HW₆

Saturday, March 24, 2018 3:32 PM

1.

000

011

110

101

2.

- a) The minimum distance is 2
- b) This code can't correct any errors, however it can detect up to 1 error.
- c) $G = [I \ 1] (k X k + 1)$
- d) H = [1](1 X k + 1)

e)
$$(p + (1-p)^n = \sum_{i}^n \binom{n}{i} p^i (1-p)^{n-i}$$

 $(-p + (1-p))^n = \sum_{i}^n \binom{n}{i} (-p)^i (1-p)^{n-i}$
 $(p + (1-p))^n + (-p + (1-p))^n = 1 + (1-2p)^n = 2 \sum_{i \in even}^n \binom{n}{i} p^i (1-p)^{n-i}$
 $\sum_{i=1}^n \binom{n}{i} p^i (1-p)^{n-i} = \frac{1 + (1-2p)^n}{2}$

3

a)
$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Row 1 new = row 2 old

Row 2 New = sum of old rows

Row 3 new = row 3 old

$$b) \ \ H^T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4.)

a)
$$GH^T = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

b) O-output, I = input

O1=I1,

O2=xor(12,13)

O3=xor(I1,xor(I2,I3))

04=12

O5=xor(I1,I3)

O6=xor(I1,I2)

c) P1 =xor(xor(O1,O2),xor(O4,O5))
P2 =xor(xor(O1,O3),xor(O5,O6))
P3 =xor(O2,xor(O5,O6))

$$\text{d)} \quad G^{\perp} = range(H) = \begin{cases} 000000 \\ 110110 \\ 101011 \\ 011101 \\ 010011 \\ 100101 \\ 111000 \\ 001110 \end{cases}$$

e) a

000000	101011	011101	110110	011010	110001	000111	101100
100000	001011	111101	010110	111010	010001	100111	001100
010000	111011	001101	100110	001010	100001	010111	111100
001000	100011	010101	111110	010010	111001	001111	100100
000100	101111	011001	110010	011110	110101	000011	101000
000010	101001	011111	110100	011000	110011	000101	101110
000001	101010	011100	110111	011011	110000	000110	101101
100010	001001	111111	010100	111000	010011	100101	001110

	Syndrome	Bits to flip		
f)	000	000000		
	110	100000		
	101	010000		
	010	001000		
	100	000100		
	111	000010		
	011	000001		
	001	100010		

g) A

i	0	1	2	3	4	5	6	
A_i	1	0	0	4	3	0	0	

$$A(z) = 1 + 4z^3 + 3z^4$$

- h) 110110
- i) 111001->110001->101

j)
$$B(z) = q^{-k} (1 + (q - 1)z)^n A \left(\frac{1 - z}{1 + (q - 1)z}\right)$$

 $B(z) = \frac{1}{8} (1 + z)^6 \left(1 + 4 \left(\frac{1 - z}{1 + z}\right)^3 + 3 \left(\frac{1 - z}{1 + z}\right)^4\right)$
 $= \frac{1}{8} (1 + z)^6 + \frac{1}{2} ((1 - z)(1 + z))^3 + \frac{3}{8} (1 - z)^4 (1 + z)^2$

$$B(z) = 1 + 4z^3 + 3z^4$$

k)
$$P_u(E) = 4p^3(1-p)^3 + 3p^4(1-p)^2 = 3.91E - 6$$

i)
$$P_d(E) = 4p (1-p) + 3p (1-p) = .0585$$

ii) $P_d(E) = 1 - (1-p)^n - P_u(E) = .0585$
iii) $\alpha_0 = 1, \alpha_1 = 6, \alpha_2 = 1,$

m)
$$\alpha_0 = 1$$
, $\alpha_1 = 6$, $\alpha_2 = 1$

$$P(E) = 1 - \sum_{j=0}^{n} \alpha_j p^j (1-p)^j = 1 - 0.99^6 - 6 \cdot 0.01 \cdot 0.99^5 - 0.01^2 \cdot 0.99^4 = 0.001364$$

n)
$$P(E) = \sum_{j=dmin}^{n} A_j \sum_{l=0}^{\tau} P_l^j = .001163$$

o)
$$P(f) = 1 - \sum_{j=0}^{floor(\frac{dmin-1}{2})} {n \choose j} p^j (1-p)^{n-j} - P(E) = .000288$$

n)
$$P(E) = \sum_{j=dmin} A_j \sum_{l=0}^{p} P_l = .001163$$

o) $P(f) = 1 - \sum_{j=0}^{floor(\frac{dmin-1}{2})} \binom{n}{j} p^j (1-p)^{n-j} - P(E) = .000288$

p) $H' = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$

$$= \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

q)
$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$