数分三

Little Wolf

2024年10月6日

目录

1	王冠香补充题目	2
2	多元函数的极限和连续	2

1 王冠香补充题目

题目. 设A, B是 \mathbb{R}^n 的互不相交的闭集,证明:存在开集 $O_1, O_2, s.t.$ $A \subseteq O_1, B \subseteq O_2, O_1 \cap O_2 = \emptyset$.

解答. $d(x, A) = \inf\{|x - a| : a \in A\}$

$$O_1 = \{x | \frac{d(x, A)}{d(x, A) + d(x, B)} < \frac{1}{2}\} = \{x | d(x, A) < d(x, B)\}$$

$$O_2 = \{x | \frac{d(x, B)}{d(x, A) + d(x, B)} < \frac{1}{2}\} = \{x | d(x, B) < d(x, A)\}$$

对任意的 $x^* \in X_1$, $d(x^*,A) < d(x^*,B)$, 那么取 $\delta_0 = \frac{d(x^*,B) - d(x^*,A)}{4}$, $\forall x \in U(x^*,\delta_0)$, 有 $d(x,A) \le d(x^*,A) + \delta < d(x^*,B) - \delta \le d(x,B)$, 即 $U(x^*,\delta_0) \subseteq O_1$, 因此 O_1 是开集. 同理, O_2 是开集. 根据定义(因为两个严格的不等式不能同时成立), $O_1 \cap O_2 = \emptyset$

因为 $\forall x \in A, d(x, A) = 0$,而A, B是不相交的闭集,所以 $B \subseteq A^c$,且 A^c 是开集,因此 $\forall x \in A, \forall y \in B, \exists \delta > 0$,使得 $d(y, A) > \delta, \forall y \in B$,从而有 $d(x, B) > \delta$,因此 $x \in O_1 \Rightarrow A \subseteq O_1$,同理 $B \subseteq O_2$. \square **题目的注记.** 两个互不相交的闭集A, B,因为 $B \subseteq A^c$, A^c 闭集,所以 $\forall b \in B, \exists \delta_b > 0, U(b, \delta_b) \subseteq A^c$,因此 $\forall x \in A$ 取定, $|x - b| > \delta_b > 0$.

考虑下确界 $\inf\{|x-b|:b\in B\}$,如果下确界等于0,那么显然 $x\in\partial A$ (否则如果是内点,上述下确界必然大于0);但如果下确界等于0,那么必然有一个B中的子列趋于x,但B是闭集,包含自身的极限点,得到 $x\in B$,矛盾.因此下确界一定大于0.

两个互不相交的闭集A, B, 单点到另一个集合的距离的下确界是正的.

两个互不相交的闭集A, B,集合中任意一点到另一个集合的距离的下确界不一定是正的.

实际上, 闭集的性质本身保证了上述定义的点到集合的距离, 即下确界, 是可以被取到的,

2 多元函数的极限和连续

题目. 1. 证明 \mathbb{R}^n 中两点距离满足三角不等式:对于 $\forall x,y,z\in\mathbb{R}^n$,有 $|x-z|\leq |x-y|+|y-z|$

解答. 设 $a_i = x_i - y_i, b_i = y_i - z_i$, 要证: $|x - z| \le |x - y| + |y - z|$, 即

$$|\boldsymbol{x} - \boldsymbol{z}| \le |\boldsymbol{x} - \boldsymbol{y}| + |\boldsymbol{y} - \boldsymbol{z}| \iff \sqrt{\sum_{i=1}^{n} (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^{n} a_i^2} + \sqrt{\sum_{i=1}^{n} b_i^2}$$

$$\iff \sum_{i=1}^{n} a_i b_i \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2} \iff \vec{a} \cdot \vec{b} \le |\vec{a}| \cdot |\vec{b}|$$

题目的注记. 直接硬证有点困难,尝试对要证明的结论做等价变形.

题目. 2. 若 $\lim_{k\to\infty} |x_k| = +\infty$, 则称 \mathbb{R}^n 中的点列 $\{x_k\}$ 趋于 ∞ . 现在设点列 $\{x_k = (x_1^k, x_2^k, \cdots, x_n^k)\}$ 趋于 ∞ , 试判断下列命题是否正确:

- (1) 对于 $\forall i (1 \leq i \leq n)$, 序列 $\{x_i^k\}$ 趋于 ∞ ;
- (2) $\exists i_0 (1 \leq i_0 \leq n)$, 序列 $\{x_{i_0}^k\}$ 趋于 ∞.

解答. (1) 不正确, 反例: $\mathbf{x}^k = (k, 0, 0, \dots, 0)$, 那么对 $2 \le i \le n$, 有 $x_i^k \equiv 0$.

(2) 不正确, 反例: 记 $t \equiv k \pmod{n}$, 设 x^k 的第t个元素是k其余为0, 那么满足条件, 但 $\forall i, 1 \leq i \leq n$, 都有 x_i^k 在充分大的K后无限次取0,因此不可能趋于 ∞ .

题目. 3. 求下列集合的聚点集:

(1)
$$E = \left\{ \left(\frac{q}{p}, \frac{q}{p}, 1 \right) \in \mathbb{R}^3 : p, q \in \mathbb{N} \ \subseteq \overline{\mathbb{R}}, \ \exists \ q$$

(2)
$$E = \left\{ \left(\ln \left(1 + \frac{1}{k} \right)^k, \sin \frac{k\pi}{2} \right) : k = 1, 2, \dots \right\};$$

(3)
$$E = \{(r\cos\left(\tan\frac{\pi}{2}r\right), r\sin\left(\tan\frac{\pi}{2}r\right)) \in \mathbb{R}^2 : 0 \leqslant r < 1\}.$$

解答. $(1)E' = \{(x, x, 1) | x \in [0, 1]\};$

- (2) $\ln(1+\frac{1}{k})^k \sim (\frac{1}{k}-\frac{1}{2k^2}+o(\frac{1}{k^2}))^k \to 1(k\to\infty)$. $\sin\frac{k\pi}{2}$ 的聚点集是 $\{-1,0,1\}$. 因此 $E'=\{(1,-1),(1,0),(1,1)\}$;
- $(3)E' = \{(x,y)|x^2 + y^2 = 1\}\cup E$. 因为 $\lim_{r\to 1}r\cos(\tan\frac{\pi}{2}r)$ 极限并不存在,但分析渐进性质可以知道, $\tan\frac{\pi}{2}r\to\infty$,将 $\tan\frac{\pi}{2}r$ 看成一个以半径r为自变量的角度参数,那么当半径 $r\to 1$ 的时候,角度会转无数圈,单位圆周成为聚点集. 又因为E本身是连续曲线,所以 $\forall x\in E, x$ 当然是E的聚点. \square

题目. 4. 求下列集合的内部、外部、边界及闭包:

(1)
$$E = \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z = 1\}$$
;

(2)
$$E = \{(x,y) \in \mathbb{R}^2 : x > 0, x^2 + y^2 - 2x > 1\}.$$

解答. (1) "一张纸".

内部 $E^o = \emptyset$

外部 $(E^c)^o = \mathbb{R}^n \setminus \{(x, y, 1) | x \ge 0, y \ge 0\}$ (注意要把包含0的部分也去掉)

边界 $\partial E = \overline{E} = \{(x, y, 1) | x \ge 0, y \ge 0\}.$

 $(2) x^2 + y^2 - 2x > 1 \iff (x-1)^2 + y^2 > (\sqrt{2})^2$, 即扣去一个开圆盘留下的区域. 又x > 0, 只看x正半轴的部分.

内部 $E^o = E = \{(x,y)|x>0, x^2+y^2-2x>1\}$

外部 $(E^c)^o = \mathbb{R}^3 \setminus \{(x,y) | x \ge 0, x^2 + y^2 - 2x \ge 1\}$ (补集的内部, 把E补成闭集之后扣掉)

边界
$$\partial E = \{(x,y)|x^2 + y^2 - 2x = 1\} \cup \{(0,y)|y^2 \ge 1\}$$

闭包
$$\overline{E} = \{(x,y)|x \ge 0, x^2 + y^2 - 2x \ge 1\}.$$

题目. 5. 设 $\{(x_k, y_k)\} \subseteq \mathbb{R}^2$ 是一个点列, 判断如下命题是否为真: 点列 $\{(x_k, y_k)\}$ 在 \mathbb{R}^2 中有聚点的充分必要条件是 $\{x_k y_k\}$ 在 \mathbb{R} 中有聚点.

解答. 下面是错误的分析:

 $\{(x_k,y_k)\}$ 有聚点 \iff 存在子列收敛 $\{(x_{n_k},y_{n_k})\} \rightarrow (a,b) \Rightarrow \{x_{n_k}y_{n_k}\} \rightarrow ab \iff \{x_ky_k\}$ 有聚点. 反例, 既不充分也不必要:

(1) $\{(0, \frac{1}{k})\}$ 有极限(当然有聚点)(0,0), 但0· $\frac{1}{k}$ = 0是单点集, 单点集没有聚点(这是我没有想到的)

$$\{(x_n,y_n)\}$$
有聚点 不能推出 $\{x_ny_n\}$ 有聚点

(2) $\{(k+1,\frac{1}{k})\}$ 没有聚点(因为x之间至少差了1!), 而 $\{\frac{k+1}{k}\}$ 有极限(有聚点)1.

$$\{x_ny_n\}$$
有聚点 不能推出 $\{(x_n,y_n)\}$ 有聚点

题目的注记. 极限点不一定是聚点, 因为极限点可以是整个序列取单点集: $1 \to 1$ 而聚点的要求是: 一定要有无穷多个点(这是定义的区别)

题目. 6. 设 $E \subseteq \mathbb{R}^n$, 证明:

- (1) $\bar{E} = E^{\circ} \cup \partial E$;
- (2) $E' = \bar{E}'$

解答,证明等号,左边属于右边,右边属于左边.

(1) 方法一: $(\overline{E})^c = (E^c)^o = (E^o \cup \partial E)^c \Rightarrow \overline{E} = E^o \cup \partial E$.

方法二: 先证明 $\overline{E} \subseteq E^o \cup \partial E$. 任取 $x \in \overline{E}$, 如果 $x \in E^o$, 当然有 $x \in E^o \cup \partial E$; 如果 $x \notin E^o$, 那么 $x \in E \setminus E^o$ 就是 ∂E , 因此有 $\overline{E} \subseteq E^o \cup \partial E$. 再证明 $E^o \cup \partial E \subseteq \overline{E}$.

(2) $E' \subseteq \overline{E}'$ 很好证明, 因为 $E \subseteq \overline{E}$, 所以E'中任取一点 $x \in E'$, 一定是E中子列的极限点, 当然也就是 \overline{E} 中子列的极限点, 因此 $x \in \overline{E}'$, 因此 $E' \subseteq \overline{E}'$.

另一方面, 来证明 $\overline{E}' \subseteq E'$.根据书上对闭包的定义, $\overline{E} = E \cup E'$, 因此 $\overline{E}' = E' \cup (E')'$, 因此只需要证明 $(E')' \subseteq E'$.

方法一:根据极限点的定义, $\forall x \in (E')', \forall \delta > 0$, s.t. $U_0(x, \frac{\delta}{2}) \cap E' \neq \varnothing$; $\forall x' \in U_0(x, \frac{\delta}{2}) \cap E'$ (注意,取自上面的交集),因为 $x' \in E'$,所以 $\forall \delta > 0$, s.t. $U_0(x', \frac{\delta}{2}) \cap E \neq \varnothing$. 即 $|x - x'| < \frac{\delta}{2}$,且 $\exists x'' \in U_0(x', \frac{\delta}{2}) \cap E$, s.t. $|x' - x''| < \frac{\delta}{2}$,从而根据三角不等式, $|x - x''| < \delta$,即 $U_0(x, \delta) \cap E \neq \varnothing$. 由 δ 的任意推出 $x \in E' \Rightarrow (E')' \subseteq E'$.

