DEPARTMENT OF COMPUTER SCIENCE & SOFTWARE ENGINEERING COMP232 MATHEMATICS FOR COMPUTER SCIENCE

FALL 2018

Assignment 4.

- 1. Establish the following properties by induction or strong induction.
 - (a) $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$ for all $n \ge 1$.
 - (b) $1 + \frac{1}{2} + \frac{1}{3} \cdots + \frac{1}{2^n} \ge 1 + \frac{n}{2}$ for all $n \ge 0$
 - (c) Every positive integer n can be represented as a sum of distinct powers of 2, i.e., in the form $n = 2^{i_1} + \cdots + 2^{i_h}$ with integers $0 \le i_1 < \cdots < i_h$.
 - (d) Let D_n denote the number of ways to cover the squares of a 2-by-n board using plain dominos. Then it is easy to see that $D_1 = 1, D_2 = 2$, and $D_3 = 3$. Compute a few more values of D_n and guess an expression for the value of D_n and use induction to prove you are right.
- 2. Determine whether or not each of the following relations is a partial order and state whether or not each partial order is a total order.
 - (a) $(\mathbb{N} \times \mathbb{N}, \leq)$, where $(a, b) \leq (c, d)$ if and only if $a \leq c$.
 - (b) $(\mathbb{N} \times \mathbb{N}, \leq)$, where $(a, b) \leq (c, d)$ if and only if $a \leq c$ and $b \geq d$.
- 3. Which of the following relations on the set of all people are equivalence relations? Determine the properties of an equivalence relation that the others lack.
 - (a) $\{(a,b)|a \text{ and } b \text{ are the same age}\}$
 - (b) $\{(a,b)|a \text{ and } b \text{ have the same parents}\}$
 - (c) $\{(a,b)|a \text{ and } b \text{ share a common parent}\}$
 - (d) $\{(a,b)|a \text{ and } b \text{ have met}\}$
 - (e) $\{(a,b)|a \text{ and } b \text{ speak a common language}\}$
- 4. Consider the following relation \simeq defined on the set $\mathbb{N} \times \mathbb{Z}^+$.

$$(m_1, n_1) \simeq (m_2, n_2)$$
 iff $m_1 n_2 = m_2 n_1$.

- (a) Prove that it is an equivalence and find equivalence classes.
- (b) Provide a concise characterization of the equivalence classes in terms of rational numbers
- 5. Consider the following relation \prec over reals: $x \prec y$ iff $(x-y) \in \mathbb{Z}$. Prove that it is an equivalence and characterize its equivalence classes

- 6. A set S of jobs can be ordered by writing $x \le y$ to mean that either x = y or x must be done before y, for all x and y in S. Given the Hasse diagram represented in Figure 1 for this relation for a particular set S of jobs, show the following:
 - (a) minimal, least, maximal, and greatest elements;
 - (b) a topological sort.

Figure 1: Hasse Diagram

7. Determine whether the posets with these Hasse diagrams are lattices.

- Poset 1 Poset 2

 8. Determine whether the following posets are lattices:
 - (a) (1,3,6,9,12,1)
 - (b) (1, 5, 25, 125, |)
 - (c) (\mathbb{Z}, \geq)
 - (d) $(P(S), \supseteq)$, where P(S) is the power set of a set S.
- 9. Let R be a relation on \mathbb{N} defined by $(x, y) \in R$ iff there is a prime p such that y = px. Describe in words the reflexive, symmetric and transitive closures of R, denoted by r, s and t, respectively.
 - (a) Which of the following are true:

$$r(s(R)) = s(r(R))$$

$$r(t(R)) = t(r(R))$$

$$s(t(R)) = t(s(R))$$

You need to justify your answer.

- (b) Which of them hold for all relations on \mathbb{N} ?
- (c) Using the reflexive, symmetric, and transitive closures, express the smallest equivalence relation containing an arbitrary relation.

2

(d) What is the smallest partial order containing R?