MO 5

LINEÁRNE ROVNICE, NEROVNICE A SÚSTAVY

Rovnica – zapísaná rovnosť dvoch výrazov s aspoň jednou neznámou

• riešiť rovnicu znamená nájsť jej korene.

Lineárna rovnica s 1 neznámou x nazývame rovnicu tvaru ax = b; $a,b \in R$

•
$$x = \frac{b}{a} \rightarrow \text{koreň rovnice}$$

$a = 0 \land b = 0$	$a = 0 \land b \neq 0$	$a \neq 0 \land b \in R$
0x = 0	$P = \emptyset$	"_ b
x∈ R	nemá riešenie	x = -
rovnica má nekonečne veľa riešení		(b)
		$P = \left\{ \frac{\sigma}{a} \right\}$
		(a)

Lineárna rovnica s 2 neznámymi x,y nazývame rovnicu tvaru ax + by = c; a,b,c \in R; a,b \neq 0

- táto rovnica má nekonečne veľa riešení v obore reálnych čísel
- pri znázornení v karteziánskej súradnicovej sústave vyplnia priamku (preto lineárna)
- keď rovnicu uvedeného typu riešime v obore celých čísel, hovoríme o diofantovskej rovnici → NSD (a,b) / c

Lineárna nerovnica s 2 neznámymi x,y nazývame nerovnicu tvaru ax

$$ax + by > c$$

 $ax + by < c$
 $ax + by \le c$
 $ax + by \le c$

- takáto nerovnica má v obore reálnych čísel nekonečne veľa riešení
- pri znázornení v karteziánskej súradnicovej sústave vyplnia polrovinu s hranicnou priamkou ax + by = c
- riešením je interval

Lineárna rovnica s n neznámymi $x_1, x_2,, x_n$ nazývame rovnicu tvaru $a_1x_1+a_2x_2+...a_nx_n=b; a_i,b\in R$

V praxi sa však najčastejšie vyskytujú sústavy takýchto rovníc. **Sústava** n lineárnych rovníc s n neznámymi má vo všeobecnosti tvar: $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2$

$$a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n = b_n$$

Vyriešiť sústavu znamená nájsť všetky jej korene. Pričom **koreň** rovnice je číslo, ktoré keď dosadím do pôvodnej rovnice za neznámu, dostaneme pravdivý výrok.

Pri riešení rovníc používame:

- ekvivalentné úpravy:
 - pripočítanie a odčítanie výrazu od oboch strán rovnice
 - vynásobenie a vydelenie oboch strán rovnice nenulovým výrazom
 - výmena strán rovnice
 - umocnenie a odmocnenie oboch strán rovnice, pokiaľ obe strany sú kladné čísla
- neekvivalentné úpravy:
 - musím robiť podmienky alebo skúšku

Metódy riešenia sústav rovníc:

Sčítacia metóda

```
napr.
x - y = 7
x + 2y = 1
-x + y = -7
x + 2y = 1
-x + x + y + 2y = -7 + 1
3y = -6
y = -2 \rightarrow dosadíme do niektorej pôvodnej rovnice <math>\Rightarrow x = 5
P = \{[5, -2]\}
```

$$3x + 4y = 2$$

-3x - 4y = -2

$$0 = 0 \rightarrow$$
 nekonečne veľa riešení \Rightarrow vyjadríme si x: $x = \frac{2 - 4y}{3} \Rightarrow P = \left\{ \left\lceil \frac{2 - 4y}{3}; y \right\rceil; y \in R \right\}$

Dosadzovacia metóda

Z jednej rovnice vyjadríme 1 neznámu a dosadíme do druhej.

Porovnávacia metóda

Z rovníc vyjadríme rovnakú neznámu a dáme do rovnosti.

Gaussova – eliminačná (matice)

napr.
$$x - y = 7$$

 $x + 2y = 1$

$$\begin{pmatrix} 1 & -1 & | & 7 \\ 1 & 2 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & | & 7 \\ 0 & 3 & | & -6 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & | & 7 \\ 0 & 1 & | & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 5 \\ 0 & 1 & | & -2 \end{pmatrix}$$

$$x = 5; y = -2$$

Musíme získať jednotky na ordinále a zvyšok 0.

Determinanty

napr.

$$x - y = 7$$

$$x + 2y = 1$$

$$D = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 1.2 - (1.(-1)) = 3$$

1,2 hlavná uhlopriečka

-1,1 vedľajšia uhlopriečka

Súčin na hlavnej mínus súčin na vedľajšej.

$$D_x = \begin{vmatrix} 7 & -1 \\ 1 & 2 \end{vmatrix} = 7.2 - ((-1).1) = 15$$

Za x-ové hodnoty sme dosadili pravú stranu.

$$x = \frac{D_x}{D}$$

$$D_{y} = \begin{vmatrix} 1 & 7 \\ 1 & 1 \end{vmatrix} = 1.1 - 7.1 = -6$$

Za y-ové hodnoty sme dosadili pravú stranu.

$$y = \frac{D_y}{D}$$

- ∞ nekonečne veľa riešení
- Dx = Dy = 0

$$Dx \neq 0$$
; $Dy \neq 0$

Grafická metóda

napr.

$$y = kx + q$$

$$y = x - 7$$
$$y = -\frac{1}{2}x + \frac{1}{2}$$

Absolútna hodnota

$$|x+3| = 5$$
 $|x-(-3)| = 5$ \rightarrow vzdialenosť od bodu "-3" 5 jednotiek

Riešenie rovníc a nerovníc v súčinovom a podielovom tvare

$$A(x).B(x) = 0 \iff A(x) = 0 \lor B(x) = 0$$

$$A(x)/B(x) = 0 \iff A(x) = 0 \land B(x) \neq 0$$

$$A(x).B(x) \ge 0 \iff (A(x) \ge 0 \land B(x) \ge 0) \lor (A(x) \le 0 \land B(x) \le 0)$$

$$A(x).B(x) \le 0 \iff (A(x) \le 0 \land B(x) \ge 0) \lor (A(x) \ge 0 \land B(x) \le 0)$$

$$A(x)/B(x) \le 0 \Leftrightarrow (A(x) \ge 0 \land B(x) < 0) \lor (A(x) \le 0 \land B(x) > 0)$$

$$A(x)/B(x) \ge 0 \Leftrightarrow (A(x) \ge 0 \land B(x) > 0) \lor (A(x) \le 0 \land B(x) < 0)$$

alebo metóda nulových bodov

Rovnice a nerovnice s parametrom