Cryptography Lecture 11

Arkady Yerukhimovich

October 2, 2024

Outline

1 Lecture 10 Review

2 Secrecy vs. Integrity (Chapter 3.7)

Message Authentication Code (MAC) (Chapters 4.1, 4.2, 4.3.1)

Arkady Yerukhimovich Cryptography October 2, 2024 2 / 15

Lecture 10 Review

- CCA Security
- PRF+OTP is not CCA secure
- Padding oracle attack on CBC mode

Outline

Lecture 10 Review

2 Secrecy vs. Integrity (Chapter 3.7)

3 Message Authentication Code (MAC) (Chapters 4.1, 4.2, 4.3.1)

Arkady Yerukhimovich Cryptography October 2, 2024 4 / 1

- We have seen two attacks against CPA-secure schemes:
 - 4 Attack against PRF+OTP
 - Padding oracle attack against CBC-mode encryption

5 / 15

- We have seen two attacks against CPA-secure schemes:
 - 4 Attack against PRF+OTP
 - Padding oracle attack against CBC-mode encryption
- ullet In both these attacks, ${\cal A}$ modifies received ciphertext to something whose decryption reveals information about original message

5 / 15

- We have seen two attacks against CPA-secure schemes:
 - Attack against PRF+OTP
 - Padding oracle attack against CBC-mode encryption
- In both these attacks, A modifies received ciphertext to something whose decryption reveals information about original message
- This is called *malleability*

- We have seen two attacks against CPA-secure schemes:
 - 4 Attack against PRF+OTP
 - Padding oracle attack against CBC-mode encryption
- In both these attacks, A modifies received ciphertext to something whose decryption reveals information about original message
- This is called *malleability*
- Need to ensure only validly encrypted ciphertexts can be decrypted

• Encryption hides content of message - confidentiality

Arkady Yerukhimovich Cryptography October 2, 2024 6 / 15

- Encryption hides content of message confidentiality
- Often confidentiality is not enough

- Encryption hides content of message confidentiality
- Often confidentiality is not enough
 - Possible to change content of encrypted messages

6/15

- Encryption hides content of message confidentiality
- Often confidentiality is not enough
 - Possible to change content of encrypted messages
 - Often want to know who sent the message

- Encryption hides content of message confidentiality
- Often confidentiality is not enough
 - Possible to change content of encrypted messages
 - Often want to know who sent the message
- Need to guarantee integrity of messages

- Encryption hides content of message confidentiality
- Often confidentiality is not enough
 - Possible to change content of encrypted messages
 - Often want to know who sent the message
- Need to guarantee integrity of messages

Example:

Consider a transaction sent from a client to a bank

- Encryption hides content of message confidentiality
- Often confidentiality is not enough
 - Possible to change content of encrypted messages
 - Often want to know who sent the message
- Need to guarantee integrity of messages

Example:

- Consider a transaction sent from a client to a bank
- The bank needs to be sure that:
 - The transaction was sent by the user holding the account

- Encryption hides content of message confidentiality
- Often confidentiality is not enough
 - Possible to change content of encrypted messages
 - Often want to know who sent the message
- Need to guarantee integrity of messages

Example:

- Consider a transaction sent from a client to a bank
- The bank needs to be sure that:
 - The transaction was sent by the user holding the account
 - 2 The amounts in the transaction were not modified in transit

- Encryption hides content of message confidentiality
- Often confidentiality is not enough
 - Possible to change content of encrypted messages
 - Often want to know who sent the message
- Need to guarantee integrity of messages

Example:

- Consider a transaction sent from a client to a bank
- The bank needs to be sure that:
 - The transaction was sent by the user holding the account
 - The amounts in the transaction were not modified in transit
- Integrity guarantees are needed even if transaction is public

- Encryption hides content of message confidentiality
- Often confidentiality is not enough
 - Possible to change content of encrypted messages
 - Often want to know who sent the message
- Need to guarantee integrity of messages

Example:

- Consider a transaction sent from a client to a bank
- The bank needs to be sure that:
 - The transaction was sent by the user holding the account
 - 2 The amounts in the transaction were not modified in transit
- Integrity guarantees are needed even if transaction is public

We Need Integrity

Confidentiality alone is insufficient to secure information

Outline

Lecture 10 Review

2 Secrecy vs. Integrity (Chapter 3.7)

3 Message Authentication Code (MAC) (Chapters 4.1, 4.2, 4.3.1)

Arkady Yerukhimovich Cryptography October 2, 2024 7/1

Our Goal

Ensure that \mathcal{A} cannot modify or create new (valid) messages without being detected.

