DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH2140 Mathematics on the Computer

Assignment 4

24 August 2015

1. Electrostatic potential of a line charge

Consider a line charge, with density $\lambda(z)$ C/m and length L=1m, placed along the z axis and symmetrically about z=0.

- 1. Assume $\lambda = \lambda_0 = \text{constant}$. Use the Integrate command to evaluate the potential V(x,y,z) everywhere (taking it's zero at infinity), and plot the equi-potential lines in the x-z plane. You may explore and use the ContourPlot command for the latter.
- 2. Assume $\lambda = f(z)$. Use the NIntegrate command to evaluate the potential V(x, y, z) everywhere (taking it's zero at infinity), and plot the equipotential lines in the x-z plane, for the following profiles:
 - (a) $f(z) \propto z$.
 - (b) $f(z) \propto \exp[-(z/a)^2]$, where a is a constant and you must plot this case for a = (1/2)m and a = 2m.
- 3. Show all the above results on a single plot. Make sure you understand their differences in terms of elementary electrostatics.

2. Simple Pendulum

Consider a simple pendulum of length L in the constant gravitational acceleration g of Earth. Let T be the time period of this pendulum, and $T_0 = 2\pi\sqrt{L/g}$, the time period for small amplitude oscillations.

Plot T/T_0 for this pendulum as a function of the amplitude ϕ_0 .