

深度学习与类脑计算

(六)

曹立宏

脑科学与智能媒体研究院

The Last Homework

Theory

- 请叙述并推导Logistic Regression中参数的MAP估计表达。
- · 请叙述并推导SVM在不可分数据情况下的最优解表达。
- · 请叙述并推导线性PCA中的主成分表达式。

Practice

- (本题可以组队完成) 收集中传男女学生身高体重信息,
 - 分别采用1维和2维Logistic Regression的方法实现ML和MAP估计。
 - 用SMV的方法, 依据中传学生身高体重信息对性别分类。
 - 比较以上两种方法的结果。
- 数据Cat4D3Groups是4维观察数据,
 - 请先采用MDS方法降维到3D, 形成Cat3D3Groups数据, 显示并观察。
 - 对Cat3D3Groups数据采用线性PCA方法降维到2D,形成Cat2D3Groups数据,显示并观察。
 - 对Cat2D3Groups数据采用K-Mean方法对数据进行分类并最终确定K,显示分类结果。
 - 对Cat2D3Groups数据采用Hierarchical分类法对数据进行分类,并显示分类结果。

在Python中使用最优化算法可以参考scipy.optimize http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

复习

- 分类问题
 - Supervised
 - Logistic Regression
 - SVM
 - Unsupervised
 - Dimension Reduction
 - CPA
 - MDS
 - IsoMap
 - Clustering
 - K-Mean
 - Hierarchical

Kernel Method – Density Estimation

Histograms

$$\hat{f}(x) = \frac{1}{Nh} \sum_{i=1}^{N} k(\frac{x - x_i}{h})$$

Kernel是距离、相似度的一种度量

Histograms

$$\hat{f}(\vec{x}) = \frac{1}{N} \sum_{i=1}^{N} k_{\Sigma} (\vec{x} - \vec{x}_i)$$

$$k_{\Sigma}(\vec{x}) = \frac{1}{\sqrt{(2\pi)^m |\Sigma|}} \exp(-\frac{1}{2} \vec{x}^T \Sigma^{-1} \vec{x})$$

From Euclidean Space to Hilbert Space

- Extension 1
 - Inner Product Space
 - Symmetric
 - Linearity
 - Positive Definite
- Extension 2
 - Vector to Function

$$\langle , \rangle \colon R^m \times R^m \to R$$

$$\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^{m} x_i y_i$$

$$\langle f,g\rangle = \int f(x)g(x)dx$$

Distance in Hilbert Space

Vector to vector

$$d(\vec{x}, \vec{y}) = \sqrt{\langle \vec{x}, \vec{y} \rangle}$$

Function to function

$$d(f,g) = \sqrt{\langle f,g\rangle} = \left(\int f(x)g(x)dx\right)^{1/2}$$

基向量-基函数

• 基向量

$$\langle \vec{e}_i, \vec{e}_j \rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$\vec{x} = \sum_{i=1}^{m} \lambda_i \vec{e}_i$$
$$\lambda_i = \langle \vec{x}, \vec{e}_i \rangle$$

• 基函数

$$\langle e_i, e_j \rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$\varphi(x) = \sum_{i=1}^{+\infty} \lambda_i e_i(x)$$
$$\lambda_i = \langle \varphi, e_i \rangle$$

特征向量-特征函数

• 特征向量 of A:

$$A\vec{x} = \lambda \vec{x}$$

•特征函数 of 线性变换T:

$$T(f) = \lambda f$$

• 核函数变换是线性变换:

$$K(f(x)) \triangleq [Kf](x) = \int K(x,s)f(s)ds$$

如果A是半正定矩阵 存在正交矩阵P, 使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & \cdots \\ \vdots & \lambda_i & \vdots \\ & \cdots & \lambda_m \end{pmatrix}, \ \lambda_i \ge 0$$

