第一学期期末高等数学试卷

一、解答下列各题

(本大题共 16 小题,总计 80 分)

1、(本小题 5 分)

求极限
$$\lim_{x\to 2} \frac{x^3 - 12x + 16}{2x^3 - 9x^2 + 12x - 4}$$

2、(本小题 5 分)

$$\Re \int \frac{x}{(1+x^2)^2} dx.$$

3、(本小题 5 分)

求极限 $\lim_{x\to\infty} \arctan x \cdot \arcsin \frac{1}{x}$

4、(本小题 5 分)

求
$$\int \frac{x}{1-x} dx$$
.

5、(本小题 5 分)

$$\vec{x}\frac{d}{dx}\int_0^{x^2}\sqrt{1+t^2}\,dt.$$

6、(本小题 5 分)

求
$$\int \cot^6 x \cdot \csc^4 x \, dx$$
.

7、(本小题 5 分)

$$\Re \int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{x^2} \cos \frac{1}{x} dx.$$

8、(本小题 5 分)

设
$$\begin{cases} x = e^t \cos t^2 \\ y = e^{2t} \sin t \end{cases}$$
 确定了函数 $y = y(x)$,求 $\frac{dy}{dx}$.

9、(本小题 5 分)

$$\Re \int_0^3 x \sqrt{1+x} \, dx.$$

10、(本小题 5 分)

求函数
$$y = 4 + 2x - x^2$$
的单调区间

11、(本小题 5 分)

$$\Re \int_0^{\frac{\pi}{2}} \frac{\sin x}{8 + \sin^2 x} dx.$$

12、(本小题 5 分)

设
$$x(t) = e^{-kt} (3\cos\omega t + 4\sin\omega t)$$
, 求 dx .

13、(本小题 5 分)

设函数
$$y = y(x)$$
由方程 $y^2 + \ln y^2 = x^6$ 所确定,求 $\frac{dy}{dx}$.

14、(本小题 5 分)

求函数
$$y = 2e^x + e^{-x}$$
的极值

15、(本小题 5 分)

求极限
$$\lim_{x\to\infty} \frac{(x+1)^2 + (2x+1)^2 + (3x+1)^2 + \dots + (10x+1)^2}{(10x-1)(11x-1)}$$

16、(本小题 5 分)

$$\Re \int \frac{\cos 2x}{1+\sin x \cos x} \, \mathrm{d} \, x.$$

二、解答下列各题

(本大题共2小题,总计14分)

1、(本小题 7 分)

某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围沿, 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省.

2、(本小题 7 分)

求由曲线 $y = \frac{x^2}{2}$ 和 $y = \frac{x^3}{8}$ 所围成的平面图形绕ox轴旋转所得的旋转体的体积.

三、解答下列各题

(本大题6分)

设
$$f(x) = x(x-1)(x-2)(x-3)$$
,证明 $f'(x) = 0$ 有且仅有三个实根.

一学期期末高数考试(答案)

一、解答下列各题

(本大题共 16 小题,总计 77 分)

1、(本小题 3 分)

解: 原式 =
$$\lim_{x \to 2} \frac{3x^2 - 12}{6x^2 - 18x + 12}$$

= $\lim_{x \to 2} \frac{6x}{12x - 18}$
= 2

2、(本小题 3 分)

$$\int \frac{x}{(1+x^2)^2} dx$$

$$= \frac{1}{2} \int \frac{d(1+x^2)}{(1+x^2)^2}$$

$$= -\frac{1}{2} \frac{1}{1+x^2} + c.$$

3、(本小题 3 分)

因为
$$\left|\arctan x\right| < \frac{\pi}{2} \ \overline{\prod} \lim_{x \to \infty} \arcsin \frac{1}{x} = 0$$

故
$$\lim_{x \to \infty} \arctan x \cdot \arcsin \frac{1}{x} = 0$$

4、(本小题 3 分)

$$\int \frac{x}{1-x} dx$$

$$= -\int \frac{1-x-1}{1-x} dx$$

$$= -\int dx + \int \frac{dx}{1-x}$$

$$= -x - \ln|1-x| + c.$$

5、(本小题 3 分)

原式 =
$$2x\sqrt{1+x^4}$$

6、(本小题 4 分)

$$\int \cot^6 x \cdot \csc^4 x \, dx$$
= $-\int \cot^6 x (1 + \cot^2 x) \, d(\cot x)$
= $-\frac{1}{7} \cot^7 x - \frac{1}{9} \cot^9 x + c$.

