Teoria da Computação

Prof. Maicon R. Zatelli

Aula 8 - Revisão P2

Universidade Federal de Santa Catarina Florianópolis - Brasil

Introdução

- Decidibilidade (Linguagens Decidíveis/Linguagens Indecidíveis)
- Redutibilidade

Hierarquia de Chomsky

Indecidíveis - são todas as linguagens Turing-reconhecíveis mas não decidíveis e também as linguagens não Turing-reconhecíveis

- **1** $L = \{ \langle D, N \rangle \mid D \text{ \'e um Autômato Finito Determinístico e } N \text{ \'e um Autômato Finito N\~ao-Determinístico e } L(D) \subseteq L(N) \}$
- 2 $L = \{ \langle G, w \rangle \mid G \text{ \'e uma Gram\'atica Regular e } G \text{ gera a palavra } w \}$
- **3** $L = \{ \langle R \rangle \mid R \text{ \'e uma Expressão Regular e } L(R) = \emptyset \}$
- $L = \{ \langle R, D \rangle \mid R \text{ \'e uma Express\~ao Regular e } D \text{ \'e um}$ Autômato Finito Determinístico e $L(R) = L(D) \}$
- **3** $L = \{ \langle A, B \rangle \mid A \in B \text{ são Autômatos Finitos Não-Determinísticos e } L(A) \cup L(B) = \emptyset \}$

Linguagem: $L = \{ \langle D, N \rangle | D$ é um Autômato Finito Determinístico e N é um Autômato Finito Não-Determinístico e $L(D) \subseteq L(N) \}$

Linguagem: $L = \{ < D, N > | D \text{ \'e um Autômato Finito} \}$ Determinístico e $N \text{ \'e um Autômato Finito N\~ao-Determin\'estico e}$ $L(D) \subseteq L(N) \}$

Teorema: *L* é decidível

Linguagem: $L = \{ < D, N > | D \text{ \'e um Autômato Finito} \}$ Determinístico e $N \text{ \'e um Autômato Finito N\~ao-Determin\'estico e}$ $L(D) \subseteq L(N) \}$

Teorema: *L* é decidível

Prova: por construção

Linguagem: $L = \{ < D, N > | D \text{ \'e um Autômato Finito} \}$ Determinístico e $N \text{ \'e um Autômato Finito N\~ao-Determin\'estico e}$ $L(D) \subseteq L(N) \}$

Teorema: L é decidível

Prova: por construção

• Note que $L(D) \subseteq L(N)$ significa que $L(D) \cap \overline{L(N)} = \emptyset$

Linguagem: $L = \{ < D, N > | D \text{ \'e um Autômato Finito}$ Determinístico e $N \text{ \'e um Autômato Finito N\~ao-Determinístico e}$ $L(D) \subseteq L(N) \}$

Teorema: L é decidível

Prova: por construção

- Note que $L(D) \subseteq L(N)$ significa que $L(D) \cap \overline{L(N)} = \emptyset$
- Ou seja, não há nenhum elemento que esteja em L(D), mas não esteja em L(N)

Linguagem: $L = \{ < D, N > | D \text{ \'e um Autômato Finito}$ Determinístico e $N \text{ \'e um Autômato Finito N\~ao-Determinístico e}$ $L(D) \subseteq L(N) \}$

Teorema: L é decidível

Prova: por construção

- Note que $L(D) \subseteq L(N)$ significa que $L(D) \cap \overline{L(N)} = \emptyset$
- Ou seja, não há nenhum elemento que esteja em L(D), mas não esteja em L(N)
- Assim, podemos construir um AFD A que aceite a linguagem $L(D) \cap \overline{L(N)}$

Linguagem: $L = \{ < D, N > | D \text{ \'e um Autômato Finito}$ Determinístico e $N \text{ \'e um Autômato Finito N\~ao-Determin\'istico e}$ $L(D) \subseteq L(N) \}$

Teorema: L é decidível

Prova: por construção

- Note que $L(D) \subseteq L(N)$ significa que $L(D) \cap \overline{L(N)} = \emptyset$
- Ou seja, não há nenhum elemento que esteja em L(D), mas não esteja em L(N)
- Assim, podemos construir um AFD A que aceite a linguagem $L(D) \cap \overline{L(N)}$
- Isso é possível pois as linguagens regulares são fechadas nas operações de intersecção e complemento

Linguagem: $L = \{ < D, N > | D \text{ \'e um Autômato Finito}$ Determinístico e $N \text{ \'e um Autômato Finito N\~ao-Determin\'stico e}$ $L(D) \subseteq L(N) \}$

