Examenul de bacalaureat național 2020 Proba E. d) FIZICĂ BAREM DE EVALUARE ȘI DE NOTARE

Test 20

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 de puncte)

A. Subjectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	c	3р
2.	a	3р
3.	c	3р
4.	b	3р
5.	b	3p
TOTAL	pentru Subiectul I	15p

A. Subiectul al II - lea

II.a.	Pentru:	4p
	reprezentarea corectă a forțelor 4p	-
b.	Pentru:	4p
	$a = \frac{g(m_2 - m_1)}{m_1 + m_2}$ 3p	
	rezultat final: $a = 2 \text{m/s}^2$	
C.	Pentru:	3р
	$T = m_1(a+g)$	
	rezultat final: $T = 24 \text{ N}$	
d.	Pentru:	4p
	$\Delta E_c = L_{total}$	
	$\Delta E_c = E_c - 0 = E_c $ 1p	
	$L_{total} = m_2 g \frac{h}{2} - m_1 g \frac{h}{2} $ 1p	
	rezultat final: $E_c = 3 \text{ J}$	
TOTAL	pentru Subiectul al III-lea	15p

A. Subiectul al III - lea

III.a.	Pentru:	3р
	Energia cinetică este maximă la baza planului înclinat 1p	
	$E_{c,\text{max}} = \frac{1}{2}mv^2$	
	rezultat final: $E_{c,max} = 1280 \text{ J}$	
b.	Pentru:	4p
	Pe plan înclinat:	
	$\Delta E_c = L$	
	$ \Delta L_c = L $ $ \int \Delta E_c = \frac{1}{2} m v^2 $ $ L = L_G + L_{F_i,1} = mgh + L_{F_i,1} $ rezultat final: $L_{F_{i1}} = -720 \text{ J}$ 1p	
	$L = L_G + L_{F_r,1} = mgh + L_{F_r,1} $ 1p	
	rezultat final: $L_{F_{71}} = -720 \text{ J}$	

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

C.	Pentru:	4p
	$L_{F_{f}} = -F_{f} \cdot d_{1}$ $F_{f} = \mu mg \cos \alpha$ 1p	
	$d_1 = \frac{h}{\sin \alpha}$	
	rezultat final: $tg\alpha \cong 0,56$	
d.	Pentru:	4p
	$\frac{mv^2}{2} = mad$ 2p	
	$a = \mu g$	
	rezultat final: $d = 16 \text{ m}$	
TOTAL	pentru Subiectul al II-lea	15p

B. ELEMENTE DE TERMODINAMICĂ

(45 de puncte)

B. Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	a	3р
2.	C	3р
3.	b	3р
4.	d	3р
5.	a	3р
TOTAL	pentru Subiectul I	15p

B. Subiectul al II - lea

D. Gubic	ctul al II - Ica	
II.a.	Pentru:	3р
	$N = v \cdot N_A$ 2p	
	rezultat final: $N \cong 1,44 \cdot 10^{23}$ molecule	
b.	Pentru:	
	gazul suferă o transformare izobară 1p	4p
	$T_1 - T_2$	
	$ \frac{T_1}{V_1} = \frac{T_2}{V_2} $ 2p	
	rezultat final: $T_2 = 510 \text{ K}$	
C.	Pentru:	4p
	$p = p_0 + \frac{G}{S}$ $(p_0 + \frac{G}{S}) \cdot V = vRT_2$ $1p$	
	$(\rho_0 + \frac{G}{S}) \cdot V = vRT_2 $ 1p	
	rezultat final: $G = 20 \text{ N}$	
d.	Pemtru:	4:p
	$Q = \nu C_p (T_2 - T_1)$ $C_p = C_V + R$ 1p	
	$C_{p} = C_{V} + R$	
	rezultat final: Q = 1785J	
TOTAL	pentru Subiectul al II-lea	15p

B. Subiectul al III - lea

III.a.	Pentru:	4p
	$U_1 = \nu C_V T_1 $ 2p	
	$U_1 = 2.5 p_1 V_1$	
	rezultat final: $U_1 = 2000 \text{ J}$	
b.	Pentru:	4p
	$L = L_{12} + L_{23} + L_{31} $ 1p	
	$L = \nu R T_1 \ln \frac{p_1}{p_2} + p_2 (V_1 - V_2) + 0$	
	$p_1V_1 = 4p_1V_2$	
	rezultat final: $L \cong 1280 \text{ J}$	
C.	Pentru:	4p
	$Q_{cedat} = Q_{31} + Q_{12} $ 1p	
	$Q_{cedat} = \nu C_V (T_1 - T_3) + \nu R T_1 \ln \frac{p_1}{p_2}$	
	$Q_{cedat} = 2,5(\rho_1 V_1 - 4\rho_1 V_1) - \rho_1 V_1 \ln 4$	
	rezultat final: $Q_{cedat} = -7120 \text{ J}$	
d.	Pentru:	3р
	reprezentare corectă 3p	
TOTAL	pentru Subiectul al III-lea	15p

