Categorías

Para probar el teorema de la invariancia homotópica de la homología singular fue la existencia del diagrama conmutativo

$$S_{n}(X) \xrightarrow{T_{n}^{X}} S_{n+1}(X \times I)$$

$$f_{\#} \downarrow \qquad \qquad \downarrow (f \times \operatorname{Id}_{I})_{\#}$$

$$S_{n}(Y) \xrightarrow{T_{n}^{Y}} S_{n+1}(Y \times I)$$

Para probar el teorema de esición nos apoyamos en la sucesión exacta larga de la homología relativa junto con el diagrama conmutativo

$$\cdots \longrightarrow H_n(A) \xrightarrow{H_n(i)} H_n(X) \xrightarrow{H_n(j)} H_n(X, A) \xrightarrow{d_n} H_{n-1}(A) \xrightarrow{H_{n-1}(i)} H_{n-1}(X) \longrightarrow \cdots$$

$$\downarrow^{H_n(f|A)} \downarrow^{H_n(f)} \downarrow^{H_n(f)} \downarrow^{H_n(f)} \downarrow^{H_{n-1}(f|A)} \downarrow^{H_{n-1}(f)}$$

$$\cdots \longrightarrow H_n(B) \xrightarrow{H_n(i')} H_n(X) \xrightarrow{H_n(j')} H_n(Y, B) \xrightarrow{d_n} H_{n-1}(B) \xrightarrow{H_{n-1}(i')} H_{n-1}(Y) \longrightarrow \cdots$$

Estas consideraciones llevaron a Eilenberg y a Maclane a crear la teoría de categorías.

Definición 1. Una categoría C consiste de tres cosas:

- 1. Una clase obj (\mathcal{C}) de objetos.
- 2. Para cada dos objetos $A, B \in \text{obj}(\mathcal{C})$, existe un conjunto Hom(A, B) cuyos elementos se llaman morfismos y se denotan $f: A \to B$ o $A \xrightarrow{f} B$.
- 3. Para cada terna $A, B, C \in \text{obj}(\mathcal{C})$ existe una función

$$\circ: \operatorname{Hom}(A, B) \times \operatorname{Hom}(B, C) \longrightarrow \operatorname{Hom}(A, C)$$
 definido por $(f, g) \mapsto g \circ f$,

llamado composición que cumple las siguientes dos propiedades:

- (a) \circ es asociativa, es decir $(h \circ g) \circ f = h \circ (g \circ f)$.
- (b) Para todo objeto $A \in \text{obj}(\mathcal{C})$ existe un morfismo $\text{Id}_A \in \text{Hom}(A, A)$ tal que para todo objeto $B \in \text{obj}(\mathcal{C})$, y cualesquiera $f \in \text{Hom}(A, B)$ y $g \in \text{Hom}(B, A)$, se cumple

$$f \circ \operatorname{Id}_A = f$$
 y $\operatorname{Id}_A \circ g = g$

Nota. Usualmente omitimos la notación \circ para simplemente escribir gf en lugar de $g \circ f$. También pedimos que, si $A \neq C$ o $B \neq D$ entonces $\operatorname{Hom}(A,B) \cap \operatorname{Hom}(C,D) = \emptyset$. Es decir los morfismos están determinados, en parte, por su dominio y su contradominio.

Las matemáticas están llenas de categorías:

Ejemplo 1.

1. **Top**: obj (**Top**) = {espacios topológicos}, $\operatorname{Hom}(X,Y) = \{f : X \to Y \mid f \text{ es continua}\}$.

