Station Identifier	water depth (m)	bottom water O_2 (μM)	bottom water $NO_3^-(\mu M)$	Measured J _{O2} (mmol m ⁻² d ⁻¹)	Measured J _{NO3} - (mmol m ⁻² d ⁻¹)	$\begin{array}{c} RPOC^* \ (mmol \\ m^{-2} \ d^{-1}) \end{array}$	RRPOC** (mmol m ⁻² d ⁻¹)
Alonso-Pérez and Castro (2014), Apr	20	250	3	-39.80	0.20	34.64	52.78
Alonso-Pérez and Castro (2014), Jul	20	160	4	-34.60	-0.70	31.00	47.24
Alonso-Pérez and Castro (2014), Oct	20	210	4	-41.70	-0.30	36.62	55.79
Alonso-Pérez and Castro (2014), Jan	20	240	8	-21.80	0.10	18.90	28.80
Berelson et al. (1996), CCI-6	231	77	32	-4.44	-0.89	4.95	5.92
Berelson et al. (1996), CCI-5	532	48	36	-3.08	-1.17	3.90	4.10
Berelson et al. (1996), CCI-7	638	16	40	-2.22	-1.20	3.17	3.30
Berelson et al. (1996), CCII-2	670	18	40	-0.52	-0.71	1.18	1.23
Berelson et al. (1996), CCII-3	1010	24	43	-0.94	-0.44	1.24	1.28
Berelson et al. (1996), CCII-6	1358	47	44	-1.43	-0.62	1.85	1.91
Berelson et al. (1996), CCII-4	2025	80	40	-1.05	-0.15	1.03	1.06
Berelson et al. (1996), CCII-5	3375	113	42	-1.71	-0.12	1.55	1.59
Berelson et al. (1996), Cat	1300	19	42	-0.46	-0.32	0.72	0.74
Berelson et al. (1996), TB	1514	25	43	-0.99	-0.51	1.35	1.39
Berelson et al. (1996), SCI	2053	58	43	-0.73	-0.10	0.72	0.74
Berelson et al. (1996), PE	3707	131	40	-0.63	-0.02	0.55	0.56
Berelson et al. (1998), 3	7	225	0	-30.00	0.01	25.19	38.39
Berelson et al. (1998), 8	8	225	0	-27.00	0.08	22.98	35.02
Berelson et al. (1998), 11	17	225	0	-29.00	0.02	24.16	36.82
Berelson et al. (1998), 13	20	225	0	-25.00	0.06	20.80	31.69
Berelson et al. (1998), 37	24	225	0	-23.00	0.12	19.27	29.35
Berelson et al. (1998), 19	12	225	0	-27.00	0.12	23.03	35.10
Berelson et al. (2002), 2	63	166	11	-20.00	-0.70	19.42	29.36
Berelson et al. (2002), 2 Berelson et al. (2002), 3	64	175	11	-23.00	-0.50	20.96	31.67
	100	101	30	-6.21	-0.89	6.40	9.45
Berelson et al. (2003), TS1	100						15.84
Berelson et al. (2003), TS2		135	22	-10.64	-1.20	10.72	
Berelson et al. (2003), TS3	100	185	15	-8.14	0.21	6.74 5.20	9.96
Berelson et al. (2003), TS4	100	133	25	-5.95	-0.07	5.20	7.69
Berelson et al. (2003), CC3	100	153	15	-12.08	-0.68	11.10	16.41
Berelson et al. (2013), 1-Apr-May	105	60	31	-6.10	-2.10	8.25	12.15
Berelson et al. (2013), 2-Apr-May	190	64	35	-3.30	-1.80	5.05	6.67
Berelson et al. (2013), 3-Apr-May	90	93	32	-5.10	-1.00	5.72	8.52
Berelson et al. (2013), 6-Apr-May	25	94	32	-5.20	-1.00	6.11	9.31
Berelson et al. (2013), 1-Sept	105	78	34	-6.50	-1.40	7.17	10.56
Berelson et al. (2013), 2-Sept	190	60	36	-4.70	-1.40	5.55	7.33
Berelson et al. (2013), 3-Sept	90	142	26	-8.00	-0.80	8.23	12.27
Berelson et al. (2013), 6-Sept	125	125	28	-5.90	-0.60	5.84	8.42
