

A·P·E Angewandte Physik & Elektronik GmbH and University of Stuttgart

Optimized coherent Raman scattering microscopy with a novel tunable dual wavelength lightsource

Ingo Rimke¹, Gregor Hehl², Marcus Beutler¹, Peter Volz¹, Edlef Büttner¹, Andreas Volkmer², Vishru Krishnamachari³; William Hay³

A•P•E GmbH, Berlin, Germany
 3. Institute of Physics, University of Stuttgart, Germany
 Leica Microsystems, Mannheim, Germany

Outline

OPOs for CRS microscopy coming of age

Second Generation in 2006: Levante Emerald: 532 nm pumped

Photonics West 2015; 9329-69 Page 3

green pumped ps-OPO

- Pump laser: mode locked 1 µm laser
- OPO pumped with SHG

- Pulse lengths Nd:YVO:
 7 ps @ 1064 nm (CRS Stokes)
 5.5 ps @ OPO Signal (CRS-Pump)
- 1 W output @ 1064 nm and 1 W @ OPO-Signal

Design based on: Tukker et al, Optics Communications 154(1998).83-86

Motivation for this work

How to get better CRS images (Signal to noise) and not compromising on the spectral resolution?

- We believe in picosecond light sources based on OPOs due to their reliability and low noise characteristics
- It would help to get pulses shorter: 10 cm⁻¹ and 1 2 ps ideal, but keeping the low noise
 → video rate SRS-imaging
- Ease of use: we want to have a one-box hands free light source

Starting point for developmet: Integrated OPO *pico*Emerald™

a one-box turnkey system for CRS, integrating pump laser and OPO

- Compact and sealed cavity
- Automatic overlap in space and time for CRS- Pump and Stokes
- Independent power setting for 1064 nm (Stokes) beam and OPO-Signal (Pump)
- Integrated modulator (EOM) for the 1064 nm- beam (10 or 20 MHz, fixed)

fiber based pump laser

integrating fiber laser into the picoEmerald

- Modelocked ps fiber laser: Yb-based MOPA design (aeroPULSE, NKT Photonics)
- 10 W output power
- $\lambda = 1031 \text{ nm}$; $\Delta \lambda = 1 \text{ nm}$ (10 cm⁻¹)

- OPO-Signal @ 800 nm: 1.9 ps
- 10 cm⁻¹ bandwidth of pump and OPO

Tuning and output power

Test of repeatability and reliability: Random tuning routine

• Tuning: 690 - 960 nm \rightarrow 725 - 4800 cm⁻¹

Fiber laser and noise

- Intrinsically higher noise of fiber lasers (due to MOPA design) than solid state Laser with the same power levels.
 How strong is the effect?
- Is the system suitable for video-rate SRS-imaging?

Setup of RIN noise measurement

Si-PD 1 ns rise time Thorlabs DET10A

RIN: laser noise @ 1 µm

	1 MHz	10 MHz	20 MHz
Solid state laser	-155 dBc	-162 dBc SNL	-162 dBc SNL
Fiber laser	-140 dBc	-153 dBc	-154 dBc

Photonics West 2015; 9329-69

RIN: OPO noise @ 810 nm

	1 MHz	10 MHz	20 MHz
Solid state laser	-155 dBc	-162 dBc SNL	-162 dBc SNL
Fiber laser	-140 dBc	-160 dBc	-162 dBc SNL

Photonics West 2015; 9329-69

Page 11

Comparative setup for CARS and SRS signal strength

System pulse lengths solid state laser 7 ps

OPO @ 817 nm 5.5 ps

Fiber-Laser 2.2 ps

OPO @ 798 nm 1.9 ps

• Setup at Leica Microsystems / Mannheim

picoEmerald and picoEmerald S coupled into a Leica SP8

Photonics West 2015; 9329-69

CRS signal dependence on laser pulse duration

 $E_{p/S}$

... peak amplitude of pump/Stokes pulse

τ

... pulse duration of pump and Stokes pulses

 f_{ren}

... pulse repetition frequency

 $P_{p/S} \propto \left| E_{p/S} \right|^2 \tau f_{rep}$

... average power of pump/Stokes pulse

Simplifying approximation: $\tau >> T_2$ (T_2 vibrational dephasing time)

