Lecture 1 and 2

Logic formalises valid methods of reasoning.

Ex.

1. if the train arrives late and there is no taxi than

John is lake for his meeting.

- 1 Pand 79 implies 8.
- 2. John is not late and train arrived late
- 1 and 2 implies there is a taxi 2. 78 and P ; 1 and 2 implies 9.
- 3. If it is raining and John does not have his umbrella

then John will get wet of the state of the s

3 and 4 implies John had his umbrella.

P: train arrives late.

9: There is a taxi

7: John is late for hismeeting.

P172 Propositional Logic p and 79 implies 8 Pand 78 Syntax. Peduce: 2 Countably infinite set of atomic propositions. P = {Po, Pi, - - -}. Logical Connectives: 7 (not), V(or), 1 (and)
disjunction Conjunction The set \$ of formulas of propositional logic is the smallest set satisfying the following conditions. · Every atomic proposition p = \$ · if de \$\P\$ than \quad de \$\P\$ · if d,BED then dVBED · if d,BED then dABED. Binary: 7 followed by V, 1 E_{\times} . $\forall \alpha V\beta \triangleq ((74) V\beta)$ PA72 ; N2 ; P72

T-True, 1- False.

Semantics. Valuation & is a function V:P-> {T, 13.

 $\Psi \subseteq P = \{P \mid \Psi(P) = T\}$. Extend the function v:P→ ¿T, B, to v: \$ = €T, B.

For $p \in P$, $\hat{\mathcal{V}}(p) = \mathcal{V}(p)$ For λ of the form $\neg \beta$ $\hat{\mathcal{V}}(\lambda) = \sum_{j=1}^{j} \text{otherwise}$. For & of the form BV8 & (a) = 5 + if & (B) = v(8)=1

For Lot the form BAS V(L) = T if V(B)=V(8)=T

ショミストシム)=ナる.

VEX VEP IF V(p)=T Utid iff UHX VEBNS if VEB ON VES. Satisfiability

A formula & is Satisfiable if ltere is valuation

V such that V(d) = T. Notation $V \neq d$ d is satisfiable. $V = \int_{-\infty}^{\infty} V(d) dd$ $V(d) = \int_{-\infty}^{\infty} V(d) dd$

Validity

a is valid if VED for every valuation 1.

Notation Ed - 2 is valid

Tautologies - valid formulas.

Proposition. Let LED & is valid iff z is not

Proof. & is not valid iff 3 4 s.t 4(x)=1
P#X

iff v(1x)=T iff 7x is satisfiable.

Question. Given &, an algorithm to check if EX

Ex. p-satisfiable pv7p-valid

P17P - not satisfiable.

Vocabulary Voc(α).

For $p \in P$ $Voc(p) = \{p\}$.

If $\alpha = \gamma B$, $Voc(\alpha) = Voc(B)$ If $\alpha = \beta V B$, $Voc(\alpha) = Voc(B) \cup Voc(B)$.

If $\alpha = \beta N B$, $Voc(\alpha) = Voc(B) \cup Voc(B)$.

Proposition. Let $\alpha \in \Phi$ V_1, V_2 be valuations.

If V, and V2 agree on Voc(a) than V, (a) = V2(a)

V, Fd iff V2 Fd.

Derived Connectives.

Lecture 3 Syntax

$$\overline{\Phi}(P) := P | \neg A | A V B$$
negation Disjunction

Sementics

d NB

Valuation
$$\psi: \mathcal{P} \to \mathcal{E}T, \mathcal{I}$$
 $\psi \subseteq \mathcal{P}$ $\hat{\psi}: \overline{\phi} \to \mathcal{E}T, \mathcal{I}$ $\hat{\psi} \subseteq \overline{\phi}$

 $\forall \cdot \mathcal{Q} \rightarrow \mathcal{Z}_{1,\perp}$ $\forall = \mathcal{Q}$ $\forall \text{ Satisfies } \mathcal{A} (\in \overline{\Phi}) \text{ if } \hat{\mathcal{Y}} (\mathcal{A}) = T$ $\forall \mathcal{P} = \mathcal{A} \text{ [V Satisfies } \mathcal{A}$

