Lab 3: System Timer Interrupts

Instructor:

Dr. Carl Latino carl.latino@okstate.edu

Graduate Teaching Assistant:

Francisco E. Fernandes Jr. feferna@okstate.edu

School of Electrical and Computer Engineering
Oklahoma State University
Fall 2019

Schedule and Grading

- All labs are now ONE WEEK ONLY:
 - You MUST demo your working LAB 3 on September 30, 2019 by the end of your lab section!

Grading for lab 3:

- Pre-lab quiz: 2 points (due on Sept. 30). Available on Canvas! READ CHAPTER 11!
- Functionality and Correctness: 8 points (No partial credits).
- Total: 10 points.

Grading penalization:

- Students who disrupt the lecture by talking and not paying attention will lose 2 points in their lab 3's grade!
- Students who do not follow the lab safety procedures (e.g. coming to lab with shorts and flip flops) will lose 1 points in their lab 3's grade!

Lab Assignment

 Write an Assembly program that uses the System Timer Interrupts to toggle both the red and green LEDs in the development kit with a period of 0.5 seconds.

System Timer (SysTick)

Generates SysTick interrupts at a fixed time interval.

Fixed time interval

Example Usages:

- Measuring time elapsed, such as time delay function
- Executing tasks periodically, such as periodic polling, and OS CPU scheduling

System Timer (SysTick)

- System timer is a standard hardware component built into ARM Cortex-M.
- This hardware
 periodically forces the
 processor to execute the
 following Interupt

 Subroutine:

```
.type SysTick_Handler, %function
SysTick_Handler:
    // Do Something
    BX LR
```


Diagram of System Timer (SysTick)

System Timer

SysTick Interrupt Time Period = (SysTick_LOAD + 1) × Clock Period = 7 × Clock Period

Diagram of System Timer (SysTick)

System Timer Registers

SysTick control and status register (SysTick_CTRL)

Memory Location 0xE000E010

SysTick reload value register (SysTick_LOAD)

Memory Location 0xE000E014

SysTick calibration register (SysTick CALIB)

SysTick current value register (SysTick_VAL)

Memory Location 0xE000E018

31 24 23 0

CURRENT

NOREF

Registers of System Timer

SysTick reload value register (SysTick_LOAD)

- 24 bits, maximum value **0x00FFFFFF** (16,777,215)
- Counter counts down from RELOAD value to 0.
- Writing RELOAD to 0 disables SysTick, independently of TICKINT
- Time interval between two SysTick interrupts

If 100 clock periods between two SysTick interrupts

$$RELOAD = 99$$

Registers of System Timer

- Reading it returns the current value of the counter
- When it transits from 1 to 0, it generates an interrupt
- Writing to SysTick_VAL clears the counter and COUNTFLAG to zero
 - Cause the counter to reload on the next timer clock
 - But, does not trigger an SysTick interrupt
- It has random value on reset.
 - Always clear it before enabling the timer

Calculating Reload Value

- Suppose clock source = 80MHz
- Goal: SysTick Interval = 10ms
- What is RELOAD value?

$$Reload = \frac{10 \, ms}{Clock \, Period} - 1$$

 $= 10ms \times Clock Frequency - 1$

 $= 10ms \times 80MHz - 1$

 $= 10 \times 10^{-3} \times 80 \times 10^{6} - 1$

= 800000 - 1

= 799999

Lab 3: Startup Code

- A startup code in a zip-file (filename: Lab 3 Startup Code.zip) is available on Canvas. It contains the following files:
 - main.s
 - Clock_Init.s → You don't need to change anything in this file!
 - LED_Init.s
 - SysTick.s
 - stm32l476xx_constants.s → You don't need to change anything in this file!
- Download and EXTRACT the startup code.
- Create a new project from scratch using the STM32CubeIDE.
- Move ALL files to you project's src folder, and follow the standard steps when we create new projects.

Lab 3: Flowchart

