Appunti Fisica

Nicola Ferru

Indice

	0.1	Premesse	7		
	0.2	Simboli	7		
Ι	fisi	sica 1	9		
1	Gra	andezze fisiche e unità di misura	11		
	1.1	Sistema internazionale delle unità di misura	11		
2	Ιm	noti	13		
	2.1	moto rettilineo uniformemente accelerato	13		
		2.1.1 Un problema d'esempio	14		
	2.2	I vettori	16		
		2.2.1 Proiezione dei vettori prodotto scalare	16		
		2.2.2 Primitive di una funsione	17		
		2.2.3 Primitive di una funsione	17		
3	Modelli atomici				
	3.1	Modello atomico di Bohr-Sommerfeld	19		

4 INDICE

Elenco delle tabelle

1.1	Unità fondamentali del sistema internazionale	11
1.2	Prefissi per le unità SI ^a	11

Elenco delle figure

0.1 Premesse...

In questo repository sono disponibili pure le dimostrazioni grafiche realizzate con Geogebra consiglio a tutti di dargli un occhiata e di stare attenti perché possono essere presenti delle modifiche per migliorare il contenuto degli stessi appunti, comunque solitamente vengono fatte revisioni tre/quattro volte alla settimana perché sono in piena fase di sviluppo. Ricordo a tutti che questo è un progetto volontario e che per questo motivo ci potrebbero essere dei rallentamenti per cause di ordine superiore e quindi potrebbero esserci meno modifiche del solito oppure potrebbero esserci degli errori, chiedo la cortesia a voi lettori di contattarmi per apportare una modifica.

Cordiali saluti

0.2 Simboli

\in Appartiene	\Rightarrow Implica	β beta
\notin Non appartiene	\iff Se e solo se	γ gamma
∃ Esiste	\neq Diverso	Γ Gamma
∃! Esiste unico	\forall Per ogni	δ, Δ delta
\subset Contenuto strettamente	∋: Tale che	ϵ epsilon
\subseteq Contenuto	\leq Minore o uguale	σ, Σ sigma
\supset Contenuto strettamente	\geq Maggiore o uguale	ρ rho
\supseteq Contiene	α alfa	

Parte I

fisica 1

Capitolo 1

Grandezze fisiche e unità di misura

In fisica, una grandezza è la proprietà di un fenomeno, corpo o sostanza, che può essere espressa quantitativamente mediante un numero e un riferimento (ovvero che può essere misurata quantitativamente). by Wikipedia

Grandezza	Nome	Simbolo
Tempo	secondo	Simbolo
Lunghezza	metro	\mathbf{m}
Quantità di materiale	mole	mol
Temperatura termodinamica	kelvin	K
Corrente elettrica	ampere	A
Intensità luminosa	candela	cd

Tabella 1.1: Unità fondamentali del sistema internazionale

Per una questione di comodità di lettura esistono i multipli delle unità di misura e vengono indicati con dei prefissi che consente di risurre il numero di cifre, rendere più veloce la lettura e la scrittura.

Fattore	Prefisso	Simbolo	Fattore	Prefisso	Simbolo
10^{18}	exa-	Е	10^{-1}	deci-	d
10^{15}	peta-	P	10^{-2}	centi-	\mathbf{c}
10^{12}	tera-	Τ	10^{-3}	milli-	\mathbf{m}
10^{9}	giga-	G	10^{-6}	micro-	μ
10^{6}	mega-	\mathbf{M}	10^{-9}	nano-	n
10^{3}	kilo-	k	10^{-12}	pico-	p
10^{2}	etto-	h	10^{-15}	femto-	f
10^{1}	deca-	da	10^{-18}	atto-	a

