Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Christian Ivicevic Sommersemester 2015 Studentisches Tutorium Zusatzmaterial 17. Februar 2015

Theoretische Informatik

- Beispiele zur Reduzierbarkeit auf Halteprobleme -

Beispiel 1

Wir betrachten das Problem $Q = \{w \in \Sigma^* \mid \varphi_w(w) = w\}$ und das Halteproblem auf leerem Band $H_0 = \{w \in \Sigma^* \mid M_w[\epsilon] \downarrow\}$. Zeigen Sie durch hinreichend genaue Spezifikation und Begründung einer Reduktionsabbildung, dass H_0 reduzierbar ist auf Q, d.h. $H_0 \leq Q$ und Q somit unentscheidbar ist.

Lösung:

Wir suchen eine Funktion $f: \Sigma^* \to \Sigma^*$, für die gilt $x \in H_0 \Rightarrow f(x) \in Q$. Die informelle Beschreibung einer solchen Funktion f lautet:

- Wandle die gegebene Gödelisierung x in die zugehörige TM M_x um.
- Konstruiere nun eine weitere TM M_1 , die den aktuellen Bandinhalt auf ein zweites Band kopiert und dabei das erste Band löscht und terminiert.
- Konstruiere nun eine weitere TM M_2 , die das erste Band löscht und das zweite Band mit der ursprünglichen Eingabe zurück kopiert und terminiert.
- Schalte diese drei TMs in Reihe und erhalte eine neue TM $M_{f(x)} = M_1; M_x; M_2$.

Wir unterscheiden nun zwei mögliche Fälle der Reduktion:

• Wähle ein $x \in H_0$, dann wird nach Definition von H_0 die zugehörige Maschine M_x terminieren und somit auch M_2 terminieren und x auf das Band geschrieben haben. Das ist genau die Eigenschaft von Q und somit gilt $f(x) \in Q$.

Formal:
$$x \in H_0 \implies M_x[\epsilon] \downarrow \implies \varphi_{f(x)}(x) = x \implies f(x) \in Q$$

• Wähle ein $x \notin H_0$, dann wird nach Definition von H_0 die zugehörige Maschine M_x nicht terminieren und somit auch M_2 nicht ausgeführt. Da die Ausgabe undefiniert ist, gilt somit $f(x) \notin Q$.

Formal:
$$x \notin H_0 \implies \neg M_x[\epsilon] \downarrow \implies \varphi_{f(x)}(x) = \bot \implies f(x) \notin Q$$

Somit gilt $x \in H_0 \Leftrightarrow f(x) \in Q$, mithin $H_0 \leq Q$. Die Unentscheidbarkeit von H_0 liefert den Beweis, dass Q es ebenfalls ist.

Beispiel 2

Wir betrachten das Problem $H_{\Sigma^*} = \{w \in \Sigma^* \mid M_w \text{ hält für mindestens eine Eingabe}\}$ und das Halteproblem auf leerem Band $H_0 = \{w \in \Sigma^* \mid M_w[\epsilon] \downarrow\}$. Zeigen Sie durch hinreichend genaue Spezifikation und Begründung einer Reduktionsabbildung, dass H_0 reduzierbar ist auf H_{Σ^*} , d.h. $H_0 \leq H_{\Sigma^*}$ und H_{Σ^*} somit unentscheidbar ist.

Lösung:

Wir suchen eine Funktion $f: \Sigma^* \to \Sigma^*$, für die gilt $x \in H_0 \Rightarrow f(x) \in H_{\Sigma^*}$. Die informelle Beschreibung einer solchen Funktion f lautet:

- Wandle die gegebene Gödelisierung x in die zugehörige TM M_x um.
- Konstruiere nun eine weitere TM M_1 , die den aktuellen Bandinhalt löscht und dann terminiert.
- Konstruiere nun eine weitere TM M_2 , die einen Tango tanzt und terminiert.
- Schalte diese drei TMs in Reihe und erhalte eine neue TM $M_{f(x)} = M_1; M_x; M_2$.

Wir unterscheiden nun zwei mögliche Fälle der Reduktion:

• Wähle ein $x \in H_0$, dann wird nach Definition von H_0 die zugehörige Maschine M_x terminieren und somit auch M_2 terminieren, da dies explizit definiert war. Das ist genau die Eigenschaft von H_{Σ^*} und somit gilt $f(x) \in H_{\Sigma^*}$.

Formal:
$$x \in H_0 \implies M_x[\epsilon] \downarrow \implies \varphi_{f(x)}(x) \neq \bot \implies f(x) \in H_{\Sigma^*}$$

• Wähle ein $x \notin H_0$, dann wird nach Definition von H_0 die zugehörige Maschine M_x (mithin $M_{f(x)}$) nicht terminieren und es ist offensichtlich $f(x) \notin H_{\Sigma^*}$.

Formal:
$$x \notin H_0 \implies \neg M_x[\epsilon] \downarrow \implies \varphi_{f(x)}(x) = \bot \implies f(x) \notin H_{\Sigma^*}$$

Somit gilt $x \in H_0 \Leftrightarrow f(x) \in H_{\Sigma^*}$, mithin $H_0 \leq H_{\Sigma^*}$. Die Unentscheidbarkeit von H_0 liefert den Beweis, dass H_{Σ^*} es ebenfalls ist.

Beispiel 3

Wir betrachten das Problem $N = \{w \in \Sigma^* \mid \varphi_w(0) = 0\}$ und das Halteproblem auf leerem Band $H_0 = \{w \in \Sigma^* \mid M_w[\epsilon] \downarrow\}$. Zeigen Sie durch hinreichend genaue Spezifikation und Begründung einer Reduktionsabbildung, dass H_0 reduzierbar ist auf N, d.h. $H_0 \leq N$ und N somit unentscheidbar ist.

Lösung:

Wir suchen eine Funktion $f: \Sigma^* \to \Sigma^*$, für die gilt $x \in H_0 \Rightarrow f(x) \in N$. Die informelle Beschreibung einer solchen Funktion f lautet:

• Wandle die gegebene Gödelisierung x in die zugehörige TM M_x um.

- Konstruiere nun eine weitere TM M_1 , die den aktuellen Bandinhalt löscht und terminiert.
- Konstruiere nun eine weitere TM M_2 , die den Bandinhalt mit ... $\square 0 \square$... ersetzt und terminiert.
- Schalte diese drei TMs in Reihe und erhalte eine neue TM $M_{f(x)} = M_1; M_x; M_2$.

Wir unterscheiden nun zwei mögliche Fälle der Reduktion:

• Wähle ein $x \in H_0$, dann wird nach Definition von H_0 die zugehörige Maschine M_x terminieren und somit auch M_2 die Zahl 0 auf das Band geschrieben haben. Das ist genau die Eigenschaft von N und somit gilt $f(x) \in N$.

Formal:
$$x \in H_0 \implies M_x[\epsilon] \downarrow \implies \varphi_{f(x)}(n) = 0 \implies f(x) \in N$$

• Wähle ein $x \notin H_0$, dann wird nach Definition von H_0 die zugehörige Maschine M_x (mithin $M_{f(x)}$) nicht terminieren und es ist offensichtlich $f(x) \notin N$.

Formal:
$$x \notin H_0 \implies \neg M_x[\epsilon] \downarrow \implies \varphi_{f(x)}(n) = \bot \implies f(x) \notin N$$

Somit gilt $x \in H_0 \Leftrightarrow f(x) \in N$, mithin $H_0 \leq N$. Die Unentscheidbarkeit von H_0 liefert den Beweis, dass N es ebenfalls ist.