CS6375: Machine Learning Gautam Kunapuli

THE UNIVERSITY OF TEXAS AT DALLAS

Erik Jonsson School of Engineering and Computer Science

Neural Networks: A Brief History

Neural Networks

- The basis of neural networks was developed in the 1940s-1960s
- The idea was to build mathematical models that might "compute" in the same way that neurons in the brain do
- As a result, neural networks are biologically inspired, though many of the algorithms developed for them are not biologically plausible
- Perform surprisingly well for many tasks

 10^{11} neurons of more than 20 types, 10^{14} synapses, 1ms–10ms cycle time; signals are noisy "spike trains" of electrical potential

McCulloch-Pitts "unit": $a_i \leftarrow g(\text{in}_i) = g(\sum_i W_{i,i} x_i)$

A gross oversimplification of real neurons, but its purpose is to develop an understanding of what networks of simple units can do

Neural Networks

- Neural networks consist of a collection of artificial neurons
- There are different types of neuron activation functions
 - the **perceptron** (one of the first studied)
 - the **sigmoid** neuron (one of the most common)
 - rectified linear units (deep learning)
- A neural network is a directed graph consisting of a collection of neurons (the nodes), directed edges (each with an associated weight), and a collection of fixed binary inputs

the activation function can be a **step function** or i **threshold function**; changing the bias weight $W_{0,i}$ moves the threshold location

the activation function can be a **sigmoid** function: $\frac{1}{1+e^{-x}}$; changing the bias weight $W_{0,i}$ moves the threshold location

Network Architectures

Feed-forward networks implement functions, have no internal state

- single-layer perceptrons
- multi-layer perceptrons

Recurrent networks have directed cycles with delays

• have internal state (like flip-flops), can oscillate etc.

A **feed-forward network** is a parameterized family of nonlinear functions; adjusting the weights changes the function

Learning problem: learn the weights for a given architecture

$$a_5 = g(W_{3,5} \cdot a_{3+} W_{4,5} \cdot a_{4})$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_{1+} W_{2,3} \cdot a_{2}) + W_{4,5} \cdot g(W_{1,4} \cdot a_{1+} W_{2,4} \cdot a_{2}))$

Single-Layer Perceptron

A **perceptron** is an artificial neuron that takes a collection of binary inputs and produces a binary output

- The output of the perceptron is determined by summing up the weighted inputs and thresholding the result
- if the weighted sum is larger than the threshold, the output is one (and zero otherwise)
- the perceptron algorithm we previously studied uses the hard step function $g = \text{step}(\cdot)$

$$y = \begin{cases} 1 & w_1x_1 + w_2x_2 + w_3x_3 + b > 0 \\ 0 & otherwise \end{cases}$$

adjusting weights moves the location, orientation, and steepness of the thresholding cliff

Single-Layer Perceptron

A perceptron can represent the **Boolean** functions and, or and not easily

and/or can be represented as linear functions, but xor?

Multi-Layer Perceptron

Recall that the **xor** function can be written as:

$$x_1 \oplus x_2 = (x_1 \lor x_2) \land \neg (x_1 \land x_2)$$

Can be expressed by combining multiple perceptron units with multiple layers!

Gluing a bunch of perceptrons together gives us a neural network

- in general, neural nets have a collection of inputs and a collection of outputs; can be binary, continuous (need appropriate loss functions)
- layers are usually fully connected
- numbers of hidden units typically chosen by hand

Output units	a_i	\bigcirc
	$W_{j,i}$	
Hidden units	a_j	$\langle \langle \langle \rangle \rangle \rangle$
	$W_{k,j}$	
Input units	a_k	

Multi-Layer Perceptron

Multi-layer perceptrons can encode all continuous functions with 2 layers, all functions with 3 layers

- combine two opposite-facing threshold functions to make a ridge
- combine two perpendicular ridges to make a bump
- add bumps of various sizes and locations to fit any surface
- proof requires exponentially many hidden units

Backpropagation: Forward Pass

For **each example**, with the **current network parameters**, compute the prediction by **forward-propagating** the inputs through the network

