

AKADEMIA GÓRNICZO-HUTNICZA
IM. STANISŁAWA STASZICA W KRAKOWIE

Silnik do automatycznej kategoryzacji obrazów

Wykonanie: Michał Cichoń

Opiekun: dr inż. Maciej Śniechowski

Wydział Fizyki i Informatyki Stosowanej, AGH

Kraków, 27.10.2014

Cel pracy

- Stworzenie silnika kategoryzacyjnego, który ma na celu przypisać dostarczony do niego obraz do odpowiedniej kategorii
- Sprawdzenie trafności predykcji kategorii

Sposób działania

Krajobrazy

Ludzie

Zwierzęta

Budynki

Sposób działania

Krajobrazy

Ludzie

Zwierzęta

Budynki

Nadzorowane uczenie maszynowe

Architektura silnika

Ekstrakcja cech

Klasyfikacja

Architektura silnika

Ekstrakcja cech

Bag of visual words

Klasyfikacja

SVM

Architektura silnika

Bag of visual words

SVM

Bag of visual words

BOW z SIFT / SURF

- SIFT i SURF dają dobre wyniki dla rozpoznawania obiektów
- Działają niezmienniczo względem rotacji, skali, zmiany oświetlenia oraz położenia

Maszyna wektorów wspierających (SVM)

- + Szeroko stosowana do rozwiązywania problemów klasyfikacji
- Dobra odporność na przetrenowanie i niedouczenie
- + Dobra generalizacja ze względu na wielowymiarowość przestrzeni cech
- Trening trwa długo
- Rozwiązania generowane przez SVM są skomplikowane

Implementacja

- wieloparadygmatowy język programowania
- statycznie typowany

- biblioteka umożliwiająca przeprowadzanie operacji na obrazach
- zawiera implementację maszyny wektorów wspierających (SVM)

 zawiera bibliotekę Serialization umożliwiającą zapis modelu do pliku

Jak korzystać z silnika

Kategoryzacja pojedynczego obrazu

Uruchomienie testów

```
imageCategorization.test();
```


Wyniki kategoryzacji

Bardzo wysoka dokładność kategoryzacji dla 4 kategorii Dobra dokładność dla 8 kategorii

Średnia trafność (ang. average accuracy) = $\frac{\overline{i=1}^{ip_i+j} n_{i+j}}{l}$

Wyniki kategoryzacji – macierze pomyłek

predykcja kategorii

0 – samoloty, 1 – bonsai, 2 – budda, 3 – motyle, 4 – samochody, 5 – żyrandole, 6 – twarze,7 – pianina

Podsumowanie i wnioski

- Udało się stworzyć API, które pozwala na kategoryzację obrazów,
- Metoda daje dobre wyniki dla kategoryzacji 2 lub 4 kategorii, nieco gorsze dla przypadku 8 kategorii,
- Zastosowanie deskryptorów nieskorelowanych z SIFT/SURF mogłoby poprawić wynik kategoryzacji,
- Warto by było przeprowadzić analizę powtarzalności wyników oraz wpływu zbiorów uczących na osiągane rezultaty

Dziękuję za uwagę.