Package 'Hapi'

October 12, 2022

```
Type Package
Title Inference of Chromosome-Length Haplotypes Using Genomic Data of Single Gamete Cells
Version 0.0.3
Author Ruidong Li,
Han Qu,
Jinfeng Chen,
Shibo Wang,
Le Zhang,
Julong Wei,
Sergio Pietro Ferrante,
Mikeal L. Roose,
Zhenyu Jia
```

Maintainer Ruidong Li <rli012@ucr.edu>

Description Inference of chromosome-length haplotypes using a few haploid gametes of an individual. The gamete genotype data may be generated from various platforms including genotyping arrays and sequencing even with low-coverage. Hapi simply takes genotype data of known hetSNPs in single gamete cells as input and report the high-resolution haplotypes as well as confidence of each phased hetSNPs. The package also includes a module allowing downstream analyses and visualization of identified crossovers in the gametes.

```
Depends R (>= 3.4.0)

License GPL-3

Encoding UTF-8

LazyData false

Imports HMM, ggplot2

Suggests knitr, testthat

VignetteBuilder knitr

biocViews SNP, GenomicVariation, Genetics, HiddenMarkovModel, SingleCell, Sequencing, Microarray

RoxygenNote 6.0.1

NeedsCompilation no
```

2 Hapi-package

Repository CRAN

Date/Publication 2018-07-28 15:10:07 UTC

R topics documented:

парі-раскаде	
base2num	3
crossover	3
gamete11	4
gmt	4
hapiAssemble	4
hapiAssembleEnd	5
hapiAutoPhase	6
hapiBlockMPR	7
hapiCVCluster	8
hapiCVDistance	9
hapiCVMap	10
hapiCVResolution	11
hapiFilterError	11
hapiFrameSelection	12
hapiGameteView	13
hapiIdentifyCV	14
hapiImupte	15
hapiPhase	16
hg19	16
num2base	17

Hapi-package

Index

Hapi is a novel easy-to-use package that only requires 3 to 5 gametes to reconstruct accurate and high-resolution haplotypes of an individual. The gamete genotype data may be generated from various platforms including genotyping arrays and next generation sequencing even with low-coverage. Hapi simply takes genotype data of known hetSNPs in single gamete cells as input and report the high-resolution haplotypes as well as confidence level of each phased hetSNPs. The package also includes a module allowing downstream analyses and visualization of crossovers in the gametes.

18

Description

Hapi is a novel easy-to-use package that only requires 3 to 5 gametes to reconstruct accurate and high-resolution haplotypes of an individual. The gamete genotype data may be generated from various platforms including genotyping arrays and next generation sequencing even with low-coverage. Hapi simply takes genotype data of known hetSNPs in single gamete cells as input and report the

base2num 3

high-resolution haplotypes as well as confidence level of each phased hetSNPs. The package also includes a module allowing downstream analyses and visualization of crossovers in the gametes.

base2num

Convert genotype coded in A/T/C/G to 0/1

Description

Convert base (A/T/C/G) coded genotype to numeric (0/1) coded

Usage

```
base2num(gmt, ref, alt)
```

Arguments

```
gmt a dataframe of genotype data of gamete cells
ref a character represents reference allele
alt a character represents alternative allele
```

Value

a dataframe containing converted genotype

Author(s)

Ruidong Li

Examples

```
ref <- sample(c('A','T'),500, replace=TRUE)
alt <- sample(c('C','G'),500, replace=TRUE)

gmt <- data.frame(chr=rep(1,500), pos=seq_len(500),
    ref=ref, alt=alt, gmt1=ref, gmt2=alt, gmt3=ref,
    gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
    stringsAsFactors = FALSE)

gmtDa <- base2num(gmt=gmt[5:9], ref=ref, alt=alt)</pre>
```

crossover

Crossover information across all gamete cells

Description

Crossover information across all gamete cells

4 hapiAssemble

gamete11

Haplotypes of a single gamete cell for visualization

Description

Haplotypes of a single gamete cell for visualization

gmt

Raw genotyping data

Description

Raw genotyping data

hapiAssemble

Consensus haplotype assembly

Description

Assemble the consensus high-resolution haplotypes

Usage

```
hapiAssemble(gmt, draftHap, keepLowConsistency = TRUE,
  consistencyThresh = 0.85)
```

