WO 2005/079168

PCT/KR2005/000104

<110>	Secul National University Industry Foundation	
<120>	A Novel STAY-GREEN Gene and Method for Preparing Stay-green Transgenic Plants	
<130>	PP-B0091	
<150>	KR10-2004-0012026	
<151>	2004-02-23	
<160>	58	
<170>	KopatentIn 1.71	
<210>	1	
<211>	825	
<212>	DNA	
<213>	Oryza sativa	
<400>	1	
atggetget	g ctacttcgac catgtccctg cttcctccca tcacccagca gcagcggtgg	6
cacgccgcc	g actecetegt egtectegee tecegetgee acaacteteg eegeegeege	12
getgeege	t acgtegtgee gagggegagg etgtteggge eggegatett egaggegteg	186
agctgaag	g tgctgttcct gggggtggac gaggagaagc accagcaccc ggggaagctg	240
cgcggacgt	t acacgetgae gcacagegae gtgaeggega ggetgaeget ggeggtgteg	300
acaccatca	a accgggcgca gctgcagggg tggtacaaca agctgcagcg ggacgaggtg	360
tggcggagt	ggaagaaggt gcagggccac atgtcgctgc acgtccactg ccacatctcc	420
gcggccacg	teeteetega eeteategee ggeeteeget aetacatett eegeaaggag	480
tccccgtgg	ttctgaagge gttcgtccac ggcgacggca acctgttcag ccggcacccg	540
agctggagg	aggecaeggt gtgggtetae ttecaeteca aceteceaeg etteaaeege	600

gtcgagtgo	t ggggcccgc	t ccgcgacgc	ggagegeege	ccgaggaage	cgacgccgtc	660
geegeegeg	g cggccgagga	a ggcggcggcg	g gagcagatgo	cegeggeegg	cgagtggccg	720
cggcggtgc	c cggggcagts	g cgactgctgc	: tteccgccat	: acagceteat	cccctggccg	780
caccagcac	g acgtcgccgd	cgccgac gg c	cageegeage	: agtga		825
<210>	2					
<211>	846					
	DNA					
	Hordeum vulg	iare				
~2232	noracaa varg	jare				
<400>	2					
	- g ccgctgccgc	tggcgcetec	accatotece	tactccccat	ctcacacctc	60
33		-55-5		cgococcae	· ·	60
aagcagctg	agetgeageg	gegegegege	cccgggcggg	tgctcgtgct	cggccgccgg	120
aggcgacac	g tegtgeegag	ggcgcggctg	tttggtccgg	ccatcttcga	ggcgtccaag	180
ctcaaggtg	: tgttegtggg	ggtggacgag	gagaagcacc	cggggaagct	gccccggacc	240
tacacgctca	ı cccacagcga	cgtgacggcg	cggctgacgc	tggccgtgtc	gcacaccatc	300
caegeegege	agetgeaggg	ctggtacaac	cgcctgcagc	gggacgaggt	ggaggccgag	360
tggaagaagg	tgcagggcgc	catgtcgctg	cacgtccact	gccacatctc	cggcggccac	420
ttcctgctcg	acctcatcgc	geegeteege	tactacatct	teegeaagga	geteceegtg	480
gttctgaagg	cgttcgtgca	cggcgacggc	agcctgttca	gccagcaccc	ggagctggag	540
gaggccacgg	tgtgggtcta	cttccactcg	aacaacccca	acttcaaccg	cgtcgagtgc	600
tggggcccgc	tcagcgacgc	cgccgcgcca	tacgatgacg	aagccgccgt	cgactececa	660
gccgccgacg	cagccatggc	ggccacggcg	gtgaacacgg	ccgcggacga (gcaggcgacg	720
cacacaaaaa	agtoggggg	acaaaaaaa	~~~~			

tgcctcatc	c cctggccgca	cgagcacgag	atggccgccg	acgeeggeea	ggcgccgccg	840
cagtga						846
	3					
	798					
	DNA - 1.					
<213>	Triticum aes	tivum				
<400>	3					
atggccacc	g cctccaccat	gtccctgctc	cccatctcgc	acctcaagca	gctgcagcag	60
cagcggcgc	a cgcggctcgc	cggcgcgggc	cccgggaagg	tgctcgtgct	cggccgccgg	120
aggegacae	g tegtgeegag	ggcgcggctg	tteggeeegg	ccatcttcga	ggcgtccaag	180
ctcaaggtg	tgttcgtggg	gatggacgag	gagaagcacc	cgggcaagct	gccccggacc	240
tacacgctca	a cccacagcga	cgtgacggcg	cggctgacgc	tggcggtgtc	gcacaccatc	300
cacgccgcg	agctgcaggg	ctggtacaac	cgcctgcagc	gggacgaggt	ggtggccgaa	360
tggaagaagg	g tgcagggcgc	catgtcgctg	cacgtccact	gccacatctc	cggcggccac	420
ttcctgctcq	g acctcatcgc	gccgcttcgc	tactacatct	tccgcaagga	gctccccgtg	480
gttctgaagg	g cgttcgtgca	cggcgacggc	agcctgttca	gccagcaccc	ggagctggag	540
gaggccacgg	tgtgggtcta	tttccactcc	aacaccccaa	acttcaaccg	cgttcagtgc	600
tggggcccgc	tcgcgaagcc	gcgggcccta	gacaacaaga	cgccgacgcg	gccgtgcccg	660
caaggcgacg	ccggggacaa	aaaggcaatg	gatcgggcag	cgccgcgggg	gtcccggggc	720
atggaatgtt	tttcccgccc	gaatcctatc	cctggcccaa	gaattcaaat	gccccaccc	780
gecaggece	cccaataa					798

<210>	4					
<211>	795					
<212>	DNA					
<213>	Triticum aes	tivum	•			
<400>	4					
atggccaco	g cctccaccat	gtccctgctc	cccatctcgc	acctcaagca	gatgcagcag	60
cageggege	a egeggetege	cggcgcgctc	cccgggaagg	tgetegtget	cggccgcc g c	120
aggegeeae	g tegtgeegeg	ggcgcggctg	tttggtccgg	ccatcttcga	ggcgtccaag	180
ctcaaggtg	c tgttegtggg	ggtggatgag	gagaagcacc	cgggcaagct	gccgcggacc	240
tacacgete	a cccacagcga	cgtgacggcg	cggctgacgc	tggcggtgtc	gcacaccatc	300
cacgccgcg	c agctgcaggg	ctggtacaac	cgcctgcagc	gggacgaggt	ggtggccgag	. 360
tggaagaag	g tgcaggggg	catgtegetg	cacgtccact	gccacatete	cggcggccac	420
ttoctgete	g acctcatcgc	geegeteege	tactacatct	tccgcaagga	gctccccgtg	480
gttctgaag	g cgttcgtgca	cggcgacggc	agcctgttca	gccagcaccc	ggagctggag	540
gaggccacg	g tgtgggtcta	ctttcactcc	aacaacccca	acttcaaccg	cgtcgagtgc	600
tggggcccg	c tegegatgee	gegegeeeta	gacgacgaga	cgccacgcga	ctcccaccgg	660
cgacgcacc	g tgccactgca	cgacgacage	cgtcgcgcgg	gcagtgcccc	aaaaaccca	720
gcattggatg	g gtgttccgca	aaatgctatc	cctggcgcgg	acccaattgc	cgccaaccgc	780
cagggcccc	: aataa					795

<210> 5

<211> 846

<212> DNA

<213> Zea mays

<400> 5						
atggccgccg (ccgcttctac	catgtccctg	ctcccgatct	cccagcccag	gaagcagcag	60
cagcaaggcg (cgggcgccgt	ggtcgtgttc	cageggegge	cctgggacgc	gcggcggagg	120
cgatacgtcg t	tcccgacggc	gaggctgttc	gggccggcga	tcttcgaggc	gtccaagctg	180
aaggtgctgt t	cctgggcgt	ggacgagggg	agcagcaagc	atctgcatgc	gcaccacccg	240
gegeeggege	getgetgee	gcggacgtac	acgctgacgc	acagcgacgt	gacggccagc	300
ctgacgctcg c	ccgtctccca	caccatcaac	cgcgcgcagc	tgcagggctg	gtacaaccge	360
ctgcagcgcg a	acgaggtggt	ggccgagtgg	aagaaggtgc	gcggccggat	gtcgctgcac	420
gtgcactgcc a	catctccgg	cggacacttg	ctcctggacc	tcatcgccgg	cctccgctac	480
tacatcttcc g	gcaaggagct	ccccgtggtg	ctcgaggcgt	tegtgeaegg	cgacggcgac	540
ctgttcagcc g	ıtcaccegga	gctggaggaa	gccacggtgt	gggtctactt	ccactccaac	600
ctggcccgct t	caaccgcgt	cgagtgctgg	ggtccgctcc	gcgacgccgc	cgcccccgcg	660
ccgccgagg a	cgactccac	cgcgccggcc	gccgcttcca	tegecatgga	gggccagatg	720
ccgtgggcg a	gtggccgca	ccggtgtccc	cagcagtgcg	actgctgctt	cccgccgcac	780
agceteatae e	ctggccgaa	cgagcaagac	atggccgccg	ccgeeggeea	ggtccgacag	840
agtag						845
:210> 6						
211> 825						
212> DNA						
213> Zea	mays					
400> 6						

atggccgcag ccaccgccgc cgcttccacc atgtcgctgc tcccgatctc ccagctcagg

WO 2005/079168

PCT/KR2005/000104

Sequence Listing

cagcagca	rca acacaaaca	c catgaggegg	cggccctggg	g tegegeggeg	gaggcgatac	120
gtcgttcc	ga cggcgaggct	gttegggeeg	gcgatcttcg	g aggcgtcgaa	gctgaaggtg	180
ctgttcct	gg gcgtggacga	a cgaggcgggc	agcaagcago	e acgggccgct	gccgcggacg	240
tacacgct	ga cgcacagcga	cgtgacggcc	aggetgaege	tegeegtete	gcacaccatc	300
aaccgcgc	gc agctgcaggg	, ctggtacaac	cgcctgcago	gcgacgaggt	ggtggccgag	360
tggaagaa	gg tgegeggeeg	gatgtogetg	cacgtgcact	gccacatctc	cggcggccac	420
tteetget	cg acctcatcgo	gggcctccgc	tacgtcattt	tccgcaagga	gctccccgtg	480
gtgctcaa	gg cgttcgtgca	cggcgacggc	gacctgttca	gceggcacec	ggagctggag	540
gaggccac	gg tgtgggtcta	cttccactcc	aacctggctc	gcttcaaccg	cgtggagtgc	600
tggggtcc	ge teegegaege	cgccgcgccc	gccgaggacg	actccaccgc	gccgcccgac	660
gcctccaad	ct ccaaggaggc	cggccagatg	atggccatgt	gcgagtggcc	gcaccggtgt	720
ccccagcag	gt geggetgetg	cttcccgccg	cacagcctca	tcccctggcc	gaacgagcac	780
gacatggco	eg cegcagatge	ctccggctcc	gcccaacagc	agtag		825
	_					
	7					
	801	•				
	DNA					
:213>	Sorghum bicol	lor				
:400>	7					
itggccgca	g ccactgccgc	egeegettet a	accatgtccc	tgcccccgat (ctcccagctc	60
ggcagcag	c agcacggcgc	gggcgccgtg g	gtcgtgttcc	ggcggcgggc (cgggacgcg	120

cggcggaggc gatacgtcgt gccgacggcg aggctgttcg ggccggcgat cttcgaggcg

Sequence Listing

tccaagctga	aggtgctgtt	cetgggegtg	gacgaggaga	gcaacaacaa	gcacgggcac	240
ccgacgacgc	cgtcgccgac	ttccccgccg	ctgccgctac	tgccgcggac	gtacacgctg	300
acgcacagcg	acgtgacggc	cagcctgacg	ctggccgtgt	cccacaccat	caaccgcgcg	360
cagctgcaag	ggtggtacaa	ccgcctgcag	cgggacgagg	tggtggcgga	gtggaagaag	420
gtgcgcgggc	ggatgtcgct	gcacgtgctc	aaggctttcg	tgcacggcga	cggcgacctg	480
ttcagccggc	acceggaget	ggaggatgcc	ccggtgtggg	tctacttcca	ctccaacctg	540
acccgcttca	accgcgtcga	gtgctggggt	ccgctgcgcg	acgccgccgc	geegeeggee	600
gaggacgact	ccaccgcgcc	ggccgccgcc	tccaacaagg	atgggcagat	gccgcccgtg	660
ggcgagtggc	cgtaccggtg	tecceageag	tgcgactgct	gcttcccgcc	gcacagcete	720
ateccetgge	cgaacgagcg	cgacatggcg	gccgccgccg	ccgatgcctc	ctccgccgcc	780
ggccaggccc	aacagcagta	g				801
<210> 8						
<211> 78	6					
<212> DN	A					
<213> Gl	ycine max					
<400> 8						
	tcacaactgt	tcctgtgctc	ccttctaagc	ttaacaagcc	ttogotttot	60
atgtgtactc			_	ttaacaagcc tcgggaagaa		60 120
atgtgtactc	attetetttt	tccctactgt	ggaagacggg		gaacaaagca	
atgtgtactc	attototttt ttgcaaggtt	tccctactgt gttcgggcca	ggaagacggg gccatatttg	tegggaagaa	gaacaaagca actgaaggtt	120

