

NGUYỄN CÔNG PHƯƠNG

LÝ THUYẾT MẠCH II

MẠCH PHI TUYẾN

Lý thuyết mạch II

- I. Quá trình quá độ
- II. Mạch phi tuyến
 - 1. Giới thiệu
 - 2. Đặc tính của phần tử phi tuyến
 - 3. Chế độ xác lập
 - 4. Chế độ quá độ
 - 5. Điốt và tranzito

III. Đường dây dài

Giới thiệu (1)

Giới thiệu (2)

Tuyến tính	Phi tuyến	
R = const	$R = R(i, t, \ldots)$	
L = const	$L = L(i, t,)$ — \mathcal{A} —	<u></u>
C = const	$C = C(u, t, \dots)$	

Giới thiệu (3)

Giới thiệu (4)

VD

$$n_{KD} = 3 - 1 = 2$$

 $n_{KA} = 3 - 2 + 1 = 2$

$$\begin{cases} a: i_1 - i_2 - i_3 = 0 \\ b: i_3 + J - i_4 = 0 \end{cases}$$

$$A: R_1 i_1 + R_2 i_2 = E_1$$

$$B: -R_2 i_2 + R_3 i_3 + R_4 i_4 = E_3$$

Một mạch điện có n_{KD} phương trình KD và n_{KA} phương trình KA, với:

$$n_{KD} = \text{s\acute{o}}_{-}\text{n\acute{u}t} - 1$$

 $n_{KA} = \text{số_nhánh} - \text{số_nút} + 1$ (không kể nguồn dòng, nếu có)

6

Giới thiệu (5)

$$J = \frac{E}{R}$$

$$E = RJ$$

Giới thiệu (6)

- *Mạch phi tuyến*: có ít nhất một phần tử thụ động (tải) phi tuyến.
- Phần tử thụ động phi tuyến: đầu vào (ví dụ dòng điện) và đầu ra (ví dụ điện áp) có quan hệ phi tuyến.
- Cách giải:
 - Tuyến tính hóa phần tử phi tuyến & xây dựng (hệ) phương trình tuyến tính & giải, hoặc,
 - Xây dựng (hệ) phương trình phi tuyến & giải.
- Xây dựng (hệ) phương trình:
 - Phương pháp dòng nhánh,
 - Biến đổi tương đương mạch điện.

Lý thuyết mạch II

- Quá trình quá độ
- II. Mạch phi tuyến
 - 1. Giới thiệu
 - 2. Đặc tính của phần tử phi tuyến
 - 3. Chế độ xác lập
 - 4. Chế độ quá độ
 - 5. Điốt và tranzito
- III. Đường dây dài

Đặc tính của phần tử phi tuyến (1)

<i>i</i> (A)	1	2	3	4
<i>u</i> (V)	34	54	60	52

$$u(i) = -7i^2 + 41i$$

Đặc tính của phần tử phi tuyến (2)

$$k_{d\hat{\phi}ng}(x) = \frac{\partial f(x)}{\partial x} \quad k_{t\tilde{i}nh}(x) = \frac{f(x)}{x}$$

$$- \psi = \psi(i) \quad L_{d}(i) = \frac{\partial \psi(i)}{\partial i} \quad L_{t}(i) = \frac{\psi(i)}{i}$$

$$- \psi = \psi(i) \quad C_{d}(u) = \frac{\partial q(u)}{\partial u} \quad C_{t}(u) = \frac{q(u)}{u}$$

Đặc tính của phần tử phi tuyến (3)

VD1

Tính $R_{d\hat{o}ng}$ & $R_{t\tilde{i}nh}$ ở i = 2 A?

$$R_{d}(i) = \frac{\partial u(i)}{\partial i} = \frac{du(i)}{di}$$

$$R_{d}(2) \approx \frac{\Delta u}{\Delta i}\Big|_{i=2} = \frac{52}{4} = \boxed{13 \ \Omega}$$

$$R_t(i) = \frac{u(i)}{i}$$

$$R_t(2) = \frac{u(2)}{2} = \frac{54}{2} = \boxed{27 \ \Omega}$$

Đặc tính của phần tử phi tuyến (4)

Tính
$$R_{d\hat{\rho}ng}$$
 & $R_{t\tilde{i}nh}$ ở $i = 2$ A?

<i>i</i> (A)	1	2	3	4
<i>u</i> (V)	34	54	60	52

$$R_{d}(2) \approx \frac{\Delta u}{\Delta i} \Big|_{i=2} = \frac{60 - 34}{3 - 1}$$
$$= \frac{26}{2} = \boxed{13 \Omega}$$

$$R_t(2) = \frac{u(2)}{2} = \frac{54}{2} = \boxed{27 \ \Omega}$$

Đặc tính của phần tử phi tuyến (5)

VD3

Cho $u(i) = -7i^2 + 41i \text{ (V-A)} \text{ Tính } R_{d\hat{\rho}ng} \& R_{t\tilde{\iota}nh} \text{ or } i = 2 \text{ A}?$

$$R_{d}(i) = \frac{\partial u(i)}{\partial i} = \frac{du(i)}{di} = -14i + 41$$

$$\rightarrow R_d(2) = -14.2 + 41 = \boxed{13 \Omega}$$

$$R_t(2) = \frac{u(2)}{2} = \frac{-7(2)^2 + 41.2}{2} = \boxed{27 \ \Omega}$$

Lý thuyết mạch II

I. Quá trình quá độ

II. Mạch phi tuyến

- 1. Giới thiệu
- 2. Đặc tính của phần tử phi tuyến
- 3. Chế độ xác lập
 - a) Mạch một chiều
 - i. Phương pháp đồ thị
 - ii. Phương pháp dò
 - b) Mạch xoay chiều
- 4. Chế độ quá độ
- 5. Điốt và tranzito

III. Đường dây dài

Phương pháp đồ thị (1)

- Dùng đồ thị trên mặt phẳng 2 chiều (hoặc mặt phẳng trong không gian 3 chiều) để tìm nghiệm.
- Chỉ dùng cho phương trình tối đa 2 ẩn.
- Các phép toán cơ bản trên đồ thị:
 - · Cộng,
 - Trù,
 - Tỉ lệ,
 - Bình phương,
 - Căn,
 - Tìm nghiệm.

Phương pháp đồ thị (2), cộng

VD1

Vẽ đồ thị của $y(x) = y_1(x) + y_2(x)$?

\mathcal{X}	$y_1(x)$	$y_2(x)$	y(x)
0	0	+0	=0
1	34,0	+2,5	=36,5
2	54,0	+10,0	=64,0
3	60,0	+23,0	= 83, 0
4	52,0	+40,0	=92,0

Phương pháp đồ thị (3), trừ

VD2

Vẽ đồ thị của $y(x) = y_1(x) - y_2(x)$?

Phương pháp đồ thị (4), tỉ lệ

VD3

Vẽ đồ thị của $y(x) = 2y_1(x)$?

Phương pháp đồ thị (5), bình phương

VD4

Vẽ đồ thị của $y(x) = y_1^2(x)$?

Phương pháp đồ thị (6), khai căn

VD5

Vẽ đồ thị của $y(x) = \sqrt{y_1(x)}$?

Phương pháp đồ thị (7), tìm nghiệm

VD6

Giải phương trình $y_1(x) = y_2(x)$?

$$x = 3, 4$$

Phương pháp đồ thị (8)

VD7

E = 60V; tính dòng điện?

$$u(i) = E = 60$$

$$\rightarrow |i=3,45 \text{ A}|$$

Phương pháp đồ thị (9)

VD8

E = 90V; $R = 15 \Omega$; tính dòng điện?

$$\sum_{k=1}^{N} u_k = 0; \quad \sum_{k=1}^{M} i_k = 0$$

$$u_R = Ri; \quad u_R = u_R(i)$$

$$u_L = L \frac{di}{dt}; \quad u_L = \frac{d\psi}{dt}$$

$$i_C = C \frac{du}{dt}; \quad i_C = \frac{dq}{dt}$$

$$u(i) + Ri = E$$

$$u(i) + 15i = 90$$

$$i = 2, 2A$$

Phương pháp đồ thị (10)

$$E = 90V$$
; $R = 15 \Omega$; tính dòng điện?

Phương pháp đồ thị (11)

VD9

E = 90V, tính dòng điện?

$$u_1(i) + u_2(i) = E = 90$$

$$\rightarrow i = 3,6 \text{ A}$$

Phương pháp đồ thị (12)

$$E = 100V$$
; $R_1 = 20 \Omega$; $R_3 = 30 \Omega$. Tính các dòng điện?

$$\begin{cases} i_1 - i_2 - i_3 = 0 \\ u_2 = R_3 i_3 \\ R_1 i_1 + u_2 = E \end{cases} \rightarrow \begin{cases} i_1 - i_2 - i_3 = 0 \\ u_2 = 30 i_3 \\ 20 i_1 + u_2 = 100 \end{cases}$$

$$\rightarrow \begin{cases} i_1 - i_2 - \frac{u_2}{30} = 0 \\ 20i_1 + u_2 = 100 \end{cases} \rightarrow 20 \left(i_2 + \frac{u_2}{30} \right) + u_2 = 100$$

$$\rightarrow u_2(i_2) = 60 - 12i_2$$

$$\rightarrow [i_2 = 0.59 \,\mathrm{A}] \quad \text{(Cách 1)}$$

Phương pháp đồ thị (13)

$$E = 100V$$
; $R_1 = 20 \Omega$; $R_3 = 30 \Omega$. Tính các dòng điện?

$$R_{td} = \frac{R_1 R_3}{R_1 + R_3}$$

$$= \frac{20.30}{20 + 30} = 12 \Omega$$

$$R_{td}$$

$$E_{td} = \frac{E/R_1}{1/R_1 + 1/R_3} = \frac{100/20}{1/20 + 1/30} = 60 \text{ V}$$

$$u_2(i_2) + 12i_2 = 60$$

$$\rightarrow u_2(i_2) = 60 - 12i_2$$

$$\rightarrow \boxed{i_2 = 0.59 \,\mathrm{A}}$$

Phương pháp đồ thị (14)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 200$ V; $e_2 = 180$ V; $j = 2$ A. Tim i_5 ?

$$\begin{cases} i_{1} + i_{2} - i_{5} = 0 \\ i_{5} - i_{4} + j = 0 \\ R_{1}i_{1} - R_{2}i_{2} = e_{1} - e_{2} \\ R_{2}i_{2} + u_{5} + R_{4}i_{4} + R_{3}i_{5} = e_{2} \end{cases} \longrightarrow u_{5}(i_{5}) = A - Bi_{5}$$

$$+ e_{12}$$

$$+ e_{12}$$

$$+ e_{13}$$

$$+ e_{4}$$

$$+ e_{14}$$

$$+ e_{15}$$

$$+ e_{$$

$$e_{12} = \frac{e_1 / R_1 + e_2 / R_2}{1 / R_1 + 1 / R_2} = \frac{200 / 20 + 180 / 30}{1 / 20 + 1 / 30} = 192 \text{ V}$$

$$e_4 = R_4 j = 40.2 = 80 \text{ V}$$

Phương pháp đồ thị (15)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 200$ V; $e_2 = 180$ V; $j = 2$ A. Tim i_5 ?

$$R_{12} = 12 \Omega$$
; $e_{12} = 192 \text{ V}$; $e_{4} = 80 \text{ V}$

$$u_5(i_5) + (R_{12} + R_3 + R_4)i_5 = e_{12} - e_4$$

$$\rightarrow u_5(i_5) + (12 + 40 + 40)i_5 = 192 - 80$$

$$\rightarrow u_5(i_5) = 112 - 92i_5$$

$$\rightarrow i_5 = 0.61 \,\mathrm{A}$$

Phương pháp đồ thị (16)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 200$ V; $e_2 = 180$ V; $j = 2$ A. Tim i_5 ?

$$R_{12} = \frac{R_1 R_2}{R_1 + R_2} = \frac{20.30}{20 + 30} = 12 \,\Omega$$

$$e_{12} = \frac{e_1 / R_1 + e_2 / R_2}{1 / R_1 + 1 / R_2} = \frac{200 / 20 + 180 / 30}{1 / 20 + 1 / 30} = 192 \text{ V}$$

$$e_4 = R_4 j = 40.2 = 80 \text{ V}$$

$$\rightarrow u_3(i_3) + u_5(i_3) + (12 + 40)i_5 = 192 - 80$$

$$\rightarrow u_3(i_3) + u_5(i_3) = 112 - 52i_3 \rightarrow i_3 = 1,05 \text{ A}$$

Phương pháp đồ thị (17)

$$E = 60V$$
; $L = 2$ H; $C = 4$ mF.
Tính dòng điện i ?

$$u(i) = E = 60$$

$$\rightarrow |i=3,45 \text{ A}|$$

Phương pháp đồ thị (18)

• Dùng đồ thị để giải phương trình một ẩn số:

$$y(x) = ax + b \qquad (\alpha)$$

(đường cong y(x) cho trước)

- Áp dụng cho mạch điện có ít phần tử phi tuyến.
- Các bước thực hiện:
 - 1. Lập 01 phương trình 01 ẩn số (α) bằng một trong hai cách:
 - a) Lập (hệ) phương trình (phương pháp dòng nhánh) mô tả mạch, rồi rút gọn về dạng (α), hoặc,
 - b) Dùng phương pháp biến đổi tương đương để đưa mạch điện về mạch có tất cả các phần tử nối tiếp với nhau, từ đó lập (α) .
 - 2. Vẽ đường thắng f(x) = ax + b,
 - 3. Tìm giao điểm M của đường cong y(x) & đường thắng f(x), nghiệm của (α) là hoành độ hoặc tung độ của M.

Phương pháp đồ thị (19)

Lý thuyết mạch II

- I. Quá trình quá độ
- II. Mạch phi tuyến
 - 1. Giới thiệu
 - 2. Đặc tính của phần tử phi tuyến
 - 3. Chế độ xác lập
 - a) Mạch một chiều
 - i. Phương pháp đồ thị
 - ii. Phương pháp dò
 - b) Mạch xoay chiều
 - 4. Chế độ quá độ
 - 5. Điốt và tranzito
- III. Đường dây dài

Phương pháp dò (1)

VD1

$$i^{(1)} = 1 \Lambda$$

 $i^{(2)} = 2,2 \text{ A}$

Thay vào

sơ đồ tính

Có

Không

TRUÖNG BAI HOC BÁCH KHOA HÀ NỘI

Phương pháp dò (2)

VD1

$$E = 90V$$
; $R = 15 \Omega$; tính dòng điện?

$$u(i) + 15i = 90$$

$$i \rightarrow u(i), 15i \rightarrow u(i) + 15i = 90?$$

$$i^{(2)} = 2.2 \text{ A}$$

$$i^{(*)} = 2.2 \text{ A}$$

Lập sơ đồ tính

Gán cho nghiệm

một giá trị

Thay vào

sơ đồ tính

$$\frac{\left| \left(u^{(k)} + 15i^{(k)} \right) - 90 \right|}{90} \le \varepsilon$$

$$\frac{\left|f^{(k)} - \text{const}\right|}{\text{const}} \le \varepsilon$$

Không

Phương pháp dò (3)

$$E = 90V$$
; $R = 15 \Omega$; tính dòng điện? $u(i) + 15i = 90$

$$u(i) + 15i = 90$$

$$i \xrightarrow{\text{do thi}} u(i) \& 15i \rightarrow E = u(i) + 15i = 90? \mathcal{E} = \frac{|E^{(k)} - 90|}{90}$$

 $i^{(1)} = 1 \text{ A} \rightarrow u^{(1)} = 35 \text{ V} \rightarrow E^{(1)} = 35 + 15.1 = 50 \text{ V}$

$$\rightarrow \varepsilon^{(1)} = |50 - 90| /90 = 44\%$$

k	1	2	3
$i^{(k)}(A)$	1	2	2,5
$u^{(k)}(V)$	35	54	59
$15i^{(k)}(V)$	15	30	37,5
$E^{(k)}(V)$	50	84	96,5
$\varepsilon^{(k)}$ (%)	44,0	6,7	7,2

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Phương pháp dò (4)

Phương pháp dò (5)

$$\begin{cases} y_a = ax_a + b \\ y_b = ax_b + b \end{cases}$$

$$\Rightarrow \begin{cases} a = \frac{y_a - y_b}{x_a - x_b} \\ b = \frac{x_a y_b - x_b y_a}{x_a - x_b} \end{cases}$$

$$\Rightarrow \begin{cases} y = \frac{y_a - y_b}{x_a - x_b} x + \frac{x_a y_b - x_b y_a}{x_a - x_b} \\ x = \frac{x_a - x_b}{y_a - y_b} y - \frac{x_a y_b - x_b y_a}{y_a - y_b} \end{cases}$$

Phương pháp dò (6)

$i^{(k)}(A)$	1	2	2,5
$E^{(k)} = u^{(k)} + 15i^{(k)} (V)$	5,0	84	96,5

$$i = \frac{i_a - i_b}{E_a - E_b}E + \frac{E_a i_b - E_b i_a}{E_a - E_b} = \frac{2 - 2.5}{84 - 96.5}E + \frac{84.2.5 - 96.5.2}{84 - 96.5} = 0,040E - 1,360$$

$$\rightarrow i^* = i(E = 90) = 0,040.90 - 1,360 = 2,24A$$

Phương pháp dò (7)

VD2

$$E = 90V$$
, tính dòng điện?

$$u_1(i) + u_2(i) = E = 90$$

$$i \rightarrow \left| \begin{array}{c} \frac{\text{d\^{o} thị } \mathbf{u}_{1}(i)}{\text{d\^{o} thị } \mathbf{u}_{2}(i)} \rightarrow u_{1}(i) \\ \text{d\^{o} thị } \mathbf{u}_{2}(i) \end{array} \right| \rightarrow E = u_{1}(i) + u_{2}(i) = 90? \ \varepsilon = \frac{\left| E^{(k)} - 90 \right|}{90}$$

$$i^{(1)} = 1 \text{ A} \rightarrow u_1^{(1)}(i) = 35 \text{ V}; u_2^{(1)}(i) = 2,5 \text{ V}$$

$$\rightarrow E^{(1)} = 35 + 2, 5 = 37,5 \text{ V}$$

$$\rightarrow \varepsilon^{(1)} = \frac{|37, 5 - 90|}{90} = 58,3\%$$

i (A)

