Solutions to Homework 2 Physics 5393

Sakurai

- P-1.9 Consider a ket space spanned by the eigenkets $\{|a'\rangle\}$ of a Hermitian operator $\tilde{\mathbf{A}}$. There is no degeneracy.
 - a) Prove that

$$\prod_{a'} (\tilde{\mathbf{A}} - a')$$

is the null operator.

To simplify the notation, we define $a_j \equiv a'$ and rewrite the operator as

$$\prod_{j} (\tilde{\mathbf{A}} - a_{j}\tilde{\mathbf{1}}),$$

where the implied identity operator is explicitly given.

To prove that this is the null operator, we apply this operator on an arbitrary ket $|\alpha\rangle$. Then using the completeness relation, this ket is expanded in the eigenkets of the operator $\tilde{\mathbf{A}}$

$$\prod_{j} (\tilde{\mathbf{A}} - a_{j} \tilde{\mathbf{1}}) |\alpha\rangle = \prod_{j} (\tilde{\mathbf{A}} - a_{j} \tilde{\mathbf{1}}) \sum_{i} |a_{i}\rangle\langle a_{i}| |\alpha\rangle = \sum_{i} \prod_{j} (a_{i} - a_{j}) |a_{i}\rangle\langle a_{i}|\alpha\rangle$$

Since the sum is over a complete set, the product will always contain the term $a_j=a_i$, therefore the operator is the null operator.

b) Explain the significance of

$$\prod_{a'' \neq a'} \frac{\tilde{\mathbf{A}} - a''}{a' - a''}.$$

To simplify the notation, we define $a_j \equiv a'$, $a_k \equiv a''$ and rewrite the operator as

$$\prod_{k \neq j} \frac{\tilde{\mathbf{A}} - a_k \tilde{\mathbf{1}}}{a_j - a_k},$$

where the implied identity operator is explicitly given.

In this case, we drop one term in the product $a_k=a_j$. This leaves one term in the sum that will be non-zero

$$\sum_{i} \prod_{k \neq j} \left(\tilde{\mathbf{A}} - a_{k} \tilde{\mathbf{1}} \right) |a_{i}\rangle \langle a_{i} | \alpha \rangle = \prod_{k \neq j} \left(a_{j} - a_{k} \right) |a_{j}\rangle \langle a_{j} | \alpha \rangle.$$

Dividing by $a_j - a_k$ produces the projection operator in the a_j direction.

c) Illustrate (a) and (b) using $\tilde{\mathbf{A}}$ set equal to $\tilde{\mathbf{S}}_z$ of a spin 1/2 system. The operator $\tilde{\mathbf{A}}$ is replaced with $\tilde{\mathbf{S}}_z$ and its eigenkets $|\pm\rangle$. The first operator is therefore

$$\prod_{a'} (\tilde{\mathbf{A}} - a') = \left(\tilde{\mathbf{S}}_z - \frac{\hbar}{2}\right) \left(\tilde{\mathbf{S}}_z + \frac{\hbar}{2}\right),\,$$

which is clearly the null operator.

The second operator is

$$\prod_{a'' \neq a'} \frac{\tilde{\mathbf{A}} - a''}{a' - a''} = \begin{cases} \frac{\tilde{\mathbf{S}}_z + \hbar/2}{\hbar} \\ \frac{\tilde{\mathbf{S}}_z - \hbar/2}{-\hbar}. \end{cases}$$

If we apply these operators on the eigenkets of $\tilde{\mathbf{S}}_z$, the upper operator projects out $|+\rangle$ and the lower operator the $|-\rangle$.

P-1.11 Construct $\left| \tilde{\mathbf{S}} \cdot \hat{\mathbf{n}}; + \right\rangle$ such that

$$\tilde{\mathbf{S}} \cdot \hat{\mathbf{n}} \left| \tilde{\mathbf{S}} \cdot \hat{\mathbf{n}}; + \right\rangle = \frac{\hbar}{2} \left| \tilde{\mathbf{S}} \cdot \hat{\mathbf{n}}; + \right\rangle,$$

where $\hat{\mathbf{n}}$ is characterized by the angles shown in the accompanying figure. Express your answer as a linear combination of $|+\rangle$ and $|-\rangle$. [Note: The answer is

$$\cos\left(\frac{\beta}{2}\right)\left|+\right\rangle+e^{i\alpha}\sin\left(\frac{\beta}{2}\right)\left|-\right\rangle.$$

But do not just verify that this answer satisfies the above eigenvalue equation. rather, treat the problem as a straightforward eigenvalue problem. Also, do not use rotation operators, which we will introduce later in the book.]