cagctgcagg ggtggtacaa cagatttcaa agggacgaag tggtggcaca gtggaaaaag

WO 2005/079168

Sequence Listing

gtgaagggaa	ggatgtctct	gcacgttcac	tgccacatta	gtggaggtca	ttttctcttg	42
gatatattag	caaggttaag	atacttcatc	ttctgcaagg	agctaccagt	ggtgttgaag	48
gaagtagtta	acggcgatga	aaacctattc	aacagctacc	cagaattgca	agatgccttg	54
gtttgggtct	actttcactc	aaacattcca	gaattcaaca	aggtggaatg	ttggggccca	60
ctgaaggaag	cgtcagcacc	cacaggtggg	gtccaggagg	aggggttggc	aattccacag	66
ccatgccaag	aagaatgcca	atgttgcttt	ccaccgctta	cgttgagccc	tattcagtgg	72
tctaaacaag	ttcccagccg	ccattacgaa	ccttgtgatg	ggattgggac	ccaacaaaat	78
ctataa						78
<210> 9						
<211> 81	.6					
<212> DN	IA.			•		
<213> Gl						
<400> 9						
atgggtactc	taacaactgt	tectgtgete	ccttctaagc	ttaacaagcc	ttegetttet	60
ccgcgtcaca	attctctttt	tecetactac	ggaagacgcg	tegggaagaa	gaacaaagca	120
atggttcctg	ttgctaggtt	gttegggeea	gccatatttg	aagcctcaaa	gcttaaggtt	180
ttattcttag	gagtggacga	aaataaacac	ccaggaaatc	tcccaaggac	ttatacteta	240
acccatagtg	atataaccgc	taagctcacc	ttggcaatct	ctcaaaccat	aaataattct	300
cagttacagg	ggtggtacaa	cagattgcaa	agggacgaag	tggtggcaca	gtggaagaag	360
gtgaagggaa a	agatgtetet	gcacgtacac	tgccacatca	gtggtggtca	tttctctta	420

gatatattag caaggttacg atacttcatc ttctgcaagg agctaccagt ggtgttgaag

gcggtggtt	c acggcgacga	a aaacctatto	aacaactacc	: cagaattgca	agatgccttg	54
gtttgggtt	t actttcacto	: aaacattcca	gaattcaaca	aggtggaatg	ttggggccca	60
ctgaaggaa	g cgtcagcacc	: aataggtggg	gccaaggaag	agagtgagca	agaaactctt	66
ctaagtaag	g agggettgge	: aattccacag	ccatgccaag	aggaatgcga	atgttgcttt	72
ccaccgctg	a cgttaagcco	: aattcagtgg	tctcaacaag	tteccageca	ccattacgaa	78
ccttgtgat	g ggattgagac	: ccaacaaagt	ctataa			81
<210>	10					
	825					
	DNA					
<213>	Vitis vinife	ra				
<400>	10					
atggctact	t tgactgctgc	tcttgtgctt	ccgtctgagc	tcaaaccttc	tttctctcaa	6
caccaaagt	t ctctcttcgt	ttgtcgaaga	agaccaaaga	agagtaaccc	tgcttttcct	120
gccgcaagg	c tgtttggtcc	tgcaattttc	gaagetteaa	agcttaaggt	tctgtttttg	180
ggagtggat	g agaagaagca	cccagggaag	cttcctagaa	cttacacgct	tacgcatagt	240
gacataacai	ctaaactcac	tctggctata	tctcaaacta	taaacaactc	tcagttgcag	300
gggtggtcca	acagattaca	aagagatgag	gtggtggcac	aatggaagaa	agtgaaagac	360
cagatgtcto	: tgcatgtgca	ctgccacata	agtggaggcc	atttccttct	agatttgtgc	420
gctaaactta	gatacttcat	cttctgcaaa	gagcttccag	tggttttgaa	ggcttttgtt	480
atggagatg	gcaacctgct	caacaattac	ccagaattac	aggaagcttt	ggtttgggtt	540
actttcact	cgaacctccc	agaattcaat	agagtagaat	gctgggggc	gctcaataat	600

gcagcggcgc ctcctcctcc tgccgccggt ggtggcggtg gtagggtgga ggcacaccag

gacatgag	gc aggtggaacc	: atcaagcaaa	tgggagaggc	cggaagagco	: atgcatggag	72
aactgtac	at gttgcttccc	accaatgago	ctcatcccat	ggtcacaaga	tctcgcccat	78
gaaaatat	tc atgataccca	aaagggatta	cagcagcaaa	cctga		82
<210>	11					
<211>	843					
<212>	DNA					
<213>	Lactuca sati	va				
<400>	11					
atggette	tc tgatecttcc	cacaaagcaa	aaccctccat	cgtcttcgtt	tctgcatcaa	6
aatcatca	aa acaatccgtt	ttttactaac	aaaagacgaa	agctcaagag	gaatcaagcc	120
ctagttcc	eg ttgcaagatt	atttgggcct	tcgatctttg	aagcttcaaa	gttgaaggtt	180
ttgtttcta	ag gagttgacga	gaagaagcat	cctggaaaac	ttccaagaac	atatacactt	240
acacatagt	g atatcacgtc	taaattgact	ctggcaatct	ctcaaactat	caataattct	300
cagttgcag	gg gttggtataa	ccaattatac	agagatgaag	tggtagcaga	gtggagaaaa	360
gtgaaaggg	ya atatgtetet	tcatgttcat	tgtcacataa	gtcgtggcca	ttttcttctt	420
gatttgtgt	g ctcgactcag	gttcttcatc	ttcaccaaag	aactccctct	ggtgttgaag	480
gcatttgct	c atggagatgg	gaatttgcta	aacagctacc	cggagttgca	ggaagetteg	540
tttgggtt	t actttcactc	aaacattcaa	gaattcaata	gggttgaatg	ttgggggcca	600
tcagagaa	g cagtgggacc	cttatccacc	accacttcat	catcatcatc	atcatcatta	660
ctgaatcc	a ccattgctga	agctggagaa	ggatcaaaca	attgggagat	cccaaagcca	720
gtctagaa	g catgtgcatg	ttgctttcca	ccgatgagtt	caatcccatg	gtcacatgat	780

cttgtgaag	a atcaagacga	tgatgatggt	gccacccacc	aagggttgca	acaaaaagct	.84
tga						84
<210>	12					
<211>	873					
<212>	DNA					
<213>	Pinus taeda					
<400>	12					
atggcggtg	g caagaatctc	tgcaggaaaa	acacagcact	gctactcctt	ctccccatct	6
gatgtacgg	a tttcgtctgc	accacagaat	tcacagtctc	agttcaaaag	gaaatcgaag	120
ataaagctt	t cctccaggtt	tctggccagc	gagagcagct	ggaatggeet	ggtcgcgcat	180
cagttacag	t gcaataacag	acatcgaact	aatagcagct	tcccccgatc	caccagtcgt	240
gtggtggcg	a gattgtttgg	gcctgcaatc	ttccaggcat	cgaagctcaa	ggttctattt	300
cttggaaca	c atgaagagaa	acatcctgcg	catettecea	ggacttatac	gctcacacac	360
agegaeate	a cggccaaatt	aacgctggct	ttttctcaaa	caatcaataa	agatcaggga	420
tggtataac	a ggttacagag	agacgaagtt	cttgcgcagt	ggaagaaatc	tcagggcaaa	480
atgtetetg	c acgttcactg	tcacatcagc	ggaggtcact	ggctcctgga	cgccattgct	540
agacttagal	tttacatctt	ccgcaaggaa	ctgccggtgg	tgctggaggc	gttcagacat	. 600
gggaccggg	g ctctgcttga	gaagcaccca	gagctggaga	ccgcactggt	ttgggtgtat	660
tttcattcca	ı atgtcaaaga	attcaaacgt	gtggaatgtt	gggggtcttt	ggctgaagca	720
tgcaagggtg	cacctagcaa	tttgaacaag	gaattggacg	agctcgatgg	tggaaaattg	780
gagatgccta	gtcattgcgc	agaaccatgt	agttgttgct	tteeteeett	tagtgttctt	840
ctacgaccag	aagatgttga	acaatttagc	taa			873

<210>	13					
<211>	816					
<212>	DNA					
<213>	Citrus sinen	sis				
<400>	13					
atggctagt	t tggttgctgc:	tettgggett	ccctcaaage	tcaaagcttc	cccctatgag	6
cagcaaaac	g cactctttgt	ttctagaaga	agatccaaga	aaaagaacca	atcttttgct	12
cctgtggca	a gattattcgg	accagccatt	tttgaagett	caaagctgaa	ggtattgttt	18
t tg ggggtg	g atgaagagaa	gcatccaggg	aagctgccaa	ggacttatac	acttacccat	24
agtgatata	a cctctaagct	tactttagct	atttctcaaa	ccataaataa	ttctcagctg	30
cagggatgg	t acaacaggtt	gcaaagggat	gaggttgtgg	cagagtggaa	gaaggtaaag	36
ggaaagatg	t ctcttcatgt	tcactgtcac	ataagtggag	gccatttctt	attagacatt	42
tgtgctaga	c ttagattctt	catcttctcc	aaggaactcc	ccgtggttct	gaaggcattt	48
gttcatgga	g atggcaattt	gttaaacaat	cacccggaat	tacaggagge	tttggtttgg	540
gtctatttt	c attccaatat	tcctgaattc	aataaagtcg	aatgctgggg	tccactcaaa	600
gaggcagtt	g ccggatcgag	tgaagetgge	gggacccgcc	acgagattag	gcaagaaact	660
tcaataagca	a actgggaatt	accagaaccc	tgccaggaaa	cgtgcaactg	ttgctttcct	720
ccaatgaget	: tgatcccgtg	gtcagagaag	cttccccttc	aaaccgaaaa	tcgtgggacc	780
cagggccaag	g aaagcttaca	gcaacaaacc	cgatga			816

<210> 14

<211> 792

<212> DNA

<213> Medicago truncatula	
<400> 14	
atgggtactc taaccaccgc tectectect atgeteaett etaagtteaa acettettt	60
tcacctcaac ataaacctct ttttccaaat agaagacggt tatggaagaa gaaccaatca	120
attgttcctg ttgctaggtt atttggaccg gctatatttg aagcatcaaa attgaaggtt	180
ttgttcttag gaattgatga agacaaacat ccaggaaatc ttccaaggac ttatacgtta	240
acacatagtg atgtaacctc aaaactcact ttggcaattt ctcaaaccat taataactct	300
cagttgcagg gatggtataa tagattgcaa agggatgaag ttgtggcgca gtggaagaag	360
gtgaagggaa agatgtetet ecatgtteat tgteatatta gtggtggeea ttttttgtta	420
gatatatttg ctagactaag atatttcatc ttctgcaaag agttacccgt ggtattgaag	480
gcttttgtac acggtgacgg caatttattc aacaactatc cggaattaca ggaagcattg	540
gtttgggtat attttcattc aaagattcca gaattcaaca aggtagaatg ttggggtcca	600
ctaaaggagg cttcacaacc tactagtggg acccaaaggg accaccaaaa tttgacccta	660
cctgagccat gtcaagaaac ttgcgagtgc tgctttccac cgttgaagtt gagcccaatg	720
ccgtgctcta atgaggttca caatgatact tatgaaccta ttgatggaat tgaaactcaa	780
caatcactgt aa	792
<210> 15	
<211> 819	
<212> DNA	
<213> Solanum tuberosum	
<400> 15	
atgggaactt tgactgcttc tctagtggtt ccatctaagc tcaacaatga aaaacagagc	60

