Amendments to the Claims are reflected in the listing of claims which begins on page 3 of this paper.

Remarks/Arguments begin on page 53 of this paper.

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) A compound of formula (I)

$$R3$$
 O-R4 O-R6 O-R8 O-R8 O-R9 R2 R1 N R5 E $R5$ E $R7$ G (I)

in which

n represents 1, 2 or 3;

A represents a substituent chosen selected from the group consisting of -C(O)-, -C(S)-, and -CH₂-, -CHR^{†0}-, -CR^{†0}R^{††}-, -C(O)O-, -C(O)S-, -C(S)O-, -C(S)S-, -C(O)NH-, -C(NH)NH- and -C(S)NH=;

B represents is selected from the group consisting of

an arylene; and

a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a naphthylene;

a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur; a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms each; a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur; a biphenylene; or a -heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur; these groups possibly being substituted with one or two substituents R¹² and R¹³ chosen, independently of each other, from halogen, CN, C(O)OR^{†4}, C(O)NR^{†5}R^{†6}, CF₃, OCF₃, -NO₂, N₃, OR^{†4}, SR^{†4}, NR^{†5}R^{†6} and C_†-6-alkyl; C represents a substituent chosen selected from the group consisting of -O-, -S-, -CH₂-,

 $\frac{-\text{CHR}^{\dagger 7}}{-\text{CR}^{\dagger 7}}$ R^{$\dagger 8$} $\frac{-\text{NH- and -NR}^{\dagger 9}}{-\text{NH- and CH-}(C_1-C_6\text{alkyl})}$;

D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;

E and G represent, independently of each other, a substituent chosen selected from the group consisting of H, OH, OR²⁰, NH, and NHR²⁰ OC(O)CH₃ and NHC(O)CH₃;

R¹ represents a substituent chosen selected from the group consisting of H, C₁-₆-alkyl, C(O)H and C(O)CH₃;

 R^2 , R^3 , R^6 , R^{t4} , R^{t5} , R^{t6} and R^{t9} represent, independently of each other, a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(O)NH_2$,

 R^4 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl and R^{21} :

 R^5 represents a substituent chosen selected from the group consisting of H, C_1 -alkyl, fucosyl and R^{22} ;

R⁷ represents a substituent chosen selected from the group consisting of H, C₁-₆-alkyl, arabinosyl and R²³;

 R^8 represents a substituent chosen selected from the group consisting of H, C_1 - $_6$ -alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO_3H , SO_3Li , SO_3Na , SO_3K , $SO_3N(C_1$ - $_8$ alkyl) $_4$ and R^{24} ;

R⁹ represents a substituent chosen selected from the group consisting of H, C₁-₆-alkyl, mannose, glycerol and R²⁵;

R¹⁰, R¹¹, R¹⁷ and R¹⁸ represent, independently of each other, a substituent chosen from C₁₋₆-alkyl and F;

R²⁰, R²¹, R²², R²³, R²⁴ and R²⁵ represent, independently of each other, a substituent chosen selected from the group consisting of C(O)C₁-6-alkyl, -C(S)C₁-6-alkyl, -C(O)OC₁-6-alkyl, -C(O)NH₂, -C(S)NH₂, -C(NH)NH₂, -C(O)NHC₁-6-alkyl, -C(S)NHC₁-6-alkyl and -C(NH)NHC₁-6-alkyl; and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof[[,]] which that are agriculturally acceptable, such as lithium, sodium, potassium and tetraalkylammonium salts.

2. (Currently Amended) The compound of formula (I) as claimed in of claim 1, having at least one or other of the following characteristics, taken separately or in combination:

n represents 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

B represents a phenylene;

C represents -O-;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H, CH₃ or and C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K,

SO₃N(C₁₋₈ alkyl)₄, fucosyl or and methylfucosyl.

(Currently Amended) The compound of formula (I) as claimed in of claim
 1, simultaneously having the following characteristics wherein:

n represents 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H, CH₃ or and C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂; and R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-8alkyl)₄, fucosyl or and methylfucosyl.

