Homework 6

Due Thursday, 10/24/19

- 1. (What is a "hat" matrix?) Throughout this problem, let $X \in \mathbb{R}^{n \times p}$ and $H \in \mathbb{R}^{n \times n}$ be such that
 - (i) $\mathbf{H}^T = \mathbf{H}$.
 - (ii) $H^2 = H$.
 - (iii) $\operatorname{im}(\boldsymbol{H}) = \operatorname{im}(\boldsymbol{X})$.

If H satisfies properties (i), (ii) and (iii), we will call H the "hat" matrix for X.

(a) Show that H is an orthogonal projection matrix that projects vectors onto the image of X. That is, show that for any $v \in \mathbb{R}^n$

$$(\boldsymbol{v} - \boldsymbol{H} \boldsymbol{v})^T (\boldsymbol{H} \boldsymbol{v}) = 0$$

and

$$Hv = \underset{u \in \text{im}(X)}{\arg \min} ||v - u||_2^2.$$

(The proof should be identical to 2c on HW 4.)

- (b) Show that if H satisfies properties (i), (ii) and (iii), it is unique. That is, if $P \in \mathbb{R}^{n \times n}$ is another matrix such that
 - (i) $P^T = P$.
 - (ii) $P^2 = P$.
 - (iii) $\operatorname{im}(P) = \operatorname{im}(X)$,

then H = P.

- (c) Define $H = XX^{\dagger}$. Use properties 1-4 of the Moore-Penrose pseudoinverse to show that H is the hat matrix for X.
- 2. (The Gauss-Markov Theorem) Suppose $Y = X\beta + \epsilon$, where $X \in \mathbb{R}^{n \times p}$ is a non-random, full rank design matrix and $\beta \in \mathbb{R}^p$ is unknown. You will prove the **Gauss-Markov Theorem**:

Suppose $\mathbb{E}(\epsilon) = \mathbf{0}_n$ and $\operatorname{Var}(\epsilon) = \sigma^2 \mathbf{I}_n$. If $\hat{\boldsymbol{\beta}}$ is the ordinary least squares estimator and $\tilde{\boldsymbol{\beta}}$ is any other linear unbiased estimator of $\boldsymbol{\beta}$, then $\operatorname{Var}(\tilde{\boldsymbol{\beta}}) = \operatorname{Var}(\hat{\boldsymbol{\beta}}) + \boldsymbol{M}$ for some symmetric and positive semi-definite matrix \boldsymbol{M} .

 $\hat{\beta}$ is also called the B.L.U.E (Best Linear Unbiased Estimator). The proof when X is not full rank is almost identical to what you will show below.

(a) What is the ordinary least squares estimator for β ? What is its variance? What is the hat matrix, H?

(b) Now let $\tilde{\beta} = A^T Y$ be another linear unbiased estimator for β , where $A \in \mathbb{R}^{n \times p}$. Since $\tilde{\beta}$ must be an unbiased estimator regardless of the value for β , show that

$$\mathbf{A}^T \mathbf{X} = \mathbf{I}_p$$
.

What is $Var(\tilde{\beta})$?

(c) Let $\hat{\beta}$ be the ordinary least squares estimator from part (i). Show that

$$\operatorname{Var}(\tilde{\boldsymbol{\beta}}) = \operatorname{Var}(\hat{\boldsymbol{\beta}}) + \boldsymbol{M},$$

where M is a symmetric and positive semi-definite matrix. (Hint: $A^T A = A^T H A + A^T (I_n - H) A$)

(d) For any $q \in \mathbb{R}^p$, show that part (c) implies

$$\operatorname{Var}\left(\boldsymbol{q}^{T}\tilde{\boldsymbol{\beta}}\right) \geq \operatorname{Var}\left(\boldsymbol{q}^{T}\hat{\boldsymbol{\beta}}\right).$$

(e) Now suppose the true model for Y is

$$Y = X\beta + \epsilon$$

 $\mathbb{E}(\epsilon) = 0_n$, $\operatorname{Var}(\epsilon) = \sigma^2 \Sigma$,

where Σ is a known, invertible matrix (you saw an example when Σ was a diagonal matrix on the midterm). Let R be an invertible matrix such that $\Sigma = RR^T$ (such an R is always guaranteed to exist).

- (i) Let $\tilde{Y} = R^{-1}Y$ and $\tilde{X} = R^{-1}X$. What is $\mathbb{E}(\tilde{Y})$? What is $\text{Var}(\tilde{Y})$?
- (ii) What is the B.L.U.E for β under this new model for Y in terms of X, Σ and Y? This is called the **generalized least squares** estimate for β .
- 3. KNNL: 6.10 a, c and 7.4 b (in their notation, b_j is $\hat{\beta}_j$).
- 4. KNNL 6.16 a, b, c