BIG O

BIG O

We say that "f is big 0 of g" and write f = O(g) or $f \in O(g)$

if there is a natural number no and a positive real number c such that

 $|f(n)| \le c|g(n)|$

for nzno.

First examples: 1) $f(n) = n^2$, $g(n) = 7n^2$

- (2) f(n) = 4n+2, g(n) = n
- 3 $f(n) = n^2$, $g(n) = n^2 + 2n + 1$
- 4) $f(n) = n, g(n) = \sqrt{n}$

LIMIT THEOREM

THEOREM: Let f,g be functions $\mathbb{N} \to [0,\infty)$ (a) If $\lim_{n \to \infty} f(n)/g(n) = 0$, then f < g(b) If $\lim_{n \to \infty} f(n)/g(n) = \infty$, then g < f(c) If $\lim_{n \to \infty} f(n)/g(n) = L \neq 0$, then f = g

MORE EXAMPLES

1) Compare n! & n"

2 Compare n! & 2"

COMBINING FUNCTIONS

Theorem: Let f,g be functions $\mathbb{N} \to \mathbb{R}$. (a) If $f \in \mathcal{O}(F)$, then $f + F \in \mathcal{O}(F)$ (b) If $f \in \mathcal{O}(F)$ and $g \in \mathcal{O}(G)$ then $fg \in \mathcal{O}(FG)$.

POLYNOMIALS

Theorem: Let $f(n) = adn^d + \cdots + a_1 n + a_0$ be a degree of polynomial $(ad \neq 0)$. Then $f(n) \neq n^d$.

MORE COMPARISONS

```
Theorem: (a) If k < l, then n^k < n^l
(b) If k > 1, then \log_k n < n
(c) If k > 0, then n^k < 2^k
```

HIERARCHY

 $1 < \log n < n < n^k < k^n < n! < n^n$ $const < \log < linear < poly < exp < fact < tower$

MORE DETAILED HIERARCHY

$$1 < \log n < m < \sqrt{\log n} < n < n \log n < n^{3h}$$
 $< n^2 < n^3 < \cdots$
 $< 2^n < 3^n < \cdots$
 $< n!$
 $< n^n < n^{n^n} < \cdots$

COMPARING DIFFERENT ORDERS

			•					
		1 10	50	100	300	1000		
	5n	50	250	500	1500	5,000	# Msecs Since big bang: ~10 ²⁴	
	n logn	33	282	665	2469	9966		
	n²	100	2500	10,000	90,000	1,000,000		
	n^3	1,000	125,000	1 mil	27 mil	1 bil		
	2 ⁿ	10 ²⁴	16 digits	31 dig.	91 dig.	302 dig.	# protons in the known	
	n!	3.6 mil	65 dig.	161 dig.	623 dig.	unimaginable	universe: ~10 ¹²⁶	
	n"	10bil	85 dig.	201 dig.	744 dig.	Unimaginable	D. Harel, Algorithmics	

COMPARING DIFFERENT ORDERS How long would it take at 1 step per usec?

	10	20	50	100	300
n²	1/10,000 Sec.	1/2500 Sec.	1/400 Sec	1/100 Sec.	9/100 Sec.
n^{5}	1/10 Sec.	3.2 sec	5.2 min	2.8 hr	28.1 days
2 ⁿ	1/1,000 Sec	1 sec	35.7 yr	400 trillion cent.	75 digit # of centuries
n^n	2.8 hr	3.3 trillion	70 digit # of centuries	185 digit # of centuries	728 digit # of centuries.

D. Harel, Algorithmics