INFO0561

Réseaux Informatiques Partie 2 - Couches 1 et 2 OSI

Luiz Angelo Steffenel Angelo.steffenel@unjv-reims.fr

Le câble, support de communication

Fonctionnalités

- Les bits sont transmis sur une voie :
 - Signal électrique (alternatif) : tension discrète
 - Standard de codage (fabricant de la carte) :
 - Valeurs des tensions
 - Débit (en bit/s): 10 Mbit/s, 100 Mbit/s, 1Gbit/s, . . .
- L'émission et la réception :
 - Simplex: transmission dans une seule direction
 - Half-duplex: transmission dans les deux sens en alternance
 - Full-duplex : transmission dans les deux sens simultanément

Le codage NRZ

NRZ (No Return to Zero)

- 2 niveaux de tension, symétriques par rapport à 0
- État haut tant que des 1 sont à transmettre
- État bas tant que des 0 sont à transmettre

Le codage NRZI

NRZI (No Return to Zero Inverted)

- Inconvénients de NRZ :
 - Problème de synchronisation lors d'une longue suite de 0 ou 1
 - Problème d'inversion de raccordement : erreur d'interprétation
- Inversion du signal à chaque 0
- Utilisé par le port USB

Le codage Manchester

Manchester

- Appelé aussi codage biphase, c'est un codage asynchrone
- 0 à coder → transition du niveau bas vers haut
- 1 à coder → transition du niveau haut vers bas
- Pas de codage continu, donc pas de perte de synchronisation sur des suites identiques

Le codage Manchester différentiel

Manchester différentiel

- 0 à coder → transition dans le même sens que
- précédemment 1 à coder → transition inverse
- Codage insensible à l'inversion de fils dans le câblage

Résumé

Comparaison entre les codages

Caractéristiques de performance d'un câble

Impédance

• Équivalent à la résistance pour un courant continu

Atténuation (ou affaiblissement linéique)

- Mesuré en décibel (dB) par kilomètre ou pour 100m
- Croît avec la fréquence du signal et la longueur du câble
- Plus l'impédance est élevée, plus l'affaiblissement est faible

Affaiblissement paradiaphonique

 Aptitude pour un câble à ne pas être perturbé par les signaux transmis par un câble voisin

Câble performant

 Faible affaiblissement linéique, forte impédance et fort affaiblissement paradiaphonique

Protection contre les signaux parasites

Mode balancé, différentiel ou symétrique

- Envoyer des signaux identiques mais inversés sur deux conducteurs
- Les champs générés ont des amplitudes égales en opposition de phase qui s'annulent

Le blindage

- Création d'une cage de Faraday autour des câbles à l'aide d'une tresse métallique
- Le blindage est relié à la terre pour ne pas faire antenne

L'écran

- Le blindage est réalisé par un feuillard (mince feuille
- d'aluminium)

Le filtrage

Filtrage des signaux qui sont dans une plage de fréquences

Le câble coaxial

Description

- Bonne protection :
 - ⇒ Bon débit sur de longues distances
- Deux types les plus répandus :
 - 50 ohms : transmission numérique
 - 75 ohms : communication analogique et TV par câble

Coupe d'un câble coaxial

Gaine protectrice en plastique

Le câble à paires torsadées (1/2)

Description

- 4 paires torsadées : 8 fils de cuivre enroulés les uns sur les autres
- Câble UTP: Unshielded Twisted Pair (paires torsadées non blindées)
- Câble STP: Shielded Twisted Pair (paires torsadées blindées)
- Câble FTP: Foiled Twisted Pair (paires torsadées blindées)
- Câble SFTP: Shielded and Foiled Twisted Pair

Coupe d'un câble à paires torsadées

Topologie 10BaseT

Le câble à paires torsadées (2/2)

Les différents types de blindage

Connecteurs RJ-45

Description

- RJ pour Registred Jack:
 - → Partie du code des règlements fédéraux aux États-Unis
- C'est le connecteur le plus répandu pour terminer les câbles de type paires torsadées
- Même type de connecteur pour les téléphones fixes (RJ-11)

Connecteur RJ-45

Cordon croisé (1/2)

Croisement des paires

- Utilité : branchement de deux cartes réseau en direct
- La paire d'émission d'une carte branchée sur la paire de réception de l'autre et inversement

Principe

Cordon croisé (2/2)

Options de câblage

- Définition de deux options de câblages : T568A et T568B
- Cordon droit : T568B à chaque bout
- Cordon croisé : T568A à un bout et T568B à l'autre bout

Organisation des paires

Option de câblage T568A

Option de câblage T568B

La fibre optique

Description

- Une fibre est constituée d'un cœur en verre à travers lequel la lumière se propage
- Une diode permet de produire le signal lumineux, capté par une photodiode
- Faible atténuation : un répéteur tous les 50 km

Coupe d'une fibre optique

Topologie 10BaseF

Fibre monomode / multimode

Description

- Le rayon lumineux peut se réfléchir contre les parois de la fibre :
 - → Variation de l'angle de réflexion = plusieurs rayons (modes)
 - Si le diamètre est suffisamment petit, un seul rayon passe
 - → fibre monomode
 - Meilleur débit
 - Plus longue distance sans amplification (100 km à 50 Gbit/s)
 - Une fibre est unidirectionnelle ou nécessite deux longueurs d'onde différentes (en multimode)

Coupes de fibres monomode (a) et multimode (b)

Fibres multimodes

Les différents types de fibres multimodes

- La fibre à saut d'indice (réfraction à angle droit) :
 - Cœur et gaine optique en verres de différents indices de
 - réfraction Grande dispersion des signaux qui la traverse : déformation du signal reçu
- La fibre à gradient d'indice (onde de forme sinusoïdale) :
 - Cœur constitué de couches de verre successives ayant des indices de réfraction proches

Coupes de fibres monomode (a) et multimode (b)

Multimode à saut d'indice

Multimode à gradient d'indice

Le transceiver optique

Fonctions

- Conversion des impulsions électriques en signaux optiques par :
 - Les LED qui fonctionnent dans l'infrarouge
 - Les lasers pour la fibre monomode
- Réception des signaux optiques qui sont convertis en impulsions électriques par un phototransistor ou une photodiode

Les connecteurs

Les différents connecteurs

Un connecteur ST

Connecteurs SC

Connecteurs LC

Un connecteur MTRJ (bivoie)

Un coupleur (pour 2fibres)

Couche 2 - Rôle dans le modèle OSI

La couche liaison de données : couche 2

- Définition des normes et des protocoles utilisés pour contrôler la transmission de données à travers un réseau
- physique

Les fonctions :

- Arbitrage : le moment approprié pour utiliser le support de transmission physique ou le média de transmission
- Gestion de la liaison de données : s'assure que les données sont bien reçues et traitées par le ou les destinataires corrects
- Détection d'erreur : détermine si les données ont traversé avec succès le média de transmission
- Identification des données encapsulées : identifier le service de la couche Réseau (OSI 3) à qui est adressé le message

Les protocoles de la couche liaison de données

Exemple de protocoles

- Ethernet
- PPP: Point-to-Point Protocol
- ISDN (ou RNIS): Integrated Services Digital Network
- Frame Relay
- ATM:
 Asynchronous Transfer
 Mode

Une trame

Description d'une trame

- La couche liaison de données prépare un datagramme à transporter à travers le médium local, appelé une trame
- Les données de la couche 3 sont encapsulées dans les données des trames

Format d'une trame

- Données : provenant de la couche 3 (datagramme IP ou autre)
- En-tête : contient des informations de contrôle comme les adresses sources et destinations
- En-queue : contient des informations de contrôle comme les détections d'erreurs

Transfert d'une trame à travers différents médias

Vie d'une trame

- La trame est envoyée dans le réseau local (segment réseau)
- L'en-tête et l'en-queue sont différentes suivant le support :
 - → Adresses locales différentes

Les champs d'une trame

Structure générale

Description des différents champs

- Indicateurs de début et de fin de la trame
- Adresses (source locale et destination locale)
- Type : type des données transportées (IP, IPX, ...
- Bits de contrôle : drapeaux pour différentes options
- Données : un paquet de données de la couche réseau (couche 3)
- FCS : champs CRC pour détecter les erreurs de transmission

Sous-couches

Implémentation

- La couche 2 est implémentée à la fois comme logiciel et matériel :
 - Logiciel: interface avec les couches supérieures, routage MAC
 - Matériel : interface avec le médium (signaux électriques)

Les deux sous-couches de la couche 2

- Logical Link Control (LLC): interface logicielle pour la liaison avec les couches supérieures:
 - Ajout d'informations pour aiguiller et identifier les informations des couches supérieures
- Media Access Control (MAC) : géré par le matériel
 - Effectue l'adressage et l'encapsulation des données dans les trames
 - Coordonne l'injection de données dans le médium
 - L'accès au médium dépend du type de partage s'il y a plusieurs nœuds par lien

L'accès au médium

Point-à-point ou multi-accès

- Réseaux point-à-point :
 - Deux nœuds seulement
 - Exemples: PPP, HDLC, Frame Relay
- Réseaux à multiples accès :
 - Plusieurs nœuds
 - Exemples: Ethernet, 802.11 (Wi-Fi), Frame Relay Multipoint

