SNLP note

Introduction

Definition

- Building computer systems that **understand** and **generate** natural languages.
- Deep understanding of broad language.

or

• A collection of problems, techniques, ideas, frameworks, etc. that really are not tied together in any resonable way other than the fact that they have to do with NLP

Some Applications:

- Speech recognition
- Machine translation
- Personal assistants
- Information Extraction
- Summarization
- Generation
- Question Answering
- Sentiment analysis
- Machine Comprehension
- Cognitive Science and Psycholinguistics (认知科学与语言心理学)

Syllabus

- Structured prediction
- Preprocessing
- Generative learning
- Discriminative learning
- Weak supervision
- Representation and deep learning

NLP Tasks

- Tokenization, Segmentation
- Language modeling
- Machine translation
- Syntactic parsing (语法分析)
- Document classification
- information Extraction
- Textual entailment/Machine comprehension (文字蕴含,机器理解)

Structure Prediction

Problem Signature

- ullet Given some input structure $x \in X$, such as a token, sentence, or documents....
- Predic an **output structure** $y \in Y$, such as a class label, a sentence or syntactic(句法) tree.

Recipe 1: Learn to Score

- Define a prametrized model $s_{\theta}(x, y)$ that measures the *match* of a given x and y using representations f(x) and g(y).
- Learn the parametrers θ from the training data D to minimise a loss.
- Given an input x find the highest-scoring output structure

$$y^\star = argmax_{y \in Y} s_ heta(x,y)$$

(a discrere optimization problem)

How to estimate θ

Let us define a Loss Function

$$l(heta) = \sum_{(x,y) \in D} I(y
eq y^\star_ heta(x))$$

where

- I(True) = 1 and I(False) = 0
- $ullet y^\star_ heta(x) \in Y$ is highest scoring translation of x

$$y^\star_{ heta}(x) = argmax_{y \in Y} s_{ heta}(x,y)$$

Learning is as simple as choosing the parameter with the lowest loss

$$heta^\star = argmin_{ heta \in [0,2]} l(heta)$$

Background Reading

- Noah Smith, Linguistic Structure Prediction
 - Free when logging in through UCL
 - o Relevant:
 - Introduction
 - Dynamic Programming
 - Generative Models (and unsupervised generative models)
 - Globally Normalized Conditional Log-Linear Models