CZ2003 Computer Graphic and Visual

Tutorial Answer

N2202781D Nie Yuhe

CZ2003 Tutorial 1 (2022/23, Semester 1)

Coordinate Systems and Vectors

- 1. A straight line is defined by equation y = 3x + 4 in Cartesian coordinate system XY.
 - (i) Define this straight line in polar coordinates r, a as an explicit function r = f(a).
 - (ii) Specify the domain for the polar coordinate α in both radians and degrees for this straight line.
- 2. (i) Define in polar coordinates $r = f(\alpha)$ the origin-centred circle with radius R. Specify the domain for the polar coordinate α .
 - (ii) Define in polar coordinates $r = f(\alpha)$ a circle with radius R and the centre at the Cartesian coordinates (R, 0). Specify the domain for the polar coordinate α .
- 3. With reference to Figure Q3, write formulas deriving Cartesian coordinates x, y, z, from the cylindrical r, α , h and spherical coordinates r, α , β . Notice that the axes layout is different in the two cases.

- 4. (i) With reference to Figure Q4, calculate coordinates (numbers) of the unit (magnitude is equal to 1) normal vector **N**.
 - (ii) What are the coordinates of the unit normal vector to the opposite side of the triangle?

QI.

- (i) y = 3x + 4in polar coordinate system $y = r \cdot \sin x = r \cdot \cos x$ $r \cdot \sin x = 3r \cdot \cos x + 4$
 - $\Rightarrow \Gamma(\sin \alpha 3\cos \alpha) = 4$ $\Rightarrow \Gamma = \frac{4}{\sin \alpha 3\cos \alpha}$
- (ii) in polar system, as shown in the below graph the range of the \times will be in (\times_1, \times_2)

$$x_1 = arctan(3) = 71.57^{\circ}$$

 $x_2 = arctan(3) + T1 = 251.57^{\circ}$

7hus, the domain of Vis { radian: (arctan(3), arctan(3)+π) { degree: (7/157°, 251.57°)

- in cartesian system, we define a circle (أ) $\chi^2 + \chi^2 = R^2$ in polar system, that is $r^2\cos^2x + r^2\sin^2x = R^2$ $\Rightarrow \Gamma^2 = \mathbb{R}^2$, since $\Gamma > 0$ in usual => r=R XE[0,271) M usual
- (ii) in cartesian system, we define a circle $(x-R)^2 + y^2 = R^2$ in polar system, that is $(r\cos x - R)^2 + r^2 \sin x^2 = R^2$ $\Rightarrow r^2 \cos^2 x - 2Rr\cos x + R^2 + r^2 \sin x^2 = R^2$ \Rightarrow $r^2-2Rrcosx=0$ =) r=2Rcosx in usual r≥0 = 2Rcosx >0, since R>0 in usual > cosk>0 > x∈[0,]

(i)
$$\begin{cases} x = r \cdot \omega_{S} x \\ y = h \\ z = -r \cdot s_{I} n x \end{cases}$$

(24

ii) suppose three points are

$$A(-4,0,0)$$
 $B(0,4,0)$ $C(2,0,4)$
then $\overrightarrow{AB} = (4,4,0)$
 $\overrightarrow{BC} = (2,-4,4)$

$$\frac{1}{CA} = (-6, 0, -4)$$

since N is the normal vector

suppose
$$\vec{N} = (x, y, +)$$
 then

$$\begin{cases} 4x + 4y = 0 \\ 2x - 4y + 4z = 0 \\ -6x - 4z = 0 \\ x^{2} + y^{2} + z^{2} = 1 \end{cases}$$

solve this formula, we can obtain
$$N = (-2\sqrt{17}, \frac{2\sqrt{17}}{17}, \frac{3\sqrt{17}}{17})$$

(ii) the unit vector to the opposite side of the triangle is

$$\overrightarrow{N}_{0} = (\frac{2\sqrt{17}}{17}, -\frac{2\sqrt{17}}{17}, -\frac{3\sqrt{17}}{17})$$

