

FEA of Linear Vibrations in FEniCs

20th July 2023

Shardul Kher

Guide: Prof. Behrooz Yousefzadeh

Concordia University

- I. Installation
- 2. FEM Formlation
- 3. Simulation Workflow
- 4. Results
- 5. Future Scope
- 6. References

FEniCs Installation

$$\rho \ddot{\mathbf{u}} = \text{div } \boldsymbol{\sigma}, \text{ in } \Omega$$

(1)

$$\rho \ddot{\mathbf{u}} = \operatorname{div} \boldsymbol{\sigma}, \quad \text{in } \Omega \tag{2}$$

To obtain the weak form we multiply the above equation with a test function ${\bf v}$ and integrate over the domain Ω

$$\int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\epsilon}(\mathbf{v}) \, dV + \int_{\Omega} \rho \ddot{\mathbf{u}} \cdot \mathbf{v} \, dV = 0, \quad \forall \mathbf{v} \text{ in } \Omega,$$
(3)

$$\rho \ddot{\mathbf{u}} = \operatorname{div} \boldsymbol{\sigma}, \quad \text{in } \Omega$$
 (4)

To obtain the weak form we multiply the above equation with a test function ${\bf v}$ and integrate over the domain Ω

$$\int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\epsilon}(\mathbf{v}) \, dV + \int_{\Omega} \rho \ddot{\mathbf{u}} \cdot \mathbf{v} \, dV = 0, \quad \forall \mathbf{v} \text{ in } \Omega,$$
 (5)

Assuming \mathbf{u} takes periodic form: $\mathbf{u}(\mathbf{x}, t) = \mathbf{u}_{A}(\mathbf{x})e^{i\omega t}$;

Substituting this $\mathbf{u}(\mathbf{x},t)$ in in the above eqn, we get:

$$\int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\epsilon}(\mathbf{v}) \, dV - \omega^2 \int_{\Omega} \rho \mathbf{u} \cdot \mathbf{v} \, dV = 0, \quad \forall \mathbf{v} \text{ in } \Omega,$$
 (6)

$$\rho \ddot{\mathbf{u}} = \operatorname{div} \boldsymbol{\sigma}, \quad \text{in } \Omega$$
 (7)

To obtain the weak form we multiply the above equation with a test function ${\bf v}$ and integrate over the domain Ω

$$\int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{u}) : \boldsymbol{\epsilon}(\boldsymbol{v}) \, dV + \int_{\Omega} \rho \ddot{\boldsymbol{u}} \cdot \boldsymbol{v} \, dV = 0, \quad \forall \boldsymbol{v} \text{ in } \Omega,$$
 (8)

Assuming \mathbf{u} takes periodic form: $\mathbf{u}(\mathbf{x},t) = \mathbf{u}_{A}(\mathbf{x})e^{i\omega t}$;

Substituting this $\mathbf{u}(\mathbf{x},t)$ in in the above eqn, we get:

$$\int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\epsilon}(\mathbf{v}) \, dV - \omega^2 \int_{\Omega} \rho \mathbf{u} \cdot \mathbf{v} \, dV = 0, \quad \forall \mathbf{v} \text{ in } \Omega,$$
 (9)

Eigen-value problem:
$$\mathbf{A}\mathbf{u} - \omega^2 \mathbf{M}\mathbf{u} = \mathbf{o},$$
 (10)

A & M are matrices assembled from the governing equations

$$\rho \ddot{\mathbf{u}} = \operatorname{div} \boldsymbol{\sigma}, \quad \text{in } \Omega$$
 (11)

To obtain the weak form we multiply the above equation with a test function ${\bf v}$ and integrate over the domain Ω

$$\int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{u}) : \boldsymbol{\epsilon}(\boldsymbol{v}) \, dV + \int_{\Omega} \rho \ddot{\boldsymbol{u}} \cdot \boldsymbol{v} \, dV = 0, \quad \forall \boldsymbol{v} \text{ in } \Omega,$$
(12)