Bohlen et al. (2011), 1	300	1	26	-1.00	-3.26	5.61	6.32
Bohlen et al. (2011), 5	80	1	16	-1.00	-3.47	6.90	10.34
Bohlen et al. (2011), 3	400	1	33	-1.00	-2.70	4.08	4.39
Bohlen et al. (2011), 4	250	1	20	-1.00	-3.23	6.31	7.40
Bohlen et al. (2011), 2	700	8	40	-0.45	-0.61	0.97	1.01
Bohlen et al. (2011), 6	1000	40	40	-1.60	-0.29	1.91	1.97
Dale et al. (2014), 1	53	55	21	-9.31	-1.31	9.81	14.88
Dale et al. (2014), 2	53	55	21	-10.65	-1.70	11.35	17.22
Dale et al. (2014), 3	98	42	22	-7.69	-1.33	7.93	11.75
Dale et al. (2014), 4	98	42	22	-6.76	-1.15	6.89	10.20
Dale et al. (2014), 5	174	58	20	-12.40	-2.16	13.22	17.86
Dale et al. (2014), 6	174	58	20	-8.20	-1.71	9.16	12.37
Dale et al. (2014), 7	241	51	25	-9.39	-1.35	9.47	11.20
Dale et al. (2014), 8	241	51	25	-6.05	-0.41	5.64	6.67
Dale et al. (2014), 9	425	54	31	-4.50	-0.94	4.99	5.34

Dale et al. (2014), 10	787	82	33	-2.77	-0.28	2.74	2.84
Dale et al. (2014), 11	787	82	33	-1.93	0.66	0.95	0.98
Dale et al. (2014), 12	789	82	33	-3.70	-0.38	3.48	3.61
Dale et al. (2014), 13	789	82	33	-2.63	-0.37	2.63	2.73
Dale et al. (2014), 14	1113	125	21	-3.07	0.02	2.55	2.63
Devol et al. (1997), A	35	329	3	-16.30	-0.10	14.00	21.31
Devol et al. (1997), B	48	327	3	-18.00	-0.15	15.59	23.68
Devol et al. (1997), C	12	317	0	-13.20	0.00	11.25	17.15
Devol et al. (1997), D	11	316	0	-10.70	0.10	8.83	13.45
Devol et al. (1997), F	14	316	0	-11.70	0.07	9.96	15.18
Devol et al. (1997), H	41	322	2	-7.40	0.12	6.06	9.22
Devol et al. (1997), I	11	252	0	-8.60	0.14	7.26	11.06
Devol et al. (1997), 1	11	270	10	-8.60	0.25	6.90	10.52
Devol et al. (1997), 2	11	270	10	-14.40	0.08	11.91	18.16
Devol et al. (1997), 3	14	285	10	-5.10	0.09	4.14	6.31
Devol and Christensen (1993), NH01	115	100	19	-10.63	-1.20	10.53	15.35
Devol and Christensen (1993), NH02	161	113	39	-10.28	-1.11	9.83	13.52
Devol and Christensen (1993), NH03	85	86	27	-6.57	-1.33	7.18	10.73
Devol and Christensen (1993), NH07	225	104	39	-4.88	-0.71	5.07	6.10
Devol and Christensen (1993), NH10	465	47	41	-2.55	-0.70	2.85	3.02
Devol and Christensen (1993), NH12	630	38	43	-2.16	-0.69	2.56	2.66
Devol and Christensen (1993), NH14A	114	127	19	-18.32	-1.64	17.24	25.15
Devol and Christensen (1993), NH17	124	112	19	-14.39	-1.60	14.12	20.38
Devol and Christensen (1993), NH18	146	106	22	-14.60	-1.46	13.89	19.50
Devol and Christensen (1993), WE101A	106	78	19	-5.27	-0.86	5.36	7.88
Devol and Christensen (1993), WE103	140	68	22	-14.64	-0.82	13.36	18.91
Devol and Christensen (1993), WE104	137	109	21	-8.94	-1.98	10.34	14.69
Devol and Christensen (1993), WE105	323	58	36	-2.51	-0.77	2.93	3.26
