Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Statistics 191: Introduction to Applied Statistics Review

Jonathan Taylor Department of Statistics Stanford University

February 22, 2010

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Outline

- What is a regression model?
- Descriptive statistics numerical
- Descriptive statistics graphical
- Inference about a population mean
- Difference between two population means

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

What is course about?

- It is a course on applied statistics.
- Hands-on: we use R, an open-source statistics software environment.
- We will start out with a review of introductory statistics to see R in action.
- Main topic is "(linear) regression models": these are the bread and butter of applied statistics.

What is a "regression" model?

A regression model is a model of the relationships between some *covariates* (*predictors*) and an *outcome*. Specifically, regression is a model of the *average* outcome *given* the covariates.

Statistics 191: Introduction to Applied Statistics Jonathan Taylor Department of Statistics Stanford

University

Heights of couples

- To study height of the wife in a couple, based on the husband's height and her parents height: Wife is the outcome, and the covariates are Husband, Mother, Father.
- A mathematical model, using only Husband's height:

Wife =
$$f(\text{Husband}) + \varepsilon$$

where f gives the average height of the wife of a man of height Husband and ε is "error": not every man of height of Husband marries a woman of height f(Husband).

- A statistical question: is there *any* relationship between
- covariates and outcomes is f just a constant? • Here is some

Heights data

Statistics 191: Introduction to Applied Statistics

Heights data

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Linear regression models

We might model the data as

Wife
$$= \beta_0 + \beta_1$$
Husband $+ \varepsilon$.

- This model is linear in Husband, it is a simple linear regression model.
- Another model:

Wife
$$= \beta_0 + \beta_1$$
Husband $+ \beta_2$ Mother $+ \beta_3$ Father $+ \varepsilon$.

- Also linear (in Husband, Mother, Father).
- Which model is better? We need a tool to compare models . . .

Right-to-work example

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Data description

- Income: income for a four-person family
- COL: cost of living for a four-person family
- PD: Population density
- URate: rate of unionization in 1978
- Pop: Population
- Taxes: Property taxes in 1972
- RTWL: right-to-work indicator

Right-to-work vs. cost of living

Statistics 191: Introduction to Applied Statistics

Right-to-work vs. income

Statistics 191: Introduction to Applied Statistics

Unionization vs. cost of living

Statistics 191: Introduction to Applied Statistics

Unionization vs. income

Statistics 191: Introduction to Applied Statistics

Unionization vs. income

Statistics 191: Introduction to Applied Statistics

Unionization vs. population

Statistics 191: Introduction to Applied Statistics

Cost-of-living vs. income

Statistics 191: Introduction to Applied Statistics

Full dataset

Statistics 191: Introduction to Applied Statistics

Without NYC

Statistics 191: Introduction to Applied Statistics

Right-to-work example

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Building a model

Some of the main goals of this course:

- Build a statistical model describing the "effect of RTWL" on "COL"
- This model should recognize that other variables also affect "COL"
- What sort of "statistical confidence" do we have in our conclusion about "RTWL" and "COL"?
- Is the model adequate do describe this dataset?
- Are there other (simpler, more complicated) models?

Review

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Effect of calcium on BP

- A study was conducted to study the effect of calcium supplements on blood pressure.
- More detailed data description can be found here.

Questions

- What is the mean decrease in BP in the treated group?
 placebo group?
- What is the median decrease in BP in the treated group?
 placebo group?
- What is the standard deviation of decrease in BP in the treated group? placebo group?
- Is there a difference between the two groups? Did BP decrease more in the treated group?

Boxplot

Statistics 191: Introduction to Applied Statistics

Histogram of Treated response

Statistics 191: Introduction to Applied Statistics

Histogram of Placebo response

Statistics 191: Introduction to Applied Statistics

Descriptive statistics - numerical

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Mean of a sample

Given a sample of numbers $X = (X_1, \dots, X_n)$ the sample mean, \overline{X} is

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Standard deviation of a sample

Given a sample of numbers $X = (X_1, \dots, X_n)$ the sample standard deviation S_X is

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2.$$

Descriptive statistics - numerical

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Median of a sample

Given a sample of numbers $X = (X_1, ..., X_n)$ the sample median is the "middle" of the sample: if n is even, it is the average of the middle two points. If n is odd, it is the midpoint.

Quantiles of a sample

Given a sample of numbers $X = (X_1, \dots, X_n)$ the q-th quantile is a point x_q in the data such that $q \cdot 100\%$ of the data lie to the left of x_q .

Example: the 0.5-quantile is the median: half of the data lie to the right of the median.

Inference about a population mean

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Confidence interval

• If (X_1, \ldots, X_n) are independent, all having a normal distribution $N(\mu, \sigma^2)$, then a $(1 - \alpha)$ -confidence interval for μ is

$$\overline{X} \pm t_{n-1,1-\alpha/2} \cdot S_X / \sqrt{n}$$

• Where $t_{n-1,1-\alpha/2}$ is the $1-\frac{\alpha}{2}$ quantile of t_{n-1} random variable, defined by

$$\mathbb{P}(T_{n-1} \leq t_{n-1,1-\alpha/2}) = 1 - \frac{\alpha}{2}.$$

Inference about a population mean

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Testing whether mean is 0

- Suppose we want a two-sided test of whether $\mu=0$ based on a sample X, at level α .
- Compute

$$T = \frac{\overline{X}}{S_X/\sqrt{n}}.$$

• If $|T| > t_{n-1,1-\alpha/2}$, then reject $H_0: \mu = 0$.

Difference between means

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

BP example

- In our setting, we have two groups that we have reason to believe are different.
- We have two samples:
 - $(X_1, \ldots, X_{10}) \text{ (Calcium)}$
 - **2** $(Z_1, ..., Z_{11})$ (Placebo)
- Does treatment have an effect?
- We can answer this statistically by testing the null hypothesis $H_0: \mu_X = \mu_Z$?

Difference between means

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Testing $H_0: \mu_X = \mu_Z$

• If variances are assumed equal, pooled *t*-test is appropriate

$$T = rac{\overline{X} - \overline{Z}}{S_P \sqrt{rac{1}{10} + rac{1}{11}}}, \qquad S_P^2 = rac{9 \cdot S_X^2 + 10 \cdot S_Z^2}{19}.$$

• For two-sided test at level α , reject if $|T| > t_{19,1-\alpha/2}$.

Our first regression model

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Unified dataset

Put two samples together:

$$Y = (X_1, \ldots, X_{10}, Z_1, \ldots, Z_{11}).$$

• Under the same assumptions as the pooled *t*-test:

$$Y_i \sim N(\mu_i, \sigma^2)$$

$$\mu_i = \begin{cases} \mu_X & 1 \le i \le 10 \\ \mu_Z & 11 \le j \le 21 \end{cases}$$

Our first regression model

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

t-test as regression model

- This is a (regression) model for the sample Y. The (qualitative) variable Treatment is called a "covariate" or "predictor".
- The decrease in BP is an outcome variable.
- We assume that the relationship between treatment and average decrease in BP is simple: it depends only on which group a subject is in.
- This relationship is "modelled" through the mean vector $\mu = (\mu_1, \dots, \mu_{21})$.