MICROHOBBY

REVISTA INDEPENDIENTE PARA USUARIOS DE ORDENADORES AMSTRAD SCONDUCCIONADORES AMSTRAD

150 Ptas.

Canarias 160 ptas.

ESCUCHA LA VOZ DE TU AMSTRAD

¿MAS MEMORIA PARA EL CPC464?

MONITOR
DE INGLES:
APRENDER
JUGANDO

SOFTWARE

ROCKY: LA GRAN ESPERANZA BLANCA ¿CONSEGUIRA VENCER A FRANK BRUNO?

Software

INO HAS VISTO NADA IGUAL!!

EL MEJOR PROGRAMA DE KARATE QUE PUEDAS ENCONTRAR

EL JUEGO DEL ANO ¡PIDELO YA!

DISTRIBUIDOR EXCLUSIVO DE ESPAÑA: ERBE SOFTWARE STA. ENGRACIA, 17 - 28010 MADRID. TEL. 447 34 10

Software

iiNO h

Franqueo Postal iiSUSCRIBETE A Microhobby AMSTRAD Y AHORRA 1.600 PTAS.!!

HOBBY PRESS, S.A.

Apartado de Correos

n.º 54.062 (Apartados Altos)

MADRID

EL MEJOR PROGRAMA DE KARATE QUE PUEDAS ENCONTRAR

EL JUEGO DEL ANO ¡PIDELO YA!

DISTRIBUIDOR EXCLUSIVO DE ESPAÑA: ERBE SOFTWARE STA. ENGRACIA, 17 - 28010 MADRID. TEL. 447 34 10

TARJETA DE SUSCRIPCION AHORRO/REGALO

(Si lo prefieres suscribete por teléfono (91) 733 50 12 (91) 733 50 16)

Oferta especial para recibir en tu domicilio todo un año la revista semanal Microhobby AMSTRAD con un descuento de 1.600 ptas., iy el regalo de una cinta original por valor de 2.100 ptas.!

FECHA LIMITE DE RESPUESTA: 30 DE NOVIEMBRE DE 1985 IRESPONDE HOY MISMO!

ISEÑALA EL NOMBRE DE LA CINTA QUE PREFIERES Y LA RECIBIRAS EN TU CASA, GRATIS, A VUELTA DE CORREO!

Deseo suscribirme a<u>Microhobby AMSTRAD</u> durante un año por sólo<u>5.900 ptas.</u>, lo que me supone un ahorro de<u>1.600 ptas.</u> Et primer número que deseo recibir es el

Envienmegratis la cinta de programas que le indico con una (X)

☐ Beach Head

☐ Pole Position

D.T. Decathlon

NOMBRE		EDAD	
DOMICILIO			
CIUDAD		PROVINCIA	
		PROFESION	
Marco con una (X) en el casi	lero correspondiente la forma de pago	que más me conviene.	
primer número, junto a la cas		Postal N.º Contra reembols MASTER CHARGE N.º	
recha de caducidad de la lai	eld	Firma!	

senciales a la hora de , por simple que sea. ncrementan la rapidez er aplicación. paso a paso, cómo

Año I N.º 4

José Golán Cortes Tel: (93) 303 10 22/313 71 62

Secretaria de Dirección Marisa Cogorro

> Suscripciones M.ª Rosa González M.ª del Mar Colzada

Redacción, Administración y Publicidad La Granja, s/n Polígono Industrial de Alcobendas Tel.: 654 32 11 Telex: 49 480 HOPR

> Dto. Circulación Carlos Peropadre

Distribución Coedis, S. A. Valencia, 245 Barcelona

Imprime ROTEDIC, S. A. Crto. de Irún. Km. 12,450 (MADRID)

Fotocamposición
Novocomp, S.A.
Nicolás Morales, 38-40
Fotomecánica
GROF

Ezequiel Solana, 16 Depósito Legal: M-28468-1985

Derechos exclusivos de la revista COMPUTING with the AMSTRAD

Representante para Argentina, Chile, Uruguay y Paraguay, Cia. Americana de Ediciones, S.R.L. Sud América 1.532. Tel.: 21 24 64, 1209 BUENOS AIRES (Argentina).

M. H. AMSTRAD na se hace necesariamente solidoria de las opiniones vertidos por sus colaboradores en los articulos firmados. Reservados tados los derechos.

Se solicitorá control OJD

conseguir que el ordenador emplee la voz humana a la hora de comunicarse con nosotros. Examinamos un sintetizador de voz compatible CPC464 y CPC664.

14 Serie oro

Los programas educativos poseen el atractivo de que nos permiten aprender rápida y fácilmente, pues la paciencia y capacidad didáctica de nuestro interlocutor no se acaba nunca, hagamos lo que hagamos. Conscientes de ello, presentamos una aplicación que permitirá practicar inglés a todo el mundo, aunque la metodología aplicada en el programa está pensada para los más jóvenes.

No todo ha de ser serio, a pesar de ser también útil y atractivo. Digger nos sumirá en la emoción de la aventura en un planeta extraño, donde debemos conseguir un precioso combustible esencial para nuestra supervivencia.

26 ProgramAcción

Está muy claro que los colores, adecuadamente combinados, aumentan significativamente la presencia de cualquier cosa que se encuentre en la pantalla del ordenador. **Amstrad** tiene nada menos que 27 colores a nuestras órdenes para conseguirlo. Veremos de forma simple cómo utilizarlos.

30 Código Máquina

Como ya habrán podido observar los lectores que sigan estas series, los registros son fundamentales en la programación en lenguaje máquina, debido al juego de instrucciones y concepción del Z80. Por tanto, seguimos aprendiendo nuevas formas de manejarlos, recalcando la importancia relativa y posibilidades de cada uno de ellos.

Director Editorial José I. Gómez-Centurión **Director Ejecutivo** Víctor Prieto Subdirector José María Díaz Redactora Jefe Marta Gorcía Diseño José Flores Colaboradores Francisco Portalo Pedro Sudón Miguel Sepúlveda Francisco Martín Jesús Alonso Pedro S. Pérez Amalio Gómez

Juan J. Martínez Secretaria Redacción Carmen Santamaria Fotografía

Carlos Candel Javier Martínez Portada

Manuel Barco Ilustradores ual, J. Pons, F. L. Fra

J. Igual, J. Pons, F. L. Frontán, J. Septien, Pejo, J. J. Mora, Luigi Pérez

> Edita HOBBY PRESS S.A.

Presidente Marío Andrino Consejero Delegado José I. Gómez-Centurión

Jefe de Publicidad Concha Gutiérrez Publicidad Barcelona José Galán Cortes Tel: (93) 303 10 22/313 71 62

Secretaria de Dirección Marisa Cogorro

> Suscripciones M.ª Rosa González M.ª del Mar Calzada

Redacción, Administración y Publicidad La Granjo, s/n Polígono Industrial de Alcobendas Tel.: 654 32 11 Telex: 49 480 HOPR

> Dto. Circulación Carlos Peropadre

Distribución Coedis, S. A. Valencia, 245 Barcelona

Imprime
ROTEDIC, S. A. Crta. de Irún.
Km. 12,450 (MADRID)
Fotocomposición
Novocomp, S. A.
Nicolás Morales, 38-40
Fotomecánica
GROF
Ezequiel Solana, 16
Depósito Legal:

Derechos exclusivos de la revista COMPUTING with the AMSTRAD

M-28468-1985

Representante para Argentina, Chile, Uruguay y Paraguay, Cia. Americana de Edicianes, S.R.L. Sud América 1.532, Tel.: 21 24 64, 1209 BUENOS AIRES (Argentina).

M. H. AMSTRAD no se hace necesariamente solidoria de las opiniones vertidas por sus calaboradores en los artículos firmados. Reservados todos los derechos.

Se solicitará control OJD

REVISTA INDEPENDIENTE PARA USUARIOS DE ORDENADORES AMSTRAD SCIPILISTA AÑO I N.º 4

Año I • Número 5 • 1 al 7 de Octubre de 1985 150 ptas. (sobretasa Canarias, 10 ptas.)

5 Primera Plana

Ante la subida de precios y las medidas de homologación, se especula con reformar el **Amstrad** CPC464.

Nuevas tecnologías aumentan un 40 por 100 la velocidad operacional de los chips.

Banco de 6 pruebas

Para hacer más amigable la interface hombre-máquina, nada más lógico que conseguir que el ordenador emplee la voz humana a la hora de comunicarse con nosotros. Examinamos un sintetizador de voz compatible CPC464 y CPC664.

14 Serie oro

Los programas educativos poseen el atractivo de que nos permiten aprender rápida y fácilmente, pues la paciencia y capacidad didáctica de nuestro interlocutor no se acaba nunca, hagamos lo que hagamos. Conscientes de ello, presentamos una aplicación que permitirá practicar inglés a todo el mundo, aunque la metodología aplicada en el programa está pensada para los más jóvenes.

No todo ha de ser serio, a pesar de ser también útil y atractivo. Digger nos sumirá en la emoción de la aventura en un planeta extraño, donde debemos conseguir un precioso combustible esencial para nuestra supervivencia.

Primeros 10 pasos

Las variables son esenciales a la hora de realizar un programa, por simple que sea. Ahorran memoria e incrementan la rapidez y claridad de cualquier aplicación.

Vamos a aprender, paso a paso, cómo se manejan.

26 ProgramAcción

Está muy claro que los colores, adecuadamente combinados, aumentan significativamente la presencia de cualquier cosa que se encuentre en la pantolla del ordenador. Amstrad tiene nada menos que 27 colores a nuestras órdenes para conseguirlo. Veremos de forma simple cómo utilizarlos.

30 Código Máquina

Como ya habrán podido observar los lectores que sigan estas series, los registros son fundamentales en la programación en lenguaje máquina, debido al juego de instrucciones y concepción del Z80. Por tanto, seguimos aprendiendo nuevas formas de manejarlos, recalcando la importancia relativa y posibilidades de cada uno de ellos.

impresionante en precio y prestaciones. Con todo lo que puede y debe exigirse a una impresora de la más avanzada tecnología: alta velocidad (140 caracteres por segundo), amplio juego de caracteres, alimentación con cualquier tipo de papel (continuo, hojas sueltas, en rollo), excelente calidad de impresión (matriz de 9 × 9), interface centronics (100% compatible con el IBM PC) y, opcionalmente, Serie RS-232 C, ...

Compacta y robusta hasta en el menor detalle de diseño y a un precio que hasta hoy parecía imposible. Impresionante ASTRON 1400.

ESPECIFICACIONES

Matriz de puntos (9 × 9) con agujas Sistema: reemplazables.

Velocidad: 140 c.p.s.

Fuentes: 96 caracteres ASCII y 32 semigráficos.

Columnas: 80 (caracteres normales), 132 (comprimidos), 40 (ensanchados), 66 (ensanchados-comprimidos).

Alimentación: Fricción y tracción.

Hojas sueltas de 102 a 254 mm. de Papel: anchura.

Papel continuo de 242 rum. (op-

cionalmente de 102 a 254 mm.). Papel en rollo de 102 a 254 mm.

Paralelo CENTRONICS. Opcional-Interface:

mente, Serie RS-232C.

Buffer: 2 kbytes de memoria.

> 66.900 pts. P.V.P.

P.º de la Castellana, 179. 28046 MADRID. Teléfono: 442 54 33./ 44

Primera plana

HERBERT

Quizá el nombre de **HERBERT** no signifique nada para la mayoría del público, en cambio si hablamos del hijo de WALLY, el famoso héroe de MICRO GEN, esto ya empieza a tener más sentido.

WALLY es el protagonista de tres aventuras: AUTOMANIA, PYJAMARAMA y EVRYONE'S A WALLY. Realizadas por la firma británica MICRO GEN.

Por supuesto, estamos hablando de juegos para SPECTRUM, que como siempre es el precursor en este mundo. En cambio para el **Amstrad**, solamente hemos podido ver el último de la trilogía EVRYONE'S A WALLY, aunque no se ha comercializado en España.

Por fin, tenemos la ocasión de contemplar un juego de MICRO GEN en nuestro país, y este camino comienza con HERBER, que para facilitar su uso por los usuarios españoles, viene con los mensajes de pantalla traducidos al castellano, cosa que siempre representa una gran ventaja si se compara con los juegos que emiten los mensajes en inglés.

Su aparición en el mercado nacional se anuncia próxima.

MACROPROCESADORES

Mitsubishi, el gigante japonés de la electrónica y de casi todo, está decidida a obligarnos a cambiar el nombre de los microprocesadores.

Un nuevo procedimiento en la fabricación de chips y un nuevo material, el siliciuro de titanio, permitirán conseguir verdaderos monstruos que manejen hasta 4 megabytes de memoria, un 40 por 100 más rápido que los actuales.

CP/M, CADA VEZ MAS CERCA

Parece que la fiebre del disco en formato 5 1/4 pulgadas se ha desatado en el mundo de AMSTRAD.

La tentación de aumentar ventas, tanto de software como de hardware, al permitir a todos los usuarios de la gama AMSTRAD acceder a la vasta biblioteca de software CP/M, es demasiado fuerte.

Tanto es así, que lejos de esperar a que los fabricantes se animen a adaptar más programas a discos de formato 3 pulgadas, escogido oficialmente por la compañía inglesa, ella misma, junto con **TIMATIC SYSTEMS**, a desarrollado el nuevo drive.

Esperemos que este interesante producto tenga una buena acogida, sin que por ello disminuya la constante labor de adaptar más programas CP/M a los discos de 3 pulgadas.

NOVEDADES DE ICL

La principal empresa británica fabricante de ordenadores personales, Internacional Computers (ICL), ha anunciado el lanzamiento de un nuevo ordenador de la gama alta de los personales, capaz de servir simultáneamente a cuatro usuarios, destinado por supuesto al mundo de la gestión, y específicamente a las pequeñas empresas.

Al parecer, ICL considera que el mercado de los ordenadores multiusuario crecerá mucho más rápidamente que el de los personales «a se-

El precio de esta máquina, en Inglaterra, estará alrededor de las 660.000 ptas.

AMSTRAD CPC-464 REMODELADO

Amstrad España, afectada por las medidas arancelarias del decreto del 17-6-1985, intenta adecuar el modelo más bajo de la gama, el CPC 464 para que éste no sufra el incremento de precios que supone la elevación del arancel.

A esto hay que añadir también la homologación a las que se deben someter todos los modelos de ordenadores que quieran ponerse a la venta en España a partir del próximo noviembre.

Ante este aluvión de novedades y modificaciones, los directivos de IN-DESCOMP, distribuidor oficial de **Amstrad** en España, viajaron a Londres con motivo de la P.C. WORLD SHOW, donde pudimos comprobar personalmente cómo se reunían en el stand de **Amstrad** con ALAN SUGAR (director de **Amstrad**) para tratar de encontrar una solución viable al tema.

El CPC 464, debe mantener su competitividad en el mercado español y una subida de precio le pondría en la cola del ranking de ventas. Además, no debemos olvidar los nuevos modelos de la casa, que le han relegado al puesto de ordenador casi exclusivamente de uso recreativo.

Con el objetivo de mantener la competitividad del modelo e incluso, hacerlo mucho más interesante frente a los ojos de los consumidores de software recreativo, se estudia la astuta medida de aumentar la memoria mediante una expansión interna; con lo cual ésta sería superior a los 64 K mínimos exigibles y pondría al CPC 464 en un precio bastante favorable frente a los 64 K de los otros ordenadores que probablemente sufrirán la subida de aranceles.

Una vez comprobada la viabilidad técnica de la citada expansión, el modelo bajo de la creciente gama Amstrad, estará dotado de memoria adicional y adecuado a las normas de homologación, incluyendo la inefable ñ, lo cual le convertirá en uno de los modelos más competitivos en los ordenadores de juegos. Incluyendo en su precio el monitor y las altas prestaciones que sólo puede dar el LOCOMOTIVE BASIC, lenguaje residente en todos los modelos Amstrad.

AMSTRAD AL HABLA

Los usuarios de ordenadores de hoy día no son como los de antes. Este comentario, puede escucharse a menudo entre los fabricantes y vendedores de software y hardware acompañado de suspiros nostálgicos.

a razón es muy simple: la informática evoluciona rápidamente, pero la gente cambia aún con mayor rapidez. Los ususarios de ordenadores saben lo que quieren y cómo lo quieren, porque la gran mayoría de ellos lo usan para su trabajo, como herramienta, y si también pueden divertirse un poco con su máquina, bueno, ¿por qué no?

Oh tempora, oh Moris

Los días de los pioneros, en los que ser poseedor de una computadora implicaba un avezado programador dedicado en cuerpo y alma a su misión sagrada, explorando un terreno completamente virgen, se encuentran enterrados, cubiertos de polvo, entre los balances de beneficios de las grandes compañías que se reparten el pastel con fruición.

