SPRAWOZDANIE

Zajęcia: Eksploracja i wizualizacja danych Prowadzący: prof. dr hab. Vasyl Martsenyuk

Laboratorium 1

30.10.2021

Temat: "Wstęp do Python. Biblioteka Pandas"

Patryk Zając
Informatyka II stopień,
niestacjonarne (zaoczne),
III semestr,

https://github.com/Paczo121/Eksploracja-i-wizualizacji-danych.git

1. Ładowanie biblioteki Pandas

```
In [1]: # tadowanie biblioteki Pandas
import pandas as pd
```

2. Tworzenie ramki danych ze słownika

```
In [2]: # tworzenie ramki danych ze stownika

dane = {
    "Numer" : [1,2,3,4,5,6,7],
    "Dzien" : ["Poniedziałek","Wtorek","Środa","Czwartek","Piątek","Sobota","Niedziela"]
}

df = pd.DataFrame(dane)
df
```

Out[2]:

Dzien	Numer	
Poniedziałek	1	0
Wtorek	2	1
Środa	3	2
Czwartek	4	3
Piątek	5	4
Sobota	6	5
Niedziela	7	6

3. Zachowanie ramki danych pobranych z pliku w formacie csv (xlsx)

```
In [4]: # zachowanie ramki danych na komputerze w formacie csv
path = r"C:\Users\Dzikus\Downloads\daneZeSlownika.csv"
df.to_csv(path, encoding="utf-8")
```

4. Tworzenie ramki danych z listy list

```
In [5]: # tworzenie ramki danych z listy list
    week_days = [
            [1,2,3,4,5,6,7],
            ["Poniedziałek","Wtorek","Środa","Czwartek","Piątek","Sobota","Niedziela"]
            ]
    pd.DataFrame(week_days)
```

Out[5]:

	0	1	2	3	4	5	6
0	1	2	3	4	5	6	7

- 1 Poniedziałek Wtorek Środa Czwartek Piątek Sobota Niedziela
- 5. Transponowanie (wymieniamy kolumny a wierszy)

```
In [6]: # transponowanie (wymieniamy kolumny a wierszy)
pd.DataFrame(week_days).T
```


6. Wyświetlić pierwsze 10 wierszy ramki danych

```
In [15]: #wczytanie danych z pliku *.csv path = r"C:\Users\Dzikus\Downloads\IHME_GDP_1960_2050_CSV_1\IHME_GDP_1960_2050_Y2021M09D22.CSV"
          df = pd.read_csv(path, low_memory=False, )
           # pierwsze 10 wierszy ramki danych
          df.head(10)
```

Out[15]:

	location_id	location_name	iso3	level	year	gdp_ppp_mean	gdp_ppp_lower	gdp_ppp_upper	gdp_usd_mean	gdp_usd_lower	gdp_usd_upper
0	1	Global	G	Global	1960	1.748345e+13	1.601915e+13	1.911586e+13	1.296863e+13	1.266890e+13	1.334177e+13
1	1	Global	G	Global	1961	1.813537e+13	1.659537e+13	1.982493e+13	1.346097e+13	1.314767e+13	1.383021e+13
2	1	Global	G	Global	1962	1.895328e+13	1.739039e+13	2.061477e+13	1.406576e+13	1.376060e+13	1.443746e+13
3	1	Global	G	Global	1963	1.965662e+13	1.811706e+13	2.134993e+13	1.461831e+13	1.432132e+13	1.497693e+13
4	1	Global	G	Global	1964	2.100575e+13	1.935664e+13	2.276791e+13	1.552986e+13	1.523498e+13	1.587998e+13
5	1	Global	G	Global	1965	2.202459e+13	2.034585e+13	2.382275e+13	1.628972e+13	1.598727e+13	1.663310e+13
6	1	Global	G	Global	1966	2.306193e+13	2.136085e+13	2.489782e+13	1.708885e+13	1.678223e+13	1.742396e+13
7	1	Global	G	Global	1967	2.391268e+13	2.217842e+13	2.577837e+13	1.770884e+13	1.740660e+13	1.804193e+13
8	1	Global	G	Global	1968	2.516723e+13	2.340479e+13	2.698215e+13	1.865379e+13	1.833216e+13	1.898399e+13
9	1	Global	G	Global	1969	2.642403e+13	2.464521e+13	2.831984e+13	1.955395e+13	1.921164e+13	1.987990e+13

7. Wyświetlić ostatnie 10 wierszy ramki danych

In [16]: # ostatnie 10 wierszy ramki danych df.tail(10)

Out[16]:

	location_id	location_name	iso3	level	year	gdp_ppp_mean	gdp_ppp_lower	gdp_ppp_upper	gdp_usd_mean	gdp_usd_lower	gdp_usd_upper
19828	44578	Low income	NaN	World Bank Income Group	2041	3.120963e+12	2.724077e+12	3.582807e+12	9.752426e+11	8.875033e+11	1.068693e+12
19829	44578	Low income	NaN	World Bank Income Group	2042	3.216988e+12	2.801335e+12	3.686394e+12	1.008813e+12	9.169149e+11	1.107239e+12
19830	44578	Low income	NaN	World Bank Income Group	2043	3.314031e+12	2.886768e+12	3.815672e+12	1.042881e+12	9.461940e+11	1.147550e+12
19831	44578	Low income	NaN	World Bank Income Group	2044	3.413020e+12	2.968361e+12	3.933135e+12	1.077714e+12	9.735487e+11	1.188093e+12
19832	44578	Low income	NaN	World Bank Income Group	2045	3.514244e+12	3.055623e+12	4.049325e+12	1.113207e+12	1.003241e+12	1.228145e+12
19833	44578	Low income	NaN	World Bank Income Group	2046	3.617310e+12	3.140835e+12	4.166469e+12	1.149318e+12	1.031500e+12	1.271992e+12
19834	44578	Low income	NaN	World Bank Income Group	2047	3.724063e+12	3.225849e+12	4.292403e+12	1.186597e+12	1.061313e+12	1.318836e+12
19835	44578	Low income	NaN	World Bank Income Group	2048	3.831942e+12	3.307609e+12	4.424674e+12	1.224062e+12	1.092874e+12	1.365610e+12
19836	44578	Low income	NaN	World Bank Income Group	2049	3.941856e+12	3.398884e+12	4.560961e+12	1.262129e+12	1.122895e+12	1.413991e+12
19837	44578	Low income	NaN	World Bank Income Group	2050	4.053883e+12	3.482933e+12	4.713596e+12	1.300764e+12	1.151548e+12	1.457362e+12

8. Wyświetlić informację o ramce danych

```
In [18]: # informacja o ramce danych
         df.info()
         <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 19838 entries, 0 to 19837 Data columns (total 11 columns): # Column Non-Null Count Dtype 0 location_id 19838 non-null int64 location_name 19838 non-null object 18655 non-null object iso3

19838 non-null object level 19838 non-null int64 year gdp_ppp_mean 19838 non-null float64 gdp_ppp_lower 19838 non-null float64 7 gdp_ppp_upper 19838 non-null float64 8 gdp_usd_mean 19838 non-null float64 gup_usu_mean 19038 non-null float64 9 gdp_usd_lower 19838 non-null float64 10 gdp_usd_upper 19838 non-null float64 dtypes: float64(6), int64(2), object(3) memory usage: 1.7+ MB

9. Wyświetlić, ile wierszy i kolumn znajduje się w ramce danych

```
In [19]: # pokazuje, ile wierszy i kolumn znajduje się w ramce danych
df.shape

Out[19]: (19838, 11)
```

10. Wyświetlić informacje, statystyczna, o kolumnach liczbowych (wartości niepowtarzalne, średnia, odchylenie standardowe, minimum, kwartyle, maksimum)

```
In [20]: # informacje statystyczne w kolumnach (wartości niepowtarzalne,
            średnia, odchylenie standardowe, minimum, kwartyle, maksimum)
          df.describe()
Out[20]:
                   location id
                                     year gdp_ppp_mean gdp_ppp_lower gdp_ppp_upper gdp_usd_mean gdp_usd_lower gdp_usd_upper
           count 19838.000000 19838.000000 1.983800e+04
                                                           1.983800e+04
                                                                          1.983800e+04
                                                                                        1.983800e+04
                                                                                                      1.983800e+04
                                                                                                                     1.983800e+04
                   949.871560 2005.000000 1.334543e+12 1.235788e+12
                                                                          1.444079e+12
                                                                                       8.554096e+11 8.197528e+11
                                                                                                                     8.967612e+11
           mean

        std
        5965.433243
        26.268513
        9.148287e+12
        8.610030e+12
        9.789327e+12
        6.286364e+12
        6.041288e+12
        6.585419e+12

                    1.000000 1960.000000 1.448063e+02 6.299026e+01 2.621094e+02 1.174979e+02 8.318772e+01
                                                                                                                   1.270468e+02
             min
                  63.000000 1982.000000 3.678736e+03 2.639116e+03 4.829886e+03 1.624411e+03 1.395430e+03 1.828575e+03
            25%
                   125.500000 2005.000000 1.103640e+04 8.105541e+03
                                                                         1.346178e+04 4.863298e+03 4.279291e+03
                                                                                                                     5.465731e+03
                  183.000000 2028.000000 2.949281e+04 2.308992e+04 3.562660e+04 1.997525e+04 1.795003e+04 2.223434e+04
            max 44578.000000 2050.000000
                                            1.827414e+14
                                                         1.667007e+14
                                                                         2.025062e+14
                                                                                       1.119468e+14 1.017185e+14 1.239708e+14
```

11. Wyświetlić informację statystyczną o kolumnach kategoryzowanych (ile unikalnych wartości, top - jaka jest najpopularniejsza wartość, freq - jak często najpopularniejsza)

12. Usunąć brakujące wartości w ramce danych

13. Przedstawić wybór wierszy z ramki danych pod warunkiem odnośnie określonej wartości kolumny

14. Przedstawić wybór wierszy z ramki danych pod warunkiem spełnienia kilku warunków jednocześnie

15. Wybrać wiersze które zawierają w kolumnie kategoryzowanej określone słowo

16. Wybrać wiersze które nie zawierają w kolumnie kategoryzowanej określone słowo

```
selection = df[df["location_name"] != "Asia"]
       selection.head()
Out[35]:
          location_id location_name iso3 level year gdp_ppp_mean gdp_ppp_lower gdp_ppp_upper gdp_usd_mean gdp_usd_lower gdp_usd_upper
        0
                            Global
                                    G Global 1960
                                                      1.748345e+13
                                                                    1.601915e+13
                                                                                  1.911586e+13
                                                                                                1.296863e+13
                                                                                                               1.266890e+13
                                                      1.813537e+13
                                                                    1.659537e+13
                                                                                                1.346097e+13
                                                                                                               1.314767e+13
                                     G Global 1962
                                                      1.895328e+13
                                                                    1.739039e+13
                                                                                  2.061477e+13
                                                                                                1.406576e+13
                                                                                                               1.376060e+13
                                                                                                                             1.443746e+13
        3
                            Global
                                                                                                1.461831e+13
                                                                                                                             1.497693e+13
                                     G Global 1963
                                                      1.965662e+13
                                                                    1.811706e+13
                                                                                  2.134993e+13
                                                                                                              1.432132e+13
                            Global G Global 1964
                                                     2.100575e+13
                                                                   1.935664e+13 2.276791e+13 1.552986e+13 1.523498e+13 1.587998e+13
```

17. Utwórz kolumnę na podstawie istniejącej

```
In [36]:
         location name = df.location name
         location name
Out[36]: 0
                 Global
                 Global
                 Global
                 Global
                 Global
         19469
                  Sudan
         19470
                  Sudan
         19471
                  Sudan
         19472
                  Sudan
         19473
                  Sudan
         Name: location_name, Length: 18655, dtype: object
```

18. Usuń kolumnę

```
In [38]: df_copy = df
        df_copy.drop(["location_name", "iso3"], axis=1, inplace=True)
        df_copy.head()
Out[38]:
           location id
                       level year gdp_ppp_mean gdp_ppp_lower gdp_ppp_upper gdp_usd_mean gdp_usd_lower gdp_usd_upper
        0
                                                                                                                1.334177e+13
                   1 Global 1960
                                     1.748345e+13
                                                    1.601915e+13
                                                                   1.911586e+13
                                                                                  1.296863e+13
                                                                                                 1.266890e+13
                    1 Global 1961
                                     1.813537e+13
                                                    1.659537e+13
                                                                   1.982493e+13
                                                                                  1.346097e+13
                                                                                                 1.314767e+13
                                                                                                                1.383021e+13
        2
                    1 Global 1962
                                     1.895328e+13
                                                   1.739039e+13
                                                                   2.061477e+13
                                                                                  1.406576e+13
                                                                                                 1.376060e+13
                                                                                                                1.443746e+13
        3
                                                                                                                1.497693e+13
                    1 Global 1963
                                     1.965662e+13
                                                   1.811706e+13
                                                                   2.134993e+13
                                                                                  1.461831e+13
                                                                                                 1.432132e+13
                    1 Global 1964
                                    2.100575e+13
                                                   1.935664e+13
                                                                   2.276791e+13
                                                                                  1.552986e+13
                                                                                                 1.523498e+13
                                                                                                                1.587998e+13
```

19. Zmień nazwę kolumny

20. Zachowaj ramkę danych jako plik csv na komputerze

