Teoremas Generales

Oscar Perpiñán Lamigueiro

- 1 Generadores
- 2 Circuitos Lineales
- 3 Teorema de Thévenin/Norton
- 4 Teorema de máxima transferencia de potencia

Generadores de Tensión y Corriente

Un **generador de tensión ideal** impone la tensión a la salida (*la corriente depende del circuito*)

Un **generador de corriente ideal** impone la corriente a la salida (*la tensión depende del circuito*)

Generador Real

Los generadores reales tienen pérdidas que se modelan con una resistencia/impedancia en **serie** (generador de tensión) o en **paralelo** (generador de corriente)

$$u_{AB}(t) = \epsilon_g(t) - Z_{\epsilon_g} \cdot i(t)$$

$$i(t) = i_g(t) - \frac{u_{AB}(t)}{Z_{I_g}}$$

Equivalencia de fuentes

Sólo es posible establecer equivalencia entre fuentes reales.

Generadores de Tensión dependientes ...

... de Tensión

... de Corriente

Generadores de Corriente dependientes ...

... de Tensión

... de Corriente

- 1 Generadores
- 2 Circuitos Lineales
- 3 Teorema de Thévenin/Norton
- 4 Teorema de máxima transferencia de potencia

Elementos lineales

- ► Un circuito eléctrico es lineal si los elementos pasivos y activos que incluye son lineales.
- ► Un elemento pasivo es lineal si la relación entre la tensión entre sus terminales y la corriente que lo recorre es lineal: resistencias, condensadores y bobinas.
- Una fuente dependiente es lineal si su salida (tensión o corriente) tiene una relación lineal con la magnitud del circuito de la que depende.
- Un circuito lineal tiene dos propiedades:
 - Homogeneidad o proporcionalidad.
 - Aditividad o superposición.

Homogeneidad o Proporcionalidad

Sea y(t) la respuesta de un **circuito lineal** a una excitación x(t).

Si la excitación es multiplicada por una **constante**, $K \cdot x(t)$, la respuesta del circuito será modificada por la misma constante, $K \cdot y(t)$.

Análisis de un circuito mediante proporcionalidad

¿Qué excitación debo aplicar a un circuito para obtener una determinada respuesta?

- Aplicamos una excitación de valor unidad.
- Resolvemos el circuito, obteniendo la respuesta del circuito a la excitación unidad.
- Hallamos la constante de proporcionalidad entre la respuesta obtenida y la respuesta deseada.
- La excitación que se debe aplicar es esta constante de proporcionalidad (puede ser un número complejo).

Análisis de un circuito mediante proporcionalidad

¿Qué respuesta proporciona un circuito ante una determinada excitación?

- Suponemos una respuesta de valor unidad.
- Resolvemos el circuito a la inversa, obteniendo la excitación que provoca la respuesta unidad.
- ► Hallamos la constante de proporcionalidad entre la excitación obtenida y la excitación deseada.
- ► La respuesta que entrega el circuito es esta constante de proporcionalidad (puede ser un número complejo).

Aditividad o Superposición

La respuesta de un circuito lineal a varias fuentes de excitación actuando simultáneamente es igual a la suma de las respuestas que se tendrían cuando actuase cada una de ellas por separado

$$y(t) = \sum_{i} y_i(t)$$

Análisis de un circuito mediante superposición

Procedimiento

- 1 Se apagan todas las fuentes **independientes** del circuito menos una.
 - Las fuentes de tensión se sustituyen por un cortocircuito (U = 0).
 - Las fuentes de corriente se sustituyen por un circuito abierto (I = 0).
 - Las fuentes **dependientes no** se modifican.
- 2 Se analiza el circuito, obteniendo la respuesta individual a la fuente que permanece activa.
- 3 Se repite este procedimiento para cada una de las fuentes **independientes** del circuito.
- 4 La respuesta total del circuito es la suma de las respuestas individuales.

Análisis de un circuito mediante superposición

Observaciones

- ➤ **Siempre** hay que aplicar este método cuando en un circuito conviven fuentes de **diferente frecuencia** (o fuentes de corriente continua y corriente alterna).
- ► En el caso de fuentes de corriente alterna sinusoidal, la respuesta debe expresarse en el dominio del tiempo. No se pueden sumar los fasores que corresponden a frecuencias diferentes.
- ► En el primer paso del procedimiento, se pueden agrupar las fuentes que funcionan a la misma frecuencia y calcular la respuesta del circuito en esa frecuencia.

