Chapitre 10 : Fonctions de référence

I. Fonctions affines et fonctions linéaires

1) <u>Définitions</u>

Définition:

Une **fonction affine** f est définie sur \mathbb{R} par f(x) = ax + b, où a et b sont deux nombres réels.

Si b = 0, la fonction f définie par f(x) = ax est appelée **fonction linéaire**.

Exemples:

La fonction f définie sur \mathbb{R} par f(x)=2x+5 est une fonction affine car a=2 et b=5 La fonction g définie sur \mathbb{R} par $g(x)=\frac{8}{3}x$ est une fonction linéaire car b=0 et $a=\frac{8}{3}$.

2) Variations

Propriété:

Soit f une fonction affine définie sur \mathbb{R} par f(x) = ax + b.

- \bullet Si a > 0, alors f est croissante sur \mathbb{R} .
- \bullet Si a < 0, alors f est décroissante sur \mathbb{R} .
- \bullet Si a=0, alors f est constante sur \mathbb{R} .

Démonstration (à faire sur une feuille annexe) :

On utilise la définition de la croissance (ou la décroissance) d'une fonction vue au chapitre 6.

Soient m et p deux nombres réels tels que m < p

Calculer f(p) - f(m):

Quel est le signe de p-m ? Qu'en déduire sur le signe de f(p)-f(m) ?

On procède par disjonction des cas :

- Si a > 0, en déduire le signe de f(p) f(m), puis montrer que f est croissante.
- Si a < 0, en déduire le signe de f(p) f(m), puis montrer que f est décroissante.
- Si a=0, en déduire le signe de f(p)-f(m), puis montrer que f est constante.

3) Représentation graphique

La représentation graphique d'une fonction affine est une droite non verticale (**non parallèle** à l'axe des ordonnées).

Dans le cas d'une fonction **linéaire**, il s'agit d'une droite passant par **l'origine** du repère. Dans le cas d'une fonction **constante**, il s'agit d'une droite horizontale **(parallèle à l'axe des abscisses)**.

2 est appelé le coefficient directeur : quand on se décale horizontalement de 1, on se décale verticalement de 2.

-2 est l'ordonnée à l'origine : il se lit sur l'axe des ordonnées

Pour (d): Le coefficient directeur est 2

L'ordonnée à l'origine est -2 (quand x=0)

La fonction f représentée par la droite (d) est définie par f(x) = 2x - 2

Pour (d'): Le coefficient directeur est -0,5

L'ordonnée à l'origine est -1 (quand x=0)

La fonction g représentée par la droite (d') est définie par g(x) = -0.5x - 1

Définition:

Pour la fonction f définie sur \mathbb{R} par f(x) = ax + b: a est appelé le **coefficient directeur** (ou pente) de la droite et b est l'ordonnée à l'origine de la droite.

4) Détermination les coefficients d'une fonction affine

Propriété:

Si $A(x_A;y_A)$ et $B(x_B;y_B)$ sont deux points distincts de la droite $\mathscr D$ représentant la fonction f définie sur $\mathbb R$ par f(x)=ax+b alors : $a=\frac{y_B-y_A}{x_B-x_A}$.

Démonstration:

$$y_B-y_A=f(x_B)-f(x_A)=(a\,x_B+b)-(a\,x_A+b)=a\,x_B-a\,x_A=a(x_B-x_A)$$

On a supposé que la droite (d) n'est pas verticale : $x_A\neq x_B$. On a $a=\frac{y_B-y_A}{x_B-x_A}$.

Méthode: Déterminer l'expression d'une fonction affine

Déterminer par calcul une expression de la fonction f telle que f(-2) = 4 et f(3) = 1.

❖ Calcul de a :

La représentation graphique correspondant à la fonction affine f passe donc par les points A(-2; 4) et B(3; 1).

$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{1 - 4}{3 - (-2)} = -\frac{3}{5}$$

Calcul de b :

Comme A est un point de la droite, on a : f(-2) = 4 (c'est la **donnée numérique**).

De plus : $f(x) = -\frac{3}{5}x + b$ selon la **formule** d'une fonction affine avec $a = -\frac{3}{5}$.

Donc on a : $4 = -\frac{3}{5} \times (-2) + b$. C'est une équation dont l'inconnue est b .

