Description of Physically-Informed Neural Network (PINN) potential

January 8, 2021

The *pinn* potential file is formatted as follows:

- Comment includes tags such as DATE, UNITS, CONTRIBUTOR, and CITATION.
- Comment
- Comment
- $\langle nv \rangle \langle G_0 \rangle \langle nf \rangle$ format version, reference Gi, type of activation function.
 - Format version (nv): 2 (current version) which means all Gis are transformed by inverse sine hyperbolic function after shifting by the reference value, G_0 .
 - Type of activation function (nf): 1 stands for $f(u) = \frac{1}{2} \tanh(\frac{u}{2})$.
- $\langle nel \rangle$ number of chemical species in the system.
- $\langle symbol \rangle \langle mass \rangle$ species 1.
- $\langle symbol \rangle \langle mass \rangle$ species 2.
- ...
- $\langle symbol \rangle \langle mass \rangle$ nel^{th} species.
- $\langle unused \rangle \langle unused \rangle \langle R_c \rangle \langle d_c \rangle \langle \sigma \rangle$
 - $-r_c$: cutoff distance
 - $-d_c$: cutoff range
 - $-\sigma$: width of a gaussian
- $\langle nl \rangle \langle P_0 \rangle \langle P_1 \rangle \dots \langle P_{nl-1} \rangle$ number of orders of the Legendre polynomials (nl) followed by their orders in ascending order, e.g. 0, 1, 2, 4, 6 etc.
- $\langle nS \rangle \{r_0^{(s=1,2,\dots nS)}\}$ number of gaussian radii (nS) and list of their values.
- $\langle nNL \rangle$ $\{N_1, N_2, ...N_{nNL}\}$ number of ANN layers and list of nodes in the input, hidden and output layers respectively.
 - There are two kinds of PINN potentials. The number of nodes in the input layer can be nel*nel*(nel+1)*nl*nS/2 or nel*(nel+1)*nl*nS/2 depending on Kind 1 or Kind 2.

- $\langle 0/1 \rangle$ $\{\chi_i; i=1,2,...,N\}$ flag and list of base BOP parameters of given chemical species in the system spanned over several lines.
 - Flag: if 0, base BO parameters not used; if 1, use base BO parameters.
 - N: number of nodes in the output layer equals (4*nel*nel+nel+3*nel*nel*nel).
 - As an example, the following is the order of base BOP parameters of a binary system:

Subscripts, $t_i (i = 1, 2, ..., nel)$, represents chemical species.

• $\{\{\mathbf{W}^i\}\{\mathbf{b}^i\}; i=1,2,..,nN\}$ - list of all NN weights and biases spanned over several lines; nN is the number of NN layers excluding the input layer. Elements of the first layer of the matrix, \mathbf{W}^i , are listed first.

Notes on feature vectors (Gis):

- Definition of structural parameters is described in "G. P. Purja Pun, V. Yamakov , J. Hickman , E. H. Glaessgen and Y. Mishin, Phys Rev Mat 4, 113807 (2020)".
- An input vector of structural parameters (fingerprints) follows a strict order. For a single component system with the Legendre polynomial orders, l=0,1,2,4,6, and Gaussian radii, $r_0^{(s)}(s=1,2,3,4,5,6)$, the order is $G_i^{(0,1)}$ $G_i^{(0,2)}$ $G_i^{(0,3)}$ $G_i^{(0,4)}$ $G_i^{(0,5)}$ $G_i^{(0,6)}$ $G_i^{(1,1)}$ $G_i^{(1,2)}$ $G_i^{(1,3)}$ $G_i^{(1,4)}$ $G_i^{(1,5)}$ $G_i^{(1,6)}$... $G_i^{(6,1)}$ $G_i^{(6,2)}$ $G_i^{(6,3)}$ $G_i^{(6,4)}$ $G_i^{(6,5)}$ $G_i^{(6,6)}$.s
- Feature vector in multicomponent system can be spanned based on chemical types of center atom, i, and its neighbors, j and k. For example, a binary system with chemical types A and B has a feature vector defined as

$$atom \ 1 \to A_i A_j A_k A_i A_j B_k A_i B_j B_k (0) (0) (0)$$

$$atom \ 2 \to (0) (0) (0) B_i A_j A_k B_i A_j B_k B_i B_j B_k$$

$$\dots$$

$$atom \ N \to (0) (0) (0) B_i A_j A_k B_i A_j B_k B_i B_j B_k$$

This description is based on PINN Kind 1. Each atom requires $n \times n \times (n+1)/2$ blocks of Gis, where n is the number of chemical species. For the binary system n equals 2. There are $n_s \times n_l$ elements

in each block of Gis where n_s and n_l represent numbers of gaussian positions, $r_0^{(s)}$, and Legendre polynomial orders, l, respectively.

For the same system, the Gis in PINN Kind 2 look like

$$atom \ 1 \to A_i A_j A_k A_i A_j B_k A_i B_j B_k$$

$$atom \ 2 \to B_i A_j A_k B_i A_j B_k B_i B_j B_k$$

$$\dots$$

$$atom \ N \to B_i A_j A_k B_i A_j B_k B_i B_j B_k$$