

J. Am. Chem. Soc., 1996, 118(45), 11225-11236, DOI:10.1021/ja9621760

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Supporting Information

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids

William L. Jorgensen,* David S. Maxwell, and Julian Tirado-Rives

Department of Chemistry, Yale University, New Haven, Connecticut 06520-8118

The following tables contain the available non-bonded and torsional parameters for the OPLS-AA force field. These and the bond-stretching and angle-bending parameters are available by ftp after contacting W. L. Jorgensen by email at bill@adrik.chem.yale.edu.

Form of the Force Field

Bond stretching:
$$E_{bond} = \sum_{k=r-d} K_r (r - r_{eq})^2$$

Angle bending:
$$E_{angle} = \sum_{angles} K_{\theta} (\theta - \theta_{eq})^{2}$$

Torsion:
$$E(\phi) = \frac{V_1}{2} [1 + \cos(\phi + f1)] + \frac{V_2}{2} [1 - \cos(2\phi + f2)] + \frac{V_3}{2} [1 + \cos(3\phi + f3)]$$

Non-bonded:
$$E_{ab} = \sum_{i}^{ona} \sum_{j}^{onb} [q_{i}q_{j}e^{2}/r_{ij} + 4\varepsilon_{ij}(\sigma_{ij}^{12}/r_{ij}^{12} - \sigma_{ij}^{6}/r_{ij}^{6})]f_{ij}$$
$$f_{ij} = 0.5 \text{ if i, j are 1,4; otherwise, } f_{ij} = 1.0$$

© 1770 American Chemical Society 3. Am. Chem. Soc. V116 Tage 1722 Jorgenson Supplemental Tage 2

Table 1. OPLS-AA Non-Bonded Parameters for Hydrocarbons and Alcohols

atom or group	q, e-	σ, Å	ε, kcal mol ⁻¹
C, CH ₄	-0.240	3.500	0.066
C, RCH ₃	-0.180	3.500	0.066
C, R_2CH_2	-0.120	3.500	0.066
C, R ₃ CH	-0.060	3.500	0.066
C, R ₄ C	0.000	3.500	0.066
H, RH, alkanes	0.060	2.500	0.030
C, Benzene	-0.115	3.550	0.070
H, Benzene	0.115	2.420	0.030
C, CH ₃ of toluene	-0.065	3.500	0.066
C, CH ₂ of ethyl benzene	-0.005	3.500	0.066
$C, R_2C=$	0.000	3.550	0.076
C, RHC=	-0.115	3.550	0.076
$C, H_2C=$	-0.230	3.550	0.076
H, HC=	0.115	2.420	0.030
O, ROH	-0.683	3.120	0.170
H(O), ROH	0.418	0.000	0.000
H(C), CH ₃ OH	0.040	2.500	0.030
C, CH ₃ OH and RCH ₂ OH	0.145	3.500	0.066
C, R ₂ CHOH	0.205	3.500	0.066
C, R ₃ COH	0.265	3.500	0.066
C, COH phenol	0.150	3.550	0.070
O, phenol	-0.585	3.070	0.170
H, phenol	0.435	0.000	0.000

Table 2. OPLS-AA Non-Bonded Parameters for Sulfur Compounds and Amines

atom or group	q, e-	σ, Å	ε, kcal mol ⁻¹
S, RSH	-0.435	3.550	0.250
H(S), RSH	0.255	0.000	0.000
C, CH ₃ SH	0.000	3.500	0.066
C, RCH ₂ SH	0.060	3.500	0.066
C, R ₂ CHSH	0.120	3.500	0.066
C, R ₃ CSH	0.180	3.500	0.066
S, RSR	-0.435	3.550	0.250
C, CH ₃ SR	0.0375	3.500	0.066
C, RCH ₂ SR	0.0975	3.500	0.066
C, R ₂ CHSR	0.1575	3.500	0.066
C, R ₃ CSR	0.2175	3.500	0.066
S, RSSR	-0.2175	3.550	0.250
C, CH ₃ SSR	0.0375	3.500	0.066
C, RCH ₂ SSR	0.0975	3.500	0.066
C, R ₂ CHSSR	0.1575	3.500	0.066
C, R ₃ CSSR	0.2175	3.500	0.066
N, RNH ₂	-0.900	3.250	0.170
H, RNH ₂	0.350	0.000	0.000
C, CH ₃ NH ₂	0.020	3.500	0.066
C, RCH ₂ NH ₂	0.080	3.500	0.066
C, R ₂ CHNH ₂	0.140	3.500	0.066
C, R ₃ CNH2	0.200	3.500	0.066