Devol and Christensen (1993), WE107	239	108	34	-9.29	-1.49	9.69	11.49
Goloway and Bender (1982), 5GC1	4563	250	21	-7.40	0.20	5.95	6.00
Goloway and Bender (1982), 10GC1	4956	250	21	-0.66	0.04	0.51	0.51
Goloway and Bender (1982), 11TW1	4980	250	21	-1.40	0.09	1.07	1.08
Goloway and Bender (1982), 12GC2	3880	250	21	-0.36	0.04	0.26	0.26
Goloway and Bender (1982), 14GC1	4170	250	21	-1.12	0.08	0.85	0.86
Goloway and Bender (1982), 16GC1	3310	250	21	-0.66	0.06	0.48	0.49
Goloway and Bender (1982), 23GC1	4901	250	21	-1.40	0.10	1.06	1.07
Goloway and Bender (1982), LGC02	4595	268	18	-1.12	0.03	0.90	0.91
Goloway and Bender (1982), LGC05	4621	268	19	-0.36	0.02	0.28	0.28
Goloway and Bender (1982), TC05	4629	268	18	-0.88	0.04	0.69	0.69
Goloway and Bender (1982), CBC13-1C	4368	167	38	-0.96	0.07	0.72	0.73
Goloway and Bender (1982), CBC21-1C	4371	167	38	-0.26	0.02	0.20	0.20
Goloway and Bender (1982), CBC44-2C	4391	167	38	-0.58	0.05	0.43	0.43
Goloway and Bender (1982), CBC6-3C	4394	167	38	-0.47	0.03	0.36	0.36
Goloway and Bender (1982), CBC6-4S	4394	167	38	-0.49	0.04	0.36	0.37
Goloway and Bender (1982), CGC3-1C	4379	167	38	-0.30	0.02	0.23	0.23
Hammond et al. (1996), 1	10	200	5	-19.90	0.49	17.43	26.56
Hammond et al. (1996), 2	15	200	2	-17.70	0.29	15.33	23.36
Hammond et al. (1996), 4	42	200	1	-5.30	-0.10	4.62	7.02
Hammond et al. (1996), 6	15	200	9	-19.20	0.11	17.51	26.68
Hammond et al. (1996), 7	22	200	2	-11.90	0.41	9.88	15.06
Hammond et al. (1996), JGOFS, 2S	4300	173	33	-0.80	0.05	0.61	0.62
Hammond et al. (1996), JGOFS, EQ	4300	173	51	-0.71	0.03	0.52	0.53
Hammond et al. (1996), JGOFS, 2N	4300	171	48	-0.70	0.07	0.32	0.50
Hammond et al. (1996), PACFLUX, II, Y	3800	170	36	-0.76	0.03	0.43	0.30
rammond et al. (1990), 1 ACPLUA, II, I	3000	170	30	-0.50	0.03	0.43	0.44

Hammond et al. (1996), PACFLUX, II, X	3800	168	48	-0.84	0.05	0.64	0.66
Hartnett and Devol (2003), NH003	100	6	28	-0.98	-1.96	3.45	5.09
Hartnett and Devol (2003), NH006	620	0	20	0.00	-0.78	1.11	1.16
Hartnett and Devol (2003), NH107	345	0	22	0.00	-1.71	2.00	2.20
Hartnett and Devol (2003), NH209	800	1	42	-0.21	-1.36	1.66	1.72
Hartnett and Devol (2003), NH104/208	1020	4	45	-0.25	-0.36	0.64	0.66
Hartnett and Devol (2003), NH206	2000	92	45	-1.87	-0.33	2.06	2.12
Hartnett and Devol (2003), NH304	3065	125	38	-2.06	-0.20	1.93	1.98
Hartnett and Devol (2003), WE203	1994	65	40	-1.54	-0.09	1.37	1.41
Hartnett and Devol (2003), WE204	105	179	25	-8.32	-1.38	8.85	13.03
Hartnett and Devol (2003), WE202	440	50	40	-2.53	-0.54	2.74	2.92
Hartnett and Devol (2003), WE213	620	27	40	-1.09	-0.54	1.54	1.61
Hartnett and Devol (2003), WE206	1025	38	40	-0.82	-0.41	1.30	1.34
