Course: IE 6200 Lecturer: Shivani Patel

Table of Content

Abstract	2
Introduction	4
Variable Definition:	5
Methods	6
Sampling Strategy	6
Data Preparation	7
Analysis	8
Exploratory Analysis	8
Statistical Analysis	12
Test 1:One Sample T-Test	12
Bootstrap Approach:	15
Interpretation:	16
Test 2:One Sample T-Test for Proportion	17
Bootstrap Approach	19
Interpretation:	20
Test 3:Two Sample T-Test for Difference In Means	21
Bootstrap approach:	24
Interpretation:	25
Test 4: Two Sample T-Test for Difference In Proportions	26
Bootstrap Approach	28
Interpretation:	29
Test 5: Chi-Square Goodness of Fit Test	29
Interpretation:	31
Discussion	31
References	33
Appendix	34
Raw Dataset	43

Abstract

Background:

For centuries, the evolution of technology has driven the development of the automobile industry. With increasing in automobile mass production, the automobile is becoming a key component in modern life as it blurred social class distinctions, expanded markets, and stimulated the economy. Buying a car has always been a part of the whole life that everyone went through or experiencing now. But how automobile industry determined their car price in terms of car's characteristics remained ambiguous.

Aims:

The aim of this observational study is to estimate the average car price in the industry and find the basic pattern of automobile characteristics with association to its price. This study particularly focuses on the following car characteristics: drive wheel mode, aspiration and body style. The scope of this observational study will be based on Automobile dataset compiled by Jeffrey C. Schlimmer (Schlimmer).

Methods:

Sampling Strategy:

The original dataset of this study comes from UCI Machine Learning Repository. It was compiled by Jeffrey C. Schlimmer. There were some limitations on the sampling strategy since the dataset only focused on the year 1985. These resources Schlimer found may not have enough coverage for the entire target population at that period which may lead to selection bias. And there may be confounding factors like currency fluctuation and auto companies' transformation that can affect this study's key variable automobile price dramatically.

Exploratory Analysis:

This study performed plots to visually show the car price distribution in terms of body styles, drive wheels and aspiration types. From the graphs and data summary, the whole dataset is right skewed at lower price (mean=13207 median=10295). Rear wheel drive cars tend to have relative

2

higher car price than other types of drive wheels, while constitutes 37.3% of the dataset. Convertible (mean=17084.5) and hardtop (19687.5) are relatively expensive than other cars, while convertible hardtop have disperse price distributions. Hatchback and sedan constitute 33.8% and 46.8% of the dataset. For aspiration types, most cars are standard type, which constitutes 82.1% of dataset.

Statistical Analysis:

There are five tests in this study.

At the significant level $\alpha = 0.05$ and with a 95% confidence, Test 1 suggests the true mean car price in 1985 is between \$12101.8 and \$14312.46 which is greater than \$7000 estimate mean price from research. Test 2 fails to prove the true proportion of rear wheel drive cars is greater than 0.3333, but between 0.3162255 and 1. Test 3 indicates that true mean price for turbo cars is greater than standard cars (CI:1257.027 to 5328.797). In the further study at Test 4 on comparison of the true proportion of turbo type between luxury cars and economy cars. Turbo cars in luxury class population has a higher proportion than turbo cars in economy class population (CI:0.07224941 to 0.30527772). Finally at Test 5, analyst finds not all true proportion of body styles are evenly distributed in whole car population.

Conclusion:

These findings on automobile price, and its characteristics in 1985 are highly based on dataset from Jeffrey C. Schlimmer on limited sources. This study firstly suggests that the average car price was greater than the estimate mean price \$7000 in 1980s. Secondly, proportion of rear wheel drive cars was equal to the other two drive wheel cars. In addition, price of turbo aspiration car was significantly higher than standard aspiration cars, and turbo aspiration car took a greater percentage in luxury class population than economy class population. Finally, the availability of different body style cars was different. But this study may have limitations due to confounding factors, potential biases, and limited sources so that this topic needs to be further explored.

Introduction

For centuries, the evolution of technology has driven the development of the automobile industry. With increasing in automobile mass production, the automobile is becoming a key component in modern life as it blurred social class distinctions, expanded markets, and stimulated the economy. Buying a car has always been a part of the whole life that everyone went through or experiencing now. And automobile development over the years has always been the symbol of technology evolution that draws attention to everyone. While driving the car, people always appreciate the emergence of new car features like hybrid fuel type, electric charging and automation driving mode. But how automobile industry determined their car price in terms of car's characteristics remained ambiguous.

What features of automobile have significant influences on car total price has been an interest to car buyers and car owners. Analyst of this study is like others as outsiders of automobile industry seek to figure out how these insiders price car in terms of car's characteristics. So by having this observational study on automobile dataset for cars in 1985, analyst could help car customers by providing buying guide to select optimized car in 1985. Analyst can also find the trend of car features in 1985 to estimate what car features are most popular nowadays.

This observational study is designed to:

- Estimate the average car price in the industry in 1985
- Find the basic pattern of automobile characteristics with association to its price.

This study particularly focuses on the following car characteristics: drive wheel mode, aspiration and body style. The scope of this observational study will be based on the year 1985 where the collected Automobile dataset focused on.

The goal of this observational study is to provide estimations for these questions below:

- 1. What is the average car price in 1985?
- 2. How rear wheel drive cars distributed in whole car population in 1985?
- 3. Is there a difference in price between turbo and standard car in 1985?

- 4. How turbo aspiration cars distributed in luxury class compared to economy class in 1985?
- 5. Are certain body style more preferred than others in 1985?

Variable Definition:

Price

Definition:Price is the most important variable for this study. The price column from dataset states car total price for each car. Analyst converts this variable into numeric to better perform analysis in the next step.

- Type: Numeric Variable in decimal; Response Variable; Quantitative Continuous Variable.
- Scale: Price values range from 5118 to 45400 per car.

• Wheel drive

Definition: Wheel drive is one of the car characteristics. Wheel drive has three modes: front wheel drive, rear wheel drive, and four wheel drive. Each car has to have only one of these three drive wheel modes. In order to perform statistical analysis, analyst will group front wheel drive and rear wheel drive into one category called two wheel drive.

- **Type:** Categories Variable; Explanatory Variable; Discrete Variable.
- Scale: Wheel drive has only 3 categories: fwd, rwd and 4wd and in statistical analysis we group fwd and 4wd into a single group called fwd(front and four wheel drive). So wheel drive will either be rwd or fwd..

• Aspiration

Definition: Aspiration is one of the car characteristics. Aspiration has two types: turbo and standard. Each car can only has one and only aspiration type.

- Type: Categories Variable; Explanatory Variable; Discrete Variable.
- **Scale:** Aspiration has only 2 categories: turbo and standard. Car aspiration either to be turbo or standard.

Price Comparison on Various Automobile Characteristics

Body style

Definition: Car has many body style which could influence the car price. Body style has

five general categories:convertible, hardtop, hatchback, sedan, and wagon. Each car can

only has one and only body style.

• **Type:** Categories Variable; Explanatory Variable; Discrete Variable.

• Scale: Body style has 5 general categories; convertible, hardtop, hatchback, sedan,

and wagon. Each car must be in one of these 5 body styles.

Car class

Definition: This study created car class variable based on car price values with

comparison of dataset's mean car price. Cars under price \$13207 will be economy class,

while cars over price \$13207 will be luxury class.

• **Type:** Categories Variable; Explanatory Variable; Discrete Variable.

• Scale: Each car must be in either economy class or luxury class.

Methods

Target population for this study: The entire automobile population in 1985.

Sampling Size: 201 data points.

Sampling Strategy

This study modifies the original dataset from UCI Machine Learning Repository. The original

dataset was compiled by Jeffrey C. Schlimmer from 1985 Model Import Car and Truck

Specifications, 1985 Ward's Automotive Yearbook, Personal Auto Manuals, Insurance Services

Office, and Insurance Collision Report, Insurance Institute for Highway Safety. In this study,

"Symboling" and "normalized losses" as these were introduced for insurance rating purposes in

Schlimmer's study and are not meaningful to this study's topic. Before preparing the dataset,

there are rows with missing values and several wrong data types.

6

• Limitations:

- The dataset only focused on the year 1985. From the datasetSchlimmer provided, it's not clear what year of car was produced and into the market which may lead to information bias in this study.
- These resources Schlimer found may not have enough coverage for the entire target population at that period which may lead to selection bias.
- In this observational study, analyst uses this dataset for price comparison on various automobile characteristics. But there may be **confounding factors** like currency fluctuation and auto companies' transformation that can affect the automobile price dramatically.

Data Preparation

- 1. Analyst removes the "symboling" and "normalized losses" from the dataset since these were introduced for insurance rating purposes in Schlimmer's study and are irrelevant to this study's topic.
- 2. Analyst removes rows with missing values and convert several data types from string into numeric data.
- 3. Analyst create a column called "Car class" based on car price values. By comparing each car price from dataset to average car price of dataset, analyst is able to prepare data points into two car class categories: economy and luxury. Price under \$13207 will be economy class while price over \$13207 will be luxury class.

Analysis

Exploratory Analysis

	4wd	fwd	rwd	Sum
Convertible	0	1	5	6
Hardtop	0	1	6	7
Hatchback	1	40	15	56
Sedan	2	48	26	76
Wagon	3	12	5	20
Sum	6	102	57	1

Table 1. Standard Type Aspiration Car Summary

	4wd	fwd	rwd	Sum
Convertible	0	0	0	0
Hardtop	0	0	1	1
Hatchback	0	9	3	12
Sedan	1	7	10	18
Wagon	1	0	4	5
Sum	2	16	18	36

Table 2. Turbo Type Aspiration Car Summary

	4wd	fwd	rwd	Sum
Convertible	0	1	5	6
Hardtop	0	1	7	8
Hatchback	1	49	18	68
Sedan	3	55	36	94
Wagon	4	12	9	25
Sum	8	118	75	201

Table3. Total Car Summary on drive-wheel and body-style

Table 1 to 3 collection demonstrates data points distributions in three aspects:body style,drive wheels and aspiration. In dataset, there are more standard (165) than turbo (36) for aspiration type cars,which constitutes 82.1% of dataset. In addition, there are more front wheel drive (118) than four wheel drive (8) and rear wheel drive (75) for drive wheels type cars, which constitutes 58.7\% of dataset. Finally, there are more hatchback (68) and sedan (94) than other body styles cars, which constitute 33.8% and 46.8% of dataset.

Following on summary of dataset, analyst is able to find some significant data on price variable. Below is the full table of summary on price variable.

	Price
Min.	5118
1st Qu.	7775
Median	13207
Mean	10295
3rd Qu.	16500
Max	45400
Sd.	7947.066

Table4. Price summary

(Plot 1).Car Price Distribution

Based on the Plot 1, we are able to view the price distribution from the dataset. Blue line indicates the average car price (\$13207) from the dataset, while purple line indicates the median car price (\$10295) from the dataset. The distribution is right skewed with IQR=8725 (Q1=7775 and Q3=16500).

(Plot 2). Car Price and Body-Style Boxplot

From Plot 2, analyst uses boxplot to demonstrate the price distribution in terms of body styles. There are five total body styles. The box plot shows the convertible and hardtop cars have relatively higher mean car price while they are also in very wide price range. In addition, sedan cars also has really wide price range and many outliers. Overall, this graph suggests convertible (mean=17084.5)and hardtop (19687.5)are relatively expensive than other cars, while the data summary suggests sedan (count=94) and hatchback (count=68) are the top two most used cars. However, analysis needs to have further analysis to testify if above estimations are true.

(Plot3).Car Price and Drive-Wheel Boxplot

The Plot 3 displays the price distribution in terms of drive wheels. There are three types of drive wheels: four wheel drive, front wheel drive and rear wheel drive. From the boxplot above, analyst finds the rear wheel drive cars have relatively higher price (mean=16900) than the other two types of drive wheels. From the data summary, analyst find there are more front wheel drive cars(count=118) than four wheel drive(count=8) and rear wheel drive(count=75) cars. Therefore, due to price differences between rear wheel drive and other two types of drive wheels, analyst combines the four wheel drive and front wheel drive cars to compare with rear wheel drive for further statistical analysis.

From Plot 4 on the left, analyst is able to find how car distributed in body styles in the datasets.

Out of 201 cars, there are 6 convertible cars, 8 Hardtop cars, 68 Hatchback cars, 94 Sedan cars, and 25 Wagon cars.

(Plot4). Cars in body-style

(Plot5). Car Price with body-style and drive-wheel

From above Plot 5, analyst demonstrates the car price distribution in terms of body styles and drive wheels. It shows the rear wheel drive cars have relatively higher price than other types of drive wheels. Most of expensive cars,regardless of which body styles, tend to have rear wheel drives than other two types of drive wheels. Convertible, hardtop and sedan cars are three car types that all have enormous fluctuation in price ranges, while hatchback and sedan cars are the top two most used cars.

Statistical Analysis

There are 5 tests for this study on price distribution in terms of car characteristics.

Test 1:One Sample T-Test

Question of Interest:

What is the average car price for all car population in 1985?

Statistic Test: One sample T-test approach.

• Explanation: This question of interest focuses on the average car price in whole car population in 1985. From the previous research on average car price in the 1980s (Pearson), the estimated true mean car price is known, which is \$7000, while the population variance of car price is unknown. Therefore, the best choice of this problem is one sample t-test.

Condition and Requirement

- ❖ Is the sample representative of the population?
 - The sample cannot surely confirm to be the representative of the population. Though it is from reliable source UCI Machine Learning Repository that complied by Jeffrey C. Schlimmer, dataset cannot be fully representative to the population due to limited resources.
- One quantitative variable of interest?
 - > The car price from the dataset is quantitative variable.
- We want to make inferences about the population mean using the sample mean?
 - ➤ Yes.
- ❖ The population variance is unknown so we estimate it using sample data?
 - ➤ Yes.
- ❖ The sample comes from a single population?
 - ➤ Yes.
- ❖ The population data must be normally distributed?
 - ➤ To check this condition look at a QQ plot of the sample data.
 - > Sample size is 201 which is larger than 30.