WO 2005/079168

PCT/KR2005/000104

Sequence Listing

tctatttt	tg tacacaaaac	tagaagaaaa	tccaagaaga	atcaatccat	agtacctgtg	120
gcaaggtt	at ttgggccagc	tatatttgaa	gcttcaaagt	tgaaggtact	tttttggga	180
gttgatga	gg aaaagcatcc	aggaaagttg	ccaagaacat	atacactgac	tcatagtgat	240
attacttc	ta aacttacttt	ggctatctct	caaaccatca	ataactctca	gttgcaaggt	300
tggtataa	ta gacttcaaag	agatgaagtt	gttgcagaat	ggaagaaagt	taaagggaag	360
atgtcacti	tc atgtccattg	ccacataagt	ggaggccatt	ttatgttaga	cttatttgct	420
agactcaga	aa actatatett	ctgcaaagaa	ctccctgtgg	ttctgaaggc	ttttgttcat	480
ggagatgag	ga atttattaaa	gaataatcca	gagttacaag	aagctttagt	ttgggtatat	540
tttcattca	aa acattcaaga	attcaacaaa	gtagaatgtt	ggggtccact	caaagatgca	600
acctcccc	t catcttcttc	tagtggggta	ggtggggtga	agagtacaag	ttttacaagc	660
aatagtaac	a acaagtggga	gttaccaaaa	ccttgtgaag	aggettgtge	atgttgcttt	720
ccccaatg	ga gtgttatgcc	ttggccttct	tcaaatcttg	atgggatagg	tgaggaaaat	780
gggaccato	c aacaaggctt	gcaagagcag	caaagttga			819
	16					
	810					
	DNA	_				
<213>	Populus tremu	la				
:400>	16					
itgggetet	c tggcaattgc	tccctttctt	ccttcaaagc	taagaccctc	tatacttgat	60
aaaatagc	t ctctctttcc	ttcaaagaaa	aaactcaaga	ggaagaacca	atctatcagt	120

cctgtggcaa ggttatttgg gccatctatt tttgaggcat caaaactgaa ggtgttgttt

ttaggggttg atgagaagaa acatccaggg aatctgccaa ggacttatac actaacacat

180

Sequence Listing

agtgatatt	a cagctaaact	tactttagco	atctcacaaa	ccatcaacaa	ttctcagttg	300
cagggatgg	t ccaacaaatt	gtacagagat	gaagtggtgg	cagagtggaa	gaaagtaaag	360
ggaaagatg	t ctctccatgt	tcactgccat	ataagtggag	gccattttct	cctagattta	420
tgttgtaga	c ttagatattt	catcttccgc	aaagaacttc	ctgtggtatt	gaaggccttc	480
tttcatgga	g atgggaattt	gtttagcagc	tatcctgaat	tgcaggaggc	tttagtttgg	540
gtttacttt	c attccaacat	tccagaattc	aacaaggtag	agtgctgggg	tccactcaag	600
catgccgca	g caccttatac	tgctgcatct	ggcggggccc	ctgagaacaa	ggagcaagca	660
accgactgg	a acttgcctga	gccatgccaa	gagaactgtc	agtgttgctt	tccaccaatg	720
agcttgatc	c catggteega	aatggttccc	caagagaaca	agaataatcc	aagcacccag	780
cagacettt	c aacaagetea	acaaccctaa				810
<210>	L7					
<211>	313					
<212> 1	ONA					
<213>	Populus trem	ula				
<400>	L 7					
	: tggcagttgc	tecetttett	ccctcaaagc	caagaccctc	tctctttgat	60
caacacagct	: ccctctttc	tccaagtaca	aagctcaaga	ggaagaacca	atctatcagc	120
ctgtggcaa	ggttatttgg	gccatctatt	tttgaggcat	caaagctgaa	ggtgctgttc	180
taggggttg	atgagaagga	gcatccaggg	aatctgccaa	ggacttatac	tctaacacac	240
ıgtgatatga	cagctaagct	tactttagcc	atctcacaga	ccataaacaa	ttctcagttg	300

cagggatggt ccaacaaatt gtaccgagat gaagtggtgg cagagtggaa gaaagtaaag

Sequence Listing

ggaaagatg	gt ctcttcatgt	tcattgccat	ataagtggag	gccattttct	tttagattgg	420
tgctgcaga	c tcagatattt	catcttccgc	agagaactcc	ctgtggtatt	gaaggccttt	480
tttca tg g	g atgggagett	gttgagcaac	tatcctgaat	tacaggaggg	tttagtttgg	540
gtttacttt	c attcaaacat	tccggaattc	agcaaggtcg	agtgctgggg	tccactcaag	600
gatgctgct	g cgccttctac	ttctgaaact	ggtgggtcca	atgagaccga	ggagctagca	660
aaccaatca	a gcaactggga	cttgcccgag	ccatgccaag	aggagaattg	tagctgttgc	720
tttccacca	a tgagcttgat	cccatggtct	aaaatggttc	cgttggagga	caaaaataat	780
ccaagcacc	c cacagaacct	tcaacagccc	taa			813
<210>	18					
<211>	861					
<212>	DNA					
<213>	Mesembryanth	emum crystal	llinum			
<400>	18					
atgggcact	t tgactgcctc	tatgttgctc	ccatcaaagc	tcaaaccttc	agtctttgaa	60
gatcaatco	t ctgtttattt	taaaagatca	tgcagaggac	ttcccaagct	caacaaggcc	120
aaatcttt	t cacctgtgat	gagattgttt	gggccagcaa	tatttgaagc	atcaaagttg	180
aaggtgttg	t tcttgggagt	ggataaagag	aagcacccag	ggaagttgcc	tagaacttat	240
actcttact						
	c atagtgatat	cacttccaag	ctcactttgg	ccatctctca	aactattaac	300
	c atagtgatat					360
aattcccag		gtacaaccaa	ctacagagag	atgaagtggt	ggcagaatgg	

ttgaaggcat ttgtgcatgg ggatgagaat ttgttcaaca actacccaga actacaagag

gcaatggtgt	gggtatactt	ccattcaaac	: cttgaagaat	tcaacaaaat	: cgagtgctgg	60
ggcccgctca	aggatgccgt	ggcacgcaac	tcgaagaaaa	acaagaacaa	gaacaagata	66
gatttcaagt	taagtttcaa	agaagaggat	gattcaccag	, ataacgagtt	ggagatacca	72
gagacttgca	aggaaccctg	tacctgttgc	tttcctccca	ctagtgtcat	cccttggtct	780
cattcagcat	tgtcacaggg	tgatgatctt	catctctctg	gtgggaccca	ccaaggettg	840
gagcagcagc	agcaaacttg	a				861
<210> 19)					
<211> 80)7					
<212> Di	JA					
<213> A	cabidopsis t	haliana				
<400> 19	•					
atgtgtagtt	tgtcggcgat	tatgttgtta	ccaacgaagc	tgaaaccagc	ttattcagac	60
aaacggagta	acagtagcag	cagcagctca	ctcttcttca	acaatagaag	atccaagaag	120
aagaaccaat	cgattgttcc	cgttgcaagg	ttgtttggac	cggcgatttt	cgaatcatcc	180
aaattgaaag	tactcttctt	aggggttgat	gagaagaagc	atccttcaac	gctccctagg	240
acttacacac	tcactcacag	tgacattaca	gctaaactaa	ccttagctat	ttctcaatcc	300
ataaacaact	ctcagttgca	aggatgggca	aataggctat	accgggatga	agttgtggca	360
gaatggaaga (aagtgaaagg g	gaaaatgtcg	cttcacgttc	attgtcacat	aagcggtggc	420
eattteettt 1	tagatotott 1	tgcaaagttt	cgatatttca	tcttttgcaa	agaactacct	480
Itggtgttga a	aggettttgt <u>(</u>	gcatggagat	gggaacttgt	tgaacaacta	tcctgagcta	540
ananacta t						

tgttggggtc cgctttg	gga agctgtttcg	g cctgatggtc	acaagactga	gactettece	660
gaggeteggt gtgegga	cga gtgtagttgt	tgttttccaa	ccgttagctc	gattccatgg	720
tctcatagtc ttagtaa	tga aggtgtaaat	ggttactctg	ggactcagac	tgagggaatt	780
gctactccaa atccgga	gaa actctag				807
<210> 20					
<211> 816					
<212> DNA		•			
<213> Arabidops:	is thaliana				
<400> 20					
atgtgtagtt tggctaca	aa tetgttaeta	ccatcgaaga	tgaaaccagt	ttttccagag	60
aaactgagca ctagctc	ct ctgtgtcacc	actagaagat	ctaagatgaa	gaaccgatct	120
attgttcctg ttgcaaga	itt gtttggaceg	gegatttttg	aaqcctccaa	attgaaagtg	180
	2 23 2		J		
ttattcttag gagttgat	ga gaagaagcat	ccagcaaaac	ttccaagaac	ttacactctt	240
	.g. ggg	00-50	ottounguas		240
actcacagtg acataaco	oc taaattaact	ttaggtatat	ctasstaast	taataaatat	300
acceacageg acacaace	ge cadactaace	ccagocacac	CCCAACCCAC	LaaLaactct	300
esattaessa astacaa	on tonottette		h		2.52
cagttgcaag gatgggca	aa taaattgtte	cgggacgaag	cagegggega	gtggaagaaa	360
gtgaaaggta aaatgteg	ct tcatgttcat	tgccacatta	gcggaggcca	cttcttcttg	420
aatctcatcg cgaagctt	cg gtactacatc	ttttgcaaag	aattacctgt	ggtactggaa	480
gcttttgccc atggagat	ga gtatttgtta	aataatcacc	cegagetaca	agaatctcct	540
gtttgggttt atttccat	tc caacatcccg	gagtacaaca	aggtcgaatg	ttggggaccg	600
ctttgggagg ccatgtcg	ca gcaccagcac	gacggaagga	cccacaagaa	gagtgaaact	660
			_		
ctaccggagc taccttgt	cc tgatgagtge	aagtgttgct	ttccqacqqt	tagcacgatt	720
-55-5				35	, 20
ccgtggtctc atcgtcat	ta tcaacatace	gcagcogato	agaatottor	ggatggccto	780
		5		~~~~	, 50

<213> Beta vulgaris

	ttggaaat	ac ctaaccctgg	gaaatcaaag	ggatag			81
	<210>	21					
	<211>	662					
	<212>	DNA					
	<213>	Lycopersicon	esculentum	ı			
	<400>	21					
	atgggaac	tt tgactacttc	tctagtggtt	ccatctaagc	tcaacaatga	acaacagagc	60
	tctattt	ta tacacaaaac	tagaaggaaa	tgcaagaaga	atcaatccat	agtacctgtg	120
	gcaaggtt	at ttggaccagc	tatatttgaa	gcttcaaaat	tgaaggtact	ttttttggga	180
	gttgatga	ag aaaagcatcc	aggaaagttg	ccaagaacat	atacactgac	tcatagtgat	240
	attacttc	ta aacttacttt	ggctatctcc	caaaccatca	ataattctca	gttgcaaggt	300
	tggtataa	ca gacttcaaag	agatgaagtt	gttgcagagt	ggaagaaagt	aaaagggaag	360
	atgtcacti	c atgtccattg	ccacattagt	ggaggccatt	ttatgttaga	cttatttgct	420
	agactcaga	aa actacatctt	ctgcaaagaa	ctccctgtgg	ttctcaaggc	ttttgttcat	480
•	ggagatgag	ga atttactaag	gaattatcca	gagttacaag	aagctttagt	ttgggtatat	540
•	tttcattca	a acattcaaga	attcaacaaa	gtagaatgtt	ggggtccact	cagagatgca	600
2	acttecce	t catcttcttc	tggtggggta	ggtg g gtga	agagtacaag	ttttacaagc	660
(ca						662
<	<210>	22					
<	:211>	334					
•	2125	מער					

<400> 22					,
cccggaatta caagaagctt	: cagtatgggt	atacttccat	tcaagcattc	ctgaatttaa	60
-					
cazagtagag tgctggggcc	cattgaccga	cgccgtggat	ccgccgtcga	aaaataagaa	120
gaggatgatg atgataaatg	, atasaasaas	t > 2 2 C 2 2 C 2 2	assassa	caagtagete	180
gaggargarg argaraans	, wedadeada	caaagaagaa	gaagaagaag	orragoragoco	100
aaaatgggag atgttagtto	cttgcacgaa	accatgtaga	tgttgctttc	cacctacaag	240
					200
tttgattcct tggactcctt	. cactateaca	agaacagcaa	caagagcaac	aaetteetgg	300
agacgtttcg atcccgccac	ctgggactcg	ctag			334
<210> 23					
<211> 564					•
<212> DNA					
<213> Zoysia japon	nica				
<400> 23					
acgtacacgc ttactcacag	g cgacgtcacg	gccaagctca	cgctggcggt	ctcccacacc	60
atccacgccg cgcagctgca	ggggtggtac	aaccgcctgc	agcgggacga	ggtggtggcc	120
gagtggagga aggtgcgcgg	gaacatgtcg	ctgcacgtcc	actgccacat	ctccggcgga	180
anattaataa gagnaatant	aggggggtg	acathathan	tattaaaaa	aasaataaaa	240
cacttcctcc gcgacctcat	. cycyccycic	cyctactaca	cccccgcaa	ggageteece	240
gtggttctca aggcgttcgt	gcacggcgac	ggcagcctgt	tcagcagcca	cccggagttg	300
gaggaggcca cggtgtgggt	ctacttccac	tccaacctgc	cccgcttcaa	ccgcgtcgag	360
tgetggggte etetetgega	egeegeegeg	cccgtcgagg	aggagggca	gcaqaatgac	420
		•			
gatcggttgc ccgcgggcga	gtggccgcgg	cggtgcccc	agcagtgcga	gtgctgcttc	480
ccgccgcaca gtctcatccc	ctggcccaac	gagcacgaca	tggctcccac	cgacgccccc	540
gccgctggcc agacgcagca	gtga				564

