Informatics Institute of Technology In Collaboration With

The University of Westminster, UK

The University of Westminster, Coat of Arms

Surpassing Time Series Forecasting Limitations using Liquid Time-stochasticity Networks

A Software Requirements Specification by

Mr. Ammar Raneez

W1761196 | 2019163

Supervised by Mr. Torin Wirasingha

April 2023

This is submitted in partial fulfilment of the requirements for the BSc (Hons) Computer Science degree at the University of Westminster.

Contents

List of Figures	ii
List of Abbreviations	iii
1. CHAPTER OVERVIEW	1
2. RICH PICTURE	1
3. STAKEHOLDER ANALYSIS	2
3.1 Stakeholder onion model	2
3.2 Stakeholder viewpoints	3
4. REQUIREMENT ELICITATION METHODOLOGIES	3
5. DISCUSSION OF FINDINGS	5
5.1 Literature review	5
5.2 Observations	5
5.3 Interviews	6
5.4 Survey	7
5.5 Prototyping	13
6. SUMMARY OF FINDINGS	13
7. CONTEXT DIAGRAM	14
8. USE CASE DIAGRAM	15
9. USE CASE DESCRIPTIONS	16
10. REQUIREMENTS	18
10.1 Functional requirements	18
10.2 Non-functional requirements	20
11. CHAPTER SUMMARY	21
REFERENCES	I
APPENDIX I – Requirement Elicitation Methodologies	II
APPENDIX II – Survey Thematic Analysis	III
APPENDIX III – Interview Thematic Analysis	V
APPENDIX IV – Use Case Descriptions	VI

List of Tables

Table 1: Stakeholder viewpoints (self-Composed)	3
Table 2: Requirement elicitation methodologies (Self-Composed)	4
Table 3: Observations findings (Self-Composed)	5
Table 4: Survey analysis (Self-Composed)	7
Table 5: Interview thematic analysis codes, themes & conclusions (Self-Composed)	6
Table 6: Prototyping findings (Self-Composed)	13
Table 7: Use case description UC:03; UC:04 (Self-Composed)	16
Table 8: Use case description UC:05; UC:06 (Self-Composed)	17
Table 9: 'MoSCoW' technique of requirement prioritization (Self-Composed)	18
Table 10: Functional requirements	19
Table 11: Non-functional requirements	20
Table 12: Stakeholder groups (Self-Composed)	II
Table 13: Survey thematic analysis codes, themes & conclusions (Self-Composed)	III
Table 14: Interview participant details (Self-Composed)	V
Table 15: Use case description UC:07 (Self-Composed)	VI
List of Figures	
Figure 1: Rich picture diagram (Self-Composed)	1
Figure 2: Stakeholder onion model (self-Composed)	2
Figure 3: Context diagram (Self-Composed)	15
Figure 4: Use case diagram (Self-Composed)	16

List of Abbreviations

AI Artificial Intelligence.

API Application Programming Interface.

ARIMA Autoregressive Integrated Moving Average.

BPTT Back-Propagation Through Time.

BTC Bitcoin.

CT-GRU Continuous-time Gated Recurrent Unit.

CT-RNN Continuous-time Recurrent Neural Network.

DL Deep Learning.

GPU Graphics Processing Unit.

LSTM Long Short-Term Memory.

LTC Liquid Time-constant.

ML Machine Learning.

(s)MAPE Symmetric Mean Absolute Product Error.

MASE Mean Absolute Scaled Error.

MSE Mean Squared Error.

N-BEATS Neural Basis Expansion Analysis for interpretable Time Series.

NER Named Entity Recognition.

NLP Natural Language Processing.

ODE Ordinary Differential Equations.

POC Proof-Of-Concept.

REST Representational State Transfer.

RMSE Root Mean Squared Error.

RNN Recurrent Neural Network.

TS Time Series.

XAI Explainable Artificial Intelligence.

1. CHAPTER OVERVIEW

In this chapter, the author focuses on identifying the requirements and the steps followed to gather these requirements. In detail, possible stakeholders, alongside their interaction points and roles, are documented using a rich picture diagram and a stakeholder onion model. Furthermore, the requirement-gathering techniques followed and the insights obtained to analyze and produce functional and non-functional requirements, use case diagrams, and prototype descriptions are defined.

2. RICH PICTURE

Figure 1: Rich picture diagram (Self-Composed)

The above diagram illustrates a helicopter view of the wider environment, how specific stakeholders would interact with the system, and how they would benefit. Furthermore, the

possibilities of negative impact on the design and possible critical analysis are identified, alongside the knowledge the researcher could receive to improve the system.

3. STAKEHOLDER ANALYSIS

The following section recognizes key stakeholders associated with the system, their relationships, and their respective roles. The stakeholder onion model depicts this information, and the stakeholder viewpoints further detail it.

3.1 Stakeholder onion model

Figure 2: Stakeholder onion model (*self-Composed*)

3.2 Stakeholder viewpoints

Table 1: Stakeholder viewpoints (self-Composed)

Stakeholder	Role	Benefits/Description
Support &	Operational – support &	Maintains the health of the system and attends to
Maintenance	Operational - maintenance	user inquiries.
Admin	Maintenance operator	Monitors and updates the system when
		necessary.
Script	Interfacing system	Fetches data and makes sure system is updated.
Owner	Owner &	Manages other operators, listens to feedback,
	Operational - administration	and communicates with other stakeholders.
Crypto trader	Functional beneficiary	More convenient for deciding whether to
Crypto buyer		purchase or sell currently held assets.
Investor	Financial beneficiary	Makes profit, by investing in the system, upon
		marketing or user subscriptions.
Domain	Surrogate – expert &	Provides advice on overall system
expert	Quality regulator	improvements.
Developer	Surrogate – developer	Develops the system.
Social media	Operational - secondary	Influence users, drive trends, and provide
influencers		thoughts.
Social media	Normal operator	Get influenced to invest or sell currently held
users		assets.
Competitors	Negative stakeholder	Build competing products that outperform or
		have better value.
Social media		Manipulate set trends and influencer thoughts.
manipulators		
Hackers		Disrupt the system and corrupt data.

4. REQUIREMENT ELICITATION METHODOLOGIES

Researchers can carry out requirement elicitation methodologies to gather requirements. The following table discusses the selected ones and their purpose.

Table 2: Requirement elicitation methodologies (Self-Composed)

Method 01: Literature review

An exhaustive literature review has been conducted to identify a respectable research gap in a cutting-edge research field and a domain of interest. The author studied existing systems to determine limitations and future research. A brief understanding of the implementation methods was also identified, alongside necessary best practices.

Method 02: Observations

Upon conducting the literature review, analysis of similar systems is an added advantage. Validating and evaluating its viability is paramount as the chosen research domain is relatively new. Existing algorithmic POCs must be studied and thoroughly assessed, as this will provide the author with the necessary insights and techniques to implement.

Method 03: Interview

Interviews can help gather knowledge and insights into more theoretical concepts that will be helpful behind the scenes for implementing the research component and associating with and answering the proposed research questions. The author can interview specific niche experts with knowledge of neural ODEs and SDEs to obtain said intuition, which they cannot acquire by conducting a survey.

Method 04: Survey

Obtaining insights and expectations from end users can be gathered by conducting a survey, specifically, the questionnaire. Upon receiving this prominent information, the author can decide whether the proposed system is helpful for the target audience and understand how the target audience intends to benefit from it. As they are large in sample size, the survey is a powerful choice for data collection.

Method 05: Prototyping

Prototyping will allow the developer to iterate between implementations and improvements. As the architecture is more novel, this procedure will be used abundantly as a straightforward approach to obtaining the optimal performance is unlikely and will take time.

5. DISCUSSION OF FINDINGS

The essential stakeholders were separated into groups, and each group was analyzed in the most suited methodology. The table breakdown of these stakeholders is available in **APPENDIX I**.

5.1 Literature review

Table 3: Literature review findings (Self-Composed)

Citation	Discussion of findings		
Research domain			
Hasani et al., 2021	Existing solutions in TS forecasting use traditional neural nets or statistics.		
Hasani et al., 2020	Traditional neural ODEs were underwhelming in performance compared		
	to existing neural nets.		
Duvenaud, 2021	The proposed architecture by Hasani et al. (2020) uses the obsolete ODE,		
	which lacks rapid adaptability - using an SDE instead can improve		
	flexibility further. Therefore, combining both would produce the optimal		
	architecture.		
Problem domain	Problem domain		
Abraham et al.,	Based on the reviewed literature, work that included multiple exogenous		
2018; Valencia et	features had not utilized a non-linear model.		
al., 2019			
Fleischer et al.,	Work that used a non-linear model had not included the additional features		
2022; Serafini et	the author aims to include. As implied, a non-linear model with multiple		
al., 2020	features would produce the optimal solution.		

5.2 Observations

Table 4: Observations findings (Self-Composed)

Criteria	Discussion of findings
To find approaches to	The author noticed that POCs of neural SDEs are available sparingly
creating a neural SDE	and had yet to be utilized in an ML system like the proposed solution.
to implement the core	It is also safe to assume that building the research component could
research component	be later used as a baseline for future neural SDE implementations.

To find Although POCs of BTC forecasting systems that use LSTMs and approaches taken to implement the statistical algorithms are available in abundance, what was noticed is component that they all naively utilize only the closing price as a feature or the additional of BTC forecasting. closing price with the Twitter sentiment. Considering this, the author decided to build the primary research component first so that the algorithm could be used to build ML systems and create the additional BTC forecasting system utilizing as many exogenous features as possible that can be of effect. Therefore, insights into implementing the supplementary system and effective evaluation techniques were acquired.

5.3 Interviews

Interviews were conducted to obtain domain expertise and any information that the author may have missed and could be significant. The author interviewed only a few candidates as the research domain is new and unknown; fortunately, they were the most knowledgeable. The author also interviewed a candidate experienced in the problem domain area. The findings were analyzed using thematic analysis and presented below. The participants affiliations and their respective expertise area are presented in **APPENDIX III**.

Table 5: Interview thematic analysis codes, themes & conclusions (Self-Composed)

Code	Theme	Conclusion	
Research compo	Research component		
Algorithm	Research	The interviewees validated the research gap and the defined	
architecture	Problem &	problem. They were also happy that the author had been	
	Gap	conducting this research, as few papers were published in this	
		domain.	
Resource	Requirements	The interviewees were concerned that ODEs and SDEs could	
intensive		be expensive to compute and hence could take some time,	
		which can be an issue given that the forecasts must be produced	
		quickly. Therefore, the author must optimize the model as	
		much as possible to avoid user-unfriendliness.	

Obsolete,	Advice	The author had initially planned on only creating an
Inflexible		implementation of the LTC architecture proposed by Hasani et
		al. (2020). However, the author could further improve the
		architecture by using SDEs instead (the base LTC uses ODEs),
		which could manifest into a novel algorithm, which is the
		author's current aim as it carries more significance and a
		potentially more outstanding contribution.
Visualizations,	Other	What was concluded here was that XAI is primarily present for
Explainability	suggestions	image classification, and there needs to be more literature on
		the TS domain. However, XAI integration into TS modelling
		could be confusing and complicated due to the temporal
		component. Additionally, XAI for SDEs needs to be
		researched, which the author could look into if time permits.
Problem domain		
External	Robustness	The interview was an additional validation for the data
features		collected in the survey. Most suggestions were to use as many
and trends		extra features as possible to make the model robust. Therefore,
		the author will ensure that they utilize the mentioned
		exogenous features.

