# HUMAN MONOCLONAL ANTIBODY

Publication number: JP2002543822 (T) Publication date: 2002-12-24

Inventor(s): Applicant(s):

Classification: - international: G01N33/53: A61K39/395: A61P11/00: A61P31/14:

C07K16/10; C12N1/15; C12N1/19; C12N1/21; C12N5/10; C12N15/09; C12P21/08; G01N33/569; G01N33/577; G01N33/53; A61K39/395; A61P11/00; A61P31/00; C07K16/08; C12N1/15; C12N1/19; C12N1/21; C12N5/10; C12N15/09; C12P21/08; G01N33/569; G01N33/577; (IPC1-7): C12N15/09; A61K39/395; A61P11/00; A61P31/14; C07K16/10; C12N1/15; C12N1/19; C12N1/21; C12N5/10;

C12P21/08: G01N33/53: G01N33/569: G01N33/577

- European: C07K16/10F; G01N33/569K Application number: JP20000617922T 20000518

Priority number(s): US19990134702P 19990518; WO2000US13694 20000518

Abstract not available for JP 2002543822 (T) Abstract of corresponding document: WO 0069462 (A1)

This invention relates to novel human monoclonal antibodies (mAbs) and to the genes encoding same. More specifically, this invention relates to human monoclonal antibodies specifically reactive with an epitope of the fusion (F) protein of Respiratory Syncytial Virus (RSV). Such antibodies are useful for the therapeutic and/or prophylactic treatment of RSV infection in human patients. particularly infants and young children.

Data supplied from the esp@cenet database — Worldwide

WO0069462 (A1) P1178829 (A1)

🖺 EP1178829 (A4) AU5441000 (A) AR030019 (A1)

# (19) 日本国特許庁 (JP)

# (12) 公表特許公報(A)

(11)特許出願公表番号 特表2002-543822 (P2002-543822A)

(43)公表日 平成14年12月24日(2002, 12, 24)

| (51) Int.Cl.7 |        | 裁別記号 |      | FΙ      |         | 7        | 73(参考)    |
|---------------|--------|------|------|---------|---------|----------|-----------|
| C12N          | 15/09  | ZNA  |      | A 6 1 K | 39/395  | M        | 4 B 0 2 4 |
| A 6 1 K       | 39/395 |      |      |         |         | s        | 4 B 0 6 4 |
|               |        |      |      | A61P    | 11/00   |          | 4 B 0 6 5 |
| A 6 1 P       | 11/00  |      |      |         | 31/14   |          | 4 C 0 8 5 |
|               | 31/14  |      |      | C07K    | 16/10   |          | 4H045     |
|               |        |      | 審査請求 | 未請求 予付  | 葡審查請求 有 | (全 92 頁) | 最終頁に続く    |

| (21)出願番号     | 特順2000-617922(P2000-617922) |
|--------------|-----------------------------|
| (86) (22)出順日 | 平成12年5月18日(2000.5.18)       |
| (85)翻訳文提出日   | 平成13年11月16日(2001,11,16)     |
| (86)国際出願番号   | PCT/US00/13694              |
| (87)国際公開番号   | WO00/69462                  |
| (87)国際公開日    | 平成12年11月23日(2000.11.23)     |
| (31)優先権主張番号  | 60/134, 702                 |
| (32)優先日      | 平成11年5月18日(1999.5.18)       |
| (33) 優先権主張国  | 米国 (US)                     |

(71)出版人 スミスクライン・ビーチャム・コーポレイ ション SMITHKLINE BEECHAM CORPORATION アメリカ合衆国ペンシルベニア州19406-0933、キング・オブ・ブルシア、スウェー ドランド・ロード709番 (72)発明者 ミッチェル・エス・グロス

アメリカ合衆国19087ペンシルベニア州ウ ェイン、ピュー・ロード667番 (74)代理人 弁理士 青山 葆 (外1名)

最終頁に続く

(54) 【発明の名称】 ヒトモノクローナル抗体

# (57) 【要約】

本発明は、新規なヒトモノクローナル杭体 (m A b) ま よび該モノクローナル杭体をコードしている遺伝子に関 する。より幹細には、本発明は、R S ウイルス (R S V) の融合 (F) 蛋白質のエピトーブと特異的に反応す るヒトモノクローナル抗体に関する。かかる抗体は、E V 患者、特に幼児および幼い小さい子供におけるR S 感染の治療的および/または下筋的処理に有用である。 【特許請求の範囲】

【請求項1】 RSウイルスのF蛋白質エピトープと特異的に反応し、G $\lambda$ -1AおよびG $\lambda$ -1Bよりなる群から選択される談ウイルスによる感染を中和できるヒトモノクローナル抗体およびその機能的フラグメント。

【請求項2】 図3 配列番号2のL鎖アミノ酸配列および図4 配列番号4のH鎖アミノ酸配列を含む請求項1記載のモノクローナル抗体。

【請求項3】 図11 配列番号16によってコードされるL鎖アミノ酸配列および図10A-10B 配列番号15のDNA配列によってコードされるL鎖アミノ酸配列を含む請求項1記載のモノクローナル抗体。

【請求項4】 フラグメントがFv、FabおよびF(ab')<sub>2</sub>よりなる 難から選択される請求項1記載のモノクローナル杭体。

【請求項5】 (a) 請求項1~4のいずれか1項記載のヒトモノクローナル特体、改変情体およびCDRのいずれかをコードしている核齢配列:

ν抗体、改変抗体およびCDRのいずれかをコードしている核酸配列; (b)(a)におけるいずれかの配列に相補的な核酸;および

(c) ストリンジェントな条件下で請求項1~4のいずれか1項記載のCDR にハイブリダイズできる18以上のヌクレオチドの核酸配列 よりなる群から選択される単態核酸分子。

【請求項6】 図8A-8Fおよび9A-9E 配列番号13および14、または図10A-10Bおよび11 配列番号15および16の配列を含む請求項5記載の単離核酸分子。

【請求項7】 請求項5または6のいずれか1項記載の核酸配列を含む組換 えプラスミド。

【請求項8】 請求項7記載のプラスミドを含む宿主細胞。

[請求項9] 請求項8記載の宿主締胞を適当な温度およびp H条件下で始 地中において培養し、そのように生産された抗体を回収することを特徴とするR S V に特異的なとト抗体の生産法。

【請求項10】 RSVを含有する疑いのある供給源を診断上有効量の請求 項1記載のモノクローナル抗体と接触させ、モノクローナル抗体が該供給源に結 合するか否かを決定することを特徴とするRSVの検出法。 【請求項11】 ヒトに免疫治療上有効量の請求項1記載のモノクローナル 抗体を投与することを特徴とする、ヒトにおけるRSV疾患に受動免疫治療を提 供する方法。

【請求項12】 受動免疫治療が予防的に提供される請求項11記載の方法

【請求項13】 医薬上許容される担体中における免疫治療上有効量の請求 項1記載のモノクローナル抗体の少なくとも1投与量を含んでなる医薬組成物。

【請求項14】 免疫治療上有効量の請求項1記載のモノクローナル抗体の少なくとも1 投与量を少なくとも1 つの付加的なモノクローナル抗体と組み合わせて含んでなる医薬組成物。

【請求項15】 付加的なモノクローナル抗体がRSV F蛋白質抗原の異なるエピトープと反応性であることによって請求項1記載の抗体と区別される抗ーRSV抗体である請求項14記載の医薬組成物。

【発明の詳細な説明】

[0001]

(技術分野)

本発明は、新規なヒトモノクローナル抗体(mAb)および該モノクローナル 抗体をコードしている遺伝子に関する。より詳細には、本発明は、RSウイルス (Respiratory Syncytial Virus) (RSV) の融合 (F) 蛋白質のエピトーブ と特異的に反応するヒトモノクローナル抗体に関する。かかる抗体は、ヒト患者 、特に幼児および幼い子供におけるRSV感染の治療的および/または予防的処

[0002]

理に有用である。 (背景技術)

RSウイルス(RSV)は、子供における下部呼吸性疾患の主要な原因であり 、世界中の子供において細気管支炎および肺炎の予測可能な例年の流行をもたら す。該ウイルスは感染性が高く、いずれの年齢でも感染が起きる可能性がある。 RS V感染およびその臨床的特徴に関する包括的な詳細は、"Respiratory Syncy tial Virus", Ch. 38, B.N. Fields ed., Raven Press (1990)においてMcIntosh . K.およびR. M. Chanock、および"Textbook of Pediatric Disease" Feigin an d Cherry, eds., W.B. Saunders, pgs 1247-1268 (1987)において Hall, C.B.に よる優れた近年の報告から得ることができる。

[0003]

RSVは世界中に分布している。RSVウイルスの疫学の最も顕著な特徴の一 つは、上記のように、感染および疾患の一貫したパターンである。他の呼吸性ウ イルスは、不規則な間隔で流行病を引き起こすか、または混成した流行病/流行 病パターンを示すが、RSVは、大都市中心において毎年かなり大きな流行をも たらす唯一の呼吸性ウイルス病原体である。世界の温帯地域において、RSV流 行病は、晩秋、冬または春に主に起こるが、夏には決して起こらない。コミュニ ティー内での感染の発生および蔓延は特徴的であり、容易に診断され、細気管支 炎および小児肺炎ならびに急性下気道疾患を有する幼い子供の入院数においてシ ャープな上昇をもたらす。大発生が起こる他の呼吸性ウイルス物質は、RSVと

#### 同時期にめったに存在しない。

# [0004]

一次RSV感受社非常に効年において起こる。0-2才の効児が最も罹患しや すく、一次罹患集団を代表する。該群において、5人のうち1人が感染において 下部呼吸 (環頭下) 疾患を発育し、この比率は再感象において同様である。自然 感染の結果として、1歳までに25-50%の効児が特異的抗体を有し、これは 4-5歳までに100%に近付く。したがって、実際、就学前に全ての子供が感 やする。

# [0005]

年輸、性別、社会経済および収縮的要因は全て、疾患の重態度に影響を及ぼし うる。RSV感染ケースの1-3%において人院が必要となり、遺産、長期間( 3週間まで)である。RSV感染の特に効年期における高い極患中は、また、後 年、呼吸性の問題の発生に関係する。米国および他の先進国における現行の集中 治療によると、正常対象に関する全死亡率は低い(人院対象の29米末満)。しか しながら、あまり発展していない国における死亡率は非常に高く、また、先命 があいてでも、心臓病(チアノーゼ性先死的心臓病)または呼吸性疾患(気管支 削形成異常症)下にある効児におけるようなある特定の危険性のある群において 死亡率が高い、例えば、チアノーゼ性先死的心臓病の効児における死亡率は3 %に学の高さであると報告されている。未熟な効児において、RSV感染のため に無呼吸別間が起こり、稀な場合、神経学的または全身性損傷を引き起こしうる 。重然な下気症患(無な質を支おび肺炎)は、6ヶ月以の患者においる最 も一般的である。酸疾患から見たところ完全に回復したらしい効児は、何年もの 間、呼吸性患常の徴候(頻発する暗鳴、肺機能の低下、頻発する咳、喘息および 気管支炎と表でよりる。

# [0006]

RSVに対する免疫は短命であるらしく、したがって再感染が頻発する。免疫 系がRSV液染および再感染を保護する機構はよく理解されていない。しかしな がら、再感染が全ての年齢においてよく起こり、5か、幼児において一次感染か ら回復したほんの数週間後に起こるので、免疫が部分的にだけ保護するというこ とは明らかである。成人ならびに実常に小さい効果においてRSV麽像に応答して、血清および分泌抗体 (Ig A) の両方が検出された。しかしながら、ウイルス性ドまたはむ糖蛋白質に対する血清抗体、ならびに効果 (1-8ヶ月) に見られる中和抗体の力価は、より満齢の対象において見られる力価の15-25%である。これらの低い力価は、より効い子供における重篇を感染の発生率の増加に寄与しうる。

#### [0007]

RSVウイルスに対する保護における血清抗体の登割の証拠は、按学的ならび に動物研究から明らかになった。該ウイルスに自然に聴露される成人において、 感染性は低流清抗体レベルとよく相関した。幼児において、母性伝揮した抗体の が値は直薄な疾患に対する耐性と相関する (Glezen、W.P. ら、J. Pediatr. 98: 708-715 (1981))。他の研究は、下気道疾患の発生率および重強度が高い血清抗 体の存在において減少すること (MeIntosh, K. ら、J. Infect. Dis. 138: 24-32 (1978)) および受動的に投与された血清中和抗体の高い力価がRSV感染のコ トンラットモデルにおいて保護的であることを示したこと (Prince, G.A. ら、Vi rus Res. 3: 198-206 (1985) を示す。

# [0008]

細胞性免疫を欠く子供は、正常な免疫系を有する子供とは対照的に、感染を抑えることができず、何か月もの間ウイルスを有する。同様に、RSVウイルスで感染させたスードマウスは、持続的にウイルスを有する。これらのマウスは、感作工無胞の妻子移入によって治療できる(Cannon, M.J. 6、Immunology 62: 133-138 (1987))。

# [0009]

要約すると、細胞性および体液性免疫はどちらも、感染、再感染およびRSV 疾患に対する保護に関与するようであり、抗原性変量は制限されるが、複数の曝 髂後でさえ保護免疫は完全ではないようである。

#### [0010]

パラミオクソウイルス科 (paramyoxoviridae) に属するRSVは、パラミクソ ウイルス (paramyxovirus) と同様の特性を有するマイナス鎖非断片化RNAウ 

# [0011]

R S Vit. 2つの抗原性が別個のサブグループ、 (A&B) に分けることができる (Mufson, M.A. b., J. Gen'l, Virol. 66: 2111-2124 (1985))。 該抗原性 二形性は、主として表面付着 (G) 精蛋白質に結合する (Johnson, R.A. b., Proc. Nat'l, Acad. Sci. USA 81: 5625-5629 (1987))。 A3±10日両節の系統は、同時に循環するが、各集団は年々、予測不可能に変化しうる。したがって。効果的な治療は、該ウイルスの両サブグループを標的としなければならず、このため、後に議論されるように、m.A.b.治療の標的抗原として高く保存された表面融合 (F) 蛋白質を選択する。

# [0012]

RSVウイルスに対する中和抗体の誘導は、FおよびG表面構張白質に限定されるようである。これらの2つの蛋白質のうち、F蛋白質は、RSVウイルスの 異なる系統に対する保護と関連した交差反応性中和抗体の主要な標的である。さ らに、マクスまたはコトンマウスのF蛋白質での実験的予防接種もまた、交差保 護をもたらす。ウイルスの系統およびサブグループを交差するF蛋白質の抗原性 の関係はアミノ酸レベルの高度な相同性において反映される。対照的に、RSV の2つのサブグループおよび種々の系統において、抗原二形性は主としてG糖蛋 白質に関連付けられる。F蛋白質は、予測分子量68-70kDa;そのN末端 にシグナルペプチド; C末端に膜アンカードメインを有し、ビリオンアセンブリ -の前に感染細胞において蛋白質分解的に分裂してジスルフィド結合したF。お よびF,を生じる。5つの中和エピトープがF蛋白質配列(配列番号20)内に 同定され、205-225;259-278;289-299;483-488 および417-438残基に位置決定された。F蛋白質(配列番号20)におけ る配列変化の頻度を決定するための研究は、中和エピトープの大部分がオースト ラリア、ヨーロッパおよび米国の地域において30年間にわたって単離された2 3系統のRSVウイルスの全てにおいて保存されていたことを示した。別の研究 において、サブグループAまたはサブグループB系統での一次感染に対する43 人の幼児および幼い子供の血清応答は、同種および異種F抗原に対する応答が有 意に異なるものではなく、一方、サブグループAおよびB系統のG蛋白質は全く 無関係であったことを示した。さらに、イン・ビトロでのウイルス媒介性細胞融 合の抗体阻害対感染の阻害は動物モデルにおける保護と最もよく相関し、融合阻 害は主にF蛋白質特異的抗体に限られる。

【0013】
したがって、RSV感染の予訪的処理は、高い危険性のある子供の群ならびに
発展途上国の全ての子供について望ましい。しかしながら、RSV感染のための
ワクチンは、現在、入手できない。1960年代に試験された被弱した全ウイル
スワクチンを助り開始安全性が厳しくなり、ならびにより新しい候待サンマート
アクチンの見通しが遠いことを明らかにする。今までのところ、10乗物療法、縦に
い範囲の抗プイルス性であるリンドリン (Khuwirin) が認可された。リッピリンは、投与、穏かな毒性および疑わしい効力の問題のために最小限の容認を獲得
したにすぎない。大多数の場合、入院した子供は果物療法を受けず、非常に高価
な集中的支持機能があるを受ける、RSV感染の形像のための全て効果的かつ容

易に投与される薬物に対する要望があることは明らかである。

#### [0014]

ヒトにおける受動的抗体被退の使用は、よく構告されており、肝疾およびサイトメガロウイルスのような他の感染性疾患を治療するために用いられている。R SVに対する受動的抗体治療/予防の可能性は、動物モデルを用いてよく確立された。R S V を包含する感染性物質に対する動物における初期の受動的移入研究のほとんどは、ネズミmABを利用した。動物における研究は、明らかに、F および6糖蛋白質の両方に対するボリクローナルおよびモノクローナル抗体が予防的または冷療的に多くられた場合にR S V ウイルス感染において交動的保護を授与できることを証明した(Princeら、前掲)。これらの研究において、中和F またはG mAbのマウス、コトンラットまたはサルへの受動的移入は、肺におけるR S V ウイルスの複製を有窓に減少するか、または完全に防止する。しかしながら、上泥のように、明らかに、F 蛋白質は抗体療法のより重要な傾的である。

# 【0015】 近年、FDAは、プールしたヒト血清から単離された静脈内ガンマグロブリン

(IVIG) の使用を認可した。該研究の最初の報告が奨励されてきた(Grooth uis, J.R.ら、Antimicrob. Agents Chemo. 35(7): 1469-1473 (1991))。しかしながら、IVIGの一般的な欠点が存在し、制限するものではないが、かかる生産物はとト血液由来であり、有効投与量を達成するためには、しばしば何グラムもの流体が遅りされなければならないという事実を包含する。

# [0016]

別法では、モノクローナル抗体が使用された。かかるアプローチの利点は:よ り高濃度の特異的抗体が達成でき、それにより喪与されるべきグロマリンの量を 減少できること;直接的な血液生産物への依存を排除できること; 調製物中の抗 体のレベルをより均一に調節できることおよび投与経路を広げることができるこ とを包含する。異種(例えば、ネズミ)由来のモノクローナル抗体を用いる受動 的免疫療法が極寒されたが(PCT出願等PCT/US94/08699号、公 開番号第WO95/04081号を参照のこと)、外来抗体に対して向けられた 患者の一部における望ましくない免疫応答の危険性を減少させるための1の選択 肢は、「ヒト化」抗体を使用することである。これらの抗体は、実質的にヒト起 源であり、非ヒト起源の相補性決定領域 (CDR) だけを有する。該アプローチ の物に有用な例は、PCT出版第PCT/GB91/01554号、公陽番号第 WO92/04381号およびPCT出版第PCT/GB93/00725号、 公開番号第WO93/2021日 号に開示されている。幼い子供におけるRSV 総染の治療のためのヒト化抗体の効力を評価するための臨床は酸は逃行中である

[0017]

第2およびより好ましいアプローチは、完全ヒトmAbを使用することである。不運にも、伝統的なハイブリドーマ技術によるヒトモノクローナルが休の製造における成功例はほとんどない。実際、許容されるヒト機合パートナーは同定されておらず、ネズミミエローマ融合パートナーはヒト細胞とよく作動せず、不安定で低生産量のハイブリドーマ素絵を生じる。しかしながら、分子生物学および免疫学における近年の進歩がこの度、ヒトmAB、特に外来感染性物質に向けられたヒトmABを単離することを可能にした。

れたヒトmABを単離することを可能にした。 【0018】

RSV F蛋白質(配列番号20)に対する完全ヒトmAbは、談疾患の治療に望ましい選択を残している。かかるmAbのフラグメントの取得におけるいくつかの成分例が報告されたが(Barnbas, C.F. 6、Proc. Nat'l. Acad. Sci. USA 99: 10164-10168 (1992); Crowe, J.E. 6、Proc. Nat'l. Acad. Sci. USA 91: 1386-1390 (1994)および1994年3月31日に公開番号第WO94/06448号として公開590(1994)および1994年3月31日に公開番号第WO94/06448号として公開590(1984)および1994年3月31日に公開番号第WO94/06440。

当該分野において、RSVの予防または受動的治療に有用な予防的組成物に対 する要望が存在する。

[0019]

(発明の開示)

発明の簡単な記載

1 の態様において、本発明は、RSVのF蛋白質エピトープと特異的に反応し、RSV感染を中和できる完全ヒトモノクローナル抗体およびその機能的フラグメントを提供する。RSVウイルスのF蛋白質に特異的なこれらのヒトmABは、感染を受動的に治療または予助するのに有用でありうる。

[0020]

もう1つ別の態様において、本発明は、ヒト抗体配列のランダムコンピナトリ アルクローニングによって生産され、繊維状ファージFabディスプレーライブ ラリーから単離されるRSVのF蛋白質に特異的な中和一本鎖Fvフラグメント (scFV) に修飾を提供する。

またもう1つ別の態様において、第1のヒトドナー由来のヒト日およびL鎖不 変領域および第2のヒトドナーから由来のRSVのF蛋白質に対するヒト中和モ ノクローナル抗休由来の日およびL鎖可変領域またはそのCDRを含有する新形 態 (reshaped) または改要抗体が提供される。

[0021]

さらにもう1つ別の態様において、本発明は、1 (またはそれ以上) の改変または新彩態抗体および医薬上許等される担体を含有する医薬組成物を提供する。 さらにもう1つ別の態様において、本発明は、少なくとも1投与量の免疫治療上有効量の本発明の新彩態、改変またはモノクローナル抗体を少なくとも1つの付加的なモノクローナル、改変または新彩態抗体と組み合わせて合んでなる医薬組成物を提供する。付加的な抗体が、本発明の対象抗体とは異なるRSV F蛋白質抗原のエピトープと反応することによって本発明の対象抗体と区別される抗ーRSV抗体である特定の具体例が提供される。

[0022]

さらなる態様において、本発明は、RSV感染の予防的または治療的処理に有効な量の本発明の医薬組成物をヒトに投与することによる、ヒトにおけるRSV 疾患の受動的免疫療法の方法を提供する。

さらにもう1つ別の態様において、本発明は、RSVのF蛋白質に対するヒト 中和モノクローナル抗体 (mAb) から由来のヒトおよび改変抗体 (例えば、操 作された (engineered 抗体、CDR、FabまたはF(ab)。フラグメント、またはその類似体)の組換え生産の方法および款組換え生産に有用な成分を提供する。これらの成分は、該抗体をコードしている甲離核酸配列、組換えブラスミドでトランスフェクトされる宿主細胞(好ましくは哺乳動物細胞)におけるそう必果現を指示することのできる歴史された調査利の制御下で試験配列を含有する組換えブラスミドを包含する。生産方法は、本発明のトランスフェクト宿主網 施系統をヒトまたは改変抗体が該細胞中で発現するような条件下で培養し、それから発現した生態物を目標さることを含れ、

# [0023]

本発明のまた別の態様において、生物学的流体の試料を本発明のヒト抗体および改変抗体およびそのフラグメントと接触させ、該ヒト抗体(または改要抗体、またはそのフラグメント)とRSVとの間の結合の出現についてアッセイすることを特徴とする、ヒトにおいてRSVの存在を診断する方法である。

本発明の他の態様および利益は、詳細な記載およびその好ましい具体例におい てさらに記載される。

# [0024]

発明の詳細な記載

本発明は、RSVのF蛋白質と反応する有用なヒトモノクローナル抗体(およびそのフラグメント)、該抗体をコードしている単離核酸およびそれらの組換え 生産のための種々の方法ならびにかかる抗体およびそのフラグメントの治療的、 予防的および診断的使用を提供する。

# [0025]

# I. 定義

本明細書および請求の範囲で使用される場合、下記の用語は次のように定義付されている。

「改変抗体」なる簡は、改変された免疫グロブリンコーディング領域によって コードされる蛋白質であって、選択された宿主細胞中における発現によって得ら れうる蛋白質をいう。かかる改変抗体は、免疫グロブリン不変領域の全てまたは 一部を欠く操作された抗体(例えば、キメラ、ヒト化、または衝形態もしくは免 疫学的にエディットされたヒト抗体)またはそのフラグメント、例えば、Fv、FabまたはF(ab')。などである。

