

DECISION TREE AND RANDOM FOREST

- Decision tree is a very old and simple idea. Today, it is perhaps the most popular machine learning algorithm due to the following reasons.
 - 1. Easy to understand
 - 2. Easy to implement (not a lot of parameters to tweak)
 - 3. Can be used for both classification and regression problems

• Here's an example of a decision tree for classification. Is Josh going to play tennis today?

- The y variable is {yes, no} There are 4 features:
 - x1 = Outlook, {sunny, overcast, rain}
 - x2 = Temperature, {hot, warm, cold}
 - x3 = Humidity, {high, normal}
 - x4 = Wind, {strong, weak}

Root Node, Internal Node, Leaf Node

Decision Tree & Continuous Variable

Both x (features) and y (predicted value) can be continuous variables, for example...

Predict amount of money in saving account of single people (Y) from the following attributes:

- x1 = age (15-65 years old)
- x2 = gender (male or female)

Decision Boundary

Decision trees divide the space into axis-parallel rectangles and label each rectangle with class membership.

Constructing Decision Tree

One can construct a decision tree by a constructive search. Suppose we have a dataset with m = 100 samples.

 Decide on the feature at the root node and a boundary to create branches.

 Decide whether to add another internal node. If there's no use in creating another internal node, just add a leaf node and make a prediction.

Constructing Decision Tree

 On the other hand, you may decide to add another internal node which focuses on another feature.

 Repeat the process until we account for all samples.

Pseudo-Algorithm

```
Function: Build subtree
  Require: node n, data at the node D
  (n_L, n_R, D_L, D_R) = \text{FindBestSplit}(D)
  if StoppingCriteria(D_L) then
     FindPrediction(D_L)
  else
     BuildSubtree(n_L, D_L)
  end if
  if StoppingCriteria(D_R) then
     FindPrediction(D_R)
  else
     BuildSubtree(n_R, D_R)
 end if
```

Find the best split

- Intuitively, the best split will send all the 'yes' samples to one side and 'no' samples to the other side.
 - **Choose feature:** first determine which feature gives us the best split. We consider how much information about a given feature x tells us about the value of y (information gain).
 - **Choose threshold:** if that feature is a continuous feature, determine the threshold to split. We consider the threshold that will maximize variance decrease.

Stopping Criteria

- When to decide not to make a branch?
 - 1. When the leaf is pure, i.e. the variance of Y is small
 - 2. When the number of samples in the leaf is too small

Making Prediction

- For a classification problem:
 - Predict most common y of the examples in the leaf.

- For a regression problem:
 - Predict the average y of the examples in the leaf or build a linear regression model on the examples in the leaf.

INFORMATION GAIN

Information Theory

- Suppose we have a variable Y which could only be 0 or 1
- Y has the following probability

$$P(Y = 0) = 0.2$$

$$P(Y = 1) = 0.8$$

• We may define 'surprise' variable S, where

$$S(Y = c) = -log(P(Y = c))$$

- If Y=0, S=2.32 we are very surprised
- If Y=1, S=0.32 we are not so surprised.

Entropy

$$H(Y) = \sum_{c=0,1} [-P(Y=c) * log(P(Y=c))]$$

- Entropy is the sum of the product of the surprise and the probability of the outcome.
- This is the average surprise yielded by a single occurrence of Y or the uncertainty of Y.

Entropy

- For continuous variable,
 - 'high entropy': the variable has uniform (boring) distribution. It is hard to guess what the variable is.
 - 'low entropy': the distribution has peaks and valleys, making it easy to guess what the variable is.

