

00196US1.ST25
SEQUENCE LISTING

<110> Vogeli, Gabriel
<120> Novel G Protein-Coupled Receptors

<130> 00196US1 -

<150> 60/195,150
<151> 2000-04-06

<150> 60/195,099
<151> 2000-04-06

<150> 60/195,151
<151> 2000-04-06

<150> 60/195,148
<151> 2000-04-06

<150> 60/195,093
<151> 2000-04-06

<150> 60/195,098
<151> 2000-04-06

<150> 60/230,149
<151> 2000-09-05

<160> 117

<170> PatentIn version 3.0

<210> 1
<211> 661
<212> DNA
<213> Homo sapiens

<400> 1 acacagtgt cacacacgtg cagggacata cccccttccc caactgcctg gcctgcacac	60
ttggcatttc cagtatattctt aggaagtgtat ggctctgtgc atcctgagcc aatccagctc	120
cgagcctcca aggcattctg gtgatgggca gctgaaatct ctgcctctga ggccttcaca	180
cacccacattt cggtaaaact tgcttctgtct gaggaacttg gtgtgtcttc cttctgggca	240
ggaggtcaca tttagagagca caggaggcgt gcctgcccccc cgaaaatgtg gctctgggta	300
gaattgcagg ctcagggtt ttggcagga gagcaccaac cgtgccacac ccacacagac	360
acggtaactg gggccctgca gcagggacga cggcacttcc caaagggtct ggaagccatg	420
tccagaggag gccatgtct agtcccttg ggcagggtct gctgcaagga gggtaagtt	480
gggcatttg aaccctggaga agtagaggac tcaagcaccag cacaaccagg tcggcgcat	540
aatacacattt cctctccac ttctcccaa gcctgaaaaa acctcaaacc agcctctttg	600
cagctccctg aggtcatgac tcacgaacca tgctcggggc agggaaaaag aaaagcatcc	660
	661

g

<210> 2

Page 1

<211> 627
<212> DNA
<213> *Homo sapiens*

<400> 2	ctaaaggagg aatagat gtc tttaagaaga aatgaaaaaa taaagtaaaat gtggaaaattt	60
	cccttactta ttccaaaca agtgctcctc caaaaaatg caaataatta agtttctgaa	120
	atggtaaca tatcagatta gtagacatat ggcaggagca gcaaattgagc agatcaagtt	180
	gaagtcctag tattaccaat ctgttaatgt tgacaggaag actcattttg actgttcctt	240
	ttatataaat aaatggatgg attcaacta ctctaaatag gaatgctaaa agcagcactg	300
	ctaaaagtgc atatcaaacc aataatttc tgatgctgtt ttggtatatc ctacaaacat	360
	tttgttagaca acaactcaga agggaaaaaa atatcttatg cctttgaggt ctgtactgaa	420
	tgctaattgca tttgtatatg atgggtttaa tacagaactg agaataaaatt actttcagca	480
	gctgcactct agacctataa atcgctctga gtactacaaa atccatacaa aggaagaaca	540
	gctggataat ttacaccacc agtatttgtc aaaaaaaaaa aaaaaaagct gaaaatacag	600
	aacctgattt tgtcccttt tcgagta	627

<210> 3
<211> 297
<212> DNA
<213> *Homo sapiens*

<400>	3	agggggccctc cagcacttgtt cttgaagggg tgacagggtc tgggtctqa ctcccaccc caccacttcc cacctgaggg ccctggaatg aatcccttcc tggatctgag ctgcacatc atcagtgaaa atgacaccta tatggactt cagtgagaac acaaatgca cgttctgcc acggaacaac ccatgtactc actgggagca ttgagagtag atccacactg attgacacag ggactccagg cctgaccat gatatgtact ggatacatgg ccatgagtgc tccacag	60
			120
			180
			240
			297

<210> 4
<211> 649
<212> DNA
<213> *Homo sapiens*

<400> 4	acacccaata ctgcttgct gccttaggct tcagcacatt agcatggc tt ccccttgg	60
	catggtaact gtagctgaac ttggagggtt tgtattaccc attataatta ttacttattt	120
	cacatggaaa acaagaaaat ctttatggga attccaagtt ccccttagga ataccaaaga	180
	gaggaaaaag gctttgagga tggtcctgat gtgtgaagt gtttcattt tggtttcac	240
	tccttaccac ctcaacttcc catttttat gatggtaag gaacatgtct ttttgaactg	300
	ctctttata aagatcattc tctgtttcca cattatttcc ctgtgtctt caaatctgaa	360
	tttgttgc tatattattt tatgacctca aaatttcatg atcaatttc	420

00196US1.SR25	
agatcatggc agcttggttc ttcagtcatg tatgagaatgt aataacagta ccttagaaat	480
tcatcagagg aaggaggat cttcaaaacta tctcttcttga atgtttgaaa gattccaaga	540
caatataatc aaataattaa cttagaaaaat cgatatgctc tattagtgttata tctatgtcac	600
tttgaagatt tttctttttt tttttctttt ttttttatta tacttttaag	649

<210> 5
<211> 626
<212> DNA
<213> *Homo sapiens*

<400> 5	aatgctactg ctcctgcata taatagctgc ttgttgttgg ttttgttgcata tgccaaac	60
	atagactctt tcaaaagcac ttctgttgttgcata gatgtccatc	120
	tttctgttc tcacatattt ttttgtgaa aaccagacat tttagataat	180
	gtgttgtagc agtccagata ctgattctct cccccaggag ctgttgtctt tcttacttgt	240
	atatgtgttt atgtacttgg ctggactttaataatgt gtatcccgtatgtatata	300
	ccatctttta tactaatgtt actttccga tagtgcagcc ttgggcattgg acagagtat	360
	cctgggatga cagtaacttt taatagggtt ctctatgact atctctttcc ctgtatgtccc	420
	tgttaagcta tctgcatttc ttgttatcac acctagcctt tgacttccac taattgtttg	480
	atcattgcct cactgtttt ggcatgtcccc taaggcataa agtgttccac agtctgat	540
	aattaaattc agattttac aagagtggtc tttagggcca gtccttgagg ttgtgtgta	600
	ctctqqqagg gctcaaatgt ttccct	626

<210> 6
<211> 400
<212> DNA
<213> *Homo sapiens*

<400>	6	cctcacatcc cttccccctc aaacctggc aacccaaac ttttcttgac agccctcctt	60
ggcattctt cattttggtg tcagatctca cagcagaatt ttttacctat tatataccag	120		
tgcctcagtg tgaagtccg gtttaacttc ttgttaccac gagcccacta ttttgccccca	180		
ataataccct cccccaattc acaaacacac aagcattcccc tcctacagct ttgggcctcc	240		
tatctgagtc cttagaaaa gaagtgtgt gtaactccct tggcagttag tgtagacttg	300		
gtccaaggaa gatgagcacc agtcaggcga gctggccct ttctctccc tggccatcag	360		
caaatacgca ctgccccatcg atgccaggc aatggggagcg	400		

<210> 7
<211> 556
<212> DNA
<213> *Homo sapiens*

00196US1.ST25

attactattt ttcaacctct	tttactccag ggacttctat	gcacccttc cctcaactcc	60
ccctcaattt gttctataa	tccccatgac ccccagttt	ataacaccac tgtcaggagc	120
ccaaagctgc cattcattca	cttccattag catgactctt	catgtacttt ggggtcttca	180
gtctctcccc ttctcctaatttccagggtt	ccattctgct tctgctggct	tccctacaaa	240
gcctgcaaca tcataagcca	tttcagggaa gagcttgatc	atctttgat gaaccctgca	300
ttcatgactc actgccttac	ctgtctttgg ctctgcatgt	ccccagttt cggtttcttt	360
ctctggaaag agagattgcc	caagagtcc	gcacatcagc attactagaa atgcatgcag	420
accagcttca gctgcttgcc	aactcttaa	aaaatgagta aacaattttc taaaggggaa	480
aaaatctt cacctcctca	caccaactat ttgcataatt	cagtgacett ttataaaccg	540
tgccattgtta taagca			556

<210> 8
<211> 670
<212> DNA
<213> Homo sapiens

<400> 8	60					
caccgtccctc atcatgatcg	tcttcgtcat ctgctgctgg	gggcctact gttcctgg				
gctgctggcc	ggcccccggc	aggcccagac catgcaggcc	ccctcgctcc tcagcgtgg	120		
ggccgtctgg	ctgacctggg	ccaatggggc	catcaaccct gtcatctacg	ccatccgcaa	180	
tcccaacatt	tcgatgtcc	tagggcgaa	ccgcgaggag ggctaccgga	cttagaatgt	240	
ggacgcttcc	ctgcccagcc	agggcccggg	tctgcaagcc	agaagccgca	gtcgcttcc	300
aaaccgctat	gccaaccggc	tggggccctg	caacaggatg	tccttttcca	accggccag	360
cgaggatggca	ggggacgtgg	ccatgtgggc	ccgaaaaat	ccagttgtac	ttttctgccc	420
agagggacca	ccagagccgg	tgacggcagt	gacaaacag	cctaaatccg	aagctgggaa	480
taccagcctc	taagacggtt	ggaatggcca	gtttatgaag	gcaattttcc	actcgcatta	540
tttaatgtat	gaagatctg	ggggagagtt	gtggatttca	taaagccaaa	catttaaagc	600
tagagacggg	ggaggcttac	cactttcccc	aaacaacata	aaagacaatg	tcccttcttt	660
caaaaaagtgc					670	

<210> 9
<211> 1860
<212> DNA
<213> Homo sapiens

<400> 9	60					
cgctcctgcgtaaacacgcgtttccctcgga	caacgctggaa	accacgtca aaggctccgc				
cagggtccca	gcgaccggca	ccctccggc	cgagccgc	tcccgcg	ggccgttagc	120
ccccggcccc	gagccaccac	tccgacctag	cgccgcgc	ccccgggtgcg	ggatgaggag	180
atcccgccgc	gccactgggc	cccatggagg	agccgcagcc	gccccgc	ccagcgcagca	240

00196US1.ST25

tggccttact gggcagccag cactccggcg cccccctccgc ggccggccca cctggcgaaa 300
cttcctccgc ggccacggcg gccgtgtct cttcagcac cgtggcgacc gcggcgctgg 360
ggaaccttag ctagcgaagg ggaggcggca cagctccgc tcccggtggc ggcggcattg 420
gcgggtccgg gcagcqcgq gaggcggggg cggcggttag gcggccgcta gacacggagg 480
cggcgccgct gctgtcgac ggagctcag tggcgccca ggcgctcgac ctccgtctca 540
tcttcctgt gtctagcctt ggcaactcg cggtgatggg ggtgattgtg aagcacccgc 600
agctccgcac cgtaaccaac gccttcattcc tgctcgcttc cctatcgat ctgtcacaagg 660
cgctgtctg cctgcccggc gccttcctgg accttcac tccgcccggg gttcggcgc 720
ctgcccggc cggggggccc tggcgccgct tctgcggc cagccgcttc ttcaagtctg 780
gttcggcat cgtgtccacg ctcaagctgg cgtctatctc gttggaccgt tactgcgcta 840
tcgtgcggcc gccgcggag aagatcgcc gccgcccgcgct gtcagctg ctggcgggcg 900
cctggctgac ggcctggc ttctccttgc cctggagct gtcggggcgccccggaaac 960
tcgcggcgcc gcaagaccc tacgggtgcc tctaccggac ctccccggac cccgcgcagc 1020
tggcgccgc ctcaagctgg gggctggtag tggctgtcta cctgtgtccc ttccgtctca 1080
tgtgtttctg ccactaccac atctgcaaga cggtgccct gtcggacgtg cgcgtgcggc 1140
cggtgaacac ctacgcgcgct gtcgtgcgt tcttcagcga ggtgcgcacg gccaccaccc 1200
tcctcatcat gatcgcttc gtcatctgt gtcggggcc ctactgttcc ctgggtgtgc 1260
tggccggcc cggcaggcc cagaccatgc agggccctc gtcctcagc gtggtgccg 1320
tctggctgac ctggccaaat gggccatca accctgtcat ctacgcattc cgcaatccca 1380
acatttcgtat gtccttaggg cgcaaccgcg aggaggctca cggactagg aatgtggacg 1440
ctttcctgcc cagccaggcc cgggtctgc aagccagaag ccgcgtgcgc ttccgaaacc 1500
gtatgccaac cgggtgggg gcctgcaaca ggtgtcctc ttccaaacccg gccagcggag 1560
tggcaggaga cgtggccatg tggcccgca aaaatccagt tgtactttc tgccgagagg 1620
gaccaccaga gccgggtacg gcagtgtacca aacagcctaa atccgaagct ggggatacc 1680
gcctctaaga cgggttgaat ggccagctt tgaaggaaaa ttccactcg cattattaa 1740
tgatggaaga ttctggggga gagttgtgaa ttccataaaag ccaaacattt aaagcttagag 1800
acgggggagg cttaccactt tcccaaaca acataaaaga caatgtccct tcttcaaaag 1860

<210> 10
<211> 630
<212> DNA
<213> Homo sapiens

<400> 10
tctcaaaaaa taaataaaaaa ccactgtaca tcaacaaggc cttggggga cagctggggc 60
ataagtaggt gtcagccata catcagagca gtgtgcctgc cctgagctgc ttgggttga 120

00196US1.ST25

ccagcctgggt gtccagaaat gcctgctgga gggagtgcgtg gtacagaaaaa ccttgcgtc 180
ttagaaggtc tcctgagagg ccctgcaaag ccagagtccc tcttagcgc tcagatcgt 240
gctatcaaag tatagctcg ggattgcgtc cagcatacaa actttactg gtctgcagcg 300
agataagtac agaaattgaa agtaaggatt tagaaacttt tataacaatt ttacaaggtc 360
ttgtcaaatg ttattaaaac aaagctgagg ctggaaatttc accttttca tttcgaaaa 420
ttcaatttaa acaaattgtt gtaaaatata ggtaaatataa atgtaccatt ttagccattt 480
ttgagcgtac aatttatgtt cagtaagtgc tttcacaata ttgtgttaacc actagtatta 540
tatagtatat atttttaaaat ttttacagaa gtattaagtt agcagcagat taaacattt 600
tttcttaat tgagcttgag aagcgctggc 630

<210> 11
<211> 683
<212> DNA
<213> Homo sapiens

<400> 11
agagcaga ttgcctgtg taggtcaggt ctgggttctt tctagtccag agtagggaaag 60
aacaggaaa gagggctgtt gttgaaggac ctteagccac gagaagggtt gtgtaccatg 120
tagccctctg gggaggcaca aaaaggctca ccattttctg aaaatgacta gactgcagga 180
tccacgttag tttgtactattt gcattcatga ctttatccac agggcctcac aaggtgcctg 240
acatgcagta ggctccagat gcataatttttataaagtta atagtcccta agtgcaggg 300
tcccttctat ttgcattcta agaaaatgtc acttttatgc ctaattttgtt atttgcagtt 360
ttataagttt tataagaggg tctcccaat agtataaact tcaagccccaa caaaacctat 420
gtttgcctcc cataggcatg caataaatgt tcgtggatct aatgagtaac aagaaaaaaga 480
aggaacaaaa ccctaaccctt tcccttaccc aaaccagtgg caaccggggaa ggtccaaattt 540
caacccttgcat cagtcagagg cagcattccaaatttattcc caagcagcaa tagacaatga 600
tttacctcaa ttaattcagc cagttaaatg cttagttctt acttgccaaac cgaaggcttg 660
aaggcaaaa gtgtttaagc ctc 683

<210> 12
<211> 481
<212> DNA
<213> Homo sapiens

<400> 12
ttcaggcaga tgtcagttaa aaacttaccc ctgcacactg caaaaactgt atagccctga 60
acagatactt ttcttgagca tagttctttt gtctctaaag caggcataat tgccaaatgt 120
gggatgatat ttagaaatct gaactgtatgt ttattctcta ggggtcttctt catttgcgt 180
gggatggag atgtcttagtgc tctcagagca gcaataagaa aacagaaaaacc tcttccagct 240

00196US1.ST25

tctgacatcc aaatgtcaag ctcttaggag aagaatggaa agtcctcaag aaatgcaaat 300
agctttggca qaatacgctga tgaagaccac ctctcccccc tccagaaagg cattggttcc 360
ccattcatgg aaaagggaat gtagagagag attagataat agtacatcca taaggttcct 420
ggaatctgca tctgaggaaag aggggcgtca gagaccccaag ctgttatcta taatccctcc 480
481

t

<210> 13
<211> 693
<212> DNA
<213> Homo sapiens

<400> 13
gcactagggc aaagtcaaga catacgggtg tccagttcta gcttgcaac taactggta 60
tatattttta agttacagtc actctgcgcc agtttcctca ttttaatag agtgggttag 120
aactagataa atacttcat tttgtcaagc tctaaattct gacttcagga aaaaaccata 180
aggcactgga gtttttattca taggttttgc tgctgacccc gtccctctct gtttctcaa 240
ccaccacaag acaatcaact tccctgattt gagattggaa caggtgtgtt ctaattctaa 300
atgcatcact taactattag ttccaaactct ctggggcttc cttcaaatag gggattaga 360
ctggctccta atctcttgc acagatgagt aactttatcc acccaaagat ttagtattaa 420
cagtcgggag caggagggag aatacttgc agacaacagc catttccaca gtggagagga 480
atggtttgc cccaatagaa gttaccagat tttagtccca ttgccaaata gatattatga 540
gcaaggaaga aatctatagt agtaacttaa gaccaccaga aagatcaaag cccagagggt 600
gagggtatgg caataaacat tagacatatac tctaaaccctc tttgtttga aataactcatt 660
693
accctgttgtt actgggataa cctgtgccta caa

<210> 14
<211> 733
<212> DNA
<213> Homo sapiens

<400> 14
ttctgccatc gcaaggggag ggaagagcac ctaaagggt tatgagaggt ttgactgacc 60
aaggaggga acagaacaca ttctttcca ttggcttaga ctgcgtcaca tggctttccc 120
tcattattag tgaggcttgg agaattcatc tatttgcgtt cccaggaaga agagaaaaca 180
aattgtgttgc aacatttgc agtctctatg acaatagtct gtatgttgc tgcaaaggtg 240
gatgaacaaa accaaggcctc cttaaagca atacaatctg gcagagtccc tggtttatca 300
ttctgaacat agatgtttat ttgtcaagag ttaagaaaat tagcatgact gcattccagt 360
tctataaaat taatctttat tcagcatatt gtcatccaca tgtctaaaa aataaaaataa 420
aaaacaaaaa accttagtaac tacgttttat atagcaagga acactcatat atatcacttc 480
attgtatcct tacaacaatc ctgtgcagta tatgtttac tccctttctt ctatgtttg 540

00196US1.ST25

tatataaaaga aatgagggcccc agggaggttga atggcttgcc ccaactagtgc aagctaaaaac 600
tccaaatccag gtcttttat ttcccaaatcc ataatctaca accatctgtat gqaggttata 660
attnaagagat atgaatggtc aggggccttt ccatttcaagt gcaagtctgc ccagctccaa 720
ctaccaggcat ctg 733

<210> 15
<211> 694
<212> DNA
<213> *Homo sapiens*

<400> 15 aatccctgcat ttcccatgct ctggggtgag aaggaattag ctgggagcca attagcaatc
ttgtcagaag caaatgaatt ttgaataaac tggatactta aactgaaatg agaccatga 120
aaccagaaga gcctgagatc catcagtagt agggaaaataaa agaagtggca ttttcctgc 180
catctgggtg cagtggtgat gatTTTATA atcctaccac atTTTATCC ctgctccct 240
taaactgtag gacccaagga acctggctgt ttgttcaac atgatgtgac cccataccta 300
accaggccag gcacaaaatt ggctccaat aagtagtgga tcaaagtatg aatggataaa 360
ctgaatgaat gaagccaaac ttgaatttct ccatagctt tccaaatgg aatggtaaaa 420
atcataagct ttgagaaga gaacttatta agaagccata catcagtcat gactggcatc 480
atggtagt ttaccaatt ttctcccttcc cttcatcttc ctaatgcaac tctggttgg 540
gtcgagat acccagttag aataccccc cccagagtc tcataccagtc ggagatgtc 600
aagtccaccag ttcttagctaa taagttgcca gccaaagtat tcaggatgag acttccagaa 660
aaagcattgt ttccctgata acaatggaca gacc 694

<210> 16
<211> 674
<212> DNA
<213> *Homo sapiens*

<400> 16 gactgttatt actgaaagtc attgctttta gactcttcca actacagac aaggaagtt 60
atgtgtatat agtaatctgt gaatatacac atacatacac atatttctat atgtaatcat 120
ccatatttaa attaagtaga atatggatc atactgatat ctccaatcct aatcaggtag 180
cacagggatt attccggcct tttcccttg gaagtttgca actcctgcct caacaggtag 240
aaatctgct tccatattca ttgtcttaat tgttcaattc cagtagacat aaatggtggc 300
ttcagaatta ataacttata cctccatggg aaataacttt attaactaaa gtacagcact 360
tatgtatagt actttttgaa ttttagact tagagattcc tcttctttc caaagttact 420
taggtcagaa ccatttcca ttcttcagtg aagttgtctt atgtatgtt aatacagtt 480
qattgttctg tcatatggtg cattccatcc tgggatttcc tatctctttt tttaacattt 540

00196US1.ST25

gcatatatta agtttcattc ttttqgtcg tatcattcta tgggttcaa ttaatgcata 600
gtgtcatgaa tctgccacca taggagcgc atacagagta gtttcaccaa cttaaaaaat 660
674
tccctatgtt ttac

