2 Convexity, Derivative

2.1 Lines, hyperplanes and linear varieties

• The line segment between two points $x, y \in \mathbb{R}^n$ is the set,

$$\{ \boldsymbol{z} \in \mathbb{R}^n : \boldsymbol{z} = \alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y}, \alpha \in [0, 1] \}.$$

• A hyperplane of the space \mathbb{R}^n , is the set of all points $\boldsymbol{x} = [x_1, x_2, \dots, x_n]^{\top}$ that satisfy the linear equation

$$u_1x_1 + u_2x_2 + \dots + u_nx_n = v,$$

where at least one of the u_i is nonzero. The hyperplane is defined by

$$\left\{ oldsymbol{x} \in \mathbb{R}^n : oldsymbol{u}^{ op} oldsymbol{x} = v
ight\},$$

where

$$\boldsymbol{u} = [u_1, u_2, \dots, u_n]^{\top}.$$

• Two half-spaces, postive half-space and negative half-space are

$$H_+ = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u}^\top \boldsymbol{x} \ge v \right\},$$

$$H_{-} = \left\{ \boldsymbol{x} \in \mathbb{R}^{n} : \boldsymbol{u}^{\top} \boldsymbol{x} \leq v \right\}.$$

• A linear variety is a set of form

$$\{ \boldsymbol{x} \in \mathbb{R}^n : \mathbf{A}\boldsymbol{x} = \boldsymbol{b} \},$$

for some matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^n$.

2.2 Convex sets

- A point $\mathbf{w} = \alpha \mathbf{u} + (1 \alpha)\mathbf{v}$ (where $\alpha \in [0, 1]$) is called a <u>convex combination</u> of the points \mathbf{u} and \mathbf{u} .
- A set $\Theta \subset \mathbb{R}^n$ is <u>convex</u> if for all $\boldsymbol{u}, \boldsymbol{v} \in \Theta$, the *line segment* between \boldsymbol{u} and \boldsymbol{v} is in Θ . That is, Θ is *convex* if and only if $\alpha \boldsymbol{u} + (1 - \alpha) \boldsymbol{v} \in \Theta$ for all $\boldsymbol{u}, \boldsymbol{v} \in \Theta$ and $\alpha \in (0, 1)$. Examples of convex sets include the following:

- The empty set - A hyperplane

- A set consisting of a single point - A linear variety

- A line or a line segment - A half-space

- A subspace - \mathbb{R}^n

- \spadesuit THEOREM4.3 Convex subsets of \mathbb{R}^n have the following properties:
 - a. If Θ is a convex set and β is a real number, then the set

$$\beta\Theta = \{ \boldsymbol{x} : \boldsymbol{x} = \beta \boldsymbol{v}, \boldsymbol{v} \in \Theta \}$$

is also convex.

b. If Θ_1 and Θ_2 are convex sets, then the set

$$\Theta_1 + \Theta_2 = \{ \boldsymbol{x} : \boldsymbol{x} = \boldsymbol{v}_1 + \boldsymbol{v}_2, \boldsymbol{v}_1 \in \Theta_1, \boldsymbol{v}_2 \in \Theta_2 \}$$

is also convex.

- c. The intersection of any collection of *convex sets* is convex.
- An extreme point \boldsymbol{x} in a convex set Θ , if there are no two distinct points \boldsymbol{u} and \boldsymbol{v} in Θ such that $\boldsymbol{x} = \alpha \boldsymbol{u} + (1 \alpha) \boldsymbol{v}$ for some $\alpha \in (0, 1)$.

2.3 Differentiation rules

• A function $f: \mathbb{R}^n \to \mathbb{R}$ follows,

$$f(\boldsymbol{x}) = f\left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}\right) = a_1x_1 + a_2x_2 + \dots + a_nx_n = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$= \begin{bmatrix} \boldsymbol{a}^\top & \end{bmatrix} \begin{bmatrix} \vdots \\ \boldsymbol{x} \\ \vdots \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}^\top & \end{bmatrix} \begin{bmatrix} \vdots \\ \boldsymbol{a} \\ \vdots \end{bmatrix}.$$

• A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, \mathbf{A} is $m \times n$ matrix,

$$\mathbf{A} = \left[egin{array}{cccc} dots & dots & dots & dots \ oldsymbol{a}_{*1} & oldsymbol{a}_{*2} & \cdots & oldsymbol{a}_{*n} \ dots & dots & dots & dots & dots \ \end{array}
ight] = \left[egin{array}{cccc} oldsymbol{a}_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots & dots \ oldsymbol{a}_{2}^{ op} \ dots \ \end{array}
ight] = \left[egin{array}{c} oldsymbol{a}_{1}^{ op} \ oldsymbol{a}_{2}^{ op} \ dots \ oldsymbol{a}_{m1} \end{array}
ight].$$

