Elektronikpraktikum Auswertung: Versuchstag 6 Lock-in Verstärker

Gruppe 01 Patrick Heuer Benjamin Lotter

Übersicht

- Einführung
 - Ziel des Versuchs:
- 2 Aufbau eines Lock-In Verstärkers
 - Phasenschieber
 - Komparatorenschaltung
 - Eingangsverstärker
 - Analogschalter
- 3 Test und Andwendung des Lock-In-Verstärkers
 - Erster Funktionstest
 - Übertragung eines Lichtsignals

Übersicht

- Einführung
 - Ziel des Versuchs:
- 2 Aufbau eines Lock-In Verstärkers
 - Phasenschieber
 - Komparatorenschaltung
 - Eingangsverstärker
 - Analogschalter
- 3 Test und Andwendung des Lock-In-Verstärkers
 - Erster Funktionstest
 - Übertragung eines Lichtsignals

Ziel

- Problem: sehr starke Störungen in Messsignal
- Lösung: Filterung einer bestimmten Frequenz aus dem Signal
 - \rightarrow Lock-In-Verstärker

Lock-In-Verstärker

- Vermischen des Messignals mit Refernzsignal
- unerwünschte Frequenzen werden duch Tiefpass herausgefiltert

Gesamtschaltung

Phasenschieber bringt Referenzsignal auf Phase mit Messsignal

Komparatoren modulieren Sinus-Referenzsignal zu (gegensätzlichen) Rechtecksspannungen

Eingangsverstärker lassen Signal durch und "drehen es um"

Analogschalter multipliziert Referenzsignale mit Messignalen

Tiefpassfilter integriert unerwünschte Frequenzen heraus

Übersicht

- Einführung
 - Ziel des Versuchs:
- 2 Aufbau eines Lock-In Verstärkers
 - Phasenschieber
 - Komparatorenschaltung
 - Eingangsverstärker
 - Analogschalter
- 3 Test und Andwendung des Lock-In-Verstärkers
 - Erster Funktionstest
 - Übertragung eines Lichtsignals

Phsenscheiber

Phasenschieber

• Verschiebung der Phase $U=e^{-i\omega} o e^{-i\omega+arphi}$ in Abhängigkeit vom Potentiometer R_{pot}

Phsenscheiber

Funktionsweise

Aus Vorbereitung wissen wir:

$$U_{out} \approx \underbrace{\frac{1 - if2\pi R_{poti} C}{1 + if2\pi R_{poti}}}_{\text{|\cdot|=1}} \cdot U_{in}$$

$$\varphi = \arctan\left(\frac{2CR_{poti}f2\pi}{1 - C^2R_{poti}^2(f2\pi)^2}\right)$$

₽ 0.0s 500.0%/ Auto f 2 -11.50

Phsenscheiber

Einführung

Phase(1 →1): 0.0° Phase(2 →1): -122° Undo Autoscale € Channels Acq Mode Normal

Figure: $\varphi = 0^{\circ}$

Figure: $\varphi = 130^{\circ}$

Phasenschieber

$R_{poti}/k\Omega$	$\varphi/^{\circ}$
6.18	17
16.8	43
23.8	57
42.38	90
71.2	120

Phasenschieber

Funktioniert der Phasenschieber auch für andere Signalformen?

Figure: Rechtecksspannung

Figure: Dreicksspannung

→ Phasenschieber funktioniert nur bei Sinus-Signal

Komparatoren

Komparatoren

Wandlung des Sinus-Signals in Rechteckssignal

Komparatoren

Funktionsweise

Funktion eines Komparators

$$U_{out} = egin{cases} U_{CC} & ext{falls} & U_1 > U_2 \ U_{EE} & ext{falls} & U_1 < U_2 \end{cases}$$

- Sinus and Komparator erzeugt Rechteckssignal
- Anschlüsse entgegengesetzt geschalten → Signale gegengleich

Komparatoren Messungen

Einführung

Figure: ohne Phasenverschiebung

Figure: mit Phasenverschiebung

Bemerkung

• Amplituden erreichen nicht ganz 14V

Eingangsverstärker

Eingangsverstärker

- Sinn: Signal soll einmal invertiert und einmal nichtinvertiert weitergeleitet werden
- Spannungsfolger: Impedanzwandlung zum Schutz des Analogschalters
- invertierender Verstärker: Signal wird "umgedreht"

Eingangsverstärker

Widerstande

- ullet Spannungsfolger:v=1
 ightarrow kein Widerstand
- invertierender Verstärker:

$$G=-\frac{R_2}{R_1}=-1\rightarrow R_2=R_1=10k\Omega$$

Messung

Messung

• Verschiebung um 177° (Theorie 180°)

Tiefpass

Tiefpass

- Tiefpassfilter zum Integrieren über Ausgangssignal
- $R = 10k\Omega$, $C = 10\mu F$
- Grenzfrequenz

$$f_G = \frac{1}{2\pi RC} = 1.59Hz$$

Übersicht

- Einführung
 - Ziel des Versuchs:
- 2 Aufbau eines Lock-In Verstärkers
 - Phasenschieber
 - Komparatorenschaltung
 - Eingangsverstärker
 - Analogschalter
- 3 Test und Andwendung des Lock-In-Verstärkers
 - Erster Funktionstest
 - Übertragung eines Lichtsignals

Testsignalschaltung

$\overline{U_{in}}$

• U_{in} liegt an Tiefpass:

$$U_{in} = \frac{1}{\sqrt{(1 + (R2\pi fC)^2)}} \cdot U_{Fg} = 0.892V$$

$$f\ddot{u}r f = 777 Hz, U_{Fg} = 1V$$

Testsignalschaltung

Phase

• Theoretische Phasenverschiebung:

$$\varphi_{Th} = -\arctan(2\pi fCR) = 26.78^{\circ}$$

$$f \ddot{u} r f = 777 Hz$$

• Gemessene Phasenverschiebung:

$$\varphi_{Ge} = 21^{\circ}$$

• Mit $R_{Poti} = 6.96k\Omega$ bei maximalem U_{out} ergibt sich eine Phasenverschiebung

$$\varphi = 17.71^{\circ}$$

Messung

Figure: U_{in} und U_{ref} Phasenverschoben

Messung

Figure: U_{in} und U_{ref} gleichphasig

Übertragung eines Lichtsignals

Ziel:

- Filterung der Störungen durch
 - Lampen
 - Tageslicht

Versuch

- moduliere LED-Signal mit 777Hz
 Spannung
- gebe Modulationsfrequenz als Referenzfrequenz weiter
- benutze L-I-Verstärker um 777 Hz herauszufiltern

Vergleich mit/ohne Abdeckung

Figure: Ohne Abdeckung

Figure: Mit Abdeckung

Ausgangssignal bleibt konstant auf $52.6mV \rightarrow Schaltung$ filtert Störsignale heraus