Trabajo Final

Paúl Ubillús

2 de agosto de 2015

Introducción

En el presente documento detallaremos cada uno de los pasos ejecutados para generar un modelo de regresión lineal múltiple. Además, tomaremos en cuenta las conclusiones y resultados obtenidos en el trabajo. ### Descripción información

Iniciamos cargando el archivo que contiene las varibles a utilizar, el paquete *readxl* permite leer archivos desde excel sin la necesidad de instalar complementos.

```
options(warn=-1)
library(readxl)
datarls1 <- read excel("poblacion1.xlsx", sheet = 1,col names = TRUE, na = "")</pre>
datarls2 <- read_excel("poblacion2.xlsx",sheet = 1,col_names = TRUE,na = "")</pre>
str(datarls1)
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                               44 obs. of 4 variables:
  $ identificador : num 1001 1002 1003 1004 1005 ...
  $ poblacion
                  : num 18.7 13.8 13.4 11.4 10.5 10.3 10.3 10.3 10.3 9.4 ...
## $ var.pobl.mayor: num 6.2 7.2 7.1 2.6 2.8 1.4 -0.5 3 -1.9 -1.5 ...
                   : num 39.7 10.4 20.4 38.7 36.4 29.8 31.8 31.1 15.9 22.4 ...
## $ menores.18
str(datarls2)
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                                40 obs. of 7 variables:
   $ identificador : num 1044 1042 1010 1009 1008 ...
## $ part.almz.escl : num 73.8 34.4 22.2 39.9 51.7 57.2 43.7 72.3 78.2 13.9 ...
## $ var.ingresos : num 50.5 24.2 33.5 38.5 26.2 27.2 29.4 26 18.4 22.5 ...
## $ tasa.crimen
                    : num 704.1 179.9 61.5 86.4 42.4 ...
## $ var.tasa.crimen: num -40.9 12.3 -32.7 -13.5 -31.9 -17.6 -10 -21.6 -12.8 -33.6 ...
                    : chr "B" "B" "A" "A" ...
  $ serv.bas.compl : chr "SI" "NO" "NO" "SI" ...
```

Analizando la información disponemos en la primera data de 44 observaciones de 4 variables y en la segunda data de 40 observaciones de 7 variables.

Luego procedemos a unir los archivos leidos en un mismo objeto.

\$ menores.18

```
options(warn=-1)
poblacion <- merge(x = datarls1 ,y = datarls2)
str(poblacion)

## 'data.frame': 40 obs. of 10 variables:
## $ identificador : num 1001 1002 1003 1004 1005 ...
## $ poblacion : num 18.7 13.8 13.4 11.4 10.5 10.3 10.3 10.3 10.3 9.4 ...
## $ var.pobl.mayor : num 6.2 7.2 7.1 2.6 2.8 1.4 -0.5 3 -1.9 -1.5 ...</pre>
```

: num 39.7 10.4 20.4 38.7 36.4 29.8 31.8 31.1 15.9 22.4 ...

```
$ part.almz.escl : num 55.8 57.9 13.9 78.2 72.3 43.7 57.2 51.7 39.9 22.2 ...
##
                            28.7 26.2 22.5 18.4 26 29.4 27.2 26.2 38.5 33.5 ...
##
   $ var.ingresos
                     : num
                            52.6 111 38.3 86.6 77.5 54 61.2 42.4 86.4 61.5 ...
##
   $ tasa.crimen
                     : num
                            -2.9 -22.6 -33.6 -12.8 -21.6 -10 -17.6 -31.9 -13.5 -32.7 ...
##
   $ var.tasa.crimen: num
                            "A" "A" "A" "A" ...
##
   $ region
                     : chr
   $ serv.bas.compl : chr
                            "SI" "SI" "NO" "NO"
##
```

Ahora disponemos en la primera data de 40 observaciones de 10 variables.

Procedemos a crear un codigo que identifique la clase de cada variable y genere diagrama de cajas para variables continuas y diagrama de barras para variables discretas.

```
options(warn=-1)
for(i in 1:(ncol(poblacion))){
  if(is.numeric(poblacion[i])==T){
    hist(poblacion[,i])
}else{
    barplot(table(poblacion[,i]))
}
}
```


