Seminarvortrag Isoperimetrische Ungleichung in der Ebene

Robert Hemstedt r@twopi.eu

19. Mai 2013

1 Motivation

Sei Γ eine **geschlossene Kurve** in der Ebene, ohne Selbstüberschneidung. Es bezeichne l die **Länge** von Γ und \mathcal{A} die **Fläche** der beschränkten Umgebung in \mathbb{R}^2 , die von Γ umschlossen wird.

Frage: Falls existent, welche Kurve Γ für ein festes l maximiert A?

Man kann sich schnell selbst davon überzeugen, dass der Kreis dieses Problem löst. Wir wollen dies formal beweisen.

2 Kurven, Längen und Flächen

Bei der ersten Beschreibung des Problems haben wir die uns alltäglichen Begriffe **geschlossene Kurve**, **Länge** und **Fläche** verwendet, ohne sie vorher klar definiert zu haben. Das holen wir jetzt nach.

Definition 2.1: Eine parametrisierte Kurve ist eine Abbildung

$$\gamma: [a,b] \to \mathbb{R}^2.$$

 $\operatorname{Im}(\gamma)$ ist eine Menge von Punkten in der Ebene, die wir als Kurve Γ bezeichnen. Eine Kurve heißt einfach, wenn sie sich nicht selbst schneidet und sie heißt geschlossen, wenn ihr Anfangs- und Endpunkt identisch sind. Also:

$$\Gamma \ einfach \ und \ geschlossen :\Leftrightarrow \left\{ \begin{array}{ll} \gamma(s_1) = \gamma(s_2) & s_1 = a, s_2 = b \\ \forall s_1 \neq s_2 \in [a,b] : \gamma(s_1) \neq \gamma(s_2) & sonst \end{array} \right.$$

Bemerkung 2.2: Wir können γ als eine periodische Funktion auf \mathbb{R} mit Periodenlänge b-a fortsetzen und sie als Funktion auf dem Kreis betrachten.

Für unsere weiteren Betrachtungen fordern wir eine gewisse Glattheit von γ voraus, sodass wir sie als \mathcal{C}^1 Funktion betrachten mit $\gamma'(s) \neq 0 \ \forall s$, also γ nie konstant ist.

Insgesamt garantieren uns diese Forderungen an γ , dass Γ an jedem Punkt eine wohldefinierte Tangente hat, die sich stetig ändert, wenn der Stützpunkt auf der Kurve (stetig) wandert.

Bemerkung 2.3: Die Parametrisierung von γ induziert eine Orientierung auf Γ , wenn s von a nach b geht. Weiterhin ergibt sich für jede bijektive Abbildung $s:[c,d] \to [a,b], s \in \mathcal{C}^1$ eine neue Parametrisierung $\eta:[c,d] \to \mathbb{R}^2$ von Γ mit

$$\eta(t) = \gamma(s(t)).$$

Es sollte klar sein, dass Γ geschlossen und einfach unabhängig von der gewählten Parametrisierung ist.

Definition 2.4: Mit den Bezeichnungen von oben sind die zwei Parametrisierungen η und γ äquivalent, wenn s'(t) > 0 für alle t, d.h. η und γ induzieren die gleiche Orientierung auf Γ . Gilt jedoch s'(t) < 0 für alle t, so kehrt η die Orientierung um.

Definition 2.5: Wird die Kurve Γ durch eine Funktion $\gamma(s) = (x(s), y(s))$ parametrisiert, dann ist ihre Länge l definiert durch

$$l := \int_a^b |\gamma'(s)| ds = \int_a^b \left((x'(s)^2 + y'(s)^2) \right)^{1/2} ds.$$

Satz 2.6: Die Länge einer Kurve Γ ist unabhängig von deren Parametrisierung.

Beweis. Seien γ und η zwei Parametrisierung mit $\gamma(s(t)) = \eta(t)$ wie oben. Dann

$$\int_{a}^{b} |\gamma'(s)| ds = \int_{c}^{d} |\gamma'(s(t))| |s'(t)| dt = \int_{c}^{d} |\eta'(t)| dt,$$

wobei wir die Kettenregel auf γ angewandt und die Variable im Integral substituiert haben. \square

Für den anvisierten Beweis wählen wir eine besondere Parametrisierung von Γ .

Definition 2.7: Wir bezeichen γ als eine Parametrisierung nach der Bogenlänge, wenn $|\gamma'(s)| = 1$ für alle s.

Das bedeutet, dass $\gamma(s)$ sich mit konstanter Geschwindigkeit bewegt und daher die Länge von Γ genau b-a ist. Nach einer eventuellen Translation lässt sich die Parametrisierung auf [0;l] definieren.

Satz 2.8: Jede Kurve lässt sich nach der Bogenlänge parametrisieren.

Beweis. O.b.d.A sei $\alpha(t):[0,b]\to\mathbb{R}^2$ eine Parametrisierung der Kurve Γ. Dann definiere $L(s):=\int_0^s |\alpha'(t)|dt$. Da $|\alpha'(t)|>0$ für alle t und α' stetig, ist L streng monoton und damit eine Bijektion $L:[0,b]\to[0,l]$. Dann ist $\gamma(s)=\alpha(L^{-1}(s))$ eine Parametrisierung von Γ nach der Bogenlänge. In der Tat:

$$\gamma'(s) = \frac{d}{ds}\alpha(L^{-1}(s)) = \alpha'(L^{-1}(s)) \cdot (L^{-1})'(s) = \alpha'(L^{-1}(s)) \cdot \frac{1}{L'(L^{-1}(s))} = \frac{\alpha'(L^{-1}(s))}{|\alpha'(L^{-1}(s))|}$$

und somit ist $|\gamma'(s)| = 1$ für alle s.

Wir wollen nun die Fläche der von der einfach geschlossenen Kurve Γ umschlossenen definieren. Für unsere Betrachtungen genügt sie der folgenden Formel:

Definition 2.9: Der Flächeninhalt A der von der Kurve Γ umschlossenen Region lässt lässt sich wie folgt berechnen:

$$\mathcal{A} = \frac{1}{2} \left| \int_{\Gamma} (xdy - ydx) \right|$$
$$= \frac{1}{2} \left| \int_{a}^{b} x(s)y'(s) - y(s)x'(s)ds \right|.$$

3 Formulierung und Beweis der Isoperimetrischen Ungleichung

An dieser Stelle sind wir mit genügend Rüstzeug bewappnet, um unser Problem exakt zu formulieren und zu beweisen.

Theorem 3.1 Isoperimetrische Ungleichung: Sei Γ eine einfache geschlossene Kurve im \mathbb{R}^2 der Länge l und sei \mathcal{A} der Flächeninhalt der ihr umschlossenen Region. Dann gilt

$$A \le \frac{l^2}{4\pi},$$

Gleichheit gilt genau dann, wenn Γ ein Kreis ist.

Beweis. Wir können unser Problem neu skalieren, indem wir die Maßeinheiten um einen Faktor $\delta > 0$ verändern. Dies definiert die Abbildung $(x,y) \mapsto (\delta x, \delta y)$. Unter dieser Abbildung hat die Kurve Γ die Länge δl und die Fläche $\delta^2 \mathcal{A}$. Wir können somit alle Fälle auf den Fall $l = 2\pi$ zurückführen und es genügt zu zeigen, dass $\mathcal{A} \leq \pi$ mit Gleichheit genau dann, wenn Γ ein Kreis ist.

Sei $\gamma:[0,2\pi]\to\mathbb{R}^2$ mit $\gamma(s)=(x(s),y(s))$ eine Parametrisierung nach der Bogenlänge der Kurve Γ , also $x'(s)^2+y'(s)^2=1$ für alle $s\in[0,2\pi]$. Dann

$$\frac{1}{2\pi} \int_0^{2\pi} \left(x'(s)^2 + y'(s)^2 \right) ds = 1. \tag{3.1}$$

Da die Kurve geschlossen und die Funktionen x(s) und y(s) 2π -periodisch ist, betrachten wir ihre Fourierreihen

$$x(s) \sim \sum a_n e^{ins}$$
 und $y(s) \sim \sum b_n e^{ins}$.

Weiter mit $\hat{f}'(n) = in\hat{f}(n)$ haben wir

$$x'(s) \sim \sum a_n ine^{ins}$$
 und $y'(s) \sim \sum b_n ine^{ins}$.

Die Parsevalsche Identität angewandt auf (3.1) gibt

$$\sum_{n=-\infty}^{\infty} |n|^2 (|a_n|^2 + |b_n|^2) = 1.$$
(3.2)

Mit der Bilinearform der Parsevalschen Identität angewandt auf das Integral für den Flächeninhalt erhalten wir mit $a_n = \overline{a_{-n}}$ und $b_n = \overline{b_{-n}}$, da x(s) und y(s) reellwertig sind:

$$\mathcal{A} = \frac{1}{2} \left| \int_0^{2\pi} x(s)y'(s) - y(s)x'(s)ds \right| = \pi \left| \sum_{n=-\infty}^{\infty} n \left(a_n \overline{b_n} - b_n \overline{a_n} \right) \right|.$$

Ferner ist

$$|a_n\overline{b_n} - b_n\overline{a_n}| \le |a_n\overline{b_n}| + |\overline{a_n}b_n| = 2|a_n||b_n| \le |a_n|^2 + |b_n|^2 \tag{3.3}$$

Mit $|n| \le |n|^2$ und (3.2) zusammen ergeben

$$\mathcal{A} \le \pi \sum_{n=-\infty}^{\infty} |n|^2 (|a_n|^2 + |b_n|^2)$$

$$< \pi$$

Wenn $\mathcal{A}=\pi$, dann muss $x(s)=a_{-1}e^{-is}+a_0+a_1e^{is}$ und $y(s)=b_{-1}e^{-is}+b_0+b_1e^{is}$, da $|n|<|n|^2$, sobald $|n|\geq 2$. Da x(s) und y(s) reellwertig sind, muss $a_{-1}=\overline{a_1}$ und $b_{-1}=\overline{b_1}$. Aus (3.2) ist $2(|a_1|^2+|b_1|^2)=1$ und wegen Gleichheit in (3.3) ist $|a_1|=|b_1|=1/2$. Demnach $a_1=\frac{1}{2}e^{i\alpha}$ und $b_1=\frac{1}{2}e^{i\beta}$. Weiter ist $1=2|a_1\overline{b_1}-\overline{a_1}b_1|=2|\frac{e^{i(\alpha-\beta)}}{4}-\frac{e^{i(\beta-\alpha)}}{4}|=|\sin(\alpha-\beta)$ und somit $\alpha-\beta=(2k+1)\pi/2, k\in\mathbb{Z}$. Damit finden wir

$$x(s) = a_0 + \cos(\alpha + s)$$
 und $y(s) = b_0 \pm \sin(\alpha + s)$,

wobei das Vorzeichen in y(s) von der Parität von k abhängt. Auf jeden Fall sehen, wir dass Γ ein Kreis ist, für den die Gleichheit offensichtlich gilt und damit ist die Aussage bewiesen. \square