

Trees

Dr. Aiman Hanna Department of Computer Science & Software Engineering Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of:
Data Structures and Algorithms in Java, 5th edition. John Wiley& Sons, 2010. ISBN 978-0-470-38326-1.
Data Structures and the Java Collections Framework by William J. Collins, 3rdedition, ISBN 978-0-470-48267-4.
Both books are published by Wiley.

Copyright © 2010-2011 Wiley
Copyright © 2010 Michael T. Goodrich, Roberto Tamassia
Copyright © 2011 William J. Collins
Copyright © 2011-2021 Aiman Hanna
All rights reserved

Coverage

Stock Fraud Ponzi Scheme Bank Robbery

- General Trees
- Tree Traversal Algorithms
- Binary Trees

What is a Tree

 In computer science, a tree is an abstract model of a hierarchical structure.

 A tree consists of nodes with a parent-child relation.

Applications include:

- Organization charts
- File systems
- Programming environments

Tree Terminology

Root: node without parent (A)

Internal node: node with at least one child (A, B, C, F)

External node (leaf): node without children (E, I, J, K, G, H, D)

 Ancestors of a node: parent, grandparent, grand-grandparent, etc.

Depth of a node: number of ancestors

Height of a tree: maximum depth of any node (3, in the shown tree)

 Descendant of a node: child, grandchild, grand-grandchild, etc.

Tree Terminology

siblings: Two nodes that are children of the same parent.

edge: an edge of a tree is a pair of nodes (u, v), where u is the parent and v is the child, or vise versa. In other words, an edge is a connection between a parent and child in the tree.

Path: a sequence of nodes such that any two consecutive nodes in the sequence form an edge (for instance: A, B, F, J).

5

Tree Terminology

Subtree: tree
 consisting of a node
 and its descendants.

Ordered Trees

- A tree is *ordered* if there is a linear ordering defined for the children of each node.
- That is, with ordered trees we can identify the children of a node as being first, second, third, etc.
- Ordered trees typically indicate the linear order among siblings by listing them in the correct (ordered) order.

- We can use positions to abstract nodes. *Positions* of a tree are its *nodes*. The terms "position" and "node" is hence used interchangeably. A position object support the following method:
 - element(): Return the object stored in the position.

Generic methods:

- integer size(): Return the number of nodes in the tree.
- boolean isEmpty(): Tests whether or not the tree has nodes.
- Iterator iterator(): Return an iterator of all the elements stored at nodes of the tree.
- Iterable positions(): Return an iterable collection of all the nodes of the tree.

- Accessor methods:
 - position root(): Return the "root" of tree; error if tree is empty.
 - position parent(p): Return the parent of p; error if p is the root.
 - Iterable children(p): Return an iterable collection containing all the children of node p.
 - →If the tree is ordered, then the iterable collection returned by children(p) stores the children of p in order.
 - \rightarrow If p is a leaf, then the returned collection is empty.

- Query methods:
 - boolean isInternal(p): Tests whether node p is internal.
 - boolean is External (p): Tests whether node p is external.
 - boolean isRoot(p): Tests whether node p is the root.
- Update method:
 - element replace (p, e): Replace the element at node p with e and return the original (old) element.
- Additional update methods may be defined by data structures implementing the Tree ADT

☐ Performance of the Tree ADT methods:

Operation	Complexity
size, isEmpty	O(1)
Iterator, positions	O(n)
replace()	O(1)
root, parent	O(1)
children(v)	$O(c_v)$
	C_{v} denotes the number of children at node C .
isInternal, isExternal, isRoot	O(1)

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, the root is visited first and then subtrees rooted as its children are traversed recursively in the same manner.

That is, a node is visited before its descendants

Algorithm preOrder(v)
visit(v)
for each child w of v
preorder (w)

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

Other Traversals

- Preorder and Postorder traversals are common but other traversals are possible.
- □ For instance, we can visit all the nodes at depth d before visiting the ones at depth d + 1.

Binary Trees

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees; otherwise the tree is improper)
- We call the children of an internal node left child and right child
 - The children of a node are an ordered pair, where the left child precedes the right one
- A binary tree can be defined recursively as either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression is a proper binary tree where:
 - internal nodes: operators
 - external nodes: operands
- □ Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

Properties of Proper Binary Trees

Notation

- *n* number of nodes
- e number of external nodes
- i number of internal nodes
- h height

$$e = i + 1$$

$$n = 2e - 1 = 2i + 1$$

■
$$h \leq i$$

■
$$h \le (n-1)/2$$

$$e \le 2^h$$

■
$$h \ge \log_2 e$$

■
$$h \ge \log_2(n+1) - 1$$

In a perfectly balanced binary tree:

$$n = 2^{0} + 2^{1} + ... + 2^{h}$$

$$n = 2^{h+1} - 1$$

$$2^{h+1} = n + 1$$

$$h+1 = \log(n+1)$$

$$h = \log(n+1) - 1$$

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position left(p): Return the left child of p; error if p has no left child
 - position right(p): Return the right child of p; error if p has no right child
 - boolean hasLeft(p): Test whether p has a left child
 - boolean hasRight(p): Test whether p has a right child
- Update methods may be defined by data structures implementing the BinaryTree ADT

