Applied Probability 2

- Unit organiser: Dr. Stanislav Volkov (office SM 3.13)
- Lectured by: Prof. John McNamara and Dr. Stanislav Volkov
- Timetable:

Monday 10^{00} am and 11^{10} am (problems class)

Tuesday 10^{00} am Wednesday 10^{00} am

- Prerequisites: First year Core Mathematics calculus, analysis, linear algebra and Probability.
- Applied probability 2 is a prerequisite for Queueing Networks, Probability 3, and also Financial Mathematics, and is relevant to other Level 3 probabilistic units.

Assessment Methods

- 10% from the weekly homework, assessed on all (approximately) 10 weekly homework marks. Each homework will be marked out of 10. The homework must be handed in by the specified time; otherwise it will be given a mark of 0. Medical or other special grounds for late or non-submission of homework must be discussed with the Unit Organiser.
- 90% from the examination: 2½ hours in May/June. FIVE questions, a candidate's FOUR best answers will be used for assessment

Texts

- Taylor, H.M. & Karlin, S. *An Introduction to*Stochastic Modelling (3rd Ed.) (Academic Press) Required text
- Grimmett, G.R. & Stirzaker, D.R. **Probability and Random Processes**. (OUP)

0. Review of probability

Random experiment

- elementary outcome, or <u>sample point</u>
- Ω set of all elementary outcomes (<u>sample space</u>)

Let \Im be a collection of subsets of Ω . We call it a *sigma-field*, if

- 1) $\emptyset \in \mathfrak{J}$ and $\Omega \in \mathfrak{J}$.
- 2) If $A_1, A_2, ... \in \mathfrak{J}$ then $\bigcup_i A_i \in \mathfrak{J}$.
- 3) If $A \in \mathcal{S}$ then $A^c \in \mathcal{S}$.

Examples: (1) $\mathfrak{I}=\{\emptyset,\Omega\}$, (2) $\mathfrak{I}=$ all subsets of Ω (usually when Ω is finite)

A subset $A \subseteq \Omega$ of elementary outcomes is called an event, if $A \in \mathfrak{J}$. Generally, sigma-fields are beyond the scope of the course, and you can assume that any $A \subseteq \Omega$ is an event.

Interpretation – say event A occurs if outcome $\omega \in A$

Two events A, B:

```
A \cup B occurs \Leftrightarrow \omega \in A or \omega \in B \Leftrightarrow A occurs or B occurs A \cap B occurs \Leftrightarrow \omega \in A and \omega \in B \Leftrightarrow A occurs and B occurs
```

To each event A assign P(A), which is probability if (axioms):

- $1) \ 0 \le \mathbf{P}(\mathbf{A}) \le 1$
- 2) $P(\Omega)=1$
- 3) For any (possibly infinite) sequence of events A_1 , A_2 ,... such that $A_i \cap A_j = \emptyset$ whenever $i \neq j$ we have $P(\bigcup A_i) = \Sigma_i$ $P(A_i)$

 $(\Omega, \mathfrak{I}, P)$ is called a probability space.

Increasing and decreasing sequences of events

Let A_1 , A_2 ,...be a sequence of events such that $A_n \subseteq A_{n+1}$ for n=1,2,3... Then this sequence is said to be increasing


```
Note A_n \subseteq A_{n+1} \iff \omega \in A_n \Rightarrow \omega \in A_{n+1}

\Leftrightarrow A_n \text{ occurs} \Rightarrow A_{n+1} \text{ occurs}
```

Example (a coin is tossed infinitely many times): Let A_n = "from the n^{th} toss onwards all tosses give a head" Then $\omega \in A_n$ = tosses n, n+1, n+2,... all heads \Rightarrow tosses n+1, n+2,... all heads $= \omega \in A_{n+1}$

Interpretation in terms of a sample space:

Sample point $\omega = (x_1, x_2, x_3,)$ where $x_i = 1$ if the *i*-th toss is a head and $x_i = 0$ otherwise.

$$\Omega = \{ \omega = (x_1, x_2, x_3, \dots) \text{ where each } x_i = 0 \text{ or } 1 \}$$

Events:

So $A_n \subseteq A_{n+1}$

 $A_1 = \{(1,1,1,\ldots)\}$ – one sample point $A_2 = \{(0,1,1,\ldots); (1,1,1,\ldots)\}$ – two sample points $A_3 = \{(0,1,1,\ldots); (1,1,1,\ldots); (0,0,1,\ldots); (1,0,1,\ldots)\}$ – four sample points (can see indeed $A_n \subseteq A_{n+1}$)
Let $A = \bigcup_{i=1}^{\infty} A_i$ be the event "at least one A_i occurred" i.e. from some time onward all heads

Example [population growth]

 N_0 initial population size; N_k size after k generations. Let $A_k = \{N_k = 0\}$ – population extinct by generation k. Since $N_k = 0$ implies $N_{k+1} = 0$ again $A_k \subseteq A_{k+1}$ Let $A = \bigcup_{i=1}^{\infty} A_i$ be the event that the population eventually becomes extinct.

<u>Theorem</u> [continuity of probability]

Suppose A_1 , A_2 ,...is a sequence of increasing events and let $A = \bigcup_{i=1}^{\infty} A_i$

Then $P(A) = \lim_{n \to \infty} P(A_n)$

(Note that $A_n = \bigcup_{i=1}^n A_i$ and we can think of A as a limit of A_n)

<u>Proof</u>: Let $D_1=A_1$ and let $D_n=A_n \setminus A_{n-1}$ Then $D_i \cap D_j=\emptyset$ if $i\neq j$ and also $A_n=\bigcup_{i=1}^n D_i$ and $A=\bigcup_{i=1}^\infty D_i$ By axioms of probability for disjoint events D_i we have

$$P(A_n) = \sum_{i=1}^{n} P(D_i)$$
 and $P(A) = \sum_{i=1}^{\infty} P(D_i)$

Thus $P(A) = \sum_{i=1}^{\infty} P(D_i) = \lim_{n \to \infty} \sum_{i=1}^{n} P(D_i) = \lim_{n \to \infty} P(A_n)$ by definition of an infinite sum. *QED*

<u>Application</u> [population growth]

P(pop. becomes extinct)= $\lim_{n\to\infty}$ P(extinct by generation n)

Definition:

A sequence B_1 , B_2 ,...of events is said to be decreasing if $B_{n+1} \subseteq B_n$ for n=1,2,3...

Theorem [continuity of probability]

Suppose B_1 , B_2 ,...is a sequence of decreasing events and let $B = \bigcap_{i=1}^{\infty} B_i$

Then $P(B) = \lim_{n \to \infty} P(B_n)$

Proof: Set $A_n = (B_n)^c$. Then A_i 's are an increasing sequence. Also

$$A = \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} (B_i)^c = (\bigcap_{i=1}^{\infty} B_i)^c = B^c$$

Thus by previous theorem

$$P(A)=P(B^{c}) = \lim P(A_{n}) = \lim P(B_{n}^{c})$$

But $P(B^{c})=1-P(B)$ and $P(B_{n}^{c})=1-P(B_{n})$, so

$$1-P(B)=1-\lim_{n \to \infty} P(B_n)$$

whence this Theorem follows.

Example [urn]

Initially there is one white and one red ball.

A ball is chosen at random and returned to the urn alongside with (always) extra red ball.

Thus when the nth ball is chosen, there are n red and 1 white ball, hence

$$P(n^{th} \text{ chosen ball is red}) = \frac{n}{n+1}$$

Question: What is the probability a white ball is never chosen? (i.e. all chosen balls are red)

Answer: Let B_n be the event that the first n balls are red. Let $B = \bigcap_{i=1}^{\infty} B_i$ be the event of interest (= none white). Note that " B_{n+1} occurs" implies " B_n occurs", that is

$$\omega \in B_{n+1} \Rightarrow \omega \in B_n$$

Hence B_n 's form a decreasing sequence and by continuity of probability

$$P(all\ red)=P(B)=\lim_{n\to\infty}\ P(B_n)$$

Meanwhile
$$P(B_n) = \frac{1}{2} \frac{2}{3} \frac{3}{4} \cdots \frac{n}{n+1} = \frac{1}{n+1}$$

Consequently P(all red)= $\lim_{n\to\infty} 1/(n+1)=0$ that is with probability 1 at least one white ball is chosen (note: can show that actually white is chosen infinitely many times!)

Random variables

A random variable X is a *measurable* function from Ω onto $R=(-\infty,+\infty)$, X: $\Omega \to R$

meaning that for any numbers a and b such that a
 $\{a < X \le b\} \in \mathcal{S}$, that is, $\{a < X \le b\}$ is an event (in fact, then we can show that $\{a < X < b\}$, $\{X \le b\}$, etc. are all events) – beyond the scope of this course.

Note: $\{a < X \le b\}$ is a shortcut for $\{\omega \in \Omega: a < X(\omega) \le b\}$

The (cumulative) distribution function (c.d.f.) of a random variable X is

$$F_X(b)=P(X \le b)=P(\omega \in \Omega: X(\omega) \le b)$$

Example [fair coin tossed 2 times]

 $\omega = (x_1, x_2)$ where each x_i is 0 if i^{th} toss is a tail and =1 if head.

 $\Omega = \{(x_1, x_2): x_i = 0 \text{ or } 1, j = 1, 2\} - 4 \text{ sample points altogether.}$

Let $X(\omega)=x_1+x_2$ – the total number of heads, in fact has Bin(2, ½) distribution

Lemma

Let X be a random variable. Let $F(b)=F_X(b)$ be the cdf of X. Then for any $b \in R$

- $\lim_{n\to\infty} F(b-1/n)=P(X< b)$
- $\lim_{n\to\infty} F(b+1/n)=P(X\leq b)=F(b)$

(that is F is right-continuous with left limits)

<u>Proof of (a)</u>: Let $A_n = \{X \le b-1/n\}$ so that $P(A_n) = F(b-1/n)$. The sequence A_n is an *increasing* sequence of events:

$$\omega\!\!\in\! A_n \iff X(\omega)\!\!\le\!\!b\text{-}1/n \qquad \Rightarrow X(\omega)\!\!\le\!\!b\text{-}1/(n\text{+}1) \Leftrightarrow \omega\!\!\in\! A_{n+1}$$

Let
$$A = \bigcup_{i=1}^{\infty} A_i$$

Note that $\omega \in A \Leftrightarrow X(\omega) \le b-1/n$ for *some* n which is the same as $X(\omega) < b$!

Thus $A = \{X < b\}$

By continuity of probability

$$P(X < b) = P(A) = \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} F(b-1/n)$$

Proof of (b): Let $B_n = \{X \le b+1/n\}$... etc.

Further examples of random variables:

A fair coin is tossed 100 times

$$\omega = (x_1, x_2, ..., x_{100})$$

where each x_j is 0 if i^{th} toss is a tail and =1 if head.

 Ω has 2^{100} equally likely sample points

Set $X_i(\omega) = x_i$ = the outcome of the *j*-th toss.

The event

$$\{X_3=1\}=\{\omega\in\Omega: \omega=(x_1,x_2,1,x_4,...,x_{100}) \text{ each } x_i=0 \text{ or } 1\}$$

has 2⁹⁹ sample points

$$P(X_3=1) = \frac{2^{99}}{2^{100}} = \frac{1}{2}$$
 that is $X_3 \sim Bernoulli(\frac{1}{2})$

Similarly can show that $X_1, X_2, ..., X_{100}$ are independent identically distributed (*iid*) Bernoulli($\frac{1}{2}$) random variables.

Stochastic process

For any set $\Delta \subseteq \mathbb{R}$ collection $\{X_t, t \in \Delta\}$ of random variables is called a stochastic process.

Think of X_t as state of some system at time t. *In our course*, this will often be non-negative integers, i.e. $\Delta = \{0,1,2,...\}$ (or some subset of this set) – discrete time stochastic process.

Example [fair coin is tossed 100 times]

Let $X_t(\omega)$ be the outcome of the t^{th} toss, t=1,2,... 100 Then $\{X_t, t=1,..., 100\}$ is a stochastic process.

Now let $Y_0=0$ and for t=1,2,...,100 let $Y_t=X_1+X_2+...+X_t$ $\{Y_t, t=0,1,..., 100\}$ is also a stochastic process

Note that Y_t is the total number of heads obtained by time t.

Two views of the stochastic process:

$X: \Delta \times \Omega \rightarrow R$

• for a fixed t, it is a random variable $Y_t(\bullet)$. In our case, Y_t has a Binomial(t, $\frac{1}{2}$) distribution, that is for k=0,1,...,t

$$P(Y_{t} = k) = {t \choose k} \left(\frac{1}{2}\right)^{k} \left(1 - \frac{1}{2}\right)^{t-k}$$

• for a fixed ω , it is a function of t, $Y_{\bullet}(\omega)$ (called <u>sample</u> <u>path</u>, or <u>realization of the process</u>). For example, suppose $\omega = (0,1,0,0,1,1,1,0,1,...)$. Then:

<u>Definition</u>: A stochastic process $\{X_t, t=0,1,..., \}$ is called *Markov* process, if for every times t and s such that s>t and any collection of states $(x_1,x_2,...)$

$$P(X_s=x_s \mid X_t=x_t, X_{t-1}=x_{t-1},..., X_0=x_0)=P(X_s=x_s \mid X_t=x_t)$$

Examples:

Both X_t and Y_t in the examples above.

Counterexample:

Let X_0 and X_1 be two independent random variables. For t=2,3,... let $X_t=X_{t-2}$, so that

$$X_1 = X_3 = X_5 = X_7 = \dots$$
 and $X_2 = X_4 = X_6 = X_8 = \dots$

Then the distribution of X_{t+1} given all the past, is different from the distribution of X_{t+1} given X_t (of the latter it is actually independent!)

The strong law of large numbers

First look at coin tossing. Y_{100} is total number of heads in 100 tosses. Using binomial, get $P(40 \le Y_{100} \le 60) \approx 0.95$, that is of 2^{100} sample points of Ω about 95% are such that Y_{100} is between 40 and 60.

Now look at infinite number of tosses of a fair coin.

$$\omega = (x_1, x_2, \dots, x_n, \dots)$$

where each x_i is 0 if j^{th} toss is a tail and =1 if head.

 Ω has uncountable many sample points

Set
$$X_j(\omega)=x_j$$
 = the outcome of the j^{th} toss (1 if head, 0 if tail)

Then there exists (*essentially*) unique prob. measure on Ω such that X_1, X_2, \ldots are iid Bernoulli($\frac{1}{2}$) \leftarrow Kolmogorov's existence theorem (beyond...)

Again, set
$$Y_0=0$$
 and for $t=1,2,...$ set $Y_t=X_1+X_2+...+X_t$

Look at the event
$$A=\{\omega \in \Omega: Y_t(\omega)/t \to \frac{1}{2} \text{ as } t\to \infty \}$$

Can show that P(A)=1, that is $P(\lim_{t\to\infty} Y_t/t = \frac{1}{2})=1$.

Note that " $\lim_{t\to\infty} Y_t / t = \frac{1}{2}$ " in general is *not* true, e.g. take $\omega = (0,0,0,...)$, but the *probability* of these "bad" sample points is zero.

We write this as
$$\underbrace{\frac{Y_t}{t}} \xrightarrow{a.s.} \underbrace{\frac{1}{2}}$$
 ("almost surely")

Convergence almost surely ("a. s.")

Let $X_1, X_2,...$ be a sequence of random variables and X be another random variable.

Let
$$A = \{ \omega \in \Omega : X_t(\omega) \to X(\omega) \text{ as } t \to \infty \}$$

We say that $X_t \to X$ a.s. if P(A)=1

Example [strong law of large numbers]:

<u>Theorem</u>: Let $X_1, X_2,...$ be a sequence of *iid* random variables with finite mean $E(X_i)=\mu$. Then

$$\frac{X_1 + X_2 + \dots + X_N}{N} \xrightarrow{a.s.} \mu$$

when $N \rightarrow \infty$

Proof is beyond the scope (see Grimmett & Stirzaker p. 329 or sign in for *Probability 3*)

Example [construction of uniform [0,1] random variable]

Let $X_1, X_2,...$ be a sequence of iid random variables with

$$P(X_j=0)=P(X_j=1)=...P(X_j=9)=\frac{1}{10}$$

Then the sample space consists of $\omega = (x_1, x_2, ..., x_n, ...)$ where each x_j is 0,1,2,... or 9 (think of digits of a number between 0 and 1, e.g. ___14159265... - what is it?)

For
$$n=1,2,...$$
 let $Y_n=10^{-1} X_1+10^{-2} X_2+...+10^{-n} X_n$

and look at stochastic process $\{Y_n, n=1,2,...\}$

Observe that

 Y_1 is equally likely to take any value $\in \{0, 0.1, 0.2, \dots, 0.9\}$

 Y_2 is equally likely ... $\{0, 0.01, 0.02, ..., 0.99\}$

 Y_3 is equally likely ... $\{0, 0.001, 0.002, ..., 0.998, 0.999\}$ etc.

$$Y_n$$
 is equally likely $\{0, 1 \times 10^{-n}, 2 \times 10^{-n}, \dots, 0.99 \dots 99 = 1 - 10^{-n}\}$

Looks like Y_n converges to a uniform [0,1] random variable!

Let us just prove that Y_n indeed converges.

This is true, since for every $\omega \in \Omega$

$$Y_n(\omega)$$
 is non-decreasing;
for any n, $Y_n(\omega) \le 9 \times 10^{-1} + 9 \times 10^{-2} + ... + 9 \times 10^{-n} = 0.99...9 < 1$

Denote the limit (which in fact always exist, not just a.s.) as $Y(\omega)$.

Can show that $Y \sim U[0,1]$

Probability Generating Functions

X r.v. taking values in $\{0,1,2,3,\ldots\}$

<u>Definition</u>: The p.g.f. of X is the function $G_X:[-1,1] \rightarrow R$ given by

$$G_X(s) = E(s^X) \equiv \sum_{k=0}^{\infty} P(X=k) s^k$$

Property: $G_X(1) = \sum_{k=0}^{\infty} P(X=k) = 1$

Relation to MGF (Moment Generating Function):

$$M_X(t) = E[e^{tX}] = E[(e^t)^X] = G_x(s) = G_x(e^t)$$

where we set $s=e^t$ (s>0)

Thus $G_X(s)=M_X(\log s)$

Example [X \sim Poisson(λ)]

$$G_X(s) = \sum_{k=0}^{\infty} e^{-\lambda} \lambda^k / k! \times s^k = e^{-\lambda} \times \sum_{k=0}^{\infty} (\lambda s)^k / k!$$
$$= e^{-\lambda} \times e^{\lambda s} = e^{\lambda(s-1)}$$

Example [$X \sim Bin(n,p)$]

$$G_X(s) = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} \times s^k = \sum_{k=0}^{n} \binom{n}{k} (ps)^k q^{n-k} = (ps+q)^n$$

PGF is a useful encoding of the distribution of X, alternative to p.m.f.