D'où :
$$b = \frac{14}{5}$$
 D'où : $f(x) = -\frac{3}{5}x + \frac{14}{5}$

♦ Conclusion :
$$f(x) = -\frac{3}{5}x + \frac{14}{5}$$

Remarque:

Cette méthode permet d'avoir des valeurs exactes pour a et b alors que la méthode graphique ne permet que de lire des valeurs approchées La méthode graphique permet donc d'avoir un ordre de grandeur des valeurs cherchées.

1. Signe d'une fonction affine

Propriété:

Si f est une fonction affine définie sur \mathbb{R} par f(x) = mx + p, avec $m \neq 0$, alors f s'annule en $x = -\frac{p}{}.$

Démonstration:

Par hypothèse, on sait que $m \neq 0$.

$$f(x) = 0 \iff mx + p = 0$$
$$\iff mx = -p$$
$$\iff x = -\frac{p}{m}$$

Propriétés:

Soit une fonction affine définie sur \mathbb{R} par f(x) = mx + p, avec $m \neq 0$.

Si m > 0:

- \bullet f est croissante sur \mathbb{R} ;
- f est négative sur $\left|-\infty; -\frac{p}{m}\right|$;
- f est positive sur $\left| -\frac{p}{m}; +\infty \right|$.

x	$-\infty$ $-\frac{p}{m}$	$+\infty$
Signe de $f(x)$	- 0 +	
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$		*

Si m < 0:

- ❖ f est positive sur $\left] -\infty; -\frac{p}{m} \right];$ ❖ f est négative sur $\left[-\frac{p}{m}; +\infty \right]$.

x	$-\infty$ $-\frac{p}{m}$ $+\infty$
Signe de $f(x)$	+ 0 -
Variations de f	0

Démonstration:

Pour connaître le signe d'une fonction affine définie sur \mathbb{R} par f(x) = mx + p, il faut résoudre l'inéquation : f(x) > 0.

$$f(x) > 0 \iff mx + p > 0$$

 $\iff mx > -p$
Si $m > 0$, alors $x > -\frac{p}{m}$
Si $m < 0$, alors $x < -\frac{p}{m}$

Rem : Le tableau résumant le signe d'une expression s'appelle un tableau de signes. Celui résumant les variations de f s'appelle un tableau de variations.

1) Résolution d'inéquations à l'aide d'un tableau de signes

· Cas d'un produit

<u>Méthode</u>: Résoudre une inéquation en étudiant le signe d'un produit Résoudre dans \mathbb{R} l'inéquation suivante : (3-6x)(x+2)>0

Le signe de (3-6x)(x+2) dépend du signe de chaque facteur 3-6x et x+2. 3-6x=0 ou x+2=0 6x=3 x=-2 $x=\frac{3}{6}=\frac{1}{2}$

Résumons dans un même tableau de signes les résultats pour les deux facteurs. En appliquant la règle des signes, on en déduit le signe du produit (3-6x)(x+2).

x	-∞		-2		$\frac{1}{2}$		+∞
3 – 6 <i>x</i>		+		+	0	-	
x + 2		-	0	+		+	
(3-6x)(x+2)		-	0	+	0	-	

On en déduit que
$$(3-6x)(x+2) > 0$$
 pour $x \in \left]-2; \frac{1}{2}\right[$.

L'ensemble des solutions de l'inéquation (3-6x)(x+2) > 0 est $\left[-2; \frac{1}{2}\right[$.

Exemple:

a.
$$(x-3)(x-1) \le 0$$

b.
$$(x-9)(x-5) < 0$$

c.
$$(2x+4)(3x-3) \ge 0$$

a.
$$(x-3)(x-1) \le 0$$

b. $(x-9)(x-5) < 0$
c. $(2x+4)(3x-3) \ge 0$
d. $(15-5x)(x+1)(x+2) > 0$

Cas d'un quotient

Méthode : Résoudre une inéquation en étudiant le signe d'un quotient

Résoudre dans \mathbb{R} l'inéquation suivante : $\frac{2-6x}{3x-2} \le 0$

L'équation n'est pas définie pour 3x - 2 = 0, soit x = 3.

Il faudra éventuellement exclure cette valeur de l'ensemble des solutions.

$$2-6x$$

Le signe de 3x-2 dépend du signe des expressions 2-6x et 3x-2.

$$2 - 6x = 0 \text{ équivaut à } x = \frac{1}{3}.$$

Résumons dans un même tableau de signes les résultats pour les deux expressions.

x	-∞		$\frac{1}{3}$		$\frac{2}{3}$	+∞
2 - 6x		+	0	-		-
3x - 2		-		-	0	+
$\frac{2-6x}{3x-2}$		-	0	+	П	,

La double-barre dans le tableau signifie que le quotient n'est pas défini pour

$$x = \frac{2}{3}$$

On en déduit que
$$\frac{2-6x}{3x-2} \le 0$$
 pour $x \in \left] -\infty; \frac{1}{3} \right] \cup \left] \frac{2}{3}; +\infty \right[$.