8/15

Our Goal

Ensure that A cannot modify or create new (valid) messages without being detected.

ullet This should hold even if ${\mathcal A}$ sees many valid messages beforehand

Our Goal

Ensure that A cannot modify or create new (valid) messages without being detected.

- ullet This should hold even if ${\mathcal A}$ sees many valid messages beforehand
- Cannot modify or recombine messages to produce a new one

Our Goal

Ensure that A cannot modify or create new (valid) messages without being detected.

- ullet This should hold even if ${\mathcal A}$ sees many valid messages beforehand
- Cannot modify or recombine messages to produce a new one
- Need an "integrity tag" that can be used to check authenticity

MAC Functionality

A Message Authentication Scheme (MAC) consists of:

- Gen(1ⁿ): Outputs key k with $|k| \ge n$ (usually $k \leftarrow \{0,1\}^n$)
- $Mac_k(m)$: Outputs a tag $t \leftarrow Mac_k(m)$
- Verify $_k(m, t)$: Outputs 1 if t is a valid tag for m, and 0 otherwise

MAC Functionality

A Message Authentication Scheme (MAC) consists of:

- Gen(1ⁿ): Outputs key k with $|k| \ge n$ (usually $k \leftarrow \{0,1\}^n$)
- $Mac_k(m)$: Outputs a tag $t \leftarrow Mac_k(m)$
- Verify $_k(m, t)$: Outputs 1 if t is a valid tag for m, and 0 otherwise

Correctness

For all k output by Gen and all messages m, $Verify_k(m, Mac_k(m)) = 1$

MAC Functionality

A Message Authentication Scheme (MAC) consists of:

- Gen(1ⁿ): Outputs key k with $|k| \ge n$ (usually $k \leftarrow \{0,1\}^n$)
- $Mac_k(m)$: Outputs a tag $t \leftarrow Mac_k(m)$
- Verify $_k(m, t)$: Outputs 1 if t is a valid tag for m, and 0 otherwise

Correctness

For all k output by Gen and all messages m, $Verify_k(m, Mac_k(m)) = 1$

Canonical Verify

If Mac is deterministic, Verify can compute $Mac_k(m)$, check equality to t.

Let $\Pi = (Gen, Mac, Verify)$ be a MAC. Consider the following game between an adversary A and a challenger:

Let $\Pi = (Gen, Mac, Verify)$ be a MAC. Consider the following game between an adversary A and a challenger:

$MacForge_{A,\Pi}(n)$

ullet The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$, and gives $\mathcal A$ an oracle $\mathsf{Mac}_k(\cdot)$

Let $\Pi = (Gen, Mac, Verify)$ be a MAC. Consider the following game between an adversary A and a challenger:

$MacForge_{A,\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$, and gives \mathcal{A} an oracle $\mathsf{Mac}_k(\cdot)$
- $\mathcal{A}^{\mathsf{Mac}_k(\cdot)}(1^n)$ outputs (m,t) (let Q be set of Mac queries made by \mathcal{A})

10 / 15

Let $\Pi = (Gen, Mac, Verify)$ be a MAC. Consider the following game between an adversary A and a challenger:

$MacForge_{A,\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$, and gives $\mathcal A$ an oracle $\mathsf{Mac}_k(\cdot)$
- $\mathcal{A}^{\mathsf{Mac}_k(\cdot)}(1^n)$ outputs (m,t) (let Q be set of Mac queries made by \mathcal{A})
- ullet We say that $\mathsf{MacForge}_{\mathcal{A},\Pi}(\mathit{n})=1$ (i.e., \mathcal{A} wins) if
 - $Verify_k(m, t) = 1$
 - m ∉ Q

Let $\Pi = (Gen, Mac, Verify)$ be a MAC. Consider the following game between an adversary A and a challenger:

$MacForge_{A,\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$, and gives $\mathcal A$ an oracle $\mathsf{Mac}_k(\cdot)$
- ullet $\mathcal{A}^{\mathsf{Mac}_k(\cdot)}(1^n)$ outputs (m,t) (let Q be set of Mac queries made by \mathcal{A})
- We say that $\mathsf{MacForge}_{\mathcal{A},\Pi}(n) = 1$ (i.e., \mathcal{A} wins) if
 - $Verify_k(m, t) = 1$
 - $m \notin Q$ $(M, t) \notin Q$

