Due: November 16, 2022

Probability and Random Processes

(5.1) For $\alpha > 1$, suppose that X has the density function given by

$$f_X(t) = \begin{cases} \alpha e^{-\alpha t} & \text{if } t \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Compute $\mathbb{E}\left[e^X\right]$.

Solution. Setting $h(x) = e^x$, we have

$$\mathbb{E}\left[e^{X}\right] = \int_{0}^{\infty} \alpha e^{t} e^{-\alpha t} dt = \int_{0}^{\infty} \alpha e^{-(\alpha - 1)t} dt = \frac{\alpha}{\alpha - 1}.$$

- **(5.2)** A die has been rolled twice. Let X denote the outcome of the first throw and Y denote the smaller of the two outcomes. For instance, if the outcomes are 2, 3 then X=2 and Y=2 and if the outcomes are 4, 3 then X=4 and Y=3.
 - (a) Describe the joint probability mass function of X and Y by drawing a table.
 - (b) Compute the marginal probability mass functions of X and Y.
 - (c) What are the possible values of Z = X Y? Compute the probability mass function of Z and use it to find $\mathbb{E}[Z]$.

Solution. Note that X can take values 1, 2, 3, 4, 5, 6 and Y can also take the same values. It is clear that no matter the outcome we have $Y \leq X$. Let us compute $\mathbb{P}\left[X=i,Y=j\right]$. For this to be possible, we must have $j \leq i$. Suppose this condition is satisfied. If j < i, then this is only possible if the first die is i and the second one is j. This has probability 1/36. If i=j. Then there is one option for the outcome of the first die (namely i) and exactly 7-i options for the outcome of the second die. Hence

$$\mathbb{P}\left[X=i,Y=i\right]=\frac{7-i}{36}.$$

We can now form the table

	Y=1	Y=2	<i>Y</i> = 3	Y=4\$	Y = 5	Y = 6
X = 1	6/36	0	0	0	0	0
X = 2	1/36	5/36	0	0	0	0
X = 3	1/36	1/36	4/36	0	0	0
X = 4	1/36	1/36	1/36	3/36	0	0
X = 5	1/36	1/36	1/36	1/36	2/36	0
X = 6	1/36	1/36	1/36	1/36	1/36	1/36

It is clear that X takes each values 1,2,...,6 with probability 1/6, so its marginals are simply $p_X(i) = 1/6$ for all $1 \le i \le 6$. For Y we have

$$p_Y(1) = \frac{11}{36}$$
, $p_Y(2) = \frac{9}{36}$, $p_Y(3) = \frac{7}{36}$, $p_Y(4) = \frac{5}{36}$, $p_Y(5) = 3/36$, $p_Y(6) = 1/36$.

(c) It is clear from the table that the possible values of Z = X - Y are 0, 1, 2, 3, 4, 5. We can see

$$\mathbb{P}[Z=0] = \mathbb{P}[X-Y=0] = \sum_{i=1}^{6} \mathbb{P}[X=i, Y=i] = \sum_{i=1}^{6} p_{X,Y}(i, i) = \frac{21}{36}.$$

For k = 1, 2, 3, 4, 5 we have

$$\mathbb{P}[Z=k] = \mathbb{P}[X-Y=k] = \sum_{i=1}^{6-k} \mathbb{P}[X=i+k, Y=i] = \sum_{i=1}^{6-k} p_{X,Y}(i+k, i) = \sum_{i=1}^{6-k} \frac{1}{36} = \frac{6-k}{36}.$$

These values are given in the following table

ſ		Z=0	Z=1	Z=2	Z=3	Z=4	Z=5
Γ	$p_Z(z)$	21/36	5/36	4/36	3/36	2/36	1/36

- **(5.3)** A coin is flipped three times. Let X denote the number of heads and Y denote the number of streaks of heads of length 2. For instance, if the outcome is HTH, then X=2 and Y=0, while if the outcome is HHT, then X=2 and Y=1.
 - (a) Find the joint probability mass function of X and Y.
 - (b) Determine Cov(X, Y).
 - (c) Are X and Y independent?

