IDEAL CASEMENTS

IDEAL CASEMENTS (READING) LTD

HOT DIPPED GALVANISED

TANDARD METAL CASEMENTS AND DOORS

STANDARD INDUSTRIAL SASHES

AGRICULTURAL TYPE WINDOWS

EVERSIBLE WINDOWS FOR MULTI-STOREY
BUILDINGS

PURPOSE MADE METAL WINDOWS FOR CHOOLS, HOSPITALS and PUBLIC BUILDINGS

ABRICATORS OF PRESSED STEEL PRODUCTS

WOOD SURROUNDS FOR METAL WINDOWS

OT DIP GALVANISING SPECIALISTS

DECEMBER, 1962

IDEAL CASEMENTS

(READING) LTD.
WORKS & OFFICES
LONDON ROAD, READING
BERKSHIRE, ENGLAND

READING 63211 TELEGRAMS
"IDEASMENT"
READING

Overseas Branches and Agents in the Following Countries

- ADEN
 BAHRAIN
- BARBADOS
- CAMEROONS
 CEYLON
- CYPRUS
- DUBAI
- FIJI • GHANA
- GHANA
 GIBRALTAR
- HAITI
- HONG KONG
- · none

- IRAN
 JAMAICA
- KUWAIT
- MALTA
- MAURITIUS
- NIGERIA PAKISTAN
- QATAR
- SAUDI ARABIA SIERRA LEONE
- TRINIDAD

also

 IDEAL CASEMENTS (E.A.) LIMITED NAIROBI, KENYA, EAST AFRICA.

INDEX

STANDARD WINDO	OWS		PAGE
No-bar type			10-13
Horizontal Bar type			14-17
Small pane type			18-19
"Z" range. No-bar typ	e		20-21
"Z" range. Horizontal	bar type		22-23
Doors and sidelights			24-25
Composite Windows			26-27
Sectional Details			28-29
Door fixing positions			30
Door sectional details			31
Window fixing position	1S		32-33
Agricultural Windows			34
Inward Opening types			35
Tubular Mullions			36
Bay Windows			37
Curved-on-Plan types			38
Circular Head and Bull	l's Eye ty	pe	39
Solid Unit types			40
Inside Glazing			41
Reversible Windows			42-43

			5
STANDARD WINDO	OWS-	continued	PAGE
Industrial Sash			48-55
Sash sectional details			56
Sash fixing positions			57
Projected Windows			58-60
Projected Windows sec	tional o	letails	61
School Windows			62-63
PURPOSE MADE W	INDO	WS	
Types and size limits			68-71
Sectional details			72-73
PRESSED STEEL			
Door Frames			74-82
Sub-Frames			83-86
Sub-cills			87
Cills			88
Sub-Frame fixing detail	ls		89
Window Boards			90
Ventilating Hoods			91
Steel and Glass Louvre	es .		92
Plate Mullions			93
Doors			94-95
Doors-sectional detail	ls		96-97
Offices and Representa	tives' A	ddresses	100-102

STANDARD WINDOWS

Ideal Hot Dipped Galvanised Standard Metal Windows are manufactured to British Standard Specification 990/1945 and are primarily intended for use in Domestic Buildings. The range of types available offers a wide choice to meet varying architectural designs.

All types of windows and doors can be coupled together by means of steel coupling members for each of which an additional &" must be added to the aggregate of sizes in both height and width to arrive at the overall dimensions.

Standard metal windows to both the 1'8" and the 'Z' modules can be provided in three normal types of panes, i.e., no bar types giving large panes, horizontal bar types or small pane types.

Construction of windows and doors is from hot rolled mild steel sections, produced by Messrs. Darlington & Simpson Rolling Mills Ltd. and are to the dimensions and weights laid down in the above quoted British Standard.

Corners of frames are mitred and welded and glazing bars tenon rivetted into the frames. In certain types of windows the tenon rivetting of glazing bars is impracticable and in these instances the glazing bars are welded in.

Architect: Clifford Culpin, Esq., O.B.E., F.R.I.B.A., M.T.P.I.

FLATS PORTSWOOD ROAD—SOUTHAMPTON
F. L. Wooldridge, Esq., M.I.C.E., M.I.Mun.E., Borough Engineer and
Reproduced by permission of the "Southern Evening Echo", Southern

Top Hung casements are hung on steel hinges and fitted with bronze pegstays.

Side Hung casements, opening outwards, are hung on projected hinges and fitted with a bronze two point handle and bronze pegstay.

Side Hung casements, opening inwards, are hung on steel non-projecting hinges and are fitted with a bronze single point handle and supplied with a galvanised cabin hook. Sliding Stays can be fitted at an extra cost.

Bottom Hung ventilators for Larder windows are hung on steel hinges and fitted with a bronze spring catch and concealed side arm. These windows can be supplied with flyscreens.

Standard Metal Windows and Doors are supplied Hot Dip Galvanised and etched to permit immediate painting.

If desired, we can supply windows in paint finish, utilising first quality red oxide paint.

