Math 430 Assignment 5

Arnold Jiadong Yu

October 2, 2018

Exercise 2.12

Solution:

True. Suppose the polyhedron P contains a line, therefore there exists a vector $\mathbf{x} \in P$ and a nonzero $\mathbf{d} \in \mathbb{R}^n$ such that

$$\mathbf{x} + \lambda \mathbf{d} \in P$$
 for all scalars λ

Since **d** is nonzero, WLOG suppose $d_1 \neq 0$. Moreover each x_i we have either $x_i \geq 0$ or $x_i \leq 0$. WLOG suppose $x_1 \geq 0$, if $d_1 > 0$ we can choose $\lambda < 0$ small enough s.t $x_1' = x_1 + \lambda d_1 < 0$, then the new \mathbf{x}' contain x_1' is not in P. If $d_1 < 0$ we can choose $\lambda > 0$ big enough s.t $x_1' = x_1 + \lambda d_1 < 0$, then the new \mathbf{x}' contain x_1' is not in P. It is not for all scalars λ , therefore there is a contradiction. P does not contain a line, then P has at least one extreme point by Theorem 2.6. Hence P has at least one basic feasible solution.

Exercise 2.13

Solution:

- (a)By assumption, all basic feasible solutions are nondegenerate. i.e. they are all in exactly $\dim(n-m)$ subspace. Then these feasible solutions has no more than n active constraints and with exactly m positive components and n-m zero components. Assume $\mathbf{x} \in P$ with exactly m positive components. i.e. \mathbf{x} is in $\dim(n-m)$ subspace. Since $\mathbf{x} \in P$. Hence \mathbf{x} is a basic feasible solution.
- (b) Consider a polyhedron P has two exactly same constraints such that

$$P = \left\{ \mathbf{x} \in \mathbb{R}^5 \middle| \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 3 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}, \mathbf{x} \ge 0 \right\}$$

Then $\mathbf{x} = (0.6, 0.6, 0.4, 0, 0)$ is a solution of P but not a basic feasible solution.

Exercise 2.15

Solution:

Let $L = {\lambda \mathbf{u} + (1 - \lambda) \mathbf{v} | 0 \le \lambda \le 1}$ and $S = {\mathbf{z} \in P | \mathbf{a}_i' \mathbf{z} = b_i, i = 1, ..., n - 1}$. WTS L = P.

(1) WTS $L \subseteq S$. Let $\mathbf{x} \in L$, then $\mathbf{x} = \lambda \mathbf{u} + (1 - \lambda)\mathbf{v}$ for some λ .

$$\mathbf{a}_{i}'\mathbf{x} = \mathbf{a}_{i}'(\lambda\mathbf{u} + (1-\lambda)\mathbf{v}) = \lambda\mathbf{a}_{i}'\mathbf{u} + (1-\lambda)\mathbf{a}_{i}'\mathbf{v} \ge \lambda b_{i} + (1-\lambda)b_{i} = b_{i} \text{ for } i = 1, ..., m$$

This shows $\mathbf{x} \in P$. Moreover

$$\mathbf{a}_{i}'\mathbf{x} = \mathbf{a}_{i}'(\lambda\mathbf{u} + (1-\lambda)\mathbf{v}) = \lambda\mathbf{a}_{i}'\mathbf{u} + (1-\lambda)\mathbf{a}_{i}'\mathbf{v} = \lambda b_{i} + (1-\lambda)b_{i} = b_{i} \text{ for } i = 1, ..., n-1$$

This shows $\mathbf{x} \in S$. That is $L \subseteq S$.

(2) WTS $S \subseteq L$. Let $\mathbf{z} \in S$, then $\mathbf{z} \in P$ and $\mathbf{a}_i'\mathbf{z} = b_i, i = 1, ..., n-1$. Moreover, $\mathbf{a}_i'\mathbf{z} = b_i = \mathbf{a}_i'\mathbf{u} = \mathbf{a}_i'\mathbf{v}, i = 1, ..., n-1$ where \mathbf{u}, \mathbf{v} are distinct basic feasible solution of P. Since \mathbf{a}_i are linear independent for i = 1, ..., n-1, then $u_i \neq v_i$ for i = 1, ..., n-1 and matrix A contains \mathbf{a}_i for i = 1, ..., n-1 is invertible. If $\mathbf{z} = \mathbf{u}$ or $\mathbf{z} = \mathbf{v}$, we are done, $\mathbf{z} \in L$. Assume $\mathbf{z} \neq \mathbf{u}$ and $\mathbf{z} \neq \mathbf{v}$, then

$$\mathbf{z} = \mathbf{a}_{i}^{-1}b_{i} = \mathbf{a}_{i}^{-1}(\lambda \mathbf{a}_{i}'\mathbf{u} + (1-\lambda)\mathbf{a}_{i}'\mathbf{v}) = \lambda \mathbf{u} + (1-\lambda)\mathbf{v}$$

for i = 1, ..., n - 1. i.e. $\mathbf{z} \in L$. Since \mathbf{u}, \mathbf{v} are distinct basic feasible solution of P, then $u_i = v_i = 0$ for i = n, ..., m. With $\mathbf{z} \in P$, \mathbf{z} is also in L. Hence $\mathbf{z} \in L$. i.e. $S \subseteq L$.

As a result, S = L. i.e. $L = \{ \mathbf{z} \in P | \mathbf{a}_i' \mathbf{z} = b_i, i = 1, ..., n - 1 \}$.

Exercise 2.17

Solution:

Consider the results of exercise 2.5. We can define two affine maps called f, g, s.t.

$$f: \mathbf{x}^* \mapsto (\mathbf{x}^*, \mathbf{b} - \mathbf{A}\mathbf{x}^*)$$
$$q: (\mathbf{x}^*, \mathbf{b} - \mathbf{A}\mathbf{x}^*) \mapsto \mathbf{x}^*$$

f,g are bijective and these two polyhedrons are isomorphic. That is \mathbf{x}^* extreme point implies $(\mathbf{x}^*,\mathbf{b}-\mathbf{A}\mathbf{x}^*)$ is also extreme point. Let \mathbf{A} be $m\times n$ matrix and $(\mathbf{x}^*,\mathbf{b}-\mathbf{A}\mathbf{x}^*)$ is degenerate, then there are more than n+m constraints are active. i.e. for extreme point \mathbf{x} , there are more than n constraints are active. This contradicts with that \mathbf{x} is nondegenerate. Therefore, $(\mathbf{x}^*,\mathbf{b}-\mathbf{A}\mathbf{x}^*)$ is nondegenerate. Hence $(\mathbf{x}^*,\mathbf{b}-\mathbf{A}\mathbf{x}^*)$ is a nondegenerate basic feasible solution. (Dr. Beck said it is okay to use exercise 2.5 as a result).