Hall Ticket No											Question Paper Code: AAEC35
----------------	--	--	--	--	--	--	--	--	--	--	-----------------------------

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500~043

MODEL QUESTION PAPER-I

B.Tech VII Semester End Examinations, December-2025

Regulations: IARE - UG20

AEROSPACE STRUCTURAL DYNAMICS

AERONAUTICAL ENGINEERING

Time: 3 hour Maximum Marks: 70

Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks

All parts of the question must be answered in one place only

MODULE-I

- 1. (a) Discuss the response of under damped, critically damped and over damped systems using respective response equations and curves. [BL: Understand— CO: 1—Marks: 7]
 - (b) A mass of 20kg is supported on two isolators as shown in fig below. Determine the undamped and damped natural frequencies of the system, neglecting the mass of the Isolators.

 [BL: Apply— CO: 1—Marks: 7]

MODULE-II

2. (a) A diesel engine, weighing 3000 N is supported on a pedestal mount. It has been observed that the engine induces vibration into the surrounding area through its pedestal mount at an operating speed of 6000rpm. Determine the parameters of the vibration absorber that

will reduce the vibration when mounted on the pedestal. The magnitude of the exciting force is 250 N and the amplitude of the auxiliary mass is to be limited to 2mm.

[BL: Understand— CO: 2—Marks: 7]

(b) Derive the equation of motion of the system shown in figure. Assume that the initial tension 'T' in the string is too large and remains constants for small amplitudes. Determine the natural frequencies, the ratio of amplitudes and locate the nodes for each mode of vibrations when $m_1 = m_2 = m$ and $l_1 = l, l_2 = 2l, l_3 = 3l$. [BL: Apply— CO: 2—Marks: 7]

MODULE-III

3. (a) Find the lowest natural frequency of the cantilever rotor system shown in Figure by matrix method. Take m1=100 kg, m2=50 kg. [BL: Understand— CO: 3—Marks: 7]

- (b) A commercial type vibration pick up has a natural frequency of 6cps and a damping factor /Tau = 0.6. calculate the relative displacement amplitude if the instrument is subject to motion x = 0.08sin20t. [BL: Apply— CO: 3—Marks: 7]
- 4. (a) A seismic instrument is mounted on a machine running at 1000 rpm. The natural frequency of the seismic instrument is 20 rad/sec. The instrument records relative amplitude of 0.5 mm. Compute the displacement, velocity and acceleration of the machine. Damping in seismic instrument is neglected. [BL: Apply— CO: 4—Marks: 7]

(b) Determine the natural frequencies and mode shapes associated with the system shown in Figure for $m_1 = 10kg, m_2 = 20kg, k_1 = 100N/m, k_2 = 100N/m, and k_3 = 50N/m$.

[BL: Apply— CO: 4—Marks: 7]

MODULE-IV

- 5. (a) Time-domain wave farms can be used to detect dushate damages of the machinery. Explain.

 [BL: Understand— CO: 5—Marks: 7]
 - (b) Derive expessions for critical speed of shaft when damping is present in the form of air resistance. [BL: Understand— CO: 5—Marks: 7]
- 6. (a) Explain the following: i) Vibration isolation transmissibility ii) Torsional vibration of circular shafts [BL: Understand— CO: 4—Marks: 7]
 - (b) Root cause analysis is very essential for introducing to implement using fishbone chart. Explain. [BL: Understand— CO: 4—Marks: 7]

MODULE-V

7. (a) Find the time it takes for a transverse wave to travel along a transmission line from one tower to another one 300 m away. Assume the horizontal component of the cable tension as 30,000N and the mass of the cable as 2Kg/m of length.

[BL: Understand— CO: 5—Marks: 7]

(b) An aerofoil using in its first bending and torsional modes can be represented schematically as shown in figure connected through a translational spring of stiffness k and a torsional spring of stiffness kT. Write the equations of motion for the system and obtain the two natural frequencies. Assume the following data. M = 5 kg, $I = 0.12 kgm^2$, $k = 5X10^3 N/m$, $k_T = 0.4X10^3 \text{ Nm/rad}$, $k_T = 0.12 kgm^2$, k

8. (a) Find the time it takes for a transverse wave to travel along a transmission line from one tower to another one 300 m away. Assume the horizontal component of the cable tension as 30,000N and the mass of the cable as 2Kg/m of length.

[BL: Understand— CO: 5—Marks: 7]

(b) A uniform bar of cross-sectional area A, length l and Young's modulus E is connected at both ends by springs, dampers and masses as shown in the figure. State the boundary conditions.

[BL: Understand— CO: 5—Marks: 7]

END OF EXAMINATION

COURSE OBJECTIVES:

The students will try to:

I	Formulate mathematical models of problems in vibrations using Newton's second law or energy principles.
II	Determine a complete solution to the modelled mechanical vibration problems.
III	design a mechanical system that has desirable vibrational behavior.
IV	Assess the underlying assumptions in the aeroelastic analysis of fixed wing and rotary wing aerospace vehicles/systems.

