In the claims:

Ø .

- 1. (cancelled)
- 2. (cancelled)

3. (withdrawn) An electroluminescent device according to claim 18, comprising a pyrimidine compound of formula

$$W^2$$
 W^3
 W^4
 W^5
(III), wherein

-14-1

Feny,

 R^1 is H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl, C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy; C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; -SR⁵; or -NR⁵R⁶; and V is H.

4. (withdrawn) An electroluminescent device according to claim 18, comprising a pyrimidine compound of formula

$$X^4$$
 X^3
 X^2
 X^5
 X^1
 X^3
 X^2
 X^3
 X^4
 X^5
 X^1
 X^2
 X^3
 X^4
 X^5
 X^5
 X^1
 X^2
 X^3
 X^4
 X^5
 X^5
 X^1
 X^2
 X^3
 X^4
 X^5
 X^5
 X^1
 Y^2
 Y^2
 Y^3
 Y^4
 Y^5
 Y^5

10/531,780 - 2 - EL/2-22773/A/PCT

wherein

V is H, and W¹ and W⁵, Y¹ and Y⁵ as well as X¹ and X⁵ are independently of each other H; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is substituted by E and/or interrupted by D.

5. (withdrawn) An electroluminescent device according to claim 18, wherein V is a group of the

$$V^1$$
 V^2
 V^3

formula V^3 , H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl, C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy; C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; or -NR⁵R⁶; and

$$W^1$$
 W^2
 W^3
 W^4
 W^5
 W^4
 W^5
 W^4
 W^5
 W^4
 W^5
 W^5
 W^4
 W^5
 W^5

W is a group of the formula

 C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl, C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy; C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; -SR⁵; or -NR⁵R⁶; and R¹⁰¹ and R¹⁰² are independently of each other H, C_1 - C_8 alkyl, C_6 - C_{24} aryl, or C_5 - C_7 cycloalkyl.

6. (withdrawn) An electroluminescent device according to claim 17, comprising a pyrimidine compound of formula

$$W^{13}$$
 W^{14}
 W^{32}
 W^{33}
 W^{34}
 W^{15}
 W^{35}
 W^{35}
 W^{25}
 W^{24}
 W^{23}
 W^{22}
 W^{22}
 W^{41}
 W^{43}
 W^{44}

1200

10/531,780 - 3 - EL/2-22773/A/PCT

18 3.5 (2.5)

10 m

wherein

Ar is a group of formula

W¹¹ to W¹⁵, W²¹ to W²⁵, W³¹ to W³⁵, W⁴¹ to W⁴⁵, Y¹¹ to Y¹⁵, Y²¹ to Y²⁵, Y³¹ to Y³⁵ and Y⁴¹ to Y⁴⁵ are independently of each other H; C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkenyl; C_7 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_7 - C_8 -alkoxy which is substituted by E and/or interrupted by D; C_7 - C_8 -alkoxy which is substituted by E and/or interrupted by D; C_7 - C_8 -alkenyl; C_7 - C_8 -alkoxy which is substituted by E and/or interrupted by D; C_8 - $C_$

V is H; C₆-C₂₄aryl; C₆-C₂₄aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; or -NR⁵R⁶; C₂-C₂₄heteroaryl; C₂-C₂₄heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D;

10/531,780 - 4 - EL/2-22773/A/PCT

 A^{18} and A^{19} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E,

B¹¹ to B¹⁴ and B²¹ to B²⁴ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C₂-C₁₈heteroaryl; C₂-C₁₈heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; or -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D.

G is E; K; heteroaryl; heteroaryl which is substituted by C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E and/or K;

K is C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; or C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D;

L is E; K;C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G, E and/or K;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

沙草

1. 1

<u>.</u>..

10/531,780 - 5 - EL/2-22773/A/PCT

 R^8 is H; C_{6} - C_{18} aryl; C_{6} - C_{18} aryl which is substituted by C_{1} - C_{18} alkyl, C_{1} - C_{18} alkyl; C_{1} - C_{18} alkyl which is interrupted by -O-; or two substituents selected from V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring.

