Appendix: A Detailed Wind Farm Model

Zilong Gong, Junyu Mao, Adrià Junyent-Ferré, Senior Member, IEEE, and Giordano Scarciotti, Senior Member, *IEEE*

Nomenclature

Roman symbols

Wind turbine swept surface \boldsymbol{A}

CDC bus capacity

 I_t One-mass wind turbine aggregated inertia

 K_{C_p} Constant tip speed ratio speed control law coefficient

 L_l Inductance of the grid connection impedance

PGenerator pole pairs

 Q_s Generator stator reactive power

RWind turbine radius

 V_{DC} DC bus voltage

 V_{bus} Infinite bus voltage

Aerodynamic power coefficient

System frequency

 f^r Rated frequency

 r_s Resistance of a single phase of the stator windings

 r_l Resistance of the grid connection impedance

Rated collection grid voltage

Rated wind turbine output voltage

Wind speed

Greek symbols

 Γ_m Generator torque

 Γ_t Wind turbine torque

β Pitch angle

Flux linkage per rotating speed unit λ_m

Gearbox multiplication ratio

Nominal generator speed ω_{mn}

Generator electrical angle speed ω_r

Wind turbine speed ω_t

Air density ρ

Time constant of the pitch angle controller

 θ_m Generator shaft angular position

Generator rotor electric angle θ_r

Superscripts and Subscripts

Reference value

abcVector of abc components

Vector of qd components qd

Variable related to the generator shaft m

rVariable related to the generator rotor

Variable related to the generator stator s

Variable related to the turbine t

Variable related to the grid connection point z

Zilong Gong, Junyu Mao, Adrià Junyent-Ferré and Giordano Scarciotti are with the Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, UK. {zilong.gong18, junyu.mao18, adria.junyentferre, g.scarciotti}@imperial.ac.uk.

A. WIND FARM MODEL

1

In this section, we provide the full model of the wind turbine used in the simulations. The wind turbine model consists of several sub-blocks. We summarise each block in terms of inputs, outputs and detailed equations. The Park and inverse Park transformation of a rotation angle θ are indicated by $T(\theta)$ and $T^{-1}(\theta)$, respectively.

1) Wind turbine dynamics:

Block inputs: θ_m^* , Γ_m and v_w . Block outputs: θ_m and ω_m .

$$\beta(s) = \frac{1}{\tau s + 1} \theta_m^*(s),$$

$$c_p(\Lambda, \beta) = c_1 (c_2 \frac{1}{\Lambda} - c_3 \beta - c_4 \beta^{c_5} - c_6) e^{-c_7 \frac{1}{\Lambda}},$$

$$\Gamma_t = \frac{1}{2} c_p \rho A v_w^3 \frac{1}{\omega_t},$$

$$\omega_t = \frac{1}{I_t} (\Gamma_t + \nu \Gamma_m),$$

$$\dot{\theta}_m = \omega_m = \nu \omega_t,$$

$$(1)$$

where $[c_1\cdots c_9]$ are wind turbine characteristic parameters and Λ is defined as $\frac{1}{\Lambda}=\frac{1}{\lambda+c_8\beta}-\frac{c_9}{1+\beta^3}$ with $\lambda=\frac{\omega_t R}{v_w}$.

2) Wind turbine speed controller:

Block input: ω_m .

Block outputs: Γ_m^* and θ_m^* .

$$K_{C_p} = \frac{1}{2} \rho A R^3 \frac{c_1 (c_2 + c_6 c_7)^3 e^{-\frac{c_2 + c_6 c_7}{c_2}}}{c_2^2 c_7^4}$$

$$\Gamma_m^* = K_{C_p} \omega_m^2,$$

$$\theta_m^*(s) = \frac{K_p s + K_i}{s} (\omega_m(s) - \omega_{mn}).$$
(2)

3) Generator dynamics:

Block inputs: v_s^{qd} and ω_m . Block outputs: i_s^{qd} , i_s^{abc} and Γ_m .

