数学の基礎訓練Ⅱ

~微積分の基本~

2022年3月29日版 西井淳

18

21

22

. 18

1	微分	•	1	3	微分差	7程式
_	1.1	極限	1			サイス
	1.2	導関数の定義と基本	2			変数分離型微分方程式の解法
	1.2	1.2.1 導関数の定義	2			数積分と定性的表現
		1.2.2 導関数の幾何学的意味	2			音次線形微分方程式の解法
		AND A STATE OF THE	2		J.4 F	10000000000000000000000000000000000000
	1.0		_	٨	微分。	積分ドリル
	1.3	複雑な関数の導関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3	A	الريدا	1月7月 フル
		1.3.1 Chain Rule	3	В	- or h	ジキュメントの著作権について
		1.3.2 逆関数・指数関数の微分	3			(I) () () () ()
	1.4	微分と定性的表現・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3			
	1.5	微分と接線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4			
	1.6	高次導関数	5			
	1.7	マクローリン展開とテイラー展開	5			
		1.7.1 マクローリン展開	5			
		1.7.2 テイラー展開	6			
	1.8	オイラーの公式	7			
		1.8.1 オイラーの公式の導出	7			
		1.8.2 オイラーの公式と三角関数の公式 .	7			
		1.8.3 オイラーの公式と複素数	7			
2	積分	•	8			
	2.1	不定積分	8			
		2.1.1 不定積分の定義	8			
		2.1.2 不定積分の幾何学的意味	8			
		2.1.3 不定積分の公式	8			
	2.2	定積分	9			
		2.2.1 定積分の定義	9			
	2.3	定積分の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9			
	2.0		10			
		2.3.2 定積分と偶関数・奇関数	10			
	2.4	ALCO TENED INC.	11			
	2.4	and the second s	11			
		2.4.2 部分分数分解	11			
		and the second s				
			12			
		2.4.4 積分の Chain Rule: 変数変換	13			
	0 =	2.4.5 三角関数の積分	13			
	2.5	面積・体積・曲線の長さ	14			
		2.5.1 面積	15			
		2.5.2 体積	16			
		2.5.3 曲線の長さ	17			
	2.6	広義積分	17			
	2.7	力学と微積分	17			
		2.7.1 重心と積分	17			
		2.7.2 運動量・力積・運動エネルギー・仕事	18			

1 微分

1.1 極限

問1以下の極限を求めなさい。必ずグラフを描いて 考えること $(^{61}$ 。

- $(1) \lim_{x \to +0} \frac{1}{x}$
- $(2) \lim_{x \to -0} \frac{1}{x}$
- $(3) \lim_{x \to 0} \frac{1}{x}$
- $(4) \lim_{x \to \infty} \frac{1}{x}$
- $(5) \lim_{x \to -\infty} \frac{1}{x}$
- (6) $\lim_{x \to 2+0} \frac{1}{x-2}$
- (7) $\lim_{x\to 2-0} \frac{1}{x-2}$
- $(8) \lim_{x \to +0} \frac{|x|}{x}$
- $(9) \lim_{x \to -0} \frac{|x|}{x}$
- $(10) \lim_{x \to \infty} e^x$
- (11) $\lim_{x \to -\infty} e^x$
- $(12) \lim_{x \to \infty} e^{-x}$
- $(13) \lim_{x \to -\infty} e^{-x}$

問 2

- (1) $\lim_{x\to 0} \frac{\sin x}{x} = 1$ を証明しなさい。
- $\lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^x = e\, が成り立つことを、次式を用いて証明しなさい。$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

問3以下の極限値を求めなさい^{(答2} (自分で証明できる公式以外は使わないこと)。

- $(1) \lim_{x \to 0} \frac{0}{x}$
- $(2) \lim_{x \to 0} \frac{x}{0}$
- $(3) \lim_{x \to -\infty} \frac{1}{e^x + 1}$
- (4) $\lim_{x \to \infty} \frac{e^x e^{-x}}{e^x + e^{-x}}$
- (5) $\lim_{x \to \infty} \frac{1}{1 + e^{-\frac{x}{T}}}$ (T > 0)
- (6) $\lim_{x \to -\infty} \frac{1}{1 + e^{-\frac{x}{T}}}$ (T > 0)
- $(7) \lim_{x \to \infty} \frac{1}{e^{\frac{1}{x}} + 1}$
- (8) $\lim_{x \to -\infty} \frac{1}{e^{\frac{1}{x}} + 1}$
- (9) $\lim_{x \to +0} \frac{1}{e^{\frac{1}{x}} + 1}$
- (10) $\lim_{x \to -0} \frac{1}{e^{\frac{1}{x}} + 1}$
- (11) $\lim_{x \to 0} \frac{\sqrt{x+1} 1}{x}$
- $(12) \lim_{x \to \infty} \frac{\sqrt{x^2 + 1} 1}{x}$
- (13) $\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1}$
- $(14) \lim_{x \to +0} \frac{\sin x}{\sqrt{x}}$
- $(15) \lim_{h \to 0} \frac{\sin 2h}{h}$
- $(16) \lim_{t \to 0} \frac{\tan t}{t}$
- (17) $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$
- $(18) \lim_{t \to \infty} \left(1 + \frac{a}{t} \right)^t \quad (a > 0)$

 $^{^{(\}stackrel{6}{1})}(1) \infty$ (2) $-\infty$ (3) 極限値無し (4) 0 (5) 0 (6) ∞ (7) $-\infty$ (8) 1 (9) -1 (10) ∞ (11) 0 (12) 0 (13) ∞

⁶ (答 2 (1) 2 (1) 2 (1) (2) 値無し (3) 2 (3) 2 (3) 2 (4) 2 (5) 2 (6) 2 (7) 2 (8) 2 (9) 2 (10) 2 (11) 2 (12) 2 (13) 2 (14) 2 (15) 2 (16) 2 (17) 2 (18) 2 (19)

$$(19) \lim_{x \to 0} \frac{\log(1+x)}{x}$$

間4以下の極限値を求めなさい^{(答3}

(1)
$$\lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

(2)
$$\lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

(3)
$$\lim_{h \to 0} \frac{\log(x+h) - \log x}{h}$$

1.2 導関数の定義と基本

1.2.1 導関数の定義

関数 f(x) の**導関数** (derivative) は次式で定義され、 $f'(x), \frac{df}{dx}, \frac{d}{dx}f$ などで表す。

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

また、導関数を求めることを「微分する」と言い、しばしば導関数自体を微分(differentiation)と呼ぶ。

物理や工学の分野では、時間 t の関数 f(t) の導関数を $\dot{f}(t)$ (「エフドット」と読む) と表し、他の変数による微分と区別する。

問1 導関数の値を調べると何がわかるか,その意味を2通り以上の表現で説明せよ。

解説 関数は入力値に出力値に対応づける規則である。一方,微分という操作は入力関数に対応した関数(導関数)を出力する操作である。

1.2.2 導関数の幾何学的意味

問2以下の式の幾何学的意味を説明しなさい。

$$(1) \frac{d}{dr}C = 0 \quad (C は定数)$$

(2)
$$\frac{d}{dx}(ax+b) = a$$
 $(a, b$ は定数)

問3 以下の図に示すなめらかな関数 y=f(x) の導関数 $\frac{d}{dx}f(x)$ のグラフを描きなさい. 注)

- (1) "滑らかな関数"とは一般に無限回微分可能 $(C^{\infty}$ 級 $^{(\pm 1)}$ な関数を指すので、その導関数のグラフも滑らかになります。
- (2) y = f'(x) のグラフ頂点のおおよその値にも気をつけましょう。

1.2.3 微分の基本公式

問4 導関数の定義式に基づいて次式を証明せよ。

(1)
$$(f(x) \pm g(x))' = f' \pm g'$$

(2)
$$(kf(x))' = kf'$$
 (k: 定数)

(3)
$$(f(x)g(x))' = f'g + fg'$$

$$(4) \left(\frac{f(x)}{g(x)}\right)' = \frac{f'g - fg'}{g^2}$$

問5以下を導関数の定義に従って証明せよ。

- (1) (2)' = 0
- $(2) (x^2)' = 2x$
- (3) $(x^{-2})' = -2x^{-3}$
- (4) $(x^n)' = nx^{n-1}$ (n:正の整数)
- (5) $(x^n)' = nx^{n-1}$ (n: 負の整数)
- (6) $(\sin x)' = \cos x$
- $(7) (\cos x)' = -\sin x$
- (8) $(\ln x)' = \frac{1}{x}$

 $^{(^{\}dot{\mathbb{L}}}\,^{1}n$ 回微分可能の関数を C^{n} 級の関数とよぶ

問 6 以下の導関数を求めよ。ここまでに証明した公式は用いてよい $(^{6}$ 4 。

- (1) $y = \tan x$
- (2) $y = \log_a x$
- (3) $y = x \sin x$
- (4) $y = \frac{1}{x(x+1)}$

1.3 複雑な関数の導関数

1.3.1 Chain Rule

複雑な関数の導関数を求めるときには **chain rule** を用いるとよい。例えば, $y = (1 + \sin 2x)^3$ の導関数は以下のように求める。

$$y = z^{3}$$

$$z = 1 + w$$

$$w = \sin u$$

$$u = 2x$$

とおくと,

$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dw} \cdot \frac{dw}{du} \cdot \frac{du}{dx}$$
$$= 3z^2 \cdot 1 \cdot \cos u \cdot 2$$
$$= 6(1 + \sin 2x)^2 \cdot \cos 2x$$

練習問題 Chain rule を用いて以下の導関数を求めよ^{(答 5} 。これ以上変数を分解できないところまで分解すること。

- (1) $y = (3x^2 x 1)^4$ …展開して計算しないこと
- (2) $y = \tan(x^2 + 2)$
- (3) $y = \log \cos^2 x$
- (4) $y = \log |x|, (x < 0)$