(withdrawn) An electroluminescent device according to claim 17, wherein the pyrimidine compound has the following formula

$$X^3$$
 X^5
 X^5

wherein

V is H, or C₁-C₈-alkyl,

 X^3 and X^4 are independently of each other H, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 thioalkyl, or phenyl, X^5 is H, or C_1 - C_8 alkoxy,

 W^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

 Y^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

 Y^3 , Y^4 , W^3 and W^4 are independently of each other C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 thioalkyl, halogen, in particular Br, phenyl, or $O(CH_2)_{n1}$ -X, wherein n1 is an integer of 1 to 5 and X is $-O_1$ - C_2 - C_3 - C_4 - C_4 - C_4 - C_5 - C_5 - C_5 - C_6 -

or the following formula

V is H, or C₁-C₈alkyl,

W³ is H, C₁-C₈alkyl, or C₁-C₈alkoxy,

 X^3 is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

 X^5 is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

 Y^3 is H, C₁-C₈alkyl, or C₁-C₈alkoxy, wherein n1 is an integer of 1 to 4 and X is -O-(CH₂)_{m1}CH₃, -O-(CO)-(CH₂)_{m1}CH₃, -O-(O)-O-C₁-C₈alkyl, wherein m1 is an integer of 0 to 5;

or the following formula

or

$$W^3$$
 W^4
 W^5
 V^5
 V^5
 V^4
 V^3
 V^3

wherein

 W^3 and W^4 are independently of each other H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, Y^3 and Y^4 are independently of each other H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl.

) y 🛴

 W^5 is H, C_1 - C_8 alkyl, or $O(CH_2)_{n1}$ -X,

10/531,780 - 7 - EL/2-22773/A/PCT

 Y^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

wherein n1 is an integer of 1 to 5 and X is $-O-(CH_2)_{m1}CH_3$, $-OC(O)-(CH_2)_{m1}CH_3$, $-C(O)-O-C_1-C_8$ alkyl, $-NR^{103}R^{104}$, wherein m1 is an integer of 0 to 5 and R^{103} and R^{104} are independently of each other H, or C_1-C_8 -alkyl, or R^{103} and R^{104} together form a five or six membered heterocyclic ring;

-or the following formula

wherein

 W^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy,

 Y^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl,

 R^{101} and R^{102} are independently of each other H, C_1 - C_8 alkyl, phenyl, or C_5 - C_7 cycloalkyl, in particular cyclohexyl;

or the following formula

13%

wherein

 Y^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy,

10/531,780 - 8 - EL/2-22773/A/PCT

 X^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl;

or the following formula

wherein

 Y^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy,

 X^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl, and R¹⁰¹ and R¹⁰² are independently of each other H, C₁-C₈alkyl, phenyl, or C₅-C₇cycloalkyl.

8. (withdrawn) An electroluminescent device according to claim 17, wherein W and Y are groups of the formula

10/531,780 - 9 - EL/2-22773/A/PCT

9. (cancelled)

10. (previously presented) An electroluminescent device according to claim 17, comprising a pyrimidine compound of formula I, wherein V is hydrogen,

. /::

W and Y are independently of each other a group of formula

or
$$R^{19} R^{18} R^{19} R^{18} R^{19} R^{18}$$
 or $R^{17} R^{18} R^{19} R^{18}$, and

X is a group of formula

wherein

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} and R^{17} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E; E, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E;

 R^{18} and R^{19} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E;

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C=C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen

10/531,780 - 10 - EL/2-22773/A/PCT

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-; or two substituents selected from V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring.

11. (previously presented) An electroluminescent device according to claim 17, comprising a pyrimidine compound of formula

 R^{110} is C_6 - C_{10} -aryl, C_6 - C_{10} -aryl which is substituted by C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy or C_4 - C_{10} heteroaryl, and

$$X^3$$
 is H, C₁-C₆-alkyl, C₁-C₄-alkoxy, Ph, or

12. (cancelled)

13. (currently amended and withdrawn): A pyrimidine compound according to claim 24 [[17]] of formula

