Math 31 Limits and the Derivative

Jad Chehimi

February 21, 2021

Unfinished!

Contents

Factoring Brief Review	3
Differences of Square	3
Polynomial	3
Radical Fractions	3
Mixed Radicals	3
Absolute Polynomial	3
Adding/Subtracting Fractions	3
Piecewise Functions	4
Rational Function	4
Vertical Asymptotes	4
Point of Discontinuity	4
Horizontal Asymptotes	5
Limits	6
Properties	6
Limits of Continuous Functions	7
Any Polynomial	7
Any Rational Function	7
Any Radical Function	7
Limits of Discontinuous Functions	7

One-sided Limits	8	
Continuous or Discontinous?	 8	
Continuous	 8	
Discontinuous	 8	
Limits to Infinity	9	
Rules	 9	
Finding Limits to Infinity	 9	

Factoring Brief Review

Differences of Square

$$x^2 - 4 = (x+2)(x-2)$$

Polynomial

$$2x^{2} + 3x - 2$$

$$\longrightarrow (2x^{2} + 4x)(-x - 2)$$

$$\longrightarrow 2x(x+2) - 1(x+2)$$

$$\longrightarrow (2x-1)(x+2)$$

Radical Fractions

• Multiply everything by monomial denominator

$$\frac{2}{\sqrt{2x}} \longrightarrow \frac{2\sqrt{2x}}{2x} \longrightarrow \frac{\sqrt{2x}}{x}$$

• Multiply everything by conjugate for polynomial denominators

$$\frac{3}{2+\sqrt{x}} \times \frac{2-\sqrt{x}}{2-\sqrt{x}} = \frac{6-3\sqrt{x}}{4-2\sqrt{2}+2\sqrt{x}-x} = \frac{6-3\sqrt{x}}{4-x}$$

Mixed Radicals

$$\sqrt{162} \longrightarrow \sqrt{9^2 \times 2} \longrightarrow \sqrt{9^2} \times \sqrt{2} \longrightarrow 9\sqrt{2}$$

Absolute Polynomial

$$|x-1| = 3$$

 $x-1 = 3$, $x = 4$
 $x-1 = -3$, $x = -2$

Adding/Subtracting Fractions

Multiply both terms so that the denominators are the same, then add/subtract.

$$\frac{\frac{2}{x-1} - \frac{3}{x+3}}{\longrightarrow \frac{2(x+3)}{(x-1)(x+3)} - \frac{3(x-1)}{(x-1)(x+3)}}$$

Piecewise Functions

Piecewise functions are functions with multiple inequalities/restrictions that dictate which function to use at specific x values.

When graphing...

- if an inequality is less/greater than a value, the plot point is not filled in
- if an inequality is less/greater than OR equal to a value, the plot point is filled in
- if x of different functions equal the same value, the graphs are continuous, and are filled in if one of the functions is inclusive

If the inequalities do not state a function for a specific x value (e.g. x=2 for 2 < x < 2) then that value **DNE**. (does not exist)

Rational Function

A function with a polynomial in the numerator and denominator.

Vertical Asymptotes

Zeros of the denominator of a rational function.

x may approach these values, but never touch them.

Point of Discontinuity

Any vertical asymptote (zeros of denominator) before simplifying a rational function.

These vertical asymptotes only applies to the unsimplified form; this makes it a point of discontinuity.

These points are gaps in a graph line, have no y value, and therefore make a graph discontinuous.

Horizontal Asymptotes

Horizontal asymptotes describe the trend of a function.

The graph line can cross over it fine, as opposed to vertical asymptotes.

Determining Horizontal Asymptotes

- degree of numerator < degree of denominator $\longrightarrow y = 0$
- degree of numerator = degree of denominator

$$\longrightarrow y = \frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}}$$

- ullet degree of numerator > degree of denominator
 - → Divergent (no horizontal asymptote)

Limits

$$\lim_{x \to a} f(x) = b$$

The limit of f(x) as x approaches a is b.

A limit is the value of y as the x approaches a specific value, as opposed to equaling a specific value. This is useful for points of discontinuity, where the exact value doesn't exist, but the value approaching does.

