目录

第	一部	分 定枳分 definite integral	2
1	"定和	识分"的定义	2
2 定积分的性质		分的性质	3
	2.1	若 b=a, 则 $\int_a^a f(x) = 0$	3
	2.2	$\int_a^b f(x) = -\int_b^a f(x) \leftarrow$ 交换上下限, 定积分的值要变号	3
	2.3	$\int_a^b (\alpha \cdot f(x) + \beta \cdot g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$ ← 即, 积分可以拆开, 常	
		数可以提到外面去	3
	2.4	若 $a < c < b$, 则 $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \leftarrow$ 其实就是原先的一步	
		走, 分成两步走而已	3
	2.5	若 $a < b < c$, 则: $\int_a^b f(x)dx = \int_a^c f(x)dx - \int_c^b f(x)dx$	3
	2.6	若 f(x) 恒等于 1, 即该函数是条 "水平直线", 它与 x 轴之间就形成一个矩形了.	
		则 $\int_a^b 1 dx = $ 高 $1 \cdot $ 第 $(b-a) = b-a $	3
	2.7	$\int_a^b k dx = k \int_a^b 1 dx = k(b-a) \leftarrow k$ 是常数, 可以提到积分外面	3
	2.8	若 $f(x) >= 0$,即"函数曲线"都在 x 轴上方. 则 $\int_a^b f(x) dx >= 0$	3
	2.9	若 $f(x) \le 0$,即"函数曲线"都在 x 轴下方. 则 $\int_a^b f(x) dx \le 0$	3
		若 $f(x) \le g(x)$, 则 $\int_a^b f(x)dx \le \int_a^b g(x)dx$	3
	2.11	$\left \int_{a}^{b} f(x)dx \right <= \int_{a}^{b} f(x) dx \dots \dots \dots \dots$	3
	2.12	一个曲线, 在 $[a,b]$ 区间上, 若 m 是它的最小 y 值高度, M 是它的最大 y 值高	
		度, 则有: $m(b-a) \leq \int_a^b f(x)dx \leq M(b-a)$	4
	2.13	定积分"中值定理":	
		如果 $f(x)$ 是连续的, $\exists \xi \in [a,b]$, 则必然有 $\int_a^b f(x)dx = f(\xi)(b-a)$	4
第	二部	分 求定积分的方法	4
3	定和	分的"分部积分法": $\int_a^b \hat{\mathbf{n}} \cdot d(\mathbf{n}) = (\hat{\mathbf{n}} \cdot \mathbf{n}) = \int_a^b \hat{\mathbf{n}} \cdot d(\hat{\mathbf{n}})$	5

积分

第一部分 定积分 definite integral

1 "定积分"的定义

- 1. 曲线函数 f(x), 在 x 轴上有界, 比如端点是 [a,b].
- 2. 然后, 我们在 [a,b] 这段区间上, 任意插入 n 个分点, 分成 n 个小区间. 它们不要求等分. 每个小区间的长度就是 $\Delta x_1, \Delta x_2, ..., \Delta x_n$.
- 3. 在每个 Δ 小区间上, 任取一点 ξ_i . 这点的函数值 (即 y 轴上的高度), 就是 $y = f(\xi_i)$.
- 4. 这样, 我们就能得到每一个 Δ 小区间, 所在的 "长方形细条的面积" 了, 即 = 宽 Δx_i ·高 $f(\xi_i)$
- 5. 把所有这些 Δ 小区间的 "长方形细条面积", 全加起来, 就是该曲线到 \mathbf{x} 轴间的面积的近似值. = $\sum_{i=1}^{n} \Delta x_i \cdot f(\xi_i)$
- 6. 我们令其中 x 轴宽度最大的那个 Δx 小区间 (假设起名为 ,即 $\lambda = \max \{\Delta x_1,...,\Delta x_n\}$),我们让这个 ,极限趋向于 0. 这样,既然最大的 Δx 小区间都趋近于 0 了,其他比它更小的 Δx 小区间,就都统统被约束,也都趋向于 0 了. 这样,它们的"长方形细条的面积之和",就能精确的等于"函数曲线到 x 轴之间的面积"了,而不仅仅是"近似"了.

即:
$$\lim_{x\to 0} \sum_{i=1}^{n} \underbrace{f(\xi_i)}_{\hat{\mathbf{g}}} \cdot \underbrace{\Delta x_i}_{\hat{\mathbf{g}}} = \underbrace{\int_{a}^{b} f(x) dx}_{\hat{\mathbf{g}}}$$

各部分的名字是:
$$\int_{\mathbb{T}\mathbb{R}^a}^{\mathbb{L}\mathbb{R}^b} \underbrace{f(x)}_{\text{被积函数}} \underbrace{d(x)}_{\text{积分变量}}$$

Fig. 1

2 定积分的性质

- **2.1** 若 b=a, 则 $\int_a^a f(x) = 0$
- 2.2 $\int_a^b f(x) = -\int_b^a f(x)$ \leftarrow 交换上下限, 定积分的值要变号
- 2.3 $\int_a^b (\alpha \cdot f(x) + \beta \cdot g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx \leftarrow 即, 积分可以拆开, 常数可以提到外面去$
- **2.4** 若 a < c < b, 则 $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx \leftarrow$ 其实就是原先的一步走, 分成两步走而已.
- **2.5** 若 a < b < c, 则: $\int_a^b f(x) dx = \int_a^c f(x) dx \int_c^b f(x) dx$

2.6 若 f(x) 恒等于 1, 即该函数是条 "水平直线", 它与 x 轴之间就形成一个矩形了. 则 $\int_a^b 1 dx = \mbox{高} 1 \cdot \mbox{\bf 宽}(b-a) = b-a$

- 2.7 $\int_a^b k dx = k \int_a^b 1 dx = k(b-a) \leftarrow k$ 是常数,可以提到积分外面
- 2.8 若 f(x) >= 0, 即"函数曲线"都在 $\mathbf x$ 轴上方. 则 $\int_a^b f(x) dx >= 0$
- 2.9 若 f(x) <= 0,即"函数曲线"都在 ${f x}$ 轴下方. 则 $\int_a^b f(x) dx <= 0$
- **2.10** 若 f(x) <= g(x),则 $\int_a^b f(x) dx <= \int_a^b g(x) dx$

2.11 $\left| \int_a^b f(x) dx \right| <= \int_a^b |f(x)| dx$

因为"函数曲线"的定积分 (面积), 在x 轴上方是正面积的, 在x 轴下方是负面积的, 如果一个曲线既有正y 值的部分, 又有负y 值的部分, 那它的总面积, 肯定会有"正负相互抵消掉"的一部分.

而先把"函数曲线"取绝对值, 它的 y 值就都在 x 轴上方了, 面积就不存在负数的一块, 就不会抵消掉总面积.

2.12 一个曲线, 在 [a,b] 区间上, 若 m 是它的最小 y 值高度, M 是它的最大 y 值高度, 则有: $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$

如下图, "高 m" 乘以 "宽 (b-a)", 就是 abm 这个小矩形的面积. '高 M" 乘以 '宽 (b-a)", 就是 abM 这个大矩形的面积. 曲线 mM 的定积分, 这个面积大小, 肯定是夹在上面两个矩形的面积之间的.

使用该方法,就可以让我们来对曲线的定积分值,进行估计.

2.13 定积分"中值定理":

如果 $f(\mathbf{x})$ 是连续的, $\exists \xi \in [a,b]$,则必然有 $\int_a^b f(x) dx = f(\xi)(b-a)$

定积分中值定理 Mean value theorems for definite integrals 的意思就是说: 在函数曲线的 [a,b] 区间上, 一定能找到一个点 ξ , 该 ξ 点的 y 值高度 (即 $f(\xi)$), 乘上 "b-a 这个宽度", 所形成的的矩形面积, 能恰好等于函数曲线的定积分值. 你找吧, 一定能找到这个点 ξ 存在.

第二部分 求定积分的方法

3 定积分的"分部积分法": $\int_a^b \hat{\mathbf{n}} \cdot d(\mathbf{h}) = (\hat{\mathbf{n}} \cdot \mathbf{h}) \mid_a^b - \int_a^b \mathbf{h} \ d(\hat{\mathbf{n}})$

比较一下:

为什么要用"分部积分法",来把 d(f) 变成 d(f)? 不还是要求某个数的微分么? 其实,你这样做的目的,是需要先满足这个前提的: 即: 当" $\int f d(f)$ " 比" $\int f d(f)$ " 更容易算时,你可以用"分部积分法"来交换微分的顺序.

注意: 在反复使用分部积分法的过程中, 不要对调两个函数地位, 否则不仅不会产生循环现象, 反而会一来一往, 恢复原状, 毫无所得.

$$\int_{0}^{\frac{1}{2}} \frac{\arcsin x}{\sin x} \, dx \leftarrow \text{根据定积分 "分部积分法" 公式} \int_{0}^{b} \hat{\mathbf{n}} \cdot d(E) = (\hat{\mathbf{n}} \cdot \hat{\mathbf{E}}) \Big|_{a}^{b} - \int_{0}^{b} E \, d(\hat{\mathbf{n}})$$

$$= (\arcsin x \cdot x) \Big|_{0}^{\frac{1}{2}} - \int_{0}^{\frac{1}{2}} x \, d(\arcsin x)$$

$$\leftarrow \hat{\mathbf{1}} \hat{\mathbf{E}}, \quad \hat{\mathbf{m}} \hat{\mathbf{H}} \hat{\mathbf{E}} \hat{\mathbf{E}} \hat{\mathbf{E}} \hat{\mathbf{H}} \hat{\mathbf{H}} \hat{\mathbf{H}} \hat{\mathbf{E}} \hat{\mathbf{H}} \hat{\mathbf{H}} \hat{\mathbf{H}} \hat{\mathbf{H}} \hat{\mathbf{E}} \hat{\mathbf{H}} \hat{\mathbf{$$

例

$$\int_0^1 e^{\sqrt{x}} \ dx$$

我们用换元法, 令 $\sqrt{x} = t$, 则 $x = t^2$. 于是, $dx = \underbrace{d(t^2)}_{\text{求微分}} = (t^2)' dt = 2t dt$

- \rightarrow 原上限是 x=1, 换成 t 来表示上限, 就是 $x=t^2=1$, 即 t=1, 这个就是换元成 t 后的 t 的新上限.
- \rightarrow 原下限是 x=0, 换成 t 来表示上限, 就是 $x=t^2=0$, 即 t=0. 这个是 t 的下限. 所以原式就变换成了:

$$=\int_0^1 e^t \ 2t \ dt = 2\int_0^1 e^t \ t \ dt \ \leftarrow$$
 把导函数 t , 拿到微分 d 后面,变成原函数.
$$=2\int_0^1 \underbrace{t}_{\text{fi}} \ d\underbrace{(e^t)}_{\text{fi}} \ \leftarrow$$
 使用定积分的"分部积分法"

$$=2\left[t\cdot e^{t}\mid_{0}^{1}-\int_{0}^{1}e^{t}\;d\left(t\right)\right]=2\left[1\cdot e-e^{t}\mid_{0}^{1}\right]=2\left[e-\left(e^{1}-e^{0}\right)\right]=2$$