Versuch 243 17. Januar 2022

Messung der Boltzmannkonstante Teil II Thermisches Rauschen

Physikalisches Anfängerpraktikum II

Juan Provencio

Betreuer/in: Tobias Martiné

Inhaltsverzeichnis

T	Ziel	des Versuches	2
2		indlagen Thermisches Rauschen	2 2
3	Ver	suchsaufbau	4
	3.1	Materialen und Geräte	4
	3.2	Aufbau	5
4		ssung und Auswertung	6
	4.1	Messprotokoll	6
	4.2	Auswertung	8
5	Zus	ammenfassung und Diskussion	10
	5.1	Zusammenfassung	10
	5.2	Diskussion	10
6	Que	ellen	11

1 Ziel des Versuches

Mit diesem Versuch wollen wir grundsätzlich zwei Sachen untersuchen. Als erstes wollen wir natürlich die Boltzmann-Konstante bestimmen, aber grundlegend wollen wir das Phänomen des thermischen Rausches untersuchen. Dabei werden wir beobachten, wie Rauschen auf die Spannung und die Messungen wirkt.

2 Grundlagen

2.1 Thermisches Rauschen

Thermisches Rauschen ist ein statistisches Phänomen bei allen elektrischen Leitern. Die zufällige Brownsche Bewegung der Ladungsträgern, führt dazu, dass selbst ohne Anlegung einer Spannung sich Ladungsträgern in allen Richtungen gleichmäßig bewegen, dies erzeugt ein statisch variierendes elektrisches Potential im Leiter. Dabei schwankt die sogenannte Rauchspannung U_R natürlich um den Mittelwert 0 ohne Anlegung einer äußeren Spannung, denn sich die Ladungsträgern in allen Richtungen bewegen. Um zu quantifizieren, wie viel Rauschspannung es gibt nimmt man deswegen nicht den Mittelwert, sondern das "Root Mean Square". Das heißt, man nimmt die Wurzel aus dem Mittelwert des Quadrats, so dass man die absolute Abweichung von der Null beobachten kann:

$$\sqrt{\langle U_R^2 \rangle} = \sqrt{\lim_{t \to \infty} \frac{1}{t} \int_0^t U_r^2(t') \, \mathrm{d}t'}$$
 (1)

Bei der Untersuchung des Frequenzspektrums einer Rauschquelle beobachtet man, dass sich alle Frequenzen im Bereich von 0 bis einige THz gleichmäßig repräsentiert zeigen. Keine Frequenz wird an dieser Stelle bevorzugt, deswegen spricht man in Analogie über "weißes Rauschen" aus der Akkustik oder "weißes Licht", bei welchen alle Frequenzen (in einem Bereich) vorhanden sind. Dieses Rauschen nennt man auch Nyquist-Rauschen. Nyquist hat auch eine Beziehung zwischen dem quadratischen Effektiwert der Rauchspannung und weitere Faktoren gefunden:

$$\left\langle U_R^2 \right\rangle = 4kTR\Delta f \tag{2}$$

wobei k die Boltzmannkonstante, T die Temperatur, R der Widerstand und Δf die Bandbreite des Messinstruments sind.

2.1.1 Messprinzip

Da die zu messende Spannung extrem klein ist, muss man sehr genaue Messprozesse anwenden. Im Prinzip hat man ja das meiste relativ leicht gegeben, die Temperatur, der Widerstand und die Bandbreite sollten keine große Schwierigkeit darstellen, aber die Spannung befindet sich im Bereich von μV , weshalb man die Einbeziehung eines sensiblen Spannungsverstärkers benötigt. Dieser verstärkt die gemessene Spannung um einen Faktor von 10^3 . Allerdings stellt der Verstärker eine weitere Rauschquelle $\langle U_V^2 \rangle$ dar, so dass man insgesamt die Rauschspannung

$$\sqrt{\left\langle U_{R+V}^2 \right\rangle} = \sqrt{\left\langle (U_R + U_V)^2 \right\rangle} \tag{3}$$

$$= \sqrt{\langle U_R^2 \rangle + \langle U_V^2 \rangle + 2 \langle U_R \rangle \langle U_V \rangle} \tag{4}$$

$$=\sqrt{\langle U_R^2\rangle + \langle U_V^2\rangle} \tag{5}$$

Das Rauschen des Verstärkers messen wir durch eine "Nullmessung". Zur Bestimmung des anderen Rauschens verwenden wir einen zusätzlichn Bandfilter um die Bandbreite einzuschränken, da die obere Grenze der Bandbreite bei hohen Frequenzen bei den meisten Voltmetern nicht deutlich definiert, und außerdem können wir damit die niederen Störsignalen ebenfalls herausfiltern.

Zur Messung benötigen wir den Frequenzgang der Messelektronik, welcher definiert wird durch das Quotient des Ausgangssignals und des Eingangssignals:

$$g(f) = \frac{U_{\text{Aus}}}{U_{\text{Ein}}} \bigg|_{f} \tag{6}$$

womit wir den Ausgangssignal in einem kleinen Intervall df bestimmen können als

$$d \langle U^2_{\text{Aus}} \rangle = g(f)^2 d \langle U^2_{\text{Ein}} \rangle = 4kTRg(f)^2 df$$
 (7)

Nach Integration und Mitberücksichtigung des Verstärkers erhalten wir also

$$\left\langle U^{2}_{\text{Aus}}\right\rangle = 4kTR\underbrace{\int_{0}^{\infty} g(f)^{2} df}_{=B} + \left\langle U_{V}^{2}\right\rangle$$
 (8)

$$=4kTRB + \left\langle U_V^2 \right\rangle \tag{9}$$

B wird als äquivalente Rauschbandbreite bekannt. Aus (9) lässt sich die Boltzmannkonstante bestimmen gemäß

$$k = \frac{\langle U^2_{\text{Aus}} \rangle - \langle U_V^2 \rangle}{4TRB}.$$
 (10)