<u>Theorem</u> [uniqueness]: Let X and Y be two non-negative integer random variables with $G_X(s) = G_Y(s)$ for all $s \in [-1,1]$. Then the distribution of X and Y are the same, i.e. P(X=k) = P(Y=k) for k=0,1,2,...

<u>Decoding</u>: how do we get p.m.f. (prob. mass func.) from G(s)?

Answer: simply expand G(s) as a power series of s. The coefficient on s^k is $p_k = P(X=k)$

Example:

Suppose we are given that $G_X(s) = \frac{ps}{1 - (1 - p)s}$ where 0<p<1. What is the distribution of X?

A: Set q=1-p. Then
$$G(s) = ps(1-qs)^{-1}=ps(1+qs+q^2s^2+q^3s^3+...)$$

= $0\times s^0 + p\times s^1 + pq\times s^2 + pq^2\times s^3 + pq^3\times s^4 + ...$
so that

$$P(X=0) = 0$$

 $P(X=1) = p$
 $P(X=2) = pq^{1}$
 $P(X=3) = pq^{2}$
...
 $P(X=k) = pq^{k-1}$ k>0

So that X~Geom(p)

<u>Lemma</u>:[mean and variance] Let X have pgf $G(s)=G_X(s)$. Then E[X]=G'(1)

$$Var(X) = G''(1) + G'(1) - [G'(1)]^{2}$$

Proof:

(a)
$$G(s) = \sum_{k=0}^{\infty} P(X=k) s^{k}$$
, so that $G'(s) = \sum_{k=0}^{\infty} P(X=k) \times k s^{k-1}$

Hence $G'(1) = \sum_{k=1}^{\infty} P(X=k) \times k = E X$

(b)
$$G''(s) = \sum_{k=0}^{\infty} P(X=k) \times k (k-1) s^{k-2}$$

Hence
$$G''(1) = \sum_{k=2}^{\infty} P(X=k) \times k(k-1) = E[X(X-1)] = EX^2 - EX$$

and
$$Var(X) = EX^2 - (EX)^2 = G''(1) + EX - (EX)^2$$

= $G''(1) + G'(1) - [G'(1)]^2$

QED

Example [mean and variance of Poisson] $X\sim Pois(\lambda)$, then $G(s)=e^{\lambda(s-1)}$

$$\Rightarrow G'(s) = \lambda e^{\lambda(s-1)}, \qquad G''(s) = \lambda^2 e^{\lambda(s-1)}$$
$$\Rightarrow G'(1) = \lambda, \qquad G''(1) = \lambda^2$$

Hence EX= λ and Var(X) = $\lambda^2 + \lambda - \lambda^2 = \lambda$

<u>Theorem</u> [sum of independent r.v.]: Suppose X and Y are independent random variables with pgf's $G_X(s)$ and $G_Y(s)$ respectively. Then if Z=X+Y, $(|s| \le 1)$

$$G_Z(s) = G_X(s) \times G_Y(s)$$

<u>Proof</u>: let $s \in [-1,1]$. Since X and Y are independent, so are s^X and s^Y .

Thus
$$G_Z(s) = E s^Z = E s^{X+Y} = E (s^X \times s^Y)$$

= $(E s^X) \times (E s^Y) = G_X(s) \times G_Y(s)$

by independence

<u>Corollary</u>: Let $X_1, X_2,... X_n$ be independent r.v. and set $Z=X_1+X_2+...+X_n$

Then

$$G_{Z}(s) = \prod_{k=1}^{n} G_{X_{k}}(s)$$

Application [sum of Poisson r.v.]

Recall that if $X \sim Poisson(\lambda)$ then $G_X(s) = e^{\lambda(s-1)}$ Let X_k be independent with $X_k \sim Poisson(\lambda_k)$ and let $Z = X_1 + X_2 + ... + X_n$. Then

$$G_{Z}(s) = \prod_{k=1}^{n} G_{X_{k}}(s) = \prod_{k=1}^{n} e^{\lambda_{k}(s-1)} = e^{\left(\sum_{k=1}^{n} \lambda_{k}\right)(s-1)}$$

 \Rightarrow Z~Pois($\Sigma \lambda_k$) by uniqueness of pgf

Compound distribution

Let $X_1, X_2,...$ be an infinite sequence of non-negative integer-valued i.i.d. r.v. and let N be a non-negative random variable independent of them all.

Set
$$T=X_1+X_2+...+X_N$$
 with $T=0$ whenever $N=0$.

(e.g. N is number of insurance claims per year, X_k is the value of the claim, T=total sum payable)

<u>Theorem</u>: denote pgf of X_k 's as $G_X(s)$. Then

$$G_T(s) = G_N(G_X(s)),$$
 $|s| \le 1$

Proof:
$$G_T(s)=E s^T = \sum_{n=0}^{\infty} E(s^T \mid N=n) P(N=n)$$

Yet

$$E(s^{T} \mid N = n) = E(s^{X_{1} + X_{2} + \dots + X_{N}} \mid N = n) = E(s^{X_{1} + X_{2} + \dots + X_{n}})$$

= $G_{X_{1} + X_{2} + \dots + X_{N}}(s) = [G_{X}(s)]^{n}$

since N is independent of X_k 's and X_k 's are independent.

Thus
$$G_T(s) = \sum_{n=0}^{\infty} [G_X(s)]^n P(N=n) = E [G_X(s)]^N = G_N (G_X(s))$$

In conditional expectation language, $E(s^T|N) = [G_X(s)]^N$ and $E s^T = E [G_X(s)]^N = G_N(G_X(s))$

Example: Suppose the number N of eggs laid by

has a Poisson distribution with mean λ .

Suppose each

independently of other eggs and their quantity. Find the distribution of the total number of eggs that hatch.

Solution:

Let N be the total number of eggs laid. Let $X_k=1$ if the egg number k hatches and =0 otherwise.

Then the total number of eggs hatching is

$$T = \begin{cases} 0 & N = 0 \\ X_1 + X_2 + \dots + X_N & N \ge 1 \end{cases}$$

Now

$$t:=G_X(s)=(1-p)+ps$$
 /for Bernoulli/

$$G_N(t)=e^{\lambda(t-1)}$$
 /for Poisson/

So
$$G_T(y) = G_N(G_X(s)) = G_N((1-p)+ps) = e^{\lambda[(1-p)+ps-1]} = e^{\lambda p(s-1)}$$

 \Rightarrow T ~ Poisson(λp) by uniqueness theorem.

Chapter 0: total 5 lectures, 4 slides per lecture

1. Branching processes

Model of population growth

Each individual in generation j produces a random number of off-springs with common p.m.f. $\{p_k\}$ independently of the others

 $j+1^{st}$ generation are the off-springs of generation j

Examples:

Male off-springs of a man (surnames)
Neutron strikes a nucleus producing a number of further neutrons out of the nucleus (chain reaction)
Growth of the number of a mutant gene in a population

Let N_j be the number of individuals in generation j, and suppose $N_0=1$.

Example of the number of off-springs Bin(3, $\frac{1}{2}$) Then p₀= 1/8, p₁=3/8, p₂=3/8, p₃=1/8

Questions:

What is the distribution of N_j , $j \ge 1$? What about $E(N_j)$, $Var N_j$?

What is the behaviour of N_j as $j\rightarrow\infty$? In particular, what is the probability that the population dies out? If it does not die out, how can we describe its asymptotic growth rate?

Representation of N_i

Members of generation j are the off-springs of generation j-1

For $k=1,2...N_{j-1}$ let Z_k be the number of children of member k in generation (j-1), these r.v.'s are independent and have the same distribution as N_1

Then

$$(1.1) N_j = Z_1 + Z_2 + ... + Z_{N_{j-1}}$$

Members of generation j are descended from members of generation 1

For $k=1,2...N_1$ let W_k be the number of members of generation j who descended from member k in generation 1. These r.v.'s are independent and have the same distribution as N_{j-1}

Then

$$(1.2) N_j = W_1 + W_2 + ... + W_{N_1}$$

Mean population size

Let $\mu = \sum_{k=0}^{\infty} kp_k =$ be the mean number of off-springs produced by one individual

Note E $N_1 = \mu$ since $N_0 = 1$

$$E N_j = \Sigma_{k=0}^{\infty} E(N_j | N_{j-1} = k) \times P(N_{j-1} = k)$$

By (1.1)

$$\begin{split} &E(N_{j} \mid N_{j-1} = k) = E(Z_{1} + Z_{2} + ... + Z_{N_{j-1}} \mid N_{j-1} = k) \\ &= E(Z_{1} + Z_{2} + ... + Z_{k} \mid N_{j-1} = k) = E(Z_{1} + Z_{2} + ... + Z_{k}) \\ &= kEZ_{i} = k\mu \end{split}$$

since Z_j 's are iid with mean μ . Consequently

E
$$N_j = \Sigma_{k=0}^{\infty} \mu k \times P(N_{j-1} = k) = \mu \Sigma_{k=0}^{\infty} k P(N_{j-1} = k) = \mu E N_{j-1}$$

By induction, iterating this formula we get

$$\to N_j = \mu \to N_{j-1} = \mu^2 \to N_{j-2} = \mu^3 \to N_{j-3} = \dots = \mu^{j-1} \to N_1 = \mu^j$$

Exercise: obtain this from (1.2), not (1.1)!

Probability generating function of N_i

Let $G(s) = \sum_{k=0}^{\infty} p_k s^k$ be the p.g.f. of the offspring distribution of 1 individual, $s \in [-1,1]$

Denote
$$G_i(s)=G_{Ni}(s)=E_i s^{Nj}$$
 the pgf of N_i

Note that $N_0=1$ and hence N_1 has the same distribution as the number of off-spring of 1 individual, so that $G_1(s)\equiv G(s)$

For $j \ge 2$ look at (1.1)

$$N_j = Z_1 + Z_2 + ... + Z_{N_{j-1}}$$

Then by theorem (about p.g.f. of compound distr.)

$$G_{N_j}(s) = G_{N_j-1}(G_Z(s)) = G_{j-1}(G(s))$$

since
$$G_{Nj} \equiv G_j$$
, $G_{Nj-1} \equiv G_{j-1}$, $G_Z \equiv G$

So

$$G_j(s) = G_{j-1}(G(s))$$

which can be expanded as

$$G_j(s) = G(G(G(...(G(s)))))$$

Hence also $G_j(s) = G(G_{j-1}(s))$ which can be obtained directly from (1.2):

$$N_{j} = W_{1} + W_{2} + ... + W_{N_{1}}$$

$$\Rightarrow G_{N_{j}}(s) = G_{N_{1}}(G_{W}(s)) = G(G_{N_{j-1}}(s)) = G(G_{j-1}(s))$$

Example [off-spring distribution $Bin(3, \frac{1}{2})$]

$$p_0 = \frac{1}{8}$$
 $p_1 = \frac{3}{8}$ $p_2 = \frac{3}{8}$ $p_3 = \frac{1}{8}$

$$G(s) = \left(\frac{1}{2} + \frac{1}{2}s\right)^3 = \frac{(1+s)^3}{8} = G_1(s)$$

$$G_2(s) = G(G(s)) = \left(\frac{1}{2} + \frac{1}{2}G(s)\right)^3 = \frac{\left[1 + \left(\frac{1+s}{8}\right)^3\right]^3}{8}$$

$$G_3(s) = G(G(G(s))) = \left(\frac{1}{2} + \frac{1}{2}G_2(s)\right)^3 = \frac{\left[1 + \left(\frac{1+s}{8}\right)^3\right]^3}{8}$$

Nevertheless – useful!

Lemma: Let $\mu=E N_1$ and let $\sigma^2=Var N_1$. Then:

(a)
$$EN_i = \mu^j$$

(b)
$$Var(N_j) = \begin{cases} \frac{\sigma^2 \mu^{j-1} (\mu^j - 1)}{\mu - 1} & \mu \neq 1 \\ j\sigma^2 & \mu = 1 \end{cases}$$

Proof:

Using generating functions.

Know:
$$E N_i = G_i'(1)$$
, $E N_1 = G_1'(1) = G'(1) = \mu$

Since $G_i(s) = G_{i-1}(G(s))$

$$\Rightarrow [G_i(s)]' = [G_{i-1}(G(s))]' = G'_{i-1}(G(s)) \times G'(s) \qquad (chain \ rule)$$

Now E
$$N_j = G_j'(1)$$
 = $G'_{j-1}(G(1)) \times G'(1)$
 $(G(1)=1, EX=G_X'(1))$
= $G'_{j-1}(1) \times \mu$
= $(E N_{j-1}) \times \mu$

and by iterations $E N_i = \mu^j$ as before

(b) Var
$$N_i = G_i''(1) + G_i'(1) - [G_i'(1)]^2 = G_i''(1) + \mu^j - \mu^{2j}$$

while

$$G_{j}''(s) = [G_{j}'(s)]' = [G'_{j-1}(G(s)) \times G'(s)]'$$

$$= G''_{j-1}(G(s)) \times G'(s)^{2} + G'_{j-1}(G(s)) \times G''(s)$$

Now plug in s=1 ...

Extinction Probabilities

Let A_j be the event $\{N_j=0\}$ - i.e. population extinct by generation j.

Let $e_j = P(A_j) = P(N_j = 0)$ be the probability of extinction by generation j

Let $A = \bigcup_{i=1}^{\infty} A_i$ be the event that the population is extinct *eventually*.

Let e=P(A) be the probability of eventual extinction

Lemma:

- a) $e_n \le e_{n+1} \le e_{n+2} \le ...$
- *b*) $e = \lim_{n \to \infty} e_n$

<u>Proof</u>: Note that $A_n \subseteq A_{n+1}$ for all n, i.e. $N_n = 0 \Rightarrow N_{n+1} = 0$

thus
$$e_i = P(A_i) \le P(A_{i+1}) = e_{i+1}$$

by continuity of probability

$$P(A) = P(\bigcup_{i=1}^{\infty} A_i) = \lim_{n\to\infty} P(A_n) = \lim_{n\to\infty} e_n$$

Lemma:

For
$$n \ge l$$
, $e_n = G(e_{n-l})$
 $e = G(e)$

Furthermore, e is the smallest non-negative root of the equation s=G(s)

Note that s=1 is always a solution of this equation!

Proof:

By definition
$$G_j(s) = \sum_{k=0}^{\infty} P(N_j = k) s^k$$

Hence
$$e_i = P(N_i = 0) = G_i(0)$$
 for all j.

By recursion,
$$G_i(s) = G(G_{i-1}(s))$$
 so $e_i = G_i(0) = G(G_{i-1}(0)) = G(e_{i-1})$

By previous lemma,

$$e = \lim_{n \to \infty} e_n = \lim_{n \to \infty} G(e_{n-1}) = G(\lim_{n \to \infty} e_{n-1}) = G(e)$$

since G(s) is continuous.

Note that G(s) is an increasing function of s when $s \ge 0$. Suppose that $s \ge 0$ satisfies equation s = G(s).

Since
$$e_0=0$$
 we have $e_0 \le s$
If $e_n \le s$ then $e_{n+1} = G(e_n) \le G(s) = s \implies e_{n+1} \le s$

Consequently by induction for all n, $e_n \le s$,

whence
$$e = \lim_{n \to \infty} e_n \le s$$

Therefore $0 \le e = G(e)$ and also $e \le$ any positive solution of s=G(s). This can happen only if e is the smallest positive solution.

Example: $[N_1 \sim Bin(3, \frac{1}{2})]$

$$G(s)=(1+s)^3/8$$

$$e_0 = 0$$

$$e_1 = G(e_0) = (1+0)^3/8 = 0.125$$

$$e_2=G(e_1)=(1+0.125)^3/8=0.178...$$

$$e_2$$
=G(e_1)= (1+0.125)³/8=0.178...
 e_3 =G(e_2)= (1+0.178...)³/8=0.2043...

$$e_4$$
=0.2183

$$e_5 = 0.2261$$

$$e_6$$
=0.2304

$$\dots e = \lim_{n \to \infty} e_n$$

Equation $s = G(s) = (1+s)^3/8$

$$\Rightarrow$$
 8s=1+3s+3s²+s³ \Rightarrow 1-5s+3s²+s³=0 (s-1)(s²+4s-1)=0

$$s=1 \text{ or } s=(-4+[16\pm4]^{0.5})/2$$

$$s \in [-4.23..., 0.23607..., 1]$$

The smallest non-negative solution is $e=0.23607...=-2+\sqrt{5}$

Alternative (heuristic) motivation of the equation G(e)=e

Suppose these are k members of generation 1. Then the possibility the entire population becomes extinct is e^k . Thus

$$e = \sum_{k=0}^{\infty} P(\text{extinction} \mid N_1 = k) P(N_1 = k)$$

= $\sum_{k=0}^{\infty} e^k P(N_1 = k) = G(e)$

Thus e=G(e).

Sub- and super critical processes

Let $\mu = \sum_{k=0}^{\infty} kp_k$ = be the mean number of off-springs produced by one individual

Definition:

- (a) if $\mu=1$ the process is a *critical* branching process
- (b) if μ <1 sub-critical
- (c) if $\mu>1$ super-critical

Lemma:

Suppose $p_1 \neq 1$. Then:

if $\mu \le 1$ then e=1

if $\mu > 1$ then e < 1

<u>Proof</u>: Look at the properties of G(s) for $0 \le s \le 1$.

$$G(0)=p_0$$

$$G(1)=1$$

$$G'(s) = \sum_{k=1}^{\infty} k s^{k-1} p_k \ge 0$$

$$G''(s) = \sum_{k=2}^{\infty} k(k-1)s^{k-2}p_k \ge 0$$

Now $G'(1) = \sum_{k=1}^{\infty} kp_k = \mu$ and since $G''(s) \ge 0$ we have that G'(s) is increasing

$$G'(s) \le G'(1)$$
 for $0 \le s \le 1$.
 $G'(s) \le \mu$ for $0 \le s \le 1$

Case A μ <1

Then G(1)=1 and $G'(s) \le \mu < 1$. Hence

$$1 - G(a) = \int_{a}^{1} G'(s) ds < \int_{a}^{1} 1 ds = 1 - a$$

And so G(s)>s for $0 \le s < 1$. Thus there is no solution for $s \in [0,1)$ of the equation s=G(s) and therefore the smallest non-negative solution is s=1. So e=1.