The 'handing' of side hung casements and single leaf

A recent addition to our range of Standard Windows is Ideal Reversible windows for use in multi-story buildings. The opening portion of this window is pivotted in such a manner as to permit it to be swung completely over to enable glass replacement, cleaning and general maintenance to be carried out from the inside of the building.

10

STANDARD LARGE PANE

2	TANDAR	LAK	JE PANE	
11" =	III'	1′ 8″	1' 8" NG1	1' 8'
ie - NH6	NH6F	NH5	NHI	NHSF
70 NE6	NE6F	NES	NEI *	NESF
in NC6	NC6F	NCS	NCI	NCSF
in NCO6	NCO6F	NCO5	NCOI	NCOSF
o v	ND6F	NDS	NDI	NDSF
to W	ND6F/S	NDS/S	ND1/S	NDSF/S
-				
NDV6	NDV6F	NDVS	NDV1/S	NDVSF

	STANDARD	LARGE PA	NE
3' 3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3' 3½" NG8	3' 3i" NG7	4' 10}" NG4
NH2	NH8	NH7	NH4
NE2 *	NE8	NE7 *	2: Q: NE4 *
NC2	NGF	NC7	NC4
NCO2	NC02F	NCO7	NCO4
ND2	NO2F	ND7	ND4
ND2/S	ND2F/S	ND7/S	ND4/S
NDV2/S	NDV2F/S	NDV7/S	NDV4/5

* Obtainable with side hung ventilators - e.g. NESI, NES2, Etc.,

NDV4F/S

IDEAL

STANDARD LARGE PANE

	STANDAR	RD LARGE	PANE
	10]	4 101" NG10	4' 10}" NG9
. — NH3		NHI0	NH9
≥ NB		NE10 *	NE9
NC4F		NC10	NCIOF
NCO4F		NCO10	NCO10F
b ND4F		ND10	ND10F
ND4F/S		ND10/S	ND10F/S
, IT	7		

NDV10/S

NDV10F/S

13

STANDARD LARGE PANE

STANDARD HORIZONTAL BAR TYPES

3171140	1110	DIGILOTAT	AL DAIL	ITTES
E □ 08	11" GT6	1' 8" NGS	I' 8" NGI	I' 6'
io	HeS	NHS	NHI	NHSF
	E47	HES	HEI *	HESF
20 %	Cus	HCS	HCI	HCSF
:	COSF	HCOS	нсоі	HCOSF
	Def	HDS	HOI	HOSF
b CM/S	DeF/S	HDS/S	HD1/S	HDSF/S

HDVS

HDV1/S

DV6 DV6F

STANDARD HORIZONTAL BAR TYPES

SIMIND	AND HONIZ	CIVIAL BA	IN TIPES
3' 3\f	NQ8	3' 31" NG7	* 10}" NG4
NH2	NH8	NH7	NH4
HE2 *	HEB	H(7 *	HE4 ★
нс	HCZF	HC7	HC4
HCO2	HCO2F	HCO7	HCO4
HD2	HOZE	HOY	HD4
HD2/S	HO2F/S	HD7/5	r q
			HD4/S
HDV2/5	NDV2F/S	HDV7/S	HDV4/S

^{*} Obtainable with side hung ventilators - e.g. HESI, HES2, Etc.

STANDARD HORIZONTAL BAR TYPES

14

16

4 10}"	4 10}*,	4' 10½" NG9
'.e :- NH3	NH10	NH9
HB	HE10 *	HE9
in HC4F	HC10	HC10F
in HCO4F	HCO10	HCO10F
		program .

-	- 1	-	-		-
-	-1	-	-	11	-
1			9		
F	-ID4F/S			HD10/S	

	_		
H		H	
H			

HDV10F/S

STANDARD HORIZONTAL BAR TYPES

STANDARD	HORIZONTAL	BAR TYPES
6' 6 "	6' 6'	8' 2\frac{1}{2}
NHII	NHII FIXED	NH12
HEII	HESTI	HE12 *
HCII	HCIIF	HC12
HCOII	HCOTTE	HCO12
HOII	HOIIF	HD12
HD11/S	HD11F/S	HD12/S
HDV11/S	HDVIIF/S	HDV12/S

STANDARD SMALL PANE

± □ 11°	GT6	1' 8'	I' 8"	I' 8"
- H ₆	H6F	HS	н	HSF
2 G G	E6F	ES	E1 *	ESF
: E	C6F	CS	CI	CSF
50 E	CO6F	cos	COI	COSF
D6	DéF	DS	DI	DSF
b D6/5	D6F/S	DS/S	DI/S	DSF/S
- Air J				8

DV6F

DVS

DVI/S

DVSF

19

STANDARD SMALL PANE

	STANDARD	SMALL PAN	E
3.31.	3' 3\\\^*	€ 10}	€ 10}-
H2	H7	H3	H4
£2 *	E7 *	E3	₩ ×
a	QF	CH	C4F
CO2	CO2F	CO4	CO4F
D2	D2F	DH	Def
D2/5	D2F/S	D4/S	D4F/S
			<u> </u>
DV2/S	DV2F/S	DV4/S	DV4F/S

