11 Numéro de publication:

0 133 130

A1

13

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 84401567.7

(2) Date de dépôt: 26.07.84

(5) Int. Ct. 4: C 08 K 5/37 C 08 L 27/06

(20) Priorité: 02.08.83 FR 8312691 18.07.84 FR 8411347

Date de publication de la demande: 13.02.85 Bulletin 85/7

Etata contractams désignés: CH DE GB IT LI LU NL 7) Demandeur: SOCIETE NATIONALE ELF AQUITAINE Tour Aquitaine F-92400 Courbevole(FR)

(7) Demandeur: M & T CHIMIE S.A. 29 Avenue de l'Eguilette F-95310 Saint-Ouen L'Aumone(FR)

(2) Inventeur: Ranceze, Dominique 42 Avenue Thiers F-64000 Pau(FR)

72 Inventeur: Roussely, Jean 14, rue Lagille F-75018 Paris(FR)

(24) Mandataire: Kohn, Armand 5 Avenue Foch F-92380 Garches(FR)

Procédé de stabilisation thermique de polymères halogéno-vinyliques et résines ainsi stabilisées.

Stabilisation à la chaleur d'une résine halogénovimylique au moyen d'un mercapto-ester de polyol, qui consiste à employer en tant que mercapto-ester un ester motte dans lequel une partie seulement des hydroxyles du polyol sont estérifiés per un mercapto-ecide, tandis que tout ou partie des autres le sont par un acide organique exempt de soufre.

Procédé de stabilisation thermique de polymères halogénovinyliques et résines ainsi stabilisées

L'invention concerne la stabilisation à la chaleur de polymères halogéno-vinyliques et, en particulier, du chlorure
de polyvinyle. Elle comprend un procédé consistant à incorporer au polymère des adjuvants qui réduisent les effets
5 nocifs de la chaleur sur le polymère. L'invention vise également, bien entendu, les masses plastiques obtenues par
l'application de ce procédé aux différents polymères, renfermant des motifs halogéno-vinyliques. Elle porte plus spécialement sur les masses plastifiées de tels polymères ou
10 copolymères.

Les efforts en vue de rendre les polymères halogéno-vinyliques le moins sujets possible aux altérations, dues à des effets thermiques, constituent une occupation permanente 15 des industriels qui produisent ou utilisent ces matières. En ce qui concerne le chlorure de polyvinyle, le plus important des produits de ce type, il y a plus de 50 ans qu'il fait l'objet de recherche en vue de sa stabilisation à la chaleur ; son façonnage ayant lieu à chaud, généralement 20 entre 150° et 200°C, des réactions de décomposition avec perte d'HCl, de scission des chaînes macromoléculaires, et autres, abaissent les propriétés mécaniques, rhéologiques et électriques du produit avec coloration pouvant aller assez rapidement jusqu'au noir. Aussi, depuis un demi-siècle, 25 de nombreux adjuvants ont-ils été utilisés, pour réduire ce processus gênant. Parmi les premiers stabilisants figuraient des savons alcalino-terreux et des composés du plomb, notamment des silicates. D'autres dérivés métalliques furent appliqués par la suite ; puis on perfectionnait peu à 30 peu la stabilisation par adjonction d'un second composé ou costabilisant, tel que, par exemple, époxyde, phosphite, phénol antioxydant, thiocomposé organique, etc. Au cours

de la d rnière décennie, des progrès sensibles nt été réalisés par l'emploi de systèmes comprenant à la fois un s l de Cd et un sel de Ba ou de Ca : dès 1970, on trouvait ainsi, sur le marché, plus de 80 produits de ce type, sous -50 différentes marques de fabrique; telles que "Advastab", aftermas a company "Ferro Mark", "Synpron", etc. (Modern Plastics Encyclopedia; Acceptant, la toxicité et la communication de ce qui a conduit, entre autres; à des systèmes de composés 10 de Ba avec Zn ou Ca avec Zn, dont également nombreux produits étaient vendus. D'autre part, de bons résultats ayant été obtenus avec des dérivés organiques de Sn et de Sb, on a cherché à les améliorer et l'on a trouvé intéressante l'adjonction de certains mercaptans, comme indiqué dans la 15 publication française de brevet 2.434 835 et dans les brevets allemands 1 217 609 ou US 3 063 963. Toutefois, tant pour des raisons sanitaires que pour celles de prix, la tendance actuelle est au remplacement des métaux lourds, aussi bien du Cd que l'Sn par des stabilisants parfaitement non 20 toxiques et moins chers. On cherche donc à revenir, à l'heure actuelle, aux systèmes alcalino-terreux et zinc, en exaltant leur action stabilisatrice par d'autres adjuvants. Un exemple typique de tels efforts se trouve dans les demandes de brevets, française n° 2 492 391 (de 1980) et eu-25 ropéenne 0 022 047 (de 1980), qui portent sur des stabilisants formés par des composés de Ca et de Zn, améliorés au moyen de différents esters thioglycoliques ; le second de ces documents préconise, en outre, l'adjonction d'un polyol.