Table 3. OPLS-AA Non-Bonded Parameters for Ammonium Ions, Imidazoles, and Carboxylate Ions^a

atom or group	q, e-	σ, Å	ε, kcal mol ⁻¹
N, RNH ₃ ⁺	-0.300	3.250	0.170
H, RNH ₃ ⁺	0.330	0.000	0.000
C, CH ₃ NH ₃ ⁺	0.130	3.500	0.066
C, RCH ₂ NH ₃ ⁺	0.190	3.500	0.066
C, R ₂ CHNH ₃ ⁺	0.250	3.500	0.066
C, R ₃ CNH ₃ ⁺	0.310	3.500	0.066
$C, C_{\epsilon 1}$ in HID, HIE	0.295	3.550	0.070
C, $C_{\delta 2}$ in HID, C_{γ} in HIE	-0.015	3.550	0.070
C , C_{γ} in HID, $C_{\delta 2}$ in HIE	0.015	3.550	0.070
$C, C_{\epsilon 1}$ in HIP	0.385	3.550	0.070
$C, C_{\gamma}, C_{\delta 2}$ in HIP	0.215	3.550	0.070
H, H on C_δ or C_ϵ in HID, HIE, HIP	0.115	2.420	0.030
N, N_{δ} in HID or N_{ϵ} in HIE	-0.570	3.250	0.170
H, H(N ₈) in HID or H(N _{ϵ}) in HIE	0.420	0.000	0.000
N, N_{ϵ} in HID or N_{δ} in HIE	-0.490	3.250	0.170
N, in HIP	-0.540	3.250	0.170
H(N), in HIP	0.460	0.000	0.000
C, CH ₃ - in 5-methylimidazole	-0.065	3.500	0.066
C, RCH ₂ - in 5-ethylimidazole	-0.005	3.500	0.066
C, RCOO-	0.700	3.750	0.105
O, RCOO-	-0.800	2.960	0.210
C, CH ₃ COO-	-0.280	3.500	0.066
C, RCH ₂ COO-	-0.220	3.500	0.066
C, R ₂ CHCOO-	-0.160	3.500	0.066
C, R ₃ CCOO-	-0.100	3.500	0.066

^a HID, HIE, and HIP refer to unprotonated histidine (imidazole) with hydrogens on N_{δ} or N_{ϵ} , and protonated histidine (imidazole), respectively.

Table 4. OPLS-AA Non-Bonded Parameters for Guanidinium Ions, Tryptophan, and Amides^a

atom or group	q, e-	σ, Å	ε, kcal mol ⁻¹
N, NH ₂ in guanidinium	-0.800	3.250	0.170
H, NH ₂ in guanidinium	0.460	0.000	0.000
C, guanidinium	0.640	2.250	0.050
N, NHR in alkylguanidinium	-0.700	3.250	0.170
H, NHR in alkylguanidinium	0.440	0.000	0.000
C, CH ₃ in methylguanidinium	0.200	3.500	0.066
C, CH ₃ in ethylguanidinium (EG)	-0.110	3.500	0.066
C, $CH_2(\delta)$ in Arg, EG	0.190	3.500	0.066
C, CH ₂ (γ) in Arg	-0.050	3.500	0.066
N , N_{ϵ} in Trp	-0.570	3.250	0.170
H , $H_{\varepsilon}(N)$ in Trp	0.420	0.000	0.000
C, C _{\gamma} in Trp	0.075	3.550	0.070
C, $CH_{\delta,\epsilon,\zeta,\eta}$ in Trp	-0.115	3.550	0.070
H, $H_{\delta,\epsilon,\zeta,\eta}$ (C) in Trp	0.115	2.420	0.030
C , C_{δ} in Trp	-0.055	3.750	0.145
C, C_{ε} in Trp	0.130	3.750	0.145
C, C=O in amide	0.500	3.750	0.105
O, C=O in amide	-0.500	2.960	0.210
H, HCONRR'	0.000	2.420	0.015
N, 1° amide	-0.760	3.250	0.170
N, 2° amide	-0.500	3.250	0.170
N, 3° amide	-0.140	3.250	0.170
H(N), 1° amide	0.380	0.000	0.000
H(N), 2° amide	0.300	0.000	0.000
C, CH ₃ N- 2° amide	0.020	3.500	0.066
C, CH ₃ N- 3° amide	-0.110	3.500	0.066
C, R CH ₂ N - 3° amide (Cδ in Pro)	-0.050	3.500	0.066
C, R ₂ CHN - 3° amide (Cα in Pro)	0.010	3.500	0.066
C, $CH_2(\alpha)$ in Gly	0.080	3.500	0.066
C, CHR(α) in Ala	0.140	3.500	0.066

1990 American Chemical Society J. Am. Chem. Soc. V116 1 age 17223 Jorgensen Supplemental 1 age 0

C, CRR'(α) in Aib

0.200

3.500

0.066

^a R in RCONR'R" is neutral and uses alkane parameters.