Definition: A MAC $\Pi =$ (Gen, Mac, Verify) is *unforgeable* if for all PPT $\mathcal A$ it holds that

$$\Pr[\mathsf{MacForge}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n)$$

ullet ${\cal A}$ can query for a mac on any message of its choice

Arkady Yerukhimovich

- ullet ${\cal A}$ can query for a mac on any message of its choice
- A WINs if he outputs valid tag on any message he hasn't queried

11 / 15

- ullet ${\cal A}$ can query for a mac on any message of its choice
- A WINs if he outputs valid tag on any message he hasn't queried
- This does not prevent replay attacks, generating new tag t' for message m for which \mathcal{A} has a tag t is not a forgery

- ullet ${\cal A}$ can query for a mac on any message of its choice
- A WINs if he outputs valid tag on any message he hasn't queried
- This does not prevent replay attacks, generating new tag t' for message m for which \mathcal{A} has a tag t is not a forgery

Strong MAC

Same definition as before, except Q contains (m, t) pairs and \mathcal{A} wins if $(m, t) \notin Q$.

• Now $\mathcal A$ WINs if he produces a new tag even for m for which he already has a tag

- ullet ${\cal A}$ can query for a mac on any message of its choice
- A WINs if he outputs valid tag on any message he hasn't queried
- This does not prevent replay attacks, generating new tag t' for message m for which \mathcal{A} has a tag t is not a forgery

Strong MAC

Same definition as before, except Q contains (m, t) pairs and A wins if $(m, t) \notin Q$.

- Now ${\mathcal A}$ WINs if he produces a new tag even for m for which he already has a tag
- Observation: Let Π be a secure MAC that uses *canonical verify*, then Π is a strong MAC.

PRF-based MAC (Fixed Length MAC)

• $Gen(1^n)$: $k \leftarrow \{0,1\}^n$

PRF-based MAC (Fixed Length MAC)

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- $\operatorname{Mac}_k(m)$: Given $m \in \{0,1\}^n$, compute $t = F_k(m)$

Arkady Yerukhimovich Cryptography October 2, 2024 12 / 15

PRF-based MAC (Fixed Length MAC)

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- $\operatorname{Mac}_k(m)$: Given $m \in \{0,1\}^n$, compute $t = F_k(m)$
- Verify_k(m, t): Compute $t' = F_k(m)$ output 1 iff t = t'

Arkady Yerukhimovich Cryptography October 2, 2024 12 / 15

PRF-based MAC (Fixed Length MAC)

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- $\operatorname{Mac}_k(m)$: Given $m \in \{0,1\}^n$, compute $t = F_k(m)$
- Verify_k(m, t): Compute $t' = F_k(m)$ output 1 iff t = t'

Observations:

• Since $F_k(m)$ is unpredictable (without knowing k), \mathcal{A} can't find tag for new message

Arkady Yerukhimovich Cryptography October 2, 2024 12 / 15

PRF-based MAC (Fixed Length MAC)

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- $\operatorname{Mac}_k(m)$: Given $m \in \{0,1\}^n$, compute $t = F_k(m)$
- Verify_k(m, t): Compute $t' = F_k(m)$ output 1 iff t = t'

Observations:

- Since $F_k(m)$ is unpredictable (without knowing k), \mathcal{A} can't find tag for new message
- We use canonical verify, so this is strong MAC

PRF-based MAC (Fixed Length MAC)

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- $\operatorname{Mac}_k(m)$: Given $m \in \{0,1\}^n$, compute $t = F_k(m)$
- Verify_k(m, t): Compute $t' = F_k(m)$ output 1 iff t = t'

Observations:

- Since $F_k(m)$ is unpredictable (without knowing k), \mathcal{A} can't find tag for new message
- We use canonical verify, so this is strong MAC
- ullet For proof, compare to the case where f is a random function

12 / 15

Theorem

PRF-based MAC (Π) is unforgeable for *n*-bit messages.

Theorem

PRF-based MAC (Π) is unforgeable for *n*-bit messages.

Proof (sketch):

Let $\Pi = (\tilde{Gen}, \tilde{Mac}, \tilde{Verify})$ be Π with random function f in place of F_k .

• Prove by reduction that for any PPT \mathcal{A} , its probability of forgery changes by a negligible amount when switch from Π to $\tilde{\Pi}$

Theorem

PRF-based MAC (Π) is unforgeable for *n*-bit messages.

Proof (sketch):

Let $\Pi = (\tilde{Gen}, \tilde{Mac}, \tilde{Verify})$ be Π with random function f in place of F_k .

- Prove by reduction that for any PPT \mathcal{A} , its probability of forgery changes by a negligible amount when switch from Π to $\tilde{\Pi}$
 - Assume A_c that distinguishes between Π and $\tilde{\Pi}$ in MacForge game

Theorem

PRF-based MAC (Π) is unforgeable for *n*-bit messages.

Proof (sketch):

- $\begin{tabular}{ll} \bullet & Prove by reduction that for any PPT \mathcal{A}, its probability of forgery changes by a negligible amount when switch from Π to $\tilde{\Pi}$ \\ \end{tabular}$
 - Assume \mathcal{A}_c that distinguishes between Π and $\tilde{\Pi}$ in MacForge game
 - A_r receives \mathcal{O} which is either f or F_k . He answers A_c 's $\mathsf{Mac}_k(\cdot)$ queries with $t = \mathcal{O}(m)$.

Theorem

PRF-based MAC (Π) is unforgeable for *n*-bit messages.

Proof (sketch):

- $\begin{tabular}{ll} \bullet & Prove by reduction that for any PPT \mathcal{A}, its probability of forgery changes by a negligible amount when switch from Π to $\tilde{\Pi}$ \\ \end{tabular}$
 - Assume \mathcal{A}_c that distinguishes between Π and $\tilde{\Pi}$ in MacForge game
 - \mathcal{A}_r receives \mathcal{O} which is either f or F_k . He answers \mathcal{A}_c 's $\mathsf{Mac}_k(\cdot)$ queries with $t = \mathcal{O}(m)$.
 - If $\mathcal{O} = F_k$, this is exactly Π . if $\mathcal{O} = f$, this is exactly Π

Theorem

PRF-based MAC (Π) is unforgeable for *n*-bit messages.

Proof (sketch):

- Prove by reduction that for any PPT \mathcal{A} , its probability of forgery changes by a negligible amount when switch from Π to $\tilde{\Pi}$
 - Assume \mathcal{A}_c that distinguishes between Π and $\tilde{\Pi}$ in MacForge game
 - A_r receives \mathcal{O} which is either f or F_k . He answers A_c 's $\mathsf{Mac}_k(\cdot)$ queries with $t = \mathcal{O}(m)$.
 - If $\mathcal{O} = F_k$, this is exactly Π . if $\mathcal{O} = f$, this is exactly $\tilde{\Pi}$
 - If \mathcal{A}_c outputs forgery, \mathcal{A}_r outputs "PRF". Succeeds with same advantage that \mathcal{A}_c has

Theorem

PRF-based MAC (Π) is unforgeable for *n*-bit messages.

Proof (sketch):

- Prove by reduction that for any PPT \mathcal{A} , its probability of forgery changes by a negligible amount when switch from Π to $\tilde{\Pi}$
- ② Prove that $\tilde{\Pi}$ is an unforgeable MAC

Theorem

PRF-based MAC (Π) is unforgeable for *n*-bit messages.

Proof (sketch):

- Prove by reduction that for any PPT \mathcal{A} , its probability of forgery changes by a negligible amount when switch from Π to $\tilde{\Pi}$
- ② Prove that $\tilde{\Pi}$ is an unforgeable MAC
 - Note that for any $m \notin Q$, t = f(m) is uniformly random

Theorem

PRF-based MAC (Π) is unforgeable for *n*-bit messages.

Proof (sketch):

- Prove by reduction that for any PPT \mathcal{A} , its probability of forgery changes by a negligible amount when switch from Π to $\tilde{\Pi}$
- ② Prove that $\tilde{\Pi}$ is an unforgeable MAC
 - Note that for any $m \notin Q$, t = f(m) is uniformly random
 - Thus,

$$Pr[\mathsf{MacForge}_{\mathcal{A},\tilde{\Pi}}(n)=1] \leq 2^{-n}$$

Authenticating Longer Messages

• So far, only showed how to authenticate *n*-bit messages

Authenticating Longer Messages

- So far, only showed how to authenticate *n*-bit messages
- Just like with encryption, we need to be able to authenticate arbitrary length messages

Authenticating Longer Messages

- So far, only showed how to authenticate *n*-bit messages
- Just like with encryption, we need to be able to authenticate arbitrary length messages
- We will explore how to do this in today's quiz.