- 1. Describir la región o regiones definidas por la pareja de inecuaciones $x^2+y^2>1$, $x^2+y^2<4$. (v. 1p.)
- 2. Definir el dominio y el rango de la función $g(x) = 1/(1 \sqrt{x-2})$. (v. 1p)
- 3. Calcular los intervalos donde la función $f(x) = (x^2-1)/(x^2-4)$ es positiva o negativa. (v. 1p)
- 4. Utilizar la inducción matemática para verificar la fórmula $\frac{d}{dx}(x^n) = nx^{n-1}$. (v. 2p)
- 5. Sea P_n la partición del intervalo dado [a,b] en n subintervalos de la misma longitud $\triangle x_i = (b-a)/n$. Calcular el valor de la suma de Riemann inferior y superior, $L(f,P_n), U(f,P_n)$, para la función $f(x) = x^2$ en [0,4] con n=4. (v. 2p)
- 6. Obtener una expresión simple para las sumas parciales S_n de la serie $\sum_{n=1}^{\infty} (-1)^n$, y utilícela para demostrar que la serie diverge (v. 1p)
- 7. Calcular el área de la región plana limitada por la curva e^x , la recta x = 0 y la tangente a $y = e^x$ en x = 1. (v. 2p)