 $\overline{(^{6})^4}$ (a) $y' = \frac{1}{\cos^2 x}$ (b) $y' = \sin x + x \cos x$ (c) $y' = \frac{10}{(x-5)^2}$ … 分子が x を含まない形にまず変形してから微分すると楽 (d) $y' = -\frac{1}{x^2} + \frac{1}{(x+1)^2}$ …部分分数分解してから微分するとよい $\overline{(^{6})^5}$ (1) $y' = 4(6x-1)(3x^2-x-1)^3$ (2) $y' = \frac{2x}{\cos^2(x^2+2)}$ (3) $y' = -2\tan x$ (4) $y' = \frac{1}{x}$ (5) $y' = \frac{1}{x\log x}$ (6) $y' = -\frac{x}{(x^2+1)\sqrt{x^2+1}}$ (7) $y' = 20x\cos x^2 \cdot \sin^9 x^2$ (8) $y' = \tan x^2 + \frac{2x^2}{\cos^2 x^2}$ (9) $y' = 1.2x^{0.2}$ (10) $y' = ax^{a-1}$

- (5) $y = \log \log x$
- (6) $y = \frac{1}{\sqrt{x^2 + 1}}$
- (7) $y = \sin^{10} x^2$
- (8) $y = x \tan x^2$ $(y = xz, z = \tan u, \cdots とおく)$
- (9) $y = x^{1.2} (x > 0)$
- (10) $y = x^a (x > 0, a: 実数)$

1.3.2 逆関数・指数関数の微分

逆関数や指数関数の導関数を求めるには、式を微分しやすい形に変形した後、両辺をxで微分する。

問1以下の各関数の導関数を求めよ^{(答6}。ただし、ここまでの問題で証明していない公式を使わないこと。どうしても使いたいときには必ず証明をすること。

- (1) $y = \sin^{-1} x$, $(-\pi/2 \le y \le \pi/2)$
- (2) $y = \cos^{-1} x$, $(0 \le y \le \pi)$
- (3) $y = \tan^{-1} x$, $(-\pi/2 < y < \pi/2)$
- (4) $y = e^x$
- (5) $y = a^x (a > 0)$
- (6) $y = x^x (x > 0)$

1.4 微分と定性的表現

問1以下の定性的表現を数式で表しなさい。ただし, ある量の変化とは,

変化=「後の量」-「始めの量」

で与えられることに注意しなさい^{(答7}。

(1) 時刻 t_1 から時刻 t_2 までの間の位置 x(t) の変化を変位 Δx とよぶ。

$$(5) \quad y' = \frac{1}{\sqrt{1-x^2}}, \quad (2) \quad y' = -\frac{1}{\sqrt{1-x^2}}, \quad (3) \quad y' = \frac{1}{1+x^2}, \quad (4)$$

$$y' = e^x, \quad (5) \quad y' = a^x \log a, \quad (6) \quad y' = x^x (\log x + 1)_o$$

$$(5) \quad (7) \quad \Delta x = x(t_2) - x(t_1) \quad (2) \quad \frac{\Delta x}{\Delta t} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

- (3) 物体の体積を V とする。 $\dot{V} < 0$
- $\dot{x}(0) = 0 (x は物体の位置)$
- (5) $\dot{T} = 0$ (T は物体の温度)
- (6) $\dot{T}(t_0) = 0$ (T は物体の温度)
- (7) $\dot{T} = k(T_0 T)$ (k は正の定数)

- (2) 時刻 t_1 から時刻 t_2 までの間の位置 x の平均変 化率を $\frac{\Delta x}{\Delta t}$ で表す。
- (3) ある物体の体積が時間とともに減少している。
- (4) ある物体が時刻 t=0 において静止している。
- (5) ある物体の温度は時間によらず一定である。
- (6) ある物体の温度が時刻 t_0 に極小値もしくは極大値になる。
- (7) ある物体が一定の温度 T_0 の恒温槽にあるとする。このとき物体の温度 T は T_0 に近づいていくが、その時間変化率は温度差に比例する。

問2以下の問いに答えなさい。

- (1) 以下の定性的表現を数式で表しなさい^{(答8}。
 - (a) ある島に住むうさぎのある年の個体数と前 年の個体数は常に同じである。
 - (b) ある島に住むうさぎのある年の個体数は前年の個体数より常に1割多い。
 - (c) ある島のうさぎは増加しており、その増加 率は一定である。(以下ではうさぎの個体 数を実数として扱う)
 - (d) ある島に住むうさぎは増加しており、その 増加率は個体数に比例する。
 - (e) ある島にはうさぎと狼が住んでいる。うさ ぎと狼の遭遇確率は、うさぎと狼の個体数 の積に比例する。
 - (f) ある島のうさぎの増加率は、個体数に比例 する増加率と、うさぎと狼の遭遇確率に比 例する減少率の和によって表される。ただ し、狼がいなければうさぎは常に増加する。

$$egin{cases} \dot{n}_r &= an_r - bP \ &= an_r - bkn_rn_w \quad (a,b)$$
は正の定数) $\dot{n}_w &= -cn_w + dP \ &= -cn_w + dkn_rn_w \quad (c,d)$ は正の定数)

- (g) ある島の狼の増加率は、個体数に比例する 減少率と、うさぎと狼の遭遇確率に比例す る増加率の和によって表される。ただし、狼 は餌になるうさぎがいなかったら減少する。
- (2) 前問の(f)と(g)で定式化した微分方程式は、捕食者と被食者の個体変動モデルとして有名であり、Lotka-Volterra 方程式とよばれている。実際にこの方程式で予測されるような個体数の変動は自然界でしばしば観察されることが報告されている。さて、うさぎと狼の個体数が一定となる条件を、Lotka-Volterra 方程式より求めなさい。

問3 水槽の底にある管からポンプで水を入れたところ、単位時間あたりに水槽に入る水の量は水槽内の水の量に反比例していた。また、この水槽の底には小さな穴があいており、単位時間あたり一定の量の水が漏れていた。

- (1) 必要な変数を定義し、水槽の中の水の量の時間 変化率を表す方程式を書きなさい^{(答9}。
- (2) しばらく水を入れ続けているとやがて水槽の水の量が変化しなくなった。このときの水の量を求めなさい(8)10。

1.5 微分と接線

問1以下の問に答えなさい。

- (1) $y = 2x^2$ の x = 1 における接線 (tangent line) を表す方程式は? (答 11
- (2) 原点を中心とする半径 1 の円のうち y > 0 の部分の、 $x = \frac{1}{2}$ における接線は? (答 12)

$$\dot{V} = \frac{k}{V} - a$$

ここで、k は正の定数である。

$$^{(\stackrel{c}{\text{--}}10}V = \frac{k}{}$$

$$(\stackrel{\text{(a)}}{=} 11y - 2 = 4(x - 1)$$

 $^{^{(\}stackrel{6}{8}8}(a)$ ある年 (第 t 年) のうさぎの個体数を n_t とおく。 $n_t=n_{t-1}$ (b) $n_t=1.1n_{t-1}$ (n_t は問 (a) と同様)

⁽c) 以下ではうさぎの個体数を $n_r(t)$ とおく。 $\dot{n}_r = C$ (C は定数) (d) $\dot{n}_r = kn_r$ (k は定数)

⁽e) 以下の問では狼の個体数を $n_w(t)$, うさぎと狼の遭遇確率を P とおく。 $P=kn_rn_w$ (k は正の定数) (f)(g)

 $^{^{(\}hat{S}^{\,9})}$ 水槽中の水の量を V, 単位時間あたりに水槽から漏れる水の量を a とおく。題意より次式が成り立つ。

 $^{(\}stackrel{\text{(§ 12)}}{2}y-\frac{\sqrt{3}}{2}=-\frac{1}{\sqrt{3}}(x-\frac{1}{2})$ (ヒント: $x^2+y^2=1$ の両辺を x で微分すれば y' を簡単に計算できる)

1.6 高次導関数 微分 1

(3) xy 平面における以下の曲線の t=1 における接 線は? (答13

$$\begin{cases} x = t - 1 \\ y = t^2 \end{cases} (t は実数)$$

(4) xy 平面における以下の曲線の t=1 における接 線は? (答 14

$$\begin{cases} x = t^2 \\ y = t - 1 \end{cases} (t は正の実数)$$

問2以下の問に答えなさい。

- (1) 2 曲線 y = f(x) と y = g(x) が点 (x_0, y_0) で接 する条件を述べなさい^{(答 15}。
- (2) f(x) と g(x) を x の多項式であるとして、以下 の問に答えなさい。
 - (a) 方程式 f(x) = g(x) が重根をもつならば, 2曲線 y = f(x)と y = g(x) は接点をもつ ことを示しなさい^{(答 16}。
 - (b) 前間の逆も成り立つことを証明しなさい。 すなわち 2 曲線 y = f(x) と y = g(x) が接 点をもつならば、方程式 f(x) = g(x) が重 根をもつことを示しなさい^{(答 17}。

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$
 を使うと便利)

 $(\stackrel{\text{(a)}}{=} 14y = \frac{1}{2}(x-1)$

 $\overset{\text{(ff }15}{y_0} = f(x_0) = g(x_0), \ f'(x_0) = g'(x_0)$

 $^{(lpha \ 16}$ 方程式 f(x)=g(x) が重根をもつならば次式を満たす x_0 および多項式 h(x) が存在する。

$$f(x) - g(x) = (x - x_0)^2 h(x)$$

このとき、 $x = x_0$ で前問で述べた条件 $(f(x_0) = g(x_0), f'(x_0) =$ $g'(x_0)$) が成り立つことを示せば良い。