Case B $\mu=1$

Since $p_1 \neq 1$ we must have $p_k > 0$ for some $k \geq 2$ and hence G''(s) > 0 for $s > 0 \Rightarrow G'(s)$ is strictly increasing for $s > 0 \Rightarrow G'(s) < G'(1) = 1$ for $0 \leq s < 1$ and by the same argument G(s) > s for $0 \leq s < 1$. Thus ...

Case C $\mu > 1$

Then $G'(1) = \mu > 1$ and therefore by Taylor expansion for $s = 1 - \epsilon < 1$ (i.e. $\epsilon > 0$), we have

$$G(s) = G(1-\epsilon) = G(1) - G'(1)\epsilon + o(\epsilon) = 1 - \mu \epsilon + o(\epsilon) < 1 - \epsilon = s$$

when $\varepsilon > 0$ is sufficiently small

Therefore, for *s* sufficiently close to 1, G(s)–s<0, and at the same time G(0)–0≥0.

By continuity of G(s)—s, there must be an $s \in [0,1-\varepsilon)$ such that G(s)=s and therefore the smallest non-negative root e < 1.

Summary

If
$$\mu$$
<1 then
E N_j \rightarrow 0
Var N_j \rightarrow 0
 e =1 i.e. N_j \rightarrow 0 a.s.

Sub-critical

If
$$\mu$$
=1 then
E N_j=1
Var N_j= $j\sigma^2 \rightarrow \infty$
 e =1 \Rightarrow N_j \rightarrow 0 a.s.

Critical

If
$$\mu>1$$
 then
 $E N_j \rightarrow \infty$
 $Var N_j \rightarrow \infty$
 $e<1 \Rightarrow P(N_j \rightarrow 0)<1$

Super-critical

Chapter 1: total 3 lectures, 4 slides per lecture

2. The Poisson Process

Revision of the Poisson distribution

Recall: a random variable X has a $Poisson(\lambda)$ distribution if it has a p.m.f. (k=0,1,2,...)

$$P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Properties:

$$EX = \lambda$$

 $Var X = \lambda$

Poisson distribution can be viewed as a limit of Binomial:

Let $X \sim Bin (n,p)$ where p is small and n is large

Set $\lambda = np$; then (approximately) $X \sim Poisson(\lambda)$

To be more precise, fix k. Now let $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that $np = \text{constant } = \lambda$

Then

$$P(X=k) = \binom{n}{k} p^k \left(1-p\right)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^n \left(1-\frac{\lambda}{n}\right)^{-k}$$

Yet, when $n \rightarrow \infty$

$$(1) \qquad \frac{n !}{(n-k)!n^k} = \frac{n(n-1)(n-2)...(n-k+1)}{n^k} = 1\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\cdots\left(1 - \frac{k-1}{n}\right) \to 1$$

(2)
$$\left(1 - \frac{\lambda}{n}\right)^{-k} \to 1$$
 (3) $\left(1 - \frac{\lambda}{n}\right)^n \to e^{-\lambda}$

Therefore

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \to \frac{\lambda^k e^{-\lambda}}{k!} \quad as \quad n \to \infty$$

Examples of Poisson rv's

(a) Number of decays of radioactive source in 1minute time

(c) Number of people who fell from a camel in Sahara in 1 day

Revision of exponential distribution

A random variable $X \sim \exp(\lambda)$ if it has a continuous distribution with density

$$f_X(x) = \begin{cases} 0 & x \le 0 \\ \lambda e^{-\lambda x} & x > 0 \end{cases}$$

Thus for x>0

$$F_X(x) = \int_{-\infty}^x f_X(u) du = \int_0^x \lambda e^{-\lambda u} du = 1 - e^{-\lambda x}$$

and
$$P(X>h) = e^{-\lambda h}$$

Lack of memory property

Let x>0, h>0. Then
$$P(X>x+h \mid X>x) = P(X>h) = e^{-\lambda h}$$

Motivation for exponential distribution as waiting time

Take h>0 small, and suppose $x \ge 0$ $0 \qquad x \qquad x+h$

Assume a random variable X has the property

$$P(X \in (x,x+h] \mid X > x) = \lambda h + o(h)$$

 $\Rightarrow P(X > x+h \mid X > x) = 1 - \lambda h + o(h)$

Look at the distribution of X:

Let g(x)=P(X>x)

Then g(x+h)=P(X>x+h)

$$= P(X > x + h \mid X > x) P(X > x) + P(X > x + h \mid X \le x) P(X \le x)$$

$$=(1 - \lambda h + o(h)) g(x) = (1 - \lambda h) g(x) + o(h)$$

$$g(x+h) - g(x) = -\lambda h g(x) + o(h)$$

$$\Rightarrow \frac{g(x+h) - g(x)}{h} = -\lambda g(x) + o(1)$$

whence $g'(x) = -\lambda g(x)$. Initial condition: g(0) = P(X > 0) = 1.

We have

$$\frac{g'(x)}{g(x)} = -\lambda \implies \frac{d}{dx} \log(g(x)) = -\lambda \implies \log g(x) = -\lambda x + C$$

Taking into account that g(0)=1, we have C=0 and thus $g(x) = P(X>x) = e^{-\lambda x}$

Examples of exponential rv's:

- (a) Time to wait for an atom to decay
- (b) Time to wait for an appendicitis case to arrive to the BRI
- (c) Time to wait for the next person to fall from a camel

Minimum of independent random variables

Let $X \sim exp(\lambda)$ and $Y \sim exp(\mu)$ be independent. $(\lambda, \mu > 0)$

Example:

Y time to wait for No 42 bus

Both go on the same route. How long do you have to wait for the first of them to come?

Time to wait W = min(X,Y)

Let $t \ge 0$.

$$P(W>t) = P(\min(X,Y)>t) = P(X>t \text{ and } Y>t)$$
(independent)
$$= P(X>t) \times P(Y>t) = e^{-\lambda t} \times e^{-\mu t} = e^{-(\lambda+\mu)t}$$

 $W \sim \exp(\lambda + \mu)$

Alternative (heuristic) approach:

Suppose no bus arrived by time t.

```
P( W ∈ [t,t+h] | W > t ) = 1- P( W > t+h | W > t ) 

= 1- P( X > t+h | W > t ) × P( Y > t+h | W > t ) 

= 1- (1-\lambda h + o(h)) × (1-\mu h + o(h)) = 1-[1-(\lambda + \mu)h + o(h)] 

= (\lambda + \mu) h + o(h)

So W~exp(\lambda + \mu)

Also suppose no bus by time t –take it as given.

Let A_{41} = \{ \text{ No 41 arrives diring } (t,t+h) \} 

A_{42} = \{ \text{ No 42 arrives diring } (t,t+h) \} 

A_F = \{ \text{ any of them arrives diring } (t,t+h) \} = A_{41} \cup A_{42}

Then

P(A_{41})=\lambda h+o(h)

P(A_{42})=\mu h+o(h)

P(A_{F})= P(A_{41}) + P(A_{42}) – P(A_{41}) ∩ A<sub>42</sub>)
= P(A_{41}) + P(A_{42}) – P(A_{41}) P(A_{42}) = (\lambda + \mu)h+o(h)
```

Hence

$$P(A_{41}|A_F) = \frac{P(A_F|A_{41})P(A_{41})}{P(A_F)} = \frac{1 \times (\lambda h + o(h))}{(\lambda + \mu)h + o(h)}$$
$$= \frac{\lambda}{\lambda + \mu} + o(h) \to \frac{\lambda}{\lambda + \mu}$$

So if we let $h\rightarrow 0$, the probability that the first bus to arrive is No 41 converges to $\lambda/(\lambda+\mu)$ (and to $\mu/(\mu+\lambda)$ for bus No 42)

In fact, this is independent of the waiting time W!

Further example [Lump of radioactive material]

n atoms

Each atom decays after $exp(\lambda_l)$ waiting time independently of the others.

Let T be the time to 1st decay. Then

$$T \sim exp(\lambda)$$
 where $\lambda = n\lambda_1$

Suppose there was no decay by time t.

Look what happens during time (t,t+h), where h>0 is small:

P(no decay)=
$$(1-\lambda_1 h + o(h))^n = 1-n\lambda_1 h + o(h)=1-\lambda h + o(h)$$

P(exactly one decay)=
$$n \times (\lambda_l h + o(h)) \times (1 - \lambda_l h + o(h))^{n-1}$$

= $n\lambda_l h + o(h) = \lambda h + o(h)$

P(more than one decay)= 1-P(exactly one decay) - P(no decay)= $1-[\lambda h + o(h)] - [1-\lambda h + o(h)] = o(h)$.

After 1st decay, we have (n-1) atoms left. Thus the next decay occurs in $exp(\lambda)$ – distributed time where

$$\lambda' = (n-1)\lambda_1 = \frac{n-1}{n}\lambda \approx \lambda$$
, provided n is large.

So we can ignore the fact that $\lambda' \neq \lambda$, and suppose that the next decay again occurs in a random time distributed $\sim exp(\lambda)$, etc.

Definition of Poisson Process

Continuous-time stochastic process [N(t), $t \ge 0$]

Recall: $\Delta \subseteq R$, $\{X_t, t \in \Delta\}$, here we have $\Delta = R_+ = [0, +\infty)$

N(t) counts the number of events (e.g. arrivals) to have occurred by time t. Rate of occurring of the events is $\lambda=const>0$ and is independent of anything

Example: radioactive decay of a large chunk of U²³⁸ by time *t* Example: cars arriving at petrol station

2.1 Introduction

<u>Definition</u>: Let $[N(t), t \ge 0]$ be a stochastic process such that

- (i) N(t) is a non-negative integer $\forall t \ge 0$
- (ii) N(0) = 0
- (iii) The process has stationary and independent increments
- (iv) $P(N(t+h)-N(t) = 0) = 1-\lambda h + o(h) \text{ as } h \downarrow 0$
- (v) $P(N(t+h)-N(t) = 1) = \lambda h + o(h)$ as $h \downarrow 0$

$$\Rightarrow$$
 P (N(t+h)-N(t) \geq 2) = o(h) as h \downarrow 0

Then $[N(t); t \ge 0]$ is a Poisson process of rate λ

Explanation of (iii): for any $n \ge 2$ and any collection of times

$$0 \le t_0 < t_1 < t_2 < \dots < t_n$$

random variables

$$N(t_1)-N(t_0), \quad N(t_2)-N(t_1), \quad ..., \quad N(t_n)-N(t_{n-1})$$
 are independent;

N(t+s)-N(s) has the same distribution for all s > 0 (which depends on t only).

Theorem: for t≥0, $N(t)\sim Poisson(\lambda t)$, i.e.

$$P(N(t)=k)=e^{-\lambda t}\frac{(\lambda t)^k}{k!}$$

Note: hence $\mathbb{E} \ N(t) = \lambda t = Var N(t)$, so the expected number of events to arrive by time t is λt .

Also, since N(0)=0, and the increments are stationary,

$$N(t+h) - N(t) \sim N(h) - N(0) \sim N(h) \sim Poisson(\lambda h)$$

i.e. number of events to arrive on any time interval [t,t+h] is Poisson with average = λh .

Proof: Let
$$p_n(t) = P(N(t) = n)$$
, $n = 0, 1, 2, ...$

Now
$$p_0(t+h) = P(N(t+h)=0) = P(N(t)=0 \text{ and } N(t+h)-N(t)=0)$$

(independence of the increments)

$$= P(N(t)=0) \times P(N(t+h)-N(t)=0)$$
(axiom iv)

$$= p_0(t) \times (1 - \lambda h + o(h))$$

as $h \rightarrow 0$.

Hence

$$\frac{p_0(t+h) - p_0(t)}{h} = -\lambda p_0(t) + o(1)$$

$$\Rightarrow p_0'(t) = -\lambda p_0(t) \tag{(4)}$$

Now let $n \ge 1$.

$$p_n(t+h) = P(N(t+h)=n) = P(N(t)=n \text{ and } N(t+h)-N(t)=0)$$

+ $P(N(t)=n-1 \text{ and } N(t+h)-N(t)=1)$
+ $P(N(t)=n-2 \text{ and } N(t+h)-N(t)=2)$

+...

Because of (iv) and (v), all terms except the first two, are o(h)

and hence by independence of the increments

$$p_{n}(t+h) = P(N(t)=n) \times P(N(t+h)-N(t)=0)$$
+ $P(N(t)=n-1) \times P(N(t+h)-N(t)=1) + o(h)$

$$= p_{n}(t) (1-\lambda h+o(h)) + p_{n-1}(t) (\lambda h+o(h)) + o(h)$$

$$= p_{n}(t) (1-\lambda h) + \lambda h p_{n-1}(t) + o(h)$$

Consequently,

$$\frac{p_n(t+h)-p_n(t)}{h} = -\lambda p_n(t) + \lambda p_{n-1}(t) + o(1)$$
and
$$p'_n(t) + \lambda p_n(t) = \lambda p_{n-1}(t)$$

$$(... *)$$

We want to solve (*) and (**) subject to

$$p_0(0)=1$$
 $(***)$ $p_n(0)=0, n \ge 1.$

Observe that (*) gives $p_0(t)=Ae^{-\lambda t}$, and taking into account (**) we get A=1 so $p_0(t)=e^{-\lambda t}$.

At the same time (**) gives

$$\frac{d}{dt} \left(e^{\lambda t} p_n(t) \right) = \lambda \times e^{\lambda t} p_{n-1}(t)$$

If we denote

$$q_n(t) := e^{\lambda t} p_n(t)$$

the differential equation becomes

$$q'_n(t) = \lambda q_{n-1}(t)$$

...whence

$$q_n(t) = \lambda \int_0^t q_{n-1}(s) ds + const_n$$

We have $q_0(t) = e^{\lambda t} p_0(t) \equiv 1$, and also $q_n(0) = 0 \implies const_n = 0$

Therefore

$$q_1(t) = \lambda \int_0^t q_0(s) ds = \lambda \int_0^t 1 ds = \lambda t$$

$$q_2(t) = \lambda \int_0^t q_1(s) ds = \lambda \int_0^t \lambda s ds = \frac{\lambda^2 t^2}{2!}$$

. . .

$$q_n(t) = \lambda \int_0^t q_{n-1}(s) ds = \lambda \int_0^t \frac{\lambda^{n-1} s^{n-1}}{(n-1)!} ds = \frac{\lambda^n t^n}{n!}$$

Hence

$$P(N(t)=n) = p_n(t) = e^{-\lambda t} \times q_n(t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$
QED

2.2. Inter arrival times

 T_1 time to 1^{st} event, $T_1=\inf\{t \ge 0: N(t) > 0\}$

Then
$$\{T_1>t\} = \{N(t)=0\}$$

Hence $P(T_1>t)=P(N(t)=0)=e^{-\lambda t}$ since $N(t) \sim Poisson(\lambda t)$.

Thus
$$T_1 \sim \text{Exp}(\lambda)$$
, $E T_1 = 1/\lambda$

Let T_n be the time of the n^{th} event.

$$T_n = \inf \{ t \ge 0 : N(t) = n \}$$

Let
$$X_1=T_1$$
, $X_2=T_2-T_1$, $X_3=T_3-T_2$, $X_n=T_n-T_{n-1}$

be the sequence of the inter-arrival times.

Look at X_n .

$$P(X_n>x \mid T_{n-1}=t) = P(N(t+x)-N(t)=0 \mid T_{n-1}=t)$$

= $P(N(t+x)-N(t)=0)$

by independence of the increments.

But $N(t+x)-N(t) \sim Poisson(\lambda x)$ and thus $P(N(t+x)-N(t)=0)=e^{-\lambda x}$

Hence $P(X_n>x \mid T_{n-1}=t) = e^{-\lambda x}$ and this is independent of t and

Therefore X_n is independent of T_{n-1} . Similarly, can show that

$$P(X_n>x \mid T_{n-1}=t_{n-1}, T_{n-2}=t_{n-2}, ..., T_1=t_1) = e^{-\lambda x}$$

and X_n is independent of $T_1, T_2, ..., T_{n-1}$.

 \Rightarrow X_n is independent of X₁, X₂, ..., X_{n-1}

 \Rightarrow X₁, X₂, ..., are iid Exp(λ) random variables.

$$T_n=X_1+X_2+...X_n \sim Gamma(n,\lambda)$$

Recall: its density is

$$f_{T_n}(t) = p_{n,\lambda}(t) = \begin{cases} \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!}, & t > 0 \\ 0 & t \le 0 \end{cases}$$

Can show directly as follows:

$$\{ T_n \le t \} = \{ N(t) \ge n \}$$

$$\Rightarrow P(T_n \le t) = P(N(t) \ge n) = \sum_{j=n}^{\infty} e^{-\lambda t} (\lambda t)^j / j!$$

Hence the density

$$f_{T_n}(t) = \frac{d}{dt} P(T_n \le t) = \sum_{j=n}^{\infty} \left[e^{-\lambda t} \frac{\lambda^j j t^{j-1}}{j!} - \lambda e^{-\lambda t} \frac{\lambda^j t^j}{j!} \right]$$

$$= \lambda e^{-\lambda t} \sum_{j=n}^{\infty} \left[\frac{(\lambda t)^{j-1}}{(j-1)!} - \frac{\lambda^{j} t^{j}}{j!} \right] = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} = \frac{\lambda^{n} t^{n-1} e^{-\lambda t}}{(n-1)!}, \quad t > 0$$

Summary

N(t+h) - N(t) = number of events in interval [t, t+h]~ Poisson (λh)

Inter-arrival times $X_1, X_2, ...$, are i.i.d. $Exp(\lambda)$ random variables

Time of n^{th} arrival $T_n \sim \text{Gamma}(n,\lambda)$

Example of Poisson process – decay example or death example

Conditional distribution

Suppose N(t)=1 Thus $T_1 \le t$, $T_2 > t$.

What can we say about the distribution of T on [0,t]?

Let
$$0 \le s \le t$$

$$P(T_{1} \le s \mid N(t) = 1) = P(N(s) = 1 \mid N(t) = 1) = \frac{P(N(s) = 1, N(t) = 1)}{P(N(t) = 1)}$$

$$= \frac{P(N(s) = 1, N(t) - N(s) = 0)}{P(N(t) = 1)} = \frac{P(N(s) = 1)P(N(t) - N(s) = 0)}{P(N(t) = 1)}$$

$$= \frac{e^{-\lambda s} \frac{\lambda s}{1!} \times e^{-\lambda (t - s)}}{e^{-\lambda t} \frac{\lambda t}{1!}} = \frac{s}{t}$$

So the conditional on N(t)=1 distribution $T_1 \sim U[0,t]$.

Now suppose $N(t) = n \ge 1$. Let $0 \le s \le t$.

Then $0 \le N(s) \le n$. What is the <u>conditional</u> distribution of N(s)?

