Chapter Exam

Chapter 5-Large and Fast: Exploiting Memory Hierarchy

2012/06/19

1. For a direct-mapped cache design with 32-bit address, the following bits of the address are used to access the cache.

	Tag	Index	Offset
a	31-10	9-4	3-0
b	31-12	11-5	4-0

- (1) What is the cache line size (in words)? (10%)
- (2) How many entries does the cache have? (10%)
- (3) What is the ratio between total bits required for such a cache implementation over the data storage bits? (10%)
- **2.** Caches are important to providing a high performance memory hierarchy to processors. Below is a list of 32-bit memory address references, given as word addresses

For each of these references, identify the binary address, the tag, and the index given a direct-mapped cache with 16 one-word blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. Please fill the Tag, Index, and Hit/Miss result in the blank. (10%)

Address		Т.	т 1	TT'./N.A'
decimal	binary	Tag	Index	Hit/Miss
1	1	0000	0001	Miss
134	10000110	1000	0110	Miss
212	11010100			
1	1			
135	10000111			
213	11010101			
162	10100010			
161	10100001			
2	10			
44	101100			
41	101001			
221	11011101			

國立中山大學資訊工程學系, 教師: 黃英哲

3. Assume that main memory accesses take 70 ns and that memory accesses are 36% of all instructions. The following table shows data for L1 caches attached to each of two processors P1 and P2.

	L1 size	L1 miss rate	L1 hit time
P1	1KB	11.4%	0.62ns
P2	2KB	8.0%	0.66ns

What is the AMAT for each of P1 and P2? (10%)

4. There is a Intrinsity FastMATH data cache in the Figure 1. It can store 256 bits data and has 512 entries. How many bits are Tag (A), Index (B), and Block offset (C) ? (10%)

- **5.** Please explain the difference between write-through and write-back and them advantage and disadvantage. (20%)
- **6.** (1) In virtual memory system, how many memory references are performed per load/store operation? Explain the purpose of these memory references. (10%)
 - (2) What is the translation lookaside buffer (TLB)? What is it purpose? (10%)

課程: Computer Organization,

國立中山大學資訊工程學系, 教師: 黃英哲

7. The textbook presents the following development issues in a specific sequence (from simple to complex), in order to show a typical research and development (R&D) process. Please fill in the sequence number for the corresponding issue (1 being the simplest and 5 being the most complex). (10%)

Development Issue	Sequence (15)
Translation Lookaside Buffer (TLB)	
Memory hierarchy	
Directed mapped cache	
Set associative cache	
Virtual memory	