 $(^{8}1^{7}$ 接点の x 座標を $x=x_0$ とすると,以下が成立する。

$$f(x_0) = g(x_0) \tag{1}$$

$$f'(x_0) = g'(x_0) (2)$$

式 (1) より、 $x = x_0$ は f(x) - g(x) = 0 の解なので、以下を満 たす多項式 k(x) が存在する。

$$f(x) - g(x) = (x - x_0)k(x)$$
(3)

上式を微分すると

$$f'(x) - g'(x) = k(x) + (x - x_0)k'(x)$$
(4)

上式が式 (2) を満たす条件は, $k(x) = (x - x_0)h(x)$,(h(x)) は 多項式)が成り立つことである。従って式(2)は以下のように 解説 以上より,2つの多項式 f(x) と g(x) が接点を もつ条件は、f(x) = g(x) が重根をもつことである ことがわかる。

高次導関数 1.6

問1以下のn次導関数を求めよ $^{(8)}$ 。

- (1) $f(x) = e^x$
- (2) $f(x) = \sin x$
- (3) $f(x) = \cos x$

問2以下の関数をそれぞれ4階微分まで求め、それ に基づいて,n階微分 $f^{(n)}$ を推測せよ $^{(819)}$ 。その推 測が正しいことを数学的帰納法で証明せよ。

- (1) $f(x) = x^k$ (k: 正の整数)
- (2) $f(x) = \log(1+x)$

問3 $x = A\sin(\omega t + \phi)$ が次式を満たすような ω の 値を求めなさい。ただし、A、 ϕ は定数である。

$$\ddot{x} = -kx$$

マクローリン展開とテイラー展開 1.7

マクローリン展開 1.7.1

様々な関数の振舞を解析する際、三角関数等のよう に値を簡単に求めることができない謎の関数が含ま れていると大変困る。そこで,例えば謎の関数 f(x)のx = 0の近傍での値や振舞いを知りたい場合には、

書き直せる。

$$f(x) - g(x) = (x - x_0)^2 h(x)$$
(5)

すなわち、方程式 f(x) - g(x) = 0 は重根をもつことがわかる。 (答 18(1) $f^{(n)}(x) = e^x$

$$(\stackrel{\text{(§)}}{=} 18(1) \ f^{(n)}(x) = e^{x}$$

$$(2) \ f^{(n)}(x) = \begin{cases} (-)^{m} \cos x & (n = 2m + 1) \\ (-)^{m} \sin x & (n = 2m) \end{cases} (m = 0, 1, 2, \dots)$$

$$(3) \ f^{(n)}(x) = \begin{cases} (-)^{m+1} \sin x & (n = 2m + 1) \\ (-)^{m} \cos x & (n = 2m) & (m = 0, 1, 2, \dots) \end{cases}$$

$$(\stackrel{\text{(§)}}{=} 19(1) \ f^{(n)}(x) = \begin{cases} \frac{k!}{(k-n)!} x^{k-n} & (n \le k) \\ 0 & (n > k) \end{cases}$$

$$(2) \ f^{(n)}(x) = \begin{cases} \log(1+x) & (n = 0) \\ (-)^{n-1} \frac{(n-1)!}{(1+x)^{n}} & (n > 0) \end{cases}$$

(2)
$$f^{(n)}(x) = \begin{cases} \log(1+x) & (n=0) \\ (-)^{n-1} \frac{(n-1)!}{(1+x)^n} & (n>0) \end{cases}$$

次式のように f(x) を x の級数で表現できれば解析が容易になる。

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

問1 a_n を求める方法を考えてみよう。よい近似式を得るには x=0 における両者の n 次微分係数 $(n=0,...,\infty)$ が全て等しくなるように係数 a_n を決める必要がある。

関数 y = f(x) が x = 0 を含むある区間で C^{∞} 級 $(^{\frac{1}{2}})^2$ の場合について係数 a_n を決定し,f(x) を無限級数で表すと以下のようになることを証明しなさい。

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
 (6)

解説 ある関数 f(x) を上記のように級数展開することを**マクローリン展開** (Maclaurin expansion) (注3 という。

問2以下の問いに答えなさい^{(答20}。

(1) $(1+x)^n$ をマクローリン展開しなさい。その結果より、 $x \ll 1$ のとき次式が成り立つことを示しなさい。

$$(1+x)^n \simeq 1 + nx$$

実際に 1.1^2 , 1.1^3 ... 等でこの近似がどの程度正しいか確認しなさい。

(2) e^x をマクローリン展開しなさい。

「註 2 関数 f(x) が区間 I で n 回微分可能であり, $f^{(n)}(x)$ が区間 I で連続なとき,関数 f(x) は区間 I で C^n 級であるという。 (注 3 マクローリンは 11 歳でグラスゴー大学に入学,19 歳にはアバディーン大学の教授,その後ニュートンに才能を認められ,ニュートンによる推薦状によって 27 歳でエジンバラ大学の教授に就任している。マクローリンは最も若く教授になった人物として約 300 年にわたって記録保持者だったが 2008 年にこの記録はアメリカ人の Alia Sabur が 18 歳で韓国の大学教授に就任することで破られる。マクローリン自身はテイラー展開(後述)を数学的な議論に用いたが,その業績を評価され,テイラー展開を x=0 において用いた場合はマクローリン展開と呼ばれるようになった。マクローリンはニュートンの業績についても書籍にまとめている("An Account of Sir Issac Newton's Philosophical Discoveries",1775)。

$$\sin x = \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)!} x^{2m+1} \quad (4) \cos x = \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)!} x^{2m}$$

(3) $\sin x$ をマクローリン展開しなさい。また、 $x \ll 1$ のとき次式が成り立つことを示しなさい。

$$\sin x \simeq x$$

(4) $\cos x$ をマクローリン展開しなさい。また、 $x \ll 1$ のとき次式が成り立つことを示せしなさい。

$$\cos x \simeq 1 - \frac{1}{2}x^2$$

- (5) x = 0, $x = \frac{\pi}{6}$ の場合それぞれについて、 $\sin x$, $\cos x$ の真値と上記による近似値がどの程度異なるか計算しなさい。
- (6) $\lim_{x\to 0} \frac{\sin x}{x} = 1$ をマクローリン展開を用いて証明しなさい。
- (7) eの値を求める多項式をつくりなさい。

練習問題 $f(x) = \frac{1}{1-x}$ (|x| < 1) をマクローリン 展開により無限級数に展開しなさい $(\frac{6}{2})$ 。

1.7.2 テイラー展開

マクローリン展開は、関数 f(x) を x=0 のまわりで級数展開するものであった。同様にして、関数 f(x) を x=a のまわりで無限級数に展開、すなわち、

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n$$

と展開する方法を**テイラー展開**^{(注 4} (Taylor expansion) とよぶ。展開式は 次式の通り。

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
 (7)

関数 f(x) の x = 0 におけるテイラー展開がマクローリン展開に一致する。

問3 テイラー展開を与える式 (7) を、マクローリン 展開の場合と同様に導きなさい。

練習問題 以下の関数をテイラー展開しなさい。

(答
$$21\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

 $^{($ 注 4 テイラー展開はスコットランドの数学者・天文学者のジェームス・グレゴリー (James Gregory, 1638-1675, スコットランド) による発案。イギリスの数学者ブルック・テイラー (Brook Taylor, 1685-1731) が 1715 年に出版した著書にこの級数展開法を記したのが後にラグランジュの目に止まり,注目されるようになった。

- (1) $f(x) = \sin x$ $(x = \pi$ のまわりで)
- $(2) f(x) = \log x \quad (x = 1 \, \text{のまわりで})$

1.8 オイラーの公式

1.8.1 オイラーの公式の導出

問1以下の問いに答えなさい。

(1) マクローリン展開を用いてオイラー^{(注 5} の公式と呼ばれる次式を証明しなさい。

$$e^{ix} = \cos x + i\sin x$$

- (2) e^{ix} の大きさを求めなさい。
- (3) 「オイラーの宝石」と呼ばれる次式を証明しなさい。

$$e^{i\pi} = -1$$

- (4) i^i が実数であることを示しなさい。
- (5) 「ド・モアブルの公式」と呼ばれる次式を証明しなさい。

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

1.8.2 オイラーの公式と三角関数の公式

問2以下の問いに答えなさい。

- (1) オイラーの公式を用いて以下を証明しなさい。
 - (a) $\sin(x \pm y) = \sin x \cos y \pm \sin y \cos x$
 - (b) $\cos(x \pm y) = \cos x \cos y \mp \sin y \sin x$
 - (c) $\sin 2x = 2\sin x \cos x$
 - (d) $\cos 2x = \cos^2 x \sin^2 x$
- (2) 前問の結果をもとに以下を導きなさい。

(a)
$$\sin x + \sin y = 2\sin(\frac{x+y}{2})\cos(\frac{x-y}{2})$$

 $^{(\pm 5}$ レオンハルト・オイラー(Leonhard Euler, 1707 年 4 月 15 日 - 1783 年 9 月 18 日)はスイス生まれの数学者,物理学者であり、天文学者。整数論,解析学,複素数論,物理学等に多くの業績を残し,人類史上最も多くの論文を書いた数学者と言われている。流体力学や剛体の力学の基礎を築いたのもオイラー。

(b)
$$\cos x + \cos y = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})$$

(3) 以下の式でa, b が与えられたとき、どのようにr, ϕ を決めたら等式が成り立つか?

$$a\sin x + b\cos x = r\sin(x+\phi)$$

ヒント) 左辺を $r(\cos\phi\sin x + \sin\phi\cos x)$ の形に 変形する。

- (4) 以下を $r\sin(x+\phi)$ の形に変形せよ^(答 22)。
 - (a) $\sqrt{3}\sin x + \cos x$
 - (b) $\sin x \sqrt{3}\cos x$

