- 1. A: Maximum speedup = $T_s / T_p = (t_0 + t_1) / (t_0 + t_1 / p)$ Maximum efficiency = $S_p / x = (t_0 + t_1) / (t_0 * 1 + t_1) = 1$ B: Maximum speedup = $T_s / T_p = (t_0 + t_1) / (t_0 + t_1 / \infty) = (t_0 + t_1) / t_0$ Maximum efficiency = $S_p / x = (t_0 + t_1) / (t_0 * \infty + t_1)$ C: Maximum speedup = $(t_0 + t_1) / (0 = 1/a)$
- 2. If(x_c < x_d): send message east else if(x_c > x_d): send message west else if(y_c < y_d): send message north else if (y_c > y_d): send message south else if(z_c < z_d): send message forward along z axis else if(z_c > z_d): send message backward along z axis else:
 dist(a,b) = (a-b+n) % n
 if(dist(x_c, x_d) < dist(x_d, x_c)): send message east else if(dist(x_c, x_d) > dist(x_d, x_c)): send message west else if (dist(y_c < y_d) < dist(y_d, y_c)): send message north else if (dist(z_c < z_d) < dist(z_d, z_c)): send message forward along z axis else if (dist(z_c < z_d) < dist(z_d, z_c)): send message backward along z axis
- 3. A. $16 * 2x10^9 = 32 GB/s$
 - B. Pipeline will stall every 64 bytes so 80 cycles of latency will apply every 4 additions. 80/4 = 20 cycles of latency per addition. Maximum performance = 2GFLOPS per second/ 20
- 4. A. Minimal congestion: 2 because of extra link Dilation: N-2 because two edge nodes will be n-2 hops apart
 - B. Minimal congestion: 2 Dilation: 2
- 5. (32 bytes / 100 MB/sec) + 500 nsec = (32 bytes / 100,000,000 bytes/sec) + 500 nsec = 3.2e-7 seconds + 500 nsec = 8.2e-7 seconds = 820 nanoseconds