ECUACIONES DIFERENCIALES con condiciones de contorno.

Método del disparo (shooting method)

Primero nos fijaremos en ecuaciones lineales del tipo:

$$u'' = p(x)u' + q(x)u + r(x) ; x \in [a, b]$$

 $u(a) = u_a ; u(b) = u_b$

Las siguientes condiciones implican solución única:

$$p(x), q(x), r(x) \ continuous \ ; \ x \in [a, b]$$

$$q(x) > 0 \; ; \; x \in [a, b]$$

Como sabemos resolver ecuaciones con condiciones iniciales mediante, por ejemplo, el método de Runge Kutta, si supieramos el valor de u'(a) podriamos aplicar Runge Kutta a nuestra ecuación.

En el método del disparo se intentan dos valores para u'(a) y se aplica Runge Kutta para obtener u en b. Se interpola linealmente entre los dos puntos para obtener el valor de u'(a) que produce el valor correcto $u(b) = u_b$.

Veamos un ejemplo para mayor claridad.

Ejemplos:.

Resolver la siguiente ecuación por el método del disparo.

$$u'' = (1 - x/5)u + x ; x \in [1, 3]$$

 $u(1) = 2 ; u(3) = -1$

Elegimos un primer valor para u'(1). Por ejemplo:

$$u'(1) = \frac{u(3) - u(1)}{3 - 1} = -1.5$$

Resolvemos por Runge-Kutta la ecuación:

$$u'' = (1 - x/5)u + x$$

$$u(1) = 2$$

$$u'(1) = -1.5$$

Eligiendo un paso $\tau = 0.1$ el resultado es u(3) = 4.77649. Debemos bajar el valor de u'(1). Probemos con u'(1) = -1.5 - 1 = -2.5.

Resolvemos por Runge-Kutta la ecuación:

$$u'' = (1 - x/5)u + x$$

$$u(1) = 2$$

$$u'(1) = -2.5$$

Eligiendo un paso $\tau = 0.1$ el resultado es u(3) = 1.88009.

Obtenemos el polinomio de interpolación de grado 1 entre los puntos:

$$(4.77649, -1.5)$$
; $(1.88009, -2.5)$

El valor del polinomio de interpolación en -1.0 nos dá u'(1) = -3.49437. Resolvemos por Runge-Kutta la ecuación:

$$u'' = (1 - x/5)u + x$$

$$u(1) = 2$$

$$u'(1) = -3.49437$$

Eligiendo un paso $\tau = 0.1$ el resultado es:

X	u(x)
1	2
1.1	1.66356
1.2	1.35105
1.3	1.06076
1.4	0.791281
1.5	0.54146
1.6	0.310394
1.7	0.0974072
1.8	-0.0979666
1.9	-0.275996
2	-0.436763
2.1	-0.580176
2.2	-0.70598
2.3	-0.813762
2.4	-0.902963
2.5	-0.972883
2.6	-1.02269
2.7	-1.05143
2.8	-1.05804
2.9	-1.04132
3	-1

Método del disparo: procedimiento general

En el caso de cualquier ecuación lineal o no lineal tendremos:

$$u'' = f(x, u, u') ; x \in [a, b]$$

 $u(a) = u_a ; u(b) = u_b$

Queremos convertir la ecuación anterior en una ecuación con condiciones iniciales:

$$u'' = f(x, u, u') ; x \in [a, b]$$

 $u(a) = u_a ; u'(a) = \lambda$

tal que $u(b) = u_b$. Como u(b) depende de λ , podemos considerar la función:

$$g(\lambda) = u(b; \lambda) - u_b$$

y encontrar numéricamente un λ que hace cero $g(\lambda)$. Para ello podemos usar, por ejemplo, el método de la secante:

$$\lambda_{k+1} = \lambda_k - (u(b; \lambda_k) - u_b) \frac{\lambda_k - \lambda_{k-1}}{u(b; \lambda_k) - u(b; \lambda_{k-1})}$$

