Vector Space

- Space Rⁿ consists of all column vectors with n components.
 Ex: R²: x-y plane
- A real vector space is a set of vectors together with 8 rules for vector addition and scalar multiplication. A vector produced by addition and scalar multiplication must be within the space.
- 8 rules to be satisfied:
 - 1. x+y=y+x
 - 2. x+(y+z)=(x+y)+z
 - 3. x+0=x for all x, where 0 is a unique zero vector
 - 4. For each x, there exists a unique -x such that x+(-x)=0
 - 5. 1x=x
 - 6. $(c_1c_2)x=c_1(c_2x)$
 - 7. c(x+y)=cx+cy
 - 8. $(c_1+c_2)x=c_1x+c_2x$

Vector Subspace

Any plane that contains the origin in the R³ space is itself
a space. Why? This plane is a subspace inside the original
space R³

Definition:

A subspace of a vector space is a nonempty subset that satisfies:

- (i) x and y are in the subspace. Then, x+y is in the subspace
- (ii) x is in the subspace. Then, cx is in the subspace
- A subspace is *closed* under addition and scalar multiplication
- Zero vector must be contained in every subspace: rule (ii)
 with scalar c=0.
- The smallest possible vector space: zero vector (zero-dimensional space)
- The largest possible: the original space.

Example: Is the first quadrant $(x \ge 0, y \ge 0)$ a subspace?

Example: Sets of lower triangular and symmetric matrices

Vector Subspace and Column Space of *A*

$$\begin{bmatrix} 1 & 0 \\ 5 & 4 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- 3 equations and 2 unknowns (m>n): usually no solution
- The system Ax=b is solvable if and only if the vector b can be expressed as a combination of the columns of A.

$$u \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix} + v \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

• The set of all combination of the columns of A: the column space of A denoted by $\mathcal{B}(A)$ (the plane spanned by the two columns in our example)

The equation Ax=b can be solved if and only if b lies in $\mathfrak{R}(A)$. For an m by n matrix A this will be a subspace of \mathbb{R}^m since the columns have m components.

3

Rule (i): b=Ax and b'=Ax' then b+b'=A(x+x')

Rule (ii): b = Ax then cb = A(cx)

Nullspace of A

- The nullspace of a matrix consists of all vectors x such that Ax=0. It is denoted by $\mathcal{S}(A)$. It is a subspace of \mathbb{R}^n , just as the column space was a subspace of \mathbb{R}^m .
- Requirement (i): If Ax=0 and Ax'=0 then A(x+x')=0
- Requirement (ii): If Ax=0 then A(cx)=0
- When Ax=b and $b\neq 0$, vectors x cannot form a subspace. (why?)
- Ax=0 is called *homogeneous* equation.

$$\begin{bmatrix} 1 & 0 \\ 5 & 4 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• Only u=v=0, that is, zero vector space is the nullspace

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 5 & 4 & 9 \\ 2 & 4 & 6 \end{bmatrix}$$

 B has the same column space as A, but it has the following nullspace:

$$\begin{bmatrix} 1 & 0 & 1 \\ 5 & 4 & 9 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} c \\ c \\ -c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

where c ranges from $-\infty$ to ∞ .

Note: the nullspace is a line passing through (0, 0, 0).

Elimination on a m by n Matrix A

ax=b

Nonsingular: $a \neq 0$, x = b/a, unique. (Ex. 3x=4)

Undetermined: a=0 and b=0, infinitely many solutions

Inconsistent: a=0 and $b \neq 0$, no solution

- For Ax=b with square matrices, $a\neq 0 \equiv A$ is invertible.
- For rectangular matrices, existence with uniqueness is impossible.

$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix} Gaussian Elimination \Rightarrow \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix}$$

• Echelon Form:

$$U = \begin{bmatrix} \textcircled{\circledast} & * & * & * & * & * & * & * & * \\ \hline 0 & \textcircled{\circledast} & * & * & * & * & * & * \\ 0 & 0 & 0 & \textcircled{\circledast} & * & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \textcircled{\$}$$

To any A (m by n) with a corresponding permutation matrix P, PA=LU, where L is m by m with unit diagonal and U is a m by n echelon matrix.