$$v_s^{qd} = \begin{bmatrix} r_s & \omega_r L_d \\ -\omega_r L_q & r_s \end{bmatrix} i_s^{qd} + \begin{bmatrix} L_d & 0 \\ 0 & L_q \end{bmatrix} \frac{d}{dt} i_s^{qd} + \lambda_m \omega_r \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$\Gamma_m = \frac{3}{2} P(\lambda_m i_{sq} + (L_d - L_q) i_{sq} i_{sd}),$$

$$i_s^{abc} = T^{-1}(\theta_r) i_s^{qd},$$
(3)

4) Generator vector controller:

Block inputs: Γ_m^* , i_s^{abc} , ω_m and θ_m . Block outputs: v_s^{qd} and v_s^{abc} .

$$i_{s}^{qd} = T(\theta_{r})i_{s}^{qbc}$$

$$i_{sq}^{*} = \frac{2}{3P} \frac{\Gamma_{m}^{*}}{\lambda_{m}},$$

$$i_{sd}^{*} = \frac{2}{3P} \frac{Q_{s}^{*}}{\omega_{m}\lambda_{m}},$$

$$\hat{v}_{sq} = \frac{K_{pq}s + K_{iq}}{s}(i_{sq}^{*} - i_{sq}),$$

$$\hat{v}_{sd} = \frac{K_{pd}s + K_{id}}{s}(i_{sd}^{*} - i_{sd}),$$

$$v_{s}^{qd} = \hat{v}_{s}^{qd} + \begin{bmatrix} 0 & \omega_{r}L_{d} \\ -\omega_{r}L_{q} & 0 \end{bmatrix} i_{s}^{qd} + \lambda_{m}\omega_{r} \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$v_{s}^{abc} = T^{-1}(\theta_{r})v_{s}^{qd}.$$
(4)

where $\omega_r = P\omega_m$, $\theta_r = P\theta_m$, $v_s^{qd} = [v_{sq}, v_{sd}]^{\mathrm{T}}$, $\hat{v}_s^{qd} = [\hat{v}_{sq}, \hat{v}_{sd}]^{\mathrm{T}}$ and $\hat{v}_s^{qd} = [i_{sq}, i_{sd}]^{\mathrm{T}}$.

5) DC bus dynamics:

Block inputs: i_l^{abc} , v_l^{abc} , i_s^{abc} and v_s^{abc} .

Block outputs: V_{DC} and i_{DCm} .

$$\frac{d}{dt}V_{DC} = \frac{1}{C}(i_{DCm} - i_{DCl}),$$

$$\{v_l^{abc}\}^{\mathrm{T}}i_l^{abc} = V_{DC}i_{DCl},$$

$$\{v_s^{abc}\}^{\mathrm{T}}i_s^{abc} = V_{DC}i_{DCm}.$$

6) Grid side system dynamics:

Block inputs: v_z^{abc} and v_l^{abc} . Block output: i_l^{abc} .

$$v_l^{abc} = r_l i_l^{abc} + L_l \frac{d}{dt} i_i^{abc} + v_z^{abc}.$$

7) Grid side controller:

Block inputs: V_{DC} and i_{DCm} .

Block output: i_{DCL}^*

$$i_{DCl}^* = \frac{K_{pg}s + K_{ig}}{s}(V_{DC}^* - V_{DC}) + i_{DCm}$$

(7)

8) Grid current controller

Block inputs: $V_{D\!C}$, i_{DCl}^* , v_z^{abc} and i_l^{abc} .

