

Claims

1. A compound of formula (I)

wherein

R^1 is a cyclic group selected from R^A , R^B , R^C and R^D , each of which is optionally substituted with one or more R^7 groups;

R^2 is hydrogen or C_1 - C_2 alkyl;

R^3 and R^4 are each independently C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl or C_3 - C_{10} cycloalkyl, each of which is optionally substituted with one or more R^8 groups, or R^E , which is optionally substituted with one or more R^9 groups, or hydrogen;

or $-NR^3R^4$ forms R^F , which is optionally substituted with one or more R^{10} groups;

R^5 is $-Y-NR^{15}R^{16}$;

R^6 , which may be attached at N^1 or N^2 , is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, each of which is optionally substituted by C_1 - C_6 alkoxy, (C_3 - C_6 cycloalkyl)methoxy, C_1 - C_6 haloalkoxy or a cyclic group selected from R^J , R^K , R^L and R^M , or R^6 is R^N , C_3 - C_7 cycloalkyl or C_3 - C_7 halocycloalkyl, each of which is optionally substituted by C_1 - C_6 alkoxy or C_1 - C_6 haloalkoxy, or R^6 is hydrogen;

R^7 is halo, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} halocycloalkyl, phenyl, OR^{12} , $OC(O)R^{12}$, NO_2 , $NR^{12}R^{13}$, $NR^{12}C(O)R^{13}$, $NR^{12}CO_2R^{14}$, $C(O)R^{12}$, CO_2R^{12} , $CONR^{12}R^{13}$ or CN ;

R^8 is halo, phenyl, C_1 - C_6 alkoxyphenyl, OR^{12} , $OC(O)R^{12}$, NO_2 , $NR^{12}R^{13}$, $NR^{12}C(O)R^{13}$, $NR^{12}CO_2R^{14}$, $C(O)R^{12}$, CO_2R^{12} , $CONR^{12}R^{13}$, CN , C_3 - C_6 cycloalkyl, R^G or R^H , the last two of which are optionally substituted with one or more R^9 groups;

R^9 is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or CO_2R^{12} ;

R¹⁰ is halo, C₃-C₁₀ cycloalkyl, C₃-C₁₀ halocycloalkyl, phenyl, OR¹², OC(O)R¹², NO₂, NR¹²R¹³, NR¹²C(O)R¹³, NR¹²CO₂R¹⁴, C(O)R¹², CO₂R¹³, CONR¹²R¹³, CN, oxo, C₁-C₆ alkyl or C₁-C₆ haloalkyl, the last two of which are optionally substituted by R¹¹;

R¹¹ is phenyl, NR¹²R¹³ or NR¹²CO₂R¹⁴;

R¹² and R¹³ are each independently hydrogen, C₁-C₆ alkyl or C₁-C₆ haloalkyl;

R¹⁴ is C₁-C₆ alkyl or C₁-C₆ haloalkyl;

R¹⁵ is selected from R¹⁷, R¹⁷C(O) and R¹⁸SO₂, and

R¹⁶ is selected from hydrogen, C₁-C₆ alkyl optionally substituted with one or more R¹⁹ groups, C₁-C₆ haloalkyl and C₃-C₁₀ cycloalkyl optionally substituted with one or more R²⁰ groups,

or -NR¹⁵R¹⁶ constitutes a 3- to 8-membered saturated ring which may optionally include one or more further heteroatoms selected from nitrogen, oxygen and sulphur, and which may optionally be substituted with one or more groups selected from R²¹, R²² and (C₁-C₆ alkoxy)C₁-C₆ alkyl;

R¹⁷ is hydrogen or R¹⁸;

R¹⁸ is selected from C₁-C₆ alkyl optionally substituted with one or more R¹⁹ groups, C₁-C₆ haloalkyl and C₃-C₁₀ cycloalkyl optionally substituted with one or more R²⁰ groups;

R¹⁹ is selected from R²¹, -NR²³R²⁴, -CO₂R²⁵, -CONR²⁶R²⁷, R²⁸ and phenyl optionally substituted by R²⁹;

R²⁰ is selected from R²¹, R²² and oxo;

R²¹ is oxo, hydroxy, C₁-C₆ alkoxy, C₁-C₆ (haloalkyl)oxy or C₃-C₇ cycloalkyloxy;