Nullspace: $Ax=0 \equiv Ux=0$

• $Ax=0 \Rightarrow L^{-1}Ax=0 \Rightarrow Ux=0$; $Ux=0 \Rightarrow LUx=0 \Rightarrow Ax=0$

$$Ux = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{cccc}
u = & -3v + y \\
v = & v \\
w = & -y \\
y = & y
\end{array}
\Rightarrow x = \begin{bmatrix}
-3v + y \\
v \\
-y \\
y
\end{bmatrix} = v \begin{bmatrix}
-3 \\
1 \\
0 \\
-1 \\
1
\end{bmatrix} + y \begin{bmatrix}
1 \\
0 \\
-1 \\
1
\end{bmatrix}$$

- The result can be obtained exactly by back-substitution.
- Pivot variables: u and w corresponding to pivots 1 and 3.
- Free variables: v and y corresponding to zero pivots
- Nullspace of A is a two-dimensional subspace in R⁴
- If a homogeneous system Ax=0 has more unknowns than equations (n>m), it has a nontrivial solution: There is a solution x other than the trivial solution x=0.
- If n>m, number of free variables $\geq n-m$. $(m \geq \# \text{ of pivots})$ The nullspace dimension = no. of free variables $\geq n-m$.

Complete Solution of Ax=b

When
$$b \neq 0$$
, $Ux = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 - 2b_1 \\ b_3 - 2b_2 + 5b_1 \end{bmatrix}$

- If the system is solvable, $b_3-2b_2+5b_1$ must be 0, i.e. the last equation can be omitted, and the system becomes a 2 by 4 system (2 equations and 4 unknowns)
- By columns, b must lie in the plane by columns of A and this plane is (b_1, b_2, b_3) satisfying $5b_1-2b_2+b_3=0$ or the plane with a perpendicular vector (5, -2, 1), geometrically.
- Let b=(1, 5, 5),

$$Ux = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} \rightarrow \begin{matrix} u = 1 - 3v - 3w - 2y \\ w = 1 \end{matrix} \rightarrow \begin{matrix} u = -2 - 3v + y \\ w = 1 \end{matrix} \rightarrow \begin{matrix} v = v \\ w = 1 \end{matrix} \rightarrow \begin{matrix} v = v \\ w = 1 \end{matrix} \rightarrow \begin{matrix} v = v \\ y = y \end{matrix} \Rightarrow x = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + v \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

• $x_{complete} = x_{particular} + x_{nullspace}$ where $x_{particular}$ can be found by setting all free variables to be zero.

$Ax=b \Rightarrow Ux=c$ back-substitution $\Rightarrow Rx=d$

• Example:

$$\begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$$

• Nullspace: $Ax=0\equiv Ux=0\equiv Rx=0$

$$Rx = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{array}{l} u + 3v - y = 0 \\ w + y = 0 \end{array} \rightarrow \begin{array}{l} u = -3v + y \\ w = -y \end{array}$$

• $Ux=c \Rightarrow Rx=d$:

$$Rx = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = d = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \rightarrow \underbrace{u + 3v - y = -2}_{w + y = 1} \rightarrow \underbrace{u = -2 - 3v + y}_{w = 1} - y$$

$$u = -2 - 3v + y$$

$$v = v$$

$$w = 1 - y$$

$$y = y$$

$$\Rightarrow x = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + v \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

Complete Solution of Ax=b: Summary

- If there are r pivots, there are r pivot variables and n-r free variables.
- The number of pivots r is also called the rank of the $m \times n$ matrix A.

