Dept. Electrical and Computer Engineering The University of British Columbia EECE 458 Power System Analysis, Fall 2012

EXERCISE No. 5

Tutorial Date: Tuesday 16th October
POWER CIRCLE DIAGRAM

Consider the following power transmission system

System Base: 100 MVA, 115 kV at bus 1. Bus 1 is voltage regulated.

All questions are to be solved using the power circle diagram built in per unit quatities. The diagram is to be built for the the receiving-end bus 2.

- 1. With $V_2=1.0$ pu and load's pf=1.0, determine the maximum active power that can be transmitted between 1 and 2 without exceeding a transmission angle of $\delta=30^\circ$, and the voltage V_1 required for this condition. Verify your answer using the power transfer formula: $P_2=\frac{V_1\cdot V_2}{X}\sin\delta$
- 2. Assume that P_L has the value calculated in 1) for maximum real power transmission, but the pf = 0.8 lagging. Assume also that the voltage at the sending end is to be limited to $V_1 = 1.05$ pu. Determine the reactive power Q_c (in MVAR) that needs to be provided by the bank of capacitors shown in the diagram to achieve the indicated operation. Calculate the value of the capacitors C in μF assuming they are connected in star.
- 3. Suppose that in order to save money, only half the Q_c calculated in 2) is installed. What would be the needed sending-end voltage V_1 and δ to maintain $V_2 = 1.0$?