-
<210> 17
<211> 645
<212> DNA
<213> Homo sapiens

<400> 17
cgttccttcc tctgtgtcat aatggacatg atgatagttg gctcaactcg taaacattct 60
gtgtctggaa ggatttgatt tgccttttc ttgaggcaac aattttgagg tgatttggaaa 120
aattttttttt gaaaaattaa aaaatttttc taattaaaaa taatgcacgc tcatttagaaa 180
aaaatttggaaa aataaataaa agcacaattt ttcttaaccac cttaaagatg accattgtta 240
gtttttttttt ttttttgggtt ctttttcccg tttccaatct cttttctatt aaaacttctg 300
aatatgtgatt gtagcaatga cgacataaggg gcccttgaca cattgagaaa tttataaata 360
cgctggcttc ttgttttgc ttgtccccca gcttaactgg gaacttttt tctatatctt 420
tgaaactcca aatccttagat aattctcaa ggtcaagctc caatgtcttgc ctggattctt 480
ctcagcagga attgatctat ttctctgtt ttttttgcc acaggatcta tgactctctt 540
atggcaacta ccaccccttg ctttatatta cgattttga atcttccaaac aaagtctaat 600
ttttttttttt tcaaatgaag ttcgtata ttgcccaga tggag 645

<210> 18
<211> 707
<212> DNA
<213> Homo sapiens

<400> 18
atgtcatggg aatgcagaat atatgtgtcc agcatggaa ggaatcgttggaaatgtttt 60
ttgataaaatt gtggcattta tcactaacat tgcctcaaaa ctttagacta cctgccccat 120
acaaatttgc ggtgaaaatt actccatgtt aatatacaag ccaacacaaa gaatccatc 180
ccagtttctt ggtggatag gcaagaatct gggtaaggtt tattgtgcataatcccttt 240
ctctcttcta taggcccggg tttaaatgttta cctcaaaaat gggaaatttt ggctggggaaa 300
attacatgtt ggaagacatc ttcaatggag atttttagtta ttacagtttgc agctatgacc 360
ctaccccttt tctactatgtt tctgccccat gttggccaga atcccttgcataatcaattatgtt 420
ttttgatcat catctatgtt cttgtgtttt tactgaacgt gatgtgaaac tccctggccgat 480
tgctggatcat cttatttcgc tgagtccgc actgtcacccg atgtcttgcacccctg 540
gccttggccg acctgtttttt ttccttgcata ttgcccattt tggctgcctc caagaatgaa 600
tggctggat ttttggcaca atctgtgcca ggtggatcttgcacccctg aagtcaactt 660
ctacggggggg tatttttttttacttacta ctggccctggcc gcagcatggg actgtttt 707

<210> 19
<211> 680
<212> DNA
<213> *Homo sapiens*

<400> 19 tatgatattt cagccatggc gctgaacatt tccaaacgc ataaatgcac catgtgtga
tggtttccctt tggatgctg tgcttagagg gtagcagaca ggggtgcaaag tgagaaggac
ctggctctgc acccaacact gccagtattt aatccctgact ccatecatctg ggagctgtgc
aacctacgca aggtacttgg ctcagtttc ctcatcatcc ccatggcatt tttgtgagaa
ttaaatgagc tgaaaacctt aaaccccttc aaacagcgcg tggcacagag gaagcacaca
atcaatgtca gctgtactct tcctggcagt gtggagatcc cagctctgcc cctagctagt
cacttctctt ctggaatct cagttccccc atctggaaa tggagcaga tgtgaaaagg
ggcagggtga gaatacatat gaaagtgtg gtcctggcgtg catagcagc acttaataat
gatacacttt tccatcttgc gcctccccca gggatgcatt gtgcgttgcata agagagag
cctccagggc tggcgagact tttgtatcca ggcttttca ggtgtcaaag atgagctgg
tgattctcca tagatccatcc ttctaaacag gtgacagttc tgtttcagaa atactgtgg
tgtttcaggtt tacagcacat

> <210> 2C
> <211> 479
> <212> DNA
> <213> Homo sapiens

<400> 20	tttatgtcta tttatgtctt tccaaagaaga gaaattacag agtcaaattg tagaaatatt	60
	taaaaatctt tggcacacat aaacagtatac catataattt ataccatctt tttagatgagt	120
	tttaaacacca aatgatagaa atctcgatcc catacagatt tggtggctg gaaccaaata	180
	cttgccgtat aggctgtccc ctcgtcttc ctatgtgtc tggaaaggc agttccgtt	240
	aagaactctc cctacggccc ctttcatctc actgtccctc agggcatataga taagtgggtt	300
	gagcagtggg gttcccaatg tgtacaccag tgagatgaac tgatcttgct tggggttgta	360
	gctggagctg gggcacaggt acatgaaggc acagcagcca tactgcagca gcaccacagt	420
	gaggtggaa gagcaggatgg agaaagcccc gtggcggcca gcagccgagt ggatcttga	479

<210> 21
<211> 709
<212> DNA
<213> *Homo sapiens*

<400> 21 ttaagccac ccagtctgtg gtgttctgtt atggcagccc aagccagcta ctacagggtg 60
ggacgagggg aggagcatgg cctctgctgg aagtgcaggc aatgatccc ccaggaacaa 120
Page 10

00196US1.ST25

tatgggggc ttctgattgc ttcatttac tctgcaaagt aggaagaaag attcatcagc 180
tgagcatgag gatggtagaa aacatcttg ggaaatttca gaagtgaagg aaggcataaa 240
atagtcatct aaaaaaaagca ggaaaggaa aagacagaga aatccagtat gagtcccagg 300
actccaggaa gcatcaggac ccacttgaaa ttgccaatgc tgaatttaaa atgaggccag 360
tctgtacaga agcacttctg gaatttgcta acagctaaat agatgataat caaacttta 420
gagaatacga gtaaccaaag gaataaaatt aactgatcaa cttttgtgtt tttactatt 480
aatatttct tcagtgtaaa tcatalogtgc ctgaattcct gaaccctct tatataaaatc 540
taaaaagctc tggtttatca tggttggaaa ttcatggcta acttacagg caaactgtcc 600
ctaaaggcatt tttgaatag cttagtatac aagatggta tgagtgtaca ttcatattcc 660
ctgcttaaag gaaggcttag ttatTTaaa ccaagtctta tttttatag 709

<210> 22
<211> 517
<212> DNA
<213> Homo sapiens

<400> 22
atttctggat ttatgcctcc cctgaccat tccaggatt accccaaacc ttccacactc 60
tcttctaaca gggaaagtcc tgttatgaca caatagtact tattaagaca gatttacatt 120
ctaaagtctca ggacagcatt tcacaaccag aaataactgg tcacatgaag aaccaggagt 180
ctggtagtag tgaaattcat ttcccttctt gaaaaagtgg atcaaaggat tcaaacagca 240
agtggtaat caatgaaaag tgtaaaatg gtgaggaaaa aatgttacta aaagatgacc 300
tcaagattac tggtgcatat gaattgctt ttatataagg aaaatactgg ataatttctt 360
attgtcatag tataattaga agcaatttca tggttcatt ttgccacatg agtttaatag 420
gaatagatt ggttccctct ctaacatgag ttcaagtgtct gaacttggc aaatttctaa 480
acaattctga gcttcactac ctctgcttga aagttag 517

<210> 23
<211> 695
<212> DNA
<213> Homo sapiens

<400> 23
ctttggaaatt ttattctaag catcaatcaa gaggtatagt acgagaaagg tagaacatgt 60
aattataaaat tcaggattca ggaagtttat ttttctcttc ttttaatttctc tctcaaaatg 120
atcttgatttc ctgcaaagtgc ttagtatatac tggttaagtaa gagtcttattt cttttaact 180
tcatctgtat taaccagctt tataatgacca aaatgtcccc caaatttaaa tctttgcaca 240
gtaaggcctt atatgtacac ctggcctcat ttcaaaagac taaaggcattt gttctcaat 300
tcagctgcac attaatataa actggaaaac tgtttaagct cctgatgaca aagccacatg 360

00196US1.ST25
tgagactaat ttatgtgaa tcactggcc aaggaccag gtatcagcat ttttaaaac 420
tatagaggaa taaccagggt tgagaaccac tgcacaaaat ggtaaatgca acttttattt 480
aagttatttttttttataaataaataatggttg aattgatact gatcttagta ccaagtcatg 540
gcaatttttt cagactaga gaattcatcc tggcatggat attattaaag aacctagaaa 600
tccaagtgtt ttgtttata ttttcctgt aaatattaga gtatgctagt gctcatcctt 660
atttgataat ttggaaaaa tatattaaa cattt 695

<210> 24
<211> 677
<212> DNA
<213> Homo sapiens

<400> 24
attatcattt gaatgttcat attacatcat atacaattt attgcaacat agttatttaa 60
tgtaacattc tattttaaaa gataaaatttca cagaatcat acattgtcac agtagtctcc 120
cttatccaca ggtcattttt ctatggttc agttacatc tgcacaacaag gatccaacaa 180
tattacatgg gaaaatcaca gaaataaaca gtttgaatgtt ttaattttgtt gcgctgttct 240
ggcaacgtg ataaaatctc atgctgttcc tctctatctt gcctgaacat gaattatcct 300
ttgtccagta tatccacact acatatgcta cttcccatt catcatttag tagctgtttt 360
gattatctga tagaaaaaac acacagtata tatagagttt ttatgggc aaggaaaaac 420
tttctcttttgcctctgaag attcactgaa aactcaactc acaagggcag actaatagga 480
atgaaggtaa aaaaaaaaaat atattaacat caatggagat aactacagag tgattattcc 540
atggccatca atggactaca gtggctaaa ttcgttttgc agttacaaa aagagtggaa 600
gtctggat cttggaaaaa caggttatgg gaagaagaga agagaaaccc tggtagcaa 660
aggtcatctt gtgatgc 677

<210> 25
<211> 361
<212> DNA
<213> Homo sapiens

<400> 25
tttttcccccttgagtgttt ctctcatgtt ttccctaaaa tggagatgga gaggtttcac 60
ctcaacttttc tctaactctc cctagttttt tggtttctt tcctccacat ctaaaagtgt 120
gcagaatgtc ctttagcac atagaaaatc tttcttgac cctgccacct acttaactaa 180
aatccccacac ttttcttctt cttaagat ttcccttata atggtgtgtc tcaatggcca 240
catccacccatccatctt cttaagtt ccagaaaaac ggtttgtttt cctgttactt 300
taatggaaatttccaa agatcaacag gactttccct caagcccaat ccagtcggta 360
361

g

<210> 26
<211> 459
<212> DNA
<213> Homo sapiens

<400> 26
atacatgata aggtacatgg atccagggga aggatgaagg gcagtgtggg attgctttq 60
aatttctcca aactcgccc aaaaagcaga caggacaac taagataact aaacaaaaaa 120
accacagac aaaactatta caaacccaa aagaagtgtg gtggAACAA acatctgata 180
gaatcagaca cattactggt gaccggacat aagccctgtt aatgagaagc ttacatTTAG 240
gagagtcaat taagtacacg ctatacacaa cctaaagtgg taaatgtac cttggTTATT 300
caacttcact gttacatgcc ttGAAGTGTG GGGTGCACTG GCCTGAACCA TTCTGGTTGT 360
gtttagattcc ttaggatgcc accaacaat aacattgaga aatacccAGC tacttttcat 420
tgTTCTCAA TGGCAGCAAA GTACAAATGA TCTCTATGA 459

<210> 27
<211> 625
<212> DNA
<213> Homo sapiens

<400> 27
tccaggcagt attctccatg acaatgagga aggttaagtct gcaacagaag aacaatggca 60
gaaattttaa gaaaagttt ccgcctggga ctatgactca cctttggga gaaaatgtga 120
ctaacccttt gtaagagctt gttgagagct cacttcctg ggaggagtcg ggagaagggg 180
agcatcagct gacgaagagg tgaaggaggt accaacaag aaaagcgtag aaggaccagg 240
gatttgggtt cgggtcttcc tcctgattcc aaggatggc ataagatatt gccaagtgaa 300
ggaagcgaag tagagccagc aaaggaaggt gaactgttgt ttcattagaa ataatatgtt 360
gtgataatta tacaaagtac taatttagtaa atttcttcc aacctcgaca ctccaaaaat 420
ccctgtactt atatccgaa ggcctttct tcccaagct ggaagacacg gtcactcatt 480
agtcaaccac tgtcacagga gtaacagaga ctacaaatat tggacaggac ataagtgagg 540
gtcaaggatc tggatgcaga tgcacatgacag gatgcaagtc ttcccagtc tcatggactt 600
tgcgacagat gcacagagtg aggtta 625

<210> 28
<211> 601
<212> DNA
<213> Homo sapiens

<400> 28
attaaatgcc tgaactccct tcagctctga aactctgtgg tgtattctct gaggacatta 60
cctctctaag ggacccaaat taaacagctc acaccatcca tcattttct gtctgaggtt 120
ttatTTCCCT aatcagattt ggtaaaattt tcagcctctc tctgtctttt acttccaaatc 180
caataaaaacc tggatggatt tggatgttat ttcattctaat gtcattatttc attctaagag 240

00196US1.ST25

tcactgcctg accatttccc tgcctatagc ataattagct attaaaaagc tacactggca 300
tggtttcaa acttgcatcc tcttttctg aggtggattt attctaaact gattaaaata 360
tctcagaatt tccaatacaa tttttaaaat gcaacagatt ttcaagactg cctcatgact 420
ctgccaagcc aagggagtt gctgccaact ctctctgact gccaaaggaag ccaaataaat 480
aatcctgatg gtggtttaa aatgagaggc aagtgcctt ttcttagttt gacagtgcct 540
ccctacacat tgacttctcc agggtttcta agacaccaag ggtgatgtt cagattttcc 600
601

c

<210> 29
<211> 597
<212> DNA
<213> Homo sapiens

<400> 29
tccacattct ttctaaaggct ctgagcttt ccatgggctt ccatggtagg gaaagcacat 60
ggcctgggtg tgggttagagc aggtgcggcc atttatatgt atggttctt gcaagtctgg 120
catttgtaaa atgggtgatg cttgtattgt gtttatttttcaatcatgt aatagaagat 180
gcacataaga ttatttgaa aagtatgcct tccattttca tgctgagaat aatgcaggaa 240
gttcagtgtt atgcagttt aataaaatag tagccaaaca atatttgct taaaatcatg 300
gaatttagcaa gtaaaagacta attggaaagcc aatctttgc aaattttta aatgttaagtt 360
tatttggagg atatgacttg ttggccca gatacatataa agaacaataag agtataatta 420
acaacagttt caaatatgga cttaccaggc atcttgataa aatcagtatt gacatgtatg 480
tgaatgccaa cattgtgtt ttccaaattca atactatgtt atgccataaa actggtagca 540
gttatgaaaa tttagaatgg ttaaaaactg ttgaaatctt taaattttc ctgttta 597

<210> 30
<211> 618
<212> DNA
<213> Homo sapiens

<400> 30
tacgtgggtt tccctatcgat cctttcatg agttctttgt gaaaacagaa agactgagtc 60
tgccaataac cagcaagaga acaagataaa ataaataaaa ttaaccataa gactttaaca 120
tatgacaaac aactggtaag gatttcaaa atcttttgtt caactttgat ggtattttc 180
catacaatga actctaaaat atgaaaaacg tacatccata ttttagatataaaatgtct 240
tgcacaggcc agaaaatgaa actttaattt aagcaataaa attccccctt gtagactgca 300
aatggagaac atgctatcta gcttcatttt tcttcaactt acataaaaat gaaacaatgg 360
ttaatgttct ggccgcattt ctaaacatata tcagtgaaac aaaatttcct tacaatgtc 420
aacagcttac aacaataac attttatctt gtttaattt ttagaaacaa aatcagtat 480

001960S1.ST25

gctgagatat gtttgcattt gatttatata ctctgtatcat agaaacaaaat tattgacatc	540
tgaatctgaa agctgaaaa catgataaaa gacataataa aatcacagat ttgttattct	600
	618
ctcaggaaact ttttctag	
 -	
<210> 31	
<211> 655	
<212> DNA	
<213> Homo sapiens	
 <400> 31	
ggtgcccatg cttgggtggta ggtatgtatga agtccttgc tcctccagct gggcatcctg	60
ccacttgctg agccaaataa ggaatgtggg gaagcagcag gccaccagcc agatgagggc	120
cactgccttc cagggcagccc catggacat gaaggagagg tagcgcagtg gatggatgac	180
tgccaggttag gtgtgcagca caatggcggt gaaggacagg atggtgttgg tgccaggcggc	240
gaagacagca tcagtgagaa tgccacaggc catggggccc agtcctccagc cacccaggct	300
gctggaggag atgagcatgt ggaggagaat gtggccagg tctgagagca ggtatgttagc	360
cgggagcagg tagtggggct cctgtcgcag ccgttggttc cgccaggatgg tcaccagcag	420
cagggggctg acagccagtg tggctgcagc cagcaggctt gagggaaagga aaagccagta	480
cagcatggag ctgggcaccc tgaggtcccc cagggccaaag gaagtgttgc tggctgcttg	540
gggcatgcag ggtgtcttgc tgatgagctg gatcagggcc ggccaagctg tagtgcacac	600
agggcaagggt gccagctcat ccccatgct tcctggcagg gatggctggc tttgt	655
 <210> 32	
<211> 697	
<212> DNA	
<213> Homo sapiens	
 <400> 32	
aacactgact tctctgaagc agttgtctaa aagaacctac accattttta tttagcaaaa	60
aggcttttgt taaaagcagg ggatagcaga aagagctttg taaaaaatat gtcattggatt	120
ttaggagtt ctaagagcaa gaaaacgttt cttaaataga ggaatgaagc aatttagagtt	180
ccataaaaat cacctaatgg gcctccaaa aggcaatgc taaagccccaa gaaatcatca	240
ctgaggaagt ctgaagtagg aagagacctt gttctagaaa gccgacaagg tagaaattaa	300
aatgaaacag gcccaacttg aaattccgag accaaaagag gagctgtatca cattgggg	360
agacaggtgt gggataaaag aatgttggta gattctagag acattccagc gataacacag	420
acaggacttt gtgactgact gtagggca gctgcagggg taggagagga ggaacgatta	480
agacatgtg aactggctt tgagttggca gtccttattta ctccagagaa cacaggaggt	540
gaaaatcatg ggagacttga tggaaacact ttgagaggca ccatggggat aaaagccaga	600
aataaggtgg gaaatgggtgg aagctattca ttctagaaaa gagggtggga ggtatgagcat	660
aagttAACAG gaaacaagt aattttttaa aagtgtct	697

<210> 33
<211> 611
<212> DNA
<213> Homo sapiens

<400> 33
tttcccagat aaattgtatg cacagtaact ggtgttcgg tataccatag catatataca 60
tccatggc acactgcagg tgccagtgaa acaacatacc agagtgtaa tcttcctgat 120
cattttcatg atgtcctcag ttatttacct tgtaataacg ttgttaaacgt ctatgattgt 180
tttgagtca tcccaatgca gtcatgtaat aacaacatgt attttaatg aaacttgggg 240
attttcctcc atacctgaat ctcttagatt cacataaattg aaaaatcaaa attaggataa 300
gttagtgtca aacattaatg gatTTTACA atgctaattg gtgttcctt ttaaattttt 360
gctgcctaca gacacatagc tatagttcca tgcacttca accaccaatg ctgccaggct 420
agtaaaggcag ttaatgtata ttggggta attatcagaa tcaccagaaa caatttttt 480
aattttaaa atatttatt ttccacaga ttatgggtt acagatgtg tttgattaca 540
taagttctt actggtgatt tgagagattt gggtgcaccc aacatccgag cagtatacat 600
tattccctat g 611

<210> 34
<211> 602
<212> DNA
<213> Homo sapiens

<400> 34
cggttattt agagaaccac ttgaaatacc acctccttgg taacaccagc tccctccacc 60
ccctgagtc acggctcttt ccctgtgaga tgcagcacca ggttaaggta ttaacaacca 120
ggtttagagt aaacagtgtc gggctgtatt tctgatccctg cttttccctt actgggtgt 180
cttggcaag ttatTAAGTT acttcatctg tacaatgggt tacacttatg cttttacat 240
atgggttggc cgaagatgtc gtgatatgca taccaaaaat gctgagcaga acacccgtc 300
catatcttcc ctctctgtta ttaaatggag gcctttaagg ttaagtaatt tggttatttt 360
gtggtaattt ttagtccctt gaattttat ctagtacaaa ttgtgctgca tttggcacat 420
ggtacatgtt catgaatatt gagttgtta taaaggaatg aaaaatcaat tacatgaaaa 480
gaaattccaa atcttacatt ttacaaacac agacacaaag aatactaaga tttaactcag 540
ggcggaaatgtt taagattgg ccaccacac gttgggtgagct tccttggaaag ttgtttctg 600
gc 602

<210> 35
<211> 428
<212> DNA
<213> Homo sapiens

00196US1.ST25

<400> 35
 attctaatgg cattaatcca tagcattatac tccatctcg ttttaatat catgcaccc
 cattctatga ttcaatcaa aggaatcctt caaaaggatc aatctaaata aataacaagt 60
 tagtttcag gcaaacaat aaatttgctt tgtttatat tcaccataaa tatttcactt 120
 -
 aattactgag gtaccttgtt caggaacac aaaacaatcataaattaa ttagcastgt 180
 ccctgctgac gttttagtcc tgtggatgc aaaagctaaa agtaaaaaca ggccatgaag 240
 cccaaccaga gcacacatcg tatgcaaatg ataaagccc caaacatcat gggatcattc 300
 ctgggacatt ctgaatcacc aaaatttgtt cttaatcaa gtattgcctt atttatttc 360
 420
 aaattcaa 428

