

How to Win Coding Competitions: Secrets of Champions

Week 5: Algorithms on Graphs 1 Lecture 1: Introduction to graphs

Maxim Buzdalov Saint Petersburg 2016

Roads and cities

Social networks

Even computer programs

- ► *V* set of graph's vertices
- \triangleright E set of graph's edges, a multiset of unordered pairs of vertices
- \blacktriangleright $(u, v) \in E$ means that an edge connecting vertices u and v exists in the graph

- ► *V* set of graph's vertices
- ► E set of graph's edges, a multiset of unordered pairs of vertices
- \blacktriangleright $(u,v) \in E$ means that an edge connecting vertices u and v exists in the graph

- ► *V* set of graph's vertices
- ► E set of graph's edges, a multiset of unordered pairs of vertices
- \blacktriangleright $(u,v) \in E$ means that an edge connecting vertices u and v exists in the graph
- ▶ Degree of a vertex v deg(v) the number of edges in E which contain v

- ► *V* set of graph's vertices
- ► E set of graph's edges, a multiset of unordered pairs of vertices
- \blacktriangleright $(u, v) \in E$ means that an edge connecting vertices u and v exists in the graph
- ▶ Degree of a vertex v deg(v) the number of edges in E which contain v

- ► *V* set of graph's vertices
- \triangleright E set of graph's edges, a multiset of **ordered** pairs of vertices

- ► *V* set of graph's vertices
- \triangleright E set of graph's edges, a multiset of **ordered** pairs of vertices

- ► *V* set of graph's vertices
- \triangleright E set of graph's edges, a multiset of **ordered** pairs of vertices
- ▶ Incoming degree of a vertex $v deg^-(v)$ the number of edges $(x, v) \in E$

- ► *V* set of graph's vertices
- \triangleright E set of graph's edges, a multiset of ordered pairs of vertices
- ▶ Incoming degree of a vertex $v deg^-(v)$ the number of edges $(x, v) \in E$
- ▶ Outgoing degree of a vertex $v deg^+(v)$ the number of edges $(v, x) \in E$

Weighted graph

- ► Can be either directed or undirected graph
- ▶ Has a function $W: E \rightarrow X$, where X is the set of weights
- ightharpoonup X is typically integers or reals, can also be symbols or strings

Weighted graph

- ► Can be either directed or undirected graph
- ▶ Has a function $W: E \rightarrow X$, where X is the set of weights
- ► X is typically integers or reals, can also be symbols or strings

Weighted graph

- ► Can be either directed or undirected graph
- ▶ Has a function $W: E \rightarrow X$, where X is the set of weights
- ► X is typically integers or reals, can also be symbols or strings
- lacktriangle In some cases, an unweighted graph is the same as a weighted graph with $X=\{1\}$

▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$

- ▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$
- \blacktriangleright Example: [A, B, F, D, C, G] is a path

- ▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$
- \blacktriangleright Example: [A, B, F, D, C, G] is a path

- ▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$
- \blacktriangleright Example: [A, B, F, D, C, G] is a path

- ▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$
- \blacktriangleright Example: [A, B, F, D, C, G] is a path

- ▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$
- \blacktriangleright Example: [A, B, F, D, C, G] is a path

- ▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$
- \blacktriangleright Example: [A, B, F, D, C, G] is a path

- ▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$
- \blacktriangleright Example: [A, B, F, D, C, G] is a path

- ▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$
- \blacktriangleright Example: [A, B, F, D, C, G] is a path

- ▶ A list of vertices v_1, v_2, \ldots, v_k , such that $(v_i, v_{i+1}) \in E$ for all $1 \le i < k$
- ightharpoonup Example: [A, B, F, D, C, G] is a path
- ► Simple path: no vertex appears twice in the path

► A path v_1, v_2, \ldots, v_k , such that $v_k = v_1$

- ► A path $v_1, v_2, ..., v_k$, such that $v_k = v_1$
- ightharpoonup Example: [C, G, H, D] is a cycle

- ► A path $v_1, v_2, ..., v_k$, such that $v_k = v_1$
- ▶ Example: [C, G, H, D] is a cycle

- ► A path $v_1, v_2, ..., v_k$, such that $v_k = v_1$
- ▶ Example: [C, G, H, D] is a cycle

- ► A path $v_1, v_2, ..., v_k$, such that $v_k = v_1$
- ▶ Example: [C, G, H, D] is a cycle

- ► A path $v_1, v_2, ..., v_k$, such that $v_k = v_1$
- ightharpoonup Example: [C, G, H, D] is a cycle

- ► A path $v_1, v_2, ..., v_k$, such that $v_k = v_1$
- ▶ Example: [C, G, H, D] is a cycle

- ► A path $v_1, v_2, ..., v_k$, such that $v_k = v_1$
- \blacktriangleright Example: [C, G, H, D] is a cycle
- ▶ Simple cycle: no vertex appears twice in the path, except for $v_1 = v_k$

Loop is an edge which connects a vertex to itself Multiedge is an edge which appears multiple times in E

Loop is an edge which connects a vertex to itself

Multiedge is an edge which appears multiple times in E

An undirected graph is connected if there exists a path between any two vertices

An undirected graph is connected if there exists a path between any two vertices Example of connected graph

An undirected graph is connected if there exists a path between any two vertices Example of graph which is not connected

An undirected graph is connected if there exists a path between any two vertices Example of graph which is not connected – three connected components

