А.П. Ершова

ГЕОМЕТРИЯ

СБОРНИК ЗАДАНИЙ ДЛЯ ТЕМАТИЧЕСКОГО И ИТОГОВОГО КОНТРОЛЯ ЗНАНИЙ

- ТЕОРЕТИЧЕСКИЕ САМОСТОЯТЕЛЬНЫЕ РАБОТЫ
- САМОСТОЯТЕЛЬНЫЕ РАБОТЫ НА ГОТОВЫХ ЧЕРТЕЖАХ
- ПИСЬМЕННЫЕ САМОСТОЯТЕЛЬНЫЕ РАБОТЫ
- КОНТРОЛЬНЫЕ РАБОТЫ

ИЛЕКСА

А.П. Ершова

СБОРНИК ЗАДАНИЙ ДЛЯ ТЕМАТИЧЕСКОГО И ИТОГОВОГО КОНТРОЛЯ ЗНАНИЙ

Геометрия 8 класс

> ИЛЕКСА Москва 2013

УДК 372.8:514 ББК 74.262.21-26+74.202 E80

Рецензент:

И.С. Маркова, учитель-методист, главный редактор журнала «Математика. Все для учителя!»

Перепечатка отдельных разделов и всего издания— запрещена. Любое коммерческое использование данного издания возможно только с разрешения издателя

Ершова А.П.

E80 Сборник заданий для тематического и итогового контроля знаний. Геометрия. 8 класс. — М.: ИЛЕКСА, 2013, -128 с.

ISBN 978-5-89237-373-9

Пособие содержит самостоятельные и контрольные работы к учебнику «Л.С. Атанасян и др. Геометрия 7-9». Пособие также может быть использовано при работе по любому действующему учебнику и для самообразования.

Самостоятельные работы разделены на 8 блоков, соответствующих основным этапам изучения геометрии в 8 классе. Каждый блок состоит из трех видов работ, реализующих различные дидактические цели,— работы по проверке теории, работы на готовых чертежах и письменные работы. В сборник также вошли 6 контрольных работ. Все работы состоят из 4 вариантов двух уровней сложности и предназначены для организации дифференцированного обучения и контроля в общеобразовательных и профильных школах.

УДК 372.8:514 ББК 74.262.21-26+74.202

[©] Ершова А.П., 2012

[©] ИЛЕКСА, 2012

ПРЕДИСЛОВИЕ

Предлагаемый сборник предназначен для тематического и итогового контроля знаний по геометрии 8 класса. Материал сборника состоит из двух частей: в часть I вошли задания для самостоятельных работ; в часть II — задания для контрольных работ.

Часть I состоит из восьми учебных блоков, которые соответствуют основным этапам изучения курса геометрии 8 класса. Каждый блок содержит задания для трех видов самостоятельных работ:

- теоретические задания для экспресс-контроля знания теории или для устного обсуждения теории в классе вопросы в этих работах сформулированы так, что проверяется не заучивание наизусть формулировок определений, аксиом или теорем, а глубокое понимание теоретических положений курса геометрии;
- задания на готовых чертежах для экспресс-контроля практических умений или коллективного решения типовых задач в классе готовые рисунки существенно экономят время выполнения работы и наглядно демонстрируют геометрические конфигурации;
- письменные задания для контроля решения задач с требованием полного обоснования действий и самостоятельного выполнения чертежей.

В часть II включены задания для шести контрольных работ — пять тематических и одна итоговая.

Задачи каждой работы приведены в четырех вариантах с двумя уровнями сложности. Первый и второй варианты предназначены для учеников общеобразовательных школ, третий и четвертый — для учеников гимназий, лицеев и специализированных школ, а также для учащихся общеобразовательных школ, которые проявляют повышенный интерес к геометрии.

Число заданий в каждой работе избыточно, чтобы более полно представить весь спекктр задач по теме. Учителю предоставляется возможность творчески подойти к составлению проверочных работ с учетом индивидуальных возможностей каждого ученика.

Материал пособия может использоваться для подготовки к ГИА и ЕГЭ. Сборник соответствует федеральным государственным образовательным стандартам.

Наш адрес в Интернете: www.ilexa.ru.

ЧАСТЬ І

блок 1

Четырехугольники. Параллелограмм и трапеция

Самостоятельная работа (теоретическая)

- **1.** Существует ли выпуклый четырехугольник, углы которого равны 20° , 150° , 10° , 180° ?
- **2.** В выпуклом четырехугольнике $ABCD \angle A = \angle C$. Верно ли, что ABCD параллелограмм?
- **3.** В параллелограмме $ABCD \ \angle B + \angle D < 180^{\circ}$. Назовите тупые углы параллелограмма.
- **4.** Существует ли трапеция, в которой только один угол прямой?
- **5.** Могут ли углы трапеции, взятые в последовательном порядке, относиться как 1:1:2:2? Ответ обоснуйте.

вариант 2

- **1.** Существует ли выпуклый четырехугольник, углы которого равны 100° , 80° , 135° , 55° ?
- **2.** В четырехугольнике ABCD AB = CD. Верно ли, что ABCD параллелограмм?
- **3.** В параллелограмме $ABCD \angle A + \angle C > 180^{\circ}$. Назовите острые углы параллелограмма.
- 4. Существует ли трапеция, в которой три угла прямые?
- **5.** Могут ли углы трапеции, взятые в последовательном порядке, относиться как 5:5:7:7? Ответ обоснуйте.

- **1.** Существует ли выпуклый четырехугольник, у которого три угла тупые и один прямой?
- **2.** Верно ли, что если в четырехугольнике две стороны параллельны, а две другие равны, то этот четырехугольник параллелограмм?
- **3.** В параллелограмме ABCD с периметром P справедливо неравенство BC + AD + CD > 0, 5P + AB. Сравните стороны BC и CD.
- **4.** Существует ли трапеция, в которой два противоположных угла острые?
- **5.** Могут ли углы трапеции, взятые в последовательном порядке, относиться как 1:3:3:5? Ответ обоснуйте.

- **1.** Существует ли выпуклый четырехугольник, у которого три угла острые и один прямой?
- **2.** Верно ли, что если в четырехугольнике есть две пары равных не обязательно противоположных сторон, то этот четырехугольник параллелограмм?
- **3.** В параллелограмме ABCD с полупериметром p справедливо неравенство CD + p > AB + AD + BC. Сравните стороны BC и AB.
- **4.** Существует ли трапеция, в которой два противоположных угла тупые?
- **5.** Могут ли углы трапеции, взятые в последовательном порядке, относиться как 2:3:3:4? Ответ обоснуйте.

Самостоятельная работа (на чертежах)

1. На рис. 1 ABCD — параллелограмм, $\angle ADB = 38^{\circ}$, $\angle BDC = 72^{\circ}$. Найдите углы параллелограмма.

Рис. 1

2. На рис. 2 ABCD — параллелограмм, BE = 4 см, AD = 8 см, $\angle AED = \angle ADE$. Найдите периметр параллелограмма.

Рис. 2

3. На рис. З ABCD — трапеция, $\angle A = 24^{\circ}$, $\angle C = 87^{\circ}$. Найдите углы B и D.

Рис. 3

4. На рис. 4 изображены параллелограммы KLMN и PRST. Докажите, что ABCD — параллелограмм.

Рис. 4

5. На рис. 5 BNDM — параллелограмм, AM = CN. Докажите, что $BC\|AD$.

Рис. 5

вариант 2

1. На рис. 6 ABCD — параллелограмм, $\angle CAD = 22^{\circ}$, $\angle ACD = 38^{\circ}$. Найдите углы параллелограмма.

Рис. 6

2. На рис. 7 ABCD — параллелограмм, BC = 5 см, DE = 8 см, BC = CE. Найдите периметр параллелограмма.

Puc. 7

3. На рис. 8 ABCD — трапеция, $\angle B = 136^{\circ}$, $\angle D = 22^{\circ}$. Найдите углы A и C.

4. На рис. 9 KLMN — параллелограмм, BL = DN, AK = CM. Докажите, что ABCD — параллелограмм.

5. На рис. 10 ABCD — параллелограмм, BE = DF. Докажите, что $AE \parallel CF$.

вариант 3

1. На рис. 11 ABCD — параллелограмм, $\angle ABE = 27^{\circ}$, $BE \perp AD$. Найдите углы параллелог- A рамма.

2. На рис. 12 ABCD — параллелограмм, BE — биссектриса, $\angle C = \angle ABE$, AD = 5 см, DE = 6 см. Найдите периметр четырехугольника ABED.

3. На рис. 13 $\angle C = 115^{\circ}$, $\angle D = 65^{\circ}$, $\angle CBE = 56^{\circ}$, AE и BE — биссектрисы. Найдите углы x и y.

4. На рис. 14 MNKL — параллелограмм, AM = CK, DM = BK. Докажите, что ABCD — параллелограмм.

5. На рис. 15 MBND — параллелограмм, AO = CO. Докажите, что ABCD — параллелограмм.

1. На рис. 16 ABCD — параллелограмм, AB = BE, $\angle CBE = 59^{\circ}$. Найдите углы параллелограмма.

Рис. 16

2. На рис. 17 ABCD — параллелограмм, DE — биссектриса, AE = DE, AD = 7 см, BE = 8 см. Найдите периметр четырехугольника BCDE.

Рис. 17

3. На рис. 18 $\angle A = 42^{\circ}$, $\angle B = 138^{\circ}$, $\angle CDE = 12^{\circ}$, CE и DE — биссектрисы. Найдите углы x и y.

4. На рис. 19 MNKL — параллелограмм, AL = CN, BM = DK. Докажите, что ABCD — параллелограмм.

5. На рис. 20 BNDM — параллелограмм, BO = DO. Докажите, что ABCD — параллелограмм.

Самостоятельная работа (письменная)

- 1. Один из углов параллелограмма равен 127°. Найдите остальные углы.
- 2. Периметр параллелограмма равен 112 см, а одна из его сторон втрое меньше другой. Найдите стороны параллелограмма.
- **3.** Два угла трапеции равны 70° и 130° . Найдите неизвестные углы трапеции.
- 4. Угол между биссектрисой острого угла параллелограмма и высотой, проведенной из вершины этого угла, равен 70°. Найдите углы параллелограмма.
- 5. Диагональ трапеции лежит на биссектрисе ее острого угла. Докажите, что боковая сторона трапеции равна меньшему основанию.

- 1. Один из углов параллелограмма равен 47°. Найдите остальные углы.
- 2. Периметр параллелограмма равен 112 см, а две его стороны относятся как 5:3. Найдите стороны параллелограмма.
- **3.** Два угла трапеции равны 120° и 80° . Найдите неизвестные углы трапеции.
- 4. Угол между биссектрисой тупого угла параллелограмма и выстой, проведенной из вершины этого угла, равен 40°. Найдите углы параллелограмма.
- 5. Боковая сторона трапеции равна меньшему основанию. Докажите, что диагональ трапеции лежит на биссектрисе ее острого угла.

- **1.** Сума двух углов параллелограмма равна 48°. Найдите углы параллелограмма.
- 2. Периметр параллелограмма больше одной из его сторон на 66 см, а другой на 54 см. Найдите стороны параллелограмма.
- **3.** Два угла трапеции равны, а разность двух других равна 20°. Найдите углы трапеции.
- **4.** Высоты параллелограмма, проведенные из одной вершины, образуют при пересечении с диагональю углы 30° и 80°. Найдите углы параллелограмма.
- **5.** Диагональ равнобедренной трапеции делит ее на два равнобедренных треугольника. Найдите углы трапеции.

- **1.** Разность двух углов параллелограмма равна 48°. Найдите углы параллелограмма.
- 2. Одна из сторон параллелограмма меньше периметра на 57 см, а другая на 63 см. Найдите периметр параллелограмма.
- **3.** Два угла трапеции относятся как 7:11, а два других равны. Найдите углы трапеции.
- **4.** Высоты параллелограмма, проведенные из одной вершины, образуют при пересечении с диагональю углы 50° и 70° . Найдите углы параллелограмма.
- **5.** Три стороны трапеции равны, а диагональ равна одному из оснований. Найдите углы трапеции.

Прямоугольник, ромб, квадрат

вариант

Самостоятельная работа (теоретическая)

4

- 1. Является ли любой квадрат прямоугольником?
- **2.** Верно ли, что существует ромб, который не является параллелограммом?
- **3.** Три угла параллелограмма равны. Определите вид параллелограмма.
- **4.** Найдите угол между диагональю и стороной параллелограмма, диагонали которого взаимно перпендикулярны и равны.
- **5.** Как с помощью транспортира, сделав наименьшее количество измерений, проверить, является ли данный параллелограмм ромбом?

вариант 2

- 1. Является ли любой квадрат ромбом?
- **2.** Верно ли, что существует прямоугольник, который не является параллелограммом?
- **3.** Три стороны параллелограмма равны. Определите вид параллелограмма.
- **4.** Найдите углы параллелограмма, диагонали которого равны.
- **5.** Как с помощью транспортира, сделав наименьшее количество измерений, проверить, является ли данный параллелограмм прямоугольником?

1. Существует ли четырехугольник с равными диагоналями, который не является прямоугольником?

- 2. Верно ли, что ни один прямоугольник не является ромбом?
- 3. Определите вид четырехугольника, у которого две стороны параллельны и равны третьей стороне.
- **4.** Найдите углы между диагоналями параллелограмма, сторона которого равна четверти периметра.
- **5.** Как, используя только циркуль, проверить, является ли четырехугольник квадратом?

- **1.** Существует ли четырехугольник с перпендикулярными диагоналями, который не является ромбом?
- 2. Верно ли, что ни один ромб не является прямоугольником?
- **3.** Определите вид четырехугольника, у которого есть две пары равных противолежащих углов и ни один из них не является острым.
- **4.** Найдите углы между диагоналями параллелограмма, сумма двух противоположных сторон которого равна полупериметру.
- **5.** Как, используя только циркуль, проверить, является ли четырехугольник прямоугольником?

Самостоятельная работа (на чертежах)

1. На рис. 21 ABCD — прямоугольник, $\angle ADB = 20^{\circ}$. Найдите углы x и y.

Рис. 21

2. На рис. 22 ABCD — ромб, $\angle BAE = 150^{\circ}$. Найдите углы x и y.

3. На рис. $23 \, ABCD$ — прямоугольник, AM = MD. Найдите стороны прямоугольника, если его периметр равен $42 \, \text{см}$.

4. На рис. $24\ ABCD$ — ромб, $\angle BAM = \angle DAN$. Докажите, что CM = CN.

5. На рис. 25 ABCD — квадрат, AK = AM = CN = CL. Докажите, что MNLK — прямоугольник.

Рис. 24

вариант 2

1. На рис. 26 ABCD — прямоугольник, ∠ $CBO = 20^{\circ}$. Найдите углы x и y.

Рис. 25

2. На рис. 27 ABCD — ромб, $\angle CDE = 140^{\circ}$. Найдите углы x и y.

3. На рис. $28\ ABCD$ — прямоугольник, $\angle ABM = \angle DCM$. Найдите периметр прямоугольника, если $BC = 24\ \text{cm}$.

Рис. 28

4. На рис. $29\,ABCD$ — ромб, $AE\perp BC$, $AF\perp CD$. Докажите, что CE=CF.

