$$\lim \frac{n^{\frac{2}{3}} - 3\sqrt{2n} + 1}{n^{5} + n^{\sqrt{3}}} = \lim \frac{n^{\frac{2}{3}} - 3\sqrt{2}n^{\frac{1}{2}} + 1}{n^{2} + n^{\sqrt{3}}} = \lim \frac{n^{\frac{2}{3}} - 3\sqrt{2}\frac{n^{\frac{1}{2}}}{n^{2}} + 1\frac{1}{n^{2}}}{\frac{n^{2}}{n^{2}} + \frac{n^{\sqrt{3}}}{n^{2}}} = \lim \frac{\frac{1}{n^{\frac{4}{3}}} - 3\sqrt{2}\frac{1}{n^{\frac{3}{3}}} + 1\frac{1}{n^{2}}}{1 + \frac{1}{n^{2-\sqrt{3}}}}$$
$$= \frac{0 - 3\sqrt{2} \cdot 0 + 0}{1 + 0} = \frac{0}{1} = 0$$

Felhasználtuk, hogy  $\frac{1}{n^k} \to 0$ , ha  $k \ge 1$ , hogy a határértékek ha léteznek, akkor összeadódnak.

# f. $\lim \frac{\binom{n}{2}}{\binom{n}{3}} = ?$

Megoldás:

A  $\frac{faktoriális}{faktoriális}$  típusú határértékektől nem szabad megijedni, a faktoriálisak egyszerűsítése után gyakran egyszerű  $\frac{polinom}{polinom}$  típusú kifejezések maradnak. Ugyanez vonatkozik az  $\binom{n}{k}$  -t tartalmazó kifejezésekre.

$$\lim \frac{\binom{n}{2}}{\binom{n}{3}} = \lim \frac{\frac{n!}{(n-2)! \, 2!}}{\frac{n!}{(n-3)! \, 3!}} = \lim \left(\frac{n!}{(n-2)! \cdot 2!} : \frac{n!}{(n-3)! \cdot 3!}\right) = \lim \left(\frac{n!}{(n-2)! \cdot 2!} \cdot \frac{(n-3)! \cdot 3!}{n!}\right)$$

$$= \lim \frac{(n-3)! \cdot 3!}{(n-2)! \cdot 2!} = \lim \frac{3! \cdot (n-3) \cdot (n-4) \cdot \dots \cdot 1}{2! \cdot (n-2) \cdot (n-3) \cdot (n-4) \cdot \dots \cdot 1} = \lim \frac{3!}{2! \cdot (n-2)} = \lim \frac{6}{2(n-2)} = \lim \frac{6}{2n-2} = \lim \frac{6\frac{1}{n}}{2\frac{n}{n} - 2\frac{1}{n}} = \frac{0}{2-2 \cdot 0} = \frac{0}{2} = 0$$

Felhasználtuk, hogy  $\frac{1}{n^k} \to 0$ , ha  $k \ge 1$ , hogy a határértékek ha léteznek, akkor összeadódnak.

#### 4. Számoljuk ki a következő határértékeket!

a.  $\lim \sqrt{9n^2 + 7} - \sqrt{9n^2 + 2n + 5} = ?$ 

Megoldás:

A " $\infty - \infty$ " típusú határértékekre nem tanultunk tételeket, ennek értéke bármi lehet. Így "ügyeskednünk" kell.

 $a-b \ (,,\infty-\infty'')$  típusú kifejezéseket megszorozhatjuk  $\frac{a+b}{a+b}$ -vel, így a határértékük általában könnyebben kiszámítható.

$$\lim \sqrt{9n^2 + 7} - \sqrt{9n^2 + 2n + 5} = \lim \left( \sqrt{9n^2 + 7} - \sqrt{9n^2 + 2n + 5} \right) \cdot \frac{\sqrt{9n^2 + 7} + \sqrt{9n^2 + 2n + 5}}{\sqrt{9n^2 + 7} + \sqrt{9n^2 + 2n + 5}}$$

$$= \lim \frac{(9n^2 + 7) - (9n^2 + 2n + 5)}{\sqrt{9n^2 + 7} + \sqrt{9n^2 + 2n + 5}} = \lim \frac{-2n + 2}{\sqrt{9n^2 + 7} + \sqrt{9n^2 + 2n + 5}}$$

Megint egyszerűsítenünk kellene a legnagyobb n hatvánnyal. Vegyük észre, hogy a számlálóban ez  $n^1$ , míg a nevezőben ez  $\sim \sqrt{n^2} = n$  szintén. Tehát egyszerűsítsünk n-nel.

