CSE 167 (WI 2025) Exercise 2

Andrew Onozuka A16760043

1/24/2025

Exercise 2.1

Problem

Two bases (\vec{a}_1, \vec{a}_2) and (\vec{b}_1, \vec{b}_2) are related as:

$$\vec{b}_1 = -\vec{a}_1 + 2\vec{a}_2, \quad \vec{b}_2 = 3\vec{a}_1 - 5\vec{a}_2$$

A vector \vec{v} is given in the (\vec{a}_1, \vec{a}_2) basis as:

$$\vec{v} = \vec{a}_1 - \vec{a}_2$$

Find the coefficients x and y such that:

$$\vec{v} = x\vec{b}_1 + y\vec{b}_2$$

Solution

1. Substitute \vec{b}_1 and \vec{b}_2 into the equation for \vec{v} :

$$\vec{v} = x(-\vec{a}_1 + 2\vec{a}_2) + y(3\vec{a}_1 - 5\vec{a}_2)$$

2. Expand:

$$\vec{v} = (-x + 3y)\vec{a}_1 + (2x - 5y)\vec{a}_2$$

3. Equate coefficients with $\vec{v} = \vec{a}_1 - \vec{a}_2$:

$$-x + 3y = 1$$
 (coefficient of \vec{a}_1)
 $2x - 5y = -1$ (coefficient of \vec{a}_2)

- 4. Solve the linear system:
 - Multiply -x + 3y = 1 by 2 and add it to 2x 5y = -1:

$$-2x + 6y + 2x - 5y = 2 - 1 \implies y = 1$$

- Substitute y = 1 into -x + 3y = 1:

$$-x+3(1)=1 \implies -x+3=1 \implies x=2$$

5. Final Answer:

$$x = 2, \quad y = 1$$

Exercise 2.2

Problem

Provide an example of two square matrices A and B such that $AB \neq BA$.

Solution

Let:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Compute AB:

$$AB = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Compute BA:

$$BA = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Therefore:

$$AB \neq BA$$