MATH 7320, Functional Analysis I

HOMEWORK 3

- 1. Let \mathcal{X} be a normed space and $f: \mathcal{X} \to \mathbb{F}$ a linear functional. Prove that f is continuous iff $\ker(f)$ is closed.
- 2. Let \mathcal{X} be a normed space and $\mathcal{Y} \leq \mathcal{X}$ be a subspace. Assume that both \mathcal{Y} and the quotient space \mathcal{X}/\mathcal{Y} are complete. Prove that \mathcal{X} is complete.
- 3. Let \mathcal{X} be a Banach space and $\mathcal{Y} \leq \mathcal{X}$ a closed subspace. Prove that if \mathcal{Y} and \mathcal{X}/\mathcal{Y} are both separable, then \mathcal{X} is separable.
- 4. Let \mathcal{X} be a Banach space and $\mathcal{Y} \leq \mathcal{X}$ a closed subspace. Show that $(\mathcal{X}/\mathcal{Y})^*$ is isometrically isomorphic to

$$\mathcal{Y}^{\perp} := \{ f \in \mathcal{X}^* : f \mid_{\mathcal{Y}} \equiv 0 \}.$$

- 5. Let $\mathcal{Y} = \{(\alpha_n) \in \ell^1 : \alpha_{2n} = 0, \ \forall n \in \mathbb{N}\}$. Show that \mathcal{Y} is a closed subspace of ℓ^1 , and that the quotient space ℓ^1/\mathcal{Y} is isometrically isomorphic to ℓ^1 .
- 6. Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$. Show that the following are equivalent:
 - i) there is c > 0 such that $||x|| \le c||T(x)||$ for all $x \in \mathcal{X}$;
 - ii) T is injective and $T(\mathcal{X})$ is closed.
- 7. Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$. Prove that if $T(\mathcal{X}) \subseteq \mathcal{Y}$ is not closed, then $T(\mathcal{X})$ is of first category.