$$\lim \frac{-2n+2}{\sqrt{9n^2+7}+\sqrt{9n^2+2n+5}} = \lim \frac{-2\frac{n}{n}+2\frac{1}{n}}{\frac{\sqrt{9n^2+7}}{n}+\frac{\sqrt{9n^2+2n+5}}{n}}$$

$$= \lim \frac{-2+2\frac{1}{n}}{\sqrt{9\frac{n^2}{n^2}+7\frac{1}{n^2}}+\sqrt{9\frac{n^2}{n^2}+2\frac{n}{n^2}+5\frac{1}{n^2}}} = \lim \frac{-2+2\frac{1}{n}}{\sqrt{9+7\frac{1}{n^2}}+\sqrt{9+2\frac{1}{n}+5\frac{1}{n^2}}} = \frac{-2+2\cdot0}{\sqrt{9+7\cdot0}+\sqrt{9+2\cdot0+5\cdot0}} = \frac{-2}{3+3} = -\frac{1}{3}$$



Felhasználtuk, hogy  $\frac{1}{n^k} \to 0$ , ha  $k \ge 1$ , hogy a határértékek ha léteznek, akkor összeadódnak, illetve, hogy ha létezik a határérték, akkor  $\lim \sqrt{a_n} = \sqrt{\lim a_n}$ .

### b. $\lim \sqrt{4n^4 + n - 2} - 2n^2 = ?$

Megoldás:

Bármilyen más a-b típusú határértékkel is eljárhatunk ugyanúgy: szorozzuk meg  $\frac{a+b}{a+b}$ -vel

$$\lim \sqrt{4n^4 + n - 2} - 2n^2 = \lim \left( \sqrt{4n^4 + n - 2} - 2n^2 \right) \cdot \frac{\sqrt{4n^4 + n - 2} + 2n^2}{\sqrt{4n^4 + n - 2} + 2n^2}$$
$$= \lim \frac{(4n^4 + n - 2) - (4n^4)}{\sqrt{4n^4 + n - 2} + 2n^2} = \lim \frac{n - 2}{\sqrt{4n^4 + n - 2} + 2n^2}$$

A számlálóban a legnagyobb kitevő egyértelműen az n, míg a nevezőben  $\sim \sqrt{n^4}=n^2$  Tehát ezzel egyszerűsítsük a törtünket.

$$\lim \frac{n-2}{\sqrt{4n^4+n-2}+2n^2} = \lim \frac{\frac{n}{n^2}-2\frac{1}{n^2}}{\frac{\sqrt{4n^4+n-2}}{n^2}+\frac{2n^2}{n^2}} = \lim \frac{\frac{1}{n}-2\frac{1}{n^2}}{\sqrt{4\frac{n^4}{n^4}+\frac{n}{n^4}-2\frac{1}{n^4}}+2}$$
$$= \frac{0-2\cdot 0}{\sqrt{4+0-2\cdot 0}+2} = \frac{0}{4} = 0$$

Közben felhasználtuk, hogy  $\frac{1}{n^k} \to 0$ , ha  $k \ge 1$ , hogy a határértékek ha léteznek, akkor összeadódnak, illetve, hogy ha létezik a határérték, akkor  $\lim \sqrt{a_n} = \sqrt{\lim a_n}$ .

### c. $\lim \frac{1}{n-\sqrt{n^2+n+5}} = ?$

Megoldás:

A probléma ugyanaz, mint eddig, a  $\infty - \infty$  határértékkel nem tudunk mit kezdeni a nevezőben sem. Ekkor szintén bővíthetünk a két tag összegével.

$$\lim \frac{1}{n - \sqrt{n^2 + n + 5}} = \lim \frac{1}{n - \sqrt{n^2 + n + 5}} \cdot \frac{n + \sqrt{n^2 + n + 5}}{n + \sqrt{n^2 + n + 5}} = \lim \frac{n + \sqrt{n^2 + n + 5}}{n^2 - (n^2 + n + 5)}$$

$$= \lim \frac{n + \sqrt{n^2 + n + 5}}{-n - 5} = \lim \frac{\frac{n}{n} + \frac{\sqrt{n^2 + n + 5}}{n}}{\frac{-n}{n} - 5\frac{1}{n}} = \lim \frac{1 + \sqrt{\frac{n^2}{n^2} + \frac{n}{n^2} + 5\frac{1}{n^2}}}{-1 - 5\frac{1}{n}}$$

$$= \lim \frac{1 + \sqrt{1 + \frac{1}{n} + 5\frac{1}{n^2}}}{-1 - 5\frac{1}{n}} = \frac{1 + \sqrt{1 + 0 + 5 \cdot 0}}{-1 - 5 \cdot 0} = \frac{2}{-1} = -2$$

#### 5. Számoljuk ki a következő határértékeket!

## a. $\lim \frac{5^{n+2} + (-1)^n}{5^n} = ?$

Megoldás:

A csak exponenciális tagokat tartalmazó törtkifejezések miden tagját alakítsuk  $k \cdot a^n$  alakra (de legalábbis ugyanolyan kitevőkre), majd egyszerűsítsük a(z abszolút értékben) legnagyobb alapú taggal. Ez után tudjuk használni az  $a^n$  határértékére vonatkozó tételt. A legnagyobb alapú tag jelen estben  $5^n$ .



