In []:

In []:

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline
import seaborn as sns

df.head()

df = pd.read csv('/content/abalone.csv')

Out[]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0.1010 M 0.455 0.365 0.095 0.5140 0.2245 0.150 15 0.0995 0.070 7 M 0.350 0.265 0.090 0.2255 0.0485 2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9 10 M 0.440 0.365 0.1250.5160 0.2155 0.1140 0.155

In []:

0.0895

0.0395

0.055

7

0.2050

df.describe()

I

0.330

0.255

0.080

								Out[]:
	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
coun t	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00
mea n	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

In []:

sns.heatmap(df.isnull())

Out[]:

In []:

df.info()

RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64

```
4 Whole weight 4177 non-null float64
5 Shucked weight 4177 non-null float64
 6 Viscera weight 4177 non-null float64
 7 Shell weight 4177 non-null float64
 8
     age
                     4177 non-null float64
dtypes: float64(8), object(1)
memory usage: 293.8+ KB
                                                                               In []:
numerical features
                                                                              Out[]:
Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',
       'Viscera weight', 'Shell weight', 'age'],
      dtype='object')
                                                                               In []:
categorical features
                                                                              Out[]:
Index(['Sex'], dtype='object')
                                                                               In []:
plt.figure(figsize = (20,7))
sns.heatmap(df[numerical features].corr(),annot = True)
                                                                              Out[]:
```

917719IT095

In[]:
sns.countplot(x = 'Sex', data = df, palette = 'Set3')
Out[]:

In []:

plt.figure(figsize = (20,7))
sns.swarmplot(x = 'Sex', y = 'age', data = df, hue = 'Sex')
sns.violinplot(x = 'Sex', y = 'age', data = df)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarni ng: 56.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 52.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:1296: UserWarning: 58.5% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[]:


```
df = pd.get_dummies(df)
dummy_df = df

In[]:
#viscera weight
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


In []:

```
#shell weight
var = 'Shell weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


In []:

```
#shucked weight
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


In []:

```
#whole weight
var = 'Whole weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


In []:

```
#diameter
var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


In []:

```
#height
var = 'Height'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


In []:

```
#length
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
```


#independent scale

ln []:

In []:

x=df.iloc[:, 0:1]

Out[]:

Length

- 0 0.455
- 1 0.350
- **2** 0.530
- **3** 0.440
- **4** 0.330
- ••• ..
- **4172** 0.565
- **4173** 0.590

Length

4174 0.600

4175 0.625

4176 0.710

4177 rows × 1 columns

#dependent variable

y=df.iloc[:,1:]

4174

4175

0.475

0.485

0.205

0.150

1.1760

1.0945

In []:

In []:

Out[]:

Whole Shucked Viscera Shell Diameter Height Sex_F Sex_I Sex_M weight weight weight weight 0 0.365 0.095 0.5140 0.2245 0.1010 0.1500 16.5 0 0 1 1 0.265 0.090 0.0995 0.0700 8.5 0 0 0.2255 0.0485 1 2 0.420 0.135 0.6770 0.2565 0.1415 0.2100 10.5 1 0 0 3 0.365 0.1140 0.1550 11.5 0 0.125 0.5160 0.2155 0 1 4 0.0895 0 0.255 0.080 0.2050 0.0395 0.0550 8.5 0 1 ••• 0 4172 0.450 0.165 0.8870 0.3700 0.2390 0.2490 12.5 1 0 4173 0.440 0.135 0.9660 0.4390 0.2145 0.2605 11.5 0 0 1

0.5255

0.5310

0.2875

0.2610

0.3080

0.2960

10.5

11.5

0

1

0

0

1

0

	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
4176	0.555	0.195	1.9485	0.9455	0.3765	0.4950	13.5	0	0	1
4177 rd	4177 rows × 10 columns									
	<pre>In []: #Train the Model, Test the Model, split from sklearn.model selection import train test split</pre>									
				. mport trai =train_test			_size	= 0.2,r	andom_	state
x_trai	n.shape									In []:
(3341	, 1)									Out[]:
x_tes	t.shape									In []:
(836,	1)									Out[]:
x_tes	t									In []:
	Length									Out[]:
668	0.550									
1580	0.500									
3784	0.620									
463	0.220									
2615	0.645									
•••	•••									
575	0.610									
3231	0.410									

	Length		
1084	0.445		
290	0.540		
2713	0.250		
836 rov	vs × 1 columns		
y_trai	.n.shape		In []:
(3341,	10)		Out[]:
	.shape		In []:
(836,	10)		Out[]:
model o	of building		In []:
from s	d the Model sklearn.linear_model i	.mport linearRegressi	
	t(x_train,y_train)		In [45]:
x_test			Out[45]:
	Length		
668	0.550		
1580	0.500		
3784	0.620		
463	0.220		
2615	0.645		
•••			

In [46]:

Length

575 0.610

3231 0.410

1084 0.445

290 0.540

2713 0.250

$836 \text{ rows} \times 1 \text{ columns}$

y_test
Out[46]:

	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
668	0.425	0.155	0.9175	0.2775	0.2430	0.3350	14.5	0	0	1
1580	0.400	0.120	0.6160	0.2610	0.1430	0.1935	9.5	0	1	0
3784	0.480	0.155	1.2555	0.5270	0.3740	0.3175	12.5	0	0	1
463	0.165	0.055	0.0545	0.0215	0.0120	0.0200	6.5	0	1	0
2615	0.500	0.175	1.5105	0.6735	0.3755	0.3775	13.5	0	0	1
•••										
575	0.475	0.140	1.1330	0.5275	0.2355	0.3500	12.5	1	0	0
3231	0.325	0.120	0.3745	0.1580	0.0810	0.1250	13.5	0	0	1
1084	0.345	0.105	0.4090	0.1675	0.1015	0.1170	8.5	0	1	0

	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
290	0.435	0.180	0.9960	0.3835	0.2260	0.3250	18.5	0	0	1
2713	0.175	0.060	0.0635	0.0275	0.0080	0.0200	5.5	0	1	0

 $836 \text{ rows} \times 10 \text{ columns}$

In [49]:

#descriptive statistics
df.describe()

Out[49]:

					Shucke	Viscer					Out[45].
	Length	Diamet er	Height	Whole weight	d weight	a weight	Shell weight	age	Sex_F	F Sex_I	Sex_M
co un t	4177.0 00000										
me an	0.5239 92	0.4078 81	0.1395 16	0.8287 42	0.3593 67	0.1805 94	0.2388 31	11.433 684	0.3129 04	0.3212 83	0.3658 13
std	0.1200 93	0.0992 40	0.0418 27	0.4903 89	0.2219 63	0.1096 14	0.1392 03	3.2241 69	0.4637 31	0.4670 25	0.4817 15
mi n	0.0750 00	0.0550 00	0.0000	0.0020 00	0.0010 00	0.0005 00	0.0015 00	2.5000	0.0000	0.0000	0.0000
25 %	0.4500 00	0.3500 00	0.1150 00	0.4415 00	0.1860 00	0.0935 00	0.1300 00	9.5000 00	0.0000	0.0000	0.0000
50 %	0.5450 00	0.4250 00	0.1400 00	0.7995 00	0.3360	0.1710 00	0.2340 00	10.500 000	0.0000	0.0000	0.0000
75 %	0.6150 00	0.4800 00	0.1650 00	1.1530 00	0.5020 00	0.2530 00	0.3290 00	12.500 000	1.0000	1.0000	1.0000
ma x	0.8150 00	0.6500 00	1.1300 00	2.8255 00	1.4880 00	0.7600 00	1.0050 00	30.500 000	1.0000	1.0000	1.0000

df=pd.read_csv('/content/abalone.csv')
df.head()

4176 M

0.710 0.555 0.195

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Out[52]: Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7
df.	tail()							In [53]:
									Out[53]:
	Sex	k Lengtl	n Diameter	· Heigh	t Whole weight		Viscera weight	Shell weight	Rings
417	2 I	G 0.565	5 0.450	0.16	5 0.8870	0.3700	0.2390	0.2490	11
417	3 N	I 0.590	0.440	0.13	5 0.9660	0.4390	0.2145	0.2605	10
417	4 N	I 0.600	0.475	0.20:	5 1.1760	0.5255	0.2875	0.3080	9
417	5 I	F 0.625	5 0.485	0.150	0 1.0945	0.5310	0.2610	0.2960	10

1.9485

0.9455

0.3765

0.4950

12