REALTOXICITYPROMPTS:

Evaluating Neural Toxic Degeneration in Language Modles

Samuel Gehman° Suchin Gururangan°† Maarten Sap° Yejin Choi°† Noah A. Smith°†

°Paul G. Allen School of Computer Science & Engineering, University of Washington

†Allen Institute for Artificial Intelligence

Seattle, USA

EMNLP 2020

발제자: 고경빈

2025.01.03

Background

- LMs pretrained on large web text corpora suffer from degenerate and biased behavior
- Regardless of toxic prompts, LMs can easily degenerate into toxicity

Operationalizing Toxicity

- Label a prompt as toxic if it has TOXICITY ≥ 0.5 from PERSPECTIVE API
- The API is imperfect
 - Bias against minorities
 - Low annotation agreement
 - Overestimating toxicity in texts mentioning minority identities
- Why?
 - Over-reliance on lexical cues of toxicity

Generation Toxicity

- Model
 - GPT-1(117M): English books
 - GPT-2-small(117M): OPENAI-WT(Web Text)
 - GPT-3(Da vinci, 175B): Common Crawl(OPENAI-W, books, Wikipedia)
 - CTRL(1.63B): Web Text, using Links control token
 - CTRL-WIKI(1.63B): English Wikipedia, using Wiki control token
- Generation
 - Nucleus sampling(p=0.9 to generate up to 20 tokens)

Unprompted Toxicity

- Measure the likelihood of toxic output based on start-of-sentence tokens
- HOW?
 - Generate a pool of 10K spans and estimate maximum toxicity by sampling n ≤ 10K spans 1K times

- All models can reach toxicity above 0.5 within 100 generations
- GPT-3's toxicity mirrors GPT-2, as its training data was designed to be similar
- GPT-1 generates more toxicity quickly due to its toxic pretraining data
- CTRL-WIKI has lower toxicity, showing models gain toxicity from pretraining data

REALTOXICITYPROMPTS

- Testbed for toxicity in conditional language generation
- Prompt Creation and Selection
 - Select prompts from the OPENWEBTEXT Corpus(Web Text)
 - Sample 25K sentences from four toxicity ranges: [0, .25), [.25, .5), [.5, .75), [.75, 1]
 - Split sentences into a prompt and continuation

# Prompts	REALTOXICITYPROMPTS			
	Toxic 21,744	Non-Toxic 77,272		
# Tokens	Prompts 11.7 _{4.2}	Continuations 12.0 _{4.2}		
Avg. Toxicity	Prompts 0.29 _{0.27}	Continuations 0.38 _{0.31}		

Prompted Toxicity

- Expected maximum toxicity
- Probability of generating TOXICITY ≥ 0.5 at least over k = 25 generations
 - Toxicity probability[↑], more frequently generation

	Exp. Ma	ax. Toxicity	Toxicity Prob.		
Model	Toxic	Non-Toxic	Toxic	Non-Toxic	
GPT-1	0.780.18	0.580.22	0.90	0.60	
GPT-2	0.750.19	0.510.22	0.88	0.48	
GPT-3	0.750.20	$0.52_{0.23}$	0.87	0.50	
CTRL	$0.73_{0.20}$	$0.52_{0.21}$	0.85	0.50	
CTRL-W	$0.71_{0.20}$	0.490.21	0.82	0.44	

- Both prompts cause toxic generations, regardless of prompt's toxicity
 - → The need to unlearn toxicity
- CTRL-WIKI has similar result to other models
 - → Prompt context strongly affects generation toxicity
- → Steering generation post-pretraining is key to avoiding toxic behavior

Detoxifying Generations

- Data-Based Detoxification
 - Domain-Adaptive Pretraining(DAPT)
 - DAPT(Non-Toxic): Additional pretraining on the non-toxic subset of a balanced corpus
 - DAPT(Toxic): Additional pretraining on the toxic subset of a balanced corpus
 - Attribute Conditioning(ATCON)
 - Prepend a toxicity token to a random sample of documents and additional pretrain (In experiments, prepend <|nontoxic|> to prompts)

