Logistics: Project

- Project presentation (next week in lectures)
 - Everyone is expected to attend both lectures
 - 10 minutes for presentation + 1~2 minutes for QA and transition

Dec 7	Charles, Riwen, Dhruva
	Yangchen, Helen, Tee
	Vishesh, Jake, Isabelle, Robert
	Max, Nurzhan, Bradley, Sam
	Aditya, Connor, Calvin
	Pratyay, Katherine, Julia
Dec 9	Bill, Chengcheng, Becky, Dian
	Ethan W., Alexander, Henry, Ryan L.
	Tushar, Ethan A., Alex E.
	Ryan M., Daniel, Ivan, Jennifer
	Will, Tatsuro, Saumik
	Xiaohan (Rocky), Ziyan (Jenny), Nicholas, Alex S.

Logistics: Project

Project reports

- Due: Dec 12 (no late submissions)
- Up to 6 pages (plus unlimited number of pages for only references/citations)
- No strict format requirements
 - You are encouraged to use standard templates, such as <u>AAAI</u> format or <u>NeurIPS</u> format
- For research projects
 - Your report should be structured in a way similar to the research papers we have read throughout the semester. (e.g., include introduction, related work, research problem or formulation, your proposed approach, results, conclusions).
- For literature surveys
 - Do not summarize papers one by one.
 Find a theme, categorize papers, and put them in context.
 - Example: Making Better Use of the Crowd: How Crowdsourcing Can Advance Machine Learning Research. Vaughan. JMLR 2018.

Assignment 4

- Due tomorrow
 - Check your late-day usages if you plan to use them
- Check the list of talks on Piazza

Peer Review

Please submit the peer review by 6pm

Lecture 23 Al-Assisted Decision Making

Instructor: Chien-Ju (CJ) Ho

Interactions between Human and Al

- How Al learns from humans
 - Label aggregation
 - Incentive design
 - Biases input
- How Al impacts humans
 - Fairness
 - Transparency / Explainability
 - Strategic manipulation

What Can AI Do => What Should AI do

What Can AI Do => What Should AI do

Human-Centered Machine Learning

From Human-in-the-Loop to Machine-in-the-Loop

Human-Centered Machine Learning

From Human-in-the-Loop to Machine-in-the-Loop

- Human-in-the-loop
 - Modeling human behavior in computation
 - Design AI/ML that account for human behavior
- Machine-in-the-loop
 - Model how humans model AI (this lecture)
 - Design AI/ML that account for humans' mental models (next lecture)