

## DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

FIRST SESSIONAL SUBJECT: PHYSICS (BSC 101)

Examination : B.Tech. Semester- II (CE/IT/EC)

: CE031

Date

: 21/03/2023

Day

Seat No.

: Tuesday

Time

: 4:00 to 5:15 PM

: 36 Max. Marks

## INSTRUCTIONS:

- Figures to the right indicate maximum marks for that question.
- The symbols used carry their usual meanings.

  Assume suitable data, if required & mention them clearly. ( $K = 1.380649 \times 10^{-23}$  joule per kelvin, Temp. T =300 K, h= 6.626 x  $10^{-34}$  J Hz<sup>1</sup>, q = 1.602176634 ×  $10^{-19}$  coulomb, C=3 x  $10^8$  m/sec)

  Draw neat sketches wherever necessary.
- 4.

| Q.1             |              | Do a | s directed.                                                                                                                                                  | [12] |
|-----------------|--------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| CO1             | $\mathbf{U}$ | (a)  | With the same secondary voltage and capacitor filter, has the                                                                                                | [1]  |
|                 |              | (-)  | most ripple and produces the least load voltage.                                                                                                             |      |
|                 |              |      | a) Half-wave rectifier, Bridge rectifier                                                                                                                     |      |
|                 |              |      | b) Center-tapped Full wave rectifier, Bridge rectifier                                                                                                       |      |
|                 |              |      | c) Half-wave rectifier, Center-tapped Full wave rectifier                                                                                                    |      |
|                 |              |      | d) Half-wave rectifier Half-wave rectifier                                                                                                                   | (2)  |
| CO <sub>1</sub> | A            | (b)  | Calculate the DC load voltage in the half wave rectifier if the secondary voltage                                                                            | [2]  |
|                 |              |      | of a transformer is 20V rms. Consider Germanium diode with second                                                                                            |      |
|                 |              |      | approximation.                                                                                                                                               | [2]  |
| CO <sub>1</sub> | A            | (c)  | A designer will be using a silicon diode over a temperature range of 0°C to                                                                                  | [2]  |
|                 |              |      | 75°C. Consider that diode is having barrier potential of 0.7V at 25°C. What are                                                                              |      |
|                 |              |      | the minimum and maximum values of the barrier potential?                                                                                                     | (1)  |
| CO <sub>1</sub> | A            | (d)  | A silicon diode has a saturation current of 10 nA at 25°C. What is the value of                                                                              | [*]  |
|                 |              |      | the saturation current at 88°C? Silicon and germanium semiconductors are not suitable for the manufacturing                                                  | [2]  |
| CO <sub>4</sub> | E            | (e)  | Silicon and germanium semiconductors are not suitable for the manufacturing                                                                                  | (-1  |
| 004             | MI           | (4)  | of LED. Justify the statement.  Differentiate between spontaneous emission and stimulated emission.                                                          | [2]  |
| CO4             | N<br>A       | (f)  | The radiative and non-radiative recombination life times of minority carriers in                                                                             | [2]  |
| CU4             | A            | (g)  | the active region of a double heterojunction LED are 60 nsec and 90 nsec                                                                                     |      |
|                 |              |      | respectively. Determine the total carrier recombination life time and internal                                                                               |      |
|                 |              |      | quantum efficiency.                                                                                                                                          |      |
|                 |              |      |                                                                                                                                                              |      |
| Q.2             |              | Atte | empt Any TWO from the following questions.                                                                                                                   | [12] |
| COI             | C            | (a)  | A bridge rectifier circuit with a capacitor filer across the load resistor is                                                                                | [6]  |
|                 |              |      | designed to meet the following specifications:                                                                                                               |      |
|                 |              |      | • DC load voltage = 9.9V                                                                                                                                     |      |
|                 |              |      | • DC load current =19.8mA                                                                                                                                    |      |
|                 |              |      | • Peak-to-peak ripple voltage = 35mV.                                                                                                                        |      |
|                 |              |      | The primary coil of a transformer is connected to a 120 V rms, 60 Hz AC                                                                                      |      |
|                 |              |      | source. Consider the silicon diodes with second approximation. Determine (1) the value of the load resistance (2) The value of capacitance required (3) Peak |      |
|                 |              |      | secondary transformer voltage and (4) turns ratio required for the transformer.                                                                              |      |
|                 |              |      | Draw a schematic of the designed circuit.                                                                                                                    |      |
| G04             | ~            | (1-) | 1 C 11 seatifier with 5000 load register and a IV                                                                                                            | [6]  |
| CO1             | C            | (b)  | load voltage of 24.3V. Input of 220V rms,60Hz is applied to the primary coil of                                                                              |      |
|                 |              |      | the transformer. Also, consider silicon diodes with second approximation.                                                                                    |      |
|                 |              |      | Determine (1) The neak output voltage (2) DC load current (3) Peak Secondary                                                                                 |      |
|                 |              |      | voltage (4) turns ratio required for the transformer. Draw a schematic of the                                                                                |      |
|                 |              |      | designed circuit.                                                                                                                                            |      |
|                 |              |      |                                                                                                                                                              |      |



Blooms Taxonomy levels: R-Remembering, U- Understanding, A-Applying, N-Analyzing, E- Evaluating, C-Creating

Fig.-1 (Q.2(c))

 $V_D(V)$ 

Fig.-2 (Q.3 (b))