[0026]

「改変された免疫グロプリンコーディング領域」なる語は、本発明の改変抗体 またはそのフラグメントをコードしている核酸配列をいう。

「新形態ヒト抗体」なる語は、第1のヒトモノクローナルドナー抗体由来の最少で少なくとも1つのCDRが第2のヒトアクセプター抗体中のCDRの代わりに用いられている改変抗体をいう。好ましくは、6個のCDR全てが歴奏されている。より好ましくは、第1のヒドナーモノクローナル抗体由来の全抗原結合領域(例えば、Fv、FabまたはF(ab')。)が第2のヒトアクセプターモノクローナル抗体中の対応する領域の代わりに用いられている。最も好ましくは、第1のヒトドナー由来のFab領域が第2のヒトアクセプター抗体の適当な不変領域に作動可能に連携して、全長モノクローナル抗体を形成する。

[0027]

「第」の免疫グロブリンパートナー」なる語は、天然(または天然で生じる) CDRーエンコーディング領域がドナーヒト流体のCDRーエンコーディング領域によって置換されているヒト枠組み構造またはヒト免疫グロブリン可変領域をコードしている核酸配列をいう。ヒト可変領域は、免疫グロブリン行動、上鎖(または両方の動)、その類似体または機能的フラグメントであることができる。 抗体(免疫グロブリン)の可愛領域内に位置するかかるCDR領域は、当該分野で既知の方法によって決定できる。例えば、Kabatら(Sequence of proteins of Immunological Interest, 第4版、U.S. Department of Health and Human Services、National Institutes of Health (1987))は、CDRを位置決定するための規則を開示する。さらに、CDR領域(構造を同定するのに有用なコンピュータープログラムが知られている。

[0028]

「第2の融合パートナー」なる語は、それに対して第1の免疫グロブリンパートナーがフレーム内でまたは任意の慣用的なリンカー配列の手段によって融合される(すなわち、作動可能に連結された)蛋白質またはペプチドをコードしてい

るもう1つ別のスタレオチド配列をいう。好ましくは、離合バートナーは、免疫 グロブリン遠伝子であり、そのような場合、「第2の免疫グロブリンパートナー という。第2の免疫グロブリンパートナーは、同じ (†なわち、同種・第1 お よび第2の党変抗体が同じ供給額由来である)または付加的な (†なわち、具種 の)目的の抗体の全不変領域をユードしている技術を別を包含しうる。それは、 免疫グロブリンと目鎖または1歳 (または単一ポリペプチドの一部としての両鎖) でありうる。第2の免疫グロブリンパートナーは、特定の免疫グロブリン/ラス またはイン型に限定されない。さらに、第2の免疫グロブリンパートナーは、ド ab、または1 (ab)。に見られるように、免疫グロブリンパを領域の一部 含みうる (†なわち、適当なヒト不変領域または枠組み構造領域の分離した部分 )。第2の融合パートナーはまた、宿主細胞の外表面上に露出した腹外住性質り、 資をコードしている配列を例えば、ファンヴィスタレーライブラリーの一部と して、または分析的または診断的検出のための蛋白質、例えば、西洋ワサビペル オキンダーゼ (HRP)、βーガラクトシダーゼなどをコードしている配列を例え

# [0029]

Fv、Fc、Fd、Fab、Fab、またはF(ab')<sub>2</sub>なる語は、それらの標準的な意味で用いられる。(例えば、Harlowら、"Antibodies A Laboratory Manual'、Cold Spring Harbor Laboratory、(1988)を参照のこと。)

本明細書で使用される場合、「操作された抗体」なる語は、改変抗体の型、すなわち、全足の合成抗体 (例えば、抗体フラグメントとは対照的に、キメラ、ヒト化抗体、新能量また自免費学的にエディットされたヒトが体)であって、ここに、選択されたエピトーブに対して特異性を有する 1 以上のドナー抗体の顕鋭総分によって置換されたエピトーブに対して特異性を有する 1 以上のドナー抗体の顕鋭総分によって置換されたいる抗体を示す。例えば、かかる分子は、非移飾上側、銀 たはキメラ1 側)と結合したヒト化日鎖またはその逆によって特徴付けられる抗体を包含しうる。操作された抗体はまた、ドナー抗体結合特異性を保持するために、アクセブター抗体1 および/または1 側 可変 ドメイン特組み構造領域をコードしいる核機能列の改変によって特徴付けられる。 これらの抗体に、アクセブター・大体におきが表情が

一抗体由来の1以上のCDR(好ましくは全て)の本明細書に記載のドナー抗体 由来のCDRによる置換を含むことができる。

[0030]

「キメラ抗体」なる語は、異種の種由来のアクセプター抗体から由来のLおよ び日鎖不変領域と結合したドナー抗体から由来の天然に生じる可変領域(L鎖お よび日鎖)を含有する操作された抗体の型をいう。

「ヒト化統体」なる語は、非ヒトドナー免疫クロプリンから由来のそのCDR を有し、分子の残りの免疫グロプリン由来部分が1以上のヒト免疫グロプリンか ら由来である操作された抗体の型をいう。さらに、枠組み構造支持発基は、結合 プフィニティーを保存するように改変されうる (例えば、Queenら、Proc. Nat'1 . Acad. Sci. USA, 86, 10029-10032 (1989), Bodgsonら、Bio/Technology, 9, 421 (1991)を参照のこと)。

[0031]

「免疫学的にエディットされた抗体」なる語は、エディットされた抗体で治療 されるべき患者において抗体に対する免疫学的応答の可能性を減少させることを 目的としたクローニング人工産物、生殖細胞系増強などに関する領域をエディッ トするようにドナーおよび/またはアクセプター配列において変化を起こした操 作された抗体の型をいう。

[0032]

「アクセプター抗体」なる語は、そのHおよび/またはL鎖枠組み構造領域お

よび/またはその日および/またはし鎖不要領域をコードしている核酸配列の全 て (またはいずれか一部、好ましくは全て)を第一の免疫グロブリンパートナー に与える、ドナー抗体に遺伝学的に無関係の供給額由来の抗体(モノクローナル または組換え)をいう。好ましくは、ヒト抗体はアクセプター抗体である。

[0033]

「CDR」なる語は、免疫クロブリン日およびL職の超可変削減である抗体の 相補性決定領域アミノ酸配列として定義される(例えば、Kadatら、Sequences of Proteins of Immunological Interest、第4版、U.S. Department of Health and Husan Services, National Institutes of Health (1987)を参照)。免疫グ ロブリンの可変部分において3つの日鎖および3つのし鎖CDR領域、またはC DR領域)がある。したがって、本明細音で使用される場合、「CDR」なる語 は、3つの日鎖CDRの全て、または3つのし鎖CDRの全て(または適当なら は、全日および全上第CDRの両方)をいう。CDRは、抗原またはエピトープ に対する抗体の結合のためのかく量の接触残器を提供する。本発明における目的の CDRは、ドナー抗体の関係のはまた、それらが由来するドナー抗体と同じ抗原結 台級似体を包含し、その類似体はまた、それらか由来するドナー抗体と同じ抗原結 台特異性および少または平和能力を共有または保持する。

[0034]

「抗原結合特異性または中和協力を共有する」なる語は、例えば、Fab G  $\lambda - 1$  はある特定のレベルの抗原アフィニティーによって特徴付けられるが、遺化素構造機能においてFab G  $\lambda - 1$  はある特定のレベルの抗原アフィニティーを有する可能性があることを意味する。にもかかわらず、かかる環境においてFab  $G\lambda - 1$  のG DRは、無係Fab G  $\lambda - 1$  と同じエドーブを記録するであるうことが手想される。「機能的フラグメント」は、そのフラグメントが由来する抗体と同じ抗原結合特異性および/または中和能力を保持する、部分的日または1 類可変配列(例えば、免疫グロブリン可変機故のアミノまたはカルボキシ末端での少量の大乗)である。

[0035]

「類似体」は、少なくとも1つのアミノ酸によって修飾されたアミノ酸配列で

あり、ここに、該終節は、化学的終節であることができ、または2、3 偏のアミ 力酸(けなわち、1 0 個未満)の置換または再起置であることができ、その終節 は、該アミノ煙配列が非終節制の生物学的特徴、例えば、抗取得異性および高 アフィニティーを保持することを可能にする。例えば、ある種のエンドヌクレア 一ゼ制度部位をCDR-エンコーディング領域内または周囲に作成する場合、置 機によって(サイレント) 架を製を構を対することができる

#### [0036]

類似体は、また、対立遺伝子要異として生じてもよい。「対立遺伝子要異また は修飾」は、本発明のアミノ酸またはベプチド配列をコードしている核酸配列に おける改要でもあ。かかる要異または修飾は、遺伝コードの縮重に起因するか、 または、所望の特徴を提供するように故意に操作されるものである。これらの変 異または修飾は、いずれかのコードされたアミノ酸配列における改変を生じても 生じなくてもよい。

#### [0037]

「エフェクター剤」なる語は、改変抗体、および/またはドナー抗体の天然もしくは合成のしまたは日類あるいはドナー抗体の他のフラグメントが常法により結合しろう無り直倒担体分子をいう。かかる事態自復担体は、診断分野において使用される慣用的な担体、例えば、ポリスチレンまたは他のプラスチックビーズ、多糖類、例えば、BIAcore(Pharmacia)システムにおいて使用されるような多糖類、または医学分野において有用であって、ヒトおよび動物への投サに安全な他の升蛋白質物質を包含することができる。他のエフェクター剤は、重全風原子または放射性同位体をキレートするための大環状環を包含しうる。かかるエフェクター剤、例えば、ポリエチレングリコールは、また、改変抗体の半減 刺を増加するのに有用でありうる。

# [0038]

# II. コンピナトリアルクローニング

上記のように、いくつかの問題が、ハイブリドーマ技術のヒトモノクローナル 抗体の作成および単離への直接的応用を阻害してきた(G. KohlerおよびC. Mils tein, Nature, 256: 495-497 (1975))。これらのなかでも、ハイブリドーマ細 臨系統を形成するために用いられる適当な融合パートナーミエローマ細胞系統が ないことならびに形成された場合でもかかるハイブリドーマの安定性が乏しいこ とである。これらの欠点は、末梢循環におけるウロスキ異的B細胞の不足のた め、RSVの場合においてさらに悪化する。したがって、コンピナトリアルクロ ーニングの分子生物学的アプローチが好ましい。

[0039]

コンピナトリアルクローニングは、一般的に、PCT公開第WO90/14430号に開示されている。簡単に言えば、コンピナトリアルクローニングの目的は、細菌細胞の集団にヒト細胞、組織または器官の免疫学的遺伝子キャパシティーを移入することである。免疫遺俗性の細胞、組織または器官を用いることが好ましい。特に有用な供給源は、限定するものではないが、脾臓、胸腺、リンパ節、骨髄、扁桃および末梢血リンパ球を包含する。細胞は、イン・ピトロでRSVによって刺激されていてもよく、または免疫応答を生じたことがわかっているドナーもしくはHIVャであるが無症候性のドナーから選択されらる。

[0040]

ドナー細胞から単離された遺伝子情報は、DNAまたはRNAの形態であることができ、都合のよいことには、ポリメラーゼ連鎖反応(PCR)または同様の 技術によって消滅される。RNAとして単値される場合、遺伝子情報は好ましく は、増幅前に逆転写によって。DNAに変換される。増幅は総合的であるかまた はより詳細に調整されることができる。例えば、PCRプライマー配列の注意探 い選択によって、免疫グロブリン遺伝子または遺伝子のクラス内のサブセットの 選択的指慮を速度かることができる。

[0041]

いったん成分遺伝子配列、この場合、種々の日およびL抗体額の可能輸続をコードしている遺伝子を得たならば、Lおよび日積遺伝子をランダムな組み合わせで結合してランダムコンピナトリアルライブラリーを形成する。コンピナトリアルクローニングを容易にするための種々の組換えDNAペクター系が記載されている(例えば、PCT公開第WO90/1443の前接)ScottおよびSmith、Scottのこの1945年6日にの249:886-406 (1990)または米国特許第5 2 2 3 4 0 9 号参照)。コンピ

ナトリアルライブラリーを作成すると、発現後、都合のよいことには生産物をR SV F 蛋白質でパイオパンニングすることによって、または必要ならば、より 詳細に下記するようなエピトーブ連斯パイオパンニングによってスクリーンでき る。

本明細書に記載するように、コンピナトリアルクローニングおよびスクリーニ ングには1本報抗体を使用することが好ましく、次いで、所望の候補分子の選択 後に、それらを全長mAbに変換する。しかしながら、mAbのFabフラグメ シトもまた、クローニングおよびスクリーニングに使用することができる。

# [0042]

III. 抗体フラグメント

本発明は、RSVのF蛋白質に向けられた誘導全長mAbに対する s c F v 、F a b またはF (a b ')  $_2$  フラグメントの使用を意図する。これらのフラグメトは独立して、RSV一様介性伝状に対するイン・ビボでの保護的および治療 的物質としてまたはRSV診断の一部としてイン・ビトロで有用でありうるが、それらは、新形態とト抗体の成分として本明細書において使用される。a c F v フラグメントは、 L ーリンカーー H 配向のいずれかにおいて約1 2 アミノ酸のリンカーによって連結された L および H 頭 可愛報報を含有する。F a b フラグメントは、全 L 鎖と日鎖のア アミノ来熔部分を含有し;F (a b')  $_2$  フラグメントは、全 L 鎖と日鎖のア アミノ来熔部分を含有し;F (a b ')  $_2$  フラグメントは、かして約3 とりがある。RSV 結合を 2 つの F a b フラグメントはが応されたフラグメントである。RSV 結合を 2 つの F a b フラグメントは対応的なジスルフィド結合によって結合された 2 つの F v または F a b フラグメントの供給源を提供する (例えば、Winter b、Ann. R ev . Immanol., 12: 433-455 (1994)または B arbs b、Proc. Nat'l. Acad. Sci. (USA) 89, 10164-10168 (1992)参照、どちらもこれにより、出典明示により全体として組み込まれる)。

# [0043]

IV. 目的の抗-RSV抗体アミノ酸およびヌクレオチド配列

 $FabG\lambda-1$ または本明細書に記載の他の抗体は、ドナー抗体の抗原結合 特異性によって特徴付けられる種々の改変抗体の設計および獲得に有用な配列、 例えば、可変日および/またはし鎖ペプチド配列、枠組み構造配列、CDR配列 、機能的フラグメント、およびその類似体、およびそれをコードしている核酸配 列を与えうる。

# [0044]

ー例として、このように本発明は、RSVヒトFab Gλ−1 A由来の可変 L鎖および可変日類配列およびぞれから由来の配列を提供する。Fab Gλ− 1 Aの日頻可変領域は、図4、8 A−8 Fおよび10 A−10 B(配列番号3− 4、13 および15) に示される。

# [0045]

可変上機および日銀ペプチド配列をコードしている本発明の核酸配列またはそ のフラグメントは、また、CDRまたは枠組み構造機をコードしている核酸配 列内における特定の変化の突然変異誘発性導入、および発現用プラスミド中への 得られた修飾または融合破酸配列の組み込み上右用である。例えば、枠組み構造 およびCDR-エンコーディング領域のヌクレオチド配列におけるサイレント屋 機は、突然変異を超こさせたCDR(および、または枠組み構造)領域の挿入を 存易にする制限機索部位を作成するために使用することができる。これらのCD R-エンコーディング領域は、本発明の新形態とト抗体の構築に用いてもよい。

# [0046]

遺伝コードの稲重を考慮して、本発明の可変日およびL鎖アミノ酸配列および CD R 配列ならびにドナー抗体の抗原特異性を実有するその機能的フラグメント および類似体をコードする種々のコーディング配列が構築されうる。可変観ペプ チド配列またはなD R をコードしている本発明の単離核酸配列またはそのフラグ メントは、第2の免疫グロブリンパートナーと作動可能に結合される場合、改変 状体、例えば、キメラまたはヒト化抗体、または本発明の他の操作された抗体を 生産するために使用することができる。

## [0047]

本明細書に記載の改変抗体の一部をコードしている単離核酸配列のほかに、天 然CDRーエンコーディング配列に相補的な配列またはCDRーエンコーディン グ領域の周囲のヒト枠組み構造領域に相補的な配列のような他のかかる核酸配列

# [0048]

V. 改変された免疫グロブリンコーディング領域および改変抗体

改変された免疫グロブリンコーディング領域は、キメラ抗体、ヒト化、新形態 および免疫学的にエディットされたヒト抗体のような操作された抗体を包含する 改変抗体をコードする。所望の改変された免疫グロブリンコーディング領域は、 アクセプター免疫グロブリンバートナー中に挿入される、RSV抗体、好ましく は、本発明によって提供されるような高アフィニティー抗体の抗原特性を有する ペプチドをコードするCDRーエンコーディング領域をscFv領域の形態で含 右する。

#### [0049]

アクセブターが免疫グロブリンパートナーである場合、上配のように、それは 、目的の第2の抗体領域、例えば、Fc 領域をコードしている配列を包含する。 免疫グロブリンパーナーは、また、それに対してしまたは日鎮不変領域がフレ ム内でまたはリンカー配列の手段によって融合する別の免疫グロブリンをコー ドしている配列を包含しうる。RSVの機能的フラグメントまたは類似体に向けられた操作された抗体は、同じ抗体との強化された結合をもたらすように設計されていてもよい。

[0050]

免疫グロブリンパートナーは、また、免疫グロブリンパートナーが常法により 作動可能に連結されうる非蛋白質担体分子を包含する上記のエフェクター剤と結 合していてもよい。

免数グロブリンバートナー、例えば、抗体配列とエフェクター剤との間の融合 または結合は、いずれかの適当な手段によって、例えば、慣用的な共有結合また はイオン結合、蛋白質融合。またはヘテロー二官健性交差リンカー、例えば、カ ルボジイミド、グルタルアルデヒドなどによるものであってもよい。かかる技術 は当該分野で既知であり、従来の化学および生物化学テキストに容易に記載され ている。

[0051]

さらに、単に第2の免疫グロブリンパートナーとエフェクター剤の間に所望の 量の空間を提供するにすぎない慣用的なリンカー配列もまた、改変された免疫グ ロブリンコーディング領域中に構築されてもよい。かかるリンカーの設計は当業 者によく知られている。

さらに、本発明の分子のシグナル配列を発現を増加するように修飾してもよい。例えば、Fab GA-1H鎖配列由来のシグナル配列およびCDRを有する 新形態とト抗体は、キャンパス (Campath) リーダー配列のような別のシグナル 配列で置換された元のシグナルペプチドを有していてもよい (Page, M.J. 6、Bi ofechnolosy 9:64-68 (1991))。

例示的な改変抗体、新形態ヒト抗体は、第2のヒト抗体から由来の不変H領域  $C_{H-1}-C_{H-3}$ に融合した $FabG\lambda-1$ の抗原特異性を有する可変Hお よび全上鎖ペプチドまたは蛋白質配列を含有する。

[0052]

またさらなる具体例において、本発明の操作された抗体は、それに付加的な物質を接着させていてもよい。例えば、組換えDNA技術の手法を用いて、Fcフ

ラグメントまたは完全な抗体分子の $C_{H-2}C_{H-3}$ ドメインが酵素または他の 検出可能な分子(すなわち、ポリペプチドエフェクターまたはリポーター分子) によって置換された本発明の操作された抗体を生産してもよい。

本発明のもう1つ別の所望の強白質は、全長の日おおよびL類を有する完全な抗 体分子、またはそのいずれかの分離したフラグメント、例えば、FabまたはF (ab')  $_{2}$ プラグメント、例えば、F v 連続を プメント、例えば、F v または1本航抗体 (S C A) または選択されたドナーF ab  $G \lambda - 1$  と同じ集界性を有するいずれか他の分子を含んでいてもよい。か かる蛋白質は、改変抗体の形態で使用されてもよく、またはその非融合形態で使 用されてもよい。

# [0053]

免疫グロブリンパートナーがドナー抗体と異なる抗体、例えば、いずれかのイソ型または免疫グロブリン枠様和が売もしくは不要領域のクラス由来であるとき は必ず、操作された抗体が生じる。操作された抗体は、10余額 焼作された抗体が生じる。操作された抗体は、10余額 域、およびドナー抗体。例えば、本明細書に記載の括一RSV抗体由来の1以上 の(好ましくは、全ての)CDRを含むことができる。さらに、核酸またはアミ 、酸レベルにおけるアクセプター加入b しおよび/または日可変ドメイン枠組 み構造領域または下き。 大阪本が成立が表現れていたが、10分割 のが、10分割 の

#### Eのために作成されりる。 【0054】

かかる操作された抗体は、RSV mAb (記載のように修飾されていてもよい)の可要日および/またはL額の1つ (または両が)あるいは下記で同定される日またはL銀CDRの1以上を用いるように設計される。本名明の操作された休は、中和性であり、すなわち、それらは、図ましくは、RSV感染の動物モデルにおいてイン・ピトロおよびイン・ビボでウィルス増殖を阻害する。

# [0055]

かかる操作された抗体は、RSV抗体機能的フラグメントに融合したヒトHお

よびL原本要領域を含有する新形態とト抗体を包含しうる。適当なヒト (または他の動物) アクセプター抗体は、慣用的なデータベース、例えば、KABAT 『登験館制 データベース、Los Als mos データベースおよびSwiss Proteinデータベースから、ドナー抗体のヌクレオチドおよびアミノ酸配列に対するホモロジーによって選択されたものであってもよい。ドナー抗体の枠組み構造領域に対するホモロジー(アミノ酸に基づく)によって特徴付けるしたとト抗体は、ドナーCDRを構入するための日銀不変領域および/または日鎖可変枠組み構造領域を提供するのに適当でありうる。L鎖不変または可変枠組み構造領域を失えることのできる適当なアクセプター抗体は、同様に選択されうる。アクセプター抗体HおよびL鎖が同じアクセプター抗体から由来する必要がないことに注目すべきである。

[0056]

望ましくは、異種枠組み構造および不変領域をヒト免疫グロブリンクラスおよ びイソ型、例えば、IgG (4のうちサブタイプ1)、IgM、IgAおよびI gEから選択する。Fcドメインは、天然配列に限定されないが、機能を改変す る当該分野で既知の突然変異変種を包含する。例えば、突然変異は、ある特定の IgG抗体のFcドメインにおいてFc-媒介性補体およびFc受容体結合を減少させ (A. R. Duncanら、Nature, 332:563-564 (1988); A. R. DuncanおよびG. W inter, Nature, 332:738-740 (1988); M.L. Alegre 5, J. Immunol, 148: 3461-3468 (1992); M.-H. Taoら、J. Exp. Med. 178:661-667 (1993);およびV. Xuら 、I. Biol. Chem., 269:3469-2374 (1994)) : クリアランス率を改変し (I. K. Kimら、Eur、 I. Immunol., 24: 542-548 (1994)) : 構造的異種性を減少させる (S. Angalら, Mol. Immunol, 30: 105-108 (1993)) ことが記載された。また、 IgMの星部セグメントの付加または他の突然変異 (R.I.F. SmithおよびS.L. M orrison, Biotechnology 12: 683-688 (1994); R.I.F. Smith 5, J. Immunol., 154: 2226-2236 (1995)) あるいは I g A の尾部セグメントの付加 (I. Karivら、 J. Immunol., 157: 29-38 (1996)) による抗体のオリゴマー化のような他の修飾 が可能である。しかしながら、アクセプター抗体は、ヒト免疫グロブリン蛋白質 配列のみを含む必要はない。例えば、ヒト免疫グロブリン鎖のDNA配列エンコ ーディング部分がポリペプチドエフェクターまたはレポーター分子のような非免 疫グロブリンアミノ酸配列をコードしているDNA配列に融合している遺伝子を 構築してもよい。

[0057]

したがって、改変抗体は、好ましくは、天然ヒト抗体またはそのフラグメントの構造を有し、効果的な治療的用途、例えば、ヒトにおけるRSV媒介疾患の治療または診断的用途に必要とされる特性の組み合わせを有する。

改変抗体がさらに、ドナー抗体の特異性および高アフィニティーに決して影響 を及ぼすことなく、可変ドメインアミノ酸における変化によって修飾されうるこ とは、当業者に理解されるであろう(すなわち、類似体)。 日およびし鎖アミノ 酸が可変ドメイン枠組み構造またはCDRまたはその両方において他のアミノ酸 によって置換されうることは予想される。特に、本明細書における実施例に設明 されるように、かかる再構築された配列の免疫学的エディティングが好ましい。 【0068】

