

RTD至数字输出转换器

概述

MAX31865是简单易用的热敏电阻至数字输出转换器,优化用于铂电阻温度传感器(RTD)。外部电阻设置所用RTD的灵敏度,高精度 Σ - Δ ADC将RTD电阻与参考阻值之比转换成数字输出。MAX31865输入具有高达±45V的过压保护,提供可配置的RTD及电缆开路/短路条件检测。

应用

工业设备 医疗设备 仪表

定购信息在数据资料的最后给出。

特点和优点

- 集成更低系统功耗, 简化设计, 减少设计周期
 - · 简便的RTD铂电阻之数字转换器
 - 支持100Ω至1kΩ (0°C时)铂电阻RTD (PT100至PT1000)
 - 兼容于2线、3线和4线传感器连接
 - SPI兼容接口
 - 20引脚TQFN和SSOP封装
- 高精度设备满足误差预算
 - 15位ADC分辨率;标称温度分辨率为0.03125℃(随 RTD非线性变化)
 - 整个工作条件下, 总精度保持在0.5°C (0.05%满量程)
 - 全差分V_{REF}输入
 - 转换时间: 21ms (最大值)
- 集成故障检测,增加系统稳定性
 - ±45V输入保护
 - 故障检测(RTD开路、RTD短路到量程范围以外的电压或 RTD元件短路)
 - SPI兼容接口

典型应用电路

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be selected an an errata and the selection an

Absolute Maximum Ratings

Voltage Range on V _{DD} Relative to GND10.3V to +4.0V Voltage Range on BIAS, REFIN+, REFIN-, ISENSOR0.3V to (V _{DD} + 0.3V) Voltage Range on FORCE+, FORCE2, FORCE-, RTDIN+, RTDIN- Relative to GND150V to +50V Voltage Range on DVDD Relative to DGND0.3V to +4.0V Voltage Range on All Digital Pins Relative to DGND0.3V to (V _{DVDD} + 0.3V)	Continuous Power Dissipation ($T_A = +70^{\circ}\text{C}$) TQFN (derate 34.5mW/°C above $+70^{\circ}\text{C}$)
Relative to DGND0.3V to (V _{DVDD} + 0.3V)	Soldering Temperature (reflow) +260°C Lead Temperature (soldering,10s) +300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

TQFN	SSOP
Junction-to-Ambient Thermal Resistance (θ _{JA})29°C/W	Junction-to-Ambient Thermal Resistance (θ _{JA})84°C/W
Junction-to-Case Thermal Resistance (θ_{JC})2°C/W	Junction-to-Case Thermal Resistance (θ _{JC})32°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Recommended DC Operating Conditions

 $(T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.})$ (Notes 2 and 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V_{DD}	V_{DD}		3.0	3.3	3.6	V
DVDD	V _{DVDD}		3.0	3.3	3.6	V
Input Logic 0	V _{IL}	CS, SDI, SCLK	-0.3		0.3 x V _{DVDD}	٧
Input Logic 1	V _{IH}	CS, SDI, SCLK	0.7 x V _{DVDD}		V _{DVDD} + 0.3	٧
Analog Voltages (FORCE+,FORCE2, FORCE-, RTDIN+, RTDIN-)		Normal conversion results	0		V _{BIAS}	V
Reference Resistor	R _{REF}		350		10k	Ω
Cable Resistance	R _{CABLE}	Per lead	0		50	Ω

Electrical Characteristics

 $(3.0V \le V_{DD} \le 3.6V, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are $T_{A} = +25^{\circ}C, V_{DD} = V_{DVDD} = 3.3V$.) (Notes 2 and 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ADC Resolution		No missing codes		15		Bits
ADC Full-Scale Input Voltage (RTDIN+ - RTDIN-)				REFIN+ - REFIN-		V

Electrical Characteristics (continued)

 $(3.0V \le V_{DD} \le 3.6V, T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are $T_A = +25^{\circ}C, V_{DD} = V_{DVDD} = 3.3V$.) (Notes 2 and 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ADC Common-Mode Input Range			0		V _{BIAS}	V
		RTDIN+, RTDIN-, 0°C to +70°C, on-state		2		
Input Leakage Current		RTDIN+, RTDIN-, -40°C to +85°C, on-state		5		nA
		RTDIN+, RTDIN-, -40°C to 100°C, on-state		14		
Bias Voltage	V _{BIAS}		1.95	2.00	2.06	V
Bias Voltage Output Current	I _{OUT}		0.2		5.75	mA
Bias Voltage Load Regulation		I _{OUT} ≤ 5.75mA		30		mV/mA
Bias Voltage Startup Time		(Note 4)			10	ms
ADC Full-Scale Error				±1		LSB
ADC Integral Nonlinearity		Differential Input, endpoint fit, 0.3 x V _{BIAS} ≤ V _{REF} ≤ V _{BIAS}		±1		LSB
ADC Offset Error			-3		+3	LSB
Noise (over Nyquist Bandwidth)		Input referred		150		μV RMS
Common-Mode Rejection				90		dB
50/60Hz Noise Rejection		Fundamental and harmonics		82		dB
		Continuous conversion (60Hz notch)		16.7	17.6	
Temperature Conversion Time		Single conversion (60Hz notch)		52	55]
(Note 5)	tCONV	Single conversion (50Hz notch)		62.5	66	ms
		Continuous conversion (50Hz notch)		20	21	1
Automatic Fault Detection Cycle Time		From CS high to cycle complete		550	600	μs
Power-Supply Rejection				1		LSB/V
Power-Supply Current (Note 6)	I _{DD} Shutdown	Bias off, ADC off		1.5	3	mA
	I _{DD}	Bias on, active conversion		2	3.5	mA
Power-On Reset Voltage Threshold			2	2.27		V
Power-On Reset Voltage Hysteresis				120		mV
Input Capacitance	C _{IN}	Logic inputs		6		pF
Input Leakage Current	IL	Logic inputs	-1		+1	μΑ
Output High Voltage	V _{OH}	I _{OUT} = -1.6mA	V _{DVDD} - 0.4			V
Output Low Voltage	V _{OL}	I _{OUT} = 1.6mA			0.4	V

