Practical Exercise

Question 1

A new test, possibly cheaper than existing options, to detect the presence of *Helicobacter pylori* is being developed. In the sample of individuals tested (drawn from the attenders of a dyspepsia clinic in Glasgow), diagnosis was confirmed by endoscopic biopsy.

The data are in the .csv format file: **Helicobacter.csv**. The two variables are coded as follows:

Variable	Coding
Test	0 = Negative
	1 = Positive
Biopsy	0 = H. pylori absent
	1 = H. pylori present

- a) Calculate appropriate summary measures for test performance and describe the test's performance in this population.
- b) What would you estimate the PPV and NPV of the test to be if it was applied in London, if the prevalence of *H. pylori* was about 60% there?

Question 2

AnginaMI.csv contains the creatine kinase (CK) data from 120 patients suffering from either unstable angina or acute myocardial infarction (AMI). The variables are as follows:

Variable	Coding
Diagnosis	Character variable – "Angina" or "AMI"
CreatineKinase	Continuous value of CK
DiagnosisCat	0 = Angina
	1 = AMI

- (a) Draw a ROC curve to show test performance across the range of CK values. What overall performance can be attained?
- (b) If you wished to create (instead) a good rule-out test, how would you modify the decision rule? (A rule-out test would be highly effective in saying that a patient would be unlikely to go on to develop AMI, but not necessarily very accurate in predicting AMI in a positive sense.)