

Name: Fe-eze Anyafulu

Programme & Part: Electrical Engineering Part 4
Project Role: Electric Vehicle Battery System

Subgroup: Electric Vehicle Frontline Task: EV Team Lead

Sustainability Report

A Sustainability report was carried out on the battery box and the assembled battery sections which will go into the box (the bricks). This was done using the Solidworks Sustainability function. The box was set to be manufactured and used in Europe while the battery section was set to be manufactured in Asia and used in Europe. The results are shown below:

Manufacturing Region

The choice of manufacturing region determines the energy sources and technologies used in the modeled material creation and manufacturing steps of the product's life cycle.

Use Region

The use region is used to determine the energy sources consumed during the product's use phase (if applicable) and the destination for the product at its end-of-life. Together with the manufacturing region, the use region is also used to estimate the environmental impacts associated with transporting the product from its manufacturing location to its use location.

Sustainability report for battery box

Environmental Impact (calculated using TRACI impact assessment methodology)

Formula Student CITY RACING 2018 1

Material Financial Impact 176.10 USD

Comments

Component Environmental Impact

Top Ten Components Contributing Most to the Four Areas of Environmental Impact

Component	Carbon	Water	Air	Energy
box_TopCover	37	3.3E-3	11	460
box_base	33	2.9E-3	10	400
box_back	20	1.8E-3	6.3	250
box_side	20	1.8E-3	6.2	250
box_sidemirrored	20	1.7E-3	6.1	240
box_frontdivider	17	1.5E-3	5.4	220
box_inner	12	1.1E-3	3.9	150
box_front	5.7	5.0E-4	1.8	71

Sustainability Report for Section Assembly

SectionAssembly

Weight: Built to last:

Duration of use:

21597.07 g 5.0 year 5.0 year

Carbon Footprint

Manufacturing: Use:

Transportation: 6.2 kg CO₂e End of Life:

12 kg CO₂e

280 kg CO₂e

91 kg CO₂e

0.00 kg CO₂e

Total Energy Consumed

Material: 3700 MJ

Manufacturing: 910 MJ Use: 0.00 MJ Transportation: 82 MJ

> End of Life: 8.7 MJ

Air Acidification

Material: Manufacturing: 61 mol H⁺ e

Transportation: 8.5 mol H⁺ e End of Life:

57 mol H⁺ e

0.00 mol H⁺ e

0.408 mol H+ e

Water Eutrophication

Transportation: End of Life:

Manufacturing:

Material:

5.2E-3 kg N e 3.7E-3 kg N e

0.359 kg N e

0.023 kg N e

0.00 kg N e

102.70 USD **Material Financial Impact**

Formula Student **CITY RACING 2018** 4

Component Environmental Impact

Top Ten Components Contributing Most to the Four Areas of Environmental Impact

It should be noted that these are just rough estimates of the Environmental Impact of the parts. For example the battery itself was analysed as a stainless steel part as there is no specific battery material available.