Suppose we want to predict Y from X:

X = college major

Y = likes 'Titanic'

\boldsymbol{X}	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Math	Yes
History	No

$$P(Y = Yes) = 0.5$$

$$H(Y) = -0.5 \cdot log_2(0.5) - 0.5 \cdot log_2(0.5) = 1$$

\boldsymbol{X}	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Math	Yes
History	No

Define conditional entropy at X=v

$$H(Y|X=v)$$
 : the entropy of Y among all records where $X=v$

Example:

$$H(Y|X = Math) = 1$$

 $H(Y|X = History) = 0$
 $H(Y|X = CS) = 0$

\boldsymbol{X}	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Math	Yes
History	No

Conditional entropy H(Y|X) is the average conditional entropy at all values of X:

$$H(Y|X) = \sum_{v} P(X=v) \cdot H(Y|x=v)$$

Example:

$oldsymbol{v}$	P(X=v)	H(Y X=v)
Math	0.5	1
History	0.25	0
CS	0.25	0

$$H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5$$

\boldsymbol{X}	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Math	Yes
History	No

Information Gain

Information gain is defined as:

$$IG(Y|X) = H(Y) - H(Y|X)$$

The difference between the uncertainty of Y when we don't know X and when we know X.

Example:
$$H(Y) = 1$$

$$H(Y|X) = 0.5$$

$$IG(X|Y) = 0.5$$

\boldsymbol{X}	\boldsymbol{Y}
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
Math	Yes
History	No

Find the best split

- Going through all x, find IG(Y|x), pick the feature with the highest IG to make a split!
- For example, to predict who will live the longest, we compute the following IG
 - IG(LongLife | HairColor) = 0.0001
 - IG(LongLife | Gender) = 0.25
 - IG(LongLife | Smoke) = 0.1
 - IG(LongLife | NSiblings) = 0.005
- Then you'll choose Gender as the feature you'd like to use for the split.

Find the best split

• Choose a threshold: If X is a continuous variable, we must pick the best threshold to split. This is often done by maximizing the following function:

$$m \cdot Var(D) - (m_L \cdot Var(D_L) + m_R \cdot Var(D_R))$$

• This means the variance should decrease most substantially when we split.

Problems with Decision Tree

- Decision trees are prone to overfitting.
 - Use early stop criteria
 - Use ensemble method (i.e. random forest)

RANDOM FOREST

- Random forest is an ensemble. The trees are weak learners and the random forest combines all weak leaners to build a strong learner.
- Number of trees could be 10, 50, 500. The more trees, the less overfitted.

• Each tree will receive subset of features and samples from all data. So that each tree comes up with uncorrelated model (each is equally right in setting up their rules).

• The answer from all trees will be pooled to create the final answer. We can simply count votes for each categorical option.

- Random Forest is simple and fast to train. It has no requirement in terms of feature scaling.
- Works well with most tabular data.
- Other variants include Gradient Boosted Tree, Extra Tree, which have additional features that make RF fit data more accurately without overfitting.

ENSEMBLE LEARNING

Ensemble Learning

Ensemble learning

• The process by which multiple models, such as classifiers or experts, are strategically generated and combined to solve a particular computational intelligence problem.

• Ensemble classification

• Aggregation of predictions of multiple classifiers with the goal of improving accuracy.

Machine learning competition with a \$1 million prize

Leaderboard

Display top 20 V leaders.