• A function $g : \mathbb{R}^n \to \mathbb{R}^m$ and a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{A}x$ is a column vector whose element is a scalar $g_{\star}(x)$.

$$\mathbf{A}oldsymbol{x} = \left[egin{array}{c} oldsymbol{a}_1^{ op} \ dots \ oldsymbol{a}_m^{ op} \end{array}
ight] oldsymbol{x} = \left[egin{array}{c} oldsymbol{a}_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \ dots \ oldsymbol{a}_{1n}x_1 \end{array}
ight] = \left[egin{array}{c} g_1(oldsymbol{x}) \ dots \ g_m(oldsymbol{x}) \end{array}
ight] = oldsymbol{g}(oldsymbol{x}).$$

• To be noted, in this course, we write the **derivative** Df(x) as a row vector, and write the **gradient** $\nabla f(x)$ as a column vector.

2

Types of Matrix Derivatives¹

Types	Scalar		Vector		Matrix
Scalar	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}f(x)}{\mathrm{d}x}\tag{1}$	$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \left[\frac{\partial y_i}{\partial x}\right]$	$\frac{\mathrm{d}\boldsymbol{g}(t)}{\mathrm{d}t} \qquad (3)$	$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}x} = \begin{bmatrix} \frac{\partial y_{ij}}{\partial x} \end{bmatrix} \frac{\mathrm{d}\mathbf{A}(t)}{\mathrm{d}t}$
Vector	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{\partial y}{\partial x_j}\right]$	$D_{x}f(x) = \left[\cdot \cdot \frac{\partial f(x)}{\partial x_{j}} \cdot \cdot \right]$ $\nabla_{x}f(x) = \left[\begin{array}{c} \cdot \\ \frac{\partial f(x)}{\partial x_{j}} \\ \cdot \end{array} \right] (2)$	$\frac{\mathrm{d} oldsymbol{y}}{\mathrm{d} oldsymbol{x}} = \left[\frac{\partial y_i}{\partial x_j} \right]$	$D_{\boldsymbol{x}}\boldsymbol{g}(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial g_i(\boldsymbol{x})}{\partial x_j} \end{bmatrix} \tag{4}$	
Matrix	$\frac{\mathrm{d}y}{\mathrm{d}\mathbf{X}} = \left[\frac{\partial y}{\partial x_{ji}}\right]$	$D_{\mathbf{X}}f = \left[\frac{\partial f}{\partial x_{ji}}\right]$			

(1) Given $f: \mathbb{R} \to \mathbb{R}$, if the limit exists, the derivative of f is a function $f': \mathbb{R} \to \mathbb{R}$ given by

$$D_x(f(x)) = \frac{\mathrm{d}f}{\mathrm{d}x} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

(2) Given $f: \mathbb{R}^n \to \mathbb{R}$, consider a scalar $f(\boldsymbol{x}) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n = \boldsymbol{a}^\top \boldsymbol{x}$. For **derivative** rule (2),

$$\mathbf{D}_{\mathbf{x}}f(\mathbf{x}) = D(\mathbf{a}^{\top}\mathbf{x}) = \left[\begin{array}{ccc} \frac{\partial f}{\partial x_1}(\mathbf{x}) & \frac{\partial f}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f}{\partial x_n}(\mathbf{x}) \end{array}\right] = \left[\begin{array}{ccc} a_1 & a_2 & \cdots & a_n \end{array}\right] = \mathbf{a}^{\top}.$$

For **gradient** rule (2), if $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, then the *gradient* of f is a function $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\boldsymbol{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \boldsymbol{a} = D_{\boldsymbol{x}} f(\boldsymbol{x})^{\top}.$$

(3) Given $g: \mathbb{R} \to \mathbb{R}^m$, here $t \in \mathbb{R}$ is a scalar. g(t) is a column vector.

$$\boldsymbol{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_m(t) \end{bmatrix}, \quad D_t \boldsymbol{g}(t) = \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}t} g_1(t) \\ \vdots \\ \frac{\mathrm{d}}{\mathrm{d}t} g_m(t) \end{bmatrix} = \begin{bmatrix} g_1'(t) \\ \vdots \\ g_m'(t) \end{bmatrix}.$$

(4) Consider $\boldsymbol{g}: \mathbb{R}^n \to \mathbb{R}^m$, here $\boldsymbol{x} \in \mathbb{R}^n$ is a vector. Since $g_i(\boldsymbol{x})$ is a scalar, $\boldsymbol{g} = [g_1, \dots, g_m]^\top$, $\boldsymbol{g}(\boldsymbol{x})$ is a column vector.

