Alumno: NL:

Duración: dos horas y media. Una condición suficiente de aprobación es la resolución completa y justificada de tres ejercicios cualesquiera No se consideran cálculos dispersos o sin comentarios, ni diagramas sin la identificación completa de sus elementos.

- Sean a<sub>n</sub>, b<sub>n</sub> dos funciones reales definidas para todos los naturales n tales que n ≥ n<sub>0</sub> ≥ 0, con a<sub>n</sub> ≠ 0. (a) Hallar la solución exlícita de la ecuación de recurrencia lineal de primer orden x<sub>n+1</sub> = a<sub>n</sub>x<sub>n</sub> + b<sub>n</sub> con la condición x<sub>n<sub>0</sub></sub> = x<sub>0</sub>.
  (b) Si se conocen dos soluciones u<sub>n</sub> = 2<sup>n</sup> y v<sub>n</sub> = 2<sup>n</sup>n! + n! de la ecuación de recurrencia x<sub>n+1</sub> = a<sub>n</sub>x<sub>n</sub> + b<sub>n</sub>, determinar el valor de x<sub>4</sub> si la condición iniciales x<sub>0</sub> = 2, .
- 2. En el conjunto  $A = \{a_1, a_2, a_3, a_4, a_5\}$  sea  $\mathcal{S}$  la relación determinada por el digraph de la figura, y  $\mathcal{T}$  la relación definida la matriz  $M_{\mathcal{T}}$ , y sea  $\mathcal{R}$  la relación complemento de  $\mathcal{T} \circ \mathcal{S}$  (esto es  $\mathcal{R} = (\mathcal{T} \circ \mathcal{S})'$ ). (a) Analizar si  $\mathcal{T}$  es una relación de equivalencia en A, y en caso afirmativo dar el conjunto cociente  $A/\mathcal{T}$ . (b) Representar el digraph de  $\mathcal{R}$  y calcular las distancias  $d(a_5, a_2)$  y  $d(a_2, a_5)$ .



- 3. Sea G = (V(G), E(G)) la red de la figura con las capacidades indicadas por los números junto a cada arista.
  - (a) Aplicar, detallando todos los pasos, el algoritmo de Ford-Fulkerson que permite obtener un flujo máximo de G.
  - (b) En G el  $alcance\ a(u_i)$  de un vértice  $u_i$  se define como el conjunto de vértices  $v_j$  tales que hay un camino (orientado) desde  $v_i$  a  $v_j$ . En V se define  $v_i \mathcal{R} v_j$  sii  $a(v_i) \subset a(v_j)$ . Determinar si  $\mathcal{R}$  es una relación de orden en V(G), y en caso afirmativo graficar su diagrama de Hasse.



4. Sea G = (V(G), E(G)) conexo y s y t dos vértices en V(G). Dos o más caminos entre s y t son de arista-disjuntos si no comparten aristas y se dice que un subconjunto de E(G) separa s de t si su remoción destruye todo camino entre s y t. (a) Probar que la máxima cantidad de caminos arista-disjuntos no supera la mínima cantidad de aristas que separan s de t. (b) En particular, para el grafo G de la figura, determinar todos los caminos arista-disjuntos entre s y t, y determinar un par de vértices u,v tales que tengan entre ellos una cantidad de caminos de arista-dijuntos que no sea superada por ningún otro par de vértices.



5. Analizar cuáles de los tres grafos son hamiltonianos y cuáles son fuertemente conexos (¿algunos son isomorfos?). Para  $G_2$ , determinar su radio  $r(G_2) \stackrel{\text{def}}{=} \min_u \max_v d(u,v)$ , calcular su matriz de incidencia M y explicar el significado de cada uno de los elementos (i,j) de la matriz  $B = MM^T$  y ponerlo en evidencia en el correspondiente grafo.