方法二: 根据极限点的定义, $\forall x \in (E')'$, $\exists \{x_n\} \in E', \quad s.t. \quad x_n \to x. \quad \mathbb{D} \forall \delta > 0, \exists N_1 > 0, \quad s.t. \forall n > N_1, \quad |x - x_n| < \frac{\delta}{2}. \quad \text{任取一个满足} |x - x_n| < \frac{\delta}{2}. \quad \text{的为} x_{n_0}, \quad \text{因为} x_{n_0} \in E', \exists \{y_n\} \in E, \quad s.t. \quad y_n \to x_{n_0}, \quad \text{即对上面相同的} \delta > 0, \exists N_2 > 0, \forall n > N_2, s.t. \quad |x_{n_0} - y_n| < \frac{\delta}{2}. \quad \text{任取上述满足条件的一个} y_{n_1}, \quad \text{通过 三角不等式得到} |x - y_{n_1}| \leq |x - x_{n_0}| + |x_{n_0} - y_{n_1}| < \delta, \forall n \geq N_1 + N_2, \quad \text{得证.}$

题目的注记. (1) 书中的定义是: $\overline{E} = E \cup E'$, 另一种定义: $\partial E = \overline{E} \setminus E^o$, 即 $\overline{E} = E^o \cup \partial E$ (2) 导集的理解:

- $\forall x \in E', \exists \{x_n\} \in E, \quad s.t. \quad x_n \to x.$ (作为一个子列的极限点, 可以从这个角度得到方法二)
- $\forall x \in E', \forall \delta > 0$, s.t. $U_0(x, \delta) \cup E \neq \emptyset$. (从邻域的角度)

题目. 7. 设 $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ 为 \mathbb{R}^n 的一族集合, 证明:

- (1) 当 Λ 为有限指标集时, 成立 $\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}} \subseteq \bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}, \bigcap_{\lambda \in \Lambda} A_{\lambda}^{\circ} \subseteq (\bigcap_{\lambda \in \Lambda} A_{\lambda})^{\circ}$;
- (2) 对任意的指标集, 成立 $\bigcup_{\lambda \in \Lambda} A_{\lambda}^{\circ} \subseteq (\bigcup_{\lambda \in \Lambda} A_{\lambda})^{\circ}, \bigcap_{\lambda \in \Lambda} A_{\lambda} \subseteq \bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}$.

解答. (1) $A_{\lambda} \subseteq \overline{A_{\lambda}}$, 故 $\bigcup_{\lambda \in \Lambda} A_{\lambda} \subseteq \bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}$, 所以 $\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}} \subseteq \overline{\bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}}$, 又因为指标集有限, 因此 $\overline{\bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}} = \bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}$, 第一部分得证.

 $\overline{\mathbb{m}} \bigcap_{\lambda \in \Lambda} A_{\lambda}^{o} = (\bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}^{c}})^{c} \subseteq (\bigcup_{\lambda \in \Lambda} A_{\lambda}^{c})^{c} = (\bigcap_{\lambda \in \Lambda} A_{\lambda})^{o}.$

(2) $\overline{A_{\lambda}}$ 闭集, 无穷闭集的交还是闭集, $\bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}$ 是闭集, 因此有 $\overline{\bigcap_{\lambda \in \Lambda} A_{\lambda}} \subseteq \overline{\bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}} = \bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}$. 而 $\bigcup_{\lambda \in \Lambda} A_{\lambda}^{o} = (\bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}^{o}})^{c} \subseteq (\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}^{o}})^{c} = (\bigcap_{\lambda \in \Lambda} A_{\lambda})^{o}$

题目. 8. 设 $E \subseteq \mathbb{R}^n$, 证明:

- (1) E' 是闭集;
- (2) ∂E 是闭集.

解答. (1) 即证明: $E' = \overline{E'}$, 而 $\overline{E'} = E' \cup (E')'$, 显然 $E' \subseteq \overline{E'}$, 又根据6题的结论, $(E')' \subseteq E'$, 得证. (2) 即证明: $\partial E = \overline{\partial E} = \partial E \cap (\partial E)'$, 即证明 $(\partial E)' \subseteq \partial E$.

方法一: E^o 是开集, $(E^c)^o$ 是开集, 那么 $E^o \cup (E^c)^o$ 是开集, 那么 $\mathbb{R}^n \setminus (E^o \cup (E^c)^o) = \partial E$ 是闭集 (边界E理解成, 既不属于E的内部 E^o , 也不属于补集的内部 $(E^c)^o$ 的部分).

方法二: (直接证明(∂E)' $\subseteq \partial E$.) 考虑 $\partial E = \overline{E} \setminus E^o$, 那么(\overline{E})' $= (\partial E)$ ' \cup (E^o)', 根据第六题的结论, (\overline{E})' $= \overline{E}$, 因此 $\overline{E} = \partial E \cup E^o = (\partial E)$ ' \cup (E^o)', 因此 $\forall x \in (\partial E)$ ', 只可能属于 ∂E 或者 E^o . 采用反证

法, 若 $x \in E^o$, 根据极限点定义, $\forall \delta > 0, U_0(x, \delta) \cap \partial E \neq \emptyset$, 但根据 E^o 是开集的定义, 充分小的 δ 可以使 $U_0(x, \delta) \subseteq E^o \Rightarrow U_0(x, \delta) \cap \partial E = \emptyset$, 矛盾.

题目的注记. (1) $(E')' \subseteq E'$, $(\partial E)' \subseteq \partial E$.

- (2) $\overline{E} = \partial E \cup E^o = E \cup E'$
- (3) 问题: $\overline{E} = \partial E \cup E^o$ 的两边取导集, 还是可以得到等式(\overline{E})' = (∂E)' \cup (E^o)'. 但是如果写成 $\partial E = \overline{E} \setminus E^o$, 还可以两边取导集吗?

题目. 9. 设 $E \subseteq \mathbb{R}^2$, 记 $E_1 = \{x \in \mathbb{R} : \exists (x,y) \in E\}, E_2 = \{y \in \mathbb{R} : \exists (x,y) \in E\}$, 判断下列命题是否为真 (说明理由):

- (1) E 为 \mathbb{R}^2 中的开 (闭) 集时, E_1 和 E_2 均为 \mathbb{R} 中的开 (闭) 集;
- (2) E_1 和 E_2 均为 \mathbb{R} 中的开 (\mathfrak{R}) 集时, E 为 \mathbb{R}^2 中的开 (\mathfrak{R}) 集。

题目. 10. 构造 \mathbb{R}^2 中单位圆盘 $\Delta = \{(x,y): x^2 + y^2 < 1\}$ 内的一个点列 $\{(x_k,y_k)\}$,使得它的点构成的集合的聚点集恰为单位圆周 $\partial \Delta$.

