SIMC Section C: Busy footbridge

Definitions: P(i,j) denote the probability that person A_i will meet person B_j .

Question 1:
$$p_{1,n} = \frac{1}{2}$$
, $p_{2,n} = \frac{3}{8}$, $q_1 = \frac{1}{2}$, $q_2 = \frac{3}{8}$, $q_3 = \frac{5}{16}$

 $p_{1,n}$) Based on simulation result, $P(1,n)=\frac{1}{2}\ \forall n$. This is intuitive. If A_1 is stubborn, then whether he meets B_n depends on whether he is in the same lane as B_n initially, with a probability of $\frac{1}{2}$. If A_1 is polite, then whether he meets B_n depends on whether B_{n-1} and B_n are on the same lane, with a probability of $\frac{1}{2}$ because we can take B_n to be independently generated as B_{n-1} . If n=1, it will still be a probability of $\frac{1}{2}$. Hence, $P(1,n)=\frac{1}{2}$.

 $p_{2,n}$) From the simulation results, it seems that $P(2,1)=\frac{1}{2}$ and $P(2,n)=\frac{3}{8}$ for n>1. The first part is intuitive. We can treat the spawning of A_2 to be independent from A_1 . Therefore, whether A_2 will meet B_1 depends on whether A_2 is spawned in the same row as B_1 after A_1 passed the row of B_1 . Hence, $P(2,1)=\frac{1}{2}$.

For the latter result, we consider a more general case. We calculate P(m, n) where n > 1. We observe that a polite person among A will not change the order of B, while a stubborn person in A will push all the B to one side.

Before A_m , there are m-1 other As. If none of them are stubborn, then the order of B will be the same. Hence, we can treat A_m as A_1 . This gives a probability of $\left(\frac{1}{2}\right)^{m-1} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^m$, where the first $\left(\frac{1}{2}\right)^{m-1}$ comes from everyone before A_m being polite. Otherwise, if at least one of $[A_1,A_2,\ldots,A_{m-1}]$ is stubborn, then the Bs will fall into one row. Hence, if A_m is polite, then it has no chance of meeting B_n . Otherwise, if it is stubborn, then A_m will only meet B_n if they are in the same row initially, which has a probability of $\frac{1}{2}$. Hence, the probability here is $\left(1-\left(\frac{1}{2}\right)^{m-1}\right)\cdot\frac{1}{2}\cdot\frac{1}{2}$.

Hence,

$$P(m,n) = \left(\frac{1}{2}\right)^m + \left(1 - \left(\frac{1}{2}\right)^{m-1}\right) \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \left(\frac{1}{2}\right)^{m+1}$$
$$p_{2,n} = P(2,n) = \frac{1}{4} + \left(\frac{1}{2}\right)^3 = \frac{3}{8}$$

Note that the probability P(m, n) is independent of n.

- q_1) From the answer and derivation in $p_{1,n}$, we have $q_1 = \frac{1}{2}$.
- q_2) Based on simulation result, $P(2,10000)\approx 0.37510\approx \frac{3}{8}$. From the answer and derivation in $p_{2,n}$, we can see $P(2,\infty)=\frac{3}{9}$.

 q_3) Based on simulation result, $P(3,10000)\approx 0.311820$. This is close to the value of $\frac{5}{16}\approx 0.3125$. From the answer and derivation in $p_{2,n}$, we can see that $P(3,\infty)=\frac{1}{4}+\left(\frac{1}{2}\right)^4=\frac{5}{16}$.

Further analysis: We see that for large m, $P(m,n) = \frac{1}{4} + \left(\frac{1}{2}\right)^{m+1} \to \frac{1}{4}$. This makes sense for large m, there is a high probability that there is a stubborn A before the A we are considering; hence the Bs will be in the same row. Therefore, the only way for A and B to meet is when A is stubborn and in the same row as B as well, each with a probability of $\frac{1}{2}$.

Question 2:
$$p_{1,n} = \frac{1}{3} \left(1 - \left(-\frac{1}{2} \right)^n \right), p_{2,n} = \frac{1}{6} \left(1 - \left(-\frac{1}{2} \right)^x \right), q_1 = \frac{1}{3}, q_2 = \frac{1}{6} q_3 = \frac{1}{6}$$

