1 Problem 1

Let $\{a_n\}_{n\geq 0}$ be a sequence defined as follows:

$$a_0 = 0; a_1 = 1; a_2 = 2$$
 and

$$a_{n+3} = 5^n \cdot a_{n+2} + n^2 \cdot a_{n+1} + 11a_n \text{ for } n \ge 0$$

Prove that there exist infinitely many $n \in \mathbb{N}$ such that $2023 \mid a_n$.

Solution. Note that there are only 2023^5 permutations of $(a_{n+2}, a_{n+1}, a_n, 5^n, n)$ when each element is considered modulo 2023. Furthermore, $a_{n+2} \pmod{2023}$, $a_{n+1} \pmod{2023}$, $a_n \pmod{2023}$, since ff (need to consider $n \implies n^2$).

Let $k = 2023^5 + 1$, and consider the a_k . By the pigeon-hole principle, there must exist some m such that $(a_{k+2}, a_{k+1}, a_k, 5^k, k) = (a_{m+2}, a_{m+1}, a_m, 5^m, m)$ (recall that these are all modulo 2023), and thus we must have that $a_{k+i} = a_{m+i}$ for all $i \in \mathbb{N}$, as we proved before. Thus, (a_n) is periodic with period p = k - m.

Note that $a_0=0$, thus, it is sufficient to show that $a_0=a_{0+p}$. To prove this, assume for the sake of contradiction that there is some least j>0 where $a_{j+p}=a_j$ but $a_{j+p-1}\neq a_{j-1}$. Then $(a_{j+2},a_{j+1},a_j,5^j,j)=(a_{j+p+2},a_{j+p+1},a_{j+p},5^{j+p},j+p)$ and $(a_{j+1},a_j,a_{j-1},5^{j-1},j-1)\neq (a_{j+p+1},a_{j+p},a_{j+p-1},5^{j+p-1},j+p-1)$. But then we have one of $a_{j-1}\neq a_{j+p-1} \pmod{2023}$, $5^{j-1}\neq 5^{j+p-1} \pmod{2023}$, or $j-1\neq n+p-1 \pmod{2023}$. If

ff we can repeat this process with j-1, until we get to j=0.

2 Problem 2

Let $n \in \mathbb{N}$. Find the number of solutions for the congruence equation:

$$x^3 \equiv 1 \pmod{n}$$

Solution. Consider the unique prime factors of n, specifically $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ (where $\alpha_i \geq 1$). If $p_i = 2$, then $x^3 \equiv 1 \pmod{2}$ is solved whenever x^3 is odd, which has one solution mod 2, namely x = 1. If $p_i \neq 2$, note that since $p \nmid 1$, and $3 \in \mathbb{Z}^+$, by theorem 18.2, we have the number of solutions to $x^3 \equiv 1 \pmod{p_i^{\alpha_i}}$ is $d_i = \gcd(3, p_i^{\alpha_i})$ (note that we never have the 0 solutions case, because $1^{\phi(p_i^{\alpha_i})/d} \equiv 1 \pmod{p_i^{\alpha_i}}$ always). We can now compute d_i :

$$d_i = \gcd(3, \phi(p_i^{\alpha_i})) = \gcd(3, p^{\alpha_i - 1}(p_i - 1))$$

We can have $p_i \equiv 0 \pmod{3}$, $p_i \equiv 1 \pmod{3}$, or $p_i \equiv 2 \pmod{3}$.

In the $0 \pmod{3}$, this says that $3 \mid p_i$, which is only true when $p_i = 3$ (by the definition of a prime). Then if $\alpha_i = 1$, we have $\gcd(3, 2) = 1$. If $\alpha_i > 1$, we have $\gcd(3, 3^{\alpha_i} 2) = 3$.

If $p_i \equiv 1 \pmod{3}$, then $\gcd(3, p_i^{\alpha_i}(p_i - 1)) = 3$ since $3 \mid p_i - 1$ and $p_i^{\alpha_i} \ge 3 + 1$.

