ÖVEGES JÓZSEF Fizikaverseny 2013. április 20. II. forduló

Öveges József (1895-1979) a jeles kísérletező fizikatanár, természettudományos kultúránk igaz ápolója.

VIII. osztály

I. feladat

1) Egy hidraulikus présnél a dugattyúk felületének aránya k. Mekkora erő hat a nagy dugattyúra (munkadugattyúra) és milyen magasra emelkedik ez a dugattyú, ha a kis dugattyú l_1 elmozdulása esetén a végzett munka L_1 .

Készítsd el a folyadékprés működési vázlatát is.

Adatok: k = 1:100, $l_1 = 25$ cm, $L_1 = 100$ J.

4 p

2)

Különböző mélységekbe, vízbe merítettünk három darab fémkockát. Az 1-es kocka rézből van, a 2-es vasból, a 3-as alumíniumból van. Mind a három fémkocka éle egyenlő $(a_1 = a_2 = a_3 = a = 1, 2 \ cm)$, a vas sűrűsége 7,8 g/cm^3 , a rézé 8900 kg/m^3 , az alumíniumé $\rho_3 = 2700 \ kg/m^3$, a víz sűrűsége 1 g/cm^3 .

- a) Melyik fémkockára hat a legnagyobb Arkhimédész-i erő (a felhajtó erő)?
- b) Rajzold be az 1-es kockára ható erőket, és számítsd ki a fonálban fellépő feszítőerőt!

6 p

II. feladat

Az m_k tömegű kaloriméterben t_0 hőmérsékletű és m_v tömegű víz van. Mi lesz, ha a kaloriméterbe egyidejűleg még bevezetünk m_g tömegű, t_g hőmérsékletű vízgőzt és m_j tömegű, t_g hőmérsékletű jeget?

Adatok: a kaloriméter sárgarézből készült m_k = 150 g, fajhője c_k = 378 J/kgK, t_0 = 0 °C, m_{viz} = 0,270 kg, m_g = 15 g, t_g = 100 °C, λ_g = 2250 kJ/kg, m_j = 60 g, t_j = -10 °C, c_j = 2090 J/kgK, λ_j = 334000 J/kg, c_{viz} = 4200 J/kgK.

III. feladat

- 1) Mi történik egy hajó merülési mélységével, ha a hajó a folyóból a sós tengervízbe úszik? Válaszodat indokold meg! Indokold meg számítással is!
- 2) Az ábrán látható kapcsolásban számítsátok ki az R_1 ellenállás sarkain (két végén) fellépő feszültséget. Határozzátok meg a rövidzárási áramot is.

Adatok: E = 24 V, $r = 1 \Omega$, $R_1 = 10 \Omega$, $R_2 = 20 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$.

10 p

IV. feladat

Az elektromos energiát az erőművektől távvezetéken szállítják (szállítóvonal) az R ellenállású fogyasztóhoz. Az erőműtől d távolságra levő fogyasztó U feszültség mellett P teljesítményt vesz fel. A szállítóvonal vezetékének keresztmetszete S, fajlagos ellenállása ρ .

- a) Számítsátok ki a vezetéken fellépő teljesítményt.
- b) Számítsátok ki, hogy mekkora kell legyen a kapocsfeszültség az erőműnél, ahhoz, hogy a fogyasztón U feszültség legyen.
- c) Mennyi az energiaátadás hatásfoka ezen a vonalon?

Adottak: d = 2 km, U = 220 V, P = 5 kW, $S = 8 \text{ mm}^2$, $\rho = 2.8 \cdot 10^{-8} \Omega m$ (alumínium).