$$\boldsymbol{g}\left(\boldsymbol{x}\right) = \begin{bmatrix} g_{1}(\boldsymbol{x}) \\ g_{2}(\boldsymbol{x}) \\ \vdots \\ g_{m}(\boldsymbol{x}) \end{bmatrix}, D_{\boldsymbol{x}}\boldsymbol{g}\left(\boldsymbol{x}\right) = \begin{bmatrix} D_{\boldsymbol{x}}g_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\ D_{\boldsymbol{x}}g_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\ \vdots \\ D_{\boldsymbol{x}}g_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_{1}}g_{1} & \frac{\partial}{\partial x_{2}}g_{1} & \cdots & \frac{\partial}{\partial x_{n}}g_{1} \\ \frac{\partial}{\partial x_{1}}g_{2} & \frac{\partial}{\partial x_{2}}g_{2} & \cdots & \frac{\partial}{\partial x_{n}}g_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_{1}}g_{m} & \frac{\partial}{\partial x_{2}}g_{m} & \cdots & \frac{\partial}{\partial x_{n}}g_{m} \end{bmatrix} = \mathbf{J}.$$

The matrix J is called the <u>Jacobian matrix</u>, or derivative matrix, of function g.

¹Ref: Thomas P. Minka, "Old and New Matrix Algebra Useful for Statistics", 2000

• If all elements in q(x) are linear combination of x,

$$\boldsymbol{g}(\boldsymbol{x}) = \begin{bmatrix} g_1(\boldsymbol{x}) \\ \vdots \\ g_m(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^\top \boldsymbol{x} \\ \vdots \\ \boldsymbol{a}_m^\top \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^\top \\ \vdots \\ \boldsymbol{a}_m^\top \end{bmatrix} \boldsymbol{x} = \mathbf{A}\boldsymbol{x}.$$

Then, the derivative of $\mathbf{A}\mathbf{x}$ is equivalent to $D_{\mathbf{x}}\mathbf{g}(\mathbf{x})$,

$$D(g(x)) = \underbrace{\frac{\mathrm{d}}{\mathrm{d}x}(\mathbf{A}x)}_{\text{Notation not used}} = D(\mathbf{A}x) = \begin{bmatrix} D(\boldsymbol{a}_1^\top x) \\ D(\boldsymbol{a}_2^\top x) \\ \vdots \\ D(\boldsymbol{a}_m^\top x) \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^\top \\ \boldsymbol{a}_2^\top \\ \vdots \\ \boldsymbol{a}_m^\top \end{bmatrix} = \mathbf{A}.$$

• In summary, the derivative rules are listed as,

• Note that for $\underline{f: \mathbb{R}^n \to \mathbb{R}}$, we have

$$\nabla f(\boldsymbol{x}) = \boldsymbol{D} f(\boldsymbol{x})^{\top}.$$

2.4 Differentiation rules on composite function

• To differentiate the composite function, h(t) = f(g(t)) is differentiable on (a, b), and

$$f(\boldsymbol{g}(t)) = f\left(\begin{bmatrix} g_1(t) \\ g_2(t) \\ \vdots \\ g_m(t) \end{bmatrix}\right) = a_1g_1(t) + a_2g_2(t) + \dots + a_mg_m(t).$$

• The differentiated composite function with **derivative** rule is

$$h'(t) = D_{\boldsymbol{g}} f(\boldsymbol{g}(t)) D_{t} \boldsymbol{g}(t) = \nabla f(\boldsymbol{g}(t))^{\top} \begin{bmatrix} g'_{1}(t) \\ \vdots \\ g'_{m}(t) \end{bmatrix} = \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}g_{1}} f(\boldsymbol{g}(t)) & \cdots & \frac{\mathrm{d}}{\mathrm{d}g_{m}} f(\boldsymbol{g}(t)) \end{bmatrix} \begin{bmatrix} g'_{1}(t) \\ \vdots \\ g'_{m}(t) \end{bmatrix}.$$

• Consider Hessian matrix, which is second order derivative of scalar. Noted that, $D(f(\boldsymbol{x}))$ is spreading the derivative of the polynomials on the horizontal direction. Thus, we would like to ensure each entry is located on a vertical direction, then the entry could be applied to conduct derivative, as

$$D^{2}(f(\boldsymbol{x})) = D(Df(\boldsymbol{x})^{\top}) = D(\nabla f(\boldsymbol{x}))$$

$$= \begin{bmatrix} D\left(\frac{\partial f}{\partial x_{1}}\right) \\ D\left(\frac{\partial f}{\partial x_{2}}\right) \\ \vdots \\ D\left(\frac{\partial f}{\partial x_{n}}\right) \end{bmatrix} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}} \end{bmatrix}.$$

• Similarly, the second order gradient of scalar is

$$\nabla^{2}(f(\boldsymbol{x})) = \nabla(\nabla f(\boldsymbol{x})^{\top}) = \nabla(Df(\boldsymbol{x})) = \nabla\left(\begin{bmatrix} \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f}{\partial x_{n}} \end{bmatrix}\right)$$

$$= \begin{bmatrix} \nabla\left(\frac{\partial f}{\partial x_{1}}\right) & \nabla\left(\frac{\partial f}{\partial x_{2}}\right) & \cdots & \nabla\left(\frac{\partial f}{\partial x_{n}}\right) \end{bmatrix} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}\partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}\partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}\partial x_{n}} \end{bmatrix}.$$