Tabella 1.2: Prefissi per le unità SI^a

1.1 Sistema internazionale delle unità di misura

l sistema internazionale di unità di misura (in francese: Système international d'unités), abbreviato in S.I. (pronunciato esse-i), è il più diffuso sistema di unità di misura. Nei paesi anglosassoni sono ancora impiegate delle unità consuetudinarie, un esempio sono quelle statunitensi. La difficoltà culturale nel passaggio della popolazione da un sistema all'altro è essenzialmente legato a radici storiche. Il sistema internazionale impiega per la maggior parte unità del sistema metrico decimale nate nel contesto della

rivoluzione francese: le unità S.I. hanno gli stessi nomi e praticamente la stessa grandezza pratica delle unità metriche. Il sistema è un sistema tempo-lunghezza massa che è stato inizialmente chiamato Sistema MKS, per distinguerlo dal similare Sistema CGS. Le sue unità di misura erano infatti metro, chilogrammo e secondo invece che centimetro, grammo, secondo. By Wikipedia

Capitolo 2

I moti

2.1 moto rettilineo uniformemente accelerato

Moto rettilineo uniformemente accelerato. La definizione di moto rettilineo uniformemente accelerato è: il moto di un corpo con accelerazione costante lungo una traiettoria retta sempre nella stessa direzione e identico verso.

$$V_{S_0} = 30,0m/s$$
 $X_{F_0} = I_{SF} = 155,5m$ $X_F(t) = X_{F_0} + V_{F_0}t$ $V_F = 5,00m/s$ $X_s(t) = X_{S_0} + X_{S_0}t + \frac{1}{2}A_st^2$ $X_s(t) = V_{S_0} + \frac{1}{2}A_st^2$

$$(x_f(t) - x_{f_0}) = X_f(t_0)$$

$$\alpha x^{2} + \beta x + \gamma = 0$$

$$x = \frac{-\beta \pm \sqrt{\beta - \gamma}}{2\alpha} \quad \Delta \geq 0$$

$$\tilde{x^{2}} + 2\tilde{\beta}x + \gamma = 0$$

$$x = \sqrt{\tilde{\beta}}$$

$$\frac{1}{2}(V_{s_{0}} - V_{F_{0}})T_{c} - X_{F_{0}} = 0$$

$$t_{c}^{2} + \frac{2}{|A_{s}|}(V_{s_{0}} - V_{f_{0}})t_{c} - \frac{2}{A_{s}}X_{f_{0}} = 0$$

$$A_{s} = -|A_{s}|$$

$$t_{c} = -[-\frac{I}{A_{s}}(V_{s_{0}} - V_{f_{0}})] \pm \sqrt{(v_{s_{0}} - v_{f_{0}})/A_{s}^{2} - \frac{2}{|A_{s}|}X_{f_{0}}} = 156, 25 - 155 = 1, 25$$

$$t_{c_{-}} = 12, 5 - 1, 00s = 11.5s$$

2.1.1Un problema d'esempio

Si Lascia cadere un sasso in un pozzo. il tempo nell'acqua viene percepito con un ritardo di 2.40s, a quale distanza dall'imboccatura del pozzo si trova la superficie dell'acqua? La velocità del suono nell'aria è 336 m/s.

$$\begin{split} \Delta t_{tot}^2 + \frac{h^2}{V_s^2} - \frac{2h}{v + V_x} \Delta t_{tot} &= \frac{2h}{g} \\ \frac{h^2}{V_s^2} - 2(\frac{\Delta t_{tot}}{V_s} + \frac{I}{g})h + \Delta t_{tot}^2 &= 0 \\ h^2 - 2V_s^2(\frac{\Delta t_{tot}}{V_s} + \frac{I}{g})h + \Delta t_{tot}^2 &= 0 \\ h &= V_s^2(\frac{\Delta t_{tot}}{V_s} + \frac{I}{g})h + V_s^2 \Delta t_{tot}^2 &= 0 \\ h &= V_s^2(\frac{\Delta t_{tot}}{V_s} + \frac{I}{g}) + \frac{I}{g}) &\pm \\ \sqrt{[\frac{\Delta t_{tot}}{V_s} + \frac{I}{g}]^2 - \frac{2h}{v + V_x} \Delta t_{tot}} \\ \Delta t_{tot} - \frac{h}{V_s} &> 0 \end{split}$$

