

Test report No.: 11143373S-A Page : 1 of 114 **Issued date** : April 25, 2016 : June 3, 2016 (-r02) Revised date FCC ID : W2Z-01000008

SAR TEST REPORT

Test Report No.: 11143373S-A

Applicant : FUJIFILM Corporation

Type of Equipment Wireless LAN Module

Model No. **SX-PCEAN(FF-E)** (*. Installed into the specified Flat Panel Sensor.)

FCC ID W2Z-01000008

Test Standard : FCC 47CFR §2.1093

Test Result Complied

Highest Reported	SAR	Operation Band		Platfor	m	Remarks
SAR(1g) Value	type	[MHz]	No.	Type	Model	Remarks
< 0.10 W/kg	Body	2412~2462				(DTS) Antenna#1, 2417MHz, 11g(6Mbps), Output power: 17.63dBm
< 0.10 W/kg	Head	2412~2402	#1	Flat Panel	RIC 43G	(DTS) Antenna#1, 2417MHz, 11g(6Mbps), Output power: 17.63dBm
0.28 W/kg	Body	5180~5320, 5500~ 5700, 5745~5825		Sensor	NC 430	(UNII) Antenna#1, 5825 MHz, 11a (6Mbps), Output power: 16.39dBm
0.30 W/kg	Head					(UNII) Antenna#1, 5825 MHz, 11a (6Mbps), Output power: 16.39dBm

- The highest reported SAR (1g) value across all exposure condition is "0.30 W/kg" = grant listing.

 Since highest reported SAR (1g): 0.30 W/kg on a platform of EUT which obtained in accordance with KDB447498 (v06) was kept under 0.8 W/kg, this EUT was approved to operate multi-platforms (which were tested in above.).
- Co-location was not considered, because the SLLSR (SAR to peak location separation ratio) was smaller than 0.04.
- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test:

Test engineer:

Engineer, Consumer Technology Division

Approved by:

Toyokazu Imamura

Leader, Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

Test report No. : 11143373S-A
Page : 2 of 114
Issued date : April 25, 2016
Revised date : June 3, 2016 (-r02)
FCC ID : W2Z-01000008

REVISION HISTORY

Revision	Test report No.	Date	Page revised	Contents
Original	11143373S-A	April 25, 2016	-	-
-r01	11143373S-A	May 9, 2016	p1,2,3	(p3) Error correction.
-r02	11143373S-A	June 3, 2016	p1,2,33,61,62	(p33,61,62) Error correction.

*. By issue of new revision report, the report of an old revision becomes invalid.

CONTENTS		PAGE
REVISION HISTOI	RY	2
CONTENTS		2
SECTION 1:	Customer information	3
SECTION 1. SECTION 2:	Equipment under test (EUT)	
SECTION 2: 2.1	Equipment under test (EU1)	3
2.1	Identification of EUT	3
2.2	Product Description (Wireless LAN module, antenna)	4
2.3 2.4	Maximum autout navior which may nasible	
SECTION 3:	Maximum output power which may possible	
	Test specification, procedures and results	
3.1	Test specification	/
3.2	Exposure limit	/
3.3	Procedure and result	/
3.4 3.5	Test location	8
	Confirmation before SAR testing	
3.6 3.7	Confirmation after SAR testing Test setup of EUT and SAR measurement procedure	8
	On anotion of EUT during CAD togeting	
SECTION 4:	Operation of EUT during SAR testing	10
SECTION 5:	Uncertainty assessment (SAR measurement)	
SECTION 6:	Confirmation before testing	12
6.1	Assessment for the antenna terminal port conducted power of EUT	
SECTION 7:	SAR Measurement results	15
7.1	Liquid measurement	15
7.2	SAR measurement results (Body)	
7.3	SAR measurement results (Head)	17
Contents of app	oendixes	
APPENDIX 1:	Photographs of test setup	18
Appendix 1-1	Photograph of EUT and antenna position	18
Appendix 1-2	Antenna position	19
Appendix 1-3	EUT and support equipment.	
Appendix 1-4	Photograph of SAR test setup	21
APPENDIX 2:	SAR Measurement data	
Appendix 2-1	Evaluation procedure	23
Appendix 2-2	Measurement data	
APPENDIX 3:	Test instruments	
Appendix 3-1	Equipment used	
Appendix 3-2	Configuration and peripherals	67
Appendix 3-3	Test system specification	68
Appendix 3-4	Simulated tissues composition and parameter confirmation	69
Appendix 3-5	Daily check results	69
Appendix 3-6	Daily check uncertainty	70
Appendix 3-7	Daily check measurement data	
Appendix 3-8	Calibration certificate: E-Field Probe (EX3DV4)	
Appendix 3-9	Calibration certificate: Dipole (D2450V2)	86
Appendix 3-10	Calibration certificate: Dipole (D5GHzV2)	

Test report No.: 11143373S-A : 3 of 114 Page **Issued date** : April 25, 2016 Revised date : May 9, 2016 (-r01) FCC ID : W2Z-01000008

SECTION 1: Customer information

Company Name	FUJIFILM Corporation
Address	9-7-3 Akasaka Minato-ku, Tokyo 107-0052, Japan
Telephone Number	81-3-6271-1654
Facsimile Number	81-3-6271-1189
Contact Person	Takao Ozaki

Equipment under test (EUT) SECTION 2:

2.1 **Identification of EUT**

	EUT	Platform									
Type of Equipment	Wireless LAN Module	Flat Panel Sensor									
Model Number	SX-PCEAN(FF-E)	RIC 43G									
Serial Number	00809270C5E1	#001									
Condition of EUT	Production model	Production prototype									
Condition of EC 1	(*. Not for sale: These samples are equivalent to mas	s-produced items.)									
Receipt Date of Sample		the Lab.) R test reference power, was installed into the platform from the wiring was changed to the original antenna line by the Lab.)									
Country of Mass-production	Japan	Taiwan									
Cotagory Identified	Portable device (*. Since EUT may contact and/or very close to a human body and head during Wi-Fi operation, the partial-										
Category Identified	body SAR (1g) shall be observed.)										
Rating	DC3.3V supplied form the platform *. During SAR test, the EUT was installed into the each SAR test, the platform which had built-in EU	e platform that was operated by the re-chargeable Li-ion battery. Therefore, IT was operated with full-charged battery.									
SAR Accessory	Any body-worn accessory was not applied.										
Feature of EUT, SAR tested consideration	Since the Flat Panel Sensor is the medical qualified person. The possibility of the may who comes in contact directly on the from Therefore , the SAR test was only considerable.	thich installs into the specified platform: Flat Panel Sensor. device, this only used under the guidance of a doctor or a aximum RF human exposure is only a body/head of the patient t surface side (patient side) of the Flat Panel Sensor. dered to apply to the front surface (patient side) of the Flat									
	Panel Sensor.										

RIC 43G: Flat Panel Sensor has the series model: RIC 43C.
RIC 43C is the same mechanically and electrically as RIC 43G, except X ray detection component. This difference doesn't influence the characteristic of wireless LAN applications. Therefore, RIC 43G was tested representatively.

	RIC 43G	RIC 43C
Size of panel (mm)	460×460×15.0	460×460×15.0
X ray detection component (scintillator)	GOS (Gd ₂ O ₂ S:Tb, oxysulfide gadolinium)	CsI (cesium iodide)

Test report No.: 11143373S-A Page : 4 of 114 **Issued date** : April 25, 2016

FCC ID : W2Z-01000008

2.2 Product Description (Wireless LAN module, antenna)

Equipment type	Transceiver SX-PCEAN(FF-E)											
Model				SX-PCI	EAN(FF-E)							
		4CII I			5GHz ban	d						
Frequency band	2.	4GHz band	-	U-NII-1 (W52)	U-NII-2A (W53)	U-NII-2C (W56)	U-NII-3 (W58)					
Frequency of operation	11b,g, n(20HT)	2412-2462 (*.ch.1-11)	11a, n(20HT)	5180-5240 (*.ch.36-48)	5260-5320 (*.ch.52-64)	5500-5700 (*.ch.100-140)	5745-5825 (*.ch.149-165)					
(MHz) (*.ch.: channel)	n(40HT)	2422-2452 (*.ch.3-9)	n(40HT)	5190-5230 (*.ch.38-46)	5270-5310 (*.ch.54-62)	5510-5670 (*.ch.102-134)	5755, 5795 (*.ch.151,159)					
Channel spacing (MHz)	5 (11b,g	g,n(20HT),n(40HT))		,	20 (11b,g,n(20HT)) / 40	(11n(40HT))						
Bandwidth (MHz)		(11b,g,n(20HT)) 0 (11n(40HT))		:	20 (11b,g,n(20HT)) / 40	(11n(40HT))						
Type of modulation			OFDM: E		DQPSK, CCK (11b), M, 64QAM (11g,a,n(2	0HT),n(40HT))						
	11b 11g	13.5 ±2.5 (*.ch.1-11, 1-11Mbps) 17.0 ±2.5 (*.ch.2, 6-36Mbps)	11a:	12.5±2.5 (*.ch.36-48, 6-54Mbps)	12.5±2.5 (*.ch.52-64, 6-54Mbps)	15.0±2.5 (*.ch.100-140, 6-48Mbps)	15.0±2.5 (*.ch.149-165, 6-48Mbps)					
Transmit power (typical, maximum channel and data rate) and tolerance (as manufacture	n(20HT)	14.5 ±2.5 (*.ch.2, MCS0-4/8-12))	n(20HT)	11.0±2.5 (*.ch.36-48, MCS0-6/8-14)	11.0±2.5 (*.ch.52-64, MCS0-6/8-14)	13.5±2.5 (*.ch.100-140, MCS0-4/8-12)	13.5±2.5 (*.ch.149-165, MCS0-4/8-12)					
variation) (dBm) (*.ch.: channel)	n(40HT)	13.5 ±2.5 (*.ch.4, MCS0-4/8-12)	n(40HT)	11.0±2.5 (*.ch.46, MCS0-7/8-15)	11.0±2.5 (*.ch.54, MCS0-7/8-15)	11.0±2.5 (*.ch.102-134, MCS0-5/8-13)	11.0±2.5 (*.ch.151,159, MCS0-5/8-13)					
	*. Refer to *. The me	clause 2.3 for more d asured Tx output pow	etail. Refer er (conduc	to clause 2.4 for the m ted) refers to section 6	aximum output power in this report.	.*. 3dBm is added to M which may possible.	IIMO power.					
Power supply	DC 3.3V	(*. DC3.3V is supplie	ed from the	main unit via constant	t voltage circuit.)							
Antenna			#1 (Bottor			ntenna #0 (Side-ant#	#0)					
Antenna quantity	11b,g,a: (One selected Tx anten	na operatio	• • • • • • • • • • • • • • • • • • • •	na #1: approx.480 mm) wo Tx antenna operation (MCS8~13)							
Antenna model	113Y120035A (cable length: 300 mm) 113Y1200036A (cable length: 575 mm)											
Antenna type / connector type		Mo	nopole an	tenna / Connector; PC	CB side: U.FL, Anten	na side: soldered						
Antenna gain (max.peak) (*.installed into the platform) (*.including cable loss)	-5.1 dBi (2.4GHz), -6.9 dBi (2.4GHz) -1.3 dBi (5GHz) -1.8 dBi (5GHz)											

The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

Test report No. : 11143373S-A Page : 5 of 114 Issued date : April 25, 2016

FCC ID : W2Z-01000008

2.3 Tx output power (typical) specification (antenna port terminal conducted)

														Tar	get Po	wer [dBm]	(aver	age)										
			11	b					1.	lg											11n(2	OHT)							
[MHz]	CH	1	2	5.5	11	6	9	12	18	24	36	48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2412	1		13.5				13.5	13.5	13.5	13.5	13.5	13.5	13.5							10.5		13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
2417	2		13.5				_ =	17				16		14.5	14.5	14.5	14.5	14.5	14	13.5	13	17.5	17.5	17.5	17.5	17.5	17	16.5	16
2422	3		13.5											14		14				13		17	17	17	17	17	16.5	16	15.5
2427	4	13.5	13.5	13.5	13.5	16.5	16.5	16.5	16.5	16.5	16.5	15.5	15	13.5	13.5	13.5	13.5	13.5	13	12.5	12	16.5	16.5	16.5	16.5	16.5	16	15.5	15
2432	5	13.5	13.5	13.5	13.5			16												12.5	12	16	16	16	16	16	15.5	15.5	15
2437	6	13.5	13.5	13.5	13.5	16	16	16	16	16	16	15.5	15	12.5	12.5	12.5	12.5	12.5	12	12	11.5	15.5	15.5	15.5	15.5	15.5	15	15	14.5
2442	7	13.5	13.5	13.5	13.5	15.5	15.5	15.5	15.5	15.5	15.5	15	15	12	12	12	12	12	12	11.5	11.5	15	15	15	15	15	15	14.5	14.5
2447	8	13.5	13.5	13.5	13.5	15.5	15.5	15.5	15.5	15.5	15.5	15	15	11.5	11.5	11.5	11.5	11.5	11.5	11	11	14.5	14.5	14.5	14.5	14.5	14.5	14	14
2452	9	13.5	13.5	13.5	13.5	15	15	15	15	15	15	15	15	11	11	11	11	11	11	11	11	14	14	14	14	14	14	14	14
2457	10	13.5	13.5	13.5	13.5	15	15	15	15	15	15	15	15	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
2462	11	13.5	13.5	13.5	13.5	15	15	15	15	15	15	15	15	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5

										Target Power [dBm] (average)															
					11	la											11n(2	OHT)							
[MHz]	СН	6	9	12	18	24	36	48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
5180	36	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	_11_	11	11	11	_ 11	11	11	10.5	14	14	14	14	14	14	_14_	13.5
5200	40	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	11	11	11	11	_ 11	11	11	10.5	14	14	14	14	14	14	14	13.5
5220	44	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	_11_	_11	_11_	_11_	_11_	_11_	_11	10.5	_14	14	14	14	14	14	14	13.5
5240	48	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	11	11	11	11	11	11	11	10.5	14	14	14	14	14	14	14	13.5
5260	52					12.5				_11_	_11	11	11	_11_	11		10.5	_14	14	14	14	14	14	14	13.5
5280	56					12.5				11	11	11	11	11	11	-==-	10.5	14	14	14	14	14	14		13.5
5300	60				. === .	12.5					-=	. 		11		-==-	10.5	_14_	14	14	14	14	14	14	13.5
5320	64	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	11	11	11	11	11	11	11	10.5	14	14	14	14	14	14	14	13.5
5500	100	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5520	104	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5540	108	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5560	112	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5580	116	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5600	120	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5620	124	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5640	128	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5660	132	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5680	136	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5700	140	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5745	149	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5765	153	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5785	157	15	15	15	15	15	15	15	14	13.5	13.5	13.5	13.5	13.5	12.5	10.5	8.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5	11.5
5805	161					15								13.5										13.5	
5825	165					15								13.5										13.5	

