CURSO 2023/2024

INGENIA "Industriales me suena"

Ma Ángeles Huerta-Juan Manuel de Andrés

26 de noviembre de 2023

INDUSTRIALES ETSII | UPM

1. OBJETIVOS

- Ser conscientes de las implicaciones ambientales de cualquier producto, proceso o servicio:
 - -Entender el marco conceptual para la identificación y evaluación de impactos ambientales
 - -Conocer las categorías o problemáticas ambientales más relevantes
 - -Entender la problemática en relación a la valoración de impactos

INGENIA

TFM y posteriores

2. MARCO CONCEPTUAL. APROXIMACIÓN AL ACV

• El Análisis del Ciclo de Vida (ACV) es una metodología que pretende evaluar de forma objetiva e integral los impactos ambientales de un proceso, producto o servicio

Etapas de un ACV

- 1. Definición del objetivo y alcance
- Inventario de Ciclo de Vida (ICV)
- 3. Evaluación de impactos ambientales del ciclo de vida (EICV)
- 4. Interpretación de los resultados

Normativa aplicable:

- ISO 14040:2006. Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia. Trasladada a la normativa española por la norma UNE-EN ISO 14040
- ISO 14044:2006. Gestión ambiental. Análisis del ciclo de vida. Requerimientos y directrices. Trasladada a la normativa española por la norma UNE-EN ISO 14044
- ISO/TR 14047:2012 (informe técnico). Gestión ambiental. Análisis del ciclo de vida. Ejemplos ilustrativos de cómo aplicar la ISO 14044 a la evaluación de impactos
- ISO/TR 14048:2002 (informe técnico). Gestión ambiental. Análisis del ciclo de vida. Formato de datos de inventario
- ISO/TR 14049:2012 (informe técnico). Gestión ambiental. Análisis del ciclo de vida. Ejemplos ilustrativos de cómo aplicar la ISO 14044 a la definición del objetivo y alcance y al análisis de inventario
- ISO 14045:2012. Gestión ambiental. Análisis de Eco-eficiencia de sistemas de productos. Principios, requerimientos y directrices
- ISO 14046:2014. Gestión ambiental. Huella hídrica. Principios, requerimientos y directrices.
- ISO/TS 14067:2013. Gestión ambiental. Huella de carbono de productos. Requerimientos y directrices para cuantificación y comunicación

Otros:

Publicly Available Specification 2050 (PAS 2050:2008 y actualización PAS 2050:2011), Specification for the
assessment of the life cycle greenhouse gas emissions of goods and services y la PAS 2070:2013:
Specification for the assessment of greenhouse gas emissions of a city.

3. ORIENTACIÓN SOBRE EL TRABAJO

- Diagrama de flujo que describa todas las etapas y permita una visión global de las implicaciones ambientales. Definición de las fronteras del sistema
- Identificación de las entradas y salidas del sistema
- Identificación y justificación de las categorías de impacto más relevantes
- Reflexión (lo más cuantitativa posible) sobre la **naturaleza de los impactos**: relación entre los flujos del sistema y los impactos ambientales
- Demostración o justificación de cómo el resultado de este análisis está integrado en el diseño del producto / proceso final

a) DIAGRAMA DE FLUJO

(ETAPA 1 del ACV – Definición de objetivo y alcance)

 Necesario para tener una visión general y no pasar por alto ningún aspecto relevante

- Delimitación geográfica y temporal
- Parámetros y datos requeridos
- Hipótesis de partida
- Limitaciones del estudio
- Enfoque = f(objetivo)

ENFOQUE

- Comparativo (evaluación respecto a un producto equivalente):
- Visión general exhaustiva y valoración cualitativa:

Actividad Categoria de impacto	Obtención de furfural	Obtención de PF5	Obtención de sales de litio	Obtención de sales de cobalto
1 Cambio climático				
2 Destrucción de la capa de ozono estratosférico				
3 Acidificación				x
4 Eutrofización del agua dulce		х		
5 Eutrofización del agua marina				
6 Formación de oxidantes fotoquímicos				
7 Toxicidad humana	х	х	х	x
8 Ecotoxicidad Terrestre	х	х	х	x
9 Ecotoxicidad. Agua dulce	х	х	х	x
10 Ecotoxicidad. Agua marina	Х	х		
11 Formación de material particulado			х	x
12 Radiación ionizante				
13 Ocupación del suelo agrícola	х	х		
14 Ocupación del suelo urbano				
15 Transformación del suelo natural			x	x
16 Agotamiento de recursos naturales. Agua			х	x
17 Agotamiento de recursos minerales		х	x	x
18 Agotamiento de recursos fósiles				

• Cuantitativo y detallado centrado en una etapa/categoría...

• Importancia de esta fase 1 del análisis (mejora conocimiento del proceso)

- Entradas y salidas relevantes:
 - Consumos energéticos
 - Materias primas
 - Fcotoxicidad
 - ...
- Etapas relevantes:
 - Transporte
 - Uso
 - Reciclaje
 - _
- Necesidad de incorporar los factores medioambientales en la selección de soluciones constructivas y materiales

b) ENTRADAS Y SALIDAS DEL SISTEMA Y MECANISMOS RELEVANTES

(ETAPA 2 del ACV – Inventario del Ciclo de Vida)

- ✓ En esta etapa se cuantifican todas las entradas y salidas de materiales y energía del sistema (en base a la unidad funcional) que puedan tener relevancia
- ✓ Ha de incluir, al menos:
 - ✓ Consumo de materias primas
 - ✓ Consumo de energía
 - ✓ Emisiones atmosféricas
 - ✓ Emisiones al agua
 - ✓ Emisiones al suelo
 - ✓ Generación de residuos
- ✓ Es fundamental documentar las fuentes de información (representatividad) o los cálculos realizados

c) IDENTIFICACIÓN Y JUSTIFICACIÓN DE LAS CATEGORÍAS DE IMPACTO MÁS RELEVANTES

- ✓ Categorías de impacto a considerar con carácter general (ejemplo tomado de la metodología ReCiPe)
- ✓ Esto se relaciona con la producción de emisiones atmosféricas, vertidos y residuos (IMA)

CATEGORIA DE IMPACTO		
1- Cambio climático		
2- Destrucción de la capa de ozono estratosférico		
3- Acidificación		
4- Eutrofización del agua dulce		
5- Eutrofización del agua marina		
6- Formación de oxidantes fotoquímicos		
7- Toxicidad Humana		
8- Ecotoxicidad Terrestre		
9- Ecotoxicidad. Agua Dulce		
10- Ecotoxicidad. Agua Marina		
11- Formación de material particulado		
12- Radiación ionizante		
13- Ocupación del suelo agrícola		
14- Ocupación del suelo urbano		
15- Transformación del suelo natural		
16- Agotamiento de recursos naturales. Agua		
17- Agotamiento de recursos minerales		
18- Agotamiento de recursos fósiles		

- Cada INGENIA debe identificar qué categorías son relevantes (o podrían serlo bajo determinados supuestos) y justificarlo
- Se relacionan con:

Emisiones atmosféricas (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

• Los gases de efecto invernadero (CO₂, CH₄, N₂O, SF₆, PFCs y HFCs) provoca un incremento global en la temperatura del planeta con efectos negativos en el clima, la salud humana, los ecosistemas y los animales

- La emisión de CFCs y HCFCs (utilizados en el pasado como gases propelentes y refrigerantes), contribuye a destruir la capa de ozono estratosférica que filtra la radiación UV, lo que tiene efectos graves en los seres vivos
- La emisión de NH₃ y NO_x puede provocar el depósito de nitrógeno en masas de agua y generar eutrofización y pérdida de biodiversidad

- Los NO_X , COVS (y en menor medida CO y CH_4) son precursores de O_3 troposférico que afecta a la salud humana, los ecosistemas y los materiarles
- Las emisiones de partículas y precursores de las mismas $(SO_2, NO_X, NH_3, COVNM)$ generan efectos negativos en la salud
- La emisión de radioisótopos radiactivos puede generar graves efectos en salud, incluyendo cánceres y efectos letales
- La emisión de metales pesados y compuestos orgánicos persistentes da lugar a efectos negativos en salud de carácter crónico y agudo
- La emisión de SH₂ y diversos COVNM puede dar lugar a olores en concentraciones muy inferiores a las que se asocian con efectos en salud

Emisiones al agua (3, 4, 5, 7, 9, 10, 12)

- Los vertidos de materia orgánica (DBO₅, DQO) generan una disminución del oxígeno disuelto en las masas de agua lo que se traduce en pérdida de biodiversidad
- Nitritos, nitratos y otras sustancias con N y P dan lugar a procesos de eutrofización, que también conducen a impactos en los seres y pérdida de biodiversidad
- El vertido de agentes patógenos puede generar graves efectos en la salud humana

- Vertidos de metales pesados, compuestos orgánicos persistentes, pesticidas, abonos, etc. generan problemas de toxicidad, tanto en la salud humana como en los ecosistemas
- Las variaciones en el pH, la temperatura, sólidos en suspensión o la concentración de sales de cursos de agua puede tener efectos negativos en la biodiversidad

Ocupación del territorio cambios de uso (13, 14, 15)

 Debe considerarse desde la perspectiva de uso de recursos limitados, especialmente cuando provoca pérdida del hábitats y biodiversidad

Agotamiento de recursos (16, 17, 18)

 Debe considerarse el consumo de agua, materias primas y combustibles fósiles, prestando especial atención a los recursos más escasos

d) NATURALEZA Y CUANTIFICACIÓN DE LOS IMPACTOS

- Tres fases o subetapas:
 - 1. Clasificación: agrupar las salidas en categorías de impacto
 - **2. Caracterización:** definición de indicadores de categoría de impacto y unidades que permitan cuantificar los flujos en cada categoría. Definir factores de caracterización
 - 3. Valoración: normalización y ponderación de los índices para agregar los resultados y obtener una evaluación global (¿Fase 3?)

En el seno de nuestro INGENIA, esta fase se relaciona con la Clasificación y Caracterización

- De todos los impactos identificados, se seleccionarán aquellos que se consideran más relevantes para su análisis y/o su integración en el proyecto INGENIA.
- A partir del análisis detallado de esos impactos se revisan los criterios de diseño y desarrollo del producto para maximizar los impactos positivos y minimizar los negativos.
- Como criterios para dicha selección:
 - Las importancia/magnitud de dichos impactos en algún/os GGII
 - la capacidad para poder incidir en ellos dentro del proyecto
 - la facilidad de profundizar en su análisis, ya sea cuantitativo o cualitativo
 - ...

• Factores de <u>caracterización</u> (*ReCiPe*)

Categoría de Impacto	Factor de caracterización	Unidad	
Cambio climático	Potencial de calentamiento global	kg CO₂ eq	
Destrucción de la capa de ozono estratosférico	Potencial de destrucción de la capa de ozono	kg CFC-11 eq (CFC=cloroflourocarbono)	
Acidificación	Potencial de acidificación	kg SO₂ eq	
Eutrofización del agua dulce	Potencial de eutrofización del agua dulce	kg P eq	
Eutrofización del agua marina	Potencial de eutrofización del agua marina	kg N eq	
Formación de oxidantes fotoquímicos	Potencial de formación de oxidantes fotoquímicos	kg COVNM (COVNM=Compuestos Orgánicos Volátiles No Metánicos)	
Toxicidad Humana	Potencial de toxicidad humana	kg 1,4-DCB eq (DCB=diclorobenceno)	
Ecotoxicidad Terrestre	Potencial de ecotoxicidad terrestre	kg 1,4-DCB eq	
Ecotoxicidad. Agua Dulce	Potencial de ecotoxicidad, agua dulce	kg 1,4-DCB eq	
Ecotoxicidad. Agua Marina	Potencial de ecotoxicidad, agua marina	kg 1,4-DCB eq	
Formación de material particulado	Potencial de formación de material particulado	kg PM ₁₀ eq	
Radiación ionizante	Potencial de radiación ionizante	kg U-235 eq	
Ocupación del suelo agrícola	Potencial de ocupación de suelo agrícola	m ² por año	
Ocupación del suelo urbano	Potencial de ocupación del suelo urbano	m² por año	
Transformación del suelo natural	Potencial de transformación del suelo natural	m² por año	
Agotamiento de recursos naturales. Agua	Potencial de agotamiento de agua	m ³	
Agotamiento de recursos minerales	Potencial de agotamiento de recursos minerales	kg Fe eq	
Agotamiento de recursos fósiles	Potencial de agotamiento de recursos fósiles	kg de crudo eq	

 No se pretende realizar una cuantificación detallada y exhaustiva del producto o proyecto global; normalmente se restringirá el análisis a una etapa o aspecto específico, adecuadamente justificado

Utilidad de software específico de ACV (SimaPro, Gabi4,..., versiones demo!!!). Etapa de EICV

e) INTERPRETACIÓN DE LOS RESULTADOS

- Resaltar los aspectos más significativos identificados y con qué etapas del producto se relacionan
- <u>Discutir las conclusiones</u> en el contexto de las limitaciones del estudio tanto por limitaciones metodológicas (fronteras del sistema, etc.) como la incertidumbre de los datos
- Demostrar o justificar cómo el resultado de este análisis se ve <u>reflejado en el</u> <u>diseño del producto / proceso final</u>

- Reflexión sobre el proceso; etapas y categorías de impacto relevantes:
 - Diagrama de flujo completo del proceso
 - Posible orientación del estudio en INGENIA
 - Propuesta preliminar de una frontera y diagrama de flujo detallado

Moodle asignatura: ¿?

Correo electrónico: ¿?

Fecha: ¿?

Más información específica sobre ACV (conceptos, metodologías y datos)

- √ "Análisis de ciclo de vida de procesos y productos" de la ETSI Industriales de la UPM (Rodríguez et al., 2014)
- ✓ European Platform on Life Cycle Assessment (EPLCA) desarrollada por el Joint Research Centre (JRC), que incluye información metodológica y bases de datos gratuitas relativas a las distintas etapas y conceptos de ACV

