Bayer Process for Alumina Production

The Bayer process, which is used to extract alumina (Al_2O_3) from bauxite ore, generates a significant amount of waste, primarily in the form of red mud (bauxite residue). The main waste product is red mud. For every 1 ton of alumina produced, the Bayer process typically generates 1–2 tons of red mud, depending on the bauxite quality.

Table 2: Red Mud Generation in India

O N -	↓Name of units	Quantity of Red Mud Generated (MT)						
S.No	Years →	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22
1.	M/s Hindalco Industries Ltd, Jharkhand	525332	590959	610020	542855	143368	533595	715833
2.	M/s Utkal Alumina International Ltd., Odisha	1914000	1974000	2049000	2082000	2232705	5044648	2408246
3.	M/s Vedanta Limited. Odisha	1497733	1626194	1694693	1758462	2112688	2272953	2506121
4.	M/s NALCO Ltd., Odisha	2789160	3137853	3096637	3057509	3351021	3234786	3241446
5.	M/s Hindalco Industries Ltd., Uttar Pradesh	928515	972319	968029	946208	1438701	991249	1044645
6.	M/s Hindalco Industries Ltd, Belgaum	356878	434358	443910	468399	580092	438539	513786

Reactions in the Bayer process

$$Al(OH)_3 + OH^- \iff_{NaOH} Al(OH)_4$$

Equation 1

The basic reactions are shown in Equation 2 (low temperature digestion), Equation 3 (high temperature digestion), Equation 4 (precipitation), and Equation 5 (calcination).

Digestion:

$$Al_2O_3.3H_2O(s) + 2NaOH(aq) \xrightarrow{105-150C} 2NaAlO_2(aq) + 4H_2O$$
 Equation 2
$$Al_2O.H_2O(s) + 2NaOH(aq) \xrightarrow{230-250C} 2NaAlO_2(aq) + 2H_2O$$
 Equation 3

Heat or increased caustic concentration drives the reaction to the right.

Precipitation:

$$2NaAlO2(aq) + 4H2O \xrightarrow{85-55C} Al2O3.3H2O(s) + 2NaOH(aq)$$
 Equation 4

Cooling or seeding drives the precipitation reaction to the right.

Calcination:

$$Al_2O_3.3H_2O(s) \xrightarrow{1000-1100C} Al_2O_3(s) + 3H_2O(g)$$
 Equation 5

1.Mass And Energy Balance

INPUTS:

- NaOH 0.09 kg
- Limestone 0.06 kg
- Water 11.57 kg
- Bauxite 5.10 kg

OUTPUTS:

- Al2O3 1.93 kg
- CO2 1.06 kg
- Water 11.57 kg
- Red Mud 2kg

ENERGY INPUT: 25.61 MJ (primarily in the form of fuels)

References:

- 1. <u>Energy and Exergy Analysis of the Primary Aluminum Production Processes: A</u>
 Review on Current and Future Sustainability
- 2. Mass & energy balance of the Bayer process followed by the Red Mud...

2. Block Diagram for Bayer Process

References:

- 3. Mass & energy balance of the Bayer process followed by the Red Mud...
- 4. https://epawebapp.epa.ie/licences/lic eDMS/090151b2806ec707.pdf
- 5. Bayer Process an overview | ScienceDirect Topics

3. Waste Streams

Major Waste Stream:

Red Mud Slurry - 0.39 kg for 1 kg Bauxite (Solid)

It is highly hazardous as it is highly alkaline (pH 10–13).

Figure 10: Composition of Bauxite Residue: Metallurgical View

Past Handling and Disposal

- Earlier, in the Bayer alumina plants, the residue generated was often just piled up on site or in the adjoining area of the alumina plant. Sometimes, exhausted mines and quarry sites were used for disposal of Red Mud.
- Prior to 1980, most of the inventory of bauxite residue was stored in lagoon type impoundments and the practice is still carried out at a few facilities. In this method, the bauxite residue slurry from the mud washing circuit is pumped with a solid content of 18 to 30 % into storage areas created by dams and other earthworks for secure containment.
- Another disposal technique adopted by some plants was sea or river disposal particularly in the 1940s to 1960s. Red Mud was being discharged into the sea, oceans, rivers, estuaries or tidal lagoons.

