A Networking Primer for Grid Computing

Supplement to Module 1

•

Basic Networking and related Definitions

Application Programming Interface (API) defines the interface.

- Refers to definition, not implementation
 - □ For example, there are many implementations of MPI
- Specification often language-specific (or IDL)
 - □ Routine name, number, order and type of arguments; mapping to language constructs
 - Behavior or function of routine
- Examples
 - □ GSS API (security), MPI (message passing)

3

Application Programming Interface

- A specification for a set of routines to help application development
 - Refers to definition, not implementation
 - □ E.g., there are many implementations of MPI
- Spec often language-specific (or IDL)
 - □ Routine name, number, order and type of arguments; mapping to language constructs
 - Behavior or function of routine
- Examples
 - □ GSS API (security), MPI (message passing)

A Software Development Kit (SDK) is a particular instantiation of an API

- An SDK consists of libraries and tools
 Provides implementation of API specification
- One API can have multiple SDKs
- Examples of SDKs
 - □ MPICH

5

Software Development Kit

- A particular instantiation of an API
- SDK consists of libraries and tools
 - □ Provides implementation of API specification
- Can have multiple SDKs for an API
- Examples of SDKs
 - □ MPICH, Motif Widgets

Network Protocol

- A formal description of message formats and a set of rules for exchanging messages
- Good protocols are designed to do just one thing
 □ Protocols can be layered
- Examples of protocols
 □ IP, TCP, TLS (SSL), HTTP, Kerberos

7

Syntax

- Rules for encoding information, e.g.
 - □ XML, Condor ClassAds, Globus RSL
 - □ X.509 certificate format (RFC 2459)
 - □ Cryptographic Message Syntax (RFC 2630)
- Distinct from protocols
 - □ One syntax may be used by many protocols (e.g., XML); & useful for other purposes
- Syntaxes may be layered
 - □ E.g., Condor ClassAds -> XML -> ASCII

Protocols can have multiple APIs.

- TCP/IP APIs include BSD sockets, Winsock, System V streams, ...
- The protocol provides *interoperability*
 - Programs using different APIs can exchange information
 - □ I don't need to know remote user's API

9

An API can have multiple protocols

- MPI provides portability: any correct program compiles & runs on a platform
- Does not provide interoperability: all processes must link against same SDK
 - □ E.g., MPICH and LAM versions of MPI

APIs and protocols are both important

- Standard APIs/SDKs are important
 - □ They enable application *portability*
 - Can move application to different places
 - But w/o standard protocols, interoperability is hard
 - Example: MPI
- Standard protocols are important
 - □ Between computers
 - □ Enable *interoperability*
 - Applications can talk to each other
 - □ Enable shared infrastructure example: the internet
 - But w/o standard APIs/SDKs, application portability is hard (different platforms access protocols in different ways)

11

Communication Elements

- Links, routers, switches, name servers, protocols
- Infrastructure evolves slowly (politics, large scale changes, money)
- Gilder's Law: total bandwidth of communication systems doubles every six months
- Change in LAN to desktops
 - □ 100 mbps shared
 - □ 100 mbps switched
 - □ 1 gbps
 - □ 10 gbps
- Clusters: Gigabit ethernet (TCP/IP and MPICH/LAM) standard, Myrinet (own MPI drivers) better performance

Network Speeds

- Analog modem: 57 kbps
- GPRS: 114 kbps
- Bluetooth: 723 kbps
- T-1: 1.5 Mbps
- Eth 10Base-X: 10Mbps
- 802.11b (WiFi) 11 Mbps
- T-3: 45 Mbps
- OC-1: 52 Mbps
- Fast Eth 100Base-X: 100 Mbps

- OC-12: 622 Mbps
- GigEth 1000Base-X: 1 Gbps
- OC-24: 1.2 Gbps
- OC-48: 2.5 Gbps
- OC-192: 10 Gbps
- 10 GigEth: 10 Gbps
- OC-3072: 160 Gbps
- Home internet
 - □ Upload: 35 KB/s
 - □ Download 250 KB/s

13

Network Enabled Services

- Implementation of a protocol that defines a set of capabilities
 - Protocol defines interaction with service
 - □ All services require protocols
 - □ Not all protocols are used to provide services (e.g. IP, TLS)
- Examples: FTP and Web servers

FTP Server	
FTP Protocol	Telnet Protocol
TCP Protocol	
IP Protocol	

Web Server	
HTTP Protocol	
TLS Protocol	
TCP Protocol	
IP Protocol	

Sockets – the basic building block

15

Services are built on Sockets

| Client-Server Model

17

Familiar Client-Server Apps

■ Email

□ Protocols: POP, SMTP

■ File Copying
□ Protocol: FTP

■ Logging in to remote computers

□ Protocol: Telnet

Peer-to-Peer Model

19

Familiar Peer-to-Peer Apps

■ File (music) Sharing

□ Protocols: Napster, Gnutella

■ Chat (sort of)