5.4 Survey

A survey was conducted to gather requirements from the target audience to infer functionalities to implement for the supplementary product developed.

Table 6: Survey analysis (Self-Composed)

Question	How much would a system capable of assuming tomorrow's price benefit
	you?
Aim of question	To identify whether the system is beneficial in the first place
Findings & conclusions	

All the participants believed that the proposed system would be beneficial – where the majority had a greater belief than others. Having obtained this information, it is evident that the supplementary proposed system will be helpful. As identified, not a single participant thought that the system would not be beneficial. Notably, this validates the problem domain and gives the author the 'green light' to go ahead.

Question	Who do you think would benefit from this system?
Aim of question	To identify beneficiaries and target audience

Findings & conclusions

The majority of the participants believed that the system would be beneficial for expert traders, investors as well as a new audience. However, what can be identified, is that a minute portion of participants assumed that the system would be helpful primarily for people who are already involved in the market – this is some evidence that the system must be made as simple as possible to attract a newer audience. It is also identified to help only a new audience – this is evidence that the system must not be immature.

Question	This system will also benefit people who are not experts in cryptocurrencies
Aim of question	To identify whether non-technical crypto traders would benefit

The responses to the above question show that the system will also apply to audiences who are not cryptocurrency experts. This question goes hand in hand with the previous question to confirm whether the system can target a newer audience of people to get into cryptocurrencies rather than just focusing on a niche audience who are experts or current investors/traders.

Question	How do you decide whether to buy or sell assets?
Aim of question	To understand how a buyer/seller proceeds with their decision

The responses to the above question are more of a 'Know Your Customer' question with no specific project-related purpose. Nevertheless, what can be identified is that most of the respondents have some knowledge of cryptocurrencies, where almost 70% are experienced in trading/investing cryptocurrencies – a great insight as nearly all the respondents have specific knowledge. Therefore, the author could use this to reach out to the respondents (whom they gathered requirements from) during the evaluation phase.

The author initially considered only having a single horizon forecast, considering the limited time. However, based on the above responses, it is evident that the audience would also expect forecasts for multi horizons. Therefore, the author will additionally aim to implement the ability of multi-horizon forecasting.

Question	Social media trends can impact the price	
Aim of question	To identify whether the community believes that social media trends impact	
	the price	

The majority of the respondents believe that social trends impact the price. Therefore, it is necessary to consider as many trends as possible. Considering the project's limited time and

scope, the author has decided to use Twitter volume and Google Trends; however, Reddit,
Facebook, and others would also provide insights and could be considered future work.

Question	If a highly influential person tweets about Bitcoin, do you expect the price		
	to tip to the side in favor of their tweets meaning?		
Aim of question	To identify whether including Twitter sentiment is beneficial and to confirm		
	the problem domain contribution.		

Findings & conclusions

All participants believe that the current thoughts on social media affect the price in one way or another. Most participants further believed that the tweeter's influence adds additional significance. Considering this and the previous question, it is apparent that the mentioned social factors contribute to price changes, which validates the problem domain contribution. Additionally, based on the responses, the requirement for NER and weighted search is more apparent to give more weightage to specific tweeter's sentiments.

Question	Would it be helpful to obtain a range of prices rather than a point price? (Ex:		
	10,000 - 15,000 instead of 12,500)		
Aim of question	To identify whether including uncertainty estimates is beneficial		
Findings & conclusions			

The author initially decided on only providing a point forecast for the system, as this research aims to develop a novel architecture for TS forecasting. However, based on the responses and while conducting prototyping, it became evident that a single-point prediction is likely to be less valuable than a range of prices. A point prediction is implausible to be accurate, which makes the requirement of uncertainty estimates more vital.

Question	What functionalities would you expect to have in a bitcoin forecasting
	system?
Aim of question	To identify any additional requirements

Findings & conclusions

To analyze opened ended questions, the author can perform thematic analysis. The analysis, including the theme and related codes, is available in **APPENDIX II**.

