IMPLEMENTAZIONE DI UN ALGORITMO KNN MULTICLASSE SU HARDWARE QUANTISTICO

TESI DI LAUREA SPERIMENTALE IN FISICA

MARIANO MOLLO N85000880 RELATORI: GIOVANNI ACAMPORA AUTILIA VITIELLO

Università degli Studi di Napoli Federico II Scuola Politecnica e delle Scienze di Base

OTTOBRE 2019

INTRODUZIONE

MACHINE LEARNING

Il machine learning permette ai computer di imparare dai dati Gli algoritmi di ML prevedono spesso di

- risolvere grandi sistemi di equazioni lineari
- invertire grandi matrici
- calcolare distanze

Effettuare questi calcoli su insiemi dati grandi e complessi diventa difficile

QUANTUM COMPUTING

Il quantum computing studia la costruzione e l'uso di hardware di elaborazione basato sulla meccanica quantistica

- Il quantum computing lavora con vettori in spazi di Hilbert complessi
- I computer quantistici eseguono operazioni lineari sui qubit
- Sistemi a molti qubit sono descritti da grandi vettori che possono essere manipolati in parallelo
- Il machine learning prevede la manipolazione di grandi vettori e matrici

QUANTUM MACHINE LEARNING

L'uso dei computer quantistici per risolvere problemi classici difficili o classi di problemi completamente nuove è chiamato machine learning quantistico, ovvero permettere ai computer quantistici di imparare dai dati più velocemente dei computer classici

DOMANDA DI RICERCA

È possibile implementare su un computer quantistico un algoritmo k-nearest neighbours multiclasse, in modo da migliorare le prestazioni ed il numero di problemi risolvibili?

OBIETTIVI

- Riprodurre l'algoritmo di classificazione binaria KNN quantistico proposto da Schuld et al.
- Implementarne una versione multiclasse
- Analizzare le capacità dell'algoritmo usando l'hardware quantistico attualmente disponibile
- Analizzare esperimenti più complessi tramite simulazione

MACHINE LEARNING

MACHINE LEARNING

Il machine learning è un ramo dell'intelligenza artificiale che permette ai computer di apprendere dai dati. L'apprendimento può formalizzarsi attraverso la definizione di modelli matematici, usati per

- effettuare previsioni (apprendimento supervisionato)
- trovare regolarità in processi complessi (apprendimento non supervisionato)
- effettuare scelte per ottenere un risultato ottimale (apprendimento per rinforzo)

MACHINE LEARNING SUPERVISIONATO

Definizione del problema

Dato un insieme dati in input con i corrispondenti output, predire l'output di un nuovo input ignoto.

Input	Output
facce	emozioni
battito cardiaco	stato di salute
meteo dell'anno scorso	meteo di domani
messaggio di un utente	intenzione del messaggio
cronologia di ricerca	probabilità di cliccare su un annuncio

K-NEAREST NEIGHBOURS CLASSICO

L'algoritmo KNN è uno tra i più semplici del ML ed è un lazy learner

k è un numero naturale Dato un insieme di apprendimento $D = v_0, \dots, v_{M-1}, v_i \in \{\text{classe}_0, \text{classe}_1\}$ Dato un nuovo vettore x:

- considera i k elementi più vicini ad x
- classifica x con un voto a maggioranza

Si assegnano pesi dipendenti da $\frac{1}{\text{distanza}}$ per aumentare l'influenza dei vettori più vicini

QUANTUM COMPUTING

- Solitamente implementati attraverso MOSFET^a
- 2 stati definiti (o, 1)
 - Può trovarsi in uno tra gli stati o o 1

^aMOSFET: Metal Oxide Semiconductor Field Effect Transistor

QUBIT

- Può essere |O⟩ o |1⟩
- Può anche essere |o⟩ e |1⟩ contemporaneamente (sovrapposizione quantistica)

QUBIT

Matematicamente, la sovrapposizione di un qubit è espressa come

$$|\psi\rangle = \alpha \, |\mathbf{0}\rangle + \beta \, |\mathbf{1}\rangle = \frac{\mathbf{0}}{\mathbf{1}} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \quad \alpha, \beta \in \mathbb{C},$$

dove α e β sono chimate ampiezze di probabilità. L'ultima espressione è chiamata vettore di probabilità.

SFERA DI BLOCH

Un qubit si può visualizzare su una 2-sfera parametrizzando α e β in coordinate polari

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$
,

dove $o < \theta < \pi$ e $o < \varphi < 2\pi$

REGISTRO DI 2 QUBIT

Un computer quantistico con n qubit ha 2^n ampiezze di probabilità.

Lo stato di un registro a più qubit è rappresentato dal prodotto tensore dello stato dei singoli qubit.

$$|00\rangle = |0\rangle \otimes |0\rangle$$

$$|\psi\rangle = c_0 |00\rangle + c_1 |01\rangle + c_2 |10\rangle + c_3 |11\rangle = \begin{cases} 00 & c_0 \\ 01 & c_1 \\ 10 & c_2 \\ 11 & c_3 \end{cases}$$

REGISTRO DI *n* QUBIT

Un computer quantistico con n qubit ha 2^n ampiezze di probabilità.

Lo stato di un registro a più qubit è rappresentato dal prodotto tensore dello stato dei singoli qubit.

$$\begin{aligned} |00\ldots00\rangle &= |0\rangle\otimes|0\rangle\otimes\ldots\otimes|0\rangle\otimes|0\rangle \\ |\psi\rangle &= c_0 |00\ldots00\rangle + c_1 |00\ldots01\rangle + \ldots + c_{n-2} |11\ldots10\rangle + \\ &+ c_{n-1} |11\ldots11\rangle = \vdots \\ &\vdots \\ &\vdots \\ c_{n-2} \\ c_{n-1} \end{aligned}$$

PORTE LOGICHE QUANTISTICHE

Per manipolare n qubit esistono apposite porte logiche quantistiche, che sono operatori rappresentabili come matrici $2^n \times 2^n$.

Figure: Toffoli

PUNTI DI FORZA DEI QUANTUM COMPUTER

# di qubit	RAM classica richiesta
5	256 byte
25	2 gigabyte
50	8000 terabyte
275	numero di atomi
	nell'universo osserv- abile

Le *n* ampiezze di probabilità possono essere usate per memorizzare quantità enormi di informazioni. Possiamo inoltre creare e lavorare su più copie in parallelo degli stessi dati.

STATO DELL'ARTE

L'IBM Q System One è il primo computer quantistico a circuiti commerciale al mondo, introdotto dall'IBM nel gennaio 2019. L'IBM Q System One possiede 20 qubit.

METODI

IBM Q EXPERIENCE

L'IBM Q Experience è un'interfaccia per interagire con le risorse di quantum computing dell'IBM

- accessibile al pubblico
- permette simulazioni con e senza rumore
- fino a 14 qubit superconduttivi
- fino a 32 qubit simulati

QISKIT

Struttura open source di sviluppo software per quantum computing, permette di

- progettare circuiti quantistici
- simularli sul proprio computer personale
- inviare ordini di esecuzione su harware quantistico reale
- visualizzare i risultati

QUANTUM MACHINE LEARNING

CODIFICARE DATI CLASSICI NELLE AMPIEZZE

Per codificare dati classici nelle ampiezze di probabilità è stata usata la tecnica di costruzione di stati flip-flop QRAM, come proposto da Petruccione et al.

FF-QRAM

La FF-QRAM è usata per memorizzare un QDB inizializzato in maniera arbitraria.

L'operazione QRAM sui qubit sovrappone un insieme di dati classici $D = \left\{ \left(\vec{d}^{(l)}, b_l \right) \middle| o \leq l < M \right\}$ come

$$\mathsf{QRAM}(\mathit{D}) \sum_{j} \psi_{j} \, |j\rangle_{\mathit{B}} \, |\mathsf{o}\rangle_{\mathit{R}} \equiv \sum_{\mathit{l}} \psi_{\mathit{l}} \, |\vec{d}^{(\mathit{l})}\rangle_{\mathit{B}} \, |b_{\mathit{l}}\rangle_{\mathit{R}} \, ,$$

dove $\vec{d}^{(l)}$ rappresenta un indirizzo di memoria con n bit di informazione e b_l è l'attributo ad esso associato.

ALGORITMO KNN QUANTISTICO

Stato quantistico iniziale

$$\ket{\psi_{\mathsf{o}}} = \frac{1}{\sqrt{2\mathsf{M}}} \sum_{m=1}^{\mathsf{M}} (\ket{\mathsf{o}}\ket{\psi_{\mathsf{X}}} + \ket{\mathsf{1}}\ket{\psi_{\mathsf{t}^m}}) \ket{c^m}\ket{m}$$

Calcolo della distanza con interferenza quantistica

$$|\psi_{1}\rangle = \frac{1}{2\sqrt{M}}\sum_{m=1}^{M}\left(\left.\left|O\right\rangle\left(\left|\psi_{\mathsf{X}}\right\rangle + \left|\psi_{\mathsf{t}^{m}}\right\rangle\right) + \left|1\right\rangle\left(\left|\psi_{\mathsf{X}}\right\rangle - \left|\psi_{\mathsf{t}^{m}}\right\rangle\right)\right)\left|c^{m}\right\rangle\left|m\right\rangle$$

Misura condizionale

$$|\psi_2\rangle = \frac{1}{2\sqrt{M}} \sum_{m=1}^{M} \sum_{i=1}^{N} (x_i + t_i^m) |0\rangle |i\rangle |c^m\rangle |m\rangle$$

ALGORITMO KNN QUANTISTICO

Probabilità di misurare una data classe

$$P(|c^{m}\rangle = |s\rangle) = \sum_{m|c^{m}=s} 1 - \frac{1}{4M}|x - t^{m}|^{2}$$

Classificazione

$$c = \begin{cases} o & \text{se P}(|c^{0}\rangle) \text{ maggiore} \\ 1 & \text{se P}(|c^{1}\rangle) \text{ maggiore} \\ \text{etc...} \end{cases}$$

23 3:

IMPLEMENTAZIONE

Figure: Data set Iris

Figure: Data set Iris standardizzato

Figure: Data set Iris normalizzato (2 caratteristiche)

Figure: Data set Iris normalizzato (4 caratteristiche)

IL CIRCUITO QUANTISTICO

Il circuito quantistico per un classificatore binario è il seguente

Per il classificatore multiclasse il disegno è più complicato.

RISULTATI

CLASSIFICAZIONE BINARIA

Classificazione setosa vs. versicolor dal data set Iris

Figure: Simulazione su setosa

Figure: Esecuzione reale su setosa

CLASSIFICAZIONE MULTICLASSE

Classificazione setosa vs. versicolor vs. virginica dal data set Iris

Figure: Simulazione su setosa

Figure: Esecuzione reale su setosa

CONCLUSIONE

RIASSUNTO

- L'elaborazione quantistica è nella frontiera dei supercomputer e ha il potenziale di accelerare gli algoritmi di machine learning classico
- È stata riprodotta un'implementazione di algoritmo KNN quantistico di classificazione binaria su hardware di piccola scala
- Se ne è esteso il funzionamento in modo da renderlo multiclasse
- Si sono effettuati test su hardware quantistico di media scala

32

PROSPETTIVE

- Far girare gli algoritmi su computer con maggiori risorse, sia in termini di numero di qubit che di tempi di decoerenza
- A tal proposito, sarebbe interessante l'esecuzione sul computer a 20 qubit annunciato quest'anno
- Si attende lo sviluppo di corrispettivi quantistici per algoritmi di IA più complessi

Domande?

ALGORITMO PER CLASSIFICATORE BINARIO

Inizializzazione dei registri quantistici

```
a = QuantumRegister(1, 'a')
m = QuantumRegister(1, 'm')
i = QuantumRegister(1, 'i')
```

c = QuantumRegister(1, 'c') b = ClassicalRegister(2, 'bit')

circuit = QuantumCircuit(a, m, i, c, b)

Sovrapposizione degli stati

circuit.h(m)

circuit.h(a)

Codifica del vettore d'input

circuit.cry(xo, a[o], i[o])
circuit.x(a) # entanglement dell'ancilla con o

ALGORITMO PER CLASSIFICATORE BINARIO

Codifica dei vettori di training

```
circuit.mcry(to, a[:] + m[:], i[o], None)
circuit.x(m) # entanglement di m con o
circuit.mcry(t1, a[:] + m[:], i[o], None)
circuit.cx(m, c) # entanglement della classe 1 con m 1
```

Interferenza degli stati

circuit.h(a)

Operazione di misura

circuit.measure(a, b[o]) circuit.measure(c, b[1])

circuit.draw(output='mpl')

Inizializzazione dei registri quantistici

```
a = QuantumRegister(1, 'a') # knn ancilla

m = QuantumRegister(2, 'm') # training vector index

i = QuantumRegister(2, 'i') # feature index

r = QuantumRegister(1, 'r') # rotation qubit

q = QuantumRegister(5, 'q') # qram ancilla

c = QuantumRegister(2, 'c') # class

b = ClassicalRegister(4, 'bit')

circuit = QuantumCircuit(a, m, i, r, q, c, b)
```

Sovrapposizione degli stati

```
circuit.h(a)
circuit.h(m)
circuit.h(i)
circuit.h(c)
```

Codifica dei vettori

```
# circuit.cry(theta, control, target)
# circuit.mcry(theta, controls, target, ancillae)
# » Encode the input vector »
encodeVector(circuit, inputVirginica, i, a[:] + i[:], r[o], q)
circuit.x(a) # entanglement dell'ancilla con o
# » Encode the training vectors »
buildTrainingState(trainingArray)
```

Interferenza e misura

```
circuit.measure(r, b[o])
circuit.h(a)
circuit.measure(a, b[1])
circuit.measure(c[o], b[2])
circuit.measure(c[1], b[3])
```

Definizione dei costruttori

```
def encodeTraining(circuit, data, i, controls, rotationQ, ancillaQ,
c, m):
# Header
encodeClass(circuit, c)
encodeIndex(circuit,m)
# Encoder
encodeVector(circuit, data, i, controls, rotationQ, ancillaQ)
# Footer
encodeClass(circuit, c)
encodeIndex(circuit, m)
```

Definizione del codificatore

```
def encodeVector(circ, data, i, controls, rotationQ, ancillaQ):
# 00>
circuit.x(i)
circuit.mcry(data[o], controls, rotationQ, ancillaQ)
circuit.x(i)
# |01>
circuit.x(i[1])
circuit.mcry(data[1], controls, rotationQ, ancillaQ)
circuit.x(i[1])
# 110>
circuit.x(i[o])
circuit.mcry(data[2], controls, rotationQ, ancillaQ)
circuit.x(i[o])
# 111>
circuit.mcry(data[3], controls, rotationQ, ancillaQ)
```