Types de transmission

- Simplex: transmission dans une seule direction
- Half-duplex: transmission dans les deux sens, en alternance
 → Concentrateur Ethernet (hub)
- Full-duplex : transmission dans les deux sens simultanément
 - → Commutateur Ethernet (switch), la plupart des liens série

Réseau multi-accès : la topologie bus

Description

- Les concentrateurs (hubs) utilisent ce schéma en interne

Exemple de la topologie en bus 10Base2

Transmission dans un bus

Exemple de transmission

Description

 Lorsqu'une trame est envoyée dans le bus, tous les dispositifs la reçoivent

Transmission dans un bus

Exemple de transmission

Description

- Réception de la trame : vérification de la correspondance entre adresse MAC destination et adresse MAC de la machine :
 - Pas de correspondance : trame ignorée
 - Correspondance : trame copiée en mémoire

Méthodes de contrôle d'accès au médium

Deux méthodes habituellement utilisées dans les LAN

- Non déterministes, méthodes de contrôle de contention :
 - Les machines surveillent le réseau pour trouver un créneau et émettre leurs trames
 - Si une collision est détectée, le processus recommence
 - \rightarrow Exemple : *Ethernet*
- Déterministes, à l'aide d'un passage de jeton :
 - La machine possédant le jeton peut émettre
 - → Exemple : *Token Ring*

Exemple de collisions

Problème de collision

Si deux machines envoient simultanément une trame :
 ⇒ Collision

Exemple de collisions

Une solution

 Avant d'envoyer une trame, les stations écoutent pour s'assurer qu'aucune machine n'émet de trame

Exemple de collisions

Encore des collisions

 Après s'être assuré qu'il n'y a pas de transmission encore, deux machines peuvent émettre simultanément leur trame :
 ⇒ Collision

Exemple de collisions

Une autre solution

 Les machines attendent pendant un temps aléatoire avant de transmettre à nouveau

Le CSMA/CD

Généralités

- Carrier Sense Multiple Access with Collision Detection
- Méthode de contrôle de congestion proposée avec Ethernet et IEEE 802.3

Algorithme pour envoyer une trame

- La station surveille si une transmission est en cours
- Si aucune transmission, la station peut émettre :
 - → Aucune permission au préalable n'est nécessaire
- Pendant l'émission, une collision peut être détectée (à l'aide d'un circuit de bouclage) : dans ce cas, un signal de brouillage est envoyé
 - → Les stations incriminées dans la collision patientent pendant un temps aléatoire
 - ightarrow Si des collisions continuent à être détectées, les stations doublent le temps d'attente

Les dispositifs des couches 1 et 2

Les dispositifs

- Répéteur (repeater)
 - \leftrightarrow Couche 1
- Concentrateur (hub)
 - <→ Couche 1
- Carte réseau
 - ← Couche 2
- Commutateur (switch)
 - ← Couche 2 (voire 3 pour certains)
- Pont (bridge)
 - <→ Couche 2

Répéteur (repeater)

Description

- Fonctionne au niveau physique (couche 1)
- Équipé d'un récepteur et d'un émetteur
- Compense les pertes de transmission d'un média et amplifie le signal sans modification du contenu

Quelques exemples

Le concentrateur (hub) (1/2)

Description

- Permet de connecter un ensemble de machines dans un réseau local de type Ethernet
- Régénère un signal reçu et répercute les données reçues sur un port vers les autres ports

Un concentrateur

Le concentrateur (hub) (2/2)

Le concentrateur et le répéteur

- Le concentrateur a les propriétés d'un répéteur :
 - ← Le signal reçu est régénéré
 - \longleftrightarrow Les données reçues dans un port sont inondées vers les autres ports
- Le débit est partagé entre toutes les machines

Topologie physique vs topologie logique

Topologie physique

Le commutateur (switch) (1/2)

Description

- Permet de relier plusieurs segments d'un réseau
- Contrairement au concentrateur, le commutateur est capable de déterminer sur quel port il doit envoyer une trame

Un commutateur utilisé en TP

Le commutateur (switch) (2/2)

Fonctionnement

- Le commutateur lit l'entête des trames pour déterminer sur quel port la transférer sauf si c'est une adresse de diffusion
- Il fonctionne en full-duplex : plusieurs communications en parallèle sont possibles (si les intervenants sont différents)

Exemple de communications en parallèle

Le pont (bridge)

Description

- Permet d'interconnecter deux segments de réseau
- Les deux segments peuvent être de technologies différentes
- Analogue à un commutateur, excepté que ce dernier ne convertit pas les formats de transmission de données

Intérêts

- Permet de segmenter un réseau
- Les informations échangées sur un segment ne peuvent être écoutées sur l'autre segment

