ECON 520 Homework 13

Due date: November 28, 2018

- 1. Let X_1, \ldots, X_{10} be a random sample of size 10 from a normal distribution with mean zero (known), and variance σ^2 . We want to test the null hypothesis $H_0: \sigma^2 = 1$ against the alternative hypothesis $H_a: \sigma^2 > 1$. Consider a test that rejects the null hypothesis if $\sum_i x_i^2 > C$, where C is a constant. Find the constant C so that the test has significance level .05. (Hint: use a table of the chi-square distribution.)
- 2. Suppose we want to test whether a coin is fair (that is, the probability of heads is p = .5). We toss the coin 1000 times, and record the number of heads. Let T denote the number of heads divided by 1000. Consider a test that rejects the null hypothesis that p = .5 if T > c.
 - (a) Write down a formula for P(T > c|p = .5).
 - (b) Give a large-sample approximate formula for P(T > c|p = .5) based on the central limit theorem.
 - (c) Using the large-sample approximation, calculate the appropriate value c for a test at the 0.05 percent level. You can use the fact that if $Z \sim N(0,1)$, then P(Z > 1.645) = 0.05. Would your test reject the null hypothesis if we observed 560 heads and 440 tails?
 - (d) Explain how to construct an approximate 95% confidence interval for p based on the statistic T. Give a general formula, and also provide a specific interval based on observing 560 heads.
- 3. Let X_i , i = 1, ..., n be a random sample from a population with mean μ and variance σ^2 . Let ω_i , i = 1, ..., n be a deterministic sequence of weights. Consider the statistic

$$T(X) = \sum_{i=1}^{n} \omega_i X_i$$

- (a) What is the condition on the ω_i weights needed to ensure that $E[T(X)] = \mu$?
- (b) Compute Var(T(X)) under this condition.
- (c) Think of the case where the weighted sample mean T(X) is more precise than the equally weighted one (recall that $\bar{X} = n^{-1} \sum_{n=1}^{n} X_i$ so in this cae all the weights are equal to 1/n).
- 4. Suppose that $X_i \sim N(\mu, 1)$ and $Y_i \mid X_i \sim N(\beta X_i, 1)$. We have a random sample of n observations on the vector (X_i, Y_i) .
 - (a) What are the maximum likelihood estimators of μ and β ?
 - (b) Suppose that we have an improper prior for the two parameters $p(\mu, \beta) \propto 1$. Calculate the (marginal) posterior distribution of β .

(c) Suppose the following are available from a random sample of 100 observations on (X_i, Y_i) :

$$\sum_{i=1}^{100} X_i = 111 \qquad \sum_{i=1}^{100} X_i^2 = 199 \qquad \sum_{i=1}^{100} Y_i = 217 \qquad \sum_{i=1}^{100} Y_i^2 = 878 \qquad \sum_{i=1}^{100} (X_i Y_i) = 391$$

Which (if any) of these numbers can be dropped if you only wish to report sufficient statistics? Justify your reasoning.

- (d) Provide an exact 95% confidence interval for μ .
- (e) Suppose that we reparameterize the model so that $X_i \sim N(\log(\gamma), 1)$ and $Y_i \mid X_i \sim N(\log(\theta)X_i, 1)$. Let $\hat{\gamma}$ be the MLE for γ . Derive its large sample distribution, and using the data above obtain an asymptotic 95% confidence interval.
- 5. Let $X_1...X_n$ be iid Bernoulli(p). Show that the variance of \bar{X} attains the CR Lower Bound.