ANALYSIS 2

2. Applications of Integrals (Chapter 6)

Nguyễn Anh Tú

natu@hcmiu.edu.vn

CONTENTS

- Areas between curves
- Volumes
- 3 Disk Method
- 4 Cylindrical Shell Method
- **6** Lengths of Curves

Section 1

Areas between curves

Area between curves

Suppose f and g are continuous and let S be the region bounded by the curves y = f(x), y = g(x) and the lines x = a, x = b.

$$S = \{(x, y) \mid a \le x \le b, g(x) \le y \le f(x)\}$$

Area between curves

We approximate the area by

$$\sum_{i} [f(x_i^*) - g(x_i^*)] \Delta x.$$

This is a Riemann sum of the function f(x) - g(x). Thus, as $n \to \infty$, the sum converges to

$$\int_a^b [f(x) - g(x)] dx.$$

Formula

• If $f(x) \ge g(x)$ on [a, b] then the area of S is

$$A = \int_a^b [f(x) - g(x)] dx.$$

• In general, the area is

$$A = \int_a^b |f(x) - g(x)| dx.$$

Notes: In general, we may need to find the zeros of f(x) - g(x) and determine its signs in between these points.

- Find the area of the region bounded by y = x² + 1, y = x, x = 0, x = 1.
- Solution:

$$A = \int_0^1 [(x^2 + 1) - x] dx$$
$$= \frac{x^3}{3} - \frac{x^2}{2} + x \Big|_0^1$$
$$= \frac{5}{6}$$

Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0, $x = \pi/2$.

$$A = \int_0^{\pi/2} |\cos x - \sin x| \, dx = A_1 + A_2$$

$$= \int_0^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \, dx$$

$$= \left[\sin x + \cos x \right]_0^{\pi/4} + \left[-\cos x - \sin x \right]_{\pi/4}^{\pi/2}$$

$$= \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 0 - 1 \right) + \left(-0 - 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)$$

$$= 2\sqrt{2} - 2$$

Integrals in y

We can also integrate in y:

$$A = \int_{c}^{d} (x_{R} - x_{L}) dy$$

- Find the area enclosed by the line y = x - 1and the parabola $y^2 = 2x + 6$.
- Intersections: (-1, -2)
 and (5, 4)
- Write equations in y

$$x_L = \frac{1}{2}y^2 - 3$$
 and $x_R = y + 1$

$$A = \int_{-2}^{4} \left[(y+1) - (\frac{1}{2}y^2 - 3) \right] dy$$
$$= -\frac{y^3}{6} + \frac{y^2}{2} + 4y \Big|_{-2}^{4} = 18$$

Section 2

Volumes

Volumes

Suppose a solid S lies between the planes x = a to x = b. Assume that we know be the area A(x) of the cross section of the solid perpendicular to the x-axis at x.

- Cut the solid into n parts by dividing [a, b] into n equal intervals $[x_{i-1}, x_i]$ of length $\Delta x = \frac{b-a}{n}$.
- Then V is approximately $\sum_{i=1}^{n} A(x_i^*) \Delta x$, where $x_i^* \in [x_{i-1}, x_i]$.
- This is a Riemann sum for the function A(x)!
- Hence, passing to the limit $n \to \infty$, we arrive at

$$V = \int_a^b A(x) dx.$$

Section 3

Disk Method

Solids of Revolution - Disk Method

• When S is a solid obtained by rotating a two dimensional figure about the x-axis, the cross-sections are annuli. Thus,

$$A(x) = \pi[(\text{outer radius})^2 - (\text{inner radius})^2].$$

• When S is obtained by rotating about the y-axis, use a similar formula for A(y) and integrate in y.

Volume of a sphere of radius r.