```
path = r"C:\Users\Dzikus\Downloads\df_copy.csv"
df.to_csv(path, encoding="utf-8")
```

21. Wyświetlić średnia (maksymalną, minimalną) wartość z jednej kolumny

```
In [42]: col = df["gdp_ppp_mean"]
    mean = col.mean()
    _max = col.max()
    _min = col.min()

    print(f"Średnia: {mean}\nMaksimum: {_max}\nMinimum: {_min}")

    Średnia: 448950770593.6332
    Maksimum: 182741391837932.0
    Minimum: 144.806256438462
```

22. Wyświetlić liczbę wierszy

```
In [43]: df.rok.count()
Out[43]: 18655
```

23. Wyświetlić wartości unikatowe w kolumnie

24. Wyświetlić liczby rekordów odpowiadających do wartości

```
In [50]: df_copy[df_copy["id"] == 187].rok.count()
Out[50]: 91
```

25. Sortowanie wierszy ramki danych według wartości określonej kolumny (malejąco, rosnąco)

[49]:	<pre>df_copy.sort_values(["gdp_ppp_upper"], ascending=True).head()</pre>													
it[49]:		id	level	rok	gdp_ppp_mean	gdp_ppp_lower	gdp_ppp_upper	gdp_usd_mean	gdp_usd_lower	gdp_usd_upper				
	15258	187	Country	2021	144.806256	62.990256	262.109448	117.497898	106.885540	127.046786				
	15259	187	Country	2022	145.845802	63.336551	264.032901	118.340834	107.636300	128.366648				
	15260	187	Country	2023	147.061289	63.853934	266.073159	119.326124	108.370797	129.740750				
	15257	187	Country	2020	151.493017	70.883163	266.749076	123.193355	112.066586	133.205105				
	15261	187	Country	2024	148.359669	64.338452	268.348580	120.378255	108.942014	130.733717				

26. Wyświetlić wierszy dla 10 największych (najmniejszych) wartości określonej kolumny

```
In [54]: df.nlargest(10, 'gdp_ppp_mean')[['rok', 'gdp_ppp_mean']]
Out[54]:
            rok gdp_ppp_mean
                 1.827414e+14
        90 2050
        89 2049
                 1.811701e+14
        88 2048
                 1.795422e+14
        87 2047
                  1.778053e+14
        86 2046
                 1.759560e+14
        85 2045
                 1.740498e+14
           2044
                 1.720934e+14
        83 2043
                 1.701152e+14
        82 2042 1.681175e+14
        81 2041
                1.661209e+14
```

27. Wyświetlić wierszy dla 10 największych wartości określonej kolumny pod warunkiem określonych wartości innej kolumny

In [57]:	df[(df['id'].isin([187, 192])) & (df['rok'] == 2003)]											
Out[57]:		id	level	rok	gdp ppp mean	gdp ppp lower	gdp_ppp_upper	gdp usd mean	gdp usd lower	gdp usd upper		

- 28. Grupowanie wierszy według wartości kolumny kategoryzowanej, potem
 - uśrednienie wartości wszystkich kolumn w grupie MultiIndex

88]:	df.gr	oupby('rok	').agg('mean')				
58]:	1-	id	gdp_ppp_mean	gdp_ppp_lower	gdp_ppp_upper	gdp_usd_mean	gdp_usd_lower	gdp_usd_upper
	1960	135.639024	8.528513e+10	7.814218e+10	9.324812e+10	6.326159e+10	6.179953e+10	6.508179e+10
	1961	135.639024	8.846523e+10	8 095304e+10	9.670697e+10	6.566329e+10	6.179955e+10 6.413496e+10	6.746446e+10
	1962	135.639024	9.245503e+10	8.483118e+10	1.005599e+11	6.861346e+10	6.712486e+10	7.042663e+10
	1962	135.639024	9.588596e+10	8 837590e+10	1.005599e+11	7 130884e+10	6.986011e+10	7.305819e+10
	1964	135.639024	1 024671e+11	9 442264e+10	1.041460e+11	7.130664e+10 7.575543e+10	7 431699e+10	7.746333e+10
	1364	130.639024	1.0246718+11	9.4422646+10	1.1106306+11	7.5755456+10	7.4310396+10	7.7403336+10
	2046	135.639024	8.583220e+11	7.915827e+11	9.409579e+11	5.275673e+11	4.862689e+11	5.759145e+11
	2047	135.639024	8.673428e+11	7.978932e+11	9.526097e+11	5.326453e+11	4.893155e+11	5.842021e+11
	2048	135.639024	8.758158e+11	8.034297e+11	9.650481e+11	5.373930e+11	4.920505e+11	5.915018e+11
	2049	135.639024	8.837564e+11	8.086222e+11	9.772106e+11	5.418284e+11	4.939856e+11	5.981921e+11
	2050	135.639024	8.914214e+11	8.131744e+11	9.878353e+11	5.460821e+11	4.961880e+11	6.047354e+11
9	91 rows	× 7 columns						

29. Grupowanie wierszy według wartości kolumny kategoryzowanej, potem - uśrednienie wartości dla pewnych kolumn, liczba wartości i mediana dla pozostałych kolumn w grupach

	location_id	gdp_ppp_mean	gdp_ppp_lower	year	gdp_ppp_upper	gdp_usd_mean
	mean	mean	mean	count	median	median
location_name						
Afghanistan	160.0	1941.160286	1236.392538	91	2776.309765	515.274036
Albania	43.0	9092.515182	7497.502508	91	9075.499017	3098.516205
Algeria	139.0	8820.271149	6354.741822	91	11218.304481	3163.885729
American Samoa	298.0	15340.365197	13676.178347	91	15350.704406	13620.772462
Andorra	74.0	25139.562251	19212.344640	91	34824.933478	38178.372791
Venezuela (Bolivarian Republic of)	133.0	10594.142490	6906.942146	91	16306.155638	5823.785745
Viet Nam	20.0	5737.873614	3963.905853	91	5395.236220	1437.919432
Yemen	157.0	2637.237249	1253.872401	91	4512.871947	828.806903
Zambia	191.0	3107.029470	2256.455986	91	4016.872139	1078.009951
Zimbabwe	198.0	2925.918096	2053.892011	91	3621.537763	1069.856772

216 rows × 6 columns

30. Wyświetlić nazwy kolumn indeksu złożonego

31. Sortować kolumnę indeksu złożonego

