五校联考

GZEZ PION 3202 赛拟模 第三场

题目名称	点三连通分量 计数	特征多项式加 速矩阵快速幂	斯特恩布洛科 树上倍增加速 二分	单点修改矩形 顺序对
题目类型	传统型	传统型	传统型	传统型
目录	three	prefix	frac	matrix
可执行文件名	three	prefix	frac	matrix
输入文件名	three.in	prefix.in	frac.in	matrix.in
输出文件名	three.out	prefix.out	frac.out	matrix.out
每个测试点时限	2000 ms	1000 ms	4000 ms	18000 ms
内存限制	512 MiB	512 MiB	1024 MiB	1024 MiB
子任务数目	6	4	10	4

提交源程序文件名

对于 C++ 语言 three.cpp

编译选项

注意事项 (请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++中函数 main() 的返回值类型必须是 int, 程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明, 结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 4. 选手提交的程序源文件必须不大于 100KB。
- 5. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 6. 提交方式、时空限制以及是否使用文件输入输出请以各校实际评测环境为准。
- 7. 请相信自己的做法,并且注意常数优化。
- 8. 对于确定无法通过的测试点,可以特判以减少评测机压力。

传统

2000 ms 512 MiB

点三连通分量计数 (three)

【题目描述】

给你一张n个点,m条边的无向图与一个整数d,求有多少个大小为3的连通块使得其中点的编号的极差小于等于d。

两个连通块不同当且仅当一个连通块内有某个点 x 而另一个连通块里没有。

【输入格式】

第一行三个整数 n, m, d。

接下来m行每行两个整数u,v,表示图中有一条边(u,v)。

【输出格式】

一行一个整数表示答案。

【样例数据】

【样例1输入】

4 5 3

1 2

23

2 4

13

3 4

【样例1输出】

4

【样例2输入】

663

14

43

3 2

2 5

1 2

26

【样例2输出】

5

【样例3】

见下发文件 ex_three3.in 和 ex_three3.out, 该测试用例满足子任务 1 的约束条件。

【样例4】

见下发文件 ex_three4.in 和 ex_three4.out, 该测试用例满足子任务 3 的约束条件。

【样例5】

见下发文件 ex_three5.in 和 ex_three5.out, 该测试用例满足子任务 5 的约束条件。

【样例6】

见下发文件 ex_three6.in 和 ex_three6.out。

【数据规模与约定】

全部数据均保证 $3 \le n, m \le 5 \times 10^5, \ 2 \le d < n,$ 保证图中无重边自环。 本题采用子任务捆绑测试,各个子任务详细信息如下:

编号	子任务分数	$n,m \leq$	特殊性质
1	10	500	
2	10	10^4	
3	10	5×10^5	图为菊花图
4	20	5×10^5	d = n - 1
5	20	5×10^5	图为二分图
6	30	5×10^5	

传统

1000 ms

512 MiB

特征多项式加速矩阵快速幂 (prefix)

【题目描述】

给出素数 p。对于序列 a,定义其权值为最小的 k > 0 使得 a 在模 p 意义下的的 k 阶前缀和为 a。特别地,若不存在这样的 k,则 a 的权值为 0。

求长度为n,每个元素在[0,p)中的整数序列的权值的期望,对998244353取模。

【输入格式】

输入一行两个整数 n, p, 以空格隔开。

【输出格式】

输出一行一个整数,表示所有整数序列的权值的期望对 998244353 取模后的结果。

【样例数据】

【样例1输入】

2 2

【样例1输出】

499122178

【样例1解释】

序列 $\{0,0\}$ 的权值是 1, 序列 $\{0,1\}$ 的权值是 1, 序列 $\{1,0\}$ 的权值是 2, 序列 $\{1,1\}$ 的权值是 2。

【样例2输入】

4 5

【样例2输出】

543044933

【样例3输入】

1000 19001

【样例3输出】

724295988

【样例4输入】

987831351 843547567

【样例4输出】

861261240

【数据规模与约定】

全部数据均保证 $1 \le n, p < 998244353$, 保证 p 为质数。

本题采用子任务捆绑测试,各个子任务详细信息如下:

编号	子任务分数	$n \leq$	$p \leq$
1	20	5	11
2	25	998244352	2
3	25	10^{5}	998244352
4	30	998244352	998244352

斯特恩布洛科树上倍增加速二分 (frac)