Hartnett and Devol (2003), WE219	1994	65	40	-1.54	-0.09	1.37	1.41
Hartnett and Devol (2003), WE201	2746	90	38	-0.37	-0.06	0.37	0.38
Jahnke et al (1989), 10BC35	5036	250	24	-0.53	0.04	0.40	0.40
Jahnke et al (1989), 12BC	3860	240	22	-0.71	0.08	0.51	0.52
Jahnke and Jahnke (2000), A	850	250	19	-4.33	0.05	3.57	3.70
Jahnke and Jahnke (2000), B	740	250	19	-5.11	0.16	4.27	4.43
Jahnke and Jahnke (2000), C	2927	250	18	-1.41	0.04	1.14	1.17
Jahnke and Jahnke (2000), D	761	250	19	-4.04	-0.02	3.41	3.53
Jahnke and Jahnke (2000), E	755	250	19	-9.18	-0.14	8.05	8.35
Jahnke and Jahnke (2000), F	855	250	19	-9.13	-0.14	7.95	8.22
Jahnke and Jahnke (2000), G	2635	250	18	-1.67	0.01	1.37	1.41
Jahnke and Jahnke (2000), H	731	250	19	-3.12	-0.01	2.70	2.80
Jahnke and Jahnke (2000), I	730	250	19	-7.73	-0.03	6.69	6.94
Jahnke and Jahnke (2000), J	607	250	19	-11.01	-0.14	9.49	9.91
Jahnke and Jahnke (2000), K	607	250	19	-10.10	0.00	8.68	9.06
Jahnke and Jahnke (2000), L	742	250	19	-13.52	-0.26	11.99	12.43
Jahnke and Jahnke (2000), M	750	250	19	-9.41	-0.24	8.34	8.65
Jahnke and Jahnke (2004),CR1	3995	263	20	-1.02	0.00	0.87	0.89
Jahnke and Jahnke (2004),CR2	3272	263	20	-0.67	0.00	0.57	0.59
Jahnke and Jahnke (2004),CR3	4675	232	25	-0.68	0.00	0.59	0.59
Jahnke and Jahnke (2004),CR4	4677	232	25	-0.75	0.00	0.67	0.67
Jahnke and Jahnke (2004),CV1	3120	242	20	-0.20	0.00	0.18	0.19
Jahnke and Jahnke (2004),CV2	3105	242	20	-0.17	0.00	0.15	0.16
Jahnke and Jahnke (2004),CV3	3103	242	20	-0.16	0.00	0.14	0.15
Jahnke and Jahnke (2004),CV4	3102	242	20	-0.18	0.00	0.16	0.17
Laursen and Seitzinger (2002), 32-1	15	186	2	-18.86	0.14	17.06	25.99
Laursen and Seitzinger (2002), 32-2	15	276	0	-12.33	0.02	11.01	16.78
Laursen and Seitzinger (2002), 32-3	15	290	0	-4.84	0.01	4.34	6.61
Laursen and Seitzinger (2002), 32-5	15	343	0	-12.20	0.10	10.75	16.39
Laursen and Seitzinger (2002), 32-6	15	321	0	-15.05	0.06	13.42	20.45
Laursen and Seitzinger (2002), 32-7	15	138	1	-23.74	-0.04	20.17	30.74
Laursen and Seitzinger (2002), C-8	11	174	1	-20.15	-0.10	18.73	28.54
Laursen and Seitzinger (2002), C-9	11	290	0	-24.09	0.16	20.99	31.99
Laursen and Seitzinger (2002), C-10	11	290	0	-13.21	0.35	11.00	16.76
Laursen and Seitzinger (2002), C-12	11	361	0	-6.89	0.23	5.40	8.23
Laursen and Seitzinger (2002), C-12	11	312	0	-15.88	0.08	13.96	21.28
Laursen and Seitzinger (2002), C-13	11	290	0	-16.72	0.08	13.81	21.25
Laursen and Seitzinger (2002), 9-15	11	334	0	-10.72	0.23	9.21	14.04
Laursen and Seitzinger (2002), 9-15	11	152	0	-24.65	-0.01	21.61	32.94
Laursen and Seitzinger (2002), 9-17	11	348	0	-24.63	0.42	14.08	21.47