			Target Power [dBm] (average)														
									11n(4	OHT)							
[MHz]	СН	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2422	3	6	6	6	6	6	6	6	6	9	9	9	9	9	9	9	9
2427	4	13.5	13.5	13.5	13.5	13.5	13	12.5	12	16.5	16.5	16.5	16.5	16.5	16	15.5	15
2432	5	_12_	12	12	12	12	_11_	11	11	15_	15	_ 15_	15	15	14	14	_14_
2437	6	10.5	10.5	10.5	10.5	10.5	10.5	10	10	13.5	13.5	13.5	13.5	13.5	13.5	13	13
2442	7	9.5	9.5	9.5	9.5	9.5	9	9	9	12.5	12.5	12.5	12.5	12.5	12	12	12
2447	8	8	8	8	8	8	8	8	8	11	11	11	11	11	11	11	11
2452	9	7	7	7	7	7	7	7	7	10	10	10	10	10	10	10	10
5190	38	_10_	10	10	10	10	10	10	10	13_	13	_13_	13	13	13	13	_13_
5230	46	11	11	11	11	11	11	11	11	14	14	14	14	14	14	14	14
5270	54	_11_	_ 11	_11	_ 11	_11	_ 11	_11_	11	14	_14	_ 14_	14	14	14	14	14
5310	62	10	10	10	10	10	10	10	10	13	13	13	13	13	13	13	13
5510	102	_11_	_11	_11_	_11	_11	_ 11	_10_	8	14	_14	_ 14_	14	14	14	13	_ 11
5550	110	11	11	11	11	11	11	10	8	14	14	14	14	14	14	13	11
5590	118	_11	11	11	11	11	11	10	8	14	14	14	14	14	14	13	11
5630	126	_11_	11	_11_	11	_11_	_11_	10	8	14	14	14	14	14	14	13	_ 11_
5670	134	11	11	11	11	11	11	10	8	14	14	14	14	14	14	13	11
5755	151	_11	11	11	11	11	11	10	8	14	14	14	14	14	14	13	11
5795	159	11	11	11	11	11	11	10	8	14	14	14	14	14	14	13	11

Test report No. : 11143373S-A Page : 6 of 114 Issued date : April 25, 2016

FCC ID : W2Z-01000008

2.4. Maximum output power which may possible

		Max									kimu	m ou	tput p	ower	which	n may	possil	ble [d]	Bm] (a	vera	ge)								
			11	b					11	g											11n(2	OHT)							
[MHz]	СН	1	2	5.5	11	6	9	12	18	24	36	48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2412	1	16	16	16	16	16	16	16	16	16	16	16	16	13	13	13	13	13	13	13	13	16	16	16	16	16	16	16	16
2417	2	16	16	16	16	19.5	19.5	19.5	19.5	19.5	19.5	18.5	17.5	17	17	17	17	17	16.5	16	15.5	20	20	20	20	20	19.5	19	18.5
2422	3	16	16	16	16	19	19	19	19	19	19	18	17.5	16.5	16.5	16.5	16.5	16.5	16	15.5	15	19.5	19.5	19.5	19.5	19.5	19	18.5	18
2427	4	16	16	16	16	19	19	19	19	19	19	18	17.5	16	16	16	16	16	15.5	15	14.5	19	19	19	19	19	18.5	18	17.5
2432	5	16	16	16	16	18.5	18.5	18.5	18.5	18.5	18.5	18	17.5	15.5	15.5	15.5	15.5	15.5	15	15	14.5	18.5	18.5	18.5	18.5	18.5	18	18	17.5
2437	6	16	16	16	16	18.5	18.5	18.5	18.5	18.5	18.5	18	17.5	15	15	15	15	15	14.5	14.5	14	18	18	18	18	18	17.5	17.5	17
2442	7	16	16	16	16	18	18	18	18	18	18	17.5	17.5	14.5	14.5	14.5	14.5	14.5	14.5	14	14	17.5	17.5	17.5	17.5	17.5	17.5	17	17
2447	8	16	16	16	16	18	18	18	18	18	18	17.5	17.5	14	14	14	14	14	14	13.5	13.5	17	17	17	17	17	17	16.5	16.5
2452	9	16	16	16	16	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
2457	10	16	16	16	16	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	13	13	13	13	13	13	13	13	16	16	16	16	16	16	16	16
2462	11	16	16	16	16	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	13	13	13	13	13	13	13	13	16	16	16	16	16	16	16	16

	10 10 10 10 17.5 17.5 17.5	
	Max	ximum output power which may possible [dBm] (average)
	11a	11n(20HT)
[MHz] CH	6 9 12 18 24 36 48 54	MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7 MCS8 MCS9 MCS10 MCS11 MCS12 MCS13 MCS14 MCS15
5180 36	15 15 15 15 15 15 15 15	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13 16.5
5200 40	15 15 15 15 15 15 15 15	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13 16.5
5220 44	15 15 15 15 15 15 15 15	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 16.
5240 48	15 15 15 15 15 15 15	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 16.
5260 52	15 15 15 15 15 15 15 15	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 16.
5280 56	15 15 15 15 15 15 15	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13 16.5
5300 60	15 15 15 15 15 15 15 15	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
5320 64	15 15 15 15 15 15 15 15	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5
5500 100	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	
5520 104	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	
5540 108	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14
5560 112	17.5, 17.5, 17.5, 17.5, 17.5, 17.5, 17.5, 16.5	16 , 16 , 16 , 16 , 16 , 15 , 13 , 11 19 , 19 , 19 , 19 , 19 , 18 , 16 , 14
5580 116	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	
	17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14
5620 124	17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14
5640 128	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14
5660 132	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14
5680 136	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14
5700 140	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	
5745 149	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14
5765 153	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14
5785 157	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14
5805 161	17.5 17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 ; 16 ; 16 ; 16 ; 16 ; 15 ; 13 ; 11 19 ; 19 ; 19 ; 19 ; 18 ; 16 ; 14
5825 165	17.5 17.5 17.5 17.5 17.5 17.5 16.5	16 16 16 16 16 15 13 11 19 19 19 19 19 18 16 14

				M	axim	ım ou	tput p	ower	which	n may	possi	ble [d]	Bm] (a	averag	ge)		
									11n(4	OHT)							
[MHz]	СН	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2422	3	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
2427	4	16	16	16	16	16	15.5	15	14.5	19	19	19	19	19	18.5	18	17.5
2432	5	14.5	14.5	14.5	14.5	14.5	13.5	13.5	13.5	17.5	17.5	17.5	17.5	17.5	16.5	16.5	16.5
2437	6	13	13	13	13	13	13	12.5	12.5	16	16	16	16	16	16	15.5	15.5
2442	7	12	12	12	12	12	11.5	11.5	11.5	15	15	15	15	15	14.5	14.5	14.5
2447	8			10.5										13.5			
2452	9	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5
5190	38	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
5230	46	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
5270	54	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
5310	62	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
5510	102	13.5	13.5	13.5	13.5	13.5	13.5	12.5	10.5	16.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5
5550	110	13.5	13.5	13.5	13.5	13.5	13.5	12.5	10.5	16.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5
5590	118	13.5	13.5	13.5	13.5	13.5	13.5	12.5	10.5	16.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5
5630	126	13.5	13.5	13.5	13.5	13.5	13.5	12.5	10.5	16.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5
5670	134	13.5	13.5	13.5	13.5	13.5	13.5	12.5	10.5	16.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5
5755	151	13.5	13.5	13.5	13.5	13.5	13.5	12.5	10.5	16.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5
5795	159	13.5	13.5	13.5	13.5	13.5	13.5	12.5	10.5	16.5	16.5	16.5	16.5	16.5	16.5	15.5	13.5

Test report No. : 11143373S-A Page : 7 of 114 Issued date : April 25, 2016

FCC ID : W2Z-01000008

SECTION 3: Test specification, procedures and results

3.1 Test specification

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. The device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling in accordance with the following measurement procedures..

KDB 447498 D01 (v06): General RF exposure guidance

KDB 248227 D01 (v02r02): SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters

KDB 865664 D01 (v01r04): SAR measurement 100MHz to 6GHz

IEEE Std. 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in

the Human Head from Wireless Communications Devices: Measurement Techniques.

3.2 Exposure limit

Environments of exposure limit	Whole-Body (averaged over the entire body)	Partial-Body (averaged over any 1g of tissue)	Hands, Wrists, Feet and Ankles (averaged over any 10g of tissue)
(A) Limits for Occupational /Controlled Exposure (W/kg)	0.4	8.0	20.0
(B) Limits for General population /Uncontrolled Exposure (W/kg)	0.08	1.6	4.0

^{*.} Occupational/Controlled Environments:

The limit applied in this test report is;

General population / uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg

3.3 Procedures and Results

	Wi-Fi	(DTS)	Wi-Fi (U	Wi-Fi (U-	-NII-2C)	Wi-Fi (U	U-NII-3)			
	(2412-24	62MHz)	(5180~5240)	MHz)(W52)	(5260~53201	-NII-2A) MHz)(W53)	(5500~5700N	мнz) (W56)	(5745~58251	MHz)(W58)
Test Procedure			SAR measur	rement; KDB	447498, KDE	3 248227, KD	B 865664, IEE	E Std.1528		
Category				FCC 4	7CFR §2.109	93 (Portable o	levice)			
Results (SAR(1g))	Com	plied	Com	plied	Com	plied	Com	plied	Com	plied
Antenna#	ant#0	ant#1	ant#0	ant#1	ant#0	ant#1	ant#0	ant#1	ant#0	ant#1
Liquid type					Body	liquid				
Reported SAR value	0.03	0.04	not ap	plied	0.08	0.06	0.14	0.20	0.22	0.28
Reported SAR value	W/kg	W/kg	(*. ≤1.2 W/kg		W/kg	W/kg	W/kg	W/kg	W/kg	W/kg
Measured SAR value	0.021	0.025			0.056	0.043	0.107	0.150	0.153	0.219
ivieasui eu SAIX value	W/kg	W/kg	-	-	W/kg	W/kg	W/kg	W/kg	W/kg	W/kg
Operation mode,	11g(6Mbps),	11g(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),
frequency[MHz]	2417	2417	5240	5240	5260	5300	5600	5500	5785	5825
Duty cycle [%] (scaled factor)	99.8 (×1.00)	99.8 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)
Output power [dBm]	18.52	17.63	14.00	13.69	13.67	13.56	16.38	16.18	15.93	16.39
(max. power, scaled factor)	(19.5,×1.25)	(19.5,×1.54)	(15.0,×1.26)	$(15.0,\times1.35)$	(15.0,×1.36)	(15.0,×1.39)	(17.5,×1.29)	$(17.5,\times1.36)$	$(17.5,\times1.44)$	(17.5,×1.29)
Liquid type				H	ead liquid (by Flat phanto	m)			
D 4 ICAD 1	0.03	0.05	not ap	pplied	0.09	0.07	0.16	0.20	0.24	0.30
Reported SAR value	W/kg	W/kg	(*. ≤1.2 W/kg		W/kg	W/kg	W/kg	W/kg	W/kg	W/kg
Measured SAR value	0.026	0.031			0.063	0.048	0.124	0.150	0.167	0.234
Measured SAR value	W/kg	W/kg	1	-	W/kg	W/kg	W/kg	W/kg	W/kg	W/kg
Operation mode,	11g(6Mbps),	11g(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),	11a(6Mbps),
frequency[MHz]	2417	2417	5240	5240	5260	5300	5600	5500	5785	5825
Duty cycle [%] (scaled factor)	99.8 (×1.00)	99.8 (×1.00)	99.9 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)	99.7 (×1.00)
Output power [dBm]	18.52	17.63	14.00	13.69	13.67	13.56	16.38	16.18	15.93	16.39
(max. power, scaled factor)	(19.5,×1.25)	(19.5,×1.54)	(15.0,×1.26)	$(15.0,\times1.35)$	(15.0,×1.36)	(15.0,×1.39)	(17.5,×1.29)	$(17.5,\times1.36)$	$(17.5, \times 1.44)$	(17.5,×1.29)

Note: UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430. No addition, deviation nor exclusion has been made from standards

<u>Test outline:</u> Where this product is built into a new platform, it was verified whether multiplatform conditions can be suited in according with section 2) of 5.2.2 in KDB447498 D01 (v06).

Consideration of the test results: The highest reported SAR (1g) of this flat panel sensor was kept; ≤ 0.8 W/kg.

Since highest reported SAR (1g) on the EUTs platform obtained in accordance with KDB447498 (v06) was kept under 0.8 W/kg, this EUT was approved to operate multi-platform.

UL Japan, Inc. Shonan EMC Lab.

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

^{*.} General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Test report No. : 11143373S-A Page : 8 of 114 Issued date : April 25, 2016

FCC ID : W2Z-01000008

3.4 Test Location

No.7 shielded room (2.76m (Width) × 3.76m (Depth) × 2.4m (Height)) for SAR testing.

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

3.5 Confirmation before SAR testing

3.5.1 Average power for SAR tests

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. The result is shown in Section 6.

*. The EUT transmission power was verified that it was within 2dB lower than the maximum tune-up tolerance limit when it was set the rated power. (Clause 4.1, KDB447498 D01 (v06))

Step.1 Data rate check (*. The EUT supported the following data rate in each operation mode.)

1	1b	11	lg	11	la			11n(20HT)					11n(40HT)		
Mod	Data	Mod	Data	Mod	Data	MCS	Spatial	Mod									
(DSSS)	rate	(OFDM)	rate	(OFDM)	rate	Index	Stream	(OFDM)									
DBPSK	1 Mbps	BPSK	6 Mbps	BPSK	6 Mbps	MCS0	1	BPSK	MCS8	2	BPSK	MCS0	1	BPSK	MCS8	2	BPSK
DQPSK	2 Mbps	BPSK	9 Mbps	BPSK	9 Mbps	MCS1	1	QPSK	MCS9	2	QPSK	MCS1	1	QPSK	MCS9	2	QPSK
CCK	5.5 Mbps	QPSK	12 Mbps	QPSK	12 Mbps	MCS2	1	QPSK	MCS10	2	QPSK	MCS2	1	QPSK	MCS10	2	QPSK
CCK	11 Mbps	QPSK	18 Mbps	QPSK	18 Mbps	MCS3	1	16QAM	MCS11	2	16QAM	MCS3	1	16QAM	MCS11	2	16QAM
*.Mod: M	odulation	16QAM	24 Mbps	16QAM	24 Mbps	MCS4	1	16QAM	MCS12	2	16QAM	MCS4	1	16QAM	MCS12	2	16QAM
	oddiadon	16QAM	36 Mbps	16QAM	36 Mbps	MCS5	1	64QAM	MCS13	2	64QAM	MCS5	1	64QAM	MCS13	2	64QAM
		64QAM	48 Mbps	64QAM	48 Mbps	MCS6	1	64QAM	MCS14	2	64QAM	MCS6	1	64QAM	MCS14	2	64QAM
		64QAM	54 Mbps	64QAM	54 Mbps	MCS7	1	64QAM	MCS15	2	64QAM	MCS7	1	64QAM	MCS15	2	64QAM

Step.2 Consideration of SAR test channel

For the SAR test reference, on each operation band, the average output power was measured on the lower/middle/upper and specified channels with the worst data rate condition in step 1 in the above.

