The Unified Service Action Model

Documentation for the clinical Area of the HL7 Reference Information Model

Gunther Schadow

Regenstrief Institute for Health Care, Indianapolis, IN

Dan Russler

McKessonHBOC, Atlanta, GA

Charlie Mead

Carecentric Solutions, Duluth, GA

Jim Case

University of California, Davis

Clem McDonald

Regenstrief Institute for Health Care, Indianapolis, IN

Contents

CONTENTS	ı
1 INTRODUCTION	1
2 OVERVIEW 2.1.1 Data Types	5
3 THE SERVICE ACTION CENTERED VIEW	11
3.1 Attributes of class Service	11
3.1.1 Service.id : SET⟨II⟩	11
3.1.2 Service.mood_cd : CV	11
3.1.3 Service.universal_service_cd : CD alias Service name	17
3.1.4 Service.text : ED	19
3.1.5 Service.sig_txt : ST	20
3.1.6 Service.status_cd : CV	20
3.1.7 Service.activity_time : GTS	23
3.1.8 Service.critical_time : GTS	23
3.1.9 Service.recording_dttm: TS	23
3.1.10 Service.method_cd : CD 3.1.11 Service.body_site_cd : CD	24 24
3.1.12 Service.body_site_cd : CD 3.1.12 Service.interpretation_cd : SET\(CV\)	25
3.1.12 Service.interpretation_cd : SET(CV) 3.1.13 Service.confidentiality_cd : SET(CV)	23
3.1.14 Service.com/dendanty_cd . SET\C v\/ 3.1.14 Service.max_repeat_nmb : IVL\(INT\)	27
3.1.14 Service.max_repeat_minb:rvtx(nvr) 3.1.15 Service.interruptible_ind: BL default: true	27
3.1.16 Service.interruptible_ind : BL default: <i>true</i> 3.1.16 Service.substitution_cd : CV default: N	28
3.1.17 Service.substitution_cd : CV default: {R}	28
3.1.17 Service.priority_cd : SET(CV) default. {R} 3.1.18 Service.orderable_ind : BL default: true	29
4 ACTORS AND TARGETS	31

4.1 4.1.1	Actor (service actor) Actor.type_cd : CV	31 32
4.1.2	Actor.function_cd : CD	33
4.1.3	Actor.tmr: $IVL\langle TS \rangle$	34
4.1.4	Actor.note_txt: ED	34
4.1.5	Actor.signature_cd : CV	35
4.2	Tongot (convice tongot)	35
4.2.1	Target (service target) Target.type_cd: CV	35
4.2.1		37
4.2.2	Target.tmr : $SET\langle CV \rangle$ Target.awareness_cd : CV	37
5 AC	TION STRUCTURES	39
5.1	Attributes of class service relationship	41
5.1.1	Service_relationship.type_cd : CV	41
5.1.2	Service_relationship.inversion_ind : BL default: false	44
5.1.3	Service_relationship.sequence_nmb : INT default: 1	45
5.1.4 5.1.5	Service_relationship.priority_nmb: INT default: 1	45 45
5.1.6	Service_relationship.pause_qty : PQ ~ 1 s default: 0 s Service_relationship.checkpoint_cd : CV default: B	45
5.1.7	Service_relationship.checkpoint_cd : CV default: I1	4.6
5.1.8	Service_relationship.join_cd : CV default: W	46
5.1.9	Service_relationship.negation_ind : BL default: false	46
5.1.10	Service_relationship.conjunction_cd : CV default: AND	47
6 TIM	MED AND CONDITIONED CARE PLANS	49
6.1.1	Plans	49
6.1		
6.1 6.1.1	Plans Background	4 9
6.1 6.1.1 6.1.2	Plans Background HL7 Activity Plans Conditionals	49 49 51
6.1 6.1.1 6.1.2 6.2	Plans Background HL7 Activity Plans Conditionals Timing	49 49 51 5 3
6.1 6.1.1 6.1.2 6.2 6.3	Plans Background HL7 Activity Plans Conditionals	49 49 51 53
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals	49 49 51 53 55 55
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals Recurring events, periodic time	49 49 51 53 55 55 55 56
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals Recurring events, periodic time Frequency f or period duration T are equivalent	49 49 51 53 55 55 55 56 56
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals Recurring events, periodic time Frequency f or period duration T are equivalent Periodic points vs. intervals and the phase j	49 49 51 53 55 55 56 56 56
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals Recurring events, periodic time Frequency f or period duration T are equivalent Periodic points vs. intervals and the phase j Periodic points and intervals as sets of time points	49 49 51 53 55 55 56 56 56 57
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals Recurring events, periodic time Frequency f or period duration T are equivalent Periodic points vs. intervals and the phase j Periodic points and intervals as sets of time points Stochastic and exact timing	49 49 51 53 55 55 56 56 56 57 57
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals Recurring events, periodic time Frequency f or period duration T are equivalent Periodic points vs. intervals and the phase j Periodic points and intervals as sets of time points Stochastic and exact timing Alignment to calendars	49 49 51 53 55 55 56 56 56 57 57 58
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9 6.3.10	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals Recurring events, periodic time Frequency f or period duration T are equivalent Periodic points vs. intervals and the phase j Periodic points and intervals as sets of time points Stochastic and exact timing Alignment to calendars Literal expression and the General Time Specification (GTS)	49 49 51 53 55 55 55 56 56 56 57 57 58 58
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals Recurring events, periodic time Frequency f or period duration T are equivalent Periodic points vs. intervals and the phase j Periodic points and intervals as sets of time points Stochastic and exact timing Alignment to calendars	49 49 51 53 55 55 56 56 56 57 57 58
6.1 6.1.1 6.1.2 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9 6.3.10 6.3.11	Plans Background HL7 Activity Plans Conditionals Timing A duration is a physical quantity with a time unit Points on the absolute real time axis Intervals Recurring events, periodic time Frequency f or period duration T are equivalent Periodic points vs. intervals and the phase j Periodic points and intervals as sets of time points Stochastic and exact timing Alignment to calendars Literal expression and the General Time Specification (GTS)	49 49 51 53 55 55 56 56 56 57 58 58

Contents

7.1.1	Observation.value : ANY	63
7.1.2	Observation.derivation_expr : ST	65
7.1.3	Observation.normal_range : IVL\(\(\frac{PQ}{}\)\)	66
7.1.4	Observation.universal_service_cd : CD inherited from Service	66
7.1.5 7.1.6	Observation aritical time (CTS inharited from Service	68 69
7.1.0	Observation.critical_time : GTS inherited from Service	09
7.2	Procedure	69
7.2.1	Procedure.entry_site_cd : CD	69
7.2.2	Procedure.body_site_cd : CD inherited from Service	69
7.3	Medication	69
7.3.1	Medication.form_cd : CD	70
7.3.2	Medication.route_cd : CD	70
7.3.3	Medication.dose_qty: PQ	70
7.3.4	Medication.strength_qty: PQ default: 1	71
7.3.5	Medication.rate_qty : PQ ~ 1 s	72
7.3.6	Medication.dose_check_qty: PQ	73
7.3.7	Medication.method_cd : CD inherited from Service	73
7.4	Condition node	74
7.4.1	Condition_node.universal_service_cd : CD inherited	75
7.4.2	Condition_node.mood_cd : CD inherited, default: EVN	75
7.5	Consents (Service)	75
7.5.1	Consent.universal_service_cd : CD inherited from Service	76
7.5.2	Consent.text : ED inherited from Service	76
7.5.3	Consent.time: GTS inherited from Service	77
7.5.4	Consent.critical_time : GTS inherited from Service	77
7.6	Transportation	77
7.6.1	Transportation.universal_service_cd : CD inherited from Service	78
7.6.2	Transportation.critical_time : GTS inherited from Service	78
7.7	Supply	78
7.7.1 7.7.2	Supply apt bod od a CD	79 70
1.1.2	Supply.method_cd : CD	79
7.8	Diet service	79
7.8.1	Diet.energy_qty : PQ ~ 1 kcal/d	79
7.8.2	Diet.carbohydrate_qty : PQ ~ 1 g/d	79
7.8.3	Diet.universal_service_cd : CD inherited from Service	79
7.8.4	Diet.method_cd : CD inherited from Service	80
8 TH	IE MATERIAL CLASS	81
8.1	Attributes of class Material	82
8.1.1	Material.id: SET(II)	82
8.1.2	Material.type_cd : CD	82 82
8.1.3	Material.form_cd : CV	83
8.1.4	Material.desc : ED	83
0.1.7	Machandese . DD	03

9.2.1	Container.capacity_qty : PQ Container.height_qty : PQ ~ 1 cm	94
9.2.1	Container.capacity_qty: PQ	94
9.2	Container	94
9.1.4	Material.qty : SET(PQ) default: {1}	93
9.1.3	Material.extent_tmr : $IVL\langle TS \rangle$	93
9.1.2	Material.type_cd : CD	92
9.1.1	Specimen.body_site_cd : CD	92
9.1	Specimen	91
Λ 1	Construction	0.1
•		٠.
9 TH	IE ROLES OF MATERIAL	91
0.0.0	<u>F</u> <u>-</u>	
8.3.3	Responsibility.material_id : SET(II)	90
8.3.2	Responsibility.tmr : $IVL\langle TS \rangle$	90
8.3.1	Responsibility.type_cd : CV	89
	Responsibilities of Stakeholders for Material	
8.3	Responsibilities of Stakeholders for Material	89
8.2.5	Material_relationship.qty : PQ	88
8.2.4	Material_relationship.position_nmb : LIST(NM)	88
8.2.3	Material_relationship.tmr : IVL⟨TS⟩	87
8.2.2	Material_relationship.inversion_ind : BL default: false	
	* **	87
8.2.1	Material_relationship.type_cd : CV	86
8.2	Material relationships to other Material	86
8.1.10	Material.qty : SE1(PQ) default: {1}	85
	<u> </u>	85
8.1.9	Material.danger_cd : CD	84
8.1.8	Material.handling_cd : CD	84
8.1.7	Material.lot_nmb : ST	84
8.1.6	Material.extent_tmr : IVL\(TS\)	83
8.1.5	Material.status_cd : $SET\langle CV \rangle$	83
0.1.5	Maria de Caracteria de Caracte	0.0

Revision 2.4 Contents

10.1 Sea	rvice List	99
10.1.1	Service_list.id : SET(II)	99
10.1.2	Service_list.type_cd : CV	99
10.1.3	Service_list.name : ST	100
10.1.4	Service_list.text : ED	100
10.2 Lis	st Item	100
10.2.1	Service_list_item.sequence_nmb : REAL default: 1	100
10.2.2	Service_list_item.priority_nmb : REAL	100
10.2.3	Service_list_item.note_txt : ED	100
APPEND	IX A: SERVICE PROPERTIES AND MOODS	100

1 Introduction

This is the documentation to the clinical part of the HL7 Reference Information Model (RIM.) This part of the RIM has recently been restructured under the Unified² Service Action Model Proposal (USAMP-II.) Therefore, we refer to the clinical part of the RIM as the Unified Service Action Model (USAM.)

The USAM was created by a group of active members of the Patient Care and Orders/Observations Technical Committees. The 23 classes and 78 attributes of the USAM have replaced 34 classes and 325 attributes of the prior RIM version. This goal of this effort was to simplify and rationalize the RIM, at the same time evolving it so that it could more easily accommodate the various new messaging requirements being generated by a changing Health Care Systems in the United States and all over the world, and HL7's desire to integrate and harmonize its efforts with those of other international healthcare standards bodies. Additionally, the work was done with a consistent awareness of not loosing any of the knowledge represented in previous versions of HL7, particularly the most recent version 2.3. Thus, the proposed model was developed after a careful study of all relevant parts of HL7 version 2.3, with special attention to the messaging functionality described in v2.3.1 Chapters 4, 7 (except clinical trials,) 8, 10, and 12, and parts of Chapters 3 and 6 (AL1, DG1, PR1). (Of some interest is the fact that the revised model fits on one letter-size page. Although the physical presentation of the model was certainly not a primary driver during model development, the authors strongly believe that the clarity, conciseness, and compactness of presentation of the HL7 RIM will ultimately aid in the important and ongoing task of securing broad-based understanding and consequent acceptance of the RIM.)

This document has two major parts. The first part describes the proposed model in detail, and provides precise and complete definitions for all classes, attributes and associations. Also included in this section are reasonably complete "concept repertoires" (i.e. code tables) for each coded attribute. The notable exception to code-table definition occurs for attributes whose values would be expected to be drawn from general healthcare terminologies. Rather than include exhaustive code tables for these attributes, we have simply included references to examples of appropriate external coding systems (e.g. SNOMED, ICD, NANDA etc.). It should be noted, however, that the number of attributes where such "generally available" terminologies are referenced has been significantly reduced and normalized to one of three types reference:

- 1. Service/Activity/Action names, modifiers and methods;
- 2. Names of Material "things;" and

3. Anatomic Structures and Systems.

The second part of this proposal provides evidence for the authors' claim that the revised model addresses all functionality of HL7 v2.3.1 in those areas potentially affected by the proposed changes. The validity of this claim is substantiated by means of a detailed mapping of all the segments and fields of the affected areas between HL7 2.3 and the proposed model. The authors believe that the mapping not only delineates domain completeness and compatibility with the v2.3 message set, but also demonstrates improvements in both the clarity and expressiveness of certain message elements when compared to the same or similar elements as defined in HL7 v2.3.1. Of particular note is the removal of most free text and/or character string fields defined in v2.3.1, and the replacement of those fields with well-defined, interoperable, table-resident codes.

Based on the information presented in this document's two parts, the authors believe that the proposed model will pave the way to new messaging opportunities, including quality management, outcome assessment, decision support, cost control, and authenticated, accurate, electronic medical record communication, while simultaneously providing a clear link back to the existing HL7 version 2.x standards. (It should be noted in the context of the mapping portion of this document the proposed model also preserves substantive amounts of the message design work that has been done during the development of HL7 version 3.)

The model is framed around three central constructs (see Figure 1):

- 1. Unification and abstraction of the "clinically-relevant activities/actions" and "things" that fall within the scope of HL7's charge into two base classes: "Clinically-relevant activities/actions" are represented by the class "Service," while "things" are represented by the class "Material;"
- 2. Formalization of the fact that any activity/action (or thing) represented as an instance of the Service (or Material) class can itself be either further decomposed into a set of more finely-granulated component activities/actions (or things), or, alternatively itself be included in the composition of a more coarsely-granulated composite activity/action (or thing). The relationships between various activities/actions (or things) involved in various compositions/decompositions is modeled as a reflexive relationship between the Service (or Material) class and the class Service_relationship (or Material relationship).
- 3. Three clearly defined -- as well as flexible and expandable -- associations between the Service and Material classes and the people and/organizations who are, respectively, Actors or Targets of Services, and/or Responsible Parties of Material.

The authors believe that the most notable contribution of the model to the evolution of the existing HL7 RIM is the clear identification of two collections of classes: the Service class/subclass hierarchy, and the Material class and its collection of associated classes. Through these two collections, the model clarifies and unifies a previously widely-distributed, fragmented, and inconsistently abstracted set of related classes. The unification occurs by means of:

- 1. A single attribute -- mood_cd -- of the Service class; and
- 2. The set of classes associated with instances of the Material class via well-defined semantic "roles."

The authors acknowledge that the modeling framework presented here is somewhat different from that used in much of traditional information modeling, where two distinct layers are typically identified: a "knowledge" layer describing things that *may* exist, *might* be observed, or *may be* done; and an "information" layer describing things that *actually* exist, *have been* observed, or *have been* done. A close examination of models constructed using this two-layered approach reveals that, other than being

Revision 2.4 Introduction

differentiable based on a fundamental difference in "mood" (i.e. the knowledge layer represents things that have a mood of "potential" which the information layer represents things that have a mood of "actual"), the content and structure of the two layers is often nearly identical. Such is the case in the current version of the RIM. In contrast, the present model simultaneously collapses the two-layered approach into a single layer in which both knowledge and information instances can accurately be represented using an appropriately-chosen value of the "mood_cd" attribute (e.g. "actual" vs "intent"). It then further expands the expressiveness of the model gained by use of the concept of mood through use of a set of semantically rich "moods" which allow several types of both "actual" and/or "intent" instances to be defined (see Table 2).

The notion of "mood" – which is discussed in detail in the document – is of pivotal importance to the model, and is the fundamental cornerstone whereby a departure from the traditional two-layer modeling approach is enabled. In particular, much of the contextual semantics assumed by an instance of class Service are fundamentally distinguishable based on the value of the mood_cd attribute (e.g. "possible," "actual," "intended," "expected," etc.).

The concept of "mood" is consistent with the framework of human language, a framework to which the discipline of electronic data interchange has often looked for metaphor or inspiration. Specifically, human language has taught us the importance of the fundamental distinction of subject and verb, the power of the verb in defining contextual meaning, and the importance of combinatorics (i.e. compositional grammar) in non-ambiguous but expressive communication. In particular, much of the power and expressiveness of human language comes through factoring common modifiers (e.g. verb tenses and moods) and then combining the factored output in context-specific ways. This USAM-II model attempts to bring a similar type of combinatorial expressiveness and power to the domain of HL7 "language."

However, the authors also realize that the combinatorially-derived expressive power of human language potentially poses a major problem to automated computer processing of shared electronic data, a problem towards which much effort has been directed over the past 50 years: the problem of *meaning*. It particular, it has become painfully clear that meaning that is obvious to humans is largely unintelligible to computers, particularly in the context of computer-to-computer messaging. Therefore, a substantial amount of the effort spent in the design of this model has been spent on finding ways to simplify and normalize information so as to unambiguously define – from the computer's perspective – the meaning well-known to a human sender or receiver, but often remarkably opaque to a computer. If the model is successful in this effort, the authors are confident that the increased flexibility and expressiveness facilitated by it will lead not to increased chaos in HL7 messaging, but rather to improved interoperability.

The name of this model is the "Unified² Service Action Model Proposal (USAMP-II)" because it is inspired by, and is the logical extension of, the first Unified Service Action Model Proposal (USAM) that was introduced in the RIM in Spring, 1998. Without the initial efforts of USAM's creators and authors – Tim Snyder, Charlie Mead and Dan Russler – USAM-II could not possibly exist today. In addition to USAM's primary architects, Clem McDonald, Gunther Schadow, Linda Quade, Debra Weiss, and Anita Benson made contributions of vital importance to the initial USAM effort. USAM-II owes acknowledgment to Mark Shafarman, Joyce Spindler, and Wayne Tracy. This work has been made possible by the prudence and support of Clem McDonald and the Regenstrief Institute for Health Care.

2 Overview

This section will provide a detailed introduction in the USAMP-II model as shown in the class diagram of Figure 1. Most of the description will focus on what the model inherently is and how it is used rather than in comparing to previous HL7 models of version 2 or various revisions of the HL7 version 3 RIM. A very detailed mapping guide between HL7 version 2.3.x and this model will follow in Section 6.3.1 below.

The Unified Service Action Model (USAM) divides the world into the major categories: actions (Service,) people (Stakeholder) and things (Material.) Stakeholders are subjects having legal rights and obligations. Stakeholder includes both individual Person and Organization. Material is everything else that has physical existence in space and time. Material is a large class of all kinds of things, including devices (both durable and disposable equipment), chemicals, food, specimen, and containers, as well as facilities (rooms, beds) and living subjects (non-human species only at this point.)

One could argue that a third important category of entities in health care be "information;" indeed, isn't the medical record a collection of health related information about a patient? A critical part of the USAM approach, however, is not to consider "information" entities independent from actions. Of course, health care computing in general and this model in particular is all about information, but computing, communication and information modeling only exists in order to support actions influencing substance for the benefit of people. It is important therefore to always hold on to the focus and purpose of information, that is substance and action.

Main Entry: ob·ser·va·tion

Function: noun

Etymology: Middle French, from Latin observation-,

observatio, from observare

Date: 1535

1: an act or instance of observing a custom, rule, or

law: OBSERVANCE

2 a: an act of recognizing and noting a fact or occurrence often involving measurement with instruments (weather *observations*) b: a record or

description so obtained

3 : a judgment on or inference from what one has observed; *broadly* : <u>REMARK</u>, <u>STATEMENT</u>

Exhibit 1: Webster's definition of "observation"

Revision 2.4 Overview

Figure 1 (facing page): This is the complete class diagram of the USAMP-II model, covering the clinical and ancillary part of the entire HL7 RIM. This includes the traditional RIM areas: orders, service event, master service, scheduling, and patient care. The three service-related class hierarchies (formally called master service, service order, and service event have been merged into one Service hierarchy. The attribute "mood_cd" distinguishes whether the service is conceived of as defined, intended or ordered, performed, as a goal, or as a conditional predicate. The second important novelty is the unification of Material that includes all the substantial "things" (except people) that services deal with. In spite of the dramatic decrease in attributes, all current application layer requirements of HL7 version 2.3.1 are covered.

The strong bound between information and action is most obvious with the Observation action. An observation, according to Webster's, is an "act of recognizing and noting a fact [...] often involving measurement with instruments" and at the same time an observation is also "a record or description so obtained" [i.e. obtained through recognizing and noting]. Thus, an observation is both, the action or measurement "procedure" and the resulting information that was obtained. The Unified Service Action Model understands the result to be entirely dependent on the observation action and thus models the result as a component (attribute) of the Observation action rather than an independent entity.

All other classes in the model that are not people, things, or actions are *associative* classes. These associative classes only exist in order to support relationships among and between substance and actions. The recursive relationship classes for Material and Service support relationships among (not between) substance and actions respectively. Relationships *between* substance classes and actions are established through the actor and target classes. The class Service-list is another kind of relationship between substance (Stakeholders) and actions. Service-list accounts for the fact that different stakeholders may assign different priorities to the same actions.

2.1.1 Data Types

In order to understand this model some knowledge about the new HL7 data types is needed. The version 3 data types have been designed in parallel to this model and both have shaped each other's development. Where specific new features of the new data types are required, we will explain these in line. The following table tries to give an short overview of the defined data types that are commonly assigned to attributes.

This table is neither complete nor detailed enough to provide anything more than a coarse overview. The complete and detailed definition of HL7 data types is found in the *HL7 version 3 Data Type Specification* (currently under development, see http://aurora.rg.iupui.edu/v3dt.) The RIM also contains a special non-normative subject area where data types are represented as information model classes.

Name	Symbol	Description	V2.3
Boolean	BL	The Boolean type stands for the values of two-valued logic. A Boolean value can be either true or false.	ID
Character String	ST	Used when the appearance of text does not bear meaning, this is true for formalized text and all kinds of names. If used as a data type for free text an ST instance is equivalent with an ED of media type text/plain.	ST
Encapsulated Data	ED	Can convey any data that is primarily shown to human beings for interpretation. ED can be any kind of text, whether unformatted or formatted written language or other multi-media data. The plain character string type ST is equivalent to ED of media type text/plain. Instead of the data itself, an ED may contain only a reference (URL.)	TX, FT, ED, RP
Instance Identifier	II	Used to uniquely identify some individual entity, a piece of data or a real world entity. Examples are medical record number, placer and filler order id, service catalog item number, etc.	ID, IS, CE, HD, EI

Table 1: Overview of HL7 version 3 data types and mapping to HL7 v2.3

Telecommunication Address	TEL	A telephone number or e-mail address specified as a URL. In addition this type contains a time specification when that address is to be used, plus a code describing the kind of situations and requirements that would suggest that address to be used (e.g., work, home, pager, answering machine, etc.)	TN, XTN
Code Value	CV	Exactly one symbol in a code system. The meaning of the symbol is defined exclusively and completely by the code system that the symbol is from. Used primarily for technical concepts, concepts which is crucial to HL7 operations, and concepts which are defined or adopted under the discretion of HL7.	ID, CE
Concept Descriptor	CD	A descriptor for a real world ("natural") concept, such as a finding, a diagnosis, or of any semantic field, that is not under the sole discretion of HL7. A given concept may be expressed in multiple terms where each term is a translation of some other term, or is a (re-)encoding of the original human readable text, that can also be sent in this data type. This data type is suitable for multi-axial code systems.	CE
Integer Number	INT	Integer numbers are precise numbers that are results of counting and enumerating. Integer numbers are discrete, the set of integers is infinite but countable. No arbitrary limit is imposed on the range of integer numbers. Integer variables can have the exceptional values positive and negative infinity.	NM
Real Number	REAL	Fractional numbers as approximations to real numbers. Fractional numbers occur whenever quantities of the real world are measured or estimated, or where quantities are the result of calculations based on other real numbers. This type preserves the precision in terms of significant digits.	NM
Physical Quantity	PQ	A dimensioned quantity expressing the result of a measurement. Consists of a real number value and a physical unit. Physical Quantities should be preferred instead of two attributes expressing a number and a unit separately. Physical quantities are often constrained to a certain dimension by specifying some unit representing the dimension (e.g. m, kg, s, kcal/d, etc.)	CQ
Monetary Amount	МО	The amount of money in some currency. Consists of a value and a denomination (e.g., U.S.\$, Pound sterling, Euro, Indian Rupee.)	МО
Point in Time	TS	A scalar defining a point on axis of natural time.	TS
General Timing Specification	GTS	A data type used to specify the timing of events. Every event spans one time interval (occurrence interval), i.e., a continuous range of natural time between a start-point and an end-point in time. A repeating event is timed through a sequence of such occurrence intervals. Such timings are often specified not directly as a sequence of intervals but as a rule, e.g., "every other day (Mo – Fr) between 8:00 and 17:00 for 10 minutes."	TQ
Ratio	RTO	A ratio quantity is the pair of a numerator quantity and a denominator quantity. Ratios occur in laboratory medicine as "titers", i.e., the maximal dissolution at which an analyte can still be detected. Other Ratios are price expressions, such as dollar per gram. The Ratio type is used whenever the reduction to a simple real number or physical quantity is to be avoided. In other words when you want the numerator and denominator to stand separate, use the ratio.	SN
Postal and Residential Address	AD	The main use of such declared data is to be printed on mailing labels (postal address,) or to allow a person to physically visit a location (residential address.) The difference between postal and residential address is whether or not there is just a post box.	AD, XAD
Person Name	PN	Used for one full name of a natural person. Names usually consist of several name parts that can be classified as given, family, nickname etc. This data type is intended to be used only in the Person_name class. Instead of directly using this data type for an attribute of another class, one should consider drawing an association to the Person_name class.	PN, XPN
Organization Name	ON	Used to name an organization. Similar but simpler than the name of a natural person.	XON
Generic (Parameter	rized) Data	а Types	
Set Collection	SET(t)	A collection of values of any type T without a specifying an order among the elements.	
List Collection	$LIST\langle\mathit{t}\rangle$	An ordered set of values of any type T.	

Revision 2.4 Overview

Bag Collection	BAG⟨ <i>t</i> ⟩	An unordered set of values of any type T where each value can occur more than once (rare.)	
Interval	IVL $\langle t \rangle$	Ranges (intervals) of values of type T. An interval is a set of consecutive values of any ordered data type, such as, integer, real number, point in time, physical quantity, monetary amount, and ratio.) Intervals should be preferred instead of two attributes expressing a start and an end separately.	SN, XNM
Uncertain value using probabilities	$UVP\langle \mathit{t} \rangle$	A nominal value with a probability number indicating the level of certainty for the value to apply in the given context.	
Parametric probability distribution	PPD⟨t⟩	A probability distribution used to indicate certainty (accuracy) of a quantitative value. Allows specifying a distribution type and applicable parameters. All distribution types have the parameters mean and standard distribution. The mean is the value that would be reported if no probability distribution were available.	

Note that some data types that existed in HL7 version 2 no longer exist in version 3. Many of the old composite types, such as CN, contain multiple concepts, and are now represented more explicitly in the information model as either attributes or classes. Other types, such as ID, IS, and CE, received a more rigorous definition so that an automatic 1:1 mapping is often not possible. The PN of version 2 has been divided into a PN data type (capturing just one name) and an information model class (capturing name purpose code, change history, etc.)

3 The Service Action Centered View

Healthcare is a series of intentional actions (or "services") that are performed to benefit patients. Actions occur within a context of who, whom, where, when, how, and why. Actions in human language are verbs that unite all the nominal phrases, the actor (nominative), the targets (accusative), and beneficiaries (dative). Where the nominal entities contribute most of the information content of a sentence, the one essential key to the meaning of the sentence is the verb.

For example, "Dr. Smith examines Mrs. Doe," represents the action *to examine*, with Dr. Smith as actor and Mrs. Doe as target. "MicroLab tests a specimen of Mrs. Doe" is another action *to test*, with "MicroLab" as actor, and specimen as direct object.

Any representation of an action identifies the kind of action (*what happens*), the actors *who* accomplish to the action, the objects or targets *whom* the action influences. Adverbs of location (*where*), time (*when*), manner (*how*), and other information about circumstances, such as reasons (*why*) or motives (*what for*) are additional pieces of information that may be required or optional in given situations.

3.1 Attributes of class Service

3.1.1 Service.id: SETállñ

This is an instance identifier of a particular Service object. For example, when a service event happens, a new service object is instantiated with an identifier that uniquely distinguishes this service object from every other service object.

Main Entry: 2mood

Note that HL7 version 2 segments often had a field called "SET ID," that had no semantic meaning. Although the similarity of names might suggest otherwise, the SET(II) data type of HL7 version 3 has *nothing* to do with the SET ID field of HL7 version 2!

Function: *noun*Etymology: alteration of ¹mode
Date: 1569

1: the form of a syllogism as determined by the quantity and quality of its constituent propositions

2: distinction of form or a particular set of inflectional forms of a verb to express whether the action or state it denotes is conceived as fact or in some other manner (as command, possibility, or wish)

3 : MODE 1b

Exhibit 2: Webster's definition of "mood".

