

DS-поток, 3 курс, осень 2023 Статистика

Лекция 10

6. Проверка статистических гипотез

6.6. Множественная проверка гипотез

Этап 1: Угадайте цвета (синий и оранжевый) с учетом порядка.

Этап 1: ответы.

Этап 2: Угадайте цвета (синий и оранжевый) с учетом порядка.

Этап 2: ответы.

Ô

В 1950 г. проводились испытания

возможности экстрасенсорного восприятия.

Этап 1: поиск экстрасенсов — испытуемому нужно угадать цвет 10 карт.

$$X_1,...,X_{10}\sim \textit{Bern}(heta)$$
 — результаты (правильно / нет).

$$\mathsf{H_0} \colon \theta = 1/2 \ \textit{vs.} \ \mathsf{H_1} \colon \theta > 1/2 \ \mathsf{--} \ \mathsf{наугад} \ \textit{vs.} \ \mathsf{не} \ \mathsf{наугад}$$

Критерий
$$S=\{T(x)\geqslant c_{\alpha}\}$$
, где $T(X)=\sum\limits_{i=1}^{n}X_{i}\sim Bin(n,\theta).$

С	7	8	9	10
$P_{1/2}(T(X)\geqslant c)$	0.172	0.055	0.010	0.001

Берем $c_{lpha}=9$, т.е. H_0 отклоняется если $\sum X_i\geqslant 9$.

Вывод: если человек верно отгадывает хотя бы 9 карт из 10, то он становится предполагаемым экстрасенсом.

В эксперименте приняли участие 1000 человек, при этом

- 9 карт верно отгадали 9 человек;
- 10 карт верно отгадали 2 человека.

В дальнейшем ни один из них не подтвердил свои способности...

$$\mathsf{P}_{1/2}$$
 (хотя бы один из 1000 угадает 9 или 10 карт верно) =
$$=1-\left(1-C_{10}^9/2^{10}-C_{10}^{10}/2^{10}\right)^{1000}=1-\left(1-11/2^{10}\right)^{1000}pprox 0.99997$$

Гипотезы и критерии

Проверка гипотез:

 $X = (X_1, ..., X_n)$ — выборка из неизвестного распр. Р.

 $\mathsf{H}_0\colon \mathsf{P}\in\mathscr{P}_0$ — проверяемая гипотеза.

S — критерий для проверки H_0 , если H_0 отвергается $\Leftrightarrow X \in S$.

 $\mathsf{P}(\mathit{I}_{\mathcal{S}}) \leqslant \alpha$ — уровень значимости.

Размножим по $j \in \{1, ..., m\}$:

 $X_j = (X_{j,1},...,X_{j,n_j}) - j$ -ая выборка из неизвестного распр. P_j .

 $\mathsf{H}_j\colon\,\mathsf{P}_j\in\mathscr{P}_j$ — проверяемая гипотеза.

 S_j — критерий для проверки H_j , если H_j отвергается $\Leftrightarrow X_j \in S_j$.

 $\mathsf{P}(\mathit{I}_{\mathit{S}_{i}}) \leqslant \alpha$ — уровень значимости.

Ô

Обобщение ошибки

Групповая ошибка первого рода (familywise error rate)

Вероятность отвергнуть хотя бы одну верную гипотезу.

$$FWER = P(V_{PS} > 0),$$

 V_{PS} — количество верных гипотез, которые были отвергнуты критерием S для распределения P (задает верные гипотезы).

Что мы знаем?

Пусть $H_1,...,H_{m_0}$ — верные гипотезы (m_0 не знаем).

$$FWER=\mathsf{P}(\mathsf{произошла}\;\mathsf{хотя}\;\mathsf{бы}\;\mathsf{одна}\;\mathsf{ошибка}\;\mathsf{I}\;\mathsf{рода})=$$
 $=\mathsf{P}\left(igcup_{j=1}^{m_{\mathbf{0}}}\{X_{j}\in S_{j}\}
ight)\leqslant \sum_{j=1}^{m_{\mathbf{0}}}\mathsf{P}(X_{j}\in S_{j})\leqslant lpha m_{0}$

A нам нужно $FWER \leqslant \alpha$.