1.8.3 オイラーの公式と複素数

複素数 $z = re^{i}\theta$, (r は正の実数) はオイラーの公式により次のように書くことができる。

$$z = re^{i\theta}$$
$$= r\cos\theta + ir\sin\theta$$

問3以下の問いに答えなさい。

- (1) 複素数 $z = re^i\theta$ を z = a + bi の形に書き直したい。a, b を |z|, $\cos\theta$, $\sin\theta$ で表しなさい。ただし, θ は z の偏角 ($\theta = \arg z$) とする。
- (2) 虚数単位 i を $re^{i\theta}$ の形に表しなさい。
- (3) 複素数 z に虚数単位 i をかける演算は,複素空間上で原点周りに $\frac{\pi}{2}$ 回転する変換と等価であることを説明しなさい。
- (4) 複素数 z_1 , z_2 の大きさおよび偏角と,以下の各値の大きさおよび偏角はどのような関係にあるか。オイラーの公式を利用して答えなさい。
 - (a) 複素数 z₁ と z₂ の積 z₁z₂
 - (b) 複素数 z_1 と z_2 の商 z_1/z_2
- (5) 以下の各複素数の大きさと偏角を求めなさい。また、各値を複素平面上に図示しなさい。ここで、偏角は $(-\pi,\pi]$ の範囲で答えること。必要な演算には、前問の結果に基づいて幾何学的に解を考える方法と、オイラーの公式を利用して

⁽答 22(a) $2\sin(x+\frac{\pi}{6})$ (b) $2\sin(x-\frac{\pi}{2})$

計算する方法の2通りで行い、両者で結果が等 しくなることを確認しなさい^{(答 23}。

- (a) $z_1 = -i$
- (b) $z_2 = (1+i)$
- (c) $\frac{1}{z_1}$
- (d) $\frac{1}{z_2}$
- (e) z_1^4
- (f) z_2^4
- (g) $z_2\bar{z}_2$
- (6) 次式が1のn乗根であることを示しなさい。

$$z = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}$$

問 4 複素空間上の点wをzの周りに反時計回りに π 回転した時、どのような点 w_z に写像されるかを考 えたい。以下の問に答えなさい^{(答 24} 。

- (1) z = 1 + i, w = 2 + i の場合について、幾何学的 に考えることで、点 w_z を表す複素数を答えな さい。
- (2) 座標軸を平行移動して z が原点になるように取 り直す。もとの座標系を L_1 ,新しい座標系を L_2 とする。
 - (a) L_1 座標系における点 w = 2+i は, L_2 座標 系ではどのような複素数 w'で表されるか。
 - (b) w' を L_2 座標系の原点周りで $\frac{\pi}{2}$ 回転した 点を表す複素数 w'' を L_2 座標系で答えな さい。
 - (c) w'' を L_1 座標系での複素数で表すと (1) の 結果と同じになることを確認しなさい。
 - (d) 任意の点wを題意の写像により w_z に写す 場合について考える。 w_z を表す L_2 上の複 素数 w' を w, z を用いて答えなさい。
 - (e) L_1 座標系における点 w_z を表す複素数を w, z を用いて答えなさい。

(a)
$$(1, -\frac{\pi}{2})$$
 (b) $(\sqrt{2}, \frac{\pi}{4})$ (c) $(1, \frac{\pi}{2})$

(a)
$$(1, -\frac{\pi}{2})$$
 (b) $(\sqrt{2}, \frac{\pi}{4})$ (c) $(1, \frac{\pi}{2})$ (d) $(\frac{1}{\sqrt{2}}, -\frac{\pi}{4})$ (e) $(1, 0)$ (f) $(4, \pi)$ (g) $(2, 0)$

積分 2

2.1 不定積分

不定積分の定義 2.1.1

微分の逆演算を不定積分 (indefinite integral) とよ ぶ。すなわち、ある関数 f(x) に対して、導関数が f(x) となる関数の集合を求める演算が不定積分で ある。

$$F'(x) = f(x)$$
 のとき,

$$\int f(x)dx = F(x) + C$$

と書いて左辺を関数 f(x) の**不定積分**, f(x) を被積分 関数,定数 C を積分定数 (constant of integration), F(x) を f(x) の**原始関数** (antiderivative) とよぶ。上 式の左辺は次のように書くこともある。

$$\int dx f(x)$$

不定積分の幾何学的意味

問1以下の数式の幾何学的意味を説明しなさい。

$$(1)$$
 $\int 0dt = C$ $(a$ は定数, C は積分定数)

(2)
$$\int adt = at + C$$
 (a は定数, C は積分定数)

不定積分の公式 2.1.3

導関数は定義式にしたがって計算すれば、原理的 には求めることが出来る。しかし、不定積分は「微 分すれば∫の中身(被積分関数)になるものはなに か」と問うクイズのようなものであり、残念ながら 微分のように決まった解き方は無い。変数置換,部 分分数分解,部分積分などにより、少しでも積分し やすそうな形に変形を試みながら、被積分関数が何 かの微分になってないかを考えることが解法である。 このため、少なくとも以下の微分公式程度は覚えて おく必要がある。

(1)
$$(x^a)' = ax^{a-1}$$

$$(2) (\sin x)' = \cos x$$

$$(3) (\cos x)' = -\sin x$$

 $^{(^{8} 23}$ 以下は各値 z に対する $(|z|, \arg z)$ を表す。

 $^{(\}stackrel{\circ}{2}^{24}(1))^{2}w_{z} = 1 + 2i$ (2)(a) w' = 1 (b) w'' = i (d) w' = iw - z (e) $w_z = (w - z)i + z$

2.2 定積分 2.2 2 積分

(4)
$$(\log |x|)' = \frac{1}{x} \quad (x \neq 0)$$

(5)
$$(e^x)' = e^x$$

問2 例えば、上記(2)式の両辺を積分すると

$$\int (\sin x)' dx = \int \cos x dx$$
$$\sin x + C = \int \cos x dx$$

すなわち,次のような積分公式を得ることができる。

$$\int \cos x dx = \sin x + C$$

上の微分公式から積分公式をそれぞれ導きなさい。 練習問題 以下の不定積分を求めなさい^{(答 25} 。また, 答えを微分することによって検算せよ。

(1)
$$\int \sqrt{x} dx$$

$$(2) \int \frac{1}{\sqrt{x}} dx$$

(3)
$$\int \frac{1}{x} dx$$

$$(4) \int \frac{1}{1-x} dx$$

(5)
$$\int \frac{1}{x\sqrt{x}} dx$$

(6)
$$\int \frac{1}{x^2} dx$$

2.2 定積分

2.2.1 定積分の定義

ある関数 y = f(x) と x = a, x = b, そして x 軸 で囲まれた面積 S を以下のように表す。

$$S = \int_{a}^{b} f(x)dx \tag{8}$$

練習問題 1 上記の「定積分の定義」に従って、以下を求めなさい(すなわち、幾何学的に面積を求める)。 (答 26 $^{\circ}$

(答 25 以下で (他の問の答においても) 2 は積分定数。(1) $\frac{2}{3}x^{3/2}+C$ (2) $2\sqrt{x}+C$ (3) $\log|x|+C$ (4) $-\log|x-1|+C$ (5) $-\frac{2}{\sqrt{x}}+C$ (6) $-\frac{1}{x}+C$ (答 26 (1) $\frac{1}{2}$ (2) 0 (3) 2 (4) $\frac{1}{2}$ (5) 0 (6) 1

図1 面積と区分法

図 2 定積分と面積

(1)
$$\int_0^1 x dx$$

$$(2) \int_{-1}^{1} x dx$$

$$(3) \int_{1}^{3} dx$$

(4)
$$\int_0^1 (1-x)dx$$

(5)
$$\int_0^{2\pi} \sin x dx$$

$$(6) \int_{-1}^{1} |x| dx$$

2.3 定積分の計算

関数 y = f(x) と x = a, x = b, そして x 軸で囲まれた領域の面積が幾何学的に求められる場合は (10)式の値を求めるのは容易である。しかし y = f(x) が曲線の場合,この面積 S を幾何学的に求めるのは一般に難しい。そこで,例えばこの領域を n 個の区間に分割し、それぞれを長方形とみなして計算した面

2.3 定積分の計算 2 積分

積の和 S_n で近似的に計算することを考える (図1)。 すなわち、

$$S_n = f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x$$
$$= \sum_{i=0}^{n-1} f(x_i)\Delta x$$
(9)

ただし、 $a=x_0$ 、 $b=x_n$ であり、 Δx は分割した 1 区間の幅 $(\Delta x=x_{i+1}-x_i)$ である。この分割数を無限個にした極限では S_n は真の面積 S に近付くと考えられる。すなわち、

$$S = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_i) \Delta x$$

ここで、 $\lim_{n\to\infty}\sum_{i=0}^n \delta \int_a^b$ 、微小幅である $\Delta x \delta dx$ と簡単化のためおき直すと、面積は次式のように書ける。

$$S = \int_{a}^{b} f(x)dx \tag{10}$$

以上をまとめると、上式は**底辺のある位置**x での微小長さ dx およびその点での高さ f(x) の積である微小面積 $dx \cdot f(x)$ を,区間 $x \in [a,b]$ で足しあわせることを意味している (図 2) (注 6。そして,これを関数 f(x) の定積分 (definite integral) とよぶ。ただし,f(x) < 0 となる領域においては,微小面積 $dx\dot{f}(x)$ も負となり,それを足し合わせた総和も負となる。すなわち,f(x) < 0 となる領域の面積は負の値で示す。

問 定積分の計算は不定積分の計算を用いて行うことができる。すなわちある関数 f(x) の原始関数の1 つを F(x) とおくと次式が成立する。

$$\int_{a}^{b} f(x) = F(b) - F(a)$$

このことを証明しなさい。

練習問題 1 以下はどのような図形の面積を表すかを グラフを書いて説明しなさい。また、その面積を定積分計算により求めなさい $(\stackrel{6}{=} 27)$ 。

