Fundação Getulio Vargas Escola de Matemática Aplicada Curso de Graduação em Matemática Aplicada

Utilização de indicadores ambientais e epidemiológicos no estudo da dinâmica de doenças transmitidas por vetores

por Raphael Felberg Levy

Rio de Janeiro - Brasil 2023

Fundação Getulio Vargas Escola de Matemática Aplicada Curso de Graduação em Matemática Aplicada

Utilização de indicadores ambientais e epidemiológicos no estudo da dinâmica de doenças transmitidas por vetores

"Declaro ser o único autor do presente projeto de monografia que refere-se ao plano de trabalho a ser executado para continuidade da monografia e ressalto que não recorri a qualquer forma de colaboração ou auxílio de terceiros para realizá-lo a não ser nos casos e para os fins autorizados pelo professor orientador."

Raphael Felberg Levy

Rio de Janeiro - Brasil 2023

Fundação Getulio Vargas Escola de Matemática Aplicada Curso de Graduação em Matemática Aplicada

Utilização de indicadores ambientais e epidemiológicos no estudo da dinâmica de doenças transmitidas por vetores

"Projeto de Monografia apresentado à Escola de Matemática
Aplicada como requisito parcial para continuidade ao trabalho de
monografia."

Aprovado em	de	de	
Grau atribuído	ao Projeto d	e Monografia:	

Professor Orientador: Flávio Codeço Coelho

Escola de Matemática Aplicada Fundação Getúlio Vargas

Sumário

1	Introdução	5
2	Objetivo Final	7
	2.1 xx	. 7
	2.1.1 yy	. 7
	2.2 xx	. 8
3	Metodologia	9
	3.1 Modelo SIR	. 9
	3.2 Modelo SEI	. 11
	3.2.1 yy	. 13
	3.3 xx	
4	Resultados Esperados	14
	4.1 xx	. 14
5	Referências	15

1 Introdução

A Amazônia é uma das maiores e mais biodiversas florestas tropicais do mundo, abrigando inúmeras espécies de plantas, animais e microrganismos, incluindo vetores e patógenos responsáveis pela transmissão de diversas doenças. Entre elas, algumas das mais comuns, e que serão estudadas nesse trabalho, são a malária, leishmaniose e doença de Chagas. Essas doenças são causadas por protozoários, respectivamente, do gênero *Plasmodium*, sendo transmitida pela picada da fêmea infectada do mosquito do gênero *Anopheles*; do gênero *Leishmania*, transmitida por insetos hematófagos conhecidos como flebótomos, podendo ser cutânea ou visceral; ou do gênero *Trypanosoma cruzi*, transmitida por insetos do gênero *Triatoma*, também conhecido como "barbeiro", sendo as três doenças não-contagiosas, ou seja, podendo ser apenas transmitidas do vetor para o humano.

Notavelmente, a transmissão de doenças por vetores é intimamente relacionada à alterações ambientais que interferem no ecossistema dos organismos transmissores e dos organismos afetados. No caso da Amazônia, essas modificações no meio podem ser representadas pelo desmatamento, queimadas, mineração e expansão da agricultura e pecuária, entre outras. Essas atividades resultam em perda de habitat, fragmentação de ecossistemas e alterações no clima, afetando a distribuição e abundância de vetores e hospedeiros, bem como a interação entre eles e os patógenos. Além disso, o crescimento populacional e a urbanização também têm um papel importante na disseminação de doenças, uma vez que aumentam a exposição dos seres humanos aos vetores e aos riscos de infecção.

Diante desse contexto, este trabalho visa investigar a transmissão de doenças por vetores na Amazônia e analisar como os impactos ambientais influenciam a dinâmica de transmissão, abordando os vetores e patógenos apresentados anteriormente, os fatores ecológicos e socioeconômicos que afetam a disseminação das doenças e possíveis estratégias de prevenção e controle.

O trabalho tem como objetivo principal ser um estudo sobre a evolução de epidemias de malária, leishmaniose e Chagas, tendo como referência principal o Projeto Trajetórias-Sinbiose, elaborado pela FIOCRUZ, um dataset incluindo indicadores ambientais, epidemiológicos, econômicos e socioeconômicos para todos os municípios da Amazônia Legal, analisando a relação

espacial e temporal entre trajetórias econômicas ligadas à dinâmica dos sistemas agrários, sendo eles rurais de base familiar ou produção agrícola e de gado em larga escala, a disponibilidade de recursos naturais e o risco de doenças.

