CMPSC-265 Data Structures and Algorithms

Zaihan Yang zyang13@suffolk.edu

Department of Math and Computer Science Suffolk University

Fall 2019

Notice

- HW9 posted, and will be due on next
 Tuesday (Nov 12th) midnight (11.59pm)
- Will have you take-home Quiz 3
 - Post by tomorrow, and
 - due on Sunday 11.59pm
 - Submit onto Blackboard

Recap

- Binary Heap:
- Max_heap vs. Min_Heap
- Reheapify:
 - Trickle up
 - Trickle down
- Two basic operations:
 - Insert: possibly need to be trickling up
 - Delete: possibly need to be trickling down

Learning Topics

- Heap Sort
- Hash Table

Heap Sort Idea

- How to use heap to sort an array?
 - Make a heap out of array
 - Remove (successively) from the heap
- Given an array, how to heapify it?
- Two possible ways to do that:
 - Successive insertion
 - Start with random placement, rearrange them to satisfy heap ordering

Making a Heap Using trickleUp()

- For each item, i, in array call insert(i)
- Example: [2, 10, 15, 5, 1, 12]

What is the time complexity? O(n logn) we insert/trickleUp n times, each is O(logn)

Making a Heap Using trickleDown()

- Start with a random placement, then rearrange using trickleDown()
- Example: [2, 10, 15, 5, 1, 12]

Output: [15, 10, 12, 5, 1, 2]

Notice that we got a different heap compared to using trickleUp()

Making a Heap Using trickleDown()

- How many times do we call trickleDown()?
 - n/2 times, no need to trickleDown leaves

```
for (int i=size/2-1; i>=0; i--)
  trickleDown(i);
```

- What is the time complexity?
 - O(n logn)
 - But, the tight bound is O(n).
 - To see why, think about why it is better to trickleDown() compared to trickleUp().

Heap Sort

- Make a heap out of the input array
 - Can be done in O(n) using trickleDown()
 - It is in-place
- Successive removal from the heap
 - Removing one element takes O(log n)
 - We remove n elements. So, the total complexity is O(n logn)
- The entire process can be in-place

```
for (int j=size-1; j>=0; j--)
{
   Node biggestNode = remove();
   heapArray[j] = biggestNode;
}
```

In-place Heap Sort

Put the removed element at the end.

Another Example:

Another Example:

Another Example:

Algorithm Analysis

HeapSort(A)

- 1. Build-Max-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2
- In-place
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap\text{-}size[A] \leftarrow heap\text{-}size[A] 1$
- 5. MaxHeapify(A, 1)
- Build-Max-Heap takes O(n) and each of the n-1 calls to Sink takes time O(lg n).
- Therefore, $T(n) = O(n) + O(n \log n) = O(n \log n)$
- For best, worst and average case.

Heap Sort: Performance Analysis

- The height of the heap: (int)log₂N
- No. of nodes of

```
height h \leq \lceil n/2^{h+1} \rceil
```

- Heap sort:
 - Build-Max-Heap(A)
 - N-1 times:
 - Sink(A, i, N)

Running Time of Build-Max-Heap

Loose upper bound:

- Cost of a Sink call × No. of calls to Sink
- $O(\lg n) \times O(n) = O(n \lg n)$

Tighter bound:

- Cost of a call to Sink() at a node depends on the height,
 h, of the node O(h).
- Height of most nodes smaller than n.
- Height of nodes h ranges from 0 to [Ig n].
- No. of nodes of height h is $\lceil n/2^{h+1} \rceil$

Running Time of Build-Max-Heap

Tighter Bound for *T*(*BuildMaxHeap*)

T(BuildMaxHeap)

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h)$$

$$= O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$

$$O\left(n\sum_{h=0}^{\lfloor \lg n\rfloor} \frac{h}{2^h}\right) = O\left(n\sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$

$$= O(n)$$

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}$$

$$\leq \sum_{h=0}^{\infty} \frac{h}{2^h} \qquad , x = 1/2 \text{ in (A.8)}$$

$$= \frac{1/2}{(1-1/2)^2}$$

$$= 2$$

Can build a heap from an unordered array in linear time

Heap Sort

- Good property:
 - Running time: ~O(nlogn)
 - Memory usage: in-pace. No extra space needed.

