Constrained Optimization (II)

Ch.19

econMath.namun+2016su@gmail.com

December 12, 2016

Main Topics

Three Aspects of the Lagrangian Approach

- 1. Sensitivity of the solution to changes in the parameters
- 2. SOCs
- 3. CQs

Note:

- To analyze the sensitivity, we should (1) get \mathbf{x}^* , the solution of the optimization problem when parameters \mathbf{a} are given. And then, we should (2) see the solution \mathbf{x}^* as the function of the parameters.
- You should be able to distinguish between variables $(e.g., \mathbf{x}, \mu)$ and parameters $(e.g., \mathbf{a})$. To distinguish explicitly, we denote a function f of variables \mathbf{x} and parameters \mathbf{a} by:

$$f(\mathbf{x}; \mathbf{a})$$

1 The Meaning of The Multiplier

Multiplier μ

Think about the solution of the optimization problem in terms of a parameter a, the level of the equality constraint.

Theorem 1 (19.1). Let f, h be C^1 functions of 2 vars. For any fixed a (parameter), let $(x_1^*(a), x_2^*(a))$ be the solution of max(min)imization problem $arg max_{\mathbf{x}} f(\mathbf{x})$ s.t. $h(\mathbf{x}) = a$ with corresponding multiplier $\mu^*(a)$ Suppose (1) \mathbf{x}^*, μ^* are C^1 functions of a and (2) NDCQ holds at $(\mathbf{x}^*(a), \mu^*(a))$. Then,

$$\mu^*(a) = \frac{d}{da} f(\mathbf{x}^*(a); a) = \frac{d}{da} f^*(a)$$

In this view, $f^*(a) := f(\mathbf{x}^*(a); a)$, *i.e.*, the function of optimized value with regard to a, and $\mu^*(a)$ is the slope of the f^* : changes in maximum value $(f^*(a))$ in terms of a

Generalization

Theorem 2 (19.2). Let f, \mathbf{H} be C^1 functions of n vars. For any fixed $\mathbf{a} \in \mathbb{R}^m$ (parameters), let $(\mathbf{x}^*(\mathbf{a}))$ be the solution of max(min)imization problem

$$\arg \max_{\mathbf{x}} f(\mathbf{x}) \quad s.t. \quad \mathbf{H}(\mathbf{x}) = \mathbf{a}$$

with corresponding multiplier $\mu^*(\mathbf{a}) = (\mu_1^*(\mathbf{a}), \dots, \mu_m^*(\mathbf{a}))$ Suppose (1) \mathbf{x}^*, μ^* are C^1 functions of \mathbf{a} and (2) NDCQ holds at $(\mathbf{x}^*(\mathbf{a}), \mu^*(\mathbf{a}))$. Then,

$$\mu^*(\mathbf{a}) = Df_{\mathbf{a}}(\mathbf{x}^*(\mathbf{a}); \mathbf{a}) = Df_{\mathbf{a}}^*(\mathbf{a})$$

Geographical Explanation:

$$\arg\max_{\mathbf{x}}(-x_1^2 - x_2^2)$$
 s.t. $x_1 + x_2 = a$

Inequality Constraints

Theorem 3 (19.3). Let $\mathbf{a}^* \in \mathbb{R}^k$. Consider the max(min)imization problem

$$\arg \max_{\mathbf{x}} f(\mathbf{x}) \quad s.t. \quad \mathbf{G}(\mathbf{x}) \le \mathbf{a}$$

Let $\mathbf{x}^*(\mathbf{a}^*)$ be the solution of above problem, and let $\lambda^*(\mathbf{a}^*) = (\lambda_1^*(\mathbf{a}^*), \dots, \lambda_k^*(\mathbf{a}^*))$ be the corresponding Lagrange multipliers. Suppose n + k functions $\mathbf{x}^*(\mathbf{a})$ and $\lambda^*(\mathbf{a})$ are differentiable around \mathbf{a}^* and NDCQ holds at \mathbf{a}^* . Then,

$$\lambda(\mathbf{a}^*)^* = Df_{\mathbf{a}}(\mathbf{x}(\mathbf{a}^*); \mathbf{a}^*) = Df_{\mathbf{a}}^*(\mathbf{a}^*)$$

