

Apresentação do Curso

Circuitos Hidráulicos e Pneumáticos (CHP)

Departamento de Engenharia de Controle e Automação Instituto de Ciência e Tecnologia – UNESP – Campus Sorocaba

Prof. Dr. Dhiego Fernandes Carvalho

dhiego.fernandes@unesp.br

O Professor da Disciplina

- Formado em Engenharia de Computação pela UFRN (2003-2008)
- Especialista em Redes de Computadores pela UNI-RN (2009-2010)
- Mestrado em Sistemas e Computação pela UFRN (2012-2014)
- Doutorado em Tecnologia para Saúde pela Universidade de Bréscia/Itália (2017-2021).
- Professor titular do IFRN por quase 10 anos (2013-2022).
- Atualmente é professor do Dep. de Controle e Automação da UNESP campus Sorocaba.
- Áreas de Pesquisa: Internet das Coisas, Indústria 4.0, LPWAN, LoRa/LoRaWAN.

Lattes: http://lattes.cnpq.br/1890075280717315

Google Acadêmico: https://scholar.google.com/citations?user=004SmXMAAAAJ&hl=pt-BR&oi=ao

Objetivos

- 1. Ensinar o que é automação hidráulica, pneumática e eletropneumática, e como elas são utilizadas na indústria.
- 2. Aprender quais são e para que servem os principais componentes dos circuitos pneumáticos e eletropneumáticos.
- 3. Ensinar a simular e criar circuitos pneumáticos e eletropneumáticos.
- 4. Entender o que são e para que servem os CLPs (Controladores Lógicos Programáveis).
- 5. Aprender a programar os CLPs para o controle de circuitos eletropneumáticos.

Tópicos de Aula

A Disciplina de Circuitos Hidráulicos e Pneumáticos possui 30 horas totais no semestre que serão divididas em:

- 1. Apresentação do Curso e Introdução ao CHP 2h
- 2. Apresentação das Bancadas FESTO e seus principais componentes 2h
- 3. Circuitos Pneumáticos 8h
 - 1. Componentes Pneumáticos
 - 2. Circuitos de Simples e Dupla Ação
 - 3. Válvulas "E" e "OU"
 - 4. Diagrama Passo
 - 5. Circuitos de Dupla Ação com Sobreposição
- 4. Primeiro Trabalho 2h
 - **Total de Aulas:** 28 horas em laboratório + 2 horas Semana de Engenharia = 30 horas totais

- 6. Circuitos Eletropneumáticos 8h
 - 1. Componentes Eletropneumáticos
 - 2. Simples Ação e Dupla Ação
 - 3. Lógica "E" e "OU"
 - 4. Circuitos de Dupla Ação com Sobreposição (Selo de Relé).
- 7. Controladores Lógicos Programáveis (CLPs) 4h
 - 1. Programação Básica em Ladder
 - 2. Lógica "E" e "OU"
 - 3. Circuitos de Simples e Dupla Ação (com e sem sobreposição).
- 8. Segundo Trabalho de CHP 2h

Cronograma

- O final do semestre 2024.2 está marcado para o dia 07/12/2024.
- Atendimento: Google classroom, e-mail e na minha sala (5º andar ao lado do GASI)

Turmas A – Segunda-Feira		
Aula	dia	
1	05/Agosto	
2	12/Agosto	
3	19/Agosto	
	26/Agosto – Semana de	
4	Engenharia	
5	02/Setembro	
6	09/Setembro	
7	16/Setembro	
8	23/Setembro	
9	30/Setembro	
10	07/Outubro	
11	14/Outubro (???)	
12	21/Outubro	
13	04/Novembro	
14	11/Novembro	
15	18/Novembro	
16	25/Novembro – Extra	
17	02/Dezembro – Extra	

Turmas B e C – Quarta-Feira		
Aula	JI:_	
Aula	dia	
1	31/Julho	
2	07/Agosto	
3	14/Agosto	
4	21/Agosto	
	28/Agosto – Semana de	
5	Engenharia	
6	04/Setembro	
7	11/Setembro	
8	18/Setembro	
9	25/Setembro	
10	02/Outubro	
11	09/Outubro	
12	16/Outubro (???)	
13	23/Outubro	
14	30/Outubro	
15	06/Novembro	
16	13/Novembro – Extra	
17	27/Novembro – Extra	
18	04/Dezembro – Extra	

Notas

 Serão realizadas duas avaliações no semestre que serão calculadas da seguinte forma:

$$MP = \frac{NA1 + NA2}{2}$$

$$NA1 = Nota da Avaliação 1$$

$$NA2 = Nota da Avaliação 2$$

- As duas avaliações no semestre serão dois trabalhos práticos em bancada.
- Para ser aprovado o aluno deve ter (MP) ≥ 5.

Recuperação e Exame Final

Recuperação

- Os alunos que tiverem nota inferior a 5,0 em cada avaliação, poderão procurar o professor para discutir os procedimentos para a sua recuperação durante a disciplina.
- Os alunos receberão atividades a serem feitas (provas ou trabalhos), que poderão ser substituídas por aquela avaliação.

Exame Final

- Caso o aluno n\u00e3o tenha (MP) ≥ 5 e tiver frequ\u00e9ncia superior a 70%, ele est\u00e1 apto a fazer o Exame Final.
- Se a Média Final (MF) for maior que 5, aluno aprovado, caso o contrário, reprovado.

$$MF = \frac{MP + EF}{2}$$

$$EF = Exame Final$$

$$MF = Média Parcial$$

$$MF = Média Final$$

Trabalhos

 Os trabalhos serão realizados em laboratório usando a bancada da FESTO com atuadores, válvulas, sensores, cabos e CLP.

Google Sala de Aula – CHP – Turma A

• Código da Turma: msf4snq

Google Classroom

https://classroom.google.com/c/Njk2NjI0NDgwOTkz?cjc=msf4snq

Google Sala de Aula – CHP – Turma B

Código da Turma: hurcfp4

Google Classroom

https://classroom.google.com/c/Njg0NzQwNzI1NDU1?cjc=hurcfp4

Google Sala de Aula – CHP – Turma C

Código da Turma: iulxmjl

Google Classroom

https://classroom.google.com/c/Njg0NzQwNzYyNDMz?cjc=iulxmjl

Github

 Todo o material da Disciplina será disponibilizado no Github

https://github.com/DhiegoFC/Hydraulic and Pneumatic Circuits

Outras Informações Importantes

- Não falte as aulas! Seja disciplinado!
- Pratique o conhecimento que aprendeu em sala de aula.
- Se tiver dúvidas procure o professor, não as deixe pra depois!
- Procure sempre material auxiliar para complementar os estudos.

DÚVIDAS?