El romanticismo ha muerto en la informática, pero de ahí ha salido un enorme grupo de ususarios experimentados que no sólo quieren una herramienta de trabajo, sino un instrumento que sea sencillo de manejar, rápido y eficiente.

Ahí está el quid de la cuestión. Como no hay más remedio que interaccionar con un ordenador para que nos «entienda» y nos sirva de algo, hay que buscar una forma de hacerle saber nuestros deseos.

Aunque hoy nos parezca increíble, primero se comenzó con los teletipos y las tarjetas perforadas. Por no haber, no había ni monitores monocromos.

Estos métodos demenciales de introducir datos a las máquinas pronto fueron abandonados, y se sustituyeron por los famosos comandos, es decir, uno se aprende un resumen críptico del lenguaje inglés, y, tras más o menos 100 horas de práctica puede plantearse CO-MENZAR a programar un poco.

Para los programadores, miel sobre hojuelas (a ellos les cuesta mucho menos), pero los sufridores que sólo deseaban utilizar su ordenador lo pasaban bastante mal.

Interfaces más amigables

Por eso, desde hace ya tiempo, se ha tratado de suprimir las dificultades de aprendizaje en el uso de ordenadores, para así hacer desaparecer las barreras que frenan a muchos a la hora de adquirir uno.

Ya puestos, no hay que conformarse con conquistas pequeñas, así que... ¿qué pasaría si los ordenadores hablaran? Y, sobre todo, ¿qué pasaría si un computador ENTENDIERA EL LENGUAJE HUMANO SIN MAS? Yo hablo y tú obedeces.

La cantidad de dinero invertida en la consecución de ambos objetivos ha sido, y es, astronómica; no obstante, sólo se ha conseguido a medias.

El hacer que un ordenador entienda el sentido de nuestras frases, sin más, pertenece todavía al mundo de la ciencia ficción. Muchos investigadores se quedan calvos por año intentándolo (aunque quién sabe lo que andará por los laboratorios).

Sin embargo, el que una máquina pueda sintetizar la voz humana y pueda obedecer órdenes simples preprogramadas por medio de la voz, ya es otro cantar. Es mucho más fácil, y si no, aquí tenemos el sintetizador de voz de **Amstrad** para probarlo.

Voz por ordenador:

El aparato, o periférico, o cualquier otra palabra griega de dudoso significado con la que se nos ocurra nombrarlo, viene dividido en varias partes:

- Dos altavoces destinados a producir el sonido en stereo.
- El hardware propiamente dicho, que se conecta al bus de expansión del **Amstrad**.
- Una cinta de cassette conteniendo el software necesario para su funcionamiento.

No hemos podido averiguar si existe una versión en disco del invento, aunque sí sabemos que es perfectamente compatible tanto desde el punto de vista hardware como software, con el **Amstrad** CPC464 y el CPC664. De hecho, este artículo se está escribiendo con un procesador de textos y el programa del sintetizador de voz coexistiendo pacíficamente en la memoria de un 664.

El montaje del sintetizador no reviste ningún problema: en la pieza que se conecta al bus de expansión hay dos slots, cada uno para un altavoz. Una vez enchufados, todo lo que hay que hacer es encender el **Amstrad** y cargar el programa de la cinta. El ordenador está listo para hablar.

Es imprescindible que ni el **Amstrad**, ni ningún periférico conectado a él, esté encendido si queremos conectar o desconectar el sintetizador. De lo contrario, pueden ocurrir daños irreparables.

tetizador tal vez sea la cinta con el programa. Sus creadores han sabido aprovechar las facilidades sabiamente implementadas por Amstrad en el firmware. Me refiero a la facilidad con que se manejan las RSX (Resident System eXtensión), lo que en definitiva significa que, para un programador en lenguaje máquina, resulta relativamente poco complejo añadir nuevos comandos al Basic Amstrad.

Los analizaremos dentro de un momento.

El software de la cinta consta de dos partes: un programa Basic que comprueba que el hardware del sintetizador está presente, nos indica la longitud del programa en máquina que viene inmediatamente después, y nos pregunta si queremos que se ubique en alguna dirección en concreto. Una vez respondidas estas cuestiones, la parte en máquina del programa sintetizador de voz se carga en la memoria y ajusta el HIMEM adecuadamente.

Nuevos comandos para el Basic

Los nuevos comandos del sintetizador toman control del Amstrad desde 4 niveles distintos, es decir, poseen una jerarquía. Cada uno de ellos cumple una determinada función, y no es muy aconsejable usar simultáneamente los

B anco de pruebas

Un diez para los manuales

El manual del usuario, al menos la versión inglesa, única a la que hemos podido acceder, la verdad es que es excelente.

En sólo 20 páginas, de forma sencilla, se introduce al lector en el uso de software del sintetizador, desde los niveles más elementales. hasta los más complejos, indicando cómo se puede usar desde lenguaje máquina.

Incluso se dan, para los interesados en el hardware, un pequeño diagrama de bloques y una ligera noción de cómo manejar directamente el sonido del sintetizador, accediendo directamente al procesador de voz.

Hay que tener en cuenta que este aparato ha sido creado pensando en las reglas de sintaxis y pronunciación del idioma inglés. Ello no implica que en español la máquina produzca únicamente sonidos incomprensibles, sino tan sólo que se requiere un trabajo extra sobre el manual, y alguna experimentación para que el resultado corresponda a lo que esperamos oír. Por ejemplo, en una palabra al dársela al ordenador para que la «lea», tal vez hay que modificarla un poco, añadiendo más vocales o algo parecido. Este sintetizador no es la panacea universal en cuanto a pronunciación; tiene sus lagunas incluso con palabras inglesas. Sin embargo, cumple su función aceptablemente bien.

En esencia, la parte más interesante del sin-

comandos de los niveles 3, 2 y 0 (diagrama 1).

El nivel 3 es el más alto de todos, es decir, el más cercano al lenguaje humano y el más lejano al lenguaje máquina (normalmente, alto nivel y bajo nivel tienen en informática esos significados). Aquí se produce la conversión de textos en formato ASCII a los ALOFONOS. usando un «interpretador». Los alófonos así producidos son enviados a ocupar su lugar en una cola de espera en el segundo nivel. Cuando se llena, los comandos de nivel 3 suspenden la ejecución de cualquier programa basic, y del propio intérprete Basic, hasta que todo el texto ha sido reconvertido.

En el segundo nivel es donde se encuentra este buffer, capaz de almacenar hasta 64 alófonos.

La principal misión de este nivel es asegurar, mediante interrupciones, que el programa Basic de fondo se seguirá ejecutando normalmente y que los alófonos se «pronunciarán» en el momento oportuno.

El nivel 1 maneja también las interrupciones mediante sus comandos, y permite que un proceso sea inicializado y lea caracteres del buffer, para enviarlo al procesador de «palabra hablada» del sintetizador. Cuando el proceso se desactiva, se impide que sean leídos más caracteres del buffer, a la vez que se envía una señal al procesador de voz para que el último alófono no suene para siempre. El buffer queda listo para llenarse de nuevo con los datos de los niveles 2 y 3.

El nivel 0, por fin, maneja directamente

COMANDO I SAY

1. USO: Conversión del texto ASCII a palabra hablada.

2. SINTAXIS: I SAY, variable de cadena. Por ejemplo:

I say, «hola»

a\$=**«hola»:** I say, a\$
3. COMENTARIOS: Todos los datos del buffer de alófonos son enviados al procesador de voz antes de manipular la nueva frase, si es que existen.

Si dicho buffer se llena, el Basic queda en suspenso hasta que todo el texto sea procesado.

COMANDO I ECHO

1. USO: Activa la conversión texto-voz sobre texto escrito en la pantalla.

2. SINTAXIS: I ECHO, modo.

3. COMENTARIOS: «modo» es un número entero de 0 a 4 que indica el tipo de respuesta que se producirá al activar el comando.

Así:

Modo 0: Desactiva cualquiera de los otro cuatro modos.

- Modo 1: Todo el texto incluido entre los delimitadores «.» (SHIFT + «/») es hablado y escrito en pantalla.

- Modo 2: Todo texto enviado a la pantalla, incluido listados, se escuchará por los altavoces.

- Modo 3: Lo mismo que en el modo 2, pero además se imprime en pantalla.

- Modo 4: Lo mismo que en el modo 1, pero el texto no aparece en pantalla.

el firmware del Amstrad y recibe los alófonos que llegan desde el nivel 2 a través

De aquí salen directamente al procesador de voz, en un formato que pueda entender.

Este es, un poco a grandes rasgos, el proceso que sique un texto desde que se introduce como una cadena literal, hasta que nuestros oídos lo comprenden.

Como lo prometido es deuda, hemos distribuido en estas páginas un resumen de los 9 comandos que pueden leerse en el diagrama 1, para que cada uno pueda hacerse una idea de lo que el sintetizador es capaz de hacer.

En resumen:

1. El sintetizador está preparado para el inglés, no para el español.

2. Es posible obtener sonidos compresibles en nuestra lengua, pero requiere un poco más de esfuerzo y experimentación y no siempre será posible.

3. El manejo del aparato y del programa es sencillo y cómodo.

4. Los manuales (en inglés) son muy buenos.

5. Se suministra información tanto para el usuario avanzado como para el novel. Sin embargo, la primera es sólo a nivel de inicio. Se ha pensado más en el no iniciado, lógicamente.

6. El sintetizador de voz puede mejorar muchísimo nuestros programas, por razones obvias.

1. USO: Envía alófonos directamente a su buffer, obviando la conversión texto-voz.

2. SINTAXIS: I APHONE, lista de alófonos.

3. COMENTARIOS: Un alófono es un número entre 0 y 63. Los números mayores se introducen dentro de este rango. El número máximo de la lista está limitado por la longitud de una línea Basic.

COMANDO I ROOM

1. USO: Indica cuántos lugares libres hay en el buffer de alófonos.

 SINTAXIS: I ROOM, variable entera.
 COMENTARIOS: El resultado del comando se devuelve en esta variable. Los primeros 5 bytes indican el número de lugares libres en el buffer. El bit 6 marca el estado de las interrupciones. Cuando están desactivadas, pueden ser recibidos más alófonos.

El bit 7, cuando está a 1, significa que el sintetizador está «ocupado» manejando un

alófono.

COMANDO I QUIET

1. USO: Limpia el buffer de alófonos y envía una pausa al sintetizador.

2. SINTAXIS: I QUIET

3. COMENTARIOS: Puede usarse en cualquier momento en que se desee impedir un sonido.

COMANDO I SPON

1. USO: Activa un proceso por interrupción, y permite que los alófonos del buffer sean oídos independientemente de lo que suceda con el Basic.

2. SINTAXIS: I SPON

3. COMENTARIOS: No se envían alófonos al procesador de voz hasta que un proceso dad sea activado con este comando.

COMANDO I SPOFF

1. USO: Efecto contrario a I SPON

2. SINTAXIS: I SPOFF

3. COMENTARIOS: Este comando no tendrá efecto a menos que se use después de I SPON. Cualquier alófono que quede en el buffer permanece intacto. Debe usarse cuando no sea necesaria la voz durante largos períodos de tiempo.

COMANDO I SPSTATUS

1. USO: Lee el estado del procesador de voz directamente del hardware.

2. SINTAXIS: I SPSTATUS, variable entera

3. COMENTARIOS: En la variable entera se devuelve un entero de 16 bytes que muestra el estado del procesador de voz.

Los primeros tienen lo último.

Te ofrece /a, el nuevo

AMSTRAD CPC-6128

128 Kb.

Doble capacidad al mismo precio.

¡MIRA QUE PRECIOS!

AMSTRAD CPC-6128 (f. verde)

AD COMPANY

AMSTRAD CPC-6128 (color) 134.500 Ptas

109.500 Ptas

Fuencarral, 100 Tel. 221 23 62 Modesto Lafuente, 63 Tel. 254 88 36 Colombia, 39 Tel. 458 61 71 Padre Damián, 18 Tel. 259 86 13

VEN A VERLO A NUESTROS CENTROS

José Ortega y Gasset, 21 Tel. 411 28 50

Pedidos por teléfono: 441 12 11 Solicita gratuitamente nuestro catálogo de productos Servimos a tiendas. Tel. 91-441 12 11

LAS VARIABLES, CLAVE DE LA PROGRAMACIÓN

La semana pasada tuvimos ocasión de escribir y ejecutar nuestros propios programas, haciendo un uso masivo de la sentencia Basic más sencilla y obvia de todas: PRINT.

in embargo, el método de programación escogido fue muy primitivo y, por tanto, muy fácil de comprender. Vamos a intentar, paso a paso, añadir a nuestros programas un poco más de sofisticación, introduciendo el CONCEPTO FUNDA-MENTAL DE VARIABLE.

Aunque la salida, el OUTPUT, de los programas que veremos no sea tal vez muy espectacular, no le quepa duda de que se avanza derecho hacia la comprensión del Basic.

Los programas son secuenciales

Recordemos solamente un concepto esencial más: un programa Basic consiste en una secuencia de instrucciones agrupadas en líneas, cada una etiquetada con su correspondiente número.

Para introducir una en el programa, basta con escribir el número de línea que deseemos que tenga, seguido de las apropiadas PALABRAS-CLAVE (comandos) de Basic y pulsar (ENTER).

Para ver todas las instrucciones del programa:

LIST (ENTER)

Para ejecutarlo:

RUN (ENTER)

Y, por fin, para deshacernos de él y limpiar la memoria antes de introducir un nuevo programa:

NEW (ENTER)

Echemos una mirada al programa número 1, nuestro viejo conocido. Bien, el programa número 2 es otra forma de obtener la misma salida por pantalla de manera mucho más elegante.

Como ya sabemos, las palabras entrecomilladas se denominan STRINGS, palabra inglesa que estimamos preferible a la traducción española «tiras», aunque hablar de tiras de caracteres recuerda cómo el **Amstrad** las interpreta, esto es, de forma serial. Para el ordenador, **CA-SA** es la serie de caracteres C, A, S, A. Nunca son tratados, aunque a nosotros nos parezca lo contrario al verlo impreso en la pantalla, como un todo

Lógicamente, nos puede interesar escribir una misma frase entrecomillada muchas veces a lo largo de una aplicación.

Por ejemplo, en una carta de negocios hay frases casi standard, que se repiten a menudo en esa misma carta o en otras.

Las variables ahorran esfuerzo y espacio

El **Amstrad** resuelve el problema asignado a cada cadena una etiqueta, de forma que al «invocarla» en un programa, la cadena de caracteres correspondiente aparece en la pantalla.

Así, en la línea 10 del programa número 2, la etiqueta «A\$» se asigna a la cadena **PROGRAMAR**, de tal forma que cuando el ordenador se encuentra con la línea 40 del programa:

40 PRINT AS

la palabra **PROGRAMAR** aparece en la pantalla.

La ventaja de esta técnica es la gran cantidad de espacio de memoria del ordenador y de esfuerzo nuestro que se ahorra al escribir los programas.

En efecto, basta pensar por un momento en que la palabra representada por A\$ tuviera que aparecer 100 veces en la salida del programa por pantalla.

Análogamente hacemos con las líneas 20 y 30 del programa 2; éstas causan la salida por pantalla deseada cuando se ejecutan las líneas 50

En este momento, hay que hacer notar los siguientes puntos:

1. Hemos elegido las etiquetas de modo tal que todas comienzan por una letra y van seguidas del signo «\$».

No estamos obligados a usar una sola letra, podemos poner más, pero SI HAY QUE PONER EL SIGNO «\$», para avisar al ordenador de que queremos etiquetar una cadena de

caracteres (veremos posteriormente cómo etiquetar otro tipo de «cosas»).

- 2. El hecho de que en el programa 2 las etiquetas se encuentren en orden alfabético es completamente arbitrario. NO TIENEN POR QUE SEGUIR NINGUN TIPO DE OR-DEN.
- **3.** Aunque hemos usado un signo «=» para relacionar etiqueta con objeto, su significado no debe entenderse como «igual a...», sino más bien como «asigna a A\$ la cadena entrecomillada que viene después del signo =».
- **4.** La etiqueta debe estar en la parte izquierda de la SENTENCIA DE ASIGNACION (que así se llama), y lo que se nombra en la parte derecha del signo igual.

Pruébese si no, con la sentencia:

10 «PROGRAMAR» = A\$

y ya se verá lo que ocurre. El pobre **Amstrad** ni se entera de lo que queremos decirle.

5. La etiqueta reemplaza a la palabra entrecomillada y a las propias comillas, ya que, al decir:

40 PRINT AS

las comillas no aparecen.

