- ASSIGNMENT 4

- ▼ 1. Download the dataset: Dataset
 - 2. Load the dataset into the tool.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
```

data=pd.read_csv("Mall_Customers.csv",encoding='ISO-8859-1')
data.head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
	-		^ 4	17	40
Saved s	uccessfully!			×	

data.describe()

		CustomerID	Age	Annual	Income	(k\$)	Spending Score (1-100)
	count	200.000000	200.000000		200.00	00000	200.000000
data	.dtype	S					
	Custome	rID	inte	54			
	Gender		objed	ct			
	Age		inte	54			
	Annual	Income (k\$)	inte	54			
	Spendin	g Score (1-1	100) int	54			

- → 3. Perform Below Visualizations.
 - Univariate Analysis

dtype: object

- · Bi- Variate Analysis
- · Multi-Variate Analysis

```
#univariate analysis "Histogram"
sns.histplot(data["Gender"],color='darkorange')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fe16d00fa10>

#univariate analysis "Countlot"
sns.countplot(data['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fe16cf59150>

#bivariate analysis"Pointplot"
sns.pointplot(x='Gender',y='Age',data=data,color='darkorange')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe16cf14910>

	X							
Saved successfully!		mean	std	min	25%	50%	75%	max
CustomerID	200.0	100.50	57.879185	1.0	50.75	100.5	150.25	200.0
Age	200.0	38.85	13.969007	18.0	28.75	36.0	49.00	70.0
Annual Income (k\$)	200.0	60.56	26.264721	15.0	41.50	61.5	78.00	137.0
Spending Score (1-100)	200.0	50.20	25.823522	1.0	34.75	50.0	73.00	99.0

data.isnull().any().any()

False

```
data.isnull().any()

CustomerID False
Gender False
Age False
Annual Income (k$) False
Spending Score (1-100) False
dtype: bool

df2=data.dropna(how='all')
```

▼ 5. Check for Missing values and deal with them.

▼ 6. Find the outliers and replace them outliers

sns.boxplot(data['Age'],data=data)

Saved successfully!

Series([], dtype: float64)

▼ 7. Check for Categorical columns and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
data['Gender']=encoder.fit_transform(data['Gender'])
```

data.head()

Saved succes	sfully!		×	nual Income (k\$)	Spending Score (1-100)
0	1	1	19.0	15	39
1	2	1	21.0	15	81
2	3	0	20.0	16	6
3	4	0	23.0	16	77
4	5	0	31.0	17	40

▼ 8. Scaling the data

```
from sklearn.preprocessing import StandardScaler
df=StandardScaler()
data1=df.fit transform(data)
```

ע./אטבטל/, ש. -ט.טטטטטטס, -ט.//טטטטט,

data1

