MATH 335 lecture 10

Chris Camano: ccamano@sfsu.edu

September 27, 2022

Summary from last lecture

If we have a sequence: $a_n \in \mathbb{R}$ if the lower limit of $\lim a_n = \lim \sup a_n$ then the limit of a_n exists and:

$$\liminf a_n = \limsup a_n = \lim a_n$$

In $(L+\varepsilon,\infty)$ There are finitley many a_n

In $(-\infty, L-\varepsilon,)$ There are finitley many a_n

In $(L - \varepsilon, L + \varepsilon)$ There are almost all a_n which means there is some number N such that for all $n \in (L - \varepsilon, L + \varepsilon)$

Thus the limit of the sequence exists

Definition of Cauchy Sequence:

$$\forall \varepsilon > 0 \exists N : \forall m, n > N \quad |a_m - a_n| < \varepsilon$$

 a_n is cauchy if and only if a_n converges to a number.

$$a_m - \varepsilon \le \liminf a_n \le \limsup a_n \le a_m + \varepsilon$$

since $a_m - \varepsilon \le \liminf a_n \le \limsup a_n \le a_m + \varepsilon$ holds for all ε then $\liminf a_N = \limsup a_n$ which implies a_n converges