Laursen and Seitzinger (2002), 9-18	11	330	0	-8.05	0.08	6.67	10.16

Laursen and Seitzinger (2002), 9-19	11	147	1	-5.74	-0.19	4.92	7.50
Lehmann et al. (2004), Hyperion-Aug	65	130	10	-6.80	-0.08	5.90	8.91
Lehmann et al. (2004), Malibu	50	130	10	-12.32	-0.21	10.67	16.19
Lehmann et al. (2004), Marina, del, Rey, 8-B	50	130	2	-9.90	0.01	8.27	12.56
Lehmann et al. (2004), Hyperion-Mar	65	130	20	-6.37	-0.81	6.85	10.35
Lehmann et al. (2004), Topanga	50	130	20	-5.73	-0.35	5.50	8.35
Lehmann et al. (2004), Marina, del, Rey, 4-B	50	130	20	-6.00	-0.40	5.77	8.75
Lohse et al. (1998), I, (94)	670	226	15	-3.30	0.13	2.89	3.00
Lohse et al. (1998), II, (94)	1425	231	18	-2.00	0.05	1.61	1.66
Lohse et al. (1998), F, (94)	2235	269	20	-1.60	0.08	1.25	1.29
Lohse et al. (1998), III, (94)	3649	249	23	-0.80	0.02	0.65	0.66
Lohse et al. (1998), E, (94)	4468	250	24	-0.80	0.04	0.62	0.63
Reimers et al. (1992), G	3319	121	35	-1.42	-0.05	1.24	1.27
Reimers et al. (1992), J	781	12	41	-0.30	-0.82	1.38	1.43
Reimers et al. (1992), K	998	20	41	-1.18	-0.47	1.74	1.79
Reimers et al. (1992), M	3728	129	35	-1.75	-0.08	1.54	1.58
Reimers et al. (1992), N	4076	144	40	-0.93	-0.01	0.79	0.80
Smetacek et al. (1997), PS2376-1	3657	246	32	-1.30	0.05	1.03	1.05
Smetacek et al. (1997), PS2371-1	3680	246	32	-1.30	0.05	1.03	1.05
Smetacek et al. (1997), PS2370-4	5078	270	32	-0.70	0.03	0.55	0.56
Smetacek et al. (1997), PS2367-1	3525	246	32	-0.90	0.08	0.66	0.68
Smetacek et al. (1997), PS2365-2	3215	246	32	-1.80	0.05	1.45	1.48
Smetacek et al. (1997), PS2361-1	3073	246	32	-1.00	0.07	0.76	0.78
Smetacek et al. (1997), PS2357-1	3627	246	32	-1.70	0.01	1.41	1.44
Warnken et al. (2008)	97.5	210	4	-26.00	0.28	24.02	35.57

^{*} RPOC is the particulate organic carbon (POC) degradation rate (Eq. 18 in the main text).

References

- Alonso-Pérez F., Castro C. G. (2014) Benthic oxygen and nutrient fluxes in a coastal upwelling system (Ria de Vigo, NW Iberian Peninsula): seasonal trends and regulating factors. *Mar. Ecol. Prog. Ser.* 511, 17–32.
- Berelson W. M., McManus J., Coale K. H., Johnson K. S., Kilgore T., Burdige D. and Pilskaln C. (1996) Biogenic matter diagenesis on the sea floor: A comparison between two continental margin transects. *J. Mar. Res.* 54, 731-762.
- Berelson W. M., Heggie D., Longmore A., Kilgore T., Nicholson G. and Skyring G. (1998) Benthic nutrient recycling in Port Phillip Bay, Australia. *Estuar. Coast. Shelf S.* 46, 917-934.
- Berelson W. M., Johnson K., Coale K. and Li H. C. (2002) Organic matter diagenesis in the sediments of the San Pedro Shelf along a transect affected by sewage effluent. Cont. Shelf Res. 22, 1101-1115.