Fix
$$k$$
, $0 \le k \le n$

$$P(N(s) = k \mid N(t) = n) = \frac{P(N(s) = k, N(t) = n)}{P(N(t) = n)}$$

$$= \frac{P(N(s) = k, N(t) - N(s) = n - k)}{P(N(t) = n)} = \frac{P(N(s) = k) \times P(N(t) - N(s) = n - k)}{P(N(t) = n)}$$

$$= \frac{e^{-\lambda s} \frac{(\lambda s)^k}{k!} \times e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{n-k}}{(n-k)!}}{e^{-\lambda t} \frac{(\lambda t)^n}{n!}} = \frac{n!}{k!(n-k)!} \left(\frac{s}{t}\right)^k \left(1 - \frac{s}{t}\right)^{n-k}$$

$$\Rightarrow$$
 given N(t)=n, N(s) ~ Bin(n, s/t)

3. Birth and Death Processes

Linear birth process (Yule process)

- ♦ Population of individuals
- An individual present at t splits into 2 during (t,t+h) with probability $\lambda h + o(h)$

All individuals behave independently

N(t) population size at time t $[N(t); t \ge 0]$ – linear birth process (Yule's process)

Inter-birth times

Population size

Suppose N(0)=1

For $n \ge 1$ let $T_n = \min\{t: N(t) \ge n\}$ – time till the population size reaches n

For $j \ge 1$ set $Z_j = T_{j+1} - T_j$ — time to grow from size j to j+1

What is the distribution of Z_j ?

Suppose population size is j. Let $X_1, X_2, ..., X_j$ be further times till the i^{th} member of population splits. Then $X_1, X_2, ...,$ are i.i.d. $Exp(\lambda)$ random variables

$$Z_j = min\{ X_1, X_2, ..., X_j \} \Rightarrow Z_j \sim Exp(j\lambda)$$

Thus $EZ_j=1/(j\lambda)$

Now $T_n = Z_1 + Z_2 + ... + Z_{n-1}$

$$\Rightarrow$$

$$ET_n = E(Z_1) + E(Z_2) + \dots + E(Z_{n-1}) = \frac{1}{\lambda} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} \right) \cong \frac{\log n}{\lambda}$$

for large n.

Distribution of N(t):

As before, assume N(0)=1

Let
$$p_n(t)=P(N(t)=n)$$

```
Then p_n(t+h) = P(N(t)=n \text{ and no births during } [t,t+h])
+ P(N(t) = n-1 \text{ and } 1 \text{ birth during } [t,t+h])
+ o(h)
```

Now

$$P(N(t)=n \& \text{ no births in } [t,t+h])$$
= $P(N(t)=n) \times P(\text{no births in } [t,t+h] \mid N(t)=n)$
= $p_n(t) \times (1-\lambda h + o(h))^n = p_n(t) \times (1-n\lambda h) + o(h)$

$$P(N(t)=n-1 \& \text{ one birth in } [t,t+h])$$
= $P(N(t)=n-1) \times P(1 \text{ birth in } [t,t+h] \mid N(t)=n-1)$
= $p_{n-1}(t) \times (n-1) (\lambda h + o(h))^1 (1-\lambda h + o(h))^{n-2}$
= $p_{n-1}(t) \times (n-1)\lambda h + o(h)$

Thus

$$p_n(t+h) = (1-n\lambda h) p_n(t) + \lambda h(n-1) p_{n-1}(t) + o(h)$$

Consequently,

$$\frac{p_n(t+h) - p_n(t)}{h} = -\lambda n p_n(t) + \lambda (n-1) p_{n-1}(t) + o(1)$$

and hence

$$p'_{n}(t) = -\lambda n p_{n}(t) + \lambda (n-1) p_{n-1}(t)$$

Also for
$$n=1$$
 $p_1'(t) = -\lambda p_1(t)$

Initially:
$$p_1(0)=1$$
 and $p_n(0)=0$, $n \ge 2$.

Rather than solving this, we can verify that

$$p_n(t) = P(N(t) = n) = e^{-\lambda t} (1 - e^{-\lambda t})^{n-1}, \quad n = 1, 2, ...$$

is the solution of this system, hence N(t) ~ Geom ($e^{-\lambda t}$) and hence E N(t)= $e^{\lambda t}$

(Not surprising – given E $T_n \approx (\log n) / \lambda$).

Note: since there is *only one* solution to the system of equations of this type with given initial conditions, we found *the solution*.

Linear birth and death process

Look at individual present at time t. Suppose during [t,t+h] it either:

- \forall splits into two (birth) with probability $\lambda h + o(h)$
- \clubsuit dies out with probability $\mu h + o(h)$
- neither with probability $1-(\lambda+\mu)h + o(h)$

<u>Note</u>: probability that either birth or death occurs is $(\lambda + \mu)h + o(h)$, and given *something* has happened, the probability of birth is $\lambda/(\lambda + \mu)$ and that of death $\mu/(\lambda + \mu)$

Suppose population size is n at time t. In [t,t+h] we have:

- \forall 1 birth with probability $n\lambda h + o(h)$
- ♣ 1 death with probability $n\mu h + o(h)$
- nothing, with probability $1 n(\lambda + \mu)h + o(h)$

Let $N(0)=n_0$ and set as usual $p_n(t) = P(N(t)=n)$

Then for $n \ge 1$

$$p_{n}(t+h) = [1 - n(\lambda + \mu)h] \times p_{n}(t) + \lambda(n-1)h p_{n-1}(t) + \mu(n+1)h \times p_{n+1}(t) + o(h)$$

Consequently,

$$\frac{p_n(t+h)-p_n(t)}{h} = -(\lambda+\mu)np_n(t) + \lambda(n-1)p_{n-1}(t) + \mu(n+1)p_{n+1}(t) + o(1)$$

and

$$p'_{n}(t) = -(\lambda + \mu)np_{n}(t) + \lambda(n-1)p_{n-1}(t) + \mu(n+1)p_{n+1}(t)$$

Generalized birth and death process

Population size is n at time t. During time [t,t+h] either:

- one birth with probability $\lambda_n h + o(h)$
- one death with probability $\mu_n h + o(h)$
- neither with probability $1-(\lambda_n + \mu_n)h + o(h)$

If $p_n(t)=P(N(t)=n)$ then we can obtain (as before) that

$$p_n(t+h) = \left[1 - (\lambda_n + \mu_n)h\right] p_n(t) + (\lambda_{n-1}h) p_{n-1}(t) + (\mu_{n+1}h) p_{n+1}(t) + \stackrel{=}{o}(h)$$

yielding

$$p'_{n}(t) = -(\lambda_{n} + \mu_{n})p_{n}(t) + \lambda_{n-1}p_{n-1}(t) + \mu_{n+1}p_{n+1}(t)$$

Example 1: $\lambda_n = \lambda = \text{constant} > 0, \mu_n = 0$

Pure immigration \Rightarrow Poisson process (λ)

Example 2: $\lambda_n = \lambda n$ where $\lambda > 0$, $\mu_n = 0$ \Rightarrow Yule process

Example 3: $\lambda_n = \lambda > 0$ (constant immigration) $\mu_n = n\mu$ (death rate μ per individual)

For this example (3), using general formula we get for $n \ge 1$

$$p'_{n}(t) = -(\lambda + n\mu)p_{n}(t) + \lambda p_{n-1}(t) + \mu(n+1)p_{n+1}(t)$$

$$p'_{0}(t) = -\lambda p_{0}(t) + \mu p_{1}(t)$$

Without proving it here, assume that as $t \rightarrow \infty$

$$\begin{cases} p_n(t) \to \hat{p}_n \\ p'_n(t) \to 0 \end{cases}$$

Then

$$\begin{cases}
0 = -(\lambda + n\mu)\hat{p}_n + \lambda\hat{p}_{n-1} + \mu(n+1)\hat{p}_{n+1} \\
0 = -\lambda\hat{p}_0 + \mu\hat{p}_1
\end{cases}$$

and it follows for any $n \ge 1$

$$a_n := [\mu(n+1)\hat{p}_{n+1} - \lambda\hat{p}_n] = [n\mu\hat{p}_n - \lambda\hat{p}_{n-1}] =: a_{n-1}$$

and also $a_0=0$ \Rightarrow $a_n\equiv 0$ for all n \Rightarrow

$$\hat{p}_n = \frac{\lambda}{\mu n} \hat{p}_{n-1} \implies \hat{p}_n = \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n \hat{p}_0$$

On the other hand, we know

$$\sum_{n=0}^{\infty} \hat{p}_n \equiv 1 \quad \Rightarrow \quad \hat{p}_0 \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n = 1 \quad \Rightarrow \quad \hat{p}_0 e^{\frac{\lambda}{\mu}} = 1$$

$$\Rightarrow \hat{p}_n = \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n e^{-\lambda/\mu} \qquad n = 0, 1, 2, \dots$$

Thus the stationary distribution is Poisson (λ/μ) Chapter 2 and 3: total 4 lectures, 5 1/4 slides per lecture

4. Random walks (bersion 4 March 08)

Gambler's ruin

Gambler has $\pounds k$ Opponent has $\pounds N-k$

Total = \pounds N between them

Bet £1 at a time

Gambler increases capital to £k+1 with probability p Gambler decreases capital to £k-1 with probability q=1-p

Successive bets are independent

Repeat procedure until one player is out of money (... we show later that the probability of this is 1) so that the gambler has either £0 or £N

Want to know: P(gambler ruins)=P(...ends up with £0).

Let Y_n be the gambler's capital in ££ after n bets. Then the process $[Y_k: k=0,1,2,...]$ is a Markov process with

$$P(Y_{n+1} = m+1 \mid Y_n = m) = p$$
 for $1 \le m \le N-1$
 $P(Y_{n+1} = m-1 \mid Y_n = m) = q$

and additionally

$$P(Y_{n+1}=0 \mid Y_n=0) = 1$$
 \Leftarrow absorbing barriers at 0 and N
 $P(Y_{n+1}=N \mid Y_n=N) = 1$

Gambler is ruined if $Y_n=0$ for some $n\geq 0$.

Let
$$p_k=P(ruin \mid Y_0=k) \leftarrow defined for k=0,1,2,...,N-1,N$$

Then

$$p_0 = 1$$
 (4.1)
and $p_N = 0$ (4.2)

Suppose that he starts with £k.

Let A be the event "gambler ruined"

B be the event "gambler wins the 1st bet"

Then

$$P(A) = P(A|B) P(B) + P(A|B^{c}) P(B^{c})$$
(partition theorem)

$$\Rightarrow p_k = p_{k+1}p + p_{k-1}q \qquad k=1,2,...,N-1$$
 (4.3)

Want to solve (4.3) subject to the boundary condition (4.1) and (4.2)

Try to solve it, assuming $p_k = \theta^k$

$$\theta^{k} = p\theta^{k+1} + q\theta^{k-1}$$

$$p\theta^2 - \theta + q = 0$$

$$(p\theta - q)(\theta - 1) = 0$$

$$\theta_1 = q/p$$
 and $\theta_2 = 1$

We can verify, that if $p\neq q$ then (4.3) has general solution

$$p_k = A\theta_1^k + B\theta_2^k = A(q/p)^k + B, k=0,1,2,...,N$$

From (4.1) we have

$$1=A+B \Rightarrow p_k = A[(q/p)^k - 1]+1$$

From (4.2) we have

$$p_N = A[(q/p)^N - 1] + 1 = 0$$
 \Rightarrow $A=1/(1-(q/p)^N).$

$$p_{k} = \frac{\left(\frac{q}{p}\right)^{k} - 1}{1 - \left(\frac{q}{p}\right)^{N} + 1} = \frac{\left(\frac{q}{p}\right)^{k} - \left(\frac{q}{p}\right)^{N}}{1 - \left(\frac{q}{p}\right)^{N}}, \quad k = 0, 1, \dots N \quad (4.4)$$

If $p=q=\frac{1}{2}$:

Then $\theta_1 = \theta_2 = 1$ and general solution of (4.3) is

$$p_k = (A+Bk)\theta^k = A+Bk$$

$$p_o=1$$
 \Rightarrow $A=1$ \Rightarrow $p_k=1+Bk$

$$p_N=0$$
 \Rightarrow 1+BN=0 \Rightarrow B=-1/N

$$\Rightarrow p_{k} = 1 - \frac{k}{N}, \qquad k = 0, 1, \dots N$$
 (4.5)

Example [N=5]

	<i>k</i> =	0	1	2	3	4	5
p = 0.5	$p_k =$	1	0.8	0.6	0.4	0.2	0
p = 0.6	$p_k =$	1	0.616	0.360	0.190	0.076	0

Absorbing barrier at 0 only

An insurance company starts with assets k. Every day the assets either

- increase with probability p
- ψ decrease with probability q=1-p

Successive days are independent.

What is the probability the company will go bankrupt?

Let Y_n be the company's assets after n days

[Y_n : n=0,1,2,...] is a Markov process, called a random walk (RW) with absorbing barrier at 0. No upper barrier!

Let A be the event of bankruptcy.

$$A = \{Y_n = 0 \text{ for some } n \ge 0\}$$

<u>Lemma</u>: Let $k \ge 1$ be fixed and assume $Y_0 = k$. Let p_k be the probability of bankruptcy for the company.

Let $p_k^{(N)}$ be the probability of ruin starting at £k for the gambler ruin problem with upper barrier at N.

Then
$$\lim_{N\to\infty} p_k^{(N)} = p_k$$

<u>Proof.</u> Fix $k \ge 1$. Assume $Y_0 = k$. Let

 $A_N = \{\omega: \exists n \ge 1 \text{ (depending on } \omega) \text{ such that } Y_k(\omega) \le N-1 \text{ for } k=0,1,2,...,n-1 \text{ and } Y_n(\omega)=0\}$

i.e. the event that the process absorbed at 0, never really reaches level N. So

$$P(A_N) = p_k^{(N)}$$

Note: $A_N \subseteq A_{N+1}$

/indeed, if $\omega \in A_N$

- \Rightarrow \exists n such that $Y_n(\omega)=0$ and $Y_k(\omega) \le N-1$ for $0 \le k \le n-1$
- \Rightarrow \exists n such that $Y_n(\omega)=0$ and $Y_k(\omega) \le N$ for $0 \le k \le n-1$
- $\Rightarrow \omega \in A_{N+1}$

Let
$$A = \bigcup_{N=1}^{\infty} A_N$$

Then $\omega \in A$ $\Rightarrow \omega \in A_N$ for some N $\Rightarrow Y_n(\omega)=0$ for some n

Conversely, if $Y_n(\omega)=0$ for some n $Y_n(\omega)=0$ and $Y_k(\omega) \le N-1$ for k=0,1,2,...,n-1where $N:=\max(Y_0,Y_1,...,Y_n)+1$

$$\Rightarrow \omega \in A_N \qquad \Rightarrow \omega \in A$$

Therefore $A = \{ Y_n = 0 \text{ for some } n \}$

By continuity of probability we have

$$p_k = P(A) = \lim_{N \to \infty} P(A_N) = \lim_{N \to \infty} p_k^{(N)}$$
 Q.E.D.

<u>Lemma</u>: For the random walk with absorbing barrier at 0 but no upper barrier

P(absorbed at 0 | start at
$$k$$
) =
$$\begin{cases} \left(\frac{q}{p}\right)^k & \text{if } q (4.6)$$

Proof:

For $q\neq p$ we have by equation (4.4)

$$p_k^{(N)} = \frac{\left(\frac{q}{p}\right)^k - \left(\frac{q}{p}\right)^N}{1 - \left(\frac{q}{p}\right)^N} \xrightarrow[N \to \infty]{N \to \infty} \begin{cases} \left(\frac{q}{p}\right)^k & \text{if} \quad q p \end{cases}$$

For $p=q=\frac{1}{2}$ by equation (4.5)

$$p_k^{(N)} = 1 - \frac{k}{N} \qquad \xrightarrow{N \to \infty} \qquad 1$$

Thus P(absorbed at 0)=1 for this case p=q=1/2.

Q.E.D.

Alternative interpretation of this formula (heuristic)

Let
$$\theta = p_1 = P(absorbed at 0 \mid Y_0 = 1)$$

Then

$$p_k=P(absorbed \ at \ 0 \mid Y_0=k)=P(reach \ 1 \ from \ k)P(reach \ 0 \ from \ 1)$$

= $p_{k-1}\theta$

So $p_k = \theta^k$ for some θ .

Now

$$p_k = p_{k+1}p + p_{k-1}q$$

$$\Rightarrow \theta^{k} = p\theta^{k+1} + q\theta^{k-1}$$

$$p\theta^{2} - \theta + q = 0$$

$$\theta = q/p \quad or \quad \theta = 1$$

In fact, θ is the smallest root (can generalize to other skip-free processes)

Insurance company assets:

not skip-free, nevertheless, can get the formula for asymptotic probability of ruin

the

Example: X_n are asset at day n. Cost is £1 per day;

income is
$$\begin{cases} 0 & \textit{with} & \textit{probability} & 0.2 \\ 1 & \textit{with} & \textit{probability} & 0.4 \\ 2 & \textit{with} & \textit{probability} & 0.3 \\ 3 & \textit{with} & \textit{probability} & 0.1 \end{cases}$$

Start at £k. Find the probability of ruin.

We have:

$$p_k = 0.2 p_{k-1} + 0.4 p_k + 0.3 p_{k+1} + 0.1 p_{k+2}$$

Try $p_k = \theta^k$. Then

$$\theta^{k} = 0.2 \ \theta^{k-1} + 0.4 \ \theta^{k} + 0.3 \ \theta^{k+1} + 0.1 \ \theta^{k+2}$$

$$\theta = 0.2 + 0.4 \theta + 0.3 \theta^2 + 0.1 \theta^3$$

$$\theta^3 + 3\theta^2 - 6\theta + 2 = 0$$

$$(\theta - 1)(\theta^2 + 4\theta - 2) = 0$$

Roots:
$$\theta = 1$$
; $\theta = -2 + \sqrt{6}$; $\theta = -2 - \sqrt{6}$;

Smallest positive root $\theta = \sqrt{6-2} = 0.45...$

So
$$p_k \approx (0.45)^k$$

<u>Unrestricted random walk</u>

Let $X_1, X_2,...$ be i.i.d. r.v. with

$$P(X_i=1) = p,$$

 $P(X_i=-1) = q = 1-p$

Let k be an integer

Set $Y_0=k$ and for $n\geq 1$

$$Y_n = k + \sum_{i=1}^n X_i$$

Then the process [Y_i : i=0,1,2,...] is a simple (unrestricted) random walk

Returns to the origin – Suppose k=0 so that $Y_0=0$

Interested in

- whether walk ever returns to 0
- time taken to return

Case p>q

By the results for random walk with absorbing barrier at 0

$$P(Y_n=0 \text{ for some } n \ge 1 \mid Y_1=1) = q/p$$

 $P(Y_n=0 \text{ for some } n \ge 1 \mid Y_1=-1) = 1$

Thus for a walk starting at 0

$$r = P(Y_n=0 \text{ for } n \ge 1) = P(Y_n=0 \text{ for } n \ge 1 \mid Y_1=1) P(Y_1=1) + P(Y_n=0 \text{ for } n \ge 1 \mid Y_1=-1) P(Y_1=-1) = (q/p) \times p + 1 \times q = 2q$$

Let R be the total number of returns to 0.