If $p_i \equiv 2 \pmod{3}$, then $\gcd(3, p_i^{\alpha_i}(p_i - 1) = 1$, since $3 \nmid p_i^{\alpha_i}$ (by definition of p_i being prime and not 3) and $3 \nmid p_i - 1 = 3k + 1$ by definition of p_i being $2 \pmod{3}$.

Let $N_P(m)$ denote the number of solutions to $x^3 - 1 \equiv 0 \pmod{m}$. From Theorem 8.2, since $p_i^{\alpha_i}$ is coprime with $p_i^{\alpha_j}$ when $i \neq j$, we have $N_P(n) = \prod N_P(p_i^{\alpha_i})$. We can rewrite n as

$$n = 2^{l} 3^{k} \prod_{i=1}^{r} p_{i}^{\alpha_{i}} \prod_{j=1}^{s} q_{i}^{\beta_{j}}$$

where $l, k \in \mathbb{N} \cup \{0\}$, p_i, q_j are prime, $p_i \equiv 1 \pmod{3}$, $q_j \equiv 2 \pmod{3}$ not 2, and r and s are the number of such primes where $\alpha_i, \beta_i \geq 1$.

Thus,

$$N_P(n) = N_P(2^l)N_P(3^k) \prod_{i=1}^r N_P(p_i^{\alpha_i}) \prod_{j=1}^s N_P(q_i^{\beta_j}) = N_P(3^k)3^r$$

Hence, we have

$$N_P(n) = \begin{cases} 3^{r+1} & \text{if } k > 1\\ 3^r & \text{otherwise} \end{cases}$$

3 Problem 3

As always, $\phi(\cdot)$ is the Euler- ϕ function.

Let α be any real number in the interval [0,1]. Prove that there exists an infinite sequence $\{n_k\}_{k\geq 1}\subset\mathbb{N}$ such that

$$\lim_{k \to \infty} \frac{\phi(n_k)}{n_k} = \alpha$$

Solution. If $n = \prod_{i=1}^{\pi(n)} p_i^{\alpha_i}$, then

$$\phi(n) = \prod_{i=1}^{\pi(n)} (p_i^{\alpha_i} - p_i^{\alpha_i - 1}) = n \prod_{\substack{p \mid n \\ p \text{ prime}}} \left(1 - \frac{1}{p}\right)$$

Thus

$$\frac{\phi(n)}{n} = \prod_{\substack{p \mid n \\ p \text{ prime}}} \left(1 - \frac{1}{p}\right)$$

To show that $\{\frac{\phi(n)}{n}\}$ is dense in (0,1), let $x,y\in(0,1)$ where x< y, then we claim there exists n such that $x<\frac{\phi(n)}{n}< y$. It is sufficient to consider when $x,y\in\mathbb{Q}\cap(0,1)$. Let $x=p_1'/q_1$ and $y=p_2'/q_2$ where $p_i'< q_i$ and $\gcd(p_i',q_i)=1$. We can rewrite them to have the same denomonator: $x=p_1/q$ and $y=p_2/q$, where $p_1< p_2< q$. Note $1-\frac{1}{p}=\frac{p-1}{p}$. Choose the p such that $p\mid q$ (I want something more, like the product of all the primes is q). So let's just assume that q's prime decomposition only has exponents 1 (and then could show this is dense) so then we want $p_1<\prod(p-1)< p_2$. Perhaps if it is too big, then we find more p later and multiply it down. If it is too small, ff

This is the problem: we can't write every rational number as a product of (p-1)/p, or even every rational with denominator whose prime number decomposition do not have extra exponents. But somehow we achieve density.

Note that $\prod (1 - \frac{1}{p})$ converges iff $\sum -\frac{1}{p}$ converges (stack exchange link in source code). But I don't think we really care.

Maybe useful: the rationals in simplified form do not contain any shared primes between the numerator and denominator.

Maybe we do a completely different approach to density. What if n = q or something.