For instance, if the point of discontinuity of f(x) is x = -1, then...

$$f(-1) = \text{DNE}$$

$$\lim_{x \to -1} f(x) = -1$$

Properties

ullet $c={
m constant\ value}$

$$\lim_{x \to a} c = c$$

$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$$

- $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$
- The rest of the rules can be summarized as limits have distributive property.

e.g.
$$\lim_{x\to a}[f(x)+g(x)]=\lim_{x\to a}f(x)+\lim_{x\to a}g(x)$$

Limits of Continuous Functions

Any Polynomial

y = f(x) is continuous at every value of a.

$$\lim_{x \to a} f(x) = f(a)$$

Just substitute x in the function with a.

Any Rational Function

 $y=rac{f(x)}{g(x)}$ is continuous at every value of a as long as $g(x) \neq 0$. (cannot divide by zero)

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f(a)}{g(a)}, \ g(a) \neq 0$$

Just substitute x in the function with a, unless a makes the denominator equal to zero. If so, refer to the next section.

Any Radical Function

 $y=\sqrt{f(x)}$ is continuous at every value of a as long as $f(x)\geq 0$. (cannot root negatives)

$$\lim_{x \to a} \sqrt{f(x)} = \sqrt{f(a)}, \ f(a) \ge 0$$

Just substitute x in the function with a, unless a makes the function equal to a negative. If so, refer to the next section.

Limits of Discontinuous Functions

Identically to finding points of discontinuity, simplify/rationalize the function in a limit if it does illegal math (divide by zero, root negatives) until it doesn't.

$$\lim_{x \to 4} \left(\frac{x^2 - 16}{x - 4} \right)$$

$$\lim_{x \to 4} \left(\frac{(x - 4)(x + 4)}{x - 4} \right)$$

$$\lim_{x \to 4} (x + 4) = 8$$

One-sided Limits

Limits of a function can be separated into the value of approaching from the left and from the right. This is denoted with a superscript on a.

- From the left (x < a): $\lim_{x \to a^{-}} f(x)$
- From the right (x > a): $\lim_{x \to a^+} f(x)$

This is only really relevant for graphs that end (such as $y = \sqrt{x}$, approaching from the side without a line is DNE) or piecewise functions.

Continuous or Discontinuous?

Continuous

Continuous functions have a left approaching limit and a right approaching limit equal to one another.

if
$$\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$$

then
$$\lim_{x \to a} f(x) = \lim_{x \to a} f(a)$$

Discontinuous

Discontinuous functions have a left approaching limit and a right approaching limit not equal to one another.

$$\text{if } \lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$$

then
$$\lim_{x \to a} f(x) = DNE$$

Limits to Infinity

Limits of infinity either approach a value or DNE.

Rules

• Limits to infinity of normal numbers is often DNE. e.g.

$$-\lim_{n\to\infty}r^n=\mathrm{DNE}\left(iff\ |r|>1\right)$$

$$-\lim_{x\to\infty} 2^x = \text{DNE}$$

$$-\lim_{x\to\infty}\frac{1}{x^{-3}}=\mathrm{DNE}$$

• Limits to infinity of fractions with variable denominators is often infinity small, so 0. e.g.

$$-\lim_{n\to\infty} r^n = 0 \ (iff \ |r| < 1)$$

$$-\lim_{n\to\infty}\frac{1}{n}=0$$

• The limit of infinity does not exist.

$$\lim_{n\to\infty} 3^n = DNE$$

$$\bullet \lim_{n \to \infty} (-1)^n = DNE$$

Finding Limits to Infinity

• Any fraction with a variable in the denominator will be zero.

$$\lim_{x \to \infty} \frac{a}{x^b} = 0$$

 Because of this, multiply a limit by something in order to put a variable under the terms, making them equal zero. e.g.

$$\lim_{x \to \infty} \frac{6n+9}{3n-2}$$

$$\frac{6n+9}{3n-2} \times \frac{\frac{1}{n}}{\frac{1}{n}}$$

$$\frac{6+\frac{9}{n}}{3-\frac{2}{n}} \longrightarrow \frac{6+0}{3-0}$$

$$\lim_{x \to \infty} \frac{6n+9}{3n-2} = 2$$