Hash Table

- A very useful data structure, great for efficient lookup of values given a key.
- What data structure to use for fast insertion and searching?
 - Unordered array
 - Insert O(1), search O(n)
 - Ordered array
 - Insert O(n), search O(logn)
 - Linked list
 - Insert O(1), search O(n)
 - Balanced BST
 - Insert O(logn), search O(logn)
 - Hash Table
 - Insert O(1), search O(1)

Hash Table and Hash Functions

Hash Table:

- Array (called "table") of size M, to hold keys (or key-value pairs);
- Need a hash function h(k) to transform a key k into an index in the array: an integer between [0,M-1]
 - such integer h(k) is the hash value of k.
- We can store key (k) or key-value pair (k, v) at index i = h(k)
- We can use the Hash Table to store a large range of keys into a table of smaller range.

Hashing

Hash Table- Example Scenario

- Employee records
- Use an array to store employee objects, employee ID numbers (keys) can be chosen as the index numbers.
- O(1) for insertion and search

What if the range of employee IDs are wide and not all of them are valid?

It will result in a very inefficient use of space.

Hash Table Example

- We store employee records at index obtained by computing hash(Employee ID) which is Employee ID%100.
- We can access an employee record by going directly to the corresponding index (hash(Employee ID))

	Employee ID	Name	Title	
0				
:	:	:	:	
25	527840 <mark>25</mark>	Jake	Data Analyst	
:	:	:	:	
64	678391 <mark>64</mark>	Sara	СТО	
:	:	:	:	
99				

Hash Function

- What is a good hash function:
 - Consistent: equal keys will produce the same hash value;
 - To be deterministic
 - Efficient to compute
 - Uniformly distribute the keys, so that collision can largely be avoided.
- Modular hashing: using the modulo operator (%) h(k) = k mod M

Hash function: Modular Hashing

Modular hashing

$$h(k) = k \mod M$$

- How to choose a good key
 - Example1: phone number
 - Bad: the first three digits; Better: the last three digits;
 - Example2: Social Security Number
 - Bad: first three digits; Better: last four digits;
- How to well-represent the key, especially how to deal with non-integer keys.
 - Like Strings
- How to choose M

Modular Hashing: choosing M

Advantage:	key	(M = 100)	(M = 97)
	212	12	18
 Fast, since requires just one 	618	18	36
•	302	2	11
division operation.	940	40	67
Disadvantage:	702 704	2 4	23 25
 Have to avoid certain values of 	612	12	30
riave to avoid certain values of	606	6	24
<i>m</i> .	772	72	93
 Don't pick certain values, such 	510	10	25
· · · · · · · · · · · · · · · · · · ·	423	23	35
as $m=2^{p}$ or $m=10^{p}$	650	50	68
	317	17 7	26 34
 Or hash won't depend on all 	907 507	7	22
bits of <i>k</i> .	304	4	13
Good choice for <i>m</i> :	714	14	35
	857	57	81
 Primes, not too close to power 	801	1	25
•	900	0	27
of 2 (or 10) are good.	413	13	25
	701	1	22
11/9/19	418 601	18 1	30 19
11/2/12	OOT		19

hash

hash

26

Collision Resolution

Collision happens when distinct keys hash to the same array index.

- Collision cannot be completely avoided and they are evenly distributed.
- e.g. people's birthdays.

Hash Table - Collision

- How to address collisions?
 - Open addressing
 - Linear probing
 - Quadratic probing
 - Double hashing
 - Separate Chaining

Linear Probing

- Insert: compute the hash, if collision, keep incrementing the probe until an empty spot is found in the array.
- Search: compute the hash, increment the probe until you find the key or you see an empty spot(search failure)
- Delete: find the key, mark it as deleted, for instance use a special key -1
 - Insertion considers the deleted array cell as empty.
 - Search considers the deleted array cell as occupied.