□ Protocols: IRC, Instant Messenger

■ Video Conferencing

□ Protocols: H323

Basic Networking and related Definitions

21

Basic Networking Skills

- Grid usage requies a basic level of UNIX and networking skills
- Remember:
 - □ Find out about Unix commands or tools using "man"
 - > man nslookup
 - □ You should read up and practise basic networking, security, linux, skills.
 - □ There is lots of information on the web
 - "what is" with Google, www.wikipedia.org, www.webopedia.com

IP Addresses

- All computers on the Internet use TCP/IP.
 - □ IP: responsible for moving packets of data from node to node
 - □ TCP: responsible for correct delivery of data
- TCP/IP assigns a unique number or "IP address" to every computer on the Internet
 - □ 32-bit number
 - □ Written as four numbers, like: 128.105.3.61
- An IP Address identifies a network interface, not a computer.
 - □ A computer can have multiple IP addresses.

23

Domain Name Server (DNS)

- DNS maps IP addresses to names, and vice-versa
 - □ www.amazon.com ←→ 72.21.206.5
 - □ Discover this with "host" or "nslookup" or "dig"
 - □ Try all three—how do they differ?

DNS

host www.amazon.com

www.amazon.com has address 207.171.163.90

nslookup -sil www.amazon.com

Server: 10.0.1.1 Address: 10.0.1.1#53 Non-authoritative answer: Name: www.amazon.com Address: 207.171.166.102

■ dig <u>www.amazon.com</u>

;; ANSWER SECTION:

www.amazon.com. 20 IN A 207.171.166.102

;; Query time: 4 msec

;; SERVER: 10.0.1.1#53(10.0.1.1) ;; WHEN: Sat Jun 24 08:59:00 2006

;; MSG SIZE_revd: 48

25

Ping!

- Is a computer on the network?
- Use ping to find out

```
% ping cu.ncsa.uiuc.edu
PING cu12.ncsa.uiuc.edu (141.142.30.77): 56 data bytes
64 bytes from 141.142.30.77: icmp_seq=0 ttl=233 time=53.663 ms
64 bytes from 141.142.30.77: icmp_seq=1 ttl=233 time=55.615 ms
64 bytes from 141.142.30.77: icmp_seq=2 ttl=233 time=55.153 ms
64 bytes from 141.142.30.77: icmp_seq=3 ttl=233 time=57.184 ms
^C
--- cu12.ncsa.uiuc.edu ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 53.663/55.404/57.184/1.256 ms
```

■ Some sites block the use of ping :(

Internet routes

■ Between you and a computer on the network, there is an often complex route.

```
% traceroute www.cs.uwm.edu
traceroute to miller.cs.uwm.edu (129.89.143.24), 30 hops max, 40
    byte packets

1    svi-121.cisco1.cs.wisc.edu.105.128.in-addr.arpa
(128.105.121.248)    0.423 ms    0.242 ms    0.227 ms

2    rh-cssc-b280c-2-core-vlan-492.net.wisc.edu (144.92.128.186)
0.404 ms    4.985 ms    0.489 ms
... snip...

6    r-uwmilwaukee-isp-atm1-0-1.wiscnet.net (140.189.8.2)    2.730
ms    2.603 ms    2.689 ms

7    space-needle-mke.csd.uwm.edu (216.56.1.194)    2.836 ms    2.718
ms    2.748 ms
8    miller.cs.uwm.edu (129.89.38.24)    2.754 ms * 2.796 ms
```

27

Internet routing

■ To be supplied.

Port numbers

- A port number indicates which program to talk to on a computer.
- Some port numbers are standard:
 - □ HTTP (web): port 80
 - □ SMTP (mail): port 25
 - □ Ping: port 7
- Some port numbers are assigned dynamically when you run a server.