Arguments

gmt a dataframe of genotype data of gamete cells draftHap a dataframe with draft haplotype information

keepLowConsistency

logical, if low-consistent gamete cells should be kept

consistencyThresh

a numeric value of the threshold determining low-consistent gamete cells com-

pared with the draft haplotype. Default is 0.85

Value

a dataframe containing phased haplotypes

Author(s)

hapiAssembleEnd 5

Examples

```
finalDraft <- rep(0,500)
names(finalDraft) <- seq_len(500)

ref <- rep(0,500)
alt <- rep(1,500)

gmtDa <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

idx1 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx2 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx3 <- sort(sample(seq_len(500), 30, replace = FALSE))

gmtDa[idx1,1] <- NA
gmtDa[idx2,2] <- NA
gmtDa[idx3,3] <- NA</pre>
consensusHap <- hapiAssemble(draftHap = finalDraft, gmt = gmtDa)
```

hapiAssembleEnd

Assembly of haplotypes in regions at the end of a chromosome

Description

Assembly of haplotypes in regions at the end of a chromosome

Usage

```
hapiAssembleEnd(gmt, draftHap, consensusHap, k = 300)
```

Arguments

gmt a dataframe of genotype data of gamete cells draftHap a dataframe with draft haplotype information

consensusHap a dataframe of the consensus haplotype information

k a numeric value for the number of hetSNPs that will be combined with markers

beyond the framework for assembly. Default is 300

Value

a dataframe containing phased haplotypes

Author(s)

6 hapiAutoPhase

Examples

```
finalDraft <- rep(0,500)</pre>
names(finalDraft) <- seq_len(500)</pre>
ref < - rep(0,500)
alt <- rep(1,500)
gmtDa <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,</pre>
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)
idx1 <- sort(sample(seq_len(500), 30, replace = FALSE))</pre>
idx2 <- sort(sample(seq_len(500), 30, replace = FALSE))</pre>
idx3 <- sort(sample(seq_len(500), 30, replace = FALSE))</pre>
gmtDa[idx1,1] <- NA
gmtDa[idx2,2] <- NA
gmtDa[idx3,3] <- NA</pre>
consensusHap <- data.frame(hap1=rep(0,500),hap2=rep(1,500),
total=rep(5,500), rate=rep(1,500),
confidence=rep('F',500),
stringsAsFactors = FALSE)
rownames(consensusHap) <- seq_len(500)</pre>
consensusHap <- hapiAssembleEnd(gmt = gmtDa, draftHap = finalDraft,</pre>
consensusHap = consensusHap, k = 300)
```

hapiAutoPhase

Automatic inference of haplotypes

Description

Automatic inference of haplotypes

Usage

```
hapiAutoPhase(gmt, code = "atcg")
```

Arguments

gmt a dataframe of genotype data of gamete cells

code a character indicating the code style of genotype data. One of 'atcg' and '01'.

Default is 'atcg'

Value

a dataframe of inferred consensus haplotypes

hapiBlockMPR 7

Author(s)

Ruidong Li

Examples

```
ref <- sample(c('A','T'),500, replace=TRUE)
alt <- sample(c('C','G'),500, replace=TRUE)

gmt <- data.frame(chr=rep(1,500), pos=seq_len(500),
    ref=ref, alt=alt, gmt1=ref, gmt2=alt, gmt3=ref,
    gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
    stringsAsFactors = FALSE)</pre>
hapOutput <- hapiAutoPhase(gmt=gmt, code='atcg')
```

hapiBlockMPR Maximum Parsimony of Recombination (MPR) for proofreading of

draft haplotypes

Description

Maximum Parsimony of Recombination (MPR) for proofreading of draft haplotypes

Usage

```
hapiBlockMPR(draftHap, gmtFrame, cvlink = 2, smallBlock = 100)
```

Arguments

draftHap a dataframe with draft haplotype information

gmtFrame a dataframe of raw genotype data in the framework cvlink a numeric value of number of cvlinks. Default is 2

smallBlock a numeric value determining the size of small blocks that should be excluded

from the draft haplotypes

Value

a dataframe of draft haplotypes after proofreading

Author(s)

8 hapiCVCluster

Examples

```
ref < - rep(0,500)
alt <- rep(1,500)
gmtFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,</pre>
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)
idx1 <- sort(sample(seq_len(500), 30, replace = FALSE))</pre>
idx2 <- sort(sample(seq_len(500), 30, replace = FALSE))</pre>
idx3 <- sort(sample(seq_len(500), 30, replace = FALSE))</pre>
gmtFrame[idx1,1] <- NA</pre>
gmtFrame[idx2,2] <- NA</pre>
gmtFrame[idx3,3] <- NA</pre>
imputedFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,</pre>
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)
draftHap <- hapiPhase(imputedFrame)</pre>
finalDraft <- hapiBlockMPR(draftHap, gmtFrame, cvlink=2, smallBlock=100)</pre>
```

hapiCVCluster

Filter out hetSNPs in potential complex regions

Description

Filter out hetSNPs in potential complex regions

Usage

```
hapiCVCluster(draftHap, minDistance = 1e+06, cvlink = 2)
```

Arguments

draftHap a dataframe with draft haplotype information

minDistance a numeric value of the distance between two genomic positions with cv-links.

Default is 1000000

cvlink a numeric value of number of cvlinks. Default is 2

Value

a dataframe of regions to be filtered out

Author(s)

hapiCVDistance 9

Examples

```
ref <- rep(0,500)
alt <- rep(1,500)

imputedFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref, gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

draftHap <- hapiPhase(imputedFrame)
cvCluster <- hapiCVCluster(draftHap = draftHap, cvlink=2)</pre>
```

hapiCVDistance

Histogram of crossover distance

Description

Histogram of crossover distance

Usage

```
hapiCVDistance(cv)
```

Arguments

C۷

a dataframe of crossover information

Value

a histogram

Author(s)

Ruidong Li

```
data(crossover)
hapiCVDistance(cv=crossover)
```

10 hapiCVMap

hapiCVMap Visualization of crossover map
--

Description

Visualization of crossover map

Usage

```
hapiCVMap(cv, chr = hg19, step = 5, gap = gap.hg19, x.limits = 6,
  y.breaks = NULL, y.labels = NULL)
```

Arguments

CV	a dataframe of crossover information
chr	a dataframe of chromosome information, including length, and centrometric regions
step	a numeric value of genomic interval in Mb. Default is 5
gap	a dataframe of unassembled regions with the first column is chromosme, the second column is start position, and third column is the end position of the gap. Default is gap for hg19. If no gap region is provided, use gap=NULL
x.limits	a numeric value of limits on x axis
y.breaks	a vector of positions to show labels on y axis. Default is NULL
y.labels	a vector of labels on the y axis. Default is NULL

Value

a plot of crossover map on all the chromosomes

Author(s)

Ruidong Li

```
data(crossover)
hapiCVMap(cv=crossover)
```

hapiCVResolution 11

 $hapi {\tt CVRe solution}$

Histogram of crossover resolution

Description

Histogram of crossover resolution

Usage

```
hapiCVResolution(cv)
```

Arguments

CV

a dataframe of crossover information

Value

a histogram

Author(s)

Ruidong Li

Examples

```
data(crossover)
hapiCVResolution(cv=crossover)
```

hapiFilterError

Filter out hetSNPs with potential genotyping errors

Description

Filter out hetSNPs with potential genotyping errors

Usage

```
hapiFilterError(gmt, hmm = NULL)
```

Arguments

gmt a dataframe of genotype data of gamete cells

hmm a list containing probabilities of a HMM. Default is NULL

Value

a dataframe of genotype data of gamete cells

12 hapiFrameSelection

Author(s)

Ruidong Li

Examples

hap i Frame Selection

Selection of hetSNPs to form a framework

Description

Selection of hetSNPs to form a framework

Usage

```
hapiFrameSelection(gmt, n = 3)
```

Arguments

gmt a dataframe of genotype data of gamete cells

n a numeric value of the minumum number of gametes with observed genotypes

at a locus

Value

a dataframe of genotype data of gamete cells

Author(s)

hapiGameteView 13

Examples

```
ref <- rep(0,500)
alt <- rep(1,500)

gmt <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

idx <- sort(sample(seq_len(500), 10, replace = FALSE))

gmt[idx,1] <- NA
gmt[idx,2] <- NA
gmt[idx,3] <- NA</pre>
gmtFrame <- hapiFrameSelection(gmt = gmt, n = 3)
```

hapiGameteView

Visualization of haplotypes in a single gamete cell

Description

Visualization of haplotypes in a single gamete cell

Usage

```
hapiGameteView(hap, chr = hg19, hap.color = c("deepskyblue2",
   "darkorange2"), centromere.fill = "black", x.breaks = NULL,
   x.labels = NULL, y.breaks = NULL, y.labels = NULL)
```

Arguments

hap	a dataframe of all the phased hetSNPs in all chromosomes
chr	a dataframe of chromosome information, including length, and centrometric regions
hap.color	a vector of colors for the two haplotypes. Default is c('deepskyblue2', 'darkorange2')
centromere.fill	
	a character of the color for the centromeres. Default is 'black'
x.breaks	a vector of positions to show labels on x axis. Default is NULL
x.labels	a vector of labels on the x axis. Default is NULL
y.breaks	a vector of positions to show labels on y axis. Default is NULL
y.labels	a vector of labels on the y axis. Default is NULL

Value

a plot of haplotypes in a single gamete cell

14 hapiIdentifyCV

Author(s)

Ruidong Li

Examples

```
data(gamete11)
hapiGameteView(hap=gamete11)
```

hapiIdentifyCV

Indentify crossovers in gamete cells

Description

Indentify crossovers in gamete cells

Usage

```
hapiIdentifyCV(hap, gmt, hmm = NULL)
```

Arguments

hap a dataframe of the two haplotypes

gmt a dataframe of genotype data of gamete cells

hmm a list containing probabilities of a HMM. Default is NULL

Value

a dataframe containing crossover information in each gamete cell

Author(s)

Ruidong Li

hapiImupte 15

	ha	рi	Ιmu	ıpte
--	----	----	-----	------

Imputation of missing genotypes in the framework

Description

Imputation of missing genotypes in the framework

Usage

```
hapiImupte(gmt, nSPT = 2, allowNA = 0)
```

Arguments

gmt	a dataframe of genotype data of gamete cells in the framework
nSPT	a numeric value of the minumum number of supports for an imputation
allowNA	a numeric value of the maximum number of gametes with NA at a locus

Value

a dataframe of imputed genotypes in the framework

Author(s)

Ruidong Li

```
ref <- rep(0,500)
alt <- rep(1,500)

gmtFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)

idx1 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx2 <- sort(sample(seq_len(500), 30, replace = FALSE))
idx3 <- sort(sample(seq_len(500), 30, replace = FALSE))

gmtFrame[idx1,1] <- NA
gmtFrame[idx2,2] <- NA
gmtFrame[idx3,3] <- NA
imputedFrame <- hapiImupte(gmtFrame, nSPT=2, allowNA=0)</pre>
```

16 hg19

hapiPhase

Phase draft haplotypes by majority voting

Description

Phase draft haplotypes by majority voting

Usage

```
hapiPhase(gmt)
```

Arguments

gmt

a dataframe of imputed genotype data of gamete cells

Value

a dataframe of inferred draft haplotypes

Author(s)

Ruidong Li

Examples

```
ref <- rep(0,500)
alt <- rep(1,500)
imputedFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
stringsAsFactors = FALSE)
draftHap <- hapiPhase(gmt=imputedFrame)</pre>
```

hg19

Chromosome information of hg19

Description

Chromosome information of hg19

num2base 17

num2base

Convert genotype coded in 0/1 to A/T/C/G

Description

Convert numeric (0/1) coded genotype to base (A/T/C/G) coded

Usage

```
num2base(hap, ref, alt)
```

Arguments

hap a dataframe of consensus haplotypes
ref a character represents reference allele
alt a character represents alternative allele

Value

a dataframe containing converted haplotypes

Author(s)

Ruidong Li

```
ref <- sample(c('A','T'),500, replace=TRUE)
alt <- sample(c('C','G'),500, replace=TRUE)

consensusHap <- data.frame(hap1=rep(0,500),hap2=rep(1,500),
    total=rep(5,500),rate=rep(1,500),
    confidence=rep('F',500),
    stringsAsFactors = FALSE)
rownames(consensusHap) <- seq_len(500)

hap <- num2base(hap=consensusHap, ref=ref, alt=alt)</pre>
```

Index

```
* datasets
    crossover, 3
    gamete11, 4
    gmt, 4
    hg19, 16
base2num, 3
crossover, 3
gamete11, 4
gmt, 4
Hapi (Hapi-package), 2
Hapi-package, 2
hapi Assemble, \\ 4
hapiAssembleEnd, 5
hapiAutoPhase, 6
hapiBlockMPR, 7
hapiCVCluster, 8
hapiCVDistance, 9
hapiCVMap, 10
hapi {\tt CVResolution}, {\tt 11}
hapiFilterError, 11
hapiFrameSelection, 12
hapiGameteView, 13
hapiIdentifyCV, 14
hapiImupte, 15
hapiPhase, 16
hg19, 16
num2base, 17
```