

CH 1 Introduction

The Computer Revolution

- Unprecedented speed of progress and innovations in computer systems
 - Analogy to transportation: NY to London in seconds for a penny
- The third revolution of human civilization is made possible
- Enabling new applications
 - Improvement in the cost of computing by factor of 10 → Numerous applications and opportunities appear

Computers in Automobiles

Cell phones

World wide web

Search engine

Human genome project

(Traditional) Class of Computers

Personal Computers

- General purpose, variety of software
- Subject to cost/performance tradeoff

Supercomputers

- High-end scientific and engineering calculations
- Highest capability and performance but represent a small fraction of the overall computer market

Servers

- Network based
- High capacity, performance, reliability

Embedded computers

- Hidden as components of systems
- Stringent power/performance/cost constraints

Supercomputer 2020

Top500 from Wikipedia

Rank 🕈	Rmax Rpeak + (PFLOPS)	Name 💠	Model \$	Processor \$	Interconnect	Vendor ≑	Site country, year	Operating system
1 🛦	415.530 513.855	Fugaku	Supercomputer Fugaku	A64FX	Tofu interconnect D	Fujitsu	RIKEN Center for Computational Science Japan, 2020	Linux (RHEL)
2 🔻	148.600 200.795	Summit	IBM Power System AC922	POWER9, Tesla V100	InfiniBand EDR	IBM	Oak Ridge National Laboratory United States, 2018	Linux (RHEL)
3▼	94.640 125.712	Sierra	IBM Power System S922LC	POWER9, Tesla V100	InfiniBand EDR	IBM	Lawrence Livermore National Laboratory United States, 2018	Linux (RHEL)
4▼	93.015 125.436	Sunway TaihuLight	Sunway MPP	SW26010	Sunway ^[25]	NRCPC	National Supercomputing Center in Wuxi China, 2016 ^[25]	Linux (Raise)
5▼	61.445 100.679	Tianhe-2A	TH-IVB-FEP	Xeon E5–2692 v2, Matrix-2000 ^[26]	TH Express-2	NUDT	National Supercomputing Center in Guangzhou China, 2013	Linux (Kylin)
6▲	35.450 51.721	HPC5	Dell	Xeon Gold 6252, Tesla V100	Mellanox HDR Infiniband	Dell EMC	Eni ■	Linux (CentOS)
7_	27.580 34.569	Selene	Nvidia	Epyc 7742, Ampere A100	Mellanox HDR Infiniband	Nvidia	Nvidia United States, 2020	Linux (Ubuntu)
8▼	23.516 38.746	Frontera	Dell C6420	Xeon Platinum 8280 (subsystems with e.g. POWER9 CPUs and Nvidia GPUs were added after official benchmarking ^[10])	InfiniBand HDR	Dell EMC	Texas Advanced Computing Center United States, 2019	Linux (CentOS)
9▲	21.640 29.354	Marconi- 100	IBM Power System AC922	POWER9, Volta V100	Dual-rail Mellanox EDR Infiniband	IBM	CINECA ■ Italy, 2020	Linux (RHEL)
10▼	21.230 27.154	Piz Daint	Cray XC50	Xeon E5-2690 v3, Tesla P100	Aries	Cray	Swiss National Supercomputing Centre Switzerland, 2016	Linux (CLE)