1AT2	NDARD	"Z" RAN	NGE LARGE	PANE
2' 0}" = ZNG5	2' 0]" ZNG1	2 0}" ZNGB1	4 0}* ZNG2	4 01 ZNG7
ZNH5	ZNHSF	ZNHI	ZNH2	ZNH7
TNES	ZNESF	ZNEI *	ZNE2 *	ZNE7 *
ZNCS	ZNCSF	J. /	ZNC2	ZNC7
in ZNCO5	ZNCOSF	ZNCOI	ZNCO2	ZNC07
io v	ZNDSF	ZNDI	ZND2	ZND7
, O . T				
ZND5/5	ZND5F/S	ZND1/S	ZND2/S	ZND7/S

20

ST	ANDARD "Z	" RANGE LA	RGE PANE
4 0} ZNG7/I	4' 0\ " ZNG13	6' 0}" ZNG3	6' 0}" ZNG4
ZNH7/1	NH13	ZNH3	ZNH4
ZNE7/1	ZNE13	ZNE3	ZNE4 *
ZNC2F	ZNC13	ZNC4	ZNC 4F
ZNCO2F	ZNCO13	ZNCO4	ZNC04F
ZND2F	ZNO13	ZND4	ZND4F
			ZND4P
ZND2F/S	ZND13/S	ZND4/S	ZND4F/S
			4 114
ZNDV2F/S	ZNDV13	ZNDV4/S	ZNDV4F/S

ZHDVS

IDEAL

STANDARD "Z" RANGE HORIZONTAL BAR TYPES

TANDARD	"Z" KAI	NGE HO	RIZONIAL	BAR TYP
2' 0}" = ZNGS	2 0]" ZNGI	2' 0}" ZNGB1	4' 0]" ZNG2	4 0)** ZNG7
- ZNHS	ZNHSF	ZNH1	ZNH2	ZNH7
ZHES	ZNESF	ZHEI *	ZHE2 *	ZHE7 *
ZHCS	ZHCSF	ZHCI	ZHC2	ZHC7
THCO5	ZHCOSF	ZHCOI	ZHCO2	ZHCO7
io ZHD5	ZHDSF	ZHDI	ZHD2	ZHD7
ZHD5/S	ZHDSF/S	ZHD1/S	ZHOZ/S	ZHD7/S
. 🖯		H		

ZHDV1/S

ZHDV2/S

ZHDV7/S

STANDARD	"Z" RANG	E HORIZONTA	AL BAR TYPES
4' 0} ZNG7/1	4" 04" ZNG13	6' 0]" ZNG3	6' 04" ZNG4
ZNH7/1	ZNH13	ZNH3	ZNH4
ZHE7/1	ZHE13	ZHE3	ZHE4★
ZHC2F	ZHC13	ZHC4	ZHC4F
ZHCO2F	ZHCO13	ZHC04	ZHCO4F
			• •
ZHD2F	ZHD13	ZHD4	ZHD4F
ZHD2F/S	ZHD13/S	ZHD4/S	ZHD4F/S
ZHDV2F/S	ZHDV13	ZHDV4/S	A
	ZHDVI3		ZHDV4F/S

STANDARD DOORS, SIDELIGHTS & FANLIGHTS

2' 6"

3' 3½"

3' 9"

24

NG2

NG25F

NA2

4' 0\frac{1}{4''}
ZNG8

II"

1′ 8″ NGS 2' 0}" ZNG5 25

ZNG2

NGT6

NG1

ZNGI

ZNAZS

NAS

ZHA2S

EXAMPLES OF COMPOSITE WINDOWS INTERNAL ELEVATIONS

26

| 181 | 152 | 154

EXAMPLES OF COMPOSITE WINDOWS INTERNAL ELEVATIONS

ZND2F/S L.H. | ZND13

ZND1 L.H. ZNDVI3

ZNGI ZNGI3 ZNGI ZNAS ZNA2S ZNAS

ZNG13

ZNA25

28

STANDARD WINDOWS, SECTION DETAILS
HALF FULL SIZE

TYPICAL COMPOSITE WINDOW

STANDARD WINDOWS, SECTION DETAILS

30

STANDARD DOORS, SIDELIGHTS & FANLIGHTS FIXING HOLE LOCATIONS

STANDARD DOORS, SIDELIGHTS & FANLIGHTS
SECTION DETAILS, HALF FULL SIZE

STANDARD WINDOWS FIXING HOLE LOCATIONS

33

STANDARD WINDOWS FIXING HOLE LOCATIONS

STANDARD AGRICULTURAL WINDOWS

VENTILATOR CAN I

....