- 2. \mathbf{Top}_* : obj $(\mathbf{Top}_*) = \{(X, x) \mid X \in \text{obj}(\mathbf{Top}), x \in X\}$, $\mathrm{Hom}((X, x), (Y, y)) = \{f : X \to Y \mid f \text{ es continua y } f(x) = y\}$.
- 3. \mathbf{Top}_2 : obj $(\mathbf{Top}_2) = \{(X, A) \mid X, A \in \mathrm{obj}(\mathbf{Top}), A \subseteq X\}$, $\mathrm{Hom}((X, A), (Y, B)) = \{f : X \to Y \mid f \text{ es continua y } f[A] \subseteq B\}$.
- 4. Var: obj (Var) = {variedades suaves}, $\operatorname{Hom}(M, N) = \{f : M \to N \mid f \text{ es suave}\}.$
- 5. h**Top**: obj(h**Top**) = obj(**Top**), Hom(X,Y) = [X,Y] donde la composición está definida por $[g][f] = [g \circ f]$ (cf. definición $\ref{eq:top}$).
- 6. **Grupos**: obj (**Grupos**) = {grupos}, Hom $(G, H) = \{f : G \to H \mid f \text{ es un homomorfismo de grupos}\}.$
- 7. **Ab**: obj (**Ab**) = {grupos abelianos}, Hom $(G, H) = \{f : X \to Y \mid f \text{ es homomorfismo de grupos}\}.$
- 8. $_{R}\mathbf{Mod}$: obj $(_{R}\mathbf{Mod}) = \{R\text{-m\'odulos izquierdos}\}$, $\mathrm{Hom}(M,N) = \{f: M \to N \mid f \text{ es un morfismo de } R\text{-m\'odulos}\}$.
- 9. **CompSimp**: obj (**CompSimp**) = {complejos simpliciales}, $\operatorname{Hom}(K, L) = \{f : K \to L \mid f \text{ es un mapea simplicial}\}$.
- 10. $\mathbf{Comp}(\mathcal{A})$: obj $(\mathbf{Comp}(\mathcal{A})) = \{\text{complejos de cadena en la categoría } \mathcal{A}\}, \text{Hom } (\mathcal{C}_{\bullet}, \mathcal{C}'_{\bullet}) = \{f_{\bullet} : \mathcal{C}_{\bullet} \to \mathcal{C}'_{\bullet} \mid f_{\bullet} \text{ es un morfismo de complejos de cadena}\}.$
- 11. $\mathbf{Cov}(X)$: obj $(\mathbf{Cov}(X)) = \{\text{cubrientes sobre } X\}$, $\mathrm{Hom}\,((E,p,X),(E',p',X)) = \{f: E \to E' \mid f \text{ es continua y } f \circ p' = p\}$.
- 12. Si (X, \leq) es un conjunto parcialmente ordenado, entonces tiene naturalmente la estructura de una categoría: define obj $((X, \leq)) = X$ y

$$\operatorname{Hom}(x, x') = \begin{cases} i_{x'}^{x} & \text{si } x \leq x' \\ \emptyset & \text{si } x \not\leq x'. \end{cases}$$

13. Todo grupo G se puede realizar como una categoría: define obj $(G) = \{\bullet\}$ y $\operatorname{Hom}(\bullet, \bullet) = G$ donde la composición está dada por la multiplicación del grupo, ie. $g \circ g' = gg'$.

Definición 2. Una categoría C es pequeña si obj(C) es un conjunto.

Una definicón que siempre hemos usado es la de isomorfismo:

Definición 3. Sea \mathcal{A} una categoría y $A, B \in \text{obj}(\mathcal{A})$. Un morfismo $f \in \text{Hom}(A, B)$ es un *isomorfismo* si existe un morfismo $g \in \text{Hom}(B, A)$ tal que $gf = \text{Id}_A$ y $fg = \text{Id}_B$.

Otra definición importante es la de funtor:

Definición 4. Sean \mathcal{A} y \mathcal{B} categorías. Un funtor (covariante), denotado por $\mathcal{F}: \mathcal{A} \to \mathcal{B}$, es una asignación:

$$A \mapsto \mathcal{F}(A) \in \text{obj}(\mathcal{B}) \quad \text{y} \quad \left(A \xrightarrow{f} A'\right) \mapsto \left(\mathcal{F}(A) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(A')\right)$$

que cumple las siguiente dos propiedades:

- 1. $\mathcal{F}(\mathrm{Id}_A) = \mathrm{Id}_{\mathcal{F}(A)}$
- 2. $\mathcal{F}(gf) = \mathcal{F}(g)\mathcal{F}(f)$

Ejemplo 2.

- 1. $\pi_n : \mathbf{Top}_* \to \mathbf{Grupos} \ \mathrm{con} \ (X, x_0) \mapsto \pi_n(X, x_0).$
- 2. $H_n(\underline{\ };R): \mathbf{Top} \to {}_R\mathbf{Mod} \ \mathrm{con} \ X \mapsto H_n(X;R).$
- 3. $|\cdot|$: CompSimp \rightarrow Top con $K \mapsto |K|$.

Los funtores preservan isomorfismos:

Ejercicio 1. Sea \mathcal{A} una categoría y $A, A' \in \text{obj}(\mathcal{A})$. Si $f \in \text{Hom}(A, A')$ es un isomorfismo, entonces $\mathcal{F}(f) : \mathcal{F}(A) \to \mathcal{F}(A')$ es un isomorfismo.

