Reconstitution of the expression unit composed by the long \(\lambda\) pL promoter (useful for Nalidixic acid induction) and the CLYTA-Mage-1 coding sequence pRIT14614):

5 A EcoRI-NCO₁ restriction fragment containing the long PL promoter and a part of CLYTA sequences was prepared from plasmid pRIT DVA6 and inserted between the EcoRI-NCO₁ sites of plasmid pRIT14613.

The recombinant plasmid pRIT14614 was obtained.

10

The recombinant plasmid pRIT14614 (see figure 17) encoding the fusion protein CLYTA-Mage-1-His was used to transform E. coli AR120. A Kan resistant candidate strain was selected and characterized.

Characterization of the recombinant protein:

Bacteria were grown on LB Medium supplemented with 50mg/ ml kanamycin at 30 °C. When the culture had reached 0D= 400 (at 620nm) Nalidixic acid was added to a final concentration of 60 mg/ ml.

20

25

15

After 4 hours induction, cells were harvested, resuspended in PBS and lysed by desintegration (disintegration CLS "one shot" type). After centrifugation, pellet supernatant and total extract were analyzed by SDS-PAGE. Proteins were visualized in Coomassie Bleu stained gels, where the fusion protein represented about 1 % of the total E. coli proteins. The fusion protein was identified by Western blot analysis using rabbits anti-Mage-1 polyclonal antibodies. The recombinant protein appeared as a single band with an apparent MW of about 49 kD.

EXAMPLE X: CLYTA - MAGE-3-HIS

A: Tumour rejection recombinant antigen: a fusion protein CLYTA -Mage-3-His 5 where the C-lyt A fusion partner lead to expression of a soluble protein, act as affinity tag and provides a useful T-helper.

Preparation of the E. coli strain expressing a fusion protein CLYTA-Mage-3-His tail

Construction of the expression plasmid pRIT14646 and transformation of the host strain AR 120:

Protein design:

10

15 The design of the fusion protein Clyta-Mage-3-His to be expressed in E. coli is described in figure 18.

The primary structure of the resulting protein has the sequence described in SEQUENCE ID No.9: and the coding sequence in sequence ID No. 10

20 The coding sequence corresponding to the above protein design was placed under the control of λ pL promoter in a E. coli expression plasmid.

25 Cloning:

The starting material was the vector PCUZ1 that contains the 117 C-terminal codons of the LytA coding region from Streptococcus pneumoniae, described in Gene 43, (1986) p. 265-272 and the vector pRIT14426, in which we have previously subcloned the MAGE-3 gene cDNA from a plasmid received from Dr Tierry Boon from the Ludwig Institute.

The cloning strategy for the expression of CLYTA-MAGE-3-His protein (see outline in Figure 19) included the following steps:

1- Preparation of the CLYTA-MAGE-3-His coding sequence module:

5

10

1.1. The first step was a PCR amplification, destined to flank the CLYTA sequences with the AfiII and AfiIII restriction sites. The PCR amplification was done using the plasmid PCUZIas template and as primers the oligonucleotide sense: 5' tta aac cac acc tta agg agg ata taa cat atg aaa ggg gga att gta cat tca gac, and the oligonucleotide antisense: 5' ccc aca tgt cca gac tgc tgg cca att ctg gcc tgt ctg cca gtg. This leads to the amplification of a 427 nucleotides long CLYTA sequence. The above amplified fragment was cloned into the TA cloning vector of Invitrogen to get the intermediate vector pRIT14661

15 1.2. The second step was linking of CLYTA sequences to the MAGE-3-His sequences, to generate the coding sequence for the fusion protein. This step included the excision of a Afl II-Afl-III Clyta fragment and insertion into the vector pRIT14426 previously opened by Afl IIand Ncol (Ncol and AflII compatible) restriction enzymes and gave rise to the plasmid pRIT14662.

20

2.- Reconstitution of the expression unit composed by the long λ pL promoter (useful for Nalidixic acid induction) and the CLYTA-Mage-3 coding sequence:

A BgIII - XbaI restriction fragment containing the short pL promoter and the

25 CLYTA-Mage-3-His coding sequences was prepared from plasmid pRIT14662. and
inserted between the BgIII - XbaI sites of plasmid TCM67 (a pBR322 derivative
containing the resistance to ampicillin, and the long λ pL promoter, described in the
international application PCT/EP92/O1827). The plasmid pRIT14607 was
obtained

The recombinant plasmid pRIT14607 encoding the fusion protein Clyta-Mage-3 His was used to transform E. coli AR 120 (Mott et al. 1985, Proc. Natl. Acad. Sci, 82: 88). An ampicillin resistant candidate strain was selected and characterized.

3. Preparation of plasmid pRIT 14646:

Finally a plasmid similar to pRIT 14607 but having the Kanamycin selection was constructed (pRIT 14646)

5

Characterization of the recombinant protein:

Bacteria were grown on LB Medium supplemented with 50mg/ ml kanamycin at 10 30°C. When the culture had reached 0D= 400 (at 600nm) Nalidixic acid was added to a final concentration of 60°g/ ml.

After 4 hours induction, cells were harvested, resuspended in PBS and lysed by desintegration (desintegration CLS "one shot" type). After centrifugation, pellet supernatant and total extract were analyzed by SDS-PAGE. Proteins were

15 visualized in Coomassie Bleu stained gels, where the fusion protein represented about 1% of the total E. coli proteins. The fusion protein was identified by Western blot analysis using rabbits anti-Mage-3 polyclonal antibodies. The recombinant protein appeared as a single band with an apparent MW of about 58 kD.

20 EXAMPLE XI:

Purification of the recombinant protein CLYTA-Mage-3 His:

The recombinant bacteria AR120 (pRIT 14646) were grown in a 20 Litters

25 fermentor under fed-batch conditions at 30°. The expression of the recombinant
protein was induced by adding Nalidixic acid at a final concentration of 60 °g/ml.