【题目描述】

给你两个序列 a,b, 每次询问给出 l,r,x, 求

$$\sum_{i=l}^r \frac{a_i}{b_i+x}$$

【输入格式】

第一行两个整数n,q分别表示序列长度、询问次数。第二行n个整数表示a。 第三行n个整数表示b。

接下来 q 行, 每行三个整数 l,r,x 表示询问。

【输出格式】

输出 q 行, 每行一个实数表示答案。你的答案只需与标准答案相差不超过 10^{-6} 即可。

【样例数据】

【样例1输入】

5 5 3 4 1 2 8 10 9 2 2 9 3 5 1 346 228 441 4 4 3

【样例1输出】

1.800000000000 0.3750000000000 0.235294117647 0.66666666667 0.400000000000

【样例2】

见下发文件 ex frac2.in 和 ex frac2.out,该测试用例满足测试点 $1 \sim 2$ 的约束条件。

【样例3】

见下发文件 ex_frac3.in 和 ex_frac3.out, 该测试用例满足测试点 $3\sim 4$ 的约束条件。

【样例4】

见下发文件 ex_frac4.in 和 ex_frac4.out。

【数据规模与约定】

全部数据均保证 $1 \le n \le 3 \times 10^5$, $1 \le q \le 10^6$, $1 \le x \le 10^6$, $1 \le l \le r \le n$, $1 \le a_i \le b_i \le 10^6$ 。

本题共有10个测试点,每个测试点10分,各个测试点详细信息如下:

测试点编号	$n \leq$	$q \le$
$1 \sim 2$	1000	1000
$3 \sim 4$	10^{5}	10^{5}
$5 \sim 10$	3×10^5	10^{6}

【提示】

可以使用下发文件中的 checker.cpp 以检验你的输出的正确性,使用时先将其编译为可执行文件 checker (在 Windows 系统下为编译为 checker.exe)。

- Linux 系统使用 ./checker <input-file> <output-file> <answer-file> 测试;
- Windows 系统使用 checker <input-file> <output-file> <answer-file> 测试。

其中 <input-file> <output-file> <answer-file> 分别是输入文件、选手输出和标准答案。

传统

18000 ms

1024 MiB

单点修改矩形顺序对 (matrix)

「看着眼下逐渐铺开的纯白世界」 「闪耀着光的地方是积雪皑皑的山巅」 「那座山叫乞力马扎罗山」 「男人心想」 「自己该去的地方就是那里了」

【题目描述】

请注意本题特殊的时间限制。

给你平面上n个点,第i点初始时有点权 v_i 。现在一共有m次操作,每次操作给出一个矩形,把被包含矩形在中的点的点权减去c。

每次操作后,请你求出求点权大于等于 0 的点的个数。本题强制在线,即你只有在算出前一次操作后的答案后,才能得到下一次操作的信息。

【输入格式】

第一行两个整数 n, m。

下面 n 行,第 i+1 行是两个整数 p_i, v_i 表示点 (i, p_i) 的点权是 v_i 。 p_i 构成 1...n 的排列。

下面 m 行, 每行五个整数 $x_1', y_1', x_2', y_2', c'$ 。为了体现你的程序的在线性, 操作进行了加密:记 lastans 为上次询问的答案, 初始为 0, 将这五个数分别异或 lastans 后得到 x_1, y_1, x_2, y_2, c 表示矩形的左下角 (x_1, y_1) 、右上角 (x_2, y_2) 和减数 c。

【输出格式】

输出m行,每行一个整数表示第i次操作后的答案。

【样例数据】

【样例1输入】

```
5 5

5 3

2 3

4 13

3 4

1 10

4 1 5 1 3

4 6 0 1 3

6 7 6 7 0

6 7 0 0 14

1 0 7 0 4
```

【样例1输出】

```
5
4
4
3
3
```

【样例1解释】

样例1的输入解密后为:

```
5 5 5 3 2 3 4 4 1 5 1 3 1 3 5 4 6 2 3 2 3 4 4 1 10 2 3 4 3 7
```

【样例2】

见下发文件 ex matrix2.in 和 ex matrix2.out, 该测试用例满足子任务1的约束条件。

【样例3】

见下发文件 ex_matrix3.in 和 ex_matrix3.out, 该测试用例满足子任务2的约束条件。

【样例4】

见下发文件 ex_matrix4.in 和 ex_matrix4.out。

【数据规模与约定】

全部数据均保证 $1 \le n \le 10^4$, $1 \le m \le 4 \times 10^6$, $0 \le v_i, c \le 4 \times 10^7$, $1 \le x_1 \le x_2 \le n$, $1 \le y_1 \le y_2 \le n$ 。

本题采用子任务捆绑测试,各个子任务详细信息如下:

编号	子任务分数	$n \le$	$m \leq$
1	20	1000	1000
2	30	10^{4}	1.5×10^6
3	30	10^{4}	3×10^{6}
4	20	10^{4}	4×10^6

【提示】

为了防止因为读入规模过大而造成卡常,我们下发了基于 fread 的快读模板,请见下发文件 FastRead.cpp。

使用此模板时请保证您已经引用头文件 bits/stdc++.h, 且应保证不使用其他读入方式。如使用文件输入,请在首次调用函数 read()前将 stdin 重打开为输入文件。调用 read()函数即可获取输入中下一个未被读入的 64 位有符号整数。