Based on the analysis conducted, it is evident that the participants would appreciate some Explainability. Including XAI is an addition that the author could look into if time permits. The participants also mentioned that the system would be better performant and robust if it utilized as many exogenous factors while making it as simple as possible. Based on these findings, the author will aim to include as much Explainability as possible and make it mandatory to use the mentioned exogenous features.

Question	Any extra feedback you would like to provide?			
Aim of question	No specific reason – is mainly used to obtain any additional feedback			

Findings & conclusions

The respondents submitted a few motivational sentences to inspire and motivate the author to perform their best.

5.5 Prototyping

Table 7: Prototyping findings (*Self-Composed*)

Criteria	Discussion of findings				
Upon iterative protot	Upon iterative prototyping, challenges that the developer did not expect to arise emerged.				
Challenges ranged from finding a suitable dataset to implementing the algorithm itself.					
To explore the	Building the algorithm was intimidating, as no proper reference exists.				
feasibility of	The author realized that, alongside traditional DL theories,				
creating the primary	implementing the algorithm required more profound knowledge and				
research component.	understanding of SDEs and differential solvers. As such a direct				
	implementation was not possible. The author therefore implemented the				
	LTC architecture first proposed by Hasani et al (2020) and then built				
	upon it to develop the LTS algorithm.				
To explore the	The author had depended on the Twitter API to get tweet sentiment of				
feasibility of	specific days; however, this was impossible as Twitter had updated the				
creating the BTC	API only to provide tweets of the past seven days. Fortunately, there				
forecasting	were public datasets available up to a certain point in time; therefore,				
application.	they had to use a third-party library to scrape tweets of dates ahead of				
	that point in time. Moreover, upon experimentation, they gained an				
	epiphany that solely the point price prediction would be useless; instead,				
	a range of uncertainty estimations that provide a range of values would				
	be more helpful. Furthermore, any explainable insights from the				
	networks can be valuable to provide intuition into the forecast				
	generation.				

6. SUMMARY OF FINDINGS

ID	Finding	Literature Review	Observations	Survey	Interview	Prototyping
----	---------	-------------------	--------------	--------	-----------	-------------

Res	earch component					
1	Validate research domain and gap.	✓	✓		√	
2	The novelty of the research hypothesis (an architecture	✓	√		√	
	inspired by the LTC).					
3	Neural ODEs are an advancement for TS forecasting.	✓			√	
4	Try to integrate latent SDEs into an LTC architecture for				√	√
	a novel algorithm implementation instead of using the					
	same obsolete latent ODE.					
Pro	blem domain			·I		l
5	The system will be of use to experts and new audiences.			✓		
6	Social trends can be a source of impact.	✓		✓		
7	Well-known influencers' opinions cause a more drastic	✓		√		
	impact.					
8	A system combining all exogenous features in a non-	✓				
	linear model has yet to be explored.					
9	Including a range of prices than a point price is an added			✓		✓
	advantage and can produce more credibility.					
10	Implementing an Explainability component will			√		√
	drastically make the system more credible.					
11	A system capable of changing its hyperparameters would			√		
	make it worthwhile for experts.					

7. CONTEXT DIAGRAM

The following diagram depicts the system's boundaries and interactions. Determining them before development will provide the author insight into how the information should flow.

Figure 3: Context diagram (Self-Composed)

8. USE CASE DIAGRAM

The below diagram demonstrates the "sea level" use cases of the proposed system, describing the functionalities at a high level the system will provide end users with.

Figure 4: Use case diagram (Self-Composed)

9. USE CASE DESCRIPTIONS

The core use case descriptions are presented below, any sub-descriptions are available in **APPENDIX IV**.

