Increasing and Decreasing Functions

The graph shown in Figure 22 rises from A to B, falls from B to C, and rises again from C to D. The function f is said to be increasing on the interval [a,b], decreasing on [b,c], and increasing again on [c,d]. Notice that if x_1 and x_2 are any two numbers between a and b with $x_1 < x_2$, then $f(x_1) < f(x_2)$. We use this as the defining property of an increasing function.

A function $\,f\,$ is called $\,$ increasing on an interval $\,I\,$ if

$$f(x_1) < f(x_2) \qquad ext{whenever } x_1 < x_2 ext{ in } I$$

It is called $\operatorname{\mathbf{decreasing}}$ on I if

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$ in I

In the definition of an increasing function it is important to realize that the inequality $f\left(x_1\right) < f\left(x_2\right)$ must be satisfied for *every* pair of numbers x_1 and x_2 in I with $x_1 < x_2$.

You can see from Figure 23 that the function $f(x)=x^2$ is decreasing on the interval $(-\infty,0]$ and increasing on the interval $[0,\infty)$.

