Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	<u> </u>	
No.	29	×

[5667]-105

F.E. EXAMINATION, 2019

ENGINEERING PHYSICS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of logarithmic tables, slide, rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (iv) Assume suitable data, if necessary.

Given :
$$e = 1.6 \times 10^{-19} \text{ C}$$

 $h = 6.63 \times 10^{-34} \text{ Js}$
 $c = 3 \times 10^8 \text{ m/s}$
 $m_e = 9.1 \times 10^{-31} \text{ kg}$

- 1. (a) Explain the theory of formation of Newton's rings. Prove that the diameters of bright rings are proportional to square root of odd natural numbers. [6]
 - (b) Explain the following: [3]
 - (i) Piezoelectric effect
 - (ii) Magnetostriction effectwith diagrams.

P.T.O.

(c) Calculate the depth of sea if the time interval between the emitted signal and the echo received is 2 sec. in SONAR studies.

Assume the velocity in sea water as 1490 m/s. [3]

Or

- 2. (a) Derive the equation for resultant amplitude in Fraunhofer diffraction due to single slit and obtain the conditions to principal maximum and minima. [6]
 - (b) Explain any two factors with remedies which affect architectural acoustics of auditorium. [3]
 - (c) In a Newton's rings experiment, the diameter of certain bright ring is 0.65 cm and that of 10th bright, ring beyond it is 0.95 cm. If $\lambda = 6000$ Å, calculate the radius of curvature of a convex lens in contact with glass plate. [3]
- 3. (a) Explain Huygen's theory of double refraction.
 - (b) Draw the energy band diagrams for p-n junction diode in :
 - (1) Zero bias
 - (2) Forward bias
 - (3) Reverse bias conditions. [3]
 - (c) Calculate the conductivity of pure silicon at room temperature when the concentration of charge carriers is 1.6×10^{10} per cm³. Given : $\mu_e = 1500$ cm²/volt-sec, $\mu_h = 500$ cm²/volt-sec.

[5667]-105

4.	(a)	Define Fermi level in conductors. Using Fermi-Dirac probabil	lity	
		distribution function, show that Fermi level in int		
		semiconductor lies exactly at centre of the band gap.	[6]	
	(<i>b</i>)	Explain the following:	[3]	
		(i) Stimulated emission		
		(ii) Population inversion		
		(iii) Metastable state.		
	(c)	Explain the construction process in holographic technique.	[3]	
5.	(a)	Derive Schrodinger's time independent wave equation.	[6]	
	(<i>b</i>)	State de Broglie hypothesis. Derive the equation for de Brog	glie	
		wavelength in terms of kinetic energy.	[4]	
	(<i>c</i>)	An electron in an infinite potential well is in ground sta	ate.	
		Find the fourth energy level of electron in eV.	[3]	
			3	
		Or		
6.	(<i>a</i>)	Define phase velocity and group velocity.	[6]	
		Show that		
		(i) Phase velocity of matter waves is $e^{2}v$.		
		(ii) Group velocity of matter waves is equal to particle velocity	ity.	
	<i>(b)</i>	Explain the physical significance of wave function ψ a	ınd	
		$ \psi ^2$.	[4]	
	(c)	Find the de Broglie wavelength of electron of ener	rgy	
		10 keV.	[3]	
		G.		

[5667]-105 3 P.T.O.

- **7.** Define superconductivity. Distinguish between Type-I and (a)Type-II superconductors. [6]
 - Explain synthesis of nanoparticles using ball milling (*b*) method. [4]
 - two applications of Nanotechnology in brief. [3] (c) Explain any

Or

- How can gold nanoparticles be synthesized using colloidal 8. (a)route? Explain the nucleation and growth of nanoparticles using LaMer diagram. [6]
 - Explain the BCS theory of superconductors. [4]
 - (c) The critical temperature of a superconductor with isotopic mass 200 is 5K. Calculate the critical temperature of superconductor when isotopic mass is 196. [3]