

Align Your Prompts: Test-Time Prompting using Distribution Alignment for Zero-Shot Generalization

Jameel Hassan¹, Hanan Gani¹, Noor Hussein¹, Uzair Khattak¹, Muzammal Naseer¹, Fahad Shahbaz Khan^{1,2}, Salman Khan^{1,3}

¹Mohamed Bin Zayed University of Artificial Intelligence ²Linköping University ³Autralian National University

Background

- Foundational Vision-Language (VL) models
 - Pre-trained models on large scale image-text pairs
 - Good generalization to unseen data
- Multi-modal prompt learning
 - Prompt learning Preserves model generalization, instead of overfitting

- Test-Time Prompt Tuning for efficient adaptation
 - An effective lightweight adaptation mechanism at test time for foundation models

Khattak et al. "Maple: Multi-modal prompt learning.

Problem Statement

- Adapting large scale Vision-Language models like CLIP at test time.
 - Light weight adaptation
 - Using a single sample for adaptation

Existing solution

- Prompt update using entropy minimization across augmented views
 - Fails to handle the distribution shift in test data

Test-time prompt tuning (Shu et al. 2022)

Problem Statement

- Adapting large scale Vision-Language models like CLIP at test time.
 - Light weight adaptation
 - Using a single sample for adaptation

Existing solution

- Prompt update using entropy minimization across augmented views
 - Fails to handle the distribution shift in test data

Test-time prompt tuning (Shu et al. 2022)

Prompt Align

- We explicitly handle the distibution shift in test data
 - The distribution aware prompts helps narrowing the distribution gap in the test domain
- We formulate a distribution alignment loss utilizing offline computed source data statistics
 - The test sample token distributions are aligned with the source data token distributions
- We study and validate the use of ImageNet as a proxy dataset for CLIP pre-training

(a) Our proposed PromptAlign method

Prompt Align Design

Token distribution statistics:

$$\begin{split} \boldsymbol{\mu}_l(\mathcal{T};\boldsymbol{p}) &= \frac{1}{N_k} \sum_{\mathbf{x} \in \mathcal{H}(X)} \tilde{\boldsymbol{X}}_{l,\mathbf{x}}^{\boldsymbol{p}} \quad, \\ \boldsymbol{\sigma}_l^{\boldsymbol{2}}(\mathcal{T};\boldsymbol{p}) &= \frac{1}{N_k} \sum_{\mathbf{x} \in \mathcal{H}(X)} \left(\tilde{\boldsymbol{X}}_{l,\mathbf{x}}^{\boldsymbol{p}} - \boldsymbol{\mu}_l(\mathcal{T};\boldsymbol{p}) \right)^2, \\ \hat{\boldsymbol{\mu}}_l &= \boldsymbol{\mu}_l(\mathcal{D}, \boldsymbol{\theta}_v) \quad \text{and} \quad \hat{\boldsymbol{\sigma}}_l^{\boldsymbol{2}} &= \boldsymbol{\sigma}_l^2(\mathcal{D}, \boldsymbol{\theta}_v) \end{split}$$

Alignment loss:

$$egin{align} \mathcal{L}_{ ext{align}} &= rac{1}{L} \sum_{l=1}^{L} igg(\|oldsymbol{\mu}_{l}(\mathcal{T}; oldsymbol{p}) - \hat{oldsymbol{\mu}}_{l}\|_{1} + \|oldsymbol{\sigma}_{l}^{oldsymbol{2}}(\mathcal{T}; oldsymbol{p}) - \hat{oldsymbol{\sigma}}_{l}^{oldsymbol{2}}\|_{1} igg). \ & \mathcal{L}_{ ext{final}} &= \mathcal{L}_{ ext{entropy}} + eta \mathcal{L}_{ ext{align}} \end{split}$$

Experiments

We conduct experiments on two generalization tasks

- Domain Generalization
 - Trained on ImageNet dataset
 - Evaluated on 4 Out of Distribution variants of ImageNet and PUG ImageNet variant
- Cross-dataset evaluation
 - Trained on ImageNet and tested on the 11 cross datasets

Experiments: Domain Generalization

Table 1: Effect of token distribution alignment strategy for domain generalization. The base model MaPLe is trained on ImageNet and evaluated on datasets with domain shifts.

