CO 485/685 Fall 2022:

Lecture Notes

1	Introduction	on to Cryptography	2
	Lecture 1	$(09/07; skipped) \dots \dots \dots \dots \dots \dots \dots$	2
	Lecture 2	Almost-Public Key Cryptosystems (09/09)	2
	Lecture 3	A Public Key Cryptosystem – RSA (09/12)	3
	Lecture 4	Security Definitions (09/14)	3
	Lecture 5	Actual IND-CPA systems (09/16)	4
2	Quadratic	Residues	6
	Lecture 6	Number Theory Background (09/19)	6
	Lecture 7	Squares Under a Modulus (09/21)	6
	Lecture 8	Squares cont'd (09/23)	7
	Lecture 9	Applying to DDH (09/26)	8
	Lecture 10	Quadratic Characters in the Complex Plane (09/28)	9
	Lecture 11	Quadratic Reciprocity (09/30)	10
3	Primality		13
	Lecture 12	Primality Testing $(10/03)$	13
	Lecture 13	Strong Primality Testing (10/05)	
	Lecture 14	Malleability (10/07)	15
	Lecture 15	Factorization Algorithms (10/17)	16
	Lecture 16	Better Sieves (10/19)	17
	Lecture 17	(10/21)	18
	Lecture 18	Index Calculus (10/26)	18
	Lecture 19	Hash Functions $(10/28)$	19
	Lecture 20	Signature Schemes $(10/31)$	20
	Lecture 21	Hashed RSA (11/02)	21
	Lecture 22	Zero-Knowledge Proofs (11/04)	

Lecture notes taken, unless otherwise specified, by myself during the Fall 2022 offering of CO 485/685, taught by David Jao.

Chapter/lecture titles are made-up nonsense and do not follow the textbook or any other published resource. Actually, scratch that, this entire document is nonsense because I am literally auditing this course two nested prerequisites behind.

Chapter 1

Introduction to Cryptography

Lecture 1 (09/07; skipped)

Lecture 2 Almost-Public Key Cryptosystems (09/09)

- For a symmetric key cryptosystem, require sets of key space K, message space M, and ciphertext space C
 - Define encryption function $Enc: K \to M \to C$ and decryption $Dec: K \to C \to M$
 - Correctness property: for all k, Dec(k) is a left inverse of Enc(k)
 - Symmetric means that both decryption and encryption use shared secret k, which we assume is drawn randomly from K
- Public key encryption scheme (Diffie, Hellman, Merkle, c. 1976)
 - Setup similar: message space M and ciphertext space C but with two key spaces K_1 of public keys and K_2 of private keys
 - Define $Enc:K_1\to M\to C$ and $Dec:K_2\to C\to M$
 - Define $KeyGen: \mathbb{1}^{\ell} \to R \subset K_1 \times K_2$
 - * For some reason, let $\mathbb{1}^n$ be the unary representation of n??
 - Correctness: for all $(k_1, k_2) \in R$ related, $Dec(k_2)$ is a left inverse of $Enc(k_1)$
- Merkle puzzle (1974)
 - Each party creates "puzzle" which is hard to solve but not too hard
 - Alice generates 1,000,000 puzzles and sends them to Bob
 - Bob solves one of the puzzles arbitrarily and sends half of the answer to Alice
 - Alice knows the answer, so Alice knows the second half of the answer, which becomes the shared secret
 - Eve cannot (realistically) solve 500,000 puzzles in time to intercept
- Diffie–Hellman key exchange
 - Consider the multiplicative group $G = (\mathbb{Z}/p\mathbb{Z})^* = 1, \dots, p-1$ and some arbitrary element $g \in G$ with sufficiently large order
 - Alice privately picks some $x \in \mathbb{Z}$, computes g^x , and sends it to Bob
 - Bob privately picks some $y \in \mathbb{Z}$, computes g^y , and sends it to Alice
 - Both can now calculate a shared secret $k = g^{xy} = (g^x)^y = (g^y)^x$
 - Eve would have to solve the Diffie–Hellman problem: given p, g, g^x, g^y , find g^{xy} which is known to be hard
- Clifford Cocks privately discovered RSA 1973, DH 1974 for GCHQ (if you believe the intelligence community)

Lecture 3 A Public Key Cryptosystem – RSA (09/12)

- RSA (Rivest, Shamir, Adleman 1977): first cryptosystem and remains secure
- Theoretically secure, but implementations are ass (cf. "Fuck RSA")
- MATH 135 review of the algorithm:
 - This "textbook RSA" has practical flaws and is insecure
 - $KeyGen : \mathbb{1}^{\ell} \to (pk, sk) \in R$
 - 1. Choose random primes $p, q \approx 2^{\ell}$ where p and q are odd and distinct
 - 2. Compute n = pq
 - 3. Choose $e \in (\mathbb{Z}/\phi(n)\mathbb{Z})^{\times}$ where $\phi(n) = (p-1)(q-1)$
 - 4. Compute $d = e^{-1} \mod \phi(n)$
 - 5. Disclose public key (n, e) and keep secret key (n, d)
 - $-Enc:K_1\to M\to C:(n,e)\mapsto m\mapsto m^e\bmod n$ where $M=(\mathbb{Z}/n\mathbb{Z})^\times=x:\mathbb{Z}/n\mathbb{Z}:\gcd(x,n)=1=C$
 - * Weird that M depends on n (part of the key). In practice, it doesn't matter because the only messages that divide n are the primes, which breaks RSA anyways
 - $Dec: K_2 \to C \to M: (n, d) \mapsto c \mapsto c^d \mod m$
- Correctness: Must show that $(m^e \mod n)^d \mod n = m \operatorname{Proof.} (m^e \mod n)^d \mod n = m^{ed} \mod n$ (exponentiation under mod). Then, since $d = e^{-1} \mod \phi(n)$, there exists k such that $de 1 = k\phi(n)$, we have $m^{\phi(n)k+1} \equiv (m^{\phi(n)})^k m \equiv m \pmod m$. This holds by Euler's theorem $(\forall m \in (\mathbb{Z}/n\mathbb{Z})^{\times}, m^{\phi(n)} \equiv 1 \pmod n)$ or Fermat's Little Theorem + Chinese Remainder Theorem (MATH 135)
- Security: Trivial that factoring n = pq breaks RSA by computing $\phi(n)$
 - Conversely, if you know $\phi(n)=(p-1)(q-1)$ you can take $q\phi(n)=(n-1)(q-1)$ and solve for q
 - * To avoid this, use the Carmichael exponent $\lambda(n) = \operatorname{lcm}(p-1,q-1)$ instead of $\phi(n)$ which works. Of course, this doesn't work in practice because it's not actually that much different
 - For any non-trivial case, knowing one pair (e, d) also allows factoring n
 - Must make an assumption about hardness to prove security:
 - * Factoring assumption: factoring random integers is hard
 - * RSA factoring assumption: factoring n = pq is hard (see, e.g., elliptical curve algorithm which depends on size of smallest prime in the factorization)
 - · Of course, quantum computing fucks all of this to hell (see troll PQRSA which uses many small primes to make terabyte-sized moduli)
 - * RSA assumption: given $n, e, m^e \mod n$, it is hard to find m
 - Can prove RSA assumption ⇒ RSA works (cannot prove without assumption without better results from complexity theory)

Lecture 4 Security Definitions (09/14)

- Security definitions, e.g., OW-CPA, IND-CPA, IND-CCA (Boneh, Shoup)
- How secure is a cryptosystem? Specify:
 - Allowable interactions between adversaries and parties
 - * Second part of abbreviation
 - Computational limits of adversary
 - * Not usually specified, usually probabilistic polynomial time

