

data sheet

MH32F103A(C)xxxx

Enhanced, True Random Number, Hardware Encryption Algorithm Unit, 32-bit Core Microcontroller with 128K Bytes to 256K Bytes Flash USB, CAN, 17 Timers, 3 ADCs, 2 DACs, 15 Communication

Interfaces

Function:

- Kernel: 32-bit Core
 - Up to 216MHz operating frequency, up to 2.54DMips/MHz (CoreMark1.0)
 - Single-cycle multiplication and hardware division
- memory (unit)
 - 128K/256K/512K/1024K bytes of flash programme memory
 - 32K/64K/96K bytes of SRAM
 - FSMC Static Memory Controller
- Clock, Reset and Power Management
 - 2.0 to 3.6 volt power supply and I/O pins
 - Power On/Power Off Reset (POR/PDR), Programmable Voltage Monitor (PVD)
 - 4∼32MHz Crystal Oscillator
 - Embedded factory-tuned 8MHz RC oscillator
 - Embedded 40kHz RC oscillator with calibration
 - 32kHz RTC oscillator with calibration function
- low power
 - Sleep, shutdown and standby modes
 - VBAT supplies power to the RTC and back-up registers
- 3 x 12-bit analogue-to-digital converters with 1us conversion time (up to 16 input channels)
 - Conversion range: 0 to 3.6V
 - Three sets of sample and hold functions
 - temperature sensor
- 2 x 12-bit D/A converters
 - DMA: 12-channel DMA controller
 Supported Peripherals: Timer, ADC, DAC, SDIO

SPI, I2S, I2C and USART

- debug mode
 - Serial Single Wire Debug (SWD) and JTAG interfaces
 - Embedded Tracking Module (ETM)
- Up to 51 I/O ports
 - 51 multifunctional bi-directional I/O ports, all of which can be mapped to 16 external interrupts
 - All GPIOs can be forced to configure pull-up and pull-down resistors
- Enhanced CRC Calculation Unit

■ 17 timers

- 10 16-bit timers, each with up to 4 channels for input capture/output compare/PWM or pulse counting and incremental encoder inputs
- 2 x 16-bit PWM advanced control timers with deadband control and emergency brake for motor control
- 2 watchdog timers (stand-alone and window type)
- System time timer: 24-bit selfsubtracting counter
- 2 16-bit basic timers
- Up to 13 communication interfaces
 - Up to 2 I2C interfaces (SMBus/PMBus support)
 - Up to 5 USART interfaces (supports ISO7816, LIN, IrDA interface and modem control) -Up to 3 SPI interfaces

Up to 3 SPI interfaces, 2 with I2S interface multiplexing

- CAN interface (2.0B active)
- USB 2.0 fullspeed interface (optional internal 1.5K pull-up resistor)
- SDIO interface
- Hardware

encryption

algorithm unit

 Built-in hardware

algorithms

(DES, AES, SHA, SM1, SM3, SM4, SM7)

- Provides a complete library of highperformance algorithms
- TRNG: The TRNG unit is used to generate a sequence of true random numbers
 - Four independent true random sources, individually configurable
 - Generates 128BIT random numbers at a time
 - Optional digital post-processing function
 - Attack detection
- SENSOR: Voltage Temperature Sensor Alarm

- VBAT and VDD voltages can be detected separately

- Provision of temperature detection sensors
- Optional reset or interrupt after alarm
- SRAM scrambling
 - Supports address and data scrambling
- One Time Programmable (OTP)
 - Supports 32 Byte
- AES encrypted download (supported by some models):
 - HEX encrypted with AES can be downloaded and decrypted by hardware.
 - Support area encryption, decryption function

directory (on computer hard drive)

1 Introduct	ion	5
	tion	
1	st	
Overview.		7
2.1.1	32-bit Core with embedded Flash and SRAM	7
2.1.2	Built-in flash memory	
2.1.3	Memory Protection Unit (MPU)	8
2.1.4	Internal SRAM internal flash memory	
2.1.5	Static Memory Controller (FSMC)	
2.1.6	LCD Parallel Interface	
2.1.7	CRC (cyclic redundancy check) calculation unit	
2.1.8	Nested Vectorised Interrupt Controller (NVIC)	
2.1.9	External Interrupt/Event Controller (EXTI)	
2.1.10	Clock and startup	
2.1.11	Start-up mode	
2.1.12	Power supply programme	
2.1.13	Power supply monitor	
2.1.14	Voltage regulator	
2.1.15	Low Power Mode	
2.1.16	DMA	
2.1.17	RTC (Real Time Clock) and Backup Registers	
2.1.18	Timers and Watchdogs	
2.1.19	I2C Bus	
2.1.20	Universal Synchronous/Asynchronous Transceiver (USART)	
2.1.21	Serial Peripheral Interface (SPI)	
2.1.21	Audio Interface (I2S)	
2.1.23	SDIO	
2.1.24	Controller Area Network (CAN)	
2.1.25	Universal Serial Bus (USB)	
2.1.26	General Purpose Input/Output Interface (GPIO)	
2.1.27	ADC (analogue/digital converter)	
2.1.28	DAC (Digital/Analogue Signal Converter)	
2.1.29	Temperature Sensors	
2.1.30	Serial Single Wire JTAG Debug Port (SWJ-DP)	
2.1.31	Embedded Tracking Module (ETM)	
2.1.32	True Random Number Generator (TRNG)	
	nitions	
	package	
1	package	
	package	
	Pin Definitions	
	Pin Definition	
	Pin Definition	
	al Characteristics	
	litions	
4.1.1	Minimum and maximum values	
4.1.2	Typical values	25
4.1.3	Typical curve	25

	4.1.4	Load capacitance	25					
	4.1.5	Pin Input Voltage	26					
	4.1.6	Power supply programme	26					
	4.1.7	Current consumption measurement	27					
		Maximum Rating						
W	orking o	conditions						
	4.1.8	General working conditions						
	4.1.9	Operating conditions at power-up and power-down						
	4.1.10	Embedded Reset and Power Control Module Features						
	4.1.11	Built-in reference voltage	29					
	4.1.12	Supply Current Characteristics						
	4.1.13	External Clock Source Characteristics	33					
	4.1.14	Internal Clock Source Characteristics	36					
	4.1.15	Wake-up time from low-power mode	37					
	4.1.16	PLL Characteristics	38					
	4.1.17	Memory Characteristics	38					
	4.1.18	Absolute maximum (electrical sensitivity)	38					
	4.1.19	I/O Port Characteristics						
	4.1.20	NRST Pin Characteristics	40					
	4.1.21	TIM Timer Characteristics	41					
	4.1.22	CAN (Controller Area Network) Interface	41					
	4.1.23	12-bit ADC Characteristics						
	4.1.24	DAC Electrical Parameters	43					
	4.1.25	Temperature Sensor Characteristics	44					
5	Packag	e Characteristics	46					
LC	QFP48 P	ackage	46					
LC	QFP64 Pa	ackage	47					
LC	QFP100 j	package	47					
6	6 Order Code							
7	Append	lix	50					

table of contents

Table 1 Device Function Configuration Table	7
Table 2 Matching relationship between supply voltage and FLASH DELAY level	7
Table 3 TIM configuration table	
Table 4 LQFP 48 Pin Definition Configuration Table	18
Table 5 LQFP 64 Pin Definition Configuration Table	
Table 6 LQFP 100 Pin Definition Configuration Table	
Table 7 Voltage Characteristics	27
Table 8 Current Characteristics	
Table 9 Temperature Characteristics	28
Table 10 General operating conditions	28
Table 11 Operating conditions at power-up and power-down	28
Table 12 Embedded Reset and Power Control Module Characteristics	28
Table 13 Built-in reference voltage	29
Table 14 Current consumption in operating mode	30
Table 15 Current consumption in sleep mode with code running in FLASH	
Table 16 Typical and Maximum Current Consumption in Stop and Standby Modes	
Table 17 Current consumption of built-in peripherals	
Table 18 High-speed external user clock characteristics	Table 18 High
Speed External User Clock Characteristics	
Table 19 Low-speed external user clock characteristics	Table 19 Low
speed External User Clock Characteristics	
Table 20 Characteristics of HSE 4~32 MHZ oscillator(1)(2)	
Table 21 LSE Oscillator Characteristics (FLSE=32.768KHZ)(1)	
Table 22 HSI oscillator characteristics(1)	
Table 23 LSI oscillator characteristics (1)	
Table 24 Wake-up times for low-power modes	
Table 25 PLL Characteristics	
Table 26 Flash Memory Characteristics	
Table 27 Flash memory life and data retention period	Table 27 Flas
memory life and data retention period	
Table 28 Absolute Maximum ESD Values	
Table 29 I/O Static Characteristics	
Table 30 Output Voltage Characteristics	40
Table 31 NRST Pin Characteristics	
Table 32 TIMX Features	
Table 33 ADC Characteristics	
Table 34 Maximum RAIN at FADC=14MHZ(1)	
Table 35 DAC Characteristics	
Table 36 Temperature Sensor Characteristics	
Table 37 MH32F103A(C) Series Ordering Code Information Graphic	
Table 38 Document version history	50

Figure catalogue

Figure 1 LQFP48 Package	17
Figure 2 LQFP64 Package	17
Figure 3 LQFP100 Package	18
Figure 4 Load Conditions for Pins	25
Figure 5 Pin Input Voltage	26
Figure 6 Power supply scheme	26
Figure 7 Current consumption measurement scheme	27
Figure 8 AC Timing Diagram for External High Speed Clock Source	34
Figure 9 AC Timing Diagram for External Low Speed Clock Source	35
Figure 10 Typical Application Using 8 мнz Crystals	36
Figure 11 Typical application using a 32.768KHZ crystal	36
Figure 12 Recommended NRST Pin Protection	41
Fig. 13 V SENSE vs. Temperature Ideal Curve Plot(1)	
Fig. 14 V SENSE vs. Temperature Ideal Curve (2)	45
Figure 15 LQFP48 7MM x 7MM Package Dimensions	46
Figure 16 LQFP64 10MM x 10MM Package Size	47
Figure 17 LQFP100 14MM x 14MM Package Dimensions	48

1 present (sb for a job etc)

The contents of the datasheet include the basic configuration of the product (e.g., the capacity of the built-in Flash and RAM, the type and number of peripheral modules, etc.), the number and assignment of pins, electrical characteristics, package information, and ordering codes.

2 Specification

The MH32F103A(C)xxxx series uses a high-performance 32-bit core and operates at a maximum frequency of 216 MHz.

. Built-in memory includes: Maximum 1024K Flash, 96K Sram

The series has up to 2 built-in advanced timers, 10 general-purpose timers, 2 basic timers, 3 12-bit ADCs, 2 12-bit DACs, and also includes standard and advanced communication interfaces including: 3 SPI interfaces, 2 I2S interfaces, 2 I2C interfaces, 5 U(S)ART interfaces, 1 USB2.0 full-speed serial communication interface, 1 CAN bus controller, 1 SDIO interface

The MH32F103A(C)xxxx family operates over a temperature range of -40°C to +85°C with a supply voltage of 2.0 V to 3.6 V. The power-saving mode ensures that low-power applications are required.