Ao longo deste trabalho, serão abordados os seguintes tópicos: (1) uma revisão das principais doenças transmitidas por vetores na Amazônia e seus vetores e patógenos associados; (2) análise dos fatores ecológicos, climáticos e socioeconômicos que influenciam a transmissão de doenças; (3) discussão sobre os modelos epidemiológicos, incluindo adaptações aos modelos SIR e SEI, para avaliar o impacto das mudanças ambientais na transmissão de doenças; e (4) identificação de estratégias de prevenção e controle baseadas na compreensão da dinâmica de transmissão e nos desafios específicos da região amazônica.

2 Objetivo Final

Estudar a evolução de doenças transmitidas por vetores através de um modelo matemático levando em consideração fatores influentes na transmissão, como desmatamento, queimadas, chuva, temperatura variante etc.

2.1 xx

referencial teórico... 1 .

2.1.1 yy

 $^{^{1}\}mathrm{Ver}$ xx

2.2 xx

XX

3 Metodologia

Para a elaboração do trabalho, serão usados dados do dataset do Projeto Trajetórias, e serão abordados métodos de transmissão de doenças baseados em equações diferenciais ordinárias, SIR e SEI, para hospedeiros e vetores, respectivamente, e, partindo de uma modelagem simples de cada doença, serão incluídos os fenômenos ambientais, como desmatamento e queimada, para ver como modificações no ecossistema irão interferir no modelo elaborado previamente.

3.1 Modelo SIR

Desenvolvido por W. O. Kermack e A. G. McKendrick em 1927, o SIR é um dos modelos mais usados para a modelagem de epidemias, levando em consideração três compartimentos:

S: número de indivíduos suscetíveis I: número de indivíduos infectados R: número de indivíduos recuperados

Nesse modelo, os indivíduos saudáveis na classe S são suscetíveis ao contato com indivíduos da classe I, e são transferidos para esse compartimento caso contraiam a doença. Indivíduos infectados podem espalhar a doença por contato direto com indivíduos suscetíveis, mas também podem se tornar imunes ao longo do tempo, sendo transferidos para o compartimento R. Em geral, R inclui o total de recuperados (imunes) e mortos em decorrência da doença, mas podemos assumir que o número de mortos é muito baixo em relação ao tamanho da população total, podendo ser ignorado. Consideramos também que indivíduos nessa categoria não voltarão a ser suscetíveis ou infecciosos.

Considerando uma epidemia em um espaço curto de tempo e que a doença não é fatal, podemos ignorar dinâmicas vitais de nascimento e morte. Com isso, podemos descrever o modelo SIR através do seguinte sistema de EDOs:

$$\begin{cases} \frac{dS}{dt} = -\frac{\beta SI}{N} \\ \frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I \\ \frac{dR}{dt} = \gamma I \end{cases}$$

No modelo, N(t) = S(t) + I(t) + R(t), ou seja, a população total no tempo t, enquanto que β é a taxa de infecção e γ é a taxa de recuperação. Dado que S + I + R é sempre constante se ignorarmos nascimento e morte, temos $\frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = 0.$

Para que a doença possa se espalhar, é fácil ver que $\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I > 0$. Assim, $\frac{\beta SI}{N} > \gamma I \Rightarrow \frac{\beta S}{N} > \gamma$. Supondo que estamos no início da infecção, dado que queremos ver como se espalha, I será muito pequeno e $S \approx N$. Concluímos então que $\frac{\beta N}{N} > \gamma \Rightarrow \frac{\beta}{\gamma} > 1$. É possível derivar esse valor adimensionalizando o modelo: sejam $y^* = \frac{S}{N}$, $x^* = \frac{I}{N}$, $z^* = \frac{R}{N}$ e $t^* = \frac{t}{1/\gamma} = \gamma t$, de forma que $y^* + x^* + z^* = 1$. Substituindo o sistema de EDOs acima utilizando esses valores:

$$\begin{cases} \frac{dS}{dt} = \frac{d(y^*N)}{d(t^*/\gamma)} = -\frac{\beta SI}{N} = -\frac{\beta(y^*N)(x^*N)}{N} = -\beta y^*Nx^* \\ \frac{dI}{dt} = \frac{d(x^*N)}{d(t^*/\gamma)} = \frac{\beta SI}{N} - \gamma I = \frac{\beta(y^*N)(x^*N)}{N} - \gamma(x^*N) = \beta y^*Nx^* - \gamma x^*N \\ \frac{dR}{dt} = \frac{d(z^*N)}{d(t^*/\gamma)} = \gamma I = \gamma(x^*N) \end{cases}$$