Detoxifying Generations

- Decoding-based Detoxification
 - Vocabulary Shifting(VOCAB-SHIFT)
 - Learn toxicity representation of toxicity, boosting non-toxic token likelihood(□W t)
 - Word Filtering(WORD FILTER)
 - Implement a blocklist to prevent certain words from being generated
 - PPLM
 - Adjust hidden representations with discriminator gradients to reflect desired attributes

Effect of Controllable Solutions

Category	Model	Exp. Max. Toxicity			Toxicity Prob.		
		Unprompted	Toxic	Non-Toxic	Unprompted	Toxic	Non-Toxic
Baseline	GPT-2	0.440.17	0.750.19	0.510.22	0.33	0.88	0.48
Data-based	DAPT (Non-Toxic) DAPT (Toxic) ATCON	0.30 _{0.13} 0.80 _{0.16} 0.42 _{0.17}	0.57 _{0.23} 0.85 _{0.15} 0.73 _{0.20}	0.37 _{0.19} 0.69 _{0.23} 0.49 _{0.22}	0.09 0.93 0.26	0.59 0.96 0.84	0.23 0.77 0.44
Decoding-based	VOCAB-SHIFT PPLM WORD FILTER	0.43 _{0.18} 0.28 _{0.11} 0.42 _{0.16}	0.70 _{0.21} 0.52 _{0.26} 0.68 _{0.19}	0.46 _{0.22} 0.32 _{0.19} 0.48 _{0.20}	0.31 0.05 0.27	0.80 0.49 0.81	0.39 0.17 0.43

- All techniques reduce toxicity, but steering doesn't fully prevent toxic degeneration
- DAPT (Non-Toxic) is simple but effective, emphasizing the importance of pretraining data
- Prompts That Challenge All Models
 - Toxic themselves or Toxic or contain quotes or prefixes like "full of-"
 - At least 10% of the 1.2K come from unreliable news sources or banned subreddits

Additional Experiment

Toxicity of generations in unprompted settings

	Exp. Max. Toxicity			Toxicity Prob.		
Model	Unprompted	Toxic	Non-Toxic	Unprompted	Toxic	Non-Toxic
GPT-2-small	0.450.18	0.740.19	0.510.22	0.33	0.87	0.47
GPT-2-medium	$0.49_{0.18}$	$0.74_{0.21}$	$0.50_{0.23}$	0.45	0.85	0.47

• Increasing model size has a minor effect on toxic behavior in the language model

Analyzing Toxicity in Web Text

OWTC

- Cross-reference with news factuality ratings
- Cross-reference Reddit dumps to identify submission subreddits

OPENAI-WT

- Filtered content using a blocklist of offensive subreddits
- 29% overlap between two corpora
- Despite the blocklist, OPENAI-WT's toxicity is twice that of OWTC

PERSP. Label	% OWTC	% OPENAI-WT
SEXUAL	3.1%	4.4%
TOXICITY	2.1%	4.3%
SEV. TOXICITY	1.4%	4.1%
PROFANITY	2.5%	4.1%
INSULT	3.3%	5.0%
FLIRTATION	7.9%	4.3%
IDEN. ATTACK	5.5%	5.0%
THREAT	5.5%	4.2%

Sources of Toxic Content in Web Text

- Toxicity from Unreliable News Sites
 - News reliability is negatively correlated with document toxicity
 - Low-reliability sites in OWTC have more toxic documents
 - At least 12% of overlappings are from low or mixed reliability

- Toxicity from Quarantined or Banned Subredits
 - At least 3% of OWTC come from banned or quarantined subreddits
 - Documents from those subreddits are more toxic
 - At least 63K overlappings are from those subreddits

Conclusion

- Toxicity largely comes from pretraining data, fully addressing it is still difficult, showing the need for better data curation
- Models generate toxic outputs regardless of prompt toxicity, highlighting the need for stronger post-training controls
- Unreliable news sites and banned subreddits are key toxicity sources, requiring stricter data filtering during dataset creation

My Review

- The study analyzed toxicity in language models from different angles, such as prompts and data sources, providing experimental proof through multiple model comparisons
- The study demonstrated the effect of model and data source differences on toxic behavior and validated toxicity mitigation techniques
- The limited experiments due to financial constraints may have restricted the diversity of results on toxicity

Open Question

 How can we assess toxicity in closed-source LLMs, where training data is not disclosed?