Modeling Regression Supervised ML

Melinda Higgins & Vicki Hertzberg

Goals

Supervised Machine Learning Models

"Supervised" Models

- Required:
 - Target must be "known" or identified
- Uses:
 - Accurate and (ideally) precise prediction of "target"
 - List of potential "predictors"
 - Evaluating association of predictors to target (implied mechanism)
 - (possibly) evaluate "importance" (tests) of predictors

Target (Y)

- Continuous numeric
- Ideally ratio, integer and interval ok
- Normal (Gaussian) distribution

Target (Y)

- Continuous numeric
- Ideally ratio, integer and interval ok
- Normal (Gaussian) distribution

Predictors (X's)

- Continuous numeric
- Ratio, integer and interval ok
- Ordinal so-so, be careful interpreting
- Categorical ok but dummy variable coding needed for > 2 categories
- Factor vs numeric class

Target (Y)

- Continuous numeric
- Ideally ratio, integer and interval ok
- Normal (Gaussian) distribution

Predictors (X's)

- Continuous numeric
- Ratio, integer and interval ok
- Ordinal so-so, be careful interpreting
- Categorical ok but dummy variable coding needed for > 2 categories
- Factor vs numeric class

Evaluate

- Model fit: r2, adj r2
- Confidence (95%) or Prediction Intervals (for predicted Y's)
- Predictor coefficients (slopes)
- Assumptions
 - Independent X's
 - Linear slope

Target (Y)

- Continuous numeric
- Ideally ratio, integer and interval ok
- Normal (Gaussian) distribution

R code

$$lm(y \sim x1 + x2, data)$$

Predictors (X's)

- Continuous numeric
- Ratio, integer and interval ok
- Ordinal so-so, be careful interpreting
- Categorical ok but dummy variable coding needed for > 2 categories
- Factor vs numeric class

Evaluate

- Model fit: r2, adj r2
- Confidence (95%) or Prediction Intervals (for predicted Y's)
- Predictor coefficients (slopes)
- Assumptions
 - Independent X's
 - Linear slope

3/14/2023

Target (Y)

- Binary
- Categorical
- Can be A/B; Yes/No; 0/1

Target (Y)

- Binary
- Categorical
- Can be A/B; Yes/No; 0/1

Predictors (X's)

- Continuous numeric
- Ratio, integer and interval ok
- Ordinal so-so, be careful interpreting
- Categorical reference category required
- Factor vs numeric class

Target (Y)

Binary

3/14/2023

- Categorical
- Can be A/B; Yes/No; 0/1

Predictors (X's)

- Continuous numeric
- Ratio, integer and interval ok
- Ordinal so-so, be careful interpreting
- Categorical reference category required
- Factor vs numeric class

Evaluate

- Model fit: AUC from ROC
- Contingency Table / Confusion Matrix (FP/FN tradeoffs)
- Predictor coefficients (odds ratios = exp(beta))
- Assumptions
 - Independent X's
 - Linear (in logit)

Target (Y)

- Binary
- Categorical
- Can be A/B; Yes/No; 0/1

R code

$$glm(y \sim x1 + x2, data, family = binomial)$$

Predictors (X's)

- Continuous numeric
- Ratio, integer and interval ok
- Ordinal so-so, be careful interpreting
- Categorical reference category required
- Factor vs numeric class

Evaluate

- Model fit: AUC from ROC
- Contingency Table / Confusion Matrix (FP/FN tradeoffs)
- Predictor coefficients (odds ratios = exp(beta))
- Assumptions
 - Independent X's
 - Linear (in logit)

11

3/14/2023 PRESENTATION TITLE