Coursework 3: Graph Algorithms and Complexity Theory

Oskar Mampe

Tutorial Session: Thursday 1pm

Explanation: A hamiltonian path in an undirected graph is a path that contains all vertices of the graph (without repetition). Similarly, a hamiltonian cycle is a cycle that contains all vertices of the graph. A graph with hamiltonian path is traceable, and a graph with hamiltonian cycle is hamiltonian.

1. Specify decision problems **HP** and **HC** dealing with hamiltonian paths and hamiltonian cycles in undirected graphs.

HP:

Input: An undirected graph G = (V, E).

Question: Does G contain a Hamiltonian Path?

HC:

Input: An undirected graph G = (V, E).

Question: Does G contain a Hamiltonian Circuit?

- 2. Show $\mathbf{HP} \leq_m^p \mathbf{HC}$ by completing the following tasks:
 - (a) Construct a polynomial transformation f from **HP** to **HC**. Let G = (V, E) be an input for a Hamiltonian Path. Let f(G) = G' = (V', E), where $V' = V \cup \{v\}v \notin V$ and $E' = E \cup \{\{v, w\}|w \in v\}$. This is in polynomial time as adding a vertex takes constant time and adding edges $\{v, w\}$ for all $w \in V$ takes |V| amount of time. In total this operation takes |V| + c amount of time, which is polynomial.
 - (b) Show for all graphs G that $G \in Y_{HP} \Rightarrow f(G) \in Y_{HC}$.
 - (c) Show for all graphs G that $f(G) \in Y_{HC} \Rightarrow G \in Y_{HP}$.
- 3. Show $\mathbf{HC} \leq_m^p \mathbf{HP}$ by completing the following tasks:
 - (a) Construct a polynomial transformation f from **HC** to **HP**.

- (b) Show for all graphs G that $G \in Y_{HC} \Rightarrow g(G) \in Y_{HP}$. (c) Show for all graphs G that $g(G) \in Y_{HP} \Rightarrow G \in Y_{HC}$.