Рис. 29

5. На рис. 30 ABCD — квадрат, $\angle ADE = \angle ABE = \angle CBF = = \angle CDF$. Докажите, что BFDE — ромб.

Рис. 30

вариант 3

1. На рис. 31 ABCD — прямоугольник, $\angle AOB = 20^{\circ}$. Найдите углы x и y.

2. На рис. $32 \ ABCD$ — ромб, ∠ $CAE = 32^{\circ}$, $AE \perp BC$. Найдите углы x и y.

3. На рис. 33 KLMN — прямоугольник, $\angle C = 90^{\circ}$, AC = BC, KL: LM = 1:5, AB = 49 см. Найдите периметр прямоугольника KLMN.

Рис. 33

4. На рис. 34 ABCD — прямоугольник, $\angle ABF = \angle BAE$. Докажите, что CE = FD.

5. На рис. 35 ABCD — квадрат, AL = BM = CN = DK. Докажите, что MNKL — квадрат.

1. На рис. $36\ ABCD$ — прямоугольник, $\angle ABO = 50^{\circ}$. Найдите углы x и y.

Рис. 36

2. На рис. 37 ABCD — ромб, $BM \perp DC$, $\angle CBM = 24^{\circ}$. Найдите углы x и y.

Рис. 37

3. На рис. 38 KLMN — прямоугольник, $\angle C = 90^{\circ}$, AC = BC, KL:LM = 2:5, $P_{KLMN} = 56$ см. Найдите AB.

Рис. 38

4. На рис. 39 ABCD — прямоугольник, BM = CN. Докажите, что треугольник AKD — равнобедренный.

Рис. 39

5. На рис. 40 ABCD — квадрат, $\angle MAB = \angle NBC = \angle KCD = = \angle LDA$, $\angle MBA = \angle NCB = \angle KDC = \angle LAD$. Докажите, что KLMN — квадрат.

Рис. 40

Самостоятельная работа (письменная)

- 1. Угол ромба равен 140°. Найдите угол между противоположной этому углу диагональю и стороной ромба.
- 2. Диагональ делит угол прямоугольника в отношении 1:8. Найдите тупой угол, который образуется при пересечении диагоналей прямоугольника.
- **3.** Перпендикуляр, проведенный из вершины тупого угла ромба, делит его сторону пополам. Периметр ромба равен 36 см. Найдите углы и меньшую диагональ ромба.
- **4.** Докажите, что прямоугольник является квадратом, если две его соседние стороны образуют с диагональю равные углы.
- 5. Постройте ромб по стороне и диагонали.

- **1.** Угол между диагональю и стороной ромба равен 20° . Найдите углы ромба.
- **2.** Диагональ делит угол прямоугольника на два угла, один из которых на 10° больше другого. Найдите острый угол между диагоналями прямоугольника.
- **3.** Перпендикуляр, проведенный из вершины тупого угла ромба, делит его сторону пополам. Меньшая диагональ ромба равна 12 см. Найдите углы и периметр ромба.
- **4.** Докажите, что параллелограмм является прямоугольником, если диагонали образуют равные углы с одной из его сторон.
- **5.** Постройте ромб по диагонали и противоположному ей углу.

- 1. Сторона прямоугольника вдвое меньше диагонали. Найдите острый угол между диагоналями прямоугольника.
- **2.** Биссектриса угла между диагональю и высотой ромба, проведенными из одной вершины, образует с этой высотой угол 20° . Найдите углы ромба.
- **3.** На сторонах BC и AD прямоугольника ABCD выбраны соответственно точки M и N так, что AMCN ромб. Найдите BC, если сторона ромба равна 18 см, а $\angle ABD = 60^{\circ}$.
- **4.** В прямоугольнике проведены биссектрисы углов. Докажите, что при их пересечении образуется квадрат.
- 5. Постройте прямоугольник по диагонали и периметру.

- **1.** Периметр ромба вчетверо больше диагонали. Найдите тупой угол ромба.
- 2. Биссектриса угла между диагональю и стороной прямоугольника образует с этой диагональю угол 18°. Найдите острый угол между диагоналями прямоугольника.
- **3.** На сторонах BC и AD прямоугольника ABCD выбраны соответственно точки M и N так, что AMCN ромб. Найдите сторону ромба, если AD = 18 см, а $\angle ADB = 30^{\circ}$.
- **4.** В углах, смежных с углами ромба, проведены биссектрисы. Докажите, что при их пересечении образуется прямоугольник.
- **5.** Постройте прямоугольник по углу между диагоналями и периметру.

Площади параллелограмма, треугольника и трапеции. Теорема Пифагора

Самостоятельная работа *(теоретическая)*

7

- **1.** Два ромба имеют равные периметры. Равны ли их площади?
- **2.** Может ли высота делить треугольник на два равновеликих треугольника? Ответ обоснуйте.
- **3.** Площади треугольников, на которые диагональ делит трапецию, относятся как 4:9. Как относятся основания трапеции?
- **4.** Определите, как изменится площадь параллелограмма, если две противоположных стороны уменьшить в 2 раза, а высоту в 6 раз.
- **5.** Определите вид треугольника со сторонами 50 см, 30 см и 40 см.

вариант 2

- **1.** Два квадрата имеют равные диагонали. Равны ли их площади?
- 2. Может ли биссектриса делить треугольник на два равновеликих треугольника? Ответ обоснуйте.
- **3.** Основания трапеции относятся как 8:3. Найдите отношение площадей треугольников, на которые данная трапеция делится диагональю.
- **4.** Определите, как изменится площадь трапеции, если ее основания увеличить в 2 раза, а высоту в 4 раза.

5. Определите вид треугольника со сторонами 12 см, 16 см, 20 см.

- **1.** Площади двух прямоугольников не равны. Могут ли быть равными их периметры?
- 2. Может ли диагональ трапеции делить ее на две равновеликие трапеции? Ответ обоснуйте.
- **3.** Катеты двух равнобедренных прямоугольных треугольников относятся как $1:\sqrt{3}$. Как относятся площади этих треугольников?
- **4.** Определите, как изменится площадь треугольника, если его основание уменьшить в 6 раз, а высоту увеличить в 2 раза?
- **5.** Определите вид треугольника со сторонами 5a, 12a, 13a.

- **1.** Площади двух прямоугольников равны. Равны ли их периметры?
- 2. Может ли высота трапеции делить ее на две равновеликие трапеции? Ответ обоснуйте.
- **3.** Площади двух прямоугольных равнобедренных треугольников относятся как 1:4. Как относятся катеты этих треугольников?
- **4.** Определите, как изменится площадь треугольника, если ее основание увеличить в 6 раз, а высоту уменьшить в 3 раза.
- **5.** Определите вид треугольника со сторонами 7a, 24a, 25a.

Самостоятельная работа (на чертежах)

1. На рис. 41 ABCD — квадрат, $CD = 5\sqrt{3}$ см. Найдите S_{ABCD} .

- **2.** На рис. 42 $BD \perp AC$, BD = 7 см, AD = 6 см, CD = 8 см. Найдите S_{ABC} .
- **3.** На рис. $43\ ABCD$ прямоугольник, $BC = 20\ \text{см}$, $AC = 25\ \text{см}$. Найдите x.

4. На рис. 44 ABCD — параллелограмм, $BE \perp AD$, AE = 3 см, CD = 5 см, BC = 10 см. Найдите S_{ABCD} .

5. Ha puc. 45 $CE \perp BC$, $CE \perp AD$, AB = 15 cm, BC = 3 cm, CD = 13 см, DE = 5 см. Найдите S_{ABCD} .

Рис. 45

1. На рис. 46 ABCD — квадрат, $AD = 7\sqrt{2}$ см. Найдите

 \boldsymbol{B} 12 Рис. 47

Рис. 46

2. На рис. 47 $BD \perp AC$, BD = 12 см, AC = 7 см. Найдите S_{ABC} . **3.** На рис. $48 \ ABCD \ -$ ромб, BO =

= 12 см, CO = 9 см. Найдите x.

ЧАСТЬ І. БЛОК З

4. На рис. 49 ABCD — параллелограмм, $DE \perp BC$, AB = 5 см, BE = 6 см, CE = 3 см. Найдите S_{ABCD} .

5. На рис. 50 $BE \perp BC$, $BE \perp AD$, AB = 17 см, BC = 7 см, CD = 25 см, BE = 15 см. Найдите S_{ABCD} .

1. На рис. 51 ABCD — квадрат, $AC = 9\sqrt{2}$ см. Найдите S_{ABCD} .

Рис. 51

2. На рис. $52\ AB = BC = 5\ \text{cm},\ AC = 8\ \text{cm}.$ Найдите S_{ABC} .

3. На рис. 53 ABCD — прямоугольник, BC = 8x см, AO = 5x см, CD = 18 см. Найдите P_{ABCD} .

4. На рис. 54 ABCD — параллелограмм, $BE \perp AD$, $\angle A = 30^\circ$, CD = 20 см, $DE = 12\sqrt{3}$ см. Найдите S_{ABCD} .

5. На рис. 55 ABCD — трапеция, AB = 3 см, BC = 10 см, CD = 4 см, AD = 15 см. Найдите S_{ABCD} .

1. На рис. 56 ABCD — квадрат, отрезок $AO=4\sqrt{2}$ см. Найдите S_{ABCD} .

2. На рис. 57 $\angle ABD = \angle CBD$, $BD \perp AC$, BC = 5 см, AD = 3 см. Найдите S_{ABC} .

- **3.** На рис. 58 ABCD прямоугольник, AB = 5x см, BC = 12x см, CO = 13 см. Найдите P_{ABCD} .
- **4.** На рис. 59 ABCD параллелограмм, $BE \perp AD$, $\angle D=150^\circ$, AB=6 см, $DE=4\sqrt{3}$ см. Найдите S_{ABCD} .

Рис. 59

5. На рис. 60 ABCD — трапеция, AB=6 см, BC=10 см, CD=8 см, AD=20 см. Найдите S_{ABCD} .

Самостоятельная работа (письменная)

- 1. Площадь параллелограмма равна 96 см², а его высоты 6 см и 12 см. Найдите стороны параллелограмма.
- 2. Площадь прямоугольника со сторонами 6 см и 10 см равна площади ромба с периметром 48 см. Найдите высоту ромба.
- **3.** Найдите площадь равнобедренного треугольника, основание которого равно 12 см, а боковая сторона 10 см.
- **4.** Сторона ромба равна 10 см, а один из углов 120° . Найдите диагонали ромба.
- **5.** Меньшее основание и меньшая боковая сторона прямоугольной трапеции равны a см, а один из углов 45° . Найдите площадь трапеции.

- Площадь параллелограмма равна 72 см², а его стороны — 12 см и 8 см. Найдите высоты параллелограмма.
- 2. Площадь ромба со стороной 18 см и высотой 7 см равна площади прямоугольника со стороной 14 см. Найдите периметр прямоугольника.
- **3.** Найдите площадь равнобедренного треугольника, боковая сторона которого равна 15 см, а основание 24 см.
- **4.** Меньшая диагональ ромба равна 12 см, а один из углов 60° . Найдите вторую диагональ и сторону ромба.
- **5.** Большее основание и большая боковая сторона прямоугольной трапеции равны a см, а один из углов 60° . Найдите площадь трапеции.

- **1.** Стороны параллелограмма равны $6\sqrt{2}$ см и 9 см, а угол между ними 135° . Найдите площадь параллелограмма.
- 2. Площадь квадрата равна площади ромба со стороной 6 см и высотой 3 см. Найдите диагональ квадрата.
- **3.** Найдите площадь равнобедренного треугольника, боковая сторона которого относится к основанию как 13:10, а высота, проведенная к основанию, равна 36 см.
- **4.** Разность углов ромба равна 60° . Найдите площадь ромба, если его большая диагональ равна $6\sqrt{3}$ см.
- **5.** Меньшая боковая сторона прямоугольной трапеции равна a см, а острый угол 60° . Найдите площадь трапеции, если меньшая диагональ образует с основанием угол 30° .

- 1. Тупой угол параллелограмма равен 135°. Высота, проведенная из вершины этого угла, делит сторону на отрезки длиной 4 см и 2 см, начиная от вершины острого угла. Найдите площадь параллелограмма.
- 2. Площадь квадрата равна площади прямоугольника со сторонами 2 см и 4 см. Найдите диагональ квадрата.
- **3.** Основание равнобедренного треугольника относится к боковой стороне как 16:17, а высота, проведенная к основанию, равна 30 см. Найдите площадь треугольника.
- **4.** Меньшая диагональ ромба равна его стороне. Найдите площадь ромба, если большая диагональ равна 10 см.
- **5.** Меньшее основание прямоугольной трапеции равно a см, а острый угол 30° . Найдите площадь трапеции, если меньшая диагональ образует с основанием угол 60° .

БЛОК **4**

Подобные треугольники

Самостоятельная работа (теоретическая) 10

вариант 1

- **1.** Могут ли быть подобными прямоугольный и равнобедренный треугольники?
- **2.** Являются ли равными любые два подобных треугольника?
- **3.** Подобны ли два прямоугольных треугольника, если они имеют общий острый угол?
- **4.** Известно, что $\triangle ABC \sim \triangle MNK$, $\angle A = \angle M$, $\angle B = \angle N$, $P_{\triangle ABC}: P_{\triangle MNK} = 2:3$. Найдите отношение NK:BC.
- **5.** Площади двух прямоугольных треугольников с соответственно равными острыми углами относятся как 2:3. Как относятся гипотенузы этих треугольников?

вариант 2

- **1.** Могут ли быть подобными равнобедренный и тупоугольный треугольники?
- 2. Подобны ли любые два равных треугольника?
- **3.** Подобны ли два прямоугольных треугольника, если они имеют общий угол?
- 4. Известно, что $\triangle ABC \sim \triangle MNK$, $\angle A = \angle M$, $\angle B = \angle N$, MK : AC = 2:7. Найдите отношение $P_{\triangle ABC} : P_{\triangle MNK}$.
- **5.** Катеты двух равнобедренных прямоугольных треугольников относятся как $1:\sqrt{3}$. Как относятся площади этих треугольников?

1. Могут ли быть подобными треугольник с углом 65° и треугольник с углом 115° ?

- **2.** Два подобных треугольника имеют общий угол. Обязательно ли их стороны, противоположные этому углу, параллельны?
- **3.** Могут ли быть подобными неравные прямоугольные треугольники с общим катетом?
- **4.** Известно, что $\triangle ABC \sim \triangle A_1B_1C_1$, $\angle A = \angle A_1$, $\angle B = \angle B_1$, $AB: A_1B_1 = 0$,4. Найдите отношение $A_1C_1:AC$.
- **5.** Площади двух равносторонних треугольников относятся как 4:9. Как относится высота меньшего треугольника к стороне большего?

- **1.** Могут ли быть подобными треугольник с углом 121° и треугольник с углом 59°?
- **2.** Два подобных треугольника имеют два общих угла. Чему равен коэффициент подобия данных треугольников?
- **3.** Могут ли быть подобными неравные прямоугольные треугольники с общей гипотенузой?
- **4.** Известно, что $\triangle ABC \sim \triangle A_1B_1C_1$, $\angle A = \angle A_1$, $\angle B = \angle B_1$, $B_1C_1:BC=1,5$. Найдите отношение $AB:A_1B_1$.
- **5.** Площади двух равнобедренных прямоугольных треугольников относятся как 1:4. Как относятся гипотенуза меньшего треугольника к катету большего?

