

Neural Lineage

Runpeng Yu, Xinchao Wang

National University of Singapore

Takeaways

- It is possible to detect with high accuracy from which pre-trained model a neural network was fine-tuned.
- Possible for: an entire neural network or a sub-network.
- We refer to the fine-tuning relationship between neural networks as Neural Lineage and term the task of identifying the parent model as the Neural Lineage Detection.
- Neural lineage detection can be achieved through learning-free methods conveniently and efficiently.
- Training a lineage detector network further improves the accuracy of neural lineage detection.
- Core intuition: the similarity between a true parentchild model pair should be higher.
- Supports cross-generational lineage detection.
- Supports various learning setups:
- Common Supervised Learning (with regularization)
- Few-Shot Learning

Imbalanced Learning

Supports various vision tasks:

- Classification
- Segmentation

 Detection Fig. 1 Illustration of Neural Lineage Detection

Learning-Free Detection

- Approximate the finetuning process and then compare the similarity.
- Approximation is based on neural network linearization.
- Efficiency issue is addressed by Taylor Expansion.
- Supports commonly used norm similarity, like l_1 and l_2 , and advanced representation similarity, like CKA and DC.

Fig. 2 Workflow: the learning-free similarity-based method.

Fig. 3 Comparison of the execution time and memory consumption for methods with & without approximation. Left: different model size; Right: different output size.

Lineage Detector

- Comprise 2 CNN encoders and 1 transformer detector.
- Train with cross-entropy loss.
- Input with network weight and(or) network feature.

Fig. 4 Workflow: learning-based Lineage Detector.

Lineage Across Generations

- G1: ImageNet pre-trained ResNet18.
- Finetune through three generations, G2, G3, and G4.
- Neural lineage detection between any two generations.
- Larger generational gap, lower accuracy.

		G2	G3	G4
G1	l_1 w/o Appx. CKA w/o Appx. l_1 w Appx.	 90.47±0.84 75.59±2.19 98.92±0.59 	 89.07±1.72 44.44±2.89 97.02±0.51 	 86.31±2.47 38.09±1.15 96.83±0.82
	CKA w Appx. Lineage Detector	 77.38±1.93 99.11±0.36 	51.59 ± 2.98 98.81 ± 0.13	■ 51.19±1.27
G2	l_1 w/o Appx. CKA w/o Appx. l_1 w Appx. CKA w Appx. Lineage Detector	- - - -	 91.27±1.89 65.88±2.63 98.41±0.53 75.41±2.81 99.61±0.83 	 83.93±2.67 67.86±2.03 95.24±1.71 72.03±3.17 98.38±0.02
G3	l_1 w/o Appx. CKA w/o Appx. l_1 w Appx. CKA w Appx. Lineage Detector	- - - -	- - - -	 94.05±1.49 66.67±1.42 97.02±0.75 72.03±1.91 98.41±0.98

Tab. 1 Cross-generational lineage detection performance.

Lineage Among 300 Models

• Lineage detector accurately identifies: all parent-child pairs and all cross-generational grandparent-child pairs and great-grandparent-child pairs.

Fig. 5 Detected lineage among 300 deep models.

Lineage for Sub-Network

- A hybrid ViT-B model: concatenate transformer layers from 9 ViT-B models in timm and then finetune.
- Lineage detector accurately identifies: the origins of all transformer layers.

Fig. 6 Detected origin of transformer layers.