$$x(t) = x_0 + V_{x_0}t$$

$$y(t) = y_0 + V_{y_0}t$$

$$x - x_0 = V_{x_0}$$

$$y - y_0 = V_{y_0}$$

$$\frac{y-y_0}{x-x_0} = \frac{V_{x_0}}{V_{y_0}}$$

$$x(t) = x_0 + V_{x_0}t + \frac{1}{2}a_xt^2$$

$$y(t) = y_0 + V_{y_0}t + \frac{1}{2}a_yt^2$$

$$\begin{split} \frac{y-y_0}{x-x_0} &= \frac{V_{y_0}}{V_{x_0}} = \frac{ay}{ax} \\ \frac{1}{2} \frac{V_{y_0}}{g} &= -\frac{1}{2} \frac{g}{V_{x_0^2}} \frac{V_{x_0^r} * V_{y_0}^2}{g^2} \\ y-y_m &= -\frac{1}{2} \frac{g}{} \end{split}$$

$$A_{y} = -g$$

$$y(t) = y_{0} + V_{y_{0}}t + \frac{1}{2}A_{y}t^{2}$$

$$y_{0} = 0 \ x_{0} = 0$$

$$V(t) = V_{y_{0}}t - \frac{1}{2}gt^{2}$$

$$x(t) = x_{0} + V_{y_{0}}t$$

$$x(t) = V_{x_{0}}t$$

$$\begin{cases} x(t) = V_{x_0}t & \alpha = -\frac{1}{2} \\ y() = V_{y_0}t - \frac{1}{2}gt^2 & X_m = \frac{V_{x_0}*V_{y_0}}{g} \\ y - y_m = \alpha(x - x_m)^2 & t_m = \frac{V_{y_0}}{g} \\ V_y(t) = V_{y_0} - gt - V_m = \alpha x_m^2 & V_{y_0} - gt_m = 0 \\ t = \frac{x}{V_{y_0}} & y_m = V_{y_0} \frac{V_{y_0}}{g} - \frac{1}{2}g\frac{V_{y_0}^2}{g^2} \\ y = V_{y_0} - \frac{1}{2}g\frac{x^2}{V_{x_0}^2} & \frac{1}{2}\frac{V_{y_0}^2}{g} = -\frac{1}{2}\frac{g}{V_{x_0}^2}\frac{V_{x_0}^r}{g^2} \\ y - y_m = \alpha x^2 + \alpha x_m^2 - 2\alpha x x_m & y - y_m = -\frac{1}{2}\frac{g}{V_{x_0}^2}(x - x_m)^2 \end{cases}$$

$$\alpha = -\frac{1}{2}$$

$$X_m = \frac{V_{x_0} * V_{y_0}}{g}$$

$$t_m = \frac{V_{y_0}}{g}$$

$$V_{y_0} - gt_m = 0$$

$$y_m = V_{y_0} \frac{V_{y_0}}{g} - \frac{1}{2} g \frac{V_{y_0}^2}{g^2}$$

$$\frac{1}{2} \frac{V_{y_0}^2}{g} = -\frac{1}{2} \frac{g}{V_{x_0}^2} \frac{V_{x_0}^r}{g^2}$$

$$y - y_m = -\frac{1}{2} \frac{g}{V_{x_0}^2} (x - x_m)^2$$

$$X_p = r * \cos \sigma$$
$$\cos \sigma = \frac{x_p}{r}$$
$$y_p = r \sin \sigma$$