Phương pháp dò (8)

$$E = 90$$
V, tính dòng điện?

$$u_1(i) + u_2(i) = E = 90$$

$$i \rightarrow \left| \begin{array}{c} \xrightarrow{\text{d\^{o} thị } \mathbf{u}_1(i)} \\ \xrightarrow{\text{d\^{o} thị } \mathbf{u}_2(i)} \\ \end{array} \right\rangle u_1(i) \\ \rightarrow E = u_1(i) + u_2(i) = 90 ? \ \varepsilon = \frac{\left| E^{(k)} - 90 \right|}{90}$$

k	1	2	3	4
$i^{(k)}(A)$	1	3	3,2	3,4
$u_1^{(k)}(\mathbf{V})$	35	60	59	58
$u_2^{(k)}(\mathbf{V})$	2,5	22,5	25	29
$E^{(k)} = u_1^{(k)} + u_2^{(k)} (V)$	37,5	82,5	84	87
$ E^{(k)} - 90 /90 \ (\%)$	58,3	8,3	6,7	3,3

$$\rightarrow [i=3,4A]$$

Phương pháp dò (9)

$$E = 100V$$
; $R_1 = 20 \Omega$; $R_3 = 30 \Omega$. Tính các dòng điện?

$$\begin{cases} i_{1} - i_{2} - i_{3} = 0 \ (\alpha) \\ u_{2} = R_{3}i_{3} \ (\beta) \\ R_{1}i_{1} + u_{2} = E \ (\gamma) \end{cases}$$

$$i_2 \xrightarrow{\text{dô thị}} u_2 \xrightarrow{(\beta)} i_3 = \frac{u_2}{R_3}$$

$$\xrightarrow{(\alpha)} i_1 = i_2 + i_3$$

$$\xrightarrow{(\gamma)} E = R_1 i_1 + u_2 = 100?$$

$$\varepsilon = \frac{|E - 100|}{100}$$

Phương pháp dò (10)

$$E = 100V$$
; $R_1 = 20 \Omega$; $R_3 = 30 \Omega$. Tính các dòng điện?

$$i_2 \to u_2 \to i_3 = \frac{u_2}{R_3} \to i_1 = i_2 + i_3$$

$$\rightarrow E = R_1 i_1 + u_2 = 100?$$
 $\varepsilon = |E - 100| / 100$

$$\begin{array}{c|cccc}
 & i_1 & i_2 & i_3 \\
E & R_2 & R_3 & R_3
\end{array}$$

$$i_2^{(1)} = 1 \text{ A} \rightarrow u_2^{(1)} = 71 \text{ V}$$

$$\rightarrow i_3^{(1)} = \frac{71}{30} = 2,37 \text{ A}$$

$$\rightarrow i_1^{(1)} = 1 + 2,37 = 3,37 \text{ A}$$

$$\rightarrow E^{(1)} = 20.3,37 + 71 = 138,4 \text{ V}$$

$$\varepsilon^{(1)} = \frac{|138, 4 - 100|}{100} = 38\%$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Phương pháp dò (11)

$$E = 100V$$
; $R_1 = 20 \Omega$; $R_3 = 30 \Omega$. Tính các dòng điện?

$$i_2 \to u_2 \to i_3 = \frac{u_2}{R_3} \to i_1 = i_2 + i_3$$

$$\rightarrow E = R_1 i_1 + u_2 = 100?$$
 $\varepsilon = |E - 100|/100$

k	1	2	3	
$i_2^{(k)}(A)$	1	0,5	0,6	
$u_2^{(k)}(V)$	71	48	53	
$i_3^{(k)}(\mathbf{A})$	2,37	1,60	1,77	
$i_1^{(k)}(\mathbf{A})$	3,37	2,10	2,37	
$E^{(k)}(V)$	138	90	100,3	
$arepsilon^{(k)}(\%)$	38	10	0,3	

$$\rightarrow |i_1 = 2,37 \text{ A}; i_2 = 0,6 \text{ A}; i_3 = 1,77 \text{ A}|$$

Phương pháp dò (12)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 200$ V; $e_2 = 180$ V; $j = 2$ A. Tim i_5 ?

$$\int i_1 + i_2 - i_5 = 0 \tag{\alpha}$$

$$i_5 - i_4 + j = 0 \tag{\beta}$$

$$\begin{cases} R_1 i_1 - R_2 i_2 = e_1 - e_2 & (\gamma) \\ R_2 i_2 + u_5 + R_4 i_4 + R_3 i_5 = e_2 & (\delta) \end{cases} \mathcal{E} = \frac{|e_1 - 200|}{200}$$

$$R_2 i_2 + u_5 + R_4 i_4 + R_3 i_5 = e_2 (\delta)$$

$$i_5 \xrightarrow{\text{d\^o thi}} u_5$$

$$\xrightarrow{(\beta)} i_4 = i_5 + j$$

$$\xrightarrow{(\delta)} i_2 = \frac{e_2 - (u_5 + R_4 i_4 + R_3 i_5)}{R_2}$$

$$\xrightarrow{(\alpha)} i_1 = i_5 - i_2$$

$$\xrightarrow{(\gamma)} e_1 = e_2 + R_1 i_1 - R_2 i_2 = 200?$$

Phương pháp dò (13)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 200$ V; $e_2 = 180$ V; $j = 2$ A. Tim i_5 ?

$$i_5 \rightarrow \begin{cases} u_5 \\ i_4 = i_5 + j \end{cases} \rightarrow i_2 = \frac{e_2 - (u_5 + R_4 i_4 + R_3 i_5)}{R_2}$$

$$\rightarrow i_1 = i_5 - i_2 \rightarrow e_1 = e_2 + R_1 i_1 - R_2 i_2; \varepsilon = |e_1 - 200|/200$$

$$i_5^{(1)} = 1 \text{ A} \rightarrow u_5^{(1)} = 71 \text{ V}, i_4 = 1 + 2 = 3 \text{ A}$$

$$\rightarrow i_2^{(1)} = \frac{180 - (71 + 40.3 + 40.1)}{30} = -1,70 \text{ A}$$

$$\rightarrow i_1^{(1)} = 1 - (-1, 70) = 2,70 \text{ A}$$

$$\rightarrow e_1^{(1)} = 180 + 20.2, 7 - 30(-1,7) = 285 \text{ V}$$

$$\varepsilon^{(1)} = \frac{|285 - 200|}{200} = 43\%$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Phương pháp dò (14)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 200$ V; $e_2 = 180$ V; $j = 2$ A. Tim i_5 ?

$$i_5 \rightarrow \begin{cases} u_5 \\ i_4 = i_5 + j \end{cases} \rightarrow i_2 = \frac{e_2 - (u_5 + R_4 i_4 + R_3 i_5)}{R_2}$$

$$\rightarrow i_1 = i_5 - i_2 \rightarrow e_1 = e_2 + R_1 i_1 - R_2 i_2; \varepsilon = |e_1 - 200|/200$$

k	1	2	3	·
$i_5^{(k)}(\mathbf{A})$	1	0,5	0,6	
$u_5^{(k)}(V)$	71	48	53	
$i_4^{(k)}$ (A)	3	2,5	2,6	
$i_2^{(k)}(A)$	-1,70	0,40	-0,033	
$i_1^{(k)}(A)$	2,70	0,10	0,67	
$e_1^{(k)}(V)$	285	170	195,33	
$\varepsilon^{(k)}$ (%)	43	15	2,33	

$$\rightarrow |i_5 = 0,6 \text{ A}| \text{ (Cách 1)}$$

Phương pháp dò (15)

VD4

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 200$ V; $e_2 = 180$ V; $j = 2$ A. Tìm i_5 ?

 R_3

$$R_4 \left[\varepsilon = \frac{|e_{td} - 192|}{192} \right] 100 U(V)$$

$$i_5 \rightarrow u_5 \rightarrow e_{td} = 80 + u_5 + (R_3 + R_4 + 12)i_5$$

k	1	2	3	
$i_5^{(k)}(A)$	1	0,5	(0,6)	
$u_5^{(k)}(V)$	71	48	54	
$e_{td}^{(k)}(V)$	243	174	189	
$arepsilon^{(k)}(\%)$	27	9,4	1,5	

$$\rightarrow |i_5 = 0, 6 \text{ A}|$$

Phương pháp dò (16)

VD5

$$E = 60 \text{ V}$$
; $R_1 = 20 \Omega$; $L = 4 \text{ H}$; $C = 80 \mu\text{F}$.
Tính dòng điện qua điện trở phi tuyến?

I(A)	0	0,5	1	1,5	2	2,5	3
U(V)	0	3	6	10	16	30	80

Đặc tính của điện trở phi tuyến

$$R_1 i + u(i) = E \rightarrow 20i + u(i) = 60$$

$$i \xrightarrow{\text{bång}} u(i) \to E = 20i + u(i) = 60 ? \varepsilon = \frac{|E - 60|}{60}$$

$$i^{(1)} = 0.5 \text{ A} \rightarrow u(i) = 3 \text{ V} \rightarrow E^{(1)} = 20.0, 5 + 3 = 13 \text{ V}$$

$$\varepsilon^{(1)} = \frac{|13 - 60|}{60} = 78\%$$

Phương pháp dò (17)

VD5

$$E=60 \text{ V}; R_1=20 \Omega; L=4 \text{ H}; C=80 \mu\text{F}.$$
 Tính dòng điện qua điện trở phi tuyến?

I(A)	0	0,5	1	1,5	2	2,5	3
U(V)	0	3	6	10	16	30	80

Đặc tính của điện trở phi tuyến

$$i \xrightarrow{\text{bång}} u(i) \rightarrow E = 20i + u(i) = 60 ? \mathcal{E} = \frac{|E - 60|}{60}$$

k	$i^{(k)}\left(\mathbf{A}\right)$	$20i^{(k)}(V)$	$u^{(k)}(i)$ (V)	$e^{(k)}(V)$	E (%)
1	0,5	10	3	13	78
2	2	40	16	56	6,67
3	2,5	50	30	80	33,33

$$i = \frac{2 + 2.5}{56 - 80}E + \frac{56.2, 5 - 80.2}{56 - 80} = 0,021E + 0,83$$

$$\rightarrow i|_{E=60} = 0,021.60 + 0,83 = \boxed{2,08 \text{ A}}$$

Phương pháp dò (18)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = 40\Omega$; $e_1 = 100 \text{ V}$; $e_2 = 80 \text{ V}$; $j = 1,2 \text{ A}$. Tim i_5 ?

 $I(A) = 0 = 0,5 = 1,0 = 1,5 = 2,0 = 2,5 = 3,0 = 0$
 $U(V) = 0 = 3 = 6 = 10 = 16 = 30 = 80$

Dặc tính phi tuyến của $R_4 \& R_5$

$$e_{td} = \frac{\frac{e_1}{R_1} + \frac{e_2}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}} = 92 \text{ V}; R_{td} = \frac{R_1 R_2}{R_1 + R_2} + R_3 = 52 \Omega$$

$$\begin{cases} i_5 - i_4 + j = 0 \\ u_5(i_5) + u_4(i_4) + R_{td}i_5 = e_{td} \end{cases}$$

$$i_5 \xrightarrow{\text{bång}} u_5(i_5)$$

$$\downarrow \rightarrow i_4 = i_5 + j \xrightarrow{\text{bång}} u_4(i_4)$$

$$\Rightarrow e_{td} = u_5 + u_4 + R_{td}i_5 = 92?$$

Phương pháp dò (19)

VD6

U(V)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = 40\Omega$; $e_1 = 100 \text{ V}$; $e_2 = 80 \text{ V}$; $j = 1,2 \text{ A}$. Tim i_5 ?

 $I(A) \quad 0 \quad 0,5 \quad 1,0 \quad 1,5 \quad 2,0 \quad 2,5 \quad 3,0$
 $U(V) \quad 0 \quad 3 \quad 6 \quad 10 \quad 16 \quad 30 \quad 80$

Đặc tính phi tuyến của
$$R_4 \& R_5$$

$$\rightarrow e_{td} = u_5 + u_4 + R_{td}i_5 = 92$$
?

$$i_5^{(1)} = 1 \rightarrow u_5^{(1)} = 6 \text{ V}; \ i_4^{(1)} = 1 + 1, 2 = 2, 2 \text{ A} \xrightarrow{\text{bang}} u_4$$

$$u_4^{(1)} = \frac{16 - 30}{2 - 2,5} 2, 2 + \frac{2.30 - 2,5.16}{2 - 2,5} = 21,60 \text{ V}$$

£=	$ e_{td}-92 $
<i>C</i> –	92

k	1	
$i_5^{(k)}(A)$	1	
$u_5^{(k)}(V)$	6	
$i_4^{(k)}(A)$	2,20	
$u_4^{(k)}(V)$	21,60	
$e_{td}^{(k)}(V)$	79,60	
$arepsilon^{(k)}(\%)$	13,5	

$$\rightarrow e_{td}^{(1)} = 6 + 21, 6 + 52.1 = 79, 6 \text{ V} \rightarrow \varepsilon^{(1)} = |79, 6 - 92| / 92 = 13,5\%$$

30

80

Phương pháp dò (20)

VD6

U(V)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = 40\Omega$; $e_1 = 100 \text{ V}$; $e_2 = 80 \text{ V}$; $j = 1,2 \text{ A}$. Tim i_5 ?

 $I(A) \quad 0 \quad 0,5 \quad 1,0 \quad 1,5 \quad 2,0 \quad 2,5 \quad 3,0 \quad U(V) \quad 0 \quad 3 \quad 6 \quad 10 \quad 16 \quad 30 \quad 80$

Đặc tính phi tuyến của $R_4 \& R_5$

$$\varepsilon = \frac{|e_{td} - 92|}{92}$$

i_5	$\xrightarrow{\text{bång}} u_5(i_5)$		
	$\rightarrow i_4 = i_5 + j$ bảng	$\rightarrow u_4(i_4)$	

$$\rightarrow e_{td} = u_5 + u_4 + R_{td}i_5 = 92?$$

$$i_5^{(2)} = 1, 5 \rightarrow u_5^{(1)} = 10 \text{ V}; \quad i_4^{(1)} = 1, 5 + 1, 2 = 2, 7 \text{ A} \xrightarrow{\text{bang}} u_4$$

$$u_4^{(2)} = \frac{30 - 80}{2, 5 - 3} 2, 7 + \frac{2, 5.80 - 3.30}{2, 5 - 3} = 50,00 \text{ V}$$

k	1	2
$i_5^{(k)}(A)$	1	1,5
$u_5^{(k)}(V)$	6	10
$i_4^{(k)}(A)$	2,20	2,7
$u_4^{(k)}(V)$	21,60	50,00
$e_{td}^{(k)}(V)$	79,60	138,0
$\varepsilon^{(k)}$ (%)	13.5	50

$$\rightarrow e_{td}^{(2)} = 10 + 50, 0 + 52.1, 5 = 138 \text{ V} \rightarrow \varepsilon^{(2)} = |138 - 92| /92 = 50\%$$

30

Phương pháp dò (21)

$$R_1 = 20\Omega$$
; $R_2 = 30\Omega$; $R_3 = 40\Omega$; $e_1 = 100 \text{ V}$; $e_2 = 80 \text{ V}$; $j = 1,2 \text{ A}$. Tim i_5 ?

 $I(A) = 0 = 0,5 = 1,0 = 1,5 = 2,0 = 2,5 = 3,0 = 0$
 $U(V) = 0 = 3 = 6 = 10 = 16 = 30 = 80$

Disc tiph phi tuyấn của $R_1 \approx R_2$

Đặc tính phi tuyến của
$$R_4 \& R_5$$

$$i_{5} \xrightarrow{\text{bảng}} u_{5}(i_{5})$$

$$\downarrow \rightarrow i_{4} = i_{5} + j \xrightarrow{\text{bảng}} u_{4}(i_{4})$$

$$\rightarrow e_{td} = u_{5} + u_{4} + R_{td}i_{5} = 92?$$

$$i_5 = \frac{1,5-1}{138-79,6}$$
92 + $\frac{138.1-79,6.1,5}{138-79,6} = \boxed{1,11A}$

k	1	2
$i_5^{(k)}(A)$	1	1,5
$u_5^{(k)}(V)$	6	10
$i_4^{(k)}(A)$	2,20	2,7
$u_4^{(k)}(V)$	21,60	50,00
$e_{td}^{(k)}(V)$	79,60	138,0
$arepsilon^{(k)}(\%)$	13,5	50

Phương pháp dò (22)

• Tìm nghiệm x của phương trình

$$M(x) = N = \text{const}$$
 (α)

bằng cách chọn các giá trị x^* khác nhau sao cho sai lệch giữa $M(x^*)$ và N nhỏ hơn một ngưỡng cho trước.

- Nếu không tìm được x^* thỏa mãn điều kiện về sai lệch thì có thể dùng phương pháp nội suy tuyến tính.
- Lập phương trình (α) bằng một trong hai cách:
 - Lập (hệ) phương trình (phương pháp dòng nhánh) mô tả mạch, rỗi rút gọn về dạng (α), hoặc,
 - 2. Dùng phương pháp biến đối tương đương để đơn giản hóa mạch điện, sau đó lập (α) .
- Có thể áp dụng cho mạch điện phức tạp, có nhiều phần tử phi tuyến.