- Goal of the adversary to "break" the cryptosystem
 - * First part of abbreviation
- OW-CPA: "one-way chosen-plaintext attack"
 - Adversary, given public key pk and encryption c of message m under pk, wants to determine m
 - Formally, given a random pk and c such that c = Enc(pk, m) for some random m, it is infeasible for any probabilistic polynomial time algorithm \mathcal{A} to determine m with non-negligible probability. That is, $\Pr[\mathcal{A}(pk,c)=m]=O(\frac{1}{\lambda c})$ for all c > 0.
- Easier way to formalize ("Sequences of Games", Shoup 2004)
 - Two players: challenger \mathcal{C} and adversary \mathcal{A}
 - Then, OW-CPA is
 - 1. \mathcal{C} runs $KeyGen: \mathbb{1}^{\lambda} \xrightarrow{\$} (pk, sk)$
 - 2. \mathcal{C} chooses $m \stackrel{\$}{\leftarrow} M$
 - 3. \mathcal{C} computes $c \leftarrow Enc(pk, m)$
 - 4. $m' \stackrel{\$}{\leftarrow} \mathcal{A}(pk,c)$
 - * with the win condition that m'=m, and we say that a cryptosystem is OW-CPA if a probabilistic polynomial time adversary \mathcal{A} cannot win this game with non-negligible probability
 - IND-CPA (Goldmeier, Micoli 1984): indistinguishability
 - 1. \mathcal{C} runs $(pk, sk) \stackrel{\$}{\leftarrow} KeyGen(\mathbb{1}^{\lambda})$
 - 2. $(m_0, m_1) \stackrel{\$}{\leftarrow} \mathcal{A}(\mathbb{1}^{\lambda}, pk)$
 - 3. \mathcal{C} picks $b \stackrel{\$}{\leftarrow} 0, 1$
 - 4. \mathcal{C} computes $c \stackrel{\$}{\leftarrow} Enc(pk, m_b)$
 - 5. $b' \stackrel{\$}{\leftarrow} \mathcal{A}(\mathbb{1}^{\lambda}, pk, c)$
 - * with the win condition b = b', and a cryptosystem is IND-CPA if for all prob. poly. time \mathcal{A} , $\left|\frac{1}{2} \Pr[\text{win}]\right| = O(\frac{1}{\lambda^{\varepsilon}})$ for all $\varepsilon > 0$
 - * Encryption function must be random, otherwise \mathcal{A} can re-encrypt

Lecture 5 Actual IND-CPA systems (09/16)

- IND-CPA is the standard security definition for symmetric security
 - Ciphertext contains no information about plaintext (except length)
- Design a slightly different equivalent IND-CPA game:
 - 1. \mathcal{C} runs $(pk, sk) \stackrel{\$}{\leftarrow} KeyGen(\mathbb{1}^{\lambda})$
 - $2. \ (m_0,m_1) \xleftarrow{\$} \mathcal{A}(\mathbb{1}^{\lambda},pk)$

 - 3. \mathcal{C} picks $b \stackrel{\$}{\leftarrow} 0, 1$ 4. \mathcal{C} computes $c_1 \stackrel{\$}{\leftarrow} Enc(pk, m_b)$ and $c_2 \stackrel{\$}{\leftarrow} Enc(pk, m_{b-1})$
 - 5. $b' \stackrel{\$}{\leftarrow} \mathcal{A}(\mathbb{1}^{\lambda}, pk, c_1, c_2)$
- Consider textbook RSA: \mathcal{A} can choose $m_0 \neq m_1$ and compute $Enc(pk, m_0)$ and $Enc(pk, m_1)$ which allows it to win
 - In general, this applies to any scheme with deterministic encryption
- Goldwasser-Micali ("Probabilistic Encryption" 1982)
 - 1. Pick n = pq (useful to have $p \equiv q \equiv 3 \pmod{4}$)
 - 2. Pick $r \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $r \not\equiv x^2 \pmod{p}$ and $r \not\equiv x^2 \pmod{q}$
 - 3. Define pk = (n, r) and sk = (p, q)
 - 4. Select a message bit b from M=0,1

- 5. Encrypt $Enc(b) = r^b y^2$ for some $y \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^{\times}$
- Then, decrypt by determining ciphertext's squareness mod n
 - * This is easy with the factorization n = pq by Euler's criterion (a is square mod prime p if and only if $a^{(p-1)/2} \equiv 1 \pmod{p}$
 - * Determining squareness without factorization of n is hard, apparently
- Since plaintexts are one bit, $OW \iff IND$ and this is provable under the circular-v assumption that determining squareness is hard
- Also one bit messages are literally useless so who cares
- Elgamal (1984) (sometimes IND-CPA)
 - Publickeycryptosystemified Diffie-Hellman
 - 1. Setup is the same as DH, take some element $q \in G$ of a group
 - 2. Define $pk = g^x$ and sk = x

 - 3. Encrypt $Enc(m) = (g^y, g^{xy} \cdot m)$ for $y \overset{\$}{\leftarrow} \mathbb{Z}$ Then, decrypt $Dec(c_1, c_2) = \frac{c^2}{c_1^x} = \frac{g^{xy} \cdot m}{(g^y)^x} = m$
 - In general, key sharing schemes can be cryptosystemified like this
 - In an IND-CPA game, given $(g^y, g^{xy}m_b)$
 - * Divide out m_0 to get either g^{xy} (if $m_b = m_0$) or garbage
 - * Real challenge is distinguishing g^{xy} from garbage
 - Decisional Diffie-Hellman assumption: in the following game, $|\Pr[\mathcal{A} \text{ wins}] \frac{1}{2}|$ is negligible in λ
 - 1. \mathcal{C} chooses $p \stackrel{\$}{\leftarrow} \mathbb{Z}$ prime, $p \approx 2^{\lambda}$
 - 2. \mathcal{C} chooses $g \in (\mathbb{Z}/p\mathbb{Z})^{\times}$
 - 3. \mathcal{C} chooses $x, y \overset{\$}{\leftarrow} \mathbb{Z}$ and $h \overset{\$}{\leftarrow} (\mathbb{Z}/p\mathbb{Z})^{\times}$, computes $g_1 = g^x$, $g_2 = g^y$, $g_3 = g^{xy}$
 - 4. \mathcal{C} chooses $b \leftarrow 0, 1$ and $g_4 = g_3$ if b = 0 and h if b = 1
 - 5. $b' \leftarrow \mathcal{A}(\mathbb{1}^{\lambda}, p, g, g_1, g_2, g_4)$
 - Can prove: if DDH assumption holds, Elgamal is IND-CPA
- Layers of assumptions here:
 - DLOG: given g and g^x , it is hard to find x
 - CDH: given g, g^x , and g^y , it is hard to find g^{xy} (equivalent to Elgamal being OW-CPA)
 - DDH: given g^{xy} and garbage, is hard to distinguish the garbage
- How to piss off mathematicians: solving DLOG in $\mathbb{Z}/n\mathbb{Z}$ is easy but in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is
 - But $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is isomorphic to $\mathbb{Z}/(p-1)\mathbb{Z}$ so DLOG difficulty must not be preserved over isomorphism
 - Specifically, DLOG is as exactly hard as computing the isomorphism (notice that we send $x \mapsto g^x$
- DDH is actually easy in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, need a subgroup $G \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$ with |G| prime

Chapter 2

Quadratic Residues

Lecture 6 Number Theory Background (09/19)

- Recall: RSA primes are gigantic so it takes time to do operations
 - e.g. picking $e \in (\mathbb{Z}/\phi(n)\mathbb{Z})^{\times}$ or finding $d = e^{-1} \pmod{\phi(n)}$ using EEA which runs in a logarithmic number of steps
 - e.g. running $Enc(m) = m^e \pmod{n}$ or $Dec(c) = c^d \pmod{n}$ using squareand-multiply which runs in a logarithmic number of steps
- Hard: picking non-squares in integers modulo p

 - Set of primes $\left|((\mathbb{Z}/p\mathbb{Z})^{\times})^{2}\right| = \frac{p-1}{2}$ for odd p > 2- This is because $f(x) = x^{2}$ is a 2-to-1 function on $(\mathbb{Z}/p\mathbb{Z})^{\times}$
 - * To prove, show $f(a) = f(b) \iff a = \pm b$
 - * Apply Euclid's Lemma: $p \mid (x-y)(x+y)$ implies $p \mid x-y$ or $p \mid x+y$, equivalently, $x = y \pmod{p}$ or $x = -y \pmod{p}$
 - * Also another theorem: for R integral domain, every polynomial of degree n over R has at most n roots

Lecture 7 Squares Under a Modulus (09/21)

The big problem: Given $(\mathbb{Z}/n\mathbb{Z})^{\times}$ and $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, when is $x \equiv \square \pmod{n}$?

For example, for $\mathbb{Z}/15\mathbb{Z}$, 1 and 4 are squares; for 8: just 1; for 7: 1, 2, and 4; and for 13: 1, 3, 4, 9, 10, and 12.

This breaks down into cases: n composite, n prime power, n prime

Theorem

Suppose
$$n = \prod p_i^{e_i}$$
. Then, $x \equiv \square \pmod{n}$ if and only if for all $i, x \equiv \square \pmod{p_i^{e_i}}$.

Proof. Suppose $x=y^2\pmod n$ for a unit y. Then, $n\mid (x-y^2)$ and $p_i^{e_i}\mid (x-y^2)$ by transitivity. That is, $x\equiv y^2\pmod {p_i^{e_i}}$. In the reverse direction, if $p_i^{e_i}\mid (x-y^2)$ for all i, then by UPF (with some omitted detail), $n \mid (x - y^2)$.

The prime power case reduces to the prime case under conditions discovered in the homework problems lol.

Theorem

The number of squares in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is $\frac{p-1}{2}$ for primes $p \geq 3$.

Proof. This is because $x = y^2 = (-y)^2$ and the size of the set is p - 1.

Build a table (x, g^x) instead of (x, x^2) :

For p = 13 and g = 2, we get (1, 2, 4, 8, 3, 6, 12 = -1, -2, -4, -8, -3, -6, -12 = 1) and the squares are the even-indexed values (1, 4, 3, 12, 9, 10, 1).

This works for tables starting with non-squares: in fact, if $g \neq \square$, then $g^3 \neq \square$ (by the contrapositive, if $g^3 = \square$, then $g = \frac{g^3}{g^2} = \frac{\square}{\square} = \square$).

This gives us the result that $g^x = g^y$ when $x \equiv y \pmod{p-1}$ (note that this is equivalent to Fermat's Little Theorem, the reverse direction requires g coprime to p-1).

Definition (order)

 $\operatorname{ord}(a)$ is the period of $x \mapsto a^x$ for $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Equivalently, $\operatorname{ord}(a) = \min\{t \in \mathbb{Z} : a^t = 1, t > 0\}$.

Lemma

Given elements a and b, numbers x and y:

- $a^x = 1$ if and only if $ord(a) \mid x$
- $a^x = a^y$ if and only if $x \equiv y \pmod{\operatorname{ord}(a)}$
- $\operatorname{ord}(a^x) = \frac{\operatorname{ord}(a)}{\gcd(x,\operatorname{ord}(a))}$
- If ord(a) and ord(b) are coprime, then ord(ab) = ord(a) ord(b).

Proof. Only prove the last one:

Let $t = \operatorname{ord}(a)$, $u = \operatorname{ord}(b)$, $v = \operatorname{ord}(ab)$. Then, $(ab)^{tu} = a^{tu}b^{tu} = 1^{u}1^{t} = 1$ so we have $v \mid tu$. Now, WLOG, $(ab)^{vu} = 1^{u} = 1 \implies a^{vu}b^{vu} = a^{vu}1 = a^{vu} = 1$. This gives $t \mid vu$ and $t \mid v$ since $\gcd(t, u) = 1$. Likewise, $u \mid v$ and we can conclude $tu \mid v$ because $\gcd(t, u) = 1$. That is, tu = v.

Lecture 8 Squares cont'd (09/23)

Definition (primitive element)

 $g \in G$ where $\{g^n : n \in \mathbb{N}\} = G$. Also called a generator.

Recall: if there exists primitive $g \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, then for all $h \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ where $h = g^k$, $h \equiv \square \iff k$ even. We can determine squareness using this fact, but finding k such that $h = g^k$ is doing a discrete log, which is hard.

Whether or not a primitive element exists is a non-trivial observation:

Theorem (Gauss' primitive root)

For all primes p, $(\mathbb{Z}/p\mathbb{Z})^{\times}$ has a primitive element.

Proof. Observe that for all polynomials $f(x) \neq 0$ over $\mathbb{Z}/p\mathbb{Z}$, the number of roots of f(x) is at most deg f. Note that factorization fails in $\mathbb{Z}/n\mathbb{Z}$ in general: e.g. $x^2 - 1 = (x-1)(x+1) = (x-3)(x-5)$ mod 8 or something weird like x = (3x+2)(2x+3) mod 6. We have this observation because $\mathbb{Z}/p\mathbb{Z}$ is an integral domain (and indeed, a field).

Consider $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.

Claim $t = \operatorname{ord}(a) \mid p - 1$. Write p - 1 = tq + r. If r = 0, done. If r > 0, $\operatorname{ord}(a) = r < t$, contradiction and indeed r = 0.

For each divisor d of p-1, consider $S_d=\{x\in(\mathbb{Z}/p\mathbb{Z})^\times:\operatorname{ord}(x)=d\}$. Then, $\bigcup_{d\mid p-1}S_d=0$ $(\mathbb{Z}/p\mathbb{Z})^{\times}$ and this is a disjoint union. To prove Gauss' theorem, we just need $\left|S_{p-1}\right|>0$.

Proceed in general for arbitrary $|S_d| > 0$ for all $d \mid p - 1$.

If
$$S_d = \emptyset$$
, then $|S_d| = 0$. Otherwise, claim that $|S_d| = \phi(d) = |(\mathbb{Z}/d\mathbb{Z})^{\times}|$.

If S_d is not empty, then $\exists a \in S_d$ where $\operatorname{ord}(a) = d$. Consider $x^d - 1$. The roots of this polynomial will include all elements of S_d (and others). We can write the set of roots as exactly $\{a^0,\ldots,a^{d-1}\}$. So for all $b\in S_d,\,b=a^k$ since b is a root and we need only count those powers with order d. But that is exactly $\operatorname{ord}(a^i) = \frac{\operatorname{ord}(a)}{\gcd(i,d)} = \frac{d}{\gcd(i,d)}$. So we are counting the i such that gcd(i, d) = 1, which is exactly $\phi(d)$.

Now, $p-1=|(\mathbb{Z}/p\mathbb{Z})^{\times}|=\left|\bigcup_{d\mid p-1}S_d\right|=\sum|S_d|\leq\sum\phi(d)$ which is equal to p-1 by Möbius inversion. That last inequality being an equality implies that $|S_d| \neq 0$ for any $d \mid p-1$, and in particular $p-1 \mid p-1$.

Quick combinatorical proof of this fact: write out all the p-1 fractions over p-1, then each of $\phi(d)$ is the number of fractions where the denominator reduces to d. The sum must be p-1.

Lecture 9 Applying to DDH (09/26)

Recall the Decisional Diffie-Hellman problem: Given g, g^x, g^y, g^z , determine if z = xy. Formally, as a game:

- \mathcal{C} chooses a bit $b \in \{0,1\}$ and $x, y \overset{\$}{\leftarrow} \mathbb{Z}$ $b' \leftarrow \mathcal{A}(g, g^x, g^y, g^z)$ where $z \leftarrow \begin{cases} xy & b = 0 \\ \$ & b = 1 \end{cases}$
- Win condition: b = b' with non-negligible probability

Notice that if g is a primitive root, then $|\{g^x:x\in\mathbb{Z}\}|=p-1$. But bruteforce DLOG takes $\frac{p-1}{2}$ steps on average. Then, Elgamal is IND-CPA \iff DDH holds.

Proposition

The Decisional Diffie-Hellman assumption in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ with a primitive base q does not hold.

Proof. We tell squares and non-squares apart.

Recall from last lecture's theorem we have that if g is a primitive root, $g^x \equiv \Box \pmod{p}$ \iff $x \equiv 0 \pmod{2}$. Then, by Euler's criterion, $a \equiv \square \pmod{p} \iff a^{(p-1)/2} \equiv 1 \pmod{p}$. Therefore, it is possible to tell the parity of x, y, and z in reasonable time using Euler's criterion (since raising to a power is easy).

If xy is odd only when x and y are odd, so if you know the parity of z you can distinguish if z = xy or random with non-negligible advantage.

Proposition (Euler's criterion)

$$a \equiv \square \pmod p \iff a^{(p-1)/2} \equiv 1 \pmod p$$

Proof. Suppose $a \equiv \Box$ iff $a \equiv g^k$ for even $k = 2\ell$ iff $a^{(p-1)/2} = (g^k)^{(p-1)/2} = g^{k(p-1)/2} = (g^{p-1})^{\ell} = 1$ by F ℓ T.

Otherwise, $a \not\equiv \Box$ iff $a = g^k$ for $k = 2\ell + 1$ iff $a^{(p-1)/2} = (g^k)^{(p-1)/2} = g^{(p-1)/2 \cdot (2\ell + 1)} = g^{(p-1)/2 \cdot 2\ell} \cdot g^{(p-1)/2} = g^{(p-1)/2} \not= 1$. But in fact $g^{(p-1)/2} = \sqrt{g^{p-1}} = \sqrt{1} = -1$ since it is not positive 1.

Corollary. For p > 2, -1 is a square mod p if and only if $p \equiv 1 \pmod{4}$.

Proof. For -1 to be a square, we need $(-1)^{(p-1)/2} \equiv 1 \pmod{p}$. That is, $\frac{p-1}{2}$ is even and we have $p \equiv 1 \pmod{4}$.

This quantity $g^{(p-1)/2}$ is useful and we give it a name:

Definition (Legendre symbol)

For p > 2 and $a \in \mathbb{Z}/p\mathbb{Z}$, the quadratic character of a, written $(\frac{a}{p}) = a^{(p-1)/2}$, is 1 if $a \equiv \square$, 0 if $a \equiv 0$, and -1 if $a \not\equiv \square$.

Equivalently, define $\chi_p:(\mathbb{Z}/p\mathbb{Z})^{\times}\to\{\pm 1\}:a\mapsto(\frac{a}{p})$ and notice that this is a multiplicative homomorphism that preserves $\chi_p(ab)=\chi_p(a)\chi_p(b)$.