Agora, cancelando os fatores N e γ em ambos os lados das equações:

$$\begin{cases} \frac{d(y^*)}{d(t^*)} = -\frac{\beta y^* x^*}{\gamma} \\ \frac{d(x^*)}{d(t^*)} = \frac{\beta y^* x^*}{\gamma} - x^* \\ \frac{d(z^*)}{d(t^*)} = x^* \end{cases}$$

Sendo assim temos um sistema dado apenas por y^* e x^* e o parâmetro $\frac{\beta}{\gamma}$, que podemos chamar de R_0 .

3.2 Modelo SEI

Figura 1: tabela.

Figura 2: tabela.

3.2.1 yy

уу

$$f_i(x) = (10x + 100),$$
 (1)

$$f_{ii}(x) = (20x + 200),$$
 (2)

$$f_{iii}(x) = (30x + 300), (3)$$

XX

$$Vm_i(p,l) = ((-1.9141)p + 49.466)l + ((199.51)p - 10795.0), l = 0$$
 (4)

$$f_n(y) = \frac{y}{1000},\tag{5}$$

3.3 xx

XX

$$Funcao_i(p) = \gamma + \delta p + \theta p^2 + \omega p^3, \tag{6}$$

4 Resultados Esperados

Nesta seção serão apresentados os resultados esperados...

4.1 xx

XX

5 Referências

- [1] Rorato, A.C., Dal'Asta, A.P., Lana, R.M. et al. Trajetorias: a dataset of environmental, epidemiological, and economic indicators for the Brazilian Amazon. Sci Data 10, 65 (2023). https://doi.org/10.1038/s41597-023-01962-1.
- [2] Prasad, R., Sagar, S.K., Parveen, S. et al. Mathematical modeling in perspective of vector-borne viral infections: a review. Beni-Suef Univ J Basic Appl Sci 11, 102 (2022). https://doi.org/10.1186/s43088-022-00282-4.
- [3] Vyhmeister E., Provan G., Doyle B., Bourke B. Multi-cluster and environmental dependant vector born disease models. Heliyon, Volume 6, Issue 9 (2020). https://doi.org/10.1016/j.heliyon.2020.e04090
- [4] Arquam, M., Singh, A., Cherifi, H. (2020). Integrating Environmental Temperature Conditions into the SIR Model for Vector-Borne Diseases. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_34.
- [5] ALVES, Leon Diniz. Weather-driven mathematical models of dengue transmission dynamics in twelve Brazilian sites. 2021. 137 f. Tese (Doutorado em Biologia Computacional e Sistemas) Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 2021. https://www.arca.fiocruz.br/handle/icict/52536

. . .

- [6] Alves, Leon Diniz, Raquel Martins Lana, and Flávio Codeço Coelho. 2021. "A Framework for Weather-Driven Dengue Virus Transmission Dynamics in Different Brazilian Regions" International Journal of Environmental Research and Public Health 18, no. 18: 9493. https://doi.org/10.3390/ijerph18189493. [7] Prasad, R., Sagar, S.K., Parveen, S. et al. Mathematical modeling in perspective of vector-borne viral infections: a review. Beni-Suef Univ J Basic Appl Sci 11, 102 (2022). https://doi.org/10.1186/s43088-022-00282-4.
- [8] Abdullah, Seadawy, A. Jun, W. New mathematical model of vertical transmission and cure of vector-borne diseases and its numerical simulation. Adv Differ Equ 2018, 66 (2018). https://doi.org/10.1186/s13662-018-1516-z. [9] N. Shah and J. Gupta, "SEIR Model and Simulation for Vector Borne Diseases," Applied Mathematics, Vol. 4 No. 8A, 2013, pp. 13-17. doi: 10.4236/am.2013.48A003.