(1)
$$\int_{2}^{4} (x-2)(x-3)dx$$

$$(2) \int_{-\pi/2}^{\pi/2} \cos x dx$$

(3)
$$\int_0^a \sqrt{a^2 - x^2} dx$$

2.3.1 物体の運動と微積分

物体の位置を x(t) とおくと,その速度 v は位置の 微分,すなわち, $v=\frac{dx}{dt}$ で与えられる。逆に,速度 v(t) から位置 x を求めるにはその逆演算,すなわち 以下の不定積分を求めれば良い。

$$x(t) = \int v(t)dt$$

ここで、右辺を計算すれば積分定数が出てくる。その値は、例えば時刻 t=0 における位置 x(0)(初期値) が与えられれば、一意に定めることができ、任意の時刻の位置を知ることができるようになる。しかし、初期値が分からなければ、謎の初期位置からどれだけ動いたか (変位) を速度情報から知ることはできるが、時刻 t における位置は分からないことになる。

時刻 t_1 から時刻 t_2 までの速度情報をもとに,その間の変位 Δx を求めるには,以下の定積分の値となる。

$$\Delta x = \int_{t_1}^{t_2} v(t)dt$$

定積分において、v(t) < 0 の時間区間は負の面積を与えることになるが、それはすなわち、x(t) の値が減少すること、言い換えると座標軸の負の向きに物体が進んでいることを意味する。つまり、負の面積を定義することによって、初めて速度から位置 (変位) の正確な計算が可能になる。

2.3.2 定積分と偶関数・奇関数

問以下の問に答えなさい。

(1) 関数 f(x) が偶関数のとき次式が成立することを証明しなさい。また、式の意味を幾何学的にも説明しなさい。

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx \quad (a > 0)$$

(2) 関数 f(x) が奇関数のとき次式が成立すること を証明しなさい。

$$\int_{-a}^{a} f(x)dx = 0 \quad (a > 0)$$

練習問題 2 次式を計算しなさい^{(答 28}。

$$(1) \int_{-\pi/2}^{\pi/2} \sin x dx$$

(2)
$$\int_{-\pi/2}^{\pi/2} e^{x^2} \sin x dx$$

(3)
$$\int_{-10}^{10} \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

$$(4) \int_{-\pi/2}^{\pi/2} (x^3 + \cos x) dx$$

積分の計算方法 2.4

複雑な関数を積分するときには、その関数が2.1.3 節で紹介したような積分公式に当てはまる形になる ように、試行錯誤的に変形してみる必要がある。以 下ではその式変形の方法をいくつか紹介する。

2.4.1微分を探す

以下のような微分の関係式を思いだそう。

$$\frac{d}{dx}\{f(x)\}^n = nf'(x)\{f(x)\}^{n-1}$$
$$\frac{d}{dx}\log|f(x)| = \frac{f'(x)}{f(x)}$$

このような構造を被積分関数のなかに見つけたらた だちに積分を実行できる。

練習問題 以下の不定積分を求めよ。また、答を微分 することにより検算せよ(答29。

$$(1) \int \sin^2 x \cos x dx$$

(2)
$$\int \tan x dx$$

$$(3) \int \frac{x}{1+x^2} dx$$

2.4.2部分分数分解

有理関数^{(注 7}の積分をするとき、分子の次数が分 母の次数より低ければ部分分数分解をして積分しや すい形にする。例えば以下の積分をしてみよう。

$$\int \frac{1}{x^2 - 4x + 3} dx = \int \frac{1}{(x - 1)(x - 3)} dx$$

被積分関数は以下のように部分分数分解をする。

$$\frac{1}{(x-1)(x-3)} = \frac{a}{x-1} + \frac{b}{x-3} \tag{11}$$

積分

Heaviside の方法を用いると、定数 a,b は以下の ように簡単に求めることができる。

- (i) まず、 $\frac{1}{r-1}$ の係数である a を求める。
- (1) 式(11)の両辺に(x-1)をかける。

$$(x-1)\frac{1}{(x-1)(x-3)} = (x-1)\left\{\frac{a}{x-1} + \frac{b}{x-3}\right\}$$
$$\frac{1}{x-3} = a + \frac{b(x-1)}{x-3}$$

(2) 両辺にx-1=0の解(x=1)を代入する。

$$\frac{1}{1-3} = a + \frac{b(1-1)}{1-3}$$
$$a = -\frac{1}{2}$$

- (ii) 次に $\frac{1}{x-3}$ の係数である b を求める。
- (1) 式(11)の両辺に(x-3)をかける。

$$(x-3)\frac{1}{(x-1)(x-3)} = (x-3)\left\{\frac{a}{x-1} + \frac{b}{x-3}\right\}$$
$$\frac{1}{x-1} = \frac{a(x-3)}{x-1} + b$$

(2) 両辺に x-3=0 の解 (x=3) を代入する。

$$\frac{1}{3-1} = \frac{a(3-3)}{3-1} + b$$
$$b = \frac{1}{2}$$

⁽注7分子および分母がそれぞれ多項式である関数

2.4 積分の計算方法 2.4 積分の計算方式 2.4 積分の計算方法 2.4 積分の計算方式 2.4 積分の計算方法 2.4 積分の計算方法 2.4 積分の計算方式 2.4 積分の計算子 2.4

以上で求めたa,bの値を用いて式(11)を変形すると

$$\int \frac{1}{x^2 - 4x + 3} dx = \int \frac{1}{(x - 1)(x - 3)} dx$$

$$= \int \{-\frac{1}{2} \frac{1}{x - 1} + \frac{1}{2} \frac{1}{x - 3}\} dx$$

$$= \frac{1}{2} \int \{-\frac{1}{x - 1} + \frac{1}{x - 3}\} dx$$

$$= \frac{1}{2} \{-\log|x - 1| + \log|x - 3|\} + C$$

$$= \frac{1}{2} \log\left|\frac{x - 3}{x - 1}\right| + C$$

問 以下のような関数 f(x) がある。

$$f(x) = \prod_{i=1}^{n} \frac{1}{x - a_i} = \frac{1}{(x - a_1)(x - a_2) \cdots (x - a_n)}$$

 a_i , (i = 1, 2, ..., n) が互いに異なる場合,上式は以下のように部分分数分解をすることができる。

$$f(x) = \sum_{i=1}^{n} \frac{c_i}{x - a_i}$$

$$= \frac{c_1}{x - a_1} + \frac{c_2}{x - a_2} + \dots + \frac{c_n}{x - a_n}$$
(12)

(1) 式 (12) において $a_i \neq a_j$ ($i \neq j$) のとき,次式が成立することを証明しなさい。

$$c_i = \lim_{x \to a_i} (x - a_i) f(x) \tag{13}$$

(2) 被積分関数 f(x) が

$$f(x) = \frac{b_1 x + b_2}{(x - a_1)(x - a_2)}$$

という形の時にも同様に式 (13) を用いて次式の 形に部分分数分解できることを証明しなさい。

$$f(x) = \frac{c_1}{x - a_1} + \frac{c_2}{x - a_2}$$

練習問題 以下の不定積分を求めなさい。また,答を 微分することにより検算しなさい^{(注 8}。

(1)
$$\int \frac{7x-1}{x^2-x-6} dx$$

$$(2) \int \frac{1}{1-x^2} dx$$

 $\frac{\text{(if 8 (1) log}\{(x-3)^4|x+2|^3\} + C}{\frac{2}{7}\log|\frac{2x-1}{x+3}| + C} + C + (2) \frac{1}{2}\log|\frac{x+1}{x-1}| + C + (3)$

(3)
$$\int \frac{2}{2x^2 + 5x - 3} dx$$

解説 被積分関数の分母多項式が $(x-a)^2$ といった冪乗項を含む場合には次のように部分分数分解する。

$$\frac{1}{(x-2)(x-1)^2} = \frac{a}{x-2} + \frac{b}{x-1} + \frac{c}{(x-1)^2}$$
(14)

a はこれまでと同様に x-2 をかけて x=2 を代入すれば a=1 を得ることができる。b, c は次のように求める。まず $(x-1)^2$ を両辺にかける。

$$\frac{(x-1)^2}{(x-1)^2(x-2)} = \frac{a(x-1)^2}{x-2} + \frac{b(x-1)^2}{x-1} + \frac{c(x-1)^2}{(x-1)^2}$$
$$\frac{1}{x-2} = \frac{a(x-1)^2}{x-2} + b(x-1) + c$$

上式に x = 1 を代入すれば c = -1 を得る。また,上式を x で微分してから x = 1 を代入すれば b = -1 を得る。

以上で求めた a, b の値を用いると,式 (14) の不定積分は次のように求まる。

$$\int \frac{1}{(x-2)(x-1)^2} dx$$

$$= \int \left\{ \frac{1}{x-2} - \frac{1}{x-1} - \frac{1}{(x-1)^2} \right\} dx$$

$$= \log|x-2| - \log|x-1| + \frac{1}{x-1} + C$$

$$= \log\left|\frac{x-2}{x-1}\right| + \frac{1}{x-1} + C$$

練習問題 以下の不定積分を求めなさい^{(答 30}。

$$(1) \int \frac{x}{x^2 + 2x + 1} dx$$

(2)
$$\int \frac{1}{x^3 - 8x^2 + 20x - 16} dx$$

2.4.3 部分積分

問 次式を証明しなさい。

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$$

練習問題 以下の不定積分を求めなさい。答は微分に

(
$$\stackrel{\text{(ff)}}{=} 30(1) \frac{1}{x+1} + \log|x+1| + C$$
 (2) $\frac{1}{4} \left\{ \frac{2}{x-2} + \log \left| \frac{x-4}{x-2} \right| \right\} + C$