Table 5. OPLS-AA Non-Bonded Parameters for Ethers, Acetals, Aldehydes, Ketones, and Carboxylic Acids.

Atom or group	q, e-	σ , Å	ε, kcal mol ⁻¹
O, ROR	-0.400	2.900	0.140
C, CH ₃ OR	0.110	3.500	0.066
C, RCH ₂ OR	0.140	3.500	0.066
C, R ₂ CHOR	0.170	3.500	0.066
C, R ₃ COR	0.200	3.500	0.066
H, CH _n OR	0.030	2.500	0.030
O, acetal	-0.400	2.900	0.140
C, ROCH ₂ OR	0.200	3.500	0.066
H, ROCH ₂ OR	0.100	2.500	0.030
C, ROCHROR	0.300	3.500	0.066
H, ROCHROR	0.100	2.500	0.030
C, ROCR ₂ OR	0.400	3.500	0.066
C, RCHO	0.450	3.750	0.105
O, RCHO	-0.450	2.960	0.210
H, RCHO	0.000	2.420	0.015
C, R ₂ CO	0.470	3.750	0.105
O, R ₂ CO	-0.470	2.960	0.210
H, CH _n COR ^a	0.060	2.420	0.015
C, RCOOH	0.520	3.750	0.105
O(C), RCOOH	-0.440	2.960	0.210
O(H), RCOOH	-0.530	3.000	0.170
H, RCOOH	0.450	0.000	0.000

^a H on alpha C of aldehyde and ketone. Alpha C uses alkyl C parameters (Table 1).

Table 6. Bond Stretching and Angle Bending Parameters

	AMB	ER	CHARMM/22	
Type ^a	r{eq} or θ_{eq}	K	r_{eq} or θ_{eq}	K
CT-CT	1.526	310.0	1.529	268.0
HC-CT	1.090	331.0	1.090	340.0
HC-CT-HC	109.5	35.00	107.8	33.00
HC-CT-CT	109.5	35.00	110.7	37.50
CT-CT-CT	109.5	40.00	112.7	58.35

^a The AMBER atom types are from reference 3.

Table 7. OPLS-AA Fourier Coefficients (kcal/mol) for Torsional Energy Functions^a

System	Dihedral	$\mathbf{v_1}$	V ₂	V ₃
alkane	H-C-C-H	0.000	0.000	0.318
	H-C-C-C	0.000	0.000	0.366
	C-C-C-C	1.740	-0.157	0.279
alkene	H-C-C=C	0.000	0.000	-0.372
ethylbenzene	H-C-C _{ar} -C _{ar}	0.000	0.000	0.000
	C-C-C _{ar} -C _{ar}	0.000	0.000	0.000
	H-C-C-Car	0.000	0.000	0.462
alcohol	Н-С-О-Н	0.000	0.000	0.450
	С-С-О-Н	-0.356	-0.174	0.492
	H-C-C-O	0.000	0.000	0.468
	C-C-C-O	1.711	-0.500	0.663
phenol	H-O-C _{ar} -C _{ar}	0.000	1.682	0.000
thiol	H-C-S-H	0.000	0.000	0.451
	C-C-S-H	-0.759	-0.282	0.603
	H-C-C-S	0.000	0.000	0.452
	C-C-C-S	1.876	0.000	0.000
sulfide	H-C-S-C	0.000	0.000	0.647
	C-C-C-S	2.619	-0.620	0.258
	C-C-S-C	0.925	-0.576	0.677
disulfide	C-S-S-C	0.000	-7.414	1.705
	H-C-S-S	0.000	0.000	0.558
	C-C-S-S	1.941	-0.836	0.935
1° amine	H-C-N-H	0.000	0.000	0.400
	H-C-C-N	-1.013	-0.709	0.473
	C-C-N-H	-0.190	-0.417	0.418
	C-C-C-N	2.392	-0.674	0.550
ammonium ion	H-C-N-H	0.000	0.000	0.261
	C-C-N-H	0.000	0.000	0.347
	H-C-C-N	0.000	0.000	0.384
	C-C-C-N	2.732	-0.229	0.485

^a Those listed with $V_1=V_2=V_3=0$ are shown for completeness.

