Applied Machine Learning

Amit Kapoor @amitkaps

Bargava Subramanian @bargava

Getting Started

- Download the Repo: https://github.com/amitkaps/applied-machine-learning
- Finish installation
- Run jupyter notebook in the console

Schedule

```
0900 - 0930: Breakfast
0930 - 1115: Session 1 - Conceptual
1115 - 1130: Tea Break
1130 - 1315: Session 2 - Coding
1315 - 1400: Lunch
1400 - 1530: Session 3 - Conceptual
1530 - 1545: Tea Break
1545 - 1700: Session 4 - Coding
```

Data-Driven Lens

"Data is a clue to the End Truth"

— Josh Smith

Metaphor

- A start-up providing loans to the consumer
- Running for the last few years
- Now planning to adopt a data-driven lens

What are the type of questions you can ask?

Type of Questions

- What is the trend of loan defaults?
- Do older customers have more loan defaults?
- Which customer is likely to have a loan default?
- Why do customers default on their loan?

Type of Questions

- Descriptive
- Inquisitive
- Predictive
- Causal

Data-driven Analytics

- Descriptive: Understand Pattern, Trends, Outlier
- Inquisitive: Conduct Hypothesis Testing
- Predictive: Make a prediction
- Causal: Establish a causal link

Prediction Challenge

It's tough to make predictions, especially about the future.

— Yogi Berra

How to make a Prediction?

- Human Learning: Make a Judgement
- Machine Programmed: Create explicit Rules
- Machine Learning: Learn from Data

Machine Learning (ML)

[Machine learning is the] field of study that gives computers the ability to learn without being explicitly programmed.

— Arthur Samuel

Machine learning is the study of computer algorithm that improve automatically through experience

— Tom Mitchell

Machine Learning: Essense

- A pattern exists
- It cannot be pinned down mathematically
- Have data on it to learn from

"Use a set of observations (data) to uncover an underlying process"

Machine Learning

- Theory
- Paradigms
- Models
- Methods
- Process

Applied ML - Approach

- Theory: Understand Key Concepts (Intuition)
- Paradigms: Limit to One (Supervised)
- Models: Use Two Types (Linear, Trees)
- Methods: Apply Key Ones (Validation, Selection)
- Process: Code the Approach (Real Examples)

ML Theory: Data Types

- What are the types of data on which we are learning?
- Can you give example of say measuring temperature?

Data Types e.g. Temperature

— Categorical

- Nominal: Burned, Not Burned
- Ordinal: Hot, Warm, Cold

— Continuous

- Interval: 30 °C, 40 °C, 80 °C
- Ratio: 30 K, 40 K, 50 K

Data Types - Operations

— Categorical

- Nominal: = , !=
- Ordinal: =, !=, >, <</pre>

— Continuous

- Interval: =, !=, >, <, -, % of diff</pre>
- Ratio: =, !=, >, <, -, +, %

Case Example

Context: Loan Approval

Customer Application

- age: age of the applicant
- income: annual income of the applicant
- year: no. of years of employment
- ownership: type of house owned
- grade: credit grade for the applicant

Question - How much loan amount to approve?

Historical Data

age	income	years	ownership	grade	amount
31	12252	25.0	RENT	C	2400
24	49200	13.0	RENT	C	10000
28	75000	11.0	OWN	В	12000
27	110000	13.0	MORTGAGE	A	3600
33	24000	10.0	RENT	В	5000

Data Types

— Categorical

- Nominal: home owner [rent, own, mortgage]
- Ordinal: credit grade [A > B > C > D > E]

— Continuous

- Interval: approval date [20/04/16, 19/11/15]
- Ratio: loan amount [3000, 10000]

ML Terminology

Features: x

- age, income, years, ownership, grade

Target: y

- amount

Training Data: $(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2)...(\mathbf{x}_n,y_n)$

- historical records

ML Paradigm: Supervised

Given a set of **feature x**, to predict the value of target y

Learning Paradigm: Supervised

- If y is continuous Regression
- If y is categorical Classification

ML Theory: Formulation

- Features x (customer application)
- Target y (loan amount)
- Target Function $f:\mathcal{X} o y$ (ideal formula)
- Data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2)...(\mathbf{x}_n, y_n)$ (historical records)
- **Final Hypothesis** $g: \mathcal{X} o y$ (formula to use)
- **Hypothesis Set** \mathcal{H} (all possible formulas)
- Learning Algorithm \mathcal{A} (how to learn the formula)

