

Filipe Alvelos falvelos@dps.uminho.pt

Março 2014 Fevereiro, 2016

Caminho preferido bi-objectivo

 Considere-se um problema em que se pretende instalar um cabo entre dois pontos. Existem seis caminhos alternativos, cada um deles envolvendo um determinado comprimento e um determinado custo (que se pretendem minimizar). Identifique as soluções dominadas.

	Comprimento (m)	Custo (€)
Α	687	900
В	667	1200
С	906	1400
D	801	2100
Е	841	800
F	1019	400

Custo (£)

C

B

A

Comprimento (m)

- Seleccionar um caminho tendo em conta dois objectivos (por exemplo custo e duração)
- Modelo

$$\begin{aligned} \operatorname{Min} z_1 &= \sum_{ij \in A} c_{ij} x_{ij} \\ \operatorname{Min} z_2 &= \sum_{ij \in A} t_{ij} x_{ij} \\ \operatorname{sujeito} a: \\ \sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} &= \begin{cases} 1, se \ i = o \\ 0, se \ i \neq d, i \neq d \end{cases}, \forall i \in \mathbb{N} \\ -1, se \ i = d \\ x_{ij} \in \{0,1\}, \forall ij \in A \end{aligned}$$

em que a cada arco está associado um custo, c_{ij} , e uma duração, t_{ij} , $\forall ij \in A$.

FA, Problemas de caminhos

Caminho preferido bi-objectivo

• Junto a cada arco é dado o seu custo (em €) e a sua duração (em horas), por esta ordem

- As duas funções objectivo são
- $Min z_1 = x_{12} + 10 x_{13} + x_{24} + 2 x_{25} + x_{32} + 5 x_{34} + 12 x_{35} + 10 x_{45} + x_{46} + 2 x_{56}$
- $Min z_2 = 10 x_{12} + 3 x_{13} + x_{24} + 3 x_{25} + 2 x_{32} + 7 x_{34} + 3 x_{35} + x_{45} + 7 x_{46} + 2 x_{56}$

FA, Problemas de caminhos

Caminho preferido bi-objectivo

- Tipicamente os objectivos são conflitusos e portanto não existe um caminho óptimo, mas um caminho preferido escolhido de entre o conjunto de caminhos eficientes
- Um caminho é eficiente se não existe nenhum outro caminho melhor ou igual nos dois objectivos
- A optimização tem como papel identificar
 - um caminho preferido de acordo com informação prestada pelo agente de decisão ou
 - um (sub)conjunto de soluções eficientes para posterior análise por parte do agente de decisão
- Optimização multi-critério pode ser dividida em dois grupos
 - Nos problemas multi-atributo as soluções possíveis são conhecidas explicitamente
 - Nos problemas multi-objectivo as soluções possíveis são conhecidas implicitamente

- Método de agregação por pesos para obter uma solução preferida
- Problema é transformado num problema de objectivo único por atribuição de um peso a cada função objectivo original

$$\begin{aligned} \mathit{Min}\ z &= \lambda_1 \sum_{ij \in A} c_{ij} x_{ij} + \lambda_2 \sum_{ij \in A} t_{ij} x_{ij} \\ \mathit{sujeito}\ a &: \\ \sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} &= \begin{cases} 1, se\ i = o \\ 0, se\ i \neq d, i \neq d \ , \forall i \in N \\ -1, se\ i = d \end{cases} \\ x_{ij} &\in \{0,1\}, \forall ij \in A \end{aligned}$$

- O agente de decisão está disposto a pagar mais λ₂ € por reduzir a duração em λ₁ horas (cada hora vale λ₂/λ₁€)
- Exemplo, λ₂\λ₁ = 5 (cada hora vale 5€), solução com custo 5 e duração 10 e solução com custo 10 e duração 9 são equivalentes (assumindo que o agente de decisão se revê nestes pesos)

Caminho preferido bi-objectivo

• Custo (em €) é dez vezes mais importante do que o comprimento (em m)

	Comprimento (m)	Custo (€)	
	1	10	Total
A	687	900	9687
В	667	1200	12667
C	906	1400	14906
D	801	2100	21801
Е	841	800	8841
F	1019	400	5019

