Cryptography and Network Security

Lecture 1

Our first encounter with secrecy: Secret-Sharing

Secrecy

Access

© Cryptography is all about "controlling access to information"

Access to learning and/or influencing information

One of the aspects of access control is secrecy

A Game

- A "dealer" and two "players" Alice and Bob
- Dealer has a message m
- She wants to "share" it among the two players so that neither player by herself/himself learns anything about the message, but together they can find it
- Bad idea: If m is a two-bit message m₁m₂, give m₁ to Alice and m₂ to Bob
- Other ideas?

Sharing a bit

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
 - Bob learns nothing (b is a random bit)
 - Neither does Alice: for each possible value of m (0 or 1), a is a random bit (0 w.p. ½, 1 w.p. ½) $= m = 0 \rightarrow (a,b) = (0,0)$ or (1,1) $= 1 \rightarrow (a,b) = (1,0)$ or (0,1)
 - Her view is independent of the message
 - Together they can recover m as a⊕b
- Multiple bits can be shared independently: e.g., $m_1m_2 = a_1a_2⊕b_1b_2$
- Note: any one share can be chosen before knowing the message [why?]

Secrecy

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability ½, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is uniformly random!)
- But they could have done this without obtaining the shares
 - The shares didn't leak any <u>additional</u> information to either party
- Typical crypto goal: <u>preserving</u> secrecy

Preserving Secrecy

- Goal: What Alice (or Bob) knows about the message after seeing her share is the same as what she knew a priori
- What she knows about the message a priori: a probability distribution over the message
 - For each message m, Pr[msg=m]
- What she knows after seeing her share (a.k.a. her view)
 - Say view is v. Then new distribution: Pr[msg=m | view=v]
- Formally: ∀ possible v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]
 - i.e., view is independent of message

Preserving Secrecy

- What Alice (or Bob) knows about the message after seeing her share is the same as what she knew a priori:

 - \bullet \forall v, \forall m, $Pr[view=v, msg=m] = Pr[view=v] \cdot Pr[msg=m]$ by the scheme
- v, \possible m, m', Pr[view=v | msg=m] = Pr[view=v | msg=m']
 - i.e., for all possible messages, the view is distributed the same way

Doesn't involve message distribution at all!

- The view could be simulated without knowing the message
- Important: can't say Pr[msg=m | view=v] = Pr[msg=m' | view=v] (unless the prior is uniform)

Exercise

- Consider the following secret-sharing scheme
 - Message space = { buy, sell, wait }
 - \odot buy \rightarrow (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each
 - \odot sell \rightarrow (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each
 - wait → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), (10,01) or (11,00) w/ prob 1/8 each
 - Reconstruction: Let $\beta_1\beta_2$ = share_{Alice} \oplus share_{Bob}. Map $\beta_1\beta_2$ as follows: $00 \rightarrow$ buy, $01 \rightarrow$ sell, 10 or $11 \rightarrow$ wait
- Is it secure?

Secret-Sharing

- More general secret-sharing
 - Allow more than two parties (how?)
 - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
 - Direct applications (distributed storage of data or keys)
 - Important component in other cryptographic constructions
 - Amplifying secrecy of various primitives
 - Secure multi-party computation
 - Attribute-Based Encryption
 - Leakage resilience ...

- ∅ (n,t)-secret-sharing
 - Divide a message m into n shares s₁,...,s_n, such that
 - any t shares are enough to reconstruct the secret
 - o up to t-1 shares should have no information about the secret
- our previous example: (2,2) secret-sharing

e.g., (s₁,...,s_{t-1}) has the same distribution for every m in the message space

@ Construction: (n,n) secret-sharing

Additive Secret-Sharing

- Message-space = share-space = G, a finite group
 - \bullet e.g. $G = \mathbb{Z}_2$ (group of bits, with xor as the group operation)
 - $or, G = \mathbb{Z}_2 d$ (group of d-bit strings)
 - o or, $G = \mathbb{Z}_p$ (group of integers mod p)
- Share(m):
 - Pick (s₁,...,s_{n-1}) uniformly at random from Gⁿ⁻¹
- @ Reconstruct($s_1,...,s_n$): $m = s_1 + ... + s_n$
- Claim: This is an (n,n) secret-sharing scheme [Why?]

