Data Exploration

BIO401-01/598-02

2021-03-31 Wed

The essence of mathematics

is not to make simple things complicated, but to

make complicated things simple.

Stan Gudder
 Mathematician

Preface

If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.

— John von Neumann —

AZ QUOTES

REVIEW: Trigonometry

$$sin(A) = a/c$$

 $cos(A) = b/c$

REVIEW: Spherical Geometry

Spherical law of cosines

$$\cos(\gamma) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)\cos(c)$$

$$cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(\gamma)$$

 $\label{eq:Geodesic} \mbox{Geodesic}: \mbox{d}(\mbox{X},\mbox{Y}) \mbox{ being the distance between two points on Earth}$

$$d(X, Y) = R \cos^{-1} \{ sin(\phi_X) sin(\phi_Y) + cos(\phi_X) cos(\phi_Y) cos(\Delta \lambda) \}$$

where ϕ_X and ϕ_Y are latitudes for X and Y, and $\Delta\lambda$ is the longitude difference.

Example

Consider two locations in north America, A(80.554 W, 25.740 N) and B(162.786 W, 68.802 N), calculate their geodesic distance.

REVIEW: Derivative properties

Extrema

If f(a) is local minimum or maximum for f, the f'(a) = 0

Concavity

When the first derivative of a function is decreasing, then the function is concave (f''(x) < 0). When the first derivative of a function is increasing, then the function is convex (f''(x) > 0). Then change of concavity occurs at the inflection point, where f''(x) = 0

Grading

```
# total is sum of the scores for all questions except for the bonus
# bonus is a fraction. sav .1 = 10%
# final score is scaled to 10*(1+bonus)
grdMerge <- function(week,raters,total,bonus){
 lstGrd <- vector(mode='list')</pre>
 for (grader in raters){
      sheetname <- paste0("grading sheet ",grader," ",week,".csv")
      lstGrd[[grader]] <- read.csv(sheetname,header=FALSE)</pre>
      nO <- ncol(lstGrd[[grader]]) - 1
      colnames(lstGrd[[grader]])[1] <- "name"
      colnames(lstGrd[[grader]])[-1] <- paste0("0".1:n0)
      lstGrd[[grader]][,-1] <- lapply(lstGrd[[grader]][,-1],as.numeric)</pre>
      lstGrd[[grader]]$sum <- rowSums(lstGrd[[grader]][,-1],na.rm=TRUE)</pre>
      lstGrd[[grader]]$scale <- lstGrd[[grader]]$sum*(10*(1+bonus)/total)</pre>
 lstGrd[[raters[1]]]$ave <- (lstGrd[[raters[1]]]$scale + lstGrd[[raters[2]]]$scale)/length(raters)
  lstGrd[[raters[2]]]$ave <- (lstGrd[[raters[1]]]$scale + lstGrd[[raters[2]]]$scale)/length(raters)
 for (grader in raters){
      sheetname <- paste0("grading_sheet_",grader,"_",week,"_merg.csv")</pre>
      lstGrd[[grader]][.1] <- formatC(lstGrd[[grader]][.1].width=18)</pre>
      lstGrd[[grader]][.-1] <- lapply(lstGrd[[grader]][.-1].formatC.format="f".digits=1.width=5)
      colnames(lstGrd[[grader]])[1] <- formatC(colnames(lstGrd[[grader]])[1].width=18)
      colnames(lstGrd[[grader]])[-1] <- formatC(colnames(lstGrd[[grader]])[-1],width=5,digits=1,format="f")
      write.table(lstGrd[[grader]], sheetname, sep=",", row.names=FALSE, quote=FALSE)
```

HW return

- BB
- email
- slack : encryption or not

Encryption

```
$ gpg --gen-key
answer questions along and set up your password
this may take a bit of time
```

```
$ gpg --list-keys
```

\$ gpg --export --armor --output your_name.asc your_email

Decryption

\$ gpg --output decrypted_filename --decrypt encrypted_filename

<ロ > → □ > → □ > → □ > → □ ● → ○ へ ○ ○

Action

message me your option in the slack private channel by 4 pm April 1st.

- No. I don't want marked HW
- 2 Yes. Please send via email
- 3 Yes. Please send via slack w/ encryption
- Yes. Please send via slack w/o encryption

If (3), please send along the file your_name.asc in the slack private channel by 4 pm April 1st.

If I did not receive any response from you by the due time, I take it as you chose option (1).

References

Geomorphometry Concepts, Software, Applications (2004) ISBN: 978-012-374345-9

P. Dale. Mathematical Techniques in GIS (2004)

C. Fleurant and S. Bodin-Fleurant. Mathematics for Earth Science and Geography (2019)

Z. Li, Q. Zhu, and C. Gold. Digital Terrain Modeling: Principles and Methodology (2005)

https://study.com/academy/answer/plot-the-point-whose-spherical-coordinates-are-7-pi-3-pi-6-then-find-the-rectangular-coordinates-of-the-point.html

https://en.wikipedia.org/wiki/Trigonometry

https://www.pinterest.com/pin/194147433908808713/

 $http://www.azquotes.com/author/10753-John_von_Neumann$