MATH 131B Homework #8

Nathan Solomon

December 1, 2024

Problem 0.1. Exercise 5.1.2: Prove lemma 5.1.5.

- (a) If $f \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$, define a function $g : [0,1] \to \mathbb{C}$ such that $g(x) = f(x + \mathbb{Z})$ for any $x \in \mathbb{R}$. Since g is a continuous function on the compact interval [0,1], it must be bounded, because continuous functions map compact sets to compact sets, and since \mathbb{C} is isometric to \mathbb{R}^2 , if the image of g is compact, it is also bounded. Every element of the domain of f can be written as $x + \mathbb{Z}$ for some $x \in [0,1]$, so the image of f is the same as the image of g, meaning f is also bounded.
- (b) Ignore the notation I used above for the rest of this homework, I will treat functions $f, g \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$ as continuous, \mathbb{Z} -periodic functions from \mathbb{R} to \mathbb{C} , instead of treating them as continuous functions from \mathbb{R}/\mathbb{Z} to \mathbb{C} .

If $f, g \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$, then f and g are continuous, so f + g, f - g, and fg are also continuous. Also, for any $x \in \mathbb{R}$, the following are all true:

$$(f+g)(x+1) = f(x+1) + g(x+1) = f(x) + g(x) = (f+g)(x)$$

$$(f-g)(x+1) = f(x+1) - g(x+1) = f(x) - g(x) = (f-g)(x)$$

$$(fg)(x+1) = f(x+1)g(x+1) = f(x)g(x) = (fg)(x).$$

Therefore $f + x, f - g, fg \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$.

For any $f \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C}), c \in \mathbb{C}, cf$ is continuous and for any $x \in \mathbb{R}$,

$$(cf)(x+1) = c \cdot f(x+1) = c \cdot f(x) = (cf)(x),$$

so $cf \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$.

(c) We have already shown that if a sequence of continuous functions converges uniformly, that sequence converges to another continuous function, so I only need to show that the sequence converges to another Z-periodic function.

For any $\varepsilon > 0$, there is some $N \in \mathbb{N}$ such that whenever $n \geq N$, $d(f_n(x), f(x)) < \varepsilon/2$ for every $x \in \mathbb{R}$. Since f_n is \mathbb{Z} -periodic, $f_n(x+1) = f_n(x)$ for any $x \in \mathbb{R}$. By the triangle inequality, for any $x \in \mathbb{R}$,

$$d(f(x), f(x+1)) \le d(f(x), f_n(x)) + d(f_n(x+1), f(x+1))$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

f is continuous, and the only way d(f(x), f(x+1)) can be less than ε for any positive ε is if f(x) = f(x+1), so $f \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$.

Problem 0.2. Exercise 5.2.1: Prove lemma 5.2.5.

(a)

$$\langle g, f \rangle = \int_{[0,1]} f(x) \overline{g(x)} dx$$
$$= \overline{\int_{[0,1]} g(x) \overline{f(x)} dx}$$
$$= \overline{\langle f, g \rangle}.$$

(b) The function $g(x) := ||f(x)||^2$ is continuous and nonnegative, and

$$\langle f, f \rangle = \int_{[0,1]} g(x) \mathrm{d}x.$$

We can partition the interval [0,1] into the disjoint subset of Lebesgue-measurable sets A, B, C, where

$$A := \{x \in [0,1] : g(x) < 0\}$$

$$B := \{x \in [0,1] : g(x) = 0\}$$

$$C := \{x \in [0,1] : g(x) > 0\},$$

$$\therefore \langle f, f \rangle = \left(\int_A g(x) \mathrm{d}x\right) + \left(\int_B g(x) \mathrm{d}x\right) + \left(\int_C g(x) \mathrm{d}x\right).$$

Clearly $A = \emptyset$ though, so I will ignore that first integral. The second integral is also obviously zero, so we only need to consider the integral over C.

If $f \neq 0$, then C is nonempty, so there is some $x_0 \in C$ such that $g(x_0) > 0$, and since g is continuous, that implies there is some interval contained in C for which $g(x) \geq g(x_0)/2 > 0$. The integral of g over that interval is positive, and the integral of g over the remainder of C is nonnegative, so $\langle f, f \rangle > 0$.

On the other hand, if f = 0, then $\langle f, f \rangle = 0$.

(c)

$$\begin{split} \langle f+g,h\rangle &= \int_{[0,1]} (f+g)(x)\overline{h(x)}\mathrm{d}x \\ &= \left(\int_{[0,1]} f(x)\overline{h(x)}\mathrm{d}x\right) + \left(\int_{[0,1]} g(x)\overline{h(x)}\mathrm{d}x\right) \\ &= \langle f,h\rangle + \langle g,h\rangle \,. \\ \langle cf,g\rangle &= \int_{[0,1]} (cf)(x)\overline{h(x)}\mathrm{d}x \\ &= c \cdot \int_{[0,1]} f(x)\overline{h(x)}\mathrm{d}x \\ &= c \, \langle f,g\rangle \,. \end{split}$$

(d)

$$\langle f, g + h \rangle = \int_{[0,1]} f(x) \overline{(g+h)(x)} dx$$

$$= \left(\int_{[0,1]} f(x) \overline{g(x)} dx \right) + \left(\int_{[0,1]} f(x) \overline{h(x)} dx \right)$$

$$= \langle f, g \rangle + \langle f, h \rangle.$$

$$\langle f, cg \rangle = \overline{\langle cg, f \rangle} = \overline{c} \langle \overline{\langle g, f \rangle} = \overline{c} \langle \overline{\langle g, f \rangle} = \overline{c} \langle f, g \rangle.$$

Problem 0.3. Exercise 5.2.2

d(f, f) = 0 for any $f \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$, because

$$d(f,f) = \sqrt{\int_{[0,1]} (f-f)(x) dx} = \sqrt{\int_{[0,1]} 0 dx} = 0.$$

d(f,g) = d(g,f) for any $f,g \in C(\mathbb{R}/\mathbb{Z},\mathbb{C})$, because

$$d(f,g) = \sqrt{\int_{[0,1]} |f(x) - g(x)|^2 dx}$$
$$= \sqrt{\int_{[0,1]} |g(x) - f(x)|^2 dx}$$
$$= d(g,f).$$

d(f,g) > 0 whenever $f \neq g$, because

$$d(f,g) = \sqrt{\int_{[0,1]} |f(x) - g(x)|^2 dx},$$

and the function $h(x) = |f(x) - g(x)|^2$ is continuous, positive somewhere, and nonnegative everywhere. I showed in the previous problem that the integral of such a function must be positive, so d(f,g) > 0.

$$d(f,g) + d(g,h) \ge d(f,h)$$
 for any $f,g,h \in C(\mathbb{R}/\mathbb{Z},\mathbb{C})$, because

$$\begin{split} d(f,h)^2 &= \langle f-h,f-h \rangle \\ &= \langle (f-g)+(g-h),(f-g)+(g-h) \rangle \\ &= \langle f-g,f-g \rangle + \langle g-h,g-h \rangle + \langle f-g,g-h \rangle + \overline{\langle f-g,g-h \rangle} \\ &= \|f-g\|^2 + \|g-h\|^2 + 2\Re\left(\langle f-g,g-h \rangle\right) \\ &\leq \|f-g\|^2 + \|g-h\|^2 + 2\left|\langle f-g,g-h \rangle\right| \\ &\leq \|f-g\|^2 + \|g-h\|^2 + 2\cdot \|f-g\|\cdot \|g-h\| \\ &= (\|f-g\|+\|g-h\|)^2 \\ &= (d(f,g)+d(g,h))^2 \,, \end{split}$$

which implies $d(f,h) \leq d(f,g) + d(g,h)$. Note that I used the Cauchy-Schwarz inequality, which says that

$$\left| \langle u, v \rangle \right|^2 \le \|u\| \cdot \|v\|$$

for any u, v in some inner product space. In this case, u = f - g and v = g - h.