L'ensemble des solutions de l'inéquation $\frac{2-6x}{3x-2} \le 0$ est $\left] -\infty; \frac{1}{3} \right] \cup \left[\frac{2}{3}; +\infty \right[$

Exemple:

$$\frac{2x+8}{x-9} > 0$$

$$6x+1 \ge 0$$
b. $\frac{6x+1}{7-x} \ge 0$
d. $\frac{-2x-10}{4-3x} \ge 0$

$$\frac{x+5}{3x-5} \le 0$$

$$\frac{-2x-10}{4-3x} \ge 0$$

II. Fonction carré

1) Définition

<u>Définition</u>: La <u>fonction carré</u> f est définie sur \mathbb{R} par $f(x) = x^2$.

2) <u>Variations</u>

Propriété:

La fonction carré f est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur l'intervalle $[0;+\infty[$.

Démonstration :

Soient a et b deux nombres réels quelconques positifs tels que a < b .

$$f(b) - f(a) = b^2 - a^2 = (b - a)(b + a).$$

Or b-a>0, $a\geq 0$ et $b\geq 0$ donc $f(b)-f(a)\geq 0$ ce qui prouve que f est croissante sur l'intervalle $\left[0;+\infty\right[$.

La décroissance sur l'intervalle $]-\infty;0]$ est prouvée de manière analogue en choisissant a et b deux nombres réels quelconques négatifs tels que a < b.

3) Représentation graphique

Remarques:

- Le tableau de valeurs n'est pas un tableau de proportionnalité. La fonction carrée n'est donc pas une fonction linéaire.
- 2) Dans un repère (O, I, J), la courbe de fonction carré est appelée une parabole de sommet O.
- 3) Dans un repère orthogonal, la courbe la fonction carré est symétrique par rapport à l'axe des ordonnées.

4) Equation de la forme $x^2 = a$

Propriété:

Les solutions dans $\mathbb R$ de l'équation $x^2=a$ dépendent du signe de a.

- Si a < 0, alors l'équation n'a pas de solution.
- Si a = 0, alors l'équation possède une unique solution qui est 0.

Démonstration:

- Si a < 0, l'équation n'a pas de solution car le carré d'un nombre est toujours positif.
- Si a = 0, alors l'équation s'écrit $x^2 = 0$ donc x = 0.
- ightharpoonup Si a>0, on obtient la chaine d'équivalence suivante :

$$x^{2} = a \iff x^{2} - a = 0$$

$$\iff \left(x - \sqrt{a}\right)\left(x + \sqrt{a}\right) = 0$$

$$\text{donc} \quad x - \sqrt{a} = 0 \quad \text{ou} \quad x + \sqrt{a} = 0$$

$$x = \sqrt{a} \quad \text{ou} \quad x = -\sqrt{a}$$

Exemples:

Résoudre dans \mathbb{R} les équations suivantes : $x^2 = 16$, $x^2 = -8$ et $(x+2)^2 = 9$.

III. Fonction inverse

1) Définition

<u>Définition</u>: La <u>fonction inverse</u> f est définie sur $\mathbb{R}\setminus\{0\}$ par $f(x)=\frac{1}{x}$.

Remarques:

- ❖ $\mathbb{R}\setminus\{0\}$ désigne l'ensemble des nombres réels sauf 0, c'est-à-dire] $-\infty$; $0[\cup]0; +\infty[$. On note aussi cet ensemble \mathbb{R}^* .
- ❖ La fonction inverse n'est donc pas définie en 0.

2) Variations

La

x	-2	-1	0	1	2
<i>f(x)</i>	4	1	0	1	4

Propriété:

fonction inverse f est décroissante sur l'intervalle $\left]-\infty;0\right[$ et décroissante sur l'intervalle $\left]0;+\infty\right[$.

Remarques:

La variation d'une fonction ne s'étudie que sur un **intervalle**. On ne peut donc pas dire que f est décroissante sur $]-\infty;0[\cup]0;+\infty[$ qui n'est pas un intervalle. On peut par contre conclure de manière séparée que la fonction inverse est décroissante sur l'intervalle $]-\infty;0[$ et décroissante sur l'intervalle $]0;+\infty[$.

