Annotated slides

2526-MA140 Engineering Calculus

Week 06, Lecture 1 Maxima and Minima

Dr Niall Madden

University of Galway

Tuesday, 21 October, 2025

Today, we'll max out on...

- Info: Survey, Assignments, etc
- 2 Higher-order Derivatives
- / 3 Maxima and minima
 - Overview
 - Critical points
 - The First Derivative Test

- Increasing/decreasing
- Derivatives
- Example
- The test
- Summary
- **Exercises**

See also: Section (4.3) Maxima and Minima) of Calculus by Strang & Herman: https://math.libretexts.org/ Bookshelves/Calculus/Calculus_(OpenStax)

of differentiation Applications

Info: Survey, Assignments, etc

- ► The module survey for MA140 has started. Please take a few minutes to complete it. See https://universityofgalway.instructure.com/courses/46734/discussion_topics/189325
 - ► It only takes a few minutes
 - We take in the input seriously, and will update you on the main findings and the actions we will take.
 - Try to mix positive comments with suggestions for improvements.
 - **Assignment 3** I added an extra 23 hours (for reasons...). Now due tomorrow (21st) at 17:00
- ▶ Assignment 4 is open and is due next Tuesday (28th) at 17:00.
- Assignment 5 will be posted soon.
- ► Grades for the class test have been posted. There were some updates/corrections. Grades are now final (I hope!). Answers have been posted to https://universityofgalway.instructure.com/courses/46734/files?preview=2948747

Higher-order Derivatives

At the end of the last class, we started learning about higher-order derivatives.

- ▶ if f(x) is a function, then f'(x) is a function whose value at x is the derivative of f at that point.
- So, since f'(x) is a function, and we can differentiate functions, we can differentiate f' itself.
- ► The derivative of the derivative of f is called that second derivative of f.
- It is denoted as f''(x) or $\frac{d^2 f}{dx^2}$ or $f^{(2)}(x)$
- ▶ We can continue this process to get third derivatives, fourth derivatives, etc. However, the most important are the 1st and 2nd: f' and f'' provide valuable information about the function and its graph, particularly concerning local or global maxima, local/global minima and points of inflection.

Find the **second** derivative of the functions

(i)
$$f_1(x) = 3x^2 + 2x + 1$$

(iii)
$$f_3(x) = \ln(x)$$

(ii)
$$f_2(x) = e^x$$

(iv)
$$f_4(x) = \sin(x)$$

(i)
$$f_{i}(x) = 3x^{2} + 2x + 1$$

 $f'_{i}(x) = 3(2x) + 2$
 $= 6x + 2$
 $f''_{2}(x) = 6$

(iii)
$$f_3(x) = |u(x)|^{-\alpha} Log^{\alpha}$$

 $f_3^{\alpha}(x) = \frac{1}{x} = x^{-1}$
 $f_3^{\alpha}(x) = (-1)x^{-2} = \frac{-1}{x^2}$

(ii)
$$f_2(x) = e^{xx}$$

 $f_2'(x) = e^{xx}$ $f_2''(x) = e^{xx}$ (iv) $f_4(x) = \sin(x)$
 $f_4'(x) = \cos(x)$
 $f_4''(x) = -\sin(x) = -f_4(x)$

$$f'_{4}(x) = \cos(x)$$
 $f''_{4}(x) = -\sin(x) = -f_{4}(x)$

This section of MA140 is concerned with using techniques of differentiation to finding where a function is

- Increasing
- Decreasing
- Has its maximum value
- Has its minimum value

derivative test.

Section 4.3 of Text

Along the way we'll learn about critical values and the first

Mathematical English

- ► The plural of maximum is maxima;
- ► The plural of **minimum** is **minima**;
- An extremum a maximum or a minimum.
- The plural of extremum is extrema.

Given an interval $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$, consider the function $f : [a, b] \to \mathbb{R}$ whose graph is given below. It illustrates local and absolute (="global") maxima and minima. Collectively, these are called **extrema**.

Definition: critical points

Let c in an point in the domain of a function f. We say that x = c is a **critical point** of f(x) if either

$$f'(c) = 0$$
 or $f'(c)$ does not exist.

Important: If f has a extremum at x = c, then c must be a critical point of f (This is called "Fermat's Theorem").

So, to find a maximum or minimum of f, it is enough to check at the critical points.

Warning: All extrema are at critical points, but not all critical points correspond to a extrema.

 $f(x) = x^2 - 2x + 1$ has one critical point. Find it. Does it correspond to an extremum?

$$f'(x) = x^2 - 2x + 1$$

$$f'(x) = 2x - 2$$

this corresponds to a local (4 global)

Find all critical points of $f(x) = x^3$. Do they correspond to extrema?

 $f(x) = x^3$

$$f'(x) = 3x^2$$

So $f'(x) = 0$ at $3x^2 = 0$
is at $x = 0$. So
there is a single critical

But we also notice: there is not an extremum at that point

Definition (Increasing/Decreasing)

Let f be a function whose domain includes the interval [a, b]. Let let x_1 and x_2 be any two points in [a, b] with $x_1 < x_2$.