Proof. Por hipótesis $f: A \to A'$ es un isomorfismo, entonces existe un morfismo $g \in \text{Hom}(A', A)$ tal que $gf = \text{Id}_A$ y $fg = \text{Id}_{A'}$. Aplicamos el funtor \mathcal{F} a estas igualdades para obtener

$$\mathcal{F}(g)\mathcal{F}(f) = \mathcal{F}(gf) = \mathcal{F}(\mathrm{Id}_A) = \mathrm{Id}_{\mathcal{F}(A)}$$
 y $\mathcal{F}(f)\mathcal{F}(g) = \mathcal{F}(fg) = \mathcal{F}(\mathrm{Id}_{A'}) = \mathrm{Id}_{\mathcal{F}(A')}$

Por lo tanto existe un $\mathcal{F}(g) \in \text{Hom}(()\mathcal{F}(A'), \mathcal{F}(A))$ tal que $\mathcal{F}(g)\mathcal{F}(f) = \text{Id}_{\mathcal{F}(A)}$ y $\mathcal{F}(f)\mathcal{F}(g) = \text{Id}_{\mathcal{F}(A')}$. Por lo tanto $\mathcal{F}(f)$ es un isomorfismo.

Ejercicio 2. Los isomorfismos de hTop son las clases de homotopía de equivalencias homotópicas.

Proof. Sean $X, Y \in \text{obj}(h\mathbf{Top}) = \text{obj}(\mathbf{Top})$. Un morfismo $[f] \in \text{Hom}(X, Y) = [X, Y]$ es un isomorfismo si y sólo si existe un $[g] \in [Y, X]$ tal que $[g][f] = [g \circ f] = [\mathrm{Id}_X]$ y $[f][g] = [g \circ f] = [\mathrm{Id}_Y]$, o equivalentemente $g \circ f \simeq \mathrm{Id}_X$ y $f \circ g \simeq \mathrm{Id}_Y$. Por lo tanto [f] es un isomorfismo si y sólo f es una equivalencia homotópica. \square

Mientras que la definición de funtor es importante, es más interesante la de transformación natural:

Definición 5. Sean \mathcal{A} y \mathcal{B} categorías, $\mathcal{F}, \mathcal{G} : \mathcal{A} \to \mathcal{B}$ funtores. Una transformación natural entre \mathcal{F} y \mathcal{G} , denotado por $\mathfrak{T} : \mathcal{F} \to \mathcal{G}$ es una familia de morfismos $\mathfrak{T} = \{T_A : \mathcal{F}(A) \to \mathcal{G}(A)\}_{A \in \text{obj}(\mathcal{A})}$ tales que hacen conmutar el siguiente diagrama:

$$\mathcal{F}(A) \xrightarrow{T_A} \mathcal{G}(A)$$

$$\mathcal{F}(f) \downarrow \qquad \qquad \downarrow_{\mathcal{G}(f)} \quad \forall A, A' \in \text{obj}(\mathcal{A}), \ \forall f \in \text{Hom}(A, A').$$

$$\mathcal{F}(A') \xrightarrow{T_{A'}} \mathcal{G}(A')$$

Si además cada $T_A \in \mathfrak{T}$ es un isomorfismo, decimos que \mathfrak{T} es una equivalencia natural.

Ejemplo 3. 1. Sea $S_n(\cdot; R)$: $\mathbf{Top} \to {}_R\mathbf{Mod}$ el funtor $X \mapsto S_n(X; R)$ y $f \mapsto f_n$, la n-ésima componente del morfismo $f_\# : S_{\bullet}(X) \to S_{\bullet}(Y)$ de complejos de cadena. Sea $\mathfrak{I} : \mathbf{Top} \to \mathbf{Top}$ el funtor $X \mapsto X \times I$ con $f \mapsto f \times \mathrm{Id}$. Definimos:

$$\mathcal{F} = (S_{n+1}(\cdot;R) \circ \mathfrak{I}) : \mathbf{Top} \longrightarrow {}_{R}\mathbf{Mod} \quad \text{con} \quad X \mapsto S_{n+1}(X \times I) \;\;, \;\; f \mapsto (f \times \mathrm{Id})_{\#}$$

Observa que $\mathfrak{T} = \{T_A : S_n(X) \to S_{n+1}(X \times I)\}_X$ es una transformación natural (cf. sección ??).

2. Tomamos el funtor $H_n(\cdot, \cdot; R)$ el funtor de homología relativa. Define $\mathcal{F}_n = H_{n-1}(\cdot; R) \circ \pi$ donde $\pi : \mathbf{Top}_2 \to \mathbf{Top}$ es el funtor $(X, A) \mapsto A$ y $f \mapsto f|_A$. En símbolos:

$$\mathcal{F}_n: \mathbf{Top}_2 \longrightarrow {}_R\mathbf{Mod} \quad \mathrm{con} \quad (X,A) \mapsto H_{n-1}(A;R)$$

Entonces la familia de morfismos de conexión $\mathfrak{D} = \{d_n^{(X,A)}: H_n(X,A;R) \to H_{n-1}(A)\}_{(X,A)}$ es una transformación natural entre $H_n(\underline{\ },\underline{\ };R) \ y \ \mathcal{F}_n$.

