

Figure 1A

SEQ ID NO:1

/translation="MGSVLSTDSGKSAPASATARALERRRDPELPVTSFDCAVCLEVL HQPVRTRCGHVFCRSCIATSLKNNKWTCPYCRAYLPSEGVPATDVAKRMKSEYKNCAE CDTLVCLSEMRAHIRTCQKYIDKYGPLQELEETAARCVCPFCQRELYEDSLLDHCITH HRSERRPVFCPLCRLIPDENPSSFSGNLIRHLQVSHTLFYDDFIDFNIIEEALIRRVL DRSLLEYVNHSNTT"

Figure 1B

SEQ ID NO:2

AGCGGAGGTCATTTTTGCAGCTTATTGTGATGACAACAGTGGAGGATGGTCTTCCACTTCA CCTTAAAAGCGGCTGTTCTCTGATTATCATTAAGCATGGCCACGCCCGCACTTAACTTCTG ACAGTGGGGAAAGCAGCTGTGTGTATAGCTTGGAAGGTTTACTGCTGCCTCAAGTCCTCT TCTCTGCAGTTGAGGTTTCAGGTTTCAATCCTCCCAATACCACAAGACAGAGCACGGGGCG GCTGCCGCCTCCGCGCCTTAACCTAGGCGGCTTGCCGAAGATCTCAGCCCCGCGG CGCACGGCAACAAACACCCTGCGGCAGGCACTGAGTGCTTCGCAGCTGTCTGGGCGAGA GGCACAGCGATGGGCTCCGTGCTGAGCACCGACAGCGGCAAATCGGCGCCCCCCCTCTGCCA CCGCGCGGGCCCTGGAGCGCAGGAGGGACCCGGAGTTGCCCGTCACGTCCTTCGACTGCGC CGTGTGCCTTGAGGTGTTACACCAGCCTGTCCGGACCCGCTGCGGCCACGTATTCTGCCGT TCCTGTATTGCTACCAGTCTGAAGAACAACAAGTGGACCTGTCCTTATTGCCGGGCATATC TTCCTTCAGAAGGAGTTCCAGCAACTGATGTAGCCAAAAGAATGAAATCAGAGTATAAGAA CTGCGCTGAGTGTGACACCCTGGTTTGCCTCAGTGAAATGAGGGCACATATTCGGACTTGT CAGAAGTACATAGATAAGTATGGACCACTACAAGAACTTGAGGAGACAGCAGCAAGGTGTG TATGTCCCTTTTGTCAGAGGGAACTGTATGAAGACAGCTTGCTGGATCATTGTATTACTCA TCACAGATCGGAACGGAGGCCTGTGTTCTGTCCACTTTGCCGTTTAATACCCGATGAGAAT CCAAGCAGCTTCAGCGGCAATTTAATAAGACATCTGCAAGTTAGTCACACTTTGTTTTATG ATGATTTCATAGATTTTAATATAATTGAGGAAGCTCTTATCCGAAGAGTCTTAGACCGGTC ACTTCTTGAATATGTGAATCACTCGAACACCACATAATTTTATTAAAACGAAGGGAAAAGG TTGATGGGCAAAAATGTACAACACAGTTATGTGTTTGTCCATGTTTATTGTTATAGTGCAT TTAAAAACTGCTTTAATTTTAATGGTTTAAATCTGTTTTACATCCTTGAGATTCTTACACA TCTAACAACAAAAAAATTATCTACATCAGTCATTGTTACATGGAAAAGACAGGTGGTAGG CAAGTAGGTGGAGGATCTCGGTTTGCAAATTAGATAATACTCTGTGTATAATGCTACATAT AGAGTGAAACAAAGTGCAGACATTCAAAGAAATAAGAAATCTGCTCCAATGCTCTTGTTCT AATCTCTAATAGGTTAACGTTAATAATCTTGTATGGGAGGTTGGAAAGGAAAATTTTGGAAG TCAAGAAAGTCCATTTAGGCCGGACGCGGTGGCTTACGCTTGTAGTCCCAGCACTTTGGGA GGCTGAGGCAGGCGGATCACAGGGTCGGGAGTTCGAGACCAGCCTGGCCAACACTGGTCTC TGTGAAACTCCGTCTCTACTGAAAATGCAAAGATTGGCTGGACGTGTTGGCGGGCATCTGT GATACCAGCTACTTGGGAGGCTGAGGCAGAAGAATCGCTTGAGCCCGGGAGGCGGAGGTTG CAGTGAGCTGAGATCGCGCCAGTACACTCCAGCCTGGGTAACAGAGCTAGACTCCATCTCA AAAAAAAAAAAAAAA

