Intro to Machine Learning Lecture #1

Lesson #1

Intro

Real-time, High Performance Platform

Data

- Speed
- Scale
- Diversity

Platform

- Hadoop
- MapReduce
- Spark

Analytics

- Counts
- Queries
- Analysis
- Summaries

Advanced Analytics

- Big Data Mining
- Classification
- Regression
- Rule Mining
- Clustering

What are Big Data Challenges?

Throughout the Big Data Specialization and in the Capstone

tools and platforms sources

Understanding

Transforming Data Into Insight For Making Better Decisions

Data

Insight

Action

Traditional Analytics Approach

Big Data Approach

Paradigm shift

Analytics Maturity Levels

Big Data and Machine Learning

Big Data Applications

- Data's journey from general purpose business application to specific Big Data
- Healthcare, manufacturing, marketing
- What do they all have in common?

Big Data Applications

 Data's j At the core of busines most of Big Data
 Healthc marketi
 What d Learning

ral purpose pecific Big

g,

:ommon?

Lesson #2

Intro to Machine Learning

Data Explosion

"We are drowning in data, but starving

for knowledge!"

(John Naisbitt, 1982)

Extraction or "mining" of interesting knowledge (rules, regularities, patterns, constraints) from data in large databases

Many definitions and descriptions of data

Extraction of implicit, previously unknown, unexpected, potentially extremely useful information from data

Top-Down Methodology Bottom-Up Methodology

Analytical Tools

SQL tools for simple queries and reporting

Statistical & BI tools for summaries and analysis

Data Mining methods for knowledge discovery

What Is Data Mining?

Combination of AI and statistical analysis to discover information that is "hidden" in the data

What can be hidden in data?

Associations

Sequences

Classifications

Forecasting

Anomalies

Grouping/Clusters/Segments

Data Mining is NOT

Data Warehousing Query processing Expert Systems Online Analytical Processing (OLAP) **Generic Statistical Analysis Tool Data visualization Business Intelligence Tools (BI tools) Generic Workflows**

Multidisciplinary Field

Lesson #3

History of Data Mining

History

Emerged late 1980s

Flourished in 1990s

Roots traced back along three family lines

Classical Statistics

Artificial Intelligence

Machine Learning

Statistics

Foundation of most methods

Regression analysis, standard distribution/deviation/variance, cluster analysis, confidence intervals

Building blocks

Artificial Intelligence (AI)

Heuristics vs. Statistics
Human-thought-like processing
Supercomputers

Machine Learning

Union of Statistics and Al

Blends AI heuristics with advanced Statistical Analysis

Terminology

Gold Mining Knowledge extraction Knowledge Discovery Databases (KDD) Information harvesting **Business intelligence Predictive Analytics Data Science**

Lesson #4

TAXONOMY

Predictive Methods

Use some variables to predict some unknown or future values of other variables

Descriptive Methods

Find human –interpretable patterns that describe the data

Supervised vs. Unsupervised

Supervised vs. Unsupervised

Learning in a presence of an expert/teacher

Training data set is labeled with a class value

Goal: Predict a class or value label

No knowledge of the output class/value

Data is NOT labeled

Goal: learn patterns/groupin gs

How Does Machine Learning Work?

Explore Data

Finds Patterns Performs
Predictions

What Form of Insight can Data Mining Discover?

Predictive Modeling

Classification, Regression, Forecasting

Descriptive Modeling

Cluster analysis/segmentation

Discovering Patterns and Rules

Association/Dependency rules Sequential or Temporal sequences

Deviation detection

Many Data Mining Applications

From

Science including Chemistry, Physics, Medicine, Bioscience Pharmaceutical, Insurance, Health care, Personalized Medicine Energy, Sustainability, Smart City

To

Financial Industry, Banks, Businesses, E-commerce Market analysis and management Risk analysis and management

To more recently

Sports and Entertainment

Improve ability to classify and treat cancer, tumors, diseases Adjust credit scores as transactions are occurring to account for risk fluctuations

Apply inferred customer social relationships to prevent churn

Increase revenue and customer satisfaction by discovering passengers who are likely to miss their flight

Hospital Loan officer Call Center Airline

Lesson #5

Add a better picture

Data Mining Tasks

Fraud? Predicted claim value

Classification and Prediction

- Finding models (functions) that describe and distinguish classes or concepts for future prediction
- Example: classify countries based on climate, or classify cars based on gas mileage
- Model representation:
 - If-THEN rules, decision-tree, classification rule, neural network
- Prediction: Predict some unknown or missing numerical values

Data Mining Tasks

Association (correlation and causality)

Multi-dimensional interactions and associations

Example:

age(X, "20-29") ^ income(X, "60-90K") -> buys(X, "TV")

Customer(area code) ^ buys(X) ->offer(type) ^ product(cost)

Data Mining Tasks

Can 1

Cluster analysis

- Class label is unknown: Group data to form new classes
- Clustering based on the principle: maximizing the intra-class similarity and minimizing the interclass similarity

Data Mining Tasks

Outlier analysis

 Data object that does not comply with the general behavior of the data

 Mostly considered as noise or exception, but is quite useful in fraud detection, rare events analysis

CRISP-DM - Cross Industry Standard Process for Data Mining

Lesson #6

Evaluation

Error on the training data vs.

Performance on future/unseen data

Evaluation

Simple solution

- Split data into training and test set
- Re-substitution error
 - error rate obtained from the training data

Three sets

training data, validation data, and test data

Training and Testing

Test set

Set of independent instances that have not been used in formation of classifier in any way

Assumption:

Data contains representative samples of the underlying problem

Evaluation

Significance tests

Statistical reliability of estimated differences in performance

Performance measures

Number of correct classifications

Accuracy of probability estimates

Error in numeric predictions

Error Estimation Methods

Holdout

½ training and ½ testing (2/3&1/3)

Repeated Holdout Method

Random sampling – repeated holdout

Cross-validation

- Partition in K disjoint clusters
- Train k-1, test on remaining

Leave-one-out Method

Bootstrap

Sampling with replacement

Cross-validation Error Estimation

Lesson #7

Data Mining Challenges

- Computationally expensive to investigate all possibilities
- Dealing with noise/missing information and errors in data
- Mining methodology and user interaction
- Scalability for some methods

Data Mining Heuristics and Guide

Appropriate attributes/input representation Minimal attribute space Adequate evaluation function(s) Extracting meaningful information Not overfitting

Open Source Data Mining Tools

- Python
- \blacksquare R
- WEKA
- KNIME
- Orange
- RapidMiner
- Rattle
- Mahout
- MILib

Summary

Discovering interesting patterns from large amounts of data

CRISP-DM Industry standard

Learn from the past

High quality, evidence based decisions

Predict for the future

- Prevent future instances of generalized patterns
- Adapt to changing circumstances

Next lecture

- Classification
- Clustering
- Association Rule Learning