Derived Connectives

$$\mathcal{A} \equiv \beta \triangleq (\mathcal{A} \rightarrow \beta) \wedge (\beta \rightarrow \mathcal{A})$$

$$\mathcal{A} \iff \beta$$

Implication $V \models A \rightarrow B$ if $V \not\models A$ then $V \models A \rightarrow B$ if $V \models A$ and $V \models B$ then $V \not\models A \rightarrow B$ $V \not\models A$ and $V \not\models B$ then $V \not\models A \rightarrow B$.

V models a.].

It is satisfiable if there exist $V \in V \text{ is } V \notin A$ $V(\alpha) = T$ It is valid if for all $V \in V$, $V \not= A$ $V(\alpha) = T$ $V(\alpha) = T$ V(

1.
$$(P \rightarrow 72) \rightarrow (9 V 7 P) = \angle$$
, Satisfiable /Not valid
$$V = \{P, 2\} \qquad V \not\models P \rightarrow 72 \qquad V \not\models (P \rightarrow 72) \rightarrow (9 V 7 P)$$

$$V = \phi \qquad V = \chi.$$

$$V = 3p^2 \qquad V = p \rightarrow 7$$

$$PVQ) \rightarrow \forall = d_2$$

$$(\neg P \vee q) \rightarrow \forall = d_2$$

$$9 = \{P, 2, 3\} \qquad 9 = d_2$$

$$19 = \{9, 3\} \qquad 19 = d_3$$

3. $\lambda_3 = (P \rightarrow (9 \rightarrow 7)) \vee (P \rightarrow 9)$ Question: Is do valid? T > 1 For all & EV, does VE d Suppose do is not valid. 3×EV s.t U ⊭d3. $V \not\models P \rightarrow (2 \rightarrow 8)$ and $V \not\models P \rightarrow 2$ VEP and VH2->8 VEP and VH2 V=9 and V#V V(P)=T; $V(3)=\bot$ V(p)=T ; V(q)=T; V(x)=L

Contradicts the assumption that

23 is not valid.

Therefore, 23 is valid.

 $d_{A} = (p \iff ((72) VY)) \rightarrow (7p \rightarrow 2)$ Question. Is 24 Valid? Suppose & is not volid. FUEV s.t VEX4. 9 × P ← ((72) V ×) and V × 7 P → 2 V=7p and V#2. V# 79 V8 12(p)=1 and 12(q)=1 Contradiction to the assumption that 34EV s.t &# d4. Thus da is valid.

Question. Given &, conyou check if \(\) \

Polynomial time algorithm.

|d| = n 2^n . - number of valuation.

Not an efficient algorithm.

BNF

Normal Forms. D=PEP | 2 | XVB

Conjunctive Normal Form. (CNF)

Literal - either a proposition p or its negation

clause - is a disjunction of literals.

l, Vl2V---Vlm. Example P,7P PVQ, PV7QVY

L is in CNF if L is a conjunction of clauses.

Ex. (7PV2) 1 (8V7PV79) is a CNF formula.

 $d = C_1 \wedge C_2 \wedge - - \wedge C_n$.

L:= Plap

D:= L|LVD

 $C := D | D \wedge C$

Lemma. A clause (disjunction of literals) livle -- vlm is valid iff Bij: 160,jem S.t Li is Thi. Prod. E From the definition => Suppose no literal le has a matching negation in {li-leng.
For each R: 1 \le k \le m assign I to P if le=7p.

assign T to P if le=7p. Eg. PV79VV P(P)=1 P(Y=1, V(2)=T V#PV79VV. Theorem. A CNF X=C, NG2A --AC, is valid iff *i: 1 \le i \le n, C; is valid Question. Given &, how to check if Ed? if & is in CNF Question. For LED does there exists B in CNF 1st Land B are "semantically equivalent". E X B is valid.