Mathématiques – Terminale spécialité

Corrigés des exercices

Table des matières

1 Compléments sur la dérivation

2

1 Compléments sur la dérivation

Exercice 1 La fonction f est définie sur l'intervalle [-2;6] par

$$f(x) = 0,5x^2 - 2x - 4.$$

Pour tout $x \in \mathbb{R}$:

$$f'(x) = 0.5 \times 2x - 2 \times 1 - 0 = x - 2.$$

La dérivée est du premier degré, donc pour obtenir le tableau de signe, il faut résoudre une équation, puis regarder le signe de *a* :

$$x-2=0$$

$$x-\cancel{2}+\cancel{2}=0+2$$

$$x=2$$

a=1 (puisque x-2 signifie $\frac{1}{2}x-2$), a est \oplus donc le signe est de la forme $\boxed{-\varphi+}$

On en déduit le tableau de signe de f' et le tableau de variations de f:

x	-2		2		6
f'(x)		_	0	+	
f(x)	2		-6		2

Pour compléter l'extrémité des flèches, on calcule :

- $f(-2) = 0.5 \times (-2)^2 2 \times (-2) 4 = 2$
- $f(2) = 0.5 \times 2^2 2 \times 2 4 = -6$
- $f(6) = 0.5 \times 6^2 2 \times 6 4 = 2$

On peut aussi faire un tableau de valeurs à la calculatrice.

Remarque: La courbe représentative est une parabole, dont le sommet *S* a pour coordonnées (2; -6).

Exercice 2 On considère un segment [AB] de longueur 4 et un point mobile M pouvant se déplacer librement sur ce segment.

$$A \longrightarrow A \longrightarrow A$$

On note x la longueur du segment [AM] et f(x) le produit des longueurs $AM \times BM$.

1.
$$BM = AB - AM = 4 - x$$
, donc

$$f(x) = AM \times BM$$

$$= x \times (4 - x)$$

$$= x \times 4 + x \times (-x)$$

$$= 4x - x^{2}.$$

2

2. Le produit des longueurs $AM \times BM$ est donné par f(x), donc maximiser ce produit revient à maximiser la fonction f. On étudie donc les variations : pour tout $x \in [0;4]$,

$$f'(x) = 4 \times 1 - 2x = -2x + 4.$$

On résout :

$$-2x+4=0$$

$$-2x+4-4=0-4$$

$$\frac{-2x}{-2}=\frac{-4}{-2}$$

$$x=2.$$

a = -2, a est Θ donc le signe est de la forme $|+ \varphi -$

On obtient le tableau de signe de f' et le tableau de variations de f:

Il n'est pas utile ici de compléter l'extrémité des flèches : tout ce qui nous intéresse, c'est la valeur de x pour laquelle f atteint son maximum.

Conclusion: f atteint son maximum lorsque x = 2, donc le produit $AM \times BM$ est maximal lorsque x = 2; c'est-à-dire quand M est le milieu de [AB].

Remarque: Cet exemple est celui qu'a choisi Fermat vers 1637 pour exposer sa méthode de l'adégalité – ancêtre de la dérivation – pour déterminer le maximum et le minimum d'une fonction.

Exercice 3 La fonction g est définie sur \mathbb{R} par

$$g(x) = 0.5x^3 + 0.75x^2 - 3x - 1.$$

Pour tout $x \in \mathbb{R}$:

$$g'(x) = 0.5 \times 3x^2 + 0.75 \times 2x - 3 \times 1 - 0 = 1.5x^2 + 1.5x - 3.$$

La dérivée est du second degré, donc on utilise la méthode de la classe de première :

- a = 1, 5, b = 1, 5, c = -3.
- le discriminant est $\Delta = b^2 4ac = 1,5^2 4 \times 1,5 \times (-3) = 20,25$.
- $\Delta > 0$, donc il y a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1, 5 - \sqrt{20, 25}}{2 \times 1, 5} = \frac{-1, 5 - 4, 5}{3} = \frac{-6}{3} = -2,$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1, 5 + \sqrt{20, 25}}{2 \times 1, 5} = \frac{-1, 5 + 4, 5}{3} = \frac{3}{3} = 1.$$

3

 $a = 1.5 \ a \text{ est} \oplus \text{donc le signe est de la forme} + \phi - \phi +$

х	$-\infty$		-2		1		+∞
g'(x)		+	0	_	0	+	
g(x)			4		-2.75		—

- $g(-2) = 0.5 \times (-2)^3 + 0.75 \times (-2)^2 3 \times (-2) 1 = 4$ $g(1) = 0.5 \times 1^3 + 0.75 \times 1^2 3 \times 1 1 = -2.75$

Remarque: Voici à quoi ressemble la courbe représentative :

Exercice 4 La fonction h est définie sur $[1; +\infty]$ par

$$h(x) = (x-6)\sqrt{x}$$
.