In Q-Q plot, we were expected to see that the data fell along the line with most points concentrated in the center of the line and fewer points towards the ends. The Q-Q plot shows there

Price Comparison on Various Automobile Characteristics

are more points concentrated in the middle and less towards the edges, but this is far from a

straight line. And histogram also suggest the price distribution is right skewed. The normality

assumption is not met and we should be concerned about the reliability of our p-value and

confidence intervals.

Parameter

The population parameter we want to make inferences to is average car price µ in 1985.

Hypotheses

Null Hypothesis: H_0 : $\mu = 7000$

• The true mean car price in whole car population in 1985 is \$7000.

Alternative Hypothesis: H_A : $\mu \neq 7000$

• The true mean car price in whole car population in 1985 is different than \$7000.

Sample Statistic: The sample statistic is the sample mean car price \bar{x} .

Test Statistic:

From research, we find estimate true mean for car price is \$7000 in 1980s, we will use it to

compare with our sample. When we do not know the population variance for car price and we

have to estimate it with the sample mean, the reference distribution of our test statistic shifts to a

t-distribution. The shape of a t-distribution depends on the sample size. As n approaches infinity

the t-distribution approaches the normal distribution.

Distribution of the test statistic

$$t_{n-1} = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$$

P Value: Two-sided based on alternative hypothesis.

[1] 1.553377e-22

14

Confidence Interval:

$$P(\overline{x} - t_{(\frac{\alpha}{2}, n-1)} \frac{s}{\sqrt{n}} < \mu < \overline{x} - t_{(\frac{\alpha}{2}, n-1)} \frac{s}{\sqrt{n}}) = (1 - \alpha)$$

• Lower Bound:

```
## [1] 12101.8
```

• Upper Bound:

```
## [1] 14312.46
```

Comparison with R built-in T test

```
##
## One Sample t-test
##
## data: auto.data$price
## t = 11.073, df = 200, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 7000
## 95 percent confidence interval:
## 12101.80 14312.46
## sample estimates:
## mean of x
## 13207.13</pre>
```

Following comparison with R built-in T test, we find our result is fairly close to R built-in T test result.

Bootstrap Approach:

Due to the right skewed distribution, we need to simulate much more times. So we set 1000 times of simulation for sampling distribution of the sample mean. The graph Plot 8 shows that after

simulation, sampling distribution is really close to normal distribution.

(Plot 8). Sample Distribution of the Sample Mean (Plot 9). Sampling Distribution of the Sample Mean, H0 True

To show the sampling distribution to be true under the null hypothesis, then the true mean car price is \$7000. We need to shift distribution to satisfy the null hypothesis. Plot 9 shows the sampling distribution of the sample mean, giving H_0 is true. To satisfy the null hypothesis is true, sample mean is \$7000, while two red lines indicate two extreme values. Upper end red line shows the average mean from the original dataset.

• Bootstrap P value

[1] 0

Comparing to traditional one sample t test result, our p values of both approach is really close.

• Bootstrap confidence interval

[1] 12096.17 14318.08

Interpretation:

There is strong evidence (p-value=1.553377e-22) to suggest that the true mean car price in 1985 is different than \$7000. We reject the null hypothesis that the true mean car price in 1980s is \$7000 at the level $\alpha = 0.05$. With 95% confidence, the true mean car price in 1985 is between

\$12101.8 and \$14312.46 which suggests that the true mean car price in 1985 is greater than \$7000. The interval of bootstrap approach is wider which agrees with our p-value being a bit more conservative. In this case, the traditional t-tools were making our results a bit more significant and our confidence intervals narrower than what we found using the empirical method.

Test 2:One Sample T-Test for Proportion

Question of Interest:

Is the rear wheel drive cars evenly distributed with the other two types wheel drive cars for all car population in 1985?

Statistic test: One Sample One Proportion T-Test approach.

• Explanation: This question of interest focuses on the proportion of rear wheel drive cars in whole car population in 1985. We have a categorical variable with three categories (front wheel, four wheel, rear wheel) but we can group the front wheel drive and four wheel drive cars together. So that instead of front wheel drive, four wheel drive and rear wheel drive, we have rear wheel drive and non-rear wheel drive cars. As we interested in the proportion of rear wheel drive cars, so the best choice of this test is one sample one proportion t test.

Condition and Requirement

- **❖** Exact Binomial Test?
 - > No requirements
- **❖** Normal approximation?
 - > $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$
 - ightharpoonup Yes. $(75)\frac{75}{201} = 27.98 > 10$ and $(201 75)\frac{201 75}{201} = 78.99 > 10$

Condition and requirement satisfied for both exact binomial test and normal approximation.

Parameter

The population parameter we want to make inferences to the population proportion of rear wheel drive cars in $1985, p_r$.

Hypotheses

Null Hypothesis: $H_0: p_r = 0.333\overline{3}$

• The true proportion of rear wheel drive cars in 1985 is 33.33%.

Alternative Hypothesis: $H_A: p_r > 0.333\overline{3}$

• The true proportion of rear wheel drive cars in 1985 is greater than 33.33%.

Sample Statistic The sample statistic is $\hat{p} = \frac{75}{201} = 0.3731$

Test Statistic

- Exact test: there is no test statistic, find the probability directly.
- Normal approximation (using p_0 to find the test statistic)

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.3731 - 0.3333}{\sqrt{\frac{0.3333(1 - 0.3333)}{201}}} = 1.1970$$

Distribution of the test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1)$$

P value

• Exact Test:

```
## data: 75 out of 201
## number of successes = 75, number of trials = 201, p-value = 0.1313
## alternative hypothesis: true probability of success is greater than
0.3333333
## 95 percent confidence interval:
```

```
## 0.3162255 1.0000000

## sample estimates:

## probability of success

## 0.3731343
```

• One Sided Upper Normal Approximation

```
## [1] 0.1156533
```

Confidence interval

One-Sided Upper Confidence Interval - Exact: from binom.test - Normal Approximation: using the Wald statistic

```
## exact binomial test

## [1] 0.3162255 1.0000000

## attr(,"conf.level")

## [1] 0.95

## attr(,"method")

## [1] "Score"

## normal approx

## [1] 0.3171555 1.0000000
```

Bootstrap Approach

We set 1000 times of simulation for sampling distribution of the sample proportion. The graph below Plot 10 shows that after simulation, sampling distribution is really close to normal distribution. To show the sampling distribution of sampling proportion to be true under the null hypothesis, then the $H_0: p=0.3333$, we need to shift distribution to satisfy the null hypothesis. The graph Plot 11 shows it.

Sampling Distribution of the Sample Proportion Sampling Distribution of the Sample Proportion und _0:p=0.3333

(Plot10).Sampling Distribution of Sample Proportion

(Plot11). Sampling Distribution of Sample Porp. under H0 true

Bootstrap Confidence Interval

5% 100% ## 0.3184080 0.5124378

Bootstrap P Value

[1] 0.1319

Interpretation:

There is very weak evidence (p-value=0.1313) that the true proportion of rear wheel drive cars is greater than .33333. We cannot reject the null hypothesis that the true proportion of rear wheel drive cars is equal to .3333 at significant level $\alpha = 0.05$. The true proportion of rear wheel drive cars in the population of rear wheel drive, front wheel drive and four wheel drive cars is between 0.3162255 and 1. Our bootstrapped p-value is closer to the exact binomial and it is more conservative than the normal approximation.

Test 3:Two Sample T-Test for Difference In Means

Question of Interest:

Is there a difference in price between turbo cars and standard cars?

Statistic test: Two sample T-test for difference in means approach.

• Explanation: This question of interest focuses on the comparison of turo cars and standard cars as two populations in terms of price. The true mean car price as well as the true population of each group are unknown. Therefore, the best choice of this problem is one sample t-test.

Condition and Requirement

- ❖ Is the sample representative of the population?
 - The sample cannot surely confirm to be the representative of the population.
- Question of interest has to do with the difference of means between two populations?
 - > Yes, turbo cars and standard cars populations and the difference in the mean price for each population.
- ❖ 2 independent samples from 2 populations?
 - > Yes, turbo cars and standard cars can be considered as two different populations.
- ❖ The population data must be normally distributed?
 - > To check this condition look at a QQ plot of the sample data.
 - > Sample sizes are 36 for turbo cars and 165 for standard cars, which are larger than 30.

(Plot 15). Standardand Turbo Aspiration Sample Distribution

From Q-Q plots and histograms above, we find turbo samples' Q-Q plot is somewhat close to normal distribution while standard sample's Q-Q plot is not normally distributed but right

skewed.Both histograms confirmed that both samples are not normally distributed. The normality assumption is not met and we should be concerned about the reliability of our p-value and confidence intervals.

Parameter:

We are interested in the true population mean difference in price between turbo cars and standard cars $\mu_t - \mu_s$

Hypotheses:

$$H_0: \mu_t - \mu_s = 0$$

• The true population mean price for turbo cars is equal to the true population mean price for standard cars.

$$H_A: \mu_t - \mu_s \neq 0$$

• The true population mean price for turbo cars is different than the true population mean price for standard cars.

Sample Statistic

$$\overline{x_t} - \overline{x_s}$$

Test Statistic

$$t_{min(n_t-1,n_s-1)} = \frac{(\overline{x_t} - \overline{x_s}) - (\mu_t - \mu_s)}{\sqrt{\frac{s_t^2}{n_t} + \frac{s_s^2}{n_s}}}$$

Distribution of the test statistic

$$t_{min(n_t-1,n_s-1)} = \frac{(\overline{x_t} - \overline{x_s}) - (\mu_t - \mu_s)}{\sqrt{\frac{s_t^2 - s_s^2}{n_t + n_s}}} \sim t_{min(n_t-1,n_s-1)}$$

P-Value for Two sided

```
## [1] 0.004128058
```

Confidence Interval

```
## [1] 1257.027
## [1] 5328.797
```

Comparison with Built In T-Test:

```
## Welch Two Sample t-test
## data: auto.data$price[auto.data$aspiration == "turbo"] and
auto.data$price[auto.data$aspiration == "std"]
## t = 3.0693, df = 64.602, p-value = 0.003135
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1296.625 6128.623
## sample estimates:
## mean of x mean of y
## 16254.81 12542.18
```

Comparing to the results of build in T-test, our traditional test is really close to them.

Bootstrap approach:

Due to the skewed distributions for both samples, we need to simulate much more times. So we set 1000 times of simulation for sampling distribution of the sample mean. The graph Plot 16 below shows that after simulation, sampling distribution is really close to normal distribution.

(Plot 16). Sampling Distribution of Difference in Sample Mean

(Plot17).Dist. of the Diff in Sample Mean Under H0 True

Graph Plot 17 shows the distribution of the difference in sample mean, giving H_0 is true. To satisfy the null hypothesis is true, the difference in sample mean should be zero. Red line and blue line indicate two extreme values.

Bootstrap P-Value

[1] 0.0096

Bootstrap Confidence Interval

2.5% 97.5% ## 1451.430 6088.783

Interpretation:

From the computation, analyst finds that there is strong evidence (p-value=0.004128058) to suggest that the true mean price for turbo cars is different than standard cars. We reject the null hypothesis that there is no difference between true population mean price for turbo cars at the level $\alpha=0.05$. With 95% confidence, the true difference between the mean price between turbo cars and standard cars is between 1257.027 and 5328.797. The null hypothesized difference between the mean price is zero and zero is not in the 95% confidence interval which is consistent with our rejection of the null hypothesis and the values of the confidence interval suggest that on average turbo cars have higher prices than standard cars. Our p-value from traditional test is a bit

more conservative compared to bootstrap approach. In this case the traditional t-tools were making our results a bit more significant and our confidence intervals narrower than what we found using the empirical method.

Test 4: Two Sample T-Test for Difference In Proportions

Question of Interest:

How turbo aspiration type distributed in luxury class compared to economy class in 1985? **Statistic test:** Two Sample T-test for Difference In Proportions approach.

• Explanation: This question of interest focuses on the comparison of luxury and economy class as two populations in terms of turbo aspiration proportion in each population. The true difference in proportion of turbo cars in luxury class cars population and economy class cars population is what we seek. Therefore, the best choice of this problem is two sample t-test for difference in proportions approach.

Condition and Requirement

- ❖ Is the sample representative of the population?
 - The sample cannot surely confirm to be the representative of the population.
- Question of interest has to do with the difference of proportions between two populations?
 - > Yes, Luxury and economy cars as two populations and the true difference in the proportion of turbo type aspiration for each population.
- ❖ Categorical response variable with 2 categories?
 - ➤ Yes.
- ❖ 2 independent samples from 2 populations?
 - > Yes, luxury cars and economy cars can be considered as two different populations.
- $np \ge 10$ and $n(1-p) \ge 10$ for both populations?
 - ➤ Yes.

Parameter

We are interested in the difference between the true population proportion of turbo type from the luxury cars and true population proportion of turbo type from the economy cars, $p_l - p_e$.

Hypotheses

$$H_0: p_l - p_e = 0$$

• There is no difference between the true population proportion of turbo type from the luxury cars and true population proportion of turbo type from the economy cars

$$H_A: p_l - p_e \neq 0$$

• There is a difference between the true population proportion of turbo type from the luxury cars and true population proportion of turbo type from the economy cars.

