Criptografia Aplicada

Atividade prática com AES

Criptografia simétrica

AES - Advanced Encryption Standard

- Suporte a chaves de 128, 192 e 256 bits
- Blocos de 128 bits
- Número de rounds dependente do tamanho da chave

Key Size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext Block Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Number of Rounds	10	12	14
Round Key Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded Key Size (words/bytes)	44/176	52/208	60/240

Modos de Operação

 Table 7.1
 Block Cipher Modes of Operation

Mode	Description	Typical Application
Electronic Codebook (ECB)	Each block of plaintext bits is encoded independently using the same key.	Secure transmission of single values (e.g., an encryption key)
Cipher Block Chaining (CBC)	The input to the encryption algorithm is the XOR of the next block of plaintext and the preceding block of ciphertext.	General-purpose block- oriented transmission Authentication
Cipher Feedback (CFB)	Input is processed <i>s</i> bits at a time. Preceding ciphertext is used as input to the encryption algorithm to produce pseudorandom output, which is XORed with plaintext to produce next unit of ciphertext.	 General-purpose stream-oriented transmission Authentication
Output Feedback (OFB)	Similar to CFB, except that the input to the encryption algorithm is the preceding encryption output, and full blocks are used.	Stream-oriented transmission over noisy channel (e.g., satellite communication)
Counter (CTR)	Each block of plaintext is XORed with an encrypted counter. The counter is incremented for each subsequent block.	General-purpose block- oriented transmission Useful for high-speed requirements

Electronic Codebook - ECB

Figure 7.3 Electronic Codebook (ECB) Mode

Cipher Block Chaining - CBC

Figure 7.4 Cipher Block Chaining (CBC) Mode

Cipher Feedback - CFB

Output Feedback - OFB

Figure 7.6 Output Feedback (OFB) Mode

Counter Mode - CTR

Figure 7.7 Counter (CTR) Mode

Atividade

- Vamos utilizar agora a biblioteca <u>PyCryptodome</u>
- Para instalar no linux, basta rodar o comando:
 - pip install pycryptodome
 - o pip install pycryptodomex (alternativa se não funcionar a anterior)
- Importação da biblioteca:
 - o from Cryptodome.Cipher import AES
 - o from Crypto.Cipher import AES

Atividade 1

 Crie duas funções python, uma para cifragem e outra para decifragem de mensagens usando o AES

• Cifragem:

- Ela precisa ser flexível para permitir diversos modos de operação
- Ela deve salvar o IV e o texto cifrado em um arquivo
- Veja a documentação para entender as particularidades de cada modo de operação

Decifragem:

- Ela precisa ser flexível para permitir diversos modos de operação
- o Ela deve obter o IV salvo na mensagem cifrada
- Cifre um arquivo de texto e envie aos colegas para decifragem
- Veja o esqueleto do código python no Canvas: aes.py

Vetor de inicialização IV

- Com exceção do modo ECB, todos os outros modos precisam de um IV ou counter/nonce para decifrar a mensagem cifrada.
- Geralmente, essa informação é transmitida junto com a mensagem cifrada
- No caso dessa aula, recomendo concatenar na mensagem cifrada da seguinte maneira, ambos em bytes:

iv + ciphertext

Atividade 2

- Um documento foi cifrado utilizando AES (trasure.txt.enc)
- A sua tarefa é decifrá-lo!
- Quais informações você precisa para fazer a decifragem?

Chave AES

 A chave foi cifrada usando uma técnica de cifragem antiga e resultou no seguinte texto:

dyhubvhfuhwnhbbbdyhubvhfuhwnhbbb

• Essa é uma chave de 32 bytes = 256 bits

Referências

Documentação PyCryptodome:

https://pycryptodome.readthedocs.io/en/latest/src/cipher/classic.html#