さらに、可変または不変領域は、上記のように、本発明の分子の選択的特性を 強化または減少するように改変されうる。例えば、2 量化、Fc 受容体への結合 、または補を結合し活性化する能力である(例えば、Angalら、Mol. Immunol. 、30: 105-108 (1993); Xuら、J. Biol. Chem. 269: 3469-3474 (1994);およて別 interら、EP 307, 434-P参照)。

かかる抗体は、下記のように、RSV媒介疾患の予防および治療に有用である

[0059]

VI. 改変抗体および操作された抗体の生産

本発明の得られる新形態にト抗体は、組換え宿主細胞、例えば、COS、CH のまたはミエローマ細胞において発現できる。 慣用的な発現ベクターまたは組換 えブラスミドは、改変抗体のこれものコーディング配列を宿主細胞中における複 製および発現および/または宿主細胞からの分泌を制御できる慣用的な調節配列 と作動可能に結合して配置することによって生産される。 調節配列は、他の妊如 の抗体から得ることのできるプロモーター配列、例えば、CMVプロモーター およびシグナル配列を包含する。同様に、根補的液体しまたは日顔をコードする DN A配列を有する第2条現ペックーを生産することができる。好ましくは、該 第2条現ペッターは、コーディング配列および選択マーカーが関係することを除 き、第1のペッターと同一である。これは、可能な限り、各ポリペプチド鎖が機 能的に発現されることを保証する。別法では、改要抗体の日およびし鎖コーディ ング配列は、単一ペックター上に発作しる。

[0060]

選択された宿主細胞は、債用的な技術によって、第一および第二のベクターと 同時トランスフェクトして(または単純に単一ペクターでトランスフェクトして )、組換えまたは合成しおよび日銀の両方を含む本発明のトランスフェクト領主 細胞を作成する。次いで、トランスフェクト細胞を慣用的な技術によって培養し て、本発明の操作された抗体を生産する。組換え日銀およびし歳の両方のアソン エーションを包含する抗体の生産は、周相解素免疫アッセイ(ELISA)また はラジオイムノアッセイ(RIA)のような適当なアッセイによって培養物中に おいて測定される。同様の慣用的な技術を用いて、本発明の他の改変抗体および 分子を構築してもよい。

[0061]

本発明の方法および本発明の組成物の構築において用いられるクローニングおよびサブタローニング段階に適当なペクターは、当業者によって選供されるうるの例えば、使用的なタロビシリーズのクローニングペクターが用いられる。例えば、低月的なタロビットでのターングペクターはリロC19であり、Amershom (Buckinghomshire, United Kingdom) またはPharmacia (Uppsala, Sweden) のような供給会社から市販されている。容易に整理でき、クローニングが化力はよび環状遺伝子 (例えば、抗変管で、分類を対している。な多点に製団で、クローニングペクターをクローニングに用いてもよい。したがって、クローニングペクターの選択は、本発明における制限的因子ではない。

[0062]

同様に、本発明による操作された抗体の発現に用いられるベクターは、いずれ かの慣用的なベクターから当業者によって選択されうる。好ましいベクターは、 例えば、pCDまたはpCNを包含する。ベクターは、また、選択された宿主細 施中における異種DNA配列の複製および発現を指示する選択された調節配列 ( 例えば、CMVプロモーター)を含有する。これらのベクターは、操作された抗 体または改変された免疫グロプリンローディング領域をコードする上記のDNA 配列を含有する。さらに、ベクターは、即應の操作に望ましい制度が促の挿入に よって修修された選択された免疫グロプリン配列を組み込んでいてもよい。

[0063]

発現ベクターは、また、異種DNA配列、例えば、哺乳動物ジドド中葉酸レダ クターゼ憲伝子(DHFR)の発現を増幅するのに適当な遺伝子によって特徴付 けられうる、他の好ましいベクター配列は、ウン成長ホルモン(BGH)および ベータグロビンプロモーター配列(betaglopro)のようなポリアデニル化(ポリ A)ングナル配列を包含する。本明細書において看用な発現ベクターは、当業者 によく知られた技術によって合成されうる。

かかるベクターの成分、例えば、レブリコン、選択遺伝子、エンハンサー、ブ ロモーター、シグナル配列などは、選択された宿主中における銀換えDNAの生 産物の発現および/または分泌を指示するのに使用するために、商業的または天 然起源から得ても、または既知の手法によって合成されてもよい、哺乳動物、細 新、昆虫、酵はおよび真菌発現の分野において多数の型が知られている他の適当 な発現ベクターもまた、この目的のために選択されりる。

[0064]

本発別は、また、操作された抗体またはその改変された免疫グロブリン分子の コーディング配別を含有する組換えプラスミドでトランスフェクトされた網路系 続を包含する。これらのクローニングペクターのクローニングおよび他の操作に 有用な宿主細胞もまた、慣用的である。しかしながら、もっとも望ましいことに 、イー・コリ (E. coli) の種々の系統由来の細胞は、クローニングペクターの 複製および米条例の改変抗体の横索における他の機能に使用される。

本発明の操作された抗体または改変抗体の発現に適当な宿主細胞または細胞系統は、好ましくは、CHO、COS、繊維芽細胞(例えば、3T3) および骨髄細胞のような哺乳動物細胞、より好ましくは、CHOまたは骨髄細胞である。と

ト細胞を使用してもよく、したがって分子をヒトグリコシル化パターンで修飾できる。別述では、他の真核細胞系統を用いてもよい。適当な哺乳動物育主細胞の選択および形質転換、培養、明価、スクリーニングならびに生産物生産および精製の方法は当該分野で既知である。例えば、SambrookらMolecular Cloning (A Laboratory Manual), 2nd edit., Cold Spring Harbor Laboratory (1989)を参照のこと。

#### [0065]

細菌細胞は、本発明の組換えscFv、FabおよびMAbの発現に適当な宿主細胞として有用であることが証明されうる(例えば、Plucektuna, A. Imauno I. Rev., 130, 151-188 (1992))。Fabは通常グリコシル化せず、発現を輸出するように操作でき、それにより、ミスフォールディングを容易にする高濃度を低下させることができるので、細菌細胞において発現された蛋白質が非フォールディングを指動るみいは非グリコシル化化造のる傾向は、たいして問題ではない。にもかかわらず、細菌細胞において生産されたいずれの組換えFabも、抗原結合能力の保持についてスクリーンされるである)。細菌細胞によって発現された分子が適当に折りたたんだ形態で生産されたいずれの組織えFabも、抗原結合能力の保持についてスクリーンされるである)。他の細菌細胞は望ましい福主であるう。例えば、発現に使用されるイー・コリの電々の系統は、バイオテクノロジーの分野において着生細胞としてよく知られている。ビー・ズブチリス (B. subtilis)、ストレプトミセス (Streptomy cos)の確々の系統は、他の細菌などもまた、使用されうる。

## [0066]

所望により、当業者に知られた酵母細胞もまた、昆虫細胞、例えば、ドロソフィラ (Drosophila) およびレビドプテラ (Lepidoptera) およびウイルス発現系と同様に宿主細胞として利用可能である (例えば、Millerら、Genetic Engineering, 8, 277-298, Plenum Press (1986)およびそこに引用される参考文献を参照のこと)。

本発明のベクターを構築しうる一般的な方法、本発明の宿主細胞を生産するの に必要なトランスフェクション方法および本発明の改変抗体をかかる宿主細胞か ら生産するのに必要な培養法は全て、慣用的な技術である。同様に、いったん生 産されたならば、本発明の改変抗体は、硫酸アンモニウム沈敷、アフィニティー カラム、カラムクロマトグラフィー、ゲル電気泳動などを包含する当該分野の標 神的な手法にしたがって、細胞培養内容物から精製されうる。かかる技術は、当 該分野の技術的であり、本発明を制限しない。

# [0067]

新形態抗体のまた別の発現方法は、トランスジェニック動物における発現を利 用しうる。例示的系は、米国特許第4873316号に記載されている。該参考 文献に記載された発現系は、動物のカゼインプロモーターを使用し、哺乳動物中 にトランスジェニック的に組み込まれた場合、雌が所望の組換え蛋白質をその乳 中に生産することが可能である。

## [0068]

いったん望ましい方法によって発現したならば、次いで、操作された抗体を適 当なアッセイを用いてイン・ビトロ活性について試験する。現在、RVに対す る改要抗体の変性および定量が結合を評価するために、慣用的なELISAアッ セイ様式が用いられる。さらに、他のイン・ビトロアッセイおよびイン・ビボ助 物モデルもまた、通常のクリアランスメカニズムにもかかわらず体における改変 抗体の持続性を評価するために行われるその後のヒト臨床的研究の前に、中和効 力を確かめるために用いてもよい。

# 【0069】 VII. 治療的/予防的用途

本発明はまた、本明無書に記載の1以上の抗体(改変、新形態、モノクローナルなど)またはそのフラグメントを包含する有効量の抗体を投与することを特徴とするRSVに関連した症状を体験しているヒトを治療する方法に関する。

本発明の分子の使用によって誘導される治療的は溶は、RSVへの結合により 生じ、したがってその後、RSV繁殖を阻害する。したがって、本発明の分子は 治療的用急に達した調製物および処方における場合、RSV感染を体験してい さといた大いに望ましい。例えば、季節的な症状の発現などを治療する場合、よ り長期の治療が望ましい。投り量および治療の神経期間は、ヒト爆魔における本 毎明の分子の様数的な存続期間に関係し、治療されるべき状態および患者の総体 的な健康に依存して当業者によって調整されることができる。

# [0070]

本発明の改変抗体、抗体およびそのフラグメントは、また、単独または他の抗体、特に、F蛋白質上の他のエピトープまたは他のRSV標的抗原と反応するヒトまたはヒト化mAbを予防的薬剤として一緒に使用してもよい。

本発明の治療および予防的薬剤の投与様式は、宿主に薬剤をデリバリーするい ずれかの適当な経路であってもよい。本発明の改変抗体、抗体、操作された抗体 およびそのフラグメント、および医薬組成物は、非経口役与、すなわち、皮下、 絡り、静脈内生たは鼻腔内に物た有用である。

# [0071]

本発明の治療および子時的薬剤は、本発明の有効量の改変抗体を活性成分として医薬上許容される担体中において含有する医薬剤成物として調整とれる点体
利用に帰慮れた形態において、好ましくは生理学的り日に緩衝化された抗体を含有する大性懸濁液または溶液が好ましい。非経口投与用組成物は、一般に、医薬上許容される担体、好ましくは木性担体中に溶解した本発明の操作された抗体またはそのサラトルの溶液を含むである。最後の木性担体を用いてもよく、対した、破壊が懸であり、一般に、定本物質を含むしない。これらの溶液は、傾角的なよく知られた破壊技術(例えば、必ず物質を含しない。これらの溶液は、傾角的なよく知られた破壊技術(例えば、必ず物質を含しない。これらの溶液は、慣用的なよく知られた破壊技術(例えば、ある)によって軟菌されるの機能は、便用的なよく知られた破壊を受される補助物質を含有しうる。かかる医薬処力中における本発明の抗体の濃度は、構成く変化するとかでき、すなわち、約0、5重量%は少ないものが、機にくなくとも1重量%、15または20重量%ほどの大きさまでで変化でき、湯根された物定の投与様式にしたがって、主に液体容積、粘度などに基づいで繋がまれるであるであるう。

#### [0072]

したがって、筋内注射用の本発明の医薬組成物は、1mL 誠菌緩衝化水および 約1ng~約100mg、例えば、約50ng~約80mgまたはより好ましく は、約5mg~約75mgの本発明の操作された抗体を含有するように課製でき た。同様に、静脈内注入用の本架例の医薬組成物は、約250mlの結構リンガ 一般および約1mg〜約75mg/mlおよび好ましくは5mg〜約50mg/ mlの本築例の機件された依依を含有するように調製できた、非純日投与可能な 組成物を調製するための実際の方法は、よく知られているか、または当業者に明 らかであり、例えば、"Remington's Pharmaceutical Science"、15版、Mack P blishing Company, Easton, Pennsylvaniaは記むてより評解に記載されている

# [0073]

医薬調製物における場合、本条明の治療剤および予防が単位投与系態で存在することが好ましい。適当な治療上有効投与量は、当業者によって容易に決定できる。ヒトまたは他の動物において実症性疾患を効果的に治療するために、体重70kgあたり約0.1mg〜約20mgの1投与虚か本発明の蛋白質または抗体を非経口、好ましくは、静脈内または筋内投与すべきである。かかる役分量を、必要ならば、均料医によって適益激択された適当な時間削隔で繰り返してもよい

# [0074]

本発明の改変抗体および操作された抗体は、また、RSV媒介疾患の決定また はかかる災患の治療の通行を追除するためのような診断的計画に用いてもよい。 診断的試験として、これらの改変抗体をELIS ASおど成構。 血療または他の 適当な組織中のRSVレベルまたは培養液中のヒト細胞によるその放出の測定の ための他の作用的なアッセイ検索において使用するために慣用的にブベルしても よい、改変数体を用いるアッセイが気は慣用的であり、族間示を制限しない。

# [0075]

本明細書に記載の抗体、改変抗体またはそのフラグメントは、保管のために凍 結乾燥でき、使用前に適当な損体中で復元できる。該技術は、慣用的な免疫グロ ブリンで効果があることがわかっており、当該分野で既知の凍結乾燥および復元 技術を用いることができる。

下記の実施例は、例示的な操作された抗体の構築および適当なベクターおよび 宿主細胞中におけるその発現を包含する本発明の種々の態様を説明するものであ り、本差明の総団を制限するものとして解釈されるべきではない。全てのアミノ 酸は慣用的な3文字表記または1文字表記によって示される。全ての必要な制限 酵素、プラスミドおよび他の砂葉をおよび材料は、別記しない限り、商業的に入手 可能である。全ての一般的なクローニングライゲーションおよび他の組換えDN A法は、f. Maniatis与(上掲)またはSambrookら(上掲)において行われたとお りであった。

[0076]

実施例1:G λ-1 scFv-1の単離

1本額 (s c) F v ライブラリーを故意にR S V に嘘露した個体から調製し、記載の予法にしたがって組換えR S V F 蛋白質に対して選択した (R H. Jackso nb、Protein Engineering、A Practical Approach、A.R. Reseら編、Oxford University Press, chapter 12, pp. 277-301, 1992; H.R. Hoogeboomb, Nucl. A cid Res., 19: 4133-4137 (1991); J.D. Marksb、J. Mol. Biol., 222: 581-59 7 (1991))。簡単に言えば、リンバ球を端離後 1 5 日 目に採取した血液純料から単難した。リンバ球から単離したR N A をファーシディスプレーのための s c F Vエンコーディングレベートリーの調製に用いた。V 個域プライマーのセットを日鎖ドメイン1 I g G および I g M ならびにし鎖C ー x およびC ー λ のための不変解域プライマーと対にし、炎いで、オーバーラップ P C R によってs c F v V H ー V L 配向において 1 5 アミノ鎖スペーサー (グリシン 4 ー セリン) 。(配列番号 2 1) と連結した(グライマーの記載についてJ.D. Marks b (上掲)を参照)。

[0077]

[0078]

s c F v 一 遺伝子 3融合を展示するファージライブラリーをプラスミドライブラリーの各々を和1 3 K 0 7 ベルパーファージで感染させることによって調製し (R. H. Jackson (上掲))、 個々に、ブラスチック上にコートした組換え下蛋白質に対する2 ラウンドのパンニングに付した。第1 ラウンドにおいて、2.5 m 1 リン酸級酸化セーライン(PBS)/2 %Marva1 TM 収開策線ミルク中における10  $^{1}$  1  $^{1}$  ファージを90分間、5  $^{1}$   $^{2}$   $^{2}$   $^{3}$   $^{4}$   $^{2}$   $^{3}$   $^{2}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3}$   $^{3$ 

#### [0079]

イー・コリを溶出したファージで感複染させ、各出発ライブラリー由来の96個のコロニーをヘルパーファージで重複感染させ、F蛋白質結合活性についてスクリーンした。たった4個の時たフェーンが2個の1gMライブラリーから得られたが、一方、41個の陽性クローンが1gGライブラリーについて観察された。部分配列分析によって、全クローンが3つの異なる日鎖の1つを有した。6個のクローンの日およびL鎖V領域の完全な配列は、全て、1gGライブラリーから得られた。

#### [0080]

これらの6個のクローンの各々の満定濃度(titered)ファージストックの連続希釈波を組換え下蛋白質およびRSV感染細胞ライゼートへの結合についてELISAによって試験した。全でが死白質への結合を示し、GAー1と呼ばれるファージが最も良好な活性を示した。しかしながら、GAー1および3個の他のクローンは、RSVライゼートへの結合をほとんと示さなかった。

# [0081]

3つのクローン:  $G\lambda - 1$ 、 $G\lambda - 3$ (ライゼート結合陽性)、および $G\kappa -$ 

#### [0082]

中和がエビトーブに関係なくウイルスのファージューティングだけに起因しうるという可能性に注目するために、非中和Fab5ー16のファージ調製物を同じアッセイにおいて試験した。4つのアッセイのうち3つにおいて対照ファージと同様であった(接1、実験4-7)。Fab5-16および対照M13K07ファージの両方による可変中和のこの混乱する結果により、ウイルス中和研究は結論に渡しなかった。

[0083]

【表1】

| 表I        |                                                           |     |      |                  |      |        |      |  |  |  |  |
|-----------|-----------------------------------------------------------|-----|------|------------------|------|--------|------|--|--|--|--|
| ファージ試     | ウイルス中和 (IC <sub>80</sub> x 10 <sup>*</sup> ) <sup>1</sup> |     |      |                  |      |        |      |  |  |  |  |
| 料         | (aru または kru/ml) <sup>2</sup>                             |     |      |                  |      |        |      |  |  |  |  |
|           | 実験番号                                                      |     |      |                  |      |        |      |  |  |  |  |
|           | 1                                                         | 2   | 8    | 4                | 5    | 6      | 7    |  |  |  |  |
| Gк-1 a    | 1,600                                                     |     | <300 |                  |      |        |      |  |  |  |  |
| ь         |                                                           |     |      | <10              | <7   |        |      |  |  |  |  |
| Gλ-1 a    |                                                           | 80  | <800 |                  |      |        |      |  |  |  |  |
| ь         |                                                           |     |      | 8.1              | 11   |        |      |  |  |  |  |
| с         |                                                           |     |      |                  |      |        | 120  |  |  |  |  |
| Gλ-3 a    |                                                           | 900 | <300 | 180              |      |        |      |  |  |  |  |
| ъ         |                                                           |     |      |                  | <7   | 10     |      |  |  |  |  |
| c         |                                                           |     |      |                  |      |        | 730  |  |  |  |  |
| M18K07a   |                                                           |     | >105 | >10 <sup>5</sup> |      | >5,000 |      |  |  |  |  |
| ь         |                                                           |     |      |                  | +全希釈 | + 全希釈  | >104 |  |  |  |  |
| Fab 5-19a |                                                           |     |      | >105             | 40   | 180    |      |  |  |  |  |
| ъ         |                                                           |     |      |                  |      |        | 8.5  |  |  |  |  |

#### 凡例:

1 M.J. Cannon, J. Virol. Meth., 16:293-301によるアッセイ。100感染中 心/ウェルのウイルスを示されたファージの希釈液と一緒に1時間インキュベー トし、次いで、感受性細胞に3時間添加した。ウイルス/ファージ溶液を吸引し 、新しい培地と交換し、細胞を一晩インキュベートした後、ウイルス感染細胞に ついてペルオキシダーゼ染色した。

- 2 aru=アンピシリン耐性単位、ファージミド含有粒子の測定単位。
- k r u = カナマイシン耐性単位、ファージゲノムを含有する粒子の測定単位 (M13K07対照の場合のみ)

# [0084]

これらの結果を考えると、ファージストック対既知の濃度の抗体蛋白質に依存

する全てのアッセイによってより不明瞭になったが、(1) F - 蛋白質へのその 見かけのより良好な結合、(2) B 4 抗体による結合のその遊泳が開密および( 3) ウイルス中和アッセイにおけるバックグラウンドを超えるその示聴される活 性に基づいて、G 2 - 1 が強力な中和抗体のための最も可能性のある候補として 選択された。

[0085]

実施例2:G l - 1 s c F V のm A b バージョン A への変換

G 2 — 1 のV 日およびV L 領域のD N A およびコードされる蛋白質配列を各々、図 3 (配列番号 1 および 2) および 4 (配列番号 3 および 4) に示す。 哺乳物 納趣能における発現の場合、G 2 — 1 プラス ミド由来の H 鎖可変 領域を 法体裁 の 発現が サイトメガロ ウイルスプロモーター (C M V) プロモーターによって制御されるプラスミド p C D N (Nambi, A. 6、 Mol. Cell. Bioc hom., 131: 75-86 (1994)) の 誘導体中にクローン化した。 プラスミド p C D ー H C 6 8 B は、全長 H 鎖を発現するために用いられ、プラスミド p C D ー H u L C は全長 L 鎖の 発現に用いられる。

[0086]

最初の構築物において、アミノ末端の配列における変化は、ブラスミドGえー 1由来の上類および日鎖可変領域をクローニングするために用いられるPCRプ ライマーによって導入された。これらの構築物において、Hおよび上額両方のペ ブチドシグナル配列は、キャンパス上鎖から誘導される 他、J.Pageら、Biotechn clogy 9: 64-68 (1991)) 。可変領域のアミノ末端および特組予構造 4のための プライマーを用いて、Gえー1の日鎖をGネー1ファージミドDNからPCR 増幅した。得られたPCRフラグメントをXho 1 (アミノ末端プライマーによ って導入された部位)およびBstEl1 (特組み構造 4における天然の部位) で切断し、中間ペクター、F4HCV中にXho1/BstEl1部位にてクローン化した。

[0087]

該クローニングは、 $G\lambda-1$ の可変領域を別の抗-RSV H鎖194-F4の不変領域(ヒトハイブリドーマからSmithKline Beechamでクローン化された)

上に連結した。該中間係クローンをX h o l およびB s p 1 2 0 1 で切断し、p CD一HC 6 8 B中における同じ縮位に導入した。X h o l 部位はP CRプライ マーによってアミノ末端に導入され、p CD一HC 6 8 B中に同じ縮位でクローン化した場合、キャンパスリーダー配列がフレーム中において先に位置する。B s p 1 2 0 1 部位は天然であり、C  $_{II-1}$  ドメインの開始における高く保存された部位であり、p CD一HC 6 8 B中に同じ部位でワーン化した場合、C  $_{II-1}$  の残りの配列からヒト1  $_{II}$  G  $_{II-2}$  資極と一緒にフレーム内にある。得られた情報物、G  $_{X}$   $_{X}$ 

[0088]

可変領域のアミノ末端および枠組み構造4のためのプライマーを用いて、G 2 -1のL鎖をG 1-1ファージミドDNAからPCR増幅した。得られたPCR フラグメントをSacl (アミノ末端プライマーによって導入された部位) およ びAvrII (枠組み構造4における天然部位)で切断し、SacI/AvrI I部位で43-1pcn中にクローン化した。該クローニングは、 $G\lambda-1$ の可 変領域をフレーム内で別の抗-RSVラムダL鎖43 (P. Tsuiら、J. Immunol. 、157: 772-780 (1996)) の不変領域 (ヒト脾臓から単離したRNAから由来の コンビナトリアルライブラリーからSmithKline Beechamでクローン化された)上 に連結した。PCRプライマーによってアミノ末端にSacI部位を導入し、同 じ部位で43pcn中にクローン化した場合、フレーム内でキャンパスリーダー 配列が先に位置する。したがって、成熟し鎖の最初の2つのアミノ鎖が削除され る。得られた構築物、G A - 1 A p c p (図 9 A - 9 E (配列番号 1 4) ) にお いて、リーダーの直後の最初の2つのアミノ酸はELであり、ここに、残基EL はSacIクローニング部位のヌクレオチド配列によってコードされている。 プラスミドG λ-1ApcdおよびG λ-1Apcnのヌクレオチド配列を各 々、図8A-8F (配列番号13) および9A-9E (配列番号14) に示す。

