KMP - Algorithmus (Zwei-Finger-Methode)

- Übungsblatt 9 –

ERIC KUNZE — 8. JANUAR 2021

Dieses Werk ist lizenziert unter einer Creative Commons "Namensnennung – Nicht-kommerziell – Weitergabe unter gleichen Bedingungen 4.0 International" Lizenz.

Keine Garantie auf Vollständigkeit und/oder Korrektheit!

Also kurz zur **Zwei-Finger-Methode**: Wir nehmen den rechten Finger auf die zu berechnende Stelle, den linken Finger positionieren wir eine Stelle links daneben. Jetzt vergleichen wir, ob ein Missmatch vorliegt.

- Wenn ja, dann ist das schön und wir können mit der Parallelverschiebung beginnen, d.h. wir schieben beiden Finger synchron um eine Stelle nach links und testen auf Match.
 - Erreichen wir dann irgendwann den linken Rand, so war der Durchlauf erfolgreich und die Startposition des linken Fingers wird der Eintrag an der Startposition des rechten Fingers.
 - Erreichen wir den linken Rand nicht, d.h. es liegt irgendwo nochmal ein Missmatch vor, dann funktioniert dieser Durchlauf nicht, und wir gehen mit den Fingern wieder zurück zur Startposition.
- Da nun entweder der Missmatch-Test nicht geklappt hat oder die Parallelverschiebung nicht bis zum Schluss durchführbar war, müssen wir jetzt den linken Finger einmal nach links verschieben und dort wieder von Neuem beginnen, d.h. es startet wieder mit dem Missmatch-Test.

So jetzt schauen wir uns einmal die Aufgabe 7.1.10 aus der Aufgabensammlung an. Gegeben ist die Tabelle

Position	0	1	2	3	4	5
Pattern	c	b				a
Tabelle	-1	0	-1	1	0	2

Wenden wir die Zyklenmethode an, dann lesen wir aus der Position 5 eine 2 aus, was uns sagt, dass die zwei Positionen davor mit dem Anfang des Patterns übereinstimmen müssen. Somit muss Pat[3] = Pat[0] = c und Pat[4] = Pat[1] = b, also

Position	0	1	2	3	4	5
Pattern	c	b		\mathbf{c}	b	a
Tabelle	-1	0	-1	1	0	2

Nun steht an Position 3 in der Tabelle eine 1, d.h. es muss einen 1-Zyklus vorher geben. Somit muss also die Position 2 mit dem Anfang übereinstimmen, ergo Pat [2] = Pat [0] = c

Position	0	1	2	3	4	5
Pattern	с	b	\mathbf{c}	\mathbf{c}	b	a
Tabelle	-1	0	-1	1	0	2

Schauen wir uns einmal die Zwei-Finger-Methode im Gegensatz dazu an. An Position 5 steht eine 2 in der Tabelle, d.h. also wir müssen an der Stelle, wo der linke Finger auf der 2 stand, einen erfolgreichen Missmatch-Test durchgeführt haben, d.h. $a = Pat[5] \neq Pat[2]$ und es kommen nur noch die Buchstaben b und c für Pat[2] in Frage. An Position 2 steht eine -1, d.h. wir waren links davon nicht erfolgreich, weil entweder kein erfolgreicher Missmatch-Test vorlag oder aber die Parallelverschiebung nicht funktioniert hat. Angenommen wir hätten mit Position 1 keinen erfolgreichen Missmatch-Test, aber einen erfolgreichen mit Pat[0], dann müsste Pat[2] = b gelten. Dann hätten wir aber einen erfolgreichen Missmatch-Test und dementsprechend (weil wir schon am linken Rand sind) schon eine gültige Position und es sollte Tab[2] = 0 gelten, was falsch ist (ist ja schon mit -1 gegeben). Also muss Pat[2] = c gelten. Warum passt das? Mit Position 1 ist der Missmatch-Test erfolgreich, beginnen wir mit der Parallelverschiebung, dann vergleichen wir Pat[1] mit Pat[0], was falsch ist. Damit kann $Tab[2] \neq 0$ gelten. Damit bleibt also nur noch -1, also passt das.

Position	0	1	2	3	4	5
Pattern	c	b	\mathbf{c}			a
Tabelle	-1	0	-1	1	0	2

Machen wir weiter mit Position 3. Wir müssen einmal weiter hinten schauen und lesen in der Tabelle an Position 5 eine 2 aus. Dementsprechend muss der Missmatch zwischen Position 5 und Position 2 vorliegen, was aber eher unwichtig ist. Viel wichtiger ist, dass die beiden Positionen links der 5 und links der 2 übereinstimmen müssen, damit während der Parallelverschiebung Matches auftreten. Somit muss also Pat[4] = Pat[1] = b und Pat[3] = Pat[0] = c gelten, sodass wir unsere beiden übrigen Plätze aufgefüllt haben.

Position	0	1	2	3	4	5
Pattern	c	b	\mathbf{c}	\mathbf{c}	b	a
Tabelle	-1	0	-1	1	0	2