Nagy energiasűrűségű állapotok kialakulásának elméleti vizsgálata nehézion-ütközésekben — a doktori értekezés tézisei —

Csizmadia Péter

1 Bevezetés

Az erős kölcsönhatás elmélete, a kvantumszíndinamika (QCD) nagy energiasűrűségeken az anyag egy "új" halmazállapotának, a kvark-gluon plazmának (QGP) megjelenését jósolja. Az Univerzum barionos anyaga ebben a formában létezett az Ősrobbanástól számított $15-20\,\mu\text{s-ig}$. A mai Univerzumban a neutroncsillagok magjában létezhet hideg, nagy sűrűségű kvarkanyag.

A kvark-hadron átalakulás (confinement) részletei a QCD téregyenletek megoldásának nehézségei miatt nem ismeretesek, így a kísérletek különleges jelentőséggel bírnak. A jelenség kísérleti vizsgálatára a neutroncsillagok, illetve az Univerzum korai állapotainak megfigyelésénél egyszerűbb lehetőséget nyújtanak azok a nagyenergiás nehézionütköztető kísérletek, amelyekben elérhető az átalakuláshoz szükséges kritikus energiasűrűség. Ilyen kísérleteket a CERN SPS és a BNL RHIC gyorsítókban végeznek, de a kvark-gluon plazma előállítása lesz az egyik fő kutatási terület a 2008-ban induló CERN LHC-ben is.

Elméleti oldalról a kvark-hadron átalakulás rács-QCD módszerekkel vagy fenomenologikus modellekkel közelíthető meg. Rács-QCD-ből megkaphatjuk az erősen kölcsönható anyag energiasűrűségét és nyomását, vagyis az állapotegyenletet. Az állapotegyenlet ismeretében egyensúlyi hidrodinamikai módszerekkel már sikeresen írhatjuk le a nehézionütközés időfejlődését. A hidrodinamikai leírás lényeges tulajdonsága, hogy megadja a makroszkopikus mennyiségek téridőbeli eloszlását és a különböző folyamatok karakterisztikus idejét. Továbbá, a hidrodinamikai leírás időfejlődését visszafelé követve, megismerhetjük a korai állapotokat is. A hidrodinamikai leírásba jól beleilleszthető a QGP megjelenése és egyensúlyi hadronizációja, ezért is aktív e terület kutatása.

A nehézionütközések részletes vizsgálata azonban rámutatott, hogy az egyensúly kialakulásához általában nem áll rendelkezésre elegendő idő, ezért indokolt a kvark-hadron fázisátalakulás nemegyensúlyi leírása. A hadronizáció térelméleti modellezése mellett (lásd pl. Nambu-Jona-Lasinio modell) egy másik lehetőség a kvarkok kvantummechanikai koaleszcenciájának feltételezése és vizsgálata. Az ily módon megalapozott nemegyensúlyi leírásokra példa az általam kifejlesztett MICOR (Microscopical Coalescence Rehadronization) modell.

A kvark koaleszcenciával leírt hadronizáció kezdőállapota tömeges kvarkokból és antikvarkokból álló plazma, melynek megjelenését a fázisátalakuláshoz közeli hőmérsékleteken rács-QCD eredmények támasztják alá. A hadronizáció végállapota színtelen "prehadronokból" álló gáz. Az alkalmazott mikroszkopikus koaleszcencia mechanizmus off-shell hadronok és hadron rezonanciák keletkezéséhez vezet. E részecskék koaleszcenciafolyamattal kapott spektrálfüggvénye nagyon közel van az ismert rezonanciákat leíró Breit-Wigner eloszlásokhoz. A MICOR által generált rezonanciagázból bomlásokkal keletkeznek a kísérletileg detektálható, stabil részecskék. Ha elhanyagoljuk a másodlagos kölcsönhatásokat, akkor megjósolhatjuk a végállapoti hadronok momentumspektrumát. A modell paramétereinek megállapításához tehát érdemes rövid élettartamú, kis kölcsönhatási hatáskeresztmetszettel rendelkező részecskékre illeszteni. Erre példa a csak ritka kvarkokból álló ϕ mezon és Ω barion. Érdekes kérdés továbbá, hogy a nehezebb kvarkokból álló, kis intenzitással kölcsönható bájos hadronok (pl. D és J/ψ) keletkezése és impulzuseloszlása leírható-e a kvark koaleszcencia feltételezésével.

Várható, hogy a hosszabb élettartamú és intenzívebben kölcsönható részecskék (pl. pionok és nukleonok) impulzuseloszlásának realisztikus leírásához a másodlagos kölcsönhatások figyelembe vétele is szükséges. Erre a feladatra általánosan alkalmazott módszer a hadronok kölcsönhatásait leíró Boltzmannegyenlet numerikus megoldása. Nehézionütközések transzport modellekkel történő leírására több hadron- illetve partonkaszkád létezik. Ezek a programok azonban speciális esetekre vannak kifejlesztve, működésük pedig nehezen áttekinthető, a szerzőn kívül bárki más csak fekete dobozként használhatja őket (lásd pl. RQMD). Ez a problémám a jelenleg létező kódokkal természetesen nem egyedi, általános igény van egy olyan programra, amely könnyen bővíthető és tetszőleges transzport modell szimulációjára alkalmas, akár hadron-, akár partonszinten.