3.6 Confirmation after SAR testing

It was checked that the power drift [W] is within $\pm 5\%$ in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

The result is shown in APPENDIX 2.

*. DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb) (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m])

Limit of power drift[W] = $\pm 5\%$

Power drift limit (\vec{X}) [dB] = $10\log(P_{drift})=10\log(1.05/1)=10\log(1.05)-10\log(1)=0.21dB$

from E-filed relations with power.

S=E×H=E^2/ η =P/(4× π ×r^2) (η : Space impedance) \rightarrow P=(E^2×4× π ×r^2)/ η

Therefore, The correlation of power and the E-filed

Power drift limit (X) dB=10log(P_drift)=10log(E_drift)^2=20log(E_drift)

From the above mentioned, the calculated power drift of DASY5 system must be the less than ±0.21dB.

3.7 Test setup of EUT and SAR measurement procedure

After considering the outline of Flat Panel Sensor, the SAR test was carried out on the following setup conditions.

	Explanation of EUT setup position	anter	ına #0	anter	ına #1
Setup	(*. Refer to Appendix 1 for test setup photographs.)	Separation [mm]	SAR Tested /Reduced	Separation [mm]	SAR Tested /Reduced
Front	The front surface (patient side) of EUT was touched to the Flat phantom.	9.5	Tested (*1)	9	Tested (*1)
Back	The back surface (operator side) of EUT was touched to the Flat phantom.	4.2	Reduced (*1)	4.2	Reduced (*1)
Bottom (antenna#1)	The bottom edge surface (antenna #1 side) of EUT was touched to the Flat phantom.	10	Tested (*1)	345	Reduced (>200 mm)
Тор	The top edge surface (opposite to antenna#1) of EUT was touched to the Flat phantom.	82	Reduced (*1)	445	Reduced (>200 mm)
Side-ant#0 (antenna#0)	The side edge surface (antenna #0 side) of EUT was touched to the Flat phantom.	365	Reduced (>200 mm)	10	Tested (*1)
Side	The side edge surface (opposite to antenna#0) of EUT was touched to the Flat phantom.	445	Reduced (>200 mm)	62	Reduced (*1)

^{*} Separation: Antenna separation distance. It is the distance from the antenna to the outer surface of Flat Panel Sensor form which a human may touch.

(cont'd)

^{*.} Size of Flat Panel Sensor (RIC 43G): $460 \times 460 \times 15$ (thickness) [mm]

Test report No.: 11143373S-A Page : 9 of 114 **Issued date** : April 25, 2016

FCC ID : W2Z-01000008

(cont'd)

KDB 447498 D01 (v06) was taken into consideration to reduce SAR test.

	Consideration	n of SA	R test re	eduction by	the ant	enna se	eparatio	n distance (100M	Hz~6GHz,≤	(50mm)
Band,	Setup	Minimu	ım distance	Max.power or	Max.	tune-up	power	Calculation		dalone SAR	
Mode	Position	[mm]		upper frequency	[dBm]	[mW]	[]	of exclusion:		t Required?	Remarks
	- 1 (110 111)	. ,	(rounded)	[GHz]			(rounded)			, -> Required)	
WLAN	Back (ant#0, ant#1)	4.2	4 (≤5)	2.417	19.5	89.1	89	27.7	>3.0	Required	->SAR test was reduced. (*1)
2.4GHz	Front (ant#1)	9	9	2.417	19.5	89.1	89	15.4	>3.0	Required	-
2.4GHZ	Front (ant#0)	9.5	10	2.417	19.5	89.1	89	13.8	>3.0	Required	-
11g	Bottom(ant#1), Side-ant#0	10	10	2.417	19.5	89.1	89	13.8	>3.0	Required	-
WLAN	Back (ant#0, ant#1)	4.2	4 (≤5)	5.32	15.0	31.6	32	14.8	>3.0	Required	->SAR test was reduced. (*1)
WLAN W52&53	Front (ant#1)	9	9	5.32	15.0	31.6	32	8.2	>3.0	Required	-
11a	Front (ant#0)	9.5	10	5.32	15.0	31.6	32	7.4	>3.0	Required	-
114	Bottom(ant#1), Side-ant#0	10	10	5.32	15.0	31.6	32	7.4	>3.0	Required	-
WLAN	Back (ant#0, ant#1)	4.2	4 (≤5)	5.7	17.5	56.2	56	26.7	>3.0	Required	->SAR test was reduced. (*1)
WLAN W56	Front (ant#1)	9	9	5.7	17.5	56.2	56	14.9	>3.0	Required	-
11a	Front (ant#0)	9.5	10	5.7	17.5	56.2	56	13.4	>3.0	Required	-
11a	Bottom(ant#1), Side-ant#0	10	10	5.7	17.5	56.2	56	13.4	>3.0	Required	-
NAT AND	Back (ant#0, ant#1)	4.2	4 (≤5)	5.825	17.5	56.2	56	27.0	>3.0	Required	->SAR test was reduced. (*1)
WLAN W58	Front (ant#1)	9	9	5.825	17.5	56.2	56	15.0	>3.0	Required	-
11a	Front (ant#0)	9.5	10	5.825	17.5	56.2	56	13.5	>3.0	Required	-
114	Bottom(ant#1), Side-ant#0	10	10	5.825	17.5	56.2	56	13.5	>3.0	Required	-

	Consideratio	n of SA	R test re	eduction by	the ant	enna se	paration	n distance (100MH	z~6GHz,>	50mm)
Band,		Minim	Standalone							
Mode	Position	[mm]	[mm] (rounded)	upper frequency [GHz]	[dBm]	[mW]	[mW] (rounded)	exclusion thresholds [mW] (*3)	SAR test	Remarks
WLAN	Side (ant#1)	62	62	2.417	19.5	89.1	89	216	Reduced	-
2.4GHz, 11g	Top (ant#0)	82	82	2.417	19.5	89.1	89	416	Reduced	-
WLAN	Side (ant#1)	62	62	5.32	15.0	31.6	32	185	Reduced	=
W52&53, 11a	Top (ant#0)	82	82	5.32	15.0	31.6	32	385	Reduced	=
WLAN	Side (ant#1)	62	62	5.7	17.5	56.2	56	183	Reduced	-
W56, 11a	Top (ant#0)	82	82	5.7	17.5	56.2	56	383	Reduced	-
WLAN	Side (ant#1)	62	62	5.825	17.5	56.2	56	182	Reduced	-
W58, 11a	Top (ant#0)	82	82	5.825	17.5	56.2	56	382	Reduced	-

- *1. Since this EUT is the medical device, the EUT is only used under the guidance of a doctor or a qualified person. The possibility of the maximum RF human exposure is only a body/head of the patient who comes in contact directly on the front surface (patient side) of the EUT. Therefore, the SAR test was only considered to the front surface of the EUT. However, SAR value couldn't be measured at the front surface, so SAR was evaluated on the side edge.
- *2. Parenthesis 1), Clause 4.3.1, KDB 447498 D01 (v06) gives the following formula to calculate the SAR(1g) test exclusion thresholds for 100MHz-6GHz at test separation distance ≤50mm.
 - [(max.power of channel, including tune-up tolerance, mW) / (min.test separation distance, mm)] $\times [\sqrt{f(GHz)}] \le 3.0$ (for SAR(1g)) · · · · · · · · formula (1) If power is calculated from the upper formula (1); $[SAR(1g) \text{ test exclusion thresholds, } mW] = 3 \times [\text{test separation distance, } mm] / [\sqrt{f} \text{ (GHz)}]$ formula (2) $[SAR(1g) \text{ test exclusion thresholds, } mW] = 3 \times 50 / SQRT(2.462) = 96mW, \text{ where test separation distance=50mm}$
- *3. Parenthesis 2), Clause 4.3.1, KDB 447498 D01 (v06) gives the following formula to calculate the SAR(1g) test exclusion thresholds for 1.5-6GHz at test separation distance > 50mm

[test exclusion thresholds, mW] = [(Power allowed at numeric threshold for 50mm in formula (1))] + [(test separation distance, mm) - (50mm)] × 10 formula (3)

(SPLSR: SAR to peak location separation ratio must be ≤ 0.04 for antenna pair.)

Mode	Data	Band	Position	Mini	mum	Max.power or	Max. power			AR(1g) [W/l	(g]	Ant#0<->#1	SPLSR	Simultaneous
Mode	rate	Danu	FOSIUOII	dista	ance	Upper frequency	(with tune-up tolerance)	Ant#0	Ant#1	Ant#0+#1	Limit	distance	SILSK	SAR test apply?
n20	MCS8	2.4GHz	Ennet	Ant#0	Ant#1	2.417GHz	17.0dBm (50mW)	1.09	1.15	2.24	1.6	480 mm	0.007	
n20	MCS8	W52/53	Front (Patient	9.5	0	5.32GHz	13.5dBm (22mW)	0.71	0.75	1.46	1.6	480 mm	0.004	Reduced
n20	MCS8	W56			mm	5.7GHz	16.0dBm (40mW)	1.34	1.41	2.75	1.6	480 mm	0.010	SPLSR: ≤0.04
n20	MCS8	W58	side)	1111111	111111	5.825GHz	16.0dBm (40mW)	1.35	1.43	2.78	1.6	480 mm	0.010	

Calculating formula: Estimate standalone SAR(1g) = $[(max.power, mW)/(min.test separation distance, mm)] \times [\sqrt{f(GHz)}] / [7.5]$ SPLSR (SAR to Peak Location Separation Ratio) = $\{(SAR_Ant\#0, W/kg) + (SAR_Ant\#1, W/kg)\} / 1.5/(Ant\#0 <>#1 distance, mm)\}$

By the determined test setup shown above, the SAR test was applied in the following procedures.

Step 1	Change the operation mode on each antenna independently with highest output power channel.
Step 2	Repeat Step1 for other frequency band.

^{*.} During SAR test, the radiated power is always monitored by Spectrum Analyzer.

Test report No.: 11143373S-A Page : 10 of 114 **Issued date** : April 25, 2016

FCC ID : W2Z-01000008

SECTION 4: Operation of EUT during testing

Operating modes for SAR testing

This EUT has IEEE 802.11b, g, a, n(HT20) and n(HT40) continuous transmitting modes.

The frequency and the modulation used in the SAR testing are shown as a following.

Operation mode	g	b	n20(1Tx)	n20(2Tx)	n40(1Tx)	n40(2Tx)	a	n20(1Tx)	n20(2Tx)	n40(1Tx)	n40(2Tx)
band			DTS					W52	2 (U-NII-1))(*1)	
Tx band [MHz]		2412~2462			2422-	-2452	4	5180~5240)	5190-	-5230
Bandwidth [MHz	20	20	20	20	40	40	20	20	20	40	40
Max.power [dBm	19.5	16	17	20	16	19	15	13.5	16.5	13.5	16.5
Modulation	OFDM	DSSS	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM
Data rate [Mbps]	6	1	MCS0	MCS8	MCS0	MCS8	6	MCS0	MCS8	MCS0	MCS8
SAR Tested?	Tested	Tested	Reduced	Reduced	Tested	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced
Frequency ant#0	2417, 2437, 2462	2412(*2)	-(*2)	-(*3)	2427(*2)	-(*3)	-	-	-	-	-
tested [MHz] ant#1	2417, 2437, 2462	2412(*2)	-(*2)	-(*3)	2427(*2)	-(*3)	-	-	-	-	-

Operation	mode	a	n20(1Tx)	n20(2Tx)	n40(1Tx)	n40(2Tx)	a	n20(1Tx)	n20(2Tx)	n40(1Tx)	n40(2Tx)	a	n20(1Tx)	n20(2Tx)	n40(1Tx)	n40(2Tx)
band			W5	3 (U-NII	-2A)			W	56 (U-NII-	2C)			W:	56 (U-NII-:	2C)	
Tx band [MHz]		5260~5320	0	5270	~5310		5500~570	00	5510	~5670		5745~582	25	5755	~5795
Bandwidth	[MHz]	20	20	20	40	40	20	20	20	40	40	20	20	20	40	40
Max.power	· [dBm]	15	13.5	16.5	13.5	16.5	17.5	16	19	13.5	16.5	17.5	16	19	13.5	16.5
Modulat	tion	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM
Data rate	Mbps]	6	MCS0	MCS8	MCS0	MCS8	6	MCS0	MCS8	MCS0	MCS8	6	MCS0	MCS8	MCS0	MCS8
SAR Test	ted?	Tested	Reduced	Reduced	Tested	Reduced	Tested	Reduced	Reduced	Tested	Reduced	Tested	Reduced	Reduced	Tested	Reduced
Frequency	ant#0	5260, 5300, 5320	-(*2)	-(*3)	-(*2)	-(*3)	5500, 5580, 5600, 5700	-(*2)	-(*3)	-(*2)	-(*3)	5745, 5785, 5825	-(*2)	-(*3)	-(*2)	-(*3)
tested [MHz]	ant#1	5260, 5300, 5320	-(*2)	-(*3)	5270 (*2)	-(*3)	5500, 5580, 5600, 5700	-(*2)	-(*3)	5550 (*2)	-(*3)	5745, 5785, 5825	-(*2)	-(*3)	5795 (*2)	-(*3)

Tx Controlled software: ART v09 (Build 34)

Mode: Continuous transmit mode.

•Tx antenna chain:

Ant#0=100, Ant#0=010, Ant#0+Ant#1(MIMO)=110.

•Frequency: Selected the target frequency.

Data Rate: Selected the target data rate.

Controlled software

•HT40: Selected when 11n(40HT) was tested.

•Setting target power. Defaults were used, but when measurement power didn't enter 2dB from maximum power, it was adjusted (tuned-up).

*. As for parameters other than the above, the initial value was used.

