Tuesday, September 11, 2018 11:29

Exam: everything up to (and including) Sylow theorems.

Sylow Theorems: |G| = n = p m, P f m.

- (1) $\exists P \leq G$, $|P| = p^r$. P is a Sylow p-subgroup.

 (2) P_1, P_2 Sylow p-subgroups $\Longrightarrow \exists g \in G \text{ s.t. } P_2 = g P_1 g^{-1}$ Memorize These Pf_s

(3) # Sylow p-Subgroups $\equiv 1 \pmod{p}$.

G (1)

pr-element subsets of G

P, (2)

G/B

sex

Since (3) not: (3) Conjugation (3) Not: (3) Conjugation (3) Since (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (4)

Instead: P Conjugation Sylp(G)
Sulo(G)

Recall: If $H \subset X$, $|X| \equiv |X^H| \pmod{p}$

Claim: P-fixed points in Sylo(G) = {P}

Page 1

Suppose
$$\forall \sigma \in P$$
, $Q \in Syl_{p}(G)$ r.t. $Q = \sigma Q \sigma^{-1}$.

(i.e. let Q be a fixed point of this action).

By (2) applied to
$$G \longrightarrow N(Q)$$
 $G \longrightarrow P(Q)$ G

Let G be a group s.t.
$$1G1=45$$
. What is G ? $45 = 3^2.5$

- (1) there is a subgroup P of size 9, and Q of size 5.
- (3) # Sylow 5-subgrs =: $n_3 \implies n_3 \equiv 1 \mod 3$, $n_3 \mid 5$ $n_5 \equiv 1 \mod 5$, $n_5 \mid q$.

$$S_b \ \eta_3 = | = n_5 \ .$$
 So $P \in Q$ we unique.

If there is only one Sylow p-subgroup, then that sylow p-subgroup is normal.

Since 9Pg-1 is another Sylow p-subgroup.

Page 2

(1)
$$\langle P,Q \rangle = G$$
 since $9.5 | \langle P,Q \rangle \leq 45$.

(2)
$$P \wedge Q = \{e\}$$
 Since $\forall x \in P \wedge Q$, $|x| \mid 1$ and $|x| \mid 5$, and $|x| \leq 5$, $|x| \leq 1$.

Lemma: If
$$N_1 \neq 1$$
 s.t. $N_1 \wedge N_2 = \{e\}$ then $ab = ba$ $\forall a \in N_1, b \in N_2$

Pf: $ab = ba$
 $b^{N_1} \neq b^{N_2}$
 $ab = ba$
 $ab = ba$

So (3)
$$\forall \alpha \in P, b \in Q$$
 $ab = ba$.

$$S_6 = \{ab \mid a \in P, b \in Q\}: (ab)(a'b') = (aa')(bb).$$

$$|Q| = 5 \Rightarrow Q \cong \mathbb{Z}/_{5\mathbb{Z}}$$

$$|P| = 9 \Rightarrow ???$$

$$\frac{P_{\text{rop}}}{|H| = 9} \Rightarrow H \cong (\mathbb{Z}/_{3}\mathbb{Z} \times \mathbb{Z}/_{3}\mathbb{Z}) \quad \text{or} \quad \mathbb{Z}/_{9}\mathbb{Z}$$

Prop:
$$|H| = 9 \Rightarrow H \cong (\mathbb{Z}/_{3}\mathbb{Z} \times \mathbb{Z}/_{3}\mathbb{Z})$$
 or $\mathbb{Z}/_{9}\mathbb{Z}$
So $|G| = 45 \Rightarrow G \cong \mathbb{Z}/_{3}\mathbb{Z} \times \mathbb{Z}/_{3}\mathbb{Z} \times \mathbb{Z}/_{5}\mathbb{Z}$
or $G \cong \mathbb{Z}/_{9}\mathbb{Z} \times \mathbb{Z}/_{5}\mathbb{Z}$

$$|Pf||H|=9=3^2$$
 \Rightarrow $Z(H)$ is nontrivial so $|Z(H)|=3$ or 3^2 .

Case 1:
$$|Z(H)|=3 \Rightarrow |H/Z(H)|=3$$
, so $H/Z(H)=\frac{1}{3},\frac{1}{3},\frac{1}{3}$

Say
$$\overline{y} = \sigma \overline{Z}$$
 so $\sigma^3 \in \overline{Z}$ which has 3 ells. σ garantees $Z(\sigma)$

Say $\overline{y} = \sigma \overline{Z}$ So $\sigma^3 \in \overline{Z}$ which has 3 ells. σ quanter $\overline{Z}(\sigma)$ either $\sigma^3 = e \in \overline{Z}$ or not, in which case $(\sigma^3)^{\frac{1}{2}} = e \Rightarrow |\overline{Z}| = 9 \times$.

 $\frac{(ase 2)}{|Z(H)|} = 9, \text{ pick } x \in Z \setminus \{e\}, \text{ ord } (x) = 3 \text{ or } 9$

we see in stanton where |H|=1, $H_1 \subseteq H$ by |H|=3, $H \subseteq Z(H)$ $Pick \subseteq EH, \quad \sigma_2^3 \in H, \quad \dots \implies H = \{\sigma_i^{\ i}\sigma_2^{\ i} \mid o \in i, i \leq 2\} \implies H = \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{3\mathbb{Z}} \times \mathbb{Z}_{3\mathbb{Z}}$

 $\frac{P_{10D}}{|H|} = P^2 \quad \text{prime} \implies H = \mathbb{Z}/p^2 \mathbb{Z} \quad \text{or} \quad \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ where the for p^3 . $|P_g| = 2^g$

For Cotter: $|G| = P^r$ and G is a believe $G \cong \mathbb{Z}/p^r$, \mathbb{Z} where $r_1 + \dots + r_k = r_k$.