35

INWARD OPENING WINDOWS

SEE ALSO GB TYPES IN STANDARD RANGES

ALSO AVAILABLE WITH SMALL PANES — OMIT "N" AND HORIZONTAL BARS — SUFFIX "H" IN LIEU OF "N"

LARDER WINDOWS

NL6 NL1 ZNL1

ALL FITTED WITH DETACHABLE FLYSCREENS
(IF REQUIRED)

AVAILABLE WITH GLAZING BARS AS ABOVE

HALF FULL SIZE

TUBULAR STEEL MULLIONS

36

HALF FULL SIZE

A 1½" 4½" DIA. ½" B 1½" IRON – LO D 1½" 4" STEEL WEL F 2½" 6" 6" × 6" ×	4½" DIA. × ½" CAST IRON — LOOSE	
		4" × 4" × }" STEEL WELDED
	2å" 2"	6" × 6" × }" STEEL WELDED
	SAFE	LOADS IN TONS
HEIC	HT A	BCDEFG

PEE DIA CARS & BASE

HEIGHT A B C D E F G

UPTO 3'0" 100 125 175 15 20 275 550
3'0" -4"0" 075 177 150 125 175 25 475
4'0" -5"0" 05 09 125 10 15 225 40
5'0" -6"0" 02 06 10 075 10 20 325

BAY AND ORIEL WINDOWS

CURVED-ON-PLAN TYPE WINDOWS

2 10)" DRI

38

DVR3

SEMI-CIRCULAR HEAD TYPE WINDOWS

BULL'S EYE TYPE WINDOWS

SOLID UNIT CONSTRUCTION

40

THESE SIZES OF WINDOWS MEETS THE DEMAND FOR COMPOSITE TYPE WINDOWS BUT CONSTRUCTED AS A SINGLE UNIT FLIMINATING THE

STANDARD WINDOWS FOR INSIDE GLAZING

DETAILS, HALF FULL SIZE

STANDARD WINDOWS CAN BE SUPPLIED FOR GLAZING INTERNALLY, AS ILLUSTRATED, THEREBY FACILITATING MAINTENANCE ON MULTI-STOREY BUILDINGS.

4

REVERSIBLE WINDOWS FOR MULTI-STOREY BUILDINGS

Fully reversible through 180°

Hot dip galvanised

REVERSIBLE WINDOWS

Normal opening (as illustrated) approx 15° Friction hinges retain firmly at any degree (0°-180') Releasable stay and turnbuckle at head. Two point handle at cill. Gravity catch for retention in reversed position. Ideal reversible windows can be coupled together. O'w with other types of standard metal windows. From within the building.

STANDARD WOOD SURROUNDS

Ideal Standard Wood Surrounds are manufactured in accordance with British Standard Specification 1285/1955.

Construction is ex $3'' \times 2''$ softwood heads, jambs and cills with alternative cills ex $5'' \times 2\frac{1}{2}''$ or ex $6'' \times 3''$, as required.

Surrounds can also be manufactured to architects' details and specifications.

Cills can be supplied from hardwood, if so required, and all door thresholds are supplied in hardwood.

All members of the surrounds are double rebated to receive steel frames. Corners are mortized and tenoned and dowelled with special non-ferrous cruciform dowel pins. Frames are left with projecting horns at heads and cills eliminating the necessity for building-in lugs.

Tenons are treated with white lead paint prior to assembly and the frame finished in primer.

Wood frames can be made with wood mullions and transomes to take single steel units.

Bay window frames are available for circular, segmental, square, square splayed and angular Bays for 30°, 45°, or 60° Bays. Semi-circular heads and bulls-eye frames can also be supplied.

-63 Cul.

45

STANDARD WOOD SURROUNDS

EX 3 × 2

HALF FULL SIZE PROFILES

Architect: Albert H. Clarke, Esq., F.R.I.B.A., A.M.T.P.I., City Architect, Bristol

SHELL AND B.P. BUILDING, NAIROBI Architects: Messrs. Cobb, Archer & Scammel

STANDARD INDUSTRIAL SASHES

Ideal Standard Industrial Sashes are manufactured to British Standard Specification 1787/1951. These Sashes are designed for use in Industrial Buildings and can be supplied as small pane types or, alternatively, horizontal bar types to suit architectural requirements.

All Sashes can be coupled together both horizontally and vertically, each coupling increasing the overall height or width of a complete unit by \(\frac{1}{4}\)" above the aggregate unit sizes.

Industrial Sashes are constructed of 1\(^2\)s" hot rolled mild steel sections with mitred and welded corners and tenon rivetted glazing bars.

Opening lights are manufactured complete with their frames as separate units which are bedded into mastic and screwed into the fixed sash frames.

Horizontal Centre Hung opening lights are hung on brass pivots and fitted with a bronze spring catch for hand operation.

Bottom Hung ventilators are hung on corner hinges and fitted with a bronze spring catch and concealed side arms.

Standard Industrial Sashes are protected by Hot Dip Galvanising process, but when specially ordered can be in red oxide paint finish.

Apart from Standard Industrial Sashes, we are able to supply Sashes to special dimensions and design.

