

5c. Senzory s ultrazvukovým principem

Přednášející: prof. Ing. Miroslav Husák, CSc.

<u>husak@fel.cvut.cz</u>,

http://micro.fel.cvut.cz

tel.: 2 2435 2267

Cvičící: Ing. Adam Bouřa, Ph.D.

Ing. Alexandr Laposa, Ph.D.

A) Princip ultrazvuku

Ultrazvuk – rychlost šíření zvuku a ultrazvuku ve vzduchu

Dolní kmitočtová hranice pro ultrazvuk se udává 20 kHz Rychlost šíření zvuku je závislá na teplotě a na tlaku plynu (vzduchu) Zkou ška

Teplotní závislost

$$c = 331.6 + 0.61 \cdot T$$
 $(m. s^{-1})$

Tlaková závislost

<i>T</i> [°C]	-20	0	20	40	60	80
c [m/s]	319,3	331,6	343,8	355,3	366,5	377.5

PUltrazvuk: Jaká je přibližná rychlost šíření zvuku a ultrazvuku ve vzduchu, jaká je teplotní závislost, závislá rychlost šíření na tlaku vzduchu, dolní kmitočtová hranice ultrazvuku.

Ultrazvuk – rychlost šíření zvuku ve vzduchu

Ultrazvuk – zdroj ultrazvuku

Piezokeramický měnič (piezoelektrický princip)

- transformace elektrického buzení na mechanickou deformaci materiálu (výchylku)
- impedanční přizpůsobení mezi zdrojem a zátěží

- a) Piezokeramický kotouc slepený s kovovým kotoucem. Příčné síly piezokeramiky způsobí prohnutí systému s velkou amplitudou. Velká časová konstanta. Náhradou kovového kotouče destičkou na bázi skla a pryskyřice se zlepší přizpůsobení asi 20x.
- b) Elastická kovová membrána je buzena keramickou destičkou

Ultrazvuk – měření vzdálenosti

Zkou ška

Měření vzdálenosti – (jednosystémový)

Blokové zapojení ultrazvukového systému

? Měření vzdálenosti ultrazvukem:
Nakreslete základní princip (impulsy v závislosti na čase) a způsob vyhodnocování, Nakreslete zjednodušeně blokové schéma elektronické části senzoru pro měření vzdálenosti

Ultrazvuk – použití více senzorů v jednom prostoru

Synchronizace činnosti dvou nebo více senzorů

Použití ultrazvukových senzorů v jednom prostoru: lze použít více ultrazvukových senzorů současně v jednom prostoru, event. jakými metodami lze řešit použití více senzorů v jednom prostoru (nakreslete příklady)

Ultrazvuk – použití více senzorů v jednom prostoru

Časový multiplex

Ultrazvuk – rozsah v přírodě

B) Aplikace ultrazvukových senzorů

Piezoelektrický jev – zdroj (aktuátor) a senzor ultrazvuku

Zobrazovací piezoelektrický senzor pro medicínu

Piezoelektrický zobrazovací senzor s jednou keramickou vrstvou (v řezu)

Základní konstrukce zobrazovacího piezoelektrického snímače

- Tloušťka piezoelektrického materiálu (keramický) s elektrodami a připojený vývody se rovná λ/2 pracovního kmitočtu (vlnové délky) a obvykle má rozpůlenou vrstvu na dvě vrstvy λ/4.
- Vrstvy jsou připojené k povrchu vyzařujícím akustický signál s optimalizací přenosu energie mezi sondou a tělem nebo tkání.
- Zaostřovací vlastnosti jsou realizovány čočkou, zatímco základní materiál pomáhá řídit šířku pásma snímače, které musí být dosti široké ke generaci krátkých impulsů potřebných pro dobré prostorové rozlišení.

Ultrazvuk

Demonstrace principu využití odrazu ultrazvukových vln v diagnostice

Ultrazvuk – medicína, ultrazvukové zobrazování

Plod na konci druhého trimestru

Podélný řez krkavicové tepny

Cévní

stěna

Cévní stěna

úsecích

Ultrazvuk – ultrazvukové sondy pro echokardiografii

- Transtorakální transducer je položen na povrch hrudníku a pohybem po jsou zkoumány různé části srdce nebo velkých cév
- **Transesophagealní** transducer je vložen ústy pacienta do jícnu a žaludku. Ultrazvukový signál je směrován k srdci.
- Introkardiální malý transducer je umístěn pomocí katétru do velké cévy a je posouván do srdce.
- Intravaskulární miniaturní transducer je vložen malým katétrem do tepny k jejímu vyšetření. Transducer při tomto vyšetření pracuje na velmi vysokém kmitočtu (20-30 MHz).

