Post-clustering inference under dependency

Javier González-Delgado¹, Juan Cortés³ and Pierre Neuvial²

1. McGill University, 2. Institut de Mathématiques de Toulouse, 3. LAAS-CNRS

International Seminar on Selective Inference

February 8, 2024

Toy example

Toy example

- Simulate $\mathcal{N}(0,1) + \mathcal{U}(-0.2,0.2)$
- Ask k-means to find 2 clusters (data-driven hypothesis selection)
- Test for the difference of cluster means (inference after selection)

Toy example

- Simulate $\mathcal{N}(0,1) + \mathcal{U}(-0.2,0.2)$
- Ask k-means to find 2 clusters (data-driven hypothesis selection)
- Test for the difference of cluster means (inference after selection)

 $p_Z = 10^{-67}$, $p_{SI} = 0.84$ (using Chen and Witten 2023).

Adapted from Hivert et al. 2024

General strategy

Notation

• Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.

General strategy

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the i-th row of **X** (resp. μ) for $i \in \{1, \ldots, n\}$.

General strategy

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the *i*-th row of **X** (resp. μ) for $i \in \{1, ..., n\}$.
- For any $\mathcal{G} \subset \{1,\dots,n\}$, let $\bar{X}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} X_i$ and $\bar{\mu}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} \mu_i$.

General strategy

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the i-th row of **X** (resp. μ) for $i \in \{1, \ldots, n\}$.
- For any $\mathcal{G} \subset \{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} X_i$ and $\bar{\mu}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} \mu_i$.
- Let $\hat{C}_1, \hat{C}_2 \subset \{1, \dots, n\}$ be two clusters estimated by $C(\cdot)$ on \mathbf{X} , that is, $\hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X})$.

General strategy

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the i-th row of **X** (resp. μ) for $i \in \{1, \ldots, n\}$.
- For any $\mathcal{G} \subset \{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} X_i$ and $\bar{\mu}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} \mu_i$.
- Let $\hat{C}_1, \hat{C}_2 \subset \{1, \dots, n\}$ be two clusters estimated by $C(\cdot)$ on \mathbf{X} , that is, $\hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X})$.
- Consider the null hypothesis $H_0^{\{\hat{C}_1,\hat{C}_2\}}:\bar{\mu}_{\hat{C}_1}=\bar{\mu}_{\hat{C}_2}.$

General strategy

Notation

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the *i*-th row of **X** (resp. μ) for $i \in \{1, ..., n\}$.
- For any $\mathcal{G} \subset \{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} X_i$ and $\bar{\mu}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} \mu_i$.
- Let $\hat{C}_1, \hat{C}_2 \subset \{1, \dots, n\}$ be two clusters estimated by $C(\cdot)$ on \mathbf{X} , that is, $\hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X})$.
- Consider the null hypothesis $H_0^{\{\hat{C}_1,\hat{C}_2\}}: \bar{\mu}_{\hat{C}_1}=\bar{\mu}_{\hat{C}_2}.$

Goal

Define a *p*-value for $H_0^{\{\hat{C}_1,\hat{C}_2\}}$ that controls the selective type I error, that is,

$$\mathbb{P}_{H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}}\left(\text{reject }H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}\text{ based on }\textbf{X}\text{ at level }\alpha\ \bigg|\ \hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\in\mathcal{C}(\textbf{X})\right)\leq\alpha\quad\forall\,\alpha\in[0,1].$$

Independence setting

Gao et al. 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$
 (indep)

and the null hypothesis

$$H_0^{\{\hat{C}_1,\hat{C}_2\}}: \bar{\mu}_{\hat{C}_1} = \bar{\mu}_{\hat{C}_2}, \tag{null}$$

$$\text{ for } \hat{\textit{C}}_{1}, \hat{\textit{C}}_{2} \in \mathcal{C}(\textbf{X}).$$

Independence setting

Gao et al. 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$
 (indep)

and the null hypothesis

$$H_0^{\{\hat{C}_1,\hat{C}_2\}}: \bar{\mu}_{\hat{C}_1} = \bar{\mu}_{\hat{C}_2},$$
 (null)

for $\hat{C}_1, \hat{C}_2 \in C(\mathbf{X})$.

Gao et al. define a p-value for (null) that

- Controls the selective type I error under (indep),
- Can be be efficiently computed for hierarchical clustering (HAC) with several types of linkages and k-means (Chen and Witten 2023),
- Is asymptotically super-uniform when σ is asymptotically over-estimated. An estimator $\hat{\sigma}$ of σ is proposed 1 .

^{1.} Exact estimation of σ has been recently proposed in Yun and Foygel Barber 2023.

Independence is usually unrealistic

Example: clustering of flexible protein structures

Independence is usually unrealistic

Example: clustering of flexible protein structures

- Conformations can be featured by p-dimensional Gaussian descriptors (e.g. pairwise distances between amino acids),
- Features are strongly interdependent,
- Conformations may be generated by molecular dynamics simulations: temporal dependence between observations.

Arbitrary dependence setting

Adapt Gao et al. 2022 to realistic practical scenarios

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \mathbf{\Sigma}),$$
 (dep)

where $\mathbf{U}\in\mathcal{M}_{n\times n}(\mathbb{R})$ and $\mathbf{\Sigma}\in\mathcal{M}_{p\times p}(\mathbb{R})$. We ask \mathbf{U} and $\mathbf{\Sigma}$ to be positive definite. Let

$$H_0^{\{\hat{C}_1,\hat{C}_2\}}:\bar{\mu}_{\hat{C}_1}=\bar{\mu}_{\hat{C}_2}, \tag{null}$$

$$\text{ for } \hat{\textit{C}}_{1}, \hat{\textit{C}}_{2} \in \mathcal{C}(\textbf{X}).$$

Arbitrary dependence setting

Adapt Gao et al. 2022 to realistic practical scenarios

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}),$$
 (dep)

where $\mathbf{U} \in \mathcal{M}_{n \times n}(\mathbb{R})$ and $\mathbf{\Sigma} \in \mathcal{M}_{p \times p}(\mathbb{R})$. We ask \mathbf{U} and $\mathbf{\Sigma}$ to be positive definite. Let

$$H_0^{\{\hat{C}_1,\hat{C}_2\}}: \bar{\mu}_{\hat{C}_1} = \bar{\mu}_{\hat{C}_2}, \tag{null}$$

for $\hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X})$.

Goal

- Definition of a p-value for (null) that controls selective type I error under (dep),
- Efficient computation for HAC and k-means clustering.
- Over-estimation of either U or Σ (not both) that yields asymptoticallly super-uniform p-values.