ML Theory: Formulation

unknown target function $f: \mathcal{X}
ightarrow y$ training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2)... (\mathbf{x}_n, y_n)$ hypothesis set \rightarrow learning algorithm final hypothesis

ML Theory: Learning Model

The Learning Model is composed of the two elements

- The Hypothesis Set: $\mathcal{H} = \{h\}$ $g \in \mathcal{H}$
- Learning Algorithm: \mathcal{A}

ML Theory: Formulation (Simplified)

unknown target function $y = f(\mathbf{x})$ training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2)... (\mathbf{x}_n, y_n)$ hypothesis set \rightarrow learning algorithm $\{h(\mathbf{x})\}$ final hypothesis $g(\mathbf{x}) \stackrel{\cdot}{\rightarrow} f(\mathbf{x})$

Linear Algorithms

$$s = \sum_{i=1}^d w_i x_i$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

linear regression

$$h(\mathbf{x}) = s$$

logistic regression

$$h(\mathbf{x}) = \theta(s)$$

Simple Hypothesis Set: Linear Regression

For d features in training data,

$$h(\mathbf{x}) = \sum_{i=1}^d w_i x_i$$

How do we choose the right w_i ?

Error

Error Measure - MSE

How well does $h(\mathbf{x})$ approximate to $f(\mathbf{x})$

We will use squared error $(h(\mathbf{x}) - f(\mathbf{x}))^2$

$$E_{in}(h) = rac{1}{N} \sum_{i=i}^{N} \left(h(\mathbf{x}) - y_i
ight)^2$$

Learning Algorithm - Linear Regression

- Linear Regression algorithm aims to minimise $E_{in}(h)$
- One-Step Learning -> Solves to give $g(\mathbf{x})$

$$g(\mathbf{x}) = \hat{y}$$

$$E_{in}(g) = rac{1}{N} \sum_{i=1}^{N} \left(\hat{y}_i - y_i
ight)^2$$

Machine Learning Process

- Frame: Problem definition
- Acquire: Data ingestion
- Refine: Data wrangling
- Transform: Feature creation
- Explore: Feature selection
- Model: Model creation & assessment
- Insight: Communication

Frame

Variables

- age, income, years, ownership, grade, amount, default and interest
- What are the Features: x ?
- What are the **Target**: y

Frame

Features: x

- age
- income
- years,
- ownership
- grade,

Target: y

- amount * (1 - default)

Acquire

— Simple! Just read the data from csv file

Refine - Missing Value

- REMOVE NAN rows
- IMPUTATION Replace them with something?
 - Mean
 - Median
 - Fixed Number Domain Relevant
 - High Number (999) Issue with modelling
- BINNING Categorical variable and "Missing becomes a category*
- DOMAIN SPECIFIC Entry error, pipeline, etc.

Refine - Outlier Treatment

- What is an outlier?
- Descriptive Plots
 - Histogram
 - Box-Plot
- Measuring
 - Z-score
 - Modified Z-score > 3.5

where modified Z-score = $0.6745 * (x - x_median) / MAD$

Explore

- Single Variable Exploration
- Dual Variable Exploration
- Multi Variable Exploration

Transform

Encodings

- One Hot Encoding
- Label Encoding

Feature Transformation

- Log Transform
- Sort Transform

Model - Linear Regression

Parameters

- fit_intercept
- normalization

Error Measure

- mean squared error

Real-World Challenge - Noise

- The "target function" f is not always a function
- Not unique target value for same input
- Need to add noise $N(0,\sigma)$

$$y = f(\mathbf{x}) + \epsilon(\mathbf{x})$$

Noise Implication

The best model we can create will have an expected error of σ^2

If Noise (σ) is large, that means feature set does not capture large enough factors in the underlying process

- Need to create **better features**
- Need to find new features

When are we learning?

Learning is defined as gpprox f, which happens when

(1) Can we make $E_{out}(g)$ is close enough to $E_{in}(g)$?

$$E_{out}(g)pprox E_{in}(g)$$

(1) Can we make $E_{in}(g)$ small enough?

$$E_{in}(g)pprox 0$$

ML Theory: Generalisation

For Learning, $E_{out}(g) pprox E_{in}(g)$

To find the generalisation error, we need to split our data into training and test samples

Given large N, the expected generalisation error should be zero

ML Theory: Generalisation

For Learning, $E_{in}(g)pprox 0$

Complex Model: Better chance of approximating f Simple Model: Better chance of generalising E_{out}

Lets try by increasing the model complexity - More features through interaction effect

ML Theory: Model Complexity

ML Theory: Bias-Variance

For Learning, $E_{in}(g)pprox 0$

Given large N, the expected error should be the bias

- Bias are the simplifying assumptions made by a model to make the target function easier to learn.
- Variance is the amount that the estimate of the target function will change if different training data was used.