On utilise la formule pour la dérivée d'un produit avec

$$u(x) = x - 6 \qquad , \qquad v(x) = \sqrt{x},$$

$$u'(x) = 1 \qquad , \qquad v'(x) = \frac{1}{2\sqrt{x}}.$$

On obtient, pour tout $x \in [1; +\infty[$:

$$h'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= 1 \times \sqrt{x} + (x - 6) \times \frac{1}{2\sqrt{x}}$$

$$= \frac{\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{x - 6}{2\sqrt{x}}$$

$$= \frac{2x}{2\sqrt{x}} + \frac{x - 6}{2\sqrt{x}}$$

$$= \frac{3x - 6}{2\sqrt{x}}.$$
(rappel: $\sqrt{x} \times \sqrt{x} = \sqrt{x^2} = x$)

• On résout rapidement :

$$3x - 6 = 0 \iff 3x = 6 \iff x = \frac{6}{3} = 2.$$

- Dans 3x 6, $a = 3 \oplus$, donc $\varphi +$
- $2\sqrt{x}$ est strictement positif pour tout $x \in [1; +\infty[$.

On a donc le tableau:

x	1		2		$+\infty$
3x-6		-	0	+	
$2\sqrt{x}$		+		+	
h'(x)		-	0	+	
h(x)	-5		$-4\sqrt{2}$		<i>></i> *

- $h(1) = (1-6) \times \sqrt{1} = -5 \times 1 = -5$; $h(2) = (2-6) \times \sqrt{2} = -4\sqrt{2}$.

Exercice 5 La fonction f est définie sur [1;4] par $f(x) = x + \frac{4}{x} - 3$. On note $\mathscr C$ sa courbe représentative, A, B, C les points de $\mathscr C$ d'abscisses respectives 1, 2, 4; et T_A , T_B , T_C les tangentes à $\mathscr C$ en ces points.

1. Pour dériver, le plus simple est de réécrire f(x) sous la forme

$$f(x) = x + 4 \times \frac{1}{x} - 3.$$

On obtient alors, pour tout $x \in [1;4]$:

$$f'(x) = 1 + 4 \times \left(-\frac{1}{x^2}\right) - 0$$

$$= 1 - \frac{4}{x^2}$$

$$= \frac{x^2}{x^2} - \frac{4}{x^2}$$

$$= \frac{x^2 - 4}{x^2}$$

- 2. Les racines de $x^2 4$ sont évidentes : ce sont $x_1 = -2$ et $x_2 = 2$. Seule la deuxième est dans l'intervalle [1;4].
 - x^2 est strictement positif pour tout $x \in [1;4]$.

On obtient donc le tableau:

x	1		2		4
$x^2 - 4$		_	0	+	
x^2		+		+	
f'(x)		_	0	+	
f(x)	2		1		, ²

Le signe de $x^2 - 4$ sur $]-\infty; +\infty[$ est de la forme $\boxed{+ \varphi - \varphi + \varphi}$ Mais comme on travaille sur l'intervalle [1;4], il ne reste plus que la partie droite $\boxed{- \varphi + \varphi}$ On calcule les valeurs aux extrémités des flèches :

• $f(1) = 1 + \frac{4}{1} - 3 = 2$;
• $f(2) = 2 + \frac{4}{2} - 3 = 1$;
• $f(4) = 4 + \frac{4}{4} - 3 = 2$.

3. On rappelle que la tangente à la courbe en un point d'abscisse *a* a pour équation

$$y = f'(a)(x - a) + f(a).$$

Appliquons cette formule avec a = 1 – puisque le point A a pour abscisse 1:

f(1) = 2 (déjà calculé) et $f'(1) = \frac{1^2 - 4}{1^2} = \frac{-3}{1} = -3$, donc l'équation de T_A est

$$y = f'(1)(x-1) + f(1)$$

$$y = -3(x-1) + 2$$

$$y = -3x + 3 + 2$$

$$y = -3x + 5$$
.