Thanks to these peripheral configurations, the MH32F103A(C)xxxx can be used in a variety of application scenarios:

- Industrial applications such as programmable controllers, printers, scanners, etc.
- Motor drives and speed control
- IoT low-power sensor terminals, e.g., sports bracelets
- UAV flight control, gimbal control
- Toy products
- domestic electric appliance
- intelligent robot
- smartwatch

Device List

Table 1 Device Function Configuration Table

range MH32F103C MH32F103A	
model number CBT6 CCT6 RPT6 VET6	VGT6
Flash memory (K 128 256 256 512	1024
bytes)	
SRAM (K bytes) 32 64 96 96	96
ti high level 1 1 2 2	2
m common (use) 4 4 10 10	10
e fundamental 2 2 2 2	2
ex	
e	
et	
c) to	
ol	
SPI 3 3 3 3	3
I2S 2 2	2
I2C 2 2 2 2	2
co usart/uart 3 3 5 5	5
m USB 1 1 1 1	1
u CAN 1 1 1 1	1
ni ca SDIO - 1 1	1
ti outlined	
in 2.1.1 32-bit Core with embedded Flash and SRAM	
te	
The 32-bit Core provides the low-cost platform, reduced pin count, and reduced system power	er
ac consumption needed to implement an MCU, while delivering superior computational performan	nce
FSMC and advanced interrupt system response.	1
GPIO port 37 37 51 80 12-bit ADC2Mbc2clinternal flast (memory channels) 3 (16 channels) 3 (16 channels) 3 (16 channels)	80
12-bit ADC2Mbc2clenternal flast (memo(Ty channels) 3 (16 chann	channels)
	channels)
(Number of Channels) channels programmes and data. Table 2 Relationship adjuvant	
module between supply voltage and Flash delay level	
Hardware encryption adjuvant	
algorithm unit Flash Delay HCLK(MHz)	
Page size (K bytes) hierarchy 1 Voltage Range 2 Voltage Range	4
CPU frequency 216M	
operating voltage 2.0~3.6V	
operating -40 to +85°C	
temperature	

	2.3V - 3.6V	2.0V - 2.3V
0	0 < HCLK <= 108	0 < HCLK <= 32
1	108 < HCLK <= 216	32 < HCLK <= 64
2	-	64 < HCLK <= 128
3	-	128 < HCLK <= 192
4	-	192 < HCLK <= 216

2.1.3 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) is used to manage CPU accesses to memory and prevent one task from accidentally corrupting memory or resources used by another active task. The memory is organised into up to 8 protection zones, which can be subdivided sequentially into up to 8 sub-zones. The size of the protected areas can range from 32 bytes to the entire 4 Gbytes of addressable memory.

The MPU is particularly useful if the application has some critical or authenticated code that must be protected from the misbehaviour of other tasks. It is usually managed by an RTOS (Real Time Operating System). If a programme accesses a memory location that is forbidden by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the settings of the MPU area based on the executing process.

2.1.4 Internal SRAM internal flash memory

Up to 96K bytes of internal SRAM that can be accessed (read/write) by the CPU with 0 wait cycles.

2.1.5 Static memory controller (FSMC)

The following modes are supported: PC Card/Flash, SRAM, PSRAM, NOR and NAND. function overview:

- Three FSMC interrupt lines through logic or connected to NVIC units
- Write to FIFO
- Code execution from external memories other than NAND flash and PC card For VET6, only FSMC Bank1 and Bank2 are available.

 Bank1 can only support NOR/PSRAM memory, use NE1 selector chip. Bank2 can only support 16/8-bit NAND flash memory, use NCE2 selector chip.

2.1.6 LCD Parallel Interface

The FSMC can be configured to interface seamlessly with most graphics LCD controllers. It supports Intel 8080 and Motorola 6800 modes and is flexible enough to accommodate specific LCD interfaces.

2.1.7 CRC (Cyclic Redundancy Check) calculation unit

The CRC (Cyclic Redundancy Check) calculation unit generates a CRC code from a 32-bit data word using a fixed polynomial (multiple modes selectable with hardware data processing) generator.

In numerous applications, the CRC-based technique is used to verify the consistency of data transfer or storage. Within the scope of the EN/IEC 60335-1 standard, it provides a means of detecting errors in flash memory.

2.1.8 Nested Vector Interrupt Controller (NVIC)

Built-in nested vectorial interrupt controller capable of handling up to 71 maskable interrupt channels (excluding 16 Core interrupt lines) and 8 priority levels.

- Tightly coupled NVICs enable low-latency interrupt response processing
- Interrupt vector entry address directly into the kernel
- Tightly coupled NVIC interface
- Allow early processing of interrupts
- Handling late arriving higher priority interrupts
- Support for interrupting the tail link function
- Automatic saving of processor state
- Auto-resume on return from interrupt, no additional instruction overhead required

 The module provides flexible interrupt management capabilities with minimal interrupt latency.

2.1.9 External Interrupt/Event Controller (EXTI)

The external interrupt/event controller contains 19 edge detectors for generating interrupt/event requests. Each interrupt line can be independently configured with its triggering event (rising or falling edge or double edge) and can be individually masked; there is a pending register that maintains the status of all interrupt requests. EXTI can detect pulse widths less than the clock period of the internal APB2. Up to 80 general-purpose I/O port connections can be connected to 16 external interrupt lines.

2.1.10 Clock and start-up

The selection of the system clock is done at startup, the internal 8MHz RC oscillator is selected as the default CPU clock at reset, and an external, failure-monitored 4-32MHz clock can be selected later; when an external clock failure is detected, it is isolated, and the system automatically switches to the internal RC oscillator, and the software receives the appropriate interrupts if they are enabled. Similarly, full interrupt management of the PLL clock can be taken when required (e.g. when an indirectly used external oscillator fails).

Multiple prescalers are used to configure the frequency of the AHB, the high-speed APB (APB2), and the low-speed APB (APB1) regions. The maximum frequency of the AHB and high-speed APB is 216 MHz, and

the maximum frequency of the low-speed APB is 108 MHz.

2.1.11 activation mode

At startup, one of three bootstrap modes can be selected via the bootstrap pin:

- Bootstrapping from Program Flash Memory
- bootstrap from system memory
- Bootstrapping from internal SRAM

The bootloader is stored in system memory and can be reprogrammed to flash memory via USART1.

2.1.12 Power supply programme

- VDD: Supplies power to the I/O pins and internal regulator.
- VSSA, VDDA: Provides power to the analogue parts of the ADC, reset module, RC oscillator and PLL.VDDA and VSSA must be connected to VDD and VSS respectively.
- VBAT: When VDD is turned off, power is supplied (via the internal power switcher) to the RTC, external 32kHz oscillator, and back-up registers.

Note: For each voltage range, refer to Table 9 General Operating Conditions.

2.1.13 Power supply monitor

This product has an internal Power-On Reset (POR)/Power-Down Reset (PDR) circuit, which is always in operation to ensure that the system operates when the power supply exceeds 2V; when VDD falls below the set threshold (VPOR/PDR), it puts the device in reset without the need to use an external reset circuit. There is also a programmable voltage monitor (PVD) in the device, which monitors the VDD/VDDA supply and compares it to the threshold VPVD, generating an interrupt when VDD is below or above the threshold VPVD, and an interrupt handler that can issue a warning message or put the microcontroller into safe mode. the PVD function needs to be enabled programmatically.

2.1.14 Voltage regulator

The regulator has three modes of operation: main mode (MR), low power mode (LPR) and shutdown mode

- Main mode (MR) for normal runtime operations
- Low power mode (LPR) for CPU shutdown mode
- Shutdown mode is used in the standby mode of the CPU: the output of the regulator is high resistance, the power supply to the kernel circuits is cut off, and the regulator is in a zero-consumption state (but the contents of the registers and SRAM will be lost)

The regulator is always active after reset and switches off in standby mode at the high resistance output.

2.1.15 low power mode

sleep mode

In sleep mode, only the CPU is stopped, and all peripherals are active and can wake up the CPU in case of an interrupt/event.

shutdown mode

The shutdown mode achieves the lowest power consumption while maintaining no loss of SRAM and register contents. In shutdown mode, power supply to all internal 1.1V sections is stopped, the PLL, the RC oscillator of the HSI, and the HSE crystal oscillator are switched off, and the regulator can be placed in the

Normal mode or low power mode.

The microcontroller can be woken up from shutdown mode by any of the signals configured as EXTI, which can be one of the 16 external I/O ports, the output of the PVD, an RTC alarm clock, or a USB wake-up signal.

• standby mode

The lowest power consumption can be achieved in standby mode. The internal voltage regulator is switched off, so that the power supply to all internal 1.1V sections is cut off; the PLL, the RC oscillator of the HSI and the HSE crystal oscillator are also switched off; when entering standby mode, the contents of the SRAM and registers are lost, but the contents of the backup registers remain, and the standby circuits are still working. The conditions for exiting from standby mode are an external reset signal on NRST, an IWDG reset, a rising edge on the WKUP pin, or the arrival of an alarm clock on the RTC.

Note: RTC, IWDG and the corresponding clock will not be stopped when entering stop or standby mode.

2.1.16 DMA

Supports up to 12 channels of general-purpose DMA (7 channels for DMA1 and 5 channels for DMA2) can manage memory-to-memory, device-to-memory, and memory-to-device data transfers; the DMA controller supports ring-buffer management, avoiding interrupts generated when the controller transfer reaches the end of the buffer.

Each channel has dedicated hardware DMA request logic, while each channel can be triggered by software; the length of the transfer, the source and destination address of the transfer can be set individually by software. DMA can be used for major peripherals: SPI/I2S, I2C, USART, advanced/general/basic timer TIMx, ADC, DAC, SDIO.

2.1.17 RTC (Real Time Clock) and Backup Registers

The RTC and back-up registers are powered through a switch that selects VDD power when VDD is active, otherwise they are powered by the VBAT pin. The back-up registers (42 16-bit registers) can be used to hold 84 bytes of user application data when VDD is turned off. The RTC and back-up registers are not reset by the system or power supply reset source; nor are they reset when woken up from standby mode.

The real time clock has a set of continuously running counters, a calendar clock function that can be provided by appropriate software, and an alarm interrupt and phase interrupt function. The RTC's drive clock can be a 32.768kHz oscillator using an external crystal, an internal low power RC oscillator, or a high speed external clock divided by 128. The internal low-power RC oscillator has a typical frequency of 40 kHz, and to compensate for deviations from the natural crystal, the RTC's clock can be calibrated by outputting a signal at 512 Hz. The RTC has a 32-bit programmable counter, and long-time measurements can be made using a comparison register. There is a 20-bit prescaler for the time base clock, which by default generates a 1-second long time reference when the clock is 32.768kHz.

2.1.18 Timers and Watchdogs

This series contains up to 2 advanced control timers, 4 normal timers, 2 basic timers, 2 watchdog timers and 1 system tick timer.

The following table compares the functions of the

Advanced Control Timer, Normal Timer, and Basic Timer:

Times 3	TIMCUMAgui	ration Prante Type	presharing factor	Generate DMA request	Capture/Comp are Channel	complem entary output
TIM1	16-bit	Up, down.	Between 1 and	possible	4	there
			65536			are

TIM8		Up/Down	any integer of			
TIM2 TIM3 TIM4 TIM5	16-bit	Up, down, up/down	Any integer between 1 and 65536.	possible	4	hasn't
TIM9 TIM12	16-bit	try to improve	Any integer between 1 and 65536.	may not	2	hasn't
		oneself				
TIM10 TIM11 TIM13 TIM14	16-bit	try to improve oneself	Any integer between 1 and 65536.	may not	1	hasn't
TIM6 TIM7	16-bit	try to improve oneself	Any integer between 1 and 65536.	possible	0	hasn't

Advanced Control Timer (TIM1 and TIM8)

The two advanced control timers (TIM1 and TIM8) can be viewed as three-phase PWM generators assigned to six channels with complementary PWM outputs with deadband insertion, and can also be treated as complete general purpose timers. Four independent channels can be used:

- Input Capture
- Output Comparison
- Generate PWM (edge or centre aligned mode)
- Single pulse output

When configured as a 16-bit standard timer, it has the same functionality as the TIMx timer. When configured as a 16-bit PWM generator, it has full modulation capability (0 to 100%).

In debug mode, the counter can be frozen while the PWM outputs are disabled, thus cutting off the switches controlled by these outputs.

Many of the features are the same as the standard TIM timer, and the internal structure is the same, so the Advanced Control Timer can operate in concert with the TIM timer through the timer linking feature, which provides synchronisation or event linking functionality.