30 Etant donné que les additifs, quels qu'ils soient, peuvent seulement retarder les altérations dues à la chaleur, et éventuellement à la lumière visible ou à d'autres radiations, mais sans supprimer complètement les réactions de décomposition, aucun des résultats, obtenus jusqu'à présent, ne 35 pouvait être définitif : toute recherche peut donc escompter

les chances de faire mieux que la technique antérieure.

La présente invention résulte de recherches effectuées selon la nouvelle tendance, mentionnée plus haut, et elle
5 apporte une amélioration nette de la résistance des résines
halogéno-vinyliques à la chaleur. Le caractère inattendu
de cette invention réside dans le fait que le perfectionnement de la stabilité est obtenu plus économiquement, avec
encore moins d'odeur, par l'adjonction à la résine de cer10 tains mercapto-esters, grâce à la diminution du nombre relatif de groupes -SH dans la molécule de tels esters utilisés selon la technique antérieure.

L'emploi de mercapto-esters, en général conjointement avec des composés métalliques stabilisants, et en particulier de mercapto-esters de polyols, est connu par la publication de brevet français 2 492 391 et par l'US 3 144 422; l'effet augmente avec la proportion de stabilisant dans la résine, donc avec la teneur en groupes -SH. Or, de façon sur-20 prenante, la stabilisation est au moins aussi bonne, ou même meilleure, tout en apportant une économie certaine, lorsque - suivant l'invention - on utilise des mercapto-esters qui renferment moins de -SH par rapport à leurs restes d'alcool, et par conséquent moins de groupes mercapto pour 100 parties de résine.

Les avantages de l'invention résident en ce qu'elle conduit à des masses plastiques aussi stables et d'aussi bonnes qualités que les masses additionnées de composés de Cd ou de 30 Sn, alors qu'elle n'utilise que des adjuvants bien moins chers et non toxiques. En outre, les masses plastiques, stabilisées suivant l'invention, sont dépourvues de toute odeur, contrairement à celles qui contiennent des esters thioglycoliques de la technique antérieure; elles ont une bonne tenue à l'humidité et à l'eau, grâce à l'absence d'adjuvants

hydroxylés employés dans l'art antérieur mentionné plus haut.

Le procédé suivant l'invention, qui consiste à incorporer

5 à une résine halogéno-vinylique un ou plusieurs esters

capto, est caractérisé en ce que, dans ces esters, une par
tie seulement des OH du polyol sont estérifiés par un mer
capto-acide, tandis que les autres le sont par un acide or
10 ganique exempt de soufre.

Dans des formes d'exécution avantageuses, l'ester mixte, de mercapto- et non-mercapto-acide, est accompagné d'autres stabilisants ou adjuvants, connus en soi, notamment des composés organiques de métaux alcalino-terreux ou/et de métaux des groupes IIB, IIIA, IVA et VA de la Classification Périodique, et de corps gras, de préférence oxydés.

Les stabilisants suivant l'invention sont fort efficaces 20 dans le cas des résines plastifiées.

De préférence, le métal des groupes II à V susmentionnés est le zinc, mais il peut être choisi parmi d'autres, en particulier antimoine, silicium ou aluminium. En tant qu'al-25 calino-terreux conviennent surtout Ca, Ba ou/et Sr.

L'ester de mercapto-acide peut porter sur le même reste du polyol, les restes de plusieurs acides différents, renfermant les goupes-SH, ou/et de plusieurs acides sans -SH.