Theorem (multiplicativity)

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$

Proof.
$$(\frac{ab}{p}) = (ab)^{(p-1)/2} = a^{(p-1)/2}b^{(p-1)/2} = (\frac{a}{p})(\frac{b}{p})$$

Lecture 10 Quadratic Characters in the Complex Plane (09/28)

Recall: we have that for odd primes, $(\frac{-1}{p}) = 1 \iff p \equiv 1 \pmod{4}$ which we proved by applying Euler's criteron. We have the similar lemma:

Lemma

$$(\frac{2}{p}) = 1 \iff p \equiv 1, 7 \pmod{8}.$$

Proof. This is harder because $2^{(p-1)/2}$ is not easy to analyze, i.e., the order of 2 is not easy to derive.

What numbers, in general, have finite/known order? Complex roots of unity $\zeta_n = e^{2\pi i/n}$.

We can write $\sqrt{2} = \zeta_8 + \zeta_8^7$, so $2^{(p-1)/2} = (\zeta_8 + \zeta_8^7)^{p-1} = \frac{(\zeta_8 + \zeta_8^7)^p}{\zeta_8 + \zeta_8^7}$. The last transformation is helpful since p powers behave well mod p.

Now, notice that $(x+y)^p \equiv x^p + y^p \pmod{p}$ because all the other terms will have a factor of $p \mid \binom{p}{i}$.

Therefore,
$$(\frac{2}{p}) \equiv 2^{(p-1)/2} \equiv \frac{\zeta_8^p + \zeta_8^{7p}}{\zeta_8 + \zeta_8^7} \pmod{p}$$
.

There are four cases for $p \pmod{8}$ because we assume p > 2:

1.
$$\zeta_8^p = \zeta_8^1$$
 and $\zeta_8^{7p} = \zeta_8^7$

- 3. $\zeta_8^p = \zeta_8^3$ and $\zeta_8^{7p} = \zeta_8^5$ 5. $\zeta_8^p = \zeta_8^5$ and $\zeta_8^{7p} = \zeta_8^3$ 7. $\zeta_8^p = \zeta_8^7$ and $\zeta_8^{7p} = \zeta_8^1$

Clearly, for $p \equiv 1,7 \pmod 8$, we have $\frac{\zeta_8^p + \zeta_8^{7p}}{\zeta_8 + \zeta_8^7} = \frac{\zeta_8 + \zeta_8^7}{\zeta_8 + \zeta_8^7} = 1$. Slightly less intuitively, for $p \equiv 3, 5 \pmod{8}$, notice that $\zeta_8^3 + \zeta_8^5 = -\sqrt{2}$, so the fractions go to -1.

Note: We can algebraically extend $\mathbb{Z}/p\mathbb{Z}$ with the necessary complex numbers to make the proof valid (or simply assert that the necessary roots of unity exist).

The pattern sort of extends:

- $(\frac{3}{p}) = 1$ if $p = 1, 11 \mod 12$ and -1 if $p = 5, 7 \mod 12$. $(\frac{5}{p}) = 1$ if $p = \pm 1, \pm 9 \mod 20$ and -1 if $p = \pm 3, \pm 7 \mod 20$. $(\frac{7}{p}) = 1$ if $p = \pm 1, \pm 3, \pm 9 \mod 28$ and -1 if $p = \pm 5, \pm 11, \pm 13 \mod 28$.

In fact, we have $(\frac{7}{p}) = 1$ if $p = \pm 1, \pm 9, \pm 25 \mod 28$. This flips the question from is 7 a square mod p to asking if p is a square mod 28.

Lemma

$$\left| \begin{array}{cc} \left(\frac{-3}{p} \right) = \begin{cases} 1 & p \equiv 1 \pmod{3} \\ -1 & p \equiv 2 \pmod{3} \end{array} \right|$$

Proof. Consider again $(-3)^{(p-1)/2} = (\sqrt{-3})^{p-1}$. We can notice $\sqrt{-3} = \sqrt{3}i = \zeta_6 + \zeta_3$.

This gives us $(\sqrt{-3})^{p-1} = \frac{\zeta_3^p - \zeta_3^{2p}}{\zeta_3 - \zeta_3^2}$ because $\zeta_6 = -\zeta_3^2$.

If
$$p \equiv 1 \pmod{3}$$
, then $\frac{\zeta_3^p - \zeta_3^{2p}}{\zeta_3 - \zeta_3^2} = \frac{\zeta_3 - \zeta_3^2}{\zeta_3 - \zeta_3^2} = 1$ and if $p \equiv 2 \pmod{3}$, $\frac{\zeta_3^p - \zeta_3^{2p}}{\zeta_3 - \zeta_3^2} = \frac{\zeta_3^2 - \zeta_3^1}{\zeta_3 - \zeta_3^2} = -1$. \square

Notice that to get to $\sqrt{3}$ on the complex plane, we need ζ_{12} , which explains why we see mod 12 in the rule. To get $\sqrt{5}$, we can either use the fact that $\cos\frac{2\pi}{5}=\frac{1}{4}(\sqrt{5}-1)$ or notice that $(\zeta_5-\zeta_5^2-\zeta_5^3+\zeta_5^4)^2=(4-\zeta_5-\zeta_5^2-\zeta_5^3-\zeta_5^4)=5-(1+\zeta_5^1+\zeta_5^2+\zeta_5^3+\zeta_5^4)=5$. We can then execute the same fraction-by-cases technique, getting our result mod 5.

Aside: This is the Gauss sum for $\sqrt{5} = \sum_{i=1}^{\infty} (\frac{i}{5}) \zeta_5^i$

Quadratic Reciprocity (09/30) Lecture 11

Recall the pattern from last lecture, where we noticed that asking if q is a square mod pseems to be like asking if p is a square mod 4q. This is almost true, but in fact

Theorem (Quadratic Reciprocity)

 $(\frac{q}{p})=(\frac{p}{q})$ for odd primes $p\neq \pm q$ where at least one is congruent to 1 mod 4 and at least one is positive.

Equivalently, for all distinct positive odd primes p and q, $(\frac{p}{q})(\frac{q}{p}) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$

The proof follows by Gauss sums and the vague ideas from the last lecture.

This means we can evaluate any Legendre symbol using a modulus as either one of

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}$$

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1 & p \equiv \pm 1 \pmod{8} \\ -1 & p \equiv \pm 3 \pmod{8} \end{cases}$$

$$\left(\frac{q}{p}\right) = \left(\frac{p}{q}\right)(-1)^{\frac{p-1}{2}\frac{q-1}{2}} = \begin{cases} (\frac{p}{q}) & p \equiv \pm 1 \pmod{4} \text{ or } q \equiv \pm 1 \pmod{4} \\ -(\frac{p}{q}) & p \equiv q \equiv 3 \pmod{4} \end{cases}$$

which is nicer than using Euler's criterion.

Example 11.1. Is 71 a square mod 101?

Solution. Write $\left(\frac{71}{101}\right) = \left(\frac{101}{71}\right) = \left(\frac{30}{71}\right) = \left(\frac{2}{71}\right)\left(\frac{3}{71}\right)\left(\frac{5}{71}\right)$ by quadratic reciprocity and multiplicativity.

Then,
$$\left(\frac{2}{71}\right) = 1$$
 since $71 \equiv 7 \pmod{8}$.

Also,
$$\left(\frac{3}{71}\right) = -\left(\frac{71}{3}\right) = -\left(\frac{2}{3}\right) = 1$$
 since $71 \equiv 3 \pmod{4}$.

Finally, $\left(\frac{5}{71}\right) = \left(\frac{71}{5}\right) = \left(\frac{1}{5}\right) = 1$ since 1 is always a square.

This gives
$$\left(\frac{71}{101}\right) = 1 \cdot 1 \cdot 1 = 1$$
 so 71 is a square mod 101.

Asymptotically, this is not faster than Euler's criterion because we require factoring. However, it is prettier.

To deal with a random large number, we must consider what to do after factoring out all the 2s (since we can deal with those quickly).

Definition (Jacobi symbol)

For all $m, n \in \mathbb{N}_{>0}$ with n odd, $\left(\frac{m}{n}\right) = \prod_{i=1}^{k} \left(\frac{m}{p_i}\right)$ where $\prod_{i=1}^{k} p_i = n$ is the prime factorization of n

Theorem (Jacobi)

For all positive and odd m and n, $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}} = \begin{cases} 1 & n \equiv 1 \pmod{4} \\ -1 & n \equiv 3 \pmod{4} \end{cases}$ $\left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}} = \begin{cases} 1 & n \equiv \pm 1 \pmod{8} \\ -1 & n \equiv \pm 3 \pmod{8} \end{cases}$ $\left(\frac{m}{n}\right) = \left(\frac{n}{m}\right)(-1)^{\frac{n-1}{2}\frac{m-1}{2}} = \begin{cases} (\frac{n}{m}) & n \equiv \pm 1 \pmod{4} \text{ or } m \equiv \pm 1 \pmod{4} \\ 0 & \gcd(m,n) \neq 1 \\ -(\frac{n}{m}) & n \equiv m \equiv 3 \pmod{4} \end{cases}$

Note: For Legendre symbols, $\left(\frac{a}{p}\right) = 1 \iff a \equiv \square \pmod{p}$. However, for Jacobi symbols, we only have the one-way implication $\left(\frac{m}{n}\right) = -1 \implies m \not\equiv \square \pmod{n}$.

