Genetic Algorithms

Presented at Computer Society Meeting 5 June 1997, Ottawa

by

Prof. V. Rao Vemuri

Department of Applied Science University of California, Davis Livermore, CA

vemuri1@llnl.gov

OUTLINE

- What are Genetic Algorithms?
- Where are They Useful?
- A Simple Example
- More Realistic Examples

WHAT ARE GAS?

- INSPIRED BY BIOLOGICAL EVOLUTION
- SEARCH AND OPTIMIZATION PROCEDURES
- METAPHORICAL EVOLUTIONARY PROCESSES
- GOOD IN RUGGED SEARCH SPACES
- GOOD FOR MULTIMODAL ENVIRONMENTS
- PROBLEM INDEPENDENT

MAIN IDEAS

- SOLUTIONS ENCODED AS CHROMOSOMES
- MAINTAINS POPULATION OF SOLUTIONS
- EVALUATE FITNESS OF ALL SOLUTIONS
- SELECT THOSE WITH DESIRABLE TRAITS
- MATE THEM VIA CROSSOVER (EXPLOITATION)
- MUTATE THEM (EXPLORATION)
- REPEAT UNTIL "CONVERGENCE"

CHARACTERISTICS OF GAS

- CAN SOLVE HARD PROBLEMS RELIABLY
- EASY TO INTERFACE WITH EXISTING MODELS
- EASY TO HYBRIDIZE WITH OTHER METHODS
- EXTENDIBLE
- NEEDS VERY LITTLE DOMAIN KNOWLEDGE

SEARCH USING GA

MULTI-MODAL OPTIMIZATION

HOW A GENETIC ALGORITHM WORKS

GENETIC OPERATORS

• SELECTION:

SURVIVAL OF THE FITTEST

CROSSOVER:

COMBINES INDIVIDUALS
TO GENERATE NEW COMBINATIONS
OF PARTIAL SOLUTIONS

• MUTATION:

INTRODUCES FEATURES THAT ARE NOT PRESENT IN THE PARENTS

SELECTION OPERATOR

- CALCULATE FITNESS OF ALL MEMBERS
- SELECT THOSE WITH BETTER FITNESS SCORES
- USE ONE OF MANY SELECTION SCHEMES
 - ROULETTE WHEEL SELECTION (A.K.A. Fitness Proportionate Reproduction, or FPR)
 - TOURNAMENT SELECTION

A SIMPLE CROSSOVER OPERATION

PARENT 1 1 0 0 1 1 1 0 0

PARENT 2 0 1 0 0 0 1 1 0

CHILD 1 1 0 0 0 0 1 0 0

CHILD 2 0 1 0 1 1 1 0 0

Other types of Crossovers exist

MUTATION OPERATION

PARENT 1 0 0 <u>1</u> 1 1 0 0

CHILD 1 0 0 0 1 1 0 0

SAMPLE PROBLEM

- A FRANCHISER WANTS PROFIT-MAKING STRATEGY
- OPTIONS ARE: AFFORDABLE VS FANCY

HOT DOGS VS CREPES

SOFT DRINK VS WINE

FORECAST ON COSTS AND SALES AVAILABLE

ENCODING THE PROBLEM

DEFINE A 3-BIT CHROMOSOME

BIT 3	BIT 2	BIT 1
211 0		

ENCODE AS FOLLOWS

- BIT 3: 0 AFFORDABLE, 1, FANCY

- BIT 2: 0 HOT DOGS, 1, CREPES

- BIT 1: 0 SOFT DRINKS, 1, WINE

FITNESS EVALUATION

- EACH OPTION CAN BE REPRESENTED BY A 3-BIT SEQUENCE
- IN THIS SMALL PROBLEM THERE ARE ONLY 8 OPTIONS
- ASSUME THAT THE PROFIT MADE ON EACH OPTION CAN BE CALCULATED BY A FORMUL, SUCH AS