Самостоятельная работа (на чертежах) 11

1. На рис. 61 AB = 2.5 см, AC = 3 см, MN = 10 см, KN = 8 см. Найдите x и y.

2. На рис. 62 AB = BC, $A_1B_1 = B_1C_1$, $\angle A = 70^\circ$, $\angle B_1 = 40^\circ$. Докажите, что $\triangle ABC \sim \triangle A_1B_1C_1$.

3. На рис. 63 BE = DE = 4 см, AE = 2 см, CE = 8 см. Докажите подобие треугольников ABE и DCE и найдите отношение $S_2: S_1$.

4. На рис. 64 $\angle ACB = 90^{\circ}$, $\angle B = \angle ACD = \alpha$. Назовите треугольники, подобные треугольнику ABC, и докажите их подобие.

Рис. 64

5. На рис. 65 $AE \perp BC$, $BD \perp AC$. Назовите все пары подобных треугольников и докажите их подобие.

Рис. 65

1. На рис. 66 AB = 16 см, BC = 6 см, MK = 5 см, NK = 1,5 см. Найдите x и y.

2. На рис. 67 AB=8 см, BC=7 см, AC=6 см, $A_1B_1=56$ см, $B_1C_1=49$ см, $A_1C_1=42$ см. Докажите, что $\Delta ABC \sim \Delta A_1B_1C_1$.

3. На рис. $68\ BE = 12\ \text{cm},\ AE = 6\ \text{cm},\ CE = 36\ \text{cm},\ DE = 18\ \text{cm}.$ Докажите подобие треугольников ABE и DCE и найдите отношение $S_1:S_2$.

4. На рис. 69 $\angle B = \angle ACD = \alpha$, $\angle A = \angle BCD = \beta$. Назовите треугольники, подобные треугольнику ABC, и докажите их подобие.

5. На рис. 70 $CE \perp AB$, $BD \perp AC$. Назовите все пары подобных треугольников и докажите их подобие.

1. На рис. 71 $P_{_{ABC}}=15$ см, $A_{_{1}}B_{_{1}}=21$ см, $B_{_{1}}C_{_{1}}=9$ см, $A_{_{1}}C_{_{1}}=15$ см. Найдите $x,\ y$ и z.

Рис. 71

2. На рис. $72\ AB = a,\ BD = 2a,\ AC = b,\ CE = 2b.\ Докажите, что <math>\triangle ABC \sim \triangle ADE$.

Рис. 72

3. На рис. 73 BM = 8 см, BN = 5 см, AM = 2 см, CN = 11 см. Найдите отношение $S_1: S_2$.

4. На рис. $74~AD=5~{\rm cm},~BD=4~{\rm cm},~BC=6~{\rm cm}.$ Назовите подобные треугольники и докажите их подобие.

5. На рис. 75 $AM \perp BC$, $CN \perp AB$. Докажите, что $\triangle ABC \sim \triangle MBN$.

1. На рис. 76 AB = 5 см, BC = 6 см, AC = 4 см, $P_{A_1B_1C_1} = 45$ см. Найдите x, y и z.

Рис. 76

2. На рис. 77 ABCD — трапеция. Докажите, что $\Delta BOC \sim \Delta DOA$.

Рис. 77

3. На рис. 78 AB = 11 см, AM = 7 см, BC = 9 см, CN = 13 см. Найдите отношение $S_1: S_2$.

Рис. 78

4. На рис. $79 \angle ABD = \angle C = 30^{\circ}$. Назовите подобные треугольники и докажите их подобие.

5. На рис. 80 $CM \perp AB$, $BN \perp AN$. Докажите, что $\Delta ABC \sim \Delta ANM$.

Самостоятельная работа (письменная) 12

- **1.** Известно, что $\triangle ABC \circ \triangle XYZ$, $\angle A = \angle X$, $\angle B = \angle Y$. Найдите угол X, если $\angle B = 72^\circ$, $\angle Z = 93^\circ$.
- **2.** Стороны треугольника равны 48 см, 24 см, 56 см. Найдите периметр треугольника, подобного данному, если его наибольшая сторона равна 7 см.
- 3. Точка пересечения диагоналей трапеции делит одну из них на отрезки длиной 5 см и 9 см. Найдите основания трапеции, если их сумма равна 70 см.
- **4.** Катеты прямоугольного треугольника равны 12 см и 16 см. Найдите периметр треугольника, подобного данному, если его площадь равна 24 см².
- **5.** Прямая, параллельная основанию треугольника, делит его на треугольник и четырехугольник, площади которых относятся как 25:24. Найдите периметр меньшего треугольника, если периметр большего равен 21 см.

- 1. Известно, что $\triangle ABC \sim \triangle XYZ$, $\angle A = \angle X$, $\angle B = \angle Y$. Найдите угол B, если $\angle X = 123^\circ$, $\angle C = 18^\circ$.
- **2.** Стороны треугольника равны 18 см, 27 см, 36 см. Найдите периметр треугольника, подобного данному, если его наименьшая сторона равна 36 см.
- **3.** Основания трапеции равны 7 см и 15 см. Найдите отрезки диагонали, на которые ее делит вторая диагональ, если разность этих отрезков равна 24 см.
- **4.** Площадь прямоугольного треугольника равна 54 см², а катеты треугольника, подобного данному, относятся как 3:4. Найдите периметр данного треугольника.

5. Прямая, параллельная основанию треугольника, делит его на треугольник и четырехугольник, площади которых относятся как 1:8. Найдите периметр большего треугольника, если периметр меньшего равен 7 см.

- 1. Найдите углы треугольника, если в треугольнике, подобном данному, наибольший угол втрое больше среднего и в 6 раз больше наименьшего.
- **2.** Известно, что $\triangle ABC \sim \triangle MNK$, $\angle A = \angle M$, $\angle B = \angle N$, AB:MN=4:3. Найдите BC и MK, если AC=NK=12 см.
- 3. Основания трапеции равны 12 см и 18 см, а диагонали 15 см и 25 см. Найдите отрезки диагоналей, на которые каждая из них делится точкой пересечения.
- 4. Биссектриса равнобедренного треугольника делит высоту, проведенную к основанию, на отрезки длиной 20 см и 16 см. Найдите периметр треугольника.
- **5.** Две прямые, параллельные стороне *AB* треугольника *ABC*, делят сторону *AC* в отношении 2:3:2. Найдите площади полученных частей треугольника, если площадь данного треугольника равна 98 см².

- 1. Найдите углы разностороннего треугольника, если в треугольнике, подобном данному, один из углов отличается от каждого из двух других на 40° .
- **2.** Известно, что $\triangle ABC \circ \triangle MNK$, $\angle A = \angle M$, $\angle B = \angle N$, NK:BC=2:3. Найдите MN и AC, если AB=MK=12 см.
- 3. Диагонали трапеции равны 32 см и 40 см, а основания 21 см и 35 см. Найдите отрезки диагоналей, на которые каждая из них делится точкой пересечения.

- 4. Биссектриса равнобедренного треугольника делит высоту, проведенную к основанию, в отношении 5:3. Найдите периметр треугольника, если данная высота равна 24 см.
- **5.** Две прямые, параллельные стороне AB треугольника ABC, делят сторону AC в отношении 1:4:2, начиная от вершины C. Найдите отношение площадей полученных частей треугольника.

блок 5

Применение подобия. Решение прямоугольных треугольников

Самостоятельная работа (теоретическая) 13

- **1.** Определите вид треугольника, у которого две средние линии перпендикулярны и равны.
- **2.** Может ли синус острого угла прямоугольного треугольника быть равным $\sqrt{3}$?
- **3.** В прямоугольном треугольнике ABC с прямым углом C $\sin B = m$. Найдите сумму $\sin B + \cos A$.
- **4.** В прямоугольном треугольнике тангенс острого угла равен $\frac{3}{4}$. Найдите отношение большего катета к гипотенузе.
- **5.** Для каких острых углов прямоугольного треугольника синус больше, чем косинус?

вариант 2

- **1.** Определите вид треугольника, у которого две средние линии равны и пересекаются под углом 60°?
- **2.** Может ли косинус острого угла прямоугольного треугольника быть равным $\frac{\sqrt{5}}{2}$?
- **3.** В прямоугольном треугольнике ABC с прямым углом C $\cos B = n$. Найдите произведение $\sin A \cdot \cos B$.

- **4.** В прямоугольном треугольнике тангенс острого угла равен $\frac{4}{3}$. Найдите отношение гипотенузы к меньшему катету.
- **5.** Для каких острых углов прямоугольного треугольника синус меньше, чем косинус?

- **1.** Могут ли средние линии треугольника относиться как 1:2:3? Ответ обоснуйте.
- 2. Может ли синус острого угла прямоугольного треугольника быть равным тангенсу этого угла?
- **3.** В прямоугольном треугольнике ABC с прямым углом C $\sin B = p$. Найдите произведение $\sin A \cdot \operatorname{ctg} A$.
- **4.** В прямоугольном треугольнике ABC с гипотенузой AB $\cos B = 4\cos A$. Найдите отношение AC:BC.
- **5.** В прямоугольном треугольнике синус острого угла равен 0,6. Найдите отношение гипотенузы к периметру.

- **1.** Может ли средняя линия быть вдвое больше, чем каждая из двух других средних линий? Ответ обоснуйте.
- 2. Может ли косинус острого угла прямоугольного треугольника быть равным котангенсу этого угла?
- **3.** В прямоугольном треугольнике ABC с прямым углом C $\cos B = p$. Найдите произведение $\cos A \cdot \operatorname{tg} A$.
- **4.** В прямоугольном треугольнике ABC с гипотенузой AB $\sin B = 3\sin A$. Найдите отношение BC:AC.
- **5.** В прямоугольном треугольнике косинус острого угла равен 0,8. Найдите отношение суммы катетов к гипотенузе.

Самостоятельная работа (на чертежах) 14

1. На рис. 81~AK = KB, BL = LC, AM = MC, AB = 18~ см, BC = 16~ см, AC = 20~ см. Найдите P_{KLM} .

Рис. 81

2. На рис. 82 $\triangle ABC$ — прямоугольный, BD = 12 см, AD = 16 см. Найдите x и y.

3. По данным рис. 83 найдите $\cos \alpha$.

4. По данным рис. 84 найдите x.

Рис. 84

5. По данным рис. 85 найдите x и y.

Рис. 85

 \boldsymbol{B}

вариант 2

1. На рис. 86 AK = KB, BL = LC, AM = MC, KL = 9 см, LM = 8 см, KM = 7 см. Найдите P_{ABC} .

Рис. 86

L

2. На рис. 87 $\triangle ABC$ — прямоугольный, BD = 24 см, CD = 18 см. Найдите x и y.

y

M

Рис. 87

3. По данным рис. 88 найдите sina.

4. По данным рис. 89 найдите x.

5. По данным рис. 90 найдите x и y.

1. На рис. 91 $AC \| KL \| MN$, AK = KM = MB, KL = 10 см. Найдите x и y.

2. На рис. $92\ AC:CB:AB = 3:4:5,\ AD = 36\$ см. Найдите x и y.

- 3. По данным рис. 93 найдите tga.
- **4.** На рис. $94\ ABCD$ прямоугольник. Найдите x и y.

5. По данным рис. 95 найдите x.

1. На рис. 96 $AC \|KL\|MN$, CL = LN = NB, MN = 8 см. Найдите x и y.

2. На рис. 97 AC:CB:AB = 3:4:5, CD = 48 см. Найдите x и y.

- 3. По данным рис. 98 найдите tga.
- **4.** На рис. $99\ ABCD$ прямоугольник. Найдите x и y.

5. По данным рис. 100 найдите x.

Самостоятельная работа (письменная) 15

- **1.** Найдите среднюю линию равностороннего треугольника с периметром 54 см.
- 2. Перпендикуляр, проведенный из вершины прямоугольника к его диагонали, делит ее на отрезки, равные 2 см и 8 см. Найдите площадь прямоугольника.
- **3.** Вычислите $\cos 30^{\circ} \frac{\operatorname{tg} 60^{\circ}}{2}$.
- **4.** В прямоугольном треугольнике гипотенуза равна 51 см, а тангенс одного из углов $\frac{8}{15}$. Найдите катеты треугольника.
- **5.** Докажите, что площадь параллелограмма со сторонами a и b и острым углом α между ними можно вычислить по формуле $S=ab \sin \alpha$.

- 1. Периметр треугольника, образованного средними линиями равностороннего треугольника ABC, равен 48 см. Найдите AB.
- **2.** Перпендикуляр, проведенный из точки пересечения диагоналей ромба к стороне, делит ее на отрезки, равные 1 см и 4 см. Найдите площадь ромба.
- **3.** Вычислите $\sin 30^{\circ} + \frac{\text{tg } 45^{\circ}}{2}$.
- **4.** В прямоугольном треугольнике гипотенуза равна 75 см, а косинус одного из углов $\frac{7}{25}$. Найдите периметр треугольника.

5. Докажите, что площадь треугольника со сторонами a и b и острым углом α между ними можно вычислить по формуле $S=\frac{1}{2}ab\sin\alpha$.

- 1. Основание равнобедренного треугольника равно 28 см, а периметр треугольника, образованного средними линиями данного треугольника, 34 см. Найдите боковую сторону данного треугольника.
- 2. Найдите площадь прямоугольника, стороны которого относятся как 3:4, а перпендикуляр, проведенный из вершины прямоугольника к диагонали, равен 12 см.
- **3.** Вычислите $2\sqrt{3} (\sin 60^{\circ} \text{tg } 30^{\circ})$.
- **4.** Большая боковая сторона прямоугольной трапеции равна 26 см, а меньшее основание 20 см. Найдите площадь трапеции, если тангенс острого угла при основании равен $\frac{12}{5}$.
- **5.** Острый угол прямоугольного треугольника с гипотенузой c равен α . Докажите, что высота, проведенная к гипотенузе, равна $c\sin\alpha\cos\alpha$.

- 1. Боковая сторона равнобедренного треугольника равна 18 см, а периметр треугольника, образованного средними линиями данного треугольника, 23 см. Найдите основание данного треугольника.
- **2.** Найдите площадь прямоугольного треугольника, катет которого относится к гипотенузе как 3:5, а высота, проведенная к гипотенузе, равна 24 см.
- **3.** Вычислите $2\sqrt{3} (\operatorname{tg} 30^{\circ} \cos 30^{\circ})$.

- 4. Основания равнобедренной трапеции равны 30 см и 60 см. Найдите площадь трапеции, если тангенс острого угла при основании равен $\frac{4}{3}$.
- **5.** Высота прямоугольного треугольника с острым углом α , проведенная к гипотенузе, равна h. Докажите, что гипотенуза треугольника равна $\frac{h}{\sin \alpha \cos \alpha}$.

Самостоятельная работа (теоретическая) 16

- **1.** Сторона вписанного угла проходит через центр окружности. Может ли данный угол быть тупым?
- 2. В окружности построены центральный и вписанный углы. Может ли центральный угол быть меньше, чем вписанный?
- **3.** Могут ли вписанные углы, не опирающиеся на одну и ту же дугу, быть равными?
- **4.** Из точки вне окружности к окружности проведены две касательные. Определите, является ли угол между ними острым, прямым или тупым, если угол между радиусами, проведенными в точки касания, острый.
- **5.** Через точку A окружности с центром O проведена касательная и на ней отмечена точка B. Определите вид треугольника AOB, если $\angle OBA = 45^{\circ}$.