Linear Probing

```
class HashTable{
  private DataItem table;
  private int size;
  public HashTable(int size){
     this.size=size;
     table = new DataItem[size];
  public int hash(int key){return key%size; }
  public void insert(DataItem item){
      int h = hash(item.getKey()); // key
     while (table[h]!=null && table[h].getKey()!=-1) { // until empty spot or -1
          h=(h+1)%size;//if occupied,increment by 1
     table[h]=item; // enter item into table
  public DataItem find(int key){
      int h = hash(key); // compute hash of item
     while (table[h]!=null && table[h].getKey()!=key) { // find matching item or null
          h=(h+1)%size; // if no match, increment by 1
     return table[h]; // return item or null
}
```

Linear Probing- Comments

- Issue of *clustering*: after collision, two adjacent array spots a occupied, it is very likely that this forms a growing cluster.
- A cluster is a sequence of filled cells on an array.
 - Results in very long probe length and degrades perform
- Load factor: the number of items in hash table(n) divided by the table(b); n/b.
 - When the load factor increases performance of linear probing drops
 - There is a trade off between space efficiency and hash performanc
 - Keep load factor between 1/2 to 2/3
- Resizing the array
 - We cannot easily copy items into a bigger array. Need to hashing, which takes O(n)

Quadratic Probing

- Quadratic probing
 - In linear probing: hash, hash+1, hash+2, hash+3,...
 - In quadratic probing: hash, hash
 +1^2, hash+2^2, hash+3^2,...
- It tries to avoid cluster formation by jumping over adjacent array cells.
- Performance degrades at higher load factors compared to linear probing
- Clusters can still be formed, keys follow the same jumping pattern.

Double Hashing

- The main idea is to relate the probe sequence to the data/key, instead of making it fixed for everyone.
- It uses two different hash functions.
 - First one determines the initial index
 - Second hash determines the step for probing
 - It cannot output 0 as step size
- Use a prime number as the array size
 - Example of non-prime array size 15
 - initial index of 0, step size of 5. The probe sequence will be 0, 5, 10, 0, 5,10, and so on.

Double Hashing

```
public int hash1(int key){
  return key%size;
public int hash2(int key){
  return 5-key%5;
public void insert(DataItem item){
   int h = hash1(item.getKey()); // key
   int s = hash2(item.getKey()); // step
  while (table[h]!=null && table[h].getKey()!=-1) {//until empty spot or -1
       h=(h+s)%size;//if occupied,increment by s
  table[h]=item; // enter item into table
public DataItem find(int key){
  int h = hash1(key); // compute hash of item
  int s = hash2(key); // compute step
  while (table[h]!=null && table[h].getKey()!=key){//find matching item or null
       h=(h+s)%size; // if no match, increment by s
  return table[h]; // return item or null
```

Efficiency analysis: Open addressing liner probing

- Performance: depends on the constant factor α=N/M
- The average number of probes for search
 bit ic: 1
 1

hit is:
$$\frac{1}{2}(1 + \frac{1}{1 - \alpha})$$

The average number of probes for search miss is: $\frac{1}{2}(1+\frac{1}{(1-\alpha)^2})$

We normally set M=2N

Separate Chaining

- The idea is to have a linked list at each index
- When collision occurs, add to the linked list

Separate Chaining-Comments

- The idea is simple, but more involved implementation.
- If the list is too long, performance is not good.
- It can tolerate higher load factors compared to open addressing.
- It takes more memory compared to open addressing.

Comments on Hash Tables

- It is all about a good hash function.
- Classic space-time tradeoff:
 - If no space limits: trivial hash function with each key as an index;
 - If no time limits: trivial collision resolution with sequential search;
 - With space and time limits (the real world): design good hashing
- Disadvantages for hash tables?
 - Difficult to expand.
 - There is no order.
 - Hash table can be implemented by a balanced BST to keep keys in order. Operations will be in O(logn)
 - Memory efficiency?