

Review Problem Solving Agent Knowledge Based Agent Learning Agent Supervised Learning Unsupervised Learning Reinforcement Learning

Unsupervised Learning

- Clustering
- Input: training set (data)
- Output: cluster → centroid, threshold
- Usage: using centroid to group data
- Process: calculate similarity of data

MLK/IF-ITB/2010

3

K-Means

- mempartisi koleksi vektor {x_i} ke dalam set cluster {C_i}. Algoritma ini membutuhkan k cluster seeds atau nilai random untuk inisialisasi.
- K-Means populer karena sederhana dan efisien (kompleksitas setiap iterasi O(kn) perbandingan, dan jumlah iterasi cukup kecil).

MLK/IF-ITB/2010

K-Means Algorithm

```
Inisialisasi: k seeds sebagai centroid dari k clusters Setiap vektor lain di-assign ke cluster dengan seed terdekat Iterasi: M_i \leftarrow \mid C_i \mid^{-1} \sum_{x \in C_i} x \quad \{\text{perhitungan centroid } \mathbf{M_i} \text{ dari cluster} \} Setiap vektor di-reassign lagi ke cluster dengan centroid terdekat Stop: convergence \{\text{tidak terjadi perubahan lagi }\}
```

MLK/IF-ITB/2010

5

K-Means (2)

Masalah utama K-Means adalah sensitif terhadap pemilihan seed inisialisasi sehingga hasilnya tidak optimal.

MLK/IF-ITB/2010

Abstraksi data

- Abstraksi data: memberi label yang bermakna pada cluster.
- Label yang baik akan singkat dan membedakan dengan tepat satu cluster dengan yang lain.

MLK/IF-ITB/2010

_

Evaluasi

- Purity(C_i)=max_i| $L_i \cap C_i$ |/| C_i |
 - $\Box \{L_1,..,L_n\}$: dokumen berlabel
 - \square {C₁,...,C_m}: cluster yang dihasilkan clustering
- utility dari cluster yang dihasilkan untuk aplikasi yang akan menggunakan

MLK/IF-ITB/2010

Latihan

Diberikan data training sebagai berikut:

Data	Pengalaman	Programming	Bahasa Inggris	Buta warna	Menikah
A	Tidak	Ya	Ya	Tidak	Tidak
В	Tidak	Tidak	Ya	Tidak	Ya
С	Ya	Ya	Tidak	Ya	Tidak
D	Tidak	Tidak	Tidak	Ya	Ya
Е	Ya	Tidak	Ya	Ya	Ya
F	Tidak	Ya	Tidak	Ya	Tidak

MLK/IF-ITB/2010

Latihan (2)

- Lakukan proses clustering K-Means dengan jumlah cluster (k) = 3:
 - □ Seed cluster 1: A; Seed cluster 2: B; Seed cluster 3: C
- Gunakanlah jumlah perbedaan sebagai jarak antar data.
 Jika jarak sama, data cenderung dimasukkan ke cluster
 2.
- Centroid diambil sebagai mayoritas nilai atribut pada cluster. Jika tidak ada mayoritas (jumlah Ya = jumlah Tidak), ambil nilai centroid sebelumnya untuk atribut tersebut.
- Kondisi berhenti: pada setiap cluster, jarak terjauh anggota dengan centroid < 2. Jarak terjauh dihitung setelah centroid terbentuk.

MLK/IF-ITB/2010

11

Solusi Latihan

■ 1:A; 2:B,D,E; 3: C,F

Iterasi 1:

A Tidak Ya	Ya	Tidak	Tidak
------------	----	-------	-------

Centroid 1: $\langle T, Y, Y, T, T \rangle$ A: 0 \rightarrow jarak terjauh=0

В	Tidak	Tidak	Ya	Tidak	Ya
D	Tidak	Tidak	Tidak	Ya	Ya
Е	Ya	Tidak	Ya	Ya	Ya

Centroid 2: $\langle T, T, Y, Y, Y \rangle$

B:1, D:1, E:1 \rightarrow jarak terjauh=1

Solusi Latihan (2)

■ 1:A; 2:B,D,E; 3: C,F

Iterasi 1:

C	Ya	Ya	Tidak	Ya	Tidak
F	Tidak	Ya	Tidak	Ya	Tidak

Centroid 3: $\langle Y, Y, T, Y, T \rangle$ C: 0, F: 1 \rightarrow jarak terjauh=1

MLK/IF-ITB/2010