AC Electrical Characteristics: SPI Interface

 $(3.0V \le V_{DD} \le 3.6V$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are $T_{A} = +25^{\circ}C$, $V_{DD} = V_{DVDD} = 3.3V$.) (Notes 3 and 7) (Figure 1 and Figure 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data to SCLK Setup	t _{DC}	(Notes 8, 9)	35			ns
SCLK to Data Hold	tcdh	(Notes 8, 9)	35			ns
SCLK to Data Valid	t _{CDD}	(Notes 8, 9, 10)			80	ns
SCLK Low Time	t _{CL}	(Note 9)	100			ns
SCLK High Time	t _{CH}	(Note 9)	100			ns
SCLK Frequency	tCLK	(Note 9)	DC		5.0	MHz
SCLK Rise and Fall	t _R , t _F	(Note 9)			200	ns
CS to SCLK Setup	tcc	(Note 9)	400			ns
SCLK to CS Hold	t _{CCH}	(Note 9)	100			ns
CS Inactive Time	tcwH	(Note 9)	400			ns
CS to Output High-Z	t _{CDZ}	(Notes 8, 9)			40	ns
Address 01h or 02h Decoded to DRDY High	t _{DRDYH}	After RTD register read access (Note 9)		50		ns

- Note 2: All voltages are referenced to ground when common. Currents entering the IC are specified positive.
- **Note 3:** Limits are 100% production tested at T_A= +25°C and/or T_A= +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Typical values are not guaranteed.
- **Note 4:** For 15-bit settling, a wait of at least 10.5 time constants of the input RC network is required. Max startup time is calculated with a $10k\Omega$ reference resistor and a 0.1μ F capacitor across the RTD inputs.
- **Note 5:** The first conversion after enabling continuous conversion mode takes a time equal to the single conversion time for the respective notch frequency.
- **Note 6:** Specified with no load on the bias pin as the sum of analog and digital currents. No active communication. If the RTD input voltage is greater than the input reference voltage, then an additional 400µA I_{DD} can be expected.
- Note 7: All timing specifications are guaranteed by design.
- **Note 8:** Measured at $V_{IH} = 0.7V \times V_{DVDD}$ or $V_{IL} = 0.3 \times V_{DVDD}$ and 10ms maximum rise and fall times.
- Note 9: Measured with 50pF load.
- Note 10: Measured at $V_{OH} = 0.7 \times V_{DVDD}$ or $V_{OL} = 0.3 \times V_{DVDD}$. Measured from the 50% point of SCLK to the V_{OH} minimum of SDO.

图1. 时序图: SPI读数据传输

图2. 时序图: SPI写数据传输

高精度、带线性补偿的 热电偶数字转换器

典型工作特性

 $(V_{DD} = V_{DVDD} = 3.3V, T_A = +25$ °C, unless otherwise noted.)

LEAKAGE CURRENT PER PIN vs. TEMPERATURE (1 VOLT APPLIED TO FORCE+, FORCE2, RTDIN+, RTDIN- PINS)

ADC CONVERSION ERROR vs. RTD RESISTANCE $(4k\Omega Rref, 4\text{-Wire Connection})$

SUPPLY CURRENT vs. TEMPERATURE (ADC NORMALLY OFF MODE)