STANDARD INDUSTRIAL SASH

2' 2' 1' SSB21	3' 21" SS831	4 3½" 	5' 3\{\frac{1}{2}\}"
5522	5532	5542	2222
2523	2233	5543	2223
5524	5534	5544	5554
2 -			
5525	5535	SS45	5555
6			
402	5534	*****	

STANDARD INDUSTRIAL SASH

		INDOSTRIA	
2' 2\frac{1}{2}	3. 5%	4' 31"	5' 3\ ^-
SSF21	SSF31	SSF41	SSF51
SSF22	SSF32	SSF42	SSF52
SSF23	SSF33	SSF43	SSF53
SSF24	SSF34	SSF44	
		5574	SSF54
SSF25	SSF35	SSF45	SSFSS
H			
H			

SSF26

SSF36

STANDARD INDUSTRIAL SASH

2' 2''	3' 2\}" HSS831	4' 3½" HSSB41	PR28821
HSS22	H5532	HSS42	HSSS2
H5523	HSS33	HSS43	HSSS3
H5524	H5534	HSS44	HSSS4
	P3334	nsse .	7333
.16 /			
HSS25	H5535	HSS4S	HSSSS
HSS26	HSS36	HSS46	HSSS6

STANDARD INDUSTRIAL SASH

2 21"	3' 2%"	4' 31"	2. 31	
HSSF21	HSSF31	HSSF41	HSSFS1	
			2	
HSSF22	HSSF32	HSSF42	HSSF52	
			2	
HSSF23	HSSF33	HSSF43	HSSFS3	
			2	
HSSF24	HSSF34	HSSF44	HSSF54	
1				
-			-	
HSSF25	HSSF35	HSSF4S	HSSFSS	
			-	
HSSF26	HSSF36	HSSF46	HSSF56	
		1133110	1131.30	

STANDARD INDUSTRIAL SASH

3. 35.

7.67

STANDARD INDUSTRIAL SASH

3' 2\frac{1}{2}"

STANDARD INDUSTRIAL SASH

SSE46

STANDARD INDUSTRIAL SASH

HSSE46

HSSE56

HSSE26

HSSE36

STANDARD INDUSTRIAL SASH SECTION DETAILS, HALF FULL SIZE

STANDARD INDUSTRIAL SASH FIXING DETAILS, HALF FULL SIZE

100	+ E	2 21"	3' 2"	4' 31"		5' 3 } "
-	U E	++	+ +	+	= [+ + + +
		ABA	ACA	A D	Α ,	АВ С ВА
	+ E					
3. 2].	+ E + F					
	E		A = 7+			
			B = 12}"			
	F E		C = 2, 01,,			
L	T		D = 3.1 ⁸			1
8	G		E = 10 14"	7/	777777	7
	+ E		E = 1, 61,	-77		
			C = 3, 0 ⁴ ,,		E	
	+ E					
6.31	G				max in	
9	+		1		"-	
	+ F	0 **			E	n
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A L		6	48
		-		1	1	
	+ E			- 1	V.	m)
	G	.g				l u
	+				1	
-	G				- 2	military and a second
	E					IIIn
						-
	∏ E	2.4.	1		P.	-9 0
			0 0	1/		U
					X	
7	+ +	1			1	
0	+	/				
					1	ess!
	+ .				V	The state of the s

STANDARD PROJECTED WINDOWS

7 2)°	2. 51.	2 8½" PW23ZT	2.8}.
PW24T	PW24TB	PW24ZT	PW24ZT8
PW2ST	PW25T8	PW25ZT	PW25ZTB
PW26T	PW26TB	PW26ZT	PW26ZT8

59

STANDARD PROJECTED WINDOWS

STANDARD PROJECTED WINDOWS FIXED LIGHTS

2' 2}"	2' 81"	3' 2(-	4 3]*
00			
PW23F	PW23ZF	PW33F	PW43F
5			
PW24F	PW24ZF	PW34F	PW44F
7.97			
PW2SF	PW25ZF	PW35F	
			PW4SF
>			
PW26F	PW26ZF	PW36F	PW46F

STANDARD PROJECTED WINDOWS DETAILS, HALF FULL SIZE

STANDARD SCHOOL TYPES

	3	0£"
	,	HP.
N	EΑ	2

6	TH
-	-
	NEA4

		1
	н	
		-
•	_	-
NEA	129	
	-1	

RH - BOTTOM HUNG

SH - SIDE HUNG HP - HORIZONTAL PIVOT VP - VERTICAL PIVOT

STANDARD SCHOOL TYPES

"EA" TYPES ARE ALSO AVAILABLE WITH HORIZONTAL GLAZING BARS — E.G. HEAL, HEAZ3 ETC.

IF HORIZONTAL AND VERTICAL GLAZING BARS ARE REQUIRED.

OMIT PREFIX LETTER, E.G. FAL. FA23 FTC.

		OMIT PREFIX LETTER	E G. EAI, EA23	ETC.	
-191	4 0" H NEA7		3 0). H		2 1½ H NEA9
.19.1	BH NEA13	N	BH EA14		BH NEATS
2 101"	TH NEA19	N	TH JEA20		TH NEA21
2' 101"	SH SH NEA25	Z	VP /		SH / NEA27
2, 101,"	F NEA31	[N	F IEA32		F NEA33
4.7.	F		VP		F
	NEA37	N	IEA38		NEA39
	STANDARD	SCHOOL TYPES MAY	BE COUPLED 3	TO FORM A	NIX

INDARD SCHOOL TYPES MAY BE COUPLED TO FORM ANY REQUIRED COMBINATION

IIDEVE

PURPOSE MADE WINDOWS

Ideal Purpose Made windows, doors and screens are designed to meet the individual requirements of the architect and construction can be arranged in several alternative sections according to the fenestration required.