- **1.** Сторона вписанного угла проходит через центр окружности. Может ли данный угол быть прямым?
- **2.** В окружности построены центральный и вписанный углы. Может ли центральный угол быть равным вписанному углу?
- **3.** Могут ли вписанные углы ABC и AB_1C не быть равными?
- **4.** Из точки вне окружности к окружности проведены две касательные. Определите, является ли угол между ними острым, прямым или тупым, если угол между радиусами, проведенными в точки касания, тупой.

5. Через точку A окружности с центром O проведена касательная и на ней отмечена точка B. Определите вид треугольника AOB, если $\angle AOB = 45^{\circ}$.

- **1.** Определите, является ли вписанный угол *ABC* острым, прямым или тупым, если дуга *ABC* меньше полуокружности?
- **2.** Равны ли вписанные углы, стороны которых пересекают окружность в двух данных точках?
- **3.** Может ли угол с вершиной на окружности, стороны которого пересекают окружность в концах диаметра, быть острым?
- **4.** Из точки A вне окружности к окружности с центром O проведены две касательные. Определите, является ли угол между ними острым, прямым или тупым, если отрезок, соединяющий точки касания, делит пополам отрезок OA.
- **5.** Верно ли, что если две окружности имеют общую касательную, то она обязательно перпендикулярна отрезку, соединяющему их центры?

- **1.** Определите, является ли вписанный угол *ABC* острым, прямым или тупым, если дуга *ABC* больше полуокружности?
- **2.** Могут ли быть равными вписанные углы, стороны которых проходят через концы одного и того же радиуса?
- **3.** Может ли угол, стороны которого пересекают окружность в концах диаметра, быть тупым?
- **4.** Из точки A вне окружности к окружности с центром O проведены две касательные. Определите, является ли

- угол между ними острым, прямым или тупым, если радиусы окружности, проведенные в точки касания, равны отрезкам касательных.
- **5.** Верно ли, что если две равные окружности имеют общую касательную, то она обязательно параллельна отрезку, соединяющему их центры?

Самостоятельная работа (на чертежах) 17

1. На рис. 101 точка O — центр окружности, CA — касательная к окружности, $\angle BAO = 20^{\circ}$. Найдите $\angle BAC$.

Рис. 101

2. На рис. 102 точка O — центр окружности, AC и BC — касательные к окружности, $\angle AOB = 140^{\circ}$. Найдите $\angle C$.

Рис. 102

3. На рис. $103 \cup AC = 68^{\circ}$. Найдите угол x.

Рис. 103

4. На рис. 104 точка O — центр окружности, $\angle ABC = 100^{\circ}$. Найдите угол x.

5. На рис. $105 \angle CAD = 30^{\circ}$, $\angle ACD = 20^{\circ}$. Найдите угол x.

вариант 2

1. На рис. 106 точка O — центр окружности, AC — касательная к окружности, $\angle BAC = 80^{\circ}$. Найдите $\angle BAO$.

2. На рис. 107 точка O — центр окружности, AC и BC — касательные к окружности, $\angle ACB = 30^{\circ}$. Найдите $\angle AOB$.

3. На рис. 108 точка O — центр окружности, $\angle AOB = 72^{\circ}$. Найдите градусную меру дуги x.

Рис. 108

4. На рис. 109 точка O — центр окружности $\angle AOC = 130^{\circ}$. Найдите угол x.

Рис. 109

5. На рис. 110 $\angle BAC = 35^{\circ}$, $\angle ADC = 60^{\circ}$. Найдите угол x.

Рис. 110

1. На рис. 111 точка O — центр окружности, BC — касательная к окружности, $\angle BCA = 20^{\circ}$. Найдите угол BAC.

2. На рис. 112 точки O и O_1 — центры окружностей, CA_1 и CB_1 — касательные к окружностям. Докажите, что $AA_1 = BB_1$.

Рис. 112

3. На рис. 113 точка O — центр окружности, $\angle ABC = 27^{\circ}$. Найдите угол x.

4. На рис. $114 \angle ABD = 25^{\circ}$, $\angle AED = 70^{\circ}$. Найдите угол x.

5. На рис. 115 AB = AD, $\angle BAC = 45^{\circ}$, $\angle DAC = 65^{\circ}$. Найдите углы x и y.

Рис. 115

1. На рис. 116 точка O — центр окружности, BC — касательная к окружности, $\angle BAC = 20^{\circ}$. Найдите угол ACB.

Рис. 116

2. На рис. 117 точки O и O_1 — центры окружностей, AA_1 и BB_1 — касательные к окружностям. Докажите, что $AA_1 = BB_1$.

Рис. 117

3. На рис. 118 точка O — центр окружности, $\angle AOB = 54^{\circ}$. Найдите угол x.

- **4.** На рис. 119 $\angle ACB = 40^{\circ}$, $\angle DAC = 20^{\circ}$. Найдите угол x.
- **5.** На рис. 120 AB = AD, $\angle BAC = 70^{\circ}$, $\angle DAC = 60^{\circ}$. Найдите углы x и y.

Рис. 120

Самостоятельная работа (письменная) 18

- **1.** Найдите вписанный угол ABC, если дуга AC, на которую он опирается, равна 148° .
- **2.** В окружности с центром O угол между диаметром MN и хордой NK равен 67° . Найдите углы KMN и MOK.
- **3.** Через точку C окружности с центром O проведена касательная AB, причем AC = CB. Докажите, что AO = OB.
- **4.** Через точку A окружности проведены хорда AC и диаметр AB. Найдите высоту треугольника ABC, проведенную из вершины C, если хорда равна 30 см, а диаметр 50 см.
- 5. При пересечении двух хорд одна из них делится на отрезки длиной 16 см и 10 см, а вторая в отношении 2:5. Найдите длину второй хорды.

- 1. Найдите вписанный угол ABC, если дуга AC, на которую он опирается, равна 288° .
- **2.** В окружности с центром O проведены хорда DC и диаметр DM, $\angle CMD = 27^{\circ}$. Найдите углы CDM и COD.
- **3.** Через точку C окружности с центром O проведена касательная AB, причем AO = OB. Докажите, что AC = CB.
- **4.** Через точку A окружности проведены хорда AC и диаметр AB. Из вершины C треугольника ABC проведена высота CD. Найдите диаметр окружности, если AD = 27 см, а хорда равна 45 см.
- **5.** При пересечении хорды с диаметром окружности хорда делится на отрезки длиной 6 см и 32 см, а диаметр в отношении 3:4. Найдите радиус окружности.

- 1. Сумма центрального угла AOB и вписанного угла, опирающегося на дугу AB, равна 174° . Найдите каждый из этих углов.
- **2.** В окружности с центром O угол между хордой AB и радиусом BO в 8 раз меньше, чем угол между хордой BC и диаметром AC. Найдите эти углы.
- **3.** Радиусы OA и OB перпендикулярны. Докажите, что касательные, проведенные через точки A и B также перпендикулярны.
- **4.** Перпендикуляр, проведенный из точки окружности к диаметру, делит его в отношении 9:16. Найдите диаметр окружности, если перпендикуляр равен 36 см.
- 5. Из точки вне окружности, удаленной от центра окружности на 20 см, проведена касательная к окружности. Найдите радиус окружности, если отрезок касательной равен 16 см.

- 1. Центральный угол AOB на 90° меньше вписанного угла, опирающегося на дугу AB. Найдите каждый из этих углов.
- **2.** В окружности с центром O угол между радиусом OC и хордой CB вдвое больше, чем угол между диаметром AB и хордой AC. Найдите эти углы.
- **3.** Прямые, касающиеся окружности в точках A и B, перпендикулярны. Докажите, что радиусы OA и OB также перпендикулярны.
- **4.** Перпендикуляр, проведенный из точки окружности к диаметру, делит его на два отрезка, один из кото-

рых относится к диаметру как 9:25. Длина меньшей хорды, соединяющей данную точку с одним из концов диаметра, равна 45 см. Найдите диаметр окружности.

5. Из точки A вне окружности, удаленной от центра окружности на 10 см, проведена секущая, пересекающая окружность в точках B и C, причем AB = 4 см, BC = 5 см. Найдите диаметр окружности.

Вписанная и описанная окружности

Самостоятельная работа (теоретическая)

- 1. В равностороннем треугольнике проведены две медианы. Можно ли считать точку их пересечения центром окружности, вписанной в этот треугольник?
- **2.** Можно ли описать окружность около четырехугольника, у которого только один угол прямой? Ответ обоснуйте.
- **3.** Даны неравносторонний треугольник и окружность. Определите, является ли окружность вписанной в треугольник или описанной около него, если центр окружности равноудален от всех вершин треугольника.
- **4.** Вершины прямоугольного треугольника ABC лежат на окружности с центром O. Назовите катеты треугольника, если отрезок BO его медиана.
- **5.** Какое свойство должны иметь диагонали ромба, чтобы около него можно было описать окружность?

- 1. В равностороннем треугольнике проведены две высоты. Можно ли считать точку их пересечения центром окружности, описанной около данного треугольника?
- **2.** Можно ли описать окружность около четырехугольника, у которого только два угла прямые? Ответ обоснуйте.
- **3.** Даны неравносторонний треугольник и окружность. Определите, является ли окружность вписанной в тре-

угольник или описанной около него, если центр окружности равноудален от всех сторон треугольника.

- **4.** Вершины прямоугольного треугольника ABC лежат на окружности с центром O. Назовите гипотенузу треугольника, если точки B, C и O лежат на одной прямой.
- **5.** Какое свойство должны иметь диагонали прямоугольника, чтобы в него можно было вписать окружность?

- **1.** В равнобедренном треугольнике из разных вершин проведены медиана и биссектриса. Может ли точка их пересечения быть центром вписанной окружности?
- 2. В трапеции три стороны равны. Можно ли около такой трапеции описать окружность? Ответ обоснуйте.
- **3.** Даны треугольник и окружность (вписанная или описанная). Определите, является ли треугольник вписанным в окружность или описанным около нее, если центр окружности лежит вне треугольника.
- **4.** Вершины прямоугольного треугольника лежат на окружности с центром *O*. Назовите катеты треугольника, если среди центральных углов *AOB*, *AOC* и *BOC* наибольшим является угол *AOC*.
- **5.** Даны две трапеции. Известно, что около первой трапеции невозможно описать окружность, а во вторую невозможно вписать окружность. Какая из этих трапеций может быть равнобедренной?

- **1.** В равнобедренном треугольнике из разных вершин проведены высота и биссектриса. Может ли точка их пересечения быть центром вписанной окружности?
- **2.** В трапеции три стороны равны. Можно в такую трапецию вписать окружность? Ответ обоснуйте.

- 3. Даны треугольник и окружность (вписанная или описанная). Определите, является ли треугольник вписанным в окружность или описанным около нее, если отрезки, которые являются расстояниями от центра окружности до сторон треугольника, радиусы окружности.
- **4.** Вершины прямоугольного треугольника лежат на окружности с центром *O*. Назовите гипотенузу треугольника, если среди дуг *ABC*, *BAC* и *ACB* наименьшую градусную меру имеет дуга *ABC*.
- **5.** Даны две трапеции. Известно, что около первой трапеции можно описать окружность, а во вторую можно вписать окружность. Какая из этих трапеций может быть прямоугольной?

Самостоятельная работа (на чертежах) 20

1. На рис. 121 точка O — центр вписанной окружности, AB = BC, $\angle B = 40^{\circ}$. Найдите $\angle OAC$.

- **2.** На рис. 122 точка O центр описанной окружности, AB = 7 см, AM = 4 см, CN = 2 см. Найдите P_{ABC} .
- **3.** На рис. 123 ABCD трапеция, точка O центр вписанной окружности, $\angle A = \angle D$, AM = 9 см, CN = 4 см. Найдите периметр трапеции.

4. На рис. 124 точка O — центр вписанной окружности, AB = BC = 39 см, AC = 30 см, $OD \perp AC$. Найдите радиус вписанной окружности.

Рис. 124

5. На рис. 125 точка O — центр вписанной окружности, OM = = 2 см, BN = 10 см. Найдите S_{ABC} .

Рис. 125

вариант 2

1. На рис. 126 точка O — центр вписанной окружности, AB = BC, $\angle C = 40^{\circ}$. Найдите $\angle ABO$.

Рис. 126

2. На рис. 127 точка O — центр описанной окружности, BM = 4 см, AN = 6 см, $P_{ABC} = 30$ см. Найдите BC.

Рис. 127

3. На рис. $128\ ABCD$ — трапеция, точка O — центр описанной окружности, $\angle A = \angle D$, CM = 10 см, AN = 12 см. Найдите периметр трапеции.

- **4.** На рис. 129 точка O центр вписанной окружности, AB = BC = 65 см, BD = 25 см. Найдите радиус вписанной окружности.
- **5.** На рис. 130 точка O центр вписанной окружности, OM = 3 см, AM = 5 см. Найдите S_{ABC} .

вариант 3

1. На рис. 131 точка O — центр вписанной окружности, $\angle B = 140^{\circ}$. Найдите $\angle AOC$.

2. На рис. 132 точка O — центр описанной окружности, BC = = 10 см, $\angle O$ = 30°. Найдите OB.

3. На рис. $133\ ABCD$ — трапеция, точка O — центр вписанной окружности, OE=6 см, BC=10 см, DE=9 см. Найдите периметр трапеции.

FNC. 155

4. На рис. 134 точка O — центр вписанной окружности, $\angle A = \angle C$, BD = 18 см, BO:OD = 5:4. Найдите стороны треугольника.

Рис. 134

5. На рис. 130 точка O — центр вписанной окружности, OD = 4 см, AB = 41 см. Найдите S_{ABC} .

вариант 4

1. На рис. 136 точка O — центр вписанной окружности, $\angle O = 170^{\circ}$. Найдите $\angle B$.

2. На рис. 137 точка O — центр описанной окружности, BO = 8 см, $\angle O = 30^{\circ}$. Найдите BC.

3. На рис. $138\ ABCD$ — трапеция, точка O — центр вписанной окружности, CN=8 см, ON=12 см, AD=30 см. Найдите периметр трапеции.

4. На рис. 139 точка O — центр вписанной окружности, $\angle A = \angle C$, BO = 10 см, DO = 6 см. Найдите стороны треугольника.

Рис. 139

5. На рис. 140 точка O — центр вписанной окружности, CD = 5 см, AB = 37 см. Найдите S_{ABC} .

Самостоятельная работа (письменная) 21

- 1. Два соседних угла вписанного четырехугольника равны 120° и 150°. Найдите градусные меры дуг, на которые опираются два других угла четырехугольника.
- **2.** Сторона равностороннего треугольника равна 6 см. Найдите радиус вписанной окружности.
- **3.** Определите площадь квадрата, описанного около окружности с радиусом r.
- **4.** Радиус окружности, вписанной в прямоугольную трапецию, равен 12 см, а наибольшая боковая сторона 25 см. Найдите периметр трапеции.
- **5.** В прямоугольный треугольник с катетами a и b и гипотенузой c вписана окружность радиуса r. Докажите, что $r=\frac{a+b-c}{2}$.