 $p_{1,n}$) We note that if B_n and B_{n-1} are in the same lane, then B_n will never collide with A_1 . This is because if A_1 is not in the same row as B_{n-1} , then it will pass B_n as well. If A_1 is in the same row as B_{n-1} , then it will be deflected. If B_n and B_{n-1} are in different lanes, then A_1 will collide with B_n if A_1 does not collide with B_{n-1} . Let P(x) denote the probability of A_1 colliding with B_x . Clearly, $P(1) = \frac{1}{2}$. From then on, the probability of A_1 not colliding with B_{x-1} is 1 - P(x-1). Since we can treat the spawning of B_x as independent of B_{x-1} , then the probability of A_1 colliding with B_x is:

$$P(x) = \frac{1}{2} (1 - P(x - 1)) \Rightarrow P(x - 1) + 2 \cdot P(x) = 1$$

This yields the solution $P(x) = \frac{1}{3} \left(1 - \left(-\frac{1}{2} \right)^x \right)$. Checking, $P(1) = \frac{1}{3} \cdot \frac{3}{2} = \frac{1}{2}$ which is true. $P(2) = \frac{1}{3} \left(1 - \frac{1}{4} \right) = \frac{1}{4}$. Simulation results showed $P(2) = 0.249630 \approx \frac{1}{4}$.

Hence,
$$p_{1,n} = \frac{1}{3} \left(1 - \left(-\frac{1}{2} \right)^n \right)$$
.

 $p_{2,n}$) For A_2 , clearly $P(2,1)=\frac{1}{2}$. Denote B_i' to be the B_i after A_1 passed through the row of Bs. For i>1, we will define Q(i) as the probability that B_i' and B_{i-1}' are in the same row after A_1 has passed through them. If B_i and B_{i-1} are initially in the same row, then B_i' and B_{i-1}' will also be in the same row. Otherwise, B_i and B_{i-1} are initially in different rows. If A_1 collided with B_{i-1} , then $B_{i-1}' = B_i'$ simply because A_1 will not want to switch. If A_1 did not collide with B_{i-1} , then whether $B_i' = B_{i-1}'$ depends on B_{i+1} . If $B_{i+1} = B_i$, then $B_i' \neq B_{i-1}'$. Otherwise, $B_i' = B_{i-1}'$.

$$Q(i) = \frac{1}{2} + \frac{1}{2} \left[P(i-1) + \frac{1}{2} \left(1 - P(i-1) \right) \right] = \frac{1}{2} + \frac{1}{4} \left[1 + P(i-1) \right] = \frac{3}{4} + \frac{1}{4} P(i-1)$$

$$Q(i) = \frac{3}{4} + \frac{1}{4} \cdot \frac{1}{3} \left(1 - \left(-\frac{1}{2} \right)^{i-1} \right) = \frac{3}{4} + \frac{1}{12} \left(1 - \left(-\frac{1}{2} \right)^{i-1} \right) = \frac{5}{6} - \frac{1}{6} \left(-\frac{1}{2} \right)^{i}$$

We now define P'(x) to be the probability that A_2 meets B'_x .

If $B_x' = B_{x-1}'$, then there is no chance for A_2 to meet B_x' . Otherwise, $B_x' \neq B_{x-1}'$. If x-1>1, then this implies that $B_{x-2}' = B_{x-1}'$, otherwise B_{x-1}' would have shifted to be in the same row as B_x' . This also means that A_2 will not collide with B_{x-1}' and must collide with B_x' .

$$P'(x) = (1 - Q(x)) = \frac{1}{6} \left(1 - \left(-\frac{1}{2} \right)^x \right), \quad x \ge 3$$

We assumed x-1>1, hence the above formula works for $x\geq 3$. For x=1, $P'(1)=\frac{1}{2}$. For x=2, case consideration gives $P'(2)=\frac{1}{16}$. Below is a table showing the comparison of simulation results and our formula:

26	Theoretical Result $P'(x)$	Simulation $P'(x)$
\boldsymbol{x}	i i neoretical Result P (x)	Simulation P(x)

1	0.5	0.497790
2	0.0625	0.062160
3	0.1875	0.185850
4	0.15625	0.154290
5	0.171875	0.170900

- q_1) We have previously $p_{1,n}=\frac{1}{3}\Big(1-\Big(-\frac{1}{2}\Big)^n\Big)$. As $n\to\infty$, $p_{1,\infty}\to\frac{1}{3}$. From our simulation, $P(1,9999)=0.333180\approx\frac{1}{3}$.
- q_2) We have previously $p_{2,n}=\frac{1}{6}\Big(1-\Big(-\frac{1}{2}\Big)^x\Big)$. As $x\to\infty$, $p_{2,\infty}\to\frac{1}{6}$. From our simulation, $P(2,9999)=0.167670\approx\frac{1}{6}$.
- q_3) We make the observation that any further entrance of A_i into Bs will not change the arrangement of B except for possibly B_1 . This is because after A_1 enters, all Bs will be in the formation of "trains" of more than or equal to length 2. A "train" here is defined to be a consecutive block of Bs. If there is a "train" of length 1 (i.e. a solo person standing in different lane as the person before AND after him, say B_x), then A_1 will either collide with B_{x-1} and deflect B_{x-1} to join B_x in the same row, OR A_1 will collide with B_x and deflect him to join B_{x-1} . Hence, future entrance of As will not affect the probability of $P(i, \infty)$. Hence $q_3 = \frac{1}{6}$.