4. (Currently Amended) The compound of formula (I) as claimed in of claim

1 simultaneously having the following characteristics wherein:

n represents 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H, CH₃ or and C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂; and

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K,

 $SO_3N(C_{1-8}alkyl)_4$, fucosyl or and methylfucosyl.

5. (Currently Amended) The compound of formula (I) as claimed in of claim 1, simultaneously having the following characteristics wherein:

n represents 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

C represents -O-;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H, CH₃ or and C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂; and

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or and methylfucosyl.

6. (Currently Amended) The compound of formula (I) as claimed in of claim 1; simultaneously having the following characteristics wherein:

n represents 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

B represents a phenylene;

C represents -O-;

D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H, CH₃ or and C(O)CH₃;

 R^2 , R^3 , R^5 , R^6 , R^7 and R^9 represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂; and

 R^8 represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or and methylfucosyl.

7. (Currently Amended) The compound as claimed in claim 1 and of formula (Ia)

(Ia)

in which

n represents 1, 2 or 3,

B represents is selected from the group consisting of

an arylene;

a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

and a naphthylene;

a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms each;

a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur; a biphenylene; or a heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur; these groups possibly being substituted with one or two substituents R12 and R13 chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₂, OR^{†4}, SR^{†4}, NR^{†5}R^{†6} and C₁-6-alkyl; C represents a substituent chosen selected from the group consisting of -O-, -S-, -CH₂-,

 $-CHR^{17}$, $-CR^{17}R^{18}$, -NH- or $-NR^{19}$ and CH- $(C_1$ - C_6 alkyl);

D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;

E and G represent, independently of each other, a substituent chosen selected from the group consisting of H, OH, OR20, NH2, NHR20 OC(O)CH3 and NHC(O)CH3;

R¹ represents a substituent chosen selected from the group consisting of H, C₁-6-alkyl, C(O)H, and $C(O)CH_3$;

R², R³, and R⁶ represent, independently of each other, a substituent chosen selected from $\underline{\text{the group consisting of H, C$_{1^-6}$-alkyl, $C(O)$C$_{1^-6}$-alkyl, $-C(S)$C$_{1^-6}$-alkyl, $-C(O)$OC$_{1^-6}$-alkyl, $-C(O)$_{1^-6}$-alkyl, $-C(O)$_$

-C(O)NH₂, -C(S)NH₂, -C(NH)NH₂, -C(O)NHC₁- $_6$ -alkyl, -C(S)NHC₁- $_6$ -alkyl or and -C(NH)NHC₁- $_6$ -alkyl;

 R^4 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl or and R^{21} ;

 R^5 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, fucosyl or and R^{22} ;

 R^7 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, arabinosyl or and R^{23} ;

 R^8 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO_3H , SO_3Li , SO_3Na , SO_3K , $SO_3N(C_{1^-e}alkyl)_a$ or and R^{24} ;

 R^9 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, mannose, glycerol or and R^{25} ;

R^{††}, R^{††}, and R^{††} represent, independently of each other, a substituent chosen from C₊₋₆-alkyl or F;

 R^{+4} , R^{+5} , R^{+6} and R^{+9} represent, independently of each other, a substituent chosen from H or C_{t^-6} alkyl, $-C(O)C_{t^-6}$ alkyl, $-C(O)C_{t^-6}$ alkyl, $-C(O)NH_2$, $-C(O)NH_$

 $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_1$ -6-alkyl, $-C(S)NHC_1$ -6-alkyl or

-C(NH)NHC₁-₆-alkyl;

and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which that are agriculturally acceptable. Among the compounds defined above, the most important compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

8. (Currently Amended) The compound of formula (Ia) as claimed in of claim 7, having at least one or other of the following characteristics, taken separately or in combination:

n represents 2 or 3;

B represents a phenylene;

C represents -O-;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or and methylfucosyl.

9. (Currently Amended) The compound of formula (Ia) as claimed in of claim 7; simultaneously having the following characteristics wherein:

n represents 2 or 3;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or and methylfucosyl.

10. (Currently Amended) The compound of formula (Ia) as claimed in of claim 7; simultaneously having the following characteristics wherein:

n represents 2 or 3;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or and methylfucosyl.

11. (Currently Amended) The compound of formula (Ia) as claimed in of claim 7; simultaneously having the following characteristics wherein:

n represents 2 or 3;

C represents -O-;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

 R^2 , R^3 , R^5 , R^6 , R^7 and R^9 represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or and methylfucosyl.

12. (Currently Amended) The compound of formula (Ia) as claimed in of claim 7, simultaneously having the following characteristics wherein:

n represents 2 or 3;

B represents a phenylene;

C represents -O-;

D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or and methylfucosyl.

13. (Withdrawn) The compound as claimed in claim 1 and of formula (Ib)

(Ib)

in which

n represents 1, 2 or 3,

B represents

an arylene;

a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a naphthylene;

a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms each;

a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a biphenylene; or a

heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁-6-alkyl;

C represents a substituent chosen from -O-, -S-, -CH₂-, -CHR¹⁷-, -CR¹⁷R¹⁸-, -NH- or -NR¹⁹;

D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;

E and G represent, independently of each other, a substituent chosen from H, OH, OR²⁰, NH₂, NHR²⁰;

R¹ represents a substituent chosen from H, C₁-6-alkyl, C(O)H, and C(O)CH₃;

 R^2 , R^3 , and R^6 represent, independently of each other, a substituent chosen from H, $C_{1^-6^-}$ alkyl, $C(O)C_{1^-6^-}$ alkyl, $-C(S)C_{1^-6^-}$ alkyl, $-C(O)OC_{1^-6^-}$ alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6^-}$ alkyl, $-C(S)NHC_{1^-6^-}$ alkyl or $-C(NH)NHC_{1^-6^-}$ alkyl;

R⁴ represents a substituent chosen from H, C₁-₆-alkyl or R²¹;

R⁵ represents a substituent chosen from H, C₁₋₆-alkyl, fucosyl or R²²;

 R^7 represents a substituent chosen from H, C_{1^-6} -alkyl, arabinosyl or R^{23} ;

R⁸ represents a substituent chosen from H, C₁-6-alkyl, fucosyl, methylfucosyl,

R⁹ represents a substituent chosen from H, C₁-6-alkyl, mannose, glycerol or R²⁵;

sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄ or R²⁴;

 R^{10} , R^{11} , R^{17} and R^{18} represent, independently of each other, a substituent chosen from C_{1^-6} -alkyl or F;

 R^{14} , R^{15} , R^{16} and R^{19} represent, independently of each other, a substituent chosen from H or C_{1^-6} -alkyl, $-C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6}$ -alkyl, $-C(S)NHC_{1^-6}$ -alkyl or $-C(NH)NHC_{1^-6}$ -alkyl;

R²⁰, R²¹, R²², R²³, R²⁴ and R²⁵ represent, independently of each other, a substituent chosen from C(O)C₁-6-alkyl, -C(S)C₁-6-alkyl, -C(O)OC₁-6-alkyl, -C(O)NH₂, -C(S)NH₂, -C(NH)NH₂, -C(O)NHC₁-6-alkyl, -C(S)NHC₁-6-alkyl or -C(NH)NHC₁-6-alkyl; and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which are agriculturally acceptable. Among the compounds defined above, the most important compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

14. (Withdrawn) The compound of formula (Ib) as claimed in claim 13, having one or other of the following characteristics, taken separately or in combination:

n represents 2 or 3;

B represents a phenylene;

C represents -O-;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents H or C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents H, C(O)CH₃ or C(O)NH₂;

 $R^8 \ represents \ H, \ SO_3H, \ SO_3Li, \ SO_3Na, \ SO_3K, \ SO_3N(C_{1}\text{--}_8alkyl)_4, \ fucosyl \ or \ methylfucosyl.$

15. (Withdrawn) The compound of formula (Ib) as claimed in claim 13, simultaneously having the following characteristics:

n represents 2 or 3;

E and G represent NHC(O)CH₃;

R¹ represents H or C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents H, C(O)CH₃ or C(O)NH₂;

 $R^8 \ represents \ H, \ SO_3H, \ SO_3Li, \ SO_3Na, \ SO_3K, \ SO_3N(C_{1}\text{--}_8alkyl)_4, \ fucosyl \ or \ methylfucosyl.$

16. (Withdrawn) The compound of formula (Ib) as claimed in claim 13 simultaneously having the following characteristics:

n represents 2 or 3;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents H or C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents H, C(O)CH₃ or C(O)NH₂;

R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or methylfucosyl.