解答. 考虑 $\{(r_k \cos \theta_k, r_k \sin \theta_k)\}$, 当 $r_k \to 1$ 时, 趋于 $(\cos \theta, \sin \theta)$, 借鉴3(3)的思想, 构造 θ 序列作为r的函数, 使得 $r \to 1$ 的过程中, $\theta \to \infty$. 例如: $\{(r_k \cos(\tan \frac{\pi}{2} r_k), r_k \sin(\tan \frac{\pi}{2} r_k))\}$, 其中 $r_k = \frac{k}{k+1}$, i.e., $\{(\frac{k}{k+1} \cos(\tan \frac{k\pi}{2(k+1)}), \frac{k}{k+1} \sin(\tan \frac{k\pi}{2(k+1)}))\}$.

和前面的3的区别是,因为我这里构造的是离散点列而不是连续的线,所以不用担心E本身也是导集的子集.

题目的注记. 问题: 除了构造 $r_k \to 1$ 的同时, θ_k 可以与 r_k 独立地定义, 如果 θ_k 的定义只是保证趋于有限($\cos \theta, \sin \theta$), 那么只能保证聚点是 $\partial \Delta$ 的有限点, 即使以可列方式组合之后成大序列, 还是不能遍历不可数集, 那么 θ_k 的定义必须保证趋于(∞, ∞)吗?

题目. 11. 设 $E_1, E_2 \subseteq \mathbb{R}^n$ 为两个非空集合, 定义 E_1, E_2 间的距离如下:

$$d\left(E_{1}, E_{2}\right) = \inf_{\boldsymbol{x} \in E_{1}, \boldsymbol{y} \in E_{2}} |\boldsymbol{x} - \boldsymbol{y}|$$

- (1) 举例说明存在开集 E_1, E_2 , 使得 $E_1 \cap E_2 = \emptyset$, 但 $d(E_1, E_2) = 0$;
 - (2) 举例说明存在闭集 E_1, E_2 , 使得 $E_1 \cap E_2 = \emptyset$, 但 $d(E_1, E_2) = 0$;
 - (3) 证明: 若紧集 E_1, E_2 满足 $d(E_1, E_2) = 0$, 则必有 $E_1 \cap E_2 \neq \emptyset$.

题目. 12. 设 $F\subseteq \mathbb{R}^n$ 是紧集, $E\subseteq \mathbb{R}^n$ 是开集, 且 $F\subseteq E$ 。证明:存在开集 O ,使得 $F\subseteq O\subseteq \bar{O}\subseteq E$ 。

题目. 13. 求下列函数的定义域:

- (1) $f(x, y, z) = \ln(y x^2 z^2);$
- (2) $f(x, y, z) = \sqrt{x^2 + y^2 z^2}$;
- (3) $f(x,y,z) = \frac{\ln(x^2+y^2-z)}{\sqrt{z}}$.

解答. (1) $\{(x,y,z)|y|x^2+z^2\}$

- (2) $\{(x, y, z)|z^2 \ge x^2 + y^2\}$
- (3) $\{(x, y, z)|x^2 + y^2 > z > 0\}$

题目. 14. 确定下列函数极限是否存在, 若存在则求出极限:

1. 14. 确定下列函数极限是否存在, 若存在则求出极限:
(1)
$$\lim_{E\ni(x,y)\to(0,0)} \frac{\sin(x^3+y^3)}{x^2+y}$$
, 其中 $E = \{(x,y): y > x^2\}$;
(2) $\lim_{(x,y)\to(0,0)} x \ln(x^2+y^2)$;

(2)
$$\lim_{(x,y)\to(0,0)} x \ln(x^2+y^2)$$
;

(3)
$$\lim_{|(x,y)| \to +\infty} (x^2 + y^2) e^{-(|x|+|y|)}$$
;

(4)
$$\lim_{|(x,y)|\to+\infty} \left(1+\frac{1}{|x|+|y|}\right)^{\frac{x^2}{|x|+|y|}};$$

(5)
$$\lim_{(x,y,z)\to(0,0,0)} \left(\frac{xyz}{x^2+y^2+z^2}\right)^{x+y};$$

(5)
$$\lim_{(x,y,z)\to(0,0,0)} \left(\frac{xyz}{x^2+y^2+z^2}\right)$$
;
(6) $\lim_{E\ni(x,y,z)\to(0,0,0)} x^yz$, $\sharp \mapsto E = \{(x,y,z): x,y,z>0\};$
(7) $\lim_{(x,y,z)\to(0,1,0)} \frac{\sin(xyz)}{x^2+z^2}$
(8) $\lim_{(x,y,z)\to(0,0,0)} \frac{\sin xyz}{\sqrt{x^2+y^2+z^2}}$
(9) $\lim_{x\to 0} \frac{\left(\sum_{i=1}^n x_i\right)^2}{|x|^2}$.

(7)
$$\lim_{(x,y,z)\to(0,1,0)} \frac{\sin(xyz)}{x^2+z^2}$$

(8)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{\sin xyz}{\sqrt{x^2+y^2+z^2}}$$

(9)
$$\lim_{\boldsymbol{x}\to \mathbf{0}} \frac{\left(\sum_{i=1}^n x_i\right)^2}{|\boldsymbol{x}|^2}$$
.

