Мета роботи: Ознайомитись із принципами побудови ітераційних алгоритмів розв'язування нелінійних алгебричних та трансцендентних рівнянь. Вивчити реалізацію числових методів знаходження першої та другої похідних функцій.

Термінологія

- Метод Ньютона називають методом послідовних наближень.
- Ітерація це один крок послідовного наближення.
- Ітераційний метод формула, згідно з якою здійснюється ітераційний процес.
- Ітераційний метод буває збіжним або розбіжним. Процес називають збіжним, якщо, виконуючи ітераційний процес, ми наближаємось до шуканого кореня.
- Окрім поняття збіжності є ще поняття **швидкості процесу збіжності**. Метод Ньютона володіє **квадратичною** швидкістю збіжності, тобто тут похибка обчислення кореня нелінійного рівняння спадає по квадратній параболі.

Теоретичні відомості до методу Ньютона

Необхідно розв'язати нелінійне рівняння f(x) = 0, (1) тобто знайти таке значення x, за якого рівняння (1) перетворюється на тотожність. Загалом це рівняння може мати безліч розв'язків. Множину значень змінної $\{x\}$, для якої рівняння (1) є тотожністю, називають **розв'язком** рівняння. Кожне значення x з цієї множини називають **коренем** цього рівняння. Оскільки ми шукаємо корінь рівняння, використовуючи комп'ютерні числові методи, які працюють в арифметиці дійсних чисел, то цей корінь ми можемо знайти тільки наближено. Позначимо його x^* . Під час розв'язання задачі (1) із заданою точністю ε ми, ітераційним алгоритмом, обчислюємо таке значення x, для якого виконується умова $\left|x-x^*\right|<\varepsilon$. Відомо, що якщо на інтервалі [a,b] виконується нерівність f(a)*f(b)<0, то на цьому інтервалі існує корінь рівняння (1).

Популярним методом рішення задачі щодо обчислення кореня рівняння (1), що належить заданому відрізку [a, b] із точністю ε , ε метод **Ньютона** (дотичних). Один із шляхів отримання ітераційної формули Ньютона ε таким:

Задаємо деяке початкове наближення $x_0 \in [a, b]$ і лінеаризуємо функцію f(x) в околі x_0 за допомогою частини ряду Тейлора: $f(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$.

Замість рівняння (1) розв'язуємо лінеаризоване рівняння $f(x_0) + f'(x_0) \cdot (x - x_0) = 0$, трактуючи його розв'язок x як перше наближення до кореня $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ (2)

Продовжуючи цей процес
$$m$$
 раз, приходимо до формули Ньютона: $x_{m+1} = x_m - \frac{f(x_m)}{f'(x_m)}$, (3)

яка є ітераційним процесом з ітераційною функцією $s(x) = x - \frac{f(x)}{f'(x)}$.

Геометричну інтерпретацію цього процесу проілюстровано на Рис. 1. Рівняння (2) ϵ рівнянням прямої, дотичної до кривої f(x) у точці x_0 , отож, цей метод називають **методом дотичних**.

Рис. 1. Геометричне трактування методу Ньютона (дотичних)

Ітераційну формулу методу Ньютона можна також отримати, використовуючи означення похідної функції f(x) у деякій точці x_0 , як тангенсу кута α дотичної до графіку функції у точці x_0 з віссю ох (Рис. 2.)

Рис. 2. Виведення ітераційної формули методу Ньютона

Головною характеристикою ітераційного процесу є його збіжність. Збіжність методу Ньютона оцінюється нерівністю $\left|x_{m+1}-x^*\right| \leq \left|x_m-x^*\right|^2 \cdot \frac{M_2}{m_1}$, де $M_2 = max \left|f''(x)\right|, \ m_1 = 2min \left|f'(x)\right|, \ x \in [a,b]$. Таку збіжність називають

квадратичною, оскільки похибка кожного кроку обчислень ϵ пропорційна до квадрату попередньої.

Рис. 3. Метод збігається

Рис. 4. Метод не збігається

Зазначимо, що поліпшення збіжності методу Ньютона, порівняно з іншими методами, досягається збільшенням витрат на виконання кожного кроку, оскільки на кожному кроці треба обчислювати не тільки значення функції f(x), але й значення її похідної f'(x).