Sample Statistic

$$\hat{p}_l - \hat{p}_e$$

Test Statistic

$$z = \frac{(\hat{p}_l - \hat{p}_e) - (p_l - p_e)}{\sqrt{\frac{\hat{p}_l(1 - \hat{p}_l)}{n_l} + \frac{\hat{p}_e(1 - \hat{p}_e)}{n_e}}}$$

Distribution of the test statistic

$$z = \frac{(\hat{p}_l - \hat{p}_e) - (p_l - p_e)}{\sqrt{\frac{\hat{p}_l(1 - \hat{p}_l)}{n_l} + \frac{\hat{p}_e(1 - \hat{p}_e)}{n_e}}} \sim N(0, 1)$$

P value

[1] 0.00181061

Confidence interval

[1] 0.06953763

[1] 0.3045845

Bootstrap Approach

Graph Plot 18 shows that after simulation, sampling distribution of difference in proportion is really close to normal distribution. But if the null hypothesis is true, then the true difference in proportions between the two groups is 0. We need to create a randomization distribution to satisfy the null hypothesis. The Plot 19 shows the distribution of difference in sample proportion given null hypothesis is true.

(Plot 18). Dist. of the Diff in Prop of sample

(Plot 19). Dist. of the Diff in Sample Props under H0 True

Bootstrap P-Value

[1] 0.001

Bootstrap Confidence Interval

2.5% 97.5%

0.07224941 0.30527772

Interpretation:

Using randomization methods, there is strong evidence (p-value = 0.00181061) to suggest that there is a difference in the true proportion of turbo type between luxury cars and economy cars. We reject the null hypothesis that the true proportion of turbo type from luxury class is equal to the true proportion of turbo cars from economy class at the level $\alpha = 0.05$. Using confidence intervals created by the bootstrap method, we can say with 95% confidence that the true population proportion difference is between 0.07224941 to 0.30527772. The null hypothesized difference of 0 is not in the confidence interval which agrees with our rejection of the null hypothesis.

Test 5: Chi-Square Goodness of Fit Test

Question of Interest:

From the body-styles convertible, hardtop, hatchback, sedan, and wagon, are certain body style more preferred than others in 1985?

	Count	Percentage of Sample
Convertible	6	2.985075%
Hardtop	8	3.980100%
Hatchback	68	33.830846%
Sedan	94	46.766169%
Wagon	25	12.437811%

(Table5).Body-Style Summary

In Table 5, analyst is able to find each body style count and percentage of the dataset.

Parameter of interest

We are interested in the true proportion of each body style of cars, $p_c, p_{har}, p_{hat}, p_s, p_e$.

Statistic test: Chi-square Goodness of Fit Test

• Explantation: The body style is single categorical variable with 5 categories. The only right choice for this problem is Chi-square Goodness of Fit Test.

Condition and requirement

- Single categorical variable with more than 2 categories?
 - > Yes
- ❖ The expected count of each count is at least 5?
 - ➤ Yes

Hypotheses

$$H_0: p_c = p_{har} = p_{hat} = p_s = p_e = 0.2$$

• The proportion of each body style is the same and is equal to 0.2.

 H_A : some $p_i \neq 0.2$

• At least one of the proportions is not equal to 0.2.

Under the null hypothesis, the expected count $np_i = 201 \times 0.2 = 40.1$

Sample Statistics

In this example we have 5 sample statistics.

$$\hat{p}_c, \hat{p}_{har}, \hat{p}_{hat}, \hat{p}_s, \hat{p}_e$$

Test Statistic and Distribution

$$\chi^2 = \sum_{i=1}^k \left(\frac{(O_i - E)^2}{E}\right) \sim \chi^2_{k-1}$$

Chi-square Value

[1] 152.2406

P value

[1] 6.738178e-32

Interpretation:

The data provides strong evidence (P=6.738178e-32) that some of the proportions of bodystyle is different than 0.2. We reject the null hypothesis that the proportions of the body styles are all equal to 0.2 at the level.

Discussion

Summary of Findings:

Based on the statistical analysis, at the $\alpha = 0.05$ and with a 95% confidence, this study

- Displays that rear wheel drive cars had relatively higher price than other drive wheels cars in 1985.
- Displays that convertible and hardtop had relatively higher price than other body style cars in 1985.
- Suggests that the average car price was greater than estimate mean price \$7000 in 1980s.
- Shows the proportion of rear wheel drive cars was equal to the other two drive wheel cars.
- Indicates price of turbo aspiration car was significantly higher than standard aspiration cars.
- Presents turbo aspiration car took a greater percentage in luxury class population than economy class population.
- Displays some proportion of body styles of cars was different.

Implication of Findings:

These findings implicate that in 1985, the average car price had increased from previous years that it was greater than estimate mean price in the 1980s. The proportion of rear wheel drive, non-rear wheel drive are not significant different in the whole car proportion. For aspiration types, findings shows turbo aspiration cars had significantly higher price than standard aspiration cars. In addition, more luxury cars were more likely to have turbo aspiration type compared to economy cars. Finally, the availability of each body style in the market is also different. It was possible that market and customers had preferences on car body styles, which affected market demand.

Extensions, Limitations and Further Questions

This study focuses on the automobile's price and characteristics. The purpose of study is to provide statistical data as suggestions for car customer in 1985. Analyst can also find the trend of car features in 1985 to compare to what car features are most popular nowadays. From the findings on exploratory analysis, rear wheel cars were more likely to have higher prices, and convertible and hardtop had relatively higher price than other body style cars in 1985. In statistical analysis, this study finds that aspiration type was one of the factors affected automobile price. Therefore, these findings can be used as suggestions to car customers in 1985. Compared to car market, some of these findings still stands. Sports cars, which are turbo and rear wheel drive mostly, seem more likely to cost more than other non-turbo and non-rear wheel drive cars. But the comparison from 1985's car market and today's car market needs to be further studied to confirm above assumption.

These findings on automobile price, and its characteristics in 1985 are highly based on dataset from Jeffrey C. Schlimmer on limited sources. This study may have limitations due to confounding factors, potential biases environment, and limited sources so that this study could be biased.

These findings cannot fully support conclusions on causation but can be discussed with several further steps:

 Have a larger scope on the sample and more sources on our sampling selection to ensure the coverage of representative to population.

- Create a well-developed sampling strategy designed for this topic to limit sampling errors.
- Rule out potential confounding factors for the study.

By having these modifications, This study can be further extended on price comparisons with car's drive wheels, body styles and other undiscussed characteristics like fuel types, horsepowers, mpgs, and etc.

References

Aust, F., & Barth, M. (2018). papaja: Create APA manuscripts with R Markdown. Retrieved from https://github.com/crsh/papaja

Pearson, S. (n.d.). 1980's Collector Cars including Prices. Retrieved from http://www.thepeoplehistory.com/80scars.html.

Schlimmer, J. C. (n.d.). Retrieved from http://archive.ics.uci.edu/ml/datasets/Automobile.

Appendix

```
# Install devtools package if necessary
#if(!"devtools" %in% rownames(installed.packages()))
install.packages("devtools")
# Install the stable development verions from GitHub
#devtools::install_github("crsh/papaja")
# Install the latest development snapshot from GitHub
#devtools::install_github("crsh/papaja@devel")
library("papaja")
knitr::opts_chunk$set(echo = FALSE)# Seed for random number generation
set.seed(0)
knitr::opts_chunk$set(cache.extra = knitr::rand_seed)
library(ggplot2)
library(dplyr)
                       # data manipulation
library(mosaic)
library(Sleuth3)
library(dplyr)
auto.data <- read.csv( "~/Documents/IE6200/Final/imports-85.data.csv",header</pre>
= TRUE, stringsAsFactors = FALSE)
auto.data
summary(auto.data)
price<-select(auto.data,price)</pre>
summary(price)
#Get the mean, median, minimum, maximum and quartiles
lapply(price, sd)
table1to3<-table(auto.data$body.style,auto.data$drive.wheels,auto.data$aspira
tion)
addmargins(table1to3)
#Car Price Distribution
Plot1 <- ggplot(auto.data, aes(price)) + geom_density()+ggtitle("Car Price
Distribution")+geom_vline(xintercept = mean(auto.data$price),
                color = "skyblue", size=1)+geom_vline(xintercept =
median(auto.data$price),
                color = "#cc99ff",
size=1)+geom_text(aes(x=median(auto.data$price), label="\nMedian",
y=0.00001), colour="#cc99ff", angle=60) +
 geom_text(aes(x=mean(auto.data$price), label="\nMean", y=0.00001),
colour="skyblue", angle=60 )
Plot1
```

```
# Bodystyle and price
Plot2<-boxplot(auto.data$price~auto.data$body.style, ylab = 'price', xlab =
'body styles', main = 'Car Price And Body Styles ', col = 'skyblue')
Plot2
# Aspiration And Price
Plot3<-boxplot( auto.data$price~auto.data$drive.wheels, ylab = 'car Price',
xlab = 'drive wheels', main = 'Price In Drive Wheel ', col = "#33ffc9")
Plot3
#count body style
bs_count < -c(6, 8, 68, 94, 25)
Plot4<-pie(bs_count, main="Cars In Body Styles",
col=rainbow(length(bs_count)),
   labels=c("Convertible", "Hardtop", "Hatchback", "Sedan", "Wagon"))
Plot4
auto.data$carclass<- ifelse(auto.data$price >7000,"luxury","economy")
# Car price, Body-styles and Drive wheels
ggplot(auto.data, aes(x = body.style, y = price,color = drive.wheels)) +
geom_point() +ggtitle("Car price, Body Styles And Drive Wheels")+labs(x =
"Body Styles", y = "Price", color = " Drive Wheels")+ theme(legend.position =
"bottom")
#Combine to do comparison rwd+fwd+4wd -one sample proportion
auto.data.rwd<-filter(auto.data, auto.data$drive.wheels == "rwd")</pre>
auto.data.fwd<-filter(auto.data, auto.data$drive.wheels == "fwd")</pre>
auto.data.4wd<-filter(auto.data, auto.data$drive.wheels == "4wd")</pre>
auto.data.fwd<-rbind(auto.data.4wd,auto.data.fwd)</pre>
library(dplyr)
set.seed(0)
qqnorm(auto.data$price)
hist(auto.data$price)
# sample mean
x_bar <- mean(auto.data$price)</pre>
# null hypothesized population mean
mu_0 <- 7000
# sample st. dev
s <- sd(auto.data$price)</pre>
# sample size
n <- length(auto.data$price)</pre>
# t-test test statistic
t <- (x_bar - mu_0)/(s/sqrt(n))
# two-sided p-value
two_sided_t_pval <- pt(q = t, df = n-1, lower.tail = FALSE)*2</pre>
two sided t pval
# Lower bound
test1_lb<-x_bar+(qt(0.025, n-1)*(s/sqrt(n)))
test1 lb
# upper bound
test1_ub<-x_bar+(qt(0.975, n-1)*(s/sqrt(n)))
```

```
test1 ub
t.test(auto.data$price,
alternative = "two.sided",
mu = 7000)
set.seed(0)
num_sims <- 10000
# A vector to store my results
results <- rep(NA, num_sims)
# A loop for completing the simulation
for(i in 1:num sims){
results[i] <- mean(sample(x = auto.data$price,
size = n,
replace = TRUE))
}
# Finally plot the results
hist(results, freq = FALSE, main='Sampling Distribution of the Sample Mean',
xlab = 'Average car price', ylab = 'Density', ylim=c(0,0.0008))
# estimate a normal curve over it - this looks pretty good!
lines(x = seq(10000, 30000, .1), dnorm(seq(10000, 30000, .1), mean = x_bar,
sd = 7947.066/sqrt(201))
price<-select(auto.data,price)</pre>
set.seed(0)
# Shift the sample so that the null hypothesis is true
time_given_H0_true <-auto.data$price-mean(auto.data$price)+mu 0
# This data is pretty skewed so even though n is large, I'm going to do a lot
of simulations
num_sims <- 10000
# A vector to store my results
results_given_H0_true <- rep(NA, num_sims)</pre>
# A loop for completing the simulation
for(i in 1:num_sims){
results_given_H0_true[i] <- mean(sample(x = time_given_H0_true,
size = n,
replace = TRUE))}
# Finally plot the results
hist(results_given_H0_true, freq = FALSE, main='Sampling Distribution of the
Sample Mean,
    Given H0 is True', xlab = 'Average Car Price', ylab = 'Density',
xlim=c(600,15000))
# add line to show values more extreme on upper end
abline(v=x_bar, col = "red")
# add line to show values more extreme on lower end
low_end_extreme <-</pre>
mean(results_given_H0_true)+(mean(results_given_H0_true)-x_bar)
```

```
abline(v=low_end_extreme, col="red")
# counts of values more extreme than the test statistic in our original
sample, given H0 is true
# two sided given the alternate hypothesis
count_of_more_extreme_lower_tail <- sum(results_given_H0_true <=</pre>
low_end_extreme)
count_of_more_extreme_upper_tail <- sum(results_given_H0_true >= x_bar)
bootstrap_pvalue <- (count_of_more_extreme_lower_tail +</pre>
count_of_more_extreme_upper_tail)/num_sims
bootstrap_pvalue
set.seed(0)
bootstrap_SE_X_bar <- sd(results)</pre>
# an estimate is to use the formula statistic +/- 2*SE
c(x_bar - 2*bootstrap_SE_X_bar, x_bar + 2*bootstrap_SE_X_bar)
binom.test(x=75, n = 201, p=(1/3), alternative="greater")
pnorm(1.1970, lower.tail = FALSE)
cat("exact binomial test")
binom.test(x=75, n = 201, p=(1/3), alternative="greater")$conf.int
cat("normal approx")
c(0.3731 - (1.64)*sqrt(((0.3731)*(1-0.3731))/201), 1)
set.seed(0)
rwd <- rep(c(1, 0), c(75, 201-75))
table(rwd)
num_sims <- 10000
# A vector to store my results
results <- rep(NA, num_sims)
# A loop for completing the simulation
for(i in 1:num_sims){
results[i] <- mean(sample(x=rwd,</pre>
size = 201,
replace = TRUE))
# Finally plot the results
hist(results,freq=FALSE,main='Sampling Distribution of the Sample
Proportion',xlab = 'proportion of rear wheel drive cars',ylab =
'Density',xlim=c(0,1))
# estimate a normal curve over it - this looks pretty good!
lines(x=seq(.01,.75,.001),dnorm(seq(.01,.75,.001),mean=mean(results),sd=sd(re
sults)))
cat("Bootstrap Confidence Interval")
c(quantile(results, c(.05, 1)))
cat("Exact Binomial test")
binom.test(x=75, n = 201, p=(.5), alternative="greater")$conf.int
cat("normal approx")
c(0.3731 - (1.64)*sqrt(((0.3731)*(1-0.3731))/201), 1)
# Under the assumption that the null hypothesis is true, we have 50% peanuts
```

```
rwd \leftarrow rep(c(1, 0), c(67, 201-67))
num_sims <- 10000
# A vector to store my results
results <- rep(NA, num_sims)
# A loop for completing the simulation
for(i in 1:num_sims){
results[i] <- mean(sample(x = rwd,
size = 201,
replace = TRUE))
# Finally plot the results
hist(results, freq = FALSE, main='Sampling Distribution of the Sample
Proportion under H
_0:p=0.3333', xlab = 'Proportion of rear wheel drive cars', ylab = 'Density')
# estimate a normal curve over it - this looks pretty good!
lines(x = seq(.1, .75, .001), dnorm(seq(.1, .75, .001), mean = mean(results),
sd = sd
(results)))
abline(v=0.3731, col="red")
count_of_more_extreme_upper_tail <- sum(results >= .3731)
bootstrap_pvalue <- count_of_more_extreme_upper_tail/num_sims</pre>
cat("Bootstrap p-value")
bootstrap_pvalue
cat("Exact Binomial p-value")
binom.test(x=75, n = 201, p=(1/3), alternative="greater")$p.value
cat("Normal Approximation p-value")
pnorm(1/3, lower.tail = FALSE)
turbo<-filter(auto.data,auto.data$aspiration=="turbo")</pre>
std<-filter(auto.data,auto.data$aspiration=="std")</pre>
qqnorm(auto.data$price)
qqnorm(auto.data$price[auto.data$aspiration=="turbo"],xlab = "Theoretical"
Quantiles-turbo")
qqnorm(auto.data$price[auto.data$aspiration=="std"],xlab = "Theoretical
Quantiles-standard")
histogram(~ price | aspiration, data=auto.data)
# Sample Mean
X_bar_t <- mean(auto.data$price[auto.data$aspiration=="turbo"])</pre>
X_bar_s <- mean(auto.data$price[auto.data$aspiration=="std"])</pre>
X_bar_t
X_bar_s
# Sample Variance
s_t <- sd(auto.data$price[auto.data$aspiration=="turbo"])**2</pre>
s_s <- sd(auto.data$price[auto.data$aspiration=="std"])**2</pre>
s_t
S_S
# Sample Size
n_t <- length(auto.data$price[auto.data$aspiration=="turbo"])</pre>
n_s <- length(auto.data$price[auto.data$aspiration=="std"])</pre>
```

```
n_t
n_s
#Null Hypothises
mu <- 0
# T Test
t <- (X_bar_t - X_bar_s - mu)/sqrt((s_t/n_t) + (s_s/n_s))
# p-value for two sided upper
two_sided_diff <- pt(q=t, df = min(n_t, n_s)-1, lower.tail = FALSE) * 2
two sided diff
Alpha <- 0.05
Confidence_Interval <- 0.95</pre>
# Lower Bound
L_bound <- (X bar_t - X bar_s) + (qt(0.025, min(n_t, n_s)-1)* sqrt((s_t/n_t))
+(s_s/n_s)))
L_bound
# Upper Bound
U_bound \leftarrow (X_bar_t - X_bar_s) + (qt(0.975, min(n_t, n_s)-1)* sqrt((s_t/n_s)
+(s_s/n_s)))
U_bound
t.test(auto.data$price[auto.data$aspiration=="turbo"],
auto.data$price[auto.data$aspiration=="std"])
set.seed(0)
num sims <- 10000
# A vector to store my results
results <- rep(NA, num sims)
# A loop for completing the simulation
for(i in 1:num_sims){
mean_turbo <- mean(sample(x = auto.data$price[auto.data$aspiration=="turbo"],</pre>
size = 36,
replace = TRUE))
mean_std <- mean(sample(x = auto.data$price[auto.data$aspiration=="std"],</pre>
size = 165,
replace = TRUE))
results[i] <- mean_turbo - mean_std</pre>
# Finally plot the results
hist(results, freq = FALSE, main='Sampling Distribution of the Sample Mean',
xlab = 'Average Difference Price', ylab = 'Density')
c(quantile(results, c(.025, .975)))
# compare to our t-methods
t.test(auto.data$price[auto.data$aspiration=="turbo"],
auto.data$price[auto.data$aspiration=="std"])$conf.int
library(data.table)
a<-copy(auto.data)</pre>
transform(a,aspiration=sample(aspiration))
set.seed(0)
```

```
num_sims <- 10000
# A vector to store my results
results_given_H0_true <- rep(NA, num_sims)</pre>
# A loop for completing the simulation
for(i in 1:num_sims){
# idea here is if there is no relationshipm we should be able to shuffle the
groups
shuffled_groups <- transform(a,aspiration=sample(aspiration))</pre>
mean_t <- mean(shuffled_groups$price[shuffled_groups$aspiration=="turbo"])</pre>
mean_s <- mean(shuffled_groups$price[shuffled_groups$aspiration=="std"])</pre>
results_given_H0_true[i] <- mean_t - mean_s</pre>
# Finally plot the results
hist(results_given_H0_true, freq = FALSE,
main='Dist. of the Diff in Sample Means Under Null',
xlab = 'Average Difference Price under Null',
ylab = 'Density', xlim = c(-10000, 10000))
diff_in_sample_means <- mean(auto.data$price[auto.data$aspiration=="turbo"])</pre>
- mean(auto.data$price[auto.data$aspiration=="std"])
abline(v=diff_in_sample_means, col = "blue")
abline(v=-(diff_in_sample_means), col = "red")
count_of_more_extreme_lower_tail <- sum(results_given_H0_true <=</pre>
-diff_in_sample_means)
count_of_more_extreme_upper_tail <- sum(results_given_H0_true >=
abs(diff_in_sample_means))
bootstrap_pvalue <- (count_of_more_extreme_lower_tail +</pre>
count_of_more_extreme_upper_tail)/num_sims
cat("Bootstrap p-value")
bootstrap_pvalue
t.test(auto.data$price[auto.data$aspiration=="turbo"],
auto.data$price[auto.data$aspiration=="std"])$p.value
auto.data$carclass<- ifelse(auto.data$price >13207,"luxury","economy")
#Comparison between luxury and standard -two sample proportion
#car class classfication
carclass.luxury<-filter(auto.data, auto.data$price > 13207)
carclass.economy<-filter(auto.data, auto.data$price <= 13207)</pre>
luxury.standard<-filter(carclass.luxury, carclass.luxury$aspiration=="turbo")</pre>
economy.standard<-filter(carclass.economy,
carclass.economy$aspiration=="turbo")
luxuryturbonumber<-count(carclass.luxury$aspiration=="turbo")</pre>
economytrbonumber<-count(carclass.economy$aspiration=="turbo")</pre>
# sample props
1t<-22
et<-14
p_hat_1 <- 22/74
p_hat_e <- 14/127
p_hat_l
```

```
p_hat_e
# null hypothesized population prop difference between the two groups
p_0 <- 0
# sample size
n_1 <- 74
n_e <- 127
# sample variances
den_p_1 \leftarrow (p_hat_1*(1-p_hat_1))/n_1
den_p_e \leftarrow (p_hat_e^*(1-p_hat_e))/n_e
# z-test test statistic
z <- (p_hat_l - p_hat_e - p_0)/sqrt(den_p_l + den_p_e)</pre>
# two sided p-value
two_sided_diff_prop_pval <- pnorm(q = z, lower.tail = FALSE)*2</pre>
two_sided_diff_prop_pval
#lower b
(p_hat_1 - p_hat_e)+(qnorm(0.025)*sqrt(den_p_1 + den_p_e))
# upper bound
(p_hat_1 - p_hat_e)+(qnorm(0.975)*sqrt(den_p_1 + den_p_e))
set.seed(2)
# Make the data
L <- rep(c(1, 0), c(lt, n_l - lt))
E \leftarrow rep(c(1,0), c(et, n_e - et))
num_sims <- 10000
# A vector to store my results
results <- rep(NA, num_sims)
# A loop for completing the simulation
for(i in 1:num_sims){
prop_L <- mean(sample(L,</pre>
size = n_1,
replace = TRUE))
prop_E <- mean(sample(x = E,</pre>
size = n_e,
replace = TRUE))
results[i] <- prop_L - prop_E
}
# Finally plot the results
hist(results, freq = FALSE, main='Dist. of the Diff in Prop', xlab =
'Difference in Prop. of Turbo type', ylab = 'Density')
cat("Bootstrap")
c(quantile(results, c(.025, .975)))
cat("Normal Approximation")
c((p_{at_1} - p_{at_e}) + (q_{norm}(0.025) * sqrt(den_p_1 + den_p_e)), (p_{at_1} - p_{at_2})
p_hat_e)+(qnorm
(0.975)*sqrt(den_p_1 + den_p_e)))
# Make the data
df_combined <- data.frame("Turbocar" = c(L, E), "group" = rep(c("luxury",</pre>
"economy"), c(n_1, n_e)))
```

```
# Sanity checks
summary(df_combined$group)
mean(df combined$Turbocar[df_combined$group=="luxury"]) == p_hat_1
mean(df_combined$Turbocar[df_combined$group=="economy"]) == p_hat_e
num sims <- 1000
# A vector to store my results
results_given_H0_true <- rep(NA, num_sims)</pre>
# A loop for completing the simulation
for(i in 1:num_sims){
# idea here is if there is no relationshipm we should be able to shuffle the
groups
shuffled_groups <- transform(df_combined, group=sample(group))</pre>
prop_1 <- mean(shuffled_groups$Turbocar[shuffled_groups$group=="luxury"</pre>
])
prop_e <- mean(shuffled_groups$Turbocar[shuffled_groups$group=="economy"])</pre>
results_given_H0_true[i] <- prop_l - prop_e</pre>
}
# Finally plot the results
hist(results_given_H0_true, freq = FALSE,
main='Dist. of the Diff in Sample Sample Props Under Null',
xlab = 'Average Difference in Prop. turbo type under Null',
ylab = 'Density')
diff_in_sample_props <- p_hat_l - p_hat_e</pre>
abline(v=diff_in_sample_props, col = "blue")
abline(v=-diff_in_sample_props, col = "red")
# counts of values more extreme than the test statistic in our original
sample, given H0 is true
# two sided given the alternate hypothesis
count_of_more_extreme_lower_tail <- sum(results_given_H0_true <=</pre>
-diff_in_sample_props)
count_of_more_extreme_upper_tail <- sum(results_given_H0_true >=
diff_in_sample_props)
bootstrap_pvalue <- (count_of_more_extreme_lower_tail +</pre>
count_of_more_extreme_upper_tail)/num_sims
cat("Bootstrap p-value")
bootstrap_pvalue
cat("Normal Approx p-value")
two_sided_diff_prop_pval
table(auto.data$body.style)
prop.table(table(auto.data$body.style))
sum(((table(auto.data$body.style) - 40.1)^2)/40.1)
pchisq(152.2406, df = 5-1, lower.tail = FALSE)
```

Raw Dataset

auto.	data										
### R	aw Dataset										
## drive	.wheels	make.	fuel.t	ype a	aspira [.]	tion	num.of	.doors	body.s	style	
## 1	alfa-romero		gas		std		two	conver	tible		rwd
## 2	alfa-romero	gas	5	sto	d	two	conver	rtible		rwd	
## 3	alfa-romero		gas		std		two	hato	hback		rwd
## 4 fwd		audi	\$	gas		std		four	`	sedan	
## 5 4wd		audi		gas		std		four	`	sedan	
## 6 fwd		audi		gas		std		two		sedan	
## 7 fwd		audi	ŧ	gas		std		four	•	sedan	
## 8 fwd		audi	ŧ	gas		std		four	•	wagon	
## 9 fwd		audi	ŧ	gas	tı	urbo		four	•	sedan	
## 10 rwd		bmw	{	gas		std		two		sedan	
## 11 rwd		bmw	{	gas		std		four	`	sedan	
## 12 rwd		bmw	{	gas		std		two		sedan	
## 13 rwd		bmw	{	gas		std		four		sedan	
## 14	rwd	bmw	\$	gas		std		fo	our	sedaı	า
## 15 rwd		bmw		gas		std		four	•	sedan	

## 16 rwd	bmw		gas	std		two	sedan
## 17 rwd	bmw		gas	std		four	sedan
## 18 fwd	chevrolet		gas	std		two hatcl	hback
## 19 fwd	chevrolet		gas	std		two hatch	hback
## 20 fwd	chevrolet		gas	std		four	sedan
## 21	dodge	gas	std		two	hatchback	fwd
## 22	dodge	gas	std		two	hatchback	fwd
## 23	dodge	gas	turbo		two	hatchback	fwd
## 24	dodge	gas	std		four	hatchback	fwd
## 25	dodge	gas	std		four	sedar	n fwd
## 26	dodge	gas	std		four	sedar	n fwd
## 27	dodge	gas	turbo		two	sedar	n fwd
## 28	dodge	gas	std		four	wagoı	n fwd
## 29	dodge	gas	turbo		two	hatchback	fwd
## 30 fwd	honda	gas	std		tw	o hatchba	ck
## 31	honda	gas	std		two	hatchback	fwd
## 32	honda	gas	std		two	hatchback	fwd
## 33	honda	gas	std		two	hatchback	fwd
## 34	honda	gas	std		two	hatchback	fwd
## 35	honda	gas	std		four	sedar	n fwd
## 36	honda	gas	std		four	wagoı	n fwd
## 37	honda	gas	std		two	hatchback	fwd
## 38	honda	gas	std		two	hatchback	fwd
## 39	honda	gas	std		four	sedaı	n fwd