2.5 Differentiation product rules

i) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two differentiable functions, $x \in \mathbb{R}$,

$$D\bigg(f(x)g(x)\bigg) = f(x)Dg(x) + g(x)Df(x),$$

$$\nabla\bigg(f(x)g(x)\bigg) = f(x)\nabla g(x) + g(x)\nabla f(x).$$

ii) Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ be two differentiable functions, $\boldsymbol{x} \in \mathbb{R}^n$,

$$D\bigg(f(\boldsymbol{x})g(\boldsymbol{x})\bigg) = f(\boldsymbol{x}) \begin{bmatrix} Dg(\boldsymbol{x}) \end{bmatrix} + g(\boldsymbol{x}) \begin{bmatrix} Df(\boldsymbol{x}) \end{bmatrix},$$
 $\nabla\bigg(f(\boldsymbol{x})g(\boldsymbol{x})\bigg) = f(\boldsymbol{x}) \begin{bmatrix} \nabla g(\boldsymbol{x}) \end{bmatrix} + g(\boldsymbol{x}) \begin{bmatrix} \nabla f(\boldsymbol{x}) \end{bmatrix}.$

iii) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ be two differentiable functions, $x \in \mathbb{R}^n$,

$$egin{aligned} Digg(m{f}(m{x})^{ op}m{g}(m{x})igg) &= ig[& m{f}(m{x})^{ op} & ig] \left[& Dm{g}(m{x}) & \ \end{bmatrix} + ig[& m{g}(m{x})^{ op} & ig] \left[& Dm{f}(m{x}) & \ \end{bmatrix}, \
abla igg(m{f}(m{x})^{ op}m{g}(m{x})igg) &= igg[&
abla m{f}(m{x}) & \ \end{bmatrix} egin{bmatrix} m{g}(m{x}) & \ \end{bmatrix} + igg[&
abla m{g}(m{x}) & \ \end{bmatrix} egin{bmatrix} m{f}(m{x}) & \ \end{bmatrix}. \end{aligned}$$

2.6 Differentiation rules

- If $f = \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}$ is a scalar, $f^{\top} = f$.
- If Q is not symmetric, we can always replace it with a symmetric matrix,

$$egin{aligned} \left(oldsymbol{x}^ op \mathbf{Q} oldsymbol{x}
ight)^ op & oldsymbol{x}^ op \mathbf{Q} oldsymbol{x}. \end{aligned}$$

Continue with manipulations,

$$oldsymbol{x}^{ op} \mathbf{Q} oldsymbol{x} = rac{1}{2} oldsymbol{x}^{ op} \mathbf{Q} oldsymbol{x} + rac{1}{2} oldsymbol{x}^{ op} \mathbf{Q} \mathbf{x} = oldsymbol{x}^{ op} \left(rac{\mathbf{Q} + \mathbf{Q}^{ op}}{2}
ight) oldsymbol{x},$$

where $\frac{1}{2} (\mathbf{Q} + \mathbf{Q}^{\top}) = \frac{1}{2} (\mathbf{Q} + \mathbf{Q}^{\top})^{\top}$ is a symmetric matrix.

- Based on the above **derivative** rule, we have
 - 1. Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a given matrix and $\mathbf{y} \in \mathbb{R}^m$ a given vector. Then,

$$D\left(\boldsymbol{y}^{\top}\mathbf{A}\boldsymbol{x}\right) = \boldsymbol{y}^{\top}\mathbf{A},$$

 $D\left(\boldsymbol{x}^{\top}\mathbf{A}\boldsymbol{x}\right) = \boldsymbol{x}^{\top}\left(\mathbf{A} + \mathbf{A}^{\top}\right).$ if $m = n$

2. Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a given matrix and $\mathbf{y} \in \mathbb{R}^n$ a given vector. Then,

$$D\left(\boldsymbol{y}^{\top}\boldsymbol{x}\right) = \boldsymbol{y}^{\top}.$$

3. Consider if \mathbf{Q} is a symmetric matrix, then

$$D\left(\boldsymbol{x}^{\top}\mathbf{Q}\boldsymbol{x}\right) = 2\boldsymbol{x}^{\top}\mathbf{Q}.$$

