

Lecture 07:

The Temperature Problem

CS 111: Intro to Computational Science
Spring 2023

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

- Turn in current homework
- New homework is out today
 - It's a tougher one, so start it early!
- Preliminary slides for this lecture available!
- Note:
 I'm pushing the continuation of "Numerical Stability" for a future lecture...
- No quiz this week!

The Temperature Problem

- A cabin in the snow
- Wall temperature is 0°, except for a radiator at 100°
- What is the temperature at every point in the interior?

The Physics behind the Problem:

Poisson's Equation

For a 2-dimensional situation:

$$\nabla^2 u(x,y) \, \equiv \, \frac{\partial^2 u}{\partial \, x^2}(x,y) \, + \, \frac{\partial^2 u}{\partial \, y^2}(x,y) \, = \, f(x,y)$$

for
$$(x,y) \in R = \{ (x,y) \mid a < x < b, c < y < d \}$$
, and
$$u(x,y) = g(x,y)$$

for (x, y) on the boundary of R.

But, this is a continuous math (Calculus) problem – how can we "translate" it into discrete math (for Computation)?

Discrete Poisson Equation

$$(
abla^2 u)_{ij} = rac{1}{\Delta x^2} (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{ij})$$

 This translates to a linear system that we can write as a matrix expression similar to Ax = b (!!! How convenient!!!)

How?... Let's See...

Discrete Poisson Equation

Think about this in the case of examining a square room...

- The room has sides that are **k** units long each
 - We'll divide up the room in k discrete steps in each direction
 - Imagine it like a square room broken up into a grid
 - End up with a discrete "stencil" space
 - This is NOT a matrix! (... yet...)

Many Physical Models Use Stencil Computations

PDE models of heat, fluids, structures, ...

Weather, airplanes, bridges, bones, ...

Modeling the Room

Discrete approximation to Poisson's equation: Divide up the room into **k**_x**k** spaces or "cells".

Again, we assume the room is square with an area of **n**

So,
$$k = n^{1/2}$$

Temperature at any point is the <u>average</u> of the temperatures at its surrounding points

0	1	2	3	•••

© 2023. Matni

CS111 S23

C

Simple Example: A 5x5 Room (i.e. k=5)

Example – Let's look at space number 13:

The temperature in space number 13 (T_{13}) is the average of the temperatures in the surrounding spaces. That is:

$$T_{13} = \frac{1}{4} (T_8 + T_{12} + T_{14} + T_{18})$$
or
$$4.T_{13} = T_8 + T_{12} + T_{14} + T_{18}$$
or
$$T_8 + T_{12} - 4.T_{13} + T_{14} + T_{18} = 0$$

k
0
1
2
3

		_		•
1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

© 2023, Matni

CS111 S23

10

Simple Example: A 5x5 Room (i.e. k=5)

Example – Let's look at space number 13:

The temperature in space number 13 (T_{13}) is the average of the temperatures in the surrounding spaces. That is:

$$T_8 + T_{12} - 4.T_{13} + T_{14} + T_{18} = 0$$

Note that the area $\mathbf{n} = 25$ in this example (i.e. $n = k^2$)

Now apply this to <u>all</u> the **n** "cells" and you can get a relationship "heat" map of the room!

You need 1 more thing: a location defined for the "heat source". This is akin to an initial condition for a diff. equation problem.

k

© 2023. Matn

Simple Example: A 5x5 Room

So:

For each *i* from 1 to **n**(except on the boundaries), we see that the *generalized relationship* is:

$$t(i-k) + t(i-1) - 4.t(i) + t(i+1) + t(i+k) = 0$$

(this is an implementation of the discrete Poisson equation!)

$$k = n^{1/2}$$

$$t(i-1) t(i) t(i+1)$$

$$t(i+k)$$

k

0

1

2

3

Δ

0

1

7

3

4

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

© 2023, Matni

CS111 S23

12

REMEMBER: There's a Transformation Going On!

• This **5x5** *grid*:

Is **NOT** the matrix that

we plug into Python!

It has to be first <u>transformed</u> into a **25x25** <u>matrix</u>!

One row for each "cell" on the grid,

One column for each "cell" too!

This is so that every row / column tells me something about the *linear temperature relationship* between every "cell" on the grid!

