ECON-GA 1025 Macroeconomic Theory I Lecture 8

John Stachurski

Fall Semester 2018

Today's Lecture

- Comments on assessment
- Finish: Numerical methods for tracking distributions
- Start: Job Search

Shifting office hours to Wed 4:00–5:00

Style of exam:

- broad understanding of all course material
- applications of ideas

Exam prep:

- Weekly assignments
- Other Ex. in slides
- Review logic and applications in slides

Wealth Distributions: Estimation by Monte Carlo (Continued)

In the last lecture we studied estimation of the time t distribution Ψ_t using Monte Carlo

Method:

- 1. Compute sample $\{w_t^m\}$, time t wealth of m independent households
- 2. Calculate the empirical distribution

$$F_t^m(x) := \frac{1}{m} \sum_{i=1}^m \mathbb{1}\{w_t^i \leqslant x\}$$

Figure: The empirical distribution F_m^t for different values of t

But we know that Ψ_t can be represented by a density ψ_t

This is structure that we would like to exploit

- helps when we get to high dimensional problems
- helps extract information from the tails

Unfortunately there is no natural estimator of densities that

- works in every setting (like the empirical distribution does)
- is always unbiased and consistent

Why?

- Empirical distributions just reflect the sample
- Density estimates must make statements about probability mass in the neighborhood of each observation

Let's look at our options

Option 1. Nonparametric kernel density estimation, where

$$\hat{f}_t^m(x) = \frac{1}{h} \sum_{i=1}^m K\left(\frac{x - w_t^i}{h}\right)$$

Here

- K is a density, called the kernel
- h is the bandwidth of the estimator

Idea:

- Put a smooth bump on each data point and then sum
- Larger h means smoother estimate

Figure: NPKDE of ψ_t using Scikit Learn

Option 2. The look ahead estimator

$$\ell_t^m(w') := \frac{1}{m} \sum_{i=1}^m \pi(w_{t-1}^i, w')$$

Note: sample $\{w_{t-1}^i\}$ is from time t-1

This makes the estimator unbiased

$$\mathbb{E}[\ell_t^m(w')] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}[\pi(w_{t-1}^i, w')]$$

$$= \frac{m}{m} \int \pi(w, w') \psi_{t-1}(w) \, dw = \psi_t(w')$$

From the SLLN, we also have

$$\ell^m_t(w') o \mathbb{E}[\pi(w^i_{t-1}, w')] = \psi_t(w')$$
 as $m o \infty$

Figure: The look ahead estimate of ψ_t

Stability of the Wealth Process

Lemma. The dynamical system (\mathcal{D},Π) corresponding to the wealth process

$$w_{t+1} = R_{t+1}s(w_t) + y_{t+1}$$

is globally stable whenever

- (a) y_t has finite first moment, $\varphi \gg 0$ and
- (b) $\mathbb{E}[R_t]s(w) \leqslant \lambda w + L$ for some $\lambda < 1$ and $L < \infty$

If ψ^* is the stationary density and $\int |h(w)| \psi^*(w) \, \mathrm{d} w < \infty$, then, with prob one,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n h(w_t)=\int h(w)\psi^*(w)\,\mathrm{d}w$$

Ex. Apply the last result to the case

$$s(w) = \mathbb{1}\{w > \bar{w}\}s_0w \qquad (w \geqslant 0)$$

- Here s_0 and $ar{w}$ are positive parameters
- What conditions do you need to impose on the parameters in the model in order to get global stability?
- Can you give some interpretation?

A **stationary** density look ahead estimator:

$$\ell_n^*(w') := \frac{1}{n} \sum_{t=1}^n \pi(w_t, w')$$

ullet sample is a single time series $\{w_t\}$ generated by simulation

Consistent for $\psi^*(w')$, since, with probability one as $n \to \infty$,

$$\ell_n^*(w') = \frac{1}{n} \sum_{t=1}^n \pi(w_t, w') \to \int \pi(w, w') \psi^*(w) dw = \psi^*(w')$$

Figure: The stationary density look ahead estimator of the wealth distribution

Figure: Lorenz curve, wealth distribution at default parameters

Figure: Lorenz curves with increasing variance in labor income

Figure: Lorenz curves with increasing rate of return on wealth

See notebook $wealth_ineq_plots.ipynb$

New Topic: Job Search

Our first deep dive into dynamic programming

- An integral part of labor and macroeconomics
- Relatively simple (binary choice)

Related to

- Optimal stopping
- Firm entry and exit decisions
- Pricing American options
- etc.

