Estadística y modelación de sistemas socio-ecológicos en R

Laboratorio
Nacional
de Ciencias
de la Sostenibilidad

Dra. Yosune Miquelajauregui Graf yosune@iecologia.unam.mx

Objetivos del curso

- 1. Conocer los principios básicos de la estadística descriptiva e inferencial para su correcta aplicación
- 2. Implementar algoritmos matemáticos para la modelación de sistemas socioecológicos
- 3. Incorporar los conocimientos adquiridos al lenguaje de programación R
- 4. Al finalizar el curso, los alumnos aplicarán los conocimientos adquiridos en el análisis de datos de tesis
- 5. Aplicar la teoría en ejercicios prácticos

Evaluación

- 1. Tareas y ejercicios en clase (20%)
- 2. Asistencia y participación en clase (10%)
- 3. Exposición de seminario (40%)
- 4. Scripts (R markdowns) (30%)

Plan del día

1. Introducción a R: tipo de objetos y manipulación de datos

2. Instalación de R en los dispositivos de cómputo

3. Instalación de editores : RStudio o Tinn-R

4. Ejercicios

R

- R es un lenguaje de programación orientada a objetos
- Cualquier operación puede ser asignada a un objeto que queda guardado en la memoria de la sesión de R
- Es utilizado para realizar desde operaciones matemáticas simples hasta computaciones estadísticas complejas
- R también se utiliza para manipular base de datos, graficar e implementar modelos matemáticos

Operaciones matemáticas simples

П	m	Я	2

3+2

[1] 5

Restas

5-2

[1] 3

Divisiones

6/3

[1] 2

Multiplicaciones

6*3

[1] 18

Tipos de objetos

1. Constantes

[1] 18

2. Vectores

3. Hoja de datos

```
c1 <- data.frame(5:1,1:5)
c1
X5.1 X1.5
1    5    1
2    4    2
3    3    3
4    2    4
5    1    5
```

Tipos de objetos

4. Matrices

```
m <- matrix (1:4,2,2)
m
[,1] [,2]
[1,] 1 3
[2,] 2 4
```

5. Listas

c1 <- data.frame(5:1,1:5)

c2 <- data.frame (1, 20:25)

```
mi.lista <- list(c1, c2)
mi.lista
[[1]]
 X5.1 X1.5
   5
4 2 4
[[2]]
 X1 X20.25
      20
      21
3 1
      22
      23
      24
      25
```

Obtener atributos de los objetos : la estructura

Función R: str ()

1. a <- 6*3 a [1] 18

str (a) num 18 b <- c(1,4,8,16) b [1] 1 4 8 16

str (b) num [1:4] 1 4 8 16 3.

c1 <- data.frame(5:1,1:5)

c1

X5.1 X1.5

1 5 1

2 4 2

3 3 3

4 2 4

5 1 5

str (c1)
'data.frame': 5 obs. of 2
variables:
\$ X5.1: int 5 4 3 2 1
\$ X1.5: int 1 2 3 4 5

Obtener atributos de los objetos : el largo

Función R: length ()

```
1.
a <- 6*3
a
[1] 18
```

```
2.
b <- c(1,4,8,16)
b
[1] 1 4 8 16
length(b)
[1] 4
```

```
c1 <- data.frame(5:1,1:5)
c1
 X5.1 X1.5
   5 1
2 4 2
3 3 3
4 2 4
length(c1[,2])
[1] 5
```

Operaciones matemáticas entre distintos tipos de objetos

Resultado:

Acceder a ciertos elementos del objeto

```
c1 <- data.frame(5:1,1:5)

X5.1 X1.5

1 5 1

2 4 2

3 3 3

4 2 4

5 1 5
```

```
Primer renglón
c1[1,]
X5.1 X1.5
1 5 1
```

Primeros 3 renglones c1[1:3,] X5.1 X1.5 1 5 1 2 4 2 3 3 3

Acceder a ciertos elementos del objeto

```
c1 <- data.frame(5:1,1:5)

X5.1 X1.5

1 5 1

2 4 2

3 3 3

4 2 4

5 1 5
```

```
Primera columna c1[,1] [1] 5 4 3 2 1
```

Segunda columna c1[,2] [1] 1 2 3 4 5

Acceder a ciertos elementos del objeto

mi.lista	[[2]]
[[1]]	X1 X20.25
X1 X1.5	1 1 20
1 1 1	2 1 21
2 1 2	3 1 22
3 1 3	4 1 23
4 1 4	5 1 24
5 1 5	6 1 25

Primer elemento de la lista

mi.lista[[1]]

