

การออกแบบวงจรตรวจจับลำดับ แบบมัวร์ที่ใช้ T Flip-Flop (Moore Machine Design of a Sequence Detector Circuits T Flip-Flop¹)

รศ.ดร.สุรชัย สุขสกุลชัย

(¹Roth, C.H., Fundamentals of Logic Design, 5th Ed.)

Out Line

- การออกแบบ Moore State Graph สำหรับตรวจจับลำดับตัวเลขไบนารี
- การสร้าง Next State Table จาก Moore State Graph
- การสร้าง Transition Table จาก Next State Table
- การสร้าง T Flip-Flop Table จาก Transition Table
- การแปลง T Flip-Flop Table เป็นสมการบูลีนโดยใช้ Karnaugh Map
- บทสรุป

วัตถุประสงค์

- สามารถออกแบบ Moore State Graph สำหรับตรวจจับลำดับตัวเลขไบนารี
- สามารถสร้างตรวจจับลำดับตัวเลขไบนารีโดยใช้ JK Flip-Flop ได้

บทน้ำ

- State Graph คือผังแสดงการทำงานของวงจรลำดับ (sequential circuit) แบ่งออกเป็น 2 แบบคือ
 - แบบมัวร์ (Moore Machine)
 - แบบเมลลี่ (Mealy Machine)
- วงจรนับก็เป็นวงจรลำดับชนิดหนึ่ง
 - แต่ไม่จัดอยู่ในทั้งสองแบบ
 - แต่มีหลักการพื้นฐานคล้ายๆกัน
- ขั้นการแปลง State Graph เป็นวงจรลอจิกจะมีขั้นตอนคล้ายๆกัน

บทน้ำ

• Moore Machine เป็นมีหลักการทำงาน จะเป็น State Graph ที่เป็น

บทน้ำ

Moore Machine

ตัวอย่างการออกแบบ Moore State Graph

- เพื่อให้เข้าใจวิธีการสร้าง State Graph
- ตัวอย่างการออกแบบวงจรตรวจจับลำดับตัวเลขไบนารี "101" จะถูกใช้ในการอธิบาย

- ค่า X คืออินพุตที่ป้อนเข้า
- ค่า Z คือค่าเอาต์พุตเมื่อลำดับของเลขที่ต้องการถูกตรวจจับได้
 - O Z=0 ถ้าลำดับไม่ถูกต้อง
 - O Z=1 ถ้าลำดับถูกต้อง
 - O สัญญาณ Clock มีไว้สำหรับให้วงจรทำงานพร้อมกัน

ขั้นตอน 1: การสร้าง Moore State Graph

• ลำดับที่ต้องการตรวจจับคือ 101

ขั้นตอน 1: การสร้าง Moore State Graph

• ลำดับที่ต้องการตรวจจับคือ 101

ขั้นตอน 1: การสร้าง Moore State Graph

• State Graph สำหรับตรวจจับลำดับ 101 ที่ได้

10

ขั้นตอน 2: การสร้าง Next State Table จาก State Graph

ขั้นตอน 2: การสร้าง Next State Table จาก State Graph

Present	Next	State	Present
State	X = 0	X = 1	Output(Z)
S ₀	So	S ₁	0
S_1	S_2	S_1	0
S_2	S_0	S_3	0
S_3	52	S_1	1

ขั้นตอน 2: การสร้าง Next State Table จาก State Graph

$0 \underbrace{\begin{array}{c} S_0 \\ 0 \\ \end{array}}_{1} \underbrace{\begin{array}{c} S_1 \\ 0 \\ \end{array}}_{0} 1$

Present	Next	State	Present
State	X = 0	X = 1	Output(Z)
00	00	01	0
01	01	01	0
11	11	10	0
10	10	01	1

ขั้นตอน 2: การสร้าง Next State Table จาก State Graph

Present	Next	State	Present
State	X = 0	X = 1	Output(Z)
00	00	01	0
01	01	01	0
11	11	10	0
10	10	01	1

ขั้นตอน 3: การสร้าง Transition Table (T Flip-Flop Table)

Present	The state of the s	State	Present
State AB	$X = 0$ A^+B^+	X = 1 A^+B^+	Output(Z)
00	00	01	0
01	11	01	0
11	00	10	0
10	11	01	1

ขั้นตอน 3: การสร้าง Transition Table (T Flip-Flop Table)

Present State AB	Next $X = 0$ A^+B^+	SEC DEPARTMENT	Present Output(Z)	<i>X</i> = 0	X = 1	X=0	X = 1
00	00	01	0				
01	11	01	0	2			
11	00	1 0	0				
10	11	01	1				

1 -

ขั้นตอน 3: การสร้าง Transition Table (T Flip-Flop Table)

