Kruskal's MST Algorithm

CLRS Chapter 23, DPV Chapter 5 Version of November 5, 2014

Main Topics of This Lecture

- Kruskal's algorithm
 Another, but different, greedy MST algorithm
- Introduction to UNION-FIND data structure.
 Used in Kruskal's algorithm
 Will see implementation in next lecture.

Idea of Kruskal's Algorithm

Build a forest.

Initially, trees of the forest are the vertices (no edges).

In each step add the cheapest edge that does not create a cycle.

Continue until the forest is a single tree. (Why is a single tree created?)

This is a *minimum* spanning tree (we must prove this).

Outline by Example

(a)

(b)

 (\mathbf{c})

 \bigcirc

 \bigcirc

original graph

forest --- MST

	edge	weight
Ε	{d, c}	2
	$\{a, e\}$	3
	$\{a,d\}$	5
	{e, d}	7
	{b, c}	9
	$\{a,b\}$	10
	{b, d}	12

Forest (V, A)

Outline of Kruskal's Algorithm

Step 0: Set $A = \emptyset$ and F = E, the set of all edges.

Step 1: Choose an edge e in F of minimum weight, and check whether adding e to A creates a cycle.

- If "yes", remove e from F.
- If "no", move e from F to A.

Step 2: If $F = \emptyset$, stop and output the minimal spanning tree (V, A). Otherwise go to Step 1.

Remark: Will see later, after each step, (V, A) is a subgraph of a MST.

Outline of Kruskal's Algorithm

Implementation Questions:

- \bullet How does algorithm choose edge $e \in {\cal F}$ with minimum weight?
- How does algorithm check whether adding e to A creates a cycle?

How to Choose the Edge of Least Weight

Question:

How does algorithm choose edge $e \in F$ with minimum weight?

Answer: Start by sorting edges in E in order of increasing weight.

Walk through the edges in this order.

(Once edge e causes a cycle it will always cause a cycle so it can be thrown away.)

How to Check for Cycles

Observation: At each step of the outlined algorithm, (V, A) is acyclic so it is a forest.

If u and v are in the same tree, then adding edge $\{u,v\}$ to A creates a cycle.

If u and v are not in the same tree, then adding edge $\{u,v\}$ to A does not create a cycle.

Question: How to test whether u and v are in the same tree?

High-Level Answer: Use a disjoint-set data structure Vertices in a tree are considered to be in same set. Test if Find-Set(u) = Find-Set(v)?

Low -Level Answer:

The UNION-FIND data structure implements this:

The UNION-FIND Data Structure

UNION-FIND supports three operations on collections of **disjoint sets**: Let n be the size of the universe.

Create-Set(u): O(1)

Create a set containing the single element u.

Find-Set(u): $O(\log n)$

Find the set containing the element u.

Union(u, v): $O(\log n)$

Merge the sets respectively containing u and v into a common set.

For now we treat UNION-FIND as a black box. Will see implementation in next lecture.

Kruskal's Algorithm: the Details

```
Sort E in increasing order by weight w; O(|E|\log|E|) /* After sorting E = \langle \{u_1, v_1\}, \{u_2, v_2\}, \dots, \{u_{|E|}, v_{|E|}\} \rangle */ A = \{ \}; for (each u in V) CREATE-SET(u); O(|V|) for i from 1 to |E| do O(|E|\log|E|) if (FIND-SET(u_i)!= FIND-SET(v_i)) \{ \text{ add } \{u_i, v_i\} \text{ to } A; UNION(u_i, v_i); \} return(A);
```

Remark: With a proper implementation of UNION-FIND, Kruskal's algorithm has running time $O(|E| \log |E|)$.

Correctness of Kruskal's Algorithm

Sort the graph edges in nondecreasing order so that

$$w(e_1) \leq w(e_2) \leq \cdots \leq w(e_m)$$

Let A_i be A in Kruskal's algorithm after processing e_i .

Set $A_0 = \emptyset$. Then

If e_{i+1} forms a cycle with A_i , $\Rightarrow A_{i+1} = A_i$ If e_{i+1} doesn't form a cycle with A_i , $\Rightarrow A_{i+1} = A_i \cup \{e_{i+1}\}$

We will prove that, $\forall i$, \exists MST T_i such that $A_i \subseteq T_i$.

In particular, this means that

$$A_0 \subseteq A_1 \cdots \subseteq A_m \subseteq T_m$$

which implies (why?) Kruskal's algorithm produces MST T_m .

Correctness of Kruskal's Algorithm

Need to prove that $\forall i, \exists \mathsf{MST}\ T_i$ such that $A_i \subseteq T_i$. Proof will be by induction on i

Obviously true for base i = 0. If $i \ge 0$,

- (a) If e_{i+1} forms a cycle with A_i , $\Rightarrow A_{i+1} = A_i$
- (b) If e_{i+1} doesn't form a cycle with A_i , $\Rightarrow A_{i+1} = A_i \cup \{e_{i+1}\}$

Claim is true for case (a).

To prove for case (b)

note that T_i is forest on n nodes.

Let C_1, C_2, C_K , be connected components (trees) of forest.

Let V_1, V_2, \ldots, V_k , be their vertices.

Without loss of generality,

let V_1 contain one of the endpoints of e_{i+1} .

Note that the other endpoint is *not* in V_1 .

Correctness of Kruskal's Algorithm

Recall Lemma proved previously

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some MST for G.

Let

- (S, V S) be any cut of G that respects A
 e be a light edge crossing the cut (S, V S)

Then, $A \cup \{e\}$ is included in some MST for G.

Now plug in the information from previous slide.

Let $S = V_1$, $A = A_i$ and $e = e_{i+1}$ Induction hypothesis is that A_i is in some MST.

Since V_1 is CC of A_i , $(V_1, V - V_1)$ respects A_i .

Easy to see (how?) that e_{i+1} is a light edge crossing the cut.

So, $A_{i+1} = A_i \cup \{e_{i+1}\}$ is included in some MST for G, and laim is proven.

Odds and Ends

On previous slide we stated that it's easy to see that e_{i+1} is a light edge crossing the cut.

Suppose that this was not true

Then \exists some e_j with $w(e_j) < w(e_{i+1})$ that crosses the cut. By definition, if edge crosses the cut, its endpoints are in different connected components of T_i (and therefore A_i) so it can't form a cycle with A_i .

 $w(e_j) < w(e_{i+1})$ so j < i+1 and e_j is processed before e_{i+1} . Since $A_{j-1} \subseteq A_i$ and e_j doesn't form a cycle with A_i , e_j also doesn't form a cycle with A_{j-1} .

Thus, e_j would have been added to A_j by Kruskal's algorithm! But this contradicts fact that e_j can not be in A_i since it connects two items that are not connected in A_i .