## 40	honda	gas	std		four		sedan	fwd
## 41	honda	gas	std		four		sedan	fwd
## 42	honda	gas	std		two		sedan	fwd
## 43	isuzu	gas	std		four		sedan	rwd
## 44	isuzu	gas	std		two	hatchb	ack	rwd
## 45	jaguar	gas	std		four		sedan	rwd
## 46 rwd	jaguar	gas	std		fou	r	sedan	
## 47	jaguar	gas	std		two		sedan	rwd
## 48	mazda	gas	std		two	hatchb	ack	fwd
## 49	mazda	gas	std		two	hatchb	ack	fwd
## 50	mazda	gas	std		two	hatchb	ack	fwd
## 51	mazda	gas	std		four		sedan	fwd
## 52	mazda	gas	std		four		sedan	fwd
## 53	mazda	gas	std		two	hatchb	ack	rwd
## 54	mazda	gas	std		two	hatchb	ack	rwd
## 55	mazda	gas	std		two	hatchb	ack	rwd
## 56	mazda	gas	std		two	hatchb	ack	rwd
## 57	mazda	gas	std		two	hatchb	ack	fwd
## 58	mazda	gas	std		four		sedan	fwd
## 59	mazda	gas	std		two	hatchb	ack	fwd
## 60	mazda	gas	std		four		sedan	fwd
## 61	mazda diese	<u>:</u> 1	std	two		sedan	fwd	
## 62 fwd	mazda	gas	std		fou	r hat	chback	
## 63	mazda	gas	std		four		sedan	rwd
## 64	mazda diese	<u>-</u> 1	std	four		sedan	rwd	
## 65	mercedes-benz	diesel	turbo	0	four		sedan	rwd

## 66	mercedes-benz	diesel	turbo	four		wagon	rwd
## 67	mercedes-benz	diesel	turbo	two	hardt	ор	rwd
## 68	mercedes-benz	diesel	turbo	four		sedan	rwd
## 69	mercedes-benz	gas	std	four		sedan	rwd
## 70	mercedes-benz	gas	std	two co	nvert	ible	rwd
## 71	mercedes-benz	gas	std	four		sedan	rwd
## 72	mercedes-benz	gas	std	two	hardt	ор	rwd
## 73	mercury	gas tu	ırbo	two	hatch	back	rwd
## 74 fwd	mitsubishi	gas	std		two	hatchback	
## 75 fwd	mitsubishi	gas	std		two	hatchback	
## 76 fwd	mitsubishi	gas	std		two	hatchback	
## 77 fwd	mitsubishi	gas	turbo		two	hatchback	
## 78 fwd	mitsubishi	gas	turbo	two	ha	tchback	
## 79 fwd	mitsubishi	gas	std		two	hatchback	
## 80 fwd	mitsubishi	gas	turbo		two	hatchback	
## 81 fwd	mitsubishi	gas	turbo		two	hatchback	
## 82 fwd	mitsubishi	gas	turbo		two	hatchback	
## 83 fwd	mitsubishi	gas	std		four	sedar	1
## 84 fwd	mitsubishi	gas	std		four	sedar	1
## 85 fwd	mitsubishi	gas	turbo		four	sedar	1

## 86 fwd	mitsubishi	ga	is st	:d	four	sedan
## 87	nissan	gas	std	two	sedan	fwd
## 88	nissan	diesel	std	two	sedan	fwd
## 89	nissan	gas	std	two	sedan	fwd
## 90	nissan	gas	std	four	sedan	fwd
## 91	nissan	gas	std	four	wagon	fwd
## 92	nissan	gas	std	two	sedan	fwd
## 93	nissan	gas	std	two	hatchback	fwd
## 94 fwd	nissan	gas	std	fou	r sedar	1
## 95	nissan	gas	std	four	wagon	fwd
## 96	nissan	gas	std	two	hardtop	fwd
## 97	nissan	gas	std	four	hatchback	fwd
## 98	nissan	gas	std	four	sedan	fwd
## 99	nissan	gas	std	four	sedan	fwd
## 100	nissan	gas	std	four	wagon	fwd
## 101	nissan	gas	std	four	sedan	fwd
## 102	nissan	gas	std	two	hatchback	rwd
## 103	nissan	gas	turbo	two	hatchback	rwd
## 104	nissan	gas	std	two	hatchback	rwd
## 105	peugot	gas	std	four	sedan	rwd
## 106	peugot	diesel	turbo	four	sedan	rwd
## 107	peugot	gas	std	four	wagon	rwd
## 108	peugot	diesel	turbo	four	wagon	rwd
## 109	peugot	gas	std	four	sedan	rwd
## 110	peugot	diesel	turbo	four	sedan	rwd
## 111	peugot	gas	std	four	wagon	rwd

## 112	peugot	diesel	turbo	four	wagon	rwd
## 113 rwd	peugot	gas	std	four	sedan	
## 114	peugot	diesel	turbo	four	sedan	rwd
## 115	peugot	gas	turbo	four	sedan	rwd
## 116	plymouth	gas	std	two hat	tchback	fwd
## 117	plymouth	gas	turbo	two hat	tchback	fwd
## 118	plymouth	gas	std	four h	atchback	fwd
## 119	plymouth	gas	std	four	sedan	fwd
## 120	plymouth	gas	std	four	sedan	fwd
## 121	plymouth	gas	std	four	wagon	fwd
## 122	plymouth	gas	turbo	two hat	tchback	rwd
## 123	porsche	gas	std	two hat	tchback	rwd
## 124	porsche	gas	std	two har	rdtop	rwd
## 125	porsche	gas	std	two har	rdtop	rwd
## 126	porsche	gas	std	two conve	ertible	rwd
## 127	renault	gas	std	four	wagon	fwd
## 128	renault	gas	std	two hat	chback	fwd
## 129 fwd	saab	gas	std		two hatch	oack
## 130 fwd	saab	gas	std	foo	ır sed	lan
## 131 fwd	saab	gas	std	two	o hatchback	(
## 132 fwd	saab	gas	std	fou	ır sed	lan
## 133 fwd	saab	gas	turbo	two	o hatchback	(
## 134 fwd	saab	gas	turbo	fou	ur sed	lan

##	135	subaru	gas	std	two	hatchback	fwd
##	136	subaru	gas	std	two	hatchback	fwd
##	137	subaru	gas	std	two	hatchback	4wd
##	138	subaru	gas	std	four	sedan	fwd
##	139	subaru	gas	std	four	sedan	fwd
##	140	subaru	gas	std	four	sedan	fwd
##	141	subaru	gas	std	four	sedan	4wd
##	142	subaru	gas	turbo	four	sedan	4wd
##	143	subaru	gas	std	four	wagon	fwd
##	144	subaru	gas	std	four	wagon	fwd
## 4wc	145 I	subaru	gas	std	foui	n wagon	
-WC	•						
##	146	subaru	gas	turbo	four	wagon	4wd
##	147	toyota	gas	std	two	hatchback	fwd
##	148	toyota	gas	std	two	hatchback	fwd
##	149	toyota	gas	std	four	hatchback	fwd
##	150	toyota	gas	std	four	wagon	fwd
##	151	toyota	gas	std	four	wagon	4wd
##	152	toyota	gas	std	four	wagon	4wd
##	153	toyota	gas	std	four	sedan	fwd
##	154	toyota	gas	std	four	hatchback	fwd
##	155	toyota	diesel	std	four	sedan	fwd
##	156	toyota	diesel	std	four	hatchback	fwd
##	157	toyota	gas	std	four	sedan	fwd
##	158	toyota	gas	std	four	hatchback	fwd
##	159	toyota	gas	std	four	sedan	fwd
##	160	toyota	gas	std	two	sedan	rwd
##	161	toyota	gas	std	two	hatchback	rwd

## 162	toyota	gas	std	two	sedan	rwd
## 163	toyota	gas	std	two	hatchback	rwd
## 164 rwd	toyota	gas	std	two	hardtop	
## 165	toyota	gas	std	two	hardtop	rwd
## 166	toyota	gas	std	two	hatchback	rwd
## 167	toyota	gas	std	two	hardtop	rwd
## 168	toyota	gas	std	two	hatchback	rwd
## 169	toyota	gas	std	two co	onvertible	rwd
## 170	toyota	gas	std	four	sedan	fwd
## 171	toyota	diesel	turbo	four	sedan	fwd
## 172	toyota	gas	std	four	hatchback	fwd
## 173	toyota	gas	std	four	sedan	fwd
## 174	toyota	gas	std	four	hatchback	fwd
## 175	toyota	gas	std	two	hatchback	rwd
## 176	toyota	gas	std	two	hatchback	rwd
## 177	toyota	gas	std	four	sedan	rwd
## 178	toyota	gas	std	four	wagon	rwd
## 179	volkswagen	diesel	std	two	sedan	fwd
## 180 fwd	volkswagen	gas	std		two	sedan
## 181	volkswagen	diesel	std	four	sedan	fwd
## 182 fwd	volkswagen	gas	std		four s	edan
## 183 fwd	volkswagen	gas	std		four s	edan
## 184	volkswagen	diesel	turbo	four	sedan	fwd
## 185 fwd	volkswagen	gas	std		four s	edan

## 186 fwd	volkswagen	٤	gas	std	two conver	tible
## 187 fwd	volkswagen	٤	gas	std	two hatc	hback
## 188 fwd	volkswagen	٤	gas	std	four	sedan
## 189	volkswagen	diesel	turbo	four	seda	n fwd
## 190 fwd	volkswagen	٤	gas	std	four	wagon
## 191	volvo	gas	std	four	seda	n rwd
## 192	volvo	gas	std	four	wago	n rwd
## 193	volvo	gas	std	four	seda	n rwd
## 194	volvo	gas	std	four	wago	n rwd
## 195	volvo	gas	turbo	four	seda	n rwd
## 196	volvo	gas	turbo	four	wagon	rwd
## 197	volvo	gas	std	four	seda	n rwd
## 198	volvo	gas	turbo	four	seda	n rwd
## 199	volvo	gas	std	four	seda	n rwd
## 200	volvo diesel	L t	turbo	four	sedan	rwd
## 201	volvo	gas	turbo	four	seda	n rwd
## engin	e.location wh	neel.bas	se length w	idth height	curb.weight	engine.type
## 1	front	8	88.6 168.8	64.1 48.	8 25	48 dohc
## 2	front	8	88.6 168.8	64.1 48.	8 25	48 dohc
## 3	front	9	94.5 171.2	65.5 52.	4 28	ohcv
## 4	front	ğ	99.8 176.6	66.2 54.	3 23	ohc ohc
## 5	front	ğ	99.4 176.6	66.4 54.	3 28	ohc ohc
## 6	front	9	99.8 177.3	66.3 53.	1 25	07 ohc
## 7 ohc	front	1	105.8 192.	7 71.4 55	5.7 2	844

## 8 ohc	front	105.8	192.7	71.4	55.7	2954	
## 9 ohc	front	105.8	192.7	71.4	55.9	3086	
## 10 ohc	front	101.2	176.8	64.8	54.3	2395	
## 11 ohc	front	101.2	176.8	64.8	54.3	2395	
## 12 ohc	front	101.2	176.8	64.8	54.3	2710	
## 13 ohc	front	101.2	176.8	64.8	54.3	2765	
## 14 ohc	front	103.5	189.0	66.9	55.7	3055	
## 15 ohc	front	103.5	189.0	66.9	55.7	3230	
## 16 ohc	front	103.5	193.8	67.9	53.7	3380	
## 17 ohc	front	110.0	197.0	70.9	56.3	3505	
## 18 1	front	88.4	141.1	60.3	53.2	1488	
## 19	front	94.5	155.9	63.6	52.0	1874	ohc
## 20	front	94.5	158.8	63.6	52.0	1909	ohc
## 21	front	93.7	157.3	63.8	50.8	1876	ohc
## 22	front	93.7	157.3	63.8	50.8	1876	ohc
## 23	front	93.7	157.3	63.8	50.8	2128	ohc
## 24	front	93.7	157.3	63.8	50.6	1967	ohc
## 25	front	93.7	157.3	63.8	50.6	1989	ohc
## 26	front	93.7	157.3	63.8	50.6	1989	ohc
## 27	front	93.7	157.3	63.8	50.6	2191	ohc

## 28 ohc	front	103.3	174.6	64.6	59.8	2535	
## 29	front	95.9	173.2	66.3	50.2	2811	ohc
## 30	front	86.6	144.6	63.9	50.8	1713	ohc
## 31	front	86.6	144.6	63.9	50.8	1819	ohc
## 32	front	93.7	150.0	64.0	52.6	1837	ohc
## 33	front	93.7	150.0	64.0	52.6	1940	ohc
## 34	front	93.7	150.0	64.0	52.6	1956	ohc
## 35	front	96.5	163.4	64.0	54.5	2010	ohc
## 36	front	96.5	157.1	63.9	58.3	2024	ohc
## 37	front	96.5	167.5	65.2	53.3	2236	ohc
## 38	front	96.5	167.5	65.2	53.3	2289	ohc
## 39	front	96.5	175.4	65.2	54.1	2304	ohc
## 40	front	96.5	175.4	62.5	54.1	2372	ohc
## 41	front	96.5	175.4	65.2	54.1	2465	ohc
## 42	front	96.5	169.1	66.0	51.0	2293	ohc
## 43	front	94.3	170.7	61.8	53.5	2337	ohc
## 44	front	96.0	172.6	65.2	51.4	2734	ohc
## 45	front	113.0	199.6	69.6	52.8	4066	dohc
## 46	front	113.0	199.6	69.6	52.8	4066	dohc
## 47	front	102.0	191.7	70.6	47.8	3950	ohcv
## 48	front	93.1	159.1	64.2	54.1	1890	ohc
## 49	front	93.1	159.1	64.2	54.1	1900	ohc
## 50	front	93.1	159.1	64.2	54.1	1905	ohc
## 51	front	93.1	166.8	64.2	54.1	1945	ohc
## 52	front	93.1	166.8	64.2	54.1	1950	ohc
## 53	front	95.3	169.0	65.7	49.6	2380	rotor
## 54	front	95.3	169.0	65.7	49.6	2380	rotor

