Série e Transformada de Fourier

Fabio Irigon Pereira

Série de Fourier

Idéia principal:

Um sinal periódico pode ser decomposto em uma soma de senos e cossenos.

Série de Fourier

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

Na fórmula acima a_n representa a amplitude do cosseno de frequência 'n' e b_n é a amplitude do enésimo seno.

Série de Fourier

A parte par do sinal original será decomposta por uma soma de cossenos.

A parte ímpar do sinal original será decomposta por uma soma de senos.

Série Discreta de Fourier

No caso de sinais discretos representamos as senóides como exponenciais complexas.

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} S_N[k] e^{i2\pi \frac{k}{N}n}$$

Série Discreta de Fourier

No caso de sinais discretos representamos as senóides como exponenciais complexas.

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} S_N[k] e^{i2\pi \frac{k}{N}n}$$

Se chamarmos de ômega_k a ésima frequência, a relação fi

$$\omega_k = 2\pi \frac{k}{N}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} S_N[k] e^{i\omega_k}$$

Série Discreta de Fourier

Lembrando que uma exponencial complexa pode ser decomposta em uma soma de um seno e um cosseno.

$$S_n[k]e^{i\omega n} = a_n cos(i\omega n) + ib_n sen(i\omega n)$$

Aliasing

Um sinal de alta frequência gera as mesmas amostras de um sinal de frequências mais baixas. A maior frequência que se pode amostrar é fs/2.

Transformada de Fourier (TF)

O objetivo da TF é descobrir o quanto de cada frequência existe no sinal original.

Frequências discretas normalizadas $[-\pi, \pi]$.

$$X(\omega) = \sum_{n=-\infty}^{\infty} e^{-i\omega_k n}$$

Transformada Discreta de Fourier

Sequências finitas:

$$X(\omega) = \sum_{n=0}^{N-1} x[n]e^{-i\omega_k n}$$

Transformada Discreta de Fourier

Sequências finitas:

$$X(\omega) = \sum_{n=0}^{N-1} x[n]e^{-i\omega_k n}$$

TF de uma senóide

TF de duas senóides

Aliasing no domínio frequência

Se plotarmos o espectro de frequência de um sinal

Aliasing no domínio frequência

Uma sinal após amostragem, tem espectro simétrico a fs, e se repete em múltiplos de fs.

Aliasing no domínio frequência

Ex: sinal de 10KHz amostrado a uma frequência de 50KHz:

