Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$	$\sigma_{2}^{\#1}$	$+^{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\tau_{2}^{\#1}\alpha_{i}$	k	αβχ ‡	$\alpha\beta \ f_{2}^{++} \alpha\beta \ \omega_{2}^{++} \alpha\beta\chi$ $-\frac{ikt_{1}}{\sqrt{2}} \qquad 0$		0 \frac{t_1}{2}	generators	Multiplicities 1								
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0			$\frac{(1+2k^2)^2t_1}{2i\sqrt{2}k}$	$-\frac{1}{(1+2k^2)}$ $4k^2$			$\omega_2^{*+}\alpha\beta$ $\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$		auge	J Mu	1	m r	n m	2				
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	$\sigma_2^{\#1}$		0	$\frac{(1+2k^2)^2}{0}$	· t ₁	0 2 1	$\omega_{2}^{\#1} + \alpha eta$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{#1} + ^{lphaeta\chi}$	Source constraints/gauge	SO(3) irreps $t_{0,\pm}^{\#2} = 0$	0		$t_1^{\#-1} = 0$ $t_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta = 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	Total constraints:			
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (2r_3+r_5)}$	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$		$\beta \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$	$_{\beta}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda}$	$ u_{\lambda}^{\alpha}{}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} + $	$4t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f$	$-2t_1 \omega_{\prime\lambda}^{\prime} \partial^{\kappa} f^{\prime}_{\kappa} + \\ + \partial^{\alpha} f^{\lambda}_{\prime} \partial^{\kappa} f_{\lambda\kappa}^{\prime} -$	$^{9}\partial^{\lambda}\omega^{\theta \kappa}$	C# F# F#	$ \frac{00^{++}_{0}}{00^{++}_{0}} \begin{array}{c c} t_{0}^{++} & t_{0}^{++} & t_{0}^{++} & 0^{++}_{0} \\ \hline \frac{1}{6k^{2}} & 0 & 0 & 0 \end{array} $	0 0 0	0	$0 0 0 -\frac{1}{t_1}$	$\omega_{0^{+}}^{\#1}\dagger$	$\omega_{0+}^{\#1}$ $6 k^2 r_3$ 0		$f_{0+}^{#2} \omega_{0-}^{#1}$ 0 0 0 0			
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0		$\omega_{\kappa^{\lambda}}^{\kappa^{\lambda}} \omega_{\kappa^{\lambda}}^{\prime} + 6 f^{\alpha\beta}$	$\omega_{\lambda}^{\alpha}$ $\omega_{\lambda}^{\alpha}$	${}_{\theta}^{\chi}\partial_{\kappa}\omega^{\kappa\lambda\theta} + 24r_{3}\partial_{\theta}\omega_{\lambda}^{\alpha}$ $\partial^{\kappa}f_{\alpha}^{\theta} - 3t_{1}\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta}$	$2t_1 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{\mu}$	$\frac{\partial^{\kappa} f'}{\partial^{\kappa} f}$			$\sigma_{0}^{\#1}$ †	τ ^{#1} †	ω_{1+}^{+0}	$\alpha\beta$		0 $\alpha\beta f_{1}^{\#1}$		$0 \ 0 \ 0 \ -t_1$ $\omega_{1}^{\#1}{}_{\alpha}$		$f_{1}^{#1}\alpha$	$f_{1}^{#2}\alpha$
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	action	$\omega_{\alpha}^{\alpha\prime} \omega_{\kappa\alpha}^{\kappa} - 6t_1$	$r_5 \partial_i \omega^{\kappa \lambda}$ $r_3 \partial_\theta \omega_{\lambda}^{c}$	$5 r_5 \partial_{\alpha} \omega_{\lambda}^{\ c}$ $3 t_1 \partial^{\alpha} f_{\theta \kappa}$	$\omega_{\kappa\alpha}^{ \alpha} \partial^{\kappa} f'_{ \alpha}$	$f_{1}' + 12t_{1} \omega_{1\kappa\theta} \partial^{\kappa} f^{1}$ $\lambda_{\alpha} + 3t_{1} \partial_{\kappa} f_{\beta} \partial^{\kappa} f_{\lambda} \theta^{\theta}$	$\frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$	V	$\omega_{1}^{#1} + ^{\alpha}$ $\omega_{1}^{#2} + ^{\alpha}$ $f_{1}^{#1} + ^{\alpha}$	ιβ	$(2r_3 + \frac{t}{\sqrt{2}})$ $-\frac{t}{\sqrt{2}}$ $\frac{ikt}{\sqrt{2}}$	1 2	$\begin{array}{c c} \frac{1}{2} & -\frac{t_1}{\sqrt{2}} \\ & 0 \\ & 0 \end{array}$	$ \frac{1}{\sqrt{2}} - \frac{ikt}{\sqrt{2}} $ $ 0$		0 0	0 0	0 0	0 0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0		$\frac{i\sqrt{2}k}{t_1+k^2t_1} \qquad \frac{i}{i}$	0	0	0	0	Quadratic (free) action	$S_{F} == \iiint \left(\frac{1}{\epsilon} \left(-2 t_{1} \ \omega_{\alpha} \right) \right)$	$\omega^{\kappa\lambda}_{}\partial^{\prime}\omega_{\alpha}^{\alpha}$ $\omega_{}^{}\partial^{\prime}\omega_{}^{\alpha}$	$_{x}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ -($_{9}\omega_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ -(OKF.	$^{\alpha}_{\beta}$ $^{\beta}$ $^{\alpha}$ $^{\beta}$ $^{\alpha}$ $^{\beta}$ $^{\alpha}$ $^{\beta}$	ν ν α -	$\omega_{1}^{\#1}$ † $\omega_{1}^{\#2}$ †	α	0		0	0		$\frac{2(2r_3+r_5)+\frac{t_1}{6}}{\frac{t_1}{3\sqrt{2}}}$	$ \frac{t_1}{3\sqrt{2}} $ $ \frac{t_1}{3} $	0	$\frac{\frac{ikt_1}{3}}{\frac{1}{3}\bar{l}\sqrt{2}kt_1}$
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_1^{#2} + \alpha \beta$	$ au_1^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} +^{\alpha}$	Quadra	S _F == ∫∫	$12 r_3 \partial_i \omega^{\kappa \lambda}_{\kappa}$ $6 r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta}$	$12 r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha}$ $12 r_5 \partial_{\theta} \omega_{\lambda}^{\alpha}$	$3t_1\partial^{\alpha}f^{\lambda}$	$2t_{1}\partial_{\kappa}f^{\lambda}_{\lambda}$ $3t_{1}\partial^{lpha}f^{\lambda}_{\kappa}$	$24 r_3 \partial^{\beta} \omega_{I}^{\lambda \alpha}$ $12 r_3 \partial_{\theta} \omega_{I}^{\alpha}$		$f_1^{#_1}$ †		0		0	0		$0 \\ -\frac{1}{3} \bar{l} k t_1$	$0 \\ -\frac{1}{3} \bar{l} \sqrt{2} k t_1$	0	$\frac{2 k^2 t_1}{3}$

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_5 < -2 r_3 \&\& t_1 < 0 \mid\mid t_1 > 0$