6. El ordenador no distingue entre mayúsculas y minúsculas en el caso de nombres de etiquetas. En lo que a él respecta, los programas 2 y 3 son idénticos y producen el mismo resultado.

Esto, que puede parecer obvio, depende del ordenador del que se trate. Otras máquinas son muy rígidas en ello.

No sólo existen los caracteres alfabéticos

Si tecleamos y ejecutamos el programa número 4, observaremos que el espacio en blanco, aunque para nosotros no es un carácter alfabético como los demás, PARA EL AMS-TRAD SI, y su existencia se toma en cuenta si se lo asignamos a una etiqueta, modificando la apariencia de lo que aparece en la pantalla según esté o no.

También la puntuación de la línea 70 del programa 4 FORMATEA la escritura, consiguiendo que las palabras representadas por A\$, B\$, C\$ y D\$ se impriman una inmediatamente a continuación de otra.

Inténtese sustituir los puntos y comas de la línea 70 por comas para ver el efecto y, más tarde, manteniendo los puntos y comas, suprimir los espacios que preceden a las palabras en las líneas 40, 50 y 60.

En este programa (4), puede verse también una nueva palabra-clave o comando Basic, LA SENTENCIA REM (del inglés REMarks, comentarios).

Todo lo que siga a una sentencia REM dentro de la misma línea de programa es completamente ignorado por el **Amstrad**, por lo que podemos escribir lo que se nos antoje detrás de un REM sin que se produzca el temido «SYNTAX ERROR».

Sentencia REM: programas más legibles

Incluir sentencias REM en nuestros programas es una excelente técnica de programación, en el sentido de que permite recordar sin esfuerzo qué es lo que hace un programa y por qué lo hace.

Puedo asegurar que un programa medianamente largo y complejo sin sentencias REM, visto dos semanas después de terminarlo, se desconoce por completo POR QUE FUNCIONA. En caso de descubrir un error en ese momento, es una auténtica «tarea de chinos» localizarlo.

No obstante, las sentencias REM tienen un problema: consumen memoria. En programas MUY largos, tal vez merezca la pena plantearse suprimirlas, pero en caso contrario, ya que sobra memoria, usémosla en algo útil que ahorrará posteriormente muchos quebraderos de cabeza.

Nunca viene mal acostumbrarse desde el principio a la jerga empleada por los programadores, así que a partir de ahora nos referiremos a las etiquetas como VARIABLES, no necesariamente en el sentido matemático del término, sino, como comentábamos antes:

A\$ = "TEST"

debe leerse el VALOR de la variable de cadena A\$ es TEST. Y el hecho de dar a una variable un valor se conoce como ASIGNACION.

El programa número 5 ilustra cómo las variables de cadena (o AL-FANUMERICAS), pueden mezclarse con cadenas literales sin ningún problema.

El espacio incluido en la cadena asignada a B\$ es muy importante. Para ver lo que quiero decir, lo mejor es ejecutar el programa primero con B\$ tal cual, y luego quitando el espacio (línea 40).

En las líneas 60 y 70 puede observarse el efecto de «pegamento» de la palabra-clave «;», y lo que ocurre si se quitan ..., bueno, probad y vereis

Podemos cambiar el aspecto de la línea 50 tecleando:

50 PRINT ASBS

esto es, sin espacio entre las variables.

El programa funcionará. No obs-

PROGRAMAS

5 REM PROGRAMA I 10 PRINT "PROGRAMAR" 20 PRINT "ES"

30 PRINT "FACIL"

5 REM PROGRAMA II 10 A\$="PROGRAMAR"

20 B\$="ES"

30 C\$="FACIL"

40 PRINT AS

50 PRINT B\$

60 PRINT C\$

5 REM PROGRAMA III

10 A\$="PROGRAMAR"

20 B\$="ES"

30 C\$="FACIL"

40 PRINT a\$

50 PRINT b\$

60 PRINT c\$

10 REM PROGRAMA IV

20 MODE 1

30 A\$="TEST"

40 B\$=" TEST"

50 C\$=" TEST"

60 D\$=" TEST"

70 PRINT A\$; B\$; C\$;D\$

80 PRINT "0123456789012345678901234

567890123456789"

10 REM PROGRAMA V

20 MODE 1

30 A\$ = "MI NOMBRE ES "

40 B\$ = " MIGUEL"

50 PRINT A\$;B\$

60 PRINT "MI NOMBRE ES ";B\$

70 PRINT AS: " MIGUEL"

tante, la legibilidad se verá disminui-

Para remediarlo, en parte, podemos escribir también:

50 PRINT A\$B\$

En las sentencias de asignación, opcionalmente, podemos colocar la palabra-clave LET (forma inglesa del imperativo):

40 LET B\$ = «MIGUEL» pero de hecho, no se usa y su inclusión se justifica para mantener la compatibilidad con la versión Basic standard (si es que hay alguna).

Esta semana hemos aprendido a manejar un concepto absolutamente esencial para la programación: EL CONCEPTO DE VARIABLE.

Con ello y el estudio de la sentencia INPUT próximamente, estamos introduciéndonos en el mundo de la programación por la puerta grande, conocida entre los programadores como PROGRAMACION INTERACTIVA.

Hasta pronto.

COMPUTER CERTER

COMANDANTE ZORITA, 13 **28003 MADRID**

TELS.: (91) 233 07 35 (91) 233 07 81

AMSTRAD 464 Verde	57.900 ptas.
AMSTRAD 6128	99.900 ptas.
AIVISTRAD 0120	
DISKETTE 3"	895 ptas.
INTERFACE DISCO 5.25"	5.900 ptas.
CINTA C-15 ESPECIAL ORDEN	85 ptas.

SOFTWARE ENTRETENIMIENTO (CASSETTE)

COMBAT LYNX	1.925 ptas.
DEAT PIT	1.925 ptas.
ALIEN-8	1.875 ptas.
KNIGHT LORE	1.875 ptas.
HARRIER ATTACK	995 ptas.
JUMP JET	2.695 ptas.
SIMULAD. VUELO 737	1.795 ptas.
FRUIT MACHINE	995 ptas.

SOFTWARE GESTION (DISCO)

CONTAB. GRAL.	11.995 ptas.
CONTROL STOCK	6.995 ptas.
BASE DE DATOS	6.995 ptas.

LIBROS

CURSO AUTODIDACTICO BASIC AMSTRAD (Contiene manual y dos cassettes) ______2.695 ptas. HACIA LA INTELIGENCIA ARTIF. _____1.300 ptas. 40 JUEGOS EDUCATIVOS ______1.800 ptas. MUSICA Y SONIDO PARA AMSTRAD ______1.300 ptas. PROGRAMANDO CON AMSTRAD ______1.900 ptas.

Tu pedido lo puedes recibir contra-reembolso (libre de gastos), llamando a los teléfonos (91) 233 07 35 y (91) 233 07 81.

1.975 Ptas.

1.495 Ptas.

1.975 Ptas.

1.495 Ptas.

MONITOR DE INGLES VARIABLES PRINCIPALES

Este programa está pensado para refrescar los conocimientos de inglés, o para aprender, cómo se dicen en ese idioma, una serie de palabras y conceptos.

Se ha tratado de hacer su uso cómodo y agradable a la vista, pensando, sobre todo, en los más jóvenes, por aquello de aprender jugando. Sin embargo, no existen restricciones de edad para utilizar este programa.

quél que use el programa, verá en la parte inferior de la pantalla una palabra o concepto en español, y cuatro posibilidades de cómo se expresa eso en inglés, de las cuáles sólo una es la correcta.

Moviendo una figura por la pantalla, se la sitúa enfrente de la que creemos válida, y se pulsa la barra

espaciadora.

El ordenador nos dice si hemos acertado o no, y al cabo de 20 intentos, se nos da el tanto por ciento de aciertos, junto con una lista de las palabras que sería conveniente aprender para la próxima vez.

COMPATIBLE CPC 464 CPC 664

Al arrancar el programa disponemos de 3 opciones:

- 1. Usar el vocabulario que el propio programa posee incorporado en forma de sentencias DATA.
- 2. Cargar un fichero de palabras desde cinta/disco.
- 3. Salvar un fichero en cinta dis-

Una aclaración a esto último: los usuarios de equipos Amstrad con unidad de disco, bien sea el CPC464 u otros, deben tener en cuenta que la entrada/salida de datos se reali-

DEL PROGRAMA

NOMBRE	FUNCION
ct\$, cb\$	Gráficos.
a\$, b\$, c\$	Mensajes.
p1%	Averigua si se está
	usando como
	vocabulario las líneas
	de DATAS o un
	fichero en cinta/disco.
a\$ (x, y)	Almacena las 4
	palabras alternativas.
a% (x)	Número de la
1415	respuesta correcta.
b\$ (x)	Definición del
	diccionario.
p	Número de
	preguntas.
X	Pregunta elegida al
0/ / 1	azar,
c% (x)	Número de respuestas
10///	erróneas.
b% (x)	Número de
16	preguntas.
t\$ Z	Entrada por teclado.
	Movimiento.
za	Posición de la figura
	en la pantalla.
s, y, d	Variables de uso
	general.

za en el periférico que el sistema tenga en ese momento por defecto, es decir, si por ejemplo tenemos un CPC464 con unidad de disco conectada, las opciones 2 y 3 del programa se realizarán en él, a menos que ANTES DE EJECUTAR EL MONITOR DE INGLES, indiquemos al ordenador que deseamos usar el cassette

mediante los comandos al efecto.

Si decidimos crear nuestro propio fichero de palabras, el Amstrad nos pedirá que introduzcamos 60 palabras. Para cada una de ellas debemos suministrar también las otras 4 alternativas, junto con la definición del diccionario y el número de la respuesta correcta (del 1 al 4).

Una vez salvado el fichero en cintaldisco, el ordenador ejecutará inmediatamente el resto del programa usando el nuevo vocabulario.

Es necesario destacar también que el programa siempre carga salva un fichero con el mismo nombre, y, por tanto, espera encontrar ese nombre en la cinta o en el disco cuando se le pide que lo cargue.

Si se desea modificar esto, obsérvense las líneas 2020-2430 del programa.

ESTRUCTURA DEL PROGRAMA

LINEAS	COMETIDO
40-50	Selección de colores y modo de pantalla.
60-210	Define ventanas.
220-270	Define gráficos para la figura.
280-480	Títulos.
490	Música
520	Dimensiona matices.
530	Fichero de cinta/disco o líneas DATA.
540-610	Lee las DATAS si no estamos usando un fichero de cinta/disco.
620-1230	DATAS.
1240	Inicializa puntuación.
1260-1680	Bucle principal.
1290	Selecciona palabra al azar.
1300	Mira si una palabra se ha elegido 2 veces. Si es así, vuelva a
	intentar con otra.
1320-1410	Impresión de las palabras.
1420-1550	Examina las teclas de movimiento de la figura y la desplaza en
	consecuencia.
1560	Chequea la respuesta.
1570	Informa si hemos acertado o no.
1660	Va al final del juego.
1690-1740	Fin del juego.
1840-1910	¿Otro juego?
1920-2010	Menú.
2020-2120	Carga el fichero de datos.
2130-2290	Crea el fichero de datos.
2300-2430	Lo salva.

10 REM REM * Monitor de Ingles * * BY Steve W. Lucas * MODE 1: INK 0,6: INK 1,24: INK 2, 20: INK 50 BORDER 22 60 REM ** definir ventanas WINDOW #1,1,15,1,5 : PAPER #1,1:P EN #1,3 WINDOW #2,1,15,6,10 :PAPER #2,2: 90 WINDOW #3,1,15,11,15:PAPER #3,1: PEN #3,3 100 WINDOW #4,1,15,16,20:PAPER #4,2 :PEN #4.3 110 WINDOW #5.16,22,1,21:PAPER #5,0 :PEN #5.3 120 WINDOW #6,1,40,21,25:PAPER #6,3 PEN #6. 130 WINDOW #7,23,40,1,20:PAPER #7,1 :PEN #7,0 140 REM ** definir caracteres ** 150 SYMBOL AFTER 240 SYMBOL 242,48,32,32,32,32,32,31 1 60 70 SYMBOL 243,1,3,7,7,3,1,255,255 180 SYMBOL 244,0,128,192,240,176,24 0,248,136 190 SYMBOL 245,7,3,1,1,0,1,1,0 200 SYMBOL 246,255,255,253,129,128, 129,193,0 210 SYMBOL 247,134,128,128,128,128, 128,192,0 REM ** definir caracter del gat 230 RESTORE 2450 240 FOR x=1 TO 12:READ d 250 cts=cts+CHRs(d) IF d(>32 THEN cb\$=cb\$+CHR\$(d) 260 270 NEXT x 280 REM ** titulos **
290 a\$=" M o n i t Monitor d e NGLES 300 c\$= by Steve W. Luca 310 B\$=" "+CHR\$(10)+CHR\$(8)+" "+CHR \$(10)+CHR\$(8)+CHR\$(8)+" 320 FOR x=1 TO 37 LOCATE X,5:PRINT 6\$ LOCATE X+1,5:PRINT 6\$ 350 360 LOCATE X+2,5:PRINT 6 370 LOCATE X+3 IF x <28 THEN PRINT cb\$ 380 400 PEN 410 PRINT MID\$(a\$,x,1) LOCATE x,17 429 PRINT MID#(c\$,x,1) 458 NEXT PEN 3:FOR x=9 TO 29 STEP 4 460 LOCATE x,2 :PRINT cb\$ 479 480 NEXT 490 PEN 1:GOSUB 1690:REM ** cancion 500 DATA 239,239,213,239,190,239,23 9,213,190,179,159,239,239,213,190,1 79,159,239,239,213,239,159,239,142, 239,127,239,127,142,159,179,198,213 510 REM ** Para anadir preguntas ex tras, incrementar el rango de la ma triz en la proxima linea ** 520 DIM a\$(61,4),a%(61),b\$(61),n\$(5 ,c%(20),b%(60) GOSUB 1930: REM ** utilizacion d e las datas en el programa ** 540 IF p1%>0 THEN 1240 550 REM ** uso de lista de datas en programa ** FOR x=1 TO 60 FOR y=1 TO 4 579 READ as(x,y) 580

590 NEXT Y

600 READ a%(x), b\$(x)

ntienen cuatro respuestas alternati

ate, accumer, late, 2, amontonar

vas, el numero de la respuesta corr ecta y la definicion de la palabra 630 DATA contol,kontroll,controll,c ontrol,4,poder de dirigir y goberna

640 DATA casette, cassette, casete, ca ssete,2,aparato para grabar y repro ducir cintas

650 DATA complicated, complhicated, c omplecated.complacated,1.complicado 660 DATA probablie, probabley, probab ly,probebly,3,muy probable

DATA altaring, altering, alturing haltering, 2, cambiando

680 DATA vibrasion, vibration, vibras ian, vitratian, 2, movimiento continuo 690 DATA concider, concidur, considur e.consider,4, tener en cuenta

700 DATA figure, fighure, phigure, phi gre,1,forma de un cuerpo

710 DATA whasteful,wastfull,wastefu 11, wasteful, 4, antieconomico

720 DATA ampliffies, amplifies, ammpl yfies,amplyfies,2,aumenta el volume

730 DATA flasching, flashzing, flachs ing, flashing, 4, se enciende y ga constantemente

740 DATA manual, manuel, mannual, mann uel, 1, hecho a mano

750 DATA encountar, encountur, encoun tter, encounter, 4, encontrar 760 DATA expreshun, expresion, expres

sion, hexpression, 3, palabra o frase la se expresa algo

770 DATA content, contant, contente, k ontent,1,satisfecho o contento 780 DATA acumalate,accumulate,acuma

790 DATA assembel, assemble, asemble, asembel, 2, ensamblar o unir

800 DATA situation, sithuation, situa sion, situachion, 1, posicion en la qu se encuentra algo

810 DATA computer, computar, commpute r,computur,1,maquina para el proces

820 DATA endles, hendless, endless, en diless, 3, sin final

830 DATA envelope, henvelope, envalop e,enverlope,1, cubierta de papel par enviar cartas

840 DATA extraction, extracshion, ext raktion.extracsion,1,accion de extr

850 DATA forcabley, forcibley, forsab ley,forsibley,2,a la fuerza

860 DATA halucination, hallucination ,hallucinatian,halucinatian,2,accio de alucinar

870 DATA idolise,idolize,idalise,id alize,2,adorar o idolatrar

880 DATA imposibal, imposible, imposs ible,impossable,3.no posible o difi

Serie Oro

890 DATA mechanical, mecanicol, mecan ical, mechanicle, i, trabajo hecho a m aquina

900 DATA necesary, neccessary, necess ary, neccesary, 3, que es objeto de ne

910 DATA navigation, navigashion, nav igatian, navigaton, I, viaje realizado por mar

920 DATA orchid, orkid, orchyd, orcid. 1, variedad de planta exotica

930 DATA oxigen, oxegen, oxygen, oxeju n,3,gas esencial para la vida

DATA spatious, spachious, spasiou s,spacious,4,amplio o de gran capac

950 DATA alocation, aloccation, alloc ation, alloccation, 3, racion o cuota 960 DATA compulsory, compulsary, comp ulsery, compullsory, 1, obligatorio o que debe ser hecho

