Part III-B: Medicine AI

Lecture by None Note by THF

2024年10月24日

目录

1	导论																	1
	1.1	监督学	习 .															2
		1.1.1	数据	挖掘														3
		1.1.2	数据	选择	·													3
		1.1.3	数据	表征														3
	1.2	核酸物	质表征	正 .														9
		1.2.1	碱基															9
	1.3	数据预	处理															10
		1.3.1	标准	化.														10
		1.3.2	插补流	缺失	值													11
	1.4	模型评	估和性	生能	度量	量												13
	1.5	模型性	能度量	量 .														14

Learn 1

10.07

1 导论

Notation. 机器学习的流程:

1. 确立目标

- 2. 收集数据
- 3. 数据预处理
- 4. 数据分析
- 5. 模型训练
- 6. 模型评估优化
- 7. 预测

机器学习和人工智能的关系:

机器学习算法包含: 无监督学习、监督学习、强化学习

1.1 监督学习

Notation. 机器学习选择数据要求:

- 1. 了解数据类型、属性、量纲
- 2. 分析分布特性
- 3. 选择高可信度数据
- 4. 进行数据表征(将原始数据转换为计算机可识别数据)

Example. 医药领域对小分子、蛋白质、核酸进行特征数字化方法

1.1.1 数据挖掘

- 1. 通过数据分析与统计学规律
- 2. 通过爬虫与自动化程序

1.1.2 数据选择

通过一部分数据来体现总体数据

1.1.3 数据表征

Example. 分子指纹:

首先提取分子结构特征(官能团等),使用分子结构特征生成比特向量,每 个比特元素对应一种分子片段,通过对比比特向量的相似度来记录分子特征

分子指纹分类:基于子结构、拓扑或路径、药效集团的分子指纹和圆形分子 指纹

Notation. SMILES/简化分子线性输入规范:

SMILES 是一种 ASCII 字符串, 具体规则如下

SMILES RULE

1. 简单规则

原子:原子缩写符号

Example. Au, Pt, C, N

离子:原子加上电荷数,外接中括号

Example. Fe^{3+} : [Fe+++]

 $C^-:[C_-]$

 $Pt^{6+}: [Pt++++++]$

H 原子: 省略

相邻原子: 直接连接

Example. Dodecane: CCCCCCCCCC (12 Carbons)

分支: 以小括号表示

Example. Write in git style:

SMILES: AB(EFG)CD

单键:直接省略

双键: "="

三键: "#"

芳香键 = 单键(直接省略)

Notation. 部分软件芳香键使用单双键交替表示

芳香原子使用小写字母

Example. hex-2-en-4-yne/戊-2-烯-4-炔 (不分顺反): CC=CC#CC

toluene: Cc1ccccc1

2. 立体结构

环状结构: 将环断开形成线性结构, 以数字标记断开的原子

Example. Cyclohexane: C1CCCC1

同位素: [核电荷数 + 元素符号]

Example. ¹³C: [13C]

Z/E 构象:使用"/"和"\"代表单键方向

Example. (2E)-hex-2-en-4-yne: C/C=C/C#CC

(2Z)-hex-2-en-4-yne: $C/C=C\setminus C\#CC$

手性异构: @ 表示 S, @@ 代表 R

图 1: S&R

Example. -CH₃ 最小, 放在最后, 对基团大小比较:

 $F > NH_2 > COOH$.

为 R 构型, 即: N[C@@](F)(C)C(=O)O

3. 算法与生成

Notation. 大部分 SMILES 生成算法为商业算法,如 Morgan 算法、Canonical SMILES 算法等

生成 SMILES 主要使用深度优先搜索 (DFS) 算法遍历分子图

Notation. InChI: 国际化合物标识,是规范的线性表示法、基于规范命名法则的 唯一标识符

通过分层符号"/"将表示小分子的字符串分层,前三层简化连接表的信息, 其他层处理额外问题

InChI RULE

1. 主层

主层可包括三个子层: 化学式、原子连接、氢原子

Learn 2 10.17

Notation. 氨基酸组成和二肽组成

基础知识:组成人体的二十种氨基酸

Alanine(A)Asparagine(N) Arginine(R) Asparticacid(D) Cysteine(C) Glutamine(Q) Glutamicaci(E) Glycine(G) Histidine(H) Isoleucine(I) Leucine(L) Lysine(K) Methionine(M) Phenylalani(F) Proline(P) Serine(S)Threonine(T)Tryptophan(W) Tyrosine(Y)Valine(V)

表 1: 20 amino acids

除此外还有用于终止密码子的硒半胱氨酸、吡咯赖氨酸(U)