ベクターの該セットを用いて、COS細胞およびCHO細胞中において抗体GA

#### 1 Aを生産した。

[0089]

実施例3:補正したGλ-1HおよびL鎖のクローニング

1本頭Fv(scFv)フォーマット由来のGA-1日鎖の可愛蜘蛛の全長フォーマット中へのクローニングにおいて、クローニング目的のために、アミノ末畑の5番目のアミノ酸をVaiからLeuへ変化させた。この変化を補正するために、PCRプライマーがpCD中にクローン化したGA-1日鎖のアミノ末端のために設計され、それは、5番目のアミノ酸をVa1に戻した。補正は、補正プライマーおよび外部5'および3'プライマーとして各々、CMVプロモーターおよびC₁1-2不愛領域州の配別にアニールするプライマーを用いるPCRオーバーラップ技術によって導入された。最終的なPCR産物を制限酵素、EcoR IおよびBsp1201で消化し、GA-1Apcdペクター中に同じ部位でクローン化してGA-18pcdペクター中に同じ部位でクローン化してGA-18pcd

#### [0090]

最終的な構築物を配列決定して、H鎖のアミノ未端がEVQLLE (配列番号 17) からEVQLVE (配列番号 18) に補正されたことを証明した (図6参 18) 。補正されたH鎖、G $\lambda$ -1Bのコーディング領域のヌクレオチド配列を図 10A-10Bに示す (配列番号 15)。

s c F v フォーマットから全長フォーマットへのG  $\lambda$  -1 L 銀の可変領域のクローニングにおいて、クローニング目的でアミノ未郷に変化を導入した。詳細には、L 貨の最初の2つのアミノ酸 G G I n およびS c r ) を削除し、3 番目のアミノ類を V a I からG l u ~変化させた。これらの変化を補正するために、p C N中にクローン化されたG  $\lambda$  -1 L 鎖のアミノ末端のために P C R ブライマーを設計し、それは、2つの欠失したアミノ酸 G G I n およびS c r ) かその場所に速き、第3のアミノ酸を V a I に戻した。補正は、補正プライマーおよび外部5 'および3 'ブライマーとして各々、C M V ブロモーターおよび $\lambda$  不変領域内の配列にアニールするブライマーを用いる P C R オーバーラップ技術によって導入された。 長終的な P C R 産物を制限酵素、E c o R I および $\lambda$  v r I I で消化、G  $\lambda$  -1 A  $\lambda$  c n  $\lambda$  -1 I で消化して、G  $\lambda$  -1 B  $\lambda$  -1 に 可能ででクローン化して、G  $\lambda$  -1 B  $\lambda$  -1 に 可能で

#### を作成した。

#### [0091]

最終的な構築物を配列決定して、L鎖のアミノ末端が--ELからQSVL( 配列番号10のアミノ酸1-4)へ補正されたことを証明した。

補正されたL鎖のコーディング領域のヌクレオチド配列、 $G\lambda-1$ Bを図11 に示す(配列番号16)。該ベクター $G\lambda-1$ Bpcnを $G\lambda-1$ Bpcdと一 緒に用いて、COS細胞およびCHO細胞中において抗体 $G\lambda-1$ Bを生産した

#### [0092]

実施例4:哺乳動物細胞におけるG λ-1 mABの生産

最初の特徴付けのために、各パージョンのm A b 精祭物、G A - I A HおよびL鎖、G A - I B HおよびL鎖をCO S 細胞中に出いて基本的にCurrent Protocols in Molecular Biology, eds F.N. Ausubel E. 1988, John Wiley &; Sons, vol. 1, section 9.1に記載のように発現させた。トランスフェクション後1日日に、起業増減治地を直消不合治地(SmithKline Beecham)で置き換え、それる3日に交換した。会共に入手可能な培地、ITS T<sup>M</sup> F re mix、インスリン、トランスフェリン、セレニウム混合物(Collaborative Research, Bedford, Mú)および1mg/m1ウシ電荷アルブミン(BSA)を捕捉したDME Mを用いて、同様の演送のいくは表記が6月と

#### [0093]

mAbは、3日および5日目の順化培地から標準的なプロテインAアフィニティークロマトグラフィー法 (例えば、Protocols in Molecular Biologyに記載されている) によって、例えば、Prosep Aアフィニティー樹脂 (Bioproces sing Ltd., 以) を用いて調製された。

より大量のG λ-1B mAB (100-200 mg) を生産するために、ベクターを有標のC H O 細胞系中に導入した。しかしながら、以前に思考されたように d h f r - C H O 細胞を用いて同様の結果が得られるであろう (P. Hensley J. J. Biol. Chem., 269: 23949-23958 (1994))。簡単に言えば、全30μgの線状化プラスミドDNA (H 動およびL 動ベクターのA またはB セットの各1

5 μ g) を1 x 1 0 <sup>7</sup> 細胞中にエレクトロポレートした。細胞を最初に、96 ウェルブレート中においてヌクレオシド不含培地中で選択する。3 ~ 4 週間後、増 低端性ウェル由来の培地をELISAアッセイを用いてヒト免疫グロブリンについてスクリーンする。最も高、発現するコロニーをトランスフェクトしたベクターの増幅について高速度のメトトレキサート中において広げ、選択する。プロティンAアフィニティークロマトグラフィー(プロテインAセファロース、Pharmacia)、次いで、サイズ排除クロマトグラフィー(Superdex 200, Pharmacia)を 用いる標準的な手法によって抗体を類化活地から精製する。

#### [0094]

溶出した抗体の濃度および抗原結合括性をELISAによって調定する。抗体 含有フラクションをブールし、サイズ排除クロマトグラフィーによってさらに精 製する。いずれかのかかる抗化こかいて予想されるとおり、SDS-PAGEに よって、優勢な蛋白質生産物は、非選元条件下で約150kdに移動し、50お よび25kdの2つのバンドが選元条件下で現れた。CHO細胞において生産さ れた抗体の場合、SDS-PAGEによる判断によると純度は>90%であり、 濃度はアミノ酸分析によって正確に決定された。

#### [0095]

実施例5:G λ-1 mABの組換えF蛋白質への結合

G λ - 1 m A B の組換え F 蛋白質への結合は、標準的な関相 E L I S A において測定された。 P B S p H 7. 0 中で希釈した抗原をポリスチレン丸底ミクロプレート (Dynatech, Imeunolon II) 上に I 8 時間吸着させた。次いで、ウェルを吸引し、1% T w e e n 2 0 を含有する P B S 中における0. 5 % 煮沸カゼイン(B C) (P B S / 0. 0 5 % B C) で 2 時間プロックした。抗体(5 0 μ 1 / ウェル)を0.0 2 5 % T w e e n 2 0 を含有する P B S / 0. 5 % B C 中において種々の素度に希釈し、抗原接慢ウェル中で 1 時間インキュペートした。プレートを0.0 5 % T w e e n 2 0 を含有する P B S ででにはいて建たの素度に高釈し、抗原接慢ウェル中で1 時間インキュペートした。プレートル洗練機を用いて3 回流神し、次いで、1:5000 希釈したH R P 一標版プロテイン A / G (5 0 μ I) を添加した。3 回流神後、T M I u e 基質(T S I 、# IMI02)を加え、プレートをさらに I 5 分間インキュペートした。1

N  $H_2$  S  $O_4$  の添加によって反応を止め、Biotek ELISAリーダーを用いて吸光度を  $450\,\mathrm{nm}$  で記録した。

#### [0096]

G A - 1 m A B の抗原結合エビトーブを競合E L I S A において対験した。G A - 1 m A B の抗原結合エビトーブを競合E L I S A において対験した。G A - 1 m A B は、高濃度のR S M U 1 9 またはB 4、2 つの強力な中和m A b (Tempestら、Biotech, 9: 266-271 (1991); Kennedyら、J. Gen. Virol., 69: 3 023-3032 (1988)) と混合し、F 蛋白質被鞭ウェルに加えた。Abrizaら、J. Gen. Virol., 73: 2225-2234 (1992)において以前に記載されたように、m A b R S M U 1 9 およびB 4 によって認識されるエビトーブ領域は互いに全く別例である。競合研究において使用されたG A - 1 m A B の結合を与えるように予め決定された。他のm A B の存在下でのG A - 1 m A B の結合は、H R P 保護化平式九ーヒト I g G を用いて検出された。反応は上記のように開始した。

#### [0097]

#### [0098]

実施例6:G1-1 mABのイン・ビトロ融合-阻害活性

 $G\lambda-1$  mABのウイルス誘導性細胞融合を阻害する能力は、イン・ビトロでの微量や和アッセイ(Beelerち、J. Virol., 63: 2941-2950(1989)) の終飾を用いて決定された。 by -1 の R. Long 系統ウイルス -1 の R. Clark -1 の R. Cl

中において、37℃、5%CO2で4時間0.1ml VERO細胞 (5x10 <sup>3</sup>/ウェル) (ATCC CCL-81) と混合した。次いで、mABの連続的な2倍希釈 液 (4連) (50μ1) をウイルス感染細胞を含有するウェルに加えた。対照培 養物は、ウイルスのみでインキュベートした細胞(陽性ウイルス対照)または培 地のみでインキュベートした細胞を含有した。

#### [0099]

培養物を37℃で5%CO。中において6日間インキュベートし、そのとき、 ウイルス対照ウェル中の細胞病理学的効果 (CPE) は>90%であった。細胞 病理学的効果の顕微鏡試験は、ELISAによって確認された。培地を培養物か ら吸引し、 $50 \mu 1 00$ .  $6% H_2 O_2$ を含有する90 %メタノールで置換した 。10分後、固定液を吸引し、プレートを一晩風乾した。1 u g/mlのビオチ ン化RSCHB4 (ウシB4mAbのヒトFc誘導体 (SmithKline Beecham) ) 、次いで、1:10000希釈したHRP-標識化ストレプトアビジン (Boehri nger-Mannheim) を用いて、ウイルス性抗原を固定した培養物中において検出し た。TMB1ueを用いて反応を開始し、1NH。SO。の添加によって止め た。450nmの吸光度を測定した(O.D. 450)。

融合-阻害力価は、ウイルス対照と比べてELISAシグナルにおいて50% 減少を引き起こした抗体濃度( $ED_{50}$ )として定義付された。標準的なウイル ス滴定によるELISAにおいて作成された曲線に基づいて、O.D. 450に おける50%減少はウイルス力価における>90%減少に相当した。50%点の 計算は、用量滴定の回帰分析に基づいた。

G l-1mABは、A型RS Long系統ウイルスに対する強力なイン・ビ トロ融合-阻害活性を明らかにした (mAB BのED 50は、0.51±0.  $38 \mu g/m1$ )。該イン・ビトロ融合-阻害アッセイにおいて、G $\lambda-1mA$ B Bは、比較アッセイにおけるヒト化mAB RSHZ19 (0. 4-3. 0 μ g/mlのEDgo) (Wydeら、Pediatr. Res., 38(4):543-550) より活性であ

[0101]

実施例 $7:G\lambda-1$  mAB Bのイン・ビボ活性: Balb/cマウスモデル における予防および治療

ヒトR S V の A 2 系統の 1 0 <sup>5</sup> P F U の鼻腔内破染の 2 4 時間前 (干防) また は 4 日後 (治療) のいずれかに、0.06 mg/kg~5 mg/kg線間のG え -1 m A B B を B a l b / c マウス (5 / 群) に腹腔内接種した。マウスを破 染 5 日後に憂した。肺を採取し、ホモジナイズしてウイルス力値を決定した。

ウイルスは、予防的または治療的に $\ge 1$ .  $25 \, \mathrm{mg/kg}$   $G \, \lambda - 1 \, \mathrm{mAB}$  Bで予防的処理を行ったマウスの肺において検出されなかった。下記の表  $116 \, \mathrm{sm}$   $0.5 \, \mathrm{sm}$  0.

【0102】 【表2】

表 I I : B a I b / c マウスにおけるG  $\lambda - 1$  mAB B予防および治療

|            | 用重      | 肺ワイルス刀曲 (log <sub>10</sub> | /g htt)       |
|------------|---------|----------------------------|---------------|
| 処理         | (mg/kg) | <b>予防</b>                  | 治療            |
|            |         |                            |               |
| Gλ-1 mAB B | 5       | <1.7                       | <1.7          |
|            | 1.25    | <1.7                       | <1.7          |
|            | 0.31    | $1.8 \pm 0.3$              | $2.9~\pm~0.4$ |
|            | 0.06    | $4.8~\pm~0.7$              | $4.5~\pm~0.3$ |
|            |         |                            |               |
| PBS        |         | $4.8~\pm~0.7$              | $4.7~\pm~0.2$ |

#### [0103]

 $G\lambda-1$  mABは、AおよびB型の両方の幅広い範囲の天然RSV単離株に対するイン・ピトロにおける強力な抗ウイルス活性を有し、動物モデルにおいて

イン・ビボで予防的および治療的効力を示す。したがって、 $G\lambda-1$  mABは、ヒトにおける治療的、予防的および診断的適用の候補である。

本明細書に記載された発明を考慮して、本発明の多くの修飾および変更が当業 者によって施されうる。かかる修飾は、本発明の明細書および請求の範囲によっ て包含されると確信する。上記の全ての引用文献は、出典明示により本明細書の 一部とされる。

【配列表】

#### SEQUENCE LISTING

| (1) GENE | RAL INFORMATION:                                                                                                                                                                  |   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (i)      | APPLICANT: SmithKline Beecham, PLC                                                                                                                                                |   |
| (ii)     | TITLE OF INVENTION: Human Monoclonal Antibody                                                                                                                                     |   |
| (iii)    | NUMBER OF SEQUENCES: 21                                                                                                                                                           |   |
| (iv)     | CORRESPONDENCE ADDRESS: (A) ADDRESSE: SmithKline Beecham Corporation (B) STREST: 709 Swedeland Rond (C) CITY: King of Fruesia (D) STATE: 05A (E) COUNTRY: USA (F) ZIF: 19406-2799 |   |
| (v)      | COMPURE READMALE FORM: (A) MEDIUM TYPE: Flopy disk (B) COMPUTER: 1EM PC compatible (C) OFERMING STREE: R-005/MS-DOS (D) SOFTMERE Patentin Release #1.0, Version #1.30             |   |
| (vi)     | CURRENT APPLICATION DATA:  (A) APPLICATION NUMBER: GB (B) FILING DATE: (C) CLASSIFICATION:                                                                                        |   |
| (viii)   | ATTORNEY/AGENT INFORMATION: (A) NAME: King, William T. (B) REGISTRATION NUMBER: 30,954 (C) REFERENCE/DOCKET NUMBER: #                                                             |   |
| (ix)     | TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 610-270-4800 (B) TELEFAX: 610-270-4026                                                                                              |   |
| (2) INFO | RMATION FOR SEQ ID NO:1:                                                                                                                                                          |   |
| (i)      | SEQUENCS CHARACTERISTICS: (A) LEMOTH: 336 base pairs (3) TYPS: nucleic acid (C) STRANDERMESS: double (D) TOPALOST: unknown                                                        |   |
| (ii)     | MOLECULE TYPE: CDNA                                                                                                                                                               |   |
| (ix)     | FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1336                                                                                                                                     |   |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO:1:                                                                                                                                                |   |
| CAG TCT  | GTG TTG ACG CAG CCG CCC TCA GTC TCT GCG GCC CCA GGA CAG<br>Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln                                                                | 4 |

AAG GTC ACC ATC TCC TGC ACT GGG AGC AGC TCC AAC CTC GGG OCA GGT 96

| Lys        | Val              | Thr              | Ile<br>20  | Ser        | Cys        | Thr              | Gly              | Ser<br>25  | Ser        | Ser              | Asn              | Leu              | Gly<br>30  | Ala        | Gly        |    |   |
|------------|------------------|------------------|------------|------------|------------|------------------|------------------|------------|------------|------------------|------------------|------------------|------------|------------|------------|----|---|
| TAT<br>Tyr | GAT<br>ASP       | GTT<br>Val<br>35 | CAC<br>His | TGĞ<br>Trp | TAC<br>Tyr | cgg<br>Arg       | CAA<br>Gln<br>40 | CTT<br>Leu | CCA<br>Pro | GGG<br>Gly       | ACA<br>Thr       | GCC<br>Ala<br>45 | CCC<br>Pro | AAA<br>Lys | CTC<br>Leu | 14 | 1 |
| CTC<br>Lou | ATC<br>Ile<br>50 | TAT<br>Tyr       | gat<br>Asp | AAC<br>Asn | AAC<br>Asn | AAT<br>Asn<br>55 | CGG<br>Arg       | CCC<br>Pro | TCA<br>Ser | GGG<br>Gly       | GTC<br>Val<br>60 | CCT<br>Pro       | GAC<br>Asp | CGA<br>Arg | TTC<br>Phe | 19 | 2 |
|            |                  |                  |            |            |            |                  |                  |            |            | CTG<br>Leu<br>75 |                  |                  |            |            |            | 24 | 3 |
|            |                  |                  |            |            |            |                  |                  |            |            | CAG<br>Gln       |                  |                  |            |            |            | 28 | 3 |
|            |                  |                  |            |            |            |                  |                  |            |            | CAG<br>Gln       |                  |                  |            |            |            | 33 | 5 |

- (2) INFORMATION FOR SEO ID NO:2:
  - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 112 amino acids
    - (B) TYPE: amino acid (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ IN NO.2;

  Gin Ser Val Leu Thr Gin Pro Pro Ser Val Ser Ala Ala Pro Gly Gin 1 5 10 10 12 15

  Lys Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Ann Leu Gly Ala Gly 25

  Tyr Asp Val His Trp Tyr Arg Gin Leu Pro Gly Thr Ala Pro Lys Leu 40 40 15

  Leu Ile Tyr Asp Asn Asn Asn Arg Pro Ser Gly Val Pro Asp Arg Phe 50

  Ser Gly Ser Lys Ser Gly Pro Ser Ala Ser Leu Ala Ile Ser Gly Leu 65

  Gin Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gin Ser Tyr Asp Ser Ser 80

  Leu Asn Gly Tyr Val Phe Gly Thr Gly Thr Gin Leu Thr Val Leu Gly 110
- (2) INFORMATION FOR SEQ ID NO:3:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 357 base pairs (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double

- (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..357
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:3:

|  |  |  |  |  |  |  | CCT<br>Pro        | GGG<br>Gly |   | 48  |
|--|--|--|--|--|--|--|-------------------|------------|---|-----|
|  |  |  |  |  |  |  | AGT<br>Ser<br>30  |            |   | 96  |
|  |  |  |  |  |  |  | GAA<br>Glu        |            |   | 144 |
|  |  |  |  |  |  |  | GAC<br>Asp        |            |   | 192 |
|  |  |  |  |  |  |  | TCA<br>Ser        |            | : | 240 |
|  |  |  |  |  |  |  | TAT<br>Tyr        |            | : | 288 |
|  |  |  |  |  |  |  | GGC<br>Gly<br>110 |            | : | 336 |
|  |  |  |  |  |  |  |                   |            |   |     |

357

- ACC CTG STC ACC GTC TCC TCA
  Thr Leu Val Thr Val Ser Ser
  115

  (2) INFORMATION FOR SEQ ID NO:4:
  - (i) SEQUENCE CHARACTERISTICS:
    (A) LEMOTH: 119 amino acids
    (B) TYPE: amino acid
    (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 15 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Val Ser Leu Ser Gly Tyr 2 20 30 30

Lys Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35 40 4

Ser Ser Ile Thr Gly Met Ser Asn Tyr Ile His Tyr Ser Asp Ser Val

Lys Gly Arg Pho Thr 11e Ser Arg Asp Asn Ala Met Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Thr Ala Glu Asp Thr Gly Val Tyr Tyr Cys 85 90 90

Ala Thr Gln Pro Gly Glu Leu Ala Pro Phe Asp His Trp Gly Gln Gly 100 105 113

Thr Leu Val Thr Val Ser Ser

- (2) INFORMATION FOR SEQ ID NO:5:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 119 amino acids (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO:5:
  - Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Val Ser Leu Ser Gly Tyr 20 25 30

Lys Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

Ser Ser Ile Thr Gly Met Ser Asn Tyr Ile His Tyr Ser Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Met Asn Ser Leu Tyr 65 -70 -70

Leu Gln Met  $\lambda$ sn Ser Leu Thr Ala Glu Asp Thr Gly Val Tyr Tyr Cys 95 95 Ala Thr Gln Pro Gly Glu Leu Ala Pro Phe Asp His Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser

- (2) INFORMATION FOR SEQ ID NO:6:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 98 amino acids (B) TYPE: amino acid
    - (B) TYPE: amino acid (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg

### (2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 138 amino acida
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Gly Trp Ser Cys Tle Ile Leu Phe Leu Val Ala Thr Ala Thr Gly

Val His Ser Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln

25

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Val Ser Leu

45

Ser Gly Tyr Lys Met Asn 555

Glu Tyr Val Ser Ser Ile Thr Gly Met Ser Asn Tyr Ile His Tyr Ser

60

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Met Asn

85

Ser Leu Tyr Leu Gln Met Asn Ser Leu Thr Ala Glu Asp Thr Gly Val

100 105 110

Tyr Tyr Cys Ala Thr Gln Pro Gly Glu Leu Ala Pro Phe Asp His Trp 115 120 125

- Gly Gln Gly Thr Len Val Thr Val Ser Ser 130 135
- (2) INFORMATION FOR SEQ ID NO:8:
  - (i) SEQUENCE CHARACTERISTICS:
    (A) LENGTH: 138 amino acids
    (B) TYPE: amino acid
    (C) STRANDEDNESS:
    (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: peptide
  - (x1) SEQUENCE DESCRIPTION: SEQ ID NO:8:
  - Mot Gly Trp Ser Cys Ile Ile Leu Fine Leu Val Ala Thr Ala Thr Gly 15
    Val Bis Ser Glu Val Gln Leu Val Glu Ser Gly Cly Gly Leu Val Gln 28
    Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Val Ser Leu 45
    Ser Gly Tyr Lys Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50
    Glu Trp Val Ser Ser Ile Thr Gly Met Ser Asn Tyr Ile Bis Tyr Ser 75
    Asp Ser Val Lys Gly Arg Fhe Thr Ile Ser Arg Asp Asn Ala Met Asn 85
    Ser Val Lys Gly Arg Fhe Thr Ile Ser Arg Asp Asn Ala Met Asn 85
    Ser Val Lys Gly Arg Fhe Thr Ile Ser Arg Asp Asn Ala Met Asn 85
    Ser Val Lys Gly Arg Fhe Thr Ile Ser Arg Asp Asn Ala Met Asn 85
  - Ser Leu Tyr Leu Gln Met Aon Ser Leu Thr Ala Glu Aop Thr Gly Val
    105

    Tyr Tyr Cys Ala Thr Gln Pro Gly Glu Leu Ala Pro Phe Aop His Trp
    115
    120
    125
  - Gly Gln Gly Thr Leu Val Thr Val Ser Ser 130 135
- (2) INFORMATION FOR SEQ 1D NO:9:
  - (i) SEQUENCE CHARACTERISTICS:
    (A) LENGTH: 111 amino acids
    (B) TTYPE: amino acid
    (C) STRANDEDNESS:
    (D) TOPOLOGY: unknown
  - (ii) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
- Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gin
- Lys Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Leu Gly Ala Gly 25 30
- Tyr Asp Val His Trp Tyr Arg Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Asp Asn Asn Asn Arg Pro Ser Gly Val Pro Asp Arg Phe
- Ser Gly Ser Lys Ser Gly Pro Ser Ala Ser Leu Ala Ile Ser Gly Leu 65 70 75 80
- Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser 85
- (2) INFORMATION FOR SEQ ID NO:10:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 90 amino acids (B) TYPE: amino acid
      - (C) STRANDEDNESS:
    - (D) TOPOLOGY: unknown
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
  - Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln 1 5 10 15
  - Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly
  - Tyr Asp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu 35 40 45
  - Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55
  - Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu 65 70 75
- Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys
- (2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 128 amino acids (B) TYPE: amino acid

    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: unknown

#### (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEU ID NO:11:

Met Gly Trp Ser Cye fle He Leu Phe Leu Val Ala Thr Ala Thr Gly 15

Val His Ser Clu Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly 20

Cln Arg Val Thr Ile Ser Cye Thr Gly Ser Ser Ser Ser Ale He Gly Ala 35

Gly Tyr Amp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lye 50

Leu Leu Ile Tyr Gly Amn Ser Amn Arg Pro Ser Gly Val Pro Amp Arg 70

Phe Ser Gly Ser Lye Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly 85

Leu Gln Ala Glu Ala Amp Tyr Tyr Cye Gln Ser Tyr Sep Ser Leu Amn Gly Tyr Val Phe Gly Thr Gly Thr Gln Leu The Cye 50

