#### 1

# GATE 2023 PH Q37

### EE23BTECH11009 - AROSHISH PRADHAN\*

**Question:** An input voltage in the form of a square wave of frequency  $1 \, kHz$  is given to a circuit, which results in the output shown schematically below. Which one of the following options is the CORRECT representation of the circuit?



Fig. 1





#### **Solution:**

| Symbol                       | Value                                                        | Description                       |
|------------------------------|--------------------------------------------------------------|-----------------------------------|
| $V_{in}(t)$                  |                                                              | Input Voltage                     |
| $V_{in}(j\omega)$            |                                                              | Fourier Transform of $V_{in}(t)$  |
| $V_{out}(t)$                 |                                                              | Output Voltage                    |
| $\mathcal{V}_{out}(j\omega)$ |                                                              | Fourier Transform of $V_{out}(t)$ |
| f                            | $\frac{\omega}{2\pi} = 1000Hz$ $\frac{2\pi}{\pi} = 10^{-3}s$ | Input Wave Frequency              |
| T                            | $\frac{2\pi}{\omega} = 10^{-3} s$                            | Input Wave Time Period            |
| R                            | (a) $0.5k\Omega$                                             | Resistance                        |
|                              | (b) $5k\Omega$                                               |                                   |
| С                            | (a) $0.1 \mu F$                                              | Capacitance                       |
|                              | (b) $1\mu F$                                                 |                                   |
| τ                            | RC                                                           | Time Constant                     |
| Z                            | $R + \frac{1}{j\omega C}$                                    | Impedance                         |
| $H(j\omega)$                 | $\frac{V_{out}}{V_{in}}$                                     | General Transfer Function         |
| $H_R(j\omega)$               | $\frac{V_{R,out}}{V_{in}}$                                   | Transfer Function for Resistor    |
| $H_C(j\omega)$               | $\frac{V_{C,out}}{V_{in}}$                                   | Transfer Function for Capacitor   |

TABLE I: Given Parameters

Input waveform is a square wave (Fig. 2), so we take its Fourier Transform

$$V_{in}(t) = 2\left(2\left[\frac{\left(t - \frac{T}{4}\right)}{T}\right] - \left[\frac{2\left(t - \frac{T}{4}\right)}{T}\right]\right) + 1 \quad (1)$$

Fourier Series Coefficient:

$$c_k = \frac{1}{T} \int_T V_{in}(t) e^{-jk\omega t} dt$$
 (2)

As square wave is even,  $\sin(k\omega t)$  terms become zero. Cosine coefficients are:

$$a_n = \frac{2}{T} \int_T V_{in}(t) \cos\left(\frac{2\pi nt}{T}\right) \tag{3}$$

$$= \frac{4}{n\pi} \sin\left(\frac{n\pi}{2}\right) \cos\left(n\pi\right) \tag{4}$$

Fourier Series of  $V_{in}(t)$ :

$$V_{in}(t) = \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nt}{T}\right)$$
 (5)



Fig. 2: Input Square Waveform  $(V_{in}(t))$ 

Taking Fourier Transform of  $V_{in}(t)$ :

$$V_{in}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{V}_{in}(j\omega)$$
 (6)



Fig. 3: Series RC Circuit in s-domain

$$s = j\omega \tag{7}$$

$$\implies Z = R + \frac{1}{sC} \tag{8}$$

$$=R + \frac{1}{j\omega C} \tag{9}$$

 $V_{in}(j\omega)$  was input into all four circuits and  $V_{out}(t)$ was calculated using the Transfer Functions of the RC Filters.

Transfer Function:

$$H(j\omega) = \frac{V_{out}}{V_{in}} \tag{10}$$

#### 1) Option A

$$H_R(j\omega) = \frac{R}{R + \frac{1}{j\omega C}} \tag{11}$$

$$=\frac{j\omega RC}{1+j\omega RC}\tag{12}$$

$$= \frac{j\omega RC}{1 + j\omega RC}$$

$$= \left(\frac{\omega RC}{\sqrt{1 + (\omega RC)^2}}\right) e^{j \tan^{-1}\left(\frac{1}{\omega RC}\right)}$$
(12)



Fig. 4:  $|H_R(j\omega)|$  vs  $\omega$  for  $R = 0.5k\Omega$ ,  $C = 0.1\mu F$ 

$$\implies \mathcal{V}_{out}(j\omega) = H_R(j\omega)\mathcal{V}_{in}(j\omega)$$
 (14)

(15)

Using (5) and (13),

$$V_{out}(t) = \sum_{n=1}^{\infty} \left( \frac{n\omega RC}{\sqrt{1 + (n\omega RC)^2}} \right) a_n \cos\left(n\omega t + \tan^{-1}\left(\frac{1}{n\omega RC}\right)\right)$$
(16)



Fig. 5: Opt A:  $V_{out}(t)$  vs t



Fig. 7: Opt B:  $V_{out}(t)$  vs t

#### 2) Option B

$$H_R(j\omega) = \frac{R}{R + \frac{1}{j\omega C}} \tag{17}$$

$$=\frac{j\omega RC}{1+j\omega RC}\tag{18}$$

$$= \left(\frac{\omega RC}{\sqrt{1 + (\omega RC)^2}}\right) e^{j \tan^{-1}\left(\frac{1}{\omega RC}\right)} \quad (19)$$

# 3) Option C

$$H_C(j\omega) = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}}$$
 (22)

$$=\frac{1}{1+j\omega RC}\tag{23}$$

$$= \left(\frac{1}{\sqrt{1 + (\omega RC)^2}}\right) e^{-j \tan^{-1}(\omega RC)} \quad (24)$$



Fig. 6:  $|H_R(j\omega)|$  vs  $\omega$  for  $R = 5k\Omega$ ,  $C = 1\mu F$ 

Fig. 8:  $|H_C(j\omega)|$  vs  $\omega$  for  $R = 0.5k\Omega$ ,  $C = 0.1\mu F$ 

$$\implies \mathcal{V}_{out}(j\omega) = H_R(j\omega)\mathcal{V}_{in}(j\omega) \qquad (20)$$

Using (5) and (19),

$$V_{out}(t) = \sum_{n=1}^{\infty} \left( \frac{n\omega RC}{\sqrt{1 + (n\omega RC)^2}} \right) a_n \cos\left(n\omega t + \tan^{-1}\left(\frac{1}{n\omega RC}\right)\right) \qquad V_{out}(t) = \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{1 + (n\omega RC)^2}}\right) a_n \cos\left(n\omega t - \tan^{-1}\left(n\omega RC\right)\right)$$
(26)

$$\implies \mathcal{V}_{out}(j\omega) = H_C(j\omega)\mathcal{V}_{in}(j\omega) \qquad (25)$$
Using (5) and (24)

$$V_{out}(t) = \sum_{n=1}^{\infty} \left( \frac{1}{\sqrt{1 + (n\omega RC)^2}} \right) a_n \cos\left(n\omega t - \tan^{-1}(n\omega RC)\right)$$
(26)



Fig. 9: Opt C:  $V_{out}(t)$  vs t

# 4) Option D

$$H_C(j\omega) = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}}$$
(27)

$$=\frac{1}{1+j\omega RC}\tag{28}$$

$$= \left(\frac{1}{\sqrt{1 + (\omega RC)^2}}\right) e^{-j \tan^{-1}(\omega RC)} \quad (29)$$



Fig. 10:  $|H_C(j\omega)|$  vs  $\omega$  for  $R = 5k\Omega$ ,  $C = 1\mu F$ 

$$\implies \mathcal{V}_{out}(j\omega) = H_C(j\omega)\mathcal{V}_{in}(j\omega) \qquad (30)$$

Using (5) and (29),

$$V_{out}(t) = \sum_{n=1}^{\infty} \left( \frac{1}{\sqrt{1 + (n\omega RC)^2}} \right) a_n \cos\left(n\omega t - \tan^{-1}(n\omega RC)\right)$$
(31)



Fig. 11: Opt D:  $V_{out}(t)$  vs t