Práctica 6: Lenguajes formales y gramáticas

Definición: Gramática es una tupla: (N, T, P, σ) donde:

- N es un conjunto finito de símbolos llamados **no terminantes**.
- lacksquare T es un conjunto finito de símbolos, llamados **terminantes** o **alfabeto**, tal que $N \cap T = \emptyset$
- P es un conjunto finito de **reglas de producción**, donde

$$P \subseteq ((N \cup T)^* - T^*) \times (N \cup T)^*$$

Definición 1. Una gramática se dice:

- (a) regular si cada producción es de la forma: $A \to a$ o $A \to aB$ o $A \to \lambda$ donde $A, B \in N$ y $a \in T$,
- (b) *libre* (o independiente) de contexto si cada producción es de la forma $A \to \delta$ donde $A \in N$ y $\delta \in (N \cup T)*$
- (c) sensible al conexto si cada producción es de la forma $aA\beta \to \alpha\delta\beta$ donde $A \in N, \alpha, \beta \in (N \cup T) * y \delta \in (N \cup T) + ,$
- (d) estructurada por frases o irrestricta si no tiene restricciones sobre la forma de sus producciones, es decir si son de la forma

$$\alpha \to \delta \quad \text{donde} \quad \alpha \in (N \cup T) * -T * y \delta \in (N \cup T) *$$

- 1. Clasifique cada una de las siguientes gramáticas (dando su tipo más restrictivo):
 - a) $T = \{a, b\}, N = \{\sigma, A\}$, símbolo inicial σ , y producciones

$$\sigma \to b\sigma, \sigma \to aA, A \to a\sigma,$$

 $A \to bA, A \to a, \sigma \to b$

Regular.

b) $T = \{a, b, c\}, N = \{\alpha, A, B\}$, símbolo inicial σ , y producciones

$$\sigma \to AB, AB \to BA, A \to aA,$$

$$B \to Bb, A \to a, B \to b$$

Sensible al contexto.

c) $T = \{a, b\}, N = \{\sigma, A, B\}$, simbolo inicial σ y producciones:

$$\sigma \to A, \quad \sigma \to AAB, \quad Aa \to ABa, \quad A \to aa,$$

$$Bb \to ABb, \quad AB \to ABB, \quad B \to b.$$

Sensible al contexto.

d) $T = \{a, b, c\}, N = \{\sigma, A, B\}$, símbolo inicial σ , y producciones:

$$\sigma \to BAB, \quad \sigma \to ABA, \quad A \to AB, \quad B \to BA,$$

$$A \to aA, \quad Aab, \quad B \to b$$

. Independiente de contexto.