Deep Networks as hidden Metric Learners

- *N* training instances: $x_1, ..., x_n, ..., x_N$
- Ground truth training labels: $y_1, ..., y_n, ..., y_N$
- Seek a function, $f: \mathbb{X} \to \mathbb{Y}$, to predict \hat{y}_{N+1} for a new, unseen instance x_{N+1} , with minimal *distance* between \hat{y}_{N+1} and y_{N+1}
- New view: Back-out a metric learner from the parametric deep network: $f = c \circ g$, where $g : \mathbb{X} \to \mathbb{R}^M$, $c : \mathbb{R}^M \to \mathbb{Y}$, and $r \in \mathbb{R}^M$ is a dense representation of the input under the parametric model
- Sense in which: $f(x_{N+1}) \approx \beta + \sum_{n=1}^{N} \left(\tanh(f(x_n)) + \gamma \cdot y_n \right) \cdot w \left(||r_n r_{N+1}||_2 \right)$ $w(\cdot) \text{ is a function of the distance between representations}$ (Relatable to instance-based learning, kernel methods, ...)

I.e., a test prediction is approx. a distanceweighting (between "<u>exemplar</u>" representations) over the training set (model predictions & associated labels)

• Enables interpretable/introspectable decision rules & various analyses (hence, "<u>auditing</u>"): E.g., only admit true positive (TP) matches:

$$\hat{y}_{N+1} = f(x_{N+1}) \cdot \left[f(x_{N+1}) = f(x_n) \land f(x_n) = y_n \right] + NULL \cdot \left[f(x_{N+1}) \neq f(x_n) \lor f(x_n) \neq y_n \right], \text{ where } n = \underset{n \in \{1, \dots, N\}}{\text{arg min}} \left| | r_n - r_{N+1} | |_2 \right|$$

- Enables updatability/adaptability:
 - Label changes: $y'_n = y_n + \Delta_n$
 - Data additions (a.k.a., continual/lifelong learning): $\mathbb{D}^N = \{(x_1, y_1), ..., (x_N, y_N)\} \text{ becomes } \mathbb{D}^{N'} = \{(x_1, y_1), ..., (x_N, y_N), ..., (x_{N'}, y_{N'})\}$
 - New lightweight models over representations (e.g., using data additions): $c': \mathbb{R}^M \to \mathbb{Y}'$

Horizontal (across the input) & Vertical (across the support set) Model Decompositions

Leveraging Model Approximations for Prediction Reliability Heuristics & Screening Input Dissimilar to the Support Set

K-NN Approximation

Support set:

 $\mathbb{S} = \left\{ \left(\begin{array}{c} \mathbf{r}_{\tilde{n}} \end{array}, \mathbf{x}^{(\tilde{n})}, s_{\tilde{n}}^{+-}, \begin{array}{c} \mathbf{Y}^{(\tilde{n})} \end{array} \right) \mid 1 \leq \tilde{n} \leq \left| \mathbb{S} \right| \right\}$

Data uncertainty: Distance to 1st match (d_1) , an exogenous factor, captures uncertainty w.r.t. data (training data compared to test data).

Model uncertainty: This bounded value reaches its min/max when $\tanh(s_k^{+-}) \& Y^{(k)}$ (or y_k , with token-level labels) agree, for all k (assuming $\gamma > 0$).

$$\frac{s_n^{+-}}{s_n^{+-}} \approx \beta + w_1 \cdot \left(\tanh\left(\frac{s_1^{+-}}{1} \right) + \gamma \cdot \frac{\gamma^{(\tilde{1})}}{\gamma^{(\tilde{2})}} \right) + w_2 \cdot \left(\tanh\left(\frac{s_2^{+-}}{1} \right) + \gamma \cdot \frac{\gamma^{(\tilde{2})}}{\gamma^{(\tilde{3})}} \right) + w_3 \cdot \left(\tanh\left(\frac{s_2^{+-}}{1} \right) + \gamma \cdot \frac{\gamma^{(\tilde{3})}}{\gamma^{(\tilde{3})}} \right)$$

Exemplar Auditing Lifecycle

Out-of-Domain Settings

- Pre-train with as much data as possible
- Add as much data as possible to the database, including data not seen in training
 - Corral the in-domain space, around the ball of the observed data
 - Never predict over out-of-domain data in high-risk settings. Instead: Rearrange the deployment to handle non-admitted predictions.

Implementations

• Binary classification: $f: \mathbb{X} \to \{0,1\}$

Unique side effect: Binary Sequence labeling: $f: \mathbb{X} \to \{0,1\}_1, ..., \{0,1\}_{|x|}$

- "Detecting Local Insights from Global Labels: Supervised & Zero-Shot Sequence Labeling via a Convolutional Decomposition"
- Multi-label classification: $f: \mathbb{X} \to 2^{|\mathbb{Y}|}$

Multi-label sequence labeling: $f: \mathbb{X} \to 2_1^{|\mathbb{Y}|}, ..., 2_{|\mathbb{Y}|}^{|\mathbb{Y}|}$

- "Exemplar Auditing for Multi-Label Biomedical Text Classification"
- Retrieval-classification: $f: \mathbb{X} \times \mathcal{D} \to \left\{ \{0,1,2\}, 2^{|\mathbb{D}|} \right\}$
 - "Coarse-to-Fine Memory Matching for Joint Retrieval and Classification"

Memory Matching Search

• Approach (<u>high-level</u>): Run the same shared network, g, over all of Wikipedia, \mathbb{D} , caching the representations, & then perform search by matching the query representation with progressively built-up support sequences

 \hat{y} is the label prediction

 $\{s_1'', ..., s_Z''\}$ is the set of Wikipedia support sentences

Joint Retrieval and Classification Training

Multi-Sequence Representation Composition for Exemplar Auditing

Token-Level Representations for Exemplar Auditing

Extractive, Comparative (Feature-wise) Summarization

Uncertainty Quantification

1. (Pre-) Train (& fine-tune) deep network, as usual.

3. Train a KNN-based model approximation over exemplar representations from the memory layer, relating a new instance to training instances (predictions and ground-truth labels): $f(x)_{tr}^{KNN}$

5. Calculate unique quantile thresholds *for each label for each test point* from the constrained set of calibration points within the distance band.

2. Freeze network. Add & train a memory layer for TASK. Extract exemplar representations.

4. Train another KNN-based model approximation, relating a new test instance to representations and *KNN predictions* over the calibration set: $f(x)_{ca}^{\overline{KNN}}$

6. Optionally, re-sample the calibration set to be more similar to the test distribution. Repeat Step 5.

7. Optionally, condition on prediction set membership. Additional heuristics screen unreliable cases. (See text.)

ADMIT: A general framework for constructing, constraining, and analyzing point predictions and distribution-free prediction sets for deep neural networks.

Prospective Outlook: Interlocking distance constraints across input modalities and tasks via a single, shared model and a dense database...

