

FCC Part 15C Test Report

FCC ID: 2AHI7YK03

Product Name:	Smart Scooter
Trademark:	YOKE
Model Name :	YK03 YK01, YK02.
Prepared For :	YOKE ELECTRONICS (HK) LIMITED
Address :	UNIT E, 15/F, CHEUK NANG PLAZA 250 HENNESSY ROAD, WANCHAI, HONG KONG
Prepared By:	Shenzhen BCTC Technology Co., Ltd.
Address :	No.101,Yousong Road,Longhua New District, Shenzhen,China
Test Date:	Jan. 27 - Feb. 03, 2016
Date of Report :	Feb. 03, 2016
Report No.:	BCTC-151215232

VERIFICATION OF COMPLIANCE

Applicant's name: YOKE ELECTRONICS (HK) LIMITED

Address:	UNIT E, 15/F, CHEUK NANG PLAZA 250 HENNESSY ROAD, WANCHAI, HONG KONG				
Manufacture's Name:	YOKE ELECTRONICS (HK) LIMITED				
Address:	UNIT E, 15/F, CHEUK NANG PLAZA 250 HENNESSY ROAD, WANCHAI, HONG KONG				
Product description					
Product name:	Smart Scooter				
Trademark:	YOKE				
Model Name:	YK03				
Test procedure	FCC Part15.249				
Standards	ANSI C63.10-2013				
	s been tested by BCTC, and the test results show that the n compliance with the FCC requirements. And it is applicable only n the report.				
·	ced except in full, without the written approval of BCTC, this rised by BCTC, personal only, and shall be noted in the revision of				
Test Result	Pass				
Testing Engineer :	Frie Yang				
	(Eric Yang)				
Technical Manager :	Sophie Lu				
	(Sophia Lee)				
Authorized Signatory:	(Carson. Zhang)				
	(Carson, Zhany)				

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	5
1.2 MEASUREMENT UNCERTAINTY	5
2 . GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 DESCRIPTION OF TEST MODES	7
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	8
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 8
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	8
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	9
3 . EMC EMISSION TEST	10
3.1 CONDUCTED EMISSION MEASUREMENT	10
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	10
3.1.2 TEST PROCEDURE 3.1.3 DEVIATION FROM TEST STANDARD	11 11
3.1.4 TEST SETUP	11
3.1.5 EUT OPERATING CONDITIONS	11
3.1.6 TEST RESULTS	12
3.2 RADIATED EMISSION MEASUREMENT	14
3.2.1 RADIATED EMISSION LIMITS	14
3.2.2 TEST PROCEDURE 3.2.3 DEVIATION FROM TEST STANDARD	15 15
3.2.4 TEST SETUP	16
3.2.5 EUT OPERATING CONDITIONS	17
3.2.6 TEST RESULTS	18
4 . BANDWIDTH TEST	23
4.1 APPLIED PROCEDURES / LIMIT	23
4.1.1 TEST PROCEDURE	23
4.1.2 DEVIATION FROM STANDARD	23
4.1.3 TEST SETUP 4.1.4 EUT OPERATION CONDITIONS	23 23
4.1.5 TEST RESULTS	24
5 . 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	31
5.1 DEVIATION FROM STANDARD	32
5.2 TEST SETUP	32
5.3 EUT OPERATION CONDITIONS	32

Shenzhen BCTC Technology Co., Ltd. Report No.: BCTC-151215232

Table of Contents	Page
5.4 TEST RESULTS	32
6 . ANTENNA REQUIREMENT	34
6.1 STANDARD REQUIREMENT	34
6.2 EUT ANTENNA	34
7 . EUT TEST PHOTO	35
8 . EUT PHOTO	37

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.249) , Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.249	Fundamental &Radiated Spurious Emission Measurement	PASS		
15.249	Bandwidth	PASS		
15.205	Band Edge Emission	PASS		
15.203	Antenna Requirement	PASS		

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACILITY

Shenzhen BCTC Technology Co., Ltd.

Add.:No.101, Yousong Road, Longhua New District, Shenzhen, China

FCC Registration No.:187086

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Scooter			
Trade Name	YOKE			
Model Name	YK03			
Serial Model	YK01, YK02.			
Model Difference	All the same, Only mo	del name is different.		
Product Description	Operation Frequency: 2402~2480 MHz Modulation Type: GFSK,PI/4 DPSK,8DPSK Bit Rate of Transmitter 1M/2M/3Mbps Number Of Channel 79 CH Antenna Designation: Please see Note 3. Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.			
Channel List	Please refer to the Note 2.			
Adapter	Model: 420020 AC Power Input: 100-240V~ 50/60Hz 1.2A Output: 42V=== 2.0A			
Battery	DC 36V			
Connecting I/O Port(s)	Please refer to the User's Manual			
hardware version				
Software version				
Serial number				

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

	Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	
03	2405	30	2432	57	2459	
04	2406	31	2433	58	2460	
05	2407	32	2434	59	2461	
06	2408	33	2435	60	2462	
07	2409	34	2436	61	2463	
08	2410	35	2437	62	2464	

Shenzhen BCTC Technology Co., Ltd. Report No.: BCTC-151215232

09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3

Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Gain (dBi)	NOTE
1	N/A	N/A	PCB Antenna	0	

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type	
Mode 1	CH00		
Mode 2	CH39	GFSK,PI/4 DPSK,8DPSK	
Mode 3	CH78	DF3K,0DF3K	
Mode 4	Link mode(conducted emission and Radiated emission)		

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) Fully-charged battery is used during the test

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Shenzhen BCTC Technology Co., Ltd.

Frequency	2402 MHz	2441 MHz	2480 MHz
Channel Low		Middle	High

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

E-1 EUT

Conducted Emission Test

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Smart Scooter	YOKE	YK03	N/A	EUT
E-2	Adapter	N/A	420020	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C1	NO	NO	1.0M	DC cable unshielded

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Report No.: BCTC-151215232

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conduction Test equipment

3	idetion rest equip						
Item	Kind of	Manufactu	Type No.	Serial No.	Last	Calibrated	Calibratio
пеш	Equipment	rer	Type No.	Serial No.	calibration	until	n period
1	Test Receiver	R&S	ESCI	1166.5950K 03-101165- ha	2015.06.06	2016.06.05	1 year
2	LISN	R&S	NSLK81 26	812646 6	2015.08.24	2016.08.23	1 year
3	LISN	R&S	NSLK81 26	812648 7	2015.08.24	2016.08.23	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	620026441 7	2015.06.07	2016.06.06	1 year
5	RF cables	R&S	R204	R20X	2015.07.06	2016.07.05	1 year

Radiation test, Band-edge test and 20db bandwith test quipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibratio n period
1	Spectrum Analyzer	Agilent	E4407B	MY4510804 0	2015.07.06	2016.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2015.06.07	2016.06.06	1 year
3	Bilog Antenna	R&S	VULB 9168	VULB91 68-438	2015.07.06	2016.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	620026441 6	2015.06.07	2016.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2015.06.07	2016.06.06	1 year
6	Horn Antenna	R&S	HF906	10027	2015.07.06	2016.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2015.07.06	2016.07.05	1 year
8	Amplifier	R&S	BBV9743	9743-01 9	2015.08.25	2016.08.24	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07	1 year
10	RF cables	R&S	R203	R20X	2015.07.06	2016.07.05	1 year
11	Antenna connector	Florida RFLa bs	Lab-Fle	RF 01#	2015.07.06	2016.07.05	1 year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	Class A (dBuV)		Class B (dBuV)		Ctondord
FREQUENCY (MHz)	Quasi-peak	Average	Quas -peak	Average	Standard
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

note: 1.5 mpport units were connected to second LISM.

2.8 oth of LISMs (AMM) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V and AC 240V, the worst voltage was AC 120V and the data recording in the report.

3.1.6 TEST RESULTS

EUT:	Smart Scooter	Model Name :	YK03
Temperature :	25 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	AC120V from Adapter	Test Mode:	Mode 4

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Detector Type
0.1900	38.36	10.06	48.42	64.03	-15.61	QP
0.1900	30.10	10.06	40.16	54.03	-13.87	AVG
0.3899	35.30	10.10	45.40	58.06	-12.66	QP
0.3899	19.55	10.10	29.65	48.06	-18.41	AVG
0.6660	35.79	10.13	45.92	56.00	-10.08	QP
0.6660	21.07	10.13	31.20	46.00	-14.80	AVG
1.0380	36.07	10.17	46.24	56.00	-9.76	QP
1.0380	20.90	10.17	31.07	46.00	-14.93	AVG
1.6340	36.66	10.18	46.84	56.00	-9.16	QP
1.6340	23.54	10.18	33.72	46.00	-12.28	AVG
29.7620	36.64	10.22	46.86	60.00	-13.14	QP
29.7620	27.60	10.22	37.82	50.00	-12.18	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Report No.: BCTC-151215232

EUT:	Smart Scooter	Model Name :	YK03
Temperature :	25 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	N
Test Voltage :	AC120V from Adapter	Test Mode:	Mode 4

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Detector Type
0.1819	38.72	10.06	48.78	64.39	-15.61	QP
0.1819	28.47	10.06	38.53	54.39	-15.86	AVG
0.3860	36.63	10.10	46.73	58.15	-11.42	QP
0.3860	26.80	10.10	36.90	48.15	-11.25	AVG
0.7100	37.23	10.14	47.37	56.00	-8.63	QP
0.7100	22.70	10.14	32.84	46.00	-13.16	AVG
0.8420	37.34	10.15	47.49	56.00	-8.51	QP
0.8420	22.97	10.15	33.12	46.00	-12.88	AVG
1.6180	37.93	10.18	48.11	56.00	-7.89	QP
1.6180	25.34	10.18	35.52	46.00	-10.48	AVG
28.2340	37.42	10.21	47.63	60.00	-12.37	QP
28.2340	26.53	10.21	36.74	50.00	-13.26	AVG

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

Report No.: BCTC-151215232

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

DC TOTIOWCU.		
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

EDEOLIENCY (MILE)	Class B (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted	1 MHz / 1 MHz for Dook 1 MHz / 10Hz for Average		
band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.1m; above 1GHz, the height was 0.1m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

Shenzhen BCTC Technology Co., Ltd.

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS

Radiated Spurious Emission (Below 30MHz)

EUT:	Smart Scooter	Model Name :	YK03
Temperature :	25 ℃	Relative Humidity:	55%
Pressure :	1010 hPa	Polarization :	
Test Voltage :	DC 36V		
Test Mode :	TX		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Radiated Spurious Emission (Between 30MHz – 1GHz)

EUT:	Smart Scooter	Model Name :	YK03
Temperature :	25 ℃	Relative Humidity:	55%
Pressure:	1010 hPa	Polarization :	Horizontal
Test Voltage :	By Battery		
Test Mode : (Worst)	Mode 4		

Shenzhen BCTC Technology Co., Ltd.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
37.0248	40.75	-8.68	32.07	40.00	-7.93	QP
55.8046	45.27	-11.19	34.08	40.00	-5.92	QP
66.2661	47.86	-13.03	34.83	40.00	-5.17	QP
78.1389	52.37	-17.43	34.94	40.00	-5.06	QP
272.2776	51.99	-13.42	38.57	46.00	-7.43	QP
336.0351	49.27	-11.66	37.61	46.00	-8.39	QP

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
All interfaces was connected, and BT TX mode was link.

EUT:	Smart Scooter	Model Name :	YK03
Temperature :	25 ℃	Relative Humidity:	55%
Pressure:	1010 hPa	Polarization :	Vertical
Test Voltage :	DC 36V		
Test Mode : (Worst)	Mode 4		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
31.1798	42.07	-8.19	33.88	40.00	-6.12	QP
43.6584	42.15	-9.30	32.85	40.00	-7.15	QP
63.9827	46.15	-12.32	33.83	40.00	-6.17	QP
75.9772	50.05	-16.68	33.37	40.00	-6.63	QP
252.0627	52.17	-14.14	38.03	46.00	-7.97	QP
283.9791	51.67	-12.99	38.68	46.00	-7.32	QP

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
All interfaces was connected, and BT TX mode was link.

Radiated Spurious Emission (1GHz to 10^{th} harmonics) GFSK

GFSK	Freq.	Receiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Result
	(MHz)	(dBµV)	(PK/QP/Ave)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	rtoour
	2402	91.35	PK	Н	13.85	105.2	114	Pass
	2402	74.05	Ave	Н	13.85	87.9	94	Pass
Lower Channel	4804	51.12	PK	Н	19.36	70.48	74	Pass
2402MHz	4804	28.47	Ave	Н	19.36	47.83	54	Pass
	2402	90.99	PK	V	13.85	104.84	114	Pass
	2402	73.86	Ave	V	13.85	87.71	94	Pass
	4804	50.18	PK	V	19.36	69.54	74	Pass
	4804	28.59	Ave	V	19.36	47.95	54	Pass
	2441	90.75	PK	Н	13.94	104.69	114	Pass
	2441	71.85	Ave	Н	13.94	85.79	94	Pass
	4882	48.69	PK	Н	19.43	68.12	74	Pass
Middle Channel	4882	28.78	Ave	Н	19.43	48.21	54	Pass
2441MHz	2441	91.83	PK	٧	13.94	105.77	114	Pass
	2441	69.45	Ave	٧	13.94	83.39	94	Pass
	4882	46.62	PK	V	19.43	66.05	74	Pass
	4882	27.53	Ave	>	19.43	46.96	54	Pass
	2480	91.39	PK	Н	14.02	105.41	114	Pass
	2480	73.78	Ave	Н	14.02	87.8	94	Pass
	4960	44.39	PK	Н	19.51	63.9	74	Pass
Upper	4960	28.35	Ave	Н	19.51	47.86	54	Pass
Channel - 2480MHz	2480	91.59	PK	V	14.02	105.61	114	Pass
	2480	74.63	Ave	V	14.02	88.65	94	Pass
	4960	44.56	PK	V	19.51	64.07	74	Pass
	4960	27.63	Ave	V	19.51	47.14	54	Pass

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Meter Reading + Factor

Margin = Emission Level - Limit

Other harmonics emissions are lower than 20dB below the allowable limit.

Shenzhen BCTC Technology Co., Ltd. Report No.: BCTC-151215232

	Freq.	Receiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Result
	(MHz)	(dBµV)	(PK/QP/Ave)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	rtoodit
	2402.00	90.53	PK	Н	13.85	104.38	114	Pass
	2402.00	74.23	Ave	Н	13.85	88.08	94	Pass
Lower Channel	4804.00	50.75	PK	Н	19.36	70.11	74	Pass
2402MHz	4804.00	28.46	Ave	Н	19.36	47.82	54	Pass
	2402.00	90.37	PK	V	13.85	104.22	114	Pass
	2402.00	73.86	Ave	V	13.85	87.71	94	Pass
	4804.00	50.34	PK	V	19.36	69.7	74	Pass
	4804.00	28.63	Ave	V	19.36	47.99	54	Pass
	2441.00	90.85	PK	Н	13.94	104.79	114	Pass
	2441.00	73.46	Ave	Н	13.94	87.4	94	Pass
	4882.00	48.08	PK	Н	19.43	67.51	74	Pass
Middle Channel	4882.00	28.24	Ave	Н	19.43	47.67	54	Pass
2441MHz	2441.00	91.22	PK	V	13.94	105.16	114	Pass
	2441.00	70.32	Ave	V	13.94	84.26	94	Pass
	4882.00	46.57	PK	V	19.43	66	74	Pass
	4882.00	28.51	Ave	V	19.43	47.94	54	Pass
	2480.00	102.68	PK	Н	1.31	103.99	114	Pass
	2480.00	87.35	Ave	Н	1.31	88.66	94	Pass
	4960.00	54.49	PK	Н	-1.06	53.43	74	Pass
Upper	4960.00	44.72	Ave	Н	-1.06	43.66	54	Pass
Channel 2480MHz	2480.00	102.15	PK	V	1.31	103.46	114	Pass
	2480.00	88.24	Ave	V	1.31	89.55	94	Pass
	4960.00	54.78	PK	V	-1.06	53.72	74	Pass
	4960.00	45.47	Ave	V	-1.06	44.41	54	Pass

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Meter Reading + Factor

Margin = Emission Level - Limit

Other harmonics emissions are lower than 20dB below the allowable limit.

4. BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.249) , Subpart C						
Section Test Item Limit		Limit	Frequency Range (MHz)	Result		
15.249	Bandwidth	(20dB bandwidth)	2400-2483.5	PASS		

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30KHz
VB	≥RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.1.1 TEST PROCEDURE

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b. Spectrum Setting : RBW= 30KHz, VBW≥ RBW, Sweep time = Auto.

4.1.5 TEST RESULTS

EUT:	Smart Scooter	Model Name :	YK03
Temperature :	25 ℃	Relative Humidity:	55%
Pressure :	1012 hPa	Test Voltage :	DC 36V
Test Mode :	CH00 / CH39 /C78		

	Frequency	20dB Bandwidth (kHz)	Result
	2402 MHz	839.926	PASS
GFSK	2441 MHz	825.766	PASS
	2480 MHz	834.707	PASS
	2402 MHz	1133	PASS
PI/4 DPSK	2441 MHz	1136	PASS
	2480 MHz	1096	PASS
	2402 MHz	1141	PASS
8DPSK	2441 MHz	1130	PASS
	2480 MHz	1121	PASS

CH78

8DPSK

5. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.1 m; above 1GHz, the height was 0.1m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
 - The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.1 DEVIATION FROM STANDARD

No deviation.

5.2 TEST SETUP

5.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.4 TEST RESULTS

EUT:	Smart Scooter	Model Name :	YK03
Temperature :	25 ℃	Relative Humidity:	55%
Pressure :	1012 hPa	Test Voltage :	DC 36V
Test Mode :	CH00/ CH78		

	Frequency (MHz)	Antenna polarization (H/V)	Meter Reading (dBµV)	Factor (dB)	Emission (dBuV/m)	Lir	edge mit V/m)	Result
	10.400		00.05	40.00			AV	Pass
	<2400	Н	36.05	13.83	49.88	74.00	54.00	Pass
	<2400	V	35.65	13.83	49.48	74.00	54.00	Pass
	>2483.5	Н	35.48	13.85	49.33	74.00	54.00	Pass
GFSK	>2483.5	V	35.57	13.85	49.42	74.00	54.00	Pass
OI OIK	<2400	Н	34.71	14.02	48.73	74.00	54.00	Pass
	<2400	V	34.37	14.02	48.39	74.00	54.00	Pass
	>2483.5	Н	34.56	14.04	48.60	74.00	54.00	Pass
	>2483.5	V	34.38	14.04	48.42	74.00	54.00	Pass
	<2400	Н	34.49	13.83	48.32	74.00	54.00	Pass
	<2400	V	33.58	13.83	47.41	74.00	54.00	Pass
	>2483.5	Н	34.06	13.85	47.91	74.00	54.00	Pass
PI/4	>2483.5	V	33.71	13.85	47.56	74.00	54.00	Pass
DPSK	<2400	Н	33.82	14.02	47.84	74.00	54.00	Pass
	<2400	V	33.93	14.02	47.95	74.00	54.00	Pass
	>2483.5	Н	33.55	14.04	47.59	74.00	54.00	Pass
	>2483.5	V	34.94	14.04	48.98	74.00	54.00	Pass

Shenzhen BCTC Technology Co., Ltd. Report No.: BCTC-151215232

8DPSK	<2400	Н	34.83	13.83	48.66	74.00	54.00	Pass
	<2400	V	34.49	13.83	48.32	74.00	54.00	Pass
	>2483.5	Н	35.25	13.85	49.10	74.00	54.00	Pass
	>2483.5	V	34.53	13.85	48.38	74.00	54.00	Pass
	<2400	Н	34.35	14.02	48.37	74.00	54.00	Pass
	<2400	V	34.63	14.02	48.65	74.00	54.00	Pass
	>2483.5	Н	35.05	14.04	49.09	74.00	54.00	Pass
	>2483.5	V	34.65	14.04	48.69	74.00	54.00	Pass

If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

6. ANTENNA REQUIREMENT

6.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

6.2 EUT ANTENNA

The EUT antenna is PCB antenna. It complies with the standard requirement.

7. EUT TEST PHOTO

Report No.: BCTC-151215232

8. EUT PHOTO

*** END OF REPORT ***