Inorder Traversal of Binary Trees

- In an **inorder** traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v

• y(v) = depth of v

Algorithm in Order(v)

if hasLeft (v)
inOrder (left (v))

visit(v)

if hasRight (v)

inOrder (right (v))

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

Algorithm *printExpression(v)*

```
if hasLeft (v)
    print(``('')
    inOrder (left(v))
    print(v.element ())
    if hasRight (v)
        inOrder (right(v))
        print (``)")
```

$$((2 \times (a - 1)) + (3 \times b))$$

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees


```
Algorithm evalExpr(v)
if isExternal (v)
return v.element ()
else
x \leftarrow evalExpr(leftChild (v))
y \leftarrow evalExpr(rightChild (v))
\Diamond \leftarrow \text{operator stored at } v
\text{return } x \Diamond y
```

Euler Tour Traversal

- All previously discussed traversal algorithms are forms of iterators where each traversal is guaranteed to visit each node in a certain order, and exactly once.
- Euler Tour traversal relaxes that requirement of the single visit to each node.
- The advantage of such algorithms is to allow for more general kinds of algorithms to be expressed easily.
- In other words, it provides a generic traversal of a binary tree which includes the preorder, postorder and inorder traversals.

Euler Tour Traversal

- Euler Tour traversals walks around the tree and visit each node three times:
 - on the left (preorder root → left → right)
 - from below (inorder − left → root → right)
 - on the right (postorder left → right → root)
- If the node is external, all three visits actually happen at the same time.

24

Euler Tour Traversal

- Complexity of Euler Tour is easy to analyze:
 - Assume each visit takes a constant time O(1)
 - Since we spend a constant time at each node, the overall running time is O(n)
- The Euler Tour can perform other kinds of traversals as well
- \Box For instance, to compute the number of descendants of a node ν , we can perform the following:
 - Start the tour by initializing a counter to 0
 - Record the counter when v is visited on the left, say x
 - Record the counter when v is visited on the right, say y
 - Number of descendants = y x + 1

Linked Structure for General Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT

Linked Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the Position ADT

Performance of List Implementation of Binary Trees

Operation	Complexity
size, isEmpty	O(1)
Iterator, positions	O(n)
replace	O(1)
root, parent, left, right, sibling, children	O(1)
children(v)	O(1) Since there are at most two children of any node in a binary tree.
hasLeft, hasRight, isInternal, isExternal, isRoot, remove, insertLeft, insertRight, attach	O(1)

Array-Based Representation of Binary Trees

 Nodes are stored in an array A □ Use level numbering □ Node v is stored at A[rank(v)] \blacksquare rank(root) = 0 if node is the left child of parent(node), $rank(node) = 2 \cdot (rank(parent(node) + 1))$ if node is the right child of parent(node), $rank(node) = 2 \cdot (rank(parent(node)) + 2)$

Array-Based Representation of Binary Trees

- \square So, in general; for any parent/root at rank i
 - the left child is at rank 2i + 1
 - the right child is at rank 2i + 2
 - links between nodes are not explicitly stored

30

Performance of Array-based Implementation of Binary Trees

Operation	Complexity
size, isEmpty	O(1)
Iterator, positions	O(n)
replace()	O(1)
root, parent, left, right, children	O(1)
children(v)	O(1) Since there are at most two children of any node in a binary tree.
hasLeft, hasRight, isInternal, isExternal, isRoot	O(1)

Template Method Pattern

- □ Generic algorithm
- Implemented by abstract Java class
- Visit methods redefined by subclasses
- Template method eulerTour
 - Recursively called on left and right children
 - A TourResult object with fields left, right and out keeps track of the output of the recursive calls to eulerTour

```
public abstract class EulerTour <E, R> {
  protected BinaryTree<E> tree;
  public abstact R execute(BinaryTree<E> T);
  protected void init(BinaryTree<E> T) { tree = T; }
  protected R eulerTour(Position<E> v) {
     TourResult<R> r = new TourResult<R>();
     visitLeft(v, r);
     if (tree.hasLeft(p))
        { r.left=eulerTour(tree.left(v)); }
     visitBelow(v, r);
     if (tree.hasRight(p))
        { r.right=eulerTour(tree.right(v)); }
     return r.out;
  protected void visitLeft(Position<E> v, TourResult<R> r) {}
  protected void visitBelow(Position<E> v, TourResult<R> r) {}
  protected void visitRight(Position<E> v, TourResult<R> r) {}
```

Specializations of EulerTour

- Specialization of class
 EulerTour to evaluate
 arithmetic expressions
- Assumptions
 - Nodes store
 ExpressionTerm objects
 with method getValue
 - ExpressionVariable objects at external nodes
 - ExpressionOperator
 objects at internal
 nodes with method
 setOperands(Integer,
 Integer)

```
public class EvaluateExpressionTour
     extends EulerTour<ExpressionTerm, Integer> {
  public Integer execute
        (BinaryTree<ExpressionTerm> T) {
     init(T);
     return eulerTour(tree.root());
  protected void visitRight
        (Position<ExpressionTerm> v,
         TourResult<Integer> r) {
     ExpressionTerm term = v.element();
     if (tree.isInternal(v)) {
        ExpressionOperator op = (ExpressionOperator) term;
        op.setOperands(r.left, r.right); }
     r.out = term.getValue();
```