An Experimental Comparison of Concurrent Data Structures

Student: Mark Gibson Supervisor: Dr. David Gregg

Background

- Concurrent Data Structures
 - Designed for access by multiple threads
 - Potential for high scalability
- Atomic Instructions
 - Either complete fully or not at all
 - Used to implement locked & lockless algorithms
- Locks
 - Use mutexes to acquire/release a lock
 - Blocks threads that don't have the lock
- Lockless
 - Use atomic instructions
 - Guaranteed system throughput
- Not a lot of data comparing locked algorithms versus lockless

Approach

- Implemented three concurrent data structures
 - Ring Buffer
 - Linked List
 - Hash Table
- Each data structure has both locked and lockless variations
- Locked Variations
 - Mutex
 - Test-and-Set
 - Ticket
- Lockless Variations
 - Atomic C++ Library
 - Compare-and-Swap
 - Fetch-and-Add
- Compared each variation on 3 different systems

BA (Mod) in Computer Science

THE

UNIVERSITY

OF DUBLIN

TRINITY COLLEGE DUBLIN COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

Evaluation

- Compared Data Structure Variations
 - Varied the thread count from 1-128
 - Modified the sizes of the data structures
 - Main Focus was locked vs lockless
- Used Hardware Performance Counters
 - Special Registers
 - Used for performance analysis
 - Record cache misses, cpu cycles etc
- Ran each data structure variation 7 times and calculated the median to ensure accurate results
- System Details
 - Local Machine (Sandy Bridge 32nm 4 Cores)
 - Stoker (Ivy Bridge 22nm 32 Cores)
 - Cube (Gainestown 45nm 16 Cores)

Singely Linked Buffer; Cube; Mutex Lock vs Lockless; Key Range 128

Nullibel of Tiffeaus		
	Cube 128	Cube Locked
Stalled Front End Cycles	8,603,339,371	28,157,586,014
Stalled Back End Cycles	4,290,118,281	19,235,301,044
CPU Cycles	16,644,060,219	37,007,949,115

Conclusion

- The project was successful in gathering data from a set of concurrent data structures
- Lockless algorithms were generally faster but there were several exceptions
- The linked list showed the largest performance gain when using a lockless algorithm out of the three data structures evaluated
- The hash table's lockless variation was consistently outperformed by the two locked variations tested