- 1. Два соседних угла вписанного четырехугольника опираются на дуги, градусные меры которых равны 192° и 214° . Найдите два других угла четырехугольника.
- **2.** Сторона равностороннего треугольника равна 6 см. Найдите радиус описанной окружности.
- **3.** Определите площадь ромба со стороной a, описанного около окружности с диаметром d.
- **4.** Периметр прямоугольной трапеции, описанной около окружности, равен 98 см, а радиус окружности 12 см. Найдите наибольшую боковую сторону.
- **5.** Прямоугольный треугольник с катетами a и b описан около окружности радиуса r и вписан в окружность радиуса R. Докажите, что 2R + 2r = a + b.

- 1. Углы вписанного четырехугольника равны 30°, 60°, 120° и 150°. Стороны, которые образуют наибольший угол четырехугольника, равны. Найдите градусные меры дуг, на которые вершины четырехугольника делят окружность.
- 2. Радиус окружности, описанной около равностороннего треугольника, равен 8 см. Найдите сторону треугольника.
- **3.** Определите радиус окружности, вписанной в квадрат, если площадь квадрата равна S.
- **4.** В прямоугольную трапецию вписана окружность, которая делит большую боковую сторону трапеции на отрезки длиной 25 см и 36 см. Найдите радиус окружности.
- **5.** В треугольник ABC с полупериметром p вписана окружность, которая касается стороны AB в точке D. Докажите, что AD = p BC.

- 1. Углы вписанного четырехугольника равны 70°, 80°, 100° и 110°. Стороны, которые образуют наименьший угол четырехугольника, равны. Найдите градусные меры дуг, на которые вершины четырехугольника делят окружность.
- **2.** Радиус окружности, вписанной в равносторонний треугольник, равен 5 см. Найдите сторону треугольника.
- **3.** Определите диаметр окружности, описанной около квадрата, если площадь квадрата равна S.
- **4.** В прямоугольную трапецию вписана окружность, радиус которой равен 30 см. Найдите отрезки большей боковой стороны трапеции, на которые ее делит точка касания с окружностью, если их разность равна 11 см.
- **5.** Докажите, что расстояние от вершины равнобедренного треугольника до точки, в которой вписанная окружность касается боковой стороны, равно разности полупериметра и основания.

Самостоятельная работа (теоретическая) 22

- **1.** Могут ли два коллинеарных вектора не быть сонаправленными?
- 2. Может ли быть нулевым вектором сумма трех векторов, модули которых равны 3; 4; 7?
- **3.** Может ли длина вектора-суммы быть меньше длины каждого из векторов-слагаемых?
- **4.** Даны точки A, B и C, лежащие на одной прямой, и произвольная точка O. Сравните длины отрезков AB и AC, если $\overrightarrow{OB} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OC} \right)$.
- **5.** В трапеции ABCD ($BC\|AD$) MN средняя линия. Сравните углы AMN и DNM, если $\angle MBC > \angle NCB$.

- **1.** Могут ли два противоположно направленных вектора не быть коллинеарными?
- 2. Может ли быть нулевым вектором сумма трех векторов, модули которых равны 3; 4; 8?
- **3.** Может ли длина вектора-разности быть больше длины каждого из векторов, разность которых находят?
- **4.** Даны точки A, B и C, лежащие на одной прямой, и произвольная точка O. Сравните длины отрезков AB и AC, если $\overrightarrow{OA} = \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OC} \right)$.
- **5.** В трапеции ABCD (BC||AD) MN средняя линия. Сравните углы BMN и CNM, если $\angle MAD < \angle NDA$.

- **1.** Могут ли начала и концы двух неколлинеарных векторов быть вершинами параллелограмма?
- 2. Может ли быть нулевым вектором сумма трех векторов, модули которых равны 29; 58; 27?
- **3.** Может ли модуль суммы ненулевых векторов быть меньше, чем сумма их модулей?
- **4.** Даны точки A, B и C, лежащие на одной прямой, и произвольная точка O. Сравните длины отрезков OB и BC, если $\overrightarrow{OB} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OC} \right)$ и $\angle AOC = 90^{\circ}$.
- **5.** В трапеции ABCD $\left(BC\|AD\right)MN$ средняя линия. Сравните углы AMN и DNM, если $\angle MAD < \angle NDA$.

- **1.** Могут ли начала и концы двух неколлинеарных векторов быть вершинами трапеции?
- 2. Может ли быть нулевым вектором сумма трех векторов, модули которых равны 19; 18; 37?
- **3.** Может ли модуль суммы ненулевых векторов быть больше, чем сумма их модулей?
- **4.** Даны точки A, B и C, лежащие на одной прямой, и произвольная точка O. Сравните длины отрезков OA и AC, если $\overrightarrow{OA} = \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OC} \right)$ и $\angle BOC = 90^{\circ}$.
- **5.** В трапеции ABCD $\left(BC\|AD\right)$ MN средняя линия. Сравните углы BMN и CNM, если $\angle MBC > \angle NCB$.

Самостоятельная работа (на чертежах) 23

- 1. Какие из векторов, изображенных на рис. 141:
 - а) коллинеарны;
 - б) сонаправлены;
 - в) противоположно направлены;
 - г) равны;
 - д) имеют равные модули?

Рис. 141

2. По рис. 142 постройте векторы: a) $\vec{a} + \vec{b}$; б) $\vec{a} - \vec{b}$; в) $\vec{c} + \vec{d}$; г) $\vec{c} - \vec{d}$

3. По рис. 143 выразите векторы \overrightarrow{BE} и \overrightarrow{CO} через векторы \overrightarrow{a} и \overrightarrow{b} , если ABCD — параллелограмм.

4. На рис. $144\ AM = BM = 4\ \mathrm{cm},\ MN = 12\ \mathrm{cm}.$ Найдите S_{ABCD} .

5. На рис. 145 ABCD — трапеция, AM = BM = CN = DN, $\angle ADB = \angle CDB$, MK = 6 см, CN = 4 см. Найдите P_{ABCD} .

- 1. Какие из векторов, изображенных на рис. 146:
 - а) коллинеарны;
 - б) сонаправлены;

- в) противоположно направлены;
- г) равны;
- д) имеют равные модули?

Рис. 146

2. По рис. 147 постройте векторы: a) $\vec{a} + \vec{b}$; б) $\vec{a} - \vec{b}$; в) $\vec{c} + \vec{d}$; г) $\vec{c} - \vec{d}$.

Рис. 147

3. По рис. 148 выразите векторы \overrightarrow{OB} и \overrightarrow{DE} через векторы \overrightarrow{a} и \overrightarrow{b} , если ABCD — параллелограмм.

4. На рис. $149\ AM = MB$, CN = ND, $MK = 2\ \text{cm}$, $KN = 9\ \text{cm}$, $KE = 5\ \text{cm}$. Найдите S_{ABCD} .

Рис. 149

5. На рис. 150 ABCD — трапеция, AM = BM = CN = DN, $\angle BAC = \angle DAC$, MK = 5 см, NK = 7 см. Найдите P_{ABCD} .

Рис. 150

- 1. Какие из векторов, изображенных на рис. 151:
 - а) коллинеарны;
 - б) сонаправлены;
 - в) противоположно направлены;
 - г) равны;
 - д) имеют равные модули?

2. По рис. 152 постройте векторы: a) $2\vec{a} + \vec{b}$; б) $2\vec{a} - \vec{b}$; в) $2\vec{c} - \vec{d}$; г) $3\vec{c} + 2\vec{d}$.

Рис. 152

3. По рис. 153 выразите векторы \overrightarrow{MO} и \overrightarrow{DN} через векторы \overrightarrow{a} и \overrightarrow{b} , если ABCD — параллелограмм.

Рис. 153

4. На рис. 154 ABCD — трапеция, $M_2N_2 = 19$ см, AD = 33 см. Найдите x, y и z.

Рис. 154

5. На рис. 155 ABCD — трапеция, AM = BM = CN = DN, $\angle BAC = \angle DAC$, MK = 10 см, $P_{ABCD} = 100$ см. Найдите x и y.

- 1. Какие из векторов, изображенных на рис. 156:
 - а) коллинеарны;
 - б) сонаправлены;
 - в) противоположно направлены;
 - г) равны;
 - д) имеют равные модули?

Рис. 156

2. По рис. 157 постройте векторы: a) $2\vec{a} + \vec{b}$; б) $2\vec{a} - \vec{b}$; в) $2\vec{c} - \vec{d}$; г) $3\vec{c} + 2\vec{d}$.

Рис. 157

3. По рис. 158 выразите векторы \overrightarrow{OM} и \overrightarrow{AN} через векторы \overrightarrow{a} и \overrightarrow{b} , если ABCD — параллелограмм.

- **4.** На рис. 159 ABCD трапеция, $M_1N_1=22\,\mathrm{cm},\ M_3N_3=12\,\mathrm{cm}.$ Найдите $x,\ y$ и z.
- **5.** На рис. 160 ABCD трапеция, AM = BM = CN = DN, $\angle ADB = \angle CDB$, MK = 15 см, $P_{ABCD} = 60$ см. Найдите x и y.

Самостоятельная работа (письменная) 24

- 1. В прямоугольном треугольнике ABC точка M середина гипотенузы AB, AM = 13 см, BC = 10 см. Найдите: а) $\left| \overrightarrow{AC} \right|$; б) $\left| \overrightarrow{AC} + \overrightarrow{CB} \right|$; в) $\left| \overrightarrow{AM} \overrightarrow{AC} \right|$.
- **2.** Какой вектор надо поставить в выражение $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{x} = \overrightarrow{OD} \overrightarrow{OA}$ вместо вектора \overrightarrow{x} , чтобы получилось верное равенство?
- 3. На сторонах AB и AD параллелограмма ABCD отмечены такие точки M и N соответственно, что AM=MB, $AN=\frac{2}{3}AD$. Выразите векторы \overrightarrow{DM} и \overrightarrow{NC} через векторы $\overrightarrow{AB}=\overrightarrow{a}$ и $\overrightarrow{AD}=\overrightarrow{b}$.
- **4.** Диагонали трапеции делят ее среднюю линию на три равные части. Найдите меньшее основание трапеции, если большее основание равно 48 см.
- **5.** Постройте такие ненулевые векторы \vec{a} и \vec{b} , что $\left|\vec{a}\right|+\left|\vec{b}\right|=\left|\vec{a}+\vec{b}\right|$.

вариант 2

- 1. В прямоугольном треугольнике ABC точка M середина гипотенузы AB, BM = 13 см, AC = 24 см. Найдите: а) $\left| \overline{BC} \right|$; б) $\left| \overline{BC} + \overline{CA} \right|$; в) $\left| \overline{BM} \overline{BC} \right|$.
- **2.** Какой вектор надо поставить в выражение $\overline{AB} + \overline{BC} + \overline{CD} = \overline{MD} \overline{x}$ вместо вектора \overline{x} , чтобы получилось верное равенство?

- **3.** На сторонах BC и CD параллелограмма ABCD отмечены такие точки M и N соответственно, что $BM=\frac{3}{4}\,BC$, CN=ND. Выразите векторы \overrightarrow{AM} и \overrightarrow{BN} через векторы $\overrightarrow{AB}=\overrightarrow{a}$ и $\overrightarrow{AD}=\overrightarrow{b}$.
- **4.** Диагонали трапеции делят ее среднюю линию на три равные части. Найдите большее основание трапеции, если меньшее основание равно 24 см.
- **5.** Постройте такие ненулевые векторы \vec{a} и \vec{b} , что $|\vec{a}|-|\vec{b}|=|\vec{a}-\vec{b}|$.

- 1. В трапеции ABCD $(BC\|AD)$ диагонали взаимно перпендикулярны и пересекаются в точке O, AO:OC=2:1, BD=9 см, AC=12 см. Найдите: a) $\left|\overline{BC}\right|$; б) $\left|\overline{OA}+\overline{OD}\right|$;
 - B) $\left| \overrightarrow{OC} \frac{1}{2} \overrightarrow{OD} \right|$.
- **2.** Какой вектор надо поставить в выражение $\overrightarrow{BC} \overrightarrow{AD} + \overrightarrow{x} \overrightarrow{BA} = \overrightarrow{0}$ вместо вектора \overrightarrow{x} , чтобы получилось верное равенство?
- 3. На сторонах BC и CD параллелограмма ABCD отмечены такие точки M и N соответственно, что $BM=\frac{1}{2}BC$, CN=ND. Выразите векторы \overrightarrow{AB} и \overrightarrow{DB} через векторы $\overrightarrow{AM}=\overrightarrow{x}$ и $\overrightarrow{AN}=\overrightarrow{y}$.
- **4.** Диагонали трапеции делят ее среднюю линию на три отрезка, два из которых равны 8 см и 7 см. Найдите основания трапеции. Сколько решений имеет задача?

5. Постройте такие ненулевые векторы \vec{a} и \vec{b} , что $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|$.

- **1.** В трапеции ABCD ($BC\|AD$) диагонали взаимно перпендикулярны и пересекаются в точке $O,\ AO:OC=2:1,\ BD=9$ см, AC=12 см. Найдите: а) $\left|\overrightarrow{AD}\right|$; б) $\left|\overrightarrow{OB}+\overrightarrow{OC}\right|$; в) $\left|\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OA}\right|$.
- **2.** Какой вектор надо поставить в выражение $\overrightarrow{DA} \overrightarrow{BA} \overrightarrow{DC} + \overrightarrow{x} = \overrightarrow{0}$ вместо вектора \overrightarrow{x} , чтобы получилось верное равенство?
- 3. На сторонах BC и CD параллелограмма ABCD отмечены такие точки M и N соответственно, что BM = MC, $CN = \frac{1}{2}CD$. Выразите векторы \overrightarrow{AD} и \overrightarrow{AC} через векторы $\overrightarrow{AM} = \overrightarrow{x}$ и $\overrightarrow{AN} = \overrightarrow{y}$.
- **4.** Диагонали трапеции делят ее среднюю линию на три отрезка, два из которых равны 7 см и 9 см. Найдите основания трапеции. Сколько решений имеет задача?
- **5.** Постройте такие ненулевые векторы \vec{a} и \vec{b} , что $|\vec{a}| = |\vec{b}| = |\vec{a} \vec{b}|$.

ЧАСТЬ ІІ

контрольная **1** Работа

Четырехугольники

- 1. Найдите углы параллелограмма, если один из них на 36° меньше другого.
- **2.** По данным рис. 161 докажите, что ABCD параллелограмм.

- **3.** Диагональ делит угол прямоугольника в отношении 1:2. Найдите диагональ прямоугольника, если меньшая сторона равна 12 см.
- **4.** В равнобедренной трапеции с тупым углом 120° диагональ перпендикулярна боковой стороне. Найдите боковую сторону, если большее основание трапеции равно 26 см.
- **5.** Докажите, что параллелограмм, у которого высоты, проведенные из вершины тупого угла, равны, является ромбом.

вариант 2

1. Найдите углы параллелограмма, если один из них на 312° меньше суммы всех его углов.

2. По данным рис. 162 докажите, что *ABCD* — параллелограмм.

- **3.** Углы ромба относятся как 1:2. Найдите периметр ромба, если меньшая диагональ равна 15 см.
- **4.** В равнобедренной трапеции с острым углом 60° диагональ перпендикулярна боковой стороне, равной 17 см. Найдите большее основание трапеции.
- **5.** Докажите, что параллелограмм, у которого высоты, проведенные из вершины острого угла, равны, является ромбом.