17. (Withdrawn) The compound of formula (Ib) as claimed in claim 13 simultaneously having the following characteristics:

n represents 2 or 3;

C represents -O-;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents H or C(O)CH₃;

 R^2 , R^3 , R^5 , R^6 , R^7 and R^9 represent H;

R⁴ represents H, C(O)CH₃ or C(O)NH₂;

 R^8 represents H, SO_3H , SO_3Li , SO_3Na , SO_3K , $SO_3N(C_{1}$ - $_8alkyl)_4$, fucosyl or methylfucosyl.

18. (Withdrawn) The compound of formula (Ib) as claimed in claim 13 simultaneously having the following characteristics:

n represents 2 or 3;

B represents a phenylene;

C represents -O-;

D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;

E and G represent NHC(O)CH₃;

R¹ represents H or C(O)CH₃;

 R^2 , R^3 , R^5 , R^6 , R^7 and R^9 represent H;

 R^4 represents H, C(O)CH₃ or C(O)NH₂;

R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or methylfucosyl.

19. (Currently Amended) The compound as claimed in claim 1 and of formula (Ic)

(Ic)

in which

n represents 1, 2 or 3;

A represents a substituent chosen selected from the group consisting of -C(O)-, -C(S)-, and -CH₂-, -CHR¹⁰-, -CR¹⁰R¹¹-, -C(O)O-, -C(O)S-, -C(S)O-, -C(S)S-, -C(O)NH-, -C(NH)NH- or -C(S)NH-;

B represents is selected from the group consisting of an arylene; a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur; and a naphthylene; a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur; a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms each; a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur; a biphenylene; or a heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R¹² and R¹³ chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃,

=NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁-6-alkyl;

D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;

E and G represent, independently of each other, a substituent chosen selected from the group consisting of H, OH, OR²⁰, NH₂, NHR²⁰ OC(O)CH₃ and NHC(O)CH₃;

R¹ represents a substituent chosen from H, C₁₋₆-alkyl, C(O)H, and C(O)CH₃;

 R^2 , R^3 , and R^6 represent, independently of each other, a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(NH)NH_2$, $-C(O)NH_2$, $-C(NH)NH_2$,

 R^4 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl or and R^{21} :

 R^5 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, fucosyl or and R^{22} ;

 R^7 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, arabinosyl or and R^{23} ;

 R^8 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO_3H , SO_3Li , SO_3Na , SO_3K , $SO_3N(C_{1^-8}alkyl)_4$ or and R^{24} ;

 R^9 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, mannose, glycerol or and R^{25} ;

 R^{10} , R^{17} and R^{18} represent, independently of each other, a substituent chosen from $C_{1^{-6}}$ alkyl or F;

 $-R^{\dagger 4}, R^{\dagger 5}, R^{\dagger 6} \text{ and } R^{\dagger 9} \text{ represent, independently of each other, a substituent chosen from H}$ or $C_{t^{+}6}$ -alkyl, $-C(O)C_{t^{+}6}$ -alkyl, $-C(O)C_{t^{+}6}$ -alkyl, $-C(O)NH_{2}$, $-C(O)NH_$

 R^{20} , R^{21} , R^{22} , R^{23} , R^{24} and R^{25} represent, independently of each other, a substituent chosen selected from the group consisting of $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NH_2$, -C(O)N

and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which that are agriculturally acceptable. Among the compounds defined above, the most important compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

20. (Currently Amended) The compound of formula (Ic) as claimed in of claim 19, having at least one or other of the following characteristics, taken separately or in combination:

n represents 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

B represents a phenylene;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H, CH₃ or and C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or and methylfucosyl.

21. (Currently Amended) The compound of formula (Ic) as claimed in of claim 19; simultaneously having the following characteristics wherein:

n represents 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H, CH₃ or and C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or and methylfucosyl.