$$\lim \frac{5^{n+2} + (-1)^2}{5^n} = \lim \frac{5^n \cdot 5^2 + (-1)^n}{5^n} = \lim \frac{25 \cdot \frac{5^n}{5^n} + \frac{(-1)^n}{5^n}}{\frac{5^n}{5^n}} = \lim \frac{25 \cdot \left(\frac{5}{5}\right)^n + \left(\frac{-1}{5}\right)^n}{\left(\frac{5}{5}\right)^n}$$
$$= \frac{25 \cdot 1 + 0}{1} = 25$$

Felhasználtuk, hogy ha létezik, akkor a határértékek összeadódnak, illetve hogy  $a^n \to 0$ , ha |a| < 1.

# b. $\lim \frac{8^{n-1}+3^{n+3}}{2^{n+3}\cdot 3^n} = ?$

Megoldás:

$$\lim \frac{8^{n-1} + 3^{n+3}}{2^{n+3} \cdot 3^n} = \lim \frac{8^n \cdot 8^{-1} + 3^n \cdot 3^3}{2^3 \cdot 2^n \cdot 3^n} = \lim \frac{\frac{1}{8} \cdot 8^n + 27 \cdot 3^n}{8 \cdot (2 \cdot 3)^n} = \lim \frac{\frac{1}{8} \cdot 8^n + 27 \cdot 3^n}{8 \cdot 6^n}$$

Ebből az alakból már könnyen látszik, hogy a legnagyobb alapú tag a 8<sup>n</sup>.

$$\lim \frac{\frac{1}{8} \cdot 8^n + 27 \cdot 3^n}{8 \cdot 6^n} = \lim \frac{\frac{1}{8} \cdot \frac{8^n}{8^n} + 27 \cdot \frac{3^n}{8^n}}{8 \cdot \frac{6^n}{8^n}} = \lim \frac{\frac{1}{8} \cdot \left(\frac{8}{8}\right)^n + 27 \cdot \left(\frac{3}{8}\right)^n}{8 \cdot \left(\frac{6}{8}\right)^n} = \frac{\frac{1}{8} \cdot 1 + 27 \cdot 0}{8 \cdot 0} = \frac{\frac{1}{8}}{0} = \infty$$

A határérték azért lett  $\infty$  (és nem  $-\infty$ ), mert bármilyen  $n \in \mathbb{N}$  esetén mind a nevező, mind a számláló pozitív, így a tört értéke is minden esetben pozitív.

Felhasználtuk továbbá, hogy ha létezik, akkor a határértékek összeadódnak, illetve hogy  $a^n \to 0$ , ha |a| < 1.

### c. $\lim \frac{3^{2n+1}+2^{n+2}}{2^{n+2}\cdot 5^{n+1}} = ?$

Megoldás:

$$\lim \frac{3^{2n+1} + 2^{n+2}}{2^{n+2} \cdot 5^{n+1}} = \lim \frac{3 \cdot 3^{2n} + 2^2 \cdot 2^n}{2^2 \cdot 2^n \cdot 5 \cdot 5^n} = \lim \frac{3 \cdot (3^2)^n + 4 \cdot 2^n}{4 \cdot 2^n \cdot 5 \cdot 5^n} = \lim \frac{3 \cdot 9^n + 4 \cdot 2^n}{20 \cdot 2^n \cdot 5^n}$$

$$= \lim \frac{3 \cdot 9^n + 4 \cdot 2^n}{20 \cdot (2 \cdot 5)^n} = \lim \frac{3 \cdot 9^n + 4 \cdot 2^n}{20 \cdot (10)^n}$$

Innen már látszik, hogy a legnagyobb alapú tag a  $10^n$ .

Tehát:

$$\lim \frac{3 \cdot 9^n + 4 \cdot 2^n}{20 \cdot (10)^n} = \lim \frac{3 \cdot \frac{9^n}{10^n} + 4 \cdot \frac{2^n}{10^n}}{20 \cdot \frac{10^n}{10^n}} = \lim \frac{3 \cdot \left(\frac{9}{10}\right)^n + 4 \cdot \left(\frac{2}{10}\right)^n}{20 \cdot \left(\frac{10}{10}\right)^n} = \frac{3 \cdot 0 + 4 \cdot 0}{20 \cdot 1} = \frac{0}{20} = 0$$

### 6. Számoljuk ki az alábbi sorozatok határértékét!

### a. $\lim \frac{n^3 2^n + 3^n}{2^{2n} - 3n^3}$

Megoldás:

A csak exponenciális és n hatvány tagokat tartalmazó törtkifejezések határértékének kiszámításakor alakítsuk az exponenciális tagokat azonos kitevőjűvé, majd egyszerűsítsünk a legnagyobb alapú exponenciális taggal. Ez után már használhatjuk, hogy  $\frac{1}{n^k} \to 0$ , ha k > 0, hogy  $n^k a^n \to 0$ , ha |a| < 1, illetve, hogy  $a^n \to 0$  szintén ha |a| < 1.