Les mercaptoacides, formant les esters mixtes, utiles suivant l'invention, peuvent être représentés globalement par la formule

$$(HS)_{D} - R - (COOH)_{m}$$
 (1)

35 dans laquelle n a une valeur de 1 à 5, m=1 ou 2, R étant

30

une chaîne aliphatiqu ou un cycle, éventuellement ramifiés en C_1 à C_{35} , de préférence en C_2 à C_{17} , ce qui - pour m=1 - correspond à des nombres totaux respectivement C_2 à C_{36} et C_3 à C_{18} .

voici. à titre d'evemples non limitation, querques-uns des mercapto-acides des esters utilisables selon l'invention : d-mercaptopropionique H₃C-CH-CO₂H (ou mercapto-2 pro-

10 pionique);

20

\(\beta\)-mercaptopropionique \(\text{HSCH}_2\)CO_2\(\text{H}\) (ou \(\text{mercapto}\)-3 \(\text{pro-}\)
pionique);

w-mercaptoundécanoique HSCH₂(CH₂)₉CO₂H (ou mercapto-11 undécanoique)

15 mercapto-10 undécanolque H₃C CH(CH₂)₈CO₂H

mercaptosuccinique HO₂C CH-CH₂CO₂H (ou thiomalique) ;

dimercaptosuccinique HO₂C-CH-CH-CO₂H;

C CO₂H (ou thiosalicylique)

- 25 Comme indiqué plus haut, une partie des -OH du polyol, dont dérive le mercapto-ester, sont estérifiés par un autre acide carboxylique, qui peut ne pas porter de fonction -SH. Un tel acide carboxylique, de formule générale R'(CO₂H)_p, est préférentiellement un mono ou diacide (p=1 ou 2). R'
- 30 peut être un groupe alkyle ou alkényle, linéaire ou ramifié, aliphatique ou aromatique, renfermant au moins 2 atomes de carbone, de préférence de 5 à 37 et mieux de 5 à 17. Bien que tout acide carboxylique puisse être utilisé, les préférés sont des acides gras, notamment caprylique, octanoï-
- 35 que, cétanolque, pelargonique, caprique, undécanolque, lau-

rique, myristique, palmitique, stéarique, isostéarique, oléique, linoléique, linolénique, béhénique, montanique.Conviennent également bien les acides succinique, adipique, glutarique, pimélique, subérique, azelalque, sébacique, dioléique, malique, tartrique ou phtalique, ainsi que des mono-acides aromatiques, comme le benzolque.

Le polyol, dont dérive le mercaptoester mixte utilisé, suivant l'invention, peut être formé d'une chaîne ou d'un cy-10 cle carboné, généralement en ${\rm C_2}$ à ${\rm C_{30}}$, mais de préférence en C₂ à C₂₀, linéaire ou ramifié, comprenant un nombre de groupes-OH supérieur ou égal à 2. Diverses autres fonctions peuvent s'y trouver, en particulier : étheroxyde, thiol, sulfure, disulfure, polysulfure, acide carboxylique, 15 ester, amine. En tant qu'exemples non limitatifs des polyols, peuvent servir les corps suivants : éthylène glycol et polyéthylène glycol HO+CH2CH2O+CH2CH2OH propylène glycol et 20 polypropylène glycol HO(CH₂-CH-O)_s-CH₂CH-OH thiodiglycol HOCH2CH2SCH2CH2OH; pentaerythritol C(CH2OH),; dipentaérythritol (HOCH₂)₃C CH₂OCH₂C(CH₂OH)₃; tripentaerythritol (HOCH₂)₃CCH₂OCH₂C (CH₂OH)₂CH₂OCH₂C (CH₂OH)₃; tri-25 méthylolpropane CH₃CH₂C(CH₂OH)₃; glycérol HOCH₂CH(OH)CH₂OH; thioglycérol HSCH2CH(OH)CH2OH ou HOCH2CH(SH)CH2OH; butane diol-1,2, butane diol-1,3 ; pentols, hexols et similaires. Bien qu'un reste de polyol constitue une partie indispensable des mercaptoesters, suivant l'invention, ceux-ci peu-30 vent porter, en outre, des restes de mono-alcools : il est en effet recommandable d'alléger la masse molaire de l'ester, lorsqu'un polyacide est en jeu. Dans ce cas, une partie des carboxyles du polyacide peuvent être avantageusement estérifiés par un mono-alcool ; ce dernier est en général 35 en C₁ à C₂₀ et de préférence en C₂ à C₈. Cette précaution

est utile surtout lorsque le mercaptoester risque d'avoir une masse molaire supérieure à 1200.