3.1.2 Service.mood cd: CV

Webster's dictionary defines mood as a "distinction of form [...] of a verb to express whether the action or state it denotes is conceived as **fact** or in some other manner (**as command**, **possibility**, or **wish**)"

Webster's definition of mood shown in Exhibit 2, can be directly applied to the USAMP-II model. The service action (corresponding to a *verb* in natural language) may be conceived as an event that happened (fact), an ordered service (command), a possible service (master), or a goal (wish) of health care. Table 2 gives an overview over all defined moods.

Table 2: Service action moods¹

Concept	Implies	Code	Definition
	ck moods. These land ordered to co		cribing activities as they progress in the business cycle, from defined,
definition		DEF	A definition of a service ("master".)
			Historical note: in previous RIM versions, the definition mood was captured as a separate class hierarchy, called <i>Master_srervice</i> .
intent		INT	An intention or plan to perform a service.
			Historical note: in previous RIM versions, the intent mood was captured as a separate class hierarchy, called Service_intent_or_order.
order	INT	ORD	An order for a service is an intent directed from a placer (intent author) to a filler (service performer.)
			Historical note: in previous RIM versions, the order mood was captured as a separate class hierarchy, called <i>Patient_service_order</i> , and later <i>Service_intent_or_order</i> .
event (occurrence)		EVN	A service that actually happens, may be an ongoing service or a documentation of a past service.
			Historical note: in previous RIM versions, the event mood was captured as a separate class hierarchy, called <i>Patient_service_event</i> , and later <i>Service_event</i> .
			ds (e.g., event, intent, or goal) can be turned into a predicate used as a ever, currently we allow only criteria on service events.
event criterion		EVN.CRT	A criterion or condition that must apply for an associated service to be considered.
option		OPT	An option is an alternative set of property-value bindings. Options specify alternative sets of values, typically used in definitions or orders to describe alternatives. An option can only be used as a group, that is, all assigned values must be used together.
			Historical note: in HL7 v2.x option existed in the special case for alternative medication routes (RXR segment.)

3.1.2.1 Use of the Mood Code

The mood code is a cornerstone of the Unified Service Action Model. Thanks to the mood code we could reuse one service action structure to express what before required three hierarchies "Master_service," "Service_intent_or_order," and "Service_event," plus additional classes and

How to read the vocabulary tables in this document? We mostly define vocabulary in a table with four columns. **1. Concept** lists a short name or phrase for each concept. **2. Implies** refers to another concept (row) in the table which is understood as a generalization of this row's concept (e.g., if a cat *is an* animal, the presence of a cat *implies* the presence of an animal.) The hierarchy established by the implies column is also visualized through indenting the concept names. **3. Code** is a short one to 5-letter abbreviation (all caps) useful for computer communication. **4. Definition** seeks to define the concept.

Figure 2: The mood code adds a third dimension to the service model. That way the structure of the class diagram is simple and reused throughout the different moods. To understand a service, knowing the mood code is as important as knowing the class name. However, the mood is orthogonal to the other properties of the service.

attributes. The mood code also allowed us to align the historic class "Goal" to the Observation class in *goal* mood.

The collapsing of the different hierarchies into one is not and end by itself. In fact, valid differences that were easily visible in multiple classes on a class diagram are now expressed in attribute values. However, we believe that the increased abstractness allows applying the reuse principle to information modeling: the mood code allows reusing the same information structure around the Service class over and over again, but still clearly distinguishes between the moods. Having identified the mood as the notion that distinguishes the formerly separate classes, we can now reason about action moods. Reasoning about action moods, in turn, led us to discover more moods than we previously used to represent in separate class hierarchies. Now the mood code can be thought of as a third dimension added to the model, as visualized in Figure 2.

The mood code modifies the meaning of the Service class in a controlled way, just as in natural language, grammatical form of a verb modify the meaning of a sentence in defined ways. For example, if the mood is factual (event,) then the entire service object represents a known fact. If the mood expresses a plan (intent,) the entire service object represents the expectation of what should be done. The mood does not change the meaning of individual service properties.

Since the mood code is a determining factor for the meaning of an entire Service object, the mood must always be known. This means, whenever a Service object is instantiated, the mood attribute must be assigned to a valid code. The mood assignment can not change throughout the lifetime of a service object. The identity of a service object is defined by the Service id attribute. Once an identifier has been assigned to a Service object in one mood, the same identifier must not be reused for a related Service object in a different mood.

As the meaning of a Service object is factored in the mood code, the mood code affects the interpretation of the entire Service object and with it every property (attributes and associations.) Note that the mood code affects the interpretation of the service object, and the meaning of the service object in turn determines the meaning of the attributes. However, the mood code does not arbitrarily change the meaning of individual attributes.

There are two kinds of service properties, inert and descriptive properties. Inert properties are not affected by the mood, descriptive properties follow the mood of the object. For example, there is an identifier attribute Service.id, which gives a unique identification to a Service object. Being a unique identifier for the object is in no way dependent on the mood of the service object. Therefore, the "interpretation" of the Service.id attribute is inert with respect to the service object's mood.

By contrast, most of the Service class' attributes are descriptive for the action. Descriptive properties of the Service class give answer to the questions who, whom, where, with what, how and when the action is done. The questions who, whom, with what, and where are answered by Actor and Target associations, while how and when is answered by descriptive attributes. The interpretation of a

descriptive attribute is aligned to the interpretation of the entire service object, and controlled by the mood. This can most intuitively be shown with natural language examples. Consider the service "blood glucose (test.)"

Table 3: How the mood code influences the meaning of the service object and some of its properties.

mood	interpretation	actors	targets	value
definition	obtaining blood glucose	describing the characteristics of the people who must be involved in the service.	describing the required objects, e.g., specimen, facility, equipment, etc.	the absolute domain (range) of the observation (e.g., 15–500 mg/dl.)
intent	we shall obtain blood glucose	the people actually or supposedly involved in the intended service, especially the author of the intent or any individual assignments for group intents.	the objects actually or supposedly involved in the service (e.g., specimen sent, equipment requirements, etc.)	usually not specified, since the intent is not to measure a blood glucose in a specific range
order (a kind of intent)	please obtain blood glucose	the people actually and supposedly involved in the service, especially the placer and the designated filler.	the objects actually or supposedly involved in the service (e.g., specimen sent, equipment requirements, etc.)	usually not specified, since the order is not to measure a blood glucose in a specific range
event	blood glucose obtained	the people actually involved in the service.	the objects actually involved (e.g., specimen, facilities, equipment.)	the value actually obtained (e.g., 80 mg/dL, or <15 mg/dL.)
criterion for event	to obtain blood glucose with value (range) given	actors are usually irrelevant (except for describing special circumstances.)	objects are largely irrelevant (except for describing circumstances.)	the value range in which the criterion would hold (e.g. > 180 mg/dL or 200–300 mg/dL.)
goal (a kind of criterion)	our goal is to be able to obtain blood glucose with value (range) given	as in an intent, especially the author of the goal. Other actors are largely irrelevant.	as in an intent, especially the patient. Other targets are largely irrelevant.	the value range describing the goal (e.g. 80–120 mg/dl.)

See Appendix A for a complete table listing the use of each attribute per mood. This example shows that the mood code influences the meaning of the service object and that the interpretation of descriptive attributes is influenced in the same way. E.g., when the service object reflects an actual service event, then all descriptive properties describe the actual service. When the service object describes an expected service (e.g., an order,) then all descriptive properties describe the expectations. The Observation value is an example for a descriptive attribute.

However, as mentioned above, not all properties are descriptive. The identifier attribute Service.id, always is the identifier of the service object in its particular mood, the Service.id is never "expected" or "actual" and can not be part of a criterion (e.g., one can not make the Service.id "1.2.3.4.5" a criterion.)

The actor and target properties behave like descriptive or inert properties depending on their type code. For example, the placer of an order is an actor of the test order, but not an expected actor of the test event. The transcriptionist of a service event report is an actor of the service event recording, but was not involved in the performance of the service. A device target of an order can be an order-authoring device or a device suggested for use with the ordered service. This kind of analysis will be described below in the table of Actor and Target type codes.

Property	Behavior	Comments
Service.id	inert	
Service.mood_cd	inert	
Service.recording_dttm	inert	
Service.confidentiality_cd	inert	
Service :: has(0*) :: Actor	hybrid	Depending on the Actor.type_cd, most actors are descriptive, except for authors (e.g., author of a service definition, reporter of an event, placer of an order, etc.)
Service :: has(0*) :: Target	hybrid	Depending on the Target.type_cd, most targets are descriptive, except for authoring facilities (e.g., entry device, entering location, etc.)
Service.universal_service_cd	descriptive	
Service.text	descriptive	
Service.activity_time	descriptive	
Service.critical_time	descriptive	
Service.status_cd	descriptive	With the unified state-transition model, the interpretation of the states parallels the interpretation of the object
Service.method_cd	descriptive	
Service.body_site_cd	descriptive	
Service.interpretation_cd	descriptive	
Service.sig_txt	descriptive	
Service.max_repeat_nmb	descriptive	
Service.interruptible_ind	descriptive	
Service.substitution_cd	descriptive	
Service.orderable_ind	descriptive	applicable only for definition mood
all subclasses, all attributes	descriptive	

Table 4: Behavior of Service properties with respect to the mood.

As can be seen, properties that give information about the activity will be interpreted subject to the mood, whereas properties about the service record (e.g., id, recording time, author, entry device, etc.) are inert with respect to the mood.

3.1.2.2 Completion Track Moods

The moods definition, intent, (order,) and event are steps in a defined service to be completed. The definition makes the service available, the intent plans the service, and the event completes it. The moods on the completion track beg to be completed by a service event. A service in event mood spans the service from the time actual work begins to the completion of the service action. When services are just reported as having happened without explicit planning, the service in event mood is used. The rest of this section is dedicated to discussing intents.

Communication of intents is the cornerstone of cooperation between health service providers and is crucial to the coordination of tasks (workflow.) Generally, a statement of intent raises the expectation for an action to be done to fulfill the intent. This means, every intent should at some point be brought to closure by a corresponding action event, and that action event should be linked to the intent. An intent that is dismissed (or cancelled) without being done is marked by an exceptional termination state (see state model below.)

Intents can also be revised. Intent revision is done by a new intent linked to the old intent through a revision relationship. The new intent supercedes the old intent. A revised intent is not closed unless the

Figure 3: A chain of intents revising preceding intents. Boxes are service objects and arrows are service relationships. Scenario: initially Dr. Smith makes a plan to do a certain expensive lab test, which he revises later to another test. Then he orders this test to a Lab. Dr. Smith's order solicits the creation of he Lab's intent to perform that test. The Lab's intent may contain specific detail on how the test is planned. This test plan is again revised. Finally, the test event fulfills the last revision of the Lab's intent. However, this final fulfillment brings preceding intent revisions to closure as well. This transitive closure is indicated by the dashed arrows. Note that revise and fulfills links are semantically equivalent.

superceding intent is closed through fulfillment or cancellation. The fulfillment or cancellation of superceding events transitively fulfills or cancels all preceding intents.

Every intent has at least an author as an associated actor. An intent can also designate other actors, thus expressing the expectation that the specified actors might be the actors of the fulfilling service event. For example, an intent can designate an actor of type *performer*, which means that actor is supposed to fulfill the intent. For a care plan authored by an individual practitioner or a care team, the intent author and designated performer is often the same person. Notably for an order (but also for other intents,) the author and the performer are different.

An order is an intent that is supposed to solicit a corresponding intent on the side of the designated performer. In an order scenario, we traditionally use the terms *placer* for the author of the order and *filler* for the designated performer. The placer of an order expects the filler to respond either with a statement of intent, or with a statement of current or completed action (event mood.) Like any intent, an order begs for a service event for closure. If the order is cancelled or abandoned otherwise, this is indicated by an exceptional termination state (see state model below.) Like any intent, an order can be revised with the disposition of the final revision affecting transitively all the previous revisions.

3.1.2.3 Predicate Moods

A service object in predicate mood describes (constrains) a class of services that may or may not happen. Existing service events can be compared with such a service predicate to see whether the service event matches the predicate or not. This predicate matching is known from Prolog or constraint language programming (CLP.) Predicates are used to describe conditionals, goals, options, reference ranges and more. Service predicates have many uses as indicated by service-relationship types referring to a predicate.

The health care goal is a special kind of service predicate. A health care goal may be set for a patient's health condition and subsequent care planning is done to achieve that goal. For example, for a hemiplegic patient, the goal of mobilization may be to have the patient walk at least 30 feet in the next two weeks. This is expressed by the goal shown in Figure 4.

Figure 4: A goal for a hemiplegia patient: he shall be able to walk more than 30 feet within 12 days.

The time the goal was set is set in the (mood-inert) Service.recording_time attribute, the time the goal is supposed to be reached is set in the (descriptive) Service.critical_time attribute. Goals are expected to be evaluated from time to time, however a goal itself is not considered a service intent. As the example shows, the goal describes an expected outcome.

3.1.3 Service.universal_service_cd : CD alias Service name

A code for the *kind* of action (e.g., physical examination, serum potassium, etc.) specified by a code from a code system (e.g. LOINC, CPT 4, Galen, SNOMED.)

The attribute name "universal service code" was chosen to tie back to the term "universal service id" commonly understood in the HL7 version 2 world. This attribute name indicates the parallelity to HL7 version 2 without being entirely correct as we discuss below. Throughout this text, we will refer to the Service universal service cd attribute as the *Service name* for brevity.

The Service name is a handle on the concept of the action, not an identifier for the individual action instance. In HL7 version 2 the "universal service id" has been understood as a primary key attribute to master service catalogs. The model was that there is a universally defined coding system used by everyone to interoperably refer to services. Although progress to public-use coding systems has been made in some areas (e.g., LOINC) the vocabulary problem still exists and makes robust interoperability difficult. The problem is that local concepts (e.g., for specialized tests) can not be specified "universally" before a new code has been added to the coding system, the new coding system version released, and installed in all communicating sites. The USAM therefore relaxes the expectations to the Service name, it is not required to be "universal" and it is not a primary key to the service definition in the master file.

The USAM uses the service name largely as a fallback when two communicating systems do not share common service definitions in their master file. Normally, when a test is ordered, the placer of the order will reference a service definition out of the filler's master service catalog. Likewise, when the test results are reported, the filler specifies the kind of service by reference to his master service catalog. For most practical purposes, service names need only be supplied in the service definition.

Different code systems cover different kinds of services, which is why there is not one single code system to be used for the *Service name*. Furthermore, the data type Concept Descriptor (CD) allows the action to be named by multiple code systems at the same time, whereby each term from a coding system is assumed to be a synonym. For example, a Thrombectomy service may be named "34001" using the CPT-4 code, "P1-30322" in SNOMED, or "38.00" in ICD-10-PCS.

The *Service name* is a descriptive property, meaning that its interpretation parallels the interpretation of the service object. For example, the *Service name* of an order is the expected name of the ordered service event. However, when orders are ordered from a service catalog, the *Service name* is not needed, since the kind of service ordered is determined by the association to the master service catalog item. An order references a master catalog item through the Service_relationship object of type *instantiates* as exemplified in Figure 4. This holds analogously for all other moods of service.

Figure 5: An order from a master catalog defines the ordered service primarily through the reference to the master catalog item made by the service relationship of type *instantiates*. While the *Service name* can be mentioned, it has no overriding effect on the service selected by the reference to the master service catalog item. If the order-filler finds the service name in disagreement with its master service, it should indicate an error. The service name is not required in any of the Service moods, although, the service definition should contain as many references to existing coding systems as applicable. A service event (result) report, like an order, specifies the test by reference to a service catalog item (data dictionary.) Again, the name can be left unspecified.

Note that the kind of service is eventually described by the service_relationship of type *instantiates* to a service definition, not by the code. The *Service name* is only used to describe the service in case there is no known or unique master service catalog from which one could instantiate the service object. This relaxes the prominent role of coded vocabulary in routine use with HL7. A standard vocabulary is helpful in describing services, but it is not necessary if the communicating partners share the same service catalog.

3.1.3.1 Primary name, additional names, codes and abbreviations

The *Service name* can be used for standard vocabularies as well as locally defined term lists and will typically contain both at the same time. The terms may be formalized codes (e.g. "123-A") but may also be controlled words (e.g., "PNEUMONIA") or abbreviations ("EKG".) The exact way of using the Concept Descriptor (CD) data type is described elsewhere, we only give a few use notes here.

The CD data type is a semi-ordered collection of Code Values (CV.) Each code value consists of a character string value (the code) and a coding system identifier. Coding systems are identified with ISO Object Identifiers (OID). The OID is a hierarchical unique id scheme that HL7 v3 will use for this and other purposes (e.g., instance identifiers.) All HL7 users will have an OID prefix assigned to them, based on which they can define their own unique code system identifiers for their internally used term lists. Standard coding systems will have object identifiers assigned by HL7.

One CD value can hold multiple Code Values at the same time, each from a different coding system. The code values so collected in a CD are considered synonyms for the purpose of that particular item. The code values in the CD are ordered so that one can indicate which is the original (preferred) code value and which are merely translations useable if the preferred term is not understood. Typically, laboratories have their own primary naming term-list which is then mapped to standard coding systems (e.g., LOINC.) If the laboratory chooses to use its own term-list as the primary name it will indicate this in the CD value by mentioning their term first. If another laboratory uses LOINC as their primary coding scheme, it will mention the LOINC code first.

In a network of heterogeneous systems there may exist multiple lists of preferred terms and abbreviations, long names, short names, etc. each preferred by a different application. This can be accommodated by configuring each application to know the code system OID of its preferred term list and use that term for display or other purposes.

3.1.4 Service.text : ED

This is a piece of free text (possibly containing multimedia data) describing the service in all necessary detail. There is no restriction on length or content imposed on the description attribute. However, the Service text is not considered part of the functional information communicated between systems. Service text data is to be shown to human individuals. All information relevant for automated functions *must* be communicated using the proper attributes and associated objects.

Note that the text attribute is not a service "name." All names of the service can be communicated in the *Service name* (Service.universal_service_cd) attribute as codes together with readable print-names.

As with any attribute of class Service, the meaning of the text attribute parallels the meaning of the service object. The meaning of the service object is controlled by the Service.mood_cd. It is a descriptive attribute. For service definitions, the text can contain textbook like information about that service. For service orders, the text will contain particular instructions pertaining only to that order. Filler order systems must show the text field to a performing provider.

For service event objects (Service.mood_cd = *event*,) the text is an important part of the documentation. The text will contain textual reports on the service. This is true for any service, in particular for pathology reports and surgical procedure reports. Textual reports are usually comprised of multiple sections, each describing a step of the procedure (e.g., preparation, palpation, excision, etc.) or a logical sub-service (gross anatomy, histology, immuno-histochemistry, etc.) Such textual reports should be broken into multiple service objects, each representing one logical unit of action, and linked to the super-service through an appropriately labeled relationship. Even though the Encapsulated Data type (ED) is capable of handling formatted textual reports in HTML, PDF, or word processor formats, the word processor format or PDF or scanned image of the full report may be assigned only to the text attribute of the highest-level service (super-service.) The sections represented by the sub-services should use formats such as plain text (or lightly marked up HTML) that can be easily rendered, indexed, and analyzed by a computer.²

Full textual reports should always be sent in the Service.text; this includes reports of observation services. The Observation.value field is reserved for information that is processed automatically and that is accessible to automated processes. Human authored free text reports are not easily accessible to automated processing and should be communicated in the Service text attribute. Of course, free text documents can be analyzed by natural language parsers and similar tools. We encourage that any output of such natural language parsers be communicated in the Observation.value attribute in the form of structured machine accessible data. Since narrative text and observation value are in different attributes, they can be communicated together, without interfering with each other.

In addition, the HL7 PRA working group defines standards to use XML as a markup language for report documents. However, the role of the PRA work in this context is not quite clear.

Table 5: Interpretation of the text attribute depending on the service mood.

Mood	Interpretation of the Text
event	Textual report of what has been done in the service, what noteworthy events happened, and what results have been achieved.
intent	Notes about what is intended to be done, necessary rationale and caveats.
order	Description of the task to be done, necessary rationale and caveats.
definition	Textbook-like description of the service.
criterion for event	Criteria in textual form can be given if a system can not deal with structured criteria or if the criterion is too vague or too complex to be formalized.

It is important to understand that the meaning of Service.text is not arbitrarily morphed depending on the mood, the dependency is regular as it is for any other descriptive service property. For example, the event mood is factual, and so is the text of a service event a recording of what actually occurred during the individual instance of the event. Conversely, the intent expresses a commitment for having an action done, and so, the text of an intent is a description of the intended action. An order is a command to carry out a service, and so the text of the order instructs about the details of the ordered action (instruction.)

3.1.5 Service.sig_txt : ST

This is a short human readable instruction on the timing, quantity and manner of service performance. In prescriptions, this is called the "SIG." Note that the timing, quantity and other performance parameters must be controlled using the appropriate attributes in the Service and service-relationship classes. The sig_txt attribute is mainly used to capture the step between human authoring of an instruction and coding in the computer-processible fields further described in Section 1 below.

3.1.6 Service.status_cd : CV

The state of the action (e.g., newly ordered, in process, completed.) The state is communicated in coded form. The codes are strictly defined by the state-transition model of a service class. No alternative coding system can be used for the status_cd attribute (CNE, coded no exceptions.)

Various state transition models for medical services have been proposed inside and outside HL7. For the information model predating USAM the orders committee had two state transition model proposals, which have never been reconciled. Common to both models was that they were quite complex, showing the processing of a service from ordering to completion, including normal and abnormal termination, validation, authorization and revision.

In the Unified Service Action Model, we have developed the mood concept to track the progression of services through the business cycle. In designing this model, we became aware of the difference between life-cycle state-transitions and business cycle. An object has a life cycle defined by its state-transition diagram. A life cycle as expressed in a UML state-transition diagram never spans multiple objects. However, we realized that at least in two very common situations life cycle seems to relate multiple objects.

1.) When an order is filled, it appears as if the order changes its status from a placed unfinished order to a completed filled order. At the same time, there is a service event object created somewhere between the ordering and the fulfillment.

Figure 6: Simple unified state-transition diagram valid for all moods.

2.) When a result is corrected, it appears as if the result object would change state from valid to corrected. At the same time it seems important to keep the old, corrected result, for forensic purposes and instead add the corrected result as a new object.

These examples suggest that much of the real world business that brings a plan or order to completion should better be represented in multiple objects, each capturing the stage in the "business cycle." Thus, when an order is filled with variances, when a result is corrected, or when a plan is ordered, we keep a snapshot of the action in each business cycle. These snapshots can be compared later for quality auditing or forensic purposes.

If we capture the complicated business cycle with it's revisions, variances, authorizations, etc. through multiple linked service objects in different moods, the state-transition diagram of one service object can now be much simpler. In fact, the state-transition model can be uniform throughout all moods as shown in Figure 6. The following table defines the states in general.

Table 6: Definition of unified service action states.

State Name	State Definition
new	Service object is in preparation awaiting to be activated
canceled	Service object has been abandoned before activation
held	Service object on hold so it can not be activated before it is released
active	Service object is active
aborted	Active service object is exceptionally terminated
suspended	Active service object temporarily suspended
completed	Service object completed
superceded	Service object completed but superceded by a new service object.
Definition Mood	
new	Service definition is in committee status, i.e., the definition is authored and may change before it can ever be instantiated.
canceled	Service definition has been abandoned before activation. May be followed by a revision. No instances should exist that reference such a canceled service definition.
held	Service definition on hold, so it can not be activated before it is released again. Rarely used.
active	Service definition is active. A service definition can only be instantiated into other moods when it is active.
aborted	Service definition was wrong and is withdrawn, but there may already be data that used this wrong definition.
suspended	Service definition must not currently be instantiated, but may be resumed later. For example, service can not currently be performed due to technical problems, or service definition may be wrong and needs

verification before used again.

completed Service definition is retired. The service is no longer instantiated for new service objects, but it is still valid

to interpret existing data referencing this service.

superceded Service definition is superceded by a new definition. The old definition may still be referenced by old data,

but new instances should reference the new definition. Not that superceded does not necessarily mean

that the definition was wrong when it was active, it just means that it has now been revised.

Intent Mood

new Service is being considered.

canceled Service was considered but now abandoned.

held Service intent on hold so it can not be activated before it is released. Rarely used.

active Service intent is committed to. Active service intents appear on TODO lists, will be notified by reminding

calendars, etc. Active service intents may be revised without changing the state, if the new intent is essentially the same intent with only details modified. Such revised intents stay active until the fulfilling event is completed. See Section 3.1.2.2 above on transitive fulfillment of chains of intent revisions.

aborted Service intent is abandoned because it was not a good idea or new information suggests not pursuing this

intent any longer. However, someone might already have ordered it or made further plans, which need to be cancelled too. Following the links from this intent to other intents will show which other intents need to

be canceled or aborted as well.

suspended Active intent suspended. This means, no further action should be done in this direction, for example,

because one waits for certain results.

completed An intent is completed if the intended action has been performed. The completion of a service event has

a ripple effect on the completion of all preceding active intents.

superceded An intent is completed, i.e. the intended action performed, but the record of intent was corrected.

Order Mood

new Order is being authored or is waiting to be issued. The filler does not yet know about it.

canceled Order has been abandoned by placer before it was issued. The cancellation thus has no effect that needs

to be communicated to the filler.

held Order is held before it was issued, must be released before it can be issued.

active Order has been issued, as an intent, the order is now awaiting fulfillment. It can be revised (e.g., by a

filler's statement of intent) but it stays active until it is fulfilled by a related service event, or until it is

aborted.

aborted Order is aborted. Since the order has already been issued, aborting an order means that the filler's intent

must also be aborted. Therefore, the filler must be notified of the abort.

suspended Active order temporarily suspended. Suspend and release transitions should be communicated to

subsequent intents (e.g., the filler's intent.)

completed As an intent, an order is only completed when a fulfilling service is completed.

superceded Order is amended after it was completed.

Event Mood

new Service is in preparation waiting to be activated. A service event may remain in new state because

required preconditions are not yet fulfilled.

canceled Service event has been abandoned before it was activated. No real work on this service has been done,

however, related preconditional services may have been done already.

held Service event on hold so it can not be activated before it is released. For example, when the

preconditions are all fulfilled and a service event is held it will enter active state as soon as it is released.

active Service event is currently in progress.

aborted Active service is interrupted and exceptionally terminated.

suspended Active service is temporarily suspended, e.g., in order to wait for new information that may suggest the

service to be aborted.

completed Service is completed, the work is done. Once a service is completed all intents that this service fulfills will

be completed as well.

superceded Service is completed but is superceded by a new service object, this can happen frequently when reports

are amended, corrected, or otherwise revised.

Predicate Mood

active This is the main state of a predicate. Predicates are only evaluated if they are active.

aborted active service is exceptionally terminated

suspended A suspended predicate will not be evaluated. If such a suspended predicate is used as a precondition,

this precondition is treated as absent.

all others A generic predicate (mostly used in conditionals) has no use for these rich states, however, subtypes of a

predicate may. So, all the other states are valid for predicates, but there is not much to say about them

other that predicates are only considered while in active state.

Goal (i.e. a predicate used as a goal)

new The goal is being considered.

canceled The goal was abandoned before it was set. active The goal is an actively pursued goal.

aborted The active goal is dismissed as being unachievable.

completed The goal has been achieved.

all others Rarely used.

Note that we used to distinguish completed task from a final release of a report. The completed task allowed issuing a preliminary report, which would then be marked as final. However, even a final report could – in practice – go back into preliminary state (e.g., microbiology lab discovers new growth on a plate.) This model works as follows: The event is in active state and may already have result values. However, as long as the event is active, the results are preliminary. Only when the event is marked completed will the result be "final". The event is completed (by common business rule) only when the report has been signed by the head of department. Even then, however, the event or any of its children may be superceded by a correction.

3.1.7 Service.activity time: GTS

This is the time when the action happened, is expected to happen, or when it can possibly happen (depending on the mood of the Service object.) The timing of actions is a very important concept that will be explained in greater detail in Section 6.3 below.

The service activity time is a descriptive attribute, i.e., it refers to the time when people are actually or supposedly executing the action.

3.1.8 Service.critical_time: GTS

This is the "biologically relevant" time of an action. The concept is best understood with observations, where the time of the observation action may be much later than the time of the observed feature. For instance, in a Blood Gas Analysis (BGA), a result will always come up several minutes after the specimen was taken, meanwhile the patient's physiological state may have changed significantly. Even more so in history taking, when the doctor records an episode of Hepatitis A under which the patient suffered last year for several weeks. For surgical procedures the time between first cut and last suture is taken as the critical time of the procedure. For transport and supply services the critical time is the time en route or time of delivery respectively. Critical time and total time of a service may often be related in a certain way, which will be discussed below (cf. Figure 15.)

3.1.9 Service.recording_dttm: TS

A database that records a separate time stamp for both valid time and transaction time is called a bitemporal database. Bi-temporal databases allow reconstructing at any time what users of the database actually could have known, versus what the state of the world was at that time. For example, one might record that a patient had a right-ventricular myocardial infarction effective three hours ago, but we may

only know about this unusual condition a few minutes ago. Thus, any interventions from three hours ago until a few minutes ago may have assumed a usual left-ventricular infarction, which can explain why these interventions may not have been appropriate in light of the more recent knowledge about the prior state. However, the transaction time (or recording time) may vary from system to system.

For HL7, messaging the Service.recording_dttm will be set according to the sender system. If the receiver system records the received information as new, it may set it's own recording time to the time it received this information, rather than to the time specified by the information sender.

