

Politechnika Gdańska

Wydział Elektroniki, Telekomunikacji i Informatyki

Katedra: Architektury Systemów Komputerowych

Imię i nazwisko dyplomanta: Wojciech Pasternak

Nr albumu: 137361

Forma i poziom studiów: Stacjonarne jednolite studia magisterskie

Kierunek studiów: Informatyka

Praca dyplomowa magisterska

Temat pracy:

Obliczanie zer wielomianów

Kierujący pracą:

dr hab. inż. Robert Janczewski

Zakres pracy:

Opis pracy (jedno zdanie)

Spis treści

1	Prz	rzegląd literatury		
	1.1	Wielor	miany	
		1.1.1	Definicja	
		1.1.2	Podstawowe działania na wielomianach	
		1.1.3	Eliminacja pierwiastków wielokrotnych	

iv Spis treści

Rozdział 1

Przegląd literatury

1.1 Wielomiany

1.1.1 Definicja

Definicja 1 Wielomianem zmiennej rzeczywistej x nazywamy wyrażenie:

$$W(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n,$$

$$gdzie \ a_0, a_1, a_2, \dots, a_{n-1}, a_n \in R, n \in N$$

$$(1.1)$$

Liczby $a_0, a_1, a_2, ..., 1_{n-1}, a_n$ nazywamy współczynnikami wielomianu, natomiast n
 nazywamy stopniem wielomianu.

Szczególnym przypadkiem wielomianu jest jednomian.

Definicja 2 Jednomianem zmiennej rzeczywistej x nazywamy wielomian, który posiada co najwyżej jeden wyraz niezerowy i określamy wzorem:

$$W(x) = ax^n, gdzie \ a \in R, n \in N$$
(1.2)

Można, więc rozumieć wielomian jako skończoną sumę jednomianów. Jednomian stopnia zerowego jest stała, pojedyncza liczba rzeczywista, która w szczególności może być zerem.

Definicja 3 Wielomianem zerowym nazywamy, wielomian wyrażony wzorem:

$$W(x) = 0 (1.3)$$

W dalszej części, jeżeli nie zaznaczymy inaczej, mówiąc wielomian, będziemy mieli na myśli pewien wielomian, nie będący wielomianem zerowym.

1.1.2 Podstawowe działania na wielomianach

Na wielomianach, tak jak na liczbach możemy wykonywać podstawowe działania. Należą do nich: porównywanie, dodawanie, odejmowanie, mnożenie, dzielenie, a także obliczanie reszty z dzielenia oraz NWD (największego wspólnego dzielnika). Jako, że wielomian zmiennej x możemy traktować jak funkcję jednej zmiennej, możemy także policzyć z niego pochodne.

Porównywania wielomianów

Twierdzenie 1 Dwa wielomiany uważamy za równe wtedy i tylko wtedy, gdy są tego samego stopnia, a ich kolejne współczynniki są równe.

Przykład 1 Mamy dane wielomian W_1 oraz wielomian W_2 .

$$W_1(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

$$W_2(x) = b_0 x^n + b_1 x^{n-1} + \dots + b_{n-1} x + b_n$$
(1.4)

Wielomiany W_1 oraz W_2 są równe wtedy i tylko wtedy $gdy \forall i \in N \ a_i = b_i$.

Suma wielomianów

Twierdzenie 2 Aby dodać dwa wielomiany, należy dodać ich wyrazy podobne.

Przykład 2 Mamy dane wielomian W_1 oraz wielomian W_2 .

$$W_1(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

$$W_2(x) = b_0 x^n + b_1 x^{n-1} + \dots + b_{n-1} x + b_n$$
(1.5)

Zdefiniujmy trzeci wielomian: $W_3(x) = W_1(x) + W_2(x)$. Wówczas:

$$W_3(x) = (a_0 + b_0)x^n + (a_1 + b_1)x^{n-1} + \dots + (a_{n-1} + b_{n-1})x + a_n + b_n$$
(1.6)

Na powyższym przykładzie łatwo zaobserwować, że stopień sumy dwóch wielomianów nie może być większy od większego ze stopni dodawanych wielomianów. W przypadku gdy oba te wielomiany są tego samego stopnia, o przeciwnym współczynniku przy najwyższej potędze, to stopień ten będzie mniejszy.

Twierdzenie 3

$$\deg(W_1 + W_2) \le \max(\deg(W_1), \deg(W_2)) \tag{1.7}$$

Różnica wielomianów

Definicja 4 Wielomianem przeciwnym nazywamy wielomian, którego wszystkie współczynniki są przeciwne do danych.