Present State	Next State $X = 0$ $X = 1$		Present Output(Z)	X = 0	X = 1	X=0	X = 1
AB	A^+B^+	A^+B^+		•			
00	00	01	()	0	0		
01	11	01	0	1	0		
11	00	10	0	1	0		
10	11	01	1	0	1		

ขั้นตอน 3: การสร้าง Transition Table (T Flip-Flop Table)

Present State AB	Next State $X = 0 X = 1$ $A^{+}B^{+} A^{+}B^{+}$		Present Output(Z)	X = 0	X = 1	X=0	X = 1
00	00	01	0	0	0		
01	11	01	0	1	0		
11	00	10	0	1	0		
10	11	01	1	0	1		

ขั้นตอน 3: การสร้าง Transition Table (T Flip-Flop Table)

Present State AB	Next State $X = 0 X = 1$ $A^{+}B^{+} A^{+}B^{+}$		Present Output(Z)	<i>X</i> = 0	X = 1	X=0	<i>B X</i> = 1
00	00	01	0	0	0	0	1
01	11	01	0	1	0	0	0
11	00	10	0	1	0	1	1
10	11	01	1	0	1	1	1

ขั้นตอน 4: การแปลง T Flip-Flop Table เป็นสมการบูลีน

Present State AB	Next $X = 0$ A^+B^+	NO. INDIANGED AND	Present Output(Z)	<i>X</i> = 0	X = 1	X=0	<i>B X</i> = 1
00	00	01	0	0	0	0	1
01	11	01	0	1	0	0	0
11	00	10	0	1	0	1	1
10	11	01	1	0	1	1	1

)

ขั้นตอน 4: การแปลง T Flip-Flop Table เป็นสมการบูลีน

Present	ĺ
State	
AB	
00	
01	
11	
10	

7	A	T_{B}			
X = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1		
0	0	0	1		
1	0	0	0		
1	0	1	1		
0	1	1	1		

ขั้นตอน 4: การแปลง T Flip-Flop Table เป็นสมการบูลีน

					\ Y		\ v
Present	9	A	7	B	AB	0 1	AB 0
State AB	X = 0	X = 1	X = 0	X = 1	00		00
AB					01		01
00	0	0	0	1	⇒ ⁰¹ L		01
01	1	0	0	0	11		11
11	1	0	1	1	10		10
10	0	1	1	1	L		10
		<u>'</u>	•			^I A	

22

ขั้นตอน 4: การแปลง T Flip-Flop Table เป็นสมการบูลีน

Present		T_{A}		T_B		
State AB	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1		
00	0	0	0	1		
01	1	0	0	0		
11	1	0	1	1		
10	0	1	1	1		

$$T_A = XB + XAB'$$
 $T_B = A + XB'$

ขั้นตอน 4: การแปลง T Flip-Flop Table เป็นสมการบูลีน

Present State AB	<i>X</i> = 0	X = 1	X=0	<i>B X</i> = 1	AB 00	0	0
00	0	0	0	1	01	1	0
01	1	0	0	0	11	1	0
11	1	0	1	1	10	0	1
10	0	1	1	1		7	4

$$T_A = X'B + XAB'$$

$$T_A = A + XB'$$

23

ขั้นตอน 4: การแปลง ZT Flip-Flop Table เป็นสมการบูลีน

Present	1	$\tau_{\!\!\!A}$		- B
State AB	X = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1
00	0	0	0	1
01	1	0	0	0
11	1	0	1	1
10	0	1	1	1

$$T_A = X'B + XAB'$$
 $T_A = A + XB'$

$$T_A = A + XB'$$

ขั้นตอน 4: การสร้างวงจร Logic จากสมการบูลีน

Pre	sent	5	A	7	B
	ate A <i>B</i>	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1
(00	0	0	0	1
()1	1	0	0	0
1	11	1	0	1	1
1	0	0	1	1	1

$$T_A = X'B + XAB'$$

$$T_A = A + XB'$$

ขั้นตอน 5: การหาสมการบูลีนของเอาต์พุต

Present State	Next $X = 0$	State $X = 1$ A^+B^+	Present Output(Z)	<i>X</i> = 0	X = 1	X=0	<i>B X</i> = 1
00 AB	00	01	0	0	0	0	1
01	11	01	0	1	0	0	0
11	00	10	0	1	0	1	1
10	11	01	1	0	1	1	1

ขั้นตอน 5: การหาสมการบูลีนของเอาต์พุต

Present	
State	
AB	
00	
01	
11	
10	

Present Output(Z)
0
0
0
1

ขั้นตอน 5: การหาสมการบูลีนของเอาต์พุต

Present State AB	Present Output(Z)
00	0
01	0
11	0
10	1

$$Z = AB'$$

ขั้นตอน 6: การสร้างวงจร Logic จากสมการบูลีน

ขั้นตอน 6: การสร้างวงจร Logic จากสมการบูลีน