ê

Методы контроля FWER

Метод Бонферрони

Каждый критерий имеет уровень значимости lpha/m.

Метод Холма

Пересортируем гипотезы и критерии в порядке возрастания p-value: $p_1 \leqslant ... \leqslant p_m$ — p-value.

 $H_1, ..., H_m$ — соответствующие гипотезы.

Установим $lpha_j = rac{lpha}{m-j+1}$ — уровень значимости критерия S_j .

Пусть $j=\min\{j\mid p_j>\alpha_j\}$ — номер первой неотвергнутой гипотезы. Отвергаем гипотезы $\mathsf{H}_1,...,\mathsf{H}_{j-1}.$

Всегда мощнее метода Бонферрони.

Обобщение ошибки

Ожидаемая доля ложных отклонений (false discovery rate)

$$FDR = \mathsf{E}_{\mathsf{P}} \frac{V_{\mathsf{P}\,\mathsf{S}}}{\mathsf{max}(R_{\mathsf{S}},1)},$$

 V_{PS} — количество верных гипотез, которые были отвергнуты,

 R_S — количество отвергнутых гипотез

Утверждение: $FDR \leqslant FWER$

Методы Бенджамини-Хохберга и Бенджамини-Иекутиели

Пересортируем гипотезы и критерии в порядке возрастания p-value.

Пусть $j = \max\{j \mid p_j \leqslant \alpha_j\}$ — номер последней отвергнутой гипотезы.

Отвергаем гипотезы $H_1, ..., H_j$.

$$lpha_j = rac{lpha_j}{m}$$
 — метод Б.-Х. (если статистики критериев независимы) $lpha_j = rac{lpha_j}{m} \left/ \sum_{j=1}^m rac{1}{j} \right.$ — метод Б.-И. (работает всегда)

Замечания

Зависимости:

- 1. V_{PS} зависит от совместн. распр. Р, общего критерия S и выборок X;
- 2. R_S зависит от общего критерия S и выборок X;
- 3. FWER и FDR зависят от совместного распр. P и общего критерия S.

Контроль FWER **на уровне** α означает:

```
for \forall \, \mathsf{P}_1 — распределение выборки X_1 (в т.ч. не из \mathsf{H}_1): ... for \forall \, \mathsf{P}_m — распределение выборки X_m (в т.ч. не из \mathsf{H}_m): проверить FWER \leqslant \alpha.
```

Максимум FWER не обязательно достигается при справедливости всех $H_1, ..., H_m$.

Итерационные процедуры

Нисходящая процедура

В методе Холма можно выполнять следующие итерации.

- 1. Если $p_1\leqslant \alpha_1$, то отвергнуть H_1 и продолжить, иначе не отвергнуть $\mathsf{H}_1,...,\mathsf{H}_m$ и остановиться;
- 2. Если $p_2\leqslant \alpha_2$, то отвергнуть H_2 и продолжить, иначе не отвергнуть $\mathsf{H}_2,...,\mathsf{H}_m$ и остановиться;
- 3. и т.д.

Итерационные процедуры

Восходящая процедура

В методах Б.-Х. и Б.-И. можно выполнять следующие итерации.

- 1. Если $p_m > \alpha_m$, то не отвергать H_m и продолжить, иначе отвергнуть $H_m, ..., H_1$ и остановиться;
- 2. Если $p_{m-1}>\alpha_{m-1}$, то не отвергать H_{m-1} и продолжить, иначе отвергнуть $\mathsf{H}_{m-1},...,\mathsf{H}_1$ и остановиться;
- 3. и т.д.