2.1.2 Messung des Frequenzgangs

Da g(f) a priori nicht bekannt ist, muss man experimentell den Frequenzgang bestimmen. Dazu gibt man durch einen Funktionsgenerator ein Sinus-Signal ein, was durch ein Dämpfungsglied mit $D=10^{-3}$ gedämpft wird um den Verstärker nicht in Sättigung zu bringen. Durch den Rechner wird automatisch die Messung durchgeführt. Dabei wird ein Signal der Frequenz f eingegeben und eine konstante Eingangsspannung $\langle U^2_{\rm ein} \rangle$ angelegt und mit dem Oszilloskop die Ausgangsspannung $\langle U^2_{\rm Aus} \rangle$ gemessen. Dieser Vorgang wird für mehrere Frequenzen wiederholt. Die Messdaten können später numerisch integriert werden.

$$g(f) = \frac{1}{D} \frac{\sqrt{\langle U^2_{\text{Aus}} \rangle}}{\sqrt{\langle U^2_{\text{Ein}} \rangle}}$$
(11)

3 Versuchsaufbau

3.1 Materialen und Geräte

- Batterienetzteil
- Zimmerthermometer
- Verschiedene ohmsche Widerstände in einem gemeinsamen Gehäuse montiert
- Rauscharmer Verstärker mit 1000-facher Verstärkung und zuschaltbarem Bandfilter
- Dämpfungsglied mit 1/1000 Dämpfung
- Beheizbarer Widerstand (Pt4000-Widerstand)
- Heizungsanteil mit integrierter Regelelektronik für den beheizbaren Widerstand
- Oszilloskop mit Spektrumanalysator
- Funktionsgenerator
- Multimeter Agilent HP34401A
- PC

