Laboration 9

Avsikten med laborationen är att få en känlsa för hur information kodas i datorns minne. Samtidigt får du träning på att skriva och dokumentera metoder.

Skapa paketet laboration9 innan du fortsätter med laborationen.

Grundläggande uppgifter

Uppgift 9a

Vilket decimalt värde representerar de binära talen?

128	64	32	16	8	4	2	1	Värde
0	0	0	0	1	0	0	1	
0	0	0	0	1	1	1	1	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	1	
1	1	1	1	1	1	1	1	
0	1	1	1	1	1	1	1	
0	1	1	0	1	1	1	0	
1	0	0	0	0	1	1	0	
0	1	1	0	0	0	0	1	
1	1	1	1	0	0	0	0	

Du kan kontrollera dina svar med en kursare och när du löst Uppgift 9c.

Uppgift 9b

Skriv talen på binär form:

- A. 3
- B. 7
- C. 127
- D. 128
- E. 32
- F. 33
- G. 113
- H. 197

Lösning får du i Uppgift 9c

Uppgift 9c

Hämta filerna **Uppgift9c.java** och **Binary.java** från kurssidan. Du ska komplettera metoden **toBinary** (i klassen Binary) med kod. Metoden ska översätta ett tal i intervallet 0-255 till binär form och skriva ut resultatet. Du kan följa nedanstående halvkod vilken löser uppgiften.

Halvkod

```
Deklarera variabeln value av typen int. Initiera värdet till 128.

Deklarera variabeln argument av typen int. Initiera argumentet till värdet i decimal, dvs. int argument = decimal;
```

Deklarera variabeln res av typen String. Initiera värdet till "".

Medan value är större än 0 // Medan är en while-loop

```
Om decimal är större än eller lika med value
Lägg till "1" i slutet av res
Minska decimal med value, dvs.
decimal = decimal - value;
Annars
Lägg till "0" I slutet av res
Halvera value, dvs
value = value / 2;
Skriv ut argument = res
```

Testa din lösning med **Uppgift9c**. Ett lyckat körresultat ska se ut så här:

```
3 = 00000011

7 = 00000111

127 = 01111111

128 = 10000000

32 = 00100000

33 = 00100001

113 = 01110001

197 = 11000101
```

Uppgift 9d

Komplettera metoden **toDecimal** i klassen **Binary** med kod. Metoden ska översätta ett tal på *binär form* till ett tal på *decimal form* (dvs ett heltal) och skriva ut resultatet:

```
binärt tal = heltal t.ex. 01111111 = 127
```

Du kan följa nedanstående halvkod för att lösa uppgiften:

Halvkod

```
Deklarera variabeln res av typen int. Initiera till värdet 0.

Deklarera variabeln value av typen int. Initiera till värdet 1.

Itererera från (antal tecken i binary – 1) till 0, dvs.

for ( int i = binary.length()-1; i>=0; i--)

Om tecknet i position i är '1' // tecknet ges med binary.charAt( i )

Öka res med value

Fördubbla value

Skriv ut binary = res
```

Testa din lösning med **Uppgift9d**. Ett lyckat körresultat ska se ut så här:

```
00101110 = 46

00000000 = 0

11111111 = 255

1111111111111111 = 65535
```

Fördjupande uppgifter

Uppgift 9e

Om man vill ta reda på koden för en *char* så kan man konvertera *char*-variabeln till en *int*.

Exempel: Nedanstående rader skriver ut koden för tecknet A

```
char tkn = 'A';
int kod = (int)tkn;
System.out.println( kod ); // 65 skrivs ut
```

Komplettera metoden **charCode** i klassen **Binary** med kod. Metoden tar emot ett *String*objekt som parameter och ska skriva ut tecknen i strängen + deras kod i Output-fönstret.

Testkod

```
Binary prog = new Binary();
prog.charCode( "solbad" );

Körresultat

s = 115
o = 111
1 = 108
b = 98
a = 97
d = 100
```

Uppgift 9f

Ändra metoden **toBinary** så att metoden returnerar ett *String*-objekt i stället för att göra en utskrift i Output-fönstret. Om användaren anropar metoden med ett negativt tal eller ett tal större än 255 ska metoden returnera "-----"

```
Deklaration: public String toBinary( int decimal )
```

Testkod

```
Binary bin = new Binary();
String res = bin.toBinary( 9 );
System.out.println(res);
System.out.println(bin.toBinary(-3));
System.out.println(bin.toBinary(600));
```

Körresultat

```
00001001
```

Uppgift 9g

Ändra metoden **toDecimal** så att metoden returnerar en *int* i stället för att göra en utskrift i Output-fönstret.

Testkod

```
Binary bin = new Binary();
int res = bin.toDecimal( "00001001" );
System.out.println( res );
```

Körresultat

9

Extrauppgift

Uppgift 9h

Skriv metoden **shortToBinary**(**int decimal**) i klassen **Binary**. Metoden ska returnera en sträng i binär form. Argumentet vid anropet ska vara i intervallet 0 – 65535.

Försök använda dig av två anrop till toBinary i din lösning.

Testkod

```
Binary bin = new Binary();
System.out.println( 76 + " = " + bin.shortToBinary(76) );
System.out.println( 2556 + " = " + bin.shortToBinary(2556) );
System.out.println( 64111 + " = " + bin.shortToBinary(64111) );
System.out.println( u3.toDecimal( bin.shortToBinary(76) ) );
System.out.println( u3.toDecimal( bin.shortToBinary(2556) ) );
System.out.println( u3.toDecimal( bin.shortToBinary(64111) ) );
```

Körresultat

```
76 = 000000001001100

2556 = 00001001111111100

64111 = 1111101001101111

76

2556

64111
```

Lösningsförslag

```
public void toBinary( int decimal ) {
   int value = 128, argument = decimal;
   String res = "";
   while (value > 0) {
      if (decimal >= value ) {
          res += "1";
          decimal -= value;
       } else {
         res += "0";
      value /= 2;
   System.out.println(argument + " = " + res);
______
public void toDecimal( String binary ) {
   int res = 0, value = 1;
   for ( int i = binary.length()-1; i>=0; i-- ) {
       if( binary.charAt( i ) == '1' )
          res += value;
      value *= 2;
   System.out.println( binary + " = " + res );
  ._____
public void charCode( String str ) {
   for ( int i = 0; i < str.length(); i++ ) {
     System.out.println( str.charAt( i ) + " = " + (int)str.charAt( i ) );
}
// Ny version
public String toBinary( int decimal ) {
   int value = 128;
   String res = "";
   if( (decimal >= 0) \&\& (decimal <= 255)) {
      while (value > 0) {
          if (decimal >= value ) {
             res += "1";
             decimal -= value;
          } else {
             res += "0";
          value /= 2;
      }
   } else {
      res = "----";
   }
   return res;
._____
```

Malmö högskola CTS

mö högskola 2010/2011

```
// Ny version
public int toDecimal( String binary ) {
   int res = 0, value = 1;
   for( int i = binary.length()-1; i>=0; i-- ) {
      if( binary.charAt( i ) == '1' )
        res += value;
      value *= 2;
   }
   return res;
}

public String shortToBinary(int decimal) {
   return byteToBinary( decimal / 256 ) + byteToBinary( decimal % 256 );
}
```