Table 8. OPLS-AA Fourier Coefficients (kcal/mol) for Torsional Energy Functions^a

System	Dihedral	$\mathbf{v_1}$	V ₂	V ₃
ether	H-C-O-C	0.000	0.000	0.760
	C-C-O-C	0.650	-0.250	0.670
acetal	C-O-C-O	-0.574	-0.997	0.000
carboxylate ion	H-C-C-O	0.000	0.000	0.000
	C-C-C-O	0.000	0.820	0.000
	H-C-C-C(O)	0.000	0.000	-0.225
	C-C-C(O)	-3.185	-0.825	0.493
carboxylic acid	O-C-O-H	0.000	4.830	0.000
	C-C-O-H	0.000	4.830	0.000
aldehyde/ketone	H-C-C-O	0.000	0.000	0.000
aldehyde	H-C-C(O)-H	0.000	0.000	0.360
ketone	H-C-C(O)-C	0.000	0.000	0.275
aldehyde/ketone	C-C-C-O	-0.277	1.228	-0.694
aldehyde	C-C-C(O)-H	0.000	0.000	0.000
ketone	C-C-C(O)-C	1.454	-0.144	-0.775
aldehyde/ketone	H-C-C-C(O)	0.000	0.000	-0.076
aldehyde/ketone	C-C-C(O)	-1.697	-0.456	0.585
amide	C(O)-N-C-H	0.000	0.000	-0.139
	C(O)-N-C-C	-1.396	-0.427	0.000
	H-N-C-H	0.000	0.000	0.000
	H-N-C-C	0.000	0.000	0.000
	N-C-C-H	0.000	0.000	0.464
	N-C-C-C	1.964	0.000	0.659
	H-C-C(O)-N	0.000	0.000	0.000
	H-C-C(O)-O	0.000	0.000	0.000
	C-C-C(O)-N	3.250	-0.402	-0.136
	C-C-C(O)-O	0.000	1.166	0.000
	H-C-C-C(O)	0.000	0.000	-0.100
	C-C-C(O)	-2.060	-0.313	0.315
	H-C-N3°-C	0.000	0.000	0.000
	H,C-C(O)-N-H	0.000	4.900	0.000

© 1990 American Chemical Society J. Am. Chem. Soc. V118 Page 11223 Jorgensen Supplemental Page 11

H,C-C(O)-N-C	2.800	6.089	0.000	
O-C(O)-N-H	0.000	4.900	0.000	
O-C(O)-N-C	0.000	6.089	0.000	

^a Those listed with V₁=V₂=V₃=0 are shown for completeness.

Table 9. OPLS-AA Fourier Coefficients (kcal/mol) for Torsional Energy Functions^a

System	Dihedral	$\mathbf{v_1}$	$\mathbf{V_2}$	V ₃
peptide ^a φ	C(O)-N-C-C(O)	-2.365	0.912	-0.850
peptide φ'	C(O)-N-C-C	0.000	0.462	0.000
peptide φ"	C(O)-N-C-H	0.000	0.000	0.000
peptide	H-N-Cα-X	0.000	0.000	0.000
peptide ψ	N-C-C(O)-N	1.816	1.222	1.581
peptide ψ'	C-C-C(O)-N	1.173	0.189	-1.200
peptide ψ"	H-C-C(O)-N	0.000	0.000	0.000
peptide	X - $C\alpha$ - $C(O)$ - O	0.000	0.000	0.000
peptide χ_1	N-C-C-C	0.845	-0.962	0.713
peptide χ_1	N-C-C-H	0.000	0.000	0.464
peptide χ_1	C(O)-C-C-H	0.000	0.000	-0.076
peptide χ ₁ b	C(O)-C-C-C	-1.697	-0.456	0.585
χ ₁ , Ser & Thr	N-C-C-O	6.280	-1.467	2.030
Ser & Thr	C(O)-C-C-O	-6.180	0.000	0.000
χ_1 , Cys	N-C-C-S	0.583	-1.163	0.141
Cys	C(O)-C-C-S	-4.214	-2.114	0.969
5-ethylimidazole	H-C-C-N	0.000	0.000	0.419
	C-C-C-N	2.366	-0.262	0.505
3-ethylindole	H-C-C3-C2	0.000	0.000	-0.480
	H-C-C3-C	0.000	0.000	0.000
	C-C-C3-C2	-0.714	0.000	0.000
	C-C-C3-C	0.000	0.000	0.000
guanidinium ion	H-N-C-N	0.000	3.900	0.000
	C-N-C-N	0.000	7.936	0.000
	C-C-N-C	1.829	0.243	-0.498
	H-C-C-N	0.000	0.000	-0.582
	H-C-N-H	0.000	0.000	0.000

^a The ϕ and ψ are used in the standard way. The "and denote dihedrals which extend to the C_{α} hydrogen and C_{β} carbon, respectively. The remaining dihedral parameters for χ_1 with the C_{α} hydrogen are the same as for alkanes, alcohols, and thiols.