$110A~\mathrm{HW7}$

Warren Kim

Winter 2024

Throughout this section, F is a field and F[x] is the ring of polynomials with F coefficients.

Question 1

Let $f, g, h \in F[x]$, and suppose f and g are relatively prime. Show that if f|h and g|h, we have fg|h.

Response

Proof: Let $f, g, h \in F[x]$ and suppose f and g are coprime. Suppose that $f \mid h$ and $g \mid h$. \square

Let $a, b \in F$ be distinct (i.e., $a \neq b$). Show that x - a and x - b (viewed as elements of F[x]) are relatively prime.

Let $f, g \in F[x]$ and suppose $g \neq 0$. Consider the set $S = \{f - gs | s \in F[x]\}$. Let $r \in S$ be of lowest degree. Show that $\deg(r) < \deg(s)$. (yes, we did this in class.)

Let $f \in F[x]$, $a \in F$, and suppose f(a) = 0 (that is, when plugging in a for x in f, we obtain 0). Show that x - a divides f.

Let $p \in F[x]$, and suppose whenever p = ab for $a, b \in F[x]$, we either have p|a or p|b. Show that p is irreducible (i.e., its only factors are units and associates).