Методы оптимизации. Повторение лекционных материалов.

Корнилов Никита Максимович

Московский физико-технический институт

Декабрь 2024г

Скорости сходимости

- Сублинейная: $\|x^k x^*\|_2 \le \frac{C}{k^{\alpha}}, \ C > 0, \ \alpha > 0.$
- Линейная: $||x^k x^*||_2 \le Cq^k$, C > 0, 0 < q < 1.
- ullet Сверхлинейная: $\|x^k x^*\|_2 \le Cq^{k^p}, \ C > 0, \ 0 < q < 1, \ p > 1.$
- ullet Квадратичная: $\|x^k-x^*\|_2 \leq Cq^{2^k},\ C>0,\ 0< q<1.$ Или $\|x^{k+1}-x^*\|\leq C\|x^k-x^*\|^2,\ C>0.$

(ロト 4個 ト 4 差 ト 4 差 ト · 差 · 夕 Q (~

Н. М. Корнилов

Свойства L-гладких и μ -сильно выпуклых функций

Пусть $f-\mu$ -сильно выпуклая, тогда

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2.$$

Пусть f - L-гладкая, тогда

$$|f(y)-f(x)-\langle \nabla f(x),y-x\rangle|\leq \frac{L}{2}||x-y||_2^2.$$

Пусть f-L-гладкая и μ -сильно выпуклая, тогда

$$LI \succeq \nabla^2 f(x) \succeq \mu I$$
.

Пусть f-L-гладкая и μ -сильно выпуклая, тогда

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2.$$

H. М. Корнилов Декабрь 2024г 3 / 30

Оптимальность

Theorem

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*) = 0$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Theorem

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$ и выпуклое множество \mathcal{X} . Тогда $x^* \in \mathcal{X}$ – глобальный минимум f на \mathcal{X} тогда и только тогда, когда для всех $x \in \mathcal{X}$ выполнено

$$\langle \nabla f(x^*), x - x^* \rangle \geq 0.$$

Начало безусловной оптимизации. Градиентный спуск

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k)$$

Шаг: оптимальное значение $\gamma_k=rac{1}{2L}$.

Интуиция: решение системы $\frac{dx_t}{dt} = (x_t)dt$ или минимизация ограничивающей параболы

$$x^{k+1} = \arg\min_{x} \left\{ f(x^k) + \langle f(x^k), x - x^k \rangle + \frac{L}{2} ||x - x^k||_2^2 \right\}$$

Сходимость для L-гладких функций:

$$f(x^K) - f(x^*) \le \frac{2L||x^0 - x^*||_2^2}{K}.$$

Сходимость для L-гладких и μ -сильно выпуклых функций:

$$\|x^K - x^*\|_2^2 \le \left(1 - \frac{\mu}{L}\right)^K \|x^0 - x^*\|_2^2.$$

H. М. Корнилов Декабрь 2024г 5 / 30

Метод тяжелого шарика

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k) + \tau_k (x^k - x^{k-1})$$

Интуиция: использовать инерцию траектории Сходимость: не лучше градиентного спуска в теории

6 / 30

Н. М. Корнилов Декабрь 2024г

Ускоренный метод Нестерова

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k + \tau_k(x^k - x^{k-1})) + \tau_k(x^k - x^{k-1})$$

Сходимость с $\gamma_k=rac{1}{L}$, $au_k=rac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}$:

$$f(x^K) - f(x^*) \le \left(1 - \sqrt{\frac{\mu}{L}}\right)^K \cdot L \|x^0 - x^*\|_2^2.$$

Сходимость с $\gamma_k = \frac{1}{L}$, $\tau_k = \frac{k}{k+3}$:

$$f(x^K) - f(x^*) \le \frac{4L||x^0 - x^*||_2^2}{(K+2)^2}.$$

Особенность: нужно подбирать два параметра, совпадает с нижними оценками

Н. М. Корнилов Декабрь 2024г 7 / 30

Метод сопряженных градиентов

Используется для решения СЛАУ: $Ax = b, A \succ 0$.

Идея: разложить решение в базис сопряженных относительно A направлений $x^* = \sum_{i=0}^{d-1} \lambda_i p_i$, восстанавливая на каждой итерации p^k, λ_k .