10/531,780 - 11 - EL/2-22773/A/PCT

$$W^{13}$$
 W^{12}
 W^{15}
 W^{15}
 W^{31}
 W^{35}
 W^{35}
 W^{25}
 W^{24}
 W^{23}
 W^{22}
 W^{21}
 W^{41}
 W^{43}
 W^{44}
 W^{45}
 W

wherein Ar is a group of formula

, or , W^{11} to W^{15} , W^{21} to W^{25} , W^{31} to W^{35} , W^{41} to W^{45} , Y^{11} to Y^{15} , Y^{21} to Y^{25} , Y^{31} to Y^{35} and Y^{41} to Y^{45} are independently of each other H; C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_1 - C_1 8alkoxy, C_1 - C_1 8alkoxy which is substituted by E and/or interrupted by D; C_1 - C_1 8alkoxy, C_1 - C_1 8alkoxy which is substituted by E and/or interrupted by D; C_2 - C_2 4heteroaryl which is substituted by L; $-SOR^4$; $-SO_2R^4$; $-COR^8$; $-COOR^7$; $-CONR^5R^6$; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl; C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D;

V is H; C₆-C₂₄aryl; C₆-C₂₄aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by

10/531,780 - 12 - EL/2-22773/A/PCT

E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; $-SR^5$; or $-NR^5R^6$; C_2 - C_{24} heteroaryl; C_2 - C_{24} heteroaryl which is substituted by L; $-SOR^4$; $-SO_2R^4$; $-COR^8$; $-COR^7$; $-CONR^5R^6$; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl which is substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D; A^{18} and A^{19} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E,

 B^{11} to B^{14} and B^{21} to B^{24} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkoxy which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; $-SR^5$; $-NR^5R^6$; $-C_2$ - $-C_{18}$ heteroaryl; $-C_3$ - $-C_4$ heteroaryl which is substituted by L; $-SOR^4$; $-SO_2R^4$; $-COR^8$; $-COOR^7$; or $-CONR^5R^6$; $-C_4$ - $-C_4$ --C

G is E; K; heteroaryl; heteroaryl which is substituted by C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E and/or K;

K is C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_1 - C_1 -alkoxy, C_1 - C_1 -alkoxy which is substituted by E and/or interrupted by D; C_1 - C_1 -alkoxy which is substituted by E and/or interrupted by D; C_2 - C_1 -acycloalkyl; C_3 - C_1 -acycloalkyl which is substituted by E and/or interrupted by D; C_4 - C_1 -acycloalkenyl; or C_4 - C_1 -acycloalkenyl which is substituted by E and/or interrupted by D;

L is E; K; C_6 - C_{18} aryl; or C_6 - C_{18} aryl which is substituted by G, E and/or K;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

July 15

. ice

10/531,780 - 13 - EL/2-22773/A/PCT

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-; or two substituents selected from V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring.

14. (currently amended): A pyrimidine compound of formula I according to claim 24 [[12]], wherein at least one of the groups W, X and Y is a group of formula

group or a heteroaryl group, wherein R^{11} , R^{12} , R^{12} , R^{12} , R^{13} , R^{15} , R^{15} , R^{16} , R^{16} , R^{17} and R^{17} are independently of each other H, E, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E; or R^{11} and R^{12} , R^{12} and R^{13} , R^{15} and R^{16} , and R^{16} and R^{17} are each a divalent group L^1 selected from an oxygen atom, an sulfur atom, $>CR^{118}R^{119}$

$$R^{49}$$
 R^{50} >SiR¹¹⁸R¹¹⁹, or , wherein

 R^{118} and R^{119} are independently of each other C_1 - C_{18} alkyl; C_1 - C_{18} alkoxy, C_6 - C_{18} aryl; C_7 - C_{18} aralkyl; R^{11} and $R^{11'}$, R^{12} and $R^{12'}$, R^{13} and $R^{13'}$, $R^{13'}$ and R^{14} , R^{14} and R^{15} , R^{15} and $R^{15'}$, R^{16} and $R^{16'}$, and $R^{17'}$

and R¹⁷ are each a divalent group

, whereir

MAG , d

- R^{30} , R^{31} , R^{32} , R^{33} , R^{49} and R^{50} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl, which is substituted by E and/or interrupted by D; E; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by E;
- R^{14} is H, C_2 - C_{30} heteroaryl, C_6 - C_{30} aryl, or C_6 - C_{30} aryl which is substituted by E, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D;
- D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; SiR⁵R⁶-; -POR⁵-; -CR⁹=CR¹⁰-; or -C≡C-;
- E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COOR⁷; -CONR⁵R⁶; -CN; or halogen, especially F, or CI; wherein R⁵ and R⁶ are independently of each other C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-; or

10/531,780 - 14 - EL/2-22773/A/PCT

R⁵ and R⁶ together form a five or six membered ring, R⁷ is C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-; R⁸ is C₇-C₁₂alkylaryl; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-; and R⁹ and R¹⁰ are independently of each other H, C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-.