As discussed earlier

Unemployed agent seeks to maximize

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^t y_t$$

- ullet Observes an employment opportunity with wage offer w_t
- ullet Wage offers are IID and drawn from distribution arphi
- Acceptance means lifetime value $w_t/(1-\beta)$
- Rejection yields unemployment compensation $c\geqslant 0$ and a new offer next period

Overview

The value function $v^*(w) :=$ the maximal value that can be extracted from any given state w

It satisfies the Bellman equation

$$v^*(w) = \max\left\{\frac{w}{1-\beta}, c+\beta\int v^*(w')\varphi(\mathrm{d}w')\right\} \qquad (w\in\mathbb{R}_+)$$

Optimal policy is then obtained via

$$\sigma^*(w) = \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant c + \beta \int v^*(w') \varphi(\mathrm{d}w')\right\}$$

To calculate the optimal policy we need to evaluate $\int v^*(w') \varphi(\mathrm{d}w')$

To compute v^* , we introduce the **Bellman operator**

$$Tv(w) := \max \left\{ \frac{w}{1-\beta'}, c + \beta \int v(w') \varphi(\mathrm{d}w') \right\}$$

Note:

 fixed points of T exactly coincide with solutions to the Bellman equation

Simplifying assumption:

• There exists an $M \in \mathbb{R}_+$ such that $\int_0^M \varphi(\mathrm{d} w) = 1$

Case 1: Continuous Wage Draws

Assumption. The offer distribution φ is a density supported on [0,M]

Any w in [0,M] is possible so v^{\ast} needs to be defined on [0,M]

Leads us to seek a fixed point of T in $\mathscr{C}:=$ all continuous functions on [0,M] paired with

$$d_{\infty}(f,g) := \|f - g\|_{\infty}, \qquad \|g\|_{\infty} := \sup_{x \in [0,M]} |g(x)|$$

• $(\mathscr{C}, d_{\infty})$ is a complete metric space

Question: Why restrict ourselves to continuous functions?

Proposition. In this setting, T is a contraction of modulus β on $\mathscr C$

In particular,

- 1. T has a unique fixed point in \mathscr{C} ,
- 2. that fixed point is equal to the value function v^* and
- 3. if $v \in \mathscr{C}$, then $||T^n v v^*||_{\infty} \leq O(\beta^n)$.

For now let's take (2) as given — we'll prove it soon

• Remainder will be verified if we show T is a contraction of modulus β on $(\mathscr{C}, d_{\infty})$

We use the elementary bound

$$|\alpha \lor x - \alpha \lor y| \le |x - y| \qquad (\alpha, x, y \in \mathbb{R})$$

Fixing f,g in $\mathscr C$ and $w\in [0,M]$,

$$\begin{aligned} |Tf(w) - Tg(w)| &\leqslant \left| \beta \int f(w') \varphi(w') \, \mathrm{d}w' - \beta \int g(w') \varphi(w') \, \mathrm{d}w' \right| \\ &= \beta \left| \int [f(w') - g(w')] \varphi(w') \, \mathrm{d}w' \right| \\ &\leqslant \beta \int |f(w') - g(w')| \varphi(w') \, \mathrm{d}w' \leqslant \|f - g\|_{\infty} \end{aligned}$$

Taking the supremum over all $w \in [0, M]$ leads to

$$||Tf - Tg||_{\infty} \leqslant ||f - g||_{\infty}$$

Ex. Show that T maps the set of increasing convex functions on the interval [0,M] to itself

Ex. Show that v^* is increasing and convex on [0,M]

Case 2: Discrete Wage Draws

Let's swap the density assumption for a discrete distribution

Assumption. The offer distribution φ is supported on finite set W with probabilities $\varphi(w)$, $w \in W$