Sequence Listing

	•					
<210>	24					
<211>	284					
<212>	DNA					
<213>	Lotus cornice	ulatus var.	japonicus			
<400>	24					
actacccag	ga attgcaggat	gcattggttt	gggtatactt	tcactcaaag	attccagagt	60
tcaacaagg	nt acagtgttgg	ggaccactga	aggaggcggc	tgcacegtca	ggtgggtccc	120
cggagaaag	ga aggtgaaggg	gtgaagatgc	cggatccgtg	tccagaagaa	tgtgagtgtt	. 180
gettteete	c tccaccggca	ttggatccaa	tcccatggtc	tgaagaagtt	ccctctcccc	240
attatgaag	c ttttgatggg	gttgggaccc	gaccaaactt	gtag		284
<210>	25					
<211>	326					
<212>	DNA					
<213>	Lotus cornicu	ılatus var.	japonicus			
<400>	25					
tagatctat	g tgctaagcta	agatacttca	tcttctgcaa	agagetteca	gtggtattga	60
aggcettca	t tcacggcgat	gaaaatttgt	tcaacaacta	cccggagttg	gaggaatcat	120
tggtttggg	t ttactttcac	tcaaacatct	cagaattcaa	caaggtggag	tgttggggtc	180
cacttaagg	a tgcttgtgca	acatcaattg	ggtcctactc	ctatgacaag	ggtatgcctc	240
aaactcagc	c atgccaacaa	aactgcgagt	gttgctttac	accgatgagc	tcaagtgatt	300
ggattggaa	с ссаасааваа	ttgtga				326
<210>	26	•				

<211> 415 <212> DNA

- 21 -

Sequence Listing

<213> Saccharum officinarum <400> 26 cacgaggete gaceteateg eeggeeteeg etactacate tteegeaagg ageteeeegt 60 ggtgctcaag gcgttcgtgc acggcgacgg cgacctgttc agccggcacc cggagctgga 120 ggatgccacg gtgtgggtct acttccactc caacctgacc cgcttcaacc gcgtcgagtg 180 ctggggteeg eteegegaeg eegeeggee geeggeegag gaagaeteea eegegeegge 240 cgcctccaac tccaaggagg ggcagatgcc gcccgtgggc gagtggccgt accggtgtcc 300 ccagcagtgc gactgctgct tcccgcccca cagcctcatc ccctggccga acgagcacga 360 catggctgcc gccgccgccg atgccaccgc cgctggccag gcccaacagc agtag 415 <210> 27 <211> 481 <212> DNA <213> Picea <400> 27 aatcaataaa gatcagttgc agggatggta taacaggtta cagagagacg aagtgattgc 60 ccagtggaag aaatctcagg gcaaaatgtc tctgcacgtt cactgtcata tcagcggagg 120 tcattggctt ctggacgcca tcgcgagact tagattttac atcttccgca aggaactgcc 180 ggtggtgctg gaggcgttca ggcatggaga tcgggctctg cttgacaagc acccagagct 240 agagaccgct ctggtttggg tgtatttcca ctccaatgtc agagagttca aacgcgtgga 300 gtgttggggt tctttggctg aggcatgcaa gggtgcccct agcaatttgg agaaggaatt 360 ggacgaggag tttaatggtg aaaaattgga gatgcctagt cattgctcag aaccatgcaa 420 ttgttgcttt cctccattta gcgtccttct acgaccagaa gatgctgaac aatttattta 480

a						481
<210>	28					
<211>	632					
<212>	DNA					
<213>	Brassica napu	s				
<400>	28					
atgtgtagi	tt tggcaacaaa	tctcttactc	ccatcgacga	tgaaaccagc	ttttacagag	60
aaacagaa	ca ctaactcact	ctttcttaca	aataaaagat	ccttgatgca	gaacagatct	120
actgttcct	g ttcctgttgc	aagattgtta	gaaccggcga	tttttgaagc	ctccaaattg	180
aaagtatc	gt tettaggagt	tgatgagaag	aagcatccat	caaagctccc	aagaacttac	240
actettact	c acagtgacat	aacagctaag	ttaactttag	ctatctccca	atctatcaat	300
	rt taanaaanta .	~~~+~~+~~~	++-+++			250
aacccccag	jt tgcagggatg (ggccaacaga	ccaccceggg	acgaagtagt	ggeegagegg	360
aagaaagto	ga agggtaaaat g	atcccttcac	atteattace	acattagege	aggggagttg	420
	,	5000000000	9000000	acarragegg	aggecaeeee	420
cttttggat	c tcatagcgaa g	acttcaatac	tacatatttt	gcaaggaatt	accogtogta	480
		3		3		200
ttgaaagct	t ttgttcatgg	ggatgggaac	ttgttgaata	gttaccctga	۱ gctacaaqaa	540
				•	-	
tctcctgtt	t gggtttattc	cattcaaaca	tccccgagta	caataaggtt	gaatgttggg	600
ggccgcttt	g ggaggccacg o	cagcacaaac	ac			632
<210>	29					
<211>	291					
:212>	DNA					
(213>	Brassica napus	3				
	29					
tgtgtagt	t totcaocoaa c	atattatta	ccgacaagc	tgaaaccagc	ttattcagac	60

WO 2005/079168

PCT/KR2005/000104

aaa	.cggg	gta	atag	tacg	jaa d	tcac	ttct	t gt	ctcc	aata	caa	gato	caa	gagg	gaagaa	C	120
caa	teeg	ıttg	ttcc	tatg	gc a	agat	tgtt	t gg	accg	gcga	ttt	tcga	atc	atco	aagtt	9	180
aaa	gtat	tgt	ttct	aggt	gt t	gatg	acaa	g as	gcat	ccac	caa	cgct	tcc	aagg	actta	c	240
act	ctca	ctc	acag	tgac	at t	acag	ctaa	g ct	aact	ttag	cta	tttc	tca	C			291
<21	0>	30)														
<21	1>	27	4														
<21	2>	PR	T														
<21	3>	Or	yza	sati	va												
<40	0>	30															
Met	Ala	Ala	Ala	Thr	Ser	Thr	Met	Ser	Leu	Leu	Pro	Pro	Ile	Thr	Gln		
1				5					10					15			
Gln	Gln	Arg	Trp	His	Ala	Ala	Asp	Ser	Leu	Val	Val	Leu	Ala	Ser	Arg		
			20					25					30				
ayɔ	His	Asn	Ser	Arg	Arg	Arg	Arg	Arg	Cys	Arg	Tyr	Val	Val	Pro	Arg		
		35					40					45					
Ala	Arg	Leu	Phe	Gly	Pro	Ala	Ile	Phe	Glu	Ala	Ser	Lys	Leu	Lys	Val		
	50					55					60						
	Phe	Leu	Gly	Val		Glu	Glu	Lys	His	Gln	His	Pro	Gly	Lys	Leu		
65					70					75					80		
Pro	Arg	Thr	Tyr		Leu	Thr	His	Ser		Val	Thr	Ala	Arg		Thr		
				85					90					95			
. .			_				_		_				_				
Leu	Ala	vai		His	Thr	Ile	Asn	_	Ala	Gln	Leu	Gln	-	Trp	Tyr		
			100					105					110				
۸۰۰	Tare	T	C1-	N ===	N	~1 ··	17 1	17-7	N1 -	01 · ·			•	•••	63 .		
Asn	пуз		GIU	мгg	изр	GIU		vai	WIG	GIU	rrp		гув	vaı	GIn		
		115					120					125					
Gly	His	Met	Ser	Leu	Hi c	Va 1	нiс	Cve	Hie	Tla	Ser	Glv	G1 v	ui c	V=3		
1								-,-				~ - y	JLY	***2	A CT T		

Sequence Listing

135 130 140 Leu Leu Asp Leu Ile Ala Gly Leu Arg Tyr Tyr Ile Phe Arg Lys Glu 150 145 155 Leu Pro Val Val Leu Lys Ala Phe Val His Gly Asp Gly Asn Leu Phe 165 170 Ser Arg His Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His 185 Ser Asn Leu Pro Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Arg 200 Asp Ala Gly Ala Pro Pro Glu Glu Asp Asp Ala Val Ala Ala Ala 215 Ala Glu Glu Ala Ala Glu Gln Met Pro Ala Ala Gly Glu Trp Pro 225 Arg Arg Cys Pro Gly Gln Cys Asp Cys Cys Phe Pro Pro Tyr Ser Leu 245 250 255 Ile Pro Trp Pro His Gln His Asp Val Ala Ala Ala Asp Gly Gln Pro 260 265 Gln Gln <210> 31 <211> 281 <212> PRT <213> Hordeum vulgare Met Ala Ile Ala Ala Ala Gly Ala Ser Thr Met Ser Leu Leu Pro

Ile Ser His Leu Lys Gln Leu Gln Leu Gln Arg Arg Ala Arg Pro Gly

	•		20					25					30		
Arg	Val	Leu 35	Val	Leu	Gly	Arg	Arg 40	Arg	Arg	His	Val	Val 45		Arg	Ala
Arg	Leu 50		Gly	Pro	Ala	Ile 55	Phe	Glu	Ala	Ser	Lys	Leu	Lys	Val	Leu
Phe 65	Val	Gly	Val	Asp	Glu 70	Glu	ГÀв	His	Pro	Gly 75	Lys	Leu	Pro	Arg	Thr 80
Tyr	Thr	Leu	Thr	His 85	Ser	Asp	Val	Thr	Ala 90	Arg	Leu	Thr	Leu	Ala 95	Val
Ser	His	Thr	Ile 100	аін	Ala	Ala	Gln	Leu 105	Gln	Gly	Trp	Tyr	Asn 110	Arg	Leu
Gln	Arg	Asp 115	Glu	Val	Val	Ala	Glu 120	Trp	Lys	Lys	Val	Gln 125	Gly	Ala	Met
Ser	Leu 130	His	Val	His	СЛв	His 135	Ile	Ser	Gly	Gly	His 140	Phe	Leu	Leu	Asp
Leu 145	Ile	Ala	Pro	Leu	Arg 150	Tyr	Tyr	Ile	Phe	Arg 155	Гуз	Glu	Leu	Ser	Val 160
Val	Leu	Lys	Ala	Phe 165	Val	His	Gly	Asp	Gly 170	Ser	Leu	Phe	Ser	Gln 175	His
Pro	Glu	Leu	Glu 180	Glu	Ala	Thr	Val	Trp 185	Val	Tyr	Phe	His	Ser 190	Asn	Asn
Pro	Asn	Phe 195	Asn	Arg	Val	Glu	Cys 200	Trp	Gly	Pro	Leu	Ser 205	Asp	Ala	Ala
Ala	Pro 210	Tyr	Asp	Asp		Ala 215	Ala	Val	Asp	Ser	Pro 220	Ala	Ala	Asp	Ala
Ala 225	Met	Ala	Ala		Ala 230	Val	Asn	Thr		Ala 235	Asp	G1u	Gln	Ala	Thr 240

Sequence Listing

Arg Ala Gly Gln Trp Pro Arg Arg Cys Pro Gly Gln Cys Asp Cys Cys 245 250 Phe Pro Pro Glu Cys Leu Ile Pro Trp Pro His Glu His Glu Met Ala 260 265 Ala Asp Ala Gly Gln Ala Pro Pro Gln 275 280 <210> 32 <211> 266 <212> PRT <213> Triticum aestivum Met Ala Thr Ala Ser Thr Met Ser Leu Leu Pro Ile Ser His Leu Lys 10 15 Gln Met Gln Gln Arg Arg Thr Arg Leu Ala Gly Ala Leu Pro Gly Lys Val Leu Val Leu Gly Arg Arg Arg His Val Val Pro Arg Ala Arg Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu 55 Phe Val Gly Val Asp Glu Glu Lys His Pro Gly Lys Leu Pro Arg Thr 70 75 Tyr Thr Leu Thr His Ser Asp Val Thr Ala Arg Leu Thr Leu Ala Val 90 Ser His Thr Ile His Ala Ala Gln Leu Gln Gly Trp Tyr Asn Arg Leu 100 Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Gln Gly Ala Met 125 115 120

Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Leu Ile Ala Pro Leu Arg Tyr Tyr Ile Phe Arg Lys Glu Leu Pro Val 150 155 Val Leu Lys Ala Phe Val His Gly Asp Gly Ser Leu Phe Ser Gln His 165 170 Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His Ser Asn Asn 180 185 Pro Asn Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Arg Glu Ala Ala 200 Ala Pro Tyr Asp Asn Lys Thr Pro Thr Arg Pro Cys Pro Gln Gly Asp 215 Ala Gly Asp Lys Lys Ala Met Asp Arg Ala Ala Pro Arg Gly Ser Arg 230 235 Gly Met Glu Cys Phe Ser Arg Pro Asn Pro Ile Pro Gly Pro Arg Ile 250 245 Gln Met Pro Pro Pro Arg Gln Ala Pro Gln 260 <210> 33 <211> 264 <212> PRT <213> Triticum aestivum <400> 33 Met Ala Thr Ala Ser Thr Met Ser Leu Leu Pro Ile Ser His Leu Lys 10 Gln Met Gln Gln Arg Arg Thr Arg Leu Ala Gly Ala Leu Pro Gly 25

Lys	Val	Leu 35	Val	Leu	Gly	Arg	Arg 40	Arg	Arg	His	Val	Val	Pro	Arg	Ala
			-1	_		-1-	nt.		•••	0		T	T	wal	T 011
Arg	Leu 50	Phe	GΙΆ	Pro	Ala	55	ьие	Glu	Ala	ser	eo rAa	Leu	ьуѕ	vaı	пеп
Phe 65	Val	Gly	Val	Asp	Glu 70	Glu	Lys	His	Pro	Gly 75	Lys	Leu	Pro	Arg	Thr 80
65					, 0					,,					
Tyr	Thr	Leu	Thr		Ser	qaA	Val	Thr		Arg	Leu	Thr	Leu		Val
				85					90					95	
Ser	His	Thr	Ile	His	Ala	Ala	Gln	Leu	Gln	Gly	Trp	Tyr	neA	Arg	Leu
			100					105					110		
Gln	Arg	Asp	Glu	Val	Val	Ala	Glu	Trp	Lys	Lys	Val	Gln	Gly	Ala	Met
		115					120					125			
Ser	Leu	His	Val	His	Cvs	His	Ile	Ser	Glv	Glv	His	Phe	Leu	Leu	Asp
Jer	130				-,-	135			2		140				
	_		_	_	_	_	_			_		~3 .		_	
Leu 145	Ile	Ala	Pro	Leu	Arg	Tyr	чуг	11e	Pne	Arg	ьуѕ	GIU	ьeu	PTO	vai 160
Val	Leu	Lys	Ala		Val	His	Gly	Asp		Ser	Leu	Phe	Ser		His
				165					170					175	
Pro	Glu	Leu	Glu	Glu	Ala	Thr	Val	Trp	Val	Tyr	P'ne	His	Ser	Asn	Asn
			180					185					190		
Pro	Asn	Phe	Asn	Arg	Val	Glu	Cys	Trp	Gly	Pro	Leu	Λla	Met	Pro	Arg
		195					200					205			
בות	Leu	Acn	Δen	Glu	Thr	Pro	Δνα	Asn	Ser	His	Ara	Ara	Ara	Thr	Val
774	210	rap	nop	G1 u		215	9	пор	-		220	3	5		
								_							_
Pro 225	Leu	His	Asp	Asp	Ser 230	Arg	Arg	Ala	Gly	Ser 235	Ala	Pro	Gly	Ala	Pro 240
223					~50										~ - •

Sequence Listing

Ala Leu Asp Gly Val Pro Gln Asn Ala Ile Pro Gly Ala Asp Pro Ile 245 250 Ala Ala Asn Arg Gln Gly Pro Gln 260 <210> 34 281 <211> <212> PRT <213> Zea mays Met Ala Ala Ala Ser Thr Met Ser Leu Leu Pro Ile Ser Gln Pro 5 10 Arg Lys Gln Gln Gln Gly Ala Gly Ala Val Val Phe Gln Arg 25 Arg Pro Trp Asp Ala Arg Arg Arg Tyr Val Val Pro Thr Ala Arg 40 Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe 55 Leu Gly Val Asp Glu Gly Ser Ser Lys His Leu His Ala His His Pro 70 Ala Pro Ala Pro Leu Leu Pro Arg Thr Tyr Thr Leu Thr His Ser Asp 90 85 Val Thr Ala Ser Leu Thr Leu Ala Val Ser His Thr Ile Asn Arg Ala 100 105 110 Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val Val Ala

120

135

Glu Trp Lys Lys Val Arg Gly Arg Met Ser Leu His Val His Cys His

115

130

125

Ile Ser Gly Gly His Leu Leu Leu Asp Leu Ile Ala Gly Leu Arg Tyr 150 155 145 Tyr Ile Phe Arg Lys Glu Leu Pro Val Val Leu Glu Ala Phe Val His 165 170 Gly Asp Gly Asp Leu Phe Ser Arg His Pro Glu Leu Glu Glu Ala Thr 185 Val Trp Val Tyr Phe His Ser Asn Leu Ala Arg Phe Asn Arg Val Glu 200 Cys Trp Gly Pro Leu Arg Asp Ala Ala Ala Pro Ala Pro Ala Glu Asp 215 Asp Ser Thr Ala Pro Ala Ala Ala Ser Ile Ala Met Glu Gly Gln Met 230 240 225 Pro Val Gly Glu Trp Pro His Arg Cys Pro Gln Gln Cys Asp Cys Cys 245 Phe Pro Pro His Ser Leu Ile Pro Trp Pro Asn Glu Gln Asp Met Ala 265 Ala Ala Gly Gln Val Arg Gln Gln 275 280 <210> 35 <211> 274 PRT <212> <213> Zea mays <400> Met Ala Ala Ala Thr Ala Ala Ser Thr Met Ser Leu Leu Pro Ile Ser Gln Leu Arg Gln Gln His Gly Ala Gly Ala Met Arg Arg Pro 25 20

Trp	Val	Ala 35	Arg	Arg	Arg	Arg	Tyr 40	Val	Val	Pro	Thr	Ala 45	Arg	Leu	Phe
Gly	Pro 50	Ala	Ile	Phe	Glu	Ala 55	Ser	ГЛЗ	Leu	Lys	Val 60	Leu	Phe	Leu	Gly
Val 65	Asp	Asp	Glu	Ala	Gly 70	Ser	Lys	Gln	His	Gly 75	Pro	Leu	Pro	Arg	Thr 80
Tyr	Thr	Leu	Thr	His 85	Ser	Asp	Val	Thr	Ala 90	Arg	Leu	Thr	Leu	Ala 95	Val
Ser	His	Thr	Ile 100	Asn	Arg	Ala	Gln	Leu 105	Gln	Gly	Trp	Tyr	Asn 110	Arg	Leu
Gln	Arg	Asp 115	Glu	Val	Val	Ala	Glu 120	Trp	Lys	Lys	Val	Arg 125	Gly	Arg	Met
Ser	Leu 130	His	Val	His	Cys	His 135	Ile	Ser	Gly	Gly	His 140	Phe	Leu	Leu	Asp
Leu 145	Ile	Ala	Gly	Leu	Arg 150	Tyr	Val	Ile	Phe	Arg 155	Lys	Glu	Leu	Pro	Val 160
Val	Leu	Lys	Ala	Phe 165	Val	His	Gly	qaA	Gly 170	Asp	Leu	Phe	Ser	Arg 175	His
Pro	Glu	Leu	Glu 180	Glu	Ala	Thr	Val	Trp 185	Val	Tyr	Phe	His	Ser 190	Asn	Leu
Ala	Arg	Phe 195	Asn	Arg	Val	Glu	Cys 200	Trp	Gly	Pro	Leu	Arg 205	Asp	Ala	Ala
Ala	Pro 210	Ala	Glu	qeA	Asp	Ser 215	Thr	Ala	Pro	Pro	Авр 220	Ala	Ser	Asn	Ser
Lys 225	Glu	Ala	Gly	Gln	Met 230	Met	Ala	Met	Cys	Glu 235	Trp	Pro	His	Arg	Суз 240
Pro	Gln	Gln	Сує	Gly	Сув	Cys	Phe	Pro	Pro	His	Ser	Leu	Ile	Pro	Trp

Sequence Listing

245 250 255 Pro Asn Glu His Asp Met Ala Ala Ala Asp Ala Ser Gly Ser Ala Gln 260 265 Gln Gln <210> 36 <211> 266 <212> PRT <213> Sorghum bicolor <400> Met Ala Ala Ala Thr Ala Ala Ala Ser Thr Met Ser Leu Pro Pro 5 10 Ile Ser Gln Leu Arg Gln Gln Gln His Gly Ala Gly Ala Val Val 20 25 Phe Arg Arg Arg Ala Arg Asp Ala Arg Arg Arg Tyr Val Val Pro 40 Thr Ala Arg Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp Glu Glu Ser Asn Asn Lys His Gly His

Pro Thr Thr Pro Ser Pro Thr Ser Pro Pro Leu Pro Leu Pro Arg 85 90

Thr Tyr Thr Leu Thr His Ser Asp Val Thr Ala Ser Leu Thr Leu Ala 100 105

Val Ser His Thr Ile Asn Arg Ala Gln Leu Gln Gly Trp Tyr Asn Arg 120 125

Leu Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Arg Gly Arg

Sequence Listing

140 135 130 Met Ser Leu His Val Leu Lys Ala Phe Val His Gly Asp Gly Asp Leu 145 150 Phe Ser Arg His Pro Glu Leu Glu Asp Ala Pro Val Trp Val Tyr Phe 170 His Ser Asn Leu Thr Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu 185 Arg Asp Ala Ala Pro Pro Ala Glu Asp Asp Ser Thr Ala Pro Ala 200 205 Ala Ala Ser Asn Lys Asp Gly Gln Met Pro Pro Val Gly Glu Trp Pro 215 Tyr Arg Cys Pro Gln Gln Cys Asp Cys Cys Phe Pro Pro His Ser Leu 235 225 230 Ile Pro Trp Pro Asn Glu Arg Asp Met Ala Ala Ala Ala Ala Asp Ala 255 245 250 Ser Ser Ala Ala Gly Gln Ala Gln Gln 265 260 37 <210> <211> 261 <212> PRT <213> Glycine max Met Cys Thr Leu Thr Thr Val Pro Val Leu Pro Ser Lys Leu Asn Lys

Arg Val Gly Lys Lys Asn Lys Ala Met Val Pro Val Ala Arg Leu Phe

Pro Ser Leu Ser Pro His His Asn Ser Leu Phe Pro Tyr Cys Gly Arg 25

20

		35					40	•				45			
Gly	Pro 50	Ala	Ile	Phe	Glu	Ala 55	Ser	Lys	Leu	Lys	Val 60	Leu	Phe	Leu	Gly
Val 65	Asp	Glu	Asn	Lys	His 70	Pro	Gly	Veu	Leu	Pro 75	Arg	Thr	Tyr	Thr	Leu 80
Thr	His	Ser	Asp	Ile 85	Thr	Ala	Lys	Leu	Thr 90	Leu	Ala	Ile	Ser	Gln 95	Thr
Ile	Asn	Asn	Ser 100	Gln	Leu	Gln	Gly	Trp 105	Tyr	Asn	Arg	Phe	Gln 110	Arg	Asp
Glu	Val	Val 115	Ala	Gln	Trp	Lys	Lys 120	Val	Lys	Gly	Arg	Met 125	Ser	Leu	His
Val	His 130	Суз	His	Ile	Ser	Gly 135	Gly	His	Phe	Leu	Leu 140	Asp	Ile	Leu	Ala
Arg 145	Leu	Arg	Tyr	Phe	Ile 150	Phe	Сув	Lys	Glu	Leu 155	Pro	Val	Val	Leu	Lys 160
Ala	Val	Val	His	Gly 165	Asp	Glu	Asn	Leu	Phe 170	Asn	Ser	Tyr	Pro	Glu 175	Leu
Gln	Asp	Ala	Leu 180	Val	Trp	Val	Tyr	Phe 185	His	Ser	Asn	Ile	Pro 190	Glu	Phe
Asn	Lys	Val 195	Glu	Сує	Trp	Gly	Pro 200	Leu	Lys	Glu	Ala	Ser 205	Ala	Pro	Thr
Gly	Gly 210	Val	Gln	Glu	Glu	Gly 215	Leu	Ala	Ile	Pro	Gln 220	Pro	Cys	Gln	Glu
Glu 225	Cys	Gln	Суз	Суз	Phe 230	Pro	Pro	Leu	Thr	Leu 235	Ser	Pro	Ile	Gln	Trp 240
Ser	Lys	Gln	Val	Pro 245	Ser	Arg	His	Tyr	Glu 250	Pro	Суз	Asp	Gly	Ile 255	Gly

WO 2005/079168

Sequence Listing

Thr Gln Gln Asn Leu 260

<210> 38 <211> 271 <212> PRT

<213> Glycine max

<400> 38

Met Gly Thr Leu Thr Thr Val Pro Val Leu Pro Ser Lys Leu Asn Lys

1 5 10 15

Pro Ser Leu Ser Pro Arg His Asn Ser Leu Phe Pro Tyr Tyr Gly Arg
20 25 30

Arg Val Gly Lys Lys Asn Lys Ala Met Val Pro Val Ala Arg Leu Phe 35 40 45

Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 50 55 60

Val Asp Glu Asn Lys His Pro Gly Asn Leu Pro Arg Thr Tyr Thr Leu 65 70 75 80

Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Thr 85 90 95

Ile Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp
100 105 110

Glu Val Val Ala Gln Trp Lys Lys Val Lys Gly Lys Met Ser Leu His 115 120 125

Val His Cys His Ile Sex Gly Gly His Phe Leu Leu Asp Ile Leu Ala 130 135 140

Arg Leu Arg Tyr Phe Ile Phe Cys Arg Glu Leu Pro Val Val Leu Lys
145 150 150 160

WO 2005/079168

Sequence Listing

Ala Val Val His Gly Asp Glu Asn Leu Phe Asn Asn Tyr Pro Glu Leu Gln Asp Ala Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe 190 180 185 Asn Lys Val Glu Cys Trp Gly Pro Leu Lys Glu Ala Ser Ala Pro Ile 195 200 205 Gly Gly Ala Lys Glu Glu Ser Glu Gln Glu Thr Leu Leu Ser Lys Glu 215 220 Gly Leu Ala Ile Pro Gln Pro Cys Gln Glu Glu Cys Glu Cys Cys Phe 230 Pro Pro Leu Thr Leu Ser Pro Ile Gln Trp Ser Gln Gln Val Pro Ser 250 245 His His Tyr Glu Pro Cys Asp Gly Ile Glu Thr Gln Gln Ser Leu 265 260

<210> 39
<211> 274
<212> PRT
<213> Vitis vinifera

39

<400>

Met Ala Thr Leu Thr Ala Ala Leu Val Leu Pro Ser Glu Leu Lys Pro

1 5 10 15

Ser Phe Ser Gln His Gln Ser Ser Leu Phe Val Cys Arg Arg Pro \$20\$ \$25\$ 30

Lys Lys Ser Asn Pro Ala Phe Pro Ala Ala Arg Leu Phe Gly Pro Ala 35 40 45

Ile	Phe 50	Glu	Ala	Ser	ГÀв	Leu 55	Lys	Val	Leu	Phe	Leu 60	Gly	Val	Asp	Glu
Lys 65	Lys	His	Pro	Gly	Lys 70	Leu	Pro	Arg	Thr	Tyr 75	Thr	Leu	Thr	His	Ser 80
Asp	Ile	Thr	Ser	Lys 85	Leu	Thr	Leu	Ala	Ile 90	Ser	Gln	Thr	Ile	Asn 95	Asn
Ser	Gln	Leu	Gln 100	Gly	Trp	Ser	Asn	Arg 105	Leu	Gln	Arg	Asp	Glu 110	Val	Val
Ala	Gln	Trp 115	Lys	ГУa	Val	Lys	Авр 120	Gln	Met	Ser	Leu	His 125	Val	His	Сув
His	Ile 130	Ser	Gly	Gly	His	Phe 135	Leu	Leu	Asp	Leu	Cys 140	Ala	Lys	Leu	Arg
Tyr 145	Phe	Ile	Phe	Сув	Lув 150	Glu	Leu	Pro	Val	Val 155	Leu	Lys	Ala	Phe	Val 160
His	Gly	Asp	Gly	Asn 165	Leu	Leu	Asn	Asn	Tyr 170	Pro	Glu	Leu	Gln	Glu 175	Ala
Leu	Val	Trp	Val 180	Tyr	Phe	His	Ser	Asn 185	Leu	Pro	Glu	Phe	Asn 190	Arg	Val
Glu	Сув	Trp 195	Gly	Ala	Leu	Asn	Asn 200	Ala	Ala	Ala	Pro	Pro 205	Pro	Pro	Ala
Ala	Gly 210	Gly	Gly	Gly	Gly	Arg 215	Val	Glu	Ala	His	Gln 220	Asp	Met	Arg	Gln
Val 225	Glu	Pro	ser	Ser	Lys 230	Trp	Glu	Arg	Pro	Glu 235	Glu	Pro	Cys	Met	Glu 240
Asn	Cys	Thr	Сув	Cys 245	Phe	Pro	Pro	Met	Ser 250	Leu	Ile	Pro	Trp	Ser 255	Gln
Asp	Leu	Ala	His	Glu	Asn	Ile	His	Asp	Thr	Gln	Lys	Gly	Leu	Gln	Gln

Sequence Listing

260 265 270 Gln Thr <210> <211> 280 <212> PRT Lactuca sativa <400> 40 Met Ala Ser Leu Ile Leu Pro Thr Lys Gln Asn Pro Pro Ser Ser Ser Phe Leu His Gln Asn His Gln Asn Asn Pro Phe Phe Thr Asn Lys Arg 25 Arg Lys Leu Lys Arg Asn Gln Ala Leu Val Pro Val Ala Arg Leu Phe 40 Gly Pro Ser Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 55 Val Asp Glu Lys Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu 70 75 Thr His Ser Asp Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Gln Leu Tyr Arg Asp 105

Val His Cys His Ile Ser Arg Gly His Phe Leu Leu Asp Leu Cys Ala 130 135 140

Glu Val Val Ala Glu Trp Arg Lys Val Lys Gly Asn Met Ser Leu His

120

115

Arg Leu Arg Phe Phe Ile Phe Thr Lys Glu Leu Pro Leu Val Leu Lys

125

Sequence Listing

160 150 155 145 Ala Phe Ala His Gly Asp Gly Asn Leu Leu Asn Ser Tyr Pro Glu Leu 165 170 Gln Glu Ala Ser Val Trp Val Tyr Phe His Ser Asn Ile Gln Glu Phe 185 Asn Arg Val Glu Cys Trp Gly Pro Leu Arg Glu Ala Val Gly Pro Leu 200 Ser Thr Thr Thr Ser Ser Ser Ser Ser Ser Leu Ser Glu Ser Thr 215 Ile Ala Glu Ala Gly Glu Gly Ser Asn Asn Trp Glu Ile Pro Lys Pro 235 230 Cys Leu Glu Ala Cys Ala Cys Cys Phe Pro Pro Met Ser Ser Ile Pro 245 250 Trp Ser His Asp Leu Val Lys Asn Gln Asp Asp Asp Gly Ala Thr 260 265 270 His Gln Gly Leu Gln Gln Lys Ala 275 280 <210> 41 <211> 290 <212> PRT <213> Pinus taeda Met Ala Val Ala Arg Ile Ser Ala Gly Lys Thr Gln His Cys Tyr Ser 5 10 Phe Ser Pro Ser Asp Val Arg Ile Ser Ser Ala Pro Gln Asn Ser Gln 20 25 Ser Gln Phe Lys Arg Lys Ser Lys Ile Lys Leu Ser Ser Arg Phe Leu

		35					40					45			
Ala	Ser 50	Glu	Ser	ser	Trp	Asn 55	Gly	Leu	Val	Ala	His 60	Gln	Leu	Gln	Сув
Asn 65	Asn	Arg	His	Arg	Thr 70	Asn	Ser	Ser	Phe	Pro 75	Arg	Ser	Thr	Ser	Arg 80
Val	Val	Ala	Arg	Leu 85	Phe	Gly	Pro	Ala	Ile 90	Phe	Gln	Ala	Ser	Lys 95	Leu
Lys	Val	Leu	Phe 100	Leu	Gly	Thr	His	Glu 105	Glu	Lys	His	Pro	Ala 110	His	Leu
Pro	Arg	Thr 115	Tyr	Thr	Leu	Thr	His 120	Ser	Asp	Ile	Thr	Ala 125	Lys	Leu	Thr
Leu	Ala 130	Phe	Ser	Gln	Thr	Ile 135	Asn	Lys	qaA	Gln	Gly 140	Trp	Tyr	Asn	Arg
Leu 145	Gln	Arg	Asp	Glu	Val 150	Leu	Ala	Gln	Trp	Lуs 155	Lys	Ser	Gln	Gly	Lys . 160
Met	Ser	Leu	His	Val 165	His	Cys	His	Ile	Ser 170	Gly	Gly	His	Trp	Leu 175	Leu
Asp	Ala	Ile	Ala 180	Arg	Leu	Arg	Phe	Tyr 185	Ile	Phe	Arg ,	Lys	Glu 190	Leu	Pro
Val	Val	Leu 195	Glu	Ala	Phe	Arg	His 200	Gly	Asp	Arg	Ala	Leu 205	Leu	Glu	Lys
His	Pro 210	Glu	Leu	Glu	Thr	Ala 215	Leu	Val	Trp	Val	Tyr 220	Phe	His	Ser	Asn
Val 225	Lys	Glu	Phe	Lys	Arg 230	Val	Glu	Cys	Trp	Gly 235	Ser	Leu	Ala	Glu	Ala 240
Cys	Lys	Gly	Ala	Pro 245	Ser	Asn	Leu	Asn	Lys 250	Glu	Leu	Asp	Glu	Leu 255	Asp

Sequence Listing

Gly Gly Lys Leu Glu Met Pro Ser His Cys Ala Glu Pro Cys Ser Cys 265 Cys Phe Pro Pro Phe Ser Val Leu Leu Arg Pro Glu Asp Val Glu Gln 280 Phe Ser 290 <210> 42 <211> 271 <212> PRT <213> Citrus sinensis <400> 42 Met Ala Ser Leu Val Ala Ala Leu Gly Leu Pro Ser Lys Leu Lys Ala 10 Ser Pro Tyr Glu Gln Gln Asn Ala Leu Phe Val Ser Arg Arg Arg Ser 25 Lys Lys Lys Asn Gln Ser Phe Ala Pro Val Ala Arg Leu Phe Gly Pro 35 Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp 50 55 Glu Glu Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His 70 75 Ser Asp Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn 90 Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val

Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His
115 120 125

Sequence Listing

Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Ile Cys Ala Arg Leu 135 Arg Phe Phe Ile Phe Ser Lys Glu Leu Pro Val Val Leu Lys Ala Phe 150 155 145 Val His Gly Asp Gly Asn Leu Leu Asn Asn His Pro Glu Leu Gln Glu 170 165 Ala Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe Asn Lys 180 185 Val Glu Cys Trp Gly Pro Leu Lys Glu Ala Val Ala Gly Ser Ser Glu 200 Ala Gly Gly Thr Arg His Glu Ile Arg Gln Glu Thr Ser Ile Ser Asn 215 220 Trp Glu Leu Pro Glu Pro Cys Gln Glu Thr Cys Asn Cys Cys Phe Pro 235 230 Pro Met Ser Leu Ile Pro Trp Ser Glu Lys Leu Pro Leu Gln Thr Glu 250 245 Asn Arg Gly Thr Gln Gly Gln Glu Ser Leu Gln Gln Gln Thr Arg 270 <210> 43 <211> 263 PRT <212> <213> Medicago truncatula <400>