```
[ 0.75345152, -0.88640526, -0.49160182,
                                                   0.58933599,
                                                               1.42863343],
          [ 0.77077224, 1.12815215, -0.99396865,
                                                   0.62750542, -1.48298362],
          [ 0.78809297, 1.12815215, -0.77866858,
                                                   0.62750542, 1.81684904],
          [ 0.80541369, 1.12815215, 0.65666521,
                                                   0.62750542, -0.55126616],
          [0.82273442, -0.88640526, -0.49160182,
                                                   0.62750542, 0.92395314],
          [ 0.84005514, -0.88640526, -0.34806844,
                                                   0.66567484, -1.09476801],
            0.85737587, 1.12815215, -0.34806844,
                                                   0.66567484,
                                                               1.54509812],
          [ 0.87469659, 1.12815215, 0.29783176,
                                                   0.66567484, -1.28887582],
                         1.12815215, 0.010765 ,
            0.89201732,
                                                   0.66567484,
                                                               1.46745499],
            0.90933804, -0.88640526, 0.36959845,
                                                   0.66567484, -1.17241113],
            0.92665877, -0.88640526, -0.06100169,
                                                   0.66567484,
                                                               1.00159627],
            0.94397949, -0.88640526, 0.58489852,
                                                   0.66567484, -1.32769738],
          [0.96130021, -0.88640526, -0.85043527,
                                                   0.66567484, 1.50627656],
          [ 0.97862094, 1.12815215, -0.13276838,
                                                   0.66567484, -1.91002079],
          [ 0.99594166, -0.88640526, -0.6351352 ,
                                                   0.66567484, 1.07923939],
          [ 1.01326239, 1.12815215, -0.34806844,
                                                   0.66567484, -1.91002079],
          [ 1.03058311, -0.88640526, -0.6351352 ,
                                                   0.66567484, 0.88513158],
          [ 1.04790384, -0.88640526, 1.23079873,
                                                   0.70384427, -0.59008772],
          [ 1.06522456, -0.88640526, -0.70690189,
                                                   0.70384427, 1.27334719],
                                                   0.78018313, -1.75473454],
            1.08254529, 1.12815215, -1.42456879,
            1.09986601, -0.88640526, -0.56336851,
                                                   0.78018313, 1.6615628 ],
          [ 1.11718674, 1.12815215, 0.80019859,
                                                   0.93286085, -0.93948177],
                                                   0.93286085, 0.96277471],
          [ 1.13450746, -0.88640526, -0.20453507,
            1.15182818, 1.12815215, 0.22606507,
                                                   0.97103028, -1.17241113],
            1.16914891, -0.88640526, -0.41983513,
                                                   0.97103028, 1.73920592],
            1.18646963, -0.88640526, -0.20453507,
                                                   1.00919971, -0.90066021],
          [ 1.20379036, 1.12815215, -0.49160182,
                                                   1.00919971, 0.49691598],
            1.22111108, 1.12815215, 0.08253169,
                                                   1.00919971, -1.44416206],
                                                   1.00919971, 0.96277471],
            1.23843181, 1.12815215, -0.77866858,
          [ 1.25575253. 1.12815215, -0.20453507,
                                                   1.00919971, -1.56062674],
                                  5, -0.20453507,
                                                   1.00919971, 1.62274124],
Saved successfully!
                                  6, 0.94373197,
                                                   1.04736914, -1.44416206],
                         0.000-0.26, -0.6351352 ,
                                                   1.04736914, 1.38981187],
                         1.12815215, 1.37433211,
                                                   1.04736914, -1.36651894],
          [ 1.32503543,
                        1.12815215, -0.85043527,
            1.34235616,
                                                   1.04736914,
                                                               0.72984534],
          [ 1.35967688, 1.12815215, 1.4460988 ,
                                                   1.23821628, -1.4053405 ],
                                                   1.23821628, 1.54509812],
                        1.12815215, -0.27630176,
            1.3769976 ,
          [ 1.39431833, -0.88640526, -0.13276838,
                                                   1.390894 , -0.7065524 ],
                                                   1.390894 ,
                                                                1.38981187],
            1.41163905, -0.88640526, -0.49160182,
          [ 1.42895978, 1.12815215, 0.51313183,
                                                   1.42906343, -1.36651894],
            1.4462805 , -0.88640526, -0.70690189,
                                                   1.42906343, 1.46745499],
          [ 1.46360123, -0.88640526, 0.15429838,
                                                   1.46723286, -0.43480148],
            1.48092195, 1.12815215, -0.6351352,
                                                   1.46723286, 1.81684904],
          [ 1.49824268, -0.88640526, 1.08726535,
                                                   1.54357172, -1.01712489],
            1.5155634 , 1.12815215, -0.77866858,
                                                   1.54357172, 0.69102378],
                                                   1.61991057, -1.28887582],
          [ 1.53288413, -0.88640526, 0.15429838,
          [ 1.55020485, -0.88640526, -0.20453507,
                                                   1.61991057, 1.35099031],
          [ 1.56752558, -0.88640526, -0.34806844,
                                                   1.61991057, -1.05594645],
```

```
[ 1.5848463 , -0.88640526, -0.49160182, 1.61991057, 0.72984534], [ 1.60216702, 1.12815215, -0.41983513, 2.00160487, -1.63826986], [ 1.61948775, -0.88640526, -0.06100169, 2.00160487, 1.58391968], [ 1.63680847, -0.88640526, 0.58489852, 2.26879087, -1.32769738], [ 1.6541292 , -0.88640526, -0.27630176, 2.26879087, 1.11806095], [ 1.67144992, -0.88640526, 0.44136514, 2.49780745, -0.86183865], [ 1.68877065, 1.12815215, -0.49160182, 2.49780745, 0.92395314], [ 1.70609137, 1.12815215, -0.49160182, 2.91767117, -1.25005425], [ 1.7234121 , 1.12815215, -0.6351352 , 2.91767117, 1.27334719]])
```

9. Perform any of the clustering algorithms 10. Add the cluster data with the primary dataset

```
x = data.iloc[:, [3, 4]].values
from sklearn.cluster import.KMeans..
wcss_list=.[]...
for.i.in.range(1,.11):..
....kmeans.=.KMeans(n_clusters=i,.init='k-means++',.random_state=.42)..
....kmeans.fit(x)..
....wcss_list.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss_list)
plt.title('The Elobw Method Graph')
plt.xlabel('Number of clusters(k)')
plt.ylabel('wcss_list')
plt.show()
```



```
kmeans = KMeans(n_clusters=5, init='k-means++', random_state= 42)
y_predict= kmeans.fit_predict(x)
plt.scatter(x[y_predict == 0, 0], x[y_predict == 0, 1], s = 100, c = 'blue',
```

```
plt.scatter(x[y_predict == 1, 0], x[y_predict == 1, 1], s = 100, c = 'green',
plt.scatter(x[y_predict == 2, 0], x[y_predict == 2, 1], s = 100, c = 'red', la
plt.scatter(x[y_predict == 3, 0], x[y_predict == 3, 1], s = 100, c = 'cyan',
plt.scatter(x[y_predict == 4, 0], x[y_predict == 4, 1], s = 100, c = 'magenta
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s =
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```


11. Split the data into dependent and independent

variables

```
Saved successfully!
y=data['Age']
y.head()
    0
         19.0
    1
         21.0
    2
         20.0
    3
         23.0
         31.0
    Name: Age, dtype: float64
#independent
x=data.drop(columns=['Age'],axis=1)
x.head()
```

	CustomerID	Gender	Annual Income (k\$)	Spending Score (1-100)
0	1	1	15	39
1	2	1	15	81
2	3	0	16	6
3	4	0	16	77
4	5	0	17	40

data=pd.get_dummies(data,columns=['Age'])
data.head()

	CustomerID	Gender	Annual Income (k\$)		Age_18.0	Age_19.0	Age_20.0	Age_21.0	Age_22.
0	1	1	15	39	0	1	0	0	
1	2	1	15	81	0	0	0	1	
2	3	0	16	6	0	0	1	0	
3	4	0	16	77	0	0	0	0	
4	5	0	17	40	0	0	0	0	
5 rc	ws × 55 colum	nns							
4									•

12. Split the data into training and testing

- → 13. Build the Model
 - 14. Train the Model
 - 15. Test the Model
 - 16. Measure the performance using Evaluation Metrics.

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
x_train.shape
     (160, 4)
x_test.shape
     (40, 4)
from sklearn.linear model import LogisticRegression
model = LogisticRegression()
 Saved successfully!
    /usr/local/lib/python3.7/dist-packages/sklearn/linear model/ logistic.py:818: Convergence
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
      extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
    LogisticRegression()
```

train_pred = model.predict(x_train)

train pred