SAR test reduction consideration

[Table A-1. Output power measured and SAR test channel selection]

802.11	Modes	b	g	1	n	a	n(1	Tx)
Ch. Bandy	vidth [MHz]	20	20	20	40	20	20	40
Lowest data	a rate [Mbps]	1	6	6.5	6.5	6	6.5	13
§15.247	Ch.	<mark>1</mark> /6/11	1/ <mark>2/</mark> 6/11	-	-			
(2.4GHz)	mW (ant#0)	<mark>32</mark> /29/31	29/ <mark>71</mark> /51/41	lower	power			
(2.4GHZ)	mW (ant#1)	33/31/30	29/ <mark>58</mark> /53/39	lower	power			
U-NII-1	Ch.					36/44/48	-	-
(W52)	mW (ant#0)					23/25/25	lower	power
(1132)	mW (ant#1)					22/23/23	lower	power
U-NII-2A	Ch.					52/ <mark>60</mark> /64	-	1
(W53)	mW (ant#0)					23/ <mark>25/</mark> 24	lower	power
(**33)	mW (ant#1)					22/ <mark>23</mark> /23	lower	power
U-NII-2C	Ch.					100/ <mark>118</mark> /120/140	-	1
(W56)	mW (ant#0)					40/ <mark>44</mark> /43/39	lower	power
(**30)	mW (ant#1)					42/ <mark>41</mark> /41/38	lower	power
U-NII-3	Ch.					149/157/ <mark>165</mark>	-	-
(W58)	mW (ant#0)					39/39/ <mark>40</mark>	lower	power
(1730)	mW (ant#1)					39/40/ <mark>44</mark>	lower	power

[Table	A-2. Repo	orted S	AR(1g)	and test reduction plan](I	Head)	
b	g	ı	1	a	n(1	Tx)
20	20	20	40	20	20	40
1	6	6.5	6.5	6	6.5	13
<u>1</u>	1/ <mark>2</mark> /6/11	-	ı			
0.02	<u>0.03</u>	lower	power			
0.02	<u>0.05</u>	lower	power			
				36/44/48	-	-
				*. U-NII-2A exclusion	lower	power
				applied (*1)	lower	power
				52/ <mark>60</mark> /64	-	-
				0.09	lower	power
				0.05	lower	power
				100/ <mark>118</mark> /120/140	-	-
				0.13	lower	power
				0.20	lower	power
				149/157/ <mark>165</mark>	-	-
				<u>0.21</u>	lower	power
				0.30	lower	power

*1. (KDB248227 D01 (v02r02)) Since highest reported SAR(1g) of U-NII-2A was ≤1.2 W/kg, SAR measurement of U-NII-1 band was omitted.

The SAR testing was applied to lower, middle and upper channels for the worst SAR condition in each operation band.

 ^{*2. (}KDB248227 D01 (v02r02)) SAR test of other power mode was reduced, because the reported SAR(1g) of 11g, and 11a mode (highest power mode in each operation by as≤0.4 W/kg. However, in a representative frequency, 11b was evaluated for DSSS mode and 11n(40HT) mode was evaluated for BW=40MHz.
 *3. (KDB447498 D01(v06)) Since SPLSR (SAR to peak location separation ratio) was enough smaller than 0.04, SAR test of MIMO mode was reduced.
 *4. The SAR test of MIMO mode was reduced.

Test report No. : 11143373S-A Page : 11 of 114 Issued date : April 25, 2016

FCC ID : W2Z-01000008

SECTION 5: Uncertainty Assessment (SAR measurement)

Uncertainty of SAR measurement (2.4-6GHz) (*.ε&σ:≤±5%, DAK3.5, Tx:≈100% duty cycle) (v08)	1g SAR	10g SAR
Combined measurement uncertainty of the measurement system (k=1)	± 13.7%	± 13.6%
Expanded uncertainty (k=2)	± 27.4%	± 27.2%

	Error Description (2.4-6GHz) (v08)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
A	Measurement System (DASY5)				\ B/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(std. uncertainty)	(std. uncertainty)	
1	Probe Calibration Error	±6.55 %	Normal	1	1	1	±6.55 %	±6.55 %	∞
2	Axial isotropy Error	±4.7 %	Rectangular	√3	√0.5	√0.5	±1.9 %	±1.9 %	∞
3	Hemispherical isotropy Error	±9.6 %	Rectangular	√3	√0.5	√0.5	±3.9 %	±3.9 %	∞
4	Linearity Error	±4.7 %	Rectangular	√3	1	1	±2.7 %	±2.7 %	∞
5	Probe modulation response	±2.4 %	Rectangular	√3	1	1	±1.4 %	±1.4 %	∞
6	Sensitivity Error (detection limit)	±1.0 %	Rectangular	√3	1	1	±0.6 %	±0.6 %	∞
7	Boundary effects Error	±4.3%	Rectangular	$\sqrt{3}$	1	1	±2.5 %	±2.5 %	∞
8	Teadout Electronics Enter(E1 E2)	±0.3 %	Rectangular	$\sqrt{3}$	1	1	±0.3 %	±0.3 %	∞
9	Response Time Error	±0.8 %	Normal	1	1	1	±0.8 %	±0.8 %	∞
10	Integration Time Error (≈100% duty cycle)	±0 %	Rectangular	$\sqrt{3}$	1	1	0%	0%	∞
11	RF ambient conditions-noise	±3.0 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
12	RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
13	Probe positioner mechanical tolerance	±3.3 %	Rectangular	$\sqrt{3}$	1	1	±1.9 %	±1.9 %	∞
14	Probe Positioning with respect to phantom shell	±6.7 %	Rectangular	$\sqrt{3}$	1	1	±3.9 %	±3.9 %	∞
15	Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞
В									
16	Device Holder or Positioner Tolerance	±3.6 %	Normal	1	1	1	±3.6 %	±3.6 %	5
17	Test Sample Positioning Error	±5.0 %	Normal	1	1	1	±5.0 %	±5.0 %	145
18	Power scaling	±0%	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	∞
19	Drift of output power (measured, <0.2dB)	±2.3%	Rectangular	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
C	Phantom and Setup								
20	Phantom uncertainty (shape, thickness tolerances)	±7.5 %	Rectangular	√3	1	1	±4.3 %	±4.3 %	∞
21	Algorithm for correcting SAR (e',σ: ≤5%)	±1.2 %	Normal	1	1	0.84	±1.2 %	±0.97 %	∞
22	Measurement Liquid Conductivity Error (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	7
23	Measurement Liquid Permittivity Error (DAK3.5)	±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	7
	Liquid Conductivity-temp.uncertainty (≤2deg.C.)	±5.3 %	Rectangular	$\sqrt{3}$	0.78	0.71	±2.4 %	±2.2 %	∞
25		±0.9 %	Rectangular	$\sqrt{3}$	0.23	0.26	±0.1 %	±0.1 %	∞
	Combined Standard Uncertainty						±13.7 %	±13.6 %	733
	Expanded Uncertainty (k=2)						±27.4 %	±27.2 %	

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

^{*.} This measurement uncertainty budget is suggested by IEEE Std.1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 (v01r04) SAR Measurement 100 MHz to 6 GHz Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

Test report No.: 11143373S-A : 12 of 114 Page **Issued date** : April 25, 2016

FCC ID : W2Z-01000008

SECTION 6: Confirmation before testing

Assessment for the antenna terminal port conducted power of EUT (Worst data rate, worst channel determination)

2.4GHz band 6.1.1

		MIZ																			_
		,	Powe	r spec.	I	Duty cy	cle	A	Antenna 7	#0 (chair	#0) pow	er		Antenna	#1 (chair	1#1) pow	er	MIMO Ar	t.#0+Ant.#1	power	
	Freq.	Data			duty	Ι ΄	scaled	Set		Δ	Tune-up		Set		Δ	Tune-up		MIMO MIN		Δ	Power
Mode	1104.	rate	Typica	l Max.	cycle	factor	factor		Ave.	Max.		SAR		Ave.	Max.		SAR			Max.	Tune
	витт	D. 41	LID. 1	r ID		LIDI		pwr.	LID. 1		factor	Tested?	pwr.	r ID. 1		factor	Tested?	target ma			_
	[MHz]	[Mbps]	[dBm]	[dBm]	[%]	[dB]	[-]	[dBm]	[dBm]	[dB]	[-]		[dBm]	[dBm]	[dB]	[-]		[dBm] [dB	n] [dBm]	[dB]	-up [:] ?
	2412	1	13.5	16.0	99.8	0.01	$\times 1.00$	13.5	14.13	-1.87	×1.54	-	13.5	13.92	-2.08	×1.61	-				-
	2412	2	13.5	16.0	99.8	0.01	×1.00	13.5	14.13	-1.87	-	-	13.5	13.92	-2.08	i -	-				-
	2412	5.5	13.5	16.0	99.6	0.02	×1.00		14.13	-1.87			13.5	13.92	-2.08						
1.11											ļ	<u>-</u>					<u>-</u>				<u>-</u>
11b	2412	11	13.5	16.0	99.4	0.03	$\times 1.01$	13.5	14.13	-1.87	-	-	13.5	13.92	-2.08	-	-				
	2412	1	13.5	16.0	99.8	0.01	$\times 1.00$	15.0	14.99	-1.01	×1.26	Tested	15.0	15.20	-0.80	×1.20	Tested				tune-up
	2437	1 1 1	13.5	16.0	99.8	0.01	×1.00	15.0	14.57	-1.43	×1.39		15.0	14.91	-1.09	×1.29					tune-up
	2462	1	13.5	16.0		0.01	×1.00	15.0	14.97	-1.03	×1.27		15.0	14.70	-1.30	×1.35	-				tune-up
	_	_		_		_															unc-up
	2417	6	17.0	19.5	99.8	0.01	×1.00	17.0	17.44	-2.06	×1.61	-	17.0	17.63	-1.87	×1.54	Tested				<u> </u>
	2417	9 12	17.0	19.5	99.6	0.02	$\times 1.00$	17.0	17.37	-2.13 -2.19 -2.20 -2.30	-	-	17.0	17.51	-1.99	-	-				-
	2417	12	17.0	19.5	99.4		×1.01	17.0	17.31	-2 19	_	-	17.0	17.47	-2.03	_	_				-
	2417	18	17.0	19.5	99.0		×1.01	17.0	17.30	2 20			17.0	17.37	-2.13						<u>-</u>
		10								-2.20	ļ										
	2417	24	17.0	19.5	98.8		×1.01	17.0	17.20	-2.30		-	17.0	17.35	-2.15	-	-				
11.	2417	36	17.0	19.5	98.4	0.07	$\times 1.02$	17.0	17.21	-2.29	-	-	17.0	17.39	-2.11	-	-				-
11g	2417	48	16.0	18.5	97.4	0.11	×1.03	16.0	15.92	-2.58	-	-	16.0	16.29	-2.21	-	-				-
	2417	56	15.0	17.5		0.13	×1.03	15.0	15.02	-2.48				15.45	-2.05						
							_					-	15.0				-				
	2412	6	13.5	16.0	99.8	0.01	$\times 1.00$	13.5	14.57	-1.43	×1.39	-	13.5	14.63	-1.37	×1.37	-				
l	2417	6	17.0	19.5	99.8	0.01	$\times 1.00$	18.0	18.52	-0.98	×1.25	Tested	-	-	-	-	-				tune-up
l	2437	6	15.5	18.0		0.01	×1.00	17.0	17.09	-1.41	×1.38	Tested	17.0	17.25	-1.25	×1.33	Tested				tune-up
l	2462	6	15.0	17.5		0.01	×1.00		16.08		×1.39										
		$\overline{}$		_				16.0		-1.42		Tested	16.0	15.87	-1.63	×1.46	Tested			-	tune-up
l	2417	MCS0	14.5	17.0	99.6	0.02	×1.00	14.5	15.16	-1.84	×1.53	no (*1)	14.5	15.12	-1.88	×1.54	no (*1)				-
l	2417	MCS1	14.5	17.0	99.3	0.03	×1.01	14.5	14.87	-2.13 -2.26	Ī -	-	14.5	14.99	-2.01	-	-				-
l	2417	MCS2	14.5	17.0	98.8	0.05	×1.01	14.5	14.74	-2.26	f		14.5	14.80	-2.20	-					_
										-2.20	ļ						-				<u>-</u>
	2417	MCS3	14.5	17.0	98.6	0.06	×1.01	14.5	14.72	-2.28	_	-	14.5	14.79	-2.21	-	-				-
11n	2417	MCS4	14.5	17.0	97.9	0.09	$\times 1.02$	14.5	14.62	-2.38 -2.11	-	-	14.5	14.78	-2.22	-	-				-
(20HT)	2417	MCS5	14.5	17.0	97.3	0.12	×1.03	14.0	14.39	-2.11		-	14.0	14.29	-2.21	-	-				-
(1Tx)	2417	MCS6	14.5	17.0	96.8	0.14	×1.03	13.5	13.95	-2.05			13.5	13.83	-2.17						
(111)										-2.03	ļ										
	2417	MCS7	14.5	17.0				13.0	13.54	-1.96	-	-	13.0	13.53	-1.97	-	-				-
	2412	MCS0	10.5	13.0	99.6	0.02	$\times 1.00$	10.5	11.71	-1.29	×1.35	-	10.5	11.36	-1.64	×1.46	-				-
	2437	MCS0	12.5	15.0	99.6	0.02	×1.00	13.5	13.73	-1.27	×1.34	_	13.5	14.04	-0.96	×1.25	-				tune-up
	2462	MCS0	10.5	13.0		0.02	×1.00	11.5	11.34	-1.66	×1.47		11.5	11.79	-1.21	×1.32					
				_	_	_		_		_		_									tune-up
	2427	MCS0	13.5	16.0	99.3	0.03	×1.01	13.5	14.19	-1.81	×1.52	Tested	13.5	14.34	-1.66	×1.47	Tested				:
	2427	MCS1	13.5	16.0		0.06	$\times 1.01$	13.5	13.99	-2.01 -2.00	-	-	13.5	14.26	-1.74	-	-				:
	2427	MCS2	13.5	16.0	97.8	0.10	×1.02	13.5	14.00	-2.00	-	-	13.5	14.16	-1.84	-	-				1
	2427	MCS3	13.5	16.0	97.2	0.12	×1.03	13.5	14.05	-1.95			13.5	14.21	-1.79	-					
											ļ	<u>-</u>				ļ <u>-</u>	-				:
11n	2427	MCS4	13.5	16.0	96.9	0.14	×1.03	13.5	13.98	-2.02	-	-	13.5	14.09	-1.91	-	-				l :
(40HT)	2427	MCS5	13.0	15.5	94.8		×1.05	13.0	13.52	-1.98	-	-	13.0	13.72	-1.78	-	-				-
(1Tx)	2427	MCS6	12.5	15.0	94.3	0.25	×1.06	12.5	12.94	-2.06	-	-	12.5	13.07	-1.93	-	-				
` /	2427	MCS6 MCS7	12.0	14.5	93.9	0.27	×1.06	12.0	12.59	-1.91			12.0	12.72	-1.78	·····					
	_						_				1.22	-				1.40					<u> </u>
	2422	MCS0	6.0	8.5	99.3	0.03	×1.01	6.0	7.29	-1.21	×1.32		6.0	6.79	-1.71	×1.48					:
l	2437	MCS0	10.5	13.0		0.03	$\times 1.01$	10.5	10.57	-2.43	×1.75	<u></u>	10.5	11.24	-1.76	×1.50	L				=_
l	2452	MCS0	7.0	9.5	99.3	0.03	×1.01	7.0	7.54	-1.96	×1.57		7.0	7.69	-1.81	×1.52	-				
	2417		14.5	17.0	99.6	0.02	×1.00	14.5	15.02	-1.98	×1.58	no (*2)	14.5	15.16	-1.84	×1.53	no (*2)	17.5 20	0 18.10	-1.90	
l		MCS8							13.02	-1.70	^1.00	no (*2)					no (*2)	17.5 20	0 17.010	-1.50	
l	2417	MCS9	14.5	17.0	99.3	0.03	×1.01	14.5	14.76	-2.24 -2.19 -2.18	ļ <u>-</u>	-	14.5	14.93	-2.07	-	-	17.5 20 17.5 20 17.5 20	0 17.86	-2.14 -2.15 -2.19	-
l	2417	MCS10	14.5	17.0	98.8	0.05	×1.01	14.5	14.81	-2.19	<u> </u>		14.5	14.86	-2.14	-	-	17.5 20	0 17.85	-2.15	
l	2417	MCS11	14.5	17.0	98.6	0.06	×1.01	14.5	14.82	-2.18	i -	-	14.5	14.77	-2.14 -2.23	Ī -	-	17.5 20	0 17.81	-2.19	-
11	2417	MCS12	14.5	17.0	97.9	0.09	×1.02	14.5	14.87	-2.13 -2.13 -2.21 -2.19	ł		14.5	14.74	-2.26	t		17.5 20	0 17.82	-2.18 -2.21 -2.23 -2.20	
11n										2.13	ļ				2.20	ļ <u>-</u>			0 17.02	-2.10	
(20HT)		MCS13	14.0	16.5	97.3	0.12	×1.03	14.0	14.37	-2.13	ļ <u>-</u>	-	14.0	14.19	-2.31	-	-			-2.21	-
(2Tx)	2417	MCS14	13.5	16.0			×1.03	13.5	13.79	-2.21		-	13.5	13.73	-2.27	_	-	16.5 19	0 16.77	-2.23	
l	2417	MCS15	13.0	15.5	96.4	0.16	×1.04	13.0	13.31	-2.19	-	-	13.0	13.26	-2.24	-	-	16.0 18	5 16.30	-2.20	-
l	_	MCS8			99.6			10.5		-1.21	×1.32		10.5	11.27	-1.73	×1.49	-		0 14.55	_1 //5	
l												_					-				
l	2437	MCS8			99.6		×1.00		13.66	-1.34	×1.36		13.5	14.00	-1.00	×1.26	L I		0 16.84		tune-up
l	2462	MCS8	10.5	13.0	99.6	0.02	$\times 1.00$	11.5	11.50	-1.50	×1.41	-	11.5	11.70	-1.30	×1.35	-	13.5 16	0 14.61	-1.39	tune-up
	2427	MCS8	13.5	16.0	98.9	0.05	×1.01	13.5	14.18	-1.82	×1.52	no (*2)	13.5	14.26	-1.74	×1.49	no (*2)	16.5 19	0 17.23	-1.77	_
l											^1.54	10 (2)					10 (2)			*************	<u>-</u>
l	2427	MCS9	13.5	16.0			×1.03	13.5	14.04	-1.96	ļ	-	13.5	14.10	-1.90	-	-	16.5 19		-1.92	
l	2427	MCS10	13.5	16.0			×1.04		14.04	-1.96	<u></u> -	-	13.5	14.11	-1.89	-		16.5 19	0 17.09	-1.91	
l	2427	MCS11	13.5	16.0			×1.05	13.5	13.99	-2.01	-	-	13.5	13.98	-2.02	-	-	16.5 19	0 16.99	-2.01	-
11	2427	MCS12	13.5	16.0			×1.07	13.5	13.85	_2 15	ł		13.5	13.90	-2.10	ļ		16.5 19		_2 11	
11n		NICO12	13.3							-2.15 -2.10	ļ <u>-</u>					ļ <u>-</u>				-2.11 -2.15	
(40HT)		MCS13	13.0	15.5	92.8		×1.08	13.0	13.40	-2.10	Į	-	13.0	13.28	-2.22	-	-	16.0 18	5 16.35	-2.15	-
(2Tx)	2427	MCS14	12.5	15.0	92.1	0.36	×1.09	12.5	13.02	-1.98	-	- "	12.5	12.88	-2.12	-	-	15.5 18	0 15.96	-2.04	-
1	2427	MCS15		14.5			×1.09	12.0	12.61	-1.89	-	_	12.0	12.58	-1.92	-	-	15.0 17	5 15.61	-1.89	-
	2422				98.9		×1.01	6.0		-1.13	×1.30							9.0 11		-1.31	
l		MCS8	6.0	8.5					7.37				6.0	6.97	-1.53	×1.42	<u>-</u>				{
l	2452	MCS8	7.0	9.5				7.0	7.62	-1.88	×1.54	-	7.0	7.52	-1.98	×1.58	-		5 10.58		-
l	2437	MCS8	10.5	13.0	98.9	0.05	$\times 1.01$	11.5	11.98	-1.02	×1.26	-	11.5	12.08	-0.92	×1.24	-	13.5 16	0 15.04	-0.96	tune-up

