Rohan Chandra - hmwk5 Solutions

Question 1

a.) L2 Denoising Problem: min $\frac{\mu}{2}\|x\|^2+\frac{1}{2}\|x-b\|^2$ The gradient of this would be $\mu\nabla^T\nabla x+(x-b)=0$

This is equal to $\mu \nabla^T \nabla x + x = b$

Which can be rewritten in the form of $(\mu \nabla^T \nabla + I)x = b$, where $A = \mu \nabla^T \nabla + I$ and $\nabla^T \nabla$ is the laplacian kernel

0.1 Richardson

c.)

Figure 1: Convergence Plot for $\mu = 2$. Number of iterations are 373

Figure 2: denoised image for $\mu=2$

Figure 3: Convergence Plot for $\mu=10.$ Number of iterations are 1901

Figure 4: denoised image for $\mu = 10$

0.2 Conjgrad

d.)

Figure 5: Convergence Plot for $\mu=2$. Number of iterations are 54

Figure 6: denoised image for $\mu=2$

Figure 7: Convergence Plot for $\mu=10$. Number of iterations are 139

Figure 8: denoised image for $\mu = 10$

e.) It is observed that iteration counts increases both for Richardson iteration and conjugate gradient method.

Stability Restriction

According to the stability criterion, we can write out the taylor approximation of a convex function as, $f(y) \leq f(x) + (y-x)^T \nabla f(x) + \frac{M}{2} \|y-x\|^2$.

Now moving in a step size τ in the direction of the gradient, we can re-write the equation as

$$f(y - \tau \nabla f(x)) \le f(x) - \tau \nabla f(x))^T \nabla f(x) + \frac{M\tau^2}{2} \|\nabla f(x)\|^2$$

This is equal to

$$f(y - \tau \nabla f(x)) \le f(x) + \frac{M\tau^2 - 2\tau}{2} \|\nabla f(x)\|^2$$

$$\frac{M\tau^2 - 2\tau}{2} < 0 \implies \tau < \frac{2}{M}$$

This means that the the convergance rate is always less than $\frac{M}{2}$. Applying this to our problem, we can factorize our problem as

$$\frac{1}{2}\mu \|\nabla x\|^2 + \|x - b\|^2$$

.

This can be re-written as $\frac{1}{2}\mu x^T \nabla^T \nabla x + x^T x - 2x^T b + ||b||^2$. This gives

$$\frac{\mu}{2}x^T(\nabla^T\nabla + I)x - 2x^Tb + ||b||^2$$

 $\frac{1}{2}x^T(\mu\nabla^T\nabla+\mu I)x-2x^Tb+\|b\|^2 \text{ is a quadratic where } \nabla^T\nabla \text{ is the laplacian and } \mu\nabla^T\nabla+\mu I \text{ is the hessian matrix. Let } \lambda \text{ be the largest eigenvalue of this hessian. That would be the largest curvature of the quadratic and convergence is defined when$

 $\tau < \frac{2}{\lambda}$

By this, we can see that τ depends inversely on μ as $\frac{2}{largest\ eigenvalue\ of(\mu\nabla^T\nabla+\mu I)}$ Hence as μ increases, τ decreases and hence results in slower convergence.

0.3 L2Denoise

f.)

Figure 9: denoised image with $norm = e^{-12}$

Question 2

Figure 10: linear seperation and clustering for 100 points

Question 3

Figure 11: linear separation and clustering for 100,000 points