解答. (1)
$$\frac{\sin(x^3+y^3)}{x^2+y} = \frac{x^3+y^3+o(x^3+y^3)}{x^2+y}$$

解答. (1) $\frac{\sin(x^3+y^3)}{x^2+y} = \frac{x^3+y^3+o(x^3+y^3)}{x^2+y}$. 如果 $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y} = 0$,那么当然有 $\lim_{(x,y)\to(0,0)} \frac{o(x^3+y^3)}{x^2+y} = 0$ 首先考虑对分子配方,使得最

$$y^3 = (x^2 + y)y^2 - x^2y^2 = (x^2 + y)(y^2 + x^2y) - x^4y = (x^2 + y)(y^2 + x^2y + x^4) - x^6$$

因此有

$$\left|\frac{x^3+y^3}{x^2+y}\right| \le |y^2+x^2y+x^4| + \left|\frac{x^3(1-x^3)}{x^2+y}\right|$$

 $|x| | x^2 + y| \ge |x^2 - |y||$, 即使 $y \to 0$, 我也不能取 $|y| \le \frac{x^2}{2}$, 因为这样就不是从各个方向来趋近 于(0,0)了. 当然, 如果x是趋于一个非零的数, 我是可以这么做的

或许可以这样做: 如果 $|y| > 2x^2$, 那么 $|x^2 + y| \ge x^2$; 如果 $|y| \le \frac{x^2}{2} \le 2x^2$, 那么 $|x^2 + y| \ge \frac{x^2}{2}$. 总之, $|x^2 + y| \ge 2x^2.$

因此有

$$\left|\frac{x^3(1-x^3)}{x^2+y}\right| = \frac{\left|x^3(1-x^3)\right|}{\left|x^2+y\right|} \le \frac{\left|x^3(1-x^3)\right|}{2x^2} = \frac{\left|x(1-x^3)\right|}{2} \to 0$$

这是在没有考虑题目给出的 $y > x^2$ 的条件下做的, 如果有这个条件, 当然好做了:

$$\left|\frac{x^3(1-x^3)}{x^2+y}\right| \le \left|\frac{x^3(1-x^3)}{2x^2}\right| = \left|x(1-x^3)\right| \to 0$$

题目的注记,主要是因为分母是 $x^2 + y$,非齐次导致不好操作,否则可以极坐标换元

之所以对分子配方把分子上的y全部移除是为了后面对分母做完操作之后全部都是x就好办了.(之 所以不去消去x是因为多出来的xy配方消不掉)

分类讨论来给出分母的下界这一点很有意思.

解答. (2) 看见 $x^2 + y^2$, 比较trivial地可以想到极坐标换元.

$$x\ln(x^2 + y^2) = 2r\ln(r)\cdot\cos\theta \to 0$$

(3) 考虑放缩之后整体换元, 这样就可以使用洛必达了(虽然换元之后就显然了)

$$\frac{x^2 + y^2}{e^{|x| + |y|}} \le \frac{(|x| + |y|)^2}{e^{|x| + |y|}} = \frac{t^2}{e^t} \to 0, \quad t = |x| + |y| \to 0$$

(4) 极限不存在, 首先取 $x \equiv 0, y \to +\infty$ 的路径, 有极限为1(实际上恒等于1). 如果取 $x = y \to +\infty$ 的 路径,那么

$$(1 + \frac{1}{2|x|})^{2|x|} = (1 + \frac{1}{2|x|})^{2|x| \cdot \frac{1}{4}} \to e^{\frac{1}{4}}$$

因此,极限不存在

(5) 考虑点列 $(\frac{1}{t},0,0), t \in \mathbb{N}^*$, 那么 $\lim_{t\to\infty} o^t = 0$; 点列 $(\frac{1}{t},\frac{1}{t},\frac{1}{t})$

那么 $\lim_{t\to\infty} (\frac{3}{t})^{\frac{2}{t}} = \lim_{t\to\infty} e^{\frac{2}{t}\ln(\frac{3}{t})} \lim_{k\to 0^+} e^{2k\ln(3k)} = 1$, 极限不存在.

(6) 点列 $(0, \frac{1}{t}, \frac{1}{t})$, 极限 $\lim_{t \to \infty} 0^{\frac{1}{t^2}} = 0$; 点列 $(\frac{1}{t}, \frac{1}{t}, \frac{1}{t})$, 极限 $\lim_{t \to \infty} (\frac{1}{t})^{\frac{1}{t^2}} = 1$, 极限不存在

- (7) 点列 $(\frac{1}{t}, \frac{t}{t+1}, \frac{1}{t})$,极限 $\lim_{t\to\infty} \frac{\sin(\frac{1}{t(t+1)})}{\frac{2}{t+1}} = \frac{1}{2}$. 点列 $(\frac{1}{t}, \frac{t}{t+1}, \frac{2}{t})$,极限 $\lim_{t\to\infty} \frac{\sin(\frac{2}{t(t+1)})}{\frac{5}{2}} = \frac{2}{5}$,极限
- (8) 极限存在, 注意和前几问的重大区别, 从渐进角度来看, 大概是 $\frac{xyz}{\sqrt{r^2+v^2+z^2}}$, 分子的次数更大, 因 此会趋于0!

注意 $|\sin t| \le |t|$ 恒成立

$$\left| \frac{\sin(xyz)}{\sqrt{x^2 + y^2 + z^2}} \right| \le \left| \frac{xyz}{\sqrt{x^2 + y^2 + z^2}} \right|$$

考虑三维的球坐标换元 $\begin{cases} x &= r\sin\theta\cos\phi\\ y &= r\sin\theta\sin\phi\,,\, \mathbb{M}\Delta\\ z &= r\cos\phi \end{cases}$

$$|\frac{xyz}{\sqrt{x^2+y^2+z^2}}| = r^2 \cdot |\sin\theta\cos\phi\sin\theta\sin\phi\cos\phi| \le r^2 \to 0$$

或者,使用基本不等式:

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \le \sqrt[n]{\prod_{i=1}^{n} x_i} \le \frac{\sum_{i=1}^{n} x_i}{n} \le \sqrt[n]{\frac{\sum_{i=1}^{n} x_i}{n}}$$

那么有 $\sqrt{x^2+y^2+z^2} \ge \sqrt{3} \cdot \sqrt[3]{xyz}$, 所以有

$$\left| \frac{xyz}{\sqrt{x^2 + y^2 + z^2}} \right| \le \left| \frac{xyz}{\sqrt{3} \cdot \sqrt[3]{xyz}} \right| = \frac{1}{\sqrt{3}} \cdot (xyz)^{\frac{2}{3}} \to 0$$

(8) 点列($\frac{1}{t}$, 0, · · · , 0), 极限 $\lim_{t\to\infty} \frac{\frac{1}{t^2}}{\frac{1}{t^2}} = 1$ 点列 $(\frac{1}{t}, \frac{1}{t}, 0, \dots, 0)$, 极限 $\lim_{t\to\infty} \frac{\frac{4}{t^2}}{\frac{2}{3}} = 2$, 极限不存在.

