PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-069596

(43)Date of publication of application: 16.03.2001

(51)Int.CI.

H04R 19/01 H04R 31/00

(21)Application number : 11-238928

(22)Date of filing: 25.08.1999

(71)Applicant: HOSIDEN CORP

(72)Inventor:

OBAYASHI YOSHIAKI YASUDA MAMORU

SAEKI SHINICHI ILUH2 AWA20

(54) MANUFACTURE OF SEMICONDUCTOR ELECTRET CONDENSER MICROPHONE AND THE SEMICONDUCTOR ELECTRET CONDENSER MICROPHONE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a manufacture of a semiconductor electret condenser microphone that attains further miniaturization, enhances yield, reduces cost and facilitates its manufacturing. SOLUTION: This manufacturing method is a method for manufacturing a semiconductor electret condenser microphone, having a microphone section 100 that outputs a received sound as an electric signal and a case section 200 that contains this microphone section 100. This method includes a step, where a chip 140 with a fixed electrode formed thereto is assembled to a plurality of the case sections 200 formed as in-line arrangement to a sheet-like ceramic laminator 300, a step where a diaphragm 130 fitted to the chip 140 is assembled, a process clogging each case section 200 with a cover 400, and a step where the laminate 300 is divided into individual case section 200.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開番号 特期2001-69596

(P2001-69596A)

(43)公開日 平成13年3月16日(2001.3.16)

(51) Int.CL'

織別配号

PI

テーマコート*(参考)

H04R 19/01 31/00 H04R 19/01 31/00

5D021

C

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号

特顯平11-238928

(22)出戰日

平成11年8月25日(1999.8.25)

(71)出職人 000194918

ホシデン株式会社

大阪府八尾市北久宝寺1丁目4番33号

(72) 発明者 大林 義昭

大阪府八尾市北久宝寺1丁目4番33号 ホ

シデン株式会社内

(72) 発明者 安田 馥

大阪府八尾市北久宝寺1丁目44633号 ホ

シデン株式会社内

(74)代键人 100085938

弁理士 大西 孝治 (外1名)

最終質に絞く

(57)【要約】 マイクロホン 【目的】 より小型化を達成することができ、歩智りも 向上し、コストダウンを図ることができ、しかも製造を 容易にする。

【様成】 入力された音響を電気信号として出力するマイクロホン部100と、このマイクロホン部100を収納するケース部200とを有する半導体エレクトレットコンデンサマイクロホンの観音方法であって、シート状なラミックスの枝層体300に基盤目状に形成成された複数間のケース部200に固定電極部110が形成されたチップ部140を組み込む工程と、このチップ部140に取り付けられる振動限130を組み込む工程と、おかース部200を置かのケース部200で開密する工程と、前記検層体300を個々のケース部200に分割する工程とを有している。

[特許請求の範囲]

【請求項 2】 前記マイクロホン部の構成要素を組み込む工程は、集秩回路が形成されるとともに、固定電極部が形成されたチップ部をケース部に組み込む工程と、ケース部に組み込まれたチップ部に短動限を取り付ける工程とに分かれていることを特徴とする請求項 1 記載の半途体エレクトレットコンデンサマイクロホンの製造方法。

【請求項 3】 入力された音響を奄気信号として出力するマイクロホン部と、このマイクロホン部を収納するケース部とを有する半導体エレクトレットコンデンサマイクロホンであって、シート状セラミックスの経層体に基盤目状に形成された複数個のケース部にマイクロホン部の構成要素を組み込んだ後に、各ケース部を整部で開室し、その後前記接層体を個々のケース部に分割したことを特徴とする半導体エレクトレットコンデンサマイクロホン。

【請求項 4】 前記マイクロホン部の構成要素は、集積回路が形成されるとともに、固定電優部が形成されたチップ部と、このチップ部に取り付けられる振動膜とであることを特徴とする請求項 3記載の半導体エレクトレットコンデンサマイクロホン。

【発明の詳細な説明】

[0001]

「発明の原する技術分野】本発明は、半導体素子を形成する技術を応用した半導体エレクトレットコンデンサマイクロホンの製造方法と、この製造方法で製造された半導体エレクトレットコンデンサマイクロホンとに関する。

[0002]

【従来の技術】この種の半導体エレクトレットコンデンサマイクロホンは、図5に示すように、主として入力された音響を電気信号として出力するマイクロホン部70と、このケース部800を開室する整部810とから構成されている。

【0003】前記ケース部800には、後述するマイクロホン部700を保持するホルダ830等がある。 【0004】前記マイクロホン部700は、半導体未子を形成する技術を応用して構成されている。すなわち、このマイクロホン部700は、インピーダンス変換素子 や増幅素子等からなる集接回路が形成されたチップ部710と、このチップ部710の表面に形成された固定電極部720と、この固定電極部720の上に形成されたスペーサ730と、このスペーサ730に取り付けられて前記固定電極部720と一定の間隔を持って対向させられた振動限740とを有している。

【0005】このような半導体エレクトレットコンデンサマイクロホンのマイクロホン部700の製造工程は次の通りである。まず、ウエハに多数値の集積回路を形成する。集積回路が形成された側に固定電極部720を形成するとともに、スペーサ730を形成するとともに、スペーサ730を形成するとともに、スペーサ730を形成する

成するとともに、スペーサ730を形成する。 【0006】次に、前記スペーサ730に振動膜740を取り付ける。すると、固定電極部720と振動膜74 Oとの間には、スペーサ730の厚さに相当する空間750が形成される。 なお、 振動膜740は予めリング741に結ちされているとともに、上面にはエレクトレット層が形成されている。

【0007】ウエハに多数個形成されたマイクロホン部700は、ダンシングソーで分割される。この分割されたマイクロホン部700のチップ部710の表面側に端7760が取り付けられてマイクロホン部700として完成する。

【0008】このような構成されたマイクロホン部700は、セラミックス等からなるケース部800のホルダ部830に保持されるとともに、ホルダ部830の骨面側に取り付けられたアース板820とともに、ケース本体部810の音孔811に正対される。

100001

【0011】
【課題を解決するための手段】本発明に係る半導体エレクトレットコンデンサマイクロホンの製造方法は、入力された音響を電気信号として出力するマイクロホン部と、このマイクロホン部を収納するケース部とを有する半導体エレクトレットコンデンサマイクロホンの製造方法において、シート状セラミックスの秩層体に基盤目状に形成された複数側のケース部に、マイクロホン部の様

成要素を組み込む工程と、各ケース部を蓋部で閉塞する 工程と、前記秩層体を個々のケース部に分割する工程と を有している。 - 【0012】

【発明の実施の形態】図1は本発明の実施の形態に係る 半塔はエレクトレットコンデンサマイクロホンの製造方 法の工程を示す概略的断面図、図2は本発明に係る半に 体エレクトレットコンデンサマイクロホンの製造方法に なエレクトレットコンデンサマイクロホンの製造方法に 図、図3は本発明に係る半塔体エレクトレットコンデンサマイクロホンの製造方法においてケース部に手が サマイクロホンの製造方法においてケース部とによって製造方法に を取り付ける前の概略的平面図、図4は本発明に係る半 塔体エレクトレットコンデンサを を取り付ける前の概略の平面図、図4は本発明に発力 を取り付ける前の概略の平面図、図4は本発明に発力で を取り付ける前の概略の下面図(A)は概略的平面 図、回図(B)は概略的A-A線断面図、同図(C)は 概略的底面図である。

【0013】本発明の実施の形態に係る半導体エレクト レットコンデンサマイクロホンの製造方法は、入力され た音等を電気信号として出力するマイクロホン部100 と、このマイクロホン部100を収納するケース部20 口とを有する半導体エレクトレットコンデンサマイクロ ホンの製造方法であ って、シート状セラミックスの秩層 体300に基盤目状に形成された複数個のケース部20 0に、マイクロホン部100の構成要素として、集積回 路が形成されるとともに、固定電極部110が形成され たチップ部140と、このチップ部140に取り付けら れる振動膜130を組み込む工程と、各ケース部200 を整部400で閉塞する工程と、前記秩層体300を個 々のケース部200に分割する工程とを有している。 【0014】まず、ケース部200について説明する、 このケース部200は、図1等に示すように、3層のシ - ト状セラミックス310、320、330を結磨した 秩層体300に基盤目状に形成されている。

【0015】各層のシート状セラミックス310、320、330には、同じ位置に複数値(図面では8つの食 通孔が開設されている。従って、枝層体300にも同様の貫通孔350A~350Hが形成されることになる。これらの貫通孔350A~350Hは、各層のシート状セラミックス310、320、330に形成された挙電層を相互に接続するための側面楽電層(図示省略)が形成される部分である。

【0016】最下層のシート状セラミックス310は、ケース部200の底面となるものである。この最下層のシート状セラミックス310は、例えば368個のケース部200となるものであれば、縦が85mm、横が68.48mmに設定されている。なお、この最下層のシート状セラミックス310の上面側には、準電層312が全面的に形成されている。なお、この導電層312は、図3においては右上がりの斜線で示されている。ま

た、この最下層のシート状セラミックス310の表 面側には、図4(C)に示すように、前記側面導電層と繋がった4つの底面導電層315B、315C、315F、315Gが形成されている。

【〇〇17】 このような最下層のシート状セラミックス 310の上に中間層のシート状セラミックス320が役 層される。この中間層のシート状セラミックス320 は、大きさは最下層のシート状セラミックス310と同 ーであるが、358個の開口部321が形成されてい る。この関口部321は、中間層のシート状セラミック ス320が最下層のシート状セラミックス310に秩層 されることで、マイクロホン部100が嵌まり込む凹部 210となる部分である。 なお、この中間層のシート状 セラミックス320には後述する上層のシート状セラミ ックス310から露出する部分に3つの革電層322 A、3228、322Cが形成されている。この導電層 322A、322B、322Cは、マイクロホン部10 0の電極141A、141B、141Cとポンディング ワイヤ150A、150B、150Cで接続される部分 である.

【0018】また、この中間層のシート状セラミックス320かは、上層のシート状セラミックス330がは層される。この上層のシート状セラミックス330は、前記間口部321より大きな368個の閉口部331な、上層の形成されている。すなわち、この間口331は、上層のシート状セラミックス320が中間層のシート状セラミックス320にはを露出させていることになる。また、この上層のシート状セラミックス330には、準電層332が全面的に形成されている。

【0019】このような3つのシート状セラミックス3 10、320、330を順次秩層して焼成することで3 58個のケース部200が一体に形成された秩層体30 0が構成されるのである。

【0020】なお、前記導电局322Aは、貫通孔350Cに形成された側面電後層(図示省時)に接続される。また、導電局322Bは、貫通孔350Bに形成された側面電極層(図示省時)に接続される。さらに、導電局322Cは、貫通孔350Aに形成された側面導電層(図示省時)、貫通孔350Gに形成された側面導電層(図示省時)、最下層のシート状セラミックス310に形成された準電層312及び、上層のシート状セラミックス330に形成された準電局332にそれぞれ接続されている。

【0021】 -方、ケース部200を閉率する蓋部400は、同様にシート状セラミックスを焼成したものである。そして、前記凹部210に収納されることになるマイクロホン部200に音響を築くための音孔410が開設されている。この蓋部400も、ケース部300と同様に、1枚のシート状セラミックス420に368個形

成されている。

10

【0022】なお、前記ケース部200となる秩層体300と、蓋部400となる1枚のシート状セラミックス420とには、最終工程で個々の半降体エレクトレットコンデンサマイクロホンに分割するための断面略V字形状のスナップライン33、421がそれぞれ形成されている。

【0023】ところで、前記マイクロホン部100は、 集核回路が形成されるとともに、固定電極部110が形 成されたチップ部140と、このチップ部140に取り 付けられる振動限130とを有している。

【0024】まず、前記チップ部140は、ウエハにフォトリソグラフィ技術等を用いて集残回路としてのインピーダンス変換素子、増幅回路、ノイズキャンセル回路、AGC回路等を形成することで、ウエハに多数個同時に形成される。さらに、図2に示すように、このチップ部140の上面に時円形の固定電極部110を形がはったらに、この固定電極部110を取り囲むように4つのスペーサ120を形成する。なお、このスペーサ120を形成する。なお、このスペーサ120を形成する。なお、このスペーサ120を形成する。なお、このスペーサ120は、後速する扱動膜130と固定電極部110との間に一定の空間を形成するものである。

【0025】このように多数個のチップ部140が形成されたウエハを分割して個々のチップ部140とする。【0026】このように、集積回路等が形成されたチップ部140は、図1(B)に示すように、積層体300に形成されたケース部200の凹部210に1つずつボンディングされる。そして、チップ部140の3つの電極141A、141B、141Cは、それぞれボングワイヤ150A、150B、150Cによって前記90シート状セラミックス320の3つの降電局22A、322B、322Cに電気的に接続される。

【0027】このようにチップ部140がポンディングされたならば、振動膜130を前記スペーサ120に取り付ける(図1(C)参照)。この振動膜130は、片面にニッケル又はアルミニウムの300~500人の悪名膜が形成されたEFPフィルムをリング131に貼るし、さらにコロナ分極の手法で-200~-250Vに帯電させることでエレクトレット層が形成されたものである。

【0028】上述のように構成された振動膜130をスペーサ120に取り付けた後、スクリーン印刷でケース部200に築電性接着剤を途布する。そして、図1 (D)に示すように、整部400となる1枚のシート状

セラミックス420を後層体300に取り付けるのである。

【0029】すなわち、この製造方法では、統層体300に形成された複数個のケース部200にマイクロホン部100を組み込む工程では、集練回路が形成されるとともに、固定電極部110が形成されたチップ部140をケース部200に組み込む工程と、ケース部200に

組み込まれたチップ部140に短動膜130を取り付ける工程とに分かれているのである。

【0030】このように複数個の半導体エレクトレットコンデンサマイクロホンが形成されたものを前記スナップライン333、421から分割することで、図4に示すような個々の半導体エレクトレットコンデンサマイクロホンとするのである。

【0031】なお、上述した実施の形態では、振動限130にエレクトレット層を形成したタイプを挙げたが、チップ部140にエレクトレット層を形成するタイプのものであってもよい。その場合には、振動限130に英電層を形成し、この導電層から信号をチップ部110の集後回路に挙くようにする必要がある。

【0032】また、1つの枝屑体300は368個のケース部200が集合したものとしたが、この数に限定されることはない。

[0033]

【発明の効果】本発明に係る半導体エレクトレットコンデンサマイクロホンの製造方法は、入力された音響を 気信号として出力するマイクロホン部と、このマイクロホン部を収納するケース部とを有する半導体エレクトレットコンデンサマイクロホンの製造方法であって、シートコンデンサマイクロホンの製造方法であって、シートはセラミックスの秩屑体に基盤目状に形成され扱む個のケース部に、マイクロホン部の様成要素を組み込む工程と、もケース部を整部で閉塞する工程と、前記検尿体を個々のケース部に分割する工程とを有している。

本性で、サースがに出る。 (国本学 を上にて、 または を 個々のケース部に分割する工程とを 有している。 【0034】この製造方法によると、ケース部、マイクロホン部を 構成するチップ部、マイクロホン部を 構成する チップ部、マイクロホン部を 構成ができるので、 従来の方法 より小型化が図れるともに 歩留りを向上させ、コストの低減がも図れるという効果がある。 特に、 複数 個のケース部が形成された 秩屋 休に マイクロホン部を 組み込むようにするので、 カンドリングの面からも無理がなく 製造が容易、特に自動化に有利になるという利点がある。

【0035】特に、前記マイクロホン部の特成要素を組み込む工程が、集終回路が形成されるとともに、固定電極部が形成されたチップ部をケース部に組み込む工程と、ケース部に組み込まれたチップ部に振動膜を取り付ける工程とに分かれていると、小さなチップ部に振動膜を取り付けるのではなく、大きなケース部に収納された状態のチップ部に振動膜を取り付けるようになるので、ハンドリングの面からも無理がない。

【0036】一方、本発明に係る半導体エレクトレットコンデンサマイクロホンは、入力された音響を電気信号として出力するマイクロホン部と、このマイクロホン部を収納するケース部とを有する半導体エレクトレットコン検アサマイクロホンであって、シート状セラミックスの検ア体に基盤目状に形成された複数側のケース部にマイクロホン部の構成要素を組み込んだ後に、各ケース部

を蓋部で開塞し、その後前記様層体を個々のケース部に 分割しているので、小型化、コストダウン等を図ること ができる。

【0037】特に、マイクロホン部の構成要素を、集積回路が形成されるとともに、固定電極部が形成されたチップ部と、このチップ部に取り付けられる振動膜とすると、ハンドリングの面から有利であるのでコストダウンに有利である。

【図面の簡単な説明】

Ţį.

【図1】本発明の実施の形態に係る半導体エレクトレットコンデンサマイクロホンの製造方法の工程を示す概略 的断面図である。

【図2】本発明に係る半導体エレクトレットコンデンサマイクロホンの製造方法においてチップ部に振動膜を取り付ける前の概略的平面図である。

図3】本発明に係る半導体エレクトレットコンデンサ

マイクロホンの製造方法においてケース部にチップ部を取り付ける前の概略的平面図である。

【図4】本発明に係る半導体エレクトレットコンデンサマイクロホンの製造方法によって製造された半導体エレクトレットコンデンサマイクロホンの図面であって、同図(A)は概略的平面図、同図(B)は概略的A-A線断面図、同図(C)は概略的底面図である。

【図5】従来のこの種の半導体エレクトレットコンデン サマイクロホンの概略的断面図である。

[符号の説明]

100 マイクロホン部

130 振動膜

140 チップ部

200 ケース部

300 積層体

フロントペー ジの抜き

(72)発明者 佐伯 英一 大阪府八尾市北久宝寺1丁目4番93号 ホ シデン株式会社内 _ (72)発明者 大澤 周治 大阪府八尾市北久宝寺1丁目4番33号 ホ シデン株式会社内 Fターム(参考) 50021 CC03 CC12