

Számítógépes alapismeretek

Dr. Illés Zoltán,

Mail: illes@inf.elte.hu

Elérhetőség, információ

- A "Számítógépes alapismeretek" tárgy honlapja: http://szamalap.inf.elte.hu
- A tárgy órabeosztása: 2+2+1
- A tárgy kreditértéke: 5
- Teljesítés eredménye: összevont jegy (X-es tárgy)
- Az összevont jegy (gyakorlati jegy) feltételei:
 - 4 zárthelyi dolgozat, minden dolgozat eredmény >= 2
 - Gyakorlaton lesznek a ZH-k, utolsó alkalommal 2 (PS+előadás)
 - 3 beadandó feladat (határidő betartás)
 - Félév végén pótzh lehetőség!

Irodalomjegyzék

- Támop online tananyag.
 - http://www.tankonyvtar.hu/
- Brian W.Kernighan, Rob Pike: A Unix operációs rendszer
- Unix manual (man)
- https://www.linux.com/learn
- http://www.microsoftvirtualacademy.com/
- http://www.powershell.com
 - http://mek.oszk.hu/10400/10402/ (Magyar nyelven: PS 2.0 leírás)

A tantárgy célja

- A számítógépek szerepének, feladatainak megismerése
- Adjon olyan alapismeretet ami a további tantárgyakhoz szükséges
- Próbáljon egy közös nevezőt adni a sokféle előismerettel érkező hallgatóknak
- Számítógépek felépítését, elemeit, alap működését mutassa be
- Unix, Windows rendszerek alapvető parancsait ismertesse meg
- Script programozás lehetőségeit mutassa be
 - Unix (Linux) shell script, Windows Powershell

A tantárgy tartalma

- Számítógépek tegnap, ma, holnap
- Architektúrák, fontosabb elemek
- Operációs rendszerek szerepe
- A Linux, Windows rendszerek alapvető lehetőségei
 - Parancsok, hálózati lehetőségek, alapvető alkalmazások
- Programozni, programozni, programozni...
- Unix shell script
- Powershell

Számítógépek, fogalmak

- Általában a tantárgyi fogalmak, témakörök, anyagrészek leírásáról
 - Törekszünk szemléletes, egyszerű, érthető, tömör megfogalmazást használni!
 - Nem törekszünk a teljesség igényével megfogalmazott részletességre!- Nagy témakör, az informatika utóbbi 50 évének legfontosabb elemi ehhez tartoznak, amire nincs idő!
- Számológép Számítógép fogalma
 - Számológép, számítógép "elődje", egyszerű, napi matematikai számolások segítése, hétköznapokban megjelent kb. 40 éve.
 - Számítógép, az egyszerű számolásokon túl, általános számítási, vezérlési stb feladatok elvégzésére.

Számítógépek tegnap I.

- Ehhez a periódushoz értem a kb. 1980-as évekig tartó időszakot.
- Jórészt "számológépi" feladatok!
- Jellemző kulcselemek:
 - Abakusz (szcsotka), mechanikus, elektromechanikus gépek
 - 1943: Alan Turing Colossus gépe
 - 1946: ENIAC (Electronic Numerical Integrator And Computer), 10-es számrendszer! 30tonna!

Számítógépek tegnap II.

- 1949 EDVAC (*Electronic Discrete Variable Automatic Computer*)- *Kettes számrendszer, digitális elv*
- 1964: IBM System/360
- Hazai vonatkozás: DEC PDP11/40- KFKI TPA 1140
 - Soros terminálok, Fortran fordító, modularitás, "szolid" méret!
- Kialakul az operációs rendszer!

Számítógépek ma I.

- Folytatódik az elektronikai eszközök méretcsökkenése, teljesítmény, kapacitás növekedése!
 - Kisebb, nagyobb teljesítményű processzorok, háttértárak.
- Operációs rendszerek fejlődése, virtualizáció!
- Egy számítógép nem számítógép! Hálózatok!
 - "Felhő" szolgáltatások, univerzális információ elérés!
- Elindul a "számítógép vezérelte eszközök" térhódítása!
 - Kezdődött talán a telefonnal, ki tudja hol áll meg!
 - Okos eszközök, IoT (Internet of Things)

Számítógépek ma II.

- Jellemző mai adatok.
 - Processzor típus, hány darab van benne
 - Memória méret
 - Háttértár
- 1 processzor, több(4,6,8,10,12) mag
- HPC (High Performance Computing)
 - Debrecen- HPC: (SGI)1536 mag, 165. a ranglistán
 - MIPS,FLOPS, http://www.top500.org
 - ELTE-atlasz: 90 darab 4 magos processzor(1 fejgép+44 node)

Számítógépek ma III.