[:] SAR test was applied. *. xx.xx highlight is shown the maximum measured output power.

^{*1. (}KDB248227 D01 (v02r02)) The reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤0.8 W/kg.
*2. (KDB447498 D01 (v06)) Since SPLSR (SAR to peak location separation ratio) was enough smaller than 0.04, SAR test of MIMO mode was reduced.
*. Date measured February 3 and 4, 2016 / measured by: H. Naka (21 ± 2 deg C / 50 ± 5 %RH, at preparation room of S/R#7)

Test report No.: 11143373S-A Page : 13 of 114 **Issued date** : April 25, 2016

FCC ID : W2Z-01000008

6.1.2 5GHz band

Miles Margo Salan Balan Salan Sala	0.1.2			Janu																		
Models Mod			_	Powe	er spec	2.	Duty cv	<i>r</i> cle	-	Antenna:	#0 (chair	1#0) pov	ver .		Antenna	#1 (chair	1#1) pow	er	MIMO Ant#0+	-Ant#1 1	nower	
Mart		Fred	Data		1	_							1									Downer
March Marc	Mode	ricq.	rate	Typica	al Max					Ave.			SAR		Ave.			SAR				
Section Proceedings Section Proceedings Section Sectio			ļ		Į.	Cycle	;	lactor				factor					t .					
Section Sect		[MHz]	[Mbps]	[dBm	[dBn	n] [%]	[dB]	[-]	[dBm]	[dBm]	[dB]	[-]	residu.	[dBm]	[dBm]	[dB]	[-]	resteu.	[dBm] [dBm] [dBm]	[dB]	-up?
Section Sect		5500	6	15.0	17 '	5 997	0.01	×1 00	15.0	14 93	-2.57	×1.81	-	150	14 60	-2.90	×1 95	_				_
Second 18 150 175 989 008 410 150 1481 2.09 150 1451 2.96			ļ <u>Ķ</u>								2.57								ł			
Second 18 150 175 989 008 410 150 1481 2.09 150 1451 2.96			<u>9</u>								-2.58	ļ	-				-	-				
Section Sect		5500	12	15.0	17.:	5 99.2	0.03	×1.01	15.0	14.87	-2.63	-	-	15.0	14.51		-	-				-
Section Sect		5500	18	15.0	17.	5 98.9	0.05	×1.01	15.0	14.81	-2.69	-	-	15.0	14.54	-2.96	-	-				
Section Sect			24								2.78	t							i			
Section Sect			24								-2.70	Ļ										
Section Sect		5500	36	15.0	17.:	98.1	0.08	×1.02	15.0	14.77	-2.73	-	-	15.0	14.49	-3.01	-	-				-
Section Sect		5500	48	15.0	17.	97.3	0.12	×1.03	15.0	14.76	-2.74	-	-	15.0	14.46	-3.04	-	-				-
18 18 18 18 18 18 18 18											2 72	ļ										
18								×1.03					-					-				
18		5180	6	12.5	15.0) 99.7	0.01	$\times 1.00$	15.0	13.70	-1.30	×1.35	-	15.0	13.50	-1.50	×1.41	-				tune-up
14 \$2.00 6 \$2.5 \$6.0 97 \$0.0 \$0.0 \$0.0 \$5.0 \$1.00 \$0.0 \$1.20 \$1.00 \$1.30		5220	6	12.5	150	7 99 7	7 0 0 1	×1 00	150	13 91	-1 09	×1 29		150	13 58	-1 42	×1 39		ĺ			tune-un
Section Column	110							1.1.00											ł			
Second Color Col	11a						_															tune-up
Section Sect		5260	6	12.5	15.0) 99.7	0.01	$\times 1.00$	15.0	13.67	-1.33	×1.36	Tested	15.0	13.55	-1.45	×1.40	Tested				tune-up
Sect		5300	6	12.5	150	997	0.01	×1 00	15.0	13.94	-1.06	×1.28	Tested	150	13 56	-1 44	×1 39	Tested				
Sept																						
Seed Seed G. Seed 17.5 Seed Seed 1.6 Se																						tune-up
Sect		5500	6	15.0	17.:	5 99.7	0.01	$\times 1.00$	16.5	15.99	-1.51	×1.42	Tested	16.5	16.18	-1.32	×1.36	Tested				tune-up
Section Column		5580	6	15.0	17	5 99 7	0.01	×1.00	16.5	1630	-1 11	v1 20	Tested		16 14		×1.37	Tested	ĺ			
Secondary 196 196 196 197 197 197 197 197 198												1.20										
March Marc																						une-up
March Marc		5700	6	15.0	17.:	5 99.7	0.01	$\times 1.00$	16.5	15.95	-1.55	×1.43	Tested	16.5	15.80	-1.70	×1.48	Tested				tune-up
March Marc	i					_		-				1										
Sect 6 150 175 997 001 x100 770 1608 -145 x140 resed 770 1609 -111 x129 resed 1500 1609 1002 x100 315 3166 2.34 x171 -135 12.75 3.34 x2.75 -3.34												.1.44										
S500 MSS 135 160 996 002 x100 35 1366 2-34 x171 - 135 1276 3-24 x211 - 1			6				0.01	1.00	1 /.0	15.93	-1.5/		Tested	17.0		-1.51	×1.42	Tested				tune-up
S500 MSS 135 160 996 002 x100 35 1366 2-34 x171 - 135 1276 3-24 x211 - 1		5825	6	15.0	17.	5 99.7	0.01	$\times 1.00$	17.0	16.05	-1.45	×1.40	Tested	17.0	16.39	-1.11	×1.29	Tested				tune-up
Section Sect					_	_		_							1000			_				
Section Sect											-2.54	×1./1	-	13.3			×∠.11	-				
Section Sect		5500	MCS1	13.5	16.0) 99.3	0.03	$\times 1.01$	13.5	13.62	-2.38	-	-	13.5	12.75	-3.25	-	-				-
Second News 125 150 976 0.11 x1.03 125 1228 2.72 2.5 12.18 2.82 -		5500		13.5	160	98.0	0.05	×1.01	13.5	13.61	-2 39				12.74		_		ĺ			
Second News 125 150 976 0.11 x1.03 125 1228 2.72 2.5 12.18 2.82 -											2.52	ļ							ł			
Second News 125 150 976 0.11 x1.03 125 1228 2.72 2.5 12.18 2.82 -			MCS3								-2.53		-				-	-				-
Second News 125 150 976 0.11 x1.03 125 1228 2.72 2.5 12.18 2.82 -		5500	MCS4	13.5	16.0	98.1	0.08	$\times 1.02$	13.5	13.47	-2.53	-	-	13.5	12.69	-3.31	-	-				-
Signormal Sign											-2.72	·····							i			
Signormal Sign			MCSS			7 77.0	0.11				2.72	ļ										
Signormal Sign		5500	MCS6		13.0			×1.03		10.02	-2.98	-	-	10.5		-3.13		-				-
180 M.S.D. 110 335 996 002 x100 135 1244 .146 x1.40 .135 1256 0.994 x1.24		5500	MCS7	8.5	11.0	96.7	0.15	×1.04	8.5	8.18	-2.82		-	8.5	7.35	-3.65	-					
11m S220 MS9 110 135 996 002 x100 135 1226 1237 113 x130 nc*** 135 1275 0.75 x199 nc*** 190 nc** 190 nc***		_										v1.40					v1.24					tama am
Carry Carr												^1.40	<i>-</i>						ł			turic-up
Carry Carr	11n	5220	MCS0	11.0	13.	99.6	0.02	1.00	13.5	12.26	-1.24	×1.33	1	13.5	12.75	-0.75	×1.19	no (*1)				tune-up
S260 S290 I 10 I 35 996 002 x100 I 35 I 222 -128 x134 I 35 I 241 -109 x129 no(1)	(20HT)	5240	MCS0	11.0	13.5	5 99.6	0.02	$\times 1.00$	13.5	12.37	-1.13	$\times 1.30$	no (*1)	13.5	12.30	-1.20	×1.32	-				tune-un
\$300 MCS0 110 155 996 002 x100 135 1256 -096 x125 125 106 135 1238 -112 x129					_								(-)					ma (*1)				_
S320 MCS0 110 135 966 002 x100 135 1266 -085 x122 00.71 150 1457 -122 x133 -	(111/)											X1.34						10(.1)				
S320 MCS0 110 135 960 002 x100 135 1266 -0.85 x122 no(*1) 135 1227 -123 x133 -			MCS0	11.0	13.			1.00	13.5	12.54		×1.25	1	13.5	12.38	-1.12	×1.29	L .				tune-up
S500 MCS0 135 160 996 002 x100 150 1490 x1.02 x1.05 1400 x1.40 x1.38 x1.05 x1.		5320	MCS0	[<u>11 0</u>	13	5 1 99 6	1002	×1 00	135	12.65	-0.85	×1 22	no (*1)	13.5	12.27	-1 23	×1 33					
S700 MCS0 13.5 16.0 99.6 0.02 x1.00 15.0 14.76 -1.24 x1.33 - 15.0 14.66 -1.37 x1.37 -	1				_							v1.20	110 (1)									
S700 MCS0 13.5 16.0 99.6 0.02 x1.00 15.0 14.76 -1.24 x1.33 - 15.0 14.66 -1.37 x1.37 -				13.3	10.			×1.00	15.0		-1.10	X1.29				-1.40						turie-up
S700 MCS0 13.5 16.0 99.6 0.02 x1.00 15.0 14.76 -1.24 x1.33 - 15.0 14.66 -1.37 x1.37 -		5580	MCS0	13.5	16.0) 99.6	0.02	$\times 1.00$	15.0		-0.97	×1.25	-	15.0	14.74	-1.26	×1.34	no (*1)				tune-up
S700 MCS0 13.5 16.0 99.6 0.02 x1.00 15.0 14.76 -1.24 x1.33 - 15.0 14.66 -1.37 x1.37 -		5600	MCS0			996	1002			15.03	-0.97	×1.25	no (*1)	150	14 70	-1 30	×1 35					
S745 MCS0 13.5 160 99.6 0.02 x1.00 16.0 15.02 0.98 x1.25 mc*1) 16.0 14.98 -1.02 x1.26												V1 22	110 (17									
5785 MCS0 13.5 16.0 99.6 0.02 ×1.00 16.0 14.82 -1.19 ×1.32 - 16.0 14.98 -1.02 ×1.26 -								×1.00					-					-				tune-up
5785 MCS0 13.5 16.0 99.6 0.02 ×1.00 16.0 14.82 -1.19 ×1.32 - 16.0 14.98 -1.02 ×1.26 -		5745	MCS0	13.5	16.0) 99.6	0.02	$\times 1.00$	16.0	15.02	-0.98	×1.25	no (*1)	16.0	14.98	-1.02	×1.26	-				tune-up
S825 MCS0 13.5 16.0 99.6 0.02 x1.00 16.0 14.82 -1.18 x1.31 - 16.0 15.37 -0.63 x1.16 no.(*1) - 1.05 1		5785	MCS0	13.5	160	1 99 6	1002	×1 00	160	14.81	-1 19	×1.32		160	14 98	-1.02	×1.26		ĺ			
S510 MCS0 11.0 13.5 99.3 0.03 ×1.01 11 10.82 2.68 ×1.85 - 13.5 10.44 -3.06 ×2.02 - -																		mc (#1)				
S510 MCSI 11.0 13.5 98.9 0.05 ×1.01 11 10.81 2.69			_		_								-					no (*1)				une-up
S510 MCSI 11.0 13.5 98.9 0.05 ×1.01 11 10.81 2.69		5510	MCS0	11.0	13.:	5 99.3	0.03	$\times 1.01$	11	10.82	-2.68	×1.85	-	13.5	10.44	-3.06	×2.02	-				-]
S510 MCS 11.0 13.5 98.0 0.09 ×.02 11 10.81 -2.69 - - 13.5 10.21 3.29 - - -											-2.69	{					+					
11											1 2.07	ļ										
11			MCS2								-2.69	Ļ	L				-	-				
11		5510	MCS3	11.0	13.			×1.03	11	10.81	-2.69	- "	- "	13.5	10.27	-3.23	-	-				-
11		5510		110			0.16	×1 04	11	10.77	-2 73	l -	-	13.5	10 13	-3 37	_	-				_
11											2.73	ļ	ļ <u>.</u>				 					<u>-</u>
11											- 2./U	Ļ	L					-				ļ <u>-</u>
STO MCS7 R.0 10.5 94.2 0.26 x.1.06 8.0 8.00 2.50 -	1.	5510	MCS6	10.0				$\times 1.05$	10	9.60	-2.90	-	-	10.5	9.44	-3.06	-	-				l -
S230 MCS0 11.0 13.5 99.3 0.03 ×1.01 13.5 12.21 -1.29 ×1.35 - 13.5 12.45 -1.05 ×1.27 -		5510										l -	l -				_	-				_
(ITX)	(40HT)											1.25	<u> </u>				1.07					