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Apply principles of mechanical vibrations such as Newton's second law, and the principle of conservation of energy to the mathematical models for obtaining their governing equations of motion.	Apply
CO 2	Analyze the mathematical modeling of the two degrees of freedom systems for determining the frequency of the spring-mass system.	Analyze
CO 3	Solve the natural frequencies and mode shapes of a multi degree of freedom system for the numerical solution of distributed parameter systems	Apply
CO 4	Apply theoretical and numerical procedures for predicting the dynamic response of continuous structural systems under the most diverse loading conditions.	Apply
CO 5	Formulate the static aeroelasticity problems such as typical section and wing divergence problems; for their selection in real world applications.	Apply

QUESTION PAPER 1: MAPPING OF SEMESTER END EXAMINATION QUESTIONS TO COURSE OUTCOMES

Q.No		All Questions carry equal marks	Taxonomy	CO's	PO's
1	a	Discuss the response of under damped, critically damped and over damped systems using respective response equations and curves.	Understand	CO 1	PO 1,2
	b	A mass of 20kg is supported on two isolators as shown in fig below. Determine the undamped and damped natural frequencies of the system, neglecting the mass of the Isolators.	Understand	CO 1	PO 1,2
2	a	Derive an expression for the transmissibility and transmitted force for a spring - massdamper system subjected to external excitation. Draw the vector diagram for the forces.	Understand	CO 1	PO 1,2

	b	A 25 kg mass is resting on a spring of 4900 N/m and dashpot of 147 N-se/m in Parallel. If a velocity of 0.10 m/sec is applied to the mass at the rest position, what will be its displacement from the equilibrium position at the end of first second?	Understand	CO 1	PO 1,2
3	a	A diesel engine, weighing 3000 N is supported on a pedestal mount. It has been observed that the engine induces vibration into the surrounding area through its pedestal mount at an operating speed of 6000rpm. Determine the parameters of the vibration absorber that will reduce the vibration when mounted on the pedestal. The magnitude of the exciting force is 250 N and the amplitude of the auxiliary mass is to be limited to 2mm.	Apply	CO 2	PO 1,2
	b	Derive the equation of motion of the system shown in figure. Assume that the initial tension 'T' in the string is too large and remains constants for small amplitudes. Determine the natural frequencies, the ratio of amplitudes and locate the nodes for each mode of vibrations when $m_1 = m_2 = m$ and $l_1 = l, l_2 = 2l, l_3 = 3l$.	Apply	CO 2	PO 1,2
4	a	For the system shown in fig find the two natural frequencies when $m_1 = m_2 = 9.8 kgK_1 = K_3 = 8820N/m$, $K_2 = 3430N/m$. Find out the resultant motions of m_1 and m_2 for the following cases. The displacements mentioned below are from the equilibrium positions of the respective masses. Both masses are displaced 5mm in the downward direction and released simultaneously both masses are displaced 5mm, in the downward direction and m_2 in the upward direction and released simultaneously.	Apply	CO 3	PO 1,2
	b	Determine the natural frequencies, the ratio of amplitudes and locate the nodes for each mode of vibrations when $m_1 = m_2 = m$.	Apply	CO 3	PO 1,2
5	a	Find the lowest natural frequency of the cantilever rotor system shown in Figure by matrix method. Take m1=100 kg, m2=50 kg.	Understand	CO 3	PO 1,2

	b	A commercial type vibration pick up has a natural frequency of 6cps and a damping factor $/Tau = 0.6$. calculate the relative displacement amplitude if the instrument is subject to motion $x = 0.08sin20t$.	Apply	CO 3	PO 1,2
6	a	A seismic instrument is mounted on a machine running at 1000 rpm. The natural frequency of the seismic instrument is 20 rad/sec. The instrument records relative amplitude of 0.5 mm. Compute the displacement, velocity and acceleration of the machine. Damping in seismic instrument is neglected.	Understand	CO 3	PO 1,2
	b	Determine the natural frequencies and mode shapes associated with the system shown in Figure for $m_1 = 10kg, m_2 = 20kg, k_1 = 100N/m, k_2 = 100N/m, and k_3 = 50N/m$.	Apply	CO 3	PO 1,2
7	a	Explain the following: i) Vibration isolation transmissibility ii) Torsional vibration of circular shafts	Analyze	CO 4	PO 1,2
	b	Analyze the concepts of transverse vibration of a string or cable	Explain	CO 4	PO 1,2
8	a	Analyze the equations longitudinal vibration of a bar or rod, torsional vibration of shaft or rod,	Analyze	CO 4	PO 1,2
	b	Analyze the problems for lateral vibration of beams, and the Rayleigh-Ritz method.	Analyze	CO 4	PO 1,2
9	a	An aerofoil using in its first bending and torsional modes can be represented schematically as shown in figure connected through a translational spring of stiffness k and a torsional spring of stiffness kT. Write the equations of motion for the system and obtain the two natural frequencies. Assume the following data. $M = 5 \text{kg}$, $I = 0.12 \text{kgm}^2$, $k = 5 \text{X} 10^3 \text{N/m}$, $k_T = 0.4 \text{X} 10^3$ Nm/rad, $a = 0.1$ m	Understand	CO 5	PO 1,2
	b	Find the time it takes for a transverse wave to travel along a transmission line from one tower to another one 300 m away. Assume the horizontal component of the cable tension as 30,000N and the mass of the cable as 2Kg/m of length.	Analyze	CO 5	PO 1,2

10	a	Find the time it takes for a transverse wave to travel along a transmission line from one tower to another one 300 m away. Assume the horizontal component of the cable tension as 30,000N and the mass of the cable as 2Kg/m of length.	Understand	CO 5	PO 1,2
	b	A uniform bar of cross-sectional area A, length l and Young's modulus E is connected at both ends by springs, dampers and masses as shown in the figure. State the boundary conditions.	Analyze	CO 5	PO 1,2

KNOWLEDGE COMPETENCY LEVELS OF MODEL QUESTION PAPER

BLOOMS TAXONOMY

Signature of Course Coordinator Mr. K Arun Kumar, Assistant Professor HOD, AE