<210> 36
 <211> 643
 <212> DNA
 <213> Homo sapiens

<400> 36
 ttgggtcta gaatccccctt ggtttggaa gcatccagaa ggagcttcca tccccatcca 60
 tttcttgcctt acttcctcctt ctctagcttt gtttacatgt ctctcgatac ctagacagag 120
 gcagaggcat ggacttctgg ttctaatcat tcaagcctta cacgtccttc aaggctccat 180
 tcagaattat ctttcctcgg ggagtctgct tctcctattt caggatttac tgactattct 240
 cttatctctt gtaacattta atatccact ctttagcatt aactttaaa ctgccttct 300
 aatcctgagg ttgtgttcc ttgccttgtt aaaaattcttt gtaaatggcc agcccagtac 360
 gtagcccaat cccaaaggcc accgttaggaa ttgaaggagc tggcacaaaa agagttcttt 420
 gtttgaattt ctttactgc tctgagttt ctctgtattt gcacatgagt tttaatgttt 480
 tggggccatt gaactatttg agaatctaga agataataca ccttttca gaaaaacaca 540
 tatgaataaca cacacacaca tgccacctac acacacaatt ttgcattgtaa tttaaggat 600
 tcattaaacct tagttacca gactgttaagt tccttgcattt att 643

<210> 37
 <211> 567
 <212> DNA
 <213> Homo sapiens

<400> 37
 gcaagttatc ttttttttttccctacaaa cacacactcc taacatacag tggtagagaga 60
 ggaacaacat aactgcagag gaagtaagt agagacacaa agcagtcattt ggttcattgc 120
 tataatgaaa ttctccatca caaatgtgc caggatctct tccctggggtaaaggcttag 180
 ttatcttcctt ggaagtgggtt tccagtcac tattctctac tttataattt cagtgcattcc 240
 ctcatccatc ctcttgcattt ctcagatctt aactttatcc tctagactcc aggctccctcc 300
 tctgagatgt ttttttttctgcaacaaa agctgagtttatttctcaat ctgtttgtt 360

00196JS1.ST25
tccatagaaa atggaagggtt cagaggcttt tattcaattt tctcagtctc tttattgcaa 420
gctgggtccc atttacttat ataactctt taaaaagttt ttgtgggctt tctatgtatc 480
agataataga ccacttcatt tgataaaaaag ccacattctt tgtttccag acaagcttc 540
tatattttg acaagtäagg ccactta 567

<210> 38
<211> 594
<212> DNA
<213> Homo sapiens

<400> 38
ttatgggtt tgtaagatct tattgccaa agagtctgtt ctgtccatct tatgatatct 60
gttttaacat taatgatgct cagttgtgc tagaccctaa aagaagaagt ttgtatgact 120
ttccatgctg ttatggtcag gaattagtt ttaagctttt ttggggcctc taagccacaa 180
gggatctgt tcagtcagg cagtagaggg cttaggattt atcatcttta attcacatcc 240
ccccattttg gtcaaaatat gccaaggta gcatcaatag ccaagctttt atttcattcc 300
atattattac caggtgggtt ggctatctat ctcagatata ttctgttctt caatggacc 360
catatagcca agggacttat agccaaaaga cttacagcca attaaacatt ctaggacaaa 420
agggaatgga ggtgggaagg cattcattat tcctaaaaaa cctttgagc aatataagag 480
ccacaaacca aaagccaaa agtaagctt caaaaaccgtt ttatctataa gttctatgt 540
ttggccatc ggctcttagg catctgtgag cccatctttt ttggaggatc tgaa 594

<210> 39
<211> 282
<212> DNA
<213> Homo sapiens

<400> 39
aaggcagagg gggccagcag ggcgggttac agaaccatga tgtgtttta actggactca 60
cttctgccag tatctgcctg actcttcage ccatgtctct ttccctgtt gtaatactaa 120
tggggcatt aaggagccag agaaggggcc tccgacgcca ctgctgtac ctctggagtt 180
acattnagcg gcatttatat tttgtcatgt gaaattcgaa atcctcatcc aaaatgcaac 240
tgtggggaa ctctcatagg aatttcagcc aattctggct cc 282

<210> 40
<211> 626
<212> DNA
<213> Homo sapiens

<400> 40
cccttcctcc ccagccatac cgtgacccac ccataagctg gcccccttag ctctggctca 60
cctggctcaag acttagaggt ggcaggattc ctgctgtca gaaataagg actgtcttg 120
agctcctcac aggccccagg aatccaaaca aaagccaaacc aaggctacct tcaggccctc 180

CC196US1.ST25

cagaaggggg	tggtagtgtc	ctcatcagg	tccccaagtt	tagggagagg	gcagctggc	240
ccagggccct	tctccttgtg	gctcaggatt	tagccccact	taccatyg	tg cagccccagc	300
cttccagcca	acccagcatt	agaggcaglg	gctcccttta	atgccaggcc	ctagttggct	360
caqgcataat	ccagccagga	aacctctcac	ctttccacag	caatggccac	cagtgtgaaa	420
acggaagccg	acacagacat	gccctgcacc	aagccgctca	tcttgcatgt	ggcattgtcg	480
aagggccacc	ctgcaatgac	agaggccccc	acagagttag	agatgcccac	gcatcaagag	540
ccagagactg	aaagccctcc	aagccaggtc	ccctctgagc	ttggatctt	cctccatgac	600
ctgcttaggtg	ttatctggtc	tctgct				626

<210> 41
<211> 685
<212> DNA
<213> Homo sapiens

<400> 41	aaactcccaa	acgatagtaa	cttaaataac	ttaggtcttt	aatactctct	tca	tagtaaaag	60
	aattcttagta	gttggagagt	ccaccatccc	taggaatgta	gttcttgtcc	tca	tgtttca	120
	atata	tagctgc	tgtatgctcca	gccattacag	ccacattcca	gacagcaaaa	tatggaaaga	180
	aat	gaatgaagag	aagaagagcg	tgccttaggag	tcccatttat	tat	ttttccata	240
	caaa	acaa	cacccat	tcacagggcc	actccat	tatctttag	ctattgtctac	300
	atgt	cata	aca	actccat	atc	atc	atagcaacca	360
	aaat	ttcc	atgtcata	acacat	atc	gcaggttgc	taggttca	420
	ctgg	tctc	acaggcag	gtt	ctg	ttacagtggc	ttagtgcatt	480
	ctgc	agg	gtt	ttc	gtt	tgagtgcatt	ccatttctca	540
	atg	aaaggaa	gcc	ccat	tcc	tccatgtgc	ctttcat	600
	gac	aaaggaa	ccat	ttt	tcc	tttccat	ccttgggttgc	660
	ca	act	ttt	ttt	ttt	tttccat	tttccat	685
	tc	at	ttt	ttt	ttt	tttccat	tttccat	
	ca	at	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	
	gg	ttt	ttt	ttt	ttt	tttccat	tttccat	
	cc	ttt	ttt	ttt	ttt	tttccat	tttccat	
	aa	ttt	ttt	ttt	ttt	tttccat	tttccat	</

tttcttccac tgattttccc tttagcaatgg cctgtttaaa gtgttgtat gatgttactg	420
agaaaatggc tggctacctg atgcacatag aagccaatac tatggcagtg gttttctaga	480
aaagaaaaagg ctttactgtg agtctactgg caaggagaca ggtggcaaca ctcaaattcg	540
tctccctgaa ctgaggatgg tgggg	566

<210> 43
<211> 578
<212> DNA
<213> Homo sapiens

<400> 43	
cctcttactt gggccccgtt cactagtccct tcagccaaac tgcctcacat gctattccca	60
gtatgaaaat ctgccatcc cttttatctt ttttctcttc tctcatttac agccctgtgc	120
tagtttcttc attcccttca agttctggcc aaactttatt tacctcttga ctgaccactc	180
catctaaaat agtactcatc actgtgtatc ccctcaaacac actttatagg tcatggccat	240
cacctgataa tgtgttatgt attttttggg ttacttggt tgtagttca ttcttgatt	300
gctgtaaaga aattcctgag actgggtaat ttataaagaa aagaggtttta attgactcac	360
agttctgcag gctgtatggg aagcatgtt ctggcatctg ctggcttct gggaggact	420
caggaaaactt acaatcatgg ggaagggtac gggggagcag gcacatctga catagcagga	480
gcagcaagtg agcaaagggg gacgtgccac acacttctaa gtaaccagac ctcatgagaa	540
ctcactatca tgagaacagt accagggat ggtgctag	578

<210> 44
<211> 684
<212> DNA
<213> Homo sapiens

<400> 44	
agtataacaa ttcaactgctt tacatctcta tattttgctt atctcaagta tccactttgt	60
ctggtagatgt gtgctcatcc cacagtttt ggctgtcctg ggaacaacaa tcttagtgcaa	120
ctccagcaat gtgagttata gtgcaaattgt caaaccagag cagcatcacc atcttagaggt	180
caaaatgata actgcaaact ttctcacctt tatgagcctt ccgtattctg tatacatagc	240
agtttatgtg aatgtacaga aaataatgtt tgctattgtt ttctctccag ttgggtttcc	300
agaaaagagat catggataaa agcaggaacc acctgtatTTT acagatggca tagggaaagca	360
tacatcgtag agccatatata cagcagcact acagcatgtt tcaacccaaag atgagcctcc	420
cacatgtcag acaaaccacc tacattggga ccacagcagt gacagtgttt tttagcacat	480
tcctgataat gaaatctatg ttgaactcaa catgaatggc tttcccttc tcttggcagt	540
caacagccta caccattctg catttgactg ttttagttat tctccctct ggaaaggcat	600
gactatggaa acagagtaga ggatatttg gggattatg aaactattaa tataattac	660

tctcattgct gtgctttcta caaa

684

<210> 45
<211> 693
<212> DNA
<213> Homo sapiens

<400> 45	
tcaagcttatac tggtaatag ctttcgctc tggtgcatac cttgagcata tgcatacgct	60
acaatgtta taggttagctg tatgggtttt gacacagcac atggcgtaacc ttaaaacaa	120
ttatagcaact gggatttggta tctgaattta tggtgccttg tcaaaggtttc ctctttgtaa	180
catggtagcc tttaaatat taggcagcta cctgcaacac tggcattca gactaacc	240
tcaggcttat ggcatcttgc tcttcgtt ccctctgtgt gtgttgtac atcatgttag	300
gtttatgcag tagacgtaga taggaagcaa gc当地atggc tacagggtat tgaaagtcaa	360
ttgtcgagaa tgataaaaaga caaggatagc cttctctgca aagaagtgc aagaagattc	420
taaacgtata caaggatctc aagagaaaca gtcccagata gcaacactat tcagtcttag	480
actatggctg atactataca cttctccagc tcctctgctc ctcagagcag aaaacagaag	540
attttggaaat gagcaccacc ccagctcctg aatacaatgg tacctttcat ctatttctgg	600
tgacttttat tttctttgt tgctggatcc cctacataat tgtaagcata tcgcaggcaa	660
gc当地atggt aaacagtggg tggacgcttc ctc	693

<210> 46
<211> 677
<212> DNA
<213> Homo sapiens

<400> 46	
atagaacttg attatattgg tatttttatt tcaaatttc aatttttggat atggcagaat	60
gttgcatttg aaaagtgtct taaaggtcac cactgtaacc ccttcattgt gcttgagacc	120
tgctcagctc ctaaatttaa cagggacgg atctgagaaa ctgactccaa gttgtAACCT	180
cttgcttagt tttctttcta gggagatatac cgtctctcca aacctgtcga aatctaaatt	240
tattacctct tacctaatac ttggccccct gtggacttca cttcactgtt tgtgctaata	300
gcctttcat caccatctt actttggatt cttagagcata acctacttcc ccattttctg	360
tgacccttac attcctcctg tcagtcacta tgtctgattt attgttctcc cctatcttt	420
gccctttgca aatcctcaag ccctcattct gggtcagacc ttaaaaggc tgagttactg	480
gagtatagtg ttacccaaag tgagttgttc cataaaaaat tagtaagttt gaaaaaaaaa	540
caaaaaacaa aaaaataccc taccctaaaa gttggtaat gttcctgtaa aaagggttcc	600
ttggccaggt acatgttaga atagctggtt aagtttcttt gcagaaagac ttctcctggc	660
cttcatttgc gactgtg	677

<210> 47
<211> 729
<212> DNA
<213> Homo sapiens

<400> 47
gcaattaagt tttgtatgt atggacagtg tgaaaaacat tatggaaaaa caacttggaaa 60
gaaaatgtga cagaatttctt cctaacaatg tcattgcttc aaccagctac aaatttccaa 120
cctagttctt ttctttgtc gtttcttctt ttgtcttga tacaatcata cagcctctst 180
tccttgaaga gataataaaa gactaacatg taaaagatct ggaagactca tattctttc 240
tttttactg gctacggttt tgaaaagagg ctgtggctt ttgattttt cttttgggtt 300
cttacatcg cccaattcaa acaggtctgc tctcaaagaa aacaaatcaa aattgtcaag 360
acctgtgaag cataaaaat aaattgtctt ttccaactcc aaaaaggccc agaaaagcat 420
taattttgat ctttataaa cctctatccc ctatcctcta atctatagat ttcacagaat 480
gtttatataat tcttctgtat aatacaggag atcaaaccctt attatgaata aattgaattg 540
aacctgtaat acaactaata tttaaacttag tgttatTTT gagttcaact agacacatat 600
aaaacatttc aagttagatg acacaaattc ctggggctgc cagtataaaa taaacagtcc 660
agtaagctgc atctaccatg ccgttaaggg actctgtcct tttagctggt gggagcacag 720
gcttcataa 729

<210> 48
<211> 595
<212> DNA
<213> Homo sapiens

<400> 48
tcctgagaag acctgcagca cagggtaaaa tatgcaaggg agggccatat aacttttac 60
tttacttaat ttatTTTaaat ttactaattt ttaagtatta acctatTTTg tttttatTTaa 120
atctctgtgg ttgcacagaa ttcaaattgc agcaaaaatc attcagggtc aaacactgg 180
aaaatctctt aattctaagg tacatgacac aatggactca aaaacagttg ctgagtcct 240
ttcactggag aaattttaag aaagggtata gaaaagttt gaccaattcc acccaatcct 300
gcatccccaa ttccaaatctc aaggaccagt ttccatctga tctctctcca cctacagatg 360
gtggcctga atctccaaat caacaaacca aaaactgaat ccatcatctt ctcacacctg 420
gtttttcctt ccaactccct catttctgtg acctgccccaa taaccttacc aggaatccag 480
cccccaaaagc agggtgact cctccctctg caatggacac cagggattca ggtcctgtg 540
ctggctccaa aatgcccaca atgccctgtt ctcccaaattc agcacattca acagt 595

<210> 49
<211> 710
<212> DNA
<213> Homo sapiens

00196US1.ST25

<400> 49
tttacttaa ccctttgtag cccaggtaat aaatccaaac tcagcaagta tgggctggac 60
cccagtagct ctgtggttgc cacttttgg cccatattga accgacgtcc ccttggcata 120
taccaggac tcctcaggga gagtggtggga atgatgggg aagactcgac actctttgt 180
agagcgtggg gcagatgata gcagagacct tccaggccc agggctgggg tcttgccttc 240
cttggatgtg gtctagcgat gctccagatg gtgggttgtt ggcaggtggg gcagaagcag 300
atgatgcagt tgaggcgggt ctctggata gagtgatgtc aaagatgagc actcccttta 360
tccctgact ctctgagga tggctgcctc ctgggtgagc cacttggagg tctcaggccc 420
atcatgcggg atggtggccc agatgaggaa gggatccaa ggcggtgcc ttcccagatg 480
cactggccc cagcccttct tcctagcttc ggctgattac tggctggcttc agcaaccagg 540
gcctacactgt aggtctccac atttgtaagc accacagaac ccagtgcata tttgtcact 600
caaatcgccc ttgatccagg ggtatccat cattcagaac acactttgaa aggccggcat 660
tccccctctg gagaaagcct ggagaatcta cagtgccctt aattacagtg 710

<210> 50
<211> 550
<212> DNA
<213> Homo sapiens

<400> 50
agatgcccag acacccatcac ttcaagcagac aaggggcaga gtcctggaaa atctaggcag 60
ggaagacttg cgcctctaag agtaaaaaggc ctcccaagaga ggacatggat gaaaggagga 120
ccacccatca atgccactct ccaaaggcagg aaacatccaa ataaaggatg ttgatccatca 180
ggacccatc cttcatgag tgcttacaca actggatatat cctctccctgt ctctcccttc 240
ggtagccaag accttataacc agtttgagta tcctttatcc aaaatgcttg gggtcagaag 300
tgtttgaat ttcaagatatt tttaaatttt ggaatattta tatcataacct ctgggttcaa 360
ccttccagat acaaaaatct ggagtccagt gaggatccctt tttgagtgtc atgtcagtgc 420
tcaaaaaatgtt ttagatccatc gggcgatccatc gattcaggt tttgaaattt ggaataactca 480
acctgtactc tctgtcccttgc ttctacccatc accagaccct ccccccacagg aatgaattta 540
gatctgaaaa 550

<210> 51
<211> 747
<212> DNA
<213> Homo sapiens

<400> 51
tcatccctcg ctgtctatcc tgagctgtga gtttatccac aaaggaacag agctgaaatg 60
aaacaatttc accacagtaa cttgttaatc gggcatccctt taagtatgtc ggatccatca 120
ctggaaatcc ttttgaagac tctgaaatgtt ttctttaatc gtcatgagat ttttccaaac 180

00196US1.ST25
taagttcatg atatggattt ttttcactgt atcttagctta agtcacatTTT caattcaaaAT 240
ctaacaccaaACT actgatggag ctggagctAG tgacttcagg caattggcat cTTTCGCTG 300
aatacaaaca tcctatTTAA aagaccaaAC acalgaCTCC attcaaaaAT taaaacagTC 360
atgtgttagtG aaacagcAAG aacacGGTCT gagaAACGTG tcCTTGACA cacAGCGTGA 420
atgcactcac gcaaggCCTAG acggTGCggC TGCCGcacAC caggCCCTGT ggtacAGCCT 480
gtcaattCCA ggccccAAAGC ctgcataCCA tggTGTGTG CGGGACGCTG CGGGCGGCTG 540
tagcacaATG ctaagtatCT gtgtatCTCA acacAGAAGA ggtAGAGTA AGTACAGTAT 600
tatgatcgTA CGGGACGCGT GTTGTACACA CAGTCTATCA ttgatGGAAG catcgTTATA 660
tggcacatta ctgcactgTA aaaAGACACC aaACTTCGGC CGGCGCAGTG gctcatGCCT 720
gtaatcccAG cactttggGA ggCTGAG 747

<210> 52
<211> 695
<212> DNA
<213> Homo sapiens

<400> 52
ttcttccttt tcctttcatt atcattttct ttttgtctca aaataatgaa aaatgcataa 60
gggtctgtAG agagaagAAA atgccttgc ccatgaactt ctTgcaggta tttatcttgc 120
ttctttatct tactaaaaAT agaattgAAA gttttcatt ttttgtttt caattttAGA 180
ggatACAATG gagattcAGG aacgaatAGA aaatAGTTT aagtcttac tagaccAGT 240
aaaAGGTAAG ttttcctact gttagattcCT gtatttgtaT ctggTTgtat ggcaataAGT 300
tcgaaggTTCT ttcccttatt cccaagcccA atcaccCAGA gataagtaAG tagtttaAC 360
actttggagt caataactcCT agatGCCACC taaacacata tggTgtgAA tgAAAatACA 420
gataAAAAGT aatctttAAA catagggAAAT ggtgtaatCC atgtttttt gactttAAATT 480
tttttgttat tttggataCC ttccatgtc agttatataAT accccattTA tttcaAGAC 540
tgcgtaatAT tctatAGTAT tggTattAAAC tttttatgt tatcgcaatt ggtgacatAT 600
tatgtatATG agttattttCT tctactgatG ctgaaatgaa tatcttggGA caaattgtTA 660
ggggTattAT ttgagtcCTT cttgggatt AAATT 695

<210> 53
<211> 735
<212> DNA
<213> Homo sapiens

<400> 53
cttttgagga taaaaattc ctgcttactg tcgttataAC acggggatta ataaggcacCT 60
tactggaATC tctcacctAC cataatttTA gtatgctATG tgagggatq aacagtctca 120
cacatttaAT aatgactact catataatGC ttttaattgg taatgaccta tatgaaacat 180
gatatAGAAA acacattACA gcttctCAA tgacccCTAT aagttaACCA attgcttagG 240

tttctgacaa atttgaatct ggcccatgc acctttgctg ggccccacaa aacaaggagg 300
 tagattattt atgaaggtca accactctgg caatatcacc attaaaatac aagctcatct 360
 gccccatagc tcctccatct tcaggccag gactctggat tggaatgacc tacctccaca 420
 ttcaagtctg taagtcatta ggcacatcatcc aagatggtag atgatgaata aatggacaat 480
 gacttaagct tttttactc tctcatccat tccaatgctt tcttcctgg tctttgctca 540
 ttatccat gttatataat atatatttg aagaattcat ggcagtgata acaataatgg 600
 ctacaatttt ttattaccta tgtatgccag gcattgtgct aagtgcctca ggtataagat 660
 cttgttaaggg attgggttaca ttttacagat ggtaagactg ggattcagat gttagttgcc 720
 tggtaagtc aataa 735

<210> 54
 <211> 427
 <212> DNA
 <213> Homo sapiens

<400> 54
 ctcttcctccc taggtggttt gctggcaatc tttggcattc cttagcttgtt ggaagtatca 60
 ctccatctct gtcctgattt ctacatggtg ttcttcctgt gtgcatgtct gtctccaaat 120
 ttccccattt tataaggaca cagtcatact ggattcgggc tcattctaaa gacctcattt 180
 aatttaattc cataaaagacc ctatctccaa ataatgtcac attctgtggt actgggggtt 240
 atgacttaaa catataaattt ttagggagac aaatttgaac ctctaacagt actgaacatc 300
 caggatggaa gaacatggta ttaggttgag ccaaacadag ttgcttacgt tttggttttc 360
 ctcaccagga caagaaaccc ccagtgcagg aaaattggag acatggaaaa cagggcttaa 420
 gtaaaca 427