15. (original): A pyrimidine compound according to claim 14, whereinV is hydrogen,

16. (currently amended) A pyrimidine compound according to claim 24 [[11]], of formula

$$V^3$$
 (XVIII), wherein V^3 and V^3 are a group of formula

wherein

 R^{110} is C_6 - C_{10} -aryl, which is optionally substituted by C_1 - C_6 -alkyl, or C_1 - C_4 -alkoxy or C_4 - C_{10} heteroaryl, and

.

X³ is H, C₁-C₆-alkyl, C₁-C₄-alkoxy, Ph, or

17. (currently amended) An electroluminescent device according to claim 1 comprising an anode, a cathode and one or a plurality of organic compound layers sandwiched therebetween, in which said organic compound layers comprise an organic compound wherein the organic compound is a pyrimidine compound of formula

V, W, Y and X are independently of each other C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, which can be substituted or unsubstitutedH; unsubstituted; H; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl, C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_1 8alkoxy; C_1 - C_1 8alkoxy which is substituted by E and/or interrupted by D; -SR 5 ; -NR 5 R 6 ;

wherein

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C \equiv C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COR⁸; -COR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen;

 R^5 and R^6 are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

R⁵ and R⁶ together form a five or six membered ring,

with the proviso that at least [[one]] $\underline{\text{two}}$ of the groups V, W, X and Y is a C₆-C₂₄aryl, or C₂-C₂₄heteroaryl group, which can be substituted.

18. (withdrawn) An electroluminescent device according to claim 17, wherein when V is C_6 - C_{30} aryl it is

10/531,780 - 16 - EL/2-22773/A/PCT

$$V^1$$
 V^2
 V^3

when W is C₆-C₃₀aryl it is

$$W^1$$
 W^2 W^3 W^4

when Y is C₆-C₃₀aryl it is

when X is C₆-C₃₀aryl it is

$$X^{1} \xrightarrow{X^{2}} X^{3}$$

$$X^{5} \xrightarrow{X^{4}}$$

wherein the groups

 V^1 to V^5 , W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by

D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; Ar^2 , wherein Ar^1 is C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, Ar^2 is C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, H, C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 -

 C_{18} alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C_2 - C_{24} heteroaryl; C_2 - C_{24} heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl which is substituted by E and/or interrupted by D; or C_{18} cycloalkenyl; C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D; or C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D; or C_4 - C_5 0 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 0 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 1 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 2 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 3 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 4 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 4 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 4 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 4 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 5 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 5 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 5 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 6 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 7 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 7 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 7 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 8 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 8 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 8 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 8 cycloalkenyl which is substituted by E and/or interrupted by D; or C_5 8 cycloalkenyl which is substituted by E and/or

wherein R⁹ is H; C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted by -O-, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy, or one of the substituents V, W, X, or Y is a group of the formula -Z, -Ar-Z, wherein Ar is C_6 - C_{24} aryl or C_2 - C_{24} heteroaryl, which can be substituted, wherein Z is a group of formula

one of the substituents

 V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , or Y^1 to Y^5 is a group of the formula -Z', -Ar-Z', wherein Ar is $C_{67}^ C_{24}$ aryl or C_2 - C_{24} heteroaryl, which can be substituted, wherein Z' is a group of formula

$$X^{2} \xrightarrow{\hspace{-0.1cm} \downarrow \hspace{-0.1cm} \downarrow \hspace{-0.1cm$$

wherein

· . . 6.T.

