Locky Erdenebet 109480099 1.A. Ix KX 1 Ix TKX
D 11. allx
B. Vx 7KX
2. T: Knight, toth 1 F: knave, lians
ABICIAV-BIANTCICUB
TTTFFF
-TTFTTT
TFFFTF
F F F T F F
FFTTFT
FITFFF
TFTFFT
FTFTFT
Islandes A and B are Knights white C is a
Known. This is belonge given he three slatements
and complex them into over propositual statement
you get (AVAB) 1 (AMAC) 1 (CUB). This is
only satisfiable when A & B are Thre and Cis halse
3. A. PQ (Pera) (PERA) (PERA)
TTTF
TF F
FIT
PFT F
The symbol () is only the when both P
and a are he same boolean value. This equation
is cosates birble because Here remains both a panda
both in seperate shikness consisting of ().

B.i. PQ r (P-r) (Q+r) (P+r) V(Q+r)
TTTTT
TTFFFF
TFITT
T F F F T
FFFT T
FFTTTT
FTFTFT
FITITITI
$\begin{array}{c c} PQPPQPQPQPQPQPQPQPQPQPQPQPQPQPQPQPQPQP$
ii, (P>r) V(Q>r) = (P(Q) -; R)
4(1PVr)V(7QVV) Distributure, table 6 red array
4, (7PV7Q) VV Dishihuhur
LA 7(PAR) UV De morgens
4 (PAQ) 7 Pighibuhue
This proposition is salig trable because here is attenst
I whisher of boolen values for P. a. I where they both

U. A. 498 22" Every student has to have
atlent I unique trail (node, 'n' is number
of conjunct brill 498 6512
nis 9, beauxe 29 is SIL. Therefore 4
is the least member hais required for each
stratent to have a unique combo of
trails nelled
B. There is an unlimited # of trails that
can be valled where the criteria is still
huct. Given that each member walks
attest I had his problem can
be represented mathebally by
2-1.
S. A. Splister: Any toppings
i. LATP
TT , 75
III. P->1L
III. L (SVG)
2 Va H
13. les, they can order a two lopping
Pitta with literte and granda (Land G).
This pita world satisfy all four conditions
given by the hinja tertles