A titre d'exemples non limitatifs des esters mixtes, reven-5 diqués, on peut citer :

 Tris (mercapto-3 propionate) mono-caprate de pentaérythrityle

10 .Mono(mercapto-2 propionate) tris-caproate de pentaérythrityle

$$C (CH_2 \stackrel{\text{осси}}{=} (SH) CH_3) \left[CH_2 \stackrel{\text{oc}}{=} (CH_2) _4 CH_3 \right]_3$$

.Tris (mercapto-3 propionate) mono-stéarate de pentaérythri-tyle

.Bis(mercapto-3 propionate) bis pelargonate de pentaérythrityle

20
$$\begin{pmatrix} \text{H}_{17} \text{C}_8 \text{COCH}_2 \end{pmatrix} \text{C} \left(\text{CH}_2 \text{OCCH}_2 \text{CH}_2 \text{SH} \right)_2$$

.Bis (mercapto-3 propionate) monooctanoate du triméthylpropane

25
$$H_3CCH_2C \left(CH_2OCCH_2CH_2SH \right)_2 \left(CH_2OCC_7H_{15} \right)$$

-Mercapto-3 propionate laurate de l'éthylène glycol HSCH2CH2CCH2CH2CCCCH2CH3

30 .Bis(thioglycolate)-bis palmitate de pentaérythrityle

(HSCH2CO-CH2)2C[CH2OC(CH2)14 CH3]2

.Bis (mercapto-3 propionate)-mono-oléate de glycéryle

.Mono (mercapto-3 propionate) monooctanoate du thioglycéryle

Le ou les corps gras, qui peuvent entrer avantageusement dans la composition des masses stabilisées, selon l'inven25 tion, sont de façon générale des esters d'alkyles en C₁ à C₁₂, du glycol ou/et du glycérol, d'un ou de plusieurs acides gras en C₈ à C₂₄, de préférence non saturés, ayant subi une époxydation. Il est pratique d'utiliser à cet effet une huile naturelle par exemple de lin, de soja ou de poisson, 30 époxydée.

Le minimum de masse moléculaire du mercapto-ester mixte est de 178 correspondant aux acides les plus légers, mercaptoacétique et acétique, et le polyol le plus léger, l'éthylène 35 glycol ; cet ester mixte "minimal" est HS-CH₂COO-CH₂CH₂-OOCCH₃

Le minimum préféré est 206 correspondant au mercaptopropionate-1 propionate-2 d'éthylène

$$\text{HS-CH}_2\text{CH}_2\text{COO-CH}_2\text{CH}_2\text{-OOC-CH}_2\text{CH}_3$$

5

En tant qu'ester "lourd" on peut citer par exemple un mercaptoester mixte gras d'un sucre, en particulier tris-/mercaptostéarate/bis-stéarate de glucose.

Captostealace, 222 (HS-C₁₇H₃₄COO)₃ C_5H_6 CHO M=16.08 (C₁₇H₃₅COO)₂

Bien que les masses molaires des mercapto-esters utiles puissent aller de 178 jusqu'à environ 2 000, il est préférable qu'elles soient comprises entre 200 et 1 000. Ainsi, 15 par exemple, le bis (mercapto-propionate) bis-octanoate de

5 par exemple, le bis (mercapto-propionate) bis-octanoate de pentaérythrityle, qui donne d'excellents résultats, a une masse moléculaire de 564.

L'objet de l'invention est accompli dès qu'au moins un des 20 OH du polyol est estérifié par un acide organique ne portant pas de -SH, alors que tous ou partie des autres OH le sont par un mercaptoacide. Inversement, peuvent convenir à la stabilisation les esters mixtes dont la molécule porte un seul mercaptoacide, le ou les autres acides étant exempts

25 de -SH. Dans les cas les plus courants des esters issus de polyols ayant 2 à 6 groupes OH, il peut y avoir respectivement 1 reste de mercaptoacide pour 1 à 5 d'acide sans SH, ou réciproquement 1 à 5 restes d'acide non mercapto par reste de mercaptoacide.

30

Parmi les composés organiques de métal alcalino-terreux et le composé divers du zinc, ceux qui conviennent particulièrement bien sont les carboxylates, les mercaptides et ZnCl₂.

35 Parmi les carboxylates, on peut citer de façon non limita-

tive l s : caproate, éthyl-2 hexanoate, octanoate, pelargonate, laurate, palmitate, stéarate, oléate, benzoate, phénate, alkylphénate, naphténate, néoalcanoate. Parmi les mercaptides, on peut citer ceux qui dérivent de mercaptans aliphatiques, d'esters de mercapto-acides ou des esters de mercaptoalkyles.

Cependant, un certain nombre de dérivés tels que les carbonate, oxyde, hydroxyde, sulfate, halogénure (chlorure, bro-10 mure) peuvent également être avantageusement utilisés.

