

Dinaminis programavimas (DP)

Algoritminė technika sudėtingoms problemoms spręsti

AG by Andrej Gorbatniov

Kas yra dinaminis programavimas?

Algoritminė technika

Išskaido sudėtingas problemas į paprastesnes dalis

Pasikartojančios dalys

Sprendimo dalys persidengia ir išsaugomos

Metodai

Memoizacija (iš viršaus) arba bottom-up (iš apačios)

Kada verta naudoti dinaminį programavimą?

Pasikartojančios dalinės problemos (overlapping)

Sprendimas priklauso nuo tų pačių smulkesnių dalių

Optimali sandara

Optimalus sprendimas sudėtas iš optimalių sprendimų dalims

Greedy algoritmai – kas tai?

Kiekviename žingsnyje renkamės lokaliai geriausią sprendimą.

3 Nėra grįžimo

Nėra grįžimo atgal ar peržiūros, kaip rekursijoje.

Pasirinkimai

Pasirinkimai daromi vietoje, be žvilgsnio į ateitį.

4 Sprendimas

Sprendimas formuojamas palaipsniui.

Rekursija vs. Greedy vs. DP

Metodas	Kaip veikia	Kada naudoti
Rekursija	Skirsto problemą į mažesnes dalis	Kai nėra pasikartojimo
Greedy	Renkasi lokaliai geriausią	Kai užtikrinamas globalus optimalumas
DP	Išsaugo tarpinius rezultatus	Kai yra persidengiančios dalys

Rekursinis Fibonačio medis: koks neefektyvus!

Funkcija: F(n) = F(n-1) + F(n-2)

Pastebėkite, kiek kartų skaičiuojamas tas pats F(2), F(3)

Tas pats Fibonačio uždavinys su DP

Saugome rezultatus

Kiekvienas F(n) skaičiuojamas tik kartą

$$F(0) \rightarrow 0, F(1) \rightarrow 1$$

Baziniai atvejai

$$F(2) = F(1) + F(0)$$

Pildome lentelę nuosekliai

Dynamic Programming with Memoization

Lookup			Fibonaccic and Lacolation						
	onacci Numbe			1	1	12	4	3	5
0	10			8	12			10	10
2	12	4	→	8	19	10			
7	145			17	15				
25				503		-			

Lookup Fibonacci Number

1		
9	9	25
19	5	40
23	11	20
18	8	

Lookup

10		1	42	
6	14	15	10	5
5	11	40	15	
15	18		101	
15	18		125	

6 Made with Gamma

Du DP sprendimo būdai

Memoizacija (rekursinis iš viršaus žemyn)

Memoizacija – tarsi **kelias per medį**, kur saugomi jau aplankyti mazgai

- Lengviau rašyti
- Artima rekursijai
- Daug rekursijos gylio

Bottom-Up (iš apačios į viršų)

Bottom-Up – tarsi plytelių klojimas nuo grindų iki lubų

- Nenaudoja rekursijos
- Paprasta optimizuoti
- Reikia žinoti eigą iš anksto

STEP - 1 Step - 2 Step - 3 STEP - 1 Step = .5 STEP = 2 Step=3 Step = 4 STEP = 4 STEP = 5Step = . 8

DP lentelės pavyzdys: Kiek būdų užlipti laiptais?

1

dp[0]

Vienas būdas niekur nelipti

1

dp[1]

Vienas būdas užlipti ant pirmo laiptelio

2

dp[2]

dp[1] + dp[0] = 2

8

dp[5]

dp[4] + dp[3] = 8

Climbing Stairs – Bottom-Up DP pseudokodas