$$\lim \frac{n^3 2^n + 3^n}{2^{2n} - 3n^3} = \lim \frac{n^3 2^n + 3^n}{2^{2^n} - 3n^3} = \lim \frac{n^3 2^n + 3^n}{4^n - 3n^3} = \lim \frac{n^3 \frac{2^n}{4^n} + \frac{3^n}{4^n}}{\frac{4^n}{4^n} - 3n^3 \frac{1}{4^n}} = \lim \frac{n^3 \left(\frac{2}{4}\right)^n + \left(\frac{3}{4}\right)^n}{1^n - 3n^3 \left(\frac{1}{4}\right)^n} = \frac{0 + 0}{1 - 0} = \frac{0}{1} = 0$$



### 7. Adjuk meg az alábbi sorozatok határértékét!

#### a. $\lim_{n \to \infty} \sqrt[n]{2n^3 + 3}$

Megoldás:

Az  $\sqrt[n]{n hatványok}$  típusú kifejezések határértékét általában rendőrelv felhasználásával tudjuk kiszámolni. Becsüljük a gyökjel alatti tagok mindegyikét a legkisebbel, illetve a legnagyobbal. Így egy alsó és felső becsléshez jutunk, melyek határértékét ki tudjuk számolni.

$$\sqrt[n]{3} \le \sqrt[n]{2n^3 + 3} \le \sqrt[n]{2n^3 + 3n^3} \le \sqrt[n]{5n^3} = \sqrt[n]{5} \cdot (\sqrt[n]{n})^3$$

Használjuk, hogy lim  $\sqrt[n]{p}=1$ , ha p>0, illetve lim  $\sqrt[n]{n}=1$ .

Tehát

$$\lim \sqrt[n]{3} = 1 \le \lim \sqrt[n]{2n^3 + 3} \le \lim \sqrt[n]{5} \cdot \left(\sqrt[n]{n}\right)^3 = 1 \cdot 1^3 = 1$$

Tehát a rendőrelv miatt lim  $\sqrt[n]{2n^3 + 3} = 1$ .

b. 
$$\lim_{n \to \infty} \sqrt[n]{\frac{27n^2 + 7n - 3}{8n^2 - 5n + 9}}$$

Ez a feladat tulajdonképpen hasonló az előzőhöz, hiszen két polinom hányadosa szintén egy polinom. Itt is a rendőr elvet alkalmazhatjuk. Ne felejtsük el, hogy ha a nevezőt csökkentjük, akkor a tört értéke nő, míg ha a nevezőt növeljük, a tört értéke csökken.

Olyan tételt nem tanultunk (mert nincs), hogy kiszámolhatjuk a gyök alatti rész határértékét, majd mivel az egy pozitív szám, ennek n-dik gyöke tart az 1-hez!!!

$$\sqrt[n]{\frac{27}{17}} \le \sqrt[n]{\frac{27n^2}{17n^2}} = \sqrt[n]{\frac{27n^2}{8n^2 + 9n^2}} \le \sqrt[n]{\frac{27n^2}{8n^2 + 9}} \le \sqrt[n]{\frac{27n^2}{8n^2 - 5n + 9}} \le \sqrt[n]{\frac{27n^2 + 7n - 3}{8n^2 - 5n + 9}} \le \sqrt[n]{\frac{27n^2 + 7n}{8n^2 - 5n + 9}} \le \sqrt[n]{\frac{27n^2 + 7n}{8n^2 - 5n + 9}} \le \sqrt[n]{\frac{27n^2 + 7n^2}{8n^2 - 5n^2}} = \sqrt[n]{\frac{34n^2}{3n^2}} = \sqrt[n]{\frac{34}{3}}$$

Használjuk, hogy lim  $\sqrt[n]{p}=1$ , ha p>0, így a becslés mindkét "vége" 1-hez tart, így a kezdeti határérték is 1.

$$1 = \lim_{n \to \infty} \sqrt[n]{\frac{27}{17}} \le \lim_{n \to \infty} \sqrt[n]{\frac{27n^2}{8n^2 - 5n + 9}} \le \lim_{n \to \infty} \sqrt[n]{\frac{34}{3}} = 1 \longrightarrow \lim_{n \to \infty} \sqrt[n]{\frac{27n^2}{8n^2 - 5n + 9}} = 1$$

#### 8. Számoljuk ki az alábbi sorozat határértékét!

### a. $\lim \frac{25n! + n^{25}}{25n^n}$

Megoldás:

Ha több nagyságrendű tag is szerepel a törtkifejezésben, akkor a nagyságrendi sorrendben legerősebbel egyszerűsítsünk, majd használjuk ki a nagyságrendeket összehasonlító tételeket. Ez jelen esetben a  $n^n$ .

$$\lim \frac{25n! + n^{25}}{25n^n} = \lim \frac{25\frac{n!}{n^n} + \frac{n^{25}}{n^n}}{25\frac{n^n}{n^n}} = \frac{25 \cdot 0 + 0}{25} = \frac{0}{25} = 0$$

Kihasználtuk, hogy  $\lim \frac{n!}{n^n} = \infty \rightarrow \lim \frac{n^n}{n!} = 0$  illetve, hogy  $\lim \frac{n^{25}}{n^n} = \infty \rightarrow \lim \frac{n^n}{n^{25}} = 0$ .



