Model Tuning

BA810: Supervised Machine Learning Nachiketa Sahoo

Summary of Mid-course Feedback

Continue	Stop	Start
 Labs, more time, in detail Recap (with questions) Interactive class, Q&A 	 Too much Q&A! Delaying labs Assuming advanced statistics background 	 More examples and illustrations in lecture In-class lab exercises Video resources Moving Q&A offline

Course Map (Topics)

- 1. Introduction to Machine Learning
- 2. General predictive models
 - Regression and classification
- 3. Model tuning and selection
- 4. End-to-end Machine Learning process
- 5. Specific predictive models
 - Support Vector Machines, Decision Tree, Ensembles
- 6. Managing class imbalance in practice

Recap

- Cost sensitive classification
 - Using cost/benefit to choose models
 - Optimize prediction threshold to minimize cost
- Validation and Cross-validation
 - Estimate test-error or generalization error
 - Validation: split data in two (train on one part, predict on the other)
 - Unreliable estimation; significantly overestimates the test error
 - Cross-validation: split into K parts (test on k'th, train on rest, K times)
 - Error on all records are averaged → more reliable
 - K = 5–10, typically works well

Recap/Follow-up

- Regularization: optimize objective that penalizes large parameters
 - Ridge: $MSE + \lambda \sum \beta_p^2$: reduces variance, shrinks but doesn't turn any β_p off
 - Lasso: $MSE + \lambda \sum |\beta_p|$: reduces variance, shrinks and turns some β_p to zero
- For each of a set of λ s
 - Divide data into K-folds
 - Keep each fold in turn for validation, use the rest for training using the chosen λ
 - Average the K prediction-errors (cross-validation error)
- Choose the λ with the lowest cross-validation error
 - Retrain using this λ on the entire data for a model to deploy
- The cross-validation error isn't an accurate estimation of test/generalization-error
 - Selected λ based on entire dataset; nothing left for an honest generalization error estimation
 - If interested in generalization error, set aside a test data before CV

Bootstrap

- An easy way to quantify uncertainty with an estimate
 - Parameter value (statistically significantly different than 0?)
 - Prediction error/accuracy, etc. (are the performances of two models significantly different?)
- ullet If we have a dataset of size n, ideal process
 - Draw B random datasets of size n from the original source
 - Estimate B times, measure the standard deviation (of regression coefficient or prediction accuracy)
- Real-world gives us only one dataset
 - ullet Draw B random datasets of size n from the dataset we have with replacement
 - Estimate B times, measure the standard deviation (bootstrap \approx make it work with what you have, without outside data help)

Bootstrap

Grid search vs Random search

Techniques for Selecting Hyperparameters (k and type of distance for kNN; λ for Ridge/Lasso regression; etc.)

Grid Search

- Define a Model/Pipeline
- Specify a "hyperparameter grid"
 - Consider all combination of parameter values, exhaustively
- For each combination
 - Evaluate the prediction performance of the model using CV

Random Search

- Define a Model/Pipeline
- Specify a "hyperparameter distributions"
 - For a pre-specified number of times, draw a value from each
- For each combination
 - Evaluate the prediction performance of the model using CV

Grid search vs Random search

(Credit: Bergstra and Bengio, 2012)

- Model Performance varies by two hyper-parameters lpha and eta as shown on the margin
 - More sensitive to β (but we won't know that until testing)
- Grid search explores only one dimension at a time, keeping the other(s) fixed
 - Random search explores different values of α and β in each draw, thus can evaluate more unique values of each hyperparameter for the same number of evaluations.
 - For high dimensional problems Random search is more likely to find good hyper parameter values

Random/Grid Search with Successive Halving/Reduction

- Carry out Grid or Random search as before, but with limited r "resources"
 E.g., 20-50 records (data samples)
- 2. Pick top $\frac{1}{f}$ parameter combinations (e.g., f = 2,3), increase resource (set $r = r \times f$)
- 3. Repeat 1–2 until only one parameter combination remains.

Explore same number of parameters as before, but more precisely evaluate the promising ones.

Summary

- Bootstrap to measure uncertainty
 - Randomly sample equal sized data with replacement
 - Repeat estimation and accuracy measurement
- Hyper-parameter search
 - Grid: explore all combinations of fixed hyperparameter values
 - Random: Evaluate combination of one random draw for each hyperparameter; repeat pre-defined number of times
 - Halving Grid/Random: evaluate hyperparameter values identified as before, but all only cheaply; promising ones more precisely

Next class

- End-to-end ML example
- Complete mid-course team feedback at https://teamlearning.bu.edu/ by Thu (11/9) noon