Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky

aaaa

BAKALÁŘSKÁ PRÁCE

Studijní program: Aplikovaná informatika

Studijní obor: Aplikovaná informatika

Autor: Karel Douda

Vedoucí práce: Ing. David Král

Praha, květen 2020

Prohlášení	
Prohlašuji, že jsem bakalářskou práci $aaaa$ ných pramenů a literatury.	vypracoval samostatně za použití v práci uvede-
V Praze dne DD. měsíc RRRR	Podpis studenta

Poděkování		
Poděkování.		

Abstrakt

Abstrakt.

Klíčová slova

animal tracking, mobilní aplikace, react native, expo

Abstract

Abstract.

Keywords

animal tracking, mobile app, react native, expo

Obsah

Ú٦	vod		15	
1	Pro	oblémová oblast	17	
	1.1	Vývoj v oblasti telemetrie	17	
2	Exi	stující řešení	19	
	2.1	Nestrukturovaný ruční zápis	19	
	2.2	Strukturovaný ruční zápis	20	
	2.3	Editory map	20	
		2.3.1 Google MyMaps	20	
		2.3.2 ArcGIS	21	
	2.4	Movebank	21	
	2.5	Anitra	21	
3	3 Analýza požadavků			
	3.1	Identifikace stakeholderů	23	
	3.2	Sběr požadavků	23	
	3.3	Funkční požadavky	24	
		3.3.1 Diagram případů užití	24	
	3.4	Nefunkční požadavky	24	
4	Tec	hnologie	25	
	4.1	TypeScript a EcmaScript	25	
	4.2	React	25	
	4.3	React Native	25	
	4.4	Expo	25	
5	Imp	plementace	27	
Zá	věr		29	
\mathbf{A}	For	mulář v plném znění	33	
R	Zdr	rojové kódy výpočetních procedur	35	

Seznam obrázků

1.1 Schéma systému GPS-GSM trackerů	18
-------------------------------------	----

Seznam tabulek

Seznam použitých zkratek

JS JavaScriptES EcmaScript

TS TypeScriptRN ReactNative

Úvod

S rozvojem IoT technologí dochází ke stále další a další miniaturizaci autonomních off-the-grid zařízení. Jedním z mnoha oborů, které z tohoto vývoje těží, je zoologie. Obory zoologie zabývající se výzkumem migrací, studiem životních cyklů, ochrany a výzkum vlivu lidské činnosti na zvířata díky tomuto vývoji využívají stále dostupnější trackovací zařízení nasazovaná na zvířata. Nasazená zařízení komunikují především pomocí GSM technologií a sbírají telemetrická data o životních funkcích zvířete, pozici, vzdálenosti k zájmovým bodům a podobně.

Cílem této práce je vytvoření aplikace pro sledování a kontrolu divokých zvířat v terénu, konkrétněji ptáků. Primární funkcí aplikace je zobrazení posledních pozic vybraných zvířat v mapě. O vybraných zvířatech se ukládají metainformace, které mohou sloužit k dodatečné identifikaci v terénu. Pro aplikaci je kritická možnost fungování bez internetového připojení, kterou současné řešení nepodporuje. Současné řešení taktéž není vhodné pro použtí na mobilu z hlediska použitelnosti. Toto téma je řešeno z důvodu absence efektivního řešení tohoto problému.

Zvolený způsob řešení je multiplatformní aplikace vyvíjená v prostředí React Native s možností prací offline. React Native umožňuje vytváření mobilních aplikací pro platformy Android i iOS bez nutnosti psát dvě separátní aplikace. React Native je souborem JS knihoven postavených nad frontendovým frameworkem React od společnosti Facebook. Pro zrychlení vývoje bez nutnosti podbroného testování aplikací na obou platformách byla použita nástavba Expo, která dále abstrahuje od platformně závislého kódu. Zdrojem dat je ornitologická platforma Anitra, která mimo funkce datového uložiště podporuje sdílení dat a udržování metainformací o žvířatech.

Popsat kapitoly

Metodika??