Sign Micso 11:0 13:5 99:3 003 ×1:01 12:5 12:22 -1.18 ×1:31 -1.12:5 12:12 -1.28 ×1:34 Tested		5230					_						-					-				tune-up
S510 MCS0 11.0 13.5 99.3 0.03 ×1.01 12.5 12.32 -1.18 ×1.31 12.5 12.16 -1.34 ×1.36	(11/1)	5270	MCS0	11.0	13.:	5 99.3	0.03	$\times 1.01$	13.5	12.23	-1.27	×1.34	-	13.5	12.16	-1.34	×1.36	Tested				tune-up
S550 MCS0 11.0 13.5 99.3 0.03 ×1.01 12.5 12.59 -0.91 ×1.23 12.5 11.95 -1.55 ×1.43 12.5 11.95 -1.55 ×1.43 12.5 11.95 -1.55 ×1.43 12.5 11.95 -1.55 ×1.43 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 11.95 -1.55 ×1.42 12.5 ×	ľ												1					_				_
5590 MCS0 11.0 13.5 99.3 0.03 ×1.01 12.5 12.49 -1.01 ×1.26 -1.25 11.95 -1.55 ×1.43 -1.55 ×1.42 -1.55 ×1.42 -1.57 ×1.42 -1.57 ×1.42 -1.57 ×1.42 -1.57 ×1.42 -1.57 ×1.42 -1.57 ×1.42 -1.57 ×1.42 -1.57 ×1.42 -1.57 ×1.42 -1.57 ×1.42 -1.55 ×1.43 -1.57 ×1.42 -1.55 ×1.43 -1.55 ×1.										12.54			<i>-</i>									
5590 McSo 11.0 13.5 99.3 0.03 ×1.01 12.5 12.49 -1.01 ×1.26 - 12.5 11.95 -1.55 ×1.43 -			MCS0	11.0				1.01×	12.5	12.59			1				×1.34	Lested				tune-up
Section Sect		5590	MCS0	11.0	13.	5 99.3	0.03	$\times 1.01$	12.5	12.49	-1.01	×1.26		12.5	11.95	-1.55	×1.43	-				tune-up
S755 MCS0 11.0 13.5 99.3 0.03 ×1.01 13.5 12.25 -1.25 ×1.33 - 13.5 12.21 -1.29 ×1.35 Tested tune-u tune-u tune-u tune-u													1									
S795 MCS0 11.0 13.5 99.3 0.03 ×1.01 13.5 11.94 -1.56 ×1.43 - 13.5 12.21 -1.29 ×1.35 Tested tune-tune-tune-tune-tune-tune-tune-tune-													<u> </u>									_
5500 MCS8 13.5 16.0 99.3 0.03 ×1.01 13.5 13.83 -2.17 ×1.65 - 13.5 12.74 -3.26 ×2.12 - 16.5 19.0 16.33 -2.67 - 5500 MCS9 13.5 16.0 97.9 0.09 ×1.02 13.5 13.47 -2.53 - - 13.5 12.64 -3.36 - - 16.5 19.0 16.09 -2.91 - 15.00 MCS1 13.5 16.0 97.9 0.09 ×1.02 13.5 13.43 - - 13.5 12.66 -3.34 - - 16.5 19.0 16.07 -2.93 - 15.00 MCS1 13.5 16.0 97.3 0.12 ×1.03 13.5 13.40 -2.60 - - 13.5 12.66 -3.34 - - 16.5 19.0 16.06 -2.94 -			MCS0										1				×1.39					tune-up
5500 MCS8 13.5 16.0 99.3 0.03 ×1.01 13.5 13.83 -2.17 ×1.65 - 13.5 12.74 -3.26 ×2.12 - 16.5 19.0 16.33 -2.67 - 5500 MCS9 13.5 16.0 97.9 0.09 ×1.02 13.5 13.47 -2.53 - - 13.5 12.64 -3.36 - - 16.5 19.0 16.09 -2.91 - 15.00 MCS1 13.5 16.0 97.9 0.09 ×1.02 13.5 13.43 - - 13.5 12.66 -3.34 - - 16.5 19.0 16.07 -2.93 - 15.00 MCS1 13.5 16.0 97.3 0.12 ×1.03 13.5 13.40 -2.60 - - 13.5 12.66 -3.34 - - 16.5 19.0 16.06 -2.94 -		5795	MCS0	11.0	13	5 993	0.03	×1.01	13.5	11.94	-1.56	×1.43		13.5	12.21	-1.29	×1.35	Tested				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		_										 						165 100	16.22	277	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				13.5	16.0						-2.1/	×1.65	<u> </u>				×2.12	-		10.55	-2.6/	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5500	MCS9	13.5	16.0	98.6	0.06	$\times 1.01$	13.5	13.47	-2.53		- "	13.5	12.64	-3.36	-		16.5 19.0	16.09	-2.91	-
11n 5500 MCSI 13.5 16.0 97.3 0.12 ×1.03 13.5 13.40 -2.60 - - 13.5 12.66 -3.34 - - 16.5 19.0 16.06 -2.94 - 2.94 - 2.95 13.5 12.5 13.5 16.0 96.1 0.17 ×1.04 13.5 13.35 -2.65 - - 13.5 12.55 -3.45 - - 16.5 19.0 15.98 -3.02 - 15.0 12.5 12.5 13.5 12.5 12.5 13.5 12.5 13.5 12.5 13.5 12.5 13.5 12.5 13.5 12.5 13.											_2 57	·····	l				·····			1607	_2 03	
20HT] 5300 McSil 13.5 16.0 97.5 0.12 ×1.05 13.5 13.40 -2.00 13.5 12.06 -3.54 16.5 19.0 16.06 -2.94 (2Tx) 5500 McSil 12.5 15.0 94.9 0.23 ×1.05 12.5 12.71 -2.29 12.5 11.64 -3.36 15.5 18.0 15.22 -2.78 - 5500 McSil 10.5 13.0 94.7 0.24 ×1.06 10.5 10.28 -2.72 10.5 9.82 -3.18 13.5 16.0 13.07 -2.93 - 5500 McSil 8.5 11.0 94.0 0.27 ×1.06 8.5 8.53 -2.47 8.5 7.81 -3.19 11.5 14.0 11.20 -2.80 -	11n										3.07	ļ	ļ				ļ			16.07	2.75	<u>-</u>
			MCS11					1×1.03			-2.60	<u> </u>						-		10.06	-2.94	-
		5500	MCS12	13.5	160) 96.1	0.17	×1.04	13.5	13.35	-2.65	-	-	13.5	12.55	-3.45	-	-	16.5 19.0	15.98	-3.02	-
	(Z1X)									12.71	-2.20	1	l	12.5			†			15 22	_2 70	
											1 -2.23	ļ	· · · · · · · · · · · · · · · · · · ·				ļ <u>.</u>			12.65	2.70	
											-2.72	<u> </u>	-				-	-		13.07	-2.93	-
		5500	MCS15	8.5	1110) 94.0	0.27	$\times 1.06$	8.5	8.53	-2.47	-	l -	8.5	7.81	-3.19	-	-	11.5 14.0	11.20	-2.80	-
							,						•						,			

(cont'd)

^{*.} SAR test was applied. *. xx.xx highlight is shown the maximum measured output power.

^{*1.} $\overline{\text{(KDB248227 D01 (v02r02))}}$ The reported SAR of the highest measured maximum output power channel for the exposure configuration is \leq 0.8 W/kg. *. Date measured February 3 and 4, 2016 / measured by: H. Naka (21 \pm 2 deg C / 50 \pm 5 %RH, at preparation room of S/R#7)

Test report No. : 11143373S-A Page : 14 of 114 Issued date : April 25, 2016

FCC ID : W2Z-01000008

(cont'd) 6.1.2 5GHz band (cont'd)

		Data	Power s	pec.	D	uty cyc	ele	Α	Antenna #	#0 (chain	1#0) pow	er		Antenna	#1 (chair	1#1) pow	er	MIM	O Ant.#()+Ant.#1	power	
Mode	Freq.	rate	Typical N		duty	factor	scaled	Set	Ave.	Δ	Tune-up	SAR	Set	Ave.	Δ	Tune-up	SAR	MIMO	MIMO	SUM	Δ	Power
111040					cycle		factor	pwr.		Max.	factor	Tested?	pwr.		Max.	factor	Tested?	target	max.	Ave.	Max.	Tune
	_	[Mbps]	[dBm] [d	_	[%]	[dB]	[-]	[dBm]	[dBm]	[dB]	[-]		[dBm]	[dBm]	[dB]	[-]		[dBm]	[dBm]	[dBm]	[dB]	-up?
	5180	MCS8	11.0 1		99.3	0.03	×1.01	13.5	11.84	-1.66	×1.47		13.5	12.42	-1.08	×1.28		14.0	16.5	15.15	-1.35	tune-up
	5220	MCS8	11.0 1		99.3	0.03	×1.01	13.5	12.32	-1.18	×1.31		13.5	12.43	-1.07	×1.28		14.0		15.39		tune-up
	5240	MCS8	11.0 1		99.3	0.03	×1.01	13.5	12.43	-1.07	×1.28	no (*1)	13.5	12.54	-0.96	×1.25	no(*1)	14.0		15.50	-1.00	tune-up
	5260	MCS8			99.3	0.03	×1.01	13.5	12.54	-0.96	×1.25		13.5	12.68	-0.82	×1.21		14.0	16.5	15.62	-0.88	tune-up
	5300	MCS8			99.3	-0.05	×1.01	13.5	12.81	-0.69	×1.17	no (*1)	13.5	12.63	-0.87	×1.22	no (*1)	14.0	16.5	15.73	-0.77	tune-up
11n	5320	MCS8			99.3		×1.01	13.5	12.92	-0.58	×1.14	-	13.5	12.40	-1.10	×1.29	-	14.0	16.5	15.68	-0.82	tune-up
(20HT)	5500	MCS8	13.5 1		99.3		×1.01	15.0	14.96	-1.04	×1.27		15.0	14.51	-1.49	×1.41		16.5	19.0	17.75	-1.25	tune-up
(2Tx)	5580	MCS8			99.3	0.03	×1.01	15.0	15.00	-1.00	×1.26		15.0	14.69	-1.31	×1.35		16.5	19.0	17.86	-1.14	tune-up
	5600	MCS8			99.3	0.03	×1.01	15.0	15.03	-0.97	×1.25	no (*1)	15.0	14.72	-1.28	×1.34	no (*1)	16.5		17.89	-1.11	tune-up
	5700	MCS8			99.3	0.00	×1.01	15.0	14.77	-1.23	×1.33	-	15.0	14.54	-1.46	×1.40	-	16.5		17.67	-1.33	tune-up
	5745	MCS8			99.3		×1.01	16.0	14.89	-1.11	×1.29		16.0	14.82	-1.18	×1.31		16.5	19.0	17.87	-1.13	tune-up
	5785 5825	MCS8			99.3 99.3		×1.01	16.0	14.85	-1.15	×1.30	- (4.1)	16.0	15.13	-0.87	×1.22		16.5		18.00	-1.00	tune-up
-		MCS8	-0.0	. 0.0	//.0	0.03	×1.01	16.0	14.83	-1.17	×1.31	no (*1)	16.0	15.18	-0.82	×1.21	no (*1)	16.5	19.0	18.02	-0.98	tune-up
	5510	MCS8			98.7	0.06	×1.01	11.0	10.88	-2.62	×1.83		11.0	10.69	-2.81	×1.91		14.0	16.5	13.80	-2.70	-
	5510	MCS9			98.0	0.09	×1.02	11.0	10.84	-2.66		-	11.0	10.56	-2.94	-	-	14.0	16.5	13.71	-2.79	-
	5510	MCS10			96.8	0.14	×1.03	11.0	10.80	-2.70		-	11.0	10.22	-3.28	-	-	14.0	16.5	13.53	-2.97	-
	5510	MCS11			95.4	0.20	×1.05	11.0	10.83	-2.67		-	11.0	10.11	-3.39	-	-	14.0	16.5	13.50	-3.00	-
		MCS12			93.6	0.29	×1.07	11.0	10.79	-2.71		-	11.0	10.22	-3.28	-	-	14.0	16.5	13.52	-2.98	-
		MCS13			92.8	0.32	×1.08	11.0	10.63	-2.87		-	11.0	10.14	-3.36	-	-	14.0	16.5	13.40	-3.10	-
11n		MCS14			91.8		×1.09	10.0	9.67	-2.83	ļ <u>-</u>	-	10.0	9.55	-2.95			13.0	15.5	12.62	-2.88	-
(40HT)		MCS15			91.3		×1.10	8.0	7.99	-2.51	-1.22	- (#1)	8.0	7.36	-3.14	- 1.22	- (+1)	11.0	13.5	10.70	-2.80	-
(2Tx)	5230	MCS8			98.7		×1.01	13.5	12.29	-1.21	×1.32	no (*1)	13.5	12.30	-1.20	×1.32	no (*1)	14.0	16.5	15.30	-1.20	tune-up
	5270	MCS8			98.7		×1.01	13.5	12.17	-1.33	×1.36	no (*1)	13.5	12.39	-1.11	×1.29	no (*1)	14.0	16.5	15.29	-1.21	tune-up
	5510	MCS8			98.7	0.06	×1.01	12.5	12.76	-0.74	×1.19	no (*1)	12.5	11.72	-1.78	×1.51	no (*1)	14.0	16.5	15.28	-1.22	tune-up
	5550	MCS8			98.7	0.06	×1.01	12.5	12.45	-1.05	×1.27		12.5	11.85	-1.65	×1.46		14.0	16.5	15.17	-1.33	tune-up
	5590	MCS8			98.7		×1.01	12.5	12.51	-0.99	×1.26		12.5	11.81	-1.69	×1.48		14.0	16.5	15.18	-1.32	tune-up
	5670	MCS8			98.7		×1.01	12.5	12.17	-1.33	×1.36	- (4.1)	12.5	12.21	-1.29	×1.35	- (44)	14.0		15.20	-1.30	tune-up
1	5755	MCS8			98.7		×1.01	13.5	12.45	-1.05	×1.27	no (*1)	13.5	12.36	-1.14	×1.30	no (*1)	14.0	16.5	15.42	-1.08	tune-up
	5795	MCS8	11.0 1	13.5	98.7	0.06	$\times 1.01$	13.5	11.93	-1.57	×1.44	-	13.5	12.12	-1.38	×1.37	-	14.0	16.5	15.04	-1.46	tune-up

