Metode numerice pentru ecuații neliniare

În general, modelele matematice asociate fenomenelor fizice sau de altă natură conduc la ecuații de forma

$$f(x) = 0$$

Ne propunem să găsim aproximații ale soluției ecuației anterioare, în cazul în care f este o funcție reală neliniară.

Metoda bisecției

Această metodă constă în înjumătățirea intervalului în care se află soluția unei ecuații.

Fie $a < b \in R$ şi $f : [a, b] \to R$ o funcție continuă cu $f(a) \cdot f(b) < 0$. Atunci există $z \in [a, b]$ astfel încât f(z) = 0. Definim şirurile $(a_n)_{n \ge 0}, (b_n)_{n \ge 0}, (c_n)_{n \ge 0}$ astfel:

- $a_0 := a, b_0 := b, c_0 := (a+b)/2;$
- \bullet Pentru $n \geq 1$

- dacă
$$f(c_{n-1}) = 0$$
, atunci
$$\begin{cases} a_n := a_{n-1} \\ b_n := b_{n-1} \\ c_n := c_{n-1} \end{cases}$$
- dacă $f(a_{n-1}) \cdot f(c_{n-1}) < 0$, atunci
$$\begin{cases} a_n := a_{n-1} \\ b_n := c_{n-1} \\ c_n := (a_n + b_n)/2 \end{cases}$$
- dacă $f(a_{n-1}) \cdot f(c_{n-1}) > 0$, atunci
$$\begin{cases} a_n := a_{n-1} \\ b_n := c_{n-1} \\ c_n := (a_n + b_n)/2 \end{cases}$$

Teorema -1.1 Presupunem că funcția f are o singură rădăcină în [a,b]. Atunci șirul $(c_n)_{n\geq 0}$ construit mai sus converge la unica soluție $z\in [a,b]$ a ecuației f(x)=0 și

$$|c_n - z| \le \frac{b - a}{2^n}$$

Iterațiile construite prin metoda bisecției se opresc la pasul m pentru care

$$|f(c_m)| < \varepsilon$$

sau, pentru o mai mare acuratețe, la pasul m pentru care

$$|f(c_m)| < \varepsilon \text{ si } |c_m - c_{m-1}| < \varepsilon,$$

unde ε este eroarea de aproximare.

Exemplul -1.1 Să se aproximeze, folosind metoda bisecției, soluția ecuației $x^3 + 4x^2 - 10 = 0$ (conținută în intervalul [-1, 2]) cu eroarile $\varepsilon 1 = 0.01$, $\varepsilon 2 = 10^{-10}$.

Soluția ecuației, aproximată cu eroarea $\varepsilon 1 = 0.01$ se obține la pasul m = 9 și are valoarea $c_9 = 1.36132812500000$.

Soluția ecuației, aproximată cu eroarea $\varepsilon 2=10^{-10}$ se obține la pasul m=35 și are valoarea $c_{35}=1.36523001342721.$

Regula falsi

"Regula falsi" este tot o metoda de "micsorare" a intervalului in care se afla solutia unei ecuatii.

Fie $a < b \in R$ și $f: [a, b] \to R$ o funcție continuă cu $f(a) \cdot f(b) < 0$. Atunci există $z \in [a, b]$ astfel încât f(z) = 0.

Definim şirurile $(a_n)_{n\geq 0}, (b_n)_{n\geq 0}, (c_n)_{n\geq 0}$ astfel:

•
$$a_0 := a, b_0 := b, c_0 := (a_0 f(b_0) - b_0 f(a_0))/(f(b_0) - f(a_0));$$

• Pentru $n \ge 1$

$$- \operatorname{dac} f(c_{n-1}) = 0, \text{ atunci} \begin{cases} a_n := a_{n-1} \\ b_n := b_{n-1} \\ c_n := c_{n-1} \end{cases}$$

$$- \operatorname{dac} f(a_{n-1}) \cdot f(c_{n-1}) < 0, \text{ atunci} \begin{cases} a_n := a_{n-1} \\ b_n := c_{n-1} \\ c_n := \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)} \end{cases}$$

$$- \operatorname{dac} f(a_{n-1}) \cdot f(c_{n-1}) > 0, \text{ atunci} \begin{cases} a_n := c_{n-1} \\ b_n := b_{n-1} \\ c_n := \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)} \end{cases}$$

Iterațiile construite prin regula falsi se opresc la pasul m pentru care

$$|f(c_m)| < \varepsilon$$

sau, pentru o mai mare acuratețe, la pasul m pentru care

$$|f(c_m)| < \varepsilon \text{ si } |c_m - c_{m-1}| < \varepsilon$$

unde ε este eroarea de aproximare.