Here is a proof of the Cauchy-Schwarz inequality, which I copied from Wikipedia:

If v = 0, then we have $0 \le \langle u, u \rangle + 0$, which we already know is true, so we only need to consider the case where $v \ne 0$. Let

$$z := u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v.$$

Note that v is orthogonal to z, so

$$||u||^2 = \left|\frac{\langle u, v \rangle}{\langle v, v \rangle}\right|^2 + ||z||^2 = \frac{|\langle u, v \rangle|^2}{||v||^2} + ||z||^2 \ge \frac{|\langle u, v \rangle|^2}{||v||^2}.$$

Therefore $\|v\|^2 \cdot \|u\|^2 \ge |\langle u, v \rangle|^2$, so

$$|\langle u, v \rangle| \le \|u\| \cdot \|v\|.$$

Problem 0.4. Exercise 5.2.6

(a) If f_n converges uniformly to f, then for every $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that for any $n \geq N, x \in \mathbb{R}$, $|f_n(x) - f(x)| < \sqrt{\varepsilon}$. The L^2 distance between f_n and f can be written as

$$d(f_n, f) = \int_{[0,1]} g(x) \mathrm{d}x,$$

where $g(x) := |f_n(x) - f(x)|^2$.

For any $x \in \mathbb{R}$, $0 \le g(x) < \varepsilon$, so

$$0 \le d(f_n, f) < \varepsilon.$$

Therefore f_n converges to f in the L^2 metric.

(b) Let f = 0, and let $f_n = \cos(\pi x)^n$. Then

$$d(f_n, f) = \sqrt{\int_{[0,1]} \cos(\pi x)^{2n} dx}$$

$$= \sqrt{\int_{[0,1]} \left(\frac{e^{i\pi x} + e^{-i\pi x}}{2}\right)^{2n} dx}$$

$$= \sqrt{\int_{[0,1]} \left(\frac{1}{4^n} \sum_{k=0}^{2n} {2n \choose k} e^{2i\pi(k-n)x}\right) dx}$$

$$= \sqrt{\int_{[0,1]} \frac{1}{4^n} {2n \choose n} dx}$$

$$= \sqrt{\frac{(2n)!}{4^n (n!)^2}}$$

$$= \frac{\sqrt{(2n)!}}{2^n n!}$$

$$= \prod_{k=1}^n \sqrt{\frac{2(k-1)(2k)}{2k}}$$

$$= \prod_{k=1}^n \sqrt{\frac{2k-1}{2k}}$$

$$= \exp\left(\frac{1}{2} \sum_{k=1}^n (\log(2k-1) - \log(2k))\right).$$

This is useful because that summation goes to $-\infty$ (which you can prove by bounding the sum with an integral, evaluating the integral, and then taking the limit as $n \to \infty$), so as $n \to \infty$, $d(f_n, f) \to 0$. Therefore f_n converges to f in the L^2 metric, but it does of converge uniformly, because $f_n(0)$ is always $\cos(0)^n = 1$, and f(0) is always zero.

- (c) My example from part (b) works here too.
- (d) Define f_n by

$$f_n(x) = \begin{cases} n \sin(n\pi x) & 0 \le x \le \frac{1}{n} \\ 0 & \frac{1}{n} \le x \le 1 \\ f(x - |x|) & x \notin [0, 1] \end{cases}$$

and let f = 0. In the L^2 norm,

$$d(f_n, f) = \sqrt{\int_{[0,1]} |f_n(x) - f(x)|^2 dx}$$
$$= \sqrt{\int_{[0,1/n]} n^2 \sin(n\pi x)^2 dx}$$
$$= \sqrt{\int_{u=0}^1 n \sin(\pi u)^2 du}$$
$$= \sqrt{\frac{n}{2}},$$

so f_n does not converge to f. But f_n does converge pointwise to f, because for any $x \in [0, 1]$, either x = 0, in which case $f_n(x)$ is always zero, or $f_n(x) = 0$ for any $n \ge 1/x$.

24F-MATH-131B HOMEWORK 8 DUE SUNDAY, DECEMBER 1

 $(1) \ \ \text{Exercise:} \ 5.1.2, \ 5.2.1, \ 5.2.2, \ 5.2.6.$