W QB QB 82×1	Jat.
8 8 22-1 E	1
Date Sa MTWTFS 3 Castelli	1
1) In Tree representation of a 'n' element heap the height	
15 Olgn or Olgn. jestify your argum	
Let h= O(lan)	ga.
Since how is always a balanced tree box it holds	-
the property of CBT . We know that CBT grows	
from left to right and top to bottom. So there	0
is no chance for the impalaced free. There is no	-
possibility to decreese high from logn and	0
increuse from logn . So His wheight will always	
h. I leght so my while	_0_
be log n	-0
01.11.11.1.2.1.1.1.1.1.1.4.5	0
- Q largest and smallest number of internal rick in road-black trees	·
	_
The largest possible rumber of internal nule in RBT is	-0-
- 2 to 1 . Because in binary tree maximum number of	-
Notes ar 2 ^{h+1} -1 and in RBT with black	
height Ic has not most let level including rent	0
- and leaf lerels.	
The smallest is 2 -1 because when the	
internal nude have 2 blade children 50	9
wants so its value will 2 kgl. QB	0.
CA GA	~
FT 13	-
- O An array is filled with a clearer's representing proving	-0.
valve . Foure and hours it is alver and accept	0
values. Figure out whether it is privily great as not	0
we will deal with this allay T(n) = n so since tall of alray is already heap sos	
n/ => to chede max heap (n)=n/s +n/2	_6
My to check min how -O(n)	-0
19	

MITWIFIS Date @ when does worst-case running time of Quick sort happen? worst case of quick Sort will happon when q=1 0 9= n where q is random in dexa T(n)= T(n-2)+T(1) + O(n) O(n) = partining time Tin)=T(n-2)+(n+1)-1) T(n-2-2)+(n-2+1)= $T(n-4)+(n-1) \rightarrow pot in (i)$ = T(n-4) + (n-1) + (n+1) T(n-14) + & (n-i) +1 n-12=1 T(K+4) + 3 (n-i)+1 so total running time is

Date	(MT)WT[F[S]	Castelli	-
an conclude about the blace	in RBT is X	. what we	0
can conclude about the blace	k height of it	bith chillian.	
_ In RBT, every path from rout			00
- numbo of black nedg . It	a node hous bl	ack height	1
of x then its children r	nust also have	a black	
height afr. If one chil	lien have blace	k height	3
less than x it would vie	classe the reg.	Therefore	29
the black height of a N	ed a must house	e same	0
_ number of black height	for both ch	illien	4
@ Suppose you want to sort n no	umber each of va	lues Or and	-0
1, in away . Write hame	s of two asymp	Aicalle	0
efficit algorith and the	ir time	- 0	
		0	_
of each value in the or	country number	of aconera	_=
each value in the gradue in the gradue in its correct	position in	ATOM CHANG	-01
Calling of Court	4 GOIT 15 O(n).	-01
4 Chick Soft . This alogith	Im con 1.		8
sut array in O(nla case is O(n²) if p	n) time in a	ia . Werst	_
case is O(n2) if	pivet is not chos	on optimal.	7
Dest lose is O(n)	in this if pivo	it value is	
usee o.			
@ Show that logest puth from no	le x in RBT to a	ny Jesonlos	0
leaf has length and most twice	e that of slorte	it pash from	
In longest path atleast every	other node is bi	ack. In the	-
Shortest part, at most every not	e in Wack - Th	erefore	Ç
two path centains equal	number of black	knedes	-
the length of longest poli	4 is almost	furce	
			-4

given an unsorted array of n integers, a max heap of elements of A can be performed asympotically faster than building a RBT out of elements of A?

In general, building a max heap of n elements can be done in O(n) time, while building a red-black tree (RBT) from n elements takes O(n log n) time in the worst case. Therefore, for large values of n, building a max heap is asymptotically faster than building an RBT.

The reason for this difference in running time is that building a max heap can be done in linear time using the bottom-up neap construction algorithm, which starts from the leaves of the heap and works its way up to the root, adjusting the heap property as needed. On the other hand, building an RBT involves inserting elements one at a time into the tree, which can cause tree rotations and color changes to maintain the RBT properties, leading to a worst-case running time of O(n log n).

However, it's w
heap and an RB. Regenerate response
te between a max
use case and the

Send a message...

ChatGPT Mar 23 Version. Free Research Preview. ChatGPT may produce inaccurate information about people, places, or facts

Therefore, to ensure that the dynamic programming algorithm produces a globally optimal solution, we need to compare the solutions obtained by combining the optimal solutions to all subproblems and choose the one that maximizes or minimizes the objective function, depending on the problem. This step is typically performed using a recurrence relation or a table lookup in the dynamic programming algorithm. reduce in 2 to 4 lines

To ensure a globally optimal solution in a dynamic programming problem, we need to:

- 1. Use the optimal substructure property to break the problem into subproblems
- 2. Solve each subproblem optimally
- Combine the optimal solutions to all subproblems to obtain the globally optimal solution
- 4. This step is typically performed using a recurrence relation or a table lookup

Send a message...

ChatGPT Mar 23 Version. Free Research Preview. ChatGPT may produce inaccurate information about people, places, or facts