- **1.** Найдите углы параллелограмма, если их градусные меры относятся как 2:7.
- **2.** По данным рис. 163 докажите, что *ABCD* параллелограмм.

- **3.** Биссектриса угла между диагоналями ромба образует со стороной угол 75°. Найдите периметр ромба, если меньшая диагональ равна 10 см.
- **4.** В прямоугольной трапеции с острым углом 60° диагональ является биссектрисой тупого угла. Найдите

- бо́льшую боковую сторону и бо́льшее основание трапеции, если меньшее основание равно 7 см.
- **5.** На диагоналях ромба от точки их пересечения отложены четыре равных отрезка. Докажите, что концы этих отрезков являются вершинами квадрата.

- **1.** Найдите углы параллелограмма, если их градусные меры относятся как 1:4.
- **2.** По данным рис. 164 докажите, что *ABCD* параллелограмм.

- **3.** Высота ромба, проведенная из вершины тупого угла, делит сторону пополам. Найдите меньшую диагональ, если периметр ромба равен 48 см.
- **4.** В прямоугольной трапеции с острым углом 60° диагональ является биссектрисой тупого угла. Найдите основания трапеции, если большая боковая сторона равна 12 см.
- **5.** От двух противоположных вершин ромба на его сторонах отложены четыре равных отрезка. Докажите, что концы этих отрезков являются вершинами прямоугольника.

контрольная 2

Площади. Теорема Пифагора

- 1. Высота параллелограмма делит сторону, к которой она проведена, на отрезки длиной 3 см и 14 см. Найдите эту высоту, если площадь параллелограмма равна 340 см².
- **2.** На рис. 165 ABCD прямоугольник, OC = 20 см, CM = 12 см. Найдите x.

- 3. Найдите площадь прямоугольного треугольника с гипотенузой 15 см и катетом 9 см.
- **4.** Найдите площадь равнобедренной трапеции с основаниями 12 см и 22 см и боковой стороной 13 см.
- **5.** На рис. $166\,ABCD$ ромб, $\angle B=60^\circ$, $CD=6\sqrt{3}$ см. Найдите S_{ABCD} .

- 1. Диагональ параллелограмма перпендикулярна стороне длиной 23 см. Найдите эту диагональ, если площадь параллелограмма равна 345 см².
- **2.** На рис. $167\ ABCD$ прямоугольник, $AO = 5\ \text{cm}$, $AM = 4\ \text{cm}$. Найдите x.

Рис. 167

- **3.** Найдите площадь равнобедренного треугольника с боковой стороной 17 см и основанием 30 см.
- **4.** Найдите площадь равнобедренной трапеции с основаниями 22 см и 40 см и боковой стороной 41 см.
- **5.** На рис. 168 ABCD ромб, $\angle D = 45^{\circ}$, $AB = 8\sqrt{2}$ см. Найдите S_{ABCD} .

Рис. 168

1. Высота треугольника длиной 16 см делит основание в отношении 1:2. Найдите площадь треугольника, если большая боковая сторона равна 20 см.

2. На рис. 169 ABCD — трапеция, BC = CD, $\angle A = \angle D$, BM = 15 см, DN = 8 см. Найдите периметр трапеции.

- **3.** Площадь равнобедренного треугольника с углом при вершине 120° равна $36\sqrt{3}$ см². Найдите стороны треугольника.
- **4.** Боковые стороны прямоугольной трапеции относятся как 5:4, а разность оснований равна 18 см. Найдите площадь трапеции, если большая диагональ равна 40 см.
- 5. Прямая, которая пересекает противоположные стороны параллелограмма, делит одну из них на отрезки 10 см и 14 см, а площадь параллелограмма в отношении 1:2. Найдите длину отрезков, на которые эта прямая делит другую сторону параллелограмма. Рассмотрите все возможные случаи.

- 1. Высота треугольника длиной 12 см делит основание в отношении 1:2. Найдите площадь треугольника, если меньшая боковая сторона равна 15 см.
- **2.** На рис. 170 ABCD трапеция, BC = CD = 25 см, $\angle A = \angle D$, BM = 24 см. Найдите периметр трапеции.

- **3.** Площадь равнобедренного треугольника с углом при основании 30° равна $64\sqrt{3}\,\mathrm{cm}^2$. Найдите стороны треугольника.
- **4.** Боковые стороны прямоугольной трапеции относятся как 5:3, а разность оснований равна 32 см. Найдите площадь трапеции, если меньшая диагональ равна 26 см.
- 5. Прямая, которая пересекает противоположные стороны параллелограмма, делит одну из них на отрезки 12 см и 18 см, а площадь параллелограмма в отношении 2:1. Найдите длину отрезков, на которые эта прямая делит другую сторону параллелограмма. Рассмотрите все возможные случаи.

контрольная з

Подобные треугольники. Применение подобия

1. На рис. 171 $\angle B = \angle D$. Докажите подобие треугольников *ABO* и *CDO*.

- **2.** На рис. 172 OA = AB, $\angle A_1 = \angle B_1$, $OA_1 = 15$ см. Найдите OB_1 .
- 3. Средняя линия равнобедренного треугольника, параллельная основанию, равна 3 см, а боковая сторона 5 см. Найдите периметр треугольника.
- 4. В двух равнобедренных треугольниках углы, противоположные основаниям, равны. Основание и высота, проведенная к ней, первого треугольника соответственно равны 30 см и 8 см, а боковая сторона второго треугольника 34 см. Найдите периметр второго треугольника.
- **5.** Высота прямоугольного треугольника, проведенная к гипотенузе, делит ее на отрезки, один из которых равен 27 см. Найдите периметр треугольника, если высота равна 36 см.

1. На рис. 173 $\angle B = \angle D$. Докажите подобие треугольников *ABO* и *CDO*.

Рис. 173

2. На рис. 174 $OA_1 = A_1B_1$, $\angle A_1 = \angle B_1$, AB = 27 см. Найдите OB.

- **3.** Средняя линия равнобедренного треугольника, параллельная боковой стороне, равна 4 см, а основание 5 см. Найдите периметр треугольника.
- 4. Углы при основании одного равнобедренного треугольника равны углам при основании другого равнобедренного треугольника. Боковая сторона и основание первого треугольника соответственно равны 15 см и 18 см, а высота второго треугольника, проведенная к основанию, 24 см. Найдите периметр второго треугольника.
- **5.** Высота прямоугольного треугольника, проведенная к гипотенузе, делит ее на отрезки длиной 54 см и 96 см. Найдите периметр треугольника.

вариант 3

1. На рис. 175 OA = 4 см, OB = 6 см, OC = 12 см, OD = 8 см. Найдите подобные треугольники и докажите их подобие.

- **2.** На рис. 176 $\angle A_1AB + \angle ABB_1 = 180^\circ$, OA = AB, OA = 7 см, $AA_1 = 8$ см, $OA_1 = 9$ см. Найдите периметр четырехугольника ABB_1A_1 .
- **3.** Сумма стороны и средней линии равностороннего треугольника равна 18 см. Найдите периметр треугольника.
- **4.** Катеты прямоугольного треугольника длиной 10 см и 24 см пропорциональны катетам другого треугольника. Найдите гипотенузу второго треугольника, если его меньший катет равен 20 см.
- **5.** Высота, проведенная к гипотенузе прямоугольного треугольника, делит ее в отношении **9:16**. Меньший катет треугольника равен **45** см. Найдите площадь треугольника.

1. На рис. 177~AB = 32~см,~BC = 16~см,~AC = 24~см,~AD = 18~см,~CD = 12~см. Найдите подобные треугольники и докажите их подобие.

- **2.** На рис. 178 $\angle AA_1B_1 + \angle A_1B_1B = 180^\circ$, $OA_1 = A_1B_1$, AB = 8 см, $BB_1 = 10$ см, $OB_1 = 12$ см. Найдите периметр треугольника OAA_1 .
- **3.** Разность периметра равностороннего треугольника и его средней линии равна 15 см. Найдите сторону данного треугольника.
- **4.** Острые углы двух прямоугольных треугольников равны. Гипотенуза и катет одного треугольника равны 20 см и 16 см. Найдите периметр другого треугольника, если его гипотенуза равна 30 см.
- **5.** Высота, проведенная к гипотенузе прямоугольного треугольника, делит ее в отношении 9:16. Больший катет треугольника равен 120 см. Найдите площадь треугольника.

контрольная 4

Окружность

1. На рис. 179 точка O — центр окружности, AC — диаметр, $\angle BOC = 20^{\circ}$. Найдите вписанный угол, опирающийся на дугу BC.

Рис. 179

- **2.** Найдите углы A и B четырехугольника ABCD, вписанного в окружность, если $\angle C = 34^{\circ}$, $\angle D = 122^{\circ}$.
- **3.** Основания равнобедренной трапеции, описанной около окружности, равны 4 см и 16 см. Найдите боковую сторону и высоту трапеции.
- **4.** Найдите углы равнобедренного треугольника, боковая сторона которого стягивает четверть дуги окружности.
- **5.** В прямоугольную трапецию с большей боковой стороной c и площадью S вписана окружность радиуса r. Докажите, что S = (c + 2r)r.

1. На рис. 180 точка O — центр окружности, AC и BD — диаметры, $\angle COD = 100^{\circ}$. Найдите вписанный угол, опирающийся на дугу AD.

Рис. 180

2. Найдите углы C и D четырехугольника ABCD, вписанного в окружность, если $\angle A = 111^{\circ}$, $\angle B = 41^{\circ}$.

- 3. Боковая сторона и высота равнобедренной трапеции, описанной около окружности, равны соответственно 30 см и 24 см. Найдите основания трапеции.
- **4.** Найдите углы равнобедренного треугольника, боковая сторона которого стягивает шестую часть дуги окружности.
- **5.** В равнобедренную трапецию с боковой стороной c и площадью S вписана окружность радиуса r. Докажите, что S=2cr.

1. На рис. 181 точка O — центр окружности, AC — касательная к окружности, $\angle BAC = 60^{\circ}$. Найдите центральный угол AOB.

- **2.** Четырехугольник ABCD вписан в окружность. Угол D меньше угла A на 15° и в 5 раз больше угла B. Найдите углы четырехугольника.
- **3.** Основания равнобедренной трапеции, описанной около окружности, относятся как 1:4, а периметр равен 80 см. Найдите стороны трапеции.
- **4.** Найдите углы равнобедренного треугольника, основание которого стягивает пятую часть дуги окружности. Рассмотрите все возможные случаи.

5. В равнобедренную трапецию с основаниями a и b вписана окружность радиуса r. Докажите, что $r = \frac{\sqrt{ab}}{2}$.

1. На рис. 182 точка O — центр окружности, AD — касательная к окружности, AC — диаметр, $\angle BOC = 60^{\circ}$. Найдите угол DAB.

- **2.** Четырехугольник ABCD вписан в окружность. Угол C меньше угла A на 140° и в 3 раза меньше угла B. Найдите углы четырехугольника.
- **3.** Разность оснований равнобедренной трапеции, описанной около окружности, равна 18 см, а периметр равен 60 см. Найдите стороны трапеции.
- **4.** Найдите углы равнобедренного треугольника, концы основания которого делят дугу окружности в отношении 1:8. Рассмотрите все возможные случаи.
- **5.** В прямоугольную трапецию с основаниями a и b вписана окружность радиуса r. Докажите, что $r = \frac{ab}{a+b}$.

Векторы

1. По рис. 183 постройте векторы: a) $\vec{a} + \vec{b} + \vec{c}$; б) $\vec{a} - \vec{b}$; в) $\vec{a} + \vec{d}$; г) $\vec{d} - \vec{e}$.

- 2. В ромбе ABCD диагонали пересекаются в точке O, AB = 20 см, BD = 24 см. Найдите: a) $|\overline{AO}|$; б) $|\overline{AD} + \overline{BA}|$;
 - B) $\left| \overrightarrow{AD} \frac{1}{2} \overrightarrow{BD} \right|$.
- 3. Точка M лежит на стороне AD параллелограмма ABCD, причем AM:MD=1:2. Выразите векторы \overrightarrow{MB} и \overrightarrow{MC} через векторы $\overrightarrow{AB}=\overrightarrow{a}$ и $\overrightarrow{AD}=\overrightarrow{b}$.
- **4.** Основания трапеции относятся как 5:9. Как относятся площади трапеций, на которые данную трапецию делит средняя линия?
- **5.** Докажите, что периметр описанной трапеции в четыре раза больше средней линии.

1. По рис. 184 постройте векторы: a) $\vec{a} + \vec{b} + \vec{c}$; б) $\vec{b} - \vec{c}$; в) $\vec{d} + \vec{e}$; г) $\vec{a} - \vec{d}$.

- 2. В прямоугольнике ABCD диагонали пересекаются в точке O, AB=10 см, AC=26 см. Найдите: a) $\left| \overrightarrow{BC} \right|$; 6) $\left| \overrightarrow{AB} + \overrightarrow{OD} \right|$; в) $\left| \overrightarrow{DA} \frac{1}{2} \overrightarrow{CA} \right|$.
- **3.** Точка M лежит на стороне CD параллелограмма ABCD, причем CM:MD=1:3. Выразите векторы \overrightarrow{AM} и \overrightarrow{BM} через векторы $\overrightarrow{AB}=\overrightarrow{a}$ и $\overrightarrow{AD}=\overrightarrow{b}$.
- **4.** Основания трапеции относятся как 7:11. Как относятся площади трапеций, на которые данную трапецию делит средняя линия?
- **5.** Докажите, что средняя линия описанной равнобедренной трапеции равна боковой стороне.

- 1. По рис. 185 постройте векторы:
 - a) $\vec{a} + 3\vec{b} + 2\vec{c}$; 6) $\frac{1}{3}\vec{a} \frac{3}{2}\vec{b}$;

B)
$$\vec{a} + \frac{1}{2}\vec{d}$$
; r) $\vec{a} - 2\vec{e}$.

- **2.** В равностороннем треугольнике ABC точка O центр описанной окружности, AO = 2 см. Найдите: a) $|\overline{BC}|$;
 - 6) $\left| 2\overline{AO} + 2\overline{CO} \right|$; B) $\left| \overline{AC} \frac{3}{2}\overline{OC} \right|$.
- **3.** Диагонали параллелограмма ABCD пересекаются в точке O. На стороне AD отмечена точка M так, что AM:MD=2:1. Выразите векторы \overrightarrow{OM} и $\overrightarrow{BD}-\overrightarrow{AM}$ через векторы $\overrightarrow{AB}=\overrightarrow{a}$ и $\overrightarrow{AD}=\overrightarrow{b}$.
- **4.** Площади трапеций, на которые данную трапецию делит средняя линия, относятся как 3:4. Как относятся основания трапеции?
- **5.** Докажите, что радиус окружности, вписанной в прямоугольную трапецию, равен разности средней линии и половины большей боковой стороны.

1. По рис. 186 постройте векторы:

a)
$$\vec{a} + \frac{1}{2}\vec{b} + 2\vec{c}$$
; 6) $2\vec{c} - \frac{1}{2}\vec{d}$;

B)
$$\frac{1}{2}\vec{a} + 2\vec{d}$$
; r) $\vec{d} - 2\vec{e}$.