When \mathbf{x}^* is interior solution, $\lambda^*(\mathbf{a}^*) = Df_{\mathbf{a}}^*(\mathbf{a}^*) = 0$. When f is a profit function, $\lambda_j^*(\mathbf{a})$ can be interpreted as the shadow price of input j. Geographical Explanation:

$$\arg\max_{\mathbf{x}}(-x_1^2 - x_2^2)$$
 s.t. $x_1 + x_2 \le a$

2 Envelope Theorems

Envelope Theorems: Unconstrained Problems

Theorem 4 (19.4). Let $f(\mathbf{x}:a)$ be a C^1 function of $\mathbf{x} \in \mathbb{R}^n$ and scalar a. For a given parameter a, consider the unconstrained max(min)imization problem

$$\arg\max_{\mathbf{x}} f(\mathbf{x}; a)$$

And let $\mathbf{x}^*(a)$ be a solution of above problem. Suppose that $\mathbf{x}^*(a)$ is a C^1 function of a. Then,

$$\frac{d}{da}f(\mathbf{x}^*(a);a) = \frac{\partial}{\partial a}f(\mathbf{x}^*(a);a) = \frac{\partial}{\partial a}f^*(a)$$

Proof: From chain rule and FOC of unconstrained optimization problem

$$\frac{d}{da}f(\mathbf{x}^*(a);a) = Df_{\mathbf{x}}(\mathbf{x}^*(a);a)\frac{d\mathbf{x}^*FOC}{da}(a) + \frac{\partial f}{\partial a}(\mathbf{x}^*(a);a)\frac{d\mathbf{x}^*}{da}$$

Envelope Theormes: Constrained Problems

Theorem 5 (19.5). Let $f, \mathbf{H} = (H_1, \dots, H_k)$ be C^1 functions of $\mathbf{x} \in \mathbb{R}^n$. Let $\mathbf{x}^*(a)$ denote the solution of the max(min)imization problem for any fixed parameter a:

$$\arg \max_{\mathbf{x}} f(\mathbf{x}; a)$$
 s.t. $\mathbf{H}(\mathbf{x}; a) = 0$

Suppose that $\mathbf{x}^*(a)$ and the Lagrange multipliers $\mu^*(a)$ are C^1 functions of a and that the NDCQ holds. Then,

$$\frac{d}{da}f(\mathbf{x}^*(a);a) = \frac{\partial}{\partial a}L(\mathbf{x}^*(a),\mu^*(a);a) = \frac{\partial}{\partial a}L^*(a)$$

3 Second Order Conditions

Strict Local Equality Constrained Max(Min)

Theorem 6 (19.6). Let f, \mathbf{H} be C^2 functions on $\mathbf{x} \in \mathbb{R}^n$. Consider the equality constrained $max(min)imization\ problem$

$$\arg \max_{\mathbf{x}} f(\mathbf{x}) \quad s.t. \quad \mathbf{H}(x) = \mathbf{c}$$

Let $L := f(\mathbf{x}) + \mu(\mathbf{c} - \mathbf{H})$ and suppose that

- 1. $\mathbf{H}(\mathbf{x}^*) = \mathbf{c}$ (Satisfies constraint)
- 2. $DL_{\mathbf{x},\mu}(\mathbf{x}^*, \mu^*) = \mathbf{0}$ (Satisfies FOC)
- 3. Hession of $L=D_{\mathbf{x}}^2L(\mathbf{x}^*,\mu^*)$ is ND on the linear constraint set $\{\mathbf{v}: D\mathbf{H}(\mathbf{x}^*)\mathbf{v}=\mathbf{0}\}$ (Satisfies Sufficient SOC)

Then, \mathbf{x}^* is a strict local constrained max(min) of f on the constrainted set

 \mathbf{v} is the tangent vector on the constraint set around \mathbf{x}^* . Proof: See Ch.30

Calculation Procedure

Sufficient SOC: Calculation Procedure

Suppose $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{H} \in \mathbb{R}^m$, and NCDQ holds.