Démonstration:

Soient a et b deux nombres réels strictement positifs tels que a < b .

$$f(b) - f(a) = \frac{1}{b} - \frac{1}{a} = \frac{a - b}{ab}.$$

Or a>0 et b>0 et de plus a-b<0 par hypothèse. Donc f(b)-f(a)<0 ce qui prouve que f est décroissante sur l'intervalle $\left]0;+\infty\right[$.

La décroissance sur l'intervalle $]-\infty;0[$ est prouvée de manière analogue en choisissant a et b deux nombres réels strictement négatifs tels que a < b.

3) Représentation graphique

Remarques:

- 1) Dans un repère (O, I, J), la courbe de la fonction inverse une hyperbole de centre O.
- 2) La courbe de la fonction inverse est symétrique par rapport à l'origine.

On dit que la fonction est

impaire. Mathématiquement, cela se traduit par f(-x) = -f(x).

Soit un rectangle de côtés de longueurs x et 2.

- 1) a) Ecrire en fonction de x, l'expression d'une fonction donnant le périmètre de ce rectangle.
 - b) Cette fonction est-elle affine?
- 2) a) Écrire en fonction de x, l'expression d'une fonction donnant l'aire de ce rectangle.
 - b) Cette fonction est-elle affine?
- 2.

Soit un carré de côté de longueur x.

Laquelle des expressions de l'aire ou du périmètre du carré en fonction de x est une fonction affine ?

3.

On considère la fonction affine f définie sur \mathbb{R} par f(x) = 2x - 1

1) Compléter le tableau de valeurs suivant :

Х	0	2	4
f(x)			

- 2) a) Quelle est la nature de la représentation graphique de la fonction f?
 - b) À l'aide du tableau, donner les coordonnées de 3 points appartenant à la représentation graphique de f.
 - c) En déduire le tracé de la représentation graphique de f.

4.

On considère la fonction affine g définie par $g(x) = -\frac{1}{2}x + 3$

1) Compléter le tableau de valeurs suivant :

X	0	2
g(x)		

- 2) Tracer la représentation graphique de g.
- 5.

On considère la fonction affine f définie par f(x) = 2x + 1

- 1) a) Quelle est l'ordonnée à l'origine de la droite représentative de la fonction f?
 - b) En déduire les coordonnées d'un point appartenant à cette droite.
 - c) Placer ce point dans un repère.
- 2) a) Quel est le coefficient directeur de la droite représentative de la fonction f?
 - b) En déduire les coordonnées d'un deuxième point appartenant à la droite.
- 3) Tracer la droite représentative de la fonction f.
- 6. On considère la fonction affine g définie par $g(x) = -\frac{1}{2}x 1$
 - 1) Donner l'ordonnée à l'origine et le coefficient directeur de la droite représentative de la fonction f.
 - 2) Représenter graphiquement la fonction g.

Dans un repère, la représentation graphique d'une fonction affine f passe par les points A(-; 4) et B(0; 2).

x	-2	-1	0,25	1	2	3
f(x)	-0,5	-1	4	1	0,5	$\frac{1}{3}$

1)Placer les points A et B dans un repère orthonormé.

2)Déterminer par le calcul les valeurs des réels a et b telles que pour tout x réel,

f(x) = ax + b.

3) Vérifier graphiquement les résultats obtenus.

8.

Dans un repère on donne deux points A(-3; 5) et B(2; -15). Déterminer l'expression de la fonction affine dont la courbe représentative est la droite (AB).

9.

Dans un repère, tracer la représentation graphique de la fonction f donnée par

$$f(x) = \begin{cases} 2 - x & pour & x \le 2 \\ x - 2 & pour & x \ge 2 \end{cases}$$

10.

 $\begin{cases} x+2 & pour \ x \le -1 \\ -2x-1 & pour \ x \ge -1 \end{cases}$ Soit f la fonction définie sur $\mathbb R$ par : Tracer la représentation graphique de f.

11.

 $\begin{cases} -\frac{1}{3}x+1 & pour \ x \le 3 \\ 2x-6 & pour \ x \ge 3 \end{cases}$ Soit f la fonction définie sur \mathbb{R} par :

Tracer la représentation graphique de f.

12.

Dans un repère, tracer la représentation graphique de la fonction g donnée par

$$g(x) = \begin{cases} -x - 6 & pour \quad x \le -1 \\ 2x - 3 & pour \quad -1 \le x \le 2 \\ x - 1 & pour \quad x \ge 2 \end{cases}$$

13.

