

インタラクション

Interaction Design

第8回 デザインの評価

立命館大学 情報理工学部 松村耕平

今回の講義内容

- ユーザビリティ テスト
 - ユーザビリティ テスト の目的
 - ユーザビリティ テスト の手法
 - ユーザビリティ テスト の流れ
 - テスト環境の整備

事例

• 事例1:掃除機

• 事例2:ATM

HCIの基本的な進め方

HCIの研究においてはこの3つを繰り返す

Prototyping の段階

Need finding 要求の探索 **Prototyping Evaluation** 試作 評価 後期

初期

低忠実度(Low fidelity)

高忠実度(High fidelity)

Verbal Prototype

Wizard-of-Oz

Physical Prototype

Paper Prototype

Card Prototype

ユーザビリティテスト

• プロトタイピングにおいてモデルを作成

ユーザに使用させ ユーザビリティを確認

ユーザビリティテスト

ユーザが実際に行なった行動や感想から、 ユーザビリティの改善を行う

ユーザビリティテストの目的

1. 問題発見

製品やシステムを利用した際に、 ユーザビリティ上の問題がないか確認

2. 案の選択、競合比較

- 複数のUIデザイン案があった際に最も優れたものを判断
- 競合他社の製品と比較し、長所・短所を具体化

3. 原因究明

販売後の問い合わせ・クレームに対して、 効果的な改良をするために問題の原因を究明

4. 水準測定

製品のユーザビリティ水準の測定

ユーザビリティテストの手法

- •パフォーマンス (効果と効率) 評価
 - 「使いやすさ」(エラー率、作業速度)を評価
- 主観評価
 - •「印象」(安心して、気分良く、好感を持ってたか)を評価
- インタラクション評価
 - 「分かりやすさ」を評価
 - ⇒ つまずきが少なく、円滑に作業できるかなど

パフォーマンス評価

- 作業時間計測、エラー数などの事象を計測
- 複数の評価対象において順位データを取得可能
- 利点
 - 実施が容易
 - 定量的な分析が可能
- 欠点
 - 結果の適応範囲が小さい
 - 問題点の指摘が困難
 - 比較対象が必要

主観評価

- 利点
 - 幅広い評価が可能
 - 多数のユーザの傾向を 把握するのに適切
- 欠点
 - ユーザの記憶に依存
 - 問題点の指摘が困難

インタラクション評価

- タスクを実行している被験者の行動を観測
- 被験者は4~6人以上用意
- 利点
 - ・幅広い評価が可能
 - 問題点の指摘が容易
 - 結果が記憶に依存しない
- 欠点
 - ユーザ解析の技術が必要⇒ 評価者のスキルに依存

ユーザビリティテストの流れ

テストに関わる人

- 評価者
 - テストの内容を具体的に考える
- 進行者
 - テスト中に、被験者に指示を行うなどテストを進行させる
- 観察者
 - テスト中に、第3者としてテスト外から観察を行う
- 被験者
 - テスト中に、プロトタイプの操作を行う

1. 要求の発生

- 問題発見の要求
 - 開発段階で最大限に商品をよくしたい
- ユーザインタフェース案選択の要求
 - どの案が一番良いか、部分的に他の案のどこを取り入れるべきか検証 したい
- 問題の原因究明の要求
 - 何故問い合わせが生まれるのかなど、問題の原因を 正しくつかみ、的確な改良に結びつけたい

ユーザビリティテストの要求が生まれる

2. テスト企画

• テスト要求に基づき、基本的なユーザビリティ評価の枠組みを 決め、企画書に

- · 目的(要求)
- 評価対象
- ・ 目標(テストで知りたいこと)
- ・ テスト環境
- 評価方法
- ・タスク
- 被験者
- スケジュール(被験者1人分)
- ・ スケジュール(全体)

4. テスト方法の検討(1)

- 1. タスクの詳細決定
 - テスト目標を達成するタスクの詳細を決定
 - タスクの開始状態とゴールを具体的に設定
- 2. タスク順序の決定
- 3. タスク指示書の作成
 - 被験者によらない、公平なテスト結果を得るために タスクの指示内容を文書化

4. テスト方法の検討(2)

- 4. タスク時間配分の確認
 - タスクが一定の時間内に収まるよう時間を配分
- 5. 教示内容の決定
 - タスク実施前に最小限の必要な知識を被験者に教示
 - タスク関連情報:製品の機能、製品を使うことになった経緯、環境条件
 - テストの前提条件:協力してもらうための目的
- 6. 助言計画
 - つまずきそうな箇所でどのように助言するか

5. 被験者選定条件の決定

評価者

• テスト目的に合わせて被験者の選定条件を決める 対象製品類の仕様経験 コンピュータのスキル 年齡 性別 被験者 MUST条件とWANT条件を決める

6. 被験者確保

「何日のどの時間帯に協力できるか」

7. テスト環境の準備

・被験者が実際に使用する評価対象物の諸条件を決めて 調達、準備

・使用するコンピュータ

- ・CPUの性能
- · OS
- ・メモリ容量
- ・ノート型/卓上型
- ・モニタの表示能力
- ・ 使用キーボード

・通信の条件

- 通信回線の種類
- ・スタンドアローン/LAN接続

・テスト室の条件

- 照明
- BGM
- ・使用するテーブル、椅子

8. 観察記録シートの準備

- 実験中の被験者の観察記録
 - 基本はビデオ撮影

ビデオだけではテスト後 の分析作業が大変

ビデオとは別に被験者の行動を記録

リアルタイムで記録しやすいように 観察記録シートを用意する

9. セッティング・リハーサル

テスト室と観察室の条件をテスト当日とできる限り 同条件にし、リハーサルを行う

> 必要があれば テストの実施方法の一部を修正

10. テスト実施 - テストの準備 -

- 実験設備の最終確認
 - 撮影機材、マイク音声、ビデオテープなど確認
- 被験者への事前説明
 - テストの趣旨
 - 何のためのテストか
 - どのくらい時間がかかるか
 - おおよそどのようなことをしてもらうのか
 - 個人データ保護
 - 実名、ビデオなど、無断で外部に出さないことを確認
 - 開発中の製品を評価する場合
 - テスト終了後、製品について口外しないよう伝える