Further analysis: We see that for large m, $P(m,n) = \frac{1}{4} + \left(\frac{1}{2}\right)^{m+1} \to \frac{1}{4}$. This makes sense for large m, there is a high probability that there is a stubborn A before the A we are considering; hence the Bs will be in the same row. Therefore, the only way for A and B to meet is when A is stubborn and in the same row as B as well, each with a probability of $\frac{1}{2}$.

Question 3:
$$p_{1,n} = \frac{1}{2} p_{2,n} = \frac{3}{8}, q_1 = \frac{1}{3}, q_2 = \frac{1}{6} q_3 = \frac{1}{6}$$

 $p_{1,n}$) We can take the spawning of B_i to be independent from the previous events. Hence, there is a $\frac{1}{2}$ chance that B_i spawns in the same row as A_1 after A_1 passed through all the previous Bs, and a $\frac{1}{2}$ chance otherwise. Hence, $P_{1,n} = \frac{1}{2} \ \forall n$.

 $p_{2,n}$) Let Q(x) denote the probability that B_x' and B_{x-1}' are in the same row. If B_x and B_{x-1} are in the same row, then if A_1 did not collide with B_{x-1} , then $B_x' = B_{x-1}'$ (this happens with a probability of $\frac{1}{4}$). Otherwise, A_1 collides with B_{x-1} . There is a $\frac{1}{2}$ chance B_{x-1} will remain and hence $B_x' = B_{x-1}'$. Otherwise, B_{x-1} deflects, but there will be another $\frac{1}{2}$ chance for B_x to also deflect upon colliding with A_1 to result in $B_x' = B_{x-1}'$. Hence probability of $B_x' = B_{x-1}'$ provided that $B_x = B_{x-1}$ is $\frac{1}{4} + \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{7}{16}$.

If $B_x \neq B_{x-1}$, then if A_1 collides with B_{x-1} , there is a $\frac{1}{2}$ chance B_{x-1} shifts such that $B_x' = B_{x-1}'$. Otherwise A_1 will shift and there is a $\frac{1}{2}$ chance that B_x will shift upon meeting A_1 . Hence if A_1 collides with B_{x-1} , there is a $\frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{16}$ chance of $B_x' = B_{x-1}'$. Otherwise, A_1 did not collide with B_{x-1} , hence there is a $\frac{1}{2}$ chance of B_x shifting so that $B_x' = B_{x-1}'$. Hence, the probability here is $\frac{3}{16} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{5}{16}$.

Hence $Q(x) = \frac{3}{4} \ \forall x$. This is independent of each other, because we can treat the spawning of B_x to be independent from B_{x-1} . Furthermore, whether A_1 collides with B_{x-1} does not depend on position of B_x afterwards, so the events in the previous case considerations are independent.

Now denote P(x) as the probability that A_2 will collide with B'_x .

If A_2 collides with B'_{x-1} , then the probability of A_2 ending up on either lane is $\frac{1}{2}$. So probability of meeting B'_x is $\frac{1}{2}$ no matter what; this gives rise to a probability of $\frac{1}{2}P(x-1)$. If A_2 does not collide with B'_{x-1} , then it will hit B'_x if $B'_x \neq B'_{x-1}$. This has a probability of $(1-Q(x))\cdot(1-P(x-1))=\frac{1}{4}(1-P(x-1))$.

$$P(x) = \frac{1}{2}P(x-1) + \frac{1}{4}(1 - P(x-1)) \Rightarrow 4P(x) = 1 + P(x-1)$$

Solving the recurrence relation and substituting in the initial values, we have:

$$P(x) = \frac{1}{3} \left(1 + 2 \cdot \left(\frac{1}{4}\right)^x \right)$$

Hence, $p_{2,n} = \frac{1}{3} \left(1 + 2 \cdot \left(\frac{1}{4} \right)^n \right)$.

