Cálcu	lc
Tocto	2

Nome completo	Número
---------------	--------

Grupo I (15 valores)

JUSTIFIQUE CUIDADOSAMENTE TODAS AS SUAS RESPOSTAS.

1. (2 valores)

Considere a região plana cuja área se pode calcular por $\int_0^1 x^2 \ dx$. Nestas condições,

- (a) forme a soma de Riemann para f, onde $f(x)=x^2$, relativa à partição $\mathcal{P}=\{0,\frac{1}{4},\frac{1}{2},\frac{3}{4},1\}$ do intervalo [0,1] e com $\tilde{x}_1=\frac{1}{8}$, $\tilde{x}_2=\frac{3}{8}$, $\tilde{x}_3=\frac{5}{8}$ e $\tilde{x}_4=\frac{7}{8}$.
- (b) esboce uma figura que ilustre o que representa a soma de Riemann da alínea anterior.

2. (3 valores)

Calcule
$$\int_1^2 x \sqrt{x-1} \ dx$$
, usando $t^2 = x-1$.

3. (2 valores)

Seja ${\mathcal A}$ a região plana limitada pelas curvas definidas por $x=y^2$ e $2y^2=x+4$.

- (a) Recorrendo a integrais definidos, exprima de duas formas distintas— integrando em ordem em x e integrando em ordem a y— a área de $\mathcal A$.
- (b) Calcule a área de \mathcal{A} .

4. (3 valores)

Qual o comprimento de uma catenária —definida por $y=\cosh x$ $\left(=\frac{e^x+e^{-x}}{2}\right)$ — entre os pontos de abcissas -1 e 1?

5. (2 valores)

Estude a natureza de

(a)
$$\int_{1}^{+\infty} \frac{1}{x^2 + 1} \ dx$$

(b)
$$\sum_{n\geq 1} \frac{1}{n^2+1}$$

6. (3 valores)

Considere a série de potências

$$\sum_{n\geq 1} \frac{(2x)^n}{n} \, .$$

Determine o raio e o intervalo de convergência desta série.

Relativamente às questões deste grupo indique, justificando, se a afirmação é verdadeira ou falsa.

1. Se $f:[a,+\infty[\longrightarrow \mathbb{R}$ é contínua então

$$\frac{d}{dx} \left[\int_a^x f(t) dt \right] = \int_a^x \frac{d}{dt} f(t) dt.$$

2. Se $f:[a,b]\longrightarrow \mathbb{R}$ é contínua e tal que $\int_a^b f(x)\,dx=0$, então existe $c\in [a,b]$ tal que f(c)=0.

3.
$$\int_{-1}^{1} \frac{1}{x^2} dx = -2.$$

4. Se $\lim_n (u_1 + u_2 + \cdots + u_n) = 1$, então $\sum_{n \geq 1} u_n$ é divergente.

5. Se $\sum_{n\geq 0} a_n x^n$ converge quando x=2, então converge quando x=1.

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
senx	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0

$$\cosh^2 x - \sinh^2 x = 1$$