

Draw the free body diagram and calculate the external reactions on the beam at A (pin) and B (rocker). Neglect the thickness of the beam.

##D:

Ax

$$Ax$$
 Ax
 Ay
 Ay

Draw the free-body diagram and calculate the external support reactions at the pin and the tension in cable BC.

+)
$$\geq M_{R} = 0 = \frac{2}{5}BC(3) + \frac{4}{5}BC(1) - 60(1) - 30$$

 $= 2.6BC = 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$
 $= 90$

Draw the free-body diagram and calculate the external support reactions at the pin at A and the pin at B utilizing any 2-force members.

Determine the components of reaction at the fixed support at A. Indicate direction in your answer with arrows.

FBD:

$$4 \cos 30$$

Ax $1.5 \sin 30 = 0.75 m$
 $1.5 \cos 30 = 1.3 m$

The member is supported by a pin at A and cable BC. If the weight of the cylinder is 350 lb, determine the external support reactions at A and the force in cable BC. Draw the free-body diagram and assume right hand rule positive sign convention.

Draw the free-body diagram and calculate the tension in cables BC and BD and the external reactions at the ball and socket at A. Assume right hand rule sign convention as positive.

A(0,0,0)

EQUILIBRIUM:

$$\frac{\text{UNIT VECTORS FOR CABBLES:}}{\Gamma_{BD} = \left\{-2\hat{i} - 1\hat{j} + 2\hat{k}\right\}}$$

$$\Gamma_{BC} = \left\{2\hat{i} - 1\hat{j} + 2\hat{k}\right\}$$

$$U_{BD} = \left\{-\frac{2}{3}\hat{i} - \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}\right\}$$

$$U_{BC} = \left\{\frac{2}{3}\hat{i} - \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}\right\}$$

$$U_{BC} = \left\{\frac{2}{3}\hat{i} - \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}\right\}$$

SOLVING:

PLUG @ OF @ INTO @:

34 = BO + BO