Met Gly Thr Leu Thr Thr Ala Pro Pro Pro Met Leu Thr Ser Lys Phe

10

5

1

Lys	Pro	Ser	Phe 20	Ser	Pro	Gln	His	Lys 25	Pro	Leu	Phe	Pro	Asn 30	Arg	Arg
Arg	Leu	Trp 35	Lys	Ьуs	Asn	Gln	Ser 40	Ile	Val	Pro	Val	Ala 45	Arg	Leu	Phe
Gly	Pro 50	Ala	Ile	Phe	Glu	Ala 55	Ser	Ьyз	Leu	Lys	Val 60	Leu	Phe	Leu	Gly
Ile 65	Asp	Glu	Asp	Lys	His 70	Pro	Gly	Asn	Leu	Pro 75	Arg	Thr	Tyr	Thr	Leu 80
Thr	His	Ser	Asp	Val 85	Thr	Ser	Lys	Leu	Thr 90	Leu	Ala	Ile	Ser	Gln 95	Thr
Ile	Asn	Asn	Ser 100	Gln	Leu	Gln	Gly	Trp 105	Tyr	Asn	Arg	Leu	Gln 110	Arg	Asp
Glu	Val	Val 115	Ala	Gln	Trp	Lys	Lys 120	Val	Lys	Gly	Lys	Met 125	Ser	Leu	His
Val	His 130	Cys	His	Ile	Ser	Gly 135	Gly	His	Phe	Leu	Leu 140	Asp	Ile	Phe	Ala
Arg 145	Leu	Arg	Tyr	Phe	Ile 150	Phe	аүЭ	Lys	Glu	Ьеи 155	Pro	Val	Val	Leu	Lys 160
Ala	Phe	Val	His	Gly 165	Asp	Gly	Asn	Leu	Phe 170	Asn	Asn	Tyr	Pro	Glu 175	Leu
Gln	Glu	Ala	Leu 180	Val	Trp	Val	Tyr	Phe 185	His	Ser	Lys	Ile	Pro 190	Glu	Phe
Asn	Lys	Val 195	Glu	Cys	Trp	Gly	Pro 200	Leu	Lys	Glu	Ala	Ser 205	Gln	Pro	Thr
Ser	Gly 210	Thr	Gln	Arg	Asp	His 215	Gln	Asn	Leu	Thr	Leu 220	Pro	Glu	Pro	Cys
Gln	Glu	Thr	Cys	Glu	Cys	Cys	Phe	Pro	Pro	Leu	Lys	Leu	Ser	Pro	Met

Sequence Listing

230 235 240 225 Pro Cys Ser Asn Glu Val His Asn Asp Thr Tyr Glu Pro Ile Asp Gly 250 245 Ile Glu Thr Gln Gln Ser Leu 260 <210> <211> 272 <212> PRT Solanum tuberosum <213> <400> Met Gly Thr Leu Thr Ala Ser Leu Val Val Pro Ser Lys Leu Asn Asn 5 Glu Lys Gln Ser Ser Ile Phe Val His Lys Thr Arg Arg Lys Ser Lys 20 25 30 Lys Asn Gln Ser Ile Val Pro Val Ala Arg Leu Phe Gly Pro Ala Ile 40 Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp Glu Glu 55 Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His Ser Asp 70 Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val Val Ala 110 100 105 Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His Cys His 125 120 115 Ile Ser Gly Gly His Phe Met Leu Asp Leu Phe Ala Arg Leu Arg Asn

WO 2005/079168

Sequence Listing

130 135 140 Tyr Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys Ala Phe Val His 150 145 155 Gly Asp Glu Asn Leu Leu Lys Asn Asn Pro Glu Leu Gln Glu Ala Leu 165 170 Val Trp Val Tyr Phe His Ser Asn Ile Gln Glu Phe Asn Lys Val Glu 185 Cys Trp Gly Pro Leu Lys Asp Ala Thr Ser Pro Ser Ser Ser Ser 200 Gly Val Gly Gly Val Lys Ser Thr Ser Phe Thr Ser Asn Ser Asn Asn 220 215 Lys Trp Glu Leu Pro Lys Pro Cys Glu Glu Ala Cys Ala Cys Cys Phe 225 230 235 Pro Pro Met Ser Val Met Pro Trp Pro Ser Ser Asn Leu Asp Gly Ile 245 Gly Glu Glu Asn Gly Thr Ile Gln Gln Gly Leu Gln Glu Gln Gln Ser 260 265

<210> 45
<211> 269
<212> PRT
<213> Populus tremula
<400> 45
Met Gly Ser Leu Ala Ile Ala Pro Phe Leu Pro Ser Lys Leu Arg Pro

Ser Ile Leu Asp Gln Asn Ser Ser Leu Phe Pro Ser Lys Lys Leu
20 25 30

10

Lys	Arg	Lys 35	Asn	Gln	Ser	Ile	Ser 40	Pro	Val	Ala	Arg	Leu 45	Phe	Gly	Pro
		33					40								
Sex	Ile 50	Phe	Glu	Ala	Ser	Lys 55	Leu	Lys	Val	Leu	Phe 60	Leu	Gly	Val	Asp
Glu 65	ГÀЗ	Lys	His	Pro	Gly 70	Asn	Leu	Pro	Arg	Thr 75	Tyr	Thr	Leu	Thr	His 80
Ser	Ąap	Ile	Thr	Ala 85	rys	Leu	Thr	Leu	Ala 90	Ile	Ser	Gln	Thr	Ile 95	Asn
Asn	Ser	Gln	Leu 100	Gln	Gly	Trp	Ser	Asn 105	Lув	Leu	Tyr	Arg	Asp 110	Glu	Val
Val	Ala	Glu 115	Trp	Lys	Lys	Val	Lys 120	Gly	ГÀЗ	Met	Ser	Leu 125	His	Val	нів
Cys	His 130	Ile	Ser	Gly	Gly	His 135	Phe	Leu	Leu	Asp	Leu 140	Cys	Сув	Arg	Leu
Arg 145	Tyr	Phe	Ile	Phe	Arg 150	ГÀв	Glu	Leu	Pro	Val 155	Val	Leu	Lys	Ala	Phe 160
Phe	His	Gly	Asp	Gly 165	Asn	Leu	Phe		Ser 170	Tyr	Pro	Glu	Leu	Gln 175	Glu
Ala	Leu	Val	Trp 180	Val	Tyr	Phe	His	Ser 185	Asn	Ile	Pro	Glu	Phe 190	Asn	Ŀуs
Val	Glu	Cys 195	Trp	Gly	Pro	Leu	Lys 200	His	Ala	Ala	Ala	Pro 205	Tyr	Thr	Ala
Ala	Ser 210	Gly	Gly	Ala	Pro	Glu 215	Asn	Lys	Glu	Gln	Ala 220	Thr	Asp	Trp	Asn
Leu 225	Pro	Glu	Pro	Cys	Gln 230	Glu	Asn	Cys	Gln	Сув 235	Cya	Phe	Pro	Pro	Met 240

Sequence Listing

Ser Leu Ile Pro Trp Ser Glu Met Val Pro Gln Glu Asn Lys Asn Asn 245 250 255

Pro Ser Thr Gln Gln Thr Phe Gln Gln Ala Gln Gln Pro 260 265

<210> 46

<211> 270

<212> PRT

<213> Populus tremula

<400> 46

Met Gly Ser Leu Ala Val Ala Pro Phe Leu Pro Ser Lys Pro Arg Pro 1 5 10 15

Ser Leu Phe Asp Gln His Ser Ser Leu Phe Ser Pro Ser Thr Lys Leu 20 25 30

Lys Arg Lys Asn Gln Ser Ile Ser Pro Val Ala Arg Leu Phe Gly Pro
35 40 45

Ser Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp 50 55 60

Glu Lys Glu His Pro Gly Asn Leu Pro Arg Thr Tyr Thr Leu Thr His 65 70 75 80

Ser Asp Met Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn 85 90 95

Asn Ser Gln Leu Gln Gly Trp Ser Asn Lys Leu Tyr Arg Asp Glu Val

Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His
115 120 125

Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Trp Cys Cys Arg Leu 130 135 140

Sequence Listing

Arg Tyr Phe Ile Phe Arg Arg Glu Leu Pro Val Val Leu Lys Ala Phe 150 155 Phe His Gly Asp Gly Ser Leu Leu Ser Asn Tyr Pro Glu Leu Gln Glu 165 170 Gly Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe Ser Lys 185 Val Glu Cys Trp Gly Pro Leu Lys Asp Ala Ala Pro Ser Thr Ser 200 Glu Thr Gly Gly Ser Asn Glu Thr Glu Glu Leu Ala Asn Gln Ser Ser 215 210 Asn Trp Asp Leu Pro Glu Pro Cys Gln Glu Glu Asn Cys Ser Cys Cys 230 235 225 Phe Pro Pro Met Ser Leu Ile Pro Trp Ser Lys Met Val Pro Leu Glu 245 250 Asp Lys Asn Asn Pro Ser Thr Pro Gln Asn Leu Gln Gln Pro 260 265 270 <210> 47 <211> 286 <212> PRT <213> Mesembryanthemum crystallinum <400> Met Gly Thr Leu Thr Ala Ser Met Leu Leu Pro Ser Lys Leu Lys Pro 5 10 Ser Val Phe Glu Asp Gln Ser Ser Val Tyr Phe Lys Arg Ser Cys Arg 25 Gly Leu Pro Lys Leu Asn Lys Ala Lys Ser Phe Ser Pro Val Met Arg 40

Leu	Phe	Gly	Pro	Ala	Ile	Phe	Glu	Ala	Ser	Lys	Leu	Lys	Val	Leu	Phe
	50					55					60				
Leu	Gly	Val	Asp	Lys	Glu	ГÀв	His	Pro	Gly	Lys	Leu	Pro	Arg	Thr	Tyr
65					70					75					80
Thr	Leu	Thr	His	Ser	Asp	Ile	Thr	Ser	Lys	Leu	Thr	Leu	Ala	Ile	Ser
				85					90					95	
Gln	Thr	Ile		Asn	Ser	Gln	Leu		Gly	Trp	Tyr	Asn		Leu	Gln
			100					105					110		
Arg	Asp		Val	Val	Ala	Glu		Lys	Lys	Val	Lys		Lys	Met	Ser
		115					120					125			
Leu		Val	His	Сув	His		Ser	Gly	Gly	His		Leu	Leu	Asp	Leu
	130					135					140				
	Ala	Lys	Leu	Arg		Tyr	Ile	Phe	Cys	_	Glu	Leu	Pro	Val	
145					150					155					160
Leu	Lys	Ala	Phe		His	Gly	Asp	Glu		Leu	Phe	Asn	Asn	-	Pro
				165					170					175	
Glu	Leu	Gln	Glu	Ala	Met	Val	Trp		Tyr	Phe	His	Ser		Leu	Glu
	_		180					185					190		
Glu	Phe		Lys	Ile	Glu	Сув		Gly	Pro	Leu	Lys		Ala	Val	Ala
	_	195		_		_	200	_	_	_		205		_	_
Arg		Ser	Lys	Lys	Asn		Asn	Lys	Asn	Lys		Asp	Phe	ГÀЗ	Leu
	210					215									
	Phe	ŗλe	Glu	Glu	_	Asp	Ser	Pro	Asp		Glu	Leu	Glu	Ile	
225					230					235					240
Glu	Thr	Cys	Lys		Pro	Cys	Thr	Cys		Phe	Pro	Pro	Thr		Val
				245					250					255	
Ile	Pro	Trp	Ser	His	Ser	Ala	Leu	Ser	Gln	Gly	Asp	Asp	Leu	His	Leu

Sequence Listing

270

Ser Gly Gly Thr His Gln Gly Leu Glu Gln Gln Gln Thr 275 280 285 <210> 48 <211> 268 <212> <213> Arabidopsis thaliana <400> 48 Met Cys Ser Leu Ser Ala Ile Met Leu Leu Pro Thr Lys Leu Lys Pro 10 Ala Tyr Ser Asp Lys Arg Ser Asn Ser Ser Ser Ser Ser Leu Phe 25 Phe Asn Asn Arg Arg Ser Lys Lys Lys Asn Gln Ser Ile Val Pro Val 35 40 Ala Arg Leu Phe Gly Pro Ala Ile Phe Glu Ser Ser Lys Leu Lys Val 50 55 Leu Phe Leu Gly Val Asp Glu Lys Lys His Pro Ser Thr Leu Pro Arg 70 Thr Tyr Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala 85 90 Ile Ser Gln Ser Ile Asn Asn Ser Gln Leu Gln Gly Trp Ala Asn Arg 100 105 Leu Tyr Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Lys Gly Lys 120 Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu

135

265

260

Sequence Listing

Asp Leu Phe Ala Lys Phe Arg Tyr Phe Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys Ala Phe Val His Gly Asp Gly Asn Leu Leu Asn Asn 170 Tyr Pro Glu Leu Gln Glu Ala Leu Val Trp Val Tyr Phe His Ser Asn 180 185 190 Val Asn Glu Phe Asn Lys Val Glu Cys Trp Gly Pro Leu Trp Glu Ala 195 200 205 Val Ser Pro Asp Gly His Lys Thr Glu Thr Leu Pro Glu Ala Arg Cys 215 Ala Asp Glu Cys Ser Cys Cys Phe Pro Thr Val Ser Ser Ile Pro Trp 230 235 Ser His Ser Leu Ser Asn Glu Gly Val Asn Gly Tyr Ser Gly Thr Gln 250 245 Thr Glu Gly Ile Ala Thr Pro Asn Pro Glu Lys Leu 260 265 <210> 49 <211> 271 <212> PRT <213> Arabidopsis thaliana <400> 49 Met Cys Ser Leu Ala Thr Asn Leu Leu Pro Ser Lys Met Lys Pro 10 Val Phe Pro Glu Lys Leu Ser Thr Ser Ser Leu Cys Val Thr Thr Arg 25 Arg Ser Lys Met Lys Asn Arg Ser Ile Val Pro Val Ala Arg Leu Phe 40

