Solutions to Assignment 2

Simon Etter, 2019/2020 Total marks: 10

1 Multigrid in two dimensions [4 marks]

The error recursion formula for the relaxed Jacobi iteration is

$$x_{k+1} - x = R(x_k - x)$$
 where $R = I - \theta D^{-1}A$.

Using $D = 4(n+1)^2 I$, we find that the eigenvalues $\hat{\lambda}_{k_1,k_2}^{(2)}$ of R can be expressed in terms of the eigenvalues $\lambda_{k_1,k_2}^{(2)}$ of $A = -\Delta_n^{(2)}$ as

$$\hat{\lambda}_{k_1,k_2}^{(2)} = 1 - \theta \, \frac{\lambda_{k_1,k_2}^{(2)}}{4(n+1)^2}.$$

Using $\lambda_{k_1,k_2}^{(2)} = \lambda_{k_1}^{(1)} + \lambda_{k_2}^{(1)}$ and the bounds on $\lambda_k^{(1)}$ mentioned in the hint, we find that the $\hat{\lambda}_{k_1,k_2}^{(2)}$ of largest absolute value are

$$\hat{\lambda}_{\frac{n}{2},1}^{(2)} = \hat{\lambda}_{1,\frac{n}{2}}^{(2)} \approx 1 - \theta \frac{2(n+1)^2}{4(n+1)^2} = 1 - \frac{\theta}{2}$$

and

$$\hat{\lambda}_{n,n}^{(2)} \approx 1 - \theta \frac{8(n+1)^2}{4(n+1)^2} = 1 - 2\theta.$$

Thus, $|\hat{\lambda}_{\text{best}}| = \max\{|1 - \frac{\theta}{2}|, |1 - 2\theta|\}$ is minimised if

$$1 - \frac{\theta_{\text{best}}}{2} = -(1 - 2\,\theta_{\text{best}}) \qquad \iff \qquad \theta_{\text{best}} = \frac{4}{5}$$

and we have

$$|\hat{\lambda}_{\text{best}}| = |1 - 2\theta_{\text{best}}| = \frac{3}{5}.$$

See also sheet2_multigrid_solution.jl.

2 Gradient descent for classification [6 marks]

See sheet2_classification_solution.jl.