3.2 Aufbau

Abbildung 1: Aufbau

4 Messung und Auswertung

4.1 Messprotokoll

Men poblo! 148: Thermisches Rauschen 17. 01. 2022 Mile Brault Juan Provencio Telanfgabe 1: Qualitative Unterouchung der Rancopan Qualitative Reobachtung den Spehtrums der Spannung innit Ostillowap zu unterochie direlen Widerständen. - Spannungswurve 1 für Widerstand 1 - Emporuntieller Alfall für hober Frequenzen V Noch striftern: Toilanfgabe 2: Rausschopannung ohr Put der Widerstandes Fir reichiedene Widerstandle nimmt dan Volt meter a. 100 Ipannungsmissrungen auf Widerstand [LR] Effektivmere [mv] Mittelwere [mv] Hittelsen Skap 1,425 2,4073 2: 0,000 48/101 15 3,6881 3,6570 2: 0,014/133 20 4,1054 4,1088 2: 0,0148/101 25 4,6552 2: 0,018/101 80 5,0483 5,0401 2: Rauschopane 4 Messgenawiget Voltmers 2: 0.3% 4 Messgenawiget Voltmers 2: 0.3% Tabelle (1): Rauschopane 4 Messung mit Kursschluss: Effentivisch : 0,005 868 mV, Mittelwer : 0,005 81 mV Strudbalatowachung: 0,000 25 Henningen a 103 Talaufgabe 3: Massung den Frequenzgenges den Vertänden stell Mit Däunpfunge glie d vird über dem Frunk honsgename mitteln Ostillowop in Frequenzgang genessen. P. notellungen webe Sun pt	Mouse to 11 110		Dauschen
Mile Brault Jean Provencio Telanf gabe 1: Qualitative Unterouchung dor Rancopami Qualitative Reobachtung der Spentrums der Spannung innit Ossillorup zu unter dure direlen Mideratänden. - Spannungshurve 1 für Mider stand 1 - Empowentieller Alfall für hohr Frequenzen V Noch stärlen: Banshifter Tailanfgabe 2: Ransschpannung oh Put der Mideratandes Für verschiedene Mideratande nimmet dan Volt meter ca. 100 Ipannungen soch ngen auf Mideratand [AR] Effehtrywert [mv] Mitteliogra [mv] Hitteriogra Mideratand [AR] Effehtrywert [mv] Mitteliogra [mv] Hitteriogra 500 3,1066 3,1188 ± 0.0146/Ns. 3,6881 3,6590± 0.014/Ns. 3,6881 3,6552± 0.018/ms. 4,6338 4,6552± 0.018/ms. 4,6338 4,6552± 0.018/ms. 4,6338 4,6552± 0.018/ms. Talalle(1): Ranschopane 4 Messgenungheit Voltmeter 10.3% Talalle(1): Ranschopane 4 Messgenungheit Voltmeter 20.3% Messgenungheit Voltmeter 20.3% Messung mit Kurzschluss: Effentiv vera : 0,005 868 mV, Mitteliona: 0,005 81 mV Strundard abovici chung: 0,000 25 Themas and Function der Mideratane Mit Däunpfunge ghie d wird über den Functions genares mitteln Osa II o Nop M Frequency and Remessen.		I hermisches	Tunocu II
Juan Provencia Talant gabe 1: Qualitative Unterouchung der Rauserpann Analitative Reobachtung der Spehtrums du Spannung imit Osallonusp zu unterndniedlichen Widerständen. - Spannungswurve 1 für Wicht stand 1 - Emponentieller Alfall für hobe Frequenzen / Noch skirternit Talantgabe 2: Rausschspannung oh Put der Widerstandes Für Nerschiedere Widerstände nimmt den Volt meter ca. 100 Ipannungsmessungen auf Widerstand [IN] Ethikrwert [mv] Mittelwert [mv] + 1777 5 kg. 2, 4073 ± 0,000 ses filot 0 3,066 3,1108 ± 0.0116 / his 15 3,6881 3,6370 ± 0.0146 / his 15 3,6881 3,6370 ± 0.0148 / filo 4,1054 4,1088 ± 0.0148 / filo 4,1054 4,1088 ± 0.0148 / filo 4,6358 4,6552 ± 0.018 / filo 80 5,0483 5,070 ± 0.008 / filo * Fehlu Widerstande ± 0.5 % * Fehlu Widerstande ± 0.5 % * Hessgenauigheit Voltmets ± 0.3% # Hessgenauigheit Voltmets ± 0.0058 1 pnV Standard abourcichung : 0.00025 Talaufgabe 3 : Hessung den Frequenzganges den Verteilber Berliner mitteln Osai II shoop in Frequenzganges den Verteilber Berliner mitteln Osai II shoop in Frequenzgange			
Télaufgabe 1: Qualitative Unterouchung dor Raucopanna auditative Reobachtung don Spehrums du Spannung invitosaillonusp zu unternoduce disclen Widerständen. - Spannungshurve 1 für W. durstand 1 - Emponuntollor Abfall für hobu Trequenzen V Noch stätlum: Talaufgabe 2: Rausschpannung ab Put dor Widerstandes Er reschiedene Widerstände nimmt dan Volt meter ca. 100 Jannungsmessungen auf Widerstand [hill] Effehtrinert [mv] Mittelwert [mv] freten 5kgr. 1,125 2,4079 ± 0,000 set 100 3,1066 3,1188 ± 0.0146 / his 15 3,6881 3,6590 ± 0.014 / 133 4,1054 4,1054 4,1054 4,1054 4,1054 4,1054 4,1054 4,1054 4,6368 4,6552 ± 0.018 / nii 80 5,0483 5,070 ± 0.018 / nii 80 Fehlu Widerstande ± 0.5 43 Tabelle (1): Rauschopane 4 Nessung mit Kurzschluss: Effektivien : 0.005 868 mV, Mittellune: 0.00581 mV Standahabore chung: 0.00025 Talaufgabe 3: Nessung dur Frequenzganges du Ventaillen sind Mit Däungfunge glies al wird über den Fund hons genander mitteln Osai II ohop die Frequenzgange mensessen.			
instruction by a untenduce disclen Widerstanden. Spanning sturve 1 für Widerstand 1 - Emporentieller Abfall für blobe Frequenzen Moch stättle mit Band Ritter Tailanfg abe 2: Rausschspannung oh Put der Widerstandes Tix reschiedere Widerstande nimmt dan Volt meter a. 100 Ipannungsmessungen auf Widerstand [h][] Ethhirwert [mv] Mittelson [mv] + HTRES 1,425 2,4079 ± 0,00 seption 15 3,6881 3,6390 ± 0.014/33 20 4,1054 4,1088 ± 0.0146/103 25 4,6368 4,6368 4,6552 ± 0.018/110 * Fehle Widerstande ± 0.5% * Fehle Widerstande ± 0.5% * Hessgenauigheit Voltmeks ± 0.3% * Tabelle(11: Rausschspans * Messung mit Kurzschluss: Etterhir were: 0,005868 mv Mittelsone: 0.00581 mv Standad abourcichung: 0,00025 Tailaufg abe 3: Nessung din Frequent georges den Ventriller verteiner vertein	Juan Provencio		
instruction by a untenduce disclen Widerstanden. Spanning sturve 1 für Widerstand 1 - Emporentieller Abfall für blobe Frequenzen Moch stättle mit Band Ritter Tailanfg abe 2: Rausschspannung oh Put der Widerstandes Tix reschiedere Widerstande nimmt dan Volt meter a. 100 Ipannungsmessungen auf Widerstand [h][] Ethhirwert [mv] Mittelson [mv] + HTRES 1,425 2,4079 ± 0,00 seption 15 3,6881 3,6390 ± 0.014/33 20 4,1054 4,1088 ± 0.0146/103 25 4,6368 4,6368 4,6552 ± 0.018/110 * Fehle Widerstande ± 0.5% * Fehle Widerstande ± 0.5% * Hessgenauigheit Voltmeks ± 0.3% * Tabelle(11: Rausschspans * Messung mit Kurzschluss: Etterhir were: 0,005868 mv Mittelsone: 0.00581 mv Standad abourcichung: 0,00025 Tailaufg abe 3: Nessung din Frequent georges den Ventriller verteiner vertein	Telanfgabe 1: Qu	calitative Unte	erouchung der Rayon
