Session Correspondence analysis

Anàlisi de Dades i Explotació de la Informació

Grau d'Enginyeria Informatica.

Information System tracking

Prof. Mónica Bécue Bertaut & Lidia Montero

Monica.becue@upc.edu lidia.montero@upc.edu

Ronald Aylmer Fisher, 1890 -1962

Brigitte Escofier (1941-1994)

Jean Paul Benzécri (1932)

- 1. Data and notation
- 2. Relationship between two categorical variables
- 3. CA: description of the desviation to independence
- 4. Geometrical approach: cloud of rows and cloud of columns. Superposition of both graphics of rows and columns
- 5. Helps to interpretation
- 6. Transition relationships: barycentric properties
- 7. Complements: supplementary elements; intensity of the relationship

1. Data

Two categorical variables observed on the same individuals

Exemple Health survey in Croatia

Edad en clase (7 categoríes) and Estado de salud (5 categoríes)

on n=5037 individuals

> summary(base\$Edad_classe) 18-25 años 26-35 años 36-45 años 46-55 años 56-65 años 66-75 años 76 y más 639 833 766 794 798 818 389 > summary(base\$B1) health-excellent health-very good health-good health-fair health-poor 472 833 1367 1322 1043

Contingency table

 x_{ij} = count of individuals who present at the same time category i of V_1 and category j of V_2

Crossed table and margins

	health-excellent	health-very good	health-good	health-fair	health-poor	
18-25 años	181	216	161	69	12	639
26-35 años	144	263	259	129	38	833
36-45 años	62	150	266	201	87	766
46-55 años	35	105	260	239	155	794
56-65 años	26	43	190	281	258	798
66-75 años	17	38	166	283	314	818
76 y más año	os 7	18	65	120	179	389
	472	833	1367	1322	1043	5037

From the count table to the proportion table

Relationship between V₁ and V₂: desviation between data and independence model

Proportion table and margins

	health-excellent	health-very good	health-good	health-fair	health-poor	<u>-</u>
18-25 años	0.036	0.043	0.032	0.014	0.002	0.127
26-35 años	0.029	0.052	0.051	0.026	0.008	0.166
36-45 años	0.012	0.030	0.053	0.040	0.017	0.152
46-55 años	0.007	0.021	0.052	0.047	0.031	0.158
56-65 años	0.005	0.009	0.038	0.056	0.051	0.159
66-75 años	0.003	0.008	0.033	0.056	0.062	0.162
76 y más añ	os 0.001	0.004	0.013	0.024	0.036	0.078
	0.093	0.167	0.272	0.263	0.207	1.000

2. Relationship/independence between two categorical variables

It there were independence

$$f_{ij} = f_{i.} \cdot f_{.j}$$

$$\frac{f_{ij}}{f_{i.}} = f_{.j} \qquad \text{Table } \mathbf{D}_{\mathbf{I}}^{-1}\mathbf{F}$$

$$\frac{f_{ij}}{f} = f_{i.}$$

Tabla
$$\mathbf{F}\mathbf{D}_{\mathbf{J}}^{-1}$$

Observed data

Estimation of the independence model

$$\hat{f}_{ij} = f_{i.} \cdot f_{.j}$$

Expected counted under independence hypothesis

$$\hat{x}_{ij} = n \cdot f_{i.} \cdot f_{.j}$$

Significance of the relationship between the two

variables:
$$\chi^2$$
 test
$$\chi^2 = \sum_{i,j} \frac{\left(x_{ij} - \hat{x}_{ij}\right)^2}{\hat{x}_{ij}} \qquad \dots \text{ distribution...} p\text{-value}$$

Intensity of the relationship between the two variables

$$\Phi^2 = \sum_{i,j} \frac{\left(f_{ij} - \hat{f}_{ij}\right)^2}{\hat{f}_{ij}} = \frac{\chi^2}{n}$$

CA simultaneously analyzes the row and column profiles tables. It does not inform about the significance of the relationship but about the intensity of the relationship and visualizes the structure of the relationship.

Comparing profiles

	health-excellent	health-very good	health-good	health-fair	health-poor
18-25 años	0.283	0.338	0.252	0.108	0.019
26-35 años	0.173	0.316	0.311	0.155	0.046
36-45 años	0.081	0.196	0.347	0.262	0.114
46-55 años	0.044	0.132	0.327	0.301	0.195
56-65 años	0.033	0.054	0.238	0.352	0.323
66-75 años	0.021	0.046	0.203	0.346	0.384
76 y más años	0.018	0.046	0.167	0.308	0.460
Perfil-medio	0.093	0.167	0.272	0.263	0.207

To compare and describe the deviations

> profil.col

	health-excell	health-very good	health-good	health-fair	health-poor	
18-25 años	0.383	0.259	0.118	0.052	0.012	0.127
26-35 años	0.305	0.316	0.189	0.098	0.036	0.166
36-45 años	0.131	0.180	0.195	0.152	0.083	0.152
46-55 años	0.074	0.126	0.190	0.181	0.149	0.158
56-65 años	0.055	0.052	0.139	0.213	0.247	0.159
66-75 años	0.036	0.046	0.121	0.214	0.301	0.162
76 y más añ	íos 0.015	0.022	0.048	0.091	0.172	0.078

3. CA

CA= First, analysis of the cloud of rows

Cloud of rows described by their profile $\frac{f_{ij}}{f_{ii}}$

 $Matrix \quad D_{I}^{-1}F$

Weights of rows

 $f_{i.}$ stored into diagonal matrix

 $\mathbf{D}_{\mathbf{I}}$

chi.2 metric

with generic term $\frac{1}{f_{i}}$

 $\mathbf{D}_{\mathbf{J}}^{-1}$

$$d^{2}(i,l) = \sum_{j=1}^{J} \frac{1}{f_{.j}} \left(\frac{f_{ij}}{f_{i.}} - \frac{f_{lj}}{f_{l.}} \right)^{2}$$

