2022-11-15

Per mappare i simboli in sequenze di bit, in una QAM, utilizziamo la mappatura di Gray per righe e per colonne:

Avendo quindi:

$$P(bit) \simeq rac{P(E)}{\log_2(M)}$$

(da notare la differenza della probabilità d'errore sul bit con la modulazione binaria)

QUANTIZZAZIONE

La quantizzazione è l'operazione di trasformazione istantanea che genera il campione $y_a(kT)$ in corrispodenza del campione in ingresso $y(kT) \in \mathbb{R}$

$$y_a(kT) \in A = \{a_1, \dots, a_L\}$$

con A alfabeto dei valori discreti

FUNZIONE CARATTERISTICA DEL QUANTIZZATORE

codifica di sorgente con perdita

QUANTIZZATORE UNIFORME

Abbiamo un errore granulare quando $y \in [-V_{sat}, V_{sat}]$ Abbiamo un errore di saturazione quando $y > V_{sat}, \ y < -V_{sat}$

GESTIONE DELL'ERRORE DI SATURAZIONE

- 1. Il segnale y è limitato in [-A,A]Scelgo $V_{sat}=A$ (non ho saturazione)
- 2. Se y non ha una densità di probabilità con un supporto finito, non posso impedire la saturazione.

A partire da una probabilità di saturazione data P_{sat} , scelto V_{sat} in modo da garantirla, risolvendo

$$P(y \not \in [-V_{sat}, V_{sat}]) \leq P_{sat}$$

Scelgo V_{sat} più piccolo che soddisfi la diseguaglianza

GESTIONE DELL'ERRORE GRANULARE

$$e_q \in \left[-rac{\Delta}{2},rac{\Delta}{2}
ight]$$

per l'errore granulare

Assumendo che il numero di livelli L sia grande, $\Delta=rac{2V_{sat}}{L}$ è piccolo.

$$P_y(a) \simeq P_y(a_i) \qquad a \in \left[a_i - rac{\Delta}{2}, a_i + rac{\Delta}{2}
ight]$$

 e_q uniforme in $\left[-rac{\Delta}{2},rac{\Delta}{2}
ight]$

$$E(e_q)=0$$
 $E(e_q^2)= ext{errore quadratico medio} \ =\int_{-rac{\Delta}{2}}^{rac{\Delta}{2}}P_{e_q}(a)a^2\,da \ =rac{\Delta^2}{12}$

RAPPORTO SEGNALE-RUMORE DI QUANTIZZAZIONE

$$\Lambda_q = rac{E(y^2)}{E(e_q^2)}$$

con $e_q=y-y_a$ e $y_q=y-e_q$

$$(\Lambda_q)_{dB} = 10 \log_{10}(\Lambda_q)
onumber \ \Lambda_q = rac{E(y^2)}{rac{\Delta^2}{12}}$$

 $L=2^b\ {
m con}\ b$ numero di bit usati per rappresentare ogni valore quantizzato

$$egin{aligned} \Delta &= rac{2V_{sat}}{L} \ &= rac{2V_{sat}}{2^b} \ &= V_{sat} \, 2^{1-b} \end{aligned}$$