Przykład 3 Mamy dany wielomian W_1 .

$$W_1(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$
(1.8)

Zdefiniujmy drugi wielomian: $W_2(x) = -W_1(x)$. Wówczas:

$$W_1(x) = -a_0 x^n + (-a_1) x^{n-1} + \dots + (-a_{n-1}) x + (-a_n)$$
(1.9)

Twierdzenie 4 Aby obliczyć różnicę wielomianów W_1 i W_2 , należy dodać ze sobą wielomiany W_1 i $-W_2$, czyli wielomian przeciwny do wielomianu W_2

Przykład 4 Mamy dane wielomian W_1 oraz wielomian W_2 .

$$W_1(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

$$W_2(x) = b_0 x^n + b_1 x^{n-1} + \dots + b_{n-1} x + b_n$$
(1.10)

Zdefiniujmy trzeci wielomian: $W_3(x) = W_1(x) - W_2(x)$. Wówczas:

$$W_3(x) = (a_0 - b_0)x^n + (a_1 - b_1)x^{n-1} + \dots + (a_{n-1} - b_{n-1})x + a_n - b_n$$
(1.11)

Wielomianem neutralnym ze względu na dodawanie i odejmowanie jest wielomian W(x) = 0.

1.1 Wielomiany 3

Iloczyn wielomianów

Twierdzenie 5 Aby pomnożyć dwa wielomiany, należy wymnożyć przez siebie wyrazów obu wielomianów, a następnie dodać do siebie wyrazy podobne.

Przykład 5 Mamy dane wielomian W_1 oraz wielomian W_2 .

$$W_1(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

$$W_2(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m$$
(1.12)

Zdefiniujmy trzeci wielomian: $W_3(x) = W_1(x) * W_2(x)$. Wówczas:

$$W_3(x) = (a_0 * b_0)x^{n+m} + (a_0b_1 + a_1b_0)x^{n+m-1} + \dots + (a_{n-1}b_m + a_nb_{m-1})x + a_nb_m$$
 (1.13)

Na podstawie powyższego przykładu, możemy zaobserwować, że stopień wielomianu, będącego iloczynem dwóch wielomianów niezerowych, jest równy sumie stopni tych wielomianów. Jeżeli jeden z czynników jest wielomianem zerowym, to stopień iloczynu jest równy 0.

Twierdzenie 6

$$deg(W_1 * W_2) = deg(W_1) + deg(W_2), dla W_1! = 0, W_2! = 0$$

$$deg(W_1 * W_2) = 0, w pozostałych przypadkach$$
(1.14)

Iloraz wielomianów

Definicja 5 Wielomian W(x) nazywamy podzielnym przez niezerowy wielomian P(x) wtedy i tylko wtedy, gdy istnieje taki wielomian Q(x), że spełniony jest warunek W(x) = P(x) * Q(x). Wówczas: wielomian Q(x) nazywamy ilorazem wielomianu W(x) przez P(x), zaś wielomian P(x) nazywamy dzielnikiem wielomianu P(x)

Definicja 6 Wielomian R(x) nazywamy resztą z dzielenia wielomianu W(x) przez niezerowy wielomian P(x) wtedy i tylko wtedy, gdy istnieje taki wielomian Q(x), że spełniony jest warunek W(x) = P(x) * Q(x) + R(x).

Przykład 6 Mamy dane wielomian W oraz wielomian P.

$$W(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

$$P(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m$$
(1.15)

 $\label{eq:Zdefiniujmy wielomian: Q(x) = W(x)/P(x) oraz Q(x) = W(x) mod P(x). \ W\'owczas:$

$$Q(x) = c_0 x^{n-m} + c_1 x^{n-m-1} + \dots + c_{n-m-1} x + c_{n-m}$$

$$R(x) = d_0 x^{n-m-1} + d_1 x^{n-m-2} + \dots + d_{n-m-2} x + d_{n-m-1}$$
(1.16)

Twierdzenie 7

$$deg(W_1 \ mod \ W_2) < deg(W_1/W_2) = deg(W_1) - deg(W_2) \tag{1.17}$$

Pochodna wielomianu

Definicja 7 Dany jest wielomian W, określony wzorem $W(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$. Pochodną wielomianu W nazywamy wielomian W' i wyrażamy wzorem:

$$W(x) = na_0x^{n-1} + (n-1)a_1x^{n-2} + \dots + 2a_{n-2}x + a_{n-1}$$
(1.18)

Twierdzenie 8

$$deg(W') = deg(W) - 1, \ dla \ deg(W) > 0$$

$$W = 0, \ w \ pozostałych \ przypadkach$$
(1.19)

NWD wielomianów

Twierdzenie 9 Niezerowy wielomian, o współczynnikach rzeczywistych, jest jednoznacznie rozkładalny na czynniki liniowe lub nierozkładalne czynniki kwadratowe, o współczynnikach rzeczywistych.

Oznacza to, że nie da się rozłożyć jednego wielomianu na czynniki, na dwa różne sposoby, tzn. tak, by istniał chociaż jeden czynnik (lub jego proporcjonalny odpowiednik), nie występujący w drugim rozkładzie.

Twierdzenie 10 Jeżeli wielomian W(x) podzelimy przez dwumian $x-x_0$, to reszta z tego dzielenia jest równa wartości tego wielomianu dla $x=x_0$.

W szczególnym przypadku reszta ta może być równa 0. Oznacza to, że liczba x_0 jest pierwiastkiem tego wielomianu.