SINC FILTER OPERATION INPUT FREQUENCY vs. NOISE RESPONSE

ADC CONVERSION ERROR vs. RTD RESISTANCE

RTD至数字输出转换器

引脚配置

RTD至数字输出转换器

引脚说明

引	脚	夕勒	TH 스Ł
TQFN	SSOP	名称	功能
1	4	BIAS	偏置电压输出(V _{BIAS})。
2	5	REFIN+	基准电压输入正端,连接至BIAS。在REFIN+和REFIN-之间连接参考电阻。
3	6	REFIN-	基准电压输入负端,在REFIN+和REFIN-之间连接参考电阻。
4	7	ISENSOR	R _{REF} 的低边,连接至REFIN-。
5	8	FORCE+	高边RTD驱动,使用3线连接配置时,将其连接到FORCE2。具有±45V过压保护。
6	9	FORCE2	输入正端,仅限3线配置。3线连接配置下将其连接至FORCE+; 2线或4线连接配置下,该引脚接地。具有 ±45V过压保护。
7	10	RTDIN+	RTD输入正端,具有±45V过压保护。
8	11	RTDIN-	RTD输入负端,具有±45V过压保护。
9	12	FORCE-	低边RTD回路,具有±45V过压保护。
10	13	GND2	模拟地,连接至GND1。
11	14	SDI	串行数据输入。
12	15	SCLK	串行数据时钟输入。
13	16	CS	低电平有效片选,CS置为低电平时使能串口。
14	17	SDO	低电平有效片选,CS置为低电平时使能串口。 串行数据输出。 数字地。 模拟地、连接至GND2。
15	18	DGND	数字地。
16	19	GND1	模拟地,连接至GND2。
17	20	N.C.	不连接。
18	1	DRDY	低电平有效数据就绪推挽输出。数据寄存器出现新的转换结果时,DRDY置为低电平。对RTD电阻数据寄存器执行读操作时,DRDY恢复为高电平。
19	2	DVDD	数字电源输入,连接至3.3V电源,利用0.1μF电容旁路至DGND。
20	3	V _{DD}	模拟电源输入,连接至3.3V电源,利用0.1μF电容旁路至GND1。
		EP	裸焊盘(封装背面),连接至GND1。仅适用于TQFN封装。

方框图

详细说明

MAX31865是成熟的RTD数字转换器,内置15位模/数转换器(ADC)、输入保护、数字控制器、SPI兼容接口以及相关的控制逻辑电路。信号调理电路优化用于PT100-PT1000 RTD,也支持其它热敏电阻。

温度转换

电阻温度检测器(RTD)是一种阻值随温度变化的电阻。铂是最常见、精度最高的测温金属丝材料。铂RTD称为PT-RTD,镍、铜和其它金属亦可用来制造RTD。RTD具有较宽的测温范围,最高达+800°C,具有较高精度和较好的可重复性,线性度适中。

对于PT-RTD,最常见的电阻是: 0° C下标称值为 100Ω 和 $1k\Omega$,当然也有其它阻值。 0° C和+ 100° C之间的平均斜率称为阿尔法(α),斜率与铂的杂质及密度有关。最常见的两个α值是: 0.00385和0.00392,分别对应于IEC 751 (PT100)和 SAMA标准。

阻值与温度的关系曲线接近线性,但有一定弯曲,可由 Callendar-Van Dusen方程表示:

$$R(T) = R_0(1 + aT + bT^2 + c(T - 100)T^3)$$

:中:

T = 温度(°C)

R(T) = T温下的阻值

 $R_0 = T 为 0$ °C 时的阻值

IEC 751规定α = 0.00385055及下列Callendar-Van Dusen 系数·

 $a = 3.90830 \times 10^{-3}$

 $b = -5.77500 \times 10^{-7}$

当-200°C \leq T \leq 0°C时, c = -4.18301 x 10-12; 当0°C \leq T \leq +850°C时, c = 0 $_{\circ}$

图3所示为PT100 RTD的电阻随温度的变化曲线,根据0°C 至+100°C之间的斜率进行直线逼近。

为测量RTD阻值,接入参考电阻(R_{REF}),该电阻与RTD串联,偏置电压作用在R_{REF}上端,如典型应用电路所示。

图3. Pt100 RTD电阻与温度的关系曲线。

参考电阻的电流同样流过RTD。参考电阻两端的电压为ADC基准电压。RTD电压连接至ADC差分输入(RTDIN+和RTDIN-)。所以ADC产生的数字输出等于RTD电阻与参考电阻的比值。对于铂电阻RTD,选择阻值等于RTD 0°C阻值的4倍的参考电阻最为合适。因此,针对PT100选用 400Ω 参考电阻;针对PT1000则选用 $4k\Omega$ 参考电阻。

如果RTD位于MAX31865附近,采用2线连接(见<u>典型应用</u> <u>电路</u>)即可获得较好的测试结果。注意,对于PT100,0.4 Ω 串联电阻引起的误差大约为1°C;因此,电缆长度增加时,电缆电阻会引起过大的误差。

4线连接通过使用独立的加载、检测(感应)引脚,消除了电缆电阻引起的误差。

3线连接是一种折中方案,比4线方案少一条引线。为补偿导线上的压降,从(RTDIN+-RTDIN-)中减去FORCE+和RTDIN+之间的电压,利用FORCE2对输入采样实现。如果电缆电阻具有很好的一致性,即可消除电缆电阻引入的误差。将配置寄存器的3线位置1,选择3线工作模式。

线性化温度数据

对于-100℃至+100℃温度范围,简单利用RTD数据可以很好地实现温度逼近,如下所示:

温度(°C) ≈ (ADC编码/32) - 256

从该式可以得出: 0°C时,误差为0°C;-100°C时,误差为-1.75°C;+100°C时,误差为-1.4°C(假设采用IEC751 RTD,REF等于0°C RTD电阻的四倍)。为了获得高精度,利用Callendar-Van Dusen方程(见<u>温度转换</u>部分)或查找表修正RTD的非线性误差。

使用热敏电阻

器件也可配合其它热敏电阻使用,例如NTC或PTC热敏电阻。选择R_{REF}大于或等于传感器在整个测温范围内的最大电阻。输出数据为传感器电阻与参考电阻之比。

模/数转换器 (ADC)