Teorema: L é decidível

Prova: por construção

- Note que $L(D) \subseteq L(N)$ significa que $L(D) \cap \overline{L(N)} = \emptyset$
- Ou seja, não há nenhum elemento que esteja em L(D), mas não esteja em L(N)
- Assim, podemos construir um AFD A que aceite a linguagem $L(D) \cap \overline{L(N)}$
- Isso é possível pois as linguagens regulares são fechadas nas operações de intersecção e complemento
- Por fim, construímos uma MT que decide se $L(A) = \emptyset$ (ou usamos o decisor de E_{DFA})

Linguagem: $L = \{ < D, N > | D \text{ \'e um Autômato Finito} \}$ Determinístico e $N \text{ \'e um Autômato Finito N\~ao-Determin\'istico e}$ $L(D) \subseteq L(N) \}$

Teorema: L é decidível

Prova: por construção

Seja M uma MT que decide L e ME uma MT que decide E_{DFA}

M com a entrada <D,N>, onde D é um AFD e N é um AFND, faz:

- 1: Construa um AFD A que reconheça a linguagem L(D) \cap $\overline{L(N)}$
- 2: Rode ME (decisor de E_{DFA}) com a entrada <A>
- 3: Se ME aceita <A>, aceite (M aceita <D,N>), caso contrário, rejeite (M rejeita <D,N>)

• $L = \{ \langle G, w \rangle \mid G \text{ \'e uma Gram\'atica Regular e } G \text{ gera a palavra } w \}$

- $L = \{ \langle G, w \rangle \mid G \text{ \'e uma Gram\'atica Regular e } G \text{ gera a palavra } w \}$
 - ullet Converta a GR em um AFD e depois é a mesma prova de A_{DFA}

- $L = \{ \langle G, w \rangle \mid G \text{ \'e uma Gram\'atica Regular e } G \text{ gera a palavra } w \}$
 - ullet Converta a GR em um AFD e depois é a mesma prova de A_{DFA}
- $L = \{ \langle R \rangle \mid R \text{ \'e uma Express\~ao Regular e } L(R) = \emptyset \}$

- $L = \{ \langle G, w \rangle \mid G \text{ \'e uma Gram\'atica Regular e } G \text{ gera a palavra } w \}$
 - ullet Converta a GR em um AFD e depois é a mesma prova de A_{DFA}
- $L = \{ \langle R \rangle \mid R \text{ \'e uma Express\~ao Regular e } L(R) = \emptyset \}$
 - ullet Converta a ER em um AFD e depois é a mesma prova de E_{DFA}

- $L = \{ \langle G, w \rangle \mid G \text{ \'e uma Gram\'atica Regular e } G \text{ gera a palavra } w \}$
 - ullet Converta a GR em um AFD e depois é a mesma prova de A_{DFA}
- $L = \{ \langle R \rangle \mid R \text{ \'e uma Express\~ao Regular e } L(R) = \emptyset \}$
 - Converta a ER em um AFD e depois é a mesma prova de EDFA
- $L = \{ \langle R, D \rangle \mid R \text{ \'e uma Express\~ao Regular e } D \text{ \'e um}$ Autômato Finito Determinístico e $L(R) = L(D) \}$

- $L = \{ \langle G, w \rangle \mid G \text{ \'e uma Gram\'atica Regular e } G \text{ gera a palavra } w \}$
 - ullet Converta a GR em um AFD e depois é a mesma prova de A_{DFA}
- $L = \{ \langle R \rangle \mid R \text{ \'e uma Express\~ao Regular e } L(R) = \emptyset \}$
 - ullet Converta a ER em um AFD e depois é a mesma prova de E_{DFA}
- $L = \{ \langle R, D \rangle \mid R \text{ \'e uma Express\~ao Regular e } D \text{ \'e um}$ Autômato Finito Determinístico e $L(R) = L(D) \}$
 - Converta a ER em um AFD e depois é a mesma prova de EQ_{DFA}

- $L = \{ \langle G, w \rangle \mid G \text{ \'e uma Gram\'atica Regular e } G \text{ gera a palavra } w \}$
 - ullet Converta a GR em um AFD e depois é a mesma prova de A_{DFA}
- $L = \{ \langle R \rangle \mid R \text{ \'e uma Express\~ao Regular e } L(R) = \emptyset \}$
 - ullet Converta a ER em um AFD e depois é a mesma prova de E_{DFA}
- $L = \{ \langle R, D \rangle \mid R \text{ \'e uma Express\~ao Regular e } D \text{ \'e um}$ Autômato Finito Determinístico e $L(R) = L(D) \}$
 - Converta a ER em um AFD e depois é a mesma prova de EQ_{DFA}
- $L = \{ \langle A, B \rangle \mid A \in B \text{ são Autômatos Finitos Não-Determinísticos e } L(A) \cup L(B) = \emptyset \}$

