StyleGAN as an AI Deconvolution Operator for Large Eddy Simulations of Turbulent Plasma Equations in BOUT++

Project: FARSCAPE III

Jony Castagna – UKRI-STFC Hartree Centre

Francesca Schiavello – UKRI-STFC Hartree Centre

Lorenzo Zanisi – UKAEA

Generative Adversarial Networks (GANs)

Idea: Can I train a GAN to reconstruct the DNS fields from the internal fields seen as LES fields?

DNS field

Potentially two instantaneous of the same mHW problem can be obtained, U(t) and $U(t+\Delta t)$ but there is no guarantee that the internal layers are representation of the same filtered mHW problem, U(t) and $U(t+\Delta t)$!

Official Sensitive

Idea: I need a more "flexible GAN": StyleGAN!

Noise

Synthesis network q

Const 4×4×512

Latent $\mathbf{z} \in \mathcal{Z}$

Normalize

Technology

Hartree Centre

Mapping

network f AdalN

Our generator thinks of an image as a collection of "styles", where each style controls the effects at a particular scale

- Coarse styles → pose, hair, face shape
- Middle styles → facial features, eyes
- Fine styles → color scheme

Each layer (style) can be adjusted without interfering with the other levels!

Latent space interpolation

Style Eddy Simulation (Styles)

Different layers of the StylES generator

Different layer can be "thought" as different filtered LES fields!

We can use StyleGAN for deconvolution of a LES field and find corresponding DNS field

Main assumptions of the StylES

- Existence and unicity of the unfiltered and filtered equations solution
- A linear interpolation between 2 latent spaces W⁺ produces always a valid DNS field
- Continuity and smoothness of the GAN manifold -> research in the latent space always converges! The problem it may take very long...

Interpolation and Energy spectra

A linear interpolation between two latent spaces gives always a DNS spectrum!

Integration with BOUT++

Filtered form of HW equations

$$\frac{\partial \tilde{\zeta}}{\partial t} + \frac{\partial \tilde{\phi}}{\partial y} \frac{\partial \tilde{\zeta}}{\partial x} - \frac{\partial \tilde{\phi}}{\partial x} \frac{\partial \tilde{\zeta}}{\partial y} = \alpha(\tilde{\phi} - \tilde{n}) - \mu_{\omega} \nabla^{4} \tilde{\zeta} + D_{\phi_{y}\zeta_{x}} + D_{\phi_{x}\zeta_{y}}$$

$$\frac{\partial \tilde{n}}{\partial t} + \frac{\partial \tilde{\phi}}{\partial y} \frac{\partial \tilde{n}}{\partial x} - \frac{\partial \tilde{\phi}}{\partial x} \frac{\partial \tilde{n}}{\partial y} = \alpha(\tilde{\phi} - \tilde{n}) - k \frac{\partial \tilde{\phi}}{\partial y} - \mu_{n} \nabla^{4} \tilde{n} + D_{\phi_{y}n_{x}} + D_{\phi_{x}n_{y}}$$

 \tilde{n} $\tilde{\phi}$ $\tilde{\zeta}$

where:

$$\frac{\partial \widetilde{\phi}}{\partial y} \frac{\partial \zeta}{\partial x} - \frac{\partial \widetilde{\phi}}{\partial y} \frac{\partial \widetilde{\zeta}}{\partial x} = D_{\phi_y \zeta_x}$$

$$\frac{\partial \widetilde{\phi}}{\partial x} \frac{\partial \zeta}{\partial y} - \frac{\partial \widetilde{\phi}}{\partial x} \frac{\partial \widetilde{\zeta}}{\partial y} = D_{\phi_x \zeta_y}$$

$$\frac{\partial \widetilde{\phi}}{\partial y} \frac{\partial n}{\partial x} - \frac{\partial \widetilde{\phi}}{\partial y} \frac{\partial n}{\partial x} = D_{\phi_y n_x}$$

$$\frac{\partial \widetilde{\phi}}{\partial x} \frac{\partial n}{\partial y} - \frac{\partial \widetilde{\phi}}{\partial x} \frac{\partial n}{\partial y} = D_{\phi_x n_y}$$

are the LES fields to be passed to StylEGAN running on GPU via TensorFlow

LES size fields to be passed back to BOUT++

Integration with BOUT++

call a function with an Embedded Python call

pass back 1D numpy array to BOUT++

add sub-grid scale terms

hw.cxx file in Hasegawa-wakatani example

https://github.com/farscape-project/BOUT-dev.git

branch: bout_with_StylES

Issues (I)

