Analysis of Energy Demand

The assignment will focus on data visualisation using pandas library.

KATE expects your code to define variables with specific names that correspond to certain things we are interested in.

KATE will run your notebook from top to bottom and check the latest value of those variables, so make sure you don't overwrite them.

- · Remember to uncomment the line assigning the variable to your answer and don't change the variable or function names.
- Use copies of the original or previous DataFrames to make sure you do not overwrite them by mistake.

You will find instructions below about how to define each variable.

Once you're happy with your code, upload your notebook to KATE to check your feedback.

Importing Libraries

Run the cell below first, to import pandas and matplotlib pyplot. The matplotlib_axes_logger.setLevel('ERROR') code prevents some unnecessary warnings from showing.

About the Datasets

In the following section, you will be analysing a datasets from the UK government detailing energy consumption across various sectors of industry.

The datasets include information about:

- · Sector sectors of industry
- Sub-Sector a sector that is part of a larger sector
- · Electricity energy consumption measured in kilowatt hour (kWh)
- Natural Gas energy consumption measured in kilowatt hour (kWh)
- Oil energy consumption measured in kilowatt hour (kWh)
- District Heating is a system for distributing heat generated in a centralised location through a system of insulated pipes, measured in kilowatt hour (kWh)
- Other other energy sources measured in kilowatt hour (kWh)

Data Collection

Out[3]:

We have written some code below to do some initial collation and cleaning of the datasets we'll be working with - see if you can follow along and understand what each line is doing.

Run the following cell to import and concatenate the datasets, assigning the result to DataFrame data:

```
In [2]: M
    df1 = pd.read_csv('data/heating_2018.csv')
    df2 = pd.read_csv('data/hot_water_2018.csv')
    df3 = pd.read_csv('data/catering_2018.csv')
    data = pd.concat([df1, df2, df3], keys=['Heating', 'Hot Water', 'Catering']).reset_index(level=[0])
```

Running data.head(), data.sample() and data.info() will show us how the DataFrame is structured:

	level_0	Sector	Sub-Sector	Electricity	Natural Gas	Oil	District Heating	Other
0	Heating	Arts, leisure and community	Clubs & community centres	14	139	60	8.0	NaN
1	Heating	Arts, leisure and community	Leisure Centres	5	159	7	18.0	NaN
2	Heating	Arts, leisure and community	Museums	2	12	3	0.0	NaN
3	Heating	Arts, leisure and community	Places of Worship	29	377	110	13.0	NaN
4	Heating	Arts, leisure and community	Theatres	1	35	2	0.0	NaN

```
In [4]:  ## #data.sample(5)
data.sample(5)
```

Out[4]:

	level_0	Sector	Sub-Sector	Electricity	Natural Gas	Oil	District Heating	Other
11	Hot Water	Emergency Services	Law courts	0	1	0	0.0	0.0
29	Heating	Retail	Retail Warehouse	18	109	11	0.0	NaN
4	Catering	Arts, leisure and community	Theatres	1	1	1	NaN	NaN
26	Catering	Retail	Hairdressers	0	0	0	NaN	NaN
28	Heating	Retail	Large non-food shops	57	55	0	0.0	NaN

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 108 entries, 0 to 35
Data columns (total 8 columns):
                      Non-Null Count Dtype
# Column
---
    -----
 0
    level_0
                      108 non-null
                                      object
                      108 non-null
                                      object
 1
    Sector
 2
    Sub-Sector
                      108 non-null
                                      object
                      108 non-null
    Electricity
                                      int64
                      108 non-null
 4
                                      int64
    Natural Gas
 5
    Oil
                      108 non-null
                                      int64
    District Heating 72 non-null
                                      float64
 6
    Other
                      36 non-null
                                      float64
dtypes: float64(2), int64(3), object(3)
memory usage: 7.6+ KB
```

Data Processing

Q1. First of all, let's tidy up the data DataFrame:

- Use the .rename() method to change the name of the level_0 column to Use
- Use the .fillna() method to update all NaN values to 0
- Use the .astype() method to convert all numerical columns ['Electricity', 'Natural Gas', 'Oil', 'District Heating', 'Other'] to integers
- Use the .sum(axis=1) method to create a new column Total which contains the sum of all numerical columns

KATE will evaluate your updated version of data to check these changes have been made.

Out[6]:

		Use	Sector	Sub-Sector	Electricity	Natural Gas	Oil	District Heating	Other
•	0 ⊢	Heating	Arts, leisure and community	Clubs & community centres	14	139	60	8.0	0.0
	1 +	Heating	Arts, leisure and community	Leisure Centres	5	159	7	18.0	0.0
	2 ⊢	Heating	Arts, leisure and community	Museums	2	12	3	0.0	0.0
	3 ⊢	Heating	Arts, leisure and community	Places of Worship	29	377	110	13.0	0.0
	4 ⊢	Heating	Arts, leisure and community	Theatres	1	35	2	0.0	0.0