正定核函数

•对于对称核函数K(x,s),任选格点 (u_i,v_j) ,以下矩阵为半正定矩阵

$$\begin{pmatrix} k(u_1, v_1) & \cdots & k(u_1, v_N) \\ \vdots & k(u_i, v_j) & \vdots \\ k(u_N, v_1) & \cdots & k(u_N, v_N) \end{pmatrix}$$

$$K(x,y) = x^T y, x, y \in \mathbb{R}^d$$

$$K(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}, x, y \in \mathbb{R}^d, \sigma > 0$$

Mercer's theorem

• 对于正定核函数K(s,t),存在正交特征函数集 $\varphi_i(x)$ 和特征值集 λ_i ,使得

$$k(s,t) = \sum_{j}^{\infty} \lambda_{i} \varphi_{j}(s) \varphi_{j}(t)$$

SVM-Kernel Trick

• Dual Problem

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \vec{x_i}^T \vec{x_j} \qquad \alpha_i \ge 0$$

Generalization

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j K(\vec{x}_i, \vec{x}_j) \qquad \alpha_i \ge 0$$

The Kernel Trick

• 给定数据,可以得到距离 $d_{ij} = \langle \vec{x}_i, \vec{x}_j \rangle$

Figure 5: (Left) A dataset in \mathbb{R}^2 , not linearly separable. (Right) The same dataset transformed by the transformation $[x_1, x_2] = [x_1, x_2, x_1^2 + x_2^2]$.

- •对于复杂(如线性不可分)问题,通过变换(如升维)也许可以转化为简单(如线性可分)问题。
- Idea:
 - Take advantage of "Distance Dependency"
 - Transform data to "feature space"
 - Take distance measure in "feature space"

$$\varphi(\cdot)$$
: $R^m \to R^k$
 $k(\vec{x}, \vec{y}) = \langle \varphi(\vec{x}), \varphi(\vec{y}) \rangle_k$

SVM-Kernel Trick

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j K(\vec{x}_i, \vec{x}_j) \qquad \alpha_i \ge 0$$

Polynomial Kernel

$$K(\vec{x}_i, \vec{x}_j) = (-\gamma \langle \vec{x}_i, \vec{x}_j \rangle + \beta)^d$$

Radial Basis Function (RBF) Kernel

$$K(\vec{x}_i, \vec{x}_j) = \exp(-\gamma |\vec{x}_i - \vec{x}_j|^2)$$

Kernel Regression - Nadaraya - Watson

$$f(s) = E(y|x = s)$$

$$f(s) = \int y p(y|s) dy$$

$$f(s) = \int y \frac{p(y,s)}{p(s)} dy$$

$$\hat{f}(s) = \frac{\sum_{i=1}^{N} y_i K_h(s - x_i)}{\sum_{i=1}^{N} K_h(s - x_i)}$$

Dirac delta function, or δ function

$$\delta(x) = \begin{cases} +\infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$$

$$\int_{-\infty}^{+\infty} \delta(x) dx = 1$$

$$\int_{-\infty}^{+\infty} k(s)\delta(s-t)dx = k(t)$$

Convolution

$$(f * g)(x) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} f(s)g(x - s)ds$$
$$= \int_{-\infty}^{+\infty} f(x - t)g(t)dt$$
$$\stackrel{\text{def}}{=} (g * f)(x)$$

Fourier Transform

$$\mathcal{F}: f(t) \to \hat{f}(\xi) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} f(t)e^{-2\pi it\xi}dt$$

$$\mathcal{F}\{f * g\}(t) = \mathcal{F}\{f\}(t) \cdot \mathcal{F}\{g\}(t)$$

离散卷积

$$(f * g)(n) \stackrel{\text{def}}{=} \sum_{i=-\infty}^{+\infty} f(i)g(n-i)$$

c = f * g

	f	1	4	2	5		g	3
		1	4	2	5			
1	4	3				•		
		1	4	2	5			
	1	4	3					
		1	4	2	5			
		1	4	3				
		1	4	2	5			
			1	4	3			
		1	4	2	5			
				1	4	3		
		1	4	2	5			
					1	4	3	

1

$$C[1] = 1*4 + 4*3 = 16$$

$$C[2] = 1*1 + 4*4 + 2*3 = 23$$

$$C[3] = 4*1 + 2*4 + 5*3 = 27$$

$$C[4] = 2*1 + 5*4 = 22$$

$$C[5] = 5*1 = 5$$

http://toto-share.com

Convolution in 2D

Continuous

$$(f * g)(x,y) \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(s,t)g(x-s,y-t)dsdt$$

Discrete

$$(f * g)(n,m) \stackrel{\text{def}}{=} \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} f(i,j)g(n-i,m-j)$$

Why Convolution?