...but:

$$\nabla^2 \phi = \zeta$$

$$\nabla \cdot (\nabla \phi) = \zeta$$

$$\nabla \cdot (-\mathbf{E}) = \zeta$$

but for the quasineutrality condition:

$$\nabla \cdot \mathbf{E} = 0$$
 (over the full domain!)

from which follows:

$$\int_{\mathcal{D}} \zeta = \int_{\mathcal{D}} \phi = 0$$

and for mass conservation:

$$\int_{\mathcal{D}} n = 0$$

Issues (I): solved!

Without correction a net flow appears...

- 100

ω

100

We can now use StyleGAN to generate an initial condition for the simulation!

Issues (II)

Hartree Centre

(GPU)

 $\partial\phi~\partial\zeta~~\partial\phi~\partial\zeta~~\partial\phi~\partial n~~\partial\phi~\partial n~~$ product as derivatives (GPU) $\overline{\partial y} \, \overline{\partial x} \, , \, \overline{\partial x} \, \overline{\partial y} \, , \, \overline{\partial y} \, \overline{\partial x} \, , \, \overline{\partial x} \, \overline{\partial y}$ $\partial \phi \, \partial \zeta \, \partial \phi \, \partial n \, \partial \phi \, \partial n$ $\overline{\partial y} \, \overline{\partial x} \, \overline{\partial x} \, \overline{\partial y} \, \overline{\partial y} \, \overline{\partial y} \, \overline{\partial x} \, \partial x \, \partial y$ filter all quantities $\widetilde{\partial \phi}$ $\widetilde{\partial \zeta}$ $\widetilde{\partial \phi}$ $\widetilde{\partial \zeta}$ $\widetilde{\partial \phi}$ $\widetilde{\partial m}$ $\widetilde{\partial \phi}$ $\widetilde{\partial m}$ (GPU) $\overline{\partial y} \ \overline{\partial x} \ \overline{\partial x} \ \overline{\partial y} \ \overline{\partial y} \ \overline{\partial x} \ \overline{\partial x} \ \overline{\partial y}$ find sub-grid scale terms (GPU) $D_{\phi_{y}\zeta_{x}}$, $D_{\phi_{x}\zeta_{y}}$, $D_{\phi_{u}n_{x}}$, $D_{\phi_{x}n_{y}}$ pack to 4 1D numpy arrays for BOUT++ (CPU, cast to 64bit)

UK Atomic Energy Authority

Issues (II): Arakawa Discretization

produces oscillations which violate conservation laws

A. Arakawa and V. Lamb, 1977 (Methods in Computational Physics)

Issues (II): solved!

- For the Hosepause - Makedone' systems

$$\frac{\partial \xi}{\partial t} = -\left\{\frac{\partial f}{\partial y}\frac{\partial \xi}{\partial x} - \frac{\partial f}{\partial x}\frac{\partial \xi}{\partial y}\right\}$$

$$\frac{\partial \xi}{\partial t} = -\left(\frac{\partial f}{\partial y}\frac{\partial \xi}{\partial x} - \frac{\partial f}{\partial x}\frac{\partial \xi}{\partial y}\right)$$

$$\frac{\partial \xi}{\partial t} = -\left(\frac{\partial f}{\partial y}\frac{\partial \xi}{\partial x} - \frac{\partial f}{\partial x}\frac{\partial \xi}{\partial y}\right)$$

$$\int_{\delta t} \int_{\delta t} \int_{\delta t} \left(-\frac{\partial f}{\partial y}\frac{\partial \xi}{\partial x} + D_{fy}\xi_{x} - \frac{\partial f}{\partial x}\frac{\partial \xi}{\partial y}\right)$$

