Quiz 4

Allen Williams

February 14th, 2018

- 1. Prove that $G = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}, a, b \text{ not both zero}\}$ is a subgroup of \mathbb{R}^* , the multiplicative group of non-zero real numbers. Let $x, y \in G$ then $x = a + b\sqrt{3}$ for some $a, b \in \mathbb{Q}$ and $y = a' + b'\sqrt{3}$ for some $a', b' \in \mathbb{Q}$. Then $y^{-1} = \frac{1}{a'+b'\sqrt{3}}$, so $x \cdot y^{-1} = \frac{a+b\sqrt{3}}{a'+b'\sqrt{3}} = \frac{a+b\sqrt{3}}{a'+b'\sqrt{3}} \cdot \frac{a'-b'\sqrt{3}}{a'-b'\sqrt{3}} = \frac{aa'-3bb'}{(a')^2-3(b')^2} + \frac{a'b-ab'}{(a')^2-3(b')^2}\sqrt{3}$. So when $x, y \in G$, $x \cdot y^{-1} \in G$ which is a necessary and sufficient condition for G being a subgroup of \mathbb{R}^* .
- 2. Prove the $SL_2(\mathbb{Z})$ is a subgroup of $SL_2(\mathbb{R})$. Clearly $SL_2(\mathbb{Z})$ is a subset of $SL_2(\mathbb{R})$ since \mathbb{Z} is a subset of \mathbb{R} . Let $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $Y = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ be elements of $SL_2(\mathbb{Z})$, that is $a,b,c,d,a',b',c',d' \in \mathbb{Z}$ and $\det(X) = \det(Y) = 1$. Then $XY^{-1} = \frac{1}{\det(Y)} X \cdot adj(Y) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d' & -b' \\ -c' & a' \end{pmatrix} = \begin{pmatrix} ad' bc' & a'b ab' \\ cd' c'd & a'd b'c \end{pmatrix}$. Since the entries in X and Y^{-1} are integers, the entries in XY^{-1} are also integers. Also since $\det(Y) = 1$, $\det(Y^{-1}) = \frac{1}{1} = 1$, so $\det(XY^{-1}) = \det(X) \det(Y^{-1}) = 1 \cdot 1 = 1$, so $XY^{-1} \in SL_2(\mathbb{Z})$ when $X, Y \in SL_2(\mathbb{Z})$, meaning $SL_2(\mathbb{Z})$ is a subgroup of $SL_2(\mathbb{R})$.
- 3. $<\mathbb{Q},+>$ the additive group of rational numbers is not cyclic. First note that if \mathbb{Q} were generated by one of its elements, that element could not be 0, since 0 is the identity element in $<\mathbb{Q},+>$ so $<0>=\{0\}$. Now Assume for contradiction that $\mathbb{Q}=< a>$ for some $a\in\mathbb{Q}$ with $a\neq 0$, that is for all $q\in\mathbb{Q}$, there exists an integer k, such that q=ka. Since a is itself rational, $\frac{a}{2}$ must also be rational. Consider $q=\frac{a}{2}$, then a=2ka. Since $a\neq 0, 2k=1$ so $k=\frac{1}{2}$, which contradicts the fact that k is an integer, so $<\mathbb{Q},+>$ cannot be cyclic.
- 4. What is the order of [4] in U(21)? Find the subgroup of U(21) generated by [4]. The order of [4] in U(21) is 3 since $[4]^3 = [4*4*4] = [64] = [1]$. $< [4] >= \{[4], [16], [1]\}$.
- 5. U(5) is a cyclic group and its generators are [2] and [3]. U(5) consists of the elements $\{[1], [2], [3], [4]\}$. Also $[2] \cdot [3] = [6] = [1]$ so $[2] = [3]^{-1}$ so the

subgroups < [2] >and < [3] >will be the same.

$$[2]^{1} = [2]$$
$$[2]^{2} = [4]$$
$$[2]^{3} = [8] = [3]$$
$$[2]^{4} = [16] = [1]$$

So < [2] >=< [3] >= U(5). [1] is the identity element in U(5) so it cannot generate U(5), and [4] is its own inverse so it cannot generate U(5) so [2] and [3] are the only generators for U(5). Since [4] is its own inverse, < [4] >= {[4], [1]} which is a non-trivial subgroup of U(5).

6. Find all non-trivial cyclic subgroups of $\langle \mathbb{Z}_8, + \rangle$. [0] is the identity on $\langle \mathbb{Z}_8, + \rangle$ so $\langle [0] \rangle$ is the trivial group. Also since $[1] = [7]^{-1}$, $[2] = [6]^{-1}$, and $[3] = [5]^{-1}$, and an element generates the same cyclic subgroup as its inverse, it is enough to find $\langle [1] \rangle, \langle [2] \rangle, \langle [3] \rangle$, and $\langle [4] \rangle$.

$$[1] = [1]$$

$$[1] + [1] = [2]$$

$$[1] + [1] + [1] = [3]$$

$$[1] + [1] + [1] + [1] = [4]$$

$$[1] + [1] + [1] + [1] + [1] = [5]$$

$$[1] + [1] + [1] + [1] + [1] + [1] = [6]$$

$$[1] + [1] + [1] + [1] + [1] + [1] = [7]$$

$$[1] + [1] + [1] + [1] + [1] + [1] = [8] = [0]$$

So $< [1] >= \{[0], [1], [2], [3], [4], [5], [6], [7]\}$

$$[2] = [2]$$

$$[2] + [2] = [4]$$

$$[2] + [2] + [2] = [6]$$

$$[2] + [2] + [2] + [2] = [8] = [0]$$

So $< [2] >= \{[0], [2], [4], [6]\}$

$$[3] = [3]$$

$$[3] + [3] = [6]$$

$$[3] + [3] + [3] = [9] = [1]$$

$$[3] + [3] + [3] + [3] = [12] = [4]$$

$$[3] + [3] + [3] + [3] + [3] = [15] = [7]$$

$$[3] + [3] + [3] + [3] + [3] + [3] = [18] = [2]$$

$$[3] + [3] + [3] + [3] + [3] + [3] + [3] = [21] = [5]$$

$$[3] + [3] + [3] + [3] + [3] + [3] + [3] = [24] = [0]$$

So
$$<$$
 [3] $>=$ {[0], [1], [2], [3], [4], [5], [6], [7]}
$$[4] = [4]$$
$$[4] + [4] = [8] = [0]$$
So $<$ [4] $>=$ {[4], [0]}