Notation. 氨基酸组成的公式:

$$f(k) = \frac{N_k}{N}, k = 1, 2, \dots, 20.$$

其中 N_k 表示第 k 种氨基酸的数量,N 表示氨基酸序列长度 Notation. 二肽组成的公式:

$$f(k,s) = \frac{N_{ks}}{N-1}, k, s = 1, 2, \dots, 20.$$

同理: N_{ks} 为第 k 种和第 s 种氨基酸形成的二肽数量

表 2: 20 种基本氨基酸

丙氨酸,A	精氨酸,R	天冬酰胺,N
天冬氨酸,D	半胱氨酸,C	谷氨酰胺,Q
谷氨酸,E	甘氨酸,G	组氨酸,H
异亮氨酸,I	亮氨酸,L	赖氨酸,K
甲硫氨酸,M	苯丙氨酸,F	脯氨酸,P
丝氨酸,S	苏氨酸,T	色氨酸,W
酪氨酸,Y	缬氨酸,V	

Notation. 蛋白质独热编码

使用 $20 \times L$ 的矩阵表示蛋白质的序列信息,L 为蛋白质的序列长度

Example. 含 556 个氨基酸的蛋白质序列可以用 20 × 556 的矩阵表示,纵向量为二十种氨基酸,横向量为蛋白质在某位置的氨基酸种类

Notation. CTD 描述符

组成、转换与分布(Composition, Transition and Distribution, CTD)根据 蛋白质序列中残基的特性编码蛋白质

(流水性 范徳华体积 极性 可极化性 可极化性 帯电性 表面张力 二级结构 溶剂可及性 ...

氨基酸残基分为三类:

表 3: CTD 分类

70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
性质	A	В	С							
疏水性	亲水	中性	疏水							
范德华体积	(0,2.78)	(2.95,4)	(4.43, 8.08)							
极性	(0,0.456)	(0.6, 0.696)	(0.792,1)							
可极化性	(0,0.108)	(0.128, 0.186)	(0.219, 0.409)							
带电性	正电	中性	负电							
表面张力	(-0.2,0.16)	(-0.52, -0.3)	(-2.46, -0.98)							
二级结构	螺旋	折叠	卷曲							
溶剂可及性	包埋	中等	暴露							

Notation. 蛋白质二级结构及蛋白质溶剂可及性

- 1. 蛋白质二级结构 (PSS)
- 2. 氨基酸溶剂可及性 (PSA)

Learn 3

10.18

编码规则:

$$\begin{cases} \text{二级结构} \begin{cases} \text{H: } \alpha 螺旋 \to (0,1,0) \\ \text{E: } \beta 折叠 \to (1,0,0) \\ \text{C: 其他结构} \to (0,0,1) \end{cases} \\ \text{溶剂可及性} \begin{cases} \text{b: buried } (包埋) \to (1,0) \\ \text{e: exposed } (暴露) \to (0,1) \end{cases} \end{cases}$$

Example. 有一条 10 氨基酸长度的蛋白质序列:

PSSSA 使用 5×1000 的矩阵编码蛋白质,每一个氨基酸由一个 5 维向量表示

用 PSSSA 编码时,一般取序列羧基的一侧开始的 1000 个氨基酸编码,如不满 1000 个使用 0 向量补齐

Pro	М	V	L	S	Р	A	D	K	Т	N	
Sec	С	С	С	С	Е	Н	Е	Е	Н	Н	
		0	0	0	0	1	0	1	1	0	0
	PSS	0	0	0	0	0	1	0	0	1	1
PSSSA		1	1	1	1	0	0	0	0	0	0
	PSA	0	0	1	0	0	0	1	1	0	0
	IBA	1	1	0	1	1	1	0	0	1	1
S.A	e	e	b	e	e	b	b	e	e	e	

1.2 核酸物质表征

Notation. 基本知识: 碱基与核酸

1.2.1 碱基

 表 4: 常见碱基

 种类
 DNA
 RNA

 嘌呤族(R)
 腺嘌呤(A)
鸟嘌呤(G)

 嘧啶族(Y)
 胞嘧啶(C)
胸腺嘧啶(T)尿嘧啶(U)

Notation. 碱基配对方式:

$$\begin{cases} \text{DNA} & A = T \\ C \equiv G \\ \text{RNA} & C \equiv G \end{cases}$$

Notation. K-mer

K: DNA 或 RNA 中一个长度为 K 的序列

以该序列为子序列,遍历核酸序列,计算该长度的所有子序列组合出现的频率

Example. 长度为 K 的 K-mer 种类共有 4^k 种可能

如长度为 3 的子序列,子序列每个位置有 A,G,C,U 四种选择,共 4^3 种组合 一段 15 个核酸的 RNA 序列如下:

所有可能的长度为3的子序列及其频率:

	表 6: 3-mers								
	RNA seq.	freq.							
1	CAT	0.111							
2	ATC	0.056							
3	TCG	0.056							
4	CGG	0.056							
12	CCA	0.056							
13	ATG	0							
64		0							

Learn 4

10.20

1.3 数据预处理

1.3.1 标准化

Notation. 变量离差标准化:标准化后所有变量范围都在[0,1]内

$$y_i = \frac{x_i - x_{\min}}{x_{\max} - x_{\min}}.$$

Example. 一组变量如下:

$$X = (1.5, 1.7, 2.2, 1.2, 1.6, 1.4, 1.1)$$
.

