$$f(x) = g\left(\frac{(b+a) + x(b-a)}{2}\right), \qquad -1 \le x \le 1$$

 ${\rm donde}$

$$t = \frac{(b+a) + x(b-a)}{2}$$

representa un cambio lineal de variable que permite aproximar f(x) en [-1,1].

$$t = \frac{(b+a) + x(b-a)}{2}$$

p1) -
$$\alpha$$
 + β = a
p2) α + β = b
 β = a+ α
 α + a + α = b
 2α = b-a
 α = (b-a)/2
 β = a+(b-a)/2
 β = (b+a)/2

$$(b-a)/2 \times (b+a)/2 = t$$