Relations et fonctions

Olivier Nicole*
DI ENS

Septembre 2020

1 Généralités

FIGURE 1 – Des propriétés sur les fonctions

Les fonctions associent à chaque élément d'un ensemble un unique élément d'un autre ensemble. Les fonctions peuvent être vu comme un cas particulier des relations binaires.

Définition 1 – Relation

Une relation entre les ensembles A et B est une partie de $A \times B$. Par exemple, si on a $\mathcal{R} \in \mathcal{P}(A \times B)$, et que $(a,b) \in \mathcal{R}$, on dit que « a est dans la relation \mathcal{R} avec b ». On abrège parfois $(a,b) \in \mathcal{R}$ en $a\mathcal{R}b$.

^{*}Ce document est basé sur le cours de Marc Chevalier, avec son aimable autorisation. https://teaching.marc-chevalier.com

Définition 2 – Relation fonctionnelle

Nous appelons une relation fonctionnelle de l'ensemble A vers l'ensemble B une partie de $A \times B$ telle que pour tout élément $a \in A$, pour tout élément $b, b' \in B$, $(a, b) \in \mathcal{R}$ et $(a, b') \in \mathcal{R}$ alors b = b'. On peut l'écrire

$$\forall a \in A, \forall (b, b') \in B^2, (a, b) \in \mathcal{R} \land (a, b') \in \mathcal{R} \Rightarrow b = b'$$

Définition 3 – Relation applicative

Nous disons qu'une relation binaire \mathcal{R} entre un ensemble A et un ensemble B est une relation applicative, si et seulement si c'est une relation fonctionnelle et que pour tout élément $a \in A$ dans l'ensemble A, il existe un élément $b \in B$ dans l'ensemble B, tel que $(a,b) \in \mathcal{R}$.

On peut l'écrire

$$\forall a \in A, \exists! b \in B, (a, b) \in \mathcal{R}$$

Nous pouvons maintenant définir les fonctions comme une relation fonctionnelle entre deux ensembles :

Définition 4 – Fonctions

Une fonction est une paire (A, B, \mathcal{R}) tel que A et B soient deux ensembles et \mathcal{R} est une relation fonctionnelle entre A et B.

Nous appelons l'ensemble A le domaine de définition de la fonction (A, B, \mathcal{R}) , l'ensemble B le codomaine de la fonction (A, B, \mathcal{R}) , et la relation binaire \mathcal{R} le graphe de la fonction (A, B, \mathcal{R}) .

Proposition 1

Soit A et B deux ensembles, la collection des fonctions entre l'ensemble A et l'ensemble B est un ensemble. Nous notons cet ensemble B^A .

Démonstration. L'ensemble des graphes des fonctions entre A et B est une partie du produit cartésien entre A et B. Puis, l'ensemble des fonctions de A vers B est le produit cartésien entre $\{A\}$, $\{B\}$, et l'ensemble des graphes de fonctions entre A et B.

Notation 1

Lorsque $f := (A, B, \mathcal{R})$ est une fonction, nous notons b = f(a) pour dire que l'élément a de l'ensemble A et l'élément b de l'ensemble B sont en relation (pour \mathcal{R}).

Notation 2

Une fonction f entre l'ensemble A et l'ensemble B peut être noté de la manière suivante :

$$f : \left\{ \begin{array}{ccc} A & \to & B \\ x & \mapsto & f(x) \end{array} \right.$$

Définition 5 – Identité

Soit A un ensemble. La fonction suivante :

$$\begin{cases}
A & \to & A \\
a & \mapsto & a.
\end{cases}$$

est bien définie. Nous notons cette fonction Id_A .

Proposition 2

Soit A un ensemble. Le graphe de la fonction Id_A est la relation $\Delta_A := \{(a, a) \mid a \in A\}.$

Exemple 1

Nous donnons d'autres exemples de fonctions.

— La fonction de l'ensemble $\{\bot, \top\}$ qui à \bot associe \top , et réciproquement se note de la manière suivante :

$$\begin{cases}
\{\bot, \top\} & \to \{\bot, \top\} \\
\bot & \mapsto & \top \\
\top & \mapsto & \bot
\end{cases}$$

— La fonction de l'ensemble des entiers dans lui-même, qui à tout entier associe son successeur se note de la manière suivante :

$$\left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n+1. \end{array} \right.$$

Définition 6 – Égalité

Deux fonctions $f := (A, B, \mathcal{R})$ et $f' := (A', B', \mathcal{R}')$ sont égales si et seulement si les ensembles A et A' sont égaux, les ensembles B et B' sont égaux, et les ensemble \mathcal{R} et \mathcal{R}' sont égaux.

