Xilinx Zynq FPGA, TI DSP, MCU 기반의 프로그래밍 및 회로 설계 전문가 과정

강사 - Innova Lee(이상훈)

gcccompil3r@gmail.com

학생 – hoseong Lee(이호성)

hslee00001@naver.com

✓ 라플라스 푸리에 적분

Laplace transform	
Laplace transfer	(ex2)
2(fl (s) = for e-st fit at	
$Iff(u)^{3} = \int_{-e^{-st}}^{\infty} e^{-st} f(t) dt$	2-10
1 7 - 0	\ <u> </u>
【f(t)((5) ● 6~A提》中型(0分键)	
Sk e-x fit) dx → think	
(Table 1980) ()	nd
-faffer) = ffengle) - ffaff (2)	2160
=> Spaga = faga) - fraga)	
- 1 fa) g(u) = 3 (u) = 3	
- 3 Se F(x) = = 5 e x f(x) = 5 - 5 e x f(x)	
$\frac{1}{2} \int e^{\frac{\pi}{2}(k)} = \frac{\pi}{2} \int e^{\frac{\pi}{2}(k)} \int \frac{dk}{2}$	
परेश्व की अन्सिर नेश्ह अन्नाभरोपी.	
अएसर निर्मि केश or e वि	
- Cu -at	
ex few=e-at	
of Steaket - De Et at at 0	
Lines Steak dt - De - a Leaket = L - Leak	1
	-
$(ex) f(t) = sin(t) = \frac{1}{2} \Rightarrow sin(t)$	
Sia).g(a) = -e-st.cosk+fe-st.coskdk	
- Say gin	

 $f(x) = \frac{\pi}{4} + \frac{\infty}{4} \frac{1}{\pi m^2} \left[\cos(\pi x) - 1 \right] \cdot \cos(\pi x) - \frac{\pi}{4} \cos(\pi x) \cdot \sin(\pi x)$ → y=x 와 등지 (x>0) → 일반장이 Rc 회로로는 작성은 만들지 못한다 · > 장한 한 항성도 만든 수가 있다. 무리이 적용. → 바꾸기할수도 푸니에 지리로 풀수가 있다. $f(z) = \frac{a_0}{2} + \frac{a_0}{\pi} a_0 \cos(\frac{nx}{\tau}x) + b_0 \sin(\frac{nx}{\tau}x)$ $\Rightarrow a_0 = \int_{-T}^{T} f(x) dx$ $a_n = \int_{-T}^{T} f(z) cos(\frac{mz}{T^2})$ $b_n = \int_{-T}^{T} f(z) sin(\frac{mz}{T^2})$