Table 8: Use case description UC:03; UC:04 (Self-Composed)

Use case	Display price & estimates
Id	UC:01; UC:02
Description	Display future prices and their respective uncertainty estimations based on
	the user's choice of date, alongside any Explainability insights.
Actor	User
Supporting	None
actor (if any)	
Stakeholders (if	Crypto buyer, crypto trader
any)	

Pre-conditions	All the data must be scraped and preprocessed, and the forecast should have			
	been generated.			
Main flow	MF1. User requests tomorrow's price.			
	MF2. The system recognizes the need to utilize available exogenous			
	features.			
	MF3. The system ensures data available is up-to-date (must be in this case,			
	as the script will run periodically automatically). If not:			
	1. Obtains the latest available data.			
	2. Performs sentiment analysis and self-retrains.			
	MF4. The system generates price and upper and lower estimations.			
	MF5. Display output to the user along with any insights.			
Alternative	AF1. The user requests the price for a date ahead of tomorrow.			
flows	AF2. The system recognizes the inability to utilize other features.			
	AF3. The system generates price and upper and lower estimations.			
	AF4. Display output to the user along with any insights.			
Exceptional	EF1. The system could not generate a prediction – display a user-friendly			
flows	error message.			
Post-conditions	The user is displayed with a forecast and necessary insights.			

Table 9: Use case description UC:05; UC:06 (Self-Composed)

Use case	Manage exogenous features
Id	UC:03; UC:04; UC:05
Description	Manage and process new data without the need for manual interaction.
Actor	Script
Supporting	None
actor (if any)	
Stakeholders (if	None
any)	
Pre-conditions	The latest available data must be scraped and available.

Main flow	MF1. A Cron job triggered fetches the latest historical prices, tweets,
	Twitter volume, trends, and block reward size data.
	MF2. Twitter volume, Google trends, and block reward size are scaled and
	cleaned.
	MF3. Tweets undergo sentiment analysis to determine current speculation.
	MF4. The sentiment is further weighted based on the Tweeter's importance
	(ex: Elon Musk)
	MF5. Features are combined with historical closing prices to create an
	enriched dataset and retrain the model.
Alternative	None
flows	
Exceptional	EF1. The script could not fetch recent data – retry a few days later or alert
flows	Admin for manual overhaul.
Post-conditions	A new enriched dataset with the features is generated.

10. REQUIREMENTS

10.1 Functional requirements

The functional requirements were determined based on priority using the 'MoSCoW' technique, which is detailed below.

Table 10: 'MoSCoW' technique of requirement prioritization (Self-Composed)

Priority level	Description
M (Must have)	The author must implement requirements with this priority for the project
	to succeed.
S (Should have)	Requirements that would be of value but are not necessary.
C (could have)	Features that are optional and have no significant impact. It is desirable to
	implement them if time permits.
W (Will not have)	Requirements that will not be a part of the implementation at this point.

Table 11: Functional requirements

ID	Description	Priority	Use
			Case
Researc	h level	1	•
FR1	A robust and scalable implementation of the novel algorithm must	M	-
	follow recommended standards.		
FR2	The developed algorithm must be able to be used as existing layers	M	-
	and algorithms (ex: LSTM, CNN).		
System	level		
FR3	Users must be able to choose a future date.	M	UC:01
FR4	Users must be able to view the point prediction price.	M	UC:03
FR5	The system must generate the point prediction price based on the	M	UC:02
	user's choice of date.		
FR6	The script must obtain the latest data available periodically.	M	UC:04
FR7	The script must extract trends and sentiments from obtained data.	M	UC:05
FR8	The script should weigh sentiment based on any influential	S	UC:06
	personnel's tweet.		
FR9	Users should be able to view a range of prices along with the	S	UC:03
	single-point price.		
FR10	The system should generate higher and lower bound uncertainty	S	UC:02
	estimations.		
FR11	The GUI should plot the forecast with the current prices in a single	S	UC:03
	graph to show the growth/decline.		
FR12	The system could display some insights to the user, such as a	С	UC:03
	highly influential tweet that made it predict the price.		
FR13	Admins could authenticate and update the model with different	С	N/A
	parameters.		
FR14	Admins could get additional information about a prediction, such	С	N/A
	as the evaluation metric and accuracy.		
FR15	The system will not produce forecasts for other cryptocurrencies.	W	N/A

ourly). W N/A

10.2 Non-functional requirements

The author prioritized the non-functional requirements based on the following two levels:

- Important best to have them.
- Desirable better to have them.

