Corso di Basi di Dati

Esercitazioni in classe

L'algebra relazionale (Cap. 3)

Richiami alla notazione dell'algebra relazionale

Date le relazioni:

$$R_1$$
 (A, B, C) e R_2 (D, E, F)

Notazione:

• Proiezione: $\pi_{AC}(R_1) = PROJ_{AC}(R_1)$

• Equi-join: $R_1 \bowtie_{A=D} R_2 = R_1 \text{ JOIN}_{A=D} R_2$

• Selezione: $\sigma_{A="Gino"}(R_1) = SEL_{A="Gino"}(R_1)$

• Rinominazione: $\rho_{coq \leftarrow coqnome}(R_1) = REN_{coq \leftarrow coqnome}(R_1)$

Operatori logici: Λ (AND), V (OR), ¬ (!,NOT), ∃ (Esiste)

• Vincolo di integrità referenziale: v.i.r.

Capitolo 3. Esercizio 2

Considerare le relazioni

 $R_1(\underline{A}, B, C)$ con cardinalità N_1

 $R_{2}(\underline{D}, E, F)$ con cardinalità N_{2}

Assumere che sia definito un vincolo di integrità referenziale fra:

l'attributo C di R_1 e la chiave D di R_2

Indicare la cardinalità (K) di ciascuno dei seguenti join (specificare l' intervallo nel quale essa può variare):

1. $R_1 \bowtie_{A=D} R_2$

2. R₁ ▷⊲_{C=D} R₂

3. $R_1 \bowtie_{A=F} R_2$

4. $R_1 \bowtie_{B=E} R_2$

Capitolo 2. Esercizio 13

Esercizio:

Supponendo di voler rappresentare una base di dati relazionale contenente le informazioni relative agli autori di una serie di libri, raccolte secondo la sequente struttura

Libri e Autori				
Codice	Titolo	Autore	Telefono	Data Pubblicazione
1	Leggende	Neri Aldo	02 345	04/05/2006
		Bianchi Ennio	02 487	04/05/2006
2	Miti	Gialli Enzo	06 343	03/03/2009
3	Fiabe	Neri Aldo	02 345	30/09/2008
		Verdi Lisa	08 467	30/09/2008
		Marroni Ada	09 445	30/09/2008
4	Racconti	Rossi Anna	03 888	06/06/2006
		Bianchi Ennio	02 487	06/06/2006

Mostrare:

- gli schemi delle relazioni da utilizzare, con:
 - attributi,
 - vincoli di chiave
 - vincoli di integrità referenziale
- l'istanza corrispondente ai dati mostrati

Capitolo 3. Esercizio 1

Considerare una relazione

 $R(A, \underline{B}, \underline{C}, D, E).$

Indicare quali delle seguenti proiezioni hanno certamente lo stesso numero di ennuple di R:

1. $\pi_{ABCD}(R)$

2. $\pi_{AC}(R)$

3. $\pi_{BC}(R)$

4. $\pi_{\rm C}(R)$

5. $\pi_{CD}(R)$

Capitolo 3. Esercizio 3

Considerare le relazioni (senza valori nulli)

 $R_1(\underline{A}, B, C)$ con v.i.r. C e D in R_2 e cardinalità N_1 =100

 $R_2(\underline{D}, E, F)$ con v.i.r. F e G in R_3 e cardinalità N_2 =200

 $R_3(G, H, I)$ con cardinalità $N_3=50$

Indicare la cardinalità (K) di ciascuna delle seguenti espressioni (specificare l'intervallo nel quale essa può variare):

$$K_1 = \pi_{AB}(R_1)$$

$$K_7 = R_3 \triangleright \triangleleft_{I=A} R_1$$

$$K_2 = \pi_E(R_2)$$

$$K_8 = (R_3 \bowtie_{I=A} R_1) \bowtie_{C=D} R_2$$

$$K_3 = \pi_{BC}(R_1)$$

$$K_4 = \pi_G(R_3)$$

$$\mathsf{K}_9 = (\mathsf{R}_3^{\mathsf{A}} \mathsf{A}_1)^{\mathsf{A}} \mathsf{A}_1^{\mathsf{A}} \mathsf{A}_2^{\mathsf{A}} \mathsf{A}_1^{\mathsf{A}} \mathsf{A$$

$$K_5 = R_1 \triangleright A_1 = R_2$$

$$K_6 = R_1 \triangleright C_{C=D} R_2$$

Capitolo 3. Esercizio 6

Considerare lo schema di base di dati contenente le relazioni:

- Film(CodiceFilm, Titolo, Regista, Anno, CostoNoleggio)
- Artisti(<u>CodiceAttore</u>,Cognome, Nome, Sesso, DataNascita, Nazionalità)
- Interpretazioni(CodiceFilm, CodiceAttore, Personaggio)
- Mostrare una base di dati su questo schema per la quale i join fra le varie relazioni siano tutti completi.
- Supponendo che esistano due vincoli di integrità referenziale fra la relazione Interpretazioni e le altre due, discutere i possibili casi di join non completo.
- Mostrare un prodotto cartesiano che coinvolga relazioni in questa base di dati.
- 4. Mostrare una base di dati per la quale uno (o più) dei join sia vuoto.

Capitolo 3. Esercizio 7

Con riferimento allo schema nell'esercizio 3.6:

- Film(CodiceFilm, Titolo, Regista, Anno, CostoNoleggio)
- Artisti(<u>CodiceAttore</u>, Cognome, Nome, Sesso, DataNascita, Nazionalità)
- Interpretazioni(CodiceFilm, CodiceAttore, Personaggio)

Formulare in algebra relazionale le interrogazioni che trovano:

- 1. I titoli dei film nei quali Henry Fonda sia stato interprete.
- 2. I titoli dei film per i quali il regista sia stato anche interprete.
- 3. I titoli dei film in cui gli attori noti siano tutti dello stesso sesso.

Capitolo 3. Esercizio 8

Si consideri lo schema di base di dati che contiene le seguenti relazioni:

DEPUTATI (Codice, Cognome, Nome, Commissione, Provincia, Collegio)

COLLEGI (Provincia, Numero, Nome)

PROVINCE (Sigla, Nome, Regione)

REGIONI (Codice, Nome)

COMMISSIONI (Numero, Nome, Presidente)

Formulare in algebra relazionale le seguenti interrogazioni:

- Trovare nome e cognome dei presidenti di commissioni cui partecipa almeno un deputato eletto in una provincia della Sicilia.
- 2. Trovare nome e cognome dei deputati della commissione Bilancio.
- Trovare nome, cognome e provincia di elezione dei deputati della commissione Bilancio.
- Trovare nome, cognome, provincia e regione di elezione dei deputati della commissione Bilancio.
- Trovare le regioni in cui vi sia un solo collegio, indicando nome e cognome del deputato ivi eletto.