

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $80V,60A,R_{DS(on).max}=16m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ◆ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 80V \\ R_{DS(on).max} \textcircled{0} \ V_{GS} \text{=} 10V & 16 \text{m}\Omega \\ I_D & 60 \text{A} \end{array}$

Pin Configuration

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	80	V
Continuous drain current (T _C = 25°C)		60	A
Continuous drain current (T _C = 100°C)	⊢ I _D	39	A
Pulsed drain current ¹⁾	I _{DM}	240	Α
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	E _{AS}	132	mJ
Power Dissipation (T _C = 25°C)	P _D	110	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	1.13	°C/W
Thermal Resistance, Junction-to-Ambient	Reja	62	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM60N08-T3	TO-263	VSM60N08-T3
VSM60N08-TC	TO-220C	VSM60N08-TC

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics				-		'
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	80			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0	1.6	2.5	V
Drain-source leakage current Ic		V _{DS} =80V, V _{GS} =0V, T _J = 25°C			1	μA
	I _{DSS}	V _{DS} =64V, V _{GS} =0V, T _J = 125°C			30	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
B :	В	V _{GS} =10 V, I _D = 30 A		12.5	16	mΩ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =20 A		16.5	21	mΩ
Forward transconductance	g _{fs}	V _{DS} =10V , I _D =30A		52		S
Dynamic characteristics						
Input capacitance	C _{iss}			3116		pF
Output capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		196		
Reverse transfer capacitance	C _{rss}	- F = 1MHz		140		
Turn-on delay time	t _{d(on)}			10.7		- _ ns
Rise time	t _r	$V_{DD} = 40V, V_{GS} = 10V, I_{D} = 30A$		17.7		
Turn-off delay time	t _{d(off)}	V _{DD} -40V,V _{GS} -10V, I _D - 30A		139.7		
Fall time	t _f			28.3		
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		1.5		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}			13.6		nC
Gate to drain charge	Q _{gd}	V _{DS} =40 V, I _D =30A, V _{GS} = 10 V		11.7		
Gate charge tota	Qg			58		
Drain-Source diode characteris	stics and Maxi	mum Ratings		•		
Diode Forward Voltage ³⁾	V _{SD}	V _{GS} =0V, I _S =30A, T _J =25℃		0.85	1.3	V
Reverse Recovery Time	t _{rr}	I _S =30A, di/dt=100A/us,		27.7		ns
Reverse Recovery Charge	Q _{rr}	Tյ=25℃		41		nC
		1	I	1	I	

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =50V, V_{GS} =10V, L=0.5mH, I_{AS} =23A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width \leq 300 \upmu s, Duty Cycle \leq 2%.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature ($^{\circ}$ C)

Figure 8. Maximum Safe Operating Area

Figure 9. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

