Oraux - agrégation externe 2027

Louis-Thibault Gauthier

14 JUILLET 2025

Table des matières

1	Leçons d'algèbre	
	1 101 : Groupe opérant sur un ensemble. Exemples et applications.	(
	2 102 : Groupe des nombres complexes de module 1. Sous-groupes des racines de l'unité. Applications.	(
	3 103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications.	
	.4 104 : Groupes finis. Exemples et applications	
	.5 105 : Groupe des permutations d'un ensemble fini. Applications.	
	1.6 106 : Groupe linéaire d'un espace vectoriel de dimension finie E , sous-groupes de $\mathrm{GL}(E)$. Applications	'
	7 108 : Exemples de parties génératrices d'un groupe. Applications	'
	8 120 : Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications	'
	9 121 : Nombres premiers. Applications	'
	10 122 : Anneaux principaux. Applications	'
	11 123 : Corps finis. Applications	'
	12 125 : Extensions de corps. Exemples et applications	
	13 127 : Exemples de nombres remarquables. Exemples d'anneaux de nombres remarquables. Applications.	'
	14 141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.	'
	15 142 : PGCD et PPCM, algorithmes de calcul. Applications	'
	16 144 : Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications	
	17 148 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications	'
	18 149 : Déterminant. Exemples et applications.	8
	19 150 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.	8
	20 151 : Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications	8
	21 152 : Endomorphismes diagonalisables en dimension finie	8
	22 153 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d'éléments propres. Applications.	
	23 155 : Exponentielle de matrices. Applications	8
	24 156: Endomorphismes trigonalisables. Endomorphismes nilpotents	8
	$25\ 157:$ Matrices symétriques réelles, matrices hermitiennes. $$	
	26 158 : Endomorphismes remarquables d'un espace vectoriel euclidien (de dimension finie)	
	27 159 : Formes linéaires et dualité en dimension finie. Exemples et applications.	
	28 161 : Espaces vectoriels et espaces affines euclidiens : distances, isométries	
	29 162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques	
	.30 170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, Applications.	
	.31 171 : Formes quadratiques réelles. Coniques. Exemples et applications	
	32 181 : Convexité dans \mathbb{R}^n . Applications en algèbre et en géométrie	
	.33 190 : Méthodes combinatoires, problèmes de dénombrement	
	.34 191 : Exemples d'utilisation des techniques d'algèbre en géométrie.	

2	Leço	ons d'analyse	10
	2.1	201: Espaces de fonctions; exemples et applications	12
	2.2	203 : Utilisation de la notion de compacité	12
	2.3	204 : Connexité. Exemples et applications	12
	2.4	205 : Espaces complets. Exemples et applications	12
	2.5	206 : Connexité. Exemples et applications	
	2.6	208 : Espaces vectoriels normés, applications linéaires continues. Exemples.	12
	2.7	209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.	12
	2.8	213 : Espaces de Hilbert. Exemples d'applications	
	2.9	214 : Théorème d'inversion locale, théorème des fonctions implicites. Illustrations en analyse et en géométrie.	
	2.10	215 : Applications différentiables définies sur un ouvert de \mathbb{R}^n . Exemples et applications.	12
		218 : Formules de Taylor. Exemples et applications	
		2 219 : Extremums : existence, caractérisation, recherche. Exemples et applications	
		3 220 : Illustrer par des exemples la théorie des équations différentielles ordinaires	
	2.14	221 : Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.	12
	2.15	223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications	13
		5 224 : Exemples de développements asymptotiques de suites et de fonctions.	
	2.17	226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications à la résolution approchée d'équations	13
	2.18	228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.	13
	2.19	229 : Fonctions monotones. Fonctions convexes. Exemples et applications.	13
	2.20	230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.	13
	2.21	234 : Fonctions et espaces de fonctions Lebesgue-intégrables.	13
	2.22	2 235 : Problèmes d'interversion de symboles en analyse	13
	2.23	3 236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.	13
	2.24	239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.	13
	2.25	241 : Suites et séries de fonctions. Exemples et contre-exemples	13
	2.26	3 243 : Séries entières, propriétés de la somme. Exemples et applications	13
	2.27	245 : Fonctions holomorphes et méromorphes sur un ouvert de C. Exemples et applications.	14
	2.28	3 246 : Séries de Fourier. Exemples et applications.	14
	2.29	250 : Transformation de Fourier. Applications.	14
	2.30	253 : Utilisation de la notion de convexité en analyse.	14
	2.31	261 : Loi d'une variable aléatoire : caractérisations, exemples, applications	14
	2.32	2 262 : Convergences d'une suite de variables aléatoires. Théorèmes limite. Exemples et applications	14
	2.33	3 264 : Variables aléatoires discrètes. Exemples et applications.	14
	2.34	266 : Utilisation de la notion d'indépendance en probabilités	14
3	Déve	reloppement d'algèbre	15
		Théorème de la base de Burnside	17

Chapitre 1 Leçons d'algèbre

1.1 101 : Groupe opérant sur un ensemble. Exemples et applications.

Liste des développements :

1. Théorème de la base de Burnside. Un max de maths p13.

Proposition

Une action est fidèle si et seulement si ϕ , le morphisme associé est injectif ssi l'intersection de tous les stabilisateurs vaut e_G .

Démonstration. Si ϕ est injectif, soit $g \in \bigcap_x \operatorname{Stab}(x)$. Alors $\forall x \in X, g \cdot x = x$, et donc par injectivité $g = e_G$. Si $\bigcap_x \operatorname{Stab}(x) = \{e_G\}$, alors il est clair que ϕ est injectif. \square

Théorème (Formule des classes)

X est fini :

$$|X| = \sum_{x \in X/\sim} |\operatorname{Orb}(x)|$$

Et on a : Orb(x) et G/Stab(x) sont en bijection.

 $D\acute{e}monstration$. Si G agit sur X, les orbites sont des classes d'équivalence. Elles sont disjointes, et forment une partition de X, reste à évaluer le cardinal d'une classe, or on a une bijection, pour $x \in X$:

$$f: \begin{array}{ccc} G / \operatorname{Stab}(x) & \to & Gx \\ g \operatorname{Stab}(x) & \mapsto & g \cdot x \end{array}$$

par passage au quotient de $G \to Gx, g \mapsto g \cdot x$.

Proposition (Formule de Burnside :)

Si G et X sont finis, alors

$$|X/_{\sim}| = \frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|$$

Démonstration. Soit E l'ensemble des couples (g, x) où $g \cdot x = x$, alors

$$|E| = \sum_{g \in G} |\operatorname{Fix}(g)| = \sum_{x \in X} |\operatorname{Stab}(x)|$$

Si Ω est une transversale de X (donc de cardinal le nombre des orbites), on a :

$$|E| = \sum_{x \in X} \frac{|G|}{|Gx|} = |G| \sum_{\omega \in \Omega} \sum_{x \in \omega} \frac{1}{|Gx|} = |G| \sum_{\omega \in \Omega} \sum_{x \in \omega} \frac{1}{|\omega|} = |G||\Omega|$$

Proposition

Soit G un groupe de cardinal $p^{\alpha}(>1)$, alors le centre de G n'est pas réduit à l'élément neutre.

 $D\'{e}monstration$. On considère l'action de G sur lui même par automorphisme intérieur. par la formule des classe on a :

$$|G| = |\mathcal{Z}(G)| + \sum_{x \in A} \frac{|G|}{|\operatorname{Stab}(x)|}$$

Avec A une transversale pour l'ensemble des orbites non réduites à un point. On en déduit que puisque le centre est non vide, qu'il est un multiple de p.

Application

Il n'existe que 2 groupes d'ordre p^2 à isomorphisme près.

Démonstration. D'après la proposition précédente un tel groupe G a son centre de cardinal p ou p^2 . Si il est de cardinal p un élément de G est dans $\mathcal{Z}(G)$ si et seulement si son centralisateur $Z_G(g)$ est G. Comme le centralisateur d'un élément $g \in G \setminus \mathcal{Z}(G)$ contient g et contient $\mathcal{Z}(G)$, il est donc d'ordre > p. Donc $\mathcal{Z}(G) = G$, ce qui donne une contradiction. Donc G est abélien. Soit G est monogène et à se moment là il est isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$, sinon soit $g \in G$, qui n'est pas l'élément unité, le sous-groupe H engendré par g est d'ordre g. Donc G/H est d'ordre g donc isomorphe à $\mathbb{Z}/p\mathbb{Z}$. Donc G est isomorphe à $\mathbb{Z}/p\mathbb{Z}$ $\mathbb{Z}/p\mathbb{Z}$.

1.2 102 : Groupe des nombres complexes de module 1. Sous-groupes des racines de l'unité. Applications.

- 1.3 103 : Conjugaison dans un groupe. Exemples de sousgroupes distingués et de groupes quotients. Applications.
- Théorème de la base de Burnside. Un max de maths p13.
- 1.4 104: Groupes finis. Exemples et applications.
- Théorème de la base de Burnside. Un max de maths p13.
- 1.5 105 : Groupe des permutations d'un ensemble fini. Applications.
- 1.6 106 : Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.
- 1.7 108 : Exemples de parties génératrices d'un groupe. Applications.
- Théorème de la base de Burnside. Un max de maths p13.
- 1.8 120 : Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications.
- 1.9 121: Nombres premiers. Applications.

- 1.10 122: Anneaux principaux. Applications.
- 1.11 123 : Corps finis. Applications.
- 1.12 125: Extensions de corps. Exemples et applications.
- 1.13 127 : Exemples de nombres remarquables. Exemples d'anneaux de nombres remarquables. Applications.
- 1.14 141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.
- 1.15 142 : PGCD et PPCM, algorithmes de calcul. Applications.
- 1.16 144 : Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications.
- 1.17 148: Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

1.18 149 : Déterminant. Exemples et applications.

- 1.24 156 : Endomorphismes trigonalisables. Endomorphismes nilpotents.
- 1.19 150 : Polynômes d'endomorphisme en dimension finie.Réduction d'un endomorphisme en dimension finie.Applications.
- 1.25 157 : Matrices symétriques réelles, matrices hermitiennes.
- 1.20 151: Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.
- 1.26 158: Endomorphismes remarquables d'un espace vectoriel euclidien (de dimension finie).

- 1.21 152: Endomorphismes diagonalisables en dimension finie.
- 1.27 159 : Formes linéaires et dualité en dimension finie. Exemples et applications.

- 1.22 153 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d'éléments propres. Applications.
- 1.28 161 : Espaces vectoriels et espaces affines euclidiens : distances, isométries.

1.23 155: Exponentielle de matrices. Applications.

.29 162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.

- 1.30 170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, Applications.
- 1.31 171 : Formes quadratiques réelles. Coniques. Exemples et applications.
- 1.32 181 : Convexité dans \mathbb{R}^n . Applications en algèbre et en géométrie.
- 1.33 190 : Méthodes combinatoires, problèmes de dénombrement.
- 1.34 191 : Exemples d'utilisation des techniques d'algèbre en géométrie.

Chapitre 2 Leçons d'analyse

- 2.1 201: Espaces de fonctions; exemples et applications.
- Théorèmes de Banach-Alaoglu. 40 dev d'analyse p27.
- 2.2 203 : Utilisation de la notion de compacité.
- 2.3 204 : Connexité. Exemples et applications.
- 2.4 205: Espaces complets. Exemples et applications.
- Théorèmes de Banach-Alaoglu. 40 dev d'analyse p27.
- 2.5 206 : Connexité. Exemples et applications.
- Exemples d'utilisation de la notion de dimension finie en analyse.
- 2.6 208 : Espaces vectoriels normés, applications linéaires continues. Exemples.
- Théorèmes de Banach-Alaoglu. 40 dev d'analyse p27.
- 2.7 209 : Approximation d'une fonction par des fonctions régulières. Exemples d'applications.
- 2.8 213 : Espaces de Hilbert. Exemples d'applications.
- Théorèmes de Banach-Alaoglu. 40 dev d'analyse p27.

- 2.9 214 : Théorème d'inversion locale, théorème des fonctions implicites. Illustrations en analyse et en géométrie.
- 2.10 215 : Applications différentiables définies sur un ouvert de \mathbb{R}^n . Exemples et applications.
- 2.11 218: Formules de Taylor. Exemples et applications.
- 2.12 219 : Extremums : existence, caractérisation, recherche. Exemples et applications.
- 2.13 220 : Illustrer par des exemples la théorie des équations différentielles ordinaires.
- 2.14 221 : Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.

- 2.15 223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.
- 2.21 234 : Fonctions et espaces de fonctions Lebesgueintégrables.
- 2.16 224 : Exemples de développements asymptotiques de suites et de fonctions.
- 2.22 235 : Problèmes d'interversion de symboles en analyse.
- 2.17 226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications à la résolution approchée d'équations.
- 2.23 236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.
- 2.18 228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
- 2.24 239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.
- 2.19 229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
- 2.25 241 : Suites et séries de fonctions. Exemples et contreexemples.
- 2.20 230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
- 2.26 243 : Séries entières, propriétés de la somme. Exemples et applications.

- 2.27 245 : Fonctions holomorphes et méromorphes sur un ouvert de \mathbb{C} . Exemples et applications.
- 2.34 266 : Utilisation de la notion d'indépendance en probabilités

- 2.28 246 : Séries de Fourier. Exemples et applications.
- 2.29 250: Transformation de Fourier. Applications.
- 2.30 253 : Utilisation de la notion de convexité en analyse.
- 2.31 261 : Loi d'une variable aléatoire : caractérisations, exemples, applications
- 2.32 262 : Convergences d'une suite de variables aléatoires.
 Théorèmes limite. Exemples et applications
- 2.33 264 : Variables aléatoires discrètes. Exemples et applications.

Chapitre 3 Développement d'algèbre

3.1 Théorème de la base de Burnside

Soit G un p-groupe (groupe fini d'ordre une puissance de p premier).

Définition. — Un sous-groupe maximal de G est un sous-groupe strict de G et maximal pour l'inclusion. On note M leur ensemble.

— Le normalisateur de H dans G, $N_G(H)$ est le sous-groupe de G qui laisse stable H par l'action de conjugaison.

Lemme. Soit $H \in \mathcal{M}$, alors $H \triangleleft G$, et $G/H = \mathbb{Z}/p\mathbb{Z}$.

 $D\acute{e}monstration$. On fait agir H sur G/H par multiplication des classes à gauche, on a, par la formule des classes

$$0 \equiv |G/H| \equiv \left| (G/H)^H \right| [p] \tag{3.1}$$

Donc p divise le cardinal de $(G/H)^H$. Or :

$$gH \in (G/H)^H \iff \forall h \in H; hgH = gH$$

 $\iff HgH = gH$
 $\iff Hg = gH$
 $\iff g \in N_G(H)$

On peut alors considérer $\psi: \left(\begin{array}{ccc} N_G(H) & \to & \left(G/H \right)^H \\ g & \mapsto & gH \end{array} \right)$ application qui est donc surjective, dont le nombre d'antécédents d'un élément est |H|, donc on a l'égalité $|N_G(H)| = |H| \times \underbrace{\left| \left(G/H \right)^H \right|}_{\geq p}$, et donc on a $|N_G(H)| > |H|$, et donc $H \subsetneq N_G(H) \subseteq G$,

ainsi par maximalité :

$$N_G(H) = G$$

C'est à dire $H \triangleleft G$.

De plus, comme H est maximal dans G, G/H n'a pas de sous-groupe propre (correspondance des sous-groupes de G/H) donc G/H est cyclique (et de cardinal une puissance de p) ce qui entraine :

$$G/H = \mathbb{Z}/p\mathbb{Z}$$

Théorème. Les parties génératrices minimales de G ont le même cardinal.

Démonstration. Considérons le sous groupe $\Phi(G) := \bigcap_{H \in \mathcal{M}} H \triangleleft G$, notons $\pi : G \rightarrow G / \Phi(G)$.

Soit $H \in \mathcal{M}$, d'après le lemme précédent, G/H est abélien, donc $D(G) \subseteq H$, donc $D(G) \subset \Phi(G)$, donc $G/\Phi(G)$ est abélien, en particulier c'est un **Z**-module.

Soit $x \in G$, soit $H \in \mathcal{M}$, on note $\sigma : G \to G/H = \mathbb{Z}/p\mathbb{Z}$, alors $\sigma(x^p) = p\sigma(x) = 0$, ainsi $x^p \in \text{Ker}(\sigma) = H$, donc

$$\forall x \in G; x^p \in \Phi(G)$$

Ainsi, pour tout $x \in G$ $\pi(x)^p = 1$, ainsi, de la structure de \mathbb{Z} -module sur $G / \Phi(G)$ on en déduit une structure de \mathbb{F}_p -espace vectoriel de dimension finie, dont toutes les familles génératrices minimales sont des bases, et en particulier ont le même cardinal.

On a démontré que les parties génératrices minimal générant le groupe entier ont même cardinal, seulement pour $G / \Phi(G)$, le lemme suivant conclut la preuve :

Lemme. $(g_i)_{i\in I}$ est génératrice de G si et seulement si $(\pi(g_i))_{i\in I}$ est génératrice de $G /_{\Phi(G)}$.

Démonstration. L'implication directe est immédiate par surjectivité de π . Pour la réciproque, raisonnons par contraposée. Si (g_i) n'engendre pas G, considérons un sous-groupe maximal H de G contenant le sous-groupe engendré par la famille (g_i) . Alors $\Phi(G) \subseteq H \subsetneq G$, donc $\pi(H) \subsetneq G / \Phi(G)$, et la famille $(\pi(g_i))$ n'engendre pas $G / \Phi(G)$.