Shown: $P(R \ge 1) = r$.

Easy to show using Markov property that

$$\begin{array}{ll} P(R=0) = 1-r \\ P(R=1) = r(1-r) & \Rightarrow & P(R=m)=r^m(1-r), \quad m \geq 0 \\ P(R=2) = r^2(1-r) \text{ etc.} & \textit{(shifted geometric)} \end{array}$$

Also by the strong law of large numbers

$$\frac{Y_n}{n} = \frac{1}{n} \left(\sum_{i=1}^n X_i \right) \xrightarrow{a.s.} E(X_i) = p - q > 0 \quad as \quad n \to \infty$$

In summary $Y_n \to \infty$ as $n \to \infty$ and before doing so it makes a geometric number of returns to the origin.

Similarly, if q>p the walk returns to zero at least once with probability r=2p.

It makes a geometric number of returns, $Y_n \rightarrow -\infty$ as $n \rightarrow \infty$.

```
Case p=q=\frac{1}{2}
```

$$P(Y_n=0 \text{ for } n \ge 1 | Y_1 = 1) = 1$$

 $P(Y_n=0 \text{ for } n \ge 1 | Y_1 = -1) = 1$

Thus
$$r=P(Y_n=0 \text{ for } n\ge 1)=1\times p+1\times q=1$$

Walk is certain to return at least once to 0. Easy to show using Markov property that P(returns at least m times) = $r^m = 1$

Let
$$B_m$$
= {returns at least m times} and $B=\bigcap_{m=1}^{\infty}B_m$ = {returns ∞ many times}

Since $B_{m+1} \subseteq B_m$ by continuity of probability

P(returns ∞ many times)= P(B)= $\lim_{m\to\infty} P(B_m)=1$

In general: (when $p=q=\frac{1}{2}$)

Let *j* be any integer

Then we know by results for RW with barrier at 0 that

$$P(Y_n=j \text{ for some } n\geq 1 \mid Y_0=0)=1$$

So RW hits level *j* with probability 1 after hitting the origin 0; hence RW visits *j* infinitely many times (*e.g. use Borel-Cantelli lemma*)

<u>Digression</u> (gambling)

Suppose $p=q=\frac{1}{2}$. Then X_i can be interpreted as the amount one on the i^{th} bet gambling on a fair bet

Let $Y_0=0$ and $Y_n=\sum_{i=1}^n X_i$, $n\geq 1$, be the profits after n bets.

Let M be some sum of money, e.g. M=£1,000,000

Then $P(Y_n=M \text{ for some } n \ge 1 \mid Y_0=0)=1$

Thus if we eploy the following strategy:

Continue until the net profit is M; then stop

we are sure to earn M pounds – this strategy always makes profit

However, you would need:

- ∞ amount of money
- ∞ time

to carry out this strategy (why? we'll see later...)

Return times

From now on assume $[S_n: n \ge 0]$ is an unrestricted simple random walk with $S_0=0$.

Definitions:

Set $p_{oo}(0)=1$, and for $n \ge 1$, $p_{oo}(n)=P(S_n=0 \mid S_o=0)$. Thus $p_{oo}(n)$ is the probability to be at the origin after n steps

For $n \ge 1$ set

$$f_{oo}(n) = P(S_n = 0 \text{ but } S_1 \neq 0, S_2 \neq 0, ..., S_{n-1} \neq 0, | S_0 = 0)$$

i.e. the probability to come back in **exactly** *n* steps.

Note: let B_m be the event $\{1^{st}$ return to origin is after m steps $\}$, so that $P(B_m)=f_{oo}(m)$. Then

{Return to origin at some time}= $\bigcup_{m=1}^{\infty} B_m$ and since these events are disjoint,

P(return to origin)= $\sum_{m=1}^{\infty} P(B_m) = \sum_{m=1}^{\infty} f_{oo}(m)$

Thus

if $\sum_{m=1}^{\infty} f_{oo}(m)=1$ return is certain \Rightarrow RW is <u>persistent</u> (or recurrent)

if $\sum_{m=1}^{\infty} f_{oo}(m) < 1$ may not return \Rightarrow RW is <u>transient</u>

Since
$$P(S_n=0) = \sum_{m=1}^{\infty} P(S_n=0 \mid B_m) P(B_m)$$
,
and $P(S_n=0 \mid B_m) = p_{oo}(n-m)$, if $1 \le m \le n$
 $= 0$, if $m > n$

$$p_{oo}(n) = P(S_n=0) = \sum_{m=1}^{n} p_{oo}(n-m)f_{oo}(m)$$

for n≥1

Definition. Set

$$P(s) = \sum_{n=0}^{\infty} p_{00}(n)s^n$$
 and $F(s) = \sum_{n=1}^{\infty} f_{00}(n)s^n$ for $|s| < 1$

Theorem. For |s|<1

(i)
$$P(s) = 1 + P(s)F(s)$$

(ii)
$$P(s) = (1-4pqs^2)^{-1/2}$$

(ii)
$$P(s) = (1-4pqs^2)^{-1/2}$$

(iii) $F(s) = 1 - (1-4pqs^2)^{1/2}$

(the latter two are specific to q-p walk)

Proof.

(i)

$$\begin{split} &\sum_{n=0}^{\infty} p_{00}(n)s^n = p_{00}(0) + \sum_{n=1}^{\infty} p_{00}(n)s^n = 1 + \sum_{n=1}^{\infty} p_{00}(n)s^n \\ &= 1 + \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} p_{00}(n-k)f_{00}(k) \right) s^n = 1 + \sum_{k=1}^{\infty} \left(\sum_{n=k}^{\infty} p_{00}(n-k)f_{00}(k)s^n \right) \end{split}$$

$$=1+\sum_{k=1}^{\infty}f_{00}(k)s^{k}\left(\sum_{n=k}^{\infty}p_{00}(n-k)s^{n-k}\right)=1+\sum_{k=1}^{\infty}f_{00}(k)s^{k}\left(\sum_{m=0}^{\infty}p_{00}(m)s^{m}\right)$$

$$=1+\sum_{k=1}^{\infty}f_{00}(k)s^{k}P(s)=1+P(s)\sum_{k=0}^{\infty}f_{00}(k)s^{k}=1+P(s)F(s)$$

(ii) Note that $S_n \neq 0$ if *n* is odd. Now let n=2m. If $S_n=0$, then there were exactly m of +1's and m of -1's. And number of +1's in 2m trials is Bin(2m,p), hence

$$P(S_{2m} = 0) = {2m \choose m} p^m q^m = p_{oo}(2m)$$

So

$$P(s) = 1 + p_{00}(2)s^{2} + p_{00}(4)s^{4} + \dots = \sum_{m=0}^{\infty} {2m \choose m} p^{m} q^{m} s^{2m} = \sqrt{1 - 4pqs^{2}}$$

Reason: use Taylor expansion:

$$(1-x)^{-\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{1}{2}\frac{3}{2}\frac{x^{2}}{2!} + \frac{1}{2}\frac{3}{2}\frac{5}{2}\frac{x^{3}}{3!} + \dots = \sum_{m=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2m-1)}{2^{m}} \frac{x^{m}}{m!}$$

$$= \sum_{m=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2m-1)}{2^{m}} \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2m)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2m)} \frac{x^{m}}{m!} = \sum_{n=0}^{\infty} \frac{(2m)!}{2^{m}} \frac{1}{2^{m} \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot m} \frac{x^{m}}{m!}$$

$$= \sum_{m=0}^{\infty} \frac{(2m)!}{m!m!} \frac{x^{m}}{4^{m}} = \sum_{m=0}^{\infty} {2m \choose m} \frac{x^{m}}{4^{m}} \frac{1}{m!} \frac{x^{m}}{m!}$$
(iii) Use F(s) = 1-1/P(s) = 1- (1-4pqs^{2})^{1/2} Q.E.D

Corollary.

(i) The probability that the walk returns to 0 is

$$\sum_{n=0}^{\infty} f_{00}(n) = 1 - |p-q|$$

(ii) Suppose $p=q=\frac{1}{2}$ so that return is certain. Let T_{00} be the time of return. Then

$$\mathrm{E}(T_{00}) = \sum_{n=0}^{\infty} n f_{00}(n) = \infty$$

Proof.

$$\sum_{n=1}^{\infty} f_{00}(n) = \lim_{s \uparrow 1} \sum_{n=1}^{\infty} f_{00}(n) s^n = \lim_{s \uparrow 1} F(s)$$

$$= \lim_{s \uparrow 1} \left[1 - \left(1 - 4pqs^2 \right)^{1/2} \right] = 1 - \sqrt{1 - 4pq} = 1 - \sqrt{(p+q)^2 - 4pq}$$
$$= 1 - \sqrt{(p-q)^2} = 1 - |p-q|$$

(ii)

Return certain $\Leftrightarrow \sum f_{00}(n)=1 \Leftrightarrow p=q \Leftrightarrow p=q=\frac{1}{2}$

Thus in this case

$$F(s)=1-(1-s^2)^{1/2}$$

Now

$$E(T_{00}) = \sum_{n=1}^{\infty} n f_{00}(n) = \lim_{s \uparrow 1} \sum_{n=1}^{\infty} n s^{n-1} f_{00}(n)$$

$$=\lim_{s \uparrow 1} F'(s) = \lim_{s \uparrow 1} \frac{s}{\sqrt{1-s^2}} = +\infty$$

<u>Summary</u>. Simple random walk (unconstrained) starting at the origin:

Case $p \neq q$ walk transient (returns a "geometric" number of times P(return *n* times)= $r^n(1-r)$ where $r = \sum_{n=0}^{\infty} f_{00}(n) = \min(2p,2q)$.

Case $p=q=\frac{1}{2}$ walk recurrent (returns infinitely many times)

<u>Higher dimensions d=2, d \geq 3 for simple random walk</u>.

2.3 Stopping times and the Wald lemma

Let [Y(t): t=0,1,2,...] be a stochastic process.

T a random variable taking non-negative integer values. Then T is said to be a stopping time for $\{Y(t)\}$ if for every n one can determine whether [T=n] or not just by looking at Y(0), Y(1), ..., Y(n).

Formally, $I_{\{T=n\}}$ is a function of Y(0), Y(1), ..., Y(n).

Example. Simple random walk (unconstrained) starting at 0.

$$Y(t) = \sum_{i=1}^{t} X_{i}$$
where $P(X_{i} = -1) = 1/3$
 $P(X_{i} = +1) = 2/3$
Let $T = min\{t: Y(t) = 5\}$

Then $\{T=17\} \Leftrightarrow Y(0), Y(1), ..., Y(16) < 5 \text{ and } Y(17) = 5.$

T is a stopping time for $\{Y(t)\}$.

Let $S=\max\{t: Y(t)=5\}.$

Then we cannot unambiguously decide whether $\{S=17\}$ or not by looking just at Y(0), Y(1), ..., Y(17). So S is *not* a stopping time for $\{Y(t)\}$.

Theorem. (Wald's lemma)

Let $X_1, X_2,...$ be a sequence of i.i.d. r.v. with $\mathbb{E}(X_i) < \infty$,

 $Y(t) = \sum_{i=1}^{t} X_i$ and let **T** be a stopping time for the process $\{Y(t)\}$, with $E(T) < \infty$. Then

$$E(Y(T)) = E(X_i) E(T)$$
, i.e. $E\left(\sum_{i=1}^{T} X_i\right) = E(X_i)E(T)$

Note that $\{T=t\}$ depends on $Y(1), Y(2), ..., Y(t) \Leftrightarrow \{T=t\}$ depends on $X_1, X_2, ..., X_t$ so would just say that T is stopping time for $\{X_i\}$

Proof. Let
$$Z_n = 1$$
 if $T \ge n$
=0 otherwise (i.e. $T < n$)

Then
$$Y(T) = \sum_{n=1}^{T} X_n = \sum_{n=1}^{\infty} X_n Z_n, \text{ so}$$
$$E(Y(t)) = E\left(\sum_{n=1}^{\infty} X_n Z_n\right) = \sum_{n=1}^{\infty} E(X_n Z_n)$$

But $\{Z_n=0\} = \{T < n\}$ depends only on $X_1, X_2, ..., X_{n-1}$ and therefore is independent of X_n . Similarly $\{Z_n=1\} = \{Z_n=0\}^c$ is independent of X_n and hence X_n and Z_n are independent.

Consequently,

$$E(X_n Z_n) = E(X_n)E(Z_n) = E(X_n)P(T \ge n)$$
and

$$E(Y(t)) = \sum_{n=1}^{\infty} E(X_n) P(T \ge n)$$
$$= E(X_i) \sum_{n=1}^{\infty} P(T \ge n) = E(X_i) E(T)$$

Application 1. Simple random walk with

$$P(X_i=-1) = 1/3$$

 $P(X_i=1) = 2/3$

T=min{t: Y(t)=5}, then easy to show that $\mathbb{E}(T)<\infty$, $\mathbb{E}(X_i)=1/3$.

Thus by Wald
$$\mathbb{E}(Y(T)) = \mathbb{E}(X_i) \mathbb{E}(T) = 1/3 \mathbb{E}(T)$$
.
However, $Y(T) = 5$ hence $\mathbb{E}(T) = 15$.

Application 2. (Gambling with fair bet)

Simple random walk with $P(X_i=1) = P(X_i=-1) = \frac{1}{2}$. Thus under *any* strategy with finite expected time the expected profit is $E(Y(T)) = E(T) E(X_i) = \text{something} \times 0 = 0$

For example, if gambler starts with k and stops when either hits £0 or £N. Set Y(0)=0, so

T=min{
$$t: Y(t) = -k \text{ or } Y(t) = N-k$$
}

Can be shown that $E(T) < \infty$. Thus, since E(Y(T)) = 0, we have

$$-k P(Y(T)=-k) + (N-k) P(Y(T)=N-k) = 0$$

Let p_k =probability of ruin = P(Y(T) = -k), then

$$-kp_k + (N-k)(1-p_k) = 0 \Rightarrow p_k = \frac{N-k}{N}$$

Suppose gambler has ∞ amount of capital and decides to stop when Y(T)=1. Then will stop with probability =1, and for sure wins £1. But $E(T)=\infty$ then! (Wald does <u>not</u> hold).

Chapter 4: total 4 lectures, 5 slides per lecture

5. Martingales

Review of conditional expectations

• Let $X_1,...,X_n$ be random variables, and Y be a r.v.

Define
$$\mathbb{E} (Y|X_1,X_2,...,X_n)$$
 to be the r.v. $\phi(X_1,X_2,...,X_n)$ where $\phi(x_1,x_2,...,x_n) = \mathbb{E} (Y|X_1=x_1,X_2=x_2,...,X_n=x_n)$

• Let X, Y be random variables (for simplicity, non-negative integer valued)

Fact:
$$\mathbb{E}(Y) = \sum_{k=0}^{\infty} \mathbb{E}(Y \mid X=k) P(X=k)$$
, so if $\phi(x) = \mathbb{E}(Y \mid X=x)$ then $\mathbb{E}(Y) = \sum_{k=0}^{\infty} \phi(k) P(X=k) = \mathbb{E}(\phi(X))$

i.e.
$$E(Y) = E(\phi(X))$$
 where $\phi(X) = E(Y|X)$ hence

$$E(Y) = E(E(Y|X))$$
 (Law of Iterated Expectations)

<u>Lemma</u>. Let $X_1, X_2, ..., X_n$ be random variables, **Z** be any random variable, and $Y = f(X_1, X_2, ..., X_n)$. Then

$$\mathbb{E}\left(\mathbf{YZ}\mid X_{1},\!X_{2},\!\ldots,\!X_{n}\right)=\mathbf{Y}\;\mathbb{E}(\mathbf{Z}|X_{1},\!X_{2},\!\ldots,\!X_{n})$$

<u>Proof.</u> Let $\phi(x_1, x_2, ..., x_n) = \mathbb{E} (YZ \mid X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$. Then

$$\begin{aligned} \phi(x_1, x_2, ..., x_n) &= \mathbb{E} \left(\begin{array}{c} \mathbf{YZ} \mid \mathbf{X}_1 = x_1, \mathbf{X}_2 = x_2, ..., \mathbf{X}_n = x_n \end{array} \right) \\ &= \mathbb{E} \left(\begin{array}{c} \mathbf{f}(\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_n) \mathbf{Z} \mid \mathbf{X}_1 = x_1, \mathbf{X}_2 = x_2, ..., \mathbf{X}_n = x_n \end{array} \right) \\ &= \mathbb{E} \left(\begin{array}{c} \mathbf{f}(x_1, x_2, ..., x_n) \mathbf{Z} \mid \mathbf{X}_1 = x_1, \mathbf{X}_2 = x_2, ..., \mathbf{X}_n = x_n \end{array} \right) \\ &= \mathbf{f}(x_1, x_2, ..., x_n) \mathbb{E} \left(\mathbf{Z} \mid \mathbf{X}_1 = x_1, \mathbf{X}_2 = x_2, ..., \mathbf{X}_n = x_n \right) \end{aligned}$$

Therefore

$$\overline{\mathbb{E}(YZ \mid X_1, X_2, ..., X_n)} = ^{\text{defn}} = \phi(X_1, X_2, ..., X_n)$$

$$= f(X_1, X_2, ..., X_n) \ \mathbb{E}(Z \mid X_1, X_2, ..., X_n) = Y \ \mathbb{E}(Z \mid X_1, X_2, ..., X_n)$$
Corollary: if $Y = f(X_1, X_2, ..., X_n)$ then $\mathbb{E}(Y \mid X_1, X_2, ..., X_n) = Y$

Example: I roll a die. Let X be the score. Then I toss a coin X times, and let Y be the total number of heads obtained. Find E(XY).