- *. SAR test was applied. *. xx.xx highlight is shown the maximum measured output power.
- *1. (KDB447498 D01 (v06)) Since SPLSR (SAR to peak location separation ratio) was enough smaller than 0.04, SAR test of MIMO mode was reduced.
- *. Date measured February 3 and 4, 2016 / measured by: H. Naka (21 ± 2 deg.C/50 ± 5 %RH, at preparation room of S/R#7)

(Common definition)

- *. Freq.: Frequency, Max.: Maximum, Power spec.: Power specification, Set pwr: Setting power for the measurement, Ave.: Average
- *. Calculating formula: Average power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)+(duty factor, dB)

Duty cycle: (duty cycle, %) = (Tx on time, ms) / (1 cycle time, ms) × 100; Duty factor: (duty factor, dBm) = $10 \times \log (100/(duty cycle, %))$ Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %) Δ Max. (Deviation form maximum power, dB) = (results power (average, dBm)) - (Max.-specification output power (average, dBm)) Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = $1/(10/(*Deviation from max., dB)^*/10)$)

- *. Date measured: February 3 and 4, 2016 / Measured by: Hiroshi Naka / Place: preparation room of No. 7 shielded room. (21 ±1 deg.C./45 ±10 %RH)
- *. Uncertainty of antenna port conducted test; Power measurement uncertainty above 1 GHz for this test was: $(\pm) 0.76 \text{ dB}$.
- *. Uncertainty of antenna port conducted test; Duty cycle and time measurement: (±) 0.012 %.

Test report No. : 11143373S-A Page : 15 of 114 Issued date : April 25, 2016

FCC ID : W2Z-01000008

SECTION 7: SAR Measurement results

Measurement date: February 10, 12, 15, 16, 23 and 24, 2016 Measurement by: Hiroshi Naka

7.1 Liquid measurement

TD 4					L	iquid par	ameters (*	a)				ΔSAR Co	efficients(*c)	
Target	Liquid		Permittivi	ty (εr) [-]			Conducti	vity [S/m]		т	D 4	ACAD	a .	D-4
Frequency [MHz]	type	Toward	Meas	sured	Limit	Toward	Mea	sured	Limit	Temp. [deg.C.]	Depth [mm]	ASAR	Correction required?	Date measured
		Target	Meas.	Δεr [%]	(*b)	Target	Meas.	Δσ [%]	(*b)	[ueg.C.]	[IIIIII]	(1g) [%]	requireu:	
5500		48.61	47.05	-3.2		5.650	5.844	+3.4				+0.49	not required.	
5550		48.54	46.98	-3.2		5.708	5.934	+4.0				+0.47	not required.	
5580		48.50	46.96	-3.2		5.743	5.954	+3.7				+0.47	not required.	
5600		48.47	46.92	-3.2		5.766	6.010	+4.2				+0.45	not required.	February 10, 2016
5700	Body	48.34	46.78	-3.2		5.883	6.108	+3.8		22.9	146	+0.47	not required.	before SAR test
5745		48.27	46.87	-2.9	-5%≤	5.936	6.199	+4.4	0%≤			+0.38	not required.	belove 57 are test
5785		48.22	46.64	-3.3	ET-meas.	5.982	6.265	+4.7	σ-meas.			+0.44	not required.	
5795		48.21	46.60	-3.3	≤0%	5.994	6.241	+4.1	≤+5%			+0.48	not required.	
5825		48.17	46.71	-3.0		6.029	6.283	+4.2				+0.41	not required.	
5260		48.93	47.51	-2.9		5.369	5.552	+3.4				+0.48	not required.	
5270	Body	48.92	47.51	-2.9		5.381	5.564	+3.4		22.9	146	+0.48	not required.	February 12, 2016
5300	Dody	48.88	47.43	-3.0		5.416	5.589	+3.2		22.7	140	+0.49	not required.	before SAR test
5320		48.85	47.40	-3.0		5.439	5.609	+3.1				+0.49	not required.	
5500		35.64	35.20	-1.2		4.963	4.804	-3.2				+0.38	not required.	
5580		35.55	35.05	-1.4		5.045	4.861	-3.6				+0.44	not required.	
5600		35.53	34.99	-1.5		5.065	4.915	-3.0				+0.44	not required.	February 15, 2016
5700	Head	35.41	34.91	-1.4	-5%≤	5.168	5.017	-2.9	-5%≤	22.9	149	+0.41	not required.	before SAR test
5745		35.36	34.90	-1.3	ET-meas.	5.214	5.054	-3.1	σ-meas.			+0.40	not required.	
5785		35.32	34.83	-1.4	≤0%	5.255	5.074	-3.4	≤+5%			+0.43	not required.	
5825		35.27	34.82	-1.3		5.296	5.160	-2.6				+0.37	not required.	
5260		35.92	35.51	-1.1		4.717	4.549	-3.6				+0.33	not required.	February 16, 2016
5300	Head	35.87	35.42	-1.3		4.758	4.595	-3.4		22.9	149	+0.37	not required.	before SAR test
5320		35.85	35.43	-1.2		4.778	4.622	-3.3				+0.34	not required.	
2412		39.27	38.13	-2.9		1.766	1.808	+2.4				+1.82	not required.	
2417		39.26	38.10	-3.0	-5%≤	1.771	1.817	+2.6	0%≤			+1.95	not required.	February 23, 2016
2427	Head	39.24	38.08	-3.0	ET-meas.	1.780	1.834	+3.1	σ-meas.	23.8	151	+2.16	not required.	before SAR test
2437		39.22	38.01	-3.1	≤0%	1.788	1.843	+3.1	≤+5%			+2.18	not required.	
2462		39.18	37.96	-3.1		1.813	1.877	+3.5				+2.39	not required.	
2412		52.75	50.76	-3.8		1.914	1.961	+2.5	1			+2.05	not required.	
2417		52.74	50.80	-3.7	-5%≤	1.918	1.973	+2.9	0%≤	22.5	1.50	+2.22	not required.	February 24, 2016
2427	Body	52.73	50.73	-3.8	ET-meas.	1.928	1.995	+3.5	σ-meas.	22.5	153	+2.54	not required.	before SAR test
2437		52.72	50.66	-3.9	≤0%	1.938	2.001	+3.3	≤+5%			+2.45	not required.	
2462		52.68	50.59	-4.0		1.967	2.031	+3.3				+2.45	not required.	

^{*}a. The target value is a parameter defined in Appendix A of KDB865664 D01 (v01r04), the dielectric parameters suggested for head and body tissue simulating liquid are given at 2000, 2450, 3000 and 5800MHz. (*The parameters of the head liquid are the same value as IEC 62209-2.) Parameters for the frequencies between 2000, 2000, 5000MHz upon obtained using linear extrapolation.

^{2000-3000, 3000-5800}MHz were obtained using linear interpolation. Above 5800MHz were obtained using linear extrapolation.

*b. Refer to KDB865664 D01 (v01r04), item 4), Clause 2.6; "When nominal tissue dielectric parameters are recorded in the probe calibration data; for example, only target values and tolerance are reported, the measured ar and σ of the liquid used in routine measurements must be: ≤ the target ar and ≥ the target σ values and also within 5% of the required target dielectric parameters."

^{*}c. Calculating formula: $\Delta SAR(1g) = Car \times \Delta ar + C\sigma \times \Delta \sigma, Car = 7.854E + 4xf^3 + 9.402E - 3xf^2 - 2.742E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.7829 = 7.854E + 2xf^3 + 9.402E - 3xf^2 - 2.742E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.7829 = 7.854E + 2xf^3 + 9.402E - 3xf^2 - 2.742E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 3xf^3 - 8.661E - 2xf^2 + 2.981E - 2x + F0.2026 / C\sigma = 9.804E - 2x + F0.2026$

Test report No. : 11143373S-A Page : 16 of 114 Issued date : April 25, 2016

FCC ID : W2Z-01000008

7.2 SAR measurement results (Body)

[Measured and Reported (Scaled) SAR results]

			S	AR meas	urem	ent re	esults					F	Reporte	d SAR	[W/kg]		
	Freg.	Data	E	UT setup	(*1)		SA	R [W/kş	g	SAR		cycle		put av		SAR	
Mode	[MHz]	Data rate	Antenna		Gap	Rív	Max. val	ue of mu	lti-peak	plot#in	corr	ection	pow	er corr	ection	Corrected	
	(Channel)	[Mbps]	*.SAR measured.	Position	[mm]	ID	Meas.	ΔSAR	ΔSAR	Appendix 2-2	Duty	Duty	Meas.		Tune-up	(Scaled)	Remarks
Ct. 1	A ACIL D							[%]	corrected		[%]	scaled	[dBm].	[dBm]	factor	(*b)	
Step 1:	2.4GHz B: 2417(2)	ana (Bo	ant#0	E	0	#2	not detected	+2.22	n/a (*a)	Plot 1-3	99.8	×1.00	18.57	19.5	×1.25	n/a	ı
11g	2417(2)	6	ant#1	Front (Patient)	0	#2	not detected	+2.22	n/a (*a)	Plot 1-4	99.8	×1.00	17.63	19.5	×1.54	n/a	-
	2417(2)		anuri	(Futient)	0	#3	0.021	+2.22	n/a (*a)	Plot 1-2	99.8	×1.00	18.57	19.5	×1.25	0.026	ant#0-worst_body,2.4GHz
11g	2437(6)	6			0	#3	0.00777	+2.45	n/a (*a)	Plot 1-5	99.8	×1.00	17.09	18.0	×1.38	0.011	unino worst,oody,z. roriz
8	2462(11)		ant#0	Side	0	#3	0.00242	+2.45	n/a (*a)	Plot 1-6	99.8	×1.00	16.08	17.5	×1.39	0.003	-
11b	2412(1)	1		-an#0	0	#3	0.011	+2.05	n/a (*a)	Plot 1-7	99.8	×1.00	14.99	16.0	×1.26	0.014	-
n40HT	2427(4)	MCS0			0	#3	0.0064	+2.54	n/a (*a)	Plot 1-8	99.3	×1.01	14.19	16.0	×1.52	0.010	-
	2417(2)				0	#2	0.025	+2.22	n/a (*a)	Plot 1-1	99.8	×1.00	17.63	19.5	×1.54	0.039	ant#1-worst,body,2.4GHz
11g	2437(6)	6			0	#2	0.018	+2.45	n/a (*a)	Plot 1-9	99.8	×1.00	17.25	18.0	×1.33	0.023	-
	2462(11)		ant#1	Bottom	0	#2	0.00914	+2.45	n/a (*a)	Plot 1-10	99.8	×1.00	15.87	17.5	×1.46	0.013	-
11b	2412(1)	1			0	#2	0.014	+2.05	n/a (*a)	Plot 1-11	99.8	×1.00	15.20	16.0	×1.20	0.017	-
n40HT	2427(4)	MCS0			0	#2	0.00845	+2.54	n/a (*a)	Plot 1-12	99.3	×1.01	14.34	16.0	×1.47	0.013	-
Step 2:	5GHz Ban	d (Bod	y)	ı			ı		1								
	5300(60)				0	#2	not detected	+0.49	n/a (*a)	Plot 2-3	99.7	×1.00	13.88	15.0	×1.29	n/a	-
	5580(118)		ant#0		0	#2	not detected	+0.47	n/a (*a)	Plot 2-4	99.7	×1.00	16.38	17.5	×1.29	n/a	-
11a	5825(165)	6		Front	0	#2	not detected	+0.41	n/a (*a)	Plot 2-5	99.7	×1.00	16.05	17.5	×1.40	n/a	-
	5300(60)			(Patient)	0	#2	not detected	+0.49	n/a (*a)	Plot 2-6	99.7	×1.00	13.56	15.0	×1.39	n/a	-
	5580(116)		ant#1		0	#2	not detected	+0.47	n/a (*a)	Plot 2-7	99.7	×1.00	16.14		×1.37	n/a	-
	5825(165) 5260(52)				0	#2	not detected 0.056	+0.41	n/a (*a) n/a (*a)	Plot 2-8 Plot 2-9	99.7 99.7	×1.00	16.39 13.67	17.5 15.0	×1.29 ×1.36	n/a <mark>0.077</mark>	ant#0-worst,body,w53
	5300(60)				0	#3	0.050	+0.49	n/a (*a)	Plot 2-10	99.7	×1.00	13.94		×1.30	0.065	ani#0-woisi,body,w55
	5320(64)				0	#3	0.031	+0.49	n/a (*a)	Plot 2-11	99.7	×1.00	13.88	15.0	×1.29	0.059	-
	5500(100)				0	#2	0.043	+0.49	n/a (*a)	Plot 2-12	99.7	×1.00	15.99	17.5	×1.42	0.115	
	5580(116)			Side	0	#2	0.086	+0.47	n/a (*a)	Plot 2-13	99.7	×1.00	16.39	17.5	×1.29	0.111	
11a	5600(120)	6	ant#0	-an#0	0	#2	0.107	+0.45	n/a (*a)	Plot 2-14	99.7	×1.00	16.38	17.5	×1.29	0.138	ant#0-worst,body,w56
	5700(140)				0	#3	0.064	+0.47	n/a (*a)	Plot 2-15	99.7	×1.00	15.95	17.5	×1.43	0.092	-
	5745(149)				0	#2	0.075	+0.38	n/a (*a)	Plot 2-16	99.7	×1.00	15.95	17.5	×1.43	0.108	-
	5785(157)				0	#2	0.153	+0.44	n/a (*a)	Plot 2-2	99.7	×1.00	15.93	17.5	×1.44	0.220	ant#0-worst,body,w58
	5825(165)				0	#2	0.135	+0.41	n/a (*a)	Plot 2-17	99.7	×1.00	16.05	17.5	×1.40	0.189	
	5260(52)				0	#3	0.037	+0.48	n/a (*a)	Plot 2-18	99.7	×1.00	13.55	15.0	×1.40	0.051	-
	5300(60)				0	#3	0.043	+0.49	n/a (*a)	Plot 2-19	99.7	×1.00	13.56	15.0	×1.39	0.059	ant#1-worst,body,w53
	5320(64)				0	#3	0.043	+0.49	n/a (*a)	Plot 2-20	99.7	×1.00	13.84		×1.31	0.057	-
	5500(100)				0	#2	0.150	+0.49	n/a (*a)	Plot 2-21	99.7	×1.00	16.18	17.5	×1.36	0.204	ant#1-worst,body,w56
11a	5580(116)	6			0	#2	0.105	+0.47	n/a (*a)	Plot 2-22	99.7	×1.00	16.14		×1.37	0.144	-
	5600(120)			D. 41	0	#2	0.083	+0.45	n/a (*a)	Plot 2-23	99.7	×1.00	16.13	17.5	×1.37	0.114	-
	5700(140)		ant#1	Bottom	0	#2	0.054	+0.47	n/a (*a)	Plot 2-24	99.7	×1.00	15.80	17.5	×1.48	0.081	-
	5745(149)				0	#3	0.066	+0.38	n/a (*a)	Plot 2-25	99.7	×1.00	15.91	17.5 17.5	×1.44	0.095 0.173	-
	5785(157)				0	#3	0.122 0.219	+0.44	n/a (*a)	Plot 2-26 Plot 2-1	99.7 99.7	×1.00	15.99 16.39	17.5	×1.42 ×1.29	0.173	
	5825(165) 5270(54)				0	#2	0.219	+0.41	n/a (*a) n/a (*a)	Plot 2-1 Plot 2-27	99.7	×1.00	12.16		×1.29	0.283	ant#1-worst,body,w58
п40НТ	5550(110)	MCSO			0	#3	0.039	+0.48	n/a (*a)	Plot 2-27	99.3	×1.01	12.10	13.5	×1.34	0.041	
1140111	5795(159)	IVICSU			0	#2	0.039	+0.47	n/a (*a)	Plot 2-29	99.3	×1.01	12.22	13.5	×1.34	0.053	
Щ	2173(139)			l	U	#4	0.040	10.40	ma (a)	r 10t 2-29	7J.J	^1.U1	14,41	13.3	^1.33	0.002	Г

