MATEMATICI SPECIALE Culegere de probleme

TANIA-LUMINIŢA COSTACHE

*

Prefață

Lucrarea este rezultatul seminariilor de Probabilități și statistică matematică și Matematici avansate ținute de autoare studenților anilor întâi și doi ai Facultăților de Automatică și Calculatoare și Electronică din Universitatea Politehnică București.

Cartea este structurată în unsprezece capitole, conținând o secțiune teoretică cu principalele noțiuni și rezultate necesare rezolvării exercițiilor, o parte de probleme rezolvate care acoperă programa seminarului de Matematici 3 și probleme propuse studenților pentru o fixare mai bună a cunoștințelor predate, precum și pentru înțelegerea altor cursuri de specialitate.

Pentru aprofundarea conceptelor fundamentale sunt necesare o pregătire teoretică suplimentară și o participare activă în cadrul seminariilor și cursurilor.

Mult succes!

*

Cuprins

Pı	refaț	ă S	}				
1	Spa	ții de probabilitate	7				
	1.1	Noțiuni teoretice	7				
	1.2	Probleme rezolvate)				
	1.3	Probleme propuse	}				
2	Var	iabile aleatoare 37	7				
	2.1	Noțiuni teoretice	7				
	2.2	Probleme rezolvate	1				
	2.3	Probleme propuse	7				
3	Vec	tori aleatori 85	5				
	3.1	Noțiuni teoretice	5				
	3.2	Probleme rezolvate	7				
	3.3	Probleme propuse)				
4	Şiruri de variabile aleatoare 103						
	4.1	Noțiuni teoretice	3				
	4.2	Probleme rezolvate	3				
	4.3	Probleme propuse	2				
5	Procese stochastice (aleatoare) 124						
	5.1	Noțiuni teoretice	1				
	5.2	Probleme rezolvate	7				
	5.3	Probleme propuse	3				
6	Metode statistice 140						
	6.1	Noțiuni teoretice)				
	6.2	Probleme rezolvate	5				
	6.3	Probleme propuse	3				

6 CUPRINS

7	Fun	cții olomorfe. Dezvoltări în serie Laurent	165		
	7.1	Noțiuni teoretice	165		
	7.2	Probleme rezolvate	167		
	7.3	Probleme propuse	174		
8	Integrale complexe				
	8.1	Noțiuni teoretice	176		
	8.2	Probleme rezolvate	180		
	8.3	Probleme propuse	187		
9	Trai	nsformata Laplace	190		
	9.1	Definiție și formule de inversare	190		
	9.2	Proprietățiile transformării Laplace	191		
	9.3	Rezolvarea ecuațiilor și sistemelor de ecuații diferențiale cu			
		coeficienți constanți	193		
	9.4	Integrarea unor ecuații cu derivate parțiale, cu condiții inițiale			
		și condiții la limită	194		
	9.5	Rezolvarea unor ecuații integrale	195		
	9.6	Probleme rezolvate	195		
	9.7	Probleme propuse	223		
10	Trai	nsformarea Z	230		
	10.1	Noțiuni teoretice	230		
	10.2	Probleme rezolvate	232		
	10.3	Probleme propuse	238		
11	Ecu	ații cu derivate parțiale de ordinul doi	240		
	11.1	Noţiuni teoretice	240		
	11.2	Probleme rezolvate	243		
	11.3	Probleme propuse	252		
Bi	bliog	rafie	255		

Capitolul 1

Spații de probabilitate

1.1 Noțiuni teoretice

Definiția 1.1. Se numește spațiu (câmp) discret de probabilitate o mulțime finită $\Omega = (\omega_n)_{n \leq N}$ sau numărabilă $\Omega = (\omega_n)_{n \in \mathbb{N}}$, împreună cu un șir $(p_n)_n, 0 \leq p_n \leq 1$, satisfăcând condiția $\sum_{n} p_n = 1$

Definiția 1.2. Orice submulțime $A \subset \Omega$ este un **eveniment** căruia i se atașează probabilitatea $P(A) = \sum_{i \in A} p_i$

Exemplul 1.1. In urma experienței care constă în aruncarea unei monede putem obține unul din rezultatele (fața cu stema), (fața cu valoarea). Considerând un singur rezultat, fața cu stema poate să apară sau să nu apară; în acest exemplu apariția feței cu stema este un **eveniment aleator** (întâmplător).

Orice eveniment întâmplător depinde de acţiunea combinată a mai multor factori întâmplători. În experienţa aruncării monedei printre factorii întâmplători putem aminti: felul în care mişcăm mâna, particularităţile monedei, poziţia în care se găseşte moneda în momentul aruncării.

Relativ la producerea unui eveniment întâmplător într-un singur rezultat nu putem spune nimic. Situația se schimbă atunci când avem în vedere evenimente întâmplătoare ce pot fi observate de mai multe ori în condiții identice.

Aceste evenimente se supun unor legi, cunoscute sub numele de **legi** statistice, teoria probabilităților stabilind forma lor de manifestare și permițând să se prevadă desfășurarea lor. Este normal să nu putem să prevedem dacă într-o singură aruncare a monedei va apărea fața cu stema, însă într-o serie mare de experiențe, putem prevedea cu suficientă precizie numărul de apariții ale acestor fețe.

Definiția 1.3. Evenimentul sigur este un eveniment care se realizează cu certitudine la fiecare efectuare a experienței.

Exemplul 1.2. Alegerea unei piese corespunzătoare sau necorespunzătoare

standardului dintr-un lot de piese este evenimentul sigur al experienței.

Definiția 1.4. Evenimentul imposibil nu se produce la nici o efectuare a experienței.

Exemplul 1.3. Extragerea unei bile roşii dintr-o urnă care conține numai bile albe.

Definiția 1.5. Intotdeauna unui eveniment îi corespunde un **eveniment contrar**, a cărui producere constă în nerealizarea primului. Evenimentul contrar unui eveniment A îl vom nota \overline{A} , CA, A^c .

Exemplul 1.4. Fie A evenimentul apariției uneia din fețele 2,5 la aruncarea unui zar și cu B apariția uneia din fețele 1,3,4,6. Se observă că atunci când nu se produce evenimentul A, adică atunci când nu apare una din fețele 2 sau 5, se produce evenimentul B, adică obținem una din fețele 1,3,4,6 și invers.

Definiția 1.6. Evenimentele A și B se numesc **compatibile** dacă se pot produce simultan, adică dacă există rezultate care favorizează atât pe A cât și pe B.

Exemplul 1.5. La aruncarea zarului evenimentul A care constă din apariția uneia din fețele cu un număr par și evenimentul B care constă din apariția uneia din fețele 2 sau 6 sunt compatibile deoarece dacă vom obține ca rezultat al experienței apariția feței 2 înseamnă că s-au produs ambele evenimente. Același lucru se întâmplă dacă obținem fața 6.

Definiția 1.7. Evenimentele A și B se numesc **incompatibile** dacă nu se pot produce simultan, adică dacă nu există rezultate care favorizează atât pe A cât și pe B.

Definiția 1.8. Dacă A și B sunt evenimente incompatibile $(A \cap B = \emptyset)$, atunci $P(A \cup B) = P(A) + P(B)$.

Mai general, pentru orice șir $(A_n)_{n\in\mathbb{N}}$ de evenimente două câte două incompatibile, avem $P(\bigcup_{n=0}^\infty A_n)=\sum_{n=0}^\infty P(A_n)$

Observația 1.1. Evenimentele contrare sunt incompatibile, dar evenimentele incompatibile nu sunt întotdeauna contrare.

Exemplul 1.6. La aruncarea zarului evenimentul A care constă din apariția uneia din fețele cu un număr impar și evenimentul B care constă din apariția uneia din fețele cu un număr par sunt evenimente incompatibile și contrare.

Exemplul 1.7. La aruncarea zarului evenimentul A care constă din apariția uneia din fețele cu un număr par și B ce constă din apariția feței 5 sunt incompatibile, însă nu sunt contrare deoarece nerealizarea evenimentului A nu este echivalentă cu producerea evenimentului B.

Definiția 1.9. Se numește **spațiu de probabilitate** un triplet (Ω, \mathcal{K}, P) , unde Ω este o mulțime de evenimente elementare, \mathcal{K} este o σ -algebră de părți ale lui Ω , iar $P \colon \mathcal{K} \to [0,1]$ este o măsură de probabilitate satisfăcând

9

 $P(\Omega) = 1$ şi $P(\bigcup_{n=0}^{\infty} A_n) = \sum_{n=0}^{\infty} P(A_n)$, pentru orice şir $(A_n)_{n \in \mathbb{N}}$ de evenimente două câte două incompatibile.

Cazuri particulare

1. Definiția clasică a probabilității

Dacă Ω este o mulțime cu N elemente, se poate defini un spațiu discret de probabilitate luând $p_n = \frac{1}{N}, n = \overline{1, N}$. In acest caz se spune că evenimentele elementre sunt **echiprobabile** şi pentru orice eveniment $A \subset \Omega$, avem $P(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$.

2. Probabilități geometrice

Fie $\Omega \subset \mathbb{R}^n$ o mulțime de măsură Lebesgue finită și fie \mathcal{K}_Ω σ - algebra submulțimilor sale boreliene. Obținem un spațiu de probabilitate $(\Omega, \mathcal{K}_{\Omega}, P)$, definind pentru orice $A \in \mathcal{K}_{\Omega}$, $P(A) = \frac{\mu(A)}{\mu(\Omega)}$, unde μ este măsura Lebesgue în \mathbb{R}^n (deci lungime pe \mathbb{R} , arie în \mathbb{R}^2 etc.).

Proprietăți ale probabilităților

Fie (Ω, \mathcal{K}, P) un spațiu de probabilitate.

- 1. Dacă $A, B \in \mathcal{K}$ și $A \subset B$, atunci $P(B \setminus A) = P(B) P(A)$
- 2. Formula lui Poincare Fie n evenimente arbitrare $A_1, \ldots A_n \in \mathcal{K}$,

atunci
$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i \neq j} P(A_i \cap A_j) + \ldots + (-1)^{n-1} P(A_1 \cap \ldots \cap A_n).$$
3. Pentru orice şir crescător de evenimente $A_0 \subset A_1 \subset \ldots A_n \subset \ldots$ avem

$$P(\bigcup_{n=0}^{\infty} A_n) = \lim_{n \to \infty} P(A_n).$$

4. Pentru orice şir descrescător de evenimente $A_0 \supset A_1 \supset \dots A_n \supset \dots$

avem
$$P(\bigcap_{n=0}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$
.

Definiția 1.10. a) Evenimentele A și B se numesc **independente** dacă $P(A \cap B) = P(A)P(B)$.

b) Evenimentele $A_1, \ldots A_n$ se numesc **independente** în ansamblu dacă pentru orice $m \le n$ și $1 \le j_1 \le \ldots \le j_m \le n$, avem

$$P(A_{i_1} \cap \ldots \cap A_{i_m}) = P(A_{i_1}) \ldots P(A_{i_m})$$

Observația 1.2. Dacă n evenimente sunt independente două câte două nu sunt neapărat independente în totalitatea lor. Acest lucru se vede în următorul exemplu datorat lui S.N. Bernstein: Se consideră un tetraedru omogen cu fețele colorate în alb, negru, roșu și a patra în cele trei culori. Efectuăm experimentul aruncării acestui corp o singură dată . Să notăm cu A_i evenimetul ca tetraedrul să se așeze pe fața cu numărul $i, i = \overline{1, 4}$. Evenimentele A_i sunt evenimente elementare ale câmpului asociat experimentului descris.

Avem
$$P(A_i) = \frac{1}{4}, i = \overline{1,4}$$

Dacă notăm $A = A_1 \cup A_2$, $B = A_1 \cup A_3$, $C = A_1 \cup A_4$ avem $P(A) = P(B) = P(C) = \frac{1}{2}$, deoarece pentru fiecare culoare sunt patru cazuri posibile şi două cazuri favorabile - faţa cu culoarea respectivă şi faţa cu toate culorile.

De asemenea, $P(A \cap B) = P(B \cap C) = P(C \cap A) = \frac{1}{4}$, deci evenimentele A, B, C sunt independente două câte două .

Din $P(A \cap B \cap C) = P(A_1) = \frac{1}{4} P(A) P(B) P(C) = \frac{1}{8}$ rezultă că evenimentele A, B, C nu sunt independente în ansamblul lor.

Definiția 1.11. Fie A și B evenimente cu $P(B) \neq 0$. **Probabilitatea** lui A condiționată de B, notată P(A/B) sau $P_B(A)$, se definește prin $P(A/B) = \frac{P(A \cap B)}{P(B)}$.

Formula de înmulțire a probabilităților

Dacă $A_1, \ldots A_n$ sunt n evenimente, atunci

$$P(A_1 \cap ... \cap A_n) = P(A_1)P(A_2/A_1)P(A_3/A_1 \cap A_2)...P(A_n/A_1 \cap ... \cap A_{n-1})$$

Formula probabilității totale

Dacă evenimentul sigur Ω se descompune în reuniunea a n evenimente incompatibile $H_1, \ldots H_n$, atunci, pentru orice eveniment $A \in \mathcal{K}$, avem

$$P(A) = \sum_{i=1}^{n} P(A/H_i)P(H_i)$$

Formula lui Bayes

$$P(H_j/A) = \frac{P(A/H_j)P(H_j)}{\sum_{i=1}^{n} P(A/H_i)P(H_i)}$$

In particular, pentru orice două evenimente A, B avem

$$P(A) = P(A/B)P(B) + P(A/B^c)P(B^c)$$

şi

$$P(B/A) = \frac{P(A/B)P(B)}{P(A/B)P(B) + P(A/B^c)P(B^c)}$$

1.2 Probleme rezolvate

1. Intr-un spaţiu de probabilitate (Ω, \mathcal{K}, P) se consideră evenimentele $A, B, C \in \mathcal{K}$ astfel încât $P(A) = \frac{1}{3}, P(B) = \frac{1}{4}, P(A \cap B) = \frac{1}{6}$. Să se determine $P(A^c), P(A^c \cup B), P(A \cup B^c), P(A^c \cup B^c), P(A^c \cap B^c)$.

Soluție.
$$P(A^c) = 1 - P(A) = 1 - \frac{1}{3} = \frac{2}{3}$$

$$\begin{split} &P(A^c \cup B) = P(A^c) + P(B) - P(A^c \cap B) = \frac{2}{3} + \frac{1}{4} - [P(B) - P(A \cap B)] = \\ &= \frac{2}{3} + \frac{1}{4} - \frac{1}{4} + \frac{1}{6} = \frac{5}{6} \\ &P(A \cup B^c) = P(A) + P(B^c) - P(A \cap B^c) = \frac{1}{3} + 1 - \frac{1}{4} - [P(A) - P(A \cap B)] = \\ &= \frac{1}{3} + 1 - \frac{1}{4} - \frac{1}{3} + \frac{1}{6} = \frac{11}{12} \\ &P(A^c \cap B^c) = P[(A \cup B)^c] = 1 - P(A \cup B) = 1 - P(A) - P(B) + \\ &+ P(A \cap B) = 1 - \frac{1}{4} + \frac{1}{6} = \frac{7}{12} \\ &P(A^c \cup B^c) = P[(A \cap B)^c] = 1 - P(A \cap B) = 1 - \frac{1}{6} = \frac{5}{6} \end{split}$$

- 2. Se consideră spațiul $\Omega = \{a, b, c, d\}$ și evenimentele $A = \{a, d\}, B = \{a, b, c\}, C = \{b, d\}$ din σ algebra $\mathcal{K} = \mathcal{P}(\Omega)$. Să se stabilească dacă există probabilități pe \mathcal{K} ce verifică una dintre următoarele serii de condiții :
 - a) P(A) = 0, 5, P(B) = 0, 9, P(C) = 0, 4
 - b) P(A) = 0, 6, P(B) = 0, 8, P(C) = 0, 7
 - c) P(A) = P(B) = P(C)

Soluție. a) Din relația $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ rezultă $1 = 0, 5 + 0, 9 - P(\{a\}) \Longrightarrow P(\{a\}) = 0, 4$

Analog, folosind evenimentele B și C, găsim $P(\left\{b\right\})=0,3,P(\left\{c\right\})=0,2,P(\left\{d\right\})=0,1$

- b) Dacă procedăm ca la a) găsim $P(\{a\})=0,4, P(\{b\})=0,5$ și $P(\{c\})=-0,1$ ceea ce nu se poate pentru că orice probabilitate este pozitivă .
- c) Notăm cu x valoarea comună a celor 3 probabilități și procedând ca mai sus rezultă $P(\{a\}) = P(\{b\}) = 2x-1, P(\{c\}) = 2-3x, P(\{d\}) = 1-x.$

Punând condiția ca probabilitățile să fie subunitare și pozitive rezultă $\frac{1}{2} \le x \le \frac{2}{3}$

3. Este mai probabil să obținem cel puțin un număr 6 în 4 aruncări cu zarul sau să obținem cel puțin o dublă șase în 24 de aruncări cu 2 zaruri?

Soluție. Probabilitatea de a nu obține fața cu numărul 6 într-o aruncare cu zarul este $\frac{5}{6}.$

Probabilitatea de a obține cel puțin un număr 6 în 4 aruncări cu zarul este $P_1=1-\left(\frac{5}{6}\right)^4\simeq 0,51$

Probabilitatea de a nu obține dublă șase în 24 de aruncări cu 2 zaruri este $\left(\frac{35}{36}\right)^{24}$.

Probabilitatea de a obține cel puțin o dublă șase în 24 de aruncări cu 2 zaruri este $P_2=1-\left(\frac{35}{36}\right)^{24}\simeq 0,49$

Aşadar este mai probabil să obținem cel puțin un număr 6 în 4 aruncări cu zarul decât să obținem cel puțin o dublă şase în 24 de aruncări cu 2 zaruri.

4. Care e probabilitatea ca suma a 3 numere din intervalul [0, a] alese la întâmplare să fie mai mare decât a?

Soluție. Spațiul de probabilitate este $\Omega = [0, a]^3$. Evenimentul cerut este format din punctele mulțimii $E = \{(x, y, z) \in \Omega/x + y + z \ge a\}$

Alegem un sistem ortogonal de axe şi Ω se reprezintă printr-un cub de latură a situat în primul octant, iar E este una din regiunile lui Ω separate de planul x+y+z=a (complementara tetraedrului OABC).

Atunci
$$P(E) = \frac{a^3 - \frac{a^3}{6}}{a^3} = \frac{5}{6}$$

5. Pe un plan orizontal se consideră un sistem de axe xOy și mulțimea E a punctelor cu coordonate întregi. O monedă cu diametrul $\frac{1}{2}$ e aruncată la întâmplare pe acest plan. Care e probabilitatea ca moneda să acopere un punct din E?

Soluție. Fie $C(x_0, y_0)$ cel mai apropiat punct din E de centrul M al monedei, deci coordonatele lui M sunt de forma $(x_0 + x, y_0 + y)$, $-\frac{1}{2} < x, y < \frac{1}{2}$

Spațiul de selecție este $\Omega = \{(x,y) \in \mathbb{R}^2 / -\frac{1}{2} < x, y < \frac{1}{2}\}$

Mulțimea evenimentelor elementare favorabile este

$$A = \{(x,y) \in \Omega/(x-x_0)^2 + (y-y_0)^2 < \frac{1}{16}\}$$

$$Deci \ p = \frac{aria(A)}{aria(\Omega)} = \frac{\pi}{16}$$

6. O urnă conține 12 bile numerotate de la 1 la 12. Să se determine probabilitatea ca bilele numerotate cu 5,7,11 să iasă la extragerile de rangul 5,7,11.

Solutie. Cazuri posibile: 12!

Cazuri favorabile 9!, de
oarece dacă fixăm de fiecare dată bilele cu numerele 5,7,11 rămân 9 libere.

Probabilitatea este
$$P = \frac{9!}{12!}$$

7. O urnă conține 50 bile dintre care 10 sunt negre, iar restul albe. Se scot la întâmplare 5 bile. Care e probabilitatea ca între cele 5 bile să fie bile negre?

Soluție. Fie evenimentele A= toate cele 5 bile sunt albe, B= între cele 5 bile cel puțin una este neagră ; A și B sunt complementare

$$P(A) = \frac{C_{40}^5}{C_{50}^5} \Longrightarrow P(B) = 1 - P(A) = 1 - \frac{C_{40}^5}{C_{50}^5} = 0,68944$$

8. Coeficienții întregi ai ecuației $ax^2 + bx + c = 0$ sunt obținuți prin aruncarea unui zar de 3 ori. Să se determine probabilitatea ca rădăcinile ei : a) să fie reale; b) să nu fie reale.

$$Soluție.\,$$
a) Condiția ca rădăcinile să fie reale este $\Delta\geq 0\Longrightarrow b^2-4ac\geq \geq 0\Longrightarrow b^2\geq 4ac\Longrightarrow \frac{b^2}{4}\geq ac$

Numărul cazurilor posibile este $6^3 = 216$

Calculând ac pentru diversele valori ale lui a și c cu b=2,3,4,5,6 găsim numărul cazurilor favorabile este 43.(pentru b=2 avem 1 caz favorabil, pentru b=3 avem 3 cazuri favorabile, pentru b=4 avem 8 cazuri favorabile, pentru b=5 avem 14 cazuri favorabile, pentru b=6 avem 17 cazuri favorabile)

Atunci
$$p = \frac{43}{216}$$

b) $p = 1 - \frac{43}{216}$

- 9. Intr-o cameră întunecoasă se găsesc 5 perechi de pantofi. Se aleg la întâmplare 5 pantofi.
 - a) Care e probabilitatea ca între cei 5 pantofi aleşi să fie cel puţin o pereche, în ipoteza că cele 5 perechi de pantofi sunt fiecare de acelaşi fel?
 - b) Care e probabilitatea ca între cei 5 pantofi aleşi să fie cel puţin o pereche, în ipoteza că cele 5 perechi de pantofi sunt de mărimi (culori) diferite?

Soluție. a) Fie evenimentele $A={\rm cu}$ cei 5 pantofi aleși se poate forma cel puțin o pereche, $B={\rm cu}$ cei 5 pantofi aleși nu se poate forma nici o pereche

A și B sunt evenimente complementare, deci $P(A)=1-P(B)=1-\frac{2}{C_{10}^5}$, deoarece numărul cazurilor posibile este dat de numărul de grupuri de câte 5 pantofi ce se pot forma din totalul de 10 pantofi. Ca să nu pot forma o pereche cu cei 5 pantofi aleși trebuie ca ei să fie sau toți pentru piciorul drept sau toți pentru piciorul stâng și avem 2 posibilități.

b) Calculăm P(B). Numărul cazurilor posibile este C_{10}^5 .

Stim că nu putem forma nici o pereche dacă cei 5 pantofi aleşi sunt toți pentru piciorul drept sau dacă 4 sunt pentru piciorul drept însă de

mărimi diferite și unul pentru piciorul stâng, însă de cealaltă mărime, sau dacă 3 sunt pentru piciorul drept de mărimi diferite și 2 pentru piciorul stâng, dar de celelalte mărimi și diferite între ele, etc. Deci, între cei 5 pantofi poate să nu apară nici un pantof stâng în C_5^5 grupe, să nu apară un pantof stâng în C_5^4 grupe, 2 pantofi stângi în C_5^3 grupe etc.

Numărul cazurilor favorabile este $C_5^5+C_5^4+C_5^3+C_5^2+C_5^1+C_5^0=2^5\Longrightarrow P(B)=\frac{2^5}{C_{10}^5}$

Fie evenimentul C= cu cei 5 pantofi putem forma cel puţin o pereche $\Longrightarrow P(C)=1-P(B)=1-\frac{2^5}{C_{10}^5}$

10. Un lift urcă cu k persoane într-o clădire cu n etaje. Care e probabilitatea ca la un etaj să coboare cel mult o persoană?

Soluție. Vom presupune că toate modurile de grupare a persoanelor în lift sunt egal probabile. Vom distinge 2 cazuri n < k și $n \ge k$.

Dacă n < k, probabilitatea ca la un etaj să coboare cel mult o persoană este nulă , deoarece numărul persoanelor depășește numărul etajelor și neapărat la un etaj va trebui să coboare mai mult de o persoană .

Dacă $n \geq k$, atunci numărul cazurilor posibile este dat de numărul aplicațiilor mulțimii $\{1, 2, ..., k\}$ în mulțimea $\{1, 2, ..., n\}$ care este dat de n^k .

Numărul cazurilor favorabile este dat de numărul aplicațiilor mulțimii $\{1,2,\ldots,k\}$ în mulțimea $\{1,2,\ldots,n\}$ în care fiecărui element din $\{1,2,\ldots,k\}$ îi corespunde un singur element din $\{1,2,\ldots,n\}$. Acest număr este A_n^k și probabilitatea va fi $\frac{A_n^k}{n^k}$.

Observația 1.3. Să ne reamintim cum calculăm numărul aplicațiilor de la o mulțime cu k elemente la o mulțime cu n elemente.

Fie mulțimea A cu card (A) = k și mulțimea B cu card (B) = n. Vrem să arătăm că numărul aplicațiilor $f: A \to B$ este n^k .

In loc să numărăm funcții vom număra cuvinte ordonate astfel : $f \colon A \to B, f \longrightarrow f(x_1) f(x_2) \dots f(x_k)$ - un cuvânt de lungime k format cu litere din milțimea B, unde $A = \{x_1, x_2, \dots, x_k\}, B = \{y_1, y_2, \dots, y_n\}$

Reciproc, fiecărui cuvânt de lungime k cu litere din mulțimea B îi asociem funcția $y_{i1}y_{i2}...y_{ik}$, $f(x_1) = y_{i1}$, $f(x_2) = y_{i2}$, ... $f(x_k) = y_{ik}$

Vom număra deci cuvintele ordonate de lungime k cu litere din alfa-

betul
$$B: (n, n, \dots, n)$$

Să ne reamintim cum calculăm numărul aplicațiilor injective de la o mulțime cu k elemente la o mulțime cu n elemente, unde $k \le n$.

Fiecărei funcții injective $f: A \to B$ îi corespunde o submulțime ordonată a lui B, care este formată din elementele $y_1 = f(x_1), y_2 = f(x_2), \dots, y_k = f(x_k)$ (toate aceste elemente sunt diferite între ele, după injectivitatea funcției f). Invers, fiecare submulțime ordonată , având k elemente, a lui B, definește o funcție injectivă f de la A la B, prin care $f(x_m) = y_m$.

Astfel, numărul funcțiilor injective definite pe o mulțime A cu k elemente cu valori într-o mulțime B cu n elemente ($k \le n$), este egal cu numărul submulțimilor ordonate, având câte k elemente, ale lui B, adică cu A_n^k .

11. Un fumător își cumpără două cutii de chibrituri și le bagă în buzunar. După aceea de fiecare dată când folosește un chibrit, îl scoate la întâmplare dintr-o cutie. După câtva timp scoate o cutie și constată că este goală . Care este probabilitatea ca în a doua cutie să fie în acel moment k chibrituri, dacă la început ambele cutii aveau câte n chibrituri? Folosind rezultatul problemei, să se deducă valoarea sumei $C_{2n}^n + 2C_{2n-1}^n + 2^2C_{2n-2}^n + \ldots + 2^nC_n^n$.

Soluție. In momentul când persoana constată că o cutie este goală , în a doua cutie pot fi h chibrituri, $h=\overline{0,n}$. Convenim să înlocuim cutia care s-a golit cu una plină și că vom continua experiența până ce am efectuat a (2n+1)-a extragere, deoarece atunci cel puțin una din cutii va fi goală , inițial ele având 2n chibrituri. La un moment dat fumătorul a scos pentru prima dată al (n+1)-lea chibrit dintr-o cutie și deci trebuie să aflăm probabilitatea ca din cea de a doua cutie să se fi extras n-k chibrituri. Intrucât fiecare chibrit poate fi extras dintr-o cutie sau alta și în total fac 2n+1 extrageri succesive, atunci numărul cazurilor posibile este dat de mulțimea aplicațiilor lui $1,2,\ldots,2n+1$ în mulțimea cu două elemente, deci este 2^{2n+1} .

Favorabile sunt cazurile în care din primele 2n-k chibrituri extrase avem n chibrituri din prima cutie, n-k din a doua cutie și al (2n-k+1)-lea chibrit este scos tot din prima cutie. Numărul acestor cazuri este C_{2n-k}^n .

Cum rolul primei cutii îl poate juca oricare din cele două cutii rezultă că avem $2C_{2n-k}^n$ cazuri. Asociind aceste cazuri cu celelalte 2^k posibilități de extragere, în celelalte k extrageri ce se mai pot face până la numărul de 2n+1 când ne oprim, găsim că numărul cazurilor favorabile este dat de $2^{k+1}C_{2n-k}^n$.

Deci probabilitatea cerută este $p_k = \frac{2^{k+1}C_{2n-k}^n}{2^{2n+1}}$.

Cum k poate lua valorile $0,1,2,\ldots,n$ și $\sum_{k=0}^{n} p_k = 1$ rezultă că

$$\sum_{k=0}^{n} 2^{k+1} C_{2n-k}^{n} = 2^{2n+1}.$$

12. Intr-un tramvai cu trei vagoane se urcă , la întâmplare, 7 persoane. Care este probabilitatea ca în primul vagon să se urce 4 persoane?

Soluție. Pentru a le deosebi vom nota vagoanele prin a,b,c. Punctele corespunzătoare spațiului de selecție constau în toate șirurile posibile de 7 litere, unde fiecare literă a șirului poate fi a,b și c. Un astfel de șir arată în felul următor bacaaac și ne spune că primul pasager s-a urcat în vagonul b, următorul în vagonul a, altul în vagonul c, trei în vagonul a și ultimul în vagonul c. Deci spațiul de selecție conține a0 puncte, care sunt aranjamente cu repetiție, adică aplicațiile mulțimii cu 7 elemente în mulțimea cu 3 elemente. Deoarece alegerile se fac la întâmplare, punctele acestui spațiu sunt egal probabile, fiecare având probabilitatea $\frac{1}{37}$.

Să notăm cu E evenimentul ce constă în faptul că în vagonul a se urcă 4 persoane. Acest eveniment este realizat de $C_7^4 \cdot 2^3$ puncte, deoarece cele 7 persoane, în grupe de câte 4, se pot urca în C_7^4 moduri, iar dacă presupunem că în primul vagon s-au urcat 4 persoane în C_7^4 moduri vom asocia numărul modurilor în care cele 3 persoane rămase se pot urca în celelalte două vagoane (acest număr fiind 2^3). Așadar, $P(E) = \frac{C_7^4 \cdot 2^3}{3^7}$.

13. (**Problema zilei de naștere**) Intr-o cameră sunt *k* persoane. Care este probabilitatea ca cel puţin două dintre aceste persoane să aibă aceeași zi de naștere, adică aceeași zi și lună a anului.

Soluție. Să presupunem că luna februarie are 28 de zile, adică anul are 365 de zile. Pentru fiecare persoană există 365 posibilități pentru ziua de naștere și 365^k posibilități pentru zilele de naștere ale celor k persoane din cameră . Astfel, spațiul de selecție corespunzător experienței are 365^k puncte, fiecare dintre ele fiind de forma (x_1,\ldots,x_k) , unde x_i reprezintă ziua de naștere a persoanei i. Vom presupune că toate punctele sunt egal probabile, adică vom asocia fiecărui punct al spațiului de selecție probabilitatea $\frac{1}{365^k}$.

Deoarece evenimentele A="cel puţin două persoane au aceeaşi zi de naştere" şi B="din cele k persoane nu există două care să aibă aceeaşi zi de naştere" sunt complementare, avem P(A) = 1 - P(B).

Pentru ziua de naștere a primei persoane sunt 365 de posibilități, a celei de-a doua persoane 364 de posibilități,..., a persoanei k, 365-(k-1) posibilități. Urmează că numărul de puncte ce favorizează evenimentul B este $365 \cdot 364 \cdot \ldots (365-k+1)$. Deci $P(B) = \frac{365 \cdot 364 \cdot \ldots (365-k+1)}{365^k} \Longrightarrow P(A) = 1 - \frac{365 \cdot 364 \cdot \ldots (365-k+1)}{365^k}$.

- 14. Se aruncă 3 zaruri. Să se calculeze probabilitatea ca suma punctelor obținute să fie:
 - a) mai mică decât 8;
 - b) mai mare decât 7;
 - c) egală cu 12.

Soluție. a) Fie A_k evenimentul ce constă în faptul că dintr-o aruncare cu 3 zaruri obținem suma $k,3 \le k \le 18$.

Atunci, folosind pentru probabilitate raportul dintre numărul cazurilor favorabile și numărul cazurilor posibile avem

$$P(A_k) = \frac{\operatorname{card}\{(e_1, e_2, e_3) / e_j = \overline{1, 6}, 1 \le j \le 3, \sum_{j=1}^{3} e_j = 1\}}{\operatorname{card}\{(e_1, e_2, e_3) / e_j = \overline{1, 6}, 1 \le j \le 3\}}$$

Dacă notăm cu A evenimentul ca într-o aruncare suma punctelor obținute să fie mai mică decât 8 putem scrie $A = A_3 \cup A_4 \cup \ldots A_7$.

Evenimentele $A_k, 3 \leq k \leq 18$ fi
ind incompatibile două câte două găsim

$$P(A) = \sum_{k=3}^{7} P(A_k), P(A_3) = \frac{1}{6^3}, P(A_4) = \frac{3}{6^3}.$$

Pentru găsirea acestui rezultat raționăm în felul următor: considerăm cubul determinat prin intersecția planelor x=1, x=6, y=1, y=6, z=1, z=6, într-un sistem de axe rectangulare tridimensional. Secționăm acest cub cu plane paralele cu axele și anume x=2,3,4,5, y=2,3,4,5,=2,3,4,5. Mulțimea tuturor punctelor de intersecție astfel obținute ne dă mulțimea tripletelor $(e_1,e_2,e_3), e_j=\overline{1,6}, 1\leq j\leq 3$.

In fiecare plan z=1,2,3,4,5,6 avem câte 36 puncte, deci în total 6^3 puncte.

In planul z=1 sunt două triplete $(e_1,e_2,e_3),e_j=\overline{1,6},1\leq j\leq 1$

 $\leq 3, \sum_{j=1}^3 e_j = 4,$ iar în planul z=2 un triplet de această formă . Deci $P(A_4) = \frac{3}{63}.$

In planul z = 1 sunt 3 triplete $(e_1, e_2, e_3), e_j = \overline{1, 6}, 1 \le j \le 3, \sum_{j=1}^{3} e_j = 5$.

In planul z=2 două și în planul z=3 un triplet de această formă . Prin urmare $P(A_5)=\frac{6}{6^3}$.

Asemănător găsim $P(A_6) = \frac{10}{6^3}, P(A_7) = \frac{15}{6^3}$.

Aşadar,
$$P(A) = \frac{1}{6^3}(1+3+6+10+15) = \frac{35}{6^3}$$
.

b) Dacă B este evenimentul că suma punctelor este mai mare decât 7, atunci $B = \bigcup_{j=8}^{18} A_j$.

Deci
$$P(B) = \sum_{j=8}^{18} P(A_j).$$

Cu raționamentul de mai sus găsim
$$P(A_8)=\frac{21}{6^3}, P(A_9)=\frac{25}{6^3}, P(A_{10})=\frac{27}{6^3}, P(A_{11})=\frac{27}{6^3}, P(A_{12})=\frac{25}{6^3}, P(A_{13})=\frac{21}{6^3}, P(A_{14})=\frac{15}{6^3}, P(A_{15})=\frac{10}{6^3}, P(A_{16})=\frac{6}{6^3}, P(A_{17})=\frac{3}{6^3}, P(A_{18})=\frac{1}{6^3}.$$

Deci
$$P(B) = \frac{1}{6^3}(21 + 25 + 27 + 27 + 25 + 21 + 15 + 10 + 6 + 3 + 1)$$

La acelaşi rezultat puteam ajunge observând că P(B)+P(A)=1, deci $P(B)=1-P(A)=1-\frac{35}{6^3}$.

c)
$$P(A_{12}) = \frac{25}{6^3}$$

- 15. Un scafandru are 2 sisteme de oxigen independente, astfel încât dacă unul se defectează scafandrul să primească în continuare oxigen. Presupunem că probabilitatea ca sistemul I să funcționeze este 0,9, în timp ce probabilitatea ca sistemul II să funcționeze este 0,8.
 - a) Găsiți probabilitatea ca nici un sistem să nu se defecteze;
 - b) Găsiți probabilitatea ca cel puțin un sistem să funcționeze.

Soluție. a) Fie evenimentele S_1 =sistemul I funcționează și S_2 =sistemul II funcționează .

Avem
$$P(S_1) = 0, 9, P(S_2) = 0, 8$$

$$P(S_1 \cap S_2) = P(S_1)P(S_2) = 0, 9 \cdot 0, 8 = 0, 72$$

b)
$$P(S_1 \cup S_2) = P(S_1) + P(S_2) - P(S_1 \cap S_2) = 0, 9 + 0, 8 - 0, 72 = 0, 98$$

16. Trăgătorul A nimerește ținta de 8 ori din 11 trageri, iar B de 9 ori din 10 trageri. Dacă trag simultan în aceeași țintă , care e probabilitatea ca ținta să fie atinsă .

Soluție. Fie evenimentele $A_1 = A$ să nimerească ținta, $A_2 = B$ să nimerească ținta.

Probabilitatea căutată este
$$p = P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1)P(A_2) = \frac{8}{11} + \frac{9}{10} - \frac{8}{11} \cdot \frac{9}{10}.$$

17. Sase vânători au zărit o vulpe și au tras simultan. Presupunem că de la distanța respectivă , fiecare vânător nimerește în mod obișnuit vulpea și o ucide cu probabilitatea $\frac{1}{3}$. Să se afle probabilitatea ca vulpea să fie ucisă .

Soluție. Notăm cu $A_1, \ldots A_6$ evenimentele ce constau în faptul că primul vânător, al doilea,..., al șaselea vânător a nimerit și ucis vulpea, V= vulpea e ucisă . Avem $P(A_i)=\frac{1}{3}, i=\overline{1,6}\Longrightarrow P(A_i^c)=\frac{2}{3}, i=\overline{1,6}.$

Cum
$$V = \bigcup_{i=1}^{6} A_i \Longrightarrow V^c = \bigcap_{i=1}^{6} A_i^c$$

$$P(V) = 1 - P(V^c) = 1 - \left(\frac{2}{3}\right)^6 = \frac{665}{729}, \text{ deoarece } A_i^c, i = \overline{1,6} \text{ sunt independente}$$

18. O societate compusă din n perechi soț și soție dansează și se presupune că formarea perechilor la dans este egal probabilă . Care este probabilitatea ca la un moment dat fiecare bărbat să nu danseze cu soția sa? Să se calculeze limita acestei probabilități când $n \longrightarrow \infty$?

Soluție. Numerotăm perechile soț - soție de la 1 la n.

Fie $A_k =$ evenimentul că s-a format perechea numărul k soț - soție, unde $k = \overline{1,n}$

Atunci $P(A_{i_1} \cap ... \cap A_{i_k}) = \frac{(n-k)!}{n!}$, deoarece s-au format k perechi soție, atunci celelalte n-k perechi bărbat- femeie pot forma (n-k)! perechi de dans

Fie evenimentele A= la un moment dat fiecare bărbat să nu danseze cu soția sa, B= la un moment dat cel puțin un bărbat dansează cu soția sa

A şi B sunt evenimente complementare $\Longrightarrow P(A) = 1 - P(B)$

Cum
$$B = \bigcup_{i=1}^{n} A_i$$
 şi $A_1, \dots A_n$ sunt evenimente compatibile \Longrightarrow

$$\Longrightarrow P(B) = P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) +$$

+
$$\sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k) + \ldots + (-1)^n P(\bigcap_{i=1}^n A_i)$$

$$\sum_{1 \le i_1 < i_2 < \dots < i_k \le n} P(A_{i_1} \cap \dots \cap A_{i_k}) = C_n^k \frac{(n-k)!}{n!}$$
Aşadar, $P(B) = C_n^1 \frac{(n-1)!}{n!} - C_n^2 \frac{(n-2)!}{n!} + \dots + (-1)^{n-1} \frac{1}{n!} \Longrightarrow$

$$\Longrightarrow P(A) = 1 - C_n^1 \frac{(n-1)!}{n!} + C_n^2 \frac{(n-2)!}{n!} - \dots + (-1)^{n-1} \frac{1}{n!} = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}$$

$$\lim_{n \to \infty} P(A) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{k!} = \frac{1}{e}$$

- 19. Să presupunem că avem un grup de indivizi de vârste $x_1, \ldots x_n$. Se cer să se determine:
 - a) probabilitatea ca după trecerea unui an, cel puțin unul din cei n indivizi să fie în viață ;
 - b) probabilitatea ca după trecerea unui an, cel puțin r persoane să fie în viață .

Soluție. a) Fie E_k = persoana de vârsta x_k e în viață după trecerea unui an, $k = \overline{1, n}$ și $p_k = P(E_k), k = \overline{1, n}$.

 E_k sunt evenimente compatibile și independente

 $P_1 \! = \! \operatorname{probabilitatea}$ ca după trecerea unui an cel puțin unul din cei n indivizi să fie în viață

$$P_{1} = P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{1 \leq i < j \leq n} P(E_{i} \cap E_{j}) + \dots + (-1)^{n} P(\bigcap_{i=1}^{n} E_{i}) =$$

$$= \sum_{i=1}^{n} p_{i} - \sum_{1 \leq i < j \leq n} p_{i} p_{j} + \dots + (-1)^{n} p_{1} \dots p_{n}$$

$$\text{Notăm } T_{1} = \sum_{i=1}^{n} p_{i}, T_{2} = \sum_{1 \leq i < j \leq n} p_{i} p_{j}, \dots,$$

$$T_{n} = \sum_{1 \leq i_{1} < i_{2} < \dots < i_{n} \leq n} p_{i_{1}} p_{i_{2}} \dots p_{i_{n}}$$

$$\text{b) } P_{r} = T_{r} - C_{r}^{1} T_{r+1} + \dots + (-1)^{n} C_{r+s-1}^{s} T_{r+s} + \dots + (-1)^{n-r} C_{n}^{n-r} T_{r} \quad \Box$$

20. Un aparat se compune din 3 elemente a căror fiabilitate (durata de funcționare fără defecțiune tot timpul într-un interval de timp dat) este egală cu 0,9; 0,85; 0,75. Primul element este indispensabil pentru funcționarea aparatului, defectarea unuia din celelalte două elemente face ca aparatul să funcționeze cu un randament inferior, iar defectarea simultană a elementelor doi și trei face imposibilă funcționarea aparatului. Elementele se defectează independent unul de altul. Se cere probabilitatea ca aparatul să funcționeze tot timpul într-un interval e timp dat.

Soluție. Fie evenimentele A_i = elementul i $(i = \overline{1,3})$ funcționează fără defecțiune și A=aparatul funcționează chiar cu un randament inferior

Avem
$$A = (A_1 \cap A_2 \cap A_3) \cup (A_1 \cap A_2^c \cap A_3) \cup (A_1 \cap A_2 \cap A_3^c)$$

 $P(A) = P(A_1 \cap A_2 \cap A_3) + P(A_1 \cap A_2^c \cap A_3) + P(A_1 \cap A_2 \cap A_3^c) =$
 $= P(A_1)P(A_2)P(A_3) + P(A_1)P(A_2^c)P(A_3) + P(A_1)P(A_2)P(A_3^c) =$
 $= 0, 9 \cdot 0, 85 \cdot 0, 75 + 0, 9 \cdot 0, 15 \cdot 0, 75 + 0, 9 \cdot 0, 85 \cdot 0, 25 = 0, 866$

21. Se dau $P(A/B) = \frac{7}{10}$, $P(A/B^c) = \frac{3}{10}$, $P(B/A) = \frac{6}{10}$. Să se determine P(A).

$$Soluție.$$
 Din definiția probabilităților condiționate avem $P(B/A)==\frac{P(B\cap A)}{P(A)},\ P(A/B)=\frac{P(A\cap B)}{P(B)},\ \mathrm{deci}\ P(A)P(B/A)=P(B)P(A/B)$ și analog $P(A)P(B^c/A)=P(B^c)P(A/B^c)$

Aşadar,
$$P(A) = \frac{P(B)P(A/B)}{P(B/A)} = \frac{P(B^c)P(A/B^c)}{P(B^c/A)}$$

Avem $P(B^c) = 1 - P(B)$ şi $P(B/A) + P(B^c/A) = 1 \Longrightarrow P(B^c/A) = 1 \Longrightarrow P(B^c/A) = 1 - P(B/A) = 1 - \frac{6}{10} = \frac{4}{10}$. Atunci $P(A) = \frac{P(B)\frac{7}{10}}{\frac{6}{10}} = \frac{7}{6}P(B)$ şi $P(A) = \frac{(1-P(B))\frac{3}{10}}{\frac{4}{10}} = \frac{3}{4}(1-P(B)) \Longrightarrow \frac{7}{6}P(B) = \frac{3}{4}(1-P(B)) \Longrightarrow P(B) = \frac{9}{23} \Longrightarrow P(A) = \frac{21}{46}$

22. Se dau probabilitățile $P(A/D), P(B/A \cap D), P(C/A \cap B \cap D)$. Se cere să se determine în funcție de ele $P(A \cap B \cap C/D)$.

$$Soluție. \text{ Avem } P(A \cap B \cap C/D) = \frac{P(A \cap B \cap C \cap D)}{P(D)}, \text{ dar } P(A \cap B \cap C \cap D) = P(D \cap A \cap B \cap C) = P(D)P(A/D)P(B/A \cap D)P(C/A \cap B \cap D),$$
 deoarece $P(D)P(A/D)P(B/A \cap D)P(C/A \cap B \cap D) = P(D) \cdot \frac{P(A \cap D)}{P(D)} \cdot \frac{P(A \cap B \cap D)}{P(A \cap D)} \cdot \frac{P(A \cap B \cap C \cap D)}{P(A \cap B \cap D)} = P(A \cap B \cap C \cap D)$ Deci $P(A \cap B \cap C/D) = P(D)P(A/D)P(B/A \cap D)P(C/A \cap B \cap D)$

23. Tabelul următor arată nivelele presiunii sângelui și obiceiurile unui grup de 300 de bărbați de vârstă medie:

	Nefumător	Fumător moderat	Fumător " înrăit"	Total
Presiunea normală		'		'
a sângelui	81	84	27	192
Presiune mare		'	'	' '
a sângelui	21	51	36	108
Total	102	135	63	300

Presupunem că cineva este selectat la întâmplare din acest grup. Găsiți probabilitatea ca persoana selectată :

a) să fie un fumător " înrăit";

- b) are presiunea mare a sângelui;
- c) are presiune mare și e un fumător " înrăit";
- d) are presiune mare a sângelui dat fiind faptul că este un fumător " înrăit";
- e) să fie un fumător "înrăit" dat fiind faptul că el are presiune mare a sângelui.

Soluție. Fie H= evenimentul că persoana selectată este un fumător " înrăit" și B= evenimentul că persoana selectată are presiunea mare a sângelui.

a)
$$P(H) = \frac{63}{300} = 0.21$$

b)
$$P(B) = \frac{108}{300} = 0.36$$

c)
$$P(B \cap H) = \frac{36}{300} = 0,12$$

d)
$$P(B/H)=\frac{\text{numărul fumătorilor " înrăiți" ce au presiunea mare a sângelui}}{\text{numărul total al fumătorilor " înrăiți"}}=\frac{36}{63}=0,57$$

e)
$$P(H/B) = \frac{P(H)P(B/H)}{P(B)} = \frac{0.21 \cdot 0.57}{0.36} = 0.33$$

24. Un studiu asupra atitudinii despre slujba unei persoane este dat în următorul tabel:

	fericit	nefericit	Total
Soferi de autobuz	50	75	125
Avocaţi	40	35	75
Total	90	110	200

O persoană din acest grup este selectată la întâmplare. Dat fiind că persoana selectată este șofer de autobuz, găsiți probabilitatea ca el să fie fericit.

Soluție. Fie H=persoana fericită este selectată și B=un șofer de autobuz este selectat.

$$P(H/B) = \frac{P(H \cap B)}{P(B)} = \frac{\frac{50}{200}}{\frac{125}{200}} = \frac{0.25}{0.625} = 0.4$$

- 25. Două cărți sunt selectate dintr-un pachet de 52 de cărți. Care e probabilitatea ca prima să fie 4 și a doua să fie Jocker dacă :
 - a) prima carte nu este întoarsă în pachetul de cărţi înainte ca a doua să fie selectată;
 - b) prima carte este întoarsă în pachetul de cărți înainte ca a doua să fie selectată .

Soluție. Fie F=prima carte este 4 și J=a doua carte este Jocker Avem $P(F) = \frac{4}{52}$.

a)
$$P(J/F) = \frac{4}{51} \Longrightarrow P(F \cap J) = P(F)P(J/F) = \frac{4}{52} \cdot \frac{4}{51} = 0,006$$

b) $P(J/F) = \frac{4}{52} \Longrightarrow P(F \cap J) = P(F)P(J/F) = \frac{4}{52} \cdot \frac{4}{52} = 0,0059$

- 26. La un colegiu, 260 de studenți pasionați de matematică participă la 3 cursuri opționale: geometrie(G), analiză (An) și algebră (Al). Se știe că 52 de studenți participă la toate cele 3 cursuri și că 100 participă la Al, 200 la An, 165 la G, 57 la Al și An, 125 la An și G, 82 la Al și G. Un student este ales la întâmplare și este întrebat dacă participă la cursul de geometrie.
 - a) Care este probabilitatea ca răspunsul să fie "da"?
 - b) Care este probabilitatea ca studentul întrebat să participe la cursul de geometrie, dar nu și la cel de analiză ?
 - c) Studentul întrebat susține că participă la cursul de analiză . Care este probabilitatea ca el să nu participe nici la cursul de geometrie, nici la cel de algebră ?

Soluție. a)
$$P(G) = \frac{165}{260} = 0,635$$

b)
$$P(G \cap An^c) = \frac{40}{260} = 0,154$$

c)
$$P(Al^c \cap G^c/An) = \frac{P(Al^c \cap G^c \cap An)}{P(An)} = \frac{70}{200}$$

(Problema se poate rezolva grafic, considerând mulțimile $G,\ An,\ Al)$

- 27. Două persoane distrate A şi B, relativ la umbrelele lor au următorul comportament: A își ia umbrela cu el ori de câte ori iese, în timp ce B își uită umbrela acasă cu probabilitatea $\frac{1}{2}$. Fiecare din ei își uită umbrela când vizitează un prieten cu probabilitatea $\frac{1}{4}$. După ce vizitează 3 prieteni, ei se întorc acasă . Să se calculeze probabilitatea ca:
 - a) ambii să aibă umbrela;
 - b) numai unul dintre ei are umbrelă;
 - c) B să -și fi uitat umbrela, condiționat de faptul că , după întoarcerea acasă există numai o singură umbrelă .

Soluție. a) Fie $A_i=A$ uită umbrela la prietenul $i,\,B_i=B$ uită umbrela la prietenul $i,i=\overline{1,3},\,B_0=B$ uită umbrela acasă

$$P(\text{ambii au umbrelă}) = P(A_1^c \cap A_2^c \cap A_3^c)[P(B_0) + P(B_0^c \cap B_1^c \cap B_2^c \cap B_4^c)] = \left(\frac{3}{4}\right)^3 \left[\frac{1}{2} + \frac{1}{2}\left(\frac{3}{4}\right)^3\right]$$

b)
$$P(\text{ numai unul are umbrelă }) = P(A_1^c \cap A_2^c \cap A_3^c)[P(B_0^c \cap B_1) + P(B_0^c \cap B_1^c \cap B_2) + P(B_0^c \cap B_1^c \cap B_2^c \cap B_3)] + [P(A_1) + P(A_1^c \cap A_2) + P(A_1^c \cap A_2^c \cap A_3)][P(B_0) + P(B_0^c \cap B_1^c \cap B_2^c \cap B_3)] = \frac{3}{4} \left[\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \left(\frac{3}{4} \right)^2 \cdot \frac{1}{4} \right]$$

c)
$$P(Ba \text{ pierdut umbrela / există o singură umbrelă }) = \frac{P(Ba \text{ pierdut umbrela și există o singură umbrelă })}{P(\text{există o singură umbrelă })} = \frac{999}{8192} \cdot \frac{8192}{4366} = \frac{999}{4366}$$

- 28. Intr-o urnă se găsesc 5 bile albe şi 4 negre. Se efectuează 3 extrageri succesive, fără a mai pune bila scoasă înapoi.
 - a) Care e probabilitatea ca cele 3 extrageri să se realizeze în ordinea albă , albă , neagră ?
 - b) Dar în cazul când este indiferentă ordinea extragerii celor 2 bile albe și a uneia negre?

Soluție. a) Fie evenimentele E_1 = prima dată se extrage o bilă albă E_2 = a doua bilă extrasă este albă , E_3 = a treia bilă extrasă este neagră

Avem
$$P(E_1) = \frac{5}{9}, P(E_2/E_1) = \frac{4}{8}, P(E_3/E_1 \cap E_2) = \frac{4}{7}$$

Probabilitatea cerută este $P(E_1 \cap E_2 \cap E_3)$.

- Cf. formulei de înmulţire a probabilităţilor avem $P(E_1 \cap E_2 \cap E_3) = P(E_1)P(E_2/E_1)P(E_3/E_1 \cap E_2) = \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{4}{7} = 0,16$
- b) Fie evenimentele A= scoaterea unei bile albe, N= scoaterea unei bile negre.

In cazul în care e indiferentă ordinea trebuie luate în considerare următoarele evenimente :

$$X = A \cap A \cap B \Longrightarrow P(X) = \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{4}{7} = \frac{10}{63}$$
$$Y = A \cap B \cap A \Longrightarrow P(Y) = \frac{5}{9} \cdot \frac{4}{8} \cdot \frac{4}{7} = \frac{10}{63}$$
$$Z = N \cap A \cap A \Longrightarrow P(Z) = \frac{4}{9} \cdot \frac{5}{8} \cdot \frac{4}{7} = \frac{10}{63}$$

Se cere $P(X \cup Y \cup Z)$. Evenimentele X, Y, Z sunt incompatibile $\Longrightarrow P(X \cup Y \cup Z) = P(X) + P(Y) + P(Z) = \frac{30}{63} = \frac{10}{21} \approx 0,476$

Altfel, putem folosi schema hipergeometrică a bilei fără revenire : $p=\frac{C_5^2C_4^1}{C_9^3}=\frac{10}{21}$

- 29. Intr-un lot 20 de televizoare sunt bune și 6 defecte. Patru cumpărători extrag succesiv câte un televizor.
 - a) Care este probabilitatea ca cele 4 televizoare să fie bune?
 - b) Care este probabilitatea ca primele 2 să fie bune și ultimele 2 să fie defecte?

Soluție. a) Fie A_i evenimentul "televizorul numărul i este bun", $i = \overline{1,4}$.

Avem de calculat probabilitatea

$$P(A_1)P(A_2/A_1)P(A_3/A_1 \cap A_2)P(A_4/A_1 \cap A_2 \cap A_3) = \frac{20}{26} \cdot \frac{19}{25} \cdot \frac{18}{24} \cdot \frac{17}{23}$$

b) Fie B_i evenimentul "televizorul numărul i este bun",i=1,2 și B_i evenimentul "televizorul numărul i este defect",i=3,4

Avem de calculat probabilitatea

$$P(B_1)P(B_2/B_1)P(B_3/B_1\cap B_2)P(B_4/B_1\cap B_2\cap B_3) = \frac{20}{26}\cdot\frac{19}{25}\cdot\frac{6}{24}\cdot\frac{5}{23} \quad \Box$$

30. La o masă se așază la întâmplare 2n persoane, n bărbaţi şi n femei. Care este probabilitatea ca să nu existe 2 persoane de acelaşi sex așezate alături?

Soluție. Metoda I : Dacă numerotăm locurile la masă de la 1 la 2n, se observă că locurile pe care trebuie să stea femeile (respectiv bărbații) pot fi atribuite în 2 moduri, după cum pe locul 1 stă o femeie sau un bărbat. Prin urmare, dacă evenimentul a cărui probabilitate se cere este notat A, atunci $A = A_1 \cup A_2$, unde $A_1 = A \cap$ (pe locul 1 stă o femeie), $A_2 = A \cap$ (pe locul 1 stă un bărbat). Evident $P(A_1) = P(A_2)$.

Numerotăm atât femeile cât și bărbații de la 1 la n și considerăm F_j = femeia j stă pe un loc impar, B_j = bărbatul j stă pe un loc par, $j = \overline{1, n}$.

Avem
$$A_1 = \bigcap_{j=1}^n (F_j \cap B_j)$$

Aplicând formula de înmulțire a probabilităților rezultă $P(A_1) = \frac{n}{2n} \cdot \frac{n}{2n-1} \cdot \frac{n-1}{2n-2} \cdot \frac{n-1}{2n-3} \cdot \dots \cdot \frac{1}{2} \cdot 1 = \frac{(n!)^2}{(2n)!}$, deci $P(A) = 2\frac{(n!)^2}{(2n)!}$

Metoda II : Pentru a calcula $P(A_1)$ folosim formula $\frac{\text{numărul cazurilor favorabile}}{\text{numărul cazurilor posibile}}$

Se va face distincție atât între 2 bărbați cât și între 2 femei. Spațiul de selecție este format din orice succesiune a bărbaților și femeilor în număr total de n!. Femeile pot fi plasate pe cele n locuri impare în n! moduri, la fel ca și bărbații pe cele n locuri pare, în total $(n!)^2$ etc. \square

31. Să se arate că pentru $\forall A, B$ evenimente cu P(A) > 0 avem $P(B) = P(B/A)P(A) + P(B/A^c)P(A^c)$.

Soluție. Din definiția probabilităților condiționate avem $P(A \cap B) = P(A)P(B/A)$. Analog $P(A^c \cap B) = P(A^c)P(B/A^c)$

Dar
$$(A \cap B) \cup (A^c \cap B) = B$$
 şi $(A \cap B) \cap (A^c \cap B) = \emptyset$, deci $P(A \cap B) + P((A^c \cap B) = P(B)$

Prin înlocuire obținem exact egalitatea din enunț . \Box

32. Printre n bilete de examen, m sunt preferate de studenți, unde $0 < m \le n, n \ge 2$. Studenții vin pe rând să tragă câte un bilet. Dintre primii 2 studenții care are şansa cea mai mare de a trage un bilet preferat?

Soluție. Fie evenimentele A = primul student trage un bilet preferat, B = al doilea student trage un bilet preferat.

Avem
$$P(A) = \frac{m}{n}$$

Cf. ex. precedent avem
$$P(B)=P(A)(B/A)+P(A^c)P(B/A^c)=\frac{m}{n}\cdot\frac{m-1}{n-1}+\left(1-\frac{m}{n}\right)\cdot\frac{m}{n-1}=\frac{m}{n}$$

Aşadar, P(A) = P(B), deci nu contează ordinea tragerii biletelor. \square

33. Intr-un lot de 200 de piese 10 sunt defecte, iar în alt lot de 150 de piese 7 sunt defecte. Se iau la întâmplare 20 de piese din unul din aceste loturi. Care este probabilitatea ca între piesele alese să fie 18 bune şi 2 defecte?

Soluție. Fie A=piesele sunt luate din primul lot, B=din cele 20 de piese alese, 18 sunt bune și 2 defecte.

Avem
$$P(A/B) = \frac{C_{190}^{18}C_{200}^2}{C_{200}^{20}}, \ P(B/A^c) = \frac{C_{143}^{18}C_7^2}{C_{150}^{20}}$$

 $P(B) = P(A)P(B/A) + P(A^c)P(B/A^c) = \frac{1}{2} \cdot \frac{C_{190}^{18}C_{10}^2}{C_{200}^{20}} + \frac{1}{2} \cdot \frac{C_{143}^{18}C_7^2}{C_{150}^{20}} \quad \Box$

34. De pe un submarin se lansează asupra unui distrugător 4 torpile. Probabilitatea ca o torpilă să lovească distrugătorul este 0,3. Pentru scufundarea distrugătorului sunt suficiente 2 torpile, iar dacă o singură torpilă lovește distrugătorul el se scufundă cu probabilitatea 0,6. Să se găsească probabilitatea ca distrugătorul să se scufunde.

Soluție. Fie evenimentele A = scufundarea distrugătorului, $A_0 =$ nici o torpilă nu lovește distrugătorul, $A_i =$ distrugătorul e lovit de i torpile, $1 \le i \le 4$.

Avem
$$P(A^c) = P(A_0)P(A^c/A_0) + P(A_1)P(A^c/A_1)$$

Deoarece lansarea unei torpile nu influențează cu nimic lansarea celorlalte torpile avem :

$$P(A_0) = (0,7)^4 \simeq 0,24, P(A_1) = C_4^10, 3(0,7)^3 \simeq 0,412, P(A^c/A_0) = 1, P(A^c/A_1) = 1 - 0,6 = 0,4$$

Deci
$$P(A^c)=0,24+0,412\cdot 0,4\simeq 0,405\Longrightarrow P(A)=1-P(A^c)\simeq \simeq 0,595$$

35. O urnă conține 3 bile albe și 5 bile negre. Din această urnă se extrag 2 bile (fără întoarcere) una după alta. Să se scrie spațiul de selecție și probabilitățile asociate evenimentelor.

Soluție. Fie evenimentele A= extragerea unei bile albe, B= extragerea unei bile negre

Spaţiul de selecţie este
$$\{(A, A), (A, N), (N, A), (N, N)\}$$

Deoarece bilele sunt extrase la întâmplare, toate bilele din urnă , la orice extragere, au aceeași probabilitate de extragere.

P(A,A)=P(prima bilă să fie albă) × P(a doua bilă e albă / prima bilă să fie albă) = $\frac{3}{8}\cdot\frac{2}{7}=\frac{3}{28}$

$$P(A,N) = \frac{3}{8} \cdot \frac{5}{7} = \frac{15}{56}$$

$$P(N,A) = \frac{15}{56}, P(N,N) = \frac{5}{14}$$

36. Se consideră o populație formată din $48^0/_0$ bărbați și $52^0/_0$ femei. Probabilitatea ca un bărbat să fie daltonist este 0,05, iar ca o femeie să sufere de această afecțiune este 0,0025. Care este proporția de daltoniști la nivelul întregii populații?

Soluție. Se alege la întâmplare o persoană și se consideră următoarele evenimente B =persoana aleasă este bărbat, F =persoana aleasă este femeie, D =persoana aleasă suferă de daltonism.

Din ipoteză ave
m
$$P(B)=0,48, P(F)=0,52, P(D/B)=0,05, P(D/F)=0,0025$$

Cf. formulei probabilităților totale rezultă:

$$P(D) = P(B)P(D/B) + P(F)P(D/F) = 0,0253$$
. Deci procentul cerut este de 2,53 $^{0}/_{0}$.

37. Se dau 6 urne:

 (S_1) : 2 urne conțin câte 2 bile albe și 4 negre;

 (S_2) : 3 urne conțin câte 2 bile albe și 8 negre;

 (S_3) : o urnă conține 6 bile albe și 2 negre.

Se extrage la întâmplare o bilă dintr-una din urne și se cere să se calculeze probabilitatea ca bila extrasă să fie albă . Să se determine probabilitatea ca bila albă să provină din urna ce conține 6 bile albe și 2 negre.

Soluție. Fie evenimentele X = extragerea unei bile albe, $A_1 = \text{extragerea}$ unei bile din urnele de tip (S_1) , $A_2 = \text{extragerea}$ unei bile din urnele de tip (S_2) , $A_3 = \text{extragerea}$ unei bile din urnele de tip (S_3) .

Avem $P(A_1) = \frac{2}{6}$, $P(A_2) = \frac{3}{6}$, $P(A_3) = \frac{1}{6}$, deoarece se alege la întâmplare una din cele 6 urne, 2 urne fiind favorabile evenimentului A_1 , 3 evenimentului A_2 , 1 evenimentului A_3 .

$$P(X/A_1) = \frac{2}{6}, P(X/A_2) = \frac{2}{10}, P(X/A_3) = \frac{6}{8}$$

Cf formulei probabilităților totale avem $P(X) = \frac{2}{6} \cdot \frac{2}{6} + \frac{3}{6} \cdot \frac{2}{10} + \frac{1}{6} \cdot \frac{6}{8} = \frac{121}{360}$.

Cf. formulei lui Bayes avem
$$P(A_3/X) = \frac{P(A_3)P(X/A_3)}{P(X)} = \frac{45}{121}$$
.

38. O uzină produce becuri cu ajutorul a 3 utilaje A,B,C astfel:

Aasigură $\frac{1}{5}$ din producție și $\frac{1}{20}$ din becuri sunt defecte;

Basigură $\frac{3}{10}$ din producție și $\frac{1}{25}$ din becuri sunt defecte;

C asigură $\frac{1}{2}$ din producție și $\frac{1}{100}$ din becuri sunt defecte.

- a) Se alege un bec la întâmplare. Să se calculeze probabilitatea ca becul să fie defect și produs de A.
- b) Se alege la întâmplare un bec și se constată că e defect. Să se determine probabilitatea ca becul să fi fost produs de A.

Soluție. Fie evenimentele A, B, C= becul provine din utilajul A, respectiv B, respectiv C. D = becul extras este defect.

Avem
$$P(A) = \frac{1}{5}, P(B) = \frac{3}{10}, P(C) = \frac{1}{2}, P(D/A) = \frac{1}{20}, P(D/B) = \frac{1}{25}, P(D/C) = \frac{1}{100}$$

a)
$$P(D \cap A) = P(A)P(D/A) = \frac{1}{5} \cdot \frac{1}{20} = \frac{1}{100}$$
.

b) Cf. formulei lui Bayes
$$\Longrightarrow P(A/D) = \frac{P(D/A)P(A)}{P(D)} = \frac{\frac{1}{1000}}{\frac{27}{1000}} = \frac{10}{27},$$
 unde $P(D) = P(A)P(D/A) + P(B)P(D/B) + P(C)P(D/C) = \frac{1}{100} + \frac{6}{250} + \frac{1}{200} = \frac{27}{1000}.$

- 39. Urna A conține 6 bile albe și 5 negre, iar B conține 4 bile albe și 8 negre. Din B sunt transferate, la întâmplare, în A 2 bile, iar apoi este extrasă o bilă din A.
 - a) Care e probabilitatea ca această bilă să fie albă?
 - b) Dacă bila extrasă este albă , care e probabilitatea (condiționată) ca cel puțin o bilă albă să fi fost transferată ?

Soluție. a) Fie $A = \dim A$ s-a extras o bilă albă , $B_1 = \dim B$ au fost extrase 2 bile albe, $B_2 = \dim B$ au fost extrase o bilă albă și una neagră $B_3 = \dim B$ au fost extrase 2 bile negre.

Avem
$$P(B_1) = \frac{C_4^2}{C_{12}^2} = \frac{1}{11}, P(B_2) = \frac{C_8^1 C_4^1}{C_{12}^2} = \frac{16}{33}, P(B_3) = \frac{C_8^2}{C_{12}^2} = \frac{28}{33}.$$

 $P(A/B_1) = \frac{8}{13}, P(A/B_2) = \frac{7}{13}, P(A/B_3) = \frac{6}{13}$

Cf. formulei probabilității totale avem
$$P(A) = \sum_{i=1}^{3} P(B_i) P(A/B_i) = \frac{20}{39}$$
.

b) Cf. formulei lui Bayes
$$\Longrightarrow p = P(B_1/A) + P(B_2/A) = \frac{P(B_1)P(A/B_1)}{P(A)} + \frac{P(B_2)P(A/B_2)}{P(A)} = \frac{34}{55}.$$

40. Se consideră două loturi de produse dintre care un lot are toate piesele corespunzătoare, iar al doilea are $\frac{1}{4}$ din piese rebuturi. Se alege la întâmplare un lot și se extrage din el o piesă constatându-se că este bună . Se reintroduce piesa în lot și se extrage din același lot o piesă Care este probabilitatea ca piesa extrasă să fie un rebut?

Soluție. Fie evenimentul A= a doua piesă extrasă este rebut, iar A_1, A_2 evenimentele de a extrage această piesă din primul, respectiv al doilea lot.

Din formula probabilității totale avem

$$P(A) = P(A_1)P(A/A_1) + P(A_2)P(A/A_2).$$

Se știe
$$P(A/A_1) = 0, P(A/A_2) = \frac{1}{4}$$
.

Notăm cu B_1 , B_2 evenimentele ca prima extragere să se facă din primul, respectiv al doilea lot, iar B=piesa extrasă este bună . Atunci $P(B_1)=$ $=P(B_2)=\frac{1}{2}, P(B/B_2)=\frac{3}{4}, P(B/B_1)=1, P(A_2)=P(B_2/B)=\frac{3}{7}$ (cf. formulei lui Bayes). Deci $P(A)=\frac{3}{7}\cdot\frac{1}{4}=\frac{3}{28}$.

- 41. O particulă se divide în 0,1 sau 2 particule cu probabilitățile $\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$; ea dispare după multiplicare. Presupunem că inițial a fost o singură particulă și notăm cu X_i numărul de particule la generația i. Să se calculeze
 - a) $P(X_2 > 0);$

b)
$$P(X_1 = 2/X_2 = 1)$$

Soluție. a) Cf. formulei probabilității totale avem

$$\begin{split} P(X_2=0) &= P(X_1=0)P(X_2=0/X_1=0) + P(X_1=1) \cdot \\ \cdot P(X_2=0/X_1=1) + P(X_2=2)P(X_2=0/X_1=2) &= \frac{1}{4} \cdot 1 + \frac{1}{2} \cdot \frac{1}{4} + \\ + \frac{1}{4} \cdot \frac{1}{16} &= \frac{25}{64} \Longrightarrow P(X_2>0) = 1 - \frac{25}{64} = \frac{39}{64}. \end{split}$$

b) Cf. formulei lui Bayes
$$\Longrightarrow P(X_1 = 2/X_2 = 1) = \frac{\frac{1}{4} \cdot \frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{4}} = \frac{1}{5}$$
. \square

42. Un student merge la facultate folosind unul din traseele A,B,C. Alegerea traseului este independentă de vreme. Dacă plouă , probabilitățile ca

el să întârzie, urmând traseele A,B,C, sunt 0,06; 0,15; 0,12. Pentru o zi fără ploaie probabilitățile respective sunt 0,05; 0,1; 0,15. Se presupune că , în medie, într-o zi din patru plouă . Să se determine :

- a) probabilitatea ca el să fi ales traaseul C, știind că a întârziat și ziua este fără ploaie;
- b) probabilitatea ca ziua să fie ploioasă, știind că a întârziat.

Soluție. Fie A, B, C evenimentele ce reprezintă traseele alese.

Fie L = studentul întârzie, S = ziua este fără ploaie.

Din ipoteză avem
$$P(A/S) = P(B/S) = P(C/S) = \frac{1}{3}, P(L/A \cap S) = 0,05, P(L/B \cap S) = 0,1, P(L/C \cap S) = 0,15, P(L/A \cap S^c) = 0,06, P(L/B \cap S^c) = 0,15, P(L/C \cap S^c) = 0,12.$$

a)
$$\begin{split} &P(C/S\cap L) = \frac{P(C\cap S\cap L)}{P(S\cap L)} = \frac{P(S)P(C\cap L/S)}{P(S)P(L/S)} = \\ &= \frac{P(C/S)P(L/C\cap S)}{P(A/S)P(L/A\cap S) + P(B/S)P(L/B\cap S) + P(C/S)P(L/C\cap S)} = 0,5 \end{split}$$

b) Avem
$$P(S) = \frac{3}{4}, P(S^c) = \frac{1}{4}, P(L/S) = P(A/S)P(L/A \cap S) + P(B/S)P(L/B \cap S) + P(C/S)P(L/C \cap S) = 0, 1.$$

$$P(L/S^c) = P(A/S^c) P(L/A \cap S^c) + P(B/S^c) P(L/B \cap S^c) + + P(C/S^c) P(L/C \cap S^c) = \frac{41}{300}$$

Deci
$$P(S^c/L) = \frac{P(S^c)P(L/S^c)}{P(S)P(L/S) + P(S^c)P(L/S^c)} = \frac{41}{131}.$$

- 43. Un procent de 10 $^0/_0$ dintr-o populație suferă de o maladie gravă . O persoană suspectată de a fi bolnavă este supusă la 2 teste condițional independente de starea persoanei. Fiecare dintre ele indică un diagnostic corect în 90 $^0/_0$ din cazuri. Să se determine probabilitatea (condiționată) ca o persoană să fie bolnavă dacă :
 - a) ambele teste sunt pozitive;
 - b) un singur test este pozitiv.

Soluție. a) Fie A = persoana suspectată e bolnavă, $B_i =$ rezultatul la testul i e pozitiv, $i = 1, 2, B = B_1 \cap B_2, C =$ un singur test e pozitiv.

Avem
$$P(A) = 0, 1, P(B_i/A) = P(B_i^c/A^c) = 0, 9, P(B_i/A^c) = P(B_i^c/A) = 0, 1, P(B/A) = P(B_1/A)P(B_2/A) = 0, 81, P(B/A^c) = P(B_1/A^c)P(B_2/A^c) = 0, 01.$$

Cf. formulei lui Bayes
$$\Longrightarrow P(A/B) = \frac{P(A)P(B/A)}{P(B)} = \frac{0.1 \cdot 0.81}{0.1 \cdot 0.81 + 0.9 \cdot 0.01} = 0.9$$
.

b)
$$C = (B_1 \cap B_2^c) \cup (B_1^c \cap B_2) \Longrightarrow P(C/A) = P(B_1/A)P(B_2^c/A) + P(B_1^c/A)P(B_2/A) = 0, 9 \cdot 0, 1 + 0, 1 \cdot 0, 9 = 0, 18$$

Analog $P(C/A^c) = 0, 18$.

Atunci
$$P(A/C) = \frac{P(A)P(C/A)}{P(A)P(C/A) + P(A^c)P(C/A^c)} = 0, 1.$$

44. Un student trimite unui prieten o scrisoare. Există o şansă de $10^{0}/_{0}$ ca scrisoarea să fie pierdută în drum spre oficiul poștal. Stiind că scrisoarea ajunge la oficiul poștal, probabilitatea că va fi distrusă de maşina de ştampilat este 0,2. De asemenea, cunoscând că a trecut de mașina de ștampilat există o probabilitate de $10^{0}/_{0}$ ca poștașul să o ducă la o adresă greșită. Dacă prietenul nu primește scrisoarea, care este probabilitatea ca masina de stampilat să o fi distrus?

Soluție. Fie A=scrisoarea e pierdută în drum spre oficiul poștal, B=scrisoarea e distrusă de ştampilă, C=scrisoarea ajunge la o adresă gresită, D=prietenul nu primeste scrisoarea.

Avem
$$P(A) = 0, 1, P(A^c) = 0, 9, P(B/A^c) = 0, 2, P(B^c/A^c) = 0, 8,$$

 $P(C/B^c) = 0, 1, P(D/B^c) = 0, 9.$
Atunci $P(B/D) = \frac{0,2 \cdot 0,9}{0,1 + 0,9 \cdot 0,2 + 0,9 \cdot 0,8 \cdot 0,1} = 0,511.$

45. O urnă conține 10 bile albe și negre într-o proporție necunoscută. Se extrag 4 bile, punând de fiecare dată bila extrasă înapoi în urnă; toate cele 4 bile extrase au fost albe. Care este probabilitatea ca urna să nu conțină decât bile albe?

Soluție. Inainte de extragerea vreunei bile orice compoziție a urnei este la fel de posibilă.

Dacă notăm A_i , $i = \overline{1,10}$ evenimentele ca urna să conțină i bile albe și 10-i bile negre (înainte de orice extragere), atunci $P(A_1) = \dots =$ $= P(A_{10}) = \frac{1}{10}.$

Fie X= evenimentul ca făcând 4 extrageri, punând de fiecare dată bila înapoi în urnă să obținem 4 bile albe.

Cu aceste notații probabilitatea căutată este $P(A_{10}/X)$.

Avem
$$P(X/A_0) = 0$$
, $P(X/A_k) = \left(\frac{k}{10}\right)^4$, $k = \overline{1,9}$, $P(X/A_{10}) = 1$.
Cf. formulei lui Bayes avem $P(A_{10}/X) = \frac{P(A_{10})P(X/A_{10})}{10} = \sum_{i=1}^{10} P(A_i)P(X/A_i)$

$$= \frac{1}{\left(\frac{1}{10}\right)^4 + \left(\frac{2}{10}\right)^4 + \dots + \left(\frac{10}{10}\right)^4} = \frac{10^4}{1^4 + 2^4 + \dots + 10^4}.$$

$$= \frac{1}{\left(\frac{1}{10}\right)^4 + \left(\frac{2}{10}\right)^4 + \dots + \left(\frac{10}{10}\right)^4} = \frac{10^4}{1^4 + 2^4 + \dots + 10^4}.$$

- 46. O informație telegrafică constă din semnale "liniuțe" și "puncte". In medie se deformează $\frac{2}{5}$ din semnalele cu "puncte" și $\frac{1}{3}$ din cele cu "liniuțe". Este cunoscut că semnalele cu "puncte" și "liniuțe" se întâlnesc în raportul $\frac{5}{3}$. Să se determine probabilitatea ca:
 - a) primind un semnal consacrat, acesta să fie "punct";
 - b) probabilitatea ca el să fie liniuță.

Soluție. Fie evenimentele A = primirea unui semnal "punct", B = primirea unui semnal "liniuță", $H_1 = \text{este transmis semnalul "punct"}$, $H_2 = \text{este transmis semnalul "liniuță"}$.

Stim că
$$\frac{P(H_1)}{P(H_2)} = \frac{5}{3}$$
 și $P(H_1) + P(H_2) = 1 \Longrightarrow P(H_1) = \frac{5}{8}, P(H_2) = \frac{3}{8}$.

Din ipoteză avem că
$$P(A/H_2) = \frac{1}{3}$$
, $P(B/H_1) = \frac{2}{5}$. Atunci $P(A/H_1) = 1 - P(B/H_1) = \frac{3}{5}$, $P(B/H_2) = 1 - P(A/H_2) = \frac{2}{3}$.

Cf. formulei probabilității totale avem
$$P(A) = P(H_1)P(A/H_1) + P(H_2)P(A/H_2) = \frac{5}{8} \cdot \frac{3}{5} + \frac{3}{8} \cdot \frac{1}{3} = \frac{1}{2}$$
 și $P(B) = P(H_1)P(B/H_1) + P(H_2)P(B/H_2) = \frac{5}{8} \cdot \frac{2}{5} + \frac{3}{8} \cdot \frac{2}{3} = \frac{1}{2}$.

a) Din formula lui Bayes
$$\Longrightarrow P(H_1/A) = \frac{P(H_1)P(A/H_1)}{P(A)} = \frac{3}{4}$$
.

b)
$$P(H_2/B) = \frac{P(H_2)P(B/H_2)}{P(B)} = \frac{1}{2}$$

47. Tragerea de pe un avion contra altui avion poate să se producă de la distanțele 600m,400m și 200m. Probabilitatea ca tragerea să se producă la distanța 600m este 0,2, la 400m este 0,3, la 200m este 0,5. Probabilitatea doborârii avionului inamic la distanța 600m este 0,1, la 400m este 0,2, la 200m este 0,4. Se efectuează tragerea al cărei efect este doborârea avionului. Să se găsească probabilitatea ca tragerea să se fi produs de la 200m.

Soluție. Fie evenimentele A_1 = tragerea se produce la distanța 600m, A_2 = tragerea se produce la distanța 400m, A_3 = tragerea se produce la distanța 200m, A = doborârea avionului inamic.

Stim
$$P(A_1) = 0, 2, P(A_2) = 0, 3, P(A_3) = 0, 5$$
 şi $P(A/A_1) = 0, 1, P(A/A_2) = 0, 2, P(A/A_3) = 0, 4.$

Cf. formulei lui Bayes
$$P(A_3/A) = \frac{P(A_3)P(A/A_3)}{\sum_{i=1}^{3} P(A_i)P(A/A_i)} = \frac{0.5 \cdot 0.4}{0.2 \cdot 0.1 + 0.3 \cdot 0.2 + 0.5 \cdot 0.4} \simeq 0,715.$$

Soluție. Fie evenimentele A = lovirea țintei de un singur arcaș $A_1 =$ = nici primul, nici al doilea arcaș nu lovește ținta, $A_2 =$ amândoi arcașii lovesc ținta, $A_3 =$ primul arcaș lovește ținta, al doilea nu, $A_4 =$ = primul arcaș nu lovește ținta, al doilea da.

Avem
$$P(A_1) = 0, 2 \cdot 0, 6 = 0, 12, P(A_2) = 0, 8 \cdot 0, 4 = 0, 32, P(A_3) = 0, 8 \cdot 0, 6 = 0, 48, P(A_4) = 0, 2 \cdot 0, 4 = 0, 08$$
, deoarece tragerile sunt independente și $P(A/A_1) = 0 = P(A/A_2), P(A/A_3) = 1 = P(A/A_4)$.

Cf. formulei lui Bayes
$$\Longrightarrow P(A_3/A) = \frac{P(A_3)P(A/A_3)}{4} = \frac{6}{7}.$$
 \square $\sum_{i=1}^4 P(A_i)P(A/A_i)$

49. (Paradoxul cutiei lui Bertrand) Există 3 sertare, fiecare conținând 2 șosete. Sertarul 1 conține 2 șosete negre, sertarul 2 conține o șosetă neagră și una albă și sertarul 3 conține 2 șosete albe. Este selectat un sertar la întâmplare și o șosetă este luată la întâmplare. Dacă șoseta este albă, care e probabilitatea ca cealaltă șosetă din sertar să fie tot albă?

Soluție. Intuitiv, pare că răspunsul este $\frac{1}{2}$. De fapt, cum a fost aleasă o șosetă albă, sertarul ales trebuie să fie 2 sau 3. In primul caz, a doua șosetă este neagră și în celălalt caz, ea este albă. Deci, probabilitatea ar trebui să fie $\frac{1}{2}$.

Să analizăm acum problema folosind formula lui Bayes. Cum ştim că şoseta aleasă este albă , singurul mod ca ambele şosete să fie albe este ca sertarul ales să fie sertarul 3. Deci, vrem să determinăm P(sertar 3/alb). Stim că $P(\text{sertar }3) = P(\text{sertar }2) = \frac{1}{3}$, P(alb/sertar 3) = 1, $P(\text{alb/2}) = \frac{1}{2}$.

Cf. formulei lui Bayes avem
$$P(\text{sertar 3/alb}) = \frac{P(\text{sertar 3})P(\text{alb/sertar 3})}{P(\text{sertar 3})P(\text{alb/sertar 3}) + P(\text{sertar 2})P(\text{alb/sertar 2})} = \frac{\frac{1}{3}\cdot 1}{\frac{1}{3}\cdot 1 + \frac{1}{3}\cdot \frac{1}{2}} = \frac{2}{3}.$$

Aceasta înseamnă că de 2 ori din 3 alegem un sertar cu cel puțin o șosetă albă , contrar intuiției. $\hfill\Box$

1.3 Probleme propuse

1. O urnă conține 99 de bile identice, numerotate 1,2,...99. Care e probabilitatea ca printr-o extragere să obținem o bilă numerotată cu un pătrat perfect?

$$\mathbf{R} : \frac{9}{99}$$

2. Intr-o urnă sunt 7 bile albe și 5 negre, iar în alta 6 albe și 8 negre. Se extrage din fiecare câte o bilă . Care e probabilitatea ca ambele bile să fie albe?

R:
$$\frac{7}{12} \cdot \frac{6}{14}$$

3. Independente una de alta se fac operațiile: se aruncă o monedă , un zar şi se extrage o carte dintr-un pachet de cărți de joc. Care este probabilitatea ca să obținem fața cu stema, un număr par (pe zar) şi să extragem un zece?

R:
$$\frac{1}{2} \cdot \frac{3}{6} \cdot \frac{4}{52}$$

4. Aruncând 4 zaruri , să se determine probabilitatea de a obține fața 1 cel puțin o dată . Să se determine probabilitatea de a obține fața 1 o singură dată .

R:
$$p_1 = 1 - \left(\frac{5}{6}\right)^4$$

 $p_2 = C_4^1 \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^3$

5. Intr-o uzină se fabrică lămpi cu incandescență . La aceste lămpi întâlnim $2^{\,0}/_0$ defecte de fabricație și $5^{\,0}/_0$ defecte de montaj. Să se calculeze probabilitatea ca o lampă să fie înlăturată ca necorespunzătoare.

R:
$$\frac{2}{100} + \frac{5}{100} - \frac{2}{100} \cdot \frac{5}{100}$$

- 6. Doi studenți care se reprezintă la un examen au probabilitățile de promovare 0,5, respectiv 0,8. Care este probabilitatea ca:
 - a) ambii studenţi să promoveze examenul;
 - b) un singur student să promoveze;
 - c) cel puţin un student să promoveze;
 - d) nici un student să nu promoveze.

 $\mathbf{R} \colon A {=} \mathrm{primul}$ student să promoveze, $B {=}$ al doilea student să promoveze

a)
$$P(A \cap B) = 0, 4$$
; b) $P((A \cap B^c) \cup (A^c \cap B)) = 0, 5$; c) $P(A \cup B) = 0, 9$; d) $P(A^c \cap B^c) = 0, 1$

- 7. Se dau P(A) = 0.5 și $P(A \cup B) = 0.6$. Găsiți P(B) dacă :
 - a) $A ext{ si } B ext{ sunt incompatibile;}$
 - b) $A ext{ si } B ext{ sunt independente};$
 - c) P(A/B) = 0,4

R: a)
$$P(B) = 0, 1$$
; b) $P(B) = 0, 2$; c) $P(B) = \frac{1}{6}$

8. Se consideră n plicuri pe care sunt scrise n adrese diferite. In aceste plicuri sunt introduse la întâmplare n scrisori, câte una pentru fiecare din cele n adrese. Să se determine probabilitatea ca cel puţin o scrisoare să nimerească în plicul cu adresa corespunzătoare?

R: folosim formula lui Poincare $\Longrightarrow p = 1 - \frac{1}{2!} + \ldots + (-1)^n \frac{1}{n!}$

9. Intr-o urnă se găsesc 5 bile numerotate de la 1 la 5. Din urnă se extrag la întâmplare toate bilele, una după alta. Care e probabilitatea ca billele să apară în ordine crescătoare?

R: $\frac{1}{120}$ (cazuri favorabile/ cazuri posibile sau cu formula de înmulţire a probabilităților)

10. Dintr-o urnă conținând 9 bile albe și 10 bile negre se extrag (succesiv, fără înlocuire) 4 bile. Să se determine probabilitatea ca cel puțin una să fie albă?

R: folosim formula de înmulțire a probabilităților $\Longrightarrow p=1-\frac{10}{19}\cdot\frac{9}{18}\cdot\frac{8}{17}\cdot\frac{7}{16}$

11. O urnă conține 10 bile printre care 3 sunt negre și 7 albe. Intr-o probă este selectată la întâmplare o bilă , se observă culoarea ei și apoi se reintroduce în urnă împreună cu alte 2 bile de aceeași culoare. Care este probabilitatea ca o bilă neagră să fie selectată în fiecare din primele 3 probe?

R:
$$\frac{3}{10} \cdot \frac{5}{12} \cdot \frac{7}{14}$$

12. Un lot de 100 de tricotaje este supus controlului de calitate. Condiția ca acest lot să fie respins este găsirea a cel puțin unui tricotaj defect în 5 verificări consecutive. Care este probabilitatea ca lotul să fie respins, dacă el conține $5^0/_0$ tricotaje defecte?

R:
$$1 - \frac{95}{100} \cdot \frac{94}{99} \cdot \frac{93}{98} \cdot \frac{92}{97} \cdot \frac{91}{96}$$

13. Intr-o urnă sunt 24 de bile albe şi 9 bile negre. Se extrag pe rând 3 bile fără a pune bila extrasă înapoi în urnă . Care este probabilitatea ca bilele să fie extrase în ordinea alb, alb, negru? Dar alb, negru, alb? Dar negru, alb, alb? Dar probabilitatea ca două din cele trei bile extrase să fie albe?

R:
$$P(A, A, N) = \frac{24}{33} \cdot \frac{23}{32} \cdot \frac{9}{31}$$

$$P(A, N, A) = \frac{24}{33} \cdot \frac{9}{32} \cdot \frac{23}{31}$$

$$P(N, A, A) = \frac{9}{33} \cdot \frac{24}{32} \cdot \frac{23}{31}$$

Fie A_i =la extragerea i obținem o bilă albă , i=1,2,3

$$P((A_1 \cap A_2 \cap A_3^c) \cup (A_1 \cap A_2^c \cap A_3) \cup (A_1^c \cap A_2 \cap A_3)) = 3 \cdot \frac{9}{33} \cdot \frac{24}{32} \cdot \frac{23}{31}$$

14. Avem o urnă cu 2 bile albe și 3 negre și alta cu 3 bile albe și 5 negre. Urnele se aleg la întâmplare cu probabilitatea $\frac{1}{2}$ fiecare. Se extrage o bilă la întâmplare din una din urne. Care e probabilitatea ca bila extrasă să fie neagră?

R: folosim relația din pb. 23 și obținem $p = \frac{49}{80}$

- 15. Se dau şase urne cu următoarele structuri:
 - (S_1) 2 urne ce conțin câte 2 bile albe și 6 negre;
 - (S_2) 3 urne ce conțin câte 3 bile albe și 5 negre;
 - (S_3) o urnă ce conține 6 bile albe și 2 negre.

Se extrage la întâmplare o bilă dintr-o urnă . Se cer:

- a) Care e probabilitatea de a extrage o bilă neagră?
- b) Presupunem că dintr-o urnă oarecare s-a extras o bilă neagră. Care e probabilitatea ca ea să aparțină uneia din structurile $(S_1),(S_2),(S_3)$?

R: a)
$$\frac{29}{48}$$
 b) $\frac{12}{29}$, $\frac{15}{29}$, $\frac{2}{29}$

16. Avem o urnă U_1 cu 4 bile roşii şi 9 albe şi o alta U_2 cu 3 bile roşii şi 7 negre. Se extrage o bilă dintr-o urnă aleasă la întâmplare. Stiind că bila este roşie, care e probabilitatea ca ea să fie din U_1 ?

R: cu formula lui Bayes $\Longrightarrow p = \frac{40}{79}$

17. O fabrică produce piese de schimb prin 3 tehnologii diferite I,II,III astfel :

I : $\frac{5}{10}$ din producție și $\frac{1}{10}$ din piese sunt defecte;

II : $\frac{2}{10}$ din producție și $\frac{3}{20}$ din piese sunt defecte;

III : $\frac{3}{10}$ din producție și $\frac{1}{25}$ din piese sunt defecte.

O persoană alege la întâmplare o piesă . Care e probabilitatea ca aceasta să fie defectă ? Care e probabilitatea ca piesa aleasă să provină din I?

 $\mathbf{R} \colon \text{Fie } A_i = \text{piesa provine din tehnologia I,II sau III, } i = \overline{1,3}$ și B = piesa aleasă e defectă

cu formula probabilității totale $P(B)=\frac{92}{1000}$

cu formula lui Bayes $P(A_1/B) = \frac{50}{92}$

Capitolul 2

Variabile aleatoare

2.1 Noțiuni teoretice

O variabilă a cărei valoare este un număr determinat de evenimentul rezultat în urma unei experiențe este numită variabilă aleatoare.

Definiția 2.2. Fie X o variabilă aleatoare care poate să ia valorile $x_1, \ldots x_n$ cu probabilitățile $f(x_1), \ldots f(x_n)$. Mulțimea ale cărei elemente sunt perechile ordonate $(x_i, f(x_i)), i = \overline{1, n}$ definește repartiția variabilei aleatoare X.

Definiția 2.3. Dacă X este o v. a. reală, atunci funcția $F: \mathbb{R} \to \mathbb{R}$ definită de $F_X(x) = P(X < x), x \in \mathbb{R}$ se numește funcția de repartiție

Proprietăți ale funcției de repartiție

- 1. $\lim_{x\to -\infty} F_X(x)=0$, $\lim_{x\to \infty} F_X(x)=1$ 2. F_X este crescătoare și continuă la dreapta în orice punct $x\in\mathbb{R}$
- 3. P(X = x) = F(x) F(x 0)
- 4. $P(a < X \le b) = F(b) F(a)$

Definiția 2.4. Variabila aleatoare X se numește discretă dacă mulțimea valorilor ei este o multime cel mult numărabilă de numere reale sau complexe $(a_n).$

Notând $P(X = a_n) = p_n$, avem $\sum p_n = 1$, funcția de repartiție F_X este o funcție în scară cu $F_X(x) = \sum_{a_n < x} p_n$, iar matricea $X \sim \begin{pmatrix} a_0 & a_1 & \dots & a_n & \dots \\ p_0 & p_1 & \dots & p_n & \dots \end{pmatrix}$

se numește matricea de repartiție a lui X sau distribuția lui X.

Dacă P(X = x) = 0 pentru orice $x \in \mathbb{R}$, atunci v. a. X se numește continuă. Aceasta este echivalent cu faptul că funcția ei de repartiție este o funcție continuă (pe IR).

Definiția 2.5. Fie X o v. a. discretă.

a) Dacă seria $\sum_{n>0} a_n p_n$ este absolut convergentă , se spune că X admite

medie, iar suma $E(X) = \sum_{n \ge 0} a_n p_n$ se numește **media** lui X.

- b) Pentru $n \in \mathbb{N}^*$, media $E(X^n)$ a variabilei X^n se numește **momentul** de ordinul n al lui X.
- c) Media variabilei $(X E(X))^2$ se numește varianța (sau dispersia) lui X și se notează Var(X) (sau $D^2(X)$).

Proprietățile mediei

- 1) Liniaritatea: $E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)(\alpha, \beta \in \mathbb{C})$
- 2) Monotonia: Dacă $X \leq Y$, atunci $E(X) \leq E(Y)$.
- 3) Dacă X este o constantă c, atunci E(X) = c.
- 4) Dacă X și Y sunt v. a. independente, atunci E(XY) = E(X)E(Y).
- 5) Pentru orice funcție $f: \mathbb{C} \to \mathbb{C}$, media v. a. $f \circ X = f(X)$ este $E(f(X)) = \displaystyle \sum_{n=0} f(a_n) p_n$ (atunci când seria din partea dreaptă este absolut convergentă).

Proprietățile dispersiei

Fie X o v. a. discretă reală

- 1) $D^2(X) = E(X^2) (E(X))^2$
- 2) $D^2(X) > 0$
- 3) $D^2(X) = 0 \iff P(X = E(X)) = 1$ (i.e. X este o constantă cu probabilitatea 1)

4) **Inegalitatea lui Cebâşev:** Pentru orice
$$\varepsilon > 0$$
, avem $P(|X - E(X)| \ge \varepsilon) < \frac{D^2(X)}{\varepsilon^2}$ sau $P(|X - E(X)| < \varepsilon) \ge 1 - \frac{D^2(X)}{\varepsilon^2}$.

- 5) $D^2(\alpha X) = \alpha^2 D^2(X)$
- 6) Dacă X, Y sunt independente, $D^2(X+Y) = D^2(X) + D^2(Y)$.

Definiția 2.6. Dacă X și Y sunt v. a., atunci vom numi **covarianță** a variabilelor X si Y si o vom nota prin cov(X,Y) expresia

$$cov(X,Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y).$$

Proprietățile covarianței

- 1) Dacă X şi Y sunt v. a. independente, atunci cov(X,Y) = 0.

2) Dacă
$$X_1, \ldots X_n$$
 sunt n v. a. cu dispersiile $D_1^2, D_2^2, \ldots D_n^2$ și covarianțele $\operatorname{cov}(X_i, X_j), i \neq j$, atunci $D^2(\sum_{i=1}^n X_i) = \sum_{i=1}^n D_i^2 + 2\sum_{i < j} \operatorname{cov}(X_i, X_j).$

Definiția 2.7. Dacă X și Y sunt v. a., atunci numim coeficient de corelație al variabilelor X și Y și-l vom nota prin $\rho(X,Y)$, expresia $\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{D^2(X)D^2(Y)}}$

Observația 2.1. Dacă v. a. X și Y sunt independente, atunci $\rho(X,Y)=$ = 0. Dacă $\rho(X,Y) = 0$, nu rezultă neapărat că X și Y sunt independente. Intr-adevăr, dacă $\rho(X,Y)=0$, atunci E(XY)=E(X)E(Y) (1). Fie f(x,y) densitatea de repartiție a vectorului (X,Y), iar f(x), respectiv g(y)sunt densitățile de repartiție ale v. a. X, respectiv Y. Conform (1) avem

$$\begin{split} &\int_{\mathbb{R}} \int_{\mathbb{R}} xy f(x,y) dx dy = \int_{\mathbb{R}} \int_{\mathbb{R}} xy f(x) g(y) dx dy \Longrightarrow \\ &\Longrightarrow \int_{\mathbb{R}} \int_{\mathbb{R}} xy [f(x,y) - f(x) g(y)] dx dy = 0, \text{ dar de aici nu rezultă neapărat} \end{split}$$
că f(x,y) = f(x)g(y), deci cele 2 v. a. nu sunt independente.

Fie
$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}, P(\omega_i) = \frac{1}{4}, i = \overline{1, 4}.$$

Variabila X realizează corespondența $X(\omega_1) = 1, X(\omega_2) = -1, X(\omega_3) =$

$$= 2, X(\omega_4) = -2.$$

$$X : \begin{pmatrix} -2 & -1 & 1 & 2\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

Variabila Y realizează corespondența $Y(\omega_1) = 1, Y(\omega_2) = 1, Y(\omega_3) = 1$

$$Y: \begin{pmatrix} -1 & 1\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$XY: \begin{pmatrix} -2 & -1 & 1 & 2\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$E(X) = E(Y) = E(XY) \Longrightarrow cov(X, Y) = 0$$

Dar X şi Y nu sunt v. a independente, deoarece $P[(X=1) \land (Y=1)] =$ $= P(\omega_1) = \frac{1}{4} \neq P(X = 1)P(Y = 1) = \frac{1}{4} \cdot \frac{1}{2}.$

Definiția 2.8. Fie X o v. a. discretă care ia valori întregi nenegative.

Atunci funcția $G_X(t)$ definită prin $G_X(t) = E(t^X) = \sum_{n=0}^{\infty} p_n t^n, t \leq 1$, unde

 $p_n = P(X = n)$, se numește funcția generatoare a v. a. X.

Proprietățile funcției generatoare

- 1) Dacă v. a. $X_1, \ldots X_n$ sunt independente, iar $X = X_1 + \ldots + X_n$, atunci $G_X(t) = G_{X_1}(t)G_{X_2}(t) \dots G_{X_n}(t)$.
 - 2) $E(X) = G'_X(1)$

 - 3) $D^2(X) = G_X''(1) + G_X'(1) [G_X'(1)]^2$ 4) Două v.a. cu aceeași funcție generatoare au aceeași repartiție.

Definiția 2.9. Pentru orice eveniment A cu P(A) > 0 și orice v. a. discretă care ia valorile $a_0, a_1, \ldots, a_n, \ldots$, media lui X condiționată de A este $E(X/A) = \sum a_n P(X = a_n/A).$

Pentru orice sistem complet de evenimente (i. e. partiție a evenimentului sigur) (A_k) avem $E(X) = \sum_k E(X/A_k)P(A_k)$ sau, mai general, $E(X/B) = \sum_k E(X/B \cap A_k)P(A_k).$

$$E(X/B) = \sum_{k} E(X/B \cap A_k) P(A_k).$$

Exemple de repartiții discrete

1) Repartiția binomială cu parametrii n și p

Să presupunem că se fac n experiențe independente, în fiecare din experiențe probabilitatea de realizare a unui eveniment A fiind constantă și egală cu p(probabilitatea ca A să nu se realizeze este q = 1 - p). Numărul de realizări ale evenimentului A în cele n experiențe este o variabilă aleatoare X, ale cărei valori posibile sunt $k = 0, 1, \dots n$. Intr-adevăr, evenimentul A poate

să nu se realizeze niciodată, sau poate să se realizeze o dată, de două ori, ..., de n ori în cele n experiențe cu probabilitățile $P(X = k) = p_k$. Vom scrie formula ce dă probabilitatea ca evenimentul A să se realizeze de k ori, pentru valorile p și n date. Când fiecare număr k este considerat cu probabilitatea sa de realizare, multimea perechilor $(k, p_k), k = 0, 1, \dots n$ se numeste repartiție binomială. Repartițiile binomiale au fost studiate de James Bernoulli, motiv pentru care adeseori vom folosi termenul de experiențe Bernoulli.

$$P(X=k) = C_n^k p^k q^{n-k}, k = \overline{0,n}$$

Media $E(X) = np$, dispersia $D^2(X) = npq$, funcția generatoare $G_X(t) = (pt+q)^n$.