En cada iteración anterior debemos obtener $u(b; \lambda_{k+1})$ resolviendo de nuevo la ecuación con condiciones iniciales:

$$u'' = f(x, u, u') ; x \in [a, b]$$

 $u(a) = u_a ; u'(a) = \lambda_{k+1}$

El proceso iterativo se sigue mientras $||u(b; \lambda_{k+1}) - u(b; \lambda_k)|| > \epsilon$, donde ϵ es un parámetro de precisión. También puede ponerse como condición $||u(b; \lambda_{k+1}) - u_b|| > \epsilon$ Ejercicios:

Resolver la siguiente ecuación por el método del disparo.

$$u'' = -(u')^2 ; x \in [0, 1]$$

 $u(0) = 0 ; u(1) = 1$

Método de las diferencias finitas

Nos fijaremos en ecuaciones lineales del tipo:

$$u'' = p(x)u' + q(x)u + r(x) ; x \in [a, b]$$

 $u(a) = u_a ; u(b) = u_b$

Dividimos el intervalo [a, b] en n subintervalos de la misma longitud h:

$$a = x_0, x_1, x_2, x_3, ..., x_{n-2}, x_{n-1}, b = x_n$$

donde $x_{i+1} - x_i = h$.

Obtenemos la aproximación numérica para la primera y segunda derivadas de u en cada punto x_i , $i=1,\ldots n-1$, es decir:

$$u' = \frac{u(x_{i+1}) - u(x_{i-1})}{2h}$$
$$u'' = \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{h^2}$$

Por simplificar la notación llamemos:

$$u_i = u(x_i) \; ; \; p_i = p(x_i) \; ; \; q_i = q(x_i) \; ; \; r_i = r(x_i)$$

Entonces la ecuación diferencial se convierte en:

$$\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} = p_i \frac{u_{i+1} - u_{i-1}}{2h} + q_i u_i + r_i$$

Reorganizando términos:

$$-(\frac{h}{2}p_i+1)u_{i-1}+(2+h^2q_i)u_i+(\frac{h}{2}p_i-1)u_{i+1}=-h^2r_i$$

que es un sistema de n-1 ecuaciones algebraicas, que podemos escribir en notación matricial como:

$$Au = b$$

donde,

Since, since,
$$A = \begin{pmatrix} 2 + h^2 q_1 & \frac{h}{2} p_1 - 1 & 0 & 0 & 0 & \cdots & 0 \\ -(\frac{h}{2} p_2 + 1) & 2 + h^2 q_2 & \frac{h}{2} p_2 - 1 & 0 & 0 & \cdots & 0 \\ 0 & -(\frac{h}{2} p_3 + 1) & 2 + h^2 q_3 & \frac{h}{2} p_3 - 1 & 0 & \cdots & 0 \\ 0 & 0 & -(\frac{h}{2} p_4 + 1) & \cdots & \cdots & \frac{h}{2} p_{n-2} - 1 \\ 0 & 0 & 0 & \cdots & \cdots & 2 + h^2 q_{n-1} \end{pmatrix}$$

$$b = \begin{pmatrix} -h^2r_1 + (\frac{h}{2}p_1 + 1)u_0 \\ -h^2r_2 \\ -h^2r_3 \\ \vdots \\ \vdots \\ -h^2r_{n-2} \\ -h^2r_{n-1} - (\frac{h}{2}p_{n-1} - 1)u_n \end{pmatrix}$$

$$u = \left(\begin{array}{c} u_1 \\ \vdots \\ \vdots \\ u_{n-1} \end{array}\right)$$

Puede aplicarse el método LU para resolver este sistema y obtener u_1, \ldots, u_{n-1} . Ejercicio.

Resolver la siguiente ecuación por el método de las diferencias finitas, dividiendo el interval (2,3) en cuatro subintervalos.

$$u'' = (1 - x/5)u + x$$
; $x \in [1, 3]$
 $u(1) = 2$; $u(3) = -1$