Cells were harvested at the end of fermentationand and lyzed at 60 OD/600 by two
passages through a French Press disrupter (20 000 psi). Lysed cells were pelleted

20 min at 15 000 g at 4 °C. Supernatant containing the recombinant protein was

30 loaded onto exchange DEAE Sepharose CL6B resin (Pharmacia) pre-equilibrated in

0.3M NaCl, 20 mM Tris HCl pH 7.6 Buffer A. After a column wash with buffer

A, fusion protein was eluted by 2 % choline in (Buffer A). Positive antigen

fractions, as revealed by Western blotting analysis using an anti Mage-3 antibody, were pooled. DEAE-eluted antigen was brought to 0.5 % Empigen BB (a zwitterionic detergent) and to 0.5 M NaCl before loading onto an Ion Metal Affinity chromatography column preequilibrated in 0.5 % Empigen BB, 0.5 M NaCl, 50 mM phosphate buffer pH 7.6 (Buffer B).

IMAC column was washed with buffer B until 280 nm absorbency reached the base line. A second wash in buffer B without Empigen BB (Buffer C) in order to eliminate the detergent was executed before Antigen elution by an Imidazole gradient 0-250mM Imidazole in buffer C.

10 0.090-0.250 M Imidazole fractions were pooled, concentrated on a 10 kDa Filtron omega membrane before dialysis versus PBS buffer.

CONCLUSION:

15

20

25

We have demonstrated that the fused protein LPD-MAGE3-His is immunogenic in mice, and that this immunogenicity (the proliferative response and antibody response) can be further increased by the use of the adjuvant described above. Purification can be enhanced by derivatising the thiols that form disulphide bonds.

We have also demonstrated that a better antibody response was triggered by the vaccination with the LPD-MAGE-3-His in the presence of the adjuvant. The predominant isotype found in the serum of C57BL/6 being IgG2b suggesting that a TH1 type immune response was raised.

In the human, clinical setting a patient treated with LPD-MAGE3-His in an unadjuvanted formulation was cleared of melanoma.

CLAIMS:

1. A rumour-associated antigen derivative from the MAGE family.

- An antigen as claimed in claim 1, when the derivative is a MAGE protein linked to an immunological fusion or expression enhancer partner.
 - An antigen as claimed in claim 1 or 2 wherein the derivative comprises an affinity tag.
 - 4. An antigen as claimed in any of claims 1 to 3 which contains a derivatised free thiol.
- 5. An antigen as claimed in claim 4 which is a carboxyamide or carboxymethylated derivative.
 - 6. A protein as claimed in claim 2, 3, 4 or 5 wherein the fusion partner is protein D or fragment thereof from Heamophilus influenzae B, NS1 protein from influenza or a fragment thereof or Lyta from Streptococcus pneumoniae or fragment thereof.

15

- 7. A protein as claimed in claim 2, 3, 4 or 5 wherein the fusion partner is the lipidated form of protein D or fragment thereof from Heamophilus influenza B.
- A protein as claimed in claim 1 to 7 wherein the MAGE protein is selected from the group MAGE A1, MAGE A2, MAGE A3, MAGE A4, MAGE A5, MAGE A6, MAGE A7, MAGE A8, MAGE A9, MAGE A10, MAGE A11, MAGE A12, MAGE B1, MAGE B2, MAGE B3 and MAGE B4, MAGE C1, MAGE C2.
 - 9. A nucleic acid sequence encoding a protein as claimed herein.

- 10. A vector comprising a nucleic acid of claim 9.
- 11. A host transformed with a vector of claim 10.

12. A vaccine containing a protein as claimed in any of claims 1 to 8 or a nucleic acid as claimed in claim 9.

- 13. A vaccine as claimed in claim 12 additionally comprising an adjuvant, and/or
 5 immunostimulatory cytokine or chemokine.
 - 14. A vaccine as claimed in claim 12 or 13 wherein the protein is presented in an oil in water or a water in oil emulsion vehicle.
- 10 15. A vaccine as claimed in claim 13 or 14 wherein the adjuvant comprises 3D-MPL, QS21 or a CpG oligonucleotide.
 - 16. A vaccine as claimed herein additionally comprising one or more other antigens.
- 17. A vaccine as claimed herein for use in medicine.

15

- 18. Use of a protein or nucleic acid as claimed herein for the manufacture of a vaccine for immunotherapeutically treating a patient suffering from melanomas or other MAGE-associated tumours.
 - 19. A process for the purification of a MAGE protein or derivative thereof, comprising reducing the disulphide bonds, blocking the resulting free thiol group with a blocking group, and subjecting the resulting derivative to one or more chromatographic purification steps.
 - 20. A process for the production of a vaccine, comprising the steps of purifying a MAGE protein or a derivative thereof, by the process of claim 19 and formulating the resulting protein as a vaccine.

Figure 1: LPD-MAGE-3-His

5

FIGURE 2 : Construction of the expression vectorpRIT 14586

2/19

FIGURE 3 : Construction of plasmid pRIT 14477 expressing the fusion protein Prot. D 1/3-MAGE-3-His tail

WO 99/40188 PCT/EP99/00660 -

FIGURE 4 Western blot analysis of LPD-MAGE-3-His protein Anti-MAGE-3 monoclonal antibodies Mab 32 and Mab 54

Mah32

Mab54

- 1, 4, and 7: molecular weight
- 2: lot 96K19 revealed with Mab 32
- 3: lot 96J22 revealed with Mab 32
- 4: lot 96K19 revealed with Mab 54
- 5: lot 96J22 revealed with Mab 54

Figure 5

IMPATOROGENICO DAYOTA ACCESTINA (IO CACATRICA)

Lymphoproliferation on spleen cells.

72Hrs stimulation with $0.1\mu g/ml$ His Mage 3 on μ beads

Group	of mice	3H Thymidine incorporation
		baseline (CPM): 0.1 μg/ml μbeads
SI	Non formulated LipoD Mage3 His	1284
S2	LipoD Mage3 His + SBAS2	679
S3	SBAS2	805
84	medium	1242

FIGURE 6:

Lymphoproliferation on lymph node cells.