<210> 55
 <211> 713
 <212> DNA
 <213> Homo sapiens

<400> 55
 ttattataact caacactgct aggaaagaat cagtgtatgtt gaagatataat atatataat 60
 ttgcttgtgtt atttgtgtgtt gagagacaca catagaaaaaa aagagagaga gaaatataattt 120
 gggtgacact ggcttccttg aaaaaaggca gtttagtaac aatggccttt actagacaga 180
 catgttagaa ggcagcagga gaaagggaaat gtggtatcag atatttctg taaaagggttt 240
 gttattataata ttcatgtggc aaattgttagc tgatgtcaaa gttagttataa agcaagggaa 300
 acacaattct tttacagcaa tggttaggtc taagaaacat aaaacaaataa cctggtaagt 360
 accatgcata tatacatataca taaacaatca ataactcaca aaacattcac atatggcaa 420
 cactgctttt cagtttatgc agtttatttt ttgttctttt taagttttt attatagtga 480

00196JS1.ST25

atgtcttata	tttcattaaa	agtttgata	ttatatgtga	aacaacagtt	ctgataaagc	540	
aatatctaga	taaaggctat	tacttaccct	tctcaaatttgc	atagattttc	tccttgcac	600	
aagctctgat	ataaaaatatg	ataatttgtt	qaaaactttt	acacattcaa	aactaaatta	660	
tcatatattt	aatgagactt	tggtgtgtta	tgtgtgagtg	tgtgtctgtg	tgt	713	
<210>	56						
<211>	607						
<212>	DNA						
<213>	Homo sapiens						
<400>	56						
aaaacttgggt	tttttaaagc	aaacacagaa	acaatgtaat	ataggctta	ttacatatgt	60	
agggaaataaa	aataatatgt	atgacgacaa	cagtagtcta	aaattcagga	gacagagaat	120	
ggaagtacat	tgttgcaagg	ttttctaata	cacatgtaca	aagtggtata	atgttacttg	180	
aaagataact	gtgataagtt	aaagacgtaa	tcaatgacac	tatataacc	actaaaataa	240	
tacaacaaag	gatatacggaa	atattttaa	aagtataatt	aacccaaaag	aaagcataga	300	
ggaaaaaggg	aacaaagaat	aatagatgga	ataaacagaa	aaaactagcc	agctggtaaa	360	
tttaaaaccg	atcatataca	tattcacatt	aaatacaaaa	agtttaaaca	cttcaaagtc	420	
aagtcaagg	tgtcatatttgc	gataaaaaga	aagactcaac	tatatgttac	ctataaggaa	480	
tgcaactttaa	atatacaaaac	atattaaaat	aaaaagatga	aaagtatata	acaatgttaa	540	
tactcatcaa	aataaagcta	atgaggctat	attcatatta	aaaagtaggt	tttaaagcaa	600	
agattac						607	
<210>	57						
<211>	746						
<212>	DNA						
<213>	Homo sapiens						
<400>	57						
tcaagtccat	gtttttacgg	aaagacccca	gttcctgcct	cttctatata	tttatctacc	60	
ttgtggtaaa	gagcatgtgt	gtgcaacacc	tttgcctgaa	atggtatgg	ttggcattaa	120	
tgaattgtgg	gtccattgaa	aagaaatctc	ctcttgcatttgc	tcgtgttatg	gacagttcaa	180	
ggtttgcctt	agaactaact	tcaagggaaaa	gttagcagaat	cgttaggaagg	gacaatcttgc	240	
ccttcagtc	caccctctgt	tccgggcagg	tctgggtggc	tatcttcttt	cgggggctt	300	
tccttgcaga	agaacttctt	cagcatgtcc	tggatttcct	tcttaatgg	cttgcacat	360	
tagccataga	cataggggtg	gatgcagcac	tgcaggaaga	aaagccagat	gattatgg	420	
atcacccact	gggttacctg	ggtttcgaca	tccacccaca	cggccaggac	tgctaaaaag	480	
cagtagggcc	ccagggatag	cacataggag	aaaatgtga	tgaagatcac	tttagcagct	540	
ttgcactgg	agcacctggg	cagaggaggg	ttgctgtgc	tgttacgacg	actgggtgg	600	
agctctccg	ggatgttac	tgcctcgac	tcatcctcac	tqaaattgat	gtcgcttca	660	

00196US1.ST25

ccaaacctcca tgtcatcttc acccaagtca atgctgact ggttacacc tcgtgcaccc 720
ttgtctgact tcatgctgtt ctccctc 746

<210> 58 -
<211> 638
<212> DNA
<213> Homo sapiens

<400> 58
agtggaaaga ccacacctag gaaccgactc tagctttac caccctgtaa gcctgaggct 60
cagttgctgt ccctggagaa cagaaaacat aatcatggct attctgaggg tcaggggcaa 120
gtgctttgca agtgggattt tggtggcag tgggaggat tctggggttc actgtcatgc 180
tagttgtta actgggcaat gcaaccgtgt aagtgtcagg aaaccctcaa taagacttag 240
ccagaggcca ataagaagcc agcatttaca tcatgttctt ttcccttttg taacttagaa 300
atttcgattt gcacactgat ttggccacc attcctggag agatctcgat ggatgtctc 360
tttggtaacttctt tgaacttctt ggtgccagga ctggtcattt tgatcagtttta ctccaaaatt 420
ttacaggtat gttttctgca agtgcgtcca ctgaacttca cccaggcttggggttatttc 480
tgctagaatc tttagaatttg gggtcggaga acacctaaga gttcacgcca gctcaatctt 540
gattcactgc ccaggctcac aacactgagg aaggagagga tttttttaga agttatatct 600
ttgtgattat gtttttgct catcaactaaa gtaataact 638

<210> 59
<211> 216
<212> PRT
<213> Homo sapiens

<400> 59

Asp Ala Phe Leu Phe Pro Cys Pro Glu His Gly Ser Val Met Thr Ser
1 5 10 15

Gly Ser Cys Lys Glu Ala Gly Leu Arg Phe Phe Gln Ala Trp Gly Glu
20 25 30

Val Gly Glu Glu Cys Val Leu Met Arg Arg Ala Gly Cys Ala Gly Ala
35 40 45

Glu Ser Ser Thr Ser Leu Gly Ser Arg Cys Pro Thr Ser Pro Ser Leu
50 55 60

Gln Pro Ala Leu Pro Lys Gly Ala Arg Ala Trp Pro Pro Leu Asp Met
65 70 75 80

Ala Ser Gln Pro Phe Gly Lys Cys Gly Arg Pro Cys Cys Arg Ala Pro
85 90 95

Val Thr Val Ser Val Trp Val Trp His Gly Trp Cys Ser Pro Ala Gln
100 105 110

Asn Pro Ala Cys Asn Ser Thr Gln Ser His Ile Pro Gly Gly Gln Ala
115 120 125

Leu Leu Leu Cys Ser Gln Met Pro Pro Ala Gln Lys Glu Asp Thr Pro
 130 135 140

Ser Ser Ser Ala Glu Ala Ser Leu Thr Glu Gly Gly Cys Val Lys Ala
 145 150 155 160

Ser Glu Ala Glu Leu Pro Ala Ala His His Gln Asp Ala Leu Glu Ala
 165 170 175

Arg Ser Trp Ile Gly Ser Gly Cys Thr Glu Pro Ser Leu Pro Arg Asn
 180 185 190

Thr Gly Asn Ala Lys Cys Ala Gly Gln Ala Val Gly Glu Gly Met
 195 200 205

Ser Leu His Val Cys Ala His Cys
 210 215

<210> 60
<211> 204
<212> PRT
<213> Homo sapiens

<400> 60

Leu Glu Lys Gly Thr Lys Ser Gly Ser Val Phe Ser Ala Phe Phe Phe
 1 5 10 15

Phe Phe Gln Ile Leu Val Val Ile Ile Gln Leu Phe Phe Leu Cys Met
 20 25 30

Asp Phe Val Val Leu Arg Ala Ile Tyr Arg Ser Arg Val Gln Leu Leu
 35 40 45

Lys Val Ile Tyr Ser Gln Phe Cys Ile Lys Pro Ile Ile Tyr Lys Cys
 50 55 60

Ile Ser Ile Gln Tyr Arg Pro Gln Arg His Lys Ile Phe Phe Ser Leu
 65 70 75 80

Leu Ser Cys Cys Pro Thr Asn Val Cys Arg Ile Tyr Gln Asn Ser Ile
 85 90 95

Arg Lys Leu Leu Val Tyr Ala Leu Ala Val Leu Leu Ala Phe
 100 105 110

Leu Phe Arg Val Val Glu Ile His Ser Phe Ile Asp Ile Lys Gly Thr
 115 120 125

Val Lys Met Ser Leu Pro Val Asn Ile Asn Arg Leu Val Ile Leu Gly
 130 135 140

Leu Gln Leu Asp Leu Leu Ile Cys Cys Ser Cys His Met Ser Thr Asn
 145 150 155 160

Leu Ile Cys Ser Pro Phe Gln Lys Leu Asn Tyr Leu His Phe Phe Gly
 165 170 175

Gly Ala Leu Val Trp Lys Val Arg Glu Ile Phe Thr Phe Thr Leu Phe
 180 185 190

Phe His Phe Phe Leu Lys Thr Ser Ile Pro Pro Leu
 195 200

<210> 61
<211> 96
<212> PRT
<213> Homo sapiens

<400> 61

Val Glu His Ser Trp Pro Cys Ile Gln Tyr Ile Ser Trp Val Arg Pro
1 5 10 15

Gly Val Pro Val Ser Ile Ser Val Asp Leu Leu Ser Met Leu Pro Val
20 25 30

Ser Thr Trp Val Val Pro Trp Gln Glu Arg Cys Ile Cys Val Leu Thr
35 40 45

Glu Val Pro Tyr Arg Cys His Phe His Cys Gly Ser Ser Asp Pro Gly
50 55 60

Lys Asp Ser Phe Gln Gly Pro Gln Val Gly Ser Gly Gly Gly Ser
65 70 75 80

Gln Thr Pro Asp Pro Val Thr Pro Ser Arg Pro Val Leu Glu Gly Pro
85 90 95

<210> 62
<211> 213
<212> PRT
<213> Homo sapiens

<400> 62

His Gln Ile Leu Leu Cys Cys Leu Arg Leu Gln His Ile Ser Met Ala
1 5 10 15

Ser Ser Leu Gly Met Val Thr Val Ala Glu Leu Gly Gly Phe Val Leu
20 25 30

Pro Ile Ile Ile Ile Thr Tyr Phe Thr Trp Lys Thr Arg Lys Ser Leu
35 40 45

Trp Glu Phe Gln Val Pro Pro Arg Asn Thr Lys Glu Arg Lys Lys Ala
50 55 60

Leu Arg Met Val Leu Met Cys Glu Val Val Phe Ile Val Cys Phe Thr
65 70 75 80

Pro Tyr His Leu Asn Phe Pro Phe Phe Met Met Val Lys Glu His Val
85 90 95

Phe Leu Asn Cys Ser Phe Ile Lys Ile Leu Cys Phe His Ile Ile
100 105 110

Ser Leu Cys Leu Ala Asn Leu Asn Cys Cys Leu Asp Pro Val Val Tyr
115 120 125

Tyr Phe Met Thr Ser Lys Phe His Asp Gln Phe Ser Asp His Gly Ser
130 135 140

Leu Val Leu Gln Ser Cys Met Arg Cys Asn Asn Ser Thr Leu Glu Ile
145 150 155 160

His Gln Arg Lys Gly Gly Ser Ser Asn Tyr Leu Ser Met Phe Glu Arg
165 170 175

00196US1.ST25

Phe Gln Asp Asn Ile Ile Lys Leu Thr Arg Lys Ile Asp Met Leu Tyr
180 185 190

Cys Ile Tyr Val Thr Leu Lys Ile Phe Leu Phe Phe Ser Phe Phe
195 200 205

Leu Leu Tyr Phe Lys
210

<210> 63

<211> 197

<212> PRT

<213> Homo sapiens

<400> 63

Cys Tyr Cys Ser Cys Ile Leu Leu Ser Val Cys Leu Leu Cys Pro Lys
1 5 10 15

His Arg Leu Phe Gln Lys His Phe Leu Leu Ser Pro Phe Ser Leu Ala
20 25 30

Glu Ser His Phe Ser Val Ser Ser His Ile Ser Tyr Leu Phe Leu Leu
35 40 45

Lys Thr Arg His Phe Arg Cys Val Val Ala Val Gln Ile Leu Ile Leu
50 55 60

Ser Pro Arg Ser Cys Cys Leu Ser Tyr Leu Tyr Met Cys Leu Val Thr
65 70 75 80

Trp Leu Asp Tyr Phe Asn Asn Val Tyr Phe Pro Val Val Tyr Thr Ile
85 90 95

Phe Tyr Thr Asn Val Thr Phe Pro Ile Val Gln Pro Trp Ala Trp Thr
100 105 110

Glu Leu Ser Trp Asp Asp Ser Asn Phe Gly Ser Leu Leu Ser Leu Ser
115 120 125

Leu Met Ser Leu Leu Ser Tyr Leu His Leu Leu Val Ser His Leu Ala
130 135 140

Phe Asp Phe His Leu Phe Asp His Cys Leu Thr Val Phe Gly Ser Ala
145 150 155 160

Leu Arg His Lys Val Phe His Ser Leu Ile Leu Asn Ser Asp Ser Tyr
165 170 175

Lys Ser Gly Leu Gly Gln Ser Leu Arg Phe Val Leu Thr Leu Gly Gly
180 185 190

Leu Lys Cys Phe Pro
195

<210> 64

<211> 132

<212> PRT

<213> Homo sapiens

<400> 64

Pro His Ile Pro Phe Pro Ser Asn Pro Gly Asn Pro Lys Leu Phe Leu
1 5 10 15

00196US1.ST25

Thr Ala Ser Phe Gly Ile Ser Ser Phe Trp Cys Gln Ile Ser Gln Gln
20 25 30

Asn Phe Leu Pro Ile Ile Tyr Gln Cys Leu Ser Val Lys Phe Arg Phe
35 40 45

Asn Phe Leu Leu Pro Arg Ala His Tyr Leu Ala Pro Ile Ile Pro Ser
50 55 60

Pro Asn Ser Gln Thr His Lys His Ser Leu Leu Gln Leu Trp Ala Ser
65 70 75 80

Tyr Leu Ser Pro Ser Gly Lys Lys Cys Cys Val Thr Pro Leu Ala Val
85 90 95

Ser Val Asp Leu Val Gln Gly Arg Ala Pro Val Arg Ala Ala Gly Pro
100 105 110

Ser Ser Leu Pro Gly His Gln Gln Ile Ser Thr Ala His Arg Cys Pro
115 120 125

Gly Asn Gly Ser
130

<210> 65

<211> 202

<212> PRT

<213> Homo sapiens

<400> 65

Ile Thr Ile Phe Gln Pro Leu Leu Gln Gly Leu Leu Cys Thr Leu
1 5 10 15

Ser Leu Asn Ser Pro Ser Ile Cys Ser His Asn Pro His Asp Pro Gln
20 25 30

Phe Tyr Asn Thr Thr Val Arg Ser Pro Lys Leu Pro Phe Ile His Phe
35 40 45

His Ile Thr Ile Phe Gln Pro Leu Leu Gln Gly Leu Leu Cys Thr
50 55 60

Leu Ser Leu Asn Ser His Asp Ser Ser Cys Thr Leu Gly Ser Ser Val
65 70 75 80

Ser Pro Leu Leu Ile Ser Arg Val Pro Phe Cys Phe Cys Trp Leu
85 90 95

Pro Tyr Lys Ala Cys Asn Ile Ile Ser His Phe Arg Lys Glu Leu Asp
100 105 110

His Leu Leu Met Asn Pro Ala Phe Met Thr His Cys Leu Thr Cys Leu
115 120 125

Trp Leu Cys Met Ser Pro Ser Phe Arg Phe Phe Leu Trp Lys Glu Arg
130 135 140

Leu Pro Lys Ser Pro Ala His Gln His Tyr Lys Cys Met Gln Thr Ser
145 150 155 160

Phe Ser Cys Leu Pro Thr Leu Lys Met Ser Lys Gln Phe Ser Lys Gly
165 170 175

Glu Lys Ile Ser Ser Pro Pro His Thr Asn Tyr Leu His Asn Ser Val

180

185

190

Thr Phe Tyr Lys Pro Cys His Cys Ile Ser
 195
 200

<210> 66
 <211> 221 -
 <212> PRT
 <213> Homo sapiens

<400> 66

Thr Val Leu Ile Met Ile Val Phe Val Ile Cys Cys Trp Gly Pro Tyr
 1 5 10 15

Cys Phe Leu Val Leu Leu Ala Ala Arg Gln Ala Gln Thr Met Gln
 20 25 30

Ala Pro Ser Leu Leu Ser Val Val Ala Val Trp Leu Thr Trp Ala Asn
 35 40 45

Gly Ala Ile Asn Pro Val Ile Tyr Ala Ile Arg Asn Pro Asn Ile Ser
 50 55 60

Met Leu Leu Gly Arg Asn Arg Glu Glu Gly Tyr Arg Thr Arg Asn Val
 65 70 75 80

Asp Ala Phe Leu Pro Ser Gln Gly Pro Gly Leu Gln Ala Arg Ser Arg
 85 90 95

Ser Arg Leu Arg Asn Arg Tyr Ala Asn Arg Leu Gly Ala Cys Asn Arg
 100 105 110

Met Ser Ser Ser Asn Pro Ala Ser Gly Val Ala Gly Asp Val Ala Met
 115 120 125

Trp Ala Arg Lys Asn Pro Val Val Leu Phe Cys Arg Glu Gly Pro Pro
 130 135 140

Glu Pro Val Thr Ala Val Thr Lys Gln Pro Lys Ser Glu Ala Gly Asp
 145 150 155 160

Thr Ser Leu Asp Gly Trp Asn Gly Gln Leu Met Lys Ala Asn Phe His
 165 170 175

Ser His Tyr Leu Met Met Glu Asp Ser Gly Gly Glu Leu Trp Ile Ser
 180 185 190

Ser Gln Thr Phe Lys Ala Arg Asp Gly Gly Leu Pro Leu Ser Pro
 195 200 205

Asn Asn Ile Lys Asp Asn Val Pro Ser Phe Lys Lys Cys
 210 215 220

<210> 67
 <211> 595
 <212> PRT
 <213> Homo sapiens

<400> 67

Leu Glu Pro Thr Ser Lys Ala Pro Pro Gly Pro Gln Arg Pro Pro Pro
 1 5 10 15

Leu Arg Pro Ser Pro Ala Pro Arg Gly Gly Arg Pro Pro Ala Pro Ser

20

25

30

His His Ser Asp Leu Ala Ala Ala Pro Gly Ala Gly Gly Asp Pro
 35 40 45
 Arg Pro Pro Leu Gly Pro Met Glu Glu Pro Gln Pro Pro Arg Pro Pro
 50 55 60
 Ala Ser Met Ala Leu Leu Gly Ser Gln His Ser Gly Ala Pro Ser Ala
 65 70 75 80
 Ala Gly Pro Pro Gly Gly Thr Ser Ser Ala Ala Thr Ala Ala Val Leu
 85 90 95
 Ser Phe Ser Thr Val Ala Thr Ala Ala Leu Gly Asn Leu Ser Asp Ala
 100 105 110
 Ser Gly Gly Gly Thr Ala Ala Ala Pro Gly Gly Gly Leu Gly Gly
 115 120 125
 Ser Gly Ala Ala Arg Glu Ala Gly Ala Ala Val Arg Arg Pro Leu Ala
 130 135 140
 Thr Glu Ala Ala Pro Leu Leu Ser His Gly Ala Ala Val Ala Ala Gln
 145 150 155 160
 Ala Leu Val Leu Leu Ile Phe Leu Leu Ser Ser Leu Gly Asn Cys
 165 170 175
 Ala Val Met Gly Val Ile Val Lys His Arg Gln Leu Arg Thr Val Thr
 180 185 190
 Asn Ala Phe Ile Leu Ser Leu Ser Asp Leu Leu Thr Ala Leu
 195 200 205
 Leu Cys Leu Pro Ala Ala Phe Leu Asp Leu Phe Thr Pro Pro Gly Gly
 210 215 220
 Ser Ala Pro Ala Ala Ala Gly Pro Trp Arg Gly Phe Cys Ala Ala
 225 230 235 240
 Ser Arg Phe Phe Ser Ser Cys Gly Ile Val Ser Thr Leu Ser Val Ala
 245 250 255
 Leu Ile Ser Leu Asp Arg Tyr Cys Ala Ile Val Arg Pro Pro Arg Glu
 260 265 270
 Lys Ile Gly Arg Arg Ala Leu Gln Leu Leu Ala Gly Ala Trp Leu
 275 280 285
 Thr Ala Leu Gly Phe Ser Leu Pro Trp Glu Leu Leu Gly Ala Pro Arg
 290 295 300
 Glu Leu Ala Ala Ala Gln Ser Phe His Gly Cys Leu Tyr Arg Thr Ser
 305 310 315 320
 Pro Asp Pro Ala Gln Leu Gly Ala Ala Phe Ser Val Gly Leu Val Val
 325 330 335
 Ala Cys Tyr Leu Leu Pro Phe Leu Leu Met Cys Phe Cys His Tyr His
 340 345 350
 Ile Cys Lys Thr Val Arg Leu Ser Asp Val Arg Val Arg Pro Val Asn
 355 360 365