$$\int_{\delta t} \int_{\delta t$$

$$\frac{\partial \hat{\xi}}{\partial t} = -\left[\frac{\partial \hat{f}}{\partial y} \frac{\partial \hat{\xi}}{\partial x} - \frac{\partial \hat{f}}{\partial x} \frac{\partial \hat{\xi}}{\partial y} + \left(D_{fy}\xi_{x} - D_{fx}\xi_{y}\right)\right]$$

but:

$$D_{fgSx} = \frac{\partial f \, \partial f}{\partial y \, \partial x} - \frac{\partial \widetilde{f}}{\partial y} \frac{\partial \widetilde{E}}{\partial x}$$

$$\int D_{fgSy} = \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} - \frac{\partial \widetilde{f}}{\partial x} \frac{\partial \widetilde{F}}{\partial y}$$

Scient Fundly
Tech
Facil
$$\frac{\partial \hat{\xi}}{\partial t} = -\left\{ \vec{\delta}, \vec{\xi} \right\} - \left\{ \vec{\delta}, \vec{\xi} \right\} + \left\{ \vec{J}, \vec{\xi} \right\} = -\left\{ \vec{\delta}, \vec{\xi} \right\}$$

Official Sensitive

Calculate the Poisson bracket term and then filter it!!

BOUT++ does not need to calculate the Poisson bracket term anymore!

skip Poisson brackets on

Issues (II): solved!

unpack 3 10 numpy arrays from BOUT++ (CPU, 64bit)

$$\tilde{n} \hspace{0.1cm} \phi \hspace{0.1cm} \zeta$$
 TensorFlow arrays (GPU, 32bit)

$$\frac{\partial n}{\partial x}$$
, $\frac{\partial n}{\partial y}$, $\frac{\partial \phi}{\partial x}$, $\frac{\partial \phi}{\partial y}$, $\frac{\partial \zeta}{\partial x}$, $\frac{\partial \zeta}{\partial y}$

find derivatives

2nd order central scheme
(GPU)

$$\frac{\partial \phi}{\partial y} \frac{\partial \zeta}{\partial x} \quad \frac{\partial \phi}{\partial x} \frac{\partial \zeta}{\partial y} \quad \frac{\partial \phi}{\partial y} \frac{\partial n}{\partial x} \quad \frac{\partial \phi}{\partial x} \frac{\partial n}{\partial y} \qquad \begin{array}{c} \text{find DNS} \\ \text{Poisson brackets} \\ \text{(GPU)} \end{array}$$

$$\frac{\widetilde{\partial \phi}}{\partial y} \frac{\widetilde{\partial \zeta}}{\partial x}$$
 filter them (GPU)

pack to **4** 1D numpy arrays for BOUT++ (CPU, cast to 64bit) and add into the convective (explicit term)

- Official Sensitive

Moreover...

You don't need to call StyleGAN if...

- $\|f(U) \widetilde{U}^{GAN}\| < \varepsilon$
- simulation time (simtime) is the same (not sure how pvode works...)

$$\{\phi,\varpi\}(t+\Delta t) = \{\phi,\varpi\}(t)$$

And:

- StyleGAN output are normalized → rescaling needed
- warm-up time (~100 steps) to fix mismatch $\nabla_{\perp}^2 \phi \neq \zeta$

Running 1024 mHW

Same as N=256, but $\nu_{\varpi} = \nu_n = 10^{-6}$

Performance

StylES is ~ 10% of the DNS!

Resume (I)

- We introduced a novel surrogate model based on latest Generative Adversarial Networks (GANs) for turbulent flow simulations
- This allows to avoid the train of a RNN for a time integration
- We do not use physic constrains yet, as these are inherited via the filter operator
- Integration with **BOUT++** is completed and results are now being gathered from 256x256 to 1024x1024

Future work

 We need to optimize and parallelize the integration to multiGPU using LBANN

Extension to full divertor geometry

• Extension to 3D-HW (as a series of 2D planes along z...)

