IV+CV results of Rounds 5-6 LD sensors

Pedro Almeida Nicholas Adams **Huiling Hua** Lucie Linssen Filip Moortgat Thorben Quast Kourosh Sarbandi Eva Sicking Chaochen Yuan Philipp Zehetner **Marta Krawczyk**

HGC Si characterisations at CERN

- Introduction
- Annealing effect on IV results
 - N4790 21
 - N4790 09
 - N4792 07
- Temperature effect
 - IV Hexplots
- Annealing effect on CV Results
- 6 Alpha plot
- Leakage current vs. fluence behaviour
- Next steps

RINSC irradiation, overview

	Round 5	Round 6			
Date	19.01.2022	26.01.2022			
Target fluence [neq/cm2]	4.00E+15	5.50E+15			
Annealing time in the reactor at 60°C	16.1 min (Front: 48.8 min, Back: 9.2 min)	115.4 min (Front: 961.5 min, Back: 18.6 min)			
Order (back to front)	N4790_08, N4790_09, N4790_21	N4792_09, N4790_08, N4792_20			

¹More Info about the the profiles.

Sensor list and annealing step

sensor	annealing steps post raditation	IV grading	CV grading
N4790_09	27.6min + 31.8min	all passed	inclusive
N4790_21	10.9min + 11.7min + 11.4min + 9.6min +11.5min + 19.9min+ 11.4min + 17.2min	all passed	inclusive
N4792_7	30.9min + 31.0min	0 passed , 30 analysis not run, 60 passed	inclusive
N4790_08	no additional annealing	passed	inclusive
N4792_09	no additional annealing	passed	inclusive
N4792_20	no additional annealing	analysis not run	inclusive

Table: Annealing steps

 Sensor N4792_08 could not be located, instead the sensor N4792_07 was found in the stack

Measurement Setup: ALPS

- Sensors placed directly on chuck (no backside protection)
- Temperature: −40°C; humidity: 4% − 8%
- Voltage provided through the HV pin to the frontside; voltage up to -850V
- Annealing at 60°C (chuck), target time of 115 mins
- Sensors from Round 5 were annealed to the total time of 115 min at CERN
- Sensors from Round 6 were not further annealed

- Introduction
- Annealing effect on IV results
 - N4790 21
 - N4790 09
 - N4792_07
- Temperature effect
 - IV Hexplots
- Annealing effect on CV Results
- 6 Alpha plot
- 6 Leakage current vs. fluence behaviour
- Next steps

Annealing effect on IV (N4790_21)

CMS HGCAL work in progress rd. 5, LD, 200 μm, ~4E15/cm2 → 1MOhm

Figure: Annealing effect on IV of pad 101

Figure: Annealing effect on IV of pad 109

- We do see annealing effect on current
- Annealing on IV results of other channels all consistent(backup)

Current vs annealing time for 600V and 650V

Current vs annealing time for 700V and 800V

Anealing effect on IV results(N4790_09)

CMS HGCAL work in progress RINSC March 2022 rd. 5, LD, 200 μm, ~4E15/cm2 no additional annealing 30 min at 60 °C 60 min at 60 °C

Figure: Annealing effect on IV channel 101

Figure: Annealing effect on IV channel 105

- Reached the limit at around 60 mins.
- Other channels all have consistent plot(exeptions exist!)

Current vs annealing time for 600V and 650V

- Channel 15 seems to be masked at 30 and 60 annealing measurement
- Only drawing 18 channels, there could be more abnormal channels like 15
- Need to further investigate this

Current vs annealing time for 700V and 800V

Anealing effect on IV channel 15

Figure: Annealing effect on IV channel 15

Figure: Annealing effect on IV channel 13

Anealing effect on IV results(N4792_07

Figure: Annealing effect on IV channel 101

Figure: Annealing effect on IV channel 109

- Current drop is significantly higher than for other sensors
- Maybe reached the limit at around 60 mins
- Other channels all have consistent plot

Current vs annealing time for 600V and 650V

seems too good?

