

Zero-Shot Learning with Semantic Output Codes

Department of Computer Engineering

Dongseo University

Jie Yong Shin,

2023.02.16

1. Highlights

2. Zero-Shot Learning

3. Experimental Results

4. Conclusion and Discussion

- 1. Why did they develop this?
 - They wanted to predict a word with a neural activity image.
 - There are more unlabeled data than labeled data.
- 2. How does it work?

•
$$\mathcal{H} = \mathcal{L}(\mathcal{S}(\cdot))$$

- 3. Experimental Results of their work.
- 4. Possible new ideas related to Zero-Shot Learning.

Zero-Shot Learning with Semantic Output Codes

Mark Palatucci

Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 mpalatuc@cs.cmu.edu

Geoffrey Hinton

Computer Science Department
University of Toronto
Toronto, Ontario M5S 3G4, Canada
hinton@cs.toronto.edu

Dean Pomerleau

Intel Labs
Pittsburgh, PA 15213
dean.a.pomerleau@intel.com

Tom M. Mitchell

Machine Learning Department Carnegie Mellon University Pittsburgh, PA 15213 tom.mitchell@cs.cmu.edu

• Published at 2009

Neural activity dataset (fMRI)

- 60 different concrete words(5 examples from 12 different categories
 - ex) Animals: bear, dog, cat, cow, horse Vehicles: truck, car, train, airplane, bicycle

Neural activity dataset (fMRI)

Neural activity dataset (fMRI)

Only 60 words are labeled

Human218 (Semantic knowledge base)

•	Is it manmade?		No	-	0
•	Can you hold it?		Yes		1
	Is it furry?		Yes		1
	Does it have a tail?		Yes		1
	Can it breathe underwater?		No		0

Example of a instance "dog"

Image		Semantic Feature		Label
		{1,0,1,0,0}		dog
	$\leq (\cdot)$) (.)

$$\mathcal{H} = \mathcal{L}(\mathcal{S}(\cdot))$$

$$\mathcal{S}$$
: $X^d \to F^p$

$$\mathcal{L}$$
: $F^p \to Y$

 ${\mathcal H}$: Semantic output code classifier

 \mathcal{S} : A collection of linear classifiers

: 1-nearest neighbor classifier

Training phase

$$5(\{x,f\}_{1:N})$$

 $L(\{f,y\}_{1:M})$

N : number of questions (feature dimension)

M: number of classes

• N >> M: class has been expanded to larger space which is feature space.

Testing phase

$$S(x) = \hat{f}$$

$$L(\hat{f}) = \hat{J}$$

- S(⋅) classifies whether the input x has each feature or not.
- L(·) clusters where the feature belongs to.

Example of Testing phase

What they did is:

3. Experimental Results

3. Experimental Results

Bear (1) bear	Foot (1) foot	Screwdriver (1) screwdriver	Train (1) train	Truck (2) jeep	Celery (5) beet	House (6) supermarket	Pants (21) clothing
fox	feet	pin	jet	truck	artichoke	hotel	vest
wolf	ankle	nail	jail	minivan	grape	theater	t-shirt
yak	knee	wrench	factory	bus	cabbage	school	clothes
gorilla	face	dagger	bus	sedan	celery	factory	panties

4. Conclusion and Discussion

 They have made a model that classifies novel data which have omitted from dataset.

 Is it possible to adopt Zero-Shot learning to other areas?

Is it possible to adopt Zero-Shot learning to NAS?

- Zero-Shot Learning with Semantic Output Codes https://www.cs.toronto.edu/~hinton/absps/palatucci.pdf
- Predicting Human Brain Activity Associated with the Meanings of Nouns https://www.science.org/doi/10.1126/science.1152876
- An embarrassingly simple approach to zero-shot learning http://proceedings.mlr.press/v37/romera-paredes15.pdf
- Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly https://paperswithcode.com/paper/zero-shot-learning-a-comprehensive-evaluation
- Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition https://paperswithcode.com/paper/zen-nas-a-zero-shot-nas-for-high-performance

Thank you Q & A