PROFIT = DECIMAL VALUE OF 3-BIT SEQUENCE

A PEEK AT THE CORRECT SOLUTION

<u>OPTION</u>	PROFIT	OPTION	PROFIT
000	\$ 0	100	\$ 4
001	\$ 1	101	\$ 5
010	\$ 2	110	\$ 6
011	\$ 3	111	\$ 7

EXHAUSTIVE ENUMERATION IMPRACTICAL

- CONSIDER TRAVELLING SALESPERSON PROBLEM
- ASSUME
 - **20-CITY PROBLEM TAKES ABOUT 1 HOUR**
- THEN
 - 21-CITY PROBLEM TAKES ABOUT 20 HOURS
 - 22-CITY PROBLEM TAKES ABOUT 20 DAYS

25-CITY PROBLEM TAKES ABOUT 6 CENTURIES!!

A POSSIBLE SOLUTION BY GA

- TRY 4 RANDOMLY SELECTED STRATEGIES AT 4 DIFFERENT OUTLETS
- OBSERVE HOW OUTLETS PERFORM FOR A WEEK
- COMPARE THEIR PERFORMANCE
- PICK THOSE THAT ARE DOING WELL: MATING POOL
- GENERATE NEW STRATEGIES FROM MATING POOL USING CROSSOVER AND MUTATION
- GO BACK TO FIRST STEP

LET'S TRY

x(i)	F(i)	M.p	F(i)	X(i)	F(i)
011	3	011	3	111	7
001	1	110	6	010	2
110	6	110	6	110	6
010	2	010	2	010	2
Total F	12		17		17
Worst	1		2		
Ave	3		4.5		4.25
Best	1		6		7

Department of Applied Science, UC Davis/Livermore

WHAT DID THE FRANCHISER LEARN?

(1) \$3 IS AN ESTIMATE OF THE AVERAGE FITNESS (PROFIT)OF THE SEARCH SPACE

- Estimate Based on 4 Samples

(2) THAT

- 110 is 200% better than estimated average
- 010 is 2/3 as good as estimated average
- 001 is 1/3 as good as estimated average

WHAT DO WE DO NEXT?

OPTION 1: BRUTE FORCE METHOD

• CONTINUE SEARCHING FOR BETTER SOLUTIONS

DRAWBACK:

- UNIVERSE CREATED 15 BILLION YEARS AGO
- AT BILLION SOLUTIONS/SEC, WE WOULD HAVE SEARCHED ONLY 2**90 SOLUTIONS
- THIS MEANS THAT OUR CHROMOSOMES CANNOT BE LONGER THAN 90 BITS!!

ANOTHER LESSON LEARNED

OPTION 2: GREEDY METHOD

- BECAUSE 110 IS 200% BETTER THAN THE AVERAGE, GRAB IT. DO NOT WORRY ABOUT POSSIBLE BETTER SOLUTIONS
- EXPLORING EVERY NEW POINT COSTS \$6 \$3 = \$3, on the average
- NOT EXPLORING COSTS \$7 - \$6 = \$1, on the average
- THIS IS EXPLORATION VS EXPLOITATION!

SUMMARY: A SIMPLE GA

GENERATE RANDOMLY AN INITIAL POPULATION EVALUATE FITNESS OF THE POPULATION

SELECTION: CREATE MATING POOL

for GENERATION = 1 TO MAX GENERATIONS

MATING: CROSSOVER AND MUTATE

REPLACEMENT: REPLACE ENTIRE POPULATION WITH OFFSPRING

end for

OTHER EXAMPLE PROBLEMS

- 1. Automatically Generating Computer Programs (Koza)
- 2. Prisoner's Dilemma (Axelrod)
- 3. Designing a Sorting Network Using Diploid Chromosomes (Hillis)
- 4. Prediction of Protein Secondary Structure (Koza)
- 5. Multi-objective Optimization (Cedeno and Vemuri)
- 6. DNA Fragment Assembly (Cedeno and Vemuri)

WHAT IS GENETIC PROGRAMMING?

