Predavanja 5.

OSNOVE MAGNETIZMA

Sadržaj

Magnetsko polje - poznate činjenice (uzroci, magnetska indukcija, magnetski tok, materijal u magnetskom polju, magnetsko polje ravnog vodiča, zavojnice i torusa)

Magnetska sila

Elektromagnetska indukcija

Lenzovo pravilo

Pojam napona samoindukcije i međusobne indukcije

Induktivitet

Međuinduktivitet

Energija pohranjena u induktivitetu

Polaritet napona samoindukcije i međusobne indukcije

Zadaci za vježbu Za one koji žele znati više....

OSNOVE ELEKTROTEHNIK

- Uzbuđeni prostor oko nas može imati dvije komponente: električnu i magnetsku.
- Pojave koje se odnose na istovremeno sudjelovanje električnog i magnetskog polja obuhvaćene su teorijom elektromagnetskog polja.
- U elektrostatici promatramo samo električno polje.
- Isto se tako može razmatrati i samo magnetsko polje ako se električka komponenta može zanemariti.
- Tri su osnovna učinka električke struje:
 - Toplina (Jouleova toplina)
 - Elektroliza
 - Magnetski učinci

OSNOVE ELEKTROTEHNIKE

- Magnetsko polje uzrokuju permanentni magneti
 - Vizualizaciia želiezni prah u poliu

- Zemlja → magnetsko polje
 - kompas

OSNOVE ELEKTROTEHNIKE

 Istoimeni polovi se odbijaju a raznoimeni privlače

OSNOVE ELEKTROTEHNIKE

Nema magnetskih naboja

Linije magnetskog polja su zatvorene krivulje

OSNOVE ELEKTROTEHNIKE

 Struja (naboji u gibanju) uzrokuje magnetsko polje

Hans Christian Oersted (1777 - 1851)

OSNOVE ELEKTROTEHNIK

UZROK MAGNETSKOG POLJA JE STRUJANJE NABOJA ILI VREMENSKA PROMJENA ELEKTRIČNOG POLJA

Kvantifikacija magnetskog polja

- Svaka točka magnetskog polja opisana je s vektorom magnetske indukcije (gustoćom magnetskog toka) B
- Magnetsko polje zorno prikazujemo pomoću magnetskih silnica.
- Silnice magnetskog polja su zatvorene krivulje (jer magnetskih naboja nema)

OSNOVE ELEKTROTEHNIKE

- U svakoj točki prostora
 - smjer vektora **B** je tangenta na silnicu
 - gustoća silnice kvalitativno opisuje jakost polja

Nikola Tesla (1856-1943)

Veličina koja predstavlja protjecanje magnetskog polja kroz neku površinu zovemo magnetski tok Φ . Jedinica za magnetski tok: 1Vs

 Magnetski tok kroz površinu S koja je okomita na homogeno magnetsko polje

$$\Phi = B \cdot S$$

Općenito vrijedi

$$\Phi = \int_{S} \vec{B} \ \vec{dS}$$

 Za magnetizam vrijedi (budući da su silnice magnetskog polja zatvorene linije, broj silnica koje uđu u zatvoreni prostor jednak je broju silnica koje iz tog prostora izađu)

$$\iint_{S} \vec{B} \cdot d\vec{S} = 0$$

OSNOVE ELEKTROTEHNIKE

Magnetsko polje (vektor B) oko ravnog vodiča protjecanog strujom I u vakumu.

OSNOVE ELEKTROTEHNIKI

Općenito, između smjera obilaska krivulje *l* i smjera struje *l* vrijedi pravilo desne ruke:

Ako prsti pokazuju smjer krivulje l, tada palac pokazuje smjer pozitivne struje.

Isto pravilo definira odnos između smjera obilaska krivulje (smjer prstiju) i smjera normale na površinu (smjer palca) koji zatvara ta krivulja (smjer površine je normala na površinu).

OSNOVE ELEKTROTEHNIKI

Materijali u magnetskom polju

- Konstantu $\mu_0 = 4\pi \cdot 10^{-7} \frac{\mathbf{H}}{\mathbf{m}}$ nazivamo permeabilnost vakuma.
- Jedinica za permeabilnost je henri po metru.
- Uz istu pobudu (struju) magnetska indukcija B je u materijalima veća μ_r puta no u vakuumu. Veličina μ_r zove se relativna permeabilnost magnetskog materijala.
- Veličina µ zove se apsolutna permeabilnost magnetskog materijala.
- Vrijedi $\mu = \mu_0 \mu_r$

OSNOVE ELEKTROTEHNIKE

- Magnetske materijale dijelimo u dvije velike skupine:
- Neferomagnetske materijale (dijamagnetski i paramagnetski materijali) gdje je μ_r približno jednak 1.
- Feromagnetske materijali gdje je μ_r puno veći od 1
- Feromagneti
- Nelinearnost
- Kanaliziraju magnetski tok

 $\mu_r = 100$

OSNOVE ELEKTROTEHNIKE

Magnetsko polje zavojnice

$$B = \mu \, \frac{NI}{l}$$

 Možemo smatrati da je magnetsko polje u zavojnici homogeno. Ono ovisi o duljini zavojnice, broju zavoja i struji, te o materijalu od koje je napravljena jezgra zavojnice.

OSNOVE ELEKTROTEHNIKE

Magnetsko polje torusne zavojnice ($\mu = \mu_0$)

$$B = \mu_0 \frac{NI}{lsr}$$

$$l_{sr} = \frac{R_1 + R_2}{2} 2\pi$$

OSNOVE ELEKTROTEHNIK

- Smjer magnetskog polja zavojnice (torusne zavojnice)
 - Pravilo desne ruke

Ako palac desne ruke pokazuje smjer struje prsti pokazuju smjer polja

 Ako prsti desne ruke obuhvate zavojnicu u smjeru struje palac pokazuje smjer polja

OSNOVE ELEKTROTEHNIKI

Dva su osnovna učinka magnetskog polja:

- ■Sila na naboj u gibanju
- Elektromagnetska indukcija.

SILA NA NABOJ KOJI SE GIBA U MAGNETSKOM POLJU

OSNOVE ELEKTROTEHNIK

Magnetsko polje djeluje silom na naboje

Magnetska sila se izražava na sljedeći način

$$\overrightarrow{F} = Q \cdot (\overrightarrow{v} \times \overrightarrow{B})$$

- Magnetska sila djeluje samo ako se naboji gibaju
- Smjer sile je okomit na površinu koju određuju brzina gibanja naboja i magnetska indukcije
- Iznos sile je

$$\left| \vec{F} \right| = q \cdot v_{\perp} \cdot B$$

- Smjer sile određujemo pravilom lijeve ruke:
 - Silnice udaraju u dlan
 - Prsti pokazuju smjer brzine
 - Palac pokazuje smjer sile.