Figure 1C

SEQ ID NO:3

1	acttctgaca	gt g ggga aa g	cagctgtgtg	tgatagcttg	gaaggtttac	tgctgcctca
					cccaatacca	
					ggcggcttgc	
181	agccccgcgg	ccgcgcgctc	gccctgccct	agaccagggt	tgggcgcagc	ggcggaggtg
241	gcttctgggc	tgcgcgagct	gggagagctg	ggaggcggcg	atcgcagctg	ggccgggact
					ggcactgagt	
361	tgtctgggcg	agaggcacag	cgatgggctc	cgtgctgagc	accgacagcg	gcaaatcggc
					gacccggagt	
481	gtccttcgac	tgcgccgtgt	gccttgaggt	gttacaccag	cctgtccgga	cccgctgcgg
541	ccacgtattc	tgccgttcct	gtattgctac	cagtctgaag	aacaacaagt	ggacctgtcc
601	ttattgccgg	gcatatcttc	cttcagaagg	agttccagca	actgatgtag	ccaaaagaat
661	gaaatcagag	tataagaact	gcgctgagtg	tgacaccctg	gtttgcctca	gtgaaatgag
721	ggcacatatt	cggacttgtc	agaagtacat	agataagtat	ggaccactac	aagaacttga
781	ggagacagca	gcaaggtgtg	tatgtccctt	ttgtcagagg	gaactgtatg	aagacagctt
841	gctggatcat	tgtattactc	atcacagatc	ggaacggagg	cctgtgttct	gtccactttg
901	ccgtttaata	cccgatgaga	atccaagcag	cttcagcggc	aatttaataa	gacatctgca
961	agttagtcac	actttgtttt	atgatgattt	catagatttt	aatataattg	aggaagctct
1021	tatccgaaga	gtcttagacc	ggtcacttct	tgaatatgtg	aatcactcga	acaccacata
1081	attttattaa	aacgaaggga	aaagggacca	ctgaattgca	ccatttaaga	tgctgcttga
1141	acaaatggga	gggaagttgt	caatgattga	tgggcaaaaa	tgtacaacac	agttatgtgt
1201	ttgtccatgt	ttattgttat	agtgcattta	aaaactgctt	taattttaat	ggtttaaatc
1261	tgttt taca t	ccttgagatt	cttacacatc	taacaacaaa	aaaaattatc	tacatcagtc
					aggatctcgg	
1381	agataatact	ctgtgtataa	tgctacatat	caataactac	catcatggtt	aggcacgata
1441	actaatcttt	gttctgtgta	aaaaaatatg	gagagtgaaa	caaagtgcag	acattcaaag
1501	aaataagaaa	tctgctccaa	tgctcttgtt	ctaatctcta	ataggttaac	gttaataatc
1561	ttgtatggga	gttggaaagg	aaaattttgg	aagtcaagaa	agtccattta	ggccggacgc
					ggcaggcgga	
1681	gggagttcga	gaccagcctg	gccaacactg	gtctctgtga	aactccgtct	ctactgaaaa
					ccagctactt	
					tgagctgaga	
1861	acactccagc	ctgggtaaca	gagctagact	ccatctcaaa	aaaaaaaaa	aaaaaa