Pentru $n \longrightarrow \infty, p \longrightarrow 0$ astfel încât $np = \lambda$, probabiliățile P(X = k)pot fi aproximate prin valorile repartiției Poisson.

2) Repartiția geometrică

Fie X numărul de experimente Bernoulli cu probabilitatea p de succes, care trebuie efectuate până la apariția primului succes. Atunci

$$P(X = k) = p(1-p)^{k-1}, k \in \mathbb{N}^*$$

Media $E(X) = \frac{1}{p}$, dispersia $D^2(X) = \frac{1-p}{p^2}$, funcția generatoare $G_X(t) = \frac{1-p}{p^2}$

$=rac{pt}{1-qt}.$ 3) Repartiția binomial negativă cu parametrii n,p

Fie X numărul de experimente Bernoulli cu probabilitatea de succes pcare trebuie efectuate pentru a obține m succese.

$$P(X = n) = C_{n-1}^{m-1} p^m q^{n-m}$$

Pentru m=1 se găsește repartiția geometrică .

Media
$$E(X) = \frac{m}{p}$$
, dispersia $D^2(X) = \frac{mq}{p^2}$, funcția generatoare $G_X(t) = \frac{p^m t^m}{(1-qt)^m}$.

4) Repartiția hipergeometrică

Dacă X este v. a. ce reprezintă numărul de bile albe obținute după nextrageri fără înlocuire dintr-o urnă ce conține a bile alb și b negre , atunci $P(X = x) = \frac{C_a^x C_b^{n-x}}{C_{a+b}^n}, x = \overline{0, n}.$

Media
$$E(X) = np$$
, dispersia $D^2(X) = xpq\frac{a+b-x}{a+b-1}$, unde $p = \frac{a}{a+b}, q = \frac{b}{a+b}$.

5) Repartiția Poisson de parametru $\lambda > 0$

$$P(X = n) = \frac{\lambda^n}{n!} \cdot e^{-\lambda}, n \in \mathbb{N}$$

$$P(X = n) = \frac{\lambda^n}{n!} \cdot e^{-\lambda}, n \in \mathbb{N}$$

Media $E(X) = \lambda$, dispersia $D^2(X) = \lambda$, funcția generatoare $G_X(t) = \lambda$ $=e^{\lambda(t-1)}$.

Aplicație la problemele telefoniei automate

Când un abonat la telefonul unei rețele automate ridică microreceptorul. după un timp, în general destul de scurt, un sunet de o anumită tonalitate îi arată momentul în care poate să compună numărul abonatului pe care îl cheamă : a fost pus în legătură cu un selector. Evident că ideal ar fi ca fiecare abonat să fie prevăzut cu un selector. Insă situația aceasta ar fi foarte costisitoare, datorită prețului ridicat al selectoarelor, și acestea ar fi rău întrebuințate, rămânând în repaus cea mai mare parte a timpului. Așa că (în sistemul Strowger, de exemplu) fiecare abonat este prevăzut cu un dispozitiv de căutare, care are ca misiune să găsească un selector liber, numărul selectoarelor fiind mult inferior numărului abonaților cuprinși în grupul considerat. In realitate, avem de-a face cu o dublă căutare; însă , în scopul unei simplificări, ne vom mărgini la o căutare simplă . Când toate selectoarele puse la dispoziția unui grup de abonați sunt prinse de convorbiri telefonice deja începute, căutătorul își continuă învârtirea până în momentul când, una dintre aceste convorbiri fiind terminată , abonatul este servit.

Problema fundamentală care se pune este următoarea : fiind date s selectoare puse la dispoziția unui grup de a abonați $(s \leq a)$, care este probabilitatea ca un abonat să găsească toate selectoarele ocupate și, dacă este așa, care este probabilitatea ca timpul de așteptare să nu depășescă o anumită durată τ ? Fie y numărul mediu de apeluri, în unitatea de timp, a unui grup de a abonați. Aceasta înseamnă că , dacă se consideră numărul N de apeluri care au loc într-un interval lung de timp, T, raportul $\frac{N}{T}$ tinde către y când N și T cresc nemărginit. Fie θ o mică fracțiune din timpul T, cu $\alpha\theta=T$.

Să căutăm probabilitatea ca n apeluri determinate, alese printre cele N, să se producă în intervalul de θ . Această probabilitate este $\left(\frac{1}{\alpha}\right)^n \left(1-\frac{1}{\alpha}\right)^{N-n}$.

Probabilitatea P_n ca, în intervalul θ , să se producă n apeluri oarecare dintre cele N este de C_N^n ori mai mare $P_n = \frac{N!}{n!(N-n)!} \left(\frac{1}{\alpha}\right)^n \left(1 - \frac{1}{\alpha}\right)^{N-n}$.

Inlocuim pe N! și pe (N-n)! prin valorile lor asimptotice date de formula lui Stirling $(n! \simeq n^n \mathrm{e}^{-n} \sqrt{2\pi n})$. Dacă N cește nemărginit cu T în așa fel încât raportul $\frac{N}{T}$ tinde către y, raportul $\frac{N}{\alpha}$ va tinde către $y\theta$, care este numairul mediu de apeluri în intervalul de timp θ , adică \overline{n} . Dacă înlocuim pe $\frac{N}{\alpha}$ prin $y\theta = \overline{n}$, formula precedentă ia forma

$$P_{n} = \frac{e^{-n}}{n!} \cdot \frac{N^{N+\frac{1}{2}}}{(N-n)^{N-n+\frac{1}{2}}} \cdot \frac{\left(\frac{N}{n}-1\right)^{N-n}}{\left(\frac{N}{n}\right)^{N}} = \frac{\overline{n}^{n}e^{-n}}{n!} \cdot \frac{(N-\overline{n})^{N-n}}{(N-n)^{N-n}} \sqrt{\frac{N}{N-n}} = \frac{\overline{n}^{n}e^{-n}}{n!} \cdot \left(1 + \frac{n-\overline{n}}{N-n}\right)^{N-n} \sqrt{\frac{N}{N-n}}$$

Dacă N crește nemărgnit avem $P_n = \frac{\overline{n}^n \mathrm{e}^{-n}}{n!}$ sau $P_n = \frac{(y\theta)^n \mathrm{e}^{-\frac{y}{\theta}}}{n!}$. Probabilitatea este dată de formula lui Poisson.

Tot această lege va da probabilitatea ca să existe n convorbiri simultane de aceeași durată θ . Intr-adevăr, această probabilitate este egală cu aceea pentru care urmează să avem n apeluri în intervalul de timp θ . Dacă duratele convorbirilor sunt inegale și dacă în medie avem y_1 convorbiri de durată θ_1 , y_2 convorbiri de durată θ_2 , etc., cele n convorbiri simultane pot fi compuse din n_1 convorbiri de primul fel, din n_2 convorbiri de al doilea fel etc., $n_1 + n_2 + \ldots = n$.

Se poate arăta că în formula care dă probabilitatea P_n nu s-a schimbat nimic, cu condiția de a lua $y = y_1\theta_1 + y_2\theta_2 + \dots$

Dacă se ia ca unitate de timp durata medie θ a convorbirilor, formula care dă probabilitatea P_n devine $P_n = \frac{y^n e^{-y}}{n!}$.

6) Schema lui Poisson

O urnă Bernoulli este caracterizată prin aceea că probabilitatea p pentru realizarea evenimentului dorit A, în timpul celor n extrageri succesive, este constantă (deoarece bila extrasă se pune înapoi). Putem prezenta schema lui Bernoulli sub forma a n urne identice U_1, \ldots, U_n . Din aceste urne se extrage câte o bilă . Probabilitatea ca din n bile extrase , x să realizeze evenimentul A (scoaterea unei bile albe) este $C_n^x p^x q^{n-x}$. Schema lui Poisson generalizează urna bilei revenite, în sensul că probabilitatea se schimbă de la o experiență la alta , sau, ceea ce este același lucru, în nurne U_1, \ldots, U_n probabilitățile evenimentului A sunt diferite. Fie p_1, \ldots, p_n probabilitățile de realizare a unui eveniment A, de exemplu, scoaterea unei bile albe din n urne, de data asta neidentice și q_1, \ldots, q_n probabilitățile de realizare a evenimentului contrar A^c , în aceeași experiență. Vom determina probabilitatea ca evenimentul A să se realizeze în cele n experiente (scoaterea din fiecare urnă a câte unei bile) de x ori, iar A^c de n-xori. Notăm h_1, \ldots, h_x și k_1, \ldots, k_{n-x} grupuri de câte x, respectiv n-xnumere din şirul $1, 2, \ldots, n$. Un eveniment $E_{h,k}$ ce realizează evenimentul cerut este $E_{h,k} = (A_{h_1} \cap \ldots \cap A_{h_x}) \cap (A_{k_1}^c \cap \ldots \cap A_{k_{n-x}}^c)$ și are probabilitatea $P(E_{h,k}) = p_{h_1} \dots p_{h_x} q_{k_1} \dots q_{k_{n-x}}$. Evenimentele $E_{h,k}$ sunt grupe distincte cu x evenimente A_h și n-x evenimente A_k^c permutate între ele. Atunci evenimentul cerut $X = \bigcup E_{h,k}$ are probabilitatea $p, p = \sum p_{h_1} \dots p_{h_x} q_{k_1} \dots q_{k_{n-x}}$. Termenii ce intră în această sumă sunt diferitele produse parțiale ale dezvoltării $(p_1+q_1)(p_2+q_2)\dots(p_n+q_n)$ ce conțin x factori p_h și n-x factori q_k . Dacă se consideră polinomul în t dat de $(p_1t+q_1)(p_2t+q_2)\dots(p_nt+q_n)$, probabilitatea căutată P e coeficientul lui t^x din polinomul anterior.

7) Schema polinomială

O urnă conține bile de culorile c_1, c_2, \ldots, c_s în proporții cunoscute; deci cunoaștem probabilitatea p_i de apariție într-o extragere a unei bile de culoarea $c_i, i = \overline{1, s}$. Se fac n extrageri a câte o bilă , cu condiția ca la fiecare extragere urna să aibă aceeași compoziție. Fie A_{α} evenimentul ca în extragerile efectuate să apară α_i bile de culoarea $c_i (i = \overline{1, s})$, deci $\alpha = (\alpha_1, \ldots, \alpha_s)$. Probabilitatea acestui eveniment este $P(A_{\alpha}) = \frac{n!}{\alpha_1! \ldots \alpha_n!} p_1^{\alpha_1} \ldots p_s^{\alpha_s}$.

Propoziția 2.1. Fie X o v. a. repartizată binomial cu parametrii $n, p_n, 1 - p_n$. Dacă $\lim_{n \to \infty} np_n = \lambda > 0$, atunci X este asimptotic poissoniană cu parametrul $\lambda > 0$, pentru $n \longrightarrow \infty$.

Definiția 2.10. Variabila aleatoare X se numește **absolut continuă** dacă există o funcție integrabilă $f: \mathbb{R} \to \mathbb{R}_+$ astfel încât funcția de repartiție F(x) a lui X să fie dată de $F(x) = \int_{-\infty}^{x} f(t)dt$. In acest caz funcția f(t) se numește **densitatea de probabilitate**(sau **de repartiție**) a v. a. X.

43

Proprietățile densității de repartiție

Dacă v. a. X admite densitatea f(x), atunci:

- 1) funcția f este pozitivă și $\int_{-\infty}^{\infty} f(x)dx = 1$ 2) în orice punct de continuitate al funcției f avem F'(x) = f(x)
- 3) $P(a \le X \le b) = \int_a^b f(x) dx$ 4) pentru orice funcție măsurabilă Borel $g \colon \mathbb{R} \to \mathbb{C}$ avem E(g(X)) = $=\int_{-\infty}^{\infty}g(x)f(x)dx$ (atunci când integrala din membrul drept este absolut convergentă). În particular, $E(X) = \int_{-\infty}^{\infty} x f(x) dx$. 5) Dacă v. a. are densitatea f(x), iar Y = aX + b $(a, b \in \mathbb{R}, a \neq 0)$,
- atunci Y are densitatea $f_Y(x) = \frac{1}{|a|} f\left(\frac{x-b}{a}\right)$.

Definiția 2.11. Pentru orice v. a. X, funcția $\varphi_X(t) = E(e^{itX})$ se numește funcția caracteristică a lui X.

Proprietățile funcției caracteristice

- 1) Dacă $X_1, \ldots X_n$ sunt v. a. independente, iar $X = X_1 + \ldots + X_n$, atunci $\varphi_X(t) = \prod_{k=1} \varphi_{X_k}(t)$.
- 2) Dacă X admite moment de ordinul n, atunci $E(X^k) = \frac{\varphi_X^{(k)}(0)}{k}, k =$ $\overline{1,n}$.
 - 3) Două v. a. cu aceeași funcție caracteristică au aceeași repartiție.
 - 4) Dacă X este discretă , atunci $\varphi_X(t) = \sum e^{\mathrm{i}ta_n} p_n$.
 - 5) Dacă X admite densitatea de repartiție $\overset{\cdot \cdot \cdot}{f}(x),$ atunci

$$\varphi_X(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx,$$

iar în punctele x de continuitate ale lui f avem

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi_X(t) dt.$$

Exemple de repartiții absolut continue

1) Repartiția normală (Gaussiană) cu media m și abaterea pătratică σ este repartiția unei v. a. X cu densitatea $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \mathrm{e}^{-\frac{(x-m)^2}{2\sigma^2}}$. In acest caz se scrie $X \sim N(m,\sigma)$. Dacă m=0 și $\sigma=1, X$ se numește variabilă normală standard.

Funcția caracteristică este $\varphi_X(t) = e^{\mathrm{i}mt - \frac{\sigma^2t^2}{2}}$.

Funcția de repartiție a unei variabile normale standard este

 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ și este numită **funcția lui Laplace**.

In cazul general, funcția de repartiție F a unei v. a. normale de tip $N(m,\sigma)$ se poate exprima cu ajutorul funcției lui Laplace astfel

$$F(x) = \Phi\left(\frac{x-m}{\sigma}\right)$$
, deci $P(a \le X \le b) = \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right)$, de unde rezultă $P(|X-m| < \varepsilon\sigma) = \Phi(\varepsilon) - \Phi(-\varepsilon) = 2\Phi(\varepsilon) - 1$.

2) **Repartiția uniformă** într-un interval [a, b] este repartiția unei v. a. X cu densitatea

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{in rest} \end{cases}$$

Media $E(X)=\frac{a+b}{2}$, dispersia $D^2(X)=\frac{(b-a)^2}{12}$. 3) Repartiția exponențială de parametru $\lambda>0$ corespunde densității de repartiție

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Media $E(X) = \frac{1}{\lambda}$, dispersia $D^2(X) = \frac{1}{\lambda^2}$, funcția caracteristică $\varphi_X(t) = \frac{1}{\lambda^2}$ $=\left(1-\frac{\mathrm{i}t}{\lambda}\right)^{-1}$.

4) Repartiția Gamma cu parametrii $\lambda, p > \text{este repartiția unei v.}$ a. X cu densitatea

$$f(x) = \begin{cases} \frac{\lambda^p}{\Gamma(p)} x^{p-1} e^{-\lambda x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Media $E(X)=\frac{p}{\lambda}$, dispersia $D^2(X)=\frac{p}{\lambda^2}$, funcția caracteristică $\varphi_X(t)=\frac{1}{\left(1-\frac{\mathrm{i}t}{\lambda}\right)^p}$.

Pentru p=1 se obține repartiția exponențială, iar pentru $\lambda=\frac{1}{2}, p=\frac{n}{2}$ repartiția $\chi^2(n)$ ("hi pătrat" cu n grade de libertate).

5) Repartiția Cauchy este repartiția unei v.a. X cu densitatea $f(x) = \frac{1}{\pi(1+x^2)}.$

In acest caz, X nu admite valoare medie.

Observația 2.2. Folosind proprietățile corespunzătoare funcțiilor caracteristice, respectiv funcțiilor generatoare, se obțin următoarele proprietăți ale sumei a două v. a. independente X și Y:

- a) Dacă X și Y sunt absolut continue cu densitățile f(x), respectiv g(y), atunci densitatea sumei X + Y este convoluția celor două densități $(f \star g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau.$ b) Dacă X şi Y iau valori în \mathbb{N} , iar $p_n = P(X=n)$ şi $q_n = P(Y=n)$ sunt
- repartițiile lor, atunci repartiția sumei $r_n = P(X + Y = n)$ este convoluția

şirurilor
$$(p_n)$$
 şi (q_n) , i. e. $r_n = \sum_{m=0}^n p(n-m)q(m)$.

2.2Probleme rezolvate

- 1. Din 100 de piese lucrate la un strung, 5 sunt defecte. Se iau la întâmplare 45 de piese.
 - a) Care e probabilitatea ca să existe între cele 45 de piese o singură piesă defectă?
 - b) Care e probabilitatea ca să existe cel puţin o piesă defectă?

2.2. PROBLEME REZOLVATE

Soluţie. a)
$$p_1 = \frac{C_5^1 C_{95}^{44}}{C_{100}^{45}}$$

b) $p_2 = \frac{C_5^1 C_{95}^{44} + C_5^2 C_{95}^{43} + C_5^3 C_{95}^{42} + C_5^4 C_{95}^{41} + C_5^5 C_{95}^{40}}{C_{100}^{45}}$

45

2. Intr-o ladă cu 80 pachete de ţigări, 4 pachete au câte o ţigară ruptă Care e probabilitatea ca o persoană care cumpără 4 pachete să primească toate pachetele cu ţigări rupte? Care e probabilitatea ca să primească cel puţin 2 pachete cu ţigări rupte?

Soluție.
$$p_1 = \frac{C_4^4 C_{76}^0}{C_{80}^4}$$

 $p_2 = \frac{C_4^2 C_{76}^2 + C_4^3 C_{76}^1 + C_4^4 C_{76}^0}{C_{80}^4}$

3. Dintr-un lot de 100 tranzistori, 20 au defecte. Se extrag 10 tranzistori. Care este probabilitatea ca toți tranzistorii extrași să fie buni, dar ca unul singur să fie defect, dar cel puțin unul să fie defect?

Soluţie.
$$p_1 = \frac{C_{80}^{10} \cdot C_{20}^0}{C_{100}^{20}}$$

 $p_2 = \frac{C_{80}^9 \cdot C_{20}^1}{C_{100}^{20}}$
 $p_3 = 1 - \frac{C_{80}^{10} \cdot C_{20}^0}{C_{100}^{20}}$

4. Din 16 borcane de câte 1 kg, 4 conţin dulceaţă de caise şi 12 de prune. Grupându-se la întâmplare câte 4 borcane, să se determine probabilitatea ca fiecare grupă să conţină un borcan cu dulceaţă de caise.

Soluție.
$$p = \frac{C_{12}^3 C_4^1}{C_{16}^4} \cdot \frac{C_9^3 C_3^1}{C_{12}^4} \cdot \frac{C_6^3 C_2^1}{C_8^4}$$

5. Intr-un lot de 200 de piese fabricate la o maşină sunt 10 piese defecte. Se scot la întâmplare 20 piese. Care e probabilitatea ca între cele 20 piese extrase să fie piese defecte?

Soluție. Fie A= toate cele 20 piese extrase sunt fără defecte, B= între cele 20 piese extrase cel puțin una este defectă .

$$P(B) = 1 - P(A)$$
, unde $P(A) = \frac{C_{190}^{20} C_{10}^{0}}{C_{200}^{20}}$

6. O urnă conține 31 bile albe și 19 negre. O persoană scoate bilele una câte una, până când obține 14 bile albe. Să se determine valoarea medie a numărului de bile negre extrase.

Soluție. Bila extrasă nu se mai pune la loc în urnă .

Probabilitatea de a extrage 14 bile albe şi k negre este $p = \frac{C_{31}^{14}C_{19}^{k}}{C_{50}^{14+k}}$, $k = \overline{0, 19}$.

$$E(X) = \sum_{k=0}^{19} k \cdot \frac{C_{31}^{14} C_{19}^k}{C_{50}^{14+k}}$$

- 7. La o agenție LOTO din 10000 de bilete, 10 sunt câștigătoare. Un jucător cumpără 6 bilete și fie X v.a. ce reprezintă numărul biletelor câștigătoare. Se cer:
 - a) repartiția v. a. X;
 - b) $E(X), D^{2}(X)$
 - c) $P(X \le 5), P(X > 3/X \le 5), P(X = 6)$

Soluție. a) X ia valorile $x = \overline{0,6}$ cu probabilitățile $p(x) = \frac{C_{10}^x C_{9990}^{6-x}}{C_{10000}^6}$

b)
$$E(X) = np = n \cdot \frac{a}{N} = 6 \cdot \frac{10}{10000} = 0,006$$

 $D^2(X) = npq \cdot \frac{N-n}{N-1} = 6 \cdot \frac{10}{10000} \cdot \frac{9990}{10000} \cdot \frac{9994}{9999} = 0,0059$

c)
$$P(X \le 5) = \sum_{x=0}^{5} \frac{C_{10}^{x} C_{9990}^{6-x}}{C_{10000}^{6}}$$

$$P(X > 3/X \le 5) = \frac{P(3 \le X \le 5)}{P(X \le 5)} = \frac{\sum_{x=3}^{5} \frac{C_{10}^{x} C_{9990}^{6-x}}{C_{10000}^{6}}}{\sum_{x=0}^{5} \frac{C_{10}^{x} C_{9990}^{6-x}}{C_{10000}^{6}}}$$

$$P(X=6) = \frac{C_{10}^6 C_{9990}^0}{C_{10000}^6}$$

8. O aceeași piesă este produsă de 2 mașini. Prima dă un rebut cu probabilitatea 0,05, iar a doua cu probabilitatea 0,06. Care e numărul mediu de rebuturi găsite, dacă s-au luat la control câte 200 de piese de la fiecare mașină?

Soluție. Fie $X_1 = v$. a. ce dă numărul de piese defecte găsite la prima mașină , $X_2 = v$. a. ce dă numărul de piese defecte găsite la a doua mașină , X = numărul de defecte găsite, $X = X_1 + X_2$.

 X_1 și X_2 se încadrează în schema bilei neîntoarse, deci $E(X_1)=np=200\cdot 0,05=10, E(X_2)=200\cdot 0,06=12\Longrightarrow E(X)=E(X_1)+E(X_2)=22$

2.2. PROBLEME REZOLVATE

47

- 9. O urnă conține 32 bile dintre care 10 bile albe, 8 negre, 7 roșii și 5 verzi. Se extrag 5 bile din urnă fără a pune bila extrasă înapoi. Se cere probabilitatea ca între cele 5 bile extrase să avem :
 - a) 3 bile albe, o bilă roșie și una verde;
 - b) o bilă albă, 2 negre și 2 roșii.

Soluție.a) Se aplică schema bilei nerevenite : $p_1=\frac{C_{10}^3\cdot C_7^1\cdot C_5^1}{C_{32}^5}$

b)
$$p_2 = \frac{C_{10}^1 \cdot C_8^2 \cdot C_7^2}{C_{22}^5}$$

- 10. Impărțim primele 12 numere naturale în 3 grupe a câte 4 numere și înregistrăm fiecare grupă pe câte un bilet. Dintr-o urnă conținând 12 bile numerotate de la 1 la 12 se extrage, pe rând, câte o bilă. Se cer:
 - a) probabilitatea ca din 6 extrageri, 4 numere să fie conținute pe același bilet, presupunând că bilele extrase nu sunt întoarse în urnă ;
 - b) aceeași probabilitate, presupunând că după fiecare extragere bila este reîntoarsă în urnă .

Soluție. a) Fie A_i evenimentul ca din cele 6 numere extrase, 4 să fie pe biletul cu numărul i, i = 1, 2, 3. Deci probabilitatea cerută va fi $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$, evenimentele A_i fiind incompatibile (pe fiecare bilet sunt numere diferite).

Avem $P(A_1) = P(A_2) = P(A_3)$, deoarece numerele se scriu la întâmplare pe bilete.

Aplicăm scheme bilei nerevenite:

$$P(A_1) = \frac{C_4^4 C_{12-4}^{6-4}}{C_{12}^6} = \frac{C_8^2}{C_{12}^6} \Longrightarrow P(A_1 \cup A_2 \cup A_3) = 3\frac{C_8^2}{C_{12}^6}$$

b) Aplicăm schema lui Bernoulli :

$$P(A_1) = C_6^4 \left(\frac{4}{12}\right)^4 \left(\frac{8}{12}\right)^2 \Longrightarrow P(A_1 \cup A_2 \cup A_3) = 3C_6^4 \left(\frac{4}{12}\right)^4 \left(\frac{8}{12}\right)^2 \qquad \Box$$

- 11. Cinci litere sunt alese la întâmplare din cele 26 de litere ale alfabetului englez: (i) cu revenire; (ii) fără revenire. Pentru fiecare din cazurile (i) și (ii), să se calculeze probabilitatea ca literele alese:
 - a) să conțină exact o dată litera "c";
 - b) să fie toate vocale;
 - c) să formeze cuvântul "work".

Soluție. a) (i)
$$C_{26}^1 \cdot \frac{1}{26} \cdot \left(\frac{25}{26}\right)^{25}$$

(ii)
$$\frac{C_{25}^4 \cdot C_1^1}{C_{26}^5}$$

b) (i)
$$(\frac{3}{13})^5$$

(ii)
$$\frac{C_6^5}{C_{26}^5}$$

c) (i)
$$(\frac{1}{26})^4$$

(ii)
$$\left(\frac{1}{26}\right)^4$$

12. Se aruncă o monedă de 8 ori. Să se afle probabilitatea ca stema să apară de 6 ori.

Soluție.
$$p = C_8^6 \cdot \left(\frac{1}{2}\right)^6 \left(\frac{1}{2}\right)^2$$

13. Probabilitatea ca un nou născut să fie sex masculin este egală cu 0,51 (pentru o anumită populație). Să se calculeze probabilitatea ca într-o familie cu 7 copii 5 să fie de sex masculin.

Soluție.
$$p = C_7^5(0,51)^5(0,49)^2$$

- 14. Un muncitor deservește simultan 10 mașini de același tip. Probabilitatea ca o mașină să necesite o intervenție într-un interval de timp t este $p = \frac{1}{3}$. Să se determine probabilitatea ca:
 - a) 6 din cele 10 mașini să necesite intervenția muncitorului în intervalul de timp t;
 - b) cel mult 4 din cele 10 mașini să necesite câte o intervenție în intervalul t.

Soluție. a)
$$C_{10}^{6} \left(\frac{1}{3}\right)^{6} \left(\frac{2}{3}\right)^{4}$$

b) $\sum_{k=0}^{4} C_{10}^{k} \left(\frac{1}{3}\right)^{k} \left(\frac{2}{3}\right)^{10-k}$

15. Probabilitatea ca o zi din luna martie să fie ploioasă este 0,8. Care este probabilitatea ca în prima decadă a acestei luni să fie 4 zile ploioase? Dar cel mult 4 zile ploioase? Dar probabilitatea ca toate zilele să fie însorite?

Soluție.
$$p_1 = C_{10}^4(0,8)^4(0,2)^6$$

 $p_2 = (0,2)^{10} + C_{10}^1(0,8)(0,2)^9 + C_{10}^2(0,8)^2(0,2)^8 + C_{10}^3(0,8)^3(0,2)^7 + C_{10}^4(0,8)^4(0,2)^6$

$$p_3 = (0,2)^{10}$$

16. Doi parteneri cu forță egală boxează 12 runde (probabilitatea ca oricare din ei să câștige o rundă este $\frac{1}{2}$). Să se calculeze valoarea medie, dispersia și abaterea medie pătratică a v. a. care reprezintă numărul de runde câștigate de unul din parteneri.

Soluție. V. a. X are repartiția binomială $P(X=k)=C_{12}^k\left(\frac{1}{2}\right)^k\left(\frac{1}{2}\right)^{12-k},$ $k=\overline{0,12}.$

Atunci
$$E(X) = np = 12 \cdot \frac{1}{2} = 6, D^2(X) = npq = 12 \cdot \frac{1}{2} \cdot \frac{1}{2} = 3, D(X) = \sqrt{D^2(X)} = \sqrt{3}.$$

17. La o agenție de turism s-a observat că $5^0/_0$ dintre persoanele care au făcut rezervare renunță . Se presupune că s-au făcut 100 de rezervări pentru un hotel cu 95 de locuri. Care este probabilitatea ca toate persoanele care se prezintă la hotel să aibă loc?

Soluție. Fie X numărul de persoane care se prezintă la hotel. V. a. X urmează o repartiție binomială cu n=100 și p=0,95.

De aceea
$$P(X \le 95) = 1 - P(X > 95) = 1 - \sum_{k=96}^{100} C_{100}^k (0, 05)^{100-k} (0, 95)^k$$

- 18. La examenul de matematică , probabilitatea ca o teză să fie notată cu notă de trecere este 0.75. Se aleg la întâmplare 10 lucrări și fie X v.a. ce reprezintă numărul tezelor ce vor fi notate cu notă de trecere. Se cer:
 - a) repartiția lui X;
 - b) $E(X), D^{2}(X)$
 - c) $P(X \ge 5), P(7 \le X \le 10/X \ge 8), P(X = 10)$
 - d) funcția caracteristică a v. a. X.

Soluție. a) V. a. X are o repartiție binomială cu n=10, p=0, 75. X ia valorile $x=0,1,\ldots 10$ cu probabilitățile $p(x)=C_{10}^x(0,75)^x(0,25)^{10-x}$.

b)
$$E(X) = np = 10 \cdot 0,75 = 7,5$$

$$D^2(X) = npq = 10 \cdot 0,75 \cdot 0,25 = 1,875$$

c)
$$P(X \ge 5) = \sum_{x=5}^{10} C_{10}^x (0,75)^x (0,25)^{10-x}$$

$$P(7 \le X \le 10/X \ge 8) = \frac{P(8 \le X \le 10)}{P(X \ge 8)} = \frac{\sum_{x=8}^{10} C_{10}^{x}(0, 75)^{x}(0, 25)^{10-x}}{\sum_{x=8} C_{10}^{x}(0, 75)^{x}(0, 25)^{10-x}} = 1$$

$$P(X = 10) = C_{10}^{10}(0,75)^{10}(0,25)^0 = (0,75)^{10}$$

d)
$$\varphi_X(t) = E(e^{itX}) = \sum_{x=0}^{10} e^{itx} C_{10}^x (0,75)^x (0,25)^{10-x} =$$

= $(0,75 \cdot e^{it} + 0,25)^{10}$

19. O urnă conține 30 bile albe și 10 bile negre. Se fac 200 de extrageri din urnă punând după fiecare extragere bila înapoi în urnă . Se cere o margine inferioară pentru probabilitatea ca numărul de apariții ale bilei albe în cele 200 de extrageri să fie cuprins între 100 și 120.

Soluție. Fie X v. a. ce reprezintă numărul de apariții ale bilei albe, X are o repartiție binomială

Probabilitatea ca într-o extragere să obținem o bilă albă este $p=\frac{3}{4}$. Deci $E(X)=np=200\cdot\frac{3}{4}=150, D^2(X)=npq=200\cdot\frac{3}{4}\cdot\frac{1}{4}=37,5$

Se aplică inegalitatea lui Cebîşev :

$$P(100 < X < 120) = P(|X - 110| < 10) \ge 1 - \frac{37.5}{100} = 0,625$$

20. Un grup de 40 elevi audiază un curs de 3 trimestre. La terminare dau un examen la care i se pune fiecăruia câte o întrebare din materia fiecărui trimestru. Stim că 5 elevi cunosc în întregime materia predată 10 elevi cunosc $90^0/_0$ din materia predată pe fiecare trimestru, 11 elevi cunosc câte $80^0/_0$ din materie, 7 elevi $60^0/_0$, 5 elevi câte $50^0/_0$ şi 2 elevi nu cunosc nimic din materia predată . La examen un elev răspunde bine la primele două întrebări şi fals la a treia. Care este probabilitatea ca el să fie unul din elevii care cunosc : întreaga materie, $90^0/_0$, $80^0/_0$, $60^0/_0$, $50^0/_0$, $0^0/_0$ din întreaga materie.

Soluție. Fie evenimentele A_1 =5 elevi cunosc în întregime materia predată , A_2 =10 elevi cunosc $90^0/_0$ din materia predată , A_3 =11 elevi cunosc câte $80^0/_0$ din materie, A_4 =7 elevi $60^0/_0$, A_5 =5 elevi câte $50^0/_0$, A_6 =2 elevi nu cunosc nimic din materia predată .

Avem
$$P(A_1) = \frac{1}{8}$$
, $P(A_2) = \frac{1}{4}$, $P(A_3) = \frac{11}{40}$, $P(A_4) = \frac{7}{40}$, $P(A_5) = \frac{1}{8}$, $P(A_6) = \frac{1}{20}$.

Fie X=un elev răspunde bine la primele două întrebări și fals la a treia.

Avem
$$P(X/A_1) = 0$$
, $P(X/A_2) = C_3^2 \left(\frac{9}{10}\right)^2 \cdot \frac{1}{10}$, $P(X/A_3) = C_3^2 \left(\frac{8}{10}\right)^2 \cdot \frac{2}{10}$, $P(X/A_4) = C_3^2 \left(\frac{6}{10}\right)^2 \cdot \frac{4}{10}$, $P(X/A_5) = C_3^2 \left(\frac{5}{10}\right)^2 \cdot \frac{5}{10}$, $P(X/A_6) = 0$.

$$= 0.$$
Atunci $P(X) = \frac{1}{8} \cdot 0 + \frac{1}{4} \cdot C_3^2 \left(\frac{9}{10}\right)^2 \cdot \frac{1}{10} + \frac{11}{40} \cdot C_3^2 \left(\frac{8}{10}\right)^2 \cdot \frac{2}{10} + \frac{7}{40} \cdot C_3^2 \left(\frac{6}{10}\right)^2 \cdot \frac{4}{10} + \frac{1}{8} \cdot C_3^2 \left(\frac{5}{10}\right)^2 \cdot \frac{5}{10} + \frac{1}{20} \cdot 0.$

In continuare se foloseste formula lui Bayes.

21. Presupunem că la 100 de convorbiri telefonice au loc 1000 de bruiaje neturale. Care e probabilitatea de a avea o convorbire fără bruiaje? Dar una cu cel puţin 2 bruiaje?

Soluție. Fie $X={\rm v.a.}$ repartizată Poisson ce reprezintă numărul de bruiaje, $\lambda=E(X).$

$$E(X) = \frac{1000}{100} = 10$$

$$P(X = 0) = e^{-10} \cdot \frac{10^0}{0!} = e^{-10}$$

$$P(X \ge 2) = 1 - P(X = 0) - P(X = 1) = 1 - e^{-10} - 10 \cdot e^{-10}$$

- 22. Intr-o mină au loc în medie 2 accidente pe săptămână (legea Poisson). Să se calculeze probabilitatea de a exista cel mult 2 accidente :
 - a) într-o săptămână;
 - b) în 2 săptămâni;
 - c) în fiecare săptămână dintr-un interval de 2 săptămâni.

Soluție. a) Fie X v. a. ce desemnează numărul de accidente dintr-o săptămână este poissoniană cu $\lambda=2$, deci $P(X\leq 2)=$ $=e^{-2}\left(1+\frac{2}{1!}+\frac{4}{2!}\right)=5e^{-2}$.

- b) Fie Y v. a. ce desemnează numărul de accidente în 2 săptămâni este poissoniană cu $\lambda=4$, deci $P(Y\leq 2)=\mathrm{e}^{-4}\left(1+\frac{4}{1!}+\frac{16}{2!}\right)=13\mathrm{e}^{-4}$.
- c) probabilitatea cerută este $[P(X \le 2)]^2 = 25e^{-4}$
- 23. La fiecare o mie de persoane, una este victima unui accident de maşină O companie de asigurări a asigurat 5000 de persoane. Care este probabilitatea ca cel mult 2 dintre acestea să încaseze asigurarea?

Soluție. Dacă X reprezintă numărul de persoane care încasează asigurarea într-un an, atunci X urmează o repartiție binomială cu n=5000 ş $p=\frac{1}{1000}$. Deoarece $\lambda=np=5$ (valori mari ale lui n și valori mici ale lui p se poate folosi propoziția 2.1 și obținem $P(X\leq 2)\cong$

$$\cong e^{-5} \left(\frac{5^0}{0!} + \frac{5}{1!} + \frac{5^2}{2!} \right) = \frac{31e^{-5}}{2}.$$

24. Presupunem că într-un anumit stat media sinuciderilor într-o lună este de 4 la un milion de locuitori. Să se determine probabilitatea ca într-un oraș cu 500000 de locuitori să fie cel mult 4 sinucideri într-o lună . Este posibil ca în decurs de un an să existe cel puţin 2 luni în care au avut loc mai mult de 4 sinucideri?

Soluție. Fie X numărule de sinucideri într-o lună ; X este o v.a. repartizată binomial cu n=500000 și $p=4\cdot10^{-6}$. Deoarece np=2 se poate

utiliza propoziția 2.1 și avem
$$p_0 = P(X \le 4) = \sum_{k=0}^{4} e^{-2} \frac{2^k}{k!} = 7e^{-2}$$
.

Fie Y numărul de luni cu mai mult de 4 sinucideri. Atunci
$$P(Y=k)=C_{12}^k(1-p_0)^kp_0^{12-k}$$
, iar $P(Y\geq 2)=1-P(Y=0)-P(Y=1)$.

- 25. O firmă se aprovizionează de la 3 furnizori. Din datele statistice privind furnizorii, firma estimează că probabilitatea cu care furnizorii nu pot onora contractul sunt $p_1 = 0, 1, p_2 = 0, 3, p_3 = 0, 2$. Fie X variabila aleatoare ce indică numărul furnizorilor ce nu-și pot onora contractul . Să se afle:
 - a) repartiția v.a. X;
 - b) E(X), D(X);
 - c) să se determine riscul pe care și-l asumă firma.

Soluție. a) Situația dată se poate modela probabilistic cu schema lui Poisson cu 3 urne, în care $p_1 = 0, 1, q_1 = 0, 9, p_2 = 0, 3, q_2 = 0, 7, p_3 = 0, 2, q_3 = 0, 8$ și se obține polinomul de gradul 3:

$$P_3(t) = (p_1t + q_1)(p_2t + q_2)(p_3t + q_3) = 0,006t^3 + 0,092t^2 + 0,398t + 0,504$$

X ia valorile 0,1,2,3 cu valorile 0,504;0,398;0,092;0,006.

b)
$$E(X) = 0.0,504 + 1.0,398 + 2.0,092 + 3.0,006 = 0.6$$

$$E(X^2) = 0^2 \cdot 0.504 + 1^2 \cdot 0.398 + 2^2 \cdot 0.092 + 3^2 \cdot 0.006 = 0.82$$

$$D^2(X) = 0.82 - 0.6^2 = 0.46$$

c) Riscul pe care și-l asumă firma este dat de următoarea probabilitate
$$P(X \ge 1) = P(X = 1) + P(X = 2) + P(X = 3) = 0,496$$

26. La un concurs de matematică 3 candidați primesc câte un plic care conține $n\ (n>3)$ bilete cu probleme de algebră și geometrie. Cele 3 plicuri conțin respectiv câte 1,2,3 subiecte de algebră . Fiind examinați, cei 3 candidați extrag fiecare câte un bilet din plic. Extragrea făcânduse la întâmplare, să se afle probabilitatea următoarelor evenimente :

- a) 3 candidați să fie examinați la geometrie;
- b) nici un candidat saă nu fie examinat la geometrie;
- c) cel puțin un candidat să fie examinat la algebră .

c)
$$p_3 = 1 - \frac{(n-1)(n-2)(n-3)}{n^3}$$

27. Un aparat se compune din 5 elemente; fiabilitatea (probabilitatea de funcționare fără defecțiune într-un interval de timp) elementelor este : $p_1 = 0, 9, p_2 = 0, 95, p_3 = 0, 8, p_4 = 0, 85, p_5 = 0, 91$. Dacă nici unul din elemente nu este în pană , probabilitatea de funcționare a aparatului fără defecțiuni este egală cu 1; dacă unul din cele 5 elemente este în pană această probabilitate este 0,7, iar dacă două elemente sunt în pană aparatul nu poate funcționa. Să se determine probabilitatea ca aparatul să poată efectua munca pentru care este destinat.

Solutie. Aplicăm schema lui Poisson:

$$(0, 1t + 0, 9)(0, 05t + 0, 95)(0, 2t + 0, 8)(0, 15t + 0, 85)(0, 09t + 0, 91) =$$

= 0, 53 + 0, 364t + ...

Fie $A_1 =$ nici un element nu este în pană ; $A_2 =$ un element este în pană

Atunci
$$P(A_1) = 0,53, P(A_2) = 0,364$$

Notând cu A evenimentul "aparatul efectuează munca pentru care este destinat", formula probabilităților totale ne dă :

$$P(A) = 0.53 \cdot 1 + 0.364 \cdot 0.7 = 0.784$$

28. Un muncitor produce cu probabilitățile 0,99; 0,07 și 0,03 o piesă bună o piesă cu un defect remediabil și un rebut. Muncitorul a produs 3 piese. Care este probabilitatea ca între cele 3 piese să fie cel puțin o piesă bună și cel puțin un rebut?

Soluție. Aplicăm schema polinomială :
$$P = \frac{3!}{1!1!1!} \cdot 0, 9 \cdot 0, 07 \cdot 0, 03 + \frac{3!}{2!1!} (0,9)^2 \cdot 0, 03 + \frac{3!}{2!1!} \cdot 0, 9 \cdot (0,03)^2 = 0,08667$$

29. Densitatea de repartiție a vieții unei lămpi dintr-un aparat de radio cu 6 lămpi este $\lambda \cdot e^{-\lambda t}$, t > 0, dat în ani și $\lambda = \frac{1}{3}$. Să se determine probabilitatea ca în mai puțin de 6 ani nici o lampă să nu fie schimbată

Soluție. Viețile medii ale lămpilor sunt considerate evenimente independente. Probabilitatea ca viața medie a unei lămpi să fie mai mare de 6 ani este $p = \int_6^\infty \lambda \cdot \mathrm{e}^{-\lambda t} dt = \mathrm{e}^{-6\lambda} = \mathrm{e}^{-2}$. Probabilitatea căutată este $p^6 = \mathrm{e}^{-12}$.

30. La o anumită scală erorile de măsurare sunt normal distribuite cu m=0 și $\sigma=0,1$ g. Dacă se cântărește un obiect la această scală , care este probabilitatea ca eroarea de măsurare să fie mai mică decât 0,15 g?

Soluție. Fie X eroarea de măsurare dată când un obiect este cântărit. Căutăm probabilitatea $P(-0, 15 \le X \le 0, 15)$.

$$\begin{array}{l} P(-0,15 \leq X \leq 0,15) = P(\frac{-0,15-0}{0,1} \leq X \leq \frac{-0,15+0}{0,1}) = \\ = P(-1,5 \leq X \leq 1,5) = \Phi(1,5) - \Phi(-1,5) = \Phi(1,5) - 1 + \Phi(1,5) = \\ = 2\Phi(1,5) - 1 = 0,8664 \end{array}$$

31. La un atelier se fabrică bile cu un diametru de 0,8 cm. Defectele de fabricație dau o eroare a diametrului repartizată după o lege normală m=0 (nu avem erori sistematice) și $\sigma=0,001$ cm. La control sunt date ca rebuturi toate bilele care trec printr-un inel de diametru de 0,798 cm și cele care nu pot trece printr-un inel de diametru 0,802 cm. Să se determine probabilitatea ca o bilă luată la întâmplare să fie refuzată .

Soluție. Fie A= bila este refuzată $A_1=$ diametrul $d<0,798, A_2=$ = diametrul $d>0,802, A=A_1\cup A_2.$

Calculăm $P(A^c) = P(0,798 < d < 0,802) = P(|d - m_d| < 0,002)$, unde $m_d = 0,8$ diametrul normal.

$$\begin{split} P(A^c) &= \Phi\left(\frac{0,002}{0,001}\right) - \Phi\left(\frac{-0,002}{0,001}\right) = \Phi\left(\frac{0,002}{0,001}\right) - 1 + \Phi\left(\frac{0,002}{0,001}\right) = \\ &= 2\Phi\left(\frac{0,002}{0,001}\right) - 1 = 2\Phi(2) - 1 = 2\cdot0,9772 - 1 \simeq 0,954 \Longrightarrow P(A) = \\ &= 1 - P(A^c) \simeq 0,046 \end{split}$$

32. Numărul pâinilor ce pot fi vândute într-o zi de un supermarket e normal distribuit cu m=1000 pâini şi $\sigma=100$ pâini. Dacă marketul stochează 1200 de pâini în fiecare zi, care este probabilitatea ca pâinile să fie vândute până ca ziua să se termine?

Soluție. Fie X numărul pânilor care pot fi vândute pe parcursul unei zile; X este normal distribuită cu m=1000 și $\sigma=100$. Vrem să găsim probabilitatea $P(X \ge 1200)$.

$$\begin{array}{l} P(X \geq 1200) = P(\frac{X-1000}{100} \geq \frac{1200-1000}{100}) = P(\frac{X-1000}{100} \geq 2) = 1 - \\ -P(\frac{X-1000}{100} < 2) = 1 - \Phi(2) = 0,0228 \end{array}$$

33. Fie $X \sim N(m, \sigma)$ astfel încât $P(X < 22) = \frac{91}{100}, P(X > 28) = \frac{6}{100}$. Se cer m și σ știind că $\Phi(1, 35) = 0, 91, \Phi(1, 56) = 0, 94$.

Soluție.
$$\frac{91}{100} = P(X < 22) = \Phi\left(\frac{22-m}{\sigma}\right) \Longrightarrow \frac{22-m}{\sigma} = 1,35$$

 $\frac{6}{100} = P(X > 28) = 1 - P(X \le 28) \Longrightarrow P(X \le 28) = 0,94 \Longrightarrow 0,94 = \Phi\left(\frac{28-m}{\sigma}\right) \Longrightarrow \frac{28-m}{\sigma} = 1,56$

Facem sistem din cele două ecuații și determinăm
$$m$$
 și σ : $m==-16,57,\sigma=28,5$

- 34. Inălțimea bărbaților este repartizată $N(m, \sigma), m = 167$ cm, $\sigma = 3$ cm.
 - 1) Care este procentul din populație cu înălțimea :
 - a) mai mare de 167 cm;
 - b) mai mare de 170 cm;
 - c) cuprinsă între 161 cm și 173 cm?
 - 2) Se selectează la întâmplare (binomial) 4 bărbaţi. Care este probabilitatea ca:
 - a) înălțimea tuturor să depășească 170 cm;
 - b) doi să aibă înălţimea mai mică decât media, iar doi mai mare decât media?

Soluție. 1) Fie X înălțimea unui bărbat în cm.

a)
$$P(X > 167) = 1 - P(X \le 167) = 1 - \Phi\left(\frac{167 - 167}{3}\right) = 1 - \Phi(0) = 50^0 / 6$$

b)
$$P(X > 170) = 1 - \Phi\left(\frac{170 - 167}{3}\right) = 1 - \Phi(1) = 16^{0}/_{0}$$

c)
$$P(161 < X < 173) = \Phi\left(\frac{173 - 167}{3}\right) - \Phi\left(\frac{161 - 167}{3}\right) = \Phi(2) - \Phi(-2) = \Phi(2) - 1 + \Phi(2) = 2\Phi(2) - 1 = 95^{0}/_{0}$$

- 2) a) Fie Y= numărul bărbaţilor cu înălţimea mai mare de 170 cm. V. a. urmează o lege binomială cu n=4 şi p=P(X>170)=0,16. De aceea $P(Y=4)=(0,16)^4=0,0007$.
- b) Dacă Z reprezintă numărul bărbaților cu înălțimea mai mare ca media de 167 cm, atunci Z este binomială cu n=4 și p=

$$= P(X > 167) = 0, 5.$$
 Astfel $P(Z = 2) = C_4^2(0, 5)^4 = 0, 375.$

- 35. Calitatea unui produs electronic este rezultanta acțiunii a 2 grupuri de factori U și V ale căror modele probabilistice sunt U=2X+3Y și V=4X-Y, unde X și Y sunt variabile aleatoare independente, $X\sim N(3,2)$ și $Y\sim Bi(10;0,9)$. Să se afle:
 - a) $D^2(U), D^2(V);$
 - b) $\rho(U, V)$;

c)
$$P(7 \le X \le 13);$$

d) o limită inferioară pentru P(5 < Y < 13).

$$Soluție. \ a) \ D^2(U) = D^2(2X+3Y) = 4D^2(X) + 9D^2(Y) = 4 \cdot 2^2 + 9 \cdot 0, 9 = 24, 1, \ \text{unde} \ D^2(X) = 2^2 = 4, D^2(Y) = npq = 10 \cdot 0, 9 \cdot 0, 1 = 0, 9 \cdot 0, 0 = 0, 0$$

36. Se fac experimente asupra alegerii filamentului unui girofar până când acesta este aprins. La fiecare experiment probabilitatea de succes este $\frac{1}{5}$. Se cer media şi dispersia numărului de experimente.

$$Soluție. \ \ \text{Fie} \ X \ \text{v. a. ce reprezintă numărul de experimente.} \ \ Atunci \ X \sim \begin{pmatrix} 1 & 2 & 3 & \dots & k & \dots \\ \frac{1}{5} & \frac{4}{5} \cdot \frac{1}{5} & \left(\frac{4}{5}\right)^2 \cdot \frac{1}{5} & \dots & \left(\frac{4}{5}\right)^{k-1} \cdot \frac{1}{5} & \dots \end{pmatrix}.$$

$$E(X) = \sum_{k=1}^{\infty} k \cdot \left(\frac{4}{5}\right)^{k-1} \cdot \frac{1}{5} = \frac{1}{5} \sum_{k=1}^{\infty} k \cdot \left(\frac{4}{5}\right)^{k-1} = \frac{1}{5} \cdot 25 = 5$$

$$\text{Am calculat astfel}: \ \text{fie} \ q = \frac{4}{5} < 1. \ \ \text{Stim} \ \sum_{k=1}^{n} q^k = q \cdot \frac{1-q^n}{1-q} \Longrightarrow \\ \Longrightarrow \sum_{k=1}^{n} kq^{k-1} = \left(q \cdot \frac{1-q^n}{1-q}\right)' = \frac{1-(n+1)q^n+nq^{n+1}}{(1-q)^2} \Longrightarrow \\ \Longrightarrow \sum_{k=1}^{\infty} kq^{k-1} = \lim_{n \to \infty} \sum_{k=1}^{n} kq^{k-1} = \frac{1}{(1-q)^2} = 25$$

$$E(X^2) = \sum_{k=1}^{n} k^2 \cdot \left(\frac{4}{5}\right)^{k-1} \cdot \frac{1}{5} = \frac{1}{5} \sum_{k=1}^{n} k^2 \cdot \left(\frac{4}{5}\right)^{k-1}$$

$$\sum_{k=1}^{n} kq^{k-1} = \frac{1 - (n+1)q^n + nq^{n+1}}{(1-q)^2} / \cdot q \Longrightarrow$$

$$\Longrightarrow \sum_{k=1}^{n} kq^k = \frac{q - (n+1)q^{n+1} + nq^{n+2}}{(1-q)^2} \Longrightarrow$$

$$\Longrightarrow \sum_{k=1}^{n} k^2 q^{k-1} = \left(\frac{q - (n+1)q^{n+1} + nq^{n+2}}{(1-q)^2}\right)' =$$

$$= \frac{1+q - (n+1)^2 q^n + q^{n+1}(2n^2 + 2n - 1) + q^{n+2}(n^2 + 4n + 1)}{(1-q)^3} \Longrightarrow$$

$$\Longrightarrow \sum_{k=1}^{\infty} k^2 q^{k-1} = \lim_{n \to \infty} \sum_{k=1}^{n} k^2 q^{k-1} = \frac{1+q}{(1-q)^3} = 9 \cdot 25$$

$$\text{Deci } E(X^2) = \frac{1}{5} \cdot 9 \cdot 25 = 45.$$

$$D^2(X) = E(X^2) - [E(X)]^2 = 45 - 25 = 20$$

37. Intr-o bibliotecă sunt n cărți numerotate de la 1 la n. Se scot la întâmplare cărțile din bibliotecă . Avem o "întâlnire" dacă numărul de pe carte coincide cu numărul extragerii. Să se calculeze media și dispersia numărului total de întâlniri.

Soluție. La fiecare carte vom asocia o v. a. $X_i, i = \overline{1,n}$ definită astfel : dacă la extragerea i cartea scoasă poartă numărul i, atunci $X_i = 1$, în celelalte cazuri $X_i = 0$. Probabilitatea ca la extragerea i să obținem cartea cu numărul i este $P(X_i = 1) = \frac{1}{n}$, deoarece există o carte favorabilă printre cele n.

Deoarece fiecare variabilă X_i poate să ia numai valorile 1 sau $0 \Longrightarrow P(X_i = 0) = 1 - P(X_i = 1) = 1 - \frac{1}{n}$.

Avem
$$E(X_i) = 1 \cdot \frac{1}{n} + 0 \cdot \left(1 - \frac{1}{n}\right) = \frac{1}{n}$$

 $E(X_i^2) = 1^2 \cdot \frac{1}{n} + 0^2 \cdot \left(1 - \frac{1}{n}\right) = \frac{1}{n}$
 $D^2(X_i) = E(X_i^2) - [E(X_i)]^2 = \frac{1}{n} - \frac{1}{n^2} = \frac{n-1}{n^2}$

Numărul total de întâlniri este dat de $Y = \sum_{i=1}^{n} X_i$.

$$E(Y) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} \frac{1}{n} = n \cdot \frac{1}{n} = 1$$

$$D^{2}(Y) = D^{2}(\sum_{i=1}^{n} X_{i}) = \sum_{i=1}^{n} D^{2}(X_{i}) + 2 \sum_{1 \le i < j \le n} \text{cov}(X_{i}, X_{j}), \text{ dar}$$
$$\text{cov}(X_{i}, X_{j}) = E(X_{i}X_{j}) - E(X_{i})E(X_{j})$$

Cum valorile posibile ale lui X_iX_j sunt o și $1 \Longrightarrow E(X_iX_j) = 1 \cdot P(X_iX_j = 1) + 0 \cdot P(X_iX_j = 0) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$, deoarece $X_iX_j = 1 \iff$ cărțile cu numerele i și j au fost extrase la rândul lor și

sunt (n-2)! permutări de cele n-2 cărți corespunzătoare acestui eveniment.

Dacă
$$i \neq j$$
, $cov(X_i, X_j) = \frac{1}{n(n-1)} - \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n^2(n-1)}$.
Deci $D^2(Y) = nD^2(X_i) + n(n-1)cov(X_i, X_j) = 1$.

38. Fie X și Y variabile aleatoare pentru care $E(X)=-2, E(Y)==4, D^2(X)=4, D^2(Y)=9$, iar coeficientul de corelație $\rho(X,Y)=-0,5$. Să se calculeze valoarea medie a variabilei $Z=3X^2-2XY++Y^2-3$.

$$\begin{array}{l} Soluție. \ E(Z)=3E(X^2)-2E(XY)+E(Y^2)-3\\ \mathrm{Cum}\ D^2(X)=E(X^2)-[E(X)]^2\Longrightarrow E(X^2)=D^2(X)+[E(X)]^2=\\ =4+(-2)^2=8\ \mathrm{şi}\ E(Y^2)=D^2(Y)+[E(Y)]^2=9+4^2=25\\ cov(X,Y)=E(XY)-E(X)E(Y)\Longrightarrow E(XY)=E(X)E(Y)+\\ +cov(X,Y)=E(X)E(Y)+\rho(X,Y)\sqrt{D^2(X)D^2(Y)}=(-2)\cdot 4+\\ +(-0,5)\cdot \sqrt{4\cdot 9}=-11\\ \mathrm{Deci}\ E(Z)=3\cdot 8-2\cdot (-11)+25-3=68. \end{array}$$

39. Fie A şi B două evenimente astfel încât $P(A) = \frac{1}{4}$, $P(B/A) = \frac{1}{2}$, $P(A/B) = \frac{1}{4}$. Definim variabilele X şi Y: X = 1 sau X = 0 după cum se realizează sau nu evenimentul A; Y = 1 sau Y = 0 după cum se realizează sau nu evenimentul B. Să se calculeze $E(X), E(Y), D^2(X), D^2(Y), \rho(X,Y)$.

Soluție.
$$E(X) = 1 \cdot P(A) + 0 \cdot P(A^c) = \frac{1}{4}$$

 $E(Y) = 1 \cdot P(B) + 0 \cdot P(B^c) = P(B)$
Stim că $P(A \cap B) = P(A) \cdot P(B/A) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$, dar $P(B) = \frac{P(A \cap B)}{P(A/B)} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2} \Longrightarrow E(Y) = \frac{1}{2}$
 $D^2(X) = E(X^2) - [E(X)]^2 = \frac{1}{4} - \frac{1}{16} = \frac{3}{16}$
 $D^2(Y) = E(Y^2) - [E(Y)]^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$
 $E(XY) = 1 \cdot P(XY = 1) + 0 \cdot P(XY = 0) = 1 \cdot P(X = 1)P(Y = 1) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$
 $\rho(X, Y) = \frac{E(XY) - E(X)E(Y)}{\sqrt{D^2(X)D^2(Y)}} = \frac{\frac{1}{8} - \frac{1}{4} \cdot \frac{1}{2}}{\sqrt{\frac{3}{16}} \cdot \frac{1}{4}} = 0$

40. Persoanele A şi B joacă în următoarele condiții : se aruncă 2 zaruri şi când suma punctelor obținute e mai mică decât 10, atunci B plătește lui A suma de 5 dolari. În caz contrar, A plătește lui B o sumă fixă a. Să se determine această sumă astfel încât jocul să fie echitabil.

Soluție. Fie X v. a. ce reprezintă suma punctelor obținute prin aruncarea celor 2 zaruri. X poate lua valorile $2, 3, \dots 12$.

Stim
$$P(X < 10) + P(X \ge 10) = 1$$
.

Avem
$$P(X < 10) = \sum_{k=2}^{9} P(X = k) = \frac{1}{36} + \frac{2}{36} + \frac{3}{36} + \frac{4}{36} + \frac{5}{36} + \frac{6}{36} + \frac{5}{36} + \frac{5}{36} + \frac{4}{36} = \frac{5}{6} \Longrightarrow P(X \ge 10) = 1 - \frac{5}{6} = \frac{1}{6}.$$

Deci A câştigă 5 dolari cu probabilitatea $\frac{5}{6}$ și pierde a dolari cu probabilitatea $\frac{1}{6}$. Pentru ca jocul să fie echitabil trebuie să avem $\frac{5}{6} \cdot 5 + \frac{1}{6} \cdot a = 0 \Longrightarrow a = -25$.

- 41. Jucătorul A plătește 1 dolar pentru fiecare participare la jocul următor: sunt aruncate 3 zaruri; dacă apare o singură dată fața 1, atunci el primește 1 dolar; dacă apare de două ori primește 2 dolari; dacă apare pe toate zarurile primește 8 dolari; în alte cazuri nu primește nimic.
 - a) Jocul este corect? (adică valoarea medie a câștigului e nulă?)
 - b) Dacă jocul nu este corect, cât ar trebui să primească jucătorul atunci când apare 1 pe toate zarurile, pentru ca jocul să devină corect?

Soluție. a) Fie X câștigul total; este o v. a. ce ia valorile
$$-1,0,1,7$$
. Atunci $P(X=-1)=\left(\frac{5}{6}\right)^3=\frac{125}{216}, P(X=0)=C_3^1\cdot\frac{1}{6}\cdot\left(\frac{5}{6}\right)^2=\frac{75}{216},$ $P(X=1)=C_3^2\cdot\left(\frac{1}{6}\right)^2\cdot\left(\frac{5}{6}\right)=\frac{15}{216}, P(X=7)=\left(\frac{1}{6}\right)^3=\frac{1}{216}.$

Deci $E(X)=-\frac{103}{216},$ ceea ce înseamnă că jocul nu este corect.

- b) Dacă a este câștigul când apare 1 de 3 ori, atunci $E(X) = \frac{a-111}{216}$, astfel că valoarea cerută este a=111.
- 42. Un jucător are 15 dolari. Se aruncă o monedă până când apare banul pentru prima dată; în acest caz jucătorul primește 1 dolar și părăsește jocul. Dacă la prima aruncare apare stema, atunci el pierde 1 dolar și continuă jocul; dacă și la a doua aruncare apare stema el pierde 2 dolari și continuă; dacă la a treia aruncare apare stema, atunci el pierde 4 dolari și continuă; dacă și la cea de-a patra aruncare apare stema jucătorul pierde ultimii 8 dolari. Să se determine valoarea medie a câștigului.

Soluție. Fie p_n probabilitatea de a apărea pentru prima dată banul la cea de-a n-a aruncare, iar X câștigul jucătorului. V. a. ia valorile -15 și 1 cu probabilitățile $P(X=-15)=P(\text{stema apare la 4 aruncări})=\frac{1}{16},$ $P(X=1)=p_1+p_2+p_3+p_4=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{15}{16}.$

Rezultă E(X) = 0, deci, în medie, jucătorul își păstrează capitalul. \square

43. Se dă ecuația ax + by + c = 0 în care coeficienții a, b, c se determină prin aruncarea unui zar. Să se determine probabilitatea ca dreapta astfel obținută să treacă prin punctul de coordonate (-1,1).

Soluție. Experimentului de determinare a unui coeficient îi ataşăm v. a. X care ia valoarea numărului de puncte apărut :

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

Fie X_1, X_2, X_3 v. a. corespunzătoare determinării coeficienților a, b, c. Aceste v. a. sunt independente.

Dreapta trece prin punctul de coordonate (-1,1) când $-X_1+X_2+X_3=0$. Deci trebuie să se determine $P(-X_1+X_2+X_3=0)=$

$$= P(X_1 = X_2 + X_3) = \sum_{k=2}^{6} P(X_2 + X_3 = k \land X_1 = k) =$$

$$= \sum_{k=2}^{6} P(X_2 + X_3 = k) P(X_1 = k) = \frac{1}{6} \sum_{k=2}^{6} P(X_2 + X_3 = k) =$$

$$= \frac{1}{6} \left(\frac{1}{36} + \frac{2}{36} + \frac{3}{36} + \frac{4}{36} + \frac{5}{36} \right) = \frac{5}{72}$$

44. Se consideră numărul complex a + ib, unde a şi b sunt determinți prin aruncarea unui zar. Se cere probabilitatea ca numărul complex astfel obținut să se găsească pe cercul $x^2 + y^2 = 17$.

Soluție. Asociem v. a. independente X și Y celor două experiențe de determinare a numerelor a și b. Numărul complex z=a+bi se găsește pe cercul de ecuație $x^2+y^2=r^2$ dacă $|z|^2=r^2$, deci când $a^2+b^2=r^2$.

Fiecare din v. a. X şi Y are repartiția $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$.

$$P(X^{2} + Y^{2} = 17) = \sum_{k} P(X^{2} = k)P(Y^{2} = 17 - k) =$$

$$= P(X^{2} = 1)P(Y^{2} = 16) + P(X^{2} = 16)P(Y^{2} = 1) = \frac{2}{36}$$

45. Fiecare coeficient al ecuației $a\cos x - b = 0$ se determină prin aruncarea unui zar. Care este probabilitatea ca ecuația dată să fie compatibilă ?

Soluție. Cei doi coeficienți ai ecuației sunt v. a. independente. Fie acestea X și Y, cu valori strict pozitive, având aceeași repartiție.

Pentru ca ecuația dată să fie compatibilă trebuie ca $\frac{b}{a} \leq 1$, deoarece $\frac{b}{a} > 0$ și $\cos x$ ia valori în intervalul [-1, 1]

$$P(\frac{Y}{X} \le 1) = P(Y \le X) = \sum_{k=1}^{6} P(X = k) P(Y \le k) = \frac{1}{6} \sum_{k=1}^{6} (Y \le k) = \frac{1}{6} \sum_{k=1}^{6} (Y \le k) = \frac{1}{6} \left(\frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6}\right) = \frac{7}{12}$$

46. Presupunem că variabila aleatoare X are repartiția $X: \begin{pmatrix} 5 & 10 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$. Făcând transformarea de variabilă Y = 2X, să se afle funcția de repartiție $F_Y(y)$ a lui Y.

Soluție. Scriem funcția de repartiție a lui X:

$$F_X(x) = \begin{cases} 0, & x \le 5\\ \frac{1}{3}, & 5 < x \le 10\\ 1, & x > 10 \end{cases}$$

Avem $F_Y(y) = P(Y < y) = P(2X < y) = P(X < \frac{y}{2}) = F_X(\frac{y}{2})$ Aşadar,

$$F_Y(y) = \begin{cases} 0, & \frac{y}{2} \le 5\\ \frac{1}{3}, & 5 < \frac{y}{2} \le 10\\ 1, & \frac{y}{2} > 10 \end{cases}$$

 \Longrightarrow

$$F_Y(y) = \begin{cases} 0, & y \le 10\\ \frac{1}{3}, & 10 < y \le 20\\ 1, & y > 20 \end{cases}$$

47. Să se determine $a \in \mathbb{R}$ astfel încât $X \sim \binom{k}{\frac{a}{3^k}}$, $k \in \mathbb{N}$ să fie o v. a.. Să se calculeze $E(X), D^2(X)$.

Soluție.
$$\sum_{k \in \mathbb{N}} \frac{a}{3^k} = 1 \Longrightarrow \sum_{k \in \mathbb{N}} \frac{1}{3^k} = \frac{1}{a} \Longrightarrow \frac{1}{1 - \frac{1}{3}} = \frac{1}{a} \Longrightarrow a = \frac{2}{3}$$

$$E(X) = \sum_{k \in \mathbb{N}} k \cdot \frac{2}{3} \cdot \frac{1}{3^k} = \frac{2}{3} \sum_{k \in \mathbb{N}} \frac{k}{3^k}$$

Avem de calculat $f_1(1)$, unde $f_1(x) = \sum_{k \in \mathbb{N}} \frac{kx}{3^k}$

Pornim de la calculul sumei $f(x) = \sum_{k \in \mathbb{N}} \frac{x^k}{3^k} = \sum_{k \in \mathbb{N}} \left(\frac{x}{3}\right)^k = \frac{1}{1 - \frac{x}{3}} \Longrightarrow$

$$\implies f'(x) = \sum_{k \in \mathbb{N}} \frac{kx^{k-1}}{3^k} = \frac{3}{(3-x)^2} \implies f'(1) = \sum_{k \in \mathbb{N}} \frac{k}{3^k} = \frac{3}{4} = f_1(1)$$

Deci
$$E(X) = \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{2}$$

$$E(X^2) = \sum_{k \in \mathbb{N}} k^2 \cdot \frac{2}{3} \cdot \frac{1}{3^k} = \frac{2}{3} \sum_{k \in \mathbb{N}} \frac{k^2}{3^k}$$

Pornim din nou de la
$$f(x) = \sum_{k \in \mathbb{N}} \frac{x^k}{3^k} = \frac{1}{1 - \frac{x}{3}} \Longrightarrow f'(x) = \sum_{k \in \mathbb{N}} \frac{kx^{k-1}}{3^k} = \frac{3}{(3-x)^2} \Longrightarrow xf'(x) = \sum_{k \in \mathbb{N}} \frac{kx^k}{3^k} = \frac{3x}{(3-x)^2} \Longrightarrow [xf'(x)]' = \sum_{k \in \mathbb{N}} \frac{k^2x^{k-1}}{3^k} = \frac{1}{2} = \frac{3}{(3-x)^2} = \frac{3}{(3-x)^2} \Longrightarrow \sum_{k \in \mathbb{N}} \frac{k^2}{3^k} = \frac{3}{2^2} = \frac{3}{4} \Longrightarrow E(X^2) = \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{2}$$

$$D^2(X) = E(X^2) - (E(X))^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

48. Se dă variabila aleatoare X cu următoarea funcție de repartiție:

$$F_X(x) = \begin{cases} 0, & x < 0\\ \frac{x}{4}, & 0 \le x < 1\\ \frac{x^2}{4}, & 1 \le x < 2\\ 1, & x \ge 2 \end{cases}$$

Se cer:

a)
$$P(1 \le X < 2), P(1 \le X < 2/1 \le X < 3);$$

- b) densitatea de repartitie $f_X(x)$:
- c) dispersia $D^2(X)$.

Soluție. a)
$$P(1 \le X < 2) = F(2) - F(1) = 1 - \frac{1}{4} = \frac{3}{4}$$

$$P(1 \le X < 2/1 \le X < 3) = \frac{P(1 \le X < 2)}{P(1 \le X < 3)} = \frac{\frac{3}{4}}{F(3) - F(1)} = \frac{\frac{3}{4}}{\frac{3}{4}} = 1$$
b)
$$\begin{cases} 0, & x < 0 \\ \frac{1}{4}, & 0 \le x < 1 \end{cases}$$

$$f_X(x) = F_X'(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{4}, & 0 \le x < 1 \\ \frac{x}{2}, & 1 \le x < 2 \\ 0, & x \ge 2 \end{cases}$$

c)
$$D^{2}(X) = E(X^{2}) - E^{2}(X)$$

 $E(X) = \int_{-\infty}^{\infty} x f_{X}(x) dx = \int_{0}^{1} \frac{x}{4} dx + \int_{1}^{2} \frac{x^{2}}{2} dx = \frac{31}{24}$
 $E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx = \int_{0}^{1} \frac{x^{2}}{4} dx + \int_{1}^{2} \frac{x^{3}}{2} dx = \frac{47}{24}$
 $D^{2}(X) = \frac{47}{24} - \frac{31}{24} = \frac{2}{3}$

49. Se dă funcția

$$f(x) = \begin{cases} e^{-a^2 x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Să se determine constanta "a" astfel încât funcția să fie o densitate de repartiție.

Soluție.
$$\int_{-\infty}^{\infty} f(x)dx = 1 \Longrightarrow 1 = \int_{0}^{\infty} e^{-a^{2}x} dx = -\frac{e^{-a^{2}x}}{a^{2}}/_{0}^{\infty} = \frac{1}{a^{2}} \Longrightarrow a = \pm 1$$

- 50. Se dă funcția $f(x) = \frac{k}{e^x + e^{-x}}$. Se cer:
 - a) să se determine constanta "k" astfel încât f(x) să fie o densitate de repartiție a unei variabile aleatoare X;
 - b) probabilitatea ca în două observații independente X să ia o valoare mai mică decât 1 și alta mai mare sau cel mult egală cu 1.

Soluţie. a) Verificăm
$$\int_{-\infty}^{\infty} f(x)dx = 1$$

 $1 = \int_{-\infty}^{\infty} \frac{k}{\mathrm{e}^x + \mathrm{e}^{-x}} dx = k \int_{-\infty}^{\infty} \frac{\mathrm{e}^x}{1 + (\mathrm{e}^x)^2} dx = k \mathrm{arctg} \, \mathrm{e}^x / 0 = k \frac{\pi}{2} \Longrightarrow k = \frac{2}{\pi} \Longrightarrow f(x) = \frac{2}{\pi (\mathrm{e}^x + \mathrm{e}^{-x})}$

b) Cum observațiile făcute asupra v. a.
$$X$$
 sunt independente \Longrightarrow $P(X_1 < 1, X_2 \ge 1) = P(X_1 < 1)P(X_2 \ge 1) = F(1)(1 - F(1)) =$ $= \int_{-\infty}^{1} f(x)dx \left(1 - \int_{-\infty}^{1} f(x)dx\right) = \frac{2}{\pi} \int_{-\infty}^{1} \frac{1}{\mathrm{e}^x + \mathrm{e}^{-x}} dx \cdot \left(1 - \frac{2}{\pi} \cdot \int_{-\infty}^{1} \frac{1}{\mathrm{e}^x + \mathrm{e}^{-x}} dx\right) = \frac{2}{\pi} \operatorname{arctg} \mathrm{e}(1 - \frac{2}{\pi} \operatorname{arctg} \mathrm{e})$

51. Să presupunem că durata în minute a unei convorbiri telefonice la distanță mare este dată de următoarea funcție de repartiție:

$$F(x) = \begin{cases} 0, & x < 0\\ 1 - \frac{1}{2} \cdot e^{-\frac{x}{3}} - \frac{1}{2} \cdot e^{-\left[\frac{x}{3}\right]}, & x \ge 0 \end{cases}$$

Se cere să se determine probabilitatea ca o convorbire :

- a) să dureze 6 minute sau mai mult de 6 minute;
- b) să fie mai mică de 4 minute;
- c) să fie egală cu 3 minute;
- d) să fie mai mică decât 9 minute dat fiind faptul că a fost mai mare de 5 minute;
- e) să fie mai mare de 5 minute, dacă a fost mai mică de 9 minute.

Soluție. a)
$$P(X \ge 6) = 1 - F(6) = \frac{1}{2}e^{-2} + \frac{1}{2}e^{-[2]} = 0,135$$

b) $P(X < 4) = F(4) = 1 - \frac{1}{2}e^{-\frac{4}{3}} - \frac{1}{2}e^{-1} = 0,684$
c) $P(X = 3) = F(3 + 0) - F(3 - 0)$, unde $F(3 + 0) = \lim_{x \to 3, x > 3} F(x)$, $F(3 - 0) = \lim_{x \to 3, x < 3} F(x) \Longrightarrow P(X = 3) = \left(1 - \frac{1}{2}e^{-1} - \frac{1}{2}e^{-1}\right) - \left(1 - \frac{1}{2}e^{-1} - \frac{1}{2}e^{-\left[\frac{2}{3}\right]}\right) = \frac{1}{2}(1 - e^{-1}) = 0,316$
d) $P(X < 0/X > 5) = \frac{P(5 < X < 9)}{1 - P(5 < X < 9)} = \frac{F(9) - F(5)}{1 - P(5)}$

d)
$$P(X < 9/X > 5) = \frac{P(5 < X < 9)}{P(X > 5)} = \frac{F(9) - F(5)}{1 - F(5)}$$

e) $P(X > 5/X < 9) = \frac{P(5 < X < 9)}{P(X < 9)} = \frac{F(9) - F(5)}{F(9)}$

52. Se dă densitatea de repartiție

$$f(x) = \begin{cases} 1 - |1 - x|, & 0 < x < 2 \\ 0, & \text{in rest} \end{cases}$$

Să se calculeze media și dispersia.

Soluție. Explicităm modulul și scriem

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & \text{in rest} \end{cases}$$

$$E(X) = \int_0^1 x^2 dx + \int_1^2 x(2-x)dx = 1$$

$$E(X^2) = \int_0^1 x^3 dx + \int_1^2 x^2 (2-x)dx = \frac{7}{6}$$

$$D^2(X) = E(X^2) - (E(X))^2 = \frac{1}{6}$$

53. Cunoscând funcția de repartiție a depărtării stelelor de la steaua cea mai apropiată este $F(r)=1-\mathrm{e}^{-\frac{4}{3}\pi\lambda r^3}$ și numărul mediu de stele în cubul parsec din vecinătatea soarelui $\lambda=0,00163$, să se afle valoarea medie și dispersia variabilelor r.

Soluție. Densitatea de repartiție este $f(r) = F'(r) = 4\pi\lambda r^2 \mathrm{e}^{-\frac{4}{3}\pi\lambda r^3}$ $E(r) = \int_0^\infty r f(r) dr = \int_0^\infty 4\pi\lambda r^3 \mathrm{e}^{-\frac{4}{3}\pi\lambda r^3} dr = \sqrt[3]{\frac{3}{4\pi\lambda}} \int_0^\infty x^{\frac{1}{3}} \mathrm{e}^{-x} dx =$ $= \sqrt[3]{\frac{3}{4\pi\lambda}} \Gamma\left(1 + \frac{1}{3}\right) = \frac{1}{3} \Gamma\left(\frac{1}{3}\right) \sqrt[3]{\frac{3}{4\pi\lambda}} = \frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt[3]{36\pi\lambda}} \simeq 3 \text{ (am făcut schimbarea de variabilă } x = 4\pi\lambda r^3)$

$$\begin{split} E(r^2) &= \int_0^\infty 4\pi \lambda r^4 \mathrm{e}^{-\frac{4}{3}\pi\lambda r^3} dr = \sqrt[3]{\frac{9}{16\pi^2\lambda^2}} \int_0^\infty x^{\frac{2}{3}} \mathrm{e}^{-x} dx = \\ &= \sqrt[3]{\frac{9}{16\pi^2\lambda^2}} \Gamma\left(1 + \frac{1}{3}\right) = \frac{\Gamma\left(\frac{2}{3}\right)}{\sqrt[3]{6\pi^2\lambda^2}} \\ D^2(r) &= E(r^2) - (E(r))^2 = \frac{\Gamma\left(\frac{2}{3}\right)}{\sqrt[3]{6\pi^2\lambda^2}} - \left(\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt[3]{36\pi\lambda}}\right)^2 = \frac{6\Gamma\left(\frac{2}{3}\right) - \left[\Gamma\left(\frac{2}{3}\right)\right]^2}{6\sqrt[3]{6\pi^2\lambda^2}} \quad \Box \end{split}$$

- 54. Se dă funcția $f(x) = ke^{-\frac{x^2}{2}}x^{n-1}, 0 \le x \le \infty$. Se cer:
 - a) Să se determine constanta k astfel încât f(x) să fie o densitate de repartiție;

b) Să se arate că
$$E(X) = \sqrt{2} \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})}$$
 și $E(X^2) = n$.

Soluție. a)
$$1 = k \int_0^\infty e^{-\frac{x^2}{2}} x^{n-1} dx$$

Făcând schimbarea de variabilă
$$u = \frac{x^2}{2}$$
, obținem $1 = 2^{\frac{n}{2} - 1} k \int_0^\infty u^{\frac{n-2}{2}} e^{-u} du = k \cdot 2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right) \Longrightarrow k = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)}$ b) $E(X) = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty x^n e^{-\frac{x^2}{2}} dx = \frac{2^{\frac{n}{2} - \frac{1}{2}}}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \sqrt{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$ $E(X^2) = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2} - \frac{1}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-u} u^{\frac{n}{2}} du = \frac{1}{2^{\frac{n}{2} - 1} \Gamma\left(\frac{n}{2$

$$E(X^{2}) = \frac{1}{2^{\frac{n}{2} - 1} \Gamma(\frac{n}{2})} \int_{0}^{\infty} x^{n+1} e^{-\frac{x^{2}}{2}} dx = \frac{2^{\frac{n}{2}}}{2^{\frac{n}{2} - 1} \Gamma(\frac{n}{2})} \int_{0}^{\infty} e^{-u} u^{\frac{n}{2}} du =$$

$$= \frac{2}{\Gamma(\frac{n}{2})} \Gamma(\frac{n}{2} + 1) = \frac{2}{\Gamma(\frac{n}{2})} \cdot \frac{n}{2} \cdot \Gamma(\frac{n}{2}) = n$$

55. Densitatea de repartiție a v. a. X este dată de funcția

$$f(x) = \begin{cases} k(1 + \frac{a}{2}x)^{\frac{4}{a^2} - 1} e^{-\frac{2x}{a}}, & -\frac{2}{a} \le x < \infty \\ 0, & \text{in rest} \end{cases}$$

Să se determine constanta k și primele două momente centrate ale acestei v. a.

Soluție.
$$\int_{-\frac{2}{a}}^{\infty} k(1 + \frac{a}{2}x)^{\frac{4}{a^2} - 1} e^{-\frac{2x}{a}} dx = 1$$

Efectuăm schimbarea de variabilă $x = -\frac{2}{a} + t$.

Obţinem
$$\int_0^\infty \left(\frac{a}{2}t\right)^{\frac{4}{a^2}-1} \mathrm{e}^{\frac{4}{a^2}} \mathrm{e}^{-\frac{2}{a}t} dt = \frac{\mathrm{e}^{b^2}}{b^{b^2-1}} \int_0^\infty t^{b^2-1} \mathrm{e}^{-bt} dt = \frac{\mathrm{e}^{b^2}}{b^{b^2-1}} \cdot \frac{\Gamma(b^2)}{b^{b^2}},$$
 unde $b = \frac{2}{a}$.

Deci
$$k = \frac{b^{2b^2 - 1}}{e^{b^2}\Gamma(b^2)}$$

Aflăm momentele centrate de ordinul 1 și 2.

$$E(X) = \frac{b^{2b^2 - 1}}{e^{b^2} \Gamma(b^2)} \int_{-b}^{\infty} x (1 + \frac{x}{b})^{b^2 - 1} e^{-bx} dx$$

Efectu
ăm substituția $1 + \frac{x}{b} = t$.

$$\begin{split} \text{Obţinem } E(X) &= \tfrac{b^{2b^2-1}}{\mathrm{e}^{b^2}\Gamma(b^2)} \int_0^\infty b^2(t-1)t^{b^2-1}\mathrm{e}^{-b^2(t-1)}dt = \\ &= \tfrac{b^{2b^2+1}}{\Gamma(b^2)} \int_0^\infty (t^{b^2} - t^{b^2-1})\mathrm{e}^{-b^2t}dt = \tfrac{b^{2b^2+1}}{\Gamma(b^2)} \left[\tfrac{\Gamma(b^2+1)}{b^{2b^2}+2} - \tfrac{\Gamma(b^2)}{b^{2b^2}} \right] = 0 \\ E(X^2) &= \tfrac{b^{2b^2-1}}{\mathrm{e}^{b^2}\Gamma(b^2)} \int_0^\infty x^2(1+\tfrac{x}{b})^{b^2-1}\mathrm{e}^{-bx}dx. \end{split}$$

Cu aceeași schimbare de mai sus obținem :

$$E(X^{2}) = \frac{b^{2b^{2}-1}}{e^{b^{2}}\Gamma(b^{2})} \int_{0}^{\infty} b^{3}(t-1)^{2}t^{b^{2}-1}e^{-b^{2}(t-1)}dt =$$

$$= \frac{b^{2b^{2}+2}}{\Gamma(b^{2})} \left[\frac{\Gamma(b^{2}+2)}{b^{2b^{2}+4}} - 2\frac{\Gamma(b^{2}+1)}{b^{2b^{2}+2}} + \frac{\Gamma(b^{2})}{b^{2b^{2}}} \right] = 1$$

56. Calculați P(X < 1, Y > 1), știind că X, Y sunt independente și că sunt repartizate cu densitatea $f(x) = \frac{a}{\cosh x}$, a urmând a fi precizat.

Soluție.
$$P(X < 1, Y > 1) = P(X < 1)P(Y > 1) = P(X < 1)(1 - P(Y < 1))$$
 (deoarece X și Y sunt independente)
$$\int_{-\infty}^{\infty} f(x)dx = 1 \Longrightarrow \int_{-\infty}^{\infty} \frac{a}{\cosh x} dx = 1 \Longrightarrow \int_{-\infty}^{\infty} \frac{a}{\frac{e^x + e^{-x}}{2}} dx = 1 \Longrightarrow$$

$$\Longrightarrow 2a \int_{-\infty}^{\infty} \frac{dx}{e^x + e^{-x}} = 1 \Longrightarrow \int_{0}^{\infty} \frac{\frac{1}{t}}{t + \frac{1}{t}} dt = \frac{1}{2a} \Longrightarrow \int_{0}^{\infty} \frac{1}{1 + t^2} dt = \frac{1}{2a} \Longrightarrow$$

$$\Longrightarrow \arctan t \int_{0}^{\infty} \frac{1}{2a} \Longrightarrow a = \frac{1}{a}$$

Determinăm funcția de repartiție:

$$F_X(x) = F_Y(x) = \int_{-\infty}^x f(t)dt = \int_{-\infty}^x \frac{1}{\pi} \cdot \frac{1}{\cosh t}dt = \frac{2}{\pi} \operatorname{arctg} e^x$$

$$P(X < 1, Y > 1) = F_X(1)(1 - F_Y(1)) = \frac{2}{\pi} \operatorname{arctg} e(1 - \frac{2}{\pi} \operatorname{arctg} e) \qquad \Box$$

57. Fie X o variabilă aleatoare care urmeaza o repartiție uniformă în intervalul [-1,1]. Să se determine densitatea de repartiție corespunzătoare variabilei aleatoare $Y=2X^2+1$.

Soluție. Densitatea de repartiție a lui X este

$$f_X(x) = \begin{cases} \frac{1}{2}, & x \in [-1, 1] \\ 0, & \text{in rest} \end{cases}$$

Funcția de repartiție a variabilei Y este

$$F_{Y}(y) = P(Y < y) = P\left(|X| < \sqrt{\frac{y-1}{2}}\right) = 2F_{X}\left(\sqrt{\frac{y-1}{2}}\right) \Longrightarrow f_{Y}(y) =$$

$$= F'_{Y}(y) = 2F'_{X}\left(\sqrt{\frac{y-1}{2}}\right) = 2\left(\sqrt{\frac{y-1}{2}}\right)' \cdot f_{X}\left(\sqrt{\frac{y-1}{2}}\right) \Longrightarrow$$

$$f_{Y}(y) = \begin{cases} 2 \cdot \frac{1}{2} \cdot \frac{1}{2\sqrt{\frac{y-1}{2}}} \cdot \frac{1}{2}, & \sqrt{\frac{y-1}{2}} \in [-1, 1] \\ 0, & \text{in rest} \end{cases}$$

$$= \begin{cases} \frac{1}{4} \cdot \left(\frac{y-1}{2}\right)^{-\frac{1}{2}}, & -1 < y < 3 \\ 0, & \text{in rest} \end{cases}$$

58. Să se determine densitatea de repartitiție a variabilei aleatoare $Y==e^X$, unde variabila aleatoare X urmează o repartiție normală de parametri m și σ .

Soluție. Densitatea de repartiție a variabilei aleatoare X este $f_X(x)=$ $=\frac{1}{\sigma\sqrt{2\pi}}\mathrm{e}^{-\frac{(x-m)^2}{2\sigma^2}}.$

Funcția de repartiție a lui Y este

$$F_Y(y) = P(Y < y) = P(e^X < y) = P(X < \ln y) = F_X(\ln y) \Longrightarrow$$

$$\Longrightarrow f_Y(y) = F_Y'(y) = F_X'(\ln y) = f_X(\ln y) \cdot (\ln y)' = \frac{1}{y} \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\ln y - m)^2}{2\sigma^2}}$$

59. Fie X o variabilă aleatoare a cărei densitate de repartiție este

$$f_X(x) = \begin{cases} \frac{1}{\pi}, & |x| < \frac{\pi}{2} \\ 0, & |x| > \frac{\pi}{2} \end{cases}$$

Să se găsească densitatea de repartiție corespunzătoare variabilei $Y = \cos X$.

Soluție. In $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, funcția $y = \cos x$ nu e monotonă .

$$F_Y(y) = \int_{-\frac{\pi}{2}}^{-\arccos y} f_X(x) dx + \int_{\arccos y}^{\frac{\pi}{2}} f_X(x) dx$$

Densitatea de repartiție a lui Y este

$$f_Y(y) = F_Y'(y) = f_X(-\arccos y) \cdot (-\arccos y)' - -f_X(\arccos y) \cdot (\arccos y)' = f_X(-\arccos y) \cdot \frac{1}{\sqrt{1-y^2}} + f_X(\arccos y) \cdot \frac{1}{\sqrt{1-y^2}} = \frac{2}{\pi} \cdot \frac{1}{\sqrt{1-y^2}}$$

60. Să presupunem că variabila aleatoare X urmează o lege normală de parametrii 0 și 1. Să se determine densitatea de repartiție corespunzătoare variabilei aleatoare $Y = |X|^{\frac{1}{2}}$.

Soluție. Densitatea de repartiție a variabilei X este $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

Functia de repartitie a lui Y este

$$F_Y(y) = P(Y < y) = P(|X|^{\frac{1}{2}} < y) = P(|X| < y^2) =$$

$$= P(-y^2 < X < y^2) = 2F_X(y^2) \Longrightarrow f_Y(y) = 2F_X'(y^2) = 2f_X(y^2) \cdot$$

$$\cdot (y^2)' = 2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{y^4}{2}} \cdot 2y = \frac{4y}{\sqrt{2\pi}} e^{-\frac{y^4}{2}}$$

- 61. Fie X și Y v. a. independente distribuite Poisson cu parametrul λ și respectiv μ . Se cere:
 - a) să se arate că v. a. X+Y urmează o distribuție Poisson de parametru $\lambda + \mu$;
 - b) să se arate că v. a. X Y nu urmează o distribuție Poisson.

Soluție.a) Funcția generatoare de momente a unei v. a. Xce urmează o lege Poisson cu parametrul λ este

$$G_X(t) = \sum_{x=0}^{\infty} t^x \frac{e^{-\lambda} \lambda^x}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(t\lambda)^x}{x!} = e^{-\lambda} e^{t\lambda} = e^{\lambda(t-1)}$$

Pentru v. a. independente X și Y , fiecare dintre ele dând naștere la o distribuție Poisson cu parametrii λ , respectiv μ avem

 $G_{X+Y}(t) = e^{\lambda(t-1)}e^{\mu(t-1)} = e^{(\lambda+\mu)(t-1)}$, care este funcția generatoare de momente a unei v. a. ce dă naștere unei legi Poisson cu parametrul $\lambda + \mu$.

- b) Avem $G_{X-Y}(t) = G_X(t)G_Y(\frac{1}{t}) = e^{\lambda(t-1)}e^{\mu(\frac{1}{t}-1)}$, expresie ce nu poate fi adusă la o formă care să reprezinte funcția generatoare a unei variabile Poisson.
- 62. Să se determine funcția generatoare corespunzătoare variabilei X pentru care se știe:
 - a) $P(X \leq n)$;
 - b) P(X < n);
 - c) $P(X \ge n)$

Soluție. a)
$$P(X \le n) + P(X > n) = 1$$
 (1)

Notăm $P(X > j) = q_j$. Obținem o funcție generatoare $Q(s) = \sum_{j=0}^{\infty} q_j s^j$. Dacă $G(s) = \sum_{j=0}^{\infty} p_j s^j$, unde $p_j = P(X = j)$, atunci $Q(s) = \sum_{j=0}^{\infty} q_j s^j$

$$=\frac{1-G(s)}{1-s}$$

Inmulţim (1) cu s^n şi sumăm $\Longrightarrow \sum_{n=0}^{\infty} P(X \le n) s^n + Q(s) = \sum_{n=0}^{\infty} s^n$

Cum
$$|s| < 1 \Longrightarrow \sum_{n=0}^{\infty} P(X \le n) s^n = \frac{1}{1-s} - \frac{1-G(s)}{1-s} = \frac{G(s)}{1-s}$$

b) Inmulțim relația P(X < n) + P(X = n) + P(X > n) = 1 cu s^n și

sumăm
$$\Longrightarrow \sum_{n=0}^{\infty} P(X < n)s^n + G(s) + Q(s) = \sum_{n=0}^{\infty} s^n \Longrightarrow$$

$$\implies \sum_{n=0}^{\infty} P(X < n)s^n = \frac{1}{1-s} - G(s) - \frac{1 - G(s)}{1-s} = \frac{s}{1-s} \cdot G(s)$$

c) Stim $P(X \ge n) + P(X < n) = 1$. Analog obţinem

$$\sum_{n=0}^{\infty} P(X \ge n) s^n = \frac{1 - sG(s)}{1 - s}$$

63. Fie X o variabilă aleatoare a cărei funcție generatoare este G(s). Să se determine funcția generatoare corespunzătoare variabilei X+1.

Soluție. Funcția generatoare a variabilei X este $G_X(s) = \sum_{n=0}^{\infty} p_n s^n$, unde $p_n = P(X=n), n=0,1,\ldots$

2.2. PROBLEME REZOLVATE

$$P(X+1=n) = P(X=n-1) = p_{n-1} \Longrightarrow G_{X+1}(s) = \sum_{n=1}^{\infty} p_{n-1}s^n = s \cdot \sum_{n=1}^{\infty} p_{n-1}s^{n-1} = sG_X(s)$$

69

64. Fie $(X_n)_n$ un şir de variabile aleatoare independente care iau valorile $0, 1, 2, \ldots a-1$ cu probabilitățile $\frac{1}{a}$. Fie $S_n = X_1 + \ldots + X_n$. Se cere să se calculeze funcția generatoare a variabilei S_n şi funcția corespunzătoare probabilității $P(S_n \leq j)$.

Soluție. Cum $(X_n)_n$ sunt variabile aleatoare independente $\Longrightarrow G_{S_n}(s) = [G_{X_i}(s)]^n$

$$G_{X_i}(s) = \frac{1}{a} \sum_{n=0}^{a-1} s^n = \frac{1-s^a}{a(1-s)} \Longrightarrow G_{S_n}(s) = \left[\frac{1-s^a}{a(1-s)}\right]^n$$

Inmulţim relația $P(S_n \leq j) + P(S_n > j) = 1$ cu s^n și sumăm \Longrightarrow

$$\Longrightarrow \sum_{j=0}^{\infty} P(S_n \le j) s^j = \frac{1}{1-s} G_{S_n}(s)$$

- 65. Dintr-o urnă conținând bile albe și bile negre se fac extrageri succesive de fiecare dată punându-se bila extrasă înapoi în urnă . Se extrage o bilă albă cu probabilitatea p, iar o bilă neagră cu probabilitatea q=1-p. Fie X o variabilă aleatoare ce ia valoarea n dacă pentru prima oară obținem o bilă albă , urmată de una neagră în extragerile de rang n-1 și n. Se cer:
 - a) funcția generatoare a variabilei X;
 - b) valoarea medie şi dispersia variabilei X.

Soluție. a) Succesiunea cea mai generală ce poate conduce la apariția unei bile albe, urmată de una neagră la extragerile n-1 și n este $X_1:NN\ldots NA,\ X_2:AA\ldots AN,$ unde A (resp. N)=apariția unei bile albe (resp. negre)

Se poate scrie $X=X_1+X_2$, unde $X_1(X_2)=$ variabila aleatoare egală cu rangul extragerii în care s-a obținut prima bilă albă (neagră). Cum X_1 și X_2 sunt independente $\Longrightarrow G_X(s)=G_{X_1}(s)G_{X_2}(s)$.

Decoarece
$$P(X_1 = k) = q^{k-1}p$$
, avem $G_{X_1}(s) = \sum_{k=1}^{\infty} q^{k-1}ps^k =$

$$= ps \sum_{k=1}^{\infty} (qs)^{k-1} = \frac{ps}{1 - qs}.$$

Decoarece
$$P(X_2 = l) = p^{l-1}q$$
, avem $G_{X_2}(s) = \sum_{l=1}^{\infty} p^{l-1}qs^l =$

$$= qs \sum_{l=1}^{\infty} (qs)^{l-1} = \frac{qs}{1 - ps}.$$

Aşadar,
$$G_X(s) = \frac{pqs^2}{(1-qs)(1-ps)}$$
.

b) Se știe că
$$E(X) = G_X'(1)$$
 și $D^2(X) = G_X''(1) + G_X'(1) - (G_X'(1))^2$.

Avem
$$G'_X(s) = \frac{pqs(2-s)}{(1-qs)^2(1-ps)^2}$$
.

$$G_X''(s) = \frac{2pq(1+pqs^2-3pqs^3)}{(1-qs)^3(1-ps)^3}$$

Când s tinde către 1, $G''_X(s)$ tinde către $\frac{2(1-2pq)}{r^2s^2}$.

Deci,
$$E(X) = G'_X(1) = \frac{1}{pq}$$
.

$$D^2(X) = \frac{1-3pq}{p^2q^2}$$

Se poate calcula direct P(X = n). Intr-adevăr, pentru a avea X = n, trebuie să nu obținem decât bile negre până la extragerea de rang k, bile albe de la extragerea de rang k+1 la extragerea de rang n-1, apoi o bilă neagră, unde k variază de la 0 la n-2.

$$\text{Avem } P(X=n) = \sum_{k=0}^{n-2} q^k p^{n-k-2} pq = pq^{n-1} \sum_{k=0}^{n-2} \left(\frac{p}{q}\right)^k = \frac{pq(q^{n-1}-p^{n-1})}{q-p}$$

Calculând funcția generatoare corespunzătoare variabile
i \boldsymbol{X} obținem

Calculând funcţia generatoare corespunzătoare variabilei
$$X$$
 obţin $G_X(s) = \sum_{n=2}^{\infty} \frac{pq(q^{n-1}-p^{n-1})}{q-p} s^n = \frac{pqs}{q-p} \sum_{n=2}^{\infty} [(qs)^n - (ps)^n] = \frac{pqs^2}{(1-qs)(1-ps)}$

66. Fie X_1 și X_2 v. a. cu valori întregi pozitive sau nule. Densitatea perechii (X_1, X_2) fiind dată de $p_{jk} = P(X_1 = j, X_2 = k)$, funcția generatoare corespunzătoare se definește prin $G(s_1, s_2) = \sum_{i} p_{jk} s_1^j s_2^k$.

Se cer:

- a) să se determine funcțiile generatoare $G_1(s_1)$ și $G_2(s_2)$ ale variabilelor X_1 și X_2 ;
- b) să se determine funcția generatoare $G_{1,2}(s)$ a variabilei $X_1 + X_2$; să se arate că variabilele X_1 și X_2 sunt independente dacă și numai $\operatorname{dac\check{a}} G(s_1, s_2) = G(s_1)G(s_2).$

Soluție. a) Fie
$$p_j = P(X_1 = j)$$
. Deci $p_j = \sum_k p_{jk}$ și $G_1(s_1) = \sum_j (\sum_k p_{jk}) s_1^j = \sum_{j,k} p_{jk} s_1^j$ sau $G_1(s_1) = G(s_1, 1)$

2.2. PROBLEME REZOLVATE

71

Analog $G_2(s_2) = G(1, s_2)$.

b) Fie
$$c_l = P(X_1 + X_2 = l) = \sum_{j,k,j+k=l} p_{jk}$$

Urmează că
$$G_{1,2}(s)=\sum_l c_l s^l=\sum_l (\sum_{j,k,j+k=l} p_{jk}) s^l=\sum_{j,k} p_{jk} s^j s^k$$
 sau

$$G_{1,2}(s) = G(s,s).$$

c) A spune că X_1 şi X_2 sunt independente este echivalent cu $p_{jk}=p_jq_k$, unde $q_k=P(X_2=k)$.

Deci
$$G(s_1, s_2) = \sum_{j,k} p_j q_k s_1^j s_2^k$$
 sau $G(s_1, s_2) = (\sum_j p_j s_1^j) (\sum_k q_k s_2^k)$ şi $G(s_1, s_2) = G(s_1)G(s_2)$.

- 67. Care din următoarele funcții este funcție caracteristică :
 - a) $\varphi_1(t) = \sin t$;
 - b) $\varphi_2(t) = \cos^2 t$;
 - c)

$$\varphi_3(t) = \begin{cases} -1, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

Soluție.a) $\varphi_1(0)=0\neq 1,$ deci $\varphi_1(t)$ nu e funcție caracteristică

b)
$$\varphi_2(t) = \cos^2 t = \left(\frac{e^{it} + e^{-it}}{2}\right)^2 = \frac{1}{4}e^{2it} + \frac{1}{4}e^{-2it} + \frac{1}{2}e^{-2it}$$

Deci, $\varphi_2(t)$ e funcția caracteristică corespunzătoare variabilei

$$X \sim \begin{pmatrix} -2 & 0 & 2\\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

- c) $\varphi_3(t)$ nu e continuă , deci nu e funcție caracteristică
- 68. Fie X o variabilă aleatoare ce ia valorile $x=0,1,\ldots$ cu probabilitățile $P(x)=\mathrm{e}^{-2}\cdot\frac{2^x}{x!}$. Se cer:
 - a) funcția caracteristică :
 - b) valoarea medie şi dispersia.

Soluție. a)
$$\varphi_X(t) = \sum_{x=0}^{\infty} e^{itx} P(x) = e^{-2} \sum_{x=0}^{\infty} e^{itx} \cdot \frac{2^x}{x!} = e^{-2} \sum_{x=0}^{\infty} \frac{(2e^{it})^x}{x!} = e^{-2} \cdot e^{2e^{it}} = e^{2(e^{it}-1)}$$

b) Se știe că
$$E(X) = \frac{\varphi'(0)}{i}$$
 și $E(X^2) = \frac{\varphi''(0)}{i^2}$

Avem
$$\varphi'(t) = 2e^{it}ie^{2(e^{it}-1)} \Longrightarrow \varphi'(0) = 2i \Longrightarrow E(X) = 2$$

$$\varphi''(t) = 2i^2 e^{it} e^{2(e^{it} - 1)} + 4i^2 e^{2(e^{it} - 1)} \Longrightarrow \varphi''(0) = 6i^2 = -6 \Longrightarrow E(X^2) = 6 \Longrightarrow D^2(X) = E(X^2) - (E(X))^2 = 6 - 4 = 2$$

69. Se aruncă 2 zaruri. Să se scrie funcția caracteristică a variabilei aleatoare X care ne dă numărul de puncte obținut pe cele 2 zaruri.