3

Proposition 3

Deux fonctions $f := (A, B, \mathcal{R})$ et $f' := (A', B', \mathcal{R}')$ sont égales si et seulement si les ensembles A et A' sont égaux, les ensembles B et B' sont égaux, et pour tout élément de A, nous avons f(a) = f'(a).

Remarque 1

Deux fonctions différentes peuvent avoir le même graphe. Par exemple, les deux fonctions suivantes :

$$\begin{cases}
\mathbb{N} \to \mathbb{N} \\
n \mapsto n+1
\end{cases} et \qquad
\begin{cases}
\mathbb{N} \to \mathbb{Z} \\
n \mapsto n+1
\end{cases}$$

Définition 7 – Composition

Soient A, B, et C trois ensembles et soient f une fonction entre l'ensemble A et l'ensemble B et g une fonction entre l'ensemble B et l'ensemble C. Alors la fonction :

$$\begin{cases}
A \to C \\
a \mapsto g(f(a))
\end{cases}$$

est bien définie. Nous notons cette fonction $g \circ f$.

2 In-, sur- et bijections

2.1 Injections

Soient A et B deux ensembles. Soit f une fonction entre l'ensemble A et l'ensemble B.

Définition 8 – Injection

Nous disons que f est une injection si et seulement si pour toute paire d'éléments $(a, a') \in A^2$, on $a : f(a) = f(a') \Rightarrow a = a'$.

Ainsi, pour prouver qu'on a une injection, on commence par prendre deux éléments de l'ensemble de départ (« Soit $(a, a') \in A^2$ »), supposer qu'ils ont la même image (« On suppose f(a) = f(a') ») et on cherche à prouver qu'ils sont égaux (« On veut montrer que a = a' »).

Corollaire 4 – Définition alternative

Soit f une fonction de A dans B. f est injective si et seulement si, pour toute paire d'éléments $(a, a') \in A^2$, $a \neq a' \Rightarrow f(a) \neq f(a')$.

Démonstration. La contraposée de la définition.

Exemple 2

- La fonction identité sur A est injective.
- La fonction de l'ensemble des individus dans les entiers, qui a chaque individu associe son âge, n'est pas injective.

— La fonction de l'ensemble des individus immatriculés à la sécurité sociale, qui a chaque individu son numéro de sécurité sociale est injective.

Proposition 5

Soit $A \xrightarrow{f} B \xrightarrow{g} C$. Si f et q sont injectives, alors $g \circ f$ est injective.

Démonstration. Soit $(x_1, x_2) \in A^2$. On suppose que $g(f(x_1)) = g(f(x_2))$. Comme g est injective, on a $f(x_1) = f(x_2)$. Puis comme f est injective, $x_1 = x_2$. Donc $g \circ f$ est injective.

Proposition 6

Soit A, B et C des ensembles et $f:A\to B$ et $g:B\to C$. Si $g\circ f$ est injective, alors f est injective.

Démonstration. Par contraposée. On suppose que f n'est pas injective. Par conséquent, il existe $(a,b) \in A^2$ tel que f(a) = f(b).

Il vient g(f(a)) = g(f(b)). Donc $g \circ f$ n'est pas injective.

Par contraposition, on a la proposition.

Remarque 2

Il existe des fonctions $A \xrightarrow{f} B \xrightarrow{g} C$ telles que $g \circ f$ est injective, mais où g n'est pas injective! Exemple :

$$\begin{array}{ccc} f: \mathbb{N} \to \mathbb{Z} & & \\ n \mapsto n & & et & g: \mathbb{Z} \to \mathbb{N} \\ & & n \mapsto \max(0,n) \end{array}$$

gn'est pas injective puisque f(0)=0=f(-1). Mais $g\circ f$ est l'identité de

 \mathbb{N} . Donc est injective.

2.2 Surjections

Définition 9 – Surjection

Nous disons que f est une surjection si et seulement si pour tout élément $b \in B$ de l'ensemble B, il existe un élément $a \in A$ tel que f(a) = b.

Sous forme mathématique, cela donne :

$$\forall b \in B, \exists a \in A : f(a) = b$$

Ainsi, pour prouver qu'on a une surjection, il faut commencer par choisir un b (« Soit $b \in B$ ») et chercher $a \in A$ tel que f(a) = b. Cela revient très souvent à résoudre l'équation f(a) = b d'inconnue a.

Exemple 3

- Si A est un ensemble, la fonction identité sur A est surjective.
- La fonction de l'ensemble des entiers relatifs dans lui-même, qui à chaque entier associe son successeur est surjective.
- La fonction de l'ensemble des entiers naturels dans lui-même, qui à chaque entier associe son successeur n'est pas surjective.

