See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263950158

Base-Promoted Expedient Access to Spiroisatins: Synthesis and Antitubercular Evaluation of 1H-1,2,3-Triazole-Tethered Spiroisatin-Ferrocene and Isatin-Ferrocene Conjugates

ARTICLE in ORGANOMETALLICS · NOVEMBER 2013

Impact Factor: 4.13 · DOI: 10.1021/om4009229

CITATIONS

2

READS

33

7 AUTHORS, INCLUDING:

Christophe Biot

Université des Sciences et Technologies de Lill...

109 PUBLICATIONS 3,049 CITATIONS

SEE PROFILE

Laurent Kremer

Université de Montpellier

157 PUBLICATIONS 5,701 CITATIONS

SEE PROFILE

Yann Guérardel

French National Centre for Scientific Research

117 PUBLICATIONS 2,027 CITATIONS

SEE PROFILE

Pascal Roussel

National Graduate School of Engineering Che...

312 PUBLICATIONS 2,040 CITATIONS

SEE PROFILE

Base-Promoted Expedient Access to Spiroisatins: Synthesis and Antitubercular Evaluation of 1*H*-1,2,3-Triazole-Tethered Spiroisatin—Ferrocene and Isatin—Ferrocene Conjugates

Kewal Kumar,[†] Christophe Biot,^{‡,§} Séverine Carrère-Kremer,^{||} Laurent Kremer,^{||,⊥} Yann Guérardel,^{‡,§} Pascal Roussel,[#] and Vipan Kumar^{*,†}

Supporting Information

ABSTRACT: The use of sodium hydride provides a convenient access to the synthesis of C-5-functionalized spiroisatins with the absence of the typical drawbacks associated with conventional protocols. The synthesized precursors, viz. N-alkylazido spiroisatins and their unprotected counterparts, were explored in Cu-mediated azide—alkyne cycloaddition reactions to probe the antitubercular structure—activity relationships (SAR) within the isatin—ferrocene—triazole conjugate family. The antitubercular evaluation studies of the synthesized conjugates revealed an improvement in the minimal inhibitory concentration (MIC) with the introduction of ferrocene nucleus, as evidenced by spiroisatin—ferrocene and isatin—ferrocene hybrids.

■ INTRODUCTION

Tuberculosis (TB) is a highly infectious disease caused by *Mycobacterium tuberculosis* (*M. tuberculosis*).¹ It is currently the second leading cause of death, claiming 1.4 million lives worldwide in 2011.² Over 95% of TB deaths occur in low- and middle-income countries, affecting mostly children and women aged between 15 and 44 years.³ The chemotherapeutic options for the treatment of first-line TB have not changed for almost five decades, with the most recent drug, rifampin, being introduced in the early 1960s.⁴ Moreover, factors such as inconsistent treatment, patient noncompliance, and the lack of available drugs especially in economically deprived countries have also contributed to the failure in achieving its cure.⁵ The emergence of multidrug-resistant strains of tuberculosis (MDR-TB and XDR-TB) have increased the problems associated with TB treatment. The frequent coinfection of TB in HIV patients

further complicates the selection of an appropriate treatment plan as a result of (a) drug-drug interactions which lead to subtherapeutic concentrations of antiretrovirals, (b) reduction of compliance due to the increased pill burden, and (c) increasing safety concerns due to overlapping toxic side effects.⁶

The United States Food and Drug Administration (FDA) recently approved TMC207 (bedaquiline),⁷ the first anti-TB drug in over five decades, for the treatment of MDR-TB and XDR-TB in adults. Unfortunately, like other known second-line antitubercular drugs, it is associated with serious side effects.⁷ Pertaining to the drug-resistant patterns, the synthesis of novel antimycobacterial scaffolds that work on characteristic targets with diverse mechanisms of action, with good potency, and

Received: September 16, 2013 **Published:** November 5, 2013

7386

[†]Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India

[‡]Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille 1, F-59650 Villeneuve d'Ascq, France

[§]CNRS, UMR 8576, F-59650 Villeneuve d'Ascq, France

Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235 CNRS, Université Montpellier 2I, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

¹DIMNP, INSERM, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

[#]UMR CNRS 8181, Unitéde Catalyse et de Chimie du Solide (UCCS), ENSCL, University Lille Nord de France, F-59000 Lille, France

Organometallics Article Article

with little or no toxicity as well as the lack of cross resistance with existing drugs remains pivotal.

Over the past few years, syntheses of organometallic analogues of biologically active compounds have emerged as an important strategy with potential advantages. These advantages include the preparation of stable metal complexes with predictable structures, the ability to tune ligand affinities according to their electron transfer properties, substitution rates, and reduction potentials, and efficient biological targeting.⁸ Among the incredible number and variety of roles that metals play in contemporary medicine, the introduction of a ferrocenyl (Fc) moiety into a drug molecule has now been recognized as a useful approach for the development of more effective therapeutic applications: viz., ferrocenyl analogues of the commercial antiestrogen tamoxifen and antiandrogen nilutamide exhibited higher cytotoxicity on breast and prostate cancer cells with respect to the reference drugs, respectively. The most symbolic example of the contribution of an Fc nucleus to enhance the activity of an organic molecule is that of ferroquine (FQ), a chloroquine (CQ) isostere with an Fc-based side chain that is highly active against CQ-resistant strains of malaria parasite and have the potential to express new organometallic-specific modes of action. 10 Using drug repositioning, FQ was also proven to be a new anti-hepatitis C virus molecule that could be used in combination with other directacting antivirals.11

Isatin is a privileged scaffold that is found as an endogenous molecule in humans, and its analogues display a diverse array of biological and pharmacological activities, which include anti-HIV, 12 antiviral, 13 antitumor, 14–16 antifungal, 17,18 antiangio-genic, 19 anticonvulsant, 20 anti-Parkinson's disease therapeutic, 21 and effective SARS coronavirus 3CL protease inhibitor.²² The most enthralling application of isatins in organic synthesis is indisputably because of the highly reactive C-3 carbonyl group, which upon nucleophilic addition or spiroannulation transforms it into 2-oxoindole compounds.²³ 2-Oxoindoles have generated tremendous interest among synthetic organic and medicinal chemists not only because of their biological activities^{24–30} but also because of their occurrence in natural products such as spirotryprostatins, horsfiline, gelsemine, gelseverine, rhynchophylline, elacomine, etc. Although a number of methods have been reported for the synthesis of spiroisatins, these methods are invariably associated with a number of drawbacks, including stringent reaction conditions, longer reaction times, moderate yields, and the use of toxic solvents such as benzene.31

1*H*-1,2,3-Triazoles constitute an exhilarating class of compounds which has also attracted the attention of both synthetic and medicinal chemists due to their synthetic accessibility via azide—alkyne cycloaddition reactions as well as their great biological potential.³² The molecular framework is highly stable under basic and acid hydrolysis and reductive and oxidative conditions, indicative of a high aromatic stabilization. The favorable properties of 1*H*-1,2,3-triazoles, including high dipole moment, capability of hydrogen bonding, and rigidity and stability under in vivo conditions are favorable factors in the binding of biomolecular targets.

Recent revelations from our group have shown the introduction of a ferrocene nucleus in the β -lactam family of therapeutics linked through the 1*H*-1,2,3-triazole ring with an extension toward the synthesis of mono and bis 1*H*-1,2,3-triazole-tethered β -lactam—ferrocene and β -lactam—ferrocenylchalcone hybrids and the evaluation of their antitubercular

potential. 33,34 Further, isatin-ferrocene and isatin-ferrocenyl chalcones have been prepared and assayed for their antimycobacterial efficacy. 35 The anti-TB profiles revealed a marked improvement in the activity of isatins with the introduction of a ferrocene nucleus, with effects more pronounced at longer chain lengths: propyl chain tethered conjugates are more active than those with ethyl chains. In continuation, the present paper is a logical extension of the above protocol and involves the synthesis of isatin-ferrocene conjugates tethered via longer alkyl chain lengths (n = 4-8)along with their anti-TB potential. It was envisioned that the introduction of a longer nonhydrolyzable alkane spacer would enhance the lipophilicity, which is considered important for antitubercular efficacy because of its contribution toward increasing membrane permeability.³⁶ A convenient protocol was also developed for the preparation of spiroisatins with subsequent utilization in the synthesis of spiroisatin-ferrocene conjugates so as to ascertain the role of keto-carbonyl in the inhibition assays.

RESULT AND DISCUSSION

The methodology involved an initial treatment of C-5-substituted isatin with sodium hydride, resulting in the formation of an intensely purple anionic solution that was subsequently reacted with 2-bromoethanol. The reaction mixture was then heated to 60 °C until the completion of the reaction as evidenced by TLC. Then, the usual workup via quenching with water, extraction with ethyl acetate, and subsequent concentration under reduced pressure resulted in the isolation of the corresponding C-5-substituted spiroisatins in quantitative yields (Scheme 1).

Scheme 1. Synthesis of C-5-Substituted Spiroisatins 2

Mechanistically, the reaction involved the initial generation of an anion by the treatment of isatin with sodium hydride followed by its nucleophilic attack on 2-bromoethanol to yield the corresponding 1-(2-hydroxyethyl)-1*H*-indole-2,3-dione 4. This species upon intramolecular cyclization via a facile nucleophilic addition of free –OH to the keto–carbonyl of isatin resulted in the formation of an intermediate, viz. C-5-substituted 8-hydroxy-9-oxa-1-azatricyclo[6.3.1.0^{2,7}]dodeca-2,4,6-trien-12-one 5 with subsequent ring opening to yield the desired spiroisatins 2, as shown in Scheme 2.

The structure assigned to the product **2** was unambiguously confirmed using X-ray crystallographic studies, and the ORTEP diagram of compound **2b** is depicted in Figure 1.

The synthesized spiroisatins 2 were sufficiently pure and were utilized as such for further synthetic endeavors: i.e., an initial alkylation with dibromoalkanes with subsequent treatment with sodium azide in dry DMF at 60 $^{\circ}$ C. The N-

Scheme 2. Plausible Mechanism for the Formation of Spiroisatins 2

 $R = H, F, CI, CH_3$

Figure 1. ORTEP diagram of spiroisatin 2b.

alkylazido precursors 8 thus formed were subjected to Cupromoted azide-alkyne cycloaddition reactions with ethynylferrocene (9) to yield the desired spiroisatin-ferrocene conjugates 10 (Scheme 3). The structures of these conjugates were assigned on the basis of analytical data and spectral evidence. Compound 10i, for example, exhibited the molecular ion peak $[M]^+$ at m/z 498.1350 along with the characteristic peaks in the ¹H and ¹³C NMR spectra. The ¹H NMR spectrum exhibited a singlet at δ 4.06 corresponding to 5H (ferrocene ring protons) along with the presence of two multiplets at δ 1.69–1.73 (2H) and 1.96–2.04 (2H) and two triplets at δ 3.69 (2H) and 4.41 (2H) corresponding to the butyl chain. The presence of a characteristic signal at 173.5 ppm corresponding to the spiroisatin ring carbonyl along with the requisite number of carbons in its ¹³C NMR spectrum further corroborated the structure assigned to spiroisatin-ferrocene hybrids.

The synthesized conjugates **10** were then subjected to deprotection via refluxing in an HCl-methanol mixture.³⁸ However, the reaction resulted in the decomposition of the starting material without the isolation of the desired isatin—

Scheme 3. Cu-Promoted Synthesis of 1H-1,2,3-Triazole-Tethered Spiroisatin-Ferrocene Conjugates 10

Organometallics Article Article

Scheme 4. Synthesis of 1H-1,2,3-Triazole-Tethered Isatin-Ferrocene Conjugates 12

Table 1. In Vitro Antimycobacterial Activity of Compounds 8a-x, 10a-x, 11a-p, and 12a-p against M. tuberculosis mc²6230

compd	MIC (μM)	compd	MIC (μM)	compd	MIC (μM)	compd	MIC (μM)
8a	>385	10a	>213	11a	>410	12a	>220
8b	>360	10b	>205	11b	>382	12b	>212
8c	>340	10c	>198	11c	164-328	12c	>195
8d	ND	10d	ND	11d	>388	12d	>214
8e	>365	10e	>207	11e	>387	12e	>215
8f	>343	10f	>199	11f	>368	12f	>206
8g	>325	10g	>193	11g	171-242	12g	>199
8h	ND	10h	ND	11h	184-368	12h	>208
8i	>347	10i	>201	11i	>368	12i	>209
8j	>327	10j	>194	11j	172-344	12j	>200
8k	>311	10k	>188	11k	163-326	12k	>194
81	ND	101	ND	111	174-348	12l	>201
8m	166-332	10m	>195	11m	175-350	12m	>202
8n	>313	10n	>187	11n	164-328	12n	>195
8o	>298	10o	>183	11o	158-312	12o	>189
8p	ND	10p	ND	11p	167-334	12p	>196
8q	158-316	10q	>190				
8r	>299	10r	>184				
8s	>286	10s	>179				
8t	ND	10t	ND				
8u	>303	10u	>185				
8v	144-287	10v	>179				
8w	137-274	10w	>174				
8x	ND	10x	ND				
cephalexin	72-144						
ethionamide	90.36						
isoniazid	2.92						
rifampicin	0.12						

ND= Not Determined.

ferrocene conjugates. Thus, in order to compare the antitubercular profiles of the spiroisatin—ferrocene conjugates with those of the deprotected isatin—ferrocene conjugates, a series of corresponding hybrids 12 were prepared following our recently reported protocol³⁵ involving Cu-promoted azide—alkyne cycloaddition reaction of N-alkylazido isatins 11^{39} and ethynylferrocene, as shown in Scheme 4. The structures of the hybrids were again confirmed using spectral data and analytical evidence, which are provided in detail in the Experimental Section; therefore, only the salient features are discussed here. The compound 12a, for instance, showed a molecular ion peak $[M + H]^+$ at m/z 455.1181 along with the appearance of characteristic singlets at δ 4.05 (5H), 4.30 (2H), and 4.71 (2H)

due to the ferrocene ring protons. The two multiplets at δ 1.73–1.80 and 2.01–2.05 and two triplets at δ 3.78 and 4.45 correspond to the protons of the butyl chain together with the presence of a singlet at δ 7.47 (1H) as a result of a triazole ring proton in the ¹H NMR spectrum. The presence of the requisite number of carbons along with the characteristic absorptions at δ 158.3 and 183.1 in the ¹³C NMR spectrum further corroborate the assigned structure.

The synthesized spiroisatin-ferrocene (10a-x) and isatin-ferrocene (12a-p) molecular conjugates and their corresponding precursors (8a-x, 11a-p) were evaluated for their antitubercular potential, and the results were compared with those for standard drugs: viz., cephalexin, ethionamide,

rifampicin, and isoniazid (Table 1). As is evident from Table 1, although the synthesized conjugates and their precursors are not as active as the standard drugs used, the introduction of the ferrocene nucleus results in substantial enhancement in the activity profiles of both *N*-alkylazido spiroisatins and *N*-alkylazido isatins. Further, the activity profiles are shown to be independent of the nature of the substituent at the C-5 position of the isatin, the length of the alkyl chain, and the presence of either a keto—carbonyl or ketal unit at the C-3 position of the isatin ring.

In conclusion, the present paper describes a base-promoted straightforward access to C-5-functionalized spiroisatins without involving typical drawbacks of the conventional routes such as long reaction times, moderate yields, and the use of toxic solvents such as benzene. The synthesized precursors, viz. *N*-alkylazido spiroisatins and *N*-alkylazido isatins, were explored using Cu-promoted click chemistry approaches with ethnylferrocene, yielding the corresponding 1*H*-1,2,3-triazole-tethered spiroisatin—ferrocene and isatin—ferrocene conjugates. The synthesized hybrids were assayed for their antitubercular potential, displaying enhancement in activity profiles with the introduction of a ferrocene nucleus in comparison to their organic precursors.

■ EXPERIMENTAL SECTION

General Information. Melting points were determined with open capillaries using a Veego Precision Digital Melting Point apparatus (MP-D) and are uncorrected. ¹H NMR spectra were recorded in deuteriochloroform (deuterated chloroform) with JEOL 300 (300 MHz) spectrometers using TMS as an internal standard. Chemical shift values are expressed as parts per million downfield from TMS, and *J* values are in hertz. Splitting patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets; ddd, doublet of doublets of doublets; br, broad peak. ¹³C NMR spectra were recorded on JEOL 300 (75 MHz) spectrometers in deuteriochloroform using TMS as internal standard. Elemental analyses were performed with a Heraus CHN-O-Rapid Elemental Analyzer. Mass spectra were recorded on a Bruker high-resolution mass spectrometer (micrOTOF-QII). Column chromatography was performed using silica gel (60–120 mesh).

General Procedure for the Synthesis of Spiroisatins 2a–d. To a stirred suspension of NaH (1 mmol) in dry DMF (5 mL) was added dropwise a solution of isatin 1 (1 mmol) in dry DMF (10 mL) at 0 °C. The solution was stirred for 10 min, followed by the addition of 2-bromoethanol (1.1 mmol). The reaction mixture was stirred for 15 min at room temperature with subsequent heating at 70 °C for 60 min. The progress of the reaction was monitored using TLC. On completion, the reaction mixture was concentrated under reduced pressure, washed with brine solution, extracted with EtOAc (2 × 25 mL), and dried over anhydrous sodium sulfate. The combined organic layers were evaporated under reduced pressure, resulting in the isolation of crude products (91–97%) which were recrystallized using an 8/2 chloroform/hexane mixture.

Spiro[[1,3]dioxolane-2,3'-indolin]-2'-one (2a): yield 95%; light yellow solid; mp 129–130 °C; ¹H NMR (CDCl₃, 300 MHz) δ 4.29–4.34 (m, 2H, –OCH₂), 4.54–4.57 (m, 2H, –OCH₂), 6.79–6.83 (m, 1H, –ArH), 7.03–7.07 (m, 1H, –ArH), 7.27–7.35 (m, 2H, –ArH), 8.24 (s, 1H, –NH, exchangeable with D₂O); ¹³C NMR (CDCl₃, 75 MHz) δ 65.8, 102.3, 110.7, 123.3, 124.3, 125.1, 131.6, 141.8, 175.6; HRMS calcd for C₁₀H₉NO₃ [M]⁺ m/z 191.0582, found 191.0577. Anal. Calcd: C, 62.82; H, 4.74; N, 7.33. Found: C, 62.69; H, 4.71; N, 7.43

5'-Fluorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (2b): yield 91%; light brown solid; mp 157–158 °C; 1 H NMR (CDCl₃, 300 MHz) δ 4.27–4.38 (m, 2H, –OCH₂), 4.50–4.58 (m, 2H, –OCH₂), 6.76–6.80 (m, 1H, –ArH), 6.99–7.09 (m, 2H, –ArH), 8.35 (s, 1H, –NH, exchangeable with D₂O); 13 C NMR (CDCl₃, 75 MHz) δ 65.9,

102.3, 111.4, 113.2, 118.2, 126.0, 137.7, 157.7, 175.9; HRMS calcd for $C_{10}H_8FNO_3$ [M]⁺ m/z 209.0488, found 209.0483. Anal. Calcd: C, 57.42; H, 3.85; N, 6.70. Found: C, 57.51; H, 3.80; N, 6.58.

5'-Chlorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (2c): yield 97%; light brown solid; mp 134–135 °C; 1 H NMR (CDCl₃, 300 MHz) δ 4.30–4.38 (m, 2H, –OCH₂), 4.52–4.65 (m, 2H, –OCH₂), 6.73–6.81 (m, 1H, –ArH), 7.04–7.09 (m, 1H, –ArH), 7.29–7.33 (m, 2H, –ArH), 8.31 (s, 1H, –NH, exchangeable with D₂O); 13 C NMR (CDCl₃, 75 MHz) δ 65.4, 101.9, 110.1, 113.1, 122.3, 124.6, 131.5, 141.2, 173.5; HRMS calcd for C₁₀H₈ClNO₃ [M]⁺ m/z 225.0193, found 225.0186. Anal. Calcd: C, 53.23; H, 3.57; N, 6.21. Found: C, 53.16; H, 3.51; N, 6.32.

5'-Methylspiro[[1,3]dioxolane-2,3'-indolin]-2'-one (2d): yield 93%; light yellow solid; mp 152–153 °C; 1 H NMR (CDCl₃, 300 MHz) δ 2.24 (s, 3H, –CH₃), 4.25–4.34 (m, 2H, –OCH₂), 4.56–4.67 (m, 2H, –OCH₂), 6.60 (d, J = 8.4 Hz, 1H, –ArH), 7.27–7.38 (m, 2H, –ArH), 8.34 (s, 1H, –NH, exchangeable with D₂O); 13 C NMR (CDCl₃, 75 MHz) δ 21.4, 65.1, 102.2, 110.3, 117.5, 121.6, 124.7, 131.5, 141.5, 174.8; HRMS calcd for C₁₁H₁₁NO₃ [M]⁺ m/z 205.0739, found 205.0732. Anal. Calcd: C, 64.38; H, 5.40; N, 6.83. Found: C, 64.49; H, 5.47; N, 6.71.

X-ray crystallographic data for 2b: molecular formula $C_{10}H_8FNO_3$, formula weight 209.17, crystal system monoclinic, space group $P2_1/n$, a=11.4436(6) Å, b=5.2965(3) Å, c=15.8782(9) Å, $\beta=97.601(3)^\circ$, V=953.94(9) Å³, T=293 K, Z=4, $D_c=1.456$ g cm⁻³, 14778 reflections measured, 1976 independent reflections, 1110 observed reflections ($I>3.0\sigma(I)$), $R1_obs=0.0486$, goodness of fit = 1.12. Crystallographic data (excluding structure factors) for spiroisatin 2b have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 953368.

General Procedure for the Synthesis of N-Alkylazidospiroisatins 8a-x. To a solution of 2 (1 mmol) in dry DMF (10 mL) was added K₂CO₃ (1.5 mmol), and the resulting suspension was stirred at room temperature for 10 min. A solution of the corresponding dibromoalkane (1.2 mmol) in dry DMF (5 mL) was added dropwise to the above reaction mixture with subsequent heating at 60 °C for 5 h. The progress of the reaction was monitored via TLC, and on completion the reaction mixture was concentrated under vacuum, washed with brine, and extracted with EtOAc (2×25 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure to result in the isolation of the crude product 7 (73-81%), which was purified by column chromatography (60-120 mesh) using EtOAc/hexane (10/ 90) as eluent. To a stirred solution of 7 (1 mmol) in dry DMF (5 mL) was added NaN₃ (2 mmol) at room temperature, and the reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 1 h. On completion, the reaction mixture was concentrated under reduced pressure and extracted with EtOAc (2×25 mL). The combined organic layers were concentrated under vacuum, resulting in the isolation of the crude product 8 (88-95%), which was sufficiently pure for the next step.

1'-(2-Azidoethyl)spiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8a): yield 90%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 3.51–3.55 (m, 2H, H¹), 3.72–3.78 (m, 2H, H²), 4.26–4.37 (m, 2H, –OCH₂), 4.51–4.64 (m, 2H, –OCH₂), 6.77 (d, J = 8.1 Hz, 1H, –ArH), 7.03–709 (m, 1H, –ArH), 7.29–7.36 (m, 2H, –ArH); 13 C NMR (CDCl₃, 75 MHz) δ 39.8, 48.4, 65.5, 102.7, 110.5, 123.1, 124.6, 125.5, 131.3, 141.6, 175.1; HRMS calcd for C₁₂H₁₂N₄O₃ [M]⁺ m/z 260.0909, found 260.0901. Anal. Calcd: C, 55.38; H, 4.65; N, 21.53. Found: C, 55.27; H, 4.58; N, 21.67.

1'-(2-Azidoethyl)-5'-fluorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8b): yield 88%; colorless oil; $^{\rm l}$ H NMR (CDCl₃, 300 MHz) δ 3.54–3.59 (m, 2H, H¹), 3.74–3.79 (m, 2H, H²), 4.29–4.34 (m, 2H, –OCH₂), 4.54–4.59 (m, 2H, –OCH₂), 6.81–6.85 (m, 1H, –ArH), 7.04–7.12 (m, 2H, –ArH); $^{\rm l3}$ C NMR (CDCl₃, 75 MHz) δ 39.4, 48.9, 65.9, 101.6, 109.6, 112.9, 117.8, 125.5, 139.6, 157.9, 173.4; HRMS calcd for C₁₂H₁₁FN₄O₃ [M]⁺ m/z 278.0815, found 278.0807. Anal. Calcd: C, 51.80; H, 3.98; N, 20.14. Found: C, 51.94; H, 3.93; N, 19.98.

1'-(2-Azidoethyl)-5'-chlorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8c): yield 89%; colorless oil; 1 H NMR (CDCl $_{3}$, 300 MHz) δ

3.52–3.61 (m, 2H, H¹), 3.70–3.77 (m, 2H, H²), 4.25–4.33 (m, 2H, –OCH₂), 4.51–4.58 (m, 2H, –OCH₂), 6.74–6.80 (m, 1H, –ArH), 7.03–7.11 (m, 1H, –ArH), 7.27–7.30 (m, 1H, –ArH); 13 C NMR (CDCl₃, 75 MHz) δ 39.1, 48.4, 65.6, 102.0, 110.4, 113.7, 123.3, 124.6, 137.3, 141.3, 173.2; HRMS calcd for C₁₂H₁₁ClN₄O₃ [M]+ m/z 294.0520, found 294.0508. Anal. Calcd: C, 48.91; H, 3.76; N, 19.01. Found: C, 48.73; H, 3.81; N, 18.87.

1'-(2-Azidoethyl)-5'-methylspiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8d): yield 93%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 2.24 (s, 3H, -CH₃), 3.50-3.58 (m, 2H, H¹), 3.71-3.78 (m, 2H, H²), 4.23-4.30 (m, 2H, -OCH₂), 4.54-4.59 (m, 2H, -OCH₂), 6.59 (d, J = 8.1 Hz, 1H, -ArH), 7.29-7.37 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 21.3, 38.9, 48.6, 65.5, 102.3, 110.4, 117.7, 121.6, 124.2, 131.7, 141.7, 175.2; HRMS calcd for C₁₃H₁₄N₄O₃ [M]+ m/z 274.1066, found 274.1075. Anal. Calcd: C, 56.93; H, 5.14; N, 20.43. Found: C, 57.12; H, 5.05; N, 20.26.

1'-(3-Azidopropyl)spiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8e): yield 95%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.89 (t, J = 6.0 Hz, 2H, H²), 3.35 (t, J = 5.7 Hz, 2H, H¹), 3.67 (t, J = 6.3 Hz, 2H, H³), 4.25–4.31 (m, 2H, -OCH₂), 4.48–4.53 (m, 2H, -OCH₂), 6.79–6.86 (m, 1H, -ArH), 7.02–7.08 (m, 1H, -ArH), 7.29–7.38 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.8, 36.2, 46.5, 65.6, 102.4, 110.6, 123.0, 124.1, 125.8, 131.2, 141.7, 175.4; HRMS calcd for C₁₃H₁₄N₄O₃ [M]* m/z 274.1066, found 274.1071. Anal. Calcd: C, 56.93; H, 5.14; N, 20.43. Found: C, 56.82; H, 5.09; N, 20.56.

1'-(3-Azidopropyl)-5'-fluorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8f): yield 91%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.83 (t, J = 5.7 Hz, 2H, H 2), 3.38 (t, J = 6.0 Hz, 2H, H 1), 3.71 (t, J = 6.0 Hz, 2H, H 3), 4.24–4.32 (m, 2H, -OCH $_2$), 4.49–4.54 (m, 2H, -OCH $_2$), 6.84–6.89 (m, 1H, -ArH), 7.03–7.14 (m, 2H, -ArH); 13 C NMR (CDCl $_3$, 75 MHz) δ 26.4, 37.2, 47.2, 65.5, 101.5, 109.3, 112.8, 117.6, 125.4, 139.4, 157.6, 173.2; Calcd for C $_{13}$ H $_{13}$ FN $_4$ O $_3$ [M] $^+$ m/z 292.0972, found 292.0964. Anal. Calcd: C, 53.42; H, 4.48; N, 19.17. Found: C, 53.34; H, 4.40; N, 19.29.

1'-(3-Azidopropyl)-5'-chlorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (**8g**): yield 95%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.91 (t, J = 6.3 Hz, 2H, H^2), 3.33 (t, J = 6.3 Hz, 2H, H^1), 3.73 (t, J = 6.6 Hz, 2H, H^3), 4.27–4.35 (m, 2H, -OCH₂), 4.53–4.61 (m, 2H, -OCH₂), 6.76–6.82 (m, 1H, -ArH), 7.05–7.12 (m, 1H, -ArH), 7.33–7.35 (m, 1H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.3, 37.5, 47.8, 65.3, 102.4, 110.5, 113.6, 123.5, 124.3, 137.1, 141.2, 173.6; HRMS calcd for C₁₃H₁₃ClN₄O₃ [M]⁺ m/z 308.0676, found 308.0665. Anal. Calcd: C, 50.58; H, 4.21; N, 18.15. Found: C, 50.72; H, 4.33; N, 18.01.

1'-(3-Azidopropyl)-5'-methylspiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8h): yield 92%; colorless oil; ^1H NMR (CDCl₃, 300 MHz) δ 1.85 (t, J=6.0 Hz, 2H, H^2), 2.21 (s, 3H, $-\text{CH}_3$), 3.36 (t, J=6.6 Hz, 2H, H^1), 3.69 (t, J=6.3 Hz, 2H, H^3), 4.24–4.33 (m, 2H, $-\text{OCH}_2$), 4.52–4.58 (m, 2H, $-\text{OCH}_2$), 6.61 (d, J=7.8 Hz, 1H, -ArH), 7.32–7.38 (m, 2H, -ArH); ^{13}C NMR (CDCl₃, 75 MHz) δ 21.2, 26.7, 38.6, 48.3, 65.4, 102.2, 110.7, 117.6, 121.9, 124.3, 131.9, 141.5, 175.0; HRMS calcd for C₁₄H₁₆N₄O₃ [M]⁺ m/z 288.1222, found 288.1213. Anal. Calcd: C, 58.32; H, 5.59; N, 19.43. Found: C, 58.49; H, 5.68; N, 19.25.

1'-(4-Azidobutyl)spiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8i): yield 88%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.72–1.84 (m, 4H, H² + H³), 3.34 (t, J = 6.0 Hz, 2H, H¹), 3.66 (t, J = 6.6 Hz, 2H, H⁴), 4.24–4.33 (m, 2H, -OCH₂), 4.44–4.53 (m, 2H, -OCH₂), 6.79–6.85 (m, 1H, -ArH), 7.04–7.11 (m, 1H, -ArH), 7.30–7.36 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.3, 29.0, 37.1, 48.3, 65.2, 102.7, 110.5, 123.3, 124.0, 125.7, 131.1, 147.4, 175.5; HRMS calcd for C₁₄H₁₆N₄O₃ [M]⁺ m/z 288.1222, found 288.1215. Anal. Calcd: C, 58.32; H, 5.59; N, 19.43. Found: C, 58.15; H, 5.46; N, 19.62.

1'-(4-Azidobutyl)-5'-fluorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8j): yield 94%; colorless oil; 1 H NMR (CDCl $_3$, 300 MHz) δ 1.79–1.88 (m, 4H, H 2 + H 3), 3.31 (t, J = 6.3 Hz, 2H, H 1), 3.63 (t, J = 6.9 Hz, 2H, H 4), 4.22–4.27 (m, 2H, –OCH $_2$), 4.48–4.52 (m, 2H, –OCH $_2$), 6.70–6.74 (m, 1H, –ArH), 6.98–7.07 (m, 2H, –ArH); 13 C NMR (CDCl $_3$, 75 MHz) δ 26.5, 29.2, 36.9, 48.5, 65.8, 101.5, 109.2, 112.8, 117.6, 125.6, 139.5, 157.6, 173.1; HRMS calcd for

 $C_{14}H_{15}FN_4O_3$ [M]⁺ m/z 306.1128, found 306.1126. Anal. Calcd: C, 54.90; H, 4.94; N, 18.29. Found: C, 54.81; H, 4.83; N, 18.45.

1'-(4-Azidobutyl)-5'-chlorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8k): yield 92%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.74–1.84 (m, 4H, H² + H³), 3.35 (t, J = 6.0 Hz, 2H, H¹), 3.62 (t, J = 6.6 Hz, 2H, H⁴), 4.24–4.31 (m, 2H, -OCH₂), 4.48–4.50 (m, 2H, -OCH₂), 6.71–6.78 (m, 1H, -ArH), 7.02–7.08 (m, 1H, -ArH), 7.27–7.36 (m, 1H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.2, 29.0, 36.5, 48.6, 65.6, 102.1, 110.6, 113.5, 123.7, 124.2, 137.4, 141.5, 173.9; HRMS calcd for C₁₄H₁₅ClN₄O₃ [M]⁺ m/z 322.1033, found 322.1037. Anal. Calcd: C, 52.10; H, 4.68; N, 17.36. Found: C, 52.22; H, 4.79; N, 17.17.

1'-(4-Azidobutyl)-5'-methylspiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8*I*): yield 89%; 1 H NMR (CDCl $_{3}$, 300 MHz) δ 1.79–1.88 (m, 4H, H 2 + H 3), 2.23 (s, 3H, –CH $_{3}$), 3.30 (t, J = 6.3 Hz, 2H, H 1), 3.66 (t, J = 6.3 Hz, 2H, H 4), 4.25–4.29 (m, 2H, –OCH $_{2}$), 4.48–4.55 (m, 2H, –OCH $_{2}$), 6.62 (d, J = 7.8 Hz, 1H, –ArH), 7.29–7.34 (m, 2H, –ArH); 13 C NMR (CDCl $_{3}$, 75 MHz) δ 21.4, 26.6, 29.3, 36.8, 48.2, 65.5, 102.1, 107.5, 117.9, 121.7, 124.4, 131.8, 141.2, 175.3; HRMS calcd for C $_{15}$ H $_{18}$ N $_{4}$ O $_{3}$ [M] $^{+}$ m/z 302.1379, found 302.1372. Anal. Calcd: C, 59.59; H, 6.00; N, 18.53. Found: C, 59.45; H, 5.86; N, 18.72.

1'-(5-Azidopentyl)spiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8m): yield 91%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.30–1.36 (m, 2H, H³), 1.46–1.59 (m, 4H, H² + H⁴), 3.13 (t, J = 6.3 Hz, 2H, H¹), 3.58 (t, J = 6.6 Hz, 2H, H⁵), 4.19–4.27 (m, 2H, -OCH₂), 4.47–4.54 (m, 2H, -OCH₂), 6.73–6.81 (m, 1H, -ArH), 7.06–7.12 (m, 1H, -ArH), 7.29–7.38 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 24.4, 26.6, 27.8, 39.6, 51.2, 66.0, 102.4, 110.4, 123.3, 124.1, 125.4, 131.6, 147.3, 175.4; HRMS calcd for C₁₅H₁₈N₄O₃ [M]+ m/z 302.1379, found 302.1367. Anal. Calcd: C, 59.59; H, 6.00; N, 18.53. Found: C, 59.74; H, 6.19; N, 18.36.

1'-(5-Azidopentyl)-5'-fluorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8n): yield 90%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.32–1.35 (m, 2H, H³), 1.36–1.62 (m, 4H, H² + H⁴), 3.18 (t, J = 6.6 Hz, 2H, H¹), 3.53 (t, J = 6.9 Hz, 2H, H⁵), 4.21–4.25 (m, 2H, –OCH₂), 4.49–4.51 (m, 2H, –OCH₂), 6.67–6.68 (m, 1H, –ArH), 6.99–7.05 (m, 2H, –ArH); 13 C NMR (CDCl₃, 75 MHz) δ 24.1, 26.8, 27.9, 39.7, 51.4, 66.2, 101.9, 109.7, 113.1, 117.9, 126.1, 140.0, 158.0, 173.3; HRMS calcd for C₁₅H₁₇FN₄O₃ [M]⁺ m/z 320.1285, found 320.1282. Anal. Calcd: C, 56.24; H, 5.33; N, 17.49. Found: C, 56.35; H. 5.22: N. 17.29.

1'-(5-Azidopentyl)-5'-chlorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (80): yield 89%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.29–1.36 (m, 2H, H³), 1.39–1.57 (m, 4H, H² + H⁴), 3.20 (t, J = 6.0 Hz, 2H, H¹), 3.58 (t, J = 6.0 Hz, 2H, H⁵), 4.26–4.31 (m, 2H, –OCH₂), 4.46–4.54 (m, 2H, –OCH₂), 6.70–6.79 (m, 1H, –ArH), 7.06–7.11 (m, 1H, –ArH), 7.28–7.33 (m, 1H, –ArH); 13 C NMR (CDCl₃, 75 MHz) δ 24.3, 26.7, 27.7, 39.4, 51.1, 65.9, 102.0, 110.5, 113.4, 123.8, 124.3, 137.5, 141.1, 173.8; HRMS calcd for C₁₅H₁₇ClN₄O₃ [M]⁺ m/z 336.0989, found 336.0981. Anal. Calcd: C, 53.50; H, 5.09; N, 16.64. Found: C, 53.37; H, 4.96; N, 16.83.

1'-(5-Azidopentyl)-5'-methylspiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8p): yield 88%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.29–1.38 (m, 2H, H³), 1.41–1.55 (m, 4H, H² + H⁴), 2.20, (s, 3H, -CH₃), 3.17 (t, J=6.3 Hz, 2H, H¹), 3.54 (t, J=6.6 Hz, 2H, H⁵), 4.29–4.37 (m, 2H, -OCH₂), 4.44–4.55 (m, 2H, -OCH₂), 6.60 (d, J=8.1 Hz, 1H, -ArH), 7.28–7.35 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 21.7, 24.0, 26.6, 27.5, 39.7, 51.4, 65.8, 102.0, 110.4, 117.8, 121.6, 124.5, 131.6, 141.1, 175.1; HRMS calcd for C₁₆H₂₀N₄O₃ [M]+ m/z 316.1535, found 316.1539. Anal. Calcd: C, 60.75; H, 6.37; N, 17.71. Found: C, 60.90; H, 6.42; N, 17.56.

1'-(6-Azidohexyl)spiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8q): yield 92%; colorless oil; 1 H NMR (CDCl $_3$, 300 MHz) δ 1.40–1.45 (m, 4H, H 3 + H 4), 1.55–1.67 (m, 2H, H 2), 1.71–1.77 (m, 2H, H 5), 3.25 (t, J = 6.6 Hz, 2H, H 1), 3.70 (t, J = 6.3 Hz, 2H, H 6), 4.20–4.27 (m, 2H, –OCH $_2$), 4.44–4.49 (m, 2H, –OCH $_2$), 6.68–6.73 (m, 1H, –ArH), 7.03–7.13 (m, 1H, –ArH), 7.27–7.37 (m, 2H, –ArH); 13 C NMR (CDCl $_3$, 75 MHz) δ 26.0, 26.4, 27.1, 28.4, 40.3, 51.4, 65.8, 102.1, 110.7, 123.1, 124.3, 125.6, 131.5, 147.6, 175.2; Calcd for

C₁₆H₂₀N₄O₃ [M]⁺ *m/z* 316.1535, found 316.1541. Anal. Calcd: C, 60.75; H, 6.37; N, 17.71. Found: C, 60.91; H, 6.46; N, 17.53.

1'-(2-Azidoethyl)spiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8s): yield 93%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.34–1.46 (m, 4H, H³ + H⁴), 1.49–1.57 (m, 2H, H²), 1.74–1.81 (m, 2H, H⁵), 3.24 (t, J = 5.7 Hz, 2H, H¹), 3.70 (t, J = 6.0 Hz, 2H, H⁶), 4.18–4.24 (m, 2H, -OCH₂), 4.44–4.51 (m, 2H, -OCH₂), 6.70–6.78 (m, 1H, -ArH), 7.03–7.10 (m, 1H, -ArH), 7.29–7.36 (m, 1H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.1, 26.5, 27.2, 28.4, 40.5, 51.1, 65.9, 102.1, 110.8, 113.3, 123.6, 124.5, 137.2, 141.4, 173.7; HRMS calcd for C₁₆H₁₉ClN₄O₃ [M]⁺ m/z 350.1146, found 350.1142. Anal. Calcd: C, 54.78; H, 5.46; N, 15.97. Found: C, 54.61; H, 5.36; N, 15.85.

1'-(6-Azidohexyl)-5'-methylspiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8t): yield 89%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.34–1.41 (m, 4H, H³ + H⁴), 1.53–1.58 (m, 2H, H²), 1.71–1.77 (m, 2H, H⁵), 2.24 (s, 3H, –CH₃), 3.19 (t, J = 6.3 Hz, 2H, H¹), 3.68 (t, J = 6.0 Hz, 2H, H⁶), 4.21–4.26 (m, 2H, –OCH₂), 4.45–4.52 (m, 2H, –OCH₂), 6.63 (d, J = 7.8 Hz, 1H, –ArH), 7.29–7.37 (m, 2H, –ArH); 13 C NMR (CDCl₃, 75 MHz) δ 21.5, 26.3, 26.4, 27.0, 28.3, 40.3, 51.0, 65.6, 102.4, 107.7, 117.5, 121.5, 124.4, 131.7, 141.4, 175.6; HRMS calcd for C₁₇H₂₂N₄O₃ [M]⁺ m/z 330.1692, found 330.1699. Anal. Calcd: C, 61.80; H, 6.71; N, 16.96. Found: C, 61.86; H, 6.79; N, 16.86.

1'-(8-Azidooctyl)spiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8u): yield 93%; colorless oil; ^1H NMR (CDCl₃, 300 MHz) δ 1.34–1.49 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.52–1.57 (m, 2H, H²), 1.68–1.79 (m, 2H, H²), 3.27 (t, J=6.0 Hz, 2H, H¹), 3.63 (t, J=5.7 Hz, 2H, H²), 4.25–4.33 (m, 2H, $-\text{OCH}_2$), 4.44–4.56 (m, 2H, $-\text{OCH}_2$), 6.69–6.77 (m, 1H, -ArH), 7.04–7.10 (m, 1H, -ArH), 7.27–7.38 (m, 2H, -ArH); ^{13}C NMR (CDCl₃, 75 MHz) δ 26.1, 26.4, 26.7, 28.4, 28.5, 29.4, 40.3, 50.5, 65.8, 102.2, 110.6, 123.4, 124.1, 125.8, 131.4, 147.3, 175.1; HRMS calcd for C₁₈H₂₄N₄O₃ [M]+ m/z 344.1848, found 344.1841. Anal. Calcd: C, 62.77; H, 7.02; N, 16.77. Found: C, 62.71; H, 7.06; N, 16.68.

1'-(8-Azidooctyl)-5'-fluorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8ν): yield 94%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.31–1.44 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.48–1.57 (m, 2H, H²), 1.65–1.72 (m, 2H, H²), 3.22 (t, J = 6.6 Hz, 2H, H¹), 3.61 (t, J = 6.3 Hz, 2H, H³), 4.22–4.31 (m, 2H, -OCH₂), 4.45–4.53 (m, 2H, -OCH₂), 6.83–6.89 (m, 1H, -ArH), 7.07–7.10 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.2, 26.3, 26.8, 28.1, 28.3, 29.5, 40.4, 50.7, 65.4, 101.7, 109.6, 112.9, 117.5, 125.2, 139.1, 157.6, 173.3; HRMS calcd for C₁₈H₂₃FN₄O₃ [M]⁺ m/z 362.1754, found 362.1759. Anal. Calcd: C, 59.66; H, 6.40; N, 15.46. Found: C, 59.73; H, 6.48; N, 15.55.

1'-(8-Azidooctyl)-5'-chlorospiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8w): yield 88%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.34–1.42 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.43–1.55 (m, 2H, H²), 1.64–1.73 (m, 2H, H²), 3.23 (t, J=5.7 Hz, 2H, H¹), 3.59 (t, J=6.6 Hz, 2H, H³), 4.26–4.34 (m, 2H, -OCH₂), 4.41–4.50 (m, 2H, -OCH₂), 6.71–6.79 (m, 1H, -ArH), 7.06–7.11 (m, 1H, -ArH), 7.28–7.38 (m, 1H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.4, 26.5, 26.9, 28.0, 28.2, 29.6, 40.5, 50.6, 65.7, 102.5, 110.3, 113.6, 123.3, 124.2, 137.0, 141.7, 173.4; HRMS calcd for C₁₈H₂₃ClN₄O₃ [M]+ m/z 378.1459, found 378.1450. Anal. Calcd: C, 57.07; H, 6.12; N, 14.79. Found: C, 57.13; H, 6.17; N, 14.69.

1'-(8-Azidooctyl)-5'-methylspiro[[1,3]dioxolane-2,3'-indolin]-2'-one (8x): yield 89%; colorless oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.31–1.42 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.45–1.57 (m, 2H, H²), 1.61–1.74 (m, 2H, H³), 2.21 (s, 3H, -CH₃), 3.21 (t, J = 6.9 Hz, 2H, H¹), 3.63 (t, J = 6.3 Hz, 2H, H³), 4.24–4.31 (m, 2H, -OCH₂), 4.40–4.48 (m, 2H, -OCH₂), 6.66 (d, J = 8.4 Hz, 1H, -ArH), 7.30–7.39

(m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 21.5, 26.1, 26.2, 26.4, 28.1, 28.5, 29.1, 40.0, 50.9, 65.8, 102.7, 110.8, 117.7, 121.2, 124.2, 131.6, 141.3, 175.8; HRMS calcd for $C_{19}H_{26}N_4O_3$ [M] $^+$ m/z 358.2005, found 358.2000. Anal. Calcd: C, 63.67; H, 7.31; N, 15.63. Found: C, 63.72; H, 7.28; N, 15.68.

General Procedure for the Synthesis of Spiroisatin–Ferrocene-Based Hybrids 10a–x. To a well-stirred solution of N-alkylazido spiroisatins 8 and ethynylferrocene 9 in a 9/1 ethanol/water mixture were added copper sulfate (0.05 mmol) and sodium ascorbate (0.13 mmol). The reaction mixture was stirred at room temperature for 7–10 h. After completion of the reaction, as indicated by TLC, water (20 mL) was added and the reaction mixture was extracted with dichloromethane (2 \times 30 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure, resulting in the crude product 10, which was purified via column chromatography using a 60/40 EtOAc/hexane mixture.

1'-(2-(4-Ferrocenyl-1H-1,2,3-triazol-1-yl)ethyl)spiro[[1,3]-dioxolane-2,3'-indolin]-2'-one (10a): yield 78%; dark brown oil; NMR (CDCl₃, 300 MHz) δ 3.93 (s, 5H, H⁶), 4.15–4.17 (m, 2H, H¹), 4.25 (s, 2H, -OCH₂), 4.34 (s, 2H, H⁵), 4.58–4.61 (m, 4H, -OCH₂ + H⁴), 4.65–4.68 (m, 2H, H²), 6.59–6.61 (m, 1H, -ArH), 7.01–7.05 (m, 1H, -ArH), 7.28–7.36 (m, 3H, H³+2ArH); 13 C NMR (CDCl₃, 75 MHz) δ 40.3, 47.4, 65.9, 66.6, 68.6, 69.5, 74.6, 101.9, 108.3, 120.1, 123.6, 123.8, 125.1, 131.9, 143.1, 173.8; HRMS calcd for C₂₄H₂₂FeN₄O₃ [M]⁺ m/z 470.1036, found 440.1034. Anal. Calcd: C, 61.28; H, 4.68; N, 11.91. Found: C, 61.25; H, 4.71; N, 11.85.

5'-Fluoro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)ethyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10b): yield 87%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 3.90 (s, SH, H⁶), 4.14–4.19 (m, 2H, H¹), 4.23 (s, 2H, -OCH₂), 4.37 (s, 2H, H⁵), 4.54–4.59 (m, 4H, -OCH₂ + H⁴), 4.62–4.69 (m, 2H, H²), 6.80–6.87 (m, 1H, -ArH), 7.01–7.10 (m, 2H, -ArH), 7.49 (s, 1H, H³); 13 C NMR (CDCl₃, 75 MHz) δ 40.4, 47.2, 65.5, 66.2, 68.4, 69.6, 74.3, 101.4, 109.8, 112.6, 117.7, 125.4, 131.1, 134.8, 139.2, 157.6, 173.7; HRMS calcd for C₂₄H₂₁FFeN₄O₃ [M]⁺ m/z 488.0141, found 488.0135. Anal. Calcd: C, 59.02; H, 4.30; N, 11.48. Found: C, 58.91; H, 4.23; N, 11.55.

5'-Chloro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)ethyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10c): yield 79%; dark brown oil; $^1\mathrm{H}$ NMR (CDCl3, 300 MHz) δ 3.86 (s, 5H, H6), 4.11–4.18 (m, 2H, H¹), 4.20 (s, 2H, $-\mathrm{OCH}_2$), 4.38 (s, 2H, H⁵), 4.51–4.58 (m, 4H, $-\mathrm{OCH}_2$ + H⁴), 4.65–4.70 (m, 2H, H²), 6.89–6.96 (m, 1H, $-\mathrm{ArH}$), 7.28–7.35 (m, 2H, $-\mathrm{ArH}$), 7.60 (s, 1H, H³); $^{13}\mathrm{C}$ NMR (CDCl3, 75 MHz) δ 40.1, 47.0, 65.4, 66.6, 68.7, 69.4, 74.4, 102.4, 110.6, 113.5, 123.5, 124.7,130.7, 134.6, 137.3, 141.5, 173.7; Calcd for $\mathrm{C}_{24}\mathrm{H}_{21}\mathrm{ClFeN}_4\mathrm{O}_3$ [M]* m/z 504.0383, found 504.0377. Anal. Calcd: C, 57.14; H, 4.17; N, 11.11. Found: C, 57.06; H, 4.07; N, 11.19.

5'-Methyl-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)ethyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10d): yield 75%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 2.20 (s, 3H, -CH₃), 3.86 (s, 5H, H⁶), 4.14-4.19 (m, 2H, H¹), 4.24 (s, 2H, -OCH₂), 4.39 (s, 2H, H⁵), 4.50-4.56 (m, 4H, -OCH₂ + H⁴), 4.61-4.67 (m, 2H, H²), 6.55 (d, J = 7.5 Hz, 1H, -ArH), 7.28-7.36 (m, 2H, -ArH); 7.58 (s, 1H, H³); 13 C NMR (CDCl₃, 75 MHz) δ 21.4, 40.5, 47.6, 65.7, 66.9, 68.4, 69.5, 74.6, 102.1, 110.6, 117.9, 121.2, 124.0, 130.2, 131.6, 134.5, 141.4, 175.6; HRMS calcd for C₂₅H₂₄FeN₄O₃ [M + H]⁺ m/z 485.0919, found 485.0915. Anal. Calcd: C, 61.98; H, 4.96; N, 11.57. Found: C, 61.90; H, 5.04; N, 11.64.

1'-(2-(4-Ferrocenyl-1H-1,2,3-triazol-1-yl)propyl)spiro[[1,3]-dioxolane-2,3'-indolin]-2' one (10e): yield 81%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 2.26 (s, 2H, H²), 3.64 (s, 2H, H¹), 4.01 (s, 5H, H²), 4.22–4.31 (m, 6H, –OCH₂ + H³ + H⁶), 4.52 (s, 2H, H⁵), 4.66 (s, 2H, –OCH₂), 6.72–6.74 (m, 1H, –ArH), 7.03–7.06 (m, 1H, –ArH), 7.30–7.33 (m, 2H, –ArH), 7.60 (s, 1H, H⁴); 13 C NMR (CDCl₃, 75 MHz) δ 27.9, 36.7, 47.4, 65.8, 66.6, 68.6, 69.6, 75.2, 101.9, 108.7, 119.9, 123.6, 124.0, 125.0, 131.8, 143.2, 173.7; HRMS calcd for C₂₅H₂₄FeN₄O₃ [M]⁺ m/z 484.1192, found 484.1189. Anal. Calcd: C, 61.98; H, 4.96; N, 11.57. Found: C, 61.85; H, 4.88; N, 11.62.

5'-Fluoro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)propyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10f): yield 79%; dark brown oil;

¹H NMR (CDCl₃, 300 MHz) δ 2.29 (s, 2H, H²), 3.66 (s, 2H, H¹), 4.04 (s, 5H, H⁷), 4.20–4.27 (m, 6H, –OCH₂ + H³ + H⁶), 4.54 (s, 2H, H⁵), 4.63 (s, 2H, –OCH₂), 6.83–6.89 (m, 1H, –ArH), 7.03–7.11 (m, 2H, –ArH), 7.44 (s, 1H, H⁴); ¹³C NMR (CDCl₃, 75 MHz) δ 27.7, 36.8, 47.5, 65.5, 66.4, 68.7, 69.8, 75.0, 101.1, 109.5, 112.8, 117.8, 125.6, 130.4, 134.5, 139.0, 157.2, 173.3; HRMS calcd for C₂₅H₂₃FFeN₄O₃ [M]⁺ m/z 502.1068, found 502.1060. Anal. Calcd: C, 59.76; H, 4.58; N, 11.16. Found: C, 59.85; H, 4.65; N, 11.09.

5'-Chloro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)propyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10g): yield 80%; dark brown oil; H NMR (CDCl₃, 300 MHz) δ 2.26 (s, 2H, H²), 3.61 (s, 2H, H¹), 4.07 (s, 5H, H²), 4.23–4.29 (m, 6H, –OCH₂ + H³ + H⁴), 4.53 (s, 2H, H⁵), 4.60 (s, 2H, –OCH₂), 6.88–6.97 (m, 1H, –ArH), 7.29–7.38 (m, 2H, –ArH), 7.63 (s, 1H, H⁴); ¹³C NMR (CDCl₃, 75 MHz) δ 27.3, 36.5, 47.2, 65.3, 66.5, 68.9, 69.5, 75.7, 102.6, 110.4, 113.8, 123.9, 124.6, 130.2, 134.9, 137.3, 141.4, 173.3; HRMS calcd for C₂₅H₂₃ClFeN₄O₃ [M]+ m/z 518.1058, found 518.1056. Anal. Calcd: C, 57.92; H, 4.44; N, 10.81. Found: C, 58.02; H, 4.49; N, 10.71.

5'-Methyl-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)propyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10h): yield 87%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 2.23 (s, 3H, -CH₃), 2.29 (s, 2H, H²), 3.68 (s, 2H, H¹), 4.10 (s, 5H, H²), 4.24-4.31 (m, 6H, -OCH₂ + H³ + H⁴), 4.50 (s, 2H, H⁵), 4.64 (s, 2H, -OCH₂), 6.51 (d, J=7.8 Hz, 1H, -ArH), 7.29-7.39 (m, 2H, -ArH); 7.62 (s, 1H, H⁴); 13 C NMR (CDCl₃, 75 MHz) δ 21.3, 27.2, 36.6, 47.7, 65.9, 66.3, 68.5, 69.8, 75.5, 102.0, 110.9, 117.6, 121.1, 124.5, 130, 131.8, 134.8, 141.1, 175.3; HRMS calcd for C₂₆H₂₆FeN₄O₃ [M]+ m/z 498.1136, found 498.1141. Anal. Calcd: C, 62.65; H, 5.22; N, 11.24. Found: C, 62.76; H, 5.31; N, 11.29.

1'-(2-(4-Ferrocenyl-1H-1,2,3-triazol-1-yl)butyl)spiro[[1,3]-dioxolane-2,3'-indolin]-2'-one (10i): yield 87%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.69–1.73 (m, 2H, H²), 1.96–2.04 (m, 2H, H³), 3.69 (t, J = 6.3 Hz, 2H, H¹), 4.06 (s, 5H, H²), 4.30–4.33 (m, 4H, -OCH₂ + H⁷), 4.41 (t, J = 6.6 Hz, 2H, H⁴), 4.53–4.64 (m, 2H, -OCH₂), 4.71 (s, 2H, H⁶), 6.76–6.79 (d, J = 7.5 Hz, 1H, -ArH), 7.05–7.10 (m, 1H, -ArH), 7.32–7.41 (m, 2H, -ArH), 7.43 (s, 1H, H⁵); 13 C NMR (CDCl₃, 75 MHz) δ 23.9, 27.2, 38.5, 49.2, 65.8, 66.5, 68.5, 69.4, 75.3, 102.0, 108.8, 118.8, 123.3, 123.9, 124.9, 131.7, 143.4, 173.5; HRMS calcd for C₂₆H₂₆FeN₄O₃ [M]+ m/z 498.1343, found 498.1350. Anal. Calcd: C, 62.65; H, 5.22; N, 11.24. Found: C, 62.57; H, 5.18; N, 11.21.

5'-fFluoro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)butyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10j): yield 86%; dark brown oil;

¹H NMR (CDCl₃, 300 MHz) δ 1.66–1.76 (m, 2H, H²), 1.95–2.01 (m, 2H, H³), 3.66 (t, J = 6.6 Hz, 2H, H¹), 4.03 (s, 5H, H²), 4.28–4.34 (m, 4H, -OCH₂ + H²), 4.44 (t, J = 6.0 Hz, 2H, H⁴), 4.54–4.63 (m, 2H, -OCH₂), 4.69 (s, 2H, H⁶), 6.81–6.89 (m, 1H, -ArH), 7.04–7.10 (m, 2H, -ArH), 7.46 (s, 1H, H⁵); 13 C NMR (CDCl₃, 75 MHz) δ 23.5, 27.0, 38.4, 49.5, 65.4, 66.7, 68.6, 69.2, 75.6, 101.4, 109.4, 112.5, 117.7, 125.4, 130.2, 134.3, 139.1, 157.4, 173.6; HRMS calcd for C₂₆H₂₅FFeN₄O₃ [M]⁺ m/z 516.1373, found 516.1379. Anal. Calcd: C, 60.47; H, 4.84; N, 10.85. Found: C, 60.52; H, 4.89; N, 10.76.

5'-Chloro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)butyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10k): yield 77%; dark brown oil; H NMR (CDCl₃, 300 MHz) δ 1.63–1.75 (m, 2H, H²), 1.98–2.04 (m, 2H, H³), 3.69 (t, J = 6.3 Hz, 2H, H¹), 4.01 (s, 5H, H²), 4.29–4.37 (m, 4H, -OCH₂ + H²), 4.42 (t, J = 6.3 Hz, 2H, H⁴), 4.55–4.61 (m, 2H, -OCH₂), 4.68 (s, 2H, H⁶),6.84–6.92 (m, 1H, -ArH), 7.31–7.39 (m, 2H, -ArH), 7.64 (s, 1H, H⁵); 13 C NMR (CDCl₃, 75 MHz) δ 23.1, 27.3, 38.3, 49.6, 65.7, 66.8, 68.4, 69.1, 75.4, 102.5, 110.6, 113.5, 123.3, 124.9, 130.3, 134.8, 137.2, 141.7, 173.8; HRMS calcd for $C_{26}H_{25}$ ClFeN₄O₃ [M]⁺ m/z 532.1372, found 532.1368. Anal. Calcd: C, 58.65; H, 4.69; N, 10.53. Found: C, 58.76; H, 4.77; N, 10.45.

5'-Methyl-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)butyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10l): yield 83%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.64–1.69 (m, 2H, H²), 1.88–1.95 (m, 2H, H³), 2.21 (s, 3H, -CH₃), 3.66 (t, J = 6.9 Hz, 2H, H¹), 4.04 (s, 5H, H³), 4.20–4.29 (m, 4H, -OCH₂ + H⁷), 4.46 (t, J = 6.0 Hz, 2H, H⁴), 4.52–4.59 (m, 2H, -OCH₂), 4.66 (s, 2H, H⁶),6.55 (d, J = 8.4 Hz, 1H, -ArH), 7.27–7.38 (m, 2H, -ArH), 7.60 (s, 1H, H⁵); 13 C NMR

(CDCl₃, 75 MHz) δ 21.5, 23.0, 27.2, 38.1, 49.5, 65.9, 66.4, 68.3, 69.5, 75.8, 102.2, 110.5, 117.9, 121.2, 124.4, 130.5, 131.7, 134.8, 141.4, 175.7; HRMS calcd for C₂₇H₂₈FeN₄O₃ [M + H]⁺ m/z 513.0925, found 513.0917. Anal. Calcd: C, 63.28; H, 5.47; N, 10.94. Found: C, 63.23; H, 5.40; N, 11.02.

1'-(2-(4-Ferrocenyl-1H-1,2,3-triazol-1-yl)pentyl)spiro[[1,3]-dioxolane-2,3'-indolin]-2'-one (10m): yield 82%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.31–1.39 (m, 2H, H³), 1.44–1.52 (m, 4H, H² + H⁴), 3.17 (t, J = 6.0 Hz, 2H, H¹), 4.06 (s, 5H, H⁹), 4.26–4.32 (m, 4H, H⁵ + H⁸), 4.44–4.51 (m, 2H, –OCH₂), 4.56 (s, 2H, H⁷), 4.69–4.76 (m, 2H, –OCH₂), 6.73–6.78 (d, J = 7.8 Hz, 1H, –ArH), 7.02–7.09 (m, 1H, –ArH), 7.34–7.41 (m, 2H, –ArH), 7.47 (s, 1H, H⁶); 13 C NMR (CDCl₃, 75 MHz) δ 24.6, 26.4, 27.5, 39.3, 51.0, 65.4, 66.3, 68.8, 69.7, 75.7, 102.5, 108.3, 118.4, 123.6, 123.7, 124.8, 131.9, 143.2, 173.8; HRMS calcd for C₂₇H₂₈FeN₄O₃ [M]⁺ m/z 512.1076, found 512.1074. Anal. Calcd: C, 63.28; H, 5.47; N, 10.94. Found: C, 63.24; H, 5.41; N, 11.07.

5'-Chloro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)pentyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10o): yield 84%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.33–1.45 (m, 2H, H³), 1.48–1.56 (m, 4H, H² + H⁴), 3.13 (t, J = 6.3 Hz, 2H, H¹), 4.03 (s, 5H, H²), 4.21–4.31 (m, 4H, H⁵ + H8), 4.41–4.47 (m, 2H, -OCH₂), 4.56 (s, 2H, H²), 4.67–4.71 (m, 2H, -OCH₂), 6.83–6.95 (m, 1H, -ArH), 7.30–7.37 (m, 2H, -ArH), 7.60 (s, 1H, H⁶); 13 C NMR (CDCl₃, 75 MHz) δ 24.4, 26.2, 27.4, 39.5, 51.0, 65.2, 66.4, 68.6, 69.8, 75.3, 102.4, 110.9, 113.8, 123.6, 124.3, 130.5, 134.5,137.7, 141.5, 173.3; HRMS calcd for C₂₇H₂₇ClFeN₄O₃ [M]⁺ m/z 546.0519, found 546.0511. Anal. Calcd: C, 59.34; H, 4.95; N, 10.26. Found: C, 59.23; H, 4.87; N, 10.20.

5'-Methyl-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)pentyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10p): yield 76%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.30–1.42 (m, 2H, H³), 1.44–1.52 (m, 4H, H² + H⁴), 2.22 (s, 3H, -CH₃), 3.20 (t, J = 6.3 Hz, 2H, H¹), 4.02 (s, 5H, H²), 4.18–4.27 (m, 4H, H⁵ + H²), 4.42–4.47 (m, 2H, -OCH₂), 4.59 (s, 2H, H²), 4.63–4.70 (m, 2H, -OCH₂), 6.53 (d, J = 8.7 Hz, 1H, -ArH), 7.31–7.37 (m, 2H, -ArH); 7.65 (s, 1H, H⁶); 13 C NMR (CDCl₃, 75 MHz) δ 21.4, 24.1, 26.0, 27.6, 39.9, 51.1, 65.3, 66.6, 68.8, 69.9, 75.1, 102.4, 110.6, 117.7, 121.3, 124.6, 130.4, 131.4, 134.2, 141.7, 175.5; HRMS calcd for C₂₈H₃₀FeN₄O₃ [M]⁺ m/z 526.1080, found 526.1077. Anal. Calcd: C, 63.88; H, 5.70; N, 10.65. Found: C, 63.81; H, 5.82; N, 10.74.

1'-(2-(4-Ferrocenyl-1H-1,2,3-triazol-1-yl)hexyl)spiro[[1,3]-dioxolane-2,3'-indolin]-2'-one (10q): yield 87%; Brown Solid; 1 H NMR (CDCl₃, 300 MHz) δ 1.38–1.48 (m, 4H, H³ + H⁴), 1.51–1.68 (m, 2H, H²), 1.75–1.83 (m, 2H, H⁵), 3.21 (t, J = 6.3 Hz, 2H, H¹), 4.03 (s, 5H, H¹0), 4.21–4.29 (m, 4H, H⁶ + H⁰), 4.41–4.46 (m, 2H, -OCH₂), 4.51 (s, 2H, H³), 4.64–4.69 (m, 2H, -OCH₂), 6.74–6.81 (d, J = 8.4 Hz,, 1H, -ArH), 7.04–7.11 (m, 1H, -ArH), 7.31–7.42 (m, 2H, -ArH), 7.45 (s, 1H, H³); 13 C NMR (CDCl₃, 75 MHz) δ 26.2, 26.3, 27.4, 28.1, 40.0, 51.1, 65.3, 66.7, 68.4, 69.8, 75.4, 102.4, 108.5, 118.5, 123.7, 123.9, 124.6, 131.8, 143.6, 173.5; HRMS calcd for C₂₈H₃₃FeN₄₄O₃ [M]⁺ m/z 526.1184, found 526.1188. Anal. Calcd: C, 63.88; H, 5.70; N, 10.65. Found: C, 63.82; H, 5.74; N, 10.79.

5'-Fluoro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)hexyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10r): yield 87%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.33–1.41 (m, 4H, H³ + H⁴), 1.52–1.63 (m, 2H, H²), 1.73–1.80 (m, 2H, H⁵), 3.20 (t, J = 6.0 Hz, 2H, H¹), 4.05 (s, 5H, H¹⁰), 4.22–4.28 (m, 4H, H⁶ + H⁹), 4.39–4.45 (m, 2H, -OCH₂), 4.56 (s, 2H, H⁸), 4.65–4.69 (m, 2H, -OCH₂), 6.77–6.86 (m, 1H, -ArH), 7.07–7.14 (m, 2H, -ArH), 7.42 (s, 1H, H⁷); 13 C

NMR (CDCl₃, 75 MHz) δ 26.3, 26.5, 27.2, 28.0, 40.4, 51.5, 65.2, 66.4, 68.6, 69.7, 75.5, 101.2, 109.6, 112.6, 117.8, 125.4, 130.2, 134.7, 139.6, 157.2, 173.4; HRMS calcd for C₂₈H₂₉FFeN₄O₃ [M + H]⁺ m/z 545.1170, found 545.1175. Anal. Calcd: C, 61.76; H, 5.33; N, 10.29. Found: C, 61.56; H, 5.21; N, 10.42.

5'-Chloro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)hexyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10s): yield 84%; dark brown oil; NMR (CDCl₃, 300 MHz) δ 1.37–1.48 (m, 4H, H³ + H⁴), 1.51–1.66 (m, 2H, H²), 1.71–1.83 (m, 2H, H⁵), 3.18 (t, J = 6.3 Hz, 2H, H¹), 4.03 (s, 5H, H¹0), 4.22–4.29 (m, 4H, H⁶ + H⁰), 4.43–4.49 (m, 2H, –OCH₂), 4.58 (s, 2H, H³), 4.63–4.70 (m, 2H, –OCH₂), 6.82–6.91 (m, 1H, –ArH), 7.33–7.38 (m, 2H, –ArH), 7.63 (s, 1H, H²); 13 C NMR (CDCl₃, 75 MHz) δ 26.4, 26.6, 27.4, 28.2, 40.5, 51.7, 65.1, 66.6, 68.7, 69.9, 75.4, 102.5, 110.8, 113.6, 123.7, 124.5, 130.7, 134.2, 137.6, 141.6, 173.4; HRMS calcd for C₂₈H₂₉ClFeN₄O₃ [M]+ m/z 560.1284, found 560.1288. Anal. Calcd: C, 60.00; H, 5.18; N, 10.00. Found: C, 59.92; H, 5.17; N, 10.11.

1'-(2-(4-Ferrocenyl-1H-1,2,3-triazol-1-yl)octyl)spiro[[1,3]-dioxolane-2,3'-indolin]-2'-one (10u): yield 94%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.31–1.45 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.49–1.59 (m, 2H, H²), 1.67–1.76 (s, 2H, H²), 3.25 (t, J = 5.7 Hz, 2H, H¹), 4.01 (s, 5H, H¹²), 4.19–4.28 (m, 4H, H³ + H¹¹), 4.45–4.51 (m, 2H, –OCH₂), 4.54 (s, 2H, H¹⁰), 4.60–4.64 (m, 2H, –OCH₂), 6.76–6.82 (d, J = 8.1 Hz, 1H, –ArH), 7.01–7.09 (m, 1H, –ArH), 7.29–7.39 (m, 2H, –ArH), 7.46 (s, 1H, H⁰); 13 C NMR (CDCl₃, 75 MHz) δ 26.2, 26.5, 26.6, 28.7, 28.8, 29.3, 40.1, 50.7, 65.1, 66.1, 68.5, 69.4, 75.5, 102.1, 108.6, 118.2, 123.5, 123.9, 124.7, 131.6, 143.0, 173.4; HRMS calcd for C₃₀H₃₄FeN₄O₃ [M + H]⁺ m/z 555.1273, found 555.1271. Anal. Calcd: C, 64.98; H, 6.14; N, 10.11. Found: C, 65.07; H, 6.20; N, 10.03.

5'-Fluoro-1'-(2-(4-Ferrocenyl-1H-1,2,3-triazol-1-yl)octyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10v): yield 89%; dark brown oil;

¹H NMR (CDCl₃, 300 MHz) δ 1.27–1.39 (m, 8H, H³ + H⁴ + H⁵ + H⁴, 1.44–1.55 (m, 2H, H²), 1.66–1.77 (s, 2H, H²), 3.21 (t, J = 5.4 Hz, 2H, H¹), 4.05 (s, 5H, H¹²), 4.18–4.25 (m, 4H, H² + H¹¹), 4.43–4.48 (m, 2H, -OCH₂), 4.55 (s, 2H, H¹⁰), 4.59–4.66 (m, 2H, -OCH₂), 6.75–6.85 (m, 1H, -ArH), 7.05–7.11 (m, 2H, -ArH), 7.46 (s, 1H, H²); ¹³C NMR (CDCl₃, 75 MHz) δ 26.0, 26.4, 26.5, 28.6, 28.9, 29.0, 40.2, 50.5, 65.5, 66.6, 68.3, 69.6, 75.6, 101.4, 109.7, 112.5, 117.7, 125.7, 130.0, 134.6, 139.3, 157.5, 173.8; HRMS calcd for C₃₀H₃₃FFeN₄O₃ [M]+ m/z 572.1291, found 572.1287. Anal. Calcd: C, 62.94; H, 5.77; N, 9.79. Found: C, 63.04; H, 5.84; N, 9.68.

5'-Chloro-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)octyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10w): yield 90%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.24–1.38 (m, 8H, H 3 + H 4 + H 5 + H 6), 1.41–1.55 (m, 2H, H 2), 1.63–1.76 (s, 2H, H 7), 3.27 (t, J = 5.7 Hz, 2H, H 1), 4.02 (s, 5H, H 12), 4.20–4.29 (m, 4H, H 8 + H 11), 4.45–4.53 (m, 2H, –OCH $_{2}$), 4.58 (s, 2H, H 10), 4.61–4.65 (m, 2H, –OCH $_{2}$), 6.84–6.93 (m, 1H, –ArH), 7.30–7.39 (m, 2H, –ArH), 7.65 (s, 1H, H 9); 13 C NMR (CDCl $_{3}$, 75 MHz) δ 26.2, 26.3, 26.6, 28.7, 28.8, 29.1, 40.4, 50.8, 65.2, 66.2, 68.7, 69.3, 75.8, 102.1, 110.3, 113.9, 123.3, 124.9, 130.6, 1341, 137.4, 141.8, 173.6; HRMS calcd for C $_{30}$ H $_{33}$ ClFeN $_{4}$ O $_{3}$ [M] $^{+}$ m/z 588.0280, found 588.0278. Anal. Calcd: C, 61.22; H, 5.61; N, 9.52. Found: C, 61.14; H, 5.55; N, 9.48.

5'-Methyl-1'-(2-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)octyl)spiro-[[1,3]dioxolane-2,3'-indolin]-2'-one (10x): yield 80%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.21–1.35 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.43–1.58 (m, 2H, H²), 1.62–1.74 (s, 2H, H⁷), 2.24 (s, 3H, −CH₃), 3.23 (t, *J* = 5.4 Hz, 2H, H¹), 4.04 (s, 5H, H¹²), 4.19−4.28 (m, 4H, H² + H¹¹), 4.43−4.47 (m, 2H, −OCH₂), 4.59 (s, 2H, H¹⁰), 4.62−4.69 (m, 2H, −OCH₂), 6.59 (d, *J* = 8.4 Hz, 1H, −ArH), 7.33−7.38 (m, 2H, −ArH), 7.61 (s, 1H, H⁰); ¹³C NMR (CDCl₃, 75 MHz) δ 21.6, 26.1, 26.2, 26.7, 28.8, 28.9, 29.5, 40.8, 50.7, 65.1, 66.4, 68.4, 69.1, 75.5, 102.4, 110.5, 117.6, 121.4, 124.3, 130.1, 131.6, 134.9, 141.4, 175.6; HRMS calcd for C₃₁H₃₀FeN₄O₃ [M]⁺ *m*/*z* 568.0418, found 568.0413. Anal. Calcd: C, 65.49; H, 6.34; N, 9.86. Found: C, 65.38; H, 6.45; N, 9.93

1-(4-Azidobutyl)-1H-indole-2,3-dione (11a): yield 83%; red oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.75–1.85 (m, 4H, H² + H³), 3.36 (t, J = 5.7 Hz, 2H, H¹), 3.61 (t, J = 6.3 Hz, 2H, H⁴), 6.77–6.82 (m, 1H, -ArH), 7.02–7.10 (m, 1H, -ArH), 7.27–7.35 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.6, 29.3, 37.0, 48.7, 118.6, 123.4, 128.5, 130.7, 131.5, 138.3, 158.6, 183.5; HRMS calcd for C₁₂H₁₂N₄O₂ [M]⁺ m/z 244.0960, found 244.0954. Anal. Calcd: C, 59.01; H, 4.95; N, 22.94. Found: C, 58.96; H, 4.88; N, 23.03.

1-(4-Azidobutyl)-5-fluoro-1H-indole-2,3-dione (11b): yield 82%; red oil; ^1H NMR (CDCl $_3$, 300 MHz) δ 1.71–1.83 (m, 4H, H 2 + H 3), 3.33 (t, J = 6.6 Hz, 2H, H 1), 3.59 (t, J = 6.9 Hz, 2H, H 4), 6.78–6.85 (m, 1H, -ArH), 7.29–7.34 (m, 2H, -ArH); ^{13}C NMR (CDCl $_3$, 75 MHz) δ 26.6, 29.7, 36.8, 48.3, 111.5, 118.5, 125.7, 129.7, 137.4, 149.6, 158.6, 182.8; HRMS calcd for C $_{12}\text{H}_{11}\text{FN}_4\text{O}_2$ [M] $^+$ m/z 262.0899, found 262.0892. Anal. Calcd: C, 54.96; H, 4.23; N, 21.36. Found: C, 55.03; H, 4.28; N, 21.42.

1-(4-Azidobutyl)-5-chloro-1H-indole-2,3-dione (11c): yield 85%; red oil; ^1H NMR (CDCl₃, 300 MHz) δ 1.74–1.84 (m, 4H, H² + H³), 3.34 (t, J = 5.7 Hz, 2H, H¹), 3.67 (t, J = 6.0 Hz, 2H, H⁴), 6.76–6.79 (m, 1H, -ArH), 7.06–7.13 (m, 1H, -ArH), 7.32–7.38 (m, 1H, -ArH), ^{13}C NMR (CDCl₃, 75 MHz) δ 26.4, 29.2, 36.4, 48.8, 110.6, 117.5, 121.7, 124.9, 146.3, 149.3, 158.3, 182.2; HRMS calcd for C₁₂H₁₁ClN₄O₂ [M]⁺ m/z 278.0570, found 278.0573. Anal. Calcd: C, 51.72; H, 3.98; N, 21.10. Found: C, 51.69; H, 4.02; N, 21.18.

1-(4-Azidobutyl)-5-methyl-1H-indole-2,3-dione (11d): yield 83%; red oil; ^1H NMR (CDCl₃, 300 MHz) δ 1.77–1.84 (m, 4H, H² + H³), 2.22 (s, 3H, -CH₃), 3.36 (t, J = 6.0 Hz, 2H, H¹), 3.62 (t, J = 6.0 Hz, 2H, H⁴), 6.67 (d, J = 8.1 Hz, 1H, -ArH), 7.27–7.37 (m, 2H, -ArH); ^{13}C NMR (CDCl₃, 75 MHz) δ 21.3, 26.7, 29.0, 36.5, 48.6, 111.5, 121.8, 124.8, 138.5, 146.4, 149.6, 158.6, 182.3; HRMS calcd for C₁₃H₁₄N₄O₂ [M]* m/z 258.1116, found 258.1113. Anal. Calcd: C, 60.45; H, 5.46; N, 21.69. Found: C, 60.37; H, 5.52; N, 21.63.

1-(4-Azidopentyl)-5-fluoro-1H-indole-2,3-dione (11f): yield 88%; red oil; ^1H NMR (CDCl₃, 300 MHz) δ 1.35–1.39 (m, 2H, H³), 1.42–1.61 (m, 4H, H² + H⁴), 3.16 (t, J = 6.0 Hz, 2H, H¹), 3.57 (t, J = 6.6 Hz, 2H, H⁵), 6.73–6.81 (m, 1H, -ArH), 7.30–7.37 (m, 2H, -ArH); ^{13}C NMR (CDCl₃, 75 MHz) δ 24.3, 26.6, 27.8, 39.9, 51.2, 111.8, 118.1, 125.5, 129.6, 137.8, 149.5, 158.5, 182.6; HRMS calcd for C₁₃H₁₃FN₄O₂ [M]⁺ m/z 276.1022, found 276.1019. Anal. Calcd: C, 56.52; H, 4.74; N, 20.28. Found: C, 56.56; H, 4.72; N, 20.31.

1-(4-Azidopentyl)-5-chloro-1H-indole-2,3-dione (11g): yield 90%; red oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.25–1.33 (m, 2H, H³), 1.38–1.59 (m, 4H, H² + H⁴), 3.26 (t, J = 6.3 Hz, 2H, H¹), 3.55 (t, J = 6.3 Hz, 2H, H¹), 6.75–6.82 (m, 1H, -ArH), 7.09–7.14 (m, 1H, -ArH), 7.30–7.37 (m, 1H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 24.1, 26.3, 27.6, 39.7, 51.4, 110.9, 117.2, 121.5, 124.8, 146.1, 149.0, 158.6, 182.8; HRMS calcd for C₁₃H₁₃ClN₄O₂ [M]⁺ m/z 292.0727, found 292.0721. Anal. Calcd: C, 53.34; H, 4.48; N, 19.14. Found: C, 53.26; H, 4.50; N, 19.09

1-(4-Azidopentyl)-5-methyl-1H-indole-2,3-dione (11h): yield 81%; red oil; ${}^{1}H$ NMR (CDCl₃, 300 MHz) δ 1.28–1.35 (m, 2H, H³), 1.45–1.53 (m, 4H, H² + H⁴), 2.24, (s, 3H, -CH₃), 3.19 (t, J = 6.9 Hz, 2H,

H¹), 3.58 (t, J = 6.0 Hz, 2H, H⁵), 6.64 (d, J = 8.4 Hz, 1H, −ArH), 7.29−7.38 (m, 2H, −ArH); ¹³C NMR (CDCl₃, 75 MHz) δ 21.6, 24.4, 26.5, 27.2, 39.5, 51.3, 111.3, 121.7, 124.9, 138.2, 146.3, 149.2, 158.3, 182.5; HRMS calcd for $C_{14}H_{16}N_4O_2$ [M]+ m/z 272.1273, found 272.1267. Anal. Calcd: C, 61.75; H, 5.92; N, 20.58. Found: C, 61.81; H. 5.99: N. 20.50.

1-(4-Azidohexyl)-1H-indole-2,3-dione (11i): yield 88%; red oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.43–1.48 (m, 4H, H³ + H⁴), 1.52–1.65 (m, 2H, H²), 1.69–1.75 (m, 2H, H⁵), 3.23 (t, J = 6.0 Hz, 2H, H¹), 3.74 (t, J = 6.6 Hz, 2H, H⁶), 6.71–6.78 (m, 1H, –ArH), 7.06–7.15 (m, 1H, –ArH), 7.29–7.36 (m, 2H, –ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.2, 26.3, 27.5, 28.1, 40.6, 51.5, 118.7, 123.1, 128.1, 130.4, 131.7, 138.2, 158.5, 183.3; HRMS calcd for C₁₄H₁₆N₄O₂ [M]⁺ m/z 272.1273, found 272.1269. Anal. Calcd: C, 61.75; H, 5.92; N, 20.58. Found: C, 61.81; H, 5.89; N, 20.64.

1-(4-Azidohexyl)-5-fluoro-1H-indole-2,3-dione (11j): yield 92%; red oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.43–1.59 (m, 4H, H³ + H⁴), 1.60–1.62 (m, 2H, H²), 1.70–1.74 (m, 2H, H⁵), 3.27 (t, J = 6.3 Hz, 2H, H¹), 3.73 (t, J = 6.3 Hz, 2H, H⁶), 6.86–6.90 (m, 1H, -ArH), 7.29–7.32 (m, 1H, -ArH), 7.55–7.57 (m, 1H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.2, 26.3, 27.0, 28.6, 40.1, 51.2, 111.1, 118.4, 125.3, 129.5, 137.6, 149.1, 157.6, 182.5; HRMS calcd for C₁₄H₁₅FN₄O₂ [M]⁺ m/z 290.1179, found 290.1187. Anal. Calcd: C, 57.92; H, 5.21; N, 19.30. Found: C, 57.97; H, 5.15; N, 19.24.

1-(4-Azidohexyl)-5-chloro-1H-indole-2,3-dione (11k): yield 82%; red oil; ^1H NMR (CDCl $_3$, 300 MHz) δ 1.34–1.46 (m, 4H, H 3 + H 4), 1.51–1.60 (m, 2H, H 2), 1.71–1.83 (m, 2H, H 5), 3.27 (t, J = 5.7 Hz, 2H, H 1), 3.66 (t, J = 6.3 Hz, 2H, H 6), 6.69–6.75 (m, 1H, -ArH), 7.03–7.12 (m, 1H, -ArH), 7.28–7.38 (m, 1H, -ArH); ^{13}C NMR (CDCl $_3$, 75 MHz) δ 26.2, 26.6, 27.6, 28.5, 40.2, 51.0, 110.5, 117.3, 121.7, 124.5, 146.3, 149.3, 158.1, 182.5; HRMS calcd for C $_{14}\text{H}_{15}\text{ClN}_4\text{O}_2$ [M] $^+$ m/z 306.0854, found 306.0848. Anal. Calcd: C, 54.82; H, 4.93; N, 18.26. Found: C, 54.79; H, 4.88; N, 18.31.

1-(4-Azidohexyl)-5-methyl-1H-indole-2,3-dione (11l): yield 87%; red oil; 1 H NMR (CDCl₃, 300 MHz):δ 1.43–1.48 (m, 4H, H³ + H⁴), 1.53–1.59 (m, 2H, H²), 1.75–1.79 (m, 2H, H⁵), 2.22 (s, 3H, −CH₃), 3.27 (t, J=6.0 Hz, 2H, H¹), 3.69 (t, J=6.3 Hz, 2H, H⁶), 6.66 (d, J=8.1 Hz, 1H, −ArH), 7.30–7.39 (m, 2H, −ArH); 13 C NMR (CDCl₃, 75 MHz) δ 21.5, 26.6, 26.8, 27.3, 28.6, 40.8, 51.4, 111.7, 121.4, 124.5, 138.5, 146.4, 149.0, 158.6, 182.8; HRMS calcd for C₁₅H₁₈N₄O₂ [M]+ m/z 286.1429, found 286.1422. Anal. Calcd: C, 62.92; H, 6.34; N, 19.57. Found: C, 62.87; H, 6.31; N, 19.55.

1-(4-Azidooctyl)-1H-indole-2,3-dione (11m): yield 91%; red oil;

¹H NMR (CDCl₃, 300 MHz) δ 1.33–1.46 (m, 8H, H³ + H⁴ + H⁵ + H⁵), 1.51–1.56 (m, 2H, H²), 1.65–1.78 (m, 2H, H²), 3.24 (t, J = 6.6 Hz, 2H, H¹), 3.66 (t, J = 5.7 Hz, 2H, H³), 6.73–6.79 (m, 1H, −ArH), 7.02–7.07 (m, 1H, −ArH), 7.30–7.38 (m, 2H, −ArH); ¹³C NMR (CDCl₃, 75 MHz) δ 26.0, 26.3, 26.6, 28.7, 28.9, 29.1, 40.2, 50.8, 118.8, 123.0, 128.2, 130.6, 131.8, 138.3, 158.7, 183.7; HRMS calcd for C₁₆H₂₀N₄O₂ [M]⁺ m/z 300.1586, found 300.1592. Anal. Calcd: C, 63.98; H, 6.71; N, 18.65. Found: C, 64.02; H, 6.67; N, 18.59.

1-(4-Azidooctyl)-5-fluoro-1H-indole-2,3-dione (11n): yield 88%; red oil; ^1H NMR (CDCl $_3$, 300 MHz) δ 1.27–1.40 (m, 8H, H 3 + H 4 + H 5 + H 6), 1.42–1.53 (m, 2H, H 2), 1.63–1.70 (m, 2H, H 7), 3.21 (t, J = 6.9 Hz, 2H, H 1), 3.66 (t, J = 6.6 Hz, 2H, H 8), 6.85–6.89 (m, 1H, –ArH), 7.29–7.33 (m, 2H, –ArH); ^{13}C NMR (CDCl $_3$, 75 MHz) δ 26.0, 26.4, 26.9, 28.3, 28.7, 29.1, 40.7, 50.8, 111.1, 118.2, 125.6, 129.4, 137.2, 149.8, 157.6, 182.6; HRMS calcd for C $_{16}\text{H}_{19}\text{FN}_4\text{O}_2$ [M] $^+$ m/z 318.1525, found 318.1523. Anal. Calcd: C, 60.37; H, 6.02; N, 17.60. Found: C, 60.43; H, 5.99; N, 17.62.

1-(4-Azidooctyl)-5-chloro-1H-indole-2,3-dione (11o): yield 93%; red oil; ^1H NMR (CDCl $_3$, 300 MHz) δ 1.31–1.44 (m, 8H, H 3 + H 4 + H 5 + H 6), 1.47–1.54 (m, 2H, H 2), 1.66–1.72 (m, 2H, H 7), 3.24 (t, J = 6.9 Hz, 2H, H 1), 3.62 (t, J = 6.6 Hz, 2H, H 8), 6.67–6.74 (m, 1H, -ArH), 7.05–7.12 (m, 1H, -ArH), 7.27–7.34 (m, 1H, -ArH); ^{13}C NMR (CDCl $_3$, 75 MHz) δ 26.1, 26.4, 26.6, 28.3, 28.5, 29.7, 40.2, 50.7, 110.7, 117.8, 121.3, 124.8, 146.2, 149.5, 158.4, 182.3; HRMS calcd for C $_{16}\text{H}_{19}\text{ClN}_4\text{O}_2$ [M] $^+$ m/z 334.1196, found 334.1188. Anal. Calcd: C, 57.40; H, 5.72; N, 16.73. Found: C, 57.47; H, 5.66; N, 16.69.

1-(4-Azidooctyl)-5-methyl-1H-indole-2,3-dione (11p): yield 91%; red oil; ^1H NMR (CDCl₃, 300 MHz) δ 1.32–1.42 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.44–1.56 (m, 2H, H²), 1.63–1.77 (m, 2H, H႗), 2.20 (s, 3H, –CH₃), 3.25 (t, J = 6.3 Hz, 2H, H¹), 3.66 (t, J = 6.6 Hz, 2H, H²), 6.67 (d, J = 8.1 Hz, 1H, –ArH), 7.31–7.38 (m, 2H, –ArH); ^{13}C NMR (CDCl₃, 75 MHz) δ 21.3, 26.5, 26.7, 26.9, 28.2, 28.7, 29.5, 40.3, 50.8, 111.5, 121.7, 124.8, 138.4, 146.7, 149.2, 158.3, 182.7; HRMS calcd for C₁₇H₂₂N₄O₂ [M]⁺ m/z 314.1742, found 314.1738. Anal. Calcd: C, 64.95; H, 7.05; N, 17.82. Found: C, 64.91; H, 7.08; N, 17.77.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)butyl]-1H-indole-2,3-dione (12a): yield 88%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.73–1.80 (m, 2H, H²), 2.01–2.05 (m, 2H, H³), 3.78 (t, J = 6.9 Hz, 2H, H¹), 4.05 (s, 5H, H³), 4.30 (s, 2H, H²), 4.45 (t, J = 6.9 Hz, 2H, H⁴), 4.71 (s, 2H, H⁴), 6.87–6.89 (m, 1H, -ArH), 7.08–7.14 (m, 1H, -ArH), 7.47 (s, 1H, H⁵), 7.56–7.61 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 23.9, 27.3, 39.1, 49.1, 66.6, 68.7, 69.5, 75.3, 110.0, 117.4, 118.8, 123.4, 124.9, 131.7, 138.5, 150.4, 158.3, 183.1; HRMS calcd for C₂₄H₂₂FeN₄O₂ [M + H]+ m/z 455.1165, found 455.1181. Anal. Calcd: C, 63.44; H, 4.85; N, 12.33. Found: C, 63.54; H, 4.92; N, 12.25.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)butyl]-5-fluoro-1H-indole-2,3-dione (12b): yield 81%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.70–185 (m, 2H, H²), 2.04–2.10 (m, 2H, H³), 3.69 (t, J = 6.6 Hz, 2H, H¹), 4.01 (s, 5H, H³), 4.48 (s, 2H, H²), 4.60 (t, J = 6.6 Hz, 2H, H⁴), 4.74 (s, 2H, H⁶), 6.79–6.85 (m, 1H, -ArH), 7.29–7.33 (m, 2H, -ArH), 7.48 (s, 1H, H⁶); 13 C NMR (CDCl₃, 75 MHz) δ 24.3, 29.5, 36.6, 39.4, 65.7, 68.2, 69.5, 72.2, 111.5, 112.7, 124.1, 125.8, 132.7, 136.4, 146.5, 157.3, 159.7, 182.8; HRMS calcd for C₂₄H₂₁FFeN₄O₂ [M]+ m/z 472.0710, found 472.0716. Anal. Calcd: C, 61.02; H, 4.45; N, 11.86. Found: C, 60.90; H, 4.32; N, 11.98.

5-Chloro-1-[2-(4-ferrocenyl-[1,2,3]triazol-1-yl)butyl]-1H-indole-2,3-dione (12c): yield 81%; dark brown oil; ^1H NMR (CDCl₃, 300 MHz) δ 1.73–1.85 (m, 4H, H² + H³), 3.31 (t, J = 6.3 Hz, 2H, H¹), 3.64 (t, J = 5.7 Hz, 2H, H⁴), 4.01 (s, 5H, H²), 4.60 (s, 2H, H²), 4.77 (s, 2H, H⁶), 6.91–6.96 (m, 1H, -ArH), 7.29–7.37 (m, 2H, -ArH), 7.60 (s, 1H, H⁵); ^{13}C NMR (CDCl₃, 75 MHz) δ 24.5, 26.6, 36.3, 39.7, 66.4, 68.4, 69.7, 75.3, 110.4, 117.5, 121.8, 124.9, 132.8, 138.9, 146.3, 149.1, 158.6, 182.5; HRMS calcd for C₂₄H₂₁ClFeN₄O₂ [M]⁺ m/z 488.1248, found 488.1253. Anal. Calcd: C, 59.02; H, 4.30; N, 11.48. Found: C, 58.92; H, 4.18; N, 11.56.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)butyl]-5-methyl-1H-indole-2,3-dione (12d): yield 75%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ1.73–183 (m, 2H, H²), 2.00–2.08 (m, 2H, H³), 2.21 (s, 3H, -CH₃), 3.64 (t, J=6.0 Hz, 2H, H¹), 4.07 (s, 5H, H²), 4.45 (s, 2H, H²), 4.61 (t, J=6.0 Hz, 2H, H⁴), 4.70 (s, 2H, H⁶), 6.60 (d, J=8.4 Hz, 1H, -ArH), 7.30–7.37 (m, 2H, -ArH), 7.41 (s, 1H, H⁵); 13 C NMR (CDCl₃, 75 MHz) δ 21.6, 24.4, 26.7, 36.3, 39.5, 66.6, 68.3, 69.2, 75.5, 110.7, 117.8, 121.8, 124.9, 132.8, 138.7, 146.4, 149.5, 158.7, 182.2; HRMS calcd for C₂₅H₂₄FeN₄O₂ [M]⁺ m/z 468.0624, found 468.0616. Anal. Calcd: C, 64.10; H, 5.13; N, 11.97. Found: C, 63.97; H, 5.06; N, 11.95.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)pentyl]-1H-indole-2,3-dione (12e): yield 79%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.25–1.33 (m, 2H, H³), 1.73–1.77 (m, 2H, H²), 2.01–2.09 (m, 2H, H⁴), 3.77 (t, J = 6.3 Hz, 2H, H¹), 4.06 (s, 5H, H²), 4.30 (s, 2H, H²), 4.45 (t, J = 6.3 Hz, 2H, H⁵), 4.71 (s, 2H, H⁻), 6.86–6.89 (m, 1H, -ArH), 7.08–7.13 (m, 1H, -ArH), 7.47 (s, 1H, H⁶), 7.56–7.60 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 24.5, 26.1, 27.7, 39.4, 51.8, 66.8, 68.6, 69.8, 75.5, 110.4, 117.3, 118.7, 123.5, 124.6, 131.9, 138.2, 150.1, 158.0, 183.3; HRMS calcd for $C_{25}H_{24}$ FeN₄O₂ [M]⁺ m/z 468.1639, found 468.1631. Anal. Calcd: C, 64.10; H, 5.13; N, 11.97. Found: C, 64.23; H, 5.24; N, 11.86.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)pentyl]-5-fluoro-1H-indole-2,3-dione (12f): yield 85%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.28–1.35 (m, 2H, H³), 1.71–1.79 (m, 2H, H²), 2.01–2.11 (m, 2H, H⁴), 3.70 (t, J = 5.7 Hz, 2H, H¹), 4.03 (s, 5H, Hց), 4.27 (s, 2H, H³), 4.46 (t, J = 5.7 Hz, 2H, H⁵), 4.67 (s, 2H, H²), 6.74–6.83 (m, 1H, -ArH), 7.32–7.39 (m, 2H, -ArH), 7.50 (s, 1H, H⁶); 13 C NMR (CDCl₃, 75 MHz) δ 24.2, 26.6, 27.8, 39.1, 51.5, 66.6, 68.9, 69.7, 75.3, 111.3, 112.8, 124.0, 125.5, 132.9, 136.2, 146.6, 157.1, 159.6, 182.4;

HRMS calcd for $C_{25}H_{23}FFeN_4O_2$ [M]⁺ m/z 486.1482, found 486.1475. Anal. Calcd: C, 61.73; H, 4.73; N, 11.52. Found: C, 61.86; H, 4.85; N, 11.42.

5-Chloro-1-[2-(4-ferrocenyl-[1,2,3]triazol-1-yl)pentyl]-1H-indole-2,3-dione (12g): yield 83%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.25–1.34 (m, 2H, H³), 1.73–1.81 (m, 2H, H²), 2.04–2.10 (m, 2H, H⁴), 3.70 (t, J = 6.3 Hz, 2H, H¹), 4.04 (s, 5H, H²), 4.27 (s, 2H, H³), 4.49 (t, J = 6.3 Hz, 2H, H⁵), 4.69 (s, 2H, H⁻), 6.93–6.99 (m, 1H, -ArH), 7.30–7.39 (m, 2H, -ArH), 7.64 (s, 1H, H⁶); 13 C NMR (CDCl₃, 75 MHz) δ 24.4, 26.6, 27.3, 39.2, 51.4, 66.3, 68.6, 69.2, 75.1, 110.1, 117.8, 121.4, 124.7, 135.6, 138.7, 146.1, 149.4, 158.3, 182.4; HRMS calcd for C₂₅H₂₃ClFeN₄O₂ [M]⁺ m/z 502.1261, found 502.1268. Anal. Calcd: C, 59.76; H, 4.58; N, 11.16. Found: C, 59.85; H, 4.67; N, 11.04.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)pentyl]-5-methyl-1H-indole-2,3-dione (12h): yield 78%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.21–1.34 (m, 2H, H³), 1.76–1.88 (m, 2H, H²), 2.01–2.09 (m, 2H, H⁴), 2.23 (s, 2H, −CH₃), 3.68 (t, J = 5.4 Hz, 2H, H¹), 4.02 (s, 5H, H³), 4.27 (s, 2H, H³), 4.45 (t, J = 5.4 Hz, 2H, H⁵), 4.71 (s, 2H, H²), 6.55 (d, J = 8.1 Hz, 1H, −ArH), 7.29–7.39 (m, 2H, −ArH), 7.48 (s, 1H, H⁶); 13 C NMR (CDCl₃, 75 MHz) δ 21.2, 24.4, 26.8, 27.4, 39.1, 51.8, 66.1, 68.3, 69.6, 75.2, 110.5, 117.4, 121.3, 124.7, 132.5, 138.6, 146.7, 149.4, 158.5, 182.6; HRMS calcd for C₂₆H₂₆FeN₄O₂ [M]⁺ m/z 482.0736, found 482.0742. Anal. Calcd: C, 64.73; H, 5.39; N, 11.62. Found: C, 64.63; H, 5.31; N, 11.51.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)hexyl]-1H-indole-2,3-dione (12i): yield 82%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.29–1.38 (m, 4H, H³ + H⁴), 1.63–1.68 (m, 2H, H²), 1.88–1.94 (m, 2H, H⁵), 3.76 (t, J = 6.6 Hz, 2H, H¹), 4.04 (s, 5H, H¹0), 4.29 (s, 2H, H²), 4.39 (t, J = 6.3 Hz, 2H, H⁶), 4.73 (s, 2H, H³), 6.84–6.88 (m, 1H, -ArH), 7.03–7.11 (m, 1H, -ArH), 7.49 (s, 1H, H²), 7.54–7.59 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.1, 26.2, 27.5, 28.7, 40.5, 51.2, 66.3, 68.2, 69.7, 75.2, 110.0, 117.6, 118.9, 123.3, 124.4, 131.8, 138.5, 149.7, 158.4, 182.2; HRMS calcd for C₂₆H₂₆FeN₄O₂ [M]+ m/z 482.0581, found 482.0577. Anal. Calcd: C, 64.73; H, 5.39; N, 11.62. Found: C, 64.66; H, 5.30; N, 11.73.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)hexyl]-5-fluoro-1H-indole-2,3-dione (12j): yield 80%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.25–1.36 (m, 4H, H³ + H⁴), 1.60–1.69 (m, 2H, H²), 1.94–2.03 (m, 2H, H⁵), 3.67 (t, J = 5.7 Hz, 2H, H¹), 4.01 (s, 5H, H¹⁰), 4.34 (s, 2H, H⁹), 4.41 (t, J = 5.7 Hz, 2H, H⁶), 4.70 (s, 2H, H⁸), 6.76–6.81 (m, 1H, -ArH), 7.30–7.38 (m, 2H, -ArH), 7.41 (s, 1H, H⁷); 13 C NMR (CDCl₃, 75 MHz) δ 26.0, 26.3, 27.2, 28.5, 40.4, 51.3, 66.0, 68.1, 69.5, 75.4, 111.1, 112.5, 124.4, 125.8, 132.6, 136.4, 146.8, 157.3, 159.4, 182.5; HRMS calcd for C₂₆H₂₅FFeN₄O₂ [M + H]⁺ m/z 501.0483, found 501.0479. Anal. Calcd: C, 62.40; H, 5.00; N, 11.20. Found: C, 62.49; H, 5.11; N, 11.12.

5-Chloro-1-[2-(4-ferrocenyl-[1,2,3]triazol-1-yl)hexyl]-1H-indole-2,3-dione (12k): yield 76%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.31–1.38 (m, 4H, H³ + H⁴), 1.62–1.69 (m, 2H, H²), 1.90–1.98 (m, 2H, H⁵), 3.69 (t, J = 6.9 Hz, 2H, H¹), 4.05 (s, 5H, H¹0), 4.33 (s, 2H, H³), 4.41 (t, J = 6.9 Hz, 2H, H6), 4.72 (s, 2H, H8), 6.84–6.92 (m, 1H, -ArH), 7.29–7.38 (m, 2H, -ArH), 7.62 (s, 1H, H⁷); 13 C NMR (CDCl₃, 75 MHz) δ 26.3, 26.8, 27.3, 28.5, 40.2, 51.4, 66.5, 68.9, 69.8, 75.1, 110.5, 117.3, 121.2, 124.4, 135.8, 138.2, 146.0, 149.3, 158.4, 182.5; HRMS calcd for C₂₆H₂₅ClFeN₄O₂ [M]+ m/z 516.0530, found 516.0522. Anal. Calcd: C, 60.47; H, 4.84; N, 10.85. Found: C, 60.57; H, 4.90; N, 10.76.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)hexyl]-5-methyl-1H-indole-2,3-dione (12l): yield 83%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.33–1.39 (m, 4H, H³ + H⁴), 1.61–1.73 (m, 2H, H²), 1.90–1.97 (m, 2H, H⁵), 2.20 (s, 3H, –CH₃), 3.69 (t, J = 6.3 Hz, 2H, H¹), 4.07 (s, 5H, H¹⁰), 4.30 (s, 2H, H⁹), 4.31 (t, J = 6.3 Hz, 2H, H⁶), 4.69 (s, 2H, H⁸), 6.56 (d, J = 8.7 Hz, 1H, –ArH), 7.32–7.38 (m, 2H, –ArH), 7.48 (s, 1H, H⁷); 13 C NMR (CDCl₃, 75 MHz) δ 21.1, 26.2, 26.7, 27.6, 28.5, 40.4, 51.7, 66.3, 68.1, 69.8, 75.5, 110.1, 117.7, 121.5, 124.9, 132.2, 138.7, 146.8, 149.6, 158.4, 182.3; HRMS calcd for C₂₇H₂₈FeN₄O₂ [M]⁺ m/z 496.1483, found 496.1474. Anal. Calcd: C, 65.32; H, 5.65; N, 11.29. Found: C, 65.40; H, 5.72; N, 11.51.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)octyl]-1H-indole-2,3-dione (12m): yield 75%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.27–1.39 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.67 (s, 2H, H²), 1.95 (s, 2H, H²), 3.63 (t, J = 6.0 Hz, 2H, H¹), 4.01 (s, 5H, H¹²), 4.31 (s, 2H, H¹¹), 4.38 (t, J = 6.0 Hz, 2H, H³), 4.69 (s, 2H, H¹⁰), 6.80–6.87 (m, 1H, -ArH), 7.06–7.14 (m, 1H, -ArH), 7.45 (s, 1H, H⁰), 7.53–7.61 (m, 2H, -ArH); 13 C NMR (CDCl₃, 75 MHz) δ 26.2, 26.6, 28.8, 28.9, 29.5, 30.3, 40.7, 50.0, 66.5, 68.7, 69.1, 75.4, 110.1, 117.3, 118.5, 123.6, 124.5, 131.7, 138.6, 149.4, 158.3, 182.7; HRMS calcd for C_{28} H₃₀FeN₄O₂ [M]+ $^{+}$

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)octyl]-5-fluoro-1H-indole-2,3-dione (12n): yield 88%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.26–1.33 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.66 (s, 2H, H²), 1.91 (s, 2H, H²), 3.68 (t, J = 6.9 Hz, 2H, H¹), 4.06 (s, 5H, H¹²), 4.28 (s, 2H, H¹¹), 4.33 (t, J = 6.9 Hz, 2H, H³), 4.72 (s, 2H, H¹⁰), 6.81–6.86 (m, 1H, -ArH), 7.27–7.29 (m, 2H, -ArH), 7.46 (s, 1H, H⁰); 13 C NMR (CDCl₃, 75 MHz) δ 26.5, 27.0, 28.6, 28.8, 29.6, 30.0, 40.1, 50.1, 65.6, 68.6, 69.5, 75.4, 111.2, 112.2, 124.4, 124.7, 135.5, 136.8, 146.9, 157.8, 159.5, 182.9; HRMS calcd for C₂₈H₂₉FFeN₄O₂ [M]⁺ m/z 528.1594, found 528.1587. Anal. Calcd: C, 63.64; H, 5.49; N, 10.61. Found: C, 63.59; H, 5.43; N, 10.75

5-Chloro-1-[2-(4-ferrocenyl-[1,2,3]triazol-1-yl)octyl]-1H-indole-2,3-dione (12o): yield 89%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.23–1.38 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.64 (s, 2H, H²), 1.89 (s, 2H, H²), 3.69 (t, J = 6.6 Hz, 2H, H¹), 4.07 (s, 5H, H¹²), 4.27 (s, 2H, H¹¹), 4.35 (t, J = 6.6 Hz, 2H, H³), 4.70 (s, 2H, H¹⁰), 6.88–6.95 (m, 1H, −ArH), 7.31–7.37 (m, 2H, −ArH), 7.62 (s, 1H, H⁰); 13 C NMR (CDCl₃, 75 MHz) δ 26.5, 27.8, 28.2, 28.7, 29.4, 30.3, 40.1, 50.7, 66.2, 68.5, 69.7, 75.2, 110.2, 117.6, 121.7, 124.8, 135.3, 138.1, 145.6, 149.6, 158.9, 182.8; HRMS calcd for C₂₈H₂₉ClFeN₄O₂ [M]⁺ m/z 544.1047, found 544.1041. Anal. Calcd: C, 61.76; H, 5.33; N, 10.29. Found: C, 61.65; H, 5.24; N, 10.40.

1-[2-(4-Ferrocenyl-[1,2,3]triazol-1-yl)octyl]-5-methyl-1H-indole-2,3-dione (12p): yield 75%; dark brown oil; 1 H NMR (CDCl₃, 300 MHz) δ 1.25–1.37 (m, 8H, H³ + H⁴ + H⁵ + H⁶), 1.61 (s, 2H, H²), 1.93 (s, 2H, H⁷), 2.24 (s, 3H, -CH₃), 3.70 (t, J = 6.0 Hz, 2H, H¹), 4.08 (s, 5H, H¹²), 4.21 (s, 2H, H¹¹), 4.33 (t, J = 6.0 Hz, 2H, H⁸), 4.68 (s, 2H, H¹⁰), 6.55 (d, J = 7.5 Hz, 1H, -ArH), 7.30–7.39 (m, 2H, -ArH), 7.46 (s, 1H, H⁹); 13 C NMR (CDCl₃, 75 MHz) δ 21.3, 26.3, 27.8, 28.4, 28.9, 29.5, 36.6, 40.8, 50.9, 66.0, 68.4, 69.5, 75.2, 110.6, 117.8, 121.1, 124.6, 132.8, 138.3, 146.4, 149.9, 158.7, 182.6; HRMS calcd for C₂₉H₃₂FeN₄O₂ [M + H]⁺ m/z 525.0495, found 525.0488. Anal. Calcd: C, 66.41; H, 6.11; N, 10.69. Found: C, 66.34; H, 6.02; N, 10.73.

Bacterial Strains and Growth Conditions. *M. tuberculosis* mc^27000 , an unmarked version⁴⁰ of mc^26230 , was grown at 37 °C in Sauton's medium supplemented with $109~\mu M$ of pantothenic acid.

Drug Susceptibility Testing. The susceptibility of M. tuberculosis $\rm mc^27000$ to the various compounds was determined as reported previously. In brief, Middlebrook 7H10 solid medium containing oleic-albumin-dextrose-catalase enrichment (OADC) and $109~\mu\rm M$ of pantothenic acid was supplemented with increasing concentrations of the chemical analogues. Serial 10-fold dilutions of each actively growing culture were plated and incubated at 37 °C for 2–3 weeks. The MIC was defined as the minimum concentration required to inhibit 99% of the growth. All of the compounds were dissolved in DMSO to carry out the inhibition assay.

ASSOCIATED CONTENT

S Supporting Information

Figures giving ¹H and ¹³C NMR spectra for the representative compounds 2a,b, 8b,j,n, 10a,e,i, 11j, and 12a,n and a CIF file giving crystallographic data for 2b. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail for V.K.: vipan org@yahoo.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial assistance from Department of Science and Technology, New Delhi, India, under Innovation in Science Pursuit for Inspired Research (INSPIRE) Fellowship (K.K.) is gratefully acknowledged. We thank Prof. W. R. Jacobs for the generous gift of *M. tuberculosis* mc²7000, which has been approved for use in Biosafety Level 2 containment by the Institutional Biosafety Committees of the Albert Einstein College of Medicine and the University Montpellier 2. The Fonds Européen de Développement Régional (FEDER), CNRS, Région Nord Pas-de-Calais, and Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche are acknowledged for funding of X-ray diffractometers.

ABBREVIATIONS

TB, tuberculosis; MDR, multidrug resistant; XDR, extensively drug resistant; MIC, minimal inhibitory concentration; FQ, ferroquine; CQ, chloroquine

REFERENCES

- (1) Zink, A. R.; Sola, C.; Reischl, U.; Grabner, W.; Rastogi, N.; Wolf, H.; Nerlich, A. G. J. Clin. Microbiol. 2003, 41, 359.
- (2) Global Tuberculosis Report 2012; World Health Organisation: Geneva, Switzerland, 2012; http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf.
- (3) Tuberculosis; Fact Sheet no. 104; World Health Organisation: Geneva, Switzerland, 2013; http://www.who.int/mediacentre/factsheets/fs104/en/index.html.
- (4) Zhang, Y. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 529.
- (5) Jassal, M. S.; Bishai, W. R. Clin. Infect. Dis. 2010, 50, S156.
- (6) Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. *Nature* **2011**, *469*, 483.
- (7) FDA News Release; United States Food and Drug Administration: Silver Spring, MD, Dec 31, 2012; www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm333695.html.
- (8) (a) Biot, C.; Castro, W.; Botte, C. Y.; Navarro, M. Dalton Trans. 2012, 41, 6335. (b) Hartinger, C. G.; Dyson, P. J. Chem. Soc. Rev. 2009, 38, 391. (c) Gasser, G.; Metzler-Nolte, N. Curr. Opin. Chem. Biol. 2012, 16, 84. (d) Bioorganometallics: Biomolecules, Labeling, Medicine; Jaouen, G., Ed.; Wiley-VCH: Weinheim, Germany, 2006.
- (9) (a) Top, S.; Vessières, A.; Leclerq, G.; Quivy, J.; Tang, J.; Vaissermann, J.; Huché, M.; Jaouen, G. Chem. Eur. J. 2003, 9, 5223. (b) Hillard, E.; Vessières, A.; Thouin, L.; Jaouen, G.; Amatore, C. Angew. Chem., Int. Ed. 2006, 45, 285. (c) Payen, O.; Top, S.; Vessières, A.; Brulé, E.; Plamont, M. A.; McGlinchey, M. J.; Müller-Bunz, H.; Jaouen, G. J. Med. Chem. 2008, 51, 1791.
- (10) (a) Dubar, F.; Slomianny, C.; Khalife, J.; Dive, D.; Kalamou, H.; Guérardel, Y.; Grellier, P.; Biot, C. *Angew. Chem., Int. Ed.* **2013**, *52*, 7690. (b) Dubar, F.; Bohic, S.; Slomianny, C.; Morin, J. C.; Thomas, P.; Kalamou, H.; Guérardel, Y.; Cloetens, P.; Khalife, J.; Biot, C. *Chem. Commun.* **2012**, *48*, 910.
- (11) Vausselin, T.; Calland, N.; Belouzard, S.; Descamps, V.; Douam, F.; Helle, F.; François, C.; Lavillette, D.; Duverlie, G.; Wahid, A.; Fénéant, L.; Cocquerel, L.; Guérardel, Y.; Wychowski, C.; Biot, C.; Dubuisson, J. *Hepatology* **2013**, *58*, 86.
- (12) Bal, T. R.; Anand, B.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2005, 15, 4451.
- (13) Jiang, T.; Kuhen, K. L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Tuntland, T.; Zhang, K.; Karanewsky, D.; He, Y. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 2109.
- (14) Tripathy, R.; Reiboldt, A.; Messina, P. A.; Iqbal, M.; Singh, J.; Bacon, E. R.; Angeles, T. S.; Yang, S. X.; Albom, M. S.; Robinson, C.;

Chang, H.; Ruggeri, B. A.; Mallamo, J. P. Bioorg. Med. Chem. Lett. 2006, 16, 2158.

- (15) Cane, A.; Tournaire, M. C.; Barritault, D.; Crumeyrolle-Arias, M. Biochem. Biophys. Res. Commun. 2000, 276, 379.
- (16) Silveira, V. Ch.; Luz, J. S.; Oliveira, C. C.; Graziani, I.; Ciriolo, M. R.; Costa-Ferreira, A. M. J. Inorg. Biochem. 2008, 102, 1090.
- (17) Raj, A. A.; Raghunathan, R.; Sridevikumaria, M. R.; Raman, N. Bioorg. Med. Chem. 2003, 11, 407.
- (18) Rodriguez-Arguelles, M. C.; Mosquera-Vazaquez, S.; Touron-Touceda, P.; Sanmartin-Matalobos, J.; Garcia-Deibe, A. M.; Belicchi-Ferraris, M.; Pelosi, G.; Pelizzi, C.; Zani, F. *J. Inorg. Biochem.* **2007**, *101*, 138.
- (19) Maskell, L.; Blanche, E. A.; Colucci, M. A.; Whatmore, J. L.; Moody, Ch. J. Bioorg. Med. Chem. Lett. 2007, 17, 1575.
- (20) Verma, M.; Pandyea, S. N.; Singh, K. N.; Stables, J. P. Acta Pharm. 2004, 54, 49.
- (21) Igosheva, N.; Lorz, C.; O'Conner, E.; Glover, V.; Mehmet, H. Neurochem. Int. **2005**, 47, 216.
- (22) Chen, L. R.; Wang, Y. C.; Lin, Y. W.; Chou, S. Y.; Chen, S. F.; Liu, L. T.; Wu, Y. T.; Kuo, C. J.; Chen, T. S. S.; Juang, S. H. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 3058.
- (23) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104.
- (24) Fensome, A.; Adams, W. R.; Adams, A. L.; Berrodin, T. J.; Cohen, J.; Huselton, C.; Illenberger, A.; Karen, J. C.; Hudak, V. A.; Marella, M. A.; Melenski, E. G.; McComas, C. C.; Mugford, C. A.; Slayeden, O. D.; Yudt, M.; Zhang, Z.; Zhang, P.; Zhu, Y.; Winneker, R. C.; Wrobel, J. E. *J. Med. Chem.* **2008**, *51*, 1861.
- (25) Kumari, G.; Nutan; Modi, M.; Gupta, S. K.; Singh, R. K. Eur. J. Med. Chem. 2011, 46, 1181.
- (26) (a) Lo, M. M. C.; Newmann, C. S.; Nagayams, S.; Perlstein, E. O.; Schreiber, S. L. *J. Am. Chem. Soc.* **2004**, *126*, 16077. (b) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qui, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. *J. Am. Chem. Soc.* **2005**, *127*, 10130.
- (27) Vintonyak, V. V.; Warburg, K.; Kruse, H.; Grimme, S.; Hubel, K.; Rauth, D.; Waldmann, H. Angew. Chem., Int. Ed. 2010, 49, 5902.
- (28) Yeung, B. K. S.; Zou, B.; Rottmann, M.; Lakshminarayana, S. B.; Ang, S. H.; Leong, S. Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E. K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E. A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T. T.; Keller, T. H. J. Med. Chem. 2010, 53, 5155.
- (29) (a) Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zhou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; Gonzalez-Paez, G. E.; Lakshminarayana, S. B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H. P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.; Diagana, T. T. Science 2010, 329, 1175. (b) Ang, S. H.; Crastel, P.; Leong, S. Y.; Tan, L. J.; Wong, W. L. J.; Yeung, B. K. S.; Zou, B. (Novartis AG) US Patent 2009/0275560 A1, 2009. (c) Liu, J. J.; Zhang, Z. (Hoffmann La Roche AG) spiroindolinone derivatives; PCT Int. Appl. WO 2008/055812, 2008.
- (30) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stukey, J.; Krajewski, K.; Roller, P. P.; Wang, S. *J. Med. Chem.* **2006**, *49*, 3432.

 (31) (a) Rajopadhyet, M.; Popp, F. D. *J. Med. Chem.* **1988**, *31*, 1001.
- (31) (a) Rajopadnyet, M.; Popp, F. D. J. Med. Chem. 1988, 31, 1001. (b) Zhou, N.; Polozov, A. M.; O'Connell, M.; Burgeson, J.; Yu, P.; Zeller, W.; Zhang, J.; Onua, E.; Ramirez, J.; Palsdottir, G. A.; Halldorsdottir, G. V.; Andresson, T.; Kiselyov, A, S.; Gurney, M.; Singh, J. Bioorg. Med. Chem. Lett. 2010, 20, 2658. (c) Santos, E. L. D.; W, A. J., Jr.; Ribeiro, N. M.; Andrade, H. M. C. J. Mol. Catal. A: Chem. 2008, 295, 18.
- (32) (a) Hou, J.; Liu, X.; Shen, J.; Zhao, G.; Wang, P. G. Expert Opin. Drug Discov. 2012, 7, 489. (b) Beal, D. M.; Jones, L. H. Angew. Chem., Int. Ed. 2012, 51, 6320. (c) He, X. P.; Xie, J.; Tang, Y.; Li, J.; Chen, G. R. Curr. Med. Chem. 2012, 19, 2399. (d) Kumar, K.; Sagar, S.; Esau, L.; Kaur, M.; Kumar, V. Eur. J. Med. Chem. 2012, 58, 153.
- (33) Kumar, K.; Singh, P.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. Dalton Trans. 2012, 41, 5778.

(34) Kumar, K.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. Dalton Trans. 2013, 42, 1492.

- (35) Kumar, K.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. *Organometallics* **2013**, 32, 5713.
- (36) Hans, R. H.; Wiid, I. J. F.; Helden, P. D. V.; Wan, B.; Franzblau, S. G.; Gut, J.; Rosenthal, P. J.; Chibale, K. *Bioorg. Med. Chem. Lett.* **2011**, 21, 2055.
- (37) Singh, P.; Kaur, S.; Kumar, V.; Bedi, P. M. S.; Mahajan, M. P.; Sehar, I.; Pal, H. C.; Saxena, A. K. *Bioorg. Med. Chem. Lett.* **2011**, 21, 3017.
- (38) (a) Wang, C. H.; White, A. R.; Schwartz, S. N.; Alluri, S.; Cattabiani, T. M.; Zhang, L. K.; Chan, T. M.; Buevich, A. V.; Ganguly, A. K. *Tetrahedron* **2012**, *68*, 9750. (b) Vine, K. L.; Locke, J. M.; Ranson, M.; Pyne, S. G.; Bremner, J. B. *Bioorg. Med. Chem. Lett.* **2007**, *15*, 931.
- (39) (a) Garden, S. J.; Torres, J. C.; da Silva, J. F. M.; Pinto, A. C. Synth. Commun. 1998, 28, 1679. (b) Bouhfid, R.; Joly, N.; Massoui, M.; Cecchelli, R.; Lequart, V.; Martin, P.; Essassi, E. M. Heterocycles 2005, 65, 2949. (c) Singh, P.; Sharma, P.; Anand, A.; Bedi, P. M. S.; Kaur, T.; Saxena, A. K.; Kumar, V. Eur. J. Med. Chem. 2012, 55, 455.
- (40) Sambandamurthy, V. K.; Derrick, S. C.; Hsu, T.; Chen, B.; Larsen, M. H.; Jalapathy, K. V.; Chen, M.; Kim, J.; Porcelli, S. A.; Chan, J.; Morris, S. L.; Jacobs, W. R. *Vaccine* **2006**, *24*, 6309.
- (41) Kremer, L.; Douglas, J. D.; Baulard, A. R.; Morehouse, C.; Guy, M. R.; Alland, D.; Dover, L. G.; Lakey, J. H.; Jacobs, W. R., Jr.; Brennan, P. J.; Minnikin, D. E.; Besra, G. S. J. Biol. Chem. 2000, 275, 16857.