6. Una fuerza de $400\,N$ alarga $2\,m$ un resorte. Una masa de $50\,kg$ se une al extremo del resorte y se libera inicialmente desde la posición de equlibrio con una velocidad ascendente de $10\,m/s$. Encuentre la ecuación de movimiento.

Solución.

De la fórmula de Hooke: $400 N = K(2 m) \Longrightarrow K = 200 N/m$

Luego,
$$w = \sqrt{\frac{200}{50}} = \sqrt{4} = 2.$$

De esta manera, la ecuación de movimiento es: $x_1(t) = c_1 \cos(2t) + c_2 \sin(2t)$. Por lo que, $x'_1(t) = -2c_1 \sin(2t) + 2c_2 \cos(2t)$.

Como la masa se libera desde la posición de equilibrio y con una velocidad ascendente de $10 \, m/s$ entonces $x_1(0) = 0$ y $x_1'(0) = 10$. De esta forma,

$$0 = x_1(0) = c_1 \cos(2(0)) + c_2 \sin(2(0)) = c_1 y$$

$$10 = x_1'(0) = -2c_1 \operatorname{sen}(2(0)) + 2c_2 \cos(2(0)) = 2c_2 \Longrightarrow 5 = c_2$$

Por lo tanto, $x_1(t) = 5 \operatorname{sen}(2t)$.

- 7. Otro resorte cuya constante es $20 \, N/m$ se suspende del mismo soporte, pero paralelo al sistema resorte/masa del problema 6. Al segundo resorte se le coloca una masa de $20 \, kg$ y ambas masas se liberan al inicio desde la posición de equilibrio con una velocidad ascendente de $10 \, m/s$.
 - a) ¿Cuál masa presenta la mayor amplitud de movimiento?
 - b) ¿Cuál masa se mueve más rápido en $t = \frac{\pi}{4} s$? ¿En $\frac{\pi}{2} s$?
 - c) ¿En qué instantes las dos masas están en la misma posición? ¿Dónde están las masas en estos instantes? ¿En qué direcciones se están moviendo las masas?

Solución.

Como la constante del resorte es $20\,N/m$ y la masa del objeto es de $20\,kg$, se tiene que

$$w = \sqrt{\frac{20}{20}} = 1$$

Así la ecuación de movimiento del segundo resorte es: $x_2(t) = c_1 \cos(t) + c_2 \sin(t)$. Por lo que, $x_2'(t) = -c_1 \sin(t) + c_2 \cos(t)$.

Como la masa se libera desde la posición de equilibrio con una velocidad ascendente de $10\,m/s$ entonces $x_2(0)=0$ y $x_2'(0)=10$. De esta forma,

$$0 = x_2(0) = c_1 \cos(0) + c_2 \sin(0) = c_1 y$$

$$10 = x_2'(0) = -c_1 \operatorname{sen}(0) + c_2 \cos(0) = c_2$$

Por lo que, $x_2(t) = 10 \operatorname{sen}(t)$.

- a) La masa de $50\,kg$ tiene una amplitud de movimiento igual a 5 y la de $20\,kg$ una de 10. Por lo tanto, la masa de $20\,kg$ presenta una mayor amplitud de movimiento.
- b) Las ecuaciones de velocidad de ambas masas son: $x_1'(t) = 10\cos(2t)$ y $x_2'(t) = 10\cos(t)$.

Luego, evaluando $t = \frac{\pi}{4}$:

$$x_1'\left(\frac{\pi}{4}\right) = 10\cos\left(2 \cdot \frac{\pi}{4}\right) = 10\cos\left(\frac{\pi}{2}\right) = 0$$

$$x_2'\left(\frac{\pi}{4}\right) = 10\cos\left(\frac{\pi}{4}\right) = 10 \cdot \frac{\sqrt{2}}{2} = 5\sqrt{2}$$

Así, la masa que se mueve más rápido en $t=\frac{\pi}{4}\,s$ es la de $20\,kg$.

Después, evaluando $t = \frac{\pi}{2}$:

$$x_1'\left(\frac{\pi}{2}\right) = 10\cos\left(2\cdot\frac{\pi}{2}\right) = 10\cos(\pi) = -10$$

$$x_2'\left(\frac{\pi}{2}\right) = 10\cos\left(\frac{\pi}{2}\right) = 0$$

De esta forma, la masa que se mueve más rápido en $t=\frac{\pi}{2}\,s$ es la de 50 kg.

c) Igualando las ecuaciones de posición:

 $5\sin(2t) = 10\sin(t)$

$$\implies \operatorname{sen}(2t) = 2\operatorname{sen}(t)$$

$$\implies 2\operatorname{sen}(t)\cos(t) = 2\operatorname{sen}(t)$$

$$\implies 2\operatorname{sen}(t)\cos(t) - 2\operatorname{sen}(t) = 0$$

$$\implies 2\operatorname{sen}(t)[\cos(t) - 1] = 0$$

$$\implies 2\operatorname{sen}(t) = 0 \text{ o } \cos(t) - 1 = 0$$

$$\implies$$
 sen $(t) = 0$ o cos $(t) = 1$

$$\implies t = k\pi \text{ con } k = 0, 1, 2, \dots$$

Es decir, ambas masas se encuentran en la posición de equilibrio al inicio y cada π segundos, pues $5 \operatorname{sen}(2k\pi) = 5(0) = 0 = 10(0) = 10 \operatorname{sen}(k\pi)$ con $k = 0, 1, 2, \dots$

Luego, se tiene que $x_1'(k\pi) = 10\cos(2k\pi) = 1 > 0$. De esta manera, la masa de $50\,kg$ se mueve hacia arriba cuando coincide con la de $20\,kg$.

Después, $x_2'(k\pi)=10\cos(k\pi)$. Si k es par entonces $x_2'(k\pi)=10>0$ y si k es impar entonces $x_2'(k\pi)=-10<0$. Así, la masa de $20\,kg$, cuando

coincide con la de $50\,kg$, se mueve hacia arriba al inicio y cada 2π segundos; y hacia abajo a los π segundos y cada 2π segundos a partir de ese instante.

- 23. Una masa de $1\,kg$ se fija a un resorte cuya constante es de $16\,N/m$ y luego el sistema completo se sumerge en un líquido que imparte una fuerza amortiguadora igual a 10veces la velocidad instantánea. Determine las ecuaciones de movimiento si
 - a) Al inicio la masa se libera desde un punto situado 1 m bajo la posición de equilibrio.
 - b) La masa se libera inicialmente desde un punto a un metro bajo la posición de equilibrio con una velocidad ascendente de $12\,m$.

Solución.

a) La E.D. que modela el movimiento del sistema es:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 10\frac{\mathrm{d}x}{\mathrm{d}t} + 16x = 0$$

Luego, como la masa se libera desde 1 m bajo la posición de equilibrio, se tiene que x(0) = 1 y x'(0) = 0

Polinomio característico:

$$r^2 + 10r + 16 = 0.$$

$$\Longrightarrow (r+2)(r+8) = 0$$

$$\implies r_1 = -2 \text{ o } r_2 = -8$$

Solución general: $x(t) = c_1 e^{-2t} + c_2 e^{-8t}$

$$\implies x'(t) = -2c_1e^{-2t} - 8c_2e^{-8t}$$

Después, usando las condiciones iniciales:

$$1 = x(0) = c_1 e^{-2(0)} + c_2 e^{-8(0)} = c_1 + c_2$$
(1)

$$0 = x'(0) = -2c_1e^{-2(0)} - 8c_2e^{-8(0)} = -2c_1 - 8c_2$$
(2)

De (2) se tiene que: $c_1 = -4c_2$

Sustituyendo
$$c_1$$
 en (1): $1 = -4c_2 + c_2 = -3c_2 \Longrightarrow c_2 = -\frac{1}{3}$. Así, $c_1 = -4\left(-\frac{1}{3}\right) = \frac{4}{3}$

Por lo tanto, $x(t) = \frac{4}{3}e^{-2t} - \frac{1}{3}e^{-8t}$.

b) Como la masa se libera desde un metro bajo la posición de equilibrio con una velocidad ascendente de 12 m, se tiene que x(0) = 1 y x'(0) = -12. Así,

$$1 = x(0) = c_1 e^{-2(0)} + c_2 e^{-8(0)} = c_1 + c_2$$
(3)

$$-12 = x'(0) = -2c_1e^{-2(0)} - 8c_2e^{-8(0)} = -2c_1 - 8c_2$$

$$\implies -6 = -c_1 - 4c_2$$
 (4)

De (4): $c_1 = 6 - 4c_2$

Sustituyendo c_1 en (3): $1 = 6 - 4c_2 + c_2 = 6 - 3c_2 \implies c_2 = \frac{5}{3}$. Así, $c_1 = 6 - 4 \cdot \frac{5}{3} = -\frac{2}{3}$.

Por lo tanto, $x(t) = -\frac{2}{3}e^{-2t} + \frac{5}{3}e^{-8t}$.