Assuming \mathbf{u} takes periodic form: $\mathbf{u}(\mathbf{x},t) = \mathbf{u}_A(\mathbf{x})e^{\mathrm{i}\omega t}$ Substituting this $\mathbf{u}(\mathbf{x},t)$ in in the above eqn, we get:

$$\int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{u}) : \boldsymbol{\epsilon}(\boldsymbol{v}) \, dV - \omega^2 \int_{\Omega} \rho \boldsymbol{u} \cdot \boldsymbol{v} \, dV = 0, \quad \forall \boldsymbol{v} \text{ in } \Omega,$$
 (13)

Eigen-value problem:
$$\mathbf{A}\mathbf{u} - \omega^2 \mathbf{M}\mathbf{u} = \mathbf{0},$$
 (14)

A & M are matrices assembled from the governing equations

$$\rho \ddot{\mathbf{u}} = \operatorname{div} \boldsymbol{\sigma}, \quad \text{in } \Omega$$
 (15)

To obtain the weak form we multiply the above equation with a test function ${\bf v}$ and integrate over the domain Ω

$$\int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\epsilon}(\mathbf{v}) \, d\mathbf{V} + \int_{\Omega} \rho \ddot{\mathbf{u}} \cdot \mathbf{v} \, d\mathbf{V} = \mathbf{o}, \quad \forall \mathbf{v} \text{ in } \Omega,$$
 (16)

Assuming \mathbf{u} takes periodic form: $\mathbf{u}(\mathbf{x},t) = \mathbf{u}_A(\mathbf{x})e^{\mathrm{i}\omega t}$ Substituting this $\mathbf{u}(\mathbf{x},t)$ in in the above eqn, we get:

$$\int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\epsilon}(\mathbf{v}) \, dV - \omega^2 \int_{\Omega} \rho \mathbf{u} \cdot \mathbf{v} \, dV = 0, \quad \forall \mathbf{v} \text{ in } \Omega,$$
 (17)

Eigen-value problem:
$$\mathbf{A}\mathbf{u} - \omega^2 \mathbf{M}\mathbf{u} = \mathbf{o},$$
 (18)

A & M are matrices assembled from the governing equations

1D space Ω with a mesh of 5 equally spaced nodes:

1D space Ω with a mesh of 5 equally spaced nodes:

Linear Basis Functions: V = fe.FunctionSpace(mesh, 1)

1D space $oldsymbol{\Omega}$ with a mesh of 5 equally spaced nodes:

- <u>Linear Basis Functions</u>: V = fe.FunctionSpace(mesh, 1)
- Basis functions: $\phi_0(x)$, $\phi_1(x)$, $\phi_2(x)$, $\phi_3(x)$, $\phi_4(x)$; $\phi_i(x) = 1$ at i^{th} node & zero at others and $\phi_i(x)$ is **linearly** interpolated between neighbouring nodes

1D space $oldsymbol{\Omega}$ with a mesh of 5 equally spaced nodes:

- <u>Linear Basis Functions</u>: V = fe.FunctionSpace(mesh, 1)
- Basis functions: $\phi_0(x)$, $\phi_1(x)$, $\phi_2(x)$, $\phi_3(x)$, $\phi_4(x)$; $\phi_i(x) = 1$ at i^{th} node & zero at others and $\phi_i(x)$ is **linearly** interpolated between neighbouring nodes
- $A = \int_{\Omega} \boldsymbol{\sigma}(u) : \boldsymbol{\epsilon}(v) dx$

1D space $oldsymbol{\Omega}$ with a mesh of 5 equally spaced nodes:

- <u>Linear Basis Functions</u>: V = fe.FunctionSpace(mesh, 1)
- <u>Basis functions</u>: $\phi_0(x)$, $\phi_1(x)$, $\phi_2(x)$, $\phi_3(x)$, $\phi_4(x)$; $\phi_i(x) = 1$ at i^{th} node & zero at others and $\phi_i(x)$ is **linearly** interpolated between neighbouring nodes
- $A = \int_{\Omega} \boldsymbol{\sigma}(u) : \boldsymbol{\epsilon}(v) dx$

Matrix
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

GMSH: Geometry creation & Meshing

- GMSH: Geometry creation & Meshing

- GMSH: Geometry creation & Meshing
- <u>FEniCs</u>: PDE Solver

- GMSH: Geometry creation & Meshing
- FEniCs: PDE Solver
- Paraview: Visualisation & Post-processing

Uniform Cantilever Beam

First 6 Modes:

Mode No.	ω - FEniCs [Hz]		Mode Participation Factor	Effective Mass	Relative Contribution
1	2.04991	2.01925	-7.83E-02	6.13E-03	61.30 %
2	4.04854	4.0385	7.88E-04	6.21E-07	0.01 %
3	12.81504	12.65443	4.34E-02	1.89E-03	18.85 %
4	25.12717	25.30886	-4.40E-04	1.94E-07	0.00 %
5	35.74168	35.43277	2.55E-02	6.49E-04	6.49 %
6	66.94816	70.86554	-3.71E-04	1.38E-07	0.00 %

Total relative mass of the first 6 modes: 86.65 %

Tapering Cantilever Beam

First 6 Modes:

Mode No.	ω - FEniCs [Hz]	Mode Participation Factor	Effective Mass	Relative Contribution
1	4.76505	-1.25E-01	1.57E-02	52.44 %
2	9.98477	-1.66E-05	2.76E-10	0.00 %
3	23.24731	7.78E - 02	6.05E-03	20.17 %
4	52.46917	-4.62E-06	2.13E-11	0.00 %
5	59.93993	-5.02E-02	2.52E-03	8.39 %
6	76.63406	6.46E-05	4.18E-09	0.00 %

Total relative mass of the first 6 modes: 81.00 %

Tapering Beam Result Verification

Mesh size limit (dl_o): 0.08m {Solver limit}

Response of Mode-1 eigen frequency upon refining the mesh

Tapering Beam Result Verification

Response of Mode-1 eigen frequency upon refining the mesh

- Mesh size limit (dl_o): 0.08m {Solver limit}
- Assuming the dl₀ mesh to give accurate output

Results

Tapering Beam Result Verification

Response of Mode-1 eigen frequency upon refining the mesh

- Mesh size limit (dl_o): 0.08m {Solver limit}
- Assuming the dl_o mesh to give accurate output
- Observing depletion of error upon mesh refinement

1 Visualisation and post-processing in Paraview [Spivak, 2018]

Visualisation and post-processing in Paraview [Spivak, 2018]

Simulating Acoustic Black Hole in FEniCs

Visualisation and post-processing in Paraview [Spivak, 2018]

Simulating Acoustic Black Hole in FEniCs

Power law: $h(x) = \epsilon x^{\mu} + h_{tip}$

[Hook et al., 2019]

① Visualisation and post-processing in Paraview [Spivak, 2018]

Simulating Acoustic Black Hole in FEniCs

[Adrien et al., 2020]

Power law: $h(x) = \epsilon x^{\mu} + h_{tip}$

- [Hook et al., 2019]
- Geometry creation in GMSH using "BSpline" function

References

Adrien, P., François, G., Stephen, C., and Fabio, S. (2020).

The acoustic black hole: A review of theory and applications.

Journal of Sound and Vibration, 476.

Hook, K., Cheer, J., and Daley, S. (2019).

A parametric study of an acoustic black hole on a beam.

The Journal of the Acoustical Society of America, 145.

Spivak, M. (2018).

Calculus on manifolds: a modern approach to classical theorems of advanced calculus.

CRC press.

THANK YOU! Shardul Kher

References

30/30

Guide: Prof. Behrooz Yousefzadeh