Ridge Regression

Nipun Batra

IIT Gandhinagar

September 9, 2025

Outline

- Motivation: The Problem of Overfitting
- Ridge Regression Formulation
- Mathematical Derivation
- Geometric Interpretation
- Hyperparameter Selection
- Examples and Applications
- Implementation Details

The Problem: Overfitting in Linear Regression

Important: Overfitting Challenge

As model complexity increases (higher polynomial degree), we often observe:

- Training error decreases
- Test error increases
- Model coefficients become very large

The Problem: Overfitting in Linear Regression

Important: Overfitting Challenge

As model complexity increases (higher polynomial degree), we often observe:

- Training error decreases
- Test error increases
- · Model coefficients become very large

Key Points: Key Insight

Large coefficient magnitudes often indicate overfitting!

The Problem: Overfitting in Linear Regression

Important: Overfitting Challenge

As model complexity increases (higher polynomial degree), we often observe:

- Training error decreases
- Test error increases
- Model coefficients become very large

Key Points: Key Insight

Large coefficient magnitudes often indicate overfitting!

In polynomial $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_d x^d$, watch max $|c_i|$

Base Data Set

Fit with Degree 1 - Underfitting

Fit with Degree 3 - Good Fit

Fit with Degree 6 - Starting to Overfit

Fit with Degree 11 - Severe Overfitting

Coefficient Explosion with Overfitting

Key Points: Key Observation

As polynomial degree increases \rightarrow coefficients grow exponentially!

Pop Quiz 1

Answer this!

Which statement about overfitting is TRUE?

- A) Higher polynomial degree always improves generalization
- B) Large coefficients indicate good model fit
- C) Overfitting occurs when training error >> test error
- D) Overfitting occurs when training error << test error

Answer: Pop Quiz 1

Answer this!

D) Overfitting occurs when training error << test error

Explanation:

- Training error becomes very small (model memorizes training data)
- Test error remains large (model fails to generalize)
- Large gap indicates overfitting

Solution: Regularization

Theorem: Ridge Regression Approach

Add a penalty term to control coefficient magnitudes:

Solution: Regularization

Theorem: Ridge Regression Approach

Add a penalty term to control coefficient magnitudes:

Definition: Constrained Formulation

$$\min_{\theta} \quad \left(\mathbf{y} - \mathbf{X}\theta\right)^T \left(\mathbf{y} - \mathbf{X}\theta\right)$$
 subject to $\theta^T \theta \leq S$

where S > 0 controls the size of the coefficient vector.

Lagrangian Formulation

Theorem: Equivalence Theorem

The constrained problem is equivalent to the unconstrained:

$$\min_{\boldsymbol{\theta}} \quad \left(\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\right)^T \left(\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\right) + \lambda \boldsymbol{\theta}^T \boldsymbol{\theta}$$

where $\lambda \geq 0$ is the regularization parameter.

Lagrangian Formulation

Theorem: Equivalence Theorem

The constrained problem is equivalent to the unconstrained:

$$\min_{\boldsymbol{\theta}} \quad (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda \boldsymbol{\theta}^T \boldsymbol{\theta}$$

where $\lambda \geq 0$ is the regularization parameter.

Key Points: Key Insight

This transforms a constrained optimization into an unconstrained one with a penalty term.

Understanding the Ridge Penalty

$$J(\theta) = \underbrace{(\mathbf{y} - \mathbf{X}\theta)^{T} (\mathbf{y} - \mathbf{X}\theta)}_{\text{Fit to data (MSE)}} + \underbrace{\lambda \theta^{T} \theta}_{\text{Penalty term}}$$
(1)

$$= \mathsf{MSE}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_2^2 \tag{2}$$

Understanding the Ridge Penalty

$$J(\theta) = \underbrace{(\mathbf{y} - \mathbf{X}\theta)^{T} (\mathbf{y} - \mathbf{X}\theta)}_{\text{Fit to data (MSE)}} + \underbrace{\lambda \theta^{T} \theta}_{\text{Penalty term}}$$
(1)

$$= \mathsf{MSE}(\theta) + \lambda \|\theta\|_2^2 \tag{2}$$

Key Points: Key Components

- Data fitting term: Ensures good fit to training data
- Regularization term: L₂ penalty shrinks coefficients toward zero
- $oldsymbol{\cdot}$ λ : Controls trade-off between fitting vs. regularization