3. Sea $\mathcal{V}_{<\infty}$ la categoría de k-espacios vectoriales de dimensión finita con transformaciones lineales como morfismos. Sea $\mathcal{I}: \mathcal{V}_{<\infty} \to \mathcal{V}_{<\infty}$ el funtor identidad, es decir $\mathcal{I}(V) = V$ y $\mathcal{I}(f) = f$. Ahora define F cumple el funtor "doble dual", es decir $\mathcal{F}: \mathcal{V}_{<\infty} \to \mathcal{V}_{<\infty}$ con $V \mapsto V^{**}$ y $\mathcal{F}(f)$ definido de la manera canónica. Más precisamente, si $f: V \to W$ es una transformación lineal y $\alpha: V^* \to k$ es un elemento de $V^{**} = \operatorname{Hom}(V^*, k)$, entonces $\mathcal{F}(f)(\alpha)$ se define como la función $\mathcal{F}(f)(\alpha): V^{**} \to W^{**}$ que hace $\mathcal{F}(f)(\alpha)(\beta) = \alpha(\beta \circ f)$, donde $\beta: W \to k$.

Ejercicio 3. La transformación natural $\mathfrak{T}: \mathcal{I} \to \mathcal{F}$, definido por $\mathfrak{T} = \{T_V: V \to (V^*)^*\}_V$ donde $T_V(v)(\alpha) = \alpha(v)$ es una equivalencia natural.

Proof. Primero probamos que cada T_V es una transformación lineal. Sean $v, v' \in V$ y $\lambda \in k$, entonces:

$$T_V(\lambda v + v')(\alpha) = \alpha(\lambda v + v') = \lambda \alpha(v) + \alpha(v') = \lambda T_V(v) + T_V(v')$$

porque $\alpha \in \text{Hom}(V^*, k)$ es una transformación lineal. Así, T_V es una transformación lineal.

Ahora probamos que $\mathfrak{T}:\mathcal{I}\to\mathcal{F}$ es una transformación natural, es decir que para todas V y W k-espacios vectoriales de dimensión finita y para toda transformación lineal $f:V\to W$ el siguiente diagrama conmuta:

$$V \xrightarrow{T_V} (V^*)^*$$

$$f \downarrow \qquad \qquad \downarrow \mathcal{F}(f)$$

$$W \xrightarrow{T_W} (W^*)^*$$

$$(1)$$

Sea $v \in V$ y evaluamos el elemento $T_W(f(v)) \in (W^*)^* = \operatorname{Hom}(W^*, k)$ en un elemento $\beta : W \to k$ de $W^* = \operatorname{Hom}(W, k)$:

$$T_W(f(v))(\beta) \stackrel{\text{def}}{=} \beta(f(v)) = (\beta \circ f)(v),$$

mientras que

$$\mathcal{F}(f)(T_V(v))(\beta) \stackrel{\text{def}}{=} T_V(v)(\beta \circ f) \stackrel{\text{def}}{=} (\beta \circ f)(v).$$

Por lo tanto $T_W(f(v)) = \mathcal{F}(f)(T_V(v))$ y el diagrama 1 conmuta.

Para probar que \mathfrak{T} es una equivalencia natural, hay que probar que cada T_V es un isomorfismo. Primero pruebo que T_V es un monomorfismo:

$$T_V(v) = 0 \iff T_V(v)(\alpha) = \alpha(v) = 0 \forall \alpha \in V^*.$$

En particular si $\{v_1, \ldots, v_n\}$ es una base de V y $e_j: V \to k$ son las funcionales lineales asociadas a la base, ie. $e_i(\lambda_1 v_1 + \cdots + \lambda_n v_n) = \lambda_i$, tenemos que $e_i(v) = 0$ para toda i y así $v = 0v_1 + \cdots + 0v_n = 0$. Como claramente $v = 0 \Longrightarrow \alpha(v) = 0$ para toda $\alpha \in V^*$, tenemos que $T_V(v) = 0$ si y sólo si v = 0, es decir, T_V es inyectivo para toda v.

Como $\{e_1, \ldots, e_n\}$ es una base de V^* , la transformación lineal $v_1 \mapsto v_n$ es un isomorfismo, es decir $V \cong V^*$. Por lo tanto $\dim(V) = \dim(V^*) = \dim(V^{**})$ y como V es de dimensión finita, el monomorfismo T_V necesariamente es un isomorfismo y acabamos.