Vector-Rotation to Euler Angles

Buck Baskin

November 24, 2017

Some calculations were verified using Python.

1 Answer

$$R_{BA} = R_y(\alpha) R_x(\beta) R_y(\gamma)$$

1.1 Solving for α, β, γ

1.1.1 β

Using the atan method, one can solve for β using the middle column of the matrix. The middle value, $r_{22} = cos(\beta)$. Using $r_{12}^2 + r_{32}^2 = sin^2(\beta)(sin^2(\gamma) + cos^2(\gamma)) = sin^2(\beta)$, $sin(\beta) = \sqrt{r_{12}^2 + r_{32}^2}$. Therefore, $\beta = atan2(\sqrt{r_{12}^2 + r_{32}^2}, r_{22})$.

1.1.2 γ

Looking at two elements in the middle row of the matrix, one can solve for γ using the atan method. $r_{21} = sin(\beta)sin(\gamma)$, so $sin(\gamma) = r_{21}/sin(\beta)$. $r_{23} = -sin(\beta)cos(\gamma)$, so $cos(\gamma) = -r_{23}/sin(\beta)$. Therefore, $\gamma = atan2(r_{21}/sin(\beta), -r_{23}/sin(\beta))$.

1.1.3 α

$$r_{12} = \sin(\alpha)\sin(\beta), \sin(\alpha) = r_{12}/\sin(\beta)$$

$$r_{32} = \cos(\alpha)\sin(\beta), \cos(\alpha) = r_{32}/\sin(\beta)$$

$$\alpha = a\tan(2(r_{12}/\sin(\beta), r_{32}/\sin(\beta))$$

1.2 Conclusion

Substituting the correct values from R_{BA} calculated by Rodriguez Formula into the spaces allocated by r_{ij} that were solved into an atan2 formula using R_{BA} calculated by the rotation matrices gives

the solution for the equivalent rotations in radians (rounded to 3 decimal places). $\alpha=1.833, \beta=1.231, \gamma=-2.880$