La naissance d'Ethernet

Naissance d'un standard

- Créé dans les années 1970 par Robert Meltcafe à Xerox parc
- En 1985, il est standardisé par l'Institute of Electrical and Electronics Engineers (IEEE) sous le nom IEEE 802.2 (pour la couche LLC) et 802.3 (couche MAC) (norme ISO/IEC 8802-3)

Première version d'Ethernet: 10Base5 ou Ethernet épais (Thicknet)

- Segments de 500m maximum, 100 nœuds maximum par segment
- Coaxial épais, connexions avec des prises vampires

Évolutions du standard

Quelques évolutions du standard Ethernet

- 10Base2, appelé Ethernet fin ou Thinnet :
 - ← Segments de 185m maximum, 30 nœuds maximum par segment
 - ← Coaxial fin, connexions avec des T
 - 10Base-T, les machines sont connectées à un hub :
- ← Segments de 100m maximum, 1024 nœuds maximum par segment
 ← Câble à paires torsadées avec un hub

Supports Ethernet

Variétés des supports Ethernet

- Nombreux supports pour Ethernet (câbles de cuivre, fibre)
- Normes XBaseY où X est le débit et Y le type de connexion

Quelques supports

- 10Base-2 : câble coaxial ; les cartes réseaux sont connectées
 via un T et un bouchon/terminaison à chaque extrémité du câble
- 10Base-5 : câble coaxial utilisant des prises vampires
 - 10Base-T: utilise 4 fils sur un câble catégorie 3 ou 5 avec
- connecteur RJ-45 ; concentrateur ou commutateur au centre du réseau
- 100Base-T: idem; inclut notamment 100BaseTX
- 100Base-TX: requiert câble CAT-5, norme actuelle
- 100Base-FX: Ethernet 100Mbits/s sur fibre optique
- 1000Base-T : utilise les 4 paires en full duplex d'un câble CAT-5

Ethernet dans le modèle OSI

Le modèle OSI

Trame Ethernet

- Utilisé pour indiquer aux machines connectées sur le réseau qu'une trame arrive
- La séquence de bits utilisée dépend du standard

Trame Ethernet

- Indique les adresses source et destination
- Plusieurs types d'adresses :
 - Adresse unicast : adresse MAC d'un seul dispositif
 - · Adresse broadcast: tous les dispositifs
 - Adresse multicast : groupes spécifiques de dispositifs

Trame Ethernet

- Indique le type de données de la couche 3 (exemple : IP)
- Quelques valeurs prédéfinies dans 802.3 :
 - 0x0600 XNS (Xerox)
 - 0x0800 IP
 - 0x8137 Novelle NetWare packet formatted for Ethernet II
 - 0x0806 ARP

Trame Ethernet

- Le MTU est négocié entre les cartes
- Ce champ contient les données de taille entre 46 et 1500 octets :
 - → Si les données sont trop petites, des bits de bourrage sont utilisés

Trame Ethernet

••••

- C'est une somme de contrôle permettant de détecter les éventuelles erreurs de transmission
- Cette somme est issue du hachage des données : l'algorithme utilisé se base sur un contrôle de redondance cyclique (CRC)
- Les erreurs sont détectées mais non corrigées (les trames erronées sont rejetées)

L'adresse MAC

Généralités

- Chaque carte Ethernet possède une adresse MAC unique : ← Chaque carte est identifiée dans le réseau local.
- L'adresse est gravée dans l'adaptateur réseau par le fabricant
- Une adresse MAC a une longueur de 48 bits (6 octets) :
 - Le 1^{er} bit indique si l'adresse est individuelle (= 0) ou de groupe (= 1)
 Le 2^{ème} bit indique si l'adresse est universelle (= 0) ou locale (= 1)

 - 22 bits identifiant le fabricant :
 - → OUI (pour Organizational Unique Identifier) attribué par l'IEEE
 - Les 3 derniers sont attribués séquentiellement par le fabriquant

Format des adresses MAC

Ibit Ibit		22 bits	3 octets	
I/G	U/L	OUI	numéro de série	

Un adressage à plat

Description

Les adresses sont gérées par l'IEEE (c.f. RFC 1340) :

OUI	Fabricant	OUI	Fabricant
00-00-0C	Cisco	00-00-AA	Xerox
00-AA-00	Intel	08-00-02	3Com-Bridge
08-00-07	Apple	08-00-09	HP

L'adressage IEEE est un adressage à plat (pas de hiérarchie)

Inconvénients

- 2⁴⁸ possibilités soit plus de 2 millions de milliards :
 - Adresse unique pour chaque carte
- Mais aucune structure dans l'adressage :