### 9. Adjuk meg a következő sorozatok határértékét!

### a. $\lim \left(1 - \frac{3}{n}\right)^n = ?$

Megoldás:

$$\lim \left(1 - \frac{3}{n}\right)^n = \lim \left(1 + \frac{-3}{n}\right)^n = e^{-3} = \frac{1}{e^3}$$

Használjuk, hogy  $\lim \left(1 + \frac{\alpha}{n}\right)^n = e^{\alpha}$ .

### b. $\lim_{n\to\infty} \left(\frac{n+5}{n-2}\right)^n = ?$

Megoldás:

Ha  $\left(\frac{polinom}{polinom}\right)^{polinom}$  esetben, ha a három polinom ugyanolyan fokú, illetve a főegyütthatójuk egyenlő, akkor próbáljuk olyan alakba átalakítani, hogy az  $\left(1+\frac{\alpha}{n}\right)^n$  egy részsorozatának a

határértékét kelljen kiszámolnunk.

$$\lim \left(\frac{n+5}{n-2}\right)^n = \lim \left(\frac{n-2+7}{n-2}\right)^n = \lim \left(\frac{n-2}{n-2} + \frac{7}{n-2}\right)^n = \lim \left(1 + \frac{7}{n-2}\right)^n$$

$$= \lim \left(1 + \frac{7}{n-2}\right)^{n-2} \cdot \left(1 + \frac{7}{n-2}\right)^2 = \lim \left(1 + \frac{7}{n-2}\right)^{n-2} \cdot \left(1 + \frac{\frac{7}{n}}{\frac{n}{n} - \frac{2}{n}}\right)^2$$

Vegyük észre, hogy a  $\lim \left(1+\frac{7}{n-2}\right)^{n-2}$  sorozat az  $\left(1+\frac{7}{n}\right)^n$  sorozat részsorozata (hiszen csak kettővel elvannak tolva az elemei: az előbbi sorozat minden eleme egyenlő a második sorozat kettővel későbbi elemével), így nyilván a határértékük is megegyezik. A szorzat másik tényezőjének határértékét már korábban részletesen tárgyaltuk.

$$\lim \left(1 + \frac{7}{n-2}\right)^{n-2} \cdot \left(1 + \frac{\frac{7}{n}}{\frac{n}{n} - \frac{2}{n}}\right)^2 = e^7 \cdot \left(1 + \frac{0}{1-0}\right)^2 = e^7 \cdot 1^2 = e^7$$

### c. $\lim \left(\frac{3n+5}{3n-4}\right)^{3n} = ?$

Megoldás:

$$\lim \left(\frac{3n+5}{3n-4}\right)^{3n} = \lim \left(\frac{3n-4+9}{3n-4}\right)^{3n} = \lim \left(\frac{3n-4}{3n-4} + \frac{9}{3n-4}\right)^{3n} = \lim \left(1 + \frac{9}{3n-4}\right)^{3n}$$

$$= \lim \left(1 + \frac{9}{3n-4}\right)^{3n-4} \cdot \left(1 + \frac{9}{3n-4}\right)^{4}$$

$$= \lim \left(1 + \frac{9}{3n-4}\right)^{3n-4} \cdot \left(1 + \frac{9 \cdot \frac{1}{n}}{3\frac{n}{n} - 4 \cdot \frac{1}{n}}\right)^{4}$$

A  $\lim_{n \to \infty} \left(1 + \frac{9}{3n-4}\right)^{3n-4}$  sorozat az  $\left(1 + \frac{9}{n}\right)^n$  sorozat részsorozata, így a határértékük is megegyezik.

$$\lim \left(1 + \frac{9}{3n - 4}\right)^{3n - 4} \cdot \left(1 + \frac{9 \cdot \frac{1}{n}}{3\frac{n}{n} - 4 \cdot \frac{1}{n}}\right)^{4} = e^{9} \cdot \left(1 + \frac{9 \cdot 0}{3 - 4 \cdot 0}\right)^{4} = e^{9} \cdot 1^{4} = e^{9}$$

Másik megoldás:

Egyszerűsítsük a törtet 3n-nel!



$$\lim \left(\frac{3n+5}{3n-4}\right)^{3n} = \lim \left(\frac{\frac{3n}{3n} + \frac{5}{3n}}{\frac{3n}{3n} - \frac{4}{3n}}\right)^{3n} = \lim \left(\frac{1 + \frac{5}{3n}}{1 - \frac{4}{3n}}\right)^{3n} = \lim \left(\frac{1 + \frac{5}{3n}}{1 - \frac{4}{3n}}\right)^{3n} = \lim \left(\frac{1 + \frac{5}{3n}}{1 - \frac{4}{3n}}\right)^{3n}$$

