Laurea in Informatica – Laurea in Ingegneria Civile – Laurea in Ingegneria Energetica

Calcolo Numerico

Esame del 10/02/2025

Esercizio 1. Sia

$$f(x) = \begin{cases} x+1, & \text{se } -1 \le x \le 0, \\ -x+1, & \text{se } 0 \le x \le 1, \\ 0, & \text{altrimenti.} \end{cases}$$

- (a) Scrivere in forma canonica il polinomio d'interpolazione p(x) di f(x) sui nodi -1, 0, 1.
- (b) Calcolare $E = \max_{x \in [-1,1]} |f(x) p(x)|$.*
- (c) Per ogni $n \ge 1$, scrivere in forma canonica il polinomio d'interpolazione $q_n(x)$ di f(x) sugli n+1 nodi uniformi $x_i = \frac{i}{n}, i = 0, \ldots, n$.

Esercizio 2. Sia $f:[a,b]\to\mathbb{R}$ una funzione di classe $C^2[a,b]$ e sia I_n la formula dei trapezi di ordine n per approssimare l'integrale $I=\int_a^b f(x)\mathrm{d}x$. Supponiamo che I_n converga a I con una velocità superiore a n^2 , nel senso che

$$\lim_{n \to \infty} n^2 |I_n - I| = 0.$$

Dimostrare che in tal caso deve esistere necessariamente un punto $x_0 \in [a, b]$ tale che $f''(x_0) = 0$.

Suggerimento. Usare il teorema sull'errore della formula dei trapezi e il seguente risultato sulle funzioni continue: se $g:[a,b] \to \mathbb{R}$ è una funzione continua su [a,b] che non ha zeri su [a,b] (cioè $g(x) \neq 0$ per ogni $x \in [a,b]$), allora il minimo $m_{|g|} = \min_{x \in [a,b]} |g(x)|$ è strettamente positivo $(m_{|g|} > 0)$.

Esercizio 3. Sia[†] $f(x) = \frac{1}{\log(x+2)}$ e sia I_n la formula dei trapezi di ordine n per approssimare $I = \int_0^1 f(x) dx$.

- (a) Per ogni fissato $\varepsilon > 0$, determinare un intero n tale che $|I_n I| \le \varepsilon$.
- (b) Calcolare un'approssimazione \tilde{I} di I con errore $|\tilde{I} I| \leq 10^{-2}$.

Esercizio 4. Sia $\alpha \in \mathbb{R}$ e si consideri la matrice

$$A = \begin{bmatrix} 1 & 1 & \alpha \\ 1 & 2 & 0 \\ \alpha & 0 & 1 + \alpha \end{bmatrix}$$

- (a) Stabilire per quali valori di α la matrice A è definita positiva.
- (b) Supponiamo che α sia uno dei valori trovati al punto (a) e sia p(x) un polinomio tale che $-2 \le p(x) \le 2$ per ogni $x \in (0, \rho(A)]$. Dimostrare che $\rho(B) \le 2$, dove B = p(A).
- (c) Supponiamo che $\alpha \geq 1$. Dimostrare che gli autovalori di A si trovano nell'intervallo aperto $(-\alpha, 1+2\alpha)$ e, sulla base di questo fatto, fornire la stima più precisa possibile per il raggio spettrale $\rho(A)$.
- (d) Sia[‡]

$$M = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Stabilire per quali valori di α il metodo iterativo associato alla decomposizione A = M - (M - A) per risolvere un sistema lineare di matrice A risulta convergente.

^{*}E è l'errore massimo commesso approssimando f(x) con p(x) al variare di $x \in [-1,1]$.

[†]Il simbolo log (senza specificazione della base del logaritmo) indica sempre il logaritmo in base e (logaritmo naturale).

[‡]In pratica, M è ottenuta sostituendo 0 al posto di α nell'espressione di A.