Principio de superposición y Potencia

► El principio de superposición aplica a tensiones y corrientes, pero no a potencias. Supongamos $i(t) = i_1(t) + i_2(t)$:

$$p(t) = R \cdot i^{2}(t) =$$

$$= R \cdot (i_{1}(t) + i_{2}(t))^{2} =$$

$$= R \cdot (i_{1}^{2}(t) + i_{2}^{2}(t) + 2 \cdot i_{1}(t) \cdot i_{2}(t))$$

$$p(t) \neq p_{1}(t) + p_{2}(t)$$

➤ Se pueden sumar las potencias **medias** de cada circuito cuando las señales que intervienen son ortogonales en un periodo*: sinusoidales con diferente frecuencia, una sinusoide con una continua, ...

$$< f_1, f_2 >_T = \int_T f_1(t) \cdot f_2(t) dt = 0$$

- 1 Generadores
- 2 Circuitos Lineales
- 3 Teorema de Thévenin/Norton
- 4 Teorema de máxima transferencia de potencia

Thévenin

Cualquier **red lineal** compuesta por elementos activos y pasivos puede sustituirse, desde el punto de vista de sus terminales externos AB, por una **fuente de tensión** (generador de Thévenin, ϵ_{th}) en **serie** con una impedancia (impedancia de Thévenin, Z_{th}).

Norton

Cualquier **red lineal** compuesta por elementos activos y pasivos puede sustituirse, desde el punto de vista de sus terminales externos AB, por una **fuente de corriente** (generador de Norton, I_N) en **paralelo** con una impedancia (impedancia de Norton, Z_N).

Cálculo del equivalente de Thévenin

lacktriangle Circuito Abierto ($Z_L o \infty$, $U_{AB} = U_{oc}$) $egin{align*} egin{align*} \epsilon_{th} = U_{oc} \end{bmatrix}$

► Cortocircuito (
$$Z_L = 0$$
, $I = I_{sc}$)
$$Z_{th} = \frac{\epsilon_{th}}{I} = \frac{U_0}{I}$$

Cálculo del equivalente de Norton

 $I_N = I_{sc}$

► Cortocircuito (
$$Z_L = 0$$
, $I = I_{sc}$)

Circuito Abierto (
$$Z_L \rightarrow \infty$$
, $U_{AB} = U_{oc}$)

$$Z_N = rac{U_{oc}}{I_N} = rac{1}{I_N}$$

Cálculo de Thévenin/Norton

Observaciones

- Gracias a la equivalencia de fuentes, una vez obtenido uno de los equivalentes se puede obtener el otro mediante una transformación.
- Cálculo de la impedancia:
 - Si el circuito no contiene fuentes dependientes, se puede realizar apagando todos los generadores y obteniendo la impedancia equivalente.
 - Si el circuito contiene fuentes dependientes, es necesario conectar un **generador de prueba** a la salida del circuito y obtener la relación entre la tensión y corriente de este generador.

- 1 Generadores
- 2 Circuitos Lineales
- 3 Teorema de Thévenin/Norton
- 4 Teorema de máxima transferencia de potencia

Planteamiento

Sea el circuito lineal de la figura. ¿Qué impedancia Z_L hay que conectar en los terminales AB para que el circuito entregue la máxima potencia disponible?

Resolvemos esta pregunta mediante el generador equivalente de Thévenin.

Ecuaciones

Calculamos la potencia activa en la impedancia de carga Z_L :

Las condiciones de máximo son:

$$\boxed{\frac{\partial P_L}{\partial X_L} = 0 \quad \frac{\partial P_L}{\partial R_L} = 0}$$

Reactancia

A partir de la expresión de potencia en la carga...

$$P_L = \frac{\epsilon_{th}^2}{|\overline{Z}_{th} + \overline{Z}_L|^2} \cdot R_L$$

calculamos la derivada parcial respecto de la reactancia:

$$\frac{\partial P_L}{\partial X_L} = \epsilon_{th}^2 \cdot R_L \cdot \left[\frac{-1}{\left((R_L + R_{th})^2 + (X_L + X_{th})^2 \right)^2} \cdot 2 \cdot (X_L + X_{th}) \right]$$

Aplicamos la condición de máximo y obtenemos un resultado parcial:

$$\frac{\partial P_L}{\partial X_L} = 0 \Rightarrow \boxed{X_L = -X_{th}}$$

Resistencia

Simplificamos la expresión de la potencia teniendo en cuenta el resultado anterior ($X_L = -X_{th}$):

$$P_L = \frac{\epsilon_{th}^2}{(R_{th} + R_L)^2} \cdot R_L$$

Calculamos la derivada parcial respecto de la resistencia:

$$\begin{split} \frac{\partial P_L}{\partial R_L} &= \epsilon_{th}^2 \cdot \left[\frac{1}{(R_L + R_{th})^2} - 2 \cdot \frac{R_L}{(R_L + R_{th})^3} \right] \\ &= \frac{\epsilon_{th}^2 \cdot (R_{th} - R_L)}{(R_L + R_{th})^3} \end{split}$$

Nuevamente, aplicamos la condición de máximo y obtenemos la resistencia:

$$\frac{\partial P_L}{\partial R_I} = 0 \Rightarrow \boxed{R_L = R_{th}}$$

Impedancia de carga

Dado un circuito lineal (del que podemos calcular su generador equivalente de Thévenin) . . .

... la impedancia de carga que hay que conectar entre sus terminales AB para obtener la máxima potencia disponible es:

$$\overline{Z}_L = \overline{Z}_{th}^*$$