```
In [9]: M data["Electricity"] = data["Electricity"].astype(int)
    data["Natural Gas"] = data["Natural Gas"].astype(int)
    data["Oil"] = data["Oil"].astype(int)
    data["District Heating"] = data["District Heating"].astype(int)
    data["Other"] = data["Other"].astype(int)
    data.head()
```

Out[9]:

	Use	Sector	Sub-Sector	Electricity	Natural Gas	Oil	District Heating	Other
0	Heating	Arts, leisure and community	Clubs & community centres	14	139	60	8	0
1	Heating	Arts, leisure and community	Leisure Centres	5	159	7	18	0
2	Heating	Arts, leisure and community	Museums	2	12	3	0	0
3	Heating	Arts, leisure and community	Places of Worship	29	377	110	13	0
4	Heating	Arts, leisure and community	Theatres	1	35	2	0	0

```
In [11]:  M data["Total"] = data[['Electricity', 'Natural Gas', 'Oil', 'District Heating', 'Other']].sum(axis=1)
data.head()
```

Out[11]:

	Use	Sector	Sub-Sector	Electricity	Natural Gas	Oil	District Heating	Other	Total	
0	Heating	Arts, leisure and community	Clubs & community centres	14	139	60	8	0	221	
1	Heating	Arts, leisure and community	Leisure Centres	5	159	7	18	0	189	
2	Heating	Arts, leisure and community	Museums	2	12	3	0	0	17	
3	Heating	Arts, leisure and community	Places of Worship	29	377	110	13	0	529	
4	Heating	Arts, leisure and community	Theatres	1	35	2	0	0	38	

Data Grouping

Q2. Create a new DataFrame called ss, using .groupby() to group DataFrame data by column 'Sub-Sector', which contains the .sum() for each of the numerical (energy type) columns for each group:

```
ss = DataFrame_Name.groupby(by=...).sum()
```

Out[14]:

	Electricity	Natural Gas	Oil	District Heating	Other	Total
Sub-Sector						
Cafes	55	44	25	0	0	124
Clubs & community centres	29	166	84	8	0	287
Cold Stores	0	2	0	0	0	2
Fire and Ambulance stations	5	75	9	1	0	90
Hairdressers	14	11	9	0	0	34
Health Centres	10	109	4	0	0	123
Hospitals	48	1243	3	34	0	1328
Hotels	67	244	160	0	76	547
Large Distribution Centres	14	117	33	0	2	166
Large food shops	58	367	0	0	0	425
Large non-food shops	60	57	6	0	0	123
Law courts	1	21	4	0	0	26
Leisure Centres	7	178	12	19	6	222
Military civilian accommodation	1	11	0	1	0	13
Military offices	3	46	14	55	0	118
Military storage	0	55	6	51	0	112
Museums	2	13	4	0	0	19
Nurseries	5	45	17	0	0	67
Nursing Homes	4	24	9	0	0	37
Offices (private)	272	958	251	4	5	1490
Offices (public)	23	200	45	11	4	283
Places of Worship	53	414	154	13	0	634
Police stations	4	215	6	0	0	225
Prisons	4	126	32	0	0	162
Pubs	107	349	332	0	0	788
Restaurants & takeaways	342	176	394	0	0	912
Retail Warehouse	19	109	11	0	0	139
Showrooms	29	89	29	0	2	149
Small shops	272	154	106	0	0	532
State Primary schools	33	516	154	0	0	703
State Secondary schools	43	431	61	0	9	544
Stores	9	33	15	0	1	58
Theatres	2	37	3	0	1	43
Uni - Non-residential	20	308	0	46	0	374
Uni - Residentia	9	85	16	39	0	149
Warehouses	56	404	651	0	3	1114

Q3. Create a new DataFrame called use , using .groupby() to group DataFrame data by column 'Use' , which contains the .sum() for each of the numerical (energy type) columns for each group:

```
use = DataFrame_Name.groupby(by=...).sum()
```

Out[16]:

	Electricity	Natural Gas	Oil	District Heating	Other	Total
Use						
Catering	758	587	800	0	0	2145
Heating	762	6044	1602	265	0	8673
Hot Water	160	801	257	17	109	1344

Q4. Create a new DataFrame called sector , using .groupby() to group DataFrame data by column 'Sector' , and make use of .agg() method on the Total column such that the new DataFrame has columns for 'sum', 'mean', and 'count' of the values in 'Total':

- $\bullet \ \ \, \text{Use the } \ \, \text{.sort_values()} \ \, \text{method to sort the resulting DataFrame by 'sum' , in } \, \text{descending order}$
- You may find this documentation page (https://pandas.pydata.org/pandasdocs/version/0.23.1/generated/pandas.core.groupby.DataFrameGroupBy.agg.html) useful

sector = DataFrame_Name.groupby(by=...)['Total'].agg([...])

sector = sector.sort_values(by=..., ascending=...)

sector = sector.sort_values(by="sum", ascending=False)

See below code syntax for some guidance:

Out[21]:

	sum	mean	count
Sector			
Hospitality	2371	197.583333	12
Education	1837	122.466667	15
Offices	1773	295.500000	6
Health	1488	165.333333	9
Retail	1402	77.888889	18
Storage	1340	111.666667	12
Arts, leisure and community	1205	80.333333	15
Emergency Services	503	41.916667	12
Military	243	27.000000	9

You may want to submit your notebook to KATE to ensure your data, ss, and use and sector DataFrames are as expected before moving on to the visualisations.

Data Visualisation

Q5. Refer to the ss DataFrame.

Create a **histogram** from the Electricity column of ss DataFrame using the .plot() method: ss['Electricity']

- The histogram should have 5 bins
- Assign the plot to the variable elec_hist
- Ensure your code cell starts with plt.figure()

```
plt.figure()
elec_hist = DataFrame_Name.plot(kind='hist', bins=...);
```

```
In [31]: | #add your code below
#plt.figure()
#elec_hist =

plt.figure()
elec_hist = ss["Electricity"].plot(kind="hist", bins=5)
```


Q6. Refer to the ss DataFrame.

Create a scatter plot of Natural Gas vs Total, to see the relationship between the two columns of ss DataFrame.

- Use the .plot() method on ss DataFrame
- ullet Have Natural Gas on the x-axis and Total on the y-axis
- Assign the plot to the variable gas_total
- Ensure your code cell starts with plt.figure()

```
plt.figure()
gas_total = DataFrame_Name.plot(x=..., y=..., kind='scatter');
```

<Figure size 640x480 with 0 Axes>

Q7. Refer to the sector DataFrame.

Create a vertical bar chart of the 'sum' column of the sector DataFrame using the .plot() method: sector['sum']

- Add a title of 'Energy consumption by sector' to the plot
- Assign the plot to the variable sector_sum
- Ensure your code cell starts with plt.figure()

```
plt.figure()
sector_sum = DataFrame_Name.plot(kind='bar', title=...);
```


Q8. Refer to the given <code>new_df_use DataFrame</code>, which is identical to the <code>use DataFrame</code> but excludes the <code>Total column</code> (see below for the code).

Create a horizontal and stacked bar chart from the <code>new_df_use</code> DataFrame, using the <code>.plot()</code> method:

- Assign the plot to the variable use_type
- Give it a figsize of (12,12)
- You may find this page (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.barh.html) useful
- Ensure your code cell starts with plt.figure()

Electricity Natural Gas

See below code syntax for some guidance:

```
plt.figure()
use_type = DataFrame_Name.plot.barh(stacked=True, figsize=(...));
```

Run the following code cell to create the DataFrame new_df_use :

Oil District Heating Other

Out[26]:

Use					
Catering	758	587	800	0	0
Heating	762	6044	1602	265	0
Hot Water	160	801	257	17	109

<Figure size 640x480 with 0 Axes>

In []: ▶