Common statistical tests are linear models

Last updated: 27 June, 2019

See worked examples and more details at the accompanying notebook: https://github.com/eigenfoo/tests-as-linear

	Common name	Function in scipy.stats	Equivalent linear model in smf.ols	Exact?	The linear model in words	Icon
Multiple regression: $(y \sim 1 + x_1 + x_2 +)$ Simple Regression: $(y \sim 1 + x)$	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	scipy.stats.ttest_1samp(y) scipy.stats.wilcoxon(y)	smf.ols("y ~ 1", data) smf.ols("y ~ 1", signed_rank(data))	√ for N >14	One number (intercept, i.e., the mean) predicts y (Same, but it predicts the <i>signed rank</i> of y .)	- 1
	P: Paired-sample t-test N: Wilcoxon matched pairs	scipy.stats.ttest_rel(y1, y2) scipy.stats.wilcoxon(y1, y2)	smf.ols("y2_sub_y1 ~ 1", data) smf.ols("y2_sub_y1 ~ 1", signed_rank(data))	√ f <u>or N >14</u>	One intercept predicts the pairwise y ₂ -y ₁ differences (Same, but it predicts the <i>signed rank</i> of y ₂ -y ₁ .)	Z :→
	y ~ continuous x P: Pearson correlation N: Spearman correlation	scipy.stats.pearsonr(x, y) scipy.stats.spearmanr(x, y)	smf.ols("y ~ 1 + x", data) smf.ols("y ~ 1 + x", rank(data))	√ for N >10	One intercept plus x multiplied by a number (slope) predicts y (Same, but with <i>ranked</i> x and y)	للطيعس
	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	scipy.stats.ttest_ind(y1, y2) N/A scipy.stats.mannwhitneyu(y1, y1)	smf.ols("y \sim 1 + group", data) ^A N/A smf.ols("y \sim 1 + group", signed_rank(data)) ^A	√ √ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	*
	P: One-way ANOVA N: Kruskal-Wallis	scipy.stats.f_oneway(a, b, c) scipy.stats.kruskal(a, b, c)	smf.ols(y ~ 1 + G_2 + G_3 ++ G_N) ^A smf.ols(rank(y) ~ 1 + G_2 + G_3 ++ G_N) ^A	√ for N >11	An intercept for group 1 (plus a difference if group \neq 1) predicts y (Same, but it predicts the <i>rank</i> of y .)	
	P: One-way ANCOVA	N/A	smf.ols("y ~ 1 + G_2 + G_3 ++ G_N + x", data) ^A	1	- (Same, but plus a slope on x .) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	
	P: Two-way ANOVA	N/A	smf.ols("y ~ 1 + G_2 + G_3 + + G_N + S_2 + S_3 + + S_K + G_2 * S_2 + G_3 * S_3 ++ G_N * S_K ", data)	1	Interaction term: changing sex changes the $\mathbf{y} \sim \mathbf{group}$ parameters. Note: $\mathbf{G}_{2 to N}$ is an indicator (0 or 1) for each non-intercept levels of the \mathbf{group} variable. Similarly for $\mathbf{S}_{2 to N}$ for sex. The first line (with \mathbf{G}_i) is main effect of group, the second (with \mathbf{S}_i) for sex and the third is the $\mathbf{group} \times \mathbf{sex}$ interaction. For two levels (e.g. male/female), line 2 would just be " \mathbf{S}_2 " and line 3 would be \mathbf{S}_2 multiplied with each \mathbf{G}_i .	[Coming]
	Counts ~ discrete x N: Chi-square test	scipy.stats.chisquare(data)	Equivalent log-linear model sm.GLM(y ~ 1 + G ₂ + G ₃ + + G _N + $S_2 + S_3 + + S_K + G_2*S_2+G_3*S_3++G_N*S_K$, family=) ^A	✓	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: $glm(model, family=poisson())$ As linear-model, the Chi-square test is $log(y_i) = log(N) + log(\alpha_i) + log(\beta_i) + log(\alpha_i\beta_i)$ where α_i and β_i are proportions. See more info in the accompanying notebook.	Same as Two-way ANOVA
	N: Goodness of fit	scipy.stats.chi2_contingency(data)	sm.GLM(y ~ 1 + G_2 + G_3 ++ G_N , family=) ^A	1	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation y = 1 + x is R shorthand for y = 1 + b + a + x which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they *all* are across colors! For non-parametric models, the linear models are reasonable approximations for non-small sample sizes (see "Exact" column and click links to see simulations). Other less accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed rank function is $signed_rank(df) = np.sign(df) * df.rank()$. The variables G_i and G_i are "dummy coded" indicator variables (either 0 or 1) exploiting the fact that when G_i are 1 between categories the difference equals the slope. Subscripts (e.g., G_i or G_i or G_i indicate different columns in data. Im requires long-format data for all non-continuous models. All of this is exposed in greater detail and worked examples at https://eigenfoo.xyz/tests-as-linear/.

A See the note to the two-way ANOVA for explanation of the notation.