

EECE5644: Final Project

Alex Montes McNeil Nishanth Marer Prabhu 04/18/2023

Dataset

- NFL data since the year 2000 containing 30 features of each game played
- Full list of the dataset features is listed in our report
- Reference: https://github.com/ukritw/nflprediction

<pre>\$ schedule_date \$</pre>	schedule_season ÷	schedule_week ÷	schedule_playoff	+ score_home +	score_away ÷ team_awa	y	spread_favorite ÷ ÷	team_away_current_win_pct ÷
0 2001-09-09	2001	1	0 BAL	17.0	6.0 CHI	BAL	-10.5	0.000000
1 2009-12-20	2009	15	0 BAL	31.0	7.0 CHI	BAL	-11.0	0.384615
2 2017-10-15	2017	6	0 BAL	24.0	27.0 CHI	BAL	-6.5	0.200000
3 2002-09-29	2002	4	0 BUF	33.0	27.0 CHI	BUF	-3.0	0.666667
4 2010-11-07	2010	9	0 BUF	19.0	22.0 CHI	CHI	-3.0	0.571429

NFL Home-Team-Win Classification Problem

Take Aways from Dataset

Number of Games: 4783

Home Straight Up Win Percentage: 57.57%

Away Straight Up Win Percentage: 42.43%

Under Percentage: 49.70%

Over Percentage: 48.55%

Equal Percentage: 1.76%

Favored Win Percentage: 65.96%

Cover The Spread Percentage: 46.96%

Against The Spread Percentage: 49.32%

Apply ML Dataset

- Can we train a Multilayer Perceptron (MLP) to predict if the home team or away team will win a game based on this dataset?
 - Does increasing the number of hidden layers improve the model size?
- Use Expected Risk Minimization to determine the theoretical minimum probability of error.

Reduce the Size of the Dataset

- Calculated the correlation coefficients of all numerical features with result
- Chose to keep features with coefficient above +/- 0.05
 - Further reduction required to remove features the give away the result of the game
- Feautures used for classification:
 - elo_prob1/2
 - team_current_win_pct
 - team_lastseason_win_pct
 - home/away_favorite
 - spread_favorite

Expected Risk Minimization (ERM)

- We will determine the mean and covariance matrix for each of the label set
- Assuming the underlying PDF as Gaussian, we will evaluate the PDF
- In this case we will use a 0-1 loss matrix and multiply it with the class posterior

P(X) =	P(X L =	(0) * P(L	= 0) +	P(X L =	= 1) *	P(L =	1)

$$P(X|L = l) * P(L = l)$$
 where $l = 0,1$

The class posterior is given by the below equation:

$$P(L = l|X) = \frac{P(X|L = l) * P(L = l)}{P(X)}$$
 where $l = 0,1$

• To determine the Risk Matrix, we need to multiply the Class Posterior P(L=l|X) where l=0,1 with the loss matrix λ_{01}

$$R(D = l|X) = \lambda_{01} * P(L = l|X)$$
 where $l = 0,1$

Finally, we take the argmin of the risk matrix

ERM Confusion Matrix

0.23

0.77

0.50

0.50

Multilayer Perceptron Model (MLP)

- MLPClassifier from scikit-learn python package
 - Number of hidden layers: 1
 - Find optimal number of neurons during cross validation
 - Activation function: relu
 - 10k Iterations (convergence was reached before the end of the iterations)
- N-fold cross-validation with GridSearchCV used to estimate number of neurons per layer
 - Varied number of folds to see the impact on the error of the model
 - [2, 5, 10, 15, 20]

Results and Analysis

- MLP outperforms MAP estimate
 - This could be due to the shape of the data
- Our dataset is < 5000 samples

Future Work

- Better understanding of the data set
- This dataset only contains games from after the year 2000
 - In the future we could include a large set NFL games

Github Repository

All code and data used in this project can be found here:

https://github.com/nishanthmarer/ITMLPRFinalProjectAlex Nishanth