\boldsymbol{x}	Theoretical Result $P'(x)$	Simulation $P'(x)$
1	0.5	0.499390
2	0.375	0.374180

3	0.34375	0.346730
4	0.3359375	0.335940
5	0.333984375	0.333250

- q_1) By result of $p_{1,n}, q_1 = \frac{1}{2}$.
- q_2) Using the result from $p_{2,n}$, $q_2=p_{2,\infty}=\frac{1}{3}$. Based on simulation result, $P(2,9999)\approx 0.333730\approx \frac{1}{3}$ too.
- q_3) We might as well solve for $p_{m,n}$. We will denote B_x^m be the position of B_x after people $A_1, A_2, ..., A_{m-1}$ passed through them. Let $Q^m(x)$ denote the probability of B_x^m and B_{x-1}^m in the same row. Let $P^m(x)$ denote the probability of A_m hitting B_x . We make the observation that the probability of A_m hitting B_n is independent of what happens after A_m passes B_n . This means whether $B_x^{m-1} = B_{x-1}^{m-1}$ is independent of whether A_{m-1} meet B_{x-1}^{m-1} .

If $B_x^{m-1}=B_{x-1}^{m-1}$, then consider the case when A_{m-1} meet B_{x-1}^{m-1} . If B_{x-1}^{m-1} does not shift, then $B_x^m=B_{x-1}^m$, this has a probability of $Q^{m-1}(x)\cdot P^{m-1}(x-1)\cdot \frac{1}{2}$. Otherwise, if B_{x-1}^{m-1} shift, then $B_x^m=B_{x-1}^m$ only if B_x^m also shifts; this has a probability of $Q^{m-1}(x)\cdot P^{m-1}(x-1)\cdot \frac{1}{2}$. Hence the total probability is $\frac{3}{4}Q^{m-1}(x)\cdot P^{m-1}(x-1)$. If A_{m-1} did not meet B_{x-1}^{m-1} , then, $B_x^m=B_{x-1}^m$. This has a probability of $Q^{m-1}(x)\cdot \left(1-P^{m-1}(x-1)\right)$. Hence, total probability is $Q^{m-1}(x)\cdot \left(1-\frac{1}{4}P^{m-1}(x-1)\right)$.

If $B_x^{m-1} \neq B_{x-1}^{m-1}$, then consider the case when A_{m-1} meet B_{x-1}^{m-1} . If B_{x-1}^{m-1} shifts, then $B_x^m = B_{x-1}^m$. This has a probability of $\left(1 - Q^{m-1}(x)\right) \cdot P^{m-1}(x-1) \cdot \frac{1}{2}$. If B_{x-1}^{m-1} does not shift, then A_{m-1} will collide with B_x^{m-1} . Then $B_x^m = B_{x-1}^m$ will hold only if B_x^{m-1} shifts. This has a probability of $\left(1 - Q^{m-1}(x)\right) \cdot P^{m-1}(x-1) \cdot \frac{1}{4}$. Hence, total probability is $\left(1 - Q^{m-1}(x)\right) \cdot P^{m-1}(x-1) \cdot \frac{3}{4}$. Now, consider the case A_{m-1} does not meet B_{x-1}^{m-1} . Then $B_x^m = B_{x-1}^m$ will only hold if B_x^{m-1} shifts. This has a probability of $\left(1 - Q^{m-1}(x)\right) \cdot \left(1 - P^{m-1}(x-1)\right) \cdot \frac{1}{2}$. Hence total probability is $\left(1 - Q^{m-1}(x)\right) \left(\frac{1}{2} + \frac{1}{4}P^{m-1}(x-1)\right)$.

$$Q^{m}(x) = Q^{m-1}(x) \cdot \left(1 - \frac{1}{4}P^{m-1}(x-1)\right) + \left(1 - Q^{m-1}(x)\right) \left(\frac{1}{2} + \frac{1}{4}P^{m-1}(x-1)\right)$$
$$Q^{m}(x) = \frac{1}{2} + \frac{1}{2}Q^{m-1}(x) + \frac{1}{4}P^{m-1}(x-1) - \frac{1}{2}P^{m-1}(x-1) \cdot Q^{m-1}(x)$$

Checking, $Q^2(x) = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$, which is true from our part $p_{2,n}$.

Hence, we are about to obtain $Q^m(x)$ from $Q^{m-1}(x)$ and $P^{m-1}(x)$. Now we focus on $P^m(x)$.

If $B_x^m = B_{x-1}^m$, then consider the case if A_m collides with B_{x-1}^m . A_m will only collide with B_x^m if B_{x-1}^m shifts. That has a probability of $Q^m(x) \cdot P^m(x-1) \cdot \frac{1}{2}$. Note we can multiply the expressions because whether $B_x^m = B_{x-1}^m$ is independent of whether A_m collides with B_{x-1}^m . If A_m did not collide with B_{x-1}^m , then there is no chance. Hence the total probability in this case is $Q^m(x) \cdot P^m(x-1) \cdot \frac{1}{2}$.