Solution: E (XY)= E [E (XY|X)] by L.I.E.
But E (XY|X)=X E (Y|X) =
$$X \times X/2 = X^2/2$$
.
Hence E (XY)= E ($X^2/2$)= $\frac{1}{6}(1^2+2^2+3^2+4^2+5^2+6^2)/2$

"Complimentary" fact: if Y is independent of $(X_1, X_2, ..., X_n)$, then $\mathbb{E}(Y|X_1, X_2, ..., X_n) = \mathbb{E}(Y)$

<u>Definition</u>: The stochastic process $[Y_n, n = 0, 1, 2, ...]$ is called **martingale** with respect to the sequence of random variables $[X_n, n=0,1,2,...]$, if for all $n \ge 0$,

- (a) $\mathbb{E}(|Y_n|) < \infty$;
- (b) $\mathbb{E}(Y_{n+1} | X_1, X_2, ..., X_n) = Y_n$

(in (b): supermartingale. if \leq , submartingale if \geq)

In the following example with gambler, the sequence of X's coincides with the sequence of Y's – this is allowed ("martingale with respect to itself").

Note: this implies by law of iterated expectations $\mathbb{E}(Y_{n+1}) = \mathbb{E} \left[\mathbb{E}(Y_{n+1} | X_1, X_2, ..., X_n) \right] = \mathbb{E}(Y_n)$ for all n (replaced by \leq or \geq for super- or sub-martingales resp.)

Martingale examples

Example 1: Symmetric Random Walk (unrestricted)

Let
$$X_1, X_2, \dots$$
 be i.i.d. r.v. with

$$P(X_i=1) = P(X_i=-1) = \frac{1}{2}$$

Fix k, and let $Y_0 = k$ and for $n \ge 1$,

$$Y_n = k + X_1 + X_2 + ... + X_n$$

Then $[Y_n, n=0,1,2,...]$ is the symmetric random walk starting at k.

Note $Y_{n+1}=Y_n+X_{n+1}$.

Thus

$$\begin{split} &\mathbb{E} \ (Y_{n+1}|X_1, X_2, \dots, X_n) \\ &= \mathbb{E} \ (Y_n|X_1, X_2, \dots, X_n) \ + \ \mathbb{E} \ (X_{n+1}|X_1, X_2, \dots, X_n) \end{split}$$

 $=Y_n+ \mathbb{E}(X_{n+1})=Y_n$

By corollary to lemma

Since X_{n+1} is independent of $X_1,...,X_n$

Since $\mathbb{E}(X_{n+1})=0$, $\mathbb{E}(Y_{n+1}|X_1,X_2,...,X_n)=Y_n$.

Hence Y_n is martingale with respect to $X_1, X_2, ...$

Example 2: Symmetric Random Walk $[Y_n, n = 0,1,2...]$ again

Let
$$Z_n = Y_n^2 - n$$
, $n \ge 0$.

Look at the process $[Z_n, n=0,1,2...]$

$$E (Z_{n+1} | X_1, X_2, ..., X_n)$$

$$= E (Y_{n+1}^2 - (n+1) | X_1, X_2, ..., X_n)$$

(recall that $Y_{n+1}=Y_n+X_{n+1}$)

$$= \mathbb{E} \left((\mathbf{Y}_{n} + \mathbf{X}_{n+1})^{2} - (n+1) \mid \mathbf{X}_{1}, \mathbf{X}_{2}, \dots, \mathbf{X}_{n} \right)$$

$$= \mathbb{E} \left(\mathbf{Y}_{n}^{2} + \mathbf{X}_{n+1}^{2} + 2 \mid \mathbf{X}_{n+1} \mathbf{Y}_{n} - n - 1 \mid \mathbf{X}_{1}, \mathbf{X}_{2}, \dots, \mathbf{X}_{n} \right)$$

$$= \mathbf{Y}_{n}^{2} + 2 \mid \mathbf{Y}_{n} \mid \mathbb{E} \left(\mathbf{X}_{n+1} \mid \mathbf{X}_{1}, \mathbf{X}_{2}, \dots, \mathbf{X}_{n} \right)$$

$$+ \mathbb{E} \left(\mathbf{X}_{n+1}^{2} \mid \mathbf{X}_{1}, \mathbf{X}_{2}, \dots, \mathbf{X}_{n} \right) - n - 1$$

$$= \mathbf{Y}_{n}^{2} + 2 \mid \mathbf{Y}_{n} \mid \mathbb{E} \left(\mathbf{X}_{n+1} \right) + \mathbb{E} \left(\mathbf{X}_{n+1}^{2} \right) - n - 1 = \mathbf{Y}_{n}^{2} + 0 + 1 - n - 1$$

$$= \mathbf{Y}_{n}^{2} - n = \mathbf{Z}_{n}$$

i.e.
$$E(Z_{n+1}|X_1,X_2,...,X_n) = Z_n$$

Example 3: Gambler

Gambler places £1 on an even bet for the 1^{st} game, and henceforth £2ⁿ⁻¹ on the n^{th} bet. If wins, he stops immediately.

Gambler must eventually win, and when s/he does, the net profit is always £1, since

$$2^{n} - (1+2+2^{2}+...+2^{n-1}) = 1$$

Yet, if you let Y_n = the cumulative gain after n^{th} game, then

$$Y_{n+1} = \begin{cases} Y_n - 2^{n-1}, & prob = \frac{1}{2} \\ Y_n + 2^{n-1}, & prob = \frac{1}{2} \end{cases}$$

So that
$$E(Y_{n+1} | Y_1, Y_2, ..., Y_n) = Y_n$$

(St Petersburg paradox)

Example 4: Branching process

 N_j size of the j^{th} generation. Assume $N_0=1$.

Let $\mu = \mathbb{E}(N_1)$ - expected number of children per member.

Recall $\mathbb{E}(N_i) = \mu^j$.

Suppose $N_i = n$ then

$$N_{j+1} = N_1^{(1)} + N_1^{(2)} + \ldots + N_1^{(n)}$$

 $N_1^{(i)}$ have the same distribution as N_1

So
$$\mathbb{E}(N_{j+1} \mid N_j = n) = \mu n$$

 \Rightarrow by definition $E(N_{j+1} \mid N_j) = \mu N_j$,

hence also $\mathbb{E}(N_{j+1} \mid N_j, N_{j-1}, ..., N_1) = \mu N_j$

since $\{N_i\}$ is a Markov process.

Define $W_i = N_i / E(N_i) = N_i / \mu^j$ then

$$\mathbb{E}(W_{i+1}|\ N_1, N_2, \dots, N_j) = \mathbb{E}(N_{i+1}/\mu^{j+1}|\ N_1, N_2, \dots, N_j) = \mu\ N_j/\mu^{j+1}$$

Hence $\mathbb{E}(W_{i+1}|N_1,N_2,...,N_i) = W_i \implies \text{martingale w.r.t. } N_i$

Martingale results

Recall: Time T is a stopping time if for all $n \ge 0$ event $\{T=n\}$ depends on $X_1, X_2, ..., X_n$ only.

Optional Stopping Theorem.

Let $[Y_n, n = 0, 1, 2, ...]$ be a martingale with respect to the sequence of $[X_n, n = 0, 1, 2, ...]$, and let T be a stopping time for $[X_n, n = 0, 1, 2, ...]$.

Suppose furthermore

(a)
$$P(T<\infty) = 1;$$

(b) $E(|Y_T|) < \infty;$
(c) $E(|Y_n| \times I_{\{T>n\}}) \rightarrow 0 \text{ as } n \rightarrow I_{\{T>n\}} = \begin{cases} 1 & \text{if } T > n \\ 0 & \text{if } T \le n \end{cases}$

Then $\mathbb{E}(Y_T)=Y_0$

Martingale Convergence Theorem.

Let $[Y_n, n = 0, 1, 2, ...]$ be a martingale (or *sub*martingale) with respect to the sequence of $[X_n, n = 0, 1, 2, ...]$. Suppose there is A > 0 such that $\mathbb{E}(|Y_n|) \le A$ for all $n \ge 0$.

Then there exists r.v. Y such that $P(\lim_{n\to\infty} Y_n = Y) = 1$

Note: If Z_n is a *non-negative super*martingale with respect to the sequence of $[X_n]$, let $Y_n := -Z_n$. Then Y_n turns out to be a *sub*martingale with respect to the very same sequence, with $E(|Y_n|) = E(Z_n) \le E(Z_{n-1}) \le ... \le E(Z_1) \le E(Z_0) = A$. Hence Y_n converges a.s. by MCT, hence $Z_n = -Y_n$ also converges.

Application of OST and MCT to Gambler's ruin

Let X_1, X_2, \dots be i.i.d. r.v.

$$P(X_i=1) = p$$

 $P(X_i=-1) = q=1-p$

Let $S_0=k$, where $1 \le k \le N$ and for $n \ge 1$ set $S_n=k+X_1+...+X_n$.

Thus $[S_n]$ is an unrestricted random walk starting at k.

Now let

$$T = \begin{cases} \min\{n : S_n = 0 \quad or \quad S_n = N\} \\ \infty, \quad if \quad 1 \le S_n \le N - 1 \quad for \quad all \quad n \end{cases}$$

Set $Y_n = S_{\min\{n,T\}}$

Then $[Y_n, n = 0, 1, 2, ...]$ is a random walk with absorbing barriers at 0 and N.

In particular, if $1 \le i \le N-1$

$$P(Y_{n+1}=i-1 | Y_n=i) = q$$

 $P(Y_{n+1}=i+1 | Y_n=i) = p$

Also

$$P(Y_{n+1}=0 | Y_n=0)=1$$

 $P(Y_{n+1}=N | Y_n=N)=1$

<u>Lemma</u>. Suppose $p=q=\frac{1}{2}$ (fair bet). Then

- (a) $P(T < \infty) = 1$,
- (b) $P(Y_T = N) = k / N$,
- (c) E(T) = k (N-k).

Proof.

Since $p=q=\frac{1}{2}$, we have

$$\mathbb{E}(\mathbf{Y}_{n+1} \mid \mathbf{Y}_n = i) = i$$

whenever $1 \le i \le N-1$, and also

$$\begin{array}{l} \mathbb{E} \ (Y_{n+1} \mid Y_n = 0) = 0 \\ \mathbb{E} \ (Y_{n+1} \mid Y_n = N) = N \end{array}$$

Thus for all i we have $\mathbb{E}(Y_{n+1} | Y_n) = Y_n$ and therefore, $\mathbb{E}(Y_{n+1} | Y_1, ..., Y_n) = Y_n$ since the process is Markov. Consequently, $[Y_n, n = 0, 1, 2, ...]$ is a martingale with respect to itself.

(a) Note $0 \le Y_n \le N$ for all $n \Rightarrow \mathbb{E}(|Y_n|) \le N = :A$ for all n.

So by MCT there is random variable Y such that $Y_n \rightarrow Y$ a.s.

Let
$$A = \{ \omega \in \Omega : Y_n(\omega) \rightarrow Y(\omega) \}$$
, then $P(A) = 1$

Suppose $T(\omega)=\infty$; i.e. $1 \le S_n(\omega) \le N-1$ for all n

Then $Y_{n+1}(\omega)=Y_n(\omega)+X_{n+1}(\omega)$ for all n

$$\Rightarrow |Y_{n+1}(\omega) - Y_n(\omega)| = 1$$

 \Rightarrow the sequence $[Y_n(\omega), n = 0, 1, ...]$ cannot converge to a limit

$$\Rightarrow \omega \in A^c$$

$$\Rightarrow \{T=\infty\}\subseteq A^c \Rightarrow 0 \le P(T=\infty) \le P(A^c) = 0$$

Therefore, $P(T=\infty)=0 \Rightarrow P(T<\infty)=1$.

(b) Look at conditions of OST. Have shown $\mathbb{P}(T < \infty) = 1$, also know that $Y_T \in \{0,N\}$ whence $\mathbb{E}[Y_T] < \infty$ as required.

Finally,

$$0 \le \mathbb{E}(Y_n I_{\{T>n\}}) \le N \mathbb{E}(I_{\{T>n\}}) = N \mathbb{P}(T>n) \to 0 \text{ as } n \to \infty,$$
 since $\mathbb{P}(T<\infty)=1$ implies $P(T>n) \to 0 \text{ as } n \to \infty.$ Thus the conditions of the OST hold.

Hence $\mathbb{E}(\mathbf{Y}_{\mathsf{T}}) = \mathbf{Y}_0 = k$.

At the same time

$$\mathbb{E}(Y_T) = 0 \times \mathbb{P}(Y_T = 0) + N \times \mathbb{P}(Y_T = N) = N \mathbb{P}(Y_T = N)$$

So
$$N P (Y_T = N) = k \Rightarrow P (Y_T = N) = k / N$$

(c) Let
$$Z_n = S_n^2 - n$$
. (Recall: $S_n = k + X_1 + ... + X_n$.)

Then $[Z_n, n = 0, 1, 2, ...]$ is a martingale with respect to $[X_n, n = 0, 1, 2, ...]$

The conditions of the OST are met (easy to check!)

Then

$$\mathbb{E}(\mathbf{Z}_{\mathrm{T}}) = \mathbf{Z}_0 = k^2 - 0 = k^2$$

Consequently
$$k^2 = \mathbb{E}(\mathbf{Z}_T) = \mathbb{E}(\mathbf{S}_T^2 - \mathbf{T}) = \mathbb{E}(\mathbf{S}_T^2) - \mathbb{E}(\mathbf{T})$$

But

$$E(S_T^2) = 0 \times P(S_T = 0) + N^2 \times P(S_T = N) = N^2 \times k / N = Nk$$

Therefore
$$E(T) = E(S_T^2) - k^2 = Nk - k^2 = k(N - k)$$

QED

<u>Lemma</u>. Consider gambler's ruin when $p\neq q$. Let Y_n be the capital of the gambler after n plays. Set

$$V_n = \left(\frac{q}{p}\right)^{Y_n}$$

Then $[V_n, n = 0, 1, 2, ...]$ is a martingale with respect to $[Y_n, n = 0, 1, 2, ...]$

<u>Proof</u>.

$$E(V_{n+1} | Y_1, Y_2, ..., Y_n) = E\left(\left(\frac{q}{p}\right)^{Y_{n+1}} | Y_1, Y_2, ..., Y_n\right) = E\left(\left(\frac{q}{p}\right)^{Y_{n+1}} | Y_n\right)$$

since [Y_n] is Markov.

Thus we need to show

$$E\left(\left(\frac{q}{p}\right)^{Y_{n+1}} \mid Y_n\right) = V_n = \left(\frac{q}{p}\right)^{Y_n}$$

First, if $Y_n = y = 0$ then $Y_{n+1} = 0$ as well, hence

$$E\left(\left(\frac{q}{p}\right)^{Y_{n+1}} \mid Y_n = 0\right) = E\left(\left(\frac{q}{p}\right)^0 \mid Y_n = 0\right) = E\left(1 \mid Y_n = 0\right) = 1 = \left(\frac{q}{p}\right)^0 = \left(\frac{q}{p}\right)^y$$

Similarly, if $Y_n = y=N$ then $Y_{n+1}=N$, so

Now suppose $Y_n = y$ where $1 \le y \le N - 1$. Then

$$\mathbf{E}\left(\left(\frac{q}{p}\right)^{Y_{n+1}} \mid Y_n = y\right) = \mathbf{E}\left(\left(\frac{q}{p}\right)^{Y_n + X_{n+1}} \mid Y_n = y\right)$$

$$= \mathbf{E}\left(\left(\frac{q}{p}\right)^{y + X_{n+1}} \mid Y_n = y\right) = \mathbf{E}\left(\left(\frac{q}{p}\right)^{y + X_{n+1}}\right) = \left(\frac{q}{p}\right)^y \mathbf{E}\left(\left(\frac{q}{p}\right)^{X_{n+1}}\right)$$

since X_{n+1} is independent of Y_n , and $Y_{n+1} = Y_n + X_{n+1}$.

Now

$$E\left(\left(\frac{q}{p}\right)^{X_{n+1}}\right) = \left(\frac{q}{p}\right)^{-1} P(X_{n+1} = -1) + \left(\frac{q}{p}\right)^{+1} P(X_{n+1} = +1)$$

$$= \frac{p}{q} q + \frac{q}{p} p = p + q = 1$$

Thus

$$E\left(\left(\frac{q}{p}\right)^{Y_{n+1}} \mid Y_n = y\right) = \left(\frac{q}{p}\right)^y$$
 Q.E.D.

Lemma. Consider the gambler ruin problem with $p\neq q$. Let T be the time at which game ends, and $Y_0=k$.

Then

(a)
$$P(T < \infty) = 1$$

(b)
$$P(Y_T = N) = \frac{1 - \left(\frac{q}{p}\right)^k}{1 - \left(\frac{q}{p}\right)^N}$$

Proof.

Let $V_n = (q/p)^{Y_n}$. Then $[V_n, n = 0, 1, 2, ...]$ is a martingale. Note that V_n lies somewhere between 1 and $(q/p)^N$, thus

$$\mathbb{E}\left(|V_{n}|\right) < \max\{1, \left(q/p\right)^{N}\} < \infty.$$

So the conditions of the MCT hold. Hence there is a random variable V such that $V_n \rightarrow V$ a.s. as $n \rightarrow \infty$.

As before, $\{T=\infty\} \Rightarrow \{V_n(\omega) \text{ does not converge}\}\$, whence $P(T=\infty)=0.$

Conditions of OST hold, so we apply it to V_n and T.

Then
$$\mathbb{E}(V_T) = V_0 = (q/p)^k$$

But
$$E(V_T) = [1-P(Y_T = N)] \times (q/p)^0 + P(Y_T = N) \times (q/p)^N$$

= $1-P(Y_T = N)[1-(q/p)^N]$

from which the lemma follows.

Applications to supercritical Branching processes ($\mu > 1$)

Motivation:

 N_j size of generation j. Know $E(N_j)=\mu^j$ so $\log E(N_j)=j\log(\mu)$ Look at behaviour of $\log N_j$ versus j

Expect either $N_j=0$ for j large or otherwise $\log N_j \approx j \log \mu + C$

$$\log (N_j) - j \log \mu \to C \text{ as } j \to \infty, \text{ i.e. } \log (N_j/\mu^j) \to C$$

$$\Rightarrow$$

$$\frac{N_j}{\mu^j} \to e^C = K$$
 random variable

and when $N_j=0$,

$$\frac{N_j}{\mu^j} \to 0$$

How to prove this?

Let
$$W_j = N_j / \mu^j$$

By the example on branching process, $\mathbb{E}(W_{j+1}|N_1,N_2,...,N_j) = W_j$ so that W_j is a martingale w.r.t. $[N_j, j=0,1,2,...]$

We have

$$E(|W_j|) = E(W_j) = E\left(\frac{N_j}{\mu^j}\right) = 1$$

Thus $\mathbb{E}(|W_j|)$ is uniformly bounded; consequently, we can apply MCT:

There exists random variable W such that

$$W_j \xrightarrow{a.s.} W$$
 as $j \to \infty$

That is to say $P (N_j / \mu^j \rightarrow W) = 1$

⇒ Either the process becomes extinct (W=0) or indeed $N_j \approx Const \times \mu^j$

Chapter 5: total 3 lectures, 5 slides per lecture

6. Markov Chains

Andrei Andreyevich Markov Born: 14 June 1856 in Ryazan, Russia

Introduction

[X_n : n=0,1,2,...] stochastic process

 X_n taking values in a finite or countable state space S, that is $X_n \in S$.

