

Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Bioreactor Gaseous Effluent Streams

Janelle Coutts, Ph.D.

Engineering Services Contract Kennedy Space Center, FL

- Role of Bioreactors in Space Exploration
- Why do we care about gases in bioreactors?
- Sample Collection and Analysis Methodology
- Results
 - Effluent Gas Profiles
 - Quantification of Process Gases
 - Quantification of Trace Contaminants
- Implications for Environmental Controls

Bioreactors and Space Exploration

- Alternative Water Processor
 - Designed as a possible replacement to current water treatment that utilized harsh chemicals and produces a very hazardous brine
 - Utilizes microbes as a pretreatment to wastewater to knock down TOC and mineralize urine-nitrogen
 - After this bioreactor pretreatment, a final polishing step using forward osmosis is utilized to make the water potable
 - Eliminates the need for caustic urine pretreatment chemicals

Why Consider Effluent Gases?

- MABR Design
 - Feeds oxygen into system
 - Strips other gases out of system
 - These must be identified and quantified for closed environment venting
- Current data available:
 - Oxygen diffusion across membranes
 - CO₂ stripping in relation to gas flow rate
 - Little to no data on other gas species

Transport fluxes of soluble constituents and microbial stratification within biofilms developed on membranes within nitrification-denitrification MABRs according to Syron and Casey¹.

Analysis Methodology

- Identification of Effluent Gas Constituents
 - FT-IR Analysis
 - Powerful tool capable of identifying constituents in unknown gas mixtures, and in some cases quantifying constituents
 - Highly dependent on analysis software
 - SPME-GC-MS Analysis
 - Great for VOC identification
- Quantification of Constituents
 - Gas Chromatography
 - GC-MS, GC-TCD, GC-ECD, GC-FID

SPME Analysis of KSC Systems for VOCs

Time (min)

- Over time, profile change significan ⅓
- Based on findings⁴ focused on for qu

• O_2 and N_2

₂, N₂O and ekly basis. oring

Trace Contaminants

•	Compound	Concentration (ppm)			
		MABR1	MABR2	MABR3	MABR4
	CO ₂	4,350-38,250	1,175-28,150	4,000-27,500	4,265-27,325
	N ₂ O	1,675-8,125	0-9,540	6,325-7,900	0-8,890
	NO ₂	0	0	N/A	0
	EtOH	0.003-0.013	0	0-0.054	BDL
1	MeOH	BDL	BDL	BDL	BDL
	Acetone	0-0.08	0-0.06	0.007-0.08	0-0.06
	MEK	BQL	BQL	BQL	BQL
	IPA	BQL	BQL	BQL	BQL

 Siloxane trends show possible initial hardware offgassing

Implications for Environmental Controls using ISS Technologies

Trace Contaminants

- Trace contaminants detected and quantified to date as significant: EtOH and Acetone
 - Estimated Added Daily Load per Bioreactor:
 - EtOH: 4-18 μg
 - Acetone: 12-137 μg
 - Average ISS Concentrations
 - EtOH: ~4 mg/m³
 - Acetone: ~0.32 mg/m³

Nitrogenous Compounds

- Nitrogenous process gases: N₂, NO, NO₂, N₂O
 - N₂ generated difficult to determine due to use of air as feed gas and detector limits
 - NO readily oxidizes to NO2 in presence of oxygen and is not expected to accumulate
 - $-NO_2$ in the effluent gas = supply gas levels
 - N₂O levels may be of concern (up to 12.36 g/day)
 - No current SMAC value, but TWA for an 8-hour period = 25-50 ppm
 - Further evaluation of TCCS required to determine if this load can be handled
 - May be caused by suboptimal conditions for microbes and further reactor operation tweaks may be able to lower these levels.

Carbon Dioxide

CO₂ SMAC & ISS Controls

- SMAC levels:
 - 1- & 24-hr: 13,000 ppm
 - 7-, 30-, 180-days: 7,000 ppm
- ISS Controls:
 - CDRA: removes CO₂ for up to
 7 crew (up to 0.22 kg/hr)
 - Vozdukh: removes CO₂ for up to 5 crew (up to 0.22 kg/hr)

Reactor Effluent

- Range of 1.5 to 50 g CO₂ per reactor per day
- Processing of wastewater for crew of 4 required 2 reactors
 - Assuming highest levels of CO2, this adds 0.1 crew member for 2 reactors in operation.
- Large flux in CO2 output due to changes in microbial environment/operation parameters
 - Alterations may be able to level out or lower concentrations.

Siloxanes and Sulfurous Compounds

Siloxanes

- Siloxanes were present in both supply gas and effluent gas
- Trends demonstrated possible initial off-gassing of siloxane derivatives from reactor hardware that decreases over time.
- Accurate determination of offgassing from silastic tubing and other hardware materials is warranted
 - May have unneccesary release of siloxanes causing further DMSD issues in water supply.
 - May require initial off-gassing period of reactors before put into use.

Sulfurous Compounds

- During testing to date, effluent gases have not been examined for sulfur-containing compounds.
- If anoxic zones are present in the reactor, release is possible
- During subscale reactor biofilm harvests at KSC, there have been obvious scents common to sulfurous compounds.
- Requires further analysis
 - Can poison catalyst beds
 - Can be harmful to crew

Conclusions

- Gaseous effluent analysis essential to bioreactor operation in closed environments
- Based on SPME results, many of the same compounds in the effluent were in the supply gas
- Trace contaminants detected, none are produced in appreciable amounts and are orders of magnitude lower than SMAC values
 - TCCS should be able to handle the small added load
- Nitrous oxide levels are of concern
- Carbon dioxide off-gassing from 2 reactors would add only 0.1 crew member to TCCS load
- Further investigation of siloxane off-gassing and detection of sulfurous compounds required

Thank You!

Questions?