

## **Stopwatch or RTC Design**

Design a top module which instantiates 12-bit decimal up counter, trigger detection circuit, hexadecimal to 7-segment display converter and one-second pulse timer circuits and write the testbench and apply the stimulus. Implement the same design on Nexys A7 board.





## **Module Description:**

The block diagram of stopwatch is as shown above. When trigger-in is triggered, stopwatch starts counting. This stopwatch can count from 0 to 999.

## **Signal Description:**

Stopwatch implementation design consists of three external inputs and three external outputs. The external inputs/outputs are :

- sys\_clk is the system clock which is operating at 100 MHz frequency. This design uses 100 MHz system clock.
- rst\_n is the synchronous active low reset signal. When reset\_n is low, the stopwatch system will be reset to 0. This signal is required to reset the internal blocks of the stopwatch design.
- trigger\_in is another external input which triggers when start/stop toggle switch is operated by the user.
- Stopwatch starts counting from the time of triggering of start toggle switch till the stop toggle switch is triggered. The current value of the stopwatch is displayed by using 7-segment display which is available on Nexys A7 board.
- Three outputs seg1\_out, seg2\_out, seg3\_out are used to display each digit starting from 000 to 999.

| Signal Name | Size | 1/0 | Description                                                                                                                                                        |
|-------------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sys_clk     | 1    | I   | System Clock 100 MHz.                                                                                                                                              |
| reset_n     | 1    | I   | Active low system reset. This reset is internally synchronized to the sys_clk.                                                                                     |
| trigger-in  | 1    | I   | trigger_in is the stopwatch trigger input. When this input is high, clock starts counting till the next time this input goes high.                                 |
| seg1_hex0   | 1    | 0   | Stopwatch can count from 0 to 999 secs. So output is displayed using three 7-segment display from Nexys A7 board. This signal is LSB which can display from 0 to 9 |
| seg2_hex1   | 1    | 0   | This signal displays from 0 to 9                                                                                                                                   |
| seg3_hex2   | 1    | 0   | This signal is MSB which can display from 0 to 9.                                                                                                                  |

**Note:** Write the code of the stopwatch by instantiating the modules namely, trigger\_det, timer, counter, seg\_display. Name the design file as stopwatch\_top.vhd, module as stopwatch\_top.vhd and the testbench as tb\_stopwatch\_top.vhd