Now v^* need only be defined on these points

Hence we define T on \mathbb{R}^W by

$$Tv(w) = \max \left\{ \frac{w}{1-\beta}, c + \beta \sum_{w \in W} v(w) \varphi(w) \right\} \qquad (w \in W)$$

• $(\mathbb{R}^W, d_{\infty})$ is a complete metric space

Proposition. In this setting, T is a contraction of modulus β on \mathbb{R}^W

In particular,

- 1. T has a unique fixed point in \mathbb{R}^W ,
- 2. that fixed point is equal to the value function v^* and
- 3. if $v \in \mathbb{R}^W$, then $||T^n v v^*||_{\infty} \leq O(\beta^n)$

Ex. Prove that T is a contraction of modulus β on (\mathbb{R}^W, d_∞)

To compute the optimal policy we can use value function iteration

- 1. Start with arbitrary $v \in \mathbb{R}^W$
- 2. iterate with T until $v_k := T^k v$ is a good approximation to v^*

Then compute

$$\sigma_k(w) := \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant c + \beta \int v_k(w') \varphi(\mathsf{d}w')\right\}$$

Approximately optimal when v_k is close to v^*

Error bounds available...

Rearranging the Bellman Equation

Actually, for this particular problem, there's an easier solution method

- involves a "rearrangement" of the Bellman equation
- shifts us to a lower dimensional problem

Recall: a function v satisfies the Bellman equation if

$$v(w) := \max \left\{ \frac{w}{1-\beta}, c+\beta \int v(w') \varphi(\mathrm{d}w') \right\}$$

Taking v as given, consider

$$h := c + \beta \int v(w') \varphi(\mathrm{d}w')$$

Using h to eliminate v from the Bellman equation yields

$$h = c + \beta \int \max \left\{ \frac{w'}{1 - \beta}, h \right\} \varphi(\mathrm{d}w')$$

We now seek an $h \in \mathbb{R}_+$ satisfying

$$h = c + \beta \int \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(dw')$$

Solution h^* is the continuation value

Optimal policy can be written as

$$\sigma^*(w) = \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant h^*\right\} \qquad (w \in \mathbb{R}_+)$$

Alternatively,

$$\sigma^*(w) = \mathbb{1}\left\{w \geqslant w^*\right\} \quad \text{where } w^* := (1 - \beta)h^*$$

The term w^* is called the **reservation wage**

To solve for h^* we introduce the mapping

$$g(h) = c + \beta \int \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(dw') \qquad (h \in \mathbb{R}_+)$$

Any solution to $h=c+\beta\int\max\left\{\frac{w'}{1-\beta},\,h\right\}\phi(\mathrm{d}w')$ is a fixed point of g and vice versa

Assumption. The distribution φ has finite first moment

Ex. Confirm that

- ullet g is a well defined map from \mathbb{R}_+ to itself
- g is a contraction map on \mathbb{R}_+ under the usual Euclidean distance

Conclude that g has a unique fixed point in \mathbb{R}_+

For computation it is somewhat easier to work with the case where wages are bounded

Ex. Suppose that $\mathbb{P}\{w_t \leqslant M\} = 1$ for some positive constant M

• Confirm that g maps [0, K] to itself, where

$$K := \frac{\max\{M, c\}}{1 - \beta}$$

• Conclude that g has a fixed point in [0,K], which is the unique fixed point of g in \mathbb{R}_+

See notebook ${\tt iid_job_search.ipynb}$

Parametric Monotonicity

Recall this result:

Fact. If (M, g_1) and (M, g_2) are dynamical systems such that

- 1. g_2 is isotone and dominates g_1 on M
- 2. (M, g_2) is globally stable with unique fixed point u_2 ,

then $u_1 \leq u_2$ for every fixed point u_1 of g_1

Now consider

$$g(h) = c + \beta \int \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(dw')$$

This map is

- 1. globally stable
- 2. an isotone self-map on \mathbb{R}_+

Hence any parameter that shifts up the function g pointwise on \mathbb{R}_+ also shifts up h^*

Ex. Show that

- 1. the continuation value h^{\ast} is increasing in unemployment compensation c
- 2. the reservation wage w^* is increasing in c

Interpret

Shifting the Offer Distribution

How do shifts in this distribution affect the reservation wage?