$$X_p^2 + y_p^2 = r^2$$

$$\frac{y_p}{x_p} = \frac{\sin \sigma}{\cos \sigma} = \tan \sigma$$

$$\cos \sigma = \cos -\sigma$$

$$\sin\sigma = -\sin-\sigma$$

16

2.2 I vettori

2.2.1 Proiezione dei vettori prodotto scalare

$$L*L=1 \qquad \overrightarrow{a}=a_x\overrightarrow{L}+a_y\overrightarrow{J} \qquad \overrightarrow{r(t)}=\overrightarrow{r_0}+V_0t+\frac{1}{2}\overrightarrow{y}t^2$$

$$\overrightarrow{J}*J=1 \qquad \overrightarrow{b}=b_x\overrightarrow{L}+b_y\overrightarrow{J} \qquad \overrightarrow{r}*\overrightarrow{J}=y=\overrightarrow{r}*\overrightarrow{J}+\overrightarrow{V_0}*\overrightarrow{J}$$

$$\overrightarrow{a}*\overrightarrow{i}=a_x \qquad \overrightarrow{a}*\overrightarrow{b}=(a_x\overrightarrow{J}+a_y\overrightarrow{J})*(b_x\overrightarrow{J}+\cos\frac{\pi}{2}*\phi=\sin\phi$$

$$\overrightarrow{a}* \qquad b_y\overrightarrow{J}) \qquad x=x_0+V_xt$$

$$\overrightarrow{a}=\overrightarrow{a}*\overrightarrow{J}+a_y\overrightarrow{J} \qquad \overrightarrow{a}*\overrightarrow{b}=a_x*b_x+a_yb_y \qquad y=y_0+V_0t-\frac{1}{2}gt^2$$

$$ax=\overrightarrow{a}*\overrightarrow{J}=||a||*||\overrightarrow{J}||\cos\phi=||\overrightarrow{a}||=a_{x^*2}+a_{y^2}=\overrightarrow{a}*\overrightarrow{a}$$

$$||\overrightarrow{a}||*\cos\phi$$

Moto balistico

$$x = x_0 + V_{0x}t$$

$$y = y_0 + V_{0y}t - \frac{1}{2}gt^2$$

$$x = 0$$

$$y = h$$

$$V_{0y} = \overrightarrow{V}_0 * \overrightarrow{J} = ||\overrightarrow{V}|| * ||\overrightarrow{J}||$$

$$h = \frac{1}{2}gt^2$$

17 2.2. I VETTORI

2.2.2Primitive di una funsione

$$\frac{d}{dx}\mathcal{A}_x = f(x)$$

$$\mathcal{A}(x) = \int_{?}^{?} i\mathcal{A}(x) = \int_{?}^{?} f(x)dx = \text{integrale indefi-} \quad P(x_2) - P(x_1) = \mathcal{A}(x_2) + c - \mathcal{A}(x_1) - c = \text{nita}$$

 $P(x) = A(x) + c \rightarrow \text{costante arbitraria}$

Integrali definito

$$\begin{array}{l} \mathcal{A}(x_2) - \mathcal{A}(x_1) = \int_{\mathcal{A}(x_1)}^{\mathcal{A}(x_2)} d\mathcal{A}(x) = \int_{\mathcal{A}(x_1)}^{\mathcal{A}(x_2)} f(x) dx \\ \text{Teorema dell'energia cinetica } \overrightarrow{F}_R \text{ risultante delle forze.} \end{array}$$

 $dL = \overrightarrow{F}_R * d\overrightarrow{r'}$ lavoro elementare fonte della risultante.

$$L_{1,2} = \int_{\overrightarrow{r}_1}^{\overrightarrow{r}_2} F_R * d\overrightarrow{r}$$

$$\overrightarrow{F}_R = m \overrightarrow{d} = m \frac{d\overrightarrow{v}}{dt}$$

$$L_{1,2} = m \int_{\overrightarrow{r}_1}^{\overrightarrow{r}_2} d\overrightarrow{v} * d\overrightarrow{v} * \overrightarrow{v} = m \int_{\overrightarrow{V}_1}^{\overrightarrow{V}_2} d\overrightarrow{V} * \overrightarrow{V}$$

