Série d'exercices #4 IFT-2035

4.1 Mini évaluateur

Soit les déclarations de type suivantes utilisées pour un mini-interpréteur d'expressions arithmétiques:

Les fonctions prédéfinies sont l'addition, la soustraction, la multiplication, et la division, liées aux variables "+", "-", "*", et "/", respectivement. Ces fonctions prennent deux arguments qui sont passés de manière currifiée. Par exemple une expression telle que "let x=3 in x+4" est représentée par la structure suivante de type Exp:

L'environnement initial prédéfini les quatre fonctions:

Écrire la fonction eval qui prend un environnement qui décrit les variables liées (et leur valeur) ainsi qu'une expression et qui renvoie le résultat de l'évaluation de l'expression. I.e.

```
eval :: Env -> Exp -> Val
et
  eval pervasive sampleExp
renvoie Vnum 7.
```

4.2 Renommage α

Soit le code ci-dessous qui est écrit en Haskell et utilise donc la portée lexicale:

```
x \rightarrow y \rightarrow
let f = x \rightarrow x + 2 in
let g x = g \rightarrow f (g x) in
let g (x, f) = f x
in f \rightarrow g (x, f)
```

Renommer toutes les variables (e.g. en y ajoutant un 0, 1, 2, ...) pour que chaque variable ait un nom différent des autres. Bien sûr ce renommage ne doit pas changer la sémantique du code.

4.3 Ordre et Portée

Définir dans un langage fonctionnel hypothétique une fonction qui renvoie:

- 0 si le langage utilisé obéi la portée statique et l'appel par valeur
- 1 si le langage utilisé obéi la portée statique et l'appel par nom
- 2 si le langage utilisé obéi la portée dynamique et l'appel par valeur
- 3 si le langage utilisé obéi la portée dynamique et l'appel par nom

4.4 Tracer la portée

Soit le code suivant dans un langage hypothétique dont la syntaxe est la même que celle de Haskell:

$$\begin{array}{c} \text{let } x=2 \\ f_1 \; y=z+x+y \\ f_2 \; x=f_1 \; (x+1) \\ f_3 \; z=f_2 \; (z+2) \\ \text{in } f_3 \; 5 \end{array}$$

Montrer les étapes de l'évaluation dans chacun des deux cas: le cas où le langage utilise la portée dynamique et le cas où il utilise la portée statique. De même avec l'exemple suivant:

$$\begin{array}{l} \text{let } m\ f\ [] = [] \\ m\ f\ (x:xs) = f\ x:m\ f\ xs \\ \\ i = 4 \\ \text{in } m\ (\lambda x \rightarrow x+i)\ [2,3] \end{array}$$

Utiliser une notation basée sur des environnements dénotés $\{x_1 \mapsto v_1, x_2 \mapsto v_2, ...\}$.