From the figure, the unit vector $\hat{\mathbf{n}}$ is

$$\hat{\mathbf{n}} = \hat{\mathbf{x}} \sin \beta \cos \alpha + \hat{\mathbf{y}} \sin \beta \sin \alpha + \hat{\mathbf{z}} \cos \beta,$$

therefore the form of the operator is

$$\tilde{\mathbf{S}} \cdot \hat{\mathbf{n}} = \sin \beta \cos \alpha \tilde{\mathbf{S}}_x + \sin \beta \sin \alpha \tilde{\mathbf{S}}_y + \cos \beta \tilde{\mathbf{S}}_z.$$

To proceed, we expand the eigenstate in the $|\pm\rangle$ basis as follows

$$\left| \tilde{\mathbf{S}} \cdot \hat{\mathbf{n}}; + \right\rangle = a \left| + \right\rangle + b \left| - \right\rangle$$

with the constraint $|a|^2 + |b|^2 = 1$, to ensure proper normalization. Next, we apply the $\tilde{\mathbf{S}} \cdot \hat{\mathbf{n}}$ operator in the form derived above on the eigenstate in the $|\pm\rangle$ basis. We will proceed by first applying each of the spin operators on the eigenstate. We start with $\tilde{\mathbf{S}}_x$:

$$\tilde{\mathbf{S}}_{x}\left[a\mid+\rangle+b\mid-\rangle\right] \\ = \tilde{\mathbf{S}}_{x}\left[a\left(\frac{|S_{x};+\rangle-|S_{x};-\rangle}{\sqrt{2}}\right)+b\left(\frac{|S_{x};+\rangle+|S_{x};-\rangle}{\sqrt{2}}\right)\right] \\ = \frac{\hbar}{2}\left[a\mid-\rangle+b\mid+\rangle\right].$$

Next $\tilde{\mathbf{S}}_y$:

$$\tilde{\mathbf{S}}_{y} [a \mid + \rangle + b \mid - \rangle]$$

$$= \tilde{\mathbf{S}}_{y} \left[a \left(\frac{|S_{y}; + \rangle + |S_{y}; - \rangle}{\sqrt{2}} \right) + ib \left(\frac{-|S_{y}; + \rangle + |S_{y}; - \rangle}{\sqrt{2}} \right) \right]$$

$$= \frac{\hbar}{2} [ia \mid - \rangle - ib \mid + \rangle].$$

And the last operator $\tilde{\mathbf{S}}_z$

$$\tilde{\mathbf{S}}_{z}\left[a\mid+\rangle+b\mid-\rangle\right] = \frac{\hbar}{2}\left[a\mid+\rangle-b\mid-\rangle\right].$$

This allows us to apply the $\tilde{\mathbf{S}} \cdot \hat{\mathbf{n}}$ operator on the eigenstate

$$\begin{split} \tilde{\mathbf{S}} \cdot \hat{\mathbf{n}} \left[a \mid + \rangle + b \mid - \rangle \right] &= \\ \frac{\hbar}{2} \left[\sin \beta \cos \alpha \left[a \mid - \rangle + b \mid + \rangle \right] + \sin \beta \sin \alpha \left[ia \mid - \rangle - ib \mid + \rangle \right] \\ &+ \cos \beta \left[a \mid + \rangle - b \mid - \rangle \right] \right]. \end{split}$$

We can now equate the form of the eigenstate on the left hand side to that on the right hand side

$$\begin{aligned} \left[a \mid + \rangle + b \mid - \rangle \right] \\ &= \left[\sin \beta \cos \alpha \left[a \mid - \rangle + b \mid + \rangle \right] + \sin \beta \sin \alpha \left[ia \mid - \rangle - ib \mid + \rangle \right] + \cos \beta \left[a \mid + \rangle - b \mid - \rangle \right] \right]. \end{aligned}$$

Since the eigenkets are independent of each other, we can equate the coefficients of each pair independently. Therefore, we choose to perform the calculation using the coefficients of $|+\rangle$. We assume that a is real and positive, and use the normalization condition given above

$$a = b \sin \beta \cos \alpha - ib \sin \beta \sin \alpha + a \cos \beta$$
$$a (1 - \cos \beta) = b \sin \beta (\cos \alpha - i \sin \alpha)$$
$$a (1 - \cos \beta) = be^{-i\alpha} \sin \beta.$$

We next apply the half angle trigonmetric identities

$$2a\sin^2\left(\frac{\beta}{2}\right) = 2be^{-i\alpha}\cos\left(\frac{\beta}{2}\right)\sin\left(\frac{\beta}{2}\right).$$

Finally, we calculate the magnitude squared of both sides assuming a is real and b is complex, and simplify

$$4a^{2} \sin^{4}\left(\frac{\beta}{2}\right) = 4|b|^{2} \cos^{2}\left(\frac{\beta}{2}\right) \sin^{2}\left(\frac{\beta}{2}\right)$$
$$4a^{2} \sin^{2}\left(\frac{\beta}{2}\right) = 4(1 - a^{2}) \cos^{2}\left(\frac{\beta}{2}\right)$$
$$\Rightarrow a = \cos\left(\frac{\beta}{2}\right)$$