Intuition: "more favorable" wage distribution would tend to increase the reservation wage

the agent can expect better offers

What does "more favorable" mean for offer distributions?

One possible answer: (first order) stochastic dominance

First Order Stochastic Dominance

Definition. Distribution φ is **stochastically dominated** by distribution ψ (write $\varphi \leq_{SD} \psi$) if

$$\int u(x)\varphi(\mathrm{d}x)\leqslant \int u(x)\psi(\mathrm{d}x) \text{ for all } u\in ibc\mathbb{R}_+$$

With $ibm\mathbb{R}_+$ as the increasing bounded Borel measurable functions, this is equivalent:

$$\int u(x)\varphi(\mathrm{d}x)\leqslant \int u(x)\psi(\mathrm{d}x) \text{ for all } u\in ibm\mathbb{R}_+$$

Interpretation: Anyone with increasing utility likes ψ better

Let φ and ψ be two wage distributions on \mathbb{R}_+ with finite first moment

Let

- w_{arphi}^{*} and w_{ψ}^{*} be the associated reservation wages
- h_{φ}^{*} and h_{ψ}^{*} be the associated continuation values

Assume both are supported on [0, M]

Lemma. If $\phi \preceq_{\mathrm{SD}} \psi$, then $w_{\phi}^* \leqslant w_{\psi}^*$

Proof: Let ψ and φ have the stated properties

It suffices to show that $h_{\varphi}^* \leqslant h_{\psi}^*$

We aim to show that

$$g(h) = c + \beta \int \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(dw')$$

increases at any h if we shift up the offer distribution in \preceq_{SD}

Sufficient: given $\varphi \preceq_{\mathrm{SD}} \psi$ and $h \geqslant 0$,

$$\int \max\left\{\frac{w'}{1-\beta},\,h\right\} \varphi(\mathrm{d}w') \leqslant \int \max\left\{\frac{w'}{1-\beta},\,h\right\} \psi(\mathrm{d}w')$$

Since $w'\mapsto \max\{w'/(1-\beta),h\}$ is in ibc[0,M], this follows directly from the definition of stochastic dominance

Second Order Stochastic Dominance

What about the **volatility** of the wage process?

How does it impact on the reservation wage?

Intuitively, greater volatility means

- option value of waiting is larger
- encourages patience higher reservation wage

But how can we isolate the effect of volatility?

introduce the notion of a mean-preserving spread

Given distribution ψ , we say that φ is a **mean-preserving spread** of ψ if \exists random variables (Y,Z) such that

$$\mathbb{E}[Z \mid Y] = 0$$
, $Y \stackrel{\mathscr{D}}{=} \psi$ and $Y + Z \stackrel{\mathscr{D}}{=} \varphi$

adds noise without changing the mean

Related definition: ψ second order stochastically dominates φ if, with $\mathscr U$ as the concave functions in $ib\mathbb R_+$,

$$\int u(x)\varphi(\mathrm{d}x)\leqslant \int u(x)\psi(\mathrm{d}x) \text{ for all } u\in\mathscr{U}$$

Fact. ψ second order stochastically dominates φ if and only if φ is a mean-preserving spread of ψ

Proof that φ is a mean-preserving spread of $\psi \implies \psi$ second order stochastically dominates φ

Let ϕ be a mean-preserving spread of ψ

We can find random variables (Y, Z) such that

$$\mathbb{E}[Z \mid Y] = 0$$
, $Y \stackrel{\mathscr{D}}{=} \psi$ and $Y + Z \stackrel{\mathscr{D}}{=} \varphi$

By Jensen's inequality,

$$\mathbb{E}u(Y+Z) = \mathbb{E}\mathbb{E}[u(Y+Z)\,|\,Y] \leqslant \mathbb{E}u(\mathbb{E}[Y+Z\,|\,Y]) = \mathbb{E}u(Y)$$

$$\therefore \int u(x)\varphi(dx) = \mathbb{E}u(Y) \leqslant \mathbb{E}u(Y+Z) = \int u(x)\psi(dx)$$

How does the unemployed agent react to a **mean-preserving** spread in the offer distribution?