#	t# 55	front	95.3	169.0	65.7	49.6	2385	rotor
ŧ	! # 56	front	95.3	169.0	65.7	49.6	2500	rotor
#	## 5 7	front	98.8	177.8	66.5	53.7	2385	ohc
ŧ	! # 58	front	98.8	177.8	66.5	55.5	2410	ohc
ŧ	## 59	front	98.8	177.8	66.5	53.7	2385	ohc
ŧ	## 60	front	98.8	177.8	66.5	55.5	2410	ohc
ŧ	## 61	front	98.8	177.8	66.5	55.5	2443	ohc
ŧ	## 62	front	98.8	177.8	66.5	55.5	2425	ohc
	## 63 ohc	front	104.9	175.0	66.1	54.4	2670	
	## 64 ohc	front	104.9	175.0	66.1	54.4	2700	
	## 65 bhc	front	110.0	190.9	70.3	56.5	3515	
	## 66 ohc	front	110.0	190.9	70.3	58.7	3750	
	## 67 ohc	front	106.7	187.5	70.3	54.9	3495	
	## 68 ohc	front	115.6	202.6	71.7	56.3	3770	
ŧ	! # 69	front	115.6	202.6	71.7	56.5	3740	ohcv
ŧ	t# 70	front	96.6	180.3	70.5	50.8	3685	ohcv
ŧ	# 71	front	120.9	208.1	71.7	56.7	3900	ohcv
ŧ	# 72	front	112.0	199.2	72.0	55.4	3715	ohcv
	## 73 ohc	front	102.7	178.4	68.0	54.8	2910	
#	‡ # 74	front	93.7	157.3	64.4	50.8	1918	ohc
#	# 75	front	93.7	157.3	64.4	50.8	1944	ohc
#	# 76	front	93.7	157.3	64.4	50.8	2004	ohc
#	# 77	front	93.0	157.3	63.8	50.8	2145	ohc

##	78	front	96.3	173.0	65.4	49.4	2370	ohc
##	79	front	96.3	173.0	65.4	49.4	2328	ohc
##	80	front	95.9	173.2	66.3	50.2	2833	ohc
##	81	front	95.9	173.2	66.3	50.2	2921	ohc
##	82	front	95.9	173.2	66.3	50.2	2926	ohc
##	83	front	96.3	172.4	65.4	51.6	2365	ohc
##	84	front	96.3	172.4	65.4	51.6	2405	ohc
##	85	front	96.3	172.4	65.4	51.6	2403	ohc
##	86	front	96.3	172.4	65.4	51.6	2403	ohc
##	87	front	94.5	165.3	63.8	54.5	1889	ohc
##	88	front	94.5	165.3	63.8	54.5	2017	ohc
##	89	front	94.5	165.3	63.8	54.5	1918	ohc
##	90	front	94.5	165.3	63.8	54.5	1938	ohc
##	91	front	94.5	170.2	63.8	53.5	2024	ohc
##	92	front	94.5	165.3	63.8	54.5	1951	ohc
##	93	front	94.5	165.6	63.8	53.3	2028	ohc
##	94	front	94.5	165.3	63.8	54.5	1971	ohc
##	95	front	94.5	170.2	63.8	53.5	2037	ohc
##	96	front	95.1	162.4	63.8	53.3	2008	ohc
##	97	front	97.2	173.4	65.2	54.7	2324	ohc
##	98	front	97.2	173.4	65.2	54.7	2302	ohc
##	99	front	100.4	181.7	66.5	55.1	3095	ohcv
##	100	front	100.4	184.6	66.5	56.1	3296	ohcv
##	101	front	100.4	184.6	66.5	55.1	3060	ohcv
##	102	front	91.3	170.7	67.9	49.7	3071	ohcv
##	103	front	91.3	170.7	67.9	49.7	3139	ohcv
##	104	front	99.2	178.5	67.9	49.7	3139	ohcv

## 105 1	front	107.9	186.7	68.4	56.7	3020	
## 106 1	front	107.9	186.7	68.4	56.7	3197	
## 107 1	front	114.2	198.9	68.4	58.7	3230	
## 108 1	front	114.2	198.9	68.4	58.7	3430	
## 109 1	front	107.9	186.7	68.4	56.7	3075	
## 110 1	front	107.9	186.7	68.4	56.7	3252	
## 111 1	front	114.2	198.9	68.4	56.7	3285	
## 112 1	front	114.2	198.9	68.4	58.7	3485	
## 113 1	front	107.9	186.7	68.4	56.7	3075	
## 114 1	front	107.9	186.7	68.4	56.7	3252	
## 115 1	front	108.0	186.7	68.3	56.0	3130	
## 116	front	93.7	157.3	63.8	50.8	1918	ohc
## 117	front	93.7	157.3	63.8	50.8	2128	ohc
## 118	front	93.7	157.3	63.8	50.6	1967	ohc
## 119	front	93.7	167.3	63.8	50.8	1989	ohc
## 120	front	93.7	167.3	63.8	50.8	2191	ohc
## 121 ohc	front	103.3	174.6	64.6	59.8	2535	
## 122	front	95.9	173.2	66.3	50.2	2818	ohc
## 123	front	94.5	168.9	68.3	50.2	2778	ohc
## 124	rear	89.5	168.9	65.0	51.6	2756	ohcf

##	125	rear	89.5	168.9	65.0	51.6	2756	ohcf
##	126	rear	89.5	168.9	65.0	51.6	2800	ohcf
##	127	front	96.1	181.5	66.5	55.2	2579	ohc
##	128	front	96.1	176.8	66.6	50.5	2460	ohc
##	129	front	99.1	186.6	66.5	56.1	2658	ohc
##	130	front	99.1	186.6	66.5	56.1	2695	ohc
##	131	front	99.1	186.6	66.5	56.1	2707	ohc
##	132	front	99.1	186.6	66.5	56.1	2758	ohc
##	133	front	99.1	186.6	66.5	56.1	2808	dohc
##	134	front	99.1	186.6	66.5	56.1	2847	dohc
##	135	front	93.7	156.9	63.4	53.7	2050	ohcf
##	136	front	93.7	157.9	63.6	53.7	2120	ohcf
##	137	front	93.3	157.3	63.8	55.7	2240	ohcf
##	138	front	97.2	172.0	65.4	52.5	2145	ohcf
##	139	front	97.2	172.0	65.4	52.5	2190	ohcf
##	140	front	97.2	172.0	65.4	52.5	2340	ohcf
##	141	front	97.0	172.0	65.4	54.3	2385	ohcf
##	142	front	97.0	172.0	65.4	54.3	2510	ohcf
##	143	front	97.0	173.5	65.4	53.0	2290	ohcf
##	144	front	97.0	173.5	65.4	53.0	2455	ohcf
##	145	front	96.9	173.6	65.4	54.9	2420	ohcf
##	146	front	96.9	173.6	65.4	54.9	2650	ohcf
##	147	front	95.7	158.7	63.6	54.5	1985	ohc
##	148	front	95.7	158.7	63.6	54.5	2040	ohc
##	149	front	95.7	158.7	63.6	54.5	2015	ohc
##	150	front	95.7	169.7	63.6	59.1	2280	ohc
##	151	front	95.7	169.7	63.6	59.1	2290	ohc

## 152	front	95.7	169.7	63.6	59.1	3110	ohc
## 153	front	95.7	166.3	64.4	53.0	2081	ohc
## 154	front	95.7	166.3	64.4	52.8	2109	ohc
## 155	front	95.7	166.3	64.4	53.0	2275	ohc
## 156	front	95.7	166.3	64.4	52.8	2275	ohc
## 157	front	95.7	166.3	64.4	53.0	2094	ohc
## 158	front	95.7	166.3	64.4	52.8	2122	ohc
## 159	front	95.7	166.3	64.4	52.8	2140	ohc
## 160	front	94.5	168.7	64.0	52.6	2169	ohc
## 161	front	94.5	168.7	64.0	52.6	2204	ohc
## 162	front	94.5	168.7	64.0	52.6	2265	dohc
## 163	front	94.5	168.7	64.0	52.6	2300	dohc
## 164	front	98.4	176.2	65.6	52.0	2540	ohc
## 165	front	98.4	176.2	65.6	52.0	2536	ohc
## 166	front	98.4	176.2	65.6	52.0	2551	ohc
## 167	front	98.4	176.2	65.6	52.0	2679	ohc
## 168	front	98.4	176.2	65.6	52.0	2714	ohc
## 169	front	98.4	176.2	65.6	53.0	2975	ohc
## 170 ohc	front	102.4	175.6	66.5	54.9	2326	
## 171 ohc	front	102.4	175.6	66.5	54.9	2480	
## 172 ohc	front	102.4	175.6	66.5	53.9	2414	
## 173 ohc	front	102.4	175.6	66.5	54.9	2414	
## 174 ohc	front	102.4	175.6	66.5	53.9	2458	
## 175	front	102.9	183.5	67.7	52.0	2976	dohc
## 176	front	102.9	183.5	67.7	52.0	3016	dohc

## 177	front	104.5	187.8	66.5	54.1	3131	dohc
## 178	front	104.5	187.8	66.5	54.1	3151	dohc
## 179	front	97.3	171.7	65.5	55.7	2261	ohc
## 180	front	97.3	171.7	65.5	55.7	2209	ohc
## 181	front	97.3	171.7	65.5	55.7	2264	ohc
## 182	front	97.3	171.7	65.5	55.7	2212	ohc
## 183	front	97.3	171.7	65.5	55.7	2275	ohc
## 184	front	97.3	171.7	65.5	55.7	2319	ohc
## 185	front	97.3	171.7	65.5	55.7	2300	ohc
## 186	front	94.5	159.3	64.2	55.6	2254	ohc
## 187	front	94.5	165.7	64.0	51.4	2221	ohc
## 188 ohc	front	100.4	180.2	66.9	55.1	2661	
## 189 ohc	front	100.4	180.2	66.9	55.1	2579	
## 190 ohc	front	100.4	183.1	66.9	55.1	2563	
## 191 ohc	front	104.3	188.8	67.2	56.2	2912	
## 192 ohc	front	104.3	188.8	67.2	57.5	3034	
## 193 ohc	front	104.3	188.8	67.2	56.2	2935	
## 194 ohc	front	104.3	188.8	67.2	57.5	3042	
## 195 ohc	front	104.3	188.8	67.2	56.2	3045	
## 196 ohc	front	104.3	188.8	67.2	57.5	3157	
## 197 ohc	front	109.1	188.8	68.9	55.5	2952	

## 198 ohc	front	109.1	188.8	68.8	55.5	3049	
## 199	front	109.1	188.8	68.9	55.5	3012	ohcv
## 200 ohc	front	109.1	188.8	68.9	55.5	3217	
## 201 ohc	front	109.1	188.8	68.9	55.5	3062	
## num.of.cyli	nders engine	e.size f	uel.sys	tem bor	e stroke	compression	.ratio
## 1	four	130	m	pfi 3.4	7 2.68		9.0
## 2	four	130	m	pfi 3.4	7 2.68		9.0
## 3	six	152	m	pfi 2.6	8 3.47		9.0
## 4	four	109	m	pfi 3.1	9 3.40		10.0
## 5	five	136	m	pfi 3.1	9 3.40		8.0
## 6	five	136	m	pfi 3.1	9 3.40		8.5
## 7	five	136	m	pfi 3.1	9 3.40		8.5
## 8	five	136	m	pfi 3.1	9 3.40		8.5
## 9	five	131	m	pfi 3.1	3 3.40		8.3
## 10	four	108	m	pfi 3.5	0 2.80		8.8
## 11	four	108	m	pfi 3.5	0 2.80		8.8
## 12	six	164	m	pfi 3.3	1 3.19		9.0
## 13	six	164	m	pfi 3.3	1 3.19		9.0
## 14 9.0	six		164	mp	fi 3.31	3.19	
## 15	six	209	m	pfi 3.6	2 3.39		8.0
## 16	six	209	m	pfi 3.6	2 3.39		8.0
## 17	six	209	m	pfi 3.6	2 3.39		8.0
## 18	three	61	2	bbl 2.9	1 3.03		9.5
## 19	four	90	2	bbl 3.0	3 3.11		9.6
## 20	four	90	2	bbl 3.0	3 3.11		9.6

##	21	four	90		2bbl 2	2.97	3.23		9.4
##	22	four	90	:	2bbl 2	2.97	3.23		9.4
##	23	four	98	I	mpfi 3	3.03	3.39		7.6
##	24	four	90	,	2bbl 2	2.97	3.23		9.4
##	25	four	90		2bbl 2	2.97	3.23		9.4
##	26	four	90		2bbl 2	2.97	3.23		9.4
##	27	four	98	I	mpfi 3	3.03	3.39		7.6
##	28	four	122	,	2bbl 3	3.34	3.46		8.5
##	29	four	156	I	mfi 3.	.60 3	3.90		7.0
##	30	four	92 1b	bl	2.91	3.41		9.6	
##	31	four	92		1bbl 2	2.91	3.41		9.2
##	32	four	79		1bbl 2	2.91	3.07		10.1
##	33	four	92		1bbl 2	2.91	3.41		9.2
##	34	four	92		1bbl 2	2.91	3.41		9.2
##	35	four	92		1bbl 2	2.91	3.41		9.2
##	36	four	92		1bbl 2	2.92	3.41		9.2
##	37	four	110	:	1bbl 3	3.15	3.58		9.0
##	38	four	110	:	1bbl 3	3.15	3.58		9.0
##	39	four	110	:	1bbl 3	3.15	3.58		9.0
##	40	four	110		1bbl	3.15	3.58		9.0
##	41	four	110	ı	mpfi 3	3.15	3.58		9.0
##	42	four	110		2bbl 3	3.15	3.58		9.1
##	43	four	111		2bbl 3	3.31	3.23		8.5
##	44	four	119		spfi 3	3.43	3.23		9.2
##	45	six	258	I	mpfi 3	3.63	4.17		8.1
##	46	six	258	ı	mpfi 3	3.63	4.17		8.1
##	47	twelve	326	ı	mpfi 3	3.54	2.76		11.5

