Exercice 13 - Algorithme de Dijkstra et analyse de sensibilité

 ${f Q}$ 13.1 Appliquer l'algorithme de Dijkstra pour déterminer l'arborescence des chemins de coût minimum à partir du sommet a dans G.

Q 13.2 On suppose maintenant que le coût de l'arc (d, e) est égal à $3 - \epsilon$ où ϵ est un paramètre réel positif. Pour quelles valeurs de ϵ l'arborescence des chemins de çoût, minimum est-elle inchangée?

Soit H une arborescence couvrante de racine s dans G. Soit d(x) le coût du chemin de s à x dans H.

Propriété:

H est une arborescence des chemins de coût minimum pour G si et seulement si pour tout arc (x,y) de G on a :

$$d(y) \le d(x) + c(x,y).$$

Cette propriété est à la base de la plupart des algorithmes de calcul des chemins de coût minimum.

$$J(e) \leq J(d) + 3 - \varepsilon$$

 $4 \leq 2 + 3 - \varepsilon$
Abnoxing indenge
pour $\xi \leq 1$,

Q 13.3 En supposant toujours que le coût de l'arc (d, e) est égal à $3 - \epsilon$, tracer la courbe donnant la valeur du plus court chemin de a à f en fonction de ϵ , pour $\epsilon \geq 0$.