Glazing can be from inside or outside, putty glazed or beaded with steel, aluminium or wood bead.

Purpose Made windows can be supplied for hand or gear operation, and we would at all times be prepared to submit schemes based on the use of cable or shaft and lever gearing, hand or electrically operated.

The services of our Technical and Drawing Office staff are available at all times to provide assistance at the early design stage.

HOT DIP GALVANISING

The normal finish for steel windows and doors is galvanising by the Hot Dip Process.

The Galvanising Plant of Ideal Casements (Reading) Limited is one of the largest and most modern installations in the country, with a monthly capacity of 2,500 tons.

In addition to galvanising our own output of windows we also process windows for thirty other manufacturers

We also undertake General Galvanising, with particular emphasis on building components, and we welcome enquiries from Architects, Contractors and Local Authorities for carrying out their requirements in the field of Hot Dip Galvanising.

65

ROYAL LONDON HOUSE, BOURNEMOUTH Architect: H. Bramhill, Esq., Dipl. Arch. (Liverpool), F.R.I.B.A.

GOVERNMENT COMMUNICATIONS HEADQUARTERS, OAKLEY FARM, CHELTENHAM Chief Architect's Division, Ministry of Works, London

HARLOW PASSMORES SECONDARY SCHOOL
Architects: Messrs. Yorke, Rosenberg & Mardall in collaboration with
H. Conolly, Esq., C.B.E., F.R.I.B.A., Essex County Architect

PIONEER HOUSE, NAIROBI Architect: Imre Rozsa, Esq., A.R.I.B.A., Dip. Eng. (Brno)

BARTON HOUSE FLATS—BRISTOL Architect: Albert H. Clarke, Esq., F.R.I.B.A., A.M.P.T.I., City Architect, Bristol

PURPOSE-MADE WINDOWS TYPES AND SIZE LIMITS

MEDIUM UNIVERSAL SECTIONS

SIDE HUNG OPEN OUT

HEIGHT — 6'6'

SIDE HUNG OPEN IN

NOTE Types and size limits given here are for LARGE UNIVERSAL SECTIONS, size

TOP HUNG OPEN OU MAXIMUM

HEIGHT - 5'0" WIDTH - 5'0"

BOTTOM HUNG OPEN IN

MAXIMUM HEIGHT — 5' 0' WIDTH

PURPOSE-MADE WINDOWS TYPES AND SIZE LIMITS

MEDIUM UNIVERSAL SECTIONS

MAXIMUM HEIGHT — 5' 0"

VERTICAL	PIVOT	HING
MAXIMUM		110140
HEIGHT	_	6 6

MEDIUM UNIVERSAL SECTIONS. By employing imits may be proportionately increased

MAXIMUM
HEIGHT — 4°0°

PROJECTED	воттом	HUNG	
MAXIMUM			
MERCHA	41.00		

PURPOSE-MADE WINDOWS

TYPES AND SIZE LIMITS

MEDIUM UNIVERSAL SECTIONS

FOLDING SIDE HUI

HEIGHT —

FOLDING SIDE HUNG FIXED MEETING RAIL

MAXIMUM
HEIGHT — 6'6'
WIDTH — 5'0'

dt.

COLDINE W.C

MAXIMUM HEIGHT — 6'0"

FOLDING V.

FIXED MEETING RAIL

MAXIMUM
HEIGHT — 6'0"
WIDTH — 7'6"

PURPOSE-MADE WINDOWS

TYPES AND SIZE LIMITS MEDIUM UNIVERSAL SECTIONS

SLIDING - FOLDING

MAXIMUM

HEIGHT — 8' 0"

WIDTH — 3' 0"

EACH LEAF

O/A WIDTH — 20' 0"

DOOR OPEN OUT OR IN

MAXIMUM
HEIGHT = 7 6*
WIDTH = 2 6*

OPEN OUT OR IN
MAXIMUM
HEIGHT _ 7

HEIGHT - 7 6" WIDTH - 5" 0"

FOLDING DOORS

PURPOSE-MADE WINDOWS

MEDIUM UNIVERSAL SECTIONS HALF FULL SIZE

73

PURPOSE-MADE WINDOWS

MEDIUM UNIVERSAL SECTIONS

STANDARD STEEL DOOR FRAMES

STANDARD STEEL DOOR FRAMES

TYPE 84 3' 10" OVERALL DIMENSIONS REFER

OVERALL
DIMENSIONS REFER
TO ACTUAL DOOR
SIZES — THE TYPE
NOTATION BEING THE
WIDTH IN INCHES,
WIDTHS INTO REBATES
OF JAMBS ARE PLUS
A* IN EACH CASE