- $L = \{ \langle G, w \rangle \mid G \text{ \'e uma Gram\'atica Regular e } G \text{ gera a palavra } w \}$
 - ullet Converta a GR em um AFD e depois é a mesma prova de A_{DFA}
- $L = \{ \langle R \rangle \mid R \text{ \'e uma Express\~ao Regular e } L(R) = \emptyset \}$
 - Converta a ER em um AFD e depois é a mesma prova de *E*_{DFA}
- $L = \{ \langle R, D \rangle \mid R \text{ \'e uma Express\~ao Regular e } D \text{ \'e um}$ Autômato Finito Determinístico e $L(R) = L(D) \}$
 - Converta a ER em um AFD e depois é a mesma prova de EQ_{DFA}
- $L = \{ \langle A, B \rangle \mid A \in B \text{ são Autômatos Finitos Não-Determinísticos e } L(A) \cup L(B) = \emptyset \}$
 - Crie um AFD que reconheça a linguagem $L(A) \cup L(B)$ e depois é a mesma prova de E_{DFA}

- $X_{TM} = \{ \langle M, X \rangle \mid M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita a linguagem regular } X \}$
- ② $NE_{TM} = \{ \langle M \rangle \mid M \text{ \'e uma M\'aquina de Turing e } L(M) \neq \emptyset \}$
- ③ $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \}$ onde, $rotaciona_1(w)$ retorna a rotação circular de w em uma posição para a direita
 - Exemplo: a rotação circular da palavra abcde em uma posição para a direita resulta em eabcd. Caso uma nova rotação seja feita, então a palavra resultante é deabc.
- $Rev_{MT} = \{ \langle M \rangle \mid M \text{ é uma Máquina de Turing e } w \in L(M) \text{ se e somente se } w^R \in L(M) \}$

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

Prova: por contradição, usando redução

 Vamos reduzir A_{TM} para Rot_{TM}, sabendo que A_{TM} é indecidível

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

- Vamos reduzir A_{TM} para Rot_{TM}, sabendo que A_{TM} é indecidível
- Suponha que Rot_{TM} é decidível, então existe um decisor R para Rot_{TM}

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

- Vamos reduzir A_{TM} para Rot_{TM}, sabendo que A_{TM} é indecidível
- Suponha que Rot_{TM} é decidível, então existe um decisor R para Rot_{TM}
- Podemos construir um decisor S para A_{TM} utilizando R como subrotina

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \}$ onde, $rotaciona_1(w)$ retorna a rotação circular de w em uma posição para a direita. Ex: $\{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

- Vamos reduzir A_{TM} para Rot_{TM}, sabendo que A_{TM} é indecidível
- Suponha que Rot_{TM} é decidível, então existe um decisor R para Rot_{TM}
- Podemos construir um decisor S para A_{TM} utilizando R como subrotina
- A ideia é quando uma MT aceita uma linguagem de rotações significa que M aceita w

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

- Vamos reduzir A_{TM} para Rot_{TM}, sabendo que A_{TM} é indecidível
- Suponha que Rot_{TM} é decidível, então existe um decisor R para Rot_{TM}
- Podemos construir um decisor S para A_{TM} utilizando R como subrotina
- A ideia é quando uma MT aceita uma linguagem de rotações significa que M aceita w
- Quando uma MT aceita uma linguagem faltando rotações significa que M não aceita w

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

Prova: por contradição, usando redução

 Vamos inicialmente precisar criar uma MT Mw que aceita uma linguagem de rotação ou uma linguagem faltando rotações

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \}$ onde, $rotaciona_1(w)$ retorna a rotação circular de w em uma posição para a direita. Ex: $\{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

Prova: por contradição, usando redução

 Vamos inicialmente precisar criar uma MT Mw que aceita uma linguagem de rotação ou uma linguagem faltando rotações

```
Mw com a entrada y, onde y é uma palavra, faz:
1: Se y ≠ w e y = w rotacionado, aceite y
2: Senão, se y = w, rode M com a entrada w
2.1: Se M aceita w, aceite y
3: Senão, se y ≠ w, rejeite y
```

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

- Mw é uma MT que reconhece ou a linguagem com as rotações de w (inclusive w) ou a linguagem com as rotações de w (sem o w)
- Assim,
 - Mw aceita as rotações + w se e somente se M aceita w
 - Mw aceita as rotações w se e somente se M não aceita w

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

Prova: por contradição, usando redução

S com a entrada <M,w>, onde M é uma MT e w é uma palavra, faz:
1: Construa a MT Mw

o b i b

2: Rode R com a entrada <Mw>

2.1: Se R aceita <Mw>, aceite (S aceita <M,w>)