Creemos un codigo que calcule automaticamente el mínimo, media, máximo, desviación estándar, primer cuartil de cada variable numérica y frecuencia en el caso de variables categoricas.

```
options(warn=-1)
for(i in 1:(ncol(poblacion))) {
  if(is.numeric(poblacion[i])==T){
    print(names(poblacion[i]))
    print(summary(poblacion)[4,i])
    print(summary(poblacion)[4,i])
    print(summary(poblacion)[6,i])
    print(sd(poblacion[,i]))
    print(summary(poblacion)[2,i])
    print("******")
  } else {
    print(names(poblacion[i]))
    print(summary(poblacion)[4,i])
    print(summary(poblacion)[4,i])
    print(summary(poblacion)[6,i])
    print(sd(poblacion[,i]))
    print(summary(poblacion)[1,i])
    print("******")
  }
}
```

```
## [1] "identificador"
## [1] "Mean :1022 "
```

```
## [1] "Mean
            :1022 "
            :1044 "
## [1] "Max.
## [1] 12.99349
## [1] "Min.
            :1001 "
## [1] "******
## [1] "poblacion"
## [1] "Mean : 7.232
## [1] "Mean : 7.232
## [1] "Max.
            :18.700
## [1] 3.621403
## [1] "Min. : 1.700 "
## [1] "******
## [1] "var.pobl.mayor"
## [1] "Mean : 6.647 "
## [1] "Mean
            : 6.647 "
## [1] "Max.
             :32.200
## [1] 8.148776
## [1] "Min. :-3.300 "
## [1] "******
## [1] "menores.18"
## [1] "Mean :27.07 "
## [1] "Mean
            :27.07 "
## [1] "Max.
            :41.50 "
## [1] 9.036337
## [1] "Min.
            : 7.50 "
## [1] "*****
## [1] "part.almz.escl"
## [1] "Mean :53.17 "
             :53.17 "
## [1] "Mean
## [1] "Max.
             :88.50 "
## [1] 25.42078
## [1] "Min.
            : 5.70 "
## [1] "******
## [1] "var.ingresos"
## [1] "Mean :26.79
## [1] "Mean
             :26.79 "
              :50.50 "
## [1] "Max.
## [1] 6.854165
## [1] "Min. :11.70 "
## [1] "******
## [1] "tasa.crimen"
## [1] "Mean :111.03
## [1] "Mean
             :111.03
## [1] "Max.
             :704.10 "
## [1] 108.8891
## [1] "Min. : 32.00 "
## [1] "******
## [1] "var.tasa.crimen"
## [1] "Mean :-15.963 "
            :-15.963 "
## [1] "Mean
## [1] "Max.
             : 27.200 "
## [1] 15.75862
## [1] "Min.
            :-45.600 "
## [1] "******
```

```
## [1] "region"
## [1] NA
## [1] NA
## [1] NA
## [1] NA
## [1] "Length:40 "
## [1] "serv.bas.compl"
## [1] NA
## [1] "Length:40 "
## [1] "*******"
```

Consideremos la variable categórica "serv.bas.compl" con una confiabilidad del 90% ¿Puede asumirse que la media de la variable "poblacion" en el grupo "serv.bas.compl:SI" es distinta a la media del grupo "serv.bas.compl:NO"? Primero veamos si podemos asumir que las varianzas de los grupos que se van a tomar son iguales o no. Procedemos a realizar un diagrama de cajas:

Gracias al diagrama de cajas podemos ver que en el grupo de "SI" existe más variación que en el grupo de "NO". Además, comparando las varianzas de los 2 grupos tenemos:

```
options(warn=-1)
var(var1[var2=="SI"])

## [1] 194.3625

var(var1[var2=="NO"])

## [1] 154.8243
```

Claramente vemos que las varianzas son distintas. Ahora procedemos a aceptar o rechazar nuestra prueba de hipotesis de las medias. Procedamos a comprobar la hipotesis si las medias son iguales. Así:

```
options(warn=-1)
t.test(var1[var2=="SI"], var1[var2=="NO"],conf.level = 0.90)

##
## Welch Two Sample t-test
##
## data: var1[var2 == "SI"] and var1[var2 == "NO"]
## t = -0.77776, df = 29.699, p-value = 0.4429
## alternative hypothesis: true difference in means is not equal to 0
```

```
## 90 percent confidence interval:
## -10.676164
                 3.967831
## sample estimates:
## mean of x mean of y
## 1019.688 1023.042
Como t = -0.7777566 es menor que df = 29.6993396 se acepta H_0: u1 - u2 = 0.
Generemos el modelo de regresión lineal múltiple que mejor se ajuste a nuestros datos.
options(warn=-1)
var2<-poblacion[,2]</pre>
var7<-poblacion[,7]</pre>
mod1<-lm(var1~var2+var7)</pre>
summary(mod1)
##
## Call:
## lm(formula = var1 ~ var2 + var7)
##
## Residuals:
##
       Min
                1Q Median
                                 ЗQ
## -5.5943 -2.8257 -0.2477 2.1106 17.9421
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.045e+03 1.959e+00 533.684
                                                <2e-16 ***
              -3.341e+00 1.989e-01 -16.797
                                                <2e-16 ***
## var7
               5.638e-03 6.615e-03 0.852
                                                   0.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.17 on 37 degrees of freedom
## Multiple R-squared: 0.9023, Adjusted R-squared: 0.897
## F-statistic: 170.8 on 2 and 37 DF, p-value: < 2.2e-16
```

plot(mod1)

Gracias a los gráficos podemos ver que nuestro modelo lineal múltiple siguen normalidad.

Interpretación de Coeficientes

Tenemos que: B1 = 1045.2376674, B2 = 1.9585318 y B3 = 533.6842932 son significantes. También tenemos que, $Pr1 = 1.6447373 \times 10^{-73}$, $Pr2 = 6.7286169 \times 10^{-19}$ y Pr3 = 0.39955 los cuales son valores muy pequeños con respecto a t1 = 533.6842932, t2 = -16.7974568 y t3 = 0.8522653 respectivamente y por tanto podemos decir que nuestros coeficientes son significativos.

