Physik Oberstufe

Ben Siebert

Grundkurs 2023-2025 NRW

Inhaltsverzeichnis

1	Elek	Elektrizitätslehre						
	1.1	Spezielle Betrachtung zur Elektronenablenkröhre						
		1.1.1 Teil 1: Betrachtung der Stärke des Feldes						
		a)						
		b)						
		1.1.2 Analogie						
	1.2	Elektronenkanone						
	1.3	Übungsaufgaben						
		Aufgabe 1)						
		a)						
		Lösung a)						
		b)						
		Lösung b)						
		c)						
		Lösung c)						
		d)						
		Lösung d)						
		Aufgabe 2)						
		Lösung Aufgabe 2)						

Kapitel 1

Elektrizitätslehre

1.1 Spezielle Betrachtung zur Elektronenablenkröhre

Daraus folgt, dass es eine Kraft F_E (elektrische Kraft) geben muss, damit eine parabelförmige Bahn entsteht \to es gibt eine kraft F_E im "elektrischen Raum" :

$$g o E(ext{elektrische Feldstärke})$$
 $m o Q(ext{Ladung})$ $F_E = E \cdot Q$

 ${\cal E}$ beschreibt dabei die Stärke des Feldes zwischen den geladenen Platten und ${\cal Q}$ die Ladung des Elektrons.

1.1.1 Teil 1: Betrachtung der Stärke des Feldes

Varianz der Entfernung bei konstanter Ladung Q

d/cm	1	3	5	7	10
$\mathbf{E}/\frac{kV}{m}$	300	210	160	100	80

Daraus folgt, dass E antiproportional zu d ist:

 $E \sim \frac{1}{d}$

Variation der Ladung Q (indirekt über die Spannung U) mit konstakt gehaltener Entfernung d

U/kV	2	3	4	5	6
$\mathbf{E}/\frac{kV}{m}$	90	140	180	210	240

Daraus folgt, dass E proportional zu U ist:

$$E \sim U$$

Aus den vorherigen Erkenntnissen lässt sich nun Folgendes festhalten:

$$\frac{E}{Proportionalittsfaktor:1} = \frac{U}{d}$$

$$\Rightarrow F_E = \frac{U}{d} \cdot Q$$

1.1.2 Analogie

Damit ist, weil die Kraft F_E stets konstant und unabhängig vom Ort ist, nachgewiesen, dass - in vollständiger Analogie zum waagerechten Wurf im Schwerefeld der Erde - die Bahn des Elektrons parabelförmig sein muss.

1.2 Elektronenkanone

1.3 Übungsaufgaben

Aufgabe 1) Ein Teilchen fliegt durch das folgende elektrische Feld der Stärke $E=10\frac{kV}{m}$:

a) Erkläre, was Du über die Ladung des Teilchen weißt.

Lösung a) Die Ladung des Teilchens muss negativ sein, da es sich laut der Skizze zum Plus-Pol bewegt.

b) Nimm an, das Teilchen trägt die Ladung $1 \cdot 10^{-10} C$. Berechne die Kraft, die auf das Teilchen wirkt, wenn die Spannung U = 2kV angelegt wird.

Lösung b)

$$U = 2kV$$

$$E = \frac{U}{d} = \frac{2000}{0.1} = 20000$$

$$Q = 1 \cdot 10^{-10}C$$

$$F_E = E \cdot Q = 20000 \frac{kV}{m} \cdot (1 \cdot 10^{-10}C)$$

$$F_E = \frac{1}{500000} = 2 \cdot 10^{-6}N$$

c) Das Teilchen wiegt 0.1g. Bestimme die Beschleunigung, die das Teilchen erfährt.

Lösung c)

$$F = m \cdot a$$

$$a = \frac{F}{m}$$

$$m = 0.1g$$

$$a = \frac{1}{500000} \div 0.0001kg$$

$$a = 0.02 \frac{m}{s^2}$$

d) Welche Geschwindigkeit besitzt das Teilchen, wenn eine vorgeschaltete Elektronenkanone es mit $U_B=5kV$ beschleunigt hat.

Lösung d)

$$v = \sqrt{\frac{2 \cdot Q \cdot U}{m}}$$

$$v = \sqrt{\frac{2 \cdot (1 \cdot 10^{-10}C) \cdot 5000V}{0.0001kg}}$$

$$v = 0.1 \frac{m}{s}$$

Aufgabe 2) Ein "größeres elektrisches Teilchen wird in das folgende homogene E-Feld eingebracht. Diskutieren, was mit dem **nicht** beschleunigten Teilchen passieren könnte.

Lösung Aufgabe 2) Das Teilchen bewegt sich in Richtung der Platte mit der umgekehrten Ladung, falls vorhanden. Sollte es keine Platte mit umgekehrter Ladung geben, bewegt sich das Teilchen nicht.