Figure 1D

SEQ ID NO:4

127	gcgg	ctgccgcctc	cgcctccgcg	ccttaaccta	ggcggcttgc	cgaagatctc
181	agccccgcgg	ccgcgcgctc	gccctgccct	agaccagggt	tgggcgcagc	ggcggaggtg
241	gcttctgggc	tgcgcgagct	gggagagctg	ggaggcggcg	atcgcagctg	ggccgggact
301	tccttcctcc	accgcacggc	aacaaaacaa	ccctgcggca	ggcactgagt	gcttcgcagc
361	tgtctgggcg	agaggcacag	cgatgggctc	cgtgctgagc	accgacagcg	gcaaatcggc
421	gcccgcctct	gccaccgcgc	gggccctgga	gcgcaggagg	gacccggagt	tgcccgtcac
481	gtccttcgac	tgcgccgtgt	gccttgaggt	gttacaccag	cctgtccgga	cccgctgcgg
541	ccacgtattc	tgccgttcct	gtattgctac	cagtctgaag	aacaacaagt	ggacctgtcc
601	ttattgccgg	gcatatcttc	cttcagaagg	agttccagca	actgatgtag	ccaaaagaat
661	gaaatcagag	tataagaact	gcgctgagtg	tgacaccctg	gtttgcctca	gtgaaatgag
721	ggcacatatt	cggacttgtc	agaagtacat	agataagtat	ggaccactac	aagaacttga
781	ggagacagca	gcaaggtgtg	tatgtccctt	ttgtcagagg	gaactgtatg	aagacagctt
841	gctggatcat	tgtattactc	atcacagatc	ggaacggagg	cctgtgttct	g

Figure 1E

SEQ ID NO:5

TRAC1 genomic region:

atattaaggatttggaatttaatcctaaggattaggagagctattaaaggattttgtgcat ggggtgacacaagatgtttgcttttcaaaagatcactttagttgccatgtggataataaac tggagagaggcaatgatggatgcgggtagagcagttaggaactactgccattaagtcacac ${\tt aagagaatgcagtgatttaaaataagcggtggctatggaaatagaagaaaatgagcatggt}$ gttcacgactagcctggccaacatggtgaaactccgtctctaccaaaaatataataaaatt agccgggtgtggtggcatgcgcctgcaatcccagctactcaggaggctgaggcaggagaat cacttgaacccaggaggcagaggttgcagtgagctgagattgcgccactgcacacttccag cctgggcgacagagagacttcatctcagaaaaaaaagaactactgagatacatattgga cttccaggtgtctagactgagctataaagtggatcatagtgccatttgctaaaagagagat caaccactggaggaggctgctactataatgagttcattattggagacattgggctgagggt gtttatgtcaaatggtcagtcatgtaagctattaggctattggacatttgaatggcctggg gtagagataaagatgtgaaagtttttggaaccgaaatagtgacagaacctgtgtgattttt cctaggatctccagcccagagccagtggagaaggagactctggcaagggagaagaacaat agccagaaagaaagagggaaagtcagagtgtttccagaaggaggggatggtcagcactaacaaacatagttgaggggtcaagcaaaaaaatagctgaaaagaatctattggaattagttac atgaacgtcaccagtgacactgataataaagcagttttttggacagatggaggtggagaggt tggttcagaacccagactggactgaataagaagtgaataattaagaaatgatgacaaaatg tagaggatcagatcaagagatttggccttgaagcggatatggggcaggagttgaggcataa gtgggatgaaagggaggtttttgttttccttttgaagatgggaataactaccttttcatct ${\tt tatttcccccccccaccgcctgccccccaccaccatgctccagctccataggtctttcc}$ tttctttggttctgcctcattcactgttcccagtccacgctttttcctaaatctttgaatg gctcacttcttttcattattcatggctctgctcaaatgtcacttcatccaaaaattcttct ctgagcttattcttctcctcattgccatttactgttttatcttcttcatggctctgattat tttgtttttgagacagagtctcgctctgttacccacgatggagtgtagtggcatggtctcg gctcactgcaacctcctctgggtgcaagtggttctcctgcctcagcctcccaagtag $\verb|ctgggactacacgcatgtgccaccacacctggctaatttttgtatttttagtacaaaaatt|\\$ tttactaaagaaatgtatttctagtagagacggggtttcactatgttggccaggctggtct tgaactcctgaccttgtgatccacctgcctcggcctcccaaattgctgggatttcaggcgt gagccactgcacccagcctgttttggttttttgagacagggtctccctctgttgcccaggc tggagtgcagtggcatgatctcggctcactgcagcctccacctttccggttcaagcgattc ttgtgcctcagcctcccaagtagctcacacccagctaagttttgtatttttagtagagaca gggtttcaccatgttggccaggctggtctcaaactcctgacctcaggtgatctgtccttct agacatggtctcactctgtcgcacaggacggagtgcagtagtgtgatcttggctcccgtgc tcaagtgatcctcccacctcagcctcccaaagtgctgaaattacaggcgtgagccacggta cccggcctatatctcctaattaaaagtaaagcctgggtgaagtttatggcctgctaaatac