2.2: Se R rejeita <Mw>, rejeite (S rejeita <M,w>)

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

Prova: por contradição, usando redução

```
S com a entrada <M,w>, onde M é uma MT e w é uma palavra, faz:
1: Construa a MT Mw
2: Rode R com a entrada <Mw>
2.1: Se R aceita <Mw>, aceite (S aceita <M,w>)
2.2: Se R rejeita <Mw>, rejeite (S rejeita <M,w>)
```

• Portanto, se R decide Rot_{TM} , então S decide A_{TM}

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \} \text{ onde, } rotaciona_1(w) \text{ retorna a rotação circular de } w \text{ em uma posição para a direita. Ex: } \{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

```
S com a entrada <M,w>, onde M é uma MT e w é uma palavra, faz:
1: Construa a MT Mw
2: Rode R com a entrada <Mw>
2.1: Se R aceita <Mw>, aceite (S aceita <M,w>)
2.2: Se R rejeita <Mw>, rejeite (S rejeita <M,w>)
```

- Portanto, se R decide Rot_{TM} , então S decide A_{TM}
- Sabemos que A_{TM} é indecidível e então há uma contradição

Linguagem: $Rot_{TM} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \}$ onde, $rotaciona_1(w)$ retorna a rotação circular de w em uma posição para a direita. Ex: $\{abc, cab, bca\}$

Teorema: Rot_{TM} é indecidível

```
S com a entrada <M,w>, onde M é uma MT e w é uma palavra, faz:
1: Construa a MT Mw
2: Rode R com a entrada <Mw>
2.1: Se R aceita <Mw>, aceite (S aceita <M,w>)
2.2: Se R rejeita <Mw>, rejeite (S rejeita <M,w>)
```

- Portanto, se R decide Rot_{TM} , então S decide A_{TM}
- Sabemos que A_{TM} é indecidível e então há uma contradição
- S não pode existir e assim R também não pode existir

• $X_{TM} = \{ < M, X > | M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita a linguagem regular } X \}$

- $X_{TM} = \{ \langle M, X \rangle \mid M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita a linguagem regular } X \}$
 - Como \emptyset é uma linguagem regular, note que é fácil reduzir E_{TM} para X_{TM}
 - ullet Basta verificar se M aceita a linguagem regular \emptyset

- $X_{TM} = \{ \langle M, X \rangle \mid M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita a linguagem regular } X \}$
 - Como \emptyset é uma linguagem regular, note que é fácil reduzir E_{TM} para X_{TM}
 - ullet Basta verificar se M aceita a linguagem regular \emptyset
- $NE_{TM} = \{ \langle M \rangle \mid M \text{ \'e uma M\'aquina de Turing e } L(M) \neq \emptyset \}$

- $X_{TM} = \{ \langle M, X \rangle \mid M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita a linguagem regular } X \}$
 - Como \emptyset é uma linguagem regular, note que é fácil reduzir E_{TM} para X_{TM}
 - ullet Basta verificar se M aceita a linguagem regular \emptyset
- $NE_{TM} = \{ \langle M \rangle \mid M \text{ \'e uma M\'aquina de Turing e } L(M) \neq \emptyset \}$
 - Novamente, note que podemos reduzir E_{TM} para NE_{TM}

- $X_{TM} = \{ \langle M, X \rangle \mid M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita a linguagem regular } X \}$
 - Como \emptyset é uma linguagem regular, note que é fácil reduzir E_{TM} para X_{TM}
 - ullet Basta verificar se M aceita a linguagem regular \emptyset
- $NE_{TM} = \{ \langle M \rangle \mid M \text{ \'e uma M\'aquina de Turing e } L(M) \neq \emptyset \}$
 - Novamente, note que podemos reduzir E_{TM} para NE_{TM}
- $Rev_{MT} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } w^R \in L(M) \}$

- $X_{TM} = \{ \langle M, X \rangle \mid M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita a linguagem regular } X \}$
 - Como \emptyset é uma linguagem regular, note que é fácil reduzir E_{TM} para X_{TM}
 - ullet Basta verificar se M aceita a linguagem regular \emptyset
- $NE_{TM} = \{ \langle M \rangle \mid M \text{ \'e uma M\'aquina de Turing e } L(M) \neq \emptyset \}$
 - Novamente, note que podemos reduzir E_{TM} para NE_{TM}
- $Rev_{MT} = \{ < M > | M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } w^R \in L(M) \}$
 - Idem Rot_{TM}, mas ao invés de rotações de w temos o reverso de w

Conclusão

- Decidibilidade (Linguagens Decidíveis/Linguagens Indecidíveis)
- Redutibilidade