

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2022 - 2023

C6: Analyse temporelle des systèmes asservis

C6-2 - Analyse temporelle des SLCI (2nd ordre)

21 Mars 2023

Table des matières

I	Système du second ordre				
	1	Définition			
	2 Exemple du cours				
II Caractérisations de la réponse d'un système du second ordre					
	1	Comportement asymptotique:			
	2	Comportement temporel			
		a) Cas où $\xi > 1 \rightarrow \Delta > 0$: 2 pôles réels:			
		b) Cas où $\xi = 1 \rightarrow \Delta = 0$: 1 pôle réel double:			
		c) Cas où $\xi < 1 \rightarrow \Delta < 0$: 2 pôles complexes:			
	3	Quantification de la réponse indicielle d'un second ordre			
		a) Analyse paramétrique			
		b) Rapidité			
		c) Précision			

Compétences

• Analyser

- o Identifier la structure d'un système asservi.
- Interpréter et vérifier la cohérence des résultats obtenus expérimentalement, analytiquement ou numériquement.

• Modéliser

- o Établir un modèle de connaissance par des fonctions de transfert.
- o Modéliser le signal d'entrée.
- o Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle.
- Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques aux résultats expérimentaux.

• Communiquer

o Utiliser un vocabulaire technique, des symboles et des unités adéquats.

Système du second ordre

Définition

Définition 1 : Système du second ordre

On appelle système du deuxième ordre fondamental tout système linéaire, continu et invariant régi par une équation différentielle de la forme :

$$\frac{1}{\omega_0^2} \frac{d^2 s(t)}{dt^2} + \frac{2\xi}{\omega_0} \frac{ds(t)}{dt} + s(t) = K e(t)$$
 (1)

Propriété 1 :

La fonction de transfert de ces systèmes peut s'écrire sous la **forme canonique suivante** :

$$H(p) = \frac{K}{\frac{1}{\omega_0^2} p^2 + \frac{2\xi}{\omega_0} p + 1}.$$
 (2)

où:

- K est le **gain statique**,
- ξ est le coefficient d'amortissement,
- ω_0 est la **pulsation propre** (en $rad\ s^{-1}$).

Remarque 1:

On parle de système du second ordre fondamental par opposition a un système généralisé, pour lequel le membre de droite de l'équation 1 est une équation différentielle du 1 er ordre. Dans ce cas, la fonction de transfert généralisée sera de la forme :

$$H(p) = \frac{K(1+\tau p)}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}.$$
 (3)

2 Exemple du cours

Exemple 1 : Ressort et amortisseur avec prise en compte de la masse de la tige

Reprenons l'exemple de la partie précédente mais sans négliger la masse m de la tige. Le principe fondamental de la dynamique appliqué à la tige donne maintenant :

$$k(e(t)-s(t))-c\cdot\frac{ds(t)}{dt}=m\frac{d^2s(t)}{dt^2}$$

On obtient bien ici une équation différentielle de degré 2, ce qui montre que le **système est du deuxième ordre**. Avec les conditions initiales nulles (s(t=0)=0 et s'(t=0)=0), on peut écrire dans le domaine de Laplace :

$$m \cdot p^2 \cdot S(p) + c \cdot p \cdot S(p) + k \cdot S(p) = k \cdot E(p).$$

On obtient alors l'expression de la transmittance :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{\frac{1}{\omega_0^2} p^2 + \frac{2\xi}{\omega_0} p + 1}.$$

Avec.

- K =
- $\omega_0 = \sqrt{\frac{k}{m}}$
- $\xi = \frac{c\omega_0^{\mathbf{v}}}{2k}$.

II. Caractérisations de la réponse d'un système du second ordre

On reprend la transformée d'un échelon : $E(p) = \frac{e_0}{p}$. La sortie sera donc :

$$S(p) = H(p) E(p) = \frac{K e_0}{p \left(\frac{1}{\omega_0^2} p^2 + \frac{2\xi}{\omega_0} p + 1\right)} = \frac{K e_0 \omega_0^2}{p \left(p^2 + 2\xi \omega_0 p + \omega_0^2\right)}$$

1 Comportement asymptotique:

On cherche à déterminer le comportement asymptotique (valeur et dérivée) de la réponse s(t) au voisinage de 0 et $+\infty$. Pour cela, on utilise les théorèmes des valeurs limites.

Au voisinage de $+\infty$:

Au voisinage de 0 :

au final:

La réponse d'une système du deuxième ordre sollicité par un échelon possède :

- une **asymptote horizontale** d'équation $s(t) = k e_0$ au voisinage de $+\infty$,
- une tangente horizontale au voisinage de 0.

2 Comportement temporel

Pour calculer s(t), il faut décomposer S(p) en éléments simples. Cette opération débute par le calcul **des pôles** de la fonction de transfert.

F.

Définition 2: pôles de la fonction de transfert

On appelle **pôles de la fonction de transfert** les "zéros" du dénominateur (c'est à dire les racines).