72Hrs stimulation with $1\mu g/ml$ His Mage 3 on μ beads

Groups of mice		H Thymidine incorporation baseline (CPM): 1 µg/ml µbeads
LN1 LN2	Non formulated LipoD Mage3 H LipoD Mage3 His + SBAS2	tis 477 1025
LN3	SBAS2	251
LN4	medium	110

FIGURE 7:

IMMUNOGENICITY OF MAGE3 IN MICE (BalbC)

Lymphoproliferation on spleen cells

72Hrs stimulation with 0.1µg/ml His Mage3 (A)

His Mage 3 coated on µbeads (B)

Groups of mice		3H Thymidine incorporation none 0.1µg/ml µb		:cpm
S1	Non Formulated LipoD Mage3 His	1002	1329	
S2	LipoD Mage 3 His + SBAS2	1738	4997	
83	SBAS2	1685	3393	
S4	Medium	1535	1129	

Α

В

FIGURE 8:

IMMUNOGENICITY OF MAGES IN MICE (BalbC)

Lymphoproliferation on popliteal lymph node cells

72Hrs stimulation with 1 µg/ml His Mage 3 (A)
His Mage 3 coated on µbeads(B)

Groups of mice		3H Thymidin none 1µ	:cpm	
LN1	Non Formulated LipoD Mage3 His	309	386	
LN2	LipoD Mage 3 His + SBAS2	438	410	
LN3	SBAS2	522	637	
LN4	Medium	318	399	

Α

В

Anti-Mage3 antibodies in the serum of mice immunized with LipoD Mage3 His in SBAS2 or not

BALB C mice

C57BL/6 mice

Subclass-specific antibody responses in Balb/c mice

	Tot. IgG	lgG1	lgG2a	lgG2b	igA	lgM
PBS	0	0	0	0	0	0
SBAS2	733	719	378	11	0	ō
LPD Mg3 His	6182	2049	2058	1835	Ö	0
LPD Mg3 H /SBAS2	44321	267884	31325	12160	. 0	ō

Subclass-specific antibody responses in C57BL/6 mice

l	Total IgG	lgG1	lgG2a	lgGZb	lgA	IgM	
PBS	807	405	718	22.8	2.8	33.8	
SBAS2	37	137	0	0	0	19	
LPO Mg3His	5471	1343	332	4540	135	5	
LPO Mg3H/SBAS2	11489	2477	2070	8118	53	46	

Figure 12

Figure 13

Construction of plasmid pRIT14426

Figure 14:

Plasmid map of pRIT14426

 CLYTA
 ASP-Met-Gly
 MAGE-1
 Gly-Gly His (7)

 1
 125
 2
 308

Figure 16: construction of plasmid pRIT 14613.

WO 99/40188 PCT/EP99/00666 -

Figure-18			***************************************		
CLYTA	Ala-Ser-Met-Leu-Asp	MAGE-3	Gly-Gly-	HIS (7)	

Figure 19

SEQUENCE LISTING

	SEQUENCE LISTING
	(1) GENERAL INFORMATION
5	(i) APPLICANT: SmithKline Beecham Biologicals
	(ii) TITLE OF THE INVENTION: Vaccine
10	(iii) NUMBER OF SEQUENCES: 10
15	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: SmithKline Beecham (B) STREET: 2 New Horizons Court, Great West Road, B (C) CITY: Middx (D) STATE: (E) COUNTRY: UK (F) 2TP: TW8 9EP
20	(v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette (B) COMPUTER: IBM Compatible (C) OPERATING SYSTEM: DOS (D) SOFTWARE: FastSQ for Windows Version 2.0
25	(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
30	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
35	
40	(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Dalton, Marcus J (B) REGISTRATION NUMBER: (C) REFERENCE/DOCKET NUMBER: 845126
45	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 0181 9756348 (B) TELEFAX: 0181 9756177 (C) TELEX:
	(2) INFORMATION FOR SEQ ID NO:1:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 452 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOSY: linear
55	(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
60	Met Asp Pro Lys Thr Leu Ala Leu Ser Leu Leu Ala Ala Gly Vai Leu 1 5 10 15
	Ala Gly Cys Ser Ser His Ser Ser Asn Met Ala Asn Thr Gln Met Lys
	Ser Asp Lys Ile Ile Ile Ala His Arg Gly Ala Ser Gly Tyr Leu Pro

PCT/EP99/00660 WO 99/40188

```
35
     Glu His Thr Leu Glu Ser Lys Ala Leu Ala Phe Ala Gin Gin Ala Asp
50 55 60
     Tyr Leu Giu Gln Asp Leu Ala Met Thr Lys Asp Gly Arg Leu Val Val 65 70 75 80
5
     Ile His Asp His Phe Leu Asp Gly Leu Thr Asp Val Ala Lys Phe 85 90 95
     Pro His Arg Ris Arg Lys Asp Gly Arg Tyr Tyr Val Ile Asp Phe Thr 100 105
      Leu Lys Glu Ile Gin Ser Leu Glu Met Thr Glu Asn Phe Glu Thr Met
                              120
             115
      Asp Leu Glu Gln Arg Ser Gln His Cys Lys Pro Glu Glu Gly Leu Glu
                             135
                                                  140
      Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gin Ala Pro Ala Thr
                                              155
15
                         150
      Glu Glu Glu Glu Ala Ala Ser Ser Ser Ser Thr Leu Val Glu Val Thr
      Leu Gly Glu Val Pro Ala Ala Glu Ser Pro Asp Pro Pro Gln Ser Pro
180 185 190
      Gln Gly Ala Ser Ser Leu Pro Thr Thr Met Asn Tyr Pro Leu Trp Ser
20
             195
      Glm Ser Tyr Glu Asp Ser Ser Asn Gln Glu Glu Glu Gly Pro Ser Thr
                 215 220
      Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Leu Ser Arg Lys Val
225 230 235
25
      Ala Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu Pro
245 250 255
      Val Thr Lys Ala Giu Met Leu Gly Ser Val Val Gly Asn Trp Gln Tyr
260 265 270
      Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Ser Leu Gln Leu Val
275 280 285
30
      Phe Gly Ile Glu Leu Mer Glu Val Asp Pro Ile Gly Bis Leu Tyr Ile
                     295
         290
      Phe Ala Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu Gly Asp Asn 305 310 315
35
      Gin Ile Met Pro Lys Ala Gly Leu Leu île Ile Val Leu Ala Ile Ile
                                          330
                      325
      Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp Glu Glu Leu
                                   345
                 340
      Ser Val Leu Glu Val Phe Glu Gly Arg Glu Asp Ser Ile Leu Gly Asp
40
             355
                                  360
      Pro Lys Lys Leu Leu Thr Gin His Phe Val Gin Glu Asn Tyr Leu Glu
                            375
                                                 380
      Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu Phe Leu Trp
385 390 395 400
45
      Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr Val Lys Val Leu His His 405 410 415
      Met Val Lys Ile Ser Gly Gly Pro His Ile Ser Tyr Pro Fro Leu His
420 425 430
      Glu Trp Val Leu Arg Glu Gly Glu Glu Thr Ser Gly Gly His His Ris
50
                                  440
              435
      His Ris His
         450
```

