データ構造とアルゴリズム

2019年4月 - 7月

教員名:松井くにお

研究室:67・106(やつかほ)内線:75-2206

E-mail: kmatsui@neptune.kanazawa-it.ac.jp

この授業について

■ 教室と時間

- ▶ 2EP2クラス:水曜1限@23.323
- ▶ 2EP3クラス:水曜2限@23.323

■ オフィスアワー

- ▶ 火曜5限、場所は 21.405室
- できるだけ事前にメールでアポをとって下さい。
- ▶ これ以外の時間帯:必ずメールでアポをとって下さい。

■ 教科書

▶ アルゴリズムとデータ構造 第2版[森北出版]

学習計画

データ	構造と	:アルゴリズム	(松井ク	ラス)講義日程と内容(予定)
2EP2、	2EP3	@23. 323		第3版 5月31日
日	付	曜日	講義回数	学習内容
4月	10日	(水)	第1回	授業のガイダンス、アルゴリズムの基礎、時間計算量
	17日	(水)	第2回	基本データ構造(配列とリスト、スタックとキュー)
	24日	(水)	第3回	アルゴリズムにおける基本概念(木、再帰)
5月	8日	(水)	第4回	データの探索
	15日	(水)	第5回	ソートアルゴリズム 1 (選択ソート, 挿入ソート)
	22日	(水)	第6回	ソートアルゴリズム 2 (クイックソート, マージソート)
	29日	(水)		休講
	3 1 日	(金) 4限	第7回	レポート課題 1 - 6 の解説 2 クラス合同小テスト (教室は23・221)
6月	5日	(水)	第8回	小テストの解答・解説、ソートアルゴリズムのまとめ
	12日		第9回	グラフアルゴリズム(グラフとそのデータ構造)
	19日	(水)2EP2穴水		総合演習(2EP2)/重み付きグラフ、最短経路探索(2EP3)
		(水)2EP3穴水		<u>重み付きグラフ、最短経路探索 (2EP2) /総合演習 (2EP3)</u>
	28日			重み付きグラフ、最短経路探索(2EP2)@23.320/総合演習(2EP3)
7月	3日	(水)	第12回	アルゴリズム設計手法、総復習
	10日	(水)	第13回	達成度確認試験の過去問
	19日	(金) 4限	第14回	2クラス合同達成度確認試験(教室は23・221) アルゴリズムの限界
	24日	(水)		休講
	3 1 日	(水)	第15回	試験の解答、総復習、自己点検

前回のおさらい

■ クイックソート

- ▶ 分割:基準値に対して大小で判断
- ▶ 最小単位になるまで再帰的に繰り返す

■ マージソート

- > 分割統治法
- > 分割、統治、組み合わせ
- ▶ 再帰的アルゴリズム

※マージ: 併合

今回の内容

- 小テストの解答・解説
 - ▶ 別紙
- 第1週レポート課題
 - ➤ スライド解答の間違い(スライドが間違いで採点はOK)
- ソートアルゴリズムのまとめ
 - ➤ 選択ソート
 - ▶ 挿入ソート
 - > ヒープソート
 - > クイックソート
 - > マージソート

- 3. 計算時間が以下の各式であったとき、その時間計算量をオーダ 記法で示せ、なお、nは問題サイズであり、自然数とする.
- (1) 4n²+1024n+65536 O (n²)
- (2) $n + \log_2 n$ O(n)
- (3) n+eⁿ (eは自然対数の底で, 2.718...) *O* (eⁿ)
- (4) 1+2+•••+n

数列の和であるため多項式に書き換えが可能

$$\frac{1}{2} \times n(n+1) = \frac{1}{2}n^2 + \frac{1}{2}n$$
 $O(n^2)$

選択ソート

■ アルゴリズム

- ▶ 前提:n個のデータが入力されている
- ① 入力データから最大値を見つける
- ② 見つけた最大値のデータを対象から外す
- ③ 12の操作をn-1回繰り返す

■ 時間計算量

$$\sum_{i=1}^{n-1} i \times O(1) = O(1) \times \frac{n(n-1)}{2}$$
$$= O(n^2)$$

選択ソート(具体例)

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

選択ソート(具体例)

挿入ソート

■ アルゴリズム

- ▶ 前提:n個のデータをソートの対象とする
- ① 最初のデータを左端に置く
- ② 次のデータは元のデータに合わせて昇順に並べる
- ③ 12の操作をn-1回繰り返す