X1 X1.5

1 1 1

2 1 2

3 1 3

4 1 4

Añadir, reemplazar y eliminar elementos del objeto

$$b[1] < -5$$

$$b[5:10] <- c(18:21,30:31)$$

Asignar nombres a las columnas de una hoja de datos

Función R: colnames ()

```
colnames(c1)<- c('Individuo','Orden')
```

c1 <- data.frame(5:1,1:5)

X5.1 X1.5

1 5 1

2 4 2

3 3 3

4 2 4

5 1 5

Individuo Orden

1 5 1

2 4 2

3 3 3

4 2 4

5 1 5

Crear una nueva columna en la hoja de datos resultado de una operación matemática

c1	<- (data	.frame(5:1,1:5)				
X_{5}	5.1 2	X1.5			Individu	o Orden	Tasa
1	5	1	15 27 4 100 1 7	1	5	1	0.1428571
2	4	2	c1[,3]<- c1\$Orden/7	2	4	2	0.2857143
3	3	3	colnames(c1)[3]= 'Tasa'	3	3	3	0.4285714
4	2	4	head (c1)	4	2	4	0.5714286
5	1	5		5	1	5	0.7142857

Crear una nueva columna en la hoja de datos resultado de una operación matemática

c1	<- (data	.frame(5:1,1:5)				
X_{5}	5.1 2	X1.5			Individu	o Orden	Tasa
1	5	1	15 27 4 100 1 7	1	5	1	0.1428571
2	4	2	c1[,3]<- c1\$Orden/7	2	4	2	0.2857143
3	3	3	colnames(c1)[3]= 'Tasa'	3	3	3	0.4285714
4	2	4	head (c1)	4	2	4	0.5714286
5	1	5		5	1	5	0.7142857

Importar y exportar archivos .csv o .txt

Función R: read.table (), read.csv(), write.table() y write.csv()

Incendio<-read.table("C:\\Users\\Usuario\\Documents\\CursoR\\Fire_intensity.txt", header = T)

write.csv(Incendio,file="C:\\Users\\Usuario\\Documents\\CursoR\\incendios.csv")

Mostrar los primeros diez elementos del objeto

Función R: head ()

head(Incendio)

]	robability.mortalit	y Stand.age	Fire.intensity	Regi	on Stand.id	Tre	ee.id
1	0.04008590	Young	13.967749	A2	1	1	1
2	0.02371104	Young	8.118900	A2	1	2	2
3	0.02959688	Young	10.189049	A2	1	3	3
4	0.06637321	Young	23.751139	A2	1	4	4
5	0.07203268	Young	25.304217	A2	1	5	5
6	0.02844691	Young	9.429986	A2	1	6	6

Mostrar los nombres de las columnas de la hoja de datos

Función R: names ()

```
> names(Incendio)
[1] "Probability.mortality" "Stand.age"
[3] "Fire.intensity" "Region"
[5] "Stand.id" "Tree.id"
```

Obtener el rango de una variable continua en la hoja de datos

Función R: range()

Se utiliza el \$ para identificar una variable y trabajar con ella.

> range(Incendio\$Fire.intensity)
[1] NA NA

Remover de la hoja de datos los valores con NA

Función R: na.omit ()

range(Incendio\$Fire.intensity)
[1] 2.423678e-01 1.000000e+04

Verificar que una variable sea factor o numérico

Funciones R: is.factor (), is.numeric ()

is.factor(Incendio\$Stand.id)
[1] FALSE

is.numeric(Incendio\$Stand.id)

[1] TRUE

Convertir objetos - números a factores y visceversa

Funciones R: as.factor (), as.numeric ()

```
> is.factor(Incendio$Region)
```

[1] TRUE

- > Incendio\$Region<-as.numeric(Incendio\$Region)
- > is.factor(Incendio\$Region)

[1] FALSE

Crear subconjuntos de datos

Funciones R: subset (), which ()

```
# select variables v1, v2, v3
myvars <- c("v1", "v2", "v3")
newdata <- mydata[myvars]</pre>
```

Incendio <- Incendio[- which(Incendio\$Probability.mortality < 0),] Eliminar negativos

Incendio2 <- Incendio[which(Incendio\$Fire.intensity < 1000),] **Remover valores** menores a 1000

Incendio3 <-subset(Incendio2[,c(1,3,4)]) Seleccionar las variables 1,3 y 4 > names(Incendio3)
[1] "Probability.mortality" "Fire.intensity" "Region"

Crear subconjuntos de datos

Funciones R: subset (), which ()

Incendio <- Incendio[- which(Incendio\$Probability.mortality < 0),] Eliminar negativos

Incendio2 <- Incendio[which(Incendio\$Fire.intensity < 1000),] Remover valores menores a 1000