In particular,

$$D\left(\boldsymbol{x}^{\top}\boldsymbol{x}\right) = 2\boldsymbol{x}^{\top}.$$

- Based on the above **gradient** rule, we have
 - 1. Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a given matrix and $\mathbf{y} \in \mathbb{R}^m$ a given vector. Then,

$$egin{aligned}
abla \left(oldsymbol{y}^{ op} \mathbf{A} oldsymbol{x}
ight) &= \mathbf{A}^{ op} oldsymbol{y}, \\
abla \left(oldsymbol{x}^{ op} \mathbf{A} oldsymbol{x}
ight) &= \left(\mathbf{A} + \mathbf{A}^{ op}
ight) oldsymbol{x}. & \quad \text{fif } m = n \end{aligned}$$

2. Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a given matrix and $\mathbf{y} \in \mathbb{R}^n$ a given vector. Then,

$$abla \left(oldsymbol{y}^{ op} oldsymbol{x}
ight) = oldsymbol{y}.$$

3. Consider if \mathbf{Q} is a symmetric matrix, then

$$\nabla \left(\boldsymbol{x}^{\top} \mathbf{Q} \boldsymbol{x} \right) = 2 \mathbf{Q} \boldsymbol{x}.$$

In particular,

$$\nabla \left(\boldsymbol{x}^{\top} \boldsymbol{x} \right) = 2 \boldsymbol{x}.$$

6

2.7 Derivative details

• Let $\boldsymbol{f}:\mathbb{R}^n \to \mathbb{R}^m$ and $\boldsymbol{g}:\mathbb{R}^n \to \mathbb{R}^m$ be two differentiable functions, $\boldsymbol{x} \in \mathbb{R}^n$,

$$D\bigg(\boldsymbol{f}(\boldsymbol{x})^{\top}\boldsymbol{g}(\boldsymbol{x})\bigg) = \boldsymbol{f}(\boldsymbol{x})^{\top}D\boldsymbol{g}(\boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{x})^{\top}D\boldsymbol{f}(\boldsymbol{x}).$$

We can write it into compact matrix form as,

$$D \left(\begin{bmatrix} 1 \\ m \end{bmatrix} \quad f(x)^{\top} \quad \right] \quad \begin{bmatrix} g(x) \\ g(x) \end{bmatrix} \right) = \begin{bmatrix} 1 \\ m \end{bmatrix} \quad f(x)^{\top} \quad \left[Dg(x) \\ f(x)^{\top} \quad \right] \quad \left[Df(x) \\ f(x) \end{bmatrix}$$

Short proof,

 $\boldsymbol{f}: \mathbb{R}^n \to \mathbb{R}^m$ and $\boldsymbol{g}: \mathbb{R}^n \to \mathbb{R}^m$, $\boldsymbol{x} \in \mathbb{R}^n$, write the derivative as

$$\begin{split} D\Big(\boldsymbol{f}(\boldsymbol{x})^{\top}\boldsymbol{g}(\boldsymbol{x})\Big) &= D\left(\left[\begin{array}{ccc} f_{1}(\boldsymbol{x}) & \cdots & f_{m}(\boldsymbol{x}) \end{array}\right] \left[\begin{array}{c} g_{1}(\boldsymbol{x}) \\ \vdots \\ g_{m}(\boldsymbol{x}) \end{array}\right]\right) \\ &= D\left(\left[\begin{array}{ccc} f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \cdots & f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \end{array}\right] \left[\begin{array}{c} g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\ \vdots \\ g_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \end{array}\right]\right) \\ &= D\left(f_{1}(\boldsymbol{x})g_{1}(\boldsymbol{x}) + \cdots + f_{m}(\boldsymbol{x})g_{m}(\boldsymbol{x})\right) \\ &= f_{1}(\boldsymbol{x})Dg_{1}(\boldsymbol{x}) + \cdots + f_{m}(\boldsymbol{x})Dg_{m}(\boldsymbol{x}) \\ &+ g_{1}(\boldsymbol{x})Df_{1}(\boldsymbol{x}) + \cdots + g_{m}(\boldsymbol{x})Df_{m}(\boldsymbol{x}) \\ &= \left[\begin{array}{ccc} f_{1}(\boldsymbol{x}) & \cdots & f_{m}(\boldsymbol{x}) \end{array}\right] \left[\begin{array}{c} Dg_{1}(\boldsymbol{x}) \\ \vdots \\ Dg_{m}(\boldsymbol{x}) \end{array}\right] + \left[\begin{array}{ccc} g_{1}(\boldsymbol{x}) & \cdots & g_{m}(\boldsymbol{x}) \end{array}\right] \left[\begin{array}{c} Df_{1}(\boldsymbol{x}) \\ \vdots \\ Df_{m}(\boldsymbol{x}) \end{array}\right] \\ &= \frac{1}{m} \left[\begin{array}{ccc} f(\boldsymbol{x})^{\top} \end{array}\right] \left[\begin{array}{ccc} Dg(\boldsymbol{x}) \\ \end{array}\right] + \frac{1}{m} \left[\begin{array}{ccc} g(\boldsymbol{x})^{\top} \end{array}\right] \left[\begin{array}{ccc} Df(\boldsymbol{x}) \\ \end{array}\right]. \end{split}$$

• Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a given matrix and $\mathbf{y} \in \mathbb{R}^m$ a given vector. Then,

$$D(\mathbf{y}^{\top} \mathbf{A} \mathbf{x}) = \mathbf{y}^{\top} \mathbf{A},$$

 $D(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}) = \mathbf{x}^{\top} (\mathbf{A} + \mathbf{A}^{\top}).$ if $m = n$

Short proof,

$$D(\mathbf{y}^{\top} \mathbf{A} \mathbf{x}) = D(\mathbf{y}^{\top} (\mathbf{A} \mathbf{x})) = D(\mathbf{f}(\mathbf{y})^{\top} (\mathbf{g}(\mathbf{x})))$$
$$= \mathbf{f}(\mathbf{y})^{\top} D\mathbf{g}(\mathbf{x}) + \mathbf{g}(\mathbf{x})^{\top} D\mathbf{f}(\mathbf{y})$$
$$= \mathbf{y}^{\top} D(\mathbf{A} \mathbf{x}) + (\mathbf{A} \mathbf{x})^{\top} [\mathbf{0}]$$
$$= \mathbf{y}^{\top} \mathbf{A}.$$

If $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$D\left(\boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{x}\right) = D\left(\boldsymbol{x}^{\top} (\mathbf{A} \boldsymbol{x})\right) = D\left(\boldsymbol{f}(\boldsymbol{x})^{\top} \left(\boldsymbol{g}(\boldsymbol{x})\right)\right)$$

$$= \boldsymbol{f}(\boldsymbol{x})^{\top} D \boldsymbol{g}(\boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{x})^{\top} D \boldsymbol{f}(\boldsymbol{x})$$

$$= \boldsymbol{x}^{\top} D (\mathbf{A} \boldsymbol{x}) + (\mathbf{A} \boldsymbol{x})^{\top} D (\mathbf{I}_{n} \boldsymbol{x})$$

$$= \boldsymbol{x}^{\top} \mathbf{A} + \boldsymbol{x}^{\top} \mathbf{A}^{\top} \mathbf{I}$$

$$= \boldsymbol{x}^{\top} (\mathbf{A} + \mathbf{A}^{\top}).$$

• It follows that if \mathbf{Q} is a symmetric matrix, then

$$D\left(\boldsymbol{x}^{\top}\mathbf{Q}\boldsymbol{x}\right) = 2\boldsymbol{x}^{\top}\mathbf{Q},$$
$$D\left(\boldsymbol{x}^{\top}\boldsymbol{x}\right) = 2\boldsymbol{x}^{\top}.$$

Short proof,

$$D\left(\boldsymbol{x}^{\top}\mathbf{Q}\boldsymbol{x}\right) = D\left(\boldsymbol{x}^{\top}(\mathbf{Q}\boldsymbol{x})\right)$$

$$= \boldsymbol{x}^{\top}\left(\mathbf{Q} + \mathbf{Q}^{\top}\right)$$

$$= 2\boldsymbol{x}^{\top}\mathbf{Q},$$

$$D\left(\boldsymbol{x}^{\top}\boldsymbol{x}\right) = D\left(\boldsymbol{x}^{\top}\mathbf{I}\boldsymbol{x}\right) = D\left(\boldsymbol{x}^{\top}(\mathbf{I}\boldsymbol{x})\right)$$

$$= \boldsymbol{x}^{\top}\left(\mathbf{I} + \mathbf{I}^{\top}\right)$$

$$= 2\boldsymbol{x}^{\top}$$

• Derivative of scalar by scalar,

$$\frac{\mathrm{d}}{\mathrm{d}\alpha} \left((\alpha \boldsymbol{x})^{\top} \mathbf{Q} (\alpha \boldsymbol{x}) \right) = (\alpha \boldsymbol{x})^{\top} \frac{\mathrm{d}}{\mathrm{d}\alpha} (\mathbf{Q} (\alpha \boldsymbol{x})) + (\mathbf{Q} (\alpha \boldsymbol{x}))^{\top} \frac{\mathrm{d}}{\mathrm{d}\alpha} (\mathbf{I} (\alpha \boldsymbol{x}))$$
$$= (\alpha \boldsymbol{x})^{\top} \mathbf{Q} \boldsymbol{x} + (\alpha \boldsymbol{x})^{\top} \mathbf{Q}^{\top} \boldsymbol{x}$$
$$= 2(\alpha \boldsymbol{x})^{\top} \mathbf{Q} \boldsymbol{x}$$
$$= 2\alpha \boldsymbol{x}^{\top} \mathbf{Q} \boldsymbol{x}$$