Supercomputer 2021

■ Top500 from Wikipedia

Rank (previous) \$	Rmax Rpeak \$ (PFLOPS)	Name \$	Model \$	CPU cores \$	Accelerator (e.g. GPU) cores	Interconnect +	Manufacturer ◆	Site ¢	Year +	Operating system
1	442.010 537.212	Fugaku	Supercomputer Fugaku	158,976 × 48 A64FX @2.2 GHz	0	Tofu interconnect D	Fujitsu	RIKEN Center for Computational Science	2020	Linux (RHEL)
2▼ (1)	148.600 200.795	Summit	IBM Power System AC922	9,216 × 22 POWER9 @3.07 GHz	27,648 × 80 Tesla V100	InfiniBand EDR	IBM	Oak Ridge National Laboratory United States	2018	Linux (RHEL)
3▼ (2)	94.640 125.712	Sierra	IBM Power System S922LC	8,640 × 22 POWER9 @3.1 GHz	17,280 × 80 Tesla V100	InfiniBand EDR	IBM	Lawrence Livermore National Laboratory United States	2018	Linux (RHEL)
4▼ (3)	93.015 125.436	Sunway TaihuLight	Sunway MPP	40,960 × 260 SW26010 @1.45 GHz	0	Sunway ^[34]	NRCPC	National Supercomputing Center in Wuxi China ^[34]	2016	Linux (Raise)
5▲ (new)	64.590 89.795	Perlmutter	НР	? × 64 Epyc 7763 @2.45 GHz	? × 108 Ampere A100	Slingshot-10	Nvidia	NERSC United States	2021	Linux (Cray Linux Environment)
6▼ (5)	63.460 79.215	Selene	Nvidia	1,120 × 64 Epyc 7742 @2.25 GHz	4,480 × 108 Ampere A100	Mellanox HDR Infiniband	Nvidia	Nvidia United States	2020	Linux (Ubuntu)
7▼ (6)	61.445 100.679	Tianhe-2A	TH-IVB-FEP	35,584 × 12 Xeon E5–2692 v2 @2.2 GHz	35,584 × 128 Matrix- 2000 ^[35]	TH Express-2	NUDT	National Supercomputer Center in Guangzhou China	2013	Linux (Kylin)
8▼ (7)	44.120 70.980	JUWELS (booster module) ^{[36][37]}	BullSequana XH2000	1,872 × 24 AMD Epyc 7402 @2.8 GHz	3,744 × 108 Ampere A100	Mellanox HDR Infiniband	Atos	Forschungszentrum Jülich Germany	2020	Linux (CentOS)
9▼ (8)	35.450 51.721	HPC5	Dell	3,640 × 24 Xeon Gold 6252 @2.1 GHz	7,280 × 80 Tesla V100	Mellanox HDR Infiniband	Dell EMC	Eni ■ Italy	2020	Linux (CentOS)
10▼ (9)	23.516 38.746	Frontera	Dell C6420	16,016 × 28 Xeon Platinum 8280 @2.7 GHz (subsystems with e.g. POWER9 CPUs and Nvidia GPUs were added after official benchmarking ^[10])	0	InfiniBand HDR	Dell EMC	Texas Advanced Computing Center United States	2019	Linux (CentOS)

The Post-PC Era

- Personal Mobile Device (PMD)
 - Battery operated
 - Connects to the Internet
 - Smart phones, Tablets, Electronic glasses
- Cloud computing
 - Warehouse Scale Computers (WSCs): 100,000 and more servers
 - Software-as-a-Service (SaaS) model
 - Portions of SW run on PMD and another portion in the Cloud
 - Fog/Edge computing

What You Will Learn

- How does high-level language programs run on the hardware?
- What's the <u>interface</u> between S/W and H/W?
- What determines the performance?
- How can we improve the performance?
- What are the reasons for and the consequences of the recent switch from sequential processing to parallel processing?