## 48	four	91	2bbl 3.03 3.15	9.0
## 49	four	91	2bbl 3.03 3.15	9.0
## 50	four	91	2bbl 3.03 3.15	9.0
## 51	four	91	2bbl 3.03 3.15	9.0
## 52	four	91	2bbl 3.08 3.15	9.0
## 53	two	70	4bbl 0.00 0.00	9.4
## 54	two	70	4bbl 0.00 0.00	9.4
## 55	two	70	4bbl 0.00 0.00	9.4
## 56	two	80	mpfi 0.00 0.00	9.4
## 57	four	122	2bbl 3.39 3.39	8.6
## 58	four	122	2bbl 3.39 3.39	8.6
## 59	four	122	2bbl 3.39 3.39	8.6
## 60	four	122	2bbl 3.39 3.39	8.6
## 61	four	122	idi 3.39 3.39	22.7
## 01				
## 62	four	122	2bb1 3.39 3.39	8.6
			2bbl 3.39 3.39 mpfi 3.76 3.16	8.6
## 62 ## 63	four	122		22.0
## 62 ## 63 8.0	four four	122	mpfi 3.76 3.16	
## 62 ## 63 8.0 ## 64	four four four	122 140 134	mpfi 3.76 3.16 idi 3.43 3.64	22.0
## 62 ## 63 8.0 ## 64 ## 65	four four four five	122 140 134 183	mpfi 3.76 3.16 idi 3.43 3.64 idi 3.58 3.64	22.0 21.5
## 62 ## 63 8.0 ## 64 ## 65 ## 66	four four five five	122 140 134 183 183	mpfi 3.76 3.16 idi 3.43 3.64 idi 3.58 3.64 idi 3.58 3.64	22.0 21.5 21.5
## 62 ## 63 8.0 ## 64 ## 65 ## 66 ## 67	four four five five five	122 140 134 183 183 183	mpfi 3.76 3.16 idi 3.43 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64	22.0 21.5 21.5 21.5
## 62 ## 63 8.0 ## 64 ## 65 ## 66 ## 67 ## 68	four four five five five five five	122 140 134 183 183 183 183	mpfi 3.76 3.16 idi 3.43 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64	22.0 21.5 21.5 21.5 21.5
## 62 ## 63 8.0 ## 64 ## 65 ## 66 ## 67 ## 68 ## 69	four four four five five five five five	122 140 134 183 183 183 183 234	mpfi 3.76 3.16 idi 3.43 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64 mpfi 3.46 3.10	22.0 21.5 21.5 21.5 21.5 8.3
## 62 ## 63 8.0 ## 64 ## 65 ## 66 ## 67 ## 68 ## 69 ## 70	four four four five five five five eight eight	122 140 134 183 183 183 183 234 234	mpfi 3.76 3.16 idi 3.43 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64 mpfi 3.46 3.10 mpfi 3.46 3.10	22.0 21.5 21.5 21.5 21.5 8.3 8.3
## 62 ## 63 8.0 ## 64 ## 65 ## 66 ## 67 ## 68 ## 69 ## 70 ## 71	four four four five five five eight eight eight	122 140 134 183 183 183 183 234 234 308	mpfi 3.76 3.16 idi 3.43 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64 mpfi 3.46 3.10 mpfi 3.46 3.10 mpfi 3.80 3.35	22.0 21.5 21.5 21.5 21.5 8.3 8.3 8.0
## 62 ## 63 8.0 ## 64 ## 65 ## 66 ## 67 ## 68 ## 69 ## 70 ## 71 ## 72	four four four five five five five eight eight eight eight	122 140 134 183 183 183 234 234 234 308 304	mpfi 3.76 3.16 idi 3.43 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64 idi 3.58 3.64 mpfi 3.46 3.10 mpfi 3.46 3.10 mpfi 3.80 3.35 mpfi 3.80 3.35	22.0 21.5 21.5 21.5 21.5 8.3 8.3 8.0 8.0

##	75	four	92	2bbl 2.97	3.23	9.4
##	76	four	92	2bbl 2.97	3.23	9.4
##	77	four	98	spdi 3.03	3.39	7.6
##	78	four	110	spdi 3.17	3.46	7.5
##	79	four	122	2bbl 3.35	3.46	8.5
##	80	four	156	spdi 3.58	3.86	7.0
##	81	four	156	spdi 3.59	3.86	7.0
##	82	four	156	spdi 3.59	3.86	7.0
##	83	four	122	2bbl 3.35	3.46	8.5
##	84	four	122	2bbl 3.35	3.46	8.5
##	85	four	110	spdi 3.17	3.46	7.5
##	86	four	110	spdi 3.17	3.46	7.5
##	87	four	97	2bbl 3.15	3.29	9.4
##	88	four	103	idi 2.99	3.47	21.9
	88 89	four	97	idi 2.99 3 2bbl 3.15	3.47	21.99.4
##						
## ##	89	four	97	2bbl 3.15	3.29	9.4
## ## ##	89 90	four four	97 97	2bbl 3.15 2bbl 3.15	3.29 3.29	9.4
## ## ##	89 90 91	four four four	97 97 97	2bbl 3.15 2bbl 3.15 2bbl 3.15	3.29 3.29 3.29	9.4 9.4 9.4
## ## ## ##	89909192	four four four	97 97 97 97	2bbl 3.15 2bbl 3.15 2bbl 3.15 2bbl 3.15	3.29 3.29 3.29 3.29	9.4 9.4 9.4 9.4
## ## ## ##	8990919293	four four four four	97 97 97 97	2bbl 3.15 2bbl 3.15 2bbl 3.15 2bbl 3.15 2bbl 3.15	3.29 3.29 3.29 3.29 3.29	9.4 9.4 9.4 9.4
## ## ## ## ##	899091929394	four four four four four	97 97 97 97 97	2bbl 3.15 2bbl 3.15 2bbl 3.15 2bbl 3.15 2bbl 3.15 2bbl 3.15	3.29 3.29 3.29 3.29 3.29	9.4 9.4 9.4 9.4 9.4
## ## ## ## ##	89909192939495	four four four four four four	97 97 97 97 97 97	2bbl 3.15	3.29 3.29 3.29 3.29 3.29 3.29 3.29	9.4 9.4 9.4 9.4 9.4 9.4
## ## ## ## ## ##	89 90 91 92 93 94 95	four four four four four four four four	97 97 97 97 97 97 97	2bbl 3.15	3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29	9.4 9.4 9.4 9.4 9.4 9.4
## ## ## ## ## ##	89 90 91 92 93 94 95 96	four four four four four four four four	97 97 97 97 97 97 97 120	2bbl 3.15 2bbl 3.35	3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29	9.4 9.4 9.4 9.4 9.4 9.4 9.4 8.5
## ## ## ## ## ##	89 90 91 92 93 94 95 96 97 98	four four four four four four four four	97 97 97 97 97 97 97 120 120	2bbl 3.15 2bbl 3.33 2bbl 3.33	3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.47 3.47	9.4 9.4 9.4 9.4 9.4 9.4 9.4 8.5 8.5
## ## ## ## ## ## ##	89 90 91 92 93 94 95 96 97 98	four four four four four four four four	97 97 97 97 97 97 97 120 120 181	2bbl 3.15 2bbl 3.33 2bbl 3.33 mpfi 3.43	3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29	9.4 9.4 9.4 9.4 9.4 9.4 9.4 8.5 8.5

##	102	six	181	mpfi 3.43	3.27	9.0
##	103	six	181	mpfi 3.43	3.27	7.8
##	104	six	181	mpfi 3.43	3.27	9.0
##	105	four	120	mpfi 3.46	3.19	8.4
##	106	four	152	idi 3.70	3.52	21.0
##	107	four	120	mpfi 3.46	3.19	8.4
##	108	four	152	idi 3.70	3.52	21.0
##	109	four	120	mpfi 3.46	2.19	8.4
##	110	four	152	idi 3.70	3.52	21.0
##	111	four	120	mpfi 3.46	2.19	8.4
## 21	112 .0	four	152	idi 3	.70 3.52	
##	113	four	120	mpfi 3.46	3.19	8.4
##	114	four	152	idi 3.70	3.52	21.0
##	115	four	134	mpfi 3.61	3.21	7.0
##	116	four	90	2bbl 2.97	3.23	9.4
##	117	four	98	spdi 3.03	3.39	7.6
##	118	four	90	2bbl 2.97	3.23	9.4
##	119	four	90	2bbl 2.97	3.23	9.4
##	120	four	98	2bbl 2.97	3.23	9.4
##	121	four	122	2bbl 3.35	3.46	8.5
##	122	four	156	spdi 3.59	3.86	7.0
##	123	four	151	mpfi 3.94	3.11	9.5
##	124	six	194	mpfi 3.74	2.90	9.5
##	125	six	194	mpfi 3.74	2.90	9.5
##	126	six	194	mpfi 3.74	2.90	9.5
##	127	four	132	mpfi 3.46	3.90	8.7
##	128	four	132	mpfi 3.46	3.90	8.7

##	129	four	121	mpfi 3.54	3.07	9.3
##	130	four	121	mpfi 3.54	3.07	9.3
##	131	four	121	mpfi 2.54	2.07	9.3
##	132	four	121	mpfi 3.54	3.07	9.3
##	133	four	121	mpfi 3.54	3.07	9.0
##	134	four	121	mpfi 3.54	3.07	9.0
##	135	four	97	2bbl 3.62	2.36	9.0
##	136	four	108	2bbl 3.62	2.64	8.7
##	137	four	108	2bbl 3.62	2.64	8.7
##	138	four	108	2bbl 3.62	2.64	9.5
##	139	four	108	2bbl 3.62	2.64	9.5
##	140	four	108	mpfi 3.62	2.64	9.0
##	141	four	108	2bbl 3.62	2.64	9.0
##	142	four	108	mpfi 3.62	2.64	7.7
##	143	four	108	2bbl 3.62	2.64	9.0
##	144	four	108	mpfi 3.62	2.64	9.0
##	145	four	108	2bbl 3.62	2.64	9.0
##	146	four	108	mpfi 3.62	2.64	7.7
##	147	four	92	2bbl 3.05	3.03	9.0
##	148	four	92	2bbl 3.05	3.03	9.0
##	149	four	92	2bbl 3.05	3.03	9.0
##	150	four	92	2bbl 3.05	3.03	9.0
##	151	four	92	2bbl 3.05	3.03	9.0
##	152	four	92	2bbl 3.05	3.03	9.0
##	153	four	98	2bbl 3.19	3.03	9.0
##	154	four	98	2bbl 3.19	3.03	9.0
##	155	four	110	idi 3.27	3.35	22.5

## 156	four	110	idi 3.27 3.35	22.5
## 157	four	98	2bbl 3.19 3.03	9.0
## 158	four	98	2bbl 3.19 3.03	9.0
## 159	four	98	2bbl 3.19 3.03	9.0
## 160	four	98	2bbl 3.19 3.03	9.0
## 161	four	98	2bbl 3.19 3.03	9.0
## 162	four	98	mpfi 3.24 3.08	9.4
## 163	four	98	mpfi 3.24 3.08	9.4
## 164 9.3	four	146	mpfi 3.62 3.50	
## 165	four	146	mpfi 3.62 3.50	9.3
## 166	four	146	mpfi 3.62 3.50	9.3
## 167	four	146	mpfi 3.62 3.50	9.3
## 168	four	146	mpfi 3.62 3.50	9.3
## 169	four	146	mpfi 3.62 3.50	9.3
## 170	four	122	mpfi 3.31 3.54	8.7
## 171	four	110	idi 3.27 3.35	22.5
## 172	four	122	mpfi 3.31 3.54	8.7
## 173	four	122	mpfi 3.31 3.54	8.7
## 174	four	122	mpfi 3.31 3.54	8.7
## 175	six	171	mpfi 3.27 3.35	9.3
## 176	six	171	mpfi 3.27 3.35	9.3
## 177	six	171	mpfi 3.27 3.35	9.2
## 178	six	161	mpfi 3.27 3.35	9.2
## 179	four	97	idi 3.01 3.40	23.0
## 180	four	109	mpfi 3.19 3.40	9.0
## 181	four	97	idi 3.01 3.40	23.0
## 182	four	109	mpfi 3.19 3.40	9.0

##	183	four	109	mpfi 3.19	3.40	9.0
##	184	four	97	idi 3.01	3.40	23.0
##	185	four	109	mpfi 3.19	3.40	10.0
##	186	four	109	mpfi 3.19	3.40	8.5
##	187	four	109	mpfi 3.19	3.40	8.5
##	188	five	136	mpfi 3.19	3.40	8.5
##	189	four	97	idi 3.01	3.40	23.0
##	190	four	109	mpfi 3.19	3.40	9.0
##	191	four	141	mpfi 3.78	3.15	9.5
##	192	four	141	mpfi 3.78	3.15	9.5
##	193	four	141	mpfi 3.78	3.15	9.5
##	194	four	141	mpfi 3.78	3.15	9.5
##	195	four	130	mpfi 3.62	3.15	7.5
##	196	four	130	mpfi 3.62	3.15	7.5
##	197	four	141	mpfi 3.78	3.15	9.5
##	198	four	141	mpfi 3.78	3.15	8.7
##	199	six	173	mpfi 3.58	2.87	8.8
##	200	six	145	idi 3.01	3.40	23.0
##	201	four	141	mpfi 3.78	3.15	9.5
##	horsepower	peak.rom cit	y.mpg highwa	ay.mpg price	carclass	
##	1 111	5000	21	27 13495	luxury	
##	2 111	5000	21	27 16500	luxury	
##	3 154	5000	19	26 16500	luxury	
##	4 102	5500	24	30 13950	luxury	
##	5 115	5500	18 2	22 17450 1	uxury	
##	6 110	5500	19	25 15250	luxury	
##	7 110	5500	19	25 17710	luxury	