По сопряженности:

$$\lambda_j = \frac{p_j^T b}{p_j^T A p_j}, \quad x^{k+1} = x^k + \alpha_k p_k.$$

По индукции доказываем, что след направление - сопряженное всем

$$r_k = Ax^k - b = \nabla f(x^k), \quad p_k = -r_k + \beta_k p_{k-1}.$$

Сопряженность p_{k-1}, p_k :

$$\beta_k = \frac{p_{k-1}^T A r_k}{p_{k-1}^T A p_{k-1}}.$$

H. М. Корнилов Декабрь 2024г 8 / 30

Метод сопряженных градиентов: особенности

- С квадратной положительно определенной матрицей размера d находит точное решение за не более чем d итераций.
- Сходимость с ошибкой

$$||x^k - x^*||_A \le 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^k ||x^0 - x^*||_A.$$

Здесь
$$\|x\|_A^2 = x^T A x$$
 и $\kappa(A) = \lambda_{\max}(A)/\lambda_{\min}(A)$.

• Обобщения для произвольных функций: $r_k = \nabla f(x^k)$, α_k - правило подбора шага, $\beta_{k+1} = \frac{\langle \nabla f(x^{k+1}), \nabla f(x^{k+1}) \rangle}{\langle \nabla f(x^k), \nabla f(x^k) \rangle}$ (Флетчер - Ривс) или $\beta_{k+1} = \frac{\langle \nabla f(x^{k+1}), \nabla f(x^{k+1}) - \nabla f(x^k) \rangle}{\langle \nabla f(x^k), \nabla f(x^k) \rangle}$ (Полак - Рибьер). Полезно использовать рестарты.

Метод Ньютона

$$x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$$

Интуиция:

$$x^{k+1} = \arg\min_{y \in \mathbb{R}^d} \left[f(x^k) + \langle \nabla f(x^k), y - x^k \rangle + \frac{1}{2} \langle \nabla^2 f(x)(y - x^k), y - x^k \rangle \right]$$

Сходимость: Квадратичная, но локальная скорость

$$||x^{k+1} - x^*||_2 \le \frac{M}{2\mu} ||x^k - x^*||_2^2.$$

Дорогая итерация $O(d^3)$, вне области сходимости может расходиться, но демпинг $\gamma_k \neq 1$ помогает

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□

Квазиньютоновские методы (Итерация за $O(d^2)$)

Идея: приблизительный, но быстрый пересчёт обратного гессиана.

Квазиньютоновское урав: $s^k = x^{k+1} - x^k$ и $y^k = \nabla f(x^{k+1}) - \nabla f(x^k)$:

$$s^k = H_{k+1}y^k.$$

Симметричность $H_{k+1} = H_{k+1}^{\top}$.

SR-1:

$$H_{k+1} = H_k + \mu_k q^k (q^k)^T,$$

где $\mu_k \in \mathbb{R}$ и $q^k \in \mathbb{R}^d$ нужно подобрать.

BFGS:

$$H_{k+1} = \arg\min_{H \in \mathbb{R}^{d \times d}} \|H - H_k\|^2$$
s.t. $s^k = Hy^k$

$$H^T = H$$

<u>Начало оптимизации на выпуклых множествах.</u> Проекционный GD

Ставится задача минимизации на множестве $\min_{x \in X} f(x)$. Проекция на выпуклое замкнутое мн-во:

$$\Pi(x) := \arg\min_{y \in X} \frac{1}{2} \|x - y\|_2^2, \quad \|\Pi_X(x_1) - \Pi_X(x_2)\|_2 \leq \|x_1 - x_2\|_2.$$

GD с проекцией:

$$x^{k+1} = \Pi_X \left[x^k - \gamma_k \nabla f(x^k) \right].$$

Итерационная сходимость как у GD: $\|x^K - x^*\|_2^2 \le (1 - \frac{\mu}{r})^K \|x^0 - x^*\|_2^2$. Примеры проекций с готовыми решениями:

- ℓ_2 -шар радиуса R с центром в 0: $\Pi_X(x) = \min \left\{ 1, \frac{R}{\|x\|_2} \right\} x$.
- $X = \{ y \in \mathbb{R}^d \mid Ay = b \} : \Pi_X(x) = x A^T (AA^T)^{-1} (Ax b)$

12 / 30

Метод Франка Вульфа

$$s^{k} = \arg\min_{s \in X} \langle s, \nabla f(x^{k}) \rangle$$
$$\gamma_{k} = \frac{2}{k+2}$$
$$x^{k+1} = (1 - \gamma_{k})x^{k} + \gamma_{k}s^{k}$$

Сходимость итерационная:

$$f(x^K) - f(x^*) \le \frac{2 \max\{L \operatorname{diam}(X)^2, f(x^0) - f(x^*)\}}{K + 2},$$

где $\operatorname{diam}(X) := \max_{x,y \in X} \|x - y\|_2$ – диаметр множества X.

