Лекция 1 Распределенные вычислительные системы

Курносов Михаил Георгиевич

E-mail: mkurnosov@gmail.com WWW: www.mkurnosov.net

Курс «Параллельные вычислительные технологии» Сибирский государственный университет телекоммуникаций и информатики (г. Новосибирск) Осенний семестр, 2019

Классификация архитектур вычислительных систем (по числу потоков команд и данных)

К	лассификация М. Флинна (М. J. F	lynn, 1966)
	Single instruction stream	Multiple instruction stream
Single data stream	SISD	<u>MISD</u>
Multiple data stream	SIMD	MIMD

- SISD последовательная ВС; одно устройство управления работает с одним потоком инструкций в памяти, выполняя их на последовательном процессоре (работает с одним потоком данных): первые процессоры
- **SIMD** вычислительная систем, в которой множество процессоров выполняют одну инструкцию над своими локальными данными: векторные ВС Cray, NEC; наборы векторных инструкций AVX, AltiVec, NEON SIMD; GPU
- MISD вычислительная система типа "много потоков команд один поток данных": конвейерные ВС (частично) и систолические ВС (systolic arrays, частично)
- **MIMD** совокупность процессорных элементов, работающих со своими локальными потоками команд и данных: вычислительные кластеры, MPP-системы

Классификация архитектур вычислительных систем

(структурно-функциональная – по способу организации оперативной памяти)

Класс 1. Системы с разделяемой процессорами оперативной памятью (shared memory systems)

- Симметричные мультипроцессоры (symmetric multiprocessor, SMP) множество процессоров имеют одинаковые возможности по доступу к разделяемой оперативной памяти и функционируют под управлением одной операционной системы
 - ✓ Относительно простое создание параллельных программ (POSIX threads, OpenMP, ...)
 - ✓ Контроллер памяти узкое место, число процессоров <= 32</p>
- **NUMA-системы** (non-uniform memory architecture) множество процессоров имеют *неодинаковые* возможности по доступу к разделяемой оперативной памяти и функционируют под управлением одной операционной системы
 - ✓ Относительно простое создание параллельных программ (POSIX threads, OpenMP, libnuma, thread affinity, ...)
 - ✓ Контроллер памяти и внутрисистемная шина (Intel QPI, HyperTransport) узкое место, число процессоров <= 128

Классификация архитектур вычислительных систем

(структурно-функциональная – по способу организации оперативной памяти)

Класс 2. Системы с распределенной оперативной памятью (distributed memory systems)

■ Распределенная вычислительная система — совокупность вычислительных узлов (элементарных машин, процессорных элементов), взаимодействующих через коммуникационную сеть (среду); каждый узел имеет свою оперативную память и функционирует под управлением свой операционной системы

- ✓ Вычислительный кластер (computer cluster) распределенная ВС,
 построенная на базе серийно выпускаемого промышленностью оборудования
- ✓ **Массово параллельная система** (massively parallel system, MPP-system) большемасштабная распределенная ВС; как правило, MPP-системы строятся на базе проприетарного (фирменного) оборудования и значительно эффективнее кластерных ВС (системы IBM BlueGene, Cray XK/XC и др.)

К какому классу можно отнести ноутбук на базе двухъядерного процессора Intel Xeon Core i5 6200U?

К какому классу можно отнести два связанных в сеть ноутбука на базе процессора Intel Xeon Core i5 6200U?

Рейтинги мощнейших вычислительных систем

- Суперкомпьютер (суперВС, supercomputer) вычислительная система, обладающая рекордными для текущего уровня развития вычислительной техники, показателями производительности и/или надежности, технико-экономической эффективности
- www.top500.org решение системы линейных алгебраических уравнений
 методом LU-факторизации (High-Performance Linpack, FLOPS Floating-point Operations Per Seconds)
- www.graph500.org алгоритмы на графах (построение графа, обход в ширину, TEPS – Traversed Edges Per Second)
- www.green500.org главный критерий энергоэффективность (объем потребляемой электроэнергии, kW)
- http://top50.supercomputers.ru рейтинг мощнейших вычислительных систем СНГ (тест High-Performance Linpack)
- Как создать свой тест производительности?

Архитектурные свойства высокопроизводительных ВС

Тор500 (#53, июнь 2019)

#	Система	Rmax, PFLOPS	HPCG / Rpeak, %	Уровни коммуникационной среды ВС				
1	Summit IBM Power System AC922 2 414 592 ядер	148.60	1.46	InfiniBand non-blocking fat tree, Mellanox EDR 100G 4 608 узлов (<mark>202 752</mark> ядер POWER9 + 2 211 840 ядер NVIDIA Volta)			X-BUS 2 x POWER9 (22 ядра)	Общая память DDR4 256GB HBM 16GB
2	Sierra IBM Power System S922LC 1 572 480 ядер	94.64	1.43	InfiniBand fat tree, Mellanox EDR 100G 4 320 узлов (190 080 ядер POWER9 + 1 382 400 ядер NVIDIA Volta)			X-BUS 2 x POWER9 (22 ядра)	Общая память DDR4 128GB HBM 16GB
3	Sunway Twilight 10 649 600 ядер	93.0	0.38	Switch network <i>Mellanox</i> 40 стоек (40 960 узлов)	Supernode network fully connected 256 supernodes	Sunway Network <i>PCIe 3.0</i> 40 960 узлов	Network on Chip 4 core groups 260 ядер	Общая память 8 GiB DDR3 1 MPE + 64 CPE (mesh 8x8, RISC)
4	Tianhe-2A MilkWay-2 4 981 760 ядер	61.44		TH Express-2 fat tree 17 792 узлов (Intel Xeon IVB + Matrix-2000)		Intel QPI 2 x Intel Xeon	Общая память 12 ядер Intel Xeon	
6	Piz Daint Cray XC50 387 872 ядер	21.23	1.83	Cray Aries network <i>Dragonfly</i> (3 уровня) 5 272 узлов (Intel Xeon + NVIDIA Tesla P100)		Aries router <i>PCIe 3.0</i> 4 узла	Общая память 12 ядер Intel Xeon Tesla P100	

Архитектурные свойства высокопроизводительных ВС

Тор500 (#53. июнь 2019)

								10р300 (#33, июнь 2019)
#	Система	Rmax, PFLOPS	HPCG / Rpeak, %	Уровни коммуникационной среды ВС				
1	Summit IBM Power System AC922 2 414 592 ядер	148.60	1.46	InfiniBand non-blocking fat tree, Mellanox EDF 4 608 узлов (202 752 ядер POWER9 + 2 211 840 ядер NVIDIA Volta)		на ядро Р9	Общая память DDR4 256GB HBM 16GB	
2	Sierra IBM Power System S922LC 1 572 480 ядер	94.64	1.43	InfiniBand fat tree, Mellanox EDR 100G 4 320 узлов (190 080 ядер POWER9 + 1 382 400 ядер NVIDIA Volta)			на ядро Р9 (22 ядра)	Общая память DDR4 128GB HBM 16GB
3	Sunway Twilight 10 649 600 ядер	93.0	0.38	Switch network <i>Mellanox</i> 40 стоек (40 960 узлов)	Supernode network fully connected 256 supernodes	Sunway Network <i>PCIe 3.0</i> 40 960 узлов	Network on Chip 4 core groups 260 ядер	Общая память 8 GiB DDR3 1 MPE + 64 CPE (mesh 8x8, RISC)
4	Tianhe-2A MilkWay-2 4 981 760 ядер	61.44		TH Express-2 fat tree 17 792 узлов (Intel Xeon IVB + Matrix-2000)			Intel QPI 2 x Intel Xeon	Общая память 12 ядер Intel Xeon
6	Piz Daint Cray XC50 387 872 ядер	21.23	1.83	Dragoi 5	Aries network nfly (3 уровня) 272 узлов н NVIDIA Tesla P10		на ядро Хеог	Общая память 12 ядер Intel Xeon Tesla P100

Архитектурные свойства современных ВС

- Иерархическая организация коммуникационной среды
- Мультиархитектура вычислительных узлов
- Большемасштабность

Системы Тор500 (#46, 2015): 2, 3 уровня иерархии

Nº	6,,,,,,,,,	Коммуникационная среда					
MS	Система	Уровень 1	Уровень 2	Уровень 3			
1	Tianhe-2 MilkWay-2 3 120 000 ядер	TH Express-2 fat tree 16 000 узлов	Intel QPI 2 x Intel Xeon 3 x Xeon Phi	Общая память DDR3 16 ядер Intel Xeon			
2	Titan Cray XK7 560 640 ядер	Cray Gemini <i>3D-тор</i> 18 688 узлов	Общая память DDR3 16 ядер AMD Opteron	No.			
3	Sequoia IBM BlueGene/Q 1 572 864 ядер	5D-тор 98 304 узлов	Общая память DDR3 16 ядер IBM PowerPC A2	N-11/N (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			
8	Hazel Hen Cray XC40 185 088 ядер	Cray Aries <i>Dragonfly</i> 7 712 узлов	Intel QPI 2 x Intel Xeon (NUMA-узел)	Общая память DDR4 12 ядер Intel Xeon			
23	SuperMUC кластер 147 456 ядер	InfiniBand FDR fat tree 3 072 узлов	Intel QPI 2 x Intel Xeon (NUMA-узел)	Общая память DDR 10 ядер Intel Xeon			

Система Cray XK7 Titan (#3 Тор500, июнь 2016)

- **Titan Cray XK7** (MPP-система, https://www.olcf.ornl.gov/titan)
 - вычислительные узлы: 18 688 (NUMA 2 AMD Opteron, 560 640 ядер)
 - \circ коммуникационная сеть: Cray Gemini (3D-тор)
 - гибридная ВС: x86-64 AMD Opteron + NVIDIA GPU
- Internode communications:
 MPI, Shmem, Unified Parallel C,
 Coarray Fortran, Global Arrays, Cray Chapel
- Multithreading: OpenMP, Intel TBB/Cilk
- GPU: NVIDA CUDA, OpenCL, OpenACC, OpenMP 4.0
- Vectorization (SIMD): SSE/AVX

Система Cray XK7 Titan (#3 Тор500, июнь 2016)

- **Titan Cray XK7** (MPP-система, https://www.olcf.ornl.gov/titan)
 - вычислительные узлы: 18 688 (NUMA 2 AMD Opteron, 560 640 ядер)
 - коммуникационная сеть: Cray Gemini (3D-тор)
 - гибридная BC: x86-64 AMD Opteron + NVIDIA GPU
- **Internode communications:** MPI, Shmem, Unified Parallel C, Coarray Fortran, Global Arrays, Cray Chapel
- Multithreading: OpenMP, Intel TBB/Cilk
- GPU: NVIDA CUDA, OpenCL, OpenACC, OpenMP 4.0
- **Vectorization (SIMD): SSE/AVX**

AMD Opteron

Interlagos (16 cores)

PLP - process level parallelism

Гибридные вычислительные узлы и ВС

Коммуникационные сети ВС

- 3a	ад	ачи коммуникационных сетей BC (communication network, interconnect)
l		Реализация обменов информацией между ветвями параллельных программ: односторонние обмены (one-sided, RDMA: put/get), двусторонние (индивидуальные, дифференцированные, point-to-point: send/recv), коллективные операции (collectives: one-to-all broadcast, all-to-one gather/reduce, all-to-all)
l		Реализация обменов служебной информацией: контроль и диагностика состояния вычислительных узлов барьерная синхронизация
[Функционирования сетевых и параллельных файловых систем (доступ к дисковым массивам)
• 7	Тр	ебования к коммуникационной сети
l		Высокая производительность реализации всех видов обменов (двусторонних, коллективных) — адекватность структуры ВС широкому классу параллельных алгоритмов
Į		Масштабируемость (простое увеличение и уменьшение числа ЭМ в системе)
l		Живучесть и отказоустойчивость (функционирование при отказах отдельных подсистем)
[Высокая технико-экономическая эффективность (цена/эффективность)

Виды коммуникационных сетей ВС

- С фиксированной структурой межмашинных связей (direct network)
 - □ Каждый вычислительный узел имеет *сетевой интерфейс* (системное устройство, маршрутизатор) с несколькими портами, через который он *напрямую* соединён с другими узлами
- С динамической структурой (indirect network, switch-based) на базе коммутаторов
 - Каждый вычислительный узел имеет сетевой интерфейс с несколькими портами
 - ☐ Порты интерфейсов подключены к *коммутаторам* (switches), через которые происходит взаимодействие узлов

Выбор структуры коммуникационной сети (топологии)

- **Структура ВС** (структура коммуникационной сети, topology) граф, в котором вершинам соответствуют вычислительные узлы, а ребрам межмашинные связи
- Требования к структуре ВС (графу)
- Минимизация времени выполнения межмашинных обменов и максимизация числа возможных одновременных обменов

 Максимизация вероятности сохранения связности структуры ВС при отказах ЭМ (вершин) и каналов связи (ребер)

Показатели эффективности структуры ВС

- **Диаметр графа** длина максимального из кратчайших путей в графе (характеристика числа транзитных передач между ЭМ, hops)
- **Средний диаметр графа** математическое ожидание расстояния между вершинами при их равновероятном выборе
- Вектор-функция структурной живучести
- Бисекционная пропускная способность (bisection bandwidth) суммарная пропускная способность каналов связи между двумя непересекающимися подмножествами машин системы (для худшего разбиения, минимальное значение)
- **Аппаратная сложность** число простейших коммутаторов (2 x 2, n x n) и каналов связи, необходимых для построения составного коммутатора сети
- **Метрическая сложность** максимальная длина линии связи, требуемая для реализации выбранной топологии в трехмерном пространстве

A) бисекционная пропускная способность 5B) бисекционная пропускная способность 3

Коммутатор Клоза

Структуры ВС с прямым соединением узлов

- *п*-мерной регулярной структуре каждая ЭМ связана с 2*n* соседями
- Тороидальные структуры
 - □ Кольцо (1D-тор), тороидальная решетка (2D-тор), тороидальный куб (3D-тор)
 - □ Cray XK7 Titan (3D-тор), IBM BlueGene/Q (5D-тор), Fijitsu K Computer (6D-тор)
- Гиперкубические структуры
 - □ Линейка (1D-гиперкуб), решетка (2D-гиперкуб), 3D-гиперкуб
 - Intel Paragon, ASCI Red (2D-куб), SGI Origin 2000 (3D-куб), МП-Х-Ү (РФЯЦ-ВНИИЭФ)

Гиперкубы: 1D, 2D, 3D

Структуры ВС с прямым соединением узлов (2)

- Dragonfly
- HyperX/Hamming Graph
- D_n -графы, циркулянтные структуры (системы МИКРОС)
- Графы Кауца (Kautz network): система SiCortex SC5832 972 узла, диаметр 6, линков 2916
- Data Vortex Interconnect

- ...

Структуры ВС на базе коммутаторов (indirect nets)

Деревья

- Толстое дерево (fat tree)
- **■** *k*-арные *n*-деревья (*k*-ary *n*-tree)
- Extended generalized fat tree (XGFT)

Fat tree (толстое дерево)

- Топология «толстое дерево» (fat tree)

 Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing //
 IEEE Transactions on Computers, Vol. 34, No. 10, 1985
- Структура на базе коммутаторов (indirect network)
- Constant bisectional bandwidth (CBB)
- Сеть строится из коммутаторов с одинаковым числом R портов (линков, constant radix)
- Линки (каналы) коммутаторов уровня *i* производительнее линков коммутаторов уровня *i* 1 в *R* раз (по числу портов)
- Пример: сети на базе InfiniBand, IBM RoadRunner

Fat tree (толстое дерево)

- Одинаковое число портов в коммутаторах
- Линки имеют разную производительность

- Одинаковое число портов в коммутаторах
- Линки имеют <u>одинаковую</u> производительность

Fat tree (толстое дерево)

- Одинаковое число портов в коммутаторах
- Линки имеют <u>разную</u> производительность

- Одинаковое число портов в коммутаторах
- Линки имеют одинаковую производительность

Что осталось "за кадром"

- Выбор структуры для проблемно-ориентированной ВС (для определенного класса задач)
- **Алгоритмы маршрутизации** (как доставить сообщение от узла A до узла B? Как учитывать загрузку каналов, отказы узлов и линков?)
- Вопросы технико-экономической эффективности (учет длин кабелей, числа коммутаторов)

Вычислительные кластеры (computer cluster)

- Вычислительные кластеры строятся на базе свободно доступных компонентов
- Вычислительные узлы: 2/4-процессорные узлы, 1 8 GiB оперативной памяти на ядро (поток)
- Коммуникационная сеть (сервисная NFS/DNS/NIS и для обмена сообщениями MPI/SHMEM)
- Подсистема хранения данных (дисковый массивы, параллельные и сетевые файловые системы)
- Система бесперебойного электропитания
- Система охлаждения
- Программное обеспечение: GNU/Linux (NFS, NIS, DNS, ...), MPI (MPICH2, Open MPI), TORQUE/SLURM

Программное обеспечение вычислительных кластеров

Параллельные вычисления – введение

Разработка параллельного алгоритма

- Поиск параллелизма в известном последовательном алгоритме, его модификация или создание нового алгоритма: определения уровня распараллеливания уровень инструкций (мелкозернистый параллелизм, fine grained), потоков/процессов (крупнозернистый параллелизм, coarse grained)
- Выбор класса целевой ВС: с общей или распределенной памятью
- Разработка алгоритма в терминах одной из моделей программирования целевой ВС:
 - □ Системы с общей памятью (SMP/NUMA): fork/join model, CSP, Actor model, передача сообщений
 - □ Системы с распределенной памятью (кластеры, MPP): явная передача сообщений (message passing: односторонние/двусторонние/коллективные обмены), BSP Bulk synchronous parallel, MapReduce
- Параллельная версия самого эффективного последовательного алгоритма решения задачи необязательно будет самой эффективной параллельной реализацией

Реализация параллельного алгоритма (программы)

- Выбор инструментальных средств (MPI, OpenSHMEM; OpenMP, POSIX Threads, Cilk)
- Распределение подзадач между процессорами (task mapping, load balancing)
- Организация взаимодействия подзадач (message passing, shared data structures)
- Учет архитектуры целевой вычислительной системы
- Запуск, измерение и анализ показателей эффективности параллельной программы
- Оптимизация программы

Показатели эффективности параллельных алгоритмов

- Коэффициент ускорения (Speedup)
- Коэффициент эффективности (Efficiency)
- Коэффициент накладных расходов
- Показатель равномерности загруженности параллельных ветвей (процессов, потоков)

- Введем обозначения:
 - \square T(n) время выполнения последовательной программы (sequential program)
 - \square $T_p(n)$ время выполнения параллельной программы (parallel program) на p процессорах
- Коэффициент $S_p(n)$ ускорения параллельной программ (Speedup):

$$S_p(n) = \frac{T(n)}{T_p(n)}$$

- Коэффициент ускорения $S_p(n)$ показывает во сколько раз параллельная программа выполняется на p процессорах быстрее последовательной программы при обработке одних и тех же входных данных размера n
- Как правило

$$S_p(n) \le p$$

- Введем обозначения:
 - \square T(n) время выполнения последовательной программы (sequential program)
 - \square $T_p(n)$ время выполнения параллельной программы (parallel program) на p процессорах
- Коэффициент $S_p(n)$ ускорения параллельной программ (Speedup):

$$S_p(n) = \frac{T(n)}{T_p(n)}$$

Цель распараллеливания – достичь линейного ускорения на максимально большом числе процессоров

$$\mathcal{S}_p(n)pprox p$$
 или $\mathcal{S}_p(n)=\Omega(p)$ при $p o\infty$

- Какое время брать за время выполнения последовательной программы?
 - Время лучшего известного алгоритма (в смысле вычислительной сложности)?
 - Время лучшего теоретически возможного алгоритма?
- Что считать временем выполнения ${T}_{p}(n)$ параллельной программы?
 - Среднее время выполнения потоков программы?
 - Время выполнения потока, завершившего работу первым?
 - Время выполнения потока, завершившего работу последним?

- Какое время брать за время выполнения последовательной программы?
 - Время лучшего известного алгоритма или время алгоритма, который подвергается распараллеливанию
- Что считать временем выполнения ${T}_{p}(n)$ параллельной программы?
 - Время выполнения потока, завершившего работу последним

Коэффициент относительного ускорения (Rel. speedup)

$$S_{Relative}(k, p, n) = \frac{T_k(n)}{T_p(n)}$$

■ Коэффициент эффективности (Efficiency) параллельной программы

$$E_p(n) = \frac{S_p(n)}{p} = \frac{T(n)}{pT_p(n)} \in [0, 1]$$

■ Коэффициент накладных расходов (Overhead)

$$\varepsilon(p,n) = \frac{T_{Sync}(p,n)}{T_{Comp}(p,n)} = \frac{T_{Total}(p,n) - T_{Comp}(p,n)}{T_{Comp}(p,n)}$$

- $lacktriangledown T_{Sync}(p,n)$ время создания, синхронизации и взаимодействия p потоков
- lacktriangle $T_{\it Comp}(p,n)$ время вычислений в каждом из p потоков

Виды масштабируемости программ

- Масштабируемость параллельной программы (scalability) характеристика программы,
 показывающая как изменяются ее показатели производительности при варьировании числа
 параллельных процессов на конкретной ВС
- Строгая/сильная масштабируемость (strong scaling) зависимость коэффициента ускорения от числа p процессов при фиксированном размере n входных данных (n = const)
 - □ Показывает как растут накладные расходы с увеличением р
 - Цель минимизировать время решения задачи фиксированного размера
- Слабая масштабируемость (weak scaling) зависимость коэффициента ускорения параллельной программы от числа процессов при фиксированном размере входных данных на один процессор (n / p = const)
 - Цель решить задачу наибольшего размера на ВС
- Параллельная программа (алгоритм) коэффициент ускорения, которой линейной растет с увеличением р называется линейно масштабируемой или просто масштабируемой (scalable)

- Ускорение программы может расти с увеличением размера входных данных
- Время вычислений превосходит накладные расходы на взаимодействия потоков (управление потоками, синхронизацию, обмен сообщениями, ...)

- Ускорение программы может расти с увеличением размера входных данных
- Время вычислений превосходит накладные расходы на взаимодействия потоков (управление потоками, синхронизацию, обмен сообщениями, ...)

Коэффициент ускорения (Speedup)

Зависимость коэффициента ускорения *S* параллельных алгоритмов Y и Z от количества *p* процессоров

Суперлинейное ускорение (superlinear speedup)

Параллельная программа может характеризоваться **суперлинейным ускорением** (superlinear speedup) — коэффициент ускорения $S_p(n)$ принимает значение больше p

$$S_p(n) > p$$

- <u>Причина</u>: иерархическая организация памяти: Cache RAM Local disk (HDD/SSD) Network storage
- Последовательная программ выполняется на одном процессоре и обрабатывает данные размера n
- Параллельная программа имеет р потоков на р процессорах, каждый поток работает со своей частью данных, большая часть которых может попасть в кеш-память,
 в результате в каждом потоке сокращается время доступа к данным
- Тот же самый эффект можно наблюдать имя два уровня иерархической памяти:
 диск память

Суперлинейное ускорение (superlinear speedup)

Parallel Molecular Dynamic Simulation

MPI, Spatial decomposition; Cluster nodes: 2 x AMD Opteron Dual Core; InfiniBand network

http://phycomp.technion.ac.il/~pavelba/Comp_Phys/Project/Project.html

Равномерность распределения вычислений

- По какому показателю оценивать равномерность времени выполнения потоков/процессов параллельной программы?
- Известно время выполнения потоков $t_0, \, t_1, \, ..., \, t_p$
- Коэффициент V вариации

$$V = \frac{\sigma[t_i]}{\mu[t_i]}$$

Отношение min/max

$$M = \frac{\min\{t_i\}}{\max\{t_i\}}$$

Jain's fairness index

$$f = \frac{\left(\sum_{i=0}^{p-1} t_i\right)^2}{n \sum_{i=0}^{p-1} t_i^2} \in [0, 1]$$

- Пусть имеется последовательная программа с временем выполнения T(n)
- Обозначим:
 - $r \in [0,1]$ часть программы, которая может быть распараллелена (perfectly parallelized)
 - s=1-r часть программы, которая не может быть распараллелена (purely sequential)
- Время выполнения параллельной программы на *р* процессорах (время каждого потока) складывается из последовательной части *s* и параллельной *r*:

$$T_p(n) = T(n)s + \frac{T(n)}{p}r$$

Вычислим значение коэффициент ускорения (по определению)

$$S_p(n) = \frac{T(n)}{T_p(n)} = \frac{T(n)}{T(n)s + \frac{T(n)}{p}r} = \frac{1}{s + \frac{r}{p}} = \frac{1}{(1 - r) + \frac{r}{p}}$$

■ Полученная формула по значениям *r* и *s* позволяет оценить максимальное ускорение

- Пусть имеется последовательная программа с временем выполнения T(n)
- Обозначим:
 - $r \in [0,1]$ часть программы, которая может быть распараллелена (perfectly parallelized)
 - s=1-r часть программы, которая не может быть распараллелена (purely sequential)
- Закон Дж. Амдала (Gene Amdahl, 1967) [1]:

Максимальное ускорение S_p программы на p процессорах равняется

$$S_{p} = \frac{1}{(1-r) + \frac{r}{p}}$$

$$S_{\infty} = \lim_{p \to \infty} S_{p} = \lim_{p \to \infty} \frac{1}{(1-r) + \frac{r}{p}} = \frac{1}{1-r} = \frac{1}{s}$$

Amdahl Gene. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities // AFIPS Conference Proceedings, 1967, pp. 483-485, http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Зависимость коэффициента S_p ускорения параллельной программы от количества p процессоров

Допущения закона Дж. Амдала (Amdahl's law)

- Последовательный алгоритм является наиболее оптимальным способом решения задачи
- Возможны ситуации когда параллельная программа (алгоритм) эффективнее решает задачу (может эффективнее использовать кеш-память, конвейер, SIMD-инструкции, ...)
- Время выполнения параллельной программы оценивается через время выполнения последовательной, однако потоки параллельной программы могут выполнятся эффективнее

$$T_p(n) = T(n)s + rac{T(n)}{p}r$$
, на практике возможна ситуация $rac{T(n)}{p} > T_p(n)$

- Ускорение $S_p(n)$ оценивается для фиксированного размера n данных при любых значениях p
- В реальности при увеличении числа используемых процессоров размер *п* входных данных также увеличивают, так как может быть доступно больше памяти

■ На что потратить ресурсы — на увеличение доли *r* параллельной части в программе или увеличение числа процессоров, на которых запускается программа?

Зависимость времени $T_p(n)$ выполнения параллельной программы от количества p процессоров и доли r распараллеленного кода (время в % от времени $T_1(n)$)

■ На что потратить ресурсы — на увеличение доли *r* параллельной части в программе или увеличение числа процессоров, на которых запускается программа?

Увеличили число процессоров с 2-х до 4-х (программу не меняли) Время выполнения сократилось с 85% до 77,5%

Зависимость времени $T_p(n)$ выполнения параллельной программы от количества p процессоров и доли r распараллеленного кода (время в % от времени $T_1(n)$)

■ На что потратить ресурсы — на увеличение доли *r* параллельной части в программе или увеличение числа процессоров, на которых запускается программа?

Зависимость времени $T_p(n)$ выполнения параллельной программы от количества p процессоров и доли r распараллеленного кода (время в % от времени $T_1(n)$)

Закон Густафсона-Барсиса

- Пусть имеется последовательная программа с временем выполнения T(n)
- Обозначим $s \in [0,1]$ часть параллельной программы, которая выполняется последовательно (purely sequential)
- Закон Густафсона-Барсиса (Gustafson—Barsis' law) [1]:

Масштабируемое ускорение S_p программы на p процессорах равняется

$$S_p = p - s(p-1)$$

■ **Обоснование:** пусть *a* — время последовательной части, *b* — время параллельной части

$$T_p(n)=a+b, \quad T(n)=a+pb$$

$$s=a/(a+b), \quad S_p(n)=s+p(1-s)=p-s(p-1)$$

- Время выполнения последовательной программы выражается через время выполнения параллельной
- Reevaluating Amdahl's Law, John L. Gustafson, Communications of the ACM 31(5), 1988. pp. 532-533 // http://www.scl.ameslab.gov/Publications/Gus/AmdahlsLaw/Amdahls.html

Литература

- Хорошевский В.Г. **Архитектура вычислительных систем**. М.: МГТУ им. Н.Э. Баумана, 2008. 520 с.
- Корнеев В.В. Вычислительные системы. М.: Гелиос АРВ, 2004. 512 с.
- Степаненко С.А. **Мультипроцессорные среды суперЭВМ. Масштабирование эффективности**. М.: ФИЗМАТЛИТ, 2016. 312 с.
- Эндрюс Г. Основы многопоточного, параллельного и распределенного программирования. М.: Вильямс, 2003.