That is allowed to me the dicter Nidertander. - Spann mag shurve 1 fiv Ni de retand 1 - Emporentieller Airfall five hole Frequencien V Noch strictur nit Band Rither Tailanfg abe 2: Rausschapannung oh Pet der Widerstanders Tix verschiedere Widerstander Himmt dan Volt meter ca. 100 Ipannungsmicssungen auf Wideretand [hl] Ethikwert [mv] Mittelwert [mv] + titrien 5600 2,4079 ± 0,000 1/16 / 163 15 3,6881 3,6390 ± 0.0146 / 163 20 4,1054 4,1088 ± 0.0146 / 163 20 4,1054 4,1088 ± 0.0146 / 163 25 4,6338 4,6552 ± 0.018 / 161 25 4,6338 4,6552 ± 0.018 / 161 * Fehle Widerstander ± 0.5% * Fehle Widerstander ± 0.5% * Hessgenaurigheit Veltmeter ± 0.5% * Hessgenaurigheit Veltmeter ± 0.5% * Messung mit Kurzschluss: Etterhiv went : 0,005868 mv, Mittelware: 0.00581 mv Standad abour chung: 0,00025 Tilaufgabe 3: Nessung din Frequent georges din Ventriller bert mitter of Standard wird über den Frunkhonsgenamen mitter Ostille hop at Frequent gang senarate	Qualitative Beobacht	una der Sool	wums de Spannin
- Spanning shurve 1 fir Widerstand ? - Emponentielly Abfall fir boke Frequenzer V North strike nit Band Rither Tailanfaabe 2: Rausschapannung ab Plut der Widerstandes Fir verschiedene Widerstande nimmt dan Volt meter ca. 100 4 pannungsmessungen auf Widerstand [h]2] Ethentiquert [mv] Mittelwert [mv] + 18 per 10 3.1066 3.1138 ± 0.0146 / 183 15 3.6881 3,6390 ± 0.014 / 133 20 4.1054 4,1088 ± 0.0148 / 101 20 4.1054 4,1088 ± 0.0148 / 101 35 4,6338 4,6552 ± 0.018 / 111 80 5,0482 5,070 ± 0.0189 / 101 * Fehle Widerstande ± 0.5% Tabelle (11: Rauschapane * Messgenauigheit Voltmete ± 0.3% ah Fundation du Widerstande * Zimme Lemperatur 22,2° C * Messung mit Kurtschluss: Ettentrusen : 0.005868 mV, Mittelware: 0.00581 mV Standard abora Chung: 0.00025 the Mennagen = 103 Tailaufgabe 3: Massung du Frequenzounges du Ventainer. Bert Mit Däinpfrunge gierd wird über den Fund Vonsgenare mitteln Osa II o hap der Frequenzagane in Remessen.	imit 0 53/11074 or 24 111	المرائد ما المرائد المرائد	Wide dinden
- Emponentieller Alfall für lobe tegnenzen V Noch zeinhern: Tailanfgabe 2: Rausschapannung all Plet der Miderstandes The reschiedere Widerstande niment dan Volt meter ca. 100 Ipannungsmiessungen auf Widerstand [NI] Ettelhirwert [mv] Mittelwert [mv] + 17 Miss 5 Mit 2, 4079 ± 0,000 ms 1/101 15 2,4079 ± 0,000 ms 1/101 15 3,6881 3,6380 3,6380 ± 0,014 / 193 20 4,1054 4,1088 ± 0,014 / 193 20 4,1054 4,1088 ± 0,014 / 193 20 4,1054 4,1088 ± 0,014 / 193 20 4,1054 4,1088 ± 0,014 / 193 4,6388 4,6552 ± 0.018 / 111 25 4,6388 4,6552 ± 0.018 / 111 4 Fehle Widerstande ± 0.5 % Tabelle (11: Rausschapane + Messgenauigheit Voltmets ± 0.3% an Fundhion du Widerstande + 0.5 % an Fundhion du Widerstande + 0.5 % an Fundhion du Widerstande + 0.05 % an Fundhion du Widerstande + 0.005 % mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 8 mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 8 mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 8 mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 8 mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 8 mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 8 mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 8 mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 8 mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 8 mv, Mittelwat: 0.005 8 1 mv Ettender Jean et 10 005 8 mv Mittel Ostille Worp et Freyneus and Jean et 10 005 8 mu mittel on sentender et 10 005 10 mm et 10 0			
Taxanto abe 2: Kausschpannung ah Pit der Widerstandes Fix Yerschiedere Widerstande nimmt dan Volt meter ca. 100 Ipannungsmessungen auf Widerstand [h.R.] Ethnixwert [mv] Mittelwert [mv] + IPFrein 5kR 2,425 2,4079 ± 0,000 4/101 10 3,1066 3,1188 ± 0.0116 / In3 15 3,6881 3,6500 ± 0.014 / 33 20 4,1054 4,1088 ± 0,0148 / ID1 25 4,6388 4,6552 ± 0.018 / In1 80 5,0483 5,070 ± 0.018 / In1 80 5,0483 5,070 ± 0.018 / In1 4 Messgenawigheit Voltmeks ± 0.3% Tabelle (11: Rawschepane 4 Messgenawigheit Voltmeks ± 0.3% Tabelle (11: Rawschepane 4 Messung mit Kurzschluss: Etterhixwere: 0,005888 mV, Mittelwere: 0,00581 mV Standad abura Chung: 0,00025 # Menngen = 103 Talaufgabe 3: Messung der Frequent garnges der Ventähler-brit Mit Däinpfrange gie d wird über den Frank Honsey ename	- E 12-10	I MY Wide	stand)
Taxanto abe 2: Kausschpannung ah Pit der Widerstandes Fix Yerschiedere Widerstande nimmt dan Volt meter ca. 100 Ipannungsmessungen auf Widerstand [h.R.] Ethnixwert [mv] Mittelwert [mv] + IPFrein 5kR 2,425 2,4079 ± 0,000 4/101 10 3,1066 3,1188 ± 0.0116 / In3 15 3,6881 3,6500 ± 0.014 / 33 20 4,1054 4,1088 ± 0,0148 / ID1 25 4,6388 4,6552 ± 0.018 / In1 80 5,0483 5,070 ± 0.018 / In1 80 5,0483 5,070 ± 0.018 / In1 4 Messgenawigheit Voltmeks ± 0.3% Tabelle (11: Rawschepane 4 Messgenawigheit Voltmeks ± 0.3% Tabelle (11: Rawschepane 4 Messung mit Kurzschluss: Etterhixwere: 0,005888 mV, Mittelwere: 0,00581 mV Standad abura Chung: 0,00025 # Menngen = 103 Talaufgabe 3: Messung der Frequent garnges der Ventähler-brit Mit Däinpfrange gie d wird über den Frank Honsey ename	Tion of the top of the	ill fix hote	Frequenzen V Noch stäther mit
Januagem estangen auf Januagem estangen auf Widerstand [h] Ethhirwere [mv] Mittelware [mv] + Texpen Jer 125 2,4073 ± 0,000 est/100 Jo 3,1066 3,1188 ± 0.0146 / 103 15 3,6881 3,6300 ± 0.0146 / 103 20 4,1054 4,1088 ± 0.0148 / 100 25 4,6388 4,6552 ± 0.018 / 100 4,6388 4,6552 ± 0.018 / 100 *Fehlu Widerstande ± 0.5 % * Hessgenauigheit Voltmetu ± 0.3% * Messgenauigheit Voltmetu ± 0.3% * Messung mit Kurzschluss: Ettehtivuen : 0.005868 mV, Mittelware: 0.00581 mV Standard aborachung: 0.00025 Talaufgabe 3: Nassung au Frequent georges du Nontainer son Mit Däinpfrungegie of wird über den Frunk honsgename mittem Ostillenop ar Frequent ganges du Nontainer son	racantoabe 2 Kai	usschopannung al	h Put dor Widerstandes
Hiderstand [h] Effehtywerk [mv] Mittelwerk [mv] + 18 piece 1, 125 2, 4079 ± 0,000 cs. 1/102 10 3, 1066 3, 1188 ± 0.0146 / 1103 15 3, 6881 3, 6570 ± 0.014 / 193 20 4, 1054 4, 1388 ± 0.0143 / 1101 25 4, 6338 4, 6552 ± 0.013 / 1101 80 5,0483 5,0701 ± 0.0180 / 1101 * Fehle Widerstande ± 0.5% Tabelle (1): Rawschspanne an Funchion du Witholis * Hessgenawigheit Voltmetts ± 0.3% an Funchion du Witholis * Zimme Lemperatur 22, 2° C * Hessung mit Kurzschluss: Effekty werk = 0.005868 mV, Mittelwerk = 0.00581 mV Standard above thung = 0.00025	Dannungsmesse Wide	erstande nimi	nt dan Volt meter ca. 100
5 kg 2, 4079 ± 0,00 sus /102 1, 125 2, 4079 ± 0,00 sus /102 15 3,1066 3,1188 ± 0.0116 /103 20 4,1054 4, 1088 ± 0.0143/102 20 4,1054 4, 1088 ± 0.0143/102 25 4,6338 4,6552 ± 0.018/102 * Fehlu Widerstande ± 0.5% Tabelle(11: Rawschepane an Funchion du Widerstande ± 0.005 8 6 8 mV Messung mi + Kurzschluss: Effectivel : 0,005 8 6 8 mV Mitteluve: 0,005 8 1 mV Standad aboura chung: 0,000 25 # Mennigen = 103 Talaufgabe 3: Massung du Frequenzaganges du Ventailler stande mittelle Osto II o wep ar Frequenzaganges den Ventailler stande mittelle Osto II o wep ar Frequenzaganges den Frequenzaganges den Ventailler stande mittelle Osto II o wep ar Frequenzagangen genaries	Widerstand [10]	aut	Standown Standown
10 3,1066 3,1188 ± 0.0116/103 15 3,6881 3,6380 ± 0.0148/101 20 4,1054 4,1054 4,1088 ± 0.0148/101 25 4,6338 4,6552 ± 0.018/101 30 5,0483 ± 5,0701 ± 0.018/101 4 Messgenauigheit Voltmeks ± 0.3% 4 Messgenauigheit Voltmeks ± 0.3% 4 Messung mit Kurzschluss: Effektiv werk ± 0.005888 mV, Mittellune: 0.00581 mV Ctundar about thung: 0.00025 Tillaufgabe 3: Hessung den Frequenzganges den Ventarhen-bord Mit Däupfungeghe d wird über den Funn honsgenaries mitteln Ostill silvop der Frequenzgange genaries	548		CMY J MIHOLOGIA (MY)+ 18 HOSSIN
3, 1188 ± 0.0116/Va3 20 4, 1054 4, 1088 ± 0.0148/Va3 25 4, 6338 4, 6552 ± 0.018/Vas * Fehle Widerstande ± 0.5% * Messagenanigheit Voltmets ± 0.3% * Zimme Aemperatur 22, 2° C * Messung mit Kurzschluss: Effektivisen = 0.005863 mV, Mitteluna: 0.00581 mV Standad abura chung: 0.00025 Talaufgabe 3: Messung din Frequenzaanges den Ventälher bert Mit Däunpfungegies den und über den Funn honsgenaraer mittel Osa II ahap in Frequenzaange and Bernessen.			
20 4,1054 4,1054 4,1088 ± 0,0148/[10] 25 4,6388 4,6552 ± 0.018/m 30 5,0483 5,0701 ± 0.0163/m * Messgenawigheit Voltmeks ± 0.3% * Messgenawigheit Voltmeks ± 0.3% * Messung mit Kurzschluss: Effectivele : 0,005888 mV, Mittelune: 0,00581 mV Standadabora chung: 0,00025 # Messung mit Kurzschluss: Effectivele : 0,005888 mV, Mittelune: 0,00581 mV Standadabora chung: 0,00025 # Messung with the sample of			3, 1198 ± 0.0 116/103
4,1054 4,1054 4,1054 4,6388 4,6552±0.018/111 80 5,0483 5,0701±0.018/1101 * Fehly Widerstande ±0.5% * Messgenawigheit Voltmeks ±0.3% * Messgenawigheit Voltmeks ±0.3% * A Zimme Aemperatur 22,2°C * Messung mit Kurzschluss: Effectively : 0,005888 mV, Mitteluxt: 0,00581 mV Standad abora chung: 0,00025 # Menugen = 103 Talaufgabe 3: Messung on Frequenzganges on Vontailler tom Mit Dainpfunge ghe a wird über den Fund honsgeharab. mittem Osa II on Norp on Frequenzange and gennessen.		3,6881	3,63701 0.014/198
4,6388 4,6552±0.018/pm 80 5,0483 5,0701 ±0.0189/mi *Fehly Widerstande ±0.5% Tabelle (11: Rawschspanne) * Messgenauight Voltmets ±0.3% an Funchion du Widente * Zimme Lemperatur 22,2° C * Messung mit Kurzschluss: Effectivel ±0.00588\$ mV, Mittelune: 0.00581 mV Standad abora chung: 0.00025 # Messungen =103 Talaufgabe 3: Messung du Frequenzounges du Ventaillen-brit Mit Däupfunge glied wird über den tunn honsgeharder mitten Osa II ahap av Frequenza and gemessen.		4,1054	
* Fehle Widerstande ± 0.5% * Tabelle (1): Rawschspanner * Messgenauigheit Voltmeks ± 0.3% * Zimme Acuperatur 22,2°C * Messung mit Kurzschluss: Effentivuele : 0.005 8 8 8 mV, Mittelunt: 0.00581 mV Standar about chung: 0.00025 Talaufgabe 3: Messung on Frequenzganges der Vontailher. And Mit Dämpfunge give at wird über den Fund honsgeharab. mittel Ostille hop at Frequenzange.	35	4,6338	
* Messgenauigheit Voltmeks ± 0.3% ah Funktion du Widuster * Zimme Aemperatur 22, 2° C * Messung mit Kurzschluss: Effentir were: 0.005888 mV, Mittelunt: 0.00581 mV Standard abora chung: 0.00025 # Menugen = 103 Talanfgabe 3: Messung du Trequenzganges du Ventailler bent Mit Daimpfunge ghe d wird über den Funktionsgeharar	80	5,0483	
* Messagenauight Veltmets: 0.3% * Zimme Lemperatur 22,2° C * Messung mit Kurzschluss: Effective were: 0.00588 my, Mittelium: 0.00581 mv Standard abord chung: 0.00025 the Mennagen = 103 The language 3: Messung our Frequent granges der Ventürler bert Mit Dämpfunge glie der wird über den trum honsgeharder mittem Ost II on hop av Frequent gang genessen.	* Fehlu Widerstande t	0.5%	
* Zimme Alemperatur 22, 2° C * Messung mit Kurzschluss: Effectivele : 0,005 868 mV, Mittelunt: 0,00581 mV Standard abord: Chung: 0,000 25 # Menugen = 103 Talaufgabe 3: Messung our Frequent ganges der Ventähler brit Mit Dämpfunge glie al wird über den Fund honsgeharabe mittem Osa'll on hop av Frequent gang genessen.	* Messgenauighit Volt	mets ± 0.3%	ah Funktion de Widester
* Messung mit Kurzschluss: Effentiv ver : 0,005888 mV, Mittelunt: 0,00581 mV Standar abwaichung: 0,00025 # Menngen = 103 Talanfgabe 3: Messung on Frequenzganges der Ventähler. And Mit Dämpfunge glied wird über den Frunk honsgenarabe mittem Ostilla wap ar Frequenzgange and en entähler.			
Effentivisen: 0,005 8 8 mV, Mittelunt: 0,00581 mV Standaraborachung: 0,00025 # Menngen = 103 Talanfgabe 3: Messung on Frequent ganges der Ventüllen som Mit Dämpfunge glie at wird über den Funn honsgeharaber mitteln Ostill in Nop ar Frequent gang gemessen.			
Talanfgabe 3: Messung du Frequenzaunges der Ventähler beid Mit Dämpfunge glied wird über den Fund honsgenander mitteln Ostilla wap ar Frequenza aug gemessen.	EHENTIVUEL : 0,00580	2 m VF May	
Mit Dainpfunge glie d vira über den tunk honsgeharer. mitten Ostillahap ar Freyneuzgang gemessen.	Standad aburg thung	i O OOO	DA: 0.00581 mV
Mit Dainpfunge glie d vira über den tunk honsgeharer. mitten Ostillahap ar Freyneuzgang gemessen.	Tillaufante 3: Was	5,000 25	# Menngen = 103
mittel Ostilla hop or Freywerza and genessen.		d Incall	enzanges du Ventainer
menta any genessen.		and upo	aen Functionsgenara
E. 15+ ellinger niehe Snir pt 000 17:01.21		The state of the	N e Bernacco
	F. 10+ellinger we're	Suript	17.01.21