The Service.recording_dttm is an inert attribute with respect to the mood code. This means, it is the recording time of the service object regardless of its mood.

3.1.10 Service.method cd: CD

For any service there may be several different methods to achieve by and large the same result, but may be important to a more thorough interpretation (e.g., blood pressure method: arterial puncture vs. Riva-Rocci, sitting vs. supine position, etc.)

Method concepts can be "pre-coordinated" in the Service definition, so that there is never an option to select different methods. Pre-coordinating methods into the service code (type_cd) avoids having to standardize on method codes. There are so many possible methods which all depend heavily on certain kinds of services, so that defining a vocabulary domain of all methods is close to impossible. The pre-coordinated approach avoids relying on the impossible to be done.

However, a code system might be designed such that it specifies a set of available methods for each defined service concept. Thus, a user ordering a service could select one of several variances of the service by means of the method code. Available method variances may also be defined in a master service catalog for each defined service. In service definition records (Service.mood_cd = DEF) the method_cd attribute is a set of all available method codes that a user may select while ordering, or expect while receiving results.

Although the authors believe that the pre-coordinated approach to methods goes a long way and should be followed as far as possible, this information structure can handle both the pre-coordinated and the post-coordinated approach.

The Service.method_cd is a descriptive attribute, meaning that its interpretation is parallel to the interpretation of the service object and subject to the mood code.

3.1.11 Service.body_site_cd : CD

Most health care services have a focus on a particular anatomic structure of the patient (the "target" of service.) This information is found in body_site_cd. The coding system to be used for anatomic site is not specified in detail. Anatomic sites, body parts, and functional body systems are huge and highly complex domains that require a very sophisticated terminology system. Candidates are Galen, SNOMED, or Read codes. Alternatively, a simple local coding system can be used to identify exactly the common body sites used.

Some body sites can also be "pre-coordinated" in the Service definition, so that there is never an option to select different body sites. The same information structure can handle both the pre-coordinated and the post-coordinated approach.

For administrative body sites (i.e. where medications are administered) HL7 used to define a table (0163) that must be used as defined in Table 7 below.

Table 7: Body site concepts (from HL7 v2.3 table 0163)

Concept	Code	Concept	Code	Concept	Code
Bilateral Ears	BE	Left Mid Forearm	LMFA	Right External Jugular	REJ
Bilateral Eyes	OU	Left Naris	LN	Right Eye	OD
Bilateral Nares	BN	Left Posterior Chest	LPC	Right Foot	RF
Buttock	BU	Left Subclavian	LSC	Right Gluteus Medius	RG
Chest Tube	CT	Left Thigh	LT	Right Hand	RH
Left Arm	LA	Left Upper Arm	LUA	Right Internal Jugular	RIJ
Left Anterior Chest	LAC	Left Upper Abd Quadrant	LUAQ	Rt Lower Abd Quadrant	RLAQ
Left Antecubital Fossa	LACF	Left Upper Forearm	LUFA	Right Lower Forearm	RLFA
Left Deltoid	LD	Left Ventragluteal	LVG	Right Mid Forearm	RMFA
Left Ear	LE	Left Vastus Lateralis	LVL	Right Naris	RN
Left External Jugular	LEJ	Nebulized	NB	Right Posterior Chest	RPC
Left Eye	os	Perianal	PA	Right Subclavian	RSC
Left Foot	LF	Perineal	PERIN	Right Thigh	RT
Left Gluteus Medius	LG	Right Arm	RA	Right Upper Arm	RUA
Left Hand	LH	Right Anterior Chest	RAC	Right Upper Abd Quadrant	RUAQ
Left Internal Jugular	LIJ	Right Antecubital Fossa	RACF	Right Upper Forearm	RUFA
Left Lower Abd Quadrant	LLAQ	Right Deltoid	RD	Right Vastus Lateralis	RVL
Left Lower Forearm	LLFA	Right Ear	RE	Right Ventragluteal	RVG

The Service.body_site_cd is a descriptive attribute, meaning that its interpretation is parallel to the interpretation of the service object and subject to the mood code.

3.1.12 Service.interpretation_cd : SETáCVñ

This attribute allows for a very rough interpretation of the course or outcome of a service action. This is sometimes called "abnormal flags." The following concepts are defined for the interpretation code:

Table 8: Interpretation codes.

Code	Implies	Definition
Normalit	y, Abnormality	y, Alert. At most one allowed.
N		Normal (for all service types)
Α		Abnormal (nominal observations, all service types)
L	Α	Below low normal (quantitative observations)
Н	Α	Above high normal (quantitative observations)
AA	Α	Abnormal alert (nominal observations and all service types)
LL	L, AA	Below lower alert threshold (quantitative observations)
НН	H, AA	Above upper alert threshold (quantitative observations)
Change	of quantity an	nd/or severity. At most one of B or W and one of U or D allowed.
В		Better (of severity or nominal observations)
W		Worse (of severity or nominal observations)
U		Significant change up (quantitative observations, does not imply B or W)

D	Significant change down (quantitative observations, does not imply B or W)				
Microbiology:	Microbiology: interpretations of minimal inhibitory concentration (MIC) values. At most one allowed.				
R	Resistant				
1	Intermediate				
MS	Moderately susceptible				
S	Susceptible				
VS	Very susceptible				
Technical exce	eptions. At most one allowed. Does not imply normality or severity.				
<	Below absolute low-off instrument scale. This is statement depending on the instrument, logically does not imply LL or L (e.g., if the instrument is inadequate.) If an off-scale value is also low or critically low one must also report L and LL respectively.				
>	Above absolute high-off instrument scale. This is statement depending on the instrument, logically does not imply LL or L (e.g., if the instrument is inadequate.) If an off-scale value is also high or critically high one must also report H and HH respectively.				

The Service.interpretation_cd is a descriptive attribute, meaning that its interpretation is parallel to the interpretation of the service object and subject to the mood code.

3.1.13 Service.confidentiality_cd : SETáCVñ

This code limits the disclosure of information about this service. The codes refer to confidentiality policies as listed in the following table:

Table 9: Confidentiality policies

Concept	Code	Definition
By accessing	g subject /	role and relationship based rights (one and only one)
normal	N	Normal confidentiality rules (according to good health care practice) apply, that is, only authorized individuals with a medical or business need may access this item.
clinician	D	only clinicians may see this item, billing and administration persons can not access this item without special permission.
restricted	R	Restricted access, i.e. only to providers having a current care relationship to the patient.
individual	I	Access only to individual persons who are mentioned explicitly as actors of this service and whose actor type warrants that access (cf. to actor type code.)
low	L	No patient record item can be of low confidentiality. However, some service objects are not patient related and therefore have low confidentiality.
business	В	Since the service class can represent knowledge structures that may be considered a trade or business secret, there is sometimes (though rarely) the need to flag those items as of business level confidentiality. However, no patient related information may ever be of this confidentiality level.
Modifiers of I	role based	access rights (multiple allowed)
sensitive	S	Information for which the patient seeks heightened confidentiality. Flag can be set or cleared on patient's request. Sensitive information is not to be shared with family members. Information reported by the patient about family members is sensitive by default.
taboo	Т	Information not to be disclosed or discussed with patient except through physician assigned to patient in this case. This is usually a temporary constraint only, example use is a new fatal diagnosis or finding, such as malignancy or HIV.
celebrity	С	Celebrities are people of public interest including employees, whose information require special protection.
By information	n type, onl	y for service catalog entries (multiples allowed) Not to be used with actual patient data!
	HIV	HIV and AIDS related item

PSY Psychiatry related item

ETH Alcohol/drug-abuse related item

SDV Sexual assault / domestic violence related item

Confidentiality policies may vary from institution to institution and not all systems are capable of abiding by all details of the confidentiality policies suggested in the above table. However, these are the items that are being used in some institutions and which implementers may want to consider supporting.

It is important to note that good confidentiality of the medical record can *not* be achieved through confidentiality codes only to filter out individual record items to certain types of users. There are two important problems with per-item confidentiality: one is *inference* and the other is the danger of holding back information that may be critical in a certain care situation. **Inference** means that filtered sensitive information can still be assumed given the other information not filtered. The simplest form of inference is that even the existence of a test order for an HIV Western Blot test or a T4/T8 lymphocyte count is a strong indication for an existing HIV infection, even if the results are not known. Very often, diagnoses can be inferred from medication, such as Zidovudin for treatment of HIV infections. The problem of hiding individual items becomes especially difficult with *current* medications, since the continuing administration of the medication must be assured.

A similar confidentiality code attribute is therefore required in the Patient class to cover the entire patient record. But this is outside the scope of the present proposal.

The flags HIV, PSY, ETH, and SDV may only be used on service items that are not patient related. Typically, they are used in the service definition object ("master" service) to indicate a generic disclosure policy of any actual service item of that type.

Aggregations of data may assume the privacy level of the most private action in the aggregation.

This attribute is inert with regards to the mood code. This means, the attribute primarily regulates disclosure of the information of this particular service object, regardless of its mood. However, follow-up object created in response to this object should usually carry the same or stronger protection. For example, if the order is marked *sensitive* then the result should be marked *sensitive* as well. Note that it is still forbidden to carry HIV, SDV and similar confidentiality classifiers from service definitions into patent-related data.

3.1.14 Service.max repeat nmb: IVLáINTñ

This is the maximum number of repetitions of a service. Typical values are 1, some other finite number, and the positive infinity (a specific null value for numbers.) See the discussion on service plans below on how specifically this is used.

The Service.max_repeat_nmb is a descriptive attribute, meaning that its interpretation is parallel to the interpretation of the service object and subject to the mood code. The attribute is used primarily in moods that precede the event mood in the business-cycle, i.e., it is used primarily for service definitions, intents, and orders.

3.1.15 Service.interruptible_ind : BL default: *true*

Indicates whether a service is interruptible by asynchronous events (such as "through"-conditions to turn false, or time running up.) See discussion on action plans below.

The Service.interruptible_ind is a descriptive attribute, meaning that its interpretation is parallel to the interpretation of the service object and subject to the mood code.

3.1.16 Service.substitution cd : CV default: N

Indicates whether an ordered or intended service may be or has been substituted for a different service. The fact that the actual service differs from the planned or ordered service, and the details of the variance can be seen by comparing the service as planned or ordered from the service as performed. Both service records should be sent in a message where this difference is important. The Service.substitution_cd attribute is mainly used in an order, to specify whether an ordered service may be substituted and in what way it may be substituted.

Concept	Code	Definition
no	N or 1	No substitution happened (no substitution allowed.)
generic	G	A generic has been (may be) substituted for a brand product.
therapeutic	Т	A therapeutic substitution was done (is permitted.)
no selection	0	No product selection indicated, i.e. this is a generic (non-brand) order / service.
patient	2	Substitution on patient request.
actor	3	Substitution selected by actor (e.g. pharmacist.)
out of stock	4	Substitution because requested product or generic is not in stock.
brand as generic	5	Substitution of a brand as a generic.
brand law	6	No substitution, brand product mandated by law.
unavailable	7	Substitution because product not available in the marketplace.

Table 10: Service substitution code

The Service.substitution_cd is a descriptive attribute, meaning that its interpretation is parallel to the interpretation of the service object and subject to the mood code.

3.1.17 Service.priority_cd : SETáCVñ default: {R}

This attribute encodes the urgency under which the service is to be scheduled and performed, or was performed. This attribute is used in orders to indicate the ordered priority. It is also used in the service event documentation to indicate the actual priority used to perform the service, which is used to determine the charge. In master service definitions it indicates the available priorities.

Concept	Implies	Code	Definition
stat		S	With highest priority (e.g., emergency.)
ASAP		Α	As soon as possible, next highest priority after stat.
routine		R	Routine service, do at usual work hours.
preop		Р	Used to indicate that a service is to be performed prior to a scheduled surgery. When ordering a service and using the pre-op priority, a check is done to see the amount of time that must be allowed for performance of the service. When the order is placed, a message can be generated indicating the time needed for the service so that it is not ordered in conflict with a scheduled operation.
callback for scheduling		CS	Filler should contact the placer (or target) to schedule the service. (Was "C" in HL7 version 2.3's TQ-priority component.)

Table 11: Service priority code.

callback placer for scheduling	callback for scheduling	CSP	Filler should contact the placer (or target) to schedule the service. (Was "C" in HL7 version 2.3's TQ-priority component.)
contact recipient for scheduling	callback for scheduling	CSR	Filler should contact the service recipient (target) to schedule the service. (Was "C" in HL7 version 2.3's TQ-priority component.)
timing critical		Т	It is critical to come as close as possible to the requested time (e.g., for a through antimicrobial level.)
as needed		PRN	an "as needed" order should be accompanied by a description of what constitutes a need. This description is represented by an observation service predicate as a precondition.
callback results		CR	Filler should contact the placer as soon as results are available, even for preliminary results. (Was "C" in HL7 verion 2.3's reporting priority.)
rush reporting		RR	A report should be prepared and sent as quickly as possible.

The Service.priority_cd is a descriptive attribute, meaning that its interpretation is parallel to the interpretation of the service object and subject to the mood code.

3.1.18 Service.orderable_ind : BL default: true

This attribute indicates whether this service can be requested independently from other services. Some services can only occur as subordinate to a super-service; others are abstractions of services or service groups that should not be ordered in one piece. It is only used for master file definitions to distinguish orderable from non-orderable master services.

Editorial note: There may be better ways to represent this information so that no attribute would have to be restricted to one mood code. For example, the orderability could be part of the state-transition model.

4 Actors and Targets

All people, things and locations involved in a Service (or for scheduling purposes "all resources of an activity") are associated with the Service as either actors or targets. Actors are mostly professional provider personnel, but also the patient (for self-administered services,) or a next of kin. Targets are the recipients of care (e.g., patient), but also consumable material, durable equipment, locations, and anything that is needed or of notable presence in the service.

4.1 Actor (service actor)

Actors can participate in an action in different ways. For example, primary surgeon, assistant surgeon, sterile nurse, and nurse assistant are all actors in a surgical procedure, who are more or less immediately involved in the action. However, payers, supervisors, provider organizations and their delegates may be actors too, even though they might not be individual persons who have their "hands on" the action. The patient himself is a performing actor in self-care procedures (e.g. fingerstick blood glucose, insulin injection, etc.)

The Stakeholders, people and organizations that can be actors and targets of a service action are not shown in the model in Figure 1. Those classes are left untouched in their present definition by the most recent RIM. The intention is to allow Actor bindings only to entities that are capable of and accountable for their independent decisions. Capability of independent decision and accountability usually applies only to persons under the law, including both organizations and natural (human) persons. This "legal person" as a subject of legal rights and obligations is a very obvious interpretation of the RIM Stakeholder construct (it is a well-known legal notion.)

The notion of multiple actors with specific functions touches and partially overlaps on two sides with related concepts of the RIM, and understanding the distinctions is important to use the RIM constructs correctly. On the one side actor functions look similar to Stakeholder roles (e.g., healthcare practitioner, guarantor, contact-person.) These actor functions also resemble capability and certification (e.g., certified surgeon vs. resident, certified nurse midwife vs. other midwife practitioner, registered nurse vs. other nurse practitioner.) However, it is important to understand that **actor functions are not professional credentials**. The credentials or specialty of a person may be quite different from what a person actually does. For example, interns and residents are the principle actors performing anesthesia, or surgeries, although under (more or less) supervision of attending specialists. The opposite example is people who are both medical doctors and registered nurses and who perform the function of a nurse.

Roles and certification refer to the static capabilities of a person (person-related,) while actors and Actor.type_cd refer to the particular function an actor played in the service (activity-related.)

On the other side, the actor concept interferes with sub-activities. Whenever multiple actors are involved in a service, each actor performs a different task (with the extremely rare exception of such symmetrical activities as two people pulling a rope from either end.) Thus, the presence of multiple actors could be equally well modeled as a service consisting of sub-services (through the Service relationship class,) where each service would have only one performing actor

For example, a record of a surgical service may include the actors of type: (a) consenter, (b) primary surgeon, and (c) anesthesist. These three actors really perform different tasks, which can be represented as three related services: (a) the consent, (b) the surgery proper, and (c) the anesthesia service in parallel to the surgery. If we used the sub-services, the consenter, surgeon and anesthesist could simply be of actor type "performer" each assigned to its own service. Thus the more sub-services we use the fewer different actor types need to be distinguished. The fewer sub-services we use the more distinct actor types we need.

Note that the perception of a task as "atomic" or "composite" (of sub-tasks) depends on local business rules and may differ from department to department. In principle, every task can be thought of as being a composite of sub-tasks. We thus say that actions are "fractal." The paradigmatic example of the fractal nature of activities is a "robotic arm" doing some simple action as reaching for a tool in front of it. The seemingly simple activity of the robotic arm decomposes into complex control and coordination procedures and movements, action of separate motors and switches, etc. (We sometimes use the keyphrase "robotic arm discussion" to recall the fractal nature of actions, since this example has been brought up over and over again, independently by different people.)

As a rule of thumb, sub-tasks should be considered instead of multiple actors when each sub-task requires special scheduling, or billing, or if overall responsibilities for the sub-tasks are different. In most cases, however, human resources are scheduled by teams (instead of individuals,) billing tends to lump many sub-tasks together into one position, and overall responsibility often rests with one attending physician, chief nurse, or head of department. This model allows both the multi-actor and the muli-service approach to represent the business reality, with a slight bias towards "lumping" minor sub-activities into the overall service.

4.1.1 Actor.type_cd : CV

Identifies a particular function or a set of functions that a person performs in the Service. In practice, there are very many different actor types whose names and responsibilities vary. The number and kinds of involved actors also depend on the special kind of service. We attempted to define a few orthogonal axes along which actor types could be defined more regularly. For example, one axis would be physical performance of the action, another axis would be responsibility for the action, yet another would be authoring the information in the service object. An actor can have one or more of these functions to a certain degree. However, the business semantics of these functions is too variant to be mathematically analyzed.

For this reason, we split the coding of the kind of actor's involvement into two attributes. The Actor.type_cd contains only categories that have crisp semantic relevance in the scope of HL7. It is a coded attribute without exceptions and no alternative coding systems allowed. Conversely, the Actor.function_cd is a mostly locally defined descriptor for the kind of professional activity carried out by the actor.

Revision 2.4 Actors and Targets

Table 12: Actor types

Concept	Code	Definition
Performer physic	ally acting	persons
performer	PRF	REQUIRED for every service event. A person who actually and principally carries out the action. Need not be the principal responsible actor, e.g. a surgery resident operating under supervision of attending surgeon, and may be the patient in self-care, e.g. fingerstick blood sugar. The traditional order filler is a performer.
assistant performer	ASS	A person assisting in a service through his substantial presence and involvement This includes: assistants, technicians, associates, or whatever the job titles may be.
escort	ESC	Only with Transportation services. A person who escorts the patient.
Authors and orig	inators of i	nformation
author	AUT	REQUIRED for every service. A person who originates and takes responsibility for the information given in the service object, e.g., the report writer, the person writing the service definition, the guideline author, the placer of an order etc.
data entry person	ENT	A person entering the data into the originating system. The data entry person is collected optionally for internal quality control purposes.
informant	INF	A source of reported information (e.g., a next of kin who answers questions about the patient's history.) For history questions, the patient is logically an informant, yet the informant of history questions is implicitly the subject.
call-back contact	CBC	A contact (often not individual) to whom immediate questions for clarification should be directed (e.g., a care facility to be called by phone number.)
Signatures peopl	e having a	ccountability without being physical actors
supervisor	SPV	A person who is legally responsible for the service carried out by a performer as a delegate. A supervisor is not necessarily present in an action, but is accountable for the action through the power to delegate, and the duty to review actions with the performing actor after the fact (e.g. head of a biochemical laboratory.)
verifier	VRF	A person who verifies the correctness and appropriateness of the service (plan, order, event, etc.) and hence takes on accountability.
witness	WIT	Only with service events. A person witnessing the action happening without doing anything. A witness is not necessarily aware, much less approves of anything stated in the service event. Example for a witness is students watching an operation or an advanced directive witness.
consenter	CNS	The person giving consent to the service (usually the patient himself or a legal guardian.) A consenting person is an actor in the sense of asking or delegating an action to happen upon himself.
reviewer	REV	A person reviewing the details of a service (order or documentation) after the fact.
Additional inform	nation recip	ients
referrer	REF	A person having referred the subject of the service to the performer (referring physician.) Typically, a referring physician will receive a report.
tracker	TRC	A person who receives copies of exchange about this service (e.g., a primary care provider receiving copies of results as ordered by specialist.)

An actor can do multiple of such functions identified by the Actor.type_cd at the same time. This can be represented using multiple Actor-instances each with a different Actor.type_cd value but relating to the same Stakeholder.

4.1.2 Actor.function_cd : CD

This attribute describes the business function of an actor in more detail. It can accommodate the huge variety and nuances of functions that actors may perform in the service. The number and kinds of functions applicable depends on the special kind of service. E.g., each operation and method may require a different number of assistant surgeons or nurses.

Examples for function types are shown in the following table. Note, however, this table shows just examples; the codes used may be locally defined. The data type of this field also allows just a simple uncoded textual description to be sent.

Table 13: Example concepts for the service- and site-specific functions of actors.

Function	Actor.type_cd	Definitionn
primary surgeon	performer	In a typical surgery setting the primary performing surgeon.
first assistant	assistant performr	In a typical surgery setting the assistant facing the primary surgeon. The first assistant performs parts of the operation and assists in others (e.g., incision, approach, electrocoutering, ligatures, sutures.)
second assistant	assistant performer	In a typical surgery setting the assistant who primarily holds the hooks.
scrub nurse	assistant performer	In a typical surgery setting the nurse in charge of the instrumentation.
third assistant	assistant performer	In a typical surgery setting there is rarely a third assistant (e.g., in some Hip operations the third assistant postures the affected leg.)
nurse assistant	witness	In a typical surgery setting the non-sterile nurse handles material supply from the stock, forwards specimen to pathology, and helps with other non-sterile tasks (e.g., phone calls, etc.)
anesthesist	performer	In a typical anesthesia setting an anesthesiologist or anesthesia resident in charge of the anesthesia and life support, but only a witness to the surgical procedure itself. To clarify responsibilities anesthesia should always be represented as a separate service related to the surgery.
anesthesia nurse	assistant performer	In a typical anesthesia setting the nurse principally assisting the anesthesiologist during the critical periods.
midwife	performer or assistant performer	A person (usually female) helping a woman deliver a baby. Responsibilities vary by locale, ranging from a mere assistant to a full responsibility for (normal) births and pre- and post-natal care for both mother and baby.

Note that the Actor.function_cd designates the actual function performed in the service. This is quite different from a role associated with a person or a profession- or specialty-code, although, some of the Actor.function_cd concepts may suggest that they are the same. While a person's role, a profession code, or a specialty code may signify a general capability and authority of that person, an Actor.function_cd rather represents a part or sub-task of the associated service activity.

Most notably the function *performing surgeon* is not necessarily filled by a certified surgeon, but in many cases by a resident (in which case an attending surgeon is designated as the *supervising* actor.) The same is true for the *anesthesist* who doesn't have to be an "anesthesiologist" and will in most cases be a resident, or sometimes even a nurse.

4.1.3 Actor.tmr : IVLáTSñ

This attribute can specify the time range during which the associated person was an actor of the specified Actor.type_cd in the associated service. This may be needed when the actor's involvement spans only part of the service, and if this fact is worth mentioning. The Actor.tmr does not need to be used in cases where this detail is irrelevant.

4.1.4 Actor.note_txt : ED

An actor can make a comment about this service item in the note attribute.

Revision 2.4 Actors and Targets

4.1.5 Actor.signature_cd : CV

Some Actors must provide a signature on the service instance. For example, a procedure report requires a signature of the performing and responsible surgeon. Or a consent requires the signature of the consenter. This attribute allows to specify whether or not such a signature is on file, it does not itself provide evidence for the signature.

Table 14: Actor signature code

Concept	Code	Definition
required	Χ	A signature for the service is required of this actor.
signed	S	A signature for the service is on file from this actor.

In today's environment, with the advent of digital signatures, this treatment appears to be insufficient. We will continue to work on integrating this to a framework of digital signatures. However, there are severe technical obstacles to overcome: digital signatures do not exist over abstract information. Only concrete bit-representations of information can be signed. Since HL7 version 3 tries to separate abstract information from bit-encodings, it is not clear how such a digital signature could exist.

We are aware of the X.509 approach of Distinguished Encoding Rules (DER), but there is currently no definition for encoding HL7 data structures in DER, nor does it seem like the industry prefers DER as the principle message encoding rules. Furthermore, there needs to be a framework to integrate traditional paper-based signatures as well. Hence, we acknowledge that the Actor class may be the principle point of implementing electronically authenticated medical records, but we defer the elaboration of this approach to later.

4.2 Target (service target)

Targets can be all physical entities, including humans, other living subjects and inanimate material. The Target class maintains a choice to link to either a Person or a Material as its substance. Again, the existing RIM classes around Stakeholder are not touched by this proposal at this time. The approach to material however is a novelty of this proposal and will be discussed further below.

4.2.1 Target.type_cd : CV

Just as with actors, different participation types can be identified for targets. By "target" of an action we mean objects of a verb. Objects appear in different cases: direct objects, indirect objects or adverbial objects according to their roles in a sentence. Target participation type codes distinguish those different roles. For instance, patient, guarantor, custodian, or family members are examples of target participation types. These are in the role of direct target on whom (accusative) or the indirect beneficiary (on behalf of whom) the service action is performed. In addition any material, specimen, device, or location used or produced by a service is a target of the service.

Table 15: Target types

Concept	Implies	Code	Definition
direct target		DIR	Target that is substantially present in the service and which is directly affected by the service action (includes consumed material, devices, etc.)
subject	direct target	SBJ	The principle target that the service acts on. E.g. the patient in physical examination, a specimen in a lab observation. May also be a patient's family member (teaching) or a device or room (cleaning, disinfecting, housekeeping.) Note: not all direct targets are subjects, consumables, and devices used as tools for a service are not subjects. However, a device may be a subject of a maintenance

			service.
beneficiary		BEN	Target on behalf of whom the service happens, but that is not necessarily present in the service. Can occur together with <i>direct target</i> to indicate that a target is both.
patient		PAT	The patient target indicates whose patient medical record this service item is part of. This is especially important when the subject of a service is not the patient himself. For practical purposes it is good to always have one patient target whose only meaning is that this service belongs to that patient's medical record. In addition, other targets types should be specified if the patient is also a subject or beneficiary or other target of the service.
proxy	subject	NOK	Someone who is the subject of the service on behalf of the patient. For example, a family member who is the subject of a teaching service in the patient's matters.
donor	subject	DON	In some organ transplantation services and rarely in transfusion services a donor will be a target participant in the service. However, in most cases transplantation is decomposed in three services: explantation, transport, and implantation. The identity of the donor (recipient) is often irrelevant for the explantation (implantation) service.
mother	patient	MTH	In an obstetric service, the mother.
baby	patient	BBY	In an obstetric service, the baby.
specimen	subject	SPC	The subject of non-clinical (e.g. laboratory) observation services is a specimen.
product	direct target	PRD	A material target that is brought forth (produced) in the service (e.g., specimen in a specimen collection, access or drainage in a placement service, medication package in a dispense service.) It doesn't matter whether the material produced had existence prior to the service, or whether it is created in the service (e.g., in supply services the product is taken from a stock.)
consumable	direct target	CSM	Target that is taken up, is diminished, and disappears in the service.
therapeutic agent		TPA	Something incorporated in the subject of a therapy service to achieve a physiologic effect (e.g., heal, relieve, provoke a condition, etc.) on the subject. In an administration service the therapeutic agent is a consumable, in a preparation or dispense service, it is a product. Thus, consumable or product must be specified in accordance with the kind of service.
device	direct target	DEV	Something used in delivering the service without being substantially affected by the service (i.e. durable or inert with respect to that particular service.) Examples are: monitoring equipment, tools, but also access/drainage lines, prostheses, pace maker, etc.
non-reuseable device	device	NRD	A device that changes ownership due to the service, e.g., a pacemaker, a prosthesis, an insulin injection equipment (pen), etc. Such material may need to be restocked after he service.
reusable device	device	RDV	A device that does not change ownership due to the service, i.e., a surgical instrument or tool or an endoscope. The distinction between reuseable and non-reuseable must be made in order to know whether material must be re-stocked.
payload	subject	PYL	For transportation services, the transported passenger or goods.
location		LOC	The facility where the service is done. May be a static building (or room therein) or a moving location (e.g., ambulance, helicopter, aircraft, train, truck, ship, etc.)
origin	location	ORG	The location of origin for transportation services. May be a static building (or room therein) or a movable facility (e.g., ship.)
destination	location	DST	The destination for transportation services. May be a static building (or room therein) or a movable facility (e.g., ship.)
via	location	VIA	For transportation services, an intermediate location that specifies a path between origin an destination.
remote	location	RML	Some services take place at multiple concurrent locations (e.g., telemedicine, telephone consultation.) The location where the principal performing actor is located is taken as the primary location (LOC) while the other location(s) are considered "remote."

Revision 2.4 Actors and Targets

4.2.2 Target.tmr : SETáCVñ

This is the time range in which the associated person or thing was a target of the specified Target.type_cd in the associated service.

4.2.3 Target.awareness_cd : CV

For person targets indicates whether the associated patient or family member is aware of the service, and especially of the observation made. For example, a patient (or his next family members) may not be aware of a malignancy diagnosis, the patient and family may be aware at different times, and some patients may go through a phase of denial. For other than person targets this attribute is not applicable and shall not be valued.