2.4 積分の計算方法 積分

より検算しなさい(答31。

$$(2) \int (\log x)^2 dx$$

(3)
$$\int \frac{\log x}{x} dx \quad (与式 = \int (\log x)' \log x dx)$$

$$(4) \int xe^{-x}dx$$

(5)
$$\int e^x \sin x dx$$

積分の Chain Rule: 変数変換 2.4.4

複雑な関数を積分したい時には、試行錯誤的に変 数変換をしてみる。すなわち、

$$F(x) = \int f(x)dx \tag{15}$$

に対して、変数 x を別の変数 t に x = x(t) と関連づ けることで、x の関数 f(x) を t の関数 f(x(t)) に置 き換え, 積分可能な形に変形できるかを考える。関 数 F(x) は変数変換 x = x(t) により F(x) = F(x(t))と書けるので、次式が成り立つ。

$$F(x(t)) = \int \frac{dF(x(t))}{dt} dt$$

$$= \int \frac{dF}{dx} \frac{dx}{dt} dt$$

$$= \int f \frac{dx}{dt} dt$$
(16)

式(15)と(16)の左辺が等しいことから、次式を得る。

$$\int f(x)dx = \int f(x(t))\frac{dx}{dt}dt$$

これが変数変換の公式である。

練習問題 以下の積分計算をしなさい^{(答 32} 。

(1)
$$\int (ax - b)^{10} dx$$
, $(a \neq 0)$

 $\frac{\text{(§ 31)}}{\text{(1)}} x \log x - x + C \quad \text{(2)} x (\log x)^2 - 2x \log x + 2x + C \\ \text{(3)} \frac{1}{2} (\log x)^2 + C \quad \text{(4)} - (1+x)e^{-x} + C \quad \text{(5)} \frac{e^x}{2} (\sin x - \cos x) + C$

(2)
$$\frac{1}{a}\sin(ax+b) + C$$
 (3) $-2\sqrt{1-x} + C$ (4) $-\frac{1}{x-1} + C$

(答 32以下で C は積分定数である。 (1) $\frac{1}{11a}(ax-b)^{11}+C$ (2) $\frac{1}{a}\sin(ax+b)+C$ (3) $-2\sqrt{1-x}+C$ (4) $-\frac{1}{x-1}+C$ (5) $\frac{1}{3}\sin^3x+C$ (6) $\frac{1}{2}\log(1+x^2)+C$ (7) $\frac{1}{2}(\log x)^2+C$ (8) $\frac{2}{3}$

(2)
$$\int \cos(ax+b)dx$$

$$(3) \int \frac{1}{\sqrt{1-x}} dx$$

$$(4) \int \frac{1}{(1-x)^2} dx$$

(5)
$$\int \sin^2 x \cos x dx$$

$$(6) \int \frac{x}{1+x^2} dx$$

(7)
$$\int \frac{\log x}{x} dx$$

(8)
$$\int_{0}^{1} \sqrt{1-x} dx$$

三角関数を利用した変数変換

以下のような場合には三角関数を利用した変数変 換を試す。

- (1) 被積分関数が $a^2 x^2$ を含む場合。 $x = a \sin \theta$ もしくは $x = a \cos \theta$ とおいてみる。 ただし、 $\int \frac{1}{1-x^2} dx$ のように部分分数分解を できる時には、まず部分分数分解を試すほうが 良い。
- (2) 被積分関数が $a^2 + x^2$ を含む時には、 $x = a \tan \theta$ とおいてみる。

練習問題 以下の不定積分を求めよ。また,答を微分 することにより検算せよ^{(答 33}。

(1)
$$\int \sqrt{1-x^2} dx$$

$$(2) \int \frac{1}{\sqrt{1-x^2}} dx$$

2.4.5 三角関数の積分

三角関数の積があれば和に変換する等、積分しや すい形に変形する。

$$\frac{(\stackrel{\text{\tiny{$(\Xi$}}}{33}(1) \frac{1}{2}(x\sqrt{1-x^2}+\sin^{-1}x)+C \text{ or } \frac{1}{2}(x\sqrt{1-x^2}-\cos^{-1}x)+C}{(2)\sin^{-1}x+C \text{ or } -\cos^{-1}x+C}$$

練習問題 以下の不定積分を求めよ。また,答を微分することにより検算せよ $({}^{\mbox{\scriptsize 6}}{}^{34}$ 。

$$(1) \int \sin(3x)\sin x dx$$

(2)
$$\int \sin^2 x dx$$

(3)
$$\int \cos^2 2x dx$$
 $(t = 2x と置く)$

三角関数を多項式に置き換える変数変換

 $t = \tan \frac{x}{2}$ とおくと三角関数で構成される関数を t の 多項式に変形できる。

練習問題 以下の問に答えなさい。

- (1) 準備: $t = \tan \frac{x}{2}$ とおく。
 - (a) $\sin x$, $\cos x$, $\tan x$ をそれぞれ t の多項式で表しなさい (答 35)。
 - (b) $\frac{dt}{dx}$ を t の多項式で表しなさい^(答 36)。
- (2) 以下の不定積分を求めよ。また、答を微分する ことにより検算せよ(8.37)。

$$\int \frac{1}{\sin x} dx$$

2.5 面積・体積・曲線の長さ

閉曲線に囲まれた面積は,以下の手順で求めることができる。

- (1) ある図形を微小断片に分割する。ただし、微小断片が長方形や三角形等に近似的にみなせるような分割をする。
- (2) 微小断片の面積を求める
- (3) それを足しあわせる

同様にして体積や線分の長さを求めることができる。

図 3 三角形の面積を求める。(a) x 軸に沿って分割。(b) y 軸に沿って分割。(c) x 軸方向に分割して,斜辺と平行な長方形に注目。(d) 斜辺と垂直な軸に沿って分割して,斜辺と平行な長方形に注目。

2.5.1 面積

もう一度面積と定積分の関係を復習するために, 次式で表される三角形の面積を求めてみよう。

$$\begin{cases} x & \geq 0 \\ y & \geq 0 \\ y & \leq -x+1 \end{cases} \tag{17}$$

求める面積は,図 3(a) で示すように底辺のある位置 x での微小長さ dx およびその点での高さ f(x)=-x+1 の積である微小面積 $dS=dx\cdot f(x)$ を $0\le x\le 1$ の範囲で足し合わせ,すなわち次式で与えられる。

$$\int_{\Xi角形内} dS = \int_0^1 dx \cdot f(x)$$
$$= \int_0^1 (1-x)dx$$
$$= -\int_0^1 (x-1)dx$$
$$= -\frac{(x-1)^2}{2} \Big|_0^1$$
$$= \frac{1}{2}$$

問式 (17) の面積を以下の方法で求めなさい^{(答 38}。

- (1) y 軸方向に微小領域を分割して積分計算をする (図 3(b))。
- (2) x 軸方向に微小領域を分割するが、斜辺と平行な長方形に着目して積分計算をする (図 3(c))。
- (3) 斜辺と直交する方向に微小領域を分割して積分 計算をする (図 3(d))。

練習問題 以下の各面積を積分計算を用いて求めなさい。どのように考えて計算式を導いたかは図示して

$$\begin{array}{l} (\overset{(\cong)}{\overline{+}} ^{34}(1) \ \frac{1}{8}(2\sin 2x - \sin 4x) + C \ \ (2) \ \frac{1}{2}x - \frac{1}{4}\sin 2x + C \ \ (3) \\ \frac{1}{2}x + \frac{1}{8}\sin 4x + C \\ (\overset{(\cong)}{\overline{+}} ^{35}\sin x = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2\frac{x}{2} + \sin^2\frac{x}{2}} = \frac{2t}{1 + t^2}, \\ \cos x = \frac{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}}{\cos^2\frac{x}{2} + \sin^2\frac{x}{2}} = \frac{1 - t^2}{1 + t^2}, \quad \tan x = \frac{2t}{1 - t^2}, \\ (\overset{(\cong)}{\overline{+}} ^{36} \frac{dt}{dx} = (1 + t^2)/2, \\ (\overset{(\cong)}{\overline{+}} ^{37}\log|\tan\frac{x}{2}| + C \\ (\overset{(\cong)}{\overline{+}} ^{38}(1) \ S = \int_0^1 (1 - y) dy \ \ (2) \ S = \int_0^1 \sqrt{2}x \cdot \frac{dx}{\sqrt{2}} \ \ (3) \ S = \int_0^1 \sqrt{2} s ds \end{array}$$

図 4 円の面積を求める。(a) 直交座標で。(b) 極座標で。 (c) 極座標で (その2)。

説明すること。可能なものは幾何学的方法でも面積を求めなさい $^{(\stackrel{\circ}{2}39}$ 。

- (1) 直線 y = x, x = 1, x = 2, x 軸で囲まれた領域
- (2) 曲線 $y = x^2 + 1$, x = 2, x = 3, x 軸で囲まれた 領域
- (3) 曲線 $y = x^2 + 1$, y = 2, y = 3 で囲まれた領域
- (4) 半径 a の円の面積

$$(78) \frac{1}{39} \frac{1}{1} \int_{1}^{2} x dx \quad (2) \int_{2}^{3} (x^{2} + 1) dx \quad (3) \quad 2 \int_{2}^{3} \sqrt{y - 1} dy$$

$$(4) \quad (a) \quad 2 \int_{-a}^{a} \sqrt{a^{2} - x^{2}} dx \quad (b) \int_{0}^{2\pi} \frac{1}{2} a \cdot a d\theta \quad (c) \int_{0}^{a} 2\pi r dr$$

$$(??) \int_{0}^{h} 2\pi r dh \text{ or } \int_{0}^{2\pi} h r d\theta \quad (5) \int_{0}^{\pi} 2\pi r \sin \theta \cdot r d\theta$$

図5 球の表面積を求める方法例

図 6 円錐の体積

- (a) 直交座標による積分で (図 4(a))
- (b) 極座標の偏角方向の積分で (図 4(b))
- (c) 極座標の動径方向の積分で (図 4(c))

