# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

## 9日本国特 許 庁(JP)

10 特許出願公開

## ◎ 公 開 特 許 公 報 (A) 昭61 - 270737

@Int\_Cl\_1

識別記号

厅内整理番号

匈公開 昭和61年(1986)12月1日

G 03 B 17/12

7610-2H

審査請求 未請求 発明の数 1 (全13頁)

9発明の名称

二焦点式カメラ

印特 額 昭60-112752

- ❷出-顋 昭60(1985)5月25日

の発 明 者 若

東京都品川区西大井1丁目6番3号 日本光学工業株式会

社大井製作所内

包出 日本光学工業株式会社 東京都千代田区丸の内3丁目2番3号

邳代 理 弁理士 渡辺 隆男

1. 発明の名称

二焦点式カメラ

2. 特許請求の範囲

(1) 主光学系の直後に設けられた絞り兼用シャ ツタを前記主光学系と一体に光軸に沿つて前進さ せると共に前記紋り兼用シャッタの後方の光軸上 に副光学系を挿入することによつて焦点距離を切 替え可能な撮影レンズを存するカメラにおいて、 前記主光学系の前部を覆うレンズバリアを開閉可り 能に設けると共に、前記レンズバリアと前記紋り。 兼用シャッタとの間の前記主光学系を取り囲む位 置に前記紋り兼用シャッタを駆動するシャッタ駆 動装置を設け、さらに、前記剛光学系を除き少な くとも前記レンズバリアと主光学系とを包囲する 断面円形の外筒を設け、前記割光学系が光軸上に 押入されたときに前記外筒が少なくとも前記シヤー ツタ駆動装置の駆動部を囲む位置までカメラ本体 の外郎に突出移動する如く構成したことを特徴と する二焦点式カメラ。.

(2) 前記シャツタ駆動装置は、電気で駆動され るモータを含み、波状に折り曲げられたフレキシ ブルプリント基版(12)を介してカメラ本体( 1) 側の制御回路(96、98)と接続している ことを特徴とする特許請求の範囲第1項記載の二 焦点式カメラ。

(3) 前記シャツタ駆動装置は、複数の磁極を有 するコータ (88) と前記主光学系 (3) のまわ りにほぼ半円形に配置されたステータ(90人、 908) とを含むステツブモータ (11) である ことを特徴とする特許請求の範囲第1項または第 2項記載の二焦点式カメラ。

3. 発明の詳細な説明

(発明の技術分野)

本発明は、主光学系の繰り出しに連動して副光 学系を摄影光軸上に挿入して焦点距離を変換可能 な撮影レンズを有する二焦点式カメラ、特に主光 学系の直後に絞り兼用シャッタが設けられた二焦 点式カメラに関する。

(発明の背景)

援影レンズの主光学系を前方へ扱り出し、その主光学系の後方の光軸上に関レンズを挿入して無点距離を変えることができるいわゆる二焦点式カメラは、例えば特開昭52-76919号、特開昭54-202431号などの公開特許公報により公知である。これらの従来公知の二焦点式カメラの公開特許の音及なされていないが、そのシャッタについての提案が特開昭59-19926号公報によつて既に開示されている。

しかしながら、この公知のシャッタを具備した 二焦点式カメラにおいては、主光学系の周囲には フォーカシングのための殴り出し優積が設けられ、 その主光学系の直後にシャッタ駆動機構と紋を 用 ンヤッタ羽根とが設けられ、さらに紋り灌用 ヤッタ羽根の後方に関光学系が挿入されるように 構成され、シャッタ駆動機構の構造が極めて複雑 で 組立て作業に長い時間と経験とそ必要とする。 また、主光学系、シャッタ装置を囲む外筒は、光

囲む位置に、その紋り兼用シャッタを駆動するシャッタ駆動装置を設け、さらに関光学系を除き少なくともレンズバリアと主光学系とシャッタ駆動装置とを包囲する断面円形の外筒を設け、開光学系が絞り兼用シャッタの後方の光軸上に挿入されたときに、その外筒が少なくともシャッタ駆動装置の駆動部を囲む位置までカメラの外部に突出移動するように構成することを技術的要点とするものである。