Block output: v_l^{abc} .

$$i_{lq}^{*} = \frac{2}{3} \frac{V_{DC}}{v_{zq}} i_{DCl}^{*},$$

$$i_{ld}^{*} = 0,$$

$$\hat{v}_{lq} = \frac{K_{pc}s + K_{ic}}{s} (i_{lq}^{*} - i_{lq}),$$

$$\hat{v}_{ld} = \frac{K_{pc}s + K_{ic}}{s} (i_{ld}^{*} - i_{ld}),$$

$$v_{lq} = v_{zq} - 2\pi f i_{ld} L_{l} - \hat{v}_{lq},$$

$$v_{ld} = 2\pi f i_{lq} L_{l} - \hat{v}_{ld},$$

$$\hat{\omega} = \frac{s + 0.129}{s} v_{zd},$$

$$i_{l}^{qd} = T(2\pi f t - \hat{\omega} t) i_{l}^{abc},$$
(8)

 $v_i^{qd} = T(2\pi ft - \hat{\omega}t)v_i^{abc}$.

where $i_l^{qd} = [i_{lq}, i_{ld}]^{\mathrm{T}}$, $v_l^{qd} = [v_{lq}, v_{ld}]^{\mathrm{T}}$ and $v_z^{qd} = [v_{zq}, v_{zd}]^{\mathrm{T}}$.

B. Model parameters

In this section we summarise the parameters used in the simulation.

- 1) Wind turbine: $c_1 = 1$, $c_2 = 39.52$, $c_6 = 2.04$, $c_7 = 14.47$, $c_3 = c_4 = c_5 = c_8 = c_9 = 0, R = 40 \text{m}, A = 5,026.5 \text{m}^2,$ $\rho = 1.225 \text{kg/m}^3$, $\nu = 90$, $I_t = 4 \text{kg} \cdot \text{km}^2$, $\tau = 0.1 \text{s}$ and
- 2) Wind turbine speed controller: $\omega_{mn} = 1,602 \mathrm{min}^{-1}, K_p =$ $0.1^{\circ} \cdot s/\text{rad}$ and $K_i = 0.02^{\circ}/\text{rad}$.
- 3) Generator: 2 pairs of poles, $r_s = 15 \text{m}\Omega$, $\lambda_m = 2.35 \text{V} \cdot \text{s/rad}$,
- $L_q=0.12732 \mathrm{mH}$ and $L_d=0.12764 \mathrm{mH}.$ 4) Generator vector controller: $Q_s^*=10 \mathrm{VAr},~K_{pq}=0.0637 \mathrm{V/A},~K_{iq}=7.5 \mathrm{V/(A \cdot s)},~K_{pd}=0.0638 \mathrm{V/A}$ and $K_{id} = 7.5 \text{V}/(\text{A} \cdot \text{s}).$
- 5) DC bus: $C=10 \mathrm{mF}$ and $V_{DC}^*=2.6 \mathrm{kV}$. 6) Grid side system: $r_l=20 \mathrm{m}\Omega$, $L_l=1 \mathrm{mH}$, $U_w^r=0.97 \mathrm{kV}$, $U_g^r=66 {
 m kV}$ and $f^r=50 {
 m Hz}$. 7) Grid side controller: $K_{pg}=0.6032 {
 m A/V}$ and $K_{ig}=$
- $14.2122A/(V \cdot s)$.
- 8) Grid current controller: $K_{pc} = 0.2803 \text{V/A}$ and $K_{ic} =$ $10V/(A \cdot s)$.

C. ROBUST ANALYSIS

To analyse the robustness of Algorithm 1, we add Gaussian noise to the measurements of y(t) with signal-noise-ratio (SNR) of 60dB. We estimate the quantity $C\Pi$ by Algorithm 1 with 1000 and 30 measurements, respectively. Fig. 1 shows the regions between the upper and lower envelopes of all obtained magnitude plots of the ROMs obtained for the 20 realisations of the noise. In particular, the red regions refer to the estimation with 1000 measurements ($\tilde{\nu} = 1000$), the blue regions refer to the estimation with 30 measurements ($\tilde{\nu} = 30$) and the brown dashed lines represent the ideal estimation (no noise).

Fig. 1. Magnitude plots of the reduced-order models under 20 realizations of additive Gaussian noise. The red regions, blue regions and brown dashed lines refer to the estimation with 1000 measurements ($\tilde{\nu} = 1000$), estimation with 30 measurements ($\widetilde{\nu}=30$) and the ideal estimation (no noise), respectively.