Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

1/21

Primary Decomposition Theorem

Theorem

Let T be a linear function over a finite dimensional linear space V whose minimal polynomial factorizes as

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the p_i 's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N(p_i^{r_i}(T))$ for each $1 \le i \le k$. Then

- **2** For each $1 \leq i \leq k$, $T(W_i) \subseteq W_i$.
- **3** The minimal polynomial of $T_i = T \upharpoonright_{W_i}$ is $p_i(x)$.

Primary Decomposition Theorem

Theorem

Let T be a linear function over a finite dimensional linear space V whose minimal polynomial factorizes as

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the p_i 's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N(p_i^{r_i}(T))$ for each $1 \le i \le k$. Then

- **2** For each $1 \leq i \leq k$, $T(W_i) \subseteq W_i$.
- **3** The minimal polynomial of $T_i = T \upharpoonright_{W_i}$ is $p_i(x)$.
- ullet Note that a linear function T is diagonalizable if and only if its minimal polynomial factorizes as

$$p(x) = (x - \lambda_1) \cdots (x - \lambda_k).$$

Matrix Representation

- Suppose that T is a linear function on V with the characteristic polynomial is

$$f(x) = (x - \lambda_1)^{d_1} \dots (x - \lambda_k)^{d_k}$$

where $\lambda_1, \ldots, \lambda_k$ are distinct elements and $d_i \ge 1$.

- Then the minimal polynomial for T will be

$$p(x) = (x - \lambda_1)^{r_1} \dots (x - \lambda_k)^{r_k}$$

where $1 \leq r_i \leq d_i$ based on the Cayley–Hamilton theorem.

- If W_i is the null space of $(T - \lambda_i I)^{r_i}$, then the primary decomposition theorem tells us that

$$V = W_1 \oplus \cdots \oplus W_k$$

such that the linear function $T_i = T \upharpoonright_{W_i} : W_i \to W_i$ has minimal polynomial $(x - \lambda_i)^{r_i}$.

Matrix Representation

Suppose that B_i is a basis for W_i . It has been proved that $B = \bigcup_{i=1}^k B_i$ is a basis for V. Based on primary decomposition theorem,

$$T(W_i) \subseteq W_i$$
.

Thus

$$[T]_B = \begin{bmatrix} [T_1]_{B_1} & & & \\ & \ddots & & \\ & & [T_k]_{B_k} \end{bmatrix}.$$

Matrix Representation

$$V = W_1 \oplus \cdots \oplus W_k$$

and

$$[T]_B = \begin{bmatrix} [T_1]_{B_1} & & & \\ & \ddots & & \\ & & [T_k]_{B_k} \end{bmatrix}.$$

- Let N_i be the linear function on W_i defined by $N_i = T \lambda_i I$.
- Then N_i is nilpotent and has minimal polynomial x^{r_i} .
- Thus, T on W_i acts as N_i plus the scalar λ_i times the identity function I.
- Suppose we choose a basis for the subspace W_i and then find the representation matrix of N_i on W_i .

Review: Nilpotent matrices and Nilpotent linear functions

Definition

A square matrix A is called nilpotent matrix with degree non-negative integer k if A^k is the zero matrix and A^r is the non-zero matrix for each r, $1 \le r \le k$.

Definition

A be a linear function T on V is called nilpotent linear function with degree non-negative integer k if T^k is the zero linear function and T^r is the non-zero one for each $r, 1 \le r \le k$.

Review: Example

Let $A \in M_3(\mathbb{R})$ be the following matrix:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Then

$$A^{2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq \mathbf{O}$$

The third power of A is

$$A^{3} = A^{2}A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{O}$$

Review: Nilpotent matrices (Revised version)

Lemma

Let $A \in M_n(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

- 1) The matrix A is nilpotent if and only if all the eigenvalues of A is zero.
- 2) The matrix A is nilpotent if and only if $A^n = O$.

Nilpotent matrices

Lemma

Let V be a finite dimensional linear space. If a linear function T on V is nilpotent with degree n where $n = \dim V$, then there is a basis for V such that

$$[T]_B = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}.$$

Lemma

Let V be a finite dimensional linear space. Then there is a vector vinV whose minimal polynomial respect to v is minimal polynomial T.