Ignoring dependency prevents selective type I error control

- Simulate n=1000 samples drawn from (dep) with $\mu=\mathbf{0}_{n\times p}$ and set $\mathcal C$ to choose three clusters,
- Randomly select two groups and test for the difference of their means assuming $\mathbf{U} = \mathbf{I}_n$ and $\mathbf{\Sigma} = \sigma^2 \mathbf{I}_n$.

Independence setting

$$\begin{split} \text{p-value for $H_0^{\{\hat{C}_1,\hat{C}_2\}}$ when $\mathbf{U} = \mathbf{I}_n$, $\mathbf{\Sigma} = \sigma^2 \mathbf{I}_p$ (Gao et al. 2022)} \\ p(\mathbf{x}; \{\hat{C}_1,\hat{C}_2\}) &= \mathbb{P}_{H_0^{\{\hat{C}_1,\hat{C}_2\}}} \bigg(\|\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}\|_2 \geq \|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2 \ \bigg| \ \hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X}), \\ \pi^{\perp}_{\nu(\hat{C}_1,\hat{C}_2)} \mathbf{X} &= \pi^{\perp}_{\nu(\hat{C}_1,\hat{C}_2)} \mathbf{x} \,, \, \mathrm{dir}(\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}) = \mathrm{dir}(\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}) \bigg). \end{split}$$

Independence setting

$$\begin{split} & \rho\text{-value for } H_0^{\{\hat{C}_1,\hat{C}_2\}} \text{ when } \mathbf{U} = \mathbf{I}_n, \; \mathbf{\Sigma} = \sigma^2 \mathbf{I}_p \; \big(\text{Gao et al. 2022} \big) \\ & \rho(\mathbf{x}; \{\hat{C}_1,\hat{C}_2\}) = \mathbb{P}_{H_0^{\{\hat{C}_1,\hat{C}_2\}}} \bigg(\|\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}\|_2 \geq \|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2 \; \bigg| \; \hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X}), \\ & \pi_{\nu(\hat{C}_1,\hat{C}_2)}^{\perp} \mathbf{X} = \pi_{\nu(\hat{C}_1,\hat{C}_2)}^{\perp} \mathbf{x}, \; \text{dir}(\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}) = \text{dir}(\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}) \bigg). \end{split}$$

The p-value is computationally tractable (Gao et al. 2022)

$$p(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\}) = 1 - \mathbb{F}_p\left(\|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2; \sigma\sqrt{\frac{1}{|\hat{C}_1|} + \frac{1}{|\hat{C}_2|}}, \mathcal{S}_2(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\})\right)$$

where $\mathbb{F}_p(t; c, S)$ denotes the CDF of a $c\chi_p$ random variable truncated to the set S.

Independence setting

$$\begin{split} \text{p-value for $H_0^{\{\hat{C}_1,\hat{C}_2\}}$ when $\mathbf{U} = \mathbf{I}_n$, $\mathbf{\Sigma} = \sigma^2 \mathbf{I}_p$ (Gao et al. 2022)} \\ p(\mathbf{x}; \{\hat{C}_1,\hat{C}_2\}) &= \mathbb{P}_{H_0^{\{\hat{C}_1,\hat{C}_2\}}} \left(\|\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}\|_2 \geq \|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2 \; \middle| \; \hat{C}_1,\hat{C}_2 \in \mathcal{C}(\mathbf{X}), \\ \pi_{\nu(\hat{C}_1,\hat{C}_2)}^{\perp} \mathbf{X} &= \pi_{\nu(\hat{C}_1,\hat{C}_2)}^{\perp} \mathbf{x}, \; \mathrm{dir}(\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}) = \mathrm{dir}(\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}) \right). \end{split}$$

The p-value is computationally tractable (Gao et al. 2022)

$$p(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\}) = 1 - \mathbb{F}_p\bigg(\|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2; \sigma\sqrt{\frac{1}{|\hat{C}_1|} + \frac{1}{|\hat{C}_2|}}, \underbrace{\begin{bmatrix}\mathcal{S}_2(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\})\end{bmatrix}}_{\mathsf{HAC}, \ \mathit{k}\text{-means}}\bigg)$$

where $\mathbb{F}_p(t; c, S)$ denotes the CDF of a $c\chi_p$ random variable truncated to the set S.

Choice of the test statistic

- Let $\mathcal{G}_1, \mathcal{G}_2 \subset \{1, \dots, n\}$ with $\mathcal{G}_1 \cap \mathcal{G}_2 = \emptyset$
- Let

$$\mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2} = \begin{pmatrix} \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\boldsymbol{\rho}} & \overset{|\mathcal{G}_1|}{\cdots} & \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\boldsymbol{\rho}} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\boldsymbol{\rho}} & \overset{|\mathcal{G}_2|}{\cdots} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\boldsymbol{\rho}} \end{pmatrix}.$$

Choice of the test statistic

- Let $\mathcal{G}_1, \mathcal{G}_2 \subset \{1, \dots, n\}$ with $\mathcal{G}_1 \cap \mathcal{G}_2 = \emptyset$
- Let

$$\mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2} = \begin{pmatrix} \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\rho} & \cdots & \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\rho} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\rho} & \cdots & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\rho} \end{pmatrix}.$$

Then, for $X \sim \mathcal{MN}_{n \times p}(\mu, U, \Sigma)$, it holds

$$\bar{X}_{\mathcal{G}_{1}} - \bar{X}_{\mathcal{G}_{2}} \overset{H_{0}^{\left\{\mathcal{G}_{1},\mathcal{G}_{2}\right\}}}{\sim} \, \mathcal{N}_{\textit{P}}\left(0,\boldsymbol{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}\right),$$

where

$$\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2} = \mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2} (\mathbf{U}_{\mathcal{G}_1,\mathcal{G}_2} \otimes \mathbf{\Sigma}) \mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2}^T.$$

Choice of the test statistic

- Let $\mathcal{G}_1, \mathcal{G}_2 \subset \{1, \dots, n\}$ with $\mathcal{G}_1 \cap \mathcal{G}_2 = \emptyset$
- Let

$$\mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2} = \begin{pmatrix} \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\boldsymbol{p}} & \overset{|\mathcal{G}_1|}{\cdots} & \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\boldsymbol{p}} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\boldsymbol{p}} & \overset{|\mathcal{G}_2|}{\cdots} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\boldsymbol{p}} \end{pmatrix}.$$

