9.4 EXERCICIOS

Seja $\alpha = \{w_1, w_2, w_3\}$ uma base de V, um espaço vetorial real $com_{pro.}$ duto interno \langle , \rangle .

$$\begin{bmatrix} \mathbf{u} \end{bmatrix}_{\alpha} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \quad \mathbf{e} \quad \begin{bmatrix} \mathbf{v} \end{bmatrix}_{\alpha} = \begin{bmatrix} 5 \\ 2 \\ -3 \end{bmatrix}$$

Se $\langle \mathbf{u}, \mathbf{v} \rangle = 2$, a base α é ortonormal?

- 2. Ache valores para $x \in y$ tais que $\begin{bmatrix} x & y \\ -1 & 0 \end{bmatrix}$ seja uma matriz ortogonal.
- Sejam $\alpha = \{(1, 1), (2, 0)\}$ e $\beta = \{(-1, 0), (2, 1)\}$. A partir das bases α e β construa bases ortonormais, usando o método de Gram-Schmidt. Se estas novas bases forem α' e β' respectivamente, mostre que a matriz de mudança de base $[I]^{\alpha'}_{\beta'}$ é ortogonal.
 - Dada uma matriz A cujas colunas são vetores ortonormais, prove que A é
 ortogonal.
- Seja T(x, y, z) = (2x + y, x + y + z, y 3z) de \mathbb{R}^3 em \mathbb{R}^3 com produto interno canônico.
 - a) Mostre que T é um operador auto-adjunto mas não ortogonal.
 - b) Se $\mathbf{v} = (2, -1, 5)$ e $\mathbf{w} = (3, 0, 1)$, verifique que $\langle T\mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, T\mathbf{w} \rangle$.
 - c) Exiba uma base de autovetores de T e verifique que é uma base ortogonal. A partir desta base, escreva uma base ortonormal.
- 6. Dada a matriz $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & c & b \end{bmatrix}$
 - a) Mostre que os autovalores são: a, b + c e b c.
 - b) Ache uma base de autovetores.
- 7. Seja o operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz em relação à base canônica é

$$\begin{bmatrix} 1 & 4 & 2 \\ 4 & -5 & -4 \\ 2 & -4 & 1 \end{bmatrix}$$

Exiba uma base ortonormal de autovetores.

Scanned with CamScanner

Mostre que uma transformação ortogonal do plano no plano deixa invariante a distância entre dois pontos, isto é, dados u e v vetores quaisquer do plano,

$$||T(\mathbf{u}) - T(\mathbf{v})|| = ||\mathbf{u} - \mathbf{v}||$$

(Sugestão: use o teorema 9.3.3 (d).)

(9.) a) Mostre que se T é uma transformação ortogonal do plano no plano, sua matriz em relação à base canônica só pode ser da forma:

$$\mathbf{A} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

ou da forma

$$\mathbf{B} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix}.$$

(Sugestão: 9.3.3 (d).)

b) Observe que se a matriz de T for da forma dada por A. T será uma rotação de um ângulo α (veja 5.2.4.). Mostre que B = A · J onde J =

$$= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
. (J é a matriz em relação à base canônica de reflexão no

eixo-x. Veja 5.2.2. Conclua finalmente, usando composição de funções, que se a transformação T for dada por B, T será uma reflexão através de uma reta do plano que passa pela origem.

10. Sejam V um espaço vetorial real de dimensão n, com produto interno \langle , \rangle e $T:V\to V$ um operador linear auto-adjunto. Se α for uma base ortonormal de V, chamemos de A a matriz $[T]^{\alpha}_{\alpha}$. Consideremos a transformação linear $T_A:\mathbb{C}^n\to\mathbb{C}^n$ dada por

$$T_{\mathbf{A}} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \mathbf{A} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

onde $x_i \in \mathbb{C}$ (\mathbb{C} = conjunto dos números complexos) e o produto interno canônico em \mathbb{C}^n , dado por

$$\langle \mathbf{v}, \mathbf{w} \rangle_{\mathbf{C}} = x_1 \overline{y}_1 + x_2 \overline{y}_2 + \dots + x_n \overline{y}_n$$

$$[\mathbf{v}]_{\beta} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$\mathcal{Q}(\mathbf{v}) = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \begin{bmatrix} 1 - \sqrt{34} & 0 \\ 0 & 1 + \sqrt{34} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

isto é,

$$Q(v) = (1 - \sqrt{34})y_1^2 + (1 + \sqrt{34})y_2^2$$
zação das formes

Esta diagonalização das formas quadráticas (forma normal) tem muitas aplicações e uma delas será vista na classificação das cônicas, que apresentaremos no próximo capítulo.

10.7 EXERCÍCIOS

1. Seja f uma forma linear de R2 em R tal que

$$f(x, y) = -x + 2y$$

Sejam $\alpha = \{(1, -1), (2, 0)\}$ e $\beta = \{-1\}$ bases de \mathbb{R}^2 e \mathbb{R} respectivamente. Se $[\mathbf{v}]_{\alpha} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$, calcule $[f(\mathbf{v})]_{\beta}$.

- 2 Verifique se as aplicações abaixo são formas bilineares.
 - a) $B: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida por $B((x_1, y_1), (x_2, y_2)) = x_1 + y_2$
 - b) $B: V \times V \rightarrow \mathbf{R}$ definida por $B(\mathbf{u}, \mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle$.
- 3. Em 2b) você deve ter mostrado que todo produto interno é uma forma bilinear. A recíproca é verdadeira?
- 4.) Se $M = \begin{bmatrix} -1 & 2 \\ 3 & 2 \end{bmatrix}$, ache a forma bilinear $B : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ associada à matriz M. Esta forma bilinear é simétrica?
- 5. Qual é a matriz $M_{2\times 2}$ associada à forma bilinear de $R^2\times R^2 \to R$ que dá o produto interno usual de R²?
 - 6. a) Seja $A: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definida por A((x, y, z), (x', y', z')) = xy' ++xz'-yx'-zy'+zz'. Ache a matriz de A em relação às bases i) canônica ii) {(1, 1, 1), (1, 1, 0), (0, 1, 0)}.
 - b) Seja $A: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida por A((x, y), (x', y')) = xy' yx' e $\alpha = \{(1, 1), (-1, 1)\}.$ Ache $[A]^{\alpha}_{\alpha}$.

Scanned with CamScanner

- 7. Mostre o resultado afirmado em 10.4.2 e use este fato para dar exemplos d_e formas bilineares simétricas $B: \mathbb{R}^5 \times \mathbb{R}^5 \to \mathbb{R}$.
- (8) a) Seja A((x, y), (x', y')) = 3xx' yy'. Ache a forma quadrática $Q: \mathbb{R}^2 \to \mathbb{R}$ associada a A. b) Seja $Q(x, y) = 2x^2 + 4xy - y^2$. Ache a matriz da forma bilinear associa.
- 9. Seja $Q(x, y) = x^2 + 12xy 4y^2$. Determine uma base β tal que $[\mathbf{v}]_{\beta} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \text{ e } Q(\mathbf{v}) = ax_1^2 + by_1^2$
- 10. Se A é uma forma bilinear simétrica e Q a forma quadrática associada a ela, mostre que

$$A(v, w) = \frac{1}{4} Q(v + w) - \frac{1}{4} Q(v - w)$$

- Uma forma quadrática Q é chamada positiva definida, se para todo $\mathbf{v} \neq \mathbf{0}, \ Q(\mathbf{v}) > 0.$
 - a) Como devem ser os autovalores da matriz de uma forma quadrática positiva definida? (Pense na matriz diagonalizada.)
 - b) A forma quadrática $Q: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada pela matriz (em relação à base canônica)

$$\begin{bmatrix} 1 & 2 \\ 2 & -4 \end{bmatrix}$$

é positiva definida?

- Mostre que se $B(\mathbf{v}, \mathbf{w})$ é uma forma bilinear simétrica cuja forma quadrática associada é positiva definida, então $B(\mathbf{v}, \mathbf{w})$ é um produto interno. Compare com o Exercício 3.
- 13. Considere o conjunto V^* , formado por todas as formas lineares $T:V\to \mathbb{R}$, onde V é um espaço vetorial de dimensão n, e V^* é chamado de espaço dual de V.
 - a) Mostre que V* é um espaço vetorial.
 - b) Mostre que, dada uma base v_1 , ..., v_n de V_1 as formas $T_i: V \to \mathbb{R}$ definidas por $T_i(v_j) = 0$, se $i \neq j$ e $T_i(v_j) = 1$, se i = j, formam uma base de V^* .
 - c) Conclua finalmente que V e V^* são espaços vetoriais isomorfos.

Figura 11-2

(d) Vimos no Capítulo 9 que u·v = ||u|| ||v|| cosθ. Não vá pensar, por uma falsa analo. gia, que u∧v é igual a ||u|| ||v|| senθ. Trata-se de erro grave, pois u∧v é vetor, e ||u|| ||v|| senθ é número. De acordo com (b₁) (Definição 11-1), esse número é igual, isto sim, à norma de u∧v. Lembre-se:

Produto escalar de dois vetores é número real. Produto vetorial de dois vetores é vetor.

11-1 A medida angular entre \vec{u} e \vec{v} é 30°, e suas normas, 2 e 3. Calcule $||\vec{u} \wedge \vec{v}||$.

11-3 O triângulo ABC tem área 4. Sendo $B = A + \vec{u} \in C = A + \vec{v}$, calcule $||\vec{u} \wedge \vec{v}||$.

11-4 (a) Seja h a altura do triângulo ABC relativa ao lado AB. Prove que

$$h = \frac{||\overrightarrow{AB} \wedge \overrightarrow{ACI}|}{||\overrightarrow{AB}||}$$

(b) Escreva expressões análogas à do item (a) para as outras duas alturas.

(c) Sejam A, B e C pontos quaisquer tais que $A \neq B$. Baseando-se no item (a), obtenha uma fórmula para calcular a distância de C à reta r determinada por A e B.

Seja E uma base ortonormal. A medida angular entre os vetores unitários \vec{u} e \vec{v} é 30° e $\vec{u} \wedge \vec{v}$ e (2,2,1)_E são de mesmo sentido. Determine a tripla de coordenadas de $\vec{u} \wedge \vec{v}$ na base E.

11-6 A medida angular entre os vetores \vec{a} e \vec{b} é 60°, e suas normas são, respectivamente, 1 e 2. Sendo $\vec{u} = \vec{a} + \vec{b}$ e $\vec{v} = \vec{a} - \vec{b}$, calcule a norma de $\vec{u} \wedge \vec{v}$.

(11-7) Calcule $(\sqrt{2}\vec{u} - \sqrt{3}\vec{v} + \vec{w}) \wedge (-\sqrt{6}\vec{u} + 3\vec{v} - \sqrt{3}\vec{w})$.

(c)
$$\vec{u} = (1,-3,1), \vec{v} = (1,1,4);$$

(d) $\vec{u} = (2,1,2)$, $\vec{v} = (4,2,4)$.

11-18

Calcule a área do paralelogramo \overrightarrow{ABCD} , sendo $\overrightarrow{AB} = (1,1,-1)$ e $\overrightarrow{AD} = (2,1,4)$.

Calcule a área do triângulo \overrightarrow{ABC} , sendo $\overrightarrow{AB} = (-1,1,0)$ e $\overrightarrow{AC} = (0,1,3)$.

- 11-20 Na Estática dos Sólidos, é importante levar em conta o ponto de aplicação de uma força. Se s Na Estática dos Sólidos, é importante levar em conta o ponto aplicadas nos pontos $P_1 \dots P_n$ é o sistema formado pelas forças $\vec{f}_1 \dots \vec{f}_n$, respectivamente aplicadas nos pontos $P_1 \dots P_n$ a conto O(pólo), o momento de S em relación $P_1 \dots P_n$ a conto $P_n \dots P_n$ a conto $P_n \dots P_n$ a conto $P_n \dots P_n$ and $P_n \dots P_n$ an é o sistema formado pelas forças \vec{f}_1 ... \vec{f}_n , respectivamente april o momento de S em relação a resultante de S é a força $\vec{r} = \vec{f}_1 + ... + \vec{f}_n$. Fixado o ponto O(pólo), o momento de S em relação a resultante de S é a força $\vec{r} = \vec{f}_1 + ... + \vec{f}_n$. Fixado o ponto O(pólo), $\vec{r} = \vec{0}$ e $\vec{m}_0 = \vec{0}$. Para os item resultante de S é a força $\vec{r} = \vec{f_1} + ... + \vec{f_n}$. Fixado o ponto O(polo), $\vec{r} = \vec{0}$ e $\vec{m_0} = \vec{0}$. Para os itens (a), \vec{O} o vetor $\vec{m_0} = \vec{OP_1} \wedge \vec{f_1} + ... + \vec{OP_n} \wedge \vec{f_n}$. Se S está em equilíbrio, $\vec{r} = \vec{0}$ e $\vec{m_0} = \vec{0}$. Para os itens (a), O é o vetor $\vec{m}_0 = \vec{OP}_1 \wedge \vec{f}_1 + ... + \vec{OP}_n \wedge \vec{f}_n$. Se S está em equilibrio, (a), (b) e (c), S é formado por uma única força \vec{f} , aplicada em P, e S é a reta por P, paralela a \vec{f} (Figura 11-7 (a)).
 - (a) Prove que, se QO//s, então $\vec{m}_0 = \vec{m}_0$.
 - (b) Se $P \neq O$, seja $\vec{h} = \vec{f} (\text{proj } \vec{OP} \vec{f})$. Prove que $\vec{m}_O = \vec{OP} \wedge \vec{h}$.
 - (c) Se $\vec{f} \neq \vec{0}$ e d é a distância de O a s, prove que $||\vec{m}_o|| = ||\vec{f}||d$.
 - (c) Se $f \neq 0$ e d é a distância de O a S, prove q = 1 (Portanto, se $\vec{r} = \vec{0}$, o momento de S (d) Prove a Fórmula de mudança de pólo: $\vec{m}_A = \vec{m}_O + \vec{r} \wedge \vec{OA}$. (Portanto, se $\vec{r} = \vec{0}$, o momento de S
 - (e) O cubo da Figura 11-7 (b) tem aresta unitária e está submetido às forças aplicadas indicadas. O cubo da Figura 11-7 (b) tem aresta difficultation de la para que haja equilíbrio e em Determine a força adicional que deverá ser exercida sobre ele para que haja equilíbrio e em que ponto ela deve ser aplicada.

Figura 11-7

Exercício Resolvido

Sendo $B = (\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal positiva, descreva o conjunto-solução da equação dada em cada caso.

(a) $\vec{x} \wedge (\vec{i} + \vec{i} - \vec{k}) = \vec{0}$