#### (実施例)

次に、本発明の実施例を添付の図面に基づいて 詳しく説明する。

第1図および第2図は本発明の実施例を示す断面図で、第1図はレンズパリアが閉じた収納状態、第2図は主光学系の光軸上に開光学系が挿入された図遠状態を示し、第3図は第1図に示す実施例の構成の一部をなす間レンズホルダの拡大断面図、第3図、第4図、第5図はそれぞれ第1図の人一人、B-B、C-C断面図である。

**第1図および第2図において、カメラ本体1は** 

軸外の退避位置に在る剛光学系のレンズ枠をも囲むように四角筒状に形成されているため、その内部に無駄なスペースが生じ、しかも、その外筒をカメラ本体との間を光密に選別するため、外筒の外側をさらに四角筒のカバーで覆わればならない欠点が有つた。また、この特別昭59~19926号公報を含む従来公知の二無点式パリアについて何等の考慮もなされていない。

### (発明の目的)

本発明は、上記従来の二焦点式カメラの欠点を 解決し、焦点距離変換の際に光軸方向に移動する 銀筒にレンズバリアとシャッタ駆動部とを内蔵し、 しかもコンパクトで、超立て作業性と操作性の良 好な二焦点式カメラを提供することを目的とする。 〔発明の概要〕

上記の目的を達成するために本発明は、主光学 系の前部を関うレンズバリアを開閉可能に設ける と共にそのレンズバリアと主光学系の後部に設け られた紋り瀬用シャツタとの間の主光学系を取り

外装ケース 2 にて度われ、カメラ本体 1 の上部 1 Aには図示されない投光レンズと受光レンズとを 含む距離検出装置やファインダー光学系などが設っ けられている。攝影レンズの主光学系3の前面に は、後で詳しく述べられるレンズパリア28、2 9 が開閉可能に設けられ、その主光学系3の後方 には副光学系 4 が摄影光軸上に排脱可能に設けら れている。また、外装カバー2の上面には、提影 レンズの焦点距離切替えとレンズパリア28、2 9の開閉のために操作される焦点距離選択部材 5 が摺動可能に設けられている。この焦点距離選択 郎材 5 は第7 図に示すように指展 5 人を有し、そ の指揮 5. 人が外装カバー 2. の上面に設けられた記 号「OFF」に一致すると、レンズパリア28、 29は開成され、指揮 5 Aが広角記号「W」に合 致すると、レンズパリア28、29は開成され且 つ主光学系3のみによつて、摄影可能な短焦点距・ 離状庭(以下「広角状態」と称する。) となる。 また、指揮5Aが箟遠記号「T」に合致すると、 後で詳しく述べられる光学系移動機構が作動して

主光学系3が前方に疑り出され、これに伴つてで 光学系4がその主光学系3の後方に挿入されて 主光学系3と副光学系4とによる長い合成焦点 超状態(以下「望遠状態」と称する)となる。な お、この焦点距離選択操作部材5には、主光学 お、この焦点距離選択操作部材5には、主光角 同に変位との駆動源となる可逆モータ M を制御 る制御回路に焦点距離切替え信号を送るスイッチ 装置57が連動している(第7図参照)。

9 に植設された 2 本の支柱 1 5 A 、 1 5 B (第 5 図参照)によつて支持されている。バリア基板 9 と前理14の外周とを雇う外筒16の一端は第6 図に示す如く小ねじ17によつて台坂10に固設 され、他端は第1図に示す如く前環14に嵌合し ている。また、パリア基板9と外筒16との間に は黒色軟質のパツキン1.8 Aが設けられ、外筒1 6の外周はカメラ本体1の前端に設けられた二重・ の遮光部材18Bによつて光密的にシールされて いる。前環14は、パリア基板9と共にレンズ保 護カバー装置を支持する前側基板を構成している。 その前環14の中央に設けられた鏡筒開口14A は、第5図中で破線にて示す如く、光軸を中心と するX - X 軸方向(フィルム開口1 B の長辺方向・ ) に長くY-Y軸方向(フィルム開口1Bの短辺 方向)にやや短い矩形の四隅を光軸を中心として 円弧状に角を落としたほぼ六角形に形成されてい

