Optimal Real-time communication

Aditya Mahajan

DEPT. OF EECS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI. USA.

Joint work with Demosthenis Teneketzis

Presented at Information Theory and Applications Workshop, January 30, 2008.

VOTVATION

Real-Time Communication Communication systems in which information should be transmitted and decoded within a fixed delay constraint.

Applications

- Sensor networks
- QoS over communication networks
- Vehicular traffic control
- Surveillance networks
- Networked controlled systems

Features

- ▷ Informationally decentralized systems
- Communication is delay sensitive
- Channels may be noisy

MODEL

Encoder
$$Z_t = c_t(X_1, \dots, X_t)$$

Decoder
$$\hat{X}_t = g_t(Y_1, \dots, Y_t)$$

Delay δ

Distortion
$$\rho(X_{t-\delta}, \hat{X}_t)$$

Total Cost
$$\mathbf{E} \left\{ \sum_{t=\delta+1}^{T} \rho(X_{t-\delta}, \hat{X}_t) \middle| c_1, \dots, c_T, g_1, \dots, g_T \right\}$$

MODEL

SALIENT FEATURES

Sequential operation

 $\cdots \rightarrow$ encoder at $t \rightarrow$ decoder at $t \rightarrow$ encoder at $t + 1 \rightarrow$ decoder at $t + 1 \rightarrow \cdots$

Decentralized information

$$\sigma(X_1,X_2,\dots,X_t) \quad \overset{\not\subseteq}{\supset} \quad \sigma(Y_1,Y_2,\dots,Y_t)$$

info. at encoder

info. at decoder

Non-classical information structure

COMPARISON WITH INFO THY

Shannon Formulation

$$Z_t = c_t(X_1, \dots X_T)$$

$$\hat{X}_t = g_t(Y_1, \dots Y_T)$$

$$\rho(X^{\mathsf{T}}, \hat{X}^{\mathsf{T}}) = \sum_{t=1}^{\mathsf{T}} \rho(X_t, \hat{X}_t)$$

Encoder

Decoder

Distortion

Real-time communication

$$Z_t = c_t(X_1, \dots X_t)$$

$$\hat{X}_t = g_t(Y_1, \dots Y_t)$$

$$ho(X^T, \hat{X}^T) = \sum_{t=\delta+1}^T
ho(X_{t-\delta}, \hat{X}_t)$$

- Information theoretic results are not applicable
 - Cannot use asymptotic equipartition theorem.
 - ▷ No concentration of measure on typical sequences.
 - ▷ Separate source channel coding is not optimal

- Asymptotic concepts not appropriate
 - Source entropy
 - > Transmission rate
 - Channel capacity

OUR APPROACH

Formulate the real-time communication problem as a stochastic optimization problem

STOCHASTIC OPT --- MDP

- Markov decision theory
 - Classical methodology for solving stochastic optimization problems
- Assumption: Centralized system
 - One controller
 - Perfect recall at the controller
- Real-time communication
 - Has two "controllers"
 - Decentralized information

Markov decision theory is not applicable to real-time communication problem

REAL-TIME COMMUNICATION

CONCEPTUAL DIFFICULTIES WITH REAL-TIME COMM

- Information theory does not apply
- Markov decision theory does not apply
- Brute force search is computationally very difficult

REAL-TIME COMMUNICATION

OUR CONTRIBUTION

- o Provide sequential decomposition
 - ▶ Break one shot optimization problem into sequence of nested optimization problems

$$O((2^A)^T) \to O(T \cdot K \cdot 2^A)$$

EXAMPLE

Encoder

$$Z_t = c_t(X_t, S_{t-1})$$

$$S_t = h_t(X_t, S_{t-1})$$

Decoder

$$\hat{X}_t = g_t(Y_t, M_{t-1})$$

$$M_t = l_t(Y_t, M_{t-1}) \\$$

$$T = 10$$

$$\delta = 1$$

Distortion $\rho(X_{t-1}, \hat{X}_t) = \text{hamming distortion}$

EXAMPLE

Communication Scheme

$$C := (c_1, \ldots, c_{10})$$

$$H := (h_1, \ldots, h_{10})$$

$$G := (g_1, \ldots, g_{10})$$

$$L \coloneqq (l_1, \dots, l_{10})$$

Performance

$$\mathcal{J}(C, H, G, L) := \mathbf{E} \left\{ \sum_{t=2}^{10} \rho(X_{t-1}, \hat{X}_t) \,\middle|\, C, H, G, L \right\}$$

BRUTE FORCE APPROACH

- Fix a communication scheme (C, H, G, L)
- Evaluate Pr $(X_1, \ldots, X_{10}, \hat{X}_1, \ldots, \hat{X}_{10} \mid C, H, G, L)$
- ho Evaluate $\mathbf{E}\left\{\sum_{t=2}^{10} \rho(X_{t-1}, \hat{X}_t) \mid C, H, G, L\right\}$
- Repeat for all choices of (C, H, G, L)
- Pick the scheme with best performance

COMPLEXITY

- Possible choices for $c_t = 2^{2 \times 2} = 16$.
- Possible choices for $(c_t, h_t, g_t, l_t) = 16^4 = 65, 536$
- Possible choices for $(C, H, G, L) = (16^4)^{10} \approx 1.5 \times 10^{48}$

Recall, this is for a "simple" example.

Solution Approach: Sequential Decomposition Key Idea: Information state

INFORMATION STATE

REQUIREMENTS ON INFORMATION STATE (π_t)

 \circ π_t should be a "state"

 \circ π_t should absorb the effect of past functions on future performance

$$\triangleright \quad \mathbf{E}\left\{\rho(X_{t-1},\hat{X}_t) \left| c_1^t, h_1^t, g_1^t, l_1^t \right.\right\} = \mathbf{E}\left\{\rho(X_{t-1},\hat{X}_t) \left| \pi_t, c_t, h_t, g_t, l_t \right.\right\}$$

SEQUENTIAL DECOMPOSITION

$$\begin{split} V_t(\pi_t) &= \min_{\gamma_t} \left\{ \hat{\rho}(\pi_t, \gamma_t) + V_{t+1} \big(\pi_{t+1}(\pi_t, \gamma_t) \big) \right\} \\ \mathcal{J}^* &= V_1(\pi_1) \end{split}$$

where $\gamma_t = (c_t, h_t, g_t, l_t)$.

Identifying appropriate information states is highly non-trivial

Information State

$$\pi_{t} = \Pr(X_{t}, S_{t-1}, Y_{t-1}, M_{t-1})$$

$$\pi_{t} \in \Delta(\mathcal{X} \times \mathcal{S} \times \mathcal{Y} \times \mathcal{M})$$

$$\begin{array}{c}
 & \xrightarrow{(c_t, h_t, l_t)} \\
 & \xrightarrow{(c_t, g_t)} \\
 & \xrightarrow{E\left\{\rho(X_{t-1}, \hat{X}_t) \middle| \pi_t, c_t, g_t\right\}}
\end{array}$$

Refine time

$$\begin{split} ^{1}\pi_{t} &= Pr\left(X_{t}, S_{t-1}, Y_{t-1}, M_{t-1}\right) \\ ^{2}\pi_{t} &= Pr\left(X_{t}, S_{t-1}, Y_{t} \quad, M_{t-1}\right) \\ ^{3}\pi_{t} &= Pr\left(X_{t}, S_{t} \quad, Y_{t} \quad, M_{t-1}\right) \end{split}$$

- Functional optimization problem
 - Different from Markov decision theory
- Two step solution
 - ▷ Step One: Computations The backward step (off-line)
 - ▷ Step Two: Implementation The forward step (off-line or on-line)

Computations — The backward step

- $\quad \triangleright \quad \text{For each time instant t and each $^i\pi_t \in \Pi$}$
 - \star evaluate the cost to go ${}^{i}V_{t}({}^{i}\pi_{t})$
 - \star and store the corresponding arg minimum ${}^i\Phi_t({}^i\pi_t)$
- $\quad \triangleright \quad \mathcal{J}^* = V_1(\pi_1^\circ)$

Implementation — The forward step

- \triangleright Start at time 1. We know ${}^1\pi_1^{\circ}$. Look-up $c_1^{\circ}={}^1\Phi_{\rm t}({}^1\pi_1^{\circ})$.
- ho $^{1}\pi_{1}^{\circ}$ and c_{1}° determine $^{2}\pi_{1}^{\circ}$. Look-up $h_{1}^{\circ}=^{2}\Phi_{t}(^{2}\pi_{2}^{\circ})$.
- ▷ And so on . . .