Return now to the application to cryptography, specifically to Goldwasser-Micali.

Goldwasser-Micali cryptosystem

Key Generation: Choose random primes p, q. Set n = pq.

Choose $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $\left(\frac{x}{p}\right) = \left(\frac{x}{q}\right) = -1$ (then $\left(\frac{x}{n}\right) = 1$). Publish x.

Encrypt: $m \in \{0, 1\}$

Choose some $r \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then, $Enc(m) = x^m r^2 = c$.

Decrypt: Determine whether c is a "fake" square using the factorization.

The underlying assumption is that it is not easy to distinguish actual squares mod n and "fake" squares mod n.

Chapter 3

Primality

Lecture 12 Primality Testing (10/03)

Given $n \in \mathbb{Z}$, how can we tell if n is prime?

Lemma (Fermat test)

Recall F ℓ T: for a prime $p, a \in (\mathbb{Z}/p\mathbb{Z})^{\times} \implies a^{p-1} = 1$. Therefore, if $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ and $a^{n-1} \neq 1$, then n is not prime.

Definition (Fermat witness)

Let
$$n \in \mathbb{N}$$
, $\alpha \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ where $\alpha^{n-1} \neq 1$.

When n is prime, no Fermat witness can exist. When n is not prime, only some elements are Fermat witnesses. The other elements are Fermat liars. How many liars are in $(\mathbb{Z}/n\mathbb{Z})^{\times}$?

Theorem

For n > 2, if there exists one Fermat witness in $(\mathbb{Z}/n\mathbb{Z})^{\times}$, then there exist at least $\frac{\phi(n)}{2}$ Fermat witnesses.

Proof. Consider the set $H = \{ \alpha \in (\mathbb{Z}/n\mathbb{Z})^{\times} : \alpha^{n-1} = 1 \}.$

H is a subgroup: $1 \in H$, $ab \in H$, $a^{-1} \in H$ (trivial by exponentiation properties).

So by Lagrange's theorem, $|H| \mid |(\mathbb{Z}/n\mathbb{Z})^{\times}|$.

Either (1) $|H| = \phi(n)$, so there are no witnesses, or (2) $|H| < \phi(n)$, so $|H| \le \frac{\phi(n)}{2}$.

Definition (Carmichael number)

 $n \in \mathbb{N}, n > 2$ such that n is composite and n has no Fermat witnesses.

Examples: $n = 561 = 3 \times 11 \times 17$. By F ℓ T, we have $\alpha^{n-1} = \alpha^{560}$ is 1 mod 3, 1 mod 11, and 1 mod 17.

Recall that for n prime: $a^{\frac{n-1}{2}} \equiv (\frac{a}{n}) \pmod{n}$ when n > 2, odd, and $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. This gives us the following test:

Lemma (Solovay–Strassen test)

If
$$a^{\frac{n-1}{2}} \not\equiv (\frac{a}{n}) \pmod{n}$$
, then n is not prime.

We can calculate $a^{\frac{n-1}{2}}$ by repeated squaring and $(\frac{a}{n})$ by Jacobi reciprocity and factoring out 2's. We can now define witness as in the Fermat test.

Definition (Euler (Solovay–Strassen) witness)

An element $\alpha \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ where $(\frac{\alpha}{n}) \not\equiv \alpha^{\frac{n-1}{2}} \pmod{n}$. If an element is not an Euler witness, it is an Euler liar.

Notice that all Euler witnesses must also be Fermat witnesses, meaning that hopefully we have a more refined test here.

Theorem

If n > 2 is composite and odd, then there exists at least one Euler witness.

Proof. Suppose n is composite and $n = p \times k$.

If $p \nmid k$, then solve $\alpha \equiv \beta \pmod{p}$ and $\alpha \equiv 1 \pmod{k}$ where β is a quadratic non-residue mod p. Now, calculate

$$\left(\frac{\alpha}{n}\right) = \left(\frac{\alpha}{p}\right)\left(\frac{\alpha}{k}\right) = \left(\frac{\beta}{p}\right)\left(\frac{1}{k}\right) = (-1)(1) = -1$$

Suppose $\alpha^{\frac{n-1}{2}}$ is -1. Then, $\alpha^{\frac{n-1}{2}} \equiv -1 \pmod{n}$ and that means $\alpha^{\frac{n-1}{2}} \equiv -1 \pmod{k}$. But we know $\alpha \equiv 1 \pmod{k}$, so this is a contradiction.

Otherwise, $p \mid k$. Let $\alpha = 1 + k$. Calculate

$$\left(\frac{\alpha}{n}\right) = \left(\frac{1+k}{n}\right) = \left(\frac{1+k}{p}\right)\left(\frac{1+k}{k}\right) = \left(\frac{1}{p}\right)\left(\frac{1}{k}\right) = (1)(1) = 1$$

Suppose $\alpha^{\frac{n-1}{2}}=1$. This implies that $\operatorname{ord}(\alpha)\mid\frac{n-1}{2}$. Calculate $\alpha^p=(1+k)^p=1^p+pk^1+\cdots+\binom{p}{p}k^p=1$ which implies $\operatorname{ord}(\alpha)=p$. But $p\mid n\implies p\nmid n-1\implies p\nmid\frac{n-1}{2}$.

Therefore, α is an Euler witness.

This theorem combined with the at-least- $\frac{\phi(n)}{2}$ theorem means that we have for every odd, composite n>2 there are $\frac{\phi(n)}{2}$ Euler witnesses.

Lecture 13 Strong Primality Testing (10/05)

Recall: for the Fermat test, evaluate a^{n-1} a bunch of times. If it is equal to 1, prime or liar; otherwise, composite. For the Solovay–Strassen test, evaluate $a^{\frac{n-1}{2}} = (\frac{a}{n})$. If yes, prime or Euler liar; otherwise, composite. Also, there are an infinite number of Carmichael numbers that screw with this but otherwise you have around a 50% chance of getting a witness.

We can refine this further beyond considering n-1 and $\frac{n-1}{2}$.

Write $n-1=2^t \cdot s$ so that s is odd. Then, a^{n-1} is a^s squared t times. So instead of asking if $a^{2^t s}=1$, consider if $a^{2^{t-1}s}$ is an "expected" square root of 1, i.e., ± 1 . If it is not,

it is composite. If it is and it is -1, we have a prime or liar. If it is and it is 1, keep going back. If we reach $a^s = 1$, we get no information.

Lemma (*Miller-Rabin test*)

Let $x \leftarrow a^s$. Do:

- If x = 1, stop. Probably prime.
- If x = -1, stop. Probably prime.
- Otherwise, $x \leftarrow x^2$

while $x \neq a^{2^t s}$. If we reach the end, it is composite.

Definition (Miller-Rabin (strong) liar)

$$a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$$
 if either $a^s = 1$ or $a^{2^k s} = -1$ for $0 \le k < t$.

We call this a "strong liar" because every strong liar is an Euler liar, and every Euler liar is a Fermat liar.

Theorem

Suppose n has at least two distinct prime factors. Then, the number of Miller–Rabin liars is at most $\frac{\phi(n)}{4}$ and in general, if n has ℓ distinct prime factors, there are at most $\frac{\phi(n)}{2^{\ell}}$ Miller–Rabin liars.

We can make these primality tests deterministic by iterating a = 1, ..., n. We do not need to go to a = n and instead we can establish an upper bound on the smallest witness. The bound (by Bach) is $O(\log^2 n)$, specifically, $2\log^2 n$. But this requires the Generalized Riemann Hypothesis which everyone believes anyways, so we just check $a = 1, ..., 2\log^2 n$.

To analyze complexity, notice that we have $\log n$ multiplications at each step, i.e., $\log^{1+\epsilon} n$ bit operations using fast multiplication. So the complexity is $O(\log^{2+(1+\epsilon)+1} n)$.

Further reading:

- AKS (Agrawal–Kayal–Saxena; 2004) primality test in $O(\log^6 n)$ which does not rely on GRH and was an undegrad project(!!)
- ECPP (elliptic curve prime proving) notable for not having liars, also does not require GRH and runs non-deterministically (Monte Carlo) in $O(\log^5 n)$
- Cyclotomic primality test in $O((\log n)^{\log \log n})$, best until AKS proved that primality is in P.