Abbildung 2: Messprotokoll

Abbildung 3: Rauschspektrum in einem großen Frequenzintervall

Abbildung 4: Rauschspektrum in einem großen Frequenzintervall mit einem Bandpassfilter

4.2 Auswertung

4.2.1 Anpassung und äquivalente Rauschbandbreite

Als erstes wollen wir den Frequenzgang quantitativ untersuchen und damit schließlich die äquivalente Rauschbandbreite bestimmen, welche notwendig ist um die Boltzmannkonstante zu bestimmen. Dafür haben wir im Python-Skript die Dateien aus Teilaufgabe 3. der Durchführung hochgeladen und mit einer passenden Skala auf Diagramm 1 aufgetragen.

Diagramm 1: Gemessener Frequenzgang inklusive Fit

Dafür haben wir uns auf Gleichung 2 gestützt und über die Messwerte folgende Funktion angepasst:

$$g(f) = \frac{V}{\sqrt{1 + \left(\frac{f}{\omega_1}\right)^{-2n_1}} \sqrt{1 + \left(\frac{f}{\omega_2}\right)^{-2n_2}}}$$
(12)

Dies entspricht der Überlagerung aus dem Frequenzgang eines Hoch- und eines Tiefpassfilters mit der Verstärkung V, $\omega_{1,2}$ die Grenzfrequenz des Tiefbzw. Hochpassfilters und $n_{1,2}$ die Filterordnung des Tiefbzw. Hochpassfilters.

Aus diesem Frequenzgang wurde als nächstes die äquivalente Bandbreite

durch numerische Integration bestimmt. Nach dem Python-Skript lautet diese

$$B = (4,73 \pm 2\%) \cdot 10^{12} \,\mathrm{Hz} \tag{13}$$

Der Fehler von 2% wurde als der im Praktikumsskript angegebene systematischer Fehler angegeben.

4.2.2 Differenz der Rauschspannung² und Verstärkerrauschspannung² und Bestimmung der Boltzmannkonstante

Als nächstes wurde die in Teilaufgabe 2 gemessene Rauschspannung U_R^2 der Verstärkerspannung bei der Nullmessung U_V^2 abgezogen und gegen den Widerstand aufgetragen.