Interpretación de R^2

Como $R^2 = 0.9022815$ podemos decir que aproximadamente el 90.2281517% de nuestra variación en nuestro problema puede ser explicado por este modelo, además el $R^2 ajustado = 0.9022815$ por lo tanto la regresión es significativa.

Análisis de Significancia de la Regresión

Gráficos de Dispersión

Carguemos la librería library(ggplot2) que nos permite realizar nuestros gráficos para concluir sobre la significancion de nuestra regresión.

```
options(warn=-1)
library(ggplot2)
```

Ahora realicemos un estudio entre las diferentes variables tomadas en cuenta en nuestra regresión.

var1 vs var2

```
options(warn=-1)
g <- ggplot(data = poblacion, aes(x=var1, y=var2))
g + geom_point() + geom_smooth(method="lm")</pre>
```


var1 vs var7

```
options(warn=-1)
g <- ggplot(data = poblacion, aes(x=var1, y=var7))
g + geom_point() + geom_smooth(method="lm")</pre>
```


var2 vs var7

```
options(warn=-1)
g <- ggplot(data = poblacion, aes(x=var2, y=var7))
g + geom_point() + geom_smooth(method="lm")</pre>
```


En el caso del primer gráfico podemos distinguir una relación lineal entre las variables. En el segundo y tercer caso se tiene una mayor dispersión de puntos. Tomemos en cuenta que en los 3 casos existen puntos atípicos.

Gráfico de Normalidad

```
options(warn=-1)
qqnorm(var1)
qqline(var1,col="blue",size=2)
```

Normal Q-Q Plot


```
options(warn=-1)
qqnorm(var2)
qqline(var2,col="blue",size=2)
```

Normal Q-Q Plot


```
options(warn=-1)
qqnorm(var7)
qqline(var7,col="blue",size=2)
```

Normal Q-Q Plot

En el tercer gráfico se puede notar claramente normalidad mietras que en los graficos $1 \ y \ 2$ se viola el supuesto de normalidad.

${\bf Histogram as}$

```
options(warn=-1)
hist(var1)
```

Histogram of var1

var2

options(warn=-1)
hist(var2)

Histogram of var2


```
options(warn=-1)
hist(var7)
```

Histogram of var7

Podemos ver que solo el segundo gráfico tiene tendencia a seguir una ley normal y tener simetría.

Análisis de Residuos

En primer lugar calculemos los residuos de neustra regresion lineal los cuales son:

```
options(warn=-1)
u1<- mod1$residuals</pre>
```

Ahora estudiemos los gráficos residuales con relación a los residuos que acabamos de calcular.

var1 vs u1

```
options(warn=-1)
g <- ggplot(data = poblacion, aes(x=var1, y=u1))
g + geom_point() + geom_smooth(method="lm")</pre>
```


var2 vs u1

```
options(warn=-1)
g <- ggplot(data = poblacion, aes(x=var2, y=u1))
g + geom_point() + geom_smooth(method="lm")</pre>
```


var7 vs u1

```
options(warn=-1)
g <- ggplot(data = poblacion, aes(x=var7, y=u1))
g + geom_point() + geom_smooth(method="lm")</pre>
```


Podemos observar que no estan aleatoriamente distribuidos en una banda centrada en 0. Realicemos un estudio de los pronósticos de nuestro modelo lineal vs los residuos del mismo.

_pronóstios vs Residuos

```
options(warn=-1)
v1 <- mod1$fitted.values
plot(u1,v1)</pre>
```


podemos observar que los puntos estan dispersos por ser puntos atípicos e influyentes por tanto no se tiene una buena linealidad. Se debe corregir el modelo lineal. Así,

Reajustando el modelo inicial

```
options(warn=-1)
varl1<-log(var1)
varl2<-log(var2)
varl7<-log(var7)
mod2<-lm(varl1~varl2+varl7)
summary(mod2)</pre>
```

```
##
## Call:
## lm(formula = varl1 ~ varl2 + varl7)
##
## Residuals:
##
          Min
                      1Q
                             Median
                                             3Q
                                                       Max
  -0.0055150 -0.0023646 0.0005776 0.0022177
##
                                                 0.0041958
##
##
  Coefficients:
##
                 Estimate Std. Error
                                      t value Pr(>|t|)
##
  (Intercept) 6.9808987
                           0.0052579 1327.707
                                                 <2e-16 ***
## varl2
               -0.0235795
                           0.0009966
                                       -23.659
                                                 <2e-16 ***
## varl7
               -0.0018388
                           0.0009018
                                        -2.039
                                                 0.0486 *
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.002923 on 37 degrees of freedom
## Multiple R-squared: 0.9498, Adjusted R-squared: 0.9471
## F-statistic: 350.3 on 2 and 37 DF, p-value: < 2.2e-16</pre>
```

plot(mod2)

Luego de realizar un ajuste en el modelo original podemos observar que los valores se ajustan mas a la linealidad y aceptacion del modelo de regresión múltiple.