- The numbers in the matrix will thus be the *coefficients* of the elements *in the discrete Poisson equation to solve the temperature*
- NOTE: They are **NOT** the temperature values themselves!!

- We are expressing: mathematical linear relationships
 - i.e. **n**-equations w/ **n**-unknowns

- The unknowns are the temperatures in each of the n number of "cells"
- These temperatures are all related to all the other cells in the room
 - In actuality, it's not exactly all the other cells, just the ones adjacent to the cell in question
- This matrix multiplication can express it:

$$A.t = \begin{bmatrix} a_{00} & \cdots & a_{0n} \\ \vdots & \ddots & \vdots \\ a_{n0} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} t_0 \\ \vdots \\ t_n \end{bmatrix}$$

• This matrix multiplication can express it:

$$A.t = \begin{bmatrix} a_{00} & \cdots & a_{0n} \\ \vdots & \ddots & \vdots \\ a_{n0} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} t_0 \\ \vdots \\ t_n \end{bmatrix}$$

• We expect this to give us an *n* number of equations of the form:

$$t(i-k) + t(i-1) - 4.t(i) + t(i+1) + t(i+k) = 0$$

- A. t should give us an nx1 vector that's mostly zeros
 - Except where the heat-source is!
- Note also that a LOT of values in matrix $A(a_{ij})$ are going to be zeros...!

Using the Transformation for a Solution!!

What we end up with, then is something like this:

- Note that this EXACTLY an Ax = b situation!!!
 - Are we going to use **npla.solve()** ??? Or something else??? This is exciting!!!!

Translate the Room into a Matrix!

$$t(i-k) + t(i-1) - 4*t(i) + t(i+1) + t(i+k) = 0$$

- Each row of this nxn matrix (A) will have *at most* 5 non-zero elements
 - These represent the cell-in-question + the 4 adjacent cells
 - These are the ones represented in the (red) Poission's equation above...
 - The rest of each row will be filled with zeros
 - Note that, if this were in 3-D, **n** would be **k**³ and each row will have at most **7** non-zeros, etc...

- This makes for a "sparse matrix"!!!
 - Def.: a matrix where most of the elements are zero
 - The opposite is called a "dense matrix"

A Very Simple Example

t1	t2	t3
t4	t5	t6
t7	t8	t9

- Consider a room that's stenciled 3x3 (so: 9 squares in the grid)
- So, the matrix A will be a 9x9 and looks like this:

	-								
4	-1	0	-1	0	0	0	0	0	
-1	4	-1	0	-1	0	0	0	0	
0	-1	4	0	0	-1	0	0	0	
-1	0	0	4	-1	0	-1	0	0	
0	-1	0	-1	4	-1	0	-1	0	
0	0	-1	0	-1	4	0	0	-1	
0	0	0	-1	0	0	4	-1	0	
0	0	0	0	-1	0	-1	4	-1	
0	0	0	0	0	-1	0	-1	4	
_	-								

t1			100
t2			100
t3			100
t4			0
t5		=	0
t6			100
t7			0
t8			0
t9			0
)		l

For square **5** in the room, we see that the relationship: t2 + t4 - 4*t5 + t6 + t8 = 0is applied by the **At = b** relationship

Same for square 1:
-4*t1 + t2 + t4 = 100
(note how this suggests that a heat source at 100° is placed next to square 1)

And so on, for each of the other 9 squares in the room.

The vector **t** gives us the temperature in every room!

A Very Simple Example

Running **solve(A, b)** on this, gives us the 9 values for **t** These are the values in the original physical grid:

Where	the	heat	source	is a	pplied

	1000	100°	0				
0	39.7°	42.8°	12.9°	0			
0	16.1°	18.8°	8.9°	0			
0	5.8°	7.1°	4.0°	0			
	0	0	0				

Sparse Matrices

- A **sparse matrix** is a **matrix** which contains very few non-zero elements.
- When a **sparse matrix** is represented with a 2-D *array* (i.e. simple 1-to-1 mapping), we waste a lot of computer memory to represent that **matrix**.
- We can represent sparse matrices in more efficient ways than this!
 - We won't get into how this is done, just how to use them...

The Temperature Matrix is a Sparse Matrix...

This temperature matrix is also a SPD type!

21

Your TO DOs!

Turn in your homework today!

Start on your new homework

Remember: NO QUIZ this week!!!!