- Mikroprocesszorok Mikrokontrollerek
 - Milyen gyors? MHz, GHz
 - CISC-RISC
 - Hány bites?
 - Mai mikroprocesszorok gyakorlatig mind 64 bitesek.
 - A mikrokontrollerek viszont jellemzően 8 bitesek!
 - Cache szerepe a mikroprocesszorban!
 - TLB szerepe a mikroprocesszorban.
 - Neumann architektúra
 - Harvard architektúra
 - (adat, utasításmemória külön)

Számítógépek holnap

- Már ma is érzékelhető, a számítógépek egyre több tevékenységet átvesznek az embertől, az automatizáció folytatódik!
- Kapacitások növekedése, a mennyiségi növekedés minőségi változásokat hoz, mesterséges intelligencia erősödése!
- Vizuális információk feldolgozásának erősödése, verbális kommunikáció kialakulása!
- Hódít a számítógép…"ki tudja hol áll meg, kit hogyan talál meg.." (Arany)

Jelek, információk

- Analóg jel, információ, folytonos jelértékek! A környezeti paraméterek, távolság, hőmérséklet, zene, zaj, áramerősség stb. természetes értékei!
- Digitális jel, információ, diszkrét, nem folytonos értékek tárolása!
 Pl. CD-n tárolt hanglemez

Információ (jel) tárolása

- Bár voltak analóg számítógépek, de gyakorlatilag az 50-es évektől a digitális elv él.
- Hogy tároljuk a diszkrét értékeket?
 - Volt 10-es számrendszerbeli ábrázolás is (1946, ENIAC).
 - Azóta gyakorlatilag a 2-es (bináris) számrendszer a meghatározó!
 - A 8-as, 16-os szintén gyakran megjelenik, de csak a könnyebb leírás miatt!
 - Bit, Byte, Word, Kilobyte(KB), Megabyte(MB), Gigabyte(GB), Terrabyte(TB)
 - 1024 (2^10) a váltószám (1KB=1024byte, 1MB=1024KB), kivéve bit-byte (8)

Word(szó)

0 1 0 1 0 1 1 1 1 1 0 1

Byte

Számok ábrázolása I.

- Alap: bináris ábrázolás
- Fixpontos ábrázolás-fix számú bit
 - Természetes számok (N):
 - 1 biten 2 különböző érték (0,1
 - 2 biten 4 különböző érték (0,1,2,3)
 - 3 biten 8 különböző érték (0,..7), oktális számrendszer(o)
 - 4 biten 16 különböző érték(0,..9,a..f),hexadecimális ábrázolás(h) →
 - 8 bit -> 1 byte (0-255)
 - 16 bit, 2 byte (0-65535, 2^16-1)
 - Hány bitet használhatunk egy természetes szám ábrázolására?

Számok ábrázolása II.

- Egész számok ábrázolása
 - Egyes komplemensű ábrázolás: első bit legyen az előjel!
 - Negálás: egy bit "ellenkezője" annak negáltja (0->1, 1->0)
 - Egy szám negatív változatát úgy kapjuk ha negáljuk a biteket!
 - -x = negált x
 - Jellemzője: 2 darab nulla van 😊
 - 1 bájton így -127 +127 közötti számok ábrázolhatók!
 - Kettes komplemensű ábrázolás
 - -x = negált x +1
 - Egy nulla, -128 +127 közti számok egy bájton.

Decimális szám	Bináris számábrázolások		
	Előjel és abszolút érték	Egyes komplemens	Kettes komplemens
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
	1000	1111	
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	-	-	1000

Számok ábrázolása III.

- Mi a helyzet a tört számokkal? Például: 3,14
 - Nem probléma! Ábrázoljuk az egészrészt illetve a törtrészt egymás után!
 - Nem az igazi megoldás, ugyanis nagy a helyigénye!
- Lebegőpontos számábrázolás.
 - Legyen a szám normál alakja: +/- M * A^K, M<1
 - M- mantissza, A-hatvány alap, K- hatvány kitevő(karakterisztika)
 - Példa: A legyen 10, akkor az 517 alakja: 0,517 * 10^3
 - Példa: A=2 esetén, 517= 1000000101 -> 0,1000000101*2^10
 - 4 bájtos ábrázolás: 1 bit->előjel, 8 bit->karakterisztika, 23 bit mantissza(IEEE754)
 - 8 bájtos ábrázolás: 1 bit->előjel, 11 bit->karakterisztika, 52 bit mantissza(IEEE754)
 - Mekkora a legnagyobb ábrázolható szám?

