Chapter 1: The Real And Complex Number Systems

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 1.1 Prove that there is no largest prime. (A proof was known to Euclid.)

There are many proofs of this result. We provide some of them.

Proof (Due to Euclid). If $p_1, p_2, ..., p_t$ were all primes, then write

$$n = p_1 p_2 \cdots p_t + 1$$

and there were a prime number p dividing n.

- (1) p can not be any of $p_i(1 \le i \le t)$, otherwise p would divide the difference $n p_1 p_2 \cdots p_t = 1$.
- (2) This prime p is another prime $\neq p_i$ for $1 \leq i \leq t$.

By (2), there exists a prime p other than all primes, which is absurd. \square

Proof (Unique factorization theorem). Given N.

(1) Show that $\sum_{n \leq N} \frac{1}{n} \leq \prod_{p \leq N} \left(1 - \frac{1}{p}\right)^{-1}$. By the unique factorization theorem on $n \leq N$,

$$\sum_{n \le N} \frac{1}{n} \le \prod_{p \le N} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right) = \prod_{p \le N} \left(1 - \frac{1}{p} \right)^{-1}.$$

(2) By (1) and the fact that $\sum \frac{1}{n}$ diverges, there are infinitely many primes.

Proof (Due to Eckford Cohen).

(1) $ord_p n! = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \cdots$. For any k = 1, 2, ..., n, we can express k as $k = p^s t$ where $s = \operatorname{ord}_p k$ is a non-negative integer and (t, p) = 1. There are $\left[\frac{n}{p^a}\right]$ numbers such that $p^a \mid k$ for a = 1, 2, ... Therefore, there are

$$\left[\frac{n}{p^a}\right] - \left[\frac{n}{p^{a+1}}\right]$$

numbers such that $\operatorname{ord}_{n}k = a$ for $a = 1, 2, \dots$ Hence,

$$\operatorname{ord}_{p} n! = \left(\left[\frac{n}{p} \right] - \left[\frac{n}{p^{2}} \right] \right) + 2 \left(\left[\frac{n}{p^{2}} \right] - \left[\frac{n}{p^{3}} \right] \right) + 3 \left(\left[\frac{n}{p^{3}} \right] - \left[\frac{n}{p^{4}} \right] \right) + \cdots$$
$$= \left[\frac{n}{p} \right] + \left[\frac{n}{p^{2}} \right] + \left[\frac{n}{p^{3}} \right] + \cdots$$

(2) $ord_p n! \leq \frac{n}{p-1}$ and that $n!^{\frac{1}{n}} \leq \prod_{p|n!} p^{\frac{1}{p-1}}$.

$$\operatorname{ord}_{p} n! = \left[\frac{n}{p}\right] + \left[\frac{n}{p^{2}}\right] + \left[\frac{n}{p^{3}}\right] + \cdots$$

$$\leq \frac{n}{p} + \frac{n}{p^{2}} + \frac{n}{p^{3}} + \cdots$$

$$= \frac{\frac{n}{p}}{1 - \frac{1}{p}}$$

$$= \frac{n}{p - 1}.$$

Thus,

$$n! = \prod_{p|n!} p^{\operatorname{ord}_p n!} \le \prod_{p|n!} p^{\frac{n}{p-1}} = \left(\prod_{p|n!} p^{\frac{1}{p-1}}\right)^n,$$

or

$$n!^{\frac{1}{n}} \le \prod_{p|n!} p^{\frac{1}{p-1}}.$$

- (3) $(n!)^2 \ge n^n$. Write $(n!)^2 = \prod_{k=1}^n k \prod_{k=1}^n (n+1-k) = \prod_{k=1}^n k(n+1-k)$, and $n^n = \prod_{k=1}^n n$. It suffices to show that $k(n+1-k) \ge n$ for each $1 \le k \le n$. Notice that $k(n+1-k) n = (n-k)(k-1) \ge 0$ for $1 \le k \le n$. The inequality holds.
- (4) By (3)(4), $\prod_{p|n!} p^{\frac{1}{p-1}} \geq \sqrt{n}$. Assume that there are finitely many primes, the value $\prod_{p|n!} p^{\frac{1}{p-1}}$ is a finite number whenever the value of n. However, $\sqrt{n} \to \infty$ as $n \to \infty$, which leads to a contradiction. Hence there are infinitely many primes.

Proof (Formula for $\phi(n)$). If $p_1, p_2, ..., p_t$ were all primes, then let $n = p_1 p_2 \cdots p_t$ and all numbers between 2 and n are NOT relatively prime to n. Thus, $\phi(n) = 1$ by the definition of ϕ . By the formula for ϕ ,

$$\phi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_t} \right)$$

$$1 = (p_1 p_2 \cdots p_t) \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_t} \right)$$

$$= (p_1 - 1)(p_2 - 1) \cdots (p_t - 1) > 1,$$

which is a contradiction (since 3 is a prime). Hence there are infinitely many primes. \Box