Important Concepts In Computer Architecture

- Design for Moore's Law
- Use abstraction to simplify design
 - Layers of Representation
- Make the common case fast
 - Related idea: Amdahl's Law
- Performance via:
 - parallelism
 - pipelining
 - prediction
- Hierarchy of memories
- Dependability via Redundancy

Below Your Program

- Word processor, database, ... etc.
 - Millions of lines of code

Translation of high-level operations into simple computer instructions

- Hardware can run only low-level, simple instructions
 - ADD, LOAD, STORE, JUMP ... etc
- Several layers between this gap

High-level

language

program

(in C)

High-level Language > Instructions

swap(int v[], int k)

v[k] = v[k+1]:

temp = v[k];

{int temp;

```
v[k+1] = temp;
                    swap:
          Assembly
                          muli $2, $5.4
          language
Compiler
                              $2, $4,$2
                          add
          program
                          l W
                              $15. 0($2)
          (for MIPS)
                              $16, 4($2)
                          1 W
    Low level programming language
                              $16. 0($2)
                          SW
                               $15, 4($2)
                          SW
                          jr
                               $31
                                10001100101010000000001000110000
                    Binary machine
                                000000010100001000000000011000
                                0000000000110000001100000100001
                    language
                                → program
        Assembler
                    (for MIPS)
                                100011001111001000000000000000100
                                101011000110001000000000000000100
```


Components of a Computer

- Basic functions of a Computer
 - Input/Output data
 - Process the data
 - Store the data
- Same components for all kinds of computer
 - Independent of H/W technology
- Processor: Datapath+Control
- Input/output includes
 - User-interface devices
 - Display, keyboard, mouse
 - Storage devices
 - Hard disk, CD/DVD, flash
 - Network adapters
 - For communicating with other computers

Five classic components of a computer

Opening the Box

- I/O dominate the Apple iPad 2 tablet
 - I/O: a capacitive multitouch LCD, front-/rear-facing cameras, microphone, speakers, Wi-Fi and Bluetooth networks, etc
 - The datapath, control, and memory are a tiny portion

32GB flash

memory

Integrated circuits (chips)

Logic board

A5 package includes two memory chips, each with 2 Gb and total 512MB

ARM processor A5

Main memory interface

Technology Trends

Processors and memory have improved at an incredible rate

Year	Technology used in computers	Relative performance/unit cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit	900
1995	Very large-scale integrated circuit	2,400,000
2013	Ultra large-scale integrated circuit	250,000,000,000

^{*} A transistor is simply an on/off switch controlled by electricity.

Growth of DRAM Capacity

Moore's Law Revisited

Performance

- Measuring the performance is challenging!!
 - Why?
 - Are you comparing apple to orange?
 - When money is involved ...
- Two key metrics in computer performance
 - Execution time (Response time)
 - The time from the start to end
 - Throughput
 - Total amount of work done in a given time

Defining The Performance

- Focus on the response time for now
- Performance = 1/Execution Time

$$P_X > P_Y$$

 $1/E_X > 1/E_Y$
 $E_X < E_Y$

X is n times faster than Y

$$P_X/P_Y = n$$

 $P_X/P_Y = E_Y/E_X = n$

Measuring Time

- Wall clock time, Elapsed time
 - Total time it took to complete the job (or task)
- CPU time vs. I/O time
- Clock cycle (ticks, clock ticks, cycles ...)
 - Operation of digital hardware governed by a constant rate clock

- Clock frequency (rate): cycles per second
 - e.g., 4.0GHz = 4000MHz = 4.0×10 9 Hz = $1/(250 \times 10 12)$
- Clock period (Clock Cycle Time): duration of a clock cycle = 1/clock frequency
 - e.g., 250ps = 0.25ns = 250×10 -12 s

Classic CPU Performance Equation

- Clock Cycle Time = $\frac{1}{Clock\ Rate}$
- CPU time = CPU clock cycles x Clock Cycle Time
- CPU time = CPU clock cycles / Clock Rate
- **IC** (Instruction count) Number of instructions executed by the program
- **CPI** (Clock Cycles Per Instruction) Average clock cycles per instructions for a program (fragment) CPI = Clock Cycles / Instruction Count
- CPU clock cycles = IC x CPI
- CPU time = IC x CPI x Clock Cycle Time
- CPU time = $\frac{IC \times CPI}{Clock\ Rate}$

Using CPI (Clock cycles Per Instruction)

Example

- Computer A has clock cycle time of 250 ps and CPI of 2.0
- Computer B has clock cycle time of 500 ps and a CPI of 1.2

Which computer is faster?

