Session 6

Xuanxi Zhang

1 root finding

1.1 fixed point iteration

1.1.1 existence of fixed point

A function g(x) has a fixed point if there exists a x^* such that $g(x^*) = x^*$. **ex**: $g_1(x) = \frac{1}{3} \ln(x+1) + \frac{2}{3}$ has fixed point.

1.1.2 stability of fixed point

 $g:[a,b]\to\mathbb{R}$ is continuous and has a fixed point ξ . Then we call ξ is stable if for any x_0 sufficiently close to ξ , the fixed point iteration $x_{k+1}=g(x_k)$ converges to ξ .

Theorem Suppose that g is continuously differentiable with $|g'(\xi)| < 1$, then the fixed point iteration converges to ξ as $k \to \infty$ provided x_0 is sufficiently close to ξ .

ex: $\xi = \frac{\pi}{2}$ is a stable fixed point for $g_2(x) = x + \cos x$.

Theorm If g(x) has a fixed point ξ in [c,d] and has a lipshitz constant L < 1, then the fixed point iteration converges to ξ as $k \to \infty$ starting from any $x_0 \in [c,d]$.

ex: starting form $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$, the fixed point iteration $x_{k+1} = g_2(x_k)$ will always converge.

ex: starting form [0, e-1], the fixed point iteration $x_{k+1} = g_1(x_k)$ will always converge.

1.1.3 speed of convergence

The sequence $\{x_k\}_{k\geq 1}$ converges (at least) linearly if

$$\lim_{k\to\infty}\frac{|x_{k+1}-\xi|}{|x_k-\xi|}=\mu>0$$

- $\mu = 0 \rightarrow$ super-linear convergence
- $\mu \in (0,1) \to \text{linear convergence}$
- $\mu = 1 \rightarrow \text{sub-linear convergence}$

ex: $x_k = 1/k$ converges super-linearly to 0.

ex: $x_{k+1} = g_1(x_k)$ converge linearly since

$$\lim_{x \to \xi} \frac{|g_1(x) - \xi|}{|x - \xi|} = g_1'(\xi) \in (0, 1)$$

Assume $x_k \to \xi$ if

$$\lim_{k \to \infty} \frac{|x_{k+1} - p|}{|x_k - \xi|^p} = \mu$$

We call p the order of convergence and μ the rate of convergence.

1.2 3 methods

1.2.1 bisection

start with f(a)f(b) < 0 on [a, b]. converge linearly.

ex: f a continuous function admits a root ξ in [a, b], then the bisection method will always converge to the root ξ . Wrong, for example $f(x) = x^2$.

1.3 newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

if f is twice continuously differentiable and $f'(\xi) \neq 0$, then the newton method converges quadratically. Otherwise, it is linear.

ex: For $f(x) = e^{3x-2} - x - 1$, newton method converges quadratically to the root ξ .

1.4 secant

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

converge at least linearly. The best convergence order is approximately 1.6.

2 LU and solve linear system

LU decomposition: A = LU

Pivot LU decomposition: PA = LU

2.1 existence of LU and PLU

Theorem For $A \in \mathbb{R}^{n \times n}$, if every leading principle submatrix $A^{(k)}$ is non-singular $k = 1, \dots, n-1$, then A = LU exists with a lower unit triangular matrix L and upper triangular matrix U.

ex Following matrix do not have a LU decomposition. If change first and second row, then it has a LU decomposition.

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 3 & -1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

Theorem PLU always exists for any matrix $A \in \mathbb{R}^{n \times n}$.

2.2 solve linear system

To solve a linear system Ax = b, with the decomposition PA = LU, the steps are

- 1. $\tilde{b} = Pb$, it is a permutation of b
- 2. $Ly = \tilde{b}$, forward substitution
- 3. Ux = y, back substitution

To solve the inverse of A, we can solve n linear systems $Ax_i = e_i$ where e_i is the ith column of the identity matrix. Then x_i is the ith column of the inverse of A.

2.3 computing complexity

- Matrix times vector A*b: $2n^2 \sim \mathcal{O}(n^2)$
- LU decomposition: $\frac{2}{3}n^3 \frac{1}{2}n^2 \sim \mathcal{O}(n^3)$
- back and forward substitution: $2n^2 \sim \mathcal{O}(n^2)$
- solve linear system given PLU (or LU): $\mathcal{O}(n^2)$
- solve the inverse of A: $\mathcal{O}(n^3)$
- by the way using cramer's rule to solve the inverse of A is $\mathcal{O}(n!)$, which is roughly $\mathcal{O}(e^n)$

3 norm and condition number

3.1 definition

V is a vector space. If a function $\|\cdot\|: V \to \mathbb{R}$ satisfies

- Positive definiteness: $||v|| = 0 \iff v = 0, \forall v \in V$.
- Absolute homogeneity: $\|\lambda v\| = |\lambda| \|v\|, \forall v \in V, \lambda \in \mathbb{R}$.
- Triangular inequality: $||v+w|| \le ||v|| + ||w||, \forall v, w \in V$,

then $\|\cdot\|$ is a norm.

ex Is $\|\cdot\|_1\|\cdot\|_2$ a norm? No, absolute homogeneity is not satisfied.

vector norms:

• 1-norm: $||x||_1 = \sum_{i=1}^n |x_i|$

• 2-norm: $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$

• ∞ -norm: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

matrix norms:

• induced norm: $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} = \max_{||x||=1} ||Ax||$

• 1-norm: $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$

• ∞ -norm: $||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|$

• 2-norm: $||A||_2 = \sqrt{\rho(A^T A)}$

• Frobenius norm: $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}$

In a space with finite dimention, norms are all equavalent. That is, there exists c>0 such that $||x||_a \le c||x||_b$ and $||x||_b \le c||x||_a$. Therefore, in practical problems, the choice of norm does not significantly affect the result, as they all lead to comparable outcomes.

matrix 2-norm has property $||A||_2 = ||AQ_1||_2 = ||Q_2A||_2$, where $A \in \mathbb{R}^{m \times n}$, $Q_1 \in \mathbb{R}^{n \times n}$, $Q_2 \in \mathbb{R}^{m \times m}$ are orthogonal matrices. Proof by definition.

For a digonal matrix D, $||D||_2 = \max_{1 \le i \le n} |d_{ii}|$.

3.2 condition number

For a matrix A, the condition number is defined as

$$\kappa(A) = ||A|| ||A^{-1}||$$

ex so $\kappa(A^{-1}) = ||A^{-1}|| ||A^{-1-1}|| = \kappa(A)$

ex For a permutation matrix, $\kappa_2(A) = \kappa_2(PA)$ because P is also orthogonal.

4 least square

For $A \in \mathbb{R}^{m \times n}$, when there is no exat solution for Ax = b, in order to obtain a solution x such that $Ax \sim b$, we solve the least quare problem $\min_x \|Ax - b\|_2^2$, which is equal to solve normal quation $A^TAx = A^Tb$. The normal equation will always have a solution no matter what A is, because range of A^TA is the same as range of A. The solution is unique if A has full column rank.

The QR decomposition for A is A=QR, where \hat{Q} is orthogonal and R is upper triangular. If m>n and A has full column rank, then $R=\begin{bmatrix}\hat{R}\\0\end{bmatrix}$, also separate $Q=\begin{bmatrix}\hat{Q}&\hat{Q}\end{bmatrix}$ in the same way. Then we have $A=QR=\hat{Q}\hat{R}$, and

$$\min_{x} \|Ax - b\|_{2} = \min_{x} \|QRx - b\|_{2} = \min_{x} \|Rx - Q^{T}b\|_{2} = \min_{x} \|\hat{R}x - \hat{Q}^{T}b\|_{2} + \|\hat{\hat{Q}}^{T}b\|_{2}.$$

The least square problem is equivalent to solve $\hat{R}x = \hat{Q}^Tb$.

note: Given QR, the flop to sovel least square is $\mathcal{O}(n^2)$

4.1 hoseholder

hose holder transform $H = I - 2 \frac{vv^T}{v^v}$ is a orthogonal transfrom.

note:
$$||H||_2 = \sqrt{\rho(H^T H)} = \sqrt{\rho(I)} = 1$$
 note: if $x \perp v$, Then $Hx = (I - 2\frac{vv^T}{v^T v})x = x - 0 = x$.