Q Learning

COMP4211

Q Function

At state s, take action a, then follow policy π

- assume deterministic rewards and actions
- discounted cumulative reward:

$$r(s,a) + \gamma V^{\pi}(\delta(s,a)) \equiv Q^{\pi}(s,a)$$

ullet action value function for policy π

For the optimal policy, $Q^*(s, a) = r(s, a) + \gamma V^*(\delta(s, a))$

maximum discounted cumulative reward

Optimal policy:

$$\pi^*(s) = \operatorname{arg\,max}_a[r(s, a) + \gamma V^*(\delta(s, a))] = \operatorname{arg\,max}_a Q^*(s, a)$$

Example

problem; state value function; action value function ($\gamma=0.9$)

e.g., (s, a) = (bottom left state; move up)

- Q: $0 + \gamma \times 90 = 81$
- e.g., (s, a) = (bottom right state; move up)
 - Q: $100 + \gamma \times 0 = 100$

One optimal policy

Unknown Environment

For the optimal policy

$$Q^*(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$
$$= r(s,a) + \gamma \max_{a'} Q^*(\delta(s,a),a')$$

What if the agent does not know δ and r?

learn an approximation of Q^*

• if the agent knows Q^* , it can choose optimal action even without knowing r and δ !

How to Approximate Q^* ?

$$Q^*(s,a) = r(s,a) + \gamma \max_{a'} Q^*(\delta(s,a),a')$$

Learn directly from experience:

- observe the current state s
- choose and execute an action a
- observe the resulting reward r = r(s, a) and the new state $s' = \delta(s, a)$
 - does not need to know $\delta(s, a)$ and r(s, a) explicitly
- update $\hat{Q}(s,a) \leftarrow \frac{r + \gamma \max_{a'} \hat{Q}(s',a')}{r + \gamma \max_{a'} \hat{Q}(s',a')}$

Example (\hat{Q})

Q Learning

```
begin
    for each s, a; initialize table entry \hat{Q}(s, a) \leftarrow 0
    observe current state s;
    repeat
         select an action a and execute it;
         receive immediate reward r:
        observe the new state s';
         update the table entry for \hat{Q}(s, a) as:
                           \hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')
        s \leftarrow s':
    until;
end
```

 \hat{Q} converges to Q in the limit

Example (numbers are the rewards)

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

With all the \hat{Q} values initialized to zero

- the agent will make no changes to any \hat{Q} entry until it happens to reach the goal state and receive a nonzero reward
- ullet refine the \hat{Q} value for the single transition leading into the goal state

On the next episode

• if the agent passes through this state adjacent to the goal state, its nonzero \hat{Q} value will allow refining the value for some transition two steps from the goal, and so on

Given a sufficient number of training episodes, the information will propagate through the entire state-action space

Non-Deterministic Rewards and Actions

Reward function r(s, a) and action transition function $\delta(s, a)$ may have probabilistic outcomes

$$V^{\pi}(s) \equiv E[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots]$$

$$Q^{\pi}(s, a) \equiv E[r(s, a) + \gamma V^{\pi}(\delta(s, a))]$$

$$Q^{*}(s, a) = E[r(s, a) + \gamma V^{*}(\delta(s, a))]$$

$$= E[r(s, a)] + \gamma \sum_{s'} P(s, s', a) V^{*}(s')$$

$$= E[r(s, a)] + \gamma \sum_{s'} P(s, s', a) \max_{a'} Q^{*}(s', a')$$

Learning Q^*

$$Q^*(s, a) = E[r(s, a)] + \gamma \sum_{s'} P(s, s', a) \max_{a'} Q^*(s', a')$$

Deterministic case:

$$Q(s_t, a_t) \leftarrow r_t + \gamma \max_a Q(s_{t+1}, a)$$

Non-deterministic case:

• a nondeterministic reward function will produce different rewards each time the transition (s_t, a_t) is repeated

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha[r_t + \gamma \max_a Q(s_{t+1}, a)]$$

- cf. perceptron learning
- the new $Q(s_t, a_t)$ is an average between $Q(s_t, a_t)$ and $r_t + \gamma \max_a Q(s_{t+1}, a)$

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

• can still prove convergence to Q^*

Learning Q^* ...

How to set α ?

ullet as training progresses, reduce lpha

Example

$$\alpha_n = \frac{1}{1 + visits_n(s,a)}$$

• $visits_n(s, a)$: total number of times this state-action pair has been visited up to and including the nth iteration

demo on Q learning

Action Selection

```
begin
    for each s, a; initialize table entry \hat{Q}(s, a) \leftarrow 0
    observe current state s;
    repeat
         select an action a and execute it:
          receive immediate reward r;
         observe the new state s':
         update the table entry for \hat{Q}(s, a) as:;
                               \hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')
         s \leftarrow s':
    until convergence;
end
```

How to select actions when the agent is in state s?

Greedy Action Selection

Obvious strategy:

• always select the action that looks best

$$\pi(s) = \arg \max_{a} \hat{Q}(s, a)$$

greedy policy

Problem

- \bullet over-commit to actions that are found during early training to have high \hat{Q} values
- fail to explore other actions that may have even higher values

Be less greedy!

Exploit vs Explore

Select action a_i with probability

•
$$\pi(s, a_i) = k^{\hat{Q}(s, a_i)} / \sum_j k^{\hat{Q}(s, a_j)}, \quad k > 0$$

Large k:

- ullet assign higher probabilities to actions with above average \hat{Q}
- exploit

Small k:

- assign higher probabilities to other actions
- ullet explore actions that do not currently have high \hat{Q} values

ϵ-Greedy Policy

Alternatively

- be greedy most of the time (exploit)
- occasionally (with probability ϵ), take a random action (explore)
- surprising, this is the state of the art