Рис. 186

2. В равностороннем треугольнике ABC точка O — центр вписанной окружности, AB = 6 см. Найдите:

a)
$$\left| \overrightarrow{AO} \right|$$
; б) $\left| \overrightarrow{AB} + \frac{1}{2} \overrightarrow{CA} \right|$; в) $\left| \frac{1}{2} \overrightarrow{CO} - \frac{1}{2} \overrightarrow{BA} \right|$.

- **3.** Диагонали параллелограмма ABCD пересекаются в точке O. На стороне AD отмечена точка M так, что AM:MD=2:1. Выразите векторы \overrightarrow{CM} и $\overrightarrow{AM}-\overrightarrow{BO}$ через векторы $\overrightarrow{AB}=\overrightarrow{a}$ и $\overrightarrow{AD}=\overrightarrow{b}$.
- **4.** Площади трапеций, на которые данную трапецию делит средняя линия, относятся как 4:5. Как относятся основания трапеции?
- **5.** Докажите, что большая боковая сторона описанной прямоугольной трапеции равна удвоенной разности средней линии и радиуса вписанной окружности.

контрольная б

Годовая

- **1.** Катеты прямоугольного треугольника равны 24 см и 70 см. Найдите периметр треугольника.
- **2.** На рис. $187~AB = 16~\text{см},~CD = 12~\text{см},~\angle ABD = 30^{\circ}.$ Найдите площадь треугольника ABC.

- **3.** Диагонали ромба относятся как 12:5. Найдите периметр ромба, если его площадь равна 480 см².
- **4.** Медиана и высота прямоугольного треугольника, проведенные к гипотенузе, равны соответственно 50 см и 48 см. Найдите стороны треугольника.
- **5.** На рис. 188 BD = 10 см, CD = 8 см, $\angle CAD = \angle BAD$. Найдите x и y.

Рис. 188

- 1. Гипотенуза прямоугольного треугольника равна 51 см, а катет 45 см. Найдите периметр треугольника.
- **2.** На рис. 189 $AB = 8\sqrt{3}$ см, CD = 2 см, $\angle A = 30^{\circ}$. Найдите площадь треугольника ABC.

- **3.** Диагонали ромба относятся как 24:7. Найдите площадь ромба, если его периметр равен 100 см.
- **4.** Расстояние между основаниями медианы и высоты прямоугольного треугольника, проведенными к гипотенузе, равно 7 см. Найдите катеты треугольника, если его гипотенуза равна 50 см.
- **5.** На рис. 190 BD = 15 см, AD = 20 см, $\angle ACD = \angle BCD = 45^{\circ}$. Найдите x и y.

Рис. 190

вариант 3

1. Разность катетов прямоугольного треугольника равна 1 см, а гипотенуза — 29 см. Найдите периметр треугольника.

2. На рис. 191 AC = BC, $BD = \sqrt{2}$ см, $\angle C = 135^{\circ}$. Найдите площадь треугольника ABC.

- **3.** Отношение диагоналей ромба равно 0,75. Найдите площадь ромба, если радиус вписанной окружности равен 24 см.
- **4.** Боковые стороны трапеции равны 30 см и 40 см. Найдите основания трапеции, если радиус вписанной окружности равен 12 см.
- **5.** На рис. 192 ABCD параллелограмм, AF = 42 см, DF = 14 см, $\angle ABE = \angle CBE = 45^{\circ}$. Найдите x и y.

Рис. 192

1. Сумма катетов прямоугольного треугольника равна 31 см, а гипотенуза — 25 см. Найдите катеты треугольника.

2. На рис. 193 AC = BC = 4 см, $\angle C = 150^{\circ}$. Найдите площадь треугольника ABC.

- **3.** Окружность, вписанная в ромб, делит точкой касания сторону в отношении 9:4. Найдите площадь ромба, если радиус окружности равен 36 см.
- **4.** Основания трапеции равны 7 см и 21 см. Найдите боковые стороны трапеции, если радиус вписанной окружности равен 6 см.
- **5.** На рис. 194 ABCD параллелограмм, AE = 30 см, CE = 40 см, $\angle ABE = \angle CBE = 45^{\circ}$. Найдите x и y.

Рис. 194

ОТВЕТЫ

часть і

Блок 1.

Самостоятельная работа 1 (теоретическая)

1 ВАРИАНТ

- 1. Нет.
- 2. Нет.
- 3.A, C.
- 4. Нет.
- 5.Да.

2 ВАРИАНТ

- 1. Нет.
- 2. Нет.
- 3.B, D.
- 4. Нет.
- 5.Да.

3 ВАРИАНТ

- 1. Нет.
- 2. Нет.
- 3.BC > CD.
- 4.Да.
- 5.Да.

4 ВАРИАНТ

- 1. Нет.
- 2. Нет.
- 3.BC < AB.
- 4.Да.
- 5.Да.

Самостоятельная работа 2 (на чертежах)

1 ВАРИАНТ

1.70°; 110°; 70°; 110°.

- 2.40 см.
- $3.156^{\circ}; 93^{\circ}.$

2 ВАРИАНТ

- 1.60°; 120°; 60°; 120°.
- 2.36 см.
- 3.44°: 158°.

3 ВАРИАНТ

- 1.63°; 117°; 63°; 117°.
- 2.27 см.
- 3.34°; 90°.

4 ВАРИАНТ

- 1.59°; 121°; 59°; 121°.
- 2.37 см.
- 3.78°: 90°.

Самостоятельная работа 3 (письменная)

1 ВАРИАНТ

- 1.53°; 127°; 53°.
- 2.14 см; 42 см; 14 см; 42 см.
- 3.110°; 50°.
- 4.40°; 140°; 40°; 140°.

2 ВАРИАНТ

- 1.133°; 47°; 133°.
- 2.35 см; 21 см; 35 см; 21 см.
- 3.60°; 100°.
- 4.80°: 100°.

- 1.24°; 156°.
- 2.14 см; 26см.

- 3.90°; 90°; 100°; 80°.
- 4.70°; 110°.
- 5.72°; 108°; 72°; 108°.

- 1.66°; 114°.
- 2.80 см.
- 3.70°; 110°; 90°; 90°.
- 4.60°; 120°.
- 5.72°; 108°; 72°; 108°.

Блок 2.

Самостоятельная работа 4 (теоретическая)

1 ВАРИАНТ

- 1.Да.
- 2. Нет.
- 3. Прямоугольник.
- 4.45°.
- 5. Измерить угол между диагоналями.

2 ВАРИАНТ

- 1.Да.
- 2. Нет.
- 3. Ромб.
- 4.90°; 90°; 90°; 90°.
- **5.** Измерить один угол параллелограмма.

3 ВАРИАНТ

- 1.Да.
- 2. Нет.
- 3. Ромб.
- 4.90°.
- 5. Проверить равенство всех сторон и равенство лиагоналей.

4 ВАРИАНТ

- 1.Да.
- 2. Нет.
- 3. Прямоугольник.
- 4.90° .
- 5. Проверить равенство противоположных сторон и равенство диагоналей.

Самостоятельная работа 5 (на чертежах)

1 ВАРИАНТ

- $1.70^{\circ}; 40^{\circ}.$
- 2.60° ; 30° .
- 3.7 см; 14 см; 7 см; 14 см.

2 ВАРИАНТ

- 1.140°; 20°.
- 2.70° ; 20° .
- 3.72 см.

3 ВАРИАНТ

- 1.80°; 10°.
- 2.64°: 58°.
- 3.84 см.

4 ВАРИАНТ

- 1.40°; 100°.
- 2.57° ; 33° .
- 3.36 см.

Самостоятельная работа 6 (письменная)

- 1.20°.
- 2.160°.
- 3.60° ; 120° ; 60° ; 120° ; 9 cm.

- 1.40°; 140°; 40°; 140°.
- 2.80°.
- 3.60° ; 120° ; 60° ; 120° ; 48 cm.

3 ВАРИАНТ

- 1.60°.
- 2.100°; 80°; 100°; 80°.
- 3.27 см.

4 ВАРИАНТ

- 1.120°.
- 2.72°.
- 3.12 см.

Блок 3

Самостоятельная работа 7 (теоретическая)

1 ВАРИАНТ

- 1. Нет, не обязательно.
- 2.Да.
- 3.4:9.
- 4. Уменьшится в 12 раз.
- 5. Прямоугольный.

2 ВАРИАНТ

- 1.Да.
- 2.Да. 3.8:3.
- 4. Увеличится в 8 раз.
- 5. Прямоугольный.

3 ВАРИАНТ

- 1.Да.
- 2. Нет.
- 3.1:3.
- 4. Уменьшится в 3 раза.

5. Прямоугольный.

4 ВАРИАНТ

- 1. Нет, не обязательно.
- 2.Да.
- 3.1:2.
- 4. Увеличится в 2 раза.
- 5. Прямоугольный.

Самостоятельная работа 8 (на чертежах)

1 ВАРИАНТ

- 1.75 cm^2 .
- $2.49~{\rm cm}^2$.
- 3.15 см.
- 4.40 cm^2 .
- 5.120 cm^2 .

2 ВАРИАНТ

- 1.98 cm^2 .
- 2.42 cm^2 .
- 3.15 см.
- 4.36 cm^2 .
- 5.315 cm^2 .

3 ВАРИАНТ

- $1.81~{\rm cm}^2$.
- 2.12 cm^2 .
- 3.84 см.
- 4. $220\sqrt{3}$ cm².
- 5.30 cm^2 .

- 1.64 cm^2 .
- 2.12 cm^2 .
- 3.68 см.

4. $21\sqrt{3}$ cm².

 5.72 cm^2 .

Самостоятельная работа 9 (письменная)

1 ВАРИАНТ

1.16 см; 8 см.

2.5 см.

 3.48 cm^2 .

4.10 cm; $10\sqrt{3}$ cm.

 $5.1,5a^2$ cm².

2 ВАРИАНТ

1.6 см; 9 см.

2.46 см.

 3.108 cm^2 .

4. $12\sqrt{3}$ cm; 12 cm.

5. $\frac{3\sqrt{3}a^2}{8}$ cm².

3 ВАРИАНТ

 1.54 cm^2 .

2.6 см.

 3.540 cm^2 .

 $4.18\sqrt{3} \text{ cm}^2.$

 $5. \, \frac{7\sqrt{3}a^2}{6} \, \, \, \mathrm{cm}^2.$

4 ВАРИАНТ

 1.24 cm^2 .

2.4 см.

 $3.480 \text{ cm}^2.$

4. $\frac{50\sqrt{3}}{3}$ cm².

 $5. \frac{5a^2\sqrt{3}}{2} \text{ cm}^2.$

Блок 4

Самостоятельная работа 10 (теоретическая)

1 ВАРИАНТ

1.Да.

2. Нет.

3.Да.

4.3:2.

 $5.\sqrt{2}:\sqrt{3}$.

2 ВАРИАНТ

1.Да.

2.Да.

3. Не обязательно.

4.7:2.

5.1:3.

3 ВАРИАНТ

1. Нет.

2. Нет.

3.Да. 4.2.5.

5. $\sqrt{3}$: 3.

4 ВАРИАНТ

1.Нет.

2.1.

3. Нет.

4.2:3.

 $5.\sqrt{2}:2.$

Самостоятельная работа 11 (на чертежах)

1 ВАРИАНТ

1.2 см; 12 см.

3.4:1.

- $4.\Delta ABC \sim \Delta ACD \sim \Delta CBD.$
- $5.\Delta AOD$ \sim ΔBOE ;

 $\triangle AEC \sim \triangle BDC$.

2 ВАРИАНТ

- 1.20 см; 4 см.
- 3.1:9.
- $4.\Delta ABC \sim \Delta ACD \sim \Delta CBD.$
- 5. $\triangle COD$ \sim $\triangle BOE$;

 $\triangle ABD \sim \triangle ACE$.

3 ВАРИАНТ

- 1.7 см; 3 см; 5 см.
- 3.1:3.
- $4.\Delta ABC \sim \Delta CBD$.

4 ВАРИАНТ

- 1.12 см; 15 см; 18 см.
- 3.1:3.
- **4.** $\triangle ABD$ \sim $\triangle ACB$.

Самостоятельная работа 12 (письменная)

1 ВАРИАНТ

- 1.15°.
- 2.16 см.
- 3.25 см: 45 см.
- 4.24 см.
- 5.15 см.

2 ВАРИАНТ

- 1.39°.
- 2.162 см.
- 3.21 см: 45 см.
- 4.36 см.
- 5.21 см.

3 ВАРИАНТ

1.120°; 40°; 20°.

- 2.16 см; 9 см.
- 3.6 см, 9 см и 10 см, 15 см.
- 4.216 см.
- 5.8 cm^2 ; 42 cm^2 ; 48 cm^2 .

4 ВАРИАНТ

- 1.60°; 20°; 100°.
- 2.8 см: 18 см.
- 3.12 см, 20 см и 15 см, 25 см.
- 4.96 см.
- 5.1:24:24.

Блок 5

Самостоятельная работа 13 (теоретическая)

1 ВАРИАНТ

- 1. Прямоугольный равнобедренный.
- 2. Нет.
- 3.2m.
- 4.4:5.
- 5. Больших 45°.

2 ВАРИАНТ

- 1. Равносторонний.
- 2. Нет.
- $3.n^{2}$.
- 4.5:3.
- 5. Меньших 45°.

- 1. Нет.
- 2. Нет.
- 3.p.
- 4.1:4.
- 5.5:12.

- 1.Нет.
- 2. Нет.
- 3.p.
- 4.1:3.
- 5.7:5.

Самостоятельная работа 14 (на чертежах)

1 ВАРИАНТ

- 1.27 см.
- 2.20 см; 9 см.
- $3.\frac{5}{13}$.
- $4.12\sin\alpha$.
- 5.10tga; $10\cos\alpha$.

2 ВАРИАНТ

- 1.48 см.
- 2.30 см; 32 см.
- $3.\frac{15}{17}.$
- $4.15\sin\alpha$.
- 5.8cosa; 8tga.

3 ВАРИАНТ

- 1.5 см; 15 см.
- 2.48 см; 64 см.
- $3.\frac{3}{4}$.
- $4.\frac{8}{\sin\alpha}$; 8ctg α .
- 5. $\frac{20\cos\alpha}{\cos2\alpha}$.

4 ВАРИАНТ

- 1.16 см; 24 см.
- 2.36 см; 64 см.

- $3.\frac{4}{3}$.
- $4.\frac{10}{\cos \alpha}$; $10 \operatorname{tg} \alpha$.
- $5.40\cos 2\alpha \log \alpha$.

Самостоятельная работа 15 (письменная)

1 ВАРИАНТ

- 1.9 см.
- 2.40 cm^2 .
- 3.0.
- 4.24 см; 45 см.

2 ВАРИАНТ

- 1.32 см.
- 2.20 cm^2 .
- 3.1.
- 4.168 см.

3 ВАРИАНТ

- 1.20 см.
- 2.300 cm^2 .
- 3.1.
- 4.600 cm^2 .

4 ВАРИАНТ

- 1.10 см.
- 2.600 cm^2 .
- 3.-1.
- 4.900 cm^2 .

Блок 6

Самостоятельная работа 16 (теоретическая)

1 ВАРИАНТ

1. Her.

Часть I

- 2.Да.
- 3.Да.
- 4.Тупым.
- 5. Равнобедренный прямоугольный.
 - 2 ВАРИАНТ
- 1. Нет.
- 2.Да.
- 3.Да.4.Острым.
- 5. Равнобедренный прямоугольный.
 - 3 ВАРИАНТ
- 1. Тупым.
- 2. Не обязательно.
- 3. Нет.
- 4. Прямым.
- 4.Прямым 5. Нет.
- 4 ВАРИАНТ
- 1. Острым.
- 2.Да.
- 3. Да. 4. Прямым.
- 5. Нет.