Phương pháp dò (23)

TRƯỜNG ĐẠI HỌC **BÁCH KHOA HÀ NỘI**

Lý thuyết mạch II

- I. Quá trình quá độ
- II. Mạch phi tuyến
 - 1. Giới thiệu
 - 2. Đặc tính của phần tử phi tuyến
 - 3. Chế độ xác lập
 - a) Mạch một chiều
 - b) Mạch xoay chiềui. Cân bằng điều hòa

 - Tuyến tính điều hòa
 - Tuyến tính hóa quanh điểm làm việc
 - iv. Tuyến tính hóa từng đoạn
 - v. Đồ thị
 - 4. Chế độ quá độ
 - 5. Điốt và tranzito
- III. Đường dây dài

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Số phức (1)

$$v = a + jb$$

$$a+jb \leftrightarrow r/\varphi \leftrightarrow re^{j\varphi}$$

$$r/\varphi \qquad r\angle \varphi \qquad r\angle \varphi$$

$$e^{j\varphi} = \cos\varphi + j\sin\varphi$$
 (ct. Euler)

TRƯƠNG BẠI HỌC BÁCH KHOA HÀ NỘI

Số phức (2)

$$z = x + jy; z_1 = x_1 + jy_1 = r_1 / \frac{\phi_1}{\phi_1}; z_2 = x_2 + jy_2 = r_2 / \frac{\phi_2}{\phi_2}$$

$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$

$$z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$$

$$z_1 z_2 = r_1 r_2 / \frac{\phi_1 + \phi_2}{\phi_1 - \phi_2}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} / \frac{\phi_1 - \phi_2}{\phi_1 - \phi_2}$$

$$\frac{1}{z} = \frac{1}{r} / \frac{-\phi}{\phi_1 - \phi_2}$$

$$\sqrt{z} = \sqrt{r} / \frac{\phi_1 / 2}{\phi_1 / 2}$$

$$\hat{z} = z^* = x - jy = r / -\phi = re^{-j\phi}$$

TRƯƠNG BẠI HỌC BÁCH KHOA HÀ NỘI

Số phức (3)

$$10/0^{\circ} \leftrightarrow 10$$

$$10/90^{\circ} \leftrightarrow j10$$

$$10/-90^{\circ} \leftrightarrow -j10$$

$$10/180^{\circ} = 10/-180^{\circ} \leftrightarrow -10$$

$$A = M / \varphi, B = M / \varphi + 90^{\circ} \iff B = jA$$

$$A = M / \varphi, B = M / \varphi - 90^{\circ} \iff B = -jA$$

$$A = M / \varphi$$
, $B = M / \varphi \pm 180^{\circ} \leftrightarrow B = -A$

$$\frac{M}{j} = -jM$$

Phản ứng của các phần tử cơ bản

$$i = I_m \sin(\omega t + \varphi)$$

Phức hóa các phần tử cơ bản

Cân bằng điều hòa (1)

$$e(t) = 100\sin 314t$$
 (V); $C = 1\mu$ F; $\psi(i) = 0.2i - 0.6i^3$.

$$\sum_{k=1}^{N} u_k = 0; \quad \sum_{k=1}^{M} i_k = 0 \qquad u_R = Ri; \qquad u_R = u_R(i)$$

$$u_L = L \frac{di}{dt}; \qquad u_L = \frac{d\psi}{dt} \qquad i_C = C \frac{du}{dt}; \qquad i_C = \frac{dq}{dt}$$

$$e = u_C + \frac{d\psi}{dt} = \frac{1}{10^{-6}} \int i dt + \frac{\partial \psi}{\partial i} \cdot \frac{di}{dt} = \frac{1}{10^{-6}} \int i dt + (0, 2 - 1, 8i^2)i'$$

$$\rightarrow 10^{-6}e' = i + 10^{-6}[(0, 2 - 1, 8i^2)i']'$$

$$\rightarrow 100.314.10^{-6} \cos 314t = i + 10^{-6} (0, 2 - 1, 8i^2)i'' - 3, 6.10^{-6}i(i')^2$$

Cân bằng điều hòa (2)

$$e(t) = 100\sin 314t$$
 (V); $C = 1\mu F$; $\psi(i) = 0.2i - 0.6i^3$.

$$100.314.10^{-6}\cos 314t = i + 10^{-6}(0, 2 - 1, 8i^{2})i'' - 3, 6.10^{-6}i(i')^{2}$$

$$i = A \sin(314t + \varphi) \rightarrow e = 100 \sin(314t + \varphi + 90^{\circ})$$

$$e = 100 \sin 314t \rightarrow i = A \sin(314t - 90^{\circ})$$

= $A \cos 314t$

$$\to 0.0314\cos \omega t = (0.9803A + 0.0444A^{3})\cos \omega t + 0.133A^{3}\cos 3\omega t$$
(Diều hoà bậc cao)

$$\rightarrow 0.0314\cos\omega t \approx (0.9803A + 0.0444A^3)\cos\omega t$$

$$\rightarrow 0.0314 = 0.9803A + 0.0444A^3 \rightarrow A_1 = 0.032$$
 $A_{2,3} = -0.016 \pm j4.70$

$$\rightarrow | i = 0.032\cos 314t \text{ A} |$$

Cân bằng điều hòa (3)

$$e(t) = 100\sin 314t$$
 (V); $R = 200 \Omega$; $\psi(i) = 0.2i - 0.6i^3$.

$$e = Ri + \frac{d\psi}{dt} = Ri + \frac{\partial\psi}{\partial i} \cdot \frac{di}{dt} = 200i + (0, 2 - 0, 6i^2)i'$$

$$i = I_m \sin(314t + \varphi) \rightarrow e = 100 \sin(314t + \varphi + \theta)$$

$$e = 100 \sin 314t \rightarrow i = I_m \sin(314t - \theta)$$

$$e = 100(\sin 314t + \theta) \rightarrow i = I_m \sin 314t$$

$$\rightarrow 100\sin(314t + \theta) = \sqrt{(200I_m)^2 + (62,8 - 47,1I_m^3)^2} \sin\left(314t + \arctan\frac{62,8 - 47,1I_m^3}{200I_m}\right)$$

$$+47,1I_m^3\cos(3.314t)$$

Cân bằng điều hòa (4)

VD2

 $e(t) = 100\sin 314t$ (V); $R = 200 \Omega$; $\psi(i) = 0.2i - 0.6i^3$.

$$100\sin(314t + \theta) = \sqrt{(200I_m)^2 + (62.8 - 47.1I_m^3)^2} \sin\left(314t + \arctan\frac{62.8 - 47.1I_m^3}{200I_m}\right)$$

 $+47,1I_m^3\cos(3.314t)$ (Điều hoà bậc cao)

$$\rightarrow 100 \sin(314t + \theta) = \sqrt{(200I_m)^2 + (62, 8 - 47, 1I_m^3)^2} \sin\left(314t + \arctan\frac{62, 8 - 47, 1I_m^3}{200I_m}\right)$$

$$\Rightarrow \begin{cases}
\sqrt{(200I_m)^2 + (62.8 - 47.1I_m^3)^2} = 100 \\
\theta = \arctan \frac{62.8 - 47.1I_m^3}{200I_m}
\end{cases} \Rightarrow \begin{cases}
I_{m1} = 0.40 \\
\theta_1 = 1.11^o
\end{cases}$$

Cân bằng điều hòa (5)

$$e(t) = 100\sin 314t$$
 (V); $R = 200 \Omega$; $\psi(i) = 0.2i - 0.6i^3$.

$$\begin{cases} e = 100(\sin 314t + \theta) \\ i = I_m \sin 314t \end{cases} \rightarrow \begin{cases} I_{m1} = 0,40 \\ \theta_1 = 1,11^{\circ} \end{cases}$$

$$e = 100 \sin 314t \text{ (V)} \rightarrow \left| i(t) = 0,40 \sin(314t - 1,11^{\circ}) \text{ A} \right|$$

Cân bằng điều hòa (6)

- Chỉ áp dụng nếu mạch rất đơn giản (RL, RC, LC, RLC) & quan hệ phi tuyến là hàm giải tích.
- Các bước thực hiện:
 - Lập phương trình $f(x) = N\sin(\omega t + \varphi)$ trong đó N, ω , & φ đã biết.
 - Đặt $x = M\sin(\omega t + \theta)$ và thay vào phương trình trên và đưa về dạng:

$$A(M, \theta)\sin[\omega t + B(M, \theta)] = N\sin(\omega t + \varphi)$$

Giải hệ phương trình:

$$\begin{cases} A(M,\theta) = N \\ B(M,\theta) = \varphi \end{cases} \to \begin{cases} M \\ \theta \end{cases}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch II

- I. Quá trình quá độ
- II. Mạch phi tuyến
 - 1. Giới thiệu
 - 2. Đặc tính của phần tử phi tuyến
 - 3. Chế độ xác lập
 - a) Mạch một chiều
 - b) Mạch xoay chiều
 - i. Cân bằng điều hòa
 - ii. Tuyến tính điều hòa
 - iii. Tuyến tính hóa quanh điểm làm việc
 - iv. Tuyến tính hóa từng đoạn
 - v. Đồ thị
 - 4. Chế độ quá độ
 - 5. Điốt và tranzito
- III. Đường dây dài

Tuyến tính điều hòa (1)

$$e = 80\sqrt{2} \sin 20t \text{ V}; L = 0.5 \text{ H}.$$

$$\dot{U}(I) + j\omega L\dot{I} = \dot{E}$$

$$I \xrightarrow{\text{do thi}} \dot{U}_{R} = U(I) / 0^{\circ}$$

$$\downarrow \dot{U}_{L} = j\omega LI$$

$$\rightarrow \dot{E} = \dot{U}(I) + j\omega L\dot{I} \rightarrow E = 80? \varepsilon = \frac{|E - 80|}{80}$$

$$I^{(1)} = 1A \rightarrow \dot{U}_R^{(1)} = 62 / 0^{\circ} = 62 \text{ V}$$

$$\dot{U}_L^{(1)} = j20.0, 5.1 = j10 \,\text{V}$$

$$\dot{E}^{(1)} = 62 + j10 = 62,80/9,16^{\circ} \text{ V};$$

$$\varepsilon^{(1)} = \frac{|62,80 - 80|}{80} = 21,5\%$$

Tuyến tính điều hòa (2)

$$e = 80\sqrt{2} \sin 20t \text{ V}; L = 0.5 \text{ H}.$$

$$\begin{array}{c}
I \xrightarrow{\text{do thi}} \dot{U}_R = U(I) / 0^{\text{o}} \\
\downarrow \dot{U}_L = j\omega LI
\end{array}$$

$$\rightarrow \dot{E} = \dot{U}(I) + j\omega L\dot{I} \rightarrow E = 80?$$
 $\varepsilon = \frac{|E - 80|}{80}$

k	1	2
$I^{(k)}(A)$	1	2
$\dot{U}_{R}^{(k)}$ (V)	62	74
$\dot{U}_{L}^{(k)}\left(\mathrm{V} ight)$	<i>j</i> 10	<i>j</i> 20
$E^{(k)}$ (V)	62,8	76,7
ε (%)	21,5	4,1

$\dot{U}(I)$ $j\omega L$
$\dot{I} \stackrel{O(I)}{\frown} \dot{E}$
-+ <u>-</u> + <u>-</u> + <u>-</u> + <u>-</u> -+ <u>-</u> -+ <u>-</u> -+ <u>-</u> + <u>-</u>

$$\theta = \arctan(U_L / U_R) = \arctan(20 / 74) = 15,1^{\circ}$$
 $U(V)$

$$\rightarrow \left| i = 2\sqrt{2} \sin(20t - 15, 1^{\circ}) \text{ A} \right|$$

Tuyến tính điều hòa (3)

$$e = 150 \sin 25t \text{ V}; R = 40\Omega; \psi_m(I_m) = 3I_m + 0.5I_m^3.$$

Đặt
$$\psi(t) = \psi_m \sin(25t + \theta) \rightarrow u_L(t) = \frac{d\psi(t)}{dt} = 25\psi_m \cos(25t + \theta)$$

$$\rightarrow U_{Lm} = 25\psi_m(I_m) = 25(3I_m + 0,5I_m^3)$$

$$\sum_{k=1}^{N} u_k = 0; \quad \sum_{k=1}^{M} i_k = 0$$

$$u_R = Ri; \quad u_R = u_R(i)$$

$$u_L = L \frac{di}{dt}; \quad u_L = \frac{d\psi}{dt}$$

$$i_C = C \frac{du}{dt}; \quad i_C = \frac{dq}{dt}$$

Tuyến tính điều hòa (4)

$$e = 150 \sin 25t \text{ V}; R = 40\Omega; \psi_m(I_m) = 3I_m + 0.5I_m^3.$$

Đặt
$$\psi(t) = \psi_m \sin(25t + \theta) \rightarrow u_L(t) = \frac{d\psi(t)}{dt} = 25\psi_m \cos(25t + \theta)$$

$$\rightarrow (RI_m)^2 + U_{Lm}^2 = E_m^2$$

$$\rightarrow (40I_m)^2 + [25(3I_m + 0,5I_m^3)]^2 = 150^2$$

$$\rightarrow I_m = 1,40$$

$$\theta = \operatorname{arctg} \frac{U_{Lm}}{U_{Rm}} = \operatorname{arctg} \frac{25(3.1, 40 + 0, 5.1, 40^3)}{40.1, 40} = 68, 1^{\circ}$$

$$\rightarrow |i = 1,40 \sin(25t - 68,1^{\circ}) \text{ A}|$$

Tuyến tính điều hòa (5)

$$e = 150 \sin 25t \text{ V}; R = 40\Omega; \psi_m(I_m) = 3I_m + 0.5I_m^3.$$

$$U_{Lm} = 25\psi_m = 25(3I_m + 0, 5I_m^3)$$

(Cách 2)

$$R\dot{I} + \dot{U}_L(I) = \dot{E}$$

$$\dot{I} = I_{m} \underline{/0^{\circ}} \rightarrow \begin{cases} \dot{U}_{R} = 40I_{m} \\ \dot{U}_{L} = 25\psi_{m} \underline{/90^{\circ}} = j25\psi_{m} \end{cases} \rightarrow \dot{E} = \dot{U}_{R} + \dot{U}_{L} \rightarrow E_{m} = 150?$$

$$\varepsilon = |E_{m} - 150|/150$$

$$\dot{I}_{m}^{(1)} = 1A \quad \Rightarrow \begin{cases} \dot{U}_{R}^{(1)} = 40.1 = 40 \text{ V} \\ \dot{U}_{L}^{(1)} = j25(3.1 + 0, 5.1^{3}) = j87, 5 \text{ V} \end{cases}$$

$$\Rightarrow \dot{E}^{(1)} = 40 + j87, 5 = 96, 21 / 65, 4^{\circ} \text{ V}$$

$$\mathcal{E}^{(1)} = \frac{|96, 21 - 150|}{150} = 36\%$$

Tuyến tính điều hòa (6)

$$e = 150 \sin 25t \text{ V}; R = 40\Omega; \psi_m(I_m) = 3I_m + 0.5I_m^3.$$

$$\dot{I} = I_{m} / 0^{\circ} \rightarrow \begin{cases} \dot{U}_{R} = 40I_{m} \\ \dot{U}_{L} = j25(3I_{m} + 0.5I_{m}^{3}) \end{cases} \rightarrow \dot{E} = \dot{U}_{R} + \dot{U}_{L} \rightarrow E_{m} = 150? \\
\varepsilon = |E_{m} - 150| / 150$$

k	1	2	3	4
$I_m^{(k)}$ (A)	1	2	1,5	1,4
$U_{Rm}^{(k)}$ (V)	40	80	60	56
$U_{Lm}^{(k)}$ (V)	87,5	250	154,7	139,3
$E_m^{(k)}$ (V)	96,2		165,9	150,1
E (%)	36		10,6	0,09

$$\theta = \operatorname{arctg} \frac{U_{Lm}}{U_{Rm}}$$

$$= \operatorname{arctg} \frac{139,3}{56}$$

$$= 68,1^{\circ}$$

$$\rightarrow i = 1,4\sin(25t - 68,1^{\circ}) \text{ A}$$

Tuyến tính điều hòa (7)

VD3

$$\dot{E} = 220 \text{ V}; \omega = 314 \text{ rad/s}; Z = 10 + j20\Omega; \mathbf{Z} = \begin{bmatrix} 30 & j20 \\ j20 & 50 \end{bmatrix} \Omega; \dot{I}_2 = ?$$

Q (mC)	0	0,5	1	1,5	2	2,5	3	3,5
U(V)	0	3	6	10	16	50	80	120

$$q(t) = Q\sqrt{2}\sin(314t + \theta)$$

$$\rightarrow i_C = \frac{dq(t)}{dt} = 314Q\sqrt{2}\cos(314t + \theta)$$

$$\rightarrow I_C = 314Q$$

$$\sum_{k=1}^{N} u_k = 0; \quad \sum_{k=1}^{M} i_k = 0$$

$$u_R = Ri; \quad u_R = u_R(i)$$

$$u_L = L \frac{di}{dt}; \quad u_L = \frac{d\psi}{dt}$$

$$i_C = C \frac{du}{dt}; \quad i_C = \frac{dq}{dt}$$

Tuyến tính điều hòa (8)

VD3

$$\dot{E} = 220 \text{ V}; \omega = 314 \text{ rad/s}; Z = 10 + j20\Omega; \mathbf{Z} = \begin{bmatrix} 30 & j20 \\ j20 & 50 \end{bmatrix} \Omega; \dot{I}_2 = ?$$

