CS 466/566 Introduction to Deep Learning

Lecture 6 – Techniques for Training Better

Recall: ML and AI vs Deep learning

Recall: Capacity of a Neuron

Recall: Capacity of Neural Network

Recall: Capacity of Neural Network

Recall: Capacity of Neural Network

Bias – Variance Trade-off

- Variance of trained model: does it vary a lot if the training set changes?
- Bias of trained model: the average model close to the true solution
- Generalization error: (can be seen as) the sum of the (squared) bias and variance

Training Problem: Overfitting

- Variance of trained model: does it vary a lot if the training set changes?
- Bias of trained model: the average model close to the true solution
- Generalization error: (can be seen as) the sum of the (squared) bias and variance
 - Might be in high variance/low bias situation

Standard Neural Network Training Demo

http://cs.stanford.edu/people/karpathy/svmjs/demo/demonn.html

- We have lots of problems to tackle with during NN training
- Some of them are:
 - Vanishing gradient
 - Adversarial Samples
 - High variance / low bias networks (generally related to overfitting)

Training Problem: Vanishing Gradient Problem

- Saturated units block gradient propagation.
- This is especially true for recurrent neural networks. Why?
- Solution?

Problem: Adversarial Examples

- Although state-of-the-art DNNs can increasingly recognize natural images, they also are easily fooled into declaring with near-certainty that unrecognizable images are familiar objects.
- Images that fool DNNs are produced by evolutionary algorithms that optimize images to generate high-confidence DNN
 predictions for each class in the dataset the DNN is trained on (here, ImageNet).

Problem: Adversarial Examples

- Evolved images that are unrecognizable to humans but that state-of-the-art DNNs trained on ImageNet believe with ≥ 99.6% certainty to be a familiar object.
- This result highlights differences between how DNNs and humans recognize objects.

Problem: Adversarial Examples

$$+.007 \times$$

=

 \boldsymbol{x}

y = "panda" w/57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" w/8.2% confidence

$$m{x} + \\ \epsilon \operatorname{sign}(\nabla_{m{x}} J(m{ heta}, m{x}, y)) \\ \text{"gibbon"} \\ \text{w/ 99.3 \%} \\ \text{confidence}$$

Problem: Adversarial Examples in Real World

(a) Image from dataset

(b) Clean image

(c) Adv. image, $\epsilon = 4$

(d) Adv. image, $\epsilon = 8$

Overfitting

- To overcome overfitting:
 - Pre-training (unsupervised learning):
 Auto-encoders, Stacked auto-encoders, Restricted
 Boltzmann Machines, etc...
 - We can use local receptive fields and shared weights, which makes the neural network a Convolutional Neural Network.
 - We can corrupt inputs (Denoising Auto-encoders)
 - We can use regularization (L1, L2, dropout, augmentation)

Regularization

 Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error.

- L2 regularization
- L1 regularization
- Dropout
- Data augmentation

Regularization: L2 Regularization

• Penalizes the gradient term in back-prop algorithm:

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} \left(W_{i,j}^{(k)} \right)^{2} = \sum_{k} ||\mathbf{W}^{(k)}||_{F}^{2}$$

- Gradient: $\nabla_{\mathbf{W}^{(k)}}\Omega(\boldsymbol{\theta}) = 2\mathbf{W}^{(k)}$
 - Only applied on weights, not biases
 - Can be interpreted as having a Gaussian Prior over weight values.

Regularization: L1 Regularization

• Penalizes the gradient term in back-prop algorithm:

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} |W_{i,j}^{(k)}|$$

- Gradient: $\nabla_{\mathbf{W}^{(k)}}\Omega(\boldsymbol{\theta}) = \operatorname{sign}(\mathbf{W}^{(k)})$
 - Only applied on weights, not biases (again)
 - Unlike L2, L1 regularization will make some of the weights exactly 0.
 - Can be interpreted as having a Laplacian Prior over weight values.

- Idea: Cripple neural network by removing hidden units randomly.
 - Each hidden unit's activation is set to 0 with a probability, independently.
 - Usually 0.5 works well.

- Idea: Cripple neural network by removing hidden units randomly.
 - Each hidden unit's activation is set to 0 with a probability, independently.
 - Usually 0.5 works well.

- Idea: Cripple neural network by removing hidden units randomly.
 - Hidden units cannot cooperate with each other in a specific layer.
 - Therefore, hidden units must be more generally useful.

- At test time, we replace the masks by their expectation
 - this is simply the constant vector 0.5 if dropout probability is 0.5
 - for single hidden layer, can show this is equivalent to taking the geometric average of all neural networks, with all possible binary masks
- Can be combined with unsupervised pre-training
- Beats regular backpropagation on many datasets

Ensemble of subnetworks

Regularization: Dataset Augmentation

Possible Variations on MNIST

Impact of Pre-training

(intentional underfitting scenario)

Network		MNIST-small	MNIST-rotation
Type	Depth	classif. test error	classif. test error
Deep net	1	4.14 % ± 0.17	$15.22~\% \pm 0.31$
	2	4.03 % ± 0.17	10.63 % \pm 0.27
	3	4.24 % ± 0.18	$11.98~\% \pm 0.28$
	4	$4.47~\% \pm 0.18$	$11.73~\% \pm 0.29$
Doop not +	1	$3.87 \% \pm 0.17$	$11.43\% \pm 0.28$
Deep net +	2	3.38 % ± 0.16	$9.88~\% \pm 0.26$
autoencoder	3	3.37 % ± 0.16	9.22 % ± 0.25
	4	3.39 % ± 0.16	9.20 % ± 0.25
Deep net +	1	$3.17 \% \pm 0.15$	$10.47~\% \pm 0.27$
	2	2.74 % ± 0.14	$9.54~\% \pm 0.26$
RBM	3	2.71 % ± 0.14	8.80 % ± 0.25
	4	2.72 % ± 0.14	8.83 % ± 0.24

Performance on Different Datasets

Stacked	Stacked	Stacked
Autoencoders	RBMS	Denoising Autoencoders

Dataset	\mathbf{SVM}_{rbf}	SAA-3	DBN-3	$\mathbf{SdA-3}\ (\nu)$
basic	$3.03{\pm}0.15$	$3.46{\pm}0.16$	$3.11{\pm}0.15$	2.80±0.14 (10%)
rot	11.11 ± 0.28	$10.30{\pm}0.27$	$10.30{\pm}0.27$	$10.29 \pm 0.27 (10\%)$
bg- $rand$	14.58 ± 0.31	11.28 ± 0.28	$6.73{\pm}0.22$	$10.38 \pm 0.27 \ (40\%)$
$bg ext{-}img$	22.61 ± 0.37	23.00 ± 0.37	$16.31 {\pm} 0.32$	$16.68 \pm 0.33 \ (25\%)$
$rot ext{-}bg ext{-}img$	55.18 ± 0.44	51.93 ± 0.44	47.39 ± 0.44	44.49 ± 0.44 (25%)
rect	$2.15{\pm}0.13$	$2.41{\pm}0.13$	$2.60 {\pm} 0.14$	$1.99 \pm 0.12 \ (10\%)$
rect- img	24.04 ± 0.37	$24.05{\pm}0.37$	$22.50{\pm}0.37$	21.59 ± 0.36 (25%)
convex	19.13 ± 0.34	$18.41{\pm}0.34$	$18.63{\pm}0.34$	19.06±0.34 (10%)

Extracting and Composing Robust Features with Denoising Autoencoders, Vincent, Larochelle, Bengio and Manzagol, 2008.