Asymptotic notations are used to compare algorithms by providing a mathematical boundary for their runtime functions. These notations define an upper bound, a lower bound, or both, helping to analyze the efficiency of algorithms as input size grows.

- **Big-O**: upper bound on runtime growth denoted O(f(n)) which is $g(n): 0 < g(n) \le cf(n)$ whenever $n \ge n_0$ for some c > 0, $n_0 > 0$
- **Big-Omega**: lower bound on runtime growth denoted $\Omega(f(n))$ which is $g(n): 0 < cf(n) \le g(n)$ whenever $n \ge n_0$ for some c > 0, $n_0 > 0$
- **Big-Theta**: tight bound (both upper and lower bound) denoted $\Theta(f(n))$ which is $g(n): c_1 f(n) \le g(n) \le c_2 f(n)$ whenever $n \ge n_0$ for some $c_2 \ge c_1 > 0$, $n_0 > 0$

Common Big-O Functions

- O(1): constant time (independent of input size).
- O(log₂n): logarithmic time (e.g., binary search).
- O(n): linear time (e.g., iterating over an array).
- $O(n^2)$: quadratic time (e.g., nested loops).
- $O(2^n)$: exponential time (e.g., brute-force recursive algorithms).

Visualizing Big-O


```
template <typename T>
     void Swap(T& a, T& b)
3
4
          T \text{ temp} = a;
5
          a = b;
6
          b = temp;
```

Steps	Code	Cost (c _i)	Time (t _i)
1	T temp = a;	$\mathtt{c}_{\mathtt{1}}$	1
2	a = b;	$\mathtt{c}_{\mathtt{2}}$	1
3	b = temp;	c ₃	1

$$T(n) = \sum_{i=1}^{m} c_i \cdot t_i$$

$$T(n) = c_1(1) + c_2(1) + c_3(1)$$

 $T(n) = 1 + 1 + 1$
 $T(n) = 3$
 $O(1)$

```
template <typename T>
     T Maximum(T arr[], int size)
         T max = arr[0];
          int i = 1;
          while (i < size)
              if (arr[i] > max)
                  max = arr[i];
12
              i++;
13
14
          return max;
15
```

Steps	Code	Cost (c _i)	Time (t _i)
1	T max = arr[0];	$\mathbf{c_1}$	1
2	int i = 1;	$\mathtt{c}_{\mathtt{2}}$	1
3	while (i < size)	c ₃	n - 1 + 1
4	<pre>if (arr[i] > max)</pre>	C ₄	n - 1
5	max = arr[0];	\mathbf{c}_{5}	n - 1
6	i++;	c ₆	n - 1
7	return max;	C ₇	1

$$T(n) = c_1(1) + c_2(1) + c_3(n) + c_4(n-1) + c_5(n-1) + c_6(n-1) + c_7(1)$$

$$T(n) = 1 + 1 + n + n - 1 + n - 1 + n - 1 + 1$$

$$T(n) = 4n$$

$$O(n)$$

```
string Square(int length)
 6
         string result;
 8
         for (int i = 0; i < length; i++)
 9
              for (int j = 0; j < length; j++)
10
11
12
                  result += "*";
13
14
              result += "\n";
15
          return result;
16
17
```

Steps	Code	Cost (c _i)	Time (t _i)
1	string result;	c_1	1
2	for (int i = 0; i < length; i++)	c_2	1 + n + n + 1
3	for (int j = 0; j < length; j++)	c ₃	$n + n^2 + n^2 + n$
4	result += "*";	C ₄	n²
5	result += "\n";	c ₅	n
6	return result;	c ₆	1

$$T(n) = c_1(1) + c_2(2n + 2) + c_3(2n^2 + 2n) + c_4(n^2) + c_5(n) + c_6(1)$$

$$T(n) = 1 + 2n + 2 + 2n^2 + 2n + n^2 + n + 1$$

$$T(n) = 3n^2 + 5n + 4$$

$$O(n^2)$$