970 DATA controler controllor contr oller,controlor,3,persona encargada

980 DATA calendar, calender, callenda r, callender, 1, registro de todos los dias del ano

990 DATA appreciate, apreciate, aprec iete,appresiate,1,valorar o aprecia

1000 DATA style, styal, stial, stile, 1

1010 DATA sterilise, steralise, stera lize, sterilize, 4, eliminar bios

1020 DATA sindicate, syndicate, synde cate, sindecate, 2, aspsacion de traba

1030 DATA tempreture, temperature, te mpereture, temparature, 2, grado de ca lor de un cuerpo

1040 DATA hidrogen, hydrgen, hydrogen .hiderogen,3.un componente de nuest atmosfera

1050 DATA bugerigar, bugarigar, budge rigar, budgeregar, 3, periquito ave do

1969 DATA administer, adminster, admi nester,adminestar,1,administrar 1070 DATA pharmecy,pharmarcy,pharme

rcy,pharmacy,4,farmacia 1080 DATA possession,posesion,posse

sion, posession, f, aquello que poseem

1090 DATA retaleate, retaliate, retal

Serie Oro

yate, retalate, 2, vengarse o tomar re presalia 1100 DATA stomach, stomache, stomake, stomuch, I. viscera del cuerpo humano 1110 DATA rhithem, rithem, rhythem, rh ythm, 4, orden acompasado de una seri e de notas 1120 DATA sucessful,succesful,succe ssful,sucesful,3,realizado con exit 1130 DATA substansial, substanshul, substantiel, substantial, 4, considerab 1140 DATA disappointing, dissappoint ino, disapointing, dissapointing, 1, de cepcionante 1150 DATA capital, capitol, kapertal, kapitol,1,de gran importancia 1160 DATA whipet, whippet, wippet, whi pet,2,determinada raza canina 1170 DATA transperent, transparent, t ransparant, transperant, 2, cuerpo atr aves del cual se puede ver 1180 DATA nececity, necesity, necesse ty.necessity.4.carencia que necesit amos cubric 1190 DATA asasination, assassination ,assasination.asassination,2,matar con alevosia 1200 DATA bronkitis, broncitis, bronc hitis,bronchitus,3,inflamacion de l os bronquios 1210 DATA centenary, centenery, sente nary, sentenery, 1, centesimo aniversa 1220 DATA sentrafugal, centrafugal, c entrifugal, centrifugul, 3, fuerza cen 1230 DATA conventional, convenshiona 1.conventionul,convensional,1,que s e ajusta a una serie de normas 1240 s%=0: REM ** pone a cero el ma 1250 CLS:RANDOMIZE TIME 1260 REM ** bucle principal **
1270 WHILE cc%(99
1280 FOR p=1 TO 20: REM ** ESCOGE L
AS 20 PREGUNTAS ** 1290 x=INT(RND(1)*60+1) 300 IF b%(x)>0 THEN 1290 $1310 \text{ b} \%(\times) = 1$ 1320 IF t%=x THEN 1290 1330 CLS #1:CLS #2: CLS #3:CLS #4:C LS #5: CLS #6:CLS #7 1340 PRINT #7:PRINT #7:PRINT #7:PRI SHRIR = A 1350 PRINT #7:PRINT #7:PRINT #7," BAJAR = Z" 1360 PRINT#7:PRINT#7:PRINT#7," (Pul Espacio> 1370 PRINT#7:PRINT#7, Para selecci 1380 LOCATE (40-LEN(b\$(x)))/2,24:PE N 1:PRINT b\$(x); 1390 FOR y=1 TO 4 1400 PRINT #y:PRINT #y:PRINT#y," "; 1419 NEXT V

no realicen el trabaja duro, M.H. AMS.

TRAD lo hace por li. Todos los Istados que incluyan este logotipo se encuentron a tu disposicion en un cassete mensual, solicitanosjo.

1420 Z=2:za=2 1430 T\$= INKEY\$ 1440 PRINT CHR\$(30) 1450 t\$=UPPER\$(t\$) IF T\$="A" THEN za=z:Z=Z-5:PRIN T CHR\$(7) 1470 IF T\$="Z" THEN za=z:Z=Z+5:PRIN T CHR\$(7) 1480 IF Z<2 THEN Z=2 1490 IF Z>17 THEN Z=17 1500 IF za>0 THEN LOCATE #5,1,za:PR INT#5. 1510 IF za>0 THEN LOCATE #5.1,za+1: 1520 IF za>0 THEN LOCATE #5,1,za+2: PRINT#5," 1530 LOCATE #5,2,z:PRINT#5," ";ct# , 1540 LOCATE #5,1,1 1550 IF t\$<>" " THEN 1430 1550 IF t\$<>" " THEN 1430 1550 IF z=2 THEN c%=1 ELSE IF z=7 T HEN c%=2 ELSE IF z=12 THEN c%=3 ELS 1570 CLS #7:PRINT CHR\$(7):LOCATE #7 1580 IF c%=a%(x) THEN PRINT #7.SPC(2): "Correcto": s%=s%+1 ELSE PRINT #7 SPC(1); "Incorrecto": LOCATE #7,6,6: "La respuesta es :-":LOCA TE #7,5,8:PRINT #7,a\$(x,a%(x)):c%(p 1590 LOCATE #7,3,12:PRINT #7, "Acier 1600 LOCATE #7.7.15: PRINT #7. "Pulsa 1610 LOCATE #7,5,17:PRINT #7," (Espa 1620 LOCATE #7,1,19:PRINT #7, "Para otra pregunta 1630 gg\$=[NKEY\$:IF gg\$()" " THEN 16 1649 t%=x 1650 NEXT p 1660 GOSUB 1770:REM ** FIN DEL JUEG 1680 END 1690 RESTORE 500 1700 FOR x=1 TO 34: READ d 1710 SOUND 5,d,20,15 1720 NEXT x:RETURN 1730 CLS: LOCATE 4,2:PRINT* Adios. Hasta otra practica. 1740 PEN 2: LOCATE 10,10:PRINT"Acie 1750 GOSUB 1690 1769 END 1770 CLS: LOCATE 2.2: PRINT"AL juego tus puntos son ";5% del 1780 GOSUB 1690:REM ** musica ** 1790 PEN 2:LOCATE 3,5:PRINT"Pulsa 1 a barra (Espacio) para practicas la s palabras que necesitas." 1800 sp\$=INKEY\$:IF sp\$</>
' THEN 18 1810 CLS 1820 FOR p=1 TO 20:IF c%(p))0 THEN PRINT a\$(c%(p),a%(c%(p))) 1830 NEXT p 1840 FOR x=1 TO 20: c%(x)=0: NEXT x :REM ** inicializar matriz de preg 1850 LOCATE 5,24:PRINT"Deseas pract icar otra vez (S/N) ? 1860 5%=0 1870 ggs=INKEYs:ggs=LOWERs(ggs):IF THEN CLS:counter≐counter+1 1880 IF counter=3 THEN RESTORE 630: counter=0:FOR x=1 TO 60:b%(x)=0:NEX 1890 IF gg\$="s" THEN RETURN 1900 IF gg\$="n" THEN CLS:PRINT"Adio s. Hasta otra practica": END 1910 GOTO 1870

1920 REM ** opciones ** 1930 LOCATE 1,20:PRINT"Pulsa la opc

1940 LOCATE 1,21:PEN 3:PRINT"1. Us

ion que desees

ar las datas del programa." 1950 PRINT"2. Cargar las datas de la cinta. 1960 PRINT"3. Crear nueva serie de datas. 1970 ggs=INKEY\$:ggs=LOWER\$(gg\$):IF gg\$("1" OR gg\$>"3" THEN 1970 1980 IF gg\$="1" THEN CLS:PRINT"Por favor, espera un segundo'":RETURN 1990 IF gg\$="2" THEN p1%=1: GOSUB 2 030:REM ** Carga las datas de la ci 2000 IF gg\$="3" THEN pl%=1:GOSUB 21 40:REM ** Guarda en cinta tus datos 2010 RETURN 2020 REM ** Carga las datas de la c 2030 CLS:PEN 1:LOCATE 4,2:PRINT Por favor inserta la cinta 2040 OPENIN"data" 2050 FOR x=1 TO 60 2060 FOR y=1 TO 4 2070 INPUT #9,a\$(x,y) 2080 NEXT 2090 INPUT #9,a%(x),b\$(x) 2100 NEXT 2110 CLOSEIN 2120 RETURN 2130 REM ** Escribe los datos para guardrlos en cinta **
2140 FOR x=1 TO 60
2150 CLS:LOCATE 4,2:PRINT"Pregunta numero 2170 WHILE d%=0 2180 FOR y=1 TO 4 2190 LOCATE 2,y*2+4:PEN 2:PRINT"Res puesta numero ";y;" ..";:INPUT a\$(x 2200 NEXT 2210 LOCATE 1,18:PEN 1:PRINT"Cual e la respuesta correcta (1-4) INPUT a%(x) 2220 IF a%(x))4 OR a%(x)(1 THEN PRI NT CHR\$(7):LOCATE 1,18:PRINT STRING \$(70,CHR\$(32)):GOTO 2210 2230 PEN 3:PRINT"Cual es la ayuda o definicion de diccionario ";: INPUT 2240 LOCATE 1,25:PRINT"Todo correct (S/N) ?" 2250 gg\$=INKEY\$:gg\$=LÜWER\$(gg\$):IF gg\$="s" OR gg\$="n" THEN 2260 ELSE 2 250 2260 IF gg\$="s" THEN d%=1 2270 CLS 2280 WEND 2290 NEXT 2300 REM ** GUARDAR LOS DATOS EN CI NTA ** 2310 CLS:PEN 1:LOCATE 4.2:PRINT"Por favor inserta la cinta para quarda los datos 2320 OPENOUT"data" 2330 FOR x=1 TO 60 2340 FOR y=1 TO 4 2350 PRINT #9,a\$(x,y) 2360 NEXT y 2370 PRINT #9,a%(x),b\$(x) 2380 NEXT 2390 CLOSEOUT 2400 CLS:PRINT"Pulsa la (Barra Espa cio> para practicar" 2419 gg\$=INKEY\$:IF gg\$ (> " THEN 24 10 2420 CLS:PEN 1: PRINT"Por favor, es pera un segundo! 2430 RETURN 2440 REM ** datas del grafico del g 2450 DATA 32,32,242,243,244,10,8.8, 8,245,246,247

Suscribete... y uno de estos tres sensacionales juegos será tuyo...; GRATIS!

M.H. AMSTRAD te da a elegir entre tres de los mejores juegos existentes en el mercado para AMSTRAD; COMBAT LYNX, DALEY THOMPSON'S DECATHLON y BEACH HEAD, cualquiera de los cuales puede ser tuyo solamente con suscribirte a nuestra revista. Aprovecha esta ocasión excepcional y ahorra 2.100 pesetas (precio de venta del programa)

más el importante descuento que se produce en el precio de cada número, por el hecho de ser suscriptor. Disfruta de las ventajas que supone recibir cómodamente tu revista a domicilio y de la seguridad de tener tu ejemplar aunque se haya agotado en los quioscos.

nvíanos tu boletín de suscripción y no le des más vueltas, el número de juegos para regalos de suscripción, aunque grande, es limitado, y estos se podrían agotar mientras lo estás pensando.

BEACH HEAD producido por U.S. GOLD es una misión de desembarco en una costa fuertemente defendida por las fuerzas aeronavales enemigas. Debes conducir tu flota hacia la bahía y repeler el ataque aéreo, si lo consigues tu siguiente obstáculo será una flotilla de destructores y acorazados, superada la cual desembarcarás tus anfibios en las arenas de la bahía, estos deben superar las defensas costeras y llegar a la fortaleza que es el objetivo

COMBAT LYNX simula una misión de defensa de unas bases atacadas por una división acorazada. Disponemos para enfrentarnos a ellos de un modernísimo helicóptero.

Este juego podría incluirse dentro del catálogo de los de estrategia, y su complejidad le dota de una gran dosis de adicción y belleza.

DALEY THOMPSON'S DECATHLON con este juego OCEAN enciende la llama olímpica y te reta a superar los récords de los campeonatos de todos los tiempos, el decathlon se desarrolla en dos días de competición y se compone de las siguientes pruebas:

PRIMER DIA: 100 m lisos, salto de longitud, lanzamiento de peso, salto de altura y 400 m lisos.

SEGUNDO DIA: 110 m vallas, lanzamiento de disco, salto con pértiga, lanzamiento de jabalina y los 1.500 m.

Nos vemos obligados a sustituir, dentro de los juegos que ofrecemos a nuestros suscriptores, el POLE POSITION por el COMBAT LYNX, debido a que la empresa distribuidora nos comunica la imposibilidad de obtenerlo en España a corto plazo.

Aquellas personas que hayan enviado la suscripción expresando su deseo de recibir el POLE POSITION recibirán, o habrán recibido ya, una carta en la que se facilita un cupón donde nos podrán hacer saber cuál de los 3 juegos prefieren. Muchas gracias.

Utiliza el cupón adjunto a la revista o suscribete por teléfono (91) 733 50 12

FRANK BRUNO Vs. Rocky

Siguiendo con la fiebre de juegos deportivos que invaden el mercado, en esta ocasión MR. JOYSTICK se adentra en el mundo del boxeo de la mano de dos programas sensacionales.

I noble arte de las doce cuerdas, conocido en todo el mundo y tachado de inhumano por asociaciones y medios de comunicación, ha dado durante su larga historia grandes campeones: JOHN L. SULLIVAN, MARVIN HART, JACK DEMPSEY, JOE LUIS, ROCKY MARCIANO, FLOYD PATTERSON, SONNY LISTON, CASSIUS CLAY, etc., son nombres que han forjado la historia de este noble deporte, consiguiendo sendos campeonatos del mundo, alcanzando la categoría de míticos para los aficionados de todos los tiempos.

Dos casas de software: una inglesa ELITE, especialista como toda firma de software que se precie, en juegos para SPECTRUM; y otra la intrépida firma nacional DINAMIC (honrosa excepción en la producción española de software ya que es la única), han coincidido en la realización simultánea de un programa de boxeo. Utilizando ambas nombres de grandes boxeadores, que encabezan las cuidadas carátulas de sus jue-

Rocky

SOLAMENTE 464

Rocky, ha sido el nombre elegido para la firma hispana y **Frank Bruno**, el protagonista del juego de ELITE.

El boxeo es un deporte duro, de hombres de hierro y que a la larga produce consecuencias irreparables; es acostumbrado oír hablar de boxeadores sonados, ésta y otras causas han tenido como consecuencia el

que este deporte, con la elevación del nivel de vida y el advenimiento de la civilización del ocio, haya perdido un gran número de practicantes.

Ahora, gracias a nuestro ordenador y sentados ante el monitor, podemos vivir la tensión y emoción de los momentos cumbres de un combate de boxeo.

Comenzando con la producción nacional, **Rocky**, sigue la línea del grupo DINAMIC, los gráficos son

Mr. Joystick

El camino que nos lleva hacia el campeonato mundial, está jalonado por adversarios cada vez más técnicos y poderosos, cada nuevo púgil al que nos enfrentamos para mejorar nuestros golpes y lanza sus puños con mayor precisión.

Buenos gráficos de DINAMIC, en su hiperrealista ROCKY.

francamente extraordinarios, con una técnica de dibujo de cómic, se diría que cuando nuestro boxeador recibe un golpe, es como si nos lo propinasen en nuestra propia cara.

El movimiento es tan real y refleja la acción hasta tal punto, que cuando nos golpean, se observa el gesto de dolor en nuestra cara, vuelta completamente hacia atrás por el golpe encajado.

De igual forma, golpear a nuestro contrincante es un placer, un verdadero placer; éste encaja el golpe con verdadera resignación, su cara se vuelve a un lado y sus ojos se cierran en una dramática mueca de dolor, mientras gotas de sudor salen despedidas de su cabeza por los impactos recibidos en pleno rostro.

Izquierda, derecha, izquierda, derecha es el ritmo que llevará a la lona a nuestro adversario, que totalmente grogui no puede defenderse del aluvión de golpes que le cae encima.