ADC提供全差分模拟输入(RTDIN+和RTDIN-)和全差分基准输入(REFIN+和REFIN-),输出码代表模拟输入电压与基准电压之比。如果输入电压为负值,则输出码为0;如果输入电压大于基准电压,则产生满量程输出。

三阶数字"sinc"滤波器提供输入噪声抑制,将50Hz或60Hz电源噪声(包括电源基频的谐波)衰减82dB。

故障检测和输入保护

MAX31865检测外部RTD和2线、3线或4线电缆可能发生的各种故障。部分故障在每次转换时进行检测,其它故

障则仅在主控制器请求故障检测时进行。故障检测期间,MAX31865能够利用内部模拟开关从GND2断开FORCE-输入的连接。

产生故障的条件如下所列,故障检测流程参见图4:

- 在任意时间点检测到:
 - FORCE+、FORCE2、RTDIN+、RTDIN-或FORCE-引脚发生过压(> V_{DD})或欠压(< GND1)条件。
- 每次ADC转换时检测到: 大于或等于转换结果上限 小于或等于转换结果下限
- 每次响应故障检测请求(配置寄存器位 (D[3:2])时,检测到:

V_{REFIN-} > 0.85 x V_{BIAS}

FORCE- 输入开关开路时, V_{REFIN-} < 0.85 x V_{BIAS}

FORCE- 输入开关开路时, V_{RTDIN-} < 0.85 x V_{BIAS}

FORCE+、FORCE2、FORCE-、RTDIN+、RTDIN-具有高达 \pm 45V的输入电压保护。作用到这些引脚的信号由模拟开关控制,所加电压一般高于 V_{DD} + 100mV或小于GND1 - 400mV时,开关开路。注意,发生电压故障时,保护电路可能允许约350 μ A的电流通过,这种故障引起的漏电流不会对MAX31865造成任何损坏。

检测到过压或欠压条件时,故障状态寄存器的D2置位,ADC中止数据转换更新,直到故障解除后恢复温度转换。

图4. 故障检测流程图

内部寄存器

通信利用八个8位寄存器实现,其中包括:转换、状态和配置数据,所有设置均通过选择相应寄存器单元的地址完成,表1所示为寄存器地址。

存取寄存器时,地址0Xh为读操作,地址8Xh为写操作。读写数据时,寄存器MSB在前。

配置寄存器 (00h)

配置寄存器选择转换模式(自动模式或单次转换命令触发模式)、使能和禁止BIAS引脚输出V_{BIAS}、发送单次转换命令、选择RTD连接方式(3线或2/4线)、启动一次故障检测、清空故障状态寄存器,以及选择滤波器陷波频率。以下介绍了配置位的影响。

BIAS (D7)

不进行温度转换时,可禁止V_{BIAS},以降低功耗。发送单次转换(1-Shot)指令之前,可通过向该位写1使能V_{BIAS}。选择自动(连续)转换模式时,V_{BIAS}保持有效状态。

转换模式(D6)

向该位写1时,选择自动转换模式,以50/60 Hz速率连续转换;向该位写0时,退出自动转换模式,进入"常闭"模式,该模式下可发送单次转换命令。

1-Shot (D5)

转换模式为"常闭"时,向该位写1启动一次电阻测试转换。向该位写1后, \overline{CS} 变为高电平时触发转换。注意,如果执行多字节写操作,在命令结束后 \overline{CS} 拉至高电平时触发转换。如果 V_{BIAS} 有效(由配置寄存器选择),在 \overline{CS} 变为高电平时采样RTD电压,并开始转换。注意,如果 V_{BIAS} 关闭(以降低两次转换之间的电源电流),RTDIN输入的滤波电容需要充电,然后才能进行高精度转换。所以,应在启动转换之前开启 V_{BIAS} ,并等待至少10.5倍的输入RC网络时间常数加上1ms。注意,单次转换完成时间在60Hz滤波模式下需要约52ms,在50Hz滤波模式下需要62.5ms。1-Shot为自动清零位。

表1. 寄存器地址和POR状态

REGISTER NAME	READ ADDRESS (HEX)	WRITE ADDRESS (HEX)	POR STATE	READ/WRITE
Configuration	00h	80h	00h	R/W
RTD MSBs	01h	_	00h	R
RTD LSBs	02h	_	00h	R
High Fault Threshold MSB	03h	83h	FFh	R/W
High Fault Threshold LSB	04h	84h	FFh	R/W
Low Fault Threshold MSB	05h	85h	00h	R/W
Low Fault Threshold LSB	06h	86h	00h	R/W
Fault Status	07h	_	00h	R

表2. 配置寄存器定义

D7	D6	D5	D4	D3	D2	D1	D0
V _{BIAS} 1 = ON 0 = OFF	Conversion mode 1 = Auto 0 = Normally off	1-shot 1 = 1-shot (auto-clear)	3-wire 1 = 3-wire RTD 0 = 2-wire or 4-wire	Cycle	Detection Control Table 3)	Fault Status Clear 1 = Clear (auto-clear)	50/60Hz filter select 1 = 50Hz 0 = 60Hz

3-Wire (D4)