试给出三元函数 f(x,y,z) 累次极限 $\lim_{x\to x_0}\lim_{y\to y_0}\lim_{z\to z_0}f(x,y,z)$ 的定义,并构造一个三元函数 f(x,y,z), 使得它满足: $\lim_{(x,y,z)\to(0,0,0)}f(x,y,z)$ 存在, 但 $\lim_{x\to 0} \lim_{y\to 0} \lim_{z\to 0} f(x,y,z)$ 不存在.

解答. 三元函数累次极限的定义: 设函数w = f(x, y, z)在 $E \subseteq \mathbb{R}^3$ 上有定义

且邻域 $U_0((x_0, y_0, z_0), \delta) \subseteq E$.

若在 $U_0((x_0,y_0,z_0),\delta)$ 内, 对每一个固定的 $x \neq x_0, y \neq y_0$, 有 $\lim_{z \to z_0} f(x,y,z) = \varphi(x,y)$ 存在

且(二元函数的累次极限已经定义了, 直接调用) $\lim_{x\to x_0}\lim_{y\to y_0}\varphi(x,y)=A$

则有 $\lim_{x\to x_0} \lim_{y\to y_0} \lim_{z\to z_0} f(x,y,z) = A.$

构造:

$$f(x, y, z) = x + z + y \sin \frac{1}{z}$$

重极限 $\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = 0$ 存在, 但是累次极限不存在, 因为 $z\to 0$ 时就已经无穷了.

16. 设 y = f(x) 在 $U_0(0, \delta_0) \subseteq \mathbb{R}$ 中有定义, 满足 $\lim_{x\to 0} f(x) = 0$, 且对于 $\forall x \in$ $U_0(0, \delta_0)$, $f(x) \neq 0$. $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$.

- (1) $\lim_{E\ni(x,y)\to(0,0)} \frac{f(x)f(y)}{f^2(x)+f^2(y)}$ 不存在; (2) $\lim_{E\ni(x,y)\to(0,0)} \frac{yf^2(x)}{f^4(x)+y^2}$ 不存在.

解答. 核心的思路: 还是去取不同的子列 (x_k, y_k) ,来使得极限趋于不同的值. 不过这里实际上需要控制的是 $f(x_k)$, $f(y_k)$, 所以更困难一点.

(1) 首先取子列 $(x_k, y_k) = (\frac{1}{k}, \frac{1}{k})$, 那么极限是 $\frac{1}{2}$.

其次, 对任意的 $k \in \mathbb{N}^*$, $\exists \delta_k > 0$, 使得 $|x_k| < \delta_k$, 就有 $|f(x_k)| < \frac{1}{k}$.

接下来, 对于固定的 $|f(x_k)|$, 存在 $\delta_k' > 0$, 使得 $|y_k| < \delta_k'$, 就有 $|f(y_k)| < \frac{|f(x_k)|}{k} < \frac{1}{k^2}$ 那么对于这样的子列 (x_k, y_k) , 就有极限

$$\left|\frac{f(x_k)f(y_k)}{f(x_k)^2 + f(y_k)^2}\right| = \frac{1}{\frac{|f(x_k)|}{|f(y_k)|} + \frac{|f(y_k)|}{|f(x_k)|}}$$

又因为

$$\left| \frac{f(x_k)^2 + f(y_k)^2}{f(x_k)f(y_k)} \right| = \frac{|f(x_k)|}{|f(y_k)|} + \frac{|f(y_k)|}{|f(x_k)|} \ge \frac{|f(x_k)|}{|f(y_k)|} \ge k \to +\infty$$

因此

$$\left| \frac{f(x_k)f(y_k)}{f(x_k)^2 + f(y_k)^2} \right| \to 0$$

所以极限不存在

(2) 和第一问相同的套路, 甚至还要简单一些:

首先取 $y = f(x)^2$, 极限是 $\frac{1}{2}$.

对任意的 $k \in \mathbb{N}^*$, 存在 δ_k , $|x_k| < \delta_k$, 有 $|f(x_k)| < \frac{1}{k}$

对固定的 $|f(x_k)|$, 存在 y_k , 使得 $|y_k| < \frac{|f(x_k)|^2}{k}$, 因此有:

$$\left|\frac{y_k f(x_k)^2}{f(x_k)^4 + y_k^2}\right| = \frac{1}{\frac{f(x_k)^2}{|y_k|} + \frac{|y_k|}{f(x_k)^2}} \le \frac{1}{\frac{f(x_k)^2}{|y_k|}} \le \frac{1}{k} \to 0$$

因此极限不存在

题目. 17. 构造二元函数f(x,y),使得对 $k=1,2,\cdots,K$,有 $\lim_{x\to 0}f(x,x^k)=0$,但是 $\lim_{(x,y)\to(0,0)}f(x,y)$ 不存在.

解答. 核心的思路: 重极限不存在, 但是方向导数存在的例子, 例如: $\frac{xy}{x^2+y^2} = \frac{\sin 2\theta}{2}$, 尝试构造类似 这样的多项式的分式形式

并且注意到, $k=1,2,\cdots,K$, 分母的主导项应该是更低阶的无穷小.

取

$$f(x,y) = \frac{x^{K+1}}{x^{K+1} + y} \Rightarrow \frac{x^{K+1}}{x^{K+1} + x^k} \sim \frac{x^{K+1}}{x^k} \to 0, \quad k = 1, 2 \cdots, K$$

 $math{m} y = x^{K+1} \text{ 时, 极限为} \frac{1}{2}, \text{ 重极限不存在}$

题目. 18. 设函数 f(x,y) 在 \mathbb{R}^2 内除直线 x=a 与 y=b 外处处有定义,并且满足:

- (a) $\lim_{y\to b} f(x,y) = g(x)$ 存在;
- (b) $\lim_{x\to a} f(x,y) = h(y)$ 一致存在,即对于 $\forall \varepsilon > 0, \exists \delta > 0$,使得对于 $\forall (x,y) \in \{(x,y): 0 < |x-a| < \delta\}$,有 $|f(x,y) h(y)| < \varepsilon$.

