

Aror University of Art, Architecture, Design and Heritage SUKKUR, Sindh

Department of Multimedia and Gaming Course: Data Structures CSC-221 (Practical) Instructor: Engr. Fatima Jaffar

LAB 07

Objective: Understanding the concept of Stacks and Queue using Array and LinkedList.

Name:			Roll Number:				
Score:		Signature:	Date: 15/ 1/ 2024				
LAB PERFOR MANCE INDICAT OR	SUBJECT KNOWLEDGE	DATA ANALYSIS AND INTERPRETAT ION	ABILITY TO CONDUCT EXPERIMENT	LUNI	CALCULA TION AND CODING	DV/ATT	SCORE

1. Stacks

Stack is a container of objects that are inserted and removed according to the last-in first-out (LIFO) principle.

In the pushdown stacks only two operations are allowed:

- i. **push** the item into the stack,
- ii. **pop** the item out of the stack.

A stack is a limited access data structure - elements can be added and removed from the stack only at the top.

push adds an item to the top of the stack, **pop** removes the item from the top. A helpful analogy is to think of a stack of books; you can remove only the top book, also you can add a new book on the top.

Stack Operations:

push(): Insert a new element into the stack
pop(): Return the top element of the Stack

peek(): Return the top element.

display(): Print all elements in Stack.

Implementation of Stack Using Array

1. Push operation

```
begin
  if top = n then stack full
  top = top + 1
  stack (top) : = item;
end
2. Pop operation:
begin
  if top = 0 then stack empty;
  item := stack(top);
  top = top - 1;
end;
3. Peek operation:
Begin
  if top = -1 then stack empty
  item = stack[top]
  return item
End
```

Lab Tasks

1. Implement Stack using Array

2. Implement Stack using Singly Linked List.