Q (mC)	0	0,5	1	1,5	2	2,5	3	3,5
U(V)	0	3	6	10	16	50	80	120

$$U_C \xrightarrow{\text{bảng số}} Q \rightarrow \dot{I}_C = 314Q / 90^{\circ} = j314Q$$

$$\xrightarrow{(\beta,\delta)} \dot{I}_1 = \frac{-\dot{U}_C - 50\dot{I}_C}{i20}$$

$$\xrightarrow{(\alpha,\gamma)} \dot{E} = (Z+30)\dot{I}_1 + j20\dot{I}_C \rightarrow E = 220?$$

$$I_C = 314Q$$

$$\left[\dot{U}_1 = 30\dot{I}_1 + j20\dot{I}_2 \quad (\alpha)\right]$$

$$\begin{bmatrix} \varepsilon = |E - 220| \\ 220 \end{bmatrix} \begin{vmatrix} \dot{U}_2 = j20\dot{I}_1 + 50\dot{I}_2 & (\beta) \\ Z\dot{I}_1 + \dot{U}_1 = \dot{E} & (\gamma) \end{vmatrix}$$

$$Z\dot{I}_1 + \dot{U}_1 = \dot{E} \qquad (\gamma)$$

$$\dot{U}_2 = -\dot{U}_C \qquad (\delta)$$

$$U_C^{(1)} = 3 \text{ V} \rightarrow Q^{(1)} = 0.5 \text{ mC} \rightarrow \dot{I}_C^{(1)} = j314.0, 5.10^{-3} = j0,157 \text{ A}$$

$$\rightarrow \dot{I}_1^{(1)} = \frac{-3 - 50(j0, 157)}{j20} = 0,42 / 159, 1^{\circ} \text{ A}$$

$$\rightarrow \dot{E}^{(1)} = (10 + j20 + 30)0, 42 / 159, 1^{\circ} + j20(j0, 16) = 21, 92 / -175, 2^{\circ} \text{ V}$$

Tuyến tính điều hòa (9)

VD3

$$\dot{E} = 220 \text{ V}; \omega = 314 \text{ rad/s}; Z = 10 + j20\Omega; \mathbf{Z} = \begin{bmatrix} 30 & j20 \\ j20 & 50 \end{bmatrix} \Omega; \dot{I}_2 = ?$$

Q (mC)	0	0,5	1	1,5	2	2,5	3	3,5
U(V)	0	3	6	10	16	50	80	120

$$U_{C} \xrightarrow{\text{bång số}} Q \to \dot{I}_{C} = j314Q \to \dot{I}_{1} = \frac{-\dot{U}_{C} - 50\dot{I}_{C}}{j20} \to \dot{E} = (Z + 30)\dot{I}_{1} + j20\dot{I}_{C} \to E = 220?$$

k	$U_{C}^{(k)}\left(\mathrm{V}\right)$	$Q^{(k)}$ (mC)	$\dot{I}_{C}^{(k)}\left(A\right)$	$\dot{I}_{1}^{(k)}\left(\mathrm{A}\right)$	$\dot{E}^{(k)}\left(\mathrm{V} ight)$	3
1	3	0,5	<i>j</i> 0,16	$0,42/159,1^{\circ}$	$21,92/-175,2^{\circ}$	
2	16			<u> </u>	$91,36/-179,6^{\circ}$	
3	50	2,5	<i>j</i> 0,79	$3,18/128,1^{\circ}$	$156,47/157,2^{\circ}$	29
4	80	3	j0,94	$4,64/120,5^{\circ}$	$223,60/149,7^{\circ}$	1,7

$$\dot{I}_C = j0.94 = 0.94 / 90^{\circ} \text{ A} \rightarrow \dot{E} = 223.60 / 149.7^{\circ} \text{ V} \rightarrow \varphi_I - \varphi_E = 90^{\circ} - 149.7^{\circ} = -59.7^{\circ}$$

$$\varphi_E = 0 \rightarrow \varphi_I = -59, 7^{\circ} \rightarrow \dot{I}_2 = \dot{I}_C = 0,94 / -59,7^{\circ} \text{ A}$$

Tuyến tính điều hòa (10)

VD3

$$\dot{E} = 220 \text{ V}; \omega = 314 \text{ rad/s}; Z = 10 + j20\Omega; \mathbf{Z} = \begin{bmatrix} 30 & j20 \\ j20 & 50 \end{bmatrix} \Omega; \dot{I}_2 = ?$$

Q (mC)	0	0,5	1	1,5	2	2,5	3	3,5
U(V)	0	3	6	10	16	50	80	120

$$U_{C} \xrightarrow{\text{bång số}} Q \rightarrow \dot{I}_{C} = j314Q \rightarrow \dot{I}_{1} = \frac{-\dot{U}_{C} - 50\dot{I}_{C}}{j20} \rightarrow \dot{E} = (Z + 30)\dot{I}_{1} + j20\dot{I}_{C} \rightarrow E = 220?$$

$$(Cách 2)$$

$$\dot{U} \rightarrow E - M 2$$

$$U_C \xrightarrow{\text{bång số}} Q \rightarrow \dot{I}_C = j314Q \rightarrow \dot{E}_{td} = -Z_{td}\dot{I}_1 - \dot{U}_C \rightarrow E_{td} = M?$$

Tuyến tính điều hòa (11)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 160\sqrt{2} \sin 50t (V)$; $e_2 = 80\sqrt{2} \sin(50t + 30^\circ)(V)$; $j = 2\sqrt{2} \sin 50t (A)$. Tîm I_L ?

$$\begin{split} & \frac{\dot{I}_{1} + \dot{I}_{2} - \dot{I}_{L} = 0}{\dot{I}_{L} - \dot{I}_{4} + \dot{J} = 0} \\ & \frac{\dot{I}_{1} - \dot{I}_{4} + \dot{J} = 0}{\dot{I}_{L} - \dot{I}_{4} + \dot{I}_{2} = \dot{E}_{1} - \dot{E}_{2}} \\ & \frac{\dot{U}_{L}(I_{L}) + R_{4}\dot{I}_{4} + R_{3}\dot{I}_{L} + \frac{1}{j\omega C}\dot{I}_{2} = \dot{E}_{2}}{\dot{L}_{L} - \dot{I}_{L} + \dot{I}_{2} + \dot{I}_{2}} \\ & \frac{\dot{E}_{2} - \dot{U}_{L} - R_{4}\dot{I}_{4} - R_{3}\dot{I}_{L}}{1/j\omega C} \\ & \rightarrow \dot{I}_{1} = \dot{I}_{L} - \dot{I}_{2} \rightarrow \dot{E}_{1} = \dot{E}_{2} + R_{1}\dot{I}_{1} + \frac{1}{j\omega C}\dot{I}_{2} \\ & \dot{I}_{L} = 1 & 0^{\circ} \rightarrow \begin{cases} \dot{U}_{L} = j71 \\ \dot{I}_{4} = 1 + 2 \end{cases} \\ & \dot{Q}_{j} = 0 \Rightarrow \varphi_{jL} = \theta; \; \varphi_{jL} = 0 \rightarrow \varphi_{j} = ? \end{split}$$

Tuyến tính điều hòa (12)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 160\sqrt{2} \sin 50t (V)$; $e_2 = 80\sqrt{2} \sin(50t + 30^\circ)(V)$; $j = 2\sqrt{2} \sin 50t (A)$. Tim I_L ?

$$Z_a = \frac{R_1 Z_C}{R_1 + Z_C} = 17,24 - j6,90 \,\Omega$$

$$\dot{E}_a = \frac{\dot{E}_1 / R_1 + \dot{E}_2 / Z_C}{1 / R_1 + 1 / Z_C}$$
$$= 96,28 / -10,9^{\circ} \text{ V}$$

$$\dot{E}_b = R_4 \dot{J} = 40.2 = 80 \,\text{V}$$

$$\dot{U}_L + (Z_a + R_3 + R_4)\dot{I}_L = \dot{E}_a - \dot{E}_b = \dot{E}_{td} = 42,11 / -25,6^{\circ}$$

$$\rightarrow \dot{E}_{td} = \dot{U}_L + (Z_a + R_3 + R_4)\dot{I}_L$$

$$\begin{vmatrix} \dot{I}_{L} = I_{L} & \xrightarrow{\text{dô thị}} \dot{U}_{L} = jU_{L} \\ \rightarrow E_{td} = 42,11? \quad \varepsilon = 100 | E_{td} - 42,11 | /42,11 |$$

$$\dot{I}_L = 1 \xrightarrow{\text{do thi}} \dot{U}_L = j71$$

$$\rightarrow \dot{E}_{td} = j71 + (17, 24 - j6, 90 + 40 + 40)1 = 116, 5/33, 4^{\circ}$$

$$\rightarrow E_{td} = 116,5 \rightarrow \varepsilon = 100 | 116,5 - 42,11 | /42,11 = 177\%$$

Tuyến tính điều hòa (13)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $C = 0.4$ mF; $e_1 = 160\sqrt{2} \sin 50t (V)$; $e_2 = 80\sqrt{2} \sin(50t + 30^\circ)(V)$; $j = 2\sqrt{2} \sin 50t (A)$. Tim I_L ?

$$\dot{I}_{L} = I_{L} \xrightarrow{\text{do thi}} \dot{U}_{L} = jU_{L} \rightarrow \dot{E}_{td} = \dot{U}_{L} + (Z_{a} + R_{3} + R_{4})\dot{I}_{L}
\rightarrow E_{td} = 42,11? \quad \varepsilon = 100 | E_{td} - 42,11 | /42,11$$

k	$I_L(A)$	$\dot{U}_L(V)$	$\dot{E}_{td}\left(\mathrm{V}\right)$	E (%)
1	1	<i>j</i> 71	$116,5/33,4^{\circ}$	177
2	0,5	<i>j</i> 48	$65,95/42,5^{\circ}$	57
3	0,3	<i>j</i> 33	$42,52/46,7^{\circ}$	1,0

$$I_L = 0.3 \,\mathrm{A}$$

$$\varphi_{Etd} - \varphi_{IL} = 46, 7^{\circ} = -25, 6^{\circ} - \varphi_{IL} \rightarrow \varphi_{IL} = -72, 3^{\circ}$$

$$\rightarrow i_{L}(t) = 0, 3\sqrt{2}\sin(50t - 72, 3^{\circ}) A$$

Tuyến tính điều hòa (14)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $L = 4H$; $e_1 = 50\sqrt{2} \sin 50t (V)$; $e_2 = 100\sqrt{2} \sin(50t + 30^\circ) (V)$; $j = 2\sqrt{2} \sin 50t (A)$. Tim I_C ?

I(A)	0	0,5	1	1,5	2	2,5	3
U(V)	0	3	6	10	16	50	80

$$\dot{E}_{34} = R_4 \dot{J} = 80 \,\text{V}$$

$$Z_{34} = R_3 + R_4 + j\omega L = 80 + j200 \Omega$$

$$Z_{td} = \frac{R_1 Z_{34}}{R_1 + Z_{34}} = 19,20 + j1,60 \Omega$$

$$\dot{E}_{134} = \frac{\dot{E}_1 / R_1 + \dot{E}_{34} / Z_{34}}{1 / R_1 + 1 / Z_{34}} = 51,20 - j2,40 \text{ V}$$

$$Z_{td}\dot{I} + \dot{U}_C = \dot{E}_2 - \dot{E}_{134} = \dot{E}_{td} = 63,24/56,0^{\circ}$$

$$\dot{I}_{2} = I \xrightarrow{\text{bång số}} \dot{U}_{C} = -jU_{C} \rightarrow \dot{E}_{td} = \dot{U}_{C} + Z_{td}\dot{I}_{2}$$

$$\rightarrow E_{td} = 63,24? \quad \varepsilon = |E_{td} - 63,24| /63,24$$

Tuyến tính điều hòa (15)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $L = 4$ H; $e_1 = 50\sqrt{2} \sin 50t$ (V); $e_2 = 100\sqrt{2} \sin(50t + 30^\circ)$ (V); $j = 2\sqrt{2} \sin 50t$ (A). Tîm I_C ?

I(A)	0	0,5	1	1,5	2	2,5	3
U(V)	0	3	6	10	16	50	80

Tim
$$I_C$$
?
$$R_1 = \frac{l_1}{l_2}$$

$$R_3 = \frac{l_L}{l_4}$$

$$R_4 = \frac{l_4}{l_4}$$

$$R_4 = \frac{l_4}{$$

$$\dot{I}_2 = I \xrightarrow{\text{bång số}} \dot{U}_C = -jU_C \rightarrow \dot{E}_{td} = \dot{U}_C + (19, 20 + j1, 60)\dot{I}_2$$

 $\rightarrow E_{td} = 63, 24$? $\varepsilon = |E_{td} - 63, 24|/63, 24$

k	1	2	3
$\dot{I}_2(A)$	1	2,5	2
$\dot{U}_{C}(V)$	- <i>j</i> 6	-j50	- <i>j</i> 16
$\dot{E}_{td}\left(\mathbf{V}\right)$	$19,70/-12,9^{\circ}$	$66,48 / -43,8^{\circ}$	$40,48 / -18,4^{\circ}$
E (%)	69	5,1	36

$$\dot{E}_{td}$$
 Z_{td}

$$I_C = \frac{2,5-2}{66,48-40,48} 63,24 + \frac{66,48.2-40,48.2,5}{66,48-40,48} = \boxed{2,44A}$$

Tuyến tính điều hòa (16)

$$R_1 = 20\Omega; R_3 = R_4 = 40\Omega; L = 4H; e_1 = 50\sqrt{2} \sin 50t (V);$$

 $e_2 = 100\sqrt{2} \sin(50t + 30^\circ)(V); j = 2\sqrt{2} \sin 50t (A). \text{ Tim } I_C?$

I(A)	0	0,5	1	1,5	2	2,5	3
U(V)	0	3	6	10	16	50	80

$$I_C = 2,44 \text{ A}; \dot{E}_{td} = 63,24 / 56,0^{\circ} \text{ V}$$

$$U_C = \frac{16-50}{2-2.5} 2,44 - \frac{16.2.5-50.2}{2-2.5} = 45,92 \text{ V}$$

$$\dot{I}_{C} = 2,44 / \varphi \rightarrow \dot{U}_{C} = 45,92 / \varphi - 90^{\circ} \rightarrow \dot{E}_{td} = \dot{U}_{C} + Z_{td} \dot{I}_{2} = E_{td} / \varphi_{E} \rightarrow \varphi_{E} = 56,0^{\circ}? \quad \varepsilon = \frac{|\varphi_{E} - 56,0|}{56,0}$$

k	1	2	3
φ(°)	10	50	100
$\dot{U}_{C}(V)$	$45,92/-80^{\circ}$	$45,92 / -40^{\circ}$	45,92 <u>/10°</u>
$\dot{E}_{td}\left(\mathbf{V}\right)$	$62,93/-31,89^{\circ}$	$62,93/8,11^{\circ}$	62,93 <u>/58,11°</u>
$\mathcal{E}(\%)$	157	85	3,8

$$i_C(t) = 2,44\sqrt{2}\sin(50t + 100^\circ) A$$

= 3,45\sin(50t + 100^\circ) A

Tuyến tính điều hòa (17)

$$R_1 = 20\Omega$$
; $R_4 = R_5 = 40\Omega$; $L = 0.4H$; $e_1 = 250\sqrt{2} \sin 20t$ (V). Tim I_3 ?

	$I_3(A)$	0	0,5	1	1,5	2	2,5	3
U	$J_3(V)$	0	10	20	35	60	90	120

$$\left(\dot{I}_1 - \dot{I}_2 - \dot{I}_L = 0\right) \tag{a}$$

$$\left| \dot{I}_L - \dot{I}_3 - \dot{I}_4 \right| = 0 \tag{\beta}$$

$$\begin{cases} R_1 \dot{I}_1 + \dot{U}_C = \dot{E} \end{cases} \tag{\gamma}$$

$$\left| (R_5 + j\omega L)\dot{I}_L + \dot{U}_3 - \dot{U}_C = 0 \right| (\delta)$$

$$\dot{U}_3 = R_4 \dot{I}_4 \tag{\zeta}$$

$$\dot{I}_2 = I_2 \xrightarrow{\text{dô thị}} \dot{U}_C = -jU_C \xrightarrow{(\gamma)} \dot{I}_1 = (\dot{E} - \dot{U}_C) / R_1 \rightarrow ?$$

$$\begin{split} &\dot{I}_{3} = I_{3} \xrightarrow{\text{bång số}} \dot{U}_{3} \xrightarrow{(\zeta)} \dot{I}_{4} = \dot{U}_{3} / R_{4} \xrightarrow{(\beta)} \dot{I}_{L} = \dot{I}_{3} + \dot{I}_{4} \\ &\xrightarrow{(\delta)} \dot{U}_{C} = (R_{5} + j\omega L)\dot{I}_{L} + \dot{U}_{3} = U_{C} / \underline{\theta} \rightarrow U_{C} \xrightarrow{\text{dổ thị}} \dot{I}_{2} \\ &\rightarrow \dot{I}_{2} = I_{2} / \underline{\theta} + 90^{\circ} \xrightarrow{(\alpha)} \dot{I}_{1} = \dot{I}_{2} + \dot{I}_{L} \xrightarrow{(\gamma)} \dot{E} = R_{1}\dot{I}_{1} + \dot{U}_{C} \\ &\rightarrow E = 250? \quad \mathcal{E} = |E - 250| / 250 \end{split}$$

Tuyến tính điều hòa (18)

$$R_1 = 20\Omega$$
; $R_4 = R_5 = 40\Omega$; $L = 0.4H$; $e_1 = 250\sqrt{2}\sin 20t$ (V). Tim I_3 ?

