6 Эффективность и среднеквадратичная ошибка

1. [# **30**] Предположим, у нас есть случайная выборка $X_1, X_2, ..., X_n$ из распределения $Exp(\lambda)$. Предположим, мы хотим оценить среднее значение $1/\lambda$. Оценка

$$T_1 = \overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

является несмещенной оценкой, равной $1/\lambda$.

Пусть M_n – минимум из

$$X_1, X_2, ..., X_n$$
.

 M_n имеет распределение $Exp(n\lambda)$. Оценка

$$T_2 = nM_n$$

является другой несмещенной оценкой для $1/\lambda$.

Какую из оценок T_1 и T_2 вы бы выбрали для оценки среднего значения $1/\lambda$? Обоснуйте свой ответ, составив модель и проведя 2000 экспериментов. Вычислите относительную эффективность одной оценки по отношению к другой.

2. [# **40**] Инженер-геодезист измеряет три неизвестных угла α_1 , α_2 и α_3 треугольника. Он моделирует неопределенность в измерениях, рассматривая их как реализации трёх независимых случайных величин T_1 , T_2 и T_3 с ожиданиями

$$E[T_1] = \alpha_1, \quad E[T_2] = \alpha_2, \quad E[T_3] = \alpha_3,$$

и все три с одинаковой дисперсией σ^2 . Чтобы использовать тот факт, что три угла должны в сумме давать π , он также рассматривает новые оценки U_1, U_2 и U_3 , определяемые

$$U_1 = T_1 + \frac{1}{3}(\pi - T_1 - T_2 - T_3),$$

$$U_2 = T_2 + \frac{1}{3}(\pi - T_1 - T_2 - T_3),$$

$$U_3 = T_3 + \frac{1}{3}(\pi - T_1 - T_2 - T_3).$$

(Обратите внимание, что «отклонение» $\pi-T_1-T_2-T_3$ делится поровну на три измерения и что $U_1+U_2+U_3=\pi$.)

- а. Вычислите $E[U_1]$ и $Var(U_1)$.
- b. Какая из оценок U_1 или T_1 эффективнее для оценки угла α_1 ? Вычислите относительную эффективность одной оценки по отношению к другой. Обоснуйте свой ответ, составив модель и проведя 2000 экспериментов.

с. Какой тип оценки вы бы выбрали для α_1 , если известно, что треугольник равнобедренный (т.е. $\alpha_1=\alpha_2$)? Обоснуйте свой ответ, составив модель и проведя 2000 экспериментов.				
экспериментов.				