2.8 Gradient details

• Consider $\boldsymbol{g}: \mathbb{R}^n \to \mathbb{R}^m$, here $\boldsymbol{x} \in \mathbb{R}^n$ is a vector. Since $g_i(\boldsymbol{x})$ is a scalar, $\boldsymbol{g} = [g_1, \dots, g_m]^\top$, $\boldsymbol{g}(\boldsymbol{x})$ is a column vector.

$$\boldsymbol{g}\left(\boldsymbol{x}\right) = \begin{bmatrix} g_{1}(\boldsymbol{x}) \\ g_{2}(\boldsymbol{x}) \\ \vdots \\ g_{m}(\boldsymbol{x}) \end{bmatrix}, \nabla_{\boldsymbol{x}}\boldsymbol{g}\left(\boldsymbol{x}\right) = \begin{bmatrix} \vdots & \vdots & \vdots \\ \nabla_{\boldsymbol{x}}g_{1} & \cdots & \nabla_{\boldsymbol{x}}g_{m} \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_{1}}g_{1} & \frac{\partial}{\partial x_{1}}g_{2} & \cdots & \frac{\partial}{\partial x_{1}}g_{m} \\ \frac{\partial}{\partial x_{2}}g_{2} & \cdots & \frac{\partial}{\partial x_{2}}g_{m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_{n}}g_{1} & \frac{\partial}{\partial x_{n}}g_{2} & \cdots & \frac{\partial}{\partial x_{n}}g_{m} \end{bmatrix}.$$

- Not standard derivations in this course, just offer some intuitions on how to obtained the gradients on production rules.
- Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$ be two differentiable functions, $\mathbf{x} \in \mathbb{R}^n$,

$$abla igg(oldsymbol{f}(oldsymbol{x})^ op oldsymbol{g}(oldsymbol{x}) igg] =
abla oldsymbol{f}(oldsymbol{x}) igg[oldsymbol{g}(oldsymbol{x}) igg[oldsymbol{f}(oldsymbol{x}) igg[oldsymbol{f}(oldsymbol{x}) igg] \, .$$

Proof. $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^m$, $x \in \mathbb{R}^n$, write the derivative as

$$\nabla \left(\boldsymbol{f}(\boldsymbol{x})^{\top} \boldsymbol{g}(\boldsymbol{x}) \right) = \nabla \left(\left[f_{1}(\boldsymbol{x}) \cdots f_{m}(\boldsymbol{x}) \right] \left[\begin{array}{c} g_{1}(\boldsymbol{x}) \\ \vdots \\ g_{m}(\boldsymbol{x}) \end{array} \right] \right)$$

$$= \nabla \left(\left[f_{1}(x_{1}, x_{2}, \dots, x_{n}) \cdots f_{m}(x_{1}, x_{2}, \dots, x_{n}) \right] \left[\begin{array}{c} g_{1}(x_{1}, x_{2}, \dots, x_{n}) \\ \vdots \\ g_{m}(x_{1}, x_{2}, \dots, x_{n}) \end{array} \right] \right)$$

$$= \nabla \left(f_{1}(\boldsymbol{x})g_{1}(\boldsymbol{x}) + \dots + f_{m}(\boldsymbol{x})g_{m}(\boldsymbol{x}) \right)$$

$$= f_{1}(\boldsymbol{x})\nabla g_{1}(\boldsymbol{x}) + \dots + f_{m}(\boldsymbol{x})\nabla g_{m}(\boldsymbol{x}) + \dots + g_{m}(\boldsymbol{x})\nabla f_{m}(\boldsymbol{x})$$

$$+ g_{1}(\boldsymbol{x})\nabla f_{1}(\boldsymbol{x}) + \dots + g_{m}(\boldsymbol{x})\nabla f_{m}(\boldsymbol{x})$$

$$= \begin{bmatrix} \nabla g_1(\boldsymbol{x}) & \cdots & \nabla g_m(\boldsymbol{x}) \end{bmatrix} \begin{bmatrix} f_1(\boldsymbol{x}) \\ \vdots \\ f_m(\boldsymbol{x}) \end{bmatrix} + \begin{bmatrix} \nabla f_1(\boldsymbol{x}) & \cdots & \nabla f_m(\boldsymbol{x}) \end{bmatrix} \begin{bmatrix} g_1(\boldsymbol{x}) \\ \vdots \\ g_m(\boldsymbol{x}) \end{bmatrix}$$

$$= \begin{bmatrix} \nabla f_1(\boldsymbol{x}) & \cdots & \nabla f_m(\boldsymbol{x}) \end{bmatrix} \begin{bmatrix} g_1(\boldsymbol{x}) \\ \vdots \\ g_m(\boldsymbol{x}) \end{bmatrix} + \begin{bmatrix} \nabla g_1(\boldsymbol{x}) & \cdots & \nabla g_m(\boldsymbol{x}) \end{bmatrix} \begin{bmatrix} f_1(\boldsymbol{x}) \\ \vdots \\ f_m(\boldsymbol{x}) \end{bmatrix}$$