- 1-D
 - Memory
 - Average
 - Differentiation
 - ...
- 2D
 - Average
 - Differentiation
 - Direction
 - •

1	1	1
		_

_1	0	1

1	1	1
1	1	1
1	1	1

-1	0	1
-1	0	1
-1	0	1

0	0	1
0	1	0
1	0	0

1	0	0
0	1	0
0	0	1

Convolution for Image Processing

Sharpen

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Box blur (normalized)

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Gaussian blur

(approximation)

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Filter: Emboss

(GIMP documentation)

Filter: Edge-Detect

(GIMP documentation)

Canny edge detection

Gabor Filters – 1D

$$g(x;\sigma,f,\phi) = \underbrace{\expigg(-rac{x^2}{2\sigma^2}igg)}_{ ext{Gaussian}} \underbrace{\expigg(i\left(rac{2\pi x}{f}+\phi
ight)igg)}_{ ext{Sinusoid}}$$

Gabor Filters – 2D

Complex

$$g(x, y; \lambda, \theta, \psi, \sigma, \gamma) = \exp\left(-\frac{x'^2 + \gamma^2 y'^2}{2\sigma^2}\right) \exp\left(i\left(2\pi \frac{x'}{\lambda} + \psi\right)\right)$$

Real

$$g(x, y; \lambda, \theta, \psi, \sigma, \gamma) = \exp\left(-\frac{x'^2 + \gamma^2 y'^2}{2\sigma^2}\right) \cos\left(2\pi \frac{x'}{\lambda} + \psi\right)$$

Imaginary

$$g(x, y; \lambda, \theta, \psi, \sigma, \gamma) = \exp\left(-\frac{x'^2 + \gamma^2 y'^2}{2\sigma^2}\right) \sin\left(2\pi \frac{x'}{\lambda} + \psi\right)$$

where

$$x' = x\cos\theta + y\sin\theta$$

and

$$y' = -x\sin\theta + y\cos\theta$$

Convolution happens in brain

- Orientation Selectivity in V1
- Large cells and small cells RF size

Convolution is auto-developed in Brain

- Auto-developed under
 - Normal condition
 - With critical period

Neural Circuitry from LGN to V1

- How exactly the orientation map is developed?
- What's the neural connection pattern from LGN to V1-Layer4-LayerX?
 - 从V1看,有Orientation Cells arranged in pinwheels. 但由于pinwheel的Size大约是0.5mm,整个V1能容纳的pinwheels数量有限,所以V1对方向的感受是有一定的区域,也就是感受野的大小。
 - V1中每个方向细胞的感受野相同吗?
 - 从V1细胞的反应能追溯LGN的细胞情况吗?是否可逆?

ConvNet or CNN - Basics

- Feed forward multi-layers
- A Layer can have depth Anti biological intuition
- Convolve + Pooling
- FC towards the end

- Image RGB(i,j)-Input Layer depth=3
- Convolution filters
 - Depth of filters=Depth of Pre-Layer
 - # of filters is a hyperparameter

ConvNet-Filter Parameters

- Filter has its size as hyperparameter denoted by F
- The squared size of a filter is FxF
- # of filter's parameters=WxHxD+1, D for Depth and 1 for bias.
- Every filter has it's own parameters
- Filter's weights are shared by all neurons in the filter's Post-Layer.
- About weight sharing
 - Biological plausible
 - Saving a lot of weights
- Questions
 - Square?
 - Same size F RF size?