■ 時間計算量

- ▶ 最良時間計算量:ソート済の場合 O(n)
- ▶ 最悪時間計算量:選択ソートと同じ O(n²)
- ➤ 平均時間計算量: O(n²)

挿入ソート(具体例)

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

挿入ソート(具体例)

<u>ヒープ</u>

■ ヒープの定義

- ▶ 2分木で必ず左詰め
 - 性質1 2分木の最大のレベルをlmとすると、 $0 \le k \le lm-1$ を満たす 各レベルk には 2^k 個の節点が存在し、レベルlmに存在する葉はその レベルに左詰めされている.
- ▶ 親は子よりも必ず大きい
 - 性質2 各節点に保存されるデータは、その子に保存されるデータより大きい

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

ヒープ

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

K. I. T.

ヒープへのデータ構造の作成

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

39	17	24	11	5	1	2	9		
0	1	2	3	4	5	6	7	8	9

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

39	23	24	17	5	1	2	9	11	
0	1	2	3	4	5	6	7	8	9

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

39	23	24	17	6	1	2	9	11	5
0	1	2	3	4	5	6	7	8	9

■ 方法

- ▶ 2分木の左詰めで追加
- ▶ 親と比べて親が小さければ位置を交換
- ▶ 親が大きければ終わり

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6} 31

39	23	24	17	6	1	2	9	11	5	31
0										

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6} 31

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6} 31

■ 方法

- ▶ 2分木の根の値(最大値)を取り出す
- ▶ 最後に追加したデータを根に移動する
- ▶ 根と根の子の大きい方を交換する
- ▶ 上記の操作を葉に向かって繰り返す(ヒープを保つ)

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

ヒーブ

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

39

ヒープ

ヒープソート

- アルゴリズム
 - ▶ 毎回最大値を取り出したものを順に並べる
- 時間計算量
 - ➤ 最悪時間計算量 2×n× log n = O(n log n)

クイックソート

■ アルゴリズム

- ① 適当に基準値を選ぶ
- ② 基準値の大小によってグループに分割
- ③ グループごとに①②を繰り返す
- ④ 最小単位になったら終了

■ 時間計算量

> 0 (n log n)

クイックソート(考え方)

クイックソート(具体例)

■ 入力: {17, 39, 1, 9, 5, 24, 2, 11, 23, 6}

左端から基準値より大きい値を見つける

右端から基準値より小さい値を見つける

クイックソート(具体例)

クイックソート

クイックソート(具体例)

■ 入力: {6, 2, 1, 9, 5}

(a)	6	2	1	9	5
	0	1	2	3	4

(e)	1	2	5	9	6
	0	1	2	3	4

マージソート

■ アルゴリズム

- ① データの集合を2つの集合に分割する
- ② ①を再帰的に繰り返し、最小単位になったら分割の終了
- ③ 分割した集合を深いレベルから順に再帰的にマージする

■ 時間計算量

> 0 (n log n)

K. I. T.

マージソート(考え方)

マージソート(具体例)

■ 入力: {1, 5, 9, 17, 39} {2, 6, 11, 23, 24}

K. I. T.

マージソート(考え方)

マージソート(具体例)

■ 入力: {2, 24} {6, 11, 23}

【第8週出席課題】 学籍番号:

クラス・番号:

氏名:

自然数の集合{35,21,4,49,55,19,12,32}を入力とする。

1. 選択ソートを行なうステップ(1)~(7)で、配列に適切な数字を入れなさい。 途中でソートが終了した場合は、それまでで良い。

初期	35	21	4	49	55	19	12	32
	0	1	2	3	4	5	6	7
(1)								
	0	1	2	3	4	5	6	7
(2)								
	0	1	2	3	4	5	6	7
(3)								
	0	1	2	3	4	5	6	7

2. 挿入ソートを行なうステップ(1)~(7)で、配列に適切な数字を入れなさい。 途中でソートが終了した場合は、それまでで良い。

3. クイックソートを行なう際、基準値を21とした。下記のステップ(1)~(7)で、配列に適切な数字を入れなさい。2回目以降の基準値はそれぞれのグループの右端値とする。途中でソートが終了した場合は、それまでで良い。

4. マージソートで、分割とマージのステップに当てはまる数字入れなさい。