Summary: Ax=b (A is $m \times n$) reduced to Ux=c and Rx=d

- If r<m, last m-r rows of U are zero and the last m-r components of c must be zero for the system to be solvable.
- 2. If r=m, there is always a solution.
- 3. The complete solution is the sum of a particular solution (with all free variables zero) and a nullspace solution (with the *n-r* free variables as independent parameters).
- 4. If r=n, there are no free variables and the nullspace contains only x=0.
- 5. The number r is called the rank of the matrix A
- If r=n, the only solution is $x_{particular}$.
- If r=m, no constraints on b and the column space is \mathbb{R}^m .

Linear Independence

- The rank r counts the number of linearly independent rows in matrix A.
- If only the trivial combination gives zero, so that $c_1v_1 + \cdots + c_kv_k = 0$ only happens when $c_1 = c_2 = \cdots = c_k = 0$, then the vectors v_1, \ldots, v_k are linearly independent. Otherwise they are linearly dependent and <u>one of them is a linear</u> combination of the others.
- A random choice of three vectors in R³, without any special accident, should produce linear independence.
- Columns of the triangular matrix must be linearly independent.

Example:
$$A = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{bmatrix} \rightarrow c_1 \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

By columns, the c_3 must first be zero, then $c_2=0$, then $c_1=0$.

- The r nonzero row of an echelon matrix U are linearly independent, and so are the r columns that contain pivots.
- A set of n vectors in \mathbb{R}^m must be linearly dependent if n > m

Spanning a Subspace by Basis

• If a vector space V consists of all linear combinations of the particular vectors $w_1, w_2, ..., w_l$, then these vectors span the space. In other words, every vector v in V can be expressed as some combination of the w's:

 $v = c_1 w_1 + \cdots + c_l w_l$ for some coefficients c_i .

- Column space of A = the space spanned by the columns
- $e_1, e_2, ..., e_n$ are not the only vectors that span \mathbb{R}^n !
- Independence involves the nullspace of A, and spanning involves the column space of A.
- A basis for a vector space is a set of vectors: (1) <u>linearly</u> independent (2) <u>spanning the space</u>.
- If $v = a_1v_1 + \cdots + a_kv_k$ and $v = b_1v_1 + \cdots + b_kv_k$, then $0 = (a_1 b_1)v_1 + \cdots + (a_k b_k)v_k$. Every coeff. a_i — b_i must be zero due to independence. A vector can uniquely expressed by a linear combination of a basis.
- A vector space has infinitely many bases.
- For U, the columns that contain pivots are a basis for the column space of U. But it is not the column space of A.

Dimension of a Vector Space

 All possible bases contain the same number of vectors. The number of vectors in bases expresses the number of degree of freedom of the space and is called the *dimension* of the space.

Proof: Let v_1, \dots, v_m and w_1, \dots, w_n , where m < n, be the bases for space V. Then, w_j can be expressed by the combination of v_i : $w_j = \sum_{i=1}^m a_{ij} v_i$. That is, W = VA where w's are columns of W and v's are columns of V. Since m < n, $A_{m \times n} c = 0$ must have nontrivial solutions. This leads to VAc = 0 or Wc = 0. Since $c \ne 0$, columns in W are dependent! Contradiction.

- The dimension of the space \mathbb{R}^n is n.
- A basis is a maximal independent set and also a minimal spanning set of vectors.
- "basis of a matrix", "rank of a space", "dimension of a basis" are meaningless in linear algebra.
- Now, what is the relationship between the "dimension of the column space" and the "rank of the matrix"?

Four Fundamental Subspaces

Two ways of describing subspaces:

- 1. Space spanned by a given set of vectors (column space)
- 2. Space subject to a list of constraints (nullspace)
- Four subspaces of matrix A:
 - 1. Column space, $\mathcal{R}(A)$
 - 2. Nullspace, $\mathcal{N}(A)$
 - 3. Row space or column space of A^T , $\mathcal{R}(A^T)$
 - 4. Left nullspace or nullspace of A^T , $\mathcal{N}(A^T)$
- $\mathcal{S}(A)$ and $\mathcal{R}(A^T)$ are subspaces of \mathbb{R}^n
- $\mathcal{R}(A)$ and $\mathcal{N}(A^T)$ are subspace of \mathbb{R}^m
- It is easier to find subspaces of U instead of A.
- Problem: connect space for U to spaces for A.

Row Space of *A*

$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix} \Rightarrow U = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- Nonzero rows of U are independent (why?), and its row space has dimension r.
- The row space of A has the same dimension r as the row space of U, and it has the same bases, because the two row spaces are the same.

Reason: The rows in U are just combinations of the original rows in A. (Remember what Gaussian elimination does) And it is those combinations that make up the row space! The row space of U contains nothing new.

- Dimension of row space for A = rank of A = r
- m-r rows should be discarded from A. But it is easier to discard rows in U than in A.
- For row space, we don't work with A^T . We work with the rows of A.

Nullspace of A

- Elimination process is to simplify the equations without changing any of the solutions even if b=0.
- Nullspace of A = solution space of Ax=0
 = solution space of Ux=0 = nullspace of U
- Dimension of nullspace for A = n r = no. of free variables
 - Free variables are variables corresponding to the columns of \boldsymbol{U} that do not contain pivots.
 - We give to each free variable the value 1, to the other free variables the value 0, and solve *Ux*=0.
 - We can therefore find n-r vectors. The solution space
 is then form by the combinations of these n-r vectors.
 - These *n-r* vectors are the basis for $\mathcal{S}(A)$

$$Ux = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad x = \begin{bmatrix} -3v + y \\ v \\ -y \\ y \end{bmatrix} = v \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

- The nullspace is also called the kernel of A.
- Its dimension n-r is called the *nullity*.

Column Space of A

- Column space of A: range of A. x is in the domain and f(x) is in the range. Here, f(x)=Ax. The range of $A=\Re(A)$
- Range is the collection of all combinations of columns.
- Problem: $\Re(U) \neq \Re(A)$ but how to derive $\Re(A)$ from $\Re(U)$
- Dimension of $\Re(U)$ =Dimension of $\Re(A)$
- Basis of $\Re(U)$ = columns with pivots \rightarrow the corresponding columns in A = Basis of $\Re(A)$

Reason: Solutions of $Ux=0 \equiv$ Solutions of Ax=0

If
$$x = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$
 is the solution then $[u_1] - [u_3] + [u_4] = 0$ and

$$[a_1] - [a_3] + [a_4] = 0$$

These are the dependence relationships among columns.

Dependence of columns of $U \equiv$ Dependence of columns of A

• Independent columns of $U \Leftrightarrow$ corresponding independent columns of A

Row Rank = Column Rank

• No. of independent columns = no. of independent rows

$$U = \begin{bmatrix} d_1 & * & * & * & * & * \\ 0 & 0 & 0 & d_2 & * & * \\ 0 & 0 & 0 & 0 & 0 & d_3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

• Rank = $r \Rightarrow m \rightarrow r$ rows are zero rows \Rightarrow only r nonzero components in columns \Rightarrow only r columns are indep.

$$c_{I}\begin{bmatrix} d_{I} \\ 0 \\ 0 \\ 0 \end{bmatrix} + c_{2}\begin{bmatrix} * \\ d_{2} \\ 0 \\ 0 \end{bmatrix} + c_{3}\begin{bmatrix} * \\ * \\ d_{3} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow c_{3}, c_{2} \text{ and } c_{I} \text{must be zero}$$

The three columns with pivots must be independent.

- Ux=0 if and only if $Ax=0 \Rightarrow$ The corresponding columns in A are also the basis for $\mathcal{R}(A)$
- For both $\mathcal{R}(A^T)$ and $\mathcal{R}(A)$, we only work with A and perform elimination on A.
- $\mathfrak{R}(A^{\mathrm{T}})$ and $\mathfrak{R}(A)$ have the same dimension and can be found at the same time from U.

Left Nullspace of A

• $\mathcal{N}(A^T) \rightarrow \text{nullspace of } A^T \rightarrow A^T y = 0 \rightarrow y^T A = 0 \rightarrow \text{left}$ nullspace of A

$$y^{\mathrm{T}}A = \begin{bmatrix} y_1 & \cdots & y_m \end{bmatrix} \begin{bmatrix} A & \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix}$$

- y^{T} is an operation performed on rows of A to give zeros
- Dimension of column space + dimension of nullspace =
 number of columns
- For A^{T} , there are m columns: Dimension of $\mathcal{N}(A^{T})$ + dimension of $\mathcal{R}(A^{T}) = m \Rightarrow$
- Dimension of $\mathcal{N}(A^T) = m r$
- Find *v*?
 - 1. PA = LU 2. $L^{-1}PA = U$
 - 3. The last *m-r* rows of $L^{-1}P$ multiply A to give *m-r* zero rows in U. These last *m-r* rows of $L^{-1}P$ are the basis for $\mathcal{N}(A^T)$

$$L^{-1}PAx = Ux = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = L^{-1}Pb = \begin{bmatrix} b_1 \\ b_2 - 2b_2 \\ b_3 - 2b_2 + 5b_1 \end{bmatrix} \Rightarrow \begin{array}{l} m-r = 3-2 = 1 \\ y = \begin{bmatrix} 5 & -2 & 1 \end{bmatrix}$$

Summary of Subspaces

Fundamental Theorem of Linear Algebra, Part I

- 1. $\mathcal{R}(A)$ = column space of A; dimension r
- 2. $\mathcal{N}(A)$ = nullspace of A; dimension n-r
- 3. $\mathcal{R}(A^T)$ = row space of A; dimension r
- 4. $\mathcal{N}(A^T)$ = left nullspace of A; dimension m-r

Example:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}, m=n=2, r=1 \Rightarrow$$

$$L^{-1}A = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = U$$

- **1. column space:** $c \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ **2. nullspace:** $c \begin{bmatrix} -2 \\ 1 \end{bmatrix}$
- 3. row space: $c \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 4. left nullspace: $c \begin{bmatrix} -3 \\ 1 \end{bmatrix}$

Existence of Inverses

• If A has a left inverse and a right inverse, then

$$B=BI=B(AC)=(BA)C=IC=C$$

- An inverse exists only when the rank is as large as possible
- What we like to explain (prove):
 - 1. $r=m \ (m \le n) \Rightarrow$ a right-inverse exist $\Rightarrow A_{m \times n} C_{n \times m} = I_{m \times m}$ There exists at least one solution for Ax=b
 - 2. r=n $(n \le m) \rightarrow$ a left-inverse exist $\rightarrow B_{n \times m} A_{m \times n} = I_{n \times n}$ If there exist solution for Ax=b, the solution is unique
- Let $B = (A^{T}A)^{-1}A^{T}$ and $C = A^{T}(AA^{T})^{-1}$. We will prove $(A^{T}A)^{-1}$ exists if the rank=n and $(AA^{T})^{-1}$ exists if the rank=m in Chapter 3.
- Another approach:

• One proof:

$$AC=I$$
 or $A[x_1 \ x_2 \ \cdots \ x_m] = [e_1 \ e_2 \ \cdots \ e_m]$

Look at every $Ax_i=e_i$: To have solutions x_i 's, all e_i 's must be in the column space of A. But e_1, e_2, \ldots, e_m fill up the entire R^m space. That is, column space of A must fill up the space of $R^m \rightarrow r=m$.

Existence of Inverses – Example 1

Example 1: $A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \end{bmatrix} \rightarrow r = m = 2$

$$AC = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1/4 & 0 \\ 0 & 1/5 \\ c_{31} & c_{32} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

where c_{31} and c_{32} can be chosen arbitrarily.