证明: 存在 $c \in \mathbb{R}$, 使得有

- (1) $\lim_{x\to a} \lim_{y\to b} f(x,y) = \lim_{x\to a} g(x) = c;$
- (2) $\lim_{y\to b} \lim_{x\to a} f(x,y) = \lim_{y\to b} h(y) = c$;
- (3) $\lim_{E\ni(x,y)\to(a,b)} f(x,y) = c$, $\sharp \oplus E = \mathbb{R}^2 \setminus \{(x,y) : x = a \not \exists y = b\}$.

解答. (1) 思路: 证明极限存在, 考虑柯西收敛准则

要证明: $\forall \epsilon > 0, \exists \delta > 0$, 使得 $\forall x_1, x_2 \in U_0(a, \delta)$, 都有 $|g(x_1) - g(x_2)| < \epsilon$.

因为 $\lim_{y\to b} f(x,y) = g(x)$,所以, $\forall \epsilon > 0$,存在 $y_0 \neq b$,使得 $|g(x_1) - f(x_1,y_0)| \leq \epsilon/4$, $|g(x_2) - f(x_2,y_0)| \leq \epsilon/4$.之所以是相同的 y_0 是为了使用一致存在的条件

因为 $\lim_{x\to a} f(x,y) = h(y)$ 一致存在,对于上面的 $\epsilon > 0$,存在 $\delta > 0$, $\forall x \in U_0(a,\delta)$,都有 $|f(x,y) - h(y)| < \epsilon/4$,那么就取最初的 $x_1, x_2 \in U_0(a,\delta)$,因此有 $|f(x_1,y_0) - h(y_0)| \le \epsilon/4$, $|f(x_2,y_0) - h(y_0)| \le \epsilon/4$.

因此有, $\forall \epsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in U_0(a, \delta)$:

$$|g(x_1) - g(x_2)|$$

$$\leq |g(x_1) - f(x_1, y_0)| + |f(x_1, y_0) - h(y_0)| + |h(y_0) - f(x_2, y_0)| + |f(x_2, y_0) - g(x_2)| \leq \epsilon$$

因此极限 $\lim_{x\to a} g(x)$ 存在, 记为c.

(2) 要证明: $\forall \epsilon > 0, \exists \delta_1 > 0,$ 使得 $\forall y_1, y_2 \in U_0(b, \delta_1),$ 都有 $|h(y_1) - h(y_2)| < \epsilon$.

首先, 因为 $\lim_{x\to a} f(x,y) = h(y)$ 一致存在, 因此对上述的 $\epsilon > 0$, $\exists \delta_0 > 0$, 使得 $\forall x \in U_0(a,\delta_0)$, 都有 $|f(x,y) - h(y)| < \epsilon/5$. 注意, 因为一致性, 才可以对不同的 y_1, y_2 , 只要 $x \cap a$ 够近, 就行

又因为我们(1)证明了 $\lim_{x\to a} g(x) = c$, 因为对取定的 $\epsilon > 0$, 存在 δ'_0 , $\forall x_1, x_2 \in U_0(a, \delta'_0)$, 都有 $|g(x_1) - g(x_2)| < \epsilon/5$.

现在取 $\delta_2 = \min\{\delta_0, \delta_0'\}, \ \mathbb{R} x_1, x_2 \in U_0(a, \delta_2).$

因此, $\forall \epsilon > 0$, $\exists \delta_1 > 0$, $\forall y_1, y_2 \in U_0(b, \delta_1)$. 以及取 $x_1, x_2 \in U_0(a, \delta_2)$

$$|h(y_1) - h(y_2)|$$

$$\leq |h(y_1) - f(x_1, y_1)| + |f(x_1, y_1) - g(x_1)| + |g(x_1) - g(x_2)|$$

$$+ |g(x_2) - f(x_2, y_2)| + |f(x_2, y_2) - h(y_2)|$$

$$\leq \epsilon$$

樂, 这样只是证明了极限存在, 但是极限不一定等于c啊, 可以一步到位的:

想证明: $\forall \epsilon > 0, \exists \delta > 0, \forall y \in U_0(b, \delta), |h(y) - c| < \epsilon$

因为: $\lim_{x\to a} f(x,y) = h(y)$ 一致存在, 所以对 $\forall y$, 只要 $x \in U_0(a,\delta_1)$, 都有 $|f(x,y) - h(y)| < \epsilon/3$, 这里取 $x_0 \in U_0(a,\delta_1)$, 那么 $|f(x_0,y) - h(y)| < \epsilon/3$

因为 $\lim_{y\to b} f(x,y) = g(x)$,所以 $\forall \epsilon > 0$, $\exists \delta > 0$, $\forall y \in U_0(b,\delta)$, $|f(x_0,y) - g(x_0)| < \epsilon/3$,这里的 x_0 是前面取定的 x_0

可以取 x_0 充分接近a, 使得 $|g(x_0) - c| < \epsilon/3$

因此有:

$$|h(y) - c| \le |h(y) - f(x_0, y)| + |f(x_0, y) - g(x_0)| + |g(x_0) - c| \le \epsilon$$

(3) 取x充分接近a, 那么 $x \in U_0(a, \delta_0)$, 那么任意的y, 都有 $|f(x, y) - h(y)| < \epsilon/2$.

 $\lim_{y\to b} h(y) = c$, $\mathbb{R} \Delta y \in U_0(b, \delta_1)$, $\hat{\eta}|h(y) - c| < \epsilon/2$.

结合在一起就是
$$|f(x,y)-c|<\epsilon, \forall (x,y)\in U_0((a,b),\delta^*),\delta^*=\min\{\delta,\delta_1\}$$

題目. 19. 设函数 f(x) 在 [0,1] 上连续, 函数 g(y) 在 [0,1] 上有唯一的第一类间断点 $y_0 = \frac{1}{2}$, (g(y) 在 $[0,1]\setminus\left\{\frac{1}{2}\right\}$ 上连续). 试求函数 F(x,y)=f(x)g(y) 在 $[0,1]\times[0,1]$ 上的全体间断点.