Current Methods

- The current practices for storage of Red Mud around the world include dry stacking. Many plants now use equipment such as Amphirols to aid dewatering of the mud in order to compact and consolidate the residue
- In order to reduce the moisture content, filtration using drum filters and plate and frame filter presses to recover caustic soda produces more manageable bauxite residue.

There is no commercial use of red mud and utilisation of red mud is still on an experimental basis.

Table 5: Red Mud disposal practices in India

S.No.	Name of the Industry	Management and Disposal Practices
1.	M/s Hindalco Industries Ltd, Muri Jharkhand	Dry stacking of Red Mud stared in June, 2002. Filter Press is used to increase solid content up to 75%.
	Muli Silaikilaliu	The filer cake i.e. the Red Mud from the filter press is collected into trucks through hoppers and hauled to the Red Mud disposal ponds.
		There are 4 Red Mud disposal ponds, of which 03 are exhausted.
2.	M/s Hindalco Industries Ltd., Renukoot, Uttar Pradesh	Red Mud is filtered using filter press. There are 11 Red Mud disposal Ponds.

S.No.	Name of the Industry	Management and Disposal Practices
3.	M/s Hindalco Industries Ltd, Belgaum, Karnataka	Filter Press are used to reduce moisture content. Part of this Red Mud is sent to Cement industries for utilization and remaining is stored in Red Mud Ponds. There are 02 Red Mud disposal ponds available with the unit designed for wet ponding and the same got started used for the dry mud stacking.
4.	M/s Utkal Alumina International Ltd., Odisha	There are only 2 ponds for red mud disposal. The 3rd and 4th ponds are SP and SNLP ponds, which are not used for disposal. Only 1 pond is operational for red mud disposal as of now.
5.	M/s Vedanta Limited, Lanjigarh, Odisha	High concentration slurry disposal of red was followed till 2013. After 2013, High Pressure Membrane Filtration Technology is being used for dry stacking of Red Mud. The filter-cake Red Mud is transferred to the pond via truck, spread in lifts to dry with a dozer and compacted with a sheep roller.

Minor Waste Streams:

- CO2 Emissions 0.2 kg for 1 kg Bauxite (Gas)
 - These emissions are from calcination which involve fossil fuel use.
- Waste Water (Liquid)
 - About 80% water is recycled in most modern plants. It is not a major waste stream.
- Some Bauxite Residue Dust (Solid PM10 / PM2.5)

References:

- 6. Mass & energy balance of the Bayer process followed by the Red Mud...
- 7. AP-42, CH 12.1: Primary Aluminum Production. Editorial corrections made 04/07
- 8. <u>Guidelines for Handling and Management of Red Mud Generated from Alumina</u>
 Plants
- 9. https://core.ac.uk/download/pdf/297712308.pdf

4. Optimization Strategies

1. Bauxite Preparation

- Dry Beneficiation: Presort bauxite to remove silica-rich fractions (reduces red mud by 10-15%).
- High-Pressure Grinding Rolls (HPGR): Cuts energy use by 30%.

2. Digestion

- Two-Stage Digestion:
 - o 1st stage: Low-temperature leaching (removes reactive silica).
 - o 2nd stage: High-efficiency digestion (reduces NaOH use by 20%).
- Caustic Recovery: Recycle NaOH from red mud wash water.

4. Precipitation

- Continuous Precipitation: Higher yield (+15%), uniform crystals (reduces energy for calcination).
- Nano-Seeding: Cuts energy use by 25%.

5. Calcination

- Fluidized Bed Calcination: Energy use ↓ to 8-10 GJ/ton.
- Waste Heat Recovery: Steam generation from kiln exhaust.