Примеры подзадачи с готовыми решениями:

- ℓ_1 -шар радиуса R с центром в 0: $y^* = -R \text{sign}(x_i) \mathbf{e_i}, i = \arg\max_i |x_i|,$
- ullet Симплекс $igtriangle = \left\{ y \in \mathbb{R}^d \mid y_i \geq 0, \sum_{i=1}^d y_i = R
 ight\}$:

 $y^* = R\mathbf{e_i}$, где $i = \arg\min_{i \in \mathcal{A}} x_i$:

Зеркальный спуск

Ставится задача минимизации на множестве $\min_{x \in X} f(x)$. Идея: обобщить понятия расстояний и проекции, использовав геометрию задачи и выиграв в константе сложности

Дивергенцией Брэгмана (аналог метрики)

Пусть дана дифференцируемая 1-сильно выпуклая относительно нормы $\|\cdot\|$ на множестве X функция d. Дивергенцией Брэгмана $V(x,y): X \times X \to \mathbb{R}$ такая, что для любых $x,y \in X$

$$V(x,y) = d(x) - d(y) - \langle \nabla d(y), x - y \rangle.$$

Примеры:

$$d(x) = \frac{1}{2} ||x||_2^2 \Longrightarrow V(x, y) = \frac{1}{2} ||x - y||_2^2.$$

$$d(x) = \sum_{i=1}^{d} x_i \log x_i \Longrightarrow V(x, y) = \sum_{i=1}^{d} x_i \log \frac{x_i}{y_i}.$$

Н. М. Корнилов Декабрь 2024г

14 / 30

Зеркальный спуск 2

$$x^{k+1} = \arg\min_{x \in X} \{ \langle \gamma \nabla f(x^k), x \rangle + V(x, x^k) \}$$

Эквивалентная запись

$$x^{k+1} = \mathsf{P}_{V(\cdot,\cdot)}\left[(\nabla d)^{-1} (\nabla d(x^k) - \gamma \nabla f(x^k)) \right].$$

Сходимость: на выпуклом множестве X с L-гладкой относительно нормы $\|\cdot\|$, выпуклой целевой функцией f и шагом $\gamma \leq \frac{1}{L}$

$$f\left(\frac{1}{K}\sum_{k=1}^{K}x^{k}\right)-f(x^{*})\leq \frac{V(x^{*},x^{0})}{\gamma K}.$$

На единичном симплексе:

$$x_i^{k+1} = x_i^* = \frac{x_i^k \exp(-\gamma [\nabla f(x^k)]_i)}{\sum_{i=1}^d x_i^k \exp(-\gamma [\nabla f(x^k)]_i)}.$$

15 / 30

Негладкая задача

$$\min_{x\in\mathbb{R}^d}f(x),$$

где f выпуклая и M-Липшицева.

Субградиентный метод:

$$g^k \in \partial f(x^k), \quad x^{k+1} = x^k - \gamma g^k.$$

Сходимость:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*})\leq \frac{M\|x^{0}-x^{*}\|_{2}}{\sqrt{K}}.$$

Оптимальная оценка (но медленнее GD для гладких функций) и маленький шаг $\gamma = \frac{\|x^0 - x^*\|_2}{M\sqrt{K}}.$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺 · 釣९♡

Проксимальный оператор

$$\operatorname{prox}_r(x) = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|^2 \right).$$

Примеры:

- $r(x) = \lambda ||x||_1$, тогда $[\operatorname{prox}_r(x)]_i = [|x_i| \lambda]_+ \cdot \operatorname{sign}(x_i)$,
- $r(x) = \frac{\lambda}{2} ||x||_2^2$, тогда $\operatorname{prox}_r(x) = \frac{x}{1+\lambda}$.

Свойства:

- $\operatorname{prox}_r(x) = y \longleftrightarrow x y \in \partial r(y)$.
- $\langle x y, \operatorname{prox}_r(x) \operatorname{prox}_r(y) \rangle \ge \|\operatorname{prox}_r(x) \operatorname{prox}_r(y)\|_2^2$,
- $\|\operatorname{prox}_r(x) \operatorname{prox}_r(y)\|_2 \le \|x y\|_2$.