Then, for $\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma})$, it holds

$$ar{X}_{\mathcal{G}_1} - ar{X}_{\mathcal{G}_2} \overset{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}{\sim} \mathcal{N}_p\left(0,\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}\right),$$

where

$$\textbf{V}_{\mathcal{G}_1,\mathcal{G}_2} = \textbf{D}_{\mathcal{G}_1,\mathcal{G}_2}(\textbf{U}_{\mathcal{G}_1,\mathcal{G}_2} \otimes \textbf{\Sigma}) \textbf{D}_{\mathcal{G}_1,\mathcal{G}_2}^{T}.$$

Consequently,

$$\|\bar{X}_{\mathcal{G}_1} - \bar{X}_{\mathcal{G}_2}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}^2 \overset{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}{\sim} \chi_p^2.$$

with
$$\|x\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} = \sqrt{x^T \mathbf{V}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}^{-1} x}, \quad \forall x \in \mathbb{R}^p.$$

Arbitrary dependence setting

Key idea : Replace the norm $\|\cdot\|_2$ by the *Mahalanobis distance* between the cluster means w.r.t. the null distribution of their difference.

p-value for $H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}$ for arbitrary ${f U}$ and ${f \Sigma}$

$$\begin{split} \rho_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x};\{\hat{C}_{1},\hat{C}_{2}\}) &= \mathbb{P}_{H_{0}^{\{\hat{C}_{1},\hat{C}_{2}\}}} \bigg(\|\bar{X}_{\hat{C}_{1}} - \bar{X}_{\hat{C}_{2}}\|_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}} \geq \|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}} \bigg| \ \hat{\mathbf{C}}_{1},\hat{C}_{2} \in \mathcal{C}(\mathbf{X}), \\ \pi_{\nu(\hat{C}_{1},\hat{C}_{2})}^{\perp}\mathbf{X} &= \pi_{\nu(\hat{C}_{1},\hat{C}_{2})}^{\perp}\mathbf{x}, \ \mathrm{dir}_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\bar{X}_{\hat{C}_{1}} - \bar{X}_{\hat{C}_{2}}) = \mathrm{dir}_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}) \bigg). \end{split}$$

Arbitrary dependence setting

Key idea : Replace the norm $\|\cdot\|_2$ by the *Mahalanobis distance* between the cluster means w.r.t. the null distribution of their difference.

p-value for $H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}$ for arbitrary ${f U}$ and ${f \Sigma}$

$$\begin{split} \rho_{\mathsf{V}_{\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2}}}(\mathbf{x};\{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}\}) &= \mathbb{P}_{H_{0}^{\{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}\}}} \bigg(\|\bar{X}_{\hat{\mathcal{C}}_{1}} - \bar{X}_{\hat{\mathcal{C}}_{2}}\|_{\mathsf{V}_{\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2}}} \geq \|\bar{x}_{\hat{\mathsf{C}}_{1}} - \bar{x}_{\hat{\mathsf{C}}_{2}}\|_{\mathsf{V}_{\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2}}} \bigg| \ \hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2} \in \mathcal{C}(\mathbf{X}), \\ \pi_{\nu(\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2})}^{\perp} \mathbf{X} &= \pi_{\nu(\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2})}^{\perp} \mathbf{x}, \, \operatorname{dir}_{\mathsf{V}_{\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2}}} (\bar{X}_{\hat{\mathsf{C}}_{1}} - \bar{X}_{\hat{\mathsf{C}}_{2}}) = \operatorname{dir}_{\mathsf{V}_{\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2}}} (\bar{x}_{\hat{\mathsf{C}}_{1}} - \bar{x}_{\hat{\mathsf{C}}_{2}}) \bigg). \end{split}$$

Theorem: The p-value is computationally tractable (and controls sel. type I error)

$$\rho_{\mathsf{V}_{\hat{C}_1,\hat{C}_2}}(\mathsf{x};\{\hat{C}_1,\hat{C}_2\}) = 1 - \mathbb{F}_{\textit{p}}\bigg(\|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_{\mathsf{V}_{\hat{C}_1,\hat{C}_2}}; \mathcal{S}_{\mathsf{V}_{\hat{C}_1,\hat{C}_2}}(\mathsf{x},\{\hat{C}_1,\hat{C}_2\}) \bigg)$$

where $\mathbb{F}_p(t;S)$ denotes the CDF of a χ_p random variable truncated to the set S.

Arbitrary dependence setting

Key idea : Replace the norm $\|\cdot\|_2$ by the *Mahalanobis distance* between the cluster means w.r.t. the null distribution of their difference.

p-value for $H_0^{\{\hat{c}_1,\hat{c}_2\}}$ for arbitrary **U** and Σ

$$\begin{split} \rho_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x};\{\hat{C}_{1},\hat{C}_{2}\}) &= \mathbb{P}_{H_{0}^{\{\hat{C}_{1},\hat{C}_{2}\}}} \bigg(\|\bar{X}_{\hat{C}_{1}} - \bar{X}_{\hat{C}_{2}}\|_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}} \geq \|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}} \bigg| \hat{C}_{1},\hat{C}_{2} \in \mathcal{C}(\mathbf{X}), \\ \pi_{\nu(\hat{C}_{1},\hat{C}_{2})}^{\perp}\mathbf{X} &= \pi_{\nu(\hat{C}_{1},\hat{C}_{2})}^{\perp}\mathbf{x}, \, \operatorname{dir}_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\bar{X}_{\hat{C}_{1}} - \bar{X}_{\hat{C}_{2}}) = \operatorname{dir}_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}) \bigg). \end{split}$$

Theorem: The p-value is computationally tractable (and controls sel. type I error)

$$\rho_{\mathsf{V}_{\hat{C}_{1},\,\hat{C}_{2}}}(x;\{\hat{C}_{1},\,\hat{C}_{2}\}) = 1 - \mathbb{F}_{\textit{p}}\bigg(\|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{\mathsf{V}_{\hat{C}_{1},\,\hat{C}_{2}}};\,\, \boxed{\mathcal{S}_{\mathsf{V}_{\hat{C}_{1},\,\hat{C}_{2}}}(x,\{\hat{C}_{1},\,\hat{C}_{2}\})\bigg)}$$
 Scale trans. of \mathcal{S}_{2}

where $\mathbb{F}_p(t;\mathcal{S})$ denotes the CDF of a χ_p random variable truncated to the set \mathcal{S} .

Three dependence settings

- (a) ${\bf U}={\bf I}_n$ and ${\bf \Sigma}$ is the covariance matrix of an AR(1) model, i.e. $\Sigma_{ij}=\sigma^2\rho^{|i-j|}$, with $\sigma=1$ and $\rho=0.5$.
- (b) **U** is a compound symmetry covariance matrix, i.e. $\mathbf{U} = b + (a b)\mathbf{I}_n$, with a = 0.5 and b = 1. Σ is a Toeplitz matrix, i.e. $\Sigma_{ij} = t(|i-j|)$, with t(s) = 1 + 1/(1+s) for $s \in \mathbb{N}$.
- (c) **U** is the covariance matrix of an AR(1) model with $\sigma=1$ and $\rho=0.1$. Σ is a diagonal matrix with diagonal entries given by $\Sigma_{ii}=1+1/i$.

Global null hypothesis

Let n=100, $\mu=\mathbf{0}_{n\times p}$, and set $\mathcal C$ to choose three clusters. Then, randomly select two groups and test for the difference of their means.

Global null hypothesis

Let n=100, $\mu=\mathbf{0}_{n\times p}$, and set $\mathcal C$ to choose three clusters. Then, randomly select two groups and test for the difference of their means.

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of clusters given that they are different.

Let μ divide the n=50 observations into three true clusters, for $\delta \in [4,10.5]$:

$$\mu_{ij} = \begin{cases} -\frac{\delta}{2} & \text{if } i \leq \lfloor \frac{n}{3} \rfloor, \\ \frac{\sqrt{3}\delta}{2} & \text{if } \lfloor \frac{n}{3} \rfloor < i \leq \lfloor \frac{2n}{3} \rfloor, \quad \forall i \in \{1, \dots, n\}, \, \forall j \in \{1, \dots, p = 10\}, \\ \frac{\delta}{2} & \text{otherwise.} \end{cases}$$

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of clusters given that they are different.

Let μ divide the n=50 observations into three true clusters, for $\delta \in [4,10.5]$:

$$\mu_{ij} = \begin{cases} -\frac{\delta}{2} & \text{if } i \leq \lfloor \frac{n}{3} \rfloor, \\ \frac{\sqrt{3}\delta}{2} & \text{if } \lfloor \frac{n}{3} \rfloor < i \leq \lfloor \frac{2n}{3} \rfloor, & \forall i \in \{1, \dots, n\}, \, \forall j \in \{1, \dots, p = 10\}, \\ \frac{\delta}{2} & \text{otherwise.} \end{cases}$$

Independence setting

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$ and consider

$$\hat{\rho}(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\}) = 1 - \mathbb{F}_{\rho}\bigg(\|\bar{\mathbf{x}}_{\hat{C}_1} - \bar{\mathbf{x}}_{\hat{C}_2}\|_2; \hat{\sigma}\sqrt{\frac{1}{|\hat{C}_1|} + \frac{1}{|\hat{C}_2|}}, \mathcal{S}_2(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\})\bigg)$$

Independence setting

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$ and consider

$$\hat{\rho}(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\}) = 1 - \mathbb{F}_{\rho}\left(\|\bar{\mathbf{x}}_{\hat{C}_1} - \bar{\mathbf{x}}_{\hat{C}_2}\|_2; \hat{\sigma}\sqrt{\frac{1}{|\hat{C}_1|} + \frac{1}{|\hat{C}_2|}}, \mathcal{S}_2(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\})\right)$$

Theorem 4 in Gao et al. 2022

If $\hat{\sigma}$ is an estimator of σ such that

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\{\hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)}\}}} \left(\hat{\sigma} \left(\mathbf{X}^{(n)} \right) \geq \sigma \, \middle| \, \hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)} \in \mathcal{C} \left(\mathbf{X}^{(n)} \right) \right) = 1, \qquad (\sigma \text{ over-est})$$

then, for any $\alpha \in [0,1]$, it holds

$$\limsup_{n \to \infty} \mathbb{P}_{H_0^{\left\{\hat{C}_1^{(n)}, \hat{C}_2^{(n)}\right\}}} \left(\hat{\rho}\left(\mathbf{X}^{(n)}; \left\{\hat{C}_1^{(n)}, \hat{C}_2^{(n)}\right\}\right) \leq \alpha \ \middle| \ \hat{C}_1^{(n)}, \hat{C}_2^{(n)} \in \mathcal{C}\left(\mathbf{X}^{(n)}\right) \right) \leq \alpha.$$

Independence setting

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$ and consider

$$\hat{\rho}(\mathbf{x}; \{\hat{C}_{1}, \hat{C}_{2}\}) = 1 - \mathbb{F}_{\rho}\bigg(\|\bar{\mathbf{x}}_{\hat{C}_{1}} - \bar{\mathbf{x}}_{\hat{C}_{2}}\|_{2}; \hat{\sigma}\sqrt{\frac{1}{|\hat{C}_{1}|} + \frac{1}{|\hat{C}_{2}|}}, \mathcal{S}_{2}(\mathbf{x}; \{\hat{C}_{1}, \hat{C}_{2}\})\bigg)$$

Theorem 4 in Gao et al. 2022

If $\hat{\sigma}$ is an estimator of σ such that

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\{\hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)}\}}} \left(\hat{\sigma} \left(\mathbf{X}^{(n)} \right) \geq \sigma \, \middle| \, \hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)} \in \mathcal{C} \left(\mathbf{X}^{(n)} \right) \right) = 1, \qquad (\sigma \text{ over-est})$$

then, for any $\alpha \in [0,1]$, it holds

$$\limsup_{n \to \infty} \mathbb{P}_{H_0^{\left\{\hat{C}_1^{(n)}, \hat{C}_2^{(n)}\right\}}} \left(\hat{\rho}\left(\mathbf{X}^{(n)}; \left\{\hat{C}_1^{(n)}, \hat{C}_2^{(n)}\right\}\right) \leq \alpha \, \middle| \, \hat{C}_1^{(n)}, \hat{C}_2^{(n)} \in \mathcal{C}\left(\mathbf{X}^{(n)}\right) \right) \leq \alpha.$$

ightarrow Gao *et al.* propose an estimator $\hat{\sigma}$ that satisfies (σ over-est) under mild assumptions on $\{\mu^{(n)}\}_{n\in\mathbb{N}}$.

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \mathbf{\Sigma}).$$
 (dep)

Can we estimate both \mathbf{U} and $\mathbf{\Sigma}$?

- Under the general model (dep), the scale matrices ${\bf U}$ and ${\bf \Sigma}$ are non-identifiable.
- We assume that one of the scale matrices is known, and assess the theoretical conditions that allow asymptotic control of the selective type I error when estimating the other one.
- Same reasoning for the estimation of U or Σ :

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}) \Leftrightarrow \mathbf{X}^T \sim \mathcal{MN}_{p \times n}(\boldsymbol{\mu}^T, \boldsymbol{\Sigma}, \mathbf{U}).$$

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \mathbf{\Sigma}).$$
 (dep)

Can we estimate both \mathbf{U} and $\mathbf{\Sigma}$?

- Under the general model (dep), the scale matrices U and Σ are non-identifiable.
- We assume that one of the scale matrices is known, and assess the theoretical conditions that allow asymptotic control of the selective type I error when estimating the other one.
- Same reasoning for the estimation of U or Σ:

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \mathbf{\Sigma}) \Leftrightarrow \mathbf{X}^T \sim \mathcal{MN}_{p \times n}(\boldsymbol{\mu}^T, \mathbf{\Sigma}, \mathbf{U}).$$

→ How to extend the notion of over-estimation to matrices?

How to *over*-estimate a covariance matrix

We consider the natural extension of \geq to the space of Hermitian matrices.

Loewner partial order ≥

Let A, B be two Hermitian matrices. $A \succeq B$ if and only if A - B is positive semidefinite (PSD).

Remark : If $A = \hat{\sigma} I_p$ and $B = \sigma I_p$, the condition $A \succeq B$ becomes $\hat{\sigma} \geq \sigma$.

How to *over*-estimate a covariance matrix

We consider the natural extension of \geq to the space of Hermitian matrices.

Loewner partial order ≥

Let A, B be two Hermitian matrices. $A \succeq B$ if and only if A - B is positive semidefinite (PSD).

Remark : If $A = \hat{\sigma} \mathbf{I}_p$ and $B = \sigma \mathbf{I}_p$, the condition $A \succeq B$ becomes $\hat{\sigma} \geq \sigma$.

Graphical interpretation

Every PSD matrix A defines an ellipsoid $\mathcal{E}_A = \{x \in \mathbb{R}^d : x^T A x \leq 1\}$, where

- The eigenvectors of A are the principal axes of E_A,
- The eigenvalues of A are the squared lengths of the principal axes of \mathcal{E}_A .

Then, it holds $\mathcal{E}_A \subset \mathcal{E}_B \Leftrightarrow A \leq B$.

Over-estimation of Σ for known U

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$ and consider

$$\hat{\rho}_{\hat{\mathbf{V}}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x};\{\hat{C}_{1},\hat{C}_{2}\}) = 1 - \mathbb{F}_{p}\bigg(\|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{\hat{\mathbf{V}}_{\hat{C}_{1},\hat{C}_{2}}};\mathcal{S}_{\hat{\mathbf{V}}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x},\{\hat{C}_{1},\hat{C}_{2}\})\bigg)$$

where
$$\hat{\mathbf{V}}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2} = \mathbf{D}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}(\mathbf{U}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}\otimes\hat{\mathbf{\Sigma}}(\mathbf{x}))\mathbf{D}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}^{\mathcal{T}}.$$

Over-estimation of Σ for known U

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$ and consider

$$\hat{\rho}_{\hat{\mathbf{V}}_{\hat{C}_1,\hat{C}_2}}(\mathbf{x};\{\hat{C}_1,\hat{C}_2\}) = 1 - \mathbb{F}_p\bigg(\|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_{\hat{\mathbf{V}}_{\hat{C}_1,\hat{C}_2}};\mathcal{S}_{\hat{\mathbf{V}}_{\hat{C}_1,\hat{C}_2}}(\mathbf{x},\{\hat{C}_1,\hat{C}_2\})\bigg)$$

where $\hat{\mathbf{V}}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2} = \mathbf{D}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}(\mathbf{U}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}\otimes\hat{\mathbf{\Sigma}}(\mathbf{x}))\mathbf{D}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}^T$.

Theorem (extension of Theorem 4 in Gao et al. 2022)

If $\hat{\Sigma}(X^{(n)})$ is a positive definite estimator of Σ such that

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\left\{\hat{\mathcal{L}}_1^{(n)}, \hat{\mathcal{L}}_2^{(n)}\right\}}} \left(\hat{\boldsymbol{\Sigma}}\left(\boldsymbol{X}^{(n)}\right) \succeq \boldsymbol{\Sigma} \,\middle|\, \hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)} \in \mathcal{C}\left(\boldsymbol{X}^{(n)}\right)\right) = 1,$$

then, for any $\alpha \in [0,1]$, we have

$$\limsup_{n \to \infty} \mathbb{P}_{H_0^{\{\hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)}\}}} \left(p_{\hat{\mathbf{V}}_{\hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)}}} \left(\mathbf{X}^{(n)}; \left\{ \hat{C}_1^{(n)}, \hat{C}_2^{(n)} \right\} \right) \leq \alpha \, \middle| \, \hat{C}_1^{(n)}, \hat{C}_2^{(n)} \in \mathcal{C} \left(\mathbf{X}^{(n)} \right) \right) \leq \alpha.$$

Asymptotic over-estimator of Σ

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma}).$$

For a given estimator $\hat{\Sigma}(\mathbf{X}^{(n)})$ of Σ , assessing whether $\hat{\Sigma}(\mathbf{X}^{(n)}) \succeq \Sigma$ asymptotically strongly depends on how the sequences $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ grow up to infinity.

Asymptotic over-estimator of Σ

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$$
.

For a given estimator $\hat{\Sigma}(X^{(n)})$ of Σ , assessing whether $\hat{\Sigma}(X^{(n)}) \succeq \Sigma$ asymptotically strongly depends on how the sequences $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{U^{(n)}\}_{n\in\mathbb{N}}$ grow up to infinity.

Estimator candidate

$$\hat{\mathbf{\Sigma}} = \hat{\mathbf{\Sigma}} (\mathbf{X}) = \frac{1}{n-1} (\mathbf{X} - \bar{\mathbf{X}})^{\mathsf{T}} \mathbf{U}^{-1} (\mathbf{X} - \bar{\mathbf{X}}), \qquad \text{(estimator)}$$

where $\bar{\mathbf{X}}$ is a $n \times p$ matrix having as rows the mean across rows of \mathbf{X} .

Asymptotic over-estimator of Σ

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$$
.

For a given estimator $\hat{\Sigma}\left(\mathbf{X}^{(n)}\right)$ of Σ , assessing whether $\hat{\Sigma}\left(\mathbf{X}^{(n)}\right) \succeq \Sigma$ asymptotically strongly depends on how the sequences $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ grow up to infinity.

Estimator candidate

$$\hat{\mathbf{\Sigma}} = \hat{\mathbf{\Sigma}} (\mathbf{X}) = \frac{1}{n-1} (\mathbf{X} - \bar{\mathbf{X}})^{\mathsf{T}} \mathbf{U}^{-1} (\mathbf{X} - \bar{\mathbf{X}}), \qquad \text{(estimator)}$$

where $\bar{\mathbf{X}}$ is a $n \times p$ matrix having as rows the mean across rows of \mathbf{X} .

 \to Assumptions on $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ to ensure that (estimator) a.s. asymptotically overestimates Σ ?

Assumptions on $\mu^{(n)}$

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all $n \in \mathbb{N}$, there are exactly K^* distinct mean vectors among the first n observations, i.e.

$$\left\{\mu_i^{(n)}\right\}_{i=1,\ldots,n} = \left\{\theta_1,\ldots,\theta_{K^*}\right\}.$$

Besides, the proportion of the first n observations that have mean vector θ_k converges to $\pi_k > 0$, i.e.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\mu_i^{(n)} = \theta_k\} = \pi_k,$$
 (as-1)

for all $k \in \{1, \dots, K^*\}$, where $\sum_{k=1}^{K^*} \pi_k = 1$.

Assumptions on $\mu^{(n)}$

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all $n \in \mathbb{N}$, there are exactly K^* distinct mean vectors among the first n observations, i.e.

$$\left\{\mu_{i}^{(n)}\right\}_{i=1,...,n} = \{\theta_{1},...,\theta_{K^{*}}\}.$$

Besides, the proportion of the first n observations that have mean vector θ_k converges to $\pi_k > 0$, i.e.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\mu_i^{(n)} = \theta_k\} = \pi_k,$$
 (as-1)

for all $k \in \{1, \dots, K^*\}$, where $\sum_{k=1}^{K^*} \pi_k = 1$.

 \diamond If $\mathbf{U}^{(n)} = \mathbf{I}_n$, this is the only requirement to ensure asymp. over-estimation of Σ .

Assumptions on $\mu^{(n)}$

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all $n \in \mathbb{N}$, there are exactly K^* distinct mean vectors among the first n observations, i.e.

$$\left\{\mu_i^{(n)}\right\}_{i=1,\ldots,n} = \left\{\theta_1,\ldots,\theta_{K^*}\right\}.$$

Besides, the proportion of the first n observations that have mean vector θ_k converges to $\pi_k > 0$, i.e.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\mu_i^{(n)} = \theta_k\} = \pi_k,$$
 (as-1)

for all $k \in \{1, ..., K^*\}$, where $\sum_{k=1}^{K^*} \pi_k = 1$.

- \diamond If $\mathbf{U}^{(n)} = \mathbf{I}_n$, this is the only requirement to ensure asymp. over-estimation of Σ .
- \diamond For general $\mathbf{U}^{(n)}$, the quantities

$$\frac{1}{n} \sum_{l,s=1}^{n} \left(U^{(n)} \right)_{ls}^{-1} \mathbb{1} \{ \mu_{l}^{(n)} = \theta_{k} \} \mathbb{1} \{ \mu_{s}^{(n)} = \theta_{k'} \}$$

are also required to **converge with explicit limit** as *n* tends to infinity.

One more assumption on $\mu^{(n)}$ for non-diagonal $\mathbf{U}^{(n)}$

Assumption on $\mu^{(n)}$ for non-diagonal $\mathbf{U}^{(n)}$ (Assumption 2)

If $\mathbf{U}^{(n)}$ is non-diagonal for all $n \in \mathbb{N}$, for any $k, k' \in \{1, \dots, K^*\}$, the proportion of the first n observations at distance $r \geq 1$ in $\mathbf{X}^{(n)}$ having means θ_k and $\theta_{k'}$ converges, and its limit converges to $\pi_k \pi_{k'}$ when the lag r tends to infinity. More precisely,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n-r} \mathbb{1}\{\mu_i = \theta_k\} \, \mathbb{1}\{\mu_{i+r} = \theta_{k'}\} = \pi_{kk'}^r \underset{r \to \infty}{\longrightarrow} \pi_k \, \pi_{k'}. \tag{as-2}$$

We are asking the proportion of pairs of observations having a given a pair of means to approach the product of individual proportions (as-1) when both observations are far away in $\mathbf{X}^{(n)}$.

Assumptions on the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Assumption on $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ (Assumption 3)

Every superdiagonal of $(\mathbf{U}^{(n)})^{-1}$ defines asymptotically a convergent sequence, whose limits sum up to a real value. More precisely, for any $i \in \mathbb{N}$ and any $r \geq 0$,

$$\lim_{n\to\infty} \left(U^{(n)}\right)_{i\,i+r}^{-1} = \Lambda_{i\,i+r}, \quad \text{where} \quad \lim_{i\to\infty} \Lambda_{i\,i+r} = \lambda_r \quad \text{and} \quad \sum_{r=0}^\infty \lambda_r = \lambda \in \mathbb{R}.$$

Moreover, for each $r \ge 0$, the sequence $\{(U^{(n)})_{i,i+r}^{-1}\}_{n \in \mathbb{N}}$ satisfies any of the following conditions :

- (i) It is dominated by a summable sequence i.e. $\left| \left(U^{(n)} \right)_{i\,i+r}^{-1} \Lambda_{i\,i+r} \right| \leq \alpha_i \,\,\forall\,\, n \in \mathbb{N},$ with $\{\alpha_i\}_{i=1}^{\infty} \in \ell_1$,
- (ii) For each $i \in \mathbb{N}$, it is non-decreasing or non-increasing.

Some admissible dependence models for $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Remark 1 (Diagonal)

Let $\mathbf{U}^{(n)}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. If the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is convergent, then the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Some admissible dependence models for $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Remark 1 (Diagonal)

Let $\mathbf{U}^{(n)}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. If the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is convergent, then the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let $a,b\in\mathbb{R}$ with $b\neq a\geq 0$. If $\mathbf{U}^{(n)}=b\mathbf{1}_{n\times n}+(a-b)\mathbf{I}_n$, where $\mathbf{1}_{n\times n}$ is a $n\times n$ matrix of ones, then $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Some admissible dependence models for $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Remark 1 (Diagonal)

Let $\mathbf{U}^{(n)}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. If the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is convergent, then the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let $a,b\in\mathbb{R}$ with $b\neq a\geq 0$. If $\mathbf{U}^{(n)}=b\mathbf{1}_{n\times n}+(a-b)\mathbf{I}_n$, where $\mathbf{1}_{n\times n}$ is a $n\times n$ matrix of ones, then $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Remark 3 (AR(P))

Let $\mathbf{U}^{(n)}$ be the covariance matrix of an auto-regressive process of order $P \geq 1$ such that, if P > 2, $\beta_k \beta_{k'} \geq 0$ for all $k, k' \in \{1, \dots, P\}$. Then, the sequence $\{\mathbf{U}^{(n)}\}_{n \in \mathbb{N}}$ satisfies Assumption 3.

Estimation of Σ for known U

Final results

Proposition

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$, whose parameters $\boldsymbol{\mu}^{(n)}$, $\mathbf{U}^{(n)}$ satisfy Assumptions 1, 2 and 3 for some $K^* > 1$. Let $\hat{\boldsymbol{\Sigma}}$ be the estimator defined in (estimator). Then,

$$\lim_{n \to \infty} \mathbb{P}\left(\hat{\boldsymbol{\Sigma}}\left(\boldsymbol{X}^{(n)}\right) \succeq \boldsymbol{\Sigma}\right) = 1.$$

Estimation of Σ for known U

Final results

Proposition

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$, whose parameters $\boldsymbol{\mu}^{(n)}$, $\mathbf{U}^{(n)}$ satisfy Assumptions 1, 2 and 3 for some $K^* > 1$. Let $\hat{\boldsymbol{\Sigma}}$ be the estimator defined in (estimator). Then,

$$\lim_{n \to \infty} \mathbb{P}\left(\hat{\boldsymbol{\Sigma}}\left(\boldsymbol{\mathsf{X}}^{(n)}\right) \succeq \boldsymbol{\Sigma}\right) = 1.$$

Proposition

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$, whose parameters $\boldsymbol{\mu}^{(n)}, \ \mathbf{U}^{(n)}$ satisfy Assumptions 1, 2 and 3 for some $K^* > 1$. Let $\mathbf{x}^{(n)}$ be a realization of $\mathbf{X}^{(n)}$ and $\hat{C}_1^{(n)}, \ \hat{C}_2^{(n)}$ a pair of clusters estimated from $\mathbf{x}^{(n)}$. Let $\mathbf{Y}^{(n)}$ an independent and identically distributed copy of $\mathbf{X}^{(n)}$. Then,

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\left\{\hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)}\right\}}} \left(\hat{\boldsymbol{\Sigma}}\left(\boldsymbol{Y}^{(n)}\right) \succeq \boldsymbol{\Sigma} \,\middle|\, \hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)} \in \mathcal{C}\left(\boldsymbol{X}^{(n)}\right)\right) = 1.$$

Numerical simulations

Let

$$X \sim \mathcal{MN}_{n \times p}(\mu, \mathbf{U}, \mathbf{\Sigma}).$$
 (dep)

For n=500 and p=10, we simulated K=10000 samples drawn from (dep) in settings (a), (b) and (c) with μ being divided into two clusters :

$$\mu_{ij} = \begin{cases} \frac{\delta}{j} & \text{if } i \leq \frac{n}{2}, \\ -\frac{\delta}{j} & \text{otherwise,} \end{cases} \quad \forall i \in \{1, \dots, n\}, \, \forall j \in \{1, \dots, p\},$$

with $\delta \in \{4,6\}$.

For HAC with average linkage we set $\mathcal C$ to chose three clusters. Then, we kept the samples for which (null) held when comparing two randomly selected clusters.

Numerical simulations

Hierarchical clustering of Hst5

Hst5 ensemble simulated with Flexible-Meccano (FM) ² and filtered by SAXS data³

- n = 2000 conformations
- Featured by pairwise Euclidean distances of 24 amino acids $\Rightarrow p = 276$
- No temporal evolution in FM simulation : $\mathbf{U}^{(n)} = \mathbf{I}_n$
- Σ unknown to be estimated

Strategy

Hierarchical clustering with average linkage, find 6 clusters.

^{2.} Ozenne et al. Bioinformatics 2012, Bernadó et al. PNAS 2005. 3. Sagar et al. J. Chem. Theory Comput 2021.

Hierarchical clustering of Hst5

Pairwise p-values corrected for multiplicity (BH)

Cluster	1	2	3	4	5
2	2.187589·10 ⁻⁴				
3	$3.039844 \cdot 10^{-11}$	$1.41 \cdot 10^{-3}$			
4	$1.070993 \cdot 10^{-10}$	0.300540	$2.98464 \cdot 10^{-4}$		
5	$3.038979 \cdot 10^{-16}$	0.093018	$6.015797 \cdot 10^{-5}$	0.105446	
6	1.729616·10 ⁻⁶	0.010612	9.290826·10 ⁻⁹	$2.105 \cdot 10^{-3}$	5.624624·10 ⁻⁵

Thank you for your attention!

- Preprint : https://arxiv.org/abs/2310.11822,
- R package PCIdep at https://github.com/gonzalez-delgado/PCIdep/.

References

- Independence setting: L. L. Gao, J. Bien, and D. Witten. Selective inference for hierarchical clustering. Journal of the American Statistical Association, 0(0):1–11, 2022.
- Extension to k-means: Y. T. Chen and D. M. Witten. Selective inference for k-means clustering. Journal
 of Machine Learning Research, 24(152):1–41, 2023.
- Extension to feature-level test: B. Hivert, D. Agniel, R. Thiébaut, and B. P. Hejblum. Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data. Comput. Statist. Data Anal., 193:107916, May 2024.
- Alternative estimation of \(\sigma : Y. \) Yun and R. Foygel Barber. Selective inference for clustering with unknown variance. arXiv.2301.12999, 2023.

https://gonzalez-delgado.github.io/

Truncation sets

Notation

$$\nu(\hat{C}_1, \hat{C}_2)_i = \mathbb{1}\{i \in \hat{C}_1\}/|\hat{C}_1| - \mathbb{1}\{i \in \hat{C}_2\}/|\hat{C}_2|. \tag{1}$$

$$dir(u) = u/||u||_2 \mathbb{1}\{u \neq 0\}$$
 (2)

$$\mathrm{dir}_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}}(u) = u/\|u\|_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}} \mathbb{1}\{u \neq 0\} \tag{3}$$