10. テスト実施 - テスト-

- タスクを与え、テストを実施
 - タスクは、予め用意した指示シートを提示
 - 説明のばらつき、誤解、評価への影響を防ぐ
 - タスク終了の判断は被験者に
 - 操作の途中である可能性もある
 - 進行中は必要に応じて助言、質問

- テスト- 観察メモへの記入

- タスクの開始時間、終了時間、各手順で起きたこと、 被験者の発言など
 - 観察メモだけから分析できるように

10. テスト実施 - テスト後 -

- 事後インタビュー
 - 全体の感想などを尋ねる

この商品は使ってみて どうでしたか?

進行者

被験者

11. 問題抽出

- •記録から問題と思われる点を抽出
 - どのタスクで発生したか
 - どの工程で発生したか
 - どの被験者で発生したか
 - 問題の重要度

抽出後:

・問題の整理統合、重要度の決定

もう一つの主観評価:思考発話法

プロトタイプでの実験中に、被験者自身が見ているもの、気付いたこと、考えていることを、常に発話させ、これを観察者が記録する

もう一つの主観評価:思考発話法

- •メリット
 - ユーザ自身の理解や誤解が直接に分かる
 - 記録ビデオを全部見直す必要は無い
 - 視線計測装置との組み合わせで効果が大きい
- デメリット
 - 常に発話することが極めて不自然
 - 操作が遅くなる
 - ・操作のミスに気付きやすくなる⇒ テスト結果に影響する可能性がある
 - 進行者に高い実験能力が必要

テスト環境の整備

ユーザビリティ テスト ラボ のレイアウト例 Example of Usability Test Lab

テスティングルームの設備

- 被験者
 - 被験者の操作、表情が、モニタルームから見える位置
- 進行者
 - 被験者の視界に入らない
 - 被験者の様子が見え、つぶやき が聞こえる
 - 被験者に自然に助言を行える位置

モニタルームの設備

- ハーフミラーの前にテーブルを配置
 - 観察中にメモをとる
- 被験者の映像をディスプレイで確認
- 防音

被験者に観察者が分からないように

ユーザビリティラボがない場合

- ・2部屋使う場合
 - 片方を実験室、他方をモニタルームとする
 - 実験室側にカメラを設置し、モニタルーム側で映像を観察
- 1部屋使う場合
 - ホワイトボードなどで部屋を仕切る
 - 扉に近いエリアを実験室とする

• 被験者の出入りに都合が良い

事例1 クリーナ

- 評価の目的
 - ユーザが身体的に楽に掃除作業できるような ユーザビリティが求められる
 - 設計段階での仕様決定のために評価を行う
- 評価方法
 - 数種類の仕様が異なるプロトタイプ(試作品)に対し 身体的な使いやすさを評価
 - 延長管とホースの太さ、ホースの長さ、ヘッグリップ形状
 - 筋電図、主観評価、パフォーマンスを計測

事例1 クリーナ

- タスク:4種類の作業を設定
 - a. 床面ブラシ往復タスク
 - 通常の床面掃除を想定し、各仕様の相違が及ぼす影響を評価
 - b
- ・タスク (a)~(c) は筋電図計測及び主観評価
- ・ タスク (d) はタスク達成時間やストローク数を
- C. 計測するパフォーマンス評価
 - ・ビデオ撮影を行い動作観察

:、ホースの

)長さ、

- d. 一定面積の掃除タスク
 - ホースの長さが掃除作業に及ぼす影響を評価

事例1 クリーナ

• 評価結果

• タスク (d) の結果

• 平均10cm程度のストローク長の違いがホースの長さの違い

によって現れている

		ストローク長(cm)	
	ホース長	900mm	1200mm
被験者	Α	65	80
	В	80	100
	С	65	75
	D	55	55
	E	80	90
	F	55	65

- タスク (a)~(c) の筋電図と主観評価の結果
 - ヘッド重量、延長管の太さがユーザビリティに影響を与えている

事例 2 ATM

- 目的
 - 高齢者対策は身体的特性に限られがちだが、認知的特性についても検討する必要がある
- 被験者
 - 60歳以上の高齢者
 - 大学生
 - インスタント高齢者用装置を装着した大学生
- 評価方法
 - ユーザビリティテストの目的説明後、課題実施
 - ・現金引き出し、残高照会、振込みなど
 - 終了後テストに関する事後質問調査を行い、 補足的にインタビューを実施

事例 2 ATM

- 装置
 - 対象システム:一般的な銀行向けATM
 - 記録用機器、ビデオカメラ、タイピン型マイク、録音装置など
- 結果
 - テスト時間
 - 大学生:約30分
 - インスタント高齢者用装置を装着した大学生:約1時間
 - 高齢者:約1時間半
 - 高齢者は、悪いデザインの影響を受けやすい
 - 一度エラーに陥ると抜け出しにくく、同じエラーを繰り返す

認知的高齢化の側面を検討していくことの重要性が示された