Name: Naveen Aradhyamath

**Data Analyst** 

Contact no: 9731047593

Title: Data Analyst test (kwalee)

Task: To find on which level are players most likely to fail?

**Solution:** level\_number 3

Method 1:

### R code:

install.packages("readr")

install.packages("magrittr")

install.packages("dplyr")

install.packages("ggplot2")

library(readr)

players <- read.csv("level\_progress.csv")</pre>

players

library(magrittr)

library(dplyr)

players\_failed <- players %>% filter(status == "fail") # filtering the data that shows only the failed status

most\_failed\_level <- players\_failed %>% group\_by(level\_number) %>%

summarise(freq = n()) %>% arrange(desc(freq)) # summarising the number of frequency that the total level number occurred in a dataset and arranging it in a descending order.

head(most\_failed\_level) # Records showing only top 6 counts which are in descending order.

## Output:

|   | level_number | freq        |
|---|--------------|-------------|
|   | <int></int>  | <int></int> |
| 1 | 3            | 865         |
| 2 | 5            | 537         |
| 3 | 4            | 475         |
| 4 | 6            | 400         |
| 5 | 7            | 255         |
| 6 | 8            | 255         |

**Conclusion:** we can see that the total frequency of level number 3 is high that is 865, hence we can conclude that maximum people failed at level number 3.

## Method 2:

## **Data Visualization:**

```
library(ggplot2)
ggplot(data = players_failed, aes(x = level_number)) +
geom_bar() +
labs(x = "level_number", y = "total counts of players failed",
    title = "Distribution of players by the level number")
```

# Output:

# Distribution of players by the level number



**Conclusion:** Above bar graph shows that at level 3 there is a increase in number of players failed. Hence level 3 is the where most players failed.

### Method 3:

### R code:

```
players_failed <- players %>% filter (status == "fail")

count(players_failed)

mean(players_failed$level_number)

o/p 7.616015

players_failed_more <- players_failed %>% filter(level_number <= 8)

players_failed_less <- players_failed %>% filter(level_number >= 8)

count(players_failed_more)

count(players_failed_less)

players_failed_more %>% mutate(player_stratum= cut(level_number, breaks = 5)) %>%

group_by(player_stratum) %>% summarise(n = n())
```

# O/p:

|   | player_stratum | n            |
|---|----------------|--------------|
|   | <fct></fct>    | <int></int>  |
| 1 | (-0.007, 1.4]  | 57           |
| 2 | (1.4, 2.8]     | 91           |
| 3 | (2.8,4.2]      | <u>1</u> 340 |
| 4 | (4.2,5.6]      | 537          |
| 5 | (5.6, 7.01]    | 655          |
|   |                |              |

**Conclusion**: We can see that the total number of players failed is higher in the level that falls between the range 2.8 - 4.2, therefore we can conclude that players are most likely to fail in the range 2.8 - 4.2.