Soluție. Fie $X_1 = v$. a. ce dă numărul de puncte obținut pe primul zar, $X_2 = v$. a. ce dă numărul de puncte obținut pe al doilea zar

Atunci
$$X = X_1 + X_2$$

Cum
$$X_1, X_2$$
 sunt independente $\Longrightarrow \varphi_X(t) = E(e^{itX}) = E(e^{it(X_1 + X_2)}) = E(e^{itX_1})E(e^{itX_2}) = \varphi_{X_1}(t)\varphi_{X_2}(t)$, unde $\varphi_{X_1}(t) = \varphi_{X_2}(t) = \frac{1}{6}\sum_{k=1}^{6}e^{itk}$

70. Se dau 2 urne A și B care conțin bile albe în proporții cunoscute. Din urna A se scoate o bilă și se pune în urna B. Din urna B efectuăm apoi 3 extrageri succesive, punând de fiecare dată bila albă înapoi în urnă Să se calculeze funcția caracteristică corespunzătoare numărului de bile albe obținut în aceste 4 extrageri.

Soluție. Fie a=numărul de bile albe din urna $A,\ b=$ numărul de bile negre din urna $B,\ \alpha=$ numărul de bile albe din urna $A,\ \beta=$ numărul de bile negre din urna B.

Fie X v.a. ce dă numărul de bile albe obținut în cele 4 extrageri; X poate lua valorile $0, 1, \dots 4$

$$\begin{split} &P(X=0) = \frac{b}{a+b} \cdot \left(\frac{\beta+1}{\alpha+\beta+1}\right)^3 \\ &P(X=1) = \frac{a}{a+b} \cdot \left(\frac{\beta}{\alpha+\beta+1}\right)^3 + \frac{b}{a+b} \cdot C_3^1 \cdot \frac{\alpha}{\alpha+\beta+1} \cdot \left(\frac{\beta+1}{\alpha+\beta+1}\right)^2 \\ &P(X=2) = \frac{a}{a+b} \cdot C_3^1 \cdot \frac{\alpha+1}{\alpha+\beta+1} \cdot \left(\frac{\beta}{\alpha+\beta+1}\right)^2 + \frac{b}{a+b} \cdot C_3^2 \cdot \left(\frac{\alpha}{\alpha+\beta+1}\right)^2 \cdot \frac{\beta+1}{\alpha+\beta+1} \\ &P(X=3) = \frac{a}{a+b} \cdot C_3^2 \left(\frac{\alpha+1}{\alpha+\beta+1}\right)^2 \cdot \frac{\beta}{\alpha+\beta+1} + \frac{b}{a+b} \cdot \left(\frac{\alpha}{\alpha+\beta+1}\right)^3 \\ &P(X=4) = \frac{a}{a+b} \cdot \left(\frac{\alpha+1}{\alpha+\beta+1}\right)^3 \\ &\varphi_X(t) = E(\mathrm{e}^{\mathrm{i}tX}) = \frac{b}{a+b} \cdot \left(\frac{\beta+1}{\alpha+\beta+1}\right)^3 + \left[\frac{a}{a+b} \cdot C_3^1 \cdot \frac{\alpha+1}{\alpha+\beta+1} \cdot \left(\frac{\beta}{\alpha+\beta+1}\right)^2 + \right. \\ &\left. + \frac{b}{a+b} \cdot C_3^2 \cdot \left(\frac{\alpha}{\alpha+\beta+1}\right)^2 \cdot \frac{\beta+1}{\alpha+\beta+1} \right] \mathrm{e}^{\mathrm{i}t} + \left[\frac{a}{a+b} \cdot C_3^1 \cdot \frac{\alpha+1}{\alpha+\beta+1} \cdot \left(\frac{\beta}{\alpha+\beta+1}\right)^2 + \right. \\ &\left. + \frac{b}{a+b} \cdot C_3^2 \cdot \left(\frac{\alpha}{\alpha+\beta+1}\right)^2 \cdot \frac{\beta+1}{\alpha+\beta+1} \right] \mathrm{e}^{\mathrm{i}t} + \left[\frac{a}{a+b} \cdot C_3^2 \left(\frac{\alpha+1}{\alpha+\beta+1}\right)^2 \cdot \frac{\beta}{\alpha+\beta+1} + \frac{b}{a+b} \cdot \left(\frac{\alpha}{\alpha+\beta+1}\right)^3 \right] \mathrm{e}^{\mathrm{3}it} + \frac{a}{a+b} \cdot \left(\frac{\alpha+1}{\alpha+\beta+1}\right)^3 \mathrm{e}^{\mathrm{4}it} \\ & \Box \end{split}$$

71. Să se calculeze funcția caracteristică a variabilei aleatoare X care are densitatea de repartiție

$$f_X(x) = \begin{cases} 0, & |x| > 2\\ \frac{1}{2} \left(1 - \frac{|x|}{2} \right), & |x| \le 2 \end{cases}$$

Soluție.
$$\varphi_X(t) = \int_{-\infty}^{\infty} f_X(x) e^{itx} dx = \frac{1}{2} \int_{-2}^{2} \left(1 - \frac{|x|}{2}\right) e^{itx} dx =$$

$$= \frac{1}{2} \int_{-2}^{0} \left(1 + \frac{x}{2}\right) e^{itx} dx + \frac{1}{2} \int_{0}^{2} \left(1 - \frac{x}{2}\right) e^{itx} dx = \frac{1}{2} \int_{0}^{2} \left(1 - \frac{x}{2}\right) e^{-itx} dx +$$

$$+ \frac{1}{2} \int_{0}^{2} \left(1 - \frac{x}{2}\right) e^{itx} dx = \int_{0}^{2} \left(1 - \frac{x}{2}\right) e^{itx} dx = \int_{0}^{2} \left(1 - \frac{x}{2}\right) \cos tx dx =$$

$$= \frac{\sin tx}{t} /_{0}^{2} - \frac{1}{2} \left(x \cdot \frac{\sin tx}{t} /_{0}^{2} - \int_{0}^{2} \frac{\sin tx}{t} dx\right) = \frac{\sin 2t}{t} -$$

$$- \frac{1}{2} \left(\frac{2 \sin 2t}{t} - \frac{1}{t} \cdot \left(-\frac{\cos tx}{t}\right) /_{0}^{2}\right) = -\frac{1}{2t^{2}} (\cos 2t - 1) = \frac{\sin^{2} t}{t^{2}}$$

72. Să se afle densitatea de repartiție corespunzătoare funcției caracteristice $\varphi(t)=\mathrm{e}^{-|t|}.$

Soluție. Aplicăm formula de inversiune a funcției caracteristice scrisă cu ajutorul densității:

$$\begin{split} f(x) &= \tfrac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{e}^{-|t|} \mathrm{e}^{-\mathrm{i}tx} dt = \tfrac{1}{2\pi} \left[\int_{-\infty}^{0} \mathrm{e}^{t} \mathrm{e}^{-\mathrm{i}tx} dt + \int_{0}^{\infty} \mathrm{e}^{-t} \mathrm{e}^{-\mathrm{i}tx} dt \right] = \\ &= \tfrac{1}{2\pi} \int_{0}^{\infty} \mathrm{e}^{-t} (\mathrm{e}^{-\mathrm{i}tx} + \mathrm{e}^{\mathrm{i}tx}) dt = \tfrac{1}{\pi} \int_{0}^{\infty} \mathrm{e}^{-t} \cos tx dt = \tfrac{1}{\pi} (-\mathrm{e}^{-t} \cos tx) / _{0}^{\infty} - \\ &- \tfrac{x}{\pi} \int_{0}^{\infty} \mathrm{e}^{-t} \sin tx dt = \tfrac{1}{\pi} + \left(\tfrac{x}{\pi} \mathrm{e}^{-t} \sin tx \right) / _{0}^{\infty} - \tfrac{x^{2}}{\pi} \int_{0}^{\infty} \mathrm{e}^{-t} \cos tx dt = \tfrac{1}{\pi} - \\ &- x^{2} f(x) \Longrightarrow f(x) = \tfrac{1}{\pi (1 + x^{2})} \end{split}$$

- 73. Fie X o v. a. repartizată normal N(0,1). Se cer:
 - a) Să se determine funcția caracteristică a v. a. $\frac{X^2}{2}$;
 - b) Dacă X_1 și X_2 sunt v. a. independent repartizate N(0,1), să se determine funcția caracteristică a v. a. $Y=\frac{X_1^2-X_2^2}{2}$.

$$Soluție. \ a) \ \varphi_{\frac{X^2}{2}}(t) = E(e^{it\frac{X^2}{2}}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}(1-it)} dx = \\ = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\left(\frac{x\sqrt{(1-it)}}{\sqrt{2}}\right)^2} dx = \frac{1}{\sqrt{2\pi}} \cdot \frac{\sqrt{2}}{\sqrt{1-it}} \int_{-\infty}^{\infty} e^{-y^2} dy = \frac{1}{\sqrt{\pi}} \cdot \frac{1}{\sqrt{1-it}} \cdot \sqrt{\pi} = \frac{1}{\sqrt{1-it}}$$

$$b) \ \varphi_{-\frac{X^2}{2}}(t) = \overline{\varphi}_{\frac{X^2}{2}}(t) = (1+it)^{-\frac{1}{2}}$$

Cum
$$X_1$$
 și X_2 sunt independente $\Longrightarrow \varphi_Y(t) = \varphi_{\frac{X_1^2}{2}}(t) \cdot \varphi_{-\frac{X_2^2}{2}}(t) =$

$$= (1 - it)^{-\frac{1}{2}}(1 + it)^{-\frac{1}{2}} = (1 + t^2)^{-\frac{1}{2}}$$

74. Fie X şi Y v. a. independente care urmează o aceeaşi repartiție. Să presupunem că dispersiile sunt finite. Să se arate că dacă X+Y şi X-Y sunt v. a. independente, atunci X şi Y sunt normal distribuite.

Soluție. Fără a restrânge generalitatea, vom presupune că $E(X)=E(Y)=0, D^2(X)=D^2(Y)=1.$

Cum X și Y sunt independente, dacă notăm cu $\varphi(t)$ funcția caracteristică , atunci X+Y are funcția caracteristică $\varphi^2(t)$, iar X-Y, $\varphi(t)\varphi(-t)$.

Dacă X+Y şi X-Y sunt v. a. independente, funcția caracteristică a variabilei X+Y+X-Y=2X este $\varphi(2t)=\varphi^2(t)\varphi(t)\varphi(-t)==\varphi^3(t)\varphi(-t)=\varphi^3(t)\overline{\varphi(t)}$ (1)

Se vede că $\varphi(t) \neq 0$. Intr-adevăr, dacă $\varphi(t) = 0$, pentru o valoare oarecare a lui t, atunci dacă în loc de t punem $\frac{t}{2}$ avem $\varphi\left(\frac{t}{2}\right) = 0$, deci $\varphi\left(\frac{t}{2^n}\right) = 0$, $n = 0, 1, 2, \ldots$

Cum $\varphi(t)$ este o funcție continuă obținem că $\varphi(0) = 0$, ceea ce ne duce la contradicție deoarece $\varphi(0) = 1$.

Introducem notația $\psi(t) = \lg \varphi(t)$. Din (1) rezultă că $\psi(2t) = 3\psi(t) + \psi(-t)$ (2)

In (2) luăm -t în loc de t: $\psi(-2t) = 3\psi(-t) + \psi(t)$ (3)

Din relațiile (2) și (3), notând $\psi(t) - \psi(-t) = \delta(t)$ obținem $\delta(2t) = 2\delta(t)$ (4)

Am presupus că $E(X)=0, D^2(X)=1$, deci $\varphi(t)$ este diferențiabilă de două ori în punctul $t=0, \varphi'(0)=0, \varphi''(0)=-1$, deoarece $E(X)=\frac{\varphi'(0)}{\mathrm{i}}, D^2(X)=E(X^2)=\frac{\varphi''(0)}{\mathrm{i}^2}$

Rezultă că și funcția $\psi(t)$, deci și $\delta(t)$ este diferențiabilă în t=0. Avem $\psi'(0)=0, \psi''(0)=-1$, deci $\delta'(0)=0$ și în plus $\delta(0)=0$.

In (4), dacă punem $\frac{t}{2}$ în loc de t, avem $\delta(t) = 2\delta\left(\frac{t}{2}\right)$ şi, în general, $\delta(t) = 2^n \delta\left(\frac{t}{2^n}\right)$, deci $\frac{\delta(t)}{t} = \frac{\delta\left(\frac{t}{2^n}\right)}{\frac{t}{2^n}}$, $n = 0, 1, \dots$

Dacă $n \longrightarrow \infty$ obţinem $\frac{\delta(t)}{t} \equiv 0$, deci $\delta(t) \equiv 0$

De aici rezultă că $\psi(t)=\psi(-t)$. Așadar, $\psi(t)$ este o funcție pară .

Tinem seama de (1) și obținem $\psi(2t)=4\psi(t)$ sau $\psi(t)=4\psi\left(\frac{t}{2}\right)$.

Rezultă că $\psi(t) = 4^n \psi\left(\frac{t}{2^n}\right)$ și de aici $\frac{\psi(t)}{t^2} = \frac{\psi\left(\frac{t}{2^n}\right)}{\left(\frac{t}{2^n}\right)^2}$.

Tinând seama de dezvoltarea în serie $\psi(h) = \psi(0) + h\psi'(0) + \frac{h^2}{2}\psi''(0) + \mathcal{O}(h^2)$ se vede că $\psi(h) = \frac{h^2\psi''(0)}{2} + \mathcal{O}(h^2)$, unde $\lim_{h\to\infty} \frac{\mathcal{O}(h^2)}{h^2} = 0$

Deci, dacă $n \longrightarrow \infty$ obținem $\frac{\psi(t)}{t^2} = \frac{\psi''(0)}{2} = -\frac{1}{2}$ de unde rezultă că $\varphi(t) = \mathrm{e}^{-\frac{t^2}{2}}$, deci X și Y sunt normal distribuite.

75. Fie $X_1, ... X_n$ v. a. independente, pozitive urmând aceeaşi repartiţie definită de densitatea $\lambda e^{-\lambda x}$. Se cere să se determine repartiţia variabilei $Y = \sum_{k=1}^{n} X_k$.

Soluție. Calculăm funcția caracteristică corespunzătoare variabilei X_k .

$$\varphi_{X_k}(t) = \int_0^\infty \lambda e^{-\lambda x} e^{itx} dx = \lambda \int_0^\infty e^{-x(\lambda - it)} dx = \frac{\lambda}{\lambda - it}$$

Deoarece X_k sunt independente avem $\varphi_Y(t) = \frac{\lambda^n}{(\lambda - it)^n}$.

Formula e inversiune a lui Fourier ne dă $f_Y(x) = \frac{\lambda^n}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itx}}{(\lambda - it)^n} dt$.

Această integrală se rezolvă cu ajutorul reziduurilor folosind funcția $g(z) = \frac{\mathrm{e}^{-\mathrm{i}tz}}{(\lambda - \mathrm{i}t)^n}$ și conturul, un semicerc de rază R, ce conține în interior punctul $-\mathrm{i}\lambda$.

Avem $\int_{-R}^{R} g(z)dz + \int_{\Gamma_R} g(z)dz = 2\pi i Rez(g, -i\lambda).$

Deoarece $zg(z)\longrightarrow 0$, când $|z|\longrightarrow \infty$ rezultă $\int_{\Gamma_R}g(z)dz\longrightarrow 0$, când $R\longrightarrow \infty$.

Deci
$$\int_{-\infty}^{\infty} \frac{e^{-itx}}{(\lambda - it)^n} dt = -2\pi i Rez(g, -i\lambda).$$

Pentru a calcula reziduul funcției g în $-i\lambda$ punem $z = -i\lambda + \alpha$, g(z) devine $\frac{e^{-ix(-i\lambda+\alpha)}}{(-i\alpha)^n} = \frac{e^{-\lambda x}}{(-i\alpha)^n}[1 - ix\alpha + \ldots + (-1)^{n-1}\frac{x^{n-1}(i\alpha)^{n-1}}{(n-1)!} + \ldots].$

In această dezvoltare termenul lui $\frac{1}{\alpha}$ este $\frac{1}{\alpha} \cdot \frac{x^{n-1} \mathrm{e}^{-\lambda x}}{-\mathrm{i}(n-1)!},$ de unde $\frac{\lambda^n}{2\pi} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\mathrm{i}tx}}{(\lambda-\mathrm{i}t)^n} dt = -\frac{\lambda^n}{2\pi} 2\pi \mathrm{i} \cdot \frac{x^{n-1} \mathrm{e}^{-\lambda x}}{-\mathrm{i}(n-1)!} = \frac{\lambda^n}{(n-1)!} \mathrm{e}^{-\lambda x} x^{n-1}.$

Pentru x<0 se folosește conturul simetric în raport cu axa reală . Funcția considerată fiind olomorfă în domeniul considerat, integrala este nulă . Deci, densitatea de repartiție a v. a. Y este

$$f_Y(x) = \begin{cases} 0, & x < 0\\ \frac{\lambda^n}{(n-1)!} e^{-\lambda x} x^{n-1}, & x > 0 \end{cases}$$

76. Se știe că dacă X și Y sunt v. a. independente, atunci $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$. Să se arate că proprietatea inversă nu are loc întotdeauna.

Soluție. Fie vectorul aleator (X,Y) care are densitatea de repartiție dată de expresia

$$f(x,y) = \begin{cases} \frac{1}{4}[1 + xy(x^2 - y^2)], & |x| \le 1, |y| \le 1\\ 0, & \text{in rest} \end{cases}$$

Vom arăta că v. a. X și Y sunt dependente.

$$f_X(x) = \frac{1}{4} \int_{-1}^{1} [1 + xy(x^2 - y^2)] dy = \frac{1}{2}$$

$$f_Y(y) = \frac{1}{4} \int_{-1}^{1} [1 + xy(x^2 - y^2)] dy = \frac{1}{2}$$

Aşadar, $f_X(x)f_Y(y) = \frac{1}{4} \neq f(x,y)$, deci v. a. X şi Y sunt dependente Să găsim acum densitatea de repartiție a v. a. Z = X + Y

Avem
$$f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$$

Cum $f(x,y) \neq 0$ pe domeniul $|x| \leq 1, |y| \leq 1, f(x,z-x) \neq 0$ pe domeniul $|x| \leq 1, |z-x| \leq 1$.

Dacă $z \le 0$, atunci $z - 1 \le -1$, iar $z + 1 \le 1$

Aşadar,

$$f_Z(z) = \int_{-1}^{z+1} f(x, z - x) dx = \frac{1}{4} \int_{-1}^{z+1} (1 - xz^3 + 3z^2x^2 - 2zx^3) dx = \frac{1}{4} (2 + z), \, \text{dacă} \, -2 \le z \le 0$$

Dacă
$$z \ge 0$$
, atunci $z-1 \ge -1$, $z+1 \ge 1$, deci $f_Z(z) = \int_{z-1}^1 f(x,z-x) dx = \frac{1}{4} \int_{z-1}^1 (1-xz^3+3z^2x^2-2zx^3) dx = \frac{1}{4}(2-z)$, dacă $0 \le z \le 2$

Calculăm acum funcțiile caracteristice ale v. a. X,Y și Z.

Avem
$$\varphi_X(t) = \frac{1}{2} \int_{-1}^1 e^{itx} dx = \frac{e^{it} - e^{-it}}{2it} = \frac{\sin t}{t}$$
.

Analog
$$\varphi_Y(t) = \frac{\sin t}{t}$$
.

$$\begin{split} \varphi_Z(t) &= \frac{1}{4} \int_{-2}^0 (2+z) \mathrm{e}^{\mathrm{i}tz} dz + \frac{1}{4} \int_0^2 (2-z) \mathrm{e}^{\mathrm{i}tz} dz = \frac{1}{4} \cdot \frac{2 - \mathrm{e}^{2\mathrm{i}t} - \mathrm{e}^{-2\mathrm{i}t}}{t^2} = \\ &= \frac{1}{2t^2} \left(1 - \frac{\mathrm{e}^{2\mathrm{i}t} - \mathrm{e}^{-2\mathrm{i}t}}{2} \right) = \frac{1}{2t^2} (1 - \cos 2t) = \left(\frac{\sin t}{t} \right)^2 \end{split}$$

Prin urmare,
$$\varphi_Z(t) = \varphi_X(t)\varphi_Y(t)$$
.

77. Fie X și Y v. a. independente care urmează o lege Poisson de parametru λ_1 , respectiv λ_2 . Să se arate că distribuția lui X condiționată de X+Y este o distribuție binomială și anume

$$P(X = k/X + Y = n) = b(k; n; \frac{\lambda_1}{\lambda_1 + \lambda_2}).$$

Soluție. Deoarece X și Y sunt v. a. independente avem $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t) = \mathrm{e}^{(\lambda_1+\lambda_2)(\mathrm{e}^{\mathrm{i}t}-1)}$ ceea ce arată că variabila X+Y urmează o lege Poisson de parametru $\lambda_1+\lambda_2$, deci $P(X+Y=n) = \frac{(\lambda_1+\lambda_2)^n}{n!}\mathrm{e}^{-(\lambda_1+\lambda_2)}$

Prin definiție
$$P(X = k/X + Y = n) = \frac{P(X=k)P(Y=n-k)}{P(X+Y=n)} =$$

$$= \frac{\frac{\lambda_1^k}{k!} e^{-\lambda_1} \frac{\lambda_2^{n-k}}{(n-k)!} e^{-\lambda_2}}{\frac{(\lambda_1+\lambda_2)^n}{n!} e^{-(\lambda_1+\lambda_2)}} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1+\lambda_2}\right)^{n-k}, \text{ de unde}$$

$$P(X = k/X + Y = n) = \frac{n!}{k!(n-k)!} \left(\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^k \left(1 - \frac{\lambda_1}{\lambda_1+\lambda_2}\right)^{n-k} \text{ sau}$$

$$P(X = k/X + Y = n) = b(k; n; \frac{\lambda_1}{\lambda_1+\lambda_2})$$

2.3 Probleme propuse

- 1. Intr-un număr de 1000 lozuri , 10 sunt câștigătoare. Se cumpără 20 lozuri. Care e probabilitatea de a avea :
 - a) 2 lozuri câştigătoare;
 - b) 4 lozuri câştigătoare.

R: a)
$$\frac{C_{10}^2 C_{990}^{18}}{C_{1000}^{20}}$$

b)
$$\frac{C_{10}^4 C_{990}^{16}}{C_{1000}^{20}}$$

2. Intr-o cutie de chibrituri conținând 41 bețe, 3 sunt fără gămălie. Scoţând 16 bețe la întâmplare, să se determine probabilitatea ca printre acestea să se găsească cele 3 bețe defecte.

R:
$$\frac{C_{38}^{13}C_3^3}{C_{41}^{16}}$$

3. Intr-o urnă sunt 25 bile, dintre care 14 albe și restul negre. Se extrag dintr-o dată 2 bile. Să se calculeze probabilitatea ca ele să fie de culori diferite.

R:
$$\frac{C_{14}^{1}C_{11}^{1}}{C_{25}^{2}}$$

4. Producția zilnică a unei fabrici este de 550 piese. In medie merg la rebut $3^{0}/_{0}$ din piesele fabricate. Din producția de 2 zile se trimit 1000 de piese întreprinderii A. Să se calculeze probabilitatea ca 980 dintre aceste piese să fie bune.

R:
$$\frac{C_{1067}^{980}C_{33}^{20}}{C_{1100}^{1000}}$$

- 5. Din 20 de unități agricole, 15 și-au realizat planul la însămânțări. Sunt alese la întâmplare 10 unități agricole și se cere probabilitatea ca:
 - a)
dintre acestea 6 să-și fi realizat planul; $\,$
 - b) cel mult 4 unități agricole să nu-și fi realizat planul;
 - c) toate cele 10 unități analizate să aibă planul îndeplinit.

R: a)
$$\frac{C_{15}^6 C_5^4}{C_{20}^{10}}$$

b)
$$\sum_{k=0}^{4} \frac{C_5^k C_{15}^{10-k}}{C_{20}^{10}}$$

c)
$$\frac{C_{15}^{10}}{C_{20}^{10}}$$

6. Avem 52 obiecte dintre care 4 poartă un semn distinctiv. Impărţinduse aceste 52 obiecte în 4 grupe egale, care e probabilitatea ca în fiecare grupă să se găsească un obiect cu semnul distinctiv?

$$\mathbf{R:} \ \frac{C_{48}^{12}C_{4}^{1}}{C_{52}^{13}} \cdot \frac{C_{36}^{12}C_{3}^{1}}{C_{39}^{13}} \cdot \frac{C_{24}^{12}C_{2}^{1}}{C_{26}^{13}}$$

7. Se aruncă 7 monede. Care e probabilitatea ca să apară de 5 ori stema și de 2 ori fața?

R:
$$C_7^5 \cdot \left(\frac{1}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^5$$

8. La controlul de calitate este controlat un lot de piese. Probabilitatea ca luând la întâmplare o piesă din lot să fie defectă este 0,005. Sunt controlate 100 piese din lot, care sunt luate pe rând şi puse fiecare înapoi în lot după ce a fost controlată . Se cere probabilitatea ca între cele 100 piese controlate să avem cel mult 4 piese defecte.

R:
$$P = \sum_{k=0}^{4} C_{100}^{k}(0,005)^{k}(0,995)^{100-k}$$

- 9. Doi adversari cu şanse egale joacă şah. Pentru unul din ei, ce este mai probabil, să câştige:
 - a) 2 partide din 4 sau 6 partide din 8?
 - b) cel puţin 2 partide din 4 sau 6 partide din 8?

R: a)
$$C_4^2 \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2 > C_8^6 \left(\frac{1}{2}\right)^6 \left(\frac{1}{2}\right)^2$$

b) $C_4^2 \frac{1}{2^4} + C_4^3 \frac{1}{2^4} + C_4^4 \frac{1}{2^4} > C_8^6 \frac{1}{2^8} + C_8^7 \frac{1}{2^8} + C_8^8 \frac{1}{2^8}$

- 10. O societate comercială are 6 debitori. Probabilitatea ca la sfârșitul unei luni un debitor să fie solvabil este 0,8. Să se determine probabilitatea ca:
 - a) toți debitorii să fie solvabili;
 - b) nici un debitor să nu fie solvabil;
 - c) 4 debitori să fie solvabili;
 - d) cel puţin 2 debitori să fie solvabili;
 - e) 4 debitori să nu fie solvabili;
 - f) societatea să nu mai aibă debitori;
 - g) cel mult 2 debitori să nu fie solvabili.

R: a)
$$(0,8)^6$$
; b) $(0,2)^6$; c) $C_6^4(0,8)^4(0,2)^2$; d) $\sum_{k=2}^6 C_6^k(0,8)^k(0,2)^{6-k}$;

e)
$$C_6^2(0,8)^2(0,2)^4$$
; f) $(0,8)^6$; g) $\sum_{k=4}^6 C_6^k(0,8)^k(0,2)^{6-k}$

11. Fie urnele U_1 cu 2 bile albe și 3 negre, U_2 cu 3 bile albe și 2 negre și U_3 cu 2 bile albe și 2 negre. Să se determine probabilitatea ca făcând câte o extragere din fiecare urnă , numai o singură bilă să fie albă .

R: Probabilitatea este coeficientul lui t din expresia $\left(\frac{2}{5}t+\frac{3}{5}\right)\cdot\left(\frac{3}{5}t+\frac{2}{5}\right)\cdot\left(\frac{3}{5}t+\frac{2}{5}\right)\cdot\left(\frac{1}{2}t+\frac{1}{2}\right)$, adică $p=\frac{19}{50}$

2.3. PROBLEME PROPUSE

79

12. O urnă conține 5 bile albe și 3 negre, o altă urnă 6 bile albe și 2 negre și a treia, 7 bile albe și una neagră. Se extrage câte o bilă din fiecare urnă. Să se determine probabilitatea ca 2 bile să fie albe și una neagră.

R: A plică m schoma lui Poisson și găsim că probabilitatea căutată este

R: Aplicăm schema lui Poisson şi găsim că probabilitatea căutată este dată de coeficientul lui t^2 din produsul $(\frac{5}{8}t + \frac{3}{8}) \cdot (\frac{6}{8}t + \frac{2}{8}) \cdot (\frac{7}{8}t + \frac{1}{8})$

- 13. In 3 loturi de produse $4^0/_0$, $3^0/_0$ şi respectiv $5^0/_0$ sunt defecte. Se extrage la întâmplare câte un produs din fiecare lot. Să se afle probabilitatea ca:
 - a) un produs să fie defect;
 - b) un produs să fie corespunzător;
 - c) toate produsele extrase să fie corespunzătoare;
 - d) toate produsele extrase să fie defecte.

R: a) Folosim schema lui Poisson cu 3 urne. Probabilitatea este coeficientul lui t din dezvoltarea $p_3(t) = (0,04t+0,96)(0,03t+0,97)(0,08t+0,92)$

- b) Probabilitatea este coeficientul lui t^2 din dezvoltarea lui
 $p_3(t)\,$
- c) Probabilitatea este coeficientul lui t^0 din dezvoltarea lui $p_3(t)$
- 14. La un concurs de manageri se prezintă 3 candidați. Fiecare candidat primește un plic care conține 4 bilete, iar pe fiecare bilet este scrisă o întrebare de management în comerț sau în turism. Plicul primului candidat conține o întrebare din comerț, plicul celui de-al doilea candidat conține 2 întrebări din comerț, iar plicul celui de-al treilea candidat conține 3 întrebări din comerț. Fiecare candidat extrage la întâmplare un bilet din plicul ce i-a fost repartizat. Să se calculeze probabilitatea ca:
 - a) toți candidații să fie examinați din management în comerț;
 - b) un candidat este examinat din management în comert;
 - c) nici un candidat nu este examinat din managementul în comerț.

R: Folosim schema lui Poisson cu 3 urne.

- a) coeficientul lui t^3 din dezvoltarea $(\frac{1}{4}t+\frac{3}{4})(\frac{2}{4}t+\frac{2}{4})(\frac{3}{4}t+\frac{1}{4})$
- b) coeficientul lui t din dezvoltarea anterioară
- c) coeficientul lui t^0 din dezvoltarea anterioară
- 15. O unitate agricolă primește în cursul unei săptămâni 160 de camioane cu grâu provenit de la 3 depozite A, B, C. Probabilitatea ca grâul să provină de la depozitul A este 0,5, de la depozitul B este 0,3 și de la depozitul C este 0,2. Care este probabilitatea ca din cele 160 de camioane 90 să fie de la depozitul A, 20 de la B și restul de la C?

R:
$$\frac{160!}{90!20!50!}$$
0, 5⁹⁰0, 3²⁰0, 2⁵⁰

- 16. Să presupunem că un fenomen aleator X urmează o lege normală de parametrii m=2 și $\sigma=2$. Să se calculeze: a) $P(0 \le X \le 3)$;
 - b) $P(|X| \le 1)$; c) $P(-1 \le X \le 1/0 \le X \le 3)$.

R: a)
$$P(0 \le X \le 3) = \Phi(\frac{1}{2}) + \Phi(1) - 1 = 0{,}533$$

b)
$$P(|X| \le 1) = \Phi(\frac{3}{2}) - \Phi(\frac{1}{2}) = 0,242$$

c)
$$P(-1 \le X \le 1/0 \le X \le 3) = 0,281$$

17. Fie X,Y variabile aleatoare independente, $X,Y \sim N(a,\sigma)$. Să se calculeze coeficientul de corelație al variabilelor aleatoare $U = \alpha X + \beta Y, V = \alpha X - \beta Y, \alpha, \beta \in \mathbb{R}, \alpha, \beta \neq 0$.

R:
$$\rho(U,V) = \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2}$$

18. Variabila aleatoare X are repartiția $X \sim \begin{pmatrix} -1 & 0 & 1 \\ 0, 2 & 0, 3 & 0, 5 \end{pmatrix}$. Să se calculeze valorile medii $E(X), E(2X), E(X+1), E(2X+1), E(X^2), E((X-0,3)^2)$.

R:
$$E(X) = 0, 3, E(2X) = 0, 6, E(X+1) = 1, 3, E(2X+1) = 1, 6, E(X^2) = 0, 7, E((X-0,3)^2) = 0, 61$$

19. Doi jucători de tenis joacă în 4 meciuri 12 seturi. Considerând că probabilitățile celor 2 jucători de a câștiga un set sunt egale, să se calculeze valoarea medie, dispersia și abaterea medie pătratică a variabilei aleatoare ce reprezintă numărul de seturi căștigate de unul dintre jucători.

R:
$$P(X = x) = C_{12}^x \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{12-x}, x = \overline{0,12}$$

 $E(X) = np = 6, D^2(X) = npq = 3, \sigma = \sqrt{D^2(X)} = \sqrt{3}$

20. Dacă variabilele aleatoare X și Y sunt legate prin relația Y=aX+b cu $a\neq 0, b$ constante, atunci

$$\rho(X,Y) = \begin{cases} 1, & a > 0 \\ -1, & a < 0 \end{cases}$$

21. Se consideră variabilele aleatoare X și Y de densități

$$f_X(x) = \begin{cases} \frac{1}{a\sqrt{1-x^2}}, & |x| < 1\\ 0, & |x| \ge 1 \end{cases}$$

$$f_Y(x) = \begin{cases} 0, & x \le 0\\ bxe^{-\frac{x^2}{2}}, & x > 0 \end{cases}$$

Să se determine constantele a și b astfel încât funcțiile date să fie densități de probabilitate.

R:
$$a = \pi, b = 1$$

2.3. PROBLEME PROPUSE

81

22. Se dau funcțiile

$$a)f(x) = \begin{cases} Ax, & 0 \le x < 5\\ A(10 - x), & 5 \le x < 10\\ 0, & \text{in rest} \end{cases}$$

$$b)f(x) = \begin{cases} Ae^{-\frac{x}{5}}, & x > 0\\ 0, & \text{in rest} \end{cases}$$

Pentru ce valori ale lui A funcțiile de mai sus sunt densități de repartiție?

R:
$$a)A = \frac{1}{25}$$

$$b)A = \frac{1}{5}$$

23. Fie X o variabilă aleatoare a cărei funcție de repartiție este

$$F_X(x) = \begin{cases} 0, & x \le 0 \\ \frac{x}{4}, & 0 < x \le 1 \\ \frac{1}{3}, & 1 < x \le 2 \\ \frac{x}{6}, & 2 < x \le 3 \\ \frac{1}{2}, & 3 < x \le 4 \\ \frac{x}{8}, & 4 < x \le 8 \\ 1, & x > 8 \end{cases}$$

Se cer:

a) densitatea de repartiție;

b)
$$P(2 < X \le 5);$$

c)
$$P(2 < X \le 5/1 < X \le 6)$$

R: a)

$$f_X(x) = \begin{cases} \frac{1}{4}, & 0 < x \le 1\\ \frac{1}{6}, & 2 < x \le 3\\ \frac{1}{8}, & 4 < x \le 8\\ 0, & \text{in rest} \end{cases}$$

b)
$$P(2 < X \le 5) = \frac{7}{24}$$

c)
$$P(2 < X \le 5/1 < X \le 6) = \frac{7}{12}$$

24. Se dă funcția

$$f(x) = \begin{cases} \frac{a}{\sqrt{l^2 - x^2}}, & -l < x < l\\ 0, & \text{in rest} \end{cases}$$

Se cer:

- a) să se determine constanta a astfel încât f să fie densitatea de repartiție a unei variabile aleatoare X;
- b) funcția de repartiție;

c)
$$P(0 < X \le l)$$

R: a)
$$a = \frac{1}{\pi}$$
 b)

$$F_X(x) = \begin{cases} 0, & x \le -l \\ \frac{1}{\pi} \arcsin \frac{x}{l} + \frac{1}{2}, & -l < x < l \\ 1, & x \ge l \end{cases}$$

c)
$$P(0 < X \le l) = \frac{1}{2}$$

25. Fie X o v. a. repartizată exponențial de parametru $\lambda=\frac{1}{2}$. Să se afle P(1< X<3) și $E(X^n)$.

R:
$$P(1 < X < 3) = e^{-\frac{1}{2}} - e^{-\frac{3}{2}}$$

 $E(X^n) = \frac{n!}{\lambda^n} = 2^n n!$

26. Se dau densitățile de repartiție

$$a)f_X(x) = \begin{cases} 2x, & 0 < x < 1\\ 0, \text{ în rest} \end{cases}$$

$$b)f_X(x) = \begin{cases} |x|, & |x| < 1\\ 0, & \text{in rest} \end{cases}$$

Să se calculeze valoarea medie și dispersia variabilei X.

R:
$$a)E(X) = \frac{2}{3}, D^2(X) = \frac{1}{18}$$

 $b)E(X) = 0, D^2(X) = \frac{1}{2}$

27. Se dau funcțiile de repartiție

$$a)F_X(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

$$b)F_X(x) = \begin{cases} 0, & x < 0 \\ x^{\frac{1}{2}}, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

Să se calculeze valorile medii și dispersiile corespunzătoare.

R:
$$a)E(X) = \frac{2}{3}, D^2(X) = \frac{1}{18}$$

 $b)E(X) = \frac{1}{3}, D^2(X) = \frac{4}{45}$

28. Fie \boldsymbol{X} o variabilă aleatoare a cărei densitate de repartiție este

$$f_X(x) = \begin{cases} c \ln\left(\frac{a}{x}\right), & 0 \le x < a \\ 0, & \text{in rest} \end{cases}$$

Să se determine constanta c și să se calculeze valoarea medie, momentul de ordinul doi și dispersia variabilei X.

R:
$$c = \frac{1}{a}, E(X) = \frac{a}{4}, E_2(X) = E(X^2) = \frac{a^2}{9}, D^2(X) = \frac{7a^2}{144}$$

2.3. PROBLEME PROPUSE

83

29. Se consideră v. a. X cu densitatea de repartiție

$$f_X(x) = \begin{cases} \alpha x^2 e^{-kx}, & 0 \le x \\ 0, & \text{in rest} \end{cases}$$

- a) Să se determine constanta α ;
- b) Să se afle funcția de repartiție;
- c) Să se calculeze $P(0 < X < \frac{1}{k})$.

R: a)
$$\alpha = \frac{k^3}{2}$$

b)

$$F_X(x) = \begin{cases} 0, & x \le 0\\ 1 - \frac{k^2 x^2 + 2kx + 2}{2} e^{-kx}, & 0 < x \le 1\\ 1, & x > 1 \end{cases}$$

- c) $P(0 < X < \frac{1}{k}) = 1 \frac{5}{2e}$
- 30. Fie X o variabilă aleatoare ce urmează o repartiție uniformă în intervalul [-1,1]. Să se determine densitatea de repartiție corespunzătoare variabilei aleatoare:
 - a) $Y = e^{X}$;
 - b) Y = 2X + 1

R: a)

$$f_Y(y) = \begin{cases} \frac{1}{2y}, & \frac{1}{e} < y < e \\ 0, & \text{in rest} \end{cases}$$

b)

$$f_Y(y) = \begin{cases} \frac{1}{4}, & -1 < y < 3\\ 0, & \text{in rest} \end{cases}$$

31. Să presupunem că variabila aleatoare X urmează o lege normală de parametrii 0 și 1. Să se determine densitatea de probabilitate corespunzătoare variabilei aleatoare $Y = |X|^{\frac{1}{3}}$.

R:
$$f_Y(y) = \frac{6y^2}{\sqrt{2\pi}} e^{-\frac{y^6}{2}}, y > 0$$

32. Fie X o variabilă aleatoare a cărei funcție generatoare este G(s). Să se determine funcția generatoare corespunzătoare variabilei 2X.

R:
$$G_{2X}(s) = G_X(s^2)$$

- 33. Fie X o variabilă aleatoare ce ia valorile $x=1,2,\ldots$ cu probabilitățile $P(x)=\frac{2}{3}\left(\frac{1}{3}\right)^{x-1}$. Se cer:
 - a) Funcția caracteristică ;
 - b) valoarea medie și dispersia.

R: a)
$$\varphi(t) = \frac{2e^{it}}{3-e^{it}}$$

b) $E(X) = \frac{3}{2}, D^2(X) = \frac{3}{4}$

34. Se dă funcția caracteristică $\varphi(t) = \frac{1}{4}(e^{it}+1)^2$. Să se determine funcția de repartiție corespunzătoare.

 \mathbf{R} :

$$F(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{4}, & 0 < x \le 1\\ \frac{3}{4}, & 1 < x \le 2\\ 1, & x > 2 \end{cases}$$

35. Se dă funcția

$$f(x) = \begin{cases} e^{-x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Se cer:

- a) să se verifice că f este o densitate de repartiție;
- b) să se scrie funcția caracteristică;
- c) valoarea medie și dispersia.

R: b)
$$\varphi(t) = \frac{1}{1 - it}$$

c)
$$E(X) = 1, D^2(X) = 1$$

36. Să se afle funcția caracteristică a variabilei aleatoare X cu densitatea de repartiție

$$f_X(x) = \begin{cases} 0, & x \le a - c \\ \frac{1}{c^2}(x - a + c), & a - c < x < a \\ -\frac{1}{c^2}(x - a - c), & a \le x < a + c \\ 0, & x \ge a + c \end{cases}$$

R:
$$\varphi_X(t) = e^{ita} \left(\frac{\sin \frac{tc}{2}}{\frac{tc}{2}} \right)^2$$

37. Să se afle funcția caracteristică a variabilei aleatoare X care are funcția de repartiție

$$F_X(x) = \begin{cases} 0, & x < a \\ 1 - e^{-k^2(x-a)}, & x \ge a \end{cases}$$

R:
$$\varphi_X(t) = \frac{k^2 e^{ita}}{k^2 - it}$$

Capitolul 3

Vectori aleatori

3.1 Notiuni teoretice

Definiția 3.1. Funcția de repartiție a unui vector aleator d-dimensional $X = (X_1, \dots, X_d)$ este funcția $F_X \colon \mathbb{R}^d \to [0, 1],$

$$F_X(x_1, \dots, x_d) = P(X_1 < x_1, \dots, X_d < x_d)$$

Proprietățile funcției de repartiție

- 1) F este crescătoare și continuă la dreapta în fiecare dintre variabile
- $2) \lim_{x_j \to 0} F_X(x_1, \dots, x_d) = 0, j = \overline{1, d}$
- 3) $\Delta_{a_1b_1}\Delta_{a_2b_2}\dots\Delta_{a_db_d}F_X(x_1,\dots,x_d) \geq 0$ pentru orice $a_i < b_i, i = \overline{1,d}$, unde s-a notat $\Delta_{a_jb_j}F_X(x_1,\dots,x_d) = F_X(x_1,\dots,x_{j-1},b_j,x_{j+1},\dots x_d) F_X(x_1,\dots,x_{j-1},a_j,x_{j+1},\dots x_d)$

Definiția 3.2. Vectorul aleator $X = (X_1, \dots, X_d)$ admite densitatea de probabilitate (de repartiție) $f(x_1, \dots, x_d)$ dacă

$$F_X(x_1,\ldots,x_d) = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_d} f(t_1,\ldots,t_d) dt_1 \ldots dt_d$$

In acest caz, pentru orice mulţime boreliană $M \subset \mathbb{R}^d$, avem

$$P(X \in M) = \int \dots \int f(t_1, \dots, t_d) dt_1 \dots dt_d$$

Observația 3.1. Componentele X_1, \ldots, X_d sunt independente dacă și numai dacă vectorul $X = (X_1, \ldots, X_d)$ are densitatea $f(x_1, \ldots, x_d) = f(x_1) \ldots f(x_d)$, unde $f(x_1), \ldots, f(x_d)$ sunt densitățile v. a. X_1, \ldots, X_d .

Fie $h: \mathbb{R}^d \to \mathbb{R}$ o funcție măsurabilă Borel. Variabila aleatoare $Y(\omega) = h(X_1(\omega), \dots, X_d(\omega))$, care se notează $Y = h(X_1, \dots, X_d)$ este o **funcție** de v. a. (X_1, \dots, X_d) .

Dacă vectorul aleator X admite densitatea $f(x_1, \ldots, x_d)$, atunci funcția de repartiție a v. a. $Y = h(X_1, \ldots, X_d)$ este dată de

 $F_Y(y) = \int \ldots \int_{M_y} f(t_1,\ldots,t_d) dt_1 \ldots dt_d$, unde integrala d-dimensională este calculată pe mulțimea $M_y = \{(x_1, \dots, x_d) \in \mathbb{R}^d / h(x_1, \dots, x_d) \leq y\}.$

Valoarea medie a v. a. Y este

$$E(Y) = \int \dots \int_{\mathbf{R}_u^d} h(t_1, \dots, t_d) f(t_1, \dots, t_d) dt_1 \dots dt_d$$

Dacă $h: \mathbb{R}^d \to \mathbb{R}^d$ este un difeomorfism cu jacobianul $D(x_1, \dots, x_d)$, iar $X = (X_1, \dots, X_d)$ este un vector aleator cu densitatea $f(x_1, \dots, x_d)$, atunci $Y = h(X_1, \dots, X_d)$ este un vector aleator cu densitatea $g(x_1, \dots, x_d) = h(X_1, \dots, X_d)$ $=\frac{f(h^{-1}(x_1,\ldots,x_d))}{|D(x_1,\ldots,x_d)|}.$ In particular, dacă A este o matrice nesingulară de dimensiune $d\times d$,

$$m \in \mathbb{R}^d$$
, iar $Y = A \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} + m$, at unci Y are densitatea $g(x_1, \dots, x_d) = \frac{f(A^{-1}(x-m))}{|A| + |A|}$, unde $x = (x_1, \dots, x_d)$.

$$=\frac{f(A^{-1}(x-m))}{|\det A|}$$
, unde $x=(x_1,\ldots,x_d)$.

Dacă vectorul aleator bidimensional (X,Y) are funcția de repartiție F(x,y), atunci funcțiile de repartiție ale celor două componente sunt **repartițiile** marginale ale lui F(x, y), i.e.

$$F_X(x) = \lim_{y \to \infty} F(x, y), F_Y(y) = \lim_{x \to \infty} F(x, y)$$

Dacă (X,Y) admite densitatea f(x,y), atunci densitățile v. a. X și Y sunt densitățile marginale ale lui f(x,y), i. e.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy, f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Definiția 3.3. 1) Fie (X,Y) un vector aleator cu densitatea f(x,y) ale cărei densități marginale sunt $f_1(x), f_2(y)$, atunci pentru orice $x, y \in \mathbb{R}$ cu $f_1(x) \neq 0$, densitatea variabilei Y condiționată de X=x este dată de $f(y/x) = \frac{f(x,y)}{f_1(x)}$

Pentru orice x fixat, f(y/x) este o densitate de probabilitate, asociată repartiției v. a. "Y condiționată de X=x".

In particular, $P(Y \le a/X = x) = \int_{-\infty}^{a} f(y/x) dy$

2) Media variabilei Y conditionată de X = x este

$$E(Y/X = x) = \int_{-\infty}^{\infty} y f(y/x) dy$$

3) Dacă notăm g(x) = E(Y/X = x), atunci v. a. g(X) se notează E(Y/X) și se numește **media lui** Y **condiționată de** X.

Din definiția precedentă rezultă

$$E(Y) = \int_{-\infty}^{\infty} E(Y/X = x) f_1(x) dx$$

Definiția 3.4. Fie X un vector aleator d-dimensional și H un eveniment cu $P(H) \neq 0$. O funcție de d variabile se numește **densitatea vectorului** X **condiționat de** H și se notează f(x/H), dacă pentru orice mulțime boreliană $M \subset \mathbb{R}^d$, $P(X \in M/H) = \int \dots \int_M f(x/H) dx_1 \dots dx_d$.

Definiția 3.5. Pentru orice $x \in \mathbb{R}^d$, probabilitatea evenimentului H condiționat de X=x este definită prin $P(H/X=x)=\lim_{\varepsilon\to 0}P(H/X\in C_\varepsilon)$, unde C_ε este un hipercub de latură 2ε cu centrul în x.

Formula lui Bayes Dacă vectorul aleator admite densitatea continuă f(x), iar $x \in \mathbb{R}^d$ este un punct în care $f(x) \neq 0$, atunci $P(H/X = x) = \frac{f(x/H)P(H)}{f(x)}$.

3.2 Probleme rezolvate

- 1. Fie X_1, X_2 v. a. independente și cu repartițiile date de $P(X_i = k) = pq^k, k = 0, 1, 2, \dots, i = 1, 2$. Notăm $Y = \max(X_1, X_2)$.
 - a) Să se afle repartiția variabilei Y;
 - b) Să se afle repartiția vectorului aleator (Y, X_1) .

$$Soluţie. \ P(Y=k) = P(\max(X_1, X_2) = k) = \sum_{j=0}^{k} P(X_1 = k, X_2 = j) + \sum_{j=0}^{k-1} P(X_1 = j, X_2 = k) = \sum_{j=0}^{k} P(X_1 = k) P(X_2 = j) + \sum_{j=0}^{k-1} P(X_1 = j) P(X_2 = k) = p^2 q^k \sum_{j=0}^{k} q^j + p^2 q^k \sum_{j=0}^{k-1} q^j = p^2 q^{2k} + 2p^2 q^k \sum_{j=0}^{k-1} q^j = p^2 q^{2k} + 2p^2 q^k \cdot \frac{1-q^k}{1-q} = -p^2 q^{2k} + 2p^2 q^k - pq^{2k+1}$$

- b) Pentru a afla repartiția vectorului aleator (Y, X_1) va trebui să evaluăm $P(Y=i, X_1=j), i, j=0,1,2,...$
- 1) Dacă $i < j \Longrightarrow (Y = i, X_1 = j)$ este evenimentul imposibil, deci $P(Y = i, X_1 = j) = 0$

2) Dacă
$$i = j \Longrightarrow P(Y = i, X_1 = j) = \sum_{j=0}^{i} P(X_1 = i, X_2 = j) = \sum_{j=0}^{i} P(X_1 = i) P(X_2 = j) = P(X_1 = i) \sum_{j=0}^{i} P(X_2 = j) = p^2 q^i \sum_{j=0}^{i} q^j = \sum_{j=0}^{i} P(X_1 = i) P(X_2 = j) = p^2 q^i \sum_{j=0}^{i} q^j = \sum_{j=0}^{i} P(X_2 = j) = p^2 q^i \sum_{j=0}^{i} q^j = \sum_{j=0}^{i} P(X_1 = j) P(X_2 = j) = p^2 q^i \sum_{j=0}^{i} P(X_2 = j) = p^2 q^i \sum_{j=0}^{i} q^j = \sum_{j=0}^{i} P(X_1 = j) P(X_2 = i) = p^2 q^i \sum_{j=0}^{i} q^j = \sum_{j=0}^{i} P(X_1 = j) P(X_2 = i) = p^2 q^{i+j}$$

- 2. Fie X, Y v. a. discrete cu repartițiile $X \sim \begin{pmatrix} -1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, $Y \sim \begin{pmatrix} -1 & 2 \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$. Dacă $P(X = -1, Y = -1) = \lambda, \lambda \in \mathbb{R}$, să se calculeze:
 - a) repartiția vectorului (X, Y);
 - b) coeficientul de corelație $\rho(X,Y)$ în funcție de λ ;
 - c) valoarea lui λ pentru care X și Y sunt necorelate; în acest caz să se cerceteze și independența v. a. X și Y.

Soluție. a)
$$P(X=-1,Y=-1)=\lambda; P(X=-1,Y=2)=\frac{1}{2}-\lambda; P(X=1,Y=-1)=\frac{2}{3}-\lambda; P(X=1,Y=2)=\lambda-\frac{1}{6}$$

b)
$$\rho(X,Y) = \frac{E(XY) - E(X)E(Y)}{\sqrt{D^2(X)D^2(Y)}}$$

$$XY \sim \begin{pmatrix} -2 & -1 & 1 & 2\\ \frac{1}{2} - \lambda & \frac{2}{3} - \lambda & \lambda & \lambda - \frac{1}{6} \end{pmatrix}$$

Calculăm $E(XY)=6\lambda-2, E(X)=0, E(Y)=0, D^2(X)=1, D^2(Y)=2$ și avem $\rho(X,Y)=\frac{6\lambda-2}{\sqrt{2}}$

c)
$$\rho(X,Y) = 0 \Longrightarrow \lambda = \frac{1}{3} \Longrightarrow X,Y$$
 sunt necore
late

Pentru $\lambda = \frac{1}{3}$ are loc $p_{ij} = p_i q_j, i, j = 1, 2$, unde $p_i = P(X = x_i), q_j = P(Y = y_j), p_{ij} = P(X = x_i, Y = y_j)$, deci X, Y sunt independente.

3. Fiind dată densitatea de repartiție a vectorului aleator (X,Y)

$$f(x,y) = \begin{cases} 2xye^{-(x^2+y^2)}, & x > 0, y > 0\\ 0, & \text{in rest} \end{cases}$$

să se determine $E(X), E(Y), D^2(X), D^2(Y)$.

Solutie. Aflăm mai întâi densitățile de repartiție ale componentelor:

$$f_X(x) = \int_0^\infty f(x,y)dy = 2xe^{-x^2} \int_0^\infty ye^{-y^2}dy = xe^{-x^2}(-e^{-y^2})/0^\infty = xe^{-x^2}, x > 0$$

$$f_Y(y) = \int_0^\infty f(x,y) dx = y e^{-y^2}, y > 0$$

Atunci
$$E(X) = \int_0^\infty x f_X(x) dx = \int_0^\infty x^2 e^{-x^2} dx$$
.

Facem substituția $x^2=t\Longrightarrow x=t^{\frac{1}{2}}\Longrightarrow dx=\frac{1}{2}t^{-\frac{1}{2}}dt.$

Atunci
$$E(X) = \frac{1}{2} \int_0^\infty t^{\frac{1}{2}} e^{-t} dt = \frac{1}{2} \Gamma\left(\frac{3}{2}\right) = \frac{1}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{4}$$
.

Analog
$$E(Y) = \frac{\sqrt{\pi}}{4}$$
.

Analog
$$E(Y) = \frac{1}{4}$$
.
 $E(X^2) = \int_0^\infty x^2 f_X(x) dx = \int_0^\infty x^3 e^{-x} dx = \frac{1}{2} \int_0^\infty t e^{-t} dt = \frac{1}{2} \Gamma(2) = \frac{1}{2} \cdot 1! = \frac{1}{2}$

Aşadar,
$$D^2(X) = \frac{1}{2} - \frac{\pi}{16}$$
.

Analog
$$D^2(Y) = \frac{1}{2} - \frac{\pi}{16}$$
.

4. Fie vectorul (X,Y) cu densitatea de repartiție $f(x,y) = \frac{1}{\pi^2(1+x^2)(1+y^2)}$, $x,y \in \mathbb{R}$. Să se afle $F_{(X,Y)}(x,y), F_X(x), F_Y(y), f_X(x), f_Y(y)$.

Soluţie.
$$F_{(X,Y)}(x,y) = \frac{1}{\pi^2} \int_{-\infty}^{x} \int_{-\infty}^{y} \frac{dudv}{(1+u^2)(1+v^2)} =$$

$$= \frac{1}{\pi^2} \int_{-\infty}^{x} \frac{du}{1+u^2} \cdot \int_{-\infty}^{y} \frac{dv}{1+v^2} = \frac{1}{\pi^2} \left(\operatorname{arctg} x + \frac{\pi}{2} \right) \left(\operatorname{arctg} y + \frac{\pi}{2} \right)$$

$$F_X(x) = \lim_{y \to \infty} F_{(X,Y)}(x,y) = \frac{1}{\pi^2} \left(\operatorname{arctg} x + \frac{\pi}{2} \right)$$

$$F_Y(y) = \lim_{x \to \infty} F_{(X,Y)}(x,y) = \frac{1}{\pi^2} \left(\operatorname{arctg} y + \frac{\pi}{2} \right)$$

$$f_X(x) = F_X'(x) = \frac{1}{\pi(1+x^2)}$$

$$f_Y(y) = F_Y'(y) = \frac{1}{\pi(1+v^2)}$$

5. Fie vectorul (X, Y) cu densitatea de repartiție

$$f(x,y) = \begin{cases} axy(3-x)(4-y), & x \in [0,3], y \in [0,4] \\ 0, & \text{in rest} \end{cases}$$

Să se determine "a" și să se scrie funcția de repartiție a vectorului (X,Y).

$$Soluţie. \int_{0}^{3} \int_{0}^{4} axy(3-x)(4-y)dxdy = 1 \Longrightarrow \\ \Rightarrow a\left(\frac{3x^{2}}{2} - \frac{x^{3}}{3}\right)/_{0}^{3}\left(2y^{2} - \frac{y^{3}}{3}\right)/_{0}^{4} = 1 \Longrightarrow 48a = 1 \Longrightarrow a = \frac{1}{48}$$

$$F(x,y) = \begin{cases} a \int_{0}^{x} u(3-u)du \int_{0}^{y} v(4-v)dv, & x \in [0,3], y \in [0,4] \\ a \int_{0}^{x} u(3-u)du \int_{0}^{4} v(4-v)dv, & x \in [0,3], y > 4 \\ a \int_{0}^{3} u(3-u)du \int_{0}^{4} v(4-v)dv, & x > 3, y \in [0,4] \\ 1, & x > 3, y > 4 \\ 0, & \text{in rest} \end{cases}$$

$$= \begin{cases} \frac{1}{48} \cdot \frac{9x^{2} - x^{3}}{6} \cdot \frac{6y^{2} - y^{3}}{3}, & x \in [0,3], y \in [0,4] \\ \frac{2}{9} \left(\frac{3x^{2}}{2} - \frac{x^{3}}{3}\right), & x \in [0,3], y > 4 \\ \frac{3}{32} \left(2y^{2} - \frac{y^{3}}{3}\right), & x > 3, y \in [0,4] \\ 1, & x > 3, y > 4 \\ 0, & \text{in rest} \end{cases}$$

6. Fie vectorul (X, Y) cu densitatea de repartiție

$$f(x,y) = \begin{cases} e^{-(x+y)}, & x \ge 0, y \ge 0\\ 0, & \text{in rest} \end{cases}$$

Să se calculeze a) $P(X \le 1, Y \le 1)$; b) $P(X+Y \le 1)$; c) P(X+Y > 2); d) $P(Y > 1/X \le 1)$;e) P(X > 1/Y > 1); f) P(X < 2Y).

Soluție. a)
$$P(X \le 1, Y \le 1) = \int_0^1 \int_0^1 e^{-(x+y)} dx dy = \int_0^1 e^{-x} dx \cdot \int_0^1 e^{-y} dy = (e^{-1} - 1)^2$$

b)
$$P(X + Y \le 1) = \int_0^1 \int_0^{1-x} e^{-(x+y)} dy dx = \int_0^1 e^{-x} (1 - e^{x-1}) dx = 1 - 2e^{-1}$$

c)
$$P(X+Y>2) = 1 - P(X+Y \le 2) = 1 - \int_0^2 \int_0^{2-x} e^{-(x+y)} dy dx = 2e^{-2}$$

d) Fie evenimentele $A = Y > 1, B = X \le 1$

Vrem să calculăm $P(A/B) = 1 - P(\overline{A}/B)$

$$P(\overline{A}/B) = \frac{P(\overline{A} \cap B)}{P(B)} = \frac{P(X \le 1, Y \le 1)}{P(X \le 1)}$$

$$P(X \le 1) = \int_0^1 e^{-x} dx = 1 - e^{-1}$$

Atunci
$$P(A/B) = 1 - \frac{(1-e^{-1})^2}{1-e^{-1}} = e^{-1}$$

e) Fie evenimentele A = X > 1, B = Y > 1

Avem de calculat $P(A/B) = \frac{P(A \cap B)}{P(B)}$

Stim
$$P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B) = 1 - (P(A) + P(B) - P(A \cap B)) \Longrightarrow$$

 $\Longrightarrow P(A \cap B) = P(\overline{A} \cap \overline{B}) - 1 + P(A) + P(B) =$
 $= P(X \le 1, Y \le 1) - 1 + 1 - P(X \le 1) + 1 - P(Y \le 1) =$
 $= (e^{-1} - 1)^2 - 2(1 - e^{-1}) + 1$

Atunci
$$P(A/B) = \frac{(e^{-1}-1)^2 - 2(1-e^{-1}) + 1}{e^{-1}}$$

f)
$$P(X < 2Y) = \int \int_{\frac{x}{y} < 2} e^{-(x+y)} dx dy = \int_{0}^{\infty} \int_{0}^{2y} e^{-(x+y)} dx dy =$$

= $\int_{0}^{\infty} e^{-y} (1 - e^{-2y}) dy = \frac{2}{3}$

7. Fie X,Y variabile aleatoare N(0,1) independente. Calculați probabilitatea ca vectorul aleator (X,Y) să aparțină discului $D = \{(x,y) \in \mathbb{R}^2/x^2 + y^2 \leq 1\}.$

Soluție. Densitățile de repartiție ale v. a X, Y sunt: $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, resp. $f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$

Cum X și Y sunt independente, densitatea de repartiție a vectorului (X,Y) va fi $f(x,y)=f_X(x)\cdot f_Y(y)=\frac{1}{2\pi}\mathrm{e}^{-\frac{1}{2}(x^2+y^2)}$

Probabilitatea cerută este
$$P((X,Y) \in D) = \frac{1}{2\pi} \int \int_D e^{-\frac{1}{2}(x^2+y^2)} dx dy =$$

= $\frac{1}{2\pi} \int_0^{2\pi} \int_0^1 \rho e^{-\frac{\rho^2}{2}} d\rho d\theta = 1 - e^{-\frac{1}{2}} \simeq 0,3934$

8. Fie (X,Y) vector aleator cu densitatea f(x,y). Să se calculeze densitatea de repartiție a variabilei aleatoare $Z = \sqrt{X^2 + Y^2}$.

Soluţie. Pentru
$$z > 0, F_Z(z) = \int \int_{x^2 + y^2 \le z^2} f(x, y) dx dy =$$

$$= \int_0^{2\pi} \int_0^z f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta \Longrightarrow f_Z(z) = z \int_0^{2\pi} f(z \cos \theta, z \sin \theta) d\theta,$$

$$z > 0$$

9. Dacă X, Y sunt v. a. independente, arătați că v. a. $U = \max(X, Y)$, $V = \min(X, Y)$ au funcțiile de repartiție $F_U(t) = F_X(t) \cdot F_Y(t)$, $F_V(t) = 1 - [(1 - F_X(t))(1 - F_Y(t))]$.

Soluție. Cum
$$\max(X,Y) \leq t \iff X \leq t \text{ si } Y \leq t \implies F_U(t) = P(U \leq t) = P(X \leq t, Y \leq t) = P(X \leq t)P(Y \leq t) = F_X(t) \cdot F_Y(t)$$

Cum $\min(X,Y) > t \iff X > t, Y > t \implies F_V(t) = P(V \leq t) = 1 - P(V > t) = 1 - P(X > t, Y > t) = 1 - P(X > t)P(Y > t) = 1 - [(1 - F_X(t))(1 - F_Y(t))]$

10. Fie X,Y v. a. independente, repartizate exponențial cu parametrul $\lambda=1$. Arătați că $V=\min(X,Y)$ e repartizată exponențial cu parametrul $\lambda=2$.

Soluție.
$$F_X(t) = F_Y(t) = \int_0^t \mathrm{e}^{-x} dx = -\mathrm{e}^{-x}/_0^t = 1 - \mathrm{e}^{-t}, t \ge 0$$

Cf. ex. anterior $\Longrightarrow F_V(t) = 1 - [(1 - F_X(t))(1 - F_Y(t))] = 1 - (1 - \mathrm{e}^{-t})^2 = 1 - \mathrm{e}^{-2t}$ care e funcția de repartiție a unei v. a. repartizată exponențial de parametru $\lambda = 2$

11. Fie vectorul aleator (X,Y) cu densitatea

$$f(x,y) = \begin{cases} ae^{-x-2y}, & x \ge 0, y \ge 0\\ 0, & \text{in rest} \end{cases}$$

Să se determine "a", funcția de repartiție a vectorului (X,Y) și funcțiile de repartiție ale variabilelor $X+Y,\frac{X}{Y},X^2,\sqrt{X}$.

Soluţie.
$$a \int_0^\infty \int_0^\infty e^{-x-2y} dx dy = 1 \Longrightarrow a \int_0^\infty e^{-x} dx \int_0^\infty e^{-2y} dy = 1 \Longrightarrow$$

$$\Longrightarrow a(-e^{-x}/_0^\infty) \left(-\frac{1}{2}e^{-2y}\right)/_0^\infty = 1 \Longrightarrow \frac{a}{2} = 1 \Longrightarrow a = 2$$

$$F(x,y) = \begin{cases} \int_0^x \int_0^y 2e^{-u-2v} du dv, & x \ge 0, y \ge 0\\ 0, & \text{in rest} \end{cases}$$

$$= \begin{cases} (1-e^{-x})(1-e^{-2y}), & x \ge 0, y \ge 0\\ 0, & \text{in rest} \end{cases}$$
Fie $Z = X + Y$

$$F_Z(z) = P(Z < z) = \int \int_{x \ge 0, y \ge 0, x+y < z} 2e^{-x-2y} dx dy = 2 \int_0^z \int_0^{z-x} e^{-x-2y} dy dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-2y} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-2y} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-2y} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-2y} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} \left(\int_0^{z-x} e^{-x} dy \right) dx = 2 \int_0^z e^{-x} dy dx = 2 \int_0^z e^{-x} dx dx dx dx dx dx dx dx dx$$

$$= 2 \int_{0}^{z} e^{-x} \left(-\frac{1}{2} e^{-2y} \right) /_{0}^{z-x} dx = \int_{0}^{z} e^{-x} (1 - e^{-2z + 2x}) dx = \\ = 1 + e^{-2z} - 2e^{-z}$$
Fie $Z = \frac{X}{Y}$

$$F_{Z}(z) = P(Z < z) = \int \int_{x \ge 0, y \ge 0, \frac{x}{y} < z} 2e^{-x - 2y} dx dy = \\ = 2 \int_{0}^{\infty} \int_{\frac{x}{z}}^{\infty} e^{-x - 2y} dx dy = 2 \int_{0}^{\infty} e^{-x} \left(\int_{\frac{x}{z}}^{\infty} e^{-2y} dy \right) dx = \\ = 2 \int_{0}^{\infty} e^{-x} \left(-\frac{1}{2} e^{-2y} \right) /_{\frac{x}{z}}^{\infty} dx = \int_{0}^{\infty} e^{-x} \cdot e^{-\frac{2x}{z}} dx = \\ = \int_{0}^{\infty} e^{-x} \frac{z + 2}{z} dx = -\frac{z}{z + 2} e^{-x} \frac{z + 2}{z} /_{0}^{\infty} = \frac{z}{z + 2}$$
Fie $Z = X^{2}$

$$F_{Z}(z) = P(Z < z) = \int \int_{x \ge 0, y \ge 0, x^{2} < z} 2e^{-x - 2y} dx dy = \\ = 2 \int_{0}^{\infty} \int_{0}^{\sqrt{x}} e^{-x - 2y} dx dy = 1 - e^{-\sqrt{z}}$$
Fie $Z = \sqrt{X}$

$$F_{Z}(z) = P(Z < z) = \int \int_{x \ge 0, y \ge 0, \sqrt{x} < z} 2e^{-x - 2y} dx dy = \\ = 2 \int_{0}^{\infty} \int_{0}^{z^{2}} e^{-x - 2y} dx dy = 1 - e^{z^{2}}$$

12. Fie

$$f_{(X,Y,Z)}(x,y,z) = \begin{cases} e^{-(x+y+z)}, & x \ge 0, y \ge 0, z > 0 \\ 0, & \text{in rest} \end{cases}$$

o densitate de repartiție. Să se calculeze densitatea de repartiție corespunzătoare variabilei $U=\frac{X+Y+Z}{3}$.

Soluție. Considerăm schimbările de variabile $u=\frac{x+y+z}{3}, v=y, w=z\Longrightarrow x=3u-v-w, y=v, z=w$

$$J = \frac{D(x,y,z)}{D(u,v,w)} = \begin{vmatrix} 3 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 3 \text{ Atunci}$$

$$f_{(U,V,W)}(u,v,w) = \begin{cases} 3e^{-3u}, & 3u-v-w>0, v>0, w>0 \\ 0, & \text{in rest} \end{cases}$$

$$f_{(U,V)}(u,v) = \begin{cases} \int_0^{3u-v} 3e^{-3u} dw, & 3u-v>0, v>0 \\ 0, & \text{in rest} \end{cases}$$

$$f_{U}(u) = \begin{cases} \int_0^{3u} \int_0^{3u-v} 3e^{-3u} dw dv, & u>0 \\ 0, & \text{in rest} \end{cases}$$

$$= \begin{cases} \frac{27}{2}u^2 e^{-3u}, & u>0 \\ 0, & \text{in rest} \end{cases}$$

13. Fie (X,Y) un vector aleator cu densitatea de repartiție

$$f(x,y) = \begin{cases} 4xy, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{in rest} \end{cases}$$

Se cere să se determine densitățile de repartiție corespunzătoare variabilelor aleatoare X^2 și Y^2 .

Soluție. Facem schimbările de variabilă $u=x^2, v=y^2$

$$J = \frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{1}{2\sqrt{u}} & 0\\ 0 & \frac{1}{2\sqrt{v}} \end{vmatrix} = \frac{1}{4\sqrt{uv}}$$

Atunci

$$f_{(U,V)}(u,v) = \begin{cases} 4\sqrt{uv} \cdot \frac{1}{4\sqrt{uv}}, & 0 < u < 1, 0 < v < 1 \\ 0, & \text{în rest} \end{cases}$$

$$= \begin{cases} 1, & 0 < u < 1, 0 < v < 1 \\ 0, & \text{în rest} \end{cases}$$

$$f_U(u) = \begin{cases} \int_0^1 dv, & 0 < u < 1 \\ 0, & \text{în rest} \end{cases}$$

$$= \begin{cases} 1, & 0 < u < 1 \\ 0, & \text{în rest} \end{cases}$$

$$= \begin{cases} 1, & 0 < u < 1 \\ 0, & \text{în rest} \end{cases}$$

$$f_V(v) = \begin{cases} \int_0^1 du, & 0 < v < 1 \\ 0, & \text{în rest} \end{cases}$$

$$= \begin{cases} 1, & 0 < v < 1 \\ 0, & \text{în rest} \end{cases}$$

$$= \begin{cases} 1, & 0 < v < 1 \\ 0, & \text{în rest} \end{cases}$$

14. Fie X,Y v. a. independente și identic repartizate exponențial cu parametrul $\lambda=1$. Calculați densitatea vectorului (U,V), unde $U=X+Y,V=\frac{X}{X+Y}$ și deduceți că v. a. V e repartizată uniform în (0,1).

Soluție. Facem shimbările de variabile $u=x+y, v=\frac{x}{x+y} \Longrightarrow x=uv, y=u-uv$

$$J = \frac{D(x,y)}{D(u,v)} = \begin{vmatrix} v & u \\ 1 - v & -u \end{vmatrix} = -u$$

Cum X, Y sunt independente și identic repartizate exponențial cu parametrul $\lambda = 1$, densitatea de repartiție a vectorului (X, Y) va fi

$$f(x,y) = \begin{cases} e^{-x} \cdot e^{-y}, & x,y \ge 0 \\ 0, & \text{in rest} \end{cases}$$

Deci $f_{(U,V)}(u,v) = |J| \cdot e^{-(uv+u-uv)} = u \cdot e^{-u}, u \geq 0, 0 \leq v \leq 1$ (deoarece $x \geq 0 \Longrightarrow uv \geq 0, y \geq 0 \Longrightarrow u - uv \geq 0 \Longrightarrow u \geq uv \geq 0$; pe de altă parte, cum $x, y \geq 0 \Longrightarrow 0 \leq \frac{x}{x+y} \leq 1 \Longrightarrow 0 \leq v \leq 1$)

$$f_V(v) = \int_0^\infty u \cdot e^{-u} du = -u \cdot e^{-u} / \frac{1}{0} + \int_0^\infty e^{-u} du = -e^{-u} / \frac{1}{0} = e^0 = 0$$

$$= 1 \Longrightarrow V \sim U(0, 1)$$

15. Fie X şi Y v. a. independente, X având o repartiție exponențială de densitate $\lambda e^{-\lambda x}(x>0)$ şi Y e repartizată uniform în $(0,2\pi)$. Punând $Z_1=\sqrt{X}\cos Y, Z_2=\sqrt{X}\sin Y,$ să se arate că Z_1 şi Z_2 sunt independente şi au aceeași densitate $\sqrt{\frac{\lambda}{\pi}}e^{-\lambda x^2}$.

Soluție.
$$F_{(Z_1,Z_2)}(u,v) = \frac{1}{2\pi} \int \int_{\sqrt{x}\cos y < u,\sqrt{x}\sin y < v} \lambda e^{-\lambda x} dx dy$$

Facem schimbările de variabile $\alpha = \sqrt{x} \cos y, \beta = \sqrt{x} \sin y \Longrightarrow x = \alpha^2 + \beta^2, y = \arctan \frac{\beta}{\alpha}, \frac{D(x,y)}{D(\alpha,\beta)} = 2$

Atunci
$$F_{(Z_1,Z_2)}(u,v) = \frac{\lambda}{\pi} \int_{-\infty}^{u} \int_{-\infty}^{v} e^{-\lambda(\alpha^2 + \beta^2)} d\alpha d\beta = \frac{\lambda}{\pi} \int_{-\infty}^{u} e^{-\lambda\alpha^2} d\alpha \cdot \int_{-\infty}^{v} e^{-\lambda\beta^2} d\beta = \Phi(\sqrt{2\lambda}u)\Phi(\sqrt{2\lambda}v), \text{ unde } \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt \quad \Box$$

16. Dacă X_1 şi X_2 sunt v. a. independente, repartizate uniform U(0,1), să se arate că $U = \sqrt{-2 \ln X_1} \cos 2\pi X_2, V = \sqrt{-2 \ln X_1} \sin 2\pi X_2$ sunt independente şi repartizate N(0,1).

Soluție. Facem schimbarea $u = \sqrt{-2 \ln x_1} \cos 2\pi x_2, v = \sqrt{-2 \ln x_1} \sin 2\pi x_2$ Avem $u^2 + v^2 = -2 \ln x_1 \cos^2 2\pi x_2 - 2 \ln x_1 \sin^2 2\pi x_2 = -2 \ln x_1 \Longrightarrow x_1 = \mathrm{e}^{-\frac{u^2 + v^2}{2}}$

$$u = \sqrt{u^2 + v^2} \cos 2\pi x_2 \Longrightarrow x_2 = \frac{\arccos \frac{u}{\sqrt{u^2 + v^2}}}{2\pi}$$

$$\frac{D(x_1, x_2)}{D(u, v)} = \begin{vmatrix} -ue^{-\frac{u^2 + v^2}{2}} & -ve^{-\frac{u^2 + v^2}{2}} \\ -\frac{v}{2\pi(u^2 + v^2)} & \frac{u}{2\pi(u^2 + v^2)} \end{vmatrix} = -\frac{1}{2\pi}e^{-\frac{u^2 + v^2}{2}}$$

Cum X_1 și X_2 sunt v. a. repartizate uniform U(0,1) avem

$$f_{X_1}(x_1) = \begin{cases} 1, & x_1 \in (0,1) \\ 0, & \text{in rest} \end{cases}$$

şi

$$f_{X_2}(x_2) = \begin{cases} 1, & x_2 \in (0,1) \\ 0, & \text{in rest} \end{cases}$$

Deoarece X_1 și X_2 sunt v. a. independente avem

$$f_{(X_1,X_2)}(x_1,x_2) = \begin{cases} 1, & (x_1,x_2) \in (0,1) \times (0,1) \\ 0, & \text{in rest} \end{cases}$$

Obţinem
$$f_{(U,V)}(u,v) = \frac{1}{2\pi} e^{-\frac{u^2+v^2}{2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{v^2}{2}} = f_U(u) f_V(v)$$

17. Fie X, Y, Z componentele vitezei unei molecule de gaz. Se presupune că aceste componente sunt independente și uniform repartizate în (-A, A). Să se calculeze densitatea energiei acestei molecule, $f_A(x)$, și să se determine $\lim_{a\to\infty} A^3 \cdot f_A(x)$.

Soluție. Fie m= masa moleculei și E=energia moleculei $E=\frac{m}{2}(X^2+Y^2+Z^2)\Longrightarrow P(E< t)=\frac{1}{8A^3}\int\int\int_{\frac{m}{2}(x^2+y^2+z^2)< t}dxdydz=$ $=\frac{\pi}{6A^3}\left(\frac{2t}{m}\right)^{\frac{3}{2}}, \text{ pentru }\sqrt{\frac{2t}{m}}< A, \text{ deoarece integrala reprezintă volumul unei sfere de rază }\sqrt{\frac{2t}{m}}$

Atunci
$$f_A(t) = \left(\frac{\pi}{6A^3} \left(\frac{2t}{m}\right)^{\frac{3}{2}}\right)' = \left(\frac{2}{m}\right)^{\frac{3}{2}} \cdot \frac{\pi}{4A^3} \cdot \sqrt{t}$$
, pentru $\sqrt{\frac{2t}{m}} < A$

$$\lim_{a \to \infty} A^3 \cdot fA(x) = \left(\frac{2}{m}\right)^{\frac{3}{2}} \cdot \frac{\pi}{4} \cdot \sqrt{t}$$

18. Fie X_1, X_2, X_3 v. a. independente, fiecare având densitatea de repartiție $f(x) = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{1}{2}x^2}$. Punând $Y_1 = \frac{X_1 - X_2}{\sqrt{2}}, Y_2 = \frac{X_1 + X_2 - 2X_3}{\sqrt{6}}, Y_3 = \frac{X_1 + X_2 + X_3}{\sqrt{3}}$, să se arate că v. a. Y_1, Y_2, Y_3 sunt independente și urmează aceeași repartiție ca și X_1, X_2, X_3 .

Soluție. Densitatea de repartiție a vectorului (X_1,X_2,X_3) este $f(x_1,x_2,x_3)=f(x_1)f(x_2)f(x_3)=\frac{1}{2\pi\sqrt{2\pi}}\mathrm{e}^{-\frac{1}{2}(x_1^2+x_2^2+x_3^2)}$

Facem schimbările de variabile

$$x_1 - x_2 = \sqrt{2}y_1$$

$$x_1 + x_2 - 2x_3 = \sqrt{6}y_2$$

$$x_1 + x_2 + x_3 = \sqrt{3}y_3$$

deci

$$x_1 = \frac{\sqrt{2}}{2}y_1 + \frac{\sqrt{6}}{6}y_2 + \frac{\sqrt{3}}{3}y_3$$
$$x_2 = -\frac{\sqrt{2}}{2}y_1 + \frac{\sqrt{6}}{6}y_2 + \frac{\sqrt{3}}{3}y_3$$
$$x_3 = \frac{\sqrt{3}}{3}y_3 - \frac{\sqrt{6}}{3}y_2$$

$$\frac{D(x_1, x_2, x_3)}{D(y_1, y_2, y_3)} = \begin{vmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} & \sqrt{3} \\ 0 & -\frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} \end{vmatrix} = 1 \text{ si } x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2$$

Atunci densitatea de repartiție a vectorului (Y_1, Y_2, Y_3) este $f(y_1, y_2, y_3) = \frac{1}{2\pi\sqrt{2\pi}} e^{-\frac{1}{2}(y_1^2 + y_2^2 + y_3^2)}$

$$\begin{split} &f_{Y_1}(y_1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2, y_3) dy_2 dy_3 = \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2\pi\sqrt{2\pi}} \mathrm{e}^{-\frac{1}{2}(y_1^2 + y_2^2 + y_3^2)} dy_2 dy_3 = \\ &= \frac{1}{2\pi\sqrt{2\pi}} \mathrm{e}^{-\frac{y_1^2}{2}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{y_2^2}{2}} dy_2 \cdot \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{y_3^2}{2}} dy_3 = \frac{1}{2\pi\sqrt{2\pi}} \mathrm{e}^{-\frac{y_1^2}{2}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\frac{y_2}{\sqrt{2}}\right)^2} dy_2 \cdot \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\frac{y_3}{\sqrt{2}}\right)^2} dy_3 = \frac{1}{2\pi\sqrt{2\pi}} \mathrm{e}^{-\frac{y_1^2}{2}} \int_{-\infty}^{\infty} \sqrt{2} \mathrm{e}^{-z_2^2} dz_2 \cdot \int_{-\infty}^{\infty} \sqrt{2} \mathrm{e}^{-z_3^2} dz_3 = \\ &= \frac{1}{2\pi\sqrt{2\pi}} \mathrm{e}^{-\frac{y_1^2}{2}} \sqrt{2} \sqrt{\pi} \sqrt{2} \sqrt{\pi} = = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{1}{2}y_1^2} \end{split}$$

Analog $f_{Y_2}(y_2) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y_2^2} \operatorname{gi} f_{Y_3}(y_3) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y_3^2}$

Aşadar, $f(y_1,y_2,y_3)=f(y_1)f(y_2)f(y_3)$, deci Y_1,Y_2,Y_3 sunt independente și urmează aceeași repartiție ca X_1,X_2,X_3

19. Fie X_1, X_2, X_3 v. a. independente, repartizate N(0,1). Punând $X_1 = r\cos\varphi\cos\psi$, $X_2 = r\cos\varphi\sin\psi$, $X_3 = r\sin\varphi$. Să se arate că v. a. r, φ, ψ sunt independente și să se determine densitatea de probabilitate corespunzătoare lui r.

Soluție. Cum X_1, X_2, X_3 sunt v. a. independente avem $f(x_1, x_2, x_3) = \frac{1}{2\pi\sqrt{2\pi}} e^{-\frac{x_1^2 + x_2^2 + x_3^2}{2}}$

$$\frac{D(x_1, x_2, x_3)}{D(r, \varphi, \psi)} = r^2 \cos \varphi$$

Atunci $f(r, \varphi, \psi) = r^2 \cos \varphi \frac{1}{2\pi\sqrt{2\pi}} e^{-\frac{r^2}{2}}$

 $f(r) = k_1 r^2 e^{-\frac{r^2}{2}}, r \in [0, \infty), f(\varphi) = k_2 \cos \varphi, f(\psi) = k_3, \psi \in [0, 2\pi]$

f(r) fiind probabilitate, se verifică $\int_0^\infty f(r)dr = 1 \Longrightarrow k_1 \int_0^\infty r^2 e^{-\frac{r^2}{2}} = 1 \Longrightarrow \frac{k_1}{2} \int_0^\infty e^{-\frac{u}{2}} u^{\frac{1}{2}} du = 1 \Longrightarrow \sqrt{2}k_1 \int_0^\infty e^{-t} t^{\frac{1}{2}} dt = 1 \Longrightarrow \sqrt{2}k_1 \Gamma\left(\frac{3}{2}\right) = 1 \Longrightarrow \sqrt{2}k_1 \cdot \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = 1 \Longrightarrow \sqrt{2}k_1 \cdot \frac{1}{2}\sqrt{\pi} = 1 \Longrightarrow k_1 = \sqrt{\frac{2}{\pi}}$

20. Fie (X,Y) un vector aleator cu densitatea

$$f(x,y) = \begin{cases} \frac{1}{8}(6-x-y), & (x,y) \in (0,2) \times (2,4) \\ 0, & \text{in rest} \end{cases}$$

Să se afle:

- a) densitățile de repartiție condiționate f(x/y), f(y/x);
- b) E(X/Y = y), E(Y/X = x)

3.2. PROBLEME REZOLVATE

$$Soluţie. \ a) \ f_X(x) = \int_2^4 \frac{1}{8}(6-x-y)dy = \frac{3-x}{4}, x \in (0,2) \Longrightarrow f(y/x) = \\ = \frac{f(x,y)}{f_X(x)} = \frac{\frac{1}{8}(6-x-y)}{\frac{3-x}{4}} = \frac{6-x-y}{2(3-x)}, y \in (2,4) \\ f_Y(y) = \int_0^2 \frac{1}{8}(6-x-y)dx = \frac{1}{4}(5-y), y \in (2,4) \Longrightarrow f(x/y) = \frac{f(x,y)}{f_Y(y)} = \\ = \frac{\frac{1}{8}(6-x-y)}{\frac{1}{4}(5-y)} = \frac{6-x-y}{2(5-y)}, x \in (0,2) \\ b) \ E(X/Y = y) = \int_0^2 x \cdot f(x/y)dx = \int_0^2 x \cdot \frac{6-x-y}{2(5-y)}dx = \frac{14-3y}{3(5-y)} \\ E(Y/X = x) = \int_2^4 y \cdot f(y/x)dy = \int_2^4 y \cdot \frac{6-x-y}{2(3-x)} = \frac{26-9y}{3(2-x)}$$

21. Fie (X,Y) un vector aleator cu densitatea

$$f(x,y) = \left\{ \begin{array}{ll} k(2x+y+2), & (x,y) \in [0,1] \times [-2,2] \\ 0, & \text{in rest} \end{array} \right.$$

Să se determine:

- a) $k \in \mathbb{R}$;
- b) densitățile de repartiție marginale;
- c) densitățile de repartiție ale vectorilor aleatori U=(3X,2Y-5) și $V=(X,Y^2).$

$$Soluție. a) \text{ Avem condițiile: } f(x,y) \geq 0 \Longrightarrow k \geq 0$$

$$\int_{-2}^{2} \int_{0}^{1} k(2x+y+2) dx dy = 1 \Longrightarrow k = \frac{1}{12}$$
 b)
$$f_{X}(x) = \begin{cases} \frac{1}{12} \int_{-2}^{2} (2x+y+2) dy, & x \in [0,1] \\ 0, & \text{in rest} \end{cases}$$

$$= \begin{cases} \frac{2x+3}{3}, & x \in [0,1] \\ 0, & \text{in rest} \end{cases}$$

$$f_{Y}(y) = \begin{cases} \frac{1}{12} \int_{0}^{1} (2x+y+2) dx, & y \in [-2,2] \\ 0, & \text{in rest} \end{cases}$$

$$= \begin{cases} \frac{y+3}{12}, & y \in [-2,2] \\ 0, & \text{in rest} \end{cases}$$

$$c) F_{U}(x,y) = P(3X < x, 2Y - 5 < y) = P\left(X < \frac{x}{3}, Y < \frac{5+y}{2}\right) = \\ = F_{(X,Y)}\left(\frac{x}{3}, \frac{5+y}{2}\right)$$

$$f_{U}(x,y) = \frac{\partial^{2} F_{U}(x,y)}{\partial x \partial y} = \frac{\partial^{2} F\left(\frac{x}{3}, \frac{5+y}{2}\right)}{\partial x \partial y} = \frac{1}{3} \cdot \frac{1}{2} f\left(\frac{x}{3}, \frac{5+y}{2}\right) = \\ = \begin{cases} \frac{1}{72} \left(\frac{2x}{3} + \frac{5+y}{2} + 2\right), & \frac{x}{3} \in [0,1], \frac{5+y}{2} \in [-2,2] \\ 0, & \text{in rest} \end{cases}$$

$$= \begin{cases} \frac{4x+3y+27}{432}, & (x,y) \in [0,3] \times [-9,-1] \\ 0, & \text{in rest} \end{cases}$$

$$F_V(x,y) = P(X < x, Y^2 < y) = P(X < x, Y < \sqrt{y}) = F_{(X,Y)}(x,\sqrt{y})$$

$$f_V(x,y) = \frac{\partial^2 F_V(x,y)}{\partial x \partial y} = \frac{\partial^2 F_{(X,Y)}(x,\sqrt{y})}{\partial x \partial y} = \frac{1}{2\sqrt{y}} f(x,\sqrt{y}) =$$

$$= \begin{cases} \frac{1}{12\sqrt{y}} (2x + \sqrt{y} + 2), & (x,y) \in [0,1] \times [0,2] \\ 0, & \text{in rest} \end{cases}$$

22. Fie $(X_i, Y_i)_{1 \leq i \leq k}$ un sistem de k vectori aleatori bidimensionali independenți, identic repartizați cu funcțiile de repartiție F(x, y) și densitățile f(x, y). Fie $U = \max(X_1, \ldots X_k), V = \max(Y_1, \ldots Y_k)$ și $W = \max(X_1 + Y_1, \ldots, X_k + Y_k)$. Să se determine densitatea de repartiție a vectorului aleator (U, V) și densitatea v. a. W.

 $Soluție. \text{ Funcția de repartiție a vectorului } (U,V) \text{ este } G_{(U,V)}(u,v) = P(U < u,V < v) = P(X_1 < u,X_2 < u,\dots X_k < < u,Y_1 < v,Y_2 < v,\dots Y_k < v) = P^k(X_i < u,Y_i < v) = F^k(u,v)$ Densitatea vectorului (U,V) este $g(u,v) = \frac{\partial^2 G(u,v)}{\partial u \partial v} = \frac{\partial}{\partial v} (kF^{k-1}(u,v) \cdot \frac{\partial F(u,v)}{\partial u}) = k(k-1)F^{k-2}(u,v) \cdot \frac{\partial F(u,v)}{\partial u} \cdot \frac{\partial F(u,v)}{\partial v} + kF^{k-1}(u,v)f(u,v) = kF^{k-2}(u,v)[(k-1)\frac{\partial F(u,v)}{\partial u} \cdot \frac{\partial F(u,v)}{\partial v} + F(u,v)f(u,v)]$ Funcția de repartiție a v. a. W este $H_W(w) = P(W < w)P(X_1 + Y_1 < < w,\dots X_k + Y_k < w) = \prod_{i=1}^k P(X_i + Y_i < w) = \left(\int \int_{x+y < w} f(x,y) dx dy\right)^k = \left[\int_{-\infty}^{\infty} \left(\int_{-\infty}^{w-x} f(x,y) dy dx\right)^k\right]^k \Longrightarrow h_W(w) = H'_W(w) = k\left(\int_{-\infty}^{\infty} \int_{-\infty}^{w-x} f(x,y) dy dx\right)^{k-1} \cdot \int_{-\infty}^{\infty} f(x,w-x) dx$

23. Fie X_1, \ldots, X_n v. a. independente, având aceeași funcție de repartiție F, respectiv aceeași densitate f. Să se determine funcția de repartiție a v. a. $Y = \max(X_1, \ldots, X_n) - \min(X_1, \ldots, X_n)$.

Soluție. Fie $U = \max(X_1, \dots, X_n)$ și $V = \min(X_1, \dots, X_n)$. AtunciY = U - V

Avem
$$P(U < x) = P(X_1 < x, ... X_n < x) = \prod_{i=1}^n P(X_i < x) = [F(x)]^n$$

$$P(V \ge x)P(X_1 \ge x, \dots X_n \ge x) = \prod_{i=1}^n P(X_i \ge x) = [1 - F(x)]^n$$

Notăm cu F(x,y) funcția de repartiție a vectorului aleator (U,V), adică F(x,y) = P(U < x, V < y)

 $\begin{array}{l} \operatorname{Cum} \ \big\{ \omega/U(\omega) < x \big\} = \big\{ \omega/U(\omega) < x, V(\omega) < y \big\} \cup \\ \cup \big\{ \omega/U(\omega) < x, V(\omega) \ge y \big\}, \ \operatorname{prin} \ \operatorname{aplicarea} \ \operatorname{probabilității} \ \operatorname{obținem} \\ P(\big\{ \omega/U(\omega) < x \big\}) = P(\big\{ \omega/U(\omega) < x, V(\omega) < y \big\}) + P(\big\{ \omega/U(\omega) < x, V(\omega) \ge y \big\}) \\ = x, V(\omega) \ge y \big\}) \Longrightarrow F(x,y) = [F(x)]^n - P(\big\{ \omega/U(\omega) < x, V(\omega) \ge y \big\}) \\ \end{array}$

Vom evalua acum $P(\{\omega/U(\omega) < x, V(\omega) \ge y\})$. Pentru aceasta vom examina separat cazurile $x \le y$ şi y < x.

Dacă $x \leq y$, atunci evenimentul

$$\{\omega/\max(X_1(\omega),\ldots,X_n(\omega)) < x \le y \le \min(X_1(\omega),\ldots,X_n(\omega))\}$$

este imposibil, deci

$$P(\{\omega/U(\omega) < x, V(\omega) \ge y\}) = 0$$

Dacă y < x, atunci evenimentul

$$\{\omega/y \le \min(X_1(\omega), \dots, X_n(\omega)) \le \max(X_1(\omega), \dots, X_n(\omega)) < x\} =$$

$$= \bigcap_{i=1}^{n} \{ \omega/y \le X_i(\omega) < x \}$$

Cum
$$P(\omega/y \le X_i(\omega) < x) = F(x) - F(y)$$
 rezultă $P(\{\omega/U(\omega) < x, V(\omega) \ge y\}) = [F(x) - F(y)]^n$

De aici urmează că funcția de repartiție bidimensională a vectorului aleator (U,V) este

$$F_{(U,V)}(x,y) = \begin{cases} F(x)^n, & x \le y \\ F(x)^n - [F(x) - F(y)]^n, & x > y \end{cases}$$

Dacă acum presupunem că variabilele X_1, \ldots, X_n au aceeași densitate de repartiție f și dacă notăm cu w(x, y) densitatea de repartiție a vectorului aleator (U, V), atunci

$$w(x,y) = \begin{cases} n(n-1)[F(x) - F(y)]^{n-2} f(x)f(y), & x > y \\ 0, & x \le y \end{cases}$$

Aflăm acum funcția de repartiție a v. a. Y = U - V

Din definiția funcției de repartiție avem $f_Y(z) = P(U - V < z) = \int \int_{x-y < z} w(x,y) dx dy$

Cum w(x,y) = 0dacă $x \leq y$ rezultă că $F_Y(z) = P(U-V < z) = 0$ dacă $z \leq 0$

Dacă
$$z > 0$$
, atunci $F_Y(z) = P(U - V < z) = \int_{-\infty}^{\infty} \int_{x-z}^{\infty} w(x,y) dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z} w(x,x-y) dy dx = \int_{-\infty}^{z} \int_{-\infty}^{\infty} w(x,x-y) dx dy$

Derivând în raport cu z găsim densitatea de repartiție a v. a. Y:

$$f_Y(z) = \int_{-\infty}^{\infty} w(x, x - z) dx$$

Cum w(x,y) = 0 dacă $x \le y$, rezultă că w(x,x-z) = 0 dacă $x \le x-z$, adică z < 0.

Aşadar,

$$f_Y(z) = \begin{cases} n(n-1) \int_{-\infty}^{\infty} [F(x) - F(x-z)]^{n-2} f(x) f(x-z) dx, & z > 0 \\ 0, & z \le 0 \end{cases}$$

3.3 Probleme propuse

- 1. Fie X_1, X_2 v. a. independente cu repartițiile $P(X_i = k) = pq^k$, $i=1,2; k=0,1,2,3,\ldots$ Să se arate că $P(X_1=k/X_1+X_2=n)=$ $= \frac{1}{n+1}, k = 1, 2, \dots n$
- 2. Fie

$$f(x,y) = \begin{cases} xye^{-(x+y)}, & x \ge 0, y \ge 0\\ 0, & \text{in rest} \end{cases}$$

densitatea de repartitie a vectorului (X, Y). Să se determine $F_{(X,Y)}(x,y), F_X(x), F_Y(y), f_X(x), f_Y(y).$

R:
$$F_{(X,Y)}(x,y) = [1 - (1+x)e^{-x}][1 - (1+y)e^{-y}], x, y \ge 0$$

$$F_X(x) = 1 - (1+x)e^{-x}, x \ge 0$$

$$F_Y(y) = 1 - (1+y)e^{-y}, y \ge 0$$

$$f_X(x) = xe^{-x}, x \ge 0$$

$$f_Y(y) = ye^{-y}, y \ge 0$$

3. Fie vectorul (X, Y) cu densitatea

$$f(x,y) = \begin{cases} a\sin(x+y), & 0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2} \\ 0, & \text{in rest} \end{cases}$$

Să se determine "a", E(X), E(Y), $D^2(X)$, $D^2(Y)$, cov(X, Y).

R:
$$a = \frac{1}{2}, E(X) = \frac{\pi}{4} = E(Y), D^2(X) = D^2(Y) = -\frac{\pi^2}{16} + \frac{\pi^2}{8} + \frac{\pi}{2} - 2$$

4. Fie vectorul aleator (X,Y) cu densitatea de repartiție

$$f(x,y) = \begin{cases} \frac{1}{4}, & 0 \le x \le 2, 0 \le y \le 2\\ 0, & \text{in rest} \end{cases}$$

Să se determine: a) $P(X \le 1, Y \le 1)$; b) $P(X + Y \le 1)$;

c)
$$P(X + Y > 2)$$
; d) $P(X < 2Y)$;e) $P(X > 1)$.

R: a)
$$P(X \le 1, Y \le 1) = \frac{1}{4}$$
; b) $P(X + Y \le 1) = \frac{1}{8}$;

R: a)
$$P(X \le 1, Y \le 1) = \frac{1}{4}$$
; b) $P(X + Y \le 1) = \frac{1}{8}$; c) $P(X + Y > 2) = \frac{1}{2}$; d) $P(X < 2Y) = 1$; e) $P(X > 1) = \frac{1}{2}$

5. Fie X și Y v. a. independente urmând fiecare o lege normală de parametrii 0 și 1. Să se determine raza cercului cu centrul în origine astfel încât $P((X,Y) \in D(0,R) = 0,95)$.

R:
$$R = \sqrt{2 \ln 20}$$

6. Fie X şi Y v. a. independente repartizate exponențial cu parametrii λ şi μ . Să se determine densitatea de probabilitate a vectorului (X,Y) şi funcția de repartiție a vectorului (X,Y).

R:

$$f_{(X,Y)}(x,y) = \begin{cases} \lambda \mu e^{-\lambda x - \mu y}, & x,y \ge 0 \\ 0, & \text{in rest} \end{cases}$$

$$F_{(X,Y)}(x,y) = \begin{cases} (1 - e^{-\lambda x})(1 - e^{-\mu y}), & x,y \ge 0 \\ 0, & \text{in rest} \end{cases}$$

7. Fie

$$f_{(X,Y)}(x,y) = \begin{cases} 3x, & 0 < y < x, 0 < x < 1 \\ 0, & \text{in rest} \end{cases}$$

o densitate de repartiție bidimensională . Se cere să se calculeze densitatea de repartiție corespunzătoare variabilei Z=X-Y.

 \mathbf{R} :

$$f_Z(z) = \begin{cases} \frac{3(1-z^2)}{2}, & 0 < z < 1\\ 0, & \text{in rest} \end{cases}$$

8. Fie (X,Y) un vector aleator a cărei densitate de repartiție este

$$f(x,y) = \begin{cases} e^{-(x+y)}, & x,y \ge 0\\ 0, & \text{in rest} \end{cases}$$

Să se afle densitatea de repartiție a variabilelor $U=X+Y, V=\frac{X}{V}$.

R:
$$f_U(u) = ue^{-u}, f_V(v) = \frac{1}{(1+v)^2}$$

- 9. Fie X_1 și X_2 v. a. continue și $Y_1 = X_1 + X_2, Y_2 = X_1 X_2$. Să se arate că pentru orice u_1, u_2 avem $f_{(Y_1, Y_2)}(u_1, u_2) = \frac{1}{2} f_{(X_1, X_2)}\left(\frac{u_1 + u_2}{2}, \frac{u_1 u_2}{2}\right)$.
- 10. Fie X_1 şi X_2 v. a. şi $Y_1 = X_1 \cos \alpha + X_2 \sin \alpha, Y_2 = -X_1 \sin \alpha + X_2 \cos \alpha$ pentru orice $\alpha, 0 \le \alpha \le 2\pi$. Să se arate că $f_{(Y_1,Y_2)}(y_1,y_2) = f_{(X_1,X_2)}(y_1 \cos \alpha y_2 \sin \alpha, y_1 \sin \alpha + y_2 \cos \alpha)$
- 11. Fie vectorul aleator (X,Y) cu densitatea de repartiție

$$f_{(X,Y)}(x,y) = \begin{cases} \frac{1}{20}(x+y+2), & (x,y) \in [0,2] \times [1,3] \\ 0, & \text{in rest} \end{cases}$$

Să se afle:

- a) densitățile de repartiție marginale $f_X(x), f_Y(y)$;
- b) funcțiile de repartiție marginale;
- c) funcția de repartiție $F_{(X,Y)}(x,y)$;
- d) densitățile de repartiție condiționate.