In this course, we usually take

$$S \subseteq Z = {..., -2, -1, 0, 1, 2,...}$$

Recall

<u>Definition</u>. A stochastic process $\{X_t, t=0,1,..., \}$ is called *Markov* chain, if for every n and m such that m, $n\geq 0$ and any collection of states $i_1,i_2,...\in S$ and $j\in S$

$$P(X_{n+m}=j \mid X_n=i_n, X_{n-1}=i_{n-1},..., X_0=i_0)=P(X_{n+m}=j \mid X_n=i_n)$$

We assume that Markov Chain is time-homogeneous, that is

$$P(X_{n+1}=j \mid X_n=i) = p_{ij}$$
One-step transition probability

does not ever depend on n.

Matrix $P = \{p_{ij}\}$ is called <u>transition matrix</u> of the chain.

Note that

$$\sum_{j \in S} p_{ij} = 1 \qquad for \quad each \quad i \in S$$

89

i.e. row sum is 1 for <u>every</u> row. Also $0 \le p_{ij} \le 1$.

Example. Unrestricted random walk

Let
$$X_1, X_2, ...$$
 be i.i.d. integer-valued r.v., $X_i = \begin{cases} +1 & prob = p \\ -1 & prob = 1-p \end{cases}$

Fix k, and let $Y_0=k$ and for $n \ge 1$,

$$Y_n = k + X_1 + X_2 + \dots + X_n$$

Then $[Y_n, n = 0, 1, 2, ...]$ is a Markov process.

Proof.

$$\begin{split} & P(Y_{n+m} = j \mid Y_0 = i_0, Y_1 = i_1, \dots, Y_n = i_n) \\ & = P\left(k + \sum_{i=1}^{n+m} X_i = j \mid Y_0 = i_0, \dots, Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_0 = i_0, \dots, Y_n = i_n\right) \\ & = P\left(\sum_{i=n+1}^{n+m} X_i = j - i_n \mid Y_0 = i_0, \dots, Y_n = i_n\right) \\ & = P\left(\sum_{i=n+1}^{n+m} X_i = j - i_n \mid Y_0 = i_0, \dots, Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+m} X_i = j \mid Y_n = i_n\right) \\ & = P\left(Y_n + \sum_{i=n+1}^{n+$$

Example. [Y_n : $n \ge 0$] simple random walk with absorbing barriers at 0 and N.

$$P = \begin{bmatrix} 1 & 0 & 0 & \dots & \dots & \dots & 0 \\ q & 0 & p & 0 & \dots & \dots & \dots & 0 \\ 0 & q & 0 & p & \dots & \dots & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & \dots & q & 0 & p \\ 0 & \dots & \dots & \dots & 0 & 0 & 1 \end{bmatrix}$$

Single Server Queue

Queue characterized by

- (i) distribution of interarrival time;
- (ii) distribution of service time.

Exponential interarrival times

Special case: M/M/1 queue

Let Y(t) = queue size at time t (as time progresses)

Let X(n) =size of queue prior to n^{th} change of size (X(n) is called the *embedded chain*)

Suppose that

- interarrival times independent exponential (λ)
- ullet service times independent exponential (μ)

Then P (nearest change is due to arrival)= $\lambda / (\lambda + \mu)$

(Remember homework!)

So

$$P(X(n+1)=i+1 \mid X(n)=i) = \frac{\lambda}{\lambda+\mu}$$

$$P(X(n+1)=i-1 \mid X(n)=i) = \frac{\mu}{\lambda+\mu}$$

$$i \ge 1$$

$$P(X(n+1)=1 | X(n)=0)=1$$

Look at particular locus on a chromosome Let X_n be the number of such loci in the population which contains the allele A after n generations.

Suppose:

- The population size is constant at N
- Given $X_n = i$, each member of the $n+1^{st}$ generation has A at the locus with probability i/N

Then

$$p_{ij} = P(X_{n+1} = j \mid X_n = i) = {N \choose j} \left(\frac{i}{N}\right)^j \left(1 - \frac{i}{N}\right)^{N-j}$$
 $i, j \in S$

Here $S=\{0,1,2,...,N\} \Leftarrow absorbing barriers at 0 and N$

Andrey Nikolayevich Kolmogorov,

born April 25 1903, Tambov, Russia, influenced many branches of modern mathematics, especially harmonic analysis, **probability**, set theory, information theory, and number theory

The Chapman – Kolmogorov Equations

Define $p_{ij}(n) = P(X_{n+k} = j \mid X_k = i)$ i.e. n steps transition probabilities

Note: does <u>not</u> depend on *k*!

We have

$$p_{ij}(n+m) = P(X_{n+m} = j \mid X_0 = i)$$

$$= \sum_{l=0}^{n} P(X_{n+m} = j \mid X_0 = i, X_n = k) P(X_n = k \mid X_0 = i)$$

since Markov chain

$$= \sum_{k \in S} P(X_{n+m} = j \mid X_n = k) P(X_n = k \mid X_0 = i) = \sum_{k \in S} p_{kj}(m) p_{ik}(n)$$

Let $P^{(n)} = \{p_{ij}(n)\}$. Then CK equations give

$$P^{(n+m)} = P^{(n)} P^{(m)}$$

Let
$$P(X_0=i) = p_i(0)$$
 and $P(X_n=i) = p_i(n)$.

Denote $\vec{p}(n) = (p_0(n), p_1(n),...)$ horizontal vector (maybe ∞ long)

Then
$$P(X(n)=j) = \sum_{i} P(X(n)=j \mid X(0)=i) P(X(0)=i) = \sum_{i} p_{i}(0)p_{ii}(n)$$

Thus
$$\vec{p}(n) = \vec{p}(0) P^n$$

Example.

Each day a machine is either working or broken down. If it is working, it is also working next day with probability 0.9; and if it is broken, it remains broken next day with probability 0.75.

Let
$$X_n = 0$$
, if the machine is *broken* on day $n = 1$, if the machine is working on day $n = 1$

[X_n : n=0,1,2,...] is a Markov chain with transition probabilities

$$p_{00}=P(X_{n+1}=0 \mid X_n=0) = \frac{3}{4}$$

$$p_{01}=P(X_{n+1}=1 \mid X_n=0) = \frac{1}{4}$$

$$p_{10}=P(X_{n+1}=0 \mid X_n=1) = 0.1$$

$$p_{11}=P(X_{n+1}=1 \mid X_n=1) = 0.9$$

$$P = \begin{bmatrix} 0.75 & 0.25 \\ 0.10 & 0.90 \end{bmatrix}$$

The machine is working on day zero (given). What is the probability the machine is working on day n? Namely, what's $\mathbb{P}(X_n=1 \mid X_0=1)$? What happens as $n \to \infty$?

To answer this, we need to calculate P^n for n = 2,3,...But it's easier to look at eigenvalues of matrix P.

Solution:

Need to find eigenvectors \underline{x} such that $\underline{x} P = \lambda \underline{x}$. Find λ first:

$$\det(P - \lambda I) = 0 \Rightarrow (0.75 - \lambda)(0.9 - \lambda) - 0.25 \times 0.1 = 0$$
$$\lambda^2 - 1.65\lambda + 0.65 = 0 \quad \lambda_{1,2} = 1, 0.65$$

Note! $\lambda=1$ is *always* a solution of **det**($P-\lambda I$)=0 for Markov chains.

<u>Case</u> $\lambda_1 = 1$. Let vector \underline{x} satisfy $\underline{x}P = \lambda_1 \underline{x}$, i.e.

$$(x_0 \quad x_1) \quad \begin{bmatrix} 0.75 & 0.25 \\ 0.10 & 0.90 \end{bmatrix} = 1 \times (x_0 \quad x_1) = (x_0 \quad x_1)$$

$$\Rightarrow$$
 0.75 $x_0 + 0.1$ $x_1 = x_0$ \Rightarrow 0.1 $x_1 = 0.25x_0$ \Rightarrow $x_1 = 2.5$ x_0

W.l.o.g. (=without loss of generality) can assume $x_0 + x_1 = 1$

Thus $\underline{x} = (2/7, 5/7)$

<u>Case</u> $\lambda_2 = 0.65$. Let vector $\underline{\mathbf{y}}$ satisfy $\underline{\mathbf{y}}P = \lambda_2 \underline{\mathbf{y}}$, i.e.

$$(y_0 \quad y_1) \quad \begin{bmatrix} 0.75 & 0.25 \\ 0.1 & 0.9 \end{bmatrix} = 0.65 \times (y_0 \quad y_1) = (0.65 \, y_0 \quad 0.65 \, y_1)$$

$$\Rightarrow$$
 0.75 $y_0 + 0.1 y_1 = 0.65 y_0 \Rightarrow y_1 + y_0 = 0 \Rightarrow y_1 = -y_0$

W.l.o.g. y=(-1, 1).

Now:

 $\mathbf{p}(0) = (0, 1)$ since initially machine is working.

We can write this in the new basis ($\underline{\mathbf{x}},\underline{\mathbf{y}}$) as

$$\mathbf{\underline{p}}(0) = \mathbf{\underline{x}} + 2/7 \,\mathbf{\underline{y}}$$

(by solving the equation $\vec{p}(0) = \alpha \vec{x} + \beta \vec{y}$ for α and β)

Since \underline{x} is an eigenvector corresponding to the eigenvalue λ_1 , we have $\underline{x} P = \lambda_1 \underline{x}$ yielding

$$\underline{\boldsymbol{x}} P^{n} = (\underline{\boldsymbol{x}} P) P^{n-1} = (\lambda_{1} \underline{\boldsymbol{x}}) P^{n-1} = \lambda_{1} (\underline{\boldsymbol{x}} P^{n-1}) = \lambda_{1} [(\underline{\boldsymbol{x}} P) P^{n-2})]$$

$$= \lambda_{1} [(\lambda_{1} \underline{\boldsymbol{x}}) P^{n-2}] = \lambda_{1}^{2} (\underline{\boldsymbol{x}} P^{n-2}) = \dots = \lambda_{1}^{n} \underline{\boldsymbol{x}}$$

Similarly, $\underline{\mathbf{y}} P^{n} = \lambda_{2}^{n} \underline{\mathbf{y}}$

Thus, since $\lambda_1=1$ and $\lambda_2=0.65$, and $\mathbf{p}(0)=\mathbf{x}+2/7\mathbf{y}$

$$\mathbf{\underline{p}}(n) = \mathbf{\underline{p}}(0)P^{n} = \mathbf{\underline{x}} P^{n} + 2/7 \mathbf{\underline{y}} P^{n} = \mathbf{\underline{x}} + 2/7 (0.65)^{n} \mathbf{\underline{y}}$$

$$= (2/7, 5/7) + 2/7 \times (0,65)^{n} (-1, 1)$$

$$= \left(\frac{2}{7} (1 - 0.65^{n}), \frac{5}{7} + \frac{2}{7} 0.65^{n}\right)$$

Consequently,

$$P(X_n=1 \mid X_0=1) = 5/7 + 2/7 \times (0.65)^n$$

and this $\rightarrow 5/7$ as $n \rightarrow \infty$.

Heuristically:

Observe that mean working time between repairs is 10 days (=mean of geometric r.v. with rate p=0.1 is 1/p=1/0.1) and mean repair time is 4 days (= 1 / 0.25).

Hence proportion of working time is 10/(10+4) = 5/7 again!

Classification of Markov Chains

Definition.

State *j* is *accessible* from state *i* if for some $n \ge 0$ $p_{ij}(n) > 0$.

Write $i \rightarrow j$.

Definition.

States *i* and *j* communicate if $i \rightarrow j$ and $j \rightarrow i$.

Write $i \leftrightarrow j$.

Theorem. Communications is an equivalence class, that is

- (i) $i \leftrightarrow i$;
- (ii) $i \leftrightarrow j$ if and only if $j \leftrightarrow i$;
- (iii) if $i \leftrightarrow j$ and $j \leftrightarrow k$ then $i \leftrightarrow k$.

<u>Proof.</u> (i) and (ii) follow immediate from the definition. To prove (iii), observe that there are $m \ge 0$ and $n \ge 0$ such that $p_{ii}(m) > 0$ and $p_{ik}(n) > 0$, consequently by CK equations

$$p_{ik}(m+n) = \sum_{r \in S} p_{ir}(m) p_{rk}(n)$$
$$\geq p_{ij}(m) p_{jk}(n) > 0$$

Thus $i \rightarrow k$. Similarly prove $k \rightarrow i$.

If $i \leftrightarrow j$ then i,j are said to be in the same *communicating class*. Classes partition the state space S.

<u>Definition</u>. Markov chain is called *irreducible* if it has *only one* communicating class.

<u>Definition</u>. State *i* is said to have period d if

Notation. d(i) = d

Remark: if d(i) = d, then there exists $n_0 \ge 1$ such that $p_{ii}(n) > 0$ for $n \ge n_0$ if and only if n is divisible by d.

Look at return times to

g.c.d.= 2, n_0 =4

 $p_{ii}(n) > 0$ for n = 4, 6, 8, 10, 12, 14, ...

Another example

Again look at return times to ©

g.c.d.= 1, n_0 =8

 $p_{ii}(n) > 0$ for n = 3, 5, 6, 8, 9, 10, ...

Theorem. If $i \leftrightarrow j$ then d(i) = d(j).

<u>Proof.</u> Let m and n be such that $p_{ij}(m) > 0$ and $p_{ji}(n) > 0$. Suppose $p_{ii}(s) > 0$. Then

$$\begin{array}{ll} p_{jj}(m+n) & \geq & p_{ji}(n) \; p_{ij}(m) > 0 \\ p_{jj}(m+n+s) \geq & p_{ji}(n) \; p_{ii}(s) \; p_{ij}(m) > 0 \end{array}$$

Hence d(j) divides (m+n) and also divides (m+n+s), consequently d(j) divides s,

- \Rightarrow d(j) divides g.c.d. {s: $p_{ii}(s) > 0$ } = d(i)
- \Rightarrow d(j) divides d(i)

By similar argument d(i) divides d(j), hence d(j)=d(i). Q.E.D.

```
<u>Definition</u>. For states i,j set f_{ij} = \mathbb{P}(X_n = j \text{ for some } n \ge 1 \mid X_0 = i)
```

<u>Definition</u>. State j is called *recurrent* (=persistent) if $f_{jj}=1$. Otherwise call it *transient*.

<u>Remark</u>. Suppose $X_0=j$ and let N be the number of times the chain returns to state j. Then $f_{jj}=P$ $(N \ge 1)$.

```
Case f_{jj}<1 (transient)

\Rightarrow \mathbb{P}(N \ge k) = (f_{jj})^k. Thus N is geometric and \mathbb{P}(N = \infty) = 0.

Case f_{jj} = 1 (recurrent)

\Rightarrow \mathbb{P}(N = \infty) = 1.
```

Remark. Suppose $X_0=i$, and let N be the number of times the chain visits state j.

Then
$$P(N \ge k) = f_{ii}(f_{ii})^{k-1}$$
, for $k \ge 1$

In particular, if *j* is transient, $P(N=\infty) = 0$.

<u>Corollary</u>. Suppose S has finitely many states. Then at least one state is recurrent.

Indeed, when S is finite, at least one state must be visited ∞ many times with positive probability, hence it cannot be transient.

Example. $S=\{1,2,3,4,5,6,7\}$ Transition matrix:

$$P = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 1/3 & 0 & 2/3 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1/3 & 2/3 & 0 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 \\ 5 & 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 6 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 7 & 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 \end{bmatrix}$$

What are the equivalence classes of communicating states?

•
$$1 \rightarrow 4$$

• $2 \rightarrow 4$
• $4 \rightarrow 5$ {4, 5} class

$$\rightarrow 6$$
 {6} class \Leftarrow the *only* recurrent one

$$5 \rightarrow 4$$

$$5 \rightarrow 6$$
 {7} class

Periods of states:
$$7 \rightarrow 7$$

 $\{1, 2, 3\}$ return to $\{1\}$ after 3, 5, 6... steps \Rightarrow d(1)=d(2)=d(3)=1

$$\{4, 5\}$$
 return to $\{4\}$ after 2, 4, 6, ... steps \Rightarrow $d(4)=d(5)=2$

$$\{6\} \Rightarrow d=1$$
 and $\{7\} \Rightarrow d=1$

All classes except {6} are transient.

More on recurrence

Let $f_{jj}(n) = P(X_1 \neq j, X_2 \neq j, ..., X_{n-1} \neq j, X_n = j \mid X_0 = j)$. Thus

$$f_{jj} = \sum_{n=1}^{\infty} f_{jj}(n)$$

Let

$$F_{jj}(s) = \sum_{n=1}^{\infty} s^n f_{jj}(n), \qquad |s|$$

p.m.f. of 1st return time $\tau_{jj} = \inf \{k \ge 1: X_k = j\}$ when $X_0 = j$

Recall that $p_{ij}(n) = P(X_n=j \mid X_0=j)$, and let

$$P_{jj}(s) = \sum_{n=0}^{\infty} s^n p_{jj}(n),$$
 | $s < 1$

<u>Lemma</u>. $P_{ij}(s) = 1 + P_{ij}(s) F_{jj}(s)$.

Proof. As for the random walk, we have

$$p_{jj}(m) = \sum_{r=1}^{m} f_{jj}(r) p_{jj}(m-r) \dots \text{ ... hence the result.}$$

Corollary. State *j* is recurrent $\Leftrightarrow \sum_{n\geq 0} p_{jj}(n) = \infty$.

<u>Proof.</u> *j* is recurrent $\Leftrightarrow f_{jj}=1$ (by definition) $\Leftrightarrow \Sigma_n f_{jj}(n)=1$

$$\Leftrightarrow \sum_{n=1}^{\infty} f_{jj}(n) = \lim_{s \uparrow 1} \sum_{n=1}^{\infty} f_{jj}(n) s^n = \lim_{s \uparrow 1} F_{jj}(s)$$

But $F_{jj}(s) = 1 - 1 / P_{jj}(s)$ by Lemma, so

$$\lim_{s\uparrow_1} F_{ij}(s) = 1 \iff \lim_{s\uparrow_1} P^{-1}_{ij}(s) = 0 \iff \lim_{s\uparrow_1} P_{ij}(s) = \infty,$$

$$\iff \lim_{s \uparrow 1} \sum_{n=1}^{\infty} p_{jj}(n) s^n = \infty \iff \sum_{n=1}^{\infty} p_{jj}(n) = \infty \quad \text{Q.E.D.}$$

Corollary. Suppose $i \leftrightarrow j$. Then *i* recurrent $\iff j$ recurrent.