gtacatgtattatatgcgttattatatcccatgtgttatattatatattattgtatatgtg tattatatactatgtactattcttacaactgtatgtgaatctataattatctcaaagtttt tqtcttcatcactaqaaccqaqtctqqcqtqcaqtgggcactaaataagtcttcgtaaaaa gtgtaaattaacgcccggctaatttttgtattattagcagcgacggggtttcaccatgttg gccaggctggtctcgaactcctgccctcaagcaggagtttcaagcccgcctcggcctccca aagtgttggaattacaggcgtgggccaccgcgcctggctgatcatgtttaaagggcggggt qggqaqcgtacaaacaacagaggaaatcctgagccgcagaggaaactggagatggcagggt ttagcactagaatctctgtaggagaggtaagattggaatcctaatctccaggactctttcc actacccaggctatctctccattaatggactattgattggatgacagagtagcgatagcac cqtcttaqqaqacqcccaatcataggtcataggtcatttttgcagcttattgtgatgacaa caqtqqaqqatqqtcttccacttcaccttaaaagcggctgttctctgattatcattaagca

tggccacgcccgcactta

ACTTCTGACAGTGGGGAAAGCAGCTGTGTGTGTATAGCTTGGAAGGTTTACTGCTGCCTCAA GTCCTCTTCTCTGCAGTTGAGGTTTCAGGTTTCAATCCTCCCAATACCACAAGACAGAGCA CGGGGCGCTGCCGCCTCCGCCCTTAACCTAGGCGGCTTGCCGAAGATCTCAGC CCCGCGCCCCCCCCCCCCTGCCCTAGACCAGGGTTGGCCGCAGCGGCGGAGGTGGCTT CTGGGCTGCGCGAGCTGGGAGACTGGGAGGCGGCGATCGCAGCTGGGCCGGGACTTCCTT CCTCCACCGCACGCAACAAACAACCCTGCGGCAGGCACTGAGTGCTTCGCAGCTGTCTG TCTGCCACCGCGCGGCCCTGGAGCGCAGGAGGGACCCGGAGTTGCCCGTCACGTCCTTCG ACTGCGCCGTGTGCCTTGAGGTGTTACACCAGCCTGTCCGGACCCGCTGCGGCCACGTATT CTGCCGTTCCTGTATTGCTACCAGTCTAAAGAACAACAAGTGGACCTGTCCTTATTGCCGG GCATATCTTCCTTCAGAAGGAGTTCCAGCAACTGATGTAGCCAAAAGAATGAAATCAGAGT ATAAGAACTGCGCTGAGTGTGACACCCTGGTTTGCCTCAGTGAAATGAGGGCACATATTCG GACTTGTCAGAAGTACATAGATAAGTATGGACCACTACAAGAACTTGAGGAGACAGCAGCA AGGTGTGTATGTCCCTTTTGTCAGAGGGAACTGTATGAAGACAGCTTGCTGGATCATTGTA TTACTCATCACAGATCGGAACGGAGGCCTGTGTTCTGTCCACTTTGCCGTTTAATACCCGA TGAGAATCCAAGCAGCTTCAGTGGCAGTTTAATAAGACATCTGCAAGTTAGTCACACTTTG TTTTATGATGATTTCATAGATTTTAATATAATTGAGGAAGCTCTTATCCGAAGAGTCTTAG ACCGGTCACTTCTTGAATATGTGAATCACTCGAACACCACATAATTTTATTAAAACGAAGG TCAATGATTGATGGGCAAAAATGTACAACACAGTTATGTGTTTTGTCCATGTTTATTGTTAT AGTGCATTTAAAAACTGCTTTAATTTTTAATGGTTTAAATCTGTTTTACATCCTTGAGATTC