

Actividad de Verificación de Saberes (AVS): Análisis de Datos de Transferencia de Calor

Asignatura: Termodinámica Automotriz

Unidad 4: Procesos Termodinámicos y de Transferencia de Calor

Tema: Mecanismos de Transferencia de Calor (Conducción, Convección, Radiación)

Objetivo de la Actividad

Al completar esta actividad, el estudiante será capaz de analizar datos experimentales (o simulados) de sistemas de gestión térmica, aplicar los principios de conducción, convección y radiación para calcular tasas de transferencia de calor, e interpretar los resultados en un formato conciso.

Instrucciones Generales

- 1. Esta actividad se realizará de forma individual en el laboratorio o aula de cómputo, con una duración máxima de **1.5 horas**.
- Los datos necesarios para la resolución de los problemas serán proporcionados al inicio de la sesión, ya sea a través de una práctica de laboratorio o de una simulación interactiva de un sistema de transferencia de calor.
- 3. Presente todos los cálculos de manera clara y ordenada. Utilice la notación LaTeX para todas las ecuaciones y variables.
- 4. Las respuestas deben ser concisas y directas, enfocándose en los resultados numéricos y una breve interpretación.
- 5. El entregable será un documento (físico o digital, según se indique) con las soluciones a los problemas planteados.

Escenario y Problemas a Resolver

Se ha realizado una prueba en un sistema de enfriamiento de un motor para evaluar la disipación de calor. A continuación, se presentan los datos obtenidos de diferentes componentes. Su tarea es analizar estos datos para cuantificar la transferencia de calor por los distintos mecanismos.

Datos Proporcionados (Ejemplo - los datos reales se entregarán en la sesión):

- Componente 1: Pared del Bloque del Motor (Conducción)
 - Espesor (Δx) : 0.8 cm
 - Conductividad térmica (k): $50 W/m \cdot K$
 - Temperatura interior (T_{int}) : $750^{\circ}C$
 - Temperatura exterior (T_{ext}) : $120^{\circ}C$
 - Área (A): 0.02 m²
- Componente 2: Aletas del Radiador (Convección)

- Temperatura superficial (T_s) : $85^{\circ}C$
- Temperatura del aire ambiente (T_{∞}): $20^{\circ}C$
- Área de las aletas (A): $1,2 m^2$
- Coeficiente de transferencia de calor por convección (h): $100 \, W/m^2 \cdot K$

■ Componente 3: Tubo de Escape (Radiación)

- Temperatura superficial (T_s) : $350^{\circ}C$
- Temperatura de los alrededores ($T_{alrededores}$): $60^{\circ}C$
- Área de la superficie (A): $0.15 m^2$
- Emisividad (ϵ): 0,7
- Constante de Stefan-Boltzmann (σ): $5.67 \times 10^{-8} \, W/m^2 \cdot K^4$

Problemas a Resolver:

- 1. **Conducción:** Calcule la tasa de transferencia de calor por conducción a través de la pared del bloque del motor. (30 %)
- 2. **Convección:** Calcule la tasa de transferencia de calor por convección desde las aletas del radiador al aire. (30%)
- 3. **Radiación:** Calcule la tasa de transferencia de calor por radiación desde el tubo de escape a los alrededores. (30 %)
- 4. **Interpretación:** Basado en los resultados, ¿cuál de los tres mecanismos es el más significativo en este escenario y por qué? (10 %)

Rúbrica de Evaluación

Criterio	10 Es-	9 Autóno-	8 Básico	7 Re-	6 Pre-	0 No	Puntaje
de Eva-	tratégico	mo (80-	(70-79%)	ceptivo	formal	entrega	
luación	(90-	89 %)		(60-69 %)	(50-59 %)	(0%)	
	100 %)						
1. Con-	Cálculo	Cálculo	Cálculo	Cálculo	Cálculo	No entre-	/30 %
ducción	preciso y	correcto	con error	incomple-	incorrecto	ga.	
	bien pre-	con error	significati-	to o con	o ausente.		
	sentado.	menor.	VO.	error con-			
				ceptual.			
2. Con-	Cálculo	Cálculo	Cálculo	Cálculo	Cálculo	No entre-	/30 %
vección	preciso y	correcto	con error	incomple-	incorrecto	ga.	
	bien pre-	con error	significati-	to o con	o ausente.		
	sentado.	menor.	vo.	error con-			
				ceptual.			
3. Radia-	Cálculo	Cálculo	Cálculo	Cálculo	Cálculo	No entre-	/30 %
ción	preciso y	correcto	con error	incomple-	incorrecto	ga.	
	bien pre-	con error	significati-	to o con	o ausente.		
	sentado.	menor.	vo.	error con-			
				ceptual.			
4. Inter-	Análisis	Análisis	Análisis	Análisis	Análisis	No entre-	/10%
pretación	profundo	adecuado.	básico.	superfi-	incorrecto	ga.	
	y justifica-			cial.	o ausente.		
	do.						
Puntaje							/100%
Total							