	CARS	SRL
induced third-order polarization ($p^{(3)}$)	$p_{CARS}^{(3)} \propto \left(X_{NR}^{(3)} + X_{R}^{(3)}\right) E_p^2 E_S$	$p_{SRL}^{(3)} \propto \left(2X_{NR}^{(3)} + X_R^{(3)}\right) E_p E_S ^2$
number of signal photons (S)	$S_{CARS} \propto \left X_{NR}^{(3)} + X_{R}^{(3)} \right ^2 \frac{P_p^2 P_S}{\left(\tau f_{rep} \right)^2}$	$S_{SRL} \propto Im \left[X_R^{(3)} \right] \frac{P_p P_S}{\tau f_{rep}}$

[adapted from Ozeki et al. Optics Express 17 (2009) 3651]

CARS: $S_{CARS} \propto \frac{1}{\tau^2}$

→ ~9 x enhancement

SRL: $S_{SRL} \propto \frac{1}{\tau}$

→ ~3 x enhancement

Enhancement factor in the CARS signal

dodecane in water probed at 2855 cm⁻¹

same average powers of pump and Stokes pulses: 36 mW

picoEmerald: $\tau = 5.5 \, ps$

picoEmerald-S: $\tau = 1.9 \ ps$

$$S_{CARS}(\tau = 5.5 ps)$$

$$S_{CARS}(\tau = 1.9 ps)$$

measured signal enhancement factor

$$\frac{S_{CARS}(\tau = 1.9 \ ps)}{S_{CARS}(\tau = 5.5 \ ps)} = 9.9 \pm 1.2$$

Enhancement factor in the CARS signal

maluseonly

- Dodecane water emulsion 2855 cm-1 (36 mW in pump and in stokes)
- 10 x Signal enhancement measured at 3198 cm-1; 3249 cm-1 and 2855cm-1 for different power levels

Photonics West 2015; 9329-69

Page 15

Enhancement factor in the SRS signal

- dodecane in water probed at 2859 cm⁻¹
- same average powers of pump and Stokes pulses: 27 mW
- $\tau = 5.5 \ ps$ picoEmerald:
- picoEmerald-S: $\tau = 1.9 \ ps$

$$S_{SRL}(\tau = 5.5 ps)$$

$$S_{SRL}(\tau = 1.9 ps)$$

measured signal enhancement factor

$$\frac{S_{SRL}(\tau = 1.9 \ ps)}{S_{SRL}(\tau = 5.5 \ ps)} = 2.5 \pm 0.4$$

Enhancement factor in the SRS signal

Modulation frequency of the stokes beam: 20MHz

- Dodecane water emulsion 2855 cm-1 (36 mW in pump and in stokes)
- 2.5 x Signal enhancement measured at 3198 cm-1; 3249 cm-1 and 2855cm-1 for different power levels

Photonics West 2015; 9329-69

Page 17

Detector- and Lock-In Amplifier unit for video rate SRS

- Integrated large area Si-photo diode
- Max. Signal slope 500 mV / μW
- sensitivity limits for 50 mW shot noise limited laser power on photo diode (Signal amplitude equivalent to rms noise):

 $\Delta I / I = 5 E-6$ for 100 ns integration time

 $\Delta I / I = 1.5 E-6$ for 2 µs integration time

 $\Delta I / I = 5 E-7$ for 20 µs integration time

Photonics West 2015; 9329-69

Demonstration of multi-spectral SRS imaging in CH-stretching region of PS beads (1 μ m \varnothing) in water

Sweep of signal wavelength from 782.0 nm to 800.0 nm in 0.5 nm steps (37 frames)

Typical tuning time between wavelengths points: 5 s

→ less than 5 minutes for taking this movie

 $P_{Pump} = 12 \text{ mW},$ $P_{Stokes} = 20 \text{ mW}$

Fast scanning of living HeLa cells

2939.9 cm-1 , 50 mW Signal / 200 mW IR

28 Frames / sec 256*256 Pixel

Pixel dwell time: 120 ns

Fast scanning of living HeLa cells in the fingerprint region

50mW Signal
200 mW IR
1000Hz
1024 Pixels
10 Frames average
Pixel dwell time: 980 ns

100mW Signal
200 mW IR
1000Hz
1024 Pixels
10 Frames average
Pixel dwell time: 980 ns

Photonics West 2015; 9329-69

Page 21

Summary and Conclusions

- Compressed fiber laser used as OPO pump source
- 2 ps pulses with 10 cm⁻¹ bandwidth, ideal for ps-CRS-imaging
- 2.5x higher Signal in SRS; 10x higher Signal in CARS compared with standard solid state pumped OPO system
- 2 ps: already a good pulse length for MPE fluorescence and SHG imaging
 - Good for multi modal imaging
- Extremely low noise system, same level as solid state pump
- Sensitive lock-in amplifier and detector unit easy to integrate in every standard microscope

Photonics West 2015; 9329-69