- hidden layer values depend on the input layer: e.g., $h_1 = \sigma(W_{11}x_1 + W_{21}x_2) = \sigma(\mathbf{w}_1^T\mathbf{x})$
- ullet output layer values depend on the hidden layer: $f=u_1h_1+u_2h_2$
- activation function is sigmoid, $\sigma(z) = \frac{1}{1+e^{-x}}$

Use the squared loss (cost) to evaluate the prediction

$$C(y_{\text{true}}, y_{\text{pred}}) = \frac{1}{2}(y - f(x))^2 = \frac{1}{2}(y - u^T \sigma(Wx))^2$$

Backpropagation: Chain Rule $\frac{\partial h_1}{\partial W_{11}}$

- sigmoid functions have a nice property, $\frac{\partial}{\partial z}\sigma(z)=\sigma(z)(1-\sigma(z))$
- we can chain derivatives to compute gradients e.g.,

$$\frac{\partial C}{\partial W_{11}} = \frac{\partial C}{\partial f} \cdot \frac{\partial f}{\partial h_1} \cdot \frac{\partial h_1}{\partial W_{11}}$$
$$= -(y - f(\mathbf{x})) \cdot \sigma(\mathbf{w}_1^T \mathbf{x}) (1 - \sigma(\mathbf{w}_1^T \mathbf{x})) \cdot x_1$$

Backpropagation: Multiple Layers

layer L-1: hidden layer layer L: output layer

loss at the *j*-th output node:

$$C = \frac{1}{2} \left(y_j - a_j^L \right)^2$$

 z_i^L : **input** to the *j*-th neuron in the *L*-th layer

$$z_j^L = \sum_i w_j^L a_j^{L-1}$$

 a_j^L : **output** of the *j*-th neuron in the *L*-th layer

$$a_j^L = \sigma(z_j^L)$$

$$\frac{\partial C}{\partial z_j^L} = -(y_j - a_j^L) \frac{\partial a_j^L}{\partial z_j^L}
= -(y_j - a_j^L) \frac{\partial \sigma(z_j^L)}{\partial z_j^L}
= -(y_j - a_j^L) \sigma(z_j^L) (1 - \sigma(z_j^L))
= \delta_j^L$$

Backpropagation: Multiple Layers

layer L-1: hidden layer layer L: output layer

 z_i^L : **input** to the *j*-th neuron in the *L*-th layer

$$z_j^L = \sum_i w_j^L a_j^{L-1}$$

 a_j^L : **output** of the *j*-th neuron in the *L*-th layer

$$a_j^L = \sigma(z_j^L)$$

$$\frac{\partial C}{\partial z_{j}^{L-1}} = \sum_{j} (a_{j}^{L} - y_{j}) \frac{\partial a_{j}^{L}}{\partial z_{k}^{L-1}}
= \sum_{j} (a_{j}^{L} - y_{j}) \frac{\partial \sigma(z_{j}^{L})}{\partial z_{k}^{L-1}}
= \sum_{j} (a_{j}^{L} - y_{j}) \sigma(z_{j}^{L}) (1 - \sigma(z_{j}^{L})) \frac{\partial z_{j}^{L}}{\partial z_{k}^{L-1}}
= \sum_{j} (a_{j}^{L} - y_{j}) \sigma(z_{j}^{L}) (1 - \sigma(z_{j}^{L})) \frac{\partial \sum_{k'} w_{jk'}^{L} a_{k'}^{L-1} + b_{j}^{L}}{\partial z_{k}^{L-1}}
= \sum_{j} (a_{j}^{L} - y_{j}) \sigma(z_{j}^{L}) (1 - \sigma(z_{j}^{L})) \sigma(z_{k}^{L-1}) (1 - \sigma(z_{k}^{L-1})) w_{jk}^{L}
= ((\delta^{L})^{T} w_{*k}^{L}) (1 - \sigma(z_{k}^{L-1})) \sigma(z_{k}^{L-1})$$

