Magic States Distillation Using Δ -Toric (good qLDPC?).

David Ponarovsky

January 1, 2024

Let $|f\rangle$ be a codeword in C_X , and let X_g be the indicator that equals 1 if f has support on X_g , and 0 otherwise. Observes that applying T^{\otimes} on $|f\rangle$ yilds the state:

$$\begin{split} T^{\otimes n} \left| f \right\rangle &= T^{\otimes n} \left| \sum_{g} X_g g \right\rangle = \exp \left(i \pi / 4 \sum_{g} X_g |g| - 2 \cdot i \pi / 4 \sum_{g,h} X_g X_h |g \cdot h| \right. \\ &+ 4 \cdot i \pi / 4 \sum_{g,h} X_g X_h X_l |g \cdot h \cdot l| - 8 \cdot i \pi / 4 \cdot \text{ integers } \right) \left| f \right\rangle \\ &= \exp \left(i \pi / 4 \sum_{g} X_g |g| - 2 \cdot \pi / 4 \sum_{g,h} X_g X_h |g \cdot h| + 4 \cdot i \pi / 4 \sum_{g,h} X_g X_h X_l |g \cdot h \cdot l| \right) \left| f \right\rangle \end{split}$$

Now assume that the code C_X is the quantum Tanner code, denote by G, A, B the group and the two generator sets that are used for constructing the square complex.

Claim 0.1. Consider g,h that are supported on the same $v \in V$. We will call such a pair a source-sharing pair. Suppose that for any we have that $|g \cdot h|$ is even. Then there is a Clifford gate that computes $|f\rangle \mapsto \exp\left(-i\pi \sum_{g,h \text{ source-sharing }} X_g X_h |g \cdot h|\right) |f\rangle$.

1 Fail Attempt.

In addition, let us assume the existence of $d \in G$ such that d is non-identity and commutes with any element in $A \cup B$. Then, observe that multiplying by d preserves adjacency on the complex. Namely, if $\{u,v\} \in E$ then also $\{du,dv\} \in E$.

Consider $|f\rangle$ such that if X_g is not zero, and g is associated with a local codeword $c \in C_A \otimes C_B$ on vertex v, then the generator associated with the local codeword c on vertex $d \cdot v$ also supports f, denoted by g'. Thus, the exponent above becomes:

$$\begin{split} &=\exp\left(i\pi/4\sum_{g}X_{g}|g|-2\cdot\pi/4\sum_{g,h\in G/a}X_{g}X_{h}|g\cdot h|+X_{g'}X_{h'}|g\cdot h|\\ &+4\cdot i\pi/4\sum_{g,h\in G/a}X_{g}X_{h}X_{l}|g\cdot h\cdot l|+X_{g'}X_{h'}X_{l'}|g\cdot h\cdot l|\right)|f\rangle\\ &=\exp\left(i\pi/4\sum_{g}X_{g}|g|-2\cdot2\cdot\pi/4\sum_{g,h\in G/a}X_{g}X_{h}|g\cdot h|+2\cdot4\cdot i\pi/4\sum_{g,h\in G/a}X_{g}X_{h}X_{l}|g\cdot h\cdot l|\right)|f\rangle\\ &=\exp\left(i\pi/4\sum_{g}X_{g}|g|-i\pi\sum_{g,h\in G/a}X_{g}X_{h}|g\cdot h|\right)|f\rangle \end{split}$$

Claim 1.1. The gate $|f\rangle \mapsto \exp\left(-i\pi \sum_{g,h\in G/a} X_g X_h |g\cdot h|\right) |f\rangle$ is in the Clifford.

Figure 1: Quantum Circuit for distillation.

Proof. Just decode f and apply \mathbf{CZ} between any pair of qubits corresponding to the generators g, h such that $g \cap h = 1$. Then encode the state again. Observes that \mathbf{CZ} is a Clifford gate, and by the fact that the code is a CSS code then the decoder and the encoder are both in the Clifford.

Let's denote the circuit defined in Claim 1.1 by Λ . So we have that:

$$\begin{split} \Lambda^\dagger \exp \left(i \pi/4 \sum_g X_g |g| - i \pi \sum_{g,h \in G/a} X_g X_h |g \cdot h| \right) |f\rangle \\ = \exp \left(i \pi/4 \sum_g X_g |g| \right) |f\rangle \end{split}$$