SILA NA NABOJ KOJI SE GIBA U MAGNETSKOM POLJU

OSNOVE ELEKTROTEHNIK

Veličina sile ako brzina nije okomita na polje:

■ *a* je kut između vektora brzine *v* i vektora *B*

$$|\vec{F}| = q \cdot v \cdot B \cdot \sin \alpha$$

$$\alpha = 0 \quad ; \quad \sin \alpha = 0$$

$$|\vec{F}| = 0$$

$$\vec{F} = \vec{0}$$

$$\frac{\alpha \neq 0}{|\vec{F}| = q \cdot v \cdot B \cdot \sin \alpha}$$

Ravnina v i B

Primjer 1

Elektron mase m_e =9,11·10⁻³¹ kg, naboja q_e =1,602·10⁻¹⁹ C upada brzinom v=500 km/s pod pravim kutem u homogeno magnetsko polje indukcije B=2 T prema slici. Koliko iznosi magnetska sila? Odrediti polumjer putanje elektrona.

OSNOVE ELEKTROTEHNIKI

Primjer 1 - Rješenje

 Na naboj u gibanju djeluje magnetska sila. Jakost sile ovisi o smjeru brzine naboja prema silnici. Ako se naboj giba okomito na silnice, sila je najveća, a kada se giba u smjeru silnice sila je nula. Iznos sile ovdje izračunamo po formuli

$$F = q \cdot B \cdot v$$
 $F = 1.6 \times 10^{-13} \text{N}$

U općenitom slučaju silu izračunavamo vektorskim produktom:

 $F=q \cdot (v \times B)$ (q se uvrštava sa predznakom! -pa je iznos sile

$$F=q \cdot B \cdot v \cdot \sin \alpha$$

 Magnetska sila ima karakter centripetalne sile (djeluje na smjer gibanja čestice, a ne na njenu brzinu). Izjednačavajući centripetalnu i centrifugalnu silu dobijemo da je putanja čestice kružnica polumjera

$$r = mv/qB$$

Primjer 2

Mlaz pozitivno nabijenih čestica različitih masa, naboja i brzina ulazi u prostor u kojemu postoje električno i magnetsko polje prema slici. Odrediti brzinu čestica koje će se ulaskom u polje nastaviti gibati pravolinijski (zanemariti gravitacijsku silu).

Rješenje

$$F_e = F_m$$

 $qE = qvB$

$$v = E/B$$

SILA NA VODIČ PROTJECAN STRUJOM U MAGNETSKOM POLJU

OSNOVE ELEKTROTEHNIKI

- Eksperiment: sila između dva paralelna vodiča
 - Jedan vodič uzrokuje magnetsko polje
 - Ono silom djeluje na drugi vodič

SILA NA NABOJ U GIBANJU U VODIČU

André Marie Ampère (1775 - 1836)

Sila na ravni vodič

- Vodič duljine l kojim teče struja l postavljen je okomito na magnetsko polje indukcije B
- Ako u vremenu ∆t brzinom v prođe N naboja q od jednog do drugog kraja vodiča, struja je:

$$I = \frac{\Delta Q}{\Delta t} = \frac{N \cdot q}{\Delta t}$$

- Na svaki naboj q djeluje sila iznosa: $|\vec{f}| = q \cdot v \cdot B$
- Iznos ukupne sile na sve naboje (vodič) je:

$$|\vec{F}| = N \cdot q \cdot v \cdot B = N \cdot q \frac{l}{\Delta t} B = I \cdot l \cdot B$$

SILA NA VODIČ PROTJECAN STRUJOM U MAGNETSKOM POLJU

OSNOVE ELEKTROTEHNIKI

Ako vodič nije okomit na polje:

$$|\vec{F}| = I \cdot l \cdot B \cdot \sin \alpha$$

- a je kut između vektora struje *I* i vektora *B*
- Smjer sile: pravilo lijeve ruke
 - Silnice udaraju u dlan
 - Prsti pokazuju smjer brzine (struje)
 - Palac pokazuje smjer sile.
- Sila između dva vodiča je:

$$\left| \vec{F}_1 \right| = B_2 \cdot I_1 \cdot l = \mu_0 \frac{I_2 \cdot I_1 \cdot l}{2\pi d}$$

OSNOVE ELEKTROTEHNIKE

Primjer 3

 Ravni vodič duljine l nalazi se u homogenom magnetskom polju u kojem je gustoća toka (indukcija) B. Kut između vodiča i magnetskih silnica je α, a struja kroz vodič I. Kolika je sila na taj vodič? Za koji kut a će sila biti najveća, a za koji nula?

Zadano: B = 0.5 T, I = 20 A, l = 0.1 m, $\alpha = 30^{\circ}$.

Primjer 3 - Rezultat:

$$|\vec{F}| = I \cdot l \cdot B \cdot \sin \alpha$$

- F = 0.5 N
- Sila je najveća kada je α = 90°, a najmanja za α =0.

SILA NA VODIČ PROTJECAN STRUJOM U MAGNETSKOM POLJU

OSNOVE ELEKTROTEHNIK

Primjer 4

 Odredite magnetsku silu koja djeluje po 1 m duljine između dvaju dugih paralelnih ravnih vodiča udaljenih međusobno 1m, protjecanih strujama od 1 A suprotnog smjera. Da li se ti vodiči privlače ili se odbijaju?

Primjer 4 - Rješenje

 Sila postoji između vodiča kroz koje prolaze struje. Ovu pojavu tumačimo ovako: Svaki od vodiča nalazi se u magnetskom polju koje stvara onaj drugi. Prema tome ako vodiče označimo s 1 i 2 možemo izračunati magnetsku indukciju koju vodič 1 stvara na mjestu vodiča 2, a to je:

$$B_{12} \cdot = \mu_0 \frac{I_1}{2\pi d}$$

SILA NA VODIČ PROTJECAN STRUJOM U MAGNETSKOM POLJU

OSNOVE ELEKTROTEHNIK

Primjer 4 - Rješenje (nastavak)

 Zamislimo li da je duljina drugog vodiča upravo l = 1 m, dobivamo da je magnetska sila:

$$F_{12} = B_{12} \cdot I_2 \cdot l = 2 \times 10^{-7} \text{ N} = F_{21}$$

- Ako je smjer struja suprotan, sila je odbojna. Treba napomenuti da se opisana konfiguracija vodiča koristila za definiciju ampera. Prema toj definiciji struja ima iznos 1 A kada je izmjerena sila od 2x10⁻⁷ N. Ako uređaj za mjerenje sile napravimo kao neku vrst vage tada možemo kazati: važemo struju.
- Primjeri dugih paralelnih vodiča kroz koje prolaze struje su: vodovi u instalacijama, dalekovodi i sl. Postoje dakako i kratki paralelni vodiči u raznim elektrotehničkim uređajima. Npr. "bus" vodovi u računalima. Proračun polja kratkih vodiča prema gornjim formulama će vrijediti samo za vodiče koji su blizu jedan drugome.

