STATS 212

Homework3

March 7, 2025

Samuel Molero

samueljosemolero@tamu.edu Section: 501

1. Q1?

Ans:

Running the above code output the following results:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	223.115	332.717	0.671	0.502970	
batting.average	3043.192	2712.536	1.122	0.262746	
on.base.percent	-3528.013	2376.084	-1.485	0.138581	
runs	7.100	5.643	1.258	0.209259	
hits	-2.698	3.312	-0.815	0.415788	
doubles	1.368	8.611	0.159	0.873846	
triples	-17.922	21.647	-0.828	0.408339	
home.runs	19.483	12.583	1.548	0.122506	
rbi	17.415	5.068	3.436	0.000668	***
walks	5.815	4.523	1.285	0.199548	
strike.outs	-9.586	2.151	-4.457	1.15e-05	***
stolen.bases	13.044	4.714	2.767	0.005988	**
errors	-9.553	7.500	-1.274	0.203693	
free.agent.eligible	1372.886	108.594	12.642	< 2e-16	***
free.agent	-280.790	137.640	-2.040	0.042168	*
arbitration.eligible	783.592	118.289	6.624	1.48e-10	***
arbitration	352.114	241.829	1.456	0.146361	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 694.3 on 320 degrees of freedom Multiple R-squared: 0.7014, Adjusted R-squared: 0.6865 F-statistic: 46.99 on 16 and 320 DF, p-value: < 2.2e-16

(b) The R square of 0.7014, which translates to 70.14%

- (c) The coefficient for the predictor is -2.698 which predicts a decrease in salaries holding all the other variables constant. This could be due to the variation in salary data is explained by other variables such as home run and stolen bases.
- (d) Given that the P-value is 2.2e-16, which is smaller than 0.05 thus rejecting the null. This means that the model has good utility, and is a helpful indicative at predicting salary data.
- (e) Give that the F statistic is 0.619 and that is bigger than the give alpha, the second model does not have a significant improvement at predicting the Salary compared to the first model. This result is surprising became you would assume that having less predictors would make the prediction of salary worse given that there is less information.
- (f) This value will be the R-squared which is 0.6981 about 69.81%

(i) The is no clear pattern, but the spread of residuals increases in proportion to fitted values, indicating no constant variance. Additionally, non-linearity exits which demonstrate that a linear model may not be the best fit.

(g)

- (ii) The distribution is highly skewed, indicating for no normality assumption
- (iii) The points mostly follow a straight line in the middle, but deviate at

extremes demonstrating a non-normality at outliers.

```
(h)
        source("AIC-Leaps.R")
        df <- read.csv("Baseball-Salary-Data.csv")</pre>
        df <- df[, -18]
        library(leaps)
        leaps_ic <- leaps.AIC(df[,2:17], df[, 1])</pre>
            # includes all predictors
                                                      includes the
                 response variable
        leaps_output <- leaps(df[, 2:17], y = df[, 1], nbest =
            1) # perform AIC\BIC calc
        var_names <- colnames(df[, 2:17]) # get predictors</pre>
        best_model_index <- which.min(leaps_output$Cp) # Get</pre>
           selected variables
        var_mask <- leaps_output$which[best_model_index, ]</pre>
        model_vars <- var_names[var_mask] # extract the best</pre>
           predictor names
        model_vars
```

By the code above, the best predictors are "home.runs", "rbi", "walks", "strike.outs",

"stolen.bases", "free.agent.eligible", "free.agent", "arbitration.eligible", and "arbitration"

The rationale for selecting these predictors was based on the combination of player performance metrics and contractual factors that ultimately influence the salary. The leaps() function alongside Mallows CP helps identify the best subset, by comparing the models' goodness of fit and complexity. A lower CP will indicate that the model is both accurate and not complex, which is why the models with the lowest CP were selected as the best subset, to ensure that the salary variations are explained without unnecessary predictors, and thus show the strongest statistical relation with salary.

Player with standardized residual greater than the 3 are:

	salary	batting.average	on.base.percent	runs	hits	doubles	triples	home.runs	rbi	walks	strike.outs
25	6100	0.302	0.391	102	174	44	6	18	100	90	67
218	5300	0.316	0.397	78	153	35	3	31	100	65	121

Demonstrating who the difference in salaries does not correlate with the battling average, hits, and triples.

(j)

The plot exhibits a curved pattern, suggesting no linearity in the data.

Mostly linear but demonstrate non-normality by outliers.

Most points are near zero, demonstrating little influence, with a few being

above the zero range.

Running the following code to determine the outliers

```
influential_points <- which(cd > (4 / length(cd)))
print(influential_points)
df[influential_points, ]
```

output (a few):

stolen.bases		errors
22	76	6
25	2	15
26	10	7
27	37	3

Which demonstrates that predictors such as stolen.bases and errors have a high impact on the fitted model

Ans:

(a)

(b) dta2 <- read.table("SleepRem.txt", header = TRUE, sep = "")
attach(dta2)</pre>

fit <- aov(values ~ as.factor(ind), data = dta2)
anova(fit)</pre>

Using the above code snippet we get the following result:

Response: values

Df Sum Sq Mean Sq F value Pr(>F) 3 5881.7 1960.58 21.093 8.322e-06

Residuals 16 1487.1 92.95

Given that is confirmed that the p-value is 8.322e - 06 the null hypothesis should be rejected.

(c) #To test variance

```
anova(aov(resid(aov(values ~ ind))**2 ~ ind))
```

Given that the p-value is 0.621. This suggests that the assumption of equal variance is approximately valid.

```
#to test stability
shapiro.test(resid(aov(values ~ ind)))
```

p-value = 0.1285 suggests that the normality assumption approximately holds.

```
fit = aov(values ~ find)
boxplot(resid(fit))
plot(fit, which=2)
```

The Code snippets creates the following graphs:

plots also suggest that the normality assumption is approximately satisfied, in agreement with the Shapiro-Wilk test p-value.