Ultrazvukové sondy

(velikosti v porovnání s tužkou)

- a) Transtorakální
- b) Transesophageální
- c) Introkradiální
- d) intravaskulární

Ultrazvuk – ultrazvukové sondy pro oční lékařství

Ultrazvukové sondy pro oční diagnostiku

Ultrazvuk – ultrazvuková závora

Činnost senzoru v režimu - závora

? Aplikace ultrazvukových senzorů: uveďte příklady 3 aplikací

Ultrazvuk – ultrazvuková závora

Počítání průhledných plastových lahví

? Aplikace ultrazvukových senzorů: uveďte příklady 3 aplikací

Počítání průhledných tvarovaných plastových lahví

Úkol: Kontrola průchodu průhledných tvarovaných lahví. Problém: Optické senzory nedovedou láhev spolehlivě zjistit. Příčinou nemusí být ani propustnost světla, ale tvarová členitost, která způsobí lom paprsku a chybnou činnost senzoru. Řešení: Ultrazvuková jednocestná závora. Klíčové body: Ultrazvukový senzor zjistí Ultrazvukový senzor přítomnost předmětu i při jeho velké členitosti a vysoké propustnosti světla. PET láhev

Ultrazvuk – ultrazvuková detekce naplnění lahví v

prostředí se stříkajícím vodou

Úkol: Detekce lahví na dopravníku v potravinářském průmyslu

Řešení: Ultrazvukový senzor jako jednocestná nebo reflexní závora

Problém: Prostředí se stříkajícím vodou neumožňuje použít optosenzor. Ovlivňování vodou je mnohem menší než u optosenzorů.

Požadavek: US senzor musí mít IP67.

Ultrazvuk – ultrazvukový limitní senzor výšky

Zjištění výšky materiálu pohlcujícího zvuk.

Problém:

Prostředí je prašné, optosenzor použít nelze. Zjišťování výšky materiálu, který pohlcuje zvuk není pro ultrazvukový senzor obvyklá záležitost.

Řešení:

Použít ultrazvukový senzor, ale aktivní rozsah nastavit až na konec vyzařovací charakteristiky.

Klíčové body:

Senzor aktivuje výstup jen pokud dostává odražený signál. A k tomu mu zde slouží odrazná plocha. Jakmile je zvuk pohlcen materiálem, výstup rozepne pokud byl sepnut a nebo sepne, pokud byl rozepnut. První varianta je z hlediska hlídání meze (nebo havárie) lepší řešení.

Zjišťování výšky hladiny materiálů pohlcujících zvuk

Ultrazvuk – ultrazvukový senzor výška hladiny u plynů a tekutin

Hlídání výšky hladiny

? Aplikace ultrazvukových senzorů: uveďte příklady 3 aplikací

Zkou

Ultrazvuk – reflexní měření výšky hladiny pevných látek

Reflexní měření výšky hladiny piezokeramický vysílač/přijímač

Ultrazvuk – senzor výšky hladiny

Kontrola výšky hladiny – Honeywell ULTRASONIC AP 00207

Ultrazvuk – senzor výšky hladiny

Kontrola hladiny – Honeywell ULTRASONICAP 00218

- Sensoreinheit
- 2 Ultraschallsensoren
- 3 Anzeige
- 4 Anschlussleitung für Anzeige
- 5 Anschlusskabel f
 ür Spannungsversorgung
- 6 Lochschneider

Nr. 85 24 75

om

Ultrazvuk – senzor kontroly přítomnosti papíru

Kontrola přítomnosti vlhkého papíru ve stroji-Honeywell ULTRASONIC AP 00212

Ultrazvuk – senzor přiblížení

V přítomnosti předmětu nebo osoby dojde k odrazu signálu a jeho vyhodnocení v přijímači.

Bez přítomnosti předmětu nebo osoby se signál neodráží.

Otázky ke zkoušce

- 1. Ultrazvuk: Jaká je přibližná rychlost šíření zvuku a ultrazvuku ve vzduchu, jaká je teplotní závislost, závislá rychlost šíření na tlaku vzduchu, dolní kmitočtová hranice ultrazvuku.
- Měření vzdálenosti ultrazvukem: Nakreslete základní princip (impulsy v závislosti na čase) a způsob vyhodnocování, Nakreslete zjednodušeně blokové schéma elektronické části senzoru pro měření vzdálenosti.
- 3. Použití ultrazvukových senzorů v jednom prostoru: lze použít více ultrazvukových senzorů současně v jednom prostoru, event. jakými metodami lze řešit použití více senzorů v jednom prostoru (nakreslete příklady).
- 4. Aplikace ultrazvukových senzorů: uveďte příklady 3 aplikací.

