Field Extensions

A field F is a ring such that (F\{0}, .) is a group. Lit K be a field. A subjield F of K is a subset such that (1) F is a subgroup of (K,+) (2) F \ {0} is a subgroup of (K\0),) We say that K is a field extension of F and denote this using K/F or De will anly consider fields for which 0 \$ 1. Bo min | F | = 2.

Let K and a EK. We will be constructed thing a field $F(\alpha)$ such that $F(\alpha)$.

F(a) is called the intermediate field.

It should be the smallest subfield

of K containing F and a. F(a) contains all polynomials of the form $a_n \alpha^n + \dots + a_1 \alpha + a_0, a_n, \dots a_0 \in F, a$ well as all ratios of those polynomials, which are of the form $\frac{f(\alpha)}{g(\alpha)}$ where $g(\alpha) \neq 0$. Notice that $\left\{\frac{J(\alpha)}{g(\alpha)} \mid J(x), g(x) \in F[x], g(\alpha) \neq 0\right\}$ is a juld $\Rightarrow F(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} \mid f(\alpha), g(\alpha) \in F[\alpha], g(\alpha) \neq 0 \right\}$

We say a is algebraic over F if there exists a polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$. a is the root of f(x).

Otherwise, a is transundental over F.

Consider the ring homomorphism $\alpha: F[x] \to K$ $\begin{cases} \alpha(x) = \beta(\alpha), & Now \end{cases}$

$$Kar(y) = \begin{cases} f(x) \in F[x] \mid f(\alpha) = 0 \end{cases}$$
If α is algebraic own F , then
$$Kar(y) + \{0\}.$$

$$Im(y) = \{f(\alpha) \mid f(\alpha) \in F[x]\} = F[\alpha]. Kup$$
in mind that $F[\alpha]$ and $F(\alpha)$ are not
the same $F(\alpha)$ is bigger than $F[\alpha]$.
By the first Ring isomorphism theorem,
there exists a ring isomorphism
$$\frac{\nabla}{\alpha} : \frac{F[x]}{Kar(y)} \xrightarrow{} F[\alpha]$$
Notice that $F[x]$ is a Principal Ideal.
Suppose $Kar(y) = (f(\alpha)), f(\alpha) \in F[x]$ and
$$f(\alpha) \neq 0$$
 This means all polynomials which
have α as the root, are multiples of $f(\alpha)$.

f(x) is irreducible. $f(x) = \frac{F[x]}{Kxxy} \xrightarrow{\sim} F[\alpha]$

$$\Rightarrow \nearrow_{\alpha} : \frac{F[x]}{(f(x))} \xrightarrow{\sim} F[\alpha]$$

 $\frac{1}{|f(x)|} = \frac{|f(x)|}{|f(x)|} \text{ is an Integral Domain since it}$ is the subring of $f[\alpha]$ which itself is ID. $\frac{1}{|f(x)|} = \frac{|f(x)|}{|f(x)|} \text{ is a Prime ideal. } f(x) \text{ is thus}$ irreducible.

=> (I(x)) is a Maximal Ideal.

 $\frac{1}{f(x)}$ is a field.

 $= F[\alpha] = F(\alpha) \text{ if } \alpha \text{ is algebraic over } F.$ $= F[\alpha] \subseteq F(\alpha) \text{ in general, since } F(\alpha) \text{ also contains } ratios of polynomials.}$

2) Suppose a is transcendental over F.
=> 1< 2 = \{0\}.

=> p is injective

F[x] is isomorphic to $F[\alpha]$ as rings. a then behaves like the variable x. It doesn't have any inverse in $F[\alpha]$, since x doesn't have one in F[x]. $F[\alpha]$ is thus not a field.