SFL | SPATIAL FUTURES LAB

SFL001 | DRONE FLIGHT + POINT CAPTURE

- 1. Place DRONE in NET at the crosshairs of the marker in the center and turn ON.
- 2. Connect OPTITRACK System to power to turn ON.
- 3. Start up UBUNTU + PC Machines

in UBUNTU -- Connect to Bebop2Power Wi-Fi Network

in PC -- Start up Motive, open Calibration File, and generate RigidBody from DRONE in NET -- call it 'bebop'

4. In UBUNTU -- ctrl + alt + t to start the ROS terminal

A) TO START COMMUNICATION bebop

b/w UBUNTU + PC roslaunch rosbridge_server rosbridget_websocket.launch

B) TO GET MOTIVE RIGIDBODY bebop

into ROS roslaunch drone_mocap drone_mocap.launch

C) TO START DRONE via ROS bebop roslaunch bebop_driver bebop_node.launch

D) TO USE JOYSTICK bebop

CONTROLLER roslaunch bebop_tools joy_teleop.launch

bebop

E) TO GET POINTS from DRONE -scripts directory-

python bebop_position_controller.py

F) TO SEE XYZ COORDINATES

of DRONE

bebop
rostopic list

rostopic echo /vrpn_client_node/bebop/pose

G) TO SEE XYZ COORDINATES

bebop
rostopic list

of CAPTURED POINT rostopic rist rostopic echo /bebop/captured_pose

NOTES in UBUNTU

- ctrl + shift + t to make a TAB within the ROS window
- ctrl + c to shutdown process within ROS window
- ↑ (up arrow) to retrieve last thing you typed in ROS window
- E) wont look like it's doing anything after the last input.

SFL | SPATIAL FUTURES LAB

SFL002 | GEOMTOOLS POINT CAPTURE

- 1. Place DRONE in NET at the crosshairs of the marker in the center and turn ON.
- 2. Connect OPTITRACK System to power to turn ON.
- 3. Start up UBUNTU + PC Machines

C)

in UBUNTU -- Connect to Bebop2Power Wi-Fi Network

in PC -- Start up Motive, open Calibration File, and generate RigidBody from DRONE in NET -- call it 'bebop'

4. In UBUNTU -- ctrl + alt + t to start the ROS terminal

A) TO START COMMUNICATION bebop

b/w UBUNTU + PC roslaunch rosbridge_server rosbridget_websocket.launch

B) TO GET MOTIVE RIGIDBODY bebop

into ROS roslaunch drone_mocap drone_mocap.launch

Create a rigidbody in Motive -- name it <u>GeomToolA</u>

Make copies of this rigidbody for however many points

need to be captured (0-9) -- name them <u>SnapPoint#</u>
On each SnapPoint#, press ctrl + click the maker you want

MOTIVE to be recorded.

Then right click "Set Pivot Point to Respective Marker"

Repeat this for all SnapPoint rigidbodies to get all points

D) TO GET POINTS from bebop

DEFINE GEOMTOOL in

GEOMTOOL -scripts directory-

python capture_rigid_bodies.py

E) TO CAPTURE POINTS from GEOMTOOL in window D press 0-9 to capture that specific SnapPoint and SPACEBAR for all captured points

Make sure specific SnapPoint's checkbox in

rigidbody window in Motive is checked if wanting to

capture.

bebop

Press escape to restart capture.

Can only transmit 4 pts MAX at a time.

F) TO SEE XYZ COORDINATES

of GEOMTOOL rostopic list

rostopic echo /vrpn_client_node/bebop/GeomToolA

G) TO SEE XYZ COORDINATES bebop rostopic list

of SNAPPOINT rostopic list rostopic echo/vrpn_client_node/bebop/SnapPoint#