RoboCup Simulation League

Andreas Mikolajewski
Daniela Grimm
Florian Gauger
Marcus Krug

RoboCup

- Jährlich ausgetragen
- Verschiedene Ligen

Architektur

- Server Client
- Echtzeit
- 6000 Zyklen
- Fussballregeln
- Reale Sensoren simuliert (Rauschen)

Spielregeln

- Reduktion der Komplexität
- Komplett beobachtbar

Modellierung

- Markow-Entscheidungsprozess (S, A, T, R)
 - S: Menge von Zuständen
 - A: Menge von Aktionen
 - T: Aktionsmodell T(s,a,s') = p(s'|s,a)
 - R: Belohnungsfunktion für Übergang vom letzten zum aktuellen Zustand

Eine Lösung des Problems wird Strategie $\pi: S \rightarrow A$ genannt, die die Belohnung maximiert.

Modellierung

- Zustand: aktuelle Spielsituation (Ballposition,...)
- Aktionen: Schießen, rennen, warten,...
- Belohnungsfunktion:
 - Belohnung bei Tor
 - Bestrafung bei Eigentor

Lösungsverfahren

Value iteration:

- Startet am Ende und arbeitet rückwärts
- Schrittweise Berechnung
 wie hoch erwartete Belohnung
 bei Zustand ist

- Policy iteration
 - Bewerte Policy
 - Verbessere Policy