Lemma. If φ is a mean-preserving spread of ψ , then $w_{\psi}^* \leqslant w_{\varphi}^*$

Proof: Again, it suffices to show that $h_\psi^* \leqslant h_\varphi^*$

Claim: g increases pointwise with the mean-preserving spread

Equivalently, for all $h \geqslant 0$,

$$\int \max\left\{\frac{w'}{1-\beta},\,h\right\}\psi(\mathrm{d}w')\leqslant \int \max\left\{\frac{w'}{1-\beta},\,h\right\}\varphi(\mathrm{d}w')$$

By definition, there exists a (w',Z) such that $\mathbb{E}[Z\,|\,w']=0$, $w'\stackrel{\mathscr{D}}{=}\psi$ and $w'+Z\stackrel{\mathscr{D}}{=}\varphi$

By this fact and the law of iterated expectations,

$$\int \max \left\{ \frac{w'}{1-\beta}, h \right\} \varphi(\mathrm{d}w') = \mathbb{E}\left[\max \left\{ \frac{w'+Z}{1-\beta}, h \right\} \right]$$
$$= \mathbb{E}\left[\mathbb{E}\left[\max \left\{ \frac{w'+Z}{1-\beta}, h \right\} \, \middle| \, w' \right] \right]$$

Jensen's inequality now produces

$$\int \max\left\{\frac{w'}{1-\beta},\,h\right\} \varphi(\mathrm{d}w') \geqslant \mathbb{E} \max\left\{\frac{\mathbb{E}[w'+Z\,|\,w']}{1-\beta},\,h\right\}$$

Using $\mathbb{E}[w'\,|\,w']=w'$ and $\mathbb{E}[Z\,|\,w']=0$ leads to

$$\int \max \left\{ \frac{w'}{1-\beta'}, h \right\} \varphi(\mathrm{d}w') \geqslant \mathbb{E} \max \left\{ \frac{\mathbb{E}[w'+Z \mid w']}{1-\beta}, h \right\}$$

$$= \mathbb{E} \max \left\{ \frac{w'}{1-\beta}, h \right\}$$

$$= \int \max \left\{ \frac{w'}{1-\beta}, h \right\} \psi(\mathrm{d}w')$$

Since h was arbitrary, the function g shifts up pointwise Since g is isotone and a contraction, this completes the proof

Second Order Stochastic Dominance and Welfare

How does volatility impact on welfare?

Do mean-preserving spreads have a monotone impact on lifetime value?

More precisely, with

- ullet ϕ as a mean-preserving spread of ψ
- ullet v_{arphi} and v_{ψ} as the corresponding value functions

do we have $v_{\psi} \leqslant v_{\varphi}$?

Why might this be true?

Prop. If φ is a mean-preserving spread of ψ , then $v_{\psi}\leqslant v_{\varphi}$ on \mathbb{R}_{+}

Proof: For a fixed distribution ν , the value function v_{ν} satisfies

$$v_{\scriptscriptstyle V}(w) = \max\left\{rac{w}{1-eta},\, h_{\scriptscriptstyle V}
ight\}$$

where the continuation value

$$h_{
u}:=c+eta\int v_{
u}(w')
u(\mathrm{d}w')$$

is the fixed point of

$$g_{\nu}(h) := c + \beta \int \max\left\{\frac{w'}{1-\beta'}, h\right\} \nu(\mathrm{d}w')$$

If $h_{\psi} \leqslant h_{arphi}$, then the result is immediate

Let ϕ be a mean-preserving spread of ψ

Since g_{φ} is isotone and globally stable on \mathbb{R}_+ , it suffices to show that

$$g_{\psi}(h) \leqslant g_{\varphi}(h) \quad \forall h \in \mathbb{R}_+$$

So fix $h \in \mathbb{R}_+$

It is enough to show that

$$\int \max\left\{\frac{w'}{1-\beta},h\right\}\psi(\mathrm{d}w')\leqslant \int \max\left\{\frac{w'}{1-\beta},h\right\}\varphi(\mathrm{d}w')$$

Ex. Prove it