22. (Currently Amended) The compound of formula (Ic) as claimed in of claim 19, simultaneously having the following characteristics wherein:

n represents 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H, CH₃ or and C(O)CH₃;

 R^2 , R^3 , R^5 , R^6 , R^7 and R^9 represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or and methylfucosyl.

23. (Currently Amended) The compound of formula (Ic) as claimed in of claim 19, simultaneously having the following characteristics wherein:

n represents 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

B represents a phenylene;

D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H, CH₃ or and C(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or and methylfucosyl.

24. (Currently Amended) The compound as claimed in claim 1 and of formula (Id)

(Id)

in which	
n rep	resents 1, 2 or 3;
В гер	presents is selected from the group consisting of
	an arylene ,
	a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and
sulfur;	
	and a naphthylene;
	a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen
and sulfur;	
	a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms
each;	
	a divalent radical derived from 2 fused aromatic or heteroaromatic rings
containing 5	or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen
and sulfur;	
	a biphenylene; or a
	heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen
and sulfur;	
	these groups possibly being substituted with one or two substituents R12 and R13
chosen, inde	pendently of each other, from halogen, CN, C(O)OR ¹⁴ , C(O)NR ¹⁵ R ¹⁶ , CF ₃ , OCF ₃ ,
-NO₂, N₃, OI	R ^{††} , SR ^{†‡} , NR ^{†5} R ^{†6} -and C _† - ₆ -alkyl;

D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;

E and G represent, independently of each other, a substituent chosen selected from the group consisting of H, OH, OR²⁰, NH₂, NHR²⁰ OC(O)CH₃ and NHC(O)CH₃;

 R^1 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, C(O)H, and $C(O)CH_3$;

 R^2 , R^3 , and R^6 represent, independently of each other, a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(NH)NH_2$, $-C(O)NH_2$, $-C(NH)NH_2$,

 R^4 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl or and R^{21} ;

 R^5 represents a substituent chosen selected from the group consisting of H, C_1 -6-alkyl, fucosyl or and R^{22} ;

 R^7 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, arabinosyl or and R^{23} ;

 R^8 represents a substituent chosen selected from the group consisting of H, C_{1^-6} -alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO_3H , SO_3Li , SO_3Na , SO_3K , $SO_3N(C_{1^-8}alkyl)_4$ or and R^{24} ;

 R^9 represents a substituent chosen selected from the group consisting of H, $C_{1^{-6}}$ -alkyl, mannose, glycerol or and R^{25} ;

 R^{10} , R^{17} and R^{18} represent, independently of each other, a substituent chosen from $C_{1^{-6}}$ -alkyl or F;

selected from the group consisting of $C(O)C_1$ - $_6$ -alkyl, $-C(S)C_1$ - $_6$ -alkyl, $-C(O)OC_1$ - $_6$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_1$ - $_6$ -alkyl, $-C(S)NHC_1$ - $_6$ -alkyl or and $-C(NH)NHC_1$ - $_6$ -alkyl;

and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers, tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which that are agriculturally acceptable. Among the compounds defined above, the most important compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

25. (Currently Amended) The compound of formula (Id) as claimed in of claim 24, having at least one or other of the following characteristics, taken separately or in combination:

n represents 2 or 3;

B represents a phenylene;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or and methylfucosyl.

26. (Currently Amended) The compound of formula (Id) as claimed in of claim 24, simultaneously having the following characteristics wherein:

n represents 2 or 3;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or and methylfucosyl.

27. (Currently Amended) The compound of formula (Id) as claimed in of claim 24; simultaneously having the following characteristics wherein:

n represents 2 or 3;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or and methylfucosyl.

28. (Currently Amended) The compound of formula (Id) as claimed in of claim 24; simultaneously having the following characteristics wherein:

n represents 2 or 3;

B represents a phenylene;

D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents is selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

 R^8 represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁- $_8$ alkyl)₄, fucosyl or and methylfucosyl.