Key Points: Parameter Effects

- $\lambda = 0$: No regularization (standard linear regression)
- λ small: Light regularization (slight shrinkage)
- λ large: Heavy regularization (strong shrinkage)
- $\lambda \to \infty$: Extreme regularization (coefficients $\to 0$)

Key Points: Parameter Effects

- $\lambda = 0$: No regularization (standard linear regression)
- λ small: Light regularization (slight shrinkage)
- λ large: Heavy regularization (strong shrinkage)
- $\lambda \to \infty$: Extreme regularization (coefficients $\to 0$)

Important: Key Trade-off

Higher $\lambda = \text{more regularization} = \text{more bias, less variance}$

Geometric Interpretation

Ridge regression finds solution where error contours touch constraint circle

Step 1: Set up the Lagrangian

For the constrained optimization problem:

$$\min_{\theta} \quad (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$
s.t. $\theta^T \theta \leq S$

The Lagrangian is:

$$L(\boldsymbol{\theta}, \lambda) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{T} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda \left(\boldsymbol{\theta}^{T}\boldsymbol{\theta} - S\right)$$

where $\lambda \geq 0$ is the Lagrange multiplier.

Step 2: Apply KKT Conditions For optimality, we need: $\frac{\partial L}{\partial \theta} = 0 \quad \text{(stationarity)} \qquad (3)$ $\lambda \geq 0 \quad \text{(dual feasibility)} \qquad (4)$ $\theta^T \theta - S \leq 0 \quad \text{(primal feasibility)} \qquad (5)$ $\lambda(\theta^T \theta - S) = 0 \quad \text{(complementary slackness)} \qquad (6)$

Step 2: Apply KKT Conditions

For optimality, we need:

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = 0 \quad \text{(stationarity)} \tag{3}$$

$$\lambda \geq 0$$
 (dual feasibility) (4)

$$\theta^T \theta - S \le 0$$
 (primal feasibility) (5)

$$\lambda(\boldsymbol{\theta}^T \boldsymbol{\theta} - S) = 0$$
 (complementary slackness) (6)

Key Points: Two Cases

- Case 1: $\lambda = 0 \Rightarrow \text{No constraint active (standard OLS)}$
- Case 2: $\lambda > 0 \Rightarrow \theta^T \theta = S$ (constraint is tight)

Step 3: Compute the Gradient

Taking the derivative of the Lagrangian with respect to θ :

$$\frac{\partial L}{\partial \theta} = \frac{\partial}{\partial \theta} \left[(\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta) + \lambda \theta^T \theta \right] \qquad (7)$$

$$= \frac{\partial}{\partial \theta} \left[\mathbf{y}^T \mathbf{y} - 2 \mathbf{y}^T \mathbf{X}\theta + \theta^T \mathbf{X}^T \mathbf{X}\theta + \lambda \theta^T \theta \right] \qquad (8)$$

$$= -2 \mathbf{X}^T \mathbf{y} + 2 \mathbf{X}^T \mathbf{X}\theta + 2\lambda \theta \qquad (9)$$

Step 4: Set Gradient to Zero

Setting
$$\frac{\partial L}{\partial \theta} = 0$$
:

$$-2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\theta + 2\lambda\theta = 0 \qquad (10)$$

$$-\mathbf{X}^T\mathbf{y} + (\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})\theta = 0 \qquad (11)$$

$$(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})\theta = \mathbf{X}^T\mathbf{y} \qquad (12)$$

Step 4: Set Gradient to Zero

Setting $\frac{\partial L}{\partial \theta} = 0$:

$$-2\mathbf{X}^{T}\mathbf{y} + 2\mathbf{X}^{T}\mathbf{X}\boldsymbol{\theta} + 2\lambda\boldsymbol{\theta} = 0$$
 (10)

$$-\mathbf{X}^{T}\mathbf{y} + (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})\boldsymbol{\theta} = 0$$
 (11)

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y} \tag{12}$$

Theorem: Ridge Regression Solution

$$\hat{oldsymbol{ heta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Compare with OLS: $\hat{\theta}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

 $\lambda=1$ - Mild Regularization

 $\lambda=10$ - Moderate Regularization

 $\lambda=1000$ - Heavy Regularization

Pop Quiz 2

Answer this!

What happens to the Ridge regression solution as $\lambda \to \infty$?

- A) Coefficients approach the OLS solution
- B) Coefficients approach zero
- C) Solution becomes undefined
- D) Training error becomes zero

Answer: Pop Quiz 2

Answer this!