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

(45 de puncte)

C. Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	C	3р
2.	b	3р
3.	C	3р
4.	b	3р
5.	d	3р
TOTAL	pentru Subiectul I	15p

C. Subiectul al II - lea

II.a.	Pentru:	3р
	$I_d = \frac{E}{R_a + r}$	
	rezultat final: $R_e = 4 \Omega$	
b.	Pentru:	4p
	$U = E - I_d r $	
	$U = I_1(R_1 + R_2) $ 2p	
	rezultat final: I_1 =1A 1p	
C.	Pentru:	4p
	$R_{\text{serie}} = R_1 + R_2 $	
	$R_{\rm e} = \frac{R_{\rm Serie} \cdot R_3}{R_{\rm Serie} + R_3} $	
	$N_{\rm e} - \frac{1}{R_{\rm serie} + R_3}$	
	rezultat final: $R_3 = 6 \Omega$	
d.	Pentru:	4p
	$R_{\rm e}' = \frac{R_{\rm l}R_{\rm 3}}{R_{\rm l} + R_{\rm 3}} $ 2p	
	$E = I_i(R'_e + r) $ 1p	
	rezultat final: $I_i = 3,75 \text{ A}$	
TOTAL	pentru Subiectul al II-lea	15p

C. Subiectul al III - lea

III.a.	Pentru:	3р
	$R_{bec} = \frac{U_n}{I_n}$ 2p	
	rezultat final: $R_{\rm bec}$ = 12 Ω	
b.	Pentru:	4p
	$n_{\text{max}} = \begin{bmatrix} I_{\text{max}} \\ I_{n} \end{bmatrix}$ 3p	
	rezultat final: $n_{\text{max}} = 12$ beculeţe	
C.	Pentru:	4p
	$P_{bec} = U_n \cdot I_n$	
	$W = n_1 \cdot P_{bec} \cdot t $ 1p	
	rezultat final: $W = 46656 \text{ J}$	
d.	Pentru:	4p
	$R_{\text{ext}} = r$ 2p	
	$R_{\text{ext}} = \frac{R_{\text{bec}}}{n_2}$	
	rezultat final: $n_2 = 12$ beculeţe	
TOTAL	pentru Subiectul al III-lea	15p

D. OPTICĂ (45 de puncte)

D. Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	d	3р
2.	b	3р
3.	d	3р
4.	b	3р
5.	C	3р
TOTAL	pentru Subiectul I	15p

D. Subiectul al II - lea

II.a.	Pentru:	3р
	$C_2 = \frac{1}{f_2}$	
	rezultat final:, $C_2 = -2.5 \text{ m}^{-1}$	
b.	Pentru:	4p
	$C = C_1 + C_2$	
	$C = C_1 + C_2$ $f = \frac{1}{C}$ 1p	
	rezultat final: $f = 1 \mathrm{m}$	
C.	Pentru:	4p
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f} \Rightarrow x_2 = \frac{x_1 f}{x_1 + f}$	
	$-x_1 = D 1p$	
	rezultat final: $x_2 \cong 1,1 \text{ m}$	
d.	Pentru:	4p
	construcție grafică corectă a imaginii 4p	
TOTAL	pentru Subiectul al II-lea	15p

D. Subiectul al III - lea

Di Cabio	ctui ai iii - ica		
III.a.	Pentru:		3р
	$n_{\text{stic}reve{a}} = \frac{c}{v_{\text{stic}reve{a}}}$	2р	
	rezultat final $v_{\text{sticlå}} = 1,875 \cdot 10^8 \frac{\text{m}}{\text{s}}$	1p	
b.	Pentru:		4p
	$n_{\text{aer}} \cdot \sin i = n_{\text{sticlă}} \cdot \sin r$	3р	
	rezultat final $r = 30^{\circ}$	1p	
C.	Pentru:		4p
	$n_{\text{sticl}\check{a}} \cdot \sin r = n_{1} \cdot \sin r'$	3р	
	rezultat final $n_1 \cong 1,13$	1p	
d.	reprezentare corectă a razelor incidentă, reflectată și refractată	4p	4p
TOTAL pentru Subiectul al III-lea			15p