Transmission Media

- The Transmission Medium is the path along which the signal travels.
- The type of medium determines the type of signal to be used and can affect the reliability of communications.
- Conventional networks use copper wire:
 - Low resistance to electrical current,
 - The terms copper and wire are used interchangeably,
 - Prone to interference from other wires close-by,
 - This interference can be minimised by using *Twisted Pair* wiring and *Co-axial* cable.

TP, Co-ax and Optical Fibre Cables

Twisted Pair

Characteristics:

- Comprised 2 insulated copper wires twisted together,
- These twists reduce crosstalk,
- Typically many pairs are bundled in a protective sheath,
- Very cheap and easy to use,
- BW: Cat 3 = 16MHz., Cat 5 = 100MHz., Cat 6 = 250MHz.

- In office buildings for phone and computer connectivity
- Residential telephone the local loop.

Twisted Pair Cables

Coaxial Cable

Characteristics:

- Comprised of central copper conductor and a hollow outer cylindrical conductor,
- A surrounding sheath holds the inner conductors in place,
- BW: 1GHz.

- Cable TV,
- Long distance telephone network,
- Computer connectivity (LANs).

Co-axial cable

Optical Fibre

Characteristics:

- Comprised of thin flexible transparent glass fibre core,
- This core is surrounded by glass or plastic cladding with a lower refractive index,
- Outer sheath provides rigidity and protection,
- Several fibres may be bound in a single jacket,
- Two types of light source used:
 - Light emitting diode (LED) low cost,
 - Injection laser diode (ILD) for higher data rates and greater distances.

Fibre Optic cable and a faulty cable

Optical Fibre

- Long distance telephone connections,
- Metropolitan trunks,
- Rural exchange trunks,
- Local loop (becoming more popular),
- LANs.

Optical Fibre V Coaxial Cable

- Optical Fibre cables offer the following advantages over Co-axial cables:
 - Electromagnetic isolation i.e. no interference,
 - Lower Attenuation hence greater repeater spacing (50km v 5km for copper),
 - Greater Capacity up to 10 Gbps over many km's,
 - Requires only single core for complete circuit:
 - Hence smaller in size, lighter in weight.

Wireless Transmission

- Two configurations:
 - Omni-directional e.g. radio station,
 - Directional e.g. microwave/satellite links.
- Radio Transmission characteristics:
 - Networks that use EM radio waves are known as Radio Frequency (RF) networks,
 - There is no physical connection between stations,
 - Transmission is achieved using an antenna.

Terrestrial Microwave

Characteristics:

- Microwaves travel at higher frequency than RF. Typically 2 40 GHz.,
- This higher frequency allows for a larger bandwidth which implies a high data rate e.g. 120 Mbps,
- Waves are focused into a narrow beam by a parabolic dish antenna,
- Waves are received by a similar dish antenna,
- Line of sight required (although not always possible),
- Prone to interference from rainfall and other dishes,
- Prone to misalignment in storm.

Terrestrial Microwave Links

Terrestrial Microwave

- Back-to-back installations used on long haul links (this is their main application).
- Also used where there are difficulties laying cables e.g. mountain top installations.
- Very common with mobile phone networks e.g.
 the 3 Network relies heavily on MW links.

Satellite Microwave (aka Satellites)

- Satellites can link two or more ground stations – i.e. they act as a relay,
- Satellites use two different bands (frequency ranges) to communicate:
 - Different frequencies allow full duplex comms.,
 - There are up and down links each using different frequencies.
- Two types of Satellite (GEOs and LEOs):
 - GEOs remain stationary over a point on earth,
 - LEOs move rapidly across the sky.

Satellites

Characteristics:

- Originally operated in range 1 10GHz.,
- The 4/6 GHz band is now saturated,
- 12/14 GHz now open for service.
- Inherent propagation delay (time delay) approx. 0.25sec.

- Television distribution,
- Long-distance telephone transmission,
- Private business networks.

The Iridium Satellite Network

Using Iridium Network for Computer Comms.

Elon Musk's Starlink Network

Infrared

Characteristics:

- Does not require antennae or special license to operate,
- Uses LED,
- Very low cost,
- Cannot penetrate obstacles i.e. requires line of sight.

- Remote controls,
- Computer-to-computer connectivity e.g mobile phones etc.

Bluetooth

Characteristics:

- Uses the 2.4 GHz. ISM band (Industrial, Scientific and Medical),
- Uses low power implies short range (approx. 10m),
- Comprises 79 channels of 1MHz. each,
- Uses a type of encoding called FSK which provides for 1 bit per Hz. i.e. 1Mbps per channel,

Applications:

Connection of a variety of computing devices

The E-M Spectrum