1. Problémová oblast

Sledování a popis životního cyklu ptáků, vědecká disciplína nazývaná ornitologie, je poměrně starou vědeckou disciplínou s kořeny ve starověku. Jedním z prvních dochovaných textů zabývajícím se popisu života ptáků je Aristotelova Historia Animalium v roce 350 př. n. l. Ornitologie se postupně rozvíjela – zaváděly se taxonomie ptactva, studovala se ptačí anatomie, ale spousta otázek spojena s chováním ptáků zůstavala nezodpovězena. V roce 1805. Americký ornitolog John James Audubon se snažil prokázat, že se každým rokem na jeho farmu vrací stejný jedinec druhu Sayornis phoebe přivázáním stříbrného lanka na nohu. Tímto nepřímo položil základy pro tzv. kroužkování, pasivní označení jedinců kovovým kroužkem s vyraženým sériovým identifikátorem kroužku. Systém kroužkování zavedl dánský ornitolog a učitel Hans Christian Cornelius Mortensen v roku 1899. Na území České republiky se kroužkování ujalo roku 1910, přibližně rok po rozšíření systému v Anglii a Německu. Dle informací Společnosti spolupracovníků kroužkovací stanice Národního muzea je dnes registrováno 480 spolupracovníků, kteří ročně okroužkují kolem 175 000 ptáků.

Kroužkování ptáků slouží k mnoha účelům – mapování migračních tras (zimoviště, návrat na stejné lokace), populační studie (např. rozšiřování jednotlivých druhů, roční úhyn nebo naopak nárůst), životní cyklus ptactva (např. délka života). Kroužkování je dodnes základem práce ornitologů díky jeho nízké cenové náročnosti a mezinárodní kolaboraci ornitologů, záchranných stanic a dobrovolníků.

Hlavní nevýhodou kroužkování je samozřejmě pasivní povaha této metody – o ptácích se zjišťují pouze kusé informace o jejich přibližné poloze, které musí nahlásit pozorovatel. Pozorování samotné je záležitostí s prvkem nejistoty - kroužky nemusí být dostatečně čitelné pro kompletní identifikaci, pozorovatel tedy může informovat např. jen o pozorování určitého druhu ptáka. Kroužkování závisí také na vysoké angažovanosti dobrovolníků a disciplinované administrativě související s osazením a nahlášením pozorování ptáků s kroužky. Dále taktéž neřeší jiné úkoly ornitologů, které souvisí např. s kontrolou hnízd – musí se zkontrolovat rozsáhlý počet hnízd, což s sebou přináší logistické i administrativní problémy.

1.1 Vývoj v oblasti telemetrie

Miniaturizací elektronických součástek, především akumulátorů, se v 60. letech 20. století začínají rozšiřovat aktivní telemetrická zařízení. Jednoduché radiolokátory umožnily v terénu přesně určit pozici zvířete sledováním intenzity signálu. Radiolokátory mohou pomocí elektromagnetických pulsů přenášet určitá data (např. identifikátor radiolokátoru – zvířete) za použití určité modulace signálu. Tímto se zjednodušilo např. hledání hnízd, čímž se taktéž usnadnilo hledání a označení mladých jedinců, kteří ještě nebyli vyvedeni z hnízda.

Ornitologie těžila i z rozvoje kosmických programů. Signály z dostatečně výkonných radio-

lokátorů mohou být přijaty speciálními družicemi v kosmu a za pomocí Dopplerova jevu lze spočítat přibližnou polohu daného jedince. Tato řešení nebyla zpočátku pro ornitologii příliš vhodná z hlediska hmotnosti radiolokátorů. Příchodem GSM sítí v 90. letech a uvolňování restrikcí na použití GPS se situace pro ornitology zásadně změnila. Na trhu se objevily výrazně lehčí (desítky až jednotky gramů) GPS-GSM trackery vhodné i pro malé druhy ptáků. Data z těchto trackerů se průběžně sbírají a odesílají do systémů výrobců zařízení, případně přímo majiteli zařízení.

Rapidní nástup webových technologií po roce 2000 umožňil výrobcům zařízení jednoduše uživatelům poskytovat navazující služby ke svým zařízením, jmenovitě jednoduchou konfiguraci zařízení, základní visualizaci dat, exporty dat, vedení metainformací k zařízení (např. na jakém zvířeti zařízení je) a další. Většina systémů se omezuje pouze na trackery od jednoho výrobce a funkce mimo množinu konfigurace zařízení jsou primitivní, až nedostatečné. V roce 20?? vznikla česká ornitologická platforma Anitra, která poskytuje komplexní nástroje pro správu zařízení a visualizaci dat od širokého spektra výrobců trackerů. Platforma Anitra taktéž poskytuje správu metainformací o zvířetech, správu zájmových bodů, nahrávání příloh a komplexní metody sdílení dat. Pro tuto práci byla platforma Anitra vybraná z důvodu autorovy možnosti vytvářet API na míru mobilní aplikaci a již existující uživatelské základny.

