

A Two-stage Mechanism for Prioritized Trajectory Planning in Multi-Agent Systems

Yu-Wen Chen Can Kizilkale Murat Arcak

Motivation

How to motivate agents to report truthfully?

Vickrey-Clarke-Groves (VCG) mechanism

- For each outcome x in set X, each of the N agents has its valuation $v_i(x)$, but may report the evaluation function as $\tilde{v}_i(\cdot)$.
- VCG mechanism maximizes social welfare and encourages truthfulness via selecting the outcome and imposing payments by

$$x^* = \arg\max_{x} \sum_{i=1}^{N} \tilde{v}_i(x) \quad \text{and} \quad (1)$$

$$p_i = \sum_{j \neq i} \tilde{v}_j(x^*) + h_i(\tilde{v}_{-i}). \tag{2}$$

• The additional payment p_i aligns agent-i's optimization goal with the planner's goal.

Main takeaways

- The VCG mechanism encourages truthful reporting but fails in settings where agents can refine locally.
- ► We propose a two-stage mechanism that incentivizes truthfulness while respecting agents' local decision-making.
- Our design prevents manipulation in priority weighting for prioritized planning.

Problem settings

Design a monetary mechanism s.t. agents are willing to report truthfully while selfishly minimizing their costs:

- g_i includes agent dynamics and coupling constraints.
- c_i is the intrinsic cost; p_i is the imposed payment

Proposed two-stage mechanism

1. Based on the reported functions $\tilde{c}=(\tilde{c}_1,\cdots,\tilde{c}_N)$ and $\tilde{g}=(\tilde{g}_1,\cdots,\tilde{g}_N)$, the planner determines a reference signal:

$$\tilde{y}^*(\tilde{c}, \tilde{g}) = \arg\min_{y} \sum_{i=1}^{N} \tilde{c}_i(y)$$

$$s.t. \ \tilde{g}(y) \leq 0.$$
(4)

2. Once receiving the reference signal, each agent decides its optimal y_i^* via (3) and then pays $p_i\left(y_i^*, \tilde{y}_{-i}^*(\tilde{c}, \tilde{g})\right)$ where $p_i(s, t) =$

$$\sum_{j \neq i} \tilde{c}_j(s, t) + I_{\tilde{g}_j}(s, t) - h_i(\tilde{c}_{-i}, \tilde{g}_{-i}). \tag{5}$$

Extension to prioritized planning

Misreport manipulates the planner's optimization problem directly (via \tilde{c}) and indirectly (via weightings).

Case study: Linear-Quadratic-Regulator