Solution. It is clear that $0 \le X \le 3$ and $0 \le Y \le 2$. If Y = 2, then clearly X = 3, and this only happens when the outcome is HHH, hence

$$\mathbb{P}[X=3, Y=2] = \frac{1}{8}, \quad \mathbb{P}[X=j, Y=2] = 0, 1, 2.$$

Consider Y = 1, this corresponding to two outcomes HHT and THH. Hence

$$\mathbb{P}[X = 2, Y = 1] = \frac{2}{8}, \quad \mathbb{P}[X = j, Y = 1] = 0, \quad j = 0, 1, 3.$$

Finally assume that Y=0. Then X can take any of values 0,1, 2. We have X=0 for TTT, we have X=1 for HTT, THT, TTH, and we have X=2 for THT. Hence

$$\mathbb{P}[X = 0, Y = 0] = \frac{1}{8}, \quad \mathbb{P}[X = 1, Y = 0] = \frac{3}{8}, \quad \mathbb{P}[X = 2, Y = 0] = \frac{1}{8}.$$

These numbers can be summarized in the following table:

	Y = 0	Y = 1	Y=2
X = 0	1/8	0	0
X = 1	3/8	0	0
X = 2	1/8	1/4	0
X = 3	0	0	1/8

Since X has a binomial distribution with n=3 and p=1/2 we have $\mathbb{E}[X]=3/2$. A simple computation shows that

$$\mathbb{E}[Y] = 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{8} = \frac{1}{2}.$$

Also

$$\mathbb{E}[XY] = 2 \cdot \frac{1}{4} + 6 \cdot \frac{1}{8} = \frac{5}{4}.$$

Hence

$$Cov(X,Y) = \frac{5}{4} - \frac{1}{2}\frac{3}{2} = \frac{1}{2} > 0$$

from which it follows that X and Y are not independent.

(5.4) If X and Y are two random variables prove that

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y).$$

Solution.

$$\text{Var}\left[X+Y\right] = \mathbb{E}\left[(X+Y)^2\right] - (\mathbb{E}\left[X\right] + \mathbb{E}\left[Y\right])^2 = \mathbb{E}\left[X^2 + Y^2 + 2XY\right] - (\mathbb{E}\left[X\right]^2 + \mathbb{E}\left[Y\right]^2 + 2\mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]).$$
 Hence

$$\operatorname{Var}\left[X+Y\right] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 + \mathbb{E}\left[Y^2\right] - \mathbb{E}\left[Y\right]^2 + 2\left(\mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]\right) = \operatorname{Var}\left[X\right] + \operatorname{Var}\left[Y\right] + 2\operatorname{Cov}(X,Y).$$

(5.5) Let

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

be a 2 \times 2 matrix where A_{ij} are independent and each is uniformly chosen from the set {1, 2, 3, 4, 5}. Set $D = \det A$. Find Var[D].

Solution. Note that

$$D = A_{11}A_{22} - A_{12}A_{21}.$$

A simple computation shows that $\mathbb{E}[A_{ij}] = 3$ and

$$\mathbb{E}\left[A_{ij}^2\right] = \frac{1}{5}\left(1^2 + 2^2 + \dots + 5^2\right) = 11.$$

Using the independence of A_{ij} we have

$$\mathbb{E}[D] = \mathbb{E}[A_{11}A_{22} - A_{12}A_{21}] = \mathbb{E}[A_{11}]\mathbb{E}[A_{22}] - \mathbb{E}[A_{12}]\mathbb{E}[A_{21}] = 0.$$

We also hae

$$\mathbb{E}\left[D^2\right] = \mathbb{E}\left[(A_{11}A_{22} - A_{12}A_{21})^2\right] = \mathbb{E}\left[A_{11}^2A_{22}^2 + A_{12}^2A_{21}^2 - 2A_{11}A_{22}A_{12}A_{21}\right].$$

Using independence of A_{ij} we have

$$\mathbb{E}\left[A_{11}^2 A_{22}^2\right] = \mathbb{E}\left[A_{11}^2\right] \mathbb{E}\left[A_{22}^2\right] = 11 \times 11 = 121.$$

Similarly we have $\mathbb{E}\left[A_{12}^2A_{21}^2\right]=121$. Finally, we using independence again we have

$$\mathbb{E}[A_{11}A_{22}A_{12}A_{21}] = \mathbb{E}[A_{11}]\mathbb{E}[A_{22}]\mathbb{E}[A_{12}]\mathbb{E}[A_{21}] = 3^4 = 81.$$

It follows that

$$\mathbb{E}\left[D^2\right] = 121 + 121 - 162 = 80.$$

Hence $Var[D] = \mathbb{E}[D^2] - \mathbb{E}[D]^2 = 80.$