Mivel mind a számláló részsorozata az  $\left(1+\frac{5}{n}\right)^n$  sorozatnak, míg a nevező részsorozata az  $\left(1+\frac{-4}{n}\right)^n$  sorozatnak.

$$\lim \frac{\left(1 + \frac{5}{3n}\right)^{3n}}{\left(1 + \frac{-4}{3n}\right)^{3n}} = \frac{e^5}{e^{-4}} = e^9$$

# d. $\lim_{n \to +\infty} \left( \frac{n^2 + 3}{n^2 + 5} \right)^{n^2} = ?$

<u>Megoldás:</u>

$$\lim \left(\frac{n^2+3}{n^2+5}\right)^{n^2} = \lim \left(\frac{n^2+5-2}{n^2+5}\right)^{n^2} = \lim \left(\frac{n^2+5}{n^2+5} - \frac{2}{n^2+5}\right)^{n^2} = \lim \left(1 - \frac{2}{n^2+5}\right)^{n^2}$$

$$= \lim \left(1 + \frac{-2}{n^2+5}\right)^{n^2} = \lim \left(1 + \frac{-2}{n^2+5}\right)^{n^2+5} \cdot \left(1 + \frac{-2}{n^2+5}\right)^{-5}$$

$$= \lim \left(1 + \frac{-2}{n^2+5}\right)^{n^2+5} \cdot \left(1 + \frac{-2 \cdot \frac{1}{n^2}}{n^2+5}\right)^{-5} = e^{-2} \cdot \left(1 + \frac{-2 \cdot 0}{1+5 \cdot 0}\right) = e^{-2} \cdot 1$$

$$= e^{-2}$$

Másik megoldás:

$$\lim \left(\frac{n^2+3}{n^2+5}\right)^{n^2} = \lim \left(\frac{\frac{n^2}{n^2}+3\frac{1}{n^2}}{\frac{n^2}{n^2}+5\frac{1}{n^2}}\right)^{n^2} = \lim \left(\frac{1+\frac{3}{n^2}}{1+\frac{5}{n^2}}\right)^{n^2} = \lim \left(\frac{1+\frac{3}{n^2}}{1+\frac{5}{n^2}}\right)^{n^2} = \lim \left(\frac{1+\frac{3}{n^2}}{1+\frac{5}{n^2}}\right)^{n^2} = e^{3}$$

### e. $\lim_{n \to \infty} \left(\frac{2n+7}{2n+3}\right)^{2n+5} = ?$

Megoldás

$$\lim \left(\frac{2n+7}{2n+3}\right)^{2n+5} = \lim \left(\frac{\frac{2n}{2n}+7\frac{1}{2n}}{\frac{2n}{2n}+3\frac{1}{2n}}\right)^{2n} \cdot \left(\frac{\frac{2n}{2n}+7\frac{1}{2n}}{\frac{2n}{2n}+3\frac{1}{2n}}\right)^{5} = \lim \left(\frac{1+\frac{7}{2n}}{1+\frac{3}{2n}}\right)^{2n} \cdot \left(\frac{1+7\frac{1}{2n}}{1+3\frac{1}{2n}}\right)^{5}$$

$$= \frac{e^{7}}{e^{3}} \cdot \left(\frac{1+7\cdot 0}{1+3\cdot 0}\right)^{5} = e^{4}$$

Máshogy:

$$\lim \left(\frac{2n+7}{2n+3}\right)^{2n+5} = \lim \left(\frac{2n+3+4}{2n+3}\right)^{2n+5} = \lim \left(\frac{2n+3}{2n+3} + \frac{4}{2n+3}\right)^{2n+5}$$

$$= \lim \left(1 + \frac{4}{2n+3}\right)^{2n+3} \cdot \left(1 + \frac{4}{2n+3}\right)^{2}$$

$$= \lim \left(1 + \frac{4}{2n+3}\right)^{2n+3} \cdot \left(1 + \frac{4 \cdot \frac{1}{n}}{2\frac{n}{n} + 3 \cdot \frac{1}{n}}\right)^{2} = e^{4} \cdot \left(1 + \frac{4 \cdot 0}{2 + 3 \cdot 0}\right)^{2} = e^{4} \cdot 1 = e^{4}$$





Megoldás:

Mivel a nevező és számláló legnagyobb kitevőjű tagjának nem egyforma az együtthatója, így nem fogjuk tudni "könnyen"  $1 + \frac{1}{n}$  alakra hozni. Becsüljük tehát a kifejezést!