29

Netstat

 Netstat can answer the question: is a program running on a port on the local computer.

```
netstat --protocol=inet -l
tcp 0 0 *:finger *:* LISTEN
```

-l meant "listening for connections". Look for active connections:

```
netstat --protocol=inet | grep ssh
% netstat --protocol=inet | grep ssh
tcp 0 0 chopin.cs.wisc.edu:ssh ppp-67-38-160-
108:20715 ESTABLISHED
tcp 0 0 chopin.cs.wisc.edu:ssh
68.185.181.47:1176 ESTABLISHED
...
```

Telnet

- Telnet isn't just for remote access to a computer
- Telnet can tell you if remote services are running correctly and "listenening" for "connections".
- Is ssh running?
 - □ Find ssh port number in /etc/services. It's 22.
 - □ telnet <host> 22. Example:

```
telnet beak.cs.wisc.edu 22
Trying 128.105.146.14...
Connected to beak.cs.wisc.edu (128.105.146.14).
Escape character is '^]'.
SSH-1.99-OpenSSH_3.6.1p2
^] (That is control-right bracket)
telnet> quit
```

31

APIs and Protocols are Both Important

- Standard APIs/SDKs are important
 - □ They enable application *portability*
 - But w/o standard protocols, interoperability is hard (every SDK speaks every protocol?)
- Standard protocols are important
 - □ Enable cross-site interoperability
 - Enable shared infrastructure
 - But w/o standard APIs/SDKs, application portability is hard (different platforms access protocols in different ways)

Secure Sockets Layer: SSL (TLS)

- Protocol that transmits communications over the Internet in an encrypted form
 - □ SSL ensures that the information is sent, unchanged, only to the server you intended to send it to.
- SSL uses a private key to encrypt data
 - Netscape and Internet Explorer support SSL
 - □ Web sites use SSL to obtain confidential user information, such as credit card numbers.
 - By convention, URLs that require an SSL connection start with https: instead of http:.
- Newest version of SSL is called Transport Later Security (TLS)

33

OpenSSL

- An Open Source implementation of the SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols
- OpenSSL is used by Apache HTTP Server for https support and by MySQL to provide secure database access.

OpenSSH

- OpenSSH is an implementation of the SSH protocol suite of tools
- OpenSSH encrypts all traffic (including passwords)
- OpenSSH provides a variety of authentication methods.
- The OpenSSH suite includes
 - ssh program which replaces rlogin and telnet,
 - scp which replaces rcp,
 - sftp which replaces ftp.
 - Also other basic utilities like ssh-add, ssh-agent, ssh-keygen

35

Very Basic Web Services

Web Services

A Web service is a software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-processable format (specifically WSDL). Other systems interact with the Web service in a manner prescribed by its description using SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards. (W3C definition)

In plain words, they provide a good mechanism to connect heterogeneous systems with WSDL, XML, SOAP, XML, UDDI.

37

A Sample interaction

Key things to note: Request/response

The Web Service state machine

39

XML (Extensible Markup Language)

- A language for describing data
- Platform independent and self-describing
- Good for distributed computing where heterogeneous systems co-exist

An example scenario

The Web Service state machine

The technologies

- WSDL
 - □ to describe the basic format of web service requests
- SOAP
 - □ defines a uniform way of passing XML-encoded data
- XML and
- UDDI concepts
 - □ for finding web services

43

SOAP (Simple Object Access Protocol)

- <u>SOAP</u> is a protocol specification that defines a uniform way of passing XML-encoded data
- In also defines a way to perform remote procedure calls (RPCs) using HTTP as the underlying communication protocol
- It is the underlying protocol for all web services

WSDL (Web Service Description Language)

- WSDL tells us about the web service interface.
- <u>WSDL</u> provides a way for service providers to describe the basic format of web service requests over different protocols or encodings
- It provides the following information about the service
 - □ What the service can do
 - Where it resides
 - □ How to invoke it
- Provides a platform and language independent abstraction of the service
- It specifies the port types, messages exchanged and how data is encoded etc.

45

UDDI: Universal Description, Discovery and Integration

- A protocol for finding web services
- Registries of web services can be maintained
- The primary purpose is to find services with certain qualities

Web Services vs Grid Services

- Though web services are great, some key things that are required on the grid are missing
 - State management
 - Global Service Naming
 - Reference resolution
 - □ more ...
- Grid services are web services that are customized to grid environment
 - Similar to web services they provide the glue to interact with heterogeneous systems
 - □ Grid computing needs a few additional features, e.g. state
 - □ Lots of development & politics here!

47

48

Grid architecture is evolving to a Service-Oriented approach.

...but this is beyond our workshop's scope. Users See "Service-Oriented Science" by Ian Foster. Composition Service-oriented applications Workflows Wrap applications as services Invocation Compose applications into workflows **Appln Appln** Service Service Service-oriented Grid infrastructure Provision physical resources to support application workloads

"The Many Faces of IT as Service", Foster, Tuecke, 2005

Based on:

Grid Intro and Fundamentals Review

Dr Gabrielle Allen

Center for Computation & Technology Department of Computer Science Louisiana State University gallen@cct.lsu.edu

> Grid Summer Workshop June 26-30, 2006

49