Н. М. Корнилов

Композитная задача и проксимальный метод

$$\min_{x \in \mathbb{R}^d} [f(x) + r(x)]$$
 — композитная задача,

где f является L-гладкой выпуклой функцией, r выпуклой (необязательно гладкой, но проксимально дружественной функцией). Проксимальный метод:

$$x^{k+1} = \operatorname{prox}_{\gamma r}(x^k - \gamma \nabla f(x^k)).$$

Альтернативая запись:

$$x^{k+1} = x^k - \gamma(\nabla f(x^k) + \partial r(x^{k+1})).$$

Сходимость: Композитная задача с L-гладкой, μ -сильно выпуклой целевой функцией f и выпуклой r при $\gamma_k=\frac{1}{L}$:

$$||x^K - x^*||_2^2 \le \left(1 - \frac{\mu}{L}\right)^K ||x^0 - x^*||_2^2.$$

Точка x^* — неподвижная точка для $\operatorname{prox}_{\gamma r}(\cdot - \gamma \nabla f(\cdot))$

Н. М. Корнилов Декабрь 2024г

18 / 30

Начало оптимизации с ограничениями. Штрафная функция

Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $h_i(x) = 0, \quad i = 1, \dots m,$
 $g_i(x) \le 0, \quad j = 1, \dots n.$

Аугментация:

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \rho \cdot \frac{1}{2} \sum_{i=1}^m h_i^2(x) + \rho \cdot \frac{1}{2} \sum_{j=1}^n (g_j^+)^2(x) \right].$$

Пусть все функции являются непрерывными и $\{x \in \mathbb{R}^d \mid f(x) \leq f(x^*)\}$ ограничено. Тогда для любого e > 0 существует $\rho(e) > 0$ такое, что множество решений штрафной задачи X_{o}^{*} для любых $ho \geq
ho(e)$ содержится в

$$X_e^* = \{x \in \mathbb{R}^d \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e\}$$
. Декабрь 2024г — 19 / 30

Н. М. Корнилов

Метод штрафных функций

Алгоритм:

- lacktriangle решить задачу для текущего ho,
- $oldsymbol{0}$ увеличить ho,
- 🗿 использовать предыдущее решение как начальную точку.

Особенности:

- Условная задача превращена в безусловную.
- Увеличение ρ приближает к исходной задаче.
- При большом ρ наблюдается нарушение ограничений, что подходит не для всех задач.
- Увеличение ρ влечет за собой увеличение обусловленности задачи (константа Липшица градиента будет сильно расти). А значит задачу будет сложнее решать.

H. М. Корнилов Декабрь 2024г 20 / 30

ADMM

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} f(x) + g(y),$$
s.t. $Ax + By = c$,

где $A \in \mathbb{R}^{n \times d_x}$, $B \in \mathbb{R}^{n \times d_y}$, $c \in \mathbb{R}^n$. Аугментация

$$\min_{x \in \mathbb{R}^{d_x}, y \in \mathbb{R}^{d_y}} f(x) + g(y) + \frac{\rho}{2} ||Ax + By - c||_2^2,$$

s.t. $Ax + By = c$,

Алгоритм:

$$\begin{array}{lll} x^{k+1} & = & \displaystyle \arg\min_{x \in \mathbb{R}^{d_x}} L_{\rho}(x,y^k,\lambda^k) \\ y^{k+1} & = & \displaystyle \arg\min_{y \in \mathbb{R}^{d_y}} L_{\rho}(x^{k+1},y,\lambda^k) \\ \lambda^{k+1} & = & \displaystyle \lambda^k + \rho \left(Ax^{k+1} + By^{k+1} - c\right) \end{array}$$

Вернуть $\frac{1}{K} \sum_{k=1}^{K} x^k, \frac{1}{K} \sum_{k=1}^{K} y^k, \frac{1}{K} \sum_{k=1}^{K} \lambda^k.$