- Gibanje vodiča u magnetskom polju
 - Polje djeluje silom na naboje

$$F = q \cdot v \cdot B$$

Naboji se razdvajaju

Michael Faraday (1791-1867)

OSNOVE ELEKTROTEHNIKI

Gibanja štapa u homogenom magnetskom polju okomito na silnice - inducirani napon

$$\overrightarrow{F} = Q \cdot (\overrightarrow{v} \times \overrightarrow{B})$$
 \overrightarrow{E}_{ind}

$$\vec{E}_{ind} = \frac{F_m}{Q} = \vec{v} \times \vec{B}$$

Gibanja štapa u homogenom magnetskom polju okomito na silnice - inducirani napon

Polaritet napona možemo odrediti pravilom desne ruke:

- silnice udaraju u dlan
 palac pokazuje smjer brzine
 prsti pokazuju kraj štapa koji se nalazi
 na višem potencijalu

$$\begin{array}{ccc} {}^{\mathrm{B}} & \Delta e = \vec{E}_{\mathrm{ind}} \cdot \Delta \vec{l} \\ e_{\mathrm{AB}} = \sum \Delta e = \sum\limits_{B}^{A} \vec{E}_{\mathrm{ind}} \cdot \Delta \vec{l} = \vec{E}_{\mathrm{ind}} \cdot \vec{l} = (\vec{v} \times \vec{B}) \cdot \vec{l} > 0 \end{array}$$

Komentar

Rad koji obavi sila na elektrone jest

$$A = q \cdot v \cdot B \cdot l$$

Između krajeva štapa javlja se razlika potencijala

$$U_{AB} = \frac{A}{q} = v \cdot B \cdot l = E'l$$

 Ravnoteža se uspostavlja kad je inducirano električno polje E_{ind} jednako električnom polju E' razdvojenih naboja

OSNOVE ELEKTROTEHNIKE

Razmotrimo sada gibanje vodiča duž metalnih tračnica

- Vodič je izvor napona
- Zatvara se strujni krug
- U Δt put vodiča je $\Delta s = v \cdot \Delta t$
- Površina je: $\Delta S = \Delta s \cdot l = l \cdot v \cdot \Delta t$

OSNOVE ELEKTROTEHNIKI

Možemo pisati:

$$|U_{_{ind}}| = v \cdot B \cdot l = \frac{v \cdot B \cdot l \cdot \Delta t}{\Delta t} = \frac{B\Delta S}{\Delta t} = \frac{\Delta \Phi}{\Delta t}$$

Posljedica: PROMJENA toka uzrokuje inducirani napon

Polaritet induciranog napona: Lenzovo pravilo

- Magnetski učinci induciranog napona (struje) se protive promjeni toka (uzroku koji ih je stvorio)
 - Smjer sile F_r na vodič je suprotan brzini v
- Faradayev zakon:

$$U_{ind} = -\frac{\Delta\Phi}{\Delta t} = -\frac{d\Phi}{dt}$$

OSNOVE ELEKTROTEHNIKE

Komentar: Inducirani napon u petlji -Faradayev zakon

Petlja vodljiva

- •Štap se giba u smjeru brzine v
- e_{AB} > 0 se pojavljuje kao EMS, dakle kao napon izvora
- e ce potjerati struju I
- •Struja I stvorit će u okolnom prostoru inducirano magnetsko polje, čiji će se tok suprotstavljati magnetskom toku $\Lambda \Phi$

 $\Delta \Phi$ raste pa se inducirana struja I nastoji suprotstaviti promjenama.

OSNOVE ELEKTROTEHNIKI

Zavojnica - Polaritet induciranog napona

- U zavojnicu u točku A ulazi rastuća struja i
- Tok kroz zavojnicu raste
- Zavojnica se opire rastu toka
- Inducira se struja i_{ind} koja nastoji poništiti rast toka
- Zavojnica se ponaša kao izvor.
- i_{ind} teče od B prema A (izlazi na točki A iz zavojnice)
- Na mjestu gdje i_{ind} izlazi iz zavojnice je točka višeg potencijala.
- Inducirani napon U_{AB} > 0

OSNOVE ELEKTROTEHNIK

Komentar: Inducirani napon u petlji - Faradayev zakon

Lenzov zakon (pravilo):

Inducirani napon ima takav polaritet da nastoji poništiti svoj uzrok.

U diferencijalnom obliku Faradayev zakon glasi:

$$e = -\frac{d\Phi}{dt}$$

Inducirani napon (inducirana elektromotorna sila) u zatvorenoj konturi jednaka je negativnoj promjeni magnetskog toka koji je obuhvaćen tom konturom.

Između smjera obilaska konture (pozitivni referentni smjer induciranog napona) i smjera pozitivnog referentnog toka vrijedi pravilo desne ruke: prsti određuju smjer obilaska konture, a palac smjer pozitivnog toka.

Primjer 5

Ravni vodič (štap) duljine 20 cm giba se brzinom 15 m/s okomito na silnice magnetskog polja gustoće toka (indukcije) 1,2 T. Koliki će se napon pojaviti (inducirati) na krajevima vodiča? Koja je točka (A ili B) na višem potencijalu?

Primjer 5 - Rješenje

Ako je zadovoljen uvjet međusobne okom smjera gibanja štapa i magnetskih silnica napon na krajevima štapa je: $U_{ind} = Blv, U_{ind} = 3,6 \text{ V}$ Po pravilu desne ruke točka A je na višem potencijalu Ako je zadovoljen uvjet međusobne okomitosti smjera gibanja štapa i magnetskih silnica inducirani

$$U_{ind} = Blv$$
, $U_{ind} = 3.6 V$

potencijalu

$$U_{AB} = 3,6 \text{ V}$$

OSNOVE ELEKTROTEHNIKI

Primjer 6

Vodljivi štap duljine 10 cm klizi brzinom 9 m/s po vodljivom okviru u magnetskom polju gustoće toka (indukcije) 1T. Kolika je magnetska sila na štap ako je ukupan otpor (okvira i štapa) 150 m Ω ?

