PSALTer results panel

$$\iiint \left(\frac{1}{6}\left(6t_{1}^{2}\mathcal{R}^{ai}_{a}\mathcal{R}^{\theta}_{,\theta}+6\mathcal{R}^{a\beta\chi}\mathcal{R}^{\alpha}_{a\beta\chi}+6f^{a\beta}\right)\tau\left(\Delta+\mathcal{K}\right)_{a\beta}-12t_{1}^{2}\mathcal{R}^{\theta}_{a}\theta\partial_{t}f^{ai}-12r_{1}^{2}\partial_{\beta}\mathcal{R}^{\theta}_{,\theta}\partial_{t}\mathcal{R}^{a\beta}_{a}+12r_{1}^{2}\partial_{t}\mathcal{R}^{\theta}_{,\theta}\partial_{t}\mathcal{R}^{a\beta}_{a}+12t_{1}^{2}\mathcal{R}^{\theta}_{,\theta}\partial_{t}f^{ai}-6t_{1}^{2}\partial_{t}f^{\theta}_{a$$

°. <i>Э</i> ₁" Ţ	1	1	U	U								
0.+ <i>f</i> †	$-i\sqrt{2} kt$	$-2 k^2 t$.	0	0								
0.+ f +	0	0	0	0								
^{0.} 'Æ [∥] †	0	0	0	<i>t</i> . 2	$^{1.}^{+}\mathcal{H}^{\parallel}{}_{lphaeta}$	$^{1^+_{\cdot}}\mathcal{H}^{^\perp}{}_{\alpha\beta}$	$1.^+f^{\parallel}_{lphaeta}$	${}^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{H}^{\perp}{}_{lpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$^{1}f_{\alpha}^{\perp}$	
				$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{1}{6}(t_1+4t_1)$	$-\frac{t2t.}{3\sqrt{2}}$	$-\frac{i k (t2 t.)}{3 \sqrt{2}}$	0	0	0	0	
					- ,-		$\frac{1}{3}ik(t_1+t_2)$		0	0	0	
				$\overset{1}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k (t2 t.)}{3 \sqrt{2}}$	$-\frac{1}{3} i k (t_1 + t_2)$	$\frac{1}{3}k^2(t_1+t_2)$		0	0	0	
				$^{1}\mathcal{A}^{\parallel}$ † lpha	0	0	0		$\frac{t_1}{\sqrt{2}}$	0	īkt. 1	
				$\frac{1}{2}\mathcal{A}^{\perp} + \alpha$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0	
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	-ākt. 1	0	0	0	$2^{+}\mathcal{A}^{\parallel}_{\alpha\beta}$ $2^{+}f^{\parallel}_{\alpha\beta}$ $2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2.}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{t}{\frac{1}{2}} - \frac{ikt}{\sqrt{2}} \qquad 0$
											$\overset{2^+}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	1/2
											$2^{-}\mathcal{A}^{\parallel} + \alpha^{\alpha\beta\chi}$	$0 0 k^2 r_1 + \frac{t_1}{2}$
Satu	ırated	propa	ada	tor								

 $0.^{+} \tau^{\parallel} + \frac{i \sqrt{2} k}{(1+2 k^{2})^{2} t_{1}} - \frac{2 k^{2}}{(1+2 k^{2})^{2} t_{1}} = 0$

$0.^+\tau^{\perp}$ †	0	0	0	0										
0. σ †	0	0	0	$\frac{1}{t}$	$\overset{1^{+}}{\cdot}\sigma^{\parallel}{}_{\alpha\beta}$		$1.^+ \tau^{\parallel}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$^{1}\sigma^{_{}}{}_{lpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$\dot{\cdot}^{+}\sigma^{\parallel}$ †	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1-2t_1)}{3(1+k^2)t_1t_2}$	$\frac{i \sqrt{2} k (t_1 - 2t_1)}{3 (1 + k^2) t_1 t_2}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$\frac{\sqrt{2} (t_1-2t_1)}{3 (1+k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$\frac{i k (t_1 + 4 t_1)}{3 (1 + k^2)^2 t_1 t_1}$	0	0	0	0			
				$\overset{1,^{+}}{\cdot}\tau^{\parallel}+\overset{\alpha\beta}{\cdot}$	$-\frac{i\sqrt{2}k(t_1-2t_1)}{3(1+k^2)t_1t_2}$	$-\frac{i k (t_1 + 4 t_1)}{3 (1 + k^2)^2 t_1 t_1}$	$\frac{k^2 (t.+4t.)}{3 (1+k^2)^2 t.t.}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$			
				$\frac{1}{2}\sigma^{\mu}$	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i \sqrt{2} k (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$			
				$1^{-}\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{\tau}$ τ^{\perp} τ^{α}	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r. +t.)}{(t. +2 k^2 t.)^2}$	$^{2.}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$^{2}\sigma^{\parallel}_{\alpha\beta\chi}$
												$\frac{2}{\left(1+2k^2\right)^2t_{\dot{1}}}$	1	0
											$^{2^{+}}\tau^{\parallel}\uparrow^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	1	0
											$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$
Sou	rce co	nstrair	nts											

Spin-parity form	Covariant form	Multiplicities
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$-2 i k^{0,+} \sigma^{\parallel} + {}^{0,+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$\frac{2 i k 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} = 0}{2 i k n n n}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
$1^{-}\tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}==$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k 2^{+}_{0} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{0} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\partial^{\alpha}\sigma(\Delta+\mathcal{K})^{\chi\beta}-2\partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha}\partial^{\alpha$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\ \delta}^{\ \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha \beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}{}^{\epsilon}) == 0$	
Total expected gauge g	lenerators:	16

Massive spectrum

Pole residue: $\left| -\frac{1}{r_i} > 0 \right|$

	1
Square mass:	$-\frac{\frac{t}{1}}{2r} >$
Spin:	2
Parity:	Odd
Massless s	spec

trum

(No particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$