(2) INFORMATION FOR SEQ ID NO:2: 55

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1353 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: Linear

60

(ii) MOLECULE TYPE: cDNA

PCT/EP99/00660 WO 99/40188

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:2:

	ATGGATCCAA	AAACTTTAGC	CCTTTCTTTA	TTAGCAGCTG	GCGTACTAGC	AGGTTGTAGC	60
	AGCCATTCAT	CAAATATGGC	GAATACCCAA	ATGAAATCAG	ACAAAATCAT	TATTGCTCAC	120
5	CGTGGTGCTA	GCGGTTATTT	ACCAGAGCAT	ACGTTAGAAT	CTARAGCACT	TGCGTTTGCA	180
	CAACAGGCTG	ATTATTTAGA	GCAAGATTTA	GCAATGACTA	AGGATGGTCG	TTTAGTGGTT	240
	ATTCACGATC	ACTTTTTAGA	TEGETTEACT	GATGTTGCGA	AAAAATTCCC	ACATCGTCAT	300
	CGTAAAGATG	GCCGTTACTA	TGTCATCGAC	TTTACCTTAA	AAGAAATTCA	AAGTTTAGAA	360
	ATGACAGAAA	ACTTTGAAAC	CATGGATCTG	GAACAGCGTA	GTCAGCACTG	CAAGCCTGAA	420
10	GAAGGCCTTG	AGGCCCGAGG	AGAGGCCCTG	GGCCTGGTGG	GTGCGCAGGC	TCCTGCTACT	480
	GAGGAGCAGG	AGGCTGCCTC	CTCCTCTTCT	ACTCTAGTTG	AAGTCACCCT	GGGGGAGGTG	540
	CCTGCTGCCG	AGTCACCAGA	TCCTCCCCAG	AGTCCTCAGG	GAGCCTCCAG	CCTCCCCACT	600
	ACCATGAACT	ACCCTCTCTG	GAGCCAATCC	TATGAGGACT	CCAGCAACCA	AGAAGAGGAG	660
	GGGCCAAGCA	CCTTCCCTGA	CCTGGAGTCC	GAGTTCCAAG	CAGCACTCAG	TAGGAAGGTG	720
15	GCCGAATTGG	TTCATTTTCT	GCTCCTCAAG	TATCGAGCCA	GGGAGCCGGT	CACAAAGGCA	780
	GARATGCTGG	GGAGTGTCGT	CGGAAATTGG	CAGTATTTCT	TTCCTGTGAT	CTTCAGCAAA	840
	GCTTCCAGTT	CCTTGCAGCT	GGTCTTTGGC	ATCGAGCTGA	TGGAAGTGGA	CCCCATCGGC	900
	CACTTGTACA	TCTTTGCCAC	CTGCCTGGGC	CTCTCCTACG	ATGGCCTGCT	GGGTGACAAT	960
	CAGATCATGC	CCAAGGCAGG	CCTCCTGATA	ATCGTCCTGG	CCATAATCGC	AAGAGAGGGC	1020
20	GACTGTGCCC	CTGAGGAGAA	AATCTGGGAG	GAGCTGAGTG	TGTTAGAGGT	GTTTGAGGGG	1080
	AGGGAAGACA	GTATCTTGGG	GGATCCCAAG	AAGCTGCTCA	CCCAACATTT	CGTGCAGGAA	1140
	AACTACCTGG	AGTACCGGCA	GGTCCCCGGC	AGTGATCCTG	CATGTTATGA	ATTCCTGTGG	1200
	GGTCCAAGGG	CCCTCGTTGA	AACCAGCTAT	GTGAAAGTCC	TGCACCATAT	GGTAAAGATC	1260
	AGTGGAGGAC	CTCACATTTC	CTACCCACCC	CTGCATGAGT	GGGTTTTGAG	AGAGGGGGAA	1320
25	GAGGGCGGTC	ATCACCATCA	CCATCACCAT	TAA			1353
200	0710000010	*************					

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS: 30
 - (A) LENGTH: 1341 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: aDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	ATGGATCCAA	AAACTTTAGC	CCTTTCTTTA	TTAGCAGCTG	GCGTACTAGC	AGGTTGTAGC	60
40	AGCCATTCAT	CAAATATGGC	GAATACCCAA	ATGAAATCAG	ACAAAATCAT	TATTGCTCAC	120
	CGTGGTGCTA	GCGGTTATTT	ACCAGAGCAT	ACGTTAGAAT	CTAAAGCACT	TGCGTTTGCA	180
	CAACAGGCTG	ATTATTTAGA	GCAAGATTTA	GCAATGACTA	AGGATGGTCG	TTTAGTGGTT	240
	ATTCACGATC	ACTITITAGA	TGGCTTGACT	GATGTTGCGA	AAAAATTCCC	ACATCGTCAT	300
	CCTAAAGATG	GCCGTTACTA	TGTCATCGAC	TTTACCTTAA	AAGAAATTCA	AAGTTTAGAA	360
45	ATGACAGAAA	ACTTTGAAAC	CATGGGCTCT	CTGGAACAGC	GTAGTCTGCA	CTGCAAGCCT	420
	GAGGAAGCCC	TTGAGGCCCA	ACAAGAGGCC	CTGGGCCTGG	TGTGTGTGCA	GGCTGCCACC	480
	TCCTCCTCCT	CTCCTCTGGT	CCTGGGCACC	CTGGAGGAGG	TGCCCACTGC	TGGGTCAACA	540
	GATCCTCCCC	AGAGTCCTCA	GGGAGCCTCC	GCCTTTCCCA	CTACCATCAA	CTTCACTCGA	600
	CAGAGGCAAC	CCAGTGAGGG	TTCCAGCAGC	CGTGAAGAGG	AGGGGCCAAG	CACCTCTTGT	560
50	ATCCTGGAGT	CCTTGTTCCG	AGCAGTAATC	ACTAAGAAGG	TGGCTGATTT	GGTTGGTTTT	720
	CTGCTCCTCA	AATATCGAGC	CAGGGAGCCA	GTCACAAAGG	CAGAAATGCT	GGAGAGTGTC	780
	ATCAAAAATT	ACAAGCACTG	TTTTCCTGAG	ATCTTCGGCA	AAGCCTCTGA		840
	CTGGTCTTTG	GCATTGACGT	GAAGGAAGCA	GACCCCACCG	GCCACTCCTA	TGTCCTTGTC	900
	ACCTGCCTAG	GTCTCTCCTA	TGATGGCCTG	CIGGGTGATA	ATCAGATCAT	GCCCAAGACA	960
55	GGCTTCCTGA	TAATTGTCCT	GGTCATGATT	GCAATGGAGG	GCGGCCATGC	TCCTGAGGAG	1020
	GAAATCTGGG	AGGAGCTGAG	TGTGATGGAG	GIGTATGATG	GGAGGGAGCA		1080
	GGGGAGCCCA	GGAAGCTGCT	CACCCAAGAT	TTGGTGCAGG	AAAAGTACCT	GGAGTACCGG	1140
	CAGGTGCCGG	ACAGTGATCC	CGCACGCTAT	GAGTTCCTGT	GGGGTCCAAG	GGCCCTCGCT	1200
	GAAACCAGCT	ATGTGAAAGT	CCTTGAGTAT	GTGATCAAGG	TCAGTGCAAG	AGTTCGCTTT	1260
60	TTCTTCCCAT	CCCTGCGTGA		AGAGAGGAGG	AAGAGGGAGT	CGGCGGTCAT	1320
	CACCATCACC	ATCACCATTA	A				1341

