WWS 509 Generalized Linear Models: Precept 10 Survival Analysis Using Poisson

Kristin E. Bietsch

Office of Population Research, Princeton University

November 2012

Introducing the Data

This week we are looking at the graduation rate of PhD students from Princeton, Columbia, and Berkeley. This data comes from Espenshade and Rodríguez 1997 and can be found on the website. We will be using Poisson models to look at piece-wise survival analysis. For more about survival analysis, Germán teaches a mini course every-other year (Survival Website). Also, Cox proportional hazards are taught in POP502/ECON572, which I hear has a great preceptor!

Survival Data

Survival data is a special type of data. Think about if you wanted to study mortality, but you don't want to wait until everyone has died to do it. Or maybe you want to study divorce, but not everyone is going to get divorced and some people will get divorced, but not yet.

• If an event has not occured at the time of data collection it is called	
• Different observations can be at risk for different amounts of time, therefore, we need a variable measuring	
 If using the offset option in Stata, make sure to take the 	
• If we are using grouped data, we will need information on and of all the people in each group.	
• If we are using individual data, we will need information on and for each observation.	
• What are some interesting ways you can think to use survival analysis?	

Interpretation

General

- 1. Looking at the local I created, what year did I choose as my reference group? Why do you think I chose this?
- 2. Why did I change the residence term into temporary?
- 3. Why did I take the log of exposure?

Null Model

- 1. What does the constant in this model represent?
- 2. Transform the constant into something easy to interpret.
- 3. How does this relate to the observed rate?

University Model

- 1. Interpret the coefficients for Berekely and Columbia. Remember the reference group is Princeton.
- 2. Does university matter in graduation rate?

Residence Model

- 1. Interpret the coefficient on "temporary."
- 2. Why do you think results are this way?

Time Model

- 1. What year has the highest graduation rate?
- 2. What is the graduation rate in that year?

University + Time Model

- 1. Controlling for time, what is difference between Berkeley, Columbia, and Princeton?
- 2. I bet you are happy you are at Princeton.

Appendices

Stata Output

```
. use http://data.princeton.edu/wws509/datasets/phd.dta
(Time to Ph.D. at Berkeley, Columbia and Princeton)
. tab year, gen(year_)
. local time year_1 year_2 year_3 year_4 year_6 year_7 year_8 year_9
year_10 year_11 year_12 year_13 year_14
. gen berkeley= university==1
. gen columbia= university==2
. gen temporary= residence-1
. gen logexp=log(exposure)
. *null model
. poisson events, offset(logexp)
Iteration 0: log likelihood = -2712.4406
Iteration 1: log likelihood = -2712.4406
Poisson regression
                                           Number of obs =
                                                                 73
                                                              0.00
                                           LR chi2(0) =
                                           Prob > chi2
                                           Pseudo R2 = 0.0000
Log likelihood = -2712.4406
     events | Coef. Std. Err. z P>|z| [95% Conf. Interval]
______
     _cons | -3.1098 .0132465 -234.76 0.000 -3.135763 -3.083838
     logexp | (offset)
. estat gof
       Goodness-of-fit chi2 = 5044.534
       Prob > chi2(72) = 0.0000
. estimates store null
. quietly summarize events
. scalar nevents = r(sum)
. quietly summarize exposure
. di "Observed Rate = " nevents/r(sum)
```

Observed Rate = .04460987

. * Lets look if I should have stayed at Berkeley!

. poisson events berkeley columbia, offset(logexp)

Iteration 0: log likelihood = -2230.795
Iteration 1: log likelihood = -2230.7381
Iteration 2: log likelihood = -2230.7381

Poisson regression Number of obs = 73LR chi2(2) = 963.41Prob > chi2 = 0.0000Log likelihood = -2230.7381 Pseudo R2 = 0.1776

events | Coef. Std. Err. z P>|z| [95% Conf. Interval]

berkeley | -.8780076 .0333036 -26.36 0.000 -.9432814 -.8127337

columbia | -1.416278 .0462468 -30.62 0.000 -1.50692 -1.325635

_cons | -2.257475 .0290129 -77.81 0.000 -2.314339 -2.200611
logexp | (offset)

. estat gof

Goodness-of-fit chi2 = 4081.128Prob > chi2(70) = 0.0000

. lrtest null .

Likelihood-ratio test LR chi2(2) = 963.41 (Assumption: null nested in .) Prob > chi2 = 0.0000

. poisson events berkeley columbia temporary, offset(logexp)

Iteration 0: log likelihood = -2132.2795
Iteration 1: log likelihood = -2132.2677
Iteration 2: log likelihood = -2132.2677

events	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
berkeley columbia temporary _cons logexp	8829095	.0333058 .0462475 .0323063 .0297592	-26.51 -30.69 14.71 -78.57	0.000 0.000 0.000 0.000	9481877 -1.510203 .4119033 -2.396511	8176312 -1.328916 .5385418 -2.279857

. estat gof

Goodness-of-fit chi2 = 3884.188Prob > chi2(69) = 0.0000

. poisson events 'time', offset(logexp)

Iteration 0: log likelihood = -987.36059
Iteration 1: log likelihood = -977.73285
Iteration 2: log likelihood = -977.69997
Iteration 3: log likelihood = -977.69997