TTACACATCTAACAACAAAAAAAATTATCTACATCAGTCATTGTTACATGGAAAAGACAGG TGGTAGGCAAGTAGGTGGAGGATCTCGGTTTGCAAATTAGATAATACTCTGTGTATAATGC TACATATCAATAACTACCATCATGGTTAGGCACGATAACTAATCTTTGTTCTGTGTAAAAA AATATGGAGAGTGAAACAAAGTGCAGACATTCAAAGAAATAAGAAATCTGCTCCAATGCTC TTGTTCTAATCTCTAATAGGTTAACGTTAATAATCTTGTATGGGAGTTGGAAAGGAAAATT TTGGAAGTCAAGAAAGTCCATTTAGGCCGGACGCGGTGGCTTACGCTTGTAATCCCAGCAC TTTGGGAGGCTGAAGCAGGCGGATCACAAGGTCAGGAGTTCGAGACCAGCCTGGCCAACAC TGGTCTCTGTGAAACTCCGTCTCT

Figure 1F

SEQ ID NO:6 Mouse TRAC1 cDNA sequence:

TGCGCGCGCTCCGCCTGCGCTCCACCGAGAGGCCCCGCGGCGCGCTGGC GCGGGACAACAGAACCACCCGCAGCCAGCAGGGAGCTCCTGGCAGCTCGC TGAGCTAGAGCGCAAGNNTGGGCTCCCTGCTGAGCAGCGACAGCTCCAAG TCCGCGCCCGCCTCCGCCACCCCGCGACTCTGGAGCGCAGCGGGACTC GGAGCTGCCCATCACCTCCTTCGACTGCTCAGTGTCTCGAGGTGCTAC ACCAGCCGGTCCGGACCCGCTGTGGCCACGTGTTCTGCCGATCTTGCATT GCGACCAGTATAAAGAACAATAATAAATGGACATGTCCATACTGCCGGGC ATACCTTCCTTCAGAGGGAGTGCCCGCAACTGACATAGCCAAGAGGATGA AGTCAGAATACCAGAACTGTGCTGAGTGTGGAACTCTGGTTTGCCTCAGT GACATGAGGGCGCACATAAGGACCTGTGAGAAGTACATCGATAAATATGG CCCGCTGCTAGAACTTGGCGACACCACAGCAAGATGTGTATGTCCATTTT GTCAGCGGGAACTGGATGAAGACTGCTTGCTGGATCATTGCATTATCCAC CACAGATCAGAAAGGAGGCCCGTGTTCTGTCCACTTTGCCATTCACGACC TGATGAAAGCCCAAGTACCTTCAATGGCAGTTTAATTAGACATTTGCAAG TCAGTCACACTTTGTTTTATGATGATTTCATAGATTTTGATATAATTGAG GAAGCCATTATTCGCAGAGTGCTAGACCGCTCACTTCTTGAATATGTGAA TCAGTCAAACACCACATAATTTTATGACTAGGAAGGGGACCATTCACTCG TACCATTTAAGATGCTGCTTGAAGGACTGGAGGGGGATTGTCGACGTTTG ATGGAGAAACATGTACTACAGTATTACCTGCTTGTCTTTGTTATGTTGCA TTCAAAAACCGTGTTCATTCTGGCTTAGATCTGCCCTTACATTCTTGAGT CTATTAGACATTTAACCACGAGACACAGCCTCTCAGCCATTAACAGATGG AAGAGACACGACACGGCTGGCTATGTGATGGAGCAGCTTCCTGTGTCCA TTAGTGATGTGTATAACGCTACATATTCCCAACTGTCATCATGGTTAG GCGAGAAAGCCAATCTCTGTTCCATGCTAAAAGACGGAGAAAGGAACAAA ATATGGACATTAARGGAAATCTGAAATGTATTCAAAATTCTCATGCTCTAA TCTCCAATAAGGAACGTGAATAATCTTATGAAAAGGAGGAAAGGGAAGAA TTTGAAGTCACCAAAATCCAATTTAGCCAAATTATAGTACATAATATAAT **ACTGCAGC**