- Introduction
- Annealing effect on IV results
 - N4790_21
 - N4790 09
 - N4792 07
- Temperature effect
 - IV Hexplots
- 4 Annealing effect on CV Results
- 6 Alpha plot
- 6 Leakage current vs. fluence behaviour
- Next steps

Temperation effect on IV measurement

IV HexPlots

Figure: Round5, N4792_7

Figure: Round5, N4790_09

Figure: Round5, N4790_21

Figure: Round6, N4792_09

Figure: Round6, N4790_8

Figure: Round6, N4792_20

- Introduction
- 2 Annealing effect on IV results
 - N4790_21
 - N4790 09
 - N4792 07
- Temperature effect
 - IV Hexplots
- Annealing effect on CV Results
- 6 Alpha plot
- 6 Leakage current vs. fluence behaviour
- Next steps

Anealing on CV results N4790_21

- We do see annealing effects
- Reached the limit of reversed annealing at around 60 min
- Depletion voltage not reached

CV results, N4790_09

CV results, N4792_07

- Introduction
- Annealing effect on IV results
 - N4790 21
 - N4790 09
 - N4792 07
- Temperature effect
 - IV Hexplots
- Annealing effect on CV Results
- 6 Alpha plot
- 6 Leakage current vs. fluence behaviour
- Next steps

- Introduction
- Annealing effect on IV results
 - N4790_21
 - N4790_09
 - N4792 07
- Temperature effect
 - IV Hexplots
- Annealing effect on CV Results
- 6 Alpha plot
- 6 Leakage current vs. fluence behaviour
- Next steps

Proto-A: example CV results

- Round 5 and 6 sensors in general follow the current damage rate from previous campaigns
- Round 5 the sensor N4792_7 seems to have received more annealing during the irradiation
- Round 6 has probably been annealed significantly more than 80 mins (values for the other sensors)

- Introduction
- Annealing effect on IV results
 - N4790 21
 - N4790 09
 - N4792 07
- Temperature effect
 - IV Hexplots
- Annealing effect on CV Results
- 6 Alpha plot
- 6 Leakage current vs. fluence behaviour
- Next steps

Summary

- Clarify the irradiation setup with Nick to better understand the annealing during the irradiation
- Measure and analyze Round 7 & 8 sensors

Backup

Backup slides

RINSC irradiation, Round 5

RINSC irrad. round	Target fluence [neq/cm2]	Sensor ID	Scratch pad ID	Oxide type	Thick- ness	P-stop	Current location	Pre-irrad. IV+CV institute	Estimated arrival date at Brown	Irradiation date at RINSC (one per week)	Irradiation status (Done/ scheduled)	Wafer location from reactor core (1st, 2nd, 3rd)	Puck material
5	4.00E+15	N4792_08	200094	С	200	com	CERN	FSU	18/1/22	19/1/22	Done	3	
5	4.00E+15	N4790_09	200077	В	200	com	CERN	FSU	18/1/22	19/1/22	Done	2	PEEK
5	4.00E+15	N4790_21	200083	D	200	com	CERN	FSU	18/1/22	19/1/22	Done	1	

Figure: Round 5, sensors, N4792_7 instead of N4792_8

Figure: Round 5, temperature profile

RINSC irradiation, Round 6

RINSC irrad. round	Target fluence [neq/cm2]	Sensor ID	Scratch pad ID	Oxide type	Thick-	P-stop	Current location	Pre-irrad. IV+CV institute	Estimated arrival date at Brown	Irradiation date at RINSC (one per week)	Irradiation status (Done/ scheduled)	Wafer location from reactor core (1st, 2nd, 3rd)	Puck material
6	5.50E+15	N4790_08	200076	В	200	com	CERN	FSU	18/1/22	26/1/22	Done	2	
6	5.50E+15	N4792_09	200095	C	200	com	CERN	FSU	18/1/22	26/1/22	Done	3	PEEK
6	5.50E+15	N4790_20	200082	D	200	com	CERN	FSU	18/1/22	26/1/22	Done	1	

Figure: Round 6, sensors