Ô

Скорректированные p-value

$$p_j$$
 — p-value, сравниваем с α_j [+процедура] $\widetilde{p_j}$ — скорректированные p-value, хотим сравнивать с α

Метод Бонферрони

Запишем пограничные случаи:

$$egin{cases} p_j = lpha_j \; (=lpha/m) \ \widetilde{p}_j = lpha \end{cases} \implies \widetilde{p}_j = mp_j \$$
 Чтобы $\widetilde{p}_i \in [0,1]$ поправим их: $\widetilde{p}_i = \min(1,mp_i)$

Метод Холма

Аналогично получаем $\widetilde{p}_j = (m-j+1)p_j$

Если H_{j-1} не отверглась, то дальше не отвергаем $\Rightarrow \widetilde{p}_j = \max(\widetilde{p}_{j-1}, (m-j+1)p_j)$

Чтобы $\widetilde{
ho}_j \in [0,1]$ поправим их: $\widetilde{
ho}_j = \min\left(1, \max\left[\widetilde{
ho}_{j-1}, (m-j+1)
ho_j
ight]
ight)$

Численный пример

Гипотезы, верность и полученные результаты:

Гипотеза	H ₁	H ₂	H ₃	H ₄	H ₅	H ₆	H ₇
Верность	Нет	Да	Да	Нет	Да	Нет	Да
p-value	0.015	0.005	0.014	0.009	0.013	0.001	0.8

Верность известна тем, кто сгенерировал выборку, а не аналитикам :)

Перегруппируем:

Гипотеза	H ₍₁₎	H ₍₂₎	H ₍₃₎	H ₍₄₎	H ₍₅₎	H ₍₆₎	H ₍₇₎
Верность	Нет	Да	Нет	Да	Да	Нет	Да
p-value	0.001	0.005	0.009	0.013	0.014	0.015	0.8

		۰	ĸ	
4	0	٩	١	١
	H	6		
	u			
	٦	5	ø	,

Гипотеза	H ₍₁₎	H ₍₂₎	H ₍₃₎	H ₍₄₎	H ₍₅₎	H ₍₆₎	H ₍₇₎
Верность	Нет	Да	Нет	Да	Да	Нет	Да
p-value	0.001	0.005	0.009	0.013	0.014	0.015	8.0

Метод Бонферрони:

Гипотеза	p-value	α_j	p-value adj	Отвергаем?
H ₍₁₎	0.001	0.0071	0.007	True
H ₍₂₎	0.005	0.0071	0.035	True
H ₍₃₎	0.009	0.0071	0.063	False
H ₍₄₎	0.013	0.0071	0.091	False
H ₍₅₎	0.014	0.0071	0.098	False
H ₍₆₎	0.015	0.0071	0.105	False
H ₍₇₎	0.8	0.0071	1.0	False

Ошибок I рода: 1 Верных отвержений: 1

Гипотеза	H ₍₁₎	H ₍₂₎	H ₍₃₎	H ₍₄₎	H ₍₅₎	H ₍₆₎	H ₍₇₎
Верность	Нет	Да	Нет	Да	Да	Нет	Да
p-value	0.001	0.005	0.009	0.013	0.014	0.015	0.8

Метод Холма:

Гипотеза	p-value	α_j	p-value adj	Отвергаем?
H ₍₁₎	0.001	0.0071	0.007	True
H ₍₂₎	0.005	0.0083	0.03	True
H ₍₃₎	0.009	0.0100	0.045	True
H ₍₄₎	0.013	0.0125	0.052	False
H ₍₅₎	0.014	0.0167	0.052	False
H ₍₆₎	0.015	0.0250	0.052	False
H ₍₇₎	0.8	0.0500	0.8	False

Ошибок I рода: 1 Верных отвержений: 2

Гипотеза	H ₍₁₎	H ₍₂₎	H ₍₃₎	H ₍₄₎	H ₍₅₎	H ₍₆₎	H ₍₇₎
Верность	Нет	Да	Нет	Да	Да	Нет	Да
p-value	0.001	0.005	0.009	0.013	0.014	0.015	0.8

Метод Бенджамини-Иекутиелли:

Гипотеза	p-value	α_j	p-value adj	Отвергаем?
H ₍₇₎	0.8	0.0193	1.0	False
H ₍₆₎	0.015	0.0165	0.045375	True
H ₍₅₎	0.014	0.0138	0.045375	True
H ₍₄₎	0.013	0.0110	0.045375	True
H ₍₃₎	0.009	0.0083	0.045375	True
H ₍₂₎	0.005	0.0055	0.045375	True
H ₍₁₎	0.001	0.0028	0.01815	True

Ошибок I рода: 3 Верных отвержений: 3

Сравнение методов МПГ

Реализация МПГ

```
statsmodels.stats.multitest.multipletests
(pvals, alpha=0.05, method='hs',
is_sorted=False, returnsorted=False)
```

- ▶ pvals значения p-value по всем критериям
- ▶ alpha желаемый уровень значимости
- method:
 - ▶ bonferroni▶ sidak▶ fdr_bh▶ holm▶ holm-sidak▶ fdr_by

Возвращает:

- ▶ reject для отвергаемых гипотез True
- pvals_corrected скорректированые p-value

Простой пример

Знакомая задача:

$$X_1,...,X_n \sim \mathcal{N}(\theta,1)$$

$$H_0$$
: $\theta \geqslant 0$ vs H_1 : $\theta < 0$

PHMK:
$$S = \{x \in \mathbb{R} \mid \overline{x} \leqslant c_{\alpha}\}$$

Пусть теперь две одинаковые задачи с независимыми выборками:

$$X \sim \mathcal{N}(\theta_1, 1)$$

$$Y \sim \mathcal{N}(\theta_2, 1)$$

$$H_1: \theta_1 \geqslant 0 \text{ vs } H'_1: \theta_1 < 0$$

$$H_2$$
: $\theta_2 \geqslant 0$ vs H_2' : $\theta_2 < 0$

Критерии:
$$S_1 = \left\{ (x,y) \in \mathbb{R}^2 \mid x \leqslant c_{lpha}
ight\}$$

$$S_2 = \{(x, y) \in \mathbb{R}^2 \mid y \leqslant c_{\alpha}\}$$

Частая ошибка: Выборки независимы \Longrightarrow МПГ не нужна.

Вывод:

вероятность допустить хотя бы одну ошибку равна 0.0975, если обе основные гипотезы верны.

Сравнение: без корректировки

Вероятности указаны при справедливости H_1 и H_2 .

Сравнение: метод Бонферрони

Вероятности указаны при справедливости H_1 и H_2 .

Сравнение: метод Холма

Вероятности указаны при справедливости H_1 и H_2 .

Сравнение: метод Бенджамини-Хохберга (не контр. FWER)

Вероятности указаны при справедливости H_1 и H_2 .

Какой подход использовать?

- При первичном анализе данных, при котором только происходит формулировка интересных гипотез, можно вообще не делать поправки на МПГ. При этом всегда нужно приводить информацию об общем количестве гипотез и количестве отвергнутых.
- При проведении исследований и отбора признаков для дальнейшего анализа, который обычно является более сложным и дорогим, следует применять методы, контролирующие FDR. Обычно берут $FDR \leqslant 0.1$.
- На этапе подтверждения выводов следует проводить строгий контроль за вероятностью ошибок первого рода, контролируя **FWER**. Обычно берут $FWER \leqslant 0.05$.

Удивительные открытия

2009 год. МРТ мозга мертвого самца лосося:

MPT дает 3D-изображение на 130 000 вокселей.

Эксперимент: Лососю показывали фото и просили его пояснить, какие эмоции испытывают люди с картинки.

Обработка: Для каждого вокселя тестируется гипотеза о наличии активации этого участка мозга.

Удивительные открытия

Результат: Для каждой картинки для нескольких вокселей мозга p-value оказывалось меньше 0.001.

Вывод: мертвый лосось реагирует на фотки!!!

Авторы удостоились Шнобелевской премии (2012 год) за открытие в области неврологии.

При применении МПГ лосось переставал на что-либо реагировать...

http://prefrontal.org/files/posters/Bennett-Salmon-2009.pdf

