Instantaneous Center of Velocity "M"

* point that a rigid body is rotating about at a given
instant in time if a rigid body has $\vec{\omega} \neq 0$, there exists an instantaneous center

Equation For Locating The Instantaneous Center Use the fact that $\vec{v}_{M} = 0$ $0 = \vec{V}_M = \vec{V}_P + \vec{\omega} \times \vec{F}_{PM}$ $0 = \vec{\omega} \times (\vec{V}_P + \vec{\omega} \times \vec{r}_{PM})$ matterly by w: $= \vec{\omega} \times \vec{V}_p + \vec{\omega} \times (\vec{\omega} \times \vec{\Gamma}_{PM})$ $0 = \mathcal{U} \times \mathcal{V}_{p} - \mathcal{U}^{2} \mathcal{I}_{pM}$ $\omega = \omega \hat{\omega}$ $= \frac{1}{\omega^2} \vec{\omega} \times \vec{\nabla}_{p}$ $r_{PM} = \frac{1}{m^2} \tilde{\omega} \times v_{P}$ $= \frac{1}{\omega} \left(\widehat{\omega} \times \widehat{V}_{p} \right) = \frac{1}{11} \left(\widehat{V}_{p} \right)$

Example: Rolling

