Усреднение комптоновских измерений энергии

Никита Петров cmd.inp.nsk.su/~compton

План

- Введение
- Алгоритм усреднения
- Реализация

Ведение

Энергия пучка ВЭПП-2000 измеряется методом обратного комптоновского рассеяния:

$$rac{\delta E}{E} = 6 \cdot 10^{-5}$$

[1]: A system of beam energy measurement based on the Compton backscattered laser photons for the VEPP-2000 electron-positron collider: 10.1016/j.nima.2014.01.020

 $E = 458.508 \pm 0.077 \text{ MeV}, P (\chi 2) = 0.45.$

Задачи:

- 1. Отфильтровать измерения из slowdb
- 2. Сопоставить заходы с компт. измерениями
- 3. Усреднить измерения с весами (светимостями)

1. Paбota co slowdb

Фильтрация slowdb:

- удалить значения dt=0
- удалить дубликаты
- определить интервал времени комптоновского измерения

B slowdb (g_id=43) хранятся данные о комптоновских измерениях энергии

Перенос в БД калибровок: Misc/RunHeader/Compton_run

time						vals_arr[7]	
2021-11-30 16:34:22							-1.31656e+07
2024 42 02 47 52 47	1 4700	1 02/ 022			1 70 6664	1000	10/1/6
2021-12-02 17:52:14	1782	934.032	0.058354	835.284	79.6661	1802	-1841.46
2021-12-02 18:22:22	1808	934.114	0.059949	908.46	80.0137	1802	-1847.32

Фрагмент slowdb

1. Paбota co slowdb

time			vals_arr[2]		——————————————————————————————————————	——————————————————————————————————————	
2021-11-30 16:34:22							-1.31656e+07
			• • •				
2021-12-02 17:52:14	1782	934.032	0.058354	835.284	79.6661	1802	-1841.46
2021-12-02 18:22:22	1808	934.114	0.059949	908.46	80.0137	1802	-1847.32

Фрагмент slowdb

[1], [2]: средняя энергия и ошибка (МэВ);

[5], [6]: средний разброс и ошибка (КэВ);

[7], [8]: времена, через которые вычисляется начало и конец комптоновского измерения (с)

	endtime				
02.12.21 17:21:32	02.12.21 17:51:34 02.12.21 18:21:36	934.032	0.058354	0.835284	0.079666

-tr_ph/emeas1

Фрагмент БД калибровок: Misc/RunHeader/Compton_run

begintime, endtime: начало и конец компт.измерения

0, 1: средняя энергия и ошибка (МэВ);

2, 3: средний разброс и ошибка (МэВ);

2. Сопоставление комптона и заходов

- Для усреднения энергии в каждой энергетической точке нужно кроме данных об измерениях получить их веса:
- вес комптоновского
 измерения это полная
 светимость, набранная во
 время этого измерения
- необходимо сопоставить комптоновские измерения и заходы КМД-3

$$ar{E} = rac{\sum w_i E_i}{\sum w_i}$$

только пример формулы для усреднения энергии (эта формула не используется в этой работе)

2. Сопоставление комптона и заходов

Сопоставленные друг другу заходы и измерения энергии показаны цифрами

- 1, 6. Большая часть захода попала в комптоновское измерение
- 2. Заход целиком попал в комптоновское измерение
- 3. Заход не попал ни в одно комптоновское измерение (не будет использован)
- 4, 5. Заходы попали на комптоновское измерение во время смены точки по энергии (это измерение комптона не будет использовано)

Теперь у нас есть данные о комптоновских измерениях и их веса, можно приступать к усреднению энергий:

Пример комптоновских измерений энергии. Средние значения (слева) и размазка (справа). Каждому измерению приписан вес (светимость), на рис. не показан

Усреднение производится через максимизацию функции правдоподобия:

$$L = \prod_{m} \left[G(\mu, \sigma, E_i, \delta E_i)
ight]^{w_i}$$

$$G(\mu,\sigma,E_i,\delta E_i)=|s_i\equiv\sqrt{\sigma^2+\delta E_i^2}|=rac{1}{\sqrt{2\pi s_i^2}}{
m exp}\left(-rac{(\mu-E_i)^2}{2s_i^2}
ight)$$

µ - усреднённое значение энергии

σ - стандартное отклонение для усреднённой энергии

Еі - средние значения измерений энергии

δΕ_і - ошибка средних измерений энергии

w_i - вес i-го комптоновского измерения (светимость)

Использую МС toy, чтоб продемонстрировать работу формул (с одинаковыми весами):

МС Тоу эксперимент: представим себе, что мы измерили энергию 10 000 раз в одной точке. Получаем: 550±2.23 МэВ (в этом диапазоне лежит 68% значений)

Разбиваем наши данные на 100 измерений по 100 сэмплов в каждом. Находим для каждого среднее и сигму.

Строю средние значения (слева) и стандартные отклонения (справа) измерений и определяю параметры через функцию правдоподобия:

	Name	Value	Hesse Err
0 1	mean	549.996	0.022
	sigma	0.0	0.12

	mean	sigma
mean	0.00049	5.09e-07
sigma	5.09e-07	0.0148

Получаем:

$$\mu + \delta \mu = 549.996 \pm 0.022$$

$$\sqrt{\sigma^2 + \mathrm{std}^2} = 2.22$$

Теперь делаю то же самое, но в при условии, что сначала энергия была 548, а потом повысилась до 552:

	Name	Value	Hesse Err
0 1	mean	550.0	0.2
	sigma	1.99	0.14

	mean	sigma
mean	0.0398	-4.01e-06
sigma	-4.01e-06	0.0199

$$\mu \pm \delta \mu = 550.0 \pm 0.2$$
 $\sqrt{\sigma^2 + \mathrm{std}^2} = 2.23$

Что было раньше?

$$ar{E} = rac{\sum L_i E_i}{\sum L_i} \ \delta E^2 = rac{1}{(\sum L_i)^2} \sum L_i^2 \delta E_i^2$$

Комментарии:

Легко вычислять
В среднем не учитывается δE_i δE - ошибка определения среднего значения энергии

Пример усреднения с функцией правдоподобия:

Усреднение энергии для точки HIGH2021/970

Сравнение с предыдущим результатом

Разница средних значений энергии (учтены только стат. ошибки средних) между двумя методами для HIGH2019:

Отличие обусловлено различиями в методах усреднения

Сравнение с предыдущим результатом

То же для LOW2020 (слева) и HIGH2021 (справа):

Реализация

Git-репозиторий

cmd.inp.nsk.su/~compton

- •видна история изменений
- •обновляется каждые 6 часов

Картинки

cmd.inp.nsk.su/~compton/pictures

Compton avg by seasons

HIGH2017

HIGH2019

HIGH2020

HIGH2021

LOW2020

NNBAR2021

RH02013

RHO2018

945.0 MeV

База данных калибровок

Заполняю базу данных калибровок:

Misc/RunHeader/Compton_run

таблица с данными о комптоновских измерениях заполнение tr_ph/emeas1

Misc/RunHeader/Compton_run_avg

таблица с данными об усреднениях заполнение tr_ph/emeas

Заключение

- 1. Обновлён алгоритм усреднения комптоновских энергий
- 2. Автоматизирован процесс усреднения
- 3. Обновлён визуальный интерфейс

Спасибо Евгению Козыреву за помощь!

Спасибо за внимание!