⁽²⁾ INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 466 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Asp Pro Lys Thr Leu Ala Leu Ser Leu Leu Ala Ala Gly Val Leu 3.0 Ala Gly Cys Ser Ser His Ser Ser Asc Met Ala Asn Thr Gln Met Lys Ser Asp Lys Ile Ile Ile Ala His Arg Gly Ala Ser Gly Tyr Leu Pro Glu His Thr Leu Glu Ser Lys Ala Leu Ala Phe Ala Gln Gln Ala Asp 5.5 Tyr Leu Glu Gln Asp Leu Ala Met Thr Lys Asp Gly Arg Leu Val Val Ile His Asp His Phe Leu Asp Gly Leu Thr Asp Val Ala Lys Lys Phe Pro His Arg His Arg Lys Asp Gly Arg Tyr Tyr Val Ile Asp Phe Thr Leu Lys Glu Ile Gin Ser Leu Glu Met Thr Glu Asn Phe Glu Thr Met Gly Ser Leu Glu Gln Arg Ser Leu His Cys Lys Pro Glu Glu Ala Leu Glu Ala Gln Gln Glu Ala Leu Gly Leu Val Cys Val Gln Ala Ala Thr Ser Ser Ser Pro Leu Val Leu Gly Thr Leu Glu Glu Val Pro Thr Ala Gly Ser Thr Asp Pro Pro Gln Ser Pro Gin Gly Ala Ser Ala Phe Pro Thr Thr Ile Asn Phe Thr Arg Gln Arg Gln Pro Ser Glu Gly Ser Ser Ser Arg Glu Glu Glu Gly Pro Ser Thr Ser Cys Ile Leu Glu Ser Leu Phe Arg Ala Val Ile Thr Lys Lys Val Ala Asp Leu Val Gly Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu Pro Val Thr Lys Ala Glu Met Leu Glu Ser Val Ile Lys Asn Tyr Lys His Cys Phe Pro Glu Ile Phe Gly Lys Ala Ser Glu Ser Leu Gln Leu Val Phe Gly Ile Asp Val Lys Glu Ala Asp Pro Thr Gly His Ser Tyr Val Leu Val Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu Gly Asp Asn Gln Ile Met Pro Lys Thr Gly Phe Leu Ile Ile Val Leu Val Met Ile Ala Met Glu Gly Gly His Ala Pro Glu Glu Glu Ile Trp Glu Glu Leu Ser Val Met Glu Vol Tyr Asp Gly Arg Glu His Ser Ala Tyr Gly Glu Pro Arg Lys Leu Leu Thr Gln Asp Leu Val Gln Glu Lys Tyr Leu Glu Tyr Arg Gln Val Pro Asp Ser Asp Pro Ala Arg Tyr Glu Phe Leu Trp Gly Pro Arg Ala Leu Ala 385 390 395 400 Glu Thr Ser Tyr Val Lys Val Leu Glu Tyr Val Ile Lys Val Ser Ala Arg Val Arg Phe Phe Pro Ser Leu Arg Glu Ala Ala Leu Arg Glu

Glu Glu Glu Gly Val Gly Gly His His His His His His His 435 $440\,$

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 404 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Asp Pro Asn Thr Val Ser Ser Phe Gln Val Asp Cys Phe Leu Trp His Val Arg Lys Arg Val Ala Asp Gln Glu Leu Gly Asp Ala Pro Phe Leu Asp Arg Leu Arg Arg Asp Gln Lys Ser Leu Arg Gly Arg Gly Ser Thr Leu Gly Leu Asp Ile Glu Thr Ala Thr Arg Ala Gly Lys Gln Ile Val Glu Arg Ile Leu Lys Glu Glu Ser Asp Glu Ala Leu Lys Met Thr Met Asp Leu Glu Gln Arg Ser Gln His Cys Lys Pro Glu Glu Gly Leu Glu Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gln Ala Pro Ala 1.10 Thr Glu Glu Gln Glu Ala Ala Ser Ser Ser Ser Thr Leu Val Glu Val Thr Leu Gly Glu Val Pro Ala Ala Glu Ser Pro Asp Pro Pro Gin Ser Pro Gin Gly Ala Ser Ser Leu Pro Thr Thr Met Asn Tyr Pro Leu Trp Ser Gin Ser Tyr Glu Asp Ser Ser Asm Gin Glu Glu Glu Gly Pro Ser Thr Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Leu Ser Arg Lys Val Ala Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu Pro Val Thr Lys Ala Glu Met Leu Gly Ser Val Val Gly Asn Trp Gln Tyr Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Ser Leu Gln Leu Val Phe Gly Ile Glu Leu Met Glu Vai Asp Pro Ile Gly His Leu Tyr Ile Phe Ala Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu Gly Asp Asn Gln Ile Met Pro Lys Ala Gly Leu Leu Ile Ile Val Leu Ala Ile Ile Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp Glu Glu Leu Ser Val Leu Glu Vai Phe Glu Gly Arg Glu Asp Ser Ile Leu Gly Asp Pro Lys Lys Leu Leu Thr Gln His Phe Val Gln Glu Asn Tyr Leu Glu Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu Phe Leu Trp Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr Val Lys Val Leu His His Met Val Lys Ile Ser Gly Gly Pro His Ile Ser Tyr Pro Pro Leu His Glu Trp Val Leu Arg Glu Gly Glu Glu Gly Gly His Ris His His