General purpose timers (TIM2, TIM3, TIM4, TIM5)

Four standard timers (TIM2, TIM3, TIM4, TIM5) that can run synchronously are built into this series. Each timer has a 16-bit auto-loading increment/decrement counter, a 16-bit prescaler, and four independent channels, each of which can be used for input capture, output comparison, PWM, and single pulse mode output. They can also work in conjunction with advanced control timers via the timer link function, providing synchronisation or event linking. The counters can be frozen in debug mode. Any of the standard timers can be used to generate PWM

outputs. Each timer has an independent DMA request mechanism.

These timers are also capable of handling signals from incremental encoders and also digital outputs from 1 to 3 Hall sensors. General purpose timers (TIM10, TIM11, TIM9)

These timers are based on a 16-bit auto-reload counter and a 16-bit prescaler. The TIM10 and TIM11 have a separate channel, while the TIM9 has two separate channel outputs for input capture/output comparison, PWM or mono-pulse modes. They can be synchronised with the TIM2, TIM3, TIM4, and TIM5 full-featured synchronised general purpose timers. They can also be used as simple time bases.

General purpose timers (TIM13, TIM14, TIM12)

These timers are based on a 16-bit auto-reload counter and a 16-bit prescaler. TIM13 and TIM14 have a separate channel, while TIM12

There are two independent channels for input capture/output comparison, PWM or mono-pulse mode with independent channel outputs they can be used with TIM2TIM3,

TIM4 and TIM5 full function synchronised general purpose

timers. They can also be used as simple time bases. Independent

Watchdog

The stand-alone watchdog is based on a 12-bit decrement counter and an 8-bit prescaler, which is clocked by an internal, independent 40kHz RC oscillator; because this RC oscillator is independent of the main clock, it can operate in shutdown and standby modes. It can be used as a watchdog to reset the entire system in the event of a problem, or as a free timer to provide timeout management for the application. The option byte can be configured to be a software or hardware initiated watchdog. In debug mode the counter can be frozen.

Basic Timers TIM6 and TIM7

These timers are primarily used for DAC trigger generation. They can also be used as a general purpose 16-bit time base. Window

Watchdog

The window watchdog contains a 7-bit decrementing counter and can be set to run freely. It can be used as a watchdog to reset the whole system in the event of a problem. It is driven by the master clock and has an early warning interrupt; the counter can be frozen in debug mode. System time base timer

This timer is dedicated to real-time operating systems and can also be used as a standard decrementing counter. It has the following characteristics:

- 24-bit Decrementing Counter
- Auto-reload function
- Generates a maskable system interrupt when the counter is 0.
- Programmable Clock Source

2.1.19 I2C bus

Up to 2 I2C bus interfaces, capable of operating in multi-master or slave mode, supporting standard and fast modes. The I2C interfaces support 7-bit or 10-bit addressing, and dual-slave address addressing in 7-bit slave mode. Built-in hardware CRC generator/checker.

They can use DMA operation and support SMBus bus version 2.0/PMBus bus.

2.1.20 Universal Synchronous/Asynchronous Transceiver (USART)

Three general-purpose synchronous/asynchronous transceivers (USART1, USART2 and USART3) and two general-purpose asynchronous receive transmitters (UART4 and UART5). These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode, and LIN master/slave functionality.

The USART1 interface communicates at rates up to 13.5 megabits per second.

The USART1, USART2 and USART3 interfaces feature hardware CTS and RTS signal management, ISO7816-compatible smart card mode and SPI-like communication mode.

2.1.21 Serial Peripheral Interface (SPI)

Up to 3 SPI interfaces with full and half duplex communication rates up to 30 Mbit/s in slave or master mode. 3-bit prescaler generates 8 master mode frequencies configurable to 8 or 16 bits per frame. Hardware CRC generation/checksum support for basic SD card and MMC modes.

All SPI interfaces can use DMA operation.

2.1.22 Audio Interface (I2S)

The two standard I2S interfaces (multiplexed with SPI2 and SPI3) can be operated in master or slave mode, and can be configured for 16-bit or 32-bit transfers, as well as for input or output channels, and support audio sampling from 8kHz to 48kHz. when either or both I2S interfaces are configured as master mode, its master clock can be output to an external DAC or CODEC (decoder) at a frequency of 256 times the sampling frequency. When either or both I2S interfaces are configured as master mode, its master clock can be output to an external DAC or CODEC at 256 times the sample rate.

2.1.23 SDIO

The SD/SDIO/MMC host interface can support three different data bus modes: 1-bit (default), 4-bit, and 8-bit in the MMC card system specification version 4.2. The SDIO memory card specification version 2.0 supports two data bus modes: 1-bit (default) and 4-bit. Current chip versions can only support one SD/SDIO/MMC version 4.2 card at a time, but can support multiple MMC version 4.1 or earlier cards simultaneously.

With the exception of SD/SDIO/MMC, this interface is fully compatible with the CE-ATA digital protocol version 1.1.

2.1.24 Controller Area Network (CAN)

The CAN interface is compatible with specifications 2.0A and 2.0B (active) and has a bit rate of up to 1 megabit per second. It can receive and send standard frames with 11-bit identifiers or extended frames with 29-bit identifiers. Has 3 transmit mailboxes and 2 receive FIFOs, 3 stages with 14 adjustable filters.

2.1.25 Universal Serial Bus (USB)

Embedded a full-speed USB-compatible device controller that follows the full-speed USB device (12 megabits/second) standard, with software-configurable endpoints and standby/wakeup functionality. The USB-specific 48MHz clock is generated directly from the internal master PLL (clock source can be arbitrary).

2.1.26 General Purpose Input Output Interface (GPIO)

Each GPIO pin can be configured by software as an output (push-pull or open-drain), an input (with or without pull-up or pull-down), or a multiplexed peripheral function port. Most GPIO pins are shared with digital or analogue multiplexed peripherals. All GPIO pins have high-current pass-through capability, except for ports with analogue input functions.

Where required, the peripheral functions of the I/O pins can be locked by a specific operation to avoid accidental writes to the I/O registers. Each I/O can be configured with forced pull-up

and pull-down resistors to save external resistor consumption.

2.1.27 ADC (analogue/digital converter)

Up to three 12-bit analogue/digital converters (ADCs), each sharing up to 16 external channels, are supported for single or scanning conversions. In scan mode, conversion is performed automatically on a selected set of analogue inputs.

Other logical functions on the ADC interface include:

- Synchronised sample and hold
- Cross sample and hold
- Single Sampling

The ADC can use DMA operation.

The analogue watchdog function allows very precise monitoring of one, several or all selected channels, generating an interrupt when the monitored signal exceeds a preset threshold. Events generated by the standard timers (TIMx) and advanced control timers (TIM1 and TIM8) can be internally cascaded to the ADC start trigger and injection trigger, respectively, and the application program can synchronise the AD conversion with the clock.

2.1.28 DAC (digital/analogue signal converter)

Two 12-bit buffered DAC channels can be used to convert two digital signals into two analogue voltage signals and output them. This dual digital interface supports the following functions:

- Two DAC converters: one output channel each
- 8-bit or 12-bit monotonic output
- Left and right data alignment in 12-bit mode
- Synchronised update function
- create a noise wave
- generate a triangle wave
- Dual DAC channels convert independently or synchronously
- DMA function available for each channel
- External trigger for conversion
- Input reference voltage V REF+

The DAC channel can be triggered by the update output of the timer, and the update output can also be connected to a different DMA channel.

2.1.29 temperature sensor

The temperature sensor produces a voltage that varies linearly with temperature. The temperature sensor is internally connected to the input channel of ADC1_IN16, which is used to convert the output of the sensor to a digital value.

2.1.30 Serial single wire JTAG debug port (SWJ-DP)

The embedded SWJ-DP interface, which is a combination of JTAG and serial single-wire debugging, enables the connection of either a serial single-wire debugging interface or a JTAG interface. The TMS and TCK signals of the JTAG share the same pins with SWDIO and SWCLK, respectively, and a special sequence of signals on the TMS pin is used to toggle between JTAG-DP and SW-DP.

2.1.31 Embedded Tracking Module (ETM)

Using an embedded trace microcell (ETM) connected to an external trace port analysis (TPA) device

via few ETM pins, a compressed stream of data is output from the CPU core at high speed, providing developers with clear information about instruction operation and data flow. The TPA device can be connected to a debug host via USB, Ethernet, or other high-speed channel, and real-time instruction and data flow Real-time instruction and data flow can be recorded by the debug software on the debug host and displayed in the desired format. TPA hardware can be purchased from development tool vendors and is compatible with third-party debug software.

2.1.32 True Random Number Generator (TRNG)

The TRNG unit is used to generate a sequence of true random numbers. A 128-bit true random number sequence is generated in a single operation. Configurable to generate a CPU interrupt request after random number generation.

3 Pin Definitions

LQFP48 package

Figure 1 LQFP48 Package

LQFP64 package

Figure 2 LQFP64 Package

LQFP100 package

LQFP48 Pin Definition

Table 4 LOFP 48 Pin Definition Configuration Table

LQFP 48	Pin Name	Туре	I/O Level	Main Function (after reset)	Default	Remap
1	VBAT	S	_	VBAT	-	_
2	PC13-TAMPERRTC	I/O	-	PC13	TAMPER-RTC	_
3	PC14-OSC32_IN	I/O	_	PC14	OSC32_IN	_
4	PC15-OSC32_OUT	I/O	-	PC15	OSC32_OUT	_
5	OSC_IN	I/O	-	OSC_IN	-	PD0
6	OSC_OUT	I/O	-	OSC_OUT	-	PD1
7	NRST	I/O	_	NRST	-	-
8	VSSA	S	-	VSSA	-	-
9	VDDA	S	-	VDDA	-	-
10	PA0-WKUP	I/O	-	PA0	WKUP/USART2_CTS/ adc12_in0/tim2_ch1_etr/	-