R²² is C₁-C₆ alkyl or C₁-C₆ haloalkyl;

R²³ and R²⁴ are each independently selected from hydrogen and C₁-C₆ alkyl;

or -NR²³R²⁴ constitutes an azetidine, pyrrolidine, piperidine or morpholine ring;

R²⁵ is hydrogen or C₁-C₆ alkyl;

R²⁶ and R²⁷ are each independently selected from hydrogen and C₁-C₆ alkyl;

or -NR²⁶R²⁷ constitutes an azetidine, pyrrolidine, piperidine or morpholine ring;

R^{28} is a saturated, unsaturated or aromatic heterocycle with up to 10 ring atoms, at least one of which is selected from nitrogen, oxygen and sulphur;

R^{29} is selected from halo, R^{21} and R^{22} ,

R^A and R^J are each independently a C_3 - C_{10} cycloalkyl or C_3 - C_{10} cycloalkenyl group, each of which may be either monocyclic or, when there are an appropriate number of ring atoms, polycyclic and which may be fused to either

- (a) a monocyclic aromatic ring selected from a benzene ring and a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur, or
- (b) a 5-, 6- or 7-membered heteroalicyclic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur;

R^B and R^K are each independently a phenyl or naphthyl group, each of which may be fused to

- (a) a C_5 - C_7 cycloalkyl or C_5 - C_7 cycloalkenyl ring,
- (b) a 5-, 6- or 7-membered heteroalicyclic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur, or
- (c) a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur;

R^C , R^L and R^N are each independently a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated or partly unsaturated ring system containing between 3 and 10 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur, which ring may be fused to a C_5 - C_7 cycloalkyl or C_5 - C_7 cycloalkenyl group or a monocyclic aromatic ring selected from a benzene ring and a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur;

R^D and R^M are each independently a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms independently selected from nitrogen, oxygen and sulphur, which ring may further be fused to

- (a) a second 5- or 6-membered heteroaromatic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur;
- (b) C_5 - C_7 cycloalkyl or C_5 - C_7 cycloalkenyl ring;
- (c) a 5-, 6- or 7-membered heteroalicyclic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur; or
- (d) a benzene ring;

R^E , R^F and R^G are each independently a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 10 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^H is a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms independently selected from nitrogen, oxygen and sulphur; and

Y is a covalent bond, C₁-C₆ alkylenyl or C₃-C₇ cycloalkylenyl;

a tautomer thereof or a pharmaceutically acceptable salt, solvate or polymorph of said compound or tautomer.

2. A compound according to claim 1 wherein R¹ is R^B, which is optionally substituted with one or more R⁷ groups.

3. A compound according to claim 1 wherein R¹ is R^D, which is optionally substituted with one or more R⁷ groups.

4. A compound according to claim 1 wherein R⁷ is halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, OR¹² or CONR¹²R¹³.

5. A compound according to claim 1 wherein R² is hydrogen.

6. A compound according to claim 1 wherein R³ is hydrogen, C₁-C₆ alkyl, which is optionally substituted with one or more R⁸ groups, or R^E, which is optionally substituted with one or more R⁹ groups; and wherein R^E is a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur.

7. A compound according to claim 1 wherein R⁴ is hydrogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkenyl or C₂-C₆ alkynyl.

8. A compound according to claim 1 wherein -NR³R⁴ forms R^F, which is optionally substituted with one or more R¹⁰ groups and wherein R^F is a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 10 ring atoms containing at least one nitrogen atom and optionally one other atom selected from oxygen and sulphur.

9. A compound according to claim 1 wherein Y is C₁-C₆ alkylenyl.

10. A compound according to claim 1 wherein R¹⁵ is R¹⁷C(O) or R¹⁸SO₂ and R¹⁶ is hydrogen or C₁-C₆ alkyl.

11. A compound according to claim 1 wherein R¹⁵ is R¹⁷ and R¹⁶ is hydrogen or C₁-C₆ alkyl.

12. A compound according to claim 1 wherein $-NR^{15}R^{16}$ constitutes a 3- to 8-membered saturated ring which may optionally include one or more further heteroatoms selected from nitrogen, oxygen and sulphur, and which may optionally be substituted with one or more groups selected from R^{21} , R^{22} and $(C_1-C_6\text{ alkoxy})C_1-C_6\text{ alkyl}$.

13. A compound according to claim 1 wherein R^6 is positioned on N^1 .

14. A compound according to claim 1 wherein

R^6 is $C_1-C_6\text{ alkyl}$ or $C_1-C_6\text{ haloalkyl}$, each of which is optionally substituted by $C_1-C_6\text{ alkoxy}$, $C_1-C_6\text{ haloalkoxy}$ or a cyclic group selected from R^J , R^L and R^M , or R^6 is R^N or hydrogen;

R^J is a C_3-C_7 monocyclic cycloalkyl group;

R^L and R^N are each independently a monocyclic, saturated or partly unsaturated ring system containing between 4 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur; and

R^M is a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms independently selected from nitrogen, oxygen and sulphur.

15. A compound according to claim 1 wherein

R^3 is hydrogen, $C_1-C_4\text{ alkyl}$, which is optionally substituted with one or more R^8 groups, or R^E , which is optionally substituted with one or more R^9 groups;

R^4 is hydrogen, $C_1-C_6\text{ alkyl}$ or $C_1-C_6\text{ haloalkyl}$;

or $-NR^3R^4$ forms R^F , which is optionally substituted with one or more R^{10} groups;

R^6 is $C_1-C_4\text{ alkyl}$ or $C_1-C_4\text{ haloalkyl}$, each of which is optionally substituted by $C_1-C_4\text{ alkoxy}$, $C_1-C_4\text{ haloalkoxy}$ or a cyclic group selected from R^J , R^L and R^M , or R^6 is R^N or hydrogen;

R^A is a monocyclic C_3-C_8 cycloalkyl group;

R^B is phenyl;

R^C is a monocyclic saturated or partly unsaturated ring system containing between 3 and 8 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^D is a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms independently selected from nitrogen, oxygen and sulphur;

R^E is a monocyclic saturated ring system containing between 3 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^F is a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 10 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^J is cyclopropyl or cyclobutyl;

R^L and R^N are each independently a monocyclic saturated ring system containing either 5 or 6 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^M is a 5- or 6-membered heteroaromatic ring containing a heteroatom selected from nitrogen, oxygen and sulphur; and

Y is C₁-C₆ alkenyl.

16. A compound according to claim 15 wherein R¹ is a cyclic group selected from R^A, R^B, R^C and R^D, each of which is optionally substituted with one or more R⁷ groups;

R⁷ is halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, OR¹² or CONR¹²R¹³;

R⁸ is halo, phenyl, C₁-C₆ alkoxyphenyl, OR¹², NR¹²R¹³, NR¹²CO₂R¹⁴, CO₂R¹², CONR¹²R¹³, R^G or R^H, the last two of which are optionally substituted with one or more R⁹ groups;

R^A is a monocyclic C₅-C₇ cycloalkyl group;

R^B is phenyl;

R^C is a monocyclic saturated ring system containing between 5 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^D is a 5-membered heteroaromatic ring containing a heteroatom selected from nitrogen, oxygen and sulphur and optionally up to two further nitrogen atoms in the ring, or a 6-membered heteroaromatic ring including 1, 2 or 3 nitrogen atoms;

R^E is a monocyclic saturated ring system containing between 3 and 7 ring atoms containing one nitrogen atom;

R^F is a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 10 ring atoms containing at least one nitrogen atom and optionally one other atom selected from oxygen and sulphur;

R^G is a monocyclic saturated ring system containing between 3 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^H is a 5- or 6-membered heteroaromatic ring containing up to two nitrogen atoms; and

Y is -CH₂-.

17. A pharmaceutical composition comprising a compound of formula (I) as claimed in claim 1, or pharmaceutically acceptable salts, solvates or polymorphs thereof, and a pharmaceutically acceptable diluent or carrier.

18. A method of treatment of a disorder or condition where inhibition of PDE5 is known, or can be shown, to produce a beneficial effect, in a mammal, comprising administering to said mammal a therapeutically effective amount of a compound of formula (I) as claimed in claim 1, or a pharmaceutically acceptable salt, solvate or polymorph thereof.

19. A method according to claim 18, wherein the disorder or condition is diabetes.

20. A method according to claim 18, wherein the disorder or condition is hypertension.