SEQ ID NO:7
Mouse TRAC1 protein (3rd frame)

SAXXGSLLSSDSSKSAPASATPRTLERSGDSELPITSFDCSVCLEVLHQP VRTRCGHVFCRSCIATSIKNNNKWTCPYCRAYLPSEGVPATDIAKRMKSE YQNCAECGTLVCLSDMRAHIRTCEKYIDKYGPLLELGDTTARCVCPFCQR ELDEDCLLDHCIIHHRSERRPVFCPLCHSRPDESPSTFNGSLIRHLQVSH TLFYDDFIDFDIIEEAIIRRVLDRSLLEYVNQSNTTFYD

FLJ20456 Hit Inhibited anti-TCR Induced CD69 Expression in Jurkat Cells 170 aa **FIGURE 2A** 75 RING RING FLJ20456 Ħ

GFP+ FLJ20456 Hit Inhibited anti-TCR Induced GFP-**CD69 Expression in Jurkat Cells** Phenotype Transfer + a-TCR + \arta-TCR 10⁵ CD69 APC - a-TCR 30 Sounts 20 Sounts 9 10 ò 200 300 500 300 00Þ 100

Figure 3A

Full Length FLJ20456 Does Not Inhibit CD69 Upregulation in Jurkat Cells

FLJ20456

RING

232 aa

Pfu PCR product amplified from a capped human brain cDNA library.

One N to S polymorphism with FLJ20456 NM_017831.1 at amino acid 186, present in EST database.

JurkatN 32H

Full Length FLJ20456 Does Not Inhibit CD69 Upregulation in Jurkat Cells

Figure 4A

RING

兰

Figure 4C

Stimulation: 300ng/ml C305

GFP- 141.2 GFP+ 28.8 Ratio = 4.9

BJAB

100

08

Counts 60

50

Ratio = 1.0

Figure 5

Lymphoid and Hematopoietic Organs FLJ20456 Is Strongly Expressed in

Relative expression

FL20456 Sequence is Most Similar to Two Sequences: Znf313 and STRIN

human
are
sednences
sed
three
₹
*

^{*} Murine sequences are not shown

	FLJ20456.pep	znf313.pep	STRIN.pep	
	1	2	3	
က	22.3	27.9		3
2	26.6		134.7	2
_		130.4	140.9	1
	1	2	3	

FIG. 7.