```
In [73]: data['gdp_ppp_lower']['mean'].sort_values(ascending=False)
Out[73]: location_name
         Global
                                                  8.770511e+13
         High income
                                                  4,296017e+13
         High-income
                                                  3.910369e+13
         Upper-middle income
                                                  2.770854e+13
         Southeast Asia, East Asia, and Oceania
                                                  1.644275e+13
         Niger
                                                  9.053953e+02
         Mozambique
Burundi
                                                  8.709698e+02
                                                  8.240844e+02
                                                  7.925530e+02
         Malawi
         Somalia
                                                  9.249822e+01
         Name: mean, Length: 216, dtype: float64
```

32. Stworzyć tabelę przystawną (pivot table) na podstawie ramki danych

33. Wyświetlić indeksy i kolumny tabeli przystawnej

34. Utwórz indeks złożony tabeli przystawnej i wyświetl go

```
'location_id'], columns='year',
                             1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 ... 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
                     vear
           location_name
            Afghanistan
               Albania
               Algeria
                         139
                                                          1
                                                              1 1 ...
                         298
         American Samoa
                                  1
                                      1
                                          1
                                              1
                                                  1
                                                      1
                                                           1
                                                              1
                                                                  1 ...
       Venezuela (Bolivarian
              Viet Nam
                          20
               Yemen
             Zimbahwe
```

35. Zaimportuj moduł pyplot z biblioteki matplotlib

```
import matplotlib.pyplot as plt

%matplotlib inline
```

36. Wskazać, że wykresy należy rysować bezpośrednio w zeszycie, a nie w osobnej zakładce

```
import matplotlib.pyplot as plt

%matplotlib inline
```

37. Wyświetlić wykres na podstawie tabeli przystawnej

38. Narysować histogram na podstawie wartości kolumny

39. Pokazać dodawanie nowych kolumn za pomocą operacji matematycznych

40. Przedstawić na przykładzie dodawanie nowych kolumn z pomocą funkcji lambda

```
In [65]: df['years_ago'] = df['year'].apply(lambda y: 2051 - int(y))
       df[['year', 'years_ago']]
Out[65]:
              year years_ago
           0 1960
            1 1961
            2 1962
                          89
            3 1963
                          88
            4 1964
                          87
        19833 2046
                           5
        19834 2047
                           4
        19835 2048
        19836 2049
                           2
        19837 2050
                           1
```

41. Przedstawić możliwości pracy z dużymi plikami przy użyciu argumentu chunksize

19838 rows × 2 columns