21 / 30

Н. М. Корнилов Декабрь 2024г

ADMM: Детали

Theorem

Если функции f и g являются выпуклыми и дружественными с точки зрения вычислений arg min, то ADMM имеет следующую оценку сходимости для любого $x \in \mathbb{R}^{d_x}$, $y \in \mathbb{R}^{d_y}$, $\lambda \in \mathbb{R}^n$

$$L_0\left(\frac{1}{K}\sum_{k=1}^K x^k, \frac{1}{K}\sum_{k=1}^K y^k, \lambda\right) - L_0\left(x, y, \frac{1}{K}\sum_{k=1}^K \lambda^k\right) \leq \frac{1}{2K}\|z^0 - z\|_P^2,$$

где
$$L_0$$
 – Лагранжиан без аугментации, $P=\left(egin{array}{ccc}
ho A^TA & 0 & -A^T \ 0 & 0 & 0 \ -A & 0 & rac{1}{
ho}I \end{array}
ight)$,

$$z^0 = \left(\begin{array}{c} x^0 \\ y^0 \\ \lambda^0 \end{array}\right)$$

22 / 30

Н. М. Корнилов Декабрь 2024г

Барьерная функция

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}),$$
s.t. $g_i(\mathbf{x}) \le 0, \quad i = 1, \dots m.$

Барьером будем называть функцию $F: \mathbb{R}^d \to \mathbb{R}$:

- F непрерывно дифференцируема на int G;
- ullet Для любой последовательности $\{x_i\}\in \mathrm{int} G$ такой, что $x_i o x\in\partial G$ (граница множества G), выполнено $F(x_i) \to +\infty$. Примеры:
- Барьер Кэррола: $F(x) = -\sum_{i=1}^{m} \frac{1}{\sigma_i(x)}$;
- Логарифмический барьер: $F(x) = -\sum_{i=1}^{m} \ln(-g_i(x))$.

$$\min_{x \in \text{int}(G)} \left[F_{\rho}(x) = f(x) + \frac{1}{\rho} F(x) \right].$$

Декабрь 2024г

Метод внутренней точки

Сходимость: Для любого e>0 существует $\rho(e)>0$ такое, что множество решений барьерной задачи X_{ρ}^* для любых $\rho\geq\rho(e)$ содержится в

$$X_e^* = \{ x \in G \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e \},$$

где X^* – множество решений исходной задачи оптимизации с ограничениями вида неравенств.

Алгоритм:

- **1** Увеличить $\rho_k > \rho_{k-1}$
- ② С помощью некоторого метода решить численно задачу безусловной оптимизации с целевой функцией F_{ρ_k} и стартовой точкой x_k . Гарантировать, что выход метода x_{k+1} будет близок к реальному решению $x^*(\rho_k)$.

Всегда соблюдаем ограничения неравенства!

◆ロト ◆個ト ◆意ト ◆意ト 意 めなべ

Седловая задача и Экстреградиент

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^d} L(x, \lambda),$$

где L непрерывно дифференцируема по обеим группам переменных, выпукла-вогнута: выпукла по x (для любого фиксированного λ) и вогнута по λ (для любого фиксированного x) Обобщения GD расходятся или сходятся неоптимально (L(x,y)=xy).

Экстраградиент

$$x^{k+1/2} = x^k - \gamma \nabla_x L(x^k, \lambda^k)$$

$$\lambda^{k+1/2} = \lambda^k + \gamma \nabla_\lambda L(x^k, \lambda^k)$$

$$x^{k+1} = x^k - \gamma \nabla_x L(x^{k+1/2}, \lambda^{k+1/2})$$

$$\lambda^{k+1} = \lambda^k + \gamma \nabla_\lambda L(x^{k+1/2}, \lambda^{k+1/2})$$

Вернуть $\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \frac{1}{K} \sum_{k=0}^{K-1} \lambda^{k+1/2}$

25 / 30

Экстраградиент: сходимость

Для любого $u \in \mathbb{R}^d \times \mathbb{R}^n$ и для любого $\gamma < \frac{1}{L}$:

$$\left(L\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k+1/2},u_{\lambda}\right)-L\left(u_{x},\frac{1}{K}\sum_{k=0}^{K-1}\lambda^{k+1/2}\right)\right)\leq \frac{\|z^{0}-u\|_{2}^{2}}{2\gamma K}$$

Метрика для решения на компактах: $\max_{\lambda} L(x^k, \lambda) - \min_{\kappa} L(x, \lambda^k)$

- Можно добавить проекции и решать седловую задачу на множествах $X \neq \mathbb{R}^d$ и $\Lambda \neq \mathbb{R}^n$.
- Можно получить линейную сходимость для сильно выпуклых-сильно вогнутых задач.
- Часто применяют для решения двойственной задачи.

