

Assignment 5

Due: Thursday, 22nd October at 5 pm

Problem 1: SISO System: Setting up DMC Algorithm

(2+1+1+2 points)

This is a hand-written problem. Although, you can do it in MATLAB, I will suggest doing by hand (except for matrix multiplication) to get yourself used to solving by hand.

In the previous assignments, you developed step-response model for the first-order system:

$$G(s) = \frac{5}{\tau s + 1} e^{-0.15s}$$
, $\tau = \frac{1 + a}{2}$ a = Last digit of roll number, $\Delta t = 0.5$

I will upload a snipped of code that will generate S matrix for you. Please use this to construct the following that will be required for SISO DMC Algorithm

- 1. With p = 5 and m = 2 as the prediction and control horizons, respectively, please compute the matrix S^U used in DMC algorithm for future predictions: $\mathcal{Y}_p(k) = \mathcal{M}\tilde{Y}(k) + S^U \Delta U$
- 2. Let the output weights be Q = 1 and input weights be R = 0.5. Please compute the Hessian \mathcal{H}
- 3. If the constraints are $-0.1 \le \Delta u(k) \le 0.1$ and $0 \le u(k) \le 1$, please express the left-hand side of the constraint equation $C\Delta U(k) \le c_{RHS}$.
- **4.** If the previous inputs were u(k-i) = 0, compute the RHS of the constraint equation, i.e., c_{RHS} This problem is worth double points if submitted before 5 pm on Monday 19th October.

Problem 2: Step-Response Model of Reactor

(3+3 points)

In Problem-3 of the previous Assignment, we considered a step response model for a reactor, with $\Delta t = 0.2$ and with $n_u = 1$, $n_y = 2$, and n = 25 steps in the step-response model. As in the previous assignment, the model parameters will be provided as a $(n_y, n) \times 1$ matrix Smodel.

- 5. With p = 5 and m = 2 as the prediction and control horizons, respectively, please compute the matrix S^U used in the DMC algorithm and report it in 10×2 matrix bigSu.
- **6.** Let the output weights be $Q = \begin{bmatrix} 0.25 & 0 \\ 0 & 1 \end{bmatrix}$ and input weights be R = 0.1. With these values, please compute the Hessian \mathcal{H} and report it in a 2 × 2 matrix Hess.

Problem 3: Step-Response Model for

(4 + 4 points)

In Problem-3 of the Assignment-2, we considered a step response model for the following two-input two-output system (with sampling interval $\Delta t = 2$ and n = 25)

$$G(s) = \begin{bmatrix} \frac{2}{40s^2 + 16s + 1} & \frac{0.5}{20s^2 + 7s + 1} \\ \frac{1.2}{10s^2 + 5s + 1} & \frac{1}{36s^2 + 12s + 1} \end{bmatrix}$$

As in the previous problem, the $(n_y, n) \times n_u$ matrix Smodel will be provided to you.

July-Nov. 2020

Like the previous two problems, you will compute the matrices \mathcal{S}^U , Γ^y , Γ^u , \mathcal{H} . However, unlike the previous problem, you will not know the values of p and m. You will write a MATLAB function [bigSu, Hess]=mimo_dmc_fcn(p,m), where p, m are accepted as inputs and the matrices bigSu(\mathcal{S}^U) and Hess(\mathcal{H}) are returned as outputs.

- 7. For input values of p and m, please compute the matrix S^U used in the DMC algorithm. This must be returned by your function as a $(2p \times 2m)$ matrix bigSu.
- **8.** Let the output weights be $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and input weights be $R = Q = \begin{bmatrix} 0.25 & 0 \\ 0 & 0.25 \end{bmatrix}$. With these values, please compute the Hessian \mathcal{H} and report it in $(2m \times 2m)$ matrix Hess.