Backpropagation: Multiple Layers

We can compute these derivatives one layer at a time

$$\frac{\partial C}{dz_j^{L-1}} = \delta^{L-1} = \left((\delta^L)^T w^L \right) \left(1 - \sigma(z^{L-1}) \right) \sigma(z^{L-1})$$

$$\delta^{l} = \left((\delta^{l+1})^{T} w^{l+1} \right) \left(1 - \sigma(z^{l}) \right) \sigma(z^{l})$$

Can use stochastic gradient descent to update gradients one example at a time!

$$\frac{\partial C}{\partial b_j^l} = \frac{\partial C}{\partial z_j^l} \cdot \frac{\partial z_j^l}{\partial b_j^l} = \delta_j^l$$
bias term is implicit in each node

$$\frac{\partial C}{\partial w_{jk}^l} = \frac{\partial C}{\partial z_j^l} \cdot \frac{\partial z_j^l}{\partial w_{jk}^l} = \delta_j^l a_k^{l-1}$$

Backpropagation

layer L-1: hidden layer layer L: output layer

- Backpropagation converges to a **local minimum** (loss is not convex in the weights and biases)
- Like EM, can just run it several times with different initializations
- Training can take a very long time
 - even with stochastic gradient descent
- Prediction after learning is fast
- ullet Sometimes include a **momentum** term lpha in the gradient update

$$w(t) = w(t-1) - \gamma \cdot \nabla_{w}C(t-1) + \alpha(-\gamma \cdot \nabla_{w}C(t-2))$$

- Compute the inputs/outputs for each layer by starting at the input layer and applying the sigmoid functions
- Compute δ^L for the output layer

$$\delta^{L} = -(y_{j} - a_{j}^{L}) \sigma(z_{j}^{L}) \left(1 - \sigma(z_{j}^{L})\right)$$

• Starting from l = L - 1 and working backwards, compute

$$\delta^{l} = \left((\delta^{l+1})^{T} w^{l+1} \right) \sigma(z^{l}) \left(1 - \sigma(z^{l}) \right)$$

Perform gradient descent

$$b_j^l = b_j^l - \gamma \cdot \delta_j^l$$

$$w_{jk}^l = w_{jk}^l - \gamma \cdot \delta_j^l a_k^{l-1}$$

Overfitting

Neural Networks in Practice

Many ways to improve weight learning in NNs

• Use regularized squared loss (cost) prediction (can still use backpropagation in this setting)

$$C(y_{\text{true}}, y_{\text{pred}}) = \frac{1}{2}(y - f(x; w, b))^2 + \frac{\lambda}{2}||w||_2^2$$

- *L*₁ regularization can also be useful
- $\lambda > 0$ should be chosen with a validation set
- Try other loss functions, e.g., the cross entropy

•
$$C(y_{\text{true}}, y_{\text{pred}}) - y \log f(x) - (1 - y) \log(1 - f(x))$$

- Initialize weights of the network more cleverly
 - Random initializations are likely to be far from optimal
- Learning procedure can have numerical difficulties if there are a large number of layers
 - Early stopping: stop the learning early in the hopes that this prevents overfitting

Drop out: A heuristic bagging-style approach applied to neural networks to counteract overfitting

- Randomly remove a certain percentage of neurons from the network and then train only on the remaining neurons
- networks recombined using an approximate averaging
- keeping around too many networks and doing proper bagging can be costly in practice

(a) Standard Neural Net

(b) After applying dropout.

Parameter Tying

Parameter tying: Assume some of the weights in the model are the same to reduce the **dimensionality** of the learning problem;

- Also a way to learn "simpler" models
- Can lead to significant compression in neural networks (i.e., >90%)

Convolutional neural networks

- Instead of the output of every neuron at layer ℓ being used as an input to every neuron at layer $\ell + 1$, edges between layers are chosen more locally
- Many tied weights and biases
 - convolution nets apply the same process to many different local chunks of neurons
- Often combined with pooling layers
 - layers that replacing small regions of neurons with their aggregated output
- Used extensively for image classification tasks

Topological Visualization of a Convolutional Neural Network by Terence Broad http://terencebroad.com/nnvis.html

Activation Functions

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	-
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0, z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

Example: Self Driving Cars