前環14の基例にはリングギャ19が回転可能 に支持され、そのリングギャ19には第5図に示 つて駆動される後述の光学系駆動装置(第8図参照)が設けられ、その光学系移動機構は、台版10を光軸に沿つて移動させ、さらに開光学系4を支持する開光学系ホルダ13を光軸に直交する方向に変位させるように構成されている。

その創光学系ホルダ13は、第3図な示すよと、、第3図な示すよと、、第3回な示すよと、に、別光学系4を保持する関や首13日に、の別レンズ枠13人に螺合する内枠首13日と大谷では、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、13日には、

台板 1 0 に固定されたパリア基板 9 の前面には 前環 1 4 が設けられ、この前環 1 4 はパリア基板

すように、互いに180、離れた位置に第1セグ メントギャ部19Aと第2セグメントギャ部19 Bとが光軸を中心として対称的に形成されている。 さらに第1セグメントギャ部19人の近傍のリン グギャ外周に、その一対のセグメントギャ部19 A、19Bの歯型外周よりやや小さい歯型外周を 有する第3セグメントギャ部19Cが形成されて いる。第1セグメントギヤ部19人と積み合う第 1ピニオンギヤ20は第1回動レバー21と一体 に形成され、その歯列の一方の側面にはフランジ 部20Aが一体に形成されている。また、第2セ グメントギャ部 1 9 Bと暗み合う第2ピニオンギ ヤ22は第2回動レバー23と一体に形成され、 その歯列の一方の側面にはフランジ部22Aが一 \*体に形成されている。その第1回動レバー21は - 第1ピニオンギャ20と、また第2回動レバー2 3 は第 2 ピニオンギャ 2 2 とそれぞれ一体にブラ スチック成形を可能にするように基部 2 1 A、 2 - 3 人がそれぞれ鍵型に形成されている。また、そ れぞれ一体に形成された第1ピニオンギヤ20、

第1回動レバー21は第2ピニオンギャ22、第2回動レバー23とは、それぞれ支触24、25を介してバリア基板9と前環14との間に回転可能に支持され、さらにリングギャ19は、フランジ部20A、22Aによつてスラスト方向(第1図中で右方)の移動を阻止されている。

第1回動レバー21と第2回動レバー23の自由 協には、それぞれピン軸26、27を介して至28には、それぞれピン軸26、27を介して至28とが自由にリア28とが第1だリア28とが第1だりであるように保持されている。この第1だリアクトでは、外間が外間16の内にほどである。29が外間16の内では、レンズバリア28、29が開放が発展があるのである。28b、29なが開催し、その際ののでは、28b、29なが開催し、その際のでは、28b、29なが開催したがある。28b、29なが開催したときは、第5図に示すように光軸と

するためのトランジスタTri、Tri、後述の選光 用1C95、コンデンサCi、Ciなどの制御回 路装置が設けられている。

一方、リングギャ19の第3セグメントギャ部 19Cと贈み合う第3ピニオンギナ40は、第4 図に示す如く連動軸41に支持され且つフランジ 郎40Aと一体に形成されている。このフランジ 郎40Aは、第1ピニオンギャ20のフランジ部 20Aおよび第2ピニオンギャ22のフランジ部 22Aと共にリングギヤ19にスラスト方向(第 (図中で右方)の助きを阻止するように構成され ている。第3ピニオンギヤ40を支持する連動軸 4.1は、台板10の裏面に固設されたブラケット 44に回転可能に支持されると共に、その一端は 第4図に示すように前環14に回転可能に支持さ れている。また、連動軸41の他端は、ブラケツ ト44を貫通してその裏側で第4図および第7図 に示す如くカム部材42を一体に支持している。 そのカム部材42は、台板10の移動方向に対し て傾斜したカム面(2Aを有し、ねじりコイルば

