

Course code	Course Name	L-T-P -Credits	Year of Introduction
CS202	Computer Organization and Architecture	3-1-0-4	2016

Pre-requisite: CS203 Switching theory and logic design

Course Objectives

- 1. To impart an understanding of the internal organization and operations of a computer.
- 2. To introduce the concepts of processor logic design and control logic design.

Syllabus

Fundamental building blocks and functional units of a computer. Execution phases of an instruction. Arithmetic Algorithms. Design of the processing unit – how arithmetic and logic operations are performed. Design of the control unit – hardwired and microprogrammed control. I/O organisation – interrupts, DMA, different interface standards. Memory Subsystem – different types.

Expected outcome

Students will be able to:

- 1. identify the basic structure and functional units of a digital computer.
- 2. analyze the effect of addressing modes on the execution time of a program.
- 3. design processing unit using the concepts of ALU and control logic design.
- 4. identify the pros and cons of different types of control logic design in processors.
- 5. select appropriate interfacing standards for I/O devices.
- 6. identify the roles of various functional units of a computer in instruction execution.

Text Books:

- 1. Hamacher C., Z. Vranesic and S. Zaky, Computer Organization ,5/e, McGraw Hill, 2011
- 2. Mano M. M., Digital Logic & Computer Design, 4/e, Pearson Education, 2013.

References:

- 1. Mano M. M., Digital Logic & Computer Design, 4/e, Pearson Education, 2013.
- 2. Patterson D.A. and J. L. Hennessey, Computer Organization and Design, 5/e, Morgan Kauffmann Publishers, 2013.
- 3. William Stallings, Computer Organization and Architecture: Designing for Performance, Pearson, 9/e, 2013.
- 4. Chaudhuri P., Computer Organization and Design, 2/e, Prentice Hall, 2008.
- 5. Rajaraman V. and T. Radhakrishnan, Computer Organization and Architecture, Prentice Hall, 2011.
- 6. Messmer H. P., The Indispensable PC Hardware Book, 4/e, Addison-Wesley, 2001

Course Plan					
Module	Contents	Hours (51)	Sem.ExamMarks		
I	Basic Structure of computers—functional units—basic operational concepts—bus structures—software. Memory locations and addresses—memory operations—instructions and instruction sequencing—addressing modes—ARM Example (programs not required). Basic I/O operations—stacks subroutine calls.	6	15%		

II	Basic processing unit – fundamental concepts – instruction cycle - execution of a complete instruction –multiple- bus organization – sequencing of control signals. Arithmetic algorithms: Algorithms for multiplication and division of binary and BCD numbers — array multiplier —Booth's multiplication algorithm — restoring and non- restoring division — algorithms for floating point, multiplication and division.	10	15%			
FIRST INTERNAL EXAMINATION						
III	I/O organization: accessing of I/O devices – interrupts –direct memory access –buses –interface circuits –standard I/O interfaces (PCI, SCSI, USB)	8	15%			
IV	Memory system: basic concepts –semiconductor RAMs –memory system considerations – semiconductor ROMs –flash memory –cache memory and mapping functions.	9	15%			
SECOND INTERNAL EXAMINATION						
V	Processor Logic Design: Register transfer logic – inter register transfer – arithmetic, logic and shift micro operations –conditional control statements.	9	20%			
	Processor organization:—design of arithmetic unit, logic unit, arithmetic logic unit and shifter —status register —processor unit —design of accumulator.					
VI	Control Logic Design: Control organization – design of hardwired control –control of processor unit –PLA control. Micro-programmed control: Microinstructions –horizontal and vertical micro instructions – micro-program sequencer –micro programmed CPU organization.	9	20%			
	END SEMESTER EXAM					

Question Paper Pattern:

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module I and II; All <u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. <u>Three</u> questions each having <u>9</u> marks, uniformly covering module I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 4. Part C
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module III and IV; All *four* questions have to be answered.
- 5. Part D
 - a. Total marks: 18
 - b. <u>Three</u> questions each having <u>9</u> marks, uniformly covering module III and IV; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions..