Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Cornélio Procópio

Aula Prática2 Professor Wagner Fontes Godoy

OBJETIVO

 Utilizar a ponte de Wheatstone para medir a resistência através de simulação computacional.

TEORIA

A ponte de Wheatstone é um circuito composto por resistores arranjados de tal forma, a obter-se em um determinado ramo uma corrente nula, ou seja, situação denominado de equilíbrio da ponte. Esse circuito é mostrado na Figura 1.

Figura 1. Ponte de Wheatstone

Para o circuito estar equilibrado, a corrente I deve ser igual a zero e para tanto a tensão V_{AB} deve ser nula. Nessas condições, temos que a corrente I1 percorre R1 e R2 e a corrente I2 percorre R3 e R4, pois não há deriva dessas correntes para o fio central. Logo, podemos escrever que:

$$V_{R1} = V_{R3}$$
 e $V_{R2} = V_{R4}$

onde: $V_{R1} = R_1 I_1$ (tensão no resitor R1), $V_{R2} = R_2 I_1$ (tensão no resistor R2), $V_{R3} = R_3 I_2$ (tensão no resistor R3 e $V_{R4} = R_4 I_2$ (tensão no resistor R4)

substituindo, temos:

$$R_1I_1 = R_3I_2$$
 e $R_2I_1 = R_4I_2$

Portanto, podemos escrever que:

$$\frac{I_2}{I_1} = \frac{R_1}{R_3} = \frac{R_2}{R_4}$$

onde a igualdade $R_1/R_3 = R_2/R_4$ é a relação entre os resistores para obter-se a situação de equilíbrio da ponte.

Uma das aplicações da Ponte de Wheatstone é a medida de resistência com grande precisão. Para tanto, montamos o circuito, mostrado na Figura 2.

Figura 2. Ponte de Wheatstone para medida de resistência

No circuito acima, observamos que o resistor desconhecido Rx será colocado entre dois pontos num dos braços da ponte. Enquanto que no outro braço, colocamos um potenciômetro para ajustarmos a situação de equilíbrio da ponte, ou seja, ajustamos o valor da corrente do micro-amperímetro para zero. Feito isso, aplicamos a relação $R_X = \left(\frac{R_1}{R_2}\right)$. R_{DEC} , onde conhecendo-se os valores de R1, R2 e R_{DEC}, determina-se o valor de Rx.

RECURSOS

Computador;

Software de Simulação Proteus ou outro de sua preferência.

PROCEDIMENTO

 Caso esteja utilizando o Proteus, para montar o circuito da Figura 3, utilize o menu do lado esquerdo, selecione a opção Instruments, depois DC AMMETER e no EditComponent/Display Range selecionar Microamps para inserir o microamperímetro. O RDEC é um POT-HG de 100kΩ.

Figura 3 - Ponte de Wheatstone

Meça e anote no Quadro 1, as tensões iniciais nos resistores e na década. Ajuste o potenciômetro para 5 k Ω .

R	R1	R2	RX	R _{Dec}
V				

Quadro 1

2) Utilizando o circuito da Fig. 3, substitua o valor do resistor RX pelos valores descritos no Quadro 2. Ajuste o equilíbrio da ponte para cada resistor e anote o valor ajustado de R_{DEC} no quadro 2 e ilustre com a imagem do circuito simulado na qual ilustra o equilíbrio da ponte, ou seja, o display do amperímetro deve estar zerado.

RX	R _{DEC}
20kΩ	
50kΩ	
100kΩ	
150kΩ	
180kΩ	

Quadro 2

QUESTÕES

1) Calcular Rx para a Figura 4, sabendo-se que a ponte está no equilíbrio e que o cursor do potenciômetro está no ponto médio.

Figura 4

2) Estando a ponte em equilíbrio, determine Rx, V_{AB} , V_{DC} , V_{R3} e I_1 para a Figura 5.

Figura 5

REFERÊNCIAS:

[1] CAPUANO, F. – "Laboratorio de Eletricidade e Eletrônica", Editora Érica.