B) Coefficients approach zero

As $\lambda \to \infty$, the penalty term dominates:

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \approx \lambda^{-1}\mathbf{I}\mathbf{X}^{\mathsf{T}}\mathbf{y} \rightarrow \mathbf{0}$$

Coefficient Shrinkage: Visual Evidence

Coefficient Magnitudes vs λ (Real Estate Dataset)

Important: Important Question

Do coefficients ever become exactly zero?

Ridge vs. Lasso: Coefficient Behavior

Ridge Coefficients Shrink but Never Reach Zero

Key Points: Key Difference

• Ridge (L_2) : Coefficients shrink toward zero but remain

Key Properties of Ridge Regression

Theorem: Ridge Solution Properties

$$\hat{oldsymbol{ heta}}_{\mathsf{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

Key Properties of Ridge Regression

Theorem: Ridge Solution Properties

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Key Points: Important Properties

- 1. Always invertible: $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})$ is positive definite for $\lambda > 0$
- 2. Shrinkage: Coefficients are shrunk toward zero
- 3. **Bias-Variance trade-off:** Increases bias, reduces variance
- 4. **Computational efficiency:** Closed-form solution available

Choosing the Regularization Parameter λ

Important: Hyperparameter Selection

How do we choose the optimal value of λ ?

Choosing the Regularization Parameter λ

Important: Hyperparameter Selection

How do we choose the optimal value of λ ?

Theorem: Cross-Validation Approach

- 1. Split data into training and validation sets (k-fold CV)
- 2. For each candidate λ value:
 - Train ridge model on training data
 - Compute validation error
- 3. Select λ that minimizes validation error
- 4. Retrain on full dataset with chosen λ

Cross-Validation for Ridge Regression

Cross-validation curve for Ridge regression showing optimal λ

Key Points: CV Pattern

- Small λ : High variance (overfitting)
- Large λ : High bias (underfitting)

Bias-Variance Trade-off in Ridge Regression

Theorem: Bias-Variance Decomposition

Total $Error = Bias^2 + Variance + Irreducible Error$

Bias-Variance Trade-off in Ridge Regression

Theorem: Bias-Variance Decomposition

Total Error = $Bias^2 + Variance + Irreducible Error$

Key Points: Ridge Effect

Regularization increases bias but reduces variance, often leading to lower total error.

Small vs Large Regularization

Small λ ($\lambda \rightarrow 0$):

- · Low bias
- High variance
- Risk of overfitting

Large λ ($\lambda \to \infty$):

- High bias
- · Low variance
- Risk of underfitting

Pop Quiz 3

Answer this!

In ridge regression, as we increase λ , what happens to model bias and variance?

- A) Both bias and variance increase
- B) Both bias and variance decrease
- C) Bias increases, variance decreases
- D) Bias decreases, variance increases

Answer: Pop Quiz 3

Answer this!

C) Bias increases, variance decreases

Explanation:

- Increasing λ constrains coefficients more severely
- Model becomes simpler (higher bias)
- Less sensitive to training data variations (lower variance)
- This is the fundamental bias-variance trade-off!

Worked Example: Setup

Example: Ridge Regression Example

Given the following simple dataset, compare OLS vs. Ridge regression with $\lambda=2$:

Data:
$$(x_1, y_1) = (1, 1)$$
, $(x_2, y_2) = (2, 3)$, $(x_3, y_3) = (3, 2)$, $(x_4, y_4) = (4, 4)$
Model: $y = \theta_0 + \theta_1 x$

Worked Example: Setup

Example: Ridge Regression Example

Given the following simple dataset, compare OLS vs. Ridge regression with $\lambda=2\colon$

Data:
$$(x_1, y_1) = (1, 1)$$
, $(x_2, y_2) = (2, 3)$, $(x_3, y_3) = (3, 2)$, $(x_4, y_4) = (4, 4)$

Model: $y = \theta_0 + \theta_1 x$

Step 1: Set up matrices

$$\mathbf{X} = egin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}, \quad \mathbf{y} = egin{bmatrix} 1 \\ 3 \\ 2 \\ 4 \end{bmatrix}, \quad \boldsymbol{\theta} = egin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

Worked Example: OLS Setup

Step 2: Ordinary Least Squares

$$\hat{\boldsymbol{\theta}}_{\mathsf{OLS}} = (\mathbf{X}^{T}\mathbf{X})^{-1}(\mathbf{X}^{T}\mathbf{y})$$