If $B_x^m \neq B_{x-1}^m$, then consider the case if A_m collides with B_{x-1}^m . Then A_m will only collide with B_x^m if A_m shifts. This has a probability of $\left(1-Q^m(x)\right)\cdot P^m(x-1)\cdot \frac{1}{2}$. Otherwise, A_m did not collide with B_{x-1}^m . Then A_m must have collided with B_x^m . This has probability of $\left(1-Q^m(x)\right)\cdot \left(1-P^m(x-1)\right)$. The total probability is $\left(1-Q^m(x)\right)\cdot \left(1-\frac{1}{2}P^m(x-1)\right)$.

$$P^{m}(x) = Q^{m}(x) \cdot P^{m}(x-1) \cdot \frac{1}{2} + \left(1 - Q^{m}(x)\right) \cdot \left(1 - \frac{1}{2}P^{m}(x-1)\right)$$
$$P^{m}(x) = 1 - Q^{m}(x) - \frac{1}{2}P^{m}(x-1) + Q^{m}(x) \cdot P^{m}(x-1)$$

Checking for m = 2, $P^2(x) = 1 - \frac{3}{4} - \frac{1}{2}P^2(x-1) + \frac{3}{4}P^2(x-1) = \frac{1}{4}(1 + P^2(x-1))$, which is the result we have gotten earlier.

Hence we have the following two results:

$$Q^{m}(x) = \frac{1}{2} + \frac{1}{2}Q^{m-1}(x) + \frac{1}{4}P^{m-1}(x-1) - \frac{1}{2}P^{m-1}(x-1) \cdot Q^{m-1}(x)$$
$$P^{m}(x) = 1 - Q^{m}(x) - \frac{1}{2}P^{m}(x-1) + Q^{m}(x) \cdot P^{m}(x-1)$$

Solving for m = 3,

$$Q^{3}(x) = \frac{1}{2} + \frac{1}{2}Q^{2}(x) + \frac{1}{4}P^{2}(x-1) - \frac{1}{2}P^{2}(x-1) \cdot Q^{2}(x)$$
$$P^{3}(x) = 1 - Q^{3}(x) - \frac{1}{2}P^{3}(x-1) + Q^{3}(x) \cdot P^{3}(x-1)$$

Reducing, we have:

$$Q^{3}(x) = \frac{5}{6} - \frac{1}{12} \left(\frac{1}{4}\right)^{x}$$
$$P^{3}(x) = \left(\frac{1}{6} + \frac{1}{12} \left(\frac{1}{4}\right)^{x}\right) + \frac{1}{3} \left(1 - \frac{1}{4} \left(\frac{1}{4}\right)^{x}\right) P^{3}(x - 1)$$

When $x \to \infty$, $q_3 = \frac{1}{6} + \frac{1}{3}q_3 \Rightarrow q_3 = \frac{1}{4}$.

We note that our theory in this case is wrong, since our simulation predicts $P(3,10000) = 0.258120 \approx \frac{7}{27}$. This is related to Markov chain. Work is still in progress.

Question 4:

We mainly explore k lanes. Firstly, we show some preliminary observations. We simulated k=10 with equal number of As and Bs and we plotted the distribution of As across the lanes after passing through all the Bs. We noticed a spike in the second and ninth row. In other simulations, a similar trend holds. More people end up at the $2^{\rm nd}$ and the $(k-1)^{\rm th}$ row compared to the remaining rows. The least people end up at $1^{\rm st}$ and $k^{\rm th}$ row. For the remaining rows, the number of people passing through them are generally the same, except that there is a slight dip towards the center.

We now move onto more quantitative analysis. We firstly investigate the peaks. We plotted the probability of a person ending up on the 2^{nd} lane across $k \in [3,25]$.

Probability distribution of 2^{nd} row against k

We tried fitting the data points with a $f(k) = \frac{1}{k-1}$ graph. However, as seen from figure above, the data points fall above the fit for larger values of k, although the shape is generally correct. Our non-linear model fit returned $f(k) = \frac{1.09239}{k-0.863873}$.

For the first lane, we fitted $f(k) = \frac{0.70099}{k}$ graph. We will approximate it to $\frac{0.7}{k}$.

To find the remaining distribution, assuming they are equal, we have:

$$P = \frac{1}{k-4} \left[1 - 2 \left(\frac{0.7}{k} + \frac{1}{k-1} \right) \right] =$$

References:

NUSH Champion Award Report:

 $https://www.nushigh.edu.sg/qql/slot/u90/file/simc/mathmodel/SIMC2018ChampionAw\ ardReport.pdf$