Solutions 2

Exercise 1. 1. Since there are n variables, which can take two values, there are 2^n possible states.

- 2. As in class, $\bar{s} = (s_1, \dots s_n)$ and exponent are used to represent the variables in the different states (i.e. $\bar{s}^k = (s_1^k, \dots s_n^k)$).
 - We note

where
$$ar{v}^k = (s_1^k, \dots, s_n^k, a_1^k, \dots, a_m^k, x_1^k, \dots, x_\ell^k)$$

$$F_{(=k)} = \exists \bar{v}^0, \dots, \bar{v}^{k-1}, \bar{s}^k. \ Init \left[\bar{s} := \bar{s}^0\right] \wedge \left(\bigwedge_{i=0}^{k-1} R_i\right) \wedge \left(\bar{s}^k = \bar{s}\right)$$

Another solution:

$$\exists \bar{v}^0, \dots, \bar{v}^{k-1}.$$

$$Init\left[\bar{s} := \bar{s}^0\right] \wedge \left(\bigwedge_{i=0}^{k-2} R_i\right) \wedge R\left[\left(\bar{s}, \bar{a}, \bar{x}, \bar{s}'\right) := \left(\bar{s}^{k-1}, \bar{a}^{k-1}, \bar{x}^{k-1}, \bar{s}\right)\right]$$

- $F_{(\leq k)} = \bigvee_{i=0}^{k} F_{(=i)}$
- The "intuitive" solution is $F_{(\leq \infty)}$, however this formula is infinite. Using question (1), it can be reduced to $F_{(\text{reachable})} = F_{(\leq 2^n 1)}$

•
$$F_{(=k,\text{Err})} = \exists \bar{v}^0, \dots, \bar{v}^{k-1}, \bar{s}^k. \ (\bar{s}^0 = \bar{s}) \land \left(\bigwedge_{i=0}^{k-1} R_i\right) \land E\left[\bar{s} := \bar{s}^k\right]$$

- $F_{(\leq k, \text{Err})} = \bigvee_{i=0}^k F_{(=i, \text{Err})}$
- $F_{\text{(stuck)}} = \neg \exists \bar{a}, \bar{x}, \bar{s}'. R$
- 3. $\neg \exists \bar{s}. \ F_{\text{(reachable)}} \land E$
 - $\neg \exists \bar{s}. \ F_{\text{(reachable)}} \land F_{\text{(stuck)}}$
 - $\forall \bar{s}. \ F_{(< k)}$
 - Note that we are only allowed to quantify on propositional variables. As such, a formula such as

$$\forall k. \ \exists \bar{s}. \ F_{(=k)} \land \neg F_{(\text{stuck})}$$

is not allowed, as k ranges (implicitly) over \mathbb{N} .

$$\exists \bar{s}. \ F_{(=2^n)}$$

if such a state (\bar{s}) exists, the underlying trace contains $2^n + 1$ states (since it is 2^n steps long). By the pigeon hole principle, one of these states must appear twice. This means that there is a part of the trace which can be repeated infinitely ("pumped"), implying the existence of an infinite trace (see the proof of the pumping lemma for regular languages¹ which relies on the same principle).

Exercise 2. 1. Any expression of the type $y_k \leftrightarrow x_i * x_j$ is easily convertible to a CNF.

$$y_k \leftrightarrow x_i \lor x_j \equiv (y_k \to x_i \lor x_j) \land (x_i \lor x_j \to y_k)$$

$$\equiv (\neg y_k \lor x_i \lor x_j) \land (\neg x_i \lor y_k) \land (\neg x_j \lor y_k)$$

$$y_k \leftrightarrow x_i \land x_j \equiv (y_k \to x_i \land x_j) \land (x_i \land x_j \to y_k)$$

$$\equiv (\neg y_k \lor x_i) \land (\neg y_k \lor x_j) \land (\neg x_i \lor \neg x_j \lor y_k)$$

$$y_k \leftrightarrow x_i \to x_j \equiv y_k \leftrightarrow \neg x_i \lor x_j$$

$$\equiv (\neg y_k \lor \neg x_i \lor x_j) \land (x_i \lor y_k) \land (\neg x_j \lor y_k)$$

$$y_k \leftrightarrow \neg x_i \equiv (y_k \to \neg x_i) \land (\neg x_i \to y_k)$$

$$\equiv (\neg y_k \lor \neg x_i) \land (x_i \lor y_k)$$

Let's first define the mapping between sub formulas and fresh variables:

$$y_1 \leftrightarrow \neg b$$

$$y_2 \leftrightarrow a \lor y_1$$

$$y_3 \leftrightarrow b \rightarrow c$$

$$y_4 \leftrightarrow \neg y_3$$

$$y_5 \leftrightarrow y_2 \land y_4$$

$$y_6 \leftrightarrow y_5 \rightarrow a$$

The Tseytin transformation of the formula is therefore:

$$(y_1 \leftrightarrow \neg b) \land (y_2 \leftrightarrow a \lor y_1) \land (y_3 \leftrightarrow b \rightarrow c) \land (y_4 \leftrightarrow \neg y_3) \land$$

$$(y_5 \leftrightarrow y_2 \land y_4) \land (y_6 \leftrightarrow y_5 \rightarrow a) \land y_6$$

$$= (\neg y_1 \lor \neg b) \land (b \lor y_1) \land (\neg y_2 \lor a \lor y_1) \land (\neg a \lor y_2) \land (\neg y_1 \lor y_2) \land$$

$$(\neg y_3 \lor \neg b \lor c) \land (b \lor y_3) \land (\neg c \lor y_3) \land (\neg y_4 \lor \neg y_3) \land (y_3 \lor y_4) \land$$

$$(\neg y_5 \lor y_2) \land (\neg y_5 \lor y_4) \land (\neg y_2 \lor \neg y_4 \lor y_5) \land (\neg y_6 \lor \neg y_5 \lor a) \land$$

$$(y_5 \lor y_6) \land (\neg a \lor y_6) \land (\neg y_6 \lor \neg y_7) \land (y_6 \lor y_7) \land y_7$$

¹John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to automata theory, languages, and computation*. Addison-Wesley, 2006, pp. 128–129.

2. We first show that they might not be equivalent by providing a small counterexample. As written above, the Tseytin transform of the formula $\neg x$ is $(y \leftrightarrow \neg x) \land y$. The value of $\neg x$ when x = 0 is 1, whereas the value of its Tseytin transformation when x = 0, y = 0, is 0. Therefore the two formulas are not equivalent.

Let's now prove that a formula is satisfiable if and only if its Tseytin transformation is satisfiable as well.

Let φ be a formula and $V = \{x_i \mid x_i \in FV(\varphi)\}$ its set of variables. One can notice (and prove by induction) that the Tseytin transformation of φ is equivalent to:

$$y_n \wedge \bigwedge_{i=1}^n (y_i \leftrightarrow \psi_i)$$

where $\{\psi_i\}_{0\leq i\leq n}$ are all the (non-atomic) subformulas of φ ; in particular, $\psi_n = \varphi$. Therefore given an assignment α of V, a clause $(y_i \leftrightarrow \psi_i)$ is true if and only if one assigns the truth value of $\psi_i [V := \alpha]$ to y_i . Since these clauses can be true whatever is the value of α , we have that the Tseytin transformation of φ is satisfiable if and only if y_n is satisfiable. Since we have a clause $y_n \leftrightarrow \varphi$ (due to the fact that $\psi_n = \varphi$), y_n is satisfiable if and only if φ is satisfiable. Therefore φ and its Tseytin transformation are equisatisfiable.

3. F is a valid formula if and only if $\neg F$ is false for any variable assignment, i.e. it is unsatisfiable. A formula is unsatisfiable if and only if its Tseytin transformation is unsatisfiable as well (by the previous question). Therefore F is a valid formula if and only if the Tseytin transformation of $\neg F$ is unsatisfiable.

Exercise 3. By taking the CNF found in the above exercise and applying resolution, we obtain the following derivation trees:

Exercise 4. 1. Let $I=(D,\alpha)$ be an interpretation of \mathcal{L} , for which $\alpha(B)=b$ and $\alpha(T)=t$. For notational convenience we will denote $\alpha(L)$ by L_{α}

$$\begin{split} \llbracket \mathsf{Min} \rrbracket_I &= 1 & \Longrightarrow \ L_\alpha(b,b), L_\alpha(b,u) \text{ and } L_\alpha(b,t) \\ \llbracket \mathsf{Max} \rrbracket_I &= 1 & \Longrightarrow \ L_\alpha(b,t), L_\alpha(u,t) \text{ and } L_\alpha(t,t) \\ \llbracket \mathsf{Tot} \rrbracket_I &= 1 & \Longrightarrow \ L_\alpha(u,u) \text{ (by choosing } x = u \text{ and } y = u) \\ \llbracket \mathsf{Tra} \rrbracket_I &= 1 & \Longrightarrow \ (L_\alpha(t,b) \implies L_\alpha(t,u)) \end{split}$$

This greatly reduce the number of choices, restricting L_{α} to be either:

	L_{α}	b	u	t		L_{α}	b	u	t
a)	b	1	1	1	<i>b</i>)	b	1	1	1
a)	u	1	1	1	0)	u	1	1	1
	t	1	1	1		t	0	0	1
	L_{α}	b	u	t		L_{α}	b	u	t
(م	b	1	1	1	<i>d</i>)	b	1	1	1
c)	u	0	1	1	d)	u	0	1	1
	t	Ω	1	1		t	0	Ω	1

