KUOPION YLIOPISTO

Tietojenkäsittelytieteen laitos Laskennan teoria

kirjatentti 30.5.2007

- Oletetaan, että M on k-nauhainen Turingin kone (k > 1).
 - a) Kuvaile, miten konstruoidaan yksinauhainen Turingin kone N, joka simuloi koneen M toimintaa. (10 p)
 - b) Selitä, miten koneen N laskenta etenee, kun N simuloi koneen M yhtä siirtymäaskelta. (12 p)
 - c) Mikä merkitys on sillä tiedolla, että moninauhaisen Turingin koneen toimintaa voidaan simuloida yksinauhaisella Turingin koneella? (6 p)
- 2 Mitä tiedetään Turingin koneiden ja seuraavien kieliperheiden suhteesta:
 - a) rekursiiviset kielet (6 p)
 - b) rekursiivisesti numeroituvat kielet (6 p)
 - c) rekursiivisesti numeroitumattomat kielet (6 p)

Olkoot
$$L_e = \{ M \mid M \text{ on Turingin kone, jolle } L(M) = \emptyset \}$$

ja $L_{ne} = \{ M \mid M \text{ on Turingin kone, jolle } L(M) \neq \emptyset \}.$

Tiedetään, että L_{ne} on rekursiivisesti numeroituva, muttei rekursiivinen.

- d) Mihin kieliperheeseen Le sisältyy? Perustele! (8 p)
- a) Selitä, miten Postin vastaavuusongelma palautetaan kontekstittomien kielioppien moniselitteisyysongelmaan. (9 p)
 - b) Sovella a-kohdassa kuvailemaasi palautusta Postin vastaavuusongelman tapaukseen

$$A = 1, 10111, 10.$$

 $B = 111, 10, 0. (4 p)$

- c) Perustele, miksi a-kohdassa kuvailemasi palautus on oikeellinen. (9 p)
- d) Onko a-kohdassa kuvailemasi palautus tehtävissä polynomisessa ajassa? Perustele! (6 p)
- 4 Miten näytetään, että ongelma on
 - a) $\mathcal{N}\mathcal{F}(6\,\mathrm{p})$
 - b) **NP**-täydellinen (6 p)
 - c) NP-vaikea (6 p)