Truncation sets

Independence setting

$$\hat{S}_2 = \{ \phi \ge 0 : \hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{x}_2'(\phi)) \}, \tag{4}$$

$$\mathbf{x}_{2}'(\phi) = \mathbf{x} + \frac{\nu(\hat{C}_{1}, \hat{C}_{2})}{\|\nu(\hat{C}_{1}, \hat{C}_{2})\|_{2}^{2}} \left(\phi - \|\bar{\mathbf{x}}_{\hat{C}_{1}} - \bar{\mathbf{x}}_{\hat{C}_{2}}\|_{2}\right) \operatorname{dir}(\bar{\mathbf{x}}_{\hat{C}_{1}} - \bar{\mathbf{x}}_{\hat{C}_{2}}), \tag{5}$$

Arbitrary dependence setting

$$\hat{\mathcal{S}}_{\mathsf{V}_{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}}} = \left\{ \phi \geq 0 : \hat{\mathcal{C}}_{1}, \hat{\mathcal{C}}_{2} \in \mathcal{C}\left(\mathsf{x}'_{\mathsf{V}_{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}}}(\phi)\right) \right\}, \quad (6)$$

$$\mathbf{x}'_{\mathsf{V}_{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}}}(\phi) = \mathbf{x} + \frac{\nu(\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2})}{\|\nu(\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2})\|_{2}^{2}} \left(\phi - \|\bar{\mathbf{x}}_{\hat{\mathcal{C}}_{1}} - \bar{\mathbf{x}}_{\hat{\mathcal{C}}_{2}}\|_{\mathsf{V}_{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}}}\right) \operatorname{dir}_{\mathsf{V}_{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}}}(\bar{\mathbf{x}}_{\hat{\mathcal{C}}_{1}} - \bar{\mathbf{x}}_{\hat{\mathcal{C}}_{2}}). \tag{7}$$

Lemma (scale transformation)

$$\hat{S}_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}} = \frac{\|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}}}{\|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{2}} \hat{S}_{2}$$
(8)

Truncation set and conditioning set

Let

$$\hat{M}_{12}(\mathbf{X}) = M_{12}(\mathbf{X}; \{\hat{C}_1, \hat{C}_2\}) = \{\hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X})\},\tag{9}$$

and

$$\hat{T}_{12}(\mathbf{X}) = T_{12}(\mathbf{X}; {\hat{C}_1, \hat{C}_2}) =
\left\{ \boldsymbol{\pi}_{\nu(\hat{C}_1, \hat{C}_2)}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\nu(\hat{C}_1, \hat{C}_2)}^{\perp} \mathbf{x}, \operatorname{dir}_{\mathbf{V}_{\hat{C}_1, \hat{C}_2}} \left(\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2} \right) = \operatorname{dir}_{\mathbf{V}_{\hat{C}_1, \hat{C}_2}} \left(\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2} \right) \right\}.$$
(10)

The event $\hat{M}_{12}(\mathbf{X}) \cap \hat{T}_{12}(\mathbf{X})$ is the maximal event for which any analytically tractable p-value has been shown to control the sel. type I error under the general model (dep).

Truncation set and conditioning set

We have

$$\rho_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x}; \{\hat{C}_{1},\hat{C}_{2}\}) = \mathbb{P}_{H_{0}^{\{\hat{C}_{1},\hat{C}_{2}\}}} \left(\|\bar{X}_{\hat{C}_{1}} - \bar{X}_{\hat{C}_{2}}\|_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}} \ge \|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}} \right)
\hat{M}_{12}(\mathbf{X}) \cap \hat{T}_{12}(\mathbf{X}) \right). (11)$$

and we can write

$$S_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x}; \{\hat{C}_{1},\hat{C}_{2}\}) = \left\{ \phi \in \mathbb{R} : \hat{M}_{12} \left(\mathbf{x}'_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\phi) \right) \right\}, \tag{12}$$

so that

$$p_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x};\{\hat{C}_{1},\hat{C}_{2}\}) = 1 - \mathbb{F}_{P}\left(\|\bar{\mathbf{x}}_{\hat{C}_{1}} - \bar{\mathbf{x}}_{\hat{C}_{2}}\|_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}}, \left\{\phi \geq 0 : \hat{M}_{12}\left(\mathbf{x}'_{\mathbf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\phi)\right)\right\}\right). \tag{13}$$

Truncation set and conditioning set

Finer conditioning sets

Theorem

Let
$$\emptyset \neq E_{12}(\mathbf{X}) \subset M_{12}(\mathbf{X}) = M_{12}(\mathbf{X}; \{\mathcal{G}_1, \mathcal{G}_2\}), T_{12}(\mathbf{X}) = T_{12}(\mathbf{X}; \{\mathcal{G}_1, \mathcal{G}_2\})$$
 and

$$p_{\mathbf{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}}(\mathbf{x};\{\mathcal{G}_{1},\mathcal{G}_{2}\};E_{12}) = \mathbb{P}_{H_{0}^{\{\mathcal{G}_{1},\mathcal{G}_{2}\}}} \left(\|\bar{X}_{\mathcal{G}_{1}} - \bar{X}_{\mathcal{G}_{2}}\|_{\mathbf{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}} \ge \|\bar{x}_{\mathcal{G}_{1}} - \bar{x}_{\mathcal{G}_{2}}\|_{\mathbf{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}} \right| E_{12}(\mathbf{X}) \cap T_{12}(\mathbf{X})).$$

Then, $p_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x}; \{\mathcal{G}_1,\mathcal{G}_2\}; E_{12})$ is a *p*-value that controls the selective type I error for clustering at level α . Furthermore, it satisfies

$$p_{\boldsymbol{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}}(\boldsymbol{x};\{\mathcal{G}_{1},\mathcal{G}_{2}\};E_{12}) = 1 - \mathbb{F}_{\rho}\left(\|\bar{\boldsymbol{x}}_{\mathcal{G}_{1}} - \bar{\boldsymbol{x}}_{\mathcal{G}_{2}}\|_{\boldsymbol{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}}, \, \left\{\phi \geq 0 \, : \, E_{12}\left(\boldsymbol{x}'_{\boldsymbol{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}}(\phi)\right)\right\}\right).$$

Lemma (scale transformation)

$$E_{12}\left(\mathbf{x}_{\mathbf{V}_{\hat{c}_{1},\hat{c}_{2}}}'(\phi)\right) = \frac{\|\bar{\mathbf{x}}_{\hat{c}_{1}} - \bar{\mathbf{x}}_{\hat{c}_{2}}\|_{\mathbf{V}_{\hat{c}_{1},\hat{c}_{2}}}}{\|\bar{\mathbf{x}}_{\hat{c}_{1}} - \bar{\mathbf{x}}_{\hat{c}_{2}}\|_{2}} E_{12}\left(\mathbf{x}'(\phi)\right). \tag{14}$$