R: a)

$$f_X(x) = \begin{cases} \frac{x+4}{10}, & x \in [0,2] \\ 0, & \text{in rest} \end{cases}$$
$$f_Y(y) = \begin{cases} \frac{y+3}{10}, & y \in [1,3] \\ 0, & \text{in rest} \end{cases}$$

b)
$$F_X(x) = \begin{cases} 0, & x \le 0 \\ \frac{x^2 + 8x}{20}, & x \in [0, 2] \\ 1, & x > 2 \end{cases}$$

$$F_Y(y) = \begin{cases} 0, & y \le 1 \\ \frac{y^2 + 6y - 7}{20}, & y \in [1, 3] \\ 1, & y > 3 \end{cases}$$

c)

$$F_{(X,Y)}(x,y) = \begin{cases} 0, & x < 0, y < 1 \\ \frac{x^2y + xy^2 + 4xy - x^2 - 5x}{40}, & (x,y) \in [0,2] \times [1,3] \\ \frac{y^2 + 6y - 7}{20}, & (x,y) \in (2,\infty) \times (1,3] \\ \frac{x^2 + 8x}{20}, & (x,y) \in (0,2] \times (3,\infty) \\ 1, & (x,y) \in (2,\infty) \times (3,\infty) \end{cases}$$

d) Pentru $y \in [1,3]$,

$$f(x/y) = \begin{cases} \frac{x+y+2}{2(y+3)}, & x \in [0,2] \\ 0, & \text{in rest} \end{cases}$$

Pentru $x \in [0, 2]$,

$$f(y/x) = \begin{cases} \frac{x+y+2}{2(x+4)}, & y \in [1,3] \\ 0, & \text{in rest} \end{cases}$$

Capitolul 4

Şiruri de variabile aleatoare

4.1 Noţiuni teoretice

Tipuri de convergență

Definiția 4.1. Fie $(X_n)_{n\in\mathbb{N}^*}$ un şir de v. a. reale sau complexe definite pe un spațiu de probabilitate (Ω, \mathcal{K}, P) , iar X o altă v.a. definită pe același spațiu de probabilitate.

- 1) Sirul $(X_n)_{n\in\mathbb{N}^*}$ converge în probabilitate către X $(X_n \xrightarrow{P} X,$ când $n \longrightarrow \infty)$, dacă $\forall \varepsilon > 0, P(|X_n X| > \varepsilon) \longrightarrow 0, n \longrightarrow \infty$ sau $\forall \varepsilon > 0, P(|X_n X| < \varepsilon) \longrightarrow 1, n \longrightarrow \infty$.
- 2) Sirul $(X_n)_{n\in\mathbb{N}^*}$ converge aproape sigur către X $(X_n \xrightarrow{a.s.} X$, când $n \longrightarrow \infty)$, dacă $P(\{\omega/\lim_{n\to\infty} X_n(\omega) = X(\omega)\}) = 1$.
- 3) Sirul $(X_n)_{n\in\mathbb{N}^*}$ converge în medie de ordinul r către X $(X_n \xrightarrow{r} X,$ când $n \longrightarrow \infty)$, dacă există momentele absolute $E(|X_n|^r), n \in \mathbb{N}^*$ și E(|X|) și dacă $E(|X_n X|^r) \longrightarrow 0$, când $n \longrightarrow \infty$.
- 4) Sirul $(X_n)_{n\in\mathbb{N}^*}$ converge în repartiție sau slab către X $(X_n \xrightarrow{w} X,$ când $n \longrightarrow \infty)$, dacă $F_{X_n}(x) \longrightarrow F_X(x), n \longrightarrow \infty, \forall x \in C(F_X)$, unde $F_{X_n}, n \in \mathbb{N}^*$ și F_X sunt funcții de repartiție ale v. a. $X_n, n \in \mathbb{N}^*$ și respectiv X, iar $C(F_X) = \{x/F_X(x)$ este continuă în $x\}$ reprezintă mulțimea de continuitate a lui F_X .

Relații între tipurile de convergență

- 1) Dacă $X_n \xrightarrow{a.s.} X, n \longrightarrow \infty$, atunci $X_n \xrightarrow{P} X, n \longrightarrow \infty$.
- 2) Dacă $X_n \xrightarrow{P} X, n \longrightarrow \infty$, atunci există un subșir $(X_{n_k})_{k \in \mathbb{N}^*}$ astfel încât $X_{n_k} \xrightarrow{a.s.} X, k \longrightarrow \infty$.
- 3) Dacă $X_n \xrightarrow{r} X, n \longrightarrow \infty$, atunci $X_n \xrightarrow{P} X, n \longrightarrow \infty$. Implicația reciprocă nu are loc, deoarece $E(|X_n X|^r)$ s-ar putea să nu existe.
 - 4) Dacă $X_n \xrightarrow{r} X, n \longrightarrow \infty$, atunc
i $X_n \xrightarrow{r'} X, n \longrightarrow \infty$, pentru r' < r.
 - 5) Dacă $X_n \xrightarrow{P} X, n \longrightarrow \infty$, atunci $X_n \xrightarrow{w} X, n \longrightarrow \infty$.

Teorema 4.1. Fie $X, X_1, X_2, \ldots v$. a. discrete cu valori întregi nenegative.

$$Dac \ \ G_{X_n}(t) \longrightarrow G_X(t), n \longrightarrow \infty, \ atunci \ X_n \xrightarrow{w} X, n \longrightarrow \infty.$$

Teorema 4.2. (Helly) Dacă $X_n \xrightarrow{w} X, n \longrightarrow \infty$, atunci şirul $(\varphi_{X_n})_{n \ge 0}$ converge uniform în orice interval mărginit către φ_X . Reciproc, dacă şirul $(\varphi_{X_n})_{n \ge 0}$ converge punctual pe $\mathbb R$ către o funcție φ continuă în origine, atunci există o v. a. X cu funcția caracteristică $\varphi_X = \varphi$, astfel încât $X_n \xrightarrow{w} X, n \longrightarrow \infty$.

Legea numerelor mari

Am văzut că nu putem ști înainte de efectuarea experienței ce valoare va lua variabila aleatoare pe care o studiem. S-ar părea că , întrucât despre fiecare variabilă aleatoare dispunem de informații reduse, cu greu am putea determina comportarea mediei aritmetice a unui număr suficient de mare de variabile aleatoare. În realitate, în condiții puțin restrictive media aritmetică a unui număr suficient de mare de variabile aleatoare își pierde caracterul întâmplător. Pentru practică este foarte important să cunoaștem condițiile în care acțiunea combinată a mai mulți factori întâmplători conduce la un rezultat care să nu depindă de întâmplare, deci care să ne permită să prevedem mersul fenomenului studiat. Astfel de condiții se dau în teoremele cunoscute în calculul probabilitătilor sub denumirea comună de legea numerelor mari. Termenul de lege a numerelor mari a fost folosit pentru prima oară de Poisson, deși, cu aproximativ un secol înainte, Jacob Bernoulli a pus în evidență acțiunea legii numerelor mari cu referire la repartiția binomială. În 1867, Cebîşev precizează riguros din punct de vedere matematic legea numerelor mari în condiții generale.

Fie (Ω, \mathcal{K}, P) un spaţiu de probabilitate şi $(X_n)_{n \in \mathbb{N}^*}$ un şir de v. a. reale definite pe acest spaţiu.

Ne interesează cazul în care există un şir de numere reale $(a_n)_{n\in\mathbb{N}^*}$ astfel încât:

1)
$$\frac{1}{n} \sum_{k=1}^{n} X_k - a_n \xrightarrow{P} 0, n \longrightarrow \infty$$

sau
2) $\frac{1}{n} \sum_{k=1}^{n} X_k - a_n \xrightarrow{a.s.} 0, n \longrightarrow \infty$

De obicei se consideră cazul în care $a_n = \frac{1}{n} \sum_{k=1}^{n} E(X_k)$.

In cazul 1) (resp. 2)) se spune că șirul $(X_n)_{n\in\mathbb{N}^*}$ satisface **legea slabă a** numerelor mari (resp. **legea tare a numerelor mari**) sau că $(X_n)_{n\in\mathbb{N}^*}$ este slab stabil (resp. tare stabil).

Teorema 4.3. (Hincin) Fie $(X_n)_{n\in\mathbb{N}^*}$ un şir de v. a. independente, identic repartizate, având valoarea medie m $(m < \infty)$. Atunci şirul $(X_n)_{n\in\mathbb{N}^*}$ verifică legea slabă a numerelor mari.

Teorema 4.4. (Teorema lui Bernoulli) Să presupunem că se fac n experiențe independente, în fiecare experiență probabilitatea evenimentului A fiind p, și fie ν numărul de realizări ale evenimentului A, în cele n experiențe. Dacă ε este un număr pozitiv arbitrar suficient de mic, atunci $\lim_{n\to\infty} P(|\frac{\nu}{n}-p|<\varepsilon)=1.$

Observația 4.1. In cazul unei populații de volum mare, dacă se efectuează o selecție de volum n și se obțin ν rezultate favorabile, atunci cu o probabilitate apropiată de unitate, putem afirma că probabilitatea evenimentului cercetat este dată de frecvența relativă . Prin urmare, dacă în studiul populațiilor pentru care nu putem determina apriori probabilitatea de realizare a unui eveniment, probabilitatea teoretică p se poate exprima pe cale experimentală prin frecvența relativă $\frac{\nu}{n}$ a evenimentului considerat, fapt ce constituie justificarea teoretică a folosirii frecvenței în loc de probabilitate.

Corolarul 4.1. Pentru $\forall \varepsilon > 0$ avem $\lim_{n \to \infty} P(|f_n - p| < \varepsilon) \ge 1 - \frac{pq}{n\varepsilon^2}$, unde $f_n = \frac{\nu}{n}, \nu = de$ câte ori s-a realizat evenimentul A în n probe independente.

Teorema 4.5. (Teorema lui Poisson) Fie şirul de evenimente $A_1, A_2, \ldots, A_n, \ldots$ ale căror probabilități de verificare au valorile succesive $p_1, p_2, \ldots, p_n, \ldots$ Dacă notăm cu f_n frecvența relativă a numărului care indică de câte ori s-au realizat evenimentele $A_1, A_2, \ldots, A_n, \ldots$ și cu p expresia $p = \lim_{n \to \infty} \frac{p_1 + p_2 + \ldots + p_n}{n}$, atunci

$$\lim_{n\to\infty} P(|f_n - \frac{p_1 + p_2 + \ldots + p_n}{n}| < \varepsilon) = 1$$

Teorema 4.6. (Cebîşev) Fie $(X_n)_{n\in\mathbb{N}^*}$ un şir de v. a. independente astfel \hat{n} cât $E(X_i) = m_i, D^2(X_i) = \sigma_i^2, \forall i \in \mathbb{N}^*$. Dacă există o constantă $M < \infty$ astfel \hat{n} cât $\sigma_i^2 \leq M, \forall i \in \mathbb{N}^*$, atunci şirul $(X_n)_{n\in\mathbb{N}^*}$ verifică legea slabă a numerelor mari.

Problema limită centrală

Teorema 4.7. (Teorema Moivre-Laplace) Se consideră v. a. bernoulliene $X_1, X_2, \ldots, X_n, n \in \mathbb{N}^*$, adică

$$X_i = \begin{cases} 1, & cu \ probabilitatea \ p \\ 0, & cu \ probabilitatea \ q = 1 - p \end{cases}$$

 $\forall 1 \leq i \leq n \text{ si } v. \text{ a. } S_n = X_1 + X_2 + \ldots + X_n, n \in \mathbb{N}^*. \text{ Atunci sirul de } v. \text{ a. } (Y_n)_{n \in \mathbb{N}^*}, Y_n = \frac{S_n - np}{\sqrt{npq}}, n \in \mathbb{N}^* \text{ converge \hat{n} repartitie către o } v. \text{ a. } repartizată normal $N(0,1)$.}$

Teorema 4.8. (Teorema lui A. M. Leapunov) Fie $X_1, X_2, ..., X_n$ v. a. independente. Să notăm $m_k = E(X_k), \mu_k^2 = D^2(X_k),$

$$\begin{split} \rho_k^3 &= E(|X_k - m_k|^3), 1 \leq k \leq n, \mu^2(n) = \sum_{k=1}^n \mu_k^2, \rho^3(n) = \sum_{k=1}^n \rho_k^3. \quad \textit{Dacă} \\ \lim_{n \to \infty} \frac{\rho(n)}{\mu(n)} &= 0, \; \textit{atunci} \; (Y_n)_n \; \textit{converge în repartiție către v.} \quad \textit{a. } Y, \; \textit{unde} \\ \sum_{k=1}^n X_k - \sum_{\mu(n)}^n m_k \\ Y_n &= \frac{k=1}{\mu(n)} \; \text{i $Y \sim N(0,1)$.} \end{split}$$

4.2 Probleme rezolvate

1. Fie X o v. a. a cărei densitate de repartiție este

$$f(x) = \begin{cases} \frac{x^m}{m!} \cdot e^{-x}, & x > 0\\ 0, & \text{in rest} \end{cases}$$

Să se arate că $P(0 < X < 2(m+1)) > \frac{m}{m+1}$.

Soluție. Folosim inegalitatea lui Cebîşev:

$$P(|X - E(X)| < \varepsilon) > 1 - \frac{D^2(X)}{\varepsilon^2}$$

Avem
$$E(X) = \int_0^\infty x \cdot f(x) dx = \frac{1}{m!} \int_0^\infty x^{m+1} \cdot e^{-x} dx = \frac{\Gamma(m+2)}{m!} = \frac{(m+1)!}{m!} = m+1$$

$$E(X^{2}) = \int_{0}^{\infty} x^{2} \cdot f(x) dx = \frac{1}{m!} \int_{0}^{\infty} x^{m+2} \cdot e^{-x} dx = \frac{\Gamma(m+3)}{m!} = \frac{(m+2)!}{m!} = (m+1)(m+2)$$

$$D^2(X) = E(X^2) - [E(X)]^2 = m + 1$$

Luăm
$$\varepsilon = m+1 \Longrightarrow P(|X-(m+1)| < m+1) > 1 - \frac{m+1}{(m+1)^2} = \frac{m}{m+1} \Longrightarrow P(0 < X < 2(m+1)) > \frac{m}{m+1}$$

2. Se aruncă o monedă de n ori. Cât de mare trebuie să fie n pentru ca $P\left(\left|\frac{\alpha}{n}-\frac{1}{2}\right|<\frac{1}{100}\right)>0,99,$ știind că α reprezintă numărul de apariții ale unei fețe alese de mai înainte.

Soluție. Se știe că
$$D^2(X) = E((X - E(X))^2) = E_2(|X - E(X)|)$$

Folosim inegalitatea lui Cebîşev şi obţinem

$$P\left(\left|\frac{\alpha}{n} - \frac{1}{2}\right| < \frac{1}{100}\right) > 1 - \frac{E_2\left(\left|\frac{\alpha}{n} - \frac{1}{2}\right|\right)}{10^{-4}}$$

$$\begin{split} E\left(\left|\frac{\alpha}{n} - \frac{1}{2}\right|\right) &= E\left(\left|\frac{\alpha}{n} - \frac{1}{2}\right|^2\right) = E\left(\frac{\alpha^2}{n^2} - \frac{\alpha}{n} + \frac{1}{4}\right) = \frac{E(\alpha^2)}{n^2} - \frac{E(\alpha)}{n} + \frac{1}{4} = \\ &= \frac{n^2p^2}{n^2} + \frac{npq}{n^2} - \frac{np}{n} + \frac{1}{4} = \frac{1}{4n}, \text{ deoarece } p = q = \frac{1}{2} \end{split}$$

Deci
$$P\left(\left|\frac{\alpha}{n} - \frac{1}{2}\right| < \frac{1}{100}\right) > 1 - \frac{10^4}{4n}$$

Aflăm
$$n$$
 din inegalitatea $1 - \frac{10^4}{4n} > 0,99 \Longrightarrow n > 5^2 \cdot 10^4$

3. O variabilă aleatoare X are $E(X) = 80, E_2(X) = 6416$. Să se determine o limită inferioară a probabilității P(40 < X < 120).

Soluție.
$$40 < X < 120 \iff 80 - 40 < X < 80 + 40 \iff -40 < X - 80 < 40 \iff |X - 80| < 40 \implies P(40 < X < 120) = P(|X - 80| < 40)$$

Folosim inegalitatea lui Cebîşev şi luăm $\varepsilon=40$

Calculăm
$$D^2(X) = E_2(X) = (E(X))^2 = 16$$

Avem
$$P(|X - 80| < 40) > 1 - \frac{16}{1600} = 0,99$$

4. Limita superioară a probabilității ca abaterile, în modul, ale valorilor v. a. X față de medie, să fie mai mare decât 3, este 0,96. Să se afle $D^2(X)$.

Solutie. Folosim inegalitatea lui Cebîşev :

$$P(|X - E(X)| \ge \varepsilon) < \frac{D^2(X)}{\varepsilon^2}$$

$$P(|X - E(X)| \ge 3) < \frac{D^2(X)}{9} = 0,96 \Longrightarrow D^2(X) = 8,64$$

5. Cu ce probabilitate putem afirma că din 100 de aruncări ale unei monede, stema apare de un număr de ori cuprins între 40 și 60?

Soluție. Aplicăm formula lui Moivre-Laplace:
$$P(\alpha \leq \frac{X_n - np}{\sqrt{npq}} \leq \beta) \simeq \Phi(\beta) - \Phi(\alpha) \Longleftrightarrow P(\alpha \leq \sqrt{\frac{n}{pq}}(X_n - p) \leq \beta) \simeq \\ \simeq \Phi(\beta) - \Phi(\alpha), \text{ unde } X_n \text{ e v. a. ce ne dă numărul de apariții ale stemei când aruncăm moneda de } n \text{ ori}$$

Avem
$$p = q = \frac{1}{2}, n = 100 \Longrightarrow \alpha = \sqrt{\frac{100}{\frac{1}{2} \cdot \frac{1}{2}}} (0, 4 - 0, 5) = -2, \beta = \sqrt{\frac{100}{\frac{1}{2} \cdot \frac{1}{2}}} (0, 6 - 0, 5) = 2$$

Atunci
$$P(0, 4 \le X_n \le 0, 6) \simeq \Phi(2) - \Phi(-2) = 2\Phi(2) - 1 \simeq 2 \cdot 0,9772 - 1 = 0.9544$$

6. De câte ori trebuie aruncată o monedă pentru ca să putem spune cu o probabilitate de 0,6 că abaterea frecvenței de apariție a stemei de la probabilitatea $p = \frac{1}{2}$ să fie mai mică decât 0,01?

Soluție. Cf. teoremei Moivre-Laplace avem
$$P(\sqrt{\frac{n}{pq}}|X_n - p| \le \beta) \simeq 2\Phi(\beta) - 1$$

Ştim
$$2\Phi(\beta) - 1 = 0, 6 \Longrightarrow \Phi(\beta) = 0, 8 \Longrightarrow \beta = 0, 84$$

Dar $0, 84 = \sqrt{\frac{n}{\frac{1}{2} \cdot \frac{1}{2}}} \cdot 0, 01 \Longrightarrow n = 1764$

7. Se aruncă de 360 de ori o pereche de zaruri. Cu ce probabilitate ne putem aștepta să apară 12 puncte (dubla 6) de un număr de ori cuprins între 8 și 12?

Soluție. Probabilitatea ca să apară 12 puncte într-o aruncare cu 2 zaruri este $p=\frac{1}{36},$ iar probabilitatea ca să nu apară 12 puncte este $q=1-p=\frac{35}{36}$

Cf. teoremei Moivre-Laplace $\Longrightarrow P(\alpha \leq \sqrt{\frac{n}{pq}}(X_n - p) \leq \beta) \simeq \Phi(\beta) - \Phi(\alpha)$

$$n = 360, \alpha = \sqrt{\frac{360}{\frac{1}{36} \cdot \frac{35}{36}}} \cdot \left(\frac{8}{360} - \frac{1}{36}\right) = -\frac{6}{5\sqrt{3.5}} \simeq -0,641, \beta = \sqrt{\frac{360}{\frac{1}{36} \cdot \frac{35}{36}}} \cdot \left(\frac{12}{360} - \frac{1}{36}\right) = \frac{6}{5\sqrt{3.5}} \simeq 0,641$$

$$P(-\frac{6}{5\sqrt{3.5}} \le X_n - \frac{1}{36} \le \frac{6}{5\sqrt{3.5}}) \simeq 2\Phi(\beta) - 1 = 2 \cdot 0,7389 - 1 = 0,48$$

8. Probabilitatea ca o anumită operație chirurgicală să fie un succes este 0,8. Dacă operația este făcută la 120 de persoane, găsiți probabilitatea ca mai mult de 90 de operații să aibă succes?

Soluție. Dacă X este v. a. binomială ce reprezintă numărul de operații cu succes, atunci vrem să aflăm probabilitatea $P(X \ge 90)$.

Cum n e mare, vom folosi distribuția normală cu $m=120\cdot 0, 8=96$ și $\sigma=\sqrt{120\cdot 0, 8\cdot 0, 2}=4,38$ pentru a aproxima distribuția binomială a lui X.

Obţinem
$$P(X \ge 90) = P(\frac{X-96}{4,38} \ge \frac{90-96}{4,38}) = P(\frac{X-96}{4,38} \ge -1,37) = 1 - P(\frac{X-96}{4,38} < -1,37) = 1 - \Phi(-1,37) = 0,9147.$$

- 9. Probabilitatea obținerii unei piese rebut din producția unei mașini automate este p=0,005. Să se determine probabilitatea ca din 10000 de piese fabricate la această mașină , numărul pieselor rebut să fie:
 - a) între 60 și 70;
 - b) cel mult 70.

Soluție. Fie
$$X_k \sim \begin{pmatrix} 0 & 1 \\ 0,995 & 0,005 \end{pmatrix}, k \in \mathbb{N}^*$$
 și $S_n = \sum_{k=1}^n X_k$

 S_n reprezintă numărul de piese rebut; este o v. a. cu o repartiție binomială de parametrii n=10000, p=0,005. Deci $E(S_n)=np=50, D^2(S_n)=npq=49,75, \sigma=\sqrt{D^2(S_n)}\approx 7$

Cf. teoremei Moivre-Laplace, repartiția limită a repartiției binomiale este repartiția normală de parametrii np și \sqrt{npq} și rezultă că

$$P(a \le S_n \le b) \simeq \Phi\left(\frac{b-np}{\sqrt{npq}}\right) - \Phi\left(\frac{a-np}{\sqrt{npq}}\right)$$

a)
$$P(60 \le S_n \le 70) \simeq \Phi\left(\frac{70-50}{7}\right) - \Phi\left(\frac{60-50}{7}\right) = \Phi\left(\frac{20}{7}\right) - \Phi\left(\frac{10}{7}\right) = 0,49788 - 0,42364 \simeq 0,07$$

b) $P(0 \le S_n \le 70) \simeq \Phi\left(\frac{70-50}{7}\right) - \Phi\left(-\frac{50}{7}\right) \simeq 0,997$

- 1) Să se determine probabilitatea ca numărul de aparate ce trebuie reparate să fie cuprins între 250 și 350;
- 2) Să se determine numărul de reparații n ce trebuie efectuate în atelier pentru ca probabilitatea p a numărului de aparate în reparație să fie p = 0, 9.

Soluție. 1) Fie evenimentul A= aparatul trebuie reparat și X= numărul de apariții ale evenimentului A; X este o v. a. repartizată normal

Atunci
$$E(X) = 500 \cdot 0, 3 + 1000 \cdot 0, 4 = 550, D^2(X) = 500 \cdot 0, 3 \cdot 0, 7 + 1000 \cdot 0, 4 \cdot 0, 6 = 345$$

$$P(250 \le X \le 350) \simeq P(250 < X < 350) = P(|X - 300| < 50) = 2\Phi\left(\frac{50}{\sqrt{345}}\right) - 1$$

2)
$$P(X < n) = 0, 9 = \Phi\left(\frac{n - 300}{\sqrt{345}}\right)$$

Din tabele
$$\Phi(1,27) \simeq 0,9 \Longrightarrow \frac{n-300}{\sqrt{345}} = 1,27 \Longrightarrow n \simeq 323$$

11. O întreprindere fabrică un anumit produs cu $5^0/_0$ rebuturi. Ce comandă trebuie să facă un beneficiar pentru ca, cu probabilitatea 0,8, să nu achiziționeze mai mult de 4 produse defecte?

Soluție. Fie X =numărul de produse fără defecte achiziționate dintrocomandă de n produse

Cf. teoremei Moivre-Laplace
$$\Longrightarrow 0, 8 = P(X \ge 5) \simeq 1 - \Phi\left(\frac{5 - 0.05n}{\sqrt{0.05 \cdot 0.95 \cdot n}}\right)$$

Din tabel $\Phi(0, 84) \simeq 0, 8$

Deci
$$\frac{5-0.05n}{\sqrt{0.05\cdot0.95\cdot n}}=-0.84\Longrightarrow n\simeq 144$$
 (deoarece $\Phi(0,84)=1--\Phi(-0.84))$

12. Presupunem că 120 de persoane stau la coada unei casierii pentru a-și primi drepturile bănești. Sumele care trebuie primite de fiecare sunt v. a. X_1, \ldots, X_{120} independente și identic repartizate cu media m=50 și abaterea standard $\sigma=30$. Casieria dispune de 6500 unități monetare. Calculați probabilitatea ca toate persoanele să-și primească drepturile.

Soluție. Notăm $S = X_1 + \ldots + X_{120}$

$$S$$
 poate fi aproximată cu o v. a. normală cu $E(S) = E(\sum_{k=1}^{120} X_k) =$

$$= \sum_{k=1}^{120} E(X_k) = 120 \cdot 50 = 6000 \text{ si } D^2(S) = D^2(\sum_{k=1}^{120} X_k) = \sum_{k=1}^{k=1} D^2(X_k) = 120 \cdot 30^2 = 108000$$

Atunci
$$P(S \le 6500) \simeq \Phi\left(\frac{6500 - 6000}{\sqrt{108000}}\right) \simeq 0,936$$

- 13. La un restaurant pot servi prânzul 75 de clienți. Din practică , proprietarul știe ca $20^0/_0$ dintre clienții care au rezervat loc nu se mai prezintă .
 - a) Proprietarul acceptă 90 de rezervări. Care este probabilitatea ca să se prezinte mai mult de 50 de clienți?
 - b) Câte rezervări trebuie să accepte proprietarul pentru ca, cu o probabilitate mai mare sau egală cu 0,9, să poată servi toți clienții care se prezintă ? $(\Phi(1,281)=0,9)$

Soluție. a) Fie X v. a. ce reprezintă numărul de clienți care se prezintă la restaurant ; X este repartizată binomial cu p=0,8.

Avem
$$n=90, E(X)=np=72, D^2(X)=npq=14, 4\Longrightarrow \sigma=\sqrt{14,4}\simeq 3,795$$

Cf. th. Moivre -Laplace obtainem
$$P(X>50)=1-P(X\leq 50)=1-P(X\leq 50)=1-P\left(\frac{X-np}{\sigma}\leq \frac{50-72}{3,795}\right)=1-\Phi(-5,797)=1-1+\Phi(5,975)=\Phi(5,975)\simeq 2$$

b) Vom determina n astfel încât $P(X \le 75) \ge 0.9$

$$P(X \le 75) = P\left(\frac{X - np}{\sqrt{npq}} \le \frac{75 - 0.8n}{\sqrt{0.16n}}\right) \ge 0, 9 = \Phi(1, 281) \Longrightarrow \frac{75 - 0.8n}{\sqrt{0.16n}} \ge 21, 281 \Longrightarrow n < 88$$

- 14. Probabilitatea de câștig la ruletă este de $\frac{1}{35}$. Presupunem că la fiecare joc, un jucător poate câștiga sau pierde 1 dolar.
 - a) Câte jocuri trebuie jucate zilnic în cazino astfel încât cu probabilitatea 0,5, câștigul cazinoului să fie cel puțin 1000 dolari zilnic. $(\Phi(0) = 0,5)$
 - b) Să se determine apoi procentul zilelor în care cazinoul pierde.

Soluție.a) Fie X_i v. a. ce reprezintă profitul cazinoului într-o zi; $X_i \sim \begin{pmatrix} 0 & 1 \\ \frac{34}{35} & \frac{1}{35} \end{pmatrix}$

$$P(\sum_{i=1}^{n} X_{i} > 1000) = 1 - P(\sum_{i=1}^{n} X_{i} \le 1000) = 1 - P(\sum_{i=1}^{n} X_{i} \le 1000) = 1 - P(\sum_{i=1}^{n} X_{i} - n \cdot \frac{1}{35}) = 1 - P(\sum_{i=1}^$$

15. Calitatea unor piese este apreciată prin caracteristica X care este repartizată normal cu media 10 cm și abaterea medie pătratică 0,15 cm. Piesele sunt acceptate numai dacă valorile caracteristicii X sunt cuprinse în intervalul (9,8 cm, 10,2 cm). Firma producătoare are o comandă de 3000 de piese. Să se determine numărul de piese care trebuie să fie produse de firmă astfel încât să se poată onora contractul.

Soluție. Fie n numărul de piese care trebuie să fie produse de firmă astfel încât contractul să fie onorat, x numărul pieselor contractate și p probabilitatea realizării evenimentului (9,8 cm< X < 10,2 cm)

Cf. teoremei lui Bernoulli, pentru n suficient de mare se poate considera $n \approx x \cdot \frac{1}{n}$

$$P(9,8 < X < 10,2) = \Phi(\frac{10,2-10}{0,15}) - \Phi(\frac{9,8-10}{0,15}) = 0,81$$
 Deci $n = 3000 \cdot \frac{1}{0.81} = 3690$

16. Pentru un studiu biologic sunt cercetate 1000 de probe independente, dacă au sau nu o anumită caracteristică biologică . Să se determine o margine inferioară a probabilității ca diferența, în valoare absolută , dintre frecvența relativă și probabilitatea p de a apărea caracteristica într-o probă , să fie mai mică decât 0.03.

$$\begin{array}{ll} \textit{Soluție}. \ \ \text{Cf. consecinței teoremei lui Bernoulli} \Longrightarrow p = q = \frac{1}{2}, \varepsilon = \\ = 0,03 \Longrightarrow P(|\frac{x}{n} - p| < 0,03) \geq 1 - \frac{pq}{n\varepsilon^2} = 1 - \frac{\frac{1}{2},\frac{1}{2}}{1000\cdot 0,03^2} = 0,72 \end{array} \quad \Box$$

17. Fie şirurile de variabile aleatoare definite pe acelaşi câmp de probabilitate $(X_n)_{n\geq 1}, (Y_n)_{n\geq 1}, (Z_n)_{n\geq 1},$ unde $X_n \sim \begin{pmatrix} -5n & 0 & 5n \\ \frac{1}{3n^2} & 1 - \frac{2}{3n^2} & \frac{1}{3n^2} \end{pmatrix}$,

$$Y_n \sim \begin{pmatrix} -n^2 & 0 & n^2 \\ \alpha^{-n} & 1-2\alpha^{-n} & \alpha^{-n} \end{pmatrix}$$
 și Z_n are densitatea de repartiție

$$f_n(x) = \begin{cases} \lambda^{-n} e^{-\frac{x}{\lambda^n}}, & x > 0\\ 0, & \text{in rest} \end{cases}$$

 $\forall n \geq 1, \lambda > 0.$ Să se verifice aplicabilitatea teoremei lui Cebîşev celor trei şiruri.

Soluție. Teorema este aplicabilă dacă media e finită și dispersia este egal mărginită .

$$E(X_n) = (-5n) \cdot \frac{1}{3n^2} + 0 \cdot (1 - \frac{2}{3n^2}) + 5n \cdot \frac{1}{3n^2} = 0, E(X_n^2) = (-5n)^2 \cdot \frac{1}{3n^2} + 0^2 \cdot (1 - \frac{2}{3n^2}) + (5n)^2 \cdot \frac{1}{3n^2} = \frac{50}{3}, D^2(X_n) = \frac{50}{3} \Longrightarrow \text{ teorema se aplică}$$

$$E(Y_n) = (-n^2) \cdot \alpha^{-n} + 0 \cdot (1 - 2\alpha^{-n}) + n^2 \cdot \alpha^{-n} = 0, E(Y_n^2) =$$

$$= (-n^2)^2 \cdot \alpha^{-n} + 0^2 \cdot (1 - 2\alpha^{-n}) + (n^2)^2 \cdot \alpha^{-n} = \frac{2n^4}{\alpha^n}, D^2(Y_n) = \frac{2n^4}{\alpha^n} \Longrightarrow$$

$$\Longrightarrow \lim_{n \to \infty} D^2(Y_n) = 0 \Longrightarrow \exists c \in (0, \infty) \text{ astfel încât } \forall n \ge 1, D^2(Y_n) \le$$

$$\le c \Longrightarrow \text{teorema se aplică}$$

$$E(Z_n) = \int_0^\infty x \lambda^{-n} e^{-\frac{x}{\lambda^n}} dx = \lambda^n, E(Z_n^2) = \int_0^\infty x^2 \lambda^{-n} e^{-\frac{x}{\lambda^n}} dx = 2\lambda^{2n} \Longrightarrow D^2(Z_n) = \lambda^{2n} \Longrightarrow$$

$$\lim_{n \to \infty} D^2(Z_n) = \begin{cases} 0, & \lambda \in (0, 1) \\ 1, & \lambda = 1 \\ \infty, & \lambda > 1 \end{cases}$$

deci teorema se aplică numai dacă $\lambda \in (0,1]$

18. Fie $(X_n)_{n\geq 1}$ un şir de variabile aleatoare independente ce pot lua valorile $\pm \sqrt{\lg n}$ cu probabilitățile $P(X_k = \sqrt{\lg k}) = P(X_k = -\sqrt{\lg k}) = \frac{1}{2}, k = 2, 3, \ldots, P(X_1 = 0) = 1$. Să se arate că şirul dat se supune legii numerelor mari în formularea lui Cebîşev.

Soluție. Se constată că
$$E(X_k) = \sqrt{\lg k} \cdot \frac{1}{2} + (-\sqrt{\lg k}) \cdot \frac{1}{2} = 0, E(X_k^2) = (\sqrt{\lg k})^2 \cdot \frac{1}{2} + (-\sqrt{\lg k})^2 \cdot \frac{1}{2} = \lg k, D^2(X_k) = \lg k, k = 2, 3, \dots$$

Luăm
$$Y_n = \frac{1}{n} \sum_{k=1}^n X_k \Longrightarrow E(Y_n) = \frac{1}{n} \sum_{k=1}^n E(X_k) = 0$$

$$D^{2}(Y_{n}) = \frac{1}{n^{2}} \sum_{k=1}^{n} D^{2}(X_{k}) = \frac{1}{n^{2}} \sum_{k=1}^{n} \lg k$$

 $D^2(Y_n)$ poate fi majorată astfel:

$$\sum_{k=1}^{n} \lg k < \int_{1}^{n+1} \lg x dx = x \lg x / \frac{n+1}{1} - \int_{1}^{n+1} dx = (n+1) \lg(n+1) - 1$$
$$-n \Longrightarrow D^{2}(Y_{n}) < \frac{(n+1) \lg(n+1)}{n^{2}} \Longrightarrow \lim_{n \to \infty} D^{2}(Y_{n}) = 0$$

Sunt îndeplinite condițiile teoremei Markov și rezultă

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{k=1}^n X_k - \frac{1}{n}\sum_{k=1}^n E(X_k)\right| < \varepsilon\right) = 1 \Longrightarrow \text{ şirului dat i se poate}$$
 aplica legea numerelor mari

19. Fie $(X_n)_{n\geq 1}$ un şir de variabile aleatoare independente astfel încât $P(X_n = \frac{1}{n^{\beta}}) = P(X_n = -\frac{1}{n^{\beta}}) = p$, cu $\frac{1}{3} < \beta \leq \frac{1}{2}, n \in \mathbb{N}^*$ şi $P(X_n = 0) = 1 - 2p$. Să se arate că şirului $(X_n)_{n\geq 1}$ i se poate aplica teorema lui Leapunov.

Soluţie. Obţinem
$$E(X_k) = \frac{1}{k^{\beta}} \cdot p + (-\frac{1}{k^{\beta}}) \cdot p = 0, E(X_k^2) = (\frac{1}{k^{\beta}})^2 \cdot p + (-\frac{1}{k^{\beta}})^2 \cdot p = \frac{2p}{k^{2\beta}} = \mu_k^2, E(|X_k|^3) = \frac{2p}{k^{3\beta}} = \rho_k^3 \Longrightarrow \mu^2(n) = \sum_{k=1}^n \mu_k^2 = 2p\sum_{k=1}^n \frac{1}{k^{2\beta}}, \rho^3(n) = \sum_{k=1}^n \rho_k^3 = 2p\sum_{k=1}^n \frac{1}{k^{3\beta}}$$

 $\operatorname{Cum} \ \tfrac{1}{3} < \beta \leq \tfrac{1}{2} \Longrightarrow 1 < 3\beta \leq \tfrac{3}{2} \Longrightarrow \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^{3\beta}} = \sum_{k=1}^{\infty} \frac{1}{k^{3\beta}} \text{ e o series}$

$$\sum_{k=1}^n \frac{1}{k^{2\beta}} > \sum_{k=1}^n \frac{1}{k}$$
 ce tinde la ∞ când $n \longrightarrow \infty$

Condiția lui Leapunov $\lim_{n\to\infty}\frac{\sqrt[3]{\rho(n)^3}}{\sqrt{\mu(n)^2}}=0$ e îndeplinită \Longrightarrow şirului $(X_n)_{n>1}$ i se poate aplica teorema lui Leapunov

20. Fie $(X_n)_{n\geq 1}$ un şir de variabile aleatoare independente pentru care $P(X_n=3^{n-1})=P(X_n=-3^{n-1})=\frac{1}{2}, n=1,2,3,\ldots$ Dacă notăm cu $Y_n=\frac{1}{S_n}\sum_{k=1}^n X_k$, unde $S_n=D^2(\sum_{k=1}^n X_k)$, să se arate că Y_n nu converge în probabilitate către 0.

Soluție. Avem
$$E(X_k) = 3^{k-1} \cdot \frac{1}{2} + (-3^{k-1}) \cdot \frac{1}{2} = 0, E(X_k^2) = (3^{k-1})^2 \cdot \frac{1}{2} + (-3^{k-1})^2 \cdot \frac{1}{2} = 3^{2(k-1)}, D^2(X_k) = 3^{2(k-1)}$$

$$D^{2}(\sum_{k=1}^{n} X_{k}) = \sum_{k=1}^{n} D^{2}(X_{k}) = \sum_{k=1}^{n} 3^{2(k-1)} = \frac{3^{2n} - 1}{3^{2} - 1} = \frac{9^{n} - 1}{8}$$

$$\begin{split} |X_n| &= |X_n + X_{n-1} - X_{n-1}| \leq |X_n + X_{n-1}| + |X_{n-1}| \leq |X_n + X_{n-1} + \\ &+ \ldots + |X_1| + |X_{n-1}| + \ldots + |X_1| \Longrightarrow |Y_n| \geq \frac{|X_n| - |X_1| - |X_2| - \ldots - |X_{n-1}|}{S_n} = \\ &= \frac{3^{n-1} - (1 + 3 + \ldots + 3^{n-2})}{\sqrt{\frac{9^n - 1}{8}}} > \frac{\sqrt{2}}{3} \Longrightarrow P(|Y_n| > \frac{\sqrt{2}}{3}) = 1 \Longrightarrow P(|Y_n| > \varepsilon) \text{ nu} \end{split}$$

tinde la 0, dacă $\varepsilon \leq \frac{\sqrt{2}}{3} \Longrightarrow (Y_n)_n$ nu converge în probabilitate către 0

21. Dacă funcțiile de repartiție corespunzătoare șirului de variabile $(X_n)_n$ tind către o repartiție limită și dacă șirul $(Y_n)_n$ converge în probabilitate la 0, atunci șirul $(X_nY_n)_n$ converge în probabilitate către 0.

Soluţie. Fie
$$a \in \mathbb{R}, a > 0 \Longrightarrow \left\{ \omega/|X_n(\omega)Y_n(\omega)| > \varepsilon \right\} \subset$$

$$\subset \left\{ \omega/|X_n(\omega)| > a \right\} \cup \left\{ \omega/|Y_n(\omega)| > \frac{\varepsilon}{a} \right\} \Longrightarrow$$

$$\Longrightarrow P\left(\left\{ \omega/|X_n(\omega)Y_n(\omega)| > \varepsilon \right\} \right) \leq P\left(\left\{ \omega/|X_n(\omega)| > a \right\} \right) +$$

$$+P\left(\left\{ \omega/|Y_n(\omega)| > \frac{\varepsilon}{a} \right\} \right) \leq P(X_n(\omega) < -a) + 1 - P(X_n(\omega) \leq a) +$$

$$+P(|Y_n(\omega)| > \frac{\varepsilon}{a}) \leq F_n(-a) + 1 - F_n(a) + P(|Y_n(\omega)| > \frac{\varepsilon}{a})$$

Dacă a e luat astfel încât -a și a să fie puncte de continuitate pentru funcția de repartiție limită F, atunci din ipoteză obținem $\limsup_{n\to\infty} P(\left\{\omega/|X_n(\omega)Y_n(\omega)|>\varepsilon\right\}) \leq F(-a)+1-F(a)$

Alegem a astfel încât -a și a să fie puncte de continuitate pentru F și, în plus, să avem $F(-a) < \frac{\delta}{2}, 1 - F(a) < \frac{\delta}{2}$ cu $\delta > 0 \Longrightarrow \lim \sup_{n \to \infty} P(\left\{\omega/|X_n(\omega)Y_n(\omega)| > \varepsilon\right\}) \le \delta$

Cum δ e arbitrar $\Longrightarrow (X_n Y_n)_n$ converge în probabilitate către 0 \square

22. Fie $(X_n)_n$ un şir de variabile aleatoare Poisson, independente cu $E(X_k) = \lambda_k$ şi $Y_n = \frac{1}{n} \sum_{k=1}^n X_k$. Să se arate că dacă există $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \lambda_k = \lambda$, atunci şirul de variabile aleatoare $(Y_n)_n$ converge în probabilitate către λ .

Soluție. Cum $(X_n)_n$ un șir de variabile aleatoare Poisson $\Longrightarrow \lambda_k = E(X_k) = D^2(X_k)$

Cum variabilele X_n sunt independente $\Longrightarrow D^2(Y_n) = \frac{1}{n^2} \sum_{k=1}^n D^2(X_k) =$

$$=\frac{1}{n^2}\sum_{k=1}^n\lambda_k=\frac{1}{n}\cdot\frac{\displaystyle\sum_{k=1}^n\lambda_k}{n}\longrightarrow 0, \text{ când } n\longrightarrow\infty$$

$$E(Y_n) = \frac{1}{n} \sum_{k=1}^{n} E(X_k) = \frac{1}{n} \sum_{k=1}^{n} \lambda_k \longrightarrow \lambda$$

Folosind inegalitatea lui Cebîşev $\Longrightarrow 0 \le P(|Y_n - \lambda| \ge \varepsilon) < \frac{D^2(Y_n)}{\varepsilon^2} \longrightarrow 0$, deci $P(|Y_n - \lambda| \ge \varepsilon) \longrightarrow 0 \Longrightarrow (Y_n)_n$ converge în probabilitate către 0

23. Fie $(X_n)_n$ un şir de v. a. independente astfel încât $P(X_n=1)=1-\frac{1}{n}, P(X_n=n)=\frac{1}{n}, n>1$. Să se arate că $(X_n)_n$ converge în probabilitate la 1, când $n\longrightarrow \infty$, dar $(X_n)_n$ nu converge aproape sigur la 1, când $n\longrightarrow \infty$.

Soluţie. $\forall \varepsilon > 0, P(|X_n - 1| > \varepsilon) = P(X_n = n) = \frac{1}{n} \longrightarrow 0 \Longrightarrow X_n \xrightarrow{P} 1$ $X_n \xrightarrow{a.s} X \iff \forall \varepsilon > 0, \forall \delta \in (0, 1) \exists n_0 \text{ astfel încât } \forall n > n_0 \text{ avem}$ $P(\bigcap_{m > n} \{|X_m - X| < \varepsilon\}) > 1 - \delta (1)$

Pentru $\forall \varepsilon>0, \delta\in(0,1), N>n$ obţinem $P(\bigcap_{m>n}\big\{|X_m-1|<\varepsilon\big\})\leq$

$$\leq P(\bigcap_{m=n+1}^{N} \{|X_m-1| < \varepsilon\}) = \prod_{m=n+1}^{N} P(|X_m-1| < \varepsilon) = \prod_{m=n+1}^{N} P(X_m-1) = \prod_{m=n+1}^{N} \left(1 - \frac{1}{m}\right) = \frac{n}{N} < 1 - \delta \text{ cu condiția să alegem } N \text{ astfel încât } N > \frac{n}{1-\delta} \Longrightarrow \text{ nu există } n_0 \text{ astfel încât să aibă loc } (1) \Longrightarrow (X_n)_n \text{ nu converge aproape sigur la 1, când } n \longrightarrow \infty \quad \square$$

24. Fie $\alpha > 0$ şi $(X_n)_n$ un şir de v. a. astfel încât $P(X_n = 1) = 1 - \frac{1}{n^{\alpha}}, P(X_n = n) = \frac{1}{n^{\alpha}}, n > 1$. Să se arate că $(X_n)_n$ converge în probabilitate la 1 şi $(X_n)_n$ converge în medie de ordinul r la 1, când $r < \alpha$, dar $(X_n)_n$ nu converge în medie de ordinul r la 1, când $r \ge \alpha$.

Soluție.
$$P(|X_n - 1| > \varepsilon) = P(X_n = n) = \frac{1}{n^{\alpha}} \longrightarrow 0 \Longrightarrow X_n \xrightarrow{P} 1$$

Cum $E(|X_n - 1|^r) = 0 \cdot \left(1 - \frac{1}{n^{\alpha}}\right) + |n - 1|^r \cdot \frac{1}{n^{\alpha}} = \frac{(n-1)^r}{n^{\alpha}} \Longrightarrow$

$$E(|X_n - 1|^r) \longrightarrow \begin{cases} 0, & r < \alpha \\ 1, & r = \alpha \\ \infty, & r > \alpha \end{cases}$$

25. Fie $(X_n)_n$ un şir de v. a. având repartiţia $X_n \sim \begin{pmatrix} -n^{\frac{2}{r}} & 0 & n^{\frac{2}{r}} \\ \frac{1}{2n^2} & 1 - \frac{1}{n^2} & \frac{1}{2n^2} \end{pmatrix}$. Să se arate că $(X_n)_n$ converge aproape sigur către 0.

Soluție. $A_{j,\delta} = \left\{ \omega/|X_j(\omega)| \le \delta \right\}$

$$B_{n,\delta} = \bigcap_{j=n}^{\infty} A_{j,\delta}$$

$$B_{n,\delta}^{c} = \bigcup_{j=n}^{\infty} A_{j,\delta}^{c}$$

$$P(B_{n,\delta}^{c}) = P(\bigcup_{j=n}^{\infty} A_{j,\delta}^{c}) \le \sum_{j=n}^{\infty} P(A_{j,\delta}^{c}) = \sum_{j=n}^{\infty} P(|X_{j}(\omega)| > \delta)$$
Din definiția şirului $(X_{n})_{n} \Longrightarrow \text{pentru } n \ge 1, \delta < 1 \text{ avem } P(|X_{j}(\omega)| > \delta)$

$$\delta) = P(X_{j}(\omega) = -j^{\frac{2}{r}}) + P(X_{j}(\omega) = j^{\frac{2}{r}}) = \frac{1}{j} \Longrightarrow P(B_{n,\delta}) \le \sum_{j=n}^{\infty} \frac{1}{j^{\frac{2}{r}}} \Longrightarrow P(B_{n,\delta})$$

$$\delta) = P(X_j(\omega) = -j^{\frac{2}{r}}) + P(X_j(\omega) = j^{\frac{2}{r}}) = \frac{1}{j} \Longrightarrow P(B_{n,\delta}) \le \sum_{j=n}^{\infty} \frac{1}{j^2} \longrightarrow 0 \text{ (când } n \longrightarrow \infty)$$

$$\lim_{n \to \infty} P(B_{n,\delta}) = \lim_{n \to \infty} P(\bigcap_{j=n}^{\infty} \{\omega/|X_j(\omega)| \le \delta\}) = 1$$

26. Fie $(X_n)_n$ un șir de v. a. pozitive cu densitățile de repartiție date de

$$f_n(x) = \begin{cases} \frac{x^{n-1}e^{-x}}{(n-1)!}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Să se arate că șirul $\left(\frac{X_n-E(X_n)}{\sqrt{D^2(X_n)}}\right)_n$ urmează la limită o lege normală N(0,1).

Soluție.
$$E(X_n) = \frac{1}{(n-1)!} \int_0^\infty x^n e^{-x} dx = \frac{\Gamma(n+1)}{(n-1)!} = n$$

$$E(X_n^2) = \frac{1}{(n-1)!} \int_0^\infty x^{n+1} e^{-x} dx = \frac{\Gamma(n+2)}{(n-1)!} = n(n+1)$$

$$D^2(X_n) = n(n+1) - n^2 = n$$
Şirul $Y_n = \frac{X_n - E(X_n)}{\sqrt{D^2(X_n)}}$ devine $Y_n = \frac{X_n - n}{\sqrt{n}} = \frac{1}{\sqrt{n}} X_n - \sqrt{n}$

Dacă notăm $\varphi_n(t)$ funcția caracteristică a v. a. Y_n și reușim să arătăm că $\lim_{n\to\infty}\varphi_n(t)=\mathrm{e}^{-\frac{t^2}{2}}$, demonstrația s-a încheiat, deoarece folosim teorema ce leagă între ele șirurile de funcții de repartiție și cele caracteristice corespunzătoare unui șir de v. a.

Folosind definiția funcției caracteristice avem

$$\varphi_n(t) = \int_0^\infty e^{it\left(\frac{x}{\sqrt{n}} - \sqrt{n}\right)} f_n(x) dx = e^{-it\sqrt{n}} \cdot \frac{1}{(n-1)!} \int_0^\infty x^{n-1} e^{-\left(1 - \frac{it}{\sqrt{n}}\right)x} dx = e^{-it\sqrt{n}} \left(1 - \frac{it}{\sqrt{n}}\right)^{-n} \text{ (cu ajutorul funcției } \Gamma\text{)}$$

$$\ln \varphi_n(t) = -it\sqrt{n} - n\ln\left(1 - \frac{it}{\sqrt{n}}\right) = -it\sqrt{n} + n\cdot\left(\frac{it}{\sqrt{n}} - \frac{t^2}{2n} + o(n)\right) =$$
$$= -\frac{t^2}{2} + o'(n) , \operatorname{dac\check{a}} \left|\frac{t}{\sqrt{n}}\right| < 1$$

4.2. PROBLEME REZOLVATE

117

Cum
$$\lim_{n \to \infty} \ln \varphi_n(t) = -\frac{t^2}{2} \Longrightarrow \lim_{n \to \infty} \varphi_n(t) = e^{-\frac{t^2}{2}} \Longrightarrow$$

$$\Longrightarrow \lim_{n \to \infty} P\left(\frac{X_n(\omega) - E(X_n)}{\sqrt{D^2(X_n)}} < x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$$

27. Se știe că dacă $(X_n)_{n\in\mathbb{N}^*}$ este un șir de v. a. convergent în medie pătratică , atunci $\lim_{n\to\infty} E(X_n) = E(X)$ și $\lim_{n\to\infty} E(X_n^2) = E(X^2)$, unde $X = \lim_{n\to\infty} X_n$. Să se arate că dacă se înlocuiește condiția de convergență în medie pătratică cu convergența în probabilitate, afirmația nu mai este adevărată .

Soluție. Fie $(X_n)_{n\in\mathbb{N}^*}$ un șir de v. a. care pot lua valorile -(n+4), -1, n+4 cu probabilitățile $P(X_n=-n-4)=\frac{1}{n+4}, P(X_n=-1)=1-\frac{4}{n+4}, P(X_n=n+4)=\frac{3}{n+4}$

Avem $\lim_{n\to\infty} P(|X_n+1|>\varepsilon)=0$, ceea ce arată că şirul $(X_n)_{n\in\mathbb{N}^*}$ converge în probabilitate către -1.

Pe de altă parte $E(X_n)=1+\frac{4}{n+4}$, deci $\lim_{n\to\infty} E(X_n)=1$, de unde rezultă concluzia că $\lim_{n\to\infty} E(X_n)=1\neq -1=E(\lim_{n\to\infty} X_n)$.

28. Să se arate că există șiruri de v. a. care converg atât în medie de ordinul r cât și aproape sigur.

Soluție. Fie șirul de v. a. $(X_n)_{n\in\mathbb{N}^*}$, unde $X_n \sim \begin{pmatrix} -\frac{1}{n} & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ Deoarece $E(|X_n|^r) = \frac{1}{n^r}$ rezultă că $\lim_{n\to\infty} E(|X_n|^r) = 0$, ceea ce arată că șirul $(X_n)_{n\in\mathbb{N}^*}$ converge în medie de ordinul r.

Fie
$$T_{j,\delta} = \{\omega/|X_j(\omega)| \le \delta\}$$

Din felul cum am definit şirul $(X_n)_{n \in \mathbb{N}^*}$ rezultă că pentru orice j < k avem $|X_j| > |X_k|$.

Deci
$$\{\omega/|X_j(\omega)| \le \delta\} \subset \{\omega/|X_k(\omega)| \le \delta\} \Longrightarrow T_{1,\delta} \subset T_{2,\delta} \subset \ldots \subset T_{n,\delta} \subset T_{n+1,\delta} \subset \ldots$$

In acest caz
$$S_{n,\delta} = \bigcap_{j=n}^{\infty} T_{j,\delta} = T_{n,\delta}$$

Fie $\delta > 0$ dat. Dacă $n > \frac{1}{\delta}$ din definiția șirului și din relațiile găsite avem $P(S_{n,\delta}) = P(T_{n,\delta}) = P(\{\omega/|X_n(\omega)| \le \delta\}) = 1$, ceea ce înseamnă că $(X_n)_{n \in \mathbb{N}^*}$ converge aproape sigur către 0.

29. Să se arate că poate exista un şir de v. a. convergent în medie pătratică și care să nu fie convergent aproape sigur.

Soluție. Fie $(Y_n)_{n\in\mathbb{N}^*}$ un șir de v. a. independente care iau doar valorile -1,0,1 cu probabilitățile $P(Y_n=-1)=P(Y_n=1)=\frac{1}{2\sqrt[4]{n}},$ $P(Y_n=0)=1-\frac{1}{\sqrt[4]{n}}, n=1,2,\ldots$

Pentru $n \geq 2$ definim evenimentul E_n ca fiind evenimentul ce constă în faptul că toți $Y_i = 0$ cu $n - \sqrt{n} \leq i < n$.

Probabilitatea acestui eveniment este, datorită independenței v. a. $(Y_n)_{n\in\mathbb{N}^*}$:

$$P(E_n) = \prod_{n - \sqrt{n} \le i < n} P(Y_i = 0) = \prod_{n - \sqrt{n} \le i < n} \left(1 - \frac{1}{\sqrt[4]{i}}\right)$$

Se știe că pentru orice numir real, $0 \le b < 1$ este adevărată inegalitatea $1 - b \le e^{-b}$.

Utilizând acest fapt, putem scrie $P(E_n) \leq$ e $\frac{1}{n-\sqrt{n}} \leq e^{in} = 1$, de unde rezultă $\lim_{n\to\infty} P(E_n) = 0$.

Definim, cu ajutorul şirului $(Y_n)_{n\in\mathbb{N}^*}$ considerat mai înainte şirul de v. a. $(X_n)_{n\in\mathbb{N}^*}$ astfel :

$$X_1 = Y_1$$

 $X_n = \left\{ \begin{array}{ll} Y_n, & \text{dacă se realizează } E_n^c \\ \pm 1, & \text{cu probabilități egale dacă se realizează evenimentul } E_n \end{array} \right.$

pentru orice $n \geq 2$

Avem $E(X_n)=0$ şi $E(X_n^2)=P(E_n)+(1-P(E_n))\frac{1}{\sqrt[4]{n}}$ de unde $\lim_{n\to\infty}E(X_n^2)=0$, adică $(X_n)_{n\in\mathbb{N}^*}$ converge în medie de ordinul 2 către 0. Să arătăm că şirul $(X_n)_{n\in\mathbb{N}^*}$ nu converge aproape sigur către 0.

Să presupunem că șirul $(X_n)_{n\in\mathbb{N}^*}$ converge aproape sigur către 0.

Atunci, de
oarece v. a. limită X=0,rezultă că pentru orice
 $\delta<1$ avem

$$T_{j,\delta} = \left\{ \omega / |X_j(\omega)| \le \delta \right\} = \left\{ \omega / X_j(\omega) = 0 \right\} = E_j^c \cap \left\{ \omega / Y_j(\omega) = 0 \right\}$$

Prin urmare $T_{j,\delta} \subset \left\{ \omega / Y_j(\omega) = 0 \right\}$ și $T_{j,\delta} \subset E_j^c$

Deoarece $S_{n,\delta} = \bigcap_{j=n}^{\infty} T_{j,\delta}$ va rezulta că putem scrie

$$S_{[m-\sqrt{m}],\delta} = \bigcap_{j=[m-\sqrt{m}]}^{j=m} T_{j,\delta} \subset \bigcap_{j=[m-\sqrt{m}]}^{\infty} \{\omega/Y_j(\omega) = 0\} \subset E_m, \text{ unde}$$

prin $[m-\sqrt{m}]$ înțelegem partea întreagă a numărului $m-\sqrt{m}$.

Mai departe putem scrie
$$S_{n,\delta} = \bigcap_{j=n}^{\infty} T_{j,\delta} \subset \bigcap_{j=n}^{\infty} E_j^c \subset E_n^c$$
.

Deoarece am presupus că șirul $(X_n)_{n\in\mathbb{N}^*}$ converge aproape sigur, rezultă că pentru orice $\varepsilon > 0$ există un rang $N = N(\varepsilon)$ astfel încât $P(S_{n,\delta}) >$ $> 1 - \varepsilon$ pentru toți $n \ge N$.

Alegând pemastfel încât $m-\sqrt{m}\geq N$ obținem $P(E_m) \ge P(S_{[m-\sqrt{m}],\delta}) > 1 - \varepsilon$, rezultat în contradicție cu $P(E_m^c) \ge P(S_{m,\delta}^c) > 1 - \varepsilon$

30. Convergența aproape sigură nu implică convergența în medie de ordinul r.

Soluție. Fie $(X_n)_{n\in\mathbb{N}^*}$ un șir de v. a. cu repartițiile

$$X_n \sim \begin{pmatrix} -n^{\frac{2}{r}} & 0 & n^{\frac{2}{r}} \\ \frac{1}{2n^2} & 1 - \frac{1}{n^2} & \frac{1}{2n^2} \end{pmatrix}, r > 0, n \in \mathbb{N}^*$$

Fie
$$T_{j,\delta}=\left\{\omega/|X_j(\omega)|\leq \delta\right\}, S=\bigcap_{j=n}^{\infty}T_{j,\delta}$$
 și $S_{n,\delta}^c=\bigcup_{j=n}^{\infty}T_{j,\delta}^c$

Atunci
$$P(S_{n,\delta}^c) = P(\bigcup_{j=n}^{\infty} T_{j,\delta}^c) \le \sum_{j=n}^{\infty} P(T_{j,\delta}^c)) =$$

$$= \sum_{j=n}^{\infty} P(\{\omega/|X_j(\omega)| > \delta\})$$

Din definiția șirului de v. a. $(X_n)_{n\in\mathbb{N}^*}$ urmează că pentru $n\geq 1$ și

$$\delta < 1 \text{ avem } P(\{\omega/|X_j(\omega)| > \delta\}) = P(\{\omega/X_j(\omega) = -j^{\frac{2}{r}}\}) + P(\{\omega/X_j(\omega) = j^{\frac{2}{r}}\}) = \frac{1}{j^2}, \text{ aşa că } P(S_{n,\delta}) \le \sum_{j=n}^{\infty} \frac{1}{j^2}$$

 $\mathrm{Deci} \lim_{n \to \infty} P(S_{n,\delta}) = \lim_{n \to \infty} P(\bigcap_{i=n}^{\infty} \left\{ \omega / |X_j(\omega)| \le \delta \right\}) = 1, \, \mathrm{adică} \, (X_n)_{n \in \mathbb{N}^*}$ converge aproape sigur către 0.

Pe de altă parte, $E(|X_n|^r) = P(|X_n|^r \neq 0) + P(|X_n|^r = 0) = 1$, deci şirul $(X_n)_{n\in\mathbb{N}^*}$ nu converge în medie de ordinul r către 0.

31. Să se arate că dacă un şir de v. a. converge în probabilitate, nu rezultă că șirul dat converge aproape sigur.

Solutie. Considerăm câmpul de probabilitate (Ω, K, P) , unde $\Omega =$ $= [0,1), K = \mathcal{B}_{[0,1)}, P$ măsura Lebesgue pe dreaptă.

Pentru fiecare număr natural m vom considera șirul de v. a. $X_1^{(m)}, X_2^{(m)}, \dots, X_m^{(m)}$ definite astfel:

$$X_j^{(m)}(\omega) = \begin{cases} 1, & \text{dacă } \omega \in \left[\frac{j-1}{m}, \frac{j}{m}\right) \\ 0, & \text{în rest} \end{cases}$$

Punem $X_1^{(1)}(\omega)=1, \omega\in[0,1)$ și considerăm următorul șir de v. a. $X_1^{(1)},X_1^{(2)},X_2^{(2)},X_1^{(3)},X_2^{(3)},X_3^{(3)},\dots,X_1^{(n)},X_2^{(n)},\dots,X_n^{(n)},\dots$

Oricare ar fi
$$\varepsilon>0$$
 ave
m
$$P(\left\{\omega/|X_k^{(n)}(\omega)|\geq\varepsilon\right\})=P(\left\{\omega/\omega\in\left[\frac{k-1}{n},\frac{k}{n}\right)\right\})=\frac{1}{n}.$$

Dacă $n>N(\varepsilon,\eta)$ atunci $P(\left\{\omega/|X_k^{(n)}(\omega)|\geq\varepsilon\right\})<\eta$, deci șirul de v. a. considerat converge în probabilitate către 0.

Se observă că șirul nu converge aproape sigur către 0. Intr-adevăr, dacă $\omega_0 \in [0,1)$, atunci pentru orice m există un j astfel încât $\omega_0 \in \left[\frac{j-1}{m}, \frac{j}{m}\right)$, deci $X_j^{(m)}(\omega_0) = 1$ și de aici rezultă că în șirul $X_1^{(1)}(\omega_0), X_1^{(2)}(\omega_0), X_2^{(2)}(\omega_0), X_1^{(3)}(\omega_0), X_2^{(3)}(\omega_0), X_3^{(3)}(\omega_0), \dots$ oricare ar fi rangul termenului din şir găsim după el termeni ai şirului egali cu 1, care demonstrează afirmația.

32. Convergența în probabilitate nu implică întotdeauna convergența în medie de ordinul r.

Soluție. Fie șirul de v. a.
$$(X_n)_{n \in \mathbb{N}^*}$$
, unde $P(X_n = 0) = 1 - \frac{1}{n^2}$, $P(X_n = -n) = P(X_n = n) = \frac{1}{2n^2}$.

Atunci $\forall \varepsilon > 0$ şi $\forall \eta > 0 \exists n > N(\varepsilon, \eta)$ astfel încât $P(|X_n| > \varepsilon) = \frac{1}{2n^2} < \infty$ $<\eta$ îndată ce $n>N(arepsilon,\eta),$ ce
ea ce arată că şirul $(X_n)_{n\in\mathbb{N}^*},$ converge în probabilitate către 0.

Pe de altă parte, $E(|X_n - 0|^2) = E(X_n^2) = 1$, deci șirul nu converge în medie de ordinul 2.

33. Să se arate că dacă $(X_n)_{n\in\mathbb{N}^*}$ converge în repartiție, nu rezultă că el converge și în probabilitate.

Soluție. Considerăm câmpul de probabilitate (Ω, K, P) , unde $\Omega =$ $= [0,1], K = \mathcal{B}_{[0,1]}$ și P măsura Lebesgue pe dreaptă .

Definim şirul de v. a. $(X_n)_{n \in \mathbb{N}^*}$ astfel:

$$X_n(\omega) = \begin{cases} 0, & \text{dacă } \omega \in \left[0, \frac{1}{2}\right) \\ 1, & \text{dacă } \omega \in \left[\frac{1}{2}, 1\right] \end{cases}$$

$$X(\omega) = \begin{cases} 1, & \text{dacă } \omega \in \left[0, \frac{1}{2}\right) \\ 0, & \text{dacă } \omega \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Atunci $P(\{\omega/|X_n(\omega)-X(\omega)|=1\})=1$, deci şirul $(X_n)_{n\in\mathbb{N}^*}$ nu converge în probabilitate către X.

Funcțiile de repartiție ale v. a X_n și X sunt:

$$F_n(x) = P(\{\omega/X_n(\omega) < x\}) = \begin{cases} 0, & \text{dacă } x \le 0\\ \frac{1}{2}, & \text{dacă } 0 < x \le 1\\ 1, & \text{dacă } x > 1 \end{cases}$$

$$F(x) = P(\left\{\omega/X(\omega) < x\right\}) = \begin{cases} 0, & \text{dacă } x \le 0\\ \frac{1}{2}, & \text{dacă } 0 < x \le 1\\ 1, & \text{dacă } x > 1 \end{cases}$$

deci $F_n(x) = F(x), x \in \mathbb{R}, n = 1, 2, \ldots \Longrightarrow \lim_{n \to \infty} F_n(x) = F(x)$ ceea ce dovedeşte că şirul $(X_n)_{n \in \mathbb{N}^*}$ converge în repartiție către X.

34. Se știe că funcția caracteristică este continuă pentru orice $t \in \mathbb{R}$, precum și teorema lui Helly. Să se arate că este esențial ca limita $\varphi(t)$ să fie continuă în t=0.

Soluție. Fie

$$F_n(x) = \begin{cases} 0, & \text{dacă } x \le -n \\ \frac{x+n}{2n}, & \text{dacă } -n < x < n \\ 1, & \text{dacă } x \ge 1 \end{cases}$$

Densitatea de repartiție corespunzătoare este

$$f_n(x) = \begin{cases} \frac{1}{2n}, & \text{dacă } -n < x < n \\ 0, & \text{in rest} \end{cases}$$

Sirul funcțiilor caracteristice este dat de $\varphi_n(t) = \frac{1}{2n} \int_{-n}^n e^{itx} dx = \frac{\sin nt}{nt}$

$$\lim_{n \to \infty} \varphi_n(t) = \varphi(t) = \begin{cases} 1, & \text{dacă } t = 0 \\ 0, & \text{în rest} \end{cases}$$

Se vede că funcția limită nu este continuă în t=0.

Corespunzător acestui fapt avem pentru orice x fixat $\lim_{n\to\infty} F_n(x) = \frac{1}{2}$, adică limita şirului $(F_n(x))_{n\in\mathbb{N}^*}$ nu este o funcție de repartiție.

35. Să se arate că șirul funcțiilor de repartiție $(F_n(x))_{n\in\mathbb{N}^*}$ corespunzător șirului de funcții caracteristice $(\varphi_n)_{n\in\mathbb{N}^*}$ date prin relațiile $\varphi_n(t) = e^{\mathrm{i}nt}, n\in\mathbb{N}^*$ nu converge către o funcție de repartiție.

Soluție. Se observă că șirul $(\varphi_n)_{n\in\mathbb{N}^*}$ nu converge în afară de $t=2k\pi$. Nefiind îndeplinite condițiile din teorema lui Helly, rezultă că $F_n(x))_{n\in\mathbb{N}^*}$ nu converge către o funcție de repartiție.

Acest lucru se observă și direct, și anume $\varphi_n(t) = e^{int}$ reprezintă funcția caracteristică a v. a. X_n cu masa concentrată în punctul n.

Deci

$$F_n(x) = P(\{\omega/X_n(\omega) \le x\}) = \varepsilon(x-n) == \begin{cases} 0, & \text{dacă } x < n \\ 1, & \text{in rest} \end{cases}$$

Sub această formă se vede că $\lim_{n\to\infty} F_n(x) = 0$ pentru orice x fixat. \square

4.3 Probleme propuse

1. Aplicând inegalitatea lui Cebîşev, să se găsească limita inferioară a probabilității inegalității $\left|\frac{\alpha}{10^5} - \frac{1}{6}\right| < \frac{1}{100}$, unde α reprezintă numărul de apariții ale feței 5 în 100000 aruncări de zar.

R: $\frac{71}{72}$

2. Să se determine numărul n al probelor independente începând cu care are loc $P\left(\left|\frac{x}{n}-p\right|<0,1\right)\geq0,97,$ dacă într-o singură probă evenimentul se realizează cu o probabilitate p=0,8.

R: Cf. teoremei lui Bernoulli $\Longrightarrow n \ge 534$

3. Fie $(X_n)_n$ un șir de v. a. independente ale căror valori și probabilități sunt

Sunt
$$X_k \sim \begin{pmatrix} -k & -(k-1) & \dots & -1 & 0 & 1 & \dots & k-1 & k \\ \frac{1}{3k^3} & \frac{1}{3(k-1)^3} & \dots & \frac{1}{3} & 1 - \frac{2}{3}(1 + \dots + \frac{1}{k^3}) & \frac{1}{3} & \dots & \frac{1}{3(k-1)^3} & \frac{1}{3k^3} \end{pmatrix}$$
 $k = 1, 2, \dots$ Să se arate că șirul dat se supune legii numerelor mari în formularea lui Cebîşev.

- 4. Fie $(X_n)_n$ un şir de v. a. independente care pot lua valorile $\pm \sqrt{n}$ şi 0 cu probabilitățile $P(X_1=0)=1, P(X_k=\sqrt{k})=P(X_k=-\sqrt{k})=$ $=\frac{1}{k}, P(X_k=0)=1-\frac{2}{k}, k=2,3,\ldots$ Să se arate că șirul dat se supune legii numerelor mari.
- 5. Fie $(X_n)_n$ un şir de v. a. independente de valori medii $E(X_n) = 0, \forall n \geq 1$ şi dispersii $D^2(X_n) = n^{\lambda}, \forall n \geq 1$, unde $0 < \lambda < 1$. Să se arate că şirul dat se supune legii numerelor mari.
- 6. Fie $(X_n)_n$ un şir de v. a. independente astfel încât $P(X_k = -\sqrt{k}) = P(X_k = \sqrt{k}) = \frac{1}{2}$. Să se arate că şirului i se poate aplica teorema lui Leapunov.
- 7. Fie $(X_n)_n$ un şir de v. a. cu densitățile de repartiție

$$f_{X_k}(x) = \begin{cases} \frac{1}{ck^{\alpha}} \cdot e^{-\frac{x}{ck^{\alpha}}}, & x > 0, c > 0, 0 < \alpha < \frac{1}{2} \\ 0, & x \le 0 \end{cases}$$

4.3. PROBLEME PROPUSE

123

Notăm $Y_n=\frac{1}{n}{\displaystyle\sum_{k=1}^n}X_k$, să se arate că șirul de v. a. $\left(Y_n-\frac{cn^\alpha}{\alpha+1}\right)_n$ converge în probabilitate la 0.

 $\mathbf{R} \colon \text{Calcul} \check{\text{am}}$ dispersia variabile
i $Y_n - \frac{cn^\alpha}{\alpha+1}$ și apoi folosim inegalitatea lui Cebîşev

Capitolul 5

Procese stochastice (aleatoare)

5.1 Noțiuni teoretice

I.Lanţuri Markov omogene

Definiția 5.1. Fie $(X_n)_{n\geq 0}$ un şir de v. a. discrete, luând valori într-o mulțime finită sau numărabilă S, numită **spațiul stărilor**.

a) Şirul $(X_n)_{n\geq 0}$ formează un lanţ Markov dacă pentru orice $n\in \mathbb{N}^*$ şi $i_0,\ldots,i_n\in S,$ avem

$$P(X_n = i_n/X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = P(X_n = i_n/X_{n-1} = i_{n-1})$$

b) Un lanţ Markov se numeşte **omogen** dacă probabilitățile

$$P(X_n = i/X_{n-1} = j) = p_{ij}$$

sunt independente de n. In cazul când lanțul Markov are un număr finit

de stări
$$1,2,\ldots,N,$$
 el se numește finit. Matricea $P=\begin{pmatrix}p_{11}&\ldots&p_{1N}\\\vdots&&&\\p_{N1}&\ldots&p_{NN}\end{pmatrix}$

se numește matricea probabilităților de trecere (tranziție) a lanțului Markov considerat.

Proprietăți

- 1. Linia i a matricei P, formată din elementele $p_{i1}p_{i2} \dots p_{iN}$ conține probabilitățile de trecere din starea i în stările $1, 2, \dots, N$.
- 2. P este o matrice stochastică, adică este formată din elemente pozitive, iar suma elementelor fiecărei linii este 1.
- 3. Notând $p_{ij}(n) = P(X_n = j/X_0 = i)$, probabilitatea de a trece după n paşi din starea i în starea j, se obține **matricea de trecere după** n **paşi** $P(n) = (p_{ij}(n))_{i,j}$ care verifică relația $P(n) = P^n$. In particular, P(n) = P(n-1)P și P(n) = PP(n-1), de unde rezultă ecuațiile directe

ale lui Kolmogorov $p_{ij}(n) = \sum_k p_{ik}(n-1)p_{kj}, i,j \in S,$ precum și ecuațiile inverse $p_{ij}(n) = \sum_{k} p_{ik} p_{kj}(n-1), i, j \in S.$

4. Repartiția v. a. $X_n \sim \begin{pmatrix} 1 & 2 & \dots N \\ p_1(n) & p_2(n) & \dots p_N(n) \end{pmatrix}$ este definită de vectorul de probabilitate $p(n) = (p_1$ $p(n) = p(0)P^n$.

Definiția 5.2. Un lanț Markov cu matricea de trecere P este **ergodic** dacă $\lim P^n = \Pi$, unde Π este o matrice stochastică, având toate liniile egale cu un anumit vector de probabilitate $\sigma = (\sigma_1 \sigma_2 \dots \sigma_n)$ numit **repartiția** staționară a procesului.

Criteriu de ergodicitate Dacă $\exists n > 0$ astfel încât matricea P^n să aibă toate elementele strict pozitive, atunci lanțul este ergodic.

Găsirea repartiției staționare Fie P matricea de trecere a unui lanț Markov ergodic, atunci distribuția limită este unicul vector de probabilitate σ satisfăcând ecuația vectorială $\sigma P = \sigma$.

Observația 5.1. Dacă σ este repartiția staționară a unui lanț Markov ergodic, atunci șirul distribuțiilor p(n) la momentul n satisface relația

$$\lim_{n \to \infty} p(n) = \sigma$$

II.Procese stochastice cu timp continuu de ordinul al doilea

Fie $(X(t))_{t\geq 0}$ o familie de v. a. . Pentru orice n momente de timp $t_1 < t_2 < \ldots < t_n$ vectorul aleator cu componentele $X(t_1), \ldots, X(t_n)$ se numește o secțiune n-dimensională a procesului.

Caracteristicile stochastice ale procesului X(t) sunt:

- a) Media la momentul t: m(t) = E(X(t))
- b) Variația la momentul $t: V(t) = D^2(X(t))$
- c) Funcția de autocovarianță : K(s,t) = cov(X(s),X(t)) d) Funcția de autocorelație : $r(s,t) = \frac{K(s,t)}{\sqrt{V(s)V(t)}}$

Procesele cu proprietatea $E(X(t))^2 < \infty$ se numesc funcții aleatoare de ordinul al doilea.

Procesul aleator $(X(t))_{t\geq 0}$ se numește **staționar** dacă Definiția 5.3. funcția m(t) este constantă , iar funcția de autocovarianță K(s,t) depinde numai de diferența t-s: cov(X(s),X(t))=K(t-s) pentru o anumită funcție de o variabilă K(t) egală cu covarianța dintre X(r) și $X(t+\tau), \tau \geq 0$.

Proprietăți ale covarianței unui proces staționar:

- 1. K(t) = K(-t)
- 2. V(t) = K(0)
- 3. $|K(t)| \leq K(0)$

Definiția 5.4. Funcția $r(t) = \frac{K(t)}{\tau^2}$ se numește funcție de autocorelație a procesului.

Definiția 5.5. Un proces $(X(t))_{t\geq 0}$ este cu **creșteri independente** staționare dacă :

- 1. Pentru $t_1 < t_2 < \ldots < t_n$, variabilele $X(t_1), X(t_2) X(t_1), \ldots, X(t_n) X(t_{n-1})$ sunt independente în totalitate.
- 2. Pentru s < t, variabila aleatoare X(t) X(s) are aceeași repartiție ca și X(t-s) X(0).

III.Procese Markov omogene

Considerăm un proces aleator cu timp continuu $(X(t))_{t\geq 0}$, în care fiecare v. a. X(t) este discretă și ia valori într-o mulțime finită sau numărabilă S. **Definiția 5.6.** a) Procesul $(X(t))_{t\geq 0}$ este un **proces Markov** dacă pentru orice șir de momente $t_1 < t_2 < \ldots < t_n$ și orice stări $i_1, i_2, \ldots, i_n \in S$ avem

$$P(X(t_n) = i_n/X(t_1) = i_1, \dots, X(t_{n-1}) = i_{n-1}) =$$

$$= P(X(t_n) = i_n/X(t_{n-1}) = i_{n-1})$$

b) Procesul Markov este **omogen** dacă $P(X(t) = j/X(s) = i) = p_{ij}(t - s)$. Matricea de funcții $P(t) = (p_{ij}(t))_{ij}$ este **matricea de trecere** a procesului și satisface relația P(s + t) = P(s)P(t).

Matricea $q_{ij} = p_{ij}(0)$ se numește intensitatea de trecere din starea i în starea j, iar matricea $Q = (q_{ij})_{i,j}$ este matricea intensităților de trecere.

Definiția 5.7. Procesul se numește **ergodic** dacă $\lim_{n\to\infty} P(t) = \Pi$, unde Π este o matrice satisfăcând proprietățile di definiția 5.2, în raport cu un anumit vector de probabilitate $\sigma = (\sigma_1 \sigma_2 \dots \sigma_n \dots)$ numit **repartiția staționară** procesului.

IV.Clase importante de procese aleatoare

1. Mersul la întâmplare pe o axă este un lanţ Markov cu spaţiul stărilor \mathbb{Z} , în care trecerea din starea i se poate face doar în starea i+1 (cu probabilitatea p_i) sau în starea i-1, (cu probabilitatea q_i); probabilităţile de trecere sunt :

$$p_{ij} = \begin{cases} p_i, & j = i+1\\ q_i, & j = i-1\\ 1 - p_i - q_i, & j = i\\ 0, & \text{in rest} \end{cases}$$

2. Procesele de ramificare sunt lanţuri Markov $(X_n)_{n\geq 0}$, unde $X_0=1, X_1$ este o v. a. luând valori întregi nenegative şi are funcţia generatoare G(t), iar pentru $n\geq 1, \ X_{n+1}=\sum_{k=1}^{X_n} Z_k$, unde $(Z_k)_k$ este un şir de v. a. , independente şi identic repartizate cu funcţia generatoare G(t) $(X_n)_{n\geq 0}$

poate reprezenta de exemplu numărul de particule din a n- a generație, rezultate prin dezintegrarea succesivă a unei particule date, dacă numărul

de descendenți direcți ai fiecărei particule este o v. a. cu funcția generatoare G(t)

- 3. Procese gaussiene Un proces cu timp continuu $(X(t))_{t\geq 0}$ se numește gaussian dacă orice secțiune n- dimensională a sa este un vector aleator cu o repartiție normală n- dimensională .
- **4. Procese Weiner** Sunt procese gaussiene cu X(0) = 0, E(X(t)) = 0 și creșteri independente staționare.
- 5. Procesul Poisson cu intensitate λ Este un proces $(N(t))_{t\geq 0}$ cu creșteri independente staționare astfel încât N(0)=0, iar pentru t>0, N(t) este o v. a. repartizată Poisson cu parametrul λt .

Observația 5.2. Fie $T_0=0, T_n=\inf \{t\geq 0/N(t)=n\}$, momentul producerii celui de-al n-lea eveniment Poisson și $X_n=T_n-T_{n-1}$ $(n\geq 1)$, timpul de așteptare dintre două evenimente succesive. Atunci v. a. $X_1,X_2,\ldots X_n,\ldots$ sunt independente și fiecare din ele are repartiția exponențială cu parametrul λ .

6. Procesul de naștere și moarte Este analogul continuu al mersului la întâmplare : un proces cu timp continuu X(t)_{$t \ge 0$} și valori întregi având intensitățile de trecere

$$q_{ij} = \begin{cases} \lambda_i, & j = i+1\\ \mu_i, & j = i-1\\ -\lambda_i - \mu_i, & j = i\\ 0, & \text{în rest} \end{cases}$$

5.2 Probleme rezolvate

1. Fie $P_{jk}(-n)=P(X_m=k/X_{m+n}=j), n=1,2,\ldots$ Să se arate că $\lim_{n\to\infty}P_{jk}(-n)=P_{jk}^*$ există și că P_{jk}^* formează o matrice stochastică .

Soluție.
$$P_{jk}(-n) = \frac{P(X_m = k, X_{m+n} = j)}{P(X_{m+n} = j)} = \frac{P(X_{m+n} = j/X_m = k)P(X_m = k)}{P(X_{m+n} = j)}$$
Deci $\lim_{n \to \infty} P_{jk}(-n) = \frac{P_k P_{kj}}{P_j} = P_{jk}^*$.

In consecință
$$\sum_{k=1}^{N} P_{jk}^* = \frac{1}{P_j} \sum_{k=1}^{N} P_k P_{kj}.$$

Insă
$$\sum_{k=1}^N P_k P_{kj} = P_j$$
, aşadar, $\sum_{k=1}^N P_{jk}^* = 1$, ceea ce înseamnă că P_{jk}^* formează o matrice stochastică .

2. O urnă conține 4 bile, fiecare putând fi albă sau neagră . Presupunem că se efectuează un șir de extrageri după următoarea regulă : dacă la o extragere s-a obținut o bilă albă , se pune în urnă o altă bilă ,

neagră și invers, dacă s-a obținut o bilă neagră , aceasta se înlocuiește cu o bilă albă . Numărul bilelor albe existente în urnă după fiecare extragere determină starea procesului.

- a) Să se arate că acest proces este un lanț Markov staționar;
- b) Să se afle matricea de trecere după un pas, după doi pași.

Soluție. a) Definim un şir de v. a. $(X_n)_n$ astfel ca X_n să reprezinte numărul bilelor albe existente în urnă după cea de-a n- a extragere, $n = 1, 2, \ldots$ Vom arăta că procesul $(X_n)_n$ definit în acest exemplu este un lanț Markov staționar.

Intr-adevăr, fie $i = \overline{0,4}$ o valoare posibilă a v. a. $X_k, k = \overline{1,n}$. Atunci, pentru a calcula $P(X_{k+1} = j/X_k = i, X_{k-1} = i_{k-1}, \dots, X_1 = i_1)$ trebuie specificat numărul i de bile albe existente în urnă după extragerea k. In cea de-a k+1-a extragere, probabilitatea de obținere a unei bile albe este $\frac{i}{4}$. Dacă se extrage o bilă albă , numărul bilelor albe din urnă va deveni i-1, iar în caz contrar va deveni i+1, a treia alternativă fiind imposibilă . Deci,

$$P(X_{k+1} = j/X_k = i, X_{k-1} = i_{k-1}, \dots, X_1 = i_1) =$$

$$= P(X_{k+1} = j/X_k = i) = \begin{cases} \frac{i}{4}, & j = i - 1\\ 1 - \frac{i}{4}, & j = i + 1\\ 0, & \text{in rest} \end{cases}$$

valorile i_{k-1}, \ldots, i_1 neinfluențând cu nimic rezultatul obținut. Cum probabilitățile de trecere nu depind de k, se verifică și caracterul staționar al lanțului.

b) Matricea stochastică a lanțului după un pas este următoarea :

$$P = (p_{ij}(1))_{i,j=\overline{0,4}} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ \frac{1}{4} & 0 & \frac{3}{4} & 0 & 0 \\ 0 & \frac{2}{4} & 0 & \frac{2}{4} & 0 \\ 0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Matricea stochastică după 2 pași este

$$P^{2} = \begin{pmatrix} \frac{1}{4} & 0 & \frac{3}{4} & 0 & 0\\ 0 & \frac{5}{8} & 0 & \frac{3}{8} & 0\\ \frac{1}{8} & 0 & \frac{6}{8} & 0 & \frac{1}{8}\\ 0 & \frac{3}{8} & 0 & \frac{5}{8} & 0\\ 0 & 0 & \frac{3}{4} & 0 & \frac{1}{4} \end{pmatrix}$$

3. O urnă conține 2 bile albe. Se alege din urnă o bilă la întâmplare, se vopsește în roşu sau albastru și se pune înapoi. Apoi experimentul continuă: dacă bila a fost nevopsită, se vopsește la întâmplare în roşu sau albastru; dacă bila a fost vopsită, i se schimbă culoarea. Astfel,

la un anumit moment, o bilă din urnă poate fi albă , roșie sau albastră Starea urnei la orice moment este determinată de numărul de bile albe, de bile roșii și de bile albastre din ea.

- a) Care sunt stările posibile ale urnei?
- b) Să se scrie matricea corespunzătoare a probabilităților de trecere după un pas.

Soluție.a) $S_1=(2,0,0)$: 2 bile albe, nici o bilă roșie, nici o bilă albastră

 $S_2 = (1,1,0)$: o bilă albă , o bilă roșie, nici o bilă albastră

 $S_3 = (1,0,1)$: o bilă albă , nici o bilă roșie, o bilă albastră

 $S_4 = (0,2,0)$: nici o bilă albă
,2 bile roșii, nici o bilă albastră

 $S_5 = (0,1,1)$: nici o bilă albă , o bilă roșie, o bilă albastră

 $S_6 = (0,0,2)$: nici o bilă albă , nici o bilă roșie, 2 bile albastre

b)
$$P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

- 4. In modelul de hidrogen al lui Bohr electronul se poate găsi pe una din mulțimea numerabilă de orbite în dependență de energia pe care o posedă. Să presupunem, mai departe, că variația stării atomului are loc numai la momentele t_1, t_2, \ldots Probabilitatea de trecere a electronului de pe orbita i pe orbita j în decurs de o secundă este $p_{ij} = c_i e^{-\alpha|i-j|} (\alpha > 0)$. Să se calculeze: a) probabilitățile de trecere în decurs de 2 secunde; b) constantele c_i .
 - Soluție. a) Probabilitățile de trecere a electronului de pe orbita i pe orbita j la momentul t_s depinde numai de i și j și nu depinde pe ce orbită s-a găsit electronul la momentele anterioare lui t_s . In acest caz, avem un lanț Markov cu un număr infinit de stări. Matricea de trecere peste un pas este

$$P = (p_{ij}) = \begin{pmatrix} c_1 & c_1 e^{-\alpha} & c_1 e^{-2\alpha} & c_1 e^{-3\alpha} & \dots \\ c_2 e^{-\alpha} & c_2 & c_2 e^{-\alpha} & c_2 e^{-2\alpha} & \dots \\ c_3 e^{-2\alpha} & c_3 e^{-2\alpha} & c_3 & c_3 e^{-\alpha} & \dots \\ c_4 e^{-3\alpha} & c_4 e^{-2\alpha} & c_4 e^{-\alpha} & c_4 & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix}$$

De aici se pot obține probabilitățile de trecere după doi pași, adică în decurs de două secunde $P_2 = P^2$.

De exemplu, $p_{11}(2) = c_1(c_1 + c_2e^{-2\alpha} + c_3e^{-4\alpha} + c_4e^{-6\alpha} + \dots)$ etc.

Deoarece suma probabilităților fiecărei linii este 1, avem

$$c_1 \sum_{k=0}^{\infty} e^{-k\alpha} = 1 \Longrightarrow c_1 \cdot \frac{1}{1 - e^{-\alpha}} = 1 \Longrightarrow c_1 = 1 - e^{-\alpha}$$

$$c_2(e^{-\alpha} + \sum_{k=0}^{\infty} e^{-k\alpha}) = 1 \Longrightarrow c_2(e^{-\alpha} + \frac{1}{1 - e^{-\alpha}}) = 1 \Longrightarrow$$
$$\Longrightarrow c_2 = \frac{1 + e^{-\alpha}}{1 + e^{-\alpha} + e^{-2\alpha}} \text{ etc.}$$

5. Două firme de distribuit pizza, Pizza Hut (H) şi Cuptorul cu lemne (C), monopolizează piaţa în Bucureşti. Studiile de piaţă indică $60^0/_0$ şanse ca un client de la Pizza Hut să se ducă la Cuptorul cu lemne, în timp ce sunt $25^{-0}/_0$ şanse ca un client de la Cuptorul cu lemne să treacă la Pizza Hut. Presupunem că un client obișnuit comandă pizza zilnic şi că luni pizza vine de la Pizza Hut. Care este probabilitatea ca miercuri pizza să vină de la Cuptorul cu lemne?

Soluție. Fiecare zi este asociată cu una din cele 2 stări H şi C. Presupunem H e starea 1 şi C este starea 2 şi $P = (p_{ij})$ matricea probabilităților de trecere din starea i în starea j

Avem
$$P = \begin{pmatrix} 0.4 & 0.6 \\ 0.25 & 0.75 \end{pmatrix}$$
.

Probabilitatea cerută este $p_{12}(2)$.

Obţinem
$$P^2 = \begin{pmatrix} 0.31 & 0.69 \\ 0.2875 & 0.7125 \end{pmatrix}$$
.

Deci
$$p_{12}(2) = 0,69.$$

- 6. Un meteorolog a dezvoltat următorul model pentru prezicerea vremii. Dacă plouă azi, probabilitatea este 0,6 că va ploua şi mâine şi 0,4 că nu va mai ploua mâine. Dacă nu plouă azi, probabilitatea este 0,2 că va ploua şi mâine şi 0,8 că nu va ploua mâine.
 - a) Găsiți matricea de trecere P pentru acest lanț Markov și matricea de trecere după 2 pași.
 - b) Dacă plouă azi, care este probabilitatea că va ploua și poimâine?
 - c) Dacă nu plouă azi, care este probabilitatea ca să plouă și poimâine?

Soluție. a) Fie starea 1: "plouă" și starea 2 "nu plouă"

$$P = \begin{pmatrix} 0, 6 & 0, 4 \\ 0, 2 & 0, 8 \end{pmatrix}$$

$$P^2 = \begin{pmatrix} 0,44 & 0,56 \\ 0,28 & 0,72 \end{pmatrix}$$

5.2. PROBLEME REZOLVATE

b)
$$p_{11}(2) = 0,44$$

c)
$$p_{21}(2) = 0.28$$

7. Intr-un anumit model psihologic comportamentul unui copil la scoală într-o anumită zi e clasificat "bun" sau "rău". Dacă un anumit copil e bun azi, există o şansă de 0,9 că va fi bun şi mâine, în timp ce dacă acest copil e rău azi, există o şansă de 0,3 ca el să fie rău şi mâine. Dat fiind că acest copil e bun azi, găsiţi probabilitatea ca el să fie bun încă 4 zile.

Soluție. Comportamentul copilului poate fi descris printr-un lanț Markov cu 2 stări, "bun" (starea 1) și "rău" (starea 2). Matricea de trecere pentru acest lanț este $P = \begin{pmatrix} 0, 9 & 0, 1 \\ 0, 7 & 0, 3 \end{pmatrix}$

Probabilitatea ca acest copil să fie bun încă 4 zile este probabilitatea ca acest copil să fie în starea 1 după 4 paşi, adică se cere probabilitatea $p_{11}(4)$.

Avem
$$P^4 = \begin{pmatrix} 0.875 & 0.125 \\ 0.974 & 0.126 \end{pmatrix} \Longrightarrow p_{11}(4) = 0.875$$

- 8. Fie un lanț Markov a cărui matrice de trecere este $P=\begin{pmatrix}0&1&0\\0&\frac{1}{2}&\frac{1}{2}\\\frac{1}{3}&0&\frac{2}{3}\end{pmatrix}$
 - a) Să se calculeze matricea probabilităților de trecere după 2, respectiv 3 pași.
 - b) Lantul este ergodic?
 - c) Dacă este ergodic, atunci să se determine probabilitățile limită.

Soluție. a)
$$P^2 = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{4} & \frac{7}{12} \\ \frac{2}{9} & \frac{1}{3} & \frac{4}{9} \end{pmatrix}$$

$$P^{3} = \begin{pmatrix} \frac{1}{6} & \frac{1}{4} & \frac{7}{12} \\ \frac{7}{36} & \frac{7}{24} & \frac{37}{72} \\ \frac{4}{27} & \frac{7}{18} & \frac{25}{54} \end{pmatrix}$$

- b) Deoarece există un astfel de număr natural n, pentru care toate elementele matricei P^n sunt strict pozitive, atunci, cf. criteriului de ergodicitate, lanțul este ergodic.
- c) Deoarece lanțul este ergodic, atunci există unicul vector
 (p_1,p_2,p_3)

pentru care
$$(p_1, p_2, p_3) \cdot \begin{pmatrix} 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & 0 & \frac{2}{3} \end{pmatrix} = (p_1, p_2, p_3)$$

De aici obținem următorul sistem de ecuații :

$$\begin{cases} \frac{1}{3}p_3 = p_1\\ p_1 + \frac{1}{2}p_2 = p_2\\ \frac{1}{2}p_2 + \frac{2}{3}p_3 = p_3\\ p_1 + p_2 + p_3 = 1 \end{cases}$$

a cărui soluție este vectorul $(\frac{1}{6},\frac{1}{3},\frac{1}{2})$

Prin urmare, dacă $n \longrightarrow \infty$, P^n tinde către matricea $\begin{pmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \end{pmatrix}$

- 9. Presupunem că înainte de a fi făcută o evidență a legăturii dintre fumat și bolile respiratorii, $40^0/_0$ din adulții de sex masculin erau fumători și $60^0/_0$ erau nefumători. La un an după ce această evidență a fost făcută public, $30^0/_0$ dintre fumători s-au oprit din fumat, în timp ce $10^0/_0$ din nefumători au început să fumeze.
 - a) Scrieți matricea de trecere a lanțului Markov cu 2 stări;
 - b) Reprezentați distribuția inițială a fumătorilor și nefumătorilor ca un vector probabilitate;
 - c) Găsiți vectorul probabilitate ce descrie distribuția fumătorilor și nefumătorilor după un an;
 - d) Găsiți vectorul probabilitate ce descrie distribuția fumătorilor și nefumătorilor după 2 ani.

Soluție. a) Stările sunt "fumător" (starea 1) și "nefumător" (starea 2) și matricea de trecere este $P=\begin{pmatrix}0,7&0,3\\0,1&0,9\end{pmatrix}$

b) (0,4;0,6)

c)
$$(0,4;0,6)$$
 $\begin{pmatrix} 0,7 & 0,3 \\ 0,1 & 0,9 \end{pmatrix} = (0,34;0,66)$

$$\mathbf{d})P^2 = \begin{pmatrix} 0,52 & 0,48 \\ 0,16 & 0,84 \end{pmatrix}$$

$$(0,4;0,6)P^2 = (0,4;0,6)\begin{pmatrix} 0,52 & 0,48 \\ 0,16 & 0,84 \end{pmatrix} = (0,304;0,696)$$

10. In modelul stochastic de învăţare bazat pe teoria selectării stimulilor propus de W.K. Estes în 1950, se consideră un lanţ Markov cu 2 stări. Astfel starea 1 semnifică faptul că subiectul a învăţat, de exemplu, să primească o alună sau să evite un şoc electric. Starea 2 semnifică faptul că subiectul nu a învăţat încă . Se presupune că de îndată ce

subiectul a învățat el nu mai uită , iar dacă nu a învățat încă , el va reuși cu probabilitatea α să învețe după fiecare încercare. Să se determine matricea de trecere și să se calculeze $p_{21}(n)$.

Soluție.
$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \alpha & 1 - \alpha \end{pmatrix}$$

Pentru a calcula $p_{21}(n)$, adică probabilitatea de trecere din starea 2 în starea 1 după n pași, trebuie să determinăm matricea P^n . Calculăm valorile proprii : $det(P - \lambda I_2) = 0 \Longrightarrow \lambda_1 = 1, \lambda_2 = 1 - \alpha$

Determinăm vectorii proprii corespunzători din sistemele :

 $Pu = \lambda_1 u, Pv = \lambda_2 v$ și rezultă $u = (1, 1)^t, v = (0, 1)^t$

Fie
$$T=\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 și $D=\begin{pmatrix} 1 & 0 \\ 0 & 1-\alpha \end{pmatrix}$

Atunci
$$T^{-1}PT = D \Longrightarrow P = TDT^{-1} \Longrightarrow P^n = TD^nT^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
.

$$\cdot \begin{pmatrix} 1 & 0 \\ 0 & (1-\alpha)^n \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 - (1-\alpha)^n & (1-\alpha)^n \end{pmatrix} \Longrightarrow p_{21}(n) =$$

$$= 1 - (1-\alpha)^n \qquad \Box$$

- 11. Un sistem de telecomunicații transmite cifrele 0 și 1. Fiecare cifră trece prin mai multe stadii de prelucrare, în fiecare stadiu existând probabilitatea p ca să fie transmisă corect și probabilitatea q = 1 - pca ea să fie transmisă greșit. Fie X_k cifra care intră în stadiul k de prelucrare.
 - a) Scrieți matricea P a lanțului Markov omogen cu stările $\{0,1\}$ astfel obținut și calculați $P^n, n \in \mathbb{N}^*$, precum și $P(X_2 = 1/X_0 = 1)$, $P(X_7 = 0/X_3 = 1)$
 - b) Determinați repartiția staționară

c) Dacă
$$X_0 \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
, calculați repartiția v. a. X_n și $P(X_0=0/X_n=1)$

Soluție. a) Din ipoteză
$$P(X_{n+1} = 1/X_n = 1) = P(X_{n+1} = 0/X_n = 0) = p$$

$$P(X_{n+1} = 1/X_n = 0) = P(X_{n+1} = 0/X_n = 1) = q$$
, deci
 $P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} = \begin{pmatrix} p & q \\ q & p \end{pmatrix}$

$$P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} = \begin{pmatrix} p & q \\ q & p \end{pmatrix}$$

Determinăm valorile proprii ale lui $P: \det(P - \lambda I_2) = 0 \Longrightarrow$ $\Longrightarrow \lambda_1 = p - q, \lambda_2 = 1$

Determinăm vectorii proprii din sistemele $Pu = \lambda_1 u$ și $Pv = \lambda_2 v$ $\implies u = (1, -1)^t, v = (1, 1)^t$

Fie
$$T = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
 şi $D = \begin{pmatrix} p-q & 0 \\ 0 & 1 \end{pmatrix}$
Obţinem $T^{-1}PT = D \Longrightarrow P = TDT^{-1} \Longrightarrow P^n = TD^nT^{-1} =$

$$= \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} (p-q)^n & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} =$$

$$= \begin{pmatrix} \frac{1}{2} + \frac{1}{2}(p-q)^n & \frac{1}{2} - \frac{1}{2}(p-q)^n \\ \frac{1}{2} - \frac{1}{2}(p-q)^n & \frac{1}{2} + \frac{1}{2}(p-q)^n \end{pmatrix}$$
Atunci $P(X_2 = 1/X_0 = 1) = p_{11}(2) = \frac{1}{2} - \frac{1}{2}(p-q)^2$

$$P(X_7 = 0/X_3 = 1) = p_{10}(4) = \frac{1}{2} - \frac{1}{2}(p-q)^4$$
b) Avem $\lim_{n \to \infty} P^n = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, deci repartiţia staţionară este $\sigma = (\frac{1}{2}, \frac{1}{2})$
c) Notând $p(n) = (P(X_n = 0), P(X_n = 1))$ obţinem $p(n) = p(0)P^n =$

$$= (\frac{1}{3}, \frac{2}{3}) \begin{pmatrix} \frac{1}{2} + \frac{1}{2}(p-q)^n & \frac{1}{2} - \frac{1}{2}(p-q)^n \\ \frac{1}{2} - \frac{1}{2}(p-q)^n & \frac{1}{2} + \frac{1}{2}(p-q)^n \end{pmatrix} =$$

$$= (\frac{1}{2} - \frac{1}{6}(p-q)^n, \frac{1}{2} + \frac{1}{6}(p-q)^n)$$
Atunci $P(X_0 = 0/X_n = 1) = \frac{P(X_n = 1/X_0 = 0)P(X_0 = 0)}{P(X_n = 1)} = \frac{[\frac{1}{2} - \frac{1}{2}(p-q)^n]\frac{1}{3}}{\frac{1}{2} + \frac{1}{6}(p-q)^n} =$

12. Dacă $(X_n)_{n\geq 0}$ este un lanţ Markov omogen cu matricea probabilităţilor de trecere $P=(p_{ij})$, atunci $P(X_0=i_0,X_1=i_1,\ldots,X_n=i_n)=$ $=P(X_0=i_0)p_{i_0i_1}p_{i_1i_2}\ldots p_{i_{n-1}i_n}.$

Soluție. Aplicăm formula de înmulțire a probabilităților obținem

$$\begin{split} &P(X_0=i_0,X_1=i_1,\ldots,X_n=i_n)=P(X_0=i_0)\cdot\\ &\cdot P(X_1=i_1/X_0=i_0)P(X_2=i_2/X_1=i_1,X_0=i_0)\cdot\ldots\\ &\cdot P(X_n=i_n/X_{n-1}=i_{n-1},\ldots X_0=i_0),\\ &\text{iar formula din enunţ rezultă ţinând cont că }P(X_1=i_1/X_0=i_0)=\\ &=p_{i_0i_1},P(X_2=i_2/X_1=i_1,X_0=i_0)=p_{i_1i_2}\text{ etc.} \end{split}$$

13. Matricea probabilităților de trecere ale unui lanț Markov omogen este

$$P = \begin{pmatrix} 0,1 & 0,5 & 0,4\\ 0,6 & 0,2 & 0,2\\ 0,3 & 0,4 & 0,3 \end{pmatrix}, \text{ iar } X_0 \sim \begin{pmatrix} 1 & 2 & 3\\ 0,7 & 0,2 & 0,1 \end{pmatrix}. \text{ Calculați repartiția}$$

variabilei X_1 și probabilitatea ca la momentele n=0,1,2 lanțul să se găsească în stările 1,2,2 respectiv.