395 400 385 390 His His His (2) INFORMATION FOR SEQ ID NO:6: S (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 10 (D) TOPOLOGY: linear (11) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: 15 ATGGATCCAA ACACTGTGTC AAGCTTTCAG GTAGATTGCT TTCTTTGGCA TGTCCGCAAA CGAGTTGCAG ACCAAGAACT AGGTGATGCC CCATTCCTTG ATCGGCTTCG CCGAGATCAG AAATCCCTAA GAGGAAGGGG CAGCACTCTT GGTCTGGACA TCGAGACAGC CACACGTGCT GGAAAGCAGA TAGTGGAGCG GATTCTGAAA GAAGAATCCG ATGAGGCACT TAAAATGACC 20 ATGGATCTGG AACAGCGTAG TCAGCACTGC AAGCCTGAAG AAGGCCTTGA GGCCCGAGGA GAGGCCCTGG GCCTGGTGGG TGCGCAGGCT CCTGCTACTG AGGAGCAGGA GGCTGCCTCC TCCTCTTCTA CTCTAGTTGA AGTCACCCTG GGGGAGGTGC CTGCTGCCGA GTCACCAGAT CCTCCCCAGA GTCCTCAGGG AGCCTCCAGC CTCCCCACTA CCATGAACTA CCCTCTCTGG CCTCCCCAGA GTCCTCAGGG AGCCTCCAGC CTCCCCCATA COGASACTA CCCTCTCTGG AGCCARTCCA ATGAGGACTC CAGCAACCAA GAAGAGGAGG GGCCAACCAC CTTCCCTGAC CTGGAGTCCC AGTTCCAACC AGCACTCAGT AGGAAAGGTG CGGAATTGGT TCATTTTCTG CTCCCCAAGT ATCGAGCCAG GGAGCCGGT ACAAAGGCAG AAATCGTGG GAGTTGGTG GGAAATTGCA ATGATTTCTT TCCTGTGATC TCAGCAAAG CTTCCAGTTC CTTGGAGCTG CTCTTTGGCA TCGAGCTGAT GGAAGTGGAC CCCATCGGC ACTTGTACAT CTTTGCCACC TCCTGGGCC TCCCCTCACCA TGGCCTGCC GTGGACATC AGATCATGCC CAAGCAGGC TCCTGGGCC TCCCCTACCA TGGCCTGCC GTGGACATC AGATCATGCC CAAGCAGGC 25 30 CTCCTGATAA TCGTCCTGGC CATAATCGCA AGAGAGGGCG ACTGTGCCCC TGAGGAGAAA 900 ATCTGGGAGG AGCTGAGTGT GTTAGAGGTG TTTGAGGGGA GGGAAGACAG TATCTTGGGG 1020 35 CATCACCATT AA 1212 (2) INFORMATION FOR SEQ ID NO:7: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 445 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 45 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: Met Lys Gly Gly Ile Val His Ser Asp Gly Ser Tyr Pro Lys Asp Lys 10 15Phe Glu Lys Ile Asn Gly Thr Trp Tyr Tyr Phe Asp Ser Ser Gly Tyr 20 25 30Met Leu Ala Asp Arg Trp Arg Lys His Thr Asp Gly Asn Trp Tyr Trp 35 45 55 Phe Asp Asn Ser Gly Glu Met Ala Thr Gly Trp Lys Lys Ile Ala Asp 50 55 Lys Trp Tyr Tyr Phe Asn Glu Glu Gly Ala Met Lys Thr Gly Trp Val 65 70 75 80 Lys Tyr Lys Asp Thr Trp Tyr Tyr Leu Asp Ala Lys Glu Gly Ala Met

85 90 95

Val Ser Asn Ala Phe Ile Gln Ser Ala Asp Gly Thr Gly Trp Tyr Tyr

100 105

```
Leu Lys Pro Asp Gly Thr Leu Ala Asp Arg Pro Giu Leu Asp Met Gly
            115
                              120
     Ser Leu Glu Gln Arg Ser Leu His Cys Lys Pro Glu Glu Ala Leu Glu
                          135
        130
     Ala Gin Gin Glu Ala Leu Gly Leu Val Cys Val Gin Ala Ala Thr Ser
                                       155
                       150
     145
     Ser Ser Ser Pro Leu Val Leu Gly Thr Leu Glu Glu Val Pro Thr Ala
                                  170
                 165
     Gly Ser Thr Asp Pro Pro Gin Ser Pro Gin Gly Ala Ser Ala Phe Pro
                                185
10
               180
     Thr Thr Ile Asn Phe Thr Arg Gln Arg Gln Pro Ser Glu Gly Ser Ser
                             200 205
           195
     Ser Arg Glu Glu Glu Gly Pro Ser Thr Ser Cys Ile Leu Glu Ser Leu
                           215
                                           220
         210
     Phe Arg Aia Val Ile Thr Lys Lys Val Ala Asp Leu Val Gly Phe Leu
15
                                        235
                       230
     Leu Leu Lys Tyr Arg Ala Arg Glu Pro Val The Lys Ala Glu Met Leu
                           250
                   245
     Glu Ser Val Ile Lys Asn Tyr Lys His Cys Phe Pro Glu Ile Phe Gly
                                265 270
20
                260
     Lys Ala Ser Glu Ser Leu Gln Leu Val Phe Gly Ile Asp Val Lys Glu
                              280 285
     Ala Asp Pro Thr Gly Ris Ser Tyr Val Leu Val Thr Cys Leu Gly Leu
       290
                          295
     Ser Tyr Asp Gly Leu Leu Gly Asp Asn Gln Ile Met Pro Lys Thr Gly
25
                                       315
                       310
     Phe Leu Ile Ile Val Leu Val Met Ile Ala Met Glu Gly Gly His Ala
                   325
                                     330
     Pro Glu Glu Glu Ile Trp Glu Glu Leu Ser Val Met Glu Val Tyr Asp
                                                    350
                                  345
30
                340
     Gly Arg Glu His Ser Ala Tyr Gly Glu Pro Arg Lys Leu Leu Thr Gln
                              360
                                    365
             355
     Asp Leu Val Gln Glu Lys Tyr Leu Glu Tyr Arg Gln Val Pro Asp Ser
                           375
                                            380
     Asp Pro Ala Arg Tyr Glu Phe Leu Trp Gly Pro Arg Ala Leu Ala Glu
35
                                         395
                       390
     Thr Ser Tyr Val Lys Val Leu Glu Tyr Val Ile Lys Val Ser Ala Arg
                                    410 415
                   405
     Val Arg Phe Phe Phe Pro Ser Leu Arg Glu Ala Ala Leu Arg Glu Glu
                               425 430
40
               420
     Glu Glu Gly Val Gly Gly His His His His His His His
                              440
             (2) INFORMATION FOR SEQ ID NO:8:
45
           (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 1338 base pairs
             (B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
50
            (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: cDNA
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
55
```