Poisson regression Number of obs = 73LR chi2(13) = 3469.48Prob > chi2 = 0.0000Log likelihood = -977.69997 Pseudo R2 = 0.6395

______ events | Coef. Std. Err. z P>|z| [95% Conf. Interval] ______ year_1 | -2.100309 .0858483 -24.47 0.000 -1.932049 -2.268568 .0540307 -14.54 0.000 year_2 | -.7857379 -.8916361 -.6798398 year_3 | -.0695101 .0457912 -1.52 0.129 -.1592592 .020239 year_4 | .0544905 .0459175 1.19 0.235 -.0355061 .1444872 -2.89 0.004 year_6 | -.1503525 .0520957 -.2524581 -.0482469 -.3434541 -5.96 year_7 | .0576071 0.000 -.4563619 -.2305463 0.000 year_8 | -.6143716 .0664536 -9.25 -.7446182 -.484125 year_9 | -.8471369 .0762228 -11.11 0.000 -.9965307 -.697743 -1.163863 -12.620.000 year_10 | .0922588 -1.344687-.9830387 -13.59 -1.645646 0.000 -1.883055 year_11 | .1211291 -1.408238year_12 | -1.781405 .1356471 -13.13 0.000 -2.047269 -1.515542-2.548429 -17.18 0.000 -2.257771 year_13 | .1482973 -2.839086 year_14 | -3.405446 .154551 -22.03 0.000 -3.708361 -3.102532 .0340404 0.000 -2.506594 -2.373158 _cons | -2.439876 -71.68 logexp | (offset)

. estat gof

Goodness-of-fit chi2 = 1575.052Prob > chi2(59) = 0.0000

. poisson events 'time' berkeley columbia, offset(logexp)

Iteration 0: log likelihood = -490.53092
Iteration 1: log likelihood = -482.75404
Iteration 2: log likelihood = -482.73038
Iteration 3: log likelihood = -482.73038

Poisson regression Number of obs = 73LR chi2(15) = 4459.42Prob > chi2 = 0.0000Log likelihood = -482.73038 Pseudo R2 = 0.8220

events | Coef. Std. Err. z P>|z| [95% Conf. Interval] ______ -2.329039 year_1 | -2.160665 .0859071 -25.15 0.000 -1.99229year_2 | -.8438316 .0541078 -15.60 0.000 -.7377822 -.949881 year_3 | -.1124038 -2.45 0.014 .0458399 -.2022484 -.0225591 year_4 | .0360547 .045927 0.79 0.432 -.0539605 .1260699 year_6 | -.1405086 .0520978 -2.70 0.007 -.2426185 -.0383988 year_7 | -5.75 0.000 -.331341 .0576116 -.4442577 -.2184243 .0664687 year_8 | -.5965924 -8.98 0.000 -.7268687 -.4663161 year_9 | -.8401931 .0762385 -11.02 0.000 -.9896178 -.6907684 year_10 | -1.178694 .0922862 -12.77 0.000 -1.359572 -.9978165 year_11 | -1.673799 .1211607 -13.81 0.000 -1.911269 -1.436328.1356796 -13.48 0.000 -2.094452 year_12 | -1.828525 -1.562598 year_13 | -2.571328 .1483305 -17.34 0.000 -2.862051 -2.280606 year_14 | -3.398059 .1546342 -21.97 0.000 -3.701137 -3.094982 -.7693476 berkeley | .0335248 -22.95 0.000 -.8350549 -.7036402 .0463438 -31.12 0.000 columbia | -1.442275 -1.533108 -1.351443 _cons | -1.636069 .0431878 -37.88 0.000 -1.720716-1.551422 (offset) logexp |

. estat gof

Goodness-of-fit chi2 = 585.1131Prob > chi2(57) = 0.0000

. * Estimating "survival" probabilities

```
. predict p_events
(option n assumed; predicted number of events)
```

- . gen hazard = events/exposure
- . sort university year
- . by university: gen cumhaz = sum(hazard)
- . gen survival = exp(-cumhaz)
- . tab year university, sum(survival) mean

Means of survival

Year of graduate	1					
school	i	U				
(1-14)	İ		niversity Columbia	Princeton		Total
1	i	.98140088	.98833132	.93995562	i	.96989594
2	1	.90257922	.95536572	.72673407	1	.86155967
3	1	.78443277	.88305119	.46713404	1	.71153933
4	1	.61886293	.79426798	.30070929	1	.57128007
5	1	.48875487	.72256139	.20441666	-	.47191097
6	-	.40128219	.66628823	.16244519		.4100052
7	-	.34557866	.62381384	.14546854		.37162034
8	-	.3063942	.58608893	.13615279		.38422381
9	-	.27941421	.56743196	.12993373		.36472521
10	-	.26272123	.55089468	.12652953		.30071666
11	-	.2533576	.5423317	.12485366		.29347514
12	-	.24600293	.5387401	.12064083		.25440552
13	-	.24237683	.53783846	.11711153		.28492591
14		.24041579	.53761292	.11686262		.28382678
Total		.45382674	.70790517	.31302056		.49144411