→ distributional equivalence

CA= Then, analysis of the cloud of columns

Cloud of columns described by their profile
$$\frac{f_{ij}}{f_{.j}}$$

Matrix $D_J^{-1}F'$

Weighted of the columns

 $f_{.j}$ stored into diagonal matrix

 $\mathbf{D}_{\mathbf{J}}$

Métrica del chi.2

with generic term
$$\frac{1}{f_i}$$

$$\mathbf{D}_{\mathbf{I}}^{-1}$$

$$d^{2}(j,h) = \sum_{i=1}^{I} \frac{1}{f_{i}} \left(\frac{f_{ij}}{f_{.j}} - \frac{f_{ih}}{f_{.h}} \right)^{2}$$

→ distributional equivalence

4. Geometrical approach: cloud of rows and cloud of columns

Weight of point $i: f_{i}$.

Cloud of rows
$$d^{2}(i,l) = \sum_{j=1}^{J} \frac{1}{f_{.j}} \left(\frac{f_{ij}}{f_{i.}} - \frac{f_{lj}}{f_{l.}} \right)^{2}$$

Cloud of column profiles

If there were independent

$$\frac{f_{ij}}{f_{i.}} = f_{.j}$$

$$\frac{f_{ij}}{f_{i.}} = f_{.j}$$
Both clouds have a null inertia
$$Inercia(N_I|G_I) = Inercia(N_J|G_J)$$

The intensity of the relationship is higher insofar as the inertia is higher

$$\begin{split} Inercia \Big(N_I \big| G_I \Big) &= \sum_i Inercia \Big(i \big| G_I \Big) = \sum_i f_{i.} d^2 \Big(i, G_I \Big) = \sum_j f_{.j} d^2 \Big(j, G_J \Big) = \\ &= \sum_i \sum_j \frac{1}{f_{i.} f_{.j}} \Big(f_{ij} - f_{i.} \cdot f_{.j} \Big)^2 = \\ &= \Phi^2 = \frac{\chi^2}{n} = Inercia \Big(N_J \big| G_J \Big) \end{split}$$

Representation is a low dimension space

Find the subspace which better sums up the data

Figure: Camel vs dromedary?

Row cloud

$Max\sum_{i}f_{i}.OH_{i}^{2}$

$$u_1$$
 λ_1 u_2 λ_2 u_3 λ_3

• • • • • •

$$u_{\min(I-1,J-1)} \lambda_{\min(I-1,J-1)}$$

In the column cloud.....

$$\begin{array}{ccc}
v_1 & \lambda_1 \\
v_2 & \lambda_2 \\
v_3 & \lambda_3
\end{array}$$

$$v_{\min(I-1,J-1)} \lambda_{\min(I-1,J-1)}$$

 $\Phi^2 = \sum_{i} \lambda_i = \sum_{i} f_{i.} d^2(i, G_I) = \sum_{j} f_{.j} d^2(j, G_J)$

Graphical results: in this case, it is legitimous to superpose the row and column graphics

CA factor map

5. Helps to interpretation Global quality of the representation

On the first plane:

$$\frac{\lambda_1 + \lambda_2}{\sum_{s=1}^{S} \lambda_s}$$

```
> round(res.ca$eiq,2)
      eigenvalue percentage of variance cumulative percentage of variance
dim 1
            0.29
                                   90.81
                                                                      90.81
dim 2
            0.03
                                    8.30
                                                                      99.11
dim 3
            0.00
                                    0.83
                                                                      99.94
dim 4
                                    0.06
                                                                     100.00
         0.00
dim 5
                                                                     100.00
            0.00
                                    0.00
```

```
> FI2
[1] 0.3142015=chi2/n
```

V de Cramer

```
> sqrt(sum(res.ca$eig[,1])/4)
[1] 0.2802684
```

Particularities of the eigenvalues in CA

$$0 \le \lambda_s \le 1$$

What does it mean to observe an eigenvalue equal to 1?

Maximum number of axes?

How many axes we have to interpret?

Contributions and quality if representation

= what we have seen in PCABut do not forget that the elements (rows and columns) are endowed with weights

6. Transition relationships also called barycentrical relationships

$$F_s(i) = \frac{1}{\sqrt{\lambda_s}} \sum_j \frac{f_{ij}}{f_{i.}} G_s(j)$$

$$G_{s}(j) = \frac{1}{\sqrt{\lambda_{s}}} \sum_{i} \frac{f_{ij}}{f_{.j}} \cdot F_{s}(i)$$

6. Complements

6.1 Supplementary columns and/or rows

$$F_{s}(i^{+}) = \frac{1}{\sqrt{\lambda_{s}}} \sum_{j} \frac{f_{i^{+}j}}{f_{i^{+}}} G_{s}(j)$$

$$G_s(j^+) = \frac{1}{\sqrt{\lambda_s}} \sum_{i} \frac{f_{ij^+}}{f_{.j^+}} \cdot F_s(i)$$

Categories of Age × Educ as supplementary rows

6.2 Nature of the relation. Intensity of the relation. Cramer V

The graph informs about the nature of the relationship between the variables through the visualisation of the associations between the categories of one variable and these of the other

The eigenvalues— and their sum- inform about the intensity of the relationship.

The Carmer V allows for comparing the intensity of the relationship with its maximum (and therefore, between crosstables with different dimensions)

$$V = \sqrt{\frac{\phi^2}{Max(\phi^2)}} = \sqrt{\frac{\phi^2}{Min(I-1, J-1)}}$$
₃₅