PAMSI – testowanie algorytmów wyszukiwania w grafie

Piotr Wilkosz

06/05/2014

1 Wstęp

Celem ćwiczenia było przetestowanie implementacji algorytmów wyszukiwania ścieżki w grafie. Graf został stworzony na podstawie listy incydencji. Przetestowano następujące algorytmy:

- Przeszukiwanie wgłąb DFS
- Przeszukiwanie wszerz BFS
- Przeszukiwanie grafu poczynając od najkrótszej ścieżki Best First Search

Zadaniem było zmierzenie czasu wykonywania operacji wyszukania losowego elementu w grafie.

2 Wyniki pomiarów

1. DFS

Tablica 1: Pomiar czasu przeszukiwania wgłąb w grafie

N	czas	odchylenie
10	0.000241798	0.000197743
100	0.00295474	0.00432009
1000	0.126165	0.334439
10000	0.56064	1.12066
50000	3.74226	11.2241
100000	9.42976	19.3432

Rysunek 1: Wykres do tabeli nr 1

Na podstawie wykresu czas operacji przeszukiwania wgłąb szacuje się jako liniowy. Duże odchylenie od średniego czasu przeszukiwania świadczy o tym, iż zarówno przypadek pesymistyczny, jak i optymistyczny przypada z jendakowym prawdopodbieństwem, co powoduje znaczące zróżnicowanie.

2. BFS

Tablica 2: Pomiar czasu przeszukiwania wszerz w grafie

N	czas	odchylenie
10	4.5747e-06	1.52169e-06
100	0.00106285	0.00193947
1000	0.0216128	0.0473675
10000	0.339568	0.941901
50000	1.76083	5.35834
100000	10.5094	39.9244

Rysunek 2: Wykres do tabeli nr 2

Na podstawie wykresu czas operacji przeszukiwania wszerz szacuje się jako liniowy. Podobnie jak w przypadku wcześniejszym, zaobserwować można spore odchylenie, jednak uśrednienie wyników daje czas proporcjonalny do sumy liczb wierzchołków i krawędzi w grafie.

3. Best - First Search

Tablica 3: Pomiar czasu przeszukiwania typu best - first w grafie

N	czas	odchylenie
10	0.000279491	0.000470026
100	0.00318932	0.00492697
1000	0.0417995	0.0982492
10000	0.70878	1.24863
50000	4.73391	9.98982
100000	11.1066	17.9514

Rysunek 3: Wykres do tabeli nr 3

Z powyższych danych mozna wyciągnąć podobne wnioski jak w przypadku dwóch poprzednich algorytmów. Czas wykonania operacji jest liniowy.

3 Wnioski

- Wszystkie powyższe algorytmy osiągają podobną złożoność obliczeniowa.
- wykorzystanie uprzednio stworzonych struktur danych, jak np. tablica asocjacyjna, pozwoliło na bardziej intuicyjną implementację algorytmów.
- Niestety badane algorytmy mogą okazać się mało efektywnym sposobem przeszukiwania grafów. Efekty ich działania są zbyt mocno zależne od struktury grafu. O efektywności wykonania algorytmu w wielu sytuacjach decyduje losowe wybranie szukanego elementu, co często może prowadzić do sytuacji optymistycznej, ale także pesymistycznej.

Rysunek 4: Przykładowy rysunek grafu dla 10 węzłów. Graf wykoanany za pomocą programu GrapViz, plik źródłowy: graf.dot