Initiation

Exercice 1

Les variables a, b et c sont de type int ou boolean.

Indiquer la valeur de a, b et c pour chaque ligne.

Écrire le programme qui permettra d'afficher ces valeurs.

a	b	С	Expression	a ==	b ==	c ==
6	7	4	c = (a & b)	a==	b ==	c ==
true	5	3	b = (!a? b *= c : c *= b)	a==	b ==	c ==
5	2	4	$b = ((b \mid c)! = ++a?5:1)$	a==	b ==	c ==
0	1	2	a = (a++) * ((++b) * (c++))	a==	b ==	c ==
0	1	2	a = (++a) * ((++b) * (c++))	a==	b ==	c ==
8	true	4	b = (false ((c *= 2) > 0))	a==	b ==	c ==
8	false	4	b = (true ((c *= 2) > 0))	a==	b ==	c ==
5	4	3	c = ((a > b) && (b > c)? b : c)	a==	b ==	c ==
6	false	7	a &= ((true && b)? -a : c -= 3)	a==	b ==	c ==
4	8	1	b += (a++) + (++c)	a==	b ==	c ==

Exercice 2

Écrire le programme donnant les limites minimums et maximums de chacun des types entiers et réels.

Exercice 3

Étudier le programme suivant :

```
public class Limites {
   public static void main (String [] args) {
     int i1 = 10000000000;
     int i2 = 2 * i1;
     int i3 = 3 * i1;
     int i4 = Integer .MAX_VALUE;
        System .out . println ("i1_:_" + i1);
        System .out . println ("i2_:_" + i2);
        System .out . println ("i3_:_" + i3);
        System .out . println ("i4_:_" + i4);
    }
}
```

- 1. Ce programme compile-t-il?
- 2. Que se passe-t-il à l'exécution? Pourquoi?

Exercice 4

On déinit dans cet exercice les classes Segment et Point pour représenter des segments de droites dans un plan définis par deux points du plan.

- 1. Érire la classe *Point*. Érire la classe *Segment*. Chaque segment contient deux points nommés start et stop. Ajouter les getters et les setters.
- 2. Érire deux constructeurs. L'un prendra en argument deux objets *Point*, et l'autre quatre variables entières.
- 3. Écrire une classe SegmentTest destinée à tester les classes Segment et Point. Elle contiendra une méthode main où on crée un segment s1 avec le premier constructeur et un segment s2 avec le second constructeur.

- 4. Érire dans la classe Segment une méthode toString permettant d'afficher les deux points d'un segment. On utilisera la méthode toString de Point.
- 5. Érire dans la classe Segment une méthode translate permettant de déplacer un segment dans le plan. On utilisera une méthode translate de Point.
- 6. Érire une méthode qui teste si deux segments ont une extrémité (un point) en commun. Dans quelle classe faut-il la mettre? Quel est le type de retour de cette méthode?
- 7. Tester vos méthodes dans SegmentTest.
- 8. On peut également imaginer la classe *Triangle*. Codez cette classe, qui permettra notemment de déterminer si un triange est rectangle, isocèle ou équilatéral. On pourra aussi calculer les coordonnées du centre du cercle circonscrit à ce triangle.