L'invention, qui s'applique aux différents polymères et copolymères halogéno-vinyliques, notamment aux chlorure de
polyvinyle, chlorure de polyvinylidène, acétochlorure de
15 polyvinyle, chlorure de polyvinyle surchloré, résines vinyliques chloro-fluorées, etc., présente surtout beaucoup
d'importance pour les masses plastiques à base de chlorure
de polyvinyle. Comme dans la technique connue, la proportion de stabilisant primaire, qui est ici un composé organi20 que de métal alcalino-terreux joint à un composé organique
du zinc, est en général de 0,01 à 6% en poids, et le plus
souvent de 0,05 à 3%, par rapport à la résine à stabiliser.
Lorsque le mercapto.ester mixte, suivant l'invention, est
employé comme co-stabilisant, sa proportion est dans les
25 mêmes limites, sans devoir être égale à celle de stabilisant primaire.

Dans le cas particulier du chlorure de polyvinyle rendu souple par l'adjonction d'un plastifiant constitué par un 30 ester, notamment par celle d'un phtalate, adipate, sébaçate, azélate, phosphate ou un polyester, les proportions pour 100 parties en poids de résine sont de préférence :

- 5 à 70 parties de plastifiant,
- 1 à 10 parties de corps gras,
- 35 0,1 à 2 parties de composé organique de métal alcalino-terreux

0,05 à 1,5 parties de composé organique de Zn 0,1 à 3 parties de mercapto-ester mixte.

Le rapport entre le composé alcalino-terreux et celui du 5 zinc est de préférence de 1 à 6 moles du premier pour 1 mole du second. Dans le cas du calcium, les meilleurs rapports s'échelonnent entre 1 à 4 atomes Ca pour 1 Zn.

Dans les exemples non limitatifs qui suivent, des échantil10 lons de chlorure de polyvinyle, stabilisé avec un adjuvant
suivant l'invention, sont soumis à des essais de coloration
au chauffage. Pour cela, les différentes compositions sont
malaxées pendant 5 minutes à 160°C sur un mélangeur à cylindres. Les feuilles obtenues ont une épaisseur voisine
15 de 1 millimètre. L'essai thermique, proprement dit, est
effectué en étuve du type "SIGMA" fabriquée par METRASTAT
SA. Son principe repose sur la mise en évidence du changement de couleur graduel, résultant de la décomposition thermique de longues éprouvettes, en rubans de 25 cm de long,
20 découpés dans les feuilles susmentionnées, exposées temporairement à la chaleur dans un four calorifugé, maintenu à une
température constante.

Outre son enceinte thermique, l'appareil comprend un systè25 me électromécanique assurant le transfert d'une platine
porte-éprouvettes amovible, sortant du four à une vitesse
constante, prédéterminée; un ensemble électronique assure
la régulation de la vitesse de la platine et celle de la
température du four.

30

La coloration de la résine est observée pour une température du four et une vitesse de sortie de l'échantillon données. Pour chaque essai, on relève le "temps de stabilité" qui est le temps au bout duquel la résine devient noire, 35 ou bien on enregistre l'évolution de l'indice de jaune. Les compositions soumises aux essais comprennent :

100 parties en poids de chlorure de polyvinyle, connu sous
la dénomination commerciale de "LACQVYL S 111" à
indice K=67, et

5 40-parties en poids de phtalate de dioctyle (nom commercial PALATINOL AH).

EXEMPLES 1 à 5

10 Les essais de tenue à la chaleur sont effectués à 190°C, la vitesse de sortie des éprouvettes étant réglée à 30 minutes.

Dans le tableau de résultats ci-après, les l'indique les 15 proportions d'adjuvants incorporés dans les échantillons, avantle passage au four.

Exemple n°	<u>1</u>	<u>2</u>	<u>3</u>	4	5
Tétrakis (mercapto-3 propionate) de penta-érythrityle	0	0,4%	0	. 0	0
Bis (mercapto-3 propionate) bis octanoate de pentaéry- thrityle	0	0	0,4%	0	0,4%
Huile de soja époxydée	0 .	0	0	48	4%
Indice de jaune après 20 minutes	160	135	127	155	90
	Tétrakis (mercapto-3 propionate) de penta- érythrityle Bis (mercapto-3 propionate) bis octanoate de pentaéry- thrityle Huile de soja époxydée Indice de jaune	Tétrakis (mercapto-3 propionate) de penta- érythrityle 0 Bis (mercapto-3 propionate) bis octanoate de pentaéry- thrityle 0 Huile de soja époxydée 0 Indice de jaune	Tétrakis (mercapto-3 propionate) de penta- érythrityle 0 0,4% Bis (mercapto-3 propionate) bis octanoate de pentaéry- thrityle 0 0 Huile de soja époxydée 0 0 Indice de jaune	Tétrakis (mercapto-3 propionate) de penta- érythrityle 0 0,4% 0 Bis (mercapto-3 propionate) bis octanoate de pentaéry- thrityle 0 0 0,4% Huile de soja époxydée 0 0 0 Indice de jaune	Tétrakis (mercapto-3 propionate) de penta- érythrityle 0 0,4% 0 0 Bis (mercapto-3 propionate) bis octanoate de pentaéry- thrityle 0 0 0,4% 0 Huile de soja époxydée 0 0 0 4% Indice de jaune

