Dynamic Design Analysis

ECU 1

1. State Machine Diagram for each ECU component:

Data Logger Module

Speed Sensor Module

Light Switch Module

Door Sensor Module

Monitoring Sensors Module

Periodic Transmitter Component

2. State Machine Diagram for ECU Operation:

3. Sequence Diagram for ECU:

4. <u>CPU Load for ECU:</u>

We have three tasks: (Assuming Execution time)

T1: {Periodicity: 10 ms, Execution Time: 1 ms}

T2: {Periodicity: 5 ms, Execution Time : 1 ms}

T3: {Periodicity: 20 ms , Execution Time: 1 ms }

H (HyperPeriod) = LCM(Pi) = 20 ms

CPU Load = $\sum E / H = (1*2 + 1*4 + 1*1) / 20 * 100 = 35\%$

ECU 2

1. <u>State Machine Diagram for each ECU component:</u>

Data Logger Module

Buzzer Module

Lights Module

2. State Machine Diagram for ECU Operation:

5. Sequence Diagram for ECU:

6. CPU Load for ECU:

We have one task: (Assuming Execution time and periodicity)

T: {Periodicity: 5 ms , Execution Time : 2 ms }

H (HyperPeriod) = LCM(Pi) = 5 ms

CPU Load = $\sum E / H = (2) / 5 * 100 = 40\%$

CAN Bus Load in System: (% of time the CAN bus loaded with data)

1 CAN frame contains approximately 125 bits.

Given we are using a 500 kBit/s bit rate:

bit time = 1 / bit rate = 1 /
$$(500 * 1000) s = 2 * 10^{-6} s = 2 \mu s$$

This means 1 bit will take 2 µs to transfer on the bus when using 500 kBit/s.

So the approximate time to transfer 1 frame is $(2 \mu s/bit * 125 bit) = 250 \mu s$. (time for 125 bits)

We have multiple sending intervals on the bus:

1 frame every 10 ms = 100 frames every 1000 ms

1 frame every 20 ms = 50 frames every 1000 ms

1 frame every 5 ms = 200 frames every 1000 ms

This is in total = 350 frames every 1000 ms

Total time on bus = 350 (total number of frames)* $250 \mu s$ (time of 1 frame)

Bus load is = ((350 * 250) / (1000 * 1000)) * 100 % = 8.75 %