29. (Withdrawn) The compound as claimed in claim 1 and of formula (Ie)

(Ie)

in which

n represents 1, 2 or 3;

B represents

an arylene;

a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a naphthylene;

a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a divalent radical derived from 2 fused aromatic rings containing 5 or 6 atoms each;

a divalent radical derived from 2 fused aromatic or heteroaromatic rings containing 5 or 6 atoms each and comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

a biphenylene; or a

heterobiphenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly being substituted with one or two substituents R^{12} and R^{13} chosen, independently of each other, from halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁-6-alkyl;

D represents a linear or branched, saturated or unsaturated hydrocarbon-based chain containing from 2 to 20 carbon atoms;

E and G represent, independently of each other, a substituent chosen from H, OH, OR²⁰, NH₂, NHR²⁰;

 R^1 represents a substituent chosen from H, C_{1^-6} -alkyl, C(O)H, and $C(O)CH_3$;

 R^2 , R^3 , and R^6 represent, independently of each other, a substituent chosen from H, C_{1^-6} -alkyl, $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6}$ -alkyl, $-C(S)NHC_{1^-6}$ -alkyl or $-C(NH)NHC_{1^-6}$ -alkyl;

 R^4 represents a substituent chosen from H, C_{1^-6} -alkyl or R^{21} ;

R⁵ represents a substituent chosen from H, C₁-₆-alkyl, fucosyl or R²²;

R⁷ represents a substituent chosen from H, C₁-6-alkyl, arabinosyl or R²³;

R⁸ represents a substituent chosen from H, C₁-₆-alkyl, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄ or R²⁴;

R⁹ represents a substituent chosen from H, C₁₋₆-alkyl, mannose, glycerol or R²⁵;

 R^{10} , R^{11} , R^{17} and R^{18} represent, independently of each other, a substituent chosen from C_{1^-6} -alkyl or F;

 R^{14} , R^{15} , R^{16} and R^{19} represent, independently of each other, a substituent chosen from H or C_{1^-6} -alkyl, $-C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6}$ -alkyl, $-C(S)NHC_{1^-6}$ -alkyl or $-C(NH)NHC_{1^-6}$ -alkyl;

 R^{20} , R^{21} , R^{22} , R^{23} , R^{24} and R^{25} represent, independently of each other, a substituent chosen from $C(O)C_{1^-6}$ -alkyl, $-C(S)C_{1^-6}$ -alkyl, $-C(O)OC_{1^-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$, $-C(O)NHC_{1^-6}$ -alkyl, $-C(S)NHC_{1^-6}$ -alkyl or $-C(NH)NHC_{1^-6}$ -alkyl; and also the possible geometrical and/or optical isomers, enantiomers and/or diastereoisomers,

tautomers, salts, N-oxides, sulfoxides, sulfones, and metal or metalloid complexes thereof, which are agriculturally acceptable. Among the compounds defined above, the most important

compounds are the salts, more particularly the lithium, sodium, potassium or tetraalkylammonium salts.

30. (Withdrawn) The compound of formula (Ie) as claimed in claim 29, having one or other of the following characteristics, taken separately or in combination:

n represents 2 or 3;

B represents a phenylene;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents H or C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents H, C(O)CH₃ or C(O)NH₂;

 $R^8 \ represents \ H, \ SO_3H, \ SO_3Li, \ SO_3Na, \ SO_3K, \ SO_3N(C_{1^-8}alkyl)_4, \ fucosyl \ or \ methylfucosyl.$

31. (Withdrawn) The compound of formula (Ie) as claimed in claim 29, simultaneously having the following characteristics:

n represents 2 or 3;

E and G represent NHC(O)CH₃;

R¹ represents H or C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

 R^4 represents H, C(O)CH₃ or C(O)NH₂;

R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁₋₈alkyl)₄, fucosyl or methylfucosyl.

32. (Withdrawn) The compound of formula (Ie) as claimed in claim 29, simultaneously having the following characteristics:

n represents 2 or 3;

D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 3 to 17 carbon atoms;

E and G represent NHC(O)CH₃;

R¹ represents H or C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

 R^4 represents H, C(O)CH₃ or C(O)NH₂;

 $R^8 \text{ represents H, SO}_3H, SO_3Li, SO_3Na, SO_3K, SO_3N(C_{1}\text{--}_8alkyl)_4, fucosyl \text{ or methylfucosyl}.$

33. (Withdrawn) The compound of formula (Ie) as claimed in claim 29, simultaneously having the following characteristics:

n represents 2 or 3;

B represents a phenylene;

D represents a linear hydrocarbon-based chain containing 11 carbons, which is saturated, or unsaturated between carbons 4 and 5;

E and G represent NHC(O)CH₃;

R¹ represents H or C(O)CH₃;

R², R³, R⁵, R⁶, R⁷ and R⁹ represent H;

R⁴ represents H, C(O)CH₃ or C(O)NH₂;

R⁸ represents H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄, fucosyl or methylfucosyl.

