

Relembrando...

- Lista: É um conjunto de **zero** ou **mais itens** x_1 , x_2 ,..., x_n na qual x_i é de um determinado **tipo** e n representa o tamanho da lista.
- Sua principal propriedade estrutural diz respeito às posições relativas dos itens.

X ₁	X ₂	X ₃	•••	X _{i-1}	Xi	X _{i+1}	•••	X _n

TADs da Lista Estática

- Quais os problemas da lista estática?
 - Quantidade fixa de elementos
 - Memória alocada sem uso
 - Impossibilidade de alocar mais memória

- Como solucionar tais problemas?
 - Utilizar Estruturas de Dados que cresçam e diminuam na medida da necessidade, Estruturas Dinâmicas
 - Malloc, Alocação dinâmica de memória para armazenar os elementos

- Caracteristicas da lista encadeada
 - Cresce e diminui dinâmicamente
 - Tamanho máximo não precisa ser definido
 - Provêem flexibilidade, permitindo que os itens sejam rearrumados eficientemente
 - Também chamada de lista ligada

• Definição?

Uma lista encadeada consiste de uma sequência linear de nós dinamicamente alocados, que são encadeados (ou conectados) através de ponteiros (ou apontadores)

O que seria o nó da lista?

Cada elemento da lista possui pelo menos dois campos: um para armazenar a informação e outro para o endereço do próximo (ponteiro)

 Um nó possui uma seta apontando para fora. Essa seta representa um ponteiro que aponta para outro nó, formando uma lista encadeada

- Antes de começarmos, precisamos definir como a lista será representada
- Uma forma bastante comum é manter uma variável ponteiro para o primeiro elemento da lista encadeada

- Quando a lista estiver vazia, a variável ponteiro deve ter seu valor apontado para onde?
- Portanto, essa deve ser a iniciação da lista e também a forma de se verificar se ela se encontra vazia

- Outro detalhe importante é quanto a posições!
 - Na implementação com vetores, uma posição é o valor inteiro entre zero e a variável fim
 - Na lista encadeada como é determinado a posição?

Com **listas encadeadas**, uma posição passa ser um **ponteiro** que aponta um determinado **nó** da lista

Criar Lista

- Pré-condição: Existir espaço na memória
- Pós-condição: Inicia a estrutura de dados

Limpar Lista

- Pré-condição: Nenhuma
- Pós-condição: Remove a estrutura de dados da memória

- Pré-condição: Existir memória disponível
- Pós-condição:Insere um item na última posição, retorna true se a operação foi executada com sucesso, false caso contrário

Inserir item – Última posição

Item a ser inserido

• Como é inserir na primeira posição e dado uma chave?

Remover item – Dado uma chave

- Pré-condição: Nenhuma
- Pós-condição: remove um determinado item da lista dado uma chave, retorna true se a operação foi executada com sucesso, false caso contrário

Remover item – Dado uma chave

• Como é remover na primeira e última posição?

Recuperar item – Dado uma chave

- Pré-condição: Nenhuma
- Pós-condição: Recupera o item dado uma chave, retorna true se a operação foi executada com sucesso, false caso contrário

Contar número de itens

- Pré-condição: Nenhuma
- Pós-condição: Retorna o número de itens na lista

Verificar se a lista está vazia

- Pré-condição: Nenhuma
- Pós-condição: Retorna true se a lista estiver vazia e falso caso-contrário

Verificar se a lista está cheia

- Pré-condição:
- Pós-condição:

Imprimir lista

- Pré-condição: Nenhuma
- Pós-condição: Imprime na tela os itens da lista

