PHY407H1 Lab9

 $\begin{array}{c} {\rm Eric~Yeung^*} \\ {\it Department~of~Physical~Sciences,~University~of~Toronto,~Toronto~M1C~1A4,~Canada} \\ {\rm (Dated:~November~13,~2015)} \end{array}$

QUESTION 1

- a) See Assignment 9_Analysis.pdf by me.
- b) See Lab9_q1b.py by me.

FIG. 1: Plot for $\eta(x,t)$

 $^{^{*}}$ eric.yeung@mail.utoronto.ca

FIG. 2: Plot for $\phi(x,z,t)$

The spectral method gives me around the same answers for $\eta(x,t)$. Regarding speed, this simulation (spectral method) took 0.698999881744 seconds!

The $\phi(x, z, t)$ looks like η reflected along the x axis. The solutions that Paul gave out showed the contour plots of ϕ . My code accounted only for ϕ when z = 0. I didn't have time to troubleshoot/debug the phi solution, but the solution at $\phi(z = 0)$ seem to be what I would expect.

In comparison with the graphs I got in Lab8, shown below:

FIG. 3: The figure from the last lab

QUESTION 2

a) b) c)See Lab9_q2abc.py by Chi.

FIG. 4: Wave function from Crank-Nicolson Method

The animation is shown in a vpython window. The time dependent wave function is simply evolving in time from starting in a stationary state. We can see the solution is oscillating between two points (the ends of the potential wall).

d)See Lab9_q2d.py by Chi.

FIG. 5: x0 = 0.4L

FIG. 6: x0 = 0.49L

With the potential jump, I can see that wave function spikes at around L/2, which is where our potential jump is.