News Popularity: Predicting popular news articles.

```
In [127... pwd
Out[127]: '/Users/pratik'
In [128... import pandas as pd
```

Collecting Data

In [129	news = pd.read_csv('OnlineNewsPopularity_for_python.csv')							
In [130	new	s.head(4)						
Out[130]:		url	timedelta	n_tokens_title	n_tokens_content	n_unique_tokens		
	0	http://mashable.com/2013/01/07/amazon- instant	731	12	219	0.663594		
	1	http://mashable.com/2013/01/07/ap- samsung-spon	731	9	255	0.604743		
	2	http://mashable.com/2013/01/07/apple-40-billio	731	9	211	0.575130		

4 rows × 61 columns

http://mashable.com/2013/01/07/astronaut-

```
In [131... # handle goal attrubte to binary
    popular = news.shares >= 1400
    unpopular = news.shares < 1400
    news.loc[popular,'shares'] = 1
    news.loc[unpopular,'shares'] = 0</pre>
```

731

531

0.503788

In [132... news.head(4)

Out[132]

:		url	timedelta	n_tokens_title	n_tokens_content	n_unique_tokens
	0	http://mashable.com/2013/01/07/amazon- instant	731	12	219	0.663594
	1	http://mashable.com/2013/01/07/ap- samsung-spon	731	9	255	0.604743
	2	http://mashable.com/2013/01/07/apple-40- billio	731	9	211	0.575130
	3	http://mashable.com/2013/01/07/astronaut- notre	731	9	531	0.503788

4 rows × 61 columns

Decision Tree

```
In [133... print(news.columns)
   news.info()
```

```
Index(['url', 'timedelta', 'n_tokens_title', 'n_tokens_content',
         'n unique tokens', 'n_non_stop_words', 'n_non_stop_unique_tokens',
         'num hrefs', 'num self hrefs', 'num imgs', 'num videos',
         'average_token_length', 'num_keywords', 'data_channel is lifestyle',
         'data channel is entertainment', 'data channel is bus',
         'data channel is socmed', 'data channel is tech',
         'data channel is world', 'kw min min', 'kw max min', 'kw avg min',
         'kw_min_max', 'kw_max_max', 'kw_avg_max', 'kw_min_avg', 'kw_max_avg', 'kw_avg_avg', 'self_reference_min_shares', 'self_reference_max_shares',
         'self reference avg sharess', 'weekday is monday', 'weekday is tuesday',
         'weekday_is_wednesday', 'weekday_is_thursday', 'weekday_is_friday',
         'weekday is saturday', 'weekday is sunday', 'is weekend', 'LDA 00',
         'LDA 01', 'LDA 02', 'LDA 03', 'LDA 04', 'global subjectivity',
         'global_sentiment_polarity', 'global rate positive words',
         'global rate negative words', 'rate positive words',
         'rate negative words', 'avg positive polarity', 'min positive polarity',
         'max positive polarity', 'avg negative polarity',
         'min negative polarity', 'max negative polarity', 'title subjectivity',
         'title sentiment polarity', 'abs title subjectivity',
         'abs title sentiment polarity', 'shares'],
       dtype='object')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39644 entries, 0 to 39643
Data columns (total 61 columns):
                                             Non-Null Count Dtype
 # Column
                                              -----
--- ----
 0
    url
                                              39644 non-null object
 1 timedelta
                                             39644 non-null int64
                                           39644 non-null int64
39644 non-null int64
39644 non-null float64
 2 n tokens title
 3 n tokens content
 4 n unique tokens
 5 n_non_stop_words
                                            39644 non-null float64
 6 n_non_stop_unique_tokens 39644 non-null float64
 7
    num hrefs
                                            39644 non-null int64
 8 num_self_hrefs
                                            39644 non-null int64
                                           39644 non-null int64
 9 num imgs
10 num_videos 39644 non-null int64
11 average_token_length 39644 non-null float64
12 num_keywords 39644 non-null int64
13 data_channel_is_lifestyle 39644 non-null int64
 14 data_channel_is_entertainment 39644 non-null int64
15 data_channel_is_bus 39644 non-null int64
16 data_channel_is_socmed 39644 non-null int64
17 data_channel_is_tech 39644 non-null int64
18 data_channel_is_world 39644 non-null int64
 19 kw min min
                                            39644 non-null int64
                                            39644 non-null float64
 20 kw max min
                                           39644 non-null float64
39644 non-null int64
39644 non-null int64
39644 non-null float64
39644 non-null float64
39644 non-null float64
 21 kw avg_min
 22 kw min max
 23 kw max max
 24 kw avg max
 25 kw min avg
 26 kw max avg
27 kw_avg_avg 39644 non-null float64
28 self_reference_min_shares 39644 non-null float64
29 self_reference_max_shares 39644 non-null float64
30 self_reference_avg_sharess 39644 non-null float64
31 weekday_is_monday 39644 non-null int64
30 self_reference_avg_snaless
31 weekday_is_monday 39644 non-null into4
32 weekday_is_tuesday 39644 non-null int64
33 weekday_is_wednesday 39644 non-null int64
34 rep-null int64
35 contains thursday 39644 non-null int64
36 contains thursday 39644 non-null int64
 35 weekday is friday
                                            39644 non-null int64
                                           39644 non-null int64
36 weekday_is_saturday
37 weekday_is_sunday
                                            39644 non-null int64
 38 is weekend
                                            39644 non-null int64
 39 LDA 00
                                              39644 non-null float64
```

```
39644 non-null float64
 40 LDA 01
 41 LDA 02
                                                     39644 non-null float64
 42 LDA 03
                                                     39644 non-null float64
 43 LDA 04
                                                    39644 non-null float64
44 global_subjectivity 39644 non-null float64
45 global_sentiment_polarity 39644 non-null float64
46 global_rate_positive_words 39644 non-null float64
47 global_rate_negative_words 39644 non-null float64
48 global_rate_negative_words 39644 non-null float64
49 global_rate_negative_words 39644 non-null float64
 48 rate_positive_words
                                                   39644 non-null float64
 49 rate negative words
                                                   39644 non-null float64
avg_positive_polarity
min_positive_polarity
max_positive_polarity
avg_negative_polarity
min_negative_polarity
max_negative_polarity
max_negative_polarity
title_subjectivity
                                                   39644 non-null float64
                                                    39644 non-null float64
                                                    39644 non-null float64
                                                   39644 non-null float64
                                                   39644 non-null float64
                                               39644 non-null float64
                                                    39644 non-null float64
 57 title_sentiment_polarity
58 abs_title_subjectivity
                                                   39644 non-null float64
                                                    39644 non-null float64
 59 abs title sentiment polarity 39644 non-null float64
                                                    39644 non-null int64
dtypes: float64(34), int64(26), object(1)
memory usage: 18.5+ MB
```

