FX Interventions Rules for Central Banks A Risk-Based Framework

Romain Lafarguette, Ph.D. Amine Raboun, Ph.D.

Quants & IMF External Experts

romainlafarguette.github.io/ amineraboun.github.io/

Singapore Training Institute, 20 April 2023

- 1 Conceptual Framework
- 2 Model
- 3 Forecasting
- 4 Benchmarking
- 6 Policy Uses

Contributions

- Design a rule to address tail-risks related to direct and indirect FX exposures in the economy
- Provides guidance on when to intervene ("triggers")
- Appropriate for **floating exchange rate regimes** with FX macrofinancial risks (e.g. dollarization)
- Consistently target **FX** risk in the economy
- A risk management framework for central banks' financial stability mandate: aligned with industry's practices in risk management

Desirable Properties of FXI Rules

Foreign Exchange intervention rules should be:

- Adaptative, depend on market conditions
- Objective, anchored to a risk tolerance level rather than an aribtrary FX level threshold
- Capture FX **non-linearities and asymmetries** between appreciation and depreciation
- Be easily operationalizable, and financially viable

We propose an FX intervention rule based on Conditional Value-at-Risk

Concept: Value-at-Risk FXI Rule

- Rather than using a fixed volatility rule (e.g. intervene if daily exchange rate varies by more than 2% compared to previous day)
- Use a **risk-based rule**: intervene when the daily exchange rate log-returns fall within the tails of the conditional distribution
- Measure the tail-risk via the concept of **Value-at-Risk** (the conditional quantile of the log returns distribution)
- The conditional distribution is estimated daily with a standard financial GARCH model and varies with market conditions
- The central bank decides on the **risk tolerance**: e.g. intervene in the tail at 1%, 5%, 10%, etc.

VaR FXI Rule

Conditional Density and Intervention Rule Based on 2020-04-03 Information

A Risk-Management Approach to FX Interventions

- Tail-risks hedge not always available: incomplete markets
- The central bank is transferring FX risk from the market to its balance sheet. It buys a risky asset (FX) and issues a risk-free asset (local currency)
- Provide a **public good** to address market failure. Leave a fix share of risk for the market to hedge
- Risk tolerance should depend on the macrofinancial risk
- The financial stability mandate of the central bank is properly formalized and quantified via VaR metric

Main Features

- Allows flexible exchange rate to act as a **shock absorber**: more flexibility in crisis time => **avoid overshooting**
- **2** No excessive interventions in crisis time, often ineffective and costly (exhaust FX reserves)
- No free insurance to the market: avoid moral hazard, foster the development of hedging market
- Prevent market speculation and windfall effects
- **o** Guarantees **fixed-frequency** interventions:
 - Certainty about interventions: the central bank can intervene with larger amounts, more efficient
 - Budget neutrality with symmetric risk preference
- **6** Financially optimized: buy/sell at the best expected price

Operational Implementation

- Standard data requirements, easily accessible for a central bank, can be customized
- Parsimonious GARCH model featuring embedded heteroskedasticity, asymmetries (appreciation/depreciation), non-linearities (exponential volatility) and parametric density forecasting
- We created a Python package, **free and open-source** (available on Github): estimation, forecasting, out-of-sample evaluation, optimization, benchmarking, etc. Results are **fully replicable**
- Can be readily used by central banks and deployed during Technical Assistance (TA) missions

Challenges

- Some central banks might be reluctant to use a VaR-rule: more difficult to communicate to the public
 - However, FXI occur on the wholesale FX market, where market participants are fully aware of the VaR concept
- Some policymakers might **prefer to keep discretion** over FXI
 - Trade-off: a transparent rule anchors better market expectations, maximize efficiency and strengthen central bank's independence

The Framework Extends Beyond FXI triggers

- Determine FX Intervention triggers
- 2 Conduct market monitoring and provide policy guidance
- Benchmark FX interventions, including discretionary interventions
 - We present below an application of the toolkit to the Mexican Peso, based on publicly available data
- More than 4500 daily observations, from 2009 to 2018, with Bank of Mexico (public) FX interventions, mostly concentrated in 2009 and 2016