A jó becsléshez érdemes megsejteni, hogy mi lehet a határérték. Mivel 6n + 1 > 4n + 5, így a tört értéke mindig egynél nagyobb, sőt egyre nagyobb, így az n- dik hatvány is egyre nagyobb lesz. Így sejtésünk legyen az, hogy a határérték végtelen. Így becsüljük a kifejezést alulról valamivel, aminek a határértékéről tudjuk, hogy végtelen. VISZONT a sejtés nem

bizonyítás! A fenti fejtegetés sem bizonyítás, ezt precízen be kell látni.

$$\lim \left(\frac{6n+1}{4n+5}\right)^n \ge \lim \left(\frac{6n}{4n+5}\right)^n \ge^* \lim \left(\frac{6n}{4n+n}\right)^n \ge \lim \left(\frac{6n}{5n}\right)^n \ge \lim \left(\frac{6}{5}\right)^n = \infty$$

A \* egyenlőtlenség azért teljesül, mert ha n > 5, akkor a nevező minden esetben nőtt, így a tört értéke csökkent. Vagyis a határérték legfeljebb akkora lehet, mint az előző.

Tehát: 
$$\lim \left(\frac{6n+1}{4n+5}\right)^n \ge \infty \rightarrow \lim \left(\frac{6n+1}{4n+5}\right)^n = \infty$$

g. 
$$\lim_{n \to \infty} \left( \frac{2n+2}{7n+3} \right)^n = ?$$

Megoldás:

Az előbbi esettel ellentétben itt a nevező mindig nagyobb, mint a számláló, így a tört értéke mindig 1-nél kisebb. Így várhatóan nem lesz végtelen a határérték.

Emeljük ki a legnagyobb n hatványt a nevezőből, és a számlálóból is!

$$\lim \left(\frac{2n+2}{7n+3}\right)^n = \lim \frac{(2n+2)^n}{(7n+3)^n} = \lim \frac{(2n)^n \left(\frac{2n}{2n} + 2 \cdot \frac{1}{2n}\right)^n}{(7n)^n \left(\frac{7n}{7n} + 3 \cdot \frac{1}{7n}\right)^n} = \lim \frac{(2n)^n}{(7n)^n} \cdot \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{3}{7n}\right)^n}$$

$$= \lim \left(\frac{2}{7}\right)^n \cdot \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{1}{n}\right)^n} = 0 \cdot \frac{e}{e^{\frac{3}{7}}} = 0$$

h. 
$$\lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^{n^2} = ?$$

Megoldás:

Mivel a számlálóban levő  $n^2$  és a zárójelben levő n nem azonos n hatványok, így nem fogjuk tudni az  $\left(1+\frac{\alpha}{n}\right)^n$  sorozat egy részsorozataként felfogni. Megint becsülnünk kell!

$$\lim \left(1 + \frac{3}{n}\right)^{n^2} = \lim \left(\left(1 + \frac{3}{n}\right)^n\right)^n \ge^* \lim (2^3)^n = \lim 2^n \ge \lim 2^n = \infty$$

A \* egyenlőtlenséget úgy kaptuk, hogy  $\left(1+\frac{3}{n}\right)^n$  határértéke  $e^3$ , tehát a határérték definíciója miatt az  $\left(1+\frac{3}{n}\right)^n$  egy megfelelően nagy N küszöbindextől kezdve közelebb van az  $e^3$ -höz, mint  $e^3-2^3$ .

Vagyis ettől a bizonyos N küszöbindextől kezdve az összes elem nagyobb, mint  $2^3$ . (Ez egy elég erős becslés, hiszen e "jóval" nagyobb, mint 2, és  $e^3 \sim 20,1$  és  $2^3 = 8$  szintén nincsenek közel egymáshoz. De a becslés működik, tehát nekünk épp megfelel.)



### 10. Határozzuk meg a számsorozat torlódási pontjait! $\overline{\lim} a_n = ?$ , $\underline{\lim} a_n = ?$

### a. $a_n = 2^{(-1)^n \cdot n}$

Megoldás:

Ha páros, akkor  $(-1)^n = 1$ , ha páratlan, akkor pedig  $(-1)^n = -1$ .

Tehát, ha n páros (vagyis n=2k), akkor  $\lim a_n=2^n=\infty$ . Továbbá, ha n páratlan (vagyis , n=2k+1) akkor  $\lim a_n=2^{-n}=-\infty$ .

Tehát:  $S = \{-\infty, \infty\}$ ;  $\overline{\lim} a_n = \infty$ ;  $\underline{\lim} a_n = -\infty$ .

