# RENDSZER- ÉS IRÁNYÍTÁSTECHNIKA

#### MÁSODIK HÁZI FELADAT

Réda Vince – Z697LX

1. táblázat. Házi feladat kódja

| $\vartheta_0$ | $\vartheta_1$ | $\vartheta_2$ | $\vartheta_3$ | $\vartheta_4$ |
|---------------|---------------|---------------|---------------|---------------|
| 36 V          | $60^{\circ}$  | 10%           | 3%            | 50 ms         |

Mechatronika, Optika és Gépészeti Informatika Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem

2020. november 13.

TARTALOMJEGYZÉK

## Tartalomjegyzék

| 1. | PI sz | zabályzó tervezése pólus-zérus kiejtéssel | 3 |
|----|-------|-------------------------------------------|---|
|    | a.    | P és I paraméterek számítása              | 3 |
|    | b.    | Egységugrás válasz                        | 4 |
|    | c.    | Állandósult szögsebesség                  | 4 |
| 2. | PD s  | zabályzó tervezése pólus-zérus kiejtéssel | 5 |
|    | a.    | P és D paraméterek számítása              | 5 |
|    | b.    | Egységugrás válasz                        | 6 |
|    | C     | Állandósult szögsebesség                  | 6 |

A második házi feladat a tárgyhoz kapcsolódó első házi feladat folytatása. A rendszer paraméterei és egyenleteit ott tárgyaltam, amelyeket itt fel fogok használni.

#### Az egyenáramú motor paraméterei

| 2. táblázat. | Α | motor | és a | haitómű | paraméterei |
|--------------|---|-------|------|---------|-------------|
|              |   |       |      |         |             |

| Név                                | Jelölés               | Katalógus-beli érték               | SI-beli érték                              |
|------------------------------------|-----------------------|------------------------------------|--------------------------------------------|
| armatúra ellenállás                | $R_{\rm a}$           | 11,1 Ω                             | 11,1 Ω                                     |
| armatúra induktivitás              | $L_{\rm a}$           | 1,52 mH                            | $1,52\cdot 10^{-3}~\mathrm{H}$             |
| nyomatékállandó                    | $k_{\rm m}$           | $58,2 \frac{\text{mNm}}{\text{V}}$ | $0.0582 \frac{\text{Nm}}{\text{V}}$        |
| sebességállandó                    | $k_{ m s}$            | $164 \frac{\text{rpm}}{\text{V}}$  | $17,17 \frac{\text{rad}}{\text{Vs}}$       |
| elektromos állandó                 | $k_{\rm e}$           | $0,006097 \frac{V}{rpm}$           | $0.05822 \frac{\mathrm{Vs}}{\mathrm{rad}}$ |
| forgórész tehetetlenségi nyomatéka | $J_{\rm a}$           | $44,6 \text{ gcm}^2$               | $4,46\cdot10^{-6} \text{ kgm}^2$           |
| névleges szögsebesség              | $\omega_{\mathrm{n}}$ | 4430 rpm                           | $463,91 \frac{\text{rad}}{\text{s}}$       |
| névleges áramerősség               | $i_{\rm n}$           | 0,804 A                            | 0,804 A                                    |
| névleges feszültség                | $u_{\rm n}$           | 36 V                               | 36 V                                       |



(a) A motor hatásvázlata



(b) A szabályozott rendszer hatásvázlata

#### 1. ábra. A rendszer és a visszacsatolt kör hatásvázlatai

#### 1. PI szabályzó tervezése pólus-zérus kiejtéssel

#### a. P és I paraméterek számítása

Az 1b. ábra mutatja a rendszerünket, ahol a W<sub>c</sub> szabályzó átviteli függvénye

$$W_{c} = P \frac{1 + sT_{I}}{sT_{I}} \tag{1}$$

alakú.  $T_{\rm I}$ -vel a motor legnagyobb időállandóját ejtjük ki, tehát ezt válasszuk  $T_{\rm I}=T_1=0,0145$  s értékűre, az első házi feladatban kiszámoltak alapján.

Az előrevezető ág átviteli függvénye ekkor leegyszerűsödik:

$$W_{x} = \frac{A}{(1 + T_{1}s)(1 + T_{2}s)} P \frac{1 + sT_{1}}{sT_{1}} = \frac{AP}{T_{1}} \frac{1}{s(1 + sT_{2})},$$
 (2)

ahol  $T_1$  és  $T_2$  a szabályozott szakasz időállandója, A az erősítése.