La première constatation, qui se dégage de ces résultats, est que le mercapto-ester mixte de l'exemple 3 (bis-bis), malgré sa teneur en -SH moitié seulement de celle du tétra-kis correspondant (exemple 2), a une efficacité au moins 30 aussi bonne que ce dernier, ou même un peu meilleure : indice de jaune 127 contre 135. L'emploi de ce composé mixte est donc bien plus économique.

Le second résultat intéressant ressort des exemples 4 et 5 : 35 en présence de l'huile de soja époxydée, le mercapto-ester

mixte (ex.5) agit fortement, en abaissant l'indice de jaun de 150 à 90.

EXEMPLES 6 à 10

5

20

Association d'un mercapto-ester mixte avec des stabilisants classiques à base de composés métalliques. Essais à 190°C.

Exemple n°	<u>6</u>	<u>7</u>	<u>8</u>	9	10
10 Vitesse de sortie des éprouvettes, en mm	30	30	30	60	60
Octanoate de Zn %	0,08	0,08	0,08	0,08	0,08
Octanoate de Ba %	-	- .	-	0,80	0,80
Tétrakis (mercapto-3 propionate) de penta- 15 érythrityle	-	0,4	-	_	_
Bis (mercapto-3 propionate)- bis octanoate de pentaéry- thrityle	- -	_	0,4	~ ·	0,4
Temps de stabilité en mn	15	18	18	43	53

Comme dans les essais précédents le mercapto ester mixte (bis-bis) des exemples 8 et 10 se révèle aussi efficace que le mercapto-ester (tétrakis) de l'exemple 7, bien qu'il renferme deux fois moins de groupes -SH que ce der-25 nier.

L'association du composé mixte avec les stabilisants classiques aux Ba et Zn (ex. 9-10) procure une amélioration de la stabilité de (53-43):43=23,2% ce qui est tout à fait appré-30 ciable.

EXEMPLES 11 à 19

On opère comme dans les exemples précédents, mais la propor-35 tion de plastifiant, phtalate dioctylique, est de 50 parties en poids pour 100 parties de résine et c lle-ci contient 5% d'huile de soja péroxydée, 0,3% de stéarate de Ca et 0,15% de stéarate de Zn. Les stabilités à 190°C, en minutes, ont été trouvées par l'adjonction de différents mercaptoesters.

Э.	
~	

2	•		•
	EXEMPLE	Adjuvant	Stabilité
		% - constitution	mn ·
	11	Aucun	160
10	12	0,5 Tétra (mercapto-3 propionate) de pentaérythrityle	203
	13	1,0	227 3
	14	bis-octanoate de pentaéry-	8: (H: (11- (-0-
		thrityle	226
15	15	1,0 Tétra (mercapto-11 undécanoate) de pentaérythrityle	225
	16	1,0 Tris (mercapto-11 undécanoate) mono-undécanoate de penta- érythrityle	226
	17	1,0 Bis-mercapto-acétate de propy- lèneglycol	189
20	18	1,0 Mercapto-acétate hexanoate de propylèneglycol	- 194
	19	1,0 Mercapto-11 undécanoate d'éthyle	176
	Ces essai	s montrent la possibilité d'augmenter la	a stabilité
	d'environ	30% (de 160 à 226) par l'utilisation co	onjointe
	d'un merc	apto-ester mixte avec un système stabil:	isant clas-
25		comporte une huile péroxydée et les s	
	de Ca et		

Ils confirment les résultats précédents en ce qui concerne l'avantage surprenant du mercapto-ester mixte sur
30 le mercapto-ester ordinaire. Ainsi l'exemple 14 (ester mixte) donne un résultat aussi bon que l'exemple 13
(mercapto seul), malgré sa teneur bien plus faible en
-SH. Comme cette dernière est moins que la moitié de
celle du composé de l'exemple 13, il y aurait lieu plu35 tôt de comparer l'exemple 14 avec 12 qui contient 0,5%

de mercapto-ester : or la stabilité dans ce cas est de 203 mn contre 226 pour l'adjuvant selon l'invention (ex. 14).