• For example, if $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\begin{split} \nabla \left(\boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{x} \right) &= \nabla \left(\begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \boldsymbol{a}_1^{\top} \boldsymbol{x} \\ \vdots \\ \boldsymbol{a}_n^{\top} \boldsymbol{x} \end{bmatrix} \right) \\ &= \nabla \left(x_1 \boldsymbol{a}_1^{\top} \boldsymbol{x} + \cdots + x_n \boldsymbol{a}_n^{\top} \boldsymbol{x} \right) \\ &= x_1 \nabla (\boldsymbol{a}_1^{\top} \boldsymbol{x}) + \cdots + x_n \nabla (\boldsymbol{a}_n^{\top} \boldsymbol{x}) \\ &+ \boldsymbol{a}_1^{\top} \boldsymbol{x} \nabla \left(1 x_1 + 0 x_2 + \cdots + 0 x_n \right) + \cdots + \boldsymbol{a}_n^{\top} \boldsymbol{x} \nabla \left(0 x_1 + 0 x_2 + \cdots + 1 x_n \right) \\ &= \boldsymbol{a}_1^{\top} \boldsymbol{x} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \cdots + \boldsymbol{a}_n^{\top} \boldsymbol{x} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} + \boldsymbol{a}_1 x_1 + \cdots + \boldsymbol{a}_n x_n \\ &= \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{a}_1^{\top} \boldsymbol{x} \\ \boldsymbol{a}_2^{\top} \boldsymbol{x} \\ \vdots \\ \boldsymbol{a}_n^{\top} \boldsymbol{x} \end{bmatrix} + \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{I} & \end{bmatrix} \begin{bmatrix} \mathbf{A} \boldsymbol{x} \end{bmatrix} + \begin{bmatrix} \mathbf{A}^{\top} & \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \end{bmatrix} = (\mathbf{A} + \mathbf{A}^{\top}) \boldsymbol{x} \\ &= \begin{bmatrix} \nabla f(\boldsymbol{x}) & \end{bmatrix} \begin{bmatrix} g(\boldsymbol{x}) \end{bmatrix} + \begin{bmatrix} \nabla g(\boldsymbol{x}) & \end{bmatrix} \begin{bmatrix} f(\boldsymbol{x}) \end{bmatrix} \\ &= \nabla \left(f(\boldsymbol{x})^{\top} g(\boldsymbol{x}) \right), \end{split}$$

where f(x) = x, g(x) = Ax.

• Hand writing derivation: given $\underline{y} \in \mathbb{R}^m, \underline{A} \in \mathbb{R}^{m \times n}, \underline{x} \in \mathbb{R}^n$, write the derivative as

$$\begin{split} D_{\boldsymbol{x}}\left(\boldsymbol{y}^{\top}\mathbf{A}\boldsymbol{x}\right) &= D_{\underline{x}}\left(\underline{y}^{\top}\underline{A}\ \underline{x}\right) \\ &= D\left(\begin{smallmatrix} 1\backslash m \left[& \underline{y}^{\top} & \right] \end{smallmatrix}^{m\backslash n} \left[& \underline{A} & \right]^{-n\backslash 1} \left[\underline{x} & \right]\right) \\ &= \begin{smallmatrix} 1\backslash m \left[& \underline{y}^{\top} & \right] D\left(\begin{smallmatrix} m\backslash n \left[& \underline{A} & \right]^{-n\backslash 1} \left[\underline{x} & \right]\right) \\ &+ \left(\begin{smallmatrix} m\backslash n \left[& \underline{A} & \right]^{-n\backslash 1} \left[\underline{x} & \right]\right)^{\top} & m\backslash n \left[& \underline{D}\underline{y} & \right] \\ &+ \left(\begin{smallmatrix} m\backslash n \left[& \underline{A} & \right]^{-n\backslash 1} \left[& \underline{x} & \right]\right)^{\top} & m\backslash n \left[& \underline{D}\underline{y} & \right] \\ &= \begin{smallmatrix} 1\backslash m \left[& \underline{y}^{\top} & \right] & \left[& \underline{A} & \right] \\ &+ \begin{smallmatrix} 1\backslash n \left[& \underline{x}^{\top} & \right] & \left[& \underline{A}^{\top} & \right] & m\backslash n \left[& \underline{Q} & \right] \\ &= \begin{smallmatrix} 1\backslash m \left[& \underline{y}^{\top} & \right] & \left[& \underline{A} & \right] \\ &= \begin{smallmatrix} y^{\top}\mathbf{A}. \end{split}$$

[Ref]: Edwin K.P. Chong, Stanislaw H. Żak, "PART I MATHEMATICAL REVIEW" in "An introduction to optimization", 4th Edition, John Wiley and Sons, Inc. 2013.