# b. $a_n = \frac{n^2 + n^2 \sin(n\frac{\pi}{2})}{2n^2 + n + 7}$

Megoldás:

• Ha *n* páros, akkor  $\sin\left(n\frac{\pi}{2}\right) = 0$ . Tehát:

$$\lim \frac{n^2 + n^2 \sin\left(n\frac{\pi}{2}\right)}{2n^2 + n + 7} = \lim \frac{n^2}{2n^2 + n + 7} = \lim \frac{\frac{n^2}{n^2}}{2\frac{n^2}{n^2} + \frac{n}{n^2} + 7 \cdot \frac{1}{n^2}} = \lim \frac{1}{2 \cdot 1 + \frac{1}{n} + 7 \cdot \frac{1}{n^2}}$$
$$= \frac{1}{2 + 0 + 7 \cdot 0} = \frac{1}{2}$$

• Ha n 4-gyel osztva 1 maradékot ad, akkor  $\sin\left(n\frac{\pi}{2}\right) = 1$ . Tehát:

$$\lim \frac{n^2 + n^2 \sin\left(n\frac{\pi}{2}\right)}{2n^2 + n + 7} = \lim \frac{n^2 + n^2}{2n^2 + n + 7} = \lim \frac{\frac{2n^2}{n^2}}{2\frac{n^2}{n^2} + \frac{n}{n^2} + 7 \cdot \frac{1}{n^2}} = \lim \frac{2}{2 \cdot 1 + \frac{1}{n} + 7 \cdot \frac{1}{n^2}}$$
$$= \frac{2}{2 + 0 + 7 \cdot 0} = 1$$

• Ha pedig *n* 4-gyel osztva 3 maradékot ad, akkor  $\sin\left(n\frac{\pi}{2}\right) = -1$ . Tehát:

$$\lim \frac{n^2 + n^2 \sin\left(n\frac{\pi}{2}\right)}{2n^2 + n + 7} = \lim \frac{n^2 - n^2}{2n^2 + n + 7} = \lim \frac{0}{2\frac{n^2}{n^2} + \frac{n}{n^2} + 7 \cdot \frac{1}{n^2}} = \lim \frac{0}{2 \cdot 1 + \frac{1}{n} + 7 \cdot \frac{1}{n^2}}$$

$$= \frac{0}{2+0+7\cdot 0} = 0$$

Tehát  $S = \left\{\frac{1}{2}, 1, 0\right\}, \overline{\lim} a_n = 1, \underline{\lim} a_n = 0.$ 

## c. $a_n = \frac{3^{2n+1} + (-4)^n}{5 + 9^{n+1}}$

Megoldas:

$$\lim \frac{3^{2n+1} + (-4)^n}{5 + 9^{n+1}} = \lim \frac{3 \cdot 3^{2n} + (-4)^n}{5 + 9 \cdot 9^n} = \lim \frac{3 \cdot (3^2)^n + (-4)^n}{5 + 9 \cdot 9^n} = \lim \frac{3 \cdot 9^n + (-4)^n}{5 + 9 \cdot 9^n}$$

$$= \lim \frac{3 \cdot \frac{9^n}{9^n} + \frac{(-4)^n}{9^n}}{5 \cdot \frac{1}{9^n} + 9 \cdot \frac{9^n}{9^n}} = \lim \frac{3 \cdot 1^n + \left(\frac{-4}{9}\right)^n}{5 \cdot \frac{1}{9^n} + 9 \cdot 1^n} = \frac{3 + 0}{5 \cdot 0 + 9} = \frac{1}{3}$$

Vegyük észre, hogy a negatív alapú exponenciális tag csak akkor okoz problémát, ha épp az a legnagyobb abszolút értékű, hiszen ellenkező esetben az egyszerűsítés után egy 1-nél kisebb abszolút értékű (negatív) számot kapunk, melynek n-dik hatványa 0-hoz tart.

Tehát: 
$$S = \left\{\frac{1}{3}\right\}$$
,  $\underline{\lim} a_n = \overline{\lim} a_n = \lim a_n = \frac{1}{3}$ 



d. 
$$a_n = \frac{(-4)^n + 3 \cdot 3^n}{1 + 4^n}$$

Megoldás:

$$\lim \frac{(-4)^n + 3 \cdot 3^n}{1 + 4^n} = \lim \frac{\frac{(-4)^n}{4^n} + 3 \cdot \frac{3^n}{4^n}}{1 \cdot \frac{1}{4^n} + \frac{4^n}{4^n}} = \lim \frac{(-1)^n + 3 \cdot \left(\frac{3}{4}\right)^n}{1 \cdot \frac{1}{4^n} + 1^n}$$

Itt épp az előző feladat végén említett probléma merül fel. Az  $(-1)^n$  divergens. Ha n páros, akkor értéke 1, ha n páratlan értéke -1.

Tehát:

• ha *n* páros

$$\lim \frac{1+3\cdot\left(\frac{3}{4}\right)^n}{1\cdot\frac{1}{4^n}+1^n} = \frac{1+3\cdot 0}{1\cdot 0+1} = 1$$

• ha *n* páratlan

$$\lim \frac{-1+3\cdot\left(\frac{3}{4}\right)^n}{1\cdot\frac{1}{4^n}+1^n} = \frac{-1+3\cdot 0}{1\cdot 0+1} = -1$$

Tehát:  $S = \{-1; 1\}, \underline{\lim} a_n = -1 \quad \overline{\lim} a_n = 1$