$I_3(A)$	0	0,5	1	1,5	2	2,5	3
$U_3(V)$	0	10	20	35	60	90	120

$$\dot{I}_3 = I_3 \xrightarrow{\text{bång số}} \dot{U}_3 \xrightarrow{(\zeta)} \dot{I}_4 = \dot{U}_3 / R_4 \xrightarrow{(\beta)} \dot{I}_L = \dot{I}_3 + \dot{I}_4$$

$$\xrightarrow{(\delta)} \dot{U}_C = (R_5 + j\omega L)\dot{I}_L + \dot{U}_3 = U_C / \theta \rightarrow U_C \xrightarrow{\text{do thi}} I_2$$

$$\rightarrow \dot{I}_2 = I_2 / \theta + 90^{\circ} \xrightarrow{(\alpha)} \dot{I}_1 = \dot{I}_2 + \dot{I}_L \xrightarrow{(\gamma)} \dot{E} = R_1 \dot{I}_1 + \dot{U}_C$$

$$\rightarrow E = 250$$
? $\varepsilon = |E - 250|/250$

$$\dot{I}_3 = 1 \text{A} \xrightarrow{\text{bång số}} \dot{U}_3 = 20 \text{ V} \rightarrow \dot{I}_4 = 20 / 40 = 0,5 \text{ A}$$

$$\rightarrow \dot{I}_L = 1 + 0.5 = 1.5 \,\text{A}$$

$$\rightarrow \dot{U}_C = (40 + j20.0, 4)1, 5 + 20 = 81 / 8,5^{\circ} \text{ V}$$

$$\rightarrow U_C = 81 \text{ V} \xrightarrow{\text{dô thị}} I_2 = 0.34 \text{ A}$$

$$\rightarrow \dot{I}_2 = 0.35 / 8.5^{\circ} + 90^{\circ} = 0.35 / 98.5^{\circ}$$
 A

$$\rightarrow \dot{I}_1 = \dot{I}_2 + \dot{I}_L = 0.34/98,5^{\circ} + 1.5 = 1.49/13,1^{\circ} \text{ A}$$

$$\rightarrow \dot{E} = 20.1,49/13,1^{\circ} + 81/8,5^{\circ} = 110,6/10,3^{\circ} \text{ V}$$

Tuyến tính điều hòa (19)

$$R_1 = 20\Omega$$
; $R_4 = R_5 = 40\Omega$; $L = 0.4H$; $e_1 = 250\sqrt{2} \sin 20t$ (V). Tim I_3 ?

I_3 (A)	0	0,5	1	1,5	2	2,5	3
$U_3(V)$	0	10	20	35	60	90	120

$$\begin{split} \dot{I}_{3} &= I_{3} \xrightarrow{\text{bằng số}} \dot{U}_{3} \xrightarrow{(\zeta)} \dot{I}_{4} = \dot{U}_{3} / R_{4} \xrightarrow{(\beta)} \dot{I}_{L} = \dot{I}_{3} + \dot{I}_{4} \\ \xrightarrow{(\delta)} \dot{U}_{C} &= (R_{5} + j\omega L)\dot{I}_{L} + \dot{U}_{3} = U_{C} / \theta \rightarrow U_{C} \xrightarrow{\text{đồ thị}} \dot{I}_{2} \\ \rightarrow \dot{I}_{2} &= I_{2} / \theta + 90^{\circ} \xrightarrow{(\alpha)} \dot{I}_{1} = \dot{I}_{2} + \dot{I}_{L} \xrightarrow{(\gamma)} \dot{E} = R_{1}\dot{I}_{1} + \dot{U}_{C} \\ \rightarrow E = 250? \quad \mathcal{E} = |E - 250| / 250 \end{split}$$

k	1	2	3
$\dot{I}_3(A)$	1	1,5	2
$\dot{U}_3({ m V})$	20	35	60
$\dot{U}_{C}(V)$	$81/8,5^{\circ}$	$131/8,3^{\circ}$	$202/8,0^{\circ}$
$\dot{I}_2(A)$	$0,34/98,5^{\circ}$	$0,70/98,3^{\circ}$	$2/98,0^{\circ}$
$\dot{E}({ m V})$	$110,6/10,3^{\circ}$	$178,5/10,6^{\circ}$	$272,9/14,3^{\circ}$
E(%)		29	9,2

$$I_3 = \frac{1,5-2}{178,5-272,9} 250 + \frac{178,5.2-272,9.1,5}{178,5-272,9} = \boxed{1,86 \,\text{A}}$$

Tuyến tính điều hòa (20)

$$\begin{array}{c|c} & \dot{I} = I / \underline{0^{\circ}} \rightarrow \dot{U}_{R} = U(I) / \underline{0^{\circ}} \\ \hline & U(I) & \dot{I} = I / \underline{0^{\circ}} \rightarrow \dot{U}_{L} = U(I) / \underline{90^{\circ}} = jU(I) \\ \hline & \psi(I) & \dot{I} = I / \underline{0^{\circ}} \rightarrow \dot{U}_{L} = \omega \psi(I) / \underline{90^{\circ}} = j\omega \psi(I) \\ \hline & U(I) & \dot{I} = I / \underline{0^{\circ}} \rightarrow \dot{U}_{C} = U(I) / \underline{-90^{\circ}} = -jU(I) \\ \hline & Q(U) & \dot{U} = U / \underline{0^{\circ}} \rightarrow \dot{I}_{C} = \omega Q(U) / \underline{90^{\circ}} = j\omega Q(U) \\ \hline \end{array}$$

Tuyến tính điều hòa (21)

- Áp dụng khi biết các quan hệ phi tuyến U(I), $\Psi(I)$, Q(U), $U_m(I_m)$, $\Psi_m(I_m)$, $Q_m(U_m)$.
- Các bước thực hiện:
 - 1. Phức hóa mạch điện,
 - Lập (hệ) phương trình (phương pháp dòng nhánh) mô tả mạch, rồi rút gọn về dạng M(X) = N = const,
 - 3. Giải trực tiếp phương trình trên hoặc giải bằng **phương pháp dò**.
- Nếu mạch điện phức tạp thì có thể đơn giản hóa mạch điện trước khi lập phương trình.

Tuyến tính điều hòa (22)

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch II

- I. Quá trình quá độ
- II. Mạch phi tuyến
 - 1. Giới thiệu
 - 2. Đặc tính của phần tử phi tuyến
 - 3. Chế độ xác lập
 - a) Mạch một chiều
 - b) Mạch xoay chiều
 - i. Cân bằng điều hòa
 - ii. Tuyến tính điều hòa
 - iii. Tuyến tính hóa quanh điểm làm việc
 - iv. Tuyến tính hóa từng đoạn
 - v. Đồ thị
 - 4. Chế độ quá độ
 - 5. Điốt và tranzito
- III. Đường dây dài

Tuyến tính hóa quanh điểm làm việc (1)

Tuyến tính hóa quanh điểm làm việc (2)

5 sin 50t V

u(i)

$$e = 100 + 5\sin 50t \text{ V}; L = 0,5 \text{ H}.$$

$$E_{\text{max}} = 100 + 5 = 105 \text{ V}$$

$$E_{\min} = 100 - 5 = 95 \text{ V}$$

$$I_{DC} = 1.4 \,\mathrm{A}$$

$$u_R = u(i) \approx R_{tth}i$$

$$R_{AC} \approx \frac{\Delta u}{\Delta i} = \frac{105}{3} = 35\Omega$$

$$\dot{I}_{AC} = \frac{\dot{E}_{AC}}{R_{AC} + j50L}$$

$$= \frac{5/\sqrt{2}}{35 + j50.0,5} = 0,067 - j0,048$$
$$= 0,082/-35,5^{\circ} \text{ A}$$

Tuyến tính hóa quanh điểm làm việc (3)

$$e = 100 + 5\sin 50t \text{ V}; L = 0,5 \text{ H}.$$

$$I_{DC} = 1.4 \,\mathrm{A}$$

$$\dot{I}_{AC} = 0.082 / -35.5^{\circ} \text{ A}$$

$$\rightarrow i = I_{DC} + i_{AC}$$
= $1,4 + 0,082\sqrt{2}\sin(50t - 35,5^{\circ})$ A

Tuyến tính hóa quanh điểm làm việc (4)

- 1. Tìm điểm làm việc (do nguồn DC tạo ra),
- 2. Tuyến tính hóa phần tử phi tuyến (tìm đặc tính động),
- 3. Giải mạch AC với phần tử phi tuyến đã tuyến tính hóa,
- 4. Tổng hợp đáp số.

$$1.I_{DC} = 1.4 \,\mathrm{A}$$

$$2.R_{AC} \approx \frac{\Delta u}{\Delta i} = 35\Omega$$

$$3.\dot{I}_{AC} = \frac{E_{AC}}{R_{AC} + j50L}$$
$$= 0,082 / -35,5^{\circ} \text{ A}$$

$$u(i) \qquad L$$

$$e$$

$$4.i = I_{DC} + i_{AC} = 1,4 + 0,082\sqrt{2}\sin(50t - 35,5^{\circ})$$
 A

Tuyến tính hóa quanh điểm làm việc (5)

$$E_1 = 60 \text{ V}; \ e_2(t) = \sqrt{2} \sin 314t; \ R = 20 \Omega$$

$$\psi(i) = 0.96e^{0.0020i} - 1.05e^{-0.26i}; \ q(u) = 10^{-4}u - 0.5.10^{-8}u^3$$
 Tính dòng điện trên cuộn cảm & điện áp trên tụ điện.

$$I_{LDC} = \frac{E_1}{R} = \frac{60}{20} = 3 \text{ A}; \ U_{CDC} = E_1 = 60 \text{ V}$$

$$\psi = \psi(i) \approx L_{tth}i$$

$$L_{tth} = \frac{d\psi}{di}\bigg|_{i=3} = \left(0,96.0,002e^{0,0020i} + 1,05.0,26e^{-0,26i}\right)\bigg|_{i=3} = 0,13H$$

$$q = q(u) \approx C_{tth}u$$

$$C_{tth} = \frac{dq}{du}\Big|_{u=60} = (10^{-4} - 3.0, 5.10^{-8} u^2)\Big|_{u=60} = 46 \,\mu\,\text{F}$$

Tuyến tính hóa quanh điểm làm việc (6)

$$E_1 = 60 \text{ V}; \ e_2(t) = \sqrt{2} \sin 314t; \ R = 20 \Omega$$
 $\psi(i) = 0.96e^{0.0020i} - 1.05e^{-0.26i}; \ q(u) = 10^{-4}u - 0.5.10^{-8}u^3$ Tính dòng điện trên cuộn cảm & điện áp trên tụ điện.

$$I_{LDC} = 3A; \ U_{CDC} = 60V; \ L_{tth} = 0.13H; \ C_{tth} = 46 \,\mu\,F$$

$$\dot{I}_{LDC} = 3A; \ U_{CDC} = 60 \text{ V}; \ L_{tth} = 0,13H; \ C_{tth} = 46 \mu \text{ F}$$

$$\dot{I}_{LAC} = \frac{\dot{E}_2}{R + \frac{1}{j\omega C_{tth}}} = 0,025 / -62,6^{\circ} \text{ A}; \ \dot{U}_{CAC} = \frac{R \frac{1}{j\omega C_{tth}}}{R + \frac{1}{j\omega C_{tth}}} \dot{I}_{LAC} = 1 / 0^{\circ} \text{ V}$$

$$\dot{I}_{LAC} = \frac{1}{j\omega C_{tth}} \dot{I}_{LAC} = 1 / 0^{\circ} \text{ V}$$

$$i_L(t) = I_{LDC} + i_{LAC}(t) = 3 + 0.025\sqrt{2}\sin(314t - 62.6^{\circ}) \text{ A}$$

$$u_C(t) = U_{CDC} + u_{CAC}(t) = 60 + \sqrt{2} \sin 314t \text{ V}$$

Tuyến tính hóa quanh điểm làm việc (7)

VD3

 $e=60+\sin 100t$ V; $R_1=20$ Ω ; L=4 H; C=80 μ F. Tính dòng điện qua điện trở phi tuyến?

I(A)	0	0,5	1	1,5	2	2,5	3
U(V)	0	3	6	10	16	30	80

Đặc tính của điện trở phi tuyến

$$i \xrightarrow{\text{bång}} u(i) \to E = 20i + u(i) = 60 ? \mathcal{E} = \frac{|E - 60|}{60}$$

k	$i^{(k)}\left(\mathbf{A} ight)$	$20i^{(k)}(V)$	$u^{(k)}(i)$ (V)	$e^{(k)}(V)$	ε (%)
1	0,5	10	3	13	78
2	2	40	16	56	6,67
3	2,5	50	30	80	33,33

$$i = \frac{2 + 2.5}{56 + 80}e + \frac{56.2.5 - 80.2}{56 - 80} = 0.021e + 0.83$$

$$\rightarrow i|_{e=60} = 0.021.60 + 0.83 = \boxed{2.08 \,\text{A}} = I_{DC}$$

Tuyến tính hóa quanh điểm làm việc (8)

$$e=60+\sin 100t$$
 V; $R_1=20$ Ω ; $L=4$ H; $C=80$ μ F. Tính dòng điện qua điện trở phi tuyến?

$I(\Lambda)$	Λ	0.5	1	1 5	2	2 5	3
I(A)	U	0,5	1	1,5		2,3	3
U(V)	0	3	6	10	16	30	80

Đặc tính của điện trở phi tuyến

$$i_{DC} = 2,08 \,\mathrm{A}$$

$$R_{2tth} = \frac{30-16}{2.5-2} = 28\Omega$$

$$\dot{I}_{AC} = \frac{\dot{U}_{2AC}}{R_{2tth}} = \frac{0,22 - j0,21}{28} = 0,011 / -42,7^{\circ} \text{ A}$$

$$\rightarrow i_2 = i_{DC} + i_{AC} = 2,08 + 0,011 \sqrt{2} \sin(100t - 42,7^{\circ}) \text{ A}$$

Tuyến tính hóa quanh điểm làm việc (9)

$$R_1 = 60\Omega$$
; $R_3 = 40\Omega$; $L = 0.4$ H; $e = 200$ V (một chiều); $j = 0.2\sin 2000t$ (A). Tìm $i_L(t)$?

Q (mC)	0	0,5	1	1,5	2	2,5	3
U(V)	0	20	40	70	120	180	250

$$(R_1 + R_3)I_{DC} + U_{R4} = e \rightarrow (60 + 40)I_{DC} + U_{R4} = 200$$

$$\rightarrow U_{R4} = 200 - 100 I_{DC} \rightarrow I_{DC} = 0.7 \text{ A}$$

$$R_1 I_{DC} + U_{CDC} = e \rightarrow U_{CDC} = 200 - 60.0, 7 = 158 \text{ V}$$

$$R_{tth} = 140/1, 4 = 100 \Omega$$

$$C_{tth} = \frac{\Delta Q}{\Delta U} = \frac{(2,5-2)10^{-3}}{180-120} = 8,33 \mu\text{F}$$

Tuyến tính hóa quanh điểm làm việc (10)

$$R_1 = 60\Omega$$
; $R_3 = 40\Omega$; $L = 0.4$ H; $e = 200$ V (một chiều); $j = 0.2\sin 2000t$ (A). Tìm $i_L(t)$?

Q (mC)	0	0,5	1	1,5	2	2,5	3
U(V)	0	20	40	70	120	180	250

$$I_{DC} = 0.7A; R_{tth} = 100\Omega; C_{tth} = 8.33 \mu F$$

$$\dot{I}_{AC} = \frac{R_{tth}\dot{J}}{R_{3} + R_{tth} + j\omega L + \frac{R_{1}\frac{1}{j\omega C_{tth}}}{R_{1} + \frac{1}{j\omega C_{tth}}}}$$

$$= 0,0179 / -77,6^{\circ} \text{ A}$$

$$i_L(t) = I_{DC} + i_{AC}(t) = 0.7 - 0.0254\sin(2000t - 77.6^{\circ}) \text{ A}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Tuyến tính hóa quanh điểm làm việc (11)

	Đồ thị	Hàm số	Bảng số
•———	Vẽ tiếp tuyến ở điểm làm việc $K_{tth} = \frac{\Delta y}{\Delta x}$	$R_{tth} = \frac{du}{di}\bigg _{i=I_{DC}}$	$R_{tth} = \frac{U_2 - U_1}{I_2 - I_1}$ $I_1 = I_2 - I_1$
		$L_{tth} = \frac{d\psi}{di}\Big _{i=I_{DC}}$	$I_{1} < I_{DC} < I_{2}$ $L_{tth} = \frac{\psi_{2} - \psi_{1}}{I_{2} - I_{1}}$ $I_{1} < I_{DC} < I_{2}$
• #		$C_{tth} = \frac{dq}{du}\Big _{u=U_{DC}}$	$C_{tth} = \frac{Q_2 - Q_1}{U_2 - U_1}$ $U_1 < U_{DC} < U_2$

Tuyến tính hóa quanh điểm làm việc (12)

- Áp dụng khi mạch có nguồn một chiều lớn & nguồn xoay chiều có biên độ nhỏ.
- Các bước thực hiện
 - 1. Tìm điểm làm việc (do nguồn DC tạo ra),
 - 2. Tuyến tính hóa phần tử phi tuyến (tìm đặc tính động),
 - 3. Giải mạch AC với phần tử phi tuyến đã tuyến tính hóa,
 - 4. Tổng hợp đáp số.

