

EEM 401 Digital Signal Processing

The Z-Transform

Assistant Prof. Dr. Selda GÜNEY

The z-Transform

- Counterpart of the Laplace transform for discrete-time signals
- Generalization of the Fourier Transform
 - Fourier Transform does not exist for all signals
- The z-Transform is often time more convenient to use
- Definition:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

Compare to DTFT definition:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- z is a complex variable that can be represented as z=r e^{jω}
- Substituting z=e^{jω} will reduce the z-transform to DTFT

The z-transform and the DTFT

- The z-transform is a function of the complex z variable
- Convenient to describe on the complex z-plane
- If we plot $z=e^{j\omega}$ for $\omega=0$ to 2π we get the unit circle

The z-transform

Aşağıdaki dizilerin z dönüşümlerini inceleyiniz.

(a)
$$x_1(n) = \{1, 2, 5, 7, 0, 1\}$$

(b)
$$x_2(n) = \{1, 2, 5, 7, 0, 1\}$$

(c)
$$x_3(n) = \{0, 0, 1, 2, 5, 7, 0, 1\}$$

(d)
$$x_4(n) = \{2, 4, 5, 7, 0, 1\}$$

(e)
$$x_5(n) = \delta(n)$$

(f)
$$x_6(n) = \delta(n-k), k > 0$$

(g)
$$x_7(n) = \delta(n+k), k > 0$$

Çözüm. (3.1.1) tanımlamasından hareketle

(a)
$$X_1(z) = 1 + 2z^{-1} + 5z^{-2} + 7z^{-3} + z^{-5}$$
 ROC: $z = 0$ hariç tüm z-bölgesi,

(b)
$$X_2(z) = z^2 + 2z + 5 + 7z^{-1} + z^{-3}$$
 ROC: $z = 0$ ve $z = \infty$ hariç tüm z-bölgesi,

(c)
$$X_3(z) = z^{-2} + 2z^{-3} + 5z^{-4} + 7z^{-5} + z^{-7}$$
 ROC: $z = 0$ hariç tüm z-bölgesi,

(d)
$$X_4(z) = 2z^2 + 4z + 5 + 7z^{-1} + z^{-3}$$
 ROC: $z = 0$ ve $z = \infty$ hariç tüm z-bölgesi,

(e)
$$X_5(z) = 1$$
 [i.e., $\delta(n) \stackrel{z}{\longleftrightarrow} 1$] ROC: tüm z-bölgesi,

(f)
$$X_6(z) = z^{-k}$$
 [i.e., $\delta(n-k) \stackrel{z}{\longleftrightarrow} z^{-k}$], $k > 0$ ROC: $z = 0$ hariç tüm z-bölgesi,

(g)
$$X_7(z) = z^k$$
 [i.e., $\delta(n+k) \stackrel{z}{\longleftrightarrow} z^k$], $k > 0$ ROC: $z = \infty$ hariç tüm z-bölgesi,

Convergence of the z-Transform

DTFT does not always converge

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- Infinite sum not always finite if x[n] no absolute summable
- Example: $x[n] = a^n u[n]$ for |a| > 1 does not have a DTFT
- Complex variable z can be written as r e^{jω} so the z-transform

$$X\!\!\left(\!re^{j\omega}\right)\!=\sum_{n=-\infty}^{\infty}\!x\!\!\left[\!n\right]\!\left(\!re^{-j\omega}\right)^{\!\!-n}\\ =\!\sum_{n=-\infty}^{\infty}\!\left(\!x\!\!\left[\!n\right]\!r^{\!-n}\right)\!e^{-j\omega n}$$

- DTFT of x[n] multiplied with exponential sequence r -n
 - For certain choices of r the sum maybe made finite

$$\sum_{n=-\infty}^{\infty} |x[n] r^{-n}| < \infty$$

Region of Convergence

- The set of values of z for which the z-transform converges
- Each value of r represents a circle of radius r
- The region of convergence is made of circles

- Example: z-transform converges for values of 0.5<r<2
 - ROC is shown on the left
 - In this example the ROC includes the unit circle, so DTFT exists
- Not all sequence have a z-transform

Right-Sided Exponential Sequence Example

$$x[n] = a^n u[n] \quad \Rightarrow \quad X(z) = \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n} = \sum_{n=0}^{\infty} \left(az^{-1}\right)^n$$

For Convergence we require

$$\sum_{n=0}^{\infty} \left| az^{-1} \right|^n < \infty$$

Hence the ROC is defined as

$$\left|az^{-1}\right|^{n} < 1 \Rightarrow \left|z\right| > \left|a\right|$$

Inside the ROC series converges to

$$X(z) = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

$$\sum_{n=N_1}^{N_2} a^n \, = \frac{a^{N_1} \, - a^{N_2+1}}{1-a}$$

- Region outside the circle of radius a is the ROC
- Right-sided sequence ROCs extend outside a circle