Frank Bruno's boxing, es realmente excitante. ELITE, casa caracterizada por la extrema dificultad de sus juegos; los cuales requieren varios cientos de horas delante del ordenador para ser completados, le ha dado al boxeo un toque especial de emoción y superadicción.

El truco reside en que el programa utiliza una cara de la cinta para las rutinas de movimiento, golpes, marcadores, tiempo, etc., y la otra para cargar los distintos adversarios.

Con este sistema de multicarga, revolucionario en los juegos de cinta, se consiguen unos resultados francamente buenos, pudiendo al finalizar una fase de juego con el código obtenido, cargar la fase siguiente, que contiene gráficos distintos y aumenta la aventura en una longitud considerable.

Los resultados conseguidos con este sistema son asombrosos, mientras que en el **Rocky**, nuestro contrario siempre tiene la misma cara, en el **Frank Bruno's**, no solamente cambia la cara, sino que el púgil es totalmente distinto, es más, utiliza distintos golpes y movimientos no ejecutados por los demás, además de técnicas de lucha completamente distintas.

Los contrarios que nos separan de la corona mundial son: CANADIAN CRUSHER, FLING LONG CHOP, ANDRA PUNCHEREDOV, TRIBAL TROUBLE, FRENCHIE, RAVIOLI, MAFIOSI, ANTIPODEAN ANDY Y PETER PERFECT.

CANADIAN CRUSHER, es un peso pesado, cuya actividad profesional antes de dedicarse al boxeo era la de leñador, como tal tiene la fuerza de un oso pardo, pero en cambio su lentitud es manifiesta.

Su país de origen es Canadá y como primer rival no ofrece grandes dificultades, FRANK es mucho más rápido y ágil; para el oso canadiense es un simple aperitivo, que sirve para desentumecer los músculos y ensayar series de golpes. El próximo rival es mucho más serio, FLING LONG CHOP, es una estrella del boxeo thailandés, no solamente golpea con los puños, sino que también utiliza las piernas (muy bien por cierto).

Su golpe más efectivo, es una prodigiosa patada volante, que ejecuta a la perfección y que noquea a FRANK, cada vez que le alcanza.

FLING LONG PONG, es rápido y sus series de golpes son certeras y contundentes, es un hueso duro de roer y noquearle requiere una práctica que sólo se logra a base de horas.

Pero si el tío F. L. CHOP era duro, ANDRA PUNCHEREDOV es una máquina de repartir golpes, su gran esquiva y sus prolongadas series de ganchos y directos al rostro, hacen la labor de FRANK muy difícil.

El ruso PUNCHEREDÓV, tiene una técnica depuradísima y es un maestro en el arte de dar cabezados, golpe que ejecuta con una rapidez y contundencia asombrosas.

Un rival muy técnico de golpes duros y gran esgrima boxística.

TRIBAL TROUBLE, el zulú de una lejana tribu de Uganda, con una

guardia impenetrable y un ritmo de puños inigualable, todo un rival para un púgil que se precie.

Los demás rivales que vienen a continuación, poseen un nivel de boxeo inalcanzable y prometen ser rápidos y muy técnicos.

FRENCHIE, RAVIOLI MAFIOSI, ANTIPODEAN ANDY y PETER PER-FECT, convierten el boxeo en un verdadero arte, vencerles no está al alcance de cualquiera.

FRANK BRUNO'S BOXING, es un juego ante todo super adictivo, vencer a un púgil para ver cómo es el siguiente y cómo pelea es una verdadera obsesión, los distintos contrincantes hacen que el programa adquiera verdadero interés.

La gama de golpes y movimientos de FRANK es muy amplia; guardia arriba, guardia abajo, opercut, directos de izquierda y derecha a la cara y estómago, esquiva a la derecha, esquiva a la izquierda y agacharse.

Todo esto aderezado con un movimiento veloz y unos buenos gráficos, un programa de horas y horas de entretenimiento.

FRANK BRUNO Vs. ROCKY

REVISTA INDEPENDIENTE PARA USUARIOS DE ORDENADORES AMSTRAD

LE OFRECE AHORA SUS PROGRAMAS YA GRABADOS, PARA QUE VD. NO TENGA QUE TECLEARLOS

Todos los programadores y aficionados a la microinformática sabemos lo tedioso y propenso a errores que resulta el teclear un listado de un programa. Para facilitar tu labor al máximo y que no tengas que estar horas sobre el teclado de tu ordenador tratando de descifrar incomprensibles mensajes de error,

AMSTRAD SEMANAL te ofrece cada mes los programas publicados de los cuatro números correspondientes en una cinta cassette, sólo por 675 ptas. (sin más gastos por envío).

Título Revista núme	
EASYDRAW	
EGGBLITZ	2
CODIGO SECRETO	2
/ENTANAS	2
BIORRITMOS	3
MAD ADDER 3	
HEXER	3
CHARGEN 4	
PROGRAMACCION	4

Envianos con la Envianos con la menor demora pondiente. Menor correspondiente.

DIGGER

Nos encontramos
en el espacio
profundo. En el
camino de regreso
a la base número
11 de Alpha
Centauri, nuestros
generadores de
taquiones de
pronto se quedan
sin energía.

SOLAMENTE CPC 664

Como esperábamos, descubrimos un planeta que, debido a su excéntrica órbita alrededor del Sol doble de aquel sistema, poseía claros indicios de Dilithium, el combustible del que ahora dependían nuestras vidas, pues sin él el retorno a la Tierra a velocidad sublumínica tomaría aproximadamente 15.000 años.

El aterrizaje fue brusco, pero sobrevivimos y fuimos a por el Dilithium a las cavernas donde nuestros sensores lo detectaron.

A sus habitantes, porque tenía habitantes, no parecía importarles demasiado que cogiéramos algunos cristales, siempre y cuando no chocáramos con ellos o nos interpusiéramos en su camino; si lo hacíamos, era la muerte.

No sé si lo conseguiremos.

SUBRUTINAS PRINCIPALES DEL PROGRAMA

LINEAS	LO QUE HACEN
250- 420	Asigna las posiciones de comienzo, lee las DATAS y pokea en la memoria de pantalla.
430- 620	Define los caracteres para la nave, dimensiona matrices e inicializa algunas variables.
630- 810	Dibuja la pantalla, inicializa la matriz para el lodo y pinta un mensaje si no es la primera pantalla.
810- 900	Mueve el hombre, lee el teclado o el joystick, y mira si hemos cogido un cristal o está siendo cogido.
910-1.010	Mueve los bichos de forma semialeatoria. Mira si el hombre ha sido capturado.
1.020-1.080	Introduce en &AB00 una corta rutina en máquina para mover los caracteres.
1.090-1.190	Imprime el mensaje de cogido y borra los caracteres correspondientes.
1.200-1.430	Instrucciones.
1.440-1.610	Fin del juego.

VARIABLES PRINCIPALES DEL PROGRAMA

NOMBRE FUNCION

lives	Vidas.
x%, y%	Coordenadas del hombre.
gotit	Dónde coger un cristal.
ok	Dónde se ha cogido.
i%, j%	Variables contadoras usa-
10/ 6	das en los bucles.
k%, a\$	Variables de uso general.
address	Dirección del carácter en
	la memoria de pantalla.
mud% (25,2)	//Barro.
bug% (2,1)	Posición del bicho.
note% (10)	Música.
hiscore	Máxima puntuación.
chase	Oportunidad para que un
	bicho nos persiga.
burrow	Posibilidad de que un bi-
	cho haga una
	madriguera.
score%	Puntos.
bonus%	Bonos.
	-

Coordenadas temporales

del hombre o del bicho.

xx%, yy%

Serie Oro

10 REM ***** Digger ***** 20 REM *By R.A. Waddilove* 30 MEMORY &AAFF 40 MODE 1 50 GOSUB 1200 : REM instrucciones GOSUB 1020 : REM codigo maquina 60 70 GOSUB 430 : REM inicialization 80 MODE 0 90 WHILE as="S" 100 WHILE lives 110 GOSUB 630 : REM pantalla 120 WHILE collected% (8 AND lives 130 GOSUB 250 : REM comienzo 140 WHILE ok AND collected%(8 150 GOSUB 820 :REM mueve hombre 160 GOSUB 910 : REM mueve bicho 170 WEND 180 IF NOT ok THEN GOSUB 1090 : REM cogidos 198 WEND 200 WEND 210 GOSUB 1440 :REM fin del juego 220 WEND 230 MODE 1:PEN 1 240 END 250 REM *** comienzo ** 260 LOCATE 12.25:PRINT "Vidas:";USI NG "#"; lives 270 RESTORE 280 280 DATA 0,20,40,0,0,60,60,0,0,20,4 0,0,84,252,252,168,168,252,252,84,4 0,84,168,20.0,168,84,0,84,168,84,16 290 DATA 3,2,1,3,2,2,1,1,0,3,3,0,1, 0,0,2,2,130,65,1,2,0,0,1,2,65,130,1 .1.3.3.2 300 DATA 5,15,15,10,79,143,79,143,7 9,5,10,143,15,15,15,15,5,79,143,10, 5,143,79,10,15,10,5,15,10,0,0,5 310 DATA 179,51,51,115,115,162,81,1 79,115,0,0,179,34,81,162,17,17,115, 179,34,17,17,34.34,17,0,0,34,179,0, 0.115 320 address=&C000+&50+8:GOSUB 400 : REM hombre 330 address=&C000+20*&50+16:GOSUB 4 00 : REM bicho 1 340 address=&C000+20*&50+36:GOSUB 4 00 : REM bicho 2 350 address=&C000+20*&50+56:GOSUB 4 :REM bicho 3 360 bug%(0,0)=5:bug%(0,1)=21:bug%(1 ,0)=10:bug%(1,1)=21:bug%(2,0)=15:bu 9%(2,1)=21 370 x%=3:y%=2:got.it=0:ok=-1 380 LOCATE 8,2:PRINT SPC(10) 390 RETURN 400 REM *** pokea datas de caracter 410 FOR 1%=0 TO 7:FOR 1%=0 TO 3:REA D k%:POKE address+j%+&800*1%,k%:NEX T:NEXT 420 RETURN 430 REM *** inicializacion ***
440 ENT -1,50.10.5 450 SYMBOL 248,3,14,117,255,146,146 ,255,255

460 SYMBOL 249,192,112,174,255,73,7 3,255,254 470 SYMBOL 250,255,170,85,42,63,32, 32.80 480 SYMBOL 251,248,168,88,172,252,2 2,19,41 490 SYMBOL 252,0,1,10,0,109,109,0,0 500 SYMBOL 253,0,128,80,0,182,182,0 . 0 ,510 SYMBOL 254,0,85,42,21,0,0,0,0 520 SYMBOL 255,0,80,160,80,0,0,0,0 530 DATA 0,9,12.0,3,10,16,2,6,15,8, 20,24,13,23,26 540 RESTORE 530:FOR 1%=0 TO 15:READ jX: INK 1%, j%: NEXT 550 INK 3,13,26:BORDER 0 560 DIM mud%(25,21),bug%(2,1),note% (10) 570 DATA 379,319,239,213,190,478,15 9,142,379,119,319 580 FOR 1%=0 TO 10:READ note%(1%):N FXT 590 FOR j%=3 TO 20:mud%(2,j%)=32:NE 600 hi.score=10:score%=0:lives=3:ch ase=1:burrow=0 610 a\$= "S" 620 RETURN 630 REM *** pantalla *** 640 IF score%)0 THEN LOCATE 4,10:PR
INT CHR\$(22);CHR\$(1);"FELICIDADES";
CHR\$(22);CHR\$(0):FOR i%=0 TO 3000:N EXT:score%=score%+bonus% 650 CLS:RESTORE 660 660 DATA 248,249,8,8,10,250,251,8,8,11,252,253,8,8,10,254,255
670 LOCATE 1,1:PEN 14:PRINT CHR\$(22);CHR\$(1): 680 FOR 1%=1 TO 17 IF iX=10 THEN PEN 2 690 READ JX:PRINT CHR\$(JX); 700 710 NEXT 720 PEN 1 730 FOR i%=3 TO 20:LOCATE 1,i%:PRIN T STRING\$(20,CHR\$(207)):FOR j% 1 TO 20:mud%(i%,j%)=207:NEXT:NEXT 740 FOR i%=21 TO 23:FOR j%=1 TO 20: mud%(i%,j%)=32:NEXT:NEXT 750 FOR j%=2 TO 8 STEP 2:LOCATE j%, 23:PRINT CHR\$(15);CHR\$(3);CHR\$(233);CHR\$(8);CHR\$(15);CHR\$(4);CHR\$(202) ;CHR\$(8);CHR\$(15);CHR\$(5);CHR\$(148) :mud%(23,j%)=202:NEXT 760 FOR J%=13 TO 19 STEP 2:LOCATE %,23:PRINT CHR\$(15);CHR\$(3);CHR\$(23

Serie Oro

1430 RETURN

1440 REM *** game over ***

3); CHR\$(8); CHR\$(15); CHR\$(4); CHR\$(20 2); CHR\$(8); CHR\$(15); CHR\$(5); CHR\$(14 8):mud%(23,j%)=202:NEXT 770 PEN 1:PRINT STRING\$(20, CHR\$(208)); CHR\$(22); CHR\$(0); 780 score%=score%+bonus%:PEN 15:PRI NT " Pts:";score% 790 PEN #1,2:LOCATE #1,10,1:PRINT # 1, "Bonos 500" 800 collected%=0:chase=chase-0.1:bu rrow=burrow+0.1:bonus%=500 820 REM *** mueve hombre *** 830 bonus%=bonus%+(bonus%)0):LOCATE #1,15,1:PRINT #1,bonus% 840 xx%=x%+(INKEY(c%)>-1)-(INKEY(d%)>-1):yyX=yX+(INKEY(aX))-1)-(INKEY(850 char%=mud%(yy%,xx%):IF char%=0 OR (char%=202 AND got.it) THEN RETU 860 CALL &AB00, x%, y%, xx%, yy%:x%=xx% :y%=yy%:mud%(y%,x%)=32 870 IF char%=202 THEN got.it=1:INK 7,2,1:SOUND 2,30,40,15,0,1 IF x%=3 AND y%=2 AND got.it THE N SOUND 2,200,200,15,0,1:score%=score%+10:LOCATE 7,25:PRINT score%:mud %(y%,x%)=32:got.it=0:collected%=col lected%+1: INK 7.2 890 IF (x%=bug%(0,0) AND y%=bug%(0, 1)) OR (x%=bug%(1,0) AND y%=bug%(1, 1)) OR (x%=bug%(2,0) AND y%=bug%(2, THEN OK=0 900 RETURN 910 REM *** mueve bichos *** 920 SOUND 132,note%(INT(RND*11)),20 ,14:SOUND 129,478,200,12 930 FOR i%=0 TO 2 940 IF RND) chase THEN xx%=bug%(i%,0)+(x%(bug%(i%,0))-(x%)bug%(i%,0)):y y%=bug%(i%,1)+(y%(bug%(i%,1))-(y%)b ug%(i%,1)) ELSE xx%=bug%(i%,0)+INT(RND*3)-1:yy%=bug%(i%,1)+INT(RND*3)-950 char%=mud%(yy%,xx%) 960 IF char%=202 OR char%=0 OR char %=255 OR (char%=207 AND RND)burrow) THEN RETURN