Table 16: Awareness code

Concept	Code	Definition
full awareness	F	Target person is fully aware of the issue.
uninformed	U	Target person has not yet been informed of the issue.
denying	D	Target person has been informed about the issue but currently denies it.
partial	Р	Target person is partially aware of the issue.
marginal	M	Target person is marginally aware of the issue.
incapable	I	Target person is not capable of comprehending the issue.

5 Action Structures

Consider a surgical procedure, e.g. a laparoscopic cholecystectomy, as a typical action in health care. This action obviously consists of many smaller actions that must occur in the right order and relation to each other. Preoperative preparation is a precondition. Anesthesia is conducted in parallel to the entire surgical component. The operation itself includes a sequence of steps, such as incisions, preparation of the gall bladder, ligature of the vessels, excision and extraction of the gall bladder, sutures and bandages. Close analysis reveals that even the simplest of actions can be split into smaller actions. We thus say that actions are "fractal." The paradigmatic example of the fractal nature of activities is a "robotic arm" doing some simple action as reaching for a tool in front of it. The seemingly simple activity of the robotic arm decomposes into complex control and coordination procedures and movements, action of separate motors and switches, etc.

Because actions are fractal for everyone to keep track of all the sub-actions is neither possible nor desirable. Since healthcare is a collaborative process involving many different perspectives, the level of detail needed may not be the same for everyone. Notably there is, in principle, no way to come to a standardized consensus on the "right" level of detail to be assumed in all of HL7's scope. For example, the working group on laboratory automation is be interested in more procedural detail of laboratory tests and maintenance activities. Other working groups focusing on clinical medicine may not want to deal with all that technical detail, but may consider other detail (e.g., medical reasoning) as relevant. Yet, HL7 is to suit both equally valid perspectives, and HL7 should do it's best to allow both perspectives to cooperate smoothly.

An information model must describe the most fine-grained level of detail needed by any customer of the data. For instance, the surgeon reports on every major milestone of his operation for communication with the next surgeon and the legal system, but the payer usually only wants to know about the cholecystectomy at the very top level. Since the detail level needed may vary, the model must incorporate a method of mapping between "atomic" actions and collections of sub-actions.

Analysis of action relationships also revealed the need to associate individual actions to collections of past actions, e.g. this test was performed because of the results of two earlier tests.

In the initial USAM proposal therefore introduced a general recursive association, the class Service_relationship. The Service relationship class is a recursive associative class with two associations to the Service class, one named "source" the other named "target". Consider every Service_relationship instance an arrow with a point (headed to the target) and a butt (coming from the

Figure 7: A surgeon intends to perform a cholecystectomy because there are gallstones found by a radiologist. The medical record must attribute the "reason" link properly to the surgeon so as to avoid ambiguity as if the radiologist has suggested the cholecystectomy. The rule of attribution is **that all service relationships** are attributed to the responsible actor of the source service.

source.) For each relationship type the roles of source and target Service are different as specified in Table 17 below.

In principle the assignment of roles to each side of the relationship "arrow" is completely arbitrary. However since a service is the core element of a medical record, proper attribution of the medical record items is an important issue. The relationships associated with a Service are considered properties of the *source* service object. That means, that the originator of the information reported in a service object is not only responsible for the attribute values of that object, but also for all its outgoing relationships.

For example (Figure 7), consider a record item of an ultrasonography, authored by radiologist R, mentioning the presence of 4 gall stones about 1 cm in diameter, but no signs for acute inflammation of the gall bladder. The surgeon S reads this report and sees in it an indication for a laparoscopic cholecystectomy. S will be the author of the cholecystectomy service. So both, the cholecystectomy service and the indication will be authored by S. The indication link pointing to the ultrasonography service must not in any way be misunderstood as if the Radiologist was suggesting the cholecystectomy.

THE SERVICE RELATIONSHIPS ARE ALWAYS ATTRIBUTED TO THE RESPONSIBLE AUTHOR OF THE SERCICE AT THE SOURCE OF THE RELATIONSHIP (THE SOURCE-SERVICE)!

With this recursive service relationship one can group actions into "batteries," e.g. LYTES, CHEM12, or CBC, where multiple routine laboratory tests are ordered as a group. Some groupings, such as CHEM12, appear more arbitrary; others, such as blood pressure, seem to naturally consist of systolic and diastolic pressure.

Actions may also be grouped longitudinal, in a sequence of sub-actions. Examples of such longitudinal grouping patterns include the phases of a clinical trial or the steps of the cholecystectomy outlined above. Actions may be explicitly timed, and may be conditioned on the status or outcome of previous actions. Concurrent collections of actions allow expressing logical branches as well as parallel tasks (tasks carried out at the same time.) These constructs can be organized in multiple layers of nesting, to support workflow management.

The relationship class is not only used to construct action plans but also to represent clinical reasoning or judgements about action relationships. Prior actions can be linked as the reasons for more recent actions. Supporting evidence can be linked with current clinical hypotheses. A flexible way of

Revision 2.4 Action Structures

managing problem lists consistent with the requirements addressed by Rector³ also uses the action relationship as its key component.

5.1 Attributes of class service relationship

5.1.1 Service_relationship.type_cd: CV

Determines the meaning of a relationship between two Services. This attribute is probably the most important attribute in this entire model besides the Service.mood_cd. It is a "structural" attribute inasmuch as each of its values implies specific constraints to what kinds of Service objects can be related and in which way.

The following table lists the concepts of the Service_relationship.type_cd attribute. For individual relationship type codes, the roles of source and target are specified in the table.

Concept	Code	Implies	Definition	meaning of the service		
				source	target	
has parts	PART		Collection of sub-services of any kind.	collection	element	
has plan component	PLCM	PART	A collection of sub-services as steps or subtasks performed for the source service. Services may be performed sequentially or concurrently. See Section 1 below for detail.	plan	step	
has ingredient	INGR	PART	Allows expressing composition of medications from ingredients. Both, source (composite) and target (ingredients) are medications, where the ingredients need not necessarily be commonly ordered medications. Note: usually the class Material and Material_relationship should be used to express mixtures. However, for medical knowledge a composite substance (e.g. Cotrimoxazole or Tylenol III) can be though of as a combined treatment service. The Medication class should be used mainly for generics while the detail of pharmaceutical products should be given through the Material class.	composite	ingredient	
has species	SPEC		The generalization relationship (often ambiguously called "is-a") can be used to express categorical knowledge about services. (e.g., amilorid, triamterene, and spironolactone medications are potassium sparing diuretics.)	genus	species	
has pre-	PRCN		A requirement to be met before a service is performed. The target can be any service in	action	pre-condition	

Table 17: Service relationship types⁴

_

Rector AL, Nowlan WA, Kay S. Foundations for an electronic medical record. Meth Inform Med, 1991;30:179–86.

See footnote 1 on page 12 for a description of the vocabulary table convention. Here we use two additional convention in the **Implies** column: (1) an "exponent" –1 at the code in the "implies" column means that the currently defined concept implies the inverse meaning of the code in the "implies" column. Please refer to the description of the inversion_ind attribute about what inversion means and how it is used. (2) a minus sign in front of the code in the "implies" column indicates that the currently defined concept implies the logical negation of the concept referred to in the "implies" column. (e.g., contraindication is the negation of reason ("–RSON").

condition			criterion mood. For multiple pre-condition a conjunction attribute (AND, OR, XOR) is applicable.		
has trigger	TRIG	PRCN	A pre-condition that, if true would permit, suggest, or demand the source service (action) to be executed. The target is in <i>criterion</i> mood. A delay between the trigger and the triggered action can be specified.	action	trigger
has reason	RSON	PRCN	The reason or rationale for a service. A reason link is weaker than a trigger, it only suggests that some service may be or might have been a reason for some action, but not that this reason requires/required the action to be taken. Also, as opposed to the trigger, there is no strong timely relation between the reason and the action.	action	reason
suggests	SUGG	RSON ⁻¹	This is an inversion of the reason link, used to express recommendations or suggestions. For example, if the radiologist in the example of Figure 7 would have recommend the cholecystectomy, one would use the suggestion link.	reason	suggested action
has contra- indication	CIND	-RSON	A contraindication is just a negation of a reason, i.e. it gives a condition under which the action is not to be done. Both, source and target can be any kind of service, target service is in <i>criterion</i> mood. How the strength of a contraindication is expressed (e.g., relative, absolute) is left as an open issue. The priority_nmb attribute could be used.	action	contra- indication
has outcome	OUTC		An observation that should follow or does actually follow as a result or consequence of a condition or action (sometimes called "post-condition".) Target must be an observation as a <i>goal, risk</i> or any <i>criterion</i> . For complex outcomes a conjunction attribute (AND, OR, XOR) can be used. An outcome link is often inverted to describe an outcome assessment.	condition or action	outcome
has goal	GOAL	OUTC	A goal that one defines given a patient's health condition. Subsequently planned actions aim to meet that goal. Source is an observation or condition node, target must be an observation in <i>goal</i> mood.	observation, condition	goal
has final objective	OBJF	OUTC	A desired outcome that a service action aims to meet finally. Source is any service (typically an intervention.) Target must be an observation in <i>criterion</i> mood.	service	criterion
has continuing objective	OBJC	OUTC	A desired state that a service action aims to maintain. E.g., keep systolic blood pressure between 90 and 110 mm Hg. Source is an intervention service. Target must be an observation in <i>criterion</i> mood.	service	criterion
has risk	RISK	OUTC	A noteworthy undesired outcome of a patient's condition that is either likely enough to become an issue or is less likely but dangerous enough to be addressed.	observation, condition	risk
has support	SPRT		Used to indicate that an existing service is suggesting evidence for a new observation. The assumption of support is attributed to the same actor who asserts the observation. Source must be an observation, target may be any service (e.g., to indicate a status post.)	observation	supporting evidence
has expla- nation	EXPL	SPRT ⁻¹	This is the inversion of support. Used to indicate that a given observation is explained by another observation or condition.	observation	explaining observatior or conditior

Revision 2.4 Action Structures

is cause for	CAUS	SPRT	An assertion that a new observation was assumed to be the cause for another existing observation. The assumption is attributed to the same actor who asserts the observation. This is stronger and more specific than the support link. For example, a growth of Staphylococcus aureus may be considered the cause of an abscess. The source (cause) is typically an observation, but may be any service, while the target must be an observation.	cause	effect
is manifest- ation of	MFST	CAUS-1	An assertion that a new observation may be the manifestation of another existing observation or action. This assumption is attributed to the same actor who asserts the manifestation. This is stronger and more specific than an inverted support link. For example, an agitated appearance can be asserted to be the manifestation (effect) of a known hyperthyroxia. This expresses that one might not have realized a symptom if it would not be a common manifestation of a known condition. The target (cause) may be any service, while the source (manifestation) must be an observation.	manifestation	cause
is derived from	DRIV	SPRT	A derivation link serves to explicitly associate a derived observation with its input parameters. Both, source and target must be observations, typically numerical observation. E.g., an anion-gap observation can be associated as being derived from given sodium-, (potassium-,) chloride-, and bicarbonate-observations.	output parameter	input parameter
has reference values	REFV	SPRT ⁻¹	Reference ranges are essentially descriptors of a class of result values assumed to be "normal", "abnormal", or "critical." Those can vary by sex, age, or any other criterion. Source and target are observations, the target is in <i>criterion</i> mood. The interpretation range is both a support link and a trigger, in case of alarms being triggered by critical results.	observation	range
assigns name	NAME	SPRT ⁻¹	Used to assign a "name" to a condition thread. Source is a condition node, target can be any service.	condition thread	name
is revision of	RVSN		A service description that is a modification of another service description. This includes revisions of protocols and orders.	revision	prior version
amends	AMND	RVSN	A service that amends a previously stated service. This is used, e.g., for corrections of reported observations.	amendment	prior version
updates (condition)	UPDT	RVSN	A condition thread relationship specifically links condition nodes together to form a condition thread. The source is the new condition node and the target links to the most recent node of the existing condition thread.	new head of thread	old head of thread
instantiates (master)	INST	RVSN	Used to capture the link between a potential service ("master" or plan) and an actual service, where the actual service instantiates the potential service. The instantiation may override the master's defaults.	instance	master
fulfills (order)	FLFS	RVSN	A service that was done in fulfillment of an ordered service description. A fulfilled service may differ from an ordered (or planned) service description.	fulfillment	order
dispensing for (ordrer)	DISP	FLFS	Links a medication service (order) with a supply service, representing the dispensing of the drug (as	supply order of event	medication order

substitutes (brand product)	SBST	RVSN	A special link between medications indicating that the source is a generic for the target.	generic	brand
matches (trigger)	MTCH	RVSN	A trigger-match links an actual service (e.g., an observation or procedure that took place) with a service in <i>criterion</i> mood. For example if the trigger is "observation of pain" and pain is actually observed, and if that pain-observation caused the trigger to fire, that pain-observation can be linked with the trigger.	matching service	trigger
evaluates (goal)	GEVL	RVSN	A goal-evaluation links an observation (intent or actual) to a goal to indicate that the observation evaluates the goal. Given the goal and the observation, a "goal distance" (e.g., goal – observation) can be "calculated" and need not be sent explicitly.	evaluation	goal
has option	OPTN		Multiple alternative options for an order, routing, or scheduling options and preferences may be specified for a planned (or ordered) service. The source (plan) is in either of the moods <i>definition</i> , <i>intent</i> , or <i>order</i> . The Service.priority_nmb attribute is used to weigh options as preferred over other options.	plan	option

This table is not necessarily complete. The purpose of this table is to be as specific as possible but also to classify similar relationship types into categories. Some may miss an unspecific relationship type "pertains-to." This "pertinence" was not included in the above table, because, it is just a more polite way to say "relationship, not otherwise specified" or "other." The problem is that "other" terms have no specified meaning, but are merely the complement of all the currently existing relationship types. As new relationship types will be defined in the future, "other" will change its meaning rather drastically. When other relationship types are discovered, they should be communicated to the Order/Results or Patient/Care Technical Committees and should be standardized. In addition the HL7 Code Value (CV) data type allows one to express that a given concept is not-codeable with the applicable code system.

5.1.2 Service_relationship.inversion_ind : BL default: false

The inversion indicator is used when the meaning of the relationship type must be reversed. For example, we define a relationship type *reason* to express the reason for an action as in

 a) "A cholecystectomy was performed because of symptomatic cholelithiasis without signs for cholecystitis." (cholecystectomy has-reason cholelithiasis)

This statement of rationale is attributed to the responsible performer of the cholecystectomy. Now consider the following statement:

b) "The finding of symptomatic gall stones (cholelithiasis) with no signs of acute cholecystitis suggests a cholecystectomy."

While sentence a) declares a reason for an action, sentence b) suggests an action. Reason and suggestion links are in a reciprocal, i.e., if X has-reason Y, then Y suggests X. The second statement would may have been made by the originator of the cholelithiasis finding.

In the "network" of interrelated services, we need to make sure that we do not lose proper attribution of statements to originators ("who said what?") Since attribution is so important, we adopt a very simple rule for it: a service relationship is always attributed to the originator of the source service. No exceptions to this rule are permitted whatsoever. If attribution needs to be different one can invert the relationship type by setting the inversion_ind attribute to true.

If the inversion indicator is *true*, source and target service swap their roles, that is, the reason and the suggested action swap their roles, so that cholecystectomy can be the source and colelithiasis can be the

Revision 2.4 Action Structures

target. Note that the attribution rule is always unchanged, i.e., **the service relationship is always attributed to the responsible author of the** *source* **service**, no matter what the inversion_ind value is.

5.1.3 Service_relationship.sequence_nmb : INT default: 1

This integer number allows one to specify an ordering amongst the outgoing relationships of a service. This is used to represent sequences of actions in execution plans.

The ordering may be total or partial. A total ordering exists if every relationship in a relationship bundle has a distinct sequence number. (A relationship "bundle" is a sub-set of the relationships originating in the same service instance and usually having the same relationship type). If, however, some relationships in the bundle share the same sequence number, we have a partial ordering. In such a case the services with the same sequence number are concurrent.

5.1.4 Service_relationship.priority_nmb: INT default: 1

This integer number allows to specify another kind of ordering amongst the outgoing relationships of a service. This is used to represent the priority ordering of conditional branches in service execution plans, or priority ranking in pre-condition, outcome or support links, and preferences among options.

The ordering may be total or partial. A total ordering exists if every relationship in a relationship bundle (a relationship bundle is a sub-set of the relationships originating in the same service instance and usually having the same relationship type) has a distinct priority number. If, however, some relationships in the bundle share the same priority number, we have a partial ordering. Those links with the same priority will have undefined ordering of consideration.

5.1.5 Service_relationship.pause_qty: PQ ~ 1 sdefault: 0 s

The time that should elapse after this activity has got clearance to execute and the actual begin of execution. Any entering pre-conditions are tested before the slot is entered, so the pause specifies a minimal waiting time before the service is executed after its pre-conditions become true.

5.1.6 Service_relationship.checkpoint_cd : CV default: B

Indicates when associated pre-conditions are to be tested. The following values are defined:

Concept Code **Definition** Condition is tested once before the service is executed (IF condition THEN service). entry beginning В Condition is tested every time before execution of the service (WHILE condition DO service.) Е Condition is tested at the end of a repeated service execution. The service is repeated only if the end condition is true (DO service WHILE condition.) through Condition must be true throughout the execution and the service is interrupted (asynchronously) as Т soon as the condition turns false (asynchronous WHILE loop.) The service must be interruptible. exit Condition is a loop checkpoint, i.e. it is a step of an activity plan and, if negative causes the containing loop to exit.

Table 18: Condition checkpoint code

5.1.7 Service_relationship.split_cd : CV default: I1

When an activity plan has a branch (indicated through multiple steps with the same item number) the split code specifies how branches are selected for execution. The values are defined as follows:

Table 19: Branch split code

Concept	Code	Definition
exclusive try once	E1	The pre-condition associated with the branch is evaluated once and if true the branch may be entered. All other exclusive branches compete with each other and only one will be selected. This implements a COND, IF and CASE conditionals, or "XOR-split." The order in which the branches are considered may be specified in the Service_relationship.priority_nmb.
exclusive wait	EW	A branch is selected <i>as soon as</i> the pre-condition associated with the branch evaluates to true. If the condition is false, the branch may be entered later, when the condition turns true. All other exclusive branches compete with each other and only one will be selected. Each waiting branch executes in parallel with the default join code <i>wait</i> (see below.) The order in which the branches are considered may be specified in the Service_relationship.priority_nmb.
inclusive try once	I1	A branch is executed if its associated preconditions permit. If associated preconditions do not permit, the branch is dropped. Inclusive branches are not suppressed and do not suppress other branches.
inclusive wait	IW	A branch is executed as soon as its associated conditions permit. If the condition is false, the branch may be entered later, when the condition turns true. Inclusive branches are not suppressed and do not suppress other branches. Each waiting branch executes in parallel with the default join code wait (see below.)

5.1.8 Service_relationship.join_cd : CV default: W

In a parallel branch construct the join code indicates how the concurrent activities are resynchronized.

Table 20: Branch join code

Concept	Code	Definition
wait	W	Wait for this branch to terminate.
kill	K	When all other concurrent branches are terminated, interrupt and discontinue this branch.
exclusive wait	Χ	Wait for any one of the branches in the set of exclusive wait branches to terminate, then discontinue all the other exclusive wait branches.
detached	D	Detach this branch from the other branches so it will not be resynchronized with the other branches.

A *kill* branch will only be executed if there is at least one active *wait* (or *exclusive wait*) branch. If there is no other *wait* branch active, a *kill* branch is not started at all (rather than being discontinued shortly after it is started.) A *detached* branch will be unrelated to all other branches, thus a *kill* branch will be discontinued no matter whether there are *detached* branches still running.

5.1.9 Service_relationship.negation_ind : BL default: false

For conditions and criteria links indicates whether the meaning is negative (condition must not be true.) Normally all conditions are interpreted as affirmative, i.e., the condition must be true. The negation_ind is part of the condition so that the Boolean outcome of the condition XOR-ed with the negation_ind of the condition link must be true. We thus say the "condition is true" even if the test was negative if the negation_ind is *true*.

Revision 2.4 Action Structures

5.1.10 Service_relationship.conjunction_cd : CV default: AND

In a bundle of precondition or outcome relationships, this code indicates the logical conjunctions of the criteria.

Table 21: Criteria conjunction code

Concept	Code	Definition
and	AND	This condition must be true.
or	OR	At least one of the condition among all OR conditions must be true.
exclusive or	XOR	One and only one of the XOR conditions must be true.

All AND criteria must be true. If OR and AND criteria occur together, one criterion out of the OR-group must be true and all AND criteria must be true. If XOR criteria occur together with OR and AND criteria, exactly one of the XOR criteria must be true, and at least one of the OR criteria and all AND criteria must be true. In other words, the sets of AND, OR, and XOR criteria are in turn combined by a logical AND operator (all "AND" criteria *and* at least one "OR" criterion *and* exactly one "XOR" criterion.)

6 Timed and conditioned care plans

Providing a concise way of representing care plans, scheduling, protocols, guidelines, and workflow processes is one of the main concerns of the USAM. There is a huge amount of prior work in this area on which this proposal is based. In this section we present the three principle building blocks of timed and conditioned care plans, which is, (1) plans, (2) conditionals and (3) timing.

6.1 Plans

6.1.1 Background

Defining a plan of activities is very much like programming a computer. To standardize the HL7 information structure for activity management (e.g., ordering, scheduling) it is of utmost importance to absolutely crisply define the meaning and functioning of all the data elements and data structures that are supposed to manage activities.

The advantage of likening business activity management with computer programming is that what is understandable to a computer usually makes sense to humans as well (but not vice versa.) In the following we speak about a service whose "conditions are checked," "that is invoked or discontinued," as if there was a microprocessor doing it all. In so speaking we do not imply that every system needs to have automated activity management functionality or a service execution "robot," programmed and directed by HL7 messages. Instead of performing services automatically, many systems will choose to manage activities by active or passive

Figure 8: Simple model of the essential sequential programming constructs: A statement may be primitive (not specialized.) A conditional consists of a number of branches, each branch having a condition and a statement. A block is a sequence of statements that is executed once, while a loop is just a block executed more than once. Blocks (loops) can be exited with the exit statement, that is usually embedded in a conditional.

reminder notices to personnel. However, systems should be able to map whatever their functionality is to HL7 interfaces precisely and interoperably. This can only be achieved if the HL7 specification of process wok-flow has some rigor.

In principle a computer program consists of *statements*. Every statement represents a step in an activity plan. Most computer programming languages provide a sequential computing model, where statements are executed one after the other. For real world processes a purely sequential execution model is clearly inadequate, since real world activities are carried out cooperatively and concurrently by multiple actors who perform multiple sub-tasks all at the same time. However, there is considerable work in computer science on parallel processes, although that is not usually reflected in the more popular programming languages. Just like many of the proposed concurrency-aware programming languages do, we will reuse the fundamental concepts from a sequential execution model as far as possible and then add the concurrent constructs to it.

6.1.1.1 Sequential control constructs

In the sequential computing model, the primitive statements fall into two categories (1) data and I/O manipulation commands, and (2) control flow commands. The most primitive control flow command is the GOTO statement and the IF-THEN conditional branching. In the early 30 years of computer science the value of structured program design has been discovered and one finds agreement that even though the primitive control flow statements are all that is technically needed, a structured program model is favorable. The consensus model of structured programming that such diverse languages as LISP and the ALGOL family seem to agree to consists of the following components:

- (1) primitive statement (e.g., procedure call, value assignment.)
- (2) block (a sequence of statements.)
- (3) Conditional
 - (a) (COND (condition₁ statement₁) (condition₂ statement₂) ... (condition_n statement_n))
 - (b) IF condition THEN statement₁ ELSE statement₂
 - (c) CASE expression OF value₁: $statement_1$; $value_2$: $statement_2$; ...; $value_n$: $statement_n$; END
- (4) Loop
 - (a) LOOP statement with nested conditional EXIT
 - (b) WHILE condition DO statement
 - (c) REPEAT statement UNTIL condition
 - (d) FOR iterator DO statement

The most general conditional statement is the COND term known from LISP: a list of condition-action pairs is worked down until a condition evaluates to true, only then the associated action is executed and its result becomes the result of the entire COND term. The final condition in the list should be a default (the *true* literal) so that the final action will be the default action, otherwise the COND term "fails." IF-THEN-ELSE is simply a restricted COND term with only one condition and one default. The CASE statement is just a COND term with the condition being an equality test for the case expression with the case branch value.

The most general (and actually the most useful) loop statement is the LOOP-EXIT statement added late into the ALGOL family (with MODULA 2.) Pushing the condition test to the begin or end of the loop body as is done in WHILE and REPEAT loops reads nice in English but is seldom actually useful.

Therefore we will mark the primitive statement, the block, the COND term, and the LOOP-EXIT statement as a requirement for the HL7 sequential activity plan. A simple model of those minimal control constructs is shown in Figure 8.

Figure 9: Example of sequential plan construction for laparoscopic cholecystectomy. Edged boxes are Service instancess (all in definition "master" mood.) Rounded boxes are Service_relationship instances of type: plan-component. The sequence_nmb attribute orders the relationships into a sequence. Each service can in turn be decomposed into plan-components.

6.1.1.2 Concurrent control constructs

The primitive of parallel activities are the notions of a process, a fork that spawns off a child process from a parent process, and inter-process communication through signals and semaphores. However, just as with sequential programming, a more structured approach is favorable. A typical approach to "parallelizing" sequential programming languages is to conceive parallel extensions of the sequential constructs. Thus one can correlate a statement with a process, a block with a multi-branch fork. The COND term can be parallelized as a multi-branch fork with guard-conditions on each branch. Parallel loop constructs are conceivable but their use seems rather limited.

6.1.2 HL7 Activity Plans

In HL7 version 3 an activity plan can be constructed as a brand new instance used once for a particular patient or can be defined in the "master file" and reused multiple times. Complex orders are an example for when one would construct brand new service plans. For protocols and guidelines, service plans are defined once as a "master" service. In any way, every activity in our plan construction model is represented as an instance of the service class.

Every "primitive" activity must be defined as a service "master", there are no primitive statements defined by HL7 besides what is defined as "master" services. These plan construction features allow one to construct plans either as reuseable master plans or as ad-hoc plans constructed for just one

Figure 10: Example of plan construction with a concurrent region. Edged boxes are Service instances. Rounded boxes are Service_relationship instances of type: plan-component showing only the sequence_nmb attribute. Since the components A3.1, A3.2 and A3.3 all have the same sequence number (3) they may be executed in parallel.

special case. However, the primitives that the so constructed plan uses, must be predefined as master services.

A simple block statement can be formed through a service that has a set of target services associated with it through service relationships of type *plan-component*. In a simple sequential block, every relationship instance has a different Service_relationship.sequence_nmb value so that the order of the statements in the block is given from lowest to highest. For example, the laparoscopic cholecystectomy example would (partially) decompose as shown in Figure 9.

An activity loop can be constructed by setting the Service.max_repeat_nmb to a value greater than 1. For any finite max_repeat_nmb > 1 the loop will cycle at most that number of times and then exit. If max_repeat_nmb is set to the positive infinity (a special kind of a null-value) the loop can be cycled

indefinitely. The loop is still terminated when the time constraints or conditional constraints are no longer valid.

If the multiple plan-components have the same sequence number, this indicates a concurrent region or a branching of the flow of control. Concurrent region and (conditional) branching is actually expressed in the same way with the attributes split_cd, and join_cd to control the kind of branching or concurrent region. Figure 10 shows an example with three concurrent plan components. In this example there are four sequential steps: A1, A2, A4 and the *concurrent region* consisting of A3.1 A3.2 and A3.3. The control flow is symbolized with dashed arrows in Figure 10, with a split (or fork) before the concurrent region and a join after the concurrent region.

When only one of the branches A3.1, A3.2, or A3.3 is selected we have a conventional conditional branch known from every programming language. In general a branch can only be selected for execution if all its preconditions are true. If all the branches have their split_cd attribute set to "exclusive" branching (E1 or EW) only one branch will be entered. If more than one branch is ready to be entered, the one with the lowest priority_nmb value is selected. If priority_nmb is ambiguous, the selection of the branch is undefined (subject to preferences of the performing actors or simply random.) The priority is ambiguous if more than one branch that have clearance to run have the same priority_nmb value and if no other branch with clearance has a higher priority (see about conditions below.)

If split_cd is "inclusive" (I1 or IW) and more than one branch have clearance to run, there will be a true concurrent region, i.e. all branches with clear preconditions will be executed in parallel. The synchronization of the concurrent region is controlled by the join_cd. If the join_cd for one branch is wait (W) the concurrent region ends not before that branch terminates. If the super-service is asynchronously stopped (by a time-out or by through-criteria to turn false,) the wait branches will be interrupted. (An interrupt may be blocked, however, if the actually running (sub-)service has the Service.interruptible_ind set to false.)

If the join_cd for a branch is *kill* (K) that branch is interrupted and terminated prematurely as soon as all other branches have terminated whose join_cd is neither *kill* nor *detached*. The interruption of the kill branch is subject to the Service.interruptible_ind. This means, if the branch to interrupt is currently

Figure 11: A simple condition representing a PRN medication order: Acetaminophen 1000 mg tab p.o. PRN for pain. Criteria always refer to the most recent service if the time attribute is not specified.

executing a sub-activity that is not interruptible, the service will be interrupted only after that non-interruptible sub-activity is completed. For example, if the slot contains one wait-branch and one kill-branch, the kill-branch executes until the wait-branch terminates. A concurrent region can not consist of only *kill* branches, since none of it could ever be executed – there must be at least one *wait* or *exclusive-wait* branch.