- **Método de geração através de pesos** para obter um conjunto de soluções eficientes
- Primeiro passo: normalizar
 - $z^{norm} = \frac{z^{orig} z^{min}}{z^{max} z^{min}}$ em que z^{max} e z^{min} são o maior e menor valores, respectivamente, que a função objectivo em causa podem tomar considerando a optimização isolada de cada objectivo
 - No exemplo,
 - $\begin{array}{ll} \bullet & z_1^n = \frac{x_{12} + 10\,x_{13} + x_{24} + 2\,x_{25} + x_{32} + 5\,x_{34} + 12\,x_{35} + 10\,x_{45} + x_{46} + 2\,x_{56} 3}{24 3} \\ \bullet & z_2^n = \frac{10\,x_{12} + 3\,x_{13} + x_{24} + 3\,x_{25} + 2\,x_{32} + 7\,x_{34} + 3\,x_{35} + x_{45} + 7\,x_{46} + 2\,x_{56} 8}{18 8} \end{array}$
- Segundo passo, decidir quantas optimizações efectuar (q)
- Optimizar q modelos de $\lambda_1=0$ até $\lambda_1=1$ com um incremento de $\frac{1}{(q-1)}$. O peso da segunda função objectivo é dado por $\lambda_2=1-\lambda_1$

FA, Problemas de caminhos

Caminho preferido bi-objectivo

λ_1	$\lambda_2 = 1 - \lambda_1$	Custo	Duração	Caminho
0.00	1.00	24	8	1-3-5-6
0.11	0.89	24	8	1-3-5-6
0.22	0.78	24	8	1-3-5-6
0.33	0.67	15	10	1-3-2-5-6
0.44	0.56	15	10	1-3-2-5-6
0.55	0.45	5	15	1-2-5-6
0.66	0.34	5	15	1-2-5-6
0.77	0.23	3	18	1-2-4-6
0.88	0.12	3	18	1-2-4-6
0.99	0.01	3	18	1-2-4-6

• Distância ao ideal – método para indicar uma solução preferida

			métrica	métrica de
	comp	custo	Euclideana	Manhattan
Α	687	900	500	520
В	667	1200	800	800
C	906	1400	1028	1239
D	801	2100	1705	1834
E	841	800	436	574
F	1019	400	352	352
ideal	667	400	352	352

• Com atributos normalizados

	Comprimento	Custo	Distância ao ideal (métrica de Manhattan)
A	0.06	0.29	0.35
В	0.00	0.47	0.47
С	0.68	0.59	1.27
D	0.38	1.00	1.38
E	0.49	0.24	0.73
F	1.00	0.00	1.00
Ideal	0	0	

FA, Problemas de caminhos

Caminho preferido bi-objectivo

- Distância ao ideal (métrica de Manhattan) método para indicar uma solução preferida
- s_1 distância ao ideal da primeira função objectivo
- s_2 distância ao ideal da segunda função objectivo

$$Min s_1 + s_2$$

sujeito a:

x é um caminho

$$\begin{aligned} s_1 &= x_{12} + 10 \, x_{13} + x_{24} + 2 \, x_{25} + x_{32} + 5 \, x_{34} + 12 \, x_{35} + 10 \, x_{45} + x_{46} + 2 \, x_{56} - 3 \\ s_2 &= 10 \, x_{12} + 3 \, x_{13} + x_{24} + 3 \, x_{25} + 2 \, x_{32} + 7 \, x_{34} + 3 \, x_{35} + x_{45} + 7 \, x_{46} + 2 \, x_{56} - 8 \\ s_1, s_2 &\geq 0 \end{aligned}$$

- Optimização lexicográfica
- Agente de decisão estabelece hierarquia para os objectivos
- Uma solução com melhor valor do que outra no primeiro objectivo é
 preferível a essa outra quaisquer que sejam os valores de ambas nos
 restantes objectivos. Se duas soluções tiverem o mesmo valor no
 primeiro objectivo, o raciocínio anterior aplica-se ao segundo
 objectivo e assim sucessivamente
- O primeiro problema a resolver é

Min
$$z_1 = f_1(x)$$

sujeito a:
 $x \in X$

representando por \mathbf{z}_1^* o valor óptimo deste problema o segundo problema a resolver é

$$\begin{aligned} & \textit{Min } z_2 = f_2(x) \\ & \textit{sujeito } a \text{:} \\ & x \in X \\ & f(x) = z_1^* \\ & \text{\tiny FA, Problemas de caminhos} \end{aligned}$$

Caminho preferido bi-objectivo

Consideram-se seis possíveis configurações para a expansão de uma rede de telecomunicações e dois objectivos: minimizar o custo estimado da expansão da rede (em $\mathfrak E$) e a duração dessa expansão (em meses). Na tabela seguinte apresentam-se os valores de cada um dos objectivos para cada uma das configurações.

Configuração	Custo (€)	Duração (meses)
A	200	8
В	500	7
С	600	6
D	700	10
F	800	9

- a) Indique as configurações eficientes e, para as restantes, indique quais as configurações que as dominam.
- b) Considerando que o agente de decisão atribui um valor de 300€ a cada mês que a construção demora, qual a solução preferida?
- c) Indique a solução mais próxima da solução ideal após proceder à normalização dos objectivos.