34. (Currently Amended) The compound as claimed in of claim 1, for which wherein

B represents is selected from the group consisting of

a naphthylene[[;]] and

an arylene;

a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and

sulfur; or

a heteronaphthylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly optionally being substituted with one or two substituents R¹² and R¹³ chosen, independently of each other, selected from the group consisting of halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁-6-alkyl

wherein R^{14} , R^{15} , and R^{16} are independently selected from the group consisting of H, C_{1-6} -alkyl, $C(O)C_{1-6}$ -alkyl, $-C(S)C_{1-6}$ -alkyl, $-C(O)NH_2$, $-C(S)NH_2$, $-C(NH)NH_2$

35. (Currently Amended) The compound as claimed in of claim 1, for which whereinB represents

an arylene;

or a heteroarylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly optionally being substituted with one or two substituents R^{†2} and R^{†3}-ehosen, independently of each other, selected from the group consisting of halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁-6-alkyl wherein R¹⁴, R¹⁵, and R¹⁶ are independently selected from the group consisting of H, C₁-6-alkyl, C(O)C₁-6-alkyl, -C(S)C₁-6-alkyl, -C(O)OC₁-6-alkyl, -C(S)NH₂, -C(NH)NH₂, -C(NH)NH₂, -C(O)NHC₁-6-alkyl, -C(S)NHC₁-6-alkyl and -C(NH)NHC₁-6-alkyl.

36. (Currently Amended) The compound as claimed in of claim 1, for which wherein

B represents

a phenylene; or a

heterophenylene comprising 1 or 2 hetero atoms chosen from nitrogen, oxygen and sulfur;

these groups possibly optionally being substituted with one or two substituents R^{†2} and R^{†3}-ehosen, independently of each other, selected from the group consisting of halogen, CN, C(O)OR¹⁴, C(O)NR¹⁵R¹⁶, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁-6-alkyl wherein R¹⁴, R¹⁵, and R¹⁶ are independently selected from the group consisting of H, C₁-6-alkyl, C(O)C₁-6-alkyl, -C(S)C₁-6-alkyl, -C(O)OC₁-6-alkyl, -C(O)NH₂, -C(S)NH₂, -C(NH)NH₂, -C(NH)NH₂, -C(O)NHC₁-6-alkyl, -C(S)NHC₁-6-alkyl and -C(NH)NHC₁-6-alkyl.

37. (Withdrawn) The compound as claimed in claim 1, for which B represents a substituent chosen from:

B1	R12 R13	В6	S HN R12	B11	R12 R13	B16	R13 R12
B2	R12 N R13	B7	O N R12	B12	R13 R12	B17	R13 H N R12
В3	S R12	В8	HN N 2 2 R12	B13	R13 R12	B18	R13 R12 N
В4	R12	В9	R12 R13	B14	N/ R13	B19	R12 S R13
В5	H N R12	B10	R13 R12	B15	R13 N R12	B20	R13 R12 S

in which R^{12} and R^{13} represent two substituents chosen, independently of each other, from halogen, CN, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁-6-alkyl.

- 38. (Withdrawn) The compound as claimed in claim 37, for which B represents a phenylene B1 that may be substituted with one or two substituents R¹² and R¹³ chosen, independently of each other, from halogen, CN, CF₃, OCF₃, -NO₂, N₃, OR¹⁴, SR¹⁴, NR¹⁵R¹⁶ and C₁-6-alkyl.
- 39. (Currently Amended) The compound as claimed in claim 1, having <u>at least</u> one of the following characteristics, taken separately or in combination:

n = 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

C represents -O-;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and C(O)CH₃;

R², R³, R⁵, R⁶, and R⁷ represent a hydrogen atom;

R⁴ represents a substituent chosen <u>selected</u> from <u>the group consisting of</u> H, C(O)CH₃ and C(O)NH₂;

R⁸ represents a substituent chosen <u>selected</u> from <u>the group consisting of</u> H, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K and SO₃N(C₁-₈alkyl)₄;

R⁹ represents a hydrogen atom.

40. (Currently Amended) The compound as claimed in of claim 1, having all of the following characteristics wherein:

n = 2 or 3;

A represents is selected from the group consisting of -C(O)- or and -CH₂-;

C represents -O-;

E and G represent NHC(O)CH₃;

R¹ represents is selected from the group consisting of H or and C(O)CH₃;

R², R³, R⁵, R⁶, and R⁷ represent a hydrogen atom;

R⁴ represents a substituent chosen selected from the group consisting of H, C(O)CH₃ or and C(O)NH₂;

R⁸ represents a substituent chosen <u>selected</u> from <u>the group consisting of</u> H, fucosyl, methylfucosyl, sulfofucosyl, acetylfucosyl, arabinosyl, SO₃H, SO₃Li, SO₃Na, SO₃K or <u>and</u> SO₃N(C₁-₈alkyl)₄; <u>and</u>

R⁹ represents a hydrogen atom.

41. (Currently Amended) The compound as claimed in of claim 1, for which wherein R⁸ represents is selected from the group consisting of H, SO₃H, SO₃Li, SO₃Na, SO₃K, SO₃N(C₁-₈alkyl)₄ or and a substituent of formula:

in which wherein

R²⁶ represents a substituent chosen selected from the group consisting of H and CH₃;

 R^{27} and R^{28} represent, independently of each other, a substituent chosen selected from the group consisting of H, C(O)CH₃, SO₃H, SO₃Li, SO₃Na, SO₃K and SO₃N(C₁-₈alkyl)₄.

- 42. (Currently Amended) The compound as claimed in of claim 41, for which wherein R²⁶, R²⁷ and R²⁸ represent each represents a hydrogen atom.
- 43. (Previously Presented) The compound as claimed in claim 1, for which D represents a linear, saturated or unsaturated hydrocarbon-based chain containing from 7 to 15 carbon atoms.
- 44. (Previously Presented) The compound as claimed in claim 1, for which D represents a hydrocarbon-based chain according to one of the formulae represented below

in which

$$m = 1 \text{ to } 12$$

$$p = 0 \text{ to } 11$$

$$q = 6 \text{ to } 14$$

$$s = 5 \text{ to } 13$$

with $m+p \le 12$ and $m+p \ge 4$.

45. (Currently Amended) The compound as claimed in of claim 1 or which wherein D represents a hydrocarbon-based chain according to one of the formulae represented below

in which

$$m = 1 \text{ to } 12$$

$$p = 0 \text{ to } 11$$

$$q = 6 \text{ to } 14$$

with $m+p \le 12$ and $m+p \ge 4$;

- 46. (Currently Amended) The compound as claimed in of claim 1, for which wherein D represents a linear hydrocarbon-based chain containing comprising 11 carbon atoms, which that is saturated, or unsaturated between carbon atoms 4 and 5.
- 47. (Currently Amended) The compound as claimed in of claim 1, corresponding to one of the following formulae:

in which, when it is present, M represents a cation chosen selected from the group consisting of H^+ , Li^+ , Na^+ , K^+ and $(C_{1^-8}alkyl)_4N^+$.

- 48. (Withdrawn) The use of a compound as claimed in claim 1, as a nodulation factor for a plant.
- 49. (Withdrawn) The use as claimed in claim 48, characterized in that said plant is a legume.

- 50. (Withdrawn) The use as claimed in claim 49, characterized in that said legume is soybean, pea, horse bean, groundnut, bean, lupin, alfalfa or clover.
- 51. (Withdrawn) The use of a compound as claimed in claim 1, as a plant growth stimulation factor
- 52. (Withdrawn) A process for treating seeds, comprising the application, alone or as a combination with other active molecules, of one or more compound(s) as defined in claim 1.