# Computational Photography

Siavash Bigdeli University of Bern Fall 2014

#### Deadline

Deadline:

October 16

before class (14:00)

## Project 2

- Topics
  - High dynamic range images
  - Bilateral filter
- Assignments
  - Capturing HDR images
  - Tone mapping HDR images using the bilateral filter
  - Tone adjustment using the bilateral filter

### Capturing HDR images

- Use HDRShop (version 1 is free)
  <a href="http://www.hdrshop.com/">http://www.hdrshop.com/</a>
- Camera can be borrowed

- 1. Measure response curve (HDRShop)
- 2. Capture images at different exposures
- 3. Assemble HDR image (HDRShop)

### Tone mapping HDR images

- Implement bilateral filter in Matlab
- Only two nested loops, not four!

$$\frac{1}{k(x)} \sum_{\xi} \left[ h(\xi - x) d(f(\xi) - f(x)) f(\xi) \right]$$

- 1D filter for the range weight d
  - Note normalization to unit integral

$$d(t) = \frac{1}{\sqrt{2\pi}\sigma_r} e^{-\frac{t^2}{2\sigma_r^2}}$$

- 2D Gaussian for distance weight h
  - Standard deviation  $\sigma_s^2$ , variance  $\sigma_s$
  - Note normalization to unit integral

$$h(t_1, t_2) = \frac{1}{2\pi\sigma_s^2} e^{-\frac{t_1^2 + t_2^2}{2\sigma_s^2}}$$

• In our case  $t_1, t_2$  are the coordinates of the vector  $\xi - x$ . As a formula:

$$\xi - x = \vec{t} = \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}$$

 Matlab evaluates exponential per matrix element:

$$h(t_1, t_2) = \frac{1}{2\pi\sigma_s^2} e^{-\frac{t_1^2 + t_2^2}{2\sigma_s^2}}$$

0.0821

0.0183

No loop required!

0.1353

0.0821

0.0183

### Tone adjustment

- Histograms
- Histogram matching
- Two-scale tone adjustment procedure

## Image histogram

- Count number of pixels for each intensity level
  - Discrete number of levels (bins)
  - Separate histograms for color channels
- Normalized histogram
  - Divide value of each bin by total number of pixels
  - Discrete probability distribution for pixel values



Count



Bins/levels

Histogram of red channel

#### Histogram matching & equalization

- Histogram matching
  - Given a desired histogram
  - Map each value of an image channel to a new value, such that the new histogram matches the desired histogram
- Histogram equalization
  - The desired histogram is constant

### Histogram matching

 Histogram matching is done by adjusting the cumulative distribution function (cdf)



Pixels G2 get intensitiy of Pixels G1

# Histogram equalization









### Histogram matching

 Match histogram to an "interesting" model image





Winterstorm (Ansel Adams)

### Two-scale tone adjustment



#### Two-scale tone adjustment

- Get desired large scale contrast
- Emphasize detail





Input Output

#### Color images

Transform to YUV, work on Y, transform back





Input Output