6. Red Mud Recycling & Usage

- We could consider the conversion of red mud into another form rather than disposing
 it to open spaces or oceans. It is best to utilize this waste as a raw material for
 another process.
- By using it in cement and brick manufacturing as a resource, the waste exchange process can be effectively done. Due to its absorptive property, it can be even used to absorb heavy metals in wastewater treatment processes.

Additionally, we can improve the process by :

- Full Transition to Filter Presses
- Advanced Stabilization by using CO₂ carbonation (instead of just lime) to reduce alkalinity further (pH <9) and lock in CO₂ (carbon sequestration).
- Magnetic separation for pig iron production and some rare earth metal recovery like Sc. Y
- Reuse in construction by replacing 10-20% clinker with treated red mud in cement and using neutralized mud as a raw material for bricks.

Parameter	Before	After	Improvement
Energy Use	15 GJ/ton Al ₂ O₃	10 GJ/ton Al ₂ O ₃	33% reduction
Red Mud Volume	1.5 ton/ton Al ₂ O ₃	1.2 ton/ton Al ₂ O ₃	20% reduction
NaOH Consumption	120 kg/ton Al₂O₃	90 kg/ton Al₂O₃	25% reduction
CO ₂ Emissions	1.2 ton/ton Al ₂ O ₃	0.7 ton/ton Al ₂ O ₃	42% reduction
Water Use	5 m³/ton Al ₂ O ₃	3 m³/ton Al₂O₃	40% reduction

References:

- Sustainable Management of Red Mud: Lifecycle Assessment and Treatment Techniques
- 11. <u>Migration of Iron, Aluminum and Alkali Metal Within Pre-reduced-Smelting Separation of Bauxite Residue | SpringerLink</u>
- 12. <u>Sustainable Aspects of Ultimate Reduction of CO2 in the Steelmaking Process</u> (COURSE50 Project), Part 2: CO2 Capture | Journal of Sustainable Metallurgy
- 13. International Aluminium Institute

5. LCA & PCF

- 1. Goal & Scope
- Functional Unit: 1 ton of alumina (Al₂O₃).
- $\bullet \quad \text{System Boundaries: Bauxite mining} \rightarrow \text{Alumina production (cradle-to-grave)}$

Bayer Process: Baseline vs. Optimized Scenarios

Process Stage	Baseline Practice	Optimized Practice	Key Improvements
Bauxite Mining	High-energy grinding; dust emissions	Dry beneficiation; dust suppression	↓ Energy use (30%); ↓ Air pollution
Digestion	High NaOH/steam use; excess waste	Two-stage digestion; caustic recycle	↓ NaOH use (20%); ↓ Waste alkalinity
Red Mud Handling	Wet ponds (18–30% solids); high pH	Filter presses (75% solids); CO ₂ carbonation	1 Storage volume (40%); Neutralized (pH<9)
Precipitation	Batch process; inconsistent yield	Continuous precipitation	↑ Yield (15%); ↓ Energy for calcination
Calcination	Rotary kilns (12–15 GJ/ton)	Fluidized beds (8–10 GJ/ton)	↓ Energy (30%); ↓ CO ₂ emissions

2. Life Cycle Assessment:

(Cradle to Grave)

Impact Category	Baseline Scenario	Optimized Scenario
Global Warming (CO ₂)	High (1.2–1.5 t CO₂-eq/t Al₂O₃)	Moderate (0.7–1.0 t CO ₂ -eq/t Al ₂ O ₃)
Water Consumption	4–6 m³/t Al ₂ O ₃ (open-loop systems)	2–3 m³/t Al₂O₃ (closed-loop recycling)
Land Use	Large ponds (1.5–2.0 $\text{m}^2/\text{t Al}_2\text{O}_3$)	Dry stacking (0.8–1.0 $\text{m}^2/\text{t Al}_2\text{O}_3$)
Toxicity	High (alkaline red mud, heavy metals)	Reduced (neutralized red mud, metal recovery)
Resource Depletion	High NaOH/fossil fuel use	Lower (caustic recycling, waste heat recovery)