STANDARD STEEL DOOR FRAMES

PROFILES

STANDARD STEEL DOOR FRAMES

WIDTH OF DOOR	PROFILE	EXTERNAL	INTERNAL	
2' 0"	A	DEA24	DIA24	
2' 3"	A	DEA27	DIA27	
2' 6"	6" A DEA30	DIA30		
2 9"	A	DEA33	DIA33	
3' 10"	A	DEA46	DIA46	
7 0"	A	DEA84	DIA84	
2' 0"	В	DEB24	DIB24	
2' 3"	В	DEB27	DIB27	
2 6"	В	DEB30	DIB30	
2'9"	В	DEB33	DIB33	
3' 10'	В	DEB46	DIB46	
7 0"	В	DEB84	D1884	
2' 0"	2'0" C		DIC24	
2.3	2 3 C		DIC27	
2 6	C	DEC30	DIC30	
2 9	C	DEC33	DIC33	
3. 10 C		DEC46	DIC46	
7 0"	C	DEC84	DIC84	

INFORMATION REQUIRED WHEN ORDERING

- A REFERENCE NUMBER FROM TABLE ABOVE
- B FOR EXTERNAL DOORS, WHETHER OPEN IN OR OUT
- C HANDING (SEE BELOW)

 D TYPE OF LOCK
- E TYPE OF DOOR, e.g. FLUSH OR PANELLED
- F FINISHED TOTAL THICKNESS OF FLOOR
- G GENERAL CONSTRUCTION OF FLOOR
- H FOR FOLDING DOORS -- POSITION & DETAILS OF BOLTS

IIDEVE

STANDARD STEEL DOOR FRAMES

APPLICATION OF FRAMES TO WALLS

STANDARD STEEL DOOR FRAMES

APPLICATION TO EXTERNAL WALLS

STANDARD STEEL DOOR FRAMES

DETAILS

ADJUSTABLE STRIKE PLATE FOR MORTICE LOCK

ADJUSTABLE STRIKE PLATE FOR RIM LOCK

2"×1"×1" STEEL THRESHOLDS

STANDARD STEEL DOOR FRAMES

DETAILS

STANDARD STEEL DOOR FRAMES

SECTIONAL OR "KNOCK-DOWN" TYPE

ALL OTHER DETAILS AS FOR WELDED TYPES

STANDARD CAVITY SUB-FRAMES

STANDARD SUB-FRAMES FOR CAVITY WALLS

STANDARD SUB-FRAMES FOR SOLID WALLS DETAILS, HALF FULL SIZE

CILL PROFILES AS FOR "CAVITY" FRAMES

SUB CILLS FOR SUB-FRAMES
DETAILS, HALF FULL SIZE

FIXING	X	TYPE	POSITION
SOLID WALL	34.	SA	Window set back 24" from face of fair face brickwork.
SOLID	42.	SB	Window set back 2_{4}^{+-} from brick face of rendered brickwork.
SOLID	54.	sc	Window set back 3_8^{+-} from face of fair face brickwork.
SOLID WALL	614	SD	Window set back 3% from brick face of rendered brickwork.
CAVITY	572	SE	For use with fair face cavity wall,
CAVITY	672	SF	For use with rendered cavity wall,

STANDARD STEEL WINDOW CILLS

DETAILS, HALF FULL SIZE

"W"OR	POSITION
A	Window set back 21" from face of fair face brickwork.
В	Window set back 24" from brick face of rendered brickwork.
С	Window set back $3\frac{2}{8}$ " from face of fair face brickwork.
D	Window set back $3_{\frac{3}{8}}^{*-}$ from brick face of rendered brickwork.
	A B

IDEAL STANDARD SUB-FRAMES-FIXING 21" CAVITY CAVITY WALL

STANDARD STEEL WINDOW BOARDS

PRESSED STEEL VENTILATING HOODS

LOUVRES

GLASS LOUVRES

PRESSED STEEL PLATE MULLIONS

AVAILABLE TO SUIT ALL THICKNESSES OF PARTITIONS

WHEN ORDERING PLEASE STATE EITHER

I. THICKNESS OF BLOCK AND WHETHER TO BE PLASTERED

OR 2. OVERALL THICKNESS OF PARTITION

OR 3. DIMENSION "X"

STANDARD PRESSED STEEL DOORS

DIMENSIONS DOOR SIZES

DIMENSIONS - DOOR SIZES

2

SINGLE

PD7 (Open out)
PD13 AS ABOVE
BUT 6' 83" h

SINGLE

PD8 (Open out)
PD14 AS ABOVE
BUT 6' 81" h.

2' 6"

DOUBLE PANEL

PD9

2 9

DOUBLE PANEL

, ,

DOUBLE PANEL

PDII

. .

DOUBLE PANEL

STANDARD PRESSED STEEL DOORS

STANDARD PRESSED STEEL DOORS DETAILS

View through drying oven in Galvanising Plant

PRESSED STEEL PRODUCTS

Ideal Standard Pressed Steel sub-frames are manufactured in accordance with British Standard Specification No. 1422/1956, and are supplied for use with solid wall construction or cavity walls.

The sub-frame itself serves as a template for the window opening and provides a rigid support for flat

brick arches

We recommend that frames over 3' 31" in width should have additional reinforcement at the head. Frames are produced from 16G steel sheet, fully welded at all four corners with fixing holes to correspond with those in Standard Metal Windows

All Sub-frames are prepared to receive sub-cills and windowboards.

