Machine classification for probe-based quantum thermometry

Fabrício S. Luiz¹, <u>A. de Oliveira Junior</u>², Felipe F. Fanchini¹, Gabriel Landi³

Faculdade de Ciências, UNESP - Universidade Estadual Paulista, 17033-360 Bauru, São Paulo, Brazil¹ Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland² Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil³

Introduction

Motivation: Quantum thermometry are crucial for experimental applications. But known strategies are highly model-dependent.

This work: introduces machine classification for quantum thermometry and show that it provides reliable and entirely model-independent predictions.

■ Setting the scene

Probe-based thermometry

The temperature of the system is estimated by coupling it to a probe, which is subsequently **measured**. The protocol can be summarised as follow:

1.Interaction

Impurities in ultra-cold gases, phonon occupation number of trapped ion, or a mechanical resonator represents a **prototypical example** of probe-based thermometry.

Experimentalist

 ho_p

dataset

Probe observables

2. Measurement

The k-nearest-neighbours (KNN) algorithm

Classification is a pattern recognition method that can be employed as a concrete estimation strategy.

KNN in a nutshell

The green dot should be classified either to blue squares or to red triangles. If k=3 (solid circle) it is assigned to pink triangles. However, if k=5(dashed circle), it is assigned to the blue squares.

Probe-based thermometry and machine classification

Prior information: $T \in [T_{\min}, T_{\max}]$

- 1. Discretize T2. Train using (D_i, T_i)
- 3. KNN: \hat{T}

Data: training (70%) and validation (30%) sets

AOJ acknowledge financial support by the Foundation for Polish Science through TEAM-NET

Rzeczpospolita Polska

MSE

Jaynes-Cummings (JC) model - We illustrate the idea using the JC model. The probe is described by a qubit and the system by a bosonic mode. The total Hamiltonian is

Results

$$H = \omega a^{\dagger} a + \frac{\Omega}{2} \sigma_z + \gamma (a^{\dagger} \sigma_- + a \sigma_+)$$

■ The probe is taken to be resonant with the system $(\Omega = \omega)$ and start in the pure state:

 $|\psi_P\rangle = |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

■ Setting: $T, \gamma \in [0.1, 2]$

Free parameters: γ, T

Predicted vs real temperature for the validation set

 $T_{\rm real}$

- (a) Using only data from $\langle \sigma_z \rangle_t$ with $\gamma = 1$.
- (b) Same, but with noise.
- (c) Similar to (b) but with $\gamma \in [0.1, 2]$.
- (d) Same, but using $\langle \sigma_y \rangle_t$ instead.
- (e) Net mean-squared error as function of the number of measurement times.

 $MSE = \frac{1}{N_{\text{val}}} \sum_{\text{val} \text{ set}} (T_{\text{pred}} - T_{\text{real}})^2$

Why does KNN lead to higher precision?

- The dataset is segmented into well-defined regions, e.g., the change from hot to cold regions is smooth.
- (a)-(f) $\langle \sigma_z \rangle_t$ vs $\langle \sigma_y \rangle_t$ JC model at different times, for $T \in [0.1, 2]$ and $\gamma \in [0.1, 2]$. The colors represent the temperature of the correspoding data point. The insets are similar, but for the Rabi model instead.
- We also have explored other systems, such as qudits and spin chains. Also, performed a variety of parameter choices: resonant vs non-resonant energy gaps, different probe states, and so on.

project (contract no. POIR.04.04.00- 00-17C1/18-00).

Number of measurements