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch II

- I. Quá trình quá độ
- II. Mạch phi tuyến
 - 1. Giới thiệu
 - 2. Đặc tính của phần tử phi tuyến
 - 3. Chế độ xác lập
 - a) Mạch một chiều
 - b) Mạch xoay chiều
 - i. Cân bằng điều hòa
 - ii. Tuyến tính điều hòa
 - iii. Tuyến tính hóa quanh điểm làm việc
 - iv. Tuyến tính hóa từng đoạn
 - v. Đồ thị
 - 4. Chế độ quá độ
 - 5. Điốt và tranzito
- III. Đường dây dài

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Tuyến tính hóa từng đoạn (1)

Tuyến tính hóa từng đoạn (2)

VD

 $e = 150 \sin 250t \text{ V}; R = 50\Omega$; Tính dòng điện trong mạch.

$$i_{\text{max}} < \frac{150}{50} = 3 \text{ A}; \ i_{\text{min}} > \frac{-150}{50} = -3 \text{ A}$$

$$L_{d\delta} = \frac{\Delta \psi}{\Delta i} = \frac{0.4}{1} = 0.4 \,\mathrm{H}$$

$$L_{xanh}$$
 $L_{xanh} = \frac{\Delta \psi}{\Delta i} = \frac{0.2}{2} = 0.1 \,\mathrm{H}$

Tuyến tính hóa từng đoạn (3)

VD

 $e = 150 \sin 250t \text{ V}; R = 50\Omega$; Tính dòng điện trong mạch.

$$\frac{1}{50\Omega}$$
 0,4H

$$i_{d\delta} = 1,34\sin(250t - 63,4^{\circ})$$
A

$$i_{xanh} = 2,68\sin(250t - 26,6^{\circ})$$
A

Tuyến tính hóa từng đoạn (4)

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch II

- I. Quá trình quá độ
- II. Mạch phi tuyến
 - 1. Giới thiệu
 - 2. Đặc tính của phần tử phi tuyến
 - 3. Chế độ xác lập
 - a) Mạch một chiều
 - b) Mạch xoay chiều
 - i. Cân bằng điều hòa
 - ii. Tuyến tính điều hòa
 - iii. Tuyến tính hóa quanh điểm làm việc
 - iv. Tuyến tính hóa từng đoạn
 - v. Đồ thị
 - 4. Chế độ quá độ
 - 5. Điốt và tranzito
- III. Đường dây dài

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Đồ thị

Lý thuyết mạch II

I. Quá trình quá độ

II. Mạch phi tuyến

- 1. Giới thiệu
- 2. Đặc tính của phần tử phi tuyến
- 3. Chế độ xác lập
- 4. Chế độ quá độ
 - a) Tuyến tính hóa quanh điểm làm việc
 - b) Tuyến tính hóa từng đoạn
 - c) Tham số bé
 - d) Sai phân
- 5. Điốt và tranzito

III. Đường dây dài

Tuyến tính hóa quanh điểm làm việc (1)

Tuyến tính hóa quanh điểm làm việc (2)

$$I_{100\,\mathrm{V}} = 1.4\,\mathrm{A}$$

$$E_{\text{max}} = 100 + 5 = 105 \,\text{V}$$

$$R_{5V} \approx \frac{\Delta u}{\Delta i} = \frac{105}{3} = 35\Omega$$

$$i_{L,5\,\mathrm{V}}(-0) = 0$$

$$I_{5V}(s) = \frac{5/s}{2,5s+35}$$
$$= \frac{2}{s(s+14)} A$$

Tuyến tính hóa quanh điểm làm việc (3)

$$i = i_{100\text{V}} + i_{5\text{V}}(t) = 1,4+0,14(1-e^{-14t}) \text{ A}$$

Tuyến tính hóa quanh điểm làm việc (4)

$$I_{DC} = 1,4 \,\mathrm{A}$$

$$E_{\text{max}} = 100 + 5 = 105 \text{ V}$$

$$E_{\min} = 100 - 5 = 95 \text{ V}$$

$$R_{AC} \approx \frac{\Delta u}{\Delta i} = \frac{105}{3} = 35 \,\Omega$$

$$i_{L,5V}(-0) = 0$$

$$I_{AC}(s) = \frac{\frac{250}{s^2 + 2500}}{2,5s + 35}$$

$$=\frac{100}{(s^2+2500)(s+14)}$$
 A

$$\rightarrow i_{AC}(t) = 0.045e^{-14t} + 0.14\sin(50t - 19.7^{\circ})$$
 A

$$\rightarrow i(t) = 1, 4 - 0,045e^{-14t} - 0,14\sin(50t - 19,7^{\circ}) \text{ A}$$

Tuyến tính hóa quanh điểm làm việc (5)

Tuyến tính hóa quanh điểm làm việc (6)

$$E_1 = 60 \text{ V}; \ e_2(t) = \sqrt{2} \sin 314t; \ R = 20 \Omega$$

$$\psi(i) = 0.96e^{0.0020i} - 1.05e^{-0.26i}; \ q(u) = 10^{-1}u - 0.5.10^{-5}u^3$$
 Tính dòng điện trên cuộn cảm & điện áp trên tụ điện.

$$I_{LDC} = \frac{E_1}{R} = \frac{60}{20} = 3 \text{ A}; \ U_{CDC} = E_1 = 60 \text{ V}$$

$$I_{LDC} = \frac{E_1}{R} = \frac{60}{20} = 3 \text{ A}; \ U_{CDC} = E_1 = 60 \text{ V}$$

$$L_{tth} = \frac{d\psi}{di}\Big|_{i=3}$$

$$= \left(0,96.0,002e^{0,0020i} + 1,05.0,26e^{-0,26i}\right)\Big|_{i=3} = 0,13 \text{ H}$$

$$C_{tth} = \frac{dq}{du}\Big|_{u=60} = (10^{-1} - 3.0, 5.10^{-5} u^2)\Big|_{u=60} = 46 \,\mathrm{mF}$$

Tuyến tính hóa quanh điểm làm việc (7)

$$E_1 = 60 \text{ V}; \ e_2(t) = \sqrt{2} \sin 314t; \ R = 20 \Omega$$
 $\psi(i) = 0.96e^{0.0020i} -1.05e^{-0.26i}; \ q(u) = 10^{-1}u - 0.5.10^{-5}u^3$ Tính dòng điện trên cuộn cảm & điện áp trên tụ điện.

$$I_{LDC} = 3 \text{ A}; L_{tth} = 0.13 \text{ H}; C_{tth} = 46 \text{ mF}$$

 $i_{L,e2}(-0) = 0; u_{C,e2}(-0) = 0$

$$I_{LDC} = 3R, L_{tth} = 0,13R, C_{tth} = 40R$$

$$I_{L,e2}(-0) = 0; \ u_{C,e2}(-0) = 0$$

$$I_{e2}(s) = \frac{314\sqrt{2}/(s^2 + 314^2)}{L_{tth}s + \frac{R(1/C_{tth}s)}{R + 1/C_{tth}s}} = \frac{1,485(2300s + 2500)}{(s^2 + 314^2)(s^2 + 1,087s + 167,22)} A$$

Tuyến tính hóa quanh điểm làm việc (8)

$$E_1 = 60 \text{ V}; \ e_2(t) = \sqrt{2} \sin 314t; \ R = 20 \Omega$$

$$\psi(i) = 0.96e^{0.0020i} - 1.05e^{-0.26i}; \ q(u) = 10^{-1}u - 0.5.10^{-5}u^3$$
 Tính dòng điện trên cuộn cảm & điện áp trên tụ điện.

$$I_{LDC} = 3 \text{ A}; \ L_{tth} = 0.13 \text{ H}; \ C_{tth} = 46 \text{ mF}$$

 $i_{L,e2}(-0) = 0; \ u_{C,e2}(-0) = 0$

$$t = 0$$

$$e_2$$

$$R$$

$$I_{e2}(s) = \frac{314\sqrt{2}/(s^2 + 314^2)}{L_{tth}s + \frac{R(1/C_{tth}s)}{R + 1/C_{tth}s}} = \frac{1,485(2300s + 2500)}{(s^2 + 314^2)(s^2 + 1,087s + 167,22)} A$$

$$\rightarrow i_{e2}(t) = 0.0245\sqrt{2}\sin(314t - 90^{\circ}) + 0.0347e^{-0.54t}\cos(12.92t - 2.4^{\circ}) A$$

$$\rightarrow i(t) = I_{LDC} + i_{e2}(t)$$

$$= 3 + 0.0245\sqrt{2}\sin(314t - 90^{\circ}) + 0.0347e^{-0.54t}\cos(12.92t - 2.4^{\circ}) A$$

Tuyến tính hóa quanh điểm làm việc (9)

VD3

$$E_1 = 60 \text{ V}; \ e_2(t) = \sqrt{2} \sin 314t; \ R = 20 \Omega$$

$$\psi(i) = 0.96e^{0.0020i} - 1.05e^{-0.26i}; q(u) = 10^{-1}u - 0.5.10^{-5}u^{3}$$

Tính dòng điện trên cuộn cảm & điện áp trên tụ điện.

$$i(t) = 3 + 0,0245\sqrt{2}\sin(314t - 90^{\circ}) + 0,0347e^{-0.54t}\cos(12,92t - 2,4^{\circ})$$
A

Tuyến tính hóa quanh điểm làm việc (10)

VD4

$$e_1 = 60\text{V}$$
; $e_2 = 5e^{-100t}\text{ V}$; $R_1 = 20\ \Omega$; $C = 0.8\ \text{mF}$; $u_C(t) = ?$

I(A)	0	0,5	1	1,5	2	2,5	3
U(V)	0	3	6	10	16	30	80

Đặc tính của điện trở phi tuyến

$$I_{DC} = 2,08 \,\mathrm{A}$$

$$U_{CDC} = e_1 - R_1 I_{DC} = 60 - 20.2, 08 = 18,4 \text{ V}$$

$$R_{2tth} = \frac{30 - 16}{2, 5 - 2} = 28 \,\Omega$$

$$u_{C,e2}(-0) = 0$$

Tuyến tính hóa quanh điểm làm việc (11)

VD4

$$e_1 = 60\text{V}; \ e_2 = 5e^{-100t} \text{ V}; \ R_1 = 20 \ \Omega; \ C = 0.8 \text{ mF}; \ u_C(t) = ?$$

I(A)	0	0,5	1	1,5	2	2,5	3
U(V)	0	3	6	10	16	30	80

Đặc tính của điện trở phi tuyến

$$U_{CDC} = 18,4 \text{ V}; \ R_{2tth} = 28 \Omega$$

$$Z_{R2C} = R_{2tth} / / C = \frac{R_{2tth} (1 / Cs)}{R_{2tth} + 1 / Cs}$$

$$U_{Ce2}(s) = Z_{R2C} \frac{E_2(s)}{R_1 + Z_{R2C}} = \frac{312,5}{(s+107)(s+100)} V$$

$$\rightarrow u_{Ce2} = 43,75(e^{-100t} - e^{-107t}) V$$

$$\rightarrow u_C = u_{CDC} + u_{Ce2} = 18,40 + 43,75(e^{-100t} - e^{-107t}) \text{ V}$$

Tuyến tính hóa quanh điểm làm việc (12)

VD4

$$e_1 = 60\text{V}$$
; $e_2 = 5e^{-100t}\text{ V}$; $R_1 = 20\ \Omega$; $C = 0.8\ \text{mF}$; $u_C(t) = ?$

I(A)	0	0,5	1	1,5	2	2,5	3
U(V)	0	3	6	10	16	30	80

Đặc tính của điện trở phi tuyến

$$u_C = 18,40 + 43,75(e^{-100t} - e^{-107t}) V$$

Lý thuyết mạch II

I. Quá trình quá độ

II. Mạch phi tuyến

- 1. Giới thiệu
- 2. Đặc tính của phần tử phi tuyến
- 3. Chế độ xác lập
- 4. Chế độ quá độ
 - a) Tuyến tính hóa quanh điểm làm việc
 - b) Tuyến tính hóa từng đoạn
 - c) Tham số bé
 - d) Sai phân
- 5. Điốt và tranzito

III. Đường dây dài

TRƯỜNG BẠI HỌC BÁCH KHOA HÀ NỘI

Tuyến tính hóa từng đoạn (1)

Tuyến tính hóa từng đoạn (2)

$$e = 150 \text{ V}; R = 50\Omega$$
; Tính dòng điện trong mạch.

$$i_{\text{max}} = 150 / 30 = 3 \text{ A}; \ i_{\text{min}} = 0 \text{ A}$$

$$0 < i < 1$$
: $L_{d\delta} = \Delta \psi / \Delta i = 0, 4 / 1 = 0, 4 H$

$$i > 1$$
: $L_{xanh} = \Delta \psi / \Delta i = 0, 2 / 2 = 0, 1 H$

Tuyên tính hóa từng đoạn (3)

VD

$$e = 150 \text{ V}; R = 50\Omega$$
; Tính dòng điện trong mạch.

$$i(-0) = 0 A$$

$$I_{do}(s) = \frac{150/s}{0.4s + 50}$$
 A

$$\rightarrow \left[i_{do}(t) = 3 - 3e^{-125t} \quad A\right]$$

$$i_{do}(t^*) = 3 - 3e^{-125t^*} = 1$$

$$\rightarrow t^* = 3.2 \text{ ms}$$

t(ms)

i(A)

Tuyên tính hóa từng đoạn (4)

VD

$$e = 150 \text{ V}; R = 50\Omega$$
; Tính dòng điện trong mạch.

$$i(-0) = 1A$$

$$I_{xanh}(s) = \frac{150 / s + 0,1}{0,1s + 50}$$
 A

$$\rightarrow [i_{xanh}(t) = 3 - 2e^{-500t} \text{ A}]$$

$$t = 3.2 \,\mathrm{ms}$$

i(A)

Tuyến tính hóa từng đoạn (5)

VD

 $e = 150 \text{ V}; R = 50\Omega$; Tính dòng điện trong mạch.

$$i_{do}(t) = 3 - 3e^{-125t}$$
 A

$$\Rightarrow \begin{cases}
0 < t < 3, 2 \,\text{ms}: & i(t) = 3 - 3e^{-125t} \,\text{A} \\
t > 3, 2 \,\text{ms}: & i(t) = 3 - 2e^{-500(t - 3, 2.10^{-3})} \,\text{A}
\end{cases}$$

Lý thuyết mạch II

I. Quá trình quá độ

II. Mạch phi tuyến

- 1. Giới thiệu
- 2. Đặc tính của phần tử phi tuyến
- 3. Chế độ xác lập
- 4. Chế độ quá độ
 - a) Tuyến tính hóa quanh điểm làm việc
 - b) Tuyến tính hóa từng đoạn
 - c) Tham số bé
 - d) Sai phân
- 5. Điốt và tranzito

III. Đường dây dài

Tham số bé (1)

$$Ri + \frac{d\Psi}{dt} = u \rightarrow Ri + \frac{\partial\Psi}{\partial i} \cdot \frac{di}{dt} = u$$

$$\rightarrow 250i + (2-11,25i^2)i' = 120$$

$$t = 0 \qquad \qquad W(i) \qquad U_{DC} = 120 \text{ V}; \\ R = 250 \Omega; \\ \Psi(i) = 2i - 3,75i^{3} \\ i = ?$$

Tham số bé (2)

$$(250i_0 + 2i'_0 - 120) + \mu(250i_1 + 2i'_1 - i_0^2 i'_0) - \mu^2(2i_0 i_1 i'_0 + i_0^2 i'_1) - \mu^3(2i_0 i_1 i'_1 + i_1^2 i'_0) - \mu^4 i'_1^2 i'_1 = 0$$

$$\rightarrow \begin{cases} 250i_0 + 2i'_0 - 120 = 0\\ 250i_1 + 2i'_1 - i_0^2 i'_0 = 0 \end{cases}$$
(1)

$$(1a) \rightarrow 250I_0(p) + 2pI_0(p) - 2i_0(-0) - \frac{120}{p} = 0 \rightarrow I_0(p) = \frac{\frac{120}{p} + 2i_0(-0)}{2p + 250} = \frac{60}{p(p + 125)}$$

$$\rightarrow i_0(t) = 0.48(1 - e^{-125t}) A$$

Tham số bé (3)

$$\begin{cases} 250i_0 + 2i'_0 - 120 = 0\\ 250i_1 + 2i'_1 - i_0^2 i'_0 = 0 \end{cases}$$
 (1)

$$(1a) \rightarrow [i_0(t) = 0, 48(1 - e^{-125t})A]$$

$$t = 0$$

$$R$$

$$\psi(i)$$

$$U_{DC} = 120 \text{ V};$$

$$R = 250 \Omega;$$

$$\Psi(i) = 2i - 3,75i^3$$

$$i = ?$$

$$(1b) \rightarrow 250i_{1} + 2i'_{1} - [0,48(1 - e^{-125t})]^{2} 60e^{-125t} = 0$$

$$\rightarrow 250i_{1} + 2i'_{1} - 13,824(e^{-125t} - 2e^{-250t} + e^{-375t}) = 0$$

$$\rightarrow 250I_{1}(p) + 2pI_{1}(p) - 2i_{1}(-0) - 13,824\left(\frac{1}{p+125} - \frac{2}{p+250} + \frac{1}{p+375}\right) = 0$$

$$\rightarrow I_{1}(p) = 13,824\frac{\frac{1}{p+125} - \frac{2}{p+250} + \frac{1}{p+375}}{2p+250} =$$

$$= 6,912\left[\frac{1}{(p+125)^{2}} - \frac{2}{(p+125)(p+250)} + \frac{1}{(p+125)(p+375)}\right]$$

$$\rightarrow \left[i_{1}(t) = 6,912(te^{-125t} - 0,012e^{-125t} + 0,016e^{-250t} - 0,004e^{-375t})A\right]$$
The latter (Is the good com/site/goodb) the (box)

Tham số bé (4)

$$i = i_0(t) + \mu i_1(t)$$

$$i_0(t) = 0,48(1 - e^{-125t}) A$$

$$i_1(t) = 6,912(te^{-125t} - 0,012e^{-125t} + 0,016e^{-250t} - 0,004e^{-375t}) A$$

$$\rightarrow i(t) = 0.48(1 - e^{-125t}) + \mu 6.912(te^{-125t} - 0.012e^{-125t} + 0.016e^{-250t} - 0.004e^{-375t}) A$$

$$\mu = 11.25$$

$$\rightarrow i(t) = 0,48(1 - e^{-125t}) + 11,25.6,912(te^{-125t} - 0,012e^{-125t} + 0,016e^{-250t} - 0,004e^{-375t}) A$$

$$= \boxed{0,48 + (77,76t - 1,41)e^{-125t} + 1,24e^{-250t} - 0,31e^{-375t} A}$$

Lý thuyết mạch II

I. Quá trình quá độ

II. Mạch phi tuyến

- 1. Giới thiệu
- 2. Đặc tính của phần tử phi tuyến
- 3. Chế độ xác lập
- 4. Chế độ quá độ
 - a) Tuyến tính hóa quanh điểm làm việc
 - b) Tuyến tính hóa từng đoạn
 - c) Tham số bé
 - d) Sai phân
- 5. Điốt và tranzito

III. Đường dây dài

TRƯỜNG BẠI HỌC BÁCH KHOA HÀ NỘI

Sai phân (1)

$$\begin{vmatrix} \frac{dy}{dx} \approx \frac{\Delta y}{\Delta x}; & \frac{di_k}{dt} \approx \frac{\Delta i}{\Delta t} = \frac{i_{k+1} - i_k}{t_{k+1} - t_k} = \frac{i_{k+1} - i_k}{h}; & \frac{du_k}{dt} \approx \frac{u_{k+1} - u_k}{h} \end{vmatrix}$$

Sai phân (2)

VD1

e=24V (DC); R=60 Ω ; $\Psi(i)=1,75i-2,8i^3$; bước sai phân h=2ms. Tính dòng điện quá độ trong mạch?

$$t = 0$$

$$R$$

$$\psi(i)$$

$$Ri + \frac{d\Psi}{dt} = e \rightarrow 60i + \frac{d\Psi}{dt} = 24 \rightarrow 60i + \frac{\partial\Psi}{\partial i} \cdot \frac{di}{dt} = 24$$

$$\rightarrow 60i + (1,75 - 8,4i^2)i' = 24 \rightarrow 60i_k + (1,75 - 8,4i_k^2)i'_k = 24$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Sai phân (3)

VD1

e=24V (DC); R=60 Ω ; $\Psi(i)=1,75i-2,8i^3$; bước sai phân h=2ms. Tính dòng điện quá độ trong mạch?

$$t = 0$$

$$R$$

$$\psi(i)$$

$$Ri + \frac{d\Psi}{dt} = e \rightarrow i_{k+1} = i_k + 0,002 \frac{24 - 60i_k}{1,75 - 8,4i_k^2}$$

$$i_{1} = i_{0} + 0.002 \frac{24 - 60i_{0}}{1.75 - 8.4i_{0}^{2}}$$

$$i_{0} = i_{L}(-0) = 0$$

$$\rightarrow i_{1} = 0 + 0.002 \frac{24 - 60.0}{1.75 - 8.4.0^{2}} = 0.0274A$$

$$i_2 = i_1 + 0,002 \frac{24 - 60i_1}{1,75 - 8,4i_1^2} = 0,0274 + 0,002 \frac{24 - 60.0,0274}{1,75 - 8,4.0,0274^2} = 0,0530A$$

$$i_3 = i_2 + 0,002 \frac{24 - 60i_2}{1,75 - 8,4i_2^2} = 0,0530 + 0,002 \frac{24 - 60.0,0530}{1,75 - 8,4.0,0530^2} = 0,0771A$$

k	0	1	2	3	
$i_k(A)$	0	0,0274	0,0530	0,0771	

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sai phân (4)

VD1

e=24V (DC); R=60 Ω ; $\Psi(i)=1,75i-2,8i^3$; bước sai phân h=2ms. Tính dòng điện quá độ trong mạch?

