第二讲 质点动力学(牛顿定律)

[1]牛顿运动定律

- (1) 隔离体法解题
 - •选体
 - •建系
 - •受力
 - •方程

- (2) 受力分析
 - •顺序: 重力,接触力(弹、摩)
 - •完整: 所有接触处
 - •摩擦力: max静, 动
 - •力的突变

[2] 参照系

- (1)惯性系 牛顿运动3定律成立
- (2)非惯性系 12不成立,引入惯性力,使定律形式成立

 $\bar{F}_{\parallel} = -m\bar{a}_r$ (非惯性系对惯性系-牵连)

[习题1] AB静 μ_s , 滑 μ_k . 要使原静止的 AB无相对滑动, 确定 F_{max}

FangYi

[习题2]确定下列两种情况剪断OA瞬间球的a

解: 解:

[讨论1]确定移走支撑或剪断绳瞬间A, B的 a

解:

FangYi [习题3]均质链条挂于光滑钉子(O<b<c). 从静止到滑离时的v及需t?↑ 解

[讨论2] m从静止落下,受 $f_{\text{H}}=kv^2$. 求 $v_{\text{收尾}}$ (即最后物体作匀速运动时的速度)

FangYi

[讨论3] 2Kg质点在oxy平面受力 $\vec{F} = 4\vec{i} - 24t^2\vec{j}$ 已知 $\vec{v}_0 = 3\vec{i} + 4\vec{j}$,求 $F_n \mid_{t=1}$

[习题4]已知 $m_1, m_2, a_{(柱绳)}, \text{不计} m_{绳}, m_{滑}, f_{滑绳}$ 。 求:(1) a_1, a_2 (2)绳的张力T(柱绳摩擦力f)

FangYi

[习题4]已知 $m_1, m_2, a_{(柱绳)}, m_{4}, m_{7}, f_{7}$ 不计。 求:(1) a_1, a_2 (2)绳的张力T(柱绳摩擦力f)

[讨论4] 双摆 m_1 , l_1 ; m_2 , l_2 , 初始平衡,使 m_1 获水平 v_o . 求此刻两段绳张力

[讨论4] 双摆 m_1 , l_1 ; m_2 , l_2 , 初始平衡,使 m_1 获水平 v_o . 求此刻两段绳张力