Worked Example: OLS Setup

Step 2: Ordinary Least Squares $\hat{ heta}_{\sf OLS} = (extsf{X}^{ au} extsf{X})^{-1}(extsf{X}^{ au} extsf{y})$

Step 3: Compute matrix products $\mathbf{X}^T\mathbf{X} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$ $\mathbf{X}^T\mathbf{y} = \begin{bmatrix} 10 \\ 28 \end{bmatrix}$

Worked Example: Matrix Inverse

Step 4: Compute the inverse

For
$$\mathbf{X}^T \mathbf{X} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$
:
$$\det(\mathbf{X}^T \mathbf{X}) = 4 \cdot 30 - 10 \cdot 10 = 20$$

$$(\mathbf{X}^T \mathbf{X})^{-1} = \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix}$$

Worked Example: OLS Calculation

Step 5: Final matrix multiplication
$$\hat{\boldsymbol{\theta}}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$

$$= \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix} \begin{bmatrix} 10 \\ 28 \end{bmatrix}$$

$$= \frac{1}{20} \begin{bmatrix} 20 \\ 12 \end{bmatrix} = \begin{bmatrix} 1.0 \\ 0.6 \end{bmatrix}$$

OLS Final Result

Theorem: OLS Result

 $\hat{y} = 1.0 + 0.6x$ (No regularization)

Worked Example: Ridge Regression Setup

Step 5: Ridge regression with $\lambda=2$ $\hat{m{ heta}}_{\sf ridge} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}(\mathbf{X}^T\mathbf{y})$

Worked Example: Ridge Regression Setup

Step 5: Ridge regression with
$$\lambda=2$$

$$\hat{m{ heta}}_{\mathsf{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}(\mathbf{X}^T\mathbf{y})$$

Step 6: Add regularization term
$$\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 10 \\ 10 & 32 \end{bmatrix}$$

Worked Example: Ridge Regression Setup

Step 5: Ridge regression with
$$\lambda=2$$

$$\hat{\pmb{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}(\mathbf{X}^T\mathbf{y})$$

Step 6: Add regularization term
$$\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & 10 \\ 10 & 32 \end{bmatrix}$$

Note: $det(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}) = 6 \cdot 32 - 10 \cdot 10 = 192 - 100 = 92$

Worked Example: Ridge Result

Step 7: Final Ridge solution
$$\hat{\theta}_{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} (\mathbf{X}^T \mathbf{y}) \\
= \frac{1}{92} \begin{bmatrix} 32 & -10 \\ -10 & 6 \end{bmatrix} \begin{bmatrix} 10 \\ 28 \end{bmatrix} \\
= \frac{1}{92} \begin{bmatrix} 32 \cdot 10 + (-10) \cdot 28 \\ (-10) \cdot 10 + 6 \cdot 28 \end{bmatrix} \\
= \frac{1}{92} \begin{bmatrix} 320 - 280 \\ -100 + 168 \end{bmatrix} = \frac{1}{92} \begin{bmatrix} 40 \\ 68 \end{bmatrix} \\
= \begin{bmatrix} 0.435 \\ 0.739 \end{bmatrix}$$

Worked Example: Ridge Result

Step 7: Final Ridge solution

$$\hat{\theta}_{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} (\mathbf{X}^T \mathbf{y})$$

$$= \frac{1}{92} \begin{bmatrix} 32 & -10 \\ -10 & 6 \end{bmatrix} \begin{bmatrix} 10 \\ 28 \end{bmatrix}$$

$$= \frac{1}{92} \begin{bmatrix} 32 \cdot 10 + (-10) \cdot 28 \\ (-10) \cdot 10 + 6 \cdot 28 \end{bmatrix}$$

$$= \frac{1}{92} \begin{bmatrix} 320 - 280 \\ -100 + 168 \end{bmatrix} = \frac{1}{92} \begin{bmatrix} 40 \\ 68 \end{bmatrix}$$

$$= \begin{bmatrix} 0.435 \\ 0.739 \end{bmatrix}$$

Theorem: Ridge Result

Multi-collinearity

 $(\mathbf{X}^T\mathbf{X})^{-1}$ is not computable when $|\mathbf{X}^T\mathbf{X}| = 0$. This was a drawback of using linear regression

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix}$$

The matrix **X** is not full rank.

Multi-collinearity

But with ridge regression, the matrix to be inverted is $\mathbf{X}^T\mathbf{X} + \mu\mathbf{I}$ and not $\mathbf{X}^T\mathbf{X}$.

$$\mathbf{X}^{T}\mathbf{X} + \mu \mathbf{I} = \begin{bmatrix} 3 + \mu & 6 & 12 \\ 6 & 14 + \mu & 28 \\ 12 & 28 & 56 + \mu \end{bmatrix}$$

The matrix $\mathbf{X}^T\mathbf{X}$ would be full rank for $\mu > 0$.

Multi-collinearity

But with ridge regression, the matrix to be inverted is $\mathbf{X}^T\mathbf{X} + \mu \mathbf{I}$ and not $\mathbf{X}^T\mathbf{X}$.

$$\mathbf{X}^{T}\mathbf{X} + \mu \mathbf{I} = \begin{bmatrix} 3 + \mu & 6 & 12 \\ 6 & 14 + \mu & 28 \\ 12 & 28 & 56 + \mu \end{bmatrix}$$

The matrix $\mathbf{X}^T\mathbf{X}$ would be full rank for $\mu>0$. Another interpretation of "regularisation"

Extension of the analytical model

For ridge with no penalty on θ_0

$$\hat{oldsymbol{ heta}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} + \mu \mathbf{I}^* \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

where,

$$\mathbf{I}^* = \begin{bmatrix} \mathbf{0} & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

Ridge Regression via Gradient Descent

Theorem: Gradient Descent Update Rule

Standard gradient descent step for ridge regression:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha \nabla J(\boldsymbol{\theta}^{(t)})$$

Ridge Regression via Gradient Descent

Theorem: Gradient Descent Update Rule

Standard gradient descent step for ridge regression:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha \nabla J(\boldsymbol{\theta}^{(t)})$$

Ridge Gradient Computation

$$\nabla J(\boldsymbol{\theta}) = \nabla \left[\frac{1}{2} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_{2}^{2} + \frac{\lambda}{2} \| \boldsymbol{\theta} \|_{2}^{2} \right]$$

$$= -\mathbf{X}^{T} (\mathbf{y} - \mathbf{X} \boldsymbol{\theta}) + \lambda \boldsymbol{\theta}$$

$$= -\mathbf{X}^{T} \mathbf{y} + \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta} + \lambda \boldsymbol{\theta}$$
(14)
$$= (15)$$

Ridge vs OLS: Gradient Descent Updates

Theorem: Ridge Update (with shrinkage)

$$\theta^{(t+1)} = \theta^{(t)} - \alpha(-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \theta^{(t)} + \lambda \theta^{(t)})$$
$$= (1 - \alpha \lambda)\theta^{(t)} - \alpha(-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \theta^{(t)})$$

Ridge vs OLS: Gradient Descent Updates

Theorem: Ridge Update (with shrinkage)

$$\theta^{(t+1)} = \theta^{(t)} - \alpha(-\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\theta^{(t)} + \lambda\theta^{(t)})$$
$$= (1 - \alpha\lambda)\theta^{(t)} - \alpha(-\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\theta^{(t)})$$

Theorem: OLS Update (no shrinkage)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}^{(t)})$$

Ridge vs OLS: Gradient Descent Updates

Theorem: Ridge Update (with shrinkage)

$$\theta^{(t+1)} = \theta^{(t)} - \alpha(-\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\theta^{(t)} + \lambda\theta^{(t)})$$
$$= (1 - \alpha\lambda)\theta^{(t)} - \alpha(-\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\theta^{(t)})$$

Theorem: OLS Update (no shrinkage)

$$\boldsymbol{\theta^{(t+1)}} = \boldsymbol{\theta^{(t)}} - \alpha (-\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\boldsymbol{\theta^{(t)}})$$

Key Points: Key Insight

The $(1 - \alpha \lambda)$ factor **shrinks** coefficients at each step!

Summary: What We Learned

Key Points: Ridge Regression Key Points

- Problem: Overfitting in linear regression with large coefficients
- **Solution**: Add L_2 penalty $\lambda \|\theta\|_2^2$ to loss function
- **Effect**: Shrinks coefficients, improves generalization
- Trade-off: Higher bias, lower variance

Key Formula & Next Steps

Theorem: Ridge Regression Solution

$$\hat{m{ heta}}_{\mathsf{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

Key Formula & Next Steps

Theorem: Ridge Regression Solution

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

Important: Next Steps

- Compare with Lasso regression (L_1 penalty)
- Explore elastic net (combines L_1 and L_2)
- Apply to real-world datasets