6. Элементы теории поля

6.2. Векторное поле. Векторные линии

Если в каждой точке P(x,y,z) области D задан определенный вектор $\vec{a}(P)$, то будем говорить, что в этой области задано **векторное поле**.

Примеры векторных полей: силовое поле, поле скоростей текущей жидкости, электромагнитное поле и т.д. Будем рассматривать стационарные векторные поля, в которых вектор $\vec{a}(P)$ не зависит от времени. Обозначим проекции вектора $\vec{a}(P)$ на оси координат через $a_x,\ a_y,\ a_z,$ тогда

$$ec{a}(P) = a_x(x,y,z)ec{i} + a_y(x,y,z)ec{j} + a_z(x,y,z)ec{k} \; .$$

Предполагаем, что $a_x,\ a_y,\ a_z$ – непрерывные дифференцируемые функции координат.

Векторной линией векторного поля называется линия, в каждой точке которой направление касательной совпадает с направлением вектора $\vec{a}(P)$.

Примеры векторных линий – линии тока в гидродинамике, силовые линии в физике.

Система дифференциальных уравнений семейства векторных линий поля $\vec{a}(P)$ имеет вид

$$\frac{dx}{a_x} = \frac{dy}{a_y} = \frac{dz}{a_z} \; .$$

Эта система представляет собой условие параллельности вектора касательной к линии $d\vec{s}=dx\vec{i}+dy\vec{j}+dz\vec{k}$ и вектора $\vec{a}(P)$.

◀ Вопросы преподавателю

Перейти на...

8. Теория вероятностей и математическая статистика >