	Imagenet V2	Imagenet Sketch	Imagenet A	Imagenet R	OOD Avg.
MaPLe [18] MaPLe+TPT	64.07 64.87	49.15 48.16	50.90 58.08	76.98 78.12	60.28 62.31
PromptAlign	65.29	50.23	59.37	79.33	63.55

	Imagenet V2	Imagenet Sketch	Imagenet A	Imagenet R	OOD Avg.
CLIP [28]	60.86	46.09	47.87	73.98	57.20
CLIP+TPT [32]	64.35	47.94	54.77	77.06	60.81
CoOp [46]	64.20	47.99	49.71	75.21	59.28
CoOp+TPT [32]	66.83	49.29	57.95	77.27	62.84
Co-CoOp [45]	64.07	48.75	50.63	76.18	59.91
Co-CoOp+TPT [32]	64.85	48.27	58.47	78.65	62.61
PromptAlign	65.29	50.23	59.37	79.33	63.55

Experiments: Domain Generalization

Evaluation on the recent Photorealistic Unreal Graphics (PUG) dataset

Table 3: Effect of token distribution alignment strategy for domain generalization. The base model MaPLe is trained on ImageNet and evaluated on PUG-ImageNet.

	Camera (Yaw/ Pitch/ Roll)	Pose (Yaw/ Pitch/ Roll)	Scale	Texture	Lighting	Worlds
MaPLe [18] MaPLe+TPT	48.73/ 39.93/ 32.13 57.04/ 45.99/ 39.23	48.10/ 28.40/ 27.80 56.26/ 35.64/ 33.26	46.90 54.87	37.90 43.73	15.50 22.52	32.13 42.00
PromptAlign	58.14/ 46.93/ 40.45	57.43/ 36.31/ 34.32	56.18	44.97	23.06	43.24

Bordes et al. "Pug: Photorealistic and semantically controllable synthetic data for representation learning."

Experiments: Cross Dataset

Table 4: **Comparison of PromptAlign in cross-dataset evaluation.** Prompt learning methods are trained on ImageNet and evaluated on cross-datasets.

	Caltech	Pets	Cars	Flowers	Food101	Aircraft	SUN397	DTD	EuroSAT	UCF101	Average
CLIP 28	93.35	88.25	65.48	67.44	83.65	23.67	62.59	44.27	42.01	65.13	63.58
CLIP+TPT 32	94.16	87.79	66.87	68.98	84.67	24.78	65.50	47.75	42.44	68.04	65.10
CoOp [46]	93.70	89.14	64.51	68.71	85.30	18.47	64.15	41.92	46.39	66.55	63.88
CoCoOp 45	93.79	90.46	64.90	70.85	83.97	22.29	66.89	45.45	39.23	68.44	64.63
ProDA 44	86.70	88.20	60.10	77.50	80.80	22.20	-	50.90	58.50	-	65.62
MaPLe	93.53	90.49	65.57	72.23	86.20	24.74	67.01	46.49	48.06	68.69	66.30
MaPLe+TPT	93.59	90.72	66.50	72.37	86.64	24.70	67.54	45.87	47.80	69.19	66.50
PromptAlign	94.01	90.76	68.50	72.39	86.65	24.80	67.54	47.24	47.86	69.47	66.92

Analysis of Distribution Alignment

Effect of the distribution alignment loss

Method	Entropy loss	Distribution alignment	Top-1 Acc.
MaPLe [18]	X	X	50.90
MaPLe+TPT	\checkmark	X	58.08
PromptAlign [†]	×	\checkmark	50.85
PromptAlign	✓	✓	59.37

Analysis of Distribution Alignment

Effect of distribution alignment with number of augmented views and prompt update steps

Conclusion

- We introduce a distribution alignment loss to enhance test-time adaptation of Vision-Language models for zero-shot generalization.
- The proposed method bridges the gap between the test sample and source distributions explicitly, facilitated by multi-modal prompts.
- Validates ImageNet as a valid proxy source dataset for the distribution alignment loss
- Extensive experiments show improvement in domain generalization and cross dataset evaluation.