1. Form a Lagrangian function L

$$L := f(\mathbf{x}) + \mu(\mathbf{c} - \mathbf{H})$$

- 2. Get points \mathbf{x}^*, μ^* satisfy FOCs
- 3. Make a bordered Hessian

$$H := D^2 L_{\mu, \mathbf{x}}(\mathbf{x}^*, \mu^*) = \begin{pmatrix} \mathbf{0} & D\mathbf{H}_{\mathbf{x}}(\mathbf{x}^*) \\ D\mathbf{H}_{\mathbf{x}}(\mathbf{x}^*)^T & D^2 L_{\mathbf{x}}(\mathbf{x}^*, \mu^*) \end{pmatrix}$$

- 4. If H is PD, then \mathbf{x}^* is strict local min. If ND, \mathbf{x}^* is strict local max.
 - (a) If $sign(\det H) = sign((-1)^m)$ and all n m LPMs have same sign, H is \underline{PD} on the constraint set
 - (b) If $sign(\det H) = sign((-1)^n)$ and following n m LPMs alternates in sign, H is \overline{ND} on the constraint set

Sufficient SOC: Mixed Constraints

Theorem 7 (19.8). Let $f, \mathbf{H} \in \mathbb{R}^m, \mathbf{G} \in \mathbb{R}^k$ be C^2 functions on $\mathbf{x} \in \mathbb{R}^n$. Consider the mixed constrained max(min)imization problem $\arg \max_{\mathbf{x}} f(\mathbf{x})$ s.t. $\mathbf{H}(\mathbf{x}) = \mathbf{c} \wedge \mathbf{G}(\mathbf{x}) \leq \mathbf{b}$.

1. Form the Lagrangian function L

$$L := f(\mathbf{x}) + \mu(\mathbf{c} - \mathbf{H}(\mathbf{x})) + \lambda(\mathbf{b} - \mathbf{G}(\mathbf{x}))$$

- 2. Suppose $\exists \mathbf{x}^*, \mu^*, \lambda^*$ satisfying FOCs (Theorem 18.5)
- 3. For convenience, suppose $\mathbf{G}_E := (G_1, \dots, G_e)$ are binding at \mathbf{x}^* and the others $\mathbf{G}_{-E} := (G_{e+1}, \dots, G_k)$ are not binding. Let λ_E be the corresponding multiplier of \mathbf{G}_E . Then if the bordered Hessian $D^2L_{\lambda_{\mathbf{E}},\mu,\mathbf{x}}(\lambda_{\mathbf{E}}^*,\mu^*,\mathbf{x}^*)$ is PD(ND), \mathbf{x}^* is a strict local mixed constrained max(min) of f.

Sufficient SOC

Bordered Hessian (Mixed Constraints)

$$H = D^2 L_{\lambda_{\mathbf{E}}, \mu, \mathbf{x}}(\lambda_{\mathbf{E}}^*, \mu^*, \mathbf{x}^*) = \begin{pmatrix} \mathbf{0} & \mathbf{0} & D\mathbf{G}_{\mathbf{E}_{\mathbf{x}}} \\ \mathbf{0} & \mathbf{0} & D\mathbf{H}_{\mathbf{x}} \\ D\mathbf{G}_{\mathbf{E}_{\mathbf{x}}}^T & D\mathbf{H}_{\mathbf{x}}^T & D^2 L_{\mathbf{x}} \end{pmatrix} \Big|_{(\lambda_{\mathbf{E}}, \mu, \mathbf{x}) = (\lambda_{\mathbf{E}}^*, \mu^*, \mathbf{x}^*)}$$

Let $F_{ab} := \frac{\partial}{\partial a} \frac{\partial}{\partial b} F$. Then

$$H = \begin{pmatrix} L_{\chi_{E}\lambda_{E}} & 0 & L_{\chi_{E}\mu} & L_{\chi_{X}} \\ L_{\mu\lambda_{E}} & L_{\mu\mu} & L_{\mu\mathbf{x}} \\ L_{\mathbf{x}\lambda_{E}} & L_{\mathbf{x}\mu} & L_{\mathbf{x}\mathbf{x}} \end{pmatrix}^{D\mathbf{G}_{\mathbf{E}_{\mathbf{x}}}} \mathbf{B}_{\mathbf{H}_{\mathbf{x}}}^{\mathbf{H}_{\mathbf{x}}} \\ (\lambda_{\mathbf{E}}, \mu, \mathbf{x}) = (\lambda_{\mathbf{E}}^{*}, \mu^{*}, \mathbf{x}^{*})$$

Deteriming Definiteness of Bordered Hessian (Mixed Constraints)

Determining Definiteness

- (a) If $sign(\det H) = sign((-1)^{(m+e)})$ and all n (m+e) LPMs have same sign, H is \underline{PD} on the constraint set
- (b) If $sign(\det H) = sign((-1)^n)$ and following n (m + e) LPMs alternates in sign, H is \underline{ND} on the constraint set
- 4 Smooth Dependence of the Parameters
- 5 Constraint Qualifications
- 6 Proofs of the First Order Conditions