Twierdzenie 11 (Bezout) Liczba x_0 jest pierwiastkiem wielomianu W(x) wtedy i tylko wtedy, gdy wielomian jest podzielny przez dwumian $x - x_0$

Dowód Jeżeli liczba x_0 jest pierwiastkiem wielomianu W, to wielomian ten możemy wyrazić jako iloczyn dwumianu $x-x_0$ oraz pewnego wielomianu Q: $W(x)=(x-x_0)*Q(x)$. Wyznaczając z tego wyrażenia wielomian Q, otrzymujemy $Q(x)=\frac{W(x)}{x-x_0}$. Widzimy zatem, że dzieląc wielomian W(x) przez dwumian $x-x_0$, otrzymujemy bez reszty, wielomian Q(x).

Twierdzenie 12 Liczba x_0 jest pierwiastkiem k-krotnym wielomianu W(x) wtedy i tylko wtedy, gdy wielomian jest podzielny przez $(x-x_0)^k$ i nie jest podzielny przez $(x-x_0)^{k+1}$.

Dowód Dowód jest analogiczny, jak dla twierdzenia Bezout. Jedyną różnicą jest to, że wielomian W przedstawiamy jako: $W(x) = (x - x_0)^k * Q(x)$.

Twierdzenie 13 Każdy wielomian W(x) nie będący wielomianem zerowym jest iloczynem czynników stopnia co najwyżej drugiego

Twierdzenie 14 Każdy wielomian stopnia nieparzystego, ma przynajmniej jeden pierwiastek rzeczywisty.

Twierdzenie 15 Dany jest wielomian $W(x) = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$, o współczynnikach całkowitych. Jeżeli wielomian W posiada pierwiastki całkowite, to są one dzielnikami wyrazu wolnego a_0 .

Twierdzenie 16 Dowolny wielomian $W_1(x) = \frac{a_n}{b_n} x^n + \frac{a_{n-1}}{b_{n-1}} x^{n-1} + ... + \frac{a_1}{b_1} x + \frac{a_0}{b_0}$, o współczynnikach wymiernych, można przekształcić w wielomian $W_2(x) = k * W_1(x)$, o współczynnikach całkowitych i tych samych pierwiastkach, co wielomian W. Wówczas:

$$k = NWW(b_0, b_1, ..., b_{n-1}, b_n)$$
(1.20)

Twierdzenie 17 Jeżeli liczba jest pierwiastkiem k-krotnym wielomianu W, to jest pierwiastkiem (k-1)-krotnym pochodnej tego wielomianu.

Przykład 7 Mamy dany wielomian $W(x) = x^3 + 2x^2 + x$. Obliczmy teraz kolejne pochodne wielomianu W.

$$W'(x) = 3x^{2} + 2 * 2x + 1 = 3x^{2} + 4x + 1$$

$$W^{(2)}(x) = 2 * 3x + 4 = 6x + 4$$

$$W^{(3)}(x) = 6$$
(1.21)

1.1 Wielomiany 5

Obliczmy teraz pierwiastki wielomianu W i jego kolejnych pochodnych.

$$\begin{split} W(x) &= x^3 + 2x^2 + x = x(x^2 + 2x + 1) = x(x + 1)^2 \\ x_1 &= 0, \ k_1 = 1, \ x_2 = -1, \ k_2 = 2 \\ W'(x) &= 3x^2 + 4x + 1 \\ \Delta &= 4^2 - 4 * 3 * 1 = 16 - 12 = 4 \\ \sqrt{\Delta} &= 2 \\ x_1 &= \frac{-4 - 2}{2 * 3} = \frac{-6}{6} = -1, \ k_1 = 1, \ x_2 = \frac{-4 + 2}{2 * 3} = \frac{-2}{6} = -\frac{1}{3}, \ k_2 = 1 \\ W^{(2)}(x) &= 6x + 4 = 6(x + \frac{2}{3}) \\ x_1 &= -\frac{2}{3}, \ k_1 = 1 \\ W^{(3)}(x) &= 6 - brak \ pierwiastk\'ow \end{split}$$

Jak widać powyższy przykład potwierdza zastosowanie przedstawionego twierdzenia. Widzimy, że krotność wszystkich pierwiastków ulega zmniejszeniu o 1, w kolejnej pochodnej. Dodatkowo możemy zauwazyć, że pochodna może zawierać także pierwiastki, których nie miał dany wielomian.

1.1.3 Eliminacja pierwiastków wielokrotnych

Przykład 8 Dany jest wielomian W, określony wzorem: $W(x) = x^6 - 6x^4 - 4x^3 + 9x^2 + 12x + 4$. Dokonajmy eliminacji pierwiastków dla wielomianu W.

1. Obliczamy pochodną wielomianu.

$$W'(x) = 6 * x^5 - 4 * 6x^3 - 3 * 4x^2 + 2 * 9x + 12 =$$

$$= 6x^5 - 24x^3 - 12x^2 + 18x + 12 = 6(x^5 - 4x^3 - 2x^2 + 3x + 2)$$
(1.23)

Obliczmy teraz pierwiastki wielomianu W i jego kolejnych pochodnych.

(1.24)

.

.

.

.

.

.

.

.

.

.