Sai phân (5)

$$e = 60 \text{ V (DC)}; R = 20 \Omega; q(u) = 10^{-4} u - 0.5.10^{-8} u^3;$$

Bước sai phân 1ms. Tính điện áp trên tụ điện.

$$t = 0$$

$$R$$

$$q(u)$$

$$e$$

$$Ri + u = e \rightarrow 20i + u = 60 \rightarrow 20\frac{dq}{dt} + u = 60$$

$$\rightarrow 20 \frac{\partial q}{\partial u} \cdot \frac{du}{dt} + u = 60 \quad \rightarrow 20(10^{-4} - 1, 5.10^{-8} u^2) u' + u = 60$$

$$\rightarrow 20(10^{-4} - 1, 5.10^{-8} u_k^2) u_k' + u_k = 60$$

k	$u_k(V)$
0	$u_{C}(-0) = 0$
1	30,00
2	47,34

$$u_1 = u_0 + \frac{0,001(60 - u_0)}{20(10^{-4} - 1,5.10^{-8}u_0^2)}$$

$$u_2 = u_1 + \frac{0,001(60 - u_1)}{20(10^{-4} - 1,5.10^{-8} u_1^2)}$$

$$u_{1} = u_{0} + \frac{0,001(60 - u_{0})}{20(10^{-4} - 1,5.10^{-8}u_{0}^{2})} \rightarrow \frac{u_{k+1} - u_{k}}{0,001} = \frac{60 - u_{k}}{20(10^{-4} - 1,5.10^{-8}u_{k}^{2})}$$

$$\rightarrow u_{k+1} = u_k + \frac{0,001(60 - u_k)}{20(10^{-4} - 1,5.10^{-8} u_k^2)}$$

Sai phân (6)

$$x_k' \approx \frac{\Delta x_k}{\Delta t} = \frac{x_{k+1} - x_k}{h}$$

$$x_{k}'' = \frac{d^{2}x_{k}}{dt^{2}} = \frac{dx_{k}'}{dt} \approx \frac{\Delta x_{k}'}{h} = \frac{x_{k+1}' - x_{k}'}{h}$$

$$x_{k}' \approx \frac{\Delta x_{k}}{\Delta t} = \frac{x_{k+1} - x_{k}}{h}$$

$$x_{k+1}' \approx \frac{\Delta x_{k+1}}{\Delta t} = \frac{x_{k+2} - x_{k+1}}{h}$$

$$\approx \frac{x_{k+2} - x_{k+1}}{h}$$

$$\approx \frac{x_{k+2} - x_{k+1}}{h}$$

$$\approx \frac{x_{k+2} - x_{k+1}}{h}$$

Sai phân (7)

VD3

e = 24V; $R = 60 \Omega$; $\Psi(i) = 1,75i - 2,8i^3$; $C = 25 \mu F$; bước sai phân h = 2ms. Tính dòng điện quá độ trong mạch?

$$60i + \frac{d\Psi}{dt} + u = 24 \rightarrow 60i + \frac{\partial\Psi}{\partial i} \cdot \frac{di}{dt} + u = 24$$

$$\rightarrow 60i + (1,75 - 8,4i^2)i' + u = 24 \rightarrow i'_k = \frac{24 - u_k - 60l_k}{1,75 - 8,4i_k^2}$$

$$\underbrace{i = Cu'}_{==} = 25.10^{-6} u' \rightarrow u'_{k} = \frac{i_{k}}{25.10^{-6}}$$

t = 0	$R = \psi(i)$	
Cách 1	e C	

$$\Rightarrow \begin{cases}
0,002 & 1,75-8,4 \\
\frac{u_{k+1}-u_k}{0.002} & = \frac{i_k}{25.10^{-6}}
\end{cases}$$

$$\begin{vmatrix} k & i_k(A) & u_k(V) \\ 0 & i_L(-0) = 0 & u_C(-0) = 0 \\ 1 & 0,0274 & 0 \\ 2 & 0,0530 & 2,192 \end{vmatrix}$$

$$\Rightarrow \begin{cases}
i_{k+1} = i_k + 0,002 \frac{24 - u_k - 60i_k}{1,75 - 8,4i_k^2} \\
u_{k+1} = u_k + \frac{0,002i_k}{25.10^{-6}}
\end{cases}$$

Sai phân (8)

VD3

 $e=24\text{V};\ R=60\ \Omega;\ \varPsi(i)=1,75i-2,8i^3;\ C=25\ \mu\text{F};$ bước sai phân h=2ms. Tính dòng điện quá độ trong mạch?

h 2

bước sai phân
$$h = 2\text{ms.}$$
 Tính dòng điện quá độ trong mạch? Cách 2
$$60i + \frac{d\Psi}{dt} + u = 24 \rightarrow 60i + (1,75-8,4i^2)i' + u = 24$$

$$i = Cu'$$

$$\rightarrow$$
 60(Cu') +[1,75-8,4(Cu')²](Cu')' + $u = 24$

$$\rightarrow$$
 60 Cu' + [1,75 – 8,4 $C^2(u')^2$] Cu'' + $u = 24$

$$\rightarrow u'' = \frac{24 - u - 60Cu'}{C[1,75 - 8,4C^2(u')^2]}$$

Sai phân (9)

VD3

 $e=24\mathrm{V};\ R=60\ \Omega;\ \varPsi(i)=1,75i-2,8i^3;\ C=25\ \mu\mathrm{F};$ bước sai phân $h=2\mathrm{ms}$. Tính dòng điện quá độ trong mạch?

$$t = 0$$

$$R$$

$$\psi(i)$$

$$C\acute{a}ch 2$$

$$e$$

$$C$$

$$u'' = \frac{24 - u - 60Cu'}{C[1, 75 - 8, 4C^{2}(u')^{2}]}$$

$$u''_{k} = \frac{u_{k+2} - 2u_{k+1} + u_{k}}{h^{2}}; \ u'_{k} = \frac{u_{k+1} - u_{k}}{h}$$

$$\rightarrow \frac{u_{k+2} - 2u_{k+1} + u_k}{h^2} = \frac{24 - u_k - 60C \frac{u_{k+1} - u_k}{h}}{C \left[1,75 - 8,4C^2 \left(\frac{u_{k+1} - u_k}{h} \right)^2 \right]}$$

$$\rightarrow u_{k+2} = 2u_{k+1} - u_k + h^2 \frac{24 - u_k - 60C(u_{k+1} - u_k) / h}{C[1,75 - 8,4C^2(u_{k+1} - u_k)^2 / h^2]}$$

Sai phân (10)

VD3

e = 24V; $R = 60 \Omega$; $\Psi(i) = 1,75i - 2,8i^3$; $C = 25 \mu F$; bước sai phân h = 2ms. Tính dòng điện quá độ trong mạch? **Cách 2**

$$u_{k+2} = 2u_{k+1} - u_k + h^2 \frac{24 - u_k - 60C(u_{k+1} - u_k) / h}{C[1, 75 - 8, 4C^2(u_{k+1} - u_k)^2 / h^2]}$$

$$u_{2} = 2u_{1} - u_{0} + h^{2} \frac{24 - u_{0} - 60C(u_{1} - u_{0}) / h}{C \left[1,75 - 8,4C^{2}(u_{1} - u_{0})^{2} / h^{2}\right]}$$

$$C[1,75-8,4C^{2}(u_{1}-u_{0})^{2}/h^{2}]$$

$$u'_{k} = \frac{u_{k+1}-u_{k}}{h} \rightarrow u'_{0} = \frac{u_{1}-u_{0}}{h} = u'(0) \rightarrow u_{1} = u_{0} + hu'(0)$$

$$i = Cu' \rightarrow i(0) = Cu'(0) \rightarrow u'(0) = \frac{i(0)}{C} = 0$$

$$\rightarrow u_{1} = 0$$

$$i = Cu' \to i_k = C \frac{u_{k+1} - u_k}{h}$$

Sai phân (11)

VD3

e = 24V; $R = 60 \Omega$; $\Psi(i) = 1,75i - 2,8i^3$; $C = 25 \mu F$; bước sai phân h = 2ms. Tính dòng điện quá độ trong mạch? | Cách 2

$$u_{k+2} = 2u_{k+1} - u_k + h^2 \frac{24 - u_k - 60C(u_{k+1} - u_k) / h}{C \left[1,75 - 8,4C^2(u_{k+1} - u_k)^2 / h^2 \right]}$$

$$i_k = C(u_{k+1} - u_k) / h; \quad u_0 = 0; \quad u_1 = 0$$

$$u_2 = 2u_1 - u_0 + h^2 \frac{24 - u_0 - 60C(u_1 - u_0) / h}{C \left[1,75 - 8,4C^2(u_1 - u_0)^2 / h^2 \right]}$$

$$=2.0-0+(2.10^{-3})^{2}\frac{24-0-60(25.10^{-6})(0-0)/(2.10^{-3})}{25.10^{-6}\left[1,75-8,4(25.10^{-6})^{2}(0-0)^{2}/(2.10^{-3})\right]}$$

$$= 2,1943 V$$

$$i_1 = C \frac{u_2 - u_1}{h} = 25.10^{-6} \frac{2,1943 - 0}{2.10^{-3}} = 0,0274 \text{ A}$$

Sai phân (12)

Mạch điện phi tuyến

(hệ) Phương trình phi tuyến

$$\begin{cases} (x_{k+1} - x_k) / h = f(x_k, y_k) \\ (y_{k+1} - y_k) / h = g(x_k, y_k) \end{cases}$$

$$\begin{cases} x_{k+1} = x_k + hf(x_k, y_k) \\ y_{k+1} = y_k + hg(x_k, y_k) \end{cases}$$

Sai phân (13)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $\Psi(i) = 2i + 8i^3$; $C = 20\mu\text{F}$; $E_1 = 50\text{V}$; $E_2 = 100\text{V}$; $J = 2\text{A}$; $h = 1\text{ms}$. Tìm i_L ?

$$i_L(0) = i_1 = \frac{E_1 - R_4 J}{R_1 + R_3 + R_4} = \frac{50 - 40.2}{20 + 40 + 40} = -0,3A$$

$$R_1 i_1 - u_C(0) = E_1 - E_2 \rightarrow u_C(0) = E_2 - E_1 + R_1 i_1 = 50 - 100 + 20(-0,3) = -56 \text{ V}$$

$$\begin{cases} i_1 + i_C - i_L = 0 \\ u_C + u_L + (R_3 + R_4)i_L = E_2 \\ R_1 i_1 - u_C = E_1 - E_2 \end{cases} \rightarrow \begin{cases} i_1 + C u_C' - i_L = 0 \\ u_C + \frac{\partial \psi}{\partial i} \cdot \frac{di}{dt} + (R_3 + R_4)i_L = E_2 \\ R_1 i_1 - u_C = E_1 - E_2 \end{cases}$$

$$\rightarrow \begin{cases} i_1 + Cu_C' - i_L = 0 \\ u_C + (2 + 24i_L^2)i_L' + (R_3 + R_4)i_L = E_2 \\ R_1i_1 - u_C = E_1 - E_2 \end{cases} \rightarrow \begin{cases} \frac{E_1 - E_2 + u_C}{R_1} + Cu_C' - i_L = 0 \\ u_C + (2 + 24i_L^2)i_L' + (R_3 + R_4)i_L = E_2 \end{cases}$$

Sai phân (14)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $\Psi(i) = 2i + 8i^3$; $C = 20\mu\text{F}$; $E_1 = 50\text{V}$; $E_2 = 100\text{V}$; $J = 2\text{A}$; $h = 1\text{ms}$. Tìm i_L ?

$$\begin{cases} \frac{E_1 - E_2 + u_C}{R_1} + Cu_C' - i_L = 0\\ u_C + (2 + 24i_L^2)i_L' + (R_3 + R_4)i_L = E_2 \end{cases}$$

$$\Rightarrow \begin{cases} u'_{C} = \frac{i_{L}}{C} - \frac{E_{1} - E_{2} + u_{C}}{R_{1}C} \\ i'_{L} = \frac{E_{2} - u_{C} - (R_{3} + R_{4})i_{L}}{(2 + 24i_{L}^{2})} \end{cases} \Rightarrow \begin{cases} \frac{u_{k+1} - u_{k}}{h} = \frac{i_{k}}{C} - \frac{E_{1} - E_{2} + u_{k}}{R_{1}C} \\ \frac{i_{k+1} - i_{k}}{h} = \frac{E_{2} - u_{k} - (R_{3} + R_{4})i_{k}}{(2 + 24i_{k}^{2})} \end{cases}$$

$$\Rightarrow \begin{cases} u_{k+1} = u_k + h \left(\frac{i_k}{C} - \frac{E_1 - E_2 + u_k}{R_1 C} \right) = u_k + 10^{-3} \left(\frac{i_k}{20.10^{-6}} - \frac{50 - 100 + u_k}{20.20.10^{-6}} \right) \\ i_{k+1} = i_k + h \frac{E_2 - u_k - (R_3 + R_4)i_k}{(2 + 24i_k^2)} = i_k + 10^{-3} \frac{100 - u_k - (40 + 40)i_k}{(2 + 24i_k^2)} \end{cases}$$

Sai phân (15)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $\Psi(i) = 2i + 8i^3$; $C = 20\mu$ F; $E_1 = 50V$; $E_2 = 100V$; $J = 2A$; $h = 1$ ms. Tim i_L ?

$$i_I(0) = -0.3A$$
; $u_C(0) = -56 \text{ V}$

$$\begin{cases} u_{k+1} = u_k + 10^{-3} \left(\frac{i_k}{20.10^{-6}} - \frac{50 - 100 + u_k}{20.20.10^{-6}} \right) \\ i_{k+1} = i_k + 10^{-3} \frac{100 - u_k - (40 + 40)i_k}{(2 + 24i_k^2)} \end{cases}$$

$$\begin{cases} u_1 = u_0 + \frac{i_0}{0,02} + \frac{50 - u_0}{0,4} = 194 \\ i_1 = i_0 + \frac{100 - u_0 - 80i_0}{(2 + 24i_0^2)1000} = -0,26 \end{cases} \begin{cases} u_2 = u_1 + \frac{i_1}{0,02} + \frac{50 - u_1}{0,4} = -178,8 \\ i_2 = i_1 + \frac{100 - u_1 - 80i_1}{(2 + 24i_1^2)1000} = -0,28 \end{cases}$$

k	0	1	2	3	4
$u_C(V)$	-56	194	-178,8		
$i_L(A)$	-0,3	-0,26	-0,28		

Sai phân (16)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix}; E = 24 \text{ V (DC)};$$

$$\psi(i) = 2i - 3,33i^{3};$$

$$q_{C} = 10^{-5}u_{C} - 5.10^{-10}u_{C}^{3}; h = 0,2\text{ms; tinh } i_{2}?$$

$$u_{C} + u_{1} = 24 \rightarrow u_{1} = 24 - u_{C}$$

$$u_{2} = -\frac{d\Psi}{dt} = -\frac{\partial\Psi}{\partial i_{2}} \cdot \frac{di_{2}}{dt} = -(2 - 9, 99i_{2}^{2})i_{2}'$$

$$\begin{cases} u_{1} = 30i_{1} + 20i_{2} \\ u_{2} = 20i_{1} + 50i_{2} \end{cases} \rightarrow \begin{cases} 24 - u_{C} = 30i_{1} + 20i_{2} \\ (9, 99i_{2}^{2} - 2)i_{2}' = 20i_{1} + 50i_{2} \end{cases}$$

$$i_{1} = \frac{dq}{dt} = \frac{\partial q}{\partial u_{C}} \cdot \frac{du_{C}}{dt} = (10^{-5} - 15.10^{-10}u_{C}^{2})u_{C}'$$

$$\rightarrow \begin{cases} 24 - u_C = 30(10^{-5} - 15.10^{-10}u_C^2)u_C' + 20i_2 \\ (9, 99i_2^2 - 2)i_2' = 20(10^{-5} - 15.10^{-10}u_C^2)u_C' + 50i_2 \end{cases}$$

