

1) Dados os pontos A(2,0,2) e $B(3,\sqrt{3},6)$, determinar o vetor projeção de \overrightarrow{AB} sobre o vetor \overrightarrow{u} que é ortogonal ao eixo Oz, forma ângulo de 60° com o vetor i e ângulo agudo com o eixo Oy.

Resposta: $proj_{\vec{i}}^{\vec{AB}} = (1, \sqrt{3}, 0)$

2) Determine os angulos diretores do vetor resultante da projeção do vetror $\vec{a} = 3\vec{i} + 2\vec{j} - \vec{k}$ na direção do vetor $\vec{b} =$ $\vec{i} + 2\vec{i} + 3\vec{k}$.

Resposta: $\alpha \approx 74,50^{\circ}, \ \beta \approx 57,69^{\circ}, \ \gamma \approx 36,70^{\circ}$

- 3) Sejam os pontos A(-1, -1, 2), B(2, 1, 1) e C(m, -5, 3).
- a) Para que valor de m o triângulo ABC é retângulo em A? Resposta: m = 2
- b) Determinar o ponto H, pé da altura relativa ao vértice A.

Resposta: $H = (2, -\frac{11}{10}, \frac{17}{10})$

4) Determinar o vetor \vec{v} de módulo 5, sabendo que é ortogonal ao eixo Oy e ao vetor $\vec{u} = \vec{i} - 2\vec{k}$, e forma ângulo obtuso com o vetor i .

Resposta: $\vec{v} = (-2\sqrt{5}, 0, -\sqrt{5})$

5) Determinar a projeção do vetor $\vec{v} = 4\vec{i} + 6\vec{j} - 3\vec{k}$ na direção do vetor definido pelos ângulos diretores α , $\beta = 120^{\circ}$ e $\gamma = 50^{\circ}$.

Resposta: $proj_{\hat{v}}^{\vec{v}} = (-1,51; 1,31; -1,67)$

6) Dados os pontos A(m, 1, 0), B(m-1, 2m, 2)e C(1, 3, -1), determinar m de modo que o triângulo ABC seja retângulo em A. Calcular a área do triângulo.

Resposta: m = 1 ; A = $\frac{\sqrt{30}}{2} \cong 2,7386 u. a.$

Resposta: m = 1; $A = \frac{1}{2} \cong 2,7386 \ u. \ a.$ 7) Seja um triângulo de vértices A(2, 1, 3), B(1, 0, -1) e C(-1, 2, 1). Encontre a altura (h) desse triângulo, em relação ao lado AC.

Resposta: $h \cong 3,2950 \ u.c.$

- 8) Determine e represente, no sistema de coordenadas cartesianas, o vetor \vec{v} , sabendo que:
 - o vetor \vec{v} tem abscissa igual à ordenada;
 - o vetor \vec{v} tem cota positiva;
 - o vetor \vec{v} tem módulo igual a 6;
 - o vetor \vec{v} é ortogonal ao vetor $\vec{u} = (1,1,-4)$.

Resposta: $\vec{v} = (4, 4, 2)$

- 9) Determinar o vetor \vec{w} , sabendo que:
- \vec{w} é ortogonal ao eixo das abscissas (OX) e;
- $-\vec{u} = \vec{w} \times \vec{v}$, sendo $\vec{u} = (1, 1, -1) \text{ e } \vec{v} = (2, -1, 1)$.

Resposta: $\vec{w} = (0, \frac{1}{2}, \frac{1}{2})$

10) O vetor \overrightarrow{v} é ortogonal aos vetores $\overrightarrow{u} = (1, 2, 0)$ e $\overrightarrow{w} = (2, 0, 1)$ e forma ângulo agudo com o vetor \overrightarrow{j} . Determinar o vetor \overrightarrow{v} , sabendo que $|\overrightarrow{v}| = \sqrt{21}$.

Resposta: $\vec{v} = (2, 1, 4)$