Crear subconjuntos de datos

Funciones R: subset (), which ()

Incendio3 <-subset(Incendio2[,c(1,3,4)]) Seleccionar las variables 1,3 y 4

> names(Incendio3)
[1] "Probability.mortality" "Fire.intensity" "Region"

Crear subconjuntos de datos utilizando operadores lógicos

Funciones R: subset (), which ()

Operador lógico	Descripción	Ejemplo
& (and)	Verdadero sólo si las dos comparaciones son verdaderas	>> x=5; >> (x>2) & (x<10) ans = 1
(or)	Verdadero si al menos una de las comparaciones es verdaderas	>> x=8; >> (x>2) (x<5) ans = 1
~ (not)	Niega el resultado de la comparación. Verdadero si la comparación es falsa.	>> x=8; >> ~ (x>10) ans = 1

Crear subconjuntos de datos utilizando operadores lógicos

Funciones R: subset (), which ()

```
nuevosdatos <- Incendio[which(Incendio$Fire.intensity<1500 & Incendio$Stand.age == "Young"), ]
```

> levels(nuevosdatos\$Stand.age)
[1] "Young"

Crear una nueva variable basada en niveles de otra variable

Función R: ifelse ()

Generar una nueva variable : "Tipo de incendio" basada en la variable Fire.intensity (intensidad del incendio (kW/m)):

- 1. Superficial de baja intensidad SBI cuando Intensidad<200
- 2. Superficial alta intensidad cuando Intensidad >=200 y <1500
- 3. Corona alta intensidad cuando Intensidad >1500

Crear una nueva variable basada en niveles de otra variable

Función R: ifelse ()

Incendio\$TipoIncendio <- ifelse(Incendio\$Fire.intensity<200,"SBI",ifelse(Incendio\$Fire.intensity>=200 & Incendio\$Fire.intensity<1500,"SAI","CAI"))

> levels(Incendio\$TipoIncendio)
[1] "CAI" "SAI" "SBI"

Elegir entradas basadas en otros atributos

Función R: subset ()

Unir elementos de dos o más hojas de datos y matrices

Función R: cbind (), rbind () y merge ()

df2	df3
id1 id2 c21 c22	id1 id2 c31 c32
1 99 98 5 e	1 999 998 9 i
2 12 22 6 f	2 9999 9998 10 j
3 13 23 7 g	3 13 23 11 k
4 14 24 8 h	4 14 24 12 1
	id1 id2 c21 c22 1 99 98 5 e 2 12 22 6 f 3 13 23 7 g

Unir elementos de dos o más hojas de datos y matrices

Función R: cbind (), rbind () y merge ()

> cbind(df1,df2,df3)

```
id1 id2 c11 c12 id1 id2 c21 c22 id1 id2 c31 c32
1 11 21 1 a 99 98 5 e 999 998 9 i
2 12 22 2 b 12 22 6 f 9999 9998 10 j
3 13 23 3 c 13 23 7 g 13 23 11 k
4 14 24 4 d 14 24 8 h 14 24 12 1
```

Unir elementos de dos o más hojas de datos y matrices

Función R: cbind (), rbind () y merge ()

> rbind(df1,df2,df3) Error in match.names(clabs, names(xi)): names do not match previous names

N.B.Marca error ya que los nombres de las columnas son distintos

Unir elementos de dos o más hojas de datos y matrices

```
> rbind(df1[,1],df2[,1],df3[,1])

[,1] [,2] [,3] [,4]

[1,] 11 12 13 14

[2,] 99 12 13 14

[3,] 999 9999 13 14
```

```
> rbind(df1[,1:2],df2[,1:2],df3[,1:2])
   id1
         id2
   11
         21
  12
         22
  13
         23
         24
   14
   99
         98
         22
  12
          23
  13
   14
         24
9 999
         998
10 9999
          9998
11 13
          23
          24
12 14
```

Unir elementos de dos o más hojas de datos y matrices

```
> rbind(df1[,1],df2[,1],df3[,1])

[,1] [,2] [,3] [,4]

[1,] 11 12 13 14

[2,] 99 12 13 14

[3,] 999 9999 13 14
```

Unir elementos de dos o más hojas de datos y matrices

Unir elementos de dos o más hojas de datos y matrices

Unir elementos de dos o más hojas de datos y matrices

Unir elementos de dos o más hojas de datos y matrices

```
merge(df1,df2,,all = TRUE)
id1 id2 c11 c12 c21 c22
1 11 21 1 a NA NA
2 12 22 2 b 6 f
3 13 23 3 c 7 g
4 14 24 4 d 8 h
5 99 98 NA NA 5 e
```

```
> merge(df1,df2, by = "id1")
id1 id2.x c11 c12 id2.y c21 c22
1 12 22 2 b 22 6 f
2 13 23 3 c 23 7 g
3 14 24 4 d 24 8 h
```