Pro základní představu celého systému je níže uvedeno schématické znázornění vztahů mezi jeho prvky.

Obrázek 1.1: Schéma systému GPS-GSM trackerů

2. Existující řešení

Tato kapitola se věnuje popisu již existujících řešení problémů nastíněných v předchozí kapitole. V této kapitole budou zhodnoceny i další problémy, např. administrativního rázu a problémy s bezpečností dat. Za konkrétní problémy se zde řadí: uchovávání informací o jedincích (morfometricé údaje, obrázky, místo označení), uchování pozic z GPS-GSM trackeru, uchování jiných geografických informací (např. lokace hnízdiště), přehlednost dat, přenositelnost a sdílení dat. Jednotlivá řešení budou popsána, zhodnocena z pohledu vydefinovaných kritérií a na konci bude vynesen verdikt, proč bylo rozhodnuto pro vývoj mobilní aplikace nad platformou Anitra.

2.1 Nestrukturovaný ruční zápis

ruční poznámky - obrázek od D.

Popsat co jsou nestrukturovaná data

Metoda nestrukturovaného ručního zápisu spočívá v uchovávání papírových dokumentů vznikající při činnosti ornitologů. Je možné zapsat např. pozorování jedinců, kontroly hnízd, manipulace (např. nasazení kroužku), morfometrické údaje (délky křídel), obecné poznámky. Schéma zápisu nemusí být normalizované, je zde tedy nejjednoduší možnost schéma upravit pro potřeby ornitologa, případně ornitologické organisace.

Kritérium	Hodnocení
Informace o jedincích	1 – absence vynuceného schématu umožňuje uložit jakékoliv info
Práce s pozicemi z trackerů	4 – informace musí být ručně vloženy
Práce s uživatelsky vloženými pozicemi	3 – informace musí být ručně vloženy, ale schéma není pevně da
Přehlednost dat	3-v datech se obtížně hledá, závisí primárně na zapisovateli, n
Přenositelnost a sdílení dat	4 - data jsou složitě přenositelná, mohou být i obtížně pochopite

Výhody

- možnost kdykoliv upravit schéma,
- nízká náročnost na technologie,
- · rychlost zápisu,

Nevýhody

- obtižné vkládání fotodokumentace, o
- data jsou složitě přenositelná, obvykle pouze ručním přepisem do jiného systému.

2.2 Strukturovaný ruční zápis

Označení "strukturovaná"se přisuzuje datům, které explicitně zachycují fakta, atributy, objekty, u kterých je významným rysem existence elementů dat. Strukturované ukládání dat je strojově zpracovatelné počítači a ukládá se často v databázových systémech nebo tabulkových procesorech. V této podkapitole bude popsán zápis pomocí tabulkového procesoru.

Na rozdíl od ručního zápisu je zde možné vynutit schéma, přehlednost i přenositelnost dat je tedy nesrovnale vyšší. Změny schématu pro zaznamenání nového druhu informací mohou být komplikací, např. v případu rozdělení datového elementu na dva, nutnosti změnit procesy či procedury zapisování záznamu. Problematické je vkládání a zobrazování některých telemetrických dat z trackerů umístěných na zvířatech. Ačkoliv např. zobrazení numerických telemetrických dat (teplota, napětí na akumulátoru) je jednoduché a dá se v tabulkovém procesoru zobrazit jednoduše, geografické pozice nikoliv. Problém také nastává při přibývání dat s výkonem. Problém zde může nastat při spolupráci více uživatelů najednou, synchronizace dat se musí kontrolovat, aby nedošlo ke ztrátě dat.

Kritérium	Hodnocení
Informace o jedincích	2 – způsob dostačuje, ale změna schématu nemusí vždy být flexibil
Práce s pozicemi z trackerů	3 – informace musí být ručně vloženy, případně integrovány službo
Práce s uživatelsky vloženými pozicem	i $\mid 3$ – informace musí být ručně vloženy, ale schéma není pevně dané
Přehlednost dat	2-v datech se dá vcelku dobře hledat, ale některé metriky je obtí
Přenositelnost a sdílení dat	3 - data jsou přenositelná do jiných formátů, ale díky absenci stano

Výhody

- možnost kdykoliv upravit schéma,
- nízká náročnost na technologie,
- rychlost zápisu,
- integrované visualizační nástroje,
- tabulková podoba dat srozumitelná pro vědce.

Nevýhody

• data jsou složitě přenositelná, obvykle pouze ručním přepisem do jiného systému.

