Effective Field Theory (T) - physics757

Course	Effective Field Theory (T)
Course No.	physics757

		Teaching			
Category	Type	Language	hours	\mathbf{CP}	Semester
Elective	Lecture with exercises	English	3+2	7	WT/ST

Requirements:

Preparation:

Advanced quantum theory (physics606)

Quantum Field Theory (physics755)

Form of Testing and Examination: Requirements for the examination (written): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: Understanding basic properties and construction of Effective Field Theories, ability to perform calculations in Effective Field Theories

Contents of the Course:

Scales in physical systems, naturalness

Effective Quantum Field Theories

Renormalization Group, Universality

Construction of Effective Field Theories

Applications: effective field theories for physics beyond the Standard Model, heavy quarks, chiral dynamics, low-energy nuclear physics, ultracold atoms

Recommended Literature:

- S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)
- J.F. Donoghue et al.; Dynamics of the Standard Model (Cambridge University Press 1994)
- A.V. Manohar, M.B. Wise; Heavy Quark Physics (Cambridge University Press 2007)
- P. Ramond, Journeys Beyond The Standard Model (Westview Press 2003)
- D.B. Kaplan, Effective Field Theories (arXiv:nucl-th/9506035)
- E. Braaten, H.-W. Hammer; Universality in Few-Body Systems with Large Scattering Length (Phys. Rep. 428 (2006) 259)

PDF version of this page.