Exclusive join codes behave like the reverse of an exclusive branch. For example, if all sub-activities A3.1, A3.2, and A3.3 run with *exclusive wait* (X) and, say, A3.3 terminates first, A3.1 and A3.2 will be interrupted and discontinued. The *exclusive wait* join code lets you express a "whichever comes first" logic.

Finally the join code *detach* will spawn off the activity and run on its own. Detached branches will not be resynchronized to the parent service nor to any other branches running concurrently. Detached branches can not extend the runtime of kill-branches, and are not terminated by interrupts to the parent service. Detached branches are terminated only subject to their own conditions. For example, if A3.3 were detached, it could continue to execute even if A3.1 and A3.2 ends and A4 is begun. No synchronization with A3.1 and A3.2 or A4 will occur for the detached branch.

6.2 Conditionals

Activities can not be planned ignorant of the varying circumstances of the real world. Variants of plans must be selectable depending on certain circumstances. Probably the most important functionality of the Unified² Service Action Model is its straight forward way to express conditions. Conditions can select sequential or concurrent branches in activity plans, and can control the repeated execution of activities (loops.) But conditions can also asynchronously invoke other activities (e.g., alert and reminder triggers) or can asynchronously interrupt current activities. Finally, activities as outcomes can be used to describe goals, whose evaluation can be initiated automatically.

Conditionals in USAM are described uniformly as Service *predicates*. A service predicate is an instance of class Service in one of the predicate moods. In predicate mood, a service object is not indicating a service that has been or will actually be performed as such, but it specifies a pattern that actual services can be compared against. For example, when we want to prescribe PRN medication Acetaminophen 1000 mg p.o. once for "pain" we can formulate this as an Observation service in *criterion* mood as shown in Figure 11.

Thus, any service that two systems share common definitions (defined in the "master" service catalog) can be used to formulate conditions. By default, any field of a *criterion* service object is assigned the *no-information* (NULL) value, meaning that it would match any actual data. When testing a criterion a system will pick the most recent actual service instance of the specified Service definition or *Service name*. It will the look at all fields that are assigned values and compare those with the actual service under consideration. All fields with assigned values must match the actual service.

Figure 12: Example of a complex criterion as a precondition for Service X, representing the Boolean expression ((A or B) AND C) XOR (D or E).

other criteria.

Conditions are tested at different times in the execution of a service depending on the Service_relationship.checkpoint_cd defined in Table 18. By default (*beginning*, B) a precondition is tested every time before a service is executed. For repeating services it is tested before every occurrence and the repetition is ended the first time the condition evaluates to false. This implements a WHILE *condition* DO *service* loop.

Alternatively, the condition may be tested only once before a repeating service is executed the first time (*start*, S). A start condition can thus not terminate a loop, but the loop can be terminated through other conditions or through a timing constraint. This implements a simple IF *condition* THEN *statement* logic, where *statement* may be a loop terminated by

A condition may be tested after the first execution of a repeating service and before the next cycle (*end*, E). This implements the loop REPEAT *statement* UNTIL NOT *condition* as known from the Pascal language. The sense of the condition is always the same, i.e. the statement is executed or repeated when the condition is true and the loop is exited when the condition turns false (DO *statement* WHILE *condition* in C.)

With the checkpoint_cd set to *through* (T) that condition must be true at all times throughout the execution of the service. If that condition turns false the service is interrupted. Therefore it is an error for a service with a through condition to have an interruptible_ind = *false*. Sub-services may well block interrupts by setting their interruptible_ind to *false*, which will cause the service to end as soon as the currently running non-interruptible sub-service ends.

A condition can be negated by setting the Service_relationship.negation_ind to *false*. That way the service will be executed or repeated only if the condition is false. The negation indicator is part of the condition, that is, the Boolean outcome of the condition XOR the negation_ind of the condition link must be true. We thus say the "condition is true" even if the test was negative if the negation_ind is set to *true*.

Multiple criteria can be combined using Boolean logic operators in the attribute Service_relationship.conjunction_cd. The operators AND, OR and XOR are available (negation is also available with the Service_relationship.negation_ind = true.) The default conjunction is AND, i.e. by default, all associated criteria must be true. When all criteria links have conjunction_cd OR, only one criterion needs to be true. With XOR, exactly one criterion must be true. Note that use of XOR in reasonabe rules is rather rare. In one criteria bundle multiple conjunction operators can be mixed with the following semantics: all links are sorted into three groups by conjunction code. All AND criteria must be true, one or more of the OR criteria must be true, and exactly one of the XOR criteria must be true.

For more complex criteria requiring nested Boolean expressions intermediate criteria can be constructed using Service objects without a reference to a Service definition and without a *Service name* value. For example, the complex logic expression "((A OR B) AND C) XOR (D OR E)"can be constructed as shown in Figure 12.

A criterion in *trigger* mood is tested asynchronously at any time the system may choose. Trigger conditions are used to trigger alerts or reminders. For example, the PRN order above could have been written using a trigger so that each time the patient reports pain (and that information is entered into the medical record) the associated PRN order is considered.

6.3 Timing

The timing of orders and schedules can be a very complex task, even the representation of all the parameters of scheduling is quite a challenge. HL7 v2.3.1 has left many questions open about the timing of orders, and the timing/quantity (TQ) data type has not been very widely appreciated. While part of the complexity of the HL7 v2.x TQ data type is due to the complexity of the matter, we have put a lot of effort into revising the TQ and finding a simpler and more uniform alternative. Together with the version 3 data type working group we have investigated two representations of timing parameters.

One alternative was a minimal set of distinct attributes, to describe frequency, duration, pause intervals, etc. However, we found that the best way to specify such parameters in a way that is somewhat intuitive to humans would be a single "General Time Specification" (GTS) that is a literal syntax defining a complex set of periodic points and intervals of time.

A requirement for the definition of this GTS syntax was that it had to have a crisp semantic explanation that would be readily implementable in computer systems. Thus, we developed a semantic model of this General Time Specification, that, due to the nature of the problem, requires some mathematics to understand. In this section we will first explain the concepts that are fundamental to this General Time Specification, and only then describe the syntax. We are now confident that the approach works in general, but we are not yet finished with refining the specification, so, some changes may still occur in the near future.

6.3.1 A duration is a physical quantity with a time unit

HL7 version 3 distinguishes a number of different time related data types. The simplest of the time related data types is for *duration of elapsed time*, which is just a physical quantity (PQ, a real number with a unit) constrained to the dimension of time. That is, any unit of time is allowed (e.g., 1 s, 1 min, 1 h, 1 d, 1 wk, 1 mon, 1 a.)

6.3.2 Points on the absolute real time axis

Based on the duration, we define the *point in time* data type, i.e. any point on the real natural time axis. Because there is no natural origin of the absolute real time axis, one can reach any point on the time axis by agreeing on an epoch and communicating just the duration elapsed since that epoch. Astronomers, for example, communicate point in time as the number of days elapsed since the Julian date noon Monday, January 1 4713 B.C. Other than that, most people will not understand an epoch/duration form for points in time and use the Gregorian (or other) calendars instead. However, computers can best deal with the epoch/duration form of time points so system implementers will likely deal with the epoch/duration form internally, while presenting time points to humans in a calendar form.

The relationship between calendars and the even flow of real time is quite complex, which makes conversion between epoch/duration form and a calendar form of points in time rather difficult. Fortunately there are many programs available that help in this task, most notably such routines are implemented in most operating systems. In HL7 v3 we continue to allow points in time to be expressed as "Timestamps" (TS) in the traditional format "YYYYMMDDhhmmss.fff[+|-]ZZzz", where digits can be left out from the right hand side..

The arithmetic difference between two points in time is a duration. The sum of a point in time and a duration is a point in time. No multiplication is defined for points in time. A duration can be multiplied by a real number (yielding a duration scaled by the factor) or any other physical quantity (yielding something other than a duration.)

6.3.3 Intervals

Intervals are continuous subsets of an ordered base data type. Intervals can be formed from numbers and physical quantities, including elapsed time. For example, the interval [0;1] of real numbers contains all the real numbers between zero and one. In the same way one can form an interval of duration, such as [5 min; 10 min] containing all elapsed time from 5 to 10 minutes. The meaning of an interval is that all the values between the bounds are contained. For example, we can specify the normal range of turn-around times for an activity as "[5 min; 10 min]" (or simply "5-10 min".)

Intervals can also be formed from points in time. The most common case where this is done is to specify the time of a Service, that includes any point in time between a begin time and an end time. In the epoch/duration form of absolute time, such an interval of points in time is specified as an interval of elapsed time given a certain epoch. For example, if we set the epoch to be January 1 1996, the interval between September 1 1999 and September 3 1999 would be "1340-1342 d". In calendar form we can specify that interval as "19990901-19990903".

An interval is usually specified in terms of its low and high bounds. If both bounds are unknown, the width of the interval may still be known. For instance, we may know that a service requires 10 min but we may not know (yet) when the service is scheduled to start (or when it started in the past.) In that case one can specify only the width of an interval. In the example of the three days in September can be written as "[3 d]". For the 10 minutes service we can write "[10 min]".

6.3.4 Recurring events, periodic time

In scheduling and medication orders we need to deal with events that recur over time in some regular pattern. For example, amoxicillin 500 mg tablets 3 times a day for 10 days. U.S. doctors and pharmacist have developed abbreviations they use to communicate such timing information in some "coded" form. For example, BID means twice a day, TID three times a day, X10D means for 10 days, and Q6H means every six hours. These abbreviations have been used in HL7 version 2's TQ data type.

For HL7 version 3 rather than using such symbols we apply a consistent quantitative schema to expressing such periodic time phenomena. The goal is to have a schema that has crisply defined semantics and that is actually computer processible. The basic building blocks for periodic time are: duration, intervals, set operations, and calendars.

6.3.5 Frequency f or period duration T are equivalent

Periodic events can be described with a **frequency** f or the **period** duration T. Period and frequency are related in a simple reciprocal way: f = 1/T. Apart from their reciprocity, period and frequency are the same.

We can describe the above amoxicillin example using the frequency f = 3 /d or period T = 8 h (note that there is no difference in choosing f or T.) Whenever there are two ways of expressing the same information, a standard should allow one and forbid the other so as to avoid unnecessary optionality. Since we can base elapsed time, absolute time and intervals of absolute time all on duration, we choose to base periodic time also on duration, the period duration.

Figure 13: Periodic events can be described in terms of a rotation or wave. The period T, frequency f, and angular velocity \mathbf{w} are equivalent measures of how often the event occurs in a unit of time. The phase \mathbf{j} is a measure for the offset between the wave and a reference wave of the same frequency. The phase may be measured in a unit of plane angle or as a difference of time $\mathbf{D}t$. Thus, all parameters describing the periodic event can be measured as time duration.

6.3.6 Periodic points vs. intervals and the phase j

Within the period of 8 hours we may need to specify some more precisely at what point the medication is to be given. This can be done by specifying an offset into the period. For example, if a service is to repeat once every day at 8 o'clock the period is be T=1 d. To adjust the timing to 8 o'clock every day we can set the offset (or **phase** \boldsymbol{j}) $\boldsymbol{j}=8$ h. Thus, given that for $\boldsymbol{j}=0$ every cycle starts at 12 o'clock midnight, moving the phase 8 hours later will set the recurrent time to every day at 8 o'clock. In the same way one can specify times precisely up to the nanosecond if necessary, for example, every day at 08:12:18 and 675 milliseconds would be: T=1 d, $\boldsymbol{j}=8.2051875$ h. We call this construct **periodic point in time**.

One can use the period-phase notation to specify **periodic intervals of time**. For example, a radiation therapy is to be performed every other day for 10 minutes for five times in a row. We can specify this as: $T = 2 \, \mathrm{d}$, $\boldsymbol{j} = [10 \, \mathrm{min}]$. When this service has been scheduled, say, for every other day at 9:30 to 9:40 AM, this is expressed as: $T = 2 \, \mathrm{d}$, $\boldsymbol{j} = [9.5; 9.6667] \, \mathrm{min}$. A periodic *point* in time has a simple elapsed time as its phase \boldsymbol{j} , while a periodic *interval* has an interval of elapsed time as its phase.

6.3.7 Periodic points and intervals as sets of time points

A periodic point in time is an infinite set of discrete time points recurring at the same distance from all past to all eternity. Most real recurring events are limited to a certain maximum amount or maximum time in which the event repeats. Since both intervals of absolute time and periodic points in time are sets of absolute time, one can build the **intersection** between the interval and the recurring time to narrow the time set down to some finite number of recurrences. For example, by limiting the amoxicillin therapy to any interval of 10 days with 3 doses, we limited the amount to 30 doses.

The set **union** operation is available to specify more irregular timings (e.g., Monday 8:00 AM and Thursday 11:30 AM.)

Every set of time **S** has an **outer bound interval**. The outer bound interval is the smallest interval of absolute time that includes the set of time **S**. The outer bound interval may be infinite in on both sides, but usually it is finite on the left and often it is finite on the right too. The outer bound interval is an

Figure 14: Example of constructing a complex schedule as the intersection of various periodic intervals of time. The schedule is: every other day from Monday to Friday 8:00 to 10:00 AM for six times. Regardless of how the set of time was constructed, it has one outer bound interval and can be enumerated as a sequence of intervals, each representing one occurrence of the service.

important concept that a scheduling system needs to find out when a series of recurring services actually starts and when it ends.

Every set of time **S**, with a finite outer bound interval, can be enumerated as a sequence of time intervals, regardless how it is constructed. For example, the radiation therapy, that we start on a Tuesday, can be enumerated as Tuesday 9:30-9:40, Thursday 9:30-9:40, Saturday 9:30-9:40, and the following week Monday 9:30-9:40, and Wednesday 9:30-9:40. A scheduling system will eventually have to turn every specification of periodic time as a complex set of times into such an enumerated sequence of occurrence intervals.

6.3.8 Stochastic and exact timing

If we measure the frequency of a recurring event, say, $f = 16 / \min (T = 3.75 \text{ s})$, this can mean two things: either the recurring event occurs evenly and exactly every 3.75 seconds (exact frequency) or it is distributed unevenly but at average there are 16 events per minute (stochastic frequency.) Note that choosing period T or frequency f in specifying the timing of recurrence does not decide whether the timing is exact or stochastic. Although traditionally we tend to think of "every 8 hours" as more exact as "three times a day" both statements are really the same, since period and frequency are related through T = 1/f.

By default all periodic points and intervals of time are stochastic, that is, the true times of occurrence is allowed to be randomly distributed around the times specified. Just how far the actual timing may differ from the specified timing is usually left up to the reasonable judgement of the performing actors. If the allowance needs to be constrained, one can do so using a probability distribution for the phase. For example, for ampicillin 500 mg i.v. every 8 hours starting at 6 AM, with an allowance of 30 minutes, one can specify: T = 8 h, $j = 6\pm0.5 \text{ h}$. From the many probability distributions available, one will most often choose the *guess*, *uniform*, or *normal* distributions. See the HL7 version 3 data type manual for more on probability distributions.

6.3.9 Alignment to calendars

The time units 1 mon, and 1 a, are but averages over one or many years, because the length of an individual month may vary between 28 and 31 days, and an individual year may be 365 or 366 days.

Sometimes one wants a schedule to be ignorant of the irregularities of a calendar (e.g., strictly every other day) and sometimes one wants to align to the calendar (e.g., every 15th of the month.) One can specify alignment to a calendar unit for both the period and the phase. Alignment of the period to a calendar unit means that at the beginning or end of the calendar unit there may be a short period. For example, with week of the month the first and last period of any month are usually shorter. Alignment to calendars is selected symbolically through a code referring to a calendar unit. See the data type specification for more detail.

6.3.10 Literal expression and the General Time Specification (GTS)

Periodic times constructed from periods and phases with optional alignment to certain calendar units is easy to understand and process for computers. However, for humans a more intuitive notation is in order. The HL7 v3 data type specification therefore defines the following literal expression for sets of time.

A period identifier is a short one or two letter code for a calendar cycle. Period identifier come in three forms: (1) continuous, (2) ordinal, and (3) implicit. A continuous period is measured from some initial date (e.g., the epoch or an order start date) and is not bound to the larger calendar cycles. For example, if something is to happen strictly every other day regardless whether months are 30 or 31 days long one would use a continuous period. Continuous periods are formed using the letter C before the period identifier (e.g., CD for continuous day.)

An ordinal period identifier is aligned to the larger calendar cycles. For example, if something is to happen on every odd day of the month (1, 3, 5, ..., 27, (29, (31))) an ordinal period is used. Ordinal periods are specified using two period identifiers, one for the period in which to count and another for

```
expr := term [ "+" term ]

term := factor [ [ " " ] factor ]

factor := period [ list | [ range [ step ] | step ] ]

list := number [ "," list ]

range := number "-" number

step := "/" number [ "%" number ]
```

Exhibit 3: Definition of literal expressions for sets of real time in EBNF.

the larger period which we want to align to, (e.g. DM ordinal day of the month, DW ordinal day of the week.) Ordinal periods are counted from either 0 or 1 depending on the customs of the calendar. For example, in the western calendar day of the month and month of the year is usually counted from 1, while hour of the day and minute of the hour is counted from 0.

Implicit periods are those periods identified by the one letter period code, because it is so common to use it in either the continuous or the ordinal sense. For example, the year is counted continuously because there is no larger cycle (except for decimal multiples decade and

century, which are not real calendar cycles.) Weeks are usually counted in a continuous way (i.e. not aligned to the calendar year,) while most other calendar cycles are aligned to each other (month-day-hour-minute-second.)

This part of the specification needs review and validation through a reference implementation to make sure everything is covered, and, to refine the specification. At this point the specification is certainly not quite complete.

Code		e Meaning		Length	Starts With
2-letter	1-letter				
CY	Υ	year (anno domini)	1	4	0
YM	M	month of the year	2	2	1 (January)

Table 22: Period Identifiers in the Gregorian (western) Calendar

СМ		month (continuous)			0
CW	W	week (continuous)			0
WY		week of the year		2	1
DM	D	day of the month	3	2	1
CD		day (continuous)			0
DY		day of the year		3	1
DW	J	day of the week		1	1 (Monday)
HD	Н	hour of the day	4	2	0
СН		hour (continuous)			0
NH	N	minute of the hour	5	2	0
CN		minute (continuous)			0
SN	S	second of the minute	6	2	0
CS		second (continuous)			0

The following table shows many example expressions.

Table 23: Examples for literal expressions for time sets.

Literal Expression	Meaning
M09	September
MY09	September (using explicit ordinal two letter code)
M0915	September 15
M091516	September 15 at 4 PM
M09151630	September 15 at 4:30 PM
M0915163034.12	September 15 at 4:30:34.12 PM
M09 D15 H16 N30 S34.12	September 15 at 4:30:34.12 PM (as the intersection of multiple sets)
M01,03,07	January, March, July
M/2	every other month of the year (January, March,)
M/2%0	every even month of the year (February, April,)
M/2%1	every odd month of the year (January, March,)
M04-09	April 1 to September 30
M04-09/2	every second month from April to September (April, June, August)
J6	every Saturday
DW6	Saturday (using explicit two letter code)
J1,2,4	Monday, Tuesday, Thursday
J/2	every other day of the week (Tuesday, Thursday, Saturday)
J/2%1	every odd day of the week (Monday, Wednesday, Friday, Sunday)
J1-5	Monday to Friday
J1-5/2%1	Monday, Wednesday, Friday
W/2	every other week (continuous)
W/2 J2	every other Tuesday
WY/2	every other week of the year
Y1999 WY15	the 15 th calendar week in 1999
1999 WY15	the 15 th calendar week in 1999 (period code is optional for the highest calendar unit)
1969021919-20	February 19 th of 1969, 7 PM to 8 PM.
WM2	the second week of the month

DY128	the 128 th day of the year
WM2 J6	Saturday of the 2 nd week of the month
M05 WM2 J6	Saturday of the 2 nd week of May
M05 DM08-14 J7	Mother's day (second Sunday in May.)
J1-5 H0800-1600	Monday to Friday from 8 AM to 4 PM
J1-4 H0800-1600 + J5 H0800-1200	Monday to Thursday 8 AM to 4 PM and Friday 8 AM to 12 noon.
CD/2 [10 min]	every other day for 10 minutes.
[10 d] H/8	three times a day for 10 days (each time a 60 minutes interval).
H/8	every eighth hour (each time a 60 minutes interval)
H/8%0700	every eight hours starting at 7 AM (each time a 1 minute interval)
H/8@	every eight hours (a point in time)
H/8%0(30 min)@	every eight hours with 30 min tolerance (guess distribution)
H/8%0(30 min)[10 min]	every eight hours with 30 min tolerance for 10 minutes.

Symbolic time specification (to be resolved at the receiving system)		
•		
H/8 IST	three times a day at institution specified times	
AM	every morning at institution specified times	
PM	every evening at institution specified times	
HS	at the hour of sleep	
AC	before meal (ante cibus)	
PC	after meal (post cibus)	
IC	between meals (inter cibus)	
ACM	before breakfast (ante cibus matutinus)	
ACD	before lunch (ante cibus diurnus)	
ACV	before dinner (ante cibus vespertinus)	
PCM	after breakfast (post cibus matutinus)	
PCD	after lunch (post cibus diurnus)	
PCV	after dinner (post cibus vespertinus)	
ICM	between breakfast and lunch	
ICD	between lunch and dinner	
ICV	between dinner and the hour of sleep	

Common symbolic abbreviations

Abbreviation	Normal form	
BID	H/12 IST	two times a day at institution specified time
TID	H/8 IST	three times a day at institution specified time
QID	H/6 IST	four times a day at institution specified time

6.3.11 Time related attributes

The Service class has three time attributes: Service.recording_dttm, Service.activity_time, and Service.critical_time. The Service.recording_dttm simply is the time when the service information object was created, it is not about the time of the activity. The other two attributes exist because the time the work of a service was done may be different from the critical time that the service object talks about. For all laboratory observations on specimen, the critical time is the "biologically relevant" time, when the specimen was taken. A measurement may be performed hours or even days after the specimen was taken. The Service.critical_time may be an interval or even a complex set of time, but for such laboratory observations on specimen, the interval does not mark begin and end of the

Figure 15: A service as ordered by a doctor is only part of what needs to actually happen. Typically a real service consists of preparation and cleanup work that may take just as much time as the biologically relevant part of the service. While the medical reasoning will focus on the biologically relevant aspect of the service, scheduling must consider the entire service.

biological condition. For example, begin and end of a certain potassium concentration in the patient's serum are unknown, the only thing that is known is that the critical time is within that unknown time interval. Therefore, the critical time will often be specified as only one point in time.

For clinical observation (made directly with the patient) or for direct care procedures on the patient, the Service.critical_time will usually lie within the Service.activity_time but will still not be the same. Most procedures will require some preparation time before the procedure enters it's critical phase, and will require some time to unwind after the critical phase is finished. So, the critical time in surgical procedures will reflect the time between first incision and last suture, for imaging the critical time will be the time the images were actually shot, etc. The total time on the other hand will contain the preparation time and time to clean up.

A doctor who orders some therapy, such as an i.v. over 20 minutes or a radiation over 10 minutes will consider this timing to be the biologically relevant time. Almost every service will require a certain time for preparation and cleanup before and after the service. Therefore, if the service is to be scheduled, the margin around the critical phase of the service needs to be considered. Obviously there is some ambiguity in whether the service timing includes the preparation/cleanup margin or not. Figure 15 shows the general pattern of the situation.

As can be seen in Figure 15, the service ordered by the doctor and the service scheduled and performed are really two different entities. The Doctor's service is a part of the overall service to schedule. Today's systems will probably not want to clearly overcome the ambiguity between ordered medical service and performed actual service, which is why we have the biologically relevant time as an attribute.

Both biological time and service time are defined as a set of time as explained above. This allows points in time, intervals and periodic points or intervals to be specified. A doctor's order will typically contain a critical time specification. Only when the service is scheduled will it also contain a proper total time.

The **Service_relationship.pause_qty** attribute allows to specify a time duration which is to elapse after the preconditions are effective and before the action is performed. When there are no preconditions, the pause quantity will give a waiting time between the previous activity and this activity.

The **Service.max_repeat_nmb** attribute is a generalization of a simple loop indicator. That is, whether or not the service should be executed multiple times depends chiefly on the Service.max_repeat_nmb attribute. By default Service.max_repeat_nmb is 1, and thus, by default a service is to occur only once. When Service.max_repeat_nmb is set to the positive infinity the service will repeat and the number of occurences will be determined by the timing attribute and/or by associated conditional constraints. When Service.max_repeat_nmb is a finite number greater than one, it will prohibit the number of repetitions to exceed that value, regardless whether the timing or conditional constraints would allow for more repetitions. That way, Service.max_repeat_nmb has an effect on the outer bound interval of the Service.time, by limiting the number of occurrence intervals to that Service.max_repeat_nmb.

7 Special kinds of Services

USAM divides actions into very coarse categories. The more common subclasses are displayed in the lower part of Figure 1. As usual, subclasses are identified mainly because different categories of actions have different basic properties, which are reflected in the attributes. Attributes of a sub-class should be both useful and unique to that sub-class. Each sub-class of action inherits the attributes described in the Service. The meaning of the inherited attributes may be interpreted slightly differently for each specialization of service.

In the following subsections each subclass of Service is described in detail. Even though a subclass may have no special attributes, it inherits all the attributes of the Service class. The meaning and use of the Service attributes vary slightly depending on the subclass. If we refer to that specialized meaning and use of an attribute of a subclass that is inherited from Service, we will prefix the attribute name with the name of the subclass. For example, when we speak about the *Service name* attribute in the special context of the Observation class, we will refer to that attribute as *Observation name*. In the following subsections we will first describe the special attributes of a subclass and then explain the specialized meaning of inherited attributes, if there is a significant variance.

7.1 Observation

Observations are actions performed in order to determine an answer or *result value*. Observation result values are specific information about the observed object. The type and constraints of result values depend on the kind of action performed.

In the USAM, the observation action and observation result are modeled as being the two sides of the same concept, just like the two faces of a coin are not separable from each other. Most other published healthcare models, including earlier HL7 RIM versions, separate the activity of observing and the observation result into different classes. These models label the kind of action in one class and the kind of observation result in the other. In most cases, however, the test name is a label for both activity and observation result. Therefore, after merging action with the result, the two codes are now only one.

7.1.1 Observation.value : ANY

The result value of an observation action. As was true with HL7 v2, this value can be of any data type. However, there are clearly more or less reasonable choices of data types as indicated in the table below.

Table 24: Choice of observation value data types

Kind of observation	Data type	Notes
Quantitative measurements	PQ	Physical quantity (real number with unit.) This is the most usual choice. Note that numeric values must not be communicated as a simple character string (ST.)
Titer (e.g., 1:64) and other ratios (e.g. 1 out of 1000)	RTO	A ratio of two integer numbers (e.g., 1:128.) Sometimes by local conventions titers are reported as just the denominator (e.g., 32 instead of 1/32) Such conventions are confusing and should not be followed in HL7 messages.
Index (number without unit)	REAL	When a quantity does not have a proper unit, one can just send the number as a real number. Alternatively one can use a PQ with a dimensionless unit (e.g., 1 or %). An integer number should only be sent when the measurement is by definition an integer, which is an extremely rare case and then is most likely an ordinal (see below.)
Ranges (e.g., ≤ 3; 12–20)	IVL(PQ)	Interval of physical quantity. Note that sometimes such intervals are used to report the uncertainty of measurement value. For uncertainty there are dedicated data type extensions available.
Ordinals (e.g., stage "IIa")	CV, INT	At this point, ordinals should be reported either as code values, (e.g., +, ++, +++; or I, IIa, IIb, III, IV) or as integers. In the future ordinals may be addressed by a separate data type.
Nominal results, "taxons" (e.g. organism type.)	CD	The Concept Descriptor (CD) is the most common data type to use for categorical results (e.g., diagnosis, complaint, color.) Such qualitative results are rarely simple Code Values (CV) if there is a tightly defined code system that everyone uses.
Image (still, movie)	ED	The encapsulated data type allows one to send an image (e.g., chest X-ray) or a movie (e.g., coronary angiography, cardiac echo.)
Waveform		Waveforms can be sent using the waveform template developed by the Automated Data SIG for version 2.3. A mapping onto version 3 is shown farther below. In addition, one can use the Encapsulated Data (ED) type to send waveforms in other formats.
Formalized expressions	ST	The character string data type may be used to convey formalized expressions that do not fit in any of the existing data types. However, use of the string data type is not allowed if the meaning can be represented by one of the existing data types. Note that many of the data types do have character string literal expressions too, so the field in the message can be formatted using character string literals and still have a distinct data type.
Short text descriptors and names.	ST	The string data type may be used as a result value for short names or descriptor phrases. These items should better be coded elements, but if they are entered by humans and no coding machinery is available, sending these items as string values is allowed.

7.1.1.1 On the Encapsulated Data (ED) Type in Observation Values

The Encapsulated Data type (ED) can be used for certain kinds of observation values but is forbidden for others. Full formatted text reports or scanned images of text reports, use the ED data type in the Service.text attribute. Formatted text documents are not proper observation values and do not belong into that attribute. Therefore, using media types text/html, text/sgml, application/pdf, application/msword, etc. in the Observation value is generally prohibited.

However, the ED is also used for diagnostic images and can be used for waveforms and other observation modalities. This use of the ED is allowed. Generally the distinction about the purpose of an ED can be inferred from the media type. For example, a diagnostic image will use the media types image/jpeg, a catheter film may use video/mpeg, etc. Rarely will imaging or waveforms be sent in

text/html, or application/pdf. Thus, HL7 interface can decide about the general legality of an observation object by inspecting the media type of an ED in the observation value.

Names, text phrases, and formalized expressions may be sent as a character string (ST) if they are not coded. A receiver sending an observation value as an ST may generally not expect the value to be interpreted by a computer. For instance, an observation value of ST showing "results not yet available" must not expect a receiving application to act on this message by automatically retrying an observation retrieval at a later point in time. The ST type is only used for information intended to be ultimately evaluated by human users. No matter whether a receiver may choose to parse ST data into computer processable representations, the sender must never expect this to happen for an ST value. Instead, the CD with appropriate code values can be readily used instead.

7.1.1.2 On ranges and Exceptional or Structured Numeric Values

Numeric values that are typically reported as crisp numbers may sometimes come up as ranges. For example, if a blood glucose scale has a lower limit of 10 mg/dL, every value below 10 mg/dL is off scale. These observation will carry the "<" code in the interpretation_cd attribute to indicate the exception. The value field in this cases must indicate the range below the lower scale limit in which the true value falls. In HL7 v2.3 this has been reported as a string value "<10" or as a so called "structured numeric" ("<^10").

In HL7 v3, such values are conceptually intervals with a high boundary of 10 and a low boundary of zero, unspecified, or negative infinity. In the case of concentrations the lowest possible value is 0, yet a system producing such a value will not necessarily know that lowest (or highest) possible value. Therefore, one side intervals may have an unspecified or infinite bound.

The HL7 v3 data type task force realized that specifying such ranges as intervals only may not be very well appreciated by implementers. In a character-based representation, a valid literal for intervals may use the relational operator style and a number. So "<10" is a legal character string literal for a conceptually structured interval of real numbers.

7.1.2 Observation.derivation_expr : ST

Derived observations can be defined through association with other observations using relationships of derivation type (Service_relationship.type_cd = derivation.) For example, to define a derived observation for Mean Corpuscular Hemoglobin (MCH) one will associate the MCH observation with an Hemoglobin (HGB) observation (Service_relationship.sequence_nmb = 1) and a Red Blood cell Count (RBC) observation (Service_relationship.sequence_nmb = 2) Since MCH = HGB / RBC, the value of the derivation expression would be "\$1 / \$2".

The derivation expression is a character string with a simple syntax similar to that of the UNIX "expr" utility, or the expression subset of the PERL or TCL language. All observations that are cited in the formula must be associated with the derived observation through links of type *derivation* with a unique Service_relationship.sequence_nmb. Such observation values are referred to by that sequence number preceded by a dollar sign (\$).

Defined operators are addition (+), subtraction (-), multiplication (*) and division (/). Parentheses can be used to overcome the usual precedence (left to right, multiplication before addition.) In addition to the basic arithmetic operations, the usual mathematical functions (e.g., log, sqrt, etc.) will be defined.

7.1.3 Observation.normal range: IVLáPQñ

This attribute can be used to report simple normal ranges.

The USAM defines normal ranges as described in Section 7.1.4.2 using a linked observation service in a predicate mood. The USAM's way to represent normal ranges allows specifying both simple and special population-based normal ranges in a uniform and extensible structure. It allows ranges to be defined and reported for normalcy and alert levels. It can give normal ranges for numeric, ordinal, or coded values; and it can represent normal ranges as well as the frequency distributions from which normal ranges are derived. Normal ranges in USAM should be defined and reported starting with a service relationship of type *has-reference-range* that links to an observation object of the same kind but in the *predicate* mood. In that predicate only the attributes interpretation_cd and value are valued.

Conversely, the normal_range attribute defined in this section mainly exists for an easy way to show simple normal ranges in a simple attribute. Such normal ranges may cover 90% of the practical cases, which we sometimes consider a reason to break the rule of uniformity and generality. Note that this attribute is deliberately simple, is only applicable for numeric normal ranges, and provides no sophistication whatsoever. It always represents the range that is considered normal, or has been considered the normal range of the reported observation given the knowledge known to the producer of the observation.

This attribute is *not* being developed or refined in the future. For all sophisticated cases, we suggest using the proper USAM structure for reference values as described in Section 7.1.4.2.

7.1.4 Observation.universal_service_cd : CD inherited from Service

Please refer to the description of Service.universal_service_cd about the rationale for the attribute name. Throughout this text, we refer to this attribute as *Observation name* for brevity.

For observations the universal_service_cd attribute will preferably use a standard code system for observations. The Logical Observation Identifier Names and Codes (LOINC) system is currently the most widely used and most interoperable coding scheme available. Therefore, it is strongly recommended to communicate a LOINC code as the primary code of the *Observation name*. The Concept Descriptor (CD) data type, however, allows for multiple codes to be sent as synonyms, so that local codes as well as codes from other coding systems can be sent all together.

7.1.4.1 Diagnoses and Allergies

Diagnoses and Allergies are kinds of observations. Elsewhere, diagnoses and allergies have been called "meta-observations" and are sometimes grouped in a class separate of other observations. USAM agrees to that diagnoses are derived statements, typically concluded from more directly observed properties. However, USAM covers this notion of derivation through the service-relationship that allows one to specify on what prior observations a diagnosis has been made. Conceptually, however, USAM makes no difference in the dignity of observations. In fact, most observations considered direct and measured are really derived from even prior observations (e.g., electrolytes from electrode potential differences, hemoglobin from light extinction, etc.) The USAM does not force any kind of cut in the continuum of observations and conclusions.

Diagnoses and allergies are nominal observations. The diagnosis code is carried in the Observation value. The observation name may classify the diagnosis as of a certain kind (e.g., admission diagnosis, discharge diagnosis, billing diagnosis, etc.) In the context of diagnoses, the observation name has also

Figure 16: Reference ranges are frequency distributions of observations among populations. The reference ranges (mood: REF) are associated with the master observation (upper left, mood: DEF) through *reference* links. The reference value is usually an interval of physical quantity (low–high) or, with nominal observations, a set of value codes. If a reference range has no criterion, it is the typical "normal" range, based on the not further specified healthy population. If criteria are associated with the reference, the criteria can be any observation (mood: EVN+CRT), but sex and age are the most common reference range criteria. An actual observation (upper right, mood: EVN) may be linked with the applicable reference range in order to specify which range has been applied to determine the interpretation (abnormal) flag "H" on the service report.

been called "diagnosis classification" or "diagnosis type." Such names are typically defined in the master file as observation definitions just as it is done for any other kind of observation.

However, we realize that some current systems mainly in ancillary and administrative departments, depend on diagnoses and allergies being clearly labeled as such. Those systems may not have a master file or terminology service available to look up the meaning of the observation name, but rely on direct clues in the message data to figure out whether an observation is an allergy or not. We are currently working on an approach to satisfy the needs of those systems using LOINC codes or a short specialized vocabulary that will allow such systems continue to operate.

7.1.4.2 Demographic observations, age, gender, and race, and their use in reference ranges.

A small set of medical observations is traditionally communicated in administrative data elements (called demographics.) Typically, this is gender and age, but also species, breed/race, and strain. We do not aim to discourage reporting this data as part of patient "demographics." However, we need a way to specify those observations as genuine medical observations too. This is to accommodate cases of uncertainty (e.g., estimated age,) change, or clinical nuance, and to use such values in observation criteria for defining patient collectives, and population-based reference ranges.

Reference ranges are a short hand representation of a frequency distribution of a measured value over a population. Usually the "normal" healthy human is used as the reference population, but sometimes values are distributed differently in different populations, so that the population on which reference ranges are based must be identified. This used to be done in HL7 v2.3 in special fields or components

using special codes and conventions. In HL7 v3 we will represent all population characteristics as observations.

Table 25: Observation type codes for demographic observations used to define populations

Kind of observation	Code	Definition	LOINC
Gender	SEX	The clinical gender. The concept repertoire includes the concepts male (M), female (F) but also many more as provided by some other clinical terminology of genders.	21840-4
Age since birth	AGEB	The elapsed time since birth. The age can not always be calculated from the date of birth, especially if the date of birth is unknown. Note that with low ages (neonates) the gestational age becomes more relevant than the age since birth.	21612-7
Gestational age	AGEG	The age since conception. Gestational age is not just applicable to an unborn fetus, but to neonates as well, for which the gestational age is a more accurate measure of age than birth age. There are many methods of calculating gestational ages, which can be differentiated using other LOINC codes	18185-9
Species	SPEC	The species of a target of service. Many laboratories do blood chemistry for veterinary medicine as well as for human medicine, so the differentiation by species is quite common. The species of humans is <i>homo sapiens sapiens</i> .	
Race/breed	RACE	An actually or potentially interbreeding group within a species; a taxonomic category (as a subspecies) representing such a group, a division of mankind possessing traits that are transmissible by descent and sufficient to characterize it as a distinct human type. [Webster Dictionary]. Race is a problematic concept since it is a very fuzzy categorization and history of man is full of racial discrimination. However, human descent is still a very important determinant for clinical conditions (e.g., 90 % of Thais have a β -Galactosidase deficiency, Africans have a significantly higher rate of Sickle Cell Anemia, etc.) For the terminology of race values, it is important to distinguish clinically relevant race from ethnicity or nationality, which is more of a cultural phenomenon (although behavioral aspects of cultures may sometimes be a determining factor for health conditions as well.)	
Strain	STRAIN	A group of presumed common ancestry with clear-cut physiological but usually not morphological distinctions; [] a specified infraspecific group []. [Webster Dictionary]	

For example, if we want to specify reference ranges for Aldosterone (a test to help monitor hypertension) we have to distinguish different age goups. Figure 16 shows how Aldosterone normal values for age groups 1–10 years and 10–12 years are specified. It also shows how the applicable reference range is connected to a particular observation report.

7.1.5 Observation.text : ED

inherited from Service

In an observation report (mood_cd = actual) the attribute Observation.text is used to store textual reports. The Observation.value field is reserved for information that is processed automatically and that is accessible to automated processes. Human authored free text reports are not easily accessible to automated processing, which is why they should be communicated in the description attribute. Of course, free text documents can be analyzed by natural language parsers and similar tools. We encourage that any output of such natural language parsers be communicated in the Observation.value attribute in the form of structured machine accessible data.

7.1.6 Observation.critical_time : GTS inherited from Service

An observation report (mode_cd = actual) contains the physiologically relevant time of an observation. In that case it is either a simple point in time or an interval of time that lies within the period for which the observation is believed to be representative. For observations on specimen this relevant time is the time of specimen collection, where it does not usually matter whether the exact start and end time of a specimen collection service are marked. The purpose of the Observation.critical_time is to indicate the time for which the assertion is valid for the patient

7.2 Procedure

The term procedures typically stands for surgical procedures. But the procedure class covers all direct care activities, whether performed by physicians, nurses, physiotherapy providers, etc.

7.2.1 Procedure.entry_site_cd : CD

All procedures other than dermatological has an anatomic site of access or entry and an anatomic site which the procedure is targeted at and that is reached through the entry site. For example an arteria pulmonalis catheter targets a pulmonary artery but the access site is typically the vena carotis interna or the vena subclavia, at the neck or the fossa subclavia respectively.

The coding system is the same as for Service.body_site.

7.2.2 Procedure.body_site_cd : CD inherited from Service

This is the anatomical target site of the procedure. For example, a pulmonary artery catheter will have the target site arteria pulmonalis with or without a known laterality.

The coding system is the same as for Service.body_site.

7.3 Medication

Medication is an indirect care-intervention using a material substance as a therapeutic agent. The effect of the therapeutic substance is typically established on a biochemical basis, however, that is not a requirement. For example, radiotherapy can largely be described in the same way, especially if it is a systemic therapy such as radio-iodine. Whether or not radiotherapy will be covered by a separate class is open.

Medication as a service indicates the administration of a generic class of medication to a patient. The administration of a particular preparation (in the U.S. typically represented by NDC code) requires the association of the material class with the Medication service. The material information is usually added to the order by the pharmacist when the prescription is filled as a revision or substitution to the original order.

Because medication deploys material substances, a number of attributes arguably pertain to the material rather than the procedure. At this point, we decided to allow that information to be represented in two ways, as attributes of the medication service or as attributes of the material. This problem is especially obvious with the kind of substance applied. For example, an Amoxicillin treatment can be described as *Medication name* = Amoxicillin or as *Medication name* = administer with associated Material target of type Amoxicillin. At this point naming the Service Action after the generic administered substance is the preferred strategy.

The goal is to allow simple medications to be described without having to use the Material class. Only if such actions as dispensing, or such information as the manufacturer are relevant, or if a recipe prescription is written, should one have to deploy the Material class.

7.3.1 Medication.form_cd : CD

The dose form of the therapeutic substance. Examples are tablet, capsule, suppository, etc.

7.3.2 Medication.route_cd : CD

The route of the medication. Medication route is similar to an anatomic body site through which the therapeutic agent is incorporated or otherwise applied to the body. It is an open issue whether a specialized route_cd could be replaced by a general anatomic site code. The typical routes are per os (PO), sublingual (SL), rectal (PR), per inhalationem (IH), ophtalmic (OP), nasal (NS), otic (OT), vaginal (VG), intra-dermal (ID), subcutaneous (SC), intra-venous (IV), and intra-cardial (IC).

However, as the table below suggests there are other routes and there are many variations as to how to access a specific route. For instance, an oral administration with the patient swallowing will usually have the same effect as if the same substance is given through a gastric tube. A more systematic approach to analyze the route into components such as site of primary entry (e.g. oral, nasal), site/system of substance uptake (e.g. gastrointestinal, bronchial, nasal mucosa), method (e.g., swallow, inhale), and device (e.g., gastric tube, tracheal tube) should be considered. At this point the version 2.x code table is used.

Concept	Code	Concept	Code	Concept	Code
Apply Externally	AP	Intramuscular	IM	Oral	PO
Buccal	В	Intranasal	IN	Otic	ОТ
Dental	DT	Intraocular	Ю	Perfusion	PF
Epidural	EP	Intraperitoneal	IP	Rectal	PR
Endotrachial Tube	ET	Intrasynovial	IS	Rebreather Mask	RM
Gastrostomy Tube	GTT	Intrathecal	IT	Soaked Dressing	SD
GU Irrigant	GU	Intrauterine	IU	Subcutaneous	SC
Immerse Body Part	IMR	Intravenous	IV	Sublingual	SL
Intra-arterial	IA	Mouth/Throat	MTH	Topical	TP
Intrabursal	IB	Mucous Membrane	MM	Tracheostomy	TRA
Intracardiac	IC	Nasal	NS	Transdermal	TD
Intracervical (uterus)	ICV	Nasogastric	NG	Translingual	TL
Intradermal	ID	Nasal Prongs	NP	Urethral	UR
Inhalation	IH	Nasotrachial Tube	NT	Vaginal	VG
Intrahepatic Artery	IHA	Ophthalmic	OP	Wound	WND

Table 26: Route of administration

7.3.3 Medication.dose_qty: PQ

The dose is the amount of the therapeutic agent given at one administration event. This attribute can be used all by itself, or in combination with a strength. In theory, a physician's prescription could suffice with just the dose specification. For example, if Azythromycin is to be given at 80 mg once a day for three days, there is no need to specify a strength. The pharmacist can figure out the right preparation given what is available in stock or on the marketplace. When the pharmacist dispenses a particular

preparation with a particular strength and packet size from a particular manufacturer, etc., this detail should be communicated using the Material class.

In medication orders, a dose **should** be given as a plain amount quantity, and exceptions are only allowed for medical reasons. In medication definitions, the dose can be specified as a body mass related dose or as a body surface area related dose. With a unit of mass in the denominator, the dose is clearly marked as body mass related. With a unit of area in the denominator, the dose is body surface area related. The fact that an amount really is a compound quantity is (at this point) indicated by the choice of the unit. Table 27 shows how one can conclude from the denominator unit to the kind of quantity on which the compound dose is based.

Compound dose denominator Example				
kind of quantity	example units	_		
body mass	kg, [lb_av]	2.5 mg/kg		
body surface area	m^2	100 mg/m ²		

Table 27: The denominator unit implies the kind of quantity

7.3.4 Medication.strength gty: PQ default: 1

The strength of a medication is the amount of therapeutic agent per each unit of administration (entitic mass, amount of substance, etc.) If the dose form is continuously divisible (e.g., liquid, gas), the strength is a concentration (volumic mass, amount of substance, etc.)

We generally discourage using this attribute, because in theory, a physician's prescription could suffice with just the dose specification. For example, if Azythromycin is to be given at 80 mg once a day for three days, there is no need to specify a strength. The pharmacist can figure out the right preparation given what is available in stock or on the marketplace. When the pharmacist dispenses a particular preparation with a particular strength and packet size from a particular manufacturer, etc., this detail should be communicated using the Material class.

When the strength attribute is used, the actual administered amount is the product of dose_qty and strength_qty.

The Medication.strength_qty is a physical quantity with units. The strength is the amount of the main therapeutic agent administered per one piece of the dose form (e.g., per one tablet.) With integral dose forms ("eaches," e.g. tablets, suppositories) the strength must be an amount kind of quantity as defined in Section 8.1.10 below.

For continuously divisible dose forms (fluids, gases) the strength quantity may be specified as a concentration of the main ingredient in the substance. For example, with Glucose 5% (D5W,) "5%" is the strength. In this case, the strength is a concentration. Since continuously divisible substances are typically measured in terms of volume, we strongly recommend that the strength be expressed as an amount per volume. Thus, in the D5W example, instead of 5%, 0.05 g/g or, 50 g/kg, we recommend the strength to be specified as 50 g/L.

However, since we doubt that the proper handling of strength concentrations can be made a conformance criterion, we suggest the following practice in using and interpreting the strength quantity.

Table 28: Compound units for the strengths of fluids and gases

Form	Strength		Notes
	kind of quantity	example units	
fluid	volumic mass	50 g/L	This should be most commonly used.
	volumic amount of substance	278 mmol/L	Another preferred (but rather rare) form.
	massic mass	50 g/kg = 5% = 5 g%	Avoid using mass percentages because of the confusion with volume percentage. This is often used for crystalline solutions, despite the discouragement from all pertinent standards bodies (e.g. IUPAC)
	volumic volume	130 ml/L = 13%	Volume percentages are used for a mixture of two fluid substances (e.g. Ethanol in Water.) Volume percentages should be avoided, since the actual amount administered depends on the density (and thus on the temperature of the fluid) so that conversion to a biologically relevant amount of substance is difficult.
gas	volumic volume	25 ml/L = 2.5%	For gases volume percentage is permissible since because of the molar volume being a nature constant (22.4 L/mol) the volume fraction is equal to the molar fraction.
	volume ratio	1L:2L = 1:2	For gases that are mixed in terms of flow rates (e.g., O_2 and N_2O mixed at 1L/min : 2L/min.) In this case the qty of Material reltionships of type ingredient is preferred.

HL7 v2.3 did suggest that the quantitative information on dosage and routing could almost completely be replaced by a code for the medication that pre-coordinates the strength, form, and route. Conversely, in HL7 v3 we strongly recommend to send the strength, and dose explicitly, since a complete NDC catalog may not be available to all recipients of the prescription information. In addition, sending the dose and strength quantities explicitly serves as a check to prevent wrong dosage because of a simple coding error. Finally, while a certain NDC code can suggest a default route, the actually ordered or administered route is not pre-coordinated in the NDC code. For example, capsules, usually administered orally, may well be administered rectally; tablets may be crushed and applied through a gastric tube, etc.

7.3.5 Medication.rate_qty: PQ ~ 1 s

With continuously divisible dose forms (e.g., liquids, gases) a dose rate can be specified. The Medication.rate_qty is specified as a physical quantity in time (a duration.) Hence, the rate_qty is really the denominator of the dose rate. For example, if an Ringer solution is to be given at 100 mL/h i.v., the dosis_qty would be 100 mL and the rate_qty would be 1 h. Note that there is no difference in the actual values of dosis_qty and rate_qty as long as the quotient of both has the same value. In this example, we could just as well specify dosis_qty as 50 mL and rate_qty as 30 min, or 200 mL and 2 h or any other combination where the quotient equals 100 mL/h.

Note that in principle one could again suffice with just the dosis_qty attribute specifying the rate right in that one attribute (e.g., dosis_qty = 100 mL/h.) However this practice is not allowed. Systems that implement the semantics of units according to the Unified Code for Units of Measure would have no problem noting the fact that a dose_qty is really a rate. Other system however will have difficulties to tell an at-once dose from a dose rate from just looking at the units. If a system wishes to deal only with a single quantity describing the dosage, it can always calculate such a quantity as

 $real_dosis_qty = dosis_qty \times strength_qty / rate_qty$.

7.3.6 Medication.dose_check_qty : PQ

This attribute should not generally be used, it is only provided for a special purpose. In some countries, especially Japan, there is a regulatory requirement to note the total daily dose on the prescription and associated documentation. The purpose of this requirement obviously is to encourage and facilitate reviewing the total dose prescribed to avoid over- (or under-) dosage. Rather than to define a "total daily dose" attribute as HL7 v2.3 did, we define the general-purpose dose_check_qty attribute that can be used in various ways as required by local business rules or regulations. For example, in Japan one would use this field as a total daily dose by calculating the "real" dose as noted in Section 7.3.5 above and then adjusting the denominator to 1 d. For example, with Erythromycin 250 mg 1 tablet 3 times a day one can calculate the total daily dose as

$$dose_check_qty = dosis_qty$$
 (1) × $strength_qty$ (250 mg) × $frequency$ (3 /d) = 750 mg/d.

For another example, a custom i.v. running at 100 mL per hour, this term would be:

$$dose_check_qty = dosis_qty (100 \text{ ml}) \times strength_qty (1) / rate_qty (1 \text{ h}) = 100 \text{ mL/h}$$

which can be calculated on a daily basis as

$$dose_check_qty = 100 \text{ mL/h} \times 24 \text{ h/d} = 2400 \text{ mL/d} = 2.4 \text{ L/d}.$$

Thus, in Japan, the denominator of the dose_check_qty unit must always be 1 /d. In other countries, the constraints on the dose_check_qty may be different or, most likely, the attribute would not be used at all. In any case, this dose_check_qty attribute must not be used to carry any functional information.

7.3.7 Medication.method_cd : CD

inherited from Service

While there are little chances for a comprehensive method code to be available for all Services, HL7 v2.3 has defined a limited set of concepts that cover the more common methods of medication administration.

Table 29: Methods of administering medication	n
(from HL7 v2.3 table 0165)	

Value	Description	Value	Description
СН	Chew	NB	Nebulized
DI	Dissolve	PT	Pain
DU	Dust	PF	Perfuse
IF	Infiltrate	SH	Shampoo
IS	Insert	SO	Soak
IR	Irrigate	WA	Wash
IVPB	IV Piggyback	WI	Wipe
IVP	IV Push		

Note, however, that in many cases the route implies a method quite strongly. For example, *per os* (PO) usually implies that the substance is swallowed; hence there has been no code for *swallow* as an administration method. The method is only necessary if it is different what would usually be expected.

For example, if a tablet is to be taken PO, but should be chewed instead of swallowed right away, this can be indicated using the *chew* (CH) method code.

7.4 Condition node

The condition node service type is used to represent problems (conditions.) The primary purpose of the condition node is to arrange other services of the patient record into a longitudinal thread that represents the patient's condition. Condition nodes are lined up along the time axis through links of *type updates condition*. Thus, a Condition node instance is not a condition or problem in itself, the condition is the entire thread or network of chain-linked condition nodes.

Each condition node represents a revision of the problem in the form of added evidence, or changing of the "name" assigned to the problem. A "name" is assigned to a problem thread by a condition node that binds another observations (diagnosis) to the thread. Consequently, conditions may change their "names" over time to represent the progression of disease, and the changing of knowledge about the disease.

A condition thread may have more than one current name. Consequently, conditions may accumulate names over time as different practitioners develop opinions or descriptions of the condition. It will not be unusual that these names may be in conflict with one another, such as when two clinicians disagree about the nature of a condition. In addition, these names may also change over time to represent the progression of disease or the changing of knowledge about the disease.

There are a number of relevant service relationship types that are especially applicable to condition nodes, shown in Table 30. Please refer to Table 17 for a more complete description of relationship types.

Table 30: Service relationship types especially relevant for conditions

Concept	Code	Definition	R	oles
			source	target
updates condition	UPDT	Chains together condition nodes to a thread representing the condition.	new head of thread	old head of thread
assigns name	NAME	A support link where an observation (diagnosis) is taken as the currently representative name for the entire thread.	condition	observation (diagnosis) as name
has support	SPRT	Indicates that the condition is support for an associated conclusion or assumption.	condition	observation (diagnosis)
is cause for	CAUS	Indicates that one assumes a condition to be the cause of some observation.	condition as cause	observation as effect
is manifestation of	MFST	Indicates that one assumes some service or observation to be the cause of a condition.	condition as effect	any service as cause
has explanation	EXPL	Indicates that one explained an observation by a condition.	observation	explaining condition
has reason	RSON	Links any service to the condition thread that the service attempts to address.	action	condition node as reason
has outcome	OUTC	Links outcome assessment to a condition.	condition	outcome
has goal	GOAL	Used to declare a goal for a condition thread.	condition	goal
has risk	RISK	Used to note about a risk of the condition.	condition	risk

7.4.1 Condition_node.universal_service_cd : CD inherited

Whereas in most other kinds of Services the universal_service_cd is an important piece of information, with condition nodes the universal_service_cd is not very important. Also, usually, there will not be much use for condition nodes in definition mood. The purpose of a condition node is chiefly to link other medical record items to a problem thread so as to provide proper attribution and context to that link.

If a condition is to be assigned a name, the proper way to do it is to associate an observation (e.g., a diagnosis) with the condition node through a relationship of type *assigns name*. Using the Condition_node.universal_service_cd for naming a condition is forbidden.

7.4.2 Condition_node.mood_cd : CD inherited, default: EVN

Whereas most other kinds of Services can exist in multiple moods (e.g., intent, order, definition, actual), condition nodes usually occur in actual mode. Thus, the mood code of a condition node needs no mentioning at all, but is assumed to be actual (EVN) unless otherwise stated. There is currently no definition of the meaning and use of a Condition_node.mood_cd other than *actual*. Receiving systems should check for the mood code anyway and should raise an exception if they encounter anything else than the actual mood.

7.5 Consents (Service)

Editorial note: This subtype of services was formerly represented by a sub-class of service in the information model. That class, however, had no specific properties. Therefore, it was decided to drop the class. This, however, does not mean that the subtype doesn't exist conceptually. The service class is still used for consent services (just as teaching services, which have no explicit service subclass either.) This allows reusing the service master file to define the many different kinds of consents. It allows planning to obtain consents (as intents,) and actually document consent as a service event object with the necessary signatures attached as Actor objects.

Obtaining informed consents is an important medico-legal activity. Consents need to be documented just as any other medical record information, with proper attribution, and all the context of who, whom, when, where, etc. The obtaining of consent takes a considerable share of a physician's time and needs to be scheduled in a more or less formal way. The details of consents vary from procedure to procedure. Often an institution has a number of different consent forms for various kinds of procedures that remind the physician about the topics to mention. Such forms also contain patient education material. In electronic medical record communication consents thus are information entities on their own and need to be managed similar to medical activities. Thus, consents are modeled as a special class of Services.

The "signatures" to the consent document are represented electronically through Actor instances to the consent object. Typically, an informed consent has actors of type *performer* (the physician informing the patient, and *consenter*, the patient or legal guardian. Some consents may associate a *witness* or a notary public (e.g., living wills, advanced directives.) In consents where a physician is not required (e.g. living will,) the performer may be the patient himself or a notary public.

Some consents have a minimal required delay between the consent and the service, to allow the patient to rethink his decisions. This minimal delay can be expressed in the service definition by the service_relationship.pause_qty attribute that delays the service until the pause time has elapsed after the consent has been completed.

7.5.1 Consent.universal_service_cd : CD inherited from Service

The Consent class is not only used for informed consents for invasive procedures, but include other forms of legal documentation of will and agreement too. Notable examples are advanced directive, living will, advanced beneficiary notice, etc. No terminology system exists that would include the various types of consents and other legal documents. Hence, the following code must be used where applicable. It is understood that there are very many types of consent forms in an institution and that those kinds are highly dependent on local and current legislation and business rules. Therefore, no attempt was made to list all possible consents in all detail.

The following table is only a rough categorization, to which institution wide master files would add many specializations. Those local specializations may use a local code as the Consent.universal_service_cd in addition to this mandated code. However, note that such a local code is not required to manage different consents. If all that is needed is a unique identifier of the consent kind and consent form, the Service.id attribute is all that is needed.

			•
Concept	Code	Implies	Definition
procedure consent	PC		A formal informed consent that must generally be obtained from the patient or legal guardian before an invasive procedure can be carried out on the patient.
clinical trial consent	TC		An informed consent required for inclusion of a patient into a clinical trial.
advanced directive	AD		A document containing the patient's anticipated wish for how to clinically proceed in cases where the patient is critically ill and unable to make or express his own decisions.
living will	LW		A document containing the patients wish for how to proceed after the patient expires. This usually contains directives of how to distribute his belongings.
advanced beneficiary notice	AB		A document that expresses the patient's consent to bear costs of medical services that his insurance(s) may not provide coverage for. In the U.S. patient covered by Medicare are thus protected against unexpected charges they would incur for services not covered by Medicare.
necessity	AB1	AB	Service is subject to medical necessity procedures
agreed	AB2	AB	Patient has been informed of responsibility, and agrees to pay for service
ask payer	AB3	AB	Patient has been informed of responsibility, and asks that the payer be billed
against medical advice	AMA		A consent that the patient signs to understand that a permanent or transient leave from an inpatient encounter is against medical advice. Such forms are given for signature to patients to keep the provider free of liability actions in the rare case that such a leave would have negative consequences for the patient.
release of information	RI		In a release of information consent, a patient (or proxy) agrees to the disclosure of medical information to another party. The other party may be another provider to whom the patient will be referred. In another typical case the other party is a life-, health-, or disability-insurance.

Table 31: Types of consents and other legal documents

7.5.2 Consent.text : ED

inherited from Service

The Consent.text of an actual consent (mood_cd = EVN) contains all the detail of what has been consented to by the patient. For example, it could contain notes taken by a physician during the dialog with the patient (or legal guardian,) should contain questions asked and answers given to those questions, to the extent required by law and local business rules. In situations where this is legitimate and required, the Consent.text could even contain an entire audio or even a video clip of the patient-physician dialog, or a transcript thereof. In many cases the Consent.text could contain an electronic

version of the filled consent form. This would include all the notes taken by the physician or the patient, as an electronic form, a scanned image, or just a reference to the consent form on paper.

For consents in definition mood, the consent.text will most usually contain an electronic rendition of the consent form and necessary patient education material. Thus, when an invasive procedure is scheduled, the consent associated to that procedure as a precondition, could be automatically scheduled, and the consent form could be printed out from the data in the Consent.text.

7.5.3 Consent.time: GTS

inherited from Service

The time when the consent was created. This begins with the consent form being handed to the patient, includes the provider informing the patient, and ends with the time when the patient (or proxy) signs the consent. This time set may also contains just one singular point in time (time stamp) in which case it marks the date and time of the signature.

7.5.4 Consent.critical_time: GTS

inherited from Service

This is the time range when the consent is valid. Many laws have consents expire after a certain period (e.g. after one year.) Furthermore, some kinds of consent are not valid immediately after signature, but require a period in which the signer may still change his mind and withdraw the consent. Hence, the Consent.critical time, for example, may be an interval spanning 24 hours to one year after the signature date.

7.6 Transportation

Transportation is an important support activity in the delivery of health services. Transportation is usually performed by other responsible parties than the health care providers who do the medical work on the transported payload. Therefore transportation is a service of its own right, with separate actors, separate scheduling, and separate billing.

Transportation is the moving of a payload from a location of origin to a destination location. Thus, any transport service has the three target instances of type *payload*, *origin*, and *destination*, besides the targets that are generally used for any service (i.e., *performer*, *device*, etc.)

For example, in the transport service of a patient (*John Doe*) in his bed (inventory number *1234567*), from the post-operative watch unit (*A5 west*) to the floor (*A7 noth*,) by the Nurse (*Jody Smith*,) one would have the following actors and targets:

Participation	Туре	Who/What
Actor	performer	Jody Smith, the nurse
Target	payload	John Doe, the patient
Target	origin	A5 west, the post-op. watch unit
Target	destination	A7 north, the floor
Target	device	bed, inventory number 1234567

Table 32: Actors and targets in an example transport service

Every Transport service must at least have three targets for origin, destination and payload.

7.6.1 Transportation.universal_service_cd : CD inherited from Service

Since medical terminology sets will often not focus on transportation types, HL7 will maintain a code sets for those transportation types, that must be used by all HL7 compliant systems, besides local codes, that may also be used. The following table is a yet incomplete code for different kinds of transportation. The values are largely adopted form HL7 version 2.3.1.

Concept	Code	Definition
patient transport	PAT	Any kind of patient transport
walking	WALK	Patient walks to diagnostic service
wheelchair	WHLC	Patient transported in wheelchair
cart	CART	Patient travels on cart or gurney
non-human transpo	ort	
	PORT	A portable device goes to location of use.
	VAN	An institutional van service provides transportation.
	MAIL	Public postal service (for specimen)
	COURIER	Using a third party express courier service

Table 33: Types of transportation services

7.6.2 Transportation.critical_time : GTS inherited from Service

The time when the transportation actually occurred, i.e. when the payload was actually transported. This excludes the time a transporter is occupied without actually transporting the payload, e.g., time to drive to the pick-up location, and time to drive from the drop-off location back to the depot. This time set usually is one simple interval of point in time (start and end time-stamp.)

7.7 Supply

Supply orders and deliveries are very simple services that mainly focus on the delivered *product*. The product is associated with the supply service as a Material target of type *product* (PRD). Just as with Medication services there are in principle two ways to represent the type and identity of supplied material, i.e. as the Supply.universal_service_cd or as the Material.type_cd of the target material (Target.type_cd = *product*.) With general supply orders the precise identification of the Material, its manufacturer, serial numbers, etc. is important, and supply services are only very marginal parts of the electronic patient record. Therefore, most of the detail information about the supply should be represented using the Material class.

Note that if delivery needs to be scheduled, tracked, and billed separately, one can associate Transportation services with the supply.

Pharmacy dispense services are represented as supply services, associated with a medication service. The medication class represents the administration of medication, while dispensing is supply.

7.7.1 Supply.qty: PQ

Specifies the quantity ordered or supplied (depending on the mood_cd.) This is a physical quantity (PQ) that must be from a constrained set of extensive "amount" kind of quantities. Refer to Section 8.1.10 for a definition of such "amount" quantities.

7.7.2 Supply.method_cd : CD

When a supply service represents a pharmacy dispense service, the method_cd may contain one of the following values for the dispense method. This is fully compatible with HL7 v2.3.

Table 34: Supply methods for pharmacy dispensing services (HL7 v2.3 table 0321)

Concept	Code	Definition
Traditional	TR	[we need a definition!!]
Unit Dose	UD	[we need a definition!!]
Floor Stock	F	The medication is dispensed from a stock on the care unit every day.
Automatic Dispensing	AD	[we need a definition!!]

7.8 Diet service

Diet services are very much like supply services, with some aspects resembling Medication services: the detail of the diet is given as a description of the Material associated as a target of type *product*. Medically relevant diet types may be communicated in the Diet.universal_service_cd, however, the detail of the food supplied and the various combinations of dishes should be communicated as Material instances.

7.8.1 Diet.energy_qty: PQ ~ 1 kcal/d

The most important medically relevant parameter of a diet order is the supplied biologic energy (Calories) per day. This value may be specified in the Diet.energy_qty attribute as a physical quantity. This physical quantity should be convertible to 1 kcal/d (or 1 kJ/d.) Note, that there is a lot of confusion about what is a "calorie." There is a "large Calorie" and a "small calorie." On "nutrition facts" labels, the large "Calories" is used. More appropriately, however, one should use the small calorie, which is 1/1000 of a large Calorie. In the Unified Code for Units of Measure, the proper unit symbol for the large calorie is "[Cal]" and for the small calorie it is "cal", or, more commonly used as a kilo-calorie "kcal".

7.8.2 Diet.carbohydrate gty: PQ ~ 1 g/d

For diabetes diet one typically restricts the amount of metabolized carbohydrates to a certain amount per day (e.g., 240 g/d). This restriction can be communicated in the carbohydrate_qty.

7.8.3 Diet.universal_service_cd : CD inherited from Service

The following table is an incomplete set of medically relevant diet types that may be communicated in the Diet.universal_service_cd. Note that details about the dishes and preparation are described in the Material class with the associated role class for Food.

Table 35: Medically relevant diet types, not including patient preferences

Concept	Code	Definition
normal diet	N	A normal diet, i.e. no special preparations or restrictions for medical reasons. This is notwithstanding any preferences the patient might have regarding special foods, such as vegetarian, kosher, etc.
(we call it "schonkost" in German)	SCH	A diet that avoids ingredients that might cause digestion problems, e.g., avoid excessive fat, avoid too much fiber (cabbage, peas, beans.)
(we call it "breikost" in German)	BR	A diet exclusively composed of oatmeal, semolina, or rice, to be extremely easy to eat and digest.
liquid	LQ	A strictly liquid diet, that can be fully absorbed in the intestine, and therefore may not contain fiber. Used before enteral surgeries.
tea only	Т	This is not really a diet, since it contains little nutritional value, but is essentially just water. Used before coloscopy examinations.
fasting	FAST	No enteral intake of foot or liquids whatsoever, no smoking. Typically 6 to 8 hours before anesthesia.
diabetes mellitus diet	DM	A diet that uses carbohydrates sparingly. Typically with a restriction in daily energy content (e.g. 1600–2000 kcal.)
reduction diet	RD	A diet that seeks to reduce body fat, typically low energy content (800–1600 kcal.)
parenteral	PAR	Patient is supplied with parenteral nutrition, typically described in terms of i.v. medications.
low fat	LF	A diet low in fat, particularly to patients with hepatic diseases.
no fat	NF	A no fat diet for acute hepatic diseases.
low sodium	LS	A diet low in sodium for patients with congestive heart failure and/or renal failure.
low protein	LP	A low protein diet for patients with renal failure.
gluten free	GF	Gluten free diet for celiac disease.
phenylalanine free	PAF	Phenylketonuria diet.
low valine, leucine, isoleucine	VLI	Diet with low content of the amino-acids valin, leucin, and isoleucin, for "maple syrup disease."

7.8.4 Diet.method_cd : CD

inherited from Service

Diet may need to be scrambled and may need to be applied through some gastric tube. This can be described using the method_cd attribute and as associated Materials representing access routes, such as naso-esophageo-gastric or -duodenal tube or a percutaneous endoscopic gastrotomy (PEG) tube.

8 The Material class

The Unified² Service Action Model divides the world into Substance and Actions with some glue classes (roles, participations, relationships) between them. The sections above have all dealt in depth with Actions. In this section we will turn to Substances. At this point, the HL7 RIM defines the classes Person and Organization with a common generalization called "Stakeholder". Although Stakeholder, Person and Organizations are classes that we referred to as part of the Universe of Substance, most Substance does not have legal rights and responsibilities.

We find that substance that is not considered a "Stakeholder" is much less organized in the current RIM

Main Entry: ¹ma·te·ri·al

Pronunciation: m&-'tir-E-&l

Function: adjective

Etymology: Middle English materiel, from Middle French & Late Latin; Middle French, from Late Latin

materialis, from Latin materia matter – more at MATTER

Date: 14th century

1 a (1): relating to, derived from, or consisting of matter; $especially: \underline{PHYSICAL}$ (the material world) (2): \underline{BODILY} (material needs) b (1): of or relating to matter rather than form (material cause) (2): of or relating to the subject matter of reasoning; $especially: \underline{EMPIRICAL}$ (material knowledge)

2 : having real importance or great consequences (facts *material* to the investigation)

 $\bf 3~a$: being of a physical or worldly nature $\bf b$: relating to or concerned with physical rather than spiritual or intellectual things $\langle material \ progress \rangle$

- ma·te·ri·al·ly /-E-&-lE/ adverb
- ma·te·ri·al·ness noun

synonyms MATERIAL, PHYSICAL, CORPOREAL, PHENOMENAL, SENSIBLE, OBJECTIVE mean of or belonging to actuality. MATERIAL implies formation out of tangible matter; used in contrast with spiritual or ideal it may connote the mundane, crass, or grasping \(\lambda material \) values \(\rangle \). PHYSICAL applies to what is perceived directly by the senses and may contrast with mental, spiritual, or imaginary \(\text{the physical} \) benefits of exercise \(\rangle \). CORPOREAL implies having the tangible qualities of a body such as shape, size, or resistance to force \(\text{artists} \) have portrayed angels as \(\corporeal \) beings \(\rangle \). PHENOMENAL applies to what is known or perceived through the senses rather than by intuition or rational deduction \(\scientists \) concerned with the \(\text{phenomenal} \) world \(\rangle \). SENSIBLE stresses the capability of readily or forcibly impressing the senses \(\text{the earth's rotation is not sensible} \) to us \(\rangle \). OBJECTIVE may stress material or independent existence apart from a subject perceiving it \(\lambda \) o \(\text{objective} \) evidence of damage \(\rangle \). Synonym see in addition RELEVANT

Exhibit 4: Webster's definition of "material".

Main Entry: ²material Function: *noun*

Date: 1556

1 a (1): the elements, constituents, or substances of which something is composed or can be made (2): matter that has qualities which give it individuality and by which it may be categorized \langle sticky $material \rangle$ \langle explosive materials \rangle b (1): something (as data) that may be worked into a more finished form \langle material for a biography \rangle (2): something used for or made the object of study \langle material for the next semester \rangle (3): a performer's repertoire \langle a comedian's material \rangle c: \underline{MATTER} 3b d: \underline{CLOTH} e: a person potentially suited to some pursuit \langle varsity material \rangle \langle leadership material \rangle 2 a: apparatus necessary for doing or making something \langle writing materials \rangle b: $\underline{MATÉRIEL}$

Exhibit 5: Webster's definition of "material" cont'd.

than is the area of people and organizations. For example, we find such classes as Collected_specimen_sample, Durable_medical_equipment, Patient_service_location, and also Living_subject, scattered in the model, unrelated to each other, with each having their own set of relationships to other classes. This is a problem because all these classes are used and acted upon by Services. At this point, the Target_participation optionally links to any one of those many substance classes. In addition there is a number of other relationships from Service to, e.g., location, and between the scattered substance classes. This is troublesome, because there is more regularity and more system to these classes than the current model suggest.

The Unified Service Action Model therefore suggest the creation of a class Material, that assumes all the

common attributes of substance. Webster's definitions for material are shown in Exhibit 4 and Exhibit 5 for reference. As can be seen the term "material" has a fairly broad meaning which we intentionally evoke for this Material class.

8.1 Attributes of class Material

8.1.1 Material.id: SETállñ

As a substantive class reflecting physical entities, material has instance identifiers. Note that an instance identifier is a pure identifier and not a classifier. That means, this identifier is not used to store information about what kind or type of material this is. Ideally each entity will have only one identifier assigned to it, however, since different systems will maintain different material data bases, there may be different instance identifiers assigned by different systems.

Note that for serial numbers assigned by specific manufacturers, catalog numbers of specific distributors, or for inventory numbers issued by owners, the attribute Responsibility.material_id: $SET\langle II \rangle$ can also be used. This allows to more clearly express the fact that such a code is assigned by a specific party associated with that material. In any case, all values of Responsibility.material_id may occur in Material.id just as well.

8.1.2 Material.type_cd : CD

This code describes what kind of material this is. It is an arbitrarily precise classification. We do not expect any single terminology to provide all concepts that are types of material, since it is simply too broad a domain. Instead of limiting the Material.type_cd to a single domain, we allow various code systems to be used, and thus, the actual domain of Material.type_cd becomes the union of all the possible code systems for material.

For example, specimen types (e.g., whole blood, serum, urine) can be used in this attribute. For chemicals, IUPAC codes might be used here. For arbitrary products one can use the Universal Product Code (UPC) code or a particular manufacturer's serial number. For pharmacological substances yet another coding system may be applicable such as the U.S. National Drug Code (NDC.) The concept

Revision 2.4 The Material Class

descriptor data type allows for multiple codes used as synonyms for each other, thus, one can specify an UPC code next to an NDC code and an IUPAC code.

8.1.3 Material.form_cd : CV

This is a classifier describing the form of the material. This includes the typical state of matter (solid, liquid, gas) and, for therapeutic substances, the dose form. The following concept repertoire is applicable

Implies Definition Concept Code CNT continuous Continuously divisible form, typically amorphic. Continuously divisible material has typically no identity and comes in quantities measured as mass or volume, **PWD** powder A grained or powdered crystalline substance in solid state. continuous liquid continuous LQD Substance is typically in liquid state. continuous GAS Substance is typically in gas state. gas integral INT Integral solid form that can not be broken into pieces without destroying the form. Typically has a fixed shape. In the pharmacy this is sometimes called "eaches." tablet integral TAB A tablet (Note: tablets can be broken into pieces of $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, but not much less.) integral **CAPS** A capsule (a container.) capsule suppository integral **SUPP** Used to apply medication rectally. vial integral VIAL A container made from all-glass and closed through melting. Filled with crystalline powder or liquid. bottle integral **BTTL** A container closed by a cover. ... more .

Table 36: Concept repertoire for forms of material

Note that the above table is not complete. It needs to incorporate all medication dose forms.

8.1.4 Material.desc : ED

A free text description of the material. May contain multimedia, such as a drawing or image depicting the material.

8.1.5 Material.status_cd : SETáCVñ

The status_cd tracks the state of the state-transition model of the material. This may be a rather trivial state-transition model, since the more concrete and detailed state-transition models may be assigned to the material role classes.

8.1.6 Material.extent_tmr : IVLáTSñ

The time interval a certain material is in existence. The high boundary of this interval is the expiration date if it is defined for the material.

Expiration dates does not always have a "day" component; therefore, such a date may be transmitted as *YYYYMM*.

8.1.7 Material.lot_nmb: ST

The lot number is the number printed on the label attached to the container holding the substance and on the packaging which houses the container. A "lot" is a collection of products produced in one cycle. This means, for instance, if one bottle of a lot is spoiled, chances are high that the entire lot is spoiled. Conversely, product defects that occur in routine production are likely to be contained in one lot.

Note that a lot number is not meant to be a unique identifier, but is meaningful only when the product kind is identified.

8.1.8 Material.handling_cd: CD

A code to describe how the material needs to be handled to avoid damage.

Implies Code Definition Concept room temperature **RMT** Keep at room temperature, about 20 °C BDT body temperature Keep at body temperature, about 36 to 37 °C COO cool Keep cool at about 5 to 8 °C FRZ frozen Keep frozen below 0 °C deep frozen DFR Keep deep frozen, below - 16 °C NTR nitrogen Keep in liquid nitrogen dry DRY Keep in a dry environment dark DRK Protect against light no shock **PSO** Protect against shock **UPR** Keep upright, do not turn upside down upright no shake **PSA** Do not shake

Table 37: Material handling code

8.1.9 Material.danger_cd : CD

... more ...

A code signaling whether there are certain dangers or hazards associated with this material.

Table 38: Material danger code

Concept	Implies	Code	Definition
tissue		TIS	The normal dangers associated with normal human or animal tissue. I.e. potential risk of unknown infections. Routine blood or excretions of humans and animals.
infectious		INF	Material known to be infectious with human pathogenic microorganisms. Those who handle this material must take precautions for their protection.
biohazard	infectious	BHZ	Material contains microorganisms that is an environmental hazard. Must be handled with special care.
radioactive		RAD	Material is a source for ionizing radiation and must be handled with special care to avoid injury of those who handle it and to avoid environmental hazards.
poison		POI	Material is poisonous to humans. Special care must be taken to avoid incorporation, even of small amounts.
acid		ACI	Material is acid and may cause severe injury to human skin and eyes. Avoid any unprotected contact.

Revision 2.4 The Material Class

inflammable		IFL	Material is highly inflammable and in certain mixtures (with air) may lead to explosions. Keep away from fire, sparks and excessive heat.
explosive	inflammable	EXP	Material is an explosive mixture. Keep away from fire, sparks, and heat.
injury hazard		INJ	Material is solid and sharp (e.g., cannulas.) Dispose in hard container.

8.1.10 Material.qty : SETáPQñ default: {1}

For many materials, the individual thing has no relevance. Especially continuously divisible forms come only in "amounts" rather than as individuals. There is a specific class of physical quantities that can be used for amounts, count (number), amount of substance, mass, and volume. This class of physical quantities is called "extensive" quantities. A quantity is called extensive if it can be added up (if it is additive.) For example, if you have 1 gallon of water and you add another gallon of water, you have two gallons of water, since volume is an additive quantity. By contrast, if you have one gallon of Glucose 5% and add to it another gallon of Glucose 5% you still have Glucose 5%, thus, mass fraction is not an additive (extensive) kind of quantity.

Only extensive quantities are permitted as elements of the Material.qty set. Typically the kinds of quantities shown in Table 39 will occur. Extensive quantities are simpler to deal with than intensive quantities. Extensive quantities are never fractions or ratios, no denominator can cancel out the units of a numerator, and therefore, with extensive quantities we can conclude the kind of quantity from the unit of measure.

Kind of quantity	Typical Unit	Forms	Examples
Number	1	solid	Material that is large enough that is can be counted ("eaches")
Mass	1 g	liquid, solid	Tissue, chemical substances, food.
Amount of substance	1 mol	all	Chemical substances, small particles.
Volume	1 L	liquid, gas	Chemical substances in liquid and gas state. Amorphic tissue.
Length	1 m	solid	Long material measured in length, e.g., tape, pipes, hose, etc.
Area	1 m ²	solid	Flat material measured in area, e.g., covers, foils, etc.
Energy	1 J, 1 kcal	solid, liquid	Chemical substances, especially food.
Catalytic amount	1 kat, 1 U, 1 i.U.	all	Enzymes and other chemical substances having catalytic activity.
Radioactivity	1 Bq, 1 Cu	all	Radioactive substances.
Reaction equivalent	1 Eq	all	Ionized chemical substances measured through titration. Deprecated, use proper amount of substance instead.

Table 39: Kinds of quantities for amounts of material

The Material day attribute permits to convey a collection of physical quantities. This collection feature must be used in the following way. When the set contains more than one quantity, the quantities must have different units. Furthermore, all quantities in the set must denote an equivalent amount. For example, for the material Glucose, we may specify an amount as the mass of 1 g. If we also want to specify the amount in amount of substance (moles) we must specify the equivalent of 1 g Glucose in mole, which is 5.556 mmol. For another example, if we specify the amount of a material Water as 1 L, and we want to provide a mass, the mass must be the mass of 1 L water, which is 1 kg.

By specifying the amount in multiple units representing multiple kinds of (extensive) quantities, we not only allow for flexibility. This brings about a simple yet powerful way to represent material constants, such as molar mass, molar volume, mass density, biologic energy content, etc. So, if we specify mass, amount of substance, volume and energy content of a substance, we can convert to any of those kinds of quantities given any other quantity.

8.2 Material relationships to other Material

Material relates to other material largely in some kind of whole-part or containment relationship. The special functioning of the material relationship depends on the role of material, i.e. whether the material is an discrete thing, a homogenous substance, a container, or a location. Material can be all of those forms which is explained in Section 1 below.

Analogous to the service relationship, the material relationship is a directed link between material entities. This means, the relationship is like an arrow with a butt and a point. The entity at the side of the butt is called the *source*, and the entity at the point is called the *target* of the relationship.

The following attributes can be ascribed to a material relationship.

8.2.1 Material_relationship.type_cd : CV

Material relationships can be of different types, i.e., may express different kinds of relationships. The relationship concepts are exhaustively defined in Table 40, that is, the concepts of that table must be used.

Every relationship type implies certain roles for the material at each side of the relationship. The notion of roles in a material relationship is very similar to material roles as defined in Section 1 below. Where in Table 40 the roles are so generic that they are not represented as a material role class in the model, that generic role name is printed in *italics*. Role names in upright font refer to the same concept as represented by the material role class of the same name. In general a material filling that role should be accompanied by the detail defined in the role class, but it is not an absolute requirement. For example, if a material is taken as a container but none of the container-specific attributes are applicable, the instance of the Container role class need not be present.

Table 40: Material relationship types

Concept	Code	Implies	Definition	meaning of	f the service
				source	target
has part	PART		Relates a whole to its parts. A part may be an ingredient that is not separable from the whole, or a discrete part that may be identified separately and may, in principle, be disassembled from the part.	whole	part
has ingredient	INGR	PART	Relates a component to a mixture. E.g., Glucose and Water are ingredients of D5W, latex may be an ingredient in a tracheal tube.	any material	any material
has base	BASE	INGR	A base ingredient is what comprises the major part. E.g., Water in most i.v. solutions, or Vaseline in salves. Among all ingredients of a material, there should be only one base. A base substance that in turn be a mixture, e.g. base: 500 ml bottle D5W, additive: KCl 20 mmol.	any material	any material
has additive	ADTV	INGR	An ingredient that is added to a base, that amounts to a minor part of the overall mixture.	any material	any material
has active ingredient	ACTI	INGR	A therapeutically active ingredient in a mixture, where the mixture is typically a manufactured pharmaceutical.	therapeutic agent	therapeutic agent
has stabilizer	STBL	ADTV	A stabilizer is a substance added to a mixture in order to prevent the molecular disintegration	any material	any material

Revision 2.4 The Material Class

			of the main substance.		
has preservative	PRSV	ADTV	A substance added to a mixture to prevent microorganisms (fungi, bacteria) to spoil the mixture.	any material	any material
has flavor	FLVR	ADTV	A substance added to a mixture to make it taste a certain way. In food the use is obvious, in pharmaceuticals flavors can hide disgusting taste of the active ingredient (important in pediatric treatments.)	any material	any material
has color	COLR	ADTV	A substance influencing the optical aspect of material.	any material	any material
has content	CONT		Relates a material as the content to a container. Unlike ingredients, the content and a container remain separate (not mixed) and the content can be removed from the container. A content is not part of an empty container.	container	any material
has presence	PRSN		Relates any material to a location at which it is present in some way. This presence may be limited in time.	any material	location
has depot	DEPO	PRSN	Relates a material (e.g. a device) to a location at which it is normally found or stored when not used.	any material	location
has species	SPEC		Relates a generalized material concept to its specialization.	any material as genus	any material as species
has generic		SPEC ⁻¹	A special link between pharmaceuticals indicating that the target is a generic for the source.	therap. agent as brand	therap. agent as generic
instantiates	INST		An individual piece of material instantiating a class of material.	any material as instance	any material, as class

8.2.2 Material_relationship.inversion_ind : BL default: false

The role type may be used in the opposite direction.

For example, instead of listing a material instance representing a mixture and subordinate to it mentioning the ingredients as target material instances, one can use one ingredient and subordinate to it mention the mixture in which it happens to exist. This is the common way of thinking of pharmaceuticals. In most pharmaceuticals, we have one main ingredient which we consider "therapeutically active" and which we mention, although we know that this substance always comes as an ingredient of a mixture containing diluents, stabilizers, preservatives, flavors and colors. This active ingredient as the top material instance inverted ingredient mixture ingredient.

Another notable example for inversion of the relationship type is for containers. The *content* relationship type allows one to first list a container (e.g. package) and then provide a list of content as subordinate (target) material. In other cases, one wants to mention the material first and by the way describe it being contained in a container. Therefore, when the content is the important thing and the container just goes with it (e.g., for most medications,) one will use the inverted content link.

8.2.3 Material_relationship.tmr : IVLáTSñ

For some transient relationships between material one can specify a time in which the relationship is valid using the Material_relationship.tmr attribute. As with any interval of points in time, a start time, an end time, or a just a duration may be specified.

8.2.4 Material relationship.position nmb: LISTáNMñ

Some containers have discrete positions in which content may be located. Depending on the geometry of the container, the position may be referenced as a scalar ordinal number, or as a vector of ordinal numbers (coordinates.) Coordinates always begin counting at 1.

Some containers may have customary ways of referring to the positions. Take a checkboard, for example, in which rows are specified A-H and columns specified 1-8. In these cases, the non-numeric coordinate must be converted into a numeric. The in absence of any specific regulation for a specific container type, the rule of thumb is that the coordinate that is changed earlier is positioned first. For the checkboard example, this means that the columns are changed or traversed first. When you start placing the figures in the start position, you chiefly align them in the columns, and only then you start moving them ahead in rows (and columns too.)

For an automated blood chemistry analyzer, with a square shaped tray, this means that the first coordinate is the one in which direction the tray moves at each step. Whereas the second coordinate is the one in which the tray moves only every 10 (or so) steps.

As a final example, the positions on a computer screen that works in usual left-to-right and top-to-bottom direction, the columns would be the first coordinate and the lines would be the second coordinate. (Note however, that this is just an example to clarify the rule. It does not mean that a character displayed on a screen would be an instance of the Material class. In fact, it's immaterial.)

8.2.5 Material_relationship.qty : PQ

This attribute specifies how much of the target material is contained in the source material of a relationship. For example, if a box contains 10 eggs, the box is the relationship source is the box and the relationship target is the egg, where the relationship quantity is 10. For mixtures with multiple ingredients, the relationship quantities specify the relative amounts of the ingredients in the mixture (proportion.)

The quantity must be a quantity that specifies an "amount" (refer to Table 39 in Section 8.1.10). The amounts specified as the proportion quantity for each ingredient are taken to be numerators over the same denominator. For example, D5W is a mixture consisting Water (H_2O) and 5% (= 50 g/L) Glucose (Glc.) The proportions can be either of the following pairs: H_2O :1 g + Glc:50 mg; H_2O :1 L + Glc:50 g; H_2O :500 mL + Glc:25 g; or any combination that amounts to the same concentration of Glucose in Water.

Note that the value of the proportion quantity does not matter as long as the proportion between the ingredients of a substance is kept invariant. If, for example, we specify D5W as having ingredients 500 mL of H_2O and 25 g of Glucose this does **not** mean that D5W could only be dispensed in multiples of 500 mL.

The benefit of specifying the proportion in terms of amounts is that it is simple and straightforward, and there is no ambiguity that we often face with intensive measures, such as concentrations, mass fractions vs. mass ratios, etc. For example, the unit percent (%) is ambiguous, since it could be a mass fraction or a volume fraction or any kind of ratio. All ratios are ambiguous since one needs to know what is the numerator substance and what the denominator substance. This ambiguity is all removed by specifying the proportion in terms of extensive measures (additive amounts.)

Revision 2.4 The Material Class

8.3 Responsibilities of Stakeholders for Material

Material can have many kinds of relationships with Stakeholders. We subsume all the relationships between material and stakeholders under the notion of Responsibility. The reason being that responsibility for the existence of material, any specific property of material, or performance of functional material (devices) is with some stakeholder. The underlying reason for stakeholder associations to material is that the material is somehow acted upon by the stakeholders. In that sense, one could subsume the Responsibility association under the Service action class. However, just as we chose to represent minor sub-activities around Services as Actors with various actor types, we allow the responsibilities that come from actions of stakeholders to be persistently "coined" on the material.

For example, manufacturing is certainly an activity (Service) with the manufacturer (Organization) as an Actor and the material as a Target of type product. However, in many cases we are not interested in the activity of manufacturing the material, when it took place and what its circumstances were, but what we are interested in is just: who made it? This interest in the manufacturer is chiefly one of responsibility and liability: if the material is different than expected, does not perform well, or does harm, one would probably consider holding the manufacturer liable. Responsibility and liability are concepts that form the very basis of a society based on the law, and emphasis on those terms should by no means imply an undue "legalization" of relationships.

Other relationship types between Material and Stakeholder are: owner, distributor, custodian/holder. All those relationships can be considered to be characterized by responsibilities. This even goes so far as **if** a human fetus would be considered Material, motherhood (and fatherhood!) would be a type of Responsibility between a Stakeholder (Person) and that fetus. This example shows that responsibility has two aspects: responsibility is not only being held liable by others for malfunctioning, disappointment, and harm caused by the material; responsibility also means an ethical responsibility towards the "material" and even to the extent of being held liable by society for neglect of one's responsibility towards that "material." This latter kind of responsibility is clearly present between fetus and parent, but also between animal and owner or custodian.

8.3.1 Responsibility.type_cd : CV

Specifies the kind of responsibility of the Stakeholder to the Material.

Concept	Implies	Code	Definition
manufacturer		MAN	Someone bringing a specific material instance into existence, or, if the material is not a specific instance, someone capable of doing so.
distributor		DST	Someone distributing material between a manufacturer and a buyer or retailer.
retailer	distributor	RET	Someone selling a material, also giving advice to prospective buyers.
transporter		TRP	Someone in transient possession of a material for the purpose of relocating it.
owner		OWN	Someone to whom law grants the right to call a material his own, which entitles him to make decisions about the disposition of that material.
holder		HLD	Someone who is currently in possession of the material, who holds, or uses it, usually based on some agreement with the owner.
trainer		TRN	Of a companion animal, someone who is training the animal on behalf of the animal's owner.
parent		PRN	One of the two direct ancestors of a human fetus, in case a fetus is not considered a person.
father	parent	FTH	The male parent of a human fetus, in case a fetus is not considered a person.
mother	parent	MTH	The female parent of a human fetus, in case a fetus is not considered a person.

Table 41: Material responsibility type code

8.3.2 Responsibility.tmr: IVLáTSñ

Allows to specify a limitation in time during which the responsibility holds.

8.3.3 Responsibility.material_id : SETállñ

The same piece of material may be given different identifiers by different responsible parties. For example, a manufacturer may assign a manufacturer id, a distributor may assign a catalog number, etc. All those identifiers can in principle occur under the Material.id attribute, i.e., as a property of the material itself. However, this attribute allows to make the scope of the id more clear, i.e. it helps to easily distinguish a specific manufacturer's id from a distributor's id much more directly and obvious as can be done using the assigning authority component of the instance identifier data type.

9 The Roles of Material

Material is used in different roles. We could have modeled the roles of material similar to the subtypes of Services (as specializations.) Role and specialization are similar in many ways. Notably there is a kind of "inheritance" of properties from a substance to a role, just as there is inheritance of properties from a general class to its specializations. A role can never exist without a substance that takes on that role, thus, all genuine properties of the substance are available regardless of which role it takes on. This is important because in the following we use the same convention to describe the interpretation of a Material attribute from the standpoint of a particular role.

The one important difference between a role class of a substantive class and a specialization of a general class is that specializations are exclusive whereas roles are inclusive. For example, the same substance (e.g., leaves of the eucalyptus plant) may be considered food and at the same time may be considered a therapeutic agent. Or, a bottle with an attached applicator is a container, and at the same time, is a device for administering the content of the container. Finally, an ambulance is a device for transportation, but at the same time, it may be a health care location (facility.)

Note that the role classes proposed for material are not very heavily used. If no strong properties are defined for these role classes in the near future, one can consider deleting them from the model. The same comment can be made on the subclasses of Service. At this point, the role classes are here to illustrate a principle. In the future, either we will use these role classes more strongly, or we may delete them from the model.

9.1 Specimen

According to Webster's dictionary, a specimen is "an individual, item, or part considered typical of a group, class, or whole" or "a portion or quantity of material for use in testing, examination, or study." In the practice of clinical medicine and especially in previous HL7 specifications, specimen was tightly related to the container which holds the specimen. However, there is an important difference between a container and a specimen. Through the material class with roles for both specimen and container one can manage containers separately from specimen. With the same class one can manage empty specimen containers (material management) the same way as the container filled with specimen.

In the prior models that merged specimen and container as the same thing, there are relatively few properties pertaining to the specimen itself as compared to the container. Only specimen type, source body site (or anatomical system,) quantity (typically volume,) and handling instructions pertin

genuinely to the specimen. One can argue whether some of those parameters even pertain to the specimen collection activity rather than the specimen itself. For example, for a peripherial venous blood sample it does not really matter whether it has been taken from the vena cephalica, the cubital venes, vena jugularis, vena femoralis, or any other peripheral vein.

9.1.1 Specimen.body_site_cd : CD

Body site has been retained as an attribute of the specimen, since it may be relevant in some cases, e.g., if multiple liver needle biopsies are taken from different lobes and locations of the liver. The value of the Specimen.body_site_cd should be identical to the value of the Service.body_site_cd of an associated specimen collection service. This attribute therefore is used only if such an associated specimen collection service is not communicated. When the rule is to always send a specimen along with a record of the specimen collection service, this attribute needs not and should not be valued.

9.1.2 Material.type_cd : CD

For material in the role of specimen, the Material.type_cd is a specimen type code. HL7 does not principally prescribe the coding system used for the material type code. However, the following concepts must be provided in the concept descriptor for specimen where applicable. The concept descriptor allows for arbitrarily many code translations, so one of the code translations must be a code from the table below. This table is taken from the LOINC 1.0M, and is largely the same as the specimen source table of HL7 v2.3.1 (with few exceptions.) We have removed one item from the LOINC table, which is "XXX – specimen type specified elsewhere," since it is not applicable in the only field available for specimen type.

 Table 42: Material type codes for specimen

Concept	Code	Concept	Code	Concept	Code
Abcess	ABS	Fistula	FIST	Seminal fluid	SMN
Amniotic fluid	AMN	Body fluid, unsp	FLU	Seminal plasma	SMPLS
Aspirate	ASP	Food sample	FOOD	Serum	SER
Basophils	BPH	Gas	GAS	Skin	SKN
Bile fluid	BIFL	Gastric fluid/contents	GAST	Skeletal muscle	SKM
Blood arterial	BLDA	Genital	GEN	Spermatozoa	SPRM
Blood bag	BBL	Genital cervix	GENC	Sputum	SPT
Blood capillary	BLDC	Genital fluid	GENF	Sputum - coughed	SPTC
Blood – cord	BLDCO	Genital lochia	GENL	Sputum - tracheal aspirate	SPTT
Blood product unit	BPU	Genital vaginal	GENV	Stone (use CALC)	STON
Blood venous	BLDV	Hair	HAR	Stool = Fecal	STL
Bone	BON	Inhaled Gas	IHG	Sweat	SWT
Breath (use EXG)	BRTH	Intubation tube	IT	Synovial fluid (Joint fluid)	SNV
Bronchial	BRO	Isolate	ISLT	Tears	TEAR
Burn	BRN	Lamella	LAM	Throat	THRT
Calculus (=Stone)	CALC	Leukocytes	WBC	Thrombocyte (platelet)	THRB
Cardiac muscle	CDM	Line	LN	Tissue, unspecified	TISS
Cannula	CNL	Line arterial	LNA	Tissue gall bladder	TISG
Catheter tip	CTP	Line venous	LNV	Tissue large intestine	TLGI

Revision 2.4 The Roles of Material

Cerebral spinal fluid	CSF	Liquid NOS	LIQ	Tissue lung	TLNG
Cervical mucus	CVM	Lymphocytes	LYM	Tissue placenta	TISPL
Cervix	CVX	Macrophages	MAC	Tissue small intestine Tissue ulcer	TSMI
Colostrum	COL	Marrow (bone)	MAR	Tissue ulcer	TISU
Conjunctiva	CNJT	Meconium	MEC	Tube, unspecified	TUB
Curettage	CUR	Menstrual blood	MBLD	Ulcer	ULC
Cornea	CRN	Milk	MLK	Umbilical blood	UMB
Cyst	CYST	Breast milk	MILK	Unknown medicine	UMED
Dialysis fluid	DIAF	Nail	NAIL	Urethra	URTH
Dose med or substance	DOSE	Nose (nasal passage)	NOS	Urine	UR
Drain	DRN	Other	ORH	Urine clean catch	URC
Duodenal fluid	DUFL	Pancreatic fluid	PAFL	Urine catheter	URT
Ear	EAR	Patient	PAT	Urine sediment	URNS
Ear wax (cerumen)	EARW	Peritoneal fluid /ascites	PRT	Unknown substance	USUB
Electrode	ELT	Placenta	PLC	Vomitus	VOM
Endocardium	ENDC	Plasma	PLAS	Whole blood	BLD
Endometrium	ENDM	Plasma bag	PLB	Whole body	BDY
Eosinophils	EOS	Pleural fluid (thoracentesis fld)	PLR	Water	WAT
Erythrocytes	RBC	Polymorphonuclear neutrophils	PMN	Wick	WICK
Eye	EYE	Platelet poor plasma	PPP	Wound	WND
Exhaled gas (=breath)	EXG	Platelet rich plasma	PRP	Wound abscess	WNDA
Fibroblasts	FIB	Pus	PUS	Wound exudate	WNDE
Filter	FLT	Saliva	SAL	Wound drainage	WNDD

9.1.3 Material.extent tmr: IVLáTSñ

As with any other material, the extent specifies the time a material exists. With specimen, the low bound of the extent interval is especially important as the time the specimen was collected, or derived. Most chemistry lab specimen are disposed after use, and the time of disposal would be the high bound of the extent time range. In anatomic pathology many specimen are frozen and kept for a long time, in which case most specimen records will not have a value for the high boundary of the extent time range.

9.1.4 Material.qty : SETáPQñ default: {1}

This is the amount of specimen. This attribute is mostly used for continuous forms, such as liquids, gases, or soil. In veterinary medicine, a number of animals may be taken as a specimen for a large population. Again the individual animal in such a set has no relevance, just as the individual grain of sand has no relevance in a soil sample, or the individual erythrocyte has no relevance in a blood sample.

Note that for an integral thing taken as a specimen, the Material.qty is 1. In these cases, the material quantity should not be used to communicate simple observations on that individual specimen. For example, if one Appendix has been sent to anatomical pathology, the length, mass, etc. would *not* be recorded in this field. Length, mass, and other measurements on an individual item must be represented as observations.

9.2 Container

The design of the Container role class is heavily influenced by the use as a specimen container. All attributes of this class are taken from the HL7 Lab Automation SIG / NCCLS proposal for an HL7 version 2.4 chapter.

A container can be related to a content material through a Material_relationship of type content.

9.2.1 Container.capacity_qty: PQ

A capacity of a container is the maximum amount of content the container is designed to hold. See Section 8.1.10 about what an amount is. Note that the Material.qty for a container is used the same way as for any other material. The Material.qty does not describe the capacity of one container, but allows one to specify a quantity of containers if the individual container has no relevance.

The actual amount of content in a container can be specified by the Material.qty of the content material.

9.2.2 Container.height_qty: PQ ~ 1 cm

From NCCLS, a geometric property of the container. Issue: how do we know that we do not need to describe other arbitrary properties of containers? If we do, how do we do that?

9.2.3 Container.diameter gty: PQ ~ 1 cm

From NCCLS, a geometric property of the container. Issue: how do we know that we do not need to describe other arbitrary properties of containers? If we do, how do we do that?

9.2.4 Container.barrier_delta_qty : PQ ~ 1 cm

From NCCLS, a geometric property of the container. Issue: how do we know that we do not need to describe other arbitrary properties of containers? If we do, how do we do that?

9.2.5 Container.bottom_delta_qty : PQ ~ 1 cm

From NCCLS, a geometric property of the container. Issue: how do we know that we do not need to describe other arbitrary properties of containers? If we do, how do we do that?

9.2.6 Container.separator type cd : CD

From NCCLS, the kind of separator material. Issue: code appears to be undefined. This attribute will be dropped if we do not get in a half-way complete concept repertoire by September 2000.

9.2.7 Container.cap_type_cd : CD

From NCCLS, the kind of cover cap? Issue: code appears to be undefined. This attribute will be dropped if we do not get in a half-way complete concept repertoire by September 2000.

Revision 2.4 The Roles of Material

9.3 Therapeutic agent

A therapeutic agent is anything that is brought to interact with the human body in order to achieve therapeutic effects.

Currently, there are no attributes of therapeutic agent that would not also be applicable to any kind of material. This role class is shown anyway, in order to make the use of material for therapeutic agents obvious. If there are no properties defined for this class by September 2000 it will be deleted from the model.

9.4 Devices

A device is anything used in an activity without being substantially changed through that activity. This includes durable (reuseable) medical equipment as well as disposable equipment.

Currently, there are no attributes of device that would not also be applicable to any kind of material. This role class is shown anyway, in order to make the use of material for devices obvious. If there are no properties defined for this class by September 2000 it will be deleted from the model.

In any way, there are a few device concepts defined by HL7 version 2.3 which are suggested for use in HL7 v2.3 as Material.type_cd values if the material is a device of one of the defined kinds and if it is not otherwise specified. See Table 43 below.

Value	Description	Value	Description
AP	Applicator	IVS	IV Soluset
BT	Buretrol	MI	Metered Inhaler
HL	Heparin Lock	NEB	Nebulizer
IPPB	IPPB	PCA	PCA Pump
IVP	IV Pump		

Table 43: Devices commonly used to administer medication (from HL7 v2.3 table 0164)

9.5 Access routes (tubes and drains)

Access tubes and drains are anything used to administer therapeutic agents (medication and vital elements) into the body, or to drain material (e.g., exsudat, pus, urine, air, blood) out of the body. Typically an access is a catheter, cannula or flexule proceeded into a compartment of the body.

Therefore, (target) body site and entry site are attributes of the access route. Note that the Access role primarily exists in order to describe material actually deployed as an access, and not so much the fresh material as it comes from the manufacturer. For example, in supply ordering a box of catheters from a distributor, it is not necessary to use the access role class, since the material attributes will usually suffice to describe and identify the product for the order.

9.5.1 Access_route.gauge_qty : PQ

The gauge of an access is a measure for the inner diameter of the tube (the lumen.) Typically catheter gauge is measured in terms of units not seen elsewhere. Those units are defined in the Unified Code for Units of Measure, but are repeated here because they are so unusual.

Name	Symbol	Synonym	Definition	Conversion
millimeter	mm		SI-unit, one thousandth of a meter	1 mm = 10 ⁻³ m
inch (international)	[in_i]		Customary unit as used today in the U.S. and Great Britain.	1 [in_l] = 25.4 mm
french	[Ch]	charrière	From Charrière, a French manu-	1 [ch] = $1/\pi$ mm ≈ 0.3183 mm
			facturer of medical instruments. Defined as the gauge of a tube having a circumference of 1 mm.	1 mm ≈ 3.14 [Ch]
gauge	G		There is a variety of gauge units	$d = d_0 \times 10^{-kg}$
			defined and used in the wire manufacturing industry. We are	$g = (\log_{10} d_0 - \log_{10} d) / k$; where
			about to collect clear definitions on most of them (particularly the	k 1/10 or 1/20 depending on gauge variant.
			variant used with cannulas) but have not been quite successful.	d the diameter
			The general schema of wire	g the gauge number
			gauges and their relationship to diameters is given through the formula on the right.	d ₀ e.g., 8.23 mm, 6.5 mm, depending on gauge variant.

Table 44: Common gauge measures for access devices

9.5.2 Access_route.entry_site_cd : CD

The Access_route.entry_site_cd specifies the anatomic site where the access first enters the body. For example in a arteria pulmonalis catheter targets a pulmonary artery but the access entry site is typically the vena carotis interna at the neck, or the vena subclavia at the fossa subclavia.

The coding system is the same as for Service.body_site.

Entry site has been copied from the Procedure service class into the Access role class. The value of the Access_route.entry_site_cd should be identical to the value of the Procedure.entry_site_cd of an associated access placement service. This attribute is used if such an associated access placement service is not communicated. Since accesses are typically placed for a considerable period of time and since the access is used as a Target (resource) of many services, the entry site seems to have become an important attribute of the access itself. The entry site is one of the most distinctive descriptors that help in locating a specific access among many others.

9.5.3 Access_route.body_site_cd : CD

This is the anatomical target site of the access, i.e., the body compartment into which material is administered or from which it is drained. For example, a pulmonary artery catheter will have the target site arteria pulmonalis with or without a known laterality.

The coding system is the same as for Service.body site.

Body site has been copied from the Service class into the Access role class. The value of the Access_route.body_site_cd should be identical to the value of the Service.body_site_cd of an associated access placement service. This attribute is used if such an associated access placement service is not communicated. Since accesses are typically placed for a considerable period of time and since the access is used as a Target (resource) of many services, the target body site seems to have become an important attribute of the access itself. The body site is an important information that determine what

Revision 2.4 The Roles of Material

kinds of substances may or may not administered (e.g., special care to avoid medication injections into an arterial access.)

9.6 Location as a Role of Material

Locations are treated as a role of Material. We anticipate this decision to be questioned, since it sounds quite unusual. In initial forms of this model, location was indeed modeled as a separate kind of substantive class, parallel to material. However, modeling location unrelated to material is challenged by a very simple problem: an ambulance. Obviously an ambulance is a material with a device role, used as a device for transportation services. However, an ambulance is also a location at which services are delivered.

This ambulance example shows that information analysis must separate the concept of position and region in a geometric coordinate system at which things are located and where activities happen, from a facility that is a resource for activities. For example an operating room is a service location that is clearly material in nature: the important parts of an operating room are its technical equipment that is tightly coupled to the walls, floor and ceiling of the room. Conversely, the position of the operating room, whether in terms of geographic coordinates or position in a building (floor, tract, room number, etc.), is quite irrelevant. So, while it is true that things are located at positions and services happen at positions, position itself is a fairly irrelevant aspect of what we call a service location. What is relevant is the location as a resource, just like a piece of equipment.

When in occupational or environmental medicine locations become a target *subject* of service (i.e., the subject to be assessed or acted upon) the findings are similar: position is a fairly irrelevant aspect of a location, whereas the material features of the location are of much higher interest. It is the water, air, the soil, the floor, the wall, the thing at the position that is the target of a service, not the position.

Thus whereby position is an important property of locations, that mainly help in locating (finding) a location, the essence of location is in fact material. Thus, we can rightfully model location as a role of material.

The USAM currently does not affect the detail of the location class in the current RIM (called "master patient service location".) Since we do not discuss the details of the location class, we do not even show that class in the model diagram. All we assert here about location is that it is a role of material, i.e., that there is an association Material :: takes_on_role_of(0,1) :: * Location :: is_a_role_of(1).

9.7 Food

Food is a role of material. Food is anything that is ingested by humans to address hunger and provide nutrition to the body. Food is often combined into dishes, which are combined into full meals. Since the Material_relationship class can express this combination there are little additional properties needed in the food class. There is only one classifier attribute that seem to be relevant and special for food. We call that classifier "preference", which is described below.

9.7.1 Food.preference cd : CD default: NVEG

The food preference describes the "style" and properties of the food that is selected mainly to meet the preference and customs of the recipient of the food. The term "preference" was selected to express that this property of food meets a preference of the consumer, not in order to limit this attribute to describe only the preferred style of food but not the actual style. The following concept repertoire is defined:

Table 45: Preferences, or "styles" of food

Concept	Implies	Code	Definition
non-vegetarian		NVEG	Supposedly every reasonable food is permitted.
no beef	NVEG	NBEF	Everything but beef (e.g., a hindu will absolutely not eat beaf.)
no pork	NVEG	NPRK	Everything but pork (e.g., muslims and jews)
kosher	NPRK	KOSH	Prepared after the traditional jewish rules
no beef and no pork	non-veg.	NBOP	Everything except beef and pork (e.g., many hindus today will not eat beaf, but will also stay away from pork), allowed meat is mutton, poultry, and fish.
no meat but fish	non-veg.	NMBF	Fish is the only allowed meat.
vegetarian		VEG	No meat at all. The only allowed animal product is egg and milk.
vegan	VEG	VEGN	vegetarian without eggs
more			

10 Stakeholder Owned Service Lists

Service lists are ordered collections of services. A service list is owned by a stakeholder and that owner can sort the services on the list in any order. A service itself is not affected in any way by being or not being a member on any particular list. Such stakeholder owned lists represent the fact that all prioritization of facts is in principle subjective. Technical applications of service lists are: work-list or schedule of the day, prioritized list of patient problems, to-do items, etc.

An example for the subjectivity of ranking among problems is a patient with three problems: a hebephrenic schizophrenia, a hypertrophic obstructive cardiomyopathia (HOCM) with a history of ventricular tachicardia, and acute abdominal pain. This patient is seen by three different physicians, a psychiatrist, a cardiologist, and, most recently, a surgeon. Obviously each one of the physicians would determine a different prioritization of the patient problems according to the his specialty and role in the care of that patient.

These stakeholder owned lists are not considered part of the patient record but are private lists that only the owner maintains. The need for communicating those lists becomes obvious when the list owner is an organization, department or team, where updates of the lists are made from different work places and systems.

10.1 Service List

A service list is owned by one and only one Stakeholder, which may be an individual, or organization (e.g., care team.) A Stakeholder can have multiple service lists. Each service list has a subject, i.e., a material (e.g. today's schedule for operating room 12a,) or a patient (patient's problem list) or another person. If the service list has no subject but just an owner, the owner is considered the subject. Thus, any stakeholder can maintain personal TO-DO lists, diaries, logbooks, etc.

10.1.1 Service list.id: SETállñ

Identifiers for the service lists, required to address the same service lists in multiple transactions.

10.1.2 Service_list.type_cd: CV

A kind of service list. Refer to the following Table for defined list types.

Table 46: Types of stakeholder owned service lists.

Concept	Implies	Code	Definition
schedule		SCH	A work-list, a schedule, or a personal to-do list of items intended to be done.
logbook		LOG	A diary of past services.
issues		ISS	A collections of any kinds of services as issues that need to be resolved.
problem list	issues	PRB	A patient's problem list as seen by a particular provider.
goal list	issues	GOL	A patient's goal list as seen by a particular provider.
more			

10.1.3 Service_list.name : ST

A short name that the owner of the list chooses to find this list among others. The name must be unique among all the lists that the stakeholder owns.

10.1.4 Service_list.text : ED

A description of this list. This may be considerable amount of text that explains what the list is for and how it is used. This is especially relevant if the owner is an organization or work group.

10.2 List Item

Each list item represents one service on the list.

10.2.1 Service_list_item.sequence_nmb : REAL default: 1

The items of the list can be sequenced using this attribute. It is a real number in order to allow dynamic insertion without having to renumber all the items every time an insertion or deletion is made.

10.2.2 Service_list_item.priority_nmb : REAL

Items in the list can be ranked by priority. This is used to help deciding which item to address next when the items are not sequenced.

10.2.3 Service_list_item.note_txt : ED

A note may be attached to each list. Since stakeholder owned lists are not part of the medical record, these notes are private notes of the list owner and are not subject to the rules of auditing and archiving that apply to medical record items.

Appendix A: Service Properties and Moods	
Copyright © 2000, Regenstrief Institute for Health Care. All rights reserved.	101

 Table 47: Detailed behavior of Service properties with respect to the mood.

Property	Definition	Intent (and order)	Event	Predicate moods	Goal
Service.id	object id	object id	object id	object id	object id
Service.recording_dttm	time the object was created	time the object was created	time the object was created	time the object was created	time the object was created
Service.confidentiality_cd	applicable confidentiality policies.	confidentiality policy (at least as strong as in definition.)	confidentiality policy (at least as strong as in definition. If preceded by an intent, inherits that policy)	not used	confidentiality policy (at least as strong as in definition.)
Service :: has(0*) :: Actor	must contain an author.	must contain an author. A performer may be designated.	must contain an author.	predicates are dependent on other services and inherit the other service's author	must contain an author.
Service :: has(0*) :: Target	required targets (resources)	designated targets. The patient target is the link to the patient record.	actually involved targets. The patient target is the link to the patient record.	constrains the predicate but rarely used if the kind of action requires them to be specified. Predicates are dependent on other services and inherit the other service's targets	patient target is the link to the patient record. Other targets rarely used if the kind of action requires them to be specified.
Service.universal_service_cd	name of defined action	name of intended action, redundant if action is identified through a link to a service definition	name of performed action, redundant if action is identified through a link to a service definition or intent	name of predicated action, redundant if identified through a link to a service definition or intent	name of goal action (observation,) redundant if action is identified through a link to a service definition
Service.text	textbook-like description of the service	description of the intended actions, instructions (not just repeating what is said already in the text of the service definition)	textual report of what actually happened in the service	textual description of the predicate. A predicate with no other values than the text is only interpreted by humans	textual description of the goal. A goal with no other values than the text is only interpreted by humans
Service.sig_txt	The default textual Sig (for human convenience only.)	The intended Sig (for human convenience only.)	The effectively used Sig (for human convenience only.)	not used	not used
Service.activity_time	the time the service provider carries out the action (e.g., business hours)	the time(s) the action is (tentatively) scheduled to happen, most intents will only use critical time leaving activity time open	the actual time the service event happened	not used	not used
Service.critical_time	not used	constrains the critical time of the event	observation: physiologically relevant	a time constraint on the predicate. For a service	the time targeted for the goal (deadline,) usually a

			time (usually a simple point in time); medication: time (and duration) the medication is actually given; transportation: the time range the payload is en route; surgical procedure: the time range between first cut and last suture.	event to match that predicate, the service event critical time must be within the constraint of the predicate.	simple point in time or a range.
Service.status_cd	state of the service definition (see text describing the attribute.)	state of the intent (see text.)	state of the occurrence (see text)	by default set to "active" (see text describing the attribute.)	state of the goal (see text describing the attribute)
Service.method_cd	method(s) available for the service. No method code is applicable if not listed in the service definition	method selected, or method(s) constrained, subset of the definition's method codes	method employed in the occurrence, subset of the definition's method code set	rarely used, constrains the predicate	rarely used, constrains the goal to be evaluated only with a specific method, must be subset of methods in the definition
Service.body_site_cd	body sites available for the service, where it is impractical to enumerate all possible sites, a code value with specified coding system and exceptional value identifies the coding system used to specify body sited	body site or enumerated set of body sites selected for the intent	body site where action was actually performed	constrains the predicate to a particular (set of) body site(s)	constrains the predicate to a particular body site (e.g., ulcus cruris <i>left leg</i> to be closed in two weeks.)
Service.interpretation_cd	interpretation codes applicable (reported) with this service	not used	interpretation codes reported	interpretation code may be given instead of a value range (e.g., if potassium is low,)	interpretation code may be given instead of a value range (e.g., potassium to be back to normal in two days)
Service.repeat_nmb	minimum/maximum number of a repeatable service. Most services are repeatable and maximum is by default infinite	minimum/maximum number of repetitions ordered	not used	can be used (together with critical timing) in the sense of: if 3 subsequent morning glucose values are high,	can be used (together with critical timing) in the sense of: 3 subsequent morning glucose values to be normal
Service.interruptible_ind	specifies defined service (or plan component) as being interruptible	specifies step in the care plan as being interruptible	not used	not used	not used
Service.substitution_cd	specifies allowable kinds and reasons for substitution (if any)	specifies allowable kinds and reasons for substitution (if any)	specifies actual kind and reason for substitution (if any)	not used	not used
Service.orderable_ind	specifies whether the	not applicable	not applicable	not applicable	not applicable

	service is orderable on its own				
Observation.value	specifies the absolute	not used	the actual value (or range	the predicated value range	the goal criterion for the
ordered scales	range of possible observation values.		of values if off scale.)		value as a range
nominal scales	specifies the domain of the defined parameter	not used	the actual value (or set of values if alternatives could not be discriminated)	the predicated value set	the goal criterion for the value as a set
Observation.property_cd	the property (kind of quantity) of the observation	same as in definition	same as in definition	same as in definition	same as in definition
Observation.derivation_expr	an expression for calculating the value from linked input parameters	same as in definition	same as in definition	same as in definition	same as in definition
Medication.doseform_cd	the set of doseforms available for this medication service, though usually medication services are defined one per doseform	the ordered doesform(s), usually just one	administered doseform	goal is not defined for other than observation services	constrains the predicate to a particular doseform (not often needed)
Medication.route_cd	the set of routes applicable for the medication, however, medication can be administered over unusual routes	the route(s) ordered or intended	the route actually chosen for administration	goal is not defined for other than observation services	constrains the predicate to a particular route
Medication.dose_qty	a range defining the recommended dosage	an ordered dosage, may be a crisp quantity or a constrained range	the dose administered	goal is not defined for other than observation services	just another constraint on the predicate
Medication.strength_qty	a set of strengths, though medications are usually defined one per strength	the strength actually ordered, may be empty since the order does not need to concern itself with manufactured drugs	the strength of the administered drug	goal is not defined for other than observation services	just another constraint on the predicate
Medication.rate_qty	a range defining the recommended rate	a range (or crisp quantity) for the intended rate	the actual rate by which drug was administered	goal is not defined for other than observation services	just another constraint on the predicate
Medication.dose_check_qty	not used (although could be used as in 0.5-1 g Q4- 6H but not more than 4 g/d)	not used (although could be used as in definition)	used as per regional requirements (Japan use case)	goal is not defined for other than observation services	just another constraint on the predicate

104 San Diego, January 25, 2000