解説 この問により、円の面積 πr^2 の微分が円周 $2\pi r$ を与える理由がわかる。正方形等も、中心から各辺までの距離 s を用いて面積を表せば、その微分は周の長さになる。

(5) 半径 r の球の表面積 (図 5)

2.5.2 体積

体積 (Volume) の計算も面積の場合と同様に、まず微小な体積を dx を用いて表して、それを積分することによって求めることができる。

例えば、底面が半径rの円であり高さがhの円錐の体積を求めてみよう。計算を簡単にするためこの

図 7 球の体積を求める方法例

円錐を逆さにし、その頂点を原点に、z軸が円錐の中心軸と一致するようにとる(図6)。

この円錐の微小高さ $z\sim z+dz$ における微小部分の体積を半径 $r'=\frac{z}{h}r$, 高さ dz の微小円柱と同じとみなすと、その体積 dV は次式で与えられる。

$$dV = dz \cdot \pi r'^2 = dz \cdot \pi \left(\frac{z}{h}r\right)^2$$

よって体積 V は次式で与えられる。

$$V = \int_{\text{Pi} f \pm f h} dV$$
$$= \int_0^h dz \cdot \pi r'^2$$
$$= \int_0^h dz \cdot \pi \left(\frac{z}{h}r\right)^2$$
$$= \frac{1}{3}\pi r^2 h$$

問以下の立体の体積を求めなさい。どのように計算式を導いたかを図を描いて説明すること。

- (1) 半径 r の球
 - (a) 半径 a の球の表面積を S(a) とおいて求める。
 - (b) 上記以外の方法で求める (例えば,図7参照)。
- (2) 底面が一辺の長さrの正方形であり高さがhの四角錐

解説 上問の (1) の (a) により,球の体積 $\frac{4}{3}\pi r^3$ の微分が球の表面積 $4\pi r^2$ を与える理由がわかる。立方体等も,中心から各辺までの距離 s を用いて体積を表せば,その微分は表面積になる。

2.6 広義積分 2.6 広義積分 2.6 大義積分 2.6

2.5.3 曲線の長さ

図8 線分の長さを求める

2次元空間内の曲線 $y=f(x), x\in [a,b]$ の長さを知りたいとき,どのように計算すればよいか考えてみよう。関数 y=f(x) は区間 $x\in [a,b]$ で微分可能であるとする。

微小区間 [x, x + dx] における曲線の長さ dl は次式で与えられる (図 8 参照)。

$$dl = \sqrt{(dx)^2 + (f(x+dx) - f(x))^2}$$
$$= dx\sqrt{1 + \left(\frac{f(x+dx) - f(x)}{dx}\right)^2}$$

よって、dx が十分小さいとき

$$dl \simeq dx \sqrt{1 + (f'(x))^2}$$

となる。求める曲線の長さlはdlを区間[a,b]で全て足しあわせたものなので、次式で与えられる。

$$l = \int_{\text{migh}} dl = \int_{a}^{b} dx \sqrt{1 + (f'(x))^2}$$

練習問題 以下の長さを積分計算により求めなさい $(^{640})$ 。

- (1) y = x の区間 $x \in [0,1]$ における長さ
- (2) 円周の長さ
- (3) $y = \frac{e^x + e^{-x}}{2}$ の区間 $x \in [-1, 1]$ における長さ

2.6 広義積分

積分区間の一端 (もしくは両端) で被積分関数が発散する場合や,積分区間の一端 (もしくは両端) が正もしくは負の無限大となる定積分を**広義積分**と呼ぶ。例えば、以下の定積分を考えよう。

$$\int_0^\infty e^{-x} dx$$

この積分値は次のように定義される。

$$\lim_{a \to \infty} \int_0^a e^{-x} dx$$

間 以下の計算をし、出来るだけ簡単な形で答えなさい (841)。

$$(1) \int_0^\infty e^{-x} dx$$

(2)
$$\int_0^1 \frac{dx}{x^{\frac{2}{3}}}$$

2.7 力学と微積分

2.7.1 重心と積分

問1長さl, 質量mの棒がある。この棒に沿ってx軸を取り、その原点は棒の一端にとる。この棒は位置によって線密度 (単位長さあたりの質量) が異なる。そこで位置xにおける線密度を $\rho(x)$ とおく。この棒について以下の間に答えなさい $(^{6}42)$ 。

- (1) $\rho(x)$ と m の関係式を表しなさい。
- (2) この棒の重心位置 X を表す式を書きなさい(^注 9</sup>。

(答 41(1) 1 (2) 3
(答 42(1)
$$m = \int_0^l \rho(x) dx$$

(2) $X = \frac{\int_0^l x \rho(x) dx}{\int_0^l \rho(x) dx} = \frac{1}{m} \int_0^l x \rho(x) dx$
(3) $X = \frac{l}{2}$, (線密度は (1) の関係式を用いると $\rho = m/l$)
(4) $X = \frac{2}{3}l$, (線密度は $\rho = \frac{2m}{l^2}x$)
(注 9質量 m_1, m_2, \dots, m_n の物体がそれぞれ位置 x_1, x_2, \dots, x_n
にあるとき、その重心位置 X は $X = \frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i x_i}$ で与えられる。

 $[\]overline{(^8 \ ^40}(3) \ e - e^{-1}, \ (注) \ y = \frac{a}{2}(e^{\frac{x}{a}} + e^{-\frac{x}{a}})$ は糸の両端を持って垂らしたときにできる曲線 (懸垂線) を表す。

- (3) 線密度 ρ が実は位置によらない定数であった場合について重心位置を求めなさい。ただし, ρ を使わずに答えること。
- (4) 線密度が $\rho(x)$ が原点からの距離に比例する場合 について重心位置を求めなさい。ただし, ρ を使わずに答えること。

2.7.2 運動量・力積・運動エネルギー・仕事

問2 質量 m の物体の位置を x 座標を用いて表す。物体に一定の力 F が x 座標の正の方向に働くときの運動方程式は次式で与えられる。

$$m\ddot{x} = F$$

 $v = \dot{x}$ とおくと次式をえる。

$$m\dot{v} = F$$

- (1) F が常に 0 の場合, v は時間とともにどのように変わるか。v の微分は v の時間変化率を表す事に注意して v の時間変化のグラフを書いて説明しなさい。
- (2) F が一定値の場合、その符号に応じてv は時間 とともにどのように変わるか。グラフを書いて 説明しなさい。
- (3) 物体が力 F(t) をうけながら時刻 t から $t + \Delta t$ までの間に x から $x + \Delta x$ まで移動した。この とき以下の式が成立することを証明しなさい。
 - (a) 運動量と力積の関係式

$$mv(t + \Delta t) - mv(t) = \int_t^{t + \Delta t} F dt$$

$$= F\Delta t \quad (F: -$$
定のとき)

(b) 運動エネルギーと仕事の関係式

$$\frac{1}{2}mv^{2}(t+\Delta t) - \frac{1}{2}mv^{2}(t) = \int_{x}^{x+\Delta x} Fdx$$
$$= F\Delta x \quad (F: -定のとき)$$

3 微分方程式

未知関数とその導関数を含む方程式を**微分方程**式とよぶ。微分方程式を満たす未知関数を**微分方程式の解**とよぶ。方程式の解は未知変数の値であるが,微分方程式の解は関数である。

3.1 微分方程式の解の挙動

問1 $\dot{x} > 0$ の場合, x は時間とともに増えるだろうか, それとも減るだろうか。 $|\dot{x}|$ の大きさにより, x の時間変化の割合はどのように変わるだろうか。理由とともに述べなさい。

問2以下の各微分方程式の解の挙動をグラフに表しなさい。

- (1) $\dot{x} = x$
- (2) $\dot{x} = 1 x$
- (3) $\dot{x} = (1 x)x$

3.2 変数分離型微分方程式の解法

以下の微分方程式の解を求めよ。また,求めた解 を微分方程式に代入することにより検算せよ(答 43。

- (1) $\dot{x} = x$
- (2) $\dot{x} = 1 x$
- (3) $\dot{x} = x(1-x)$
- (4) y' = -ay, (a: 定数)
- (5) y' = xy
- (6) $\dot{v} = -av + b$, (a, b : 定数)
- (7) y' = x(1-y)
- (8) $y' 4x^3y = 0$
- (9) $y' + y \tan x = 0$

 $[\]begin{array}{l}
\overline{\text{(ff 43)}}(1) \ x = Ce^{t} \ (2) \ x = Ce^{-t} + 1 \ (3) \ x = \frac{1}{1 - Ce^{-t}} \ (4) \ y = Ce^{-ax} \ (5) \ y = Ce^{\frac{1}{2}x^{2}} \ (6) \ v = \frac{b}{a} + Ce^{-at} \ (7) \ y = 1 + Ce^{-\frac{1}{2}x^{2}} \\
(8) \ y = Ce^{x^{4}} \ (9) \ y = C\cos x
\end{array}$

3.3 微積分と定性的表現

問1 放射性物質の量は時間とともに減少し、その時間変化率は常にその時の物質量に比例する。このとき、下記の問いに答えなさい $({}^{64}$

- (1) ある放射性物質の時刻 t における量を n(t) とする。 n(t) が満たすべき微分方程式を書きなさい。
- (2) 前問の微分方程式を解き, n(t) を時間の関数として表しなさい。
- (3) この物質の半減期を τ とおく。前問で求めたn(t)を τ を用いた出来るだけ簡単な表現に書き直しなさい。
- (4) 放射性同位体であるセシウム 137 の半減期は 30.2 年である。セシウム 137 の量が元の 1/100 になるまで何年かかるかを求めなさい。必要な ら $\log_2 5 = 2.322$ を使い,有効数字 3 桁で答え なさい。