		GTCCTCAGGG	* acamaaaaa	******	CCATCAACTT	CACTCGACAG	600
					GGCCAAGCAC		660
			CAGCAGCCGT				
	CTGGAGTCCT	TGTTCCGAGC	AGTAATCACT	AAGAAGGTGG	CTGATTTGGT	TGGTTTTCTG	728
	CTCCTCAAAT	ATCGAGCCAG	GGAGCCAGTC	ACAAAGGCAG	AAATGCTGGA.	GAGTGTCATC	780
5	DARASTTACA	AGCACTGTTT	TCCTGAGATC	TTCGGCAAAG	CCTCTGAGTC	CTTGCAGCTG	840
-	GTCTTTGGCA		GGAAGCAGAC	CCCACCGGCC	ACTCCTATGT	CCTTGTCACC	900
	TGCCTAGGTC	TOTOCTATGA	TGGCCTGCTG	GGTGATAATC	AGATCATGCC	CAAGACAGGC	960
	TTCCTGATAA	TTGTCCTGGT	CATGATTGCA	ATGGAGGGCG	GCCATGCTCC	TGAGGAGGAA	1020
		AGCTGAGTGT	GATGGAGGTG	TATGATGGGA	GGGAGCACAG	TGCCTATGGG	1080
10		AGCTGCTCAC		GTGCAGGAAA	AGTACCTGGA	GTACCGGCAG	1140
10	GTGCCGGACA	GTGATCCCGC	ACGCTATGAG	TTCCTGTGGG	GTCCAAGGGC	CCTCGCTGAA	1200
		TGAAAGTCCT			GTGCAAGAGT	TCGCTTTTTC	1260
	TTCCCATCCC	TGCGTGAAGC	AGCTTTGAGA	GAGGAGGAAG	AGGGAGTCGG	CGGTCATCAC	1320
	CATCACCATC						1338
15	CAL CALICATO						

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 454 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (wat management pro-

25

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Lys Gly Gly Tle Val His Ser Asp Gly Ser Tyr Pro Lys Asp Lys 10 30 Phe Glu Lys Ile Asn Gly Thr Trp Tyr Tyr Phe Asp Ser Ser Gly Tyr 25 Met Leu Ala Asp Arg Trp Arg Lys His Thr Asp Gly Asn Trp Tyr Trp Phe Asp Asn Ser Gly Glu Met Ala Thr Gly Trp Lys Lys Ile Ala Asp 55 35 Lys Trp Tyr Tyr Phe Asn Glu Glu Gly Ala Met Lys Thr Gly Trp Val 70 75 Lys Tyr Lys Asp Thr Trp Tyr Tyr Leu Asp Ala Lys Glu Gly Ala Met Val Ser Asn Ala Phe Ile Gln Ser Ala Asp Gly Thr Sly Trp Tyr Tyr 40 105 Leu Lys Pro Asp Gly Thr Leu Ala Asp Arg Pro Glu Leu Ala Ser Met 115 120 Leu Asp Met Asp Leu Glu Gln Arg Ser Gln His Cys Lys Pro Glu Glu 140 135 45 130 Gly Leu Glu Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gln Ala 155 150 Pro Ala Thr Glu Glu Glu Glu Ala Ala Ser Ser Ser Thr Leu Val 170 165 Glu Val Thr Leu Gly Glu Val Pro Ala Ala Glu Ser Pro Asp Pro Pro 50 185 180 Gln Ser Pro Gln Gly Ala Ser Ser Leu Pro Thr Thr Met Asn Tyr Pro 200 205 195 Leu Trp Ser Gln Ser Tyr Glu Asp Ser Ser Asn Gln Glu Glu Glu Gly 55 215 210 Pro Ser Thr Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Leu Ser 230 235 Arg Lys Val Ala Glu Leu Val Bis Phe Leu Leu Leu Lys Tyr Arg Ala 250 255 245 Arg Glu Pro Val Thr Lys Ala Glu Met Leu Gly Ser Val Val Gly Asn 60 265 270 260 Trp Gin Tyr Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Ser Leu 280

Gln Leu Val Phe Gly Ile Glu Leu Met Glu Val Asp Pro Ile Gly His

PCT/EP99/00660 WO 99/40188

```
290
      Leu Tyr Ile Phe Ala Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu 305 310 320
      Gly Asp Asn Gln Ile Met Pro Lys Ala Gly Leu Leu Ile Ile Val Leu
325 330 335
5
      Ala Ile Ile Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp
                                                          350
                                      345
                 340
      Glu Glu Leu Ser Val Leu Glu Val Phe Glu Gly Arg Glu Asp Ser Ile
                               360
      Leu Gly Asp Pro Lys Lys Leu Leu Thr Gln His Phe Val Gln Glu Asn
10
          370
                              375
                                                  380
      Tyr Leu Glu Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu
                                               395
                          390
      Phe Leu Trp Gly Pro Arg Ala Leu Val Giu Thr Ser Tyr Val Lys Val
                                          410
15
                      405
      Leu His His Met Val Lys Ile Ser Gly Gly Pro His Ile Ser Tyr Pro
                                                          430
                                     425
      Pro Leu His Glu Trp Val Leu Arg Glu Gly Glu Glu Gly Gly His His
                                  440
             435
22
      His His His His His
          450
               (2) INFORMATION FOR SEQ ID NO:10:
```