Le point A a pour coordonnées (1;2), puisque f(1) = 2; la tangente T_A passe donc par ce point. Pour la tracer, il faut placer un deuxième point (c'est une droite); ce que l'on peut faire de trois façons différentes :

- (a) L'ordonnée à l'origine est 5 (puisque T_A : y = -3x+5), donc T_A passe par le point de coordonnées (0;5).
- (b) Le coefficient directeur de T_A est -3 (puisque T_A : y = -3x + 5), donc en partant de A, il suffit d'avancer de 1 carreau en abscisse et de descendre de 3 carreaux en ordonnée – T_A passe donc par le point de coordonnées (2; –1).
- (c) On calcule un deuxième point avec la formule : par exemple, si x = 2, $y = -3 \times 2 + 5 = -1$. On obtient le point de coordonnées (2; -1) (le même qu'avec la méthode (b)) et on trace la tangente.
- 4. f(2) = 1 et $f'(2) = \frac{2^2 4}{2^2} = \frac{0}{4} = 0$, donc l'équation de T_B est

$$y = f'(2)(x-2) + f(2)$$

$$y = 0(x-1) + 1$$

5

$$y = 1$$
.

Le coefficient directeur étant égal à 0, la tangente T_B est horizontale.

• f(4) = 2 et $f'(4) = \frac{4^2 - 4}{4^2} = \frac{12}{16} = 0,75$, donc l'équation de T_C est

$$y = f'(4)(x-4) + f(4)$$

$$y = 0,75(x-4) + 2$$

$$y = 0,75x - 3 + 2$$

$$y = 0,75x - 1.$$

On trace la tangente T_C par la même méthode que T_A (le plus simple et le plus précis est d'utiliser l'ordonnée à l'origine).

5. On place les points *A*, *B*, *C*, on trace les trois tangentes et on construit la courbe de la fonction *f* (en bleu) en s'appuyant sur ces tangentes.

Exercice 6 La fonction i est définie sur \mathbb{R} par

$$i(x) = \frac{2x}{x^2 + 1}.$$

1. On utilise la formule pour la dérivée d'un quotient avec

$$u(x) = 2x$$
 , $v(x) = x^2 + 1$, $u'(x) = 2x$, $v'(x) = 2x$.

On obtient, pour tout $x \in \mathbb{R}$:

$$i'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{(v(x))^2}$$

$$= \frac{2 \times (x^2 + 1) - 2x \times 2x}{(x^2 + 1)^2}$$

$$= \frac{2x^2 + 2 - 4x^2}{(x^2 + 1)^2}$$

$$= \frac{-2x^2 + 2}{(x^2 + 1)^2}.$$

2. • Les racines de $-2x^2 + 2$ sont assez évidentes :

$$-2x^2 + 2 = 0 \iff 2 = 2x^2 \iff 1 = x^2 \iff (x = 1 \text{ ou } x = -1).$$

• $(x^2 + 1)^2$ est strictement positif pour tout réel x.

On obtient donc le tableau:

x	$-\infty$		-1		1		+∞
$-2x^2 + 2$		_	0	+	0	-	
$(x^2+1)^2$		+		+		+	
i'(x)		_	0	+	0	-	
<i>i</i> (<i>x</i>)			-1		, ¹ \		`

3. (a) $i(0) = \frac{2 \times 0}{0^2 + 1} = \frac{0}{1} = 0$ et $i'(0) = \frac{-2 \times 0^2 + 2}{(0^2 + 1)^2} = \frac{2}{1} = 2$, donc l'équation de (T) est

$$y = f'(0)(x-0) + f(0)$$

$$y = 2x + 0$$
$$y = 2x.$$

(b) Pour étudier les positions relatives de (C): $y = \frac{2x}{x^2+1}$ et (T): y = 2x, on étudie **le signe de la différence**:

$$\frac{2x}{x^2+1} - 2x.$$

- Pour les valeurs de x pour lesquelles cette différence vaut 0, les deux courbes se coupent;
- pour les valeurs de x pour lesquelles cette différence est strictement positive, (C) est au-dessus de (T);
- pour les valeurs de x pour lesquelles cette différence est strictement négative, (C) est en-dessous de (T).

On commence par calculer la différence :

$$\frac{2x}{x^2+1} - 2x = \frac{2x}{x^2+1} - \frac{2x(x^2+1)}{x^2+1}$$
$$= \frac{2x}{x^2+1} - \frac{2x^3+2x}{x^2+1}$$
$$= \frac{2x - 2x^3 - 2x}{x^2+1}$$
$$= \frac{-2x^3}{x^2+1}.$$

x	-∞	0	+∞
$-2x^3$	+	0	-
$\left(x^2+1\right)^2$	+		+
$\frac{-2x^3}{x^2+1}$	+	0	-
Positions relatives des courbes	(C) au-dessus de (T)	S e c o u p e n t	(C) en-dessous de (T)

Pour compléter le tableau de signe :

- $-2x^3 = 0$ lorsque x = 0; $-2x^3$ est \ominus lorsque x est strictement positif; $-2x^3$ est \oplus lorsque x est strictement négatif; $(x^2 + 1)^2$ est strictement positif pour tout réel x.

4.