Primjer 6 - Rješenje

OSNOVE ELEKTROTEHNIKE

Primjer 6 - Rješenje (nastavak 1)

- Ovo je primjer strujnog kruga u kojem je inducirani napon na krajevima štapa izvor napona, otpor štapa je unutarnji otpor izvora, a otpor okvira vanjski otpor. Treba zapaziti da se vanjski otpor tj. otpor okvira povećava kako se štap pomiče. Rješenje odgovara trenutku kad je ukupni otpor kruga R_{uk} = 150 m Ω .
- Najprije valja izračunati inducirani napon, a onda Ohmovim zakonom struju:

$$U_{ind} = Blv$$
, $U_{ind} = 0.9 \text{ V}$, $I = U_{ind}/R_{uk}$, $I = 6 \text{ A}$

Primjer 6 - Rješenje (nastavak 2)

Na štap protjecan strujom I = 6 A koji se giba u magnetskom polju djeluje magnetska sila:

$$F_m = BII, F_m = 0.6 \text{ N}$$

- Ovu, magnetsku silu, moramo savladavati prilikom pomicanja štapa. Time trošimo mehaničku energiju koja se pretvara u električnu, a ta se onda troši na zagrijavanje otpora.
- U ovom zadatku je prikazan jednostavni uređaj za proizvodnju el.energije (generator).
- Umjesto pravocrtnog gibanja pogodnom konstrukcijom se postiže isti efekt, ali pri kružnom gibanju štapa (rotacioni strojevi)

OSNOVE ELEKTROTEHNIKI

Primjer 7

Okomito kroz površinu kvadratnog zavoja načinjenog od vodiča prolazi homogeno magnetsko polje indukcije 1 T. Stranica zavoja je a=4 cm a otpor zavoja je 0,1 Ω . Ako se magnetsko polje smanji linearno na nulu unutar 2 ms odrediti iznos i smjer inducirane struje.

Primjer 7 - Rješenje

Zbog smanjenja magnetske indukcije inducirani napon će protjerati induciranu struju koja će stvoriti inducirano magnetsko polje B_i istog smjera kao i B. Smjer struje prikazan je na slici.

$$\Phi = BS = Ba^2 = 1,6. \ 10^{-3} \ Vs$$

$$U_{ind} = -\frac{\Delta \Phi}{\Delta t} = -\frac{d\Phi}{dt} \qquad I = \frac{U_{ind}}{R}$$

$$I = \frac{u_{ina}}{R}$$

$$\Delta \Phi = 0 - \Phi = -\Phi$$

$$I=8$$
 A

OSNOVE ELEKTROTEHNIKE

Generator sinusnog napona

- Petlju okrećemo u vanjskom polju
 - Inducira se napon u petlji
 - Krajevi petlje su spojeni na kolute koji rotiraju s petljom
 - Vanjski krug je spojen preko fiksnih četkica koje su u kontaktu s kolutima

- Napon se inducira u dijelovima BC i DA
 - Komponenta brzine okomita na BC je $v_{\perp} = v \sin \theta$
 - U dijelu BC se inducira napon $U_{BC} = Blv_{\perp} = Blv \sin \theta$
 - U dijelu DA se inducira isti napon, pa je ukupni napon

$$U = 2Blv\sin\theta$$

Vrijedi:

$$v = r\omega = \frac{a}{2}\omega; \theta = \omega t \implies U_{ind} = Bla\omega \sin \omega t$$

OSNOVE ELEKTROTEHNIKI

Zašto se napon ne inducira u dijelovima AB i CD?

- Od središta vrtnje do kraja B vodiča v₁ je u smjeru prema gore a od središta vrtnje do kraja A vodiča v₁ je u smjeru prema dolje
- Doprinosi induciranom naponu se poništavaju
- Isto vrijedi za vodič CD

OSNOVE ELEKTROTEHNIKI

Primjer 8

Svitak od 200 zavoja površine presjeka 20 cm² rotira oko osi okomite na silnice homogenog magnetskog polja gustoće toka 1,2T. Kojeg je oblika napon induciran u svitku. Ako svitak u svakoj sekundi učini 5 okretaja, odredite najveću vrijednost (amplitudu) induciranog napona.

Primjer 8 - Rješenje

 Rješenje: Rotaciono gibanje svitka u magnetskom polju ima veliki praktički značaj za proizvodnju električne energije. Napravljeni su generatori od onog malog, na biciklu snage nekoliko W, pa do ogromnih u hidro i termoelektranama snage više stotina MW (milijuna vata). Prilikom okretanja svitka promjenjivi magnetski tok koji prolazi kroz svitak se mijenja po sinusnom zakonu.

OSNOVE ELEKTROTEHNIKI

Primjer 8 - Rješenje (nastavak 1)

- Derivacijom promjenjivog sinusnog toka dobiva se vremenski promjenjivi sinusoidni napon koji popularno nazivamo: izmjenični napon (eng. kratica: AC od alternatnig current). Taj napon vremenski gledano mijenja svoj iznos i polaritet pa uvodimo pojam trenutne vrijednosti. Grafički prikaz momentalnih vrijednosti naziva se valni oblik. Dakle, naš napon ima sinusni valni oblik.
- Ovisno o broju okretaja koje svitak učini u jedinici vremena mijenjaju se dvije značajke induciranog napona: **frekvencija i amplituda**. Kod kružnog gibanja pri jednom okretaju učini se kut od 2π radijana odnosno 360° i opisuje se jedna sinusoida. Ako se u jednoj sekundi načini 5 okretaja znači da se u sekundi učini kut od 10π radijana. Kutna brzina ω je onda $\omega=10\pi$ radijana/s. Ovaj napon u jednoj sekundi 5 puta opisuje sinusoidu tj. ponavlja se 5 puta pa mu je frekvencija f=5 Hz. Općenito je kutna brzina $\omega=2\pi$ f

Primjer 8 - Rješenje (nastavak 2)

Amplituda induciranog napona iznosi

$$U_m = N \cdot \omega \cdot B \cdot S$$
 $U_m = 15.08 \text{ V}$

- U prikazu generatora sinusnog napona je površina petlje S=a·l.
- Napomena: Europski standard za proizvodnju električne energije je frekvencija od 50 Hz. To znači da svi generatori uključeni u jedinstveni elektroenergetski sustav proizvode izmjenični napon te frekvencije.