Sai phân (17)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix}; E = 24 \text{ V (DC)};$$

$$\mathbf{y}(i) = 2i - 3,33i^{3};$$

$$q_{C} = 10^{-5}u_{C} - 5.10^{-10}u_{C}^{3}; h = 0,2\text{ms}; \text{ tính } i_{2}?$$

$$\begin{cases} 24 - u_{C} = 30(10^{-5} - 15.10^{-10}u_{C}^{2})u_{C}' + 20i_{2} \\ (9,99i_{2}^{2} - 2)i_{2}' = 20(10^{-5} - 15.10^{-10}u_{C}^{2})u_{C}' \\ \end{pmatrix} \begin{cases} u' = \frac{24 - u - 20i}{30(10^{-5} - 15.10^{-10}u^{2})} \\ i' = \frac{20(10^{-5} - 15.10^{-10}u^{2})u' + 50i}{9,99i^{2} - 2} \end{cases}$$

$$u'_{k} = \frac{u_{k+1} - u_{k}}{h}$$

$$z' = \frac{i_{k+1} - i_{k}}{h}$$

$$\begin{cases} 24 - u_{C} = 30(10^{-5} - 15.10^{-10}u_{C}^{2})u_{C}' + 20i_{2} \\ (9,99i_{2}^{2} - 2)i_{2}' = 20(10^{-5} - 15.10^{-10}u_{C}^{2})u_{C}' + 50i_{2} \\ u' = \frac{24 - u - 20i}{30(10^{-5} - 15.10^{-10}u^{2})} \\ i' = \frac{20(10^{-5} - 15.10^{-10}u^{2})u' + 50i}{9,99i^{2} - 2} \\ u'_{k} = \frac{u_{k+1} - u_{k}}{h} \\ i'_{k} = \frac{i_{k+1} - i_{k}}{h} \end{cases}$$

$$= \begin{cases} u_{k+1} - u_{k} \\ h \end{cases} = \frac{20(10^{-5} - 15.10^{-10}u_{k}^{2})\frac{u_{k+1} - u_{k}}{h} + 50i_{k}}{9,99i_{k}^{2} - 2} \\ \\ u_{k+1} = h \frac{24 - u_{k} - 20i_{k}}{30(10^{-5} - 15.10^{-10}u_{k}^{2})} + u_{k} \\ \\ i_{k+1} = \frac{20(10^{-5} - 15.10^{-10}u_{k}^{2})(u_{k+1} - u_{k}) + 50hi_{k}}{9,99i_{k}^{2} - 2} + i_{k} \end{cases}$$

TRƯƠNG BẠI HỌC BÁCH KHOA HÀ NỘI

Sai phân (18)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix}; E = 24 \text{ V (DC)};$$

$$q_C = 10^{-5}u_C - 5.10^{-10}u_C^3; h = 0.2\text{ms; tinh } i_2?$$

$$\begin{aligned} u_{C} + u_{1} &= 24 \\ u_{2} &= -\frac{d\Psi}{dt} \\ u_{1} &= 30i_{1} + 20i_{2} \\ u_{2} &= 20i_{1} + 50i_{2} \\ i_{1} &= \frac{dq}{dt} \end{aligned} \rightarrow \begin{cases} u_{k+1} &= h \frac{24 - u_{k} - 20i_{k}}{30(10^{-5} - 15.10^{-10}u_{k}^{2})} + u_{k} \\ i_{k+1} &= \frac{20(10^{-5} - 15.10^{-10}u_{k}^{2})(u_{k+1} - u_{k}) + 50hi_{k}}{9,99i_{k}^{2} - 2} + i_{k} \end{cases}$$

$$u_0 = u_C(0) = 0$$

 $i_0 = i_L(0) = 0$

k	0	1	2	
$u_k(V)$	0	16,00	21,57	
$i_k(A)$	0	-0,0016	-0,0021	

Sai phân (19)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $\Psi(i) = 2i + 0.8i^3$; $C = 2\text{mF}$; $h = 1\text{ms}$; $e_1 = 50\sin(25t)$ V; $e_2 = 100\sin(25t + 45^\circ)$ V; $j = 2\sin25t$ A. Tìm i_L ?

$$i_L(0) = 0$$

$$\dot{U}_C = \frac{\dot{E}_1 - \dot{E}_2}{R_1 + 1/(j\omega C)} \frac{1}{j\omega C} = 52,10 / -151,32^{\circ} \text{ V}$$

$$\rightarrow u_C(t) = 52,10\sin(25t-151,32^{\circ}) \text{ V} \rightarrow u_C(0) = 52,10\sin(-151,32^{\circ}) = -25,00 \text{ V}$$

$$\begin{cases} i_{1} + i_{C} - i_{L} = 0 \\ u_{C} + u_{L} + (R_{3} + R_{4})i_{L} = e_{2} \\ R_{1}i_{1} - u_{C} = e_{1} - e_{2} \end{cases} \rightarrow \begin{cases} i_{1} + Cu'_{C} - i_{L} = 0 \\ u_{C} + \frac{\partial \psi}{\partial i} \cdot \frac{di}{dt} + (R_{3} + R_{4})i_{L} = e_{2} \\ R_{1}i_{1} - u_{C} = e_{1} - e_{2} \end{cases}$$

$$\rightarrow \begin{cases} i_1 + Cu_C' - i_L = 0 \\ u_C + (2 + 2, 4i_L^2)i_L' + (R_3 + R_4)i_L = e_2 \end{cases} \rightarrow \begin{cases} \frac{e_1 - e_2 + u_C}{R_1} + Cu_C' - i_L = 0 \\ R_1 i_1 - u_C = e_1 - e_2 \end{cases}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Sai phân (20)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $\Psi(i) = 2i + 0.8i^3$; $C = 2\text{mF}$; $h = 1\text{ms}$; $e_1 = 50\sin(25t)$ V; $e_2 = 100\sin(25t + 45^\circ)$ V; $j = 2\sin25t$ A. Tìm i_L ?

$$i_L(0) = 0 \text{ A}; u_C(0) = -25,00 \text{ V}$$

$$\begin{cases} \frac{e_1 - e_2 + u_C}{R_1} + Cu_C' - i_L = 0\\ u_C + (2 + 2, 4i_L^2)i_L' + (R_3 + R_4)i_L = e_2 \end{cases}$$

$$\Rightarrow \begin{cases}
u'_{C} = \frac{i_{L}}{C} - \frac{e_{1} - e_{2} + u_{C}}{R_{1}C} \\
i'_{L} = \frac{e_{2} - u_{C} - (R_{3} + R_{4})i_{L}}{(2 + 2, 4i_{L}^{2})}
\end{cases}$$

$$\Rightarrow \begin{cases}
\frac{u_{k+1} - u_k}{h} = \frac{i_k}{C} - \frac{e_1 - e_2 + u_k}{R_1 C} \\
\frac{i_{k+1} - i_k}{h} = \frac{e_2 - u_k - (R_3 + R_4)i_k}{(2 + 2, 4i_k^2)}
\end{cases}$$

Sai phân (21)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $\Psi(i) = 2i + 0.8i^3$; $C = 2\text{mF}$; $h = 1\text{ms}$; $e_1 = 50\sin(25t)$ V; $e_2 = 100\sin(25t + 45^\circ)$ V; $j = 2\sin25t$ A. Tìm i_L ?

$$i_L(0) = 0 \text{ A}; u_C(0) = -25,00 \text{ V}$$

$$\begin{cases} \frac{u_{k+1} - u_k}{h} = \frac{i_k}{C} - \frac{e_1 - e_2 + u_k}{R_1 C} \\ \frac{i_{k+1} - i_k}{h} = \frac{e_2 - u_k - (R_3 + R_4)i_k}{(2 + 2, 4i_k^2)} \end{cases}$$

$$\begin{cases} \frac{u_{k+1} - u_k}{h} = \frac{i_k}{C} - \frac{e_1 - e_2 + u_k}{R_1 C} \\ \frac{i_{k+1} - i_k}{h} = \frac{e_2 - u_k - (R_3 + R_4)i_k}{(2 + 2, 4i_k^2)} \end{cases} \rightarrow \begin{cases} u_{k+1} = u_k + h \left(\frac{i_k}{C} - \frac{e_1 - e_2 + u_k}{R_1 C} \right) \\ i_{k+1} = i_k + h \frac{e_2 - u_k - (R_3 + R_4)i_k}{(2 + 2, 4i_k^2)} \end{cases}$$

$$\rightarrow \begin{cases} u_{k+1} = u_k + 10^{-3} \left[\frac{i_k}{2.10^{-3}} - \frac{50\sin(25.10^{-3}k) - 100\sin(25.10^{-3}k + \pi/4) + u_k}{20.2.10^{-3}} \right] \\ i_{k+1} = i_k + 10^{-3} \frac{100\sin(25.10^{-3}k + \pi/4) - u_k - (40 + 40)i_k}{(2 + 2, 4i_k^2)} \end{cases}$$

Sai phân (22)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $\Psi(i) = 2i + 0.8i^3$; $C = 2\text{mF}$; $h = 1\text{ms}$; $e_1 = 50\sin(25t)$ V; $e_2 = 100\sin(25t + 45^\circ)$ V; $j = 2\sin25t$ A. Tìm i_L ?

$$i_L(0) = 0 \text{ A}; u_C(0) = -25,00 \text{ V}$$

$$\begin{cases} u_{k+1} = u_k + 10^{-3} \left[\frac{i_k}{2.10^{-3}} - \frac{50\sin(25.10^{-3}k) - 100\sin(25.10^{-3}k + \pi/4) + u_k}{20.2.10^{-3}} \right] \\ i_{k+1} = i_k + 10^{-3} \frac{100\sin(25.10^{-3}k + \pi/4) - u_k - (40 + 40)i_k}{(2 + 2, 4i_k^2)} \end{cases}$$

$$\Rightarrow \begin{cases} u_{k+1} = u_k + \frac{i_k}{2} - \frac{50\sin(0,025k) - 100\sin(0,025k + \pi/4) + u_k}{40} \\ i_{k+1} = i_k + \frac{100\sin(0,025k + \pi/4) - u_k - 80i_k}{(2 + 2,4i_k^2)10^3} \end{cases}$$

Sai phân (23)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $\Psi(i) = 2i + 0.8i^3$; $C = 2\text{mF}$; $h = 1\text{ms}$; $e_1 = 50\sin(25t)$ V; $e_2 = 100\sin(25t + 45^\circ)$ V; $j = 2\sin25t$ A. Tìm i_L ?

$$i_L(0) = 0 \text{ A}; u_C(0) = -25,00 \text{ V}$$

$$\begin{cases} u_{k+1} = u_k + \frac{i_k}{2} - \frac{50\sin(0,025k) - 100\sin(0,025k + \pi/4) + u_k}{40} \\ i_{k+1} = i_k + \frac{100\sin(0,025k + \pi/4) - u_k - 80i_k}{(2 + 2,4i_k^2)10^3} \end{cases}$$

$$\begin{cases} u_1 = u_0 + \frac{i_0}{2} - \frac{50\sin(0,025.0) - 100\sin(0,025.0 + \pi/4) + u_0}{40} \\ i_1 = i_0 + \frac{100\sin(0,025.0 + \pi/4) - u_0 - 80i_0}{(2 + 2,4i_0^2)10^3} \end{cases}$$

k	$i_k(A)$	$u_k(V)$
0	0	-25,00
1		

Sai phân (24)

$$R_1 = 20\Omega$$
; $R_3 = R_4 = 40\Omega$; $\Psi(i) = 2i + 0.8i^3$; $C = 2\text{mF}$; $h = 1\text{ms}$; $e_1 = 50\sin(25t)$ V; $e_2 = 100\sin(25t + 45^\circ)$ V; $j = 2\sin25t$ A. Tìm i_L ?

$$i_L(0) = 0 \text{ A}; u_C(0) = -25,00 \text{ V}$$

$$u_{k+1} = u_k + \frac{i_k}{2} - \frac{50\sin(0,025k) - 100\sin(0,025k + \pi/4) + u_k}{40}$$

$$i_{k+1} = i_k + \frac{100\sin(0,025k + \pi/4) - u_k - 80i_k}{(2+2,4i_k^2)10^3}$$

$$\int u_1 = u_0 + \frac{i_0}{2} - \frac{50\sin(0,025.0) - 100\sin(0,025.0 + \pi/4) + u_0}{40} = -22,61$$

$$i_1 = i_0 + \frac{100\sin(0,025.0 + \pi/4) - u_0 - 80i_0}{(2 + 2,4i_0^2)10^3} = 0,0479$$

$$u_2 = u_1 + \frac{i_1}{2} - \frac{50\sin(0,025.1) - 100\sin(0,025.1 + \pi/4) + u_1}{40} = -20,24$$

$$i_2 = i_1 + \frac{100\sin(0.025.1 + \pi/4) - u_1 - 80i_1}{(2 + 2, 4i_1^2)10^3} = 0,0933$$

k	$i_k(A)$	$u_k(V)$
0	0	-25,00
1	0,0479	-22,61
2	0,0933	-20,24
3	0,1364	-17,89
4	0,1769	-15,58

Lý thuyết mạch II

I. Quá trình quá độ

II. Mạch phi tuyến

- 1. Giới thiệu
- 2. Đặc tính của phần tử phi tuyến
- 3. Chế độ xác lập
- 4. Chế độ quá độ
- 5. Điốt và tranzito
 - a) Điốt
 - b) Tranzito

III. Đường dây dài

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Điốt (1)

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Điốt (2)

VD1

Tìm dòng điện trong mạch.

$$u_D(i) + 10^4 i = 10$$

$$\rightarrow u_D(i) = 10 - 10^4 i$$

$$\rightarrow u_D(i) = 0.6V$$

$$\rightarrow i = \frac{10 - 0.6}{10^4} = 9.4.10^{-4} \text{ A}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Điốt (3)

VD2

Tìm dòng điện trong mạch.

$$u_D(i) + 1000i = 3$$

$$\rightarrow u_D(i) = 3 - 1000i$$

$$\rightarrow i = 2,4 \,\mathrm{mA}$$

$$0,7 + 1000i = 3$$

$$\rightarrow i = \frac{3 - 0.7}{1000} = \boxed{2.3 \text{ mA}}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Điốt (4)

VD3

Tìm dòng qua điốt & điện áp ra.

$$0,3+0,7+u_{ra}=12$$

$$\rightarrow u_{ra} = 11 \text{ V}$$

$$i_D = i_R = \frac{11}{5600} = 1,96 \,\text{mA}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Điốt (5)

VD4

Tìm dòng qua điốt & điện áp ra.

$$i_D = 0$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Điốt (6)

VD5

Tính các dòng điện trong mạch.

$$i_R = \frac{0.7}{3300} = 0.212$$
mA

$$5600i_1 + 0, 7 + 0, 7 = 20$$

$$\rightarrow i_1 = \frac{20 - 0,7 - 0,7}{5600} = 3,32 \text{mA}$$

$$i_2 = i_1 - i_R = 3,32 - 0,212 = 3,108$$
mA

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Điốt (7)

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Điốt (8)

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch II

I. Quá trình quá độ

II. Mạch phi tuyến

- 1. Giới thiệu
- 2. Đặc tính của phần tử phi tuyến
- 3. Chế độ xác lập
- 4. Chế độ quá độ
- 5. Điốt và tranzito
 - a) Điốt
 - b) Tranzito

III. Đường dây dài

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Tranzito (1)

Tranzito (2)

Tranzito (3)

$$V_{CC} = 10\text{V}; \ V_{BB} = 1,6\text{V}; \ R_B = 40\text{k}\Omega; \ R_C = 2\text{k}\Omega; \ u_v = 0,4\sin(2000\pi t) \text{ V. Tính } u_{CE\text{min}}, \ u_{CE\text{max}}?$$

$$R_B i_B + u_{BE} = V_{BB} + u_v$$

$$\to 40.10^3 i_B + u_{BE} = 1,6 + 0,4 \sin(2000\pi t)$$

$$40.10^{3}i_{B \min} + u_{BE \min} = 1, 6 - 0, 4 = 1, 2$$

$$\rightarrow u_{BE \min} = 1, 2 - 4.10^{4}i_{B \min}$$

$$\rightarrow i_{B \min} = 15\mu A$$

TRUÖNG BALHOC

BÁCH KHOA HÀ NỘI

Tranzito (4)

$$V_{CC} = 10\text{V}; \ V_{BB} = 1,6\text{V}; \ R_B = 40\text{k}\Omega; \ R_C = 2\text{k}\Omega; \ u_v = 0,4\sin(2000\pi t) \text{ V. Tính } u_{CE\text{min}}, \ u_{CE\text{max}}?$$

$$i_{B \max} = 35 \mu A; \quad i_{B \min} = 15 \mu A$$

$$R_C i_C + u_{CE} = V_{CC} \rightarrow 2000 i_C + u_{CE} = 10$$

$$u_{CE} = 10 - 2000i_C$$

$$i_{B \max} = 35 \mu A \rightarrow u_{CE \min} = 3V$$

$$i_{B \min} = 15 \mu A \rightarrow u_{CE \max} = 7V$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Tranzito (5)

$$V_{CC} = 10\text{V}; \ V_{BB} = 1,6\text{V}; \ R_B = 40\text{k}\Omega; \ R_C = 2\text{k}\Omega; \ u_v = 0,4\sin(2000\pi t) \text{ V. Tính } u_{CE\text{min}}, \ u_{CE\text{max}}?$$

$$u_{CE \min} = 3V$$
; $u_{CE \max} = 7V$

Lý thuyết mạch II

- Quá trình quá độ
- II. Mạch phi tuyến
 - 1. Giới thiệu
 - 2. Đặc tính của phần tử phi tuyến
 - 3. Chế độ xác lập
 - 4. Chế độ quá độ
 - 5. Điốt và tranzito

III. Đường dây dài