Ungesättigte Kohlenwasserstoffe

Vergleich von drei organischen Molekülen:

	Ethan C₂H ₆	Ethen C₂H₄	Ethin C ₂ H ₂
Struktur	H H 	H H C=C	H—C=CH
Bindungsart	C-C-Einfachbindung	C-C-Doppelbindung	C-C-Dreifachbindung
Geometrie	2 Tetraeder	C- und H-Atome liegen in einer Ebene = planar	C- und H-Atome liegen auf einer Linie = linear
Bindungswinkel HCH	Ca. 109°	Ca. 120°	180°
C-C-Bindungsabstand	154 pm (1pm= 1/10 ¹² m; ein Billionstel Meter)	135 pm	106 pm
C-C-Bindungsenergie	347 kJ/mol	594 kJ/mol	779 kJ/mol
Auswirkung	Doppel- und Dreifachbindungen sind energiereicher und damit reaktionsfreudiger als die Einfachbindung. Drehbarkeit um die C-C-Achse ist in der Einfachbindung möglich, in der Doppel- und Dreifachbindung nicht!		

Merke:

Alkene sind Kohlenwasserstoffe (KW) mit mindestens einer C=C-Doppelbindung im Molekül, **Alkine** sind KW mit mindestens einer C-C-Dreifachbindung. Man bezeichnet sie auch als **ungesättigte Kohlenwasserstoffe**.

Die Endung **–en** weist auf die Doppelbindung, die Endung **–in** auf die Dreifachbindung hin.

Die homologe Reihe der Alkene

Ethen
$$C_2H_4$$

Propen C_3H_6

Buten C_4H_8

Penten C_5H_{10}

Hexen C_6H_{12}

Hexen C_7H_{14}

Hepten C_7H_{14}

Hexen C_7H_{14}

Allgemeine Summenformel für Alkene mit einer Doppelbindung:

$$C_nH_{2n}$$

Die homologe Reihe der Alkine

Ethin	C_2H_2	H-C=C-H
Propin	C ₃ H ₄	H-C≡C-CH ₃
Butin	C_4H_6	$H-C\equiv C-CH_2-CH_3$
Pentin	C ₅ H ₈	$H-C\equiv C-CH_2-CH_2-CH_3$
Hexin	C_6H_{10}	$H\mathbf{-}C\mathbf{\equiv}C\mathbf{-}CH_2\mathbf{-}CH_2\mathbf{-}CH_2\mathbf{-}CH_3$
Heptin	C ₇ H ₁₂	$H\text{-}C\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_3$
	usw.	

Allgemeine Summenformel für Alkine mit einer Dreifachbindung:

 C_nH_{2n-2}

Isomerie

Grundsätzlich kann sich die Doppelbindung oder die Dreifachbindung an verschiedenen C-Atomen befinden. Dadurch ergeben sich z.B. folgende Isomere:

Die C-Atome müssen so nummeriert werden, dass die Doppel- oder Dreifachbindungen eine **möglichst kleine Nummer** haben!

Cis-Trans-Isomerie bei Doppelbindungen

Aufgrund der starren C-C-Doppelbindung bei Alkenen sind die C-Atome nicht gegeneinander drehbar. Dadurch ergibt sich eine besondere Isomerie:

$$H$$
 $C=C$
 H_3C-CH_2
 CH_3

$$H_3C-CH_2$$
 H

cis: die Methylgruppen oder Halogenatome liegen auf der gleichen Seite der Doppelbindungen cis-But-2-en

trans-But-2-en

trans: die Methylgruppen oder Halogenatome liegen auf der gegenüger liegenden Seite der Doppelbindungen

cis-1,2-Dibromethen

trans-1,2-Dibromethen