- Lies between x = -r to x = r
- Cross-section at x is a circle of radius $\sqrt{r^2 x^2}$, so $A(x) = \pi(r^2 x^2)$.
- Thus,

$$V = \int_{-r}^{r} A(x) dx = \int_{-r}^{r} \pi(r^2 - x^2) dx = 2\pi \int_{0}^{r} (r^2 - x^2) dx$$
$$= 2\pi \left[r^2 x - \frac{x^3}{3} \right]_{0}^{r} = 2\pi \left(r^3 - \frac{r^3}{3} \right) = \frac{4}{3}\pi r^3$$

Find volume of a solid obtained by rotating about the x- axis the region under the curve $y=\sqrt{x}$ from 0 to 1.

Answer:
$$V = \int_0^1 A(x) dx = \int_0^1 \pi x dx = \frac{\pi}{2}$$
.

Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8 and x = 0 about the y-axis.

Answer:
$$V = \int_0^8 A(y) dy = \int_0^8 \pi y^{2/3} dy = \frac{96\pi}{5}$$
.

The region enclosed by the curves y = x and $y = x^2$ is rotated about the x-axis. Find the volume of the resulting solid.

Answer:
$$V = \int_0^1 A(x) dx = \int_0^1 \pi(x^2 - x^4) dx = \frac{2\pi}{15}$$
.

Section 4

Cylindrical Shell Method

Cylindrical shell method

- It's easier if we cut the solid into cylindrical shells.
- Divide the interval of x into n parts $[x_{i-1}, x_i]$ with length Δx
- Approximate the solid in the region $x_{i-1} \le r \le x_i$ by a cylindrical shell with height $f(\bar{x}_i)$ where $\bar{x}_i \in [x_{i-1}, x_i]$.

Volume of one shell

- Think of a shell as a thin rectangle box folded into circular shape.
- Volume = Circumference × height × thickness, i.e.

$$V_i = (2\pi \bar{x}_i) f(\bar{x}_i) \Delta x.$$

22/39

Adding up

Sum of shell volumes

$$S_n = \sum_{i=1}^n V_i$$
$$= \sum_{i=1}^n 2\pi \bar{x}_i f(\bar{x}_i) \Delta x$$

- S_n is a Riemann sum
- Let $n \to \infty$ then S_n converges to the volume of the solid

$$V = \lim_{n \to \infty} S_n = \int_a^b 2\pi x f(x) dx.$$

• To memorize: $V = \int_{a}^{b} 2\pi [radius] [height] dx$

Find the volume of the solid created by rotating about y-axis the region bounded by $y = 2x^2 - x^3$ and y = 0.

- Shell has radius x, interval [0, 2]
- the height $f(x) = 2x^2 x^3$
- Volume

• If we use the disk method, i.e. integrating in y, then we have to solve for x_L and x_R .

• This means solving the cubic equation

$$2x^2 - x^3 = y.$$

• Much more complicated than using cylindrical shell method!

Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$.

- Shell has radius x, interval [0, 1]
- Height: $f(x) = x x^2$
- Volume:

$$V = \int_0^1 2\pi x (x - x^2) dx = \frac{\pi}{6}$$

Note: The Disk Method uses integration along the axis of rotation, while the Shell Method uses integration along the other axis.

Section 5

Lengths of Curves

Parametric curves

- To describe curves that fail the vertical line test.
- Write both coordinates x and y of points on the curve as function of a parameter $t \in [a, b]$:

$$x = x(t), \quad y = y(t).$$

Example: The circle centered at (0,0) of radius 1 can be parameterized by $x = \cos(t)$, $y = \sin(t)$, $t \in [0, 2\pi]$

- The line segment connecting (a,b) and (c,d) can be paremeterized by x(t)=a+t(c-a), y(t)=b+t(d-b) for $t\in[0,1]$
- The parabola

$$x = y^2 - 4y + 3$$

- Parametric equations describe a moving point.
- The range of this point is the curve.
- There are more than one way to parameterize a curve. E.g.
 - $x = \cos(2t)$, $y = \sin(2t)$, $t \in [0, 2\pi]$ is another parameterization for the unit cirle. The point now goes around the circle twice, counterclockwise, starting from (1,0)
 - x = sin(2t), y = cos(2t), t ∈ [0, 2π] is another parameterization for the unit cirle.
 The point goes around the circle twice, clockwise, starting from (0,1).

