Travail et énergie cinétique

Situation-problème

Durant son vol, l'avion possède une énergie appelée énergie cinétique, qui est liée à la vitesse et à la masse de cet avion.

- Qu'est-ce que l'énergie cinétique? Et comment la calculer?
- Quelle relation existe-t-elle entre la variation l'énergie cinétique et la somme des travaux des forces extérieures

Objectifs

- 🦤 Définir l'énergie cinétique d'u corps .
- Savoir calculer l'énergie d'un corps solide en mouvement de translation .
- Savoir calculer l'énergie cinétique d'un corps solide en mouvement de rotation autour d'un axe fixe .
- Connaître le théorème de l'énergie cinétique.
- Savoir exploiter le théorème de l'énergie cinétique pour étudier le mouvement d'un corps solide en translation ou en rotation autour d'un axe fixe .

	Notion de l'énergie cinétique	le
	•	
_		
I	$oxed{I}$ L'énergie cinétique d'un con	rps solide en translation
•	On distingue trois types de mouvement de tran	$egin{picture}(1,0) \ A \ A \ A \ A \ A \ A \ A \ A \ A \ $
•	On distingue trois types de mouvement de tran	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	On distingue trois types de mouvement de tran	$\begin{bmatrix} \overline{B} \\ \overline{A} \overline{B} \end{bmatrix}$ A A
•	On distingue trois types de mouvement de tran	Translation rectiligne
•	On distingue trois types de mouvement de tran	Translation rectiligne
-	On distingue trois types de mouvement de tran	Translation rectiligne
-	On distingue trois types de mouvement de tran	Translation rectiligne
-	On distingue trois types de mouvement de tran	Translation rectiligne Translation curviligne
-	On distingue trois types de mouvement de tran	Translation rectiligne Translation curviligne

2) L'énergie cinét	ique d'un corp	s solide en	mouvemen	nt de translation
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
•				
•		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
Application				
On considère un corp		se $m = 2Kg$ en	n mouvement 1	rectiligne uniforme d
itesse $v = 30m. s^{-1}$		(0)		
Calculer l'énergie (Quelle est la valeu			rcia cinátiqua	est · F = 1 7KI
Quelle est la valeu	de la vitesse du co	rps si son ene	igie cinetique	$\operatorname{est}: L_{\mathcal{C}} = 1, 7 \operatorname{K}_{\mathcal{I}}$
L'énergie	cinétique d'u	n corps e	n mouven	ient de rotatio
		14.1		
Mouvement d	e rotation d'un	solide aut	our d'un ax	xe fixe « rappel
			• • • • • • • • • • • • • • • • • • • •	

L'énergie cinétique d'un corps solide en mouvement de rotation				
•				
•				
•				
Remarque				
		• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •	
Le tableau suivan	t représente l'expre	ession du moment	d'inertie pour les o	bjets ayant des
formes géométriq	ques spécifiques .			
m.	Tigo	D 11	G 1: 1	

Tige	Tige	Ballon	Cylindre	Anneau
$\stackrel{!}{\longleftarrow} l$	$\langle \qquad \qquad \qquad \qquad \qquad \qquad $	(Δ) :		
$J_{\Delta} = \frac{1}{3}ml^2$	$J_{\Delta} = \frac{1}{12}ml^2$	$J_{\Delta}=rac{2}{5}mr^{2}$	$J_{\Delta}=rac{1}{2}mr^{2}$	$J_{\Delta}=mr^2$

***** Application

On considère un disque (D) de masse m=1,5Kg et de rayon R=20cm en mouvement de rotation uniforme avec une vitesse angulaire $\omega=30rad.s^{-1}$.

- 1 Calculer la valeur du moment d'inertie du disque.
- 2 Calculer l'énergie cinétique du disque .

III Théorème de l'énergie cinétique

① Activité

On place un autoporteur de masse m=650g sur une table à coussin d'air inclinée d'un angle $\alpha=15^\circ$ par rapport à l'horizontal et on fixe le générateur d'impulsion sur la valeur : $\tau=50ms$ (la figure 0). On libère l'autoporteur sans vitesse initiale et on en registre les positions occupées par son centre d'inertie (la fiure 0)

- Faire le bilan des forces extérieures exercées sur l'autoporteur lors de son mouvement .
- ② Trouver l'expression du travail du poids de l'autoporteur lorsqu'il se déplace de la position G_1 à la position G_3 en fonction de g, m, α et la distance G_1G_3 . Déduire l'expression de la somme des travaux des forces extérieures exercées sur l'autoporteur.
- f G Trouver l'expression de l'énergie cinétique de l'autoporteur à la position G_1 en fonction de m , au et la distance G_0G_2 .
- ① Trouver l'expression de la variation de l'énergie cinétique de l'autoporteur lorsqu'il se déplace de la position G_1 à la position G_3 en fonction de τ , m, G_0G_2 et G_2G_3 .
- **6** En se basant sur les résultats des questions précédentes compléter le tableau suivant en calculant la somme des travaux des forces extérieurs exercées sur l'autoporteur et la variation de son énergie cinétique lorsqu'il se déplace de G_1 à G_3 et aussi de G_3 à G_4 (noter les résultats obtenus dans un tableau). Donnée : l'intensité de pesanteur $g = 9,8N.Kg^{-1}$
- 6 Que peut-on déduire à partir des résultats de la question précédente.

