BLG222E Computer Organization

Project 3

Due Date: 17.05.2017

Design a **hardwire-control unit** for the following architecture. Use the structure that you have designed in project #2.

Instruction format

There are two types of instructions as described below.

- (1) Instructions with address reference has the format shown in Figure 1:
 - The OPCODE is a 5-bit field (See Table 1 for the definition).
 - The REGSEL is a 2-bit field (See left side of Table 2 for the definition).
 - The ADDRESSING MODE is a 1-bit field (See Table 3 for the definition).
 - The ADDRESS is 8 bits

OPCODE	REGSEL	ADDRESSING MODE	ADDRESS
--------	--------	-----------------	---------

Figure 1: Instructions with an address reference

- (2) Instructions without address reference has the format shown in Figure 2:
 - The OPCODE is a 5-bit field (See Table 1 for the definition).
 - DESTREG is a 3-bit field which specifies the destination register (See right side of Table 2 for the definition).
 - SRCREG1 is a 3-bit field which specifies the first source register (See right side of Table 2 for the definition).
 - SRCREG2 is a 3-bit field which specifies the second source register (See right side of Table 2 for the definition).

OPCODE DESTREG	SRCREG1	SRCREG2
----------------	---------	---------

Figure 2: Instructions without an address reference

Table 1: OPCODE field and SYMBols for opertions and their descriptions

OPCODE (HEX)	SYMB	ADDRESSING MODE	DESCRIPTION
0x00	LD	IM, D	Rx ← Value (Value is described in Table 3)
0x01	ST	D	Value ← Rx
0x02	MOV	N/A	DESTREG ← SRCREG1
0x03	PSH	N/A	$M[SP] \leftarrow Rx, SP \leftarrow SP - 1$
0x04	PUL	N/A	$SP \leftarrow SP + 1$, $Rx \leftarrow M[SP]$
0x05	ADD	N/A	DESTREG ← SRCREG1 + SRCREG2
0x06	SUB	N/A	DESTREG ← SRCREG2 - SRCREG1
0x07	DEC	N/A	DESTREG ← SRCREG1 - 1
0x08	INC	N/A	DESTREG ← SRCREG1 + 1
0x09	AND	N/A	DESTREG ← SRCREG1 AND SRCREG2
0x0A	OR	N/A	DESTREG ← SRCREG1 OR SRCREG2
0x0B	NOT	N/A	DESTREG ← NOT SRCREG1
0x0C	LSL	N/A	DESTREG ← LSL SRCREG1
0xOD	LSR	N/A	DESTREG ← LSR SRCREG1
0x0E	BRA	IM	PC ← Value
0x0F	BEQ	IM	IF Z=1 THEN PC ← Value
0x10	BNE	IM	IF Z=0 THEN PC ← Value
0x11	CALL	IM	$M[SP] \leftarrow PC, SP \leftarrow SP - 1, PC \leftarrow Value$
0x12	RET	N/A	$SP \leftarrow SP + 1, PC \leftarrow M[SP]$

Table 2:REGSEL (Left) and DESTREG/SRCREG1/SRCREG2 (Right) select the register of interest for a particular instruction

REGSEL	REGISTER
00	R0
01	R1
10	R2
11	R3

DESTREG/SRCREG1/SRCREG2	REGISTER
000	R0
001	R1
010	R2
011	R3
100	PC
101	PC
110	AR
111	SP

Table 3: Addressing modes

ADDRESSING MODE	MODE	SYMB	Value
0	Immediate	IM	ADDRESS Field
1	Direct	D	M[AR]

Example Code:

The code given below adds data that are stored at M[A0]+M[A1]+M[A2]+M[A3]+M[A4] and stores the total at M[A5]. It is written as a loop that iterates 5 times.

ORG 0x20 # Write the program starting from the address 0x20 LD R0 IM 0x05 # R0 is used for iteration number #R1 is used to store total LD R1 IM 0x00 LD R2 IM 0xA0 MOV AR R2 # AR is used to track data adrress: starts from 0xA0 LABEL: LD R2 D # R2 <- M[AR] (AR = 0xA0 to 0xA4)INC AR AR # AR <- AR + 1 (Next Data) ADD R1 R1 R2 # R1 < -R1 + R2 (Total = Total + M[AR])# R0 <- R0 – 1 (Decrement Iteration Counter) DEC R0 R0 **BNE IM LABEL** # Go back to LABEL if Z=0 (Itertaion Counter > 0) INC AR AR # AR < -AR + 1 (Total will be written to 0xA5) ST R1D # M[AR] <- R1 (Store Total at 0xA5)