

Critical Agents Supporting Interactive Theorem Proving

Christoph Benzmüller

Joint work with Volker Sorge

chris|sorge@ags.uni-sb.de

The Ω MEGA Group

http://www.ags.uni-sb.de/~omega

FB Informatik, Universität des Saarlandes, Saarbrücken, Germany

EPIA99, Evora, September 1999

Overview

- Motivation
- A layered blackboard mechanism for suggesting promising proof steps
- Guiding the search:
 - A resource adapted approach
 - A resource adaptive approach
- Applications & Conclusions

Tactical Theorem Proving in \OmegaMEGA

- Natural deduction (ND) rules
- Tactics are macro steps (expandable in a sequence of ND rule applicationsquence of ND rule applications)
- Proof methods are tactics enriched by a declaratively specified pre- and post-conditions
- Other commands:
 - call external systems like OTTER or LEO
 - verbalise a proof, verify a proof, ...
- This talk addresses: rules, tactics, methods, and external systems

$$\frac{\forall x \cdot A}{[t/x]A} \ \forall_E(t) \qquad \frac{\Phi[x]_p \quad x = y}{\Phi'[y]_p} =_{Subst}(p)$$

State of the Art & Research Goals

• Drawback of respective suggestion mechanisms in state of the art theorem proving environments (e.g. Ω MEGA, TPS, HOL):

pure passive character

- A good suggestion mechanisms instead should
 - autonomously run in the background of the system
 - dynamically present the most promising suggestions to the user
 - react and respond to special queries by the user
 - optimally employ the available resources

- ...

Research goal: active and intelligent proof assistant

Problem: $p_{o \to o} (a_o \land b_o) \Rightarrow (p (b \land a))$

$$C$$
 () \vdash $(p (a \land b)) \Rightarrow (p (b \land a))$ OPEN

Problem:
$$p_{o \to o} (a_o \land b_o) \Rightarrow (p (b \land a))$$

ND-proof:

$$L_1 (L_1) \vdash (p (a \land b))$$

Нур

$$L_2$$
 (L_1) \vdash $(p (b \land a))$ OPEN
$$C \quad () \quad \vdash \quad (p (a \land b)) \Rightarrow (p (b \land a)) \quad \Rightarrow_I : (L_2)$$

Problem: $p_{o \to o} (a_o \land b_o) \Rightarrow (p (b \land a))$

$$L_1$$
 (L_1) \vdash $(p\ (a \land b))$ Hyp
$$\begin{array}{cccc} L_3 & (L_1) & \vdash & (b \land a) = (a \land b) & \text{OPEN} \\ L_2 & (L_1) & \vdash & (p\ (b \land a)) & =_{\text{subst}}: (\langle 1 \rangle)(L_1L_3) \\ C & () & \vdash & (p\ (a \land b)) \Rightarrow (p\ (b \land a)) & \Rightarrow_I: (L_2) \end{array}$$

Problem: $p_{o \to o} (a_o \land b_o) \Rightarrow (p (b \land a))$

$$L_1$$
 (L_1) \vdash $(p (a \land b))$ Hyp
$$L_4$$
 (L_1) \vdash $(b \land a) \Leftrightarrow (a \land b)$ OPEN
$$L_3$$
 (L_1) \vdash $(b \land a) = (a \land b)$ $\Leftrightarrow \mathbf{2} = : (L_4)$

$$L_2$$
 (L_1) \vdash $(p (b \land a))$ $=_{\mathsf{subst}} : (\langle 1 \rangle)(L_1L_3)$

$$C$$
 $()$ \vdash $(p (a \land b)) \Rightarrow (p (b \land a))$ $\Rightarrow_I : (L_2)$

Problem: $p_{o \to o} (a_o \land b_o) \Rightarrow (p (b \land a))$

$$L_1$$
 (L_1) \vdash $(p (a \land b))$ Hyp
$$L_4$$
 (L_1) \vdash $(b \land a) \Leftrightarrow (a \land b)$ OTTER
$$L_3$$
 (L_1) \vdash $(b \land a) = (a \land b)$ \Leftrightarrow 2=: (L_4)

$$L_2$$
 (L_1) \vdash $(p (b \land a))$ $=_{\text{subst}}$: $(\langle 1 \rangle)(L_1L_3)$

$$C$$
 $()$ \vdash $(p (a \land b)) \Rightarrow (p (b \land a))$ \Rightarrow_I : (L_2)

Partial Argument Instantiations

rule, tactic, method

invoking command

$$\frac{\Phi[x]_p \quad x = y}{\Phi'[y]_p} =_{Subst}(p) \qquad \longrightarrow \qquad \frac{prem \quad eq}{conc} = \text{Subst}(pos)$$

$$\frac{\forall x \cdot A}{[t/x]A} \ \forall_E(t) \qquad \longrightarrow \qquad \frac{prem}{conc} \ \text{ForallE}(term)$$

Representing suggestions by Partial Argument Instantiations (PAI)

```
=Subst(prem : L_1, conc : L_2, eq : L_3, pos : (1))

=Subst(prem : L_1, eq : L_3, pos : (1))

ForallE(prem : L_4)2
```

Task of the suggestion mechanism: compute PAI's

Argument Agents

```
ForallE-Agents:
```

$$\frac{\forall x \cdot A}{[t/x]A} \ \forall_E(t) \longrightarrow \frac{prem}{conc} \ \text{ForallE}(term)$$

```
\mathfrak{A}^{prem}_{\emptyset} = \{ 	ext{find universally quantified line } prem \}
\mathfrak{A}^{conc}_{\{prem\}} = \{ 	ext{find 'matching' open line } conc 	ext{ for } prem \}
\mathfrak{A}^{term}_{\{prem,conc\}} = \{ 	ext{compute mgm(scope of } prem, conc) \}
```

. . .

Argument-Agents

Argument Agents at Work

ForallE ()

$$\mathfrak{A}^{prem,conc}_{\emptyset}$$

 $(prem: L_1, \ conc: L_2)$

 $\mathfrak{A}^{prem}_{\emptyset}$

ForallE $(prem:A_1)$ $(prem:A_2)$

$$A_1$$
 (A_1) \vdash $\forall X_o p_{o \to o}(b_o \land X_o)$ Assumption A_2 (A_2) \vdash $\forall Y_o p_{o \to o}(Y_o \land c_o)$ Assumption L_1 (L_1) \vdash $p_{o \to o}(a_o \land b_o)$ Hyp ...

 L_2 (L_1) \vdash $p_{o \to o}(b_o \land a_o)$ OPEN

$$L_2$$
 (L_1) \vdash $p_{o \to o}(b_o \land a_o)$ OPEN
 C $()$ \vdash $p_{o \to o}(a_o \land b_o)) \Rightarrow p_{o \to o}(b_o \land a_o)) \Rightarrow_{I}: (L_2)$

$$\mathfrak{A}^{pos}_{\{prem, conc\}}$$

=Subst

 $(prem : L_1, conc : L_2, pos : (1))$ $(prem : L_1, conc : L_2)$ ()

 $\mathfrak{A}^{conc}_{\{prem\}}$

ForallE

 $(prem: A_1, \ conc: L_2)$ $(prem: A_1)$ $(prem: A_2)$

=Subst

 $(prem : L_1, conc : L_2, pos : (1))$ $(prem : L_1, conc : L_2)$ ()

 $\mathfrak{A}^{term}_{\{prem,conc\}}$

ForallE $(prem:A_1, conc:L_2, term:a_o)$ $(prem:A_1, conc:L_2)$ $(prem:A_1)$ $(prem:A_2)$ ()

A Resource Concept is needed

- In large proof contexts hundreds of agents may become active
- They may employ quite expensive algorithms
 - higher-order unification/matching
 - comparing all subterm positions of terms
 - employ little deductive processes or external reasoning systems
 - **–** ...
- The suggestion mechanism should support different modi
 - quick respond mode ← lunch time mode

A Resource Adapted Approach

• Complexity rating γ (mirrors computation costs): e.g.

$$\gamma(\mathfrak{A}^{conc,prem}_{\emptyset})=10$$
 and for command $\gamma(\mathfrak{A}^{eq}_{\emptyset})=2$ $prem eq \over conc}$ =Subst (pos)

 User specifies a global deactivation threshold in order to suppress computations of 'expensive' agents

Disadvantages:

Tuning by hand not reflects real costs, no dynamic adjustments, tuning of hundreds of single argument agents

A Resource Adaptive Approach

- 1. Self adjustments of the argument agents
 - Argument agents monitor and adjust their own performance and contributions in the past using as criterions:
 - cpu time the argument agents consume
 - penalty for failing several times in a row
 - Resource adjustments are communicated to command agents via blackboards

A Resource Adaptive Approach

2. Explicit reasoning on suitable resource distributions

- The command agents accumulate the ratings of their argument agents and pass them to a special resource agent via the command blackboard
- Resource agent reasons on global adjustments and communicates them to the lower layer agents via the blackboards
- Aspects of the resource reasoning
 - avoid complete retirement
 - user specific preference for certain commands
 - switch of proof context
 - and . . .

A Resource Adaptive Approach

3. Informed activation & deactivation

- Rules, tactics, methods are associated with a specific logic or theory (ΩMEGA provides special proof methods for limit-theorems)
- Problems (in mathematics) are associated with a specific logic or theory (Extensionality rules belong to HO, ForallE belongs to FO, AndE belongs to PL)
- ⇒ Use knowledge to activate appropriate and deactivate inappropriate agents
 - A classification agent tries to classify each new subproblem and passes this information via the blackboards to the argument agents
 - Argument agents can themselves decide whether they belong to this class and get active or inactive

Applications

- Suggestion mechanism for interactive systems
 - suggest next interactive step
 - complete partial command instantiations suggested by the user
- Support in proof planning: compute applicable proof methods in parallel
- Suggestion mechanism enriched with simple backtracking over the suggestions = an automated theorem prover (proof planner)

Conclusion

Advantages of the proposed suggestion mechanism to other systems:

- Flexibility
- Anytime character
- Robustness
- Expandability, User adaptability, Manageability

What interactive theorem provers gain:

 Better exploitation of available resources as in traditional systems (steadily works background, autonomous, concurrent, resource adaptive)