Gly	Pro 50	Ala	Ile	Phe	Glu	Ala 55	Ser	Lys	Leu	Lys	Val 60	Leu	Phe	Leu	Gly
Val 65	Asp	Glu	Lys	ГÀЗ	His 70	Pro	Ala	Lys	Leu	Pro 75	Arg	Thr	Tyr	Thr	Leu 80
Thr	His	Ser	Asp	Ile 85	Thr	Ala	Lys	Leu	Thr 90	Leu	Ala	Ile	Ser	Gln 95	Ser
Ile	Asn	Asn	Ser 100	Gln	Leu	Gln	Gly	Trp 105	Ala	Asn	Lys	Leu	Phe 110	Arg	Asp
Glu	Val	Val 115	Gly	Glu	Trp	ГÀЗ	Lys 120	Val	Lys	Gly	Lys	Met 125	Ser	Leu	His
Val	His 130	Сув	His	Ile	Ser	Gly 135	Gly	His	Phe	Phe	Leu 140	Asn	Leu	Ile	Ala
Lys 145	Leu	Arg	Tyr	Tyr	Ile 150	Phe	Cys	гÀг	Glu	Leu 155	Pro	Val	Val	Leu	Glu 160
Ala	Phe	Ala	His	Gly 165	Asp	Glu	Tyr	Leu	Leu 170	Asn	Asn	His	Pro	Glu 175	Leu
Gln	Glu	Ser	Pro 180	Val	Trp	Val	Туг	Phe 185	His	Ser	Asn	Ile	Pro 190	Glu	Tyr
Asn	Lys	Val 195	Glu	СЛа	Trp	Gly	Pro 200	Leu	Trp	Glu	Ala	Met 205	Ser	Gln	His
Gln	His 210	Asp	Gly	Arg	Thr	His 215	Lys	Lys	Ser	Glu	Thr 220	Leu	Pro	Glu	Leu
Pro 225	Сув	Pro	Asp	Glu	Сув 230	Lys	Cys	Сув	Phe	Pro 235	Thr	Val	Ser	Thr	Ile 240
Pro	Trp	Ser	His	Arg 245	His	Tyr	Gln	His	Thr 250	Ala	Ala	Asp	Glu	Asn 255	Val

WO 2005/079168

Sequence Listing

Ala Asp Gly Leu Leu Glu Ile Pro Asn Pro Gly Lys Ser Lys Gly
260 265 270

<210> 50 <211> 221 <212> PRT <213> Lycopersicon esculentum <400> 50 Met Gly Thr Leu Thr Thr Ser Leu Val Val Pro Ser Lys Leu Asn Asn Glu Gln Gln Ser Ser Ile Phe Ile His Lys Thr Arg Arg Lys Cys Lys 20 25 Lys Asn Gln Ser Ile Val Pro Val Ala Arg Leu Phe Gly Pro Ala Ile 35 40 Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp Glu Glu 50 55 Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His Ser Asp 75 70 Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn.Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val Val Ala 100 105 Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His Cys His 120 125 115 Ile Ser Gly Gly His Phe Met Leu Asp Leu Phe Ala Arg Leu Arg Asn 130 135

Tyr Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys Ala Phe Val His

Sequence Listing

150 155 160 145 Gly Asp Glu Asn Leu Leu Arg Asn Tyr Pro Glu Leu Gln Glu Ala Leu 170 Val Trp Val Tyr Phe His Ser Asn Ile Glu Phe Asn Lys Val Glu 185 Cys Trp Gly Pro Leu Arg Asp Ala Thr Ser Pro Ser Ser Ser Ser Gly 200 Gly Val Gly Gly Val Lys Ser Thr Ser Phe Thr Ser His 210 . 215 <210> 51 <211> 110 <212> PRT <213> Beta vulgaris <400> 51 Pro Glu Leu Gln Glu Ala Ser Val Trp Val Tyr Phe His Ser Ser Ile 5 10 Pro Glu Phe Asn Lys Val Glu Cys Trp Gly Pro Leu Thr Asp Ala Val Asp Pro Pro Ser Lys Asn Lys Lys Arg Met Met Met Ile Asn Asp Glu 40 Gln Asp Lys Glu Glu Glu Glu Ala Ser Ser Ser Lys Trp Glu Met 55 Leu Val Pro Cys Thr Lys Pro Cys Arg Cys Cys Phe Pro Pro Thr Ser 75 70 Leu Ile Pro Trp Thr Pro Ser Leu Ser Gln Glu Gln Gln Gln Gln Gln 85 90

Sequence Listing

105 100 52 <210> 187 <211> PRT <212> <213> Zoysia japonica <400> 52 Thr Tyr Thr Leu Thr His Ser Asp Val Thr Ala Lys Leu Thr Leu Ala Val Ser His Thr Ile His Ala Ala Gln Leu Gln Gly Trp Tyr Asn Arg 25 Leu Gln Arg Asp Glu Val Val Ala Glu Trp Arg Lys Val Arg Gly Asn 40 Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Arg 50 55 Asp Leu Ile Ala Pro Leu Arg Tyr Tyr Ile Phe Arg Lys Glu Leu Pro 65 Val Val Leu Lys Ala Phe Val His Gly Asp Gly Ser Leu Phe Ser Ser . 85 His Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His Ser Asn 105 100 Leu Pro Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Cys Asp Ala 120

Ala Ala Pro Val Glu Glu Glu Gly Gln Gln Asn Asp Asp Arg Leu Pro

Ala Gly Glu Trp Pro Arg Arg Cys Pro Gln Gln Cys Glu Cys Cys Phe

135

150

Gln Leu Pro Gly Asp Val Ser Ile Pro Pro Pro Gly Thr Arg

Sequence Listing

Pro Pro His Ser Leu Ile Pro Trp Pro Asn Glu His Asp Met Ala Pro 165 170 175

Thr Asp Ala Pro Ala Ala Gly Gln Thr Gln Gln
180 185

<210> 53

<211> 93

<212> PRT

<213> Lotus corniculatus var. japonicus

<400> 53

Tyr Pro Glu Leu Gln Asp Ala Leu Val Trp Val Tyr Phe His Ser Lys

1 5 10 15

Ile Pro Glu Phe Asn Lys Val Gln Cys Trp Gly Pro Leu Lys Glu Ala 20 25 30

Ala Ala Pro Ser Gly Gly Ser Pro Glu Lys Glu Gly Glu Gly Val Lys
35 40 45

Met Pro Asp Pro Cys Pro Glu Glu Cys Glu Cys Cys Phe Pro Pro Pro 50 55 60

Pro Ala Leu Asp Pro Ile Pro Trp Ser Glu Glu Val Pro Ser Pro His 65 70 75 80

Tyr Glu Ala Phe Asp Gly Val Gly Thr Arg Pro Asn Leu 85 90

<210> 54

<211> 107

<212> PRT

<213> Lotus corniculatus var. japonicus

<400> 54

Asp Leu Cys Ala Lys Leu Arg Tyr Phe Ile Phe Cys Lys Glu Leu Pro

Sequence Listing

10 1 Val Val Leu Lys Ala Phe Ile His Gly Asp Glu Asn Leu Phe Asn Asn 20 Tyr Pro Glu Leu Glu Glu Ser Leu Val Trp Val Tyr Phe His Ser Asn Ile Ser Glu Phe Asn Lys Val Glu Cys Trp Gly Pro Leu Lys Asp Ala 55 Cys Ala Thr Ser Ile Gly Ser Tyr Ser Tyr Asp Lys Gly Met Pro Gln 70 Thr Gln Pro Cys Gln Gln Asn Cys Glu Cys Cys Phe Thr Pro Met Ser Ser Ser Asp Trp Ile Gly Thr Gln Gln Lys Leu 105 100 <210> 55 <211> 137 <212> PRT Saccharum officinarum <213> <400> Thr Arg Leu Asp Leu Ile Ala Gly Leu Arg Tyr Tyr Ile Phe Arg Lys Glu Leu Pro Val Val Leu Lys Ala Phe Val His Gly Asp Gly Asp Leu 20 25 Phe Ser Arg His Pro Glu Leu Glu Asp Ala Thr Val Trp Val Tyr Phe 35 His Ser Asn Leu Thr Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu 50 55 Arg Asp Ala Ala Pro Pro Ala Glu Glu Asp Ser Thr Ala Pro Ala

Sequence Listing

70 75 80 65 Ala Ser Asn Ser Lys Glu Gly Gln Met Pro Pro Val Gly Glu Trp Pro Tyr Arg Cys Pro Gln Gln Cys Asp Cys Cys Phe Pro Pro His, Ser Leu 105 Ile Pro Trp Pro Asn Glu His Asp Met Ala Ala Ala Ala Ala Asp Ala 120 115 Thr Ala Ala Gly Gln Ala Gln Gln Gln 130 135 <210> 56 <211> <212> PRT <213> Picea <400> Ile Asn Lys Asp Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp 5 10 Glu Val Ile Ala Gln Trp Lys Lys Ser Gln Gly Lys Met Ser Leu His 25 Val His Cys His Ile Ser Gly Gly His Trp Leu Leu Asp Ala Ile Ala 40 Arg Leu Arg Phe Tyr Ile Phe Arg Lys Glu Leu Pro Val Val Leu Glu 50 Ala Phe Arg His Gly Asp Arg Ala Leu Leu Asp Lys His Pro Glu Leu 70 65 Glu Thr Ala Leu Val Trp Val Tyr Phe His Ser Asn Val Arg Glu Phe 90 85 Lys Arg Val Glu Cys Trp Gly Ser Leu Ala Glu Ala Cys Lys Gly Ala

Sequence Listing

100 105 110 Pro Ser Asn Leu Glu Lys Glu Leu Asp Glu Glu Phe Asn Gly Glu Lys 120 Leu Glu Met Pro Ser His Cys Ser Glu Pro Cys Asn Cys Cys Phe Pro 135 Pro Phe Ser Val Leu Leu Arg Pro Glu Asp Ala Glu Gln Phe Ile 150 145 155 <210> 57 <211> 210 <212> PRT <213> Brassica napus <400> 57 Met Cys Ser Leu Ala Thr Asn Leu Leu Pro Ser Thr Met Lys Pro 1 10 Ala Phe Thr Glu Lys Gln Asn Thr Asn Ser Leu Phe Leu Thr Asn Lys 25 Arg Ser Leu Met Gln Asn Arg Ser Thr Val Pro Val Pro Val Ala Arg Leu Leu Glu Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Ser Phe Leu Gly Val Asp Glu Lys Lys His Pro Ser Lys Leu Pro Arg Thr Tyr 65 70 75 Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser 85 90 Gln Ser Ile Asn Asn Ser Gln Leu Gln Gly Trp Ala Asn Arg Leu Phe 100 105 110

Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser

Sequence Listing

115 120 125 Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Leu 130 135 140 Ile Ala Lys Leu Arg Tyr Tyr Ile Phe Cys Lys Glu Leu Pro Val Val 150 155 Leu Lys Ala Phe Val His Gly Asp Gly Asn Leu Leu Asn Ser Tyr Pro 170 Glu Leu Gln Glu Ser Pro Val Trp Val Tyr Ser Ile Gln Thr Ser Pro 185 Ser Thr Ile Arg Leu Asn Val Gly Gly Arg Phe Gly Arg Pro Arg Ser 200 205 Thr Asn 210 <210> 58 97 <211> <212> PRT <213> Brassica napus <400> 58 Met Cys Ser Leu Ser Ala Asn Met Leu Leu Pro Thr Lys Leu Lys Pro 10 Ala Tyr Ser Asp Lys Arg Gly Asn Ser Thr Asn Ser Leu Leu Val Ser 20 25 Asn Thr Arg Ser Lys Arg Lys Asn Gln Ser Val Val Pro Met Ala Arg 35 Leu Phe Gly Pro Ala Ile Phe Glu Ser Ser Lys Leu Lys Val Leu Phe 50

Leu Gly Val Asp Asp Lys Lys His Pro Pro Thr Leu Pro Arg Thr Tyr

Sequence Listing

65 70 75 80

Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser

His