A directed graph is strongly connected if, for any two vertices u and v, there exists a path from u to v, and a path from v to u

A directed graph is strongly connected if, for any two vertices u and v, there exists a path from u to v, and a path from v to u Example of strongly connected graph

A directed graph is strongly connected if, for any two vertices u and v, there exists a path from u to v, and a path from v to u Example of graph which is not strongly connected

A directed graph is strongly connected if, for any two vertices u and v, there exists a path from u to v, and a path from v to u Example of graph which is not strongly connected – two strongly connected components

There exist several important types of graphs. Some of these frequently appear in programming competitions. Here they are:

- ► Trees, rooted trees and forests
- ► Cactuses
- ► Complete graphs and tournaments
- ► Bipartite graphs
- ► Planar graphs

▶ A tree does not contain any cycles. Graphs without cycles are called acyclic

- ▶ A tree does not contain any cycles. Graphs without cycles are called acyclic
- ▶ In any tree, |E| = |V| 1

- ► A tree does not contain any cycles. Graphs without cycles are called acyclic
- ▶ In any tree, |E| = |V| 1

Forest: a disjoint union of trees

- ▶ A tree does not contain any cycles. Graphs without cycles are called acyclic
- ▶ In any tree, |E| = |V| 1

Forest: a disjoint union of trees

Rooted tree: a tree where one of the vertices is a root.

All edges have direction either from or towards root

- ▶ A graph $G' = \langle V', E' \rangle$ is a subgraph of $G = \langle V, E \rangle$ if:
 - $V' \subset V, E' \subset E$
 - ▶ For all $(u, v) \in E'$, $u \in V'$ and $v \in V'$

- ▶ A graph $G' = \langle V', E' \rangle$ is a subgraph of $G = \langle V, E \rangle$ if:
 - $V' \subset V, E' \subset E$
 - ▶ For all $(u, v) \in E'$, $u \in V'$ and $v \in V'$

- ▶ A graph $G' = \langle V', E' \rangle$ is a subgraph of $G = \langle V, E \rangle$ if:
 - $V' \subseteq V, E' \subseteq E$
 - ▶ For all $(u, v) \in E'$, $u \in V'$ and $v \in V'$

Fix a spanning tree T of graph G. Every edge of G not in T forms a cycle with T. These are the fundamental cycles with regards to T. Any cycle can be uniquely expressed as a combination of fundamental cycles

► Each edge belongs to at most one cycle

► Each edge belongs to at most one cycle

► Each edge belongs to at most one cycle

Vertex-cactus: any two simple cycles share no common vertices

► Each edge belongs to at most one cycle

Vertex-cactus: any two simple cycles share no common vertices

► Each vertex belongs to at most one cycle

► Each edge belongs to at most one cycle

Vertex-cactus: any two simple cycles share no common vertices

► Each vertex belongs to at most one cycle

Bipartite graph: a undirected graph where $V = L \cup R$, $L \cap R = \emptyset$, such that for any edge (u, v) it holds that $u \in L$, $v \in R$

Bipartite graph: a undirected graph where $V = L \cup R$, $L \cap R = \emptyset$, such that for any edge (u, v) it holds that $u \in L$, $v \in R$

Bipartite graph: a undirected graph where $V = L \cup R$, $L \cap R = \emptyset$, such that for any edge (u, v) it holds that $u \in L$, $v \in R$

▶ In any bipartite graph, every loop has an even length

Complete graph K_n : an undirected graph with edges between all pairs of vertices

Complete graph K_n : an undirected graph with edges between all pairs of vertices

Complete graph K_n : an undirected graph with edges between all pairs of vertices Tournament T_n : a directed graph with either (u, v) or (v, u) for all u and v

Complete graph K_n : an undirected graph with edges between all pairs of vertices Tournament T_n : a directed graph with either (u, v) or (v, u) for all u and v

Complete graph K_n : an undirected graph with edges between all pairs of vertices Tournament T_n : a directed graph with either (u, v) or (v, u) for all u and v Complete bipartite graph $K_{n,m}$: an undirected graph with edges between all pairs of vertices from different parts

Complete graph K_n : an undirected graph with edges between all pairs of vertices Tournament T_n : a directed graph with either (u, v) or (v, u) for all u and v Complete bipartite graph $K_{n,m}$: an undirected graph with edges between all pairs of vertices from different parts

► Face: a piece of plane bounded by a loop in the graph never intersected by edges

- ► Face: a piece of plane bounded by a loop in the graph never intersected by edges
- ▶ Fact 1 (Euler characteristic): |V| |E| + |F| = 2.

- ► Face: a piece of plane bounded by a loop in the graph never intersected by edges
- ▶ Fact 1 (Euler characteristic): |V| |E| + |F| = 2.
- ▶ Fact 2: If $|V| \ge 3$ then |E| < 3|V| 6

- ▶ Face: a piece of plane bounded by a loop in the graph never intersected by edges
- ▶ Fact 1 (Euler characteristic): |V| |E| + |F| = 2.
- ▶ Fact 2: If $|V| \ge 3$ then |E| < 3|V| 6
- ▶ Fact 3 (Kuratowski): The graph is planar if and only if it doesn't contain subgraphs which are subdivision of K_5 or $K_{3,3}$. Subdivision of the graph is introducing some number of vertices in each edge.