で互いに接し、その際第1 バリア 2 8 の下端 2 8 c は支柱 1 5 A に当接し、また、第 2 バリア 2 9 の右端上縁 2 9 c はバリア基板 9 に植設された制限ピン 3 0 に当接して、玄部 2 8 b、 2 9 b の方向が開成時と同じ X - X 軸方向になるように構成されている。

さらに、前頭14には第4回に示すようとで35が設けられ、そのほ出計学光36が設けられ、そのほ出計学子36が設けられ、そのは受光で、第4回中で右方)に受光で35tれでも35tれである。また、その受光では37元には35tれである。またのでは37元には35tれでからでは、アングがのでは、15tれで対域のでは、15tれでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttなどのでは、15ttな

ね43により第1図中で反時計方向に回動するように付勢され、その回動は、レンズパリア28、29が開いて外筒16の内面に当接したときおよびレンズパリア28、29が閉じて互いに接触したときに制限される。

一方、台板10および朝レンズホルダ13を駆動変位させる可逆モータMは、焦点距離選択操作部材5に連動するスイツチ装置57およびカメラ本体1に設けられた自動焦点調調節の距離検出装置58からの信号に基づいて動作するモータ制御回路59を介して制御される。この場合、焦点調節のためのモータ駆動は、関示されないレリーズ

知の押圧によつてその動作が開始される。しかし、 魚点距離切換えは、そのレリーズ知の押圧とは無 関係に魚点距離選択慢作部材 5 の操作によるモータ 駆動によつてなされる。その際、台板 1 0 は、 スイッチ装置 5 7 の切換え信号によつて、広角状態での至近距離位置を超えて過り出され、あるいは 望ば状態での無限遠位置を超えて過り込まれ、 その間に 間光学系 4 は光軸上に押入または光軸上から脱出するように構成される。

第8図は、台版10および劇レンズホルダ13を駆動する駆動機構を示すために台版10を裏倒から見た斜視図である。可逆モータMは台版10の裏面上部に固設され、その回転は減速ギャヘルド60のベベルギャ61を介して、他のベベルギャ61を介して、他ので、で、中と一体の平歯車62に伝達される。こので、中としてあるの中心に対けられた起リードとして支持され、そのの固定に変けられた起リードというでは、カメラ本体1の固定にの設定のでは、カメラ本体1の固定に対けられたが関係では、カメラ本体1の固定に対けられたが関係では、カメラ本体1の固定に対けられたが関係では、カメラ本体1の固定に対けられたが関係では、カメラ本体1の固定に対している。

のまわりに回転することが無いように排成されて いる。また、台板10の真面に固設されたブラケ ツト 4 4 には、第8 図に示すにように軸方向に長 く伸びた速動支柱71が突出して設けられ、この 連動支柱71の協面に設けられた貫通孔71aと 台板 1 0 に設けられた貫通孔 1 0 b (第6図参照 )とを、カメラ本体 1の固定部に固設され且つ光 軸方向に伸びた第2案内軸72が貫通している。 その速動支柱71と第2案内軸72とにより、台 板10は摄影光軸に対して垂直に保持され、可逆 モータMの回転に応じて、光軸に沿つて前後に平 行移動するように構成されている。また、連動支 柱71の側面にはラツク73が設けられ、そのラ ツク13に喰み合うピニオン1しは、図示されな い摄影距離表示装置、距離検出装置やファインダ 一倍率変換機構に連動している。

光軸方向に移動する台板10とカメラ本体1とは、第4図および第8図に示す如く波形に折り曲げられたフレキシブルブリント基板75によつて架橋され、このフレキシブルブリント基板75を

介して、台板 1 0 上の可逆モータM、シャツタ制御回路基板 3 8 上のステップモータ 1 1、露出計用受光常子 3 6 は、カメラ本体 1 個の焦点検出回路装置や篩出値演算回路装置等の電気装置に接続されている。

