Методы понижения размерности

Когда появляется много признаков?

- Иногда сразу в исходных данных (ДНК)
- При обработке категориальных признаков
- При выделении признаков (например, при анализе текстов)

Зачем понижать размерность?

- Чтобы уменьшить вычислительную сложность обучения и предсказания
- Чтобы избавиться от проклятия размерности (например, в kNN)
- Сделать модель интерпретируемой
- Улучшить качество модели

Плохие признаки

Информативный признак

Плохие признаки

Коррелирующие признаки

f2 — избыточный признак

Плохие признаки

f3 — шумовой признак

Шумовые признаки

- Признаки, которые никак не связаны с целевой переменной
- Но по обучающей выборке это не всегда можно понять

Шумовые признаки

Шумовые признаки

- Генерируем случайные признаки
- Если их много, то некоторые будут хорошо коррелировать с ответами

У	x_1	x_2	x_3	x_4
-1	1.11	-0.5	0.42	0.33
-1	1.22	-0.46	-1.98	-0.55
1	-1.56	0.04	0.39	-1.67
1	-0.48	1.32	0.88	-0.27

Методы понижения размерности

- Отбор признаков (feature selection)
 - ullet Выбрать d самых важных признаков
- Извлечение признаков (feature extraction)
 - Найти d новых признаков, выражающихся через исходные

Методы понижения размерности

- Фильтрация (filter methods)
 - Понижение размерности без учёта модели
- Методы-обёртки (wrapper methods)
 - Выбор признаков, дающих лучшее качество для модели
- Понижение с помощью моделей (embedded methods)
 - Использование свойств моделей для оценивания важности признаков

Одномерные методы

Одномерные методы

- Оценивают важность каждого признака по отдельности
- Относятся к методам фильтрации
- Относятся к методам отбора признаков

Дисперсия признаков

$$R_j = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_{ij} - \overline{x_j})^2$$

- Чем больше R_j , тем информативнее признак
- Никак не учитываются ответы
- Подходит для фильтрации константных и близких к ним признаков

Корреляция

$$R_{j} = \frac{\sum_{i=1}^{\ell} (x_{ij} - \overline{x_{j}})(y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{\ell} (x_{ij} - \overline{x_{j}})^{2} \sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}}$$

- Чем больше $|R_j|$, тем информативнее признак
- Учитывает только линейную связь

Корреляция для регрессии

Корреляция для классификации

T-score

$$R_{j} = \frac{|\mu_{1} - \mu_{2}|}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

- Для задач бинарной классификации
- Чем больше R_i , тем информативнее признак
- μ_1 , μ_2 средние значения признаков в первом и втором классах
- σ_1^2 , σ_2^2 дисперсии
- n_1 , n_2 число объектов в первом и втором классах

T-score

F-score

$$R_{j} = \frac{\sum_{k=1}^{K} \frac{n_{j}}{K-1} (\mu_{j} - \mu)^{2}}{\frac{1}{\ell - K} \sum_{k=1}^{K} (n_{j} - 1) \sigma_{j}^{2}}$$

- Для задач многоклассовой классификации
- Чем больше R_i , тем информативнее признак
- μ_1 , ..., μ_K средние значения признаков в классах
- μ среднее значение признака по всей выборке
- σ_1^2 , ..., σ_K^2 дисперсии
- n_1 , ..., n_K число объектов в первом и втором классах

Пример: Titanic

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.0500	NaN	S

Пример: Titanic

- Вычислим T-score для всех признаков
- Действительно, пол сильнее всего коррелирует с выживаемостью пассажиров

Проблемы

Проблемы

Проблемы

• Одномерные критерии не работают, если целевая переменная зависит от совокупностей признаков

Отбор с помощью моделей

Отбор с помощью моделей

- Оценивают важность признаков, используя модели машинного обучения
- Относятся к методам отбора признаков

Линейные модели

$$a(x) = \sum_{j=1}^{d} w_j x^j$$

- Если признаки масштабированы, то веса можно использовать как показатели информативности
- Для повышения числа нулевых весов L_1 -регуляризация