Determine optimal $(c_1^{\circ}, h_1^{\circ}, \dots, g_T^{\circ}, l_T^{\circ})$ off line

COMPLEXITY

- Each equation is non-convex in function space.
- For a fixed t and π_t , there are 2^4 alternatives.
- There are $3 \times T = 30$ nested optimality equations. (linear in T)
- However, π takes value in a continuous space.
- \circ Suppose we partition Π into 10^6 points.

Number of calculations = 5×10^8 (cf. 10^{48} for brute force)

NUMERICAL COMPUTATIONS

- Reachability Analysis
 - \triangleright Find all reachable π_t and solve the nested optimality equations for them
- o Smallwood & Sondik-like Algorithm
 - ightharpoonup ${}^{i}V_{t}(\cdot)$ is piecewise linear and convex
 - > Can be represented as pointwise minimum of a finite family of affine functions
 - > These affine functions can be computed by linear programming
- Approximation Algorithms
 - Grid based solutions
 - Rust's probabilistic algorithm
- Specialized Algorithms ??

NUMERICAL EXAMPLE

Encoder

X_{t}	X_{t-1}	Z_{t}
0	0	1
0	1	0
1	0	1
1	1	0

Decoder

Y_{t}	$Y_{t-1} \\$	\hat{X}_{t}
0	0	1
0	1	1
1	0	0
1	1	0

NUMERICAL EXAMPLE

Source (0.7, 0.1)

Channel (0.2, 0.2)

Encoder 1

X_{t}	X_{t-1}	$Z_{\rm t}$
0	0	1
0	1	0
1	0	0
1	1	0

Decoder 1

Y _t	Y_{t-1}	Χ̂t
0	0	1
0	1	0
1	0	0
1	1	0
1	1	

Encoder 2

Decoder 2

Y _t	$Y_{t-1} \\$	Χ̂t
0	0	1
0	1	0
1	0	0
1	1	0

Encoder 3

X_{t-1}	Z_{t}
0	1
1	0
0	1
1	0
	0

Decoder 3

Y _t	Y_{t-1}	Χ̂t
0	0	0
0	1	0
1	0	0
1	1	0

Encoder 1 \longrightarrow Encoder 2 \longrightarrow Encoder 3 \longrightarrow Encoder 1 \longrightarrow \cdots

SUMMARY

SO FAR ...

- o Formulated real-time communication as a stochastic optimization problem.
- Obtained a methodology for sequential decomposition

KEY IDEAS

- Information state
- Information structures

The key ideas are fundamental and are also applicable to other problems

- Three different explanations of how to choose information states
 - ▷ Related to Aumann's notion of common knowledge
 - ▶ Resolve the second guessing argument

OTHER PROBLEMS

- Variations of real-time communication problem
 - Arbitrary (but finite) delay

 - Active noisy feedback
- Control and communication
 - Optimal feedback control over noisy communication channels.
- Decentralized diagnosis with communication
 - ▶ Fault diagnosis in discrete event systems with communication between diagnosers.

FUTURE DIRECTIONS

- Connections with classical information theory
 - ▷ Smooth transition from real-time to asymptotic
 - > Sequential information theory problems as stochastic optimization problem
- o Connections with other approaches to real-time communication

(e.g. Linder & Lugosi, Matloub & Weissman)

- Connections with mathematical economics
 - Mechanism design
 - Games with communication
- Decentralized systems with a communication component
 - Networks: Communication, control, and detection

REFERENCES

- Aditya Mahajan and Demosthenis Teneketzis, On jointly optimal encoding, decoding, and memory update for noisy real-time communication systems, under review in *IEEE Transactions on Information Theory*.
- o —, On the design of globally optimal communication strategies for noisy real-time communication systems with noisy feedback, accepted for publication in the *IEEE Journal* on *Selected Areas in Communication*, December 2007.
- o —, Globally optimal performance of feedback control systems with limited communication over noisy channels, under review in *SIAM Journal of Control and Optimization*.
- ——, Optimal design of communication strategies for decentralized diagnosis of discrete event systems with communicating diagnosers, in preparation.

