STAT 215A Fall 2019 Week 10

Tiffany Tang
11/1/19

Announcements

- ▶ Midterm is over! No more exams for this class!
- Lab 4 has been postponed and will be released next Friday, November 8
 - ► Group project
 - ► I will tell you your groups during lab section next Friday, so if possible, please come
 - ► Have two weeks to complete
- ▶ Thank you for the feedback from last time!

Lab 3: Stability of K-means

Plan for Today

► EM Algorithm

EM Algorithm: Motivation

- ► EM Algorithm = Expectation Maximization Algorithm
- Can serve as a tool for
 - ► Finding (local) solution to "hard" maximum likelihood problem via "missing data" framework
 - ► Missing observations (at random)
 - ► Missing latent (unobserved) variables
 - ▶ Clustering

EM Algorithm: Motivation

- Consider the following scenario:
 - ▶ There are two clusters of data
 - ▶ We observe data points X₁, ..., Xn but don't know which cluster each observation belongs to
 - ▶ Observed data: X₁, ..., X_n
 - ► Latent variables (i.e., cluster assignments): Z₁, ..., Z_n
 - ▶ **Goal:** want to solve some maximum likelihood problem to find the cluster labels Z_1 , ..., Z_n which are the most probable given some underlying model

EM Algorithm: General Setup

- **Observed data:** *X*
- ▶ **Goal:** want to estimate some parameter of interest $\widehat{\theta}$ via maximum likelihood estimation:

$$argmax_{\theta} L(\theta; X)$$

or equivalently, if $X = (X_1, ..., X_n) \sim p_{\theta}(X)$ iid,

$$argmax_{\theta} \ p_{\theta}(X) = \prod_{i=1}^{n} p_{\theta}(X_i)$$

or equivalently,

$$argmax_{\theta} \log(p_{\theta}(X)) = \sum_{i=1}^{n} \log(p_{\theta}(X_i))$$

EM Algorithm: General Setup

- **Observed Data:** *X*
- Unobserved Data: Z
- **Goal:** want to estimate some parameter of interest $\widehat{\theta}$ via maximum likelihood estimation:

$$argmax_{\theta} L(\theta; X, Z)$$

or equivalently,

$$argmax_{\theta} \log(p_{\theta}(X, Z)) = \sum_{i=1}^{n} \log(p_{\theta}(X_i, Z_i))$$

EM Algorithm: Some intuition

EM Algorithm

Initialize $\theta^{(0)}$

Repeat for t = 1, ..., T (or until convergence):

- 1. **E Step:** Expectation Step
 - Given $\theta^{(t)}$, compute $Q(\theta|\theta^{(t)}) = E[\log(L(\theta;X,Z))|\theta^{(t)},X]$

- 2. M Step: Maximization Step
 - ▶ Update $\theta^{(t+1)}$ by maximizing

$$\theta^{(t+1)} = argmax_{\theta} Q(\theta | \theta^{(t)})$$

(i.e., take derivative of $Q(\theta | \theta^{(t)})$ with respect to θ and set equal to 0)