Rank 1	The Ensemble	0.8553	10.10	2009-07-26 18:38:2
۷ .	Delikurs Fragilialic Chaus	0.0004	10.09	2009-07-26 18:18:28
Gran	nd Prize - RMSE <= 0.8563			
3	Grand Prize Team	0.8571	9.91	2009-07-24 13:07:4
4	Opera Solutions and Vandelay United	0.8573	9.89	2009-07-25 20:05:5
5	Vandelay Industries !	0.8579	9.83	2009-07-26 02:49:5
6	PragmaticTheory	0.8582	9.80	2009-07-12 15:09:5
7	BellKor in BigChaos	0.8590	9.71	2009-07-26 12:57:29
8	Dace	0.8603	9.58	2009-07-24 17:18:4:
9	Opera Solutions	0.8611	9.49	2009-07-26 18:02:0
10	BellKor	0.8612	9.48	2009-07-26 17:19:1
11	BigChaos	0.8613	9.47	2009-06-23 23:06:5
12	Feeds2	0.8613	9.47	2009-07-24 20:06:4
Proc	ress Prize 2008 - RMSE = 0.8616 - \	Winning Team	: BellKor in BigCh	aos
13	xiangliang	0.8633	9.26	2009-07-21 02:04:4
14	Gravity	0.8634	9.25	2009-07-26 15:58:3
15	Ces	0.8642	9.17	2009-07-25 17:42:3
16	Invisible Ideas	0.8644	9.14	2009-07-20 03:26:12
17	Just a quy in a garage	0.8650	9.08	2009-07-22 14:10:4
18	Craig Carmichael	0.8656	9.02	2009-07-25 16:00:5
19	J Dennis Su	0.8658	9.00	2009-03-11 09:41:5
20	acmehill	0.8659	8.99	2009-04-16 06:29:3
Proc	ress Prize 2007 - RMSE = 0.8712 - 1	Winning Team	: KorBell	

Slide of Dr. Santitham Prom-On

Ensemble Learning

- Utility of combining diverse, independent opinions in human decisionmaking
- Majority vote
 - Suppose we have 5 completely independent classifiers...
 - If accuracy is 70% for each
 - $10(.7^3)(.3^2) + 5(.7^4)(.3) + (.7^3)$
 - 83.7% accuracy
 - 101 such classifiers
 - 99.9% accuracy

Bias-Variance Tradeoff

Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

Bias-Variance Tradeoff

High bias (underfit)

"Just right"

High variance (overfit)

Reducing variance without increasing bias

Averaging reduces variance:

$$\operatorname{var}(\overline{X}) = \frac{\operatorname{var}(X)}{n}$$

- Average models to reduce model variance
- One problem
 - Only one training set
 - Where do multiple models come from?

Bagging: bootstrap aggregation

- Take repeated bootstrap samples from training set D.
 - Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.

- Bagging:
 - Create k bootstrap samples D1 ... Dk
 - Train distinct classifier on each Di
 - Classify new instance by majority vote / average

Bagging

Best case

$$\operatorname{var}\left(bagging\left(L(x,D)\right)\right) \to \frac{\operatorname{var}\left(L(x,D)\right)}{N}$$

- In practice, models are correlated, so the reduction is smaller than 1/N
- Variance of the models trained on fewer training cases usually somewhat larger

Bagging

Reduce bias and decrease variance?

- Bagging reduces variance by averaging
- In practice, bagging has little effect on bias
- Can we average and reduce bias?
- Yes: Boosting

Boosting

- Boosting aims to reduce bias.
- Can a set of weak learners create a single strong learner?
- A weak learner is defined to be a classifier which is only slightly correlated with the true classification (it can label examples better than random guessing).
- In contrast, a strong learner is a classifier that is arbitrarily well-correlated with the true classification.
- It make examples currently misclassified more important (or less, in some cases)

Boosting (AdaBoost)

$$h(x) = a_1h_1(x) + a_2h_2(x) + ... + a_3h_n(x)$$

u – weighting on data points

a – weight of linear combination

Stop when validation performance plateaus (will discuss later)

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Boosting

- Create a sequence of classifiers, giving higher influence to more accurate classifiers
- At each iteration, make examples currently misclassified more important (get larger weight in the construction of the next classifier)
- Then, combine classifiers by weighted vote (weight given by classifier accuracy)

AdaBoost

- Advantages
 - Very little code
 - Reduce variance

- Disadvantages
 - Sensitive to noise and outliers

Stacking

- Stacking (sometimes called stacked generalization) involves training a learning algorithm to combine the predictions of several other learning algorithms
- First, all of the other algorithms are trained using the available data, then a combiner algorithm is trained to make a final prediction using all the predictions of the other algorithms as additional inputs

Stacking

RANDOM FOREST LAB