成されるように構成されている。セクターギャ 8 4 に暗み合うピニオン 8 5 は、シャツタ基版 7 およびシャツタ制御回路基板 3 8 を資通する回転軸 8 7 の一端に支持され、その回転軸 8 7 の他端にはステップモータ 1 1 のロータ 8 8 が設けられている

御回路基板 3 8 上の位置に配置されている。

第10図はステップモータ11を動作させるた めの電気系のブロツク図である。ミリコンフォト ダイオード (SPD) の如き受光索子36にて検 出された被写体輝度は測光用IC95にてデジタ ル化され演算回路96に送られる。また一方、フ イルムパトローネに設けられたフィルムの種別や フィルム感度値を示すコードを検出するフィルム 感度値検出装置97からのデジタル化されたフィ ルム感度値信号も演算回路96に送られ記憶され る。この被写体輝度信号とフィルム感度値信号か ら、演算回路において所定のプログラムに基づく 絞り値とシャツタ速度値が算出され、その算出さ れた我出値は駆動用IC98に送られる。その駆 動用IC98からのパルス信号によりステップモ ータ 1 1 は制御され、絞り兼用シャツタが算出さ れた絞り値とシャッタ速度値との予め定められた。 組合せに従つて開閉するプログラムシャツタとし て作動するように構成されている。この場合、ス テンプモータ11のステータ90A、90Bの斑

化方向を交互に変えて磁界を移動させることにより、ロータ 8 8 を正転または送転させることができる。

、なお、カメラ本体1のフィルムパトローネ窒1 Cの側壁には、第4図に示すように、フィルムパ トローネの表面に設けられたフィルム感度値等の フイルム情報コードを検知する接触子97Aが突 出して設けられている。この接触子97人によつ て検出された検出信号のうち、フィルム感度値信 号はフィルム感度検出装置 9.7 によりデジタル化 され、カメラ本体1個に設けられた資質回路96 (第10図参照)に送られる。また、ステップモ ータ11を制御する駆動用しC98からのパルス の信号はフレキシブルブリント基板 7.5 を介して カメラ本体1個からステップモータ11に伝達さ れる。さらに、パトローネ室1Cとフィルム祭取 り宝1Dおよびフィルムアパーチャ1Bとは、第 1 図および第3 図に示す如く公知の裏蓋 9 9 に密 聞され、図示されないフィルムパトローネが装置 される際の裏蓋99の閉じ動作により、フィルム

パトローネが押圧されたときに、フィルム情報コード部分に接触子97Aは圧接するように出没可能に設けられている。

次に、上記の如く構成された実施例の動作および作用について説明する。

また、第1図の如くレンズパリア28、29の 閉じ状態においては、焦点距離選択操作部材5(

ンズバリア28、29は閉成されている。この状 庭から焦点距離選択操作部材5を広角位置(記号 「W」を示す位置)へ移動すると、カム振56が 第1図中で左方へ移動するので、摺動ピン55は カム面56人に沿つて下降し下級56℃に係合す。 る。この摺動ピン55の下降により連動板54は 引張コイルばね53の付勢力に抗して下方へ援動 し、これに連動する潜動板50が第7図中で下方 へ移動する。従つて、カム部材も2のカム面も2 Aに圧接している係合突起52が下方へ第11図 (B) に示す如く退避する。この係合突起52の 下方への変位に応じて、カム部材42は、ねじり コイルばね43(第1図参照)の付勢力により第 7 図中で反時計方向に回動する。このカム部材 4 2の回動は連動軸 4 1を介して第3ピニオンギヤ 40に伝達され、第3ピニオンギャ40が第7図 中で反時計方向(第5回中では時計方向)に回動

この第3ピニオンギャ40の回動により、リングギャ19は光铀を中心として第1図中で時計方

第7回参照)は指揮5人が記号「OFF」と合致する位置(以下「OFF位置」と称する。)に在り、摺動ピン55は、カム版56の上縁56Bと係合し、摺動版50の係合突起52は、レンズバリア28、29に運動する運動軸41の一端に固設されたカム部材42のカム面42人の萎板に第4回に示す如く係合している。一方、副光学系4は、第1回および第8回に示す如く摄影光軸外の退避位置に置かれている。

