Метод отслеживания объектов по аэрофотоснимкам с использованием нейронных сетей

Студент: Ском Эрик Павлович

Группа: ИУ7-85Б

Руководитель: Тассов Кирилл Леонидович

Актуальность

• Наблюдение и осуществление безопасности на больших территориях

• Отслеживание и контроль водных транспортных средств

• Анализ движения наземного транспорта

Цель: разработка метода отслеживания объектов по аэрофотоснимкам с использованием нейронных сетей.

Задачи:

- Проанализировать существующие методы визуального отслеживания объектов
- Разработать метод отслеживания объектов по аэрофотоснимкам
- Разработать программное обеспечение, реализующее метод отслеживания объектов
- Исследовать применимость метода для поставленной задачи

Постановка задачи

Ограничения:

 Видеопоток в формате AVI, MP4 или MOV

- Разрешение входного изображения не менее 400х400 пикселей
- Минимальный размер объекта 20 × 20 пикселей
- Угол съемки 70-90 градусов
- Отслеживаемый объект транспортные средства (автомобили)

Методы отслеживания объектов

	Низкое разрешение	Помехи и шумы	Низкая частота съемки	Перемещение камеры
Оптический поток	Падение эффективности	Ложные срабатывания	Падение эффективности	Ложные срабатывания
Контурный анализ	Падение эффективности	Ложные срабатывания Поддерживается		Поддерживается
Ключевые точки	Мало точек для обнаружения	Устойчивы	Нехватка точек при определении движения	Поддерживается
Корреляционн ый поиск	Мало точек для обнаружения	Устойчивы	Поддерживается	Поддерживается
Попиксельное определение	Падение эффективности	Ложные срабатывания	Падение эффективности	Ложные срабатывания
Нейронные сети	Устойчивы	Устойчивы	Поддерживается	Поддерживается

Методы оценки схожести сущностей

	Панхроматические изображения	Маленькие изображения с низким разрешением	Аффинные преобразования	Помехи и шумы, изменения яркости
Ключевые точки	Устойчивы	Нехватка признаков	Устойчивы	Устойчивы
Нейронные сети	Устойчивы	Нехватка размера	Устойчивы	Устойчивы
Сопоставление шаблонов	Устойчивы	Отсутствие эталона	Устойчивы, трудоемки	Падение эффективности
Статистическ ие методы	Падение эффективности	Устойчивы	Устойчивы кроме поворота	Падение эффективности

Метод отслеживания объектов по аэрофотоснимкам

Отслеживатель по фрагментам

• Потеря объекта детектором

 Полное сокрытие объекта

 Прекращение отслеживания

Идентификация внутри фрагмента

Идентификация вне фрагмента

Оценка соответствия сущностей (часть 1)

Исходные данные

Сущность – изображение и координаты

Задача: идентифицировать сущности вектора N длины n и M длины m

Экстраполяция движения

Vi – скорость і-той сущности вектора N dij – расстояние от Ni до Mj

 $A_{ij}=\sqrt[-V_i]{2^{d_{ij}}}$ – вероятность соответствия сущностей Ni и Mj на основании движения

Оценка соответствия сущностей (часть 2)

Расстояние Бхаттачария

$$B_{ij}=(-ln(BC(P,Q))$$
- вероятность соответствия сущностей Ni(P) и Mj(Q) на основе их изображений $BC(P,Q)=\sum_{x\in\mathcal{X}}\sqrt{P(x)Q(x)}$

Итоговая оценка

 $S_{ij}=a_1(A_{ij})^{p1}\cdot a_2(B_{ij})^{p2}$ – оценка соответствия сущностей Ni и Mj где a_1,p_1,a_2,p_2 варьируемые в зависимости от условий съемки параметры

Выбор нейронной сети

Базовая Архитектура	$mAP_{IoU=0.50-0.95}$	Параметры (млн)	FLOPs (млрд)
YOLOv5n	28.0	1.9	4.5
YOLOv5m	45.4	21.2	49.0
ResNet-50	36.4	41.53	207.07
SENNet-50	37.7	44.02	207.18
ECANet-50	38.0	41.53	207.18
YOLOv8n	37.3	3.2	8.7
YOLOv8m	50.2	25.9	78.9

Структура программного комплекса

Описание выборки

Характеристики:

- 2100 изображений
- ~18000 объектов
- 75:10:15 тренировочная, тестовая, валидационная

Результаты:

- ullet Точность $rac{TP}{TP+FP}=84\%$
- Полнота $rac{TP}{TP+FN}=86\%$

Точность повторной идентификации

• Расстояние Бхаттачария

$$Acc = \frac{TP + TN}{N},$$

• Экстраполяция движения

Сравнение алгоритмов сходства по аэрофотоснимкам

~10 000 пар изображений

Max	Mean	Время, мс
0.689	0.204	98
0.609	0.251	15
0.286	0.057	92
0.831	0.539	1200
0.838	0.362	1299

Заключение

Был разработан метод отслеживания объектов по аэрофотоснимкам с использованием нейронных сетей.

Были решены поставленные задачи:

- Проанализированы методы визуального отслеживания объектов
- Разработан метод отслеживания объектов по аэрофотоснимкам
- Разработано программное обеспечение, реализующее метод отслеживания объектов
- Проведено исследование точности метода при повторной идентификации

Дальнейшее развитие

• Обучение детектора на обнаружение других объектов

• Сегментация сцены при соотношении объектов