Egy ilyen univerzális kód kifejlesztéséhez több problémát is meg kell oldani. Az egyik ilyen probléma a kaszkád algoritmus Lorentz-invarianciájának biztosítása. Az invariancia-sértés oka az, hogy a kaszkád algoritmusban a részecskék világvonal helyett egy hatáskeresztmetszettől függő sugarú "világcsövet" futnak be, amely a sugár zérustól különböző volta miatt több más részecskét is érinthet egymástól térszerűen szeparált pontokban. Ekkor vonatkoztatási rendszertől függ, hogy időben melyik esemény következik be először, vagyis hogy a több lehetséges kölcsönhatás közül melyik az az egy, amelyet figyelembe kell vennünk. A szimuláció tehát különböző eredményt adhat, ha ugyanazokkal a kezdőfeltételekkel, de egy másik vonatkoztatási rendszerben végezzük el. A nagyenergiás nehézionütközéseket modellező hadron- és partonkaszkádok többsége a Lorentz invarianciasértést figyelmen kívül hagyja. A közreműködésemmel kifejlesztésre kerülő kódnak ezt a problémát is kezelnie kellett.

A másik fő probléma a hadronizációs leírás (esetünkben a MICOR modell) és a másodlagos hadron-hadron kölcsönhatásokat kezelő kaszkád kód (GROMIT) együttes alkalmazása; a kezdeti kvarkanyag tulajdonságainak meghatározása a kísérletileg is mért végállapoti hadronspektrumokból.

2 Alkalmazott módszerek

- 1. Jüttner-eloszlás, longitudinális Björken áramlás, konstans transzverzális áramlás és a kétrészecske-koaleszcencia leírására alkalmazott ún. "pick-up" reakció hatáskeresztetszetének feltételezésével meghatároztam az öszszetett részecske keletkezésének teljes illetve impulzusfüggő rátáját, egy fázistérbeli eloszlásfüggvényeket tartalmazó integrál formájában.
- 2. Az integrálokat Monte Carlo szimulációval számítottam ki, melyet a saját készítésű C++ programmal végeztem.
- 3. A másodlagos kölcsönhatások szimulációját a Boltzmann-egyenletek egy numerikus megoldási módszerével, a kaszkád algoritmussal végeztem el.
- 4. Tanulmányoztam a kaszkád nemlokalitásából származó Lorentz-invariancia-sértés korrigálására bevezetett részecskefelosztás (λ paraméter) hatását a spektrumokra.
- 5. A kaszkádprogram alapstrukturáját, illetve több kölcsönhatást, analízis rutint és egyéb modulokat írtam meg. Pl. rezonancia-formációs csatorna, melyben a bejövő részecskék között is lehet rezonancia, nukleon-nukleon és nukleon-kaon hatáskeresztmetszetek, spektrumokat tartalmazó hisztogrammok, kölcsönhatások számlálása és nyomonkövetése inelasztikus esetekben is, stb.
- 6. A momentumspektrumokra történő görbeillesztések automatizálásának lehetővé tétele érdekében külön programot írtam.

3 Eredmények

Az e dolgozatban ismeretett munkám az alábbi eredményekhez vezetett.

- 1. Nehézionütközésekben keletkező anyag téridőbeli fejlődésének hidrodinamikai leírását vizsgáltam; a tűzgömbök tágulásának leírására feltételezett új típusú megoldásunkban kiszámoltam a tágulást jellemző skálafaktort, valamint az entrópia értékét [1]. A hidrodinamikai egyenletek ezen új megoldásának több nehézionfizikai alkalmazása lehetséges.
- 2. Kifejlesztettem egy nem-egyensúlyi modellt a nehézionütközésekben keletkező kvarkanyag hadronanyaggá történő visszaalakulásának leírására (MICOR), melynek jóslatait összehasonlítottam más modellekkel is [2]. A modell paramétereknek a ϕ és Ω részecskék impulzusspektrumára való illesztésével a kísérlettel egyező jóslatot kaptam a ρ mezonra is [3]. A hosszú életű, nagy kölcsönhatási hatáskeresztmetszettel rendelkező részecskék (pl. a nukleonok) leírásához azonban szükségesnek bizonyult a másodlagos kölcsönhatások szimulációja is. A modellt megpróbáltam alkalmazni a bájos mezonok $(D, J/\psi)$ keletkezésének leírására is. Kiderült, hogy ebben az esetben nem tételezhető fel egységes, minden kvark típust

- magába foglaló kollektív áramlás; a nehéz, bájos kvarkok "lemaradnak" a könnyű és a ritka kvarkoktól [4].
- 3. A hadronok közötti másodlagos kölcsönhatásokat leíró Boltzmann-egyenlet numerikus megoldására részecskekaszkád programot fejlesztettem [5, 6, 7], amely azonban jóval általánosabb az általam vizsgált problémáknál. Tetszőleges transzport modell szimulálható vele, partonkaszkádként is használható, továbbá támogatja a Lorentz-invarianciasértés korrekciójára szolgáló részecskefelosztásos módszert. A GROMIT program segítségével az alábbi problémákat oldottam meg:
 - A "pionszél problémának" nevezett gondolatkísérlet vizsgálata során azt az eredményt kaptam, hogy nagy hatáskeresztmetszetek illetve nagy kezdeti sűrűség esetén a részecskék végső momentumspektrumai erősen függnek a λ részecskefelosztástól. Konstans 40 mb hatáskeresztmetszetekkel számolva, a naiv $\lambda=1$ esetben a nukleonok transzverzális impulzusspektrumának inverz meredeksége kb. 20%-kal kisebb, mint amennyit a Boltzmann egyenlet egzakt megoldásával, vagyis a Lorentz-invariáns határesetben kapnánk. A $\lambda=16$ eset viszont már jó közelítésnek vehető.
 - A MICOR hadronizációs modell által adott rezonanciagáz másodlagos kölcsönhatásainak szimulációja. A fő eredmény itt az, hogy a koaleszcencia modell a hadronok egymás közötti kölcsönhatásaival kiegészítve a pion és a proton spektrumát is jól leírja. Egy lényeges részeredmény pedig a részecskefelosztásra vonatkozik. A kvark koaleszcenciával keltett rezonanciagázban az ütközések elég ritkák, illetve a legtöbb kölcsönhatás hatáskeresztmetszete elég kicsi ahhoz, hogy a kaszkád algoritmus Lorentz-invariancia-sértése elhanyagolható legyen. Részecskefelosztás alkalmazására így ebben a problémában nincs szükség.
 - Partonok energiaveszteségének vizsgálata RHIC Au+Au ütközésekben, $\sqrt{s_{NN}}=130\,\mathrm{GeV}$ energián. Ebben a problémában a kvarkok és gluonok közötti $2\leftrightarrow 2$ szórási és $2\to 2+végállapoti$ sugárzási folyamatok lettek figyelembe véve. E folyamatok következtében a részecskék momentumeloszlása megváltozik, csökken a nagy impulzusú komponens ("quenching"). A hatáskeresztmetszetektől függő mértékben csökkenni fog a transzverzális energia is. Két különböző hadronizációs mechanizmust tekintettünk, melyek eltérően befolyásolják a végállapoti hadroneloszlást. Eredményül azt kaptuk, hogy a Lund string fragmentációs modell használata nagyobb parton hatáskeresztmetszeteket igényel a kísérleti π^0 spektrum reprodukálásához, mint a független fragmentációs modell [7].

Ezen vizsgálatokat az RTTC együttműködés (RHIC Transport Theory Collaboration) tagjaként végeztem. Célunk az, hogy az általunk kifejlesztett univerzális kód felhasználásával transzport modelleket fejlesszünk ki nagyenergiás nehézionütközések leírására.

Referált folyóiratban megjelent cikkeim

- [1] P. Csizmadia, T. Csörgő, B. Lukács: New analytic solutions of the non-relativistic hydrodynamical equations, Phys. Lett. **B443** (1998) 21-25
- [2] P. Csizmadia, P. Lévai, S. E. Vance, T. S. Biró, M. Gyulassy, J. Zimányi: Strange hyperon and antihyperon production from quark and string-rope matter, J. Phys. G25 (1999) 321-330
- [3] P. Csizmadia, P. Lévai: ϕ , Ω and ρ production from deconfined matter in relativistic heavy ion collisions at CERN SPS, Phys. Rev. **C61** (2000) 031903
- [4] P. Lévai, T. S. Biró, P. Csizmadia, T. Csörgő, J. Zimányi: The production of charm mesons from quark matter at CERN SPS and RHIC, J. Phys. G27 (2001) 703-706
- [5] P. Csizmadia and P. Lévai, The MICOR hadronization model with final state interactions, J. Phys. G28 (2002) 1997-2000
- [6] S. Cheng, S. Pratt, P. Csizmadia, Y. Nara, D. Molnár, M. Gyulassy, S. E. Vance, B. Zhang: The effect of finite-range interactions in classical transport theory, Phys. Rev. C65 (2002) 024901
- [7] Y. Nara, S. E. Vance, P. Csizmadia, A study of parton energy loss in Au+Au collisions at RHIC using transport theory, Phys. Lett. **B531** (2002) 209-215