$$\frac{d}{dt} V^2 = \frac{d}{dt} \overrightarrow{V} * \overrightarrow{V} = \frac{d}{dt} \overrightarrow{V} * \overrightarrow{V} = \frac{d}{dt} \overrightarrow{V} * \overrightarrow{V} = 2 \overrightarrow{V} * \frac{d\overrightarrow{V}}{dt}$$

$$L_{1,2} = m \int_{\overrightarrow{r}_1}^{\overrightarrow{r}_2} d\overrightarrow{v} * d\overrightarrow{r} = m \int_{\overrightarrow{r}_1}^{\overrightarrow{r}_2} d\overrightarrow{v} * \frac{d\overrightarrow{r}}{dt} = m \int_{\overrightarrow{r}_1}^{\overrightarrow{r}_2} d\overrightarrow{r} * \frac{d\overrightarrow{r}}{dt} * \frac{d\overrightarrow{r}}{dt} = m \int_{\overrightarrow{r}_1}^{\overrightarrow{r}_2} d\overrightarrow{r} * \frac{d\overrightarrow{r}}{dt} = m \int_{\overrightarrow{r}_1}^{\overrightarrow{r}_2} d\overrightarrow{r} * \frac{d\overrightarrow{r}}{dt} = m \int_{\overrightarrow{r}_1}^{\overrightarrow{r}_2} d\overrightarrow{r} * \frac{d\overrightarrow{r}}{dt} * \frac{d\overrightarrow{r}$$

Derivata del prodotto di funzione σ

•
$$\frac{d}{dt}(f(t)*g(t)) = (\frac{d}{at}*f(t))g(r) + f(t)*\frac{d}{dt}g(t)$$

•
$$\frac{dV^2}{dt} = 2\overrightarrow{V} * \frac{d\overrightarrow{V}}{dt}$$

$$\bullet \ dV^2 = 2\overrightarrow{V}*d\overrightarrow{V} \ \overrightarrow{V}*d\overrightarrow{V} = \frac{1}{2}dV^2$$

$$L_{1,2} = \frac{1}{2} m \int_{V_1^2}^{V_2^2} dV^2 = \frac{1}{2} m (V_2^2 - V_1^2)$$

$$L_{1,2} = \frac{1}{2} m V_2^2 - \frac{1}{2} m V_1^2$$

$$K = \frac{1}{2} m V^2 \text{ energia cinetica}$$

esempi σ

Primitive di una funsione

$$ax = g \sin \sigma \ F_r = m \overrightarrow{g} + \overrightarrow{F} n$$

 $F_{R_y} = 0 \ F_{R_x} = m a_x = mg \sin \sigma$

18 CAPITOLO 2. I MOTI

$$\begin{split} dL &= \overrightarrow{F_R} * d\overrightarrow{r'} = F_{R_x}, * dx' + F_{R_y}, * dy' = 0 \\ dL &= F_{R_x}, * dx' \ L = \frac{h}{\sin \sigma} \end{split}$$

$$L_{0,2} = \int$$

Capitolo 3

Modelli atomici

3.1 Modello atomico di Bohr-Sommerfeld

Il modello atomico proposto da Niels Bohr nel 1913, successivamente ampliato da Arnold Sommerfeld nel 1916, è la più famosa applicazione della quantizzazione dell'energia che, insieme alle spiegazioni teoriche sulla radiazione del corpo nero, sull'effetto fotoelettrico e sullo scattering Compton, e all'equazione di Schrödinger, costituiscono la base della meccanica quantistica.

Il modello, proposto inizialmente per l'atomo di idrogeno, riusciva anche a spiegare, entro il margine di errore statistico, l'esistenza dello spettro sperimentale. Bohr presenta così un modello dell'atomo, facendo intuire che gli elettroni si muovono su degli orbitali. Questo modello viene ancora utilizzato nello studio dei Semiconduttori.

By Whikipedia