ML Theory: Bias-Variance Tradeoff

ML Theory: Overfitting

- Simple Target Function
- 5th data point noisy
- 4th order polynomial fit

$$E_{in}=0$$
 , E_{out} is large

Overfitting - Fitting the data more than warranted, and hence fitting the noise

ML Theory: Addressing Overfitting

$$E_{out}(h) = E_{in}(h) + \text{overfit penalty}$$

- Regularization: Not letting the weights grow
 - Ridge: add $||w||^2$ to error minimisation
 - Lasso: add ||w|| to error minimisation
- Validation: Checking when we reach bottom point

Regularization - Ridge

$$Minimize \quad E_{in}(w) + rac{\lambda}{N} {||w||}^2$$

Validation

Validation set: K

Training set: N-K

Rule of Thumb: $N=rac{K}{5}$

Note: The validation set is

used for learning

Cross Validation

Repeats the process 5-times

Model Selection

How to choose between competing model?

Choose the function g_m with lowest cross-validation error E_m

Applied ML

- Theory: Formulation, Generalisation, Bias-Variance, Overfitting
- Paradigms: Supervised Regression
- Models: Linear OLS, Ridge, Lasso
- Methods: Regularisation, Validation
- Process: Frame, Acquire, Refine, Transform,
 Explore, Model

Classification Problem

Context: Loan Default

Customer Application

- age: age of the applicant
- income: annual income of the applicant
- year: no. of years of employment
- ownership: type of house owned
- grade: credit grade for the applicant
- amount: loan amount given
- interest: interest rate of loan

Question - Who is likely to **default**?

Linear Models

$$s = \sum_{i=1}^d w_i x_i$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

linear regression

$$h(\mathbf{x}) = s$$

logistic regression

$$h(\mathbf{x}) = \theta(s)$$

Logit Function

$$heta(s) = rac{e^s}{e^s + 1} = rac{1}{1 + e^{-s}}$$

Logistic Relationship

Find the w_i weights that best fit:

$$y=1$$
 if $\sum_{i=1}^d w_i x_i > 0$

y=0, otherwise

Follows:

$$heta(y_i) = rac{1}{1 + e^{-(\sum_{i=1}^d w_i x_i)}}$$

Error - Likelihood / Probabilities

Where,
$$h(\mathbf{x}) = \sum_{i=1}^d w_i x_i$$

Minimise the log-likelihood values

$$E(\mathbf{h}) = -rac{1}{N} ln \left(\prod_{i=1}^N heta(y_i h(\mathbf{x}))
ight)$$

Learning Algorithm - Logistic

- Logistic Regression algorithm aims to minimise $E_{in}(h)$
- Iterative Method -> Solves to give $g(\mathbf{x})$

$$g(\mathbf{x}) = \hat{y}$$

$$E_{in}(g) = rac{1}{N} \sum_{i=1}^{N} ln(1 + e^{-y_i \hat{y_i}})$$

Error Metric - Confusion Matrix

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Model Evaluation

Classification Metrics

Recall
$$(TPR) = TP / (TP + FN)$$

relevant elements

How many selected items are relevant?

How many relevant items are selected?

Model Evaluation

Receiver Operating Characteristic Curve

Plot of TPR vs FPR at different discrimination threshold

Decision Tree

Example: Survivor on Titanic

Decision Tree

- Easy to interpret
- Little data preparation
- Scales well with data
- White-box model
- Instability changing variables, altering sequence
- Overfitting

Bagging

- Also called bootstrap aggregation, reduces variance
- Uses decision trees and uses a model averaging approach

Random Forest

- Combines bagging idea and random selection of features.
- Similar to decision trees are constructed but at each split, a random subset of features is used.

If you torture the data enough, it will confess.

— Ronald Case

Challenges

- Data Snooping
- Selection Bias
- Survivor Bias
- Omitted Variable Bias
- Black-box model Vs White-Box model
- Adherence to regulations

Day 1 Coverage

Day 1: Reflections