Interpretare geometrică: Ecuația dreptei determinată de punctele $A(a_n, f(a_n))$, $B(b_n, f(b_n))$ este

$$\frac{y - f(a_n)}{f(b_n) - f(a_n)} = \frac{x - a_n}{b_n - a_n}$$

Intersecția acestei drepte cu axa Ox se obține pentru y = 0, deci

$$x = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}$$

Teorema -1.2 Presupunem că funcția f are o singură rădăcină în [a,b]. Atunci șirul $(c_n)_{n\geq 0}$ construit mai sus converge la unica soluție $z\in [a,b]$ a ecuației f(x)=0.

Exemplul -1.2 Să se aproximeze, folosind regula falsi, soluția ecuației $x^3 + 4x^2 - 10 = 0$ (conținută în intervalul [-1, 2]) cu eroarile $\varepsilon 1 = 0.01$, $\varepsilon 2 = 10^{-10}$.

Soluția ecuației, aproximată cu eroarea $\varepsilon 1=0.01$ se obține la pasul m=8 și are valoarea $c_8=1.36506360624662$.

Soluția ecuației, aproximată cu eroarea $\varepsilon=10^{-10}$ se obține la pasul m=21 și are valoarea $c_{21}=1.36523001341145.$

Metoda coardei

Fie $[a,b] \subset R$ şi $f:[a,b] \to R$ o funcţie. Definim (dacă este posibil) recurent şirul $(x_n)_n$ astfel:

$$x_0 := a, \ x_1 := b \text{ §i}$$

$$x_{n+1} := \frac{x_0 f(x_n) - x_n f(x_0)}{f(x_n) - f(x_0)}, \ \forall \ n \in \mathbf{N}$$
(1)

Interpretare geometrică: Ecuația dreptei determinată de punctele $A(x_0, f(x_0))$, $B(x_n, f(x_n))$ este

$$\frac{y - f(x_n)}{f(x_0) - f(x_n)} = \frac{x - x_n}{x_0 - x_n}$$

Intersecția acestei drepte cu axa Ox se obține pentru y = 0, deci

$$x = \frac{x_0 f(x_n) - x_n f(x_0)}{f(x_n) - f(x_0)}.$$

Teorema -1.3 Presupunem că $f \in C^2([a,b])$ și

$$a) f''(x) \neq 0, \ \forall \ x \in (a,b)$$

b)
$$f(a) \cdot f''(a) > 0$$

$$c) \ f(a) \cdot f(b) < 0$$

Atunci ecuația f(x) = 0, are o soluție unică $z \in [a, b]$, iar șirul $(x_n)_n$ converge la z.

Iterațiile construite prin metoda coardei se opresc la pasul m pentru care

$$|f(x_m)| < \varepsilon$$

sau, pentru o mai mare acuratețe, la pasul m pentru care

$$|f(x_m)| < \varepsilon \text{ si } |x_m - x_{m-1}| < \varepsilon,$$

unde ε este eroarea de aproximare.

Exemplul -1.3 Să se aproximeze, folosind metoda coardei, soluția ecuației $x^3 - x + 3 = 0$ (conținută în intervalul [-3,0]) cu eroarile $\varepsilon 1 = 0.01$, $\varepsilon 2 = 10^{-10}$.

Se verifică ipotezele teoremei anterioare.

Soluția ecuației, aproximată cu eroarea $\varepsilon 1=0.01$ se obține la pasul m=10 și are valoarea $x_{10}=-1.66063905970749$.

Soluția ecuației, aproximată cu eroarea $\varepsilon 2=10^{-10}$ se obține la pasul m=40 și are valoarea $x_{40}=-1.67169988158683$.