```
array([57., 35., 60., 32., 34., 35., 53., 32., 32., 32., 32., 32., 32.,
           32., 32., 53., 53., 36., 60., 35., 32., 32., 32., 21., 32., 32.,
           35., 39., 35., 32., 32., 32., 32., 34., 32., 32., 53., 35.,
           29., 32., 35., 34., 32., 32., 35., 53., 20., 41., 32., 35., 53.,
           47., 35., 47., 34., 32., 32., 32., 57., 32., 35., 35., 32.,
           32., 32., 35., 32., 35., 32., 20., 20., 32., 21., 39., 21., 32.,
           32., 20., 21., 32., 32., 35., 32., 32., 21., 32., 34., 45., 53.,
           35., 32., 32., 39., 32., 57., 32., 32., 21., 32., 32., 35., 35.,
           35., 21., 32., 52., 60., 32., 32., 32., 21., 53., 32., 35., 32.,
           59., 53., 60., 32., 32., 35., 34., 29., 34., 53., 32., 32., 32.,
           21., 32., 32., 32., 34., 32., 32., 32., 21., 32., 32.,
           34., 32., 35., 35., 57., 32., 35., 32., 53., 21., 21., 32., 32.,
           37., 32., 35., 34.])
test_pred= model.predict(x_test)
test_pred
     array([53., 34., 32., 32., 28., 34., 21., 32., 53., 34., 35., 32., 32.,
           34., 32., 21., 21., 34., 35., 32., 32., 29., 35., 28., 35., 29.,
           32., 32., 32., 53., 35., 20., 34., 32., 53., 32., 32., 35., 32.,
           32.])
from sklearn.metrics import accuracy_score,confusion_matrix,classification_re
accuracy_score(y_test,test_pred)
    0.025
accuracy_score(y_train,train_pred)
    0.1
                                × )red)
 Saved successfully!
     array([[0, 0, 0, ..., 0, 0, 0],
           [0, 0, 0, \ldots, 0, 0, 0]])
pd.crosstab(y_test,test_pred)
```

	col_0	20.0	21.0	28.0	29.0	32.0	34.0	35.0	53.0
	Age								
	18.0	0	1	0	0	0	0	0	0
	19.0	0	0	0	0	1	0	1	0
	22.0	0	1	0	0	0	0	0	0
	23.0	0	1	0	0	0	0	0	0
	24.0	0	0	0	0	0	0	1	0
	27.0	0	0	1	0	0	0	0	0
	28.0	0	0	0	1	0	0	0	0
	29.0	0	0	0	0	1	0	0	0
	30.0	0	0	1	0	1	0	1	0
	31.0	0	0	0	0	1	0	1	0
	35.0	0	0	0	0	1	0	1	0
	36.0	0	0	0	0	1	0	0	0
	37.0	0	0	0	0	1	0	0	0
	38.0	0	0	0	0	1	0	0	0
	39.0	0	0	0	1	0	0	0	0
	40.0	0	0	0	0	1	1	0	0
	43.0	0	0	0	0	0	1	0	0
	44.0	0	0	0	0	0	1	0	0
	46.0	0	0	0	0	1	1	0	1
Save	ed succes	ssfullv!			×	0	2	0	0
		-	-	_	-	2	0	0	0
	49.0	0	0	0	0	0	0	0	1
	52.0	0	0	0	0	0	0	0	1
	54.0	0	0	0	0	1	0	0	0
	57.0	0	0	0	0	1	0	0	0
	58.0	0	0	0	0	0	0	0	1
	59.0	0	0	0	0	1	0	0	0
	t(clas		^	^	^		^	^ .	^
I D	エィクしつく	$c_1 + 16$	TION	nana	2PT / 1/	TACT	TACT	nnad	1 1

print(classification_report(y_test,test_pred))

0/22, 0.00 1 111				, toolgilliont	mpymb colub
₽		precision	recall	f1-score	support
	18.0	0.00	0.00	0.00	1
	19.0	0.00	0.00	0.00	2
	20.0	0.00	0.00	0.00	0
	21.0	0.00	0.00	0.00	0
	22.0	0.00	0.00	0.00	1
	23.0	0.00	0.00	0.00	1
	24.0	0.00	0.00	0.00	1
	27.0	0.00	0.00	0.00	1
	28.0	0.00	0.00	0.00	1
	29.0	0.00	0.00	0.00	1
	30.0	0.00	0.00	0.00	3
	31.0	0.00	0.00	0.00	2
	32.0	0.00	0.00	0.00	0
	34.0	0.00	0.00	0.00	0
	35.0	0.17	0.50	0.25	2
	36.0	0.00	0.00	0.00	1
	37.0	0.00	0.00	0.00	1
	38.0	0.00	0.00	0.00	1
	39.0	0.00	0.00	0.00	1
	40.0	0.00	0.00	0.00	2
	43.0	0.00	0.00	0.00	1
	44.0	0.00	0.00	0.00	1
	46.0	0.00	0.00	0.00	3
	47.0	0.00	0.00	0.00	3
	48.0	0.00	0.00	0.00	2
	49.0	0.00	0.00	0.00	1
	52.0	0.00	0.00	0.00	1
	53.0	0.00	0.00	0.00	0
	54.0	0.00	0.00	0.00	1
	57.0	0.00	0.00	0.00	1
	58.0	0.00	0.00	0.00	1
	59.0	0.00	0.00	0.00	1
	66.0	0.00	0.00	0.00	1
	70.0	0.00	0.00	0.00	1
a	ccuracy			0.03	40
			01	0.01	40
Saved suc	cessfully!		× 03	0.01	40

```
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine
    _warn_prf(average, modifier, msg_start, len(result))
```

Colab paid products - Cancel contracts here

×

Saved successfully!