第11図は、焦点距離選択操作部材 5、係合突起 5 2、カム部材 4 2 およびレンズパリア 2 8、2 9の連動関係を示す説明図で、(a) は焦点距離選択操作部材 5 が 0 F F 位置に在るときの状態を示し、(b) および(c) は焦点距離選択操作部材 5 がそれぞれ広角位置、窒退位置へ移動したときの状態を示す。以下、この第10回に従って、レンズパリア 2 8、2 9の連動機構および撮影レンズ光学系の駆動機構の動作を説明する。

第11回において、焦点距離選択操作部材 5 が OFF位置に在るときは、 (A) に示すようにレ

向(第5図中では反時計方向)に回動する。リングギャ19のこの回動により第1ピニオンギャ20お共に第7図中で反時計方向(第5図中では時計方向)に回動するので、第1ピニオンギャ20と一体の第1回動レバー21、第2ピニオンギャ22と一体の第1回動レバー21、第2ピニオンギャ22と一体の第2回動レバー23の自由協にそれぞれ回転可能には、500分に変位し、それぞれの外周の円弧部28a、29a(第5図参照)が外間16の内周面に第2図に示す如く当接した位置で停止する。これにより、レンズバリア28、29は開成され、第11図(B)に示す状態となる。

一方、焦点距離選択操作部材 5 が O F F 位置から広角 (W) 位置へ移動すると、これに連動するスインチ装置 5 7 (第 7 図参照) から撮影レンズを広角状態におく広角コード信号が可逆モータ M を制御するモータ制御回路 5 9 に送られる。そこでモータ制御回路 5 9 は可逆モータ M を駆動制御し、台板 1 0 と共に主光学系 3 をわずかに繰り出

し、主光学系3が広角状態での無限遠位置まで変位したときに可逆モータMを停止させる。その際も仮10の広角状態における無限遠位置は、この台版10と一体に移動する連動支柱71のラック73(第8図参照)と増み合うビニオン74の回転に連動する図示されないエンコーダから発信される距離信号によつて決定される。

より極めて小径に形成される。しかし、その周囲を囲む外筒 I 6 の内径は、開成状態に在るレンズ 7 7 2 8 、 2 9 の外周径によって決定されるので、その外筒 I 6 と主レンズ枠 6 との間にドーナッツ状の比較的大きくスペースが生じる。このスペース内にステップモータ 1 1、測光用受光素子3 6 や測光用 I C 9 5 などがそのスペースを有効に利用して配置される。

の反射光を受光して被写体位置を検出し、その検出に号をモータ制御回路 5 9 に送り、可逆モータをその位置で停止させ、主光学系 3 の距離 四分の位置で停止させ、主光学系 3 の距離 四分のでは、立て 1 の 2 の 2 の 2 の 3 を 4 の 3 を 5 を 6 は、 2 の 3 を 6 で 9 に 2 の 9 に 2 の 9 に 2 の 9 に 2 の 9 に 2 の 9 に 2 の 9 に 2 の 9 に 2 の 9 に 2 の 9 に 3 に 4 の 9 に 4 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に 5 の 9 に

上記の如く、主光学系3の距離調節(焦点調節)のための光軸方向の移動は、台板10に設けられた駆動歯車63の回転に応じて台板10が光軸方向に移動することによつて行われる。そのため、主光学系3のまわりには、通常の撮影レンズの如き、距離調節用へリコイドねじ機構は設けられて、を発力を発展する主レンズ枠6の外径は従来公知の二焦点式カメラ用撮影レンズ線管

れる

前述の距離検出装置58の距離検出信号(可逆 モータ停止信号)を演算回路36が受信すると、 演算結果に基づく致り値とシャッタ速度値はル ス化され、次段の駆動用IC98に送られる。駆 助用IC98はステップモータ11を駆動制制を 変速度値との銀合わせに延って、 タ速度値との組合とでするなり間とシャッタ 1は、その致り値に相当するな別がせ、そのシャット 12人、128を開状態が開めるに終り羽根12 タ速度値に相当する遅れ時間の後に終り羽根12 人、128を開状態に復帰させて露光を終了する。