POJAM NAPONA SAMOINDUKCIJE I MEĐUSOBNE INDUKCIJE

OSNOVE ELEKTROTEHNIKI

- •Površina S₁ omeđena je petljom kroz koju prolazi struja *i*.
- •Struja *i* u svakoj točki okolnog prostora stvara odgovarajuću magnetsku indukciju *B*, pa tako i na svakoj točki površine *S*₁ i *S*₂.
- •Kroz površinu S_1 (odnosno S_2) prolazi odgovarajući magnetski tok Φ_1 (odnosno Φ_2).
- •Magnetski tokovi Φ_1 i Φ_2 mogu biti obuhvaćeni (ulančeni) s više zavoja. Takav obuhvaćeni (ulančeni tok) označavamo s Ψ . U prvoj petlji imamo Ψ_1 , a u drugoj Ψ_2 .

POJAM NAPONA SAMOINDUKCIJE I MEĐUSOBNE INDUKCIJE

OSNOVE ELEKTROTEHNIKI

- Ukoliko se struja promjeni, promijenit će se, Φ_1 i Ψ_1 u prvoj petlji te Φ_2 i Ψ_2 u drugoj. Zbog promjene toka kroz petlje inducirat će se odgovarajući napon.
- U prvoj petlji je do promjene toka došlo kao posljedica vlastite struje petlje (strujnog kruga). Ovakvu pojavu kad se u petlji inducira napon kao posljedica promjene struje vlastite petlje nazivamo pojavom samoindukcije, a inducirani napon nazivamo naponom samoindukcije.
- Promjena struje u prvoj petlji uzrokovat će i promjenu ulančenog (obuhvaćenog) toka u drugoj petlji, zbog toga će se u drugoj petlji inducirati odgovarajući napon. Ovakvu pojavu kad se u jednoj petlji inducira napon kao posljedica promjene struje u drugoj petlji nazivamo pojavom međusobne indukcije, a napon naponom međuindukcije.

NAPON SAMOINDUKCIJE U TORUSNOJ ZAVOJNICI

OSNOVE ELEKTROTEHNIKI

Torus površine presjeka S i srednje duljine l s koeficijentom permeabilnosti μ_0 obuhvaćen je sa N zavoja (zavojnica).

Struja ulazi na A označeni kraj zavojnice. Kao posljedica struje u torusu postoji magnetsko polje \vec{B} i odgovarajući tok ϕ čiji smjer po pravilu desne ruke vidimo na slici.

Tok ϕ prolazi kroz N zavoja žice, dakle obuhvaćeni (ulančeni) tok Ψ iznosi:

$$\Psi$$
 = N Φ = NBS = N $\mu_0 \frac{Ni}{l}$ S = k i gdje je k konstanta.

NAPON SAMOINDUKCIJE U TORUSNOJ ZAVOJNICI

OSNOVE ELEKTROTEHNIKI

Ako struja *i* poraste, porast će i ulančeni tok Ψ te će se inducirati napon samoindukcije e_s . Pozitivni smjer napona, dakle obilaska petlje (zavojnice) je u smjeru struje od točke A do točke B. Budući da se zavojnica ponaša kao izvor i napon samoindukcije predstavlja EMS (elektromotornu silu), dobijemo:

$$e_s = -\frac{d\Psi}{dt} = u_{BA}$$

Zbog pretpostavke o porastu struje i, porast će i prirast toka $d\Psi$ (prirast je veći od 0) te je napon u_{BA} negativan. Dakle, $u_{BA} < 0$, iz čega slijedi da je $u_{AB} > 0$. Kad bi mogla poteći struja zbog induciranog napona, ona bi potekla kroz izvor (zavojnicu) od točke B prema točki A.

INDUKTIVITET L

$$\Psi = N\Phi = NBS = N\mu_0 \frac{Ni}{l}S = nešto \cdot i = ki$$

Vidimo da postoji odnos između Ψ i i. To nešto ovisi samo o geometriji prostora kroz koji prolaze magnetske silnice i svojstvu materijala (μ_0). To nešto nazivamo koeficijent samoindukcije L ili kraće induktivitet L.

$$L = \frac{\psi}{i}$$

$$e_s = U_{ba} = -\frac{d\psi}{dt} = -\frac{d(Li)}{dt} = -L \frac{di}{dt}$$

Napon samoindukcije možemo izraziti strujom koja ga je prouzročila i koeficijentom L, a da veličine magnetskog polja ne moramo znati.

INDUKTIVITET L

Izračunavanje induktiviteta- primjer torusa

$$L = \frac{\Psi}{i} = \frac{N \cdot \mu_o \cdot \frac{Ni}{l} \cdot S}{i} = \frac{N^2}{\frac{1}{\mu_o} \cdot \frac{l}{S}}$$

Pri tome je magnetski otpor R_m:

$$R_{\rm m} = \frac{1}{\mu_o} \cdot \frac{l}{S}$$

Dakle induktivitet L je:

$$L = \frac{N^2}{R_m}$$

NAPON MEĐUINDUKCIJE U TORUSNOJ ZAVOJNICI

OSNOVE ELEKTROTEHNIKI

Struja i_1 ulazi na A označeni kraj prve zavojnice i stvara odgovarajući tok Φ Tok Φ prolazi kroz N_1 zavoja prve zavojnice, ali i N_2 zavoja druge zavojnice

U drugoj zavojnici postoji obuhvaćeni (ulančeni) tok Ψ_{12} (indeks 1 označava uzrok ulančenog toka, a to je struja i_1 ; indeks 2 označava mjesto gdje ulančeni tok promatramo, a to je druga zavojnica).

NAPON MEĐUINDUKCIJE U TORUSNOJ ZAVOJNICI

OSNOVE ELEKTROTEHNIKE

Promjena struje i_1 uzrokuje i promjenu Ψ_{12} . Zbog toga se u drugoj zavojnici inducira napon međusobne indukcije (međuindukcije) e_m .

$$e_m = -\frac{d\Psi_{12}}{dt}$$

$$\Psi_{12} = N_2 \Phi = N_2 BS = N_2 \mu_0 \frac{N_1 i_1}{l} S = k \cdot i_1 = \frac{ne to \cdot i_1}{l}$$

OSNOVE ELEKTROTEHNIKI

To *nešto* ovisi samo o geometriji prostora kroz koji prolaze magnetske silnice i karakteristici materijala (μ_0). To *nešto* nazivamo *koeficijent međusobne indukcije* M ili kraće *međuinduktivitet* M.

$$M_{12} = \frac{\psi_{12}}{i_1}$$

$$e_m = -\frac{d\psi_{12}}{dt} = -\frac{d(M_{12}i_1)}{dt} = -M_{12} \frac{di_1}{dt}$$

Napon međuindukcije možemo izraziti strujom koja ga je prouzročila (i_1) i koeficijentom M_{12} , a da veličine magnetskog polja ne moramo znati.

