```
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import roc_auc_score, confusion_matrix, classification_report
from sklearn.metrics import precision recall curve, roc curve
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import GridSearchCV
import warnings
warnings.filterwarnings('ignore')
# Load the dataset (replace with your actual data source)
# For demonstration, we'll use a sample dataset structure
# In practice, you would load your actual customer data
def load_data():
    # Example: df = pd.read_csv('customer_churn_data.csv')
    # For this demo, we'll create synthetic data
    np.random.seed(42)
    n \text{ samples} = 1000
    data = {
        'customer id': np.arange(n samples),
        'age': np.random.randint(18, 70, size=n_samples),
        'gender': np.random.choice(['Male', 'Female'], size=n_samples),
        'tenure': np.random.randint(1, 72, size=n samples),
        'usage frequency': np.random.randint(1, 100, size=n samples),
        'support_calls': np.random.randint(0, 10, size=n_samples),
        'payment_delay': np.random.randint(0, 30, size=n_samples),
        'subscription type': np.random.choice(['Basic', 'Standard', 'Premium'], size=n sa
        'monthly charges': np.round(np.random.uniform(20, 100, size=n samples), 2),
        'total_charges': np.round(np.random.ui
                                                                                 2),
                                                Run this cell to mount your Google Drive.
        'churn': np.random.choice([0, 1], size
                                                Learn more
    }
                                                                       Dismiss
    df = pd.DataFrame(data)
    return df
# Data Exploration and Visualization
def explore data(df):
    print("Dataset Overview:")
    print(df.head())
    print("\nDataset Info:")
    print(df.info())
    print("\nDescriptive Statistics:")
    print(df.describe())
    print("\nClass Distribution:")
```

```
print(df['churn'].value_counts())
    # Visualizations
    plt.figure(figsize=(15, 10))
    # Churn distribution
    plt.subplot(2, 2, 1)
    sns.countplot(x='churn', data=df)
    plt.title('Churn Distribution')
    # Age distribution by churn
    plt.subplot(2, 2, 2)
    sns.boxplot(x='churn', y='age', data=df)
    plt.title('Age Distribution by Churn')
    # Tenure distribution by churn
    plt.subplot(2, 2, 3)
    sns.boxplot(x='churn', y='tenure', data=df)
    plt.title('Tenure Distribution by Churn')
    # Monthly charges by churn
    plt.subplot(2, 2, 4)
    sns.boxplot(x='churn', y='monthly_charges', data=df)
    plt.title('Monthly Charges by Churn')
    plt.tight_layout()
    plt.show()
    # Correlation matrix
    numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns
    plt.figure(figsize=(10, 8))
    sns.heatmap(df[numeric_cols].corr(), annot=True, cmap='coolwarm', center=0)
    plt.title('Correlation Matrix')
    plt.show()
# Data Preprocessing
def preprocess_data(df):
    # Drop customer ID as it's not a feature
    df = df.drop('customer id', axis=1)
                                                Run this cell to mount your Google Drive.
    # Convert categorical variables to numeric
    categorical cols = ['gender', 'subscription

    label encoders = {}
    for col in categorical cols:
        le = LabelEncoder()
        df[col] = le.fit_transform(df[col])
        label encoders[col] = le
    # Handle missing values (if any)
    # In our synthetic data there are none, but in real data you might need:
    # df = df.fillna(df.mean()) # for numerical
    # df = df.fillna(df.mode().iloc[0]) # for categorical
    # Separate features and target
```

```
X = df.drop('churn', axis=1)
    y = df['churn']
    # Split data into train and test sets
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.3, random_state=42, stratify=y)
    # Scale numerical features
    scaler = StandardScaler()
    numerical_cols = X.select_dtypes(include=['int64', 'float64']).columns
    X_train[numerical_cols] = scaler.fit_transform(X_train[numerical_cols])
    X_test[numerical_cols] = scaler.transform(X_test[numerical_cols])
    # Handle class imbalance using SMOTE
    smote = SMOTE(random_state=42)
    X train, y train = smote.fit resample(X train, y train)
    return X_train, X_test, y_train, y_test, scaler, label_encoders
# Model Training and Evaluation
def train_and_evaluate_models(X_train, X_test, y_train, y_test):
    models = {
        'Logistic Regression': LogisticRegression(random_state=42),
        'Random Forest': RandomForestClassifier(random_state=42),
        'Gradient Boosting': GradientBoostingClassifier(random_state=42),
        'SVM': SVC(probability=True, random_state=42)
    }
    results = {}
    for name, model in models.items():
        # Train the model
        model.fit(X_train, y_train)
        # Make predictions
        y pred = model.predict(X test)
        y_prob = model.predict_proba(X_test)[:, 1]
        # Calculate metrics
        accuracy = accuracy_score(y_test, y_pi Run this cell to mount your Google Drive.
        precision = precision_score(y_test, y]
                                                Learn more
        recall = recall_score(y_test, y_pred)
        f1 = f1_score(y_test, y_pred)
        roc_auc = roc_auc_score(y_test, y_prol
        # Store results
        results[name] = {
            'accuracy': accuracy,
            'precision': precision,
            'recall': recall,
            'f1': f1,
            'roc_auc': roc_auc,
            'model': model
        }
```

```
# Print classification report
        print(f"\n{name} Classification Report:")
        print(classification_report(y_test, y_pred))
        # Plot confusion matrix
        cm = confusion_matrix(y_test, y_pred)
        plt.figure(figsize=(5, 5))
        sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
        plt.title(f'{name} Confusion Matrix')
        plt.xlabel('Predicted')
        plt.ylabel('Actual')
        plt.show()
    return results
# Feature Importance Analysis
def analyze_feature_importance(model, feature_names):
    if hasattr(model, 'feature_importances_'):
        importances = model.feature importances
        indices = np.argsort(importances)[::-1]
        plt.figure(figsize=(10, 6))
        plt.title('Feature Importances')
        plt.bar(range(len(importances)), importances[indices], align='center')
        plt.xticks(range(len(importances)), [feature_names[i] for i in indices], rotation
        plt.tight_layout()
        plt.show()
    elif hasattr(model, 'coef_'):
        coefficients = model.coef [0]
        indices = np.argsort(np.abs(coefficients))[::-1]
        plt.figure(figsize=(10, 6))
        plt.title('Feature Coefficients (Absolute Values)')
        plt.bar(range(len(coefficients)), np.abs(coefficients[indices]), align='center')
        plt.xticks(range(len(coefficients)), [feature_names[i] for i in indices], rotatio
        plt.tight layout()
        plt.show()
# Hyperparameter Tuning
def tune_hyperparameters(X_train, y_train):
                