##	8	110	5500	19	25	18920	luxury
##	9	140	5500	17	20	23875	luxury
##	10	101	5800	23	29	16430	luxury
##	11	101	5800	23	29	16925	luxury
##	12	121	4250	21	28	20970	luxury
##	13	121	4250	21	28	21105	luxury
##	14	121	4250	20	25	24565	luxury
##	15	182	5400	16	22	30760	luxury
##	16	182	5400	16	22	41315	luxury
##	17	182	5400	15	20	36880	luxury
##	18	48	5100	47	53	5151	economy
##	19	70	5400	38	43	6295	economy
##	20	70	5400	38	43	6575	economy
##	21	68	5500	37	41	5572	economy
##	22	68	5500	31	38	6377	economy
##	23	102	5500	24	30	7957	economy
##	24	68	5500	31	38	6229	economy
##	25	68	5500	31	38	6692	economy
##	26	68	5500	31	38	7609	economy
##	27	102	5500	24	30	8558	economy
##	28	88	5000	24	30	8921	economy
##	29	145	5000	19	24	12964	economy
##	30	58	4800	49	54	6479	economy
##	31	76	6000	31	38	6855	economy
##	32	60	5500	38	42	5399	economy
##	33	76	6000	30	34	6529	economy
##	34	76	6000	30	34	7129	economy

## 35	76	6000	30	34 7295	economy
## 36	76	6000	30	34 7295	economy
## 37	86	5800	27	33 7895	economy
## 38	86	5 5800	27	33	9095 economy
## 39	86	5800	27	33 8845	economy
## 40	86	5800	27	33 10295	economy
## 41	101	5800	24	28 12945	economy
## 42	100	5500	25	31 10345	economy
## 43	78	4800	24	29 6785	economy
## 44	90	5000	24	29 11048	economy
## 45	176	4750	15	19 32250	luxury
## 46	176	4750	15	19 35550	luxury
## 47	262	5000	13	17 36000	luxury
## 48	68	5000	30	31 5195	economy
## 49	68	5000	31	38 6095	economy
## 50	68	5000	31	38 6795	economy
## 51	68	5000	31	38 6695	economy
## 52	68	5000	31	38 7395	economy
## 53	101	6000	17	23 10945	economy
## 54	101	6000	17	23 11845	economy
## 55	101	6000	17	23 13645	luxury
## 56	135	6000	16	23 15645	luxury
## 57	84	4800	26	32 8845	economy
## 58	84	4800	26	32 8495	economy
## 59	84	4800	26	32 10595	economy
## 60	84	4800	26	32 10245	economy
## 61	64	4650	36	42 10795	economy

		_			
	62	84	4800	26	32 11245 economy
##	63	120	5000	19	27 18280 luxury
##	64	72	4200	31	39 18344 luxury
##	65	123	4350	22	25 25552 luxury
##	66	123	4350	22	25 28248 luxury
##	67	123	4350	22	25 28176 luxury
##	68	123	4350	22	25 31600 luxury
##	69	155	4750	16	18 34184 luxury
##	70	155	4750	16	18 35056 luxury
##	71	184	4500	14	16 40960 luxury
##	72	184	4500	14	16 45400 luxury
##	73	175	5000	19	24 16503 luxury
##	74	68	5500	37	41 5389 economy
##	75	68	5500	31	38 6189 economy
##	76	68	5500	31	38 6669 economy
##	77	102	5500	24	30 7689 economy
##	78	116	5500	23	30 9959 economy
##	79	88	5000	25	32 8499 economy
##	80	145	5000	19	24 12629 economy
##	81	145	5000	19	24 14869 luxury
##	82	145	5000	19	24 14489 luxury
##	83	88	5000	25	32 6989 economy
##	84	88	5000	25	32 8189 economy
##	85	116	5500	23	30 9279 economy
##	86	116	5500	23	30 9279 economy
##	87	69	5200	31	37 5499 economy
##	88	55	4800	45	50 7099 economy

##	89	69	5200	31	37 6649 economy
##	90	69	5200	31	37 6849 economy
##	91	69	5200	31	37 7349 economy
##	92	69	5200	31	37 7299 economy
##	93	69	5200	31	37 7799 economy
##	94	69	5200	31	37 7499 economy
##	95	69	5200	31	37 7999 economy
##	96	69	5200	31	37 8249 economy
##	97	97	5200	27	34 8949 economy
##	98	97	5200	27	34 9549 economy
##	99	152	5200	17	22 13499 luxury
##	100	152	5200	17	22 14399 luxury
##	101	152	5200	19	25 13499 luxury
##	102	160	5200	19	25 17199 luxury
##	103	200	5200	17	23 19699 luxury
##	104	160	5200	19	25 18399 luxury
##	105	97	5000	19	24 11900 economy
##	106	95	4150	28	33 13200 economy
##	107	97	5000	19	24 12440 economy
##	108	95	4150	25	25 13860 luxury
##	109	95	5000	19	24 15580 luxury
##	110	95	4150	28	33 16900 luxury
##	111	95	5000	19	24 16695 luxury
##	112	95	4150	25	25 17075 luxury
##	113	97	5000	19	24 16630 luxury
##	114	95	4150	28	33 17950 luxury
##	115	142	5600	18	24 18150 luxury

## 117	##	116	68	5500	37	41 5572 economy
## 119 68 5500 31 38 6692 economy ## 120 68 5500 31 38 7609 economy ## 121 88 5000 24 30 8921 economy ## 122 145 5000 19 24 12764 economy ## 123 143 5500 19 27 22018 luxury ## 124 207 5900 17 25 32528 luxury ## 125 207 5900 17 25 34028 luxury ## 126 207 5900 17 25 37028 luxury ## 127 100 4150 23 31 9295 economy ## 128 100 4150 23 31 9895 economy ## 129 110 5250 21 28 11850 economy ## 130 110 5250 21 28 12170 economy ## 131 110 5250 21 28 15510 luxury ## 132 110 5250 21 28 15510 luxury ## 133 160 5500 19 26 18150 luxury ## 134 160 5500 19 26 18620 luxury ## 135 69 4900 31 36 5118 economy ## 136 73 4400 26 31 7603 economy ## 137 73 4400 26 31 7603 economy ## 139 82 4400 28 33 77126 economy ## 139 82 4400 28 33 7775 economy ## 140 94 5200 26 32 9960 economy ## 140 94 5200 26 32 9960 economy ## 141 82 4800 24 25 9233 economy	##	117	102	5500	24	30 7957 economy
## 120 68 5500 31 38 7609 economy ## 121 88 5000 24 30 8921 economy ## 122 145 5000 19 24 12764 economy ## 123 143 5500 19 27 22018 luxury ## 124 207 5900 17 25 32528 luxury ## 125 207 5900 17 25 37028 luxury ## 126 207 5900 17 25 37028 luxury ## 127 100 4150 23 31 9295 economy ## 128 100 4150 23 31 9895 economy ## 129 110 5250 21 28 11850 economy ## 130 110 5250 21 28 12170 economy ## 131 110 5250 21 28 15040 luxury ## 132 110 5250 21 28 15040 luxury ## 133 160 5500 19 26 18150 luxury ## 134 160 5500 19 26 18620 luxury ## 135 69 4900 31 36 5118 economy ## 136 73 4400 26 31 7603 economy ## 137 73 4400 26 31 7603 economy ## 138 82 4800 32 37 7126 economy ## 139 82 4400 28 33 7775 economy ## 140 94 5200 26 32 9960 economy ## 140 94 5200 26 32 9960 economy ## 140 94 5200 26 32 9960 economy ## 141 82 4800 24 25 9233 economy	##	118	68	5500	31	38 6229 economy
## 121 88 5000 24 30 8921 economy ## 122 145 5000 19 24 12764 economy ## 123 143 5500 19 27 22018 luxury ## 124 207 5900 17 25 32528 luxury ## 125 207 5900 17 25 34028 luxury ## 126 207 5900 17 25 37028 luxury ## 127 100 4150 23 31 9295 economy ## 128 100 4150 23 31 9895 economy ## 129 110 5250 21 28 11850 economy ## 130 110 5250 21 28 1270 economy ## 131 110 5250 21 28 15040 luxury ## 132 110 5250 21 28 15510 luxury ## 133 160 5500 19 26 18150 luxury ## 134 160 5500 19 26 18620 luxury ## 135 69 4900 31 36 5118 economy ## 136 73 4400 26 31 7053 economy ## 137 73 4400 26 31 7053 economy ## 138 82 4800 32 37 7126 economy ## 139 82 4400 28 33 7775 economy ## 140 94 5200 26 32 9960 economy ## 141 82 4800 24 25 9233 economy	##	119	68	5500	31	38 6692 economy
## 122	##	120	68	5500	31	38 7609 economy
## 123	##	121	88	5000	24	30 8921 economy
## 124	##	122	145	5000	19	24 12764 economy
## 125	##	123	143	5500	19	27 22018 luxury
## 126	##	124	207	5900	17	25 32528 luxury
## 127	##	125	207	5900	17	25 34028 luxury
## 128	##	126	207	5900	17	25 37028 luxury
## 129	##	127	100	4150	23	31 9295 economy
## 130	##	128	100	4150	23	31 9895 economy
## 131	##	129	110	5250	21	28 11850 economy
## 132	##	130	110	5250	21	28 12170 economy
## 133	##	131	110	5250	21	28 15040 luxury
## 134	##	132	110	5250	21	28 15510 luxury
## 135 69 4900 31 36 5118 economy ## 136 73 4400 26 31 7053 economy ## 137 73 4400 26 31 7603 economy ## 138 82 4800 32 37 7126 economy ## 139 82 4400 28 33 7775 economy ## 140 94 5200 26 32 9960 economy ## 141 82 4800 24 25 9233 economy	##	133	160	5500	19	26 18150 luxury
## 136	##	134	160	5500	19	26 18620 luxury
## 137	##	135	69	4900	31	36 5118 economy
## 138 82 4800 32 37 7126 economy ## 139 82 4400 28 33 7775 economy ## 140 94 5200 26 32 9960 economy ## 141 82 4800 24 25 9233 economy	##	136	73	4400	26	31 7053 economy
## 139 82 4400 28 33 7775 economy ## 140 94 5200 26 32 9960 economy ## 141 82 4800 24 25 9233 economy	##	137	73	4400	26	31 7603 economy
## 140 94 5200 26 32 9960 economy ## 141 82 4800 24 25 9233 economy	##	138	82	4800	32	37 7126 economy
## 141 82 4800 24 25 9233 economy	##	139	82	4400	28	33 7775 economy
·	##	140	94	5200	26	32 9960 economy
## 142	##	141	82	4800	24	25 9233 economy
	##	142	111	4800	24	29 11259 economy

##	143	82	4800	28	32	7463	economy
##	144	94	5200	25	31	10198	economy
##	145	82	4800	23	29	8013	economy
##	146	111	4800	23	23	11694	economy
##	147	62	4800	35	39	5348	economy
##	148	62	4800	31	38	6338	economy
##	149	62	4800	31	38	6488	economy
##	150	62	4800	31	37	6918	economy
##	151	62	4800	27	32	7898	economy
##	152	62	4800	27	32	8778	economy
##	153	70	4800	30	37	6938	economy
##	154	70	4800	30	37	7198	economy
##	155	56	4500	34	36	7898	economy
##	156	56	4500	38	47	7788	economy
##	157	70	4800	38	47	7738	economy
##	158	70	4800	28	34	8358	economy
##	159	70	4800	28	34	9258	economy
##	160	70	4800	29	34	8058	economy
##	161	70	4800	29	34	8238	economy
##	162	112	6600	26	29	9298	economy
##	163	112	6600	26	29	9538	economy
##	164	116	4800	24	30	8449	economy
##	165	116	4800	24	30	9639	economy
##	166	116	4800	24	30	9989	economy
##	167	116	4800	24	30	11199	economy
##	168	116	4800	24	30	11549	economy
##	169	116	4800	24	30	17669	luxury

##	170	92	4200	29	34 8948 economy
##	171	73	4500	30	33 10698 economy
##	172	92	4200	27	32 9988 economy
##	173	92	4200	27	32 10898 economy
##	174	92	4200	27	32 11248 economy
##	175	161	5200	20	24 16558 luxury
##	176	161	5200	19	24 15998 luxury
##	177	156	5200	20	24 15690 luxury
##	178	156	5200	19	24 15750 luxury
##	179	52	4800	37	46 7775 economy
##	180	85	5250	27	34 7975 economy
##	181	52	4800	37	46 7995 economy
##	182	85	5250	27	34 8195 economy
##	183	85	5250	27	34 8495 economy
##	184	68	4500	37	42 9495 economy
##	185	100	5500	26	32 9995 economy
##	186	90	5500	24	29 11595 economy
##	187	90	5500	24	29 9980 economy
##	188	110	5500	19	24 13295 luxury
##	189	68	4500	33	38 13845 luxury
##	190	88	5500	25	31 12290 economy
##	191	114	5400	23	28 12940 economy
##	192	114	5400	23	28 13415 luxury
##	193	114	5400	24	28 15985 luxury
##	194	114	5400	24	28 16515 luxury
##	195	162	5100	17	22 18420 luxury
##	196	162	5100	17	22 18950 luxury

## 197	114	5400	23	28 16845	luxury
## 198	160	5300	19	25 19045	luxury
## 199	134	5500	18	23 21485	luxury
## 200	106	4800	26	27 22470	luxury
## 201	114	5400	19	25 22625	luxury