次に、無点距離の切替えについて説明する。無点距離選択操作部材 5 を第 1 1 図(C)に示す如く 望遠(T)位置へ移動すると、その移動に応じてスイッチ 4 装置 5 7 (第 7 図参照)から望遠せで ほほ 号がモータ制御回路 5 9 に送られ、可逆モータ M が回転して、台板 1 0 は広角状態における至近距離位置に超えて望遠状態での無限遠位置まで 繰り出される。その際、カムギャ 6 6 は第 8 図中

で時計方向に大きく回転し、正面カム 6 7 の傾斜 面で関レンズホルダ 1 3 の脱部 1 3 足がであると、正面の 1 3 足がであると、の付勢 関レンズホルダ 1 3 は 2 との付勢 関レンズホルダ 1 3 は 2 とのであると、所にはいると、方のにはいる。との 2 を 3 の 2 を 3 の 2 を 3 の 2 を 3 の 2 を 3 との 2 を 4 との 2 を 4 との 2 を 4 との 2 を 5 との 2 を 5

上記の望遠状態への切替え動作において、焦点 距離選択退作部材 5 が第 1 1 図 (B) に示す如く 広角 (W) 位置から第 1 1 図 (C) に示す望遠 ( T) 位置へ移動する場合には、係合突起 5 2 はカ ム部材 4 2 のカム面 4 2 人から離れ、レンズバリ ア 2 8 、 2 9 は既に完成状態におかれているので、

ら下方へはみ出しても差し支え無い。従つて、外間6の大きさは、レンズパリア28、29が開成されたときの円弧郎28a、29aの位置によつて決定される。そのため、外間6の外周半径は、退避位置に在る間レンズホルダ13には無関係に小さく設定できる。

副光学系4が第2図に示す如く主光学系3の光 軸上に押入され、台板10が望遠状態での無限遠 位置に達すると、可逆モータMは停止する。その 後、図示されないレリーズ釦を押し下げると、広 角状態における摄影と同様にして距離傾節が行わ れ、距離調節完了と同時に演算回路96(第10 図参照)で計算された絞り値とシャッタ速度値に 基づいてステップモータ11が作動し、絞り兼用 シャッタ羽根12が開閉し、露出が行われる。

無点距離選択操作部材 5 を望遠 (T) 位置から 広角 (W) 位置に切替えると、可逆モータ M は逆 転し、台版 1 0 は望遠状態での無限遠位置を超え て繰り込まれ、広角状態での無限遠位置に達した とき可逆モータは停止する。その間に関レンズホ カム部材 4 2 は回転すること無く単に第11図(C)に示すように左方へ台板10と共に移動するのみである。しかし、焦点距離選択操作部材 5 を第11図(A)に示すOFF位置から広角(W)位置を超えて直接望遠(T)位置に変位させた場合には、カム部材 4 2 は回転しつつ左方へ移動するので、レンズバリア 2 8、29 はこれに応じて開成され、第2図および第7図に示すように全開される。

なお、この望遠状だにおいては、外筒16が第 2 図に示す如く外装ケース2の前端から長され、 する。しかし、外筒16は円筒状に形成され、カメラ本体1とのすき間は2重の遮光部材18日 よつてシールされているので、極めて簡単なたまってカメラ本体1の暗箱内は完全な光密状態に でカメラ本体1の暗箱内は完全な光速には3の 外枠13Cは第2図に示すように光軸中心に無い からに角状態および第1図に示す如き収納状態に おいて、外枠13Cの一部が台板10の下端縁か

また、焦点距離選択操作部材 5 を望遠 (T) 位置から直接 OFF 位置まで移動すると、台板 1 0 は鏡筒収納位置まで復帰するが、その復帰の初期に係合突起 5 2 は第11 図 (C) に示す如くカム部材 4 2 の光軸方向の動きの軌道 L上に挿入 (破