Soluție.
$$p(1) = p(0)P = (0,7,;0,2;0,1) \begin{pmatrix} 0,1 & 0,5 & 0,4 \\ 0,6 & 0,2 & 0,2 \\ 0,3 & 0,4 & 0,3 \end{pmatrix} = (0,22;0,43;0,35)$$

Deci
$$X_1 \sim \begin{pmatrix} 1 & 2 & 3 \\ 0,22 & 0,43 & 0,35 \end{pmatrix}$$

Aplicând problema precedentă obținem
$$P(X_0 = 1, X_1 = 2, X_2 = 2) = P(X_0 = 1)P(X_1 = 2/X_0 = 1)P(X_2 = 2/X_1 = 2, X_0 = 1) = P(X_0 = 1)p_{12}p_{22} = 0, 7 \cdot 0, 5 \cdot 0, 2 = 0, 07$$

14. Să presupunem că într-o uzină există o maşină care datorită procesului tehnologic respectiv o perioadă de timp lucrează iar o perioadă stă ş. a. m. d. Să notăm cu A_0 starea maşinii când nu funcționează și cu A_1 starea maşinii când funcționează . Fie p_{jk} probabilitatea ca din starea A_j să se treacă în starea $A_k(j,k=0,1)$ și anume dacă la momentul t a fost în starea A_j la momentul t+1 să se treacă în starea A_k . In plus, dacă presupunem că $p_{01}=\lambda$ și $p_{10}=\mu$, atunci matricea de trecere este $\begin{pmatrix} 1-\lambda & \lambda \\ \mu & 1-\mu \end{pmatrix}$. Să se calculeze $\lim_{n\to\infty} p_i(n), i=0,1$.

Soluție. Introducând probabilitățile inițiale $P(X_0 = i) = p_i$, $P(X_n = k) = p_k(n)$ este dată de relația $p_k(n) = \sum_i p_i p_{ik}(n)$,

 $k = 0, 1, \ldots, n = 1, 2, \ldots$, care se mai poate scrie şi sub forma $p_k(n) = \sum_i p_i(n-r)p_{ik}(r), 0 \le r < n$ (1), unde $p_{kk}(0) = 1$ şi $p_{jk}(0) = 0$ dacă $j \ne k$ şi $p_j(0) = p_j$

Dacă $P(X_0 = i_0) = 1$ avem $p_{i_0} = 1$ și $p_j = 0$, dacă $j = i_0$, atunci $p_k(n) = p_{i_0k}(n)$

Să ne reîntoarcem la exemplul considerat. In relația (1) luăm k = 1, r = 1, j = 0, 1 și obținem $p_1(n) = p_0(n-1)p_{01} + p_1(n-1)p_{11}$

Cum $p_0(k) + p_1(k) = 1 \Longrightarrow p_0(n-1) = 1 - p_1(n-1)$. In plus avem $p_{01} = \lambda \text{ și } p_{10} = \mu$.

Deci $p_1(n) = (1 - p_1(n-1))\lambda + p_1(n-1)(1-\mu).$

Prin inducție se obține $p_1(n) = \frac{\lambda}{\lambda + \mu} + (1 - \lambda - \mu)^n \left(p_1 - \frac{\lambda}{\lambda + \mu} \right)$ și cum $p_0(n) = 1 - p_1(n)$, avem $p_0(n) = \frac{\mu}{\lambda + \mu} + (1 - \lambda - \mu)^n \left(p_0 - \frac{\mu}{\lambda + \mu} \right)$

Intr-adevăr, pentru n = 1, 2 avem

 $p_1(1) = (1 - p_1(0))\lambda + p_1(0)(1 - \mu) = p_1(1 - \lambda - \mu) + \lambda; p_1(0) = p_1; p_1(2) = p_1(1)(1 - \lambda - \mu) + \lambda \Longrightarrow p_1(2) = p_1(1 - \lambda - \mu)^2 + \lambda(1 - \lambda - \mu) + \lambda,$ de unde adunând şi scăzând $\frac{\lambda}{\lambda + \mu}(1 - \lambda - \mu)^2$ obţinem $p_1(2) = (1 - \lambda - \mu)^2 \left(p_1 - \frac{\lambda}{\lambda + \mu}\right) + \frac{\lambda}{\lambda + \mu}, \ p_0 \text{ este probabilitatea ca la momentul } t = 0 \text{ maşina să stea}, \ p_1 \text{ este probabilitatea ca la momentul } t = 1 \text{ maşina să funcționeze}.$

Cum
$$|1 - \lambda - \mu| < 1$$
, cu excepția $\lambda = \mu = 0$ sau $\lambda = \mu = 1$ obținem $\lim_{n \to \infty} p_1(n) = \frac{\lambda}{\lambda + \mu}$, $\lim_{n \to \infty} p_0(n) = \frac{\mu}{\lambda + \mu}$

15. In lichidul dintr-un vas studiem particulele care realizează o mişcare browniană . Delimităm o parte din vas şi cercetăm numărul particulelor care se află în acea parte la momentele $t=\overline{0,n}$; să notăm aceste numere cu X_1,X_2,\ldots,X_n . Presupunem că probabilitatea ca o particulă să iasă din partea delimitată în unitatea de timp, este egală cu α , iar probabilitatea ca să intre în partea delimitată în aceeași unitate de timp m particule este $\frac{\lambda^m}{m!} \mathrm{e}^{-\lambda}(m=0,1,\ldots)$. Să se scrie probabilitățile de trecere şi $p_k(n)$.

Soluție. În acest caz probabilitățile de trecere vor fi

$$p_{jk} = P(X_{n+1} = k/X_n = j) = \sum_{k=0}^{\min(j,k)} C_j^h \alpha^{j-h} (1-\alpha)^h \frac{\lambda^{k-h}}{(k-h)} e^{-\lambda}$$

Dacă se notează cu $p_k(n)$ probabilitatea ca la momentul t=n să avem în porțiunea respectivă k particule, atunci $p_k(n)=\sum_{0}^{\infty}p_j(n-1)p_{jk}$. Stim că $\lim_{n\to\infty}p_k(n)=p_k, k=0,1,\ldots$

Introducând notația
$$G(z) = \sum_{k=0}^{\infty} p_k z^k$$
 avem $G(z) = \sum_{j=0}^{\infty} p_j (\sum_{k=0}^{\infty} p_{jk} z^k)$

Tinând sema de expresia lui p_{jk} obținem $G(z) = \mathrm{e}^{\lambda(z-1)}G[1+(1-\alpha)(z-1)] \ (*) \ \mathrm{deoarece}$ $\sum_{k=0}^{\infty} p_{jk}z^k = [\alpha+(1-\alpha)z]^j \mathrm{e}^{\lambda(z-1)}$

Inmulţim (*) cu $e^{-\frac{\lambda}{\alpha}(z-1)}$ şi introducând notaţia $H(z) = G(z) \cdot e^{-\frac{\lambda}{\alpha}(z-1)}$ rezultă că $H(z) = H[1 + (1 - \alpha)^n(z - 1)]$ şi cum termenii şirului $1 + (1 - \alpha)^n(z - 1)$ sunt toţi în cercul unitate şi $\lim_{n \to \infty} [1 + (1 - \alpha)^n(z - 1)] = 0$, având în vedere continuitatea lui H(z) în z = 1, obţinem că $H(z) = H(1) = G(1) = 1 \Longrightarrow G(z) = e^{\frac{\lambda}{\alpha}(z-1)}$ şi astfel şi distribuţia limită $(\lim_{n \to \infty} p_k(n) = p_k)$ este o repartiţie Poisson cu valoarea medie $\frac{\alpha}{n}$. Repartiţia este în acest caz în mod natural staţionară .

16. Fie $(X_n)_{n\geq 0}$ un şir de v. a. independente luând valori într-o mulţime numărabilă S. Arătaţi că el este un lanţ Markov. In ce condiţii acest lanţ este omogen?

Soluție. Datorită independenței avem

$$P(X_n=i_n/X_0=i_0,\ldots,X_{n-1}=i_{n-1})=P(X_n=i_n)=$$

= $P(X_n=i_n/X_{n-1}=i_{n-1})$, deci proprietatea Markov este satisfăcută

Pentru ca lanțul să fie omogen trebuie ca $P(X_n = j/X_{n-1} = i) = P(X_n = j)$ să nu depindă de n, deci $P(X_m = j) = P(X_n = j)$, $\forall m, n \in \mathbb{N}, j \in S$, adică v. a. (X_n) trebuie să fie identic repartizate.

- 17. Fie $(X(t))_{t\geq 0}$ un proces cu creșteri independente staționare, X(0)=0 și cu valori în \mathbb{N} . Notând $P(X(t)=n)=p_n(t)$, arătați că :
 - a) pentru s < t, $P(X(t) = j/X(s) = i) = p_{j-i}(t s)$;
 - b) pentru $t_1 < t_2 < \ldots < t_n$, $P(X(t_1) = i_1, \ldots, X(t_n) = i_n) = p_{i_1}(t_1)p_{i_2-i_1}(t_2-t_1)\ldots p_{i_n-i_{n-1}}(t_n-t_{n-1});$
 - c) deduceți că (X(t)) este un lanț Markov omogen cu probabilități de trecere $p_{ij}(t) = p_{j-i}(t)$.

Soluție. a) P(X(t) = j/X(s) = i) = P(X(t) - X(s) = j - i/X(s) = i), iar prin ipoteză variabilele X(t) - X(s) și X(s) sunt independente, deci $P(X(t) - X(s) = j - i/X(s) = i) = p_{j-i}(t - s)$

- b) Rezultă din relația $P(X(t_1)=i_1,\ldots,X(t_n)=i_n)=P(X(t_1)=i_1,X(t_2)-X(t_1)=i_2-i_1,\ldots,X(t_n)-X(t_{n-1})=i_n-i_{n-1})$
- c) Cf. b), $P(X(t_n) = i_n/X(t_1) = i_1, \ldots, X(t_{n-1}) = i_{n-1}) = p_{i_{n-1}i_{n+1}}(t_n t_{n-1}) = P(X(t_n) = i_n/X(t_{n-1}) = i_{n-1})$, deci proprietatea lui Markov este verificată .

Prin definiție, $p_{ij}(t) = P(X(s+t) = j/X(s) = i)$, iar cf. a), membrul drept al ultimei relații este egal cu $p_{j-i}(t)$.

18. Fie X(t) un proces Poisson, unde $0 \le t \le 1$ şi $0 \le k \le n$. Stiind că până la momentul 1 au loc n sosiri, care este probabilitatea să se producă exact k sosiri în intervalul [0, t]?

19. Să se arate că pentru un proces Poisson X(t) are loc convergența în probabilitate $\frac{X(t)}{t} \stackrel{p}{\to} \lambda$ dacă $t \longrightarrow \infty$.

 $\begin{array}{l} \textit{Soluție}. \ \, \textit{Folosind inegalitatea lui Cebîşev pentru v. a.} \ \, \frac{X(t)}{t} \,\, \text{şi ținând cont că} \,\, D^2(X(t)) = \lambda t \,\, (\text{deoarece} \,\, E(X(t)) = \sum_{k=0}^n k \cdot \frac{(\lambda t)^k}{k!} \cdot \mathrm{e}^{-\lambda t} = \mathrm{e}^{-\lambda t} \cdot \lambda t = \lambda t \,\, \text{şi analog se calculează} \,\, E(X^2(t)) = \lambda t \,\, \sum_{k=0}^n \frac{(\lambda t)^{k-1}}{(k-1)!} = \mathrm{e}^{-\lambda t} \cdot \mathrm{e}^{\lambda t} \cdot \lambda t = \lambda t \,\, \text{şi analog se calculează} \,\, E(X^2(t)) = \lambda t \,\, \sum_{k=0}^n \frac{(\lambda t)^{k-1}}{(k-1)!} = \mathrm{e}^{-\lambda t} \cdot \mathrm{e}^{\lambda t} \cdot \lambda t = \lambda t \,\, \text{şi analog se calculează} \,\, E(X^2(t)) = \lambda t \,\, \sum_{k=0}^n \frac{(\lambda t)^{k-1}}{(k-1)!} = \mathrm{e}^{-\lambda t} \cdot \lambda t = \lambda t \,\, \text{şi analog se calculează} \,\, E(X^2(t)) = \lambda t \,\, \sum_{k=0}^n \frac{(\lambda t)^{k-1}}{(k-1)!} = \lambda t \,\, \sum_{k=0}^n \frac{(\lambda t)^$

5.3 Probleme propuse

1. Să se calculeze matricea probabilităților de trecere după 2 pași, respectiv 3 pași pentru lanțul Markov a cărui matrice de trecere este

$$P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$\mathbf{R} \colon P^2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}, P^3 = \begin{pmatrix} \frac{1}{4} & \frac{3}{8} & \frac{3}{8} \\ \frac{3}{8} & \frac{1}{4} & \frac{3}{8} \\ \frac{3}{8} & \frac{3}{8} & \frac{1}{4} \end{pmatrix}$$

2. Fie un lanț Markov dat de matricea de trecere $P = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$. Să se calculeze probabilitățile staționare stabilind mai întâi că lanțul este ergodic.

R:
$$(\frac{4}{11}, \frac{3}{11}, \frac{4}{11})$$

3. La un moment inițial într-o urnă se găsesc a bile albe și b bile negre. Se efectuează un șir infinit de extrageri astfel încât după fiecare extragere se pun înapoi în urnă 2 bile de culoarea bilei extrase. Numărul bilelor albe din urnă după extragerea k determină starea procesului. Să se calculeze probabilitățile de trecere din starea i în starea j după un pas.

 \mathbf{R} :

$$P(X_{k+1} = j/X_k = i) = \begin{cases} \frac{a+b+k-i}{a+b+k}, & j = i\\ \frac{i}{a+b+k}, & j = i+1\\ 0, & \text{in rest} \end{cases}$$

4. Vremea în țara vrăjitorului din Oz este un lanț Markov omogen cu 3 stări : s_1 : "ploaie", s_2 : "vreme bună ", s_3 : "zăpadă : și matricea probabilităților de trecere $P = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$. Să se calculeze :

5.3. PROBLEME PROPUSE

139

a) probabilitatea ca după 3 zile de la o zi cu vreme bună să avem o zi cu zăpadă ;

b) repartiția staționară.

R: a)
$$\frac{13}{32}$$
, b) $(\frac{2}{5}, \frac{1}{5}, \frac{2}{5})$

5. Calculați repartiția staționară a unui lanț Markov cu matricea de tre-

cere
$$P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$
.

R:
$$\frac{1}{37}(8,9,20)$$

6. Fie lanţul Markov cu 2 stări E_1 şi E_2 cu probabilitățile de trecere $p_{11}=p_{22}=p, p_{12}=p_{21}=q(0< p<1, p+q=1)$ și repartiția inițială $P(X_0=1)=\alpha, P(X_0=2)=\beta(\alpha+\beta=1)$. Se cer:

a) să se determine probabilitățile de trecere după n pași $(p_{jk}(n))$;

b) să se determine probabilitățile limită;

c) să se determine probabilitatea $P(X_0 = 1/X_n = 1)$.

R: a)
$$P^n = \begin{pmatrix} \frac{1}{2} + \frac{(p-q)^n}{2} & \frac{1}{2} - \frac{(p-q)^n}{2} \\ \frac{1}{2} - \frac{(p-q)^n}{2} & \frac{1}{2} + \frac{(p-q)^n}{2} \end{pmatrix}$$

b)
$$\lim_{n \to \infty} \alpha \cdot p_{11}(n) + \beta \cdot p_{21}(n) = \frac{1}{2}$$

$$\lim_{n \to \infty} \alpha \cdot p_{21}(n) + \beta \cdot p_{22}(n) = \frac{1}{2}$$

Lanţul este ergodic şi distribuţia lui limită (p_1, p_2) se obţine rezolvând sistemul

$$\begin{cases} p_1 = p_1 \cdot p + p_2 \cdot q \\ p_2 = p_1 \cdot q + p_2 \cdot p \\ p_1 + p_2 = 1 \end{cases}$$

c)
$$P(X_0 = 1/X_n = 1) = \frac{P(X_0 = 1)P(X_n = 1/X_0 = 1)}{P(X_n = 1)} = \frac{\alpha \cdot p_{11}(n)}{p_1(n)} = \frac{\alpha + \alpha(p - q)^n}{1 + (\alpha - \beta)(p - q)^n}$$

Capitolul 6

Metode statistice

6.1 Noțiuni teoretice

Teoria selecției

Fie X o v. a. reprezentând o anumită caracteristică numerică (durata de viață, venitul, număr de defecțiuni etc.) a unei populații statistice. Rezultatele numerice x_1, x_2, \ldots, x_n obținute prin n măsurători (interogări, observări etc.) formează o selecție empirică de volum n a v. a. X. Elementele mulțimii $\{x_1, x_2, \dots, x_n\}$ numite variabile de selecție au o dublă interpretare:

- 1) considerate după efectuarea selecției, variabilele x_1, x_2, \ldots, x_n reprezintă valori concrete pe care le folosim ca informații asupra v. a. X și le notăm $X_1 = x_1, \dots, X_n = x_n;$
- 2) considerate înainte de efectuarea selecției, variabilele X_1, \ldots, X_n pot fi privite ca v. a. independente și identic repartizate din punct de vedere probabilistic cu v. a. X

Se consideră că fiecare v. a. $X_j, j = \overline{1, n}$ se realizează cu aceeași probabilitate egală cu $\frac{1}{n}$. Pe baza acestui fapt se construiește v. a. de selecție (variabila empirică)

Definiția 6.1. Variabila aleatoare de selecție are următoarea repartiție

$$X^* \sim \begin{pmatrix} x_1 & \dots & x_n \\ \frac{1}{n} & \dots & \frac{1}{n} \end{pmatrix}$$
, în care $P(X^* = x_k) = \frac{1}{n}, \forall k = \overline{1, n}$

Presupunând că după efectuarea a n observații am obținut : de n_1 ori a apărut X_1, \ldots , de n_k ori a apărut X_k , unde $n_1 + \ldots + n_k = n$, atunci

$$X^* \sim \begin{pmatrix} x_1 & \dots & x_n \\ \frac{n_1}{x} & \dots & \frac{n_k}{x} \end{pmatrix}$$

 $X^* \sim \begin{pmatrix} x_1 & \dots & x_n \\ \frac{n_1}{n} & \dots & \frac{n_k}{n} \end{pmatrix}$ Media de selecție este $\overline{x} = \frac{x_1 + \dots + x_n}{n}$

Dispersia de selecție este $S^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \overline{x})^2$

Selecții dintr-o populație normală

1. Repartiția mediei de selecție dintr-o populație normală

Teorema 6.1. Dacă $\{X_1, X_2, \dots, X_n\}$ este o selecție de volum n dintro populație normală $N(m,\sigma)$, atunci media de selecție $\overline{X}=\frac{X_1+X_2+...+X_n}{n}$ urmează o repartiție normală $N(m, \frac{\sigma}{\sqrt{n}})$.

Corolarul 6.1. In condițiile anterioare $\frac{\overline{X}-m}{\frac{\sigma}{\sqrt{c}}}$ are o repartiție normală standard N(0,1).

Teorema 6.2. $Dacă\{X_{11}, X_{12}, \dots, X_{1n_1}\}$ şi $\{X_{21}, X_{22}, \dots, X_{2n_2}\}$ sunt două selecții de volum n_1 , respectiv n_2 din populațiile normale $N(m_1, \sigma_1)$ şi $N(m_2, \sigma_2)$ şi dacă $\overline{X}_1 = \frac{1}{n_1} \sum_{k=1}^n X_{1k}$ şi $\overline{X}_2 = \frac{1}{n_2} \sum_{k=1}^n X_{2k}$ sunt mediile de selecție corespunzătoare, atunci v. a. $Y = \overline{X}_1 - \overline{X}_2$ are o repartiție normală $N\left(m_1 - m_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right).$

Teorema 6.3. Dacă $\{X_1, X_2, \dots, X_n\}$ reprezintă o selecție de volum n dintr-o populație normală N(0,1), atunci v. a. $Y = \sum_{k=1}^n X_k^2$ urmează o repartitie χ^2 cu n grade de libertate.

2. Repartiția dispersiei de selecție pentru selecții dintr-o populație normală

Fiind dată o populație statistică și X_1, X_2, \ldots, X_n o selecție de volum n se pot defini:

- a) media de selecție $\overline{X}=\frac{X_1+X_2+\ldots+X_n}{n}$ b) dispersia de selecție cu ajutorul căreia putem evalua dispersia populației:
- 1) dacă media m a populației generale este cunoscută atunci dispersia de selecție este dată de $s_0^2 = \frac{1}{n} \sum_{k=0}^{n} (x_k - m)^2$
- 2) dacă media m a populației generale nu este cunoscută , dispersia de selecție este $S^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \overline{x})^2$
- 3) în cazul selecțiilor de volum mic (n < 30) este indicat să fie folosită dispersia modificată de selecție $s^2 = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2$, $s^2 = \frac{n}{n-1} S^2$

Teorema 6.4. Dacă $\{X_1, X_2, \dots, X_n\}$ este o selecție dintr-o populație normală $N(m,\sigma)$, atunci v. a. $\frac{n \cdot s_0^2}{\sigma^2}$ are o repartiție χ^2 cu n grade de libertate.

Teorema 6.5. Dacă $\{X_1, X_2, \dots, X_n\}$ este o selecție dintr-o populație normală $N(m, \sigma)$, atunci

- (1) statisticile $\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$ şi $S^2 = \frac{1}{n} \sum_{k=1}^{n} (X_k \overline{X})^2$ sunt independente;
- (2) statistica $V = \frac{n \cdot S^2}{\sigma^2}$ are o repartiție χ^2 cu n-1 grade de libertate.

Teorema 6.6. Dacă $\{X_1, X_2, \ldots, X_n\}$ este o selecție dintr-o populație normală $N(m, \sigma)$, atunci v. a. $t = \frac{\overline{X} - m}{\frac{s}{\sqrt{n}}}$ are o repartiție Student cu n-1 grade de libertate

Elemente de teoria estimaţiei

Considerăm o v. a. X dintr-o populație Γ având repartiția $f(x,\theta)$. Fie $\{X_1, X_2, \dots, X_n\}$ o selecție de volum n din Γ .

Definiția 6.2. $\theta^*(X_1, X_2, \dots, X_n)$ se numește **estimator** pentru θ , dacă valoarea lui $\theta^*(X_1, X_2, \dots, X_n)$ îl aproximează pe θ .

Definiția 6.3. $\theta^*(X_1, X_2, \dots, X_n)$ se numește **estimator consistent** pentru θ dacă $\lim_{n\to\infty} P(|\theta^*(X_1, X_2, \dots, X_n) - \theta| < \varepsilon) = 1, \forall \varepsilon > 0$, adică $\theta^*(X_1, X_2, \dots, X_n)$ converge în probabilitate către θ .

Definiția 6.4. $\theta^*(X_1, X_2, ..., X_n)$ se numește **estimator nedeplasat** pentru θ dacă $E(\theta^*(X_1, X_2, ..., X_n)) = \theta$.

Definiția 6.5. Dacă

$$\lim_{n \to \infty} E(\theta^*(X_1, X_2, \dots, X_n)) = \theta$$

$$\lim_{n \to \infty} D^2(\theta^*(X_1, X_2, \dots, X_n)) = 0$$

spunem că $\theta^*(X_1, X_2, \dots, X_n)$ este o **estimație corectă** a parametrului θ . **Definiția 6.6.** Dacă

$$E(\theta^*(X_1, X_2, \dots, X_n)) = \theta$$

$$\lim_{n\to\infty} D^2(\theta^*(X_1, X_2, \dots, X_n)) = 0$$

spunem că $\theta^*(X_1, X_2, \dots, X_n)$ este o **estimație absolut corectă** a parametrului θ

Teorema 6.7. Dacă $\theta^*(X_1, X_2, ..., X_n)$ este o estimație pentru θ astfel încât $E(\theta^*(X_1, X_2, ..., X_n)) = \theta$ și $\lim_{n \to \infty} D^2(\theta^*(X_1, X_2, ..., X_n)) = 0$, atunci $\theta^*(X_1, X_2, ..., X_n)$ este un estimator consistent pentru θ .

Teorema 6.8. (Rao-Cramer) Dacă $\theta^*(X_1, X_2, \dots, X_n)$ este o estimație nedeplasată pentru θ , atunci $D^2(\theta^*) \geq \frac{1}{nI(\theta)}$, unde $I(\theta) = -E\left(\frac{\partial^2 \ln f(x,\theta)}{\partial \theta^2}\right) = E\left[\left(\frac{\partial \ln f(x,\theta)}{\partial \theta}\right)^2\right]$.

Definiția 6.7. Dacă $\theta^*(X_1, X_2, ..., X_n)$ este un estimator nedeplasat astfel încât $D^2(\theta^*) = \frac{1}{nI(\theta)}$, atunci el se numește **eficient**.

Corolarul 6.2. Orice estimație eficientă este consistentă .

Metoda verosimilității maxime

Se consideră o selecție (x_1, \ldots, x_n) de volum n. Presupunem că densitatea de repartiție (sau, în cazul discret, funcția de frecvență) depinde de un parametru necunoscut θ care poate lua valori într-o mulțime $\Theta \subset \mathbb{R}^k$.

Definiția 6.8. Vom numi funcție de verosimilitate corespunzătoare valorilor x_1, \ldots, x_n , o funcție $L(x_1, \ldots, x_n; \theta)$, considerată ca funcție de θ ,

definită prin $L(x_1, \ldots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$, unde $f(x_i; \theta)$ este fie densitatea

de probabilitate a v. a. X, fie repartiția sa , adică $f(x;\theta)=P(X=x)$, dacă X este discretă .

Definiția 6.9. Estimatorul de verosimilitate maximă pentru θ este acea valoare $\theta^* = \theta^*(x_1, \dots, x_n)$ cu proprietatea că $L(x_1, \dots, x_n; \theta^*) = \max_{\theta \in \Theta} L(x_1, \dots, x_n; \theta)$.

Întrucât funcțiile L și ln L au aceleași puncte de maxim rezultă că , dacă $\theta=(\theta_1,\ldots,\theta_k)$, atunci $\theta^*(x_1,\ldots,x_n)=(\theta_1(x_1,\ldots,x_n),\ldots,\theta_k(x_1,\ldots,x_n))$ trebuie să verifice sistemul de ecuații

$$\frac{\partial}{\partial \theta_j} \ln L(x_1, \dots, x_n; \theta_1, \dots, \theta_k) = 0, j = \overline{1, k}$$

Intervale de încredere

Definiția 6.10. Fie X o v. a., $a = a(x_1, \ldots, x_n)$ și $b = b(x_1, \ldots, x_n)$ statistici ale lui X, iar $\alpha \in (0,1)$. Intervalul $(a,b) \subset \mathbb{R}$ este un **interval de încredere de nivel** α pentru un anumit parametru θ asociat v. a. X dacă pentru orice selecție statistică X_1, X_2, \ldots, X_n a lui X avem $P(a(X_1, X_2, \ldots, X_n) < \theta < b(X_1, X_2, \ldots, X_n)) = 1 - \alpha$.

Se spune că intervalul (a, b) acoperă pe θ cu probabilitatea $1 - \alpha$.

Definiția 6.11. Fie F(x) o funcție de repartiție și $\alpha \in (0,1)$. Se numește α -cuantilă a repartiției F un număr $c \in \mathbb{R}$ pentru care $F(c) = \alpha$.

In cele ce urmează α -cuantilele repartițiilor $N(0,1), \chi^2(n), T(n)$ vor fi notate respectiv $z_{\alpha}, \chi^2_{\alpha}(n), t_{\alpha}(n)$.

Intervale de încredere pentru media și dispersia repartiției normale $\,$

1. σ cunoscut, m necunoscut

$$m \in \left(\overline{x} - \frac{\sigma}{\sqrt{n}} z_{1-\frac{\alpha}{2}}, \overline{x} + \frac{\sigma}{\sqrt{n}} z_{1-\frac{\alpha}{2}}\right)$$

2. m cunoscut, σ necunoscut

$$\sigma^2 \in \left(\frac{n}{\chi^2_{1-\frac{\alpha}{2}}(n)} \cdot s_0^2, \frac{n}{\chi^2_{\frac{\alpha}{2}}(n)} \cdot s_0^2\right)$$

3. m și σ necunoscuți

$$\sigma^2 \in \left(\frac{n-1}{\chi_{1-\frac{\alpha}{2}}^2(n-1)} \cdot s^2, \frac{n-1}{\chi_{\frac{\alpha}{2}}^2(n-1)} \cdot s^2\right)$$

$$m \in \left(\overline{x} - \sqrt{\frac{s^2}{n}} t_{1-\frac{\alpha}{2}}(n-1), \overline{x} + \sqrt{\frac{s^2}{n}} t_{1-\frac{\alpha}{2}}(n-1)\right)$$

Verificarea ipotezelor statistice parametrice

Fie θ un parametru asociat v. a. X şi ipoteza nulă $H_0: \theta = \theta_0$ care trebuie testată (verificată) astfel încât probabilitatea **unei erori de prima speță** (respingerea lui H_0 atunci când ea este adevărată) să fie egală cu α . Numărul $\alpha \in (0,1)$ se numește **nivelul de semnificație** al testului. Etapele aplicării testului sunt următoarele:

- a) Alegerea **ipotezei alternative** H_1 care poate fi **unilaterală** H_1 : $\theta < \theta_0, \theta > \theta_0$ sau **bilaterală** $H_1: \theta \neq \theta_0$;
- b) Alegerea unei statistici $f = f(x_1, ..., x_n)$ astfel încât, în ipoteza H_0 , repartiția lui f să fie cunoscută ;
- c) In funcție de ipoteza alternativă H_1 și de nivelul de semnificație α , fixarea unei regiuni critice de forma

$$R_{cr} = \{f/f < c_{\alpha}\}, R_{cr} = \{f/f > c_{1-\alpha}\}$$

în cazul unui test unilateral, sau

$$R_{cr} = \left\{ f/f < c_{\frac{\alpha}{2}} \right\} \cup R_{cr} = \left\{ f/f > c_{1-\frac{\alpha}{2}} \right\}$$

în cazul unui test bilateral. Cu $c_{\alpha}, c_{1-\alpha}, c_{\frac{\alpha}{2}}, c_{1-\frac{\alpha}{2}}$ s-au notat cuantilele repartiției lui f în ipoteza H_0 ; deci, în această ipoteză , probabilitatea unei erori de prima speță este $P(f \in R_{cr}) = \alpha$.

- d) Se calculează valoarea $f(x_1, \ldots, x_n)$ luată de statistica f pe elementele unei anumite selecții empirice x_1, \ldots, x_n
 - e) Se respinge ipoteza H_0 dacă și numai dacă $f(x_1, \ldots, x_n) \in R_{cr}$
- 1. Verificarea ipotezei asupra medie
ima unei populații normale cu σ^2 cunoscut
 - 1.1. Testul bilateral

$$H_0: m = m_0$$

$$H_1: m = m_1 \neq m_0$$

Regiunea critică este
$$R_{cr}: \left|\frac{\overline{x}-m_0}{\frac{\sigma}{\sqrt{n}}}\right| > z_{1-\frac{\alpha}{2}}$$

1.2. Testul unilateral stânga

$$H_0: m = m_0$$

$$H_1: m = m_1 < m_0$$

Regiunea critică este
$$R_{cr}: \frac{\overline{x}-m_0}{\frac{\sigma}{\sqrt{r_0}}} \leq z_{\alpha}$$

1.3. Testul unilateral dreapta

$$H_0: m = m_0$$

$$H_1: m = m_1 > m_0$$

Regiunea critică este
$$R_{cr}: \frac{\overline{x}-m_0}{\frac{\sigma}{\sqrt{n}}} \geq z_{1-\alpha}$$

2. Verificarea ipotezei asupra mediei m a unei populații normale cu σ^2 necunoscut

2.1. Testul bilateral

$$H_0: m=m_0$$

$$H_1: m = m_1 \neq m_0$$

Regiunea critică este
$$R_{cr}: |\frac{\overline{x}-m_0}{\frac{s}{\sqrt{n}}}| > t_{1-\frac{\alpha}{2}}(n-1)$$

2.2. Testul unilateral stânga

$$H_0: m=m_0$$

$$H_1 : m = m_1 < m_0$$

Regiunea critică este
$$R_{cr}: \frac{\overline{x}-m_0}{\frac{s}{\sqrt{n}}} \leq t_{\alpha}(n-1)$$

2.3. Testul unilateral dreapta

$$H_0: m=m_0$$

$$H_1: m = m_1 > m_0$$

Regiunea critică este
$$R_{cr}: \frac{\overline{x}-m_0}{\frac{s}{\sqrt{n}}} \ge t_{1-\alpha}(n-1)$$

Regiunea critică este $R_{cr}: \frac{\overline{x}-m_0}{\frac{s}{\sqrt{n}}} \geq t_{1-\alpha}(n-1)$ 3. Verificarea ipotezei asupra dispersiei unei populații normale

Fie ipoteza $H_0: \sigma^2 = \sigma_0^2$ și alternativa ei $H_1: \sigma^2 = \sigma_1^2$

3.1. Testul unilateral stânga

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0^2$$

 $H_1: \sigma^2 = \sigma_1^2 < \sigma_0^2$

Regiunea critică este
$$R_{cr}: \frac{(n-1)s^2}{\sigma_0^2} < \chi_{\alpha}^2(n-1)$$

3.2. Testul unilateral dreapta

$$H_0: \sigma^2 = \sigma_0^2$$

$$\begin{aligned} H_0: \sigma^2 &= \sigma_0^2 \\ H_1: \sigma^2 &= \sigma_1^2 > \sigma_0^2 \end{aligned}$$

Regiunea critică este
$$R_{cr}: \frac{(n-1)s^2}{\sigma_0^2} > \chi_{1-\alpha}^2(n-1)$$

3.3. Testul bilateral

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_1: \sigma^2 = \sigma_1^2 \neq \sigma_0^2$$

Regiunea critică este
$$R_{cr}: \frac{(n-1)s^2}{\sigma_0^2} < \chi_{\frac{\alpha}{2}}^2(n-1) \cup \frac{(n-1)s^2}{\sigma_0^2} > \chi_{1-\frac{\alpha}{2}}^2(n-1)$$

6.2 Probleme rezolvate

1. Cercetându-se numărul de accidente dintr-o unitate economică au fost obținute următoarele date în urma efectuării unei selecții de volum n = 1000 muncitori.

Stabiliți:

- a) media și dispersia de selecție;
- b) funcția empirică de repartiție și valorile ei în punctele x=4 și x=6.

Soluție. a)
$$\overline{x} = \frac{1}{1000} (0.500 + 1.200 + 2.150 + 3.80 + 4.70) = 1,02$$

 $S^2 = \frac{1}{1000} [500 \cdot (0 - 1,02)^2 + 200 \cdot (1 - 1,02)^2 + 150 \cdot (2 - 1,02)^2 + 80 \cdot (3 - 1,02)^2 + 70 \cdot (4 - 1,02)^2] = 1,589$

b)
$$X^* \sim \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ \frac{500}{1000} & \frac{200}{1000} & \frac{150}{1000} & \frac{80}{1000} & \frac{70}{1000} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0,5 & 0,2 & 0,15 & 0,08 & 0,07 \end{pmatrix}$$

$$F^*(x) = \begin{cases} 0, & x \le 0 \\ 0, 2, & 0 < x \le 1 \\ 0, 7, & 1 < x \le 2 \\ 0, 85, & 2 < x \le 3 \\ 0, 93, & 3 < x \le 4 \\ 1, & x > 4 \end{cases}$$

$$F^*(4) = 0.93, F^*(6) = 1$$

2. Durata de execuție a unei lucrări într-o bandă de montaj este repartizată normal cu media m și abaterea $\sigma=4$ minute. S-a cronometrat durata de efectuare a operației la un număr de n=9 muncitori. Determinați probabilitatea ca media duratei determinate pe baza celor n observații să nu difere de m în valoare absolută cu mai mult de 3 minute la un muncitor. $(\Phi(2, 25) = 0, 9878)$

$$\begin{array}{ll} \textit{Soluție.} \ \ P(|\overline{X}-m|<3) = P(-3<\overline{X}-m<3) = \\ = P(-\frac{3\sqrt{n}}{\sigma}<\frac{\overline{X}-m}{\frac{\sigma}{\sqrt{n}}}<\frac{3\sqrt{n}}{\sigma}) = 2\Phi(\frac{3\sqrt{n}}{\sigma}) - 1 = 2\Phi(\frac{3\cdot3}{4}) - 1 = 2\Phi(2,25) - \\ -1 = 2\cdot0,9878 - 1 = 0,975 \end{array}$$

3. Presupunând că diametrul unor piese fabricate la un strung este repartizat normal N(m,2), care trebuie să fie volumul n al selecției astfel încât $P(|\overline{X} - m| < 1) = 0,99$? $(\Phi(2,58) = 0,995)$

$$Soluţie. \ 0,99 = P(|\overline{X} - m| < 1) = P(-1 < \overline{X} - m < 1) = P(-\frac{\sqrt{n}}{\sigma} < \frac{\overline{X} - m}{\frac{\sigma}{\sqrt{n}}} < \frac{\sqrt{n}}{\sigma}) = 2\Phi(\frac{\sqrt{n}}{\sigma}) - 1 = 2\Phi(\frac{\sqrt{n}}{2}) - 1 \Longrightarrow 2\Phi(\frac{\sqrt{n}}{2}) = 1,99 \Longrightarrow \Phi(\frac{\sqrt{n}}{2}) = 0,995 \Longrightarrow \frac{\sqrt{n}}{2} = 2,58 \Longrightarrow n \simeq 27$$

4. Dintr-o populație normală cu media m=12, probabilitatea ca media de selecție corespunzătoare unei selecții de volum n=25 să nu depășească 16 este de 0,24. Care este probabilitatea ca o singură observație din această selecție să aibă o valoare mai mare decât 16? $(\Phi(0,31)=1,24,\Phi(0,02)=0,5)$

5. Diametrele în mm ale pieselor prelucrate la două strunguri sunt v. a. repartizate normal N(12,4), respectiv N(13,2). Se efectuează o selecție de volum $n_1=16$ și $n_2=9$ de la primul, respectiv al doilea strung și se calculează \overline{X}_1 și \overline{X}_2 mediile de selecție corespunzătoare. Calculați $P(\overline{X}_1-\overline{X}_2<0,3).(\Phi(1,08)=0,8599)$

Soluţie. Cf. teoremei 6.2 ştim că
$$\frac{\overline{X}_1 - \overline{X}_2 - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Aşadar, $P(\overline{X}_1 - \overline{X}_2 < 0, 3) = P\left(\frac{\overline{X}_1 - \overline{X}_2 - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}}} < \frac{0,3 - (12 - 13)}{\sqrt{\frac{16}{16} + \frac{4}{9}}}\right) =$

$$= P\left(\frac{\overline{X}_1 - \overline{X}_2 - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}}} < 1,08\right) = \Phi(1,08) = 0,8599$$

- 6. Dintr-o populație normală cu media $m_1 = 80$ și dispersia $\sigma_1^2 = 40$ se extrage o selecție de volum $n_1 = 400$ și din altă populație normală cu $m_2 = 76$ și $\sigma_2^2 = 180$ se extrage o selecție de volum $n_2 = 200$. Să se determine probabilitatea ca:
 - a) media de selecție \overline{X}_1 a primei populații să fie mai mare decât media de selecție \overline{X}_2 a celei de-a doua populații cu cel puțin 5 unități;
 - b) diferența mediilor celor două selecții în valoare absolută să fie mai mare decât 6. ($\Phi(1)=0,8413$)

Soluţie. a)
$$P(\overline{X}_1 > \overline{X}_2 + 5) = P(\overline{X}_1 - \overline{X}_2 > 5) =$$

$$= P\left(\frac{\overline{X}_1 - \overline{X}_2 - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}}} > \frac{5 - (80 - 76)}{\sqrt{\frac{40}{400} + \frac{180}{200}}}\right) = P\left(\frac{\overline{X}_1 - \overline{X}_2 - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}}} > 1\right) =$$

$$= 1 - P\left(\frac{\overline{X}_1 - \overline{X}_2 - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}}} \le 1\right) = 1 - \Phi(1) = 1 - 0,8413 = 0,1587$$
b) $P(|\overline{X}_1 - \overline{X}_2| > 6) = 1 - P(|\overline{X}_1 - \overline{X}_2| \le 6) = 1 - P(-6 \le \overline{X}_1 - \overline{X}_2 \le 6) = 1 - P\left(\frac{-6 - 4}{1} \le \frac{\overline{X}_1 - \overline{X}_2 - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}}} \le \frac{6 - 4}{1}\right)$

$$= 1 - P\left(-10 \le \frac{\overline{X}_1 - \overline{X}_2 - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}}} < 2\right) = 1 - (\Phi(2) - \Phi(-10)) = 1 - \Phi(2) - \Phi(-10) = 1 - \Phi(2) - \Phi(10) = 1 - \Phi(2) - \Phi(10) = 1 - \Phi(2) = 0,023$$

7. Să se arate că media de selecție $\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$ este un estimator nedeplasat și consistent pentru media m a oricărei populații.

Soluție.
$$E(\overline{X}) = E\left(\frac{1}{n}\sum_{k=1}^{n}X_k\right) = \frac{1}{n}\sum_{k=1}^{n}E(X_k) = \frac{1}{n}\cdot nm = m \Longrightarrow \overline{X}$$
 e nedeplasat

$$D^2(\overline{X}) = D^2\left(\frac{1}{n}\sum_{k=1}^n X_k\right) = \frac{1}{n^2} \cdot n\sigma^2 = \frac{\sigma^2}{n} \longrightarrow 0, n \longrightarrow \infty \text{ rezultă cf.}$$
teoremei 6.7 că \overline{X} este consistent

8. Să se arate că media de selecție este un estimator eficient pentru parametrul λ al repartiției exponențiale cu legea de repartiție $f(x,\lambda) = \frac{1}{\lambda} \mathrm{e}^{-\frac{x}{\lambda}}$, unde $\lambda > 0, x > 0$.

$$\begin{array}{l} \textit{Soluție.} \ \ \textit{Folosim} \ \ \textit{teorema} \ \ 6.8: \ I(\lambda) = -E(\frac{\partial^2 \ln f(x,\lambda)}{\partial \lambda^2}) = \\ = -E(\frac{\partial^2}{\partial \lambda^2}(-\ln \lambda - \frac{x}{\lambda})) = -E(\frac{\partial}{\partial \lambda}(-\frac{1}{\lambda} + \frac{x}{\lambda^2})) = -E(\frac{1}{\lambda^2} - \frac{2x}{\lambda^3}) = \\ = \frac{-\lambda + 2E(x)}{\lambda^3} = \frac{\lambda}{\lambda^3} = \frac{1}{\lambda^2} \\ D^2(\overline{X}) = \frac{1}{n^2} \cdot \lambda^2 n = \frac{\lambda^2}{n} = \frac{1}{n \cdot \frac{1}{\lambda^2}} = \frac{1}{nI(\lambda)}, \ \ \text{deoarece} \ D^2(X_k) = \lambda^2 \Longrightarrow \overline{X} \\ \text{este estimator eficient} \\ \Box$$

- 9. Se consideră caracteristica X din populația C, având funcția de repartiție teoretică $F(x,\theta)=1-\left(1+\frac{x}{\theta}\right)\cdot \mathrm{e}^{-\frac{x}{\theta}}, x>0, \theta>0$. Se cer:
 - a) să se determine legea de repartiție f(x) a variabilei X, funcția caracteristică $\varphi_X(t)$ și momentul de ordinul $r, E(X^r)$;
 - b) prin metoda verosimilității maxime să se estimeze parametrul θ al legii $f(x,\theta)$ pe baza unei selecții aleatoare x_1,\ldots,x_n de volum n, extrasă din populația C;

c) fie θ^* estimatorul găsit la punctul b). Să se arate că θ^* este nedeplasat, consistent și eficient.

Soluţie. a)
$$f(x,\theta) = \frac{\partial F(x,\theta)}{\partial x} = \frac{1}{\theta} e^{-\frac{x}{\theta}} - \frac{1}{\theta} e^{-\frac{x}{\theta}} + \frac{x}{\theta^2} e^{-\frac{x}{\theta}} = \frac{x}{\theta^2} e^{-\frac{x}{\theta}}$$

$$\varphi_X(t) = \int_0^\infty e^{itx} \frac{x}{\theta^2} e^{-\frac{x}{\theta}} dx = (1 - it\theta)^{-2}$$

$$E(X^r) = \frac{1}{\theta^2} \int_0^\infty x^r x e^{-\frac{x}{\theta}} dx = \frac{\theta^{r+2}}{\theta^2} y^{r+1} e^{-y} dy = \theta^r \Gamma(r+2) = \theta^r (r+1)!$$

b)
$$L(x_1, ..., x_n; \theta) = \frac{x_1...x_n}{\theta^{2n}} e^{-\frac{1}{\theta} \sum_{i=1}^n x_i} \Longrightarrow \ln L = -2n \ln \theta + \sum_{i=1}^n \ln x_i - \frac{1}{\theta} \sum_{i=1}^n x_i = -\frac{1}{\theta} \sum_$$

$$-\frac{1}{\theta} \sum_{i=1}^{n} x_i \Longrightarrow \frac{\partial \ln L}{\partial \theta} = -\frac{2n}{\theta} + \frac{\sum_{i=1}^{n} x_i}{\theta^2} = 0 \Longrightarrow \theta^* = \frac{1}{2n} \sum_{i=1}^{n} x_i$$

c)
$$E(\theta^*) = \frac{1}{2n} \sum_{i=1}^n E(X_i) = \frac{1}{2n} \cdot n \cdot 2\theta = \theta$$
 (deoarece $E(X) = 2\theta$ făcând

r=1 în formula dedusă la punctul a) pentru momentul de ordinul $r){\Longrightarrow}\;\theta^*$ e nedeplasat

$$D^{2}(\theta^{*}) = D^{2}\left(\frac{1}{2n}\sum_{i=1}^{n} x_{i}\right) = \frac{1}{4n^{2}}\sum_{i=1}^{n} D^{2}(X_{i}) = \frac{1}{4n^{2}} \cdot n \cdot 2\theta^{2} = \frac{\theta^{2}}{2n} \longrightarrow 0$$

$$1 \ge P(|\theta^* - \theta| < \varepsilon) \ge 1 - \frac{D^2(\theta^*)}{\varepsilon^2} = \left(1 - \frac{\theta^2}{2n\varepsilon^2}\right) \longrightarrow 1, n \longrightarrow \infty, \text{ deci } \theta^*$$
este consistent

Pentru eficiență trebuie arătat că $D^2(\theta^*) = \frac{1}{nI(\theta)}$, unde $I(\theta) = E\left(\frac{\partial \ln f(x,\theta)}{\partial \theta}\right)^2$

Avem
$$\ln f(x,\theta) = \ln x - 2 \ln \theta - \frac{x}{\theta} \Longrightarrow \frac{\partial \ln f(x,\theta)}{\partial \theta} = -\frac{2}{\theta} + \frac{x}{\theta^2} \Longrightarrow$$

$$\Longrightarrow E \left(\frac{\partial \ln f(x,\theta)}{\partial \theta}\right)^2 = E \left(\frac{x-2\theta}{\theta^2}\right)^2 = \frac{1}{\theta^4} E(X-2\theta)^2 = \frac{1}{\theta^4} D^2(X) = \frac{2\theta^2}{\theta^4} =$$

$$= \frac{2}{\theta^2} \Longrightarrow \frac{1}{nI(\theta)} = \frac{1}{n \cdot \frac{2}{\sigma^2}} = \frac{\theta^2}{2n} = D^2(\theta^*), \text{ deci } \theta^* \text{ este eficient} \qquad \Box$$

10. Să se estimeze prin metoda verosimilității maxime parametrul θ al repartițiilor:

a)
$$f(x,\theta) = \theta(1-\theta)^x, x = 0, 1, 2..., 0 < \theta < 1$$

b)
$$f(x,\theta) = (1+\theta)x^{\theta}, 0 < x < 1, \theta > 0$$

c)
$$f(x,\theta) = \frac{\theta x_0^{\theta}}{x^{\theta+1}}, x > x_0(x_0 \text{ constantă dată }), \theta > 0$$

d)
$$f(x,\theta) = \frac{x}{\theta} \cdot e^{-\frac{x^2}{2\theta}}, x > 0, \theta > 0$$

e)
$$f(x,\theta) = \frac{x^{\alpha-1}e^{-\frac{x}{\theta}}}{\Gamma(\alpha)\theta^{\alpha}}, x > 0, \theta > 0, \alpha$$
 dat

f)
$$f(x,\theta) = \theta e^{-\theta x}, x \ge 0, \theta > 0$$

-1

Soluție. a)
$$L(x_1, x_2, \dots x_n; \theta) = \prod_{i=1}^n f(x_i, \theta) = \theta^n (1 - \theta)^{\sum_{i=1}^n x_i} \Longrightarrow$$

$$\implies \ln L = n \ln \theta + \sum_{i=1}^{n} x_i \ln(1-\theta) \implies \frac{\partial \ln L}{\partial \theta} = \frac{n}{\theta} - \frac{\sum_{i=1}^{n} x_i}{1-\theta} = 0 \implies \theta^* = \frac{n}{n+\sum_{i=1}^{n} x_i} = \frac{1}{1+\overline{x}}$$

b)
$$L(x_1, x_2, \dots x_n; \theta) = (1 + \theta)^n (x_1 x_2 \dots x_n)^{\theta} \Longrightarrow \ln L = n \ln(1 + \theta) + \theta \ln(x_1 x_2 \dots x_n) \Longrightarrow \frac{\partial \ln L}{\partial \theta} = \frac{n}{1 + \theta} + \ln \prod_{i=1}^n x_i = 0 \Longrightarrow \theta^* = -\frac{n}{\sum_{i=1}^n \ln x_i} - \frac{n}{\sum_{i=1}^n \ln x_i}$$

c)
$$L(x_1, x_2, \dots x_n; \theta) = \theta^n x_0^{n\theta} (x_1 x_2 \dots x_n)^{-(1+\theta)} \Longrightarrow \ln L = n \ln \theta +$$

 $+ n\theta \ln x_0 - (1+\theta) \ln \prod_{i=1}^n x_i \Longrightarrow \frac{\partial \ln L}{\partial \theta} = \frac{n}{\theta} + n \ln x_0 - \ln \prod_{i=1}^n x_i = 0 \Longrightarrow$
 $\Longrightarrow \theta^* = -\frac{n}{\ln \frac{x_0}{n}}$
 $\prod_{i=1}^n x_i$

d)
$$L(x_1, x_2, \dots x_n; \theta) = \frac{x_1 x_2 \dots x_n}{\theta^n} \cdot e^{-\frac{1}{2\theta} \sum_{i=1}^n x_i^2} \Longrightarrow \ln L = \ln \prod_{i=1}^n x_i - \ln \theta - \frac{1}{2\theta} \sum_{i=1}^n x_i^2 \Longrightarrow \frac{\partial \ln L}{\partial \theta} = -\frac{n}{\theta} + \frac{1}{2\theta^2} \sum_{i=1}^n x_i^2 = 0 \Longrightarrow \theta^* = \frac{1}{2n} \sum_{i=1}^n x_i^2$$

e)
$$L(x_1, x_2, \dots x_n; \theta) = \frac{(x_1 x_2 \dots x_n)^{\alpha - 1}}{[\Gamma(\alpha)]^n \theta^{n\alpha}} \cdot e^{-\frac{1}{\theta} \sum_{i=1}^n x_i} \Longrightarrow \ln L = (\alpha - 1) \ln \prod_{i=1}^n x_i - n \ln \Gamma(\alpha) - n\alpha \ln \theta - \frac{1}{\theta} \sum_{i=1}^n x_i \Longrightarrow \frac{\partial \ln L}{\partial \theta} = -\frac{n\alpha}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n x_i = 0 \Longrightarrow$$

$$\Longrightarrow \theta^* = \frac{1}{n\alpha} \sum_{i=1}^n x_i = \frac{\overline{x}}{\alpha}$$

f)
$$L(x_1, x_2, \dots x_n; \theta) = \theta^n e^{-\theta \sum_{i=1}^n x_i} \Longrightarrow \ln L = n \ln \theta - \theta \sum_{i=1}^n x_i \Longrightarrow$$

$$\Longrightarrow \frac{\partial \ln L}{\partial \theta} = \frac{n}{\theta} - \sum_{i=1}^{n} x_i = 0 \Longrightarrow \theta^* = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{x}$$

11. Intr-o fabrică de țesut s-a constatat că rezistența la rupere a unui anumit fir de bumbac are o repartiție normală cu media necunoscută m și abaterea medie pătratică $\sigma=36\mathrm{g}$ (calitatea standard). Pentru a cerceta calitatea unui lot de fire de bumbac în ceea ce privește rezistența la rupere s-a făcut o selecție de volum n=9 fire, obținându-se media de selecție $\overline{X}=195$ g. Să estimeze rezistența la rupere m a lotului de fire controlat, printr-un interval de încredere $1-\alpha=0,95.$ $(z_{0,975}=1,96)$

Soluție.
$$\sigma$$
 e cunoscut, deci $m \in \left(195 - 1, 96 \cdot \frac{36}{\sqrt{9}}, 195 + 1, 96 \cdot \frac{36}{\sqrt{9}}\right) = (171, 48; 218, 52)$

12. Rectorul Universității Politehnice București vrea să știe care este media vârstei studenților. Din anii trecuți se cunoaște că abaterea standard este de 2 ani. Un sondaj asupra a 50 de studenți arată că media este de 23,2 ani. Cu un nivel de semnificație de 0,05, să se determine un interval de încredere pentru medie. Se presupune că populația are caracteristica normală .

Soluție. Se știu
$$\overline{X} = 23, 2, \sigma = 2, n = 50, \alpha = 0, 05$$

 $m \in (23, 2 - 1, 96 \cdot \frac{2}{\sqrt{50}}, 23, 2 + 1, 96 \cdot \frac{2}{\sqrt{50}}) = (22, 65; 23, 75)$

13. Pentru a testa viteza cu care este absorbit pe piaţă un roman de Octavian Paler, o editură particulară pune în vânzare, prin 9 librării, loturi identice. Cantitățile se epuizează după un număr de zile valabil după cum urmează :

- a) Să se estimeze printr-un interval de încredere $95^{0}/_{0}$ viteza medie cu care este absorbit pe piață romanul (nr. mediu de zile m)
- b) Să se determine un interval de încredere $90^0/_0$ pentru dispersia σ^2 a numărului de zile X în care se epuizează romanul. $(t_{0,975}(8) = 2,33,\chi^2_{0.95}(8) = 15,5,\chi^2_{0.05}(8) = 2,73)$

Soluție. a)
$$\sigma$$
 și m sunt necunoscuți, deci
$$m \in \left(\overline{x} - \sqrt{\frac{s^2}{n}} t_{1-\frac{\alpha}{2}}(n-1), \overline{x} + \sqrt{\frac{s^2}{n}} t_{1-\frac{\alpha}{2}}(n-1)\right)$$
$$\overline{X} = \frac{1}{0}(51 + 54 + \ldots + 49) = 50$$

$$s^{2} = \frac{1}{8}[(51 - 50)^{2} + (54 - 50)^{2} + (49 - 50)^{2} + \dots + (49 - 50)^{2}] = 3$$

$$m \in \left(50 - 2, 33 \cdot \sqrt{\frac{3}{9}}, 50 + 2, 33 \cdot \sqrt{\frac{3}{9}}\right) = (48, 674; 51, 236)$$
b)
$$\sigma^{2} \in \left(\frac{n - 1}{\chi_{1 - \frac{\alpha}{2}}^{2}(n - 1)} \cdot s^{2}, \frac{n - 1}{\chi_{\frac{\alpha}{2}}^{2}(n - 1)} \cdot s^{2}\right) = \left(\frac{8}{15, 5} \cdot 3, \frac{8}{2, 73} \cdot 3\right) =$$

$$= (1, 548; 8, 791)$$

14. Fie X v. a. normală care reprezintă grosimea unor plăci metalice. O selecție de volum n=5 a dat rezultatele $X_1=2,015, X_2=2,02, X_3=2,025, X_4=2,02, X_5=2,015$. Se cere să se estimeze grosimea medie a plăcilor de metal printr-un interval de încredere $95^0/_0$. Să se afle volumul minim n al selecției astfel încât eroarea în estimarea medie la nivelul de încredere specificat mai sus să nu depășească 0,003. $(t_{0.975}(4)=2,776))$

$$Soluție. \ \overline{X} = \frac{1}{5} \sum_{i=1}^{n} X_i = 2,019,$$

$$s = \sqrt{\frac{1}{4}[(2,015-2,019)^2 + \ldots + (2,02-2,019)^2 + +(2,015-2,019)^2]} = 0,0042$$

$$\text{Deci } m \in (2,019-2,776 \cdot \frac{0,0042}{\sqrt{5}},2,019+2,776 \cdot \frac{0,0042}{\sqrt{5}}) = (2,0142;2,0238)$$

$$\text{Pentru aflarea volumului minim } n \text{ avem } \varepsilon = 2,776 \cdot \frac{0,0042}{\sqrt{n}} \Longrightarrow n \ge 2 \ge \frac{0,000018}{(0,003)^2} \cdot (2,776)^2 \simeq 6$$

- 15. Fie X o v. a. având o repartiție Poisson $f(x, \theta) = e^{-\theta} \cdot \frac{\theta^x}{x!}$, $x = 0, 1, 2 \dots, \theta > 0$
 - a) Să se estimeze parametrul θ al repartiției și să se arate că estimatorul este eficient.
 - b) Folosind o selecție de volum mare, să se determine un interval de încredere $1-\alpha$ pentru θ .
 - c) Intr-un cartier al capitalei cu 10 telefoane publice s-a efectuat zilnic în decursul unei anumite perioade, înregistrarea numărului de telefoane care nu funcționează . In total sunt n=200 înregistrări și s-au obținut rezultatele :

Se cere să se estimeze numărul mediu de telefoane defecte, știind că numărul de telefoane defecte este o variabilă Poisson și să se determine un interval de încredere $95^0/_0$ pentru numărul mediu de telefoane.

Soluţie. a)
$$L(x_1, \dots, x_n; \theta) = e^{-n\theta} \cdot \frac{\sum_{i=1}^n x_i}{x_1! \dots x_n!} \Longrightarrow \ln L = -n\theta + \sum_{i=1}^n x_i \ln \theta - \ln(x_1! \dots x_n!) \Longrightarrow \frac{\partial \ln L}{\partial \theta} = -n + \frac{\sum_{i=1}^n x_i}{\theta} = 0 \Longrightarrow \theta^* = \frac{1}{n} \sum_{i=1}^n x_i = \overline{X}$$

$$\ln f(x,\theta) = -\theta + x \ln \theta - \ln x! \Longrightarrow \frac{\partial \ln f(x,\theta)}{\partial \theta} = -1 + \frac{x}{\theta} \Longrightarrow \frac{\partial^2 \ln f(x,\theta)}{\partial \theta^2} =$$

$$= -\frac{x}{\theta^2} \Longrightarrow I(\theta) = -E\left(\frac{\partial^2 \ln f(x,\theta)}{\partial \theta^2}\right) = -E\left(-\frac{x}{\theta^2}\right) = \frac{\theta}{\theta^2} = \frac{1}{\theta} \Longrightarrow$$

$$\Longrightarrow \frac{1}{nI(\theta)} = \frac{\theta}{n}$$

Pe de altă parte
$$D^2(\theta^*) = D^2(\overline{X}) = D^2\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}\sum_{i=1}^n D^2(X_i) = \frac{1}{n^2} \cdot n\theta = \frac{\theta}{n} \Longrightarrow \theta^*$$
 este eficient

- b) Pentru n mare variabila $\frac{\theta^*-\theta}{\sqrt{\frac{\theta^*}{n}}} \sim N(0,1)$. Rezultă intervalul de încredere pentru θ : $\theta^*-z_{1-\frac{\alpha}{2}}\sqrt{\frac{\theta^*}{n}} < \theta < \theta^*+z_{1-\frac{\alpha}{2}}\sqrt{\frac{\theta^*}{n}}$ (*)
- c) Numărul mediu de telefoane care nu funcționează calculat pe baza celor 200 observații este dat de $\theta^* = \overline{X} = \frac{1}{n} \sum_{i=1}^n n_i x_i = \frac{1}{200} (0 \cdot 41 + 1 \cdot 62 + \ldots + 10 \cdot 0) = 1,8$

Repartiția complet specificată a variabilei X se scrie $f(x)=\mathrm{e}^{-1,8}\cdot\frac{(1,8)^x}{x!}, x=0,1,2\dots$

Pentru
$$1 - \alpha = 0, 95, z_{1-\frac{\alpha}{2}} = 1, 96, n = 200, \theta^* = 1, 8$$
 găsim intervalul pentru θ dat de (*): $1, 8 - 1, 96 \cdot 0, 09 < \theta < 1, 8 + 1, 96 \cdot 0, 09 \Longrightarrow \implies 1, 62 < \theta < 1, 98$

- 16. Un lot numeros (de volum N>5000) de casete audio înregistrate este supus controlului, pentru determinarea procentului p de casete necorespunzătoare din lot (p= probabilitatea ca o casetă extrasă la întâmplare din lot să fie necorespunzătoare). S-au controlat printro selecție cu întoarcere n casete printre care s-au găsit X necorespunzătoare. Se cere:
 - a) să se estimeze proporția p de casete necorespunzătoare din lot, considerând că numărul de casete necorespunzătoare din cele n urmează o repartiție binomială ;
 - b) Să se arate că estimatorul găsit este nedeplasat, consistent și eficient;
 - c) să se determine un interval de încredere $1-\alpha$ pentru proporția p a casetelor necorespunzătoare din lot.

Soluție. Notând cu X_i v. a. ce exprimă numărul de casete defecte ce apar la extragerea de rang i avem $X_i \sim \begin{pmatrix} 1 & 0 \\ p & q \end{pmatrix}, i = \overline{1,n}$, unde p este probabilitatea ca o casetă să fie necorespunzătoare, iar q este probabilitatea ca o casetă să fie corespunzătoare

Repartiția v. a. X_i se mai scrie $f(x,p) = p^{x_i}(1-p)^{1-x_i}, x_i = 0, 1, i =$

Funcția de verosimilitate este $L(x_1,\dots,x_n;p)=\sum_{i=1}^n x_i$ $(1-p)^{n-\sum_{i=1}^n x_i}\Longrightarrow$

$$\implies \ln L = \sum_{i=1}^{n} x_i \ln p + (n - \sum_{i=1}^{n} x_i) \ln(1-p) \implies \frac{\partial \ln L}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{1}{p} - \frac{1$$

$$-\frac{n-\sum_{i=1}^{n}x_{i}}{1-p} \implies p^{*} = \frac{1}{n}\sum_{i=1}^{n}x_{i} = \frac{k}{n} = f_{n}, \text{ adică frecvența relativă a}$$

aparițiilor casetei necorespunzătoare în cele n probe (k este numărul de casete necorespunzătoare din cele n controlate)

b) Deoarece k este o v. a. binomială luând valorile $0, 1, \dots n$ avem $E(p^*) = E\left(\frac{k}{n}\right) = \frac{1}{n}E(k) = \frac{np}{n} = p$, deci p^* este nedeplasat

 $D^2(p^*)=D^2\left(\frac{k}{n}\right)=\frac{1}{n^2}D^2(k)=\frac{np(1-p)}{n^2}=\frac{p(1-p)}{n}$ și cf. inegalității lui Cebîşev $P(|p^*-p|<\varepsilon)\geq 1-\frac{pq}{n\varepsilon^2}\longrightarrow 1,$ când $n\longrightarrow\infty,$ ceea ce demonstrează consistența lui p^*

Pentru eficiență avem:

$$\begin{split} & \ln f(x,p) = x \ln p + (1-x) \ln (1-p) \Longrightarrow \frac{\partial \ln f(x,p)}{\partial p} = \frac{x}{p} - \frac{1-x}{1-p} = \\ & = \frac{x-p}{p(1-p)} \Longrightarrow I(p) = \frac{1}{p^2(1-p)^2} E(x-p)^2 = \frac{p(1-p)}{p^2(1-p)^2} = \frac{1}{p(1-p)} \Longrightarrow \\ & \Longrightarrow D^2(p^*) \ge \frac{p(1-p)}{n} \text{ cf. inegalității Rao-Cramer și cum } D^2(p^*) = \\ & = \frac{p(1-p)}{n}, \text{ rezultă că } p^* \text{ este eficient} \end{split}$$

c) Pentru n mare variabila $\frac{p^*-p}{\sqrt{\frac{p^*(1-p^*)}{n}}}$ are o repartiție normală standard. Rezultă intervalul de încredere pentru p este $p^*-z_{1-\frac{\alpha}{2}}\sqrt{\frac{p^*(1-p^*)}{n}}$

$$p^* - z_{1 - \frac{\alpha}{2}} \sqrt{\frac{p^*(1 - p^*)}{n}}$$

17. O maşină automată fabrică piese cu un anumit diametru a cărui dimensiune nominală trebuie să fie m=14 mm. Dimensiunea diametrului unei piese este o v. a. normală N(m,1). Efectuându-se un control asupra n = 64 de astfel de piese a rezultat o medie a observațiilor X=13,4 mm. Se poate afirma că maşina produce piese cu dimensiune mai mică decât dimensiunea nominală, la un prag de semnificație $\alpha = 0.05$? $(z_{0.95} = 1.64)$

Soluție. Avem $H_0: m = m_0 = 14$

$$H_1: m = m_1 < m_0$$

Calculăm
$$z_c = \frac{\overline{X} - m}{\frac{\sigma}{\sqrt{n}}} = \frac{13.4 - 14}{\frac{1}{8}} = -4.8$$

 $z_{\alpha}=z_{0,05}=-z_{0,95}=-1,64\Longrightarrow z_{c}=-4,8< z_{0,05}=-1,64,$ deci acceptăm ipoteza conform căreia mașina produce piese cu diametrul mai mic decât diametrul nominal și din această cauză mașina trebuie reglată

18. Durata de funcționare a unei rezistențe de 1000 w este o v. a. normală cu $\sigma=250$ ore. O selecție de volum n=36 de astfel de rezistențe a dat o durată medie de funcționare de $\overline{X}=1200$ ore. Să se testeze ipoteza $H_0: m=m_0=1300$ ore față de alternativa $H_1: m=m_1<1300$ ore la pragul de semnificație $\alpha=0,01$. $(z_{0.99}=2,33)$

Soluție.
$$z_c = \frac{\overline{X} - m}{\frac{\sigma}{\sqrt{n}}} = \frac{1200 - 1300}{\frac{250}{6}} = -\frac{600}{250} = -2, 4$$

 $z_{\alpha}=z_{0,01}=-z_{0,99}=-2,33>-2,4=z_{c}\Longrightarrow$ respingem ipoteza H_{0} și acceptăm ipoteza H_{1}

19. Durabilitatea unor motoare de automobile poate fi considerată o v. a. normală cu media m=200000 km şi dispersia 50000^2 km. Se face o schimbare în procesul de producție prin introducerea unei metode noi de fabricație. O selecție de volum n=100 de motoare a dat $\overline{X}=220000$ km. Considerând $\alpha=0,05$ se poate afirma că noua metodă duce la creșterea durabilității motoarelor?

Soluție. Avem
$$H_0: m = m_0 = 200000$$

$$H_1: m = m_1 > m_0$$

Calculăm
$$z_c = \frac{\overline{X} - m}{\frac{\sigma}{\sqrt{n}}} = \frac{220000 - 200000}{\frac{50000}{10}} = 4$$

 $z_{1-\alpha}=z_{0,95}=1,64\Longrightarrow z_c=4>z_{0,95}=1,64,$ deci acceptăm ipoteza conform căreia noua metodă duce la creșterea durabilității motoarelor

20. S-a stabilit că greutatea tabletelor dintr-un medicament cu acțiune toxică puternică trebuie să fie $m_0=0,5$ mg. O cercetare selectivă de n=121 tablete a dat o greutate medie observată a tabletelor egală cu $\overline{X}=0,53$ mg. Se cere să se verifice la pragul de semnificație $\alpha=0,01$ ipoteza $H_0: m=m_0=0,5$ față de $H_1: m\neq 0,5$. O observare atentă (prin cântăriri numeroase) a tabletelor a condus la concluzia că variabila greutate a tabletelor are o repartiție normală cu $\sigma=0,11$ mg. $(z_{0,995}=2,58)$

Soluție. Aplicăm testul bilateral și obținem $z_c = \frac{\overline{X} - m_0}{\frac{\sigma}{\sqrt{n}}} = \frac{0,53 - 0,5}{\frac{0,11}{11}} = 3$ $z_{1-\frac{\alpha}{2}} = z_{0,995} = 2,58 \Longrightarrow z_c = 3 > z_{0,995} = 2,58$, deci respingem H_0 Greutatea medie a tabletelor diferă semnificativ de greutatea admisă deci administrarea acestui medicament bolnavilor trebuie interzisă .

21. O fabrică de acumulatori afirmă că durata de funcționare a acumulatorilor este 300 de zile. Un laborator cercetează 4 acumulatori și obține rezultatele 298,290,306,302. Aceste rezultate indică faptul că acest tip de acumulatori are o durată de funcționare mai mică decât afirmă fabrica ($\alpha = 0,02,t_{0,02}(3) = 4,541$)?

Soluție. Verificăm ipoteza $H_1: m < 300$ Avem $\overline{X} = \frac{1}{4}(298 + 290 + 306 + 302) = 299$ și $s^2 = \frac{1}{3}[(298 - 299)^2 + (290 - 299)^2 + (306 - 299)^2 + (302 - 299)^2] = \frac{140}{3} \Longrightarrow s = \sqrt{\frac{140}{3}} = 6,83$ $t_c = \frac{299 - 300}{\frac{6,83}{2}} = \frac{-1}{3,41} = -0,29$

$$t_c = -0,29 < t_{0,02}(3) = 4,541$$
, deci se acceptă ipoteza H_1

22. Douăzeci de determinări a procentului de NaCl într-o anumită soluție au condus $\overline{X}=0,7^0/_0$ și $s=0,03^0/_0$. Stiind că procentul de NaCl într-o anumită soluție este o v. a. normală , să se verifice la pragul de semnificație $\alpha=0,05$ ipoteza $H_0: m=0,8^0/_0$ față de alternativa $H_1: m<0,8^0/_0$. $(t_{0,95}(19)=1,729)$

$$\begin{array}{ll} \textit{Soluție.} \ t_c = \frac{\overline{X} - m}{\frac{s}{\sqrt{n}}} = \frac{0.7 - 0.8}{\frac{0.03}{\sqrt{20}}} = -15 \\ t_{\alpha}(19) = t_{0.05}(19) = -t_{0.95}(19) = -1,729 \Longrightarrow t_c = -15 < t_{0.05}(19) = \\ = -1,729 \Longrightarrow \text{respingem ipoteza} \ H_0 \ \text{și acceptăm } H_1 \end{array}$$

23. Pentru efectuarea unei anumite piese, norma tehnică prevede o durată medie de 40 minute. Pentru verificarea executării piesei respective în condiții optime, se cronometrează durata de fabricație la un număr de n=16 muncitori găsindu-se astfel o durată medie de $\overline{X}=45$ minute și o abatere medie pătratică S=3,5 minute. Putem la un prag de semnificație $\alpha=0,01$ să respingem ipoteza conform căreia durata medie reală de execuție a unei piese este mai mare decât norma tehnică $(t_{0,99}(15)=2,6)$

Soluție.
$$s^2 = \frac{n}{n-1} \cdot S^2 = \frac{16}{15} \cdot 12, 25 = 13, 06 \Longrightarrow s = 3,61$$

Avem $H_0: m=40$

$$H_1: m > 40$$

 $t_c = \frac{\overline{X} - m}{\frac{s}{\sqrt{c}}} = \frac{45 - 40}{\frac{3.61}{t}} = 5,54$

 $t_{1-\alpha}(n-1)=t_{0,99}(15)=2,6 < t_c=5,54 \Longrightarrow$ se acceptă ipoteza conform căreia durata medie de fabricație a unei piese este mai mare decât norma tehnică

24. S-a stabilit experimental că nivelul colesterolului în organismul unui adult este o v. a. normală . O selecție aleatoare de volum n=41 adulți a dat un nivel mediu observat al colesterolului $\overline{X}=213$ cu $s^2=48,4$. Să se testeze ipoteza $H_0: m=m_0=200$ cu alternativa $H_1: m=m_1>200$ la un prag de semnificație $\alpha=0,05$. $(t_{0,95}(40)=1,684)$

Soluție. Aplicăm testul tunilateral dreapta : $t_c=\frac{\overline{X}-m}{\frac{s}{\sqrt{n}}}=\frac{213-200}{\frac{\sqrt{48},4}{\sqrt{41}}}==11,97$

$$t_{0.95}(40) = 1,684 < t_c = 11,97$$
, deci respingem ipoteza H_0

25. Precizia unui cântar electronic se verifică cu ajutorul dispersiei măsurătorilor efectuate asupra unui etalon. Dispersia măsurătorilor nu trebuie să depășească valoarea nominală $\sigma_0^2=0,04$. S-au efectuat n=11 cântăriri ale unui etalon și s-au obținut rezultatele :

Să se verifice, la un prag de semnificație $\alpha=0,05,$ dacă cântarul asigură precizia standard stabilită , presupunând că datele de selecție sunt observații asupra unei v. a. normale. $(\chi^2_{0.95}(10)=18,3)$

Soluție. Avem de testat ipoteza $H_0: \sigma^2=0,04$ cu alternativa $H_1: \sigma^2>0,04$ (cântarul nu asigură precizia cerută). Ipoteza alternativă $H_2: \sigma^2<0,04$ nu prezintă interes, deoarece nu ne temem că precizia cântarului ar fi mai mare decât cea impusă de standarde.

Avem
$$\overline{x} = \frac{1}{11}(100, 6 + 99, 6 + \dots + 100, 5) = 100, 2,$$

$$s^2 = \frac{1}{10}[(100, 2 - 100, 6)^2 + (100, 2 - 99, 6)^2 + \dots + (100, 2 - 100, 5)^2]$$

 $\chi_c^2 = \frac{(n-1)s^2}{\sigma^2} = 25 > \chi_{0,95}^2(10) = 18,3$, deci respingem ipoteza H_0 , cântarul nu asigură precizia cerută , prin urmare trebuie reglat.

26. Pentru analiza preciziei unor măsurători s-au făcut n=16 măsuritori și s-a stabilit $s^2=0,56$. Verificați ipoteza $H_0:\sigma^2=0,41$ față de alternativa $H_1:\sigma^2\neq 0,41$ la pragul de semnificație $\alpha=0,1,$ știind că populația în studiu este normală . $(\chi^2_{0.95}(15)=25,\chi^2_{0.05}(15)=7,28)$

Soluție.
$$\chi_c^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{15 \cdot 0.56}{0.41} = 20,49$$

Rezultă $\chi^2_{0,05}(15) < \chi^2_c < \chi^2_{0,95}(15)$, deci se acceptă ipoteza H_0 și se respinge ipoteza H_1 .

27. Precizia de prelucrare a unui strung automat se verifică cu ajutorul dispersiei dimensiunii controlate a pieselor produse. Dispersia nu trebuie să depășească $\sigma_0^2 = 0, 1$. O selecție extrasă la întâmplare de volum n = 25 a dat rezultatele :

$$\begin{vmatrix}
x_i & 3 & 3.5 & 3.8 & 4.4 & 4, \\
n_i & 2 & 6 & 9 & 7 & 1
\end{vmatrix}$$

Presupunem că x_i sunt observații asupra unei v. a. normale. Să se verifice dacă strungul asigură precizia cerută la pragul de semnificație $\alpha = 0,025.$ ($\chi^2_{0.975}(24) = 39,4$)

Soluție. Avem de verificat ipoteza $H_0: \sigma^2=\sigma_0^2=0, 1$ față de $H_1: \sigma^2=\sigma_1^2>0, 1.$

Pentru calculul lui s_X^2 facem schimbarea de variabilă $u_i=10\cdot x_i-39.$ Obținem :

$$s_u^2 = \frac{\sum n_i u_i^2 - \frac{1}{n} (\sum n_i u_i)^2}{n-1} = 19, 91, s_x^2 = \frac{s_u^2}{10^2} = 0, 1991$$

Intrucât $\frac{(n-1)s_x^2}{\sigma_0^2} = \frac{24\cdot 0.1991}{0.1} \simeq 48 > 39, 4 = \chi_{0.975}^2(24)$ respingem H_0 , adică strungul nu asigură precizia necesară și trebuie reglat

6.3 Probleme propuse

1. Repartiția valorilor defecțiunilor unor aparate de măsură și control a fost analizată pe baza a 100 de observații care au furnizat următoarele valori cu privire la numărul de porniri (puneri în funcțiune) după care $\begin{vmatrix} x_i & 1 & 3 & 6 & 8 & 10 \end{vmatrix}$

acestea se defectează :
$$\begin{bmatrix} x_i & 1 & 3 & 6 & 8 & 10 \\ n_i & 15 & 20 & 30 & 10 & 25 \end{bmatrix}$$

Stabiliți:

- a) media și dispersia de selecție;
- b) funcția de repartiție a selecției și valorile ei în punctele x=2 și x=7.

R: a)
$$\overline{x} = 5,85; S^2 = 9,925$$

6.3. PROBLEME PROPUSE

159

b)

$$F^*(x) = \begin{cases} 0, & x \le 1\\ 0, 15, & 1 < x \le 3\\ 0, 35, & 3 < x \le 6\\ 0, 65, & 6 < x \le 8\\ 0, 75, & 8 < x \le 10\\ 1, & x > 10 \end{cases}$$

$$F^*(2) = 0, 15, F^*(7) = 0, 65$$

2. Pentru a cerceta prezența studenților la un anumit curs s-a ales un eșantion de n studenți și s-a înregistrat numărul absențelor acestora la patru cursuri consecutive.

| Nr. studenţi
$$n_i$$
 | 50 | 20 | 15 | 8 | 7 | Nr. absenţe x_i | 0 | 1 | 2 | 3 | 4

- a) Să se scrie repartiția empirică și funcția de repartiție empirică $F_n^*(x)$;
- b) Să se calculeze media și dispersia de selecție;
- c) Să se calculeze $F_{100}^*(3)$

R: a)
$$X^* \sim \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0, 5 & 0, 2 & 0, 15 & 0, 08 & 0, 07 \end{pmatrix}$$

$$F^*(x) = \begin{cases} 0, & x \le 0 \\ 0, 2, & 0 < x \le 1 \\ 0, 7, & 1 < x \le 2 \\ 0, 85, & 2 < x \le 3 \\ 0, 93, & 3 < x \le 4 \\ 1, & x > 4 \end{cases}$$

b)
$$\overline{x} = 1,02, S^2 = 1,5996$$

c)
$$F_{100}^*(3) = 0.85$$

3. Se controlează greutatea unor pachete și, pentru aceasta, se extrage o selecție de volum n, care dă următoarele valori:

Pachetul	1	2	3	4	5	6	7	8	9	10
Greutatea	21,5	21,6	21,75	22	22,45	22,6	23,2	23,4	23,5	23.65

Să se calculeze $F_{10}^*(20), F_{10}^*(22), F_{10}^*(23)$. Să se scrie repartiția empirică și să se calculeze media de selecție.

$$\mathbf{R:} \ X^* \sim \begin{pmatrix} 21,5 & 21,6 & 21,75 & 22 & 22,45 & 22,6 & 23,2 & 23,4 & 23,5 & 23.65 \\ \frac{1}{10} & \frac{1}{10} \end{pmatrix}$$

$$F_{10}^*(x) = \begin{cases} 0, & x \leq 21, 5 \\ 0, 1, & 21, 5 < x \leq 21, 6 \\ 0, 2, & 21, 6 < x \leq 21, 75 \\ 0, 3, & 21, 75 < x \leq 22 \\ 0, 4, & 22 < x \leq 22, 45 \\ 0, 5, & 22, 45 < x \leq 22, 6 \\ 0, 6, & 22, 6 < x \leq 23, 2 \\ 0, 7, & 23, 2 < x \leq 23, 4 \\ 0, 8, & 23, 4 < x \leq 23, 5 \\ 0, 9, & 23, 5 < x \leq 23, 65 \\ 1, & x > 23, 65 \end{cases}$$

$$F_{10}^*(20) = 0, F_{10}^*(22) = 0, 3, F_{10}^*(23) = 0, 6$$

 $\overline{x} = 22,565$

4. Repartiția valorilor rezistenței la rupere a unor fire de bumbac (în kg) a fost analizată pe baza a 100 de observații. Valorile observate împreună cu frecvențele lor absolute sunt date în tabelul următor:

x_i (valorile rezistenței									
la rupere în kg)	0,5	$0,\!65$	0,75	0,8	0,9	1	1,12	1,35	
n_i (frecvențe absolute)	2	4	5	26	30	25	6	2	ĺ

Se cer:

- a) Valoarea medie și dispersia de selecție a rezistenței la rupere;
- b) $F^*(0,78), F^*(0,9)$, unde $F^*(x)$ este funcția empirică de repartiție

R: a)
$$\overline{X} = 0.8957, S^2 \simeq 0.0189$$

b)
$$F^*(0,78) = 0,11, F^*(0,9) = 0,37$$

5. Dintr-o populație normală cu media m=12, probabilitatea ca media de selecție corespunzătoare unei selecții de volum n=16 să nu depășească 14 este de 0,24. Care este probabilitatea ca o singură observație din această selecție să aibă o valoare mai mare decât 14? $(\Phi(0,71)=0,76,\Phi(0,1776)=0,9616)$

R:
$$P(X_k > 14) = 0,0384$$

6. Dintr-o populație normală se extrag toate selecțiile posibile de volum n=25. Dacă $5^0/_0$ dintre ele au medii care diferă de media poulației cu cel puțin 5 unități în valoare absolută , aflați abaterea medie pătratică a populației.

R: Stim
$$P(|\overline{X} - m| \ge 5) = 0.05 \Longrightarrow \sigma = 12.76$$

7. Dintr-o populație normală cu media $m_1 = 60$ și $\sigma_1^2 = 40$ se extrage o selecție de volum $n_1 = 80$ și dintr-o altă populație normală cu media $m_2 = 80$ și dispersia $\sigma_2^2 = 100$ se extrage o selecție de volum $n_2 = 100$. Determinați probabilitatea ca diferența mediilor în valoare absolută să fie mai mare decât 8.

R:
$$P(|\overline{X}_1 - \overline{X}_2| > 8) \simeq 1$$

- 8. Arătați că media de selecție este un estimator eficient pentru parametrul λ al repartiției Poisson.
- 9. Arătați că media de selecție este un estimator eficient pentru media m a repartiției normale.
- 10. Se constată că sosirile cumpărătorilor într-un raion de confecții se supun legii Poisson. Intr-o zi, se alege un interval de timp de 10 ore și în fiecare oră se numără cumpărătorii veniți la acest raion. Se obțin valorile $X_1=55, X_2=60, X_3=80, X_4=75, X_5=60, X_6=83, X_7=42, X_8=70, X_9=70, X_{10}=46.$
 - a) Să se estimeze parametrul λ din repartiția Poisson prin metoda verosimilității maxime;
 - b) Să se analizeze estimarea făcută .

R: a)
$$\lambda^* = \overline{X}$$

- b) λ^* e absolut corect, consistent, eficient
- 11. Să se estimeze prin metoda verosimilității maxime parametrul θ al repartițiilor:

a)
$$f(x,\theta) = (2-\theta)x^{(\ln 2)^{-1}\ln\frac{\theta-1}{2-\theta}}, 1 < \theta < 2$$

b)
$$f(x,\theta) = \frac{\theta}{1-\theta} x^{\frac{2\theta-1}{1-\theta}}, \frac{1}{2} < \theta < 1$$

c)
$$f(x,\theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{1}{2\theta}(x-\theta)^2}, 0 < x < 1, \theta > 0$$

R: a)
$$\theta^* = 1 + \frac{1}{\ln 2} \cdot \frac{1}{n} \sum_{i=1}^{n} \ln x_i$$

b)
$$\theta^* = \left[1 - \frac{1}{n} \sum_{i=1}^n \ln x_i\right]^{-1}$$

c)
$$\theta^* = \frac{1}{2} \left(-1 + \sqrt{1 + 4 \sum_{i=1}^n \frac{x_i^2}{n}} \right)$$

12. Fie X o v. a. cu densitatea $f(x,\theta) = \frac{A}{\theta+1}, x \geq 1, \theta > 0$ și să considerăm o selecție aleatoare X_1, \ldots, X_n din populația de caracteristică X.

- a) Să se determine A în funcție de θ ;
- b) Să se afle estimatorul de verosimilitate al parametrului θ și să se studieze proprietățile acestuia.

R: a)
$$A = \frac{1}{\theta}$$

b)
$$\theta^* = \frac{1}{n} \sum_{k=1}^{n} \ln X_k$$

 θ^* este nedeplasat, consistent, eficient

13. Fie X v. a. normală care reprezintă greutatea unor ouă . O selecție de volum n=200 a dat rezultatele următoare :

Greutatea (g)	37,5	42,5	47,5	52,5	57,5	62,5	67,5	72,5
Nr. observaţiilor	8	14	26	44	68	20	14	6

Stiind că dispersia lui X este $\sigma^2=64$, aflați un interval de încredere $95^0/_0$ și $90^0/_0$ pentru media m. $(z_{0.975}=1,96,z_{0.95}=1,65)$

R:
$$53,79 < m < 56,01$$

14. Fie X o v. a. care reprezintă numărul de zile după care un anumit produs alimentar este absorbit pe piață . In urma unei selecții de volum n=8 în rândul centrelor de desfacere, s-au obținut următoarele rezultate cu privire la numărul de zile după care se epuizează produsul respectiv :

Centru de desfacere i	1	2	3	4	5	6	7	8
Nr. de zile x_i	40	54	40	50	38	40	50	60

Presupunând că X are o repartiție normală să se afle:

- a) un interval de încredere $95^0/_0$ pentru viteza media cu care este absorbit produsul pe piață ;
- b) un interval de încredere $95^0/_0$ pentru abaterea medie pătratică a numărului de zile după care se epuizează produsul respectiv. $(t_{0,975}(7) = 2, 36, \chi_{0.975}^2(7) = 16, \chi_{0.025}^2(7) = 1,69)$

R: a)
$$39,73 < m < 53,27$$

b)
$$5,37 < \sigma < 16,53$$

15. Intr-un parc cu 10 mașini ale R.A.T.B-ului s-a efectuat zilnic în decursul unei anumite perioade înregistrarea numărului de mașini defecte. In total s-au făcut n=200 de astfel de înregistrări și s-au obținut următoarele rezultate :

Nr. de maşini defecte x_i											
Frecvenţa n_i	39	42	38	36	18	12	8	4	2	1	0

Să se estimeze numărul mediu de mașini defecte, știind că numărul de mașini defecte este o v. a. Poisson și să se determine un interval $95^0/_0$ pentru numărul mediu de mașini defecte.

R:
$$\lambda^* - z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\lambda^*}{n}} < \lambda < \lambda^* + z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\lambda^*}{n}}$$
, unde $\lambda^* = \overline{X} = \frac{1}{200} \sum_{i=0}^{10} n_i x_i = 2,295$

$$2,085 < \lambda < 2,505$$

16. Pentru a estima precizia unui termometru se realizează 15 măsurători independente asupra temperaturii unui lichid menținut constant la $20^{\circ}C$. Presupunem că rezulttele măsurătorilor sunt realizări ale variabilelor aleatoare normale $X_k, k=\overline{1,15}$ de medie m=20 și σ necunoscută . Construiți un interval de încredere $1-\alpha=0,99$ pentru

$$\sigma^2$$
, stiind că $\frac{1}{15} \sum_{k=1}^{15} (x_k - 20)^2 = 18$.

R:
$$8,23 < \sigma^2 < 58,7$$

17. Pentru stabilirea rezistenței la rupere a unor cabluri s-au efectuat n=36 măsurători și s-a stabilit media de selecție $\overline{X}=500$ kg. Stiind că rezistența la rupere este o v. a. normală cu $\sigma^2=100$ kg, să se verifice ipoteza $H_0: m=496$ kg față de alternativele : a) $H_1: m\neq 496$ kg; b) $H_1: m<496$ kg la pragul de semnificație $\alpha=0,01$. $(z_{0,995}=2,58,z_{0,99}=2,33)$

R: a) respingem ipoteza H_1 și acceptăm H_0

- b) se acceptă H_1 și se respinge H_0
- 18. S-a stabilit că greutatea unor ouă pentru a fi importate trebuie să fie de $m_0 = 50$ g. O cercetare selectivă asupra unui volum n = 150 ouă dintr-un lot importat a determinat o greutate medie observată de $\overline{X} = 43$ g. Se cere să se verifice la un prag de semnificație $\alpha = 0,01$, ipoteza $H_0: m = m_0 = 50$ g față de ipoteza alternativă $H_1: m < 50$ g, dacă greutatea ouălelor este o v. a. normală N(m,16).

 \mathbf{R} : respingem ipoteza H_0 și acceptăm ipoteza H_1

19. Durata de funcționare a unui tip oarecare de bec electric de 100 wați poate fi considerată ca o v. a. X repartizată normal cu media m=1500 și $\sigma^2=200^2$. O selecție de volum n=25 de astfel de becuri dă o durată medie de funcționare de 1380 ore. La pragul $\alpha=0,01$, să se verifice ipoteza $H_0: m=m_0=1500$ față de $H_1: m=m_1<1500$.

R: respingem H_0 şi acceptăm H_1

20. O firmă producătoare de becuri afirmă că durata medie de viață a becurilor produse este de 170 ore. Un reprezentant al Oficiului pentru Protecția Consumatorilor cercetează un eșantion aleator de n=100 de becuri, obținând o durată medie observată de viață de 158 ore și o abatere standard s=30 ore. Determinați un interval de încredere $1-\alpha=0,99$ pentru durata medie de viață m, în ipoteza că durata de viață a becurilor este o v. a. normală . Poate fi acuzată firma producătoare de publicitate mincinoasă ? $(t_{0.995}(99)=2,63)$

R: 150 < m < 166; firma poate fi acuzată de publicitate mincinoasă (folosim testul t unilateral la stânga)

21. Consumul nominal de benzină al unui anumit motor de mașină este de 10 l la 100 km. Se aleg la întâmplare 25 de motoare fabricate după o tehnologie modernizată , obținându-se media $\overline{x}=9,3$ l și varianța $s^2=4l^2$. Presupunând că selecția provine dintr-o populație normală , folosiți un test unilateral cu nivelul de semnificație $\alpha=0,05$, pentru a testa ipoteza că noua tehnologie nu a influențat consumul de benzină $(t_{0.95}(24)=1,711)$

R: ipoteza H_0 este respinsă (avem motive să credem că noua tehnologie a micșorat consumul de benzină)

22. Dintr-o populație normală o slecție de volum n=30 a dat rezultatele:

Să se verifice ipoteza $H_0: \sigma^2 = \sigma_0^2 = 1$ față de alternativa $H_1: \sigma^2 = \sigma_1^2 > 1$ la pragul de semnificație $\alpha = 0,05$. $(\chi_{0,95}^2(29) = 42,6)$

R:
$$\overline{x} = 3,03, s^2 = 1,22$$

se respinge ipoteza H_0 și se acceptă ipoteza H_1

Capitolul 7

Funcții olomorfe. Dezvoltări în serie Laurent

7.1 Noțiuni teoretice

Definiția 7.1. Fie $A \subset \mathbb{C}$ o mulțime deschisă și $f: A \to \mathbb{C}$ o funcție complexă . Funcția f se numește **olomorfă într-un punct** $z_0 \in A$ (sau \mathbb{C} -derivabilă în z_0 sau monogenă în z_0) dacă există și e finită limita l =

 $=\lim_{z\to z_0,z\neq z_0} rac{f(z)-f(z_0)}{z-z_0}$. Notăm l cu $f'(z_0)$ și se numește **derivata complexă a lui** f în z_0 .

Fie f = P + iQ, unde P = Ref, Q = Imf.

Condițiile Cauchy-Riemann sunt

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$

$$\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x}$$

Teorema 7.1. Fie $A \subset \mathbb{C}$ o mulţime deschisă . Fie $f: A \to \mathbb{C}$, f = P + iQ e olomorfă în $z_0 \in A$ dacă şi numai dacă $P,Q: A \to \mathbb{R}$ sunt diferențiabile în $z_0 = (x_0, y_0)$ și derivatele lor parțiale în (x_0, y_0) verifică condițiile Cauchy-Riemann.

Corolarul 7.1. Fie $A \subset \mathbb{C}$ o mulțime deschisă și $f: A \to \mathbb{C}$, f = P + iQ. Dacă $P, Q \in C^1(A)$ și dacă pentru $\forall z \in A$ au loc condițiile Cauchy-Riemann, atunci f este olomorfă pe A.

Notăm $\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - \mathrm{i} \frac{\partial f}{\partial y} \right)$ și $\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + \mathrm{i} \frac{\partial f}{\partial y} \right)$ (numită **derivata areolară**).

Corolarul 7.2. Fie $A \subset \mathbb{C}$ o mulţime deschisă şi $f: A \to \mathbb{C}$, f = P + iQ. Dacă $P, Q \in C^1(A)$ şi $\frac{\partial f}{\partial \overline{z}} = 0$ pe A, atunci funcţia f este olomorfă pe A.

Definiția 7.2. Fie $u: A \to \mathbb{R}$ o funcție de clasă \mathcal{C}^2 pe A. Funcția u se numeşte **armonică** dacă pentru $\forall a \in A$ avem $\frac{\partial^2 u}{\partial x^2}(a) + \frac{\partial^2 u}{\partial u^2}(a) = 0$, adică $\Delta u = 0$ în orice punct din A.

Corolarul 7.3. Fie $A \subset \mathbb{C}$ o multime deschisă și $f: A \to \mathbb{C}$, f = P + iQ și $P,Q \in \mathcal{C}^2(A)$. Dacă f este olomorfă, atunci P,Q sunt funcții armonice pe A.

Definiția 7.3. Seria $\sum_{n\geq 0} a_n (z-z_0)^n$, unde $z\in\mathbb{C}, z_0\in\mathbb{C}$ fixat, $a_k\in\mathbb{C}, k=0$

 $=0,1,2,\ldots$ se numește **serie de puteri centrată în punctul** z_0 . **Definiția 7.4.** Fie $R=\sup\big\{r\in\mathbb{R}/r\geq 0,\ \mathrm{seria}\sum_{n\geq 0}a_n|r|^n\mathrm{convergentă}\big\}.$

Numărul R se numește rază de convergență, iar discul $B(z_0,R) =$ $=\{z\in\mathbb{C}\ |z-z_0|< R\}$ se numește **discul de convergență** . Convenție : pentru $R = 0, B(z_0, R) = \{z_0\}$, iar pentru $R = \infty, B(z_0, R) = \mathbb{C}$

Teorema 7.2. (Cauchy- Hadamard) Fie o serie de puteri cu raza de convergență R. Atunci $R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}$.

Teorema 7.3. (Teorema lui Abel) Fie seria de puteri $\sum_{n>0} a_n z^n$ cu raza de convergență R. Atunci

- 1. seria este absolut convergentă dacă |z| < R;
- 2. seria este divergentă |z| > R;
- 3. seria este uniform convergentă pe $|z| \leq \rho$, oricare ar fi $\rho < R$.

Teorema 7.4. Fie $z_0 \in \mathbb{C}$ fixat și $S(z) = \sum_{n \geq 0} a_n (z-z_0)^n, \forall z \ cu \ |z-z_0| < R$

suma seriei centrate în punctul z_0 , unde R este raza de convergență . Atunci funcția S(z) este olomorfă în orice punct $z \in B(z_0,R)$ și

$$S'(z) = \sum_{n \ge 0} na_n (z - z_0)^{n-1}, \forall z \in B(z_0, R).$$

Corolarul 7.4. Fie $z_0 \in \mathbb{C}$ fixat şi $S(z) = \sum_{n \geq 0} a_n (z - z_0)^n, \forall z \ cu \ |z - z_0| < R$

suma seriei centrate în punctul z_0 , unde R este raza de convergență . Atunci funcția S(z) are derivate complexe de orice ordin în orice punct $z \in B(z_0, R)$

Definiția 7.5. Se numește serie Laurent centrată în punctul $z_0 \in \mathbb{C}$ orice serie de funcții de forma $\sum_{n\in\mathbb{Z}} a_n(z-z_0)^n, a_n\in\mathbb{C}.$

Definiția 7.6. Seria $\sum_{n\in\mathbb{Z}}a_n(z-z_0)^n, a_n\in\mathbb{C}$ se numește **convergentă**

dacă seriile $\underset{n\geq 0}{\sum}a_n(z-z_0)^n$ și $\underset{n\geq 1}{\sum}a_{-n}(z-z_0)^{-n}$ sunt simultan convergente.

Definiția 7.7. Seria $\sum_{n\geq 1} a_{-n}(z-z_0)^{-n}$ se numește partea principală a seriei Laurent, iar seria $\sum_{n\geq 0} a_n(z-z_0)^n$ numește partea Taylor a seriei

Laurent.

Teorema 7.5. Fie seria Laurent $\sum_{n\in\mathbb{Z}} a_n(z-z_0)^n$ și fie $r=\overline{\lim_{n\to\infty}}\sqrt[n]{|a_{-n}|}, \frac{1}{R}=$

- $=\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}$; presupunem că $0 \le r < R$. Atunci:
- a) In coroana circulară $B(z_0; r, R) = \{z \in \mathbb{C}/r < |z z_0| < R\}$ seria Laurent converge absolut și uniform pe compacți.
 - b) In multimea $\mathbb{C} \setminus \overline{B(z_0; r, R)}$ seria Laurent diverge.
- c) Suma seriei Laurent $S(z)=\sum_{n\in\mathbb{Z}}a_n(z-z_0)^n$ este o funcție olomorfă pe coroana $B(z_0;r,R)$.

Teorema 7.6. Fie $f: B(z_0; r, R) \to \mathbb{C}$ o funcție olomorfă pe coroana circulară $D = B(z_0; r, R) (0 \le r < R)$. Atunci există o unică serie Laurent $\sum_{n \in \mathbb{Z}} a_n (z-z_0)^n$ a cărei coroană de convergență include coroana D astfel încât

$$\hat{i}n \ D \ avem \ f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n.$$

7.2 Probleme rezolvate

1. Să se arate că funcția $f\colon \mathbb{C} \to \mathbb{C}, \ f(z)=|z|$ nu e olomorfă în nici un punct din $\mathbb{C}.$

Soluție. Funcția f se scrie $f=P+\mathrm{i}Q,$ unde $P(x,y)=\sqrt{x^2+y^2}$ și Q=0.