Kódolás, karakterek tárolása

- Számokat már tudunk ábrázolni! 2-es számrendszer előnyben!
- Mi a helyzet a karakterekkel? Fontos ez?
- Kódolás: kód(Code), francia eredetű szó, rejtjelhez köthető, információt hordozó szimbólum, olyan módszer ami szimbólumokat és azok értelmezését összekapcsolja!
 - Kódolás, dekódolás (rejtjelezés, visszafejtés) régi eszkösztár
- Számítógép világában természetes módon számok léteznek -> Létre kell hozni egy szám-karakter hozzárendelési táblázatot!
 - Ezzel megszülettek a karakter kód táblázatok: ASCII, UTF-8, stb.

Számítógépek felépítése I.

 Fontosabb elemek: Központi egység, Memória, Háttértár, Bemeneti, Kimeneti egységek

• Ezen ábrázolások gyakran módosulnak, pl a bemenet, kimenet, háttértár egy logikai egységbe is kerülhet.

Számítógép kívül- belül

Miben, hol találunk számítógépet?

- Loviban...©
- Felhőben, telefonunkban, fényképezőben, televízióban, kamerában...mindenhol!
- Miben különböznek?
 - Feladatokban leginkább!
 - Általános számítógépek
 - Cél számítógépek
- Hardver, szoftver különbségek!

Számítógépek- Operációs rendszerek

- Kliens-szerver gépek.
 - Kliens, jellemzően egy felhasználó igényeit kielégítő számítógép.
 - Szerver, jellemzően sok felhasználó kiszolgálását végzi!
- Hardver különbségek
 - Szerver esetén a klasszikus input/output eszközök hiányoznak!
 - Kliens esetén ez lényeges!
- Szoftver különbségek
 - Operációs rendszer
 - Egyéb felhasználói programok

Operációs rendszerek

- Linux (SUSE, Ubuntu, Red Hat, Debian, stb)
 - UNIX-LINUX
- Apple iOS
- Windows (7,8,10), Win2012
- Felhasználói felületek
 - Grafikus
 - Karakteres
- A félév során a LINUX(UNIX) alaplehetőségeket nézünk meg!
 - Majd script programozunk!

Kiszolgálók elérése I.

- Korábban csak a számítógépes termek termináljairól volt lehetséges!
- Ma "hálózati" kapcsolaton keresztül!
 - A terminál szobák megszűntek... 😊
- Hálózati kapcsolatot biztosító eszközök.
 - Soros, párhuzamos port, ma nem használt.
 - USB port, jellemzően speciális esetben használt.
 - Hálózati (ethernet) kártya(LAN), RJ-45 port, UTP(STP) kábel, 10/100/100
 - Vezeték nélküli kártya(WIFI), IEEE 803.11 a/b/g/n/ac

Kiszolgálók elérése II.

- Hálózati elérés biztonsága
 - Az alap szabványok jellemzően nem tartalmaznak titkosítást!
 - Például, HTTP, HTTPS
- Karakteres elérés
 - Telnet ma ritkán használt mert titkosítatlan kapcsolatot használ!
 - FTP hasonló a Telnethez!
 - Titkosított kapcsolatot használ:
 - SSH vagy SSL alap
 - RSA (Rivest-Shamir-Adleman) aszimmetrikus kódolás.
- Grafikus kapcsolatok

Terminálkapcsolat

• Putty.exe – www.putty.hu oldalról letölthető!


```
szamalap.inf.elte.hu - PuTTY
                                                                         illes@szamalap.inf.elte.hu's password:
Linux pandora 4.0.9-grsec-pandora #1 SMP Fri Jul 31 18:02:34 CEST 2015 i686
 Oracle adatbázis elérése lehetséges sglplus cliensel a pandora-n.
Használat: sglplus username@oradb v sglplus username@ablinux
 Meglevo szovegfajlokat az iconv paranccsal lehet konvertalni:
iconv -f ISO-8859-2 -t UTF-8 <regi iso.txt >uj utf8.txt
iconv -f UTF-8 -t ISO-8859-2 <regi utf8.txt >uj iso.txt
UTF-8 ekezetteszt: áéíóöőúüűÁÉÍÓÖŐÚÜŰ
.....2013.05.24. PUTTY->afs home konyvtar elerese laborokbol!
kinit usernev
aklog ; cd
Disk quotas for user illes (uid 11264):
     Filesystem blocks quota limit
                                          grace
                                                  files
                                                          quota
                                                                  limit
labhome.inf.elte.hu:/cluster/home
                     32 256000 256000
Volume Name
                               Quota
                                                        Partition
user.illes
                            10485760
                                           1496
                                                               0%
Hajra Fradi!
illes@pandora:~$
```

Fájlok másolása

Winscp.exe – http://www.winscp.net

Köszönöm a figyelmet!