解答. 全体间断点是: $\{(x, \frac{1}{2}) | x \in [0, 1], f(x) \neq 0\}$

只需要考虑 $\{(x, \frac{1}{2})|x \in [0, 1]\}$ 是否全部都是间断点.

如果 $f(x_0) \neq 0$, 那么 $(x_0, \frac{1}{2})$ 是间断点. 反证法, 假设 $(x_0, \frac{1}{2})$ 是f(x)g(y)的连续点, 那么因为 $f(x_0) \neq 0$, 那么 $\frac{1}{2}$ 会是 $\frac{f(x)g(x)}{f(x)} = g(x)$ 的连续点, 矛盾

如果 $f(x_0) = 0$,因为是第一类间断点,所以g(y)在 $\frac{1}{2}$ 附近有界,所以

$$|f(x)g(y)| \le M|f(x)| \to 0, (x,y) \to (x_0, \frac{1}{2})$$

因此是连续点

题目. 20. 设函数 f(x,y) 在 $D = [0,1] \times [0,1]$ 上有定义, 且对固定的 x, f(x,y) 是 y 的连续函数, 对固定的 y, f(x,y) 是 x 的连续函数. 证明:若 f(x,y) 满足下列条件之一:

- (1) 对固定的 x, f(x, y) 是 y 的单调上升函数;
- (2) 对于 $\forall \varepsilon > 0, \exists \delta > 0$, 使得当 $y_1, y_2 \in [0,1]$ 且 $|y_1 y_2| < \delta$ 时, $|f(x, y_1) f(x, y_2)| < \varepsilon$ 对于 $\forall x \in [0,1]$ 成立,则 f(x,y) 在 D 内连续.

题目. 21. 设 $E \subseteq \mathbb{R}^n$, 证明: 向量函数 $f(x): E \to \mathbb{R}^m$ 在 $x_0 \in E$ 处连续的充分必要条件是对任何在 $U(f(x_0), \delta)$ ($\delta > 0$) 内连续的函数 h(y), h(f(x)) 在 x_0 处连续.

题目. 22. 设 $U \subseteq \mathbb{R}^n$ 是一个非空开集, 证明: 向量函数 $f: U \to \mathbb{R}^m$ 在 U 内连续的充分必要条件是开集的原像是开集, 即对 \mathbb{R}^m 中的任意开集 $E, f^{-1}(E)$ 是 \mathbb{R}^n 中的开集.

解答. 方法一: 不妨假设在 \mathbb{R}^m 取的任意开集E属于f(U), 那么 $\forall y \in E, \exists x_0, f(x_0) = y, \exists \epsilon > 0$, 使 得 $U(f(x_0), \epsilon) \subseteq E$

函数 \mathbf{f} 连续 $\iff \forall \epsilon > 0, \exists \delta > 0, \forall x_0 \in U, \ \forall x_0 \in U, \ \forall x_0 \in U(x_0, \delta) \Rightarrow f(x) \in U(f(x_0), \epsilon)$

即 $f(U(x_0,\delta)) \subseteq U(f(x_0),\epsilon) \iff U(x_0,\delta) \subseteq f^{-1}(U(f(x_0),\epsilon))$

开集E的原像 $f^{-1}(E)$ 是开集 $\iff \forall x_0 \in f^{-1}(E), \exists \epsilon > 0, \ \text{使得}U(f(x_0), \epsilon) \subseteq E \Rightarrow \exists \delta > 0, U(x_0, \delta) \subseteq f^{-1}(E)$

- (秦) 己知开集的原像都是开集, 那么 $U(f(x_0), \epsilon), \forall \epsilon > 0$ 是开集, 那么原像 $f^{-1}(U(f(x_0), \epsilon))$ 也是开始, 且 $x_0 \in f^{-1}(U(f(x_0), \epsilon))$, 所以 $\exists \delta > 0, U(x_0, \delta) \subseteq f^{-1}(U(f(x_0), \epsilon))$, 即 $x \in U(x_0, \delta) \Rightarrow f(x) \in U(f(x_0), \epsilon)$. 得证.
- (⇒) 已知函数 \mathbf{f} 是连续函数. 任取开集 $E \subseteq f(U)$, 对取定的E, 任取 $x_0 \in f^{-1}(E)$, 有 $y = f(x_0) \in E$, 因为E开集, $\exists \epsilon_y > 0$, $\forall 0 < \epsilon \le \epsilon_y$, 有 $U(f(x_0), \epsilon) \subseteq E$. 因为f连续, 所以 $\exists \delta > 0$, $f(U(x_0, \delta)) \subseteq U(f(x_0), \epsilon) \iff U(x_0, \delta) \subseteq f^{-1}(U(f(x_0), \epsilon)) \subseteq f^{-1}(E)$, $f^{-1}(E)$, $f^{$

方法二: 反证法:

- (⇒): 己知函数连续,假设开集 $E \subseteq f(U)$ 的原像 $f^{-1}(E)$ 不是开集,存在 $x_0 \in f^{-1}(E)$ 是孤立点. 但由于 $f(x_0)$ 是开集E的内点,因此 $\exists \epsilon > 0, U(f(x_0), \epsilon) \subseteq E$,因为f连续, $\exists \delta > 0, f(U(x_0, \delta)) \subseteq U(f(x_0), \epsilon) \iff U(x_0, \delta) \subseteq f^{-1}(U(f(x_0), \epsilon)) \subseteq f^{-1}(E)$,因此矛盾.
- (秦) 已知开集的原像是开集,不妨假设f有间断点 x_0 ,即 $\exists \epsilon_0 > 0$, $\forall k \in \mathbb{N}^*$, $\exists x_k$,使得 $|f(x_k) f(x_0)| > \epsilon_0$,但是开集 $U(f(x_0), \epsilon_0)$ 的原像 $f^{-1}(U(f(x_0), \epsilon_0))$ 是开集,且 $x_0 \in f^{-1}(U(f(x_0), \epsilon_0))$,而 $\{x_k\} \not\subseteq f^{-1}(U(f(x_0), \epsilon_0))$,这与开集的定义矛盾.