3. PCF:

Source	Baseline (kg CO2-eq/ton)	Optimized (kg CO2-eq/ton)
Bauxite Mining	150	120
Digestion	400	300
Red Mud Disposal	250 (lime + ponds)	100 (CO ₂ carbonation)
Calcination	400	250
Total PCF	1,200	770

References:

14. <u>Circular economy and life cycle assessment of alumina production: Simulation-based comparison of Pedersen and Bayer processes - ScienceDirect</u>

- 15. Aluminum Statistics and Information | U.S. Geological Survey
- 16. Life Cycle Assessment of Alumina Production by the Bayer Process | JOM
- 17. https://international-aluminium.org/resources/energy-efficiency-in-alumina-refining/
- 18. Carbon footprint calculation

6. Cost Benefit Analysis

Cost-Benefit Analysis (Optimized Scenario)			
Category	Optimized Scenario	Notes	
Capital Costs	\$50–100M (plant-wide)	Covers filter presses, carbonation systems, and fluidized bec retrofits	
Operational Savings	\$20–40 per ton Al ₂ O ₃	From energy, NaOH, and water reductions	
Waste Disposal Savings	\$10–20 per ton Al ₂ O ₃	Dry stacking vs. wet pond maintenance	
Byproduct Revenue	\$10–50 per ton Al ₂ O ₃	Iron recovery (20–30), $cement$ (10–20), scandium (if viable	
Payback Period	3–7 years	For typical 100,000 t/year facility	

7. Final Recommendations:

A. Process Changes

- 1. Immediate Actions:
 - o Install filter presses: Reduce red mud volume by 40% (↓ storage costs).
 - o Adopt CO₂ carbonation: Neutralize waste + earn carbon credits.
- 2. Medium-Term (3-5 years):
 - Switch to fluidized bed calciners: Cut energy use by 30%.
 - Implement continuous precipitation: Improve yield by 15%.
- 3. Long-Term (5+ years):
 - o Full circular integration: Recover Fe/Sc; sell red mud to cement industry.

B. Recycling/Valorization

- 1. Use red mud in construction: Replace part of cement or make bricks from it instead of dumping.
- 2. Switch to filter presses: Dry red mud into solid cakes for safer, smaller storage.
- 3. Treat with CO₂: Makes red mud less toxic and traps greenhouse gases.
- 4. Extract useful metals : Remove iron and rare metals first, then use leftovers for building materials

C. Environmental vs Economic Tradeoffs

Optimization Area	Environmental Benefits	Economic Challenges
Red Mud Management	Eliminates wet storage risks, reduces land use	Requires significant equipment inves
Energy Efficiency	Substantially lowers carbon emissions	Needs major process upgrades
Water Conservation	Dramatically reduces freshwater needs	Increases system complexity
Material Recovery	Decreases reliance on virgin mining	Only viable for certain compositions
Carbon Capture	Neutralizes waste while sequestering emissions	Adds ongoing operational expenses

1. Red Mud Management

- Environmental Benefit: Dry stacking + reuse (cement/bricks) cuts landfill use and toxicity.
- Economic Cost: Filter presses and carbonation systems require high upfront investment (\$50–100M).

2. Energy Efficiency

- Environmental Benefit: Fluidized bed calciners reduce CO₂ by 30% vs. rotary kilns.
- Economic Cost: Retrofitting costs \$20–30M; payback takes 5+ years.

3. Water Recycling

- Environmental Benefit: Closed-loop systems save 3–5 m³ water/ton Al₂O₃.
- Economic Cost: Requires expensive filtration and maintenance.

4. Byproduct Recovery

- Environmental Benefit: Extracting iron/scandium reduces mining demand.
- Economic Cost: Metal recovery is only profitable if red mud is high-grade (e.g., >50 ppm Sc).

5. CO₂ Carbonation

- Environmental Benefit: Neutralizes waste and sequesters CO₂.
- Economic Cost: Adds \$10–30/ton Al₂O₃ without carbon credit incentives