- THINK OF EACH SOLUTION IN THE GA AS A COMPUTER PROGRAM
- START WITH A FAMILY OF RANDOMLY GENERATED COMPUTER PROGRAMS
- RUN EACH PROGRAM AND DETERMINE HOW WELL IT SOLVES THE PROBLEM AT HAND
- CROSSOVER AND MUTATE PROGRAMS
 TO GENERATE OFFSPRING PROGRAMS
- AFTER A FEW GENERATIONS ENJOY A CORRECT COMPUTER PROGRAM

CROSSING COMPUTER PROGRAMS

PARENT 2 PARENT 1 **CROSSOVER FRAGMENTS** ZY (Y + 0.314Z)Y + 0.314Z0.234Z + X - 0.7890.234Z0.234 3 **(**0.314) **(**2.789) (0.314) (Z) Y + 0.314Z + X - 0.789 $0.234Z^{2}Y$ **6.789** (\mathcal{D}) **6.23** CHILD 2 CHILD 1

Department of Applied Science, UC Davis/Livermore

PROTEIN STRUCTURE PROBLEM

- PROBLEM: LOCATE TRANSMEMBRANE SEGMENTS OF BACTERIORHODOPSIN
- TM PROTEINS CROSS CELL WALLS SEVERAL TIMES
- SHORT LOOPS ON EITHER SIDE OF THE MEMBRANE
- GOAL: IDENTIFY SEGMENTS THAT ARE WITHIN THE MEMBRANE, THE TRANSMEMBRANE DOMAINS
- OBJECTIVE: EVOLVE A COMPUTER PROGRAM FOR PREDICTING WHETHER OR NOT A GIVEN SEGMENT LIES IN TM DOMAIN

WINNING PROGRAM

```
(prog (looping-over-residues

(SETM3 (- (+ (- (F?) (K?) )) (+ (-M3 (P?))

(+ (I?) (SETM2 (SETM3 (L?)))))) (SETM2 (SETM2 (H?))))))

(values (* (IFLTE (IFLTE (+ -5.606 M3) (* L M2) (% -2.786

(IFLTE M1 M3 M2 M2)) (* M2 M0 ) (*% (+M2 M3)

(+M3 L) (%M2 L) )) (* (+ (+M2 M1) (*M2 M0))

(%M2 M2))))
```

PROJECTS AT DAS/LLNL

- GP WITH SISAL, A PARALLEL LANGUAGE
- GA TO TRAIN NEURAL NETS
- GA TO PROTEIN STRUCTURE PREDICTION
- GA TO DNA SEQUENCING ANALYSIS
- GA TO GROUND WATER REMEDIATION
- GA TO INFORMATION FILTERING
- GA TO COMMUNICATIONS AND NETWORKING

A FLOW CHART

Department of Applied Science, UC Davis/Livermore

SUMMARY

- GAS ARE RANDOMIZED OPTIMIZATION PROCEDURES
- GAS ARE EASY TO LEARN AND IMPLEMENT
- GAS CAN BE BE APPLIED TO A WIDE RANGE OF PROBLEMS
- GAS CAN BE COMBINED WITH NEURAL NETS
- GAS CAN BE USED TO AUTOMATICALLY GENERATE CORRECT COMPUTER PROGRAMS

REFERENCES

- Holland, J. Adaptation in Natural and Artificial Systems, MIT Press, 1975
- Proceedings of the International Conferences on Genetic Algorithms, Lawrence Erlbaum Assoc. 1985, 87, 89, 91
- Davis, L. Genetic Algorithm and SimulAted Annealing, Pitman 1987
- Goldberg, D. Genetic Algorithms in Optimization, Search, and Machine Learning, Addison Wesley, 1989
- Davis, L. Handbook of Genetic Algorithm, Van Nostrand.1990
- Koza, J. Genetic Programming: On the Programing of Computers by Means of Natural Selection, MIT Press
- Koza, J. Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, 1994