PA1						TIM5_CH1	
11			7.10		5.14		
12	11	PA1	1/O	_	PA1	·	-
11MCHS/ITMS_CH4/ 14	10	DAO	1/0		DAG	usart2_tx/adc12_in2/	
13	12	PAZ	1/0	_	PAZ	TIM2_CH3/TIM5_CH3/	-
14	12	DV3	I/O		DV3	usart2_rx/adc12_in3/	
14	13	1 A5	1/0		IAS	tim2_ch4/tim5_ch4/	_
15	14	PA4	I/O	_	PA4		_
DAC_OUT2		1111	1,0		1111	<u>'</u>	
DRC_00112 DRC_0012 DRC_00112 DRC_0012 DRC_	15	PA5	I/O	_	PA5	·	-
Timax			·				
PA7	16	PA6	I/O	_	PA6	·	TIM1_BKIN
18							
18	17	PA7	I/O	_	PA7		TIM1_CH1N
PB1	18	PB0	I/O	_	PB0		TIM1 CH2N
PB2			· ·	_			
PB10				FT		-	_
PB11						I2C2 SCL/USART3 TX	TIM2 CH3
23							
24 VDD_1 S - VDD_1 - - 25 PB12 I/O FT PB12 SPI2_NSS/IZC2_SMBA/ usart3_ck/tim1_bkin - 26 PB13 I/O FT PB13 spi2_sck/usart3_cts/ TIM1_cH1N - 27 PB14 I/O FT PB14 spi2_miso/usart3_rts/ TIM1_cH2N - 28 PB15 I/O FT PB15 spi2_mosi/tim1_ch3n - 29 PA8 I/O FT PA8 usart1_ck/tim1_ch1/ MCO - 30 PA9 I/O FT PA9 usart1_tx/tim1_ch2 - 31 PA10 I/O FT PA9 usart1_tx/tim1_ch3 - 32 PA11 I/O - PA11 USART1_CTS/USBDM CAN_RX/TIM1_CH4 - 33 PA12 I/O - PA12 usart1_rts/usbdp/ CAN_TX/TIM1_ETR - 34 PA13 I/O FT JTMS-SWDIO - PA13 35 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>							_
PB12				_		-	_
25						SPI2 NSS/I2C2 SMBA/	
PB13	25	PB12	1/O	FT.	PB12		-
PB14	26	DD12	T/O	TYT	DD12	spi2_sck/usart3_cts/	
27	26	PB13	1/0	F1	PB13	TIM1_CH1N	_
PB15	27	PR14	I/O	FТ	PR14	± .	_
PA8		1 1 1 1	1/0	11	1 D1 1	TIM1_CH2N	
PAS	28	PB15	I/O	FT	PB15	spi2_mosi/tim1_ch3n	_
PAS						usart1_ck/tim1_ch1/	
30	29	PA8	I/O	FT	PA8	· · · · · · · · · · · · · · · · · · ·	-
31	30	PA9	I/O	FT	PA9		_
SZ						<u>'</u>	_
33 PA12 I/O - PA12 usart1_rts/usbdp/ -	22	D A 1.1	T/O		DA 11	USART1_CTS/USBDM	
SPI3_NSS PAI2 I/O FT JTMS-SWDIO FT JTMS-SWDIO FT JTMS-SWDIO FT FAI2 CAN_TX/TIM1_ETR FT	32	PAII	1/0	_	PAII	CAN_RX/TIM1_CH4	_
34	33	DA12	I/O		DA 12	usart1_rts/usbdp/	
35			,			CAN_TX/TIM1_ETR	_
36 VDD_2 S - VDD_2 -				FT	-		PA13
37 PA14 I/O FT JTCK-SWCLK - PA14 38 PA15 I/O FT JTDI SPI3_NSS tim2_ch1_etr/pa15/SPI1_NSS 39 PB3 I/O FT JTDO SPI3_SCK TIM2_CH2/PB3/TRACESWO/SPI1_SCK 40 PB4 I/O FT NJTRST SPI3_MISO TIM3_CH1/PB4/SPI1_MISO 41 PB5 I/O - PB5 I2C1_SMBA/SPI3_MOSI TIM3_CH2/SPI1_MOSI 42 PB6 I/O FT PB6 I2C1_SCL/TIM4_CH1 USART1_TX 43 PB7 I/O FT PB7 I2C1_SDA/TIM4_CH2 USART1_RX 44 BOOT0 I - BOOT0 - - - 45 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL/CAN_RX				-			-
38							_
38 PATS I/O FT JTDI SPI3_INSS SPI1_NSS 39 PB3 I/O FT JTDO SPI3_SCK TIM2_CH2/PB3/TRACESWO/SPI1_SCK 40 PB4 I/O FT NJTRST SPI3_MISO TIM3_CH1/PB4/SPI1_MISO 41 PB5 I/O - PB5 I2C1_SMBA/SPI3_MOSI TIM3_CH2/SPI1_MOSI 42 PB6 I/O FT PB6 I2C1_SCL/TIM4_CH1 USART1_TX 43 PB7 I/O FT PB7 I2C1_SDA/TIM4_CH2 USART1_RX 44 BOOTO I - BOOTO - - 45 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL/CAN_RX	37	PA14	I/O	FΤ	JTCK-SWCLK		
SPI1_NSS SPI1_NSS SPI1_NSS SPI1_NSS SPI1_NSS TIM2_CH2/PB3/ TRACESWO/SPI1_SCK TRACESWO/SPI1_SCK TRACESWO/SPI1_SCK TRACESWO/SPI1_SCK TRACESWO/SPI1_SCK TRACESWO/SPI1_SCK SPI3_MISO TIM3_CH1/PB4/ SPI1_MISO SPI1_MISO SPI1_MISO SPI1_MISO TIM3_CH2/SPI1_MOSI 41	38	PA15	I/O	FT	JTDI	SPI3_NSS	
TRACESWO/SPI1_SCK							
40 PB4 I/O FT NJTRST SPI3_MISO TIM3_CH1/PB4/SPI1_MISO 41 PB5 I/O - PB5 I2C1_SMBA/SPI3_MOSI TIM3_CH2/SPI1_MOSI 42 PB6 I/O FT PB6 I2C1_SCL/TIM4_CH1 USART1_TX 43 PB7 I/O FT PB7 I2C1_SDA/TIM4_CH2 USART1_RX 44 BOOTO I - BOOTO - - 45 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL/CAN_RX	39	PB3	I/O	FT	JTDO	SPI3_SCK	1 1
40 PB4 I/O FT NJTRST SPI3_MISO SPI1_MISO 41 PB5 I/O - PB5 I2C1_SMBA/ SPI3_MOSI TIM3_CH2/SPI1_MOSI 42 PB6 I/O FT PB6 I2C1_SCL/TIM4_CH1 USART1_TX 43 PB7 I/O FT PB7 I2C1_SDA/TIM4_CH2 USART1_RX 44 BOOTO I - BOOTO - - 45 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL/CAN_RX							
41 PB5 I/O - PB5 I2C1_SMBA/ SPI3_MOSI TIM3_CH2/SPI1_MOSI 42 PB6 I/O FT PB6 I2C1_SCL/TIM4_CH1 USART1_TX 43 PB7 I/O FT PB7 I2C1_SDA/TIM4_CH2 USART1_RX 44 BOOT0 I - BOOT0 - - 45 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL/CAN_RX	40	PB4	I/O	FT	NJTRST	SPI3_MISO	1 ' ' 1
42 PB6 I/O FT PB6 I2C1_SCL/TIM4_CH1 USART1_TX 43 PB7 I/O FT PB7 I2C1_SDA/TIM4_CH2 USART1_RX 44 BOOT0 I - BOOT0 - - 45 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL/CAN_RX	41	PB5	I/O	_	PB5	I2C1 SMBA/SPI3 MOSI	
43 PB7 I/O FT PB7 I2C1_SDA/TIM4_CH2 USART1_RX 44 BOOT0 I - BOOT0 - - 45 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL/CAN_RX						<u>'</u>	'
44 BOOT0 I - BOOT0 - - - 45 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL/CAN_RX			· ·			<u>'</u>	
45 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL/CAN_RX			· -	_		-	-
, , , , , , , , , , , , , , , , , , ,				FT		TIM4_CH3	I2C1_SCL/CAN_RX
46 PB9 I/O FT PB9 TIM4_CH4 I2C1_SDA/CAN_TX	46			FT		TIM4_CH4	

47	VSS_3	S	_	VSS_3	_	-
48	VDD_3	S	-	VDD_3	-	-

⁽¹⁾ FT = 5V tolerance

LQFP64 Pin Definition

Table 5 LQFP 64 Pin Definition Configuration Table

LQFP 64	Pin Name	Туре	I/O Level	Main Function (after reset)	Default	Remap
1	VBAT	S	_	VBAT		_
2	PC13-TAMPERRTC	I/O	_	PC13	TAMPER-RTC	
3 4	PC14-OSC32_IN PC15-OSC32_OUT	I/O I/O	_	PC14 PC15	OSC32_IN OSC32_OUT	PD0 PD1
5	OSC_IN	I/O	_	OSC_IN	U3C32_UU1	PDI
6	OSC_OUT	I/O		OSC_IN OSC_OUT		
7	NRST	I/O		NRST		
8	PC0	I/O	_	PC0	ADC123_IN10	_
9	PC1	I/O	_	PC1	ADC123_IN11	_
10	PC2	I/O	_	PC2	ADC123_IN12	_
11	PC3	I/O	_	PC3	ADC123_IN13	_
12	VSSA	S	_	VSSA	-	_
13	VDDA	S	_	VDDA	_	_
14	PA0-WKUP	I/O	-	PA0	wkup/usart2_cts/ adc123_in0/tim2_ch1_etr/ tim5_ch1/tim8_etr	-
15	PA1	I/O	-	PA1	usart2_rts/adc123_in1/ TIM2_CH2/TIM5_CH2	-
16	PA2	I/O	_	PA2	usart2_tx/adc123_in2/ tim2_ch3/tim5_ch3/ TIM9_CH1	-
17	PA3	I/O	-	PA3	usart2_rx/adc123_in3/ tim2_ch4/tim5_ch4/ TIM9_CH2	-
18	VSS_4	S	_	VSS_4	-	-
19	VDD_4	S	_	VDD_4	-	-
20	PA4	I/O	_	PA4	spi1_nss/usart2_ck/ DAC_OUT1/ADC12_IN4	-
21	PA5	I/O	-	PA5	SPI1_SCK/ADC12_IN5/ DAC_OUT2	-
22	PA6	I/O	_	PA6	spi1_miso/adc12_in6/ tim3_ch1/tim8_bkin/ TIM13_CH1	TIM1_BKIN
23	PA7	I/O	_	PA7	spi1_mosi/adc12_in7/ tim3_ch2/tim8_ch1n/ TIM14_CH1	TIM1_CH1N
24	PC4	I/O		PC4	ADC12_IN14	_
25	PC5	I/O		PC5	ADC12_IN15	
26	PB0	I/O	_	PB0	ADC12_IN8/TIM3_CH3/ TIM8_CH2N	TIM1_CH2N
27	PB1	I/O	-	PB1	ADC12_IN9/TIM3_CH4/ TIM8_CH3N	TIM1_CH3N
28	PB2	I/O	FT	PB2/BOOT1	_	_

29	PB10	I/O	FT	PB10	I2C2_SCL/USART3_TX	TIM2_CH3
30	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX	TIM2_CH4
31	VSS_1	S	_	VSS_1	-	-
32	VDD_1	S	_	VDD_1	-	-
33	PB12	I/O	FT	PB12	spi2_nss/i2s2_ws/ i2C2_smba/usart3_ck/ TIM1_BKIN	-
34	PB13	I/O	FT	PB13	spi2_sck/i2s2_ck/ usart3_cts/tim1_ch1n	-
35	PB14	I/O	FT	PB14	spi2_miso/tim1_ch2n usart3_rts/tim12_ch1	-
36	PB15	I/O	FT	PB15	spi2_mosi/i2s2_sd/ tim1_ch3n/tim12_ch2	_
37	PC6	I/O	FT	PC6	I2S2_MCK/TIM8_CH1/ SDIO_D6	TIM3_CH1
38	PC7	I/O	FT	PC7	I2S3_MCK/TIM8_CH2/ SDIO_D7	TIM3_CH2
39	PC8	I/O	FT	PC8	TIM8_CH3/SDIO_D0	TIM3_CH3
40	PC9	I/O	FT	PC9	TIM8_CH4/SDIO_D1	TIM3_CH4
41	PA8	I/O	FΤ	PA8	usart1_ck/tim1_ch1/ MCO	-
42	PA9	I/O	FT	PA9	usart1_tx/tim1_ch2	_
43	PA10	I/O	FT	PA10	usart1_rx/tim1_ch3	-
44	PA11	I/O	-	PA11	USART1_CTS/USBDM CAN_RX/TIM1_CH4	-
45	PA12	I/O	ı	PA12	usart1_rts/usbdp/ CAN_TX/TIM1_ETR	-
46	PA13	I/O	FT	JTMS-SWDIO	-	PA13
47	VSS_2	S	-	VSS_2	_	_
48	VDD_2	S	-	VDD_2		-
49	PA14	I/O	FT	JTCK-SWCLK	_	PA14
50	PA15	I/O	FT	JTDI	SPI3_NSS/I2S3_WS	TIM2_CH1_ETR/PA15/ SPI1_NSS
51	PC10	I/O	FT	PC10	UART4_TX/SDIO_D2	USART3_TX
52	PC11	I/O	FT	PC11	UART4_RX/SDIO_D3	USART3_RX
53	PC12	I/O	FT	PC12	UART5_TX/SDIO_CK	USART3_CK
54	PD2	I/O	FT	PD2	TIM3_ETR/UART5_RX SDIO_CMD	
55	PB3	I/O	FT	JTDO	SPI3_SCK/I2S3_CK	PB3/TRACESWO TIM2_CH2/SPI1_SCK
56	PB4	I/O	FT	NJTRST	SPI3_MISO	PB4/TIM3_CH1/ SPI1_MISO
57	PB5	I/O	ı	PB5	I2C1_SMBA/SPI3_MOSI /I2S3_SD	TIM3_CH2/SPI1_MOSI
58	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1	USART1_TX
59	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2	USART1_RX
60	BOOT0	Ι	-	BOOT0		-
61	PB8	I/O	FT	PB8	TIM4_CH3/SDIO_D4/ TIM10_CH1	I2C1_SCL/CAN_RX
1-62	DDO	I/O	FT	PB9	TIM4_CH4/SDIO_D5/ TIM11_CH1	I2C1_SDA/CAN_TX
[(19 4	T = 5V tolerance				111V111_C111	
(19 4) 63	$T = 5V \text{ tolerance}$ VSS_3	S		VSS_3		_

LQFP100 Pin Definition

Table 6 LQFP 100 Pin Definition Configuration Table

LQFP 64	Pin Name	Туре	I/O Level	Main Function (after reset)	Default	Remap
1	PE2	I/O	FT	PE2	FSMC_A23	_
2	PE3	I/O	FT	PE3	FSMC_A19	
3	PE4	I/O	FT	PE4	FSMC_A20	_
4	PE5	I/O	FT	PE5	FSMC_A21	_
5	PE6	I/O	FT	PE6	FSMC_A22	
6	VBAT	S		VBAT	-	
7	PC13-TAMPERRTC	I/O	_	PC13	TAMPER-RTC	
8	PC14-OSC32_IN		_	PC14	OSC32_IN	
9	PC15-OSC32_OUT	,	_	PC15	OSC32_OUT	
10	VSS_5	S	_	VSS_5	-	
11	VDD_5	S	_	V 33_3 VDD_5	_	
12	OSC_IN	I/O		OSC_IN	_	
		,	_		_	
13	OSC_OUT	I/O	-	OSC_OUT	_	
14	NRST	I/O	-	NRST	- ADO122 IN10	_
15	PC0	I/O	-	PC0	ADC123_IN10	
16	PC1	I/O	-	PC1	ADC123_IN11	
17	PC2	I/O	-	PC2	ADC123_IN12	_
18	PC3	I/O	-	PC3	ADC123_IN13	_
19	VSSA	S	-	VSSA	-	
20	Vref-	S	-	Vref-	-	_
21	Vref+	S	-	Vref+	-	_
22	VDDA	S	-	VDDA	-	-
23	PA0-WKUP	I/O	-	PA0	wkup/usart2_cts/ adc123_in0/tim2_ch1_etr/ tim5_ch1/tim8_etr	-
24	PA1	I/O	-	PA1	usart2_rts/adc123_in1/ TIM2_CH2/TIM5_CH2	-
25	PA2	I/O	-	PA2	usart2_tx/adc123_in2/ tim2_ch3/tim5_ch3/ TIM9_CH1	-
26	PA3	I/O	-	PA3	usart2_rx/adc123_in3/ tim2_ch4/tim5_ch4/ TIM9_CH2	-
27	VSS_4	S	_	VSS_4	-	_
28	VDD_4	S	_	VDD_4	-	
29	PA4	I/O	-	PA4	spi1_nss/usart2_ck/ DAC_OUT1/ADC12_IN4	-
30	PA5	I/O	-	PA5	SPI1_SCK/ADC12_IN5/ DAC_OUT2	-
31	PA6	I/O	-	PA6	spi1_miso/adc12_in6/ tim3_ch1/tim8_bkin/ TIM13_CH1	TIM1_BKIN
32	PA7	I/O	-	PA7	spi1_mosi/adc12_in7/ tim3_ch2/tim8_ch1n/ TIM14_CH1	TIM1_CH1N
33	PC4	I/O		PC4	ADC12_IN14	_

34	PC5	I/O		PC5	ADC12_IN15	_
35	PB0	I/O	_	PB0	ADC12_IN8/TIM3_CH3/ TIM8_CH2N	TIM1_CH2N
36	PB1	I/O	_	PB1	ADC12_IN9/TIM3_CH4/ TIM8_CH3N	TIM1_CH3N
37	PB2	I/O	FT	PB2/BOOT1	_	-
38	PE7	I/O	FT	PE7	FSMC_D4	TIM1_ETR
39	PE8	I/O	FT	PE8	FSMC_D5	TIM1_CH1N
40	PE9	I/O	FT	PE9	FSMC_D6	TIM1_CH1
41	PE10	I/O	FT	PE10	FSMC_D7	TIM1_CH2N
42	PE11	I/O	FT	PE11	FSMC_D8	TIM1_CH2
43	PE12	I/O	FT	PE12	FSMC_D9	TIM1_CH3N
44	PE13	I/O	FT	PE13	FSMC_D10	TIM1_CH3
45	PE14	I/O	FT	PE14	FSMC_D11	TIM1_CH4
46	PE15	I/O	FT	PE15	FSMC_D12	TIM1_BKIN
47	PB10	I/O	FT	PB10	I2C2_SCL/USART3_TX	TIM2_CH3
48	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX	TIM2_CH4
49	VSS_1	S	_	VSS_1	-	_
50	VDD_1	S	_	VDD_1	-	_
51	PB12	I/O	FT	PB12	spi2_nss/i2s2_ws/ i2C2_smba/usart3_ck/ TIM1_BKIN	-
52	PB13	I/O	FT	PB13	spi2_sck/i2s2_ck/ usart3_cts/tim1_ch1n	-
53	PB14	I/O	FT	PB14	spi2_miso/tim1_ch2n usart3_rts/tim12_ch1	-
54	PB15	I/O	FT	PB15	spi2_mosi/i2s2_sd/ tim1_ch3n/tim12_ch2	-
55	PD8	I/O	FT	PD8	FSMC_D13	USART3_TX
56	PD9	I/O	FT	PD9	FSMC_D14	USART3_RX
57	PD10	I/O	FT	PD10	FSMC_D15	USART3_CK
58	PD11	I/O	FT	PD11	FSMC_A16	USART3_CTS
59	PD12	I/O	FT	PD12	FSMC_A17	TIM4_CH1/USART3_RX
60	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2
61	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3
62	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4
63	PC6	I/O	FT	PC6	I2S2_MCK/TIM8_CH1/ SDIO_D6	TIM3_CH1
64	PC7	I/O	FT	PC7	I2S3_MCK/TIM8_CH2/ SDIO_D7	TIM3_CH2
65	PC8	I/O	FT	PC8	TIM8_CH3/SDIO_D0	TIM3_CH3
66	PC9	I/O	FT	PC9	TIM8_CH4/SDIO_D1	TIM3_CH4
67	PA8	I/O	FT	PA8	usart1_ck/tim1_ch1/ MC0	-
68	PA9	I/O	FT	PA9	usart1_tx/tim1_ch2	-
69	PA10	I/O	FT	PA10	usart1_rx/tim1_ch3	_
70	PA11	I/O	-	PA11	USART1_CTS/USBDM CAN_RX/TIM1_CH4	-
71	PA12	I/O	_	PA12	usart1_rts/usbdp/ CAN_TX/TIM1_ETR	-
72	PA13	I/O	FT	JTMS-SWDIO	-	PA13
73		, ,		Not Connected		-
74	VSS_2	S	_	VSS_2	-	-
75	VDD_2	S	_	VDD_2	-	_

76	PA14	I/O	FT	JTCK-SWCLK	-	PA14
77	PA15	I/O	FT	JTDI	SPI3_NSS/I2S3_WS	TIM2_CH1_ETR/PA15/ SPI1_NSS
78	PC10	I/O	FT	PC10	UART4_TX/SDIO_D2	USART3_TX
78	PC10 PC11		FT	PC10 PC11	UART4_RX/SDIO_D3	
		I/O			· · · · · · · · · · · · · · · · · · ·	USART3_RX
80	PC12	I/O	FT	PC12	UART5_TX/SDIO_CK	USART3_CK
81	PD0	I/O	FT	PD0	FSMC_D2	CAN_RX
82	PD1	I/O	FT	PD1	FSMC_D3	CAN_TX
83	PD2	I/O	FT	PD2	TIM3_ETR/UART5_RX SDIO_CMD	-
84	PD3	I/O	FT	PD3	FSMC_CLK	USART2_CTS
85	PD4	I/O	FT	PD4	FSMC_NOE	USART2_RTS
86	PD5	I/O	FT	PD5	FSMC_NWE	USART2_TX
87	PD6	I/O	FT	PD6	FSMC_NWAIT	USART2_RX
88	PD7	I/O	FT	PD7	FSMC_NE1/FSMC_NCE2	USART2_CK
89	PB3	I/O	FT	JTDO	SPI3_SCK/I2S3_CK	PB3/TRACESWO TIM2_CH2/SPI1_SCK
90	PB4	I/O	FT	NJTRST	SPI3_MISO	PB4/TIM3_CH1/ SPI1_MISO
91	PB5	I/O	_	PB5	I2C1_SMBA/SPI3_MOSI /I2S3_SD	TIM3_CH2/SPI1_MOSI
92	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1	USART1_TX
93	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2 / FSMC_NADV	USART1_RX
94	BOOT0	I	_	BOOT0	-	-
95	PB8	I/O	FT	PB8	TIM4_CH3/SDIO_D4/ TIM10_CH1	I2C1_SCL/CAN_RX
96	PB9	I/O	FT	PB9	TIM4_CH4/SDIO_D5/ TIM11_CH1	I2C1_SDA/CAN_TX
97	PE0	I/O	FT	PE0	TIM4_ETR/FSMC_NBL0	-
98	PE1	I/O	FT	PE1	FSMC_NBL1	-
99	VSS_3	S	_	VSS_3	-	-
100	VDD_3	S	_	VDD_3	-	-
(4) 7						1

⁽¹⁾ FT = 5V tolerance

4 Electrical Characteristics

test condition

All voltage's are referenced to VSS unless otherwise noted.

4.1.1 Minimum and maximum values

Unless otherwise stated, all minimum and maximum values will be guaranteed at the worst ambient temperature, supply voltage and clock frequency conditions by tests performed on 100% of the products at ambient temperature TA=25°C on the production line.

In the notes at the bottom of each table it is stated that the data obtained through comprehensive evaluation, design simulation and/or process characterisation will not be tested on the production line; on the basis of the comprehensive evaluation, the minimum and maximum values are obtained by taking the average of the samples tested plus or minus three times the standard distribution (mean \pm 3 sigma).

4.1.2 Typical values

Typical data is based on TA=25°C and VDD=3.3 V. These data are for design guidance only and are not tested unless otherwise noted.

Typical ADC accuracy values are obtained by sampling a standard batch, tested over all temperature ranges, with 95% of the products having an error less than or equal to the value given (average ± 2 sigma).

4.1.3 typical curve

Typical curves are for design guidance only and are untested unless otherwise noted.

4.1.4 load capacitance

Figure 4 Load Conditions for Pins

4.1.5 Pin Input

Voltage

Figure 5 Pin Input Voltage

4.1.6 Power supply programme

Figure 6 Power supply scheme

4.1.7 Current consumption measurement

Loads applied to the device in excess of the values given in the *Absolute Maximum Ratings* list may result in permanent damage to the device. The fact that only the maximum loads that can be withstood are given here does not imply that the device will operate functionally without error under these conditions. Prolonged operation of the device under maximum conditions will affect the reliability of the device.

Table 7 Voltage Characteristics

14816 7 701	tage distracteristics				_
notation	Description	minimum	maximum	unit	
		value	values		
VDD - VSS	External mains supply voltage (including	-0.3	4		
	VDDA and VDD)(1)			V	
VIN	Input voltage on 5V tolerant pins (2)	Vss-0.3	Vdd+4.0		
	Input voltage on other pins(2)	Vss-0.3	4.0		
1) All power (VPDtage difference between differencing	s must a <u>l</u> ways b	e connected to	a	
	system within the external permissible rar			mV	
d b\$& x& & &rr	eYpltagardifferencebetween different	-	50		
notation	ground pins descriptions		Maximum	unit	
			value (1)	(of	
				measu	
				re)	
IVDD	Total current through VDD/VDDA powe	, 11 5	150		
1) All power (V	VIDIDUVIIDIDA)(ah)d ground (VSS, VSSA) pins n	nust always be c	onnected to the	external pe	rmissi
IVSAge powe	er sufottalsguterant through VSS ground (c	outgoing	150	IIIA	
	current) (1)				
IIO	Output sink current on arbitrary I/O and control		25		
110	pins				
	Output current on arbitrary I/O and c	control pins	-25		

Table 9 Temperature Characteristics

notation	descriptions	numerical	unit (of
		value	measure)
TSTG	Storage temperature range	-65 ~ +150	°C
TJ	Maximum Junction Temperature	105	°C

working conditions

4.1.8 General working conditions

Table 10 General operating conditions

	notatio	parameters	prerequisite	minimu	maximu	unit			
	n			m value	m values				
	fHCLK	Internal AHB clock frequency	-	0	216				
	fPCLK1	Internal APB1 clock frequency	-	0	108	MHz			
	fPCLK2	Internal APB2 clock frequency	-	0	216				
	VDD	Standard Operating Voltage	-	2.0	3.6	V			
	VDDA(1)	Analogue section operating	Must be the same as	2.0	3.6	V			
		voltage	VDD(2)						
	VBAT (1) It is reco	Backup section operating mmended that the same power supply voltage	y be used to power bot	h VDD and	VDDA:6	V			
4.1	1. ₁ 9. Opera	ting conditions patapower-	up and power-d	own ₄₀	85	°C			

The parameters given in the following table are based on tests $% \left\{ 1,2,...,n\right\}$

at ambient temperatures listed in the General Operating

Condication Tab	le 11 O perating c ondition	is aprocoppisite an	dminimum	maximum	unit
nower down	• 0		value	values	
p ower-down tVDD	VDD Rise Rate	_	0	8	us/V
	VDD Decline Rate		20	∞	as, i

4.1.10 Embedded reset and power control module features

The parameters given in the following table are based on testing at the VDD supply voltage listed in the General Operating Conditions.

Tablada Embed	ded Rasatnand :Rowe	r Contr phMoquilei G harac	teninition	typical	maxim	unit			
			um	value	um				
			value		values				
IIDIID	Programmabl	PLS[2:0]=000 (rising	2.1	2.16	2.26	V			
VPVD	e level	edge)							
	selection for	PLS[2:0]=000 (falling	2	2.07	2.16	V			
	voltage	edge)							
	1-44								

		PLS[2:0]=001 (rising edge)	2.19	2.26	2.37	V
		PLS[2:0]=001 (falling	2.09	2.17	2.27	V
		edge) PLS[2:0]=010 (rising	2.28	2.35	2.48	V
		edge)				
		PLS[2:0]=010 (falling	2.18	2.26	2.38	V
		edge)				
		PLS[2:0]=011 (rising	2.38	2.48	2.58	V
		edge)				
		PLS[2:0]=011 (falling	2.28	2.36	2.48	V
		edge)				
		PLS[2:0]=100 (rising	2.47	2.55	2.69	V
		edge)				
		PLS[2:0]=100 (falling	2.37	2.45	2.59	V
		edge)				
		PLS[2:0]=101 (rising	2.57	2.66	2.79	V
		edge)				
		PLS[2:0]=101 (falling	2.47	2.57	2.69	V
		edge)				
		PLS[2:0]=110 (rising	2.66	2.76	2.9	V
		edge)				
		PLS[2:0]=110 (falling	2.56	2.67	2.8	V
		edge)				
		PLS[2:0]=111 (rising	2.76	2.85	3	V
(1) Guaranteed b	y design, not teste	edge)				
) ′	<i>y</i> 0 /	PLS[2:0]=111 (falling	2.66	2.77	2.9	V
4. 1.11 Built	<u>-in reference v</u>	70ttage				
VPVDhyst (1) The parameters	PVD hysteresis given in the follov	ving table are tested at th	e VDD -	100	-	mV
supply voltage lis	todivetha popovel	Operitings (ge (if on a)	able 13	1.90	_	V
Bundtahion ference	e dolars resters	prerequisite rising edge (of a	minim	typical 2.02	maxim	unit (of
	threshold value	mountain range)	um	value	um	measur
VPDRhyst (1) VREFINT	PDR hysteresis Built-in	_	value -	30	values -	e) mV V
		-40°C < TA < +85°C	1.16		1.24	
TRSTTEMPO(1)	Resetremention	-	_	2	-	ms
	voltage					
TC renofinet(1)	When reading out the			5.1	17.1	110
TS_vrefint(1)	internal	-	_	5.1	17.1	us
	parameter					
	ADC sampling					
	time when					
	illuminating					
	1		1			

the voltage

- (1) The shortest sampling time is obtained by applying multiple cycles in the application.
- (2) Guaranteed by design, not tested in production.

4.1.12 Supply Current Characteristics

Current consumption is a combination of a number of parameters and factors, including operating voltage, ambient temperature, load on I/O pins, software configuration of the product, operating frequency, flip-flop rate of I/O pins, location of the programme in memory, and code executed. For a description of how current consumption is measured, see the Current Consumption Test Volume description in the Test Conditions section.

current consumption

The microcontroller is in the following conditions:

- All I/O pins are in analogue input mode.
- All peripherals are off unless otherwise noted.
- When the peripheral is switched on: fPCLK1 = fHCLK/2, fPCLK2 = fHCLK.

Table 14 Current consumption in operating mode

Ţ	able 14	Guirein C	onsumpno	n in operati	ing infode			1	
					Typi	cal value(1)		imum	u
	notati	param	prereq	fHCLK			value	e (2)	
	on	eters	uisite		Enable all	Close all	Enable all	Close all	ni
					peripheral	peripheral	peripheral	peripher	t
					S	S	S	als	(o
									f
									m
									ea
									su
									re
)
				216MHz	36.29	25.49	38.50	27.56	
				168MHz	27.71	19.27	29.95	21.35	
				72MHz	13.09	9.38	14.93	11.21	
			external clock	48MHz	9.35	6.93	11.18	8.74	mA
			(3)	32MHz	6.88	5.25	8.68	7.04	
		operation		24MHz	5.67	4.46	7.41	6.20	
	IDD	al mode							
	1) Tunio	formal	o obtained b	16MHz	4.43	3.63	6.16	5.34	
	1) Typic	electric	e obtained b	y testing at T 8MHz	3.28	2.58	4.98	4.54	
		supply		ed at TA=85°					
	3) The ex	kternal clos stream of	k is 8MHz and	i PLL is enabl 128MHz	ed when fHC	LK > 8MHz. 15.19	23.89	17.27	
		water or	Dungon						
		sth.	Runs on						
		resemblin	a high-						mA
		g one	speed						

Table 15 Current Consumption in Sleep Mode with Code Running in Flash

notati	param	nr	ereq	fHCLK	1,771	JAI V	value(1)		valu	imum e (2)	u
on	eters	_	site		Enable all peripher als		ose all ipheral s	Enable periph s		Close al periphera	l t
				216MHz	25.72		7.01	27.	73	8.70	
				168MHz	19.46		4.81	21.	49	6.58	
				72MHz	9.53		3.25	11.	31	4.92	
		exter clo	ck	48MHz	6.99		2.81	8.7	6	4.51	mA
		(3	3)	32MHz	5.32		2.54	7.0	07	4.23	
IDD	sleep pattern			24MHz	4.50		2.41	6.3	22	4.09	
1) Tyni	formal	s are	teste	16MHz d at TA=25	3.66°C	:	2.28	5.3	6	3.96	
LL is e	supply VDD=3.6V. stream of nabled water ow	3) Ex hen fl	terna: HCLK>8	e is ^{8MHZ} ted clock is 8M 128MHz MHz. Table	Hz, 15.31 16		4.14	4.5 17.		5.90	
ypical a notati n stop ar on	resemblin	iumie iers madde	urren k-	t consumpt prereqi	ion uisite		-	oical ue(1)		aximum alue (2)	unit
I			1							(=)	(ofmA
	g one	speed	d	72MHz	9.47		3.20	11.	36	4.93	meas
	gone	speed interi	d	72MHz 48MHz	9.47 6.97		3.20	11.		. ,	1
	gone	interi	d nal ——— The r	48MHz egulator is i	6.97	,			80	4.93	meas
	gone	speed internal RC oscil	nal The r	48MHz egulator is i	6.97 n run mode 5.32		2.80	8.8 7.5	80 11	4.93 4.52	meas
		speed internal RC oscill r (HS	nal The r lato low, l SI) Speed	48MHz egulator is i 32MHz nigh 24MHz internal 16MHz external	6.97 n run mode 5.32 4.49 RC oscillato	or	2.80	8.3 7.3	80 11 25	4.93 4.52 4.26	meas
	g one Supply current	speed internal RC oscill r (HS	nal The r lato low, l SI) Speed	48MHz egulator is i 32MHz nigh 24MHz internal 16MHz external	6.97 n run mode 5.32	or ed	2.80 2.54 2.41 2	8.8 7.2 10 6.2	80 11 25 39	4.93 4.52 4.26 12904.12	meas
IDD	Supply	internance RC oscill r (HS	The r lato low, h Speed and	48MHz egulator is i 32MHz nigh 24MHz internal 16MHz external	6.97 h run mode 5.32 4.49 RC oscillate 3.65 high-spee	or ed	2.80 2.54 2.41 2 2.27	8.8 7.3 10 6.3 5.3	80 11 25 39	4.93 4.52 4.26 12904.12 3.98	meas
IDD	Supply	speed internal control in the speed internal control in the speed internal control in the speed	The r lato low, he speed and oscill mode High-oscillaspeed	48MHz egulator is in 32MHz nigh 24MHz internal 16MHz external ator 8MHz endent water segulator is in and low specific and low	6.97 h run mode 4.49 RC oscillate 3.65 high-spee off 2.89 (nechdog) n low power eed, ternal Resternal high	or d o	2.80 2.54 2.41 2 2.27 2.17	8.8 7.3 10 6.3 5.3	80 11 25 39	4.93 4.52 4.26 12904.12 3.98	meas ure)

		Low-speed internal RC oscillator on , external low-speed oscillator and RTC, IWDG are off	1.0	2.5	
		External low-speed oscillator is on, low-speed internal RC oscillator and RTC, IWDG are off.	1.0	2.6	
		External low-speed oscillator and RTC are on, low-speed internal RC oscillator and IWDG are off.	1.3	2.7	
		Low-speed internal RC oscillator and IWDG on, external low- speed oscillator and RTC off	1.0	2.7	
IDD_VB AT	Supply current in the	External low-speed oscillator and RTC are on	0.9	1.3	
	backup area				

(1) Typical values are tested at TA=25°C, VDD=VBAT=3.3V. (2) Maximum values are obtained by testing at TA=85°C, VDD=VBAT=3.6V. (3) Derived from comprehensive evaluation, not tested in production

Built-in Peripheral

Current

Consumption The operating conditions of the MCU are as

follows:

- All I/O pins are in analogue input mode
- All peripherals are off unless otherwise noted.
- The values given are calculated by measuring the current consumption
 - ◆ Clock off all peripherals
 - ◆ Turning on the clock

of only one peripheral Table 17

or only one p	of only one peripheral rable 17									
Current corb	uithintiperinfleuilt in	Typical Power	unit (of measure)							
peripherals		Consumption at 25°C								
	TIM2	2.08								
	TIM3	2 36								

	TTO A DOTTO	0.56	
	USART2	0.56	
	USART3	0.56	
	UART4	0.56	
	UART5	0.56	
	I2C1	1.81	
	I2C2	1.81	
	USB	5.42	
	CAN	1.11	
	SDIO	7.92	
	WWDG	0.24	
	DAC	0.58	
	PWR	0.008	
	ВКР	0.11	
	ADC1(1)	5	
	ADC2(1)	5	
	ADC3(1)	5	
APB2	TIM1	3.71	
	TIM8	3.76	
	SPI1	1.83	
	USART1	1.39	

⁽¹⁾ Special conditions for ADC: fHCLK = 56MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADC_CR2 ADON=1 for the register.

4.1.13 External Clock Source Characteristics

High-speed external user clock generated from an external oscillator source

The characteristics given in the following table were measured using a high-speed external clock source with ambient temperature and supply voltage in accordance with general

clock source with uniblent temperature and supply voltage in accordance with general								
operatationo	 nditions. Pa®ret®r High-Spe	eprexequisiteu	sericlimk	CHapical	i maxi mu	unit		
			m value	value	m values	(of		
						meas		
						ure)		
fHSE_ext	User external clock		0.615	8	35	MHz		
	frequency(1)							
VHSEH	OSC_IN input pin high	_	0.48Vdd	-	Vdd	T 7		
	voltage					V		
VHSEL	OSC_IN input pin low level		Vss	-	0.38Vdd			
	voltage							
tw (HSE)	Time when OSC_IN is high or low (1)		5	62.5	-	ns		

tr(HSE)	Time for OSC_IN to rise or		_	4.1	20	
tf (HSE)	fall			1.1	20	
	(1)					
Cin	OSC_IN input tolerance(1)	-	-	5	_	pF
(HSE)						
(1) Bug (Ast)	ed by desi gn tynot dested in p	roduction.	45	50	55	%
	tr(HSE) + tf(HSE	E)	tW(HSE)	/	tW(HSE)	

Figure 8 AC Timing Diagram of External High-Speed Clock Source Low-Speed External User Clock Generated from External Oscillator Source

fHSE_ext

External clock source

The characteristic parameters given in the following table were measured using a low-speed external clock source, with ambient temperature and supply voltage in accordance with general operating conditions.

Table 19 Low-speed external user clock characteristics

notation	parameters	prerequisite	minimu	typical	maximu	unit (of
			m value	value	m	measur
					values	e)
fHSE_ext	User external clock		-	32.768	1000	KHz
	frequency(1)					
VLSEH	OSC32_IN input pin high		0.48Vdd	-	VDD	T 7
	voltage					V
VLSEL	OSC32_IN input pin low level	-	VSS	-	0.38Vdd	
	voltage					
tw (LSE)	OSC32_IN high or low time		450			
tw (LSE)	9		430	_	_	
, ,	(1)					ns
tr(LSE) (1) Guarante	OSC32_IN rise or fall time eed by design and not tested in	n production.	-	-	50	
tf(LSE)	(1)	•				
Cin (LSE)	OSC32_IN input	-	-	5	-	pF
	tolerance(1)					
DuCy (LSE)	duty cycle	-	30	-	70	%

Figure 9 AC Timing Diagram of an External Low-Speed Clock Source High-Speed External Clock Generated Using a Crystal/Ceramic Resonator

The High Speed External Clock (HSE) can be generated using an oscillator consisting of a crystal/ceramic resonator from 4 to 32 MHz. The information given in this section is based on results obtained from a comprehensive characterisation evaluation using typical external components listed in the table below. In the application, the resonator and load capacitance must be placed as close as possible to the oscillator pins to minimise output distortion and stabilisation time at start-up. For detailed parameters (frequency, package, accuracy, etc.) of the crystal resonator, please consult the appropriate manufacturer. (Translation: The crystal resonator mentioned here is what we usually call passive crystal oscillator)

Table 20 Characteristics of HSE 4~32MHz oscillator(1)(2)

	notation	parameters	prereq	uisite	minimu	typical	maximu	unit (of	
					m value	value	m values	measur	
								e)	
	fOSC_IN	oscillator	-		4	8	32	MHz	
		frequency							
				$TA = -40^{\circ}C$	-	790	-		
(-	lt/SR({\texts\ta})(5)	cha stætterip tic p	a VDD ėtot abare	given bythe	cryst <u>a</u> l/ce	eramicores	onator ma	nutasctur	rer.
(2	2) Derived fro	m đ ico e nprehe	nsive assessme	nt and not te	sted in pr	oduction.			
		the start-up tim						stable	

8MHz oscillation is obtained. This value is measured on a standard crystal resonator, and it may vary greatly depending on the crystal manufacturer.

For CL1 and CL2, it is recommended to use high quality, porcelain dielectric capacitors designed for high frequency applications (typical values are) between 5 pF and 25 pF, and select a crystal or resonator that meets the requirements. Usually CL1 and CL2 have the same parameters. Crystal manufacturers usually give the load capacitance parameters as a serial combination of CL1 and CL2. When selecting CL1 and CL2, the capacitance of the PCB and MCU

pins should be taken into account (the capacitance of the pins to the PCB board can be roughly estimated at $10~\mathrm{pF}$).

Figure 10 Typical application

using an 8MHz crystal using a low-speed external clock generated by a crystal/ceramic resonator

The low speed external clock (LSE) can be generated using an oscillator consisting of a 32.768kHz crystal/ceramic resonator. The information given in this section is the result of a comprehensive characterisation evaluation. In the application, the resonator and load capacitance must be placed as close as possible to the oscillator pins to minimise output distortion and stabilisation time at start-up. For detailed parameters (frequency, package, accuracy, etc.) of crystal resonators, please consult the appropriate manufacturer. (Translation: The <u>crystal resonator mentioned here is what we usually call passive crystal oscillator)</u>

Table 21 LSE oscillator characteristics (fLSE=32.768kHz)(1)

	notation	paramet	prer	prerequisite		typical	maxim	unit	
		ric			um	value	um	(of	
					value		values	measu	
								re)	
				TA = -40°C	-	321	-		
(LBDerised(fic	m stapmpreh	enyjyqassesen	ient and not test	ed in pro	duction.	-	ms	
F	or CL1 and CI	2, itingeecomr	nended to use l	nigh-quality cera TA = 85°C	mic diele	etrie eapa 223	acitors be	tween 5 p	F and 15
p	F, and select a	crystal or reso	nator that mee	ts the requireme	nts of the				

. Usually CL1 and CL2 have the same parameters. Crystal manufacturers usually give the parameters of the load capacitance as a serial combination of CL1 and CL2. The load capacitance CL is calculated by the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray, where Cstray is the capacitance of the pins and the capacitance associated with the PCB $^{-}$

Figure 11 Typical application using a 32.768 KHz crystal

4.1.14 Internal Clock Source Characteristics

The characteristic parameters given in the following table were measured using ambient temperatures and supply voltages in accordance with general operating conditions.

High Speed Internal (HSI) RC Oscillator

Table 22 HSI Oscillator Characteristics (1)

notation	parameters	prerequisite	minimum	typical	maximu	unit
	1	1 1	value	value	m	(of
					values	measu
						re)
fHSI	frequency	-	-	8	-	MHz
		TA = -40~85°0	C -2.5	-	2.5	%
ACCHSI	Accuracy of HSI	TA = 0~70°C	-1	-	1	%
	oscillators	TA = 25°C	-0.5	-	0.5	%
(1) VDD = 3 tSU	HSLOSCILIATOR START- I	unless otherwise	-	12	-	us
noted Low (HSI)	Speed Internal (LSI) I	RC Oscillator				
Table 23 L	SI _I RScillator Charact	eristics (1)	_	3.5	_	uA
notation (HSI)	n parameters consumption	prerequisi	1	typical	maximu	unit (of
(- /	1 1 1 1 1 1		value	value	m	measu
					values	re)
fLSI(2)	frequency	-	33	40	43	kHz
tSU(LSI)	(3) LSI oscillator sta	rt	-	75	-	us
(1) VDD = 3	.3V, TA = - 40 pt <u>a 85</u> eC, u	ınless otherwise ı	noted.			
	(B) nLSbaspillatensper		1 *	tion0.28	-	uA
(3) Guarant	eed by design, not tes	ted in production	n			

4.1.15 Wake-up time from low-power mode

The wake-up times listed in the table below were measured during the wake-up phase of an 8MHz HSI RC oscillator. The clock source used for wake-up depends on the current operating mode:

- Stop or standby mode: clock source is RC oscillator
- Sleep mode: the clock source is the clock used when entering sleep mode

All times are measured using ambient temperatures and supply

voltages in accordance with common operating conditions.

	- ortuges in accordance with common obstacting contactions.									
Table 124 i Wake	-up times for low-рфиленте ters	typical value	unit (of							
			measur							
			e)							
tWUSLEEP(1)	Wake from sleep mode	10	CPU clock cycle							
tWUSTOP(1)	Wake-up from shutdown mode (regulator is in	12	us							
	low-power mode)			_						
(1) The wake-u tWUSTDBY(1)	o time is measured from the start of the wake-up ev Wake up from standby mode	ent until the user p	rogramm	ie reads						

the first instruction.

- (2) For MH32F103A series
- (3) For MH32F103C series

4.1.16 PLL Characteristics

The parameters listed in the following table were measured using ambient temperature and supply voltage in accordance with general

	1 117 0				
purposetop	erating conditions Table 25 PLL	Characteris l	numerical val	ue	unit
n	1	minimum	typical	Maximum	(of
		value	ue value value (1		measu
					re)
fPLL_IN	PLL input clock(2)	2	8	32	MHz
	PLL Input Clock Duty Cycle	40	-	60	%
fPLL_OUT	PLL multiplier output clock	4	-	216	MHz
tLOCK	PLL phase lock time	-	51.2	87.8	us
(1) Derived Jitter	from a comprehensive assessmen Cyclic jitter	t and not test -	ed in product	tion. 200	ps

(2) Care needs to be taken to use the correct multiplication factor so that fPLL_OUT is within the allowable range based on the PLL input clock frequency.

4.1.17 Memory Characteristics

flash memory

4

All characteristic parameters were obtained at TA = -40 to 85°C unless otherwise noted. Table 26 Flash memory characteristics

	.0 1 10:011 13	ilemory characteristics						
	notation	parametric	prerequisite			typical va	alue	unit
								(of
								measu
								re)
	tPROG	16-bit programming	-		50us			us
		time						
7	CatEIRASE	Flas RageErase Iffme nd	data retention period		25			ms
	notMfo	W pahafiiletees ase	prerequisite	Minim	um(typi&al	maxin	n usnit
	n	time		1)		value	um	(of
							values	meas
	1) D				1			ure)
(1) Derived NEND	Lifetime (translation:	e assessment and not to TA = -40~85°C	ested in 1 100	orodi	uction.	-	thous
	1.18	number of erasures)	um (electrical sen	citizzitzz	.\			and
١.	1.10	Absolute maxim	um (electrical sem	Sitivity	/			times
F	tRET Llectrosta	the Data retention period	TA = 105°C	20		-	-	surna
								me
								Nian

An electrostatic discharge (a positive pulse followed by a negative pulse one second apart) was applied to all pins of all samples, and the samples' large

Small in relation to the number of power supply pins on the chip (3 slices x (n+1) power

supply pins). This test complies with the JEDEC EIA/JESD22-A114 standard. Table 28 ESD

I	Abs ohtæiM axii	num Narhree ters	prerequisite	typol	Maximum	unit (of
				ogy	value (1)	measure)
	VESD (HBM)	Electrostatic	T A = +25 °C in	3A	4000	V
		discharge voltage	accordance with JEDEC			
(1) Derived from	(human body) n'a comprehensive as Modelling)	FIA/IFSD22-A114 sessment and not tested in	produ	ction.	

4.1.19 I/O Port Characteristics

General Input/Output Characteristics

Unless otherwise noted, the parameters listed in the following table were measured in accordance with general-purpose operating conditions. All I/O ports are CMOS and TTL compatible. Table

29 I/O Static Characteristics

notation	parameters	prerequisite	minimu	typical	maximu	unit (of
			m value	value	m	measure
					values)
VIL	Input Low Level Voltage			-	1.38	
VIH	Standard I/O pin, input high level current push down	-	1.59	-	-	V
	FT I/O pin (1), input high input voltage		1.59	-	-	
Vhys	Standard I/O Pin Schmitt Trigger Voltage hysteresis(2)	-	-	0.21	-	V
	5V Tolerant I/O Pin Schmitt Trigger Voltage hysteresis (2)		-	0.21	-	V
Ilkg	Input leakage current(4)	VSS ≤ VIN ≤ VDD Standard I/O Ports	-	-	±0.5	uA
output volt	age	VIN = 5V. 5V tolerance port	-	-	±1	
RPU	Weak pull-up equivalent resistance(5)	VIN = VSS	37	-	38.5	kΩ

Unless otherwise specified, the parameters listed in the table below were measured using ambient temperature and VDD supply voltage in accordance with general operating conditions. All The I/O ports are both CMOS and

TTL compatible. Table 30

Out potat io	l paga meters	prerequisite	minimu	maxim	unit	
 Character	istics		m value	um	(of	
				values	meas	
					ure)	
VOL	Output Low	TTL port, IIO= +12mA		0.4		
	Level	VDD=3.3V				
VOH	Output	,	2.9			
	High Level				V	
VOL	Output Low	CMOS port, IIO = +14mA		0.4		
	Level	VDD=3.3V				
VOH	Output	,	2.9			
	High Level					
VOL	Output Low	$_{\text{IIO}}$ = +34mA VDD =		1.3		
1.20	NRST PeneCharacte	eristics				
VOH	Output		2			
the NRST p	in ingut driver uses a	CMOS process which connects a pul	l-up resisto	r that cann	ot be disc	onnec

Unless otherwise noted, the parameters listed in the following table were

measured using ambient temperatures and supply voltages consistent with general

purpostatiperatii	ng conditio nerametri c 31 NRST	PireOlqui	acminims	typical	maximu	unit
		site	m value	value	m	(of
					values	measu
						re)
VIL(NRST)(1)	NRST Input Low Voltage	-	-	1.31	-	V
VIH (NRST)(1)	NRST input high voltage	-	-	1.57	-	·
Vhys (NRST)	NRST Schmitt Trigger Voltage	-	-	260	-	mV
	Hysteresis					
RPU	Weak pull-up equivalent	VIN=VSS	-	37	-	kΩ
(1) Guaranteed l	oyrekistgn;ce(2t)					
teVtE(NinSti)(d)uc	tiNRST input filter pulse	-	-	120	-	ns
Recommended I protection	NRST pin NRST input unfiltered pulse	-	25	-	-	ns
P'(I)						

Figure 12 Recommended NRST Pin Protection

- (1) The reset network is designed to prevent parasitic resets.
- (2) The user must ensure that the potential of the NRST pin can be below the maximum VIL(NRST), otherwise the MCU cannot get reset.

4.1.21 TIM Timer Characteristics

The parameters listed in

the following table are

guaranteethb	y design parameters	minimum value	maximum	unit (of measure)
Table 32 TIN	Лх		values	
tres(TIM). characteristic	Timer Resolution Time	1	-	tTIMxCLK
fEXT	Timer external time for CH1 to CH4	0	FTIMCLK/2	MHz
	clock frequency			
ResTIM	Timer Resolution	-	16	classifier for
				honorific people
tCOUNTER	When the internal clock is selected, 16 Bit Counter Clock Period	1	65535	tTIMxCLK
tMAX_COUNT			65505*65505	+TIM2/CLI/
IMAA_COUNT	count	-	65535*65535	tTIMxCLK

4.1.22 CAN (Controller Area Network) interface

For details on the characteristics of the input-output multiplexing function pins (CAN_TX and CAN_RX), see the IO Port Characteristics section.

4.1.23 12-bit ADC Characteristics

Unless otherwise noted, the parameters in the following table were obtained using ambient temperature, fPCLK2 frequency and VDDA supply voltage measurements that conform to general-purpose operating conditions.

Note: It is recommended that a

calibration be performed at each power-up. Table 33 ADC Characteristics

VDDA	/DDA Supply Voltage		2.3	3.3	3.6	V		
VREF+	Positive reference voltage	-	2.3	-	VDDA	V		
fADC	ADC Clock Frequency			-	14	MHz		
fS(2)	sampling rate	-	0.05	-	1	MHz		
fTRIG(2)	External Trigger Frequency	fADC = 14MHz	-	-	823	kHz		
VAIN	Conversion voltage range(3)	-	0		VREF+	V		
RAIN(2)	External Input Impedance	-	-	-	50	kΩ		
RADC(2)	Sampling Switch Resistor	-	-	-	1	kΩ		
CADC(2)	Internal Sample and Hold countenance	-	-	-		pF		
tCAL(2)				us				
			83					
tlat(2)	Injection Trigger	fADC = 14MHz	-	-	0.214	us		
	Conversion Delay late		-	-	3	1/fAD		
tlatr(2)	Regular Trigger	fADC = 14MHz	-	-	0.143	us		
	Transition Delay late		-	-	2	1/fAD		
tS(2)	sampling time	fADC = 14MHz	0.107	_	17.1	us		
1) Assured b	y comprehensive eva	luation, not tested	in prodetictio	n	239.5	1/fAD		
2 1 8444442111e	dplowdesigntimet test	ed in production.	0	0	1	us		
3) Depending on the package, VREF+ CONV(2) Total conversion connected to YSSA packagester 3-1		for details.	connected to V					
4) For external triggering, a delay 1 Table 34 Maximum RAIN at fADC=14N		1/fPCLK2 must be a	fPCLK2 must be added to the delays lis approximations)		r successive ed in Table 3	1/fAD 2.		
able of Maxii	TS (cycle)		tS(us)		Maximum	ı RAIN		
)					
	1.5		0.11			0.4		
	7.5		0.54					
	13.5		0.96			1		
		1						

28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	-
239.5	17.11	-

⁽¹⁾ Guaranteed by design, not tested in production.

4.1.24 DAC Electrical Parameters

Table 35 DAC Characteristics

notation	parameters	minim	typical	maxim	unit	exegesis
		um	value	um	(of	
		value		values	meas	
					ure)	
VDDA	Analogue supply	2.0	-	3.6V	V	
	voltage					
VREF+	reference voltage	2.0	-	3.6V	V	VREF+ must always
						be lower than V
		-		-		DDA
VSSA	earth (wire)	0	-	0	V	-
RLOAD(1)	Load when buffer is	5	_	_	kΩ	_
,	open					
	resistive					
RO(2)	Output when buffer	_	_	15	kΩ	_
(=/	is closed					
	(electrical) impedance					
						on the DAC_OUT pin.
CLOAD(1)	load capacitance	-	-	50	pF	Large capacitance
						(when buffer is
						on)
DAC OUT 000 011/1)	The buffer opens	50			V	
DAC_OUT small(1)	with the low end of	50	-	-	mV	Gives the maximum
	the					DAC output span
	DAC_OUT Voltage					1 1
DAC_OUT large (1)	High-end when the			VREF+	V	
DUCTORI raise (1)	buffer is open	-	-	- 0.2	V	
	DAC_OUT Voltage					
DAC_OUT small(1)	The low side of the		0.5		mV	
DAC_OOT SHIGH(1)	buffer when it is	-	0.5	-	111 V	Gives the maximum
	turned off					DAC output span
	DAC_OUT Voltage					1 1
DAC OUT large /1\	High-end when the			VREF+	V	
DAC_OUT large (1)	buffer is turned off	_	-		V	

					ı	
	Non-linear					
	accumulation (in					
INL(2)	code i	_	_	+-4	LSB	DAC configured for 12-
	The connection					bit
	between the value					
	measured at the					
	time and the code					
	DAC_OUT large and					
	code DAC_OUT small					
	(Deviation between					
	the two)					
	Offset error (code					
	0x800)		1 -	0.5	T 7	DAC when VREF+ = 3.3
Offset error(2)	Values measured at	_	15	25	mV	V
	deviation from the					Configured as a 12-
	ideal value V REF+					_
	/2)					bit
	Setting time (full					
LODERI INTO	range: 10		0	4		$C LOAD \le 50 pF, R$
tSETTLING	The bit input code	_	3	4	us	$\mathrm{LOAD} \geq 5 \mathrm{k}\Omega$
	changes from a					
	small value to a large					
	value and DAC_OUT					
	reaches ±1 LSB of					
	its final value)					
	When the input					
C 1 .	code is a smaller			4	3.50/	$C LOAD \le 50 pF, R$
refresh rate	variable	_	_	1	MS/s	$LOAD \ge 5k\Omega$
	When changing					
	from value i to					
	i+1 LSB, the large					
	frequency of the					
	correct DAC_OUT is					
	obtained.					
						C LOAD ≤ 50 pF, R
	Wake-up time from					LOAD $\geq 5k\Omega$ Input
tWAKEUP	off state (set ENx	_	6.5	10	us	code between small
	bit in DAC control					and large can be
	register)					
						Between energy
						values

PSRR+ (1)	Supply rejection ratio (relative to V	-	-60	-50	dB	No R LOAD, C LOAD ≤ 50 pF
	DDA) (static DC					
	measurement)					

(1) Assured by design, not tested in production. (2) Guaranteed by comprehensive evaluation, not tested in production.

4.1.25 Temperature Sensor Characteristics

Table 36 Temperature Sensor Characteristics

notation	parameters	minimu	typical	maximu	unit (of
		m value	value	m values	measur
					e)
Avg_Slope(1)	average slope	-	5	ı	mV/°C
V25(1)	Voltage at 25°C	-	1.43(4)/ 1.18(5)	-	V
tSTART(2)	Establishment time	-	-	10	us
TS_temp(2)(3)	ADC sampling time when	-	-	17.1	us
	reading temperature				

- (1) Assured by comprehensive evaluation, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) The minimum sampling time can be determined by the application through multiple cycles.
- (4) For MH32F103A series
- (5) For MH321F03C series

Use the following formula to derive the temperature:

Temperature ($^{\circ}$ C) = {(V25 - VSENSE) / Avg_Slope} + 25

Here (1):

V25 = VSENSE at 25 °C

Avg_Slope = average slope of the temperature vs. VSENSE curve (in mV/°C)

5 Package Characteristics

LQFP48 package

Figure 15 LQFP48 7mm x 7mm Package Dimensions

LQFP64 package

LQFP100 package

Sumb al		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591

Sumbal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.08	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 17 LQFP100 14mm x 14mm Package Size

Order Code 6 Table 37 MH32F103A(C) Series Ordering Code Information Graphic temp Example: 6 = -40~85? 7. = -40~105? **Product Series MH** = 32-bit microcontroller based Product Type 32F = Generic safety type Product Subfamily 103A(C) = Mainstream Number of pins C **= 48** pins R = 64pins **V = 100** pins storage capacity B = 128K Flash + 32K Sram C = 256K Flash + 64K SramP = 256K Flash + 96K Sram E = 512K Flash + 96K Sram G = 1024 Flash + 96K Sram

Package Information

T = LQFP

U = QFN

mh 32f103a c b t 6

7 appendice

Table 38 Document version history

dates	releases	modify	
2021-1-17	1.00	initial version	
2022-5-28	1.01	Add LQFP100 package description	