Package 'expint'

October 28, 2022

Type Package

Title Exponential Integral and Incomplete Gamma Function

Version 0.1-8

Date 2022-10-28

Description The exponential integrals E_1(x), E_2(x), E_n(x) and Ei(x), and the incomplete gamma function G(a, x) defined for negative values of its first argument. The package also gives easy access to the underlying C routines through an API; see the package vignette for details. A test package included in sub-directory example_API provides an implementation. C routines derived from the GNU Scientific Library https://www.gnu.org/software/gsl/>.

Depends R (>= 3.3.0)

License GPL (>= 2)

URL https://gitlab.com/vigou3/expint

BugReports https://gitlab.com/vigou3/expint/-/issues

Encoding UTF-8

NeedsCompilation yes

Author Vincent Goulet [cre, aut],

Gerard Jungman [aut] (Original GSL code),

Brian Gough [aut] (Original GSL code),

Jeffrey A. Ryan [aut] (Package API),

Robert Gentleman [aut] (Parts of the R to C interface),

Ross Ihaka [aut] (Parts of the R to C interface),

R Core Team [aut] (Parts of the R to C interface),

R Foundation [aut] (Parts of the R to C interface)

Maintainer Vincent Goulet < vincent.goulet@act.ulaval.ca>

Repository CRAN

Date/Publication 2022-10-28 11:27:38 UTC

2 expint-package

R topics documented:

expint-package																					2
expint																					3
gammainc				•					•					•	•						5

Index 7

expint-package

Exponential Integral and Incomplete Gamma Function

Description

The exponential integrals $E_1(x)$, $E_2(x)$, $E_n(x)$ and $E_1(x)$, and the incomplete gamma function $\Gamma(a,x)$ that is defined for negative values of its first argument.

Details

The exponential integral

$$E_1(x) = \int_{r}^{\infty} \frac{e^{-t}}{t} dt$$

and the incomplete gamma function

$$\Gamma(a,x) = \int_{x}^{\infty} t^{a-1}e^{-t} dt$$

are closely related functions that arise in various fields of mathematics.

expint is a small package that provides R functions to compute the exponential integral and the incomplete gamma function.

Most conveniently for R package developers, the package also gives access to the underlying C workhorses through an API; see the package vignette for instructions.

The C routines are adapted versions of those of the GNU Scientific Library https://www.gnu.org/software/gsl/.

Author(s)

Vincent Goulet <vincent.goulet@act.ulaval.ca>

References

Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, Dover.

See Also

expint for the exponential integral family of functions.

gammainc for the incomplete gamma function.

vignette("expint") for a detailed presentation of the package.

expint 3

expint

Exponential Integral

Description

The exponential integrals $E_1(x)$, $E_2(x)$, $E_n(x)$ and Ei.

Usage

```
expint(x, order = 1L, scale = FALSE)
expint_E1(x, scale = FALSE)
expint_E2(x, scale = FALSE)
expint_En(x, order, scale = FALSE)
expint_Ei(x, scale = FALSE)
```

Arguments

x vector of real numbers.

order vector of non-negative integers; see Details.

scale logical; when TRUE the result will be scaled by e^x .

Details

Abramowitz and Stegun (1972) first define the exponential integral as

$$E_1(x) = \int_x^\infty \frac{e^{-t}}{t} dt, \quad x \neq 0.$$

An alternative definition (to be understood in terms of the Cauchy principal value due to the singularity of the integrand at zero) is

$$Ei(x) = -\int_{-x}^{\infty} \frac{e^{-t}}{t} dt = -E_1(-x).$$

The exponential integral can also generalized to order n as

$$E_n(x) = \int_1^\infty \frac{e^{-xt}}{t^n} dt,$$

for n = 0, 1, 2, ...; x a real number (non-negative when n > 2).

The following relation holds:

$$E_n(x) = x^{n-1}\Gamma(1-n, x),$$

where $\Gamma(a,x)$ is the incomplete gamma function implemented in gammainc.

By definition,
$$E_0(x) = x^{-1}e^{-x}, x \neq 0$$
.

Function expirt is vectorized in both x and order, whereas function expirt_En expects a single value for order and will only use the first value if order is a vector.

Non-integer values of order will be silently coerced to integers using truncation towards zero.

4 expint

Value

The value of the exponential integral.

Invalid arguments will result in return value NaN, with a warning.

Note

The C implementation is based on code from the GNU Software Library https://www.gnu.org/software/gsl/.

Author(s)

Vincent Goulet <vincent.goulet@act.ulaval.ca>

References

Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, Dover.

See Also

gammainc

Examples

```
## See section 5.3 of Abramowitz and Stegun
expint(1.275, order = 1:10)
expint(10, order = 1:10) * 1e5
expint(c(1.275, 10), order = c(1, 2))
expint_E1(1.275)
                                         # same as above
expint_E2(10)
                                         # same as above
## Figure 5.1 of Abramowitz and Stegun
curve(expint_Ei, xlim = c(0, 1.6), ylim = c(-3.9, 3.9),
      ylab = "y")
abline(h = 0)
curve(expint_E1, add = TRUE)
x < -1.5
text(x, c(expint_Ei(x), expint_E1(x)),
     expression(Ei(x), E[1](x)),
     adj = c(0.5, -0.5)
## Figure 5.2 of Abramowitz and Stegun
plot(NA, xlim = c(-1.6, 1.6), ylim = c(0, 1),
     xlab = "x", ylab = expression(E[n](x)))
n \leftarrow c(10, 5, 3, 2, 1, 0)
for (order in n)
    curve(expint_En(x, order), add = TRUE)
x \leftarrow c(0.1, 0.15, 0.25, 0.35, 0.5, 0.7)
text(x, expint(x, n), paste("n =", n),
     adj = c(-0.2, -0.5)
```

gammainc 5

gammainc

Incomplete Gamma Function

Description

The incomplete gamma function $\Gamma(a, x)$.

Usage

gammainc(a, x)

Arguments

a vector of real numbers.

x vector of non-negative real numbers.

Details

As defined in 6.5.3 of Abramowitz and Stegun (1972), the incomplete gamma function is

$$\Gamma(a,x) = \int_{x}^{\infty} t^{a-1}e^{-t} dt$$

for a real and $x \ge 0$.

For non-negative values of a, we have

$$\Gamma(a, x) = \Gamma(a)(1 - P(a, x)),$$

where $\Gamma(a)$ is the function implemented by R's gamma() and P(a,x) is the cumulative distribution function of the gamma distribution (with scale equal to one) implemented by R's pgamma().

Also, $\Gamma(0,x) = E_1(x)$, x > 0, where $E_1(x)$ is the exponential integral implemented in expirt.

Value

The value of the incomplete gamma function.

Invalid arguments will result in return value NaN, with a warning.

Note

The C implementation is based on code from the GNU Software Library https://www.gnu.org/software/gsl/.

Author(s)

Vincent Goulet <vincent.goulet@act.ulaval.ca>

References

Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, Dover.

6 gammainc

See Also

expint

Examples

```
## a > 0
x <- c(0.2, 2.5, 5, 8, 10)
a <- 1.2
gammainc(a, x)
gamma(a) * pgamma(x, a, 1, lower = FALSE) # same

## a = 0
a <- 0
gammainc(a, x)
expint(x) # same

## a < 0
a <- c(-0.25, -1.2, -2)
sapply(a, gammainc, x = x)</pre>
```

Index

```
* math
    expint, 3
    expint-package, 2
    gammainc, 5
* package
    expint-package, 2
expint, 2, 3, 5, 6
expint-package, 2
expint_E1 (expint), 3
expint_E2 (expint), 3
expint_Ei (expint), 3
expint_En (expint), 3
ExponentialIntegral (expint), 3
gamma, 5
gamma_inc (gammainc), 5
gammainc, 2-4, 5
IncompleteGammaFunction (gammainc), 5
pgamma, 5
```