7、(本小题 4 分)

原式 =
$$-\int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \cos \frac{1}{x} d(\frac{1}{x})$$

= $-\sin \frac{1}{x} \Big|_{\frac{1}{\pi}}^{\frac{2}{\pi}}$

$$= -1$$

8、(本小题 4 分)

解:
$$\frac{dy}{dx} = \frac{e^{2t} (2\sin t + \cos t)}{e^t (\cos t^2 - 2t\sin t^2)}$$
$$= \frac{e^t (2\sin t + \cos t)}{(\cos t^2 - 2t\sin t^2)}$$

9、(本小题 4 分)

令
$$\sqrt{1+x} = u$$

原式 = $2\int_{1}^{2} (u^{4} - u^{2}) du$

= $2(\frac{u^{5}}{5} - \frac{u^{3}}{3})\Big|_{1}^{2}$

= $\frac{116}{15}$

10、(本小题 5 分)

$$y' = 2 - 2x = 2(1 - x)$$

$$\triangleq x = 1, y' = 0$$

当
$$x < 1$$
, $y' > 0$ 函数单调增区间为 $(-\infty,1]$

当
$$x > 1$$
, $y' < 0$ 函数的单调减区间为 $[1,+\infty)$

11、(本小题 5 分)

原式 =
$$-\int_0^{\frac{\pi}{2}} \frac{d\cos x}{9 - \cos^2 x}$$

= $-\frac{1}{6} \ln \frac{3 + \cos x}{3 - \cos x} \Big|_0^{\frac{\pi}{2}}$
= $\frac{1}{6} \ln 2$

12、(本小题 6 分)

$$dx = x'(t)dt$$

$$= e^{-kt} [(4\omega - 3k)\cos \omega t - (4k + 3\omega)\sin \omega t] dt$$

13、(本小题 6 分)

$$2yy' + \frac{2y'}{y} = 6x^5$$

$$y' = \frac{3yx^5}{v^2 + 1}$$

14、(本小题 6 分)

定义域 $(-\infty, +\infty)$. 且连续

$$y' = 2e^{-x}(e^{2x} - \frac{1}{2})$$

驻点: $x = \frac{1}{2}\ln\frac{1}{2}$
由于 $y'' = 2e^{x} + e^{-x} > 0$
故函数有极小值,, $y(\frac{1}{2}\ln\frac{1}{2}) = 2\sqrt{2}$

15、(本小题 8 分)

原式 =
$$\lim_{x \to \infty} \frac{(1 + \frac{1}{x})^2 + (2 + \frac{1}{x})^2 + (3 + \frac{1}{x})^2 + \dots + (10 + \frac{1}{x})^2}{(10 - \frac{1}{x})(11 - \frac{1}{x})}$$

$$= \frac{10 \times 11 \times 21}{6 \times 10 \times 11}$$

$$= \frac{7}{2}$$

16、(本小题 10 分)

$$\Re : \int \frac{\cos 2x}{1 + \sin x \cos x} dx = \int \frac{\cos 2x}{1 + \frac{1}{2} \sin 2x} dx$$

$$= \int \frac{d(\frac{1}{2} \sin 2x + 1)}{1 + \frac{1}{2} \sin 2x}$$

$$= \ln \left| 1 + \frac{1}{2} \sin 2x \right| + c$$

二、解答下列各题

(本大题共2小题,总计13分)

1、(本小题 5 分)

设晒谷场宽为x,则长为 $\frac{512}{x}$ 米,新砌石条围沿的总长为

$$L = 2x + \frac{512}{x}$$
 $(x > 0)$
 $L' = 2 - \frac{512}{x^2}$ 唯一驻点 $x = 16$
 $L'' = \frac{1024}{x^3} > 0$ 即 $x = 16$ 为极小值点

故晒谷场宽为16米,长为 $\frac{512}{16}$ =32米时,可使新砌石条围沿

所用材料最省

2、(本小题 8 分)

解:
$$\frac{x^2}{2} = \frac{x^3}{8},8x^2 = 2x^3 \quad x_1 = 0, x_1 = 4.$$

$$V_x = \pi \int_0^4 \left[\left(\frac{x^2}{2} \right)^2 - \left(\frac{x^3}{8} \right)^2 \right] dx = \pi \int_0^4 \left(\frac{x^4}{4} - \frac{x^6}{64} \right) dx$$

$$= \pi \left(\frac{1}{4} \cdot \frac{1}{5} x^5 - \frac{1}{64} \cdot \frac{1}{7} x^7 \right) \Big|_0^4$$

$$=\pi 4^4 (\frac{1}{5} - \frac{1}{7}) = \frac{512}{35} \pi$$

三、解答下列各题

(本大题10分)

证明: f(x)在($-\infty$, $+\infty$)连续,可导,从而在[0,3];连续,可导.

$$\nabla f(0) = f(1) = f(2) = f(3) = 0$$

则分别在[0,1],[1,2],[2,3]上对f(x)应用罗尔定理得,至少存在

$$\xi_1 \in (0,1), \xi_2 \in (1,2), \xi_3 \in (2,3)$$
 $\notin f'(\xi_1) = f'(\xi_2) = f'(\xi_3) = 0$

即f'(x) = 0至少有三个实根,又f'(x) = 0,是三次方程,它至多有三个实根, 由上述f'(x)有且仅有三个实根

高等数学(上)试题及答案

一、 填空题 (每小题 3 分, 本题共 15 分)

1.
$$\lim_{x\to 0} (1+3x)^{\frac{2}{x}} = \underline{\qquad}$$
.

2、 当
$$k$$
_____时, $f(x) = \begin{cases} e^x & x \le 0 \\ x^2 + k & x > 0 \end{cases}$ 在 $x = 0$ 处连续.

3、设
$$y = x + \ln x$$
 ,则 $\frac{dx}{dy} =$

4、曲线
$$y = e^x - x$$
 在点 (0, 1) 处的切线方程是______

5、若
$$\int f(x)dx = \sin 2x + C$$
, C 为常数,则 $f(x) =$ ______。

二、 单项选择题 (每小题 3 分, 本题共 15 分)

1、若函数
$$f(x) = \frac{|x|}{x}$$
,则 $\lim_{x \to 0} f(x) = ($)

B、-1 C、1 D、不存在

2、下列变量中,是无穷小量的为()

$$A. \ln \frac{1}{x} (x \to 0^+)$$

A. $\ln \frac{1}{r}(x \to 0^+)$ B. $\ln x(x \to 1)$ C. $\cos x(x \to 0)$ D. $\frac{x-2}{r^2-4}(x \to 2)$

- 3、满足方程 f'(x) = 0 的 x 是函数 y = f(x) 的 ().

 - A. 极大值点 B. 极小值点 C. 驻点 D. 间断点

4、下列无穷积分收敛的是()

A,
$$\int_0^{+\infty} \sin x dx$$

B,
$$\int_0^{+\infty} e^{-2x} dx$$

$$C \cdot \int_0^{+\infty} \frac{1}{x} dx$$

A,
$$\int_0^{+\infty} \sin x dx$$
 B, $\int_0^{+\infty} e^{-2x} dx$ C, $\int_0^{+\infty} \frac{1}{x} dx$ D, $\int_0^{+\infty} \frac{1}{\sqrt{x}} dx$

5、设空间三点的坐标分别为 M(1, 1, 1)、A(2, 2, 1)、B(2, 1, 2)。则 ∠AMB =_____

A,
$$\frac{\pi}{3}$$

B,
$$\frac{\pi}{4}$$

A,
$$\frac{\pi}{3}$$
 B, $\frac{\pi}{4}$ C, $\frac{\pi}{2}$ D, π

三、 计算题 (每小题 7 分, 本题共 56 分)

$$1、求极限 \qquad \lim_{x\to 0} \frac{\sqrt{4+x}-2}{\sin 2x} \quad .$$

$$2、求极限 \qquad \lim_{x\to 0} (\frac{1}{x} - \frac{1}{e^x - 1})$$

4、设
$$y = e^5 + \ln(x + \sqrt{1 + x^2})$$
,求 y'

5、设
$$f = y(x)$$
 由已知
$$\begin{cases} x = \ln(1+t^2) \\ y = \arctan t \end{cases}$$
, 求 $\frac{d^2y}{dx^2}$

6、求不定积分
$$\int \frac{1}{x^2} \sin(\frac{2}{x} + 3) dx$$

7、求不定积分
$$\int e^x \cos x dx$$

四、应用题(本题7分)

求曲线 $y = x^2$ 与 $x = y^2$ 所围成图形的面积 A 以及 A 饶 y 轴旋转所产生的旋转体的体积。

五、证明题(本题7分)

若
$$f(x)$$
 在[0,1]上连续,在(0,1)内可导,且 $f(0) = f(1) = 0$, $f(\frac{1}{2}) = 1$,证明:

在(0,1)内至少有一点 ξ , 使 $f'(\xi) = 1$ 。

参考答案

一。填空题(每小题3分,本题共15分)

1.
$$e^6$$
 2. $k=1$ 3. $\frac{x}{1+x}$ 4. $y=1$ 5. $f(x)=2\cos 2x$

二. 单项选择题(每小题3分,本题共15分)

三. 计算题 (本题共56分,每小题7分)

1.#:
$$\lim_{x \to 0} \frac{\sqrt{4+x}-2}{\sin 2x} = \lim_{x \to 0} \frac{x}{\sin 2x(\sqrt{4+x}+2)} = \frac{1}{2} \lim_{x \to 0} \frac{2x}{\sin 2x(\sqrt{4+x}+2)} = \frac{1}{8}$$

$$2.\text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \lim_{x \to 0} (\frac{1}{x} - \frac{1}{e^x - 1}) = \lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)} = \lim_{x \to 0} \frac{e^x - 1}{e^x - 1 + xe^x} = \lim_{x \to 0} \frac{e^x}{e^x + e^x + xe^x} = \frac{1}{2}$$

3、解:
$$\lim_{x \to 0} \frac{\int_{1}^{\cos x} e^{-t^2} dt}{x^2} = \lim_{x \to 0} \frac{-\sin x e^{-\cos^2 x}}{2x} = -\frac{1}{2e}$$

4、解:
$$y' = \frac{1}{x + \sqrt{1 + x^2}} (1 + \frac{1}{\sqrt{1 + x^2}}) = \frac{1}{\sqrt{1 + x^2}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dt} \left(\frac{dy}{dx}\right) / \frac{dx}{dt} = \frac{-\frac{1}{2t^{2}}}{\frac{1+t^{2}}{1+t^{2}}} = -\frac{1+t^{2}}{4t^{3}}$$

6. #:
$$\int \frac{1}{x^2} \sin(\frac{2}{x} + 3) dx = -\frac{1}{2} \int \sin(\frac{2}{x} + 3) d(\frac{2}{3} + 3) = \frac{1}{2} \cos(\frac{2}{x} + 3) + C$$

$$7. \quad \text{\mathbb{R}:} \qquad \int e^x \cos x \, \mathrm{d}x = \int \cos x \, \mathrm{d}e^x$$

$$= e^{x} \cos x + \int e^{x} \sin x dx = e^{x} \cos x + \int \sin x de^{x}$$
$$= e^{x} \cos x + e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^x(\sin x + \cos x) + C$$

8.
$$\Re$$
:
$$\int_{0}^{2} f(x-1) dx = \int_{-1}^{1} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx \dots$$

$$= \int_{-1}^{0} \frac{dx}{1+e^{x}} + \int_{0}^{1} \frac{dx}{1+x}$$

$$= \int_{-1}^{0} (1 - \frac{e^{x}}{1+e^{x}}) dx + \ln(1+x) \Big|_{0}^{1}$$

$$= 1 - \ln(1+e^{x}) \Big|_{-1}^{0} + \ln 2$$

$$= 1 + \ln(1+e^{-1}) = \ln(1+e)$$

四. 应用题(本题7分)

解: 曲线 $y = x^2 与 x = y^2$ 的交点为 (1, 1),

于是曲线 $y = x^2$ 与 $x = y^2$ 所围成图形的面积 A 为

$$A = \int_{0}^{1} (\sqrt{x} - x^{2}) dx = \left[\frac{2}{3} x^{\frac{3}{2}} - \frac{1}{3} x^{2}\right]_{0}^{1} = \frac{1}{3}$$

A 绕 y 轴旋转所产生的旋转体的体积为:

$$V = \pi \int_{0}^{1} \left((\sqrt{y})^{2} - y^{4} \right) dy = \pi \left[\frac{y^{2}}{2} - \frac{y^{5}}{5} \right]_{0}^{1} = \frac{3}{10} \pi$$

五、证明题(本题7分)

证明: 设F(x) = f(x) - x,

显然 F(x) 在 $\left[\frac{1}{2},1\right]$ 上连续, 在 $\left(\frac{1}{2},1\right)$ 内可导,

$$\mathbb{H}. \qquad F(\frac{1}{2}) = \frac{1}{2} > 0, \quad F(1) = -1 < 0.$$

由零点定理知存在 $x_1 \in [\frac{1}{2}, 1]$,使 $F(x_1) = 0$.

由F(0) = 0,在 $[0,x_1]$ 上应用罗尔定理知,至少存在一点

$$\xi \in (0, x_1) \subset (0,1)$$
,使 $F'(\xi) = f'(\xi) - 1 = 0$,即 $f'(\xi) = 1$ …