Avem
$$\frac{\partial P}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \frac{\partial P}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}, \frac{\partial Q}{\partial x} = \frac{\partial Q}{\partial y} = 0$$
 pentru $z \neq 0$.

Din condițiile Cauchy-Riemann obținem $\frac{x}{\sqrt{x^2+y^2}}=0$ și $\frac{y}{\sqrt{x^2+y^2}}=0$, deci x=y=0, adică z=0. Dar, în punctul z=0 funcția P nu are derivate parțiale, deci cf. teoremei 7.1, funcția f nu poate fi olomorfă în acest punct.

2. Să se arate că funcția $f\colon \mathbb{C}\to \mathbb{C},\ f(z)=\sqrt{|z^2-\overline{z}^2|}$ este continuă în z=0, satisface condițiile Cauchy-Riemann în acest punct, dar nu este olomorfă .

168CAPITOLUL 7. FUNCȚII OLOMORFE. DEZVOLTĂRI ÎN SERIE LAURENT

Soluție.
$$\lim_{z\to 0} f(z) = 0 = f(0)$$
, deci f este continuă în $z=0$

Dacă
$$z = x + iy$$
, avem $f(z) = 2\sqrt{|xy|}$, deci $P(x,y) = 2\sqrt{|xy|}$ și $Q = 0$.

$$\tfrac{\partial P}{\partial x}(0,0) = \lim_{x \to 0} \frac{P(x,0) - P(0,0)}{x-0} = 0 = \frac{\partial Q}{\partial y}(0,0)$$

$$\tfrac{\partial P}{\partial y}(0,0) = \lim_{y \to 0} \frac{P(0,y) - P(0,0)}{y-0} = 0 = -\frac{\partial Q}{\partial x}(0,0)$$

Totuși f nu este olomorfă în z=0, deoarece P nu e diferențiabilă în acest punct. Presupunem că P ar fi diferențiabilă , deci

$$P(x,y) - P(0,0) = 0 \cdot (x-0) + 0 \cdot (y-0) + P_1(z)|z-0|,$$

unde $\lim_{z\to 0} P_1(z) = 0$.

Pentru
$$z \neq 0$$
 avem $P_1(z) = \frac{P(z)}{|z|} = \frac{2\sqrt{|xy|}}{\sqrt{x^2 + y^2}}$

Luând $z=\frac{1}{n},z'_n=\frac{1}{n}+\mathrm{i}\frac{1}{n},n\in\mathbb{N}^*$ avem $z_n\longrightarrow 0,z'_n\longrightarrow 0,$ dar $P_1(z_n)=0\longrightarrow 0,P_1(z'_n)=\sqrt{2}\longrightarrow \sqrt{2},$ deci P_1 nu are limită în (0,0).

3. Să se determine punctele în care funcția $f(z)=z^2+z\overline{z}-\overline{z}^2+2z-\overline{z}$ este olomorfă și să se calculeze derivata funcției în acele puncte.

Soluţie. Dacă
$$z = x + iy$$
, atunci $f(z) = x^2 + y^2 + x + iy(4x + 3)$, deci $P(x, y) = x^2 + y^2 + x$ si $Q(x, y) = y(4x + 3)$.

Condițiile Cauchy-Riemann ne dau 2x + 1 = 4x + 3 și 2y = -4y, decix = -1, y = 0. Așadar, funcția f este olomorfă în z = -1.

Derivata în
$$z=-1$$
 este $f'(-1)=\lim_{h\to 0}\frac{f(-1+h)-f(-1)}{h}=$
$$=\lim_{h\to 0}\frac{h^2-h+h\overline{h}-\overline{h}^2}{h}=-1+\lim_{h\to 0}(h+\overline{h}-\frac{\overline{h}^2}{h})=-1+\lim_{h\to 0}\left(-\frac{\overline{h}^2}{h}\right)=$$

$$=-1, \text{ deoarece }\left|\frac{\overline{h}^2}{h}\right|=\frac{|\overline{h}|^2}{|h|}=\frac{|h|^2}{|h|}=|h|\longrightarrow 0, \text{ când }h\longrightarrow 0$$

4. Să se scrie condițiile Cauchy-Riemann în coordonate polare și apoi sa se arate că $f(z)=z^n\ (n\geq 2\ {\rm intreg})$ e olomorfă în $\mathbb C.$

Soluție. Fie
$$f = P + iQ$$
, $P = P(x, y)$, $Q = Q(x, y)$ de clasă C^1 .

Luăm $x = r \cos \theta, y = r \sin \theta$.

Atunci
$$\frac{\partial P}{\partial r} = \frac{\partial P}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial P}{\partial y} \cdot \frac{\partial y}{\partial r} = \frac{\partial P}{\partial x} \cdot \cos \theta - \frac{\partial P}{\partial y} \cdot \sin \theta$$

$$\frac{\partial P}{\partial \theta} = \frac{\partial P}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial P}{\partial y} \cdot \frac{\partial y}{\partial (-r\sin\theta) + \theta} = \frac{\partial P}{\partial x} \cdot \frac{\partial P}{\partial y} \cdot r\cos\theta$$

Rezolvăm sistemul relativ la $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}$ și obținem

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial r}\cos\theta - \frac{1}{r}\cdot\frac{\partial P}{\partial \theta}\sin\theta$$

$$\frac{\partial P}{\partial u} = \frac{\partial P}{\partial r} \sin \theta + \frac{1}{r} \cdot \frac{\partial P}{\partial \theta} \cos \theta$$

Analog pentru Q.

Condițiile Cauchy-Riemann devin:

$$\frac{\partial P}{\partial r} = \frac{1}{r} \frac{\partial Q}{\partial \theta}$$

$$\frac{\partial Q}{\partial r} = -\frac{1}{r} \frac{\partial P}{\partial \theta}$$

Pentru $f(z) = z^n$ avem $f = P + iQ = (x + iy)^n = (re^{i\theta})^n = r^n e^{in\theta} \Longrightarrow P = r^n \cos n\theta, Q = r^n \sin n\theta$ şi se verifică relațiile deduse mai sus.

5. Fie $P(x,y) = e^{2x} \cos 2y + y^2 - x^2$. Să se determine funcția olomorfă f = P + iQ pe \mathbb{C} astfel încât f(0) = 1.

Soluție. Verificăm că funcția P este armonică .

Aplicăm condițiile Cauchy-Riemann și obținem

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y} = 2e^{2x}\cos 2y - 2x$$

$$-\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 2e^{2x}\sin 2y - 2y$$

Integrăm a doua ecuație în raport cu x și obținem $Q(x,y) = e^{2x} \sin 2y - 2xy + c(y)$. Inlocuind apoi în a prima ecuație avem c'(y) = 0, deci c(y) = k. Atunci $f(z) = e^{2x} \cos 2y + y^2 - x^2 + i(e^{2x} \sin 2y - 2xy + k) = e^{2x}(\cos 2y + i \sin 2y) - (x + iy)^2 + ki \Longrightarrow f(z) = e^{2z} - z^2 + ki$. Din condiția din enunț obținem constanta $k: f(0) = 1 \Longrightarrow k = 0$. Așadar, $f(z) = e^{2z} - z^2$.

6. Să se determine funcția olomorfă f = P + iQ pe \mathbb{C} , unde $Q(x, y) = \varphi(x^2 - y^2), \varphi \in \mathcal{C}^2$.

Solutie. Notăm $\alpha = x^2 - y^2$.

Avem
$$\frac{\partial Q}{\partial x} = 2x\varphi'(\alpha), \frac{\partial Q}{\partial y} = -2y\varphi'(\alpha), \text{ deci } \frac{\partial^2 Q}{\partial x^2} = 2\varphi'(\alpha) + 4x^2\varphi''(\alpha),$$

 $\frac{\partial^2 Q}{\partial y^2} = -2\varphi'(\alpha) + 4y^2\varphi''(\alpha)$

Cum
$$Q$$
 este armonică rezultă că $\Delta Q = 0 \Longrightarrow \frac{\partial^2 Q}{\partial x^2} + \frac{\partial^2 Q}{\partial y^2} =$
= $4(x^2 + y^2)\varphi''(\alpha) = 0 \Longrightarrow \varphi''(\alpha) = 0 \Longrightarrow \varphi'(\alpha) = c \Longrightarrow \varphi(\alpha) =$
= $c\alpha + c_1 \Longrightarrow Q(x,y) = c(x^2 - y^2) + c_1, c, c_1 \in \mathbb{R}$

Din condițiile Cauchy-Riemann obținem

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y} = -2cy$$

170CAPITOLUL 7. FUNCȚII OLOMORFE. DEZVOLTĂRI ÎN SERIE LAURENT

$$\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x} = -2cx$$

Integrând a doua ecuație și înlocuind în prima obținem P(x,y) == -2cxy + k, deci $f(z) = -2cxy + k + i(c(x^2 - y^2) + c_1) \Longrightarrow$ $\implies f(z) = ciz^2 + d, c, d \in \mathbb{R}$

7. Stiind că partea reala P a unei funcții olomorfe f(z) = P + iQ este de forma $P = \varphi\left(\frac{y}{x}\right)$, să se determine această funcție.

Soluție. Notăm $\frac{y}{x} = u$. Atunci $\frac{\partial Q}{\partial x} = -\frac{1}{x} \cdot \varphi'(u), \frac{\partial Q}{\partial y} = -\frac{y}{x^2} \cdot \varphi'(u)$.

Fie $Q_1(x,y)$ funcția obținută înlocuind în Q variabila y prin ux.

Avem
$$\frac{\partial Q}{\partial x} = -\frac{\partial Q_1}{\partial u} \cdot \frac{y}{x^2} + \frac{\partial Q_1}{\partial u}$$

$$\frac{\partial Q}{\partial y} = \frac{\partial Q_1}{\partial u} \cdot \frac{1}{x}$$

Atunci
$$\frac{\partial Q_1}{\partial u} = -\varphi'(u) \cdot u$$

$$\frac{\partial Q_1}{\partial x} = -\frac{1}{x} \cdot \varphi'(u)(1+u^2)$$

Prima ecuație ne arată că $Q_1(u)$ este de forma $Q_1(u) = F(u) + G(x)$.

Cea de-a doua ecuație se poate scrie sub forma

$$xG'(x) = -\varphi'(u) \cdot (1 + u^2)$$

egalitate posibilă doar dacă cei doi membri sunt constanți. Atunci $\varphi'(u) = \frac{k}{1+u^2}, G'(x) = -\frac{k}{x}, \text{ deci } \varphi(u) = k \operatorname{arctg} u + k_1, G(x) = \frac{k}{x}$ $=-k\ln x+k_2.$

Inlocuind aceste expresii în prima egalitate obținem $F'(u) = -\frac{ku}{1+u^2}$ $F(u) = -k \ln \sqrt{1 + u^2 + k_3} \Longrightarrow f(z) = k(\operatorname{arctg} u - i \ln x \sqrt{1 + u^2}) + \alpha = k \operatorname{arctg} \frac{y}{x} - ik \ln \sqrt{x^2 + y^2} + \alpha, k \in \mathbf{R}, \alpha \in \mathcal{C}$

8. Să se determine funcția olomorfă $f=P+\mathrm{i}Q$ astfel încât $f\left(\frac{\pi}{2}\right)=0$ și $P-Q=\frac{\cos x+\sin x-\mathrm{e}^{-y}}{2\cos x-\mathrm{e}^y-\mathrm{e}^{-y}}.$

Soluție. Derivăm relația din enunț în raport cu x și y și ținem seama de condițiile Cauchy-Riemann:

$$\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial x} + \frac{\partial P}{\partial y} = \frac{2 - (\cos x - \sin x)e^y - (\cos x + \sin x)e^{-y}}{(2\cos x - e^y - e^{-y})^2}$$

$$\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial x} + \frac{\partial P}{\partial y} = \frac{2 - (\cos x - \sin x)e^y - (\cos x + \sin x)e^{-y}}{(2\cos x - e^y - e^{-y})^2}$$

$$\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial y} = \frac{\partial P}{\partial y} - \frac{\partial P}{\partial x} = \frac{-2 + (\cos x + \sin x)e^y + (\cos x - \sin x)e^{-y}}{(2\cos x - e^y - e^{-y})^2}$$

Obtinem astfel

$$\frac{\partial P}{\partial x} = \frac{2 - (e^y + e^{-y})\cos x}{(2\cos x - e^y - e^{-y})^2}$$

$$\frac{\partial P}{\partial y} = \frac{(e^y - e^{-y})\sin x}{(2\cos x - e^y - e^{-y})^2}$$

Integrăm a doua relație în raport cu $y: P(x,y) = \frac{\sin x}{2\cos x - e^y - e^{-y}} + \varphi(x)$. Derivând în raport cu x și introducând în prima ecuație obținem $\varphi'(x) = 0 \Longrightarrow \varphi(x) = k \Longrightarrow P(x,y) = \frac{\sin x}{2\cos x - e^y - e^{-y}} + k \Longrightarrow \Longrightarrow Q(x,y) = \frac{e^{-y} - \cos x}{2\cos x - e^y - e^{-y}} + k \Longrightarrow f(z) = \frac{ie^{-y} - ie^{ix}}{e^{ix} + e^{-ix} - e^y - e^{-y}} + k(1+i) = \frac{i}{e^{-i}(x+iy)-1} + k(1+i) = \frac{i}{e^{-iz}-1} + k(1+i)$, dar $f\left(\frac{\pi}{2}\right) = \frac{i}{-i-1} + k(1+i) = 0 \Longrightarrow k = \frac{1}{2}$

9. Să se determine funcția olomorfă f = P + iQ știind că P și Q verifică relația $2xyP + (y^2 - x^2)Q + 2xy(x^2 + y^2)^2 = 0$.

Soluție. Obținem
$$P = \frac{x^2 - y^2}{2xy}Q - (x^2 + y^2)^2$$

Cum f e olomorfă , ținând cont de condițiile Cauchy-Riemann și de relația de mai sus avem :

$$\frac{\partial Q}{\partial y} + \frac{y^2 - x^2}{2xy} \cdot \frac{\partial Q}{\partial x} - \frac{x^2 + y^2}{2x^2y}Q + 4x(x^2 + y^2) = 0$$

$$\frac{\partial Q}{\partial x} + \frac{x^2 - y^2}{2xy} \cdot \frac{\partial Q}{\partial y} - \frac{x^2 + y^2}{2xy^2}Q - 4y(x^2 + y^2) = 0$$

Deci

$$\frac{\partial Q}{\partial x} = \frac{Q}{x} + 8x^2y$$
$$\frac{\partial Q}{\partial y} = \frac{Q}{y} - 8xy^2$$

Rezultă că
$$dQ = \frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy = \frac{ydx + xdy}{xy}Q + 8xy(xdx - ydy) =$$

$$= \frac{d(xy)}{xy}Q + 4xyd(x^2 - y^2) \Longrightarrow \frac{xydQ - Qd(xy)}{x^2y^2} = 4d(x^2 - y^2) \Longrightarrow$$

$$\Longrightarrow d\left(\frac{Q}{xy}\right) - 4d(x^2 - y^2) = 0 \Longrightarrow \frac{Q}{xy} - 4(x^2 - y^2) = 2k \Longrightarrow$$

$$\Longrightarrow Q(x,y) = 4xy(x^2 - y^2) + 2kxy$$

Deci
$$P(x,y) = x^4 - 6x^2y^2 + y^4 + k(x^2 - y^2)$$

Aşadar,
$$f(z) = x^4 - 6x^2y^2 + y^4 + k(x^2 - y^2) + \mathrm{i}(4xy(x^2 - y^2) + 2kxy) \Longrightarrow f(z) = z^4 + kz^2$$

- 10. Să se dezvolte în serie de puteri ale lui z funcția $f(z) = \frac{1}{z^3 6z^2 + 11z 6}$ în următoarele domenii:
 - a) |z| < 1;
 - b) 1 < |z| < 2;
 - c) 2 < |z| < 3;
 - d) |z| > 3.

172CAPITOLUL 7. FUNCȚII OLOMORFE. DEZVOLTĂRI ÎN SERIE LAURENT

Soluție. Funcția f are ca poli rădăcinile ecuației $z^3 - 6z^2 + 11z - 6 = 0$, adică punctele $z_1 = 1, z_2 = 2, z_3 = 3$.

a) In cercul |z| < 1, funcția f este olomorfă , deci dezvoltabilă în serie Taylor în acest domeniu.

$$f(z) = \frac{1}{(z-1)(z-2)(z-3)} = \frac{1}{2(z-1)} - \frac{1}{z-2} + \frac{1}{2(z-3)} = -\frac{1}{2} \cdot \frac{1}{1-z} + \frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} - \frac{1}{6} \cdot \frac{1}{1-\frac{z}{3}}$$

In acest domeniu avem $|z| < 1, \left| \frac{z}{2} \right| < 1, \left| \frac{z}{3} \right| < 1$. Atunci $f(z) = -\frac{1}{2} \sum_{n > 0} z^n + \frac{1}{2} \sum_{n > 0} \frac{z^n}{2^n} - \frac{1}{6} \sum_{n > 0} \frac{z^n}{3^n}$

b) In coroana circulară 2 < |z|<3, funcția
 f este dezvoltabilă în serie Laurent.

$$f(z) = \frac{1}{2z} \cdot \frac{1}{1 - \frac{1}{z}} + \frac{1}{2} \cdot \frac{1}{1 - \frac{z}{2}} - \frac{1}{6} \cdot \frac{1}{1 - \frac{z}{3}}$$

In domeniul 1 < |z| < 2 avem $\left| \frac{z}{2} \right| < 1, \left| \frac{z}{3} \right| < 1, \left| \frac{1}{z} \right| < 1$, deci $f(z) = \frac{1}{2z} \sum_{n \ge 0} \frac{1}{z^n} + \frac{1}{2} \sum_{n \ge 0} \frac{z^n}{2^n} - \frac{1}{6} \sum_{n \ge 0} \frac{z^n}{3^n}$

$$f(z) = \frac{1}{2z} \cdot \frac{1}{1 - \frac{1}{z}} - \frac{1}{z} \cdot \frac{1}{1 - \frac{2}{z}} - \frac{1}{6} \cdot \frac{1}{1 - \frac{z}{3}}$$

In domeniul 2 < |z| < 3 avem $\left| \frac{1}{z} \right| < 1, \left| \frac{z}{3} \right| < 1, \left| \frac{2}{z} \right| < 1$

Atunci
$$f(z) = \frac{1}{2z} \sum_{n \ge 0} \frac{1}{z^n} - \frac{1}{z} \sum_{n \ge 0} \frac{2^n}{z^n} - \frac{1}{6} \sum_{n \ge 0} \frac{z^n}{3^{n+1}}$$

d)
$$f(z) = \frac{1}{2z} \cdot \frac{1}{1 - \frac{1}{z}} - \frac{1}{z} \cdot \frac{1}{1 - \frac{2}{z}} + \frac{1}{2z} \cdot \frac{1}{1 - \frac{3}{z}}$$

In acest domeniu $\left|\frac{1}{z}\right|<1,\left|\frac{2}{z}\right|<1,\left|\frac{3}{z}\right|<1$

Atunci
$$f(z) = \frac{1}{2z} \sum_{n>0} \frac{1}{z^n} - \frac{1}{z} \sum_{n>0} \frac{2^n}{z^n} + \frac{1}{2z} \sum_{n>0} \frac{3^n}{z^n}$$

11. Să se dezvolte funcția $f(z) = \frac{2z^2 + 3z - 1}{z^3 + z^2 - z - 1}$ în jurul originii și în jurul lui $z = \pm 1$.

Soluție. $z^3+z^2-z-1=0\Longrightarrow (z-1)(z+1)^2=0$, deciz=1e pol simplu, iar z=-1e pol dublu

$$f(z) = \frac{1}{z-1} + \frac{1}{z+1} + \frac{1}{(z+1)^2}$$

In cercul $|z|<1,\,f$ este olomorfă și $f(z)=-{\displaystyle\sum_{n\geq 0}}z^n+{\displaystyle\sum_{n\geq 0}}(-1)^nz^n+$

$$+\sum_{n\geq 0} (-1)^n (n+1) z^n$$

7.2. PROBLEME REZOLVATE

173

Pentru a dezvolta în jurul punctului z=-1 scriem $f(z)=\frac{1}{(z+1)^2}++\frac{1}{z+1}-\frac{1}{2}\cdot\frac{1}{1-\frac{z+1}{2}}$

In cercul
$$|z+1| < 2$$
 avem $\frac{1}{1-\frac{z+1}{2}} = \sum_{n>0} \left(\frac{z+1}{2}\right)^n$

Deci
$$f(z) = \frac{1}{(z+1)^2} + \frac{1}{z+1} - \frac{1}{2} \sum_{n>0} \left(\frac{z+1}{2}\right)^n$$

$$f(z) = \frac{1}{z-1} + \frac{1}{2} \cdot \frac{1}{1 + \frac{z-1}{2}} + \frac{1}{4} \cdot \frac{1}{\left(1 + \frac{z-1}{2}\right)^2}$$

In cercul
$$|z-1| < 2$$
 avem $\frac{1}{1+\frac{z-1}{2}} = \sum_{n \ge 0} (-1)^n \left(\frac{z-1}{2}\right)^n$ şi $\frac{1}{\left(1+\frac{z-1}{2}\right)^2} = \sum_{n \ge 0} (-1)^n \frac{(n+1)(z-1)^n}{2^n}$

Atunci
$$f(z) = \frac{1}{z-1} + \sum_{n>0} (-1)^n \frac{n+3}{2^{n+2}} (z-1)^n$$

12. Să se dezvolte funcția $f(z) = \sin \frac{z}{z-1}$ în jurul punctului z = 1.

Soluție.
$$\sin \frac{z}{z-1} = \sin \left(1 + \frac{1}{z-1}\right) = \sin 1 \cos \frac{1}{z-1} + \cos 1 \sin \frac{1}{z-1}$$

$$\sin\frac{1}{z-1} = \sum_{n>0} (-1)^n \frac{1}{(2n+1)!(z-1)^{2n+1}}$$

$$\cos\frac{1}{z-1} = \sum_{n>0} (-1)^n \frac{1}{(2n)!(z-1)^{2n}}$$

Atunci
$$f(z) = \sin 1 \cdot \sum_{n \ge 0} (-1)^n \frac{1}{(2n)!(z-1)^{2n}} +$$

$$+\cos 1 \cdot \sum_{n \ge 0} (-1)^n \frac{1}{(2n+1)!(z-1)^{2n+1}}$$

13. Să se dezvolte funcția $f(z)=\mathrm{e}^{\mathrm{i}\pi\cdot\frac{z+\mathrm{i}}{z-\mathrm{i}}}$ în jurul punctului $z=\mathrm{i}.$

Soluție.
$$f(z) = e^{i\pi(1+\frac{2i}{z-i})} = e^{i\pi} \cdot e^{-\frac{2\pi}{z-i}} = -e^{-\frac{2\pi}{z-i}} \Longrightarrow$$

$$\implies f(z) = -\sum_{n\geq 0} \frac{(-1)^n}{n!} \left(\frac{2\pi}{z-i}\right)^n \text{ convergentă pe coroana circulară}$$

$$0 < |z-i| < \infty$$

14. Să se dezvolte funcția $f(z)=\frac{1}{z^2\sin z}$ în jurul originii și a punctului $z=\pi.$

174CAPITOLUL 7. FUNCȚII OLOMORFE. DEZVOLTĂRI ÎN SERIE LAURENT

Soluție.
$$f(z) = \frac{1}{z^2} \cdot \frac{1}{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots} = \frac{1}{z^3} \cdot \frac{1}{1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots}$$

In domeniul $|z| < \pi$, $f_1(z) = \frac{1}{1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots}$ este olomorfă , deci $\frac{1}{1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \dots} = a_0 + a_2 z^2 + a_4 z^4 + \dots$ Prin identificarea coeficienților obținem $a_0 = 1, a_2 = \frac{1}{6}, a_4 = \frac{7}{360}, \dots \Longrightarrow f(z) = \frac{1}{z^3} + \frac{1}{6} \cdot \frac{1}{z} + \frac{7}{360} \cdot z + \dots$

Pentru a dezvolta funcția în jurul punctului $z=\pi$ facem substituția $z=t+\pi$ și f(z) devine $F(t)=-\frac{1}{(t+\pi)^2\sin t}=-\frac{1}{\pi^2t}(1+\frac{t}{\pi})^{-2}\cdot\frac{1}{1-\frac{t^2}{3!}+\frac{t^4}{5!}-\dots}$

In interiorul cercului $|t| < \pi$ avem $\left| \frac{t}{\pi} \right| < 1$ și $(1 + \frac{t}{\pi})^{-2} = 1 - 2 \cdot \frac{t}{\pi} +$ $+3 \cdot \frac{t^2}{\pi^2} - 4 \cdot \frac{t^3}{\pi^3} + \dots$

Atunci în domeniul
$$|t| < \pi$$
 avem
$$F(t) = -\frac{1}{\pi^2 t} (1 - 2 \cdot \frac{t}{\pi} + 3 \cdot \frac{t^2}{\pi^2} - 4 \cdot \frac{t^3}{\pi^3} + \dots) (1 + \frac{1}{6} t^2 + \frac{7}{360} t^4 + \dots) \Longrightarrow F(t) = -\frac{1}{\pi^2 t} + \frac{2}{\pi^3} - \frac{18 + \pi^2}{6\pi^4} t + \frac{12 + \pi^2}{3\pi^5} t^2 + \dots$$

Revenind la variabila z, în interiorului cercului $|z-\pi|<\pi$, dezvoltarea în serie a funcției f(z) este $f(z)=-\frac{1}{\pi^2}\cdot\frac{1}{z-\pi}+\frac{2}{\pi^3}-\frac{18+\pi^2}{6\pi^4}(z-\pi)+$ $+\frac{12+\pi^2}{2-5}(z-pi)^2+\dots$

7.3 Probleme propuse

1. Să se arate că funcțiile $f: \mathbb{C} \to \mathbb{C}, f(z) = z^2 + e^{iz}, g: \mathbb{C} \setminus \{0\} \to \mathbb{C},$ $g(z) = \frac{1}{z}$ sunt olomorfe.

R: Se aplică corolarul 7.1

- 2. Să se arate că funcția $f \colon \mathbb{C} \to \mathbb{C}, \ f(z) = \overline{z}$ nu e olomorfă în nici un punct din \mathbb{C} .
- 3. Să se determine punctele în care funcția $f: \mathbb{C} \to \mathbb{C}, f(z) = z\overline{z}$ este olomorfă.

R: z = 0

- 4. Să se determine constantele corespunzătoare astfel încât următoarele funcții să fie olomorfe:
 - a) $f_1(z) = x + ay + i(bx + cy)$;
 - b) $f_2(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$:
 - c) $f_3(z) = \cos x(\cosh y + a \sinh y) + i \sin x(\cosh y + b \sinh y)$.

R: a)
$$b = -a, c = 1$$
; b) $a = d = 2, b = c = -1$; c) $a = b = -1$.

5. Să se calculeze $\frac{\partial f}{\partial z}$, $\frac{\partial f}{\partial \overline{z}}$ pentru funcțiile $f_1(z)=z^2$ și $f_2(z)=z\cdot |z|^2$.

R:
$$\frac{\partial f_1}{\partial z} = 2z$$
, $\frac{\partial f_1}{\partial \overline{z}} = 0$, $\frac{\partial f_2}{\partial z} = 2|z|^2$, $\frac{\partial f_2}{\partial \overline{z}} = z^2$

6. Să se determine funcția olomorfă $f=P+\mathrm{i}Q$ pe $\mathbb C$ astfel încât $P(x,y)=x^2-y^2$ și f(0)=0.

R:
$$f(z) = z^2$$

7. Să se determine funcția olomorfă $f=P+\mathrm{i}Q$ pe $\mathbb C$ astfel încât $P(x,y)=\sin x\cosh y$ și f(0)=0.

R:
$$f(z) = \sin z$$

8. Să se determine funcția olomorfă $f=P+\mathrm{i}Q$ pe $\mathbb C$ astfel încât $Q(x,y)=\ln(x^2+y^2)+x-2y$.

R:
$$f(z) = 2i \ln z - (2 - i)z + k$$

9. Să se determine funcția olomorfă $f=P+\mathrm{i}Q$ pe $\mathbb C$ astfel încât $Q(x,y)==\mathrm{e}^x\sin y-\frac{y}{x^2+y^2}$ și $f(1)=\mathrm{e}.$

R:
$$f(z) = e^z + \frac{1}{z} - 1$$

10. Să se dezvolte în serie de puteri ale lui z funcția $f(z)=\frac{1}{z^2-3z+2}$ în următoarele domenii:

a)
$$|z| < 1$$
;

b)
$$1 < |z| < 2$$
;

c)
$$|z| > 2$$
.

R: a)
$$f(z) = \sum_{n \ge 0} \frac{2^{n+1} - 1}{2^{n+1}} z^n$$
; b) $f(z) = \sum_{n \ge 1} \left(\frac{1}{z^n} + \frac{z^n}{2^{n+1}} \right)$; c) $f(z) = \sum_{n \ge 1} \frac{2^n - 1}{z^{n+1}}$

11. Să se determine dezvoltările în serie după puterile lui z ale funcției $f(z)=\frac{1}{(z^2-1)(z^2-4)^2}.$

R: Dacă
$$|z| < 1$$
, $f(z) = \sum_{n > 0} \left(-1 + \frac{3n+7}{4^{n+2}} \right) \cdot \frac{z^{2n}}{9}$

Dacă
$$1 < |z| < 2, f(z) = \frac{1}{9} \sum_{n \ge 1} \frac{1}{z^{2n}} + \sum_{n \ge 0} \frac{3n+7}{4^{n+2}} \frac{z^{2n}}{9}$$

Dacă
$$|z| > 2$$
, $f(z) = \sum_{n \ge 3} [(3n - 7)4^{n-2} + 1] \frac{1}{9z^{2n}}$

Capitolul 8

Integrale complexe

8.1 Noțiuni teoretice

Definiția 8.1. Fie $A \subset \mathbb{C}$ o mulțime deschisă nevidă și fie $f: A \to \mathbb{C}$ o funcție olomorfă pe A. Un punct $z_0 \in \mathbb{C}$ se numește punct singular izolat al lui f dacă există un disc $B(z_0,r)(r>0)$ astfel încit $B(z_0,r)\setminus\{z_0\}\subset A$ (adică funcția f este olomorfă pe discul punctat $B(z_0; 0, r) = B(z_0, r) \setminus \{z_0\}$).

Pe coroana $B(z_0; 0, r)$ funcția olomorfă f are o dezvoltare în serie Laurent

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n.$$

Exemplul 8.1. Punctul z=2 este un punct singular izolat pentru fiecare

din funcțiile $f(z) = \frac{1}{z-2}$, $f(z) = z^2$, $f(z) = \frac{\sin \pi z}{z-2}$. **Exemplul 8.2.** Punctele $z = 0, \pm i$ sunt puncte singulare izolate ale funcției $f: \mathbb{C} \setminus \{0, \pm i\} \to \mathbb{C}$, $f(z) = \frac{1}{z^3+z}$.

Definiția 8.2. Fie $f: A \to \mathbb{C}$ o funcție olomorfă , unde $A \subset \mathbb{C}$ o mulțime deschisă nevidă și fie $z_0 \in \mathbb{C}$ un punct singular izolat al lui f. Punctul singular izolat z_0 se numește **punct singular aparent** dacă seria Laurent

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$
 are partea principală nulă , adică $a_n = 0, \forall n < 0.$

Definiția 8.3. Punctul singular izolat z_0 se numște **pol** dacă în seria

Laurent $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ partea principală are un număr finit de

termeni nenuli, adică există $m \in \mathbb{Z}, m < 0$ astfel încât $a_m \neq 0$ și $a_n =$ $0, \forall n \in \mathbb{Z}$ cu n < m. Numărul natural -m se numește **ordinul polului** z_0 . Polii de ordinul întâi se mai numesc **simpli**.

Definiția 8.4. Punctul singular izolat z_0 se numşte **punct singular** esențial dacă partea principală a seriei Laurent $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ are o infinitate de termeni nenuli.

Propoziția 8.1. Fie $f: B(z_0; 0, r) \to \mathbb{C}$ o funcție olomorfă pe coroana

 $B(z_0;0,r)$. Atunci punctul z_0 este punct singular aparent pentru f dacă și numai dacă există și este finită $\lim_{z \to z_0} f(z)$.

Propoziția 8.2. Fie $f: B(z_0; 0, r) \to \mathbb{C}$ o funcție olomorfă pe coroana $B(z_0;0,r)$. Atunci punctul z_0 este pol pentru f dacă și numai dacă $\lim_{z\to z_0} f(z) =$

Propoziția 8.3. Fie $f: B(z_0; 0, r) \to \mathbb{C}$ o funcție olomorfă pe coroana $B(z_0;0,r)$. Atunci punctul z_0 este punct singular esențial pentru f dacă și numai dacă nu există $\lim_{z \to z_0} f(z)$.

Exemplul 8.3. Punctul z=1 este un pol simplu pentru $f(z)=\frac{z}{z-1}$. Intr-adevăr, $\lim_{z\to 1} f(z)=\infty$, iar dezvoltarea Laurent a lui f în jurul lui z=1este $f(z) = \frac{z \to 1}{z-1} = \frac{1}{z-1} + 1$, cu partea principală $\frac{1}{z-1}$. **Exemplul 8.4.** Punctul z = 0 este o singularitate aparentă pentru f(z) = 0

 $=\frac{\sin z}{z}$, deoarece $\lim_{z\to 0}=1$.

Exemplul 8.5. Punctul z=2 este pol dublu pentru $f(z)=\frac{\sin \pi z}{(z-2)^3}$. Pentru orice $z \in \mathbb{C}$ avem $\sin \pi z = a_0 + a_1(z-2) + a_2(z-2)^2 + \dots$, unde $a_0 = 0, a_1 = \pi, a_2 = 0, a_3 = -\frac{\pi^3}{6}$ etc., deci $f(z) = \frac{\pi}{(z-2)^2} - \frac{\pi^3}{6} + \dots$

Exemplul 8.6. Pentru funcția $f(z) = e^{\frac{1}{z}}$ punctul z = 0 este singular esențial deoarece $e^{\frac{1}{z}}=1+\frac{1}{1!z}+\frac{1}{2!z^2}+\ldots$ și partea principală are o infinitate de termeni. Analog, z=0 este singular esențial pentru $g(z)=\sin\frac{1}{z}$ și $h(z) = \cos \frac{1}{z}$.

Cazul punctului de la infinit

Fie $f: B(0; r, \infty) \to \mathbb{C}$ o functie olomorfă pe coroana $B(0; r, \infty)$ (exteriorul unui disc). Vom spune că punctul ∞ este punct singular izolat al lui f. Funcția $(t \mapsto z = \frac{1}{t}) : B(0; 0, \frac{1}{r}) \to B(0; r, \infty)$ este olomorfă ; compunând cu f obținem funcția olomorfă $f^*: B(0;0,\frac{1}{r}) \to \mathbb{C}$, $f^*(t) = f(\frac{1}{t}), \forall t \in B(0; 0, \frac{1}{r})$ care are punctul t = 0 ca punct singular izolat.

Vom spune că $z=\infty$ este un punct singular aparent al lui f (sau că funcția f este olomorfă în $z=\infty$) dacă funcția f^* are t=0 ca punct singular aparent. Vom spune că $z=\infty$ este pol al lui f dacă funcția f^* are t=0 ca pol. Vom spune că $z=\infty$ este punctul singular esențial al lui f dacă funcția f^* are t=0 ca punct singular esențial.

Observația 8.1. Fie $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ dezvoltarea în serie Laurent a lui

f în coroana |z| > r. Atunci $f^*(t) = f(\frac{1}{t}) = \sum_{n=-\infty}^{\infty} a_n t^{-n}$ este dezvoltarea

în serie Laurent a funcției f^* în coroana $B(0;0,\frac{1}{r}).$ Rezultă că $z=\infty$ este punct singular aparent al lui f dacă $a_n = 0, \forall n \geq 1; z = \infty$ este pol al lui f dacă $a_n = 0, \forall n \geq 1$, cu excepția unui număr finit de valori și $z = \infty$ este punct singular esențial al lui f dacă $a_n \neq 0$ pentru o infinitate de valori ale lui $n \ge 1$.

Definiția 8.5. Un domeniu D se numește **simplu conex** dacă orice curbă simplă închisă C conținută în D are proprietatea că domeniul mărginit Δ care are frontiera C este inclus în D.

Teorema 8.1. (Teorema lui Cauchy) Dacă f este olomorfă într-un domeniu simplu conex D, atunci $\int_C f(z)dz = 0$, oricare ar fi curba închisă C conținută în D.

Teorema 8.2. (Formula integrală Cauchy) Fie f o funcție olomorfă într-un domeniu simplu conex D și C o curbă simplă închisă conținută în D. Notăm cu Δ domeniul mărginit care are frontiera C, $\Delta \subset D$. Atunci

$$f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - a} dz, a \in \Delta$$

Teorema 8.3. Fie f o funcție olomorfă într-un domeniu D simplu conex ce admite derivate de orice ordin. Atunci

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-a)^{n+1}} dz$$

unde C este o curbă simplă închisă care înconjoară punctul a.

Definiția 8.6. Fie $A \subset \mathbb{C}$ o mulțime deschisă nevidă și fie $f: A \to \mathbb{C}$ o funcție olomorfă și fie discul punctat (coroana) $B(z_0; 0, r) \subset A$ ($z_0 \in \mathbb{C}$, r > 0) astfel încât punctul z_0 să fie punct singular izolat al funcției f. Fie

 $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ dezvoltarea în serie Laurent a funcției f în coroana

 $B(z_0;0,r)$. Coeficientul a_{-1} se numește **reziduul funcției** f în punctul singular z_0 și se notează $\text{Rez}(f,z_0)$.

Propoziția 8.4. Fie $C = \{z \in \mathbb{C}/|z - z_0| = \rho < r\}$ (cerc parcurs în sens trigonometric direct). Atunci

$$a_{-1} = \frac{1}{2\pi i} \int_C f(z) dz$$

Observația 8.2. Dacă $z_0 \in \mathbb{C}$ e punct singular aparent pentru f, atunci $\text{Rez}(f, z_0) = 0$.

Propoziția 8.5. Fie $f: B(z_0; 0, r) \to \mathbb{C}$ o funcție olomorfă pe coroana $B(z_0; 0, r)$ și fie $z_0 \in \mathbb{C}$ un pol de ordinul k > 0 pentru f. Atunci

$$\operatorname{Rez}(f, z_0) = \frac{1}{(k-1)!} \lim_{z \to z_0} [(z - z_0)^k f(z)]^{(k-1)}$$

Corolarul 8.1. Fie $f: B(z_0; 0, r) \to \mathbb{C}$ o funcție olomorfă pe coroana $B(z_0; 0, r)$ astfel încât $f(z) = \frac{P(z)}{Q(z)}, \forall z \in B(z_0; 0, r), \ cu \ P, Q \ funcții olomorfe în discul <math>B(z_0; r), P(z_0) \neq 0, Q(z_0) = 0, Q'(z_0) \neq 0.$ Atunci punctul $z_0 \in \mathbb{C}$ este un pol de ordinul întâi pentru f și $Rez(f, z_0) = \frac{P(z_0)}{Q'(z_0)}$.

Definiția 8.7. Fie $f: B(0; r, \infty) \to \mathbb{C}$ o funcție olomorfă în exteriorul discului B(0,r) (deci $z=\infty$ este punct singular izolat pentru funcția f). Se numește **reziduul funcției** f în **punctul** ∞ , reziduul funcției $(-\frac{1}{t^2})f(\frac{1}{t})$ în punctul t=0.

Propoziția 8.6. Fie $C = \{z \in \mathbb{C}/|z| = \rho > r\}$ un cerc de rază ρ parcurs în sens trigonometric direct (orientat pozitiv). Atunci

$$\operatorname{Rez}(f,\infty) = -\frac{1}{2\pi \mathrm{i}} \int_C f(z) dz$$

Teorema 8.4. (Teorema reziduurilor) Fie f o funcție olomorfă întrun domeniu D și C o curbă simplă închisă conținută în D. Notăm cu Δ domeniul mărginit care are frontiera C. Dacă în interiorul lui Δ funcția fare un număr finit de singularități $a_1, a_2, \ldots a_n$, poli sau puncte singulare esențiale, atunci

$$\int_{C} f(z)dz = 2\pi i \sum_{j=1}^{k} Rez(f, \alpha_{j})$$

Corolarul 8.2. Fie $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{C}$ punctele singulare izolate ale unei funcții $f: \mathbb{C} \setminus \{\alpha_1, \alpha_2, \ldots, \alpha_k\} \to \mathbb{C}$, olomorfe pe $\mathbb{C} \setminus \{\alpha_1, \alpha_2, \ldots, \alpha_k\}$. Atunci $\sum_{j=1}^k Rez(f, \alpha_j) + Rez(f, \infty) = 0 \text{ (suma tuturor reziduurilor este nulă în cazul unui număr finit de puncte singulare izolate).}$

Lema 8.1. (Jordan) Fie f o funcție continuă definită în sectorul $\theta_1 \leq \theta \leq \theta_2$ ($z = r\mathrm{e}^{\mathrm{i}t}$). Dacă $\lim_{|z| \to \infty} zf(z) = 0$ ($\theta_1 \leq \arg z \leq \theta_2$), atunci

$$\int_{\delta(r)} f(z)dz \longrightarrow 0$$

când $r \longrightarrow \infty$, unde $\delta(r)$ este arcul de cerc centrat în origine de rază r conținut în sectorul $\theta_1 \le \theta \le \theta_2$.

Lema 8.2. (Jordan) Fie f o funcție continuă definită în sectorul $\theta_1 \leq \theta \leq \theta_2$ ($z = re^{it}$). Dacă $\lim_{|z| \to 0} zf(z) = 0$ ($\theta_1 \leq \arg z \leq \theta_2$), atunci

$$\int_{\delta(r)} f(z)dz \longrightarrow 0$$

când $r \longrightarrow 0$, unde $\delta(r)$ este arcul de cerc centrat în origine de rază r conținut în sectorul $\theta_1 \le \theta \le \theta_2$.

8.2 Probleme rezolvate

1. Să se calculeze reziduul funcției $f(z) = \frac{1}{z \sin z^2}$ în punctul z = 0.

Soluție. Avem
$$\sin z = \frac{z}{1!} - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \Longrightarrow z \sin z^2 =$$

$$= z \left(\frac{z^2}{1!} - \frac{z^6}{3!} + \frac{z^{10}}{5!} - \dots \right) = z^3 \left(1 - \frac{z^4}{3!} + \frac{z^8}{5!} - \dots \right) \Longrightarrow$$

$$\Longrightarrow f(z) = \frac{1}{z^3 \left(1 - \frac{z^4}{3!} + \frac{z^8}{5!} - \dots \right)}$$

Există o serie de puteri $\sum_{n>0} a_n z^n$ astfel încât $\left(1-\frac{z^4}{3!}+\frac{z^8}{5!}-\ldots\right)$.

$$(a_0 + a_1 z + a_2 z^2 + \dots) = 1 \Longrightarrow a_0 = 1, a_0 \cdot 0 + a_1 \cdot 1 = 0, a_0 \cdot 0 + a_1 \cdot 0 + a_2 \cdot 1 = 0 \Longrightarrow a_2 = 0$$

Atunci
$$f(z) = \frac{1}{z^3} \sum_{n \ge 0} a_n z^n = \frac{a_0}{z^3} + \frac{a_1}{z^2} + \frac{a_2}{z} + a_3 + \dots$$
, deci Rez $(f, 0) = a_2 = 0$

2. Să se calculeze reziduul funcției $f(z) = \frac{1}{z(1-e^z)}$ în z = 0.

Soluție.
$$z(1 - e^z) = z^2(1 + \frac{z}{2!} + \frac{z^2}{3!} + \dots) \Longrightarrow f(z) = \frac{1}{z^2(1 + \frac{z}{2!} + \frac{z^2}{3!} + \dots)} = \frac{1}{z^2} \cdot (a_0 + a_1 z + a_2 z^2 + \dots)$$

Deci
$$1 = (1 + \frac{z}{2!} + \frac{z^2}{3!} + \dots) \cdot (a_0 + a_1 z + a_2 z^2 + \dots) \Longrightarrow a_0 = 1, a_0 \cdot 1 + \frac{1}{2!} \cdot a_1 = 0 \Longrightarrow a_1 = -\frac{1}{2} \Longrightarrow \operatorname{Rez}(f, 0) = \frac{1}{2}$$

3. Să se calculeze $\operatorname{Rez}(f,0)$, unde $f(z) = \frac{1}{z^n}(1 + e^{\frac{1}{z}})$.

Soluție. Punctul z=0 este un punct singular esențial izolat, deoarece f admite o dezvoltare în serie Laurent în jurul originii,

$$f(z) = \frac{1}{z^n} \left(2 + \frac{1}{1!} \cdot \frac{1}{z} + \frac{1}{2!} \cdot \frac{1}{z^2} + \frac{1}{3!} \cdot \frac{1}{z^3} + \dots \right)$$

cu o infinitate de termeni în partea principală.

Reziduul funcției relativ la acest punct este coeficientul lui $\frac{1}{z}$, deci $\operatorname{Rez}(f,0)=2$, pentru n=1 și $\operatorname{Rez}(f,0)=0$, pentru n>1.

4. Să se calculeze reziduul funcției $f(z) = \frac{1}{(z^2+1)^n}$ relativ la polii ei.

Soluție. $z = \pm i$ sunt poli de ordin n

$$\operatorname{Rez}(f, \mathbf{i}) = \frac{1}{(n-1)!} \lim_{z \to \mathbf{i}} [(z - \mathbf{i})^n \cdot \frac{1}{(z - \mathbf{i})^n (z + \mathbf{i})^n}]^{(n-1)} =$$

$$= \frac{1}{(n-1)!} \lim_{z \to \mathbf{i}} \left[\frac{1}{(z + \mathbf{i})^n} \right]^{(n-1)} = (-1)^{n-1} \frac{n(n+1) \dots (2n-2)}{(n-1)!} (2\mathbf{i})^{-2n+1} =$$

$$= -\frac{\mathbf{i}}{2^{2n-1}} \cdot \frac{n(n+1) \dots (2n-2)}{(n-1)!}$$

Analog calculăm Rez(f, -i)

5. Să se calculeze integralele $I_1=\int_{|z|=1}z|dz|, I_2=\int_Sz|dz|,$ unde cercul unitate este parcurs pozitiv o singură dată , iar S e segmentul care unește 0 și i.

Soluție.
$$z = e^{it}, t \in [0, 2\pi] \Longrightarrow dz = ie^{it}dt \Longrightarrow |dz| = dt \Longrightarrow I_1 = \int_0^{2\pi} e^{it}dt = \frac{1}{i}e^{it}/\frac{2\pi}{0} = 0$$

Segmentul
$$S$$
 are reprezentarea parametrică $z=t$ i, $t\in[0,1]\Longrightarrow dz=$ $=idt\Longrightarrow |dz|=dt\Longrightarrow I_2=\int_0^1tidt=\frac{i}{2}$

Să se calculeze integralele complexe:

6. $\int_{\gamma}(z^2+1)dz,$ unde γ e semidiscul $\left\{z\in\mathbb{C}/|z|\leq r, \mathrm{Im}z\geq 0\right\}$ cur>1.

Soluție. γ este reuniunea curbelor δ , unde $\delta(t) = (2t-1)r, t \in [0,1]$ și σ , unde $\sigma(t) = re^{it}, t \in [0, \pi]$

Atunci
$$\int_{\gamma} (z^2+1)dz = \int_{\delta} (z^2+1)dz + \int_{\sigma} (z^2+1)dz = \int_{0}^{1} (2t-1)^2 r^2 2rt dt + \int_{0}^{\pi} r^2 e^{2it} rie^{it} dt$$
 etc

7.
$$\int_{|z-2i|=1}^{\infty} \frac{1}{z^2+4} dz$$

Soluţie.
$$\int_{|z-2\mathbf{i}|=1} \frac{1}{z^2+4} dz = \int_{|z-2\mathbf{i}|=1} \frac{\frac{1}{z+2\mathbf{i}}}{z-2\mathbf{i}} dz = \int_{|z-2\mathbf{i}|=1} \frac{f(z)}{z-2\mathbf{i}}$$
, unde $f(z) = \frac{1}{z+2\mathbf{i}}$

Aplicăm formula integrală a lui Cauchy și obținem :
$$f(2\mathrm{i}) = \frac{1}{2\pi\mathrm{i}} \int_{|z-2\mathrm{i}|=1} \frac{f(z)}{z-2\mathrm{i}} \Longrightarrow \int_{|z-2\mathrm{i}|=1} \frac{f(z)}{z-2\mathrm{i}} = 2\pi\mathrm{i} f(2\mathrm{i}) = 2\pi\mathrm{i} \cdot \frac{1}{4\mathrm{i}} = \frac{\pi}{2}$$

8.
$$\int_{|z|=r} \frac{ze^z}{(z-1)^3} dz$$
, pentru $r > 1$

Soluție. Din teorema 8.3 avem
$$\int_{|z|=r} \frac{ze^z}{(z-1)^3} dz = \frac{2!}{2\pi i} f''(1) = 3\pi ie$$
, unde $f(z) = ze^z$

9.
$$\int_{|z+2i|=2} \frac{\cosh \frac{\pi z}{2}}{(z+i)^4} dz$$

Soluție. Funcția $g(z)=\frac{\cosh\frac{\pi z}{2}}{(z+\mathrm{i})^4}$ are punctul $-\mathrm{i}$ pol de ordinul 4. Aplicând teorema 8.3 pentru $n=3, a=-\mathrm{i}, f(z)=\cosh\frac{\pi z}{2}$ obținem

$$\int_{|z+2\mathbf{i}|=2} \frac{\cosh\frac{\pi z}{2}}{(z+\mathbf{i})^4} dz = \frac{2\pi \mathbf{i}}{3!} f^{(3)}(-\mathbf{i}) = \frac{2\pi \mathbf{i}}{3!} \left[\cosh\frac{\pi z}{2}\right]^{(3)} (-\mathbf{i}) = \frac{2\pi \mathbf{i}}{3!} \cdot \left(\frac{\pi}{2}\right)^3 \cdot \sinh\frac{\pi(-\mathbf{i})}{2} = \frac{\pi^4}{24}$$

10.
$$\int_{|z|=R} \frac{ze^{i\frac{\pi}{2}z}}{z-1} dz, R \neq 1$$

Soluție. Dacă R < 1, conform teoremei lui Cauchy $\int_{|z|=R} \frac{z e^{i\frac{\pi}{2}z}}{z-1} dz = 0$ Dacă R>1, aplicăm formula lui Cauchy funcției $f(z)=z\mathrm{e}^{\mathrm{i}\frac{\pi}{2}z}$, deci $\int_{|z|=R} \frac{z e^{i\frac{\pi}{2}z}}{z-1} dz = 2\pi i f(1) = -2\pi$

11.
$$\int_{|z|=2} \frac{\operatorname{tg} z}{z^2} dz$$

 $\mathit{Soluție}.$ Funcția $f(z)=\frac{\operatorname{tg} z}{z^2}$ are ca poli rădăcinile ecuației $z^2\cos z=0,$ adică $z=0,2k\pi\pm\frac{\pi}{2},k\in \mathbb{Z}$. În interiorul cercului |z|=2 se află polii simpli $0, \frac{\pi}{2}, -\frac{\pi}{2}$.

Calculăm
$$\operatorname{Rez}(f,0) = \lim_{z \to 0} z \cdot \frac{\operatorname{tg} z}{z^2} = 1$$

$$\operatorname{Rez}(f, \frac{\pi}{2}) = \lim_{z \to \frac{\pi}{2}} \left(z - \frac{\pi}{2} \right) \cdot \frac{\operatorname{tg} z}{z^2} = \lim_{v \to 0} v \cdot \frac{-\operatorname{ctg} v}{\left(v + \frac{\pi}{2} \right)^2} = -\frac{4}{\pi^2}$$

$$\text{Rez}(f, -\frac{\pi}{2}) = -\frac{4}{\pi^2}$$

Din teorema reziduurilor obţinem :
$$\int_{|z|=2} \frac{\lg z}{z^2} dz = 2\pi \mathrm{i} \left(\mathrm{Rez}(f,0) + \mathrm{Rez}(f,\frac{\pi}{2}) + \mathrm{Rez}(f,-\frac{\pi}{2}) \right) = 2\pi \mathrm{i} \left(1 - \frac{8}{\pi^2} \right)$$

12.
$$\int_{|z|=r} \frac{e^z}{(z-\mathrm{i})(z-2)} dz, r > 0, r \neq 1, r \neq 2$$

Soluție.1) Dacă 0 < r < 1, aplicăm teorema lui Cauchy si obține
m $\int_{|z|=r} \frac{{\rm e}^z}{(z-{\rm i})(z-2)} dz=0$

2) Dacă 1 < r < 2, aplicăm formula integrală a lui Cauchy.

$$\int_{|z|=r} \frac{e^z}{(z-i)(z-2)} dz = \int_{|z|=r} \frac{\frac{e^z}{z-2}}{z-i} dz = \int_{|z|=r} \frac{f(z)}{z-i} dz, \text{ unde } f(z) = \frac{e^z}{z-2}$$

Atunci
$$\int_{|z|=r} \frac{f(z)}{z-i} dz = 2\pi i f(i) = 2\pi i \frac{e^i}{i-2}$$

3) Dacă r > 2, aplicăm teorema reziduurilor.

i și 2 sunt poli simpli

Calculăm
$$\operatorname{Rez}(f, i) = \lim_{z \to i} (z - i) \frac{e^z}{(z - i)(z - 2)} = \frac{e^i}{i - 2}$$

$$Rez(f,2) = \lim_{z \to 2} (z-2) \frac{e^z}{(z-i)(z-2)} = \frac{e^2}{2-i}$$

$$Atunci \int_{|z|=r} \frac{e^z}{(z-i)(z-2)} dz = 2\pi i \left(\frac{e^i}{i-2} + \frac{e^2}{2-i}\right) = \frac{e^i - e^2}{i-2}$$

13.
$$\int_C \frac{1+\sin\frac{\pi}{z}}{1+z} dz,$$
unde C este elipsa $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>1$

Soluție. In interiorul domeniului mărginit de curba C sunt două singularități: -1 pol simplu și 0 punct singular esențial izolat.

Conform teoremei reziduurilor obţinem

$$\int_C \frac{1 + \sin\frac{\pi}{z}}{1 + z} dz = 2\pi i (\text{Rez}(f, -1) + \text{Rez}(f, 0))$$

Calculăm
$$\operatorname{Rez}(f,-1) = \lim_{z \to -1} (z+1) f(z) = \lim_{z \to -1} 1 + \sin \frac{\pi}{z} = 1$$

Pentru reziduul în punctul singular esențial z=0 este necesară o dezvoltare în serie Laurent în jurul acestui punct :

$$f(z) = \frac{1}{1+z} (1 + \sin \frac{\pi}{z}) = (1 - z + z^2 - z^3 + \ldots) \cdot \left(1 + \frac{1}{1!} \cdot \frac{\pi}{z} - \frac{1}{3!} \cdot \frac{\pi^3}{z^3} + \frac{1}{5!} \cdot \frac{\pi^5}{z^5} + \ldots\right), \text{ valabilă pentru } |z| < 1.$$

Din produsul celor două serii ne interesează doar coeficientul lui $\frac{1}{z}$, deci $\operatorname{Rez}(f,0) = \frac{\pi}{1!} - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \frac{\pi^7}{7!} + \ldots = \sin \pi = 0$

Aşadar,
$$\int_C \frac{1+\sin\frac{\pi}{z}}{1+z} dz = 2\pi i$$

14.
$$\int_{|z|=r} \frac{e^{\frac{1}{z}}}{1-z} dz, r > 0, r \neq 1$$

Soluție. Funcția $f(z)=\frac{{\rm e}^{\frac{1}{z}}}{1-z}$ are în z=1 pol simplu și în z=0 singularitate esențială .

$$\operatorname{Rez}(f,1) = \lim_{z \to 1} (z-1) \cdot \frac{e^{\frac{1}{z}}}{1-z} = -e$$

Pentru 0 < |z| < 1 avem $f(z) = \left(1 + \frac{1}{1!z} + \frac{1}{2!z^2} + \ldots + \frac{1}{n!z^n} + \ldots\right) \cdot (1 + z + z^2 + \ldots + z^n + \ldots) \Longrightarrow \operatorname{Rez}(f, 0) = \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!} + \ldots = e - 1(\operatorname{coeficientul\ lui\ } \frac{1}{z})$

Dacă
$$0 < r < 1$$
, $\int_{|z|=r} \frac{e^{\frac{1}{z}}}{1-z} dz = 2\pi i \text{Rez}(f,0) = 2\pi i (e-1)$

Dacă
$$r > 1$$
, $\int_{|z|=r} \frac{e^{\frac{1}{z}}}{1-z} dz = 2\pi i (\text{Rez}(f,0) + \text{Rez}(f,1)) = -2\pi i$

15.
$$\int_0^\infty \frac{x^2}{(1+x^2)^3} dx$$

 $\textit{Soluție.} \lim_{x\to\infty} x^\alpha \cdot \frac{x^2}{(1+x^2)^3} = 1$ pentru $\alpha=4>1,$ deci integrala $\int_0^\infty \frac{x^2}{(1+x^2)^3} dx$ este convergentă .

Funcția $f(x)=\frac{x^2}{(1+x^2)^3}$ este pară , deci $\int_0^\infty \frac{x^2}{(1+x^2)^3}dx=\frac{1}{2}\int_{-\infty}^\infty \frac{x^2}{(1+x^2)^3}dx$

Fie
$$f(z)=\frac{z^2}{(1+z^2)^3}, z\in\mathbb{C}\setminus\big\{\pm\mathrm{i}\big\}$$
olomorfă

 $\pm i$ sunt poli de ordinul 3

Fie
$$r > 1$$
 şi $\Gamma_r = [-r, r] \cup \gamma_r$, unde $\gamma_r = re^{it}, t \in [0, \pi]$

Aplicăm teorema reziduurilor și obținem $\int_{\Gamma_r} f(z)dz = 2\pi i \text{Rez}(f,i)$

Rez
$$(f, i) = \frac{1}{2!} \lim_{z \to i} \left[(z - i)^3 \left(\frac{z^2}{(1 + z^2)^3} \right) \right]'' = -\frac{i}{16}$$

Deci $\int_{\Gamma_r} f(z) dz = \frac{\pi}{8}$

Dar $\frac{\pi}{8} = \int_{\Gamma_r} f(z) dz = \int_{-r}^r \frac{x^2}{(1+x^2)^3} dx + \int_{\gamma_r} f(z) dz$. In această relație trecem la limită când $r \longrightarrow \infty$ și obținem $\frac{\pi}{8} = \int_{-\infty}^{\infty} \frac{x^2}{(1+x^2)^3} dx$, deoarece

$$\lim_{r\to\infty} \int_{\gamma_r} f(z)dz = 0 \text{ cf. lemei lui Jordan} \left(\lim_{z\to\infty} z f(z) = \lim_{z\to\infty} z \cdot \frac{z^2}{(1+z^2)^3} = 0\right). \text{ Aşadar, } \int_0^\infty \frac{x^2}{(1+x^2)^3} dx = \frac{\pi}{16}$$

16.
$$\int_0^\infty \frac{\cos x}{(x^2+1)(x^2+4)} dx$$

Soluție. Considerăm integrala $I=\int_C \frac{\mathrm{e}^{\mathrm{i}z}}{(z^2+1)(z^2+4)}dz,$ unde $C=[-r,r]\cup \cup \gamma_r, r>2$

Funcția $f(z) = \frac{\mathrm{e}^{\mathrm{i}z}}{(z^2+1)(z^2+4)}$ e olomorfă cu polii simpli $\pm\mathrm{i},\pm2\mathrm{i}$

Cum polii i şi 2i sunt in interiorul conturului C, aplicăm teorema reziduurilor şi avem $I = 2\pi i (\text{Rez}(f, i) + \text{Rez}(f, 2i))$

Calculăm
$$\operatorname{Rez}(f, \mathbf{i}) = \lim_{z \to \mathbf{i}} (z - \mathbf{i}) f(z) = \lim_{z \to \mathbf{i}} \frac{\mathrm{e}^{\mathbf{i}z}}{(z^2 + 4)(z + \mathbf{i})} = \frac{\mathrm{e}^{-1}}{6\mathbf{i}} = \frac{1}{6\mathbf{i}}$$

$$\operatorname{Rez}(f,2\mathrm{i}) = \lim_{z \to 2\mathrm{i}} (z-2\mathrm{i}) f(z) = \lim_{z \to \mathrm{i}} \frac{\mathrm{e}^{\mathrm{i}z}}{(z^2+1)(z+2\mathrm{i})} = -\frac{1}{12\mathrm{i}\mathrm{e}^2}$$

Deci
$$I = \frac{(2e-1)\pi}{6e^2}$$
.

Pe de altă parte $I=\int_{-r}^{r}\frac{\mathrm{e}^{\mathrm{i}x}}{(x^2+1)(x^4+4)}dx+\int_{\gamma_r}\frac{\mathrm{e}^{\mathrm{i}z}}{(z^2+1)(z^2+4)}dz$. In această relație trecem la limită când $r\longrightarrow\infty$ și obținem $\int_{-\infty}^{\infty}\frac{\mathrm{e}^{\mathrm{i}x}}{(x^2+1)(x^4+4)}dx==\frac{(2\mathrm{e}-1)\pi}{6\mathrm{e}^2},$ deoarece, cf. lemei lui Jordan, $\lim_{r\to\infty}\int_{\gamma_r}\frac{\mathrm{e}^{\mathrm{i}z}}{(z^2+1)(z^2+4)}dz==0$ $(|zf(z)|=\left|\frac{z\mathrm{e}^{\mathrm{i}z}}{(z^2+1)(z^2+4)}\right|<\frac{\mathrm{e}^{-y}}{|z|^3}(y>0)\Longrightarrow\lim_{|z|\to\infty}|zf(z)|=0)$

$$\operatorname{Dar} \int_{-\infty}^{0} \frac{e^{ix}}{(x^{2}+1)(x^{4}+4)} dx = \int_{0}^{\infty} \frac{e^{-ix}}{(x^{2}+1)(x^{4}+4)} dx \Longrightarrow \int_{0}^{\infty} \frac{\cos x}{(x^{2}+1)(x^{4}+4)} dx = \frac{(2e-1)\pi}{12e^{2}} \qquad \Box$$

17.
$$\int_0^{2\pi} \frac{1}{(2+\cos t)^2} dt$$

Soluție. Deoarece $\cos t=\frac{\mathrm{e}^{\mathrm{i}t}+\mathrm{e}^{-\mathrm{i}t}}{2}$ vom face schimbarea de variabilă $z=\mathrm{e}^{\mathrm{i}t},t\in[0,2\pi],$ deci $dz=\mathrm{i}\mathrm{e}^{\mathrm{i}t}dt$ și |z|=1.

Integrala devine
$$\int_{|z|=1} \frac{\frac{1}{iz}dz}{\left(2+\frac{1}{2}\left(z+\frac{1}{z}\right)\right)^2} = \frac{4}{i} \int_{|z|=1} \frac{z}{(z^2+4z+1)^2}dz$$

Funcția $f(z)=\frac{z}{(z^2+4z+1)^2}, z\in\mathbb{C}\setminus\left\{-2\pm\sqrt{3}\right\}$ e olomorfă și are polii dubli $-2\pm\sqrt{3}$.

Aplicăm teorema reziduurilor, ținând cont de faptul că doar $-2+\sqrt{3}$ se află în interiorul cercului de centru 0 și rază 1 și rezultă că $\int_{|z|=1}^{z} \frac{z}{(z^2+4z+1)^2} dz = 2\pi i \text{Rez}(f,-2+\sqrt{3})$

Calculăm Rez
$$(f, -2 + \sqrt{3}) = \lim_{z \to -2 + \sqrt{3}} [(z + 2 - \sqrt{3})^2 f(z)]' = \frac{1}{6\sqrt{3}} \Longrightarrow$$
$$\Longrightarrow \int_{|z|=1}^{z} \frac{z}{(z^2 + 4z + 1)^2} dz = \frac{\pi i}{3\sqrt{3}} \Longrightarrow \int_0^{2\pi} \frac{1}{(2 + \cos t)^2} dt = \frac{4\pi}{3\sqrt{3}}$$

18.
$$\int_{-\pi}^{\pi} \frac{\cos 3t}{5 - 4\cos t} dt$$

Soluție. Facem schimbarea $z={\rm e}^{{\rm i}t}$ și integrala devine $\int_{-\pi}^{\pi} \frac{\cos 3t}{5-4\cos t} dt = \int_{|z|=1} \frac{z^3+z^{-3}}{\frac{z}{5-4}\cdot\frac{z+\frac{1}{z}}{2}} \cdot \frac{dz}{{\rm i}z} dz = -\frac{1}{2{\rm i}} \int_{|z|=1} \frac{z^6+1}{z^3(2z^2-5z+2)} dz$

Polii funcției $f(z)=\frac{z^6+1}{z^3(2z^2-5z+2)}$ sunt $0,2,\frac{1}{2}$ și doar 0, pol triplu și $\frac{1}{2}$, pol simplu, sunt în interiorul cercului |z|=1. Aplicând teorema reziduurilor obținem $\int_{|z|=1} \frac{z^6+1}{z^3(2z^2-5z+2)} dz = 2\pi \mathrm{i}(\mathrm{Rez}(f,0)+\mathrm{Rez}(f,2))$

Calculăm
$$\text{Rez}(f,0) = \frac{1}{2} \lim_{z \to 0} [z^3 f(z)]'' = \frac{1}{2}$$

$$\operatorname{Rez}(f, \frac{1}{2}) = \lim_{z \to \frac{1}{2}} \left(z - \frac{1}{2} \right) f(z) = -\frac{1 + 2^6}{3 \cdot 2^2}$$

Deci
$$\int_{-\pi}^{\pi} \frac{\cos 3t}{5 - 4\cos t} dt = -\frac{1}{2i} \cdot 2\pi i \cdot \left(\frac{1}{2} - \frac{1 + 2^6}{3 \cdot 2^2}\right)$$

$$19. \int_0^\pi \operatorname{tg}(x+\mathrm{i}) dx$$

Soluție.
$$\operatorname{tg}(x+\mathrm{i}) = \frac{\sin(x+\mathrm{i})}{\cos(x+\mathrm{i})} = \frac{\frac{\mathrm{e}^{\mathrm{i}(x+\mathrm{i})} - \mathrm{e}^{-\mathrm{i}(x+\mathrm{i})}}{2\mathrm{i}}}{\frac{\mathrm{e}^{\mathrm{i}(x+\mathrm{i})} + \mathrm{e}^{-\mathrm{i}(x+\mathrm{i})}}{2}} = \frac{1}{\mathrm{i}} \cdot \frac{\mathrm{e}^{2\mathrm{i}x} - \mathrm{e}^{2}}{\mathrm{e}^{2\mathrm{i}x} + \mathrm{e}^{2}}$$

Facem schimbarea
$$z=\mathrm{e}^{2\mathrm{i}x}$$
 și integrala devine
$$\int_0^\pi \mathrm{tg}\,(x+\mathrm{i})dx=\tfrac{1}{\mathrm{i}}\int_{|z|=1}\tfrac{z-\mathrm{e}^2}{z+\mathrm{e}^2}\cdot\tfrac{dz}{2\mathrm{i}z}=\tfrac{1}{2\mathrm{i}^2}\int_{|z|=1}\tfrac{z-\mathrm{e}^2}{z(z+\mathrm{e}^2)}dz$$

Funcţia $f(z) = \frac{z-\mathrm{e}^2}{z(z+\mathrm{e}^2)}$ are drept poli simpli punctele $0, -\mathrm{e}^2$, dar numai 0 este în interiorului cercului |z| = 1. Aplicând teorema reziduurilor obţinem $\int_0^\pi \mathrm{tg}\,(x+\mathrm{i})dx = \frac{1}{2\mathrm{i}^2}\cdot 2\pi\mathrm{i}\cdot \mathrm{Rez}(f,0)$, unde $\mathrm{Rez}(f,0) = \lim_{z\to 0} zf(z) = -1$, deci $\int_0^\pi \mathrm{tg}\,(x+\mathrm{i})dx = \pi\mathrm{i}$

$$20. \int_0^{2\pi} e^{\cos x} \cos(nx - \sin x) dx$$

$$\begin{array}{l} Soluție. \ \ {\rm Facem \ schimbarea} \ z={\rm e}^{{\rm i}x} \ {\rm si \ avem} : \\ \cos(nx-\sin x)=\frac{1}{2}[{\rm e}^{{\rm i}(nx-\sin x)}+{\rm e}^{-{\rm i}(nx-\sin x)}]=\\ =\frac{1}{2}[z^n{\rm e}^{-\frac{1}{2}\left(z-\frac{1}{z}\right)}+z^{-n}{\rm e}^{\frac{1}{2}\left(z-\frac{1}{z}\right)}]=\frac{1}{2z^n}[z^{2n}{\rm e}^{-\frac{1}{2}\left(z-\frac{1}{z}\right)}+{\rm e}^{\frac{1}{2}\left(z-\frac{1}{z}\right)}]\\ {\rm Integrala \ devine} \ \int_{|z|=1}{\rm e}^{\frac{1}{2}\left(z+\frac{1}{z}\right)}\cdot\frac{1}{2z^n}[z^{2n}{\rm e}^{-\frac{1}{2}\left(z-\frac{1}{z}\right)}+{\rm e}^{\frac{1}{2}\left(z-\frac{1}{z}\right)}]\cdot\frac{dz}{{\rm i}z}=\\ =\frac{1}{2{\rm i}}\int_{|z|=1}\frac{z^{2n}{\rm e}^{\frac{1}{z}}+{\rm e}^z}{z^{n+1}}dz=2\pi{\rm i}{\rm Rez}(f,0), \ {\rm cf. \ teoremei\ reziduurilor.} \end{array}$$

Pentru a calcula Rez(f,0) dezvoltăm funcția $\frac{z^{2n} \mathrm{e}^{\frac{1}{z}} + \mathrm{e}^z}{z^{n+1}}$ în vecinătatea punctului 0:

$$\frac{z^{2n}e^{\frac{1}{z}}+e^{z}}{z^{n+1}} = \frac{z^{2n}\left(1+\frac{1}{z}+\frac{1}{2!z^{2}}+...+\frac{1}{n!z^{n}}+...\right)+1+\frac{z}{1!}+\frac{z^{2}}{2!}+...+\frac{z^{n}}{n!}+...}{z^{n+1}} = \frac{2}{n!}\cdot\frac{1}{z}+... \Longrightarrow \\ \Longrightarrow \operatorname{Rez}(f,0) = \frac{2}{n!} \Longrightarrow \int_{0}^{2\pi} e^{\cos x} \cos(nx-\sin x) dx = \frac{2\pi i}{n!} \qquad \Box$$

21. Să se demonstreze egalitatea $\int_0^\pi \frac{\cos n\theta}{b - \mathrm{i}a\cos\theta} d\theta = \frac{\pi\mathrm{i}^n}{\sqrt{a^2 + b^2}} \cdot \frac{a^n}{(\sqrt{a^2 + b^2} + b)^n},$ $a, b > 0, n \in \mathbb{Z}$.

Soluție. Fie $I=\int_0^\pi \frac{\cos n\theta}{b-\mathrm{i}a\cos\theta}d\theta=\frac{1}{2}\int_{-\pi}^\pi \frac{\cos n\theta}{b-\mathrm{i}a\cos\theta}d\theta$ și i $J=\frac{1}{2}\int_{-\pi}^\pi \frac{\mathrm{i}\sin n\theta}{b-\mathrm{i}a\cos\theta}d\theta=0$ (deoarece funcția din interiorul integralei este impară)

$$I + iJ = \frac{1}{2} \int_{-\pi}^{\pi} \frac{e^{in\theta}}{b - ia \cos \theta} d\theta$$

Facem schimbarea $z=\mathrm{e}^{\mathrm{i}t}$ și integrala devine $I=I+\mathrm{i}J=\int_{|z|=1}\frac{z^n}{az^2+2\mathrm{i}bz+a}dz$

Polul simplu $z=\mathrm{i}\frac{\sqrt{a^2+b^2}-b}{a}$ este în interiorul cercului |z|=1.

$$\operatorname{Rez}(f, i^{\frac{\sqrt{a^2 + b^2} - b}{a}}) = \lim_{z \to i^{\frac{\sqrt{a^2 + b^2} - b}{a}}} \left(z - i^{\frac{\sqrt{a^2 + b^2} - b}{a}}\right) \frac{z^n}{az^2 + 2ibz + a} = \lim_{z \to i^{\frac{n}{2i\sqrt{a^2 + b^2}}} \cdot \frac{a^n}{(\sqrt{a^2 + b^2} + b)^n}}$$

Cf. teoremei reziduurilor rezultă
$$\int_0^\pi \frac{\cos n\theta}{b - \mathrm{i}a\cos\theta} d\theta = \int_{|z|=1} \frac{z^n}{az^2 + 2\mathrm{i}bz + a} dz = 2\pi\mathrm{i}\mathrm{Rez}(f,\mathrm{i}\frac{\sqrt{a^2 + b^2} - b}{a}) = \frac{\pi\mathrm{i}^n}{\sqrt{a^2 + b^2}} \cdot \frac{a^n}{(\sqrt{a^2 + b^2} + b)^n}$$

22. Să se calculeze integrala $I=\int_{|z|=4}\frac{dz}{3\sin z-4\sin^3z}$

 $Soluție. \ \text{Cum} \sin 3z = 3 \sin z - 4 \sin^3 z, \text{ integrala devine } I = \frac{1}{4} \int_{|z|=4}^{} \frac{dz}{\sin^3 z}$ Funcția $f(z) = \frac{1}{\sin^3 z}$ are polii tripli $z_k = k\pi, k = 0, \pm 1, \pm 2, \ldots$ In interiorul cercului |z|=4, f are polii tripli $z_1=0, z_2=\pi, z_3=-\pi.$ Atunci, conform teoremei reziduurilor, $I=2\pi \mathrm{i}(\mathrm{Rez}(f,0)+\mathrm{Rez}(f,\pi)+\mathrm{Rez}(f,-\pi)).$ Conform exercițiului 17, capitolul 7, $\frac{1}{\sin z} = \frac{1}{z}(1+\frac{z^2}{6}+\mathrm{Rez}(f,-\pi)) = \frac{1}{z^3}(1+\frac{z^2}{3}+\frac{z^4}{15}+\ldots) \Longrightarrow \mathrm{Rez}(f,0) = \frac{1}{3}$ Pentru a dezvolta f în serie Laurent în jurul punctului $z_2=\pi$ fac substituția $z=t+\pi$, rezultă $f(t+\pi)=-\frac{1}{\sin^3 z}=-\frac{1}{t^3}(1+\frac{t^2}{3}+\frac{t^4}{15}+\ldots).$ Atunci $\mathrm{Rez}(f,\pi)=-\frac{1}{3}.$ Analog $\mathrm{Rez}(f,-\pi)=-\frac{1}{3}.$ Deci $I=-\frac{2\pi \mathrm{i}}{3}$

8.3 Probleme propuse

1. Să se calculeze reziduurile funcțiilor $f(z)=z\mathrm{e}^{\frac{1}{z}},\ g(z)=\frac{\sin 2z}{z^6},\ h(z)=z^3\cos\frac{1}{z}$ în punctul singular z=0.

R: $\text{Rez}(f,0) = \frac{1}{2}, \text{Rez}(g,0) = \frac{4}{15}, \text{Rez}(h,0) = \frac{1}{24}$

2. Să se calculeze reziduul funcției $f(z) = \frac{z+3}{(z+1)^3}$ în polul z = -1.

R: Rez(f, -1) = 0

3. Să se calculeze reziduul funcției $f(z) = \frac{1}{z^3 + z^2}$ în polii săi.

R: Rez(f, 0) = -1, Rez(f, -1) = 1

4. Să se calculeze $\int_{\gamma} \frac{1+z^4}{1+z^2} dz,$ unde γ e semidiscul

 $\{z \in \mathbb{C}/|z| \le r, \operatorname{Im} z \ge 0\}$ cu r > 1.

 $\mathbf{R:} \int_{\gamma} \frac{1+z^4}{1+z^2} dz = 2\pi ($ aplicăm formula integrală a lui Cauchy)

Să se calculeze integralele complexe:

5. $\int_{|z|=r} \frac{\sin z}{(z-a)^2} dz$, unde $|a| \neq r > 0$

R.:

$$\int_{|z|=r} \frac{\sin z}{(z-a)^2} dz = \begin{cases} 2\pi i f'(a), & |a| < r \\ 0, & |a| > r \end{cases}$$
$$= \begin{cases} 2\pi i \cos a, & |a| < r \\ 0, & |a| > r \end{cases}$$

6. $\int_{|z|=r} \frac{1}{z^4+1} dz$, $0 < r \neq 1$

R: Dacă 0 < r < 1, $\int_{|z|=r} \frac{1}{z^4+1} dz = 0$ (cf. teoremei lui Cauchy)

Dacă r>1,aplicăm teorema reziduurilor și $\int_{|z|=r}\frac{1}{z^4+1}dz=0$

7. $I = \int_C \frac{dz}{z(z^2 + a^2)^2} dz$, unde a > 0 și C este cercul |z| = R, R > a.

R: I = 0

8.
$$I = \int_C \frac{z^3}{z^4 - 1} dz$$
, unde

a)
$$C: (x^2 + y^2)^4 - 16(x^2 - y^2)^2 = 0;$$

b)
$$C: x^2 + 16y^2 - 4 = 0;$$

c)
$$C: |z| = \frac{\sqrt{2}}{2}$$
.

R: a) Curba C este reuniunea dintre o lemniscată de ecuație $(x^2+y^2)^2-4(x^2-y^2)=0$ cu originea ca punct dublu și care intersectează axa Ox în punctele $A_1(2,0)$ și $A_2(-2,0)$ și o lemniscată de ecuație $(x^2+y^2)^2+4(x^2-y^2)=0$ cu originea ca punct dublu și care intersectează axa Oy în punctele $B_1(0,2)$ și $B_2(0,-2)$. Cf. teoremei reziduurilor, $I=2\pi i$.

b)
$$I = \pi i$$

c)
$$I = 0$$

9.
$$I = \int_0^\infty \frac{1}{1+x^2} dx$$

R:
$$I = \frac{\pi}{2}$$

10.
$$I = \int_0^\infty \frac{1}{1+x^4} dx$$

R:
$$I = \frac{\pi}{2\sqrt{2}}$$

11.
$$I = \int_0^\infty \frac{1}{1+x^6} dx$$

R:
$$I = \frac{\pi}{3}$$

12.
$$I = \int_0^\infty \frac{x^2}{(x^2 + a^2)^2} dx$$

$$\mathbf{R}$$
: $I = \frac{\pi}{4a}$

13.
$$I_1 = \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 2x + 10}, I_2 = \int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + 2x + 10}$$

R:
$$I_1 = \frac{\pi}{3e^3}(3\cos 1 + \sin 1), I_2 = \frac{\pi}{3e^3}(3\sin 1 - \cos 1)$$

14.
$$I = \int_0^\infty \frac{\cos x}{x^2 + 1} dx$$

R:
$$I = \frac{\pi}{2e}$$

15.
$$I = \int_0^{2\pi} \frac{1}{2 + \cos t} dt$$

R:
$$I = \frac{4\pi}{3}(3 - 2\sqrt{3})$$

16.
$$I = \int_0^{2\pi} \frac{1}{2 + \sin t} dt$$

R:
$$I = \frac{2\pi}{\sqrt{3}}$$

17.
$$I = \int_0^{2\pi} \frac{dx}{a + b\cos^2 x}, a, b > 0$$

$$\mathbf{R:}\ I = \frac{2\pi}{\sqrt{a(a+b)}}$$

18.
$$I = \int_0^{2\pi} \frac{\cos^2 2x}{1 - 2a\cos x + a^2} dx, |a| < 1$$

R:
$$I = \frac{\pi}{2} \left[\frac{(a^4+1)^2}{1-a^2} - \frac{1}{a} \right]$$

19.
$$I = \int_0^\pi \frac{dx}{(17 + 8\cos x)^2}$$

20.
$$I = \int_{-\pi}^{\pi} \frac{\sin x \sin nx}{5 - 4 \cos x} dx$$

R: Fie
$$I_1 = \int_{-\pi}^{\pi} \frac{\sin x \cos nx}{5-4\cos x} dx$$
. Atunci $I_1 + iI = iI = \int_{-\pi}^{\pi} \frac{e^{inx} \sin x}{5-4\cos x} dx$. Notăm $z = e^{ix}$ și aplicăm teorema reziduurilor pentru integrala $\int_{-\pi}^{\pi} \frac{e^{inx} \sin x}{5-4\cos x} dx$. Rezultă $I = \frac{\pi}{2^{n+1}}$

Capitolul 9

Transformata Laplace

9.1 Definiție și formule de inversare

Definiția 9.1. Se numește funcție original orice funcție $f: \mathbb{R} \to \mathbb{C}$ care posedă proprietățile:

- a) f este integrabilă pe orice compact și f(t) = 0 pentru t < 0;
- b) există constantele M>0 și $\gamma_0\in\mathbb{R}$ astfel încât: $|f(t)|\leq M\mathrm{e}^{\gamma_0 t}$, pentru orice $t\geq 0$.

Numărul γ_0 se numește indicele de creștere al funcției f.

Definiția 9.2. Transformata Laplace (sau **funcția imagine**) a unei funcții original f este, prin definiție, funcția complexă:

$$F(p) = \int_0^\infty f(t)e^{-pt}dt$$
 (9.1)

adică

$$F(p) = \lim_{\substack{\varepsilon \searrow 0 \\ R \nearrow \infty}} \int_{\varepsilon}^{R} f(t) e^{-pt} dt$$
 (9.2)

Se demonstrează că funcția imagine F este olomorfă (analitică) în semi-planul Re $p>\gamma_0$ și vom nota $F=\mathcal{L}[f]$

Teorema 9.1. (formula de inversare Mellin-Fourier) Fie f o funcție original cu indicele de creștere γ_0 , iar $F = \mathcal{L}[f]$ imaginea sa. Atunci egalitatea

$$f(t) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} F(p) e^{pt} dp, \alpha > \gamma_0$$
 (9.3)

are loc în toate punctele în care f este continuă .

In fiecare punct a de discontinuitate, valoarea funcției din membrul drept este egală cu $\frac{1}{2}[f(c-0)+f(c+0)]$.

Presupunem că F admite o prelungire în \mathbb{C} cu excepția unui număr finit de puncte singulare izolate $p_1, p_2, \dots p_n$ şi că $\lim_{n \to \infty} \sup_{|p| \le n} |F(p)| = 0$.

Dacă sunt îndeplinite condițiile în care relația (9.3) este adevărată, atunci:

$$f(t) = \sum_{k=1}^{n} \operatorname{Rez}(F(p)e^{pt}, p_k)$$
(9.4)

In particular, dacă p_1, p_2, \ldots sunt poli de ordin n_1, n_2, \ldots respectiv, atunci (9.4) devine:

$$f(t) = \sum_{k=1}^{n} \frac{1}{(n_k - 1)!} \lim_{p \to p_k} \frac{d^{n_k - 1}}{dp^{n_k - 1}} [F(p)(p - p_k)^{n_k} e^{pt}]$$
(9.5)

9.2 Proprietățiile transformării Laplace

In continuare sunt date proprietățiile transformării Laplace cu denumirile uzuale, iar în tabelul 9.1 transformatele funcțiilor mai importante.

1. (linearitatea) Dacă $\alpha, \beta \in \mathbb{R}$ atunci:

$$\mathcal{L}[\alpha f(t) + \beta g(t)](p) = \alpha \mathcal{L}[f(t)](p) + \beta \mathcal{L}[g(t)](p)$$

2. (schimbarea de scală) Dacă $\tau > 0$ și $F(p) = \mathcal{L}[f(t)](p)$, atunci:

$$\mathcal{L}[f(at)](p) = \frac{1}{a} F\left(\frac{p}{a}\right), \quad a \in \mathbb{R}$$

3. (teorema întârzierii) Dacă $\tau > 0$ și $F(p) = \mathcal{L}[f(t)](p)$, atunci:

$$\mathcal{L}[f(t-\tau)](p) = e^{-p\tau}F(p)$$

4. (teorema deplasării) Dacă Re $(p + \lambda) > \gamma_0$ și $F(p) = \mathcal{L}[f(t)](p)$

$$\mathcal{L}[e^{-\lambda t}f(t)](p) = F(p+\lambda)$$

5. (derivarea imaginii) Dacă $F(p) = \mathcal{L}[f(t)](p)$ și $n \in \mathbb{N}^*$, atunci:

$$\mathcal{L}[t^n f(t)](p) = (-1)^n \frac{d^n F}{dp^n}$$

6. (derivarea originalului) Dacă f este de n ori derivabilă în $\mathbb{R}\setminus\{0\}$, $f^{(n)}$ este o funcție original, există $f^{(k)}(0+0)$, $0 \le k \le n-1$, iar $F(p) = \mathcal{L}[f(t)](p)$, atunci:

$$\mathcal{L}\left[\frac{d^n f(t)}{dt^n}\right](p) = p^n F(p) - (p^{n-1} f(0+0) + p^{n-2} f'(0+0) + \dots + f^{(n-1)}(0+0))$$

7. (integrarea originalului) Dacă $F(p) = \mathcal{L}[f(t)](p)$, atunci:

$$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right](p) = \frac{F(p)}{p}$$

8. (integrarea imaginii) Dacă $\frac{f(t)}{t}$ este funcție original, iar F este transformata Laplace a funcției f:

$$\mathcal{L}\left[\frac{f(t)}{t}\right](p) = \int_{p}^{\infty} F(v)dv$$

9. (teorema de convoluție) Fie h = f * g, $F = \mathcal{L}[f]$, $G = \mathcal{L}[g]$ și presupunem că integralele F(p) și G(p) converg absolut în punctul $p_0 \in \mathbb{C}$, atunci integrala $H(p) = \mathcal{L}[h(t)](p)$ are aceeași proprietate și, în plus:

$$H(p) = F(p)G(p),$$

pentru Re $p \geq \text{Re } p_0$.

		Tabelul 9.1
Nr.	f(t)	F(p)
1	h(t)	$\frac{1}{p}$
2	t^n	$\frac{\Gamma(n+1)}{p^{n+1}}$
3	$\mathrm{e}^{\omega t}$	$\frac{1}{p-\omega}$
4	$\sin \omega t, \omega > 0$	$\frac{\omega}{p^2 + \omega^2}$
5	$\cos \omega t, \omega > 0$	$\frac{p}{p^2 + \omega^2}$
6	$sh \omega t, \omega > 0$	$\frac{\omega}{p^2-\omega^2}$
7	$ch\omega t,\omega>0$	$rac{p}{p^2-\omega^2}$

Funcțiile de la nr. 2-10 care apar în tabelul 9.1 sunt subînțelese a fi înmulțite cu h(t), pentru că , în caz contrar, nu ar fi funcții original; astfel,

de exemplu, prin t^n se înțelege $t^n h(t)$. Această convenție va fi utilizată și în continuare.

Teorema următoare este utilă pentru calculul unor originale dacă imaginea are o anumită formă.

Teorema 9.2. (Efros) Fie f(t) o funcție orginal și $F(p) = \mathcal{L}[f(t)](p)$. Dacă notăm:

$$\varphi(t,\tau) = \frac{1}{\sqrt{\pi t}} e^{-\frac{\tau^2}{4t}}$$

atunci există $\gamma_0 \in \mathbb{R}$ astfel încât, pentru Re $p > \gamma_0$ avem:

$$\mathcal{L}\Big[\int_0^\infty f(\tau)\varphi(t,\tau)d\tau\Big](p) = \frac{F(\sqrt{p})}{\sqrt{p}}$$

9.3 Rezolvarea ecuațiilor și sistemelor de ecuații diferențiale cu coeficienți constanți

Se consideră ecuația diferențială cu coeficienți constanți:

$$a_0 x^{(n)} + a_1 x^{(n-1)} + \ldots + a_n x(t) = f(t)$$
 (9.6)

cu funcția necunoscută x(t) și cu condițiile inițiale:

$$x^{(k)}(0) = c_k, \quad k = 1, 2, \dots n - 1$$

Notăm $X(p) = \mathcal{L}[x(t)](p), F(p) = \mathcal{L}[f(t)](p)$ și aplicăm operatorul \mathcal{L} ecuației (9.6); se va obține o relație de forma:

$$R(p)X(p) = Q(p) + F(p)$$

unde R este polinomul caracteristic al ecuației (9.6), iar Q este un polinom de grad n-1 depinzând de c_k . Relația precedentă permite determinarea funcției imagine X(p), iar apoi se deduce originalul x(t), care este soluția ecuației (9.6).

Considerații similare au loc pentru sisteme de ecuații diferențiale cu coeficienți constanți, de forma:

$$x' = Ax + f(t) \tag{9.7}$$

unde $A \in M_n(\mathbb{C}), n \geq 1, f(t) = (f_1(t), \dots f_n(t))'$ cu f_i funcții original. Soluția $x(t) = (x_1(t), \dots x_n(t))'$ a sistemului (9.7) care satisface condiția x(0+) = C, unde C este un vector coloană constant (accentul semnifică transpunerea de matrice) are toate componenele x_i funcții original.

Transformata Laplace a funcțiilor cu valori vectoriale se definește pe componente; dacă se notează $X(p)=\mathcal{L}[x(t)]$ și $F(p)=\mathcal{L}[f(t)]$ din (9.7) rezultă:

$$pX(p) - C = AX(p) + F(p)$$

sau

$$(A - pI_n)X(p) = -C - F(p)$$

Este evident că, pentru orice p cu Re p suficient de mare, matricea $A-pI_n$ este inversabilă; rezultă deci că există $a \in \mathbb{R}$ astfel încât $X(p) = -(A-pI_n)^{-1}(C+F(p))$, pentru Re p > a, și , de aici, se deduce originalul x(t).

9.4 Integrarea unor ecuații cu derivate parțiale, cu condiții inițiale și condiții la limită

Considerăm ecuația liniară

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial u}{\partial x} + \alpha \frac{\partial^2 u}{\partial t^2} + \beta \frac{\partial u}{\partial t} + \gamma u = \varphi(x, t)$$

cu coeficienții $a, b, \alpha, \beta, \gamma$ funcții numai de x, continue pe un interval [0, l]. Termenul liber φ e funcție original, în raport cu $t, \forall x \in [0, l]$.

Se pune problema determinării soluției $u: [0, l] \times [0, \infty) \to \mathbb{R}$ a acestei ecuații care satisface condițiile inițiale

$$u(x,0) = f(x), \frac{\partial u}{\partial t}(x,0) = g(x), \forall x \in [0,l]$$

și condițiile la limită

$$A\frac{\partial u}{\partial x}(0,t) + B\frac{\partial u}{\partial t}(0,t) + Cu(0,t) = h(t)$$

$$A_1 \frac{\partial u}{\partial x}(l,t) + B_1 \frac{\partial u}{\partial t}(l,t) + C_1 u(l,t) = k(t), \forall t \in [0,\infty)$$

cu A, B, C, A_1, B_1, C_1 constante date și h, k funcții original date.

Fie $H(p) = \mathcal{L}[h(t)], K(p) = \mathcal{L}[k(t)], \Phi(x, p) = \mathcal{L}[\varphi(x, t)] = \int_0^\infty \varphi(x, t) e^{-pt} dt,$ $U(x, p) = \mathcal{L}[u(x, t)] = \int_0^\infty u(x, t) e^{-pt} dt$

Avem
$$\mathcal{L}\left[\frac{\partial u}{\partial x}\right] = \int_0^\infty \frac{\partial u}{\partial x} e^{-pt} dt = \frac{dU}{dx}, \mathcal{L}\left[\frac{\partial^2 u}{\partial x^2}\right] = \int_0^\infty \frac{\partial^2 u}{\partial x^2} e^{-pt} dt = \frac{d^2U}{dx^2},$$

$$\mathcal{L}\left[\frac{\partial u}{\partial t}\right] = pU(x,p) - u(x,0) = pU(x,p) - f(x), \mathcal{L}\left[\frac{\partial^2 U}{\partial t^2}\right] = p^2U(x,p) - f(x)$$

 $-[pu(x,0) + \frac{\partial u}{\partial t}(x,0)] = p^2 U(x,p) - [pf(x) + g(x)]$ şi aplicând transformata Laplace ecuației inițiale obținem

$$a\frac{d^2U}{dx^2} + b\frac{dU}{dx} + cU = d$$

unde $c = \alpha p^2 + \beta p + \gamma$, $d = \Phi + (\alpha p + \beta) f + \alpha g$ sunt funcții de p și x. Deoarece în ecuația operațională de mai sus nu intervin decât derivatele funcției U în raport cu x, am notat aceste derivate cu simbolul utilizat pentru derivate

ordinare. In această ecuație, p are rolul unui parametru. Ecuația este o ecuație diferențială liniară cu coeficienții și termenul liber funcții de x și de parametrul p.

Aplicând condițiilor la limită transformata Laplace, aceste condiții devin

$$\left[A\frac{dU}{dx} + (Bp + C)U\right]/_{x=0} = H(p) + Bf(0)$$

$$\left[A_1 \frac{dU}{dx} + (B_1 p + C_1)U \right] /_{x=l} = K(p) + B_1 f(l)$$

De obicei, integrarea ecuației operaționale cu condițiile de mai sus este o problemă mai simplă decât problema inițială .

9.5 Rezolvarea unor ecuații integrale

Considerăm ecuația integrală de tip Volterra de speța a doua:

$$x(t) = f(t) + \int_0^t K(t - \tau)x(\tau)d\tau$$

în care funcțiile f(t) și K(t) sunt funcții original.

Se notează $X(p) = \mathcal{L}[x(t)](p), F(p) = \mathcal{L}[f(t)](p), L(p) = \mathcal{L}[K(t)](p)$ și se aplică transformarea Laplace celor doi membri ai ecuației integrale; utilizând teorema de convoluție, rezultă:

$$X(p) = F(p) + L(p)X(p)$$

și deci

$$X(p) = \frac{F(p)}{1 - L(p)}$$

care permite determinarea originalului x(t).

9.6 Probleme rezolvate

1. Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$

$$f(t) = \left\{ \begin{array}{ll} t^3 - t + 6, & \text{dacă } t \geq 0 \\ 0, & \text{dacă } t < 0 \end{array} \right.$$

este o funcție original.

Soluție. Verificăm definiția:

a. f e integrabilă pe orice compact și f(t) = 0 pentru t < 0

b. Arătăm că există constantele M>0 și $\gamma_0\in\mathbb{R}$ astfel încât $|f(t)|\leq M\mathrm{e}^{\gamma_0 t}$ pentru orice $t\geq 0$.

Cum $\lim_{t\to\infty} f(t)e^{-t} = 0$ rezultă că pentru $\varepsilon = 1\,\exists \delta > 0$ astfel încât $|f(t)e^{-t}| \leq 1$, adică $|f(t)| \leq e^t$, pentru $t \geq \delta$

Pentru $t \in [0, \delta]$ avem $|f(t)| \leq M_1$ cu $M_1 \geq 0$ convenabil ales, deci luând $M = \max(1, M_1)$ avem $|f(t)| \leq Me^t, \forall t \geq 0$, cu indicele de creștere exponențială $\gamma_0 = 1$

2. Să se găsească pentru funcțiile original f(t), periodice de perioade T, o formulă cu ajutorul căreia să se calculeze imaginile lor Laplace.

Soluție.
$$f$$
 periodică $\Longrightarrow f(t+nT)=f(t), n\in \mathbb{Z}$

$$F(p) = \int_0^\infty e^{-pt} f(t) dt = \sum_{n=0}^\infty \int_{nT}^{(n+1)T} e^{-pt} f(t) dt (*)$$

Cum $\int_0^\infty \mathrm{e}^{-pt} f(t) dt$ e convergentă în semiplanul Re $p>\alpha$, unde α e abscisa de convergență rezultă că seria (*) e convergentă.

Fac schimbarea de variabilă u = t - nT în (*).

Obţinem

$$F(p) = \sum_{n=0}^{\infty} \int_{0}^{T} e^{-p(u+nT)} f(u+nT) du = \sum_{n=0}^{\infty} \int_{0}^{T} e^{-p(u+nT)} f(u) du =$$

$$= \sum_{n=0}^{\infty} e^{-pnT} \int_{0}^{T} e^{-pu} f(u) du = (\sum_{n=0}^{\infty} e^{-pnT}) \int_{0}^{T} e^{-pt} f(t) dt$$

Expresia din paranteză e o serie geometrică cu rația e^{-pt} . Observăm că $|e^{-pt}| = \frac{1}{e^{(\operatorname{Re}^p)T}} < 1$, pentru că $\operatorname{Re} p > \alpha \geq 0$. Deci suma seriei e $\frac{1}{1-e^{-pT}}$. Prin urmare $\mathcal{L}[f(t)](p) = \frac{\int_0^T e^{-pt} f(t) dt}{1-e^{-pT}}$

Să se calculeze imaginile Laplace ale funcțiilor periodice:

3.

$$f(t) = \begin{cases} \frac{t}{a} - 4n, & \text{dacă } 4na < t < (4n+1)a \\ -\frac{t}{a} + 4n + 2, & \text{dacă } (4n+1)a < t < (4n+2)a \\ 0, & \text{dacă } (4n+2)a < t < (4n+4)a \end{cases}$$

 $n = 0, 1, 2, \dots$

Solutie.

$$T = 4a \Longrightarrow \mathcal{L}[f(t)](p) = \frac{1}{1 - e^{-4ap}} \left[\int_0^a \frac{t}{a} e^{-pt} dt + \int_0^{2a} (2 - \frac{t}{a}) e^{-pt} dt \right] =$$
$$= \frac{(1 - e^{-ap})^2}{ap^2 (1 - e^{-4ap})}$$

4.
$$f(t) = t - n, n < t < n + 1, n = 0, 1, 2, ...$$

Soluţie.
$$T=1 \Longrightarrow \mathcal{L}[f(t)](p)=\frac{1}{1-\mathrm{e}^{-p}}\int_0^1 t\mathrm{e}^{-pt}dt=\frac{p+1-\mathrm{e}^p}{p^2(1-\mathrm{e}^p)}$$

5.
$$f(t) = |\sin \omega t|$$

Solutie.

$$T = \frac{\pi}{\omega} \Longrightarrow \mathcal{L}[f(t)](p) = \frac{1}{1 - e^{-\frac{\pi}{\omega}p}} \int_0^{\frac{\pi}{\omega}} e^{-pt} \sin \omega t dt =$$
$$= \frac{\omega}{p^2 + \omega^2} \frac{1 + e^{-\frac{\pi}{\omega}p}}{1 - e^{-\frac{\pi}{\omega}p}} = \frac{\omega}{p^2 + \omega^2} \operatorname{cth} \frac{\pi p}{2\omega}$$

6. Să se arate că $\mathcal{L}[\ln t](p)=\frac{\Gamma(1)-\ln p}{p}\equiv -\frac{\gamma+\ln p}{p},$ unde $\gamma=0,57721\ldots$ este constanta lui Euler.

Soluție. Se știe că
$$\mathcal{L}[t^{\alpha}](p) = \frac{\Gamma(\alpha+1)}{p^{\alpha+1}}$$
, pentru $\forall \alpha > -1$

Deci
$$\int_0^\infty e^{-pt} t^\alpha dt = \frac{\Gamma(\alpha+1)}{p^{\alpha+1}}$$
, pentru $\forall \alpha > -1$

Vom deriva această relație în raport cu α și obținem $\int_0^\infty \mathrm{e}^{-pt} t^\alpha \ln t dt = \frac{\Gamma'(\alpha+1) - \Gamma(\alpha+1) \ln p}{p^{\alpha+1}}$

Luând
$$\alpha = 0$$
 obţinem $\int_0^\infty \mathrm{e}^{-pt} \ln t dt = \frac{\Gamma'(1) - \Gamma(1) \ln p}{p}$, deci $\mathcal{L}[\ln t](p) = \frac{\Gamma'(1) - \ln p}{p}$. Cum $\Gamma'(1) = -\gamma$ avem $\mathcal{L}[\ln t](p) = -\frac{\gamma + \ln p}{p}$

Să se determine transformatele Laplace ale funcțiilor:

7.
$$f(t) = \frac{\sinh \omega t}{t}$$

Soluție. Cf. teoremei integrării imaginii avem

$$\mathcal{L}[f(t)](p) = \int_{p}^{\infty} \frac{\omega}{q^{2} - \omega^{2}} dq = \omega \int_{p}^{\infty} \frac{1}{(q - \omega)(q + \omega)} dq =$$
$$= \omega \frac{1}{2\omega} \ln \frac{q - \omega}{q + \omega} / \sum_{p}^{\infty} \frac{1}{2} \ln \frac{p - \omega}{p + \omega}$$

8.
$$f(t) = \int_0^t \tau e^{-\tau} d\tau$$

Soluție. Cf. teoremei integrării originalului avem $\mathcal{L}[f(t)](p) = \frac{F(p)}{p}$, unde $F(p) = \mathcal{L}[te^{-t}](p) = (-1)F'_1(p)$ (cf. teoremei derivării imaginii), unde $F_1(p) = \mathcal{L}[e^{-t}](p) = \frac{1}{p+1} \Longrightarrow F(p) = \frac{1}{(p+1)^2} \Longrightarrow \mathcal{L}[f(t)](p) = \frac{1}{p(p+1)^2}$

9.
$$f(t) = \int_0^t \frac{\sin \tau}{\tau} d\tau$$

Soluție. Cf. teoremei integrării imaginii avem $\mathcal{L}[\frac{\sin t}{\tau}](p) = \int_p^{\infty} F(v) dv$, unde

$$F(v) = \mathcal{L}[\sin t](v) = \frac{1}{v^2 + 1} \Longrightarrow \mathcal{L}\left[\frac{\sin t}{\tau}\right](p) = \int_p^{\infty} \frac{1}{v^2 + 1} dv = \frac{\pi}{2} - \operatorname{arctg} p$$
$$\Longrightarrow \mathcal{L}[f(t)](p) = \frac{\frac{\pi}{2} - \operatorname{arctg} p}{p},$$

cf. teoremei integrării originalului.

10.
$$f(t) = \int_0^t \frac{1 - e^{-\tau}}{\tau} d\tau$$

Soluție. Aplicăm integrarea originalului și integrarea imaginii:

$$\mathcal{L}[f(t)](p) = \frac{1}{p} \mathcal{L}[\frac{1 - e^{-t}}{t}](p) = \frac{1}{p} \int_{p}^{\infty} \mathcal{L}[1 - e^{-t}](v) dv = \frac{1}{p} \int_{p}^{\infty} \left[\frac{1}{v} - \frac{1}{v+1}\right] dv = \frac{1}{p} \ln \frac{v}{v+1} / \frac{\infty}{p} = \frac{1}{p} \ln \frac{p+1}{p}$$

11.
$$f(t) = (t-1)^2 e^{t-1}$$

Soluție. Cf. teoremei întârzierii avem $\mathcal{L}[f(t)](p) = e^{-p}F(p)$, unde

$$F(p) = \mathcal{L}[t^2 e^t](p) = \frac{2}{(p-1)^3},$$

cf. teoremei derivării imaginii și ținând cont că $\mathcal{L}[\mathbf{e}^t](p) = \frac{1}{p-1}$

12.
$$f(t) = te^t \cos 3t$$

Soluție. $\mathcal{L}[f(t)](p)=(-1)F'(p)$ (cf. teoremei derivării imaginii), unde $F(p)=\mathcal{L}[\mathrm{e}^t\cos 3t](p)=F_1(p-1)$ (cf. teoremei deplasării), unde

$$F_1(p) = \mathcal{L}[\cos 3t](p) = \frac{p}{p^2 + 9} \Longrightarrow F(p) = \frac{p - 1}{(p - 1)^2 + 9} \Longrightarrow$$

 $\Longrightarrow \mathcal{L}[f(t)](p) = \frac{(p - 1)^2 - 9}{[(p + 1)^2 + 9]^2}$

13.
$$f(t) = \operatorname{sh}2t \sin 5t$$

Soluție. Scriem $f(t) = \frac{e^{2t} - e^{-2t}}{2} \sin 5t$

Atunci, cf. linearității și teoremei deplasării avem:

$$\mathcal{L}[f(t)](p) = \frac{1}{2}\mathcal{L}[e^{2t}\sin 5t](p) - \frac{1}{2}\mathcal{L}[e^{-2t}\sin 5t](p) = \frac{1}{2}F(p-2) - \frac{1}{2}F(p+2) = \frac{1}{2}\frac{5}{(p-2)^2 + 25} - \frac{1}{2}\frac{5}{(p+2)^2 + 25},$$

unde
$$F(p) = \mathcal{L}[\sin 5t] = \frac{5}{p^2 + 25}$$

14.
$$f(t) = \frac{e^{bt} - e^{at}}{2t\sqrt{\pi t}}$$

Soluție. Scriem $f(t) = \frac{\frac{e^{bt} - e^{at}}{2\sqrt{\pi t}}}{t}$

Cf. linearității și teoremei integrării imaginii avem:

$$\mathcal{L}[f(t)](p) = \int_{p}^{\infty} F_{1}(s)ds - \int_{p}^{\infty} F_{2}(s)ds,$$

unde

$$F_1(s) = \mathcal{L}\left[\frac{e^{bt}}{2\sqrt{\pi t}}\right](s), F_2(s) = \mathcal{L}\left[\frac{e^{at}}{2\sqrt{\pi t}}\right](s)$$

Calculăm $F_1(s) = \frac{1}{2\sqrt{\pi}} \mathcal{L}[e^{bt}t^{-\frac{1}{2}}](s) = F_3(s-b)$ (cf. teoremei deplasării), unde

$$F_{3}(s) = \mathcal{L}[t^{-\frac{1}{2}}](s) = \int_{0}^{\infty} e^{-pt} t^{-\frac{1}{2}} dt = \frac{1}{p} \int_{0}^{\infty} e^{-x} \left(\frac{x}{p}\right)^{-\frac{1}{2}} dx =$$

$$= \frac{1}{\sqrt{p}} \int_{0}^{\infty} e^{-x} x^{-\frac{1}{2}} dx = \frac{1}{\sqrt{p}} \Gamma\left(-\frac{1}{2} + 1\right) = \frac{1}{\sqrt{p}} \Gamma\left(\frac{1}{2}\right) = \sqrt{\frac{\pi}{p}} \Longrightarrow$$

$$\Longrightarrow F_{1}(s) = \frac{1}{2\sqrt{\pi}} \frac{\sqrt{\pi}}{\sqrt{s - b}} = \frac{1}{2\sqrt{s - b}}$$

Analog
$$F_2(s) = \frac{1}{2\sqrt{s-a}}$$

Atunci $\mathcal{L}[f(t)](p) = \sqrt{p-b} - \sqrt{p-a}$

15.
$$f(t) = \sin \sqrt{t}$$

Soluție. Metoda 1: Se poate arăta că f verifică ecuația diferențială 4f''(t) + 2f'(t) + f(t) = 0

Dacă
$$F(p) = \mathcal{L}[f(t)](p)$$
, atunci $\mathcal{L}[f'(t)](p) = pF(p) - f(+0)$, $\mathcal{L}[f''(t)](p) = p^2F(p) - pf(+0) - f'(+0)$, $\mathcal{L}[tf''(t)](p) = -\frac{d}{dp}[\mathcal{L}[f''(t)](p)] = -2pF(p) - p^2F'(p) + f(+0)$ (cf. derivării originalului și derivării imaginii)

Aplicând transformata Laplace ecuației diferențiale obținem $-8pF(p)-4p^2F'(p)+4f(+0)+2pF(p)-2f(+0)+F(p)=0, \text{ adică} 4p^2F'(p)+(6p-1)F(p)=0, \text{ pentru că} f(+0)=\lim_{t\to 0, t>0}\sin\sqrt{t}=0$

Integrând obţinem $F(p) = \frac{c}{p^{\frac{3}{2}}} e^{-\frac{1}{4p}}$

Pentru valori mici ale lui tavem $\sin \sqrt{t} \sim \sqrt{t}$

$$\mathcal{L}[\sqrt{t}](p) = \frac{\Gamma(\frac{1}{2}+1)}{p^{\frac{1}{2}+1}} = \frac{\sqrt{\pi}}{2p^{\frac{3}{2}}}$$

Pentru p mare, $F(p) \sim \frac{c}{p^{\frac{3}{2}}}$, pentru că $e^{-\frac{1}{4p}} \longrightarrow 0$, când $|p| \longrightarrow \infty$ şi $F(p) \sim \mathcal{L}[\sqrt{t}](p) = \frac{\sqrt{\pi}}{2p^{\frac{3}{2}}}$, când $|p| \longrightarrow \infty$

Deci
$$c = \frac{\sqrt{\pi}}{2}$$
 şi $\mathcal{L}[\sin \sqrt{t}](p) = \frac{\sqrt{\pi}}{2p^{\frac{3}{2}}}e^{-\frac{1}{4p}}$

Metoda 2: $\sin \sqrt{t} = \sqrt{t} - \frac{(\sqrt{t})^3}{3!} + \ldots + (-1)^n \frac{(\sqrt{t})^{2n+1}}{(2n+1)!} + \ldots = t^{\frac{1}{2}} - \frac{1}{3!} t^{\frac{3}{2}} + \ldots + \frac{(-1)^n}{(2n+1)!} t^{\frac{2n+1}{2}} + \ldots$

$$\mathcal{L}[\sin\sqrt{t}](p) = \mathcal{L}\left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} t^{\frac{2n+1}{2}}\right](p) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \mathcal{L}[t^{\frac{2n+1}{2}}](p) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot \frac{\Gamma\left(n+\frac{1}{2}+1\right)}{p^{n+\frac{1}{2}+1}} = \frac{\sqrt{\pi}}{2p^{\frac{3}{2}}} \sum_{n=0}^{\infty} (-1)^n \frac{1}{n!} \left(\frac{1}{4p}\right)^n = \frac{\sqrt{\pi}}{2p^{\frac{3}{2}}} e^{-\frac{1}{4p}}$$

Să se determine funcțiile original ale căror imagini Laplace sunt:

16.
$$F(p) = \frac{1}{p(p^2 + a^2)}$$

Soluție. Descompunem F(p) în fracții simple și obținem

$$F(p) = \frac{1}{a^2} \left(\frac{1}{p} - \frac{p}{p^2 + a^2} \right) \Longrightarrow f(t) = \frac{1}{a^2} (1 - \cos at) = \frac{2}{a^2} \sin^2 \frac{at}{2}$$

17. $F(p) = \frac{2p-5}{p^2-9}$

Soluție.
$$f(t) = \mathcal{L}^{-1} \left[\frac{2p-5}{p^2-9} \right](t) = \mathcal{L}^{-1} \left[2 \cdot \frac{p}{p^2-9} - \frac{5}{3} \cdot \frac{3}{p^2-9} \right](t) = 2 \text{ch} 3t - \frac{5}{3} \text{sh} 3t$$

18.
$$F(p) = \frac{12}{4-3p} + \frac{p+1}{p^{\frac{4}{3}}}$$

9.6. PROBLEME REZOLVATE

Soluţie.
$$f(t) = \mathcal{L}^{-1} \left[\frac{12}{4-3p} + \frac{p+1}{\frac{4}{3}} \right] (t) = \mathcal{L}^{-1} \left[\frac{12}{-3\left(p-\frac{4}{3}\right)} \right] (t) + \mathcal{L}^{-1} \left[\frac{1}{\frac{1}{p^{\frac{1}{3}}}} \right] (t) + \mathcal{L}^{-1} \left[\frac{1}{\frac{1}{p^{\frac{4}{3}}}} \right] (t) = -4e^{\frac{4t}{3}} + \frac{t^{\frac{4}{3}-1}}{\Gamma(\frac{1}{3})} + \frac{t^{\frac{4}{3}-1}}{\Gamma(\frac{4}{3})}$$

201

19.
$$F(p) = \frac{p}{(p+1)^{\frac{5}{2}}}$$

Soluţie.
$$f(t) = \mathcal{L}^{-1} \left[\frac{p}{(p+1)^{\frac{5}{2}}} \right] (t) = \mathcal{L}^{-1} \left[\frac{p+1-1}{(p+1)^{\frac{5}{2}}} \right] (t) = \mathcal{L}^{-1} \left[\frac{1}{(p+1)^{\frac{3}{2}}} \right] - \mathcal{L}^{-1} \left[\frac{1}{(p+1)^{\frac{5}{2}}} \right] (t) = e^{-t} \mathcal{L}^{-1} \left[\frac{1}{p^{\frac{3}{2}}} \right] - e^{-t} \mathcal{L}^{-1} \left[\frac{1}{p^{\frac{5}{2}}} \right] = e^{-t} \left(\frac{\sqrt{t}}{\Gamma(\frac{3}{2})} - \frac{t\sqrt{t}}{\Gamma(\frac{5}{2})} \right) = 2e^{-t} \sqrt{\frac{t}{\pi}} \left(1 - \frac{2}{3}t \right) \text{ (cf. th. deplasării)}$$

20.
$$F(p) = \frac{e^{-p}}{p+2} + \frac{e^{-2p}}{p^2+1} + \frac{e^{-3p}}{p^2+4p+5}$$

Soluție. Stim că

$$\mathcal{L}^{-1} \left[\frac{1}{p+2} \right] (t) = e^{-2t}, \mathcal{L}^{-1} \left[\frac{1}{p^2+1} \right] (t) = \sin t,$$

$$\mathcal{L}^{-1} \left[\frac{1}{p^2+4p+5} \right] (t) = \mathcal{L}^{-1} \left[\frac{1}{(p+2)^2+1} \right] (t) = e^{-2t} \mathcal{L} \left[\frac{1}{p^2+1} \right] (t) = e^{-2t} \sin t$$

(cf. teoremei deplasării)

Avem
$$f(t) = e^{-2(t-1)} + \sin(t-2) + e^{-2(t-3)}\sin(t-3)$$
 (cf. teoremei întârzierii)

21.
$$F(p) = \frac{Mp+N}{(p+a)^2+b^2}, M, N, a, b \neq 0$$
 constante

Soluţie. Scriem
$$F(p) = \frac{M(p+a)+N-Ma}{(p+a)^2+b^2}$$

Stim că
$$\mathcal{L}[e^{-at}\sin bt](p) = \frac{b}{(p+a)^2+b^2}$$
 şi $\mathcal{L}[e^{-at}\cos bt](p) = \frac{p+a}{(p+a)^2+b^2}$ (din teorema deplasării)

Atunci
$$f(t) = Me^{-at}\cos bt + (N - Ma)\frac{1}{b}e^{-at}\sin bt$$

22.
$$F(p) = \frac{1}{(p+a)^n}, n \ge 1$$
 întreg, $a \in \mathbb{C}$

Soluţie. Stim că
$$\mathcal{L}[t^{n-1}](p) = \frac{(n-1)!}{p^n}$$
 şi $\mathcal{L}[e^{-at}t^{n-1}](p) = \frac{(n-1)!}{(p+a)^n}$ (cf. teoremei deplasării)

Avem
$$f(t) = e^{-at} \frac{t^{n-1}}{(n-1)!}$$

23.
$$F(p) = \frac{2p^2 + p + 4}{p^4 + p^3 + 2p^2 - p + 3}$$

Solutie.

$$F(p) = \frac{1}{p^2 - p + 1} + \frac{1}{p^2 + 2p + 3} = \frac{1}{(p - \frac{1}{2})^2 + \frac{3}{4}} + \frac{1}{(p + 1)^2 + 2} \Longrightarrow$$
$$\Longrightarrow f(t) = \frac{2}{\sqrt{3}} e^{\frac{t}{2}} \sin \frac{\sqrt{3}}{2} t + \frac{1}{\sqrt{2}} e^{-t} \sin \sqrt{2} t$$

24.
$$F(p) = \frac{15p-6}{3p^2+4p+8}$$

Soluţie.
$$f(t) = \mathcal{L}^{-1} \left[\frac{15p-6}{3p^2+4p+8} \right] (t) = \mathcal{L}^{-1} \left[\frac{3(5p-2)}{3\left[(p+\frac{2}{3})^2 + \frac{20}{9} \right]} \right] (t) =$$

$$= 5\mathcal{L}^{-1} \left[\frac{p+\frac{2}{3}}{(p+\frac{2}{3})^2 + \frac{20}{9}} \right] (t) - \frac{8}{\sqrt{5}} \mathcal{L}^{-1} \left[\frac{\sqrt{\frac{20}{9}}}{(p+\frac{2}{3})^2 + \frac{20}{9}} \right] (t) =$$

$$= e^{-\frac{2}{3}t} (5\cos\frac{2\sqrt{5}}{3}t - \frac{8}{\sqrt{5}}\sin\frac{2\sqrt{5}}{3}t) \text{ (cf. th. deplasării)}$$

25.
$$F(p) = \frac{3p+2}{4p^2+12p+9}$$

Soluție.
$$f(t) = \mathcal{L}^{-1} \left[\frac{3p+2}{4p^2+12p+9} \right] (t) = \frac{27}{4} \mathcal{L}^{-1} \left[\frac{1}{p+\frac{3}{2}} \right] (t) - \frac{45}{8} \mathcal{L}^{-1} \left[\frac{1}{(p+\frac{3}{2})^2} \right] (t) = e^{-\frac{3}{2}t} \left[\frac{27}{4} - \frac{45}{8}t \right] (\text{cf. th. deplasării})$$

26.
$$F(p) = \frac{2}{\sqrt[4]{16p+81}}$$

Soluţie.
$$f(t) = \mathcal{L}^{-1} \left[\frac{2}{\sqrt[4]{16p+81}} \right](t) = \mathcal{L}^{-1} \left[\frac{2}{\sqrt[4]{16(p+\frac{81}{16})}} \right](t) =$$

$$= \mathcal{L}^{-1} \left[\frac{1}{\left(p+\frac{81}{16}\right)^{\frac{1}{4}}} \right](t) = e^{-\frac{81}{16}t} \mathcal{L}^{-1} \left[\frac{1}{p^{\frac{1}{4}}} \right](t) = e^{-\frac{81}{16}t} \frac{t^{-\frac{3}{4}}}{\Gamma(\frac{1}{4})} \text{ (cf. th. deplasării)}$$

27.
$$F(p) = \frac{1}{(p^2 + a^2)^2}, a > 0$$

Soluție. Scriem $F(p) = \frac{1}{p^2 + a^2} \frac{1}{p^2 + a^2}$ și ținem cont de

$$\mathcal{L}^{-1}\left[\frac{1}{p^2 + a^2}\right](t) = \frac{1}{a}\sin at \Longrightarrow f(t) = \frac{1}{a}\sin at * \frac{1}{a}\sin at = \frac{1}{a^2}\int_0^t \sin az \sin a(t - z)dz$$

(am folosit teorema de convoluție)

28.
$$F(p) = \frac{p}{(p^2+4)(p^2+1)}$$

Solutie.

$$F(p) = \frac{p}{p^2 + 4} \cdot \frac{1}{p^2 + 1} = \mathcal{L}[\cos 2t](p)\mathcal{L}[\sin t](p) = \mathcal{L}[\cos 2t * \sin t](p) \Longrightarrow$$
$$\Longrightarrow f(t) = \int_0^t \cos 2\tau \sin(t - \tau)d\tau = \frac{1}{3}(\cos t - \cos 2t)$$

29.
$$F(p) = \frac{p+1}{(p^2+2p+2)^2}$$

$$\begin{array}{ll} \textit{Soluție.} \ f(t) = \mathcal{L}^{-1} \left[\frac{p+1}{(p^2+2p+2)^2} \right](t) = \mathcal{L}^{-1} \left[\frac{p+1}{[(p+1)^2+1]^2} \right](t) = \\ = \mathrm{e}^{-t} \mathcal{L}^{-1} \left[\frac{p}{(p^2+1)^2} \right](t) = \mathrm{e}^{-t} \mathcal{L}^{-1} \left[\frac{p}{p^2+1} \cdot \frac{1}{p^2+1} \right](t) = \\ = \mathrm{e}^{-t} \int_0^t \cos \tau \sin(t-\tau) d\tau = \frac{1}{2} \mathrm{e}^{-t} t \sin t \ (\text{cf. th. deplasării și th. de convoluție}) \end{array}$$

30.
$$F(p) = \frac{1}{p^4 + 2p^3 + 3p^2 + 2p + 1}$$

Solutie.

$$\begin{split} F(p) &= \frac{1}{(p^2 + p + 1)^2} = \frac{1}{[(p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2]^2} = \\ &= \frac{2}{3} \cdot \frac{(p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2 - (p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2}{[(p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2]^2} = \\ &= \frac{2}{3} \cdot \frac{1}{(p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} + \frac{2}{3} \cdot \frac{-(p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2}{[(p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2]^2} \end{split}$$

Analizăm fiecare termen:

Cf. linearității și th. întărzierii avem:

$$\frac{2}{3} \cdot \frac{1}{(p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} = \frac{2}{3} \cdot \frac{2}{\sqrt{3}} \cdot \frac{\frac{\sqrt{3}}{2}}{(p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} = \mathcal{L}\left[\frac{2}{3} \cdot \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\sin\frac{\sqrt{3}}{2}t\right](p)$$

Cf. th. derivării imaginii avem:

$$\left[\frac{p+\frac{1}{2}}{(p+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}\right]' = \frac{-(p+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}{[(p+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2]^2} = -\mathcal{L}[tf_1(t)](p),$$

unde

$$\mathcal{L}[f_1(t)](p) = \frac{p + \frac{1}{2}}{(p + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} = \mathcal{L}\left[e^{-\frac{t}{2}}\cos\frac{\sqrt{3}}{2}t\right](p)$$

(cf. teoremei deplasării)

Atunci
$$f_1(t) = e^{-\frac{t}{2}} \cos \frac{\sqrt{3}}{2} t$$

Aşadar,
$$f(t) = \frac{4}{3\sqrt{3}}e^{-\frac{t}{2}}\sin\frac{\sqrt{3}}{2}t - \frac{2}{3}te^{-\frac{t}{2}}\cos\frac{\sqrt{3}}{2}t$$

31.
$$F(p) = \frac{1}{p^3 + 2p - 3}$$

Soluţie.
$$F(p) = \frac{1}{p^3 - 1 + 2p - 2} = \frac{1}{(p-1)(p^2 + p + 3)} = \frac{1}{5} \frac{1}{p-1} - \frac{1}{5} \frac{p+2}{p^2 + p + 3}$$

Analizăm fiecare termen:

$$\mathcal{L}^{-1} \left[\frac{1}{5} \frac{1}{p-1} \right] (t) = \frac{1}{5} e^t$$

$$\operatorname{Cum} \frac{p+2}{p^2+p+3} = \frac{p+2}{(p+\frac{1}{2})^2+\frac{11}{4}} = \frac{p+\frac{1}{2}}{(p+\frac{1}{2})^2+(\frac{\sqrt{11}}{2})^2} + \frac{\frac{3}{2}}{(p+\frac{1}{2})^2+(\frac{\sqrt{11}}{2})^2}$$
rezultă că

$$\mathcal{L}^{-1} \left[\frac{p + \frac{1}{2}}{(p + \frac{1}{2})^2 + (\frac{\sqrt{11}}{2})^2} \right] (t) = e^{-\frac{t}{2}} \cos \frac{\sqrt{11}}{2} t$$

şi

$$\mathcal{L}^{-1}\left[\frac{3}{2}\frac{1}{(p+\frac{1}{2})^2 + (\frac{\sqrt{11}}{2})^2}\right](t) = \frac{3}{2}\frac{2}{\sqrt{11}}e^{-\frac{t}{2}}\sin\frac{\sqrt{11}}{2}t$$

(cf. th. întârzierii)

Atunci
$$f(t) = \frac{1}{5}e^t - \frac{1}{5}e^{-\frac{t}{2}}\cos\frac{\sqrt{11}}{2}t - \frac{3}{\sqrt{11}}e^{-\frac{t}{2}}\sin\frac{\sqrt{11}}{2}t$$

32.
$$F(p) = \frac{e^{-p}(1-e^{-p})}{p(p^2+1)}$$

$$\begin{split} & \textit{Soluție. } f(t) = \mathcal{L}^{-1} \left[\frac{\mathrm{e}^{-p} (1 - \mathrm{e}^{-p})}{p(p^2 + 1)} \right](t) = \mathcal{L}^{-1} \left[(\mathrm{e}^{-p} - e^{-2p}) \left(\frac{1}{p} - \frac{p}{p^2 + 1} \right) \right](t) = \\ & = \mathcal{L}^{-1} \left[\frac{\mathrm{e}^{-p}}{p} - \frac{p\mathrm{e}^{-p}}{p^2 + 1} - \frac{\mathrm{e}^{-2p}}{p} + \frac{p\mathrm{e}^{-2p}}{p^2 + 1} \right](t) = (1 - \cos(t - 1)) - \\ & - (1 - \cos(t - 2)) \text{ (cf. th. întârzierii)} \end{split}$$

33.
$$F(p) = \frac{3p-4}{p^2-p-6}$$

9.6. PROBLEME REZOLVATE

205

Soluție. Vom folosi formula (9.4).

 $p_1 = 3, p_2 = -2$ sunt poli simpli

Atunci
$$f(t) = \text{Rez}\left(\frac{3p-4}{p^2-p-6}e^{pt},3\right) + \text{Rez}\left(\frac{3p-4}{p^2-p-6}e^{pt},-2\right)$$

Calculăm Rez
$$\left(\frac{3p-4}{p^2-p-6}e^{pt},3\right) = \lim_{p\to 3} \frac{3p-4}{p^2-p-6}e^{pt}(p-3) = e^{3t}$$

Analog Rez
$$\left(\frac{3p-4}{p^2-p-4}, -2\right) = 2e^{-2}$$

$$Deci f(t) = e^{3t} + 2e^{-2t}$$

34.
$$F(p) = \frac{1}{(p^2+1)^3}$$

Soluție. $p = \pm i$ poli de ordin 3

Calculăm Rez
$$\left(\frac{e^{pt}}{(p^2+1)^3}, i\right) = \frac{1}{2!} \lim_{p \to i} \left[\frac{e^{pt}}{(p^2+1)^3} (p-i)^3\right]'' = e^{it} t (2it - 3 + 2i)$$

Obţinem
$$f(t) = \frac{1}{8}(3-t^2)\sin t + \frac{3}{8}t\cos t$$

35.
$$F(p) = \frac{1}{pe^{\frac{1}{p}}}$$

Soluție. Dezvoltăm în jurul punctului de la $\infty,$ punând $u=\frac{1}{p}$ și obținem:

$$F(\frac{1}{u}) = ue^{-u} = u(1 - \frac{u}{1!} + \frac{u^2}{2!} - \dots + (-1)^n \frac{u^n}{n!} + \dots) =$$

$$= u - \frac{u^2}{1!} + \frac{u^3}{2!} - \dots + (-1)^n \frac{u^{n+1}}{n!} + \dots$$

convergentă pentru $|u|<\infty$

Deci
$$F(p) = \frac{1}{p} - \frac{1}{1!p^2} + \frac{1}{2!p^3} - \ldots + (-1)^n \frac{1}{n!p^{n+1}} + \ldots$$
 convergentă pentru $|p| > 0$

Cum

$$\mathcal{L}[t^{n}](p) = \frac{n!}{p^{n+1}} \Longrightarrow \mathcal{L}^{-1} \left[\frac{1}{p^{n+1}} \right](t) = \frac{t^{n}}{n!} \Longrightarrow$$

$$\Longrightarrow f(t) = \mathcal{L}^{-1}[F(p)](t) = \mathcal{L}^{-1} \left[\frac{1}{pe^{\frac{1}{p}}} \right](t) = \mathcal{L}^{-1} \left[\sum_{n=0}^{\infty} (-1)^{n} \frac{1}{n!p^{n+1}} \right](t) =$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{t^{n}}{(n!)^{2}} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}} \left(\frac{2\sqrt{t}}{2} \right)^{2n} = J_{0}(2\sqrt{t})$$

36.
$$F(p) = e^{-\sqrt{p}}$$

Soluție. Vom căuta o ecuație diferențială de ordin minim verificată de F(p).

Avem
$$F'(p) = -\frac{1}{2\sqrt{p}} e^{-\sqrt{p}}, F''(p) = \frac{1}{4p\sqrt{p}} e^{-\sqrt{p}} + \frac{1}{4p} e^{-\sqrt{p}}$$

Deci
$$4pF''(p) + 2F'(p) - F(p) = 0$$

Dar $F''(p) = \mathcal{L}[t^2f(t)](p), pF''(p) = \mathcal{L}\left[\frac{d}{dt}(t^2f(t))\right](p), F'(p) = \mathcal{L}[-tf(t)](p),$ unde $F(p) = \mathcal{L}[f(t)](p)$ (cf. th. derivării imaginii şi derivării originalului)

Deci
$$4pF''(p)+2F'(p)-F(p) = \mathcal{L}[4\frac{d}{dt}(t^2f(t))-2tf(t)-f(t)](p) = 0 \Longrightarrow \frac{df(t)}{dt} = \frac{1-6t}{4t^2}dt \Longrightarrow \ln f(t) = -\frac{3}{2}\ln t - \frac{1}{4t} + \ln c \Longrightarrow f(t) = \frac{c}{t^{\frac{3}{2}}}e^{-\frac{1}{4}t}$$

Pentru determinarea constantei c avem $tf(t) = \frac{c}{\sqrt{t}} e^{-\frac{1}{4}t}$ şi $\mathcal{L}[tf(t)] = -\frac{d}{dp}\mathcal{L}[f(t)](p) = -\frac{d}{dp}e^{-\sqrt{p}} = \frac{1}{2\sqrt{p}}e^{-\sqrt{p}}$

Când $t \longrightarrow \infty$, $tf(t) \sim \frac{c}{\sqrt{t}}$ și deci când $p \longrightarrow 0$, $\mathcal{L}[tf(t)](p) \sim \mathcal{L}\left[\frac{c}{\sqrt{t}}\right](p) = \frac{c\sqrt{\pi}}{\sqrt{p}}$, dar $\mathcal{L}[tf(t)](p) = \frac{1}{2\sqrt{p}}\mathrm{e}^{-\sqrt{p}} \sim \frac{1}{2\sqrt{p}}$, pentru p mic, deci $\frac{c\sqrt{\pi}}{\sqrt{p}} \sim \frac{1}{2\sqrt{p}}$, deci $c = \frac{1}{2\sqrt{\pi}} \Longrightarrow f(t) = \frac{1}{2t\sqrt{\pi t}}\mathrm{e}^{-\frac{1}{4}t}$

37.
$$F(p) = \frac{e^{-\frac{x\sqrt{p}}{a}}}{p}, x, a \in \mathbb{R}$$

Soluție. Fie $G(p)=\frac{\mathrm{e}^{-\frac{px}{a}}}{p}$. Cf. teoremei întârzierii avem $g(t)=t-\frac{x}{a}$ Observăm că $F(p)=\frac{G(p\sqrt{p})}{\sqrt{p}}$ și cf. teoremei 9.2

$$f(t) = \frac{1}{\sqrt{\pi t}} \int_0^\infty \left(\tau - \frac{x}{a}\right) e^{-\frac{\tau^2}{4t}} d\tau = \frac{1}{\sqrt{\pi}} \int_{\frac{x}{a}}^\infty e^{-\frac{\tau^2}{4t}} d\tau$$

Dacă se introduc "funcțiile eroare" definite prin $\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}}\int_0^z \mathrm{e}^{-t^2}dt$ și $\operatorname{Erf}(z)=1-\operatorname{erf}(z)$ rezultă că

$$g(t) = \operatorname{Erf}\left(\frac{x}{2a\sqrt{t}}\right)$$

38. Să se calculeze transformata Laplace a funcției $\operatorname{erf}(\sqrt{t})$.

Soluţie.
$$\mathcal{L}[\text{erf}(\sqrt{t})](p) = \frac{2}{\sqrt{\pi}} \mathcal{L}\left[\int_0^{\sqrt{t}} e^{-u^2} du\right](p) =$$

$$= \frac{2}{\sqrt{\pi}} \mathcal{L}\left[\int_0^{\sqrt{t}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} u^{2n} du\right](p) = \frac{2}{\sqrt{\pi}} \mathcal{L}\left[\sum_{n=0}^{\infty} \frac{(-1)^n u^{2n+1}}{n!(2n+1)} / {\sqrt[t]{t}}\right](p) =$$

$$\begin{split} &=\frac{2}{\sqrt{\pi}}\mathcal{L}\left[\sum_{n=0}^{\infty}\frac{(-1)^n(\sqrt{t})^{2n+1}}{n!(2n+1)}\right](p) = \frac{2}{\sqrt{\pi}}\sum_{n=0}^{\infty}\frac{(-1)^n}{n!(2n+1)} \cdot \frac{\Gamma\left(\frac{2n+1}{2}+1\right)}{p^{\frac{2n+3}{2}}} = \\ &=\frac{2}{\sqrt{\pi}}\sum_{n=0}^{\infty}\frac{(-1)^n}{n!(2n+1)} \cdot \frac{\frac{1}{2}\cdot\left(\frac{1}{2}+1\right)\cdot\ldots\left(\frac{1}{2}+n\right)\Gamma\left(\frac{1}{2}\right)}{p^{\frac{2n+3}{2}}} = \\ &=\frac{1}{p\sqrt{p}}\sum_{n=0}^{\infty}\frac{(-1)^n\frac{1}{2}\cdot\left(\frac{1}{2}+1\right)\cdot\ldots\left(\frac{1}{2}+n-1\right)}{n!} \cdot \frac{1}{p^n} = \frac{1}{p\sqrt{p}}\left(1+\frac{1}{p}\right)^{-\frac{1}{2}} = \\ &=\frac{1}{p\sqrt{p+1}} & \Box \end{split}$$

39. Să se arate că $\int_0^\infty \mathrm{e}^{-t} \mathrm{erf}(\sqrt{t}) dt = \frac{\sqrt{2}}{2}$

Soluţie. Cf. ex. anterior avem
$$\mathcal{L}[\operatorname{erf}(\sqrt{t})](p) = \int_0^\infty e^{-pt} \operatorname{erf}(\sqrt{t}) dt = \frac{1}{p\sqrt{p+1}}$$

Trecând la limită pentru $p\longrightarrow 1$ obținem $\int_0^\infty \mathrm{e}^{-t}\mathrm{erf}(\sqrt{t})dt=\frac{1}{\sqrt{2}}$

40. Să se calculeze $\int_0^\infty u e^{-u^2} \operatorname{erf}(u) du$.

$$\begin{array}{ll} \textit{Soluție.} \ \ \textit{Facem schimbarea de variabilă} \ u^2 = t \ \text{și obținem} \\ \int_0^\infty u \mathrm{e}^{-u^2} \mathrm{erf}(u) du = \frac{1}{2} \int_0^\infty \mathrm{e}^{-t} \mathrm{erf}(\sqrt{t}) dt = \frac{1}{2} \underset{p \to 1}{\lim} \int_0^\infty \mathrm{e}^{-pt} \mathrm{erf}(\sqrt{t}) dt = \\ = \frac{1}{2} \underset{p \to 1}{\lim} \mathcal{L}[\mathrm{erf}(\sqrt{t})](p) = \frac{1}{2} \underset{p \to 1}{\lim} \frac{1}{p\sqrt{p+1}} = \frac{1}{2\sqrt{2}} \end{array} \qquad \Box$$

41. Să se calculeze integralele $I_1 = \int_0^\infty \frac{e^{-at} - e^{-bt}}{t} dt$, $I_2 = \int_0^\infty \frac{J_0(t) - \cos t}{t} dt$, unde $J_0(t) = \sum_{n=0}^\infty \frac{(-1)^n}{(n!)^2} \cdot \left(\frac{t}{2}\right)^{2n}$.

Soluție. Dacă $F(p) = \mathcal{L}[f(t)](p)$, atunci

$$\int_0^\infty F(p)dp = \int_0^\infty \left[\int_0^\infty f(t) \mathrm{e}^{-pt} dt \right] dp = \int_0^\infty \int_0^\infty f(t) \mathrm{e}^{-pt} dt dp$$

Inversând ordinea de integrare rezultă

$$\int_0^\infty F(p)dp = \int_0^\infty \left[\int_0^\infty e^{-pt}dp \right] f(t)dt = \int_0^\infty \frac{f(t)}{t}dt$$

deoarece $\int_0^\infty e^{-pt} dp = \frac{1}{p}$

Avem
$$\mathcal{L}[e^{-at} - e^{-bt}](p) = \frac{1}{p+a} - \frac{1}{p+b}$$
, deci $\int_0^\infty \frac{e^{-at} - e^{-bt}}{t} dt = \int_0^\infty \left(\frac{1}{p+a} - \frac{1}{p+b}\right) dp = \ln \frac{p+a}{p+b} / \frac{\infty}{0} = \ln \frac{b}{a}$

$$\mathcal{L}[J_0(t)](p) = \mathcal{L}\left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \cdot \left(\frac{t}{2}\right)^{2n}\right](p) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \cdot \frac{1}{2^{2n}} \cdot \frac{(2n)!}{p^{2n+1}} = \frac{1}{p} \sum_{n=0}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots 2n} \cdot \frac{1}{p^{2n}} = \frac{1}{p} \left(1 + \frac{1}{p^2}\right)^{-\frac{1}{2}} = \frac{1}{\sqrt{1+p^2}}$$
Rezultă $I_2 = \int_0^{\infty} \frac{J_0(t) - \cos t}{t} dt = \int_0^{\infty} \left(\frac{1}{\sqrt{1+p^2}} - \frac{p}{1+p^2}\right) dp = \frac{1}{p^2} \frac{p + \sqrt{1+p^2}}{\sqrt{1+p^2}} = \ln 2$

42. Se defineşte funcţia $f(t) = \int_0^\infty \frac{\sin tx}{x} dx$, pentru t > 0 şi f(t) = 0, pentru $t \le 0$. Să se calculeze F(p) şi apoi să se deducă valoarea lui $I = \int_0^\infty \frac{\sin x}{x} dx$.

Soluție.

$$F(p) = \int_0^\infty f(t)e^{-pt}dt = \int_0^\infty \left(\int_0^\infty \frac{\sin tx}{x}dx\right)e^{-pt}dt =$$
$$= \int_0^\infty \frac{dx}{x} \int_0^\infty e^{-pt}\sin txdt,$$

$$\text{dar } \int_0^\infty \mathrm{e}^{-pt} \sin tx dt = \frac{x}{p^2 + x^2}$$
 Deci $F(p) = \int_0^\infty \frac{dx}{p^2 + x^2} = \frac{\pi}{2p} \Longrightarrow f(t) = \frac{\pi}{2}, t > 0 \Longrightarrow I = f(1) = \frac{\pi}{2}$

43. Să se calculeze integrala:

$$I(t) = \int_0^\infty \frac{\sin tx}{x(x^2 + a^2)} dx, t > 0.$$

Soluție.

$$\mathcal{L}[I(t)](p) = \int_0^\infty \frac{dx}{x(x^2 + a^2)} \int_0^\infty e^{-pt} \sin tx dt = \int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + p^2)} =$$

$$= \frac{1}{p^2 - a^2} \left(\int_0^\infty \frac{dx}{x^2 + a^2} - \int_0^\infty \frac{dx}{x^2 + p^2} \right) = \frac{1}{p^2 - a^2} \frac{\pi}{2} \left(\frac{1}{a} - \frac{1}{p} \right) =$$

$$= \frac{\pi}{2a^2} \left(\frac{1}{p} - \frac{1}{p+a} \right) = \frac{\pi}{2a^2} \mathcal{L}[1 - e^{-at}] \Longrightarrow I(t) = \frac{\pi}{2a^2} (1 - e^{-at})$$

44. Să se calculeze integrala

$$I(t) = \int_0^\infty \frac{x^2 - a^2}{x^2 + a^2} \cdot \frac{\sin tx}{x} dx, t > 0.$$

Solutie.

$$\mathcal{L}[I(t)](p) = \int_0^\infty \frac{x^2 - a^2}{x^2 + a^2} \cdot \frac{1}{x} dx \int_0^\infty e^{-pt} \sin tx dt = \int_0^\infty \frac{x^2 - a^2}{x^2 + a^2} \cdot \frac{1}{x^2 + p^2} dx = \frac{\pi}{2} \left(-\frac{1}{p} + \frac{2}{p+a} \right) \Longrightarrow I(t) = \frac{\pi}{2} \left(-1 + 2e^{-at} \right)$$

45. Să se calculeze $I(t) = \int_0^\infty \frac{\sin^3 x}{x^2} dx$.

Soluţie. Calculăm $I_1(t) = \int_0^\infty \frac{\sin^3 tx}{x^2} dx$

$$\mathcal{L}[I_{1}(t)](p) = \int_{0}^{\infty} \frac{dx}{x^{2}} \int_{0}^{\infty} e^{-pt} \sin^{3} tx dt = \int_{0}^{\infty} \frac{dx}{x^{2}} \int_{0}^{\infty} e^{-pt} (\frac{3}{4} \sin tx - \frac{1}{4} \sin 3tx) dt = \frac{3}{4} \int_{0}^{\infty} \frac{dx}{x(x^{2} + p^{2})} - \frac{3}{4} \int_{0}^{\infty} \frac{dx}{x(9x^{2} + p^{2})} = \frac{3}{4} \ln 3 \cdot \frac{1}{p^{2}} = \frac{3}{4} \ln 3 \cdot \mathcal{L}[t] \Longrightarrow I_{1}(t) = \frac{3t}{4} \ln 3 \Longrightarrow I_{1}(1) = \frac{3}{4} \ln 3$$

46. Să se calculeze cu ajutorul transformatei Laplace integralele Fresnel $I_1 = \int_0^\infty \sin x^2 dx, I_2 = \int_0^\infty \cos x^2 dx.$

Soluție. Funcțiile $S(t)=\int_0^t\sin u^2du$ și $C(t)=\int_0^t\cos u^2du$ sunt funcțiile sinus integral și respectiv cosinus integral ale lui Fresnel.

Aplicăm transformata Laplace originalelor $I_1(t) = \int_0^\infty \sin tx^2 dx, I_2(t) = \int_0^\infty \cos tx^2 dx$

Avem
$$\mathcal{L}[I_1(t)](p) = \mathcal{L}\left[\int_0^\infty \sin tx^2 dx\right](p) = \int_0^\infty \left(\int_0^\infty \sin tx^2 dx\right) e^{-pt} dt =$$

= $\int_0^\infty \left(\int_0^\infty \sin tx^2 e^{-pt} dt\right) dx = \int_0^\infty \mathcal{L}[\sin tx^2](p) dx = \int_0^\infty \frac{x^2}{p^2 + x^4} dx$

Descompunem în fracții simple fracția

$$\begin{array}{l} \frac{x^2}{p^2+x^4} = \frac{x^2}{(x^2+p)^2-(\sqrt{2p}x)^2} = \frac{x^2}{(x^2-\sqrt{2p}x+p)(x^2+\sqrt{2p}x+p)} = \\ = \frac{1}{2\sqrt{2p}} \left[\frac{x}{x^2-\sqrt{2p}x+p} - \frac{x}{x^2+\sqrt{2p}x+p} \right] \end{array}$$

Deci
$$\mathcal{L}[I_1(t)](p) = \frac{1}{2\sqrt{2p}} \left[\int_0^\infty \frac{x}{x^2 - \sqrt{2p}x + p} dx - \int_0^\infty \frac{x}{x^2 + \sqrt{2p}x + p} dx \right] =$$

$$= \frac{1}{2\sqrt{2p}} \left[\frac{1}{2} \ln \frac{x^2 - \sqrt{2p}x + p}{x^2 + \sqrt{2p}x + p} + \operatorname{arctg} \frac{\sqrt{2x} - \sqrt{p}}{\sqrt{p}} + \operatorname{arctg} \frac{\sqrt{2x} + \sqrt{p}}{\sqrt{p}} \right] \Big|_0^\infty = \frac{1}{2\sqrt{2p}} \pi$$

Analog
$$\mathcal{L}[I_2(t)](p) = \mathcal{L}\left[\int_0^\infty \cos tx^2 dx\right](p) = \int_0^\infty \frac{p}{p^2 + x^4} dx$$

Descompunem în fracții simple fracția

$$\frac{p}{p^2 + x^4} = \frac{p}{(x^2 - \sqrt{2p}x + p)(x^2 + \sqrt{2p}x + p)} = \frac{1}{2\sqrt{2p}} \left[\frac{x + \sqrt{2p}}{x^2 + \sqrt{2p}x + p} - \frac{x - \sqrt{2p}}{x^2 - \sqrt{2p}x + p} \right]$$

Atunci
$$\mathcal{L}[I_2(t)](p) = \frac{1}{2\sqrt{2p}} \int_0^\infty \left[\frac{x+\sqrt{2p}}{x^2+\sqrt{2p}x+p} - \frac{x-\sqrt{2p}}{x^2-\sqrt{2p}x+p} \right] dx =$$

$$= \frac{1}{2\sqrt{2p}} \left[\ln \frac{x^2+\sqrt{2p}x+p}{x^2-\sqrt{2p}x+p} + \operatorname{arctg} \frac{\sqrt{2x}+\sqrt{p}}{\sqrt{p}} + \operatorname{arctg} \frac{\sqrt{2x}-\sqrt{p}}{\sqrt{p}} \right] \Big|_0^\infty = \frac{1}{2\sqrt{2p}} \pi$$
Obtinem $I_1(t) = I_2(t) = \mathcal{L}^{-1} \left[\frac{1}{2\sqrt{2p}} \pi \right] (t) = \frac{1}{2\sqrt{2p}} \pi \mathcal{L}^{-1} \left[\frac{1}{\sqrt{p}} \right] (t) =$

$$= \frac{1}{2\sqrt{2p}} \cdot \frac{1}{\Gamma(\frac{1}{2})\sqrt{t}} = \frac{1}{2} \sqrt{\frac{\pi}{2t}}$$

47. Să se calculeze $\int_0^\infty dt \int_0^t \frac{e^{-t} \sin \tau}{\tau} d\tau$.

Soluție. Intervertind ordinea de integrare obținem

$$\int_0^\infty dt \int_0^t \frac{\mathrm{e}^{-t} \sin \tau}{\tau} d\tau = \int_0^\infty d\tau \int_\tau^\infty \frac{\mathrm{e}^{-t} \sin \tau}{\tau} dt = \int_0^\infty \frac{\sin \tau}{\tau} d\tau \int_\tau^\infty \mathrm{e}^{-t} dt = \int_0^\infty \frac{\sin t}{t} \mathrm{e}^{-t} dt = \int_0^\infty \mathcal{L}[\mathrm{e}^{-t} \sin t](p) dp = \int_0^\infty \frac{1}{(p+1)^2 + 1} dp = \\ = \arctan(p+1)|_0^\infty = \frac{\pi}{4} \text{ (cf. ex. 44 și teoremei deplasării)}$$

48. Să se calculeze $\int_0^\infty \frac{\cos at - \cos bt}{t} dt, \ a,b>0, a\neq b.$

Soluție.
$$\int_{0}^{\infty} \frac{\cos at - \cos bt}{t} dt = \int_{0}^{\infty} \mathcal{L}[\cos at - \cos bt](p) dp =$$

$$= \int_{0}^{\infty} \left[\frac{p}{p^{2} + a^{2}} - \frac{p}{p^{2} + b^{2}} \right] dp = \frac{1}{2} \ln \frac{p^{2} + a^{2}}{p^{2} + b^{2}} \Big|_{0}^{\infty} = \frac{1}{2} \ln \frac{b^{2}}{a^{2}} = \ln \frac{b}{a} \text{ (cf. ex. 44)}$$

Să se integreze ecuațiile:

49.
$$x''' - 2x'' - x' + 2x = 5\sin 2x, x(0) = 1, x'(0) = 1, x''(0) = -1$$

Soluție. Folosim teorema derivării originalului și notăm $\mathcal{L}[x(t)](p) = X(p)$

$$\mathcal{L}[x'''(t)](p) = p^3 X(p) - p^2 x(0) - px'(0) - x''(0) = p^3 X(p) - p^2 - p + 1$$

$$\mathcal{L}[x''(t)](p) = p^2 X(p) - px(0) - x'(0) = p^2 X(p) - p - 1$$

$$\mathcal{L}[x'(t)](p) = pX(p) - x(0) = pX(p) - 1$$

Aplicăm ecuației date transformata Laplace și obținem:

$$(p^{3} - p^{2} - p + 2)X(p) - p^{2} - p + 1 + 2p + 2 + 1 = 5\frac{2}{p^{2} + 4} \Longrightarrow$$

$$\Longrightarrow X(p) = \frac{p^{2} - p - 2}{(p - 1)(p + 1)(p - 2)} + \frac{10}{(p - 1)(p + 1)(p - 2)(p^{2} + 4)} =$$

$$= \frac{1}{3}\frac{1}{p + 1} + \frac{5}{12}\frac{1}{p - 2} + \frac{1}{4}(\frac{p}{p^{2} + 4} + \frac{2}{p^{2} + 4}) \Longrightarrow$$

$$\Longrightarrow x(t) = \frac{1}{3}e^{-t} + \frac{5}{12}e^{2t} + \frac{1}{4}\cos 2t + \frac{1}{4}\sin 2t$$

50.
$$x''' + 2x'' + 2x' + x = 1, x(0) = x'(0) = x''(0) = 0$$

Soluție. Cf. teoremei derivării originalului avem:

$$\mathcal{L}[x'(t)](p) = pX(p) - x(0) = pX(p)$$

$$\mathcal{L}[x''(t)](p) = p^2 X(p) - px(0) - x'(0) = p^2 X(p)$$

$$\mathcal{L}[x'''(t)](p) = p^3 X(p) - p^2 x(0) - px'(0) - x''(0) = p^3 X(p)$$

Ecuația devine

$$X(p)(p^{3} + 2p^{2} + 2p + 1) = \frac{1}{p} \Longrightarrow X(p) = \frac{1}{p(p+1)(p^{2} + p + 1)} = \frac{1}{p} - \frac{1}{p+1} - \frac{1}{p^{2} + p + 1} = \frac{1}{p} - \frac{1}{p+1} - \frac{2}{\sqrt{3}} \cdot \frac{\frac{\sqrt{3}}{2}}{\left(p + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} \Longrightarrow x(t) = 1 - e^{-t} - \frac{2}{\sqrt{3}}e^{-\frac{1}{2}t}\sin\frac{\sqrt{3}}{2}t$$

51.
$$x'' + 4x = \sin \frac{3t}{2} \sin \frac{t}{2}, x(0) = 1, x'(0) = 0$$

Soluție. Scriem ecuația sub forma $x'' + 4x = -\frac{1}{2}(\cos 2t - \cos t)$

Cf. teoremei derivării originalului avem:

$$\mathcal{L}[x''(t)](p) = p^2 X(p) - px(0) - x'(0) = p^2 X(p) - p$$

Ecuația devine:

$$(p^2+4)X(p)-p=-\frac{1}{2}\left(\frac{p}{p^2+4}-\frac{p}{p^2+1}\right)\Longrightarrow X(p)=\frac{1}{6}\cdot\frac{p}{p^2+1}+\frac{5}{6}\cdot\frac{p}{p^2+4}-\frac{1}{2}\cdot\frac{p}{(p^2+4)^2}$$

Intrucât
$$\mathcal{L}[t\sin 2t](p) = -\left[\frac{2}{p^2+4}\right]' = \frac{4p}{(p^2+4)^2}$$
 rezultă $x(t) = \frac{1}{6}\cos t + \frac{5}{6}\cos 2t - \frac{1}{8}t\sin t$

52.
$$x'' - x = \text{th}t, x(0) = 1, x'(0) = -1$$

Soluție. Cf. teoremei derivării originalului avem:

$$\mathcal{L}[x''(t)](p) = p^2 X(p) - px(0) - x'(0) = p^2 X(p) + 1$$

Ecuatia devine:

$$\begin{split} p^2 X(p) + 1 - X(p) &= \mathcal{L}[\text{th}t](p) \Longrightarrow X(p)(p^2 - 1) + 1 = \mathcal{L}[\text{th}t](p) \Longrightarrow \\ &\Longrightarrow X(p) = \frac{1}{p^2 - 1} \cdot \mathcal{L}[\text{th}t] - \frac{1}{p^2 - 1} \Longrightarrow \\ &\Longrightarrow x(t) = -\text{sh}t - \int_0^t \text{sh}(t - \tau) \text{th}\tau d\tau = \text{sh}t + \text{sh}t + 2\text{ch}t \cdot \\ &\cdot (\text{arctg e}^t - \frac{\pi}{4}) \end{split}$$

53.
$$x'' + x = \frac{1}{\cos t}, x(0) = 0, x'(0) = 2$$

Soluție. Cf. teoremei derivării originalului avem:

$$\mathcal{L}[x''(t)](p) = p^2 X(p) - px(0) - x'(0) = p^2 X(p) - 2$$

Ecuația devine:

$$p^2X(p) - 2 + X(p) = \mathcal{L}\left[\frac{1}{\cos t}\right](p) \Longrightarrow X(p) = \frac{2}{p^2 + 1} + \frac{1}{p^2 + 1}\mathcal{L}\left[\frac{1}{\cos t}\right](p) = 2\mathcal{L}[\sin t](p) + \mathcal{L}[\sin t](p)\mathcal{L}\left[\frac{1}{\cos t}\right](p) = 2\mathcal{L}[\sin t](p) + \mathcal{L}\left[\int_0^t \frac{\sin(t - \tau)}{\cos \tau} d\tau\right](p)$$
 (cf. teoremei de convoluție)

Deci
$$x(t) = 2\sin t + \int_0^t \frac{\sin(t-\tau)}{\cos \tau} d\tau$$

54.
$$x'' + 4x = \frac{1}{4 + \cos 2t}, x(0) = 1, x'(0) = 0$$

Soluție. Cf. teoremei derivării originalului avem:

$$\mathcal{L}[x''(t)](p) = p^2 X(p) - px(0) - x'(0) = p^2 X(p) - p$$

Ecuația devine:

$$p^{2}X(p) - p + 4X(p) = \mathcal{L}\left[\frac{1}{4 + \cos 2t}\right](p) \Longrightarrow X(p) = \frac{p}{p^{2} + 4} + \frac{1}{p^{2} + 4} \cdot \mathcal{L}\left[\frac{1}{4 + \cos 2t}\right](p) = \mathcal{L}[\cos 2t](p) + \mathcal{L}\left[\frac{1}{2}\sin 2t\right](p)\mathcal{L}\left[\frac{1}{4 + \cos 2t}\right](p) = \mathcal{L}[\cos 2t](p) + \frac{1}{2}\mathcal{L}\left[\int_{0}^{t} \frac{\sin 2(t - \tau)}{4 + \cos 2\tau}d\tau\right](p) \Longrightarrow x(t) = \cos 2t + \frac{1}{2}\sin 2t \cdot \int_{0}^{t} \frac{\cos 2\tau}{4 + \cos 2\tau}d\tau - \frac{1}{2}\cos 2t\int_{0}^{t} \frac{\sin 2\tau}{4 + \cos 2\tau}d\tau = \cos 2t + \frac{1}{2}t\sin 2t - \frac{2}{\sqrt{15}}\sin 2t \cdot \cot \left(\sqrt{\frac{3}{5}}\operatorname{tg} t\right) + \frac{1}{2}\cos 2t\left[\ln(4 + \cos 2t) - \ln 4\right]$$

55. Să se integreze ecuația omogenă cu coeficienți variabili ty'' + y' + 4ty = 0 cu condițiile y(0) = 3, y'(0) = 0.

Soluție. Fie
$$Y(p) = \mathcal{L}[y(t)](p)$$

$$\mathcal{L}[ty(t)](p) = -\frac{d}{dp}Y(p), \mathcal{L}[y'(t)](p) = pY(p) - 3, \mathcal{L}[y''(t)](p) = p^2Y(p) - 3n.$$

 $\mathcal{L}[ty''(t)](p) = -\frac{d}{dp}(p^2Y(p)-3p)$ (cf. th. derivării imaginii și derivării originalului)

Aplicând transformata Laplace ecuației obținem

$$-\frac{d}{dp}(p^2Y(p) - 3p) + pY(p) - 3 - 4\frac{d}{dp}Y(p) = 0 \Longrightarrow (p^2 + 4)\frac{dY}{dp} + pY = 0 \Longrightarrow \frac{dY}{Y} = -\frac{p}{p^2 + 4}dp \Longrightarrow \ln Y(p) = -\frac{1}{2}\ln(p^2 + 4) + \ln c \Longrightarrow Y(p) = \frac{c}{\sqrt{p^2 + 4}} \Longrightarrow y(t) = cJ_0(2t)$$

Pentru determinarea lui c vom folosi condiția inițială y(0) = 3

$$3 = cJ_0(0)$$
, dar $J_0(0) = 1$, deci $c = 3$ și soluția este $y(t) = 3J_0(2t)$

56. Să se găsească soluția ecuației $x^{\prime\prime}-2x^{\prime}+2x=f(t)$ care satisface $x(1)=x^{\prime}(1)=1.$

 \Box

Soluție. Facem mai întâi schimbarea de variabilă $t_1 = t - 1$

Obţinem ecuaţia $x'' - 2x' + 2x = f(t_1 + 1)$ cu condiţiile x(0) = x'(0) = 1 Cf. teoremei derivării originalului avem:

$$\mathcal{L}[x'(t_1)](p) = pX_1(p) - x(0) = pX_1(p) - 1$$

$$\mathcal{L}[x''(t_1)](p) = p^2 X_1(p) - px(0) - x'(0) = p^2 X_1(p) - p - 1$$

Ecuația devine

$$p^{2}X_{1}(p) - p - 1 - 2(pX_{1}(p) - 1) + 2X_{1}(p) = \mathcal{L}[f(t_{1} + 1)](p) \Longrightarrow X_{1}(p)(p^{2} - 2p + 2) = p - 1 + \mathcal{L}[f(t_{1} + 1)](p) \Longrightarrow X_{1}(p) = \frac{p - 1}{(p - 1)^{2} + 1} + \frac{1}{(p - 1)^{2} + 1} \cdot \mathcal{L}[f(t_{1} + 1)](p)$$

Cf. th. deplasării și th. de convoluție obținem

$$x(t_1) = e^{t_1} \cos t_1 + \int_0^{t_1} e^{\tau} \sin \tau f(t_1 + 1 - \tau) d\tau$$

Deci
$$x(t) = e^{t-1}\cos(t-1) + \int_0^{t-1} e^{\tau}\sin\tau f(t-\tau)d\tau$$

57. Să se integreze sistemul neomogen de ecuații diferențiale:

$$x' - y' - 2x + 2y = \sin t$$

$$x'' + 2y' + x = 0$$

cu condițiile
$$x(0) = x'(0) = y(0) = 0$$

Soluție. Notăm
$$X(p) = \mathcal{L}[x(t)](p), Y(p) = \mathcal{L}[y(t)](p)$$

Folosim teorema derivării originalului:

$$\mathcal{L}[x''(t)](p) = p^2 X(p) - px(0) - x'(0) = p^2 X(p)$$

$$\mathcal{L}[x'(t)](p) = pX(p) - x(0) = pX(p)$$

$$\mathcal{L}[y'(t)](p) = pY(p) - y(0) = pY(p)$$

Sistemul devine:

$$(p-2)X(p) + Y(p)(2-p) = \frac{1}{n^2+1}$$

$$X(p)(p^2 + 1) + 2pY(p) = 0$$

Atunci:
$$X(p) = \frac{1}{9(p+1)} + \frac{1}{3(p+1)^2} + \frac{1}{45(p-2)} - \frac{p+2}{5(p^2+1)}$$

$$Y(p) = \frac{1}{9(p+1)} + \frac{1}{3(p+1)^2} - \frac{1}{9(p-2)}$$

Obţinem:
$$x(t) = \frac{1}{9}e^{-t} + \frac{1}{3}te^{-t} + \frac{4}{45}e^{2t} - \frac{1}{5}\cos t - \frac{2}{5}\sin t$$

$$y(t) = \frac{1}{9}e^{-t} + \frac{1}{2}te^{-t} - \frac{1}{9}e^{2t}$$

58. Să se integreze sistemul de ecuații diferențiale cu coeficienți constanți:

$$x' - 4x - y + 36t = 0$$

$$y' + 2x - y + 2e^t = 0$$

cu condițiile inițiale x(0) = 0, y(0) = 1

Soluție. Fie $\mathcal{L}[x(t)](p) = X(p), \mathcal{L}[y(t)](p) = Y(t)$.

Aplic transformata Laplace în cei doi membri ai ecuațiilor sistemului:

$$(p-4)X(p) - Y(p) = -\frac{36}{p^2}$$

$$2X(p) + (p-1)Y(p) = \frac{2}{p-1}$$

Obţinem

$$X(p) = \frac{6}{p^2} - \frac{1}{p} - \frac{1}{p-1} + \frac{11}{p-2} - \frac{9}{p-3}$$
$$Y(p) = \frac{12}{p^2} + \frac{10}{p} + \frac{3}{p-1} - \frac{22}{p-2} + \frac{9}{p-3}$$

Deci

$$x(t) = 6t - 1 - e^{t} + 11e^{2t} - 9e^{3t}$$
$$y(t) = 12t + 10 + 3e^{t} - 22e^{2t} + 9e^{3t}$$

59. Să se integreze sistemul liniar și neomogen de ecuații diferențiale cu coeficienți variabili

$$ty + z + tz' = (t - 1)e^{-t}$$

 $y' - z = e^{-t}$

cu condițiile y(0) = 1, z(0) = -1

Soluție. Fie $Y(p) = \mathcal{L}[y(t)](p)$ și $Z(p) = \mathcal{L}[z(t)](p)$ și aplicăm transformata Laplace ecuațiilor sistemului, ținând cont de $\mathcal{L}[ty](p) = -\frac{dY}{dp}$, $\mathcal{L}[y'](p) = pY - 1$, $\mathcal{L}[z'](p) = pZ + 1$, $\mathcal{L}[tz'](p) = -\frac{d}{dp}(pZ + 1)$ (cf. th. derivării imaginii și derivării originalului)

Obtinem

$$-\frac{dY}{dp} + Z - \frac{d}{dp}(pZ + 1) = \frac{1}{(p+1)^2} - \frac{1}{p+1}$$

$$pY - 1 - Z = \frac{1}{p+1}$$

$$Y' + pZ' = \frac{1}{p+1} - \frac{1}{(p+1)^2}$$

$$pY - Z = \frac{1}{p+1} + 1$$

sau

Rezultă $(1+p^2)Y'+pY=0$. Separăm variabilele, integrăm și obținem soluția generală $Y=\frac{c}{\sqrt{1+p^2}}\Longrightarrow y(t)=cJ_0(t), \text{ dar } y(0)=1, \text{ deci}$ $1=y(0)=cJ_0(0)=c\Longrightarrow y(t)=J_0(t)$

Din a doua ecuație a sistemului obținem direct funcția

$$Z = pY - \frac{1}{p+1} - 1 = \frac{p}{\sqrt{1+p^2}} - 1 - \frac{1}{p+1} = -\frac{\sqrt{1+p^2-p}}{\sqrt{1+p^2}} - \frac{1}{p+1} \Longrightarrow$$
$$\Longrightarrow z(t) = -J_1(t) - e^{-t}$$

60. Să se integreze ecuația propagării căldurii printr-o bară finită $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ în condițiile $u(x,0) = 3\sin 2\pi x, u(0,t) = 0, u(1,t) = 0$, unde t > 0 și 0 < x < 1.

Soluție. Fie $U(x,p) = \mathcal{L}[u(x,t)]$

Aplicăm transformata Laplace în raport cu t, x fiind considerat parametru.

Avem
$$\mathcal{L}\left[\frac{\partial u}{\partial t}\right] = pU(x,p) - u(x,0), \mathcal{L}\left[\frac{\partial^2 u}{\partial x^2}\right] = \frac{\partial^2 U(x,p)}{\partial x^2}$$

Ecuația devine $\frac{\partial^2 U}{\partial x^2}=pU-3\sin2\pi x$ sau dacă îl considerăm pe p ca parametru putem scrie $\frac{d^2 U}{dx^2}-pU=-3\sin2\pi x$

Ecuația omogenă $\frac{d^2U}{dx^2}-pU=0$ are ca soluție generală $U(x,p)=c_1{\rm e}^{x\sqrt{p}}+c_2{\rm e}^{-x\sqrt{p}}$

O soluție particulară a ecuației neomogene este $\frac{3\sin 2\pi x}{4\pi^2+p}$, deci integrala generală a ecuației $\frac{d^2U}{dx^2}-pU=-3\sin 2\pi x$ este $U(x,p)=c_1(p)\mathrm{e}^{x\sqrt{p}}+c_2(p)\mathrm{e}^{-x\sqrt{p}}+\frac{3\sin 2\pi x}{4\pi^2+p}$

Aplicând transformata Laplace condițiilor la limită avem $\mathcal{L}[u(0,t)] = U(0,p) = 0, \mathcal{L}[u(1,t)] = U(1,p) = 0$

Cu ajutorul condițiilor U(0,p) = U(1,p) = 0 vom determina pe $c_1(p), c_2(p)$. Avem

$$0 = c_1(p) + c_2(p)$$

$$0 = c_1(p)e^{\sqrt{p}} + c_2(p)e^{-\sqrt{p}}$$

de unde $c_1(p) = c_2(p) = 0$

Deci $U(x,p) = \frac{3\sin 2\pi x}{4\pi^2 + p}$, a cărui original Laplace este $u(x,t) = 3e^{-4\pi^2 t} 3\sin 2\pi x$ și care reprezintă temperatura barei, în fiecare punct M(x), 0 < x < 1, la orice moment t(t > 0)

61. Să se integreze ecuația corzii vibrante $\frac{\partial^2 z}{\partial x^2} = \frac{1}{16} \cdot \frac{\partial^2 z}{\partial t^2}$ cu condițiile $\frac{\partial z}{\partial x}(0,t) = 0, z(\frac{3}{2},t) = 0, z(x,0) = 0, \frac{\partial z}{\partial t}(x,0) = 2\cos\pi x + 3\cos3\pi x.$

Soluție. Notăm $\mathcal{L}[z(x,t)] = Z(x,p)$

$$\begin{split} \operatorname{Avem} \mathcal{L} \left[\tfrac{\partial^2 z}{\partial x^2}(x,t) \right] &= \tfrac{\partial^2 Z}{\partial x^2}(x,p), \mathcal{L} \left[\tfrac{\partial^2 z}{\partial t^2}(x,t) \right] = p^2 Z - 2\cos\pi x - 3\cos3\pi x, \\ \mathcal{L} \left[\tfrac{\partial z}{\partial x}(0,t) \right] &= \tfrac{\partial^2 Z}{\partial x^2}(0,p) = 0, \mathcal{L}[z(\tfrac{3}{2},t)] = Z(\tfrac{3}{2},p) = 0 \end{split}$$

Aplicând transformata Laplace ecuației cu derivate parțiale, obținem ecuația $\frac{\partial^2 Z}{\partial x^2} - \frac{p^2}{16}Z = -\frac{1}{16}(2\cos\pi x + 3\cos3\pi x)$ care integrată în raport cu xare integrala generală

$$Z(x,p) = c_1 e^{\frac{p}{4}x} + c_2 e^{-\frac{p}{4}x} + \frac{2}{p^2 + 16\pi^2} \cos \pi x + \frac{3}{p^2 + 144\pi^2} \cos 3\pi x$$

Dar
$$\frac{\partial Z}{\partial x}(0,p) = 0, Z(\frac{3}{2},p) = 0$$
, deci $c_1 = c_2 = 0$

Aşadar, $Z(x,p) = \frac{2}{p^2+16\pi^2}\cos\pi x + \frac{3}{p^2+144\pi^2}\cos3\pi x$ este transformata Laplace a funcției z(x,t), ce verifică ecuația cu derivate parțiale și condițiile inițiale și la limită impuse de problemă . Rezultă că

$$z(x,t) = \frac{1}{2\pi}\cos\pi x\sin 4\pi t + \frac{1}{4\pi}\cos 3\pi x\sin 12\pi t$$

62. Să se integreze ecuația $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, pentru x>0, t>0, știind că $u(0,t)=10\sin 2t, \lim_{x\to\infty}u(x,t)=0, u(x,0)=\frac{\partial u}{\partial t}=(x,0)=0.$

Soluție. Fie
$$U(x,p) = \mathcal{L}[u(x,t)]$$

Aplicând proprietățile transformatei Laplace obținem

Applicant proprietatile transformater Laplace obtained
$$\mathcal{L}\left[\frac{\partial^2 u}{\partial x^2}\right] = \frac{\partial^2 U}{\partial x^2}, \mathcal{L}\left[\frac{\partial^2 u}{\partial t^2}\right] = p^2 U, \mathcal{L}[u(0,t)] = U(0,p) = \frac{20}{p^2+4},$$

$$\mathcal{L}[\lim_{x\to\infty} u(x,t)] = \lim_{x\to\infty} U(x,p) = 0$$

Aplicând transformata Laplace ecuației cu derivate parțiale, obținem ecuația diferențială $\frac{d^2U}{dx^2} - p^2U = 0$ a cărei integrală generală este $U(x,p) = c_1(p)\mathrm{e}^{-px} + c_2(p)\mathrm{e}^{px}$ (unde c_1 și c_2 sunt constante față de x, transformate Laplace în raport cu p)

Din ultima condiție $0 = \lim_{x\to\infty} U(x,p) = \lim_{x\to\infty} [c_1(p)\mathrm{e}^{-px} + c_2(p)\mathrm{e}^{px}]$ rezultă $c_2(p) = 0$

Din condiția
$$\frac{20}{p^2+4} = U(0,p) = c_1(p) + c_2(p)$$
, deci $c_1(p) = \frac{20}{p^2+4}$

Deci
$$U(x,p) = \frac{20}{p^2+4} e^{-px} \Longrightarrow$$

$$\Longrightarrow u(x,t) = \left\{ \begin{array}{ll} 10\sin 2(t-x), & \text{pentru } t > x > 0 \\ 0, & \text{pentru } 0 < t < x \end{array} \right.$$

Să se rezolve ecuațiile integrale:

63.
$$x(t) - \int_0^t \text{ch}2(t-\tau) \cdot x(\tau)d\tau = 4 - 4t - 8t^2$$

Soluție. Aplicăm transformata Laplace și teorema de convoluție:

$$X(p) - \mathcal{L}[\text{ch}2t](p)\mathcal{L}[x(t)](p) = \frac{4}{p} - \frac{4}{p^2} - \frac{16}{p^3} \Longrightarrow X(p) - \frac{p}{p^2 - 4}X(p) =$$

$$= \frac{4}{p} - \frac{4}{p^2} - \frac{16}{p^3} \Longrightarrow X(p) = 4(\frac{1}{p} - \frac{4}{p^3}) \Longrightarrow x(t) = 4 - 8t^2$$

64. $x(t) = a \sin bt + c \int_0^t \sin b(t-u) \cdot x(u) du, 0 < c < b$ (ecuație de tip Voltorra)

Soluție. Scriem ecuația sub forma

$$x(t) - c \int_0^t \sin b(t - u) \cdot x(u) du = a \sin bt$$

Fie
$$\mathcal{L}[x(t)](p) = X(p)$$

Aplicăm transformata Laplace și folosim th. de convoluție și obținem

$$X(p) - X(p) \cdot \mathcal{L}[\sin bt](p) = \mathcal{L}[a\sin bt](p) \Longrightarrow X(p) - \frac{cb}{p^2 + b^2}X(p) = \frac{ab}{p^2 + b^2} \Longrightarrow X(p) = \frac{ab}{p^2 + b^2 - cb} \Longrightarrow x(t) = \frac{ab}{\sqrt{b^2 - bc}}\sin \sqrt{b^2 - bc}t$$

65.
$$\int_0^t x(\tau) \frac{1}{\sqrt{t-\tau}} d\tau = 1 + t + t^2$$
 (Abel)

Soluție. Ecuația se mai scrie: $x*\frac{1}{\sqrt{t}}=1+t+t^2$

Aplicând transformata Laplace obţinem:

$$X(p)\mathcal{L}\left[\frac{1}{\sqrt{t}}\right](p) = \mathcal{L}\left[1 + t + t^2\right](p) \Longrightarrow X(p)\frac{\Gamma\left(\frac{1}{2}\right)}{\sqrt{p}} = \frac{1}{p} + \frac{1}{p^2} + \frac{2}{p^3} \Longrightarrow$$

$$\Longrightarrow X(p) = \left(\frac{1}{\sqrt{p}} + \frac{1}{p\sqrt{p}} + \frac{2}{p^2\sqrt{p}}\right)\frac{1}{\sqrt{\pi}} \Longrightarrow$$

$$\Longrightarrow x(t) = \frac{1}{\sqrt{\pi}}\left(\frac{t^{-\frac{1}{2}}}{\Gamma\left(\frac{1}{2}\right)} + \frac{t^{\frac{1}{2}}}{\Gamma\left(\frac{3}{2}\right)} + 2\frac{t^{\frac{3}{2}}}{\Gamma\left(\frac{5}{2}\right)}\right) =$$

$$= \frac{1}{\pi}\left(\frac{1}{\sqrt{t}} + 2\sqrt{t} + \frac{8}{3}t\sqrt{t}\right)$$

66.
$$x(t) + 2 \int_0^t x(u) du = 3e^t + 2t$$

Soluție. Fie $\mathcal{L}[x(t)](p) = X(p)$

Cf. th. de integrare a originalului avem $\mathcal{L}\left[\int_0^t x(u)du\right](p) = \frac{X(p)}{p}$

Aplicăm transformata Laplace și obținem
$$X(p) + 2\frac{X(p)}{p} = \frac{3}{p-1} + \frac{2}{p^2} \Longrightarrow X(p) = \frac{3p}{(p-1)(p+2)} + \frac{2}{p(p+2)} \Longrightarrow x(t) = 1 + e^t + e^{-2t}$$

67.
$$\sin t = t + \int_0^t \frac{dx(\tau)}{d\tau} (t - \tau) d\tau$$

Soluție. Avem formula lui Duhamel

$$pF(p)G(p) = \mathcal{L}[f(t)g(0) + \int_0^t f(\tau)g'(t-\tau)]d\tau](p)$$

Deci
$$\mathcal{L}\left[\int_0^t \frac{dx(\tau)}{d\tau}(t-\tau)d\tau\right](p) = pX(p) \cdot \frac{1}{p^2} = \frac{X(p)}{p}$$

Aplicând transformata Laplace ecuației integrale obținem

$$\frac{1}{p^2+1} = \frac{1}{p^2} + \frac{X(p)}{p} \Longrightarrow X(p) = \frac{p}{p^2+1} - \frac{1}{p} \Longrightarrow x(t) = \cos t - 1$$

68. Folosind formula lui Duhamel, să se rezolve ecuațiile diferențiale:

a)
$$x'' + x = \sin t, x(0) = x'(0) = 0$$

b)
$$x'' - x' = \frac{1}{1+e^t}, x(0) = x'(0) = 0$$

Soluție. Rezolvăm ecuația $x_1'' + x_1 = 1, x_1(0) = x_1'(0) = 0$

Notăm
$$X_1(p) = \mathcal{L}[x_1(t)](p)$$

Cf. th. derivării originalului avem

$$\mathcal{L}[x_1''(t)](p) = p^2 X_1(p) - p X_1(0) - x_1(0) = p^2 X_1(p)$$

Ecuația devine
$$p^2X_1(p) + X_1(p) = \mathcal{L}[1](p) = \frac{1}{p} \Longrightarrow$$

Ecuația devine
$$p^2 X_1(p) + X_1(p) = \mathcal{L}[1](p) = \frac{1}{p} \Longrightarrow$$

 $\Longrightarrow X_1(p) = \frac{1}{p} \cdot \frac{1}{p^2 + 1} = \frac{1}{p} - \frac{p}{1 + p^2} \Longrightarrow x_1(t) = 1 - \cos t \Longrightarrow$
 $\Longrightarrow x_1'(t) = \sin t$

Pe de altă parte
$$X(p) = \mathcal{L}[x(t)](p)$$
 verifică relația $(p^2 + 1)X(p) = F(p) = \mathcal{L}[\sin t](p) = \frac{1}{p^2 + 1} \Longrightarrow X(p) = pF(p)X_1(p)$

Cf. formulei lui Duhamel rezultă

$$x(t) = \int_0^t \sin \tau \cdot \sin(t - \tau) d\tau = \frac{1}{2} (\sin t - t \cos t)$$

b) Ca și la pct. a) rezolvăm ecuația
$$x_1^{\prime\prime}-x_1^{\prime}=1, x_1(0)=x_1^{\prime}(0)=0$$

Cf. th. derivării originalului avem
$$\mathcal{L}[x_1'(t)](p) = pX_1(p) - x_1(0) = pX_1(p)$$

Ecuația devine
$$p^2X_1(p) - pX_1(p) = \frac{1}{p} \Longrightarrow X_1(p) = \frac{1}{p} - \frac{1}{p(p-1)} = -\frac{1}{p} - \frac{1}{p^2} + \frac{1}{p-1} \Longrightarrow x_1(t) = 1 - t + e^t \Longrightarrow x_1'(t) = e^t - 1$$
 și $X(p) = pX_1(p)F(p)$, unde $F(p) = \mathcal{L}\left[\frac{1}{1+e^t}\right](p)$

Deci
$$x(t) = \int_0^t \frac{1}{1+e^{\tau}} \cdot (e^{t-\tau} - 1)d\tau$$

69. Să se rezolve ecuația integrodiferențială

$$y'(t) = \int_0^t y(\tau) \cos(t - \tau) d\tau$$

cu condiția y(0) = 1

Soluție. Cf. teoremei derivării originalului avem

$$\mathcal{L}[y'(t)](p) = pY(p) - 1$$

Membrul drept al ecuației e produsul de convoluție $y(t)*\cos t$; aplicând transformata Laplace ecuației obținem:

$$pY(p)-1=Y(p)\frac{p}{p^2+1}$$
 Atunci $Y(p)=\frac{p^2}{p^3}=\frac{1}{p}+\frac{1}{p^3}\Longrightarrow y(t)=1+\frac{t^2}{2}$ $\hfill\Box$

Cu ajutorul transformatei Laplace să se determine soluțiile ecuațiilor cu argumente decalate:

70.
$$3y(t) - 4y(t-1) + y(t-2) = t$$
, dacă $y = 0$ pentru $t < 0$.

Soluţie. Notăm $\mathcal{L}[y(t)](p) = Y(p)$

Cf. teoremei întârzierii avem:

$$\mathcal{L}[y(t-1)](p) = e^{-p}Y(p)$$

$$\mathcal{L}[y(t-2)](p) = e^{-2p}Y(p)$$

După ce aplicăm transformata Laplace, ecuația devine:

$$(3 - 4e^{-p} + e^{-2p})Y(p) = \frac{1}{p^2} \Longrightarrow (1 - e^p)(3 - e^{-p})Y(p) = \frac{1}{p^2} \Longrightarrow$$

$$\Longrightarrow Y(p) = \frac{1}{2p^2} \left(\frac{1}{1 - e^{-p}} - \frac{1}{3 - e^{-p}} \right) = \frac{1}{2p^2} \left(\frac{1}{1 - e^{-p}} - \frac{1}{3} \frac{1}{1 - \frac{e^{-p}}{3}} \right) =$$

$$= \frac{1}{2p^2} [1 + e^{-p} + e^{-2p} + \dots + e^{-np} + \dots - \frac{1}{3} (1 + \frac{e^{-p}}{3} + \frac{e^{-2p}}{3^2} + \dots +$$

$$+ \frac{e^{-np}}{3^n} + \dots)] = \frac{1}{2p^2} [\frac{2}{3} + \left(1 - \frac{1}{3^2} \right) e^{-p} + \left(1 - \frac{1}{3^3} \right) e^{-2p} + \dots +$$

$$+ \left(1 - \frac{1}{3^{n+1}} \right) e^{-np} + \dots] = \frac{1}{3p^2} + \frac{1}{2} \sum_{n=1}^{\infty} \left(1 - \frac{1}{3^{n+1}} \right) \frac{e^{-np}}{p^2} \Longrightarrow$$

$$\Longrightarrow y(t) = \frac{t}{3} + \frac{1}{2} \sum_{n=1}^{\infty} \left(1 - \frac{1}{3^{n+1}} \right) (t - n)$$

(am folosit teorema întârzierii)

71.
$$y'(t) + y(t-1) = t^2$$
, dacă $y(t) = 0$, pentru $t < 0$

Soluție. Cf. teoremei derivării originalului: $\mathcal{L}[y'(t)](p) = p \cdot Y(p)$

Cf. teoremei întârzierii: $\mathcal{L}[y(t-1)](p) = e^{-p} \cdot Y(p)$

Ecuația devine:

$$p \cdot Y(p) + e^{-p} \cdot Y(p) = \frac{2}{p^3} \Longrightarrow Y(p) = \frac{2}{p^3(p + e^{-p})} = \frac{2}{p^4(1 + \frac{e^{-p}}{p})} = \frac{2}{p^4(1 + \frac{e^{-p}}{p$$

Aplicații în fizică și electronică

72. O particulă de masă m e aruncată vertical în sus cu viteza inițială v_0 . Asupra ei acționează forța gravității și o forță de rezistență 2kmv, vfiind viteza particulei (k > 0 constantă). Să se determine distanța parcursă de particulă după un timp t.

Solutie. Notăm cu x(t) distanța cerută

Atunci
$$mx''(t) = -mg - 2kmx'(t), x(0) = 0, x'(0) = v_0$$

Notăm
$$X(p) = \mathcal{L}[x(t)](p)$$

Aplicând th. de derivare a originalului ecuația devine

Applicand th. de derivare a original
unit ecuaçia devine
$$m(p^2X(p) - v_0) = -mg\frac{1}{p} - 2kmX(p) \Longrightarrow X(p) = \frac{v_0p - g}{p^2(p + 2k)} = -\frac{g}{2k} \cdot \frac{1}{p^2} + \frac{g + 2v_0k}{4k^2} \cdot \frac{1}{p} - \frac{g + 2v_0k}{4k^2} \cdot \frac{1}{p + 2k} \Longrightarrow x(t) = -\frac{g}{2k} \cdot t + \frac{g + 2v_0k}{4k^2} \cdot (1 - e^{-2kt}),$$

$$t \ge 0$$

73. O tensiune electromotoare constantă E este aplicată la timpul t=0unui circuit electric format dintr-o inductanță L, o capacitate C și o rezistență r, în serie. La timpul t=0 sarcina la bornele condensatorului este nulă și curentul în circuit egal. Să se dea expresia curentului în funcție de timp.

Soluție. Ecuația diferențială a sistemului este $L\frac{di}{dt} + ri + \frac{q}{C} = E$ la care se adaugă $\frac{dq}{dt} = i$, unde i este curentul în circuit, iar q sarcina instantanee a condensatorului.

Notăm
$$I(p) = \mathcal{L}[i(t)](p), Q(p) = \mathcal{L}[q(t)](p)$$

Cu condițiile inițiale i(0) = 0, q(0) = 0, prin aplicarea transformatei Laplace, ecuațiile diferențiale de mai sus devin

$$LpI + rI + \frac{Q}{C} = E$$
$$pQ = I$$

(cf. th. de derivare a originalului)

Inlocuind pe
$$Q$$
 din ecuația a doua în prima, obținem ecuația $LpI + rI + \frac{I}{pC} = E \implies I = \frac{E}{L(p + \frac{r}{L} + \frac{1}{pLC})} = \frac{E}{L} \cdot \frac{p}{p^2 + 2ap + \omega_0^2}$, unde $a = \frac{r}{2L}, \omega_0^2 = \frac{1}{LC}$

Avem $i(t) = \mathcal{L}^{-1}[I(p)](t) = \mathcal{L}^{-1}\left[\frac{E}{L} \cdot \frac{p}{p^2 + 2ap + \omega_0^2}\right](t) = \frac{E}{L} \cdot \mathcal{L}^{-1}\left[\frac{p}{p^2 + 2ap + \omega_0^2}\right](t),$

$$i(t) = \begin{cases} \frac{E}{L} e^{-at} \sin \omega t, & \text{dacă } \omega^2 > a^2 \\ \frac{E}{L} t e^{-at}, & \text{dacă } \omega^2 = a^2 \\ \frac{E}{L} \cdot \frac{1}{n-m} (e^{-nt} - e^{-mt}), & \text{dacă } \omega^2 < a^2 \end{cases}$$

unde
$$-m$$
 și $-n$ sunt rădăcinile ecuației $p^2+2ap+\omega_0^2=0$, iar $\omega^2=\frac{1}{LC}-\frac{r^2}{4L^2}$

74. Un circuit electric constă dintr-un capacitor (cu capacitatea C) și un inductor L, legate în serie. La momentul t=0 se aplică la bornele circuitului forța electromagnetică $E\cos(\omega t + \alpha)$, unde $\omega^2 \neq \frac{1}{LC}$ $(C, L, E, \omega, \alpha \text{ sunt presupuse constante})$. Să se determine curentul i(t)la orice moment t, știind că la momentul t=0 atât curentul cât și sarcina q(t) sunt nule.

Soluție. Cf. legii lui Kirchoff avem $Lq''(t) + \frac{1}{C}q(t) = E\cos(\omega t + \alpha)$, q(0) = 0, q'(0) = 0, i(t) = q'(t)

Notăm
$$Q(p) = \mathcal{L}[q(t)](p)$$

Aplicând transformata Laplace ecuației anterioare și th. de derivare a originalului obţinem $Lp^2Q(p) + \frac{1}{C}Q(p) = E\left(\frac{p}{p^2 + \omega^2}\cos\alpha - \frac{\omega}{\omega^2 + p^2}\sin\alpha\right) \Longrightarrow$ $\Longrightarrow Q(p) = \frac{1}{Lp^2 + \frac{1}{C}} \cdot E \cdot \left(\frac{p}{p^2 + \omega^2} \cos \alpha - \frac{\omega}{\omega^2 + p^2} \sin \alpha \right) = \frac{1}{L} \cdot E \cdot \frac{1}{p^2 + \frac{1}{LC}} \cdot \frac{1}{p^2 + \frac$ $\left(\frac{p}{p^2 + \omega^2} \cos \alpha - \frac{\omega}{\omega^2 + p^2} \sin \alpha\right) \Longrightarrow Q(p) = \frac{1}{L} \cdot E \cdot \sqrt{LC} \cdot \mathcal{L} \left[\sin \sqrt{\frac{1}{LC}} t\right] (p)$ $\mathcal{L}[\cos \omega t \cdot \cos \alpha - \sin \omega t \cdot \sin \alpha](p) \Longrightarrow q(t) = \frac{1}{L} \cdot E \cdot \sqrt{LC}$ $\cdot \left[\cos \alpha \cdot \int_0^t \sin \sqrt{\frac{1}{LC}} \tau \cdot \cos \omega (t-\tau) d\tau - \sin \alpha \cdot \int_0^t \sin \sqrt{\frac{1}{LC}} \tau \cdot \sin \omega (t-\tau) d\tau \right]$

75. Un electron se miscă în planul xOy pornind din origine cu viteza inițială v_0 orientată spre Ox. Să se determine traiectoria electronului dacă intensitatea câmpului magnetic H este constantă și orientată perpendicular pe planul xOy.

Soluție. Dacă e este sarcina electronului și c viteza luminii, atunci ecuațiile de mișcare a electronului sunt

$$mx''(t) = -\frac{e}{c}Hy'(t)$$

$$my''(t) = \frac{e}{c}Hx'(t)$$

$$x(0) = 0, x'(0) = v_0, y(0) = 0, y'(0) = 0$$

Aplicând transformata Laplace și th. de derivare a originalului obținem

$$m(p^{2}X(p) - px(0) - x'(0)) = -\frac{e}{c}H(pY(p) - y(0))$$

$$m(p^{2}Y(p) - py(0) - y'(0)) = \frac{e}{c}H(pX(p) - x(0))$$

Adică

$$m(p^{2}X(p) - v_{0}) = -\frac{e}{c}HpY(p)$$
$$mp^{2}Y(p) = \frac{e}{c}HpX(p)$$

Din a doua ecuație rezultă că $Y(p) = \frac{eH}{cm} \cdot \frac{1}{n} \cdot X(p)$

Deci
$$m(p^2X(p) - v_0) = -\frac{e^2}{c^2m}H^2X(p) \Longrightarrow X(p)\left(mp^2 + \frac{e^2}{c^2m}H^2\right) =$$

$$= mv_0 \Longrightarrow X(p) = \frac{v_0}{p^2 + \frac{e^2}{c^2m^2}H^2} \Longrightarrow x(t) = \frac{v_0cm}{eH}\sin\frac{eH}{cm}t \text{ și}$$

$$y(t) = \frac{v_0cm}{eH}(1 - \cos\frac{eH}{cm}t), t > 0$$

76. Mişcarea unui electron într-un câmp electric E și unul magnetic H este descrisă printr-o ecuație de forma $\frac{dv}{dt} = -\frac{e}{m}(E + \mu v \times H)$, unde v e vectorul viteză al electronului, m masa lui și μ permeabilitatea magnetică în vid. Să se determine traiectoria electronului dacă vectorii E și H sunt constanți și ortogonali și dacă la momentul t=0, electronul este în origine și nu are viteză inițială .

Soluție. Alegem reperul ortogonal Oxyz astfel încât $H = H\overline{j}, E = E\overline{k}$. Fie $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k} = \overline{OM}$, unde M este poziția curentă a electronului. Rezultă $x''\overline{i} + y''\overline{j} + z''\overline{k} = -\frac{e}{m}(E\overline{k} + \mu(-Hz'\overline{i} + Hx'\overline{j})) \Longrightarrow \Longrightarrow x'' = \mu \frac{e}{m}Hz', y'' = 0, z'' = -\frac{e}{m}E - \frac{e}{m}\mu Hx', x(0) = y(0) = z(0) = 0, x'(0) = y'(0) = z'(0) = 0$

Aplicând transformata Laplace și th. de derivare a originalului obținem $p^2X(p)=\mu \frac{e}{m}HZ(p), p^2Y(p)=0, p^2Z(p)=-\frac{e}{m}\cdot \frac{E}{p}-\frac{e}{m}\mu HpX(p)$

Notâm
$$a = \mu \frac{e}{m}H$$
, $b = -\frac{e}{m}E$ şi avem $X(p) = \frac{ab}{p^2(p^2 + a^2)}$, $Y(p) = 0$, $Z(p) = \frac{b}{p(p^2 + a^2)} \Longrightarrow x(t) = \frac{b}{a}t - \frac{b}{a^2}\sin at$, $y(t) = 0$, $z(t) = \frac{b}{a^2}(1 - \cos at)$, $t > 0$

9.7 Probleme propuse

Să se calculeze imaginile Laplace ale funcțiilor periodice:

1.

$$f(t) = \begin{cases} 0, & \text{dacă } 4n < t < 4n+1 \\ A, & \text{dacă } 4n+1 < t < 4n+2 \\ 0, & \text{dacă } 4n+2 < t < 4n+3 \\ -A, & \text{dacă } 4n+3 < t < 4n+4 \end{cases}$$

$$n = 0, 1, 2, \dots$$

R:
$$T = 2, \mathcal{L}[f(t)](p) = \frac{A}{p} \cdot \frac{1 - e^{-p}}{e^p + e^{-p}}$$

2.

$$f(t) = \begin{cases} \frac{t}{a} - 4n, & \text{dacă } 4na < t < (4n+1)a \\ -\frac{t}{a} + 4n + 2, & \text{dacă } (4n+1)a < t < (4n+2)a \\ 0, & \text{dacă } (4n+2)a < t < (4n+4)a \end{cases}$$

$$n = 0, 1, 2, \dots$$

R:
$$T = 4a$$
, $\mathcal{L}[f(t)](p) = \frac{1}{ap^2} \cdot \frac{(1 - e^{-ap})^2}{1 - e^{-4ap}}$

3.

$$f(t) = \begin{cases} 0, & \text{dacă } 4n < t < 4n + 2 \\ 3\sin 2\pi t, & \text{dacă } 4n + 2 < t < 4n + 4 \end{cases}$$

$$n = 0, 1, 2, \dots$$

R:
$$\mathcal{L}[f(t)](p) = \frac{6\pi}{p^2 + 4\pi^2} \cdot \frac{e^{-2p}}{1 + e^{-2p}}$$

Să se calculeze transformatele Laplace ale următoarelor funcții:

4.
$$f(t) = 3t^4 - 2t^3 + 4e^{-3t} - 2\sin 5t$$

R:
$$f(t) = 3 \cdot \frac{4!}{p^5} - 2 \cdot \frac{3!}{p^4} + 4 \cdot \frac{1}{p+3} - 2 \cdot \frac{5}{p^2+25}$$

5.
$$f(t) = \sin^2 \omega t$$

R:
$$\mathcal{L}[f(t)](p) = \frac{2\omega^2}{p(p^2 + 4\omega^2)}$$

6.
$$f(t) = (\sin t + \cos 2t)^2$$

R:
$$\mathcal{L}[f(t)](p) = \frac{1}{p} - \frac{p}{2(p^2+4)} + \frac{p}{2(p^2+16)} + \frac{3}{p^2+9} - \frac{1}{p^2+1}$$

7.
$$f(t) = (t+2)^2 e^{3t}$$

R:
$$\mathcal{L}[f(t)](p) = \frac{2}{(p-3)^3} + \frac{4}{(p-3)^2} + \frac{4}{p-3}$$
 (cf. th. deplasării)

8.
$$f(t) = e^t \sin 2t + e^{-t} \cos 4t$$

R:
$$\mathcal{L}[f(t)](p) = \frac{2}{(p-1)^2+4} + \frac{p+1}{(p+1)^2+16}$$
 (cf. th. deplasării)

9.
$$f(t) = \int_0^t \tau^2 \cos 2(t - \tau) d\tau$$

R:
$$\mathcal{L}[f(t)](p) = \frac{2}{p^3} \cdot \frac{p}{p^2+4}$$

$$u(t) = \begin{cases} \int_0^t e^{2\tau} (t - \tau)^2 d\tau, & \text{dacă } t > 0 \\ 0, & \text{dacă } t \le 0 \end{cases}$$

R:
$$\mathcal{L}[u(t)](p) = \frac{1}{p-2} \cdot \frac{2}{p^3}$$

11.
$$f(t) = \sin at \sin bt, a, b \in \mathbb{R}$$

R:
$$\mathcal{L}[f(t)](p) = \frac{1}{2} \left[\frac{p}{p^2 + (a-b)^2} - \frac{p}{p^2 + (a+b)^2} \right]$$

Să se determine funcțiile original ale căror transformate Laplace sunt:

12.
$$F(p) = \frac{p+3}{p^3+4p^2}$$

R: Se descompune în fracții simple:

$$F(p) = \frac{A}{p} + \frac{B}{p} + \frac{C}{p+4} \Longrightarrow f(t) = At + B + Ce^{-4t}$$

13.
$$F(p) = \frac{p^2 + 3p + 1}{(p+1)(p+2)(p+3)}$$

$$\mathbf{R:} \ \frac{p^2 + 3p + 1}{(p+1)(p+2)(p+3)} = -\frac{1}{2} \cdot \frac{1}{p+1} + \frac{1}{p+2} + \frac{1}{2} \cdot \frac{1}{p+3} \Longrightarrow$$

$$\Longrightarrow f(t) = \mathcal{L}^{-1} \left[\frac{p^2 + 3p + 1}{(p+1)(p+2)(p+3)} \right] (t) = -\frac{1}{2} \cdot \mathcal{L}^{-1} \left[\frac{1}{p+1} \right] (t) + \mathcal{L}^{-1} \left[\frac{1}{p+2} \right] (t) +$$

$$+ \frac{1}{2} \cdot \mathcal{L}^{-1} \left[\frac{1}{p+3} \right] (t) = -\frac{1}{2} e^{-t} + e^{-2t} + \frac{1}{2} e^{-3t}$$

14.
$$F(p) = \frac{2p+1}{p(p+1)}$$

R:
$$f(t) = 3e^t - 1$$

15.
$$F(p) = \frac{4p+10}{p^2-12p+32}$$

R:
$$f(t) = -\frac{13}{2}e^{4t} + \frac{21}{2}e^{8t}$$

16.
$$F(p) = \frac{5p+1}{p^2+1}$$

R:
$$f(t) = 5\cos t + \sin t$$

17.
$$F(p) = \frac{p+2}{p^2(p+3)}$$

R:
$$f(t) = -\frac{1}{27} + \frac{t}{9} + \frac{t^3}{3} + \frac{1}{27}e^{-3t}$$

18.
$$F(p) = \frac{1}{p^2(p-2)^2}$$

R:
$$f(t) = \left(\frac{t^2}{8} - \frac{t}{4} + \frac{3}{16}\right) e^{2t} - \frac{t}{8} - \frac{3}{16}$$

19.
$$F(p) = \frac{p^3 + 16p - 24}{p^4 + 20p^2 + 64}$$

R:
$$f(t) = \cos 2t - \sin 2t + \frac{1}{2}\sin 4t$$

20.
$$F(p) = \frac{2p-7}{p^2+2p+6}$$

R:
$$f(t) = 2e^{-t}\cos\sqrt{5}t - \frac{9}{\sqrt{5}}e^{-t}\sin\sqrt{5}t$$

21.
$$F(p) = \frac{3p-14}{p^2-4p+8}$$

R:
$$f(t) = e^{2t} (3\cos 2t - 4\sin 2t)$$

22.
$$F(p) = \frac{e^{-p}}{\sqrt{p+1}}$$

R:
$$f(t) = e^{-(t-1)} \frac{1}{\sqrt{\pi(t-1)}}$$
 (cf. th. întârzierii şi deplasării)

23.
$$F(p) = \frac{8e^{-3p}}{p^2+4} - \frac{3pe^{-2p}}{p^2-4}$$

R:
$$f(t) = 4\sin 2(t-3) - 3\cosh 2(t-2)$$

24.
$$F(p) = \frac{e^{-p}}{p^2 - 2p + 5} + \frac{pe^{-2p}}{p^2 + 9}$$

R:
$$f(t) = \frac{1}{2}e^{t-1}\sin 2(t-1) + \cos 3(t-2)$$

25.
$$F(p) = \frac{e^{-p}}{p^2 - 2p + 5}$$

R:
$$f(t) = \frac{1}{2}e^{t-1}\sin 2(t-1)$$

26.
$$F(p) = \frac{pe^{-2p}}{p^2 + 3p + 2}$$

R:
$$f(t) = 2e^{-2(t-2)} - e^{-(t-2)}$$

27.
$$F(p) = \ln \frac{p+2}{p+1}$$

 $\mathbf{R:}\ f(t)=\frac{e^{-t}-e^{-2t}}{t}(\text{cf. teoremei derivării imaginii sau prin dezvoltarea în serie a funcției }f(t))$

28.
$$F(p) = \frac{27-12p}{(p+4)(p^2+9)}$$

R: $f(t) = 3e^{-4t} - \frac{3}{2}e^{-3it} - \frac{3}{2}e^{3it} = 3e^{-4t} - 3\cos 3t$ (am folosit descompunerea în fracții simple sau teorema reziduurilor)

29.
$$F(p) = \frac{1}{2p^2 - 2p + 5}$$

R: Cf. formulei (2.6) avem
$$f(t) = 2 \operatorname{Re} \frac{e^{pt}}{4p-2} /_{p=\frac{1}{2}+i\frac{3}{2}} = \frac{1}{3} e^{\frac{t}{2}} \sin \frac{3t}{2}$$

30.
$$F(p) = \frac{3p^2-1}{(p^2+1)^2}$$

R: Cf. formulei (2.6) avem
$$f(t) = 2 \operatorname{Re} \frac{d}{dp} [(p-i)^2 \cdot \frac{3p^2 - 1}{(p-i)(p+i)^2} e^{pt}]/_{p=i} = (1+2t) \sin t$$

31.
$$F(p) = \frac{5p^2 - 15p - 11}{(p+1)(p-2)^3}$$

R:
$$f(t) = -\frac{1}{3}e^{-t} + \frac{1}{3}e^{2t} + 4te^{2t} - \frac{7}{2}t^2e^{2t}$$

32.
$$F(p) = \frac{2p-7}{p^2+2p+6}$$

R:
$$f(t) = 2e^{-t}\cos\sqrt{5}t - \frac{9}{\sqrt{5}}e^{-t}\sin\sqrt{5}t$$

33.
$$F(p) = \frac{5p+1}{p^2+1}$$

R:
$$f(t) = 5\cos t + \sin t$$

34.
$$F(p) = \frac{e^{-p}}{p^2 - 2p + 5} + \frac{pe^{-2p}}{p^2 + 9}$$

R:
$$f(t) = \frac{1}{2}e^{t-1}\sin 2(t-1) + \cos 3(t-2)$$

35.
$$F(p) = \ln \frac{p+2}{p+1}$$

R: $f(t) = \frac{e^{-t} - e^{-2t}}{t}$ (cf. teoremei derivării imaginii sau prin dezvoltarea în serie a funcției f(t))

36.
$$F(p) = \frac{27 - 12p}{(p+4)(p^2+9)}$$

R: $f(t) = 3e^{-4t} - \frac{3}{2}e^{-3it} - \frac{3}{2}e^{3it} = 3e^{-4t} - 3\cos 3t$ (am folosit descompunerea în fracții simple sau teorema reziduurilor)

Să se calculeze integralele:

37.
$$I(t) = \int_0^\infty \frac{\cos tx}{1+x^2} dx, t > 0$$

R:
$$I(t) = \frac{\pi}{2} e^{-t}$$

$$38. \ I(t) = \int_0^\infty \frac{\sin x^2}{x} dx$$

R:
$$I(t) = \frac{\pi}{4}$$

39.
$$I(t) = \int_0^\infty \frac{\sin^2 x}{x^2} dx$$

R:
$$I(t) = \frac{\pi}{2}$$

40.
$$I(t) = \int_0^\infty \frac{e^{-at} - e^{-bt}}{t} \sin \omega t dt, \ a, b > 0, \omega \neq 0$$

R:
$$I(t) = \operatorname{arctg} \frac{b}{\omega} - \operatorname{arctg} \frac{a}{\omega} (\text{cf. ex. 44})$$

Să se integreze ecuațiile:

41.
$$x'' + 6x' + 9x = 9e^{3t}, x(0) = 0, x'(0) = 0$$

R:
$$x(t) = \frac{e^{3t} - (1+6t)e^{-3t}}{4}$$

42. $y'' - 3y' + 2y = 4e^t, y(0) = -3, y'(0) = 5$ (cf. teoremei derivării originalului)

R:
$$y(t) = -7e^t + 4te^{2t} + 4e^{2t}$$

43.
$$x'' - 2x' = e^{2t} + t^2 - 1, x(0) = \frac{1}{8}, x'(0) = 1$$

R:
$$x(t) = -\frac{t^3}{6} - \frac{t^2}{4} + \frac{t}{4} + \frac{1}{8}e^{2t}(4t+1)$$

44.
$$x'' - 2x' + 5x = e^t \cos 2t, x(0) = x'(0) = 1$$

R:
$$x(t) = e^t \sin 2t + \frac{1}{4}te^t \sin 2t$$
 (cf. teoremei derivării originalului)

9.7. PROBLEME PROPUSE

227

45.
$$x'' + 2x' + x = \frac{e^{-t}}{t+1}, x(0) = x'(0) = 0$$

R: $x(t) = e^{-t} \int_0^t \frac{t-\tau}{\tau+1} d\tau = e^{-t} [(t+1)\ln(t+1) - t]$

46.
$$y''' - 3y'' + 3y' - y = t^2 e^t, y(0) = 1, y'(0) = 0, y''(0) = -2$$

R: $y(t) = \left(1 - t - \frac{t^2}{2} + \frac{t^5}{60}\right) e^t$

47.
$$x''' + x' = \sin t, x(0) = 0, x'(0) = 0, x''(0) = 0$$

R: $x(t) = 1 - \cos t - \frac{t}{2} \sin t$

48.
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0, y(0) = 0, y'(0) = 1$$

R: $y(x) = x$

49.
$$xy'' + 2y' = x - 1, y(0) = 0$$

R: $y(x) = \frac{x(x-3)}{6}$

Să se rezolve sistemele de ecuații diferențiale:

50.

$$3x' + 2x + y' = 1$$

 $x' + 4y' + 3y = 0$

$$x > 0, x(0) = y(0) = 0$$

R:
$$x(t) = \frac{1}{2} - \frac{3}{10}e^{-\frac{6}{11}t} - \frac{1}{5}e^{-t}, y(t) = \frac{1}{5}(e^{-t} - e^{-\frac{6}{11}t})$$

51.

$$x' - x + 2y = 0$$
$$x'' + 2y' = 2t - \cos 2t$$

$$x(0) = 0, x'(0) = 2, y(0) = -1$$

R:
$$x(t) = t^2 - \frac{1}{2}\sin 2t, y(t) = -t + \frac{1}{2}t^2 + \frac{1}{2}\cos 2t - \frac{1}{4}\sin 2t$$

52.

$$x' = 2x - 3y$$
$$y' = y - 2x$$

$$x(0) = 8, y(0) = 3$$

R:
$$x(t) = 5e^{-t} + 3e^{4t}, y(t) = 5e^{-t} - 2e^{4t}$$

53.

$$x' + 5x - 2y = e^t$$
$$y' - x + 6y = e^{2t}$$

$$x(0) = 1, y(0) = -2$$

$$\mathbf{R} \colon x(t) = \frac{7}{40} e^t + \frac{1}{27} e^{2t} - \frac{41}{45} e^{-4t} + \frac{367}{216} e^{-7t}, y(t) = \frac{1}{40} e^t + \frac{7}{54} e^{2t} - \frac{7}{18} e^{-4t} - \frac{367}{216} e^{-7t}$$

54.

$$x'' + x' + y'' - y = e^{t}$$

 $x' + 2x - y' + y = e^{-t}$

$$x(0) = x'(0) = 0, y(0) = y'(0) = 0$$

R:
$$x(t) = \frac{1}{8}e^t + \frac{1}{8}(2t-1)e^{-t}, y(t) = \frac{3}{4}(t-1)e^t - \frac{3}{4}(3t-1)e^{-t}$$

Să se rezolve ecuațiile integrale:

55.
$$x(t) - 2 \int_0^t x(\tau) d\tau = \frac{1}{9} (1 - \cos 3t)$$

R: $x(t) = \frac{1}{13}e^{2t} + \frac{1}{13}\cos 3t - \frac{2}{13}\sin 3t$ (cf. teoremei integrării originalului)

56.
$$x(t) = t + 4 \int_0^t (t - \tau) x(\tau) d\tau$$

R:
$$x(t) = \frac{1}{2} \text{sh} 2t$$

57.
$$x(t) = t \cos 3t + \int_0^t \sin 3(t - \tau)x(\tau)d\tau$$

R:
$$x(t) = 2\sin 3t - \frac{5}{\sqrt{6}}\sin \sqrt{6}t$$

58.
$$x(t) = \cos t + \int_0^t (t - \tau) e^{t - \tau} x(\tau) d\tau$$

$$\mathbf{R}: x(t) = \frac{1}{5}e^{2t} + \frac{4}{5}\cos t - \frac{2}{5}\sin t$$

- 59. O particulă M cu masa de 3 g se mişcă pe direcția axei Ox, fiind atrasă spre originea O cu o forță numeric egală cu 6x (proporțională cu deplasarea). Dacă la momentul inițial particula este în repaus în punctul x=10, să se determine poziția ei la orice moment t>0, presupunând că :
 - a) asupra particulei nu mai acționează nici o forță ;
 - b) asupra particulei acționează o forță de amortizare numeric egală cu de 9 ori viteza instantanee.
 - \mathbf{R} : a) Aplicăm legea lui Newton : masă · accelerație = forța

Dacă particula M se deplasează pe Ox, fiind la momentul t în punctul x(t) > 0, forța cu care este atrasă ea spre origine va fi -6x(t) (sensul forței fiind contrar cu sensul pozitiv de pe Ox); dacă particula M se găsește în punctul x(t) < 0, forța cu care este atrasă spre origine are același sens cu al axei Ox (deci pozitiv), deci forța va fi -6x(t). Ecuația diferențială ce descrie mișcarea particulei este 3x''(t) = -6x(t) cu condițiile inițiale x(0) = 10, x'(0) = 0. rezultă $x(t) = 10\cos\sqrt{2}t$ (deci o mișcare oscilatorie în jurul poziției de echilibru)

b) Se observă că forța de amortizare este -9x'(t) și obținem ecuația diferențială 3x''(t) = -6x(t) - 9x'(t) cu condițiile inițiale x(0) = 10, x'(0) = 0. Rezultă $x(t) = 20e^{-t} - 10e^{-2t}$ (deci o mișcare neoscilatorie, particula tinzând asimptotic spre poziția de echilibru)

60. Un punct material de masă m se mişcă rectiliniu, pe axa Ox, sub acțiunea unei forțe elastice $m\lambda x(t)$, proporțională cu deplasarea și sub acțiunea unei forțe rezistente $2m\mu x'(t)$, proporțională cu viteza, cu $\lambda > \mu^2$. Dacă la momentul inițial punctul material se găsește în x_0 și are viteza v_0 , să se arate că , la un moment oarecare t, t > 0, poziția punctului material este dată de

$$x(t) = \frac{1}{\omega} e^{-\mu t} [\omega x_0 \cos \omega t + (v_0 + \mu x_0) \sin \omega t]$$

unde
$$\omega^2 = \lambda - \mu^2$$

R: Procedând ca la pb. anterioară obținem $mx'' = -m\lambda x - 2m\mu x'$ cu condițiile inițiale $x(0) = x_0, x'(0) = v_0$

- 61. O bobină de inductivitate 2H, o rezistență de 16 ohmi și un condensator de capacitate 0,02 F sunt conectate în serie cu o sursă de tensiune electromotoare de mărime E volți. la momentul t=0 sarcina pe condensator și curentul sunt 0. Să se găsească sarcina pe condensator și curentul la un moment oarecare t,t>0 dacă :
 - a) E = 300 volţi;
 - b) $E = 100 \sin 3t$ volţi

R: Dacă I(t) și Q(t) sunt valorile la momentul t pentru curent și pentru sarcina electrică , aplicând legile lui Kirchoff avem $2\frac{dI}{dt}+16I+\frac{Q}{0,02}=$ $=E,I=\frac{dQ}{dt},$ deci $2\frac{d^2Q}{dt^2}+16\frac{dQ}{dt}+50Q=E$ cu condițiile inițiale Q(0)=0,I(0)=Q'(0)=0

a)
$$Q = 6 - 6e^{-4t}\cos 3t - 8e^{-4t}\sin 3t$$
, $I = 50e^{-4t}\sin 3t$

b)
$$Q = \frac{25}{52}(2\sin 3t - 3\cos 3t) + \frac{25}{52}e^{-4t}(3\cos 3t + 2\sin 3t),$$

 $I = \frac{75}{52}(2\cos 3t + 3\sin 3t) - \frac{25}{52}e^{-4t}(6\cos 3t + 17\sin 3t)$

Observația 9.1. Observație: S-a utilizat convenția care presupune că funcția original f(t) este înmulțită cu h(t).