Même constatation s'impose au sujet des exemples respectifs 5 15-16 et 17-18; il est à noter en passant que le mercaptoacétate de la technique antérieure (exemple 17) communique une odeur à la résine.

L'exemple 19 montre qu'un mercapto-ester de mono-alcool est 10 moins efficace que les mercapto-esters de polyols.

EXEMPLES 20 à 23

En appliquant la technique des exemples précédents à la mê15 me composition de chlorure de polyvinyle avec 50% de phtalate dioctylique et 5% d'huile de soja époxydée, on a fait
varier la nature et les proportions des stabilisants. Les
exemples 20 à 22 portent sur l'emploi de composés de Ca et
Zn, tandis que dans l'exemple 23 on a utilisé des stabili20 sants de l'art antérieur à base de Cd et Ba, considérés
comme particulièrement efficaces.

	Exemple n°	20	21_	22	23
25	Stabilisants	· · · · · ·	% d'adj	uvant	
	Laurate de Ca	0,60	-	-	-
	Stéarate de Ca	_	0,30	0,30	-
	Stéarate de Zn	0,15	0,15	-	-
	Mercaptide de 2n				
30	Zn (SCH ₂ CH ₂ COOn-C ₁₂ H ₂₅) ₂	-	-	0,15	
	Stéarate de Cd		-	-	1,50
	Stéarate de Ba		_	~	1,,,,,
	Bis (mercapto-3 propionate)				
	bis octanoate de pentaéry-				
35	thritol	0,50	1,0	0,2	_
	Stabilité en minutes	241	226	230	250

Ces résultats démontrent qu , grâce à l'adjonction de mercapto-ester, on arrive à une stabilisation équivalente à celle que procure le système connu Cd-Ba ; cela, apporte l'avantage d'éviter toute toxicité due au métal lourd, 5 ainsi qu'un prix de revient plus bas.

EXEMPLES 24 à 26

30

La composition de résine, comprenant pour 100 parties de 10 chlorure de polyvinyle, 50 parties de phtalate de dioctyle et 5 parties d'huile de soja peroxydée, est utilisée avec 0,6% de laurate de Ba

- et 0,15% de stéarate de Zn comme stabilisants classiques.
- 15 L'étuve est réglée à 190°C avec une vitesse de sortie des éprouvettes en 180 minutes.

Les stabilités suivantes sont trouvées avec chacun des costabilisants employés, pour trois concentrations différen-20 tes de ces derniers.

	Ex n°	%	<u>o</u> .	0,1	0,2	0,5
	24	Bis(mercapto-3 propio- nate)bis-pélargonate de pentaérythrityle	105	119	124	139
25	25	Bis(mercapto-3 propio- nate)bis-octanoate de pentaérythrityle	105	117	131	153
	26	Tétra (mercapto-3 propio- nate) de pentaérythrity- le	105	108	122	131

On a donc, avec 0,5% de co-stabilisant, dans l'exemple 22, une augmentation de la stabilité de

139-105=34 soit (34:105)100 = 32,3% et dans l'exemple 23 :

35 153-105=48 soit (48:105)100 = 45,7%

contre 131-105 = 26 soit (26:105)100 = 24,8% seulement avec le mercapto-ester normal de l'exemple 26.

EXEMPLE 27

Les exemples 8 et 10 sont répétés avec du ZnCl₂ à la pla-5 ce de l'octanoate de Zn : pratiquement les mêmes résultats sont obtenus.

EXEMPLES 28 et 29

Comme dans les exemples précédents, on a utilisé des mélanges de 100 parties de même chlorure de polyvinyle avec 50 parties de phtalate de dioctyle, 5 parties d'huile de soja époxydée, 0,6 p. d'octanoate de Ba et 0,04 p. de ZnCl₂.

Opéré à 190°C, sortie des éprouvettes en 180 mn Temps de stabilité trouvé :

ex. 28, sans autre adjuvant 84 mm

soit une amélioration de 60%.

sans aucun adjuvant.