Pressed Steel sub-cills for use in conjunction with subframes are readily available constructed from 14G steel sheet and in addition a full range of Pressed Steel Cills for use without sub-frames are offered

Pressed Steel windowboards from 18G steel sheet are

also available.

Ideal Standard Pressed Steel door frames are produced in accordance with British Standard Specification 1245/ Door frames are constructed from either 16G or 18G

mild steel sheet and are suitable for doors up to 2" nominal thickness. It is essential that the thickness of the door be mentioned at the time of ordering.

Door frames are available in three profiles-A, B or C, as illustrated, and doors can be hung either right hand or

left hand to open inwards or outwards.

Door frames supplied for use in the United Kingdom are welded and cleaned off at Works as a fully fabricated

frame, prior to site delivery.

Door frames for Export are manufactured in a knocked-down construction for assembly on site without the use of screws or welding. In all cases base ties are supplied to ensure the correct positioning of the frames whilst building-in.

Internal door frames are supplied Paint finish. External frames are Hot Dip Galvanised before despatch.

In addition to the Standard components mentioned above we are able to offer sheet metal products to architects' special requirements and we invite enquiries.

IDEAL CASEMENTS OFFICES AND REPRESENTATIVES

LONDON AREA

MR. C. F. HOARE,

122, Glenhurst Avenue, BEXLEY, Kent.

MR. J. E. LAMPARD,

11, Coopers Lane, Grove Park, LONDON S.E.12.

MR. J. B. COOK,

78, Hartford Road, BEXLEY, Kent.

MR H. W. CLIFT,

82, Cedar Lawn Avenue, BARNET, Herts. Rarnet 7693

MR. C. ZARKOS,

62, Homer Court, Erith Road, BARNEHURST, Bexleyheath. Kent.

MR. K. FULLER, 18. Hampton House, Erith Road, BARNEHURST, Kent.

BRISTOL OFFICE

3. Kings Square, BRISTOL, 2.

DEVON & CORNWALL

MR. W. H. ORCHARD, 348. St. Peters Road, Manadon Vale, PLYMOUTH.

BRISTOL & SOMERSET

MR. D. ST. J. PORTNELL, Dragon House, Dinder, WELLS, Somerset.

Wells 2166 GLOUCESTERSHIRE, MONMOUTHSHIRE &

HEREFORDSHIRE. MR. P. J. MAY

39. Stoke Gove, Westbury-on-Trym, BRISTOL.

WEST WALES

MR. R. JONES, "Windways".

16. Bryntirion Hill, BRIDGEND, Glam,

EAST MIDLAND OFFICE

Reading 62258

MR. P. G. A. RANDALL

21, Queensway, WELLINGBOROUGH, Northants. Wellingborough 2092

READING AREA

MR. R. G. BALLARD,
13, Chiltern Crescent, Earley, READING, Berks.

WILTSHIRE & WEST BERKSHIRE

MR. E. A. RAWLING

75, Ashampstead Road, READING, Berks.

BIRMINGHAM AREA

MR. L. C. ROCK,

60, Lewis Road, Quinton, BIRMINGHAM, 32. Woodgate 6941

CENTRAL SOUTHERN AREA

MR. H. LAINSON,

161, Kingsway, Chandlers Ford, EASTLEIGH, Hants. Chandlers Ford 2730

EAST ANGLIA

MR. F. G. LUNNESS,

33, Enfield Road, NORWICH, NOR. 53H., Norfolk. Norwich 52450

SUSSEX

MR. E. A. SHAW,

"Crusaders", Coltsfoot Drive, Burpham, GUILDFORD Surrey. Guildford 66870

EAST & WEST RIDING YORKSHIRE

MR. G. F. STOCKS, Field House, Haugh Shaw Road, HALIFAX, Yorks.

NORTHERN AREA

MR. R. LILBURN DUNS, Brunton House, 11, Polwarth Crescent, NEWCASTLE UPON TYNE, 3. Wide Onen 2033

DERBYSHIRE & NOTTINGHAMSHIRE

MR. C. A. BEARDSMORE, Conamara, 19, Whitehouse Way, ALDRIDGE, nr. Walsall, Staffs. Aldridge 53437

LINCOLNSHIRE & LEICESTERSHIRE

MR. C. SMITH, 400, Park Road, LOUGHBOROUGH, Leics. Loughborough 4528

LANCASHIRE

Mr. H. N. MATTOK 449, Warrington Road, CULCHETH, Nr. Warrington. Culcheth 3040

AGENTS

SHROPSHIRE, CHESHIRE & STAFFORDSHIRE

Messrs. J. H. HOLTOM & SON LTD. Moreton House, Wolstanton, NEWCASTLE, Staffs. 51831 & 52107

NORTH WALES

MR. W. R. JONES, 8, Broughton Avenue, SOUTHPORT, Lancs. 55600 (78555 after office hours)

SCOTLAND

ALLIED BUILDING AGENCIES, 13, High Street, PAISLEY, Renfrewshire.

DEPOT

NORTHERN IRELAND

MESSRS. J. F. KERR & CO., 146, Cullingtree Road, BELFAST, N. Ireland. Belfast 24071

View of Machine Shop

Part of "Ideal" transport fleet

