Sam Stewart

Education

PhD Candidate, Math, University of Minnesota (Minneapolis, MN)	2020
MS, Math, University of Minnesota (Minneapolis, MN)	2017
BS, Math, Lewis & Clark College (Portland, OR)	2011-2015
Budapest Semesters in Mathematics (Budapest, Hungary)	2014

Work Experience

Intern at Wolfram Research

2019

• Wrote bridge between Mathematica and cvxpy (Python optimization framework) that will shipped with the October production release

Tractors for Africa (Burkina Faso)

2017

 Sole language and cultural liaison between US team and local team in a rural town in Burkina Faso

Contract Developer, Upsight Analytics (Portland, OR)

2013-2015

 Wrote entire Android advertising framework that served millions of ads per month

iPhone Development Intern, SeatMe (San Francisco, CA)

2011

• Wrote core UI components now used by hundreds of restaurants

Research Experience

Graduate Research Assistant (Minneapolis, MN)

2015-2020

- Designed a fast algorithm for large simulations of elliptical sand particles
- Fourier analysis in Matlab to prove conjectures about a fluid model
- Proved error bound on sparse approximation to an MRI inverse problem

Summer Undergraduate Research Experiences (Portland, OR)

2012-2015

Skills

- Programming: Linux, Git, Python, C/C++, Mathematica, Matlab, R, Julia, Java
- Math: PDEs, convex optimization, Fourier analysis
- Languages: French (fluent)

Papers

- Sverak, Vladimir, Samuel Stewart. *Modeling Elliptical Granular Media via a Locally Convex Program*. In preparation.
- Gutierrez, Alex, Gilad Lerman, Samuel Stewart. *Bounding the Error of a Sparse Approximation to an MRI Inverse Problem.* In preparation.
- Jia, Hao, Samuel Stewart, and Vladimir Sverak. *On the De Gregorio Modification of the Constantin–Lax–Majda Model.* Archive for Rational Mechanics and Analysis 231.2 (2019): 1269-1304.
- Basaldúa, Jacques, Samuel Stewart, J. Marcos Moreno-Vega, and Peter D. Drake. Two online learning playout policies in Monte Carlo Go: An application of win/loss states. IEEE Transactions on Computational Intelligence and AI in Games 6.1 (2013): 46-54.
- Daly, K., Gavin, C., Montes de Oca, G., Ochoa, D., Stanhope, E., & Stewart, S. *Orbigraphs: a graph-theoretic analog to Riemannian orbifolds.* Involve, a Journal of Mathematics 12.5 (2019): 721-736.