SKOOK

Additive Secret-Sharing: Proof

- Share(m):
 - Pick (s₁,...,s_{n-1}) uniformly at random from Gⁿ⁻¹
- Ø Claim: Upto n−1 shares give no information about m
- **Proof**: Let T ⊆ {1,...,n}, |T| = n-1. We shall show that $\{s_i\}_{i\in T}$ is distributed the same way (in fact, uniformly) irrespective of what m is.
 - For concreteness consider $T = \{2,...,n\}$. Fix any (n-1)-tuple of elements in G, $(g_1,...,g_{n-1}) \in G^{n-1}$. To prove $Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})]$ is same for all m.
 - Fix any m.
 - $(s_2,...,s_n) = (g_1,...,g_{n-1}) \Leftrightarrow (s_2,...,s_{n-1}) = (g_1,...,g_{n-2}) \text{ and } s_1 = m (g_1+...+g_{n-1}).$
 - So Pr[(s₂,...,s_n) = (g₁,...,g_{n-1})] = Pr[(s₁,...,s_{n-1}) = (a,g₁,...,g_{n-2})] where
 a := m (g₁+...+g_{n-1})
 - But Pr[(s₁,...,s_{n-1}) = (a,g₁,...,g_{n-2})] = 1/|G|ⁿ⁻¹, since (s₁,...,s_{n-1}) is picked uniformly at random from Gⁿ⁻¹
 - Hence Pr[(s₂,...,s_n) = (g₁,...,g_{n-1})] = 1/|G|ⁿ⁻¹, irrespective of m.

An Application

Gives a "private summation" protocol

No colluding set of servers/clients will learn more than the inputs/output of the clients in the collusion, provided that at least one server stays out of the collusion

- Message-space = share-space = F, a field (e.g. integers mod a prime)
 - Share(m): pick random r. Let $s_i = r \cdot a_i + m$ (for i=1,...,n < |F|)
 - @ Reconstruct(s_i, s_j): $r = (s_i-s_j)/(a_i-a_j)$; $m = s_i r \cdot a_i$

a_i are n distinct, non-zero field elements

- Each s_i by itself is uniformly distributed,
 irrespective of m [Why?]
 Since a_i-1 exists, exactly one
- "Geometric" interpretation

Since a_i-1 exists, exactly one solution for r·a_i+m=d, for every value of d

- Sharing picks a random "line" y = f(x), such that f(0) = m. Shares $s_i = f(a_i)$.
- But can reconstruct the line from two points!

(n,2) Secret-Sharing: Proof

- Share(m): pick random $r \leftarrow F$. Let $s_i = r \cdot a_i + m$ (for i=1,...,n < |F|)
- @ Claim: Any one share gives no information about m
- Proof: For any i∈{1,..,n} we shall show that s_i is distributed the same way
 (in fact, uniformly) irrespective of what m is.
- @ Fix any m.
- For any g ∈ F, $s_i = g ⇔ r · a_i + m = g ⇔ r = (g m) · a_i 1 (since a_i ≠ 0)$
- So, $Pr[s_i=g] = Pr[r=(g-m)\cdot a_i^{-1}] = 1/|F|$, since r is chosen uniformly at random

- Shamir Secret-Sharing
- Generalizing the geometric/algebraic view: instead of lines, use polynomials
 - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0) = m. Shares are $s_i = f(a_i)$.
 - @ Random polynomial with f(0) = m: $c_0 + c_1X + c_2X^2 + ... + c_{t-1}X^{t-1}$ by picking $c_0 = m$ and $c_1,...,c_{t-1}$ at random.
 - **8** Reconstruct($s_1,...,s_t$): Lagrange interpolation to find $m = c_0$
 - Need t points to reconstruct the polynomial. Given t-1 points, out of |F|^{t-1} polynomials passing through (0,m') (for any m') there is exactly one that passes through the t-1 points

Lagrange Interpolation

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)
 - ★ variables: $c_0,...,c_{t-1}$.
 † equations: $1.c_0 + a_i.c_1 + a_i^2.c_2 + ... a_i^{t-1}.c_{t-1} = s_i$
 - ⊕ A linear system: Wc=s, where W is a txt matrix with ith row,
 W_i= (1 $a_i a_i^2 ... a_i^{t-1}$)
 - W (called the Vandermonde matrix) is invertible
 - o c = W⁻¹s

Today

- Preserving secrecy: view is independent of the message
 - @ i.e., \forall view, \forall msg₁,msg₂, Pr[view | msg₁] = Pr[view | msg₂]
 - Tiew does not give any <u>additional</u> information about the message, than what was already known (the prior)
 - The view could be <u>simulated</u> without knowing the message
 - Holds even against unbounded computational power
- Achieved in additive and threshold secret-sharing schemes
- Such secrecy not always possible (e.g., no public-key encryption against computationally unbounded adversaries)