Homework #1

Illya Starikov

Due Date: February 3, 2016

1 Insertion Sort

1.1 Operations of Insertion Sort

3 <u>41</u> 52 26 38 57 9 49	1 $Comparison(s)$.
3 41 <u>52</u> 26 38 57 9 49	1 Comparison(s).
3 41 52 <u>26</u> 38 57 9 49	3 Comparison(s).
3 26 41 52 <u>38</u> 57 9 49	3 Comparison(s).
3 26 38 41 52 <u>57</u> 9 49	1 Comparison(s).
3 26 38 41 52 57 <u>9</u> 49	6 Comparison(s).
3 9 26 38 41 52 57 <u>49</u>	3 Comparison(s).
3 9 26 38 41 49 52 57	0 Comparison(s).

1.2 Number of Comparisons

18 total operations.

2 Question 2

В	A	О	О	Ω	ω	Θ
2^n	$2^{\frac{n}{2}}$	no	no	yes	yes	no
$n^{\lg c}$	$c^{\lg n}$	yes	no	yes	no	yes

2.1 Justification

To determine larger asymptotic growth, take the limit of one function over the other. Arbitrarily choosing 2^n for the numerator, we see that:

$$\lim_{n \to \infty} \frac{2^n}{2^{\frac{n}{2}}} = \lim_{n \to \infty} 2^{\frac{n}{2}} = \infty \tag{1}$$

Alternatively, if we chose 2^n as the denominator, we notice that $\lim_{n\to\infty} \frac{2^{\frac{n}{2}}}{2^n} = 0$, so we know that the condition $2^n > 2^{\frac{n}{2}}$ holds, and for certain conditions the functions are equal (take $n = 0, 2^0 = 2^{\frac{0}{2}}$).

 $\therefore 2^n$ is $\omega(2^{\frac{n}{2}})$ and $\Omega(2^{\frac{n}{2}})$. QED.

2.2 Justification II

By the properties of logarithms, we will show that $n^{\lg c} = c^{\lg n}$.

$$n^{\lg c} = c^{\lg n} \tag{2}$$

$$= c^{\log_2 n} \tag{3}$$

$$= c^{\frac{\ln n}{\ln 2}} \tag{4}$$

$$= e^{\ln c \times \frac{\ln n}{\ln 2}} \tag{5}$$

$$= e^{\frac{\ln c}{\ln 2} \times \ln n} \tag{6}$$

$$= e^{\lg c \ln n} \tag{7}$$

$$= n^{\lg c} \tag{8}$$

 $\therefore n^{\lg c}$ is $O(c^{\lg n})$, $\Omega(c^{\lg n})$ and $\Theta(c^{\lg n})$. QED.

3 Big-O Implies Big- Ω

Theorem: Let f(n) and g(n) be asymptotically positive functions, O(g(n)) be the set $\{f(n): \exists c, n_0 \in \mathbb{R}^+, \forall n, n_0 \in \mathbb{R}, 0 \leq f(n) \leq c \ g(n) \land n > n_0\}$, and $\Omega(g(n))$ be the set $\{f(n): \exists c, n_0 \in \mathbb{R}^+, \forall n, n_0 \in \mathbb{R}^+, 0 \leq c \ g(n) \leq f(n) \land n > n_0\}$ Then,

$$f(n) = O(g(n)) \Rightarrow g(n) = \Omega(f(n)) \tag{9}$$

[We will prove so by contradiction.]

Proof: Suppose not. That is, suppose

$$\sim [f(n) = O(g(n)) \quad \Rightarrow \quad g(n) = \Omega(f(n))] \tag{10}$$

$$f(n) = O(g(n)) \quad \wedge \quad \sim [g(n) = \Omega(f(n))]$$
 (11)

Using the formal definition of $\Omega(g(n))$, we can see the negation is as follows:

$$\sim \Omega(g(n)) = \{ f(n) : \forall c, n_0 \in \mathbb{R}^+, \exists n, n_0 \in \mathbb{R}^+, 0, > cg(n) > f(n) \land n \le n_0 \}$$
 (12)

This is a contradiction, for there are no c, n_0 such that $0 \le cg(n) \le f(n) \land 0 > cf(n) > g(n)$ because c, n_0 are defined as *positive* constants, and f(n), g(n) are defined as *positive* functions. Because no such positive function and positive constants exists to satisfy

$$0 > cf(n) > g(n) \tag{13}$$

This has led us to a contradiction. QED.

Asymptotic Proofs

4.1 Proof I

Assuming n > 1,

$$n^{2} \leq 20n^{2} + 2n + 5$$
 (14)
 $\leq 20n^{2} + 2n^{2} + 5$ (15)
 $\leq 27n^{2}$ (16)

$$\leq 20n^2 + 2n^2 + 5 \tag{15}$$

$$\leq 27n^2 \tag{16}$$

 \therefore For $C = 27, n_0 = 1, 20n^2 + 2n + 5 = O(n^2)$. QED.

4.2 Proof II

Assume $C = 1, n_0 = 1$. This satisfies the condition that c and n_0 are positive constants such that $0 \le Cn^2 \le 5n^2 - 15n + 100 \ \forall n \ge n_0$. QED.

4.3 **Proof III**

4.3.1 Lower Bound

Assume $C = 1, n_0 = 1$. This satisfies the condition that c and n_0 are positive constants such that $0 \le Cn^2 \le 5n^2 + 2n \ \forall n \ge n_0$. QED.

4.3.2 Upper Bound

Assuming n > 1,

$$n^{2} \leq 5n^{2} + 2$$
 (17)
 $\leq 5n^{2} + 2n^{2}$ (18)
 $\leq 7n^{2}$ (19)

$$\leq 5n^2 + 2n^2 \tag{18}$$

$$\leq 7n^2 \tag{19}$$

 $\therefore C = 7, n_0 = 1, 5n^2 + 2n = \Theta(n^2). \text{ QED.}$

Proof IV 4.4

To prove that $5n + 7 = o(n^2)$ we must show that $\exists c, n_0 \in \mathbb{R}^+, 0 \leq f(n) < \infty$ $Cg(n) \wedge n > n_0$. We do so by showing that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$. [with the help of L'Hôpital's Rule

$$\lim_{n \to \infty} \frac{5n+1}{n^2} \tag{20}$$

$$= \lim_{n \to \infty} \frac{5}{2n} \tag{21}$$

$$= 0 \tag{22}$$

$$= \lim_{n \to \infty} \frac{5}{2n} \tag{21}$$

$$= 0 (22)$$

QED.