INFO251 - Applied Machine Learning

Lab 6 Suraj R. Nair

Announcements

- Quiz 1 on March 4
- PS2 Grades released, PS3 Grades next week
- PS 4 due on March 13
- Today:
 - Quiz review: code demo + quiz questions discussion
 - For derivations / discussions related to mathematical intuition: office hours

Quiz 1 Review

Quick Review: Research Designs

Design	Key Identifying Assumption	Confounds / Threats to identification
Randomized experiment	?	?
(T v/s C)		
Pre v/s Post	?	?
Double Difference	?	?

1. Diff-in-diff

- Suppose you are evaluating the impact of a minimum wage program on employment rates. In the treatment group, the employment rate changed from 74% (pre) to 82% (post). In the control group, during the same time, the employment rate changed from 71% (pre) to 68% (post).
- Estimate the true impact of the minimum wage program.

2. Linear Regression

We run a linear regression of the form

GPA =
$$\alpha$$
 + β StudyingHours + γ ChatGPT

StudyingHours is continuous (time spent reviewing lecture notes); ChatGPT is binary (indicator for whether student uses ChatGPT to write assignments)

$$\alpha = 0.5$$

$$\beta = 0.12$$

$$y = -0.05$$

What is the difference between the GPA of a student who spends 20 hours studying + uses ChatGPT, and the GPA of a student who spends 40 hours studying + does not use ChatGPT?

3. Logistic Regression

- $logit(honor_i) = \alpha + \beta STEM_i + \epsilon_i$
- Calculate (from the regression results below):
 - odds of a non-STEM student pursing an honors degree?
 - odds of a STEM student pursuing an honors degree?
 - the odds ratio (STEM vs Non-STEM)
 - probability that a STEM student is an honors student?

		stem		
hon	no +	yes	Total +	
0	74	77	151	
1	17 +	32	49 +	
Total	91	109	200	

Logistic regre		2		Number LR chi Prob > Pseudo	chi2	= = =	200 3.10 0.0781 0.0139
hon	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
stem intercept	.5927822 -1.470852	.3414294 .2689555	1.74 -5.47	0.083 0.000	07640 -1.9979	. –	1.261972 9437087

4. Ridge regression

- Statement A: As the regularization penalty becomes larger, ridge regression coefficients approach infinity
- Statement B: Ridge regression forces some coefficients to zero
- 1. A is True, B is True
- 2. A is True, B is False
- 3. A is False, B is True
- 4. A is False, B is False

Quick Review: Decision Boundaries

Source

5. Decision Boundaries

- Which of the following algorithms recovers non-linear decision boundaries:
 - K-nearest neighbors (K = 5)
 - SVM
 - Logistic Regression
 - Logistic Regression with lasso regularization

6. Mean Squared Error

- Suppose you build a linear regression model which predicts y = f(x). Which of these two cases has a higher MSE?
 - A
 - B

7. Bayes Theorem

- A doctor knows that having a cold causes you to sneeze 50% of the time.
- Prior probability of any patient having a cold is 1/10,000
- Prior probability of any patient sneezing is 1/15
- If a patient is sneezing, what is the probability they have a cold?

8. Cross-validation

- Suppose you want to estimate the out of sample performance of a K-nearest neighbors algorithm using nested cross-validation. If you have 5 outer loops, 10 inner loops and 20 different values for K in the hyperparameter grid, how many times will the learning algorithm nearest_neighbor(K) be called?
- Hint: Don't forget the refit step!

9. Classification

Calculate accuracy, TPR, FPR and Precision for the "green" class.

		Predicted			
		Green	Orange		
Actual	Green	9	3		
	Orange	2	1		