Real-Time Embedded Digital Signal Processing

FINAL EXAM SOLUTION

Question 1

Consider a weighted moving average function:

$$y_n = [x_n + 0.4x_{n-1} + 0.2x_{n-2}]/1.6$$

1. What is the transfer function H(z)=Y(z)/X(z)?

Taking Z-transform of both sides of the moving average function gives:

$$Y(z) = \left[X(z) + 0.4z^{-1}X(z) + 0.2z^{-2}X(z) \right] / 1.6$$

$$H(z) = Y(z)/X(z) = [1 + 0.4z^{-1} + 0.2z^{-2}]/1.6$$

$$H(z) = (z^2 + 0.4z + 0.2)/(1.6z^2)$$

2. Where is the first pole?

There is a poles at z=0.

3. Where is the second pole?

There is a second pole at z=0.

4. Where is the first zero?

Zeros are given by: $z^2 + 0.4z + 0.2 = 0$

Roots of a quadratic of the form: $ax^2 + 2bx + c = 0$ are $z = \left(-b \pm \sqrt{b^2 - ac}\right)/a$

Thus, roots are at: $z = \left(-0.2 \pm \sqrt{0.2^2 - 0.2}\right) = -0.2 \pm \sqrt{-0.16} = -0.2 \pm j0.4$

First zero is at -0.2+0.4j (or -0.2-0.4j)

5. Where is the second zero?

Second zero is at -0.2-0.4j (or -0.2+0.4j)

6. Stability

Zeros (red diamond) and poles (blue dots) are plotted below.

As the poles are inside the unit circle the system is stable.

7. What is the real part of the frequency response $H(\omega)$?

Frequency response is the transfer function evaluated on the unit circle:

$$H(\omega) = H(z)\Big|_{z=e^{j\omega}} = (1 + 0.4e^{-j\omega} + 0.2e^{-2j\omega})/1.6$$

$$H(\omega) = [1 + 0.4(\cos \omega - j\sin \omega) + 0.2(\cos 2\omega - j\sin 2\omega)]/1.6$$

$$H(\omega) = 0.625 * [(1 + 0.4\cos\omega + 0.2\cos2\omega) + j(-0.4\sin\omega - 0.2\sin2\omega)]$$

Real part is:

Re
$$H(\omega) = 0.625 * (1 + 0.4 \cos \omega + 0.2 \cos 2\omega)$$

8. What is the imaginary part of the frequency response $H(\omega)$?

Imaginary part is:

$$\text{Im } H(\omega) = 0.625 * (-0.4 \sin \omega - 0.2 \sin 2\omega)$$

9. What is the magnitude squared of the frequency response $H(\omega)$?

Magnitude squared is:

$$|H(\omega)|^2 = [\operatorname{Re} H(\omega)]^2 + [\operatorname{Im} H(\omega)]^2$$

$$|H(\omega)|^2 = 0.625^2[(1+0.4\cos\omega+0.2\cos2\omega)^2+(-0.4\sin\omega-0.2\sin2\omega)^2]$$

$$|H(\omega)|^2 = \begin{bmatrix} 0.625^2 [1 + \underline{0.4^2 \cos^2 \omega} + \underline{0.2^2 \cos^2 2\omega} \\ + 2*0.4\cos \omega + \underline{2*0.4\cos \omega}*0.2\cos 2\omega + 2*0.2\cos 2\omega \\ + \underline{0.4^2 \sin^2 \omega} + \underline{0.2^2 \sin^2 2\omega} + \underline{2*0.4\sin \omega}*0.2\sin 2\omega] \end{bmatrix}$$

$$|H(\omega)|^2 = 0.625^2 [1 + 0.4^2 + 0.2^2 + 0.8\cos\omega + 0.4\cos2\omega + 0.16(\cos\omega\cos2\omega + \sin\omega\sin2\omega)]$$

$$|H(\omega)|^2 = 0.625^2 [1.2 + 0.8\cos\omega + 0.4\cos2\omega + 0.16(\cos\omega(1 - 2\sin^2\omega) + \sin\omega(2\sin\omega\cos\omega))]$$

$$|H(\omega)|^2 = 0.625^2[1.2 + 0.8\cos\omega + 0.4\cos2\omega + 0.16\cos\omega]$$

$$|H(\omega)|^2 = 0.625^2 [1.2 + 0.96\cos\omega + 0.4\cos2\omega]$$

$$|H(\omega)|^2 = 0.391[1.2 + 0.96\cos\omega + 0.4\cos2\omega]$$
 $for -\pi \le \omega \le \pi$

10. What is the tangent of the phase of the frequency response $H(\omega)$?

Tangent of phase is:

$$\tan \Phi(\omega) = \operatorname{Im} H(\omega) / \operatorname{Re} H(\omega)$$

$$\tan \Phi(\omega) = (-0.4\sin \omega - 0.2\sin 2\omega)/(1 + 0.4\cos \omega + 0.2\cos 2\omega)$$

$$\tan \Phi(\omega) = -(2\sin \omega + \sin 2\omega)/(5 + 2\cos \omega + \cos 2\omega)$$

$$\tan \Phi(\omega) = -(2\sin \omega + 2\sin \omega \cos \omega)/(5 + 2\cos \omega + 2\cos^2 \omega - 1)$$

$$\tan \Phi(\omega) = -2\sin \omega (1 + \cos \omega) / (2\cos^2 \omega + 2\cos \omega + 4)$$

$$\tan \Phi(\omega) = \frac{-\sin \omega (1 + \cos \omega)}{\cos^2 \omega + \cos \omega + 2} \qquad for -\pi \le \omega \le \pi$$

11. What is the group delay (defined as the negative derivative of the phase)?

Time delay for the signal "envelope" (aka group delay) is defined as:

$$T_d(\omega) = -\frac{d\Phi(\omega)}{d\omega}$$

For our filter:

$$\Phi(\omega) = \tan^{-1} \Psi(\omega) \qquad \text{where} \quad \Psi(\omega) = \frac{g(\omega)}{h(\omega)} = \frac{-\sin \omega (1 + \cos \omega)}{\cos^2 \omega + \cos \omega + 2} = \frac{-\sin \omega - \sin \omega \cos \omega}{\cos^2 \omega + \cos \omega + 2}$$

Since the derivative of $tan^{-1}(x) = 1/(1+x^2)$, we have:

$$T_d(\omega) = -\frac{d\Phi(\omega)}{d\omega} = -\frac{1}{1 + \Psi^2(\omega)} \frac{d\Psi(\omega)}{d\omega}$$

Since the derivative of $\Psi(\omega) = g(\omega)/h(\omega) = [g'(\omega)h(\omega)-g(\omega)h'(\omega)]/h(\omega)^2$, we have:

$$T_d(\omega) = -\frac{1}{1 + \Psi^2(\omega)} \frac{d\Psi(\omega)}{d\omega} = -\frac{1}{1 + g(\omega)^2 / h(\omega)^2} \frac{g'(\omega)h(\omega) - g(\omega)h'(\omega)}{h(\omega)^2}$$

$$T_d(\omega) = \frac{-g'(\omega)h(\omega) + g(\omega)h'(\omega)}{h(\omega)^2 + g(\omega)^2}$$

Noting derivative formulas:

 $d/d\omega [\sin\omega] = \cos\omega$

 $d/d\omega [\cos\omega] = -\sin\omega$

 $d/d\omega [\sin\omega \cos\omega] = \cos\omega \cos\omega + \sin\omega(-\sin\omega) = \cos^2\omega - \sin^2\omega = 2\cos^2\omega - 1$

$$T_d(\omega) = \frac{-(-\cos\omega - 2\cos^2\omega + 1)h(\omega) + g(\omega)(2\cos\omega^*(-\sin\omega) - \sin\omega)}{h(\omega)^2 + g(\omega)^2}$$

$$T_d(\omega) = \frac{(\cos \omega + 2\cos^2 \omega - 1)h(\omega) - \sin \omega (2\cos \omega + 1)g(\omega)}{h(\omega)^2 + g(\omega)^2}$$

$$T_d(\omega) = \frac{(2\cos^2\omega + \cos\omega - 1)(\cos^2\omega + \cos\omega + 2) - \sin\omega(2\cos\omega + 1)(-\sin\omega - \sin\omega\cos\omega)}{(\cos^2\omega + \cos\omega + 2)^2 + (-\sin\omega - \sin\omega\cos\omega)^2}$$

$$T_d(\omega) = \frac{(2\cos^2\omega + \cos\omega - 1)(\cos^2\omega + \cos\omega + 2) + \sin^2\omega(2\cos\omega + 1)(1 + \cos\omega)}{(\cos^2\omega + \cos\omega + 2)^2 + \sin^2\omega(1 + \cos\omega)^2}$$

Simplifying the numerator separately and defining $\beta = \cos \omega$, and noting $\sin^2 \omega = 1 - \cos^2 \omega = 1 - \beta^2$:

$$NumT_d = (2\beta^2 + \beta - 1)(\beta^2 + \beta + 2) + (1 - \beta^2)(2\beta + 1)(\beta + 1)$$

Note that the roots of the first quadratic are real: $(-1\pm\sqrt{(1+8)})/4=(-1\pm\sqrt{9})/4=(-1\pm3)/4=\{0.5,-1\}$

$$NumT_d = (2\beta - 1)(\beta + 1)(\beta^2 + \beta + 2) + (1 - \beta^2)(2\beta + 1)(\beta + 1)$$

$$NumT_d = (\beta + 1)[(2\beta - 1)(\beta^2 + \beta + 2) + (1 - \beta^2)(2\beta + 1)]$$

$$NumT_d = (\beta + 1)[2\beta^3 + 2\beta^2 + 4\beta - \beta^2 - \beta - 2 + 2\beta + 1 - 2\beta^3 - \beta^2]$$

$$NumT_d = (\beta + 1)[+5\beta - 1] = 5\beta^2 + 4\beta - 1$$

$$NumT_d = 5\cos^2\omega + 4\cos\omega - 1$$

Simplifying the denominator separately:

$$DenT_d = (\beta^2 + \beta + 2)^2 + (1 - \beta^2)(1 + \beta)^2$$

$$DenT_d = (\beta^4 + \beta^2 + 4 + 2\beta^3 + 4\beta + 4\beta^2) + (1 - \beta^2)(1 + 2\beta + \beta^2)$$

$$DenT_d = (\underline{\beta^4} + \underline{2\beta^3} + 5\beta^2 + 4\beta + 4) + (1 + 2\beta + \beta^2 - \beta^2 - \underline{2\beta^3} - \underline{\beta^4})$$

$$DenT_d = 5\beta^2 + 6\beta + 5 = 5\cos^2\omega + 6\cos\omega + 5$$

Thus, the group time delay is:

$$T_d(\omega) = \frac{5\cos^2 \omega + 4\cos \omega - 1}{5\cos^2 \omega + 6\cos \omega + 5}$$

Question 2

1. Compute the DFT of the sequence $x(n) = \{2, 3, -2, -4\}$ using the matrix formulation

Using the matrix formulation, the DFT \mathbf{X} of a sequence \mathbf{x} is defined as:

$$X = Wx$$

$$X = \begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^4 & W_4^6 \\ W_4^0 & W_4^3 & W_4^6 & W_4^9 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix}$$

where:
$$W_N^n = e^{-j2\pi n/N} = \cos(2\pi n/N) - j\sin(2\pi n/N)$$

Since N=4,

$$W_4^n = e^{-j2\pi n/4} = \cos(\pi n/2) - j\sin(\pi n/2)$$

Thus,

$$X = \begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0-j & -1-0 & 0+j \\ 1 & -1-0 & 1-0 & -1-0 \\ 1 & 0+j & -1-0 & 0-j \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -2 \\ -4 \end{bmatrix}$$

$$X = \begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & +j \\ 1 & -1 & 1 & -1 \\ 1 & +j & -1 & -j \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 2+3-2-4 \\ 2-3j+2-4j \\ 2-3-2+4 \\ 2+3j+2+4j \end{bmatrix} = \begin{bmatrix} -1 \\ 4-7j \\ +1 \\ 4+7j \end{bmatrix}$$

So for $x(n) = \{2, 3, -2, -4\}$, the DFT is $X(n) = \{-1, 4-7j, +1, 4+7j\}$

2. <u>How many multiplies were needed (not counting multiplies needed to generate the W matrix & assuming x is real)?</u>

No. of Multiplies = (no. of equations) * (no. of terms/equation) * (no. of multiplies/term)

= (4) * (4) * (1 complex number multiplied by a 1 real number)

= (4) * (4) * (2 real multiplies)

= 32 real multiplies

Note that if x was not assumed to be real, then the number of multiples per term would be 4, as multiplying two complex numbers requires four real multiplies: (a+jb)*(c+jd)=(ac-bd)+j(bc+ad).

3. How many adds were needed?

No. of Adds = (no. of equations) * (no. of complex adds/equation) *(no. of real adds/complex add)

$$= (4) * (3) * (2)$$

= 24 real adds

4. The inverse DFT may be computed as: x = W*X/N where N = 4. What is the first row of the matrix W*?

$$W^* = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^4 & W_4^6 \\ W_4^0 & W_4^3 & W_4^6 & W_4^9 \end{bmatrix}$$

$$W^* = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^{-1} & W_4^{-2} & W_4^{-3} \\ W_4^0 & W_4^{-2} & W_4^{-4} & W_4^{-6} \\ W_4^0 & W_4^{-3} & W_4^{-6} & W_4^{-9} \end{bmatrix}$$

$$W^* = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & + j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

Note that:

$$x = \frac{1}{N}W^*X$$

$$x = \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix} = \frac{1}{4} \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^4 & W_4^6 \\ W_4^0 & W_4^3 & W_4^6 & W_4^9 \end{bmatrix}^* \begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix}$$

$$x = \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 + j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} -1 \\ 4 - 7j \\ 1 \\ 4 + 7j \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -1 + 4 - 7j + 1 + 4 + 7j \\ -1 + 4j + 7 - 1 - 4j + 7 \\ -1 - 4 + 7j + 1 - 4 - 7j \\ -1 - 4j - 7 - 1 + 4j - 7 \end{bmatrix}$$

$$x = \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 8 \\ 12 \\ -8 \\ -16 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -2 \\ -4 \end{bmatrix} \text{ giving back the original sequence!}$$

The first row of W^* is $[1 \ 1 \ 1]$.

5. What is the second row of the matrix W*? The second row of W* is [1 +j -1 -j].

6. What is the third row of the matrix W*? The second row of W* is [1 -1 1 -1].

7. What is the fourth row of the matrix W*? The second row of W* is [1 -j -1 j].

8. Given x(n) = [2, 3, -2, -4], is split into even and odd numbered sequences xe(n) and xo(n), what is the DFT of xe?

Given $x(n) = \{2, 3, -2, -4\}$, split sequence into even and odd numbered sequences:

$$xe(n) = \{2, -2\}$$

$$xo(n) = \{3, -4\}$$

DFT of xe:

$$XE = \begin{bmatrix} XE(0) \\ XE(1) \end{bmatrix} = \begin{bmatrix} W_2^0 & W_2^0 \\ W_2^0 & W_2^1 \end{bmatrix} \begin{bmatrix} xe(0) \\ xe(1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 2-2 \\ 2+2 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

9. Given x(n) = [2, 3, -2, -4], is split into even and odd numbered sequences xe(n) and xo(n), what is the DFT of xo?

DFT of xo:

$$XO = \begin{bmatrix} XO(0) \\ XO(1) \end{bmatrix} = \begin{bmatrix} W_2^0 & W_2^0 \\ W_2^0 & W_2^1 \end{bmatrix} \begin{bmatrix} xo(0) \\ xo(1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 3-4 \\ 3+4 \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}$$

10. Using the DFT of xe and xo, compute the FFT by decimation in time of x(n) = [2, 3, -2, -4]FFT by decimation in time (where N=2M):

$$X(k) = \begin{cases} XE(k) + W_N^k XO(k) & k = 0,1,...,M-1 \\ XE(k-M) - W_N^{k-M} XO(k-M) & k = M,M+1,...,2M-1 \end{cases}$$

In our case M=2, N=4:

$$X(k) = \begin{cases} XE(k) + W_4^k XO(k) & k = 0,1 \\ XE(k-2) - W_4^{k-2} XO(k-2) & k = 2,3 \end{cases}$$

Thus:

$$X(0) = XE(0) + W_4^0 XO(0) = 0 + 1(-1) = -1$$

$$X(1) = XE(1) + W_4^1 XO(1) = 4 + (-j)(7) = 4 - j7$$

$$X(2) = XE(0) - W_4^0 XO(0) = 0 - 1(-1) = 1$$

$$X(3) = XE(1) - W_4^1 XO(1) = 4 - (-j)(7) = 4 + j7$$

Thus, the FFT is [-1, 4-7j, +1, 4+7j]