CSC 339 – Theory of Computation Fall 2022-2023

4. Nondeterministic Finite Automata

Outline

- Nondeterministic Finite Automata (NFA)
- Examples
- Epsilon transition
- Formal definition
- Languages accepted by NFA and DFA
- Conversion of NFA to DFA
- NFA and DFA are equivalent

Nondeterministic Finite Automata (NFA)

Alphabet = $\{a\}$

Nondeterministic Finite Automata (NFA)

An NFA accepts a string:

If there is a computation of the NFA that accepts the string i.e., all the input string is processed and the automaton is in an accepting state.

aa is accepted by the NFA:

Nondeterministic Finite Automata (NFA)

An NFA rejects a string:

If there is no computation of the NFA that accepts the string i.e. for each computation:

- •All the input is consumed and the automaton is in a non-final state, OR
- •The input cannot be consumed.

a is rejected by the NFA: reject q_1 q_2 q_3 reject All possible computations lead to rejection

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transition

All input is consumed.

String aa is accepted

Input cannot be consumed

Automaton halts

reject

String aaa is rejected

Language accepted: $L = \{aa\}$

Language accepted

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^+$$

Another NFA Example $\begin{array}{c} 0\\ \hline q_0\\ \hline \end{array}$

Language accepted

$$L(M) = \{\varepsilon, 10, 1010, 101010, ...\}$$

= $\{10\}$ *

Remarks:

 ${\cal E}$ symbol never appears on the input tape.

Simple automata:

$$M_{1}$$

$$q_{0}$$

$$L(M_{1}) = \{ \}$$

$$M_{2}$$

$$q_{0}$$

$$L(M_{2}) = \{ \varepsilon \}$$

NFA vs. DFA

NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

 $M = (Q, \Sigma, \delta, q_0, F)$

Q: Set of states, i.e. $\{q_0, q_1, q_2, ...\}$

 Σ : Input alphabet, i.e. $\{a, b\}$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Transition Function δ

$$\delta(q, x) = \{q_1, q_2, \dots, q_k\}$$

Resulting states with following one transition with symbol x

Extended Transition Function δ^*

Same with δ but applied on strings

$$\delta^*(q_0,a) = \{q_1\}$$

Particular case:

for any state $q, q \in \delta^*(q, \varepsilon)$

In general

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_j$$

The Language of an NFA M

• The language accepted by M is:

$$L(M) = \{w_1, w_2, \dots w_n\}$$

where
$$\delta^*(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

and there is some $q_k \in F$ (accepting state)

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a \quad a$$

$$\varepsilon$$

$$\delta^*(q_0, abaa) = \{q_4, \underline{q_5}\}$$

$$e \quad abaa \in L(M)$$

$$e \quad f$$

NFAs accept the Regular Languages

Equivalence of Machines

Definition:

• The machine M_1 is equivalent to the machine M_2 if $L(M_1) = L(M_2)$

Theorem:

NFAs and DFAs have the same computation power. They accept the same set of languages.

73

by DFAs

Proof: We need to show: Languages

accepted

by NFAs

Regular
Language

AND

Languages
accepted
by NFAs

 \subseteq

Regular Languages

Step 1

$$\left\{
\begin{array}{c}
\text{Languages} \\
\text{accepted} \\
\text{by NFAs}
\right\} \qquad \left\{
\begin{array}{c}
\text{Regular} \\
\text{Languages}
\end{array}
\right\}$$

Every DFA is trivially an NFA

Then

Any language L accepted by a DFA is also accepted by an NFA

Step 2

Any NFA can be converted to an equivalent DFA

Then

Any language L accepted by an NFA is also accepted by a DFA

Conversion of NFA to DFA

General Conversion Procedure

- Input: an NFA M
- Output: an equivalent DFA M' with L(M) = L(M')

General Conversion Procedure

- The NFA has states q_0, q_1, q_2, \dots
- The DFA has states from the power set:

$$\emptyset, \{q_0\}, \{q_1\}, \{q_0, q_1\}, \{q_1, q_2, q_3\}, \dots$$

General Conversion Procedure

1. Initial state of NFA: q_0

Initial state of DFA: $\{q_0\}$

Example:

DFA M'

2. For every DFA's state $\{q_i, q_j, ..., q_m\}$ compute in the NFA

$$\begin{array}{c}
\delta^*(q_i, a) \\
\cup \delta^*(q_j, a) \\
\dots \\
\cup \delta^*(q_m, a)
\end{array}
= \begin{cases}
\mathbf{Union} \\
= \{q'_k, q'_l, \dots, q'_n\}
\end{cases}$$

add transition to DFA

$$\delta(\{q_i, q_j, ..., q_m\}, a) = \{q'_k, q'_l, ..., q'_n\}$$

3. Repeat Step 2 for every state in DFA and symbols in alphabet until no more states can be added in the DFA.

4. For any DFA state $\{q_i, q_j, ..., q_m\}$ If some q_j is accepting state in NFA

Then $\{q_i, q_j, ..., q_m\}$ is accepting state in DFA

NFA and DFA are Equivalent

Lemma:

If we convert NFA M to DFA M' then the two automata are equivalent:

$$L(M) = L(M')$$

Proof:

We need to show: $L(M) \subseteq L(M')$ AND $L(M) \supseteq L(M')$

First we show: $L(M) \subseteq L(M')$

We need to prove:

$$w \in L(M)$$
 Then $w \in L(M')$

Let's have an NFA Consider $w \in L(M)$

symbols

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_0 \int_{-\infty}^{\sigma_1} \sigma_2 \int_{-\infty}^{\sigma_2} q_f$$

symbol

denotes a possible sub-path like

symbol

More generally, we show that if in M:

An arbitrary string $v = a_1 a_2 \cdots a_n$

NFA
$$M: \rightarrow q_0 q_i q_i q_j q_j q_m$$

Then

DFA
$$M'$$
: $q_0 \in \{q_i,...\} \in \{q_j,...\} \in \{q_l,...\} \in \{q_m,...\}$

NFA and DFA are Equivalent

Proof by induction on |v|Induction Basis: |v| = 1

NFA
$$M: \rightarrow q_0 \stackrel{a_1}{\smile} q_i$$

DFA
$$M'$$
: $\{q_0\}$ $\{q_i,\ldots\}$

is true by construction of M'

Induction hypothesis: $1 \le |v| \le k$

$$v = a_1 a_2 \cdots a_k$$

Suppose that the following hold

NFA
$$M: \rightarrow q_0 \stackrel{a_1}{\smile} q_i \stackrel{a_2}{\smile} q_j \stackrel{a_k}{\smile} q_d$$

DFA
$$M'$$
: $q_0 = \{q_0, \dots\} = \{q_j, \dots\} = \{q_l, \dots\} = \{q$

Induction Step:
$$|v| = k+1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$
Then this is true by construction of M'

NFA $M : \longrightarrow q_0 \stackrel{a_1}{\longrightarrow} q_i \stackrel{a_2}{\longrightarrow} q_j \stackrel{a_k}{\longrightarrow} q_c \stackrel{a_{k+1}}{\longrightarrow} q_e$

$$v'$$

DFA $M' : \longrightarrow \stackrel{a_1}{\longrightarrow} \stackrel{a_2}{\longrightarrow} \stackrel{a_2}{\longrightarrow} \stackrel{a_k}{\longrightarrow} \stackrel{a_{k+1}}{\longrightarrow} q_e$

$$v'$$

102

Therefore if $w \in L(M)$

$$W = \sigma_1 \sigma_2 \cdots \sigma_k$$
NFA $M : - q_0 \sigma_1$

Then

$$\begin{array}{c} \text{DFA } M' : \longrightarrow \stackrel{\sigma_1}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_k}{\longrightarrow} \stackrel{\sigma_k}{\longrightarrow} \\ w \in L(M') \end{array}$$

We have shown: $L(M) \subseteq L(M')$

With a similar proof, we can show: $L(M) \supseteq L(M')$

Therefore: L(M) = L(M')

Readings

- Textbook:
 - Part 1, Section 1.2 (Finite Automata)