- Conceptual Framework
- 2 Model
- 3 Forecasting
- 4 Benchmarking
- 6 Policy Uses

Specification

- Non-linear, Exponential GARCH (EGARCH) model
- The dependent variable is the FX log-returns, $r_t = \log(\frac{e_t}{e_{t-1}})$, where e_t is the bilateral market exchange rate against the major currency (e.g. USD)
- Drift AR-X(1): $r_{t+1} = \alpha_d + \rho r_t + \beta X_{t+1} + \epsilon_{t-1}$
- Exponential volatility: $\log \sigma_{t+1}^2 = \omega + \beta g(r_t)$ where $g(r_t) = \alpha_v r_t + \gamma(|r_t| \mathbb{E}|r_t|)$
- Error term distribution $\epsilon_t = \sigma_t \varepsilon_t$, $\varepsilon_t \sim \text{TSK}(0, 1, \nu)$
- The forecasted conditional probability distribution function is defined as:

$$\hat{f}(r_{t+1}|r_t, X_{t+1}) = \text{TSK}(\hat{r}_{t+1}, \hat{\sigma}_{t+1}^2, \hat{\nu})$$

Estimation

- The GARCH estimation is standard and done with maximimum likelihood
- Selection of parameters is done via AIC/BIC criteria.
- Our Python package allows to flexibly select:
 - The set of exogeneous regressors
 - ► The number of lags
 - The volatility specification (exponential, RiskMetric, standard GARCH, etc.)
 - The distribution family of the error-terms (Gaussian, Student, Tskew, Generalized Gaussian, etc.)
- More complex models (e.g. copulas, non-parametric kernels, etc.) can be used within the same VaR framework. However, more difficult to understand and to implement

Exogeneous Regressors

- FX microstructure: FX bid-ask spread (averaged over the day)
- ② CIP: daily interest rate differential with the US Libor
- Hedging costs: one-month forward exchange rate
- **Past policy interventions**: lagged amount of central bank FX intervention
- Global risk sentiment: The VIX, implied volatility on the S&P 500
- **6** Global FX factor: The EURUSD exchange rate

Regression Table

	Microstructure	CIP	Dollar move	Risk Appetite	Baseline
Intercept	-2.34	-2.29	-1.74	-2.55	-1.63
Lag FX log returns	-0.07***	-0.08***	-0.08***	-0.08***	-0.08***
Bid ask abs	5.67	24.45	-33.58	-2.68	3.22
Min max abs	35.62	34.68	33.32	34.45*	26.2
Forward points first difference	23.29***	17.79***	26.33***	19.82***	19.44***
Interbank rate vs Libor		33.61***	39.43***	34.75***	33.86***
EURUSD log returns			-0.14***	-0.17***	-0.16***
VIX first diff				15.67***	15.37***
FX intervention dummy lag					2.23
Oil prices log returns					-0.02***
Omega	0.13***	0.13***	0.12***	0.11***	0.12***
Alpha	0.17***	0.17***	0.16***	0.16***	0.15***
Gamma	0.07***	0.06***	0.06***	0.05***	0.05***
Beta	0.98***	0.99***	0.99***	0.99***	0.99***
Nu	8.33***	8.67***	8.92***	8.71***	8.54***
Lambda	0.08*	0.07	0.09*	0.07*	0.08***
R2	5.8 %	6.7 %	10.4 %	27.3 %	27.6 %
R2 adjusted	5.8 %	6.6 %	10.3 %	27.2 %	27.5 %
Number of observations Significance *10%, **5%, ***1%	5986	5986	5682	5682	5680

Formalization of the Intervention Rule

• Consider the estimated conditional distribution of the exchange rate log returns r_t defined as

$$\mathbb{P}[r_t \leqslant x] = \int_{-\infty}^x \hat{f}(r_t|r_{t-1}, X_t) dr_t$$

• The Conditional Value-at-Risk at threshold τ is simply defined as the conditional τ -quantile

$$Q(r_t, \tau) \equiv \mathbb{P}[r_t \leqslant Q(r_t, \tau)] = \tau, \text{ for } \tau \in (0, 1)$$