MEĐUINDUKTIVITET M

Izračunavanje međuinduktiviteta - primjer torusa

$$M_{12} = \frac{\Psi_{12}}{i_1} = \frac{N_2 \cdot \mu_o \cdot \frac{N_1 i_1}{l} \cdot S}{i_1} = \frac{N_1 N_2}{\frac{1}{\mu_o} \cdot \frac{l}{S}}$$

$$\mathsf{M}_{12} = \frac{N_1 \cdot N_2}{R_m}$$

ODNOS INDUKTIVITETA I MEĐUINDUKTIVITETA

OSNOVE ELEKTROTEHNIKI

$$L_1 = \frac{N^2_1}{R_m}$$
 $L_2 = \frac{N^2_2}{R_m}$

$$M_{12} = M_{21} = M$$

Opći slučaj:

$$\mathbf{M} = \mathbf{k}\sqrt{L_1L_2}$$

Uočimo da je magnetski otpor R_m isti i za induktivitet i za međuinduktivitet jer magnetske silnice prolaze kroz isti prostor. Vrijedi:

$$M_{12}^2 = L_1 \cdot L_2$$

$$M = \sqrt{L_1 L_2}$$

$$0 \le k \le 1$$

NAPON SAMOINDUKCIJE I PAD NAPONA NA INDUKTIVITETU

OSNOVE ELEKTROTEHNIKI

Induktivitet je bitan parametar strujnih krugova

$$\begin{array}{c}
L \\
\downarrow & A \\
\hline
& \bullet \\
\end{array}$$

Napon samoindukcije e_s se ponaša kao izvor (dakle kao EMS) po je po definiciji mjesto na kojem struja izlazi na višem potencijalu nego mjesto gdje struja ulazi.

Induktivitet možemo smatrati trošilom u strujnom krugu. Pad napona na trošilu u_L definiramo kao potencijal točke gdje struja ulazi prema potencijalu točke gdje struja izlazi.

$$e_s = -L \frac{di}{dt} = u_{BA}$$
 $u_L = u_{AB} = -u_{BA} = -e_s = L \frac{di}{dt}$

ENERGIJA POHRANJENA U INDUKTIVITETU

OSNOVE ELEKTROTEHNIKI

Promjenu energije definiramo kao (p(t)) je trenutna snaga) $\Delta W = p(t) \cdot \Delta t$

Ukoliko prelazimo na infinitezimalne dijelove tada Δ zamijenjujemo s diferencijalom d

$$dW = p(t) \cdot d(t)$$

U elektrotehnici se trenutna snaga izražava produktom trenutnog napona i struje:

$$dW = u(t) \cdot i(t) dt$$

Zamjenom u(t) s izrazom za pad napona na induktivitetu dobijemo:

$$dW = i(t) \cdot L \frac{di}{dt} \cdot dt = i(t) \cdot L \cdot di$$

Promjena energije:

$$\Delta W = p(t)\Delta t = u(t) \cdot i(t) \cdot \Delta t = i \cdot L \frac{\Delta i}{\Delta t} \cdot \Delta t = i \cdot L \cdot \Delta i = \psi \cdot \Delta i$$

Ukupna energija

$$W = \sum_{i=1}^{J} \Delta W = \int_{0}^{I} i \cdot L di = L \frac{I^{2}}{2}$$

ENERGIJA POHRANJENA U INDUKTIVITETU

OSNOVE ELEKTROTEHNIKI

Ukupna energija akumulirana u induktivitetu L (dakle torusu koji taj induktivitet predstavlja) je suma doprinosa *dW* od trenutka kad je struja kroz zavojnicu bila 0 (nije postojalo magnetsko polje), do trenutka kad je struja poprimila iznos / (za taj iznos postoji magnetsko polje).

$$W = \int_{i=0}^{i=I} i(t) L di = L \frac{I^2}{2}$$

U torusu je akumulirana magnetska energija.

Akumulirana magnetska energija je ovisna o kvadratu trenutne vrijednosti struje.

$$W = L \frac{I^2}{2}$$

INDUKTIVITET U STRUJNOM KRUGU

OSNOVE ELEKTROTEHNIK

Induktivitetom prikazujemo u strujnom krugu pohranjenu (akumuliranu) magnetsku energiju.

- •Energija se ne može trenutno povećati jer bi za to trebala beskonačna snaga.
- Zbog toga nije moguće da se struja kroz induktivitet trenutno poveća.
- •Time možemo objasniti i Lenzov zakon koji govori da se inducirani napon želi poništiti svoj uzrok.

INDUKTIVITET U STRUJNOM KRUGU

OSNOVE ELEKTROTEHNIK

- U trenucima kad struja i kroz induktivitet raste, u njemu se povećava magnetska energija (električna energija pretvara se u magnetsku) i induktivitet se ponaša kao trošilo (u_{AB} > 0).
- U trenucima kad struja *i* kroz induktivitet opada, u njemu se smanjuje magnetska energija (magnetska energija se pretvara u električnu) i induktivitet se ponaša kao izvor (napon $u_{AB} < 0$, $u_{BA} > 0$).
- U trenucima kad je struja *i* konstantna, tada je napon $u_{AB} = 0$, nema promjene magnetske energije.

INDUKTIVITET U STRUJNOM KRUGU

OSNOVE ELEKTROTEHNIKE

Primjer 9

Svitak induktiviteta L=1 H protjecan je strujom I=1A. Koliki se napon inducira na krajevima svitka, ako se struja linearno smanji na nulu u vremenu $\Delta t=100$ ms? Koliko napona «otpada» na pojedini zavoj ako zavojnica ima N=100 zavoja? Krajeve svitka označimo s A i B. Struja ulazi u stezaljku označenu s A. Koji je polaritet induciranog napona?