Abbildung 5: Spannungsdifferenz² gegen Widerstand

Daraus ließ sich die Steigung der Gerade feststellen, welche nach der Theorie

$$a = 4k_B T B \tag{14}$$

$$\to k_B = \frac{a}{4TB} \tag{15}$$

Die Temperatur im Raum wurde gemessen und B wurde bereits bestimmt. Damit ließ sich die Boltzmannkonstante bestimmen als

$$k_B = (1, 56 \pm 0, 03 \,\text{stat.} \pm 0, 03 \,\text{sys.}) \cdot 10^{-25} \,\text{J K}^{-1}$$
 (16)

Es ist wichtig an dieser Stelle den statistischen von dem systematischen Fehler zu unterscheiden, weil

5 Zusammenfassung und Diskussion

5.1 Zusammenfassung

In diesem Versuch haben wir uns mit den Ursachen und Effekte des thermischen Rausches auseinandergesetzt. Als erstes haben wir das Spektrum der Rauschsspannung qualitativ beobachtet. Dabei konnte man klar erkennen, dass die Spannungskurve höher wird mit steigendem Widerstand, und dass es einen exponentiellen Abfall bei hoheren Frequenzen abgibgt, welcher mit einem Bandfilter noch deutlich weiter gesunken wird.

Als nächstes haben wir für verschiedene Widerstände die Rauschspannung gemessen, dabei wurde automatisch durch den Rechner ein Mittelwert über etwa 100 Messungen gebildet und einen entsprechenden Fehler angegeben. Dazu hat man auch eine Messung mit Kurzschluss durchgeführt um die Nullmessung zu berücksichtigen.

Als letztes haben wir den Frequenzgang des Verstärkers bestimmt. Die zugehörige Messung wurde auf eine Datei gespeichert und später in der Auswertung gebraucht.

5.2 Diskussion

Als erstes wollen wir in der Diskussion auf einen scheinbaren Fehler in der Auswertung eingehen. Es fällt in erster Linie bei den Fitparemtern des Frequenzgangs, dass die angegebene Verstärkung um den Faktor 10 größer ist als die ursprüngliche Vorhersage. Die weiteren Parametern passen grob zur Vorhersage. Auf diesem Grund entsteht bei der numerischen Integration einen Faktor von 10^2 , welcher nicht den Erwartungen entspricht. Diese Ordnungsgröße übersetzt sich schließlich in der Angabe der Boltzmannkonstante, welche ganze um ganze 2 Größenordnungen vom Literaturwert abweicht. Um die Einheiten der Ausgangsspannung im Einklang mit der Eingangsspannung zu bringen wurde die Ausgangsspannung, welche ursprünglich in mV_{rms} angegeben war, um den Faktor 10^{-3} in V_{rms} gebracht. Im Folgenden werden wir diesen Faktor 10^2 für den Vergleich mit dem Literaturwert korregieren.

Mit dem Fit über den Frequenzgang lässt sich nach der χ^2 -Analyse einen fast perfekten linearen Zusammenhang mit einer Fitwahrscheinlichkeit von 98%. Allerdings bei der χ^2 Analyse des linearen Fits bei der Spannungsdifferenz beträgt die Fitwahrscheinlichkeit 0%. Da man aus der Steigung dieser Gerade zum Teil die Boltzmannkonstante bestimmen will, lässt sich schon vermuten, dass diese stark von dem Literaturwert abweichen wird. Dies ist besonders merkwürdig, denn die Messungen hier automatisch durch einen Rechner durchgeführt wurden und daher der menschliche Faktor nur noch eine geringe Rolle spielt.

Zur Diskussion wollen wir die von uns bestimmte Boltzmannkonstante mit dem Literaturwert (BIPM, 2019) vergleichen:

$$k_B = 1,380\,649 \cdot 10^{23} \,\mathrm{J \, K^{-1}}$$
 (17)

Der von uns gemessene Wert weicht um 6 σ -Bereiche von diesem ab, woraus sich deutlich feststellen lässt dass es in der Durchführung des Versuches zu systematischen Fehlern kam. Diese mögen möglicherweise an den Bauteilen liegen, sei es durch eine ungenaue Angabe des Widerstands oder der Dämpfung, welche mit der Zeit von der ursprünglichen Angabe abweichen können. Außerdem wurden die kleinen Rauschspannungen von anderen Bauelementen wie die (möglichst kurzen) Kabeln nicht berücksichtigt, aber es wird angenommen, dass diese nur einen vernachlässigbaren Einfluss auf die Messung hatten. Ansonsten ließ dieser Versuch wenig Raum für menschlichen Fehler.

6 Quellen

Wagner, J., Universität Heidelberg (2021). Physikalisches Praktikum PAP 2.2 für Studierende der Physik B.Sc..

BIPM. (2019). The International System of Units (9. Aufl.). BIPM.

Anhang

VIII Auswertung

```
In [1]:
```

```
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
from numpy import exp, sqrt, log
from scipy.optimize import curve_fit
from scipy.optimize import curve_fit
from scipy.stats import chi2
import scipy.integrate as integrate
```