The coefficient b can be derived by substituting a into the last equation before calculating the magnitude squared to derive

$$b = e^{i\alpha} \sin\left(\frac{\beta}{2}\right).$$

We have therefore arrived at the desired result

$$\left| \hat{\mathbf{S}} \cdot \hat{\mathbf{n}}; + \right\rangle = \cos \left(\frac{\beta}{2} \right) \left| + \right\rangle + e^{i\alpha} \sin \left(\frac{\beta}{2} \right) \left| - \right\rangle.$$

P-1.17 Let $\tilde{\bf A}$ and $\tilde{\bf B}$ be observables. Suppose the simultaneous eigenkets of $\tilde{\bf A}$ and $\tilde{\bf B}$ $\{|a',b'\rangle\}$ form a complete orthonormal set of base kets. Can we always conclude that

$$\left[\tilde{\mathbf{A}}, \tilde{\mathbf{B}}\right] = 0? \tag{1}$$

If your answer is yes, prove the assertion. If your answer is no, give a counterexample.

The answer is yes. This can be proved using the completeness relation

$$\tilde{\mathbf{A}}\tilde{\mathbf{B}} = \tilde{\mathbf{A}}\tilde{\mathbf{B}}\sum_{i,j} |a_i, b_{i,j}\rangle\langle a_i, b_{i,j}| = \sum_{i,j} a_i b_{i,j} |a_i, b_{i,j}\rangle\langle a_i, b_{i,j}| = \tilde{\mathbf{B}}\tilde{\mathbf{A}},$$

where in the last step we note that the order of the operators does not matter in deriving the eigenvalues and the notation i, j denotes the degenerate eigenstates of b_i associated with a_i . Also, it is important that the sum be over both a_i and $b_{i,j}$ to ensure the full space is spanned.

P-1.18 Two Hermitian operators anti-commute:

$$\left\{\tilde{\mathbf{A}}, \tilde{\mathbf{B}}\right\} = \tilde{\mathbf{A}}\tilde{\mathbf{B}} + \tilde{\mathbf{B}}\tilde{\mathbf{A}} = 0 \tag{2}$$

Is it possible to have a simultaneous (that is, common) eigenket of $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{B}}$? Prove or illustrate your assertion.

For this to be possible, the following condition must be satisfied

$$\tilde{\mathbf{A}}\tilde{\mathbf{B}} |a,b\rangle = -\tilde{\mathbf{B}}\tilde{\mathbf{A}} |a,b\rangle \quad \Rightarrow \quad ab = -ab.$$

This requires that the eigenvalues a and/or b must be equal to zero.

Additional Problems

Q-1 The state space of a certain physical system is 3-dimensional. Let $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ be an orthonormal basis of this space. The kets $|\psi_0\rangle$ and $|\psi_1\rangle$ are defined by:

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} |u_1\rangle + \frac{i}{2} |u_2\rangle + \frac{1}{2} |u_3\rangle$$
$$|\psi_1\rangle = \frac{1}{\sqrt{3}} |u_1\rangle + \frac{i}{\sqrt{3}} |u_2\rangle$$

a) Are these kets normalized?

To determine if they are normalized, determine the scalar product. The first equation gives

$$\langle \psi_0 | \psi_0 \rangle = 1 \tag{3}$$

therefore normalized according to our probablistic interpretation of quantum mechanics. The second equation leads to:

$$\langle \psi_1 | \psi_1 \rangle = \frac{2}{3} \tag{4}$$

therefore it is not normalized. The proper normalization is

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} |u_1\rangle + \frac{i}{\sqrt{2}} |u_2\rangle.$$

b) Calculate the matrices $\tilde{\mathbf{P}}_0$ and $\tilde{\mathbf{P}}_1$ representing, in the above given basis set, the projection operators onto the state $|\psi_0\rangle$ and $|\psi_1\rangle$. Verify that the matrices are Hermitian.

The projection operators are give by $P_i = |\psi_i\rangle\langle\psi_i|$. To extract the matrix elements in the basis set $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$, it must be expressed in this basis set

$$|\psi_i\rangle\langle\psi_i| = \sum_{j,k} |u_j\rangle\langle u_j|\psi_i\rangle\langle\psi_i|u_k\rangle\langle u_k|,$$

where the matrix elements are given by $\langle u_j | \psi_i \rangle \langle \psi_i | u_k \rangle$. From this expression, the matrix for P_0 is:

$$P_0 = \begin{pmatrix} \frac{1}{2} & \frac{i}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ -\frac{i}{2\sqrt{2}} & \frac{1}{4} & -\frac{i}{4} \\ \frac{1}{2\sqrt{2}} & \frac{i}{4} & \frac{1}{4} \end{pmatrix}$$

and the matrix for P_1 :

$$P_1 = \begin{pmatrix} \frac{1}{2} & -\frac{i}{2} & 0\\ \frac{i}{2} & \frac{1}{2} & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Both matrices satisfy the condition for being Hermitian.