Discriminant : $\Delta = (2\xi\omega_0)^2 - 4\omega_0^2 = 4\omega_0^2(\xi^2 - 1)$ Trois cas sont possibles :

a) Cas où $\xi > 1 \rightarrow \Delta > 0$: 2 pôles réels:

$$\begin{cases} p_1 = \omega_0 \left(-\xi + \sqrt{\xi^2 - 1} \right) \\ p_2 = \omega_0 \left(-\xi - \sqrt{\xi^2 - 1} \right) \end{cases}$$

avec p_1 $p_2 = \omega_0^2$. La sortie peut alors se décomposé de la manière suivante :

$$S(p) = \frac{K e_0 \omega_0^2}{p(p-p_1)(p-p_2)}$$
$$= Ke_0 \omega_0^2 \left(\frac{A}{p} + \frac{B}{(p-p_1)} + \frac{C}{(p-p_2)}\right)$$

Il reste à identifier A, B et C:

Définition 3:

Il s'agit d'un **régime apériodique**(voir fig.2).

Cas où $\xi = 1 \rightarrow \Delta = 0$: 1 pôle réel double :

$$r_1 = r_2 = r = -\omega_0$$

La décomposition en éléments simple est alors :

$$S(p) = \frac{K e_0 \omega_0^2}{p (p-r)^2}$$
$$= \frac{A}{p} + \frac{B}{(p-r)} + \frac{C}{(p-r)^2}$$

On trouve au final:

$$s(t) = K e_0 \left[1 - (1 + \omega_0 t) e^{-\omega_0 t} \right] u(t).$$
 (5)

Définition 4:

On parle alors de régime apériodique critique (voir fig.2).

c) Cas où $\xi < 1 \rightarrow \Delta < 0$: 2 pôles complexes:

La décomposition en éléments simple est alors :

$$S(p) = \frac{K e_0 \omega_0}{p (p^2 + 2\xi \omega_0 p + \omega_0^2)}$$
$$= \frac{A}{p} + \frac{B p + C}{p^2 + 2\xi \omega_0 p + \omega_0^2}$$

La résolution et le retour dans le domaine temporel donne alors :

$$s(t) = K e_0 \left[1 - e^{-\xi \omega_0 t} \left(\cos \left(\omega_0 \sqrt{1 - \xi^2} t \right) + \frac{\xi}{\sqrt{1 - \xi^2}} \sin \left(\omega_0 \sqrt{1 - \xi^2} t \right) \right) \right] u(t).$$
 (6)

🦰 Remarque 2 :

En posant $\xi = \cos(\phi)$ et $\sqrt{1-\xi^2} = \sin(\phi)$, le résultat peut se simplifier sous la forme :

$$s(t) = K e_0 \left[1 - \frac{e^{-\xi \omega_0 t}}{\sqrt{1 - \xi^2}} \sin\left(\omega_0 \sqrt{1 - \xi^2} t + \phi\right) \right] u(t).$$
 (7)

Définition 5:

Ce régime est dit régime oscillatoire amorti ou pseudo-périodique (voir fig.2).

Remarque 3 :

Pour un second ordre *généralisé*, le dénominateur de la fonction de transfert étant le même que pour le second ordre *fondamental*, la décomposition en éléments simples sera de la même forme et donc la réponse temporelle aura la même allure.

Dans ce dernier cas on peut considérer un certain nombre de grandeurs

Pseudo-pulsation	$\omega_p = \omega_0 \sqrt{1 - \xi^2}$	Dépassement relatif	$Dr = \frac{s_{max} - s_{\infty}}{s_{\infty}} = exp\left(\frac{-\xi\pi}{\sqrt{1 - \xi^2}}\right)$
Pseudo-période	$T_p = \frac{2\pi}{\omega_p} = \frac{2\pi}{\omega_0 \sqrt{1 - \xi^2}}$	Temps de montée	$t_m = \frac{1}{\omega_0 \sqrt{1 - \xi^2}} \left(\pi - Arccos(\xi) \right)$
Temps de pic	$t_{pic} = \frac{\pi}{\omega_0 \sqrt{1 - \xi^2}}$	Temps de réponse à 5% pour $\xi = 0,7$	$t_{r5\%} \cong \frac{3}{\omega_0}$

FIGURE 1 – Définition des différentes grandeurs pour un régime pseudo-périodique.

3 Quantification de la réponse indicielle d'un second ordre

a) Analyse paramétrique

Les courbes représentées sur la figure 2 permet de comparer les réponses indicielles pour un système du second ordre selon les valeurs de ξ et ω_0 .

• Le paramètre ξ contribue à l'amortissement du système mais également la diminution de la rapidité.

• Le paramètre ω_0 augmente la rapidité du système mais contribue à augmenter l'instabilité car il diminue la période d'oscillation du régime pseudo-harmonique.

FIGURE 2 – Illustration des différents régimes en fonctions de l'amortissement ξ .

b) Rapidité

Propriété 3 : Rapidité

Le temps de réponse pour un système du second ordre dépend du coefficient d'amortissement ξ . Pour une valeur de ξ donnée, il existe une relation entre ω_0 et t_r . Cette relation est donnée par l'abaque figure 3. On retiendra en particulier :

- le temps de réponse minimum obtenu pour $\xi = 0,7$ avec $t_r \omega_0 \approx 3$,
- le temps de réponse en régime apériodique critique ($\xi = 1$) : $t_r \omega_0 \approx 5$

c) Précision

Là encore, elle est définie par l'erreur statique :

$$\varepsilon_s = \lim_{t \to \infty} |e(t) - s(t)|$$

(toujours en faisant attention à l'homogénéité des grandeurs.)

FIGURE 3 – Temps de réponses réduit en fonction de ξ

FIGURE 4 – Pseudo-période en fonction de la pulsation propre.