18CSC201J-Data Structures and Algorithm

Multiple Choice Questions

A binary search tree generated by inserting the sequence of nodes 10, 15, 1 point 13, 2, 5, 8, 1, 7 in order. What will be the height of the resultant tree?
O 6
5
O 7
O 8
Clear selection
In AVL tree, a node having two children is to be deleted, then it is replaced 1 point by its,
In-order Predecessor
O In-order Successor
O Pre-Order Predecessor
O Pre-order Successor
Clear selection

The minimum	possible depth of a binary tree with 23 nodes is	1 point
3		
4		
5		
O 6		
	Clears	selection
2, 17, 55, 88, 1,	h tree formed by inserting the sequence of nodes 47, 12, 5 5, 34, 57, 21, 35 in order. The number of nodes in the left su sub-tree of the root node is	
(4,8)		
(5,7)		
(7,5)		
(8,4)		
	Clears	selection
The best situat	ion to choose B-Tree, Reb-Black Tree and AVL Tree is,	1 point
	iging more data items, Many Insertions, and Many searching respe	ectively
When Mana	igning more data items, many meertiene, and many economing reept	,
	tion, Many Searching, and when Managing more data items respec	·
Many Insert		ctively

An AVL tree is formed by inserting the sequence of nodes 18, 6, 22, 5, 9, 19, 8 in order. Suppose if we remove the root node by replacing it with something from the left sub tree, what will be the new root?	1 point
O 8	
O 9	
O 5	
O 18	
A B-tree of order 3 and of height 3 will have the maximum of keys, when all nodes are completely filled.	1 point
O 26	
O 28	

!

Clear selection

Which of the following is the Red-Black tree structure after inserting the 1 point following nodes in sequence: 12, 20, 9, 17, 18, 32.

Option 1

Option 3

Option 4

The infix, prefix and postfix expression is produced from an expression tree ¹ point by,

- In-order traversal, Post-order traversal and Pre-order traversal respectively
- In-order traversal, Pre-order traversal and Post-order traversal respectively
- Level order traversal, Pre-order traversal and Post-order traversal respectively
- Level-order traversal, Post-order traversal and Pre-order traversal respectively

Clear selection

In a tree, for any node n, every descendant node's value in the left sub tree of n is less than the value of n and every descendant node's value in the right sub tree is greater than the value n. This property should be satisfied for,		
Red-Black tree, Binary search tree and AVL tree		
B-Tree, AVL tree and Heap tree		
Complete binary tree, Red-Black tree and Binary search tree		
Binary search tree, Extended binary tree and AVL tree		
	Clear selection	

What graph traversal algorithm uses a queue data structure to keep tra of vertices which need to be processed?	n ck 1 point
Breadth-first search.	
Depth-first search.	
Both BFS and DFS	
Neither BFS nor DFS	
Clear	selection

!

What would be the BFS traversal of the given Graph?

1 point

- ABCED
- AEDCB
- ABDCE
- ADECB

Clear selection

What is the out-degree of the node 2 in the given graph?

1 point

- \bigcirc 2
- O 3
- () 1
- 0

!

Which of the following is a topological sorting of the given graph?

1 point

- □ ABCDEF
- □ ABFEDC
- □ ABECFD
- □ BCDEFA

What sequence would the BFS traversal of the given graph yield?

1 point

- AFDBCE
- ABCDFE
- ABDCF
- FDCBA

Clear selection

If the number of nodes in complete graph is 4, then the maximum possible 1 point number of spanning tree will be	
16	
O 256	
O 32	
O 8	
	Clear selection
What is the search complexity in direct addressing/hashing?	1 point
O(n)	
O(logn)	
O(nlogn)	
O(1)	
	Clear selection
Calculate hash values of keys 1234 and 5462 while m=97	1 point
O 16,70	
O 16,16	
o 70,16	
17,60	
	Clear selection

What is the position of 72, 27, 36 in a hash table with size 10 using Line probing	ar 1 point
2,7,6	
7,6,2	
6,2,7	
1,3,4	
Clea	ar selection

0 22 1 34 2 3 3 4 5 6 7 8 41

18

What is the position of 271 in the following table

O 3

9

10

O 4

O 5

Clear selection

1 point

Back

Submit

Never submit passwords through Google Forms.

Google Forms