La ville de Bordeaux compte 240000 habitants. Quel sera ce nombre s'il augmente de 3%?

14.

Le prix d'un téléphone portable est 99€. Quel est le prix payé par un acheteur qui a obtenu une réduction de 10% ?

15.

Un marchand de cycle propose à un client une réduction de 15% sur un VTT affiché à 249€. Quel sera le prix payé par un client qui dispose d'une carte de fidélité qui lui accorde en plus une réduction de 5% ?

16. Déterminer dans chacun des cas le coefficient multiplicateur qui passe d'un prix initial à un prix final. En déduire la variation exprimée en pourcentage.

Prix initial en €	Prix final en €
80	56
24	30
45	22,50
19	38

17.

En combien de temps le nombre de bactéries dans un produit aura-t-il doublé s'il augmente de 3% par jour ?

18.

Calculer le carré des nombres suivants :

19.

a) Retrouver des nombres dont le carré est égal à :

b) Existe-t-il un nombre dont le carré est égal à -25 ? Expliquer.

20.

Parmi les expressions suivantes, reconnaître celles de fonctions carré ?

$$f(x) = 3x$$

$$q(x) = x^2$$

$$h(x) = x \times x$$

$$k(x) = 3\sqrt{x}$$

21.

Prouver que les fonctions suivantes sont des fonctions carré ?

$$f(x) = x(x+1) - x$$

$$g(x) = -x^2 + 5x^2 - 3x^2$$

$$h(x) = (x-1)^2 + 2x - 1$$

22.

On considère la fonction f définie par $f(x) = x^2$.

1) Compléter le tableau de valeurs suivant :

Х	-3	-2	-1	0	1	2	3
f(x)	9						

- 2) a) Pourquoi le point de coordonnées (-3 ; 9) appartient-il à la courbe représentative de f?
 - b) Dans un repère, placer les points de la courbe représentative de f correspondant aux valeurs du tableau et en déduire le tracé de la courbe.

On considère la fonction f définie par $f(x) = x^2$.

1) Compléter le tableau de valeurs suivant :

Х	0	0,2	0,4	0,6	0,8	1	1,2
f(x)							

2) Dans un repère, placer les points de la courbe représentative de f correspondant aux valeurs du tableau et en déduire le tracé de la courbe sur l'intervalle [0 ; 1,2].

24.

On considère la fonction f définie par $f(x) = 0.5x^2$.

Compléter le tableau de valeurs puis tracer la représentation graphique de f.

. •										
x	-4	-3	-2	-1	0	1	2	3	4	
f(x)										

25.

1) Calculer l'inverse des nombres suivants : 2 ; 5 ; 1 ; -2 ; 10 : $\frac{1}{2}$

26.

Retrouver les nombres dont l'inverse est égal à : $\frac{1}{3}$; $\frac{1}{7}$; 3 ; 0,2 ; $-\frac{3}{2}$

27.

Parmi les expressions suivantes, reconnaître celles de fonctions inverse ?

$$f(x) = \frac{x}{2}$$

$$g(x) = \frac{1}{x}$$

$$f(x) = \frac{x}{2} \qquad g(x) = \frac{1}{x} \qquad h(x) = \frac{x+1}{x}$$

$$k(x) = 1: x$$

28.

Prouver que les fonctions suivantes sont des fonctions inverse ?

$$f(x) = 3 \times \frac{1}{3x}$$

$$g(x) = \frac{x+1}{x} - 1$$

29.

On considère la fonction f définie par f(x) = x.

3) Compléter le tableau de valeurs suivant :

х	0,1	0,2	0,5	1	2	4	5
f(x)	10						

- 4) a) Pourquoi le point de coordonnées (0,1 ; 10) appartient-il à la courbe représentative de f ?
 - b) Dans un repère, placer les points de la courbe représentative de f correspondant aux valeurs du tableau et en déduire le tracé de la courbe sur l'intervalle [0,1;5].

2

On considère la fonction f définie par f(x) = x.

1) Compléter le tableau de valeurs puis tracer la représentation graphique de f sur l'intervalle [0,1;5].

Х	0,1	0,2	0,4	0,5	0,8	1	2	4	5
f(x)									

- 2) a) Que peut-on dire des symétries de la courbe représentative de f?
 - b) En déduire le tracé de la représentation graphique de f sur l'intervalle [-5 ; -0,1].

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales