Evolution of antibiotic resistance

1d. using fitness landscape from Weinreich et al.

Introducing the system

bacteria + antibiotic

Experimental fitness landscape

taken from Weinrich et al. 2006

create all 32 sequences measure the minimum inhibitory concentration (MIC)

antibiotic concentration at which there is no more bacterial growth

Understanding the MIC data

from MIC find growth rate (here linear)

$$\mu(c) = \frac{-1}{MIC}c + \mu_0$$

$$\dot{n} = \mu(c)n$$

Understanding the MIC data

rising antibiotic resistance means: gradually you get species that don't die at such concentration

from MIC find growth rate (here linear)

$$\mu(c) = \frac{-1}{MIC}c + \mu_0$$

$$\dot{n} = \mu(c)n$$

Population growth and selection

$$\dot{f}_a = f_a(\mu_a - \bar{\mu})$$

$$f_a = \frac{n_a}{\sum_i (n_i)}$$

$$\bar{\mu} = \sum_i \mu_i f_i$$

population fraction equations represent selection

time step dt=1 is arbitrary

*c = 40; start with randomly distributed values for f

Selection at changing antibiotic

Simulating mutation

$$\dot{f}_i = \mu_i \sum_j f_j q_{ij} - \bar{\mu} f_i$$

$$\mathbb{Q}(h_{ij}) = \begin{cases} 0.01 & \text{if } h_{ij} = 1 \\ 0.95 & \text{if } h_{ij} = 0 \\ 0 & \text{otherwise} \end{cases} \begin{array}{c} 0.6 \\ 0.4 \\ 0 \end{array}$$

h is hamming distance

Q is probability of mutation

Simulating mutation $\dot{f}_i = \mu_i \sum f_j q_{ij} - \bar{\mu} f_i$

$$\dot{f}_i = \mu_i \sum_j f_j q_{ij} - \bar{\mu} f_i$$

time step and probability of mutation occurring are arbitrary chosen

Simulating mutation

$$\dot{f}_i = \mu_i \sum_j f_j q_{ij} - \bar{\mu} f_i$$

so what next?

viruses: implement real
time —> model how
long until a new variant
emerges; the
parameters are the
difficult part

simulate evolution pathways: record where species come from

weaknesses:

- * no real time
- * deterministic eqns

code: https://github.com/mimifilova/StatBiophys23