- → There are many right-inverses!
- For solution of Ax=b: Substitute $x=Cb \Rightarrow Ax=ACb=Ib=b$

$$x = Cb = \begin{bmatrix} 1/4 & 0 \\ 0 & 1/5 \\ c_{31} & c_{32} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} b_1/4 \\ b_2/5 \\ c_{31}b_1 + c_{32}b_2 \end{bmatrix}$$

Solutions exist but are not unique

$$C = A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} = \begin{bmatrix} 4 & 0 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/16 & 0 \\ 0 & 1/25 \end{bmatrix} = \begin{bmatrix} 1/4 & 0 \\ 0 & 1/5 \\ 0 & 0 \end{bmatrix}$$

• In this formula, $c_{31}=c_{32}=0 \Rightarrow pseudoinverse$

Existence of Inverses – Example 2

Example 2: $A = \begin{bmatrix} 4 & 0 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} \rightarrow r = n = 2$

$$BA = \begin{bmatrix} 1/4 & 0 & \beta_{13} \\ 0 & 1/5 & \beta_{23} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

where β_{13} and β_{23} can be chosen arbitrarily.

- → many left-inverses
- For Ax = b, $Ax = \begin{bmatrix} 4 & 0 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$
 - ⇒ solvable only if $\underline{b}_3 = \underline{0}$ → $\begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$
- Solution: $BAx=Bb \Rightarrow Ix=Bb \Rightarrow x=Bb$

$$x = Bb = \begin{bmatrix} 1/4 & 0 & \beta_{13} \\ 0 & 1/5 & \beta_{23} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{4}b_1 + \beta_{13}b_3 \\ \frac{1}{5}b_2 + \beta_{23}b_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{4}b_1 \\ \frac{1}{5}b_2 \end{bmatrix}$$

→ If the solution exists, it must be unique!

Inverse of Square Matrix A

- Existence implies uniqueness and uniqueness implies existence, when the matrix is square $\rightarrow r = m = n$
- Square matrix A invertible (nonsingular): sufficient and necessary test list
- 1. The columns span \mathbb{R}^m , so Ax=b has at least on solution for every b.
- 2. The columns are independent, so $Ax=\theta$ has only the solution $x=\theta$.
- 3. The rows of A span \mathbb{R}^n .
- 4. The rows are linearly independent.
- 5. Elimination can be completed: PA=LDU, with all $d_{i\neq 0}$
- 6. There exists a matrix A^{-1} such that $AA^{-1}=A^{-1}A=I$.
- 7. The determinant of A is not zero.
- 8. Zero is not an eigenvalue of A.
- 9. $A^{T}A$ is positive definite

Vandermonde Matrix

• For any unknown function f(t), if we can make n observations: $f(t_1)=b_1$, $f(t_2)=b_2$,..., $f(t_n)=b_n$, then we can find exactly one polynomial function of degree n-1 to fit these observations.

That is,
$$\begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & t_n & t_n^2 & \cdots & t_n^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$
 has only one

$$\mathbf{solution} \Rightarrow \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & t_n & t_n^2 & \cdots & t_n^{n-1} \end{bmatrix} \mathbf{must be nonsingular}$$

(called Vandermonde's matrix.)

• Another perspective: A polynomial P(t) of degree n-1 can have at most n-1 roots (P(t)=0). If there exist n points t_1 , $t_2,..., t_n$ that make $P(t_i)=0$, then this polynomial must be $0+0t+0t^2+\cdots+0t^{n-1}$.

If
$$\begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & t_n & t_n^2 & \cdots & t_n^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ x_n \end{bmatrix}$$
 then
$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Matrices of Rank One

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 2 \\ 8 & 4 & 4 \\ -2 & -1 & -1 \end{bmatrix}$$

 \Rightarrow

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 2 \\ 8 & 4 & 4 \\ -2 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 4 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$$

• For any matrix of rank one:

Every matrix of rank one has the simple form $A=uv^T$

- The rows of A are all multiples of the same vector v^T
- The columns of A are all multiples of the same vector u
- The row space and column space are lines.