使用3线RTD连接时,该位写1。该模式下,从(RTDIN+-RTDIN+)中减去FORCE+与RTDIN+之间的电压,以补偿用一条线连接FORCE-和RTDIN-时产生的IR误差。使用2线或4线连接时,向该位写0。

故障检测周期(D3:D2)

主控制器启动的故障检测周期有两种工作模式: 手动和自动模式。如果外部RTD接口电路包括时间常数大于100μs的输入滤波器,故障检测周期时序应采用手动模式控制。故障检测周期通过以下电压比较以及故障状态寄存器设置,提供三种故障检测:

- 1) REFIN-电压是否大于85% x V_{BIAS}? (故障状态寄存器 D5位)
- 2) Force-输入开关开路时, REFIN-电压是否小于85% x V_{BIAS}? (故障状态寄存器D4位)
- 3) Force-输入开关开路时, RTDIN-电压是否小于85% x V_{BIAS}? (故障状态寄存器D3位)

注: 所有电压以GND1为基准。

<u>应用信息</u>部分提供了表格,帮助了解故障状态位置位的可能原因。

为进入自动故障检测,向配置寄存器写100X010Xb,此时ADC处于"常闭"模式。自动故障检测周期在检查故障之前

插入100µs延迟,允许外部输入滤波器达到稳定。完成检测后,故障检测周期设置位(D[3:2])自动清除为00b。

为进入手动控制故障检测,首先确保VBIAS开启时间至少达到5倍的时间常数。然后向配置寄存器写100X100Xb,此时ADC处于"常闭"模式。MAX31865在FORCE-输入开关闭合的情况下检查故障,完成检查后,FORCE-输入开关开路。故障检测周期控制位(D[3:2])保持为10b。同样,等待至少5倍时间常数,然后向配置寄存器写100X110Xb。此时,MAX31865在FORCE-输入开关开路的情况下检查故障;完成检查后,FORCE-输入开关闭合,故障检测周期控制位(D[3:2])自动清除为00b。注意,如果在单次写操作中向D5 (1-Shot)和D2或D3写1,将忽略所发送的命令。如果之前没有首先设置手动模式(100X100Xb)而设置了100X110Xb,则将工作在自动故障检测模式。

故障状态清零(D1)

向D5、D3和D2位写0的同时向该位写1,将使故障寄存器的全部故障状态位(D[7:2])清零。注意,如果仍然存在过压/欠压故障,故障寄存器的D2位、RTD LSB寄存器的D0位可能立即再次置位。故障状态清除位D1自动清零。

50/60Hz (D0)

该位选择噪声抑制滤波器的陷波频率。向该位写0时,抑制60Hz及其谐波;向该位写1时抑制50Hz及其谐波。**注**:自动转换模式下,不要更改陷波频率。

表3. 故障检测周期控制位

D3	D2	CONFIGURATION REGISTER WRITE (BINARY) WRITE ACTION		READ MEANING
0	0	XXXX00XXb	No action	Fault detection finished
0	1	100X010Xb	Fault detection with automatic delay	Automatic fault detection still running
1	0	100X100Xb	Run fault detection with manual delay (cycle 1)	Manual cycle 1 still running; waiting for user to write 11
1	1	100X110Xb	Finish fault detection with manual delay (cycle 2)	Manual cycle 2 still running

X = 无关。

RTD电阻寄存器(01h-02h)

RTD MSB和RTD LSB两个8位寄存器包含RTD电阻数据,数据格式如表4所示。数据格式为RTD电阻与参考电阻的

比值,包含15位有效数据。RTD LSB寄存器的D0为故障位,表示是否检测到任意RTD故障。

表4. RTD电阻寄存器定义

REGISTER		RTD MSBS (01h) REGISTER								RTD LSBS (02h) REGISTER						
Bit	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0
RTD Resistance Data	MSB	_	_	_	_	_	_	_	_	_	_	_	_	_	LSB	Fault
Bit Weighting	214	213	212	211	210	29	28	27	26	2 ⁵	24	23	22	21	20	_
Decimal Value	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	_

表5. RTD电阻与数据的关系

D/D	BINA	RY	HE	X	DECIMAL
R _{RTD} /R _{REF}	RTD MSBs (01h)	RTD LSBs (02h)	RTD MSBs (01h)	RTD LSBs (02h)	DECIMAL
0.025	0000 0110	0110 0110b	06h	66h	819
0.125	0010 0000	0000 0000b	20h	00h	4096
0.25	0100 0000	0000 0000b	40h	00h	8192
0.50	1000 0000	0000 0000b	80h	00h	16,384
0.75	1100 0000	0000 0000b	C0h	00h	24,576
0.999	1111 1111	1111 1110b	FFh	FEh	32,767

注: 假设D0 ("Fault")为0。

故障门限寄存器(03h-006h)

故障上限和故障下限寄存器用于选择RTD故障检测的触发门限。将RTD转换结果与这些寄存器值进行比较,在故障状态寄存器中置位"Fault"(D[7:6])。RTD数据寄存器、故障上限寄存器和故障下限寄存器的数据格式均相同。

如果RTD电阻寄存器值大于或等于故障上限寄存器值,置位故障状态寄存器的RTD High。故障上限寄存器的POR状态为FFFFh。

如果RTD电阻值小于或等于故障下限寄存器值,则置位故障状态寄存器的RTD Low。故障下限寄存器的POR状态为0000h。

故障状态寄存器(07h)