Exploring and Preparing the Data

```
In [134... target = news['shares']
```

Train, Test data with a aplit of 75% data for training set and 25% data for testing set and seed of 23458. Dropping the "url" column as it is a string type object and just the address of the site, dropping "shares" column from X as "shares" is a response or target variable.

```
In [135... from sklearn.model_selection import train_test_split
y = target
x = news.drop(['shares','url'], axis=1)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=2)
```

Design Decision Tree

```
In [136... from sklearn import tree
from sklearn.tree import DecisionTreeClassifier

In [137... model = tree.DecisionTreeClassifier()
model = model.fit(x_train, y_train)
```

Evaluating the model

```
In [138... from sklearn.metrics import confusion_matrix
    from sklearn.metrics import accuracy_score
    y_predict = model.predict(x_test)
    print(confusion_matrix(y_test, y_predict))

    [[2513 2050]
    [2098 3250]]

In [139... print(accuracy_score(y_test, y_predict)*100)
    58.147512864494
```

The results show the accuracy of the model to be 58% for seed of 23458.

Random Forest

```
In [140... y = target
    x = news.drop(['shares','url'], axis=1)
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=2)
In [141... from sklearn.ensemble import RandomForestClassifier
    clf = RandomForestClassifier()
    clf.fit(x_train, y_train)

Out[141]: RandomForestClassifier()

In [142... y_predict = clf.predict(x_test)
    print(confusion_matrix(y_test, y_predict))
    [[2794 1769]
    [1520 3828]]
In [143... print(accuracy_score(y_test, y_predict)*100)
    66.81465038845728
```

The Results show that using Random Forest the accuracy of predicting popular and unpoularnews based on the model is 67% based on ratio of (True positives and True Negatives) to all predicted observations (TP+FN+FP+TN)

Important Features

Out[144]:

```
In [144... import pandas as pd
    feature_importances = pd.DataFrame(clf.feature_importances_, index = news.columns[1:60],
    feature_importances
```

	importance
kw_avg_avg	0.040599
kw_max_avg	0.038371
LDA_02	0.033017
timedelta	0.031161
self_reference_avg_sharess	0.029585
LDA_01	0.028522
LDA_04	0.028398
self_reference_min_shares	0.027897
kw_avg_min	0.027684
LDA_00	0.027673
kw_avg_max	0.027526
global_subjectivity	0.026878
n_unique_tokens	0.026258
n_non_stop_unique_tokens	0.026078
average_token_length	0.025736
kw_max_min	0.025464

n_tokens_content	0.025322
LDA_03	0.025283
global_rate_positive_words	0.024946
avg_positive_polarity	0.024771
kw_min_avg	0.024475
global_sentiment_polarity	0.023800
self_reference_max_shares	0.023728
avg_negative_polarity	0.022924
global_rate_negative_words	0.022820
num_hrefs	0.020784
rate_negative_words	0.019936
rate_positive_words	0.019703
kw_min_max	0.016427
n_tokens_title	0.015610
title_sentiment_polarity	0.014466
min_negative_polarity	0.014348
num_imgs	0.013600
max_negative_polarity	0.013421
num_self_hrefs	0.012824
min_positive_polarity	0.012670
title_subjectivity	0.012334
abs_title_subjectivity	0.011780
abs_title_sentiment_polarity	0.011593
is_weekend	0.011208
max_positive_polarity	0.010282
num_keywords	0.010244
data_channel_is_entertainment	0.009047
num_videos	0.007659
data_channel_is_world	0.006367
kw_max_max	0.005807
data_channel_is_socmed	0.005328
data_channel_is_tech	0.004845
kw_min_min	0.004643
weekday_is_saturday	0.004358
weekday_is_tuesday	0.003403
weekday_is_thursday	0.002950
weekday_is_wednesday	0.002925
weekday_is_friday	0.002870
weekday_is_monday	0.002835

```
weekday_is_sunday0.002627data_channel_is_bus0.002405data_channel_is_lifestyle0.001652n_non_stop_words0.000134
```

We see that the top five most imortant features for the model to predict popular and unpopular news are kw_avg_avg, kw_max_avg, timedelta, LDA_02 and self_reference_min_shares in that order.

Finding Correlation

We see that the correlation between actual and predicted values is 33%

Finding RMSE

```
In [146... from sklearn.metrics import mean_squared_error
    rmse = mean_squared_error(y_test, y_predict, squared=False)

In [147... print(rmse)
    0.5760672670057094
```

The results shows that the root mean squared error is 0.57. It appears that the model is a little less effective than the acceptable range as the difference betweent the the actual and predicted test scores or the errors, account for more than 0.50 or 50%. The lower the rmse value the better the model can be assumed to fit the dataset (rmse values lie in range from 0 to 1).

Part II: Dimensionality Reduction with correlation graph

```
In [148... target = news["shares"]
    y = target
    x = news.drop(['shares', 'url'], axis = 1)
```

Correlation Graph

```
import numpy as np
import matplotlib.pyplot as plt

corr = x.corr()
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(corr,cmap='coolwarm', vmin=-1, vmax=1)
fig.colorbar(cax)
ticks = np.arange(0,len(x.columns),1)
ax.set_xticks(ticks)
plt.xticks(rotation=90)
ax.set_yticks(ticks)
ax.set_xticklabels(x.columns)
```


In [150... corr_matrix = x.corr().abs()
corr_matrix

Out[150]:		timedelta	n_tokens_title	n_tokens_content	n_unique_tokens	n_non_stop
	timedelta	1.000000	0.240320	0.062867	0.002866	0.
	n_tokens_title	0.240320	1.000000	0.018160	0.005318	0
	n_tokens_content	0.062867	0.018160	1.000000	0.004737	(
	n_unique_tokens	0.002866	0.005318	0.004737	1.000000	0
	n_non_stop_words	0.000089	0.004754	0.017512	0.999572	1.
	n_non_stop_unique_tokens	0.003805	0.005420	0.000373	0.999852	0.
	num_hrefs	0.000832	0.053496	0.423065	0.004352	О
	num_self_hrefs	0.064530	0.014856	0.304682	0.006620	0
	num_imgs	0.027636	0.008858	0.342600	0.018802	Ο.
	num_videos	0.000936	0.051460	0.103699	0.000597	0.

0.071403

average_token_length 0.130465

0.167789

0.026407

num_keywords	0.046884	0.006077	0.072845	0.003679	0
data_channel_is_lifestyle	0.054492	0.070815	0.037548	0.001653	0
data_channel_is_entertainment	0.049109	0.132791	0.060200	0.011016	0
data_channel_is_bus	0.055788	0.023902	0.006105	0.000264	0
data_channel_is_socmed	0.076287	0.090394	0.033424	0.000945	0
data_channel_is_tech	0.083277	0.046716	0.025408	0.002328	0
data_channel_is_world	0.170250	0.049223	0.055989	0.005535	0
kw_min_min	0.591199	0.110672	0.054345	0.001601	0
kw_max_min	0.029503	0.005890	0.000066	0.000552	0.
kw_avg_min	0.133225	0.031400	0.003545	0.000826	0.
kw_min_max	0.076590	0.012926	0.022786	0.000577	0
kw_max_max	0.637824	0.120841	0.058860	0.001624	0.
kw_avg_max	0.493093	0.115746	0.096460	0.000805	0.
kw_min_avg	0.157204	0.002370	0.022286	0.004563	0.
kw_max_avg	0.051820	0.006918	0.030496	0.002120	0.
kw_avg_avg	0.163164	0.004296	0.079624	0.002083	0
self_reference_min_shares	0.011438	0.004563	0.030686	0.001036	0.
self_reference_max_shares	0.014501	0.000128	0.025657	0.000222	С
self_reference_avg_sharess	0.015655	0.000661	0.013809	0.001992	С
weekday_is_monday	0.006129	0.004274	0.002484	0.002142	С
weekday_is_tuesday	0.005781	0.009322	0.004027	0.010538	(
weekday_is_wednesday	0.009961	0.008935	0.016891	0.002224	С
weekday_is_thursday	0.004042	0.015472	0.007395	0.002248	0.
weekday_is_friday	0.002853	0.002015	0.015949	0.001398	0
weekday_is_saturday	0.004067	0.015013	0.034538	0.002563	0
weekday_is_sunday	0.004226	0.006289	0.036394	0.001803	0
is_weekend	0.000272	0.005996	0.052024	0.003186	0
LDA_00	0.080894	0.070038	0.026218	0.002213	C
LDA_01	0.004423	0.063568	0.009724	0.000827	0.
LDA_02	0.141713	0.038365	0.087266	0.006855	0.
LDA_03	0.030838	0.042208	0.140141	0.003689	С
LDA_04	0.092906	0.065063	0.041265	0.004260	С
global_subjectivity	0.133837	0.056804	0.127879	0.000180	0
global_sentiment_polarity	0.158646	0.072226	0.021937	0.000523	0
global_rate_positive_words	0.207604	0.064951	0.133979	0.000014	0
global_rate_negative_words	0.010266	0.015530	0.125013	0.000877	0
rate_positive_words	0.198654	0.066589	0.098960	0.000667	О
rate_negative_words	0.071968	0.034186	0.101053	0.001657	0
avg_positive_polarity	0.126344	0.049619	0.135123	0.000487	0

min_positive_polarity	0.054772	0.025069	0.261493	0.009193	0.
max_positive_polarity	0.098288	0.021662	0.415706	0.009054	0
avg_negative_polarity	0.000507	0.017096	0.130375	0.001453	С
min_negative_polarity	0.062175	0.029146	0.450603	0.009902	(
max_negative_polarity	0.063239	0.011425	0.225870	0.007315	С
title_subjectivity	0.015919	0.077245	0.004484	0.004678	0.
title_sentiment_polarity	0.038711	0.000240	0.023358	0.002333	0
abs_title_subjectivity	0.011551	0.146954	0.007136	0.009242	C
abs_title_sentiment_polarity	0.002745	0.040550	0.013439	0.004217	0

59 rows × 59 columns

Select Upper triangle of correlation matrix

```
In [151... import numpy as np
    upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape) , k=1).astype(np.bool))

//var/folders/fp/szpx3gxd4ln849f9dbx_lqw00000gn/T/ipykernel_1107/2665990962.py:2: Depreca
    tionWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this war
    ning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you
    specifically wanted the numpy scalar type, use `np.bool_` here.
    Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/relea
    se/1.20.0-notes.html#deprecations
    upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape) , k=1).astype(np.bool))
```

Find index of feature columns with correlation greater than 0.95

Out[152]:		timedelta	n_tokens_title	n_tokens_content	n_unique_tokens	num_hrefs	num_self_hrefs	num_i
	0	731	12	219	0.663594	4	2	
	1	731	9	255	0.604743	3	1	
	2	731	9	211	0.575130	3	1	
	3	731	9	531	0.503788	9	0	
	4	731	13	1072	0.415646	19	19	
	•••							
	39639	8	11	346	0.529052	9	7	
	39640	8	12	328	0.696296	9	7	
	39641	8	10	442	0.516355	24	1	
	39642	8	6	682	0.539493	10	1	
	39643	8	10	157	0.701987	1	1	

39644 rows × 43 columns

New Accuracy with new Xnew(after dropping highly correlated variables)

Using Xnew(after dropping highly correlated var) for randomising, Splitting, Training model and evaluating

In [153	xnew							
Out[153]:		timedelta	n_tokens_title	n_tokens_content	n_unique_tokens	num_hrefs	num_self_hrefs	num_i
	0	731	12	219	0.663594	4	2	
	1	731	9	255	0.604743	3	1	
	2	731	9	211	0.575130	3	1	
	3	731	9	531	0.503788	9	0	
	4	731	13	1072	0.415646	19	19	
	•••							
	39639	8	11	346	0.529052	9	7	
	39640	8	12	328	0.696296	9	7	
	39641	8	10	442	0.516355	24	1	

682

157

0.539493

0.701987

10

1

1

39644 rows × 43 columns

8

8

6

10

39642

39643

```
to_drop
In [154...
           ['n non stop words',
Out[154]:
            'n non stop unique tokens',
            'kw avg min',
            'kw max max',
            'kw avg avg',
            'self reference avg sharess',
            'is weekend',
            'LDA 00',
            'LDA 02',
            'LDA 04',
            'rate positive_words',
            'rate negative words',
            'avg positive polarity',
            'max positive polarity',
            'min negative polarity',
            'abs title sentiment polarity']
```

Dropping to_drop columns

```
'min_negative_polarity',
'abs_title_sentiment_polarity'], axis = 1)
```

As above, the to_drop function showed high correlation for 16 columns, which we will remove from our dataset for further analysis. We can see the remainging variables in xnew as below, which we will cond=sider for further analysis

In [156	xnew							
Out[156]:		timedelta	n_tokens_title	n_tokens_content	n_unique_tokens	num_hrefs	num_self_hrefs	num_i
	0	731	12	219	0.663594	4	2	
	1	731	9	255	0.604743	3	1	
	2	731	9	211	0.575130	3	1	
	3	731	9	531	0.503788	9	0	
	4	731	13	1072	0.415646	19	19	
	•••							
	39639	8	11	346	0.529052	9	7	
	39640	8	12	328	0.696296	9	7	
	39641	8	10	442	0.516355	24	1	
	39642	8	6	682	0.539493	10	1	
	39643	8	10	157	0.701987	1	1	

39644 rows x 43 columns

	39644 r	ows × 43 columns				
In [157	news_ne	W				
Out[157]:		url	timedelta	n_tokens_title	n_tokens_content	n_unique_tok
	0	http://mashable.com/2013/01/07/amazon- instant	731	12	219	0.663
	1	http://mashable.com/2013/01/07/ap- samsung-spon	731	9	255	0.604
	2	http://mashable.com/2013/01/07/apple-40- billio	731	9	211	0.57ξ
	3	http://mashable.com/2013/01/07/astronaut- notre	731	9	531	0.503
	4	http://mashable.com/2013/01/07/att-u- verse-apps/	731	13	1072	0.415
	•••					
	39639	http://mashable.com/2014/12/27/samsung- app-aut	8	11	346	0.529
	39640	http://mashable.com/2014/12/27/seth- rogen-jame	8	12	328	0.696
	39641	http://mashable.com/2014/12/27/son-pays- off-mo	8	10	442	0.516
	39642	http://mashable.com/2014/12/27/ukraine- blasts/	8	6	682	0.539
	39643	http://mashable.com/2014/12/27/youtube- channel	8	10	157	0.701

Decision Tree Model: (After dropping the correlated variables)

(Note: It is not necessary to normalize or standardize the data for Decision Tree and Random Forest models)

```
In [158... y = target
    x = xnew
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=2)
In [159... from sklearn import tree
    from sklearn.tree import DecisionTreeClassifier
    model = tree.DecisionTreeClassifier()
    model = model.fit(x_train, y_train)
    y_predict = model.predict(x_test)
    print(confusion_matrix(y_test, y_predict))

[[2503 2060]
    [2151 3197]]
In [160... print(accuracy_score(y_test, y_predict)*100)

57.51185551407527
```

Random Forest Model: (After dropping the correlated variables)

```
In [161... y = target
    x = xnew
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=2)
In [162... from sklearn.ensemble import RandomForestClassifier
    model = RandomForestClassifier()
    model = model.fit(x_train, y_train)
    y_predict = model.predict(x_test)
    print(confusion_matrix(y_test, y_predict))

[[2791 1772]
    [1509 3839]]
In [163... print(accuracy_score(y_test, y_predict)*100)
66.89536878216124
```

It is observed that there isn't much difference in the accuracies of Decision Tree and Random Forest models after dropping the correlated variables.

Normalizing the data(Normalization: Use MinMaxScaler from sklearn, Standardization: Use StandardScaler from sklearn)

```
In [164... from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
         scaled = scaler.fit transform(xnew)
         print(scaled)
         [[1. 0.47619048 0.02584376 ... 0.5
                                                         0.40625
                                                                    0.
                                                                              1
         [1.
                    0.33333333 0.03009205 ... 0.
                                                         0.5
                                                                    1.
                                                                              ]
                    0.33333333 0.02489969 ... 0.
                                                         0.5
          [0.
                     0.38095238 0.05215955 ... 0.45454545 0.56818182 0.090909091
```

```
[0. 0.19047619 0.08048147 ... 0. 0.5 1. ]
[0. 0.38095238 0.01852726 ... 0.33333333 0.625 0.33333333]]
```

Training(90) and Test(10) Split): (Note: Use Normalized x (xnew) when splitting data)

```
In [165... y = target
         x = scaled
         x train, x test, y train, y test = train test split(x, y, test size = 0.10, random state
         y train
          24329
                1
Out[165]:
          11705
                 0
          1995
                  1
          22132
                  1
          24562
                 1
                  . .
          32399 0
          17048 1
                0
          23924
          34086
          27439
                0
          Name: shares, Length: 35679, dtype: int64
         x train.shape
In [166...
          (35679, 43)
Out[166]:
         x test.shape
In [167...
          (3965, 43)
Out[167]:
```

Train the model, Use Linear Separator to design the model

Designing the model

```
In [168... from sklearn import svm
          clf = svm.SVC(kernel = "linear")
          clf
          SVC(kernel='linear')
Out[168]:
In [169... clf.fit(x train, y train)
          y predict = clf.predict(x test)
In [170... from sklearn.metrics import confusion matrix
          from sklearn.metrics import accuracy score
          print(confusion matrix(y test, y predict))
          [[ 940 927]
          [ 618 1480]]
         accuracy score(y test, y predict) *100
In [171...
          61.03404791929382
Out[171]:
```

Improving the model by changing the kernels

Using the "rbf" kernel

```
In [172... clf = svm.SVC(kernel='rbf', gamma =0.3)
```

Using the 'poly kernel' kernel

```
In [174... clf = svm.SVC(kernel='poly', degree=8)
#clf = svm.LinearSVC(C=1)
clf.fit(x_train, y_train)
y_predict = clf.predict(x_test)
print(confusion_matrix(y_test, y_predict))

[[1217 650]
[ 754 1344]]
In [59]: print(accuracy_score(y_test, y_predict)*100)
64.59016393442623
```

The highly correlated 16 variabled were removed from before normalizing the data. The input variables (x variables) were normalized using the MinMaxScaler from sklearn. The data was further split into Training (90%) and Test Data set (10%). The LinearSVC Kernel model showed an accuracy of 61.03%. The accuracy increased to 64.69% when using the 'rbf' kernel with gamma =0.3. The Accuracy was seen to be 64.59% by changing the Kernel to 'poly' kernel with degrees = 8.

Part III: Dimensionality Reduction using Principal Component Analysis

```
In [175...
           import pandas as pd
           news = pd.read csv('OnlineNewsPopularity for python.csv')
           news.head()
Out [175]:
                                                         timedelta n_tokens_title n_tokens_content n_unique_tokens
                 http://mashable.com/2013/01/07/amazon-
            0
                                                               731
                                                                                12
                                                                                                               0.663594
                                                                                                  219
                                              instant-...
                      http://mashable.com/2013/01/07/ap-
             1
                                                               731
                                                                                 9
                                                                                                  255
                                                                                                               0.604743
                                        samsung-spon...
                http://mashable.com/2013/01/07/apple-40-
             2
                                                               731
                                                                                 9
                                                                                                   211
                                                                                                                0.575130
                                                 billio...
                http://mashable.com/2013/01/07/astronaut-
             3
                                                               731
                                                                                 9
                                                                                                  531
                                                                                                               0.503788
                    http://mashable.com/2013/01/07/att-u-
             4
                                                               731
                                                                                13
                                                                                                 1072
                                                                                                                0.415646
                                            verse-apps/
```

5 rows × 61 columns

RangeIndex: 39644 entries, 0 to 39643

	columns (total 61 columns):	15	
	Column	Non-Null Count	
0	url	39644 non-null	_
1 2	timedelta	39644 non-null	
3	n_tokens_title	39644 non-null 39644 non-null	
4	n_tokens_content n unique tokens	39644 non-null	
5	n non stop words	39644 non-null	
6	n non stop unique tokens	39644 non-null	
7	num hrefs	39644 non-null	
8	num self hrefs	39644 non-null	
9	num imgs	39644 non-null	
10	num videos	39644 non-null	int64
11	average_token_length	39644 non-null	float64
12	num_keywords	39644 non-null	int64
13	data_channel_is_lifestyle	39644 non-null	
14	data_channel_is_entertainment		
15	data_channel_is_bus	39644 non-null	
16	data_channel_is_socmed	39644 non-null	
17 18	data_channel_is_tech	39644 non-null 39644 non-null	
19	<pre>data_channel_is_world kw min min</pre>	39644 non-null	
20	kw max min	39644 non-null	
21	kw avg min	39644 non-null	
22	kw min max	39644 non-null	
23	kw max max	39644 non-null	
24	kw_avg_max	39644 non-null	float64
25	kw_min_avg	39644 non-null	float64
26	kw_max_avg	39644 non-null	
27	kw_avg_avg	39644 non-null	
28	self_reference_min_shares	39644 non-null	
29 30	<pre>self_reference_max_shares self reference avg sharess</pre>	39644 non-null	
31	weekday is monday	39644 non-null 39644 non-null	
32	weekday is tuesday	39644 non-null	
33	weekday is wednesday	39644 non-null	int64
34	weekday is thursday	39644 non-null	int64
35	weekday is friday	39644 non-null	int64
36	weekday_is_saturday	39644 non-null	int64
37	weekday_is_sunday	39644 non-null	int64
38	is_weekend	39644 non-null	int64
39	LDA_00	39644 non-null	float64
40	LDA_01	39644 non-null	float64
41	LDA_02	39644 non-null	float64
42 43	LDA_03 LDA_04	39644 non-null 39644 non-null	float64 float64
44	global subjectivity	39644 non-null	float64
45	global sentiment polarity	39644 non-null	float64
46	global rate positive words	39644 non-null	float64
47	global rate negative words	39644 non-null	float64
48	rate positive words	39644 non-null	float64
49	rate negative words	39644 non-null	float64
50	avg_positive_polarity	39644 non-null	float64
51	min_positive_polarity	39644 non-null	float64
52	max_positive_polarity	39644 non-null	float64
53	avg_negative_polarity	39644 non-null	float64
54	min_negative_polarity	39644 non-null	float64
55 56	max_negative_polarity	39644 non-null	float64
56 57	title_subjectivity title sentiment polarity	39644 non-null 39644 non-null	float64 float64
58	abs title subjectivity	39644 non-null	float64
59	abs_title_subjectivity abs title sentiment polarity	39644 non-null	float64
60	shares	39644 non-null	int64

```
dtypes: float64(34), int64(26), object(1)
    memory usage: 18.5+ MB

In [177... # handle goal attrubte to binary
    popular = news.shares >= 1400
        unpopular = news.shares < 1400
        news.loc[popular,'shares'] = 1
        news.loc[unpopular,'shares'] = 0</pre>

In [178... target = news["shares"]
    y = target
```

Normalizing the data

```
In [179... from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         scaled = scaler.fit transform(news.drop(columns = ["shares", "url"], axis =1))
         array([[ 1.75788035, 0.75744723, -0.69521045, ..., -0.97543219,
Out[179]:
                  -1.81071884, 0.13891975],
                 [1.75788035, -0.66165665, -0.61879381, ..., -0.26907618,
                   0.83774863, -0.68965812],
                 [1.75788035, -0.66165665, -0.71219192, ..., -0.26907618,
                   0.83774863, -0.68965812],
                 [-1.61808342, -0.18862202, -0.2218518, ..., 0.24463728,
                  -1.56994907, -0.08705603],
                 [-1.61808342, -2.08076053, 0.28759248, ..., -0.26907618,
                   0.83774863, -0.68965812],
                 [-1.61808342, -0.18862202, -0.82681689, ..., 0.67273184,
                  -0.92789635, 0.41511238]])
```

Implementing PCA with selecting 30 components from all initial 58 Variables.

```
In [180... from sklearn.decomposition import PCA
         pca = PCA(n components = 30)
         PC = pca.fit(scaled)
         PC.components
          array([[-0.16132739, 0.0581139, -0.13404156, ..., -0.08046848,
Out[180]:
                   0.03406751, -0.07174961],
                 [-0.19286504, 0.07672684, 0.09800518, ..., -0.04403546,
                  -0.03249026, 0.07886985],
                 [-0.06891273, 0.01090471, -0.13706484, ..., 0.12710808,
                  -0.0733436 , 0.095867031,
                 . . . ,
                 [0.00838535, -0.03247174, 0.10835193, ..., -0.22710656,
                   0.11732152, 0.11457629],
                 [0.099999982, -0.0683428, -0.0681115, ..., 0.21921158,
                  -0.23191139, -0.17044049],
                 [-0.01377077, 0.15246142, -0.19444994, ..., 0.01398225,
                   0.58131374, 0.27219535]])
```

Variance in components

As we see above the 30 principal components together explain a little over 80 % of the variance. So we will select all thirty Principal Components

Creating dataframe with the new features as the 30 principal components from above.

```
new_data = pd.DataFrame(new_feats, columns = ["PCA1", "PCA2", "PCA3", "PC4", "PC5", "PC6
In [183...
In [184... new data.head()
                   PCA1
                             PCA2
                                       PCA<sub>3</sub>
                                                   PC4
                                                             PC5
                                                                        PC6
                                                                                  PC7
                                                                                            PC8
                                                                                                      PCA9
Out [184]:
              -1.357857 -1.884258
                                   -1.973979 -0.000726
                                                         0.431248 -3.606503
                                                                              1.421048
                                                                                        -1.418715
                                                                                                   0.462156
               0.196398 -4.305383
                                   -1.135902
                                              0.082758
                                                        -0.351744
                                                                   -1.565965
                                                                              3.365590
                                                                                        0.305649
                                                                                                   1.896648
              -3.731175 -3.498205 -1.735055 -0.078569 -0.386974 -0.860576
                                                                             2.504444 -0.273746 -0.266942
           3 -0.670099 -1.695278 -3.436231
                                             -0.106110
                                                          1.187241 -2.169244
                                                                              1.392527 -1.008122 -0.530892
               -4.169513 -3.718399
                                   -1.441031 -0.131872
                                                         0.376862
                                                                   0.343934 -2.743607 -1.432815
                                                                                                  0.532606
```

5 rows × 30 columns

SVM using "rbf" kernel after dimensionality reduction

Sunsupervised model: Using Clustering to determine the best value of K using K-means.

```
In [187... from sklearn.cluster import KMeans import matplotlib.pyplot as plt
```

```
sse = {}
last_sse = 17592402.70373319
for k in range(1,30):
    kmeans = KMeans(n_clusters=k, random_state=12345, n_init = 25).fit(new_data)
    #print(data["clusters"])
    sse[k] = kmeans.inertia_ # Inertia: Sum of distances of samples to their closest clu
    change_per = (last_sse-kmeans.inertia_)/last_sse*100
    print ('At k= ',k,'The percentage of change in SSE is ',change_per,'%')
    last_sse = kmeans.inertia_
plt.figure()
plt.plot(list(sse.keys()), list(sse.values()))
plt.xlabel("Number of cluster")
plt.ylabel("SSE")
plt.show()
At k= 1 The percentage of change in SSE is 88.07631058253925 %
```

```
At k= 2 The percentage of change in SSE is 6.1770128975934755 %
At k= 3 The percentage of change in SSE is 5.352399147817898 %
At k=4 The percentage of change in SSE is 5.196874067232386 %
At k= 5 The percentage of change in SSE is 5.907706464446229 %
At k= 6 The percentage of change in SSE is 5.588287251806153 %
At k= 7 The percentage of change in SSE is 3.213208487607857 %
At k= 8 The percentage of change in SSE is 4.181117909254028 %
At k=9 The percentage of change in SSE is 3.8599610578537344 %
At k= 10 The percentage of change in SSE is 2.8623620777938474 \%
At k= 11 The percentage of change in SSE is 2.5649047197786743 %
At k= 12 The percentage of change in SSE is 2.802892920114828 %
At k= 13 The percentage of change in SSE is 2.5372429036207804 %
At k= 14 The percentage of change in SSE is 2.255100568286224 %
At k= 15 The percentage of change in SSE is 3.447060012527133 %
At k= 16 The percentage of change in SSE is 0.4836430128399092 %
At k= 17 The percentage of change in SSE is 3.088310387503831 %
At k= 18 The percentage of change in SSE is 1.1019768357863073 %
At k= 19 The percentage of change in SSE is 1.6371358128957423 %
At k= 20 The percentage of change in SSE is 1.7602885621822693 %
At k= 21 The percentage of change in SSE is 0.8808199240166601 %
At k= 22 The percentage of change in SSE is 1.5642818718455027 %
At k= 23 The percentage of change in SSE is 0.37656337146127855 %
At k= 24 The percentage of change in SSE is 0.8745224075705327 %
At k=25 The percentage of change in SSE is 2.0028257085055117 %
At k= 26 The percentage of change in SSE is 0.6345199003790533 %
At k=27 The percentage of change in SSE is 0.8788147395915004 %
At k= 28 The percentage of change in SSE is 0.6613765648575097 %
At k= 29 The percentage of change in SSE is 0.6493573618314269 %
```


From the graph it looks like values of k from 5 to 9 can be a good range.

Using KNN classifier which is a Supervised Learning Algorithm

Using k=2, Randomizing the data with seed 12345

```
In [188... import random
    target = news["shares"]
    random.seed(12345)
    indx = random.sample(range(0, 1000), 1000)
    new_data_rand = new_data.iloc[indx]
    target_rand = target.iloc[indx]
```

Splitting into 80% training data and 20% testing data

```
In [189... from sklearn.model_selection import train_test_split

y = target_rand
x = new_data_rand

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=1)
```

Using KNN algorithm for Classification with k=2

```
In [190... from sklearn.neighbors import KNeighborsClassifier
  neigh = KNeighborsClassifier(n_neighbors=2)
  model = neigh.fit(x, y)
  y_predict = model.predict(x_test)
```

/Users/pratik/opt/anaconda3/lib/python3.9/site-packages/sklearn/neighbors/_classificatio n.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the

be accepted. Set `keepdims` to True or False to avoid this warning.

default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer

```
Using K-value of 5
```

79.5

```
In [193... import random
    target = news["shares"]
    random.seed(12345)
    indx = random.sample(range(0, 1000), 1000)
    new_data_rand = new_data.iloc[indx]
    target_rand = target.iloc[indx]

y = target_rand
x = new_data_rand

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=1)

neigh = KNeighborsClassifier(n_neighbors=5)
model = neigh.fit(x, y)

y_predict = model.predict(x_test)
```

/Users/pratik/opt/anaconda3/lib/python3.9/site-packages/sklearn/neighbors/_classificatio n.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

```
In [194... print(confusion_matrix(y_test, y_predict)*100)
    print(accuracy_score(y_test, y_predict)*100)

[[7200 2100]
    [2800 7900]]
    75.5
```

Using k-value of 8

```
import random
target = news["shares"]
random.seed(12345)
indx = random.sample(range(0, 1000), 1000)
new_data_rand = new_data.iloc[indx]
target_rand = target.iloc[indx]
```

```
y = target_rand
x = new_data_rand

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=1)

neigh = KNeighborsClassifier(n_neighbors=8)

model = neigh.fit(x, y)

y_predict = model.predict(x_test)

print(confusion_matrix(y_test, y_predict)*100)

print(accuracy_score(y_test, y_predict)*100)
```

```
[[7600 1700]
[4700 6000]]
68.0
```

/Users/pratik/opt/anaconda3/lib/python3.9/site-packages/sklearn/neighbors/_classificatio n.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.

mode, = stats.mode(y[neigh ind, k], axis=1)

Using K-20

```
In [196... import random
    target = news["shares"]
    random.seed(12345)
    indx = random.sample(range(0, 1000), 1000)
    new_data_rand = new_data.iloc[indx]
    target_rand = target.iloc[indx]

    y = target_rand
    x = new_data_rand

    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=1)

    neigh = KNeighborsClassifier(n_neighbors=21)
    model = neigh.fit(x, y)

    y_predict = model.predict(x_test)

    print(confusion_matrix(y_test, y_predict)*100)
    print(accuracy_score(y_test, y_predict)*100)
```

```
[[6400 2900]
[4200 6500]]
```

/Users/pratik/opt/anaconda3/lib/python3.9/site-packages/sklearn/neighbors/_classificatio n.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

As seen above the accuracy for k=2 is 80%, K=5 is 75.5%, k=8 is 69.5% and k=21 is 63.5%. However, from the graph generated above, it looks like k=8 is a better value as the sse is small compared to K=2 and k=5. A slight elbow can be seen from the graph

as seen from k=5 to k=8 with a good percentage change in sse. The percentage in sse after k=9 is very less comparatively. I would like to use value of K=8.

Conclusion:

Amongst all the algorithms used, the KNN Classifier algorithm after Dimensionality Reduction gave us the maximum accuracy for prediciting the Popular news articles.