問2以下の間に答えなさい^{(答45}。

- (1) 空のバケツに毎秒 a リットルの水を入れる。入れ始めてから t 秒後の水の量を V(t) を定積分を使って表しなさい。また,V が満たすべき微分方程式を書きなさい。
- (2) バケツにはじめbリットルの水が入れたが、底に小さな穴があいていて水が少しずつ漏っていた。単位時間あたりに水の漏る量はバケツに残っている水の量Vに比例することがわかった。バケツに水を入れてからt秒後の水の量Vとする。上記の文章を定式化することにより、Vが満たすべき積分方程式と微分方程式をそれぞれ書きなさい。

(答 $^{45}(1)$ 積分方程式は $V=\int_0^t adt$, 微分方程式は $\dot{V}=a$ 。 ただし V(0)=0。 (2) 積分方程式は $V=b-\int_0^t kVdt$ (k は正の定数)。 微分方程式は $\dot{V}=-kV$ (k は正の定数)。 ただし, V(0)=b. (3) 積分方程式は $V=\int_0^t (a-kV)dt$ (k は正の定数) 微分方程式は $\dot{V}=a-kV$ (k は正の定数)。 ただし, V(0)=0. (4) 前間の微分方程式において $\dot{V}=0$ となる時の V が求める値。 すなわち, V=a/k。 微分方程式の解を求めて $\lim_{t\to\infty}V(t)$ を求めても良い。

- (3) 空のバケツに毎秒aリットルの水を入れる。しかし、このバケツには小さな穴が空いていて水が漏る。単位時間あたりに水の漏る量はバケツに残っている水の量Vに比例する。バケツに水を入れ初めてからt秒後の水の量をVとするとき、Vが満たすべき積分方程式と微分方程式をそれぞれ書きなさい。
- (4) 前問のバケツにしばらく水を入れ続けていると やがてバケツの水の量が変化しなくなった。aは定数であったとして、このときの水の量Vを 求めなさい。

問3 落下する雨粒には、その速度に比例した働く粘性抵抗と重力が働く。雨粒の運動方程式を書き、十分時間がたったときの速度を求めなさい。

3.4 斉次線形微分方程式の解法

未知関数とその導関数 (高階導関数を含む) の線形 和のみを含む微分方程式を, **斉次線形微分方程式**と よぶ。

以下の二階斉次線形微分方程式の解を求めよう。

$$\ddot{x} + a\dot{x} + bx = 0 \tag{18}$$

(1) 微分方程式の解を $x = Ce^{\lambda t}$ と仮定し,実際にこれが式 (18) の解となるには λ がどのような条件を満たせばよいかを議論しなさい。

解説 $x = Ce^{\lambda t}$ が式 (18) の解となるために λ が満たすべき方程式を**特性方程式**という。

- (2) 特性方程式の解を λ_1 , λ_2 とすると,微分方程式 の解は次のようになることを示しなさい。
 - (a) $\lambda_1 \neq \lambda_2$ の時

$$x = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

ただし、 $\lambda = \alpha \pm i\omega$ 、 $(\omega \neq 0)$ の場合には 以下のように書けることを示しなさい。

$$x = e^{\alpha t} (C_1 \cos \omega t + C_2 \sin \omega t)$$

(b) $\lambda_1 = \lambda_2$ の時

$$x = (C_1 + C_2 t)e^{\lambda_1 t}$$

 $[\]overline{(^8 ext{ }^4 ext{4})}$ $\dot{n} = -an, \ a$ は正の定数。 (2) $n = Ce^{-at}$ (3) $n = n_0 \left(\frac{1}{2}\right)^{\frac{t}{\tau}}, \ n_0$ は t = 0 における放射性物質の量。(4) 2.01×10^2 年

(3) 解の振舞をa, bの値によって分類し、図示して説明しなさい。

問1 水平面上に質量を無視できるバネを置き,一端は壁に,もう一端には質量mの重りをつけた。その後,重りを少し引っ張ってから手を離し,重りの運動を観察した。 重りと床面の間には粘性摩擦(速度に比例する大きさの抵抗力)がはたらくが,静止摩擦や動摩擦は働かないものとする。バネ定数をk,粘性摩擦係数を σ とする。

- (1) 重りの運動方程式を書きなさい。
- (2) バネ定数や粘性摩擦係数が変化するとバネの運動がどのように変化しうるか説明しなさい。

練習問題 以下の微分方程式の解をそれぞれ求め,解 軌道を図示しなさい。また,求めた解を微分方程式 に代入することにより検算をしなさい^{(答 46}。

(1)
$$y'' + 6y' + 5y = 0$$
, $y(0) = 0$, $y'(0) = 4$

(2)
$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 2$

(3)
$$y'' - 4y' + 4y = 0$$
, $y(0) = 2$, $y'(0) = 5$

(4)
$$\ddot{x} + 4\dot{x} + 5x = 0$$
, $x(0) = 2$, $\dot{x}(0) = 0$

$$\frac{\text{(ff }46(1) }{y = e^{-x} - e^{-5x}} \text{(2) } y = \sin 2x \text{ (3) } y = (x+2)e^{2x} \text{ (4)}$$

 $x = 2e^{-2t}(\cos t + 2\sin t)$

A 微分・積分ドリル

以下の式の微分および積分を求めなさい。特に微分か積分の指示があるものはそれに従いなさい。

- $(1) (3x-1)^{10}$
- (2) $e^x \cos x$
- (3) $\frac{1}{x^2 4x + 3}$
- (4) $\tan^{-1} x$, $(-\pi/2 < y < \pi/2)$ (微分)
- $(5) (\log x)^2$
- (6) e^{2x}
- $(7) \sin^2 x$
- $(8) \ \frac{1}{\sqrt{1-x}}$
- (9) $\sqrt{1-x}$
- (10) t^a (a は定数, t が変数)
- $(11) \ \frac{7x-1}{x^2-x-6}$
- $(12) \tan x$
- $(13) \ \frac{\sin x}{\cos x + 7} \ (積分)$
- (14) $\frac{(x+1)^2}{x}$
- (15) $\sqrt{4-x^2}$
- (16) $\cos 2x \sin 3x$
- $(17) \sin 2x \cos^2 x$
- (18) $\frac{1}{(1-x)^2}$
- (19) $2^{\log \sqrt{2} x}$
- (20) $\cos(4x+3)$
- (21) log(log x) (微分)
- $(22) \log x$
- (23) r^2 (r は定数。 θ で微積分)
- (24) xe^{-x^2}
- (25) $\ln(x + \sqrt{x^2 + 1})$
- (26) $\frac{x+2}{x^2-1}$
- (27) $\frac{1}{1+x^2}$
- (28) $\sin^{-1} x$, $(-\pi/2 < y < \pi/2)$ (微分)
- (29) $\frac{2}{2x+5}$

- (30) $\frac{1}{\sqrt{1-x^2}}$
- (31) xe^{-x}
- (32) $\cos^{-1} x$, $(0 < y < \pi)$ (微分)
- (33) $\sin^2 x \cos x$
- (34) a^x (a > 0) (微分)
- (35) y^x (x は定数, y が変数)
- (36) $\sin ax \sin x$
- (37) $\cos^2 x$
- (38) $r \exp r^2$ (r が変数)
- (39) $(3x^2 x 1)^4$ (微分)
- $(40) \ \frac{2}{2x^2 + 5x 3}$
- $(41) \ 3^{\log_9 x}$
- $(42) \cos^2 2x$
- $(43) \ \frac{x^2 + x + 1}{x^2 1}$
- (44) $\frac{1}{a^2-t^2}$ (a は定数, t が変数)
- $(45) \ \frac{1}{\sin x}$
- (46) $e^x \sin x$
- (47) $\log(1+x^3)$ (微分)
- (48) $\frac{2x}{1+x^2}$
- $(49) \ \frac{x^4 + x^3 + 2x^2 + x + 1}{1 + x^2}$
- (50) $\sin^{10} 2x^2$ (微分)
- (51) $\frac{x}{(x+1)^2}$
- $(52) \ \frac{x^3 + 2x^2 + x + 1}{(x+1)^2}$
- (53) $x^3e^{-x^2}\sin^2 2x$ (微分)
- (54) $\frac{e^x e^{-x}}{e^x + e^{-x}}$
- (55) x^x (微分)

B このドキュメントの著作権について

- (1) 本稿の著作権は西井淳 nishii@sci. yamaguchi-u.ac.jpが有します。
- (2) 非商用目的での複製は許可しますが、修正を加えた場合は必ず修正点および加筆者の氏名・連絡先、修正した日付を明記してください。また本著作権表示の削除は行ってはいけません。
- (3) 本稿は間違いがないように注意をして執筆していますが、もしも間違い等によりなんらかの被害を被ったとしても著者は一切責任を負いません。

間違い等の連絡や加筆修正要望等の連絡は大歓迎です。

索 引

<u>A</u>
antiderivative
<u>C</u>
chain rule
constant of integration
D
${\it definite\ integral}10$
$\ \text{derivative} \dots \dots$
${\it differentiation}2$
<u>E</u>
Euler, Leonhard 7
G
Gregory, James 6
Н
Heaviside の方法11
<u>I</u>
indefinite integral
M
Maclaurin expansion
<u>T</u>
tangent line4
Taylor expansion
Taylor, Brook6
V
Volume
<u></u> <u> </u>
オイラー7
オイラーの公式7
オイラーの宝石7
か
グレゴリー6
原始関数8
広義積分17
<u></u>
斉次線形微分方程式19

積分定数	3
接線4	1
<i>t</i> c	
体積16	3
定積分1()
テイラー(
テイラー展開 (
ド・モアブルの公式	
導関数	2
特性方程式 19	
は	
微分	2
微分方程式	3
複素数	
—の大きさ	7
—の偏角	
- 不定積分	3
偏角	
ま	
マクローリン展開(3