Field effect transistor

Dr. Mithun Kr. Bhowal

Bangabasi Morning College

Introduction:

- > The field effect transistor or FET is a semiconductor device with the output current controlled by an electric field.
- > Why unipolar? Since the current carried predominantly by one type of carriers, the FET is known as unipolar device.
- **➤** Difference between FET & BJT?

	FET	BJT
1.	FET is an unipolar semiconductor device because its operation depends upon the flow of majority carriers <i>i.e.</i> , either holes or electrons as the case may be.	 BJT is a bipolar semiconductor device because the current constituting elements are both majority carriers as well as minority carriers in this case.
2.	The input impedance of FET is much more larger (ranging in Megaohms) than BJT. The reason behind this is that the input terminal <i>i.e.</i> , gate to source of FET is reverse biased and reverse bias offers ideally infinite resistance.	The input impedance of BJT is very less in comparison to FET.
3.	FET is a voltage controlled device.	3. BJT is a current controlled device.
4.	FET is less noisy. Because there are no junctions.	4. Much noisy than FET.
5.	Higher frequency response.	Frequency variation affects the performance.
6.	Good thermal stability because of absence of minority carriers.	Temperature dependent, thermal runaway may cause.
7.	Costlier than BJT.	7. Relatively cheaper.
8.	Small sized.	8. Comparatively bigger.
9.	In FET, relationship between input and output quantities is nonlinear due to square term in shockley's equations	The BJT is an almost linear device or we can say that BJT works linearly in active region as an amplifier.
	$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$	27
10.	No offset voltage; so it works better as a switch or chopper.	 There is always an offset voltage before switching.
11.	Small gain bandwith product.	11. Greater than FET.

Junction field effect transistor (JFET):

- G N-Channel JFET S P-Channel JFET D
 - Circuit symbol

- The terminal through which the majority carrier enter is called the source.
- The terminal through which the majority carrier leave is called the drain.
- The region between the two **gate** regions through which majority carrier move from source to drain is called the **channel**.

P-TYPE. CHANNEL

> N-TYPE GATES

Fig. 12.3. Basic Structure of an N-Channel FET

(a) Circuit Diagram For Determining Drain Characteristic With External Bias For an N-Channel JFET

Scanned (b) JEE In Prain-Characteristics With External Bias

FET Parameters

- Drain Resistance (r_d)
 - The dynamic a.c. resistance is defined as the ratio of infinitesimal change in V_{DS} to the corresponding change in drain current I_D at a constant value of V_{GS} $r_d = \frac{\Delta V_{DS}}{\Delta I_D}$
- Transconductance (g_m)
 - The mutual conductance is defined as the ratio of the change in drain current to the corresponding change in V_{GS} at a constant value of V_{DS}

$$g_{\rm m} = \frac{\Delta I_{\rm D}}{\Delta V_{\rm GS}}$$

Dr. S. R. Bhagat

11

(iii) Amplification factor (μ). It is the ratio of change in drain-source voltage (ΔV_{DS}) to the change in gate-source voltage (ΔV_{GS}) at constant drain current i.e.

Amplification factor,
$$\mu = \frac{\Delta V_{DS}}{\Delta V_{GS}}$$
 at constant I_D

Relation between μ , r_d and g_m

The drain current I_D is a function of drain voltage V_{DS} and gate voltage V_{GS} i.e.,

$$I_D = f(V_{DS}, V_{GS})$$

$$\therefore dI_D = \frac{\partial I_D}{\partial V_{DS}} \Big|_{V_{GS}} dV_{DS} + \frac{\partial I_D}{\partial V_{GS}} \Big|_{V_{DS}} dV_{GS}$$
(9.5-4)

If V_{DS} and V_{GS} are simultaneously so changed that I_D remains constant then $dI_D = 0$ and we can write from Eq. (9.5-4) after rearrangement,

$$\frac{\partial I_D}{\partial V_{DS}}\Big|_{V_{GS}} \cdot \frac{\partial V_{DS}}{\partial V_{GS}}\Big|_{I_D} + \frac{\partial I_D}{\partial V_{GS}}\Big|_{V_{DS}} = 0$$

Now using the definitions (9.5.1)-(9.5-3),

$$\frac{1}{r_d}(-\mu) + g_m = 0$$
 or,
$$\mu = r_d \cdot g_m$$

CScanned with CamScanner

Thank you