970 CALL &AB00, bug%(i%, 0), bug%(i%, 1

980 mud%(bug%(i%,1),bug%(i%,0))=32: mud%(yy%,xx%)=255:bug%(i%,0)=xx%:bu

1020 REM *** codigo maquina ***

1050 READ a\$: POKE &AB00+1%, VAL("&"+

xx%=x% AND yy%=y% THEN ok=0

,××%, yy%

9%(i%,1)=yy% 990 IF xx%=x%

1010 RETURN

1030 RESTORE 1070

1040 FOR 1%=0 TO 64

1800 NEXT

4\$) 1060 NEXT 01.00,08,C5,06,04,7E,36,00,12.23,13,10,F8,01,FC,07,09,E8,09,EB,C1,10,EB,C9,10,21,00,C0,55,A7,CB,13,CB,13, 19,05,C8,11,50,00,19,10,FD,C9 1080 RETURN 1090 REM *** cogida *** 1100 SOUND 2,90,50,15,0,1,1 1110 LOCATE 8,2:PRINT "G U L P" 1120 lives=lives-l 1130 LOCATE x%, y%: PRINT " " 1140 IF got.it THEN collected/=coll ected%+1:got.it=0:INK 7,2 1150 FOR i%=0 TO 2 1160 LOCATE bugk(1%,0),bug%(1%,1):P ':mud%(bug%(i%,1),bug%(i%,0) RINT)=32 1170 1180 FOR 1%=0 TO 2000:NEXT 1190 RETURN 1200 REM *** instrucciones *** INK 0,0:INK 1,0:INK 2,15:INK 3 1210 , 11 1220 BORDER 0:PLOT -5,-5,3:PEN 1 LOCATE 1,25:PRINT "DIGGER" 1230 1240 FOR 1%=0 TO 96 STEP 2 1250 FOR J%=0 TO 16 STEP 2 1260 IF TEST(1%,J%) THEN PLOT 200+1 %*2,365+j%*2:PLOT 200+i%*2,367+j%*2 :PLOT 202+i%*2,365+j%*2:PLOT 202+i% *2,367+j%*2 1270 NEXT 1290 LOCATE 1,25:PRINT SPC(10):INK 1300 LOCATE 1,5:PEN 2 1310 PRINT "Nuestro Sistema Solar e sta en peligno. La falta de materi as energeticas puede provocar su e xtincion." 1320 PRINT:PRINT "Trata de robar lo s barriles radioactivosdel planeta Uron sin ser deborado por los Uro bichos que rondan protegiendo losba rriles de Uranio." 1330 PRINT: PRINT "Recuerda que debe s recoger los barriles de uno en u depositandolos en la nave." 1340 PEN 3:PRINT:PRINT:PRINT oles joystick o teclado." 1350 PEN 2:PRINT:PRINT " A .. Z bajar":PRINT " < izquierda > derecha" 1360 PEN 1:LOCATE 1,25:PRINT "Pulsa ESPACIO o Fuego para comenzar.. 1370 a\$="":WHILE INKEY\$<>"":WEND 1380 WHILE a\$<>" " AND JOY(0)()16 1390 AS=INKEY\$ 1400 WEND 1410 CLS

1450 LOCATE 12,25:PRINT "Vidas:0" 1460 LOCATE 6,10:PRINT CHR\$(22);CHR \$(1);"GAME OVER";CHR\$(22);CHR\$(0) 1470 FOR 1%=0 TO 5000:NEXT:CLS 1480 PAPER 8: PRINT CHR\$(30); STRING\$ (100. 1490 LOCATE 1,25: PRINT STRING\$ (20, " 1500 LOCATE 3,3:PEN 12:PRINT "Puntu acion Final: ":LOCATE 8,4:PRINT;scor 1510 LOCATE 3,25:PRINT "Otro juego (S/N) ? 1520 MOVE 0,0:DRAW 0,399,15:DRAW 63 9,399:DRAW 639,0:DRAW 0,0:MOVE 0,32 0:DRAW 639,320 1530 MOVE 0,16: DRAW 639,16 1540 PAPER 0:PEN 11 1550 IF score%>hi.score THEN hi.sco re=score%:LOCATE 3,10:PRINT "Nuevo record":LOCATE 7,15:PRINT "del dia ELSE LOCATE 6,10:PRINT "El recor d esta en: ":LOCATE 8,15:PRINT hi.sc 1560 a\$="" 1570 WHILE INSTR(" SN",a\$) (2 1580 a\$=UPPER\$(INKEY\$) 1590 WEND 1600 score%=0:lives=3:chase=1:burro w=0 1610 RETURN

no realicen el trabajo duro, M.H. AMS-TRAD lo hace por ti. Todos los listados que incluyan este logotipo se encuentran a tu disposición en un cassette mensual, solicitanaslo.

1420 IF as=" " THEN a%=69:b%=71:c%=

39:d%=31 ELSE a%=72:b%=73:c%=74:d%=

RAMIFICACIONES

sta semana vamos a introducirnos en el mundo de los gráficos con un pequeño, pero sustancioso programa que nos permite dibujar, partiendo de un punto fijo, una serie creciente de ramificaciones, de forma que de cada punto surgen dos ramas que acaban en nuevos puntos, que a su vez constituyen los orígenes de las ramas del nivel superior, formando una retícula de rombos con estructura de árbol.

10-20 Líneas REM que identifican el programa.

30 La variable NIVELMAX, selecciona el número de niveles de que va a componerse nuestro árbol de ramificaciones.

Llamamos nivel, a cada nueva ramificación que parte de un punto. Un vistazo a la figura 1, nos dará una exacta idea de cómo se constituyen éstos y del número de puntos que genera cada nuevo nivel.

40 El comando DIM, es utilizado para inicializar una matriz de dos dimensiones, en la cual van a estar contenidas las posibles coordenadas X de los puntos de ramificación.

Este método supone un gran despilfarro, debido a que no todos los niveles tienen el máximo número de puntos.

Esta matriz, crea espacio para una cantidad elevada de puntos inexistentes.

¿Serias capaz de encontrar algún método para realizar la misma tarea, evitando el mencionado despilfarro de dimensionamiento?

50 Contiene los valores iniciales para los cambios que han de producirse en las coordenadas X e Y de los sucesivos niveles.

La variable ANCHURA, introduce un factor de varianza en la forma en que se dividen las líneas.

Es interesante, observar los efectos producidos al asignarle a ANCHURA, valores distintos de cero.

Otro efecto muy interesante, sería cambiar los valores de SEPARACION X, SEPARACION Y, sobre todo si este cambio se efectúa aleatoriamente.

60 Establece las coordenadas del punto que se encuentra en el nivel 0.

80-140 Constituye un ciclo FOR NEXT, que rota una vez por cada uno de los niveles. Cada vez que las coordenadas de todos los puntos de ramificación en ese nivel deben ser calculadas.

90-130 Conforma un segundo ciclo, anidado en el anterior, que realiza la labor de calcular las coordenadas de los puntos y dibujar las líneas que los unen.

La figura 1, nos muestra que el número de puntos que constituye cada nuevo nivel, es el cuadrado del número de estos contenidos en el inmediato inferior. 100 Se ocupa de asegurar que el cursor gráfico se encuentra en el punto adecuado, para realizar el trazado de las líneas. Obsérvese lo que ocurre al omitir esta línea, y comprenderemos su importancia.

110 Traza la línea que se bifurca hacia la izquierda del punto.

En la figura 2, podemos observar que todos los puntos impares, están situados en la parte izquierda de la bifurcación; de esta manera, mediante el comando MOD calculamos si el punto es par o impar.

En caso de que éste sea impar, el resto de la línea procede a dibujar la recta que une el punto de ramificación del nivel inferior con el punto del nivel en que nos encontramos.

120 Realiza los mismos cálculos y tanteos que la línea anterior, pero esta vez con las líneas que bifurcan hacia la derecha.

La figura 2, de nuevo nos muestra cómo se calculan las coordenadas de los puntos del nivel superior en función de las del punto situado en un nivel inferior; solamente es cuestión de sumar y restar los valores adecuados.

150 Un ciclo sin fin, que mantiene en pantalla el dibujo de nuestro árbol, sin esta línea la figura desaparecería de nuestra vista inmediatamente.

Figura 1: Puntos y niveles.

Figura II: Coordenadas de los puntos.

LOS COLORES EN EL AMSTRAD (I)

El Amstrad es uno de los ordenadores que posee posibilidades gráficas más amplias y potentes dentro de las máquinas de su rango.

27 colores y un variado juego de comandos gráficos están esperándonos para mejorar el aspecto de nuestros programas.

i alguna vez hemos empleado software comercial, especialmente juegos, en el Amstrad, probablemente hemos visto con asombro los gráficos que estos programas utilizan, y seguro que ha aparecido el deseo de incorporar algo parecido en nuestros propios programas.

Sin embargo, la gran cantidad de comandos disponibles en el Basic Locomotive para este fin, hacen que la tarea no sea tan simple, porque no

son fáciles de usar.

Por tanto, vamos a intentar subsanar esta dificultad introduciéndonos en el mundo de la programación a color de una manera más detallada y amigable que la que **Amstrad** usa en sus manuales.

Se supondrá que el lector posee un pequeño conocimiento del lenguaje Basic. Si no es así, no hay que preocuparse. El contenido del artículo podrá captarse perfectamente.

Incluso si no se tiene monitor en color, las técnicas descritas aquí pueden aprovecharse, en primer lugar, para aprenderlas, y en segundo lugar, cada color corresponderá a una intensidad de tono de verde distinta, por lo que es igualmente identificable.

En este caso, el peor de todos, sólo hace falta un poco de imaginación para asociar determinado tono de verde con algunos de los colores. Por

Tabla 1

CARACTERISTICAS DE LOS DISTINTOS MODOS		
Modo	N.º carac.	N.º colores
0	20	16
1	40	4
2	80	2

desgracia, no todos son fácilmente reconocibles en un monitor monocromo.

Cada modo implica un cierto número de colores

Así que vamos a comenzar por el principio. Como muchos ya conocen, el **Amstrad** posee tres modos de pantalla, cada uno de los cuales se diferencia de sus parientes en la dimensión horizontal que adquiere la pantalla de texto, esto es, el número de carácteres escritos que caben en una línea.

Si tecleamos:

MODE 0

y llenamos una línea de la pantalla con letras, observamos que caben exactamente 20.

Los comandos MODE 1 y MODE 2 aumentan la «extensión» de la línea a 40 y 80 caracteres respectivamente. Obsérvese también que el tamaño de los símbolos varía de mayor a menor y que el MODE 1 es el que el **Amstrad** posee por defecto al encenderlo.

La magnitud y número de caracteres no es la única diferencia entre los modos de pantalla. La fundamental, en lo que a este artículo respecta, es que TAMBIEN SE DISTINGUE EN EL NUMERO DE COLORES QUE PODEMOS UTILIZAR SIMULTANEAMENTE EN PANTALLA.

El modo 0 permite 16 colores, el 1, 4 colores y el 2 solamente 2.

La relación resulta clara: a medida que aumentan los caracteres por línea, el número de colores disminuye.

P rogram Acción

Pensando un poco, esta regla adquiere sentido inmediatamente. Basta recordar que, en los tres modos, LA CANTIDAD DE MEMORIA ASIGNADA A LA PANTALLA ES LA MISMA, 16 KBYTES.

Como el **Amstrad** codifica la imagen de la pantalla y los colores asociados en ella, el espacio para almacenar datos relativos a colores disminuirá si reclamamos más memoria para especificar caracteres. La Tabla número 1 resume todo esto.

En este momento, el ordenador debe estar en MODE 1. Si no es así, por favor ponedlo.

Dos colores como mínimo

Obviamente, el mínimo número de colores que debe existir en cualquier modo de pantalla es dos, porque de lo contrario, con un solo color, no distinguiríamos un ápice: siempre tendrá que haber un color de fondo y uno de primer plano, o lo que es lo mismo, UN COLOR DE PAPEL y UN COLOR DE TINTA.

Siguiendo con la analogía de una hoja de papel normal y corriente en lugar de un monitor, para escribir con una tinta determinada necesitamos un tintero y una pluma.

El **Amstrad** Basic tiene justamente estas palabras: papel, pluma y tinta, como palabras reservadas, con idea de hacer el manejo de colores lo más mnemotécnico posible, sólo que en inglés:

PAPER para papel PEN para pluma INK para tinta

En el momento de encender el Amstrad estamos escribiendo con una pluma mojada en tinta amarilla sobre papel azul. Si tecleamos:

PEN 2

le estamos diciendo al micro que querenos mojar la pluma en otro tintero, y efectivamente los caracteres aparecen en cyan (azul), pero el papel, el color de fondo, no ha cambiado. Existen más tinteros; por ejemplo:

PEN 3

escribirá en rojo, mientras que:

PEN 1

devolverá el color de tinta a amarillo, su color original.

Parece ser que al menos podemos manejar 3 tinteros distintos, ¿verdad?

Pues no, hay 4. Recuérdese que los ordenadores comienzan a contar con el 0, así que también podemos teclear.

PEN 0

Desgraciadamente, este tintero contiene azul, por lo que no veremos una sola palabra por mucho que escribamos. Teclee ENTER para conseguir una nueva línea y luego, cuidadosamente, PEN 1 para **llamar** a la tinta amarilla (si no funciona, no se pare en barras; resetee el **Amstrad** y listo).

¿Y qué sucede si no me creo que sólo existen 4 tinteros y tecleo PEN 4, ó 5 ó 6 ó 7?

Bueno, descubriremos que PEN 4 actúa exactamente igual que PEN 0, PEN 5 que PEN 1 y así sucesivamente hasta PEN 7 que corresponde a PEN 4.

Lo que sucede es que en MODE 1 sólo se permiten 4 colores o tintas a un tiempo en la pantalla, por lo que PEN es convertido por el **Amstrad** en PEN 0, al igual que PEN 8.

En MODE 1, dado un número de pluma, como sólo hay 4 colores disponibles, el número real que el **Amstrad** obedece es el resto de dividirlo por 4 (asumiendo que el número sea mayor que 3).

mayor que 3).
Por ejemplo, PEN 13 se convierte en PEN 1 (13/4 da de resto 1).

La tabla número 2 especifica los colores asignados a cada tintero en MODE 1. Para estar seguros de acertar siempre, basta con emplear números del 0 al 3.

El programa número 1 muestra todos los colores disponibles en este modo, excepto PEN 0 que sería invisible.

Ahora bien, si cambiamos la línea 20 del programa 1 por:

20 MODE 2

y lo ejecutamos, ¡menudo caos!

¿Qué sucede con PEN 2, y por qué PEN 3 es amarilla? Se supone que era roja.

Efectivamente, MODE 2 sólo usa dos colores. No cabe duda.

PEN 0 da azul brillante, y PEN 1 amarillo brillante.

Cualquier número superior revierte a los valores primitivos: PEN 3, por ejemplo, se comporta como la número 0. La Tabla número 3 muestra los colores y sus números asociados en este modo.

Al modificar de nuevo la línea 20 y escribir:

20 MODE 0

parece haber poca diferencia respecto al MODE 2. No olvidemos, sin embargo, que en MODE 0 disponemos de 16 colores, de 0 a 15. El programa número 2 los muestra, así como la Tabla 4 indica la relación entre color y número de pluma.

También podemos cambiar con facilidad el color de fondo de la pantalla, esto es, el PAPEL, mediante el comando PAPER.

Cambiando el color del papel y del borde

Con el **Amstrad** en MODE 1, si tecleamos:

PAPER 3

el papel se vuelve rojo, mientras que las letras permanecen en amarillo. La sentencia PAPER 3 quiere decir:

«EL COLOR DE FONDO SERA EL MIS-MO QUE TIENE LA TINTA USANDO EL TINTERO NUMERO 3, ES DECIR, PEN 3"

Como puede verse en la Tabla 2, PEN 3 es rojo brillante, por lo que el papel también es rojo brillante.

De la misma forma y según esta ta-

Tabla 2

COLORES POR DEFECTO EN MODO 1		
N.º de pluma (PEN)	Color	
0	Azul brillante	
1	Amarillo brillante	
2	Cyan brillante	
3	Rojo brillante	

Tabla 3

COLORES DE PLUMA POR DEFECTO EN MODO 2		
N.º de pluma	Color	
0	Azul brillante	
1	Amarillo brillante	

bla, PAPER 2 colocará el fondo de color cyan brillante.

La escritura con esta combinación de color es bastante ilegible, así que vamos a cambiar la tinta a rojo (¿recordáis cómo?):

PEN 3

El color del papel es muy fácil de manejar: trabaja exactamente igual que PEN, con las mismas restricciones explicadas antes propias de cada modo.

Tabla 4

1	COLORES DE PLUMA				
۱	POR DEFECTO EN MODO 0				
	N.º de pluma	Color			
	0	Azul brillante			
	1	Amarillo brillante			
	2	Cyan brillante			
	3	Rojo brillante			
	4	Blanco brillante			
	5	Negro			
	2 3 4 5 6 7 8 9	Azul brillante			
	7	Magenta brillante			
	8	Cyan			
		Amarillo			
	10	Azul pastel			
	11	Rosa			
	12	Verde brillante			
	13	Verde pastel			
	14	Parpadeo entre azul/			
	16	amarillo brillante			
	15	Parpadeo entre rosal azul cielo			

Insistimos que la regla de oro es: PAPER N pondrá de color de fondo el mismo color de tinta PEN N.

Cuando cambiemos el color del papel, sólo los caracteres que escribamos a partir de ese momento se ven afectados, el resto de la pantalla permanece en el color de fondo anterior.

Sin embargo, al llegar a la última línea, todo el papel cambia al nuevo color escogido.

Por supuesto que hay formas más rápidas de conseguir que toda la pantalla adopte un solo color, mediante la secuencia de comandos:

PAPER 1: CLS

y el color de fondo pasará a amarillo (PAPER 1), manteniendo rojo en primer plano (todavía estamos en PEN 3).

La clave, como sin duda sospecharéis, es el comando CLS.

