实验02 简单组合逻辑电路

【实验题目】

• 进一步使用Logisim设计组合逻辑电路,并用Verilog语言对设计的电路进行描述。

【实验目的】

- 熟练掌握Logisim的基本用法
- 进一步熟悉Logisim更多功能 (利用真值表生成电路)
- 用Logisim设计组合逻辑电路并进行仿真
- 初步学习Verilog语法

【实验环境】

- PC机一台,能流畅地链接校园网
- Logisim仿真工具
- <www.vlab.ustc.edu.cn>

【实验过程】

Step 1 用真值表自动生成电路

手工通过真值表生成电路的方法:

- 根据真值表画出各输出项的卡诺图
- 通过卡诺图写出各输出项的逻辑表达式
- 根据逻辑表达式画出电路图,完成电路设计

而Logisim可以帮助我们完成上述步骤中大部分工作。

- 1. 在Logisim中新建一个电路图,名为 lab2 ,新建电路名为 真值表生成电路 在电路图中根据输入输出数量放置引脚,并给其标号。
- 2. 在菜单栏的"Project"选项卡中找到"Analyze Circuit"选项,并选中。在弹出的窗口中选择 "Table"选项,按照实验手册中所给的真值表修改输出值,最后点击"Build Circuit"便可生 成电路。

这是按照指导生成的电路:

Step 2 用表达式生成电路图

通过真值表生成电路确实能为我们减少工作,但是也存在不足之处,真值表条目数与输入项个数呈指数相关,当输入信号数量较多时,编辑真值表也是一项非常繁重的工作。此时,需要寻找一个更为便捷的方式。

可以在 Logisim 中直接输入表达式生成电路,在"Project" --> "Analyze Circuit"的弹出窗口中选择"Expression"选项,填入每个输出信号的表达式。最后点击"Build Circuit"生成电路。有时候手动输入的表达式并不是最简形式,最终生成的电路也会占用较多的逻辑门,此时可以借助"Minimized"选项卡对表达式进行简化,进而减少电路使用的逻辑门数量,电路输入信号不多的情况下,该窗口还能显示卡诺图。

下图分别是按照指导生成的化简后的电路:

通过"Project" --> "Get Circuit Statistics"选项统计电路的基本信息:

Step 3 Verilog HDL 语法入门

【实验练习】

题目 1:依据如下真值表,通过 Logisim 编辑真值表功能,完成电路设计。

	输入	输出			
Ci-1	Ai	Bi	Si	Ci	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

真值表:

由真值表自动生成电路图:

题目 2:根据下列真值表,通过 Logisim 的编辑表达式功能完成电路设计。

\subseteq		ועלאו	-	, 1) > <		. / .	2/-	_09.	31111	Hノイル	リコーナル	<u> </u>	-0-731
输入				输出									
G1	G2	G3	A2	A1	A0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	YO
Х	1	X	Х	X	Х	1	1	1	1	1	1	1	1
Х	X	1	Х	Х	X	1	1	1	1	1	1	1	1
0	Х	Х	Х	Х	Х	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

输入表达式自动生成电路:

Y3, Y2, Y1, Y0 同理。

由于电路图太长,而电脑不能实现连续截长图,故将电路源码放在 repository https://github.com/StellaVesperi/Public-for public use/blob/master/lab2.circ lab 2 文件的 T2 circuit 中,便于助教检查。

题目 3:使用 Logisim 绘制 1bit 位宽的二选一选择器电路图,并编写 Verilog 代码。输入信号a, b, sel,输出信号为 out, sel 为 0 时选通 a 信号。

电路图:

Verilog 代码:

```
module 2-1_MUX(
    input a, b, sel,
    output out);

assign out = (a & ~sel) | (b & sel);
endmodule
```

题目 4:通过实例化题目 3 中的二选一选择器,用 Verilog 实现一个四选一选择器,并画出对应的电路图。输入信号为a, b, c, d, sel1, sel0, out, sel1 和 sel0 都为 0 时选中 a 信号。

电路图:

Verilog 代码:

```
module 4-1_MUX(
       input sel0, sel1, a, b, c, d,
       output out);
       wire carry1, carry2;
       2-1_MUX mux1(
       .a (a ),
       .b
           (b),
       .sel (sel0 ),
       .out (carry1));
       2-1_MUX mux2(
          (c ),
           (d),
       .b
       .sel (sel0 ),
       .out (carry2));
       2-1_MUX mux3(
          (carry1),
       .b
            (carry2),
       .sel (sel1 ),
       .out (out ));
endmodule
```

题目 5: 根据前面用到的八位优先编码器真值表,编写 verilog 代码。

输入							输出			
i 7	i6	i5	i4	i3	i 2	i1	i0	у2	у1	у0
1	X	X	X	X	X	X	X	1	1	1
0	1	X	X	X	X	X	X	1	1	0
0	0	1	X	X	X	X	X	1	0	1
0	0	0	1	X	X	X	X	1	0	0
0	0	0	0	1	X	X	X	0	1	1
0	0	0	0	0	1	X	X	0	1	0
0	0	0	0	0	0	1	х	0	0	1
0	0	0	0	0	0	0	1	0	0	0

根据真值表列出各输出项的逻辑表达式:

```
y2 = i7 + ~i7&i6 + ~i7&~i6&i5 + ~i7&~i6&~i5&i4
y1 = i7 + ~i7&i6 + ~i7&~i6&~i5&~i4&i3 + ~i7&~i6&~i5&~i4&~i3&i2
y0 = i7 + ~i7&~i6&i5 + ~i7&~i6&~i5&~i4&i3 + ~i7&~i6&~i5&~i4&~i3&i2
```

Verilog 代码:

```
题目 6: 阅读如下 Verilog 代码,描述其功能,并画出其对应的电路图。 module test( input a,b,c, output s1,s2); assign s1= \sima &\simb & c| \sima & b &\simc| a &\simb &\simc| a & b &\simc; assign s2= \sima & b & c| a &\simb &\simc| a &\simb &\simc; endmodule
```

用 Logisim 列出真值表如下图:

由真值表可知,当输入有0个或2个为1时,s1为0,s2为1;而当输入有1个或3个为1时,s1为1,s2为0。从而得知该电路功能为判断输入为高电平信号的个数(或奇偶性)。

由真值表生成电路图:

【总结与思考】

- 1. 通过本次实验我学会了在 Logisim 软件中:
 - 用真值表生成电路
 - 输入表达式生成电路

- 查看电路的各种信息,自动化简电路 以上这些手段使得我在运用 Logisim 创建电路图的过程中省去了不少时间。
- 2. 同时我还学会了一些基本的 verilog 语法,能用 verilog 语言描述一些简单的电路。
- 3. 在经历了第一次实验之后,我对各种工具的使用都更加熟练了,所以我认为本次实验任务量适中,难度恰到好处。
- 4. 希望以后能多介绍一些详细的 verilog 语法,并配上例题,如,用不同的方式描述同一个电路,这样会对 verilog 有更深刻的认识体会。