Самостоятельная работа 17 (на чертежах)

- 1 ВАРИАНТ
- 1.70°.
- 2.40° .
- 3.34°.
- 4.160° .
- 5.50° .
- 2 ВАРИАНТ
- 1.10°.
- 2.150° .

- 3.72° .
- 4.115°.
- 5.25° .

3 ВАРИАНТ

- 1.35°.
- 3.54° .
- 4.45°.
- 5.100°; 35°.

4 ВАРИАНТ

- 1.50°. 3.27°.
- 4.60°.
- 5.95°; 25°.

Самостоятельная работа 18 (письменная)

1 ВАРИАНТ

- 1.74°.
- 2.23°; 134°.
- 4.24 см.
- 5.8 см; 20 см.

2 ВАРИАНТ

- 1.144°.
- 2.63°: 54°.
- 4.75 см.
- 5.14 см.

3 ВАРИАНТ

- 1.116°; 58°.
- 2.10°; 80°.
- 4.75 см.
- 5.12 см.

4 ВАРИАНТ

1.60°; 150°.

- 2.60°; 30°.
- 4.75 см.
- 5.16 см.

Блок 7

Самостоятельная работа 19 (теоретическая)

1 ВАРИАНТ

- 1.Да.
- 2. Нет.
- 3. Описанной.
- 4.AB и BC.
- 5. Быть равными.

2 ВАРИАНТ

- 1.Да.
- 2. Да, если эти углы противоположные и нет, если соседние.
- 3. Вписанной.
- 4.BC.
- 5. Быть перпендикулярными.

3 ВАРИАНТ

- 1.Да.
- 2.Да.
- 3. Вписанным.
- 4.*AB* и *BC*.
- 5. Вторая.

4 ВАРИАНТ

- 1.Да.
- 2. Нет.
- 3. Описанным.
- 4.AC.
- 5. Вторая.

Самостоятельная работа 20 (на чертежах)

1 ВАРИАНТ

- 1.35° .
- 2.19 см.
- 3.52 см.
- 4.10 см.
- 5.30 cm^2 .

2 ВАРИАНТ

- 1.50° .
- 2.10 см.
- 3.88 см.
- 4.12 см.
- 5.60 cm^2 .

3 ВАРИАНТ

- 1.160° .
- 2.10 см.
- 3.50 см.
- 4.30 см; 30 см; 48 см.
- 5.180 cm^2 .

4 ВАРИАНТ

- 1.160° .
- 2.8 см.
- 3.100 см.
- 4.20 см; 20 см; 24 см.
- 5.210 cm^2 .

Самостоятельная работа 21 (письменная)

- 1.120°; 60°.
- $2.\sqrt{3}$ cm.
- $3.4r^{2}$.
- 4.98 см.

- 1.84°; 73°.
- 2. $2\sqrt{3}$ cm.
- 3.ad.
- 4.25 см.

3 ВАРИАНТ

- 1.30°; 30°; 90°; 210°.
- 2. $8\sqrt{3}$ cm.
- 4.30 см.

4 ВАРИАНТ

- 1.50°; 90°; 110°; 110°.
- $2.10\sqrt{3} \text{ cm}.$
- $3.\sqrt{2S}$.
- 4.25 см: 36 см.

Блок 8

Самостоятельная работа 22 (теоретическая)

1 ВАРИАНТ

- 1.Да.
- 2.Да.
- 3.Да.
- 4.AB < AC.
- $5. \angle AMN > \angle DNM.$

2 ВАРИАНТ

- 1. Нет.
- 2. Нет.
- 3.Да.
- 4.AB = AC.
- 5. / BMN < CNM.

3 ВАРИАНТ

- 1.Да.
- 2. Нет.
- 3.Да.
- 4.OB = BC.
- $5.\angle AMN > \angle DNM.$

4 ВАРИАНТ

- 1.Да.
- 2.Да.
- 3. Нет.
- 4.OA = AC.
- 5. / BMN < CNM.

Самостоятельная работа 23 (на чертежах)

1 ВАРИАНТ

3.
$$\overrightarrow{BE} = \overrightarrow{a} - \frac{1}{2}\overrightarrow{b}$$
;

$$\overrightarrow{CO} = -\frac{1}{2}\overrightarrow{a} - \frac{1}{2}\overrightarrow{b}.$$

- 4.96 cm^2 .
- 5.36 см.

2 ВАРИАНТ

$$3. \overrightarrow{OB} = -\frac{1}{2}\overrightarrow{a} + \frac{1}{2}\overrightarrow{b};$$

$$\overline{DE} = -\frac{1}{2}\vec{a} + \vec{b}.$$
4.110 cm².

- 5.44 см.

$$3. \ \overline{MO} = -\frac{1}{3}\vec{a} + \frac{2}{3}\vec{b} ;$$

$$\overrightarrow{DN} = \frac{5}{3}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b}.$$

4.5 см; 12 см; 26 см.

5.20 см; 10 см.

4 ВАРИАНТ

$$3. \overrightarrow{OM} = -\frac{2}{3} \overrightarrow{a} - \frac{1}{3} \overrightarrow{b};$$

$$\overrightarrow{AN} = -\frac{1}{3} \overrightarrow{a} - \frac{5}{3} \overrightarrow{b}.$$

4.7 см; 17 см; 27 см.

5.5 см: 5 см.

Самостоятельная работа 24 (письменная)

1 ВАРИАНТ

1.24 см; 26 см; 13 см.

 $2.\overline{CD}$.

3.
$$\frac{1}{2}\vec{a} - \vec{b}$$
; $\frac{1}{3}\vec{b} + \vec{a}$.

4.24 см.

2 ВАРИАНТ

1.10 см; 26 см; 13 см.

 $2. \overline{MA}$.

$$3. \vec{a} + \frac{3}{4}\vec{b}$$
; $\vec{b} - \frac{1}{2}\vec{a}$.

4.48 см.

3 ВАРИАНТ

1.5 см; 10 см; 5 см.

 $2. \overline{CD}$.

$$3. \frac{4}{3}\vec{x} - \frac{2}{3}\vec{y}; \ 2\vec{x} - 2\vec{y}.$$

4.16 см и 30 см или 14 см и 30 см.

4 ВАРИАНТ

1.10 см; 5 см; 5 см.

 $2. \overline{BC}$.

$$3. -\frac{2}{3}x + \frac{4}{3}y; \frac{2}{3}x + \frac{2}{3}y.$$

4.14 см и 32 см или 18 см и 32 см.

ЧАСТЬ II

Ответы к контрольным работам

Контрольная работа 1

1 ВАРИАНТ

1.72°, 108°, 72°, 108°.

3.24 см.

4.13 см.

2 ВАРИАНТ

1.48°; 132°; 48°; 132°.

3.60 см.

4.34 см.

3 ВАРИАНТ

1.40°; 140°; 40°; 140°.

3.40 см.

4.14 см; 14 см.

4 ВАРИАНТ

1.36°; 144°;36°; 144°.

3.12 см.

4.6 см: 12 см.

Контрольная работа 2

1 ВАРИАНТ

1.20 см.

2.32 см.

 3.54 cm^2 .

 4.204 cm^2 .

 $5.54\sqrt{3} \text{ cm}^2.$

- 1.15 см.
- 2.6 см.
- 3.120 cm^2 .
- 4.1240 cm^2 .
- 5. $64\sqrt{2}$ cm².

3 ВАРИАНТ

- 1.144 cm^2 .
- 2.84 см.
- $3.12 \text{ cm}, 12 \text{ cm}, 12\sqrt{3} \text{ cm}.$
- 4.552 cm^2 .
- 5.22 см и 2 см или 18 см и 6 см.

4 ВАРИАНТ

- 1.162 cm^2 .
- 2.114 см.
- $3.16 \text{ cm}, 16 \text{ cm}, 16\sqrt{3} \text{ cm}.$
- 4.624 cm^2 .
- 5.28 см и 2 см или 8 см и 22 см.

Контрольная работа 3

1 ВАРИАНТ

- 2.30 см.
- 3.16 см.
- 4.128 см.
- 5.180 см.

2 ВАРИАНТ

- 2.54 см.
- 3.21 см.
- 4.96 см.
- 5.360 см.

3 ВАРИАНТ

2.40 см.

- 3.36 см.
- 4.52 см.
- 5.1350 cm^2 .

4 ВАРИАНТ

- 2.19 см.
- 3.6 см.
- 4.72 см.
- 5.5400 cm^2 .

Контрольная работа 4

1 ВАРИАНТ

- 1.10°.
- 2.146°; 58°.
- 3.10 см; 8 см.
- 4.90° ; 45° ; 45° .

2 ВАРИАНТ

- 1.40° .
- 2.69°; 139°.
- 3.12 см; 48 см.
- 4.30°; 30°; 120°.

3 ВАРИАНТ

- 1.120° .
- 2.165°; 30°; 15°; 150°.
- 3.20 см; 8 см; 20 см; 32 см.
- 4.36°; 72°; 72° или 144°; 18°; 18°.

- 1.60° .
- 2.160°; 60°; 20°; 120°.
- 3.15 см; 6 см; 15 см; 24 см.
- 4.20°; 80°; 80° или 160°; 10°; 10°.

Контрольная работа 5

1 ВАРИАНТ

2.а) 16 см; б) 24 см; в) 16 см.

3.
$$\vec{a} - \frac{1}{3}\vec{b}$$
; $\vec{a} + \frac{2}{3}\vec{b}$.

4.3:4.

2 ВАРИАНТ

2. а) 24 см; б) 13 см; в) 13 см.

3.
$$\frac{3}{4}\vec{a} + \vec{b}$$
; $-\frac{1}{4}\vec{a} + \vec{b}$.

4.4:5.

3 ВАРИАНТ

2.a) $2\sqrt{3}$ cm; 6) 4 cm; B) $\sqrt{3}$ cm.

$$3. -\frac{1}{2}\vec{a} + \frac{1}{6}\vec{b}; -\vec{a} + \frac{1}{3}\vec{b}.$$

4.5:9.

4 ВАРИАНТ

2.a) $2\sqrt{3}$ cm; 6) $3\sqrt{3}$ cm;

в) $2\sqrt{3}$ см.

$$3. -\vec{a} - \frac{1}{3}\vec{b}$$
; $\frac{1}{2}\vec{a} + \frac{1}{6}\vec{b}$.

4.7:11.

Контрольная работа 6 (годовая)

1 ВАРИАНТ

1.168 см.

 $2.80\sqrt{3} \text{ cm}^2.$

3.104 см.

4.60 см; 80 см; 100 см.

5.24 см; 30 см.

2 ВАРИАНТ

1.120 см.

 $2.28\sqrt{3} \text{ cm}.$

 3.336 cm^2 .

4.30 см, 40 см.

5.21 см; 28 см.

3 ВАРИАНТ

1.70 см.

 $2.\sqrt{2} \text{ cm}^2.$

 $3.2400 \text{ cm}^2.$

4.10 см; 60 см.

5.30 см; 40 см.

4 ВАРИАНТ

1.24 см, 7 см.

 2.4 cm^2 .

 $3.5616 \text{ cm}^2.$

4.13 см; 15 см.

5.42 см; 14 см.

ЛИТЕРАТУРА

- 1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия. 7—9 классы: учеб. для общеобразоват. учреждений. М.: Просвещение, 2010.— 384 с.
- 2. Погорелов А.В. Геометрия. 7—9 классы. М.: Просвещение, 2001. 224 с.
- 3. Смирнова И.М., Смирнов В.А. Геометрия. 7—9 кл.: учеб. для общеобразоват. учреждений. М.: Мнемозина, 2005. 376 с.
- 4. Шарыгин И.Ф. Геометрия. 7—9 классы. М.: Дрофа, 1997. 352 с.
- 5. Ершова А. П., Голобородько В. В. Вся школьная математика в самостоятельных и контрольных работах. Геометрия 7—9. М.: ИЛЕКСА, 2008. 368 с.
- 6. Ершова А. П., Голобородько В. В. Устные проверочные и зачетные работы по геометрии для 7—9 классов. М.: ИЛЕКСА, 2004. 176 с.
- 7. Нелин. Е. П. Геометрия 7—11 классы. Определения, свойства, методы решений в таблицах. Серия «Комплексная подготовка к ЕГЭ и ГИА». М.: Илекса, 2011. 80 с.

содержание

часть і

Блок 1. Четырехугол	ьники. Параллелограмм и трапеция	4
	а 1 (теоретическая)	
	а 2 (на чертежах)	
	а З (письменная)	
Блок 2. Прямоугольн	ик, ромб, квадрат	14
Самостоятельная работ:	а 4 (теоретическая)	14
	а 5 (на чертежах)	
	а 6 (письменная)	
Блок 3. Площади пар	раллелограмма, треугольника и трапеции.	9.4
	а 7 (теоретическая)	
Самостоятельная работа	а 8 (на чертежах)	26
Самостоятельная работ	а 9 (письменная)	31
Блок 4. Подобные тр	еугольники	33
Самостоятельная работ	а 10 (теоретическая)	33
	а 11 (на чертежах)	
	а 12 (письменная)	
Блок 5. Применение	подобия.	
Рещение прямоуголь	ных треугольников	45
Самостоятельная работ	а 13 (теоретическая)	45
	а 14 (на чертежах)	
Самостоятельная работ	а 15 (письменная)	52
Блок 6. Окружность.		55
	а 16 (теоретическая)	
Самостоятельная работ	а 17 (на чертежах)	58
Самостоятельная работ	а 18 (письменная)	64
Блок 7. Вписанная и	описанная окружности	67
Самостоятельная работ	а 19 (теоретическая)	67
Самостоятельная работ	а 20 (на чертежах)	70
	а 21 (письменная)	

	127
Блок 8. Векторы	79
Самостоятельная работа 22 (теоретическая)	
Самостоятельная работа 23 (на чертежах)	
Самостоятельная работа 24 (письменная)	
ЧАСТЬ II	
Контрольная работа 1. Четырехугольники	91
Контрольная работа 2. Площади. Теорема Пифаго	
Контрольная работа 3. Подобные треугольники. Пр	-
Контрольная работа 4. Окружность	
Контрольная работа 5. Векторы	
Контрольная работа 6. Годовая	
	110

ЛИТЕРАТУРА......125

Алла Петровна Ершова

Сборник заданий для тематического и итогового контроля знаний

Геометрия 8 класс

Подписано в печать 28.05.2012. Формат 60×88/16. Уч.-изд. л. 7,82. Тираж 5000 экз. Заказ № 1566.

OOO «Илекса», 107023, г. Москва, ул. Буженинова, д. 30, стр. 4, сайт: www.ilexa.ru, E-mail: real@ilexa.ru, телефон: 8(495) 964-35-67

Отпечатано в ОАО «Первая Образцовая типография» Филиал «Чеховский Печатный Двор» 142300, Московская область, г. Чехов, ул. Полиграфистов, д. 1 Сайт: www.chpk.ru. E-mail: marketing@chpk.ru факс: 8(496) 726-54-10, телефон: 8(495) 988-63-87