00196US1.ST25

Thr Tyr Ala Arg Val Leu Arg Phe Phe Ser Glu Val Arg Thr Ala Thr
370 375 380

Thr Val Leu Ile Met Ile Val Phe Val Ile Cys Cys Trp Gly Pro Tyr
385 390 395 400

Cys Phe Leu Val Leu Leu Ala Ala Ala Arg Gln Ala Gln Thr Met Gln
405 410 415

Ala Pro Ser Leu Leu Ser Val Val Ala Val Trp Leu Thr Trp Ala Asn
420 425 430

Gly Ala Ile Asn Pro Val Ile Tyr Ala Ile Arg Asn Pro Asn Ile Ser
435 440 445

Met Leu Leu Gly Arg Asn Arg Glu Glu Gly Tyr Arg Thr Arg Asn Val
450 455 460

Asp Ala Phe Leu Pro Ser Gln Gly Pro Gly Leu Gln Ala Arg Ser Arg
465 470 475 480

Ser Arg Leu Arg Asn Arg Tyr Ala Asn Arg Leu Gly Ala Cys Asn Arg
485 490 495

Met Ser Ser Ser Asn Pro Ala Ser Gly Val Ala Gly Asp Val Ala Met
500 505 510

Trp Ala Arg Lys Asn Pro Val Val Leu Phe Cys Arg Glu Gly Pro Pro
515 520 525

Glu Pro Val Thr Ala Val Thr Lys Gln Pro Lys Ser Glu Ala Gly Asp
530 535 540

Thr Ser Leu Asp Gly Trp Asn Gly Gln Leu Met Lys Ala Asn Phe His
545 550 555 560

Ser His Tyr Leu Met Met Glu Asp Ser Gly Gly Glu Leu Trp Ile Ser
565 570 575

Ser Gln Thr Phe Lys Ala Arg Asp Gly Gly Leu Pro Leu Ser Pro
580 585 590

Asn Asn Ile
595

<210> 68
<211> 201
<212> PRT
<213> Homo sapiens

<400> 68

Ala Ser Ala Ser Gln Ala Gln Phe Lys Lys Lys Met Phe Asn Leu Leu
1 5 10 15

Leu Thr Tyr Phe Cys Lys Ile Leu Lys Ile Tyr Thr Ile Tyr Trp Leu
20 25 30

His Asn Ile Val Lys Ala Leu Thr Ala Thr Lys Leu Tyr Ala Gln Lys
35 40 45

Trp Leu Lys Trp Tyr Ile Tyr Ile Thr Tyr Ile Leu Leu Gln Phe Val
50 55 60

Ile Glu Lys Asn Glu Met Lys Lys Val Lys Phe Gln Pro Gln Leu Cys

65

70

75

80

Phe Asn Asn Ile Gln Asp Leu Val Lys Leu Leu Lys Phe Leu Asn Ala
 85 90 95

Tyr Phe Gln Phe Leu Tyr Leu Ser Arg Cys Arg Pro Val Lys Val Cys
 100 - 105 110

Met Leu Ala Ala Ile Pro Glu Leu Tyr Phe Asp Ser Thr Asp Leu Ser
 115 120 125

Cys Glu Gly Leu Trp Leu Cys Arg Ala Ser Gln Glu Thr Phe Glu His
 130 135 140

Lys Val Ser Cys Thr Thr Pro Ser Ser Arg His Phe Trp Thr Pro
 145 150 155 160

Gly Trp Ser Thr Pro Ser Ser Ser Gly Gln Ala His Cys Ser Asp Val
 165 170 175

Trp Leu Thr Pro Thr Tyr Ala Pro Ala Val Pro Gln Gly Pro Cys Cys
 180 185 190

Thr Val Val Phe Ile Tyr Phe Leu Arg
 195 200

<210> 69

<211> 217

<212> PRT

<213> Homo sapiens

<400> 69

Arg Leu Lys His Ile Leu Pro Ser Ser Leu Arg Leu Ala Ser Lys Asn
 1 5 10 15

Ala Phe Asn Trp Leu Asn Leu Arg Ile Ile Val Tyr Cys Cys Leu Gly
 20 25 30

Ile Ile Glu Cys Cys Leu Leu Ile Lys Val Glu Phe Asp Pro Pro Arg
 35 40 45

Leu Pro Leu Val Trp Val Gly Glu Gly Leu Gly Phe Cys Ser Phe Phe
 50 55 60

Phe Leu Leu Ile Arg Ser Thr Asn Ile Tyr Cys Met Pro Met Gly
 65 70 75 80

Gly Lys His Arg Phe Cys Gly Ala Ser Leu Tyr Tyr Leu Gly Asp Pro
 85 90 95

Leu Ile Lys Leu Ile Lys Leu Gln Ile Gln Asn Ala Lys Leu Phe Leu
 100 105 110

Arg Met Gln Ile Glu Gly Thr Leu Gln Leu Lys Asp Tyr Ser Leu Tyr
 115 120 125

Asn Lys Tyr Ala Ser Gly Ala Tyr Cys Met Ser Gly Thr Leu Gly Pro
 130 135 140

Val Asp Lys Val Met Asn Ala Ile Val Thr Leu Thr Trp Ile Leu Gln
 145 150 155 160

Ser Ser His Phe Gln Lys Met Val Ser Leu Phe Val Pro Pro Gln Arg
 165 170 175

Ala Thr Trp Tyr Thr Ala Leu Leu Val Ala Glu Gly Pro Ser Thr Pro
 180 185 190

Ala Leu Phe Pro Val Ser Ser Leu Leu Trp Thr Arg Lys Asn Pro Asp
 195 200 205

Leu Thr Tyr Thr Gly Gln Ser Ala Leu
 210 215

<210> 70

<211> 156

<212> PRT

<213> Homo sapiens

<400> 70

Glu Gly Leu Ile Thr Ala Gly Val Ser Asp Ala Pro Leu Pro Gln Met
 1 5 10 15

Gln Ile Pro Gly Thr Leu Trp Met Tyr Tyr Tyr Leu Ile Ser Leu Tyr
 20 25 30

Ile Pro Phe Ser Met Asn Gly Glu Pro Met Pro Phe Trp Arg Gly Glu
 35 40 45

Arg Trp Ser Ser Ser Ala Ile Leu Pro Lys Leu Phe Ala Phe Leu Glu
 50 55 60

Asp Phe Pro Phe Phe Ser Glu Leu Asp Ile Trp Met Ser Glu Ala Gly
 65 70 75 80

Arg Gly Phe Cys Phe Leu Ile Ala Ala Leu Arg His Thr Ser Pro Ile
 85 90 95

Pro Ala Gln Met Arg Arg Pro Leu Glu Asn Lys His Gln Phe Arg Phe
 100 105 110

Leu Asn Ile Ile Pro Thr Leu Ala Ile Met Pro Ala Leu Glu Thr Lys
 115 120 125

Glu Leu Cys Ser Arg Lys Val Ser Val Gln Gly Tyr Thr Val Phe Ala
 130 135 140

Val Cys Arg Gly Lys Phe Leu Thr Asp Ile Cys Leu
 145 150 155

<210> 71

<211> 221

<212> PRT

<213> Homo sapiens

<400> 71

Leu Ala Gln Val Phe Pro Val Pro Gln Gly Asn Glu Tyr Phe Lys Gln
 1 5 10 15

Lys Arg Val Arg Asp Met Ser Asn Val Tyr Cys His Thr Leu Thr Leu
 20 25 30

Trp Ala Leu Ile Phe Leu Val Val Leu Ser Tyr Tyr Tyr Arg Phe Leu
 35 40 45

Pro Cys Ser Tyr Leu Phe Gly Asn Gly Thr Glu Ile Trp Leu Leu Leu
 50 55 60

Gly Thr Asn His Ser Ser Pro Leu Trp Lys Trp Leu Leu Ser His Lys
 65 70 75 80
 Tyr Ser Pro Ser Cys Ser Arg Leu Leu Ile Leu Asn Leu Trp Val Asn
 85 90 95
 -
 Lys Val Thr His Leu Tyr Lys Glu Ile Gly Asp Gln Ser Asn Ser Pro
 100 105 110
 Ile Arg Lys Pro Gln Arg Val Gly Thr Asn Ser Val Met His Leu Glu
 115 120 125
 Leu Glu His Thr Cys Ser Asn Leu Gln Ser Gly Lys Leu Ile Val Leu
 130 135 140
 Trp Trp Leu Lys Lys Gln Arg Gly Ser Ala Glu Lys Pro Met
 145 150 155 160
 Asn Lys Pro Pro Val Pro Tyr Gly Phe Phe Leu Lys Ser Glu Phe Arg
 165 170 175
 Ala Gln Asn Glu Ser Ile Tyr Leu Val Leu Thr His Ser Ile Lys Asn
 180 185 190
 Glu Glu Thr Gly Ala Glu Leu Leu Lys Asn Ile Pro Val Ser Cys Lys
 195 200 205
 Ala Arg Thr Gly His Pro Tyr Val Leu Thr Leu Pro Cys
 210 215 220
 <210> 72
 <211> 237
 <212> PRT
 <213> Homo sapiens
 <400> 72
 Leu Pro Ser Gln Gly Glu Gly Arg Ala Pro Lys Gly Leu Met Arg Gly
 1 5 10 15
 Leu Thr Asp Gln Gly Arg Glu Gln Asn Thr Phe Leu Ser Ile Gly Asp
 20 25 30
 Ser Val Thr Trp Leu Ser Leu Ile Ile Ser Glu Ala Trp Arg Ile His
 35 40 45
 Leu Phe Val Ser Pro Gly Arg Arg Glu Asn Lys Leu Trp Thr Phe Ser
 50 55 60
 Ser Leu Tyr Asp Asn Ser Leu Tyr Val Asp Cys Lys Gly Gly Thr Lys
 65 70 75 80
 Pro Ser Leu Leu Ser Asn Thr Ile Trp Gln Ser Pro Trp Val Ile Ile
 85 90 95
 Leu Asn Ile Asp Ala Tyr Cys Ser Arg Val Lys Lys Ile Ser Met Thr
 100 105 110
 Ala Phe Gln Phe Tyr Lys Phe Asn Leu Tyr Ser Ala Tyr Cys His Pro
 115 120 125
 His Val Leu Lys Asn Lys Ile Lys Asn Lys Lys Pro Ser Asn Tyr Val
 130 135 140

00196US1.ST25

Leu Tyr Ser Lys Glu His Ser Tyr Ile Ser Leu His Cys Ile Leu Thr
145 150 155 160

Thr Ile Leu Cys Ser Ile Cys Phe Thr Pro Phe Leu Leu Cys Phe Val
165 170 175

Tyr Lys Glu Met Ser Pro Arg Glu Leu Asn Gly Leu Pro Gln Leu Val
180 185 190

Lys Leu Lys Leu Gln Ser Arg Ser Phe Tyr Phe Gln Ile His Asn Leu
195 200 205

Gln Pro Ser Val Glu Ser Tyr Asn Glu Ile Met Val Arg Gly Leu Ser
210 215 220

Ile Ser Val Gln Val Cys Pro Ala Pro Thr Thr Ser Ile
225 230 235

<210> 73

<211> 224

<212> PRT

<213> Homo sapiens

<400> 73

Ser Val His Cys Tyr Gln Glu Asn Asn Ala Phe Ser Gly Ser Leu Ile
1 5 10 15

Leu Asn Thr Leu Ala Gly Asn Leu Leu Ala Arg Thr Gly Asp Leu Ile
20 25 30

Ile Ser Ser Trp Met Arg Leu Trp Gly Gly Arg Ile Leu Thr Gly Tyr
35 40 45

Thr Ala Ala Gln Thr Arg Val Ala Leu Gly Arg Arg Glu Gly Glu Asn
50 55 60

Trp Val Asn Pro Met Met Pro Val Met Thr Asp Val Gly Leu Leu Asn
65 70 75 80

Lys Phe Ser Ser Gln Lys Leu Met Ile Phe Thr Ile Pro Ile Trp Ile
85 90 95

Ser Tyr Gly Glu Ile Gln Val Trp Leu His Ser Phe Ser Leu Ser Ile
100 105 110

His Thr Leu Ile His Tyr Leu Leu Glu Ala Asn Phe Val Pro Gly Leu
115 120 125

Val Arg Tyr Gly Val Thr Ser Cys Thr Lys Gln Pro Gly Ser Leu Gly
130 135 140

Pro Thr Val Gly Lys Gln Gly Lys Cys Gly Arg Ile Ile Lys Ile Thr
145 150 155 160

His Thr Ala Pro Arg Trp Gln Gly Lys Cys His Phe Phe Tyr Phe Leu
165 170 175

Leu Met Asp Leu Arg Leu Phe Trp Phe Gln Trp Ser His Phe Ser Leu
180 185 190

Ser Ile Gln Phe Ile Gln Asn Ser Phe Ala Ser Asp Lys Ile Ala Asn
195 200 205

Trp Leu Pro Ala Asn Ser Phe Ser Pro Gln Ser Met Gly Asn Ala Gly

210

215

00196US1.ST25
220

<210> 74
<211> 216
<212> PRT
<213> Homo sapiens
-

<400> 74

Leu Leu Leu Leu Lys Val Ile Ala Phe Arg Leu Phe Gln Leu Gln Ser
1 5 10 15

Lys Glu Val Tyr Val Tyr Ile Val Ile Cys Glu Tyr Thr His Thr Tyr
20 25 30

Thr Tyr Phe Tyr Met Ser Ser Ile Phe Lys Leu Ser Arg Ile Val His
35 40 45

Thr Asp Ile Ser Asn Pro Asn Gln Leu Pro Gln Gly Leu Phe Arg Pro
50 55 60

Phe Ser Leu Gly Ser Leu Gln Leu Leu Leu Gln Gln Leu Glu Ile Trp
65 70 75 80

Leu Pro Tyr Ser Phe Ala Leu Phe Asn Ser Ser Thr His Lys Trp Trp
85 90 95

Leu Gln Asn Leu Ile Pro Pro Trp Glu Ile Thr Leu Leu Thr Lys Val
100 105 110

Gln His Leu Cys Ile Val Leu Phe Glu Phe Leu Asp Leu Glu Ile Pro
115 120 125

Leu Leu Phe Gln Ser Tyr Leu Gly Gln Asn His Phe Pro Phe Phe Ser
130 135 140

Glu Val Val Leu Cys Ile Cys Asn Thr Val Arg Leu Phe Cys His Met
145 150 155 160

Val His Ser Ile Leu Gly Phe Pro Ile Ser Phe Phe Asn Ile Cys Ile
165 170 175

Tyr Val Ser Phe Phe Cys Ala Val Ser Phe Tyr Gly Phe Gln Leu Met
180 185 190

His Ser Val Met Asn Leu Pro Pro Glu His His Thr Glu Phe His Gln
195 200 205

Leu Lys Lys Phe Pro Met Phe Tyr
210 215

<210> 75
<211> 204
<212> PRT
<213> Homo sapiens

<400> 75

Phe Leu Pro Leu Cys His Asn Gly His Asp Asp Ser Trp Leu Thr Gln
1 5 10 15

Thr Phe Cys Val Trp Lys Asp Leu Ile Cys Pro Phe Leu Glu Ala Thr
20 25 30

Ile Leu Arg Phe Glu Lys Ser Phe Leu Lys Asn Lys Ile Phe Leu Ile

35

40

45

Lys Asn Asn Ala Ser Ser Leu Glu Lys Asn Lys Ile Asn Lys Ser Thr
 50 55 60

Ile Phe Leu Asn His Leu Lys Met Thr Ile Val Ser Phe Phe Phe Phe
 65 - 70 75 80

Leu Val Leu Phe Ser Val Ser Asn Leu Phe Ser Ile Lys Thr Ser Glu
 85 90 95

Met Leu Gln Arg Ile Arg Gly Pro His Ile Glu Lys Phe Ile Asn Thr
 100 105 110

Leu Ala Ser Cys Leu Ala Phe Val Pro Ser Leu Thr Gly Asn Ser Phe
 115 120 125

Ser Ile Ser Leu Lys Leu Gln Ile Leu Asp Asn Ser Ser Arg Ser Ser
 130 135 140

Ser Asn Val Leu Leu Asp Ser Ser Gln Gln Glu Leu Ile Tyr Phe Leu
 145 150 155 160

Cys Ile Phe Val Pro Gln Asp Leu Leu Ser Tyr Gly Asn Tyr His Leu
 165 170 175

Leu Pro Tyr Ile Thr Ile Phe Glu Ser Ser Asn Lys Val Phe Phe Phe
 180 185 190

Phe Gln Met Lys Ser Arg Tyr Ile Ala Gln Ala Gly
 195 200

<210> 76

<211> 228

<212> PRT

<213> Homo sapiens

<400> 76

Val Met Gly Asn Ala Arg Ile Cys Val Gln His Gly Arg Glu Ser Val
 1 5 10 15

Trp Lys Ser Phe Asp Lys Leu Trp His Leu Ser Leu Thr Leu Pro Gln
 20 25 30

Asn Phe Arg Leu Pro Ala Ile Tyr Lys Leu Glu Val Lys Ile Thr Ser
 35 40 45

Met Tyr Thr Ser Gln His Lys Glu Ser Tyr Pro Ser Phe Leu Asp Gly
 50 55 60

Ala Arg Ile Trp Val Arg Phe Ile Val Gln Ser Ser Ser Leu Phe Tyr
 65 70 75 80

Arg Pro Gly Phe Lys Phe Thr Ser Lys Met Glu Asn Phe Gly Trp Glu
 85 90 95

Asn Tyr Met Trp Glu Asp Ile Phe Ser Gly Asp Phe Ser Asn Tyr Ser
 100 105 110

Phe Ser Tyr Asp Pro Thr Pro Phe Leu Leu Asp Ser Ala Pro Cys Trp
 115 120 125

Pro Glu Ser Leu Glu Ile Asn Tyr Val Leu Ile Ile Ile Tyr Ala Leu
 130 135 140

Met Phe Leu Leu Asn Val Met Asn Ser Leu Pro Met Leu Val Ile Leu
 145 150 155 160
 Phe Ser Val Ser His Cys His Arg Cys Leu Pro Ala Asp Pro Gly Leu
 165 170 175
 Gly Arg Pro Val Leu Phe Pro Asp Ile Ala His Leu Gly Cys Leu Gln
 180 185 190
 Glu Met Ala Gly Ile Phe Gly Thr Ile Cys Ala Arg Trp Ser Ser Ser
 195 200 205
 Arg Lys Ser Thr Ser Thr Gly Gly Ile Leu Leu Leu Ala Cys Arg Ser
 210 215 220
 Met Gly Leu Leu
 225
 <210> 77
 <211> 220
 <212> PRT
 <213> Homo sapiens
 <400> 77
 Val Leu Thr Thr Ser Thr Val Phe Leu Lys Gln Asn Cys His Leu Leu
 1 5 10 15
 Glu Arg Lys Ile Tyr Gly Glu Ser Pro Ser Ser Ser Leu Thr Pro Glu
 20 25 30
 Lys Ala Trp Ile Lys Asn Ser Arg Gln Pro Trp Arg Leu Ser Leu Leu
 35 40 45
 His Gly Thr Met His Pro Trp Gly Arg Gln Lys Met Glu Lys Cys Ile
 50 55 60
 Ile Ile Lys Cys Leu Leu Cys Thr Arg Ser Gln His Phe His Met Tyr
 65 70 75 80
 Ser His Pro Ala Pro Phe His Ile Cys Ser His Phe Pro Asp Glu Gly
 85 90 95
 Thr Glu Ile Pro Arg Arg Glu Val Thr Ser Gly Gln Ser Trp Asp Leu
 100 105 110
 His Thr Ala Arg Lys Ser Thr Ala Asp Ile Asp Cys Val Leu Pro Leu
 115 120 125
 Cys Gln Leu Leu Phe Glu Gly Val Ser Arg Phe Gln Leu Ile Phe Ser
 130 135 140
 Gln Lys Cys His Gly Asp Asp Glu Glu Thr Glu Ala Lys Tyr Leu Ala
 145 150 155 160
 Val Ala Gln Leu Pro Asp Asp Gly Val Arg Ile Gln Tyr Trp Gln Cys
 165 170 175
 Trp Val Gln Ser Gln Val Leu Leu Thr Leu His Pro Val Cys Tyr Pro
 180 185 190
 Leu Ser Thr Ala Ser Gln Arg Lys Thr Tyr Thr His Gly Ala Phe Met
 195 200 205