Sketching Parametric Curves

- There is no general method to sketch parametric curves.
- For certain curves, we can find relationship between x and y from the parametric equations. E.g.
 - For the curve $x = \sin t$, $y = \sin^2 t$, we notice that $y = x^2$, so the point moves on the parabola.
 - Since $-1 \le x = \sin t \le 1$, the curve is only a part of the parabola.
 - $\sin t$ is periodic, hence the point moves back and forth between (-1,1)and (1,1).

Sketch:
$$x = h + r \cos t$$
, $y = k + r \sin t$
 $0 \le t \le 2\pi$

- Remove t to find relation between x and y: $(x - h)^2 + (y - k)^2 = r^2 \rightarrow \text{a circle of radius } r.$
- The point goes around the circle once, in counterclockwise direction.

Tangent line

• Suppose x(t) and y(t) are differentiable. Then the tangent line to the curve at (x(t), y(t)) has direction (x'(t), y'(t)). Thus, the formula is

$$\frac{x-x(t)}{x'(t)}=\frac{y-y(t)}{y'(t)}.$$

Example: Let C be the parametric curve

$$x=t^2, \quad y=t^3-3t.$$

Show that C has two tangent lines at (3,0) and find their equations.

Solution

- Solve $y = t^3 3t = 0$ we have t = 0 and $t = \pm \sqrt{3}$.
- Both 2 values $t = \pm \sqrt{3}$ give the point (3,0): C crosses itself at (0,3)
- At $t = -\sqrt{3}$, the tangent line is

$$-\frac{x-3}{2\sqrt{3}}=\frac{y}{6}.$$

At $t = \sqrt{3}$, the tangent line is

$$\frac{x-3}{2\sqrt{3}} = \frac{y}{6}.$$

Arc length

- To find the length of a parametric curve (x(t), y(t)), $t \in [a, b]$, we approximate it by simpler curves, i.e. line segments.
- Partition the interval [a, b] by $a = t_0 < t_1 < \cdots < t_n = b$, then we approximate the curve by the line segment $P_{i-1}P_i$, where $P_i = (x(t_i), y(t_i))$.

• Let $P_i = (x(t_i), y(t_i))$. Then

$$|P_{i-1}P_i| \approx \sqrt{(x'(t_i))^2 + (y'(t_i))^2} \Delta t.$$

Thus,

$$L \approx \sum_{i=1}^n \sqrt{(x'(t_i))^2 + (y'(t_i))^2} \Delta t.$$

• This is a Riemann sum for the function $\sqrt{(x'(t))^2 + (y'(t))^2}$. Thus, passing to the limit $n \to \infty$, we obtain

$$L = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt.$$

Special cases

• If f' is continuous on [a, b] then the length of the arc $y = f(x), a \le x \le b$ is

$$L = \int_a^b \sqrt{1 + [f'(x)]^2} dx = \int_a^b \sqrt{1 + \left[\frac{dy}{dx}\right]^2} dx$$

• If the curve has equation x = g(y), $c \le y \le d$ then the length is

$$L = \int_{c}^{d} \sqrt{1 + [g'(y)]^{2}} dy = \int_{c}^{d} \sqrt{1 + \left[\frac{dx}{dy}\right]^{2}} dy$$

Find the length of the arc of the semicubical parabola $y^2 = x^3$ between the points (1,1) and (4,8).

- $y = x^{3/2}$ so $y' = \frac{3}{2}x^{1/2}$
- Arc length

$$L = \int_1^4 \sqrt{1 + \frac{9}{4}x} dx$$

Subs:
$$u = 1 + \frac{9}{4}x$$

$$L = \frac{4}{9} \int_{13/4}^{10} \sqrt{u} du$$
$$= \frac{1}{27} (80\sqrt{10} - 13\sqrt{13})$$

Exercises

- 6.1: 9, 12, 21, 27
- 6.2: 5, 9, 25, 31
- 6.3: 15, 23, 37, 38
- 6.4: 8, 10, 12, 27, 28, 29