Table 12: Non-functional requirements

ID	Requirement	Description	Priority
NFR1	Performance	The system must take little time to generate a forecast,	Important
		given that a couple of extra features are in use.	
NFR2	Performance	The system must not unnecessarily keep updating its data.	Important
NFR3	Usability	The user interface must be simple and effective and	Important
		provide user-friendly errors if any occur.	
NFR4	Maintainability	The author must document the codebase well in case of	Important
		future reference, mainly the algorithm development	
		repository.	
NFR5	Quality	The output must be of good quality so that it provides	Desirable
		vital insights.	
NFR6	Scalability	The system must be deployed to a cloud with no scaling	Desirable
		issues and good resources for efficient and optimal	
		performance, especially as there could be multiple	
		concurrent active user requests.	
NFR7	Security	The system must be resilient to attackers, specifically to	Desirable
		prevent data manipulation.	
NFR8	Compatibility	To ensure compatibility, the developer must test the	Desirable
		system on most browsers and mobile phones.	
NFR9	Availability	In critical failures, the primary operator must be available	Desirable
		and solve issues as soon as possible.	

11. CHAPTER SUMMARY

In this chapter, the author defined necessary stakeholders interacting with the system and described how the interaction would occur, visualizing this using a rich picture diagram and Saunder's Onion model. Additionally, requirement elicitation techniques, their reasoning, and their respective findings were discussed and presented. Finally, they specified the use cases, associated descriptions, and system requirements.

REFERENCES

Duvenaud, D (2021). Directions in ML: Latent Stochastic Differential Equations: An Unexplored Model Class. *YouTube*. Available from https://www.youtube.com/watch?v=6iEjF08xgBg. [Accessed on 30 Sep. 2022].

Hasani, R. et al. (2021). Liquid Neural Networks. *YouTube*. Available from https://www.youtube.com/watch?v=IlliqYiRhMU&t=350s. [Accessed on 30 Sep. 2022].

Valencia, F., Gómez-Espinosa, A. and Valdés-Aguirre, B. (2019). Price Movement Prediction of Cryptocurrencies Using Sentiment Analysis and Machine Learning. *Entropy*, 21 (6), 589. Available from https://doi.org/10.3390/e21060589 [Accessed 16 October 2022].

Serafini, G. et al. (2020). Sentiment-Driven Price Prediction of the Bitcoin based on Statistical and Deep Learning Approaches. 2020 International Joint Conference on Neural Networks (IJCNN). July 2020. Glasgow, United Kingdom: IEEE, 1–8. Available from https://doi.org/10.1109/IJCNN48605.2020.9206704 [Accessed 16 October 2022].

Abraham, J., Higdon, D., Nelson, J. and Ibarra, J. (2018). Cryptocurrency Price Prediction Using Tweet Volumes and Sentiment Analysis. *SMU Data Science Review:* Vol. 1: No. 3, Article 1. Available at: https://scholar.smu.edu/datasciencereview/vol1/iss3/1

Fleischer, J.P. et al. (2022). Time Series Analysis of Cryptocurrency Prices Using Long Short-Term Memory. *Algorithms*, 15 (7), 230. Available from https://doi.org/10.3390/a15070230 [Accessed 26 September 2022].

Hasani, R. et al. (2020). Liquid Time-constant Networks. Available from https://doi.org/10.48550/arXiv.2006.04439 [Accessed 25 September 2022].

