ECUACIONES DIFERENCIALES (2021)

PRÁCTICA: Preliminares de Análisis

Convolución y mollifiers

Definición 1. Dadas $f, g : \mathbb{R}^n \to \mathbb{R}$ ambas en $L^1(\mathbb{R}^n)$, definimos la convolución de la siguiente manera

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y) \, dy$$

Ejercicio 2. Probar que si $f, g, h \in L^1(\mathbb{R}^n)$ y $\lambda \in \mathbb{R}$, entonces valen: (a) f * g = g * f, (b) f * (g + h) = f * g + f * h, (c) f * (g * h) = (f * g) * h, y $\lambda(f * g) = (\lambda f) * g = f * (\lambda g)$ y (e) $||f * g||_1 \le ||f||_1 ||g||_1$.

Observación: las propiedades anteriores se pueden resumir diciendo que $(L^1(\mathbb{R}^n), || ||_1)$ es un álgebra de Banach conmutativa con la convolución como producto.

Ejercicio 3. Probar que si $f \in L^1_{loc}(\mathbb{R}^n)$ y $\psi \in C_c(\mathbb{R}^n)$ entonces $f * \psi$ es continua.

Ejercicio 4. Probar que si $f \in L^1_{loc}(\mathbb{R}^n)$ y $\psi \in C^{\infty}_c(\mathbb{R}^n)$ entonces $\frac{\partial}{\partial x_i}(\psi * f) = f * \frac{\partial \psi}{\partial x_i}$.

Nota: Como consecuencia $\psi * f \in C^{\infty}(\mathbb{R}^n)$.

Definición 5. Dada una función ϕ diremos que es un mollifier si satisface las siguientes propiedades

- a) $\phi(x) \ge 0$.
- b) $\phi \in C^{\infty}(\mathbb{R}^n)$.
- c) supp $\phi = \overline{B_1(0)}$.

$$d) \int_{\mathbb{R}^n} \phi \, dx = 1$$

Denotamos $\phi_{\delta}(x) = \delta^{-n}\phi(\frac{x}{\delta})$, donde $\delta > 0$.

Ejercicio 6. Cuáles son las propiedades que satisface ϕ_{δ} ?.

Ejercicio 7. Si $f: \mathbb{R}^n \to \mathbb{R}$ continua luego $f_{\delta} = f * \phi_{\delta} \to f$ uniformemente en compactos de \mathbb{R}^n .

1

Nota: Si f además es de soporte compacto, luego la convergencia es uniforme en \mathbb{R}^n .

Ejercicio 8. Si $1 \leq p < \infty$ y $f \in L^p(\mathbb{R}^n)$ luego $f_{\delta} = f * \phi_{\delta} \to f$ en $L^p(\mathbb{R}^n)$.

Series de Fourier

Dada una función $f:[-\pi,\pi]\to\mathbb{C}$ tal que $f\in L^1([-\pi,\pi])$ le asociamos su serie de Fourier

$$f(x) \sim \sum_{n \in \mathbb{Z}} c_n e^{inx}$$

donde $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$, llamados coeficientes de Fourier, también notados $\hat{f}(n)$. Se ha estudiado qué condiciones debe satisfacer una función para que la serie converja a la función en cuestión y los distintos tipos de convergencia

Este tipo de problema surge de forma natural cuando se utiliza el método de separación de variables para resolver una ecuación en derivadas parciales.

Ejercicio 9. Calcular la serie de Fourier en $[-\pi, \pi]$ de f(x) = x.

Ejercicio 10. Probar que si f es periódica y derivable, entonces la serie de Fourier asociada a f'(x) es

$$\sum_{n \in \mathbb{Z}} \hat{f}(n)(in)e^{inx}$$

donde $\hat{f}(n)$ es el coeficiente de orden n de f.

Ejercicio 11. Sea f de clase C^2 en $[-\pi, \pi]$ periódica, probar que $\hat{f}(n) = O\left(\frac{1}{|n|^2}\right)$.

Ejercicio 12. Notemos $S_N f(x)$ a la suma parcial N-ésima de la serie de Fourier de f, es decir

$$S_N f(x) := \sum_{|n| \le N} \hat{f}(n) e^{inx}.$$

Probar que $S_N f(x) = \frac{1}{2\pi} (D_N * f)(x)$, donde $D_N(x)$ es el núcleo de Dirichlet dado por

$$D_N(x) = \frac{\sin((N + \frac{1}{2})x)}{\sin\frac{x}{2}}$$

Ejercicio 13. Probar el Lema de Riemann-Lebesgue: Si $f \in L^1([-\pi, \pi])$ y $\alpha \in \mathbb{R}$, entonces

$$\int_{-\pi}^{\pi} f(x) \cos(\alpha x) dx \to 0$$
$$\int_{-\pi}^{\pi} f(x) \sin(\alpha x) dx \to 0$$

para $\alpha \to \infty$. Concluir que los coeficientes de Fourier $\hat{f}(n) \to 0$ si $n \to \infty$.

Ejercicio 14. Probar que dada f es de clase C^1 en \mathbb{R} la serie de Fourier converge uniformemente a f.

Ejercicio 15. Probar que si $f \in L^2([-\pi, \pi])$ entonces su serie de Fourier converge a f en L^2 . Más aún, probar que vale la identidad de Parseval

$$||f||_{L^2}^2 = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2.$$

Espacio de Schwartz

Definimos el espacio de Schwartz $\mathcal{S}(\mathbb{R}^n)$ como el espacio

$$\{\varphi \in C^{\infty}(\mathbb{R}^n) : p_{\alpha,\beta}(\varphi) < \infty \ \forall \alpha,\beta \}$$

donde

$$p_{\alpha,\beta}(\varphi) = \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} \varphi(x)|$$

Este espacio también es comunmente llamado espacio de las funciones rápidamente decrecientes. También puede interpretarse que $|\partial^{\beta}\varphi(x)| \leq C_{\beta,m}(1+|x|)^{-m}$ para todo entero positivo m y cada multi-índice β .

Ejercicio 16. Probar que $p_{\alpha,\beta}$ define una familia de seminormas.

Ejercicio 17. Probar que $C_0^{\infty}(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n) \subset \bigcap_{1 \leq p \leq \infty} L^p$.