00196US1.ST25

Leu Phe Gly Asn Val Gln His His Gly Asn Ile Ile
210 215 220

<210> 78

<211> 157

<212> PRT

<213> Homo sapiens

<400> 78

Lys Ile His Ser Ala Ala Gly Arg His Arg Ala Phe Ser Thr Cys Ser
1 5 10 15

Ser His Leu Thr Val Val Leu Leu Gln Tyr Gly Cys Cys Ala Phe Met
20 25 30

Tyr Leu Cys Pro Ser Ser Tyr Asn Pro Lys Gln Asp Gln Phe Ile
35 40 45

Ser Leu Val Tyr Thr Leu Gly Thr Pro Leu Leu Asn Pro Leu Ile Tyr
50 55 60

Ala Leu Arg Asn Ser Glu Met Lys Gly Ala Val Gly Arg Val Leu Thr
65 70 75 80

Arg Asn Cys Leu Ser Gln Asn Ser Glu Arg Arg Gly Asp Ser Leu Ser
85 90 95

Gly Lys Tyr Leu Val Pro Ala His Gln Ile Cys Met Lys Leu Arg Phe
100 105 110

Leu Ser Phe Gly Val Lys Thr His Leu Lys Asp Gly Ile Asn Tyr Met
115 120 125

Asp Thr Val Tyr Val Cys Gln Arg Phe Leu Asn Ile Ser Thr Ile Leu
130 135 140

Cys Asn Phe Ser Ser Trp Lys Glu Leu His Glu His Lys
145 150 155

<210> 79

<211> 227

<212> PRT

<213> Homo sapiens

<400> 79

Ile Lys Ile Arg Leu Gly Leu Lys Leu Ser Leu Pro Leu Ser Arg Glu
1 5 10 15

Met Lys Cys Thr Leu Ser Thr Ile Leu Ile Leu Lys Leu Phe Lys Lys
20 25 30

Cys Phe Arg Asp Ser Leu Pro Asp Lys Leu Ala Met Asn Phe Gln Pro
35 40 45

Thr Arg Ala Phe Ile Tyr Ile Arg Gly Val Gln Glu Phe Arg Gln Leu
50 55 60

Phe Thr Leu Lys Lys Ile Leu Ile Val Lys Thr Thr Lys Val Asp Gln
65 70 75 80

Leu Ile Leu Phe Leu Trp Leu Leu Val Phe Ser Lys Val Leu Ile Leu
85 90 95

00196US1.ST25

Leu Tyr Leu Ala Val Ser Lys Phe Gln Lys Cys Phe Cys Thr Asp Trp
100 105 110

Pro His Phe Lys Phe Ser Ile Gly Asn Phe Lys Trp Val Leu Met Leu
115 120 125

Pro Gly Val Leu Gly Leu Ile Leu Asp Phe Ser Val Phe Ser Leu Ser
130 135 140

Cys Phe Phe Met Thr Ile Leu Cys Leu Pro Ser Leu Leu Lys Phe Pro
145 150 155 160

Lys Asp Val Phe Tyr His Pro His Ala Gln Leu Met Asn Leu Ser Ser
165 170 175

Tyr Phe Ala Glu Ile Met Arg Ala Ile Arg Ser Ser His His Cys Ser
180 185 190

Trp Gly Ile Ile Cys Leu His Phe Gln Gln Arg Pro Cys Ser Ser Pro
195 200 205

Arg Pro Thr Leu Leu Ala Trp Ala Ala Ile Thr Glu His His Arg Leu
210 215 220

Gly Gly Leu
225

<210> 80

<211> 164

<212> PRT

<213> Homo sapiens

<400> 80

Ser Leu Ser Ser Arg Gly Ser Glu Ala Gln Asn Cys Leu Glu Ile Cys
1 5 10 15

Pro Ser Ser Asp Thr Glu Leu Met Leu Glu Arg Glu Pro Asn Leu Phe
20 25 30

His Leu Asn Ser Cys Gly Lys Met Asn Thr Asn Cys Phe Leu Tyr Tyr
35 40 45

Asp Asn Lys Lys Leu Ser Ser Ile Phe Leu Tyr Lys Lys Ala Ile His
50 55 60

Met His Gln Ser Gly His Leu Leu Val Thr Phe Phe Pro His His Phe
65 70 75 80

Thr Thr Phe His Phe Thr Thr Cys Cys Leu Asn Pro Leu Ile His Phe
85 90 95

Phe Lys Lys Glu Asn Glu Phe His Tyr Tyr Gln Thr Pro Gly Ser Ser
100 105 110

Cys Asp Gln Leu Phe Leu Val Val Lys Cys Cys Pro Glu Thr Lys Val
115 120 125

Asn Leu Ser Val Leu Leu Cys His Asn Arg Thr Phe Pro Val Arg Arg
130 135 140

Glu Cys Gly Arg Phe Gly Val Asn Pro Gly Met Gly Gln Gly Arg His
145 150 155 160

Lys Ser Arg Asn

<210> 81
<211> 221
<212> PRT
<213> Homo sapiens
-

<400> 81

Leu Glu Phe Tyr Ser Lys His Gln Ser Arg Gly Ile Val Arg Glu Arg
1 5 10 15

Asn Met Leu Ile Gln Asp Ser Gly Ser Leu Phe Phe Ser Ser Phe Phe
20 25 30

Ser Gln Asn Asp Leu Asp Ser Cys Lys Val Leu Val Tyr Leu Val Ser
35 40 45

Lys Ser Leu Phe Leu Leu Asn Phe Ile Cys Ile Asn Gln Leu Tyr Met
50 55 60

Thr Lys Met Ser Pro Lys Phe Lys Ser Leu His Ser Lys Ala Leu Tyr
65 70 75 80

Val His Leu Ala Ser Phe Gln Lys Thr Lys Ala Val Val Leu Lys Phe
85 90 95

Ser Cys Thr Leu Ile Thr Gly Lys Leu Phe Lys Leu Leu Met Thr Lys
100 105 110

Pro His Val Arg Leu Ile Tyr Ala Glu Ser Leu Gly Gln Gly Pro Arg
115 120 125

Tyr Gln His Phe Leu Lys Leu Arg Asn Asn Gln Gly Glu Pro Leu His
130 135 140

Lys Met Val Asn Ala Thr Phe Ile Val Ile Phe Phe Lys Ile Met Val
145 150 155 160

Glu Leu Ile Leu Ile Leu Val Pro Ser His Gly Asn Phe Phe Arg Leu
165 170 175

Arg Glu Phe Ile Leu Ala Leu Arg Leu Leu Lys Asn Leu Glu Ile Gln
180 185 190

Val Phe Leu Phe Ile Phe Leu Ile Leu Glu Tyr Ala Ser Ala His
195 200 205

Pro Tyr Leu Ile Ile Leu Glu Lys Tyr Ile Lys Thr Phe
210 215 220

<210> 82
<211> 216
<212> PRT
<213> Homo sapiens

<400> 82

Ile Ile Ile Met Leu Ile Leu His His Ile Gln Ile Asp Cys Asn Ile
1 5 10 15

Val Ile Cys Asn Ile Leu Phe Lys Ile Asn Leu Ser Glu Ser Tyr Ile
20 25 30

Ala Thr Val Val Ser Leu Ile His Arg Phe Ile Phe Tyr Gly Phe Ser

35

40

45

Tyr Leu Leu Ser Thr Arg Ile Gln Gln Tyr Tyr Met Gly Lys Ser Gln
 50 55 60

Lys Thr Val Cys Lys Phe Phe Val Arg Cys Ser Gly Gln Arg Asp Lys
 65 70 75 80

Ile Ser Cys Cys Ser Ser Leu Ser Cys Leu Asn Met Asn Tyr Pro Leu
 85 90 95

Ser Ser Ile Ser Thr Leu His Met Leu Pro Ser His Ser Ser Phe Ser
 100 105 110

Ser Cys Phe Asp Tyr Leu Ile Glu Lys Thr His Ser Ile Tyr Arg Val
 115 120 125

Phe Tyr Gly Ala Arg Glu Asn Phe Leu Phe Val Leu Arg Phe Thr Glu
 130 135 140

Asn Ser Thr His Lys Gly Arg Leu Ile Gly Met Lys Val Lys Lys Lys
 145 150 155 160

Ile Tyr His Gln Trp Arg Leu Gln Ser Asp Tyr Ser Ile Ala Ile Asn
 165 170 175

Gly Leu Gln Trp Leu Lys Tyr Arg Phe Glu Val Thr Lys Arg Val Glu
 180 185 190

Val Leu Gly Ser Trp Gln Asn Arg Leu Trp Glu Glu Glu Lys Arg Asn
 195 200 205

Pro Gly Gln Arg Ser Ser Cys Asp
 210 215

<210> 83

<211> 118

<212> PRT

<213> Homo sapiens

<400> 83

Phe Phe Pro Leu Ser Val Ser Leu Met Leu Ser Ser Lys Trp Arg Trp
 1 5 10 15

Arg Gly Phe Thr Ser Leu Phe Ser Asn Ser Pro Phe Phe Gly Phe Phe
 20 25 30

Ser Ser Thr Ser Lys Ser Val Gln Asn Val Pro Leu Ala His Arg Lys
 35 40 45

Ser Phe Leu Asp Pro Ala Thr Tyr Leu Thr Lys Ile Pro His Phe Ser
 50 55 60

Ser Ser Phe Lys Ile Ser Phe Ile Met Val Cys Val Asn Gly His Ile
 65 70 75 80

His Leu Ile His Ser Phe Leu Lys Phe Gln Lys Asn Gly Phe Val Ser
 85 90 95

Cys Tyr Phe Asn Gly Ile Ile Phe Pro Lys Ile Asn Arg Thr Phe Pro
 100 105 110

Gln Ala Gln Ser Ser Arg
 115

<210> 84
<211> 147
<212> PRT
<213> Homo sapiens

<400> 84 -

Ile Glu Ile Ile Cys Thr Leu Leu Pro Leu Glu Asn Asn Glu Lys Leu
1 5 10 15

Gly Ile Ser Gln Cys Tyr Leu Leu Val Ala Ser Gly Ile Lys His Asn
20 25 30

Gln Asn Gly Ser Gly Gln Cys Thr Pro His Phe Lys Ala Cys Asn Ser
35 40 45

Glu Val Glu Pro Arg His Leu Pro Leu Val Val Tyr Ser Val Tyr Leu
50 55 60

Ile Asp Ser Pro Lys Cys Lys Leu Leu Ile Asn Arg Ala Tyr Val Arg
65 70 75 80

Ser Pro Val Met Cys Leu Ile Leu Ser Asp Val Cys Ser His His Thr
85 90 95

Ser Phe Gly Val Cys Asn Ser Phe Val Cys Gly Phe Phe Cys Leu Val
100 105 110

Ile Leu Val Cys Pro Val Cys Phe Tyr Gly Arg Val Trp Arg Asn Ser
115 120 125

Lys Ala Ile Pro His Cys Pro Ser Ser Phe Pro Trp Ile His Val Pro
130 135 140

Tyr His Val
145

<210> 85
<211> 202
<212> PRT
<213> Homo sapiens

<400> 85

Thr Ser Leu Cys Ala Ser Val Ala Lys Ser Met Arg Ala Gly Lys Thr
1 5 10 15

Cys Ile Leu Ser Cys Ile Cys Ile Gln Met Leu Asp Pro His Leu Cys
20 25 30

Pro Val Gln Tyr Leu Ser Leu Leu Leu Gln Trp Val Thr Asn Glu
35 40 45

Pro Cys Leu Pro Ala Trp Gly Arg Arg Gly Leu Arg Asp Ile Ser Thr
50 55 60

Gly Ile Phe Gly Val Ser Arg Leu Glu Arg Asn Leu Leu Ile Ser Thr
65 70 75 80

Leu Tyr Asn Tyr His Asn Ile Leu Phe Leu Met Lys Gln Gln Phe Thr
85 90 95

Phe Leu Cys Trp Leu Tyr Phe Ala Ser Phe Thr Trp Gln Tyr Leu Met
100 105 110

Pro Ser Ieu Gly Ile Arg Arg Lys Thr Arg Pro Gln Ile Pro Gly Pro
 115 120 125

Ser Thr Leu Phe Leu Leu Gly Thr Ser Phe Thr Ser Ser Ser Ala Asp
 130 135 140

Ala Pro Leu Leu Pro Thr Pro Pro Arg Lys Val Ser Ser Gln Gln Ala
 145 150 155 160

Leu Thr Lys Gly Ser His Phe Leu Pro Lys Gly Glu Ser Ser Gln Ala
 165 170 175

Val Asn Phe Ser Asn Phe Cys His Cys Ser Ser Val Ala Asp Leu Pro
 180 185 190

Ser Ser Leu Ser Trp Arg Ile Leu Pro Gly
 195 200

<210> 86

<211> 189

<212> PRT

<213> Homo sapiens

<400> 86

Leu Asn Ala Thr Pro Phe Ser Ser Glu Thr Leu Trp Cys Ile Leu Gly
 1 5 10 15

His Tyr Leu Ser Lys Gly Pro Lys Leu Asn Ser Ser His His Pro Ser
 20 25 30

Phe Phe Cys Leu Arg Phe Tyr Phe Pro Asn Gln Ile Trp Val Asn Phe
 35 40 45

Gln Pro Leu Ser Val Ser Tyr Phe Gln Ser Asn Lys Thr Cys Met Asp
 50 55 60

Leu Phe Cys Ile Ser Ser Asn Val Ile Ile His Ser Lys Ser His Cys
 65 70 75 80

Leu Thr Ile Ser Leu Pro Ile Ala Leu Ala Ile Lys Lys Leu His Trp
 85 90 95

His Gly Phe Gln Thr Cys Ile Leu Phe Phe Gly Gly Leu Ile Leu Asn
 100 105 110

Leu Lys Tyr Leu Arg Ile Ser Asn Thr Ile Phe Lys Met Gln Gln Ile
 115 120 125

Phe Lys Thr Ala Ser Leu Cys Gln Ala Lys Gly Val Ser Cys Gln Leu
 130 135 140

Ser Leu Thr Ala Lys Glu Ala Lys Ile Ile Leu Met Val Val Leu Lys
 145 150 155 160

Glu Ala Ser Ala His Phe Leu Gly Gln Cys His Pro Thr His Leu Leu
 165 170 175

Gln Gly Leu Asp Thr Lys Gly Asp Val Ser Asp Phe Pro
 180 185

<210> 87

<211> 191

<212> PRT

<213> Homo sapiens

<400> 87

Asn	Arg	Lys	Asn	Leu	Lys	Ile	Ser	Thr	Val	Phe	Asn	Gln	Phe	Phe	Ser
1				5					10					15	
-															
Leu	Leu	Pro	Val	Leu	Trp	His	Asn	Ile	Val	Leu	Asn	Trp	Lys	Asn	Thr
				20				25					30		
Met	Leu	Ala	Phe	Thr	Tyr	Met	Ser	Ile	Leu	Ile	Leu	Ser	Arg	Cys	Leu
	35						40					45			
Val	Ser	Pro	Tyr	Leu	Lys	Leu	Leu	Ile	Ile	Leu	Phe	Cys	Ser	Leu	
	50				55					60					
Tyr	Val	Leu	Trp	Ala	Asn	Lys	Ser	Tyr	Pro	Pro	Asn	Lys	Leu	Thr	Phe
	65				70			75				80			
Lys	Lys	Phe	Ala	Lys	Asp	Trp	Leu	Pro	Ile	Ser	Leu	Tyr	Leu	Ile	
		85				90					95				
Pro	Phe	Lys	Ala	Lys	Tyr	Cys	Phe	Ala	Thr	Ile	Leu	Leu	His	Tyr	
		100					105				110				
Thr	Glu	Leu	Pro	Ala	Leu	Phe	Ser	Ala	Lys	Trp	Lys	Ala	Tyr	Phe	Ser
	115					120					125				
Lys	Ser	Tyr	Val	His	Leu	Leu	Leu	His	Asp	Ile	Asn	Lys	His	Asn	Thr
	130				135				140						
Ser	Ile	Thr	His	Phe	Thr	Asn	Ala	Arg	Leu	Ala	Lys	Asn	His	Thr	Tyr
	145				150			155				160			
Lys	Trp	Pro	His	Leu	Leu	Tyr	Pro	His	Pro	Gly	His	Val	Leu	Ser	Leu
	165					170			175						
Pro	Trp	Lys	Pro	Met	Glu	Lys	Leu	Arg	Thr	Leu	Glu	Arg	Met	Trp	
		180				185			190						

<210> 88

<211> 194

<212> PRT

<213> Homo sapiens

<400> 88

Lys	Lys	Phe	Leu	Arg	Glu	Gln	Ile	Cys	Asp	Phe	Ile	Met	Ser	Phe	Ile
1				5				10			15				
-															
Met	Phe	Cys	Ser	Phe	Gln	Ile	Gln	Met	Ser	Ile	Ile	Cys	Phe	Tyr	Asp
		20				25					30				
Gln	Ser	Ile	Ile	Pro	Cys	Lys	His	Ile	Ser	Ala	Leu	Ile	Leu	Phe	Leu
	35				40					45					
Asn	Asn	Thr	Gly	Asn	Val	Ile	Cys	Cys	Lys	Leu	Leu	Thr	Phe	Val	Arg
	50					55			60						
Lys	Phe	Cys	Phe	Thr	Glu	Tyr	Val	Arg	Cys	Arg	Gln	Asn	Ile	Asn	His
	65				70			75			80				
Cys	Phe	Ile	Phe	Met	Val	Glu	Glu	Lys	Ser	Ile	Ala	Cys	Ser	Pro	Phe
		85				90					95				