Since there are $\frac{n}{\log n} + O(\sqrt{n})$ primes less than n, we can pick random numbers of size e^{ℓ} to get an approximate $\frac{1}{\ell}$ probability of a prime.

Lecture 14 Malleability (10/07)

Recall the Goldwasser–Micali cryptosystem. It satisfies IND-CPA provided that the quadratic reciprocity problem is hard. That is, determining whether an x = pq with $\left(\frac{x}{n}\right) = 1$ is actually a square or not (i.e. $\left(\frac{x}{p}\right) = 1$).

However, an adversary can still alter the message without needing to decrypt. This also applies, for example, to XOR one-time pads (since if $c = k \oplus m$ and we intercept $c \mapsto c \oplus n$, recepient will get $m' = m \oplus n$). Using MACs can get around this problem (e.g. AES with GCM or Chacha20 with Poly1305).

Definition (non-malleability)

Given the game NM-CPA:

- 1. \mathcal{C} generates (pk, sk)
- 2. $(m_0, m_1, m_0', m_1') \overset{\$'}{\leftarrow} \mathcal{A}(\lambda, pk)$ where $m_0' \neq m_1'$ 3. \mathcal{C} chooses $b \overset{\$}{\leftarrow} \{0, 1\}$
- 4. \mathcal{C} computes $c = E(m_b)$
- 5. $c' \leftarrow \mathcal{A}(\lambda, pk, c)$

with win condition $D(c') = m'_b$ with non-negligible probability above 50%.

Instead of CPA games, consider CCA2 (chosen-ciphertext attack 2) games. Here, the adversary has a decryption oracle that takes anything except c. In CCA1, the oracle can only be accessed prior to receiving c.

Theorem

```
IND-CCA2 is equivalent to NM-CCA2
```

Note that IND-CPA is not equivalent to NM-CPA, which is instead equal to IND-PCA (parallel ciphertext attack, where all oracle queries must occur at once).

Lecture 15 Factorization Algorithms (10/17)

Naive approach: trial division by $1, \dots, \sqrt{n}$ which is $O(\sqrt{n}) = O(\exp(\frac{1}{2}\log n))$. Note that we call this "exponential" because we measure with respect to the size of the input, i.e., $\lg n \approx \log n$.

Proposition

```
If x, y \in (\mathbb{Z}/n\mathbb{Z})^{\times} satisfy x^2 \equiv y^2 \pmod{n} and x \not\equiv \pm y \pmod{n}, then \gcd(n, x - y)
is a non-trivial factor of n.
```

Proof. Since $x^2 - y^2 \equiv 0$, we have $(x - y)(x + y) \equiv 0$. But we know that $x - y \not\equiv 0$ and $x + y \not\equiv 0$ so there must be some weird hidden factor.

If gcd(n, x - y) = n, then $n \mid (x - y) \implies x \equiv y \pmod{n}$ and if gcd(n, x - y) = 1, then $n \mid (x-y)(x+y)$ which implies $n \mid (x+y)$ by Gauss' Lemma which gives the same contradiction. Therefore, since the GCD must divide n, it is non-trivial.

Using this, we can find non-trivial factors of n by finding x and y and then applying the EEA. How to find x and y?

Random squares (Dixon)

Definition (B-smoothness)

 $n \in \mathbb{N}$ where the largest prime factor is less than B

Chose $x_i \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^{\times}$. For each x_i , compute $x_i^2 \pmod{n}$ and keep the *B*-smooth squares. We can tell if a number is B-smooth by trial division (since B is small).

We need at least t+1 squares that are B-smooth.

¹Where $t = \pi(B)$ is the prime-counting function.

This gives us squares $x_1^2 \bmod n = p_1^{e_{1,1}} \cdots p_t^{e_{t,1}}$ up to $x_{t+1}^2 \bmod n = p_1^{e_{1,t+1}} \cdots p_t^{e_{t,t+1}}$.

Take the subset product $\prod x_i^2 \bmod n = p_1^{\sum e_{1,i}} \cdots p_t^{\sum e_{t,i}}$.

We can define
$$b_i = \begin{cases} 0 & i \in S \\ 1 & i \notin S \end{cases}$$
 so that $\sum_{i \in S} e_{j,i} = \sum_{i=1}^{t+1} e_{j,i} b_i = 0 \mod 2$ to find squares.

Solve this homogeneous linear system over $\mathbb{Z}/2\mathbb{Z}$ (where the b_i are variables). We know there exists a non-trivial solution because there are more variables (at least t+1) than equations (exactly t).

That gives a square subset product
$$x^2 = \prod_{i=1}^{t+1} (x_i^2)^{b_i} \mod n = \prod_{j=1}^t p_j^{\sum_{i=1}^{t+1} e_{j,i}b_i} \mod n = y^2$$
.

The LHS and RHS are unrelated except for the fact that they are equal mod n. In fact, with about 50% probability, $x \not\equiv \pm y \mod n$. The probability can be improved by increasing t+1 to like t+10. Since $t \approx B$ is large, this is negligible.

Picking B: large B makes it more likely to find B-smooth squares, however, the amount of work t+1 is proportional to B.

We want to pick B such that the probability of squares being B-smooth is $\frac{1}{B}$. This depends on n.

From analytic number theory, the probability that a random $y \stackrel{\$}{\leftarrow} \mathbb{Z}/n\mathbb{Z}$ is $L(\alpha,c)$ -smooth is $L(1-\alpha,\frac{1-\alpha}{c}).^2$ So we set a bound on B of $L_n(\frac{1}{2},\frac{\sqrt{2}}{2})$. Since $(\log n)^k \ll B \ll \sqrt{n}$, we call this subexponential.

Lecture 16 Better Sieves (10/19)

What is the probability that a particular $x^2 \mod n$ is B-smooth? Vanishingly small for large n (in the hundreds of digits) and small-ish B (around 10^9). However, we can prove that the runtime for random squares is $L_n(\frac{1}{2},2\sqrt{2})$ using results from analytic number theory, i.e., probabilistic subexponential time.

How can we improve? Pick x such that $x^2 \mod n$ is small (and more likely to be B-smooth). Naively: small numbers stay small (but are useless). Instead, pick $x \approx \sqrt{n}$ so that $x^2 \mod n = x^2 - n$.

Then, if $x = \sqrt{n} + k$, $x^2 = (\sqrt{n} + k)^2 - n = 2k\sqrt{n} + k^2 = O(k\sqrt{n})$, i.e., around half the size of n and much smaller than n.

This is the quadratic sieve. We can bound $B < L_n(\frac{1}{2}, 1)$ and prove runtime $L_n(\frac{1}{2}, \sqrt{2})$.

Suppose we write $\sqrt{n} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{c}}} = [a_0, a_1, \dots]$ as a continued fraction.

Define $\frac{P_i}{Q_i} = [a_0, \dots, a_i]$. These fractions rapidly approach \sqrt{n} (and are in fact the best rational approximations). That is, $P_i^2 - nQ_i^2$ rapidly approaches 0. We can prove that $0 < P_i - nQ_i^2 < 2\sqrt{n} + 1$. Then, we can take $P_i^2 \mod n$ and sieve guaranteed that the squares are $O(2\sqrt{n})$.

Where $L_n(\alpha,c) = O(\exp(c(\log n)^{\alpha}(\log\log n)^{1-\alpha}))$. Notably, $L_n(1,1) = n$ and $L_n(1,c) = n^c$. Then, $\sqrt{n} = L_n(1,\frac{1}{2})$. Also, $L_n(0,c) = (\log n)^c$. That is, we interpolate between $L_n(0,c)$ polynomial time and $L_n(1,c)$ exponential time

Comparing the continued fraction sieve and quadratic sieve, $O(2\sqrt{n})$ appears better than $O(k\sqrt{n})$. However, if the quadratic sieve considers consecutive numbers to square, we can do a sieve of Eratosthenes-like search to find good B-smooth candidates. This is faster.

One more improvement step: number field sieve.

Choose $d \approx 6 \in \mathbb{Z}$ and $m \approx n^{1/d}$. Write n in base m: $n = a_0 + a_1 m + \dots + a_5 m^5$ and consider the polynomials $f(x) = a_0 + a_1 x + \dots + a_5 x^5$ and g(x) = x - m.

We know that $f(m) = n \equiv 0 \pmod{n}$ and g(m) = 0. That is, m is a root of both f and g mod n. The coefficients are also all around $m = O(n^{1/d})$ in size.

Consider α a complex root of f (but consider it as part of a number field $\alpha \in \mathbb{Z}[\alpha]$). We pick $a_i, b_i \in \mathbb{Z}$ such that $a_i + b_i \alpha = \prod \beta_i$ is smooth in $\mathbb{Z}[\alpha]$ and $a_i + b_i m = \prod q_i$ is smooth in \mathbb{Z} .

Pick a subset S such that $\prod_{i \in S} (a_i + b_i \alpha) = \square$ in $\mathbb{Z}[\alpha]$ and $\prod_{i \in S} (a_i + b_i m) = \square \mod n$ in \mathbb{Z} . We can expand the first sum, then replace α with $m \mod n$ to get congruent squares for a sieve. In fact, $\alpha \mapsto m \mod n$ is a ring homomorphism from $\mathbb{Z}[\alpha] \to \mathbb{Z}/n\mathbb{Z}$.

Since the numbers are smaller, we have complexity $L_n(\frac{1}{3}, \sqrt[3]{\frac{64}{9}})$.

Lecture 17 (10/21)

Lecture 18 Index Calculus (10/26)

There is a connection between runtimes of factoring algorithms and DLOG algorithms:

$$\begin{array}{c|c} \text{Factoring } n & \text{DLOG in } \mathbb{Z}_p^* \text{ or } \mathbb{F}_q^* \text{ where } q = p^k \\ \hline \text{Trial } (O(n)) & \text{Trial } (O(p)) \\ O(\sqrt{n}) & \text{Pollard's rho } (O(\sqrt{p})) \\ \text{Random squares } (L_p(\frac{1}{2},\sqrt{2})) & \text{Index calculus } (L_p(\frac{1}{2},\sqrt{2})) \\ \text{NFS } (L_n(\frac{1}{3},\sqrt[3]{\frac{64}{9}})) & \text{NFS for DLOG } (L_p(\frac{1}{3},\sqrt[3]{\frac{64}{9}})) \\ \text{Special NFS } (L_n(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & \text{Tower NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}}) \text{ if } k < 50) \\ P(1) & P(1) & P(2) & P(3) & P(3) & P(4) & P(4) \\ \text{Tower NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}}) \text{ if } k < 50) \\ P(2) & P(3) & P(4) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}}) \text{ if } k < 50) \\ P(3) & P(4) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}}) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},\sqrt[3]{\frac{32}{9}})) & P(4) \\ \text{Special NFS } (L_q(\frac{1}{3},$$

Theorem (Shoup)

For a generic group, classical probabilistic DLOG algorithms require $\Omega(\sqrt{p})$ group operations.

What we mean by generic here is that the group "interface" is exposed (multiplication, inversion, equality) but we don't know anything about the elements/structure.

Index calculus

Consider $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$, $g, h = g^{\alpha}$. We want to find α , the "index". We construct "random index calculus" from the random squares algorithm. Pick random x_i and

calculate:

$$\begin{split} g^{x_1} \bmod p &= p_1^{e_{1,1}} \dots p_t^{e_{t,1}} \\ & \vdots \\ g^{x_{t+1}} \bmod p &= p_1^{e_{1,t+1}} \dots p_t^{e_{t,t+1}} \end{split}$$

where we keep B-smooth $g^{x_i} \mod p \approx O(p)$ until we get more equations than primes p_i .

If we take log base g on both sides: $x_1 \equiv \sum e_{i,1} \log_g p_i \pmod{p-1}$. Since we know the x_i and $e_{i,j}$, we can solve the system of linear equations for the discrete logs $\log_g p_i$ (since there are at least t+1 equations and t variables).

Now, take random y find an $h^y = p_1^{f_1} \dots p_t^{f_t}$ that is B-smooth. Taking logs as above, $y\alpha = \sum f_i \log_a p_i$ and we can solve for α .

Since this is basically the same process as random squares, it is no surprise it has similar time complexity $L_p(\frac{1}{2}, \sqrt{2})$. Practically, it's slightly harder than factoring.

Lecture 19 Hash Functions (10/28)

To establish something that is NM-CCA2 secure, we need to somehow "sign" the ciphertext to distinguish "authenticated" ciphertexts. We can do this with MACs (e.g., AES-GCM or ChaCha20-Poly1305) but we will do something different.

Consider a hybrid encryption scheme: use public-key encryption to send a symmetric key that encrypts the message. This is CO 487 content.

Hash functions

Most common hash functions are the SHA family: SHA0 (broken 2005), SHA1 (broken 2017), SHA2 (actually used), SHA3 (not really used, made in anticipation of SHA2 breaking). Again, CO 487 content beyond the scope of this course.

Definition (hash function)

Function
$$H: S \to T$$
 (typically, $S = \{0, 1\}^*$ and $T = \{0, 1\}^{\lambda}$)

Ideally, a hash function is a random oracle, i.e., $H \leftarrow \{f : (f : S \to T)\}$. This is useful, e.g., for making hashed RSA signatures existentially unforgeable under chosen message attack.

There is no way to easily construct a random oracle because (1) we can't construct the set of all functions and (2) we run into measure theory issues with defining a probability distribution on that set. Instead we construct with desired properties:

- 1. Preimage resistant: Given $t \in T$, it is infeasible to find $s \in H^{-1}(t)$.
- 2. Second preimage resistant: Given $s \in S$, it is infeasible to find $s' \in S$ such that $s \neq s'$ and H(s) = H(s').
- 3. Collision resistant: It is infeasible to find $s \neq s'$ such that H(s) = H(s').

 $^{^3\}log_g p_i$ always exists. If g is not a generator since some generator h exists and we have $\frac{\log_h p_i \mod p - 1}{\log_h g \mod p - 1}$

Example 19.1. Are all preimage resistant functions second preimage resistant?

Solution. Consider $f(x) = x^2 \mod n$. To find a preimage, take $x = \sqrt{y}$ (hard). To find a second preimage, take $x' = -x \neq x$ so $(-x)^2 = x^2$ (easy).

To be formal, use games. For example, with collision resistance: Suppose we have a family of hash functions $HashGen: \mathbb{1}^{\lambda} \mapsto H_{\lambda}$. Play the game:

- 1. Pick a hash function $H_{\lambda} \stackrel{\$}{\leftarrow} HashGen(\mathbb{1}^{\lambda})$
- 2. $(s, s') \leftarrow \mathcal{A}(\mathbb{1}^{\lambda}, H_{\lambda})$

with win condition $H_{\lambda}(s) = H_{\lambda}(s')$ and $s \neq s'$. We define $\{H_{\lambda} : \lambda \in \mathbb{N}\}$ to be collision-resistant if no probabilistic polynomial time adversary \mathcal{A} can win this game with non-negligible probability in λ .

We can construct collision-resistant hash functions from claw-free permutations by Damgård.

Definition (claw-free permutation)

Given a set X, the pair of permutations (f,g) is claw-free if it is infeasible to find $x_1, x_2 \in X$ such that $f(x_1) = g(x_2)$.

The wrong way: Given claw-free permutations $f: X \to X$ and $g: X \to X$, we define $H: \{0,1\}^* \to X$ with $H(\varepsilon) = x_{\varepsilon}$. Inductively, $H(b_1b_2\cdots b_n) = h(H(b_1\cdots b_{n-1}))$ where h=f if $b_n=0$ and g if $b_n=1$. Claim this is collision-resistant because if there is a collision H(m)=H(m') and $m\neq m'$, we have a claw at some point, which is a contradiction. Unfortunately, we could run into a loop back to x_{ε} .

Instead, pick $x_0 \in X$ and define $x_{\varepsilon} = g(f(x_0))$ and define $H(b_0 \cdots b_n) = h(h(H(b_0 \cdots b_{n-1})))$ as above. Then, we cannot arrive at x_{ε} because generating pairs of $f(f(\dots))$ and $h(h(\dots))$ cannot create $g(f(\dots))$.

Lecture 20 Signature Schemes (10/31)

Consider some RSA modulus n = pq, p > 2, q > 2, $p \neq q$ where $p \equiv 3 \pmod{4}$ and $q \equiv 3 \pmod{4}$ (Blum integers, notable for use in the Blum–Blum–Shub generator).

Let y_p and $-y_p$ be square roots of y mod p (and for q). Notice that $\left(\frac{-1}{p}\right) = -1$ and $\left(\frac{-1}{q}\right) = -1$. Then, exactly one of $\{y_p, -y_p\}$ is a square mod p (and for q).

Finally, combining gives exactly one of the square roots of $y \mod n$ is a square mod n. This means that $f(x) = x^2$ is a permutation on $((\mathbb{Z}/n\mathbb{Z})^{\times})^2$.

Choose $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $(\frac{a}{n}) = -1$ Then, define $g(y) = a^2y^2$ which is also a permutation.

Note: suppose f(x) = g(y). Then, $x^2 = (ay)^2$ and $x \neq \pm ay$ because if $x = \pm ay$ then $\left(\frac{x}{n}\right) = \left(\frac{\pm 1}{n}\right)\left(\frac{a}{n}\right)\left(\frac{y}{n}\right)$ but this is 1 = (1)(-1)(1), contradiction. From this, we can factor n (by Fermat).

Overall: claw-free permutations \rightarrow collision-resistant hash functions \rightarrow {secure digital signatures, CCA2-secure encryption, etc.}

How do we generate secure digital signatures?

Suppose we have RSA pk = (n, e) and sk = (n, d). Then, define signing and verification as $Sign : (\mathbb{Z}/n\mathbb{Z})^{\times} \to (\mathbb{Z}/n\mathbb{Z})^{\times} m \mapsto \sigma := m^d \mod n$ and $Verify : (m, \sigma) \mapsto \sigma^e \mod n \stackrel{?}{=} m$.

Definition (signature schemes)

A signature (scheme) is a tuple (KeyGen, Sign, Verify) where

- $KeyGen: \mathbb{1}^{\lambda} \mapsto (pk, sk)$
- $Sign: (sk, m) \mapsto \sigma$
- $Verify: (pk, m, \sigma) \mapsto \{0, 1\}$

and we have that if $(pk, sk) \stackrel{\$}{\leftarrow} KG(\mathbb{1}^{\lambda})$ and $\sigma \stackrel{\$}{\leftarrow} S(sk, m)$, then $V(pk, m, \sigma) = 1$.

Under Textbook RSA, it is trivial to forge junk (but valid) signatures, i.e., given random signature σ , it signs some calculable message.

Example security definition game: EUF-CMA

Existential unforgeability (EUF): adversary produces a valid signature

Chosen-message attack (CMA): adversary can always use a signing oracle

$$\begin{array}{l} 1. \ (pk,sk) \xleftarrow{\$} KeyGen(\mathbb{1}^{\lambda}) \\ 2. \ \ \mathbf{for} \ i = 1 \ldots q \ \mathbf{do:} \\ m_i \xleftarrow{\$} \mathcal{A}(\mathbb{1}^{\lambda},pk,(m_1,\sigma_1),\ldots,(m_{i-1},\sigma_{i-1})) \\ \sigma_i \xleftarrow{\$} Sign(sk,m_i) \end{array}$$
 end

 $3. \ (m,\sigma) \overset{\$}{\leftarrow} \mathcal{A}(\mathbb{1}^{\lambda},pk,(m_1,\sigma_1),\dots,(m_q,\sigma_q))$

with win condition $Verify(pk, m, \sigma) = 1$ and for all $i, m \neq m_i$.

Definition (EUF-CMA)

A signature scheme is EUF-CMA if there does not exist a probabilistic polynomial time adversary \mathcal{A} which wins the EUF-CMA game with non-negligible probability.

Hashed RSA $KeyGen: \mathbb{1}^{\lambda} \mapsto ((n,e),(n,d))$ $Sign: m \mapsto H(m)^d \bmod n$ for hash $H: \{0,1\}^* \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ (i.e., a claw-free permutation) $Verify: (m,\sigma) \mapsto H(m) \stackrel{?}{=} \sigma^e \bmod n$

We can prove that if the RSA assumption holds⁴ and the hash function H is a random oracle, then Hashed RSA is EUF-CMA.

Lecture 21 Hashed RSA (11/02)

Recall EUF-CMA and Hashed RSA. We want to prove

Theorem

Hashed RSA is EUF-CMA assuming:

- The RSA assumption holds
- The hash functions H are random oracles

Proof. For a contradiction, let \mathcal{A} be an adversary that wins the EUF-CMA game, generating a forged signature (m_*, σ_*) . Note that we must expose the hash function H to the adversary.

⁴Given n, e, m^e , it is infeasible to find m.

Consider when H has the property that for some $\sigma \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, $H(m_*) = m\sigma^e$. Then, $\sigma_* = H(m_*)^d = (m\sigma^e)^d = m^d\sigma$ so $\sigma_*\sigma^{-1} = m^d$. We could return $H(m_*) = m\sigma^e$ but we still have to respond to signing queries of \mathcal{A} somehow.

To respond to a query for m_i , pick a random $\sigma_i \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^{\times}$ and set $H(m_i) = \sigma_i^e$ and respond with σ_i . Note that the challenger must maintain a table of $H(m_i)$ to respond to duplicates.

To make this work somehow, we define
$$H(m) = \begin{cases} m\sigma^e & \text{with probability } \frac{1}{q+1} \\ \sigma^e & \text{with probability } \frac{q}{q+1} \end{cases}$$

Then, notice that the adversary will make at most q+1 relevant hash function requests $(q \text{ for the signing queries}, 1 \text{ for } m_*)$. Now, the probability that we get what we want, i.e., calculate m^d , is $\left(\frac{q}{q+1}\right)^q \frac{1}{1+1} A dv(\mathcal{A}) > \frac{1}{(q+1) \exp(1)} A dv(\mathcal{A})$ which is non-negligible since q is polynomial and $A dv(\mathcal{A})$ is non-negligible.

That is, we can break RSA in probabilistic polynomial time with non-negligible probability, violating the RSA assumption. Therefore, \mathcal{A} cannot exist.

Note: non-negligible means that there exists an n such that $\Pr[\mathcal{A} \text{ wins}] = f(\lambda) \in \Omega(\frac{1}{\lambda^n})$.

Further reading: EdDSA (Schnorr), "Short signatures without random oracles" (Boneh–Boyen)

Lecture 22 Zero-Knowledge Proofs (11/04)

Suppose that $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ where n = pq.

Claim: there exists a y such that $x = y^2 \mod n$.

If Alice knows that $x=y^2$ and sends y to Bob, that is a full-knowledge proof. A zero-knowledge proof would not send y.

Instead, Alice chooses a random $r \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^{\times}$ and computes $xr^2 = y^2r^2 = (yr)^2$. If she sends $\beta = xr^2$ and $\alpha = yr$, Bob can verify that $\alpha^2 = \beta$. However, Bob cannot trust that α is in fact yr and cannot prove that $\frac{\beta}{x} = r^2$ without sending r.

Protocol For Alice to prove that she knows y such that $y^2 = x$,

- 1. Alice picks $r \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^{\times}$ and sends xr^2
- 2. Bob picks $b \xleftarrow{\$} \{0,1\}$ and sends b
- 3. Alice sends $\rho = y^b r$ and sends ρ 4. Bob verifies that $\rho^2 = \beta x^{b-1}$

Then, if b = 0, Bob can catch a forged y and if b = 1, Bob is more certain that y exists. The chance that Alice is cheating and avoids being caught in λ iterations is $2^{-\lambda}$.

Suppose Alice does not know a square root $y = \sqrt{x}$. She could:

- Choose r randomly, send $\beta = xr^2$, and hope that b = 0 to send r
- Choose α randomly, send $\beta = \alpha^2$, and hope that b = 1 to send α

meaning that Alice can forge with success probability 50%, and indeed Bob could fool himself half the time by doing this himself. That is, a zero-knowledge proof does not

introduce any new information that Bob could not have produced on his own.

Then, a security definition for a ZKP protocol requires

- 1. Correctness: With an honest prover and honest verifier, the proof succeeds with probability 100%.
- 2. Soundness: With a dishonest prover and honest verifier, then there is a non-negligible probability that they get caught.
- 3. Zero-knowledge: With an honest prover and dishonest verifier, then the verifier can simulate correct proofs with non-negligible probability. This means that the verifier cannot actually use any information for anything else (e.g., cannot factor a number even if the ZKP proves that the prover knows the factors).

where non-negligible means any useful number (e.g., 50%, 25%, 30%, etc.).

From a ZKP, we can construct a signature scheme. Generate a key (x, y) where $y^2 = x$. Signing is done by:

- 1. Alice picks random r and sends x and $\beta = xr^2$.
- 2. Bob picks random b and sends b
- 3. Alice calculates $\rho = ry^b$ and sends ρ

To verify, ensure that $\rho^2 = \beta x^{-1}$.

Alternatively, if we want to use DLOG (i.e., with g and g^x , prove that you know x):

- 1. Alice picks random r and sends g, g^x , and $\beta = g^r$
- 2. Bob picks random bit b and sends b
- 3. Alice calculates $\rho = r + bx$ and sends ρ

To verify, ensure that $q^{\rho} = \beta(q^x)^b$.

We call these Σ protocols because the back-and-forth looks like a Σ .

Definition (Fiat-Shamir transformation)

To transform a ZKP protocol to a signing scheme, set $b = H(\beta, m)$ where H is a random oracle. Then, the signature of m is (β, ρ) . To verify, assert ρ satisfies the ZKP protocol given β .

Notice that there is only one bit of entropy, so it is forgeable 50% of the time. If we try increasing entropy in the DLOG scheme by making $b \in \mathbb{Z}$, correctness and soundness still hold but zero-knowledge might not.