

Clasificación de calidad de vino blanco

Juan David Pallares Pallares Daniel Sebastián Badillo Neira

Contenido

- 1. Motivación.
- 2. Objetivos.
- 3. Información del dataset.
- 4. Procesamiento.
- 5. ML.
- 6. DL.
- 7. DBSCAN.
- 8. K-means.
- 9. Resultados.

1. Motivación

Este proyecto explora y compara modelos de aprendizaje supervisado (ML y DL) y no supervisado (K-Means y DBScan) aplicados a la clasificación de la calidad del vino. Se analiza su comportamiento, capacidad de generalización y efectividad, con el objetivo de entender sus fortalezas, limitaciones y aplicaciones prácticas en problemas reales de clasificación.

2. Objetivos

General

Desarrollar modelos de lA supervisados y no supervisados para predecir la calidad del vino, utilizando técnicas de Machine Learning (ML) y Deep Learning (DL), comparando su desempeño.

Específicos

Aplicar K-Means y DBScan para agrupar vinos según sus características y validar la coherencia de los clústeres.

3. Información del Dataset

Se trata de un dataset que contiene información acerca de la calidad de múltiples tipos de vino blanco, evaluada con un valor discreto entre 0 y 9, según ciertas características del vino como nivel de alcohol, pH, densidad, azúcar residual, distintos niveles de acidez, entre otros.

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 4898 entries, 0 to 4897 Data columns (total 12 columns): Column Non-Null Count Dtype fixed acidity 4898 non-null float64 volatile acidity 4898 non-null float64 citric acid 4898 non-null float64 residual sugar 4898 non-null float64 chlorides 4898 non-null float64

total sulfur dioxide 4898 non-null

4898 non-null

4898 non-null 4898 non-null

4898 non-null

4898 non-null

4898 non-null

float64

float64

float64

float64

float64

float64

int64

free sulfur dioxide

dtypes: float64(11), int64(1)

density

sulphates

memory usage: 459.3 KB

pH

10 alcohol

11 quality

<u>-</u>		fixed acid	ity vol	atile	acidity	citr	ic acid	residua	ıl sugar	١	
	count	4898			4898.00		4898.00		4898.00		
	mean	6	.85		0.28		0.33		6.39		
	std	0	.84		0.10		0.12		5.07		
	min	3	.80		0.08		0.00		0.60		
	25%	6	.30		0.21		0.27		1.70		
	50%	6	.80		0.26		0.32		5.20		
	75%	7	.30		0.32		0.39		9.90		
	max	14	.20		1.10		1.66		65.80		
		chlorides	free su	1fur	dioxide	total	sulfur	dioxide	density	pН	١
	count	4898.00			4898.00			4898.00	4898.00	4898.00	
	mean	0.05			35.31			138.36	0.99	3.19	
	std	0.02			17.01			42.50	0.00	0.15	
	min	0.01			2.00			9.00	0.99	2.72	
	25%	0.04			23.00			108.00	0.99	3.09	
	50%	0.04			34.00			134.00	0.99		
	75%	0.05			46.00			167.00	1.00		
	max	0.35			289.00			440.00	1.04	3.82	
		sulphates	alcohol	qua	ality						
	count	4898.00	4898.00	489	08.00						
	mean	0.49	10.51		5.88						
	std	0.11	1.23		0.89						
	min	0.22	8.00		3.00						
	25%	0.41	9.50		5.00						
	50%	0.47	10.40		6.00						
	75%	0.55	11.40		6.00						
	max	1.08	14.20		9.00						

Matriz de correlación

4. Procesamiento

Características seleccionadas para el entrenamiento

Con ayuda de la gráfica anterior se seleccionaron aquellas features cuyo coeficiente de relación con la variable quality fue menor a -0.1 y mayor a 0.05. Por lo que estas son:

alcohol

pH sulphates

residual sugar fixed acidity

total sulfur dioxide volatile acidity

chlorides density

Clasificar vino según calidad

Para mejorar el preprocesamiento, se va a clasificar un vino según si es buen vino o mal vino aquellos que tengan más de 5 en calidad serán clasificados como un buen vino, aquellos con 5 o menos serán clasificados como mal vino.

~	Cla	sificar vino se	egún calidad										
[]	<pre>#@title Clasificar vino según calidad # Para mejorar el preprocesamiento, se va a clasisficar un vino según si es buen # aquellos que tengan más de 5 en calidad serán clasificados como un buen vino, df['quality_binary'] = df['quality'].apply(lambda x: 1 if x > 5 else 0) df.head()</pre>												
 ₹		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	OH sulphates	alcohol	quality	quality_binary
	0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010 3.	00 0.45	8.8	6	1
	1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940 3.	0.49	9.5	6	1
	2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951 3.	26 0.44	10.1	6	1
	3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956 3.	9 0.40	9.9	6	1
	4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956 3.	9 0.40	9.9	6	1

4. ML

Gaussian Naive Bayes


```
model = GaussianNB()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

Accuracy: 0.71 Cross Validation

Accuracy promedio: 0.33

¿Por qué?

Random Forest

Accuracy: 0.82 Cross Validation

Accuracy promedio: 0.84

	precision	recall	f1-score	support
0	0.55	0.55	0.55	321
1	0.78	0.78	0.78	659
accuracy			0.71	980
macro avg	0.67	0.67	0.67	980
weighted avg	0.71	0.71	0.71	980


```
svc = LinearSVC(random_state=42, max_iter=10000)
svc.fit(X_train_scaled, y_train)
y_pred = svc.predict(X_test_scaled)
accuracy_svc = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy_svc:.2f}")
Accuracy: 0.74
```

Accuracy: 0.74 Cross Validation

Accuracy promedio: 0.75

Comparación de Resultados

```
resultados = pd.DataFrame({
    'Modelo': ['Random Forest', 'Linear SVC', 'GaussianNB'],
    'Accuracy': [accuracy_rf, accuracy_svc, accuracy_NB],
    'Accuracy Cross Validation': [np.mean(cross_val_score_rf), np.mean(cross_val_score_svc), np.mean(cross_val_score_NB)]
})
resultados
```

	Modelo	Accuracy	Accuracy Cross	Validation
0	Random Forest	0.827551		0.835235
1	Linear SVC	0.735714		0.751743
2	GaussianNB	0.705102		0.337924

4. DL

```
encoder = LabelEncoder()
y train encoded = encoder.fit transform(y train)
y test encoded = encoder.transform(y test)
# Número de clases
num classes = len(encoder.classes )
# One-Hot Encoding
y train ohe = to categorical(y train encoded, num classes=num classes)
y test ohe = to categorical(y test encoded, num classes=num classes)
# Definición del modelo
model = Sequential([
   Flatten(input shape=X train scaled[0].shape),
   Dense(512, activation='relu'),
   BatchNormalization(),
   Dense(256, activation='relu'),
   BatchNormalization(),
   Dense(128, activation='relu'),
   Dense(2, activation='softmax') # Salida para multi-clase
```

```
# Compilación
optimizer = tf.keras.optimizers.Adam(learning rate=0.0005)
model.compile(optimizer=optimizer, loss='binary crossentropy', metrics=['accuracy'])
# Early stopping
early stopping = EarlyStopping(monitor='val accuracy', patience=10, restore best weights=True)
# Entrenamiento
history = model.fit(X train scaled, y train ohe, epochs=100, batch size=40, validation split=0.2, callbacks=[early stopping])
# Gráfica de la evolución de la accuracy
plt.figure(figsize=(8,6))
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val accuracy'], label='Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.title('Accuracy vs Epochs')
plt.legend()
plt.grid(True)
plt.show()
```

Test Accuracy: 0.67

Test Loss: 0.71

Modelos No Supervisados


```
df = pd.read_csv(file_path, delimiter=';')
df['quality binary'] = df['quality'].apply(lambda x: 1 if x > 5 else 0)
y = df['quality_binary']
X = df.drop(['quality', 'quality_binary'], axis=1)
# Estandarizar datos
scaler = StandardScaler()
scaled features = scaler.fit transform(X)
# DBSCAN
dbscan = DBSCAN(eps=1.5, min_samples=5)
dbscan.fit(scaled features)
print(np.unique(dbscan.labels_))
accuracy = accuracy_score(y, dbscan.labels_)
print(f"Accuracy: {accuracy:.2f}")
# print(classification report(y, dbscan.labels ))
                     6 7 8 9 10 11 12 13]
Accuracy: 0.24
```

Accuracy: 0.24

Reducción de Dimensionalidad

```
#@title Reducción de dimensionalidad

pca_wine = PCA(n_components= 2, whiten=True)
X_pca = pca_wine.fit_transform(scaled_features)

tsne_wine = TSNE(n_components=2, learning_rate='auto')
X_tsne = tsne_wine.fit_transform(scaled_features)
```


Reducción de Dimensionalidad

Industrial de

DBSCAN para PCA y T-SNE

```
DBSCAN sobre PCA y TSNE
 #@title DBSCAN sobre PCA y TSNE
 from collections import Counter
 # DBSCAN sobre PCA
 dbscan pca = DBSCAN(eps=0.5, min samples=5) # Puedes ajustar eps
 labels pca = dbscan pca.fit predict(X pca)
 print("PCA Clusters:", np.unique(labels pca))
 print("PCA Label Count:", Counter(labels pca))
 # DBSCAN sobre t-SNE
 dbscan tsne = DBSCAN(eps=5, min samples=5) # t-SNE suele requerir mayor eps
 labels tsne = dbscan tsne.fit predict(X tsne)
 print("t-SNE Clusters:", np.unique(labels tsne))
 print("t-SNE Label Count:", Counter(labels tsne))
 PCA Clusters: [-1 0]
 PCA Label Count: Counter({np.int64(0): 4876, np.int64(-1): 22})
 t-SNE Clusters: [-1 0 1 2 3 4 5]
 t-SNE Label Count: Counter({np.int64(0): 4619, np.int64(3): 122, np.int64(1): 76, np.int64(2): 37, np.int64(4): 30, np.int64(5): 12, np.int64(-1): 2})
```


print(accurac print(classif		-177	2000	
0.33197223356	47203			
	precision	recall	f1-score	support
-1	0.00	0.00	0.00	0
0	0.33	0.99	0.50	1640
1	0.00	0.00	0.00	3258
accuracy			0.33	4898
macro avg	0.11	0.33	0.17	4898
weighted avg	0.11	0.33	0.17	4898

orint(accurac orint(classif	Name of the second seco	rt(y, dbs	can_tsne.la	abels_))
.31318905675	786035			
	precision	recall	f1-score	support
-1	0.00	0.00	0.00	6
0	0.33	0.92	0.48	1640
1	0.41	0.01	0.02	3258
2	0.00	0.00	0.00	6
3	0.00	0.00	0.00	0
4	0.00	0.00	0.00	0
5	0.00	0.00	0.00	e
accuracy			0.31	4898
macro avg	0.10	0.13	0.07	4898
weighted avg	0.38	0.31	0.17	4898

KMeans


```
plt.scatter(X.iloc[:,0], X.iloc[:,1], c=y, cmap='rainbow');
y = df['quality_binary']
X = df.drop(['quality', 'quality_binary'], axis=1)
# Estandarizar datos
scaler = StandardScaler()
X = scaler.fit_transform(X)
```


Elbow Method

Accuracy: 0.27

Basándonos en la gráfica, el número de clusters k adecuado serían 2 o 3.

K Means (k = 2)

```
* Kmeans con 2 clusters

#@title Kmeans con 2 clusters
kmeans = KMeans(n_clusters=2, random_state=27)
kmeans.fit(X)
print(kmeans.cluster_centers_)
print(kmeans.labels_)
print(y)
```

Accuracy: 0.64

	precision	recall	f1-score	support
0	0.47	0.55	0.51	1640
1	0.75	0.68	0.71	3258
accuracy			0.64	4898
macro avg	0.61	0.62	0.61	4898
weighted avg	0.66	0.64	0.65	4898

Resultados

	Modelo	Accuracy	Accuracy Cross Validation	Test Loss
0	Random Forest	0.823469	0.836257	NaN
1	Linear SVC	0.735714	0.752343	NaN
2	GaussianNB	0.705102	0.337918	NaN
3	DL	0.674490	NaN	0.260362
4	KMeans (k=3)	0.274194	NaN	NaN
5	KMeans (k=2)	0.638628	NaN	NaN
6	KMeans PCA	0.368722	NaN	NaN
7	KMeans TSNE	0.337281	NaN	NaN
8	DBSCAN	0.243365	NaN	NaN
9	DBSCAN PCA	0.331972	NaN	NaN
10	DBSCAN TSNE	0.313189	NaN	NaN

El mejor modelo de entre todos los utilizados en este proyecto finalmente fue el **RANDOM FOREST**.

Preguntas