Щоб позбутися необхідності обчислювати похідну на кожному кроці, використовують **модифікований метод Ньютона**, у якому похідну обчислюють тільки один раз:

$$x_{m+1} = x_m - \frac{f(x_m)}{f'(x_0)} \tag{4}$$

Цей метод можна також вважати методом релаксацій із параметром $\tau = -1/f'(x_0)$. Збіжність методу є лінійною.

Можна довести, що початкове наближення x_0 для початку ітераційного процесу необхідно обирати таким, щоб виконувалась умова $f(x_0) * f''(x_0) > 0$. В іншому випадку ітерації методу Ньютона можуть і не збігатись до розв'язку.

Алгоритм методу Ньютона

Якщо локалізовано проміжок [a, b], на якому розташований корінь рівняння (1), його уточнюємо алгоритмом Ньютона, який програмуємо так:

В описовій частині консольної програми оголошуємо:

- 1. Три функції дійсного типу від аргументу **x** з іменами **f**, **fp** і **f2p**, які, для заданого значення **x**, обчислюють, відповідно: значення функції, її першу та другу похідні.
 - 2. Змінні дійсного типу: а, b, точність обчислення кореня Ерs, робочі змінні ж, D, Dж.
 - 3. Змінні цілого типу: i параметр циклу; **ктах** максимально допустиму кількість ітерацій.

У виконуваній частині цієї програми:

- 1. Вводимо межі а, в проміжку локалізації кореня, значення точності **Eps** та кількості ітерацій **Ктах**.
- 2. Надаємо змінній ж значення b.
- 3. Якщо f(x) *f2p(x) < 0, то надаємо змінній x значення a, інакше переходимо до кроку 6;
- 4. Якщо **f** (**x**) ***f2p** (**x**) **>**0, переходимо до кроку 6, інакше
- 5. Виводимо на екран повідомлення: "Для заданого рівняння збіжність методу Ньютона не гарантується" і
- 6. Починаємо цикл по і від 1 до Ктах, у тілі якого:
 - обчислюємо Dx = f(x) / fp(x);
 - виконуємо ітерацію Ньютона: $\mathbf{x} = \mathbf{x} \mathbf{D}\mathbf{x}$;
 - якщо **модуль** значення $\mathbf{D}\mathbf{x}$ ϵ більшим за $\mathbf{E}\mathbf{p}\mathbf{s}$ продовжуємо виконувати цей ітераційний цикл, якщо ні, то:
 - 1. виводимо на екран шукане наближене значення кореня ж;
 - 2. завершуємо роботу програми.
- 7. У випадку успішного завершення цього циклу виводимо на екран повідомлення:

"За задану кількість ітерацій корінь з точністю Ерѕ не знайдено".

8. Завершуємо роботу програми.

Примітка: Значення виразів для першої та другої похідних можна обчислити "вручну" за правилами математичного аналізу. Програма буде універсальнішою, якщо похідні знаходити чисельно.

Першу похідну визначають за означенням похідної: fp(x) = (f(x + D) - f(x)) / D.

Другу похідну визначають одним із двох способів:

- аналогічно до першої: f2p(x) = (fp(x + D) fp(x)) / D, або
- за чисельною триточковою формулою: $f2p(x) = (f(x + D) + f(x D) 2 * f(x)) / D^2$.

Значення D доцільно обирати таким: D = Eps / 1000.0, або D = Eps / 100.0.

Після кожного оператора виведення на екран повідомлень чи результату необхідно затримувати зображення екрана, наприклад, оператором Readln;.

Тестовий приклад:

$$f(x) = 3*x - 4 Ln(x) - 5 = 0$$
.

Межі локалізації кореня: [2, 4]. Наближене значення кореня: 3.23.

Завдання

- 1) Вивчити теорію ітераційного методу Ньютона та зрозуміти алгоритм його реалізації.
- 2) Написати консольну програму та дослідити на прикладах роботу методу Ньютона, згідно з алгоритмом, який наведено вище.

Додаткове завдання

- 1. Написати віконний варіант алгоритму методу Ньютона.
- 2. Написати консольну програму, яка реалізує два методи: МДП і Ньютона. Передбачити можливість діалогового вибору користувачем необхідного йому методу.
- 3. Написати електронний звіт про виконану роботу і захистити його у викладача.

Література

Хвищун І.О. Програмування і математичне моделювання: Підручник. – К.: Видавничий дім "Ін Юре", 2007. – 544 с.