N: total # of instructions in a program

$$\frac{CPU\ performanceA}{CPU\ performanceB} = \frac{Exec\ TimeB}{Exec\ TimeA} = \frac{600N}{500N} = 1.2$$

Computer A is 1.2 times faster than Computer B

Comparing Code Segments

CPI Information

	CPI for each instruction class				
	А	В	С		
СРІ	1	2	3		

Code segment Information

	Instruction counts for each instruction class				
Code Sequence	A	В	C		
1	200	100	200		
2	400	100	100		

Which code sequence executes the most instructions?

• Segment1: 200 + 100 + 200 = 500 instructions

• Segment2: 400 + 100 + 100 = 600 instructions

Which will be faster?

• Segment1: 200x1 + 100x2 + 200x3 = 1000 cycles

• Segment2: 400x1 + 100x2 + 100x3 = 900 cycles

CPI

Segment1: 1000/500 = 2.0 CPI

• Segment2: 900/600 = 1.5 CPI

Performance Summary

CPU time =
$$IC \times CPI \times Clock Cycle Time$$

$$CPU time = \frac{Instructions}{Program} \times \frac{Clock \ Cycles}{Instruction} \times \frac{Seconds}{Clock \ Cycle}$$

- Performance difference can arise from:
 - Algorithm
 - affects instruction count, and maybe CPI
 - Programming Language
 - affects instruction count and CPI
 - Compiler
 - affects instruction count and CPI
 - ISA (Instruction Set Architecture)
 - affects instruction count, clock rate, CPI

Power Trend

Power ∞ Capacitive load \times Voltage² \times Frequency

- Faster clock rate means better performance
- Clock rate and power increase slowed
 - Too much power creates cooling problem
- Reducing required voltage allows the increase of the clock rate
 - → not able to reduce the voltage any more
- What can we do to improve the performance?

From Uniprocessor to Multiprocessor

Growth of processor performance

Droviously

- Previously
 - Since H/W performance increased, S/W performance automatically increased without any change
- Multi-core (=processor) H/W
 - dual-core, quad-core ... etc
 - S/W has to be re-written to utilize the multi-core.
 - Parallel programming is challenging
 - load balancing
 - communication overhead
 - synchronization

등마역파 KITU 경묵내악교 IT대학 컴퓨터학무 MALUNIVERSITY

Amdahl's Law

Making the common case faster

- Common misbelief
 - Expecting the improvement of one aspect to return the same amount of increase in overall performance
- Amdahl's Law
 - The speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program.
 - Execution time after improvement
 - $= \frac{Execution\ time\ affected\ by\ improvement}{Amount\ of\ improvement} + Execution\ time\ unaffected$

Amdahl's Law (continued)

Example

- A program runs in 100 seconds.
- Multiply operation consumes 80 seconds.
- We want to improve the performance 5 times.
- How much do we need to improve the performance of the multiply operation?

```
T = 80/n + (100-80)

5 times faster = 20 seconds

20 = 80/n + 20

0 = 80/n \leftarrow \text{Not possible to get 5 times improvement!!!}
```


Pitfalls

- Computers at low utilization use little power.
 - At 10% utilization, power consumption is 33% of peak power consumption.
- Designing for performance and designing for energy efficiency are unrelated goals.
- Using a subset of the performance equation as a performance metric.
 - MIPS (million instructions per second)

$$\begin{aligned} \text{MIPS} &= \frac{Instruction \, count}{Execution \, time \times 10^6} \\ &= \frac{Instruction \, count}{Instruction \, count \times CPI_{\times 10^6}} = \frac{Clock \, rate}{CPI \times 10^6} \end{aligned}$$

- Cannot compare different ISA using MIPS
- MIPS varies by program