級52 にて示す。)されている。そのため、台版10が級り込まれ、カム部材(2が第11図(C)中で右方へ移動すると、カム面52人が破級(521)位置まで移動した係合突起52と係合し、さらに右方への移動につれて、カム面(2人が保合突起に押され、カム部材(2は第7図中で時計方向に回転する。これにより、レンズバリア28、29は自動的に開成される。

上記の実施例においては、絞り兼用シャッタ羽根12を駆動するシャッタ駆動装置としてステップモータ11を用いたが、ステップモータに限ること無く、通常の小型可逆モータあるいはマグネットであつても麦支え無い。

#### (発明の効果)

以上の如く本発明によれば、レンズパリアを包む外筒を断面円形に形成し、そのレンズパリアと 被り兼用シャッタ羽根との間の主光学系のまわり にその絞り兼用シャッタ羽根を駆動するシャッタ 駆動装置を配置したので、スペース効率がすこよ る良く小型化が可能である。さらにそのシャッタ

第1図および第2図は本発明の実施例の断面図 で、第1回は主光学系が収納位置まで繰り込まれ た状態、第2図は主光学系望遠位置まで繰り出さ れた状態を示し、第3回は第1回の実施例の副レ ンズホルダの拡大断面図、第4図は第1図のA-A断面図、第5図は第1図のB-B断面図、第6 図は第1図のC-C断面図、第7図は、第1図に 示すレンズバリア開閉装置の構成を示す斜視関、 第8図は第1図の台板の基面に設けられた光学系 移動装置部を示す斜視図、第9図は、第1図にお けるシャツタ駆動部の斜視図、第10回は第1図 の実施例の絞り兼用シャッタの制御回路のブロッ ク図、第11図は第1図に示すレンズパリア開閉 装置の動作説明図で、第11図の(A)、(B) および(C)は、それぞれ魚点距離選択操作部材 がロFF位置、広角位置、築遠位置にあるときの 状態を示す。

(主要部分の符号の説明)

l ----カメラ本体、2 ----外装カバー、

3---- 主光学系、 4---- 副光学系、

駆動装置とレンズバリアを囲む外筒の断面は円形 に形成されているので、魚点距離切替えの際の主 光学系の移動量が大きく、これに伴つてカメラ本 体からの外筒の突出変位量が大きくても、外筒と カメラ本体との遮光を簡単な構成で確実に行うこ とができ、光がカメラ本体の暗箱内に侵入する恐 れが無い。なお、実施例に示す如く、台版の基例 に設けられる光学系移動機構、シャッタ基板に設 けられる絞り兼用シャツタおよびその駆動装置、 パリア基板と前環とに支持されるレンズパリア装 置は、いずれもユニット化され、それぞれ部分組 立て後に積み重ねで結合すればよいから極めて作 業性が良く、また、台板を含む撮影レンズ鏡筒側 の動作は、収納時のバリア開閉用カム部材とカメ ラ本体側の焦点距離選択操作部材との機械的連動 箱合以外はすべて折畳み式のフレキシブルブリン **上基板を介して電気的に接続されているので組立** てが容易で、しかも信頼性の高いカメラにするこ とができる利点がある。

4. 図面の簡単な説明

5---- 焦点距離選択操作部材、6---- 主レンズ枠、 7---- シャッタ基板、9----パリア基板、

10----台板、11----ステップモータ (シャック駆動装置)、12----被り兼用シャッタ、

1 3 ---- 削レンズホルダ、1 4 ---- 前環、

16----外筒、28、29----レンズバリア、

3 8 - - - - シャッタ制御回路基板、

4 2 ---- カム部材、5 2 ---- 係合突起

75----フレキシブルブリント基板

出願人 日本光学工業株式会社 代理人 渡 辺 陸 男



13 13C 4 13B 13D

第3図

第1図



第.2 図



第4図





第6図





第 8 図

# 特開昭61-270737(13)