<u>Proof.</u> Suppose *i* recurrent. Since $i \leftrightarrow j$ there are *m* and *n* such that $p_{ij}(n) > 0$ and $p_{ij}(m) > 0$.

From Chapman-Kolmogorov equation, applied twice, for $s \ge 0$,

$$p_{ij}(m+n+s) \ge p_{ji}(m) p_{ii}(s) p_{ij}(n)$$

Hence

$$\sum_{s} p_{ij}(m+n+s) \ge p_{ii}(m) p_{ij}(n) \sum_{s} p_{ii}(s)$$

But by above corollary, the sum on the RHS is infinite, so is

$$\sum_{\mathbf{k}} p_{\mathbf{j}\mathbf{j}}(\mathbf{k}) = \infty$$

and, by Corollary, *j* is also recurrent. Similar arguments work out for the counterpart.

Q.E.D.

<u>Corollary</u>. When S is finite, and the chain is irreducible, all states are recurrent.

Example. Simple random walk (unrestricted)

Then $i \leftrightarrow j$ for all i,j, so there is only 1 communicating class \Rightarrow chain irreducible.

Returns to any state are possible after steps 2,4,6,... so d(i)=2 for all i. (So that $p_{00}(2n+1)=0$ for all n.)

Shown before,

$$p_{00}(2n) \sim \frac{(4pq)^n}{\sqrt{\pi n}}$$
 as $n \to \infty$

<u>Case</u> $p=q=\frac{1}{2}$ Then

$$p_{00}(2n) \sim \frac{1}{\sqrt{\pi n}} \quad \Rightarrow \quad \sum_{n=1}^{\infty} p_{00}(2n) = \infty$$

Thus state 0 is recurrent by Corollary, and hence all other states are recurrent too.

<u>Case</u> $p \neq q$. Then $4pq = \theta < 1$ and

$$p_{00}(2n) \sim \frac{\theta^n}{\sqrt{\pi n}} \quad \Rightarrow \quad \sum_{n=1}^{\infty} p_{00}(2n) < \infty$$

Thus state 0 is transient by Corollary, and hence all other states are transient too.

Example.

 $\overline{2}$ -dimensional simple symmetric random walk on \mathbb{Z}^2

Thus state $\underline{\mathbf{0}} = (0,0)$ is recurrent by Corollary, and hence all other states are recurrent too.

Example.

Simple random walk with reflecting barriers at 0 and N

Then all states still communicate, i.e. $i \leftrightarrow j$ for all i,j, so the chain is irreducible (and also *aperiodic*, i.e. d(i)=1 since this is true for the barrier endpoints).

What happens with $P(X_n=i)$ as $n \to \infty$?

• In a more general set up, I am interested in $\lim_{n\to\infty} p_{ij}(n)$

Limit theorems

First, suppose that j is transient.

Then can show

$$p_{ij}(n) \to 0 \quad \forall i \in S$$

So from now, we will deal with irreducible chains in which at least one, and hence every state is **recurrent**.

<u>Definition</u>. Suppose *j* is recurrent. Let

$$\mu_{jj} = \sum_{n=1}^{\infty} n f_{jj}(n)$$

be the mean time to return to *j* starting from *j*, also called *the mean recurrence time of state j*.

<u>Definition</u>. Let *j* be a recurrent state. We call it *positive recurrent*, if $\mu_{jj} < \infty$; *null recurrent*, if $\mu_{ij} = \infty$.

Example. Simple symmetric random walk (unrestricted)

We know all states are recurrent. Starting from 0, mean return time is ∞ ; same for other states

 \Rightarrow all states are null recurrent

<u>Theorem</u>. Let *j* be a recurrent state and suppose $i \leftrightarrow j$. Then

- (a) $p_{ij}(n) \rightarrow 1 / \mu_{jj}$ as $n \rightarrow \infty$ when j is aperiodic (i.e. d(j)=1)
- (b) $p_{ij}(n) \rightarrow 1 / \mu_{jj}$ as $n \rightarrow \infty$ but only in Cesàro sense when j has period d>1, i.e. d(j)=d

Def: $x_n \rightarrow x$ in Cesàro sense, if $(x_1 + x_2 + ... + x_n) / n \rightarrow x$ as $n \rightarrow \infty$.

Note: the above theorem holds even when $\mu_{ii}=\infty$.

Why (a) is this true?

Starting from *i* the walk eventually gets to *j*. Once at *j* it returns there ∞ many times. Mean time between returns is exactly μ_{jj} . Probability of returns even out until $P(X_n=j) \cong 1/\mu_{jj}$.

Example.

Look at state *j*. Suppose $X_0 = j$. Then

n	=	1	2	3	4	5	6	7
$P(X_n=j \mid X_0=j)$	=	0	0	1/2	0	1/2	1/4	0

d(j)=1 so aperiodic. $\mu_{ij}=4$ so expect $p_{ij}(n) \rightarrow \frac{1}{4}$ for all i.

Note: in general, for $n \ge 5$,

$$P(X_{n} = j \mid X_{0} = j) = P(X_{n} = j \mid X_{0} = j, X_{n-3} = j)P(X_{n-3} = j \mid X_{0} = j)$$

$$+ P(X_{n} = j \mid X_{0} = j, X_{n-5} = j)P(X_{n-5} = j \mid X_{0} = j)$$

$$= \frac{1}{2}P(X_{n-3} = j \mid X_{0} = j) + \frac{1}{2}P(X_{n-5} = j \mid X_{0} = j)$$

Using this recursion, we get

n	=	8	9	10	11	12	13	14
$P(X_n=j \mid X_0=j)$	=	1/2	1/8	1/4	3/8	1/16	3/8	1/4

and further

								21
$P(X_n=j \mid X_0=j)$	=	5/32	3/8	5/32	17/64	5/16	5/32	41/128

etc. seems close to 1/4.

FYI almost exact formula: (beyond this course level)

$$p_n = \frac{1}{4} + 0.49(0.923)^n \cos(2.38n - 0.22) + 0.3(0.766)^n \cos(1.35n - 0.27)$$

<u>Lemma</u>. Positive (null, *respectively*) recurrence is a class property, that is whenever $i \leftrightarrow j$,

- (a) i is positive recurrent $\Leftrightarrow j$ is positive recurrent;
- (b) *i* is null recurrent \Leftrightarrow *j* is null recurrent.

Proof.

Throughout the proof we suppose that j is recurrent $(\Leftrightarrow i \text{ is recurrent})$

Since $i \leftrightarrow j$, there are fixed M and N such that $p_{ij}(M) > 0$, $p_{ji}(N) > 0$. Then by CK equations, for any $n \ge 0$

$$p_{jj}(n+N+M) \ge p_{ji}(N)p_{ii}(n)p_{ij}(M)$$

$$\Rightarrow 0 \le p_{ii}(n) \le \frac{1}{p_{ii}(N)} \frac{1}{p_{ij}(M)} p_{jj}(n+N+M)$$

Now, if j is null recurrent $\mu_{ii}=\infty$, so by Theorem $p_{ii}(k) \to 0$

- \Rightarrow the RHS of the above $\rightarrow 0 \Rightarrow p_{ii}(n) \rightarrow 0$
- \Rightarrow by the same Theorem $\mu_{ii}=\infty$ \Rightarrow *i* is *also* null recurrent.

Similarly, if i is null recurrent then j is null recurrent. Thus (b) is proved and hence so is (a).

Q.E.D.

Suppose $i \leftrightarrow j$

Stationary (Equilibrium) Distribution

Markov Chain $[X_n: n = 0, 1, 2,]$, on a countable state space $S=\{0,1,2,3,...\}$ is again assumed irreducible.

Definition.

Let $\{\alpha_i: j=0,1,2,...\}$ be a probability distribution over S, that is

$$\begin{cases} \alpha_j \ge 0 & \forall j \in S \\ \sum_{j \in S} \alpha_j = 1 \end{cases}$$

Then $\{\alpha_j\}$ is a *stationary probability distribution* for the chain X_n if

$$\alpha_{j} = \sum_{i \in S} \alpha_{i} p_{ij} \quad \forall j \in S \quad \Rightarrow \quad \underline{\alpha} = \underline{\alpha} P \quad \Rightarrow \quad \underline{\alpha} = \underline{\alpha} P^{n}$$
Suppose

Suppose

 $\{\alpha_j\}$ is a stationary probability distribution, and $\mathbb{P}(X_0=j)=\alpha_j$ for all $j\in \mathbb{S}$.

Then

$$P(X_1 = j) = \sum_{i \in S} P(X_0 = i) p_{ij} = \sum_{i \in S} \alpha_i p_{ij} = \alpha_j \qquad \forall j \in S$$

$$P(X_2 = j) = \sum_{i \in S} P(X_1 = i) p_{ij} = \sum_{i \in S} \alpha_i p_{ij} = \alpha_j \qquad \forall j \in S$$
:

i.e. $P(X_n=j)=\alpha_j$ for all $j \in S$ and all n.

Remark. Let $[X_n]$ be an irreducible chain with state space S. Suppose that either

all states are transient

or

all states are null recurrent.

Then can show that $p_{ii}(n) \rightarrow 0$ as $n \rightarrow \infty$ for all $i, j \in S$

⇒ *no* stationary probability distribution can exist.

<u>Definition</u>. Suppose a chain $[X_n]$ is

- (i) irreducible (one communicating class)
- (ii) aperiodic (d=1)
- (iii) positive recurrent $(\mu_{jj} < \infty)$

Then it is said to be *ergodic*.

<u>Theorem</u>. Let $[X_n]$ be an ergodic chain with state space S. Then

$$\lim_{n\to\infty} p_{ij}(n) = \frac{1}{\mu_{ii}} \equiv \pi_j \qquad \forall i, j \in S$$

and $\{\pi_i\}$ is unique stationary prob. distribution for the chain.

<u>Proof.</u> Since all states are positive recurrent we already know that

$$\lim_{n\to\infty} p_{ij}(n) = \frac{1}{\mu_{jj}} \quad \forall i, j \in S$$

Set $\pi_i = 1/\mu_{ij}$ We must show

(a)
$$\begin{cases} \pi_j = \sum_{i \in S} \pi_i p_{ij} & \forall j \in S \\ \sum_{j \in S} \pi_j = 1 \end{cases}$$

(b) $\{\pi_i\}$ is the unique stationary probability distribution.

Example. Two states $S = \{1,2\}$

(A) Look for the stationary distribution $\underline{\pi} P = \underline{\pi}$

$$(\pi_1 \quad \pi_2) \begin{bmatrix} 0 & 1 \\ 1/2 & 1/2 \end{bmatrix} = (\pi_1 \quad \pi_2) \implies 0\pi_1 + \frac{1}{2}\pi_2 = \pi_1 \implies \pi_2 = 2\pi_1$$

Since $\pi_1 + \pi_2 = 1$, we have $\underline{\pi} = (1/3, 2/3)$.

(B) Can we show directly that

$$p_{i1}(n) \rightarrow \frac{1}{3}$$
 as $n \rightarrow \infty$ for $i = 1,2$
 $p_{i2}(n) \rightarrow \frac{2}{3}$ as $n \rightarrow \infty$ for $i = 1,2$

Yes.

Let
$$Q = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$$
, then $Q^{-1} = Q$

and easy to see that
$$QPQ = \begin{bmatrix} 1 & 0 \\ 0 & -1/2 \end{bmatrix}$$
, hence $(QPQ)^n = \begin{bmatrix} 1^n & 0 \\ 0 & (-1/2)^n \end{bmatrix}$

But

$$(QPQ)^n = QPQQPQ...QPQ = QP(QQ)P...(QQ)PQ = QP^nQ$$

$$\Rightarrow P^{n} = Q^{-1} \begin{bmatrix} 1^{n} & 0 \\ 0 & (-1/2)^{n} \end{bmatrix} Q^{-1} \xrightarrow[n \to \infty]{} Q \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} Q = \begin{bmatrix} 1/3 & 2/3 \\ 1/3 & 2/3 \end{bmatrix}$$

(C) Does this agree with the mean recurrence time?

Yes.

Let T be time to return to $\{1\}$.

Then:

For
$$k \ge 2$$
, $P(T = k) = 1 \times \left(\frac{1}{2}\right)^{k-2} \times \frac{1}{2} = \left(\frac{1}{2}\right)^{k-1}$

Thus

$$E(T) = \sum_{k=0}^{\infty} kP(T=k) = \sum_{k=2}^{\infty} k \left(\frac{1}{2}\right)^{k-1} = 3$$

Why is that 3?

$$\sum_{k=2}^{\infty} kx^{k-1} = -1x^0 + \sum_{k=0}^{\infty} kx^{k-1} = -1 + \sum_{k=0}^{\infty} \frac{d}{dx} (x^k)$$

$$= -1 + \sum_{k=0}^{\infty} \frac{d}{dx} (x^k) = -1 + \frac{d}{dx} \left[\sum_{k=0}^{\infty} x^k \right]$$

$$= -1 + \frac{d}{dx} \left[\frac{1}{1-x} \right] = -1 + \frac{1}{(1-x)^2}$$

Now plug in $x = \frac{1}{2}$.

Similarly, can show the mean return time for state $\{2\}$ is 3/2.

Example. M/M/1 queue

Inter arrival times
$$\exp(\lambda)$$

Service times $\exp(\mu)$

 $\lambda < \mu$

 X_n = queue size after n^{th} change of queue size

Solve: $\underline{\boldsymbol{\pi}} P = \underline{\boldsymbol{\pi}} \implies$

$$\left(\frac{\mu}{\lambda + \mu}\right) \pi_1 = \pi_0$$

$$\pi_0 + \left(\frac{\mu}{\lambda + \mu}\right) \pi_2 = \pi_1$$

$$\left(\frac{\lambda}{\lambda + \mu}\right) \pi_{k-1} + \left(\frac{\mu}{\lambda + \mu}\right) \pi_{k+1} = \pi_k , \quad k \ge 2$$

$$\left(\frac{\lambda}{\lambda + \mu}\right) \pi_{k-1} + \left(\frac{\mu}{\lambda + \mu}\right) \pi_{k+1} = \pi_k , \quad k \ge 2$$

To solve, try $\pi_k = \theta^k$, $k \ge 1$

Then for $k \ge 1$, using ($\aleph 3$)

$$\left(\frac{\lambda}{\lambda+\mu}\right)\theta^{k-1} + \left(\frac{\mu}{\lambda+\mu}\right)\theta^{k+1} = \theta^{k} \quad \Rightarrow \quad \mu\theta^{2} - (\lambda+\mu)\theta + \lambda = 0$$

$$\Rightarrow \quad (\mu\theta - \lambda)(\theta - 1) = 0 \quad \Rightarrow \quad \theta_{1} = 1, \quad \theta_{2} = \frac{\lambda}{\mu}$$

Hence, general solution has the form

$$\pi_{k} = A + B \left(\lambda / \mu \right)^{k} \tag{34}$$

Now from $(\aleph 1)$ and $(\aleph 2)$,

$$\pi_{0} = \left(\frac{\mu}{\lambda + \mu}\right) \pi_{1} \qquad (35)$$

$$\pi_{1} = \left(\frac{\mu}{\lambda + \mu}\right) \pi_{1} + \left(\frac{\mu}{\lambda + \mu}\right) \pi_{2}$$

$$\Rightarrow \left(\frac{\lambda}{\lambda + \mu}\right) \pi_{1} = \left(\frac{\mu}{\lambda + \mu}\right) \pi_{2}$$

$$\Rightarrow \pi_{2} = \frac{\lambda}{\mu} \pi_{1}$$

Then, from ($\aleph 4$) for k = 2 we have

$$A + B\left(\frac{\lambda}{\mu}\right)^2 = \frac{\lambda}{\mu} \left(A + B\left(\frac{\lambda}{\mu}\right)\right) \quad \Rightarrow \quad A = \frac{\lambda}{\mu} A \quad \Rightarrow \quad A = 0$$

since $\lambda < \mu$. Therefore, $\pi_k = B (\lambda/\mu)^k$ for $k \ge 1$

From (85), we obtain

$$\pi_0 = \left(\frac{\mu}{\lambda + \mu}\right) \times B\left(\frac{\lambda}{\mu}\right)^1 = \left(\frac{\lambda}{\lambda + \mu}\right) B$$

Require

$$\sum_{k=0}^{\infty} \pi_k = 1$$

$$\Rightarrow \left(\frac{\lambda}{\lambda + \mu}\right) B + \sum_{k=1}^{\infty} B \left(\frac{\lambda}{\mu}\right)^{k} = 1$$

$$\Rightarrow B \left[\left(\frac{\lambda}{\lambda + \mu}\right) + \left(\frac{\lambda}{\mu}\right) \frac{1}{1 - (\lambda/\mu)}\right] = 1$$

$$\Rightarrow B \left[\frac{\lambda}{\lambda + \mu} + \frac{\lambda}{\mu - \lambda}\right] = 1 \Rightarrow \frac{2B\mu\lambda}{\mu^{2} - \lambda^{2}} = 1$$

$$\Rightarrow B = \frac{\mu^{2} - \lambda^{2}}{2\mu\lambda}$$

So

$$\pi_0 = \frac{\mu - \lambda}{2\mu}, \qquad \pi_k = \frac{\mu^2 - \lambda^2}{2\mu\lambda} \left(\frac{\lambda}{\mu}\right)^k, \quad k \ge 1$$

Finally, compute the proportion of *real time* the queue is empty:

$$\frac{\pi_0(\lambda)^{-1}}{\pi_0(\lambda)^{-1} + \sum_{k=1}^{\infty} \pi_k (\mu + \lambda)^{-1}} = \frac{\pi_0}{\pi_0 + \sum_{k=1}^{\infty} \left(\frac{\lambda}{\mu + \lambda}\right) \frac{\mu^2 - \lambda^2}{2\mu\lambda} \left(\frac{\lambda}{\mu}\right)^k}$$

$$= \frac{\pi_0}{\pi_0 + \sum_{k=1}^{\infty} \left(\frac{\mu - \lambda}{2\mu}\right) \left(\frac{\lambda}{\mu}\right)^k} = \frac{1}{1 + \sum_{k=1}^{\infty} (\lambda/\mu)^k}$$

$$= \left(\sum_{k=0}^{\infty} (\lambda/\mu)^k\right)^{-1} = 1 - \frac{\lambda}{\mu}$$

Chapter 6: total 8 lectures, 3 ¾ slides per lecture