

## دانشگاه تهران

## دانشکده ریاضی، آمار و علوم کامپیوتر

نیمسال دوم تحصیلی سال ۱۴۰۱–۱۴۰۰

مطالب تكميلى اصول سيستمهاى كامپيوترى

## مطالب فصل دوم مدار منطقى:

- معرفی گیتهای منطقی:
- یت R: در عبارات، با علامت "+" نشان داده میشود و جدول درستی عملکرد و مدار آن به صورت زیر است:

| $\boldsymbol{x}$ | y | x + y |
|------------------|---|-------|
| 0                | 0 | 0     |
| 0                | 1 | 1     |
| 1                | 0 | 1     |
| 1                | 1 | 1     |



گیت AND: در عبارات معمولا با علامت " • " نشان داده می شود. در برخی موارد نیز ممکن است علامتی گذاشته نشود. جدول
 درستی عملکرد و مدار آن به صورت زیر است:

| х | y | xy |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

$$y$$
  $AND$ 

 $^{\circ}$  گیت NOT: در عبارات با علامت  $^{''}$  نشان داده می شود. جدول درستی عملکرد و مدار آن به صورت زیر است:

$$\begin{array}{c|c} x & x' \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$



$$(x)' = x'$$

یت XOR: در عبارات با علامت "  $\bigoplus$  " نشان داده می شود. جدول درستی عملکرد و مدار آن به صورت زیر است:

| $\chi$ | y | $x \oplus y$ |
|--------|---|--------------|
| 0      | 0 | 0            |
| 0      | 1 | 1            |
| 1      | 0 | 1            |
| 1      | 1 | 0            |



$$x \oplus y = xy' + x'y$$

است. جدول درستی عملکرد و مدار آن به صورت زیر است: AND است. جدول درستی عملکرد و مدار آن به صورت زیر است:

| $\chi$ | y           | (xy)' |        |                 |
|--------|-------------|-------|--------|-----------------|
| 0      | 0           | 1     | x      |                 |
| 0      | 0<br>1<br>0 | 1     | NAND D | (xy)' = x' + y' |
| 1      | 0           | 1     |        | (xy) = x + y    |
| 1      | 1           | Λ     |        |                 |

است. جدول درستی عملکرد و مدار آن به صورت زیر است: OR گیت OR: نقیض

|   |   | (x+y)'      |                 |             |
|---|---|-------------|-----------------|-------------|
| 0 | 0 | 1<br>0<br>0 | $x \rightarrow$ |             |
| 0 | 1 | 0           | NOR             | (x+y)'=x'y' |
| 1 | 0 | 0           |                 |             |
| 1 | 1 | <b>l</b> 0  |                 |             |

م گیت XNOR: نقیض XOR است. جدول درستی عملکرد و مدار آن به صورت زیر است:

| $\chi$ | у | $(x \oplus y)'$  |              |                             |
|--------|---|------------------|--------------|-----------------------------|
| 0      | 0 | 1<br>0<br>0<br>1 | T            |                             |
| 0      | 1 | 0                | X            | $(x \oplus y)' = xy + x'y'$ |
| 1      | 0 | 0                | y <b>-11</b> |                             |
| 1      | 1 | 1                |              |                             |

- خواص جبر بول:
- بسته بودن
- ۵ شرکت پذیری
  - حابهجایی
  - توزیع پذیری
- وجود عضو خنثی جمع و ضرب
  - وجود عضو معكوس
- در تفسیر عبارات، تقدم عملگرها ابتدا با پرانتز، سپس با NOT، بعد از آن با AND و در نهایت با OR است.
- جدول درستی، لیستی از  $\cdot$  و ۱-ها میباشد، به طوری که برای n متغیر،  $2^n$  سطر داریم. ترتیب n متغیر برای ما اعداد  $\cdot$  تا  $2^n-1$  را تولید می کند.
  - پیادهسازی توابع با استفاده از گیتهای منطقی:

ابتدا بخشهای کوچکتر از تابع را با گیتها تشکیل میدهیم. سپس عبارت کلی را ایجاد میکنیم.

برای مثال فرض کنید میخواهیم تابع x'yz + xz' را با گیتهای منطقی رسم کنیم. برای این کار ابتدا مدار x'yz و مدار x'yz + xz' و مدار را به یک گیت x'yz ورودی میدهیم.

• در هنگام پیادهسازی توابع با استفاده از گیتهای منطقی، بهتر است ابتدا تابع را ساده کنیم سپس مدار آن را رسم کنیم.

- لیترال: به هر شیء منطقی یا نقیض آن در عبارات منطقی، لیترال گفته میشود. x, x', y, z برابر است با: x, x', y, z برابر است با:
  - در سادهسازی عبارات و توابع منطقی، هدف مینیمم کردن تعداد لیترالهاست.
- در هنگام متمم کردن، عملکرد AND به OR و عملگر OR به AND تبدیل می شود.
- محاسبه دوگان عبارت منطقی: تمام عملگرهای AND را به OR و تمام عملگرهای OR را به AND تبدیل می کنیم.
  - متمم کردن عبارات منطقی با استفاده از دوگان:

ابتدا دوگان عبارت را بدست می آوریم، سپس تمام لیترالها را نقیض می کنیم.

مثال: فرض کنید میخواهیم با استفاده از دوگان متمم عبارت x'yz' + x'y'z را بدست آوریم.

دوگان عبارت فوق برابر (x'+y'+z')(x'+y'+z) است. حال اگر هر لیترال را نقیض کنیم به عبارت زیر میرسیم که متمم عبارت داده (x+y'+z)(x'+y'+z)

- معرفی فرمهای استاندارد و متعارف:
- ست.  $M_i$  است. ها: به صورت  $M_i$  نشان داده می شود به طوری که عملگرهای میان لیترالها  $M_i$  یا همان  $M_i$
- ست. " سترمها: به صورت  $m_i$  نشان داده می شود به طوری که عملگرهای میان لیترالها  $M_i$  یا همان  $m_i$  است.

برای مثال، برای ۳ متغیر، ماکسترمها و مینترمها به صورت جدول زیر است.

|   |                            | مينترمها                                                                                |                                                                                                                              | لترمها                                               | ماکس                                                                                                                                                                                                                                                               |
|---|----------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y | Z                          | جمله                                                                                    | علامت                                                                                                                        | جمله                                                 | علامت                                                                                                                                                                                                                                                              |
| 0 | 0                          | x'y'z'                                                                                  | $m_0$                                                                                                                        | x + y + z                                            | $M_0$                                                                                                                                                                                                                                                              |
| 0 | 1                          | x'y'z                                                                                   | $m_1$                                                                                                                        | x + y + z'                                           | $M_1$                                                                                                                                                                                                                                                              |
| 1 | 0                          | x'yz'                                                                                   | $m_2$                                                                                                                        | x + y' + z                                           | $M_2$                                                                                                                                                                                                                                                              |
| 1 | 1                          | x'yz                                                                                    | $m_3$                                                                                                                        | x + y' + z'                                          | $M_3$                                                                                                                                                                                                                                                              |
| 0 | 0                          | xy'z'                                                                                   | $m_4$                                                                                                                        | x' + y + z                                           | $M_4$                                                                                                                                                                                                                                                              |
| 0 | 1                          | xy'z                                                                                    | $m_5$                                                                                                                        | x' + y + z'                                          | $M_5$                                                                                                                                                                                                                                                              |
| 1 | 0                          | xyz'                                                                                    | $m_6$                                                                                                                        | x' + y' + z                                          | $M_6$                                                                                                                                                                                                                                                              |
| 1 | 1                          | xyz                                                                                     | $m_7$                                                                                                                        | x' + y' + z'                                         | $M_7$                                                                                                                                                                                                                                                              |
|   | 0<br>0<br>1<br>1<br>0<br>0 | 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | y     Z       0     0 $x'y'z'$ 0     1 $x'y'z'$ 1     0 $x'yz'$ 1     1 $x'yz$ 0     0 $xy'z'$ 0     1 $xy'z$ 1     0 $xyz'$ | $egin{array}{ c c c c c c c c c c c c c c c c c c c$ | y     Z     حمله     علامت     عمله       0     0 $x'y'z'$ $m_0$ $x+y+z$ 0     1 $x'y'z$ $m_1$ $x+y+z'$ 1     0 $x'yz'$ $m_2$ $x+y'+z$ 1     1 $x'yz$ $m_3$ $x+y'+z'$ 0     0 $xy'z'$ $m_4$ $x'+y+z$ 0     1 $xy'z$ $m_5$ $x'+y+z'$ 1     0 $xyz'$ $m_6$ $x'+y'+z$ |

• نوشتن توابع و عبارات منطقی با استفاده از مینترمها و ماکسترمها:

به این صورت عمل می کنیم اگه اگر متغیری در بخشهای عبارت ظاهر نشده بود، به نوعی آن را ایجاد کنیم. برای فهم بهتر به مثال توجه کنید. مثال: تابع F = A + B'C را به صورت جمع مینترمها و ضرب ماکسترمها بنویسید.

میدانیم حاصل x+x' همواره برابر ۱ است. همچنین میدانیم حاصل x نیز همواره برابر x است. بنابراین میتوانیم متغیرهایی که در بخشهای تابع داده شده ظاهر نشده اند را در عبارت ایجاد کنیم.

برای این کار داریم:

$$F = A(B + B')(C + C') + B'C(A + A')$$

$$\rightarrow F = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$\rightarrow F = ABC + ABC' + AB'C + AB'C' + A'B'C$$

$$F = \sum (1,4,5,6,7)$$

همچنین توجه کنید که ایندکسهایی که در جمع مینترمها و ضرب ماکسترمها میآیند، همواره مکمل یکدیگرند. بنابراین:

$$F = \prod (0,2,3)$$

- xy + x' :فرم SOP در این فرم، عبارت را به صورت جمع حاصل ضربها می نویسند. مثال: •
- (x')(x+y+z')(z) فرم POS فرم POS