OSNOVE ELEKTROTEHNIKI

Primjer 9 - Rješenje

$$u_L = u_{AB} = -u_{BA} = -e_s = L \frac{\Delta i}{\Delta t}$$

 U_{AB} = -10 V, po svakom zavoju se inducira 0,1 V

 Komentar: s obzirom da struja opada, promjena struje je negativna

OSNOVE ELEKTROTEHNIKI

Pretpostavimo da iznos struje i_1 raste. Kao posljedica toga raste i tok Φ i ulančeni tok Ψ_{12} u drugoj zavojnici. Tok Φ je isti u oba slučaja (slučaj 1 i slučaj 2). U zavojnici N_2 inducirat će se u oba slučaja odgovarajući napon međusobne indukcije koji će se po Lenzovom zakonu suprotstaviti promjeni. Dakle kroz zavojnicu N_2 bi trebala poteći inducirana struja koja bi stvorila magnetski tok u suprotnom smjeru od toka stvorenog strujom i.

Prije smo ustanovili da je u prvoj zavojnici zbog samoindukcije $u_{AB} > 0$. Kad bi mogla poteći struja zbog induciranog napona, ona bi potekla kroz izvor (zavojnicu) od točke B prema točki A.

Analizirajmo inducirani napon međuindukcije u drugoj zavojnici.

U slučaju 1 inducirana struja bi trebala teći od točke D prema točki C i napon u_{CD} bi bio pozitivan budući da se zavojnica ponaša kao izvor.

U slučaju 2 inducirana struja bi trebala teći od točke E (koja odgovara točki C u prvom slučaju) prema točki F (koja odgovara točki P u prvom slučaju) i napon P bi trebao biti pozitivan budući da se zavojnica ponaša kao izvor.

OSNOVE ELEKTROTEHNIKI

Zaključak: polaritet napona međusobne indukcije ovisi o smjeru namatanja zavojnice.

Problem namatanja zavojnice rješava se sljedećim pravilom:

- Označimo punim kružićem točku gdje struja ulazi u Zavojnicu 1.
- Po pravilu desne ruke odredit će se smjer toka Φ .
- Odredimo punim kružićem točku Zavojnice 2 gdje bi struja trebala ulaziti da se stvori tok u istom smjeru.
- Polaritet induciranog napona između označene točke i neoznačene točke prve zavojnice (napon samoindukcije) i druge zavojnice (napon međuindukcije) bit će isti.

U prvom slučaju označene točke su A i C, u drugom slučaju su to točke A i F. Slučaj 2

Slučaj 1

$$e_s = -L \frac{dil}{dt} = u_{BA}$$

$$e_m = -M_{12} \frac{\partial U}{\partial t} = u_{DC}$$

$$e_s$$
= - L $\frac{dil}{dt}$ = u_{BA}

SIMBOLIČKI PRIKAZ INDUKTIVITETA I MEĐUINDUKTIVITETA

OSNOVE ELEKTROTEHNIK

INDUKTIVITET I MEĐUINDUKTIVITET

OSNOVE ELEKTROTEHNIK

Komentar

- Inducirani napon međuindukcije ovisi o smjeru namatanja zavojnice
- Na principu napona međuindukcije radi transformator: transformira odgovarajući napon i struju primara (primarne zavojnice) na odgovarajući napon i struju sekundara (sekundarne zavojnice)
- Induktivitet i međuinduktivitet su elementi strujnih krugova
- U okviru OE koristit ćemo većinom induktivitet L

Kroz dva duga paralelna ravna vodiča duljine l=10 m razmaknuta na udaljenost d=1m teku struje istoga iznosa. Vodiči djeluju jedan na drugoga silom od $2\cdot 10^{-6}$ N. Kolika je struja vodiča?

Rješenje: I = 1 A

OSNOVE ELEKTROTEHNIKI

Avion leti horizontalno brzinom od 900 km/h. Raspon krila aviona je 48 m a vertikalna komponenta Zemljinog magnetskog polja je 5·10⁻⁵ T. Odrediti inducirani napon između krajeva krila.

Rješenje: $u_{ind} = 0.6 \text{ V}$

Metalni štap duljine 2m giba se u homogenom magnetskom polju indukcije 0,1 T brzinom 5m/s. Štap, magnetska indukcija i brzina su međusobno okomiti. Štap je zanemarivog otpora a na njega je spojen otpor od 5Ω . Odrediti:

- a) Struju kroz otpor
- b) Silu kojom je potrebno djelovati na štap da bi se štap gibao.
- c) Snagu kojom se obavlja gibanje štapa.

Rješenja: a) I = 0.2 A b) F = 0.04 N c) P = 0.2 W

Dvije bliske zavojnice imaju N_1 =50 i N_2 =100 zavoja. Struja zavojnice 1 je iznosa 1A i u zavojnici stvara magnetski tok Φ_1 =2·10⁻² Vs. Dio toka zavojnice 1 iznosa Φ_{12} =10⁻² Vs prolazi kroz zavojnicu 2. Odrediti induktivitet prve zavojnice i međuinduktivitet !

Rješenja:

$$L_1 = 1 \text{ H}$$

$$M = 1 H$$

Struja kroz zavojnicu induktiviteta 5mH raste linearno brzinom od 2A/s. Koliki su inducirani napon i energija pohranjena u magnetskom polju zavojnice nakon 2s i nakon 4 s?

Rješenja:

 $W_2 = 40 \text{ mJ}$

 $W_4 = 160 \text{ mJ}$

Osnove magnetizma

Za one koji žele znati više......

POJAM MAGNETSKOG POLJA

OSNOVE ELEKTROTEHNIKI

$$\overrightarrow{F} = Q \cdot (v \times B)$$

Vektor \vec{B} je vektor magnetske indukcije

UZROK MAGNETSKOG POLJA JE STRUJANJE NABOJA ILI VREMENSKA PROMJENA ELEKTRIČNOG POLJA

AMPEROV KRUŽNI ZAKON ILI ZAKON PROTJECANJA

OSNOVE ELEKTROTEHNIK

Amperov kružni zakon ili Amperov zakon protjecanja

definira odnos između struje *i* kao uzroka magnetskog polja i vektora magnetske indukcije *B* kao posljedice.

OSNOVE ELEKTROTEHNIKI

Komentar

• Amperov kružni zakon govori da za svaku zatvorenu krivulju (petlju) vrijedi da je $\oint \overrightarrow{B} \cdot \overrightarrow{d} \vec{l}$

Jednak produktu μ i sume struja koji prolaze kroz tu zatvorenu petlju (pozitivni smjer struje i obilaska petlje definiran je pravilom desne ruke)

- Dakle, ako na svakom djeliću petlje dl odredimo skalarni produkt **Bdl** i sve te doprinose zbrojimo, konačni rezultat je jednak algebarskoj sumi struja koje prolaze kroz površinu petlje pomnožen s μ
- U ovom obliku izrečen Amperov zakon može se primijeniti samo na neke posebne slučajeve (ravni vodič protjecan strujom, torusna zavojnica)

AMPEROV KRUŽNI ZAKON ILI ZAKON PROTJECANJA

OSNOVE ELEKTROTEHNIK

Između smjera obilaska krivulje *I* i smjera struje *i* vrijedi pravilo desne ruke:

Ako prsti pokazuju smjer krivulje I, tada palac pokazuje smjer pozitivne struje.

