Introduction to Distance Sampling for Wildlife

Population Monitoring

Wildlife Tourism College Pardamat Conservation Area 16 – 20 September 2024

Q1: Why do we count wildlife?

Complete Census

N = Number of Animals Counted

$$N = ?$$

$$Density = rac{\# \ Counted}{Area \ Surveyed}$$

 $Density = rac{\# Counted}{Area Surveyed}$

 $\hat{N} = Density x Total Area$

$$Density = \frac{\# Counted}{Area Surveyed}$$

 $\hat{N} = Density x Total Area$

Q2: If you surveyed 20 km² and your total area is 80 km², what is the density in your sampled area?

$$Density = \frac{\# Counted}{Area Surveyed}$$

 $\hat{N} = Density x Total Area$

Q2: If you surveyed 20 km² and your total area is 80 km², what is the density in your sampled area?

Q3: What is your estimated " \hat{N} " for the full area?

$$Density = \frac{\# \ Counted}{Area \ Surveyed}$$

 $\hat{N} = Density x Total Area$

Q2: If you surveyed 20 km² and your total area is 80 km², what is the density in your sampled area?

Q3: What is your estimated " \hat{N} " for the full area?

Q4: What assumptions are we making to find \hat{N} ?

$$Density = \frac{\# Counted}{Area Surveyed}$$

 $\hat{N} = Density x Total Area$

$$\hat{N} = 1.3 \times 80 = 104$$

$$N=64$$

True Abundance

Q5: How could design our study so that observed density is more "representative"?

What if we miss some animals?

Photo credit: Richard Costin

What if we miss some animals?

Photo credit: Richard Costin

What if we miss some animals?

Q6: What factors make animals hard to see?

Q7: What happens to our estimates of D and \widehat{N} if we miss animals?

Photo credit: Janet Kavutha

Why How do we count wildlife?

Basics of Distance Sampling

Estimating animal density by recording distances to fixed transect lines or points

Basics of Distance Sampling

Estimating animal density by recording distances to fixed transect lines or points

Why Bother with Distance Sampling?

Scenario A:

- We detect every animal!
- Likely open habitat + highly visible species

Scenario B:

- Much more common!
- More animals seen close to our transect line

Why Bother with Distance Sampling?

Scenario A:

- We detect every animal!
- Likely open habitat + highly visible species

Detection probability (p) = 1

$$Density = \frac{\# Counted}{Area Surveyed}$$

Scenario B:

- Much more common!
- More animals seen close to our transect line

Detection probability (p) < 1Density = ???

Detection probability (p) = 1

Detection probability (p) < 1

Estimated detection prob. (\hat{p}) = 0.65

 \hat{p} = Area under curve

Distance sampling model

Why Bother with Distance Sampling?

Scenario A:

Detection probability (p) = 1

$$Density = \frac{\# Counted}{Area Surveyed}$$

Scenario B:

Detection probability (p) = 0.65

Density =???

$$Density = \frac{\# Counted}{Area Surveyed * p}$$

Scenario B:

Q8: What is your estimate of *D* if you have the following data?

- Transect area = 20 km²
- # Counted = 61
- Estimated detection = 0.65
- Total area = 80 km²

Q9: How many animals would you guess are in the transect area?

Q10: How many animals would you guess are in the total area?

Scenario B:

Q8: What is your estimate of *D* if you have the following data?

- Transect area = 20 km²
- # Counted = 61 Topi
- Estimated detection = 0.65
- Total area = 80 km^2

$$D = \frac{61}{20} = 3.05 \, Topi/km^2$$

Q9: How many animals would you guess are in the transect area?

 $3.05 Topi/km^2 \times 20 km^2 = 93.8 Topi (Truth = 100)$

Q10: How many animals would you guess are in the total area?

Estimated N = $3.05 Topi/km^2 \times 80 km^2 = 244 Topi$

Scenario B:

Q11: Now imagine that each dot in Scenario B represents a group of Topi, not a single individual. If the average (mean) group size is 3.8 individuals, how many Topi would you estimate for your 80 km² area?

- Transect area = 20 km²
- # Counted = 61 Topi Groups
- Mean Group Size = 3.8
- Estimated detection = 0.65
- Total area = 80 km²

Scenario B:

Q11: Now imagine that each dot in Scenario B represents a group of Topi, not a single individual. If the average (mean) group size is 3.8 individuals, how many Topi would you estimate for your 80 km² area?

- Transect area = 20 km²
- # Counted = 61 Topi Groups
- Mean Group Size = 3.8
- Estimated detection = 0.65
- Total area = 80 km²

Estimated N = $3.05 \frac{Groups}{km^2} \times 80 \text{ km}^2 \times 3.8 \frac{Individuals}{Group} = 927 \text{ Topi}$

Line Transects

Point Transects

Summary of Distance Sampling Concepts

1) Number of animals seen/heard decreases at greater distances from the observer

2) If we understand how detection probability changes with distance, we can get much more reliable density/abundance estimates than

we do with simple counts

Detection Probability =

 $\frac{\textit{Area Below Curve}}{\textit{Total Area of Rectangle}}$

Study Design

- Assumptions and Limitations
 - a) Objects on or near transects are detected with certainty
 - b) Objects should be measured from their initial location
 - c) Measurements should be exact
 - d) Sufficient sightings are recorded to estimate detection function
 - e) Sightings should be independent
 - f) Observer must walk faster than the animals
 - g) Transects should be placed at random with respect to the distribution of animals

Distance Sampling Practice!