EXEMPLE 30

Essai sur chlorure de polyvinyle non plastifié, additionné seulement de bis(mercapto-3 propionate)-bis-octanoate de pentaérythrityle. Opéré à la presse à 160°C. L'indice de jaune trouvé : 90 contre 101 pour le témoin

Revendications

- Procédé pour la stabilisation à la chaleur d'une résine halogéno-vinylique, qui comprend l'incorporation à la résine d'au moins un mercapto-ester de polyol, caractérisé en ce que cet ester est mixte, résultant de l'estérification.
 d'une partie seulement des hydroxyles du polyol par un mercaptoacide, tandis que tout ou partie des autres hydroxyles sont estérifiés par un acide exempt de -SH.
- Procédé suivant la revendication 1, caractérisé en ce
 que le mercapto-acide, dont le reste est présent dans le mercapto-ester mixte, répond à la formule

 $(HS)_n-R-(COOH)_m$ où n a une valeur de 1 à 5, m = 1 ou 2, R étant une chaîne aliphatique en C_1 à C_3 5, ou un cycle.

15

- 3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que l'acide organique exempt de -SH est un mono- ou di-acide de la forme R'(CO₂H)_p, p étant 1 ou 2 et R' un alkyle ou alkényle, renfermant au moins 2 atomes de carbone, 20 ou un groupe aromatique.
 - 4. Procédé suivant la revendication 3, caractérisé en ce que R' est en C_5 à C_{37} .
- 25 5. Procédé suivant la revendication 4, caractérisé en ce que l'acide organique est un acide gras en C_6 à C_{18} .
- 6. Procédé suivant une des revendications 1 à 5, caractérisé en ce que le polyol, dont dérive le mercapto-ester mixte,
 30 est formé d'une chaîne ou d'un cycle en C₂ à C₃₀, porteur de 2 à 6 hydroxyles.

- 7. Procédé suivant la revendication 6, caractérisé en ce que le mercapto-ester mixte comporte 1 reste de mercapto-acide pour 1 à 5 restes d'acide organique sans -SH, ou 1 reste de ce dernier pour 1 à 5 restes de mercapto-acide.
- 8. Procédé suivant une des revendications 1 à 7, caractérisé en ce que le mercapto-ester mixte présente une masse moléculaire de 178 à 2 000 et de préférence de 200 à 1 000.
- 10 9. Procédé suivant une des revendications 1 à 7, caractérisé en ce que le mercapto-ester est incorporé à la résine conjointement avec des composés métalliques stabilisants, connus en soi, notamment un ou plusieurs composés de métaux des groupes IIB, IIIA, IVA et VA de la Classification Pério15 dique des Eléments, et au moins un composé organique de métal alcalino-terreux.
- 10. Procédé suivant la revendication 9, appliqué à du chlorure de polyvinyle plastifié, renfermant une huile époxydée, 20 caractérisé en ce que 0,1 à 3%, en poids de la résine, d'un mercapto-ester mixte y sont incorporés conjointement avec 0,05 à 1,5% d'un composé organique de Ca, Mg ou Ba et 0,05 à 1,5% d'un composé du Zn, avec un rapport préféré de 1 à 3 atomes de métal alcalino-terreux pour 1 atome de Zn.

RAPPORT DE RECHERCHE EUROPEENNE

0133130 Numbro de la demande

EP 84 40 1567

stégone		vec indication, en cas de besoin. ties pertinentes	- Revendecation concernée	CLASSEMENT DE LA DEMANDE (Int. CI.4)
A,D	FR-A-2 492 391	(RHONE-POULENC)	1,2,9	C 08 K 5/37 C 08 L 27/06
	* revendication	s et exemples *		
A,D	US-A-3 144 422	(O. HOMBERG)	1,2,9	
	lignes 51-69;	on 1; colonne 1, colonne 3, lignes 4, exemples 5,6 *		
x	* revendicatio	 (CIBA-GEIGY AG) ms 1,5,8; page 5,	1-10	
	lignes 14-24 *			
.				DOMAINES TECHNIQUES RECHERCHES (Int. Ct.4)
. }				
				C 08 K C 08 L
·				
Let	présent rapport de recherche a été e	stabli pour toutes les revendications]	
	Lieu de la rache un la Caracte	Date of acpairment of it vectorishes	HOFFM	ANN K.W.
Y:jpau	CATEGORIE DES DOCUMEN triculièrement pertinent à lui se ticulièrement pertinent en com re document de la même catéq	ul E : documen date de di binaison avec un D : cité dans	de brevet antéri pot ou après ce	se de l'invention eur, mais publié à la Ite date

EB Form 1903 03 62