- (i) SEQUENCE CHARACTERISTICS: 25
 - (A) LENGTH: 1362 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (i.i.) MOLECULE TYPE: cDNA

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

35	ATGAAAGGGG	GAATTGTACA	TTCAGACGGC	TCTTATCCAA	AAGACAAGTT	TGAGAAAATC	60
00	AATGGCACTT	GGTACTACTT	TGACAGTTCA	GGCTATATGC	TTGCAGACCG	CTGGAGGAAG	120
	CACACAGACG	GCAACTGGTA	CTGGTTCGAC	AACTCAGGCG	AAATGGCTAC	AGGCTGGAAG	180
	AAAATCGCTG	ATAAGTGGTA	CTATTTCAAC	GAAGAAGGTG	CCATGAAGAC	AGGCTGGGTC	240
	AAGTACAAGG	ACACTTGGTA	CTACTTAGAC	GCTAAAGAAG	GCGCCATGGT	ATCAAATGCC	300
40	TTTATCCAGT	CAGCGGACGG	AACAGGCTGG	TACTACCTCA	AACCAGACGG	AACACTGGCA	360
40	GACAGGCCAG	AATTGGCCAG	CATGCTGGAC	ATGGATCTGG	AACAGCGTAG	TCAGCACTGC	420
	AAGCCTGAAG	AAGGCCTTGA	GGCCCGAGGA	GAGGCCCTGG	GCCTGGTGGG	TGCGCAGGCT	480
	CCTGCTACTG	AGGAGCAGGA	GGCTGCCTCC	TCCTCTTCTA	CTCTAGTTGA	AGTCACCCTG	540
	GGGGAGGTGC	CTGCTGCCGA	GTCACCAGAT	CCTCCCCAGA	GTCCTCAGGG	AGCCTCCAGC	600
45	CTCCCCACTA	CCATGAACTA	CCCTCTCTGG	AGCCAATCCT	ATGAGGACTC	CAGCAACCAA	660
70	GAAGAGGAGG	GGCCAAGCAC	CTTCCCTGAC	CTGGAGTCTG	AGTTCCAAGC	AGCACTCAGT	720
	AGGAAGGTGG	CCAAGTTGGT	TCATTTTCTG	CTCCTCAAGT	ATCGAGCCAG	GGAGCCGGTC	780
	ACAAAGGCAG	ABATGCTGGG	GAGTGTCGTC	GGAAATTGGC	AGTACTTCTT	TOCTGTGATC	840
	TTCAGCAAAG	CTTCCGATTC	CTTGCAGCTG	GTCTTTGGCA	TCGAGCTGAT	GGAAGTGGAC	900
50	CCCATCGGCC	ACCTGTACAT	CTTTGCCACC	TGCCTGGGCC	TCTCCTACGA	TEGCCTECTE	960
50	GGTGACAATC		CAAGACAGGC	TTCCTGATAA	TCATCCTGGC	CATAATCGCA	1020
	AAAGAGGGCG	ACTGTGCCCC	TGAGGAGAAA	ATCTGGGAGG	AGCTGAGTGT	GTTAGAGGTG	1080
	TTTGAGGGGA		TATCTTCGGG	GATCCCAAGA	AGCTGCTCAC	CCAATATTTC	1140
	GTGCAGGAAA	ACTACCTGGA	GTACCGGCAG	GTCCCCGGCA	GTGATCCTGC	ATGCTATGAG	1200
55	TTCCTGTGGG	GTCCAAGGGC	CCTCATTGAA	ACCAGCTATG	TGAAAGTCCT	GCACCATATG	1260
20	GTAAAGATCA	GTGGAGGACC	TCGCATTTCC		TGCATGAGTG	GGCTTTGAGA	1320
	GAGGGGGAAG	AGGGCGGTCA	TCACCATCAC	CATCACCATT	AA		1362

REFERENCES:

- 5 Anichini A., Fossati G., Parmiani G. Immunol. Today, 8: 385 (1987).
 - De Plaen E., Arden K., Traversari C., et al. Immunogenetics, 40: 360 (1994).
 - Gaugler B., Van den Eynde B., van der Bruggen P., et al. J. Exp. Med.,
- 10 179: 921 (1994).
 - Herman J., van der Bruggen P., Immanuel F., et al. *Immunogenetics*, 43; 377 (1996).
- 15 Inoue H., Mori M., Li J., et al. Int. J. Cancer, 63: 523 (1995).
 - Kensil C.R., Soltysik S., Patel U., et al. in: Channock R.M., Ginsburg H.S.,
 Brown F., et al., (eds.), Vaccines 92,
 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.),
- 20 36-40: (1992).
 - Knuth A., Danowski B., Oettgen H.F., et al. Proc. Natl. Acad. Sci. USA, 81: 3511 (1984).
- 25 Patard J.J., Brasseur F., Gil-Diez S., et al. Int. J. Cancer, 64: 60 (1995).
 - Ribi E., et al. in: Levine L., Bonventre P.F., Morello J., et al. (eds).
 American Society for Microbiology, Washington DC, Microbiology 1986,
 9-13: (1986).
- Van den Eynde B., Hainaut P., Hérin M. et al. Int. J. Cancer, 44: 634 (1989).

- Van der Bruggen P., Traversari C., Chomez P., et al. Science, 254: 1643 (1991).

- Van der Bruggen P., Bastin J., Gajewski T., et al. Eur. J. Immunol., 24: 3038 (1994).

5

- Van Pel A., van der Bruggen P., Coulie P.G., et al., *Immunol. Rev.*, 145: 229 (1995).
- Weynants P., Lethé B., Brasseur F., et al. Int. J. Cancer, 56: 826 (1994).

- Nishimura S, Fujita M, Terata N, Tani T, Kodama M, Itoh K, Nihon Rinsho Meneki Gakkai Kaishi 1997, Apr., 20 (2): 95-101.
- Fuijie T et al, Ann Oncol 1997 Apr, 8 (4): 369-72.