Most írjuk fel a fáziskésést az  $s = j\omega$  helyettesítéssel.

$$\varphi(\omega) = \underbrace{-\frac{\pi}{2}}_{\text{integráló tag miatt}} - \underbrace{\operatorname{arctg}(T_2\omega)}_{\text{kisebbik időállandó}}.$$
(3)

A megadott fázistartalék  $\varphi_{\rm t}=\vartheta_1=60^\circ$ . A következő egyenlet megoldása adja a vágási körfrekvenciát:

$$\varphi_{t} = \varphi(\omega_{c}) + \pi \Rightarrow \omega_{c} = 4176, 1 \frac{\text{rad}}{\text{s}}$$
 (4)

Ha  $\omega_{\rm c}$  a vágási körfrekvencia, definíció szerint  $|{
m W_x}(\omega_{
m c})|=1$ . Ez alapján P=4,0709.

A MATLAB-ban található margin függvény segítségével ellenőrizzük a számolást, amit a 4. ábra igazol.



2. ábra. Szabályozott rendszer Bode-diagramja

#### b. Egységugrás válasz

Az előrevezető ág  $\mathbf{W}_{x},$ a zárt kör átviteli függvénye ebből

$$W_{cl} = \frac{W_x}{1 + W_x},\tag{5}$$

mivel a visszacsatoló ágban  $W_{\rm fb}=1$ . Ezt meg kell szorozni az  $\omega_{\rm ref}=4430~{\rm rpm}=705.0564~{\rm \frac{rad}{s}}$  referencia szögsebességgel.

A PI-szabályozott rendszer egységugrás-válaszát a MATLAB-os step függvény adja meg.



3. ábra. PI egységugrás-válasz

#### c. Állandósult szögsebesség

A bemenet legyen  $X=\frac{\omega_{ref}}{s}$ , a rendszer válasz  $Y=W_{cl}X$ . A végérték-tétel alapján  $\omega_{\infty}=\lim_{s\to 0}sY=705,0564$ .

### 2. PD szabályzó tervezése pólus-zérus kiejtéssel

#### a. P és D paraméterek számítása

Az 1b. ábra mutatja a rendszerünket, ahol a W<sub>c</sub> szabályzó átviteli függvénye

$$W_{c} = P \frac{1 + sT_{D}}{1 + snT_{D}} \tag{6}$$

alakú.  $T_{\rm D}$ -vel a motor második legnagyobb időállandóját ejtjük ki, tehát ezt válasszuk  $T_{\rm D}=T_2=1,3825\cdot 10^{-4}~{\rm s}$  értékűre, az első házi feladatban kiszámoltak alapján.

Az előrevezető ág átviteli függvénye ekkor leegyszerűsödik:

$$W_{x} = \frac{A}{(1+T_{1}s)(1+T_{2}s)} P \frac{1+sT_{2}}{1+snT_{D}} = \frac{AP}{(1+sT_{1})(1+snT_{2})},$$
(7)

ahol  $T_1$  és  $T_2$  a szabályozott szakasz időállandója, A az erősítése.

Most írjuk fel a fáziskésést az  $s=j\omega$  helyettesítéssel.

$$\varphi(\omega) = -\underbrace{\arctan(T_1\omega)}_{\text{nagyobbik időállandó}} - \underbrace{\arctan(nT_2\omega)}_{\text{szűrő időállandó}}.$$
(8)

A megadott fázistartalék most is  $\varphi_t = \vartheta_1 = 60^\circ$ . A következő egyenlet megoldása adja a vágási körfrekvenciát:

$$\varphi_{\rm t} = \varphi(\omega_c) + \pi \Rightarrow \omega_{\rm c} = -4176, 1 \, \frac{\rm rad}{\rm s}$$
 (9)

Ha  $\omega_{\rm c}$  a vágási körfrekvencia, definíció szerint  $|{\rm W_x}(\omega_{\rm c})|=1$ . Ez alapján P=4,0709.

A MATLAB-ban található margin függvény segítségével ellenőrizzük a számolást, amit a 4. ábra igazol.



4. ábra. Szabályozott rendszer Bode-diagramja

#### b. Egységugrás válasz

Az előrevezető ág  $\mathbf{W}_{x},$ a zárt kör átviteli függvénye ebből

$$W_{cl} = \frac{W_x}{1 + W_x},\tag{10}$$

mivel a visszacsatoló ágban  $W_{\rm fb}=1$ . Ezt meg kell szorozni az  $\omega_{\rm ref}=4430~{\rm rpm}=705.0564~{\rm \frac{rad}{s}}$  referencia szögsebességgel.

A PI-szabályozott rendszer egységugrás-válaszát a MATLAB-os step függvény adja meg.



5. ábra. PI egységugrás-válasz

#### c. Állandósult szögsebesség

A bemenet legyen  $X=\frac{\omega_{ref}}{s}$ , a rendszer válasz  $Y=W_{cl}X$ . A végérték-tétel alapján  $\omega_{\infty}=\lim_{s\to 0}sY=705,0564$ .

Réda Vince, Z697LX HIVATKOZÁSOK

## Hivatkozások

#### [1] DC motor adatlapja

https://www.maxongroup.com/maxon/view/product/motor/dcmotor/amax/amax32/
236671