Ser Leu Amn Gly Tyr Val Phe Gly Thr Gly Thr Gln Leu Thr Val Leu 115

Er Leu Amn Gly Tyr Val Phe Gly Thr Gly Thr Gln Leu Thr Val Leu 115

#### (2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 130 amino acids (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
- Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15
- Val His Ser Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala 20 25 . 30
- Pro Gly Gln Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile 35 40 45
- Gly Ala Gly Tyr Asp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala 50 60
- Pro Lys Leu Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro 65 70 75 80 80

Asp Arg Phe Ser Gly Ser Lyx Ser Gly Thr Ser Ala Ser Leu Als Ile  $\frac{1}{85}$ 5 Thr Gly Leu Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr  $\frac{1}{100}$  Asp Ser Ser Leu Asn Gly Tyr Val Phe Gly Thr Gly Thr Gla Leu Thr  $\frac{1}{125}$  Val Leu  $\frac{1}{120}$ 

- (2) INFORMATION FOR SEQ ID NO:13:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 6281 base pairs
      - (B) TYPE: nucleic acid
      - (C) STRANDEDNESS: double (D) TOPOLOGY: unknown
  - (ii) MOLECULE TYPE: cDNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GACGTCGCGG CCGCTCTAGG CCTCCAAAAA AGCCTCCTCA CTACTTCTGG AATAGCTCAG 60 AGGCCGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAAT TAGTCAGCCA TGCATGGGGC GGAGAATGGG CGGAACTCGG CGGAGTTAGG GCCGGGATGG GCGGAGTTAG GGGCGGGACT 180 AIGGITGCIG ACTANTIGAG AIGCATGCIT IGCATACTIC IGCCIGCIGG GGAGCCIGGG 240 GACTITCCAC ACCTGGTTGC TGACTAATTG AGATGCATGC TTTGCATACT TCTGCCTGCT 300 GGGGAGCCTG GGGACTPTCC ACACCCTAAC TGACACACAT TCCACAGAAT TAATTCCCGG 360 GGATCGATCC GTCGACGTAC GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT 420 CATAGCCCAT ATATEGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA 480 CCGCCCAACG ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA 540 ATAGGGACTT TCCATTGACG TCAATGGGTG GACTATTTAC GGTAAACTGC CCACTTGGCA 600 GTACATCAAG TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG 660 CCCGCCTGGC ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC 720 TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAT CAATGGGCGT 780 GGATAGCGGT TTGACTCACS GGGATTTCCA AGTCTCCACC CCATTGACGT CAATGGGAGT 840 TTGTTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG 900 ACGCAAATOG GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGAGC TGGGTACGTG 960 AACCGTCAGA TCGCCTGGAG ACGCCATCGA ATTCTGAGCA CACAGGACCT CACCATGGGA 1020 TGGAGCTGTA TCATCCTCTT CTTGGTAGCA ACAGCTACAG GTGTCCACTC CGAGGTCCAA 1080

| CTGCTCGAGT | CTGGGGGAGG | CTTGGTACAG | CCTGGGGGGT | CCCTGAGACT | CTCCTGCGCA | 1140 |
|------------|------------|------------|------------|------------|------------|------|
| GCCTCTGGAG | TCTCCCTCAG | TGGATACAAG | ATGAACTGGG | TCCGCCAGGC | TCCAGGGAAG | 1200 |
| GGGCTGGAAT | GGGTCTCTTC | CATTACTGGT | ATGAGTAATT | ACATACACTA | CTCAGACTCA | 1260 |
| GTGAAGGGCC | GATTCACCAT | CTCCAGAGAC | AACGCCATGA | ACTCACTGTA | TCTGCAAATG | 1320 |
| AACAGCCTGA | CAGCCGAGGA | CACGGGTGTT | TATTATTGTG | CGACACAACC | GGGGGAGCTG | 1380 |
| GCGCCTTTTG | ACCATTGGGG | CCAGGGAACC | CTGGTCACCG | TCTCCTCAGC | CTCCACCAAG | 1440 |
| GGCCCATCGG | TCTTCCCCCT | GGCACCCTCC | TCCAAGAGCA | CCTCTGGGGG | CACAGCGGCC | 1500 |
| CTGGGCTGCC | TGGTCAAGGA | CTACTTCCCC | GAACCGGTGA | CGGTGTCGTG | GAACTCAGGC | 1560 |
| GCCCTGACCA | GCGGCGTGCA | CACCTTCCCG | GCTGTCCTAC | AGTCCTCAGG | ACTOTACTOO | 1620 |
| CTCAGCAGCG | TGGTGACCGT | GCCCTCCAGC | AGCTTGGGCA | CCCAGACCTA | CATCTGCAAC | 1680 |
| GTGAATCACA | AGCCCAGCAA | CACCAAGGTG | GACAAGAAAG | TTGAGCCCAA | ATCTTGTGAC | 1740 |
| AAAACTCACA | CATGCCCACC | GTGCCCAGCA | CCTGAACTCC | TGGGGGGACC | GTCAGTCTTC | 1800 |
| CTCTTCCCCC | CYAYYCCCYY | GGACACCCTC | ATGATCTCCC | GGACCCCTGA | GGTCACATGC | 1860 |
| GTGGTGGTGG | ACGTGAGCCA | CGAAGACCCT | GAGGTCAAGT | TCAACTGGTA | CGTGGACGGC | 1920 |
| GTGGAGGTGC | ATAATGCCAA | GACAAAGCCG | CGGGAGGAGC | AGTACAACAG | CACGTACCGG | 1980 |
| GTGGTCAGCG | TCCTCACCGT | CCTGCACCAG | GACTGGCTGA | ATGGCAAGGA | GTACAAGTGC | 2040 |
| AAGGTCTCCA | ACAAAGCCCT | CCCAGCCCCC | ATCGAGAAAA | CCATCTCCAA | AGCCAAAGGG | 2100 |
| CAGCCCCGAG | AACCACAGGT | GTACACCCTG | CCCCCATCCC | GGGATGAGCT | GACCAAGAAC | 2160 |
| CAGGTCAGCC | TGACCTGCCT | GGTCAAAGGC | TTCTATCCCA | GCGACATCGC | CGTGGAGTGG | 2220 |
| GAGAGCAATG | GGCAGCCGGA | GAACAACTAC | AAGACCACGC | CTCCCGTGCT | GGACTCCGAC | 2280 |
| GGCTCCTTCT | TCCTCTACAG | CAAGCTCACC | GTGGACAAGA | GCAGGTGGCA | GCAGGGGAAC | 2340 |
| GTCTTCTCAT | GCTCCGTGAT | GCATGAGGCT | CTGCACAACC | ACTACACGCA | GAAGAGCCTC | 2400 |
| TCCCTGTCTC | CGGGTAAATG | ATAGATATCT | ACGTATGATO | AGCCTCGACT | GTGCCTTCTA | 2460 |
| GTTGCCAGCC | ATCTGTTGTT | TGCCCCTCCC | CCGTGCCTTC | CTTGACCCTG | GAAGGTGCCA | 2520 |
| CTCCCACTGT | CCTTTCCTAA | TAAAATGAGG | AAATTGCATC | GCATTGTCTG | AGTAGGTGTC | 2580 |
| ATTCTATTCT | GGGGGGTGGG | GTGGGGCAGG | ACAGCAAGGG | GGAGGATTGG | GAAGACAATA | 2640 |
| GCAGGCATGC | TGGGGATGCG | GTGGGCTCTA | TGGAACCAGC | TGGGGCTCGA | CAGCGCTGGA | 2700 |
| TCTCCCGATC | CCCAGCTTTG | CTTCTCAATT | TCTTATTTGC | ATAATGAGAA | AAAAAGGAAA | 2760 |
| ATTAATTTTA | ACACCAATTC | AGTAGTTGAT | TGAGCAAATG | CGTTGCCAAA | AAGGATGCTT | 2820 |
| TAGAGACAGT | GTTCTCTGCA | CAGATAAGGA | CAAACATTAT | TCAGAGGGAG | TACCCAGAGC | 2880 |
| TGAGACTCCT | AAGCCAGTGA | GTGGCACAGC | ATTCTAGGGA | GAAATATGCT | TGTCATCACC | 2940 |
| GAAGCCTGAT | TCCGTAGAGC | CACACCTTGG | TAAGGGCCAA | TCTGCTCACA | CAGGATAGAG | 3000 |
|            |            |            |            |            |            |      |

| AGGGCAGGAG | CCAGGGCAGA  | GCATATAAGG | TGAGGTAGGA | TCAGTTGCTC | CTCACATTTG | 3060 |
|------------|-------------|------------|------------|------------|------------|------|
| CTTCTGACAT | AGTTGTGTTG  | GGAGCTTGGA | TAGCTTGGAC | AGCTCAGGGC | TGCGATTTCG | 3120 |
| CGCCAAACTT | GACGGCAATC  | CTAGCGTGAA | GGCTGGTAGG | ATTTTATCCC | CGCTGCCATC | 3180 |
| ATGGTTCGAC | CATTGAACTG  | CATCGTCGCC | GTGTCCCAAA | ATATGGGGAT | TGGCAAGAAC | 3240 |
| GGAGACCTAC | CCTGGCCTCC  | CCTCAGGAAC | GAGTTCAAGT | ACTTCCAAAG | AATGACCACA | 3300 |
| ACCTCTTCAG | TGGAAGGTAA  | ACAGAATCTG | GTGATTATGG | GTAGGAAAAC | CTGGTTCTCC | 3360 |
| ATTCCTGAGA | AGAATCGACC  | TTTAAAGGAC | AGAATTAATA | TAGTTCTCAG | TAGAGAACTC | 3420 |
| AAAGAACCAC | CACGAGGAGC  | TCATTTTCTT | GCCAAAAGTT | TGGATGATGC | CTTAAGACTT | 3480 |
| ATTGAACAAC | CGGAATTGGC  | aagtaaagta | GACATGGTTT | GGATAGTCGG | AGGCAGTTCT | 3540 |
| GTTTACCAGG | AAGCCATGAA  | TCAACCAGGC | CACCTTAGAC | TCTTTGTGAC | AAGGATCATG | 3600 |
| CAGGAATITG | AAAGTGACAC  | GTTTTTCCCA | GAAATTGATT | TGGGGAAATA | TAAACTTCTC | 3660 |
| CCAGAATACC | CAGGCGTCCT  | CTCTGAGGTC | CAGGAGGAAA | AAGGCATCAA | GTATAAGTTT | 3720 |
| GAAGTCTACG | AGAAGAAAGA  | CTAACAGGAA | GATGCTTTCA | AGTTCTCTGC | TCCCCTCCTA | 3780 |
| AAGCTATGCA | TTTTTTATAAG | ACCATGGGAC | TTTTGCTGGC | TTTAGATCAG | CCTCGACTGT | 3840 |
| GCCTTCTAGT | TGCCAGCCAT  | CTGTTGTTTG | CCCCTCCCCC | GTGCCTTCCT | TGACCCTGGA | 3900 |
| AGGTGCCACT | CCCACTGTCC  | TTTCCTAATA | AAATGAGGAA | ATTGCATCGC | ATTGTCTGAG | 3960 |
| TAGGTGTCAT | TCTATTCTGG  | GGGGTGGGGT | GGGGCAGGAC | AGCAAGGGGG | AGGATTGGGA | 4020 |
| AGACAATAGC | AGGCATGCTG  | GGGATGCGGT | GGGCTCTATG | GAACCAGCTG | GGGCTCGATC | 4080 |
| GACTGTATGA | CTGCGGCCGC  | GATCCCGTCG | AGAGCTTGGC | GTAATCATGG | TCATAGCTGT | 4140 |
| TTCCTGTGTG | AAATTGTTAT  | CCGCTCACAA | TTCCACACAA | CATACGAGCC | GGAAGCATAA | 4200 |
| AGTGTAAAGC | CTGGGGTGCC  | TAATGAGTGA | GCTAACTCAC | ATTAATTGCG | TTGCGCTCAC | 4260 |
| TGCCCGCTTT | CCAGTCGGGA  | AACCTGTCGT | GCCAGCTGCA | TTAATGAATC | GGCCAACGCG | 4320 |
| CGGGGAGAGG | CGGTTTGCGT  | ATTGGGCGCT | CTTCCGCTTC | CTCGCTCACT | GACTCGCTGC | 4380 |
| GCTCGGTCGT | TCGGCTGCGG  | CGAGCGGTAT | CAGCTCACTC | AAAGGCGGTA | ATACGGTTAT | 4440 |
| CCACAGAATC | AGGGGATAAC  | GCAGGAAAGA | ACATGTGAGC | AAAAGGCCAG | CAAAAGGCCA | 4500 |
| GGAACCGTAA | AAAGGCCGCG  | TTGCTGGCGT | TTTTCCATAG | GCTCCGCCCC | CCTGACGAGC | 4560 |
| ATCACAAAAA | TCGACGCTCA  | AGTCAGAGGT | GGCGAAACCC | GACAGGACTA | TAAAGATACC | 4620 |
| AGGCGTTTCC | CCCTGGAAGC  | TOCCTCGTGC | GCTCTCCTGT | TCCGACCCTG | CCGCTTACCG | 4680 |
| GATACCTGTC | CGCCTTTCTC  | CCTTCGGGAA | GCGTGGCGCT | TTCTCAATGC | TCACGCTGTA | 4740 |
| GGTATCTCAG | TTCGGTGTAG  | GTCGTTCGCT | CCAAGCTGGG | CTGTGTGCAC | GAACCCCCCG | 4800 |
| TTCAGCCCGA | CCGCTGCGCC  | TTATCCGGTA | ACTATOGTOT | TGAGTCCAAC | CCGGTAAGAC | 4860 |
|            |             |            |            |            |            |      |

| ACGACTTATC | GCCACTGGCA | GCAGCCACTG | GTAACAGGAT | TAGCAGAGCG | AGGTATGTAG | 4920 |
|------------|------------|------------|------------|------------|------------|------|
| GCGGTGCTAC | AGAGTTCTTG | AAGTGGTGGC | CTAACTACGG | CTACACTAGA | AGGACAGTAT | 4980 |
| TTGGTATCTG | CGCTCTGCTG | AAGCCAGTTA | CCTTCGGAAA | AAGAGTTGGT | AGCTCTTGAT | 5040 |
| CCGGCAAACA | AACCACOGCT | GGTAGCGGTG | GTTTTTTTGT | TTGCAAGCAG | CAGATTACGC | 5100 |
| GCAGAAAAA  | AGGATOTOAA | GAAGATCCTT | TGATCTTTTC | TACGGGGTCT | GACGCTCAGT | 5160 |
| GGAACGAAAA | CTCACGTTAA | GGGATTTTGG | TCATGAGATT | ATCAAAAAOG | ATCTTCACCT | 5220 |
| AGATCCTTTT | AAATTAAAA  | TGAACTTTTA | AATCAATCTA | AAGTATATAT | GAGTAAACTT | 5280 |
| GGTCTGACAG | TTACCAATGC | TTAATCAGTG | AGGCACCTAT | CTCAGCGATC | TGTCTATTTC | 5340 |
| GTTCATCCAT | AGTTGCCTGA | CTCCCCGTCG | TGTAGATAAC | TACGATACGG | GAGGGCTTAC | 5400 |
| CATCTGGCCC | CAGTGCTGCA | ATGATACCGC | GAGACCCACG | CTCACCGGCT | CCAGATTTAT | 5460 |
| CAGCAATAAA | CCAGCCAGCC | GGAAGGGCCG | AGCGCAGAAG | TGGTCCTGCA | ACTITATCCG | 5520 |
| CCTCCATCCA | GTCTATTAAT | TGTTGCCGGG | AAGCTAGAGT | AAGTAGTTCG | CCAGTTAATA | 5580 |
| GTTTGCGCAA | CGTTGTTGCC | ATTGCTACAG | GCATCGTGGT | GTCACGCTCG | TCGTTTGGTA | 5640 |
| TGGCTTCATT | CAGCTCCGGT | TCCCAACGAT | CAAGGCGAGT | TACATGATCC | CCCATGTTGT | 5700 |
| GCAAAAAAGC | GGTTAGCTCC | TTCGGTCCTC | CGATCGTTGT | CAGAAGTAAG | TTGGCCGCAG | 5760 |
| TGTTATCACT | CATGGTTATG | GCAGCACTGC | ATAATTCTCT | TACTGTCATG | CCATCCGTAA | 5820 |
| GATGCTTTTC | TGTGACTGGT | GAGTACTCAA | CCAAGTCATT | CTGAGAATAG | TGTATGCGGC | 5880 |
| GACCGAGTTG | CTCTTGCCCG | GCGTCAATAC | GGGATAATAC | CGCGCCACAT | AGCAGAACTT | 5940 |
| TAAAAGTGCT | CATCATTGGA | AAACGTTCTT | CGGGGCGAAA | ACTCTCAAGG | ATCTTACCGC | 6000 |
| TGTTGAGATC | CAGTTCGATG | TAACCCACTC | GTGCACCCAA | CTGATCTTCA | GCATCTTTTA | 6060 |
| CTTTCACCAG | CGTTTCTGGG | TGAGCAAAAA | CAGGAAGGCA | AAATGCCGCA | AAAAAGGGAA | 6120 |
| TAAGGGCGAC | ACGGAAATGT | TGAATACTCA | TACTCTTCCT | TTTTCAATAT | TATTGAAGCA | 6180 |
| TTTATCAGGG | TTATTGTCTC | ATGAGCGGAT | ACATATTIGA | ATGTATTTAG | AAAAATAAAC | 6240 |
| AAATAGGGGT | TOCGCGCACA | TTTOCCCGAA | AAGTGCCACC | T          |            | 6281 |
|            |            |            |            |            |            |      |

## (2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 5679 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDMESS: double
  (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

| GACGTCGCGG CC  | GCTCTAGG C  | стссааала  | AGCCTCCTCA | CTACTTCTGG | AATAGCTCAG | 60   |
|----------------|-------------|------------|------------|------------|------------|------|
| AGGCCGAGGC GG  | CCTCGGCC T  | PCTGCATAAA | TAAAAAAAAT | TAGTCAGCCA | TGCATGGGGC | 120  |
| GGAGAATGGG CG  | GAACTGGG C  | GGAGTTAGG  | GGCGGGATGG | GCGGAGTTAG | GGGCGGGACT | 180  |
| ATGGTTGCTG AC  | TAATTGAG A  | ATGCATGCTT | TGCATACTTC | TGCCTGCTGG | GGAGCCTGGG | 240  |
| GACTTTCCAC AC  | CTGGTTGC 1  | GACTAATTG  | AGATGCATGC | TTTGCATACT | TCTGCCTGCT | 300  |
| GGGGAGCCTG GG  | SACTITICG A | CACCCTAAC  | TGACACACAT | TCCACAGAAT | TAATTCCCGG | 360  |
| GGATCGATCC GT  | CGACGTAC G  | GACTAGTTAT | TAATAGTAAT | CAATTACGGG | GTCATTAGTT | 420  |
| CATAGCCCAT AT  | ATGGAGTT C  | CCGCGTTACA | TAACTTACGG | TAAATGGCCC | GCCTGGCTGA | 480  |
| CCGCCCAACG AC  | CCCCGCCC A  | TTGACGTCA  | ATAATGACGT | ATGTTCCCAT | AGTAACGCCA | 540  |
| ATAGGGACTT TO  | CATTGACG T  | CAATGGGTG  | GACTATTTAC | GGTAAACTGC | CCACTTGGCA | 600  |
| GTACATCAAG TG  | PATCATAT G  | CCAAGTACG  | CCCCCTATIG | ACGTCAATGA | CGGTAAATGG | 660  |
| CCCGCCTGGC AT  | ratgccca g  | TACATGACC  | TTATGGGACT | TTCCTACTTG | GCAGTACATC | 720  |
| TACGTATTAG TC. | ATCCCTAT T  | PACCATGGTG | ATGCGGTTTT | GGCAGTACAT | CAATGGGCGT | 780  |
| GGATAGCGGT TT  | GACTCACG G  | GGATTTCCA  | AGTCTCCACC | CCATTGACGT | CAATGGGAGT | 840  |
| TTGTTTTGGC AC  | CAAAATCA A  | CCCGACTTT  | CCAAAATGTC | GTAACAACTC | CGCCCCATTG | 900  |
| ACGCAAATGG GC  | GTAGGCG T   | GTACGGTGG  | GAGGTCTATA | TAAGCAGAGC | TGGGTACGTG | 960  |
| AACCGTCAGA TO  | SCCTGGAG A  | CGCCATCGA  | ATTCTGAGCA | CACAGGACCT | CACCATGGGA | 1020 |
| TGGAGCTGTA TC  | TCCTCTT C   | TTGGTAGCA  | ACAGCTACAG | GTGTCCACTC | CGAGCTCACG | 1080 |
| CAGCCGCCCT CAG | TCTCTGC G   | GCCCCAGGA  | CAGAAGGTCA | CCATCTCCTG | CACTGGGAGC | 1140 |
| AGCTCCAACC TO  | GGGGCAGG T  | TATGATGTT  | CACTGGTACC | GGCAACTTCC | AGGGACAGCC | 1200 |
| CCCAAACTCC TC  | ATCTATGA T  | AACAACAAT  | CGGCCCTCAG | GGGTCCCTGA | CCGATTCTCT | 1260 |
| GGCTCCAAGT CT  | BGCCCCTC A  | GCCTCCCTG  | GCCATCTCTG | GGCTCCAGGC | TGAGGATGAG | 1320 |
| GCTGATTATT AC  | GCCAGTC C   | TATGACAGC  | AGCCTGAATG | GTTATGTCTT | CGGAACTGGG | 1380 |
| ACCCAGCTCA CCC | STCCTAGG T  | CAGCCCAAG  | GCTGCCCCCT | CGGTCACTCT | GTTCCCGCCC | 1440 |
| TCCTCTGAGG AGG | CTTCAAGC C  | AACAAGGCC  | ACACTGGTGT | GTCTCATAAG | TGACTTCTAC | 1500 |
| CCGGGAGCCG TG  | CAGTGGC C   | TGGAAGGCA  | ATTAGCAGCC | CCGTCAAGGC | GGGAGTGGAG | 1560 |
| ACCACCACAC CC  | CCAAACA A   | AGCAACAAC  | AAGTACGCGG | CCAGCAGCTA | TCTGAGCCTG | 1620 |
| ACGCCTGAGC AG  | TGGAAGTC C  | CACAGAAGG  | TACAGCTGCC | AGGTCACGCA | TGAAGGGAGC | 1680 |
| ACCGTGGAGA AGA | CAGTGGC C   | CCTACAGAA  | TGTTCATAGT | TCTAGATCTA | CGTATGATCA | 1740 |
| GCCTCGACTG TGC | CTTCTAG T   | TGCCAGCCA  | TCTGTTGTTT | GCCCCTCCCC | CGTGCCTTCC | 1800 |
| TTGACCCTGG AAC | GTGCCAC T   | CCCACTGTC  | CTTTCCTAAT | AAAATGAGGA | AATTGCATCG | 1860 |
| CATTGTCTGA GT/ | GGTGTCA T   | TCTATTCTG  | GGGGGTGGGG | TGGGGCAGGA | CAGCAAGGGG | 1920 |

GAGGATIGGG AAGACAATAG CAGGCATCCT GGGGATGCGG TGGGCTCTAT GGAACCAGCT 1.980 GGGGCTCGAC AGCTCGAGCT AGCTTTGCTT CTCAATTTCT TATTTGCATA ATGAGAAAAA 2040 AAGGAAAATT AATTITAACA CCAATTCAGT AGTTGATTGA GCAAATGCGT TGCCAAAAAG 2100 GATGCTTTAG AGACAGTGTT CTCTGCACAG ATAAGGACAA ACATTATTCA GAGGGAGTAC 2160 CCAGAGCTGA GACTECTAAG CCAGTGAGTG GCACAGCATT CTAGGGAGAA ATATGCTTGT 2220 CATCACCGAA GCCTGATTCC GTAGAGCCAC ACCTTGGTAA GGGCCAATCT GCTCACACAG GATAGAGAGG GCAGGAGCCA GGCCAGAGCA TATAAGGTGA GGTAGGATCA GTTGCTCCTC 2340 ACATTTGCTT CTGACATAGT TGTGTTGGGA GCTTGGATCG ATCCACCATG GTTGAACAAG 2400 ATGGATTGCA CGCAGOTTCT CCGGCCGCTT GGGTGGAGAG GCTATTCGGC TATGACTGGG 2460 CACAACAGAC AATCGGCTGC TCTGATGCCG CCCTGTTCCG GCTGTCAGCG CAGGGGCGCC CGGTTCTTTT TGTCAAGACC GACCTGTCCG GTGCCCTGAA TGAACTGCAG GACGAGGCAG 2580 COCGGCTATE GTGGCTGGCC ACGACGGGCG TTCCTTGCGC AGCTGTGCTC GACGTTGTCA 2640 CTGAAGCGGG AAGGGACTGG CTGCTATTGG GCGAAGTGCC GGGGCAGGAT CTCCTGTCAT 2700 CTCACCTTGC TCCTGCCGAG AAAGTATCCA TCATGGCTGA TGCAATGCGG CGGCTGCATA 2760 CGCTTGATCC GGCTACCTGC CCATTCGACC ACCAAGCGAA ACATCGCATC GAGCGAGCAC 2820 GTACTOGGAT GGAAGCOGGT CTTGTCGATC AGGATGATCT GGACGAAGAG CATCAGGGGC 2880 TOGOGOCAGO CGAACTOTTO GOCAGGOTCA AGGOGOGOAT GOCCGACGGO GAGGATOTOG 2940 TEGTGACCCA TGGCGATGCC TGCTTGCCGA ATATCATGGT GGAAAATGGC CGCTTTTCTG 3000 GATTCATUGA CTGTGGCCGG CTGGGTGTGG CGGACCGCTA TCAGGACATA GCGTTGGCTA 3060 CCCGTGATAT TGCTGAAGAG CTTGGCGGCG AATGGGCTGA CCGCTTCCTC GTGCTTTACG 3120 GTATOGCOGO TOCCGATTOS CAGOGCATOS COTTOTATOS COTTOTIGAD GAGTTOTTOT 3180 GAGCGGGACT CTGGGGTTCG AAATGACCGA CCAAGCGACG CCCAACCTGC CATCACGAGA 3240 TTTCGATTCC ACCGCCGCCT TCTATGAAAG GTTGGGCTTC GGAATCGTTT TCCGGGACGC 3300 EGGCTGGATG ATCCTCCAGC GCGGGGATCT CATGCTGGAG TTCTTCGCCC ACCCCAACTT 3360 GTTTATTGCA GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT TCACAAATAA 3420 AGCATTTTTT TCACTGCATT CTAGTTGTGG TTTGTCCAAA CTCATCAATG TATCTTATCA 3480 TGTCTGGATC GCGGCCGCGA TCCCGTCGAG AGCTTGGCGT AATCATGGTC ATAGCTGTTT 3540 CCTGTGTGAA ATTGTTATCC GCTCACAATT CCACACAACA TACGAGCCGG AAGCATAAAG 3600 TGTAAAGCCT GGGGTGCCTA ATGAGTGAGC TAACTCACAT TAATTGCGTT GCGCTCACTG 3660 CCCGCTTTCC AGTCGGGAAA CCTGTCGTGC CAGCTGCATT AATGAATCGG CCAACGCGCG 3720 GGGAGAGGCG GTTTGCGTAT TGGGCGCTCT TCCGCTTCCT CSCTCACTGA CTCGCTGCGC 3780

| TOGGTCGTTC | GGCTGCGGCG | AGCOGTATCA         | GCTCACTCAA | AGGCGGTAAT | ACGGTTATCC | 3840 |
|------------|------------|--------------------|------------|------------|------------|------|
| ACAGAATCAG | GGGATAACGC | AGGAAAGAAC         | ATGTGAGCAA | AAGGCCAGCA | AAAGGCCAGG | 3900 |
| AACCGTAAAA | AGGCCGCGTT | GCTGGCGTTT         | TTCCATAGGC | Teegecceec | TGACGAGCAT | 3960 |
| CACAAAAATC | GACGCTCAAG | TCAGAGGTGG         | CGAAACCCGA | CAGGACTATA | AAGATACCAG | 4020 |
| GCGTTTCCCC | CTGGAAGCTC | CCTCGTGCGC         | TCTCCTGTTC | CGACCCTGCC | GCTTACCGGA | 4080 |
| TACCTGTCCG | CCTTTCTCCC | TTCGGGAAGC         | GTGGCGCTTT | CTCAATGCTC | ACGCTGTAGG | 4140 |
| TATCTCAGTT | CGGTGTAGGT | CGTTCGCTCC         | AAGCTGGGCT | GTGTGCACGA | ACCCCCCCTT | 4200 |
| CAGCCCGACC | GCTGCGCCTT | ATCCGGTAAC         | TATCGTCTTG | AGTCCAACCC | GGTAAGACAC | 4260 |
| GACTTATCGC | CACTGGCAGC | AGCCACTGGT         | AACAGGATTA | GCAGAGCGAG | GTATGTAGGC | 4320 |
| GGTGCTACAG | AGTTCTTGAA | GTGGTGGCCT         | AACTACGGCT | ACACTAGAAG | GACAGTATTT | 4380 |
| GGTATCTGCG | CTCTGCTGAA | GCCAGTTACC         | TTCGGAAAAA | GAGTTGGTAG | CTCTTGATCC | 4440 |
| GGCAAACAAA | CCACCGCTGG | TAGCGGTGGT         | TTTTTTTTT  | GCAAGCAGCA | GATTACGCGC | 4500 |
| AGAAAAAAAG | GATCTCAAGA | AGATECTTTG         | ATCTTTTCTA | CGGGGTCTGA | CGCTCAGTGG | 4560 |
| AACGAAAACT | CACGTTAAGG | GATTTTGGTC         | ATGAGATTAT | CAAAAAGGAT | CTTCACCTAG | 4620 |
| ATCCTTTTAA | ATTAAAAATG | aagttttaaa         | TCAATCTAAA | GTATATATGA | GTAAACTTGG | 4680 |
| TCTGACAGTT | ACCAATGCTT | <b>AATCAGTGA</b> G | GCACCTATCT | CAGCGATCTG | TCTATTTCGT | 4740 |
| TCATCCATAG | TTGCCTGACT | CCCCGTCGTG         | TAGATAACTA | CGATACGGGA | GGGCTTACCA | 4900 |
| TCTGGCCCCA | GTGCTGCAAT | GATACCGCGA         | GACCCACGCT | CACCGGCTCC | AGATTTATCA | 4860 |
| GCAATAAACC | AGCCAGCCGG | AAGGGCCGAG         | CGCAGAAGTG | GTCCTGCAAC | TTTATCCGCC | 4920 |
| TCCATCCAGT | CTATTAATTG | TTGCCGGGAA         | GCTAGAGTAA | GTACTTCGCC | AGTTAATAGT | 4980 |
| TTGCGCAACG | TTGTTGCCAT | TGCTACAGGC         | ATCGTGGTGT | CACGCTCGTC | GTTTGGTATG | 5040 |
| GCTTCATTCA | GCTCCGGTTC | CCAACGATCA         | AGGCGAGTTA | CATGATCCCC | CATGTTGTGC | 5100 |
| AAAAAGCGG  | TTAGCTCCTT | CGGTCCTCCG         | ATCGTTGTCA | GAAGTAAGTT | GGCCGCAGTG | 5160 |
| TTATCACTCA | TGGTTATGGC | AGCACTGCAT         | AATTCTCTTA | CTGTCATGCC | ATCCGTAAGA | 5220 |
| TGCTTTTCTG | TGACTGGTGA | GTACTCAACC         | AAGTCATTCT | GAGAATAGTG | TATGCGGCGA | 5280 |
| CCGAGTTGCT | CTTGCCCGGC | GTCAATACGG         | GATAATACCG | CGCCACATAG | CAGAACTTTA | 5340 |
| AAAGTGCTCA | TCATTGGAAA | ACGTTCTTCG         | GGGCGAAAAC | TCTCAAGGAT | CTTACCGCTG | 5400 |
| TTGAGATCCA | GTTCGATGTA | ACCCACTCGT         | GCACCCAACT | GATCTTCAGC | ATCTTTTACT | 5460 |
| TTCACCAGCG | TTTCTGGGTG | AGCAAAAACA         | GGAAGGCAAA | ATGCCGCAAA | AAAGGGAATA | 5520 |
| AGGGCGACAC | GGAAATGTTG | AATACTCATA         | CTCTTCCTTT | TTCAATATTA | TTGAAGCATT | 5580 |
| TATCAGGGTT | ATTGTCTCAT | GAGCGGATAC         | ATATTTGAAT | GTATTTAGAA | AAATAAACAA | 5640 |
| ATAGGGGTTC | CGCGCACATT | TCCCCGAAAA         | GTGCCACCT  |            |            | 5679 |
|            |            |                    |            |            |            |      |

#### (2) INFORMATION FOR SEO ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 1442 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: double
  (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCTGAG CACACAGGAC CTCACCATGG GATGGAGCTG TATCATCCTC TTCTTGGTAG 60 CAACAGCTAC AGGTGTCCAC TCCGAGGTGC AGCTGGTGGA GTCTGGGGGA GGCTTGGTAC 120 AGCCTGGGGG GTCCCTGAGA CTCTCCTGCG CAGCCTCTGG AGTCTCCCTC AGTGGATACA 180 AGATGAACTG GGTCCGCCAG GCTCCAGGGA AGGGGCTGGA ATGGGTCTCT TCCATTACTG 240 GTATGAGTAA TTACATACAC TACTCAGACT CAGTGAAGGG CCGATTCACC ATCTCCAGAG 300 SCAACGCCAT GAACTCACTG TATCTGCAAA TGAACAGCCT GACAGCCGAG GACACGGGTG 360 TITATTATTG TGCGACACAA CCGGGGGAGC TGGCGCCTTT TGACCATTGG GGCCAGGGAA 420 CCCTGGTCAC CGTCTCCTCA GCCTCCACCA AGGGCCCATC GCTCTTCCCC CTGGCACCCT 480 CCTCCAAGAG CACCTCTGGG GGCACAGCGG CCCTGGGCTG CCTGGTCAAG GACTACTTCC 540 CCGAACCGGT GACGGTGTCG TGGAACTCAG GCGCCCTGAC CAGCGGCGTG CACACCTTCC 600 CGGCTGTCCT ACAGTCCTCA GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA 660 GCAGCTTGGG CACCCAGACC TACATCTGCA ACGTGAATCA CAAGCCCAGC AACACCAAGG 720 TGGACAAGAA AGTTGAGCCC AAATCTTGTG ACAAAACTCA CACATGCCCA CCGTGCCCAG 780 CACCTGAACT CCTGGGGGGA CCOTCAGTCT TCCTCTTCCC CCCAAAACCC AAGGACACCC 840 TEATGATETE COGGACCCCT GAGGTCACAT GCGTGGTGGT GGACGTGAGC CACGAAGACC 900 CTGAGGTCAA GTTCAACTGG TACGTGGACG GCGTGGAGGT GCATAATGCC AAGACAAAGC 960 CGCGGGAGGA GCAGTACAAC AGCACGTACC GGGTGGTCAG CGTCCTCACC GTCCTGCACC 1.020 AGGACTGGCT GAATGGCAAG GAGTACAAGT GCAAGGTCTC CAACAAAGCC CTCCCAGCCC 1080 CCATCGAGAA AACCATCTCC AAAGCCAAAG GGCAGCCCCG AGAACCACAG GTGTACACCC 1140 TGCCCCCATC CCGGGATGAG CTGACCAAGA ACCAGGTCAG CCTGACCTGC CTGGTCAAAG 1200 GCTTCTATCC CAGCGACATC GCCGTGGAGT GGGAGAGCAA TGGGCAGCCG GAGAACAACT 1260 ACAAGACCAC GCCTCCCGTG CTGGACTCCG ACGCCTCCTT CTTCCTCTAC AGCAAGCTCA 1320 CCGTGGACAA GAGCAGGTGG CAGCAGGGGA ACCTCTTYCTC ATGCTCCCTG ATGCATGAGG 1380 CTCTGCACAA CCACTACACG CAGAAGAGCC TCTCCCTGTC TCCGGGTAAA TGATAGATAT 1440

1442

| T                                                                                                                                                        | 1442 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (Z) INFORMATION FOR SEQ ID NO:16:                                                                                                                        |      |
| (1) SEQUENCE CURRACTURE STITES (A) LEMPTH: 762 base pairs (3) TYPE: nurle(c acid (C) STRANDENDESS; double (D) TOPOLOCY: unknown (ii) MOLECULE TYPE: cDNA |      |
|                                                                                                                                                          |      |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:                                                                                                                 |      |
| GAATTCTGAG CACACAGGAC CTCACCATGG GATGGAGCTG TATCATCCTC TTCTTGGTAG                                                                                        | 60   |
| CAACAGCTAC AGGTGTCCAC TCCCAGTCTG TGTTGACGCA GCCGCCCTCA GTCTCTGCGG                                                                                        | 120  |
| CCCCAGGACA GAAGGTCACC ATCTCCTGCA CTGGGAGCAG CTCCAACCTC GGGGCAGGTT                                                                                        | 180  |
| ATGATGTTCA CTGGTACCGG CAACTTCCAG GGACAGCCCC CAAACTCCTC ATCTATGATA                                                                                        | 240  |
| ACAACAATCG GCCCTCAGGG GTCCCTGACC GATTCTCTGG CTCCAAGTCT GGCCCCTCAG                                                                                        | 300  |
| CCTCCCTGGC CATCTCTGGG CTCCAGGCTG AGGATGAGGC TGATTATTAC TGCCAGTCCT                                                                                        | 360  |
| ATGACAGCAG CCTGAATGGT TATGTCTTCG GAACTGGGAC CCAGCTCACC GTCCTAGGTC                                                                                        | 420  |
| AGCCCAAGGC TECCCCCTCG GTCACTCTGT TCCCGCCCTC CTCTGAGGAG CTTCAAGCCA                                                                                        | 480  |
| ACAAGGCCAC ACTGGTGTGT CTCATAAGTG ACTTCTACCC GGGAGCCGTG ACAGTGGCCT                                                                                        | 540  |
| GAAGGCAAT TAGCAGCCCC GTCAAGGCGG GAGTGGAGAC CACCACACCC TCCAAACAAA                                                                                         | 600  |
| CCAACAACAA GTACGCGGCC AGCAGCTATC TGAGCCTGAC GCCTGAGCAG TGGAAGTCCC                                                                                        | 660  |
| ACAGAAGGTA CAGCTGCCAG GTCACGCATG AAGGGAGCAC CGTGGAGAAG ACAGTGGCCC                                                                                        | 720  |
| CTACAGAATG TTCATAGTTC TAGATCTACG TATGATCAGC CT                                                                                                           | 762  |
| (2) INFORMATION FOR SEQ ID NO:17:                                                                                                                        |      |
| (i) SDQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPS: amino acid (C) STRANGENTESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPS: pectide          |      |
| inn, monneous trut proposes                                                                                                                              |      |

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
- Glu Val Gln Leu Leu Glu 1 5
- (2) INFORMATION FOR SEQ ID NO:18:

| (B) TYPE: amino acid<br>(C) STRANDENDESS:<br>(D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|--|--|--|--|
| (ii) MOLECULE TYPE: peptide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |  |  |  |  |  |  |  |  |  |  |  |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |  |  |  |  |  |  |  |  |  |  |  |
| Glu Val Gln Leu Val Glu<br>1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |  |  |  |  |  |  |  |  |  |  |  |
| (2) INFORMATION FOR SEQ ID NO:19:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |  |  |  |  |  |  |  |  |  |  |  |
| (i) SEQUENCE CHARACTERISTICS: (A) LEMBTH 1899 base pairs (R) TYPE: nucleic acid (C) STRANDETHESES: double (D) TOPOLOGY: unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |  |  |
| (ii) MOLECULE TYPE: eDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |  |  |  |  |  |  |  |  |  |  |  |
| (ix) FEATURE: (A) BAME/KEY: CDS (B) LOCATION: 141735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |  |  |  |  |  |  |  |  |  |  |  |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |  |  |
| GGGGCAAATA ACA ATG GAG TTG CTA ATC CTC AAA GCA AAT GCA ATT ACC Met Glu Leu Leu Ile Leu Lys Ala Asn Ala Ile Thr 1 $$10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49                      |  |  |  |  |  |  |  |  |  |  |  |
| Met Glu Leu Leu Ile Leu Lys Ala Asn Ala Ile Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49<br>97                |  |  |  |  |  |  |  |  |  |  |  |
| Mot Glu Leu Lou Ile Leu Lys Ala Asn Ala Ile Thr 1 5 10 ACA ATC CTC ACT GCA GTC ACA TTT TGT TTT GCT TCT GGT CAA AAC ATC Thr Ile Leu Thr Ala Val Thr Phe Cys Phe Ala Sec Gly Gln Asn Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |  |  |  |  |  |  |  |  |  |  |  |
| Met Glu Leu Leu Is Leu Lys Ala Asm Ala Ile Thr 1 0 10  ACA ATC CTC ACT GCA GTC ACA TIT TGT TET GCT TCT GGT CAA AAC ATC Thr Ile Leu Thr Ala Val Thr Phe Cys Phe Ala Ser Gly Gln Asm Ile 20 20 12 ACT GAA GAA TTT TAT CAA TCA ACA TGC AGT GCA GTT ACC AAA GCC TAT HC GLG GLY Phe Tyr GLN Ser Thr Cys Ser Ala Val Ser Lys Gly Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97                      |  |  |  |  |  |  |  |  |  |  |  |
| Met Glu Leu Leu Ile Leu Lys Ala Asm Ala Ile Thr 1 10 ACA ATC CTC ACT GCA GTC ACA TTT TGT TTT GCT TCT GGT CAA AAC ATC Thr Ile Leu Thr Ala Val Thr Phe Cys Phe Ala Ser Gly Gln Asm Ile 12 20 21 ACT GAA GAA TTT TAT CAA TCA ACA GTC AGT GCT ACC AAA GGC TAT THR Glu Glu Phe Tyr Gln Ser Thr Cys Ser Ala Val Ser Lys Gly Tyr 30 25 TGG GTC TCA GAA ACT GGT TGG TAT ACC AGT GTT ATA ACT ATA GAA Leu Ser Ala Leu Arg Thr Gly Tyr Tyr Ser Val Ile Thr Ile Glu                                                                                                                                                                                                                                                                                                                        | 97<br>145               |  |  |  |  |  |  |  |  |  |  |  |
| Met Glu Leu Leu Lie Leu Lys Ala Asm Ala 11e Thr 1   ACA ATC CTC ACT CCA CTC ACA TT TOT TOT TOT CTC GOT CAA AMC ATC Thr Ile us thr Ala Val Thr Phe Cys Phe Ala Sed Gly Gln Asm Ile 20   ACT GAA GAA TTT TAT CAA TCA ACT ACA TGC AGT GAG GTT AGC ATA COC TAT TG Glu Glu Phe Tyr Gln Ser Thr Cys Ser Ala Val Ser Lys Gly Tyr 35   CTT AGT GGT CTC AGA ACT GGT TGG TAT ACC AUT GTT ATA ACT ATA GAA Leu Ser Ala Leu Arg Thr Gly Tyr Tyr Thr Ser Val Ile Thr Ile Glu 45   TTA AGT AAT ATC AAG GAA AAT CAA GTCT AAT GCA ACA GAT GCT AGA GTC TTA ACT ATA ILE VALUE ACT ATA ILE AGA GAA AAT CAC AND ACT ACT ATA GAA Leu Ser Ala Ile Un Ser Leu Leu Arg Thr Gly Tyr Tyr Thr Ser Val Ile Thr Ile Glu Cys Chan Ile Thr Ile Glu Act Act Act Ata Gaa Act | 97<br>145<br>193        |  |  |  |  |  |  |  |  |  |  |  |
| Met Glu Leu Leu Ite Leu Lys Ala Asm Ala Ile Thr 1 10 20 40 AR ACT CTC ACT GCA GTG ACA ACA TTT TGT TTT GCT TCT GGT CAA AAC ATC Thr Ile Leu Thr Ala Val Thr Phe Cys Fhe Ala Ser Gly Gln Asm Ile 20 20 40 AGA ATT TGT TAT GAA TCA ACT GCA GTG AGT ACC AAA GCC TAT THR GLU GLY Phe Tyr GLN Ser Thr Cys Ser Ala Val Ser Lys Gly Tyr 30 35 40 AGA ACC GTA THR GLU GLY ACT                                                                                                                                                                                                                                                                                                                                                                        | 97<br>145<br>193<br>241 |  |  |  |  |  |  |  |  |  |  |  |

(i) SEQUENCE CHARACTERISTICS:

|                   |                   | Leu               |            |                   |                   |                   | Asn               |            |                   |                   |                   | Asn               |            |                   | AAA<br>Lys        | 385  |  |
|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|------|--|
|                   | Asn               |                   |            |                   |                   |                   |                   |            |                   |                   | Arg               |                   |            |                   | TTT<br>Phe<br>140 |      |  |
|                   |                   |                   |            |                   | Ser               |                   |                   |            |                   | Gly               |                   |                   |            |                   | AAG<br>Lys        | 481  |  |
|                   |                   |                   |            | Glu               |                   |                   |                   |            | Lys               |                   |                   |                   |            | Leu               | CTA<br>Leu        |      |  |
| TCC<br>Ser        | ACA<br>Thr        | AAC<br>Asn<br>175 | Lys        | GCT<br>Ala        | GTA<br>Val        | GTC<br>Val        | AGC<br>Ser<br>180 | Leu        | TCA<br>Ser        | AAT<br>Asn        | GGA<br>Gly        | GTT<br>Val<br>195 | AGT<br>Ser | GTC<br>Val        | TTA<br>Leu        | 577  |  |
|                   |                   | Lys               |            |                   |                   |                   | Lys               |            |                   |                   |                   |                   |            |                   | TTA<br>Leu        | 625  |  |
|                   | Ile               |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   | GTG<br>Val<br>220 | 673  |  |
| ATA<br>Ile        | GAG<br>Glu        | TTC<br>Phe        | CAA<br>Gln | CAA<br>G1n<br>225 | Lys               | AAC<br>Asn        | AAC<br>Asn        | AGA<br>Arg | CTA<br>Leu<br>230 | Leu               | GAG<br>Glu        | ATT<br>Ile        | ACC<br>Thr | AGG<br>Arg<br>235 | GAA<br>Glu        | 721  |  |
|                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   | TTA<br>Leu        |      |  |
|                   | AAT<br>Asn        |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   | 817  |  |
|                   |                   |                   |            |                   |                   |                   | Asn               |            |                   |                   |                   |                   |            |                   | CAA<br>GIn        | 865  |  |
| AGT<br>Ser<br>285 | TAC<br>Tyr        | TCT<br>Ser        | ATC<br>Ile | ATG<br>Met        | TCC<br>Ser<br>290 | ATA<br>Ile        | ATA<br>Ile        | AAA<br>Lys | GAG<br>Glu        | GAA<br>Glu<br>295 | GTC<br>Val        | TTA<br>Leu        | GCA<br>Ala | TAT<br>Tyr        | GTA<br>Val<br>300 | 913  |  |
|                   | CAA<br>Gln        |                   |            |                   |                   |                   |                   | Ile        |                   |                   |                   |                   |            |                   |                   | 961  |  |
|                   | ACA<br>Thr        |                   |            | Leu               |                   |                   | Thr               |            |                   |                   |                   | Gly               |            |                   | ATC               | 1009 |  |
| TGT<br>Cys        | TTA<br>Leu        | ACA<br>Thr<br>335 | AGA<br>Arg | ACT<br>Thr        | GAC<br>Asp        | AGA<br>Arg        | GGA<br>Gly<br>340 | TGG<br>Trp | TAC<br>Tyr        | TGT<br>Cya        | Asp               | AAT<br>Asn<br>345 | GCA<br>Ala | GGA<br>Gly        | TCA<br>Ser        | 1057 |  |
| Val               | TCT<br>Ser<br>350 | TTC<br>Phe        | TTC<br>Phe | CCA<br>Pro        | Gln               | GCT<br>Ala<br>355 | Glu               | ACA<br>Thr | TGT<br>Cys        | Lys               | GTT<br>Val<br>360 | CAA<br>Gln        | TCA<br>Ser | AAT<br>Asn        | CGA<br>Arg        | 1105 |  |

|                                                                   |                   |            |            |                   |            | Asn               |            |            |                   |            |                   | AGT               |            |                   |            | 1153 |
|-------------------------------------------------------------------|-------------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|------------|-------------------|-------------------|------------|-------------------|------------|------|
| CTC                                                               | TGC               | AAT        | GTT<br>Val | GAC<br>Asp<br>385 | Ile        | TTC               | Aan        | CCC        | AAA<br>Lys<br>390 | TAT<br>Tyr | GAT<br>Asp        | TGT               | AAA<br>Lys | ATT<br>Ile<br>395 | ATG<br>Met | 1201 |
|                                                                   |                   |            |            |                   |            |                   |            |            |                   |            |                   | TCT               |            |                   | GCC<br>Ala | 1249 |
|                                                                   |                   |            |            |                   |            |                   |            |            |                   |            |                   | TCC<br>Ser<br>425 |            |                   | AAT<br>Asn | 1297 |
|                                                                   |                   |            |            |                   |            |                   |            |            |                   |            |                   | TAT<br>Tyr        |            |                   |            | 1345 |
|                                                                   | Gly               |            |            |                   |            |                   |            |            |                   |            |                   | TAT               |            |                   |            | 1393 |
|                                                                   |                   |            |            |                   |            |                   |            |            |                   |            |                   | CCA<br>Pro        |            |                   |            | 1441 |
|                                                                   |                   |            |            |                   |            |                   |            |            |                   |            |                   | GAT<br>Asp        |            |                   |            | 1489 |
|                                                                   |                   |            |            |                   |            |                   |            |            |                   |            |                   | TTT<br>Phe<br>505 |            |                   |            | 1537 |
| TCC<br>Ser                                                        | GAT<br>Asp<br>510 | GAA<br>Glu | TTA<br>Leu | TTA<br>Leu        | CAT<br>His | AAT<br>Aen<br>515 | GTA<br>Val | AAT<br>Asn | GCT<br>Ala        | GGT<br>Gly | AAA<br>Lys<br>520 | TCC<br>Ser        | ACC<br>Thr | ACA<br>Thr        | AAT<br>Asn | 1585 |
|                                                                   |                   |            |            |                   |            |                   |            |            |                   |            |                   | ATA               |            |                   |            | 1633 |
|                                                                   |                   |            |            |                   |            |                   |            |            |                   |            |                   | AGA<br>Arg        |            |                   |            | 1681 |
|                                                                   |                   |            |            |                   |            |                   |            |            |                   |            |                   | AAT<br>Asn        |            |                   |            | 1729 |
| AGT<br>Ser                                                        |                   | TAA        | TAAA       | AA T              | AGCA       | CCTA              | A TO       | ATGI       | TCTI              | ACA        | ATGG              | TTT               | ACTA       | TCTG              | SCT        | 1785 |
| CATAGACAAC CCATCTGTCA TTGGATTTTC TTAAAATCTG AACTTCATCG AAACTCTCAT |                   |            |            |                   |            |                   |            | 1845       |                   |            |                   |                   |            |                   |            |      |
| CTATAAACCA TCTCACTTAC ACTATITAAG TAGATTCCTA GTTTATAGTT ATAT 1899  |                   |            |            |                   |            |                   |            | 1899       |                   |            |                   |                   |            |                   |            |      |

(2) INFORMATION FOR SEQ ID NO:20:

# (i) SEQUENCE CHARACTERISTICS: (A) LERGTH: 574 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Glu Leu Leu Ile Leu Lys Ala Asn Ala Ile Thr Thr Ile Leu Thr 1 5 10 15 Ala Val Thr Phe Cys Phe Ala Ser Gly Gln Asn Ile Thr Glu Glu Phe 20 25 30 Tyr Gln Ser Thr Cys Ser Ala Val Ser Lys Gly Tyr Leu Ser Ala Leu 35 40 45 Arg Thr Gly Trp Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile 50 55 60 Lys Glu Asn Lys Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys 65 70 75 80 Glm Glu Leu Asp Lys Tyr Lys Asm Ala Val Thr Glu Leu Glm Leu Leu 85 90 95 Met Gin Ser Thr Pro Pro Thr Asn Asn Arg Ala Arg Arg Glu Leu Pro 100 105 110 Arg Phe Met Asn Tyr Thr Leu Asn Asn Ala Lys Lys Thr Asn Val Thr 115 \$120\$Leu Ser Lys Lys Arg Lys Arg Phe Leu Gly Phe Leu Leu Gly Val 130 135 140 Gly Ser Ala Ile Ala Ser Gly Val Ala Val Ser Lys Val Leu His Leu 145 150 155 160 Glu Gly Glu Val Asn Lys Ile Lys Ser Ala Leu Leu Ser Thr Asn Lys 165 170 175 Ala Val Val Ser Leu Ser Asn Gly Val Ser Val Leu Thr Ser Lys Val Leu Asp Leu Lys Asn Tyr Ile Asp Lys Gln Leu Leu Pro Ile Val Asn 195 200 205 Lys Gln Ser Cys Ser Ile Ser Asn Ile Glu Thr Val Ile Glu Phe Gln 210 215 220 Glm Lys Asn Asn Arg Leu Leu Glu Ile Thr Arg Glu Phe Ser Val Asn Ala Gly Val Thr Thr Pro Val Ser Thr Tyr Met Leu Thr Asn Ser Glu 245 250 255 Leu Leu Ser Leu Ile Asn Asp Met Pro Ile Thr Asn Asp Gln Lys Lys 260 265 270 Leu Met Ser Asn Asn Val Gln Ile Val Arg Gln Gln Ser Tyr Ser Ile

Met Ser Ile Ile Lys Glu Glu Val Leu Ala Tyr Val Val Gln Leu Pro 290 295 300 Let Tyr Gly Val Ile Asp Thr Pro Cys Trp Lys Let His Thr Ser Pro 305 310 315Leu Cys Thr Thr Asn Thr Lys Glu Gly Ser Asn Ile Cys Leu Thr Arg 325 330 335 Thr Asp Arg Gly Trp Tyr Cys Asp Asn Ala Gly Ser Val Ser Phe Phe 340 345 Thr Met Asn Ser Leu Thr Leu Pro Ser Glu Ile Asn Leu Cys Asn Val 370 375 380 Asp Ile Phe Asn Pro Lys Tyr Asp Cys Lys Ile Met Thr Ser Lys Thr 385 390 395 400 Asp Val Ser Ser Ser Val Ile Thr Ser Lou Gly Ala Ile Val Ser Cys 405 410 415 Tyr Gly Lys Thr Lys Cys Thr Ala Ser Asn Lys Asn Arg Gly Ile Ile 420 425 430 Lys Thr Phe Ser Asn Gly Cys Asp Tyr Val Ser Asn Lys Gly Met Asp 435 440 445 Thr Val Ser Val Gly Asn Thr Leu Tyr Tyr Val Asn Lys Gln Glu Gly 450 460 Lys Ser Leu Tyr Val Lys Gly Glu Pro Ile Ile Asn Phe Tyr Asp Pro 465 470 475 Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn 485 Glu Lys Ile Asn Gln Ser Leu Ala Pho Ile Arg Lys Ser Asp Glu Leu 500 505 510 Leu His Asn Val Asn Ala Gly Lys Ser Thr Thr Asn Ile Met Ile Thr 515 520 525 Gly Leu Leu Tyr Cys Lys Ala Arg Ser Thr Pro Val Thr Leu Ser 545 550 555 560 Lys Asp Gln Leu Ser Gly Ile Asn Asn Ile Ala Phe Ser Asn

- (2) INFORMATION FOR SEQ ID NO:21:
  - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: (D) TOPOLOGY: unknown

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:21:

#### 【図面の簡単な説明】

【図1A】 G2-1 scFVファージ結合のRSV19 mAb (国際特 許出顧公報第WO92/04381号、1992年3月19日公開)との競合を 示すグラフである。

【図1B】 G  $\lambda$ -1 scFVファージ結合のRSV B4 mAb (国際特許出願公報第WO93/20210号、1993年10月14日公開) との載合を示すグラフである。

【図2】  $scFVファージ、G\lambda-1、G\lambda-3およびG\kappa-1とRSV$ 系統273によるウイルス中和を示すグラフである。

【図3】  $G\lambda-1$  L鎖可変領域、プロセッシングされたN末端から枠組 み構造 I VのDNA配列(配列番号1) および蛋白質配列(一文字コードにおい て報告されたアミノ酸)(配列番号2)を示す。

【図4】 Gλ-1 H鎖可変領域、プロセッシングされたN末端から枠組 み構造IVのDNA配列(配列番号3)および蛋白質配列(一文字コードにおい て報告されたアミノ酸)(配列番号4)を示す。

【図6】 Gλ-1一本鎖FvのH鎖アミノ酸配列(配列番号5)と本発明の種々のモノクローナル抗体との比較を提供する。A(配列番号7)およびB(配列番号8) 標築物のH鎖のアミノ酸配列を示す。残基の番号は、生殖細胞系(

GL)遺伝子Dp58 (配列番号6) に基づき、成熟のプロセッシングされたア ミノ末端で開始し、CDR3で終結する。「-」は上記の配列との同一性を示す (例えば、Bと比べたA)。太字の残基はリーダー領域およびCDR1-3に相 当する。

【図7】 G A - 1 A 1 本額F v v のL 鎖ア ミノ酸配列 (配列番号9) と本発 明本のモノクローナル抗体の比較を提供する。A (配列番号11) および B (配列番号12) 構築物の上級アミノ酸配列を示す。V x 領域の成基の番号は、 生殖細胞系 (G L) 遺伝子 D p L 8 (配列番号10) に基づき、成熟のプロセッ シングされたアミノ末端で開始し、C D R 3 で終結する。枠組み構造 4 を参照す るために、実際の番号付もまたら、- 1 A について示される。図 6 と同様に、「 - 1 は上記の番別 v 同一性を示す。

【図8】 図8A~8Fは、H鎖についてRSV中和ヒトGA−1mAbを含有する発現プラスミドGえ−1Apcdの連続的なDNA配列 (角列番号13)を示す。Gえ−1H鎖の翻訳開始、リーダーペプチド、アミノ末端プロセッシング部位、カルボキシ末端およびEcoR1制限エンドヌクレアーゼリ新部位を示す。

【図9】 図9A~9Eは、L鎖についてRSV中和ヒトGえ−1mAbを 含有する発現プラスミドGえ−1Apcnの連続的なDNA配列(配列番号14)を示す。図8A-8Fと同様にL鎖について対応する特徴が示される。

【図10】 図10Aおよび10Bは、プラスミドGえ-1BpcdのH鎖のコーディング製板の連続的なDNA配列 (配列番号15)を示す。大学の残基は、図8A-8F(配列番号13)におけるGえ-1Apcdのための全ペクター配列との相談を示す。

【図11】 プラスミドGλ-1BpcnのL鎖のコーディング領域のDN A配列(配列番号16)を示す。太字の残基は、図9A-9E (配列番号14) におけるGλ-1Apcnの全ペクター配列との相違を示す。

Fig. 1A RSV19/GI1 scFv ファージ競合



【図1B】



Fig. 1B

Fig. 2 ファージF v を用いるRS/V/273の中和



# FIGURE 3

| 1.  | CAGTCTGTGTTGACGCAGCCGCCCTCAGTCTCTGCGGCCCCAGGACAGAA                                   | 50  |
|-----|--------------------------------------------------------------------------------------|-----|
|     | Q S V L T Q P P S V S A A P G Q K                                                    |     |
| 51  | GGTCACCATCTCCTGCACTGGGAGCAGCTCCAACCTCGGGGCAGGTTATG V T I S C T G S S S N L G A G Y D | 100 |
| 101 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                | 150 |
| 151 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                | 200 |
| 201 | CAAGTCTGGCCCCTCAGCCTCCCTGGCCATCTCTGGGCTCCAGGCTGAGG K S G P S A S L A I S G L Q A E D | 250 |
| 51  | ATGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGAATGGTTAT E A D Y Y C Q S Y D S S L N G Y   | 300 |
| 01  | GTCTTCGGAACTGGGACCCAGCTCACCGTCCTAGGT V F G T G T Q L T V L G                         | 336 |

# FIGURE 4

| 1   | GAGGTGCAGCTGGTGGAGTCTGGGGGGGTC E V Q L V E S G G G L V Q P G G S                     | 50  |
|-----|--------------------------------------------------------------------------------------|-----|
| 51  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                | 100 |
| 101 | TGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGGTCTCTTCC N W V R Q A P G K G L E W V S S   | 150 |
| 151 | ATTACTGGTATGAGTAATTACATACACTACTCAGACTCAGTGAAGGGCCG I T G M S N Y I H Y S D S V K G R | 200 |
| 201 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                | 250 |
| 251 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                | 300 |
| 301 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                 | 350 |
| 351 | CTCCTCA<br>S S                                                                       | 357 |



## FIGURE 6

## G λ - 1 - 本鎖 f ν と m A b の H鎖アミノ酸配列の比較

# リーダーおよび可変領域

|                    | EVQLVESGGGLVQPGGSLRLSCAASGFTFSVSL- SL     |
|--------------------|-------------------------------------------|
| CDR1               | CDR2                                      |
|                    |                                           |
|                    | S <b>YISSSGSTIYYADSVKG</b> RFTISRDNAKNSLY |
| G-K                | -S-TGMSNY-H-SM                            |
|                    |                                           |
|                    |                                           |
|                    | CDR3                                      |
|                    |                                           |
| LQMNSLRAEDTAVYYCAR |                                           |
| TGT                | QPGELAPFDHWGQGTLVTVSS                     |
|                    |                                           |
|                    |                                           |
|                    | CDR1                                      |

# FIG 7 G λ ー 1 A 一本鎖 F v と m A b の L鎖アミノ酸配列の比較

## リーダーおよび可変領域

| リーダーね      | よい可変限以                      |                                          |
|------------|-----------------------------|------------------------------------------|
|            |                             | CDR1                                     |
|            |                             |                                          |
| GL DpL8:   |                             | QSVLTQPPSVSGAPGQRVTISC <b>TGSSSNIG</b>   |
| Gλ-1 scFv: |                             | L-                                       |
| Gλ-1A:     | MGWSCIILFLVATATGVHS         | E                                        |
| Gλ-1B:     |                             | osv                                      |
|            |                             |                                          |
|            |                             | CDR2                                     |
|            |                             |                                          |
| GL DpL8.   | <b>AGYDVH</b> WYQQLPGTAPKLL | iy <b>gnsnrps</b> gvpdrfsgsksgtsaslaitgl |
| Gλ-IscFv:  | R                           | D-N                                      |
| Gλ-IA:     |                             |                                          |
| Gλ-1B:     |                             |                                          |
|            |                             |                                          |
|            | CDR3                        |                                          |
|            |                             |                                          |
| GL DpL8:   | QAEDEADYYC                  |                                          |
| Gλ-1 scFv: | QSYDSSLNG                   | <b>YV</b> FGTGTQLTVLG                    |
| Gλ-1A:     |                             |                                          |
| Gλ-1B:     |                             |                                          |
|            |                             |                                          |

## FIGURE 8A

| 1    | gacgtcgcggccgctctaggcctccaaaaaagcctcctcactacttctgg                                       |
|------|------------------------------------------------------------------------------------------|
| 51   | ${\tt aatagctcagaggccgaggcggcctctggcctataaataa$                                          |
| 101  | ${\tt tagtcagccatgcatggggggagattgggcggaactgggcggagttagg}$                                |
| 151  | $\tt ggcgggatgggcggagttagggggggactatggttgctgactaattgag$                                  |
| 201  | ${\tt atgcatgctttgcatacttctgcctgctggggagcctggggactttccac}$                               |
| 251  | ${\tt acctggttgctgactaattgagatgcatgctttgcatacttctgcctgc$                                 |
| 301  | ggggagcctggggactttccacaccctaactgacacacattccacagaat                                       |
| 351  | ${\tt taattcccggggatcgatccgtcgacgtacgactagttattaatagtaat}$                               |
| 401  | ${\tt caattacggggtcattagttcatagcccatatatggagttccgcgttaca}$                               |
| 451  | taacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc                                       |
| 501  | ${\tt attgacgtcaataatgacgtatgttcccatagtaacgccaatagggactt}$                               |
| 551  | tccattgacgtcaatgggtggactatttacggtaaactgcccacttggca                                       |
| 601  | gtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatga                                       |
| 651  | cggtaaatggcccgcctggcattatgcccagtacatgaccttatgggact                                       |
| 701  | ttcctacttggcagtacatctacgtattagtcatcgctattaccatggtg                                       |
| 751  | atgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacg                                       |
| 801  | gggatttccaagtctccaccccattgacgtcaatgggagtttgttt                                           |
| 851  | accaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattg                                       |
| 901  | acgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagc                                       |
|      | EcoRI                                                                                    |
| 951  | tgggtacgtgaaccgtcagatcgcctggagacgccatcgaattctgagca                                       |
| 1001 | cacaggacctcaccatgggatggagctgtatcatcctcttcttggtagCa<br>M G W S C I I L F L V A<br>リーゲー 開始 |
|      | XhoI                                                                                     |

1051 acagctacaggtgtccactccgaggtccaactg<u>ctcgag</u>tctgggggagg T A T G V H S <u>E V Q</u> L L E S---プロセッシングされたN末端

### FIGURE 8B

1101 cttggtacagcctggggggtccctgagactctcctgcgcagcctctggag 1151 tctccctcagtggatacaagatgaactgggtccgccaggctccagggaag 1201 1251 ctcagactcagtgaagggccgattcaccatctccagagacaacgccatga 1301 actcactgtatctgcaaatgaacagcctgacagccgaggacacgggtgtt tattattgtgcgacacaaccgggggagctggcgccttttgaccattgggg 1351 Bsp120I BstEII 1401 ccagggaaccctggtcaccgtctcctcagcctccaccaagggcccatcgg Q G T L V T V S S / 枠組み構造 IV / CH1 1451 tettecccetggcaccetectccaagagcacctctgggggcacagcggcc ctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtg 1501 gaactcaggcgccctgaccagcggcgtgcacaccttcccggctgtcctac 1551 BstEII 1601 agtectcaggactctactccctcagcagcgtggtgaccgtgccctccagc agcttgggcacccagacctacatctgcaacgtgaatcacaagcccagcaa 1651 caccaaggtggacaagaagttgagcccaaatcttgtgacaaaactcaca 1701 1751 catgcccaccgtgcccagcacctgaactcctggggggaccgtcagtcttc 1801 ctcttcccccaaaacccaaqqacaccctcatgatctcccggacccctga 1851 ggtcacatgcgtggtggtggacgtgagccacgaagaccctgaggtcaagt tcaactggtacgtggacggcgtggaggtgcataatgccaagacaaagccg 1901 1951 cgggaggagcagtacaacagcacgtaccgggtggtcagcgtcctcaccgt cctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtctcca 2001 acaaagccctcccagcccccatcgagaaaaccatctccaaagccaaaggg 2051 caqccccqaqaaccacaggtgtacaccctgcccccatcccgggatgagct 2101 2151 gaccaagaaccaggtcagcctgacctgcctggtcaaaggcttctatccca

#### FIGURE 8C

gegacategeegtggagtgggagagcaatgggcagceggagaacaactac 2201 2251 aagaccacgcctcccgtgctggactccgacggctccttcttcctctacag caaqctcaccgtggacaagagcaggtggcagcaggggaacgtcttctcat 2301 gctccgtgatgcatgaggctctgcacaaccactacacgcagaagagcctc 2351 tecetgteteegggtaaatgatagatatetaegtatgateageetegaet 2401 S P G K \* H鎖のC末端 gtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttc 2451 cttgaccctggaaggtgccactcccactgtcctttcctaataaaatgagg 2501 aaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggg 2551 gtggggaggaggattgggaagacaatagcaggcatgc 2601 tggggatgcggtgggctctatggaaccagctggggctcgacagcgctgga 2651 tctcccgatccccagctttgcttctcaatttcttatttgcataatgagaa 2701 2751 2801 cgttgccaaaaaggatgctttagagacagtgttctctgcacagataagga 2851 caaacattattcagagggagtacccagagctgagactcctaagccagtga gtggcacagcattctagggagaaatatgcttgtcatcaccgaagcctgat 2901 tccgtagagccacaccttggtaagggccaatctgctcacacaggatagag 2951  ${\tt agggcaggagccagggcagagcatataaggtgaggtaggatcagttgctc}$ 3001 ctcacatttgcttctgacatagttgtgttgggagcttggatagcttggac 3051 agetcagggetgegatttegegecaaacttgaeggeaatcetagegtgaa 3101 ggctggtaggattttatccccgctgccatcatggttcgaccattgaactg 3151 catcgtcgccgtgtcccaaaatatggggattggcaagaacggagacctac 3201 cctggcctccgctcaggaacgagttcaagtacttccaaagaatgaccaca 3251 acctcttcagtggaaggtaaacagaatctggtgattatgggtaggaaaac 3301 3351 ctggttctccattcctgagaagaatcgacctttaaaggacagaattaata

### FIGURE 8D

| 3401 | tagttctcagtagagaactcaaagaaccaccacgaggagctcattttctt                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3451 | gccaaaagtttggatgatgccttaagacttattgaacaaccggaattggc                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3501 | $a agta \underline{a} \underline{a} gta \underline{g} a \underline{c} \underline{a} \underline{g} \underline{g} \underline{t} \underline{t} \underline{g} \underline{g} \underline{a} \underline{g} \underline{c} \underline{g} \underline{g} \underline{g} \underline{g} \underline{g} \underline{c} \underline{g} \underline{t} \underline{t} \underline{t} \underline{g} \underline{t} \underline{t} \underline{c} \underline{c} \underline{a} \underline{g} \underline{g}$ |
| 3551 | $a agccat gaat caac cagg coacct tagac to {\tt tttgtgaca} aggat catg$                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3601 | caggaatttgaaagtgacacgtttttcccagaaattgatttggggaaata                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3651 | taaactteteee agaatacce aggegteetetetetgaggtee aggaggaaa                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3701 | ${\tt aaggcatcaagtataagtttgaagtctacgagaagaagaactaacaggaa}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3751 | gatgotttcaagttototgotoccotoctaaagctatgcatttttataag                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3801 | ${\tt accatgggacttttgctggctttagatcagcctcgactgtgccttctagt}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3851 | ${\tt tgccagccatctgttgtttgcccctccccgtgccttcctt$                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3901 | ${\tt aggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgc}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3951 | $\verb"attgtetgagtaggtgteattetattetggggggtggggtggggcaggac"$                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4001 | ${\tt agcaaggggaggattgggaagacaatagcaggcatgctggggatgcggt}$                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4051 | ${\tt gggctctatggaaccagctggggctcgatcgagtgtatgactgcggccgc}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4101 | ${\tt gatecegtegagagettggegtaateatggtcatagetgttteetgtgtg}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4151 | ${\tt aaattgttatccgctcacaattccacacaacatacgagccggaagcataa}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4201 | ${\tt agtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcg}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4251 | $\verb ttgegeteactgeccgetttecagtegggaaacetgtegtgecagetgea $                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4301 | $\verb ttaatgaatcggccaacgcgggggagaggcggtttgcgtattgggcgct $                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4351 | cttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcgg                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4401 | ${\tt cgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatc}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4451 | aggggataacgcaggaaagaacatgtgagcaaaaaggccagcaaaaaggcca                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4501 | $\hbox{\tt ggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgccc}$                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4551 | ${\tt cctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaaccc}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4601 | $\tt gacaggactataaagataccaggcgtttccccctggaagctccctcgtgc$                                                                                                                                                                                                                                                                                                                                                                                                                       |

### FIGURE SE

| 4651 | $\tt gctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctc$      |
|------|---------------------------------------------------------------|
| 4701 | $\tt cottcgggaagegtggegetttctcaatgetcaegetgtaggtateteag\\$    |
| 4751 | ttcggtgtaggtcgttcgctccaagetgggctgtgtgcacgaaccccccg            |
| 4801 | ${\tt ttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaac}$    |
| 4851 | $\tt ccggtaagacacgacttatcgccactggcagcagccactggtaacaggat$      |
| 4901 | ${\tt tagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggc}$    |
| 4951 | $\verb ctaactacggctacactagaaggacagtatttggtatetgcgctctgctg $   |
| 5001 | ${\tt aagccagttaccttcggaaaaaagagttggtagctcttgatccggcaaaca}$   |
| 5051 | ${\tt aaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgc}$    |
| 5101 | $\tt gcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtct$      |
| 5151 | $\tt gacgctcagtggaacgaaaactcacgttaagggattttggtcatgagatt\\$    |
| 5201 | ${\tt atcaaaaaggatcttcacctagatccttttaaattaaaaatgaagtttta}$    |
| 5251 | $a at {\tt caatctaaagtatatatgagtaaacttggtctgacagttaccaatgc}$  |
| 5301 | $\verb ttaatcagtgaggcacctateteagcgatetgtctatttegttcatecat \\$ |
| 5351 | ${\tt agttgectgactceccgtcgtgtagataactacgatacgggagggcttac}$    |
| 5401 | $\verb"catctggccccagtgctgcaatgataccgcgagacccacgctcaccggct"$   |
| 5451 | ccagatttatcagcaataaaccagccagccggaagggccgagcgcagaag            |
| 5501 | ${\tt tggtcctgcaactttatccgcctccatccagtctattaattgttgccggg}$    |
| 5551 | ${\tt aagctagagtagttcgccagttaatagtttgcgcaacgttgttgcc}$        |
| 5601 | $\verb"attgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcatt"$   |
| 5651 | ${\tt cagetceggttcccaacgatcaaggcgagttacatgatcccccatgttgt}$    |
| 5701 | $\tt gcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaag$      |
| 5751 | $\verb ttggccgcagtgttatcactcatggttatggcagcactgcataattctct \\$ |
| 5801 | ${\tt tactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaa}$    |
|      |                                                               |

### FIGURE 8F

| 5851 | ${\tt ccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5901 | $\tt gcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgct$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5951 | catcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6001 | ${\tt tgttgagateeagttegatgtaacceactcgtgcacceaactgatetteacceactcgtgcacceaactgatetteacceactcgtgcacceaactgatetteacceactcgtgcacceaactgatetteacceactcgtgcacceaactgatetteacceactcgtgcacceaactgatetteacceactcgtgcacceaactgatetteacceactcgtgcacceaactgatetteacceactcgtgcacceaactcgtgcacceaactgatetteacceactcgtgcacceaactcgatetteacceactcgtgcacceaactcgatetteacceactcgtgcacceaactcgatetteacceactcgtgcacceaactcgatetteacceactcgtgcacceaactcgatetteacceactcgtgcacceaactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteacceactcgatetteaccea$ |
| 6051 | $\tt gcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaaacaggaaggcaaaaaacaggaaggcaaaaaa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6101 | aaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6151 | ${\tt tactcttcctttttcaatattattgaagcatttatcagggttattgtctc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6201 | at gag cggatacatattt gaat gtatttagaaaaaataaacaaataggggt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6251 | tccgcgcacatttccccgaaaagtgccacct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### FIGURE 9A

| 1    | gacgtcgcggccgctctaggcctccaaaaaagcctcctcactacttctgg                                                               |
|------|------------------------------------------------------------------------------------------------------------------|
| 51   | $\tt aatagctcagaggccgaggcctcggcctctgcataaataa$                                                                   |
| 101  | ${\tt tagtcagccatgcatggggggagaatgggcggaactgggcggagttagg}$                                                        |
| 151  | $\tt ggcgggatgggcggagttaggggggggactatggttgctgactaattgag$                                                         |
| 201  | ${\tt atgcatgctttgcatacttctgcctgctggggagccttggggactttccac}$                                                      |
| 251  | ${\tt acctggttgctgactaattgagatgcatgctttgcatacttctgcctgc$                                                         |
| 301  | ${\tt ggggagcctggggactttccacaccctaactgacacacattccacagaat}$                                                       |
| 351  | ${\tt taattcccggggatcgatccgtcgacgtacgactagttattaatagtaat}$                                                       |
| 401  | ${\tt caattacggggtcattagttcatagcccatatatggagttccgcgttaca}$                                                       |
| 451  | taacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc                                                               |
| 501  | ${\tt attgacgtcaataatgacgtatgttcccatagtaacgccaatagggactt}$                                                       |
| 551  | ${\tt tccattgacgtcaatgggtggactatttacggtaaactgcccacttggca}$                                                       |
| 601  | gtacatcaagtgtatcatatgccaagtacgcccctattgacgtcaatga                                                                |
| 651  | ${\tt cggtaaatggcccgcctggcattatgcccagtacatgaccttatgggact}$                                                       |
| 701  | ttcctacttggcagtacatctacgtattagtcatcgctattaccatggtg                                                               |
| 751  | $\verb"atgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacg"$                                                      |
| 801  | gggatttccaagtctccaccccattgacgtcaatgggagtttgttt                                                                   |
| 851  | accaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattg                                                               |
| 901  | ${\tt acgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagc}$                                                       |
| 951  | EcoRI<br>tgggtacgtgaaccgtcagatcgcctggagacgccatc <u>gaattc</u> tgagca                                             |
| 1001 | cacaggacctcacc <u>atg</u> ggatggagctgtatcatcctcttcttggtagca $ \begin{array}{ccccccccccccccccccccccccccccccccccc$ |
|      | CanT                                                                                                             |

SacI

1051 acagctacaggtgtccactccgagctcacgcagccgccctcagtctctgc T A T G V H S  $\overline{E}$   $\overline{L}$  T Q --  $\overline{J}$ 0 $\overline{U}$ 0 $\overline{U}$ 0 $\overline{U}$ 0 $\overline{U}$ 1 $\overline{U}$ 

## FIGURE 9B

ggccccaggacagaaggtcaccatctcctgcactgggagcagctccaacc 1101  ${\tt tcggggcaggttatgatgttcactggtaccggcaacttccagggacagcc}$ 1151 cccaaactcctcatctatgataacaacaatcggccctcaggggtccctga 1201  $\verb|ccgattctctggctccaagtctggccctcagcctccctggccatctctg|$ 1251  $\tt ggctccaggctgaggatgaggctgattattactgccagtcctatgacagc$ 1301 AvrII agcctgaatggttatgtcttcggaactgggacccagctcaccgtcctagg 1351 TOLTVL 枠組み構造 IV / Cλ tcagcccaaggctgcccctcggtcactctgttcccgccctcctctgagg 1401 agettcaagecaacaaggecacactggtgtgtctcataagtgacttctac 1451 ccgggagccgtgacagtggcctggaaggcaattagcagccccgtcaaggc 1501 gggagtggagaccaccacacctccaaacaaagcaacaacaagtacgcgg 1551 ccagcagctatctgagcctgacgcctgagcagtggaagtcccacagaagg 1601 tacagctgccaggtcacgcatgaagggagcaccgtggagaagacagtggc 1651 1701 PTECS\* C末端 L鎖 tgccttctagttgccagccatctgttgtttgcccctcccccgtgccttcc 1751 ttgaccctggaaggtgccactcccactgtcctttcctaataaaatgagga 1801 1851 tggggcaggacagcaagggggaggattgggaagacaatagcaggcatgct 1901 ggggatgcggtgggctctatggaaccagctggggctcgacagctcgagct 1951 agctttgcttctcaatttcttatttgcataatgagaaaaaaggaaaatt 2001 aattttaacaccaattcagtagttgattgagcaaatgcgttgccaaaaag 2051 gatgctttagagacagtgttctctgcacagataaggacaaacattattca 2101 2151

### FIGURE 9C

| 2201 | $\verb"ctagggagaaatatgettgteateacegaageetgattcegtagageeae"$   |
|------|---------------------------------------------------------------|
| 2251 | accttggtaagggccaatctgctcacacaggatagagagggcaggagcca            |
| 2301 | $\tt gggcagagcatataaggtgaggtaggatcagttgctcctcacatttgctt$      |
| 2351 | $\verb ctgacatagttgtgttgggagettggategatecaccatggttgaacaag \\$ |
| 2401 | ${\tt atggattgcacgcaggttctccggccgcttgggtggagaggctattcggc}$    |
| 2451 | ${\tt tatgactgggcacaacagacaateggctgctctgatgccgccgtgttccg}$    |
| 2501 | ${\tt gctgteagcgcaggggcgcccggttctttttgteaagaccgacctgtccg}$    |
| 2551 | $\tt gtgccctgaatgaactgcaggacgaggcagcggctatcgtggctggc$         |
| 2601 | ${\tt acgacggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggg}$     |
| 2651 | ${\tt aagggactgctattgggcgaagtgccggggcaggatctcctgtcat}$        |
| 2701 | $\verb"ctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcgg"$   |
| 2751 | ${\tt cggetgcatacgettgatceggetacetgcccattcgaccaccaagegaa}$    |
| 2801 | ${\tt acategeategagegageacgtacteggatggaageeggtettgtegate}$    |
| 2851 | ${\tt aggatgatctggacgaagagcatcaggggctcgccagccgaactgttc}$      |
| 2901 | gccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtgaccca            |
| 2951 | ${\tt tggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctg}$    |
| 3001 | ${\tt gattcatcgactgtggccggctgggtgtggcggaccgctatcaggacata}$    |
| 3051 | $\tt gcgttggctacccgtgatattgctgaagagcttggcggcgaatgggctga$      |
| 3101 | ${\tt ccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcg}$    |
| 3151 | $\verb"ccttctatcgccttcttgacgagttcttctgagcgggactctggggttcg"$   |
| 3201 | $\verb"aaatgaccgaccaagcgacgcccaacctgccatcacgagatttcgattcc"$   |
| 3251 | ${\tt accgccgccttctatgaaaggttgggcttcggaatcgttttccgggacgc}$    |
| 3301 | $\tt cggctggatgatcetccagegggggatctcatgctggagttettcgccc$       |
| 3351 | ${\tt accccaacttgtttattgcagcttataatggttacaaataaagcaatagc}$    |
|      |                                                               |

### FIGURE 9D

| 3401 | $\verb atcacaaatttcacaaataaagcatttttttcactgcattctagttgtgg $         |
|------|---------------------------------------------------------------------|
| 3451 | ${\tt tttgteca} a a a ctcatca at gtatcttat cat gtctggatcgcggccgcga$ |
| 3501 | ${\tt tcccgtcgagagcttggcgtaatcatggtcatagctgtttcctgtgtgaa}$          |
| 3551 | attgttatccgctcacaattccacacaacatacgagccggaagcataaag                  |
| 3601 | tgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgtt                  |
| 3651 | $\tt gcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcatt$            |
| 3701 | ${\tt aatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctct}$          |
| 3751 | tecgetteetegeteactgactegetgegeteggtegtteggetgeggeg                  |
| 3801 | ${\tt ageggtateagetcactcaaaggeggtaataeggttatecacagaatcag}$          |
| 3851 | gggataacgcaggaaagaacatgtgagcaaaaaggccagcaaaaggccagg                 |
| 3901 | ${\tt aaccgtaaaaaggccgcgttgctggcgtttttccataggctccgccccc}$           |
| 3951 | ${\tt tgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccga}$          |
| 4001 | ${\tt caggactataaaagataccaggcgtttccccctggaagctccctcgtgcgc}$         |
| 4051 | ${\tt tctcctgttccgaccctgccgcttaccggatacctgtccgcctttctccc}$          |
| 4101 | ${\tt ttcgggaagcgtggcgctttctcaatgctcacgctgtaggtatctcagtt}$          |
| 4151 | $\tt cggtgtaggtcgttcgctccaagctgggctgtgtgcacgaacccccgtt$             |
| 4201 | ${\tt cagecegacegetgegeettateeggtaactategtettgagteeaacce}$          |
| 4251 | $\tt ggtaagacacgacttatcgccactggcagcagccactggtaacaggatta$            |
| 4301 | $\tt gcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcct$            |
| 4351 | ${\tt aactacggctacactagaaggacagtatttggtatctgcgctctgctgaa}$          |
| 4401 | $\tt gccagttaccttcggaaaaaagagttggtagctcttgatccggcaaacaaa$           |
| 4451 | ${\tt ccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgc}$          |
| 4501 | ${\tt agaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctga}$          |
| 4551 | ${\tt cgctcagtggaacgaaaactcacgttaagggattttggtcatgagattat}$          |
|      |                                                                     |

### FIGURE 9E

4601 caaaaaggatottoacctagatoottttaaattaaaaatgaagttttaaa 4651 tcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgctt 4701 aatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatag 4751 ttgcctqactccccgtcgtgtagataactacgatacgggagggcttacca 4801 tetggecccagtgetgeaatgataccgcgagacccacgctcaccggctcc 4851 agatttatcagcaataaaccagccagccggaagggccgagcgcagaagtg gtcctgcaactttatccgcctccatccagtctattaattgttgccgggaa 4951 gctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccat 5051 gctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgc 5151 ggccgcagtgttatcactcatggttatggcagcactgcataattctctta 5201 ctgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaacc 5251 aagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggc 5301 gtcaatacgggataataccgcgccacatagcagaactttaaaagtgctca 5351 tcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctg 5401 ttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagc 5451 atcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaa 5501 atgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcata 5551 ctcttcctttttcaatattattgaagcatttatcagggttattgtctcat 5601 gagcggatacatatttgaatgtatttagaaaaataaacaaataggggttc 5651 cgcgcacatttccccgaaaagtgccacct

| FIGURE 10A                                                                                                                                    |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| EcoRI gaattctgagca                                                                                                                            | 1000 |
| cacaggacctcaccatgggatggagctgtatcatcctcttcttggtagca $\overline{\rm M}$ G W S C I I L F L V A                                                   | 1050 |
| acagetacaggtgtecaeteegaggt ${f g}$ ca ${f g}$ etg ${f g}$ t ${f g}$ gagtetggggagg T A T G V H S ${f E}$ V Q L ${f \underline{v}}$ E S - N- 末端 | 1100 |
| cttggtacagcctggggggtccctgagactctcctgcgcagcctctggag                                                                                            | 1150 |
| tctccctcagtggatacaagatgaactgggtccgccaggctccagggaag                                                                                            | 1200 |
| gggctggaatgggtctcttccattactggtatgagtaattacataca                                                                                               | 1250 |
| ctcagactcagtgaagggccgattcaccatctccagagacaacgccatga                                                                                            | 1300 |
| actcactgtatctgcaaatgaacagcctgacagccgaggacacgggtgtt                                                                                            | 1350 |
| tattattgtgcgacacaaccgggggagctggcgccttttgaccattgggg                                                                                            | 1400 |
| Bsp120I<br>ccagggaaccctggtcaccgtctcctcagcctccaccaa <u>gggccc</u> atcgg                                                                        | 1450 |
| tettecceetggcaccetectecaagagcacetetgggggcacageggce                                                                                            | 1500 |
| ctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtg                                                                                            | 1550 |
| gaactcaggcgccctgaccagcggcgtgcacaccttcccggctgtcctac                                                                                            | 1600 |
| agtcctcaggactctactccctcagcagcgtggtgaccgtgccctccagc                                                                                            | 1650 |
| agcttgggcacccagacctacatctgcaacgtgaatcacaagcccagcaa                                                                                            | 1700 |
| caccaaggtggacaagaaagttgagcccaaatcttgtgacaaaactcaca                                                                                            | 1750 |
| $\verb catgccca  cogtgccca  geactteetggggggaccgtcagtett $                                                                                     | 1800 |
| ctcttccccccaaaacccaaggacaccctcatgatctcccggacccctga                                                                                            | 1850 |
| ggtcacatgcgtggtggtggacgtgagccacgaagaccctgaggtcaagt                                                                                            | 1900 |
| ${\tt tcaactggtacgtggacgtggaggtgcataatgccaagacaaagccg}$                                                                                       | 1950 |
| cgggaggagcagtacaacagcacgtaccgggtggtcagcgtcctcaccgt                                                                                            | 2000 |
| cctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtctcca                                                                                            | 2050 |

### FIGURE 10B

| caaagccctcccagccccatcgagaaaaccatctccaaagccaaaggg   | 2100 |
|----------------------------------------------------|------|
| ageccogagaaccacaggtgtacaccettgeccccatcccgggatgaget | 2150 |
| accaagaaccaggteageetgacetgeetggteaaaggettetateeca  | 2200 |
| rcgacatcgccgtggagtgggagagcaatgggcagccggagaacaactac | 2250 |
| agaccacgcctcccgtgctggactccgacggctccttcttcctctacag  | 2300 |
| aagctcaccgtggacaagagcaggtggcagcagggggaacgtcttctcat | 2350 |
| ctccgtgatgcatgaggctctgcacaaccactacacgcagaagagcctc  | 2400 |
| ccctgtctccgggtaaa <u>tga</u> tagatatct             |      |

| EcoRI<br><u>gaattc</u> tgagca                                                                                                                | 1000 |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| cacaggacctcaccatgggatggagctgtatcatcctcttcttggtagca $\begin{tabular}{cccccccccccccccccccccccccccccccccccc$                                    | 1050 |
| acagctacaggtgtccactcc $\underline{cagtct}$ g $\underline{t}$ g $\underline{t}$ t $\underline{g}$ acgcagccgccctcagt                           | 1100 |
| ctctgcggccccaggacagaaggtcaccatctcctgcactgggagcagct                                                                                           | 1150 |
| ccaacctcggggcaggttatgatgttcactggtaccggcaacttccaggg                                                                                           | 1200 |
| acagececcaaacteetcatetatgataacaacaateggeeetcaggggt                                                                                           | 1250 |
| ccctgaccgattctctggctccaagtctggcccctcagcctccctggcca                                                                                           | 1300 |
| ${\tt tctctgggctccaggctgaggatgaggctgattattactgccagtcctat}$                                                                                   | 1350 |
| gacagcagcctgaatggttatgtcttcggaactgggacccagctcaccgt                                                                                           | 1400 |
| AvrII <a href="mailto:cctagg">cctagg</a> ccagcccaaggctgcccctcggtcactctgttcccgccctcct                                                         | 1450 |
| ctgaggagcttcaagccaacaaggccacactggtgtgtctcataagtgac                                                                                           | 1500 |
| ttctacccgggagccgtgacagtggcctggaaggcaattagcagccccgt                                                                                           | 1550 |
| caaggcgggagtggagaccaccacaccctccaaacaaagcaacaacaagt                                                                                           | 1600 |
| acgcggccagcagctatctgagcctgacgcctgagcagtggaagtcccac                                                                                           | 1650 |
| agaaggtacagctgccaggtcacgcatgaagggagcaccgtggagaagac                                                                                           | 1700 |
| $\label{eq:agtggcccctacagaatgttca}  \texttt{agtggcccctacagaatgttca} \\    \texttt{P}  \texttt{T}  \texttt{E}  \texttt{C}  \texttt{S}  * \\ $ | 1750 |

|                                                                                                                                                                                                                                               | INTERNATIONAL SEARCH REPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ır [                     | International app<br>PCT/US00/136 |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------|-----------------------|
| IPC(7)<br>US CL                                                                                                                                                                                                                               | SSIFICATION OF SUBJECT MATTER: A61K 39/395, 39/42; C12Q 1/00, 1/70; G01N 3: 424/130.1, 141.1, 147.1; 435/4, 5, 7.1 to International Patent Classification (IPC) or to bot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | and IPC                           |                       |
| B. FIBI                                                                                                                                                                                                                                       | LDS SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                   |                       |
|                                                                                                                                                                                                                                               | documentation scarched (classification system follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed by classification sym | (bols)                            |                       |
| U.S. :                                                                                                                                                                                                                                        | 424/130.1, 161.1, 147.1; 435/4, 5, 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                   |                       |
| Documenta                                                                                                                                                                                                                                     | tion searched other than minimum documentation to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e extent that such docum | nests are included                | in the Selds reacched |
|                                                                                                                                                                                                                                               | data base consulted during the international search (one Extra Sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | same of data base and,   | wiscre practicable                | e, search terms used) |
| C. DOC                                                                                                                                                                                                                                        | UMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                   |                       |
| Category*                                                                                                                                                                                                                                     | Citation of document, with indication, where a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ppropriate, of the relev | ent passages                      | Relevant to claim No. |
| x<br>                                                                                                                                                                                                                                         | US 5,81/,524 A (BRAMS et al) 22 September 1998, cols. 12-20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                   | 1, 4, 10-15           |
| Y                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                   | 2, 3                  |
| X                                                                                                                                                                                                                                             | US 5,824,307 A (JOHNSON) 20 October 1998, cols. 4-6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                   | 1, 4, 10-15           |
| Y                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2, 3                     |                                   |                       |
| x                                                                                                                                                                                                                                             | US 5,880,104 A (LI et al) 09 March 1999, cols. 6-10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                   | 1, 4, 10-15           |
| Y                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                   | 2, 3                  |
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                   |                       |
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                   |                       |
|                                                                                                                                                                                                                                               | her documents are listed in the continuation of Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | farnily annex.                    |                       |
| <ul> <li>Openial osagerous of clark documents.</li> <li>"The document published after the attendance life, place or prompt document defining of a general state off the art which as not commenced to be off particular invitered.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                   |                       |
|                                                                                                                                                                                                                                               | "B" sat for comment published on or after the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bling data  considered novel or caused whether the transmuspral bli |                          |                                   |                       |
| 101 40                                                                                                                                                                                                                                        | Oled to evaluate the publication date of wrother nistian or other  "y"  document of perticular relevance; the claimest inventors cannot be considered to wrothe an invasion step when the discounts is  "O"  december referring to an end disclaimes, size, exhibition or other  O"  december referring to an end disclaimes, size, exhibition or other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                   |                       |
| ·P· do                                                                                                                                                                                                                                        | the sing observations as a person skilled on the unit observational filing data but later than the sing observation as a person skilled on the unit observation of the same parter (smilt).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                   |                       |
| the priority data claimed  Date of the actual completion of the international search  Date of mailing of the international search report                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                   |                       |
| 16 AUGUST 2000 05 SEP 2000                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                   |                       |
| Name and mailing address of the ISA/US Chomistiant of Patent and Trademarks  BRETT NELSON  BRETT NELSON  BRETT NELSON                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                   |                       |
| Facsimile No. (703) 305-3230 Telephone No. (703) 398-1235                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                   |                       |

Form PCT/ISA/210 (second sheet) (July 1998)\*

### INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/13694

| B. HELDS SEARCHED  Electronic data base consolated (Mane of data base and where penticable terms used):  WEST, DIALOG, MEDLINE search sense KSV, respectatory supprise, monoclosed, antibodies, human, humanized, Protein, diagnostica, passive lemmanization, therefore, restricted |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

Form PCT/ISA/210 (extra sheet) (July 1998)\*

| フロ | ン | トペー | ジの | 続き |
|----|---|-----|----|----|
|----|---|-----|----|----|

| (51) Int. Cl. <sup>7</sup> |        | 識別記号 | FI      |        | 7-7: | コード(参考) |
|----------------------------|--------|------|---------|--------|------|---------|
| C 0 7 K                    | 16/10  |      | C 1 2 N | 1/15   |      |         |
| C 1 2 N                    | 1/15   |      |         | 1/19   |      |         |
|                            | 1/19   |      |         | 1/21   |      |         |
|                            | 1/21   |      | C 1 2 P | 21/08  |      |         |
|                            | 5/10   |      | G 0 1 N | 33/53  | D    |         |
| C 1 2 P                    | 21/08  |      |         | 33/569 | L    |         |
| G01N                       | 33/53  |      |         | 33/577 | В    |         |
|                            | 33/569 |      | C 1 2 N | 15/00  | ZNAA |         |
|                            | 33/577 |      |         | 5/00   | A    |         |

EP(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP(GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), EA(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, AL, AU, BA, BB, BG, BR, CA, CN, CZ, DZ, EE, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MA, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, TZ, UA, US, UZ, VN, YU, ZA

(72) 発明者 レイモンド・ダブリュー・スウィート アメリカ合衆国19004ペンシルベニア州バ ラ・シンウィド、エッジセル・ロード108 番

(72)発明者 ジェラルディーン・テイラー イギリス、アールジー20・7エヌエヌ、バ ークシャー、ニューベリー、コンプトン

F ターム(参考) 4B024 AA01 AA14 BA41 CA04 DA02 EA02 EA04 FA02 GA11 HA01 HA11 HA15

> 4B064 AG27 CA10 CA19 CC24 DA01 DA15

4B065 AA90X AA97Y AB01 BA02 CA25 CA45 CA46

4C085 AA14 BA57 CC07 CC08 DD23 4H045 AA11 AA30 BA10 CA01 DA76 EA31 EA53 FA74