A¹, B¹ and B² are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C₂-C₁₈heteroaryl; C₂-C₁₈heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D; or two substituents A¹, B¹, B² or B¹ and B² form a five to seven membered ring, which can be substituted.

m is an integer of 1 to 4; and W¹, W², Y¹, Y², X¹, X², V, W, X and Y are as defined above;

G is E; K; heteroaryl; heteroaryl which is substituted by C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E and/or K;

K is C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkenyl; or C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D;

L is E; K;C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G, E and/or K;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-.

10/531,780 - 19 - EL/2-22773/A/PCT

or two substituents selected from V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring.

19 -20 (cancelled)

1.11

21. (withdrawn): An electroluminescent device according to claim 11, wherein R¹¹⁰ is

22. (new): An electroluminescent device according to claim 17, wherein

V is H;

W is
$$W^2$$
 W^3 Y^1 Y^2 Y^3 X^1 X^2 X^3 Y^4 , X is X^5 X^4 ,

wherein the groups

 W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; -SR 5 ; -NR 5 R 6 ; C_2 - C_2 4heteroaryl; C_2 - C_2 4heteroaryl which is substituted by L; -SOR 4 ; -SO $_2$ R 4 ; -COR 8 ; -COOR 7 ; -CONR 5 R 6 ; C_4 -

ξ.

10/531,780 - 20 - EL/2-22773/A/PCT

C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D

or

one of the substituents W, X, or Y is a group of the formula -Z, -Ar-Z, wherein Ar is C_6-C_{24} aryl or C_2-C_{24} heteroaryl, which can be substituted, wherein Z is a group of formula

wherein

G is E; K; heteroaryl; heteroaryl which is substituted by C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E and/or K;

K is C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_1 - C_1 -alkoxy, C_1 - C_1 -alkoxy which is substituted by E and/or interrupted by D; C_4 - C_1 - C_1 -acycloalkyl; C_4 - C_1 -acycloalkyl which is substituted by E and/or interrupted by D; C_4 - C_1 -acycloalkenyl; or C_4 - C_1 -acycloalkenyl which is substituted by E and/or interrupted by D;

L is E; K;C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G, E and/or K;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-.

10/531.780 - 21 - EL/2-22773/A/PCT

Tryi;

 WV_{i}

- 23. (new): An electroluminescent device according to claim 22, wherein the groups W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; C_2 - C_{24} heteroaryl which is substituted by L; -COR 8 ; -COOR 7 ; or -CONR 5 R 6 .
- 24. (new) A pyrimidine compound of formula

V, W, Y and X are independently of each other C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, which can be substituted or unsubstituted; H; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl, C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy; C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; C_1 - $C_$

wherein

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C \equiv C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COR⁸; -COR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen;

 R^5 and R^6 are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; or

R⁵ and R⁶ together form a five or six membered ring,

with the proviso that at least two of the groups V, W, X and Y is a C_6 - C_{24} aryl, or C_2 - C_{24} heteroaryl group, which can be substituted.

25. (new) A pyrimidine compound of formula I according to claim 24, wherein

V is H;

W is
$$W^2$$
 W^3 Y^1 Y^3 X^4 , X is X^5 X^4 ,

wherein the groups

 W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by D; C_1 - C_1 8alkenyl; C_2 - C_1 8alkenyl which is substituted by E and/or interrupted by D; C_1 - C_1 8alkoxy, C_1 - C_1 8alkoxy which is substituted by E and/or interrupted by D; C_1 - C_1 8alkoxy which is substituted by L; $-SOR^4$; $-SO_2R^4$; $-COR^8$; $-COOR^7$; $-CONR^5R^6$; C_4 - C_1 8cycloalkyl; C_4 - C_1 8cycloalkyl which is substituted by E and/or interrupted by D; C_4 - C_1 8cycloalkenyl; C_4 - C_1 8cycloalkenyl which is substituted by E and/or interrupted by D

or

one of the substituents W, X, or Y is a group of the formula -Z, -Ar-Z, wherein Ar is C_6 - C_{24} arylor C_2 - C_{24} heteroaryl, which can be substituted, wherein Z is a group of formula

wherein

G is E; K; heteroaryl; heteroaryl which is substituted by C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E and/or K;

K is C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted

10/531,780 - 23 - EL/2-22773/A/PCT

by D; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl which is substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl; or C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D;

L is E; K;C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G, E and/or K;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-.