中国科学院大学 liguo 2201

-道数列题的不同解答

1 题目:

若
$$\{x_n\}$$
 有界, $\lim_{n \to +\infty} (x_n - 2x_{n+1} + x_{n+2}) = 0$ 求证: $\lim_{n \to +\infty} (x_{n+1} - x_n) = 0$

解答: 2

by 安贫乐道的玉米 2.1

反证。否定结论后,寻找相应的子列说明 $\{x_n\}$ 无界。

倘若 $a_n = x_n - x_{n+1}$ 不收敛于 0, 则 $\exists c > 0$, 有子列 $\{a_{n_j}\}$, 使得 $|a_{n_j}| > c$. 再由 $\lim_{n \to +\infty} (a_n - a_{n+1}) = 0$ 0, 知 $\forall \varepsilon \in (0,c), \exists N, \forall n > N, |a_n - a_{n+1}| < \varepsilon$. 取充分大的 n_j 使两式均满足。

不妨设子列 $\{a_{n_j}\}$ 恒正,那么 $\forall m > n > N a_m - a_n = \sum_{i=1}^{m-1} (a_{i+1} - a_i) > -(m-n-1)\varepsilon$. 从而 $a_m > a_n - (m - n - 1)\varepsilon$. \mathbb{R} $n > n_j, a_m > a_{n_j} - (m - n_j - 1)\varepsilon > c - (m - n_j - 1)\varepsilon > c - m\varepsilon$. 取 $M = \left\lceil \frac{c}{2\varepsilon} \right\rceil + 1$ 使得有 $a_m - a_{n_j} > \frac{c}{2} (n_j < m < M)$. 注意到

$$a_{n_j+1} + a_{n_j+2} + \dots + a_{n_j+M} > M(a_{n_j} + \frac{c}{2}) > (\frac{c}{\varepsilon} - 1)\frac{3c}{2}$$

取 $\varepsilon \to 0$, 可使上式任意地大, 这与 $\{x_n\}$ 有界矛盾!

by 空中劈叉的睿智清洁工 2.2

概要 估计十分拆。最后把k利用起来说明矛盾。

令 $a_n = x_{n+1} - x_n$,则 $\sum_{i=1}^n a_i$ 对 $\forall n \in \mathbb{N}$ 有界。令 $M = (\sup_{n \in \mathbb{N}} \left| \sum_{i=1}^n a_i \right|) + 1$. 若 $\lim_{n \to +\infty} a_n \neq 0$,则存 在 $\varepsilon_0, \forall N$, 都存在 $n_1 > N$, 使得 $|a_{n_1}| > \varepsilon_0$. 另外, 由于 $\lim_{n \to +\infty} (a_{n+1} - a_n) = 0$, 存在 N, 使得 $\forall n > N$, 都有 $|a_{n+1}-a_n|<rac{arepsilon_0}{kM}.$ $\exists N_2>N$,使得 $|a_{N_2}|>arepsilon_0$.. 这可导出 $a_{N_2},a_{N_2+1},\cdots,a_{N_2+kM}$ 同号,从而

$$\sum_{i=1}^{N_2+kM} a_i = \sum_{i=1}^{N_2-1} a_i + \sum_{j=0}^{kM} a_j$$

$$\geqslant -M + \sum_{j=0}^{kM} \left(\varepsilon_0 - \frac{\varepsilon_0 j}{kM}\right)$$

$$= -M + (kM+1)\varepsilon_0 - \frac{\varepsilon_0 j}{kM} \frac{kM(kM+1)}{2}$$

$$= \left(\frac{k}{2}\varepsilon_0 - 1\right)M + \frac{1}{2}\varepsilon_0$$

由于 ε_0 固定, 只需 $k > \frac{4}{\varepsilon_0}$, 则有 $\sum_{i=1}^{N_2+kM} a_i > M$, 矛盾!

中国科学院大学 liguo 2201

2.3 by 葡萄味的玉米

概要 还是反证的思路,由差分的变化限制导出 $\{x_n\}$ 无界。

 $\forall \varepsilon > 0, \exists N, \forall n > N, |x_n - 2x_{n+1} + x_{n+2}| < \varepsilon$ 因为 $|x_{n+1} - x_n| < 2M$ 故 $\{x_{n+1} - x_n\}$ 有界,记其上下极限分别为 \mathcal{L} 、 ℓ 显然 $\mathcal{L} \geqslant 0 \geqslant \ell$.

下证
$$\mathcal{L} = 0$$
, 否则,取 $n_1 > N$ $x_{n_1+1} - x_{n_1} > \frac{\mathcal{L}}{2}$. 令 $n_2 = n_1 + \left[\frac{\mathcal{L}}{4\varepsilon}\right]$, $x_{n_2+1} - x_{n_2} \geqslant \frac{\mathcal{L}}{2} - \varepsilon \left[\frac{\mathcal{L}}{4\varepsilon}\right] \geqslant \frac{\mathcal{L}}{4}$ 从而, $x_{n_2+1} - x_{n_1} \geqslant \frac{\mathcal{L}}{4} \left(\left[\frac{\mathcal{L}}{4\varepsilon}\right] - 1\right)$ 此即 $x_{n_2+1} \geqslant \frac{\mathcal{L}}{4} \left(\left[\frac{\mathcal{L}}{4\varepsilon}\right] - 1\right) + x_{n_1}$, 当 ε 足够小时,可以使 x_{n_2+1} 足够大,矛盾!类似可证 $\ell = 0$.

故
$$\lim_{n \to +\infty} \{x_{n+1} - x_n\} = 0.$$

注:上下极限的另解

* 引理: 若 $\{x_n\}$ 有界, 且 $\lim_{n\to+\infty}(x_{n+1}-x_n)=0$. 将 $\{x_n\}$ 的上下极限分别记为 \mathcal{L} 、 ℓ . 则区间 $[\ell,\mathcal{L}]$ 中的每一个点都是数列 $\{x_n\}$ 的聚点.

在本题中, 我们看到 $\{x_{n+1}-x_n\}$ 符合条件, 故 $\frac{\mathcal{L}}{2}$ 也为其聚点。若 $\mathcal{L}>0$, 我们取收敛于这个点的子列 $\{x_{n_i+1}-x_{n_i}\}$, 容易得到 $\sum_{i=1}^{\infty}(x_{n_i+1}-x_{n_i})$ 发散, 这与 $\{x_n\}$ 有界矛盾!