• The FXI intervention rule is a simple boolean rule, based on two risk-thresholds $(\underline{\tau}, \overline{\tau})$, for depreciation and appreciation, potentially risk-symmetric $(\overline{\tau} = 1 - \underline{\tau})$

$$\mathbb{1}\left[\left\{r_t \leqslant Q(r_t, \underline{\tau})\right\} \cup \left\{r_t > Q(r_t, \overline{\tau})\right\}\right]$$

Dynamics of the Mexican Peso against USD

Conditional In-Sample Volatility of the Mexican Peso

- 1 Conceptual Framework
- 2 Model
- 3 Forecasting
- 4 Benchmarking
- 6 Policy Uses

Forecasting

- Real-time forecasting based on market conditions
- Estimate the GARCH and derive the forecasted drift and volatility
- Infer the full-fledged conditional distribution of FX log returns for any point in time
- Optimize the choice of the mean (drift) and density models, specifically:
 - ▶ The model on the mean/drift
 - The model for the conditional variance
 - The distribution of the perturbations, that determines the whole distribution

Fan Chart

VaR FXI Rule

Conditional Density and Intervention Rule Based on 2020-04-03 Information

Conditional Cumulative Distribution Function

Conditional Exceedance

Optimization via Cross-Validation using the Zig-Zag Algorithm

- There are many possible choices for the models on the mean/drift, the conditional variance or the distribution of the perturbations
- We would like to choose the most appropriate ones, using performance metrics
- Problem: the GARCH estimates separately the drift and the volatility (where it imposes assumptions on the distribution), hence a direct approach is not feasible
- Idea: use the zig-zag algorithm to optimize the entire model
 - Optimize the choice of the drift model with RMSE out-of-sample validation
 - 2 Optimize the choice of the distribution
 - 3 Estimate the parameters based on the optimal functional forms of the models (the hyperparameters) via a recursive approach

Density Evaluation

- Conceptual Framework
- 2 Model
- 3 Forecasting
- 4 Benchmarking
- 6 Policy Uses

Bank of Mexico FX Interventions Setup

- The Banco Mexico (BM) implemented both ex-ante, transparent FX auctions and discretionary-rate auctions
- Different reservation rates:
 - Rule-based setting: BM operated an auction every day with a pre-announced a minimum rate for eligible bids
 - **Discretionary setting**: the auction was organized at the BM's discretion without reservation rate
- Often, no demand for the ruled-based auction as the market rate was below the reservation rate
- No-minimum price auctions could be motivated by other considerations than the exchange rate level
- What was the risk level when the FXI occurred?

Rule-Based Benchmarking

Rule-Based Benchmarking: Risk-Level

Discretion-Based Benchmarking

Discretion-Based Benchmarking: Risk-Level

Benchmarking Results

- FX auctions with ex-ante minimum price ("rule-based")
 - The minimum price auctions did not fully prevented BM to intervene outside of the tails of the conditional distribution
 - In that respect, VaR-based intervention would have been better to mitigate tail-risks
- ② FX auctions with no ex-ante minimum price
 ("discretion-based")
 - No minimum prices interventions occurred at almost any risk level
 - · Discretion triggers are not identifiable based on risk

- 1 Conceptual Framework
- 2 Model
- 3 Forecasting
- Benchmarking
- 6 Policy Uses

Policy Uses

- Useful for floating rate regimes to **operationalize their financial stability mandate** with a risk-management framework
- The VaR-based rule could be considered as one option to improve the rules that central banks currently use
- Let the nominal exchange rate acts as a **shock absorber**
- Could be used to accompany the **transition to exchange rate flexibility**, with gradually less and less interventions
- More generally, could be used by central banks for market and risk monitoring

Alternative Models: Benchmarking

	PIT	Logscore diff against Baseline	Diff pvalue
Baseline Unconditional Quantile Reg Gaussian EGARCH	Pass Fail	1.54	0.938
TSkew GARCH Gaussian GARCH		1.768 1.755	0.961 0.96