Same Example Alternative Way

$$\begin{split} x[n] &= a^n u[n] \quad \Rightarrow \quad X(z) = \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n} = \sum_{n=0}^{\infty} \left(az^{-1}\right)^n \\ &\sum_{n=N_1}^{N_2} \alpha^n = \frac{\alpha^{N_1} - \alpha^{N_2+1}}{1 - \alpha} \\ &\sum_{n=0}^{\infty} \left(az^{-1}\right)^n = \frac{\left(az^{-1}\right)^0 - \left(az^{-1}\right)^\infty}{1 - az^{-1}} \\ &|z| > 2 \end{split}$$

For the term with infinite exponential to vanish we need

$$\left|az^{-1}\right| < 1 \implies \left|a\right| < \left|z\right|$$

- Determines the ROC (same as the previous approach)
- In the ROC the sum converges to

$$X(z) = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}}$$

Two-Sided Exponential Sequence Example

$$x[n] = \left(-\frac{1}{3}\right)^n u[n] - \left(\frac{1}{2}\right)^n u[-n-1]$$

$$\sum_{n=0}^{\infty} \left(-\frac{1}{3} z^{-1} \right)^n = \frac{\left(-\frac{1}{3} z^{-1} \right)^0 - \left(-\frac{1}{3} z^{-1} \right)^{\infty}}{1 + \frac{1}{3} z^{-1}} = \frac{1}{1 + \frac{1}{3} z^{-1}}$$

$$\sum_{n=-\infty}^{-1} \left(\frac{1}{2} z^{-1}\right)^n = \frac{\left(\frac{1}{2} z^{-1}\right)^{-\infty} - \left(\frac{1}{2} z^{-1}\right)^0}{1 - \frac{1}{2} z^{-1}} = \frac{-1}{1 - \frac{1}{2} z^{-1}}$$

$$X(z) = \frac{1}{1 + \frac{1}{3}z^{-1}} + \frac{1}{1 - \frac{1}{2}z^{-1}} = \frac{2z\left(z - \frac{1}{12}\right)}{\left(z + \frac{1}{3}\right)\left(z - \frac{1}{2}\right)}$$

$$\left| \frac{1}{3} z^{-1} \right| < 1$$

$$\frac{1}{3} < \left| z \right|$$

ROC:
$$\left| \frac{1}{2} z^{-1} \right| > 1$$

Finite Length Sequence

$$x[n] = \begin{cases} a^n & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases}$$

$$X\!\left(z\right) = \sum_{n=0}^{N-1} a^n z^{-n} \ = \sum_{n=0}^{N-1} \left(az^{-1}\right)^{\!n} \ = \frac{1-\left(az^{-1}\right)^{\!N}}{1-az^{-1}} = \frac{1}{z^{N-1}} \frac{z^N-a^N}{z-a}$$

The ROC of Some Special Signals

Properties of The ROC of Z-Transform

- The ROC is a ring or disk centered at the origin
- DTFT exists if and only if the ROC includes the unit circle
- The ROC cannot contain any poles
- The ROC for finite-length sequence is the entire z-plane
 - except possibly z=0 and z=∞
- The ROC for a right-handed sequence extends outward from the outermost pole possibly including $z = \infty$
- The ROC for a left-handed sequence extends inward from the innermost pole possibly including z=0
- The ROC of a two-sided sequence is a ring bounded by poles
- A z-transform does not uniquely determine a sequence without specifying the ROC

Stability, Causality, and the ROC

- Consider a system with impulse response h[n]
- The z-transform H(z) and the pole-zero plot shown below
- Without any other information h[n] is not uniquely determined
 |z|>2 or |z|<½ or ½<|z|<2
- If system **stable** ROC must include unit-circle: ½<|z|<2
- If system is **causal** must be right sided: |z|>2

Some Common z-Transform Pairs

S	ignal, x[n]	Z transform (X(z))	Region of Convergence (RO	C)
1	$\delta(n)$	1	All z	
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1	
3	$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a	
4	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a	
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a	
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a	
7	$(\cos \omega_0 n)u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1	
8	$(\sin \omega_0 n)u(n)$	$\frac{z^{-1}\sin\omega_0}{1-2z^{-1}\cos\omega_0+z^{-2}}$	z > 1	
9	$(a^n \cos \omega_0 n) u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^2}$	z > a	
10	$(a^n \sin \omega_0 n) u(n)$	$\frac{az^{-1}\sin\omega_0}{1-2az^{-1}\cos\omega_0+a^2z}$	$\frac{1}{2}$ $ z > a $	