故障状态寄存器锁存所有检测到的故障位;向配置寄存器中的故障状态清除位写1时,将全部故障状态位清零。

串行接口

MAX31865支持SPI模式1和3。SPI兼容通信使用四个引脚: SDO (串行数据输出)、SDI (串行数据输入)、CS (片选)和 SCLK (串行时钟)。SDI和SDO分别是器件的串行数据输入 和输出引脚。CS输入启动和终止数据传输。SCLK同步主机(微控制器)和从机(MAX31865)之间的数据传输。

串行时钟(SCLK)由微控制器产生,只有CS为低电平时且将地址和数据传输至SPI总线上任一器件期间才有效。在部分微控制器中可设置无效的时钟极性。MAX31865通过在CS变为有效时采样SCLK,以确定无效时钟的极性,自动支持任一种时钟极性。在内部选通沿上锁存输入数据(SDI),在翻转沿上移出输出数据(SDO) (参见表8和图5)。传输的每一位均有一个时钟脉冲。地址和数据位按八位一组传输,MSB在前。

表6. 故障门限寄存器定义

REGISTER	HIG	HIGH FAULT THRESHOLD MSB (03h) REGISTER				ER	HIGH FAULT THRESHOLD LSB (04h) REGISTER					ΓER				
REGISTER	LO	W FAUI	_T THR	ESHOL	D MSB	(05h) F	REGIST	ER	LO	W FAU	_T THR	ESHO	_D LSB	(06h)	REGIST	ΓER
Bit	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0
RTD Resistance Data	MSB						_				_				LSB	×
Bit Weighting	214	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	28	2 ⁷	26	2 ⁵	2 ⁴	23	2 ²	21	20	_
Decimal Value	16384	8192	4096	2048	1024	512	256	128	64	32	16	84		21		_

 $X = \mathcal{X}$ 。

表7. 故障状态寄存器定义

D7	D6	D5	D4	D3	D2	D1	D0
RTD High	RTD Low	REFIN- >	REFIN- < 0.85 x V _{BIAS}	RTDIN- < 0.85 x	Overvoltage/	_	_
Threshold	Threshold	0.85 x V _{BIAS}	(FORCE- open)	V _{BIAS} (FORCE- open)	undervoltage fault	_ ^	^

X =无关。

地址和数据字节

地址和数据字节移入串行数据输入(SDI)和移出串行数据输出(SDO)时,MSB在前。任何传输都需要地址字节指定写或读操作,后面跟一个或多个数据字节。读操作时,从SDO输出数据;写操作时,数据输入至SDI。 CS驱动为低电平后,传输的第一个字节总为地址字节,该字节的MSB(A7)决定随后的字节为写还是为读操作。如果A7为0,地

址字节后为一个或多个字节读操作;如果A7为1,地址字节后为一个或多个字节写操作。

对于单字节传输,读或写1个字节,然后区驱动为高电平(见图6和图7);对于多字节传输,写入地址后,可以读或写多个字节(见图8)。只要CS保持为低电平,地址则连续在全部存储器内递增。如果继续移入或移出数据,地址则从7Fh/FFh返回至00h/80h。存储器地址无效时,报告FFh值。如果对只读寄存器执行写操作,不改变该寄存器的值。

表8. 功能表

MODE	<u>cs</u>	SCLK	SDI	SDO	
Disable Reset	High	Input disabled	Input disabled	High impedance	
\A/ 'L	Low	CPOL = 1*, SCLK rising	- Data bit latch	I Rada Sasara adalah	
Write	Low	CPOL = 0, SCLK falling	Data bit fatch	High impedance	
Dood	Low	CPOL = 1, SCLK falling	V	Nove data bit abift**	
Read	Low	CPOL = 0, SCLK rising	^	Next data bit shift**	

注: CPHA位极性必须设置为1。

^{**}读操作期间,SDO保持高阻抗,直到至8位数据准备好移出。

图5. 串行时钟为微控制器时钟极性(CPOL)的函数

^{*}CPOL是微控制器的控制寄存器中设置的时钟极性位。

图6. SPI单字节读

图7. SPI单字节写

图8. SPI多字节传输

DRDY

RTD数据寄存器中有新转换结果可用时,DRDY输出变为低电平。完成对RTD数据寄存器执行读操作时,DRDY恢复为高电平。

应用信息

在多噪环境下工作时,可能需要在RTDIN+和RTDIN-输入 之间安装滤波电容。发生过压或欠压故障之后、故障检测 周期之后或使能V_{BIAS}后,在重新启动ADC之前,为输入滤 波器留出一定的建立时间。建议延迟时间至少为5倍的时 间常数再附加1ms (使保护装置达到稳定),以达到规定精度。

将RTD数据寄存器值转换为温度

经过简单计算,可将RTD数据寄存器中保存的比例ADC转换结果转换为温度值。

首先,需要利用下式确定RTD的阻值:

 $R_{RTD} = (ADC Code \times R_{REF})/2^{15}$

图9. DRDY工作

ADC编码 = RTD数据寄存器(01h - 02h)中的15位ADC转换结果

使用PT100 RTD、 400Ω 高精度低漂移基准电阻的典型情况下, $\underline{89}$ 中列出了温度和电阻值及对应ADC编码结果的示例

R_{REF} = 基准电阻的阻值

如果RTD的阻值已知、电阻特性定义良好,则可通过计算 或查找表确定温度值。

表9. PT100、400Ω R_{REF}的温度示例

TEMPERATURE	RTD RESISTANCE	RTD DATA REG	ADC CODE (dec)	ADC CODE/32-256
(°C)	(Ω)	(01h-02h) (hex)	1.20 0022 (000)	(°C)
-200	18.52	0BDAh	1517	-208.59
-175	29.22	12B4h	2394	-181.19
-150	39.72	196Ch	3254	-154.31
-125	50.06	200Ah	4101	-127.84
-100	60.26	2690h	4936	-101.75
-75	70.33	2D04h	5762	-75.94
-50	80.31	3366h	6579	-50.41
-40	84.27	35EEh	6903	-40.28
-30	88.22	3876h	7227	-30.16
-20	92.16	3AFCh	7550	-20.06
-10	96.09	3D7Eh	7871	-10.03
0	100.00	4000h	8192	0.00
10	103.90	4280h	8512	10.00
20	107.79	44FCh	8830	19.94
30	111.67	4778h	9148	29.88
40	115.54	49F2h	9465	39.78
50	119.40	4C6Ah	9781	49.66
60	123.24	4EE0h	10096	59.50
70	127.08	5154h	10410	69.31
80	130.90	53C6h	10723	79.09
90	134.71	5636h	11035	88.84
100	138.51	58A4h	11346	98.56
110	142.29	5B12h	11657	108.28
120	146.07	5D7Ch	11966	117.94
130	149.83	5FE4h	12274	127.56
140	153.58	624Ch	12582	137.19
150	157.33	64B0h	12888	146.75
160	161.05	6714h	13194	156.31
170	164.77	6974h	13498	165.81
180	168.48	6BD4h	13802	175.31
190	172.17	6E30h	14104	184.75
200	175.86	708Ch	14406	194.19
225	185.01	7668h	15156	217.63
250	194.10	7C3Ah	15901	240.91

表9. PT100、400Ω R_{RFF}的温度示例(续)

TEMPERATURE (°C)	RTD RESISTANCE (Ω)	RTD DATA REG (01h-02h) (hex)	ADC CODE (dec)	ADC CODE/32-256 (°C)
275	203.11	81FEh	16639	263.97
300	212.05	87B6h	17371	286.84
325	220.92	8D64h	18098	309.56
350	229.72	9304h	18818	332.06
375	238.44	989Ah	19533	354.41
400	247.09	9E24h	20242	376.56
425	255.67	A3A2h	20945	398.53
450	264.18	A914h	21642	420.31
475	272.61	AE7Ah	22333	441.91
500	280.98	B3D4h	23018	463.31
525	289.27	B922h	23697	484.53
550	297.49	BE64h	24370	505.56

检测RTDIN+电缆故障

3线和4线RTD连接配置下,RTDIN+电缆断开会造成MAX31865的ADC+输入无偏压,导致不可预测的ADC转换结果,将受到PCB布局、外部电路噪声及环境温度的影响。根据故障门限寄存器的设定值,可能不会检测到这种电缆故障条件。如果需要检测这种条件,在RTDIN+引脚和BIAS引脚之间增加10MΩ电阻,从而在RTDIN+引线断开时产生满量程RTD电阻测量值。

解码RTD和电缆故障条件

每次转换时,根据电阻值检测RTD元件开路或短路。如果RTD元件开路,结果为满量程读数。利用故障上限寄存器设置检测RTD元件开路的门限,如果转换结果大于或等于该门限值,在转换结束时将故障状态寄存器中的RTD High

位置位。也可根据需要通过测试 $V_{REFIN-} > 0.85 \times V_{BIAS}$ 条件检测RTD元件开路。如果RTD元件短路,转换结果接近于零。利用故障下限寄存器设置检测RTD元件短路的门限。 表10、表11和表12中汇总了2线、3线和4线配置下检测RTD和电缆故障的方法,并提供了常见原因说明。

器件锁存故障状态,直到将配置寄存器中的故障清除位置位,这样可捕获间歇性故障。

电源去耦

在使用器件时,为获得最佳结果,可利用一个0.1μF电容将V_{DD}和DVDD电源去耦。尽量采用高质量表贴陶瓷电容。表贴元件将引线电阻降至最小,从而改善性能,并且陶瓷电容为去耦应用提供了足够的高频响应。

表10. 解码RTD故障, 2线配置、RTD数据LSB寄存器的故障位 = 1时

FAULT STATUS BIT SET	DESCRIPTION OF POSSIBLE CAUSE	CONDITION DETECTED	DESCRIPTION OF RESULTING DATA	
D7	Open RTD element	Measured resistance greater than High Fault Threshold value	Full scale	
D6	Shorted RTD element	Measured resistance less than Low Fault	Near zero	
D0	RTDIN+ shorted low	shorted low Threshold value		
	Open RTD		Full scale	
D5	RTDIN+ shorted high	V _{REFIN-} > 0.85 x V _{BIAS}	Indeterminate	
	RTDIN- shorted high		Indeterminate	
D4	RTDIN- shorted low	V _{REFIN-} < 0.85 x V _{BIAS} (FORCE- open)	Appear to be valid	
D3	RTDIN- shorted low	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Appear to be valid	
טט	RTDIN+ shorted low	V _{RTDIN-} < 0.85 x V _{BIAS} (FORCE- open)	Near zero	
D2	Overvoltage or undervoltage fault	Any protected input voltage >V _{DD} or <gnd1< td=""><td>Indeterminate</td></gnd1<>	Indeterminate	