El programa número 3 ilustra cómo trabajan las distintas combinaciones de pluma y papel.

PROGRAMAS

- 10 REM PROGRAMA I
 20 MODE 1
 30 PEN 1
 40 PRINT "Este es el PEN 1"
 50 PEN 2
 60 PRINT "Este es el PEN 2"
 70 PEN 3
 80 PRINT "Este es el PEN 3"
- 10 REM PROGRAMA II
 20 MODE 0
 30 FOR color = 0 TO 15
 40 PEN color
 50 PRINT "Este es el color ";color
 60 NEXT color
- 10 REM PROGRAMA III 20 MODE 0 30 FOR fondo = 0 TO 15 40 PAPER fondo 50 CLS 60 PRINT"Este es el PAPER"; fondo 70 PRINT 80 FOR color = 0 TO 15 90 PEN color 100 PRINT "Este es el color";color 110 NEXT color 120 PRINT"Pulsa una tecla" 130 delay\$ = INKEY\$: IF delay\$="" THEN GOTO 130 140 NEXT fondo 150 PAPER 0 : PEN 1
- 10 REM PROGRAMA IV
 20 MODE 1
 30 FOR color = 0 TO 26
 40 BORDER color
 50 LOCATE 16,12
 60 PRINT "BORBER "; color
 70 FOR pausa = 0 TO 500 :NEXT pausa
 80 NEXT color

P rogram Acción

Aunque hasta ahora sólo hayamos examinado 16 colores de los 27 prometidos, el programa 4 muestra la totalidad de ellos en el borde de la pantalla, de donde se deduce que BORDER es el comando que altera el color de esa zona (naturalmente).

En la tabla número 5 pueden verse los números correspondientes a los 27 colores de **Amstrad**. Producirán el color especificado precedidos del comando BORDER. El ordenador ya no se comporta como en el caso de la pluma, porque el número que sigue al comando PEN etiqueta el número de tintero al que nos estemos refiriendo, no la tinta con la que dicho tintero se llenará.

Próximamente aprenderemos cómo asignar a cada pluma el color de tinta que deseemos, pero de momento creemos que el lector estará lo suficientemente ocupado experimentando con el material que le damos aquí.

Tabla 5

Tabla 5				
COLORES DE TINTA				
N.º de tinta	Color			
0	Negro			
1	Azul			
3	Azul brillante			
3 4 5 6 7 8	Rojo			
5	Magenta			
6	Rojo brillante			
7	Púrpura			
8	Magenta brillante			
9	Verde			
10	Cyan			
11	Azul cielo			
12	Amarillo			
13	Blanco			
14	Azul pastel			
15	Naranja			
16	Rosa			
17	Magenta pastel			
18	Verde brillante			
19	Verde mar			
20	Cyan brillante			
21	Verde lima			
22	Verde pastel			
23	Cyan pastel			
24	Amarillo brillante			
25	Amarillo pastel			
26	Blanco brillante			

LOS REGISTROS RESTANTES DEL Z80

Hasta ahora nos hemos concentrado en el estudio del registro acumulador, tal vez el más versátil e importante del Z80.
Sin embargo, existen otros registros dentro del microprocesador que sirven de ayuda y complemento al acumulador e incluso se utilizan en determinadas operaciones que aquél no sería capaz de llevar a cabo.

os registros que nos interesan son los llamados: B, C, D, E, H y L. Existen otros, como el F y «el juego de registros alternativos», cuyos nombres son análogos a los anteriores, pero se les añade un apóstrofe: H', B', etc. que de momento no nos conciernen.

De paso, aprovechamos para comentar que no hay más registros (tranquilos).

Todos ellos sólo pueden almacenar un byte a un tiempo, de la misma manera que el acumulador.

Por tanto, las instrucciones:

LD B,&2A LD H,&0C

como cabría esperar, existen.

Vamos a emplear un pequeño convenio para explicar las instrucciones que atañen a estos registros, ahorrándonos tener que escribirlos uno por uno en pantalla continuamente.

La operación de carga puede representarse como:

LD r,n

en donde LD significa cargar (en inglés LoaD) como ya sabemos, r sustituye a cualquiera de los registros A, B, C, D, E, H, L y n significa un número entre 0 y 255, es decir, un byte.

La tabla número 1 muestra los códigos de operación para las operaciones de carga de todos los registros, incluido el ya conocido LD A, N. Así, de dicha tabla se deduce que:

LD B,&2A

numéricamente sería:

06 2A (en hexadecimal)

mientras que:

LD H,&0C

se convierte en:

26 OC

Perfecto. Ya sabemos cómo cargar los diferentes registros. Y ahora, ¿para qué demonios nos sirven?

Los registros sustituyen a las variables Basic

Los que hayan usado el Basic para hacer programas recordarán la importancia que poseen las variables, por ejemplo. En código máquina no podemos permitirnos tales lujos, pero sí es relativamente sencillo usar los registros como variables un tanto rudimentarias.

Aunque cada registro sólo pueda almacenar un byte, se pueden obtener resultados muy satisfactorios. Recordad: incluso el **Amstrad Basic** está escrito en lenguaje máquina.

Como un ejemplo de lo antedicho, vamos a intentar colocar el cursor de texto en una fila y columna predefinidas e imprimir un asterisco allí.

Una vez más, tenemos la suerte de poder recurrir al firmware y usar una rutina que ya está escrita, capaz de

colocar el cursor de texto en cualquier lugar de la pantalla.

COMIENZA EN LA DIRECCION &BB75, y la llamaremos PosTCur, posición del cursor de texto.

Para poder usarla, debemos CAR-GAR EL REGISTRO H con la columna que queramos y el REGISTRO L con la fila.

Una vez hecho esto, simplemente llamamos a PosTCur.

Como recordaréis, para pintar el asterisco todo lo que tenemos que hacer es cargar el acumulador con su código ASCII y llamar a otra rutina del firmware, nuestra vieja conocida PRINT (dirección &BB5A). Ya que hablamos de rutinas, no estaría de más borrar antes la pantalla para observar fácilmente si el programa completo funciona según lo previsto. Para ello, llamamos a la rutina ubicada en la dirección &BB6C, denominándola BorraText.

Por favor, introducir y ejecutar el siguiente programa mediante el He-

xer:

Opcode CD 6C BB 26 14 Dirección 3000 Mnemónico **CALL Borra Text** 3003 LD H,&14 2E OC LD L,&OC 3005 CALL PosTCur LD A,&2A 3007 **CD 75 BB** 300A 3E 2A **CALL Print** CD 5A BB

Los registros H y L han sido usados clarísimamente como «variables» para almacenar los valores de columna y fila de la posición del cursor. Sería interesante alterarlos para observar el efecto y comprender cómo actúa el programa.

El porqué de la importancia del acumulador

Como vimos anteriormente, el siguiente programa funciona perfectamente con el acumulador:

> LD A,n LD (&2FFB), A RET

DESGRACIADAMENTE, CON EL RESTO DE LOS REGISTROS ESTO NO FUNCIONA. Este programa:

> LD B,n LD (&2FF8), B RET

falla porque la instrucción:

LD (&2FF8), B

no existe excepto en el caso del acumulador.

Análogamente:

LD B, (&2FF8)

también es ilegal.

Hay que adoptar una técnica de «rodeo» para poder escribir y leer de la memoria a través de registros diferentes al acumulador:

> LD B,n LD A,B LD (&2FF8), A RET

Donde podemos observar una instrucción nueva:

LD A,B

que permite cargar el acumulador con el contenido del registro B.

De hecho, esto no es más que uno de los códigos de operación que representan la operación de cargar un registro con el contenido de otro. Hay unos cuantos de ellos, como puede verse inspeccionando la tabla número 2. Según nuestro convenio, fodos estos códigos de operación responden a la forma:

LD R,R,'

en donde ambos R y R', pueden ser cualquiera de los registros B, C, D, E, H y L.

Al usar la Tabla 2, recuérdese que R se obtiene de las filas y R' de las columnas; así, LD B,C tiene 41 hexadecimal como código de operación.

¡Aún no hemos terminado con esta tabla! Quedan por decir dos cosas:

LD B,n	06 n
LD C,n	0E n
LD D,n	16 n
LD E,n	1E n
LD H,n	26 n
LD L,n	2E n
LD A,n	3E n

Tabla 1: Opcodes del grupo de instrucciones LD r,n.

		r'						
		В	C	D	E	Н	L	A
	В	40	41	42	43	44	45	47
	C	48	49	4A	4B	4C	4D	4F
	D	50	51	52	53	54	55	57
r	E	58	59	5A	5B	5C	5D	5F
	Н	60	61	62	63	64	65	67
	L	68	69	6A	6B	6C	6D	6F
	A	78	79	7A	7B	7C	7D	7F

Tabla 2: Opcodes para LD r,r'.

- 1. Existe una relación entre estos códigos de operación, van seguidos.
- 2. Entre los registros L y A ha «desaparecido» una fila y una columna, que debería estar para seguir la misma relación que los anteriores códigos. Veremos lo que esto significa más tarde.

Esta relación existe entre muchos grupos de códigos de operación y ayudan al Z80 y al programador (antes de los ensambladores) a averiguar qué es lo que se pretende hacer (para los interesadísimos en esta cuestión, recomendamos observar los opcodes de la Tabla 2 EN BINA-RIO).

Cargar un registro con otro, no altera a éste

Antes de que se nos quede en el tintero, es esencial comprender que las instrucciones tipo:

LD R,R'

HACEN UNA COPIA DEL CONTE-NIDO DE UN REGISTRO EN OTRO y no una transferencia, esto es, el contenido de R' se copia en R, pero R' mantiene su valor sin cambios.

Para demostrarlo, ejecútese el siguiente programa que posee la modesta pretensión de pintar un asterisco en pantalla:

Dirección	Opcode	Mnemónico
3000	26 2A	LD H,&2A
3002	6C	LD L,H
3003	5D	LD E,L
3004	53	LD D,E
3005	4A	LD C,D
3006	41	LD B,C
3007	78	LD A,B
3008	CD 5A BB	CALL PRINTOut
300B	C9	RET

Obsérvese el «largo viaje» que sigue el número &2A (ASCII DEL «*»), desde el registro H hasta el acumulador, pasando por todos los demás. Y sin embargo, llega tarde tal vez, pero llega a su destino final: la pantalla, como debe ser.

Podemos hacer muchas más cosas con los registros, ya puestos.

Por ejemplo, nada más fácil que INCrementar y/o DECrementar sus contenidos, mediante los juegos de instrucciones:

INC R DEC R

en donde R representa la habitual serie de registros.

Ver (¡sí! otra tabla) si no la Tabla número 3.

Para ilustrar su uso, podemos incluirlos en los programas de este artículo, intentando que aparezcan dos asteriscos en la pantalla, uno encima del otro a poder ser.

La primera idea que nos viene a la mente es muy lógica: puesto que el registro L almacena la fila de la posición del cursor de texto, pintamos un asterisco en pantalla, INCrementamos L y volvemos a llamar a la rutina CurTPos y a PRINT, y ya está, como en este programa:

CALL Borratxt
LD H,&12
LD L,&0C
CALL PosTCur
LD A,&2A
CALL PRINTOut
INC L
CALL PosTCur
CALL PRINTOut
RET

Este sombrío preludio probablemente haya hecho sospechar a más de uno que la cosa no es tan fácil (¡BINGO!).

En efecto, resulta que la rutina CurTPos «corrompe», altera el valor de los registros H y L. Cuando acaba con ellos, su contenido no se parece ni remotamente al que tenían antes de llamarla, por lo que el segundo asterisco vaya usted a saber dónde aparecerá. Así que ejecutar alegremente el programa anterior sería algo peligroso. Si algún espíritu aventurero lo ha hecho y ha obtenido como premio un magnífico «cuelgue» del Amstrad, bueno, gajes del oficio. La vida del programador es dura.

Si por el contrario, lo hizo y no pasó nada, compre lotería o algo en el quiosco más próximo. La suerte no llama dos veces a la puerta en el mismo siglo.

r	INC r	DEC r
В	04	05
C	OC	OD
D	14	15
E	10	10
H	24	25
L	2C	2D
Α	3C	3D

Tabla 3: Opcodes de INC r y DEC r.

Bromas aparte, la rutina CurTPos «**preserva**» los registros B, C, D y E, pero corrompe el acumulador H y L.

El método a seguir, por tanto, es preservar nosotros el contenido de estos registros en otros para luego recuperarlos cuando necesitemos sus valores para fijar la posición del cursor.

Así, B preservará a H, C a L y D a A, obteniendo este resultado:

Dirección	Opcode	Mnemónico
3000	CD 6C BB	CALL Borratxt
3003	26 12	LD H,&12
3005	44	LD B,H
3006	2E OC	LD L,&0C
3008	4D	LD C,L
3009	CD 75 BB	CALL PosTCur
300C	3E 2A	LD A,&2A
300E	57	LD D,A
300F	CD 5A BB	CALL PRINTOut
3012	60	LD H,B
3013	69	LD L,C
3014	2C	INCL
3015	CD 75 BB	CALL PosTCur
3018	7A	LD A,D
3019	CD 5A BB	CALL PRINTOUT
301C	C9	RET

El programa funcionará, aunque más tarde analizaremos formas más convenientes de preservar de todo daño los registros que deseemos. Como ejercicio, ¿por qué no intentar imprimir 3 asteriscos?

Instrucciones aritméticas

Ya vimos antes que podemos sumar y restar números del acumulador. Lamentablemente, las instrucciones:

ADD B,B SUB, C,4

no existen.

Sin embargo, SI EXISTEN:

ADD A,R SUB R

en donde R, una vez más, puede ser A, B, C, D, E, H, L.

Obsérvese que, en la resta, sólo necesitamos especificar el registro donde está el número que queremos restar. El otro registro se sobreentiende que es el A.

Los códigos de operación de estas instrucciones se encuentran en la Tabla 4, y harán falta para resolver los problemas 1 al 3 (junto con la Tabla

5), en donde se trata de predecir el resultado que se obtendrá en la posición &2FF8 al ejecutar los programas. Hexer permitirá inspeccionarla con facilidad.

r	ADD A,r	SUB r
В	80	90
C	81	91
D	82	92
E	83	93
Н	84	94
L	85	95
A	87	97

Tabla 4: Opcodes de las instrucciones ADD A,r y SUB r.

Mnemonic	Opcode
CALL pq	CD qp
RET pq	C9
LD A, (pg)	3A q p
LD (pg), A	32 qp

Tabla 5: Más opcades.

Por vez primera se da un listado exclusivamente en lenguaje ensamblador, sin los opcodes. Esta labor tendrá que realizarse a mano y, para ello, sugerimos los siguientes pa-

- 1. Escribir los opcodes en papel antes de introducirlos con el Hexer.
- 2. Asegurarse de que hemos escrito números hexadecimales.
- 3. Cuidar de que el código termine con &C9, esto es, la instrucción RETorno al programa principal o, en este caso, al Hexer.
- 4. Ojo con la escritura. Resulta fácil confundir 8 con B, por ejemplo.
- 5. Las direcciones de memoria deben escribirse en el orden que el Z80 espera encontrar, primero el byte bajo y luego el alto. Por ejemplo, &2FF8 seria PRIMERO F8 y DES-PUES 2F.
- 6. Vuelva a repetir todos estos pasos antes de ejecutar el código máquina. ¡Va en serio!
- 7. Elija como dirección de comienzo para ubicar el código máquina &3000. Si decide emplear otra, notifíqueselo al Hexer cuando lo pregunte.

Después de estudiar a fondo los ejemplos y ejercicios propuestos en este artículo, estamos preparados para manejar números de dos bytes usando para ello los registros por pares. La próxima semana veremos cómo hacerlo. Buena caza.

Problema I	ı
LD B,&01 LD A,&01 ADD A,B LD (&2FF8), A RET	

Problema II	Froblema III
LD C,&1	LD D,&FF
LD A,&F	ADD A,D
LD (&2FF8), A	LD (&2FF8), A
RET	RET

S in duda alguna

A través de esta sección se pretende resolver, en la medida de lo posible, todas las posibles dudas que «atormenten» a todas las personas interesadas en el mundo del AMSTRAD, sean o no poseedores de uno y, si lo son, se encuentren en cualquier nivel de destreza en su manejo.

Semanalmente, aparecen en estas páginas las consultas de la mayor cantidad de usuarios posible; ello redundará en un mejor servicio y en un contacto más estrecho entre todos nosotros a través de la revista.

SIN DUDA ALGUNA está abierta a todos.

Seréis, semana a semana, los encargados de construir esta página con vuestras consultas. En más de una ocasión, aquello que os preocupa ya ha sido contestado antes a otro lector o, por el contrario, puede suceder que determinada consulta aclare muchos quebraderos de cabeza de otros aficionados.