APPENDIX I – Requirement Elicitation Methodologies

Table 13: Stakeholder groups (Self-Composed)

Group	Stakeholders	Reason	Instrument
G1	Domain experts	Gather any insights and knowledge	Interview
	(neural ODE/SDE	specifically in the research domain to answer	
	and	research questions and anything the author	
	blockchain/crypto)	may have missed.	
G2	End users (trader &	Gather requirements for supplementary	Survey
	buyer)	application implementation.	
G3	Competitors Analyze any existing systems and literature		LR/Observations
		in the research and problem domain.	
G4	Developers	Ensure completion and feasibility of the	Prototyping
		project.	

APPENDIX II – Survey Thematic Analysis

Table 14: Survey thematic analysis codes, themes & conclusions (Self-Composed)

Code	Theme
Exogenous factors	Robustness
Explainability, Insights	Reliability
Simplicity, Convenience	User-friendly
Tuning	Editability
On-demand	Future consideration

Theme	Conclusion	Evidence
Robustness	Participants believed that prediction	"Use previous trends in the past."
	needed more than just including	"Consider all possible external
	historical prices and that social media	factors."
	Trends and other factors (ex:	
	sentiment) are required to make the	
	system as robust and performant as	
	possible.	
Reliability	Almost all respondents requested that	"Insights about the forecast will be
	the system provide an Explainability	beneficial."
	component so that the insights obtained	"Provide as much Explainability to
	can be reliable as the inference	make the prediction as credible as
	becomes as transparent as possible.	possible."
		"The rate of success of the prediction
		would be useful."
User-friendly	A couple of participants requested that	"Show some news about the current
	the system provide some	cryptocurrency world in the platform,
	cryptocurrency news to make it	so it's convenient for the users."
	convenient and make the inference	"Make the steps from choosing a date
	procedure as straightforward as	to forecasting as simple as possible."
	possible so there is no hindrance.	

Editability	An ML-knowledgeable participant	"Coming from machine learning
	mentioned that it would be an ideal	point of view, I think it'll be a good
	scenario if the system could tune the	idea if there's a functionality to
	hyperparameters of the model in use,	change the hyperparameters used."
	which could be an excellent	
	enhancement to the system as the	
	model anyways retrains periodically.	
Future	A couple of participants mentioned	"Predict the market for any given
considerations	some additional features the author	time duration."
	believes they will not be able to cover,	"Ability to identify a pump and dump
	given the time allotted.	scenario compared to an actual
		increase in the price of stock/crypto."

APPENDIX III – Interview Thematic Analysis

Table 15: Interview participant details (Self-Composed)

Participant	Affiliation	Expertise related to the research
ID		
P1	Google Brain visiting researcher and Associate Professor at University of Toronto.	Neural ODEs and SDEs.
P2	Research scientist at Deepmind.	Neural ODEs and SDEs.
Р3	Research scientist at Meta AI.	Probabilistic DL and differential equations.
P4	PhD candidate at University of Nottingham.	XAI
P5	Chief Product Officer at Niftron.	Blockchain and cryptocurrencies.

APPENDIX IV – Use Case Descriptions

Table 16: Use case description UC:07 (Self-Composed)

Use case	Update model hyperparameters
Id	UC:07
Description	Manually change the hyperparameters used by the model.
Actor	Admin
Supporting	None
actor (if any)	
Stakeholders (if	None
any)	
Pre-conditions	All the data must be scraped and preprocessed (as the model would ideally
	need to be retrained upon hyperparameter tuning).
Main flow	MF1. Admin authorizes themselves.
	MF2. Admin can change the hyperparameters in use to a set of predefined
	values.
	MF3. The system ensures data available is up-to-date (must be in this case,
	as the script will run periodically automatically). If not:
	1. Obtains the latest available data.
	2. Performs sentiment analysis and self-retrains.
	MF4. The system retrains itself with the data and new hyperparameters.
Alternative	None
flows	
Exceptional	None
flows	
Post-conditions	The model is updated with the chosen hyperparameters.