Декабрь 2024г

Н. М. Корнилов

Стохастическая оптимизация

Онлайн-постановка:

$$\min_{x \in \mathbb{R}^d} [f(x) := \mathbb{E}_{\xi \sim D} [f(x, \xi)]]$$

Оффлайн-постановка:

$$\min_{x \in \mathbb{R}^d} \left[f(x) := \frac{1}{n} \sum_{i=1}^n [f(x, \xi_i)] \right]$$

SGD:

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k, \xi^k)$$

Предположения:

$$\mathbb{E}_{\xi}[\nabla f(x,\xi)] = \nabla f(x), \quad \mathbb{E}_{\xi}[\|\nabla f(x,\xi) - \nabla f(x)\|_{2}^{2}] \leq \sigma^{2}.$$

4□ > 4₫ > 4½ > ½
 9<0

SGD Сходимость

Задача безусловной стохастической оптимизации с L-гладкой, μ -сильно выпуклой функцией f решается с помощью SGD с $\gamma_k \leq \frac{1}{\tau}$:

$$\mathbb{E}\left[\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\|^2\right] \leq (1 - \gamma_k \mu) \mathbb{E}\left[\|\boldsymbol{x}^k - \boldsymbol{x}^*\|^2\right] + \gamma_k^2 \sigma^2.$$

Постоянный шаг:

$$\mathbb{E}\left[\|x^{k} - x^{*}\|^{2}\right] \leq (1 - \gamma\mu)^{k} \mathbb{E}\left[\|x^{0} - x^{*}\|^{2}\right] + \frac{\gamma\sigma^{2}}{\mu},$$

Уменьшающийся шаг: $\gamma_k = \frac{1}{k+1}$ или $\gamma_k = \frac{1}{\sqrt{k+1}}$. Плюс: точнее сходимость, минус: потеря линейной сходимости в начале.

Batching:

$$\nabla f(x^k, \xi^k) \to \frac{1}{b} \sum_{j \in S^k} \nabla f(x, \xi_j),$$

Уменьшение дисперсии с σ до σ/\sqrt{b} .

$$\mathbb{E}\left[\|x^{k} - x^{*}\|^{2}\right] \leq \left(1 - \frac{\mu}{L}\right)^{k} \mathbb{E}\left[\|x^{0} - x^{*}\|^{2}\right] + \frac{\sigma^{2}}{\mu^{2}bk}$$

Н. М. Корнилов Декабрь 2024г

SAGA

$$\min_{x} f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

Идея: уменьшаем с каждой итерацию дисперсию, чтобы $g^k o \nabla f(x^*) = 0,\;$ при $x^k o x^*.$

Алгоритм SAGA:

Сгенерировать независимо i_k

$$g^k =
abla f_{i_k}(x^k) - y_{i_k}^k + rac{1}{n} \sum_{j=1}^n y_j^k$$
 $y_i^{k+1} = egin{cases}
abla f_i(x^k), & \text{если } i = i_k \\ y_i^k, & \text{иначе} \end{cases}$ $x^{k+1} = x^k - \gamma g^k$

 $\frac{1}{n}\sum_{j=1}^n y_j^k$ – «запаздывающая» версия $\nabla f(x^k)$, $\mathbb{E}\left[g^k|x^k\right] = \nabla f(x^k)$.

H. М. Корнилов Декабрь 2024г 29 / 30

О сходимости SAGA

При $x^k \to x^*$ имеем, что $y_j^k \to \nabla f_j(x^*)$, и $\frac{1}{n}\sum_{j=1}^n y_j^k \to \nabla f(x^*) = 0$, $\nabla f_{i_k}(x^k) \to \nabla f_j(x^*)$, значит $g^k \to 0$.

Сходимость. Пусть задача безусловной стохастической оптимизации вида конечной суммы с L-гладкими, выпуклыми функциями f_i и μ -сильно выпуклой целевой функцией f решается с помощью SAGA с $\gamma \leq \frac{1}{6L}$. Тогда получается следующая итерационная сложность:

$$\mathcal{O}\left(\left\lceil n + \frac{L}{\mu}\right\rceil \log \frac{1}{\varepsilon}\right).$$

H. М. Корнилов Декабрь 2024г 30 / 30