2.3 Editory map

2.3.1 Google MyMaps

- obrázek od D.

- 2.3.2 ArcGIS
- 2.4 Movebank
- 2.5 Anitra

3. Analýza požadavků

Kapitola analýza požadavků se věnuje první fázi ve vývoji softwarového projektu. Analýza požadavků se skládá z různých fází dle metodiky, ale vždy je cílem od relevantních stran získat seznam požadavků, co aplikace musí splňovat, aby naplnila cíle, kvůli kterým se k vývoji SW projektu rozhodlo.

3.1 Identifikace stakeholderů

Identifikace stakeholder je první fází v analýze požadavků. Účelem této fáze je identifikovat všechny relevantní zůčastněné strany, aby mohly být zapojeny do fáze sběru požadavků. V případě nedostatečného zapojení stakeholderů je vysoká pravděpodobnost, že software nebude uspokojovat potřeby všech zúčastněných stran.

Za stakeholdery byly identifikovány následující subjekty: stávající uživatele webové aplikace Anitra a majitel firmy Anitra System s.r.o.

Stávající uživatelé aplikace již požadovali funkce pro práci v terénu a jejich požadavky byly zaevidovány do pořadníku funkcí pro webovou aplikaci. Tyto požadavky byly konzultovány se zakladatelem firmy Anitra a byly vybrány k řešení.

3.2 Sběr požadavků

Pro zakladatele firmy Anitra je cílem mobilní aplikace doplnění ekosystému značky Anitra o vhodné řešení zobrazení a zadávání dat v terénu. Na začátku psání práce byla pouze dostupná webová aplikace, která měla pro práci v terénu následující nevýhody:

- data po odpojení z internetu nebyla dostupná, ve většině případů ani již načtená data,
- aplikace byla příliš náročná na energii,
- mapové podklady se nezobrazovaly po odpojení ze sítě,
- aplikace byla na datový přenos příliš náročná,
- navigace v GUI byla pro malá zařízení příliš složitá.

Tyto podněty byly sebrány od uživatelů webové aplikace Anitra v období 2018-2020, ale mělo by se jednat o dostatečný základ pro zařazení mobilní aplikace do portfolia ekosystému Anitra, jelikož se jedná o obecné předpoklady pro software tohoto typu.

Z těchto zkušeností uživatelů vyplynuly klíčové funkční i nefunkční požadavky na funkcionalitu aplikace. Jednotlivé části jsou rozebrány níže. Další funkční požadavky byly vydefinovány zakladatelem firmy Anitra (zde uvedeny ve zkrácené formě):

- zobrazení dat ze zařízení,
- zaznamenat trasu, bod,
- možnost přiložit obrázek k zvířeti,
- notifikace o nových datech,
- zobrazení vlastní pozice na mapě.

3.3 Funkční požadavky

Funkční požadavky popisují očekávané chování systémuy. Funkční požadavky slouží s potřeby uživatelů a lze je vyjádřit ve formě případů užití.

3.3.1 Diagram případů užití

3.4 Nefunkční požadavky

Nefunkční požadavky udávají kvalitu systému, ale ne jeho chování. Tyto požadavky často přináší omezení do implementací funkčních požadavků a je někdy obtížné tyto požadavky sladit. Jako příklad se často uvádí požadavky spojené s komfortem uživatelů (např. přístupnost, výkonnost, lokalizace), provozem aplikace (přenositelnost, tolerance chyb) a bezpečnost. Do nefuknčních požadavků se řadí i požadavky související s možností dalšího vývoje systému.

Z výše uvedeného seznamu požadavků vyplynulo několik klíčových nefunkčních požadavků především ve vztahu k uživatelům. Pro úspěch aplikace je nutné, aby grafické rozhraní aplikace bylo dostatečně jednoduché a podstatné funkce byly rychle přístupné bez složitých navigací, jelikož uživatel nemusí mít mnoho času pro práci s aplikací v terénu. S tímto souvisí i nutnost odezvy v jednotkách sekund.

Neuvedeným požadavkem je multiplatformnost aplikace, jelikož část uživatelů stávající aplikace využívá mobilní operační systém iOS a část Android. Podstatným požadavkem je i rozšiřitelnost aplikace, jelikož se s vývojem aplikace počítá i po dokončení této práce.

4. Technologie

- 4.1 TypeScript a EcmaScript
- 4.2 React
- 4.3 React Native
- 4.4 Expo

5. Implementace

Závěr

Přílohy

A. Formulář v plném znění

B. Zdrojové kódy výpočetních procedur