Alignment of RING Domain Sequences from Various Human Proteins

...C.H..C..C. Consensus #1

FLJ20456.Ring VTSFD
Znf313.Ring LGRFT
STRIN.Ring EDDFY
TRAF6.Ring STFQLK
C-Cbl.Ring STFQLK
BRCAl.Ring VSEFS
RAG1.Ring VSEFS

AEN-DKDVKIEPCGHLMCTSCLTSW--QESEGOGCPFCRCEI-KG LELIKEPVSTK-CDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKR VISFDGAVCLEVLHOPVRIR-CGHVFCRSCIAISL--KNNKWICBYCRAYLP-S EVYEKPVQVP-CGHVFCSACLQECL--KPKKPVCGVCRSALA-P OBVEKTPVRFTACOHVFCRKCFLTAM--RESGAHCPLCRGNV--T CLMALREAWOLP-CGHRECKACIIKSI--RDAGHKCPV-DNEILLE CCHSFORHCLALWWA-SSKKTECPECREK--WE /FCRVCIIRCI--KVMGSYCHSCRYPCF-P ESKYECPI STFOICKI LGRFTCPV

F/G. 8.

RING finger vs. Zinc finger proteins

Ring-HC: $C_3HC_4 = Cys$ in position 5 Ring H2: $C_3H2C_3 = His$ in position 5

- Ring finger domains have a conserved pattern of Cys and His residues that coordinate two zinc atoms to form a cross-brace structure
- Ring fingers are structurally distinct from zinc fingers

Zinc Finger

Ubiquitin Pathway Components

- E1: ubiquitin-activating enzyme, with a major isoform that may work broadly
- E2: ubiquitin-conjugating enzyme, a class of ~14 enzymes, interacts with E3
- activities that promote addition of ubiquitin to specific E3: ubiquitin ligases, a broad and growing group of proteins
- binding of substrates and a 20S catalytic core with three base that mediates ATP- and ubiquitin-chain-dependent Proteasome-a 26S complex containing a 19S lid and known proteolytic activities.

Figure 10B

Enzymology of Ubiquitination

Figure 11A

A Reconstituted, Substrate-independent Assay for Studying Ligase Catalysis

The substrate-independent reaction has the same catalytic properties and requirements for Roc1/Cul1 as the substrate-dependent reaction

Reaction Components

ŗ

E2 (UbcH5): GST-fusion (cleaved), E.coli

E3 (Ring/cullin): His-tagged, coexpressed, baculovirus

Ubiquitin: FLAG-tagged, E.coli

Figure 11B

Bacterially-expressed TRAC1 for Ligase Activity Assay

E2: UbcH5

Figure 12A

TRAC1 Exhibits E3 Ubiquitin Ligase Activity

The Ring Domain is Required for TRAC1 Ligase Activity Figure 12B

Point mutations in Conserved Cysteine Residues of the TRAC1 Ring finger Domain

pEFnig/Ring finger point mutants: H54A, C75A, C37, 40A, H54C57A, C72, 75A The following expression plasmids were generated: pEFnig/Myristylation site mutant: G2A

FIG. 13A.

Figure 13B

TRAC1 Ring-finger Domain Disrupt Ligase Activity Point mutations in Conserved Residues of the

higher in PBMC than in Jurkat cells

TRAC1/HuPO Huh7 Expression of TRAC-1 mRNA is ~8 fold H M AC Hela A 549 Figure 14 PBM C PhoenixA BJAB Jurkat 8.0 7.0 -6.0 -5.0 -1.0 2.0 -9.0 4.0 -Relative expression

Figure 15A
C-terminal Truncated TRAC1 Blocks
TCR-induced Ca2+ Influx

Figure 15B

Figure 17

Summary of Functional Effects by Different TRAC-1 constructs

Figure 18

Transiently Transfected TRAC1 Protein Binds to Ubiquitin -Conjugating Enzymes (E2s) UbcH7 and UbcH5 in vitro

Figure 19

Model for TRAC-1 regulation of T cell activation