Metoda secantei

Fie $[a,b] \subset R$ și $f:[a,b] \to R$ o funcție. Definim recurent șirul $(x_n)_n$ astfel:

$$x_0, x_1 \in [a, b]$$
 și
$$x_{n+1} := \frac{x_{n-1}f(x_n) - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})}, \ \forall \ n \in \mathbf{N}$$

Teorema -1.4 Presupunem că $f \in C^1([a,b])$ și

$$a) f'(x) \neq 0, \forall x \in [a,b]$$

b) şirul $(x_n)_n$ are toate valorile în intervalul [a,b]

c)
$$f(a) \cdot f(b) < 0$$

Atunci ecuația f(x) = 0, are o soluție unică $z \in [a, b]$, iar șirul $(x_n)_n$ converge la z.

Iterațiile construite prin metoda secantei se opresc la pasul m pentru care

$$|f(x_m)| < \varepsilon$$

sau, pentru o mai mare acuratețe, la pasul m pentru care

$$|f(x_m)| < \varepsilon \text{ si } |x_m - x_{m-1}| < \varepsilon,$$

unde ε este eroarea de aproximare.

Exemplul -1.4 Să se aproximeze, folosind metoda secantei, soluția ecuației $x^3 - x + 3 = 0$ (conținută în intervalul [-15, 15], luând $x_0 = 1$, $x_1 = 2$) cu eroarile $\varepsilon 1 = 0.01$, $\varepsilon 2 = 10^{-10}$.

Se verifică ipotezele teoremei anterioare. Punctul b) se verifică la fiecare pas.

Soluția ecuației, aproximată cu eroarea $\varepsilon 1=0.01$ se obține la pasul m=23 și are valoarea $x_{23}=-1.67109143768403$.

Soluția ecuației, aproximată cu eroarea $\varepsilon 2=10^{-10}$ (chiar $\varepsilon 2=10^{-13}$) se obține la pasul m=26 și are valoarea $x_{26}=-1.67169988165715$.

Metoda lui Newton

Fie $[a, b] \subset \mathbf{R}$ și $f : [a, b] \to \mathbf{R}$ o funcție.

Teorema -1.5 Presupunem că $f \in C^2([a,b])$, că f', f'' nu se anulează pe [a,b] şi $f(a) \cdot f(b) < 0$. Fie $x_0 \in [a,b]$ astfel încât

$$f(x_0) \cdot f''(x_0) > 0$$

si

$$x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)}, \ \forall \ n \in \mathbf{N}$$

Dacă $x_n \in [a, b], \forall n \in \mathbb{N}, \text{ atunci ecuația } f(x) = 0, \text{ are o soluție unică } z \in [a, b], \text{ iar}$ şirul $(x_n)_n$ converge la z.

Interpretare geometrică: Ecuația dreptei tangentă la graficul funcției f în punctul $A(x_0, f(x_0))$ este

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Intersecția acestei drepte cu axa Ox se obține pentru y = 0, deci

$$x = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Iterațiile construite prin metoda Newton se opresc la pasul m pentru care

$$|f(x_m)| < \varepsilon$$

sau, pentru o mai mare acuratețe, la pasul m pentru care

$$|f(x_m)| < \varepsilon \text{ si } |x_m - x_{m-1}| < \varepsilon,$$

unde ε este eroarea de aproximare (se poate folosi si evaluarea data de propozitia anterioara).

Exemplul -1.5 Să se aproximeze, folosind metoda secantei, soluția ecuației $x^3 - x + 3 = 0$ (conținută în intervalul [-2, -1], luând $x_0 = -1$) cu eroarile $\varepsilon 1 = 0.01$, $\varepsilon 2 = 10^{-10}$.

Se verifică ipotezele teoremei anterioare.

Soluția ecuației, aproximată cu eroarea $\varepsilon 1=0.01$ se obține la pasul m=5 și are valoarea $x_5=-1.67170038194364$.

Soluția ecuației, aproximată cu eroarea $\varepsilon 2=10^{-10}$ (chiar $\varepsilon 2=10^{-11}$) se obține la pasul m=7 și are valoarea $x_7=-1.67169988165716$.

Presupunem că o metodă de aproximare a soluției unei ecuații de tipul f(x) = 0 este dată de construcția unui şir $(x_n)_n$ genrat recursiv de formula $x_{n+1} = I_f(x_n)$.

Figure 1:

Mulţimea punctelor iniţiale x_0 pentru care şirul $(x_n)_n$ este convergent la z, soluţie a acestei ecuaţii, se numeşte bazin de atracţie (al metodei generate de funcţia iterativă I_f) pentru soluţia z şi se notează cu $B(I_f, z)$.

De cele mai multe ori structura acestor bazine de atracție este foarte complexă, chiar haotică.

Vom exemplifica acest lucru pentru o ecuație polinomială de forma f(z)=0 ale cărei soluții le vom aproxima cu metoda Newton.

Principiul contracției

Fie $\mathbf{I}\subset R$ un interval și $f:\mathbf{I}\to R$ o funcție. f se numește contracție dacă și numai dacă:

a) există $q \in (0,1)$ astfel încât $|f(x) - f(y)| \le q |x - y|$, pentru orice $x, y \in \mathbf{I}$

b)
$$f(\mathbf{I}) \subset \mathbf{I}$$

Propoziția -1.1 $\ \ Fie\ f:[a,b]\to R\ \ o\ funcție\ derivabilă.$

- a) Dacă există $q \in (0,1)$ astfel încât $|f'(x)| \leq q$, pentru orice $x \in [a,b]$, atunci $|f(x) f(y)| \leq q |x y|$, pentru orice $x, y \in [a,b]$.
- b) Dacă $|f(x) f(y)| \le q |x y|$ şi $\left| f\left(\frac{a+b}{2}\right) \frac{a+b}{2} \right| \le (1-q) \cdot \frac{b-a}{2}$, atunci $f([a,b]) \subset [a,b]$.

Teorema -1.6 Fie $f:[a,b] \to R$ o contracție și $x_0 \in [a,b]$. Definim șirul $(x_n)_n$ prin relația de recurență

$$x_{n+1} := f(x_n), \ \forall \ n \in \mathbf{N}$$

Atunci ecuația f(x) = x are o soluție unică $z \in [a,b]$, iar șirul $(x_n)_n$ converge la z, cu următoarea formulă de evaluare a erorii:

$$|x_n - z| \le \frac{q}{1 - q} |x_n - x_{n-1}| \le \frac{q^n}{1 - q} |x_1 - x_0|, \ \forall \ n \in \mathbf{N}^*.$$

Iterațiile construite prin metoda coardei se opresc la pasul m pentru care

$$\frac{q}{1-q}\left|x_m - x_{m-1}\right| < \varepsilon$$

sau la pasul m pentru care

$$|f(x_m) - x_m| < \varepsilon \text{ si } |x_m - x_{m-1}| < \varepsilon,$$

unde ε este eroarea de aproximare.

Exemplul -1.6 Să se aproximeze, folosind principiul contracției, soluția ecuației

$$x = \frac{8}{x+2}$$

conținută în intervalul [1,4], luând $x_0=4, cu$ eroarile $\varepsilon 1=0.01, \ \varepsilon 2=10^{-10}.$

Soluția ecuației, aproximată cu eroarea $\varepsilon 1=0.01$ se obține la pasul m=9 și are valoarea $x_9=1.99707174231332$.

Soluția ecuației, aproximată cu eroarea $\varepsilon 2=10^{-10}$ se obține la pasul m=36 și are valoarea $x_{36}=2.00000000002183$.

Presupunem că o metodă de aproximare a soluției unei ecuații de tipul f(x) = 0 este dată de construcția unui şir $(x_n)_n$ genrat recursiv de formula $x_{n+1} = I_f(x_n)$. Mulțimea punctelor inițiale x_0 pentru care șirul $(x_n)_n$ este convergent la z, soluție a acestei ecuații, se numește bazin de atracție (al metodei generate de funcția iterativă I_f) pentru soluția z și se notează cu $B(I_f, z)$. De cele mai multe ori structura acestor bazine de atracție este foarte complexă, chiar haotică.