The UNNS Gauge—Gravity Correspondence (UGGC): From Recursive Gauge Fields to Emergent Geometry

UNNS Research Notes

September 25, 2025

Abstract

We propose a UNNS Gauge–Gravity Correspondence (UGGC), where recursion coefficients act as gauge connections and their curvature defines discrete geometry. Boundary recursions encode bulk gravitational dynamics, forming a discrete holographic duality. This construction parallels AdS/CFT, but arises from the recursive substrate of UNNS.

Contents

1	From Gauge Fields to Geometry	1
2	UNNS Einstein-Hilbert Action	2
3	Holographic Duality	2
4	Diagrammatic Overview	2
5	Applications 5.1 Physics 5.2 Mathematics 5.3 Philosophy	3
6	Conclusion	3

1 From Gauge Fields to Geometry

Definition 1.1 (Recursive Gauge Mesh). Let \mathcal{M} be a simplicial mesh carrying recursion coefficients $\{a_e\}$ on edges. Holonomies U(C) define curvature F(C) on cycles.

Definition 1.2 (Discrete Ricci Curvature). Assign to each 2-cell (face) a curvature

$$Ric(f) = \sum_{C \supset f} Tr(F(C)).$$

Remark 1.3. This parallels Regge calculus: geometry is reconstructed from deficit angles, here encoded in UNNS holonomies.

2 UNNS Einstein-Hilbert Action

Definition 2.1 (Discrete Action). The UNNS gravitational action is

$$S_{UG} = \sum_{f} w(f) \operatorname{Ric}(f),$$

where w(f) are weights from the UNNS nesting hierarchy.

Theorem 2.2 (Gauge–Gravity Equivalence). Minimizing S_G (gauge action) or S_{UG} (gravitational action) yields equivalent recursion dynamics in the large-nest limit.

3 Holographic Duality

Lemma 3.1 (Boundary–Bulk Principle). Let $\partial \mathcal{M}$ be the boundary recursion layer. Then:

Boundary recursion data \iff Bulk geometric curvature.

Remark 3.2. This establishes a UNNS holographic duality: recursion on the boundary encodes bulk emergent gravity.

4 Diagrammatic Overview

5 Applications

5.1 Physics

- Maxwell theory: U(1) recursion gauge group, abelian gravity dual.
- Yang-Mills: SU(n) recursion gauge group, non-abelian dual geometries.
- Dark matter/energy: curvature residues from hidden recursion cycles.

5.2 Mathematics

- Provides a discrete model of Ricci flow on recursion meshes.
- Suggests new invariants from recursion-based characteristic classes.

5.3 Philosophy

- Numbers-as-nests yield space-as-recursion.
- Gravity emerges from algebraic recursion rather than being fundamental.

6 Conclusion

The UNNS Gauge—Gravity Correspondence reframes recursion as the substrate of both gauge dynamics and emergent geometry. Boundary recursions generate bulk gravity, creating a holographic bridge between algebraic number sequences and spacetime physics.