$L_{\mathbf{1}}$ -регуляризация

$$Q(a,X) + \lambda \sum_{j=1}^{d} |w_j| \to \min_{w}$$

- Чем выше λ , тем больше весов зануляется
- Позволяет построить модель, использующую только самые важные признаки

Решающие деревья

• Поиск лучшего разбиения:

$$Q(X_m, j, t) = H(X_m) - \frac{|X_l|}{|X_m|} H(X_l) - \frac{|X_r|}{|X_m|} H(X_r) \to \max_{j, t}$$

• H(X) — критерий информативности (MSE, энтропийный)

Решающие деревья

- Чем сильнее уменьшили H(X), тем лучше признак
- Уменьшение критерия:

$$H(X_m) - \frac{|X_l|}{|X_m|} H(X_l) - \frac{|X_r|}{|X_m|} H(X_r)$$

• Важность признака R_j : просуммируем уменьшения по всем вершинам, где разбиение делалось по признаку j

Случайный лес

- Сумма важностей R_{i} по всем деревьям
- Чем больше, тем важнее признак
- Учитывается важность признаков в совокупности

Случайные леса и отбор признаков

• Классификация вин на белые и красные

Пример: Titanic

Пример: Titanic

- Модели выделяют признак Age как важный
- Ответы зависят от возраста только в совокупности с полом

Метод главных компонент

- Principal component analysis (PCA)
- Проецирует данные в пространство меньшей размерности
- Относится к методам фильтрации
- Относится к методам извлечения признаков

- Порождение новых признаков
- Их должно быть меньше
- Они должны содержать как можно больше информации из исходных признаков

- Линейные методы
- Каждый новый признак линейная комбинация исходных

- Исходные признаки: x_{ik} , D штук
- Новые признаки: z_{ij} , d штук
- Линейный подход:

$$z_{ij} = \sum_{k=1}^{D} w_{jk} x_{ik}$$

Новые признаки

Вклад исходного k-го признака в новый j-й

Исходные признаки

• Матричная запись:

$$Z = XW^T$$

• j-й столбец W — коэффициенты при исходных признаках для вычисления нового j-го признака

- Геометрический смысл поиск гиперплоскости для проецирования выборки
- Как выбирать гиперплоскость?

- Чем выше дисперсия выборки после проецирования, тем лучше
- Дисперсия мера количества информации

Максимизация дисперсии

$$\begin{cases} \sum_{j=1}^{d} w_j^T X^T X w_j \to \max_{W} \\ W^T W = I \end{cases}$$

Максимизация дисперсии

Собственные векторы

- A матрица размера $n \times n$
- Пусть $Ax = \lambda x$
- Тогда x собственный вектор, λ собственное значение
- x вектор, который не меняет направление под воздействием матрицы

Собственные векторы

Решение

- Столбцы W собственные векторы матрицы X^TX , соответствующие наибольшим собственным значениям $\lambda_1, \lambda_2, \dots, \lambda_d$
- $\frac{\sum_{i=1}^d \lambda_i}{\sum_{i=1}^D \lambda_i}$ доля дисперсии, сохранённой при понижении размерности

original data space

- Данные среднее потребление продуктов в неделю в каждой провинции
- Не очень удобно смотреть на них

	England	N Ireland	Scotland	Wales
Alcoholic drinks	375	135	458	475
Beverages	57	47	53	/3
Carcase meat	245	267	242	227
Cereals	1472	1404	11/2	1502
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
1 1511	147	70	122	100
Fresh fruit	<mark>1</mark> 102	674	957	<mark>1</mark> 137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	1374	1506	1572	<mark>12</mark> 56
Sugars	156	139	147	175

Ограничения

- Иногда выборка может лучше проецироваться не на прямую, а на некоторую кривую
- Существуют и другие методы уменьшения размерности

Подробнее об РСА

- https://habr.com/ru/post/304214/
- http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D0%BE%D0%B4 %D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D1%88B%D1%85 %D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82