Instalación de R

- 1. Instalación de R: https://www.r-project.org/
- 2. Instalación un editor en R : RStudio (https://www.rstudio.com/), Tinn-R (https://sourceforge.net/projects/tinn-r/)
- 3. Instalación de paquetería en R

Paquetería de R

- 1. Un paquete es un banco de funciones implementadas en R.
- 2. Cuando se abre una sesión en R, una serie de paquetes son activados automáticamente.
- 3. Para activar el paquete de interés es necesario cargarlo en la sesión de trabajo de R con la función library ().

Paquetería de R

- Go to file/funct	on Addins •		Project: (None)
Console			60
Files Plots Packages Help Viewer			-0
Install ① Update		Q	C
Name	Description	Version	
ystem Library			
abind	Combine Multidimensional Arrays	1.4-5	8
acepack	ace() and avas() for selecting regression transformations	1.3-3.3	8
actuar	Actuarial Functions and Heavy Tailed Distributions	2.1-1	8
assertthat	Easy pre and post assertions.	0.1	8
backports	Reimplementations of Functions Introduced Since R-3.0.0	1.1.2	8
base64enc	Tools for base64 encoding	0.1-3	8
BH	Boost C++ Header Files	1.65.0-1	8
bitops	Bitwise Operations	1.0-6	8
boot	Bootstrap Functions (Originally by Angelo Canty for S)	1.3-18	8
car	Companion to Applied Regression	2.1-2	8
caTools	Tools: moving window statistics, GIF, Base64, ROC AUC, etc.	1.17.1	8
chron	Chronological Objects which can Handle Dates and Times	2.3-47	8
class	Functions for Classification	7.3-14	8
cluster	"Finding Groups in Data": Cluster Analysis Extended Rousseeuw et al.	2.0.4	8
codetools	Code Analysis Tools for R	0.2-14	8
colorspace	Color Space Manipulation	1.2-6	8
compare	Comparing Objects for Differences	0.2-6	8
compiler	The R Compiler Package	3.3.1	8
crayon	Colored Terminal Output	1.3.4	8
curl	A Modern and Flexible Web Client for R	2.8.1	8
data.table	Extension of Data.frame	1.9.6	8
datasets	The R Datasets Package	3.3.1	8
devtools	Tools to Make Developing R Packages Easier	1.13.3	8
dichromat	Color Schemes for Dichromats	2.0-0	8
digest	Create Compact Hash Digests of R Objects	0.6.12	8
DiversitySampler	Functions for re-sampling a community matrix to compute diversity indices at different sampling levels.	2.1	8
e1071	Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien	1.6-7	8
evaluate	Parsing and Evaluation Tools that Provide More Details than the Default	0.10.1	8
n evd	Functions for Extreme Value Distributions	2 3-2	Remove packa

Paquetería de R

4. Si el paquete no se encuentra ahí, es necesario bajarlo e instalarlo desde CRAN

Algunos paquetes de interés:

- a) Modelos lineales mixtos y generalizados: MASS, nmle, lme4
- b) Análisis multivariados: vegan, ade4, cluster
- c) Interactuar con otros programas: R2WinBUGS, Brugs
- d) Funciones de utilidad general: car, Design, Hmisc, gregmisc, gmodles, foreign
- e) Análisis espaciales: geoR, sp, spatial
- f) Análisis genéticos: adegenet, ape, apTreeshape, genetics
- g) Análisis dendrocronógicos: dpIR

Ejercicio 1

- 1. Importar Datos1.csv
- 2. Verificar estructura e identificar variables
- 3. Calcular una nueva variable llamada "Porcentaje de habitantes en pobreza (PHP)"
- 4. Crear una nueva variable llamada "Categorías de pobreza" con respecto al porcentaje de habitantes con pobreza: Bajo (PHP <20), Moderado (PHP >20 y PHP <60) y Alto (PHP >60)

Ejercicio 2

- 1. Importar Datos2.csv
- 2. Verificar estructura
- 3. Asignar nombres a las columnas 2 y 3: "Edad de la infraestructura" y "Proporción de viviendas sin drenaje"
- 4. Verificar el rango de la variable "Proporción de viviendas sin drenaje"
- 5. Crear un nuevo objeto llamado "tmp" que contenga solamente los valores de la variable proporción de viviendas sin drenaje mayores que 0.5 y los elementos de la variable edad de la infraestructura mayores a 11"
- 6. Eliminar el primer y último renglón