- ▶ If $f(x_1) < f(x_2)$, then f is said to be increasing on [a, b].
- ▶ If $f(x_1) > f(x_2)$, then f is said to be decreasing on [a, b].

The function $f(x) = x^2$ is decreasing on $(-\infty, 0]$, and increasing on $[0, \infty)$.

Theorem

Suppose that f is differentiable on an interval [a, b].

- ▶ If f'(x) > 0 at each point $x \in [a, b]$, then f is increasing.
- ▶ If f'(x) < 0 at each point $x \in [a, b]$, then f is decreasing.

Find the critical points of $f(x) = x^3 - 12x - 5$ and identify the intervals on which f is increasing and decreasing

Idea: find f'(x) and then solve for f'(x) = 0.

- find f'(x): $f(x) = x^3 12x 5$ $f'(x) = 3x^2 - 12$
- Find critical points: Solve $f'(x) = 3x^2 12 = 0$ ie $3x^2 = 12 = 0$ $x^2 = 4$ so 3x = -2, 2. If has 2 critical points: at 3x = -2 and 3x = 2.

Find the critical points of $f(x) = x^3 - 12x - 5$ and identify the intervals on which f is increasing and decreasing

Idea: find f'(x) and then solve for f'(x) = 0. So we know $f'(x) = 3x^2 - 12$ We know f'(-2) =0 f'(2) =0 Check a point to the left of x=-2. Eq x=-3f'(-3) = 15 > 0. So f is increasing to the lest of x = -2Similarly, check a point in (-2,2) eg x=0& a point to the right of x=2, e_{3} x=3 The critical points c=-2 and c=2 of $f(x)=x^3-12x-5$ subdivide the domain of f into intervals $(-\infty,-2),(-2,2)$ and $(2,\infty)$ on which f' is either positive or negative. We determine the sign of f' by evaluating f at a convenient point in each subinterval.

The critical points c=-2 and c=2 of $f(x)=x^3-12x-5$ subdivide the domain of f into intervals $(-\infty,-2),(-2,2)$ and $(2,\infty)$ on which f' is either positive or negative. We determine the sign of f' by evaluating f at a convenient point in each subinterval.

Important:

If f(x) has a local minimum of f(x) at x = c, then it switches from **decreasing** to **increasing**. That means, f'(x) changes sign at x = 2) Therefore, f'(c) = 0. If f(x) has a local maximum at x = c, we have that f'(c) = 0.

First Derivative Test for local maxima and minima

Suppose that c is a critical point of a differentiable function f.

- ▶ If f' changes from negative to positive through c, then f has a local minimum at c.
- ▶ If f' changes from positive to negative through c, then f has a local maximum at c.
- If f' does not change sign through c (that is, f' is positive on both sides of c or negative on both sides),
 ✓ then f does not have a local maximum or minimum at c.

ie on inflection point, as in f(x)=X3

Find the critical points of $f(x) = x^{\frac{1}{3}}(x-4)$. Identify the local maxima and minima (if any).

First find f'(x), and then where it is either zero or undefined:

$$f(x) = \chi^{\frac{1}{3}}(\chi - 4). = u(x) v(x)$$

$$0 \le x \quad \text{the product entering ignore!}$$

$$u(x) = \chi^{\frac{1}{3}} \times \frac{2}{3} \quad \text{dv} = \frac{1}{3x^{2/3}}$$

$$f'(x) = \frac{df}{dx} = u \frac{dx}{dx} + u \frac{dx}{dx} = (x - 4) \frac{1}{3x^{2/3}} + \frac{1}{x^3}$$

$$\int_{-\infty}^{\infty} f'(x) = \frac{x - 4}{3x^{2/3}} - \frac{1}{x^3}.$$
Bad example: ignore!

Review

If a function g is differentiable on an interval [a, b], then

- ▶ g'(x) > 0 for all $x \in [a, b] \Leftrightarrow g$ increasing on [a, b].
- ▶ g'(x) < 0 for all $x \in [a, b] \Leftrightarrow g$ decreasing on [a, b]I.

Similarly, if g' is also differentiable on [a, b], then

- (g')'(x) = g''(x) > 0 for all $x \in [a, b] \Leftrightarrow g'$ increasing on I.
- ▶ (g')'(x) = g''(x) < 0 for all $x \in [a, b] \Leftrightarrow g'$ decreasing on I.

Exercises

Exercise 6.1.1

Let $f(x) = x^2 e^x$. Find f'(x), f''(x) and f'''(x).

Exercise 6.1.2 : 23/24 Exam, Q3(a)

Let $f(x) = \ln(x^2 + 1)$.

- (i) Find all critical point(s) of f and determine whether f has a local minimum, local maximum or neither.
- (ii) Determine the interval on which f is increasing.
- (iii) Determine the interval on which f is decreasing.
- (iv) Find all point(s) of inflection of f, justifying your answer.