## Exercice : erreurs de fausse alarme et de non détection

On suppose que l'on dispose d'un paramètre x obtenu par un examen médical qui permet de détecter la présence (classe  $\omega_1$ ) ou l'absence (classe  $\omega_2$ ) d'une maladie. Une valeur de x faible est plutôt signe de la maladie tandis qu'une valeur de x élevée est plutôt signe de son absence. On considère que de ne pas détecter la maladie sur un patient atteint est plus grave que de diagnostiquer la maladie sur un patient sain.

En cas d'erreur de diagnostic, on distingue les probabilités suivantes :

 $P_{FA}$  =probabilité de fausse alarme = P(décider  $\omega_1$ ,  $\omega_2$ ) et

 $P_{ND}$  =probabilité de non détection = P(décider  $\omega_2$ ,  $\omega_1$ )

Le traitement étant coûteux, il faut faire un compromis pour maintenir le taux de fausse alarme à un niveau raisonnable.

1) Pour modéliser le problème, on introduit deux coûts :

 $\lambda(\omega_2 \mid \omega_1)$  : coût de non détection

 $\lambda(\omega_1 \mid \omega_2)$ : coût de fausse alarme

Donner l'expression du risque conditionnel associé à chaque décision. Donner la règle de décision bayésienne en utilisant le rapport de vraisemblance  $\frac{p(x|\omega_1)}{p(x|\omega_2)}$ 

Lequel des coûts  $\lambda(\omega_1|\omega_2)$  et  $\lambda(\omega_2|\omega_1)$  doit être supérieur à l'autre pour ce problème?

2) On fixe les valeurs des coûts  $\lambda(\omega_i|\omega_j)$ . On exprime directement la règle de décision bayésienne en fonction du paramètre x et d'un seuil  $x_0$  tel que :

si  $x < x_0$  on décide  $\omega_1$ 

si  $x > x_0$  on décide  $\omega_2$ 

Donner les expressions des probabilités de fausse alarme  $(P_{FA})$  et de non détection  $(P_{ND})$  en fonction des lois de densités conditionnelles  $p(x|\omega_i)$  i=1,2 et du seuil  $x_0$ .

3) On considère maintenant que les lois sont gaussiennes :

$$p(x|\omega_1) \approx \mathcal{N}(m_1, \sigma^2)$$

$$p(x|\omega_2) \approx \mathcal{N}(m_2, \sigma^2)$$

En déduire l'expression du point frontière  $x_0$  en fonction de  $m_1, m_2, \sigma$ , des probabilités a priori et des coûts  $\lambda$ . Donner les expressions de  $P_{FA}$ ,  $P_{ND}$  en fonction de  $\sigma$ ,  $x_0$  et de la fonction d'erreur complémentaire  $^1$  erfc.

Application numérique :  $\sigma=0.5$ , prendre un des coûts égal à 1 , l'autre à 4 (cf. question 2),  $m_1=1, m_2=2, P(\omega_1)=0.1; P(\omega_2)=0.9$ ; et calculer  $x_0$ .

4) On pose  $e_{ND} = P_{ND}/P(\omega_1)$  et  $e_{FA} = P_{FA}/P(\omega_2)$ , probabilités conditionelles d'erreur, et on représente  $e_D = 1 - e_{ND}$  en fonction de  $e_{FA}$  pour différentes valeurs du point frontière  $x_0$ . La courbe obtenue est appelée courbe COR.

On cherche généralement à obtenir une probabilité de non détection faible en acceptant un taux de fausse alarme raisonnable. Dans quelle partie de la courbe COR se situe  $x_0$ ? Comment varie  $x_0$  le long de la courbe COR? Peut-on rendre aussi faibles que possible à la fois  $P_{ND}$  et  $P_{FA}$ ?

1. 
$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} e^{-t^2} dt$$



FIGURE 1 – Courbe COR.