VIII.1/2 Importieren und graphische Darstellung + Fit

```
# Importieren der Daten
f, U_aus = np.loadtxt('data/243/A3.txt', skiprows = 1, usecols = (0,1),
                     unpack=True) # in Hz, U_aus in mV
U aus = U aus * 1e-3 \# V
# Konstanten und Bestimmung des Frequenzgangs
D = 1e-3
sig_D = 0.002 * D
U = 0.2 \# Vrms
sig_U_ein = 0.03 * U_ein
sig_U_aus = 0.03 * U_aus
g = U_aus / (U_ein * D)
sig g = g * sqrt((sig U aus / U aus) ** 2 + (sig D / D) ** 2
                 + (sig_U_ein / U_ein) ** 2)
# Plot
xmin = 20
xmax = -48
plt.figure(figsize = (12,7))
plt.loglog(f, g, linestyle = 'None', marker='.', label = 'Messwerte')
plt.title('Frequenzgang', size = 16)
plt.xlabel('Frequenz $f$ [Hz]', size = 14)
plt.ylabel('$g(f)$', size = 14)
plt.axvline(f[xmin], ls = '--', color = 'gray')
plt.axvline(f[xmax], ls = '--', color = 'gray',
            label = 'Zum Fitten berücksichtigter Bereich')
plt.ylim(1e1, 1e5)
# Fit
def fit func(f, V, W1, W2, n1, n2):
    return V / (sqrt(1 + 1 / (f / W1) ** (2 * n1)) * sqrt(1 + (f / W2) ** (2 * n2
)))
p0 = [1000, 1000, 50000, 5, 5]
popt, pcov = curve_fit(fit_func, f[xmin:xmax], g[xmin:xmax], p0)
# Ergebnisse des Fits
V = popt[0] # Verstärkung 10 Mal grösser als erwartet
sig V = sqrt(pcov[0,0])
W1 = popt[1]
sig_W1 = sqrt(pcov[1,1])
W2 = popt[2]
sig W2 = sqrt(pcov[2,2])
n1 = popt[3]
sig n1 = sqrt(pcov[3,3])
n2 = popt[4]
sig n2 = sqrt(pcov[4,4])
plt.loglog(f, fit_func(f, *popt), label = 'Bester Fit')
plt.text(exp(4.5), exp(9.4), 'Fitparameter:')
plt.text(exp(4.5), exp(9), 'V = ' + str(np.round(V, 0)) + 'pm''
         + str(np.round(sig_V, 0)))
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:33: Runtim eWarning: invalid value encountered in power


```
In [3]:
```

```
# Güte des Fits
chi2_= np.sum((fit_func(f[xmin:xmax], *popt) - g[xmin:xmax]) ** 2 / sig_g[xmin:xmax]
] ** 2)
dof = len(sig_g[xmin:xmax]) - 1 #dof:degrees of freedom, Freiheitsgrad
chi2_red = chi2_/dof

print("chi2 =", chi2_)
print("chi2_red =",chi2_red)

prob = np.round(1 - chi2.cdf(chi2_,dof),2) * 100
print("Wahrscheinlichkeit =", prob, "%")
chi2 = 83.86209407197536
chi2_red = 0.7487686970712086
```

VIII.3 Numerische Integration

Wahrscheinlichkeit = 98.0 %

In [4]:

```
# Numerische Integration
def fit_func_square(f,V,W1,W2,n1,n2):
    return fit_func(f,V,W1,W2,n1,n2) ** 2

B = integrate.quad(fit_func_square, f[xmin], f[xmax], args = tuple(popt)) # Hz
print('Das Integral beträgt: {value:.4e}'.format(value = B[0]))
```

Das Integral beträgt: 4.7245e+12

VIII.4 Bestimmung der Boltzmann-Konstante

```
# Messwerte
R = np.array([5e3, 10e3, 15e3, 20e3, 25e3, 30e3]) # kOhm
sig R = R * 0.05
U aus = np.array([2.425, 3.1066, 3.6881, 4.1954, 4.6338, 5.0493]) * 1e-3 # V
sig U aus = np.array([0.00845, 0.0116, 0.014, 0.0149, 0.019, 0.0199]) * 1e-3
N = np.array([102, 103, 99, 101, 111, 101]) # Anzahl Messungen
err_U_aus = sig_U_aus / sqrt(N)
U V = 0.00587 * 1e-3 # V
sig_U_V = 0.00025 * 1e-3
N V = 103
err_U_V = sig_U_V / sqrt(N_V)
# Differenz U R^2 - U V^2
D_U = U_aus ** 2 - U_V ** 2
sig_D = sqrt((err_U_aus * 2 * U_aus) ** 2 + (err_U_V * 2 * U_V) ** 2)
# Plot
plt.figure(figsize = (12,7))
plt.errorbar(R, D U, yerr = sig D, fmt = '.', capsize = 2, label = 'Messwerte')
plt.axis([0,3.2e4,0,.5e-4])
plt.title('Differenz der Ausgangsspannungen$^2$ gegen den Widerstand', size = 16)
plt.xlabel('Widerstand $R$ [k$\\Omega$]', size = 14)
plt.xticks([0, 5e3, 10e3, 15e3, 20e3, 25e3, 30e3],
          [0, 5, 10, 15, 20, 25, 30])
plt.ylabel('$U_{{Aus}}^2 - U_V^2$ [$\mu$V$^2$]', size = 14)
plt.yticks([0, 0.00001, 0.00002, 0.00003, 0.00004, 0.00005],
          [0, 10, 20, 30, 40, 50])
# Fit
def line(x, a):
   return a * x
popt, pcov = curve fit(line, R, D U)
# Fitergebnisse
a = popt[0] # V^2 Ohm^-1
sig_a = sqrt(pcov[0,0])
plt.plot(R, line(R, *popt), label = 'Bester Fit')
plt.text(5e3, 4e-5, 'Fitparameter:')
plt.text(5e3, 3.5e-5, '$a = ' + str(np.round(a, 12)) + '$\pm$'
         + str(np.round(sig a, 12)) + ' [$V^2 \\Omega^{-1}$]')
plt.legend(loc = 'best')
plt.savefig('images/243/V243Diagramm2.png')
plt.show()
```


In [6]:

```
# Güte des Fits
chi2_= np.sum((line(R, *popt) - D_U) ** 2 / sig_D ** 2)
dof = len(D_U) - 1 #dof:degrees of freedom, Freiheitsgrad
chi2_red = chi2_/dof

print("chi2 =", chi2_)
print("chi2_red =",chi2_red)

prob = np.round(1 - chi2.cdf(chi2_,dof), 2) * 100
print("Wahrscheinlichkeit =", prob, "%")
```

chi2 = 161888.32011063426
chi2_red = 32377.664022126854
Wahrscheinlichkeit = 0.0 %

```
In [7]:
```

Boltzmann Konstante: $k_B = (1.56 +/- 0.03 \text{ stat.} +/- 0.03 \text{ syst.}) * 1e-25 J K^-1$

```
In [ ]:
```