Master's degree in Computer Science - A.A. 21/22

OPTIMIZATION FOR MACHINE LEARNING - 6 CFU

Project N. 4

Given the dataset **dataset4.mat**, where X is the matrix whose rows contain the points to be classified and y is the array of the corresponding class labels, perform a **spherical separation**, aimed at separating the set \mathcal{A} from the set \mathcal{B} , on the basis of the following guidelines:

- 1. Use the Gaussian kernel with $\sigma = 1$.
- 2. Choose the sets \mathcal{A} and \mathcal{B} at your convenience, between the two sets of points (positive with label +1 and negative with label -1).
- 3. Perform a bilevel 10-fold cross validation, using, for the model selection, a 5-fold cross validation. In fixing the grid of C, consider only the cases such that

$$C \ge \frac{1}{2r}$$
,

with $r = \min\{m, k\}$, where $m = |\mathcal{A}|$ and $k = |\mathcal{B}|$.

4. Each time, fix the center x_0 of the separating sphere

$$S(x_0, R) \stackrel{\triangle}{=} \{x \in R^n \mid ||x - x_0||^2 = R^2\}$$

as the bariycenter of the set A.

- 5. Compute the following performance indexes:
 - the average training correctness;
 - the average training sensitivity;
 - the average training specificity;
 - the average training F-score;
 - the average testing correctness (accuracy);
 - the average testing sensitivity;
 - the average testing specificity;
 - the average testing F-score.