Proof.

Review: Representation Matrix

- For the linear function T:
 - The characteristic polynomial: $f(x) = (x \lambda_1)^{d_1} \dots (x \lambda_k)^{d_k}$
 - **9** The minimal polynomial: $p(x) = (x \lambda_1)^{r_1} \dots (x \lambda_k)^{r_k}$.
- $V = W_1 \oplus \cdots \oplus W_k$ where $W_i = N((T \lambda_i)^{r_i})$

$$[T]_B = \begin{bmatrix} [T_1]_{B_1} & & & \\ & \ddots & & \\ & & [T_k]_{B_k} \end{bmatrix}.$$

- Let N_i be the linear function on W_i defined by $N_i = T \lambda_i I$.
- Then N_i is nilpotent and has minimal polynomial x^{r_i} on W_i .
- But dim $W_i = d_i \geqslant r_i$ (?)

The smallest T-invariant subspace containing v

- Assume V is finite-dimensional linear space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and T is a fixed (but arbitrary) linear function on V.
- If W is any subspace of V which is invariant under T and contains v, then W must also contain the vector T(v); hence W must contain $T(Tv) = T^2v$, $T(T^2v) = T^3v$, etc. In other words W must contain g(T)v, for every polynomial g(x) over \mathbb{F} . The set of all polynomial g(x) over \mathbb{F} is denoted by $\mathbb{F}[x]$
- Let $Z(v,T) = \{g(T)v \mid g(x) \in \mathbb{F}[x].\}$
- Z(v,T) is a subspace of V and it is the smallest T-invariant subspace which contains v.

T-cyclic subspace generated by v

Definition

If v is any vector in V, the subspace Z(v,T) is called the T-cyclic subspace generated. If Z(v,T) = V, then v is called a cyclic vector for T.

For any T:

- The T-cyclic subspace generated by the zero vector is the zero subspace.
- ② The space Z(v,T) is one-dimensional if and only if v is an eigenvalue vector for T.
- 3 Thus, we shall be interested in linear relations:

$$c_0v + c_1Tv + \cdots, c_kT^kv = 0.$$

between the vectors $T^{j}v$, that is we shall be interested in the polynomials

$$c_0 + c_1 x + \cdots, c_k x^k = 0$$

which have the property that g(T)v = 0.

The dimension of T-cyclic subspace generated by v

Theorem

Assume that T is a linear space on a linear space V. Let v be any non-zero vector in V and let $p_v(x)$ is the minimal polynomial for v respect to T.

- ② If U is the linear function on Z(v,T) induced by T, then the minimal polynomial for U is $p_v(x)$.

Minimal and characteristic polynomials of a cyclic vector

Theorem

T has a cyclic vector if and only if the minimal and characteristic polynomials for T are identical.

Cyclic Decomposition Theorem

Theorem

Let T be a linear function on a finite-dimensional vector space V. There exist non-zero vectors $v_1, \ldots, v_k \in V$ with minimal polynomial p_{v_1}, \ldots, p_{v_k} such that

- (i) $V = Z(v_1, T) \oplus \cdots \oplus Z(v_k, T)$.
- (ii) $p_{v_i} \mid p_{v_{i-1}}$ for each $i \ge 2$.
- (iii) Furthermore, the integer r and the minimal polynomial p_{v_1}, \ldots, p_{v_k} are uniquely determined by (i), (ii).

Jordan Form

T-cyclic linear space

Lemma

Let T is a linear function on V such that $B = \{v, Tv, ..., T^{n-1}v\}$ is a basis for V where $0 \neq v \in V$. Then

$$[T]_B = \begin{bmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \ddots & 0 & -c_2 \\ 0 & 0 & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & -c_{n-1} \end{bmatrix}$$

where $p(x) = x^n + c_{n-1}x^{n-1} + \ldots + c_1x^1 + c_0$ is the minimal polynomial for T.

Rational Form

- By Cyclic Decomposition Theorem: $V = Z(v_1, T) \oplus \cdots \oplus Z(v_k, T)$.
- Matrix representation by diagonal blocks:

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ 0 & 0 & \cdots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & -c_{n-1} \end{bmatrix}$$

• •

Thank You!