ConvNet-Stride

1	1	2	5	5
3	2	3	4	4
2	4	1	5	5
1	1	2	1	1
1	1	2	5	5

• Stride=1

1	1	2	5	5
3	2	3	4	4
2	4	1	5	5
1	1	2	1	1
1	1	2	5	5

1	1	2	5	5
3	2	3	4	4
2	4	1	5	5
1	1	2	1	1
1	1	2	5	5

• Stride=2

1	1	2	5	5
3	2	3	4	4
2	4	1	5	5
1	1	2	1	1
1	1	2	5	5

1	1	2	5	5
3	2	3	4	4
2	4	1	5	5
1	1	2	1	1
1	1	2	5	5

ConvNet-Padding

- Filter size can reduce the post-Layer's size
- Padding to prevent such reduction
- Padding size: (F-1)/2 F-Filter Size
- Zero: Best?

0	0	0	0	0	0	0
0	1	1	2	5	5	0
0	3	2	3	4	4	0
0	2	4	1	5	5	0
0	1	1	2	1	1	0
0	1	1	2	5	5	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	1	1	2	5	5	0
0	3	2	3	4	4	0
0	2	4	1	5	5	0
0	1	1	2	1	1	0
0	1	1	2	5	5	0
0	0	0	0	0	0	0

ConvNet - Build PostLayer

- Input Layer
 - W1, H1, D1
- Hyperparameters
 - # of filters K Power of 2
 - Filter size F Odd number; Assuming Square Filter
 - Stride size S
 - Pad Size P
- ConvLayer
 - W2=(W1-F+2P)/S+1
 - H2=(H1-F+2P)/S+1
 - D2=K
- Parameters
 - FxFxD1 for one filter
 - FxFxD1xK for K filters + K biases

ConvNet - Pooling

ConvNet - Max Pooling

- Input Layer
 - W1, H1, D1
- Hyperparameters
 - Pooling size F
 - Stride size S
- PoolingLayer
 - W2=(W1-F)/S+1
 - H2=(H1-F)/S+1
 - D2=D1
- Parameters
 - None
- Other Pooling
 - Average Not common
 - BP-derivative calculation

1	1	2	5
3	2	3	4
2	4	1	5
1	1	2	1

3	5
4	5

Why Pooling?

- Reduce space
- Get invariance reducing noise

Why Pooling?

- Biological reason
 - Lateral Inhibition
 - WTA

Final Fully Connected Layer

- FC Layer
 - # of neurons=# of classes
 - One-hot encoding

0

1

0

0

Training CNN

- BP method
- Different from MLP BP
 - Pooling
 - Parameter sharing
 - Auto derivative?
- Refs:
 - http://www.cnblogs.com/tornadomeet/p/3468450.html

LeNet-5

- LeCun 1998
- 10 Classes

总结

Kernel Method

- Sample point can be viewed as a kernel convolved with delta-function on that point
 - Density estimation
 - Regression
- Kernel can be viewed as dot product in Hilbert space
 - Kernel trick for SVM

Convolution

- Kernel as filter
 - Signal processing Fourier Transformation
 - Image processing
 - Gabor filter
- Convolution in brain
 - Orientation cell in V1
- ConvNet
 - Layer with depth
 - Filter with depth (=PreLayer Depth)
 - # of filters (=Post-Layer depth)
 - Filter size Stride Padding
 - Max pooling: Pooling size stride

Homework

- Theory
 - 证明 两个函数的卷积的F变换等于两个函数的F变换后的乘积
- Practice
 - 采用中传男女学生身高体重信息
 - 用Kernel方法分别得到男女生的身高体重1D分布密度函数估计
 - 用Kernel方法分别得到男女生的身高体重2D分布密度函数估计
 - 用Kernel方法分别得到男女生的体重y vs 身高x 的回归曲线
 - 用Kernel Trick方法依据身高体重数据做SVM分类
 - 以上所有结果请形成分析报告
 - 采用HTML5+JavaScript实现一个展示Gabor filter的交互网页
 - 采用MNST数据,建立一个ConvNet做分类训练学习,并形成分析报告
 - 建议参考LeNet-5的构架
 - Ref 1998, LeCun等, Gradient-based learning applied to document recognition