Isto pravilo definira odnos između smjera obilaska krivulje i smjera površine koji zatvara ta krivulja (smjer površine je normala na površinu).

OSNOVE ELEKTROTEHNIK

$$\oint_{1} \overrightarrow{B} \cdot d\overrightarrow{1} = \mu_{o}(i_{1}-i_{2})$$

Pozitivni smjer struje se podudara sa smjerom površine.

Kad bi postojala struja i_3 i koja nije obuhvaćena krivuljom l, one ne bi utjecala na rezultat, iako utječe na iznos vektora \boldsymbol{B} .

OSNOVE ELEKTROTEHNIKE

Magnetsko polje (vektor B) oko ravnog vodiča protjecanog strujom *i* u vakumu.

$$B = \frac{\mu_0 l}{2\pi r}$$

$$\oint_{L} \vec{B} \cdot d\vec{l} = \oint_{L} B \cdot dl \cdot \cos \alpha = B \oint_{L} dl = B \cdot 2\pi r = \mu_{0} i$$

$$\alpha = 0$$
; $\cos(\alpha) = 1$

AMPEROV KRUŽNI ZAKON

Magnetsko polje (vektor B) unutar ravnog vodiča protjecanog strujom *i* u vakumu.

$$B = \frac{\mu_0 \cdot \iota}{2\pi R^2} r$$

$$\oint_{L} \vec{B} \cdot d\vec{l} = B \oint_{L} dl = B \cdot 2\pi r = \mu_{0} \frac{i}{R^{2}\pi} r^{2}\pi$$

$$\alpha = 0$$
; $\cos(\alpha) = 1$

AMPEROV KRUŽNI ZAKON

OSNOVE ELEKTROTEHNIKI

Magnetsko polje (vektor B) unutar i oko ravnog vodiča protjecanog strujom i u vakumu (grafički prikaz).

AMPEROV KRUŽNI ZAKON

Magnetsko polje u torusu

1.
$$\oint_{L} \vec{B} \cdot d\vec{l} = \mu_0 \cdot \sum_{i} \vec{b} = 0$$

$$\vec{B} = 0$$

2.
$$\oint_{L} \vec{B} \cdot d\vec{l} = \mu_0(\text{Ni-Ni}) = \mu_0 0$$

$$B = 0$$

- 1. 0 < r < R1
- $2. \qquad r > R2$
- 3. $R1 \le r \le R2$

3.
$$\oint_{L} \vec{B} \cdot d\vec{l} = B \cdot 2\pi r = Ni \mu_0$$

OSNOVE ELEKTROTEHNIKE

Magnetsko polje u torusu

$$B = \mu_0 \frac{Ni}{2\pi r}$$

Za $R_1 >> R_2-R_1$ može se aproksimirati da je iznos vektora \boldsymbol{B} unutar torusa konstantan, homogeno polje.

$$B = \mu_0 \frac{Ni}{l_{sr}}$$

$$lsr = \frac{R_1 + R_2}{2} 2\pi$$

Sila na naboj koji se giba u magnetskom polju

OSNOVE ELEKTROTEHNIKI

SILA NA NABOJ U GIBANJU - VODIČ

OSNOVE ELEKTROTEHNIKE

$$\overrightarrow{F} = Q \cdot (\overrightarrow{v} \times \overrightarrow{B})$$

$$dQ = i \cdot dt$$

$$\overrightarrow{v} = \frac{d \overrightarrow{1}}{dt}$$

$$\overrightarrow{dt}$$

$$\overrightarrow{dF} = dQ (\overrightarrow{v} \times \overrightarrow{B}) =$$

$$= i \cdot dt \left(\frac{d\vec{l}}{dt} \times \vec{B} \right)$$

$$\overrightarrow{dF} = i \left(\overrightarrow{dl} \times \overrightarrow{B} \right)$$

SILA NA NABOJ U GIBANJU - VODIČ

OSNOVE ELEKTROTEHNIKI

Smjer sile dF možemo odrediti pravilom lijeve ruke:

- ·Silnice udaraju u dlan
- Prsti pokazuju smjer struje
- Palac pokazuje smjer sile.

Silu na čitavoj duljini / dobit ćemo tako da zbrojimo sve doprinose na toj duljini. Matematički se to formalno izražava operatorom integral.

$$\vec{F} = \int_{l} d\vec{F} = \int_{l} i \cdot d\vec{l} \times \vec{B}$$

SILA NA NABOJ U GIBANJU - VODIČ

OSNOVE ELEKTROTEHNIKE

Sila na ravan vodiču u homogenom magnetskom polju

$$|\vec{F}| = i \cdot |\vec{l}| \times |\vec{B}|$$

$$|\vec{F}| = B \cdot i \cdot |\vec{l}| \cdot \sin \alpha$$

$$\alpha = 90^{\circ}$$

$$F = B \cdot i \cdot l$$

FARADAYEV ZAKON - DODATAK (DETALJAN IZVOD)

OSNOVE ELEKTROTEHNIKE

$$e_{ind} = \oint \vec{E}_{ind} \cdot d\vec{l} = \oint (\frac{d\vec{\xi}}{dt} \times \vec{B}) \cdot d\vec{l}$$

$$\mathbf{e}_{\text{ind}} = \frac{1}{dt} \oint (d\vec{\xi} \times \vec{\mathbf{B}}) \cdot d\vec{\mathbf{I}}$$

FARADAYEV ZAKON - DODATAK (DETALJAN IZVOD)

OSNOVE ELEKTROTEHNIK

$$d(d\vec{S}) = d\vec{\xi} \times d\vec{l}$$

$$d(d\Phi) = \vec{B} \cdot d(d\vec{S}) = \vec{B} \cdot (d\vec{\xi} \times d\vec{I}) = (\vec{B} \times d\vec{\xi}) \cdot d\vec{I} = -(d\vec{\xi} \times \vec{B}) \cdot d\vec{I}$$

$$d\Phi = \oint_{I} d(d\Phi) = -\oint_{I} (d\vec{\xi} \times \vec{B}) \cdot d\vec{I}$$

$$e = -\frac{d\Phi}{dt}$$