- Berelson W. M., McManus J., Coale K., Johnson K., Burdige D., Kilgore T., Colodner D., Chavez F., Kudela R., Boucher J. (2003) A time series of benthic flux measurements from Monterey Bay, CA. Cont. Shelf Res. 23, 457-481.
- Berelson W., McManus J., Severmann S., Reimers C. (2013) Benthic flux of oxygen and nutrients across Oregon/California shelf sediments. Cont. Shelf Res. 55, 66–75.
- Bohlen L., Dale A. W., Sommer S., Mosch T., Hensen C., Noffke A., Scholz F. and Wallmann K. (2011) Benthic nitrogen cycling traversing the Peruvian oxygen minimum zone. *Geochim. Cosmochim. Ac.* 75, 6094-6111.
- Dale A. W., Sommer S., Ryabenko E., Noffke A., Bohlen L., Wallmann K., Stolpovsky K., Greinert J., Pfannkuche O. (2014) Benthic nitrogen fluxes and fractionation of nitrate in the Mauritanian oxygen minimum zone (Eastern tropical North Atlantic). *Geochim. Cosmochim. Acta* 134, 234–256.
- Devol A. H., Codispoti L. A. and Christensen J. P. (1997) Summer and winter denitrification rates in western Arctic shelf sediments. Cont. Shelf Res. 17, 1029–1033.
- Devol A. H. and Christensen J. P. (1993) Benthic Fluxes And Nitrogen Cycling In Sediments Of The Continental-Margin Of The Eastern North Pacific. J. Mar. Res. 51, 345-372
- Goloway F. and Bender M. (1982) Diagenetic models of interstitial nitrate profiles in deep sea suboxic sediments. Limnol. Oceanogr. 27, 624-638.

^{**} RRPOC is the POC rain rate to the sea floor.

- Hammond D. E., McManus J., Berelson W. M., Kilgore T. E. and Pope R. H. (1996) Early diagenesis of organic material in equatorial pacific sediments: Stoichiometry and kinetics. *Deep Sea Res. II* 43, 1365-1412.
- Hartnett H. E. and Devol A. H. (2003) Role of a strong oxygen-deficient zone in the preservation and degradation of organic matter: A carbon budget for the continental margins of northwest Mexico and Washington State. *Geochim. Cosmochim. Acta* 67, 247-264.
- Jahnke R. A., Emerson S., Reimers C., Schuert J., Ruttenberg K. and Archer D. (1989) Benthic recycling of biogenic debris in the eastern tropical Atlantic ocean. *Geochim. Cosmochim. Acta* 53, 2947-2960.
- Jahnke R. A. and Jahnke D. B. (2000) Rates of C, N, P and Si recycling and denitrification at the US mid-atlantic continental slope depocenter. Deep Sea Res. I 47, 1405-1428
- Laursen A. E. and Seitzinger S. P. (2002) The role of denitrification in nitrogen removal and carbon mineralization in Mid-Atlantic Bight sediments. Cont. Shelf Res. 22, 1397–1416
- Lehmann M. F., Sigman D. M. and Berelson W. M. (2004) Coupling the N-15/N-14 and O-18/O-16 of nitrate as a constraint on benthic nitrogen cycling. Mar. Chem. 88, 1-20.
- Lohse L., Helder W., Epping E. H. G. and Balzer W. (1998) Recycling of organic matter along a shelf-slope transect across the NW european continental margin (Goban Spur). *Progr. Oceanogr.* 42, 77-110.
- Reimers C. E., R. A. Jamnke, D. C. McCorcle (1992) Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global carbon cycle. Global Biogeochem. Cy. 6, 199-224.
- Smetacek V., De Baar H. J. W., Bathmann U. V., Lochte K. and Rutgers Van Der Loef M. M. (1997) Ecology and biogeochemistry of the Antarctic circumpolar current during austral spring: a summary of southern ocean JGOFS cruise ANT X/6 of R.V. Polarstern. Deep Sea Res. II 44, 1-21.
- Warnken K. W., Santschi P. H., Roberts K. A. and Gill G. A. (2008) The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas gulf coast. Estuar. Coast. Shelf S. 76, 69-84.