Las cartas «sin duda alauna», nos servirán de gran ayuda. Gracias a ellas podremos ir evaluando vuestras necesidades y, de este modo, modificando el contenido de MICROHOBBY AMSTRAD acorde con ello. ¡Os esperamos!

¿Cómo puedo rellenar figuras de color distinto al del papel?

David Corredor / Alicante.

Suponemos que posees un Amstrad CPC464, porque el 664 tiene en su juego de comandos uno que permite rellenar cualquier área del color de tinta especificado: el comando FILL.

En el caso del 464 el asunto podría ser un poco más complejo, pero si observas el programa EASYDRAW del número uno de la revista, en la página 20, verás que el cuadro de subrutinas se indica una capaz de rellenar áreas con color, que comienza en la línea 2330 y termina en la línea 2520.

No te resultará muy difícil traspasar el algorritmo a lenguaje máquina siempre y cuando tengas en tus manos el manual de firmware de Amstrad. Por razones de espacio, no podemos exponer la rutina completa en lenguaje máquina.

Preguntas:

- 1. Para solicitar la cassette de la «Serie Oro» ¿publicarán cupón de pedido, o por carta?
- 2. El tipo de escritura en la impresora utilizada, ¿no podría cambiarse? Los símbolos se confunden y la lectura es muy pesada.
- 3. Sería interesante añadir comentarios sobre la acción de cada llamada «CALL», cada vez que aparecen en un listado.

Abelardo Sánchez.

Vamos a intentar responder a tus preguntas por turno:

1. El cupón que mencionas se encuentra en todos los números de la revista, encartado en la última pági-

Lleva el siguiente encabezamiento: «SOLICITUD DE CINTAS DE PRO-GRAMAS Y NUMEROS ATRASA-DOS».

- 2. Suponemos que te refieres al listado del EASYDRAW del número 1 de la revista. En dicho programa nos vimos obligados a utilizar un tipo de letra algo menuda, por razones de espacio. Intentaremos, en la medida de lo posible, que los listados aparezcan al mayor tamaño que podamos.
- 3. Agradecemos tu sugerencia, y procuraremos incluir dicho comentario en aquellos programas en los que sea posible.

Con el objeto de fomentar las relaciones entre los usuarios de AMSTRAD, MERCADO COMUN te ofrece sus páginas para publicar los pequeños anuncios que relacionados con el ordenador y su mundo se ajusten al formato indicado a continuación.

En MERCADO COMUN tienen cabida, anuncios de ventas, compras, clubs de usuarios de AMSTRAD, programadores, y en general cualquier clase de anuncio que pueda servir de utilidad a nuestros lectores.

Envíanos tu anuncio mecanografiado a: HOBBY PRESS, S.A.

AMSTRAD SEMANAL.

Apartado de correos 54.062 28080 MADRID ¡ABSTENERSE PIRATAS! **Desearía** contactar con usuarios de **Amstrad** para formar un gran club, preferentemente de Huesca o provincia. Mis señas son: Alberto Carrera Martín. Tarbes, 1 - 4.° C. 22005 Huesca. Tel. (974) 24 24 49.

Se intercambian juegos y utilidades para el **Amstrad** CPC 464. Llamar interesado al teléfono (91) 734 25 89. Preguntar por Nabor.

Cambiaría monitor fósforo verde por uno a color, pagando una diferencia. (El monitor fósforo verde es el GT64.) Interesados llamar al teléfono (971) 41 54 48. Preguntar por Miguel o escribir a: Reyes Católicos, 172 - 4.°. Palma de Mallorca.

Vendo un JOYSTICK QUICKSHOT II en perfecto estado y cambio juegos de importación. Escribir a Luis Miguel Calonge de Marco. Duquesa de Villahermosa, 31 - 6.° A. 50010 Zaragoza. O bien llamar al teléfono (976) 35 13 26.

Vendo ordenador ATARI 600XL+Data Cassette+2 Manuales Basic+Mapa Memoria+Curso en Cassettes (muy completo). Todo por 60.000 ptas. José Víctor González. Gral. Franco, 47 - 7.º Izq. Logroño (Rioja). Tel. (941) 23 32 10.

Vendo sintetizador de voz DKTRONICS completo (interface, altavoces, programa e instrucciones) en perfecto estado. Tel. (968) 23 49 88. Preguntar por Alvaro.

Desearía contactar con usuarios de **Amstrad** para intercambio de programas. Llamar de 10 a 11 h. de la noche o escribir a Julián Calero. Cataluña, 16 - 5.º Izq. Basauri (*Vizcaya*). Tel. (94) 440 46 88.

Desearía contactar con usuarios del 464/664 para intercambio de información, programas e ideas. Llamar al teléfono (91) 276 53 49. Madrid. De 2,30 a 5,30 h. y de 10,30 h. en adelante. Preguntar por Pedro.

Cambio o compro programas para CPC 464. Interesados escribir a David Corredor. Avda. Mediterráneo. Edificio Ilice. Benidorm (Alicante).

Me interesaría ponerme en contacto con usuarios **Amstrad**, con el fin de intercambiar información, comentar programas, etc. Escribir a José Antonio Correa. General Dávila, 38 - 9.° - 8. Gijón (Asturias).

GANA 100.000 PESETAS CON MICROHOBBY AMSTRAD SEMANAL

Porque pretendemos que **AMSTRAD** SE-MANAL sea también vuestra revista, hemos abierto una sección en la que se publicarán los mejores programas originales recibidos en nuestra redacción. Vosotros seréis los encargados de reolizar estas páginas, en las que podréis aportor ideas y programas interesantes para otros lectores.

Las condiciones son sencillas:

- Los programas se enviarán a AMSTRAD SEMANAL en una cinta de cassette, sin protección en el software, de forma que sea posible obtener un listado de los mismos.
- Cada programa debe ir acompañado de un texto explicativo en el cual se incluyan:
 - Descripción general del programa.
 - Tabla de subrutinas y variables utilizadas, explicando claramente la función de cada una de ellas.
 - Instrucciones de manejo.

- Todos estos datos deberán ir escritos a máquina o con letra clara para mayor comprensión del programa.
- En una sola cinta puede introducirse más de un programa.
- Una vez publicado, AMSTRAD SEMA-NAL abonará al autor del programa de 15.000 a 100.000 pesetas, en concepto de derechos de autor.
- Los autores de los programas seleccionados para su publicación, recibirán una comunicación escrita de ello en un plazo no superior a dos meses a partir de la fecha en que su programa llegue a nuestra redacción.
- AMSTRAD SEMANAL se reserva el derecho de publicación o no del programa.
- Todos los programas recibidos quedarán en poder de AMSTRAD SEMANAL.
- Los programas sospechosos de plagio serán eliminados inmediatamente.

¡ENVIANOS TU PROGRAMA!
a HOBBY PRESS, S. A. La Granja, s/n. Pol. Ind. Alcobendas (Madrid)

Franqueo Postal

Con el ciones entre MERCADO nas para pul que relacior mundo se aj continuación En MERCA anuncios de usuarios de y en genera

Envianos a: HOBBY P AMSTRAD SI

que pueda lectores.

Apartado de correos 54.002 28080 MADRID ¡ABSTENERSE PIRATAS!

QUICKSHOT II en perfecto estado y cambio juegos de importación.

HOBBY PRESS, S.A.

Apartado de Correos

n.º 54.062 (Apartados Altos)

MADRID

usuarios de Amstrad para intercambio de programas. Llamar de 10 a 11 h. de la noche o escribir a Julián Calero. Cataluña, 16 - 5.º Izq. Basauri (Vizcaya). Tel. (94) 440 46 88.

Desearía contactar con usuarios del 464/664 para intercambio de información, programas e ideas. Llamar al teléfono (91) 276 53 49. Madrid. De 2,30 a 5,30 h. y de 10,30 h. en adelante. Preguntar por Pedro.

Cambio o compro programas para CPC 464. Interesados escribir a David Corredor. Avda. Mediterráneo. Edificio Ilice. Benidorm (*Alicante*).

Me interesaría ponerme en contacto con usuarios **Amstrad**, con el fin de intercambiar información, comentar programas, etc. Escribir a José Antonio Correa. General Dávila, 38 - 9.° - 8. Gijón (Asturias).

GANA 100.000 PESETAS CON MICROHOBBY AMSTRAD SEMANAL

Porque pretendemos que **AMSTRAD** SE-MANAL sea también vuestra revista, hemos abierto una sección en la que se publicarán los mejores programas originales recibidos en nuestra redacción. Vosotros seréis los encargados de realizar estas páginas, en las que podréis aportar ideas y programas interesantes para otros lectores.

Las condiciones son sencillas:

- Los programas se enviarán a AMSTRAD SEMANAL en una cinta de cassette, sin protección en el software, de forma que sea posible obtener un listado de los mismos.
- Cada programa debe ir acompañado de un texto explicativo en el cual se incluyan:
 - Descripción general del programa.
 - Tabla de subrutinas y variables utilizadas, explicando claramente la función de cada una de ellas.
 - Instrucciones de manejo.

- Todos estos datos deberán ir escritos a máquina o con letra clara para mayor comprensión del programa.
- En una sola cinta puede introducirse más de un programa.
- Una vez publicado, AMSTRAD SEMA-NAL abonará al autor del programa de 15.000 a 100.000 pesetas, en concepto de derechos de autor.
- Los autores de los programas seleccionados para su publicación, recibirán una comunicación escrita de ello en un plazo no superior a dos meses a partir de la fecha en que su programa llegue a nuestra redacción.
- AMSTRAD SEMANAL se reserva el derecho de publicación o no del programa.
- Todos los programas recibidos quedarán en poder de AMSTRAD SEMANAL.
- Los programas sospechosos de plagio serán eliminados inmediatamente.

¡ENVIANOS TU PROGRAMA!
a HOBBY PRESS, S. A. La Granja, s/n. Pol. Ind. Alcobendas (Madrid)

1 -1

ŀ

1

SOLICITUD DE CINTAS DE PROGRAMAS Y NUMEROS ATRASADOS

Deseo recibir en mi domicilio, al precio de 675 ptas. cada una, las siguientes cintas con los programas publicados por Microhobby AMSTRAD Marco con una (X) la(s) cinta(s) que deseo:

□ Cinta n.º 1 (contiene programas publicados en revistas 1 al 4 inclusive)
 □ Cinta n.º 2 (contiene programas publicados en revistas 5 al 8 inclusive)

Cinta n.º 3 (contiene programas publicados en revistas 9 al 12 inclusive)

Cinta n.º 4 (contiene programas publicados en revistas 13 al 16 inclusive)

Cinta n.º 5 (contiene programas publicados en revistas 17 al 20 inclusive)

Deseo recibir en mi domicilio, al precio de 150 ptas. cada uno, los siguientes números atrasados de

Microhobby AMSTRAD

Nota: Por razones administrativas, no podemos admitir solicitudes de envío de cintas o números sueltos con pago contra reembolso o Tarjeta de Crédito. Por favor, envía talón por el importe o giro postal.

Si la forma de pago elegida es tatón bancario, remileto junto con este cupón en un sobre cerrado a la misma dirección. Las cintas de programas se editan una cada mes. Si solicitas varias las recibirás sucesivamente, conforme sean editadas. No se cobran gastos de envío por las cintas y números sueltos.

NOMBRE	•		EDAD
APELLIDOS			
DOMICILIO			
CIUDAD			PROVINCIA
C. POSTAL		TELEFONO	PROFESION

Marco con una (X) en el casillero correspondiente la forma de pago que más me conviene.

☐ Talón bancario adjunto a nombre HOBBY PRESS, S. A. ☐ Giro Postal N.º

Firma:

ucativos oletos geografía, para aprender

CODIGO MAQUINA PARA PRINCIPLANTES **CON AMSTRAD**

Código măquina para principiantes con AMSTRAD ldeal para iniciarse en el código máquina del Z80 y en el sistema operativo del AMSTRAD. 2.100.- Pts.

con AMSTRAD Convierta su AMSTRAD en un compañero inteligente 1.500.- Pts.

Música y Sonidos con **AMSTRAD** Programe música y efectos sonoros y convierta su AMSTRAD en un sintetizador. 1.200.- Pts.

Programación de Basic con AMŠTRAD. Imprescindible para el principiante y eficaz herramienta para el programador avanzado. 2.100.- Pts.

Técnicas de Programación de Gráficos en el AMSTRAD Este libro enseña a aprovechar las excelentes funciones gráficas del AMSTRAD, con múltiples ejemplos. 1.950.- Pis.

Curso Autodidáctico de Basic I y II Un completo y estructurado Curso de Basic apoyado con numerosos ejemplos y acompañado de cassettes. 2.900.— Pts. cada volumen

Avd. del Mediterráneo, 9 Telfs.: 433 45 48 - 433 48 76 28007 MADRID

Delegación en Cataluña: C/. Tarragona, 110 — Telf. 325 10 58 08015 BARCELONA

DE VENTA EN EL CORTE INGLES Y TIENDAS ESPECIALIZADAS

(m) Marca Registrada por el Grupo Indescomp.

LIBROS EN CASTELLANO PARA TU

Manual de Referencia Basic para el Programador

La más autorizada y completa guía para programar en Locomotive Basic. 3.400.- Pts.

Código máquina para principiantes con AMSTRAD ldeal para iniciarse en el código máquina del Z80 y en el sistema operativo del AMSTRAD

2.100.- Pts.

Técnicas de Programación de Gráficos en el AMSTRAD Este libro enseña a aprovechar las excelentes funciones gráficas del AMSTRAD, con múltiples ejemplos. 1.950.- Pfs.

Juegos Sensacionales para **AMSTRAD**

Listados completos de 27 estupendos juegos de muy diversos estilos. 1.950.- Pts.

Hacia la Inteligencia Artificial con AMSTRAD

Convierta su AMSTRAD en un compañero inteligente 1.500.- Pts.

Programando con AMSTRAD

Fundamental para el usuario principiante. Ameno y repleto de ejemplos. 2.400.— Pts.

Música y Sonidos con **AMSTRAD**

Programe música v efectos sonoros y conviertá su AMSTRAD en un sintetizador. 1.200.- Pts.

40 Juegos Educativos

Listados completos (matemáticas, geografía, música, etc.) para aprender divirtiéndosé. 1.950.- Pts.

Programación de Basic con AMSTRAD.

Imprescindible para el principiante y eficaz herramienta para el programador avanzado. 2.100.- Pts.

Curso Autodidáctico de Basic I y II

Un completo y estructurado Curso de Basic apoyado con numerosos ejemplos y acompañado de cassettes. 2.900.— Pts. cada volumen

Avd. del Mediterráneo, 9 Telfs.: 433 45 48 — 433 48 76 28007 MADRID

Delegación en Cataluña: C/. Tarragona, 110 — Telf. 325 10 58 08015 BARCELONA

DE VENTA EN EL CORTE INGLES Y TIENDAS ESPECIALIZADAS

(m) Marca Registrada por el Grupo Indescomp.

I CPC-6128

RIO EN BASIC Y 61 K EN CP/M PLUS)

48 K DE MEMORIA ROM QUE INCLUYEN EL LOCOMOTIVE BASIC Y EL SISTEMA OPE

76 TECLAS, TECLADO NUMERICO Y DE

TEXTO EN MONITOR DE 20, 40 U 80 COLLUMNAS Y GRAFICOS CON DEFINICION DE HASTA 640 × 200 PUNTOS. 27 COLO-

HASTA 8 VENTANAS EN PANTALLA. GENERACION DE SONIDOS EN 3 VOCES Y

UNIDAD DE DISCO DE 3" (169 K BYTES) SISTEMAS OPERATIVOS AMS-DOS Y CPM/

CONECTORES PARA IMPRESORA, JOYS-TICKS, CASSETTE, SEGUNDA UNIDAD DE

SISTEMA COMPLETO CON MONITOR EN FOSFORO VERDE, MANUAL EN CASTELLANO, GARANTIA OFICIAL AMSTRAD ESPAÑA, DISCO CON SIS-TEMA OPERATIVO CP/M 2.2 Y LEN-GUAJE DR. LOGO, DISCO CON SISTE-MA OPERATIVO CP/M PLUS (CP/M 3.0) Y UTILIDADES, DISCO CON SIETE PROGRAMAS DE OBSEQUIO

109,500 Pts.

SISTEMA COMPLETO IGUAL AL ANTE-RIOR PERO CON MONITOR EN COLOR.

134.500 Pts.

Avd. de Mediterraneo, 9, 28007 MADRID. Tels. 433 45 48 - 433 48 76

Delegación Cataluña: C/. Tarragona, 110, 08015 BARCELONA - Tel. 325 10 58