This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
 - TEXT CUT OFF AT TOP, BOTTOM OR SIDES
 - FADED TEXT
 - ILLEGIBLE TEXT
 - SKEWED/SLANTED IMAGES
 - CÓLORED PHOTOS
 - BLACK OR VERY BLACK AND WHITE DARK PHOTOS
 - GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

				•
,				
			•	,
	4.3			
			,	
•				

The Delphion Integrated View

 Get Now:
 More choices...
 Tools:
 Add to Work File:
 Create new Wo

 View:
 INPADOC
 | Jump to:
 Top
 ☑ Go to:
 Derwent...
 ☑ Email

PTitle: JP11306857A2: POLYMER SOLID ELECTROLYTE

PCountry: JP Japan

% Kind: A2 Document Laid open to Public inspection i

Variable 19 Inventor: **OKADA KENJI**;

PAssignee: KANEGAFUCHI CHEM IND CO LTD

News, Profiles, Stocks and More about this company

Published / Filed: 1999-11-05 / 1998-04-16

PApplication JP1998000106017

Number:

PAbstract:

♥IPC Code: H01B 1//12; C08L 83//04; H01M 6//18; H01M 10//40;

Priority Number: 1998-04-16 JP19981998106017

PROBLEM TO BE SOLVED: To provide an amorphous solid electrolyte with high ion conductivity and small temperature dependence that is suitable for a battery by blending, to a polysiloxane-polyether random copolymer, an electrolytic salt compound soluble.

SOLUTION: This polymer solid electrolyte is formed of a polysiloxane- polyether copolymer, which is a solid random copolymer having a main chain structure consisting of a structural unit of formula I and a structural unit of formula II, wherein X1 and X2 in the formula I represent a substituent containing a cyclic ether, and an electrolytic salt compound soluble to this copolymer. This solid electrolyte is used for a battery for electronic equipment. The polysiloxane-polyether copolymer is suitably formed of 5-40 mol.% of the structural unit of the formula I and 95-60 mol.% of the structural unit of the formula II, and preferably 10-30 mol.% of the structural unit of formula I and 90-70 mol.% of the structural unit of the formula II. This solid electrolyte has high ion conductivity even at low temperatures.

COPYRIGHT: (C)1999, JPO

Pramily: None

8 Other Abstract None

Info:

this for the Gallery...

© 1997-2003 Thomson Delphion

Research Subscriptions | Privacy Policy | Terms & Conditions | Site Map | Contac

(11) Publication number:

1

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 10106017

(51) Intl. Cl.: H01B 1/12 C08L 83/04 H01M

10/40

(22) Application date: 16.04.98

(30) Priority:

(43) Date of application

publication:

05.11.99

(84) Designated contracting

states:

(71) Applicant: KANEGAFUCHI CHEM

LTD

(72) Inventor: OKADA KENJI

(74) Representative:

(54) POLYMER SOLID ELECTROLYTE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an amorphous solid electrolyte with high ion conductivity and small temperature dependence that is suitable for a battery by blending, to a polysiloxane-polyether random copolymer, an electrolytic salt compound soluble.

SOLUTION: This polymer solid electrolyte is formed of a polysiloxane- polyether copolymer, which is a solid random copolymer having a main chain structure consisting of a structural unit of formula I and a structural unit of formula II, wherein X1 and X2 in the formula I represent a substituent containing a cyclic ether, and an electrolytic salt compound soluble to this copolymer. This solid electrolyte is used for a battery for electronic equipment. The polysiloxane-polyether copolymer is suitably

formed of 5-40 mol.% of the structural unit of the formula I and 95-60 mol.% of the structural unit of the formula II, and preferably 10-30 mol.% of the structural unit of formula I and 90-70 mol.% of the structural unit of the formula II. This solid electrolyte has high ion conductivity even at low temperatures.

COPYRIGHT: (C)1999,JPO

$$\begin{array}{c}
X_1 \\
+ Si - O \\
X_2
\end{array}$$

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-306857

(43) Date of publication of application: 05.11.1999

(51)Int.Cl.

C08L 83/04 H01M 6/18

(21)Application number : 10-106017

(71)Applicant: KANEGAFUCHI CHEM IND CO

LTD

(22)Date of filing:

16.04.1998

(72)Inventor: OKADA KENJI

(54) POLYMER SOLID ELECTROLYTE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an amorphous solid electrolyte with high ion conductivity and small temperature dependence that is suitable for a battery by blending, to a polysiloxane-polyether random copolymer, an electrolytic salt compound soluble.

SOLUTION: This polymer solid electrolyte is formed of a polysiloxane- polyether copolymer, which is a solid random copolymer having a main chain structure consisting of a structural unit of formula I and a structural unit of formula II, wherein X1 and X2 in the formula I represent a substituent containing a cyclic ether, and an electrolytic salt compound soluble to this copolymer. This solid electrolyte is used for a battery for electronic equipment. The polysiloxane-polyether copolymer is

П

I

suitably formed of 5-40 mol.% of the structural unit of the formula I and 95-60 mol.% of the structural unit of the formula II, and preferably 10-30 mol.% of the structural unit of formula I and 90-70 mol.% of the structural unit of the formula II. This solid electrolyte has high ion conductivity even at low temperatures.

LEGAL STATUS

• • •

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出職公開番号

特開平11-306857

(43)公開日 平成11年(1999)11月5日

(51) Int.CL*		叙別記 号	ΡI			-	
HO1B 1	1/12		HOIB	1/12		z	
C08L 89	3/04		C08L 8	9/04			
H01M 6	6/18		HO1M *	6/18		E	
10/40		•	t	0/40	10 B		
			家產業求	未翻求	湖水県の散11	OL (全6頁)	
(21)出顧器号		特職 平10−106017	(71)出庭人				
(22)出篇日		平成10年(1998) 4 月16日	1		产工業株式会社	30700448	
		-L'atro-t (1280) 4 13 10 D	(72) 竞明者	大阪府大阪市北区中之島3丁目2巻4号 猪			
			(14/27)	兵庫吳神戸市兵庫区吉田町12-60億万			
			į	化学工業株式会社神戸研究所內			
						•	

(54) 【発明の名称】 高分子園体電解質

(57)【要約】

【課題】 従来の個体電解質に比べてイオン伝導性に優 れ、しかも加工性、成形性、機械的強度や柔軟性にも優 れるという特徴を有する高分子園体電解質を得る。

【解決手段】主鎖構造が、各けい素上に環状エーテルを 含有する置換基を2つ有するポリシロキサンとポリエー テルの共富合体に可溶性の電解質塩化合物からなる高分 子固体電解質。

(2)

10

特別平11-306857

【特許請求の範囲】

【論求項】】主鎮構造が下記(】)式の構造単位と (2) 式の構造単位からなる固体状のランダム共重合体 であって、(1)式のX1、X1は環状エーテルを含有す る置換基であるポリシロキサンとポリエーテルの共重台 体および該共重合体に可溶性の電解質塩化合物からなる ことを特徴とする高分子団体電解質。

[11]

$$\begin{array}{c}
X_1 \\
+ X_2
\end{array}$$
(1)

[{t2]

$$-(-CH_2-CH_2-O)$$
 (2)

【蘭求項2】(1)式の構造単位5~40モル%と (2) 式の構造単位95~60モル外のポリエーテル共 重合体を用いる論求項1記載の高分子固体電解質。

【論求項3】主鎖が一般式

[(t3]

で示される、各ケイ素上に環状エーテルを含有する置換 40 基を2つ有するシロキサン構造単位と(2)式の構造単 位からなる圏体状のポリシロキサン-ポリエーテルのラ ンダム共重合体および該共重合体に可溶性の電解質塩化 合物からなることを特徴とする請求項 1 に記載の高分子 個体電解質。ただし、式中A'、A'は、畳換または非畳 換のアルキル益、アリール益、またはオキシアルキレン 基を、nは1以上の整数を表す。

【論求項4】主鎖が一般式

[ft4]

で示される、各ケイ素上に環状エーテルを含有する置換 基を2つ有するシロキサン構造単位と(2)式の構造単 位からなる固体状のポリシロキサンーポリエーテルのラ ンダム共宜合体および該共重合体に可溶性の電解質塩化 20 台物からなるととを特徴とする請求項1に記載の高分子 固体電解質。ただし、式中A'、A'は、置換または非置 換のアルキル基。 アリール基、またはオキシアルキレン 基を、nは1以上の整数を表す。

【論求項5】電解質塩化合物が全属陽イオン、アンモニ ウムイオン、アミジニウムイオン、およびグアニジウム イオンから選ばれた陽イオンと、塩素イオン、臭素イオ ン、要素イオン、過塩素酸イオン、チオシアン酸イオ ン.テチラフルオロホウ素酸イオン.硝酸イオン.As F。、PF。一、ステアリルスルホン酸イオン、オクチ 30 ルスルホン酸イオン、ドデシルベンゼンスルホン酸イオ ン. ナフタレンスルホン酸イオン、ドデシルナフタレン スルホン酸イオン、R'SO, 、(R'SO,) (R'SO ;) N*、および (R*SO;) (R*SO;) (R*SO;) C⁻、から遊ばれた陰イオンとからなる化合物である節 求項1~4に記載の高分子固体電解質。ただし、Rº、 R'、R'は電子吸引性基である。

【請求項6】R1、R1、R1は各々独立して炭素数が1 から6までのパーフルオロアルキル基またはパーフルオ ロアリール基である諸求項5記載の高分子固体電解質。

【論求項7】金属陽イオンが周期表1族または2族に置 する金属から選ばれた金属の陽イオンである請求項5ま たは6に記載の高分子圏体電解費。

【論求項8】金国陽イオンが遷移金属の陽イオンである 請求項5または6に記載の高分子固体電解質。

【論求項9】金属隔イオンがMn、Fe、Co. Ni、 Cu. 2n およびAg全属から選ばれた全層の限イオン である請求項5または6に記載の高分子固体電解質。

【論求項 1 0 】電解質塩化合物と、ポリシロキサンねよ びポリキーテル共革合体の配合割合が、電解質塩化合物

50 のモル裁/共重合体中に含まれる酸素原子の殺モル数の

値で0.0001~3である請求項1~8のいずれかに 記載の高分子固体電解質。

【請求項11】 論求項1~10のいずれかに記載の高分 子固体電解質を用いた電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は高分子固体電解質に 関するものであり、イオン伝導度が高く、その温度依存 性が小さいことを特徴とする電池などに使用できる高分 子固体電解質を提供するものである。

[0002]

【従来の技術】高分子固体電解質をリチウムイオン電池 や電気化学的デバイスに使用していくためには、低温か **ち高温の広い温度範囲で高いイオン伝導度を有し、結晶** 性を示さないことなどが必要不可欠である。しかしなが ち、このような必要性能を総合的に満足するような高分 子固体電解質はこれまで開発されていない。例えば、従 来はプロビレンカーボネート、エチルメチルカーボネー トなどの有機溶剤が幅広く使用されているが、これらは 使用展界となっている。最近はこのような有機溶媒の安 全性を改良する方法として、ポリエチレンオキシド(以 下、PEOと記載する)を中心とした高分子固体電解質 の研究が行われている。PEOは周期表 1 疾または2族 に属する金属塩、例えばLiCF₂SO₂、LiC1 O.、NaCF,SO、Lilなどと錯体を形成し、室 温以上の温度領域では比較的良好なイオン伝導性を示 し、さらに保存安定性も良好である。しかしながら、P EOのイオン伝導性は温度依存性が大きく、60℃以上 では良好なイオン伝導度を示すものの20℃以下の温度 30 ではイオン伝導度が着しく低下する。従って低温で使用 するような汎用性のある商品に組み込むことは困難であ った。低分子量PEOを用いてイオン伝導度を向上させ る方法としてビニル系ポリマーの側鎖に低分子量PEO を導入する方法が、D. J. Banistarらによっ T. Polymer, <u>25</u>. 1600 (1984) に報 告されている。しかしながら、この高分子材料はしょ塩 と錯体を形成するものの、低温でのイオン伝導度が不十 分であった。さらにポリシロキサンの側鎖に低分子量P EOを導入した材料が、Journal of Pow 40 er Sourse, <u>20</u>, 327 (1987) 存物開 昭63-136409号、特開平2-265927に記 載されているが、低温でのイオン伝導度が不十分あるい は非晶質でない。合成処方が容易ではないなどの理由で 実用化はされていない。

[0003]

【発明が解決しようとする課題】本発明は、低温でも高 いイオン伝導度を示す非晶質性高分子固体電解質を提供 するものである.

[0004]

【課題を解決するための手段】本発明者らは、各けい素 上に環状エーテルを含有する置換基を2つ有するシロキ サン構造単位とエチレンオキシドを共重合成分とした。 ポリンロキサンーポリエーテルランダム共宜合体に、可 溶性の電解質塩化合物を配合することによって、著しく イオン伝導性の増大した高分子圏体電解質が得られるこ とをみいだしたものである。すなわち本発明は、主鎖機 造が下記(1)式の構造単位と(2)式の構造単位から なる関体状のランダム共重合体であって、(1)式のX 10 1、X1は環状エーテルを含有する遺換益であるポリシロ キサンとポリエーテルの共産合体および該共宣合体に可 溶性の電解質塩化合物からなることを特徴とする高分子 固体電解質およびこれを用いた電池である。本発明で用 いられるポリンロキサンーポリエーテル共産合体は、

(1)式の構造単位5~40%と(2)式の構造単位9 5~60%のものが過するが、好ましくは(1)式の梯 造単位10~30%と(2)式の構造単位90~70% のもの、さらに好ましくは(1)式の構造単位15~3 0%と(2)式の構造単位85~70%のものが用いら 沸点と蒸気圧の関係で一般に70~90℃が高温域での 20 れる。(2)式のモル比が95モル%を超えるとガラス 転移点の上昇と結晶化が見られ高分子固体電解質のイオ ン伝導度を著しく低下させてしまう。一方、(2)式の モル比が70モル%より少ないと共重合体の軟化温度が 低下して室温で固体状の電解質を得ることが困難とな る。ただし(1)式中のX1、X1は環状エーテルを含有 する置換基である本発明において、(1)式で表わされ るシロキサン梯造単位は、好ましくは一般式

> [0005] [125]

【0006】または [0007] (it6)

20

【0008】で表わされるシロキサン構造単位である。ただし、式中A¹、A¹、A²、A⁴は、置換または非置換のアルキル基、アリール量、またはオキシアルキレン基を、nは1以上の整数を表す。以下に本発明におけるシロキサン構造単位の化合物例を示すが、本発明はこの例 20に限定されるものではない。なお化合物1~6において、nは1以上の整数を表す。

(化合物例1) [0009]

【化7】

i

$$(CH_2)_3$$
 $O-CH_2$ O $(CH_2)_3$ $O-CH_2$ O

(4) 特開平11-306857
[0010] (化合物例2)
[0011]
[(比8]
(CH₂)3O—CH₂—(O)

[0012] (化台物例3) [0013]

[ft9]

【0014】(代台物例4) 【0015】 【化10】

40

$$\begin{array}{c}
CH_3-CH_2 \\
(CH_2)_3 O-CH_2
\end{array}$$

$$\begin{array}{c}
CH_3-CH_2 \\
O\end{array}$$

(5)

【0016】(化含物例5) 【0017】

(化11)

$$\begin{pmatrix}
CH_2 \\
4 \\
CH_2
\end{pmatrix}_4$$

$$\begin{pmatrix}
CH_2 \\
4 \\
CH_2
\end{pmatrix}_4$$

【0018】(化合物例6) 【0019】

[ft12]

$$(CH_2)_4$$
 O $(CH_2)_4$ O

【0020】本発明において用いられる電解質塩化合物 を除去するなどの方法によって製造される。本発明におとしては、本発明のポリシロキサンーポリエーテル共産 50 いては反応容器の種類は重要でない。しかしながら副反

台体に可溶のものならば特に限定はされないが、本発明 においては以下に挙げるものが好ましく用いられる。即 ち、金屑陽イオン、アンモニウムイオン、アミジニウム イオン、およびグアニジウムイオンから選ばれた陽イオ 20 ンと、塩素イオン、臭素イオン、要素イオン、過塩素酸 イオン、チオシアン酸イオン、テチラフルオロホウ素酸 イオン、硝酸イオン、ASF。、PF。一、ステアリル スルホン酸イオン、オクチルスルホン酸イオン、ドデシ ルベンゼンスルホン酸イオン、ナフタレンスルホン酸イ オン、ドデシルナフタレンスルホン酸イオン、R1SO, 、(R¹SO₂)(R¹SO₂)N⁻、および(R¹SO₂) (R'SO₂) (R'SO₂) C*. から選ばれた除イオン とからなる化合物が挙げられる。ただしR'、R'、R' は電子吸引性基である。好ましくはR1、R1、R1は各 々独立して炭素数が1から6までのバーフルオロアルキ ル益またはパーフルオロアリール基である。R¹、R¹、 およびR'は各々間一であっても、異なっていても良 い。金属陽イオンとしては選移金属の陽イオンを用いる ことができる。好ましくは周朝表1族または2族に属す る金属の陽イオンが用いられる。またMn、Fe. C o. Ni、Cu. ZnおよびAg金属から選ばれた金属 の陽イオンを用いることも好ましい。電解質塩化合物と して上記化台物を1種または2種以上の混合物として使 用することができる。本発明において、上記可溶性電解 質塩化合物の使用量はポリンロキサンおよびポリエーテ ル共重合体の配合割合が、電解質塩化合物のモル数/共 堂合体中に含まれる酸素原子の縁モル数の値で0.00 01~3、好ましくは0.0005~0.3の範囲であ **5.**

[0021]

【発明の実施の形態】本発明の高分子固体電解質の製造 方法は特に動物はないが、通常各々の成分を機械的に混合するか、あるいは溶剤に溶解させて混合した後、溶剤 を除去するなどの方法によって製造される。本発明においては反応容器の種類は重要でない。しかしながら副反

応を防ぐため、非反応性材料で形成された反応容器中で おこなうのが好ましい。本発明方法は、バッチ法、セミ バッチ法または連続式で実施しうる。この反応容器は、 例えば連続的優绊タンク反応容器でありうる。との方法 はバッチ式あるいは連続式でおこなうのが好ましい。本 発明の高分子化合物は、例えば以下に示すように合成さ れるが、この方法に限定されるものではない。本発明の 主鎖構造が前述(1)式の構造単位と(2)式の構造単 位からなる固体状のランダム共宣台体は、アルキレング リコールとアミン化合物を溶媒に溶解させたものに対し 10 て、不活性ガス雰囲気下で室温にて一般式

[0022] [ft13]

【0023】(式中、X1、X1は環伏エーテル基を含有 20 する置換基で、それぞれ同一でも異なっていても良い) で示されるジクロロシラン誘導体を溶媒で希釈したもの を満下することにより得られる。ことで使用するアミン 化合物は特に限定されるものではないが、例えばビリジ ンなどが挙げられる。また溶媒は特に限定されるもので はないが、例えばトルエンなどが挙げられる。一般式 [0024] [1114]

【0025】(式中X1、X1は環状のエーテルを有する 遺換基であり、それぞれ同種または異種であってもよ い) で示されるジクロロシランは例えば次のような方法 で製造される。 ジクロロシラン (H,S+C), および 環状エーテル益を含有し末端に二重結合を有する化合物 を、ヒドロシリル化反応用触媒である白金化台物触媒あ 40 示した。 るいはロジウム化合物触媒と揺触させ付加反応をするこ とにより得られる。この種のジクロロンランを合成する 別の方法としては、例えば、テトラクロロシラン(SI C1。) に対して相当するグルニヤール反応剤を反応さ せて得る方法がある。前記して得られたジクロロシラン 化合物を溶媒に溶解させたものを、アルキレングリコー ルとアミン化合物を溶媒に溶解させたものに対して滴下 させて反応をおこなうが、その際の反応温度は特に限定

されるものではないが、好ましくは0℃~200℃の超 囲で、さらに好ましくは10℃~150℃の範囲で、特 に好ましくは50℃~70℃の範囲で行われる。 [0026]

【実施例】次に本発明の実施例について具体的に説明す るが、本発明は以下の実施例に限定されるものではな

(実施例1) ガラス内筒を備えたステンレス製オートク レープに、(化合物7)

[0027] 【化15】

【0028】9. 5g(60mmo1) および白金ビニ ルシロキサンキシレン溶液1 0mg(1.0×10mmol)を秤取し、空気中でそのオートクレーブに、 ジクロロシラン2. 0g (20mmol) を加え. 60 では加熱して撹拌した。6時間後反応を終了し反応混合 物をクーゲルロールを使用して蒸馏した。その結果ケイ 素上に環状エーテルを含有する置換基を2つ有するジク ロロシラン誘導体が、7.5g(18mmol. 収率9 0%) 得られた。またこの物質のGC-MSによる分子 量測定では観ビークが417に現れた。 次に得られたジ クロロシラン誘導体4.28(10mmol)をトルエ ン20mlに溶解させたものを、テトラエチレングリコ 30 ール2. 0g (10mmol) とピリジン1. 7g (2 1mmol)をトルエン15mlに溶解したものに、窒 素ガス雰囲気下で、20分かけて満下した。その後50 ~60℃で5時間反応した。反応後折出したビリジンの 塩酸塩を取り除き、溶媒を減圧留去して目的物5. 1 g (9.6mmol、収率96%)を得た。 こうして得ち れたポリマーの、8gと過塩素酸リチウムの、2gとを アセトンに溶解させ均一溶液とし、それを基板上に流延 した役、アルゴンガス雰囲気下で加熱して溶媒を除去し 薄蘭を得た。この薄膜のイオン伝導度は極めて高い値を

[0029]

【発明の効果】本発明の各ケイ素上に環状エーテル構造 を含有する環境益を2つ有するポリンロキサンとポリエ ーテルとの共重合体および該共宣合体に可溶性の電解質 塩化合物からなる高分子固体電解質は、加工性、成形 住、機械的強度、柔軟性などに優れており、また低温で も高いイオン任導度を有することから電池などの電子機 器への応用が期待できる。