All the options satisfy reflexivity and transitivity as a consequence of the axioms. However, only d) satisfies the anti symmetry property. Therefore only d) is a partial order.

$$a) \begin{tabular}{|c|c|c|c|} \hline $E_{\alpha'}$ & b & u & t \\ \hline b & 1 & 1 & 1 \\ u & 1 & 1 & 1 \\ t & 1 & 1 & 1 \\ \hline t & 1 & 1 & 1 \\ \hline c) \end{tabular}$$

	$E_{\alpha'}$	b	u	t
<i>b</i>)	b	1	1	0
U)	u	1	1	0
	t	0	0	1
	$E_{\alpha'}$	b	\overline{u}	t
<i>d</i>)	b	1	0	0
d)	u	0	1	0

In all the cases, $E_{\alpha'}$ is an equivalence relation.

3. $E_{\alpha'}$ is always an equivalence relation, whatever is the domain.

Let D' be an arbitrary set and $I' = (D', \alpha')$.

• Reflexivity: $[Both]_{I'} = 1 \implies \forall x \in D'. E_{\alpha'}(x, x) \leftrightarrow L_{\alpha'}(x, x)$ (by choosing y = x).

We also know that, $\llbracket \mathsf{Tot} \rrbracket_{I'} = 1 \implies \forall x \in D'. \ L_{\alpha'}(x,x)$

Therefore $\forall x \in D'$. $E_{\alpha'}(x,x)$

• Symmetry:

$$[Both]_{I'} = 1 \implies \forall x \in D'. \ \forall y \in D'. \ E_{\alpha'}(x,y) \leftrightarrow (L_{\alpha'}(x,y) \land L_{\alpha'}(y,x))$$

We also know that for $x, y \in D'$ arbitrary $L_{\alpha'}(x, y) \wedge L_{\alpha'}(y, x) \equiv L_{\alpha'}(y, x) \wedge L_{\alpha'}(x, y)$. Therefore we have that for $\forall x \in D'$. $\forall y \in D'$. $E_{\alpha'}(x, y) \leftrightarrow E_{\alpha'}(y, x)$ is a tautology.

• Transitivity: $[Both]_{I'} = 1$ implies that for x, y, z arbitrary in D'

$$E_{\alpha'}(x,y) \leftrightarrow (L_{\alpha'}(x,y) \wedge L_{\alpha'}(y,x))$$

and

$$E_{\alpha'}(y,z) \leftrightarrow (L_{\alpha'}(y,z) \wedge L_{\alpha'}(z,y))$$

Therefore

$$E_{\alpha'}(x,y) \wedge E_{\alpha'}(y,z) \leftrightarrow (L_{\alpha'}(x,y) \wedge L_{\alpha'}(y,z) \wedge L_{\alpha'}(z,y) \wedge L_{\alpha'}(y,x)$$

which implies

$$E_{\alpha'}(x,y) \wedge E_{\alpha'}(y,z) \rightarrow (L_{\alpha'}(x,z) \wedge L_{\alpha'}(z,x))$$

and finally

$$E_{\alpha'}(x,y) \wedge E_{\alpha'}(y,z) \rightarrow E_{\alpha'}(x,z)$$

4. One of the solution consists in choosing $D_1 = D'/E_{\alpha'}$, the set of equivalence classes of $E_{\alpha'}$, $\alpha_1 = (B_1, T_1, L_1)$ where $B_1 = [b]_{E_{\alpha'}}$, $T_1 = [t]_{E_{\alpha'}}$ and

$$L_1 := \{([x]_{E_{\alpha'}}, [y]_{E_{\alpha'}}) : L_{\alpha'}(x, y) \text{ where } x, y \in D'\}$$

Reflexivity and transitivity are immediate as they have been proven for $L_{\alpha'}$.

Antisymmetry comes from the fact that for arbitrary $[x]_{E_{\alpha'}}, [y]_{E_{\alpha'}} \in D_1$

$$\begin{split} L_1\left([x]_{E_{\alpha'}}[y]_{E_{\alpha'}}\right) \wedge L_1\left([x]_{E_{\alpha'}},[y]_{E_{\alpha'}}\right) \\ &\Longrightarrow L_{\alpha'}(x,y) \wedge L_{\alpha'}(y,x) \\ &\Longrightarrow E_{\alpha'}(x,y) \\ &\Longrightarrow [x]_{E_{\alpha'}} = [y]_{E_{\alpha'}} \end{split}$$

Therefore L_1 is a partial order.