Proposition 7

Soit $A \xrightarrow{f} B \xrightarrow{g} C$. Si f et g sont surjectives, alors $g \circ f$ est surjective.

Démonstration. Soit $z \in C$. On cherche une solution en x à $g \circ f(x) = z$. On sait que g est surjective. Il existe donc $g \in B$ tel que g(g) = g. De plus f est surjective, il existe donc $g \in A$ tel que g(g) = g. On a bien g(g) = g. Donc $g \in B$ est surjective.

Proposition 8

Soit A, B et C des ensembles et $f: A \to B$ et $g: B \to C$. Si $g \circ f$ est surjective, alors g est surjective.

Démonstration. On suppose $g \circ f$ surjective. Soit $z \in G$. Il existe $x \in E$ tel que g(f(x)) = z. Par conséquent, on pose y = f(x). On a $y \in F$ et g(y) = z. Il existe donc un antécédent de z par g. Donc g est surjective.

Remarque 3

Il existe des fonctions $A \xrightarrow{f} B \xrightarrow{g} C$ telles que $g \circ f$ est surjective, mais où f n'est pas surjective! Exemple (le même que 2) :

$$\begin{array}{ccc} f: \mathbb{N} \to \mathbb{Z} & & \\ n \mapsto n & & et & g: \mathbb{Z} \to \mathbb{N} \\ & & n \mapsto \max(0,n) \end{array}$$

f n'est pas surjective puisque -1 n'est jamais atteint. Mais $g \circ f$ est l'identité de \mathbb{N} . Donc est surjective.

2.3 Bijections

Définition 10 – Bijection

Une fonction qui est à la fois injective et surjective est une bijection.

Proposition 9

La fonction f est bijective si et seulement si, pour tout élément $b \in B$ de l'ensemble B, il existe un unique élément $a \in A$ de l'ensemble A tel que b = f(a).

Démonstration. Cette proposition est une équivalence, on prouve par double implication.

- (\Rightarrow) On suppose f bijective. On va prouver que pour tout $b \in B$, il existe un unique élément $a \in A$ tel que b = f(a).
 - Soit $b \in B$. f est bijective, donc surjective. On sait donc qu'il existe au moins un élément $a \in A$ tel que f(a) = b. Prouvons qu'il est unique. Soit a et a' deux antécédents de b par f (ie. f(a) = f(a') = b). Comme f est bijective, elle est injective. Et par conséquent a = a'. Donc b n'a qu'un seul antécédent par f. Ce qui conclut le sens direct.
- (\Leftarrow) On suppose que pour tout $b \in B$, f(a) = b n'a qu'une seule solution en a. Prouvons que f est bijective.
 - Soit $b \in B$. Comme f(a) = b a une solution, il suit que f est surjective. Soit $(a, a') \in A^2$. On suppose f(a) = f'(a). On note b = f(a). a et a' sont donc solutions de f(x) = b. Or, on sait par hypothèse qu'il n'y a qu'une unique solution. Donc a = a', donc f est injective.

Il y a donc deux façon de montrer qu'une fonction est une bijection. On peut montrer que pour n'importe quel $b \in B$, l'équation f(a) = b d'inconnue a n'a qu'une seule solution. On peut aussi appliquer simplement la définition et montrer indépendamment que f est une injection et une surjection.

Proposition 10

Notons $f := (A, B, \mathcal{R})$ et supposons que f est une bijection. Alors le triplet (B, A, \mathcal{S}) , où la relation \mathcal{S} entre B et A est définie par :

$$bSa :\Leftrightarrow aRb$$

est une fonction bijective entre l'ensemble B et l'ensemble A. Nous appelons cette fonction l'inverse (ou bijection réciproque) de f, et la notons f^{-1} .

Proposition 11

Les deux propriétés suivantes sont vérifiées :

$$-(f^{-1} \circ f) = Id_A;$$

 $-(f \circ f^{-1}) = Id_B.$

Corollaire 12

Soit $A \xrightarrow{f} B \xrightarrow{g} C$. Si f et g sont bijectives, alors $g \circ f$ est bijective.

Démonstration. Immédiat avec les propositions 5 et 7.

Corollaire 13

Soit A, B et C des ensembles et $f: A \to B$ et $g: B \to C$. On suppose $g \circ f$ bijective, alors f est injective et g surjective.

Démonstration. Immédiat avec les propositions 6 et 8.

Remarque 4

Il existe des fonctions $A \xrightarrow{f} B \xrightarrow{g} C$ telles que $g \circ f$ est bijective, mais où f n'est pas surjective et g pas injective! Exemple (encore le même que 2):

$$f: \mathbb{N} \to \mathbb{Z} \quad \text{et} \quad g: \mathbb{Z} \to \mathbb{N}$$
$$n \mapsto n \quad n \mapsto \max(0, n)$$

On a déjà vu que f n'est pas surjective et g pas injective. Mais $g\circ f$ est

l'identité de N. Donc est bijective.

Proposition 14

Soit g une fonction de l'ensemble B dans l'ensemble A.

Si $g \circ f = Id_A$ et $f \circ g = Id_B$, alors f est bijective et son inverse est g.

 $D\acute{e}monstration$. Id_A et Id_B sont bijectives. D'après les propriétés 6 et 8, on sait que f et g sont bijectives.

Soit $x \in A$. On a f(g(x)) = x. En composant par f^{-1} , on a $g(x) = f^{-1}(x)$. Donc $g = f^{-1}$.

Proposition 15

Soit f une bijection de A dans B et g une bijection de B dans A. Si $g \circ f = Id_A$ ou $f \circ g = Id_B$, alors g est la bijection réciproque de f.

Démonstration. Soit $x \in A$. On a f(g(x)) = x. En composant par f^{-1} , on a $g(x) = f^{-1}(x)$. Donc $g = f^{-1}$.

Proposition 16

Soit $A \xrightarrow{f} B \xrightarrow{g} C$. On suppose que f et g sont bijectives. La bijection réciproque de $g \circ f$ est $f^{-1} \circ g^{-1}$.

Démonstration. $g \circ f$ est bijective d'après le corollaire 12. D'après la proposition 10, on sait que f^{-1} et g^{-1} sont des bijections. Donc (encore d'après 12) $f^{-1} \circ g^{-1}$ est une bijection

D'après la proposition 15 il suffit de vérifier que $(g \circ f) \circ (f^{-1} \circ g^{-1}) = Id_C$.

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ f \circ f^{-1} \circ g^{-1}$$

$$= g \circ (f \circ f^{-1}) \circ g^{-1}$$

$$= g \circ Id_B \circ g^{-1}$$

$$= g \circ g^{-1}$$

$$= Id_C$$

Remarque 5

Il existe des fonctions f et g tel que $g \circ f = Id_A$ mais où f et g ne sont pas bijectives. Toujours le même exemple fait l'affaire.

3 Relations d'équivalence et relations d'ordre

Notation 3

Si $\mathcal{R} \in \mathcal{P}(A \times B)$ est une relation, on peut noter $a\mathcal{R}b$ pour abréger $(a,b) \in \mathcal{R}$.

Définition 11

On dit que la relation $\mathcal{R} \in \mathcal{P}(A \times A)$ est une relation d'équivalence si et seulement si elle est :

- réflexive, c'est-à dire $\forall a, b \in A^2$, $a\mathcal{R}b \Rightarrow b\mathcal{R}a$.
- transitive, c'est-à-dire $\forall a, b, c \in A^3$, $a\mathcal{R}b \wedge b\mathcal{R}c \Rightarrow a\mathcal{R}c$.
- symétrique, c'est-à-dire $\forall a \in A, a\mathcal{R}a$.

Exemple 4

— La relation $\mathcal{R} \in \mathcal{P}(A \times A)$ telle que

$$a\mathcal{R}b \Leftrightarrow a=b$$

est une relation d'équivalence.

— Soit $n \in \mathbb{N}^*$. La relation $\mathcal{R} \in \mathcal{P}(\mathbb{Z} \times \mathbb{Z})$ telle que

$$a\mathcal{R}b \Leftrightarrow a-b$$
 est un multiple de n

est une relation d'équivalence, appelée la « congruence modulo n ».

Définition 12

Soit $\mathcal{R} \in \mathcal{P}(A \times A)$ une relation d'équivalence. On appelle classe d'équivalence de $x \in A$ l'ensemble :

$$cl(x) := \{ y \in A \mid x \mathcal{R} y \}$$

Définition 13

On dit que la relation $\mathcal{R} \in \mathcal{P}(A \times A)$ est une relation d'ordre si et seulement si elle est :

- réflexive, c'est-à dire $\forall a, b \in A^2$, $a\mathcal{R}b \Rightarrow b\mathcal{R}a$.
- transitive, c'est-à-dire $\forall a, b, c \in A^3$, $a\mathcal{R}b \wedge b\mathcal{R}c \Rightarrow a\mathcal{R}c$.
- antisymétrique, c'est-à-dire $\forall a, b \in A, \ a\mathcal{R}b \wedge b\mathcal{R}a \Rightarrow a = b.$

Exemple 5

- La relation \leq sur \mathbb{R} est une relation d'ordre.
- Pour tout ensemble E, la relation $\subseteq \operatorname{sur} \mathcal{P}(E)$ est une relation d'ordre.