ISTM 6212 - Week 7 Warehouses & Dimensional Design

Daniel Chudnov, dchud@gwu.edu

Agenda

- Schedule check
- Exercise 03 & Project Reviews 01 follow up
- Analytic / Dimensional database designs
- Dimension and Fact tables
- More basic ETL in SQL
- Exercise 04

Schedule check

- work in pairs on upcoming exercises?
- work in pairs on upcoming project?

Exercise 03 wrap-up

Good results

- My apologies for the lousy tests!
- Most of you worked it out correctly
- Nice use of JOIN/UNION for #10
- Creative SQL formatting okay!

Tips & tricks

- echo" Chart Title" # chart plot title workaround
- no need to connect to db again w/python
- usually no need to import pandas or matplotlib
 (%matplotlib inline & get data frame from SQL result)
- import matplotlib for full plot control (title, color, etc.)

Final thought

* *all* the data was about Connecticut registrations!

Project reviews 01 wrap-up

Nice work!

- Most of you nailed it
- Very positive tone a good default
- Nice use of GitHub issues response, closing ticket
- Markdown formatting within issue text
- Repeat on upcoming project

Analytic / Dimensional database designs

Why analytical processing?

- * to measure business processes
 - operational/transactional systems support execution
 - analytical systems support evaluation
- improved analyst UX over transactional system

OLTP vs OLAP (Fig 1-1)

- process execution
- CRUD operations
- individual transactions
- current focus
- ER / 3NF design

- process measurement
- query operations
- aggregated transactions
- current+historical focus
- dimensional design

Facts and dimensions

- "How were last year's sales by quarter in each territory?
- * "Which products were most popular for each demographic group during the last three holiday sales seasons?"
- "How does delivery performance vary by warehouse, driver, and by day of the week?"

Facts and dimensions

- * "How were last year's sales by quarter in each territory?
- * "Which products were **returned** the most by each demographic group during the last three holiday sales seasons?"
- * "How does **delivery performance** vary by warehouse, driver, and by day of the week?"

Facts and dimensions

- * Facts are instances of business processes worthy of measurement
- Dimensions are the contexts in which those processes occurred and through which their measurement may be framed

Facts and dimensions (Fig 1-3)

 order dollars, cost dollars, quantity ordered product, product description, SKU, brand code, brand, category code, category, order date, order month, order quarter, salesperson id, salesperson, territory, territory code, region, region code, customer, etc.

Facts are sparse; dimensions wide

- Facts represent individual events; no records for "all possible events", only what actually happened
- Dimensions represent possible contexts; records for many possible combinations of filter/aggregation attributions

Key schema differences

- Denormalized codes and categories
- Redundant data
- Many simple one-level joins
- Optimized for query, not operations

Types of keys

- Natural keys attributes that were likely primary/ foreign keys in source data but do not necessarily work as such in dimensional designs
- Surrogate keys primary keys generated for analytical dimension tables, foreign keys on analytical fact tables; no meaning w/r/t source systems

Data warehouse architectures

- Three main models:
 - Corporate Information Factory (Inmon model)
 - Dimensional Data Warehouse (Kimball model)
 - Stand-alone Data Marts
- In practice, you will see mixes of all three

Key points on architecture

- ETL extracts data from disparate source systems
- ETL can be casual and ad hoc or rigorous and formalized
- Some settings connect users to DW via data marts; others directly through views of the DW
- * ETL tools help on back end; BI tools help on front end

Dimension and fact tables

Functions of dimensions

- filter queries or reports
- control scope of fact aggregation
- order and sort information
- provide context to facts on reports
- define hierarchy, group, subtotal, and summary

Dimensional denormalization

- common combinations (e.g. names)
- codes and descriptions
- flags and values
- multi-part values split up

Dimension affinity

- products, date/time, geography, customers, vendors have related attributes so they fit together naturally
- junk dimensions offer a "catch-all" for meaningful dimensional attributes that don't group well
- snowflakes allow normalization of some dimensional attributes where valuable

Degenerate dimensions

- data unique to processes but don't fit in dimensions
- added to fact tables, (sort of) treated as dimensions
- "transaction id" or "order id" are canonical examples
- may be natural keys from source system

Slowly changing dimensions

- * address how to handle changes in source data
 - * Type 1 corrections, update data, no history
 - * Type 2 updates, insert data, keep history
- these decisions part of DW schema design

Id	EAN_Code	Product_Name	Brand	Product_Category
1	977147396801	Canon EOS Rebel	Cannon	Camera
2	977147396802	Nikon Coolpixx	Nikon	Camera
3	977147396803	Sony Cyber-shot	Sony	Camera
4	977147396804	Olympus XZ-1	Olympus	Camera

Type 1 - correction

Id	EAN_Code	Product_Name	Brand	Product_Category
1	977147396801	Canon EOS Rebel	Cannon	Camera
2	977147396802	Nikon Coolpix	Nikon	Camera
3	977147396803	Sony Cyber-shot	Sony	Camera
4	977147396804	Olympus XZ-1	Olympus	Camera

Type 2 - insertion

Type 2 Slowly Changing Dimension

SCD Type	Dimension Table Action	Impact on Fact Analysis
Type 0	No change to attribute value	Facts associated with attribute's original value
Type 1	Overwrite attribute value	Facts associated with attribute's current value
Type 2	Add new dimension row for profile with new attribute value	Facts associated with attribute value in effect when fact occurred
Туре 3	Add new column to preserve attribute's current and prior values	Facts associated with both current and prior attribute alternative values
Type 4	Add mini-dimension table containing rapidly changing attributes	Facts associated with rapidly changing attributes in effect when fact occurred
Type 5	Add type 4 mini-dimension, along with overwritten type 1 mini-dimension key in base dimension	Facts associated with rapidly changing attributes in effect when fact occurred, plus current rapidly changing attribute values
Type 6	Add type 1 overwritten attributes to type 2 dimension row, and overwrite all prior dimension rows	Facts associated with attribute value in effect when fact occurred, plus current values
Type 7	Add type 2 dimension row with new attribute value, plus view limited to current rows and/or attribute values	Facts associated with attribute value in effect when fact occurred, plus current values

www.kimballgroup.com/2013/02/design-tip-152-slowly-changing-dimension-types-0-4-5-6-7/

Functions of facts

- hold measurable data about processes/events
- enable aggregation ("additivity")
- define the grain, its level of detail
- hold as low a level of grain as possible
- allow query by context (dimensions)

Separating facts and processes

- * Key questions:
 - Do two facts/processes occur simultaneously?
 - Are both available at the same grain?
- If "no" to either, you have more than one fact

Distinguishing different facts

- Different timing: e.g. sales and shipping
 - * sale ends with financial transaction; shipping starts with end of sale and ends with delivery
- Different grain: e.g. sales and shipping
 - measurement of sales reflects customer preferences and pricing; measurement of shipping reflects inventory mgmt, shipper performance, reliability

Querying multiple facts

- * don't join fact tables: remember Cartesian product!
- do "drill across":
 - summarize each fact into common dimensions
 - join based on common dimensions
 - add computations/comparisons as needed

More basic ETL in SQL

Exercise 04