EE3801 Cheatsheet

Intro to Data Engineering github.com/securespider

01.1 Intro

Data science vs engineering

- Science Learn, optimise, analytics, aggregate and labelling
- Engineering Cleaning, data storage, logging, sensors, pipelines

Data structure

Unstructured data

• Chaotic no order to data

Structured data

• Data stored access in the same format

Semi structured data

- Can contain both forms of data
- Some structure but not all data points follow same format

Big data

Volume, Variety, Variability

Velocity High rate of data generation

• Must create a robust and scalable pipeline

Raw Data

• Tend to have gaps

Data wrangling

Used to understand raw data

Discovery Understand what is in your data

Structure

Cleaning Dealing with gaps (nulls), outliers, formatting bugs

Enrichment Derive other data from other information/ additional data augmentation (feature selection)

Validation Verify data quality, sources

Publishing Give data scientist

Process

Extraction Retrieve raw data from unstructured pool and migrate to temp repo

Transformation Structure enrich and convert raw data

Loading Loading structured data into data warehouse

Data warehouse

Decision support system storing historical data from organisations

Data Pipeline

• Processing underlying raw data in ordered sequence of steps

01.2 Data Pipelines

Considerations

Big data

Velocity Streaming, captured and processed in real time

Volume Scalable wrt time

Variety Recognise and process diff formats

Business

- Handling streaming data?
- How much data to expect (Time horizon/how much storage consumed)
- What type/how much processing in DP
- Where is data source? Need micro-services?

Architecture Batch-based DP

- Analysis of data that has been stored over a period of time
- ullet N independent tasks to process with k stages
- ullet Each stage takes max of T time process input
- Diff stage can operate concurrently
- $t(N,k) = T \times (N+k-1)$

Streaming-based DP

- Processing as data flows through system
- Logging and persistent result storage

Lambda Architecture

- Combination of batch and streaming
- Separate processing engine for "batch" and "speed" layers combining in "service" layer
- Accounts for real-time streaming and historical batch analysis
- Encourage raw data storage and create new dst for queries
- Min errors for both layers reliably at fast speeds

Kappa Architecture

- Replay data and process both layers in same single stream processing engine
- Good for big data architecture with cheaper hardware and focus on stream

Design

- 1. Identify application and decide if DP needed
- 2. Identify DP category (architecture)
- 3. Understand working mechanism, parameters/variables