表11. 解码RTD故障,3线配置、RTD数据LSB寄存器的故障位 = 1时

FAULT STATUS BIT SET	DESCRIPTION OF POSSIBLE CAUSE	CONDITION DETECTED	DESCRIPTION OF RESULTING DATA	
	Open RTD element			
D7	RTDIN+ shorted high and not connected to RTD	Measured resistance greater than High Fault Threshold value	Full scale	
	Force+ shorted high and connected to RTD	Tilleshold value		
	RTDIN+ shorted to RTDIN-			
D6	RTDIN+ shorted low and not connected to RTD	Measured resistance less than Low Fault Threshold value	Near zero	
	Force+ shorted low			
	Open RTD element			
	Force+ shorted high and connected to RTD		Full scale	
D5	Force+ unconnected	V _{REFIN} - > 0.85 x V _{BIAS}		
	Force+ shorted high and not connected to RTD		Indeterminate	
	RTDIN- shorted high			
D4	RTDIN- shorted low	V _{REFIN} - < 0.85 x V _{BIAS} (FORCE- open)	Appear to be valid	
	Force+ shorted low			
D3	RTDIN+ shorted low and connected to RTD	V _{RTDIN} - < 0.85 x V _{BIAS} (FORCE- open)	Near zero	
	RTDIN- shorted low		Appear to be valid	
D2	Overvoltage or undervoltage fault	Any protected input voltage >V _{DD} or < GND1	Indeterminate	

表12. 解码RTD故障, 4线配置、RTD数据LSB寄存器的故障位 = 1时

FAULT STATUS BIT SET	DESCRIPTION OF POSSIBLE CAUSE	CONDITION DETECTED	DESCRIPTION OF RESULTING DATA	
	Open RTD element			
D7	RTDIN+ shorted high and not connected to RTD	Measured resistance greater than High Fault Threshold value	Full scale	
	Force+ shorted high and connected to RTD	Tilleshold value		
	RTDIN+ shorted to RTDIN-			
D6	RTDIN+ shorted low and not connected to RTD	Measured resistance less than Low Fault Threshold	Near zero	
Dο	RTDIN- shorted high and not connected to RTD	value	Near Zero	
	Force+ shorted low			
	Open RTD element			
	Force+ shorted high and connected to RTD		Full scale	
	Force- unconnected			
	Force+ unconnected			
D5	Force+ shorted high and not connected to RTD	V _{REFIN} - > 0.85 x V _{BIAS}		
	Force- shorted high and not connected to RTD		Indeterminate	
	Force- shorted high and connected to RTD			
	Force- shorted low and not connected to RTD			
DA	Force- shorted low and connected to RTD	V 0.05 V (50005	Indeterminate	
D4	RTDIN- shorted low and connected to RTD	V _{REFIN} - < 0.85 x V _{BIAS} (FORCE- open)	Appear to be valid	
	Force+ shorted low			
	RTDIN+ shorted low and connected to RTD		Near zero	
D3	RTDIN- shorted low and connected to RTD	V _{RTDIN} - < 0.85 x V _{BIAS} (FORCE- open)		
	RTDIN- shorted low and not connected to RTD		Appear to be valid	
	Force- shorted low			
D2	Overvoltage or undervoltage fault	Any protected input voltage >V _{DD} or < GND1	Indeterminate	

典型应用电路(续)

定购信息

器件	温度范围	引脚-封装
MAX31865AAP+	-40°C至+125°C2	0 SSOP
MAX31865AAP+T	-40°C至+125°C2	0 SSOP
MAX31865ATP+	-40°C至+125°C2	0 TQFN-EP*
MAX31865ATP+T	-40°C至+125°C2	0 TQFN-EP*

⁺表示无铅(Pb)/符合RoHS标准的封装。

封装信息

如需最近的封装外形信息和焊盘布局(占位面积),请查询www.maximintegrated.com/cn/design/packaging。请注意,封装编码中的"+"、"#"或"-"仅表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。

封装类型	封装编码	外形编号	焊盘布局编号
20 TQFN-EP	T2055+5	<u>21-0140</u>	<u>90-0010</u>
20 SSOP	A20+1	21-0056	90-0094

T = 卷带包装。

^{*}EP = 裸焊盘。

高精度、带线性补偿的 热电偶数字转换器

修订历史

修订号	修订日期	说明	修改页
0	10/12	最初版本。	_
1	1/15	Revised Benefits and Features section	1
2	5/15	Added the SSOP package to the data sheet and updated input voltage protection as ±45V.	1, 2, 7, 10, 11, 24
3	7/15	Updated Table 6	16

Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。电气 特性表中列出的参数值(最小值和最大值)均经过设计验证,数据资料其它章节引用的参数值供设计人员参考。