2.5.2 Método dos coeficientes indeterminados na determinação de soluções particulares

Considere-se a equação linear

$$a_0y^{(n)} + a_1y^{(n-1)} + \ldots + a_{n-1}y' + a_ny = b(x)$$

onde $a_0, a_1, \ldots, a_n \in \mathbb{R}$, $a_0 \neq 0$ e b é uma função da forma

$$b(x) = P_m(x)e^{\alpha x}\cos(\beta x)$$
 ou $b(x) = P_m(x)e^{\alpha x}\sin(\beta x)$

onde $P_m(x)$ denota um polinómio de grau $m \in \mathbb{N}_0$ e, $\alpha, \beta \in \mathbb{R}$. Prova-se que existe uma solução particular da equação do tipo

$$y_p(x) = x^k e^{\alpha x} (P(x) \cos(\beta x) + Q(x) \sin(\beta x))$$

onde:

- $k \in \mathbb{N}$ é a multiplicidade de $\alpha + \beta i$ enquanto raiz do polinómio característico (k = 0 se $r = \alpha + \beta i$ não for raiz desse polinómio);
- P, Q são polinómios de grau m cujos coeficientes terão de ser determinados (daí o nome do método).

2.5.2 Método dos coeficientes indeterminados na determinação de soluções particulares

Exemplos:

$$y' - 3y = e^{3x}$$

$$y'' - 3y' - 4y = 4x^2.$$

$$\begin{cases} y'' + 2y' + 10y = 1 \\ y(0) = 0, y'(0) = 0 \end{cases}$$

2.5.2 Método dos coeficientes indeterminados na determinação de soluções particulares

Teorema (Princípio de Sobreposição)

Suponha-se que y_k é solução particular da equação

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_{n-1}(x)y' + a_n(x)y = b_k(x)$$

para k=1,2. Então $y_{
ho}=y_1+y_2$ é uma solução particular da equação

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_{n-1}(x)y' + a_n(x)y = b_1(x) + b_2(x).$$

2.3.5 Aplicação ao estudo de trajetórias ortogonais

Considere-se uma família de curvas planas admitindo reta tangente em cada ponto (x_0, y_0) com declive $f(x_0, y_0)$. Supondo que por cada um destes pontos passa uma única curva e que, localmente, esta representa graficamente uma função $y = \varphi(x)$, então tal família de curvas corresponde ao integral geral da equação diferencial y' = f(x, y).

A família das trajetórias ortogonais é dada pelo integral geral da equação

$$y'=-\frac{1}{f(x,y)}.$$

Exemplo: Determine as trajetórias ortogonais da família das curvas dadas por y = kx (k constante).