Capitolul 10

Transformarea Z

10.1 Noțiuni teoretice

Definiția 10.1. Se numește **semnal discret** o funcție $x: \mathbb{Z} \to \mathbb{C}$, $n \to x_n$ (sau x(n) sau x[n]). Mulțimea semnalelelor discrete se va nota cu S_d . Dacă $x_n = 0$ pentru orice n < 0, se spune că semnalul x este cu **suport pozitiv**, iar mulțimea acestor semnale se notează cu S_d^+ .

Se notează cu δ_k , $k \in \mathbb{Z}$ fixat, semnalul definit prin:

$$\delta_k(n) = \begin{cases} 1, & \text{dacă } n = k \\ 0, & \text{dacă } n \neq k \end{cases}$$

şi vom pune $\delta_0 = \delta$.

Definiția 10.2. Dacă $x,y \in S_d$ și seria $\sum_{k=-\infty}^{\infty} x_{n-k}y_k$ este convergentă

pentru orice $n \in \mathbb{Z}$ cu suma z_n , atunci semnalul z se numeşte **convoluţia** semnalelor x şi y şi se notează z = x * y.

Dacă $x, y \in S_d^+$, atunci x * y există şi avem x * y = y * x, de asemenea: $x * \delta = x$ şi $(x * \delta_k)(n) = x(n-k)$

Pentru orice funcție $f: \mathbb{R} \to \mathbb{C}$ și T > 0 (pas de eșantionare) se poate obține un semnal discret punând $x_n = f(nT), n \in \mathbb{Z}$.

Definiția 10.3. Fiind dat $s \in S_d$, $s = (a_n)_{n \in \mathbb{Z}}$, se numește **transformata** Z a acestui semnal, funcția complexă L_s definită prin:

$$L_s(z) = \sum_{n = -\infty}^{\infty} a_n z^{-n}$$

definită în domeniul de convergență al seriei Laurent respective.

Indicăm principalele proprietăți ale transformării Z:

1. Există R, r > 0 astfel încât seria care definește transformarea Z converge în coroana r < |z| < R

2. (Linearitatea) Asocierea $s \to L_s$ este
 $\mathbb C$ - lineară și injectivă , așadar:

$$L_{\alpha_1 s_1 + \alpha_2 s_2}(z) = \alpha_1 L_{s_1}(z) + \alpha_2 L_{s_2}(z), \ \alpha_1, \alpha_2 \in \mathbb{C}, \ s_1, s_2 \in S_d$$

- 3. Dacă $s \in S_d^+$, $s=(a_n)_{n\in\mathbb{N}}$, atunci $\lim_{z\to\infty}L_s(z)=a_0$, iar dacă există $\lim_{n\to\infty}a_n=l$, atunci $\lim_{z\to 1}\frac{z-1}{z}L_s(z)=1$.
- 4. (Inversarea transformării Z) Fie $s \in S_d^+$, $s = (a_n)_{n \in \mathbb{N}}$ și se presupune că funcția $L_s(z)$ este olomorfă în domeniul r < |z| < R. Pentru orice $r < \rho < R$, fie γ_ρ frontiera discului $|z| \le \rho$ parcursă în sens pozitiv o singură dată. Atunci avem:

$$a_n = \frac{1}{2\pi i} \int_{\gamma_\rho} z^{n-1} L_s(z) dz, \quad n \in \mathbb{N}$$

5. (Teorema de convoluție) Dacă $s,t\in S_d^+,$ atunc
i $s*t\in S_d^+$ și avem:

$$L_{s*t} = L_s L_t$$

In particular,

$$L_{s*\delta_k}(z) = z^{-k} L_s(z), \quad k \in \mathbb{Z}$$

In tabelul 10.1 sunt date transformatele Z ale semnalelor uzuale.

-1	1 1	10	١ -	
Tabe	1111	ш)	

Tabelul 10.1.			
Nr.	S	L_s	
1	$h = (h_n)_{n \in \mathbb{Z}}$ unde $h_n = 0$ pentru $n < 0$ și $h_n = 1$ pentru $n \ge 0$	$\frac{z}{z-1}$	
2	$\delta_k, k \in \mathbb{Z}$	$\frac{1}{z^k}$	
3	$s = (n)_{n \in \mathbb{N}}$	$\frac{z}{(z-1)^2}$	
4	$s = (n^2)_{n \in \mathbb{N}}$	$\frac{z(z+1)}{(z-1)^3}$	
5	$s = (a^n)_{n \in \mathbb{N}}, \ a \in \mathbb{C}$	$\frac{z}{z-a}$	
6	$s = (e^{an})_{n \in \mathbb{N}}, \ a \in \mathbb{R}$	$\frac{z}{z - \mathrm{e}^a}$	
7	$s = (\sin \omega n)_{n \in \mathbb{N}}, \ \omega \in \mathbb{R}$	$\frac{z\sin\omega}{z^2 - 2z\cos\omega + 1}$	
8	$s = (\cos \omega n)_{n \in \mathbb{N}}, \ \omega \in \mathbb{R}$	$\frac{z(z-\cos\omega)}{z^2-2z\cos\omega+1}$	

10.2 Probleme rezolvate

1. Să se arate că următorul semnal nu admite transformată Z:

$$x \in S_d^+, x_n = 2^{n^2} h(n)$$

Soluție. Raza de convergență a seriei
$$\sum_{n=0}^{\infty} 2^{n^2} z^{-n}$$
 este
$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{2^{n^2}}} = 0, \text{ deci } D_x = \emptyset$$

2. Să se determine semnalul $x \in S_d^+$ a cărui transformată Z este dată de: a) $L_s(z) = \frac{z}{(z-3)^2} b) L_s(z) = \frac{z}{(z-1)(z^2+1)}; c) L_s(z) = \frac{z}{(z-1)^2(z^2+z-6)};$ $d)L_s(z) = \frac{z}{z^2+2az+2a^2}, a > 0$ dat.

Solutie.

$$a)x_n = \frac{1}{2\pi i} \int_{|z|=\rho} z^{n-1} L_s(z) dz = \operatorname{Rez}(z^{n-1} L_s(z), 3) =$$

$$= \operatorname{Rez}(\frac{z^n}{(z-3)^2}, 3) = \lim_{z \to 3} \left((z-3)^2 \frac{z^n}{(z-3)^2} \right)' = \lim_{z \to 3} nz^{n-1} = n3^{n-1}$$

b)
$$x_n = \frac{1}{2\pi i} \int_{|z|=\rho} z^{n-1} L_s(z) dz = \text{Rez}(z^{n-1} L_s(z), 1) + \text{Rez}(z^{n-1} L_s(z), i) + \text{Rez}(z^{n-1} L_s(z), -i)$$

$$\operatorname{Rez}(z^{n-1}L_s(z),1) = \lim_{z \to 1} z^{n-1} \frac{z}{(z-1)(z^2+1)} (z-1) = \frac{1}{2}$$

Analog
$$\text{Rez}(z^{n-1}L_s(z),i) = \frac{i^n}{2\mathrm{i}(i-1)}$$
 și $\text{Rez}(z^{n-1}L_s(z),-i) = \frac{(-1)^n i^n}{2\mathrm{i}(i+1)}$

Pentru
$$n = 4k \Longrightarrow x_n = 0$$

Pentru
$$n = 4k + 1 \Longrightarrow x_n = 0$$

Pentru
$$n = 4k + 2 \Longrightarrow x_n = 1$$

Pentru
$$n = 4k + 3 \Longrightarrow x_n = 1$$

c)
$$\operatorname{Rez}(z^{n-1}L_s(z), 1) = \lim_{z \to 1} [(z-1)^2 \frac{z^2}{(z-1)^2(z^2+z-6)}]' =$$

= $\lim_{z \to 1} \frac{nz^{n-1}(z^2+z-6) - z^n(2z+1)}{(z^2+z-6)^2} = -\frac{4n+3}{16}$

Analog
$$\operatorname{Rez}(z^{n-1}L_s(z),2)=\frac{2^n}{5}$$
 și $\operatorname{Rez}(z^{n-1}L_s(z),-3)=-\frac{(-3)^n}{80}$

Deci
$$x_n = -\frac{4n+3}{16} + \frac{2^n}{5} - \frac{(-3)^3}{80}$$

d)
$$z_{1,2} = a(-1 \pm i)$$
 sunt poli simpli

$$x_n = \sum_{i=1}^{2} \text{Rez}(\frac{z^n}{(z^2 + 2a + 2a^2)}, z_i) = \frac{a^n(-1+i)^n}{2z_1 + 2a} + \frac{a^n(-1-i)^n}{2z_1 + 2a} = -\frac{i}{2a}(z_1^n - z_2^n)$$

 z_1 și z_2 se scriu:

$$z_1 = a(-1+i) = a\sqrt{2}(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})$$

$$z_2 = a(-1 - i) = a\sqrt{2}(\cos\frac{3\pi}{4} - i\sin\frac{3\pi}{4})$$

$$Deci x_n = 2^{\frac{n}{2}} a^{n-1} \sin \frac{3n\pi}{4}$$

3. Fie $x = (x_n)_{n \ge 0}$ din S_d^+ şi $y = (y_n)_{n \ge 0}$, unde $y_n = x_0 + x_1 + \ldots + x_n$. Să se arate că $Y(z) = \frac{z}{z-1}X(z)$.

Soluție. Fie
$$Y(z) = \sum_{n=0}^{\infty} y_n z^{-n} = \sum_{n=0}^{\infty} x_0 z^{-n} + \sum_{n=0}^{\infty} x_1 z^{-n} + \dots + \sum_{n=0}^{\infty} x_{n-1} z^{-n} + \sum_{n=0}^{\infty} x_n z^{-n}$$

Dar $X(z) = \sum_{n=0}^{\infty} x_n z^{-n}, \sum_{n=0}^{\infty} x_{n-1} z^{-n} = \frac{1}{z} \sum_{n=0}^{\infty} x_n z^{-n} = \frac{1}{z} X(z)$ (deoarece $x_{-1} = 0$); $\sum_{n=0}^{\infty} x_{n-2} z^{-n} = \frac{1}{z^2} z^{-n} = \frac{1}{z^2} X(z)$ etc. \Longrightarrow

$$\Longrightarrow Y(z) = X(z) \left(1 + \frac{1}{z} + \frac{1}{z^2} + \dots\right) = X(z) \cdot \frac{z}{z-1}$$

4. Dacă $x, y \in S_d^+$ și $\forall n \in \mathbb{Z}, y_n = x_n + x_{n+1},$ să se calculeze $H(z) = \frac{Y(z)}{X(z)}.$

Soluție. Avem
$$y = x + x \star \delta_{-1} \Longrightarrow Y(z) = X(z) + X(z)z \Longrightarrow H(z) = 1 + z$$

5. Cu ajutorul transformării Z, să se rezolve în mulțimea semnalelor cu suport pozitiv ecuația y*a=x în următoarele cazuri:

$$a)a = \delta_{-2} + \delta_{-1} - 6\delta, x_n = n \cdot h(n), n \in \mathbb{Z}$$
$$b)a = \delta_{-2} - 3\delta_{-1} + 2\delta, x_n = 5 \cdot 3^n h(n), n \in \mathbb{Z}$$
$$c)a = \delta_{-2} - \frac{5}{2}\delta_{-1} + \delta, x_n = \cos(n+1) \cdot h(n+1), n \in \mathbb{Z}$$

Soluție. a) Deoarece $x \in S_d^+$, ecuația dată are soluție $y \in S_d^+$ și aceasta este unică . Intr-adevăr, ecuația de convoluție se scrie

$$y_{n+2} + y_{n+1} - 6y_n = n \cdot h(n), n \in \mathbb{Z}(1)$$

Cu $x,y\in S_d^+$, relația (1) este identic satisfăcută pentru $n\leq -3$, iar pentru n=-2 și n=-1 ea furnizează valorile lui y_0 , respectiv y_1 : $y_0=0,y_1=0$. Pentru $n\geq 0$ relația de recurență (1) devine:

$$y_{n+2} + y_{n+1} - 6y_n = n, n \in \mathbb{Z},$$

cu soluția unică $(y_n)_{n\in\mathbb{N}}$ de îndată ce y_0 și y_1 sunt cunoscuți.

Deoarece membrul drept al ecuației de convoluție este un semnal care admite transformată Z, aplicăm transformarea Z acestei ecuații, în ipoteza că și semnalul $y \in S_d^+$ are transformată Z, $L_y(z)$.

Rezultă
$$L_y(z) = \frac{z}{(z-1)^2(z^2+z-6)}$$
, de unde $y_n = \frac{2^n}{5} - \frac{(-3)^n}{80} - \frac{4n+3}{16}$, $n \in \mathbb{N}$ (vezi ex.2),b)).

Astfel am găsit un semnal $y \in S_d^+$ cu proprietatea că $L_{y*a}(z) = L_x(z)$. Din injectivitatea aplicației L rezultă y*a = x și din unicitatea în S_d^+ a soluției ecuației de convoluție rezultă că semnalul găsit cu ajutorul transformării Z este cel căutat.

b)Ecuația de convoluție este

$$y_{n+2} - y_{n+1} + 2y_n = 5 \cdot 3^n h(n), n \in \mathbb{Z}$$

Aplic transformata Z acestei ecuații și obținem:

$$L_y(z)(z^2 - 3z + 2) = 5\frac{z}{z - 3} \Longrightarrow L_y(z) = \frac{5z}{(z - 3)(z^2 - 3z + 2)}$$

Descompunem în fracții simple și obținem:

$$L_y(z) = \frac{15}{2} \frac{1}{z - 3} + \frac{5}{2} \frac{1}{z - 1} - 10 \frac{1}{z - 2} \Longrightarrow y_n = \frac{5}{2} (1 - 2^{n+1} + 3^n), n \in \mathbb{N}$$

c) x se mai scrie: $x = (\cos n \cdot h(n))_{n \in \mathbb{Z}} * \delta_{-1}$

Aplicând transformata Z relației de convoluție obținem:

$$L_y(z)(z^2 - \frac{5}{2}z + 1) = \frac{z(z - \cos 1)}{z^2 - 2z\cos 1 + 1}z \Longrightarrow$$

$$\Longrightarrow L_y(z) = \frac{2z(z - \cos 1)}{(2z^2 - 5z + 2)(z^2 - 2z\cos 1 + 1)} \Longrightarrow$$

$$\Longrightarrow y_n = \frac{2}{3(5 - 4\cos 1)}[(2 - \cos 1)2^{n+1} + (2\cos 1 - 1)2^{-n} - 3\cos n], n \in \mathbb{N}$$

6. Cu ajutorul transformării Z, să se determine şirurile $(x_n)_{n\in\mathbb{N}}$ definite prin următoarele relații:

a)
$$x_0 = 0, x_1 = 1, x_{n+2} = x_{n+1} + x_n, n \in \mathbb{N}$$
(sirul lui Fibonacci)

b)
$$x_0 = 0, x_1 = 1, x_{n+2} = x_{n+1} - x_n, n \in \mathbb{N}$$

c)
$$x_0 = x_1 = 0, x_2 = -1, x_3 = 0, x_{n+4} + 2x_{n+3} + 3x_{n+2} + 2x_{n+1} + x_n = 0, n \in \mathbb{N}$$

d)
$$x_0 = 2, x_{n+1} + 3x_n = 1, n \in \mathbb{N}$$

$$(e)x_0 = 0, x_1 = 1, x_{n+2} - 4x_{n+1} + 3x_n = (n+1)4^n, n \in \mathbb{N}$$

Soluție. Considerăm șirul $(x_n)_{n\in\mathbb{N}}$ ca fiind resticția unui semnal $x\in S_d^+$ la \mathbb{N} și transcriem informațiile despre șirul dat sub forma unei ecuații de convoluție a*x=y, pe care o rezolvăm în S_d^+ procedând ca la ex. 3).

a) Fi
e $x\in S_d^+$ așa încât restricția lui xla
 $\mathbb N$ să fie șirul căutat. Observăm că

$$x_{n+2} - x_{n+1} - x_n = y_n, n \in \mathbb{Z},$$

unde $y_n = 0$ pentru $n \neq -1$ și $y_{-1} = 1$.

Aşadar, $x \in S_d^+$ satisface ecuația de convoluție a*x=y, cu $a=\delta_{-2}-\delta_{-1}+\delta, y=\delta_{-1}.$

Aplicând transformata Z rezultă :

$$L_x(z)(z^2-z-1)=z\Longrightarrow x_n=rac{1}{\sqrt{5}}\left[\left(rac{1+\sqrt{5}}{2}\right)^n-\left(rac{1-\sqrt{5}}{2}\right)^n\right]$$

b) Analog a) avem a * x = y, cu $a = \delta_{-2} - \delta_{-1} + \delta$, $y = \delta_{-1}$

Aplic transformata Z şi obţinem:

$$L_x(z)(z^2 - z + 1) = z \Longrightarrow L_x(z) = \frac{z}{z^2 - z + 1}$$

Procedând ca la ex.2) obţinem:

$$x_n = \text{Rez}\left(z^{n-1}\frac{z}{z^2 - z + 1}, \frac{1 + i\sqrt{3}}{2}\right) + \text{Rez}\left(z^{n-1}\frac{z}{z^2 - z + 1}, \frac{1 - i\sqrt{3}}{2}\right)$$

Calculăm

$$\operatorname{Rez}\left(\frac{z^{n}}{z^{2} - z + 1}, \frac{1 + i\sqrt{3}}{2}\right) = \lim_{z \to \frac{1 + i\sqrt{3}}{2}} \frac{z^{n}}{z^{2} - z + 1} \left(z - \frac{1 + \sqrt{3}}{2}\right) = \frac{\left(\frac{1 + i\sqrt{3}}{2}\right)^{n}}{i\sqrt{3}} = \frac{\cos\frac{2n\pi}{3} + i\sin\frac{2n\pi}{3}}{i\sqrt{3}}$$

Analog

$$\operatorname{Rez}\left(\frac{z^n}{z^2 - z + 1}, \frac{1 - i\sqrt{3}}{2}\right) = \frac{\cos\frac{2n\pi}{3} - i\sin\frac{2n\pi}{3}}{-i\sqrt{3}}$$

Atunci $x_n = \frac{2}{\sqrt{3}} \sin \frac{2n\pi}{3}, n \in \mathbb{N}$

c)
Avem
$$a*x = y$$
,cu $a = \delta_{-4} + 2\delta_{-3} + 3\delta_{-2} + 2\delta_{-1} + \delta, y = -\delta_{-2} - 2\delta_{-1}$

Aplicând transformata Z obţinem
$$L_x(z) = -\frac{z(z+2)}{(z^2+z+1)^2}$$

După ce descompunem în fracții simple și calculăm reziduurile, ținând cont că $\varepsilon_1, \varepsilon_2$ sunt poli de ordinul doi, unde $\varepsilon_1, \varepsilon_2$ sunt rădăcinile comlexe de ordin 3 ale unității, obținem:

$$x_n = \frac{(2n-4)(\varepsilon_1^n - \varepsilon_2^n) - (n+1)(\varepsilon_1^{n-1} + \varepsilon_1^{n-2} - \varepsilon_2^{n-1} - \varepsilon_2^{n-2})}{(\varepsilon_2 - \varepsilon_1)^3} = \frac{2(n-1)}{\sqrt{3}} \sin \frac{2n\pi}{3}, n \in \mathbb{N}$$

d)
Avem
$$a*x=y,$$
 cu $a=\delta_{-1}+3\delta$ și $y_n=1, \forall n\geq 0, y_{-1}=x_0+3x_{-1}=2, y_n=0, \forall n\leq -2,$ adică $y=1+2\delta_{-1}$

Aşadar,
$$\delta_{-1} * x + 3\delta * x = 1 + 2\delta_{-1}$$

Aplicând transformata
$$Z$$
 obţinem $zL_x(z) + 3L_x(z) = \frac{z}{z-1} + 2z = \frac{2z^2 + 3z}{z-1} \Longrightarrow L_x(z) = \frac{2z^2 + 3z}{(z-1)(z+3)} \Longrightarrow x_n = \text{Rez}(z^{n-1} \cdot \frac{2z^2 + 3z}{(z-1)(z+3)}, 1) + \text{Rez}(z^{n-1} \cdot \frac{2z^2 + 3z}{(z-1)(z+3)}, -3)$

$$\operatorname{Rez}(z^{n-1} \cdot \frac{2z^2 + 3z}{(z-1)(z+3)}, 1) = \lim_{z \to 1} (z-1) \cdot z^{n-1} \cdot \frac{2z^2 + 3z}{(z-1)(z+3)} = \frac{5}{4}$$

$$\operatorname{Rez}(z^{n-1} \cdot \frac{2z^2 + 3z}{(z-1)(z+3)}, -3) = \lim_{z \to -3} (z+3) \cdot z^{n-1} \cdot \frac{2z^2 + 3z}{(z-1)(z+3)} = (-3)^{n-1} \cdot \frac{12}{-4} = -3 \cdot (-3)^{n-1}$$

Atunci
$$x_n = \frac{5}{4} - 3 \cdot (-3)^{n-1}$$

e)
Avem
$$a*x=y, a=\delta_{-2}-4\delta_{-1}+3\delta, y_n=0, n\leq -2, y_{-1}=1, y_n=(n+1)4^n, n\in\mathbb{N}$$

Fie
$$s_1 = (n4^n)_{n \in \mathbb{N}}$$
 și $s_2 = (4^n)_{n \in \mathbb{N}}$

$$L_{s_1}(z) = -zL'_{s_2}(z) = -z(\frac{z}{z-4})' = -z(-\frac{4}{(z-4)^2}) = \frac{4z}{(z-4)^2}$$

Deci
$$L_x(z)(z^2 - 4z + 3) = \frac{4z}{(z-4)^2} + \frac{z}{z-4} + z = \frac{z^2}{(z-4)^2} + z \Longrightarrow$$

 $\Longrightarrow L_x(z) = \frac{z(z^2 - 7z + 16)}{(z-4)^2(z-1)(z-3)}$

Descompunem în fracții simple și găsim

$$x_n = \frac{1}{9}[18 \cdot 3^n + (3n - 13)4^n - 5], n \in \mathbb{N}$$

7. Să se determine şirurile $(a_n)_{n\in\mathbb{N}}$ şi $(b_n)_{n\in\mathbb{N}}$ cu $a_0=1,b_0=1$ şi $a_{n-1}++7a_n-b_n=0,b_{n+1}+a_n+5b_n=0,\forall n\in\mathbb{N}$

Solutie.

$$a_{n-1}+7a_n-b_n=\left\{\begin{array}{ll} 0, & \mathrm{dac} n\geq 0 \mathrm{\ sau\ } n\leq -2\\ 1, & \mathrm{dac} n=-1 \end{array}\right.$$

$$b_{n+1} + a_n + 5b_n = \begin{cases} 0, & \text{dacă } n \ge 0 \text{ sau } n \le -2\\ 1, & \text{dacă } n = -1 \end{cases}$$

Atunci $a * \delta_{-1} + 7a * \delta - b * \delta = \delta_{-1}$ şi $b * \delta_{-1} + a * \delta + 5b * \delta = \delta_{-1}$ Aşadar,

$$L_a(z)z + 7L_a(z) - L_b(z) = z$$

$$L_b(z)z + L_a(z) + 5L_b(z) = z$$

Rezultă
$$L_a(z) = \frac{z}{z+6}, L_b(z) = \frac{z}{z+6} \Longrightarrow a_n = b_n = (-6)^n$$

10.3 Probleme propuse

1. Să se arate că următorul semnal nu admite transformată Z:

$$x \in S_d, x_n = e^{an}, a \in \mathbb{C}$$

R: Seria
$$\sum_{n=0}^{\infty} e^{an} z^{-n}$$
 este convergentă $\iff |z| > |e^a|$, iar seria

$$\sum_{n=1}^{\infty} \mathrm{e}^{-an} z^n$$
este convergentă $\iff |z| < |\mathrm{e}^a|$. Rezultă $D_x = \emptyset$

2. Să se determine semnalul $x \in S_d^+$ a cărui transformată Z este:

a)
$$L_x(z) = \frac{2z+3}{z^2-5z+6}$$
; b) $L_x(z) = \frac{z^2+1}{z^2-z+1}$; c) $L_x(z) = \frac{z}{(z-3)^2}$

R: a)
$$x_0 = 0, x_n = 3^{n+1} - 7 \cdot 2^{n-1}, n \ge 1$$

b)
$$x_0 = 1, x_n = \frac{2}{\sqrt{3}} \sin \frac{2n\pi}{3}, n \ge 1$$

c)
$$x_n = n3^{n-1}$$

3. Cu ajutorul transformării Z, să se rezolve în mulțimea semnalelor cu suport pozitiv ecuația y*a=x în următoarele cazuri:

a)
$$a = \delta_{-2} - 4\delta_{-1} + 3\delta, x_n = 2h(n), n \in \mathbb{Z}$$

b)
$$a = \delta_{-1} - 2\delta, x_n = (n^2 - 2n - 1)h(n), n \in \mathbb{Z}$$

R: a)
$$L_y(z) = \frac{2z}{(z-1)^2(z-3)}, y_n = \frac{1}{2}(3^n - 2n - 1), n \in \mathbb{N}$$

b)
$$L_y(z) = -\frac{z(z+1)}{(z-1)^3}, y_n = -n^2, n \in \mathbb{N}$$

4) Cu ajutorul transformării Z, să se determine şirurile $(x_n)_{n\in\mathbb{N}}$ definite prin următoarele relații liniare de recurență :

a)
$$x_0 = 4, x_1 = 6, x_{n+2} - 3x_{n+1} + 2x_n = 0, n \in \mathbb{N}$$

b)
$$x_0 = 0, x_1 = 11, x_2 = -8, x_3 = 6, x_{n+4} - \frac{5}{2}x_{n+3} + \frac{5}{2}x_{n+1} - x_n = 1, n \in \mathbb{N}$$

c)
$$x_0 = 0, x_1 = 3, x_{n+2} - 4x_{n+1} + 3x_n = 2, n \in \mathbb{N}$$

$$d)x_0 = 0, x_1 = -1, x_{n+2} + x_{n+1} - 6x_n = n, n \in \mathbb{N}$$

e)
$$x_0 = x_1 = 0, x_{n+2} - 3x_{n+1} + 2x_n = 2^n, n \in \mathbb{N}$$

$$f(x_0) = 0, x_1 = 1, x_{n+2} - 5x_{n+1} + 6x_n = 4 \cdot 5^n, n \in \mathbb{N}$$

g)
$$x_0 = x_1 = 0, x_2 = 1, x_{n+3} + 3x_{n+2} + 3x_{n+1} + x_n = 0, n \in \mathbb{N}$$

R: a)
$$x_n = 2 + 2^{n+1}, n \in \mathbb{N}$$

$$b)a * x = y, a = \delta_{-4} - \frac{5}{2} \cdot \delta_{-3} + \frac{5}{2} \cdot \delta_{-1} - \delta, y = 11 \cdot \delta_{-3} - \frac{71}{2} \cdot \delta_{-2} + 26 \cdot \delta_{-1} + h \Longrightarrow L_x(z) = \frac{z(22z^3 - 93z^2 + 123z - 50)}{2(z-1)^2(z+1)(z-2)(z-\frac{1}{2})} \Longrightarrow x_n = 8(-1)^{n+1} + 2^{3-n} - n, n \in \mathbb{N}$$

$$c)x_n = 2 \cdot 3^n - n - 2, n \in \mathbb{N}$$

$$d)a * x = y, a = \delta_{-2} + \delta_{-1} - 6 \cdot \delta, y_n = 0, n \le -2, y_{-1} = -1, y_n = n \Longrightarrow$$
$$\Longrightarrow L_x(z) = -\frac{z^2}{(z-1)^2(z+3)} \Longrightarrow x_n = -\frac{1}{16}[(-3)^{n+1} + 4n + 3], n \in \mathbb{N}$$

e)
$$x_n = 1 + 2^{n-1}(n-2)$$

f)
$$a*x = y, a = \delta_{-2} - 5 \cdot \delta_{-1} + 6 \cdot \delta, y_n = 0, n \le -2, y_{-1} = 1, y_n = 4 \cdot 5^n \Longrightarrow L_x(z) = \frac{z(z-1)}{(z-2)(z-3)(z-5)} \Longrightarrow x_n = \frac{1}{3}(2^n - 3^{n+1} + 2 \cdot 5^n), n \in \mathbb{N}$$

g) $x_n = (-1)^n \frac{n(n-1)}{2}, n \in \mathbb{N}$

Capitolul 11

Ecuații cu derivate parțiale de ordinul doi

11.1 Noțiuni teoretice

Fie $F \colon \Omega \subset \mathbb{R}^m \to \mathbb{R}$. Se numește **ecuație cu derivate parțiale de ordinul II** cu două variabile independente definită de F, problema găsirii tuturor funcțiilor z(x,y) ce verifică relația

$$F\left(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y^2}\right) = 0 \tag{11.1}$$

O ecuație cu derivate parțiale de ordinul II se numește cvasiliniară , dacă e liniară în raport cu derivatele de ordinul II. In cazul a două variabile independente, forma generală a ecuației cvasiliniare este

$$A(x,y)\frac{\partial^2 z}{\partial x^2} + 2B(x,y)\frac{\partial^2 z}{\partial x \partial y} + C(x,y)\frac{\partial^2 z}{\partial y^2} + D\left(x,y,z,\frac{\partial z}{\partial x},\frac{\partial z}{\partial y}\right) = 0 \quad (11.2)$$

unde A, B, C sunt funcții reale, continue, derivabile și nu toate nule în același timp.

Se numesc **curbe caracteristice** pentru ecuația (11.2), curbele aflate pe suprafațele integrale ale acestei ecuații, ale căror proiecții în planul xOy verifică ecuația caracteristică :

$$A(x,y)dy^{2} - 2B(x,y)dxdy + C(x,y)dx^{2} = 0$$
(11.3)

Clasificare:

- 1) Dacă $B^2 AC > 0$, cele două familii de caracteristice sunt reale și distincte și ecuația este de **tip hiperbolic**.
- 2)Dacă $B^2 AC = 0$, avem o singură familie de caracteristice reale și ecuația este de **tip parabolic**.
- 3) Dacă $B^2 AC < 0$, cele două familii de caracteristice sunt complex conjugate și ecuația este de **tip eliptic**.

Direcțiile

$$\frac{dy}{dx} = \mu_1(x, y), \frac{dy}{dx} = \mu_2(x, y) \tag{11.4}$$

determinate de ecuația (11.3) se numesc direcții caracteristice ale ecuației (11.2).

Prin integrarea ecuațiilor (11.4) se obțin două familii de curbe în planul xOy, $\varphi_1(x,y) = c_1$, $\varphi_2(x,y) = c_2$ (c_1 , c_2 constante arbitrare), curbe care sunt proiecțiile pe planul xOy ale curbelor caracteristice.

Dacă ecuația este de tip hiperbolic, cu schimbarea de variabile $\xi = \varphi_1(x, y), \eta = \varphi_2(x, y)$, ecuația (11.2) se aduce la prima formă canonică

$$\frac{\partial^2 z}{\partial \xi \partial \eta} + G_1 \left(\xi, \eta, z, \frac{\partial z}{\partial \xi}, \frac{\partial z}{\partial \eta} \right) = 0 \tag{11.5}$$

Dacă se efectuează acum transformarea $\xi=x+y, \eta=x-y,$ din ecuația (11.5) rezultă

$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} + G_1'\left(\xi, \eta, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) = 0 \tag{11.6}$$

care este a doua formă canonică pentru ecuația cvasiliniară de tip hiperbolic.

Dacă ecuația este de tip parabolic, $\varphi_1(x,y) = \varphi_2(x,y) = \varphi(x,y)$, cu schimbarea de variabile $\xi = \varphi(x,y), \eta = x$, ajungem la forma canonică a ecuației (11.2)

$$\frac{\partial^2 z}{\partial \eta^2} + G_2\left(\xi, \eta, z, \frac{\partial z}{\partial \xi}, \frac{\partial z}{\partial \eta}\right) = 0 \tag{11.7}$$

Dacă ecuația este de tip eliptic, funcțiile $\varphi_1(x,y)$ și $\varphi_2(x,y)$ sunt complex conjugate și notăm $\alpha(x,y) = \text{Re}\varphi_1(x,y), \beta(x,y) = \text{Im}\varphi_1(x,y)$. Cu schimbarea de variabile $\xi = \alpha(x,y), \eta = \beta(x,y)$ se ajunge la forma canonică a ecuației (11.2)

$$\frac{\partial^2 z}{\partial \xi^2} + \frac{\partial^2 z}{\partial \eta^2} + G_3\left(\xi, \eta, z, \frac{\partial z}{\partial \xi}, \frac{\partial z}{\partial \eta}\right) = 0 \tag{11.8}$$

In cazul ecuațiilor liniare și omogene în raport cu derivatele parțiale de ordinul II cu coeficienți constanți

$$A\frac{\partial^2 z}{\partial x^2} + 2B\frac{\partial^2 z}{\partial x \partial y} + C\frac{\partial^2 z}{\partial y^2} = 0$$
 (11.9)

A,B,C constante, ecuația diferențială a proiecțiilor curbelor caracteristice pe planul xOy este

$$Ady^2 - 2Bdxdy + Cdx^2 = 0 (11.10)$$

Direcțiile caracteristice sunt

$$dy - \mu_1 dx = 0, dy - \mu_2 dx = 0 \tag{11.11}$$

şi ne dau $y - \mu_1 x = c_1, y - \mu_2 x = c_2, c_1, c_2$ constante.

Dacă ecuația este de tip hiperbolic, cu schimbarea de variabile $\xi = y - \mu_1 x$, $\eta = y - \mu_2 x$, ecuația (11.9) devine

$$\frac{\partial^2 z}{\partial \xi \partial \eta} = 0 \tag{11.12}$$

cu soluția generală $z = f(\xi) + g(\eta)$, unde f, g sunt funcții arbitrare. Revenind la vechile variabile $z(x, y) = f(y - \mu_1 x) + g(y - \mu_2 x)$

Dacă ecuația este de tip parabolic, $\mu_1 = \mu_2 = \frac{B}{A}$ și ecuația (11.10) se reduce la Ady - Bdx = 0, cu integrala generală Ay - Bx = c, c constantă Schimbarea de variabile $\xi = Ax - By$, $\eta = x$ aduce ecuația (11.9) la forma canonică

$$\frac{\partial^2 z}{\partial n^2} = 0 \tag{11.13}$$

Soluția generală a ecuației (11.13) este $z=\eta f(\xi)+g(\xi),$ unde f,g sunt funcții arbitrare.

Dacă ecuația este de tip eliptic, forma sa canonică este ecuația Laplace

$$\frac{\partial^2 z}{\partial \xi^2} + \frac{\partial^2 z}{\partial \eta^2} = 0 \tag{11.14}$$

Ecuația omogenă a coardei vibrante sau ecuația undelor plane este

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{a^2} \cdot \frac{\partial^2 u}{\partial t^2} = 0, a^2 = \frac{\rho}{T_0}$$
(11.15)

unde ρ este masa specifică liniară a coardei, T_0 este tensiunea la care e supusă coarda în poziția de repaus. Soluția ecuației (11.15) care îndeplinește condițiile inițiale $u(x,0)=f(x), \frac{\partial u}{\partial t}(x,0)=g(x), x\in [0,l]$, unde f,g sunt funcții precizate este dată de **formula lui d'Alembert**:

$$u(x,t) = \frac{1}{2} [f(x-at) + f(x+at)] + \frac{1}{2a} \int_{x-at}^{x+at} g(\tau) d\tau$$
 (11.16)

Soluția lui Bernoulli și Fourier pentru ecuația (11.15) cu condițiile la limită $u(0,t)=0, u(l,t)=0, t\geq 0$ și condițiile inițiale $u(x,0)=f(x), \frac{\partial u}{\partial t}(x,0)==g(x), x\in [0,l]$ este

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi a}{l} t + B_n \sin \frac{n\pi a}{l} t \right) \sin \frac{n\pi}{l} x \tag{11.17}$$

unde

$$A_{n} = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n\pi}{l} x dx, B_{n} = \frac{2}{n\pi a} \int_{0}^{l} g(x) \sin \frac{n\pi}{l} x dx$$
 (11.18)

Soluția ecuației căldurii

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{a^2} \cdot \frac{\partial u}{\partial t}, a^2 = \frac{k}{c\rho}$$
 (11.19)

unde k este coeficientul de conductibilitate termică , c căldura specifică , ρ densitatea, ce satisface condiția inițială $u(x,0)=f(x), x\in\mathbb{R}, f$ fiind dată continuă , mărginită , absolut integrabilă pe \mathbb{R} este dată de

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} f(\tau) e^{-\frac{(x-\tau)^2}{4a^2t}} d\tau, t > 0$$
 (11.20)

11.2 Probleme rezolvate

Să se reducă la forma canonică ecuațiile:

$$1. \ \frac{1}{x} \cdot \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Soluție.
$$B^2 - AC = -\frac{1}{x}$$

Dacă x>0, ecuația este de tip eliptic. Cele două familii de caracteristice sunt soluțiile ecuației diferențiale $\frac{1}{x}dy^2+dx^2=0\Longrightarrow dy==\pm \mathrm{i}\sqrt{x}dx$, adică $y+\mathrm{i}\frac{2}{3}x^{\frac{3}{2}}=c_1,y-\mathrm{i}\frac{2}{3}x^{\frac{3}{2}}=c_2$

Facem schimbarea de variabilă $\xi = y, \eta = \frac{2}{3}x^{\frac{3}{2}}$.

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial u}{\partial \eta} \cdot x^{\frac{1}{2}} \\ \frac{\partial u}{\partial y} &= \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = \frac{\partial u}{\partial \xi} \\ \frac{\partial^2 u}{\partial x^2} &= \left[\frac{\partial^2 u}{\partial \xi \partial \eta} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial^2 u}{\partial \eta^2} \cdot \frac{\partial \eta}{\partial x} \right] \cdot x^{\frac{1}{2}} + \frac{\partial u}{\partial \eta} \cdot \frac{1}{2} x^{-\frac{1}{2}} = \frac{\partial^2 u}{\partial \eta^2} \cdot x + \frac{\partial u}{\partial \eta} \cdot \frac{1}{2} x^{-\frac{1}{2}} \\ \frac{\partial^2 u}{\partial y^2} &= \frac{\partial^2 u}{\partial \xi^2} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial^2 u}{\partial \xi \partial \eta} \cdot \frac{\partial \eta}{\partial y} = \frac{\partial^2 u}{\partial \xi^2} \end{split}$$

Forma canonică a ecuației va fi:

$$\frac{1}{x} \cdot \left[\frac{\partial^2 u}{\partial \eta^2} \cdot x + \frac{\partial u}{\partial \eta} \cdot \frac{1}{2} x^{-\frac{1}{2}} \right] + \frac{\partial^2 u}{\partial \xi^2} = \frac{\partial^2 u}{\partial \eta^2} + \frac{\partial^2 u}{\partial \xi^2} + \frac{1}{3\eta} \cdot \frac{\partial u}{\partial \eta} = 0, \text{ deoarece}$$

$$\frac{1}{x} \cdot \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{x^{\frac{3}{2}}} = \frac{1}{3\eta}$$

Dacă x<0, ecuația este de tip hiperbolic și familiile de caracteristice sunt : $y+\frac{2}{3}(-x)^{\frac{3}{2}}=c_1, y-\frac{2}{3}(-x)^{\frac{3}{2}}=c_2$

Facem schimbarea de variabile $\xi = y + \frac{2}{3}(-x)^{\frac{3}{2}}, \eta = y - \frac{2}{3}(-x)^{\frac{3}{2}}$

Analog se arată că ecuația se reduce la forma canonică

$$\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{1}{6(\xi - \eta)} \cdot \left(\frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right) = 0$$

244CAPITOLUL 11. ECUAȚII CU DERIVATE PARȚIALE DE ORDINUL DOI

2.
$$(1+x^2)\frac{\partial^2 u}{\partial x^2} + (1+y^2)\frac{\partial^2 u}{\partial y^2} + x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$

Soluție. $B^2 - AC = -(1+x^2)(1+y^2) < 0$, deci ecuația este de tip eliptic

Din ecuația caracteristică

$$(1+x^2)dy^2 + (1+y^2)dx^2 = 0$$

rezultă

$$\sqrt{1+x^2}dy = \pm i\sqrt{1+y^2}dx,$$

deci familiile de caracteristice sunt

$$\ln(y + \sqrt{1 + y^2}) + i \ln(x + \sqrt{1 + x^2}) = c_1,$$

$$\ln(y + \sqrt{1 + y^2}) - i \ln(x + \sqrt{1 + x^2}) = c_2$$

Facem schimbarea de variabile $\xi = \ln(y + \sqrt{1 + y^2}), \eta = \ln(x + \sqrt{1 + x^2})$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial u}{\partial \eta} \cdot \frac{1}{\sqrt{1+x^2}}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{1+x^2} \cdot \frac{\partial^2 u}{\partial \eta^2} - \frac{x}{(1+x^2)^{\frac{3}{2}}} \cdot \frac{\partial u}{\partial \eta}$$

$$\frac{\partial u}{\partial y} = \frac{1}{\sqrt{1+y^2}} \cdot \frac{\partial u}{\partial \xi}$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{1}{1+y^2} \cdot \frac{\partial^2 u}{\partial \xi^2} - \frac{y}{(1+y^2)^{\frac{3}{2}}} \cdot \frac{\partial u}{\partial \xi}$$

Ecuația se reduce la forma canonică $\frac{\partial^2 u}{\partial \eta^2} + \frac{\partial^2 u}{\partial \xi^2} = 0$

3.
$$\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} - 3\frac{\partial^2 u}{\partial y^2} + 2\frac{\partial u}{\partial x} + 6\frac{\partial u}{\partial y} = 0$$

Soluție. $A=1, B=1, C=-3 \Longrightarrow B^2-AC=4>0$, deci ecuația este de tip hiperbolic

Ecuația caracteristică este :

$$\left(\frac{dy}{dx}\right)^2 - 2\frac{dy}{dx} - 3 = 0 \Longrightarrow \frac{dy}{dx} = 3, \frac{dy}{dx} = -1 \Longrightarrow y - 3x = c_1, y + x = c_2$$

Facem schimbarea de variabile $\xi = y - 3x, \eta = y + x$

$$\frac{\partial u}{\partial x} = -3\frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}$$

$$\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial \xi^2} - 6 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

$$\frac{\partial^2 u}{\partial x \partial y} = -3 \frac{\partial^2 u}{\partial \xi^2} - 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \xi^2} + 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

Forma canonică este:

$$-16\frac{\partial^2 u}{\partial \xi \partial \eta} + 8\frac{\partial u}{\partial \eta} = 0 \Longrightarrow \frac{\partial^2 u}{\partial \xi \partial \eta} - \frac{1}{2}\frac{\partial u}{\partial \eta} = 0$$

Să se aducă la forma canonică și să se determine soluțiile generale ale ecuațiilor:

4.
$$\frac{\partial^2 u}{\partial x^2} - 2\cos x \cdot \frac{\partial^2 u}{\partial x \partial y} - (3 + \sin^2 x) \cdot \frac{\partial^2 u}{\partial y^2} - y \cdot \frac{\partial u}{\partial y} - \frac{(y + \sin x)^2 + 8}{16}u = 0$$

Soluție. $B^2 - AC = 4 > 0$, deci ecuația este de tip hiperbolic

Ecuația caracteristică este :

$$\left(\frac{dy}{dx}\right)^2 + 2\cos x \cdot \frac{dy}{dx} - (3+\sin^2 x) = 0 \Longrightarrow \frac{dy}{dx} = -\cos x \pm 2 \Longrightarrow 2x + \sin x + y = c_1, 2x - \sin x - y = c_2$$

Facem schimbarea de variabile $\xi = 2x + \sin x + y, \eta = 2x - \sin x - y$

$$\frac{\partial u}{\partial x} = (2 + \cos x) \frac{\partial u}{\partial \xi} + (2 - \cos x) \frac{\partial u}{\partial \eta}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} - \frac{\partial u}{\partial \eta}$$

$$\frac{\partial^2 u}{\partial x^2} = (2 + \cos x)^2 \frac{\partial^2 u}{\partial \xi^2} + 2(4 - \cos^2 x) \frac{\partial^2 u}{\partial \xi \partial \eta} + (2 - \cos x)^2 \frac{\partial^2 u}{\partial \eta^2} - \sin x \frac{\partial u}{\partial \xi} + \sin x \frac{\partial u}{\partial \eta}$$

$$\frac{\partial^2 u}{\partial u^2} = \frac{\partial^2 u}{\partial \xi^2} - 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

$$\frac{\partial^2 u}{\partial x \partial y} = (2 + \cos x) \frac{\partial^2 u}{\partial \xi^2} - 2\cos x \frac{\partial^2 u}{\partial \xi \partial \eta} - (2 - \cos x) \frac{\partial^2 u}{\partial \eta^2}$$

Ecuația devine

$$\frac{\partial^2 u}{\partial \xi \partial \eta} - \frac{\xi - \eta}{32} \cdot \frac{\partial u}{\partial \xi} + \frac{\xi - \eta}{32} \cdot \frac{\partial u}{\partial \eta} + \frac{(\xi - \eta)^2 + 32}{64} u = 0$$

Facem transformrea
$$u(\xi, \eta) = e^{-\frac{1}{64}(\xi - \eta)^2} v(\xi, \eta) \Longrightarrow \frac{\partial^2 v}{\partial \xi \partial \eta} = 0 \Longrightarrow$$

 $\Longrightarrow v(\xi, \eta) = f(\xi) + g(\eta) \Longrightarrow u(\xi, \eta) = e^{-\frac{1}{64}(\xi - \eta)^2} (f(\xi) + g(\eta)) \Longrightarrow$
 $\Longrightarrow u(x, y) = e^{-\frac{1}{64}(y + \sin x)^2} (f(2x + \sin x + y) + g(2x - \sin x - y))$

5.
$$x^2 \cdot \frac{\partial^2 u}{\partial x^2} - 2xy \cdot \frac{\partial^2 u}{\partial x \partial y} + y^2 \cdot \frac{\partial^2 u}{\partial y^2} + x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y} = 0$$

 $Soluție. \ A=x^2, B=-xy, C=y^2 \Longrightarrow B^2-AC=0,$ deci ecuația este de tip parabolic

Ecuația caracteristică este :

$$x^{2} \cdot \left(\frac{dy}{dx}\right)^{2} + 2xy \cdot \frac{dy}{dx} + y^{2} = 0 \Longrightarrow \frac{dy}{dx} = -\frac{y}{x} \Longrightarrow xy = c$$

Facem schimbarea de variabile $\xi = xy, \eta = x$

$$\frac{\partial u}{\partial x} = y \cdot \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}$$

$$\frac{\partial u}{\partial y} = x \cdot \frac{\partial u}{\partial \xi}$$

$$\frac{\partial^2 u}{\partial x^2} = y^2 \cdot \frac{\partial^2 u}{\partial \xi^2} + 2y \cdot \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

$$\frac{\partial^2 u}{\partial y^2} = x^2 \cdot \frac{\partial^2 u}{\partial \xi^2}$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial u}{\partial \xi} + xy \cdot \frac{\partial^2 u}{\partial \xi^2} + x \cdot \frac{\partial^2 u}{\partial \xi \partial \eta}$$

246CAPITOLUL 11. ECUAȚII CU DERIVATE PARȚIALE DE ORDINUL DOI

Ecuația devine:

$$\frac{\partial^2 u}{\partial \eta^2} + \frac{1}{\eta} \cdot \frac{\partial u}{\partial \eta} = 0 \Longrightarrow \frac{\partial}{\partial \eta} \left(\eta \cdot \frac{\partial u}{\partial \eta} \right) = 0 \Longrightarrow \eta \cdot \frac{\partial u}{\partial \eta} = f(\xi) \Longrightarrow \frac{\partial u}{\partial \eta} = \frac{1}{\eta} \cdot f(\xi).$$
 Integrăm în raport cu η și obținem $u(\xi, \eta) + g(\xi) = f(\xi) \ln \eta \Longrightarrow \Longrightarrow u(x, y) = f(xy) \ln x + g(xy)$

6.
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 16(x^2 - y^2), u(x, x) = \sin x, u(x, -x) = \sin x$$

Soluție. $A=1, B=0, C=-1 \Longrightarrow B^2-AC=1$, deci ecuația este de tip hiperbolic

Ecuația caracteristică este :

$$\left(\frac{dy}{dx}\right)^2 - 1 = 0 \Longrightarrow \frac{dy}{dx} = 1, \frac{dy}{dx} = -1 \Longrightarrow x + y = c_1, x - y = c_2$$

Facem schimbarea de variabile $\xi = x + y, \eta = x - y$

Atunci
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \xi^2} - 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

Ecuația devine

$$4\frac{\partial^2 u}{\partial \xi \partial \eta} = 16\xi \eta$$
 a cărui soluție este $u(x,y) = \xi^2 \eta^2 + \varphi(\xi) + \psi(\eta)$

Deci soluția generală a ecuației inițiale este $u(x,y)=(x^2-y^2)^2+\varphi(x+y)+\psi(x-y)$

Determinăm funcțiile φ și ψ impunând condițiile din enunț . Obținem

$$u(x,x) = (x^2 - x^2)^2 + \varphi(x+x) + \psi(x-x)$$

$$u(x, -x) = (x^2 - (-x)^2)^2 + \varphi(x - x) + \psi(x + x)$$

Deci $\varphi(2x) = \sin x, \psi(2x) = \sin x$. Considerăm 2x = t, deci $\varphi(t) = \sin \frac{t}{2}, \psi(t) = \sin \frac{t}{2}$

Aşadar,
$$u(x,y) = (x^2 - y^2)^2 + \sin\frac{x+y}{2} + \sin\frac{x-y}{2} = (x^2 - y^2)^2 + 2\sin\frac{x+y+x-y}{2}\cos\frac{x+y-x+y}{2} = (x^2 - y^2)^2 + 2\sin\frac{x}{2}\cos\frac{y}{2}$$
 \square

7.
$$\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 3 \frac{\partial^2 u}{\partial y^2} + 16xy = 0$$

Soluție. $A=1, B=2, C=3 \Longrightarrow B^2-AC=1,$ deci ecuația este de tip hiperbolic

Ecuația caracteristică este :

$$\left(\frac{dy}{dx}\right)^2 - 4\frac{dy}{dx} + 3 = 0 \Longrightarrow \frac{dy}{dx} = 3, \frac{dy}{dx} = 1 \Longrightarrow 3x - y = c_1, x - y = c_2$$

Facem schimbarea de variabile $\xi = 3x - y, \eta = x - y$

$$\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial \xi^2} + 6 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \xi^2} + 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

$$\frac{\partial^2 u}{\partial x \partial y} = -3 \frac{\partial^2 u}{\partial \xi^2} - 4 \frac{\partial^2 u}{\partial \xi \partial \eta} - \frac{\partial^2 u}{\partial \eta^2}$$

Ecuația inițială are forma canonică :

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = (\xi - \eta)(\xi - 3\eta)$$

Integrăm mai întâi în raport cu ξ și apoi cu η și obținem soluția :

$$u(\xi\eta) = \frac{\xi\eta}{3}(\xi^2 - 3\xi\eta + 3\eta^2) + f(\xi) + g(\eta)$$

Deci soluția ecuației inițiale este :

$$u(x,y) = (3x - y)(x - y)(x^{2} + \frac{1}{3}y^{2}) + f(3x - y) + g(x - y)$$

8.
$$4\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + 12\frac{\partial u}{\partial x} + 6\frac{\partial u}{\partial y} + 9u = 0$$

Soluție. $A=4, B=2, C=1 \Longrightarrow B^2-AC=0$, deci ecuația este de tip parabolic

Ecuația caracteristică este :

$$4\left(\frac{dy}{dx}\right)^2 - 4\frac{dy}{dx} + 1 = 0 \Longrightarrow \frac{dy}{dx} = \frac{1}{2} \Longrightarrow x - 2y = c$$

Facem schimbarea de variabile $\xi = x - 2y, \eta = x$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}$$

$$\frac{\partial^2 u}{\partial u^2} = 4 \frac{\partial^2 u}{\partial \varepsilon^2}$$

$$\frac{\partial^2 u}{\partial x \partial y} = -2 \frac{\partial^2 u}{\partial \xi^2} - 2 \frac{\partial^2 u}{\partial \xi \partial \eta}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial n}$$

$$\frac{\partial u}{\partial y} = -2\frac{\partial u}{\partial \xi}$$

Obţinem forma canonică:

$$4\frac{\partial^2 u}{\partial n^2} + 12\frac{\partial u}{\partial n} + 9u = 0$$

Vom considera aceasta relație ca o ecuație diferențială liniară cu coeficienți constanți de ordinul doi pentru funcția u de variabilă η . Ecuația caracteristică atașată este : $4\lambda^2 + 12\lambda + 9 = 0 \Longrightarrow \lambda_1 = \lambda_2 = -\frac{3}{2}$

Astfel soluția generală poate fi scrisă sub forma :

$$u(\xi, \eta) = [f(\xi) + \eta g(\xi)]e^{-\frac{3}{2}\eta}$$

Atunci soluția generală a ecuației inițiale este :

$$u(x,y) = [f(x-2y) + xg(x-2y)]e^{-\frac{3}{2}x}$$

9.
$$\frac{\partial^2 u}{\partial x \partial y} - \frac{a}{x - y} \cdot \frac{\partial u}{\partial x} + \frac{a}{x - y} \cdot \frac{\partial u}{\partial y} + \frac{a - a^2}{(x - y)^2} u = 0$$

Soluție. Facem schimbarea de funcție $u = (x - y)^{\alpha}v$ și vom determina α astfel încât să obținem o formă cât mai simplă a ecuației.

Ecuația devine:

248CAPITOLUL 11. ECUAȚII CU DERIVATE PARȚIALE DE ORDINUL DOI

$$(x-y)^{2} \cdot \frac{\partial^{2} u}{\partial x \partial y} - (x-y)(\alpha + a) \left(\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y}\right) - v[\alpha^{2} + \alpha(2a-1) + a^{2} - a] = 0$$
Pentru $\alpha = -a \Longrightarrow \frac{\partial^{2} v}{\partial x \partial y} = 0 \Longrightarrow v(x,y) = f(x) + g(y) \Longrightarrow u(x,y) = \frac{f(x) + g(y)}{(x-y)^{a}}$

10. Să se găsească soluția generală a ecuației lui Euler

$$\frac{1}{x^2} \cdot \frac{\partial}{\partial x} \left(x^2 \cdot \frac{\partial u}{\partial x} \right) - \frac{\partial^2 u}{\partial y^2} = 0$$

Soluție. Ecuația devine $\frac{\partial^2 u}{\partial x^2}-\frac{\partial^2 u}{\partial y^2}+\frac{2}{x}\cdot\frac{\partial u}{\partial x}=0$

 $A=1, B=0, C=-1 \Longrightarrow B^2-AC=1>0,$ deci ecuația este de tip hiperbolic

Facem schimbarea de funcție $u(x,y) = \frac{v(x,y)}{x}$

$$\frac{\partial u}{\partial x} = \frac{1}{x} \cdot \frac{\partial v}{\partial x} - \frac{1}{x^2} \cdot v$$

$$\frac{\partial u}{\partial y} = \frac{1}{x} \cdot \frac{\partial v}{\partial y}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{x} \cdot \frac{\partial^2 v}{\partial x^2} - \frac{2}{x^2} \cdot \frac{\partial v}{\partial x} + \frac{2}{x^3} \cdot v$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{1}{x} \cdot \frac{\partial^2 v}{\partial y^2}$$

Ecuația devine : $\frac{\partial^2 v}{\partial x^2} - \frac{\partial^2 v}{\partial y^2} = 0$

Ecuația caracteristică este :

$$\left(\frac{dy}{dx}\right)^2 - 1 = 0 \Longrightarrow x + y = c_1, x - y = c_2$$

Facem schimbarea de variabile $\xi=x+y, \eta=x-y$. Atunci obținem ecuația $\frac{\partial^2 v}{\partial x \partial y}=0$, care are soluția $v(\xi,\eta)=f(\xi)+g(\eta)\Longrightarrow v(x,y)==f(x+y)+g(x-y)\Longrightarrow u(x,y)=\frac{f(x+y)+g(x-y)}{x}$

Să se rezolve problemele Cauchy:

11.
$$(l^2 - x^2) \cdot \frac{\partial^2 u}{\partial x^2} - x \cdot \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial y^2} = 0, 0 < x < l, u(x, 0) = \arcsin \frac{x}{l}, \frac{\partial u}{\partial y}(x, 0) = 1$$

Soluție. $B^2 - AC = l^2 - x^2 > 0$, deci ecuația este de tip hiperbolic

Ecuația caracteristică este :

$$(l^2 - x^2) \cdot \left(\frac{dy}{dx}\right)^2 - 1 = 0 \Longrightarrow \frac{dy}{dx} = \pm \frac{1}{\sqrt{l^2 - x^2}} \Longrightarrow \arcsin \frac{x}{l} + y = c_1, \arcsin \frac{x}{l} - y = c_2$$

Facem schimbarea de variabile $\xi = \arcsin \frac{x}{l} + y, \eta = \arcsin \frac{x}{l} - y$

Forma canonică este $\frac{\partial^2 u}{\partial x \partial y} = 0$ cu soluția generală $u(\xi, \eta) = f(\xi) + g(\eta) \Longrightarrow u(x, y) = f(\arcsin \frac{x}{l} + y) + g(\arcsin \frac{x}{l} - y)$

Determinăm f și g din condițiile inițiale :

$$f(\arcsin \frac{x}{T}) + g(\arcsin \frac{x}{T}) = \arcsin \frac{x}{T}$$

$$f'(\arcsin \frac{x}{T}) - g'(\arcsin \frac{x}{T}) = 1$$

Notăm $\arcsin \frac{x}{l} = v$ și obținem

$$f(v) + g(v) = v$$

$$f'(v) - g'(v) = 1$$

Deci
$$f(v) - g(v) = v - v_0, v_0$$
 constantă

Atunci
$$f(v) = v - \frac{v_0}{2}, g(v) = \frac{v_0}{2}$$

Soluţia ecuaţiei date este $u(x,y) = \arcsin \frac{x}{l} + y$

12.
$$3\frac{\partial^2 u}{\partial x^2} + 7\frac{\partial^2 u}{\partial x \partial y} + 2\frac{\partial^2 u}{\partial y^2} = 0, u(x,0) = x^3, \frac{\partial u}{\partial y}(x,0) = 2x^2$$

Soluție. $A=3, B=\frac{7}{2}, C=2 \Longrightarrow B^2-AC=\frac{25}{5}>0$, deci ecuația este de tip hiperbolic

Ecuația caracteristică este :

$$3dy^2 - 7dxdy + 2dx^2 = 0 \Longrightarrow 3\left(\frac{dy}{dx}\right)^2 - 7\frac{dy}{dx} + 2 = 0 \Longrightarrow \frac{dy}{dx} = 2$$
 şi

 $\frac{dy}{dx} = \frac{1}{3}$. Atunci familiile de curbe caracteristice sunt :

$$2x - y = c_1$$

$$x - 3y = c_2$$

Cu schimbarea de variabile $\xi=2x-y, \eta=x-3y,$ ecuația se reduce la forma canonică $\frac{\partial^2 u}{\partial \xi \partial \eta}=0 \Longrightarrow u(x,y)=\varphi(2x-y)+\psi(x-3y)$

Condițiile problemei Cauchy sunt :

$$\varphi(2x) + \psi(x) = x^3$$

$$-\varphi'(2x) - 3\psi'(x) = 2x^2$$

Integrând a doua relație obținem $-\frac{1}{2}\varphi(2x) - 3\psi(x) = \frac{2}{3}x^3 + k$

Atunci
$$\varphi(2x) = \frac{19}{96}(2x)^3 + c_1$$
 şi $\psi(x) = -\frac{7}{12}x^3 - c_1$, deci $u(x,y) = \frac{19}{96}(2x-y)^3 - \frac{7}{12}(x-3y)^3$

13.
$$x^2 \frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} = 0, u(x, 1) = x^2, \frac{\partial u}{\partial y}(x, 1) = x$$

Soluție. $B^2 - AC = x^2y^2 > 0$, deci ecuația este de tip hiperbolic

Ecuația caracteristică este :

$$x^2dy^2 - y^2dx^2 = 0 \implies \left(\frac{dy}{dx}\right)^2 = \frac{y^2}{x^2} \implies \frac{dy}{dx} = \pm \frac{y}{x}$$
. Deci curbele caracteristice sunt : $xy = c_1, \frac{y}{x} = c_2$

Facem schimbările de variabile $\xi = xy, \eta = \frac{y}{x}$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial u}{\partial \xi} \cdot y + \frac{\partial u}{\partial \eta} \cdot \left(-\frac{y}{x^2} \right)$$

250 CAPITOLUL~11.~~ECUAȚII~CU~DERIVATE~PARȚIALE~DE~ORDINUL~DOI~250 CAPITOLUL~11.~~CU~DERIVATE~PARȚIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DERIVATE~PARTIAL~11.~~CU~DE

$$\begin{array}{l} \frac{\partial^2 u}{\partial x^2} = \left(\frac{\partial^2 u}{\partial \xi^2} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial^2 u}{\partial \xi \partial \eta} \cdot \frac{\partial \eta}{\partial x}\right) \cdot y + \left(\frac{\partial^2 u}{\partial \xi \partial \eta} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial^2 u}{\partial \eta^2} \cdot \frac{\partial \eta}{\partial x}\right) \cdot \left(-\frac{y}{x^2}\right) + \frac{\partial u}{\partial \eta} \cdot \frac{\partial u}{\partial \eta} \cdot \left(-\frac{y}{x^2}\right) \right] \cdot y + \left[\frac{\partial^2 u}{\partial \xi \partial \eta} \cdot y + \frac{\partial^2 u}{\partial \eta^2} \cdot \left(-\frac{y}{x^2}\right)\right] \cdot \left(-\frac{y}{x^2}\right) + \frac{\partial u}{\partial \eta} \cdot \frac{2y}{x^3} \\ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = \frac{\partial u}{\partial \xi} \cdot x + \frac{\partial u}{\partial \eta} \cdot \frac{1}{x} \\ \frac{\partial^2 u}{\partial y^2} = \left(\frac{\partial^2 u}{\partial \xi^2} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial^2 u}{\partial \xi \partial \eta} \cdot \frac{\partial \eta}{\partial y}\right) \cdot x + \left(\frac{\partial^2 u}{\partial \xi \partial \eta} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial^2 u}{\partial \eta^2} \cdot \frac{\partial \eta}{\partial y}\right) \cdot \frac{1}{x} = \\ = \left(\frac{\partial^2 u}{\partial \xi^2} \cdot x + \frac{\partial^2 u}{\partial \xi \partial \eta} \cdot \frac{1}{x}\right) \cdot x + \left(\frac{\partial^2 u}{\partial \xi \partial \eta} \cdot x + \frac{\partial^2 u}{\partial \eta^2} \cdot \frac{1}{x}\right) \cdot \frac{1}{x} \\ \text{Ecuația devine} : x^2 y^2 \cdot \frac{\partial^2 u}{\partial \xi^2} - y^2 \cdot \frac{\partial^2 u}{\partial \xi \partial \eta} - y^2 \cdot \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{y^2}{x^2} \cdot \frac{\partial^2 u}{\partial \eta^2} + \frac{2y}{x} \cdot \frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \eta} - \frac{y^2}{x^2} \cdot \frac{\partial^2 u}{\partial \xi^2} - y^2 \cdot \frac{\partial^2 u}{\partial \xi \partial \eta} - \frac{y^2}{x^2} \cdot \frac{\partial^2 u}{\partial \eta^2} = 0 \Longrightarrow -4y^2 \frac{\partial^2 u}{\partial \xi \partial \eta} + 2\frac{y}{x} \cdot \frac{\partial u}{\partial \eta} = 0 \Longrightarrow$$

Ecuaţia devine :
$$x^2y^2 \cdot \frac{\partial^2 u}{\partial \xi^2} - y^2 \cdot \frac{\partial^2 u}{\partial \xi \partial \eta} - y^2 \cdot \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{y^2}{x^2} \cdot \frac{\partial^2 u}{\partial \eta^2} + \frac{2y}{x} \cdot \frac{\partial u}{\partial \eta} - x^2y^2 \cdot \frac{\partial^2 u}{\partial \xi^2} - y^2 \cdot \frac{\partial^2 u}{\partial \xi \partial \eta} - \frac{y^2}{x^2} \cdot \frac{\partial^2 u}{\partial \eta^2} = 0 \Longrightarrow -4y^2 \frac{\partial^2 u}{\partial \xi \partial \eta} + 2\frac{y}{x} \cdot \frac{\partial u}{\partial \eta} = 0 \Longrightarrow -4\xi \eta \frac{\partial^2 u}{\partial \xi \partial \eta} + 2\eta \cdot \frac{\partial u}{\partial \eta} = 0 \Longrightarrow -2\xi \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial u}{\partial \eta} = 0 \Longrightarrow 2\xi \frac{\partial^2 u}{\partial \xi \partial \eta} - \frac{\partial u}{\partial \eta} = 0 \Longrightarrow \frac{\partial}{\partial \eta} \left(2\xi \frac{\partial u}{\partial \xi} - u \right) = 0 \Longrightarrow u = \varphi(\xi) + \sqrt{\xi} \psi(\eta) \Longrightarrow u(x,y) = = \varphi(xy) + \sqrt{xy} \psi\left(\frac{x}{y}\right)$$

Pentru determinarea funcțiilor φ și ψ folosim condițiile inițiale:

$$\begin{split} \varphi(x) + \sqrt{x}\psi(x) &= x^2 \\ x\varphi'(x) - x\sqrt{x}\psi'(x) + \frac{1}{2}\sqrt{x}\psi(x) &= x \\ \text{Rezultă că } \varphi(x) &= \frac{1}{3}x^2 + x - c\sqrt{x} \\ \psi(x) &= \frac{2}{3}x\sqrt{x} - \sqrt{x} + c \end{split}$$

Soluţia problemei este
$$u(x,y) = \frac{1}{3}(xy)^2 + xy + \sqrt{xy} \left[\frac{2}{3} \left(\frac{x}{y} \right)^{\frac{3}{2}} - \left(\frac{x}{y} \right)^{\frac{1}{2}} \right]$$

14. Să se determine soluția ecuației $\frac{\partial}{\partial x} \left[\left(1 - \frac{x}{h} \right)^2 \frac{\partial u}{\partial x} \right] = \frac{1}{a} \cdot \left(1 - \frac{x}{h} \right)^2 \frac{\partial^2 u}{\partial t^2}$ ce satisface condițiile $u(x,0) = f(x), \frac{\partial u}{\partial t}(x,0) = F(x)$.

Soluție. Facem schimbarea de funcție $u(x,t)=\frac{v(x,t)}{h-x}$ și obținem ecuația coardei vibrante $\frac{\partial^2 v}{\partial x^2}=\frac{1}{a^2}\cdot\frac{\partial^2 v}{\partial t^2}$

Condițiile inițiale devin v(x,0)=(h-x)f(x) și $\frac{\partial v}{\partial t}(x,0)=(h-x)F(x)$

Cf. formulei lui d'Alembert avem

$$\begin{array}{l} v(x,t) = \frac{(h-x+at)f(x-at)+(h-x-at)f(x+at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} (h-\tau)F(\tau)d\tau \Longrightarrow \\ u(x,t) = \frac{(h-x+at)f(x-at)+(h-x-at)f(x+at)}{2(h-x)} + \frac{1}{2a} \int_{x-at}^{x+at} \frac{h-\tau}{h-x}F(\tau)d\tau \end{array}$$

15.
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t^2} = 0, u(x,0) = \frac{x}{1+x^2}, \frac{\partial u}{\partial t}(x,0) = \sin x$$

Soluție. Cf. formulei lui d'Alembert avem

$$u(x,t) = \frac{1}{2} \cdot \left[\frac{x-t}{1+(x-t)^2} + \frac{x+t}{1+(x+t)^2} \right] + \frac{1}{2} \int_{x-t}^{x+t} \sin y \, dy = \frac{1}{2} \cdot \left[\frac{x-t}{1+(x-t)^2} + \frac{x+t}{1+(x+t)^2} \right] - \frac{1}{2} [\cos(x+t) - \cos(x-t)] = \frac{1}{2} \cdot \left[\frac{x-t}{1+(x-t)^2} + \frac{x+t}{1+(x+t)^2} \right] - \frac{1}{2} \cdot \left[-2\sin\frac{x+t+x-t}{2}\sin\frac{x+t-x+t}{2} \right] = \left[\frac{x-t}{1+(x-t)^2} + \frac{x+t}{1+(x+t)^2} \right] + \sin x \sin t$$

16.
$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = e^x, x \in \mathbb{R}, t > 0, u(x, 0) = \sin x, \frac{\partial u}{\partial t}(x, 0) = x + \cos x$$

Soluție. Vom căuta o schimbare convenabilă de funcție pentru a obține o ecuație omogenă în locul celei neomogene. Fie $u(x,t) = v(x,t) - e^x$. Pentru v obținem următoarea problemă Cauchy:

$$\frac{\partial^2 v}{\partial t^2} - \frac{\partial^2 v}{\partial x^2} = 0, x \in \mathbb{R}, t > 0, v(x, 0) = e^x + \sin x, \frac{\partial u}{\partial t}(x, 0) = x + \cos x$$

Cf. formulei lui d'Alembert avem

$$v(x,t) = e^x \cosh t + xt + \sin(x+t) \Longrightarrow u(x,t) = e^x (\cosh t - 1) + xt + \sin(x+t)$$

17. Să se determine vibrațiile unei coarde de lungime l, având capetele fixate, când forma inițială a coardei e dată de funcția $\varphi(x) = 4\left(x - \frac{x^2}{l}\right)$, iar viteza inițială este 0.

Soluție. Avem de rezolvat următoarea problemă :

$$\frac{\partial^{2}u}{\partial x^{2}} = \frac{\partial^{2}u}{\partial t^{2}}, 0 \leq x \leq l, t > 0$$

$$u(0,t) = u(l,t) = 0$$

$$u(x,0) = \varphi(x), \frac{\partial u}{\partial t}(x,0) = 0.$$
Cf. (11.18), $B_{n} = 0$ şi
$$A_{n} = \frac{2}{l} \int_{0}^{l} 4\left(x - \frac{x^{2}}{l}\right) \sin\frac{n\pi}{l} x dx = \frac{8}{l} \int_{0}^{l} x \sin\frac{n\pi}{l} x dx - \frac{8}{l^{2}} \int_{0}^{l} x^{2} \sin\frac{n\pi}{l} x dx$$

$$\int_{0}^{l} x \sin\frac{n\pi}{l} x dx = -\frac{l}{n\pi} x \cos\frac{n\pi}{l} x / \frac{l}{0} + \frac{l}{n\pi} \int_{0}^{l} \cos\frac{n\pi}{l} x dx = \frac{l^{2}}{n\pi} (-1)^{n} + \frac{l^{2}}{n^{2}\pi^{2}} \sin\frac{n\pi}{l} x / \frac{l}{0} = (-1)^{n+1} \frac{l^{2}}{n\pi}$$

$$\int_{0}^{l} x^{2} \sin\frac{n\pi}{l} x dx = -\frac{l}{n\pi} x^{2} \cos\frac{n\pi}{l} x / \frac{l}{0} + \frac{2l}{n\pi} \int_{0}^{l} x \cos\frac{n\pi}{l} x dx = (-1)^{n+1} \frac{l^{3}}{n\pi} + \frac{2l}{n\pi} \left[\frac{l}{n\pi} x \sin\frac{n\pi}{l} x / \frac{l}{0} - \frac{l}{n\pi} \int_{0}^{l} \sin\frac{n\pi}{l} x dx \right] = (-1)^{n+1} \frac{l^{3}}{n\pi} + \frac{2l}{n^{3}\pi^{3}} \cos\frac{n\pi}{l} x / \frac{l}{0} = (-1)^{n+1} \frac{l^{3}}{n\pi} + \frac{2l}{n^{3}\pi^{3}} \left[(-1)^{n} + 1 \right]$$
Deci $A_{n} = (-1)^{n+1} \frac{8l}{n\pi} - (-1)^{n+1} \frac{8l}{n\pi} - \frac{16}{n^{3}\pi^{3}} \left[(-1)^{n} - 1 \right]$
Atunci $A_{2n} = 0, A_{2n+1} = \frac{32l}{(2n+1)^{3}\pi^{3}}$

$$u(x,t) = \frac{32l}{\pi^3} \sum_{n>0} \frac{1}{(2n+1)^3} \cos \frac{(2n+1)\pi}{l} t \sin \frac{(2n+1)\pi}{l} x$$

252 CAPITOLUL~11.~~ECUAȚII~CU~DERIVATE~PARȚIALE~DE~ORDINUL~DOI~252 CAPITOLUL~11.~~CU~DERIVATE~PARȚIALE~DE~ORDINUL~DOI~252 CAPITOLUL~11.~~CU~DERIVATE~PARȚIALE~DE~ORDINUL~DOI~252 CAPITOLUL~11.~~CU~DERIVATE~PARȚIALE~DE~ORDINUL~DOI~252 CAPITOLUL~11.~~CU~DERIVATE~PARȚIALE~DE~ORDINUL~DOI~252 CAPITOLUL~11.~~CU~DERIVATE~PARȚIALE~DE~ORDINUL~DOI~252 CAPITOLUL~11.~~CU~DERIVATE~PARȚIALE~DE~ORDINUL~DOI~252 CAPITOLUL~11.~~CU~DERIVATE~PARȚIAL~11.~~CU~DERIVATE~PARTI~11.~~CU~DERIVATE~PARTI~PA

18.
$$\frac{\partial^2 u}{\partial t^2} = 4 \cdot \frac{\partial^2 u}{\partial x^2}, 0 < x < 1, t > 0, u(x, 0) = \sin 3x - 4\sin 10x, \frac{\partial u}{\partial t}(x, 0) = 2\sin 4x + \sin 6x, 0 \le x \le \pi, u(0, t) = u(\pi, t) = 0$$

Soluție. Trebuie să determinăm coeficienții A_n și B_n din formula (11.17).

Din
$$u(x,0) = \sin 3x - 4\sin 10x \Longrightarrow \sum_{n=1}^{\infty} A_n \sin nx = \sin 3x - 4\sin 10x$$
.
Egalând coeficienții obținem $A_3 = 1, A_{10} = -4, A_n = 0$, pentru

Din
$$\frac{\partial u}{\partial t}(x,0) = 2\sin 4x + \sin 6x \Longrightarrow \sum_{n=1}^{\infty} 2nB_n \sin nx = 2\sin 4x + \sin 6x.$$

Egalând coeficienții obținem $B_4 = \frac{1}{4}, B_6 = \frac{1}{12}, B_n = 0$, pentru $n \neq$

Deci
$$u(x,t) = \cos 6t \sin 3x - 4\cos 20t \sin 10x + \frac{1}{4}\sin \sin 8t \sin 4x + \frac{1}{12}\sin 12t \sin 6x$$

19.
$$\frac{\partial^2 u}{\partial t^2} = 9 \cdot \frac{\partial^2 u}{\partial x^2}, 0 < x < \pi, t > 0, u(x, 0) = 6\sin 2x + 2\sin 6x, \frac{\partial u}{\partial t}(x, 0) = 11\sin 9x - 14\sin 15x, 0 \le x \le \pi, u(0, t) = u(\pi, t) = 0, t \ge 0$$

Soluție. Trebuie să determinăm coeficienții A_n și B_n din formula (11.17).

Din
$$u(x,0) = 6\sin 2x + 2\sin 6x \Longrightarrow \sum_{n=0}^{\infty} A_n \sin nx = 6\sin 2x + 2\sin 6x.$$

Egalând coeficienții obținem $A_2 = 6, A_6 = 2, A_n = 0$, pentru $n \neq 2, 6$

Din
$$\frac{\partial u}{\partial t}(x,0) = 11\sin 9x - 14\sin 15x \Longrightarrow \sum_{n=1}^{\infty} 3nB_n \sin nx = 11\sin 9x -$$

 $-14\sin 15x$. Egalând coeficienții obținem $B_9 = \frac{11}{27}, B_{15} = -\frac{14}{45}, B_n =$ 0, pentru $n \neq 9, 15$

Deci
$$u(x,t) = 6\cos 6t \sin 2x + 2\cos 18t \sin 6x + \frac{11}{27}\sin 27t \sin 5x - \frac{14}{45}\sin 45t \sin 15x$$

11.3Probleme propuse

Să se reducă la forma canonică ecuațiile:

1.
$$(l^2 - x^2) \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - 2x \frac{\partial u}{\partial x} - \frac{1}{4}u = 0, 0 < x < l$$

R:
$$\frac{\partial^2 u}{\partial \xi \partial \eta} - \frac{1}{4} \operatorname{tg} \frac{\xi - \eta}{2} \left(\frac{\partial u}{\partial \xi} - \frac{\partial u}{\partial \eta} \right) - \frac{u}{16} = 0$$

2.
$$y^2 \frac{\partial^2 u}{\partial x^2} + x^2 \frac{\partial^2 u}{\partial y^2} = 0$$

R:
$$\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} + \frac{1}{2\xi} \cdot \frac{\partial u}{\partial \xi} + \frac{1}{2\eta} \cdot \frac{\partial u}{\partial \eta} = 0$$

11.3. PROBLEME PROPUSE

253

3.
$$x^2 \frac{\partial^2 u}{\partial x^2} - 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} - x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$$

R:
$$\frac{\partial^2 u}{\partial n^2} - 4 \frac{\xi}{n^2} \cdot \frac{\partial u}{\partial \xi} - \frac{1}{\eta} \cdot \frac{\partial u}{\partial \eta} = 0$$

4.
$$6\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial y} + u = y^2$$

R:
$$\frac{\partial^2 u}{\partial \xi \partial \eta} = u - \eta^2$$

5.
$$\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial u} + 5 \frac{\partial^2 u}{\partial u^2} + \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial u} = 0$$

R:
$$\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} + \frac{\partial u}{\partial \eta} = 0$$

6.
$$4\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} - 2\frac{\partial u}{\partial y} = 0$$

R:
$$\frac{\partial^2 u}{\partial n^2} + \frac{\partial u}{\partial \xi} = 0$$

7.
$$\frac{\partial^2 u}{\partial x^2} - 6\frac{\partial^2 u}{\partial x \partial y} + 10\frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} - 3\frac{\partial u}{\partial y} = 0$$

R:
$$\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} + \frac{\partial u}{\partial \eta} = 0$$

Să se rezolve problemele Cauchy:

8.
$$2\frac{\partial^2 u}{\partial x^2} - 7\frac{\partial^2 u}{\partial x \partial y} + 3\frac{\partial^2 u}{\partial y^2} = 0, u(0, y) = y^3, \frac{\partial u}{\partial x}(0, y) = y$$

R:
$$u(x,y) = \frac{1}{5} \left[(3x+y)^2 - (3x+y)^3 + \frac{3}{4}(x+2y)^3 - \frac{1}{4}(x+2y)^2 \right]$$

9.
$$\frac{\partial^2 u}{\partial x^2} + 2\cos x \cdot \frac{\partial^2 u}{\partial x \partial y} - \sin^2 x \cdot \frac{\partial^2 u}{\partial y^2} - \sin x \cdot \frac{\partial u}{\partial y} = 0, u(x, \sin x) = x^4, \frac{\partial u}{\partial y}(x, \sin x) = x^4$$

R:
$$u(x,y) = \frac{1}{2}(x + \sin x - y)^2 - \frac{1}{4}(x + \sin x - y)^2 + \frac{1}{2}(x - \sin x + y)^4 + \frac{1}{4}(x - \sin x + y)^2$$

10.
$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} - 3 \frac{\partial^2 u}{\partial y^2} = 0, u(x,0) = 3x^2, \frac{\partial u}{\partial y}(x,0) = 0$$

R:
$$u(x,y) = \frac{1}{2}(3x+y)^2 - \frac{3}{2}(x+y)^2$$

11.
$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{4} \cdot \frac{\partial^2 u}{\partial t^2} = 0, u(x,0) = e^x, \frac{\partial u}{\partial t}(x,0) = 4x$$

R:
$$u(x,t) = \frac{1}{2}(e^{x-2t} + e^{x+2t}) + 4xt$$
 (cf. formulei lui d'Alembert)

12.
$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{a^2} \cdot \frac{\partial^2 u}{\partial t^2} = 0, 0 \le x \le \pi, t \ge 0, a > 0, u(x, 0) = \sin x, \frac{\partial u}{\partial t}(x, 0) = \sin x, u(0, t) = 0, u(\pi, t) = 0$$

R: Cf. (11.17) şi (11.18),
$$u(x,t) = (\cos at + \frac{\sin at}{a}) \sin x$$

13.
$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{4} \cdot \frac{\partial^2 u}{\partial t^2} = 0, 0 \le x \le 1, t \ge 0, u(x, 0) = x(1 - x), \frac{\partial u}{\partial t}(x, 0) = 0, u(0, t) = u(1, t) = 0$$

R: Cf. (11.17) și (11.18),
$$u(x,t) = \sum_{n=0}^{\infty} \frac{4}{(n\pi)^3} (1 - (-1)^n) \cdot \cos 2n\pi t$$

 $\sin n\pi x$

254 CAPITOLUL~11.~~ECUAȚII~CU~DERIVATE~PARȚIALE~DE~ORDINUL~DOI

14.
$$\frac{\partial^2 u}{\partial t^2} = 9 \cdot \frac{\partial^2 u}{\partial x^2}, 0 < x < \pi, t > 0, u(x, 0) = \sin x - 2\sin 2x + \sin 3x, \frac{\partial u}{\partial t}(x, 0) = 6\sin 3x - 7\sin 5x, 0 \le x \le \pi, u(0, t) = u(\pi, t) = 0, t \ge 0$$

$$= 6 \sin 3x - 7 \sin 3x, 0 \le x \le \pi, u(0, t) = u(\pi, t) = 0, t \ge 0$$

$$\mathbf{R:} \ u(x, t) = \cos 3t \sin x - \cos 6t \sin 2x + \cos 9t \sin 3x + \frac{2}{3} \sin 9t \sin 3x - \frac{7}{15} \sin 15t \sin 5x$$

Bibliografie

- [1] Angheluță, Th. (1957) Curs de teoria funcțiilor de variabilă complexă Ed. Tehnică, București.
- [2] Baz, D., Cozma, C., Popescu, O. (1981) Matematici aplicate în economie și aplicații, ASE, Catedra de Matematici, București.
- [3] Boiarski, A., I. (1963) Matematica pentru economişti, Ed. Stiinţifică, Bucureşti.
- [4] Cenuşă , Gh., Filip, Argentina, Baz, S., Iftimie, B., Raischi, C., Toma, Aida, Bădin, Luiza, Agapia, Adriana (2000) *Matematici pentru economişti- Culgere de probleme* , Ed. CISON , Bucureşti.
- [5] Cenuşă, Gh., Raischi, C., Baz, Dragomira, Toma, M., Burlacu, Veronica, Sacui, I., Mircea, I. (2000) Matematici pentru economişti, Ed. CISON, Bucureşti.
- [6] Ciucu, G., Craiu, V., Săcuiu, I. (1974) Probleme de teoria probabilităților, Ed. Tehnică, București.
- [7] Ciucu, G., Craiu, V. (1971) Introducere în teoria probabilităților și statistică matematică , Ed. Didactică și Pedagogică , București.
- [8] Ciucu, G., Tudor, C. (1983) *Teoria probabilităților și aplicații*, Ed. Stiintifică și Enciclopedică, București.
- [9] Costache, Tania- Luminiţa, Oprişan, Gh. (2004) Transformări integrale,Ed. Printech, Bucureşti.
- [10] Costache, Tania- Luminița (2006) Culegere de teoria probabilităților și statistică matematică, Ed. Printech, București.
- [11] Constantin, Gh. , Istrățescu, Ioana (1989) Elements of Probabilistic Analysis , Ed. Academiei , București.
- [12] Ciumac, P., Ciumac, Viorica, Ciumac, Mariana (2003) Teoria probabilităților și elemente de statistică matematică , Ed. Tehnică UTM , Chișinău.

256 BIBLIOGRAFIE

- [13] Cuculescu, I. (1998) Teoria probabilităților, Ed. ALL, București.
- [14] Despa, R., Andronache, Cătălina, Ciocănel, B., Ghenciu, Ioana, Tetileanu, Cristina, Toropu, Cristina (1998) Culegere de probleme de matematici aplicate în economie vol.I-II, Ed. SYlVI, București.
- [15] Dinescu, C., Fătu, I. (1995) Matematici pentru economiști vol.I-III , Ed. Didactică și Pedagogică , București.
- [16] Dochiţoiu, C., Matei, A. (1995) Matematici economice generale, Ed. Economică, Bucureşti.
- [17] Filipescu, D., Trandafir, Rodica, Zorilescu, D. (1981) *Probabilități geometrice și aplicații*, Ed. Dacia, Cluj-Napoca.
- [18] Hoffmann, D., L., Bradely, L., G. (1995) Finite mathematics with calculus, McGRAW-HILL,INC., New-York.
- [19] Ionescu, H., M. (1957) Elemente de statistică matematică , Ed. Stiintifică , București.
- [20] Leonte, A., Trandafir, Rodica (1974) Clasic și actual în teoria probabilităților, Ed. Dacia, Cluj.
- [21] Mayer, O. (1981) Teoria funcțiilor de o variabilă complexă, vol.1, Ed. academiei R.S.R., București.
- [22] Mihăilă , N. (1965) Introducere în teoria probabilităților și statistică matematică , Ed. Didactică și Pedagogică , București.
- [23] Mihăilă , N., Popescu, O. (1978) Matematici dpeciale aplicate în economie , Ed. Didactică și Pedagogică , București.
- [24] Mihoc, Gh., Craiu, V. (1977) Tratat de statistică matematică Volumul II Verificarea ipotezelor statistice, Ed. Academiei, București.
- [25] Mihoc, Gh., Micu, N. (1970) Introducere în teoria probabilităților, Ed.Tehnică, București.
- [26] Mihoc, Gh., Urseanu, V., Ursianu, Emiliana (1982) Modele de analiză statistică, Ed. Stiintifică și Enciclopedică, București.
- [27] Moineagu, C., Negură, I., Urseanu, V. (1976) Statisticaă, Ed. Stiintifică și Enciclopedică, București.
- [28] Moroianu, M., Oprişan, Gh. (2002) Caiet de seminar- Probabilități și statistică, Ed. Printech, București.
- [29] Myskis, A., D. (1972) Introductory mathematics for engineers, MIR Publishers, Moscow.

BIBLIOGRAFIE 257

[30] Nistor, S., Tofan, I. (1997) Introducere în teoria funcțiilor complexe, Ed. Univ. Al. I. Cuza, Iași.

- [31] Niţă, Alina, Costache, Tania-Luminita, Dumitrache, Raluca (2007) Matematici speciale. Noţiuni teoretice. Aplicaţii., Ed. Printech, Bucureşti.
- [32] Olariu, V., Prepeliță, V. (1986) Teoria distribuțiilor. Funcții complexe și aplicații, Ed. Științifică și Enciclopedică, București.
- [33] Olariu, V., Stănăşilă, O. (1982) Ecuații diferențiale și cu derivate parțiale, Ed. Tehnică, București.
- [34] Onicescu, O. (1963) *Teoria probabilităților și aplicații*, Ed.Didactică și Pedagogică, București.
- [35] Onicescu, O., Mihog, Gh., Ionescu Tulcea, C., T. (1956) Calculul probabilităților și aplicații, Ed. Academiei, București.
- [36] Popescu, I., Baz, D., Beganu, G., Filip, A., Raischi, C., Vasiliu, D., P., Butescu, V., Enăchescu, M., Firică, O., Stremţan, N., Toma, M., Zaharia, G., Baz, S., Bădin, L. (1999) Matematici aplicate în economie-Culegere de probleme, Ed. Didactică şi Pedagogică, Bucureşti.
- [37] Papoulis, A. (1962) The Fourier integral and its applications, McGraw Hill Book Co., New York.
- [38] Pavel, Garofița, Tomuța, Floare, Ileana, Gavrea, I. (1981) *Matematici speciale*, Ed. Dacia, Cluj-Napoca.
- [39] Postolache, M., Corbu, S. (1998) Exercise Manual in Probability Theory, Fair Parteners Ltd., Bucharest.
- [40] Rudin, W. (1999) Analiză reală și complexă, Texte Matematice Esențiale, Vol. 1, Ed. Theta, București.
- [41] Rudner, V. (1970) *Probleme de matematici speciale*, Ed. Didactică și Pedagogică , București.
- [42] Stanomir, D., Stănăşilă, O.(1980) Metode matematice în teoria semnalelor, Ed.Tehnică, București.
- [43] Stănăşilă, O., Brânzănescu, V. (1994) Matematici speciale- teorie, exemple, aplicații, Ed. ALL.
- [44] Stoilow, S. (1962) Teoria funcțiilor de o variabilă complexă, vol,I,II, Ed. de Stat Ed. Didactică și Pedagogică, București.
- [45] Stoka, M. (1965) Culegere de probleme de funcții complexe, Ed. Tehnică București.

258 BIBLIOGRAFIE

[46] Stoka, M. (1964) Funcții de variabilă reală și funcții de variabilă complexă, Ed. Didactică și Pedagogică, București.

- [47] Şabac, I.Gh. (1965) $Matematici\ Speciale,$ Ed. Didactică și Pedagogică , București.
- [48] Tomescu, Rodica, Ijacu, Daniela (2005) Probabilități și statistică matematică , Ed. Printech , București.
- [49] Trandafir, Rodica (1979) Introducere în teoria probabilităților, Ed. Albatros, București.
- [50] Trandafir, Rodica (1977) Probleme de matematici pentru ingineri , Ed. Tehnică , București.
- [51] Turbatu, S. (1980) Funcții complexe de variabilă complexă , Univ. București, Facultatea de Fizică .
- [52] Ţiţian, Emilia, Ghiţă , Simona (2001) Bazele Statisticii-Aplicaţii, Meteora Press, Bucureşti.