易得 $x_{\min} = 1.1, x_{\max} = 2.2$

$$y_i = \frac{x_i - x_{\min}}{x_{\max} - x_{\min}}$$

$$= \frac{x_i - 1.1}{2.2 - 1.1}$$

$$= \frac{x_i - 1.1}{1.1}$$

$$= \frac{x_i}{1.1} - 1$$

得 Y = (0.364, 0.545, 1, 0.091, 0.455, 0.273, 0)

Notation. Z-score (变量标准差)标准化 经过标准化后平均值为 0,标准差为 1

$$z_i = \frac{x_i - \bar{x}}{s}$$
 $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}.$

可以看出 s 为原数据的标准差, z_i 值其实等同于标准正态分布中的 u 值:

$$u = \frac{x - \mu}{\sigma} \quad y = \frac{1}{\sigma \sqrt{2\pi}} e^{-u^2} / 2.$$

1.3.2 插补缺失值

Notation. 均值插补

1. 数值性变量: 采用平均值插补

2. 离散型: 采用众数插补

Notation. 同类均值插补:使用层次聚类方法归类缺失值的样本,用该类别的特征均值插补

Notation. $KNN(K-nearest\ neighbor)$ 缺失值插补:找到与含缺失值样本相似的 K 个样本,使用这 K 个样本在该缺失变量上的均值填充

K-nearest neighbor

基本思路

找到与新输入的待预测样本最临近的 K 个样本, 判断这 K 个样本中绝大多数的所属类别作为分类结果输出

条件:已经具有较大的样本量

Notation. KNN 算法的基本要素: 距离度量、K 值、分类决策规则

距离度量

Notation. KNN 算法能够分类:特征空间内的样本点之间的距离能够反映样本特征的相似程度

设有两个样本点 x_i, x_j , 以 n 维向量空间作为特征空间,将这两个点表示为:

$$egin{aligned} oldsymbol{x}_i, oldsymbol{x}_j \in oldsymbol{X}. \ oldsymbol{x}_i = \left(x_i^1, x_i^2, \dots, x_i^n
ight)^T. \ oldsymbol{x}_j = \left(x_i^1, x_i^2, \dots, x_i^n
ight)^T. \end{aligned}$$

特征点之间的距离定义为:

$$L_{p}\left(\boldsymbol{x}_{i},\boldsymbol{x}_{j}\right) = \left(\sum_{l=1}^{n}\left|x_{i}^{l}-x_{j}^{l}\right|^{p}\right)^{\frac{1}{p}}.$$

Example. 代入 p=2 ,易得 $L_2(\boldsymbol{x}_i,\boldsymbol{x}_j)$ 为平面上两点间的距离公式,该距离又称为欧氏距离:

$$L_2(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(x_{i_1} - x_{j_1})^2 + (x_{i_2} - x_{j_2})^2}.$$

代入 p = 1: $L_1(x_i, x_i)$ 称为曼哈顿距离:

K 值的选择

使用交叉验证方法确定最合适的 K 值

Learn 5

1.4 模型评估和性能度量

Notation. 留出法 (hold-out):

将原始数据集 D 分为两个互斥的子集 S,T ,S 作为训练数据集,T 作为测试数据集: $D=S\cup T,S\cap T=\varnothing$

在划分任务时要尽量保证 S 和 T 中的样本类别比例相似

Example.

$$D\left(a,b\right)\to S\left(\lambda a,\lambda b\right)\cup T\left(\left(1-\lambda\right)a,\left(1-\lambda\right)b\right).$$

该过程称为分层采样法,其中 $\lambda \in \left[\frac{2}{3}, \frac{4}{5}\right]$

使用 S 训练模型, T 进行模型测试, 多次随机划分 a,b 在 S 和 T 内的内容, 多次实验取测试结果平均值

Notation. 交叉验证法/k 折交叉验证 (cross validation/k-fold cross validation):

$$D = D_1 \cup D_2 \cup \ldots \cup D_k \, \coprod D_I \cap D_j = \varnothing (i \neq j).$$

此处 $\forall D_i$ 由 D 分层采样得到

每次实验使用 k-1 个子集的并集训练,剩下的一个子集作为测试集:

$$S = \sum_{i=1}^{m-1} D_i + \sum_{i=m+1}^{k} D_i \quad T = D_m.$$

取不同的 m 值共可以得到 k 组 "训练集-测试集",得到 k 个结果,取 k 个结果的平均值

Example. 5 折交叉验证的数据划分:

Notation. 若样本量 m 等于子集数 k , 交叉验证法等同于留一法 (leave one out, LOO)

留一法的优点: 训练结果更准确

缺点: 样本量太大的时候消耗过多资源

1.5 模型性能度量

Notation. 错误率:

$$E = \frac{1}{m} N \left(f \left(x_i \right) \neq y_i \right).$$

准确率:

$$Acc = \frac{1}{m} N \left(f \left(x_i \right) = y_i \right).$$

m 为样本总数, $N(f(x_i) = y)$ 表示符合特征 $f: x \to y$ 的样本数量

Notation. 二分类问题: