Отчет по вычислительному практикуму

Шилов Максим

Численное методы решения нелинейных уравнений

Метод секущих

Идея интерполяционных методов состоит в том, что задача, нахождения корней уравнения

$$f(x) = 0 \quad (1)$$

заменяется задачей нахождения корней интерполяционного полинома $P_n(x)$, построенного для f(x).

Рассмотрим случай, когда для f(x) строится интерполяционный полином первого порядка $P_1(x)$ — интерполяционный метод первого порядка. Пусть известны приближения x_{n-1} и x_n к кор- ню x^* уравнения (1). Выбрав в качестве узлов интерполяции x_n и x_{n-1} , построим для f(x) интерполяционный полином в форме Ньютона:

$$P_1(x) = f(x_n) + f(x_n, x_{n-1})(x - x_n).$$
 (2)

Заменяя в уравнении (1) функцию f(x) интерполяционным полиномом $P_1(x)$ из (2), получаем линейное уравнение

$$f(x_n) + f(x_n, x_{n-1})(x - x_n) = 0$$

Принимая его решение за новое приближение x_{n-1} , приходим к интерполяционному методу первого порядка:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n, n_{n-1})}.$$

Подставляя сюда выражение для разделенной разности первого порядка функции f(x), окончательно получаем

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n).$$
 (3)

Геометрическая интерпретация рассмотренного метода состоит в следующем. Через точки $(x_{n-1}, f(x_{n-1}))$ и $(x_n, f(x_n))$ проводится прямая - секущая графика функции y = f(x). Ее уравнение имеет вид

$$y = f(x_n) + \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} (x - x_n)$$

Полагая в этом равенстве y = 0, находим точку пересечения секущей с осью Ox, значение которой в точности совпадает с x_{n+1} , вычисляем по формуле (3). Благодаря такой геометрической интерпретации интерполяционный метод первого порядка называют методом секущих.

Метод хорд

$$x_0 = a$$

$$x_{n+1} = x_n - \frac{x_n - b}{f(x_n) - f(b)} f(x_n).$$

$$y = f(x_n) + \frac{f(x_n) - f(b)}{x_n - b} (x - x_n)$$

Вычисления

$$f(x) = 3x - \cos x - 1 = 0 \implies 3x = \cos x + 1 \implies x^* \in [0, \frac{2}{3}]$$

 $f(x)=3x-\cos x-1=0 \ \Rightarrow \ 3x=\cos x+1 \ \Rightarrow \ x^*\in [0,rac{2}{3}]$ т.к. производная f(x) существует и сохраняет знак внутри интервала $[0,rac{2}{3}],$ то корень x^* заведомо будет единственным.

Метод секущих

Точность:	$x_0 \in [0, \frac{2}{3}]$	Кол-во итераций:
10^{-3}	0.6071898315409672	2
10^{-6}	0.6071016710657215	3
10^{-9}	0.6071016481033554	4
10^{-12}	0.6071016481033554	4

Метод хорд

Точность: $x_0 \in [0, \frac{2}{3}]$	Кол-во итераций:
10^{-3} 0.6069837096982954	2
10^{-6} 0.6071016288617436	4
10^{-9} 0.607101648348866	5
10^{-12} 0.6071016481031627	7

Метод хорд имеет меньшую скорость сходимости.

Код программ (Python 3.7)

Преамбула

```
In []: import numpy as np
       import matplotlib.pyplot as plt
  Метод секущих
In []: def secant(inter, e):
             iterat = []
             x = []
             for i in inter:
                 j = 0
                 x0 = i[1]
                 x1 = 1
                 while True:
                     j += 1
                     xn = x1 - ((x1-x0)/(function(x1)-function(x0)))*function(x1)
                     if function(xn) == 0:
                         x.append(xn)
                         break
                     if np.abs(function(xn)) < e:</pre>
                         x.append(xn)
                         break
                     x0 = x1
                     x1 = xn
                 iterat.append(j)
             return (x, iterat)
         def function(x):
             return (3*x - np.cos(x) - 1)
         inter = [[0,1/2]]
         e = 1e-12
         roots, iteration = secant(inter, e)
         print(roots, iteration)
```

2 Метод хорд

```
In []: def chord(inter, e):
             iterat = []
             x = []
             for i in inter:
                 j = 0
                 x0 = i[0]
                 x1 = i[1]
                 while True:
                     j += 1
                     xn = x0 - ((x0-x1)/(f(x0)-f(x1)))*f(x0)
                     if f(xn) == 0:
                         x.append(xn)
                         break
                     if np.abs(f(xn)) < e:
                         x.append(xn)
                         break
                     x0 = xn
                 iterat.append(j)
             return (x, iterat)
         def f(x):
             return (3*x - np.cos(x) - 1)
         inter = [[0,1/2]]
         e = 1e-12
         x, iteration = chord(inter, e)
         print(x, iteration)
```