^{*1.} Since this EUT is the medical device, the EUT is only used under the guidance of a doctor or a qualified person. The possibility of the maximum RF human exposure is only a body/head of the patient who comes in contact directly on the front surface (patient side) of the EUT. Therefore, the SAR test was only considered to the front surface of the EUT. However, SAR value couldn't be measured at the front surface, so SAR was evaluated on the side edge.

Notes: *. Gap: It is the separation distance between the platform outer surface and the bottom outer surface of phantom; Freq.: Frequency; Bty.ID: Battery ID (Battery #2 and #3 were same model. Refer to Appendix 1 for more detail); Max.: Maximum, Meas.: Measured value; n/a: not applied.

*. Calibration frequency of the SAR measurement probe (and used conversion factors)

	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
	2412, 2417, 2427, 2437, 2462 MHz	2450 MHz	within ±50MHz of calibration frequency	7.17	±12.0%
Ì	5260, 5270, 5300, 5320 MHz	5250 MHz	within ±110 MHz of calibration frequency	4.53	±13.1 %
	5500, 5550, 5580, 5600, 5700 MHz	5600 MHz	within ±110 MHz of calibration frequency	3.78	±13.1 %
Ì	5745, 5785, 5795, 5825 MHz	5750 MHz	within ±110 MHz of calibration frequency	4.06	±13.1 %

^{*.} The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %) Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor $[-] = 1/(10^{(*)})$ ("Deviation from max., dB" / 10))

^{*}a. Since the calculated Δ SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by Δ SAR correction.

 $[\]begin{array}{ll} \text{Calculating formula:} & \Delta SAR \text{ corrected SAR (W/kg)} = (Meas. SAR (W/kg)) \times (100 - (\Delta SAR(\%)) / 100 \\ \text{*b. Calculating formula:} & \text{Reported SAR (W/kg)} = (Measured SAR (W/kg)) \times (Duty \text{ scaled}) \times (Tune-up \text{ factor}) \\ \end{array}$

Test report No. : 11143373S-A Page : 17 of 114 Issued date : April 25, 2016

FCC ID : W2Z-01000008

7.3 SAR measurement results (Head)

[Measured and Reported (Scaled) SAR results]

		SAR measurement results										F	Reporte	d SAR	[W/kg]		
	Freg.	Data	E	UT setup	(*1)			R [W/k		SAR		cycle		tput ave		SAR	
Mode	[MHz]	rate	Antenna		Gap	Bty.	Max. val	ue of mu	lti-peak	plot#in	corr	ection	pow	er corr	ection	Corrected	
Mode	(Channel)	[Mbpc]	*.SAR measured.	Position	[mm]	ID	Meas.	ΔSAR	ΔSAR	Appendix 2-2	Duty	Duty	Meas.	Max.	Tune-up	(Scaled)	Remarks
	,				. ,		11101131	[%]	corrected	2-2	[%]	scaled	[dBm].	[dBm]	factor	(*b)	Temares
Step 3:	2.4GHz Ba	and (He		1						1						,	
11g	2417(2)	6	ant#0	Front	0	#3	not detected	+1.95	n/a (*a)	Plot 3-3	99.8	×1.00	18.57	19.5	×1.25	n/a	-
	2417(2)		ant#1	(Patient)	0	#3	not detected	+1.95	n/a (*a)	Plot 3-4	99.8	×1.00	17.63		×1.54	n/a	-
	2417(2)				0	#2	0.026	+1.95	n/a (*a)	<u>Plot 3-2</u>	99.8	×1.00	18.57	19.5	×1.25	0.033	ant#0-worst,head,2.4GHz
11g	2437(6)	6		Side	0	#2	0.010	+2.18	n/a (*a)	Plot 3-5	99.8	×1.00	17.09	18.0	×1.38	0.014	-
	2462(11)		ant#0	-an#0	0	#2	0.00267	+2.39	n/a (*a)	Plot 3-6	99.8	×1.00	16.08	17.5	×1.39	0.004	-
11b	2412(1)	1			0	#2	0.012	+1.82	n/a (*a)	Plot 3-7	99.8	×1.00	14.99	16.0	×1.26	0.015	-
n40HT	2427(4)	MCS0			0	#2	0.00653	+2.16	n/a (*a)	Plot 3-8	99.3	×1.01	14.19	16.0	×1.52	0.010	-
	2417(2)				0	#3	0.031	+1.95	n/a (*a)	<u>Plot 3-1</u>	99.8	×1.00	17.63	19.5	×1.54	0.047	ant#1-worst,head,2.4GHz
11g	2437(6)	6			0	#3	0.021	+2.18	n/a (*a)	Plot 3-9	99.8	×1.00	17.25	18.0	×1.33	0.028	-
	2462(11)		ant#1	Bottom	0	#3	0.012	+2.39	n/a (*a)	Plot 3-10	99.8	×1.00	15.87	17.5	×1.46	0.017	-
11b	2412(1)	1			0	#3	0.017	+1.82	n/a (*a)	Plot 3-11	99.8	×1.00	15.20	16.0	×1.20	0.021	-
n40HT	2427(4)	MCS0			0	#3	0.010	+2.16	n/a (*a)	Plot 3-12	99.3	×1.01	14.34	16.0	×1.47	0.015	-
Step bo	dy-4: 5GH	z Band	l (Head)	•		,					•						
	5300(60)				0	#2	not detected	+0.37	n/a (*a)	Plot 4-3	99.7	×1.00	13.88		×1.29	n/a	-
	5580(118)		ant#0		0	#2	not detected	+0.44	n/a (*a)	Plot 4-4	99.7	×1.00	16.38	17.5	×1.29	n/a	-
11a	5825(165)	6		Front	0	#2	not detected	+0.37	n/a (*a)	Plot 4-5	99.7	×1.00	16.05	17.5	×1.40	n/a	-
114	5300(60)			(Patient)	0	#2	not detected	+0.37	n/a (*a)	Plot 4-6	99.7	×1.00	13.56		×1.39	n/a	-
	5580(116)		ant#1		0	#2	not detected	+0.44	n/a (*a)	Plot 4-7	99.7	×1.00	16.14		×1.37	n/a	-
	5825(165)				0	#2	not detected	+0.37	n/a (*a)	Plot 4-8	99.7	×1.00	16.39	17.5	×1.29	n/a	-
	5260(52)				0	#2	0.063	+0.33	n/a (*a)	Plot 4-9	99.7	×1.00	13.67	15.0	×1.36	0.085	ant#0-worst,head,w53
	5300(60)				0	#2	0.061	+0.37	n/a (*a)	Plot 4-10	99.7	×1.00	13.94	15.0	×1.28	0.078	-
	5320(64)				0	#2	0.058	+0.34	n/a (*a)	Plot 4-11	99.7	×1.00	13.88	15.0	×1.29	0.075	-
	5500(100)				0	#2	0.093	+0.38	n/a (*a)	Plot 4-12	99.7	×1.00	15.99	17.5	×1.42	0.131	-
11a	5580(116)	6	ant#0	Side	0	#2	0.099	+0.44	n/a (*a)	Plot 4-13	99.7	×1.00	16.39	17.5	×1.29	0.128	-
114	5600(120)			-an#0	0	#2	0.124	+0.44	n/a (*a)	Plot 4-14	99.7	×1.00	16.38		×1.29	0.160	ant#0-worst,head,w56
	5700(140)				0	#2	0.076	+0.41	n/a (*a)	Plot 4-15	99.7	×1.00	15.95	17.5	×1.43	0.108	-
	5745(149)				0	#3	0.085	+0.40	n/a (*a)	Plot 4-16	99.7	×1.00	15.95		×1.43	0.122	=
	5785(157)				0	#3	0.167	+0.43	n/a (*a)	<u>Plot 4-2</u>	99.7	×1.00	15.93	17.5	×1.44	0.240	ant#0-worst,head,w58
	5825(165)				0	#3	0.152	+0.37	n/a (*a)	Plot 4-17	99.7	×1.00	16.05	17.5	×1.40	0.213	-
	5260(52)				0	#3	0.038	+0.33	n/a (*a)	Plot 4-18	99.7	×1.00	13.55	15.0	×1.40	0.054	-
	5300(60)				0	#3	0.048	+0.37	n/a (*a)	Plot 4-19	99.7	×1.00	13.56		×1.39	0.067	ant#1-worst,head,w53
	5320(64)				0	#3	0.046	+0.34	n/a (*a)	Plot 4-20	99.7	×1.00	13.84		×1.31	0.060	-
	5500(100)				0	#2	0.150	+0.38	n/a (*a)	Plot 4-21	99.7	×1.00	16.18		×1.36	0.204	ant#1-worst,head,w56
11a	5580(116)	6	ant#1	Bottom	0	#2	0.107	+0.44	n/a (*a)	Plot 4-22	99.7	×1.00	16.14		×1.37	0.147	-
	5600(120)			2000111	0	#2	0.088	+0.44	n/a (*a)	Plot 4-23	99.7	×1.00	16.13	17.5	×1.37	0.120	-
	5700(140)				0	#2	0.054	+0.41	n/a (*a)	Plot 4-24	99.7	×1.00	15.80	17.5	×1.48	0.081	-
	5745(149)				0	#2	0.070	+0.40	n/a (*a)	Plot 4-25	99.7	×1.00	15.91	17.5	×1.44	0.101	-
	5785(157)				0	#2	0.128	+0.43	n/a (*a)	Plot 4-26	99.7	×1.00	15.99	17.5	×1.42	0.182	-
	5825(165)				0	#2	0.234	+0.37	n/a (*a)	<u>Plot 4-1</u>	99.7	×1.00	16.39	17.5	×1.29	0.302	ant#1-worst,head,w58
															-		marinum DE

^{*1.} Since this EUT is the medical device, the EUT is only used under the guidance of a doctor or a qualified person. The possibility of the maximum RF human exposure is only a body/head of the patient who comes in contact directly on the front surface (patient side) of the EUT. Therefore, the SAR test was only considered to the front surface of the EUT. However, SAR value couldn't be measured at the front surface, so SAR was evaluated on the side edge.

Notes: *. Gap: It is the separation distance between the platform outer surface and the bottom outer surface of phantom; Freq.: Frequency; Bty.ID: Battery ID (Battery #2 and #3 were same model. Refer to Appendix 1 for more detail); Max.: Maximum, Meas.: Measured value; n/a: not applied.

*. Calibration frequency of the SAR measurement probe (and used conversion factors)

SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
2412, 2417, 2427, 2437, 2462 MHz	2450 MHz	within ±50MHz of calibration frequency	7	±12.0%
5260, 5300, 5320 MHz	5250 MHz	within ±110 MHz of calibration frequency	5.04	±13.1 %
5500, 5580, 5600, 5700 MHz	5600 MHz	within ±110 MHz of calibration frequency	4.61	±13.1 %
5745, 5785, 5825 MHz	5750 MHz	within ±110 MHz of calibration frequency	4.66	±13.1 %

^{*.} The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %) Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = $1/(10 \land (\text{`Deviation from max., dB''}/10))$

 ^{*}a. Since the calculated ΔSAR values of the tested liquid had shown positive correction, the measured SAR was not converted by ΔSAR correction.
 Calculating formula: ΔSAR corrected SAR (W/kg) = (Meas. SAR (W/kg)) × (100 - (ΔSAR(%)) / 100

^{*}b. Calculating formula: Reported SAR (W/kg) = (Measured SAR (W/kg)) × (Duty scaled) × (Tune-up factor)