00196US1.ST25

Ala Val Tyr Lys Gly Glu Phe Tyr Cys Leu Asn Ser Phe Ile Phe Trp
100 105 110

Pro Val Gin Glu Thr Phe Ile Ser Lys Ile Trp Met Tyr Val Phe His
115 120 125

Ile Leu Glu Phe Ile Val Trp Lys Asn Thr Ile Lys Val Asp Gln Lys
130 135 140

Ile Leu Lys Ile Leu Thr Ser Cys Leu Ser Tyr Val Lys Val Leu Trp
145 150 155 160

Leu Ile Leu Phe Ile Leu Ser Cys Ser Leu Ala Gly Tyr Trp Gln Thr
165 170 175

Gln Ser Phe Cys Phe His Lys Glu Leu Met Lys Arg Thr Ile Gly Lys
180 185 190

Pro Thr

<210> 89
<211> 218
<212> PRT
<213> Homo sapiens

<400> 89

Gln Ser Gln Pro Ser Leu Pro Gly Ser Met Gly Asp Glu Leu Ala Pro
1 5 10 15

Cys Pro Val Gly Thr Thr Ala Trp Pro Ala Leu Ile Gln Leu Ile Ser
20 25 30

Lys Thr Pro Cys Met Pro Gln Ala Ala Ser Asn Thr Ser Leu Gly Leu
35 40 45

Gly Asp Leu Arg Val Pro Ser Ser Met Leu Tyr Trp Leu Phe Leu Pro
50 55 60

Ser Ser Leu Leu Ala Ala Ala Thr Leu Ala Val Ser Pro Leu Leu Leu
65 70 75 80

Val Thr Ile Leu Arg Asn Gln Arg Leu Arg Gln Glu Pro His Tyr Leu
85 90 95

Leu Pro Ala Asn Ile Leu Leu Ser Asp Leu Ala Tyr Ile Leu Leu His
100 105 110

Met Leu Ile Ser Ser Ser Ser Leu Gly Gly Trp Glu Leu Gly Arg Met
115 120 125

Ala Cys Gly Ile Leu Thr Asp Ala Val Phe Ala Ala Cys Thr Ser Thr
130 135 140

Ile Leu Ser Phe Thr Ala Ile Val Leu His Thr Tyr Leu Ala Val Ile
145 150 155 160

His Pro Leu Arg Tyr Leu Ser Phe Met Ser His Gly Ala Ala Trp Lys
165 170 175

Ala Val Ala Leu Ile Trp Leu Val Ala Cys Cys Phe Pro Thr Phe Leu
180 185 190

Ile Trp Leu Ser Lys Trp Gln Asp Ala Gln Leu Glu Gln Gly Ala

195

200

205

Ser Tyr Ile Leu Pro Pro Ser Met Gly Thr
 210 215

<210> 90
 <211> 223 -
 <212> PRT
 <213> Homo sapiens

<400> 90

His Phe Lys Ile Asn Leu Phe Pro Val Asn Leu Cys Ser Ser Ser His
 1 5 10 15

Pro Leu Phe Asn Glu Leu Pro Pro Phe Pro Thr Leu Phe Leu Ala Phe
 20 25 30

Ile Pro Met Val Pro Leu Lys Val Phe Ser Ser Ser Leu Pro Phe Ser
 35 40 45

Pro Pro Val Phe Ser Gly Val Asn Gly Ala Ala Asn Ser Pro Ser Ser
 50 55 60

Ser Cys Leu Asn Arg Ser Ser Ser Pro Thr Pro Ala Ala Ala Pro Tyr
 65 70 75 80

Ser Gln Ser Gln Ser Pro Val Cys Val Ile Ala Gly Met Ser Leu Glu
 85 90 95

Ser Thr Asn Ile Leu Tyr Ser His Thr Cys Leu Pro Pro Met Ser Ser
 100 105 110

Ala Pro Leu Leu Val Ser Glu Phe Gln Val Gly Pro Val Pro Phe Phe
 115 120 125

Leu Pro Cys Arg Leu Ser Arg Thr Arg Ser Leu Pro Thr Ser Asp Phe
 130 135 140

Leu Ser Asp Asp Phe Trp Gly Phe Ser Ile Cys Leu Leu Glu Gly Pro
 145 150 155 160

Leu Gly Asp Phe Tyr Gly Thr Leu Ile Ala Ser Phe Leu Tyr Leu Arg
 165 170 175

Asn Val Phe Leu Leu Glu Thr Pro Lys Ile His Asp Ile Phe Phe
 180 185 190

Thr Lys Leu Phe Leu Leu Ser Pro Ala Phe Asn Lys Ser Leu Phe Ala
 195 200 205

Lys Lys Trp Cys Arg Phe Phe Thr Thr Ala Ser Glu Lys Ser Val
 210 215 220

<210> 91
 <211> 193
 <212> PRT
 <213> Homo sapiens

<400> 91

Phe Pro Arg Ile Val Cys Thr Val Thr Gly Val Ala Val Tyr His Ser
 1 5 10 15

Ile Tyr Thr Ser Ile Trp His Thr Ala Gly Ala Ser Gly Thr Thr Tyr

20 25 30

Gln Ser Val Ser Leu Pro Asp His Phe His Asp Val Leu Ser Tyr Leu
 35 40 45

Pro Cys Asn Lys Leu Val Asn Val Tyr Asp Cys Phe Val Ile Pro Met
 50 - 55 60

Gln Ser Cys Asn Asn Asn Met Tyr Phe Lys Asn Leu Gly Ile Phe Leu
 65 70 75 80

His Thr Ile Ser Ser Ile His Ile Asn Glu Lys Ser Lys Leu Gly Val
 85 90 95

Ser Val Lys His Trp Ile Phe Thr Met Leu Ile Gly Val Pro Phe Ile
 100 105 110

Ile Ala Ala Tyr Arg His Ile Ala Ile Val Pro Cys Thr Phe Asn His
 115 120 125

Gln Cys Cys Gln Ala Ser Lys Ala Val Asn Val Tyr Leu Gly Leu Ile
 130 135 140

Ile Arg Ile Thr Arg Asn Asn Phe Phe Asn Phe Asn Ile Leu Phe Phe
 145 150 155 160

His Arg Leu Leu Gly Tyr Arg Cys Cys Leu Ile Thr Val Leu Tyr Trp
 165 170 175

Phe Glu Arg Phe Gly Cys Thr Gln His Pro Ser Ser Ile His Tyr Ser
 180 185 190

Leu

<210> 92

<211> 191

<212> PRT

<213> Homo sapiens

<400> 92

Gly Leu Phe Arg Glu Pro Leu Glu Ile Pro Pro Pro Trp His Gln Leu
 1 5 10 15

Pro Pro Pro Pro Glu Leu Thr Val Ser Ser Leu Asp Ala Ala Pro Gly
 20 25 30

Lys Val Ile Asn Asn Gln Val Ser Lys Gln Cys Trp Ala Val Phe Leu
 35 40 45

Ile Leu Pro Phe Pro Asn Trp Val Leu Phe Gly Lys Leu Leu Ser Tyr
 50 55 60

Phe Ile Cys Thr Met Gly Tyr Thr Tyr Ala Phe Tyr Ile Trp Leu Leu
 65 70 75 80

Arg Arg Leu Ser Asp Met His Thr Lys Asn Ala Glu Gln Asn Thr Leu
 85 90 95

Ser Ile Ser Phe Leu Ser Val Ile Lys Trp Arg Pro Leu Arg Leu Ser
 100 105 110

Asn Leu Leu Leu Trp Leu Ile Leu Val Leu Ile Leu Ile Tyr Lys
 115 120 125

Leu Cys Cys Ile Trp His Met Val His Val His Glu Tyr Val Leu Tyr
 130 135 140

Lys Gly Met Lys Asn Gln Leu His Glu Lys Lys Phe Gln Ile Leu His
 145 150 155 160

Phe Thr Asn Thr Asp Thr Lys Asn Thr Lys Ile Leu Arg Gly Lys Ser
 165 170 175

Asp Leu Ala Thr Ser Thr Trp Ala Ser Leu Lys Val Cys Phe Trp
 180 185 190

<210> 93

<211> 133

<212> PRT

<213> Homo sapiens

<400> 93

Leu Asn Leu Lys Ile Asn Arg Ala Ile Leu Asp Arg Gln Asn Phe Gly
 1 5 10 15

Asp Ser Glu Cys Pro Arg Asn Asp Pro Met Met Phe Val Gly Phe Ile
 20 25 30

Ile Cys Ile Arg Cys Val Leu Trp Leu Gly Phe Met Ala Cys Phe Tyr
 35 40 45

Phe Leu Leu His Ser Thr Gly Leu Lys Arg Gln Gln Gly Gln Cys Leu
 50 55 60

Ile Tyr Asn Val Val Leu Cys Phe Leu Asn Lys Val Pro Gln Leu Ser
 65 70 75 80

Glu Ile Phe Met Val Asn Ile Lys Gln Ser Lys Phe Ile Cys Leu Pro
 85 90 95

Glu Ser Leu Val Ile Tyr Leu Asp Ser Phe Arg Ile Pro Leu Asn Ile
 100 105 110

Ile Glu Gly Cys Met Ile Phe Lys Thr Glu Met Glu Ile Met Leu Trp
 115 120 125

Ile Asn Ala Ile Arg
 130

<210> 94

<211> 202

<212> PRT

<213> Homo sapiens

<400> 94

Tyr Ala Lys Glu Leu Thr Val Trp Ala Lys Val Asn Glu Ser Leu Lys
 1 5 10 15

Leu His Ala Lys Leu Cys Val Val Ala Cys Val Cys Val Tyr Ser Tyr
 20 25 30

Val Phe Phe Lys Glu Val Tyr Tyr Leu Leu Asp Ser Gln Ile Val Gln
 35 40 45

Trp Pro Gln Asn Ile Lys Thr His Val Gln Ile Gln Ser Lys Leu Arg
 50 55 60

Ala Val Lys Glu Ile Gln Thr Lys Asn Ser Phe Cys Pro Ser Ser Phe
 65 70 75 80

Asn Cys Leu Arg Gly Ala Trp Asp Trp Ala Thr Tyr Trp Ala Gly His
 85 90 95

Leu Gln Arg Ile Leu Gln Gly Lys Gly Thr Gln Thr Ser Gly Leu Glu
 100 105 110

Ser Lys Phe Lys Ser Cys Gly Val Gly Tyr Met Leu Gln Glu Ile Arg
 115 120 125

Glu Ser Val Asn Pro Glu Ile Gly Glu Ala Asp Ser Pro Arg Lys Asp
 130 135 140

Asn Ser Glu Trp Ser Leu Glu Gly Arg Val Arg Leu Glu Leu Glu Pro
 145 150 155 160

Glu Val His Ala Ser Ala Ser Val Val Ser Arg Asp Met Thr Lys Leu
 165 170 175

Glu Arg Arg Lys Ala Arg Asn Gly Trp Gly Trp Lys Leu Leu Asp
 180 185 190

Ala Ser Gln Thr Lys Gly Ile Leu Asp Pro
 195 200

<210> 95

<211> 178

<212> PRT

<213> Homo sapiens

<400> 95

Lys Leu Ser Val Phe Ile Pro Leu Gln Thr His Thr Pro Asn Ile Gln
 1 5 10 15

Trp Glu Arg Asn Asn Ile Thr Ala Glu Glu Val Ser Glu Arg His Lys
 20 25 30

Ala Val Ile Gly Ser Leu Leu Asn Ser Pro Arg Gln Met Leu Pro Gly
 35 40 45

Ser Leu Pro Trp Gly Gly Leu Val Ile Phe Leu Glu Val Val Ser Ser
 50 55 60

Ser Leu Phe Ser Thr Val Leu Gln Leu Pro His Pro Ser Ser Cys Leu
 65 70 75 80

Leu Arg Ser Leu Tyr Pro Leu Asp Ser Arg Leu Leu Asp Val Leu
 85 90 95

Thr Phe Leu Gln Gln Lys Leu Ser Leu Phe Leu Asn Leu Phe Ala Val
 100 105 110

His Arg Lys Trp Lys Val Gln Arg Leu Leu Phe Asn Phe Leu Ser Leu
 115 120 125

Phe Ile Ala Ser Trp Val Pro Phe Thr Tyr Ile Thr Leu Leu Lys Ser
 130 135 140

Phe Cys Gly Leu Ser Met Tyr Gln Ile Ile Asp His Phe Ile Lys Ala
 145 150 155 160

00196US1.ST25

Thr Phe Phe Val Phe Gln Thr Ser Phe Leu Tyr Phe Gly Gln Val Arg
165 170 175

Pro Leu

<210> 96 -
<211> 191
<212> PRT
<213> Homo sapiens

<400> 96

Met Val Phe Val Arg Ser Tyr Cys Pro Lys Ser Leu Phe Cys Pro Ser
1 5 10 15

Tyr Asp Ile Cys Phe Asn Ile Asn Asp Ala Gln Leu Cys Leu Asp Pro
20 25 30

Lys Arg Arg Ser Leu Tyr Asp Phe Pro Cys Cys Tyr Gly Gln Glu Phe
35 40 45

Ser Phe Lys Leu Phe Trp Gly Leu Ala Thr Arg Gly Ser Val Gln Ser
50 55 60

Val Gln Arg Ala Asp Leu Ser Ser Leu Ile His Ile Pro Pro Phe Trp
65 70 75 80

Ser Lys Tyr Ala Lys Ser Ser Ile Asn Ser Gln Ala Leu Ile Ser Phe
85 90 95

His Ile Ile Thr Arg Trp Cys Gly Tyr Leu Ser Gln Ile Tyr Ser Val
100 105 110

Leu Gln Trp Asp Pro Tyr Ser Gln Gly Thr Tyr Ser Gln Lys Thr Tyr
115 120 125

Ser Gln Leu Asn Ile Leu Gly Gln Lys Gly Met Glu Val Gly Arg His
130 135 140

Ser Leu Phe Leu Lys Asn Leu Leu Ser Asn Ile Arg Ala Thr Asn Gln
145 150 155 160

Lys Pro Lys Ser Lys Leu Thr Lys Pro Ile Tyr Leu Val Leu Cys Val
165 170 175

Gly Pro Ser Ala Leu Arg His Leu Ala His Leu Phe Trp Arg Ile
180 185 190

<210> 97
<211> 91
<212> PRT
<213> Homo sapiens

<400> 97

Gly Arg Gly Gly Gln Gln Gly Gly Leu Gln Asn His Asp Val Phe Leu
1 5 10 15

Thr Gly Leu Thr Ser Ala Ser Ile Cys Leu Thr Leu Gln Pro Met Ser
20 25 30

Leu Phe Leu Val Val Ile Leu Met Gly Ala Leu Arg Ser Gln Arg Arg
35 40 45

00196US1.ST25

Gly Leu Arg Arg His Cys Leu Tyr Leu Trp Ser Tyr Ile Arg His Leu
50 55 60

Tyr Phe Val Met Asn Ser Lys Ser Ser Ser Lys Met Gln Leu Trp Gly
65 70 75 80

Asn Ser His Arg Asn Phe Ser Gln Phe Trp Leu
85 90

<210> 98

<211> 201

<212> PRT

<213> Homo sapiens

<400> 98

Ser Arg Asp Gln Ile Thr Pro Ser Arg Ser Trp Arg Lys Asp Pro Ser
1 5 10 15

Ser Glu Gly Thr Trp Leu Gly Gly Leu Ser Val Ser Gly Ser Cys Val
20 25 30

Gly Ile Ser His Ser Val Gly Ala Ser Val Ile Ala Gly Trp Pro Phe
35 40 45

Asp Asn Ala Thr Cys Lys Met Ser Gly Leu Val Gln Gly Met Ser Val
50 55 60

Ser Ala Ser Val Phe Thr Leu Val Ala Ile Ala Val Glu Arg Glu Val
65 70 75 80

Ser Trp Leu Asp Tyr Ala Ala Asn Gly Leu Ala Leu Arg Gly Ala Thr
85 90 95

Ala Ser Asn Ala Gly Leu Ala Gly Arg Leu Gly Leu His His Gly Lys
100 105 110

Trp Gly Ile Leu Ser His Lys Glu Lys Gly Pro Gly Pro Ser Cys Pro
115 120 125

Leu Pro Lys Leu Gly Glu Pro Asp Glu Asp Thr Thr Thr Pro Phe Trp
130 135 140

Lys Ala Arg Pro Trp Leu Ala Phe Val Gly Ile Pro Gly Ala Cys Glu
145 150 155 160

Glu Leu Lys Ser Ser Pro Tyr Phe Leu Ser Ser Arg Asn Pro Ala Thr
165 170 175

Ser Lys Ser Glu Pro Gly Glu Pro Glu Leu Arg Gly Pro Ala Tyr Gly
180 185 190

Trp Val Thr Val Trp Leu Gly Arg Lys
195 200

<210> 99

<211> 218

<212> PRT

<213> Homo sapiens

<400> 99

Thr Pro Lys Arg Leu Lys Leu Arg Ser Leu Ile Leu Ser Ser Val Lys
1 5 10 15

00196US1.ST25

Glu Phe Leu Glu Ser Pro Pro Ser Leu Gly Met Phe Leu Ser Ser Trp
20 25 30

Phe Asn Ile Ala Ala Asp Ala Pro Ala Ile Thr Ala Thr Phe Gln Thr
35 40 45

Ala Lys Tyr Gly Lys Arg Met Lys Arg Arg Ala Cys Leu Gly Val
50 55 60

Pro Cys Ile Ile Ser Ile Tyr Ile Trp Ala Glu Pro Ser His Arg Ala
65 70 75 80

Thr Pro Tyr Val Ser Val Ser Tyr Cys Tyr Ile Ala Thr Thr Lys Phe
85 90 95

Pro Cys His Thr Thr His Ile Cys Arg Leu Ala Arg Val Gln Phe Leu
100 105 110

His Ala Gly Leu Arg Gln Ala Val Leu Leu Arg Val Thr Val Ala Glu
115 120 125

Leu Ile Pro Phe Leu Thr Ala Gly Leu Cys Phe Ser Val Thr Val Pro
130 135 140

Cys Ala Phe His Leu Pro Trp Val Asp Glu Arg Lys Pro His Leu Ser
145 150 155 160

Thr Gly Leu Ala Thr Ser Val Pro His Gly Pro Lys Arg His Gln Arg
165 170 175

Ala Asp Arg Asn Arg Asp Leu Leu Arg Ser Arg Leu Lys Thr Gly Thr
180 185 190

Leu Pro Arg Leu Phe Thr Ser Tyr Pro Lys His Arg Cys Ile Thr Lys
195 200 205

Pro Gln Val Lys Gly Lys Tyr Asn Pro
210 215

<210> 100

<211> 175

<212> PRT

<213> Homo sapiens

<400> 100

Thr Ile Ile Cys Cys Ile Phe Gln Asn Ser Cys Asn Val Ser Asn Thr
1 5 10 15

Lys Lys Arg Met Phe Val Val Met His Ile Ser Ser Thr Leu Ile Leu
20 25 30

His Ile Val Tyr Ile Tyr Gln Asn Ile Ser Ser Thr Ser Lys Ile Cys
35 40 45

Ser Ile Ile Val Val Gln Lys Asn Leu Asn Asn Tyr Asn Val Leu Phe
50 55 60

Ile Ser Lys Trp Phe Ile Arg Phe Lys Ile Phe Leu Val Phe Asn Phe
65 70 75 80

Phe Ile Tyr Tyr Leu Ile Pro Phe Asn Phe Leu Lys Tyr Ile Arg Ser
85 90 95

Ser Tyr Phe Arg Val Lys Phe Lys Ser Phe Glu Tyr Leu Ile Leu Gln

100

105

110

Ser Phe Leu Pro Leu Ile Phe Pro Gln Trp Pro Val Ser Val Val Met
 115 120 125

Met Leu Leu Arg Asn Gly Leu Ala Thr Cys Thr Lys Pro Ile Leu Trp
 130 - 135 140

Gln Trp Phe Ser Arg Lys Glu Lys Ala Leu Leu Val Tyr Trp Gin Gly
 145 150 155 160

Asp Arg Trp Gln His Ser Asn Leu Ser Pro Thr Glu Asp Gly Gly
 165 170 175

<210> 101

<211> 184

<212> PRT

<213> Homo sapiens

<400> 101

Ser Tyr Leu Gly Pro Val His Ser Phe Ser Gln Thr Ala Ser His Ala
 1 5 10 15

Ile Pro Ser Met Lys Ile Leu Pro Phe Pro Leu Ser Phe Phe Ser Ser
 20 25 30

Leu Ile Tyr Ser Pro Val Leu Val Ser Ser Phe Pro Ser Ser Ser Gly
 35 40 45

Gln Thr Leu Phe Thr Ser Leu Thr Thr Pro Ser Lys Ile Val Leu Ile
 50 55 60

Thr Val Tyr Pro Leu Asn Thr Leu Tyr Arg Ser Trp Pro Ser Pro Asp
 65 70 75 80

Asn Val Leu Cys Ile Phe Trp Phe Thr Cys Cys Val Ser Ser Phe Leu
 85 90 95

His Cys Cys Lys Glu Ile Pro Glu Thr Gly Phe Ile Lys Lys Arg Gly
 100 105 110

Leu Ile Asp Ser Gln Phe Cys Arg Leu Tyr Gly Lys His Val Ala Gly
 115 120 125

Ile Cys Leu Ala Ser Gly Glu Asp Ser Gly Asn Leu Gln Ser Trp Gly
 130 135 140

Arg Arg Gly Ser Arg His Ile His Ser Arg Ser Ser Lys Ala Lys Gly
 145 150 155 160

Asp Val Pro His Thr Ser Lys Pro Asp Leu Met Arg Thr His Tyr His
 165 170 175

Glu Asn Ser Thr Arg Gly Trp Cys
 180

<210> 102

<211> 212

<212> PRT

<213> Homo sapiens

<400> 102

Tyr Asn Asn Ser Leu Leu Tyr Ile Ser Ile Phe Cys Leu Ser Gln Val

00196US1.ST25

1 5 10 15
Ser Thr Leu Ser Gly Ile Val Cys Ser Phe His Ser Phe Trp Leu Ser
20 25 30
Trp Glu Gln Gln Ser Ser Ala Thr Pro Ala Met Val Ile Val Gln Met
35 - 40 45
Ser Asn Gln Ser Ser Ile Thr Ile Arg Ser Lys Leu Gln Thr Phe Ser
50 55 60
Pro Leu Ala Phe Arg Ile Leu Tyr Thr Gln Phe Met Met Tyr Arg Lys
65 70 75 80
Cys Leu Leu Leu Phe Ser Leu Gln Leu Gly Phe Gln Lys Glu Ile Met
85 90 95
Ala Ser Arg Asn His Leu Tyr Leu Gln Met Ala Gly Ser Ile His Arg
100 105 110
Arg Ala Ile Tyr Gln Gln His Tyr Ser Met Phe Gln Pro Lys Met Ser
115 120 125
Leu Pro His Val Arg Gln Thr Thr Tyr Ile Gly Thr Thr Ala Val Thr
130 135 140
Val Phe Phe Ser Thr Phe Leu Ile Met Lys Ser Met Leu Asn Ser Thr
145 150 155 160
Met Ala Phe Pro Phe Ser Trp Gln Ser Thr Ala Tyr Thr Ile Leu His
165 170 175
Leu Thr Val Phe Ile Leu Pro Ser Gly Lys Ala Leu Trp Lys Gln Ser
180 185 190
Arg Gly Tyr Phe Gly Asp Leu Asn Tyr Tyr Asn Leu Ser Leu Leu
195 200 205
Cys Phe Leu Gln
210
<210> 103
<211> 219
<212> PRT
<213> Homo sapiens

<400> 103
Ser Leu Ser Gly Gln Leu Phe Ala Leu Leu His Thr Leu Ser Ile Cys
1 5 10 15
Ile Ser Tyr Asn Val Tyr Arg Leu Tyr Gly Val His Ser Thr Trp Arg
20 25 30
Thr Phe Lys Thr Ile Ile Ala Leu Gly Phe Gly Ser Glu Phe Met Leu
35 40 45
Pro Cys Gln Ser Phe Leu Phe Val Thr Trp Pro Phe Lys Tyr Ala Ala
50 55 60
Thr Cys Asn Thr Gly His Ser Asp Pro Ile Arg Leu Met Ala Ser Cys
65 70 75 80
Ser Ser Arg Ser Leu Ser Val Cys Trp Tyr Ile Met Leu Gly Leu Cys
85 90 95

Ser Arg Arg Arg Glu Ala Ser Gln Leu Ala Thr Gly Tyr Lys Ser Ile
 100 105 110

Ala Glu Asn Asp Lys Arg Gln Gly Pro Ser Leu Gln Arg Ser Ala Lys
 115 120 125

Lys Ile Leu Asn Val Tyr Lys Asp Leu Lys Arg Asn Ser Pro Arg Gin
 130 135 140

His Tyr Ser Val Leu Asp Tyr Gly Tyr Thr Leu Leu Gln Leu Leu
 145 150 155 160

Cys Ser Ser Glu Gln Lys Thr Glu Asp Phe Glu Met Ser Thr Thr Pro
 165 170 175

Ala Pro Glu Tyr Asn Gly Thr Phe His Leu Phe Leu Val Thr Phe Ile
 180 185 190

Phe Phe Cys Cys Trp Ile Pro Tyr Ile Ile Val Ser Ile Ser Gln Ala
 195 200 205

Ser Thr Met Val Asn Ser Gly Trp Thr Leu Pro
 210 215

<210> 104

<211> 208

<212> PRT

<213> Homo sapiens

<400> 104

Arg Thr Leu Tyr Trp Tyr Phe Tyr Phe Lys Phe Ser Ile Phe Gly Met
 1 5 10 15

Ala Glu Cys Cys Tyr Lys Val Ser Arg Ser Pro Leu Pro Leu His Cys
 20 25 30

Ala Asp Leu Leu Ser Ser Ile Gln Gly Thr Asp Leu Arg Asn Leu Gln
 35 40 45

Val Val Thr Ser Cys Leu Val Phe Phe Leu Gly Arg Tyr Pro Ser Leu
 50 55 60

Gln Thr Cys Arg Asn Leu Asn Leu Leu Pro Leu Thr Tyr Leu Val Pro
 65 70 75 80

Cys Gly Leu His Phe Thr Val Cys Ala Asn Ser Leu Phe Ile Thr Ile
 85 90 95

Leu Thr Leu Asp Ser Arg Ala Ser Pro Thr Ser Pro Phe Ser Val Thr
 100 105 110

Leu Thr Phe Leu Leu Ser Val Thr Met Ser Asp Leu Leu Phe Ser Pro
 115 120 125

Ile Phe Cys Pro Leu Gln Ile Leu Lys Pro Ser Phe Trp Phe Arg Pro
 130 135 140

Leu Lys Gly Val Thr Gly Val Cys Tyr Pro Lys Val Val Pro Lys Ile
 145 150 155 160

Ser Lys Leu Glu Lys Lys Thr Lys Asn Lys Lys Ile Pro Tyr Pro Ser
 165 170 175

00196US1.ST25

Trp Met Phe Leu Lys Gly Phe Leu Gly Gln Val His Val Arg Ile Ala
180 185 190

Gly Val Ser Leu Gln Lys Asp Phe Ser Trp Pro Ser Phe Val Thr Val
195 200 205

<210> 105 -
<211> 231
<212> PRT
<213> Homo sapiens

<400> 105

Met Lys Pro Val Leu Pro Pro Ala Lys Arg Thr Glu Ser Leu Asn Gly
1 5 10 15

Met Val Asp Ala Ala Tyr Trp Thr Val Tyr Phe Ile Leu Ala Ala Pro
20 25 30

Gly Ile Cys Val Ile Ser Leu Glu Met Phe Tyr Met Cys Leu Val Glu
35 40 45

Leu Gln Asn Asn Thr Ser Leu Asn Ile Ser Cys Ile Thr Gly Ser Ile
50 55 60

Gln Phe Ile His Asn Lys Val Ser Pro Val Leu Tyr Arg Arg Ile Tyr
65 70 75 80

Lys His Ser Val Lys Ser Ile Asp Arg Ile Gly Asp Arg Gly Leu Lys
85 90 95

Ile Lys Ile Asn Ala Phe Leu Val Leu Phe Gly Val Gly Lys Ser Asn
100 105 110

Leu Phe Phe Met Leu His Arg Ser Gln Phe Phe Val Phe Phe Glu Ser
115 120 125

Arg Pro Val Ile Gly Arg Cys Lys Glu Pro Lys Arg Lys Asn Gln Lys
130 135 140

Pro Thr Ala Ser Phe Gln Asn Arg Ser Gln Lys Arg Lys Glu Tyr Glu
145 150 155 160

Ser Ser Arg Ser Phe Asn Cys Ser Phe Ile Ile Ser Ser Arg Lys Arg
165 170 175

Gly Cys Met Ile Val Ser Lys Thr Lys Glu Glu Thr Ala Lys Glu Arg
180 185 190

Asn Val Gly Asn Leu Leu Val Glu Ala Met Thr Leu Leu Gly Glu Ile
195 200 205

Leu Ser His Phe Leu Ser Ser Cys Phe Ser Ile Met Phe Phe Thr Leu
210 215 220

Ser Ile Gln Tyr Lys Thr Leu
225 230

<210> 106
<211> 188
<212> PRT
<213> Homo sapiens

<400> 106

00196US1.ST25

Ser Glu Asp Leu Gln His Arg Val Lys Tyr Ala Arg Glu Gly His Ile
1 5 10 15

Thr Phe Ile Phe Thr Phe Ile Leu Ile Tyr Phe Leu Ser Ile Asn Leu
20 25 30

Phe Cys Phe Tyr Ile Ser Val Val Ala Gln Asn Ser Asn Cys Ser Lys
35 40 45

Asn His Ser Gly Leu Asn Thr Gly Lys Ile Ser Phe Gly Thr His Asn
50 55 60

Gly Leu Lys Asn Ser Cys Val Pro Phe Thr Gly Glu Ile Arg Lys Gly
65 70 75 80

Ile Glu Lys Phe Pro Ile Pro Pro Asn Pro Ala Ser Pro Ile Pro Ile
85 90 95

Ser Arg Thr Ser Phe His Leu Ile Ser Leu His Leu Gln Met Val Val
100 105 110

Leu Asn Leu Gln Ile Asn Lys Pro Lys Thr Glu Ser Ile Ile Phe Ser
115 120 125

His Leu Val Phe Pro Ser Asn Ser Leu Ile Ser Val Thr Cys Pro Ile
130 135 140

Thr Leu Pro Gly Ile Gln Pro Pro Lys Gln Gly Leu Leu Pro Leu
145 150 155 160

Gln Trp Thr Pro Gly Ile Gln Val Leu Leu Leu Ala Pro Lys Cys Pro
165 170 175

Gln Cys Pro Val Leu Pro Asn Gln His Ile Gln Gln
180 185

<210> 107

<211> 230

<212> PRT

<213> Homo sapiens

<400> 107

His Cys Asn Gly His Cys Arg Phe Ser Arg Leu Ser Pro Glu Gly Glu
1 5 10 15

Trp Pro Pro Phe Lys Val Cys Ser Glu Glu Asn Thr Pro Gly Ser Arg
20 25 30

Ala Ile Val His Lys Asp Ala Leu Gly Ser Val Val Leu Thr Asn Val
35 40 45

Glu Thr Tyr Arg Ala Leu Val Ala Glu Ala His Ser Asn Gln Pro Lys
50 55 60

Leu Gly Arg Arg Ala Gly Ala Gln Cys Ile Trp Glu Gly His Arg Leu
65 70 75 80

Gly Ser Pro Ser Ser Ser Gly Pro Pro Ser Arg Met Ile Gly Leu Arg
85 90 95

Pro Pro Ser Gly Ser Pro Arg Arg Gln Pro Ser Ser Glu Glu Ser Gly
100 105 110

Asp Lys Arg Ser Ala His Leu His His Ser Leu Pro Glu Thr Arg Leu

115	120	125
Asn Cys Ile Ile Cys Phe Cys Pro Thr Cys His Lys Pro Thr Ile Trp		
130	135	140
Ser Asn Ala Arg Pro His Pro Arg Lys Thr Arg Pro Gln Pro Trp Ala		
145	- 150	155 160
Leu Glu Gly Leu Cys Tyr His Leu Pro His Ala Leu Gln Lys Ser Asp		
165	170	175
Glu Ser Ser Pro Ile Ile Pro Thr Leu Ser Leu Arg Ser Pro Trp Met		
180	185	190
Pro Arg Gly Arg Arg Phe Asn Met Gly Gln Lys Val Ala Thr Thr Glu		
195	200	205
Leu Leu Gly Ser Ser Pro Tyr Leu Leu Ser Leu Asp Leu Leu Pro Gly		
210	215	220
Leu Gln Arg Val Lys Ser		
225	230	
<210> 108		
<211> 178		
<212> PRT		
<213> Homo sapiens		
<400> 108		
Phe Arg Ser Lys Phe Ile Pro Val Gly Glu Leu Val Glu Val Glu		
1	5	10 15
Gln Gly Gln Arg Val Gln Val Glu Tyr Ser Asn Phe Lys Asn Leu Lys		
20	25	30
Ser Glu Thr Leu Gln Asn Leu Lys Leu Phe Glu His His Asp Thr Gln		
35	40	45
Arg Lys Tyr Ser Leu Asp Ser Arg Phe Leu Tyr Leu Glu Gly Ser Thr		
50	55	60
Lys Arg Tyr Asp Ile Asn Ile Pro Lys Phe Lys Asn Ile Asn Ser Lys		
65	70	75 80
His Phe Pro Gln Ala Phe Trp Ile Lys Asp Thr Gln Thr Gly Ile Arg		
85	90	95
Ser Trp Leu Pro Glu Glu Glu Thr Gly Glu Asp Ile Pro Val Val Ala		
100	105	110
Leu Met Lys Gly Trp Gly Pro Glu Asn Gln His Pro Leu Phe Gly Cys		
115	120	125
Phe Leu Leu Trp Arg Val Ala Leu Glu Gly Gly Pro Pro Phe Ile His		
130	135	140
Val Leu Ser Gly Arg Pro Phe Thr Leu Arg Gly Ala Ser Leu Pro Cys		
145	150	155 160
Leu Asp Phe Pro Gly Leu Cys Pro Leu Ser Ala Glu Val Lys Val Ser		
165	170	175
Gly His		

<210> 109
<211> 237
<212> PRT
<213> Homo sapiens

<400> 109 -

Ser Ala Ser Gln Ser Ala Gly Ile Thr Gly Met Ser His Cys Ala Gly
1 5 10 15

Arg Ser Leu Val Ser Phe Tyr Ser Ala Val Met Cys His Ile Thr Met
20 25 30

Leu Pro Ser Met Ile Asp Cys Val Tyr Asn Thr Arg Pro Val Arg Ser
35 40 45

Tyr Cys Thr Leu Leu Tyr Leu Phe Cys Val Glu Ile His Arg Tyr Leu
50 55 60

Ala Leu Cys Tyr Ser Arg Arg Gln Arg Pro Ala Gln Gln His Gly Met
65 70 75 80

Gln Ala Trp Gly Leu Glu Leu Thr Gly Cys Thr Thr Gly Pro Gly Val
85 90 95

Arg Gln Pro His Arg Leu Gly Leu Arg Glu Cys Ile His Ala Val Cys
100 105 110

Ala Arg Thr Arg Phe Ser Asp Arg Val Leu Ala Val Ser Leu His Met
115 120 125

Thr Val Leu Ile Phe Glu Trp Ser His Val Phe Gly Leu Leu Asn Arg
130 135 140

Met Phe Val Phe Ser Glu Lys Met Pro Ile Ala Ser His Leu Gln Leu
145 150 155 160

His Gln Phe Arg Phe Arg Phe Glu Leu Lys Cys Asp Leu Ser Ile Gln
165 170 175

Lys Lys Ser Ile Ser Thr Phe Gly Lys Ile Ser Arg Leu Lys Lys Thr
180 185 190

Phe Arg Val Phe Lys Arg Thr Ser Ser Val Lys Ser Ser Ile Leu Lys
195 200 205

Gly Cys Pro Ile Asn Lys Leu Leu Trp Asn Cys Phe Ile Ser Ala Leu
210 215 220

Phe Leu Cys Gly Thr His Ser Ser Lys Thr Ala Glu Asp
225 230 235

<210> 110
<211> 221
<212> PRT
<213> Homo sapiens

<400> 110

Phe Phe Leu Phe Leu Ser Leu Ser Phe Ser Phe Cys Leu Lys Ile Met
1 5 10 15

Lys Asn Ala Gly Ser Val Glu Arg Arg Lys Cys Pro Cys Pro Thr Ser
20 25 30

Cys Arg Tyr Leu Ser Cys Phe Phe Ile Leu Leu Lys Ile Glu Leu Lys
 35 40 45
 Val Phe His Phe Leu Phe Phe Asn Phe Arg Gly Tyr Asn Gly Asp Ser
 50 55 60
 Gly Thr Asn Arg Lys Phe Val Phe Thr Arg Pro Val Lys Arg Val Phe
 65 70 75 80
 Leu Leu Ile Pro Val Phe Val Ser Gly Cys Met Ala Ile Ala Ser Lys
 85 90 95
 Phe Phe Pro Leu Phe Pro Ser Pro Ile Thr Gln Arg Val Ser Ser Phe
 100 105 110
 Asn Thr Leu Glu Ser Ile Leu Leu Asp Ala Thr Thr His Met Cys Val
 115 120 125
 Asn Glu Asn Thr Asp Lys Lys Ser Leu Asn Ile Gly Asn Gly Val Ile
 130 135 140
 His Ala Phe Leu Thr Leu Ile Phe Leu Leu Phe Trp Ile Pro Phe His
 145 150 155 160
 Val Ser Tyr Ile Tyr Pro Ile Tyr Phe Gln Asp Cys Val Ile Phe Tyr
 165 170 175
 Ser Ile Val Leu Thr Phe Phe Met Leu Ser Gln Leu Val Thr Tyr Tyr
 180 185 190
 Val Tyr Glu Leu Phe Leu Leu Leu Met Leu Lys Ile Ser Trp Asp Lys
 195 200 205
 Leu Leu Gly Val Leu Phe Glu Ser Phe Leu Gly Ile Lys
 210 215 220
 <210> 111
 <211> 235
 <212> PRT
 <213> Homo sapiens
 <400> 111
 Phe Glu Asp Lys Phe Leu Leu Thr Val Val Ile Thr Arg Gly Leu Ile
 1 5 10 15
 Ser Thr Leu Leu Glu Ser Leu Thr Tyr His Asn Phe Ser Met Leu Cys
 20 25 30
 Glu Gly Met Asn Ser Leu Thr His Leu Ile Met Thr Thr His Ile Met
 35 40 45
 Leu Leu Ile Gly Asn Asp Leu Tyr Glu Thr Tyr Arg Lys His Ile Thr
 50 55 60
 Ala Ser Gln Met Thr Pro Ile Ser Pro Ile Ala Val Ser Asp Lys Phe
 65 70 75 80
 Glu Ser Gly Pro Met His Leu Cys Trp Ala Pro Gln Asn Lys Glu Val
 85 90 95
 Asp Tyr Leu Arg Ser Thr Thr Leu Ala Ile Ser Pro Leu Asn Ile Lys
 100 105 110

00196US1.ST25

Leu Ile Cys Pro Ile Ala Pro Pro Ser Ser Gly Pro Gly Leu Trp Ile
115 120 125

Gly Met Thr Tyr Leu His Ile Gln Phe Cys Lys Ser Leu Gly Ile Ile
130 135 140

Gln Asp Gly Arg Ile Asn Gly Gln Leu Lys Leu Phe Leu Leu Ser His
145 150 155 160

Pro Phe Gln Cys Phe Leu Pro Trp Ser Leu Leu Ile Ile Ser Met Leu
165 170 175

Phe Asn Ile Tyr Leu Glu Glu Phe Met Ala Val Ile Thr Ile Met Ala
180 185 190

Thr Ile Phe Tyr Tyr Leu Cys Met Pro Gly Ile Val Leu Ser Ala Ser
195 200 205

Gly Ile Arg Ser Cys Lys Gly Leu Val Thr Phe Tyr Arg Trp Asp Trp
210 215 220

Asp Ser Asp Val Ser Cys Leu Phe Lys Ser Ile
225 230 235

<210> 112

<211> 134

<212> PRT

<213> Homo sapiens

<400> 112

Ser Ser Pro Val Val Cys Trp Gln Ser Leu Ala Phe Leu Ser Leu Trp
1 5 10 15

Lys Tyr His Ser Ile Ser Val Leu Ile Ser Thr Trp Cys Ser Ser Cys
20 25 30

Val His Val Cys Leu Gln Ile Ser Pro Phe Tyr Lys Asp Thr Val Ile
35 40 45

Leu Asp Ser Gly Ser Phe Arg Pro His Leu Ile Phe His Lys Asp Pro
50 55 60

Ile Ser Lys Cys His Ile Leu Trp Tyr Trp Gly Leu Leu Lys His Ile
65 70 75 80

Asn Phe Arg Glu Thr Asn Leu Asn Leu Gln Tyr Thr Ser Arg Met Glu
85 90 95

Glu His Gly Ile Arg Leu Ser Gln Thr Gln Leu Leu Thr Phe Trp Phe
100 105 110

Ser Ser Pro Gly Gln Glu Thr Pro Ser Ala Gly Lys Leu Glu Thr Trp
115 120 125

Lys Thr Gly Leu Lys Thr
130

<210> 113

<211> 229

<212> PRT

<213> Homo sapiens

<400> 113

00196US1.ST25

His Thr Asp Thr His Ser His Ile His Thr Gln Ser Leu Ile Lys Tyr
1 5 10 15

Met Ile Ile Phe Met Cys Lys Ser Phe Gln Gln Ile Ile Ile Phe Tyr
20 25 30

Ile Arg Ala Cys Tyr Lys Glu Lys Ile Tyr Gln Phe Glu Lys Gly Lys
35 40 45

Pro Leu Ser Arg Tyr Cys Phe Ile Arg Thr Val Val Ser His Ile Ile
50 55 60

Ser Lys Leu Leu Met Lys Tyr Lys Thr Phe Thr Ile Ile Lys Ser Leu
65 70 75 80

Lys Arg Thr Lys Asn Lys Leu His Lys Leu Lys Ser Ser Val Ala Asn
85 90 95

Met Met Phe Cys Glu Leu Leu Ile Val Tyr Val Cys Ile Tyr Ala Trp
100 105 110

Tyr Leu Pro Gly Ile Cys Phe Met Phe Leu Arg Pro Gln His Cys Cys
115 120 125

Lys Arg Ile Val Phe Pro Leu Leu Tyr Asn Tyr Phe Asp Ile Ser Tyr
130 135 140

Asn Leu Pro His Glu Tyr Gln Thr Phe Tyr Arg Lys Tyr Leu Ile Pro
145 150 155 160

His Ser Leu Ser Pro Ala Ala Phe His Val Cys Leu Val Lys Ala Ile
165 170 175

Val Thr Lys Leu Pro Phe Phe Lys Glu Ala Ser Val Asn Gln Tyr Ile
180 185 190

Ser Leu Ser Leu Phe Phe Tyr Val Cys Leu Ser His Thr Asn Thr Gln
195 200 205

Ala Asn Ile Tyr Ile Tyr Ile Phe Asn Ile Thr Asp Ser Phe Leu Ala
210 215 220

Val Leu Ser Ile Ile
225

<210> 114

<211> 189

<212> PRT

<213> Homo sapiens

<400> 114

Ser Leu Leu Asn Leu Leu Phe Asn Met Asn Ile Ala Ser Leu Ala Leu
1 5 10 15

Phe Val Leu Thr Leu Tyr Ile Thr Phe His Leu Phe Ile Leu Ile Cys
20 25 30

Leu Tyr Ile Ser Ala Phe Leu Ile Gly Asn Ile Leu Ser Leu Ser Phe
35 40 45

Tyr Pro Ile His Leu Leu Asp Phe Glu Val Phe Lys Leu Phe Val Phe
50 55 60

Asn Val Asn Met Tyr Met Ile Gly Phe Lys Phe Thr Ser Trp Leu Val

65 70 75 00196US1.ST25
 Phe Ser Val Tyr Ser Ile Tyr Tyr Ser Leu Phe Pro Phe Ser Ser Met
 85 90 95
 Leu Ser Phe Gly Leu Ile Ile Leu Leu Lys Ile Phe Arg Ile Ser Phe
 100 - 105 110
 Val Val Leu Phe Trp Leu Ile Cys His Leu Arg Leu Leu Ile Thr Val
 115 120 125
 Ile Phe Gln Val Thr Leu Tyr His Phe Val His Val Tyr Lys Thr Leu
 130 135 140
 Gln Gln Cys Thr Ser Ile Leu Cys Leu Leu Asn Phe Arg Leu Leu Leu
 145 150 155 160
 Ser Ser Tyr Ile Leu Phe Leu Phe Pro Thr Tyr Val Ile Arg Pro Ile
 165 170 175
 Leu His Cys Phe Cys Val Cys Phe Lys Lys Pro Ser Phe
 180 185
 <210> 115
 <211> 242
 <212> PRT
 <213> Homo sapiens
 <400> 115
 Glu Glu Asn Ser Met Lys Ala Asp Lys Gly Arg Thr Glu Val Asn Gln
 1 5 10 15
 Cys Ser Ile Asp Leu Gly Glu Asp Asp Met Glu Phe Gly Glu Asp Asp
 20 25 30
 Ile Asn Phe Ser Glu Asp Asp Val Glu Ala Val Asn Ile Pro Glu Ser
 35 40 45
 Leu Pro Pro Ser Arg Arg Asn Ser Asn Ser Asn Pro Pro Leu Pro Arg
 50 55 60
 Cys Tyr Gln Cys Lys Ala Ala Lys Val Ile Phe Ile Ile Ile Phe Ser
 65 70 75 80
 Tyr Val Leu Ser Leu Gly Pro Tyr Cys Phe Leu Ala Val Leu Ala Val
 85 90 95
 Trp Val Asp Val Glu Thr Gln Val Pro Gln Trp Val Ile Thr Ile Ile
 100 105 110
 Ile Trp Leu Phe Phe Leu Gln Cys Cys Ile His Pro Tyr Val Tyr Gly
 115 120 125
 Tyr Met His Lys Thr Ile Lys Lys Glu Ile Gln Asp Met Leu Lys Lys
 130 135 140
 he Phe Cys Lys Glu Lys Pro Pro Lys Glu Asp Ser His Pro Asp Leu
 45 150 155 160
 ro Gly Thr Glu Gly Gly Thr Glu Gly Lys Ile Val Pro Ser Tyr Asp
 165 170 175
 er Ala Thr Phe Pro Ser Phe Gly Lys Pro Thr Val His Asn Thr Arg
 180 185 190

Asn Lys Arg Arg Phe Leu Phe Asn Gly Pro Thr Ile His Cys Gln Thr
 195 200 205

Ile Pro Phe Gln Ala Lys Val Leu His Thr His Ala Leu His His Lys
 210 215 220

Val Asp Lys Tyr Ile Glu Glu Ala Gly Thr Gly Val Phe Pro Lys His
 225 230 235 240

Gly Leu

<210> 116

<211> 206

<212> PRT

<213> Homo sapiens

<400> 116

Ser Gly Lys Thr Thr Pro Arg Asn Arg Leu Leu Leu Pro Pro Cys Lys
 1 5 10 15

Pro Glu Ala Gln Leu Leu Ser Leu Glu Asn Arg Lys His Asn His Gly
 20 25 30

Tyr Ser Glu Gly Gln Gln Val Leu Cys Lys Trp Asp Cys Gly Gly
 35 40 45

Gln Trp Glu Gly Phe Trp Gly Ser Leu Ser Cys Leu Cys Asn Trp Ala
 50 55 60

Met Gln Pro Cys Lys Cys Gln Glu Thr Leu Asn Lys Thr Glu Pro Glu
 65 70 75 80

Ala Asn Lys Lys Pro Ala Phe Thr Cys Ser Phe Pro Phe Cys Asn Glu
 85 90 95

Ile Ser Ile Cys Thr Leu Ile Trp Pro Thr Ile Pro Gly Glu Ile Ser
 100 105 110

Trp Asp Val Ser Phe Val Thr Leu Asn Phe Leu Val Pro Gly Leu Val
 115 120 125

Ile Val Ile Ser Tyr Ser Lys Ile Leu Gln Val Cys Phe Leu Gln Val
 130 135 140

Leu Pro Leu Asn Phe Thr Gln Ala Trp Gly Tyr Phe Cys Asn Leu Arg
 145 150 155 160

Ile Trp Gly Arg Arg Thr Pro Lys Ser Ser Arg Gln Leu Asn Leu Asp
 165 170 175

Ser Leu Pro Arg Ser Thr Thr Leu Arg Lys Glu Arg Ile Phe Leu Glu
 180 185 190

Val Ile Ser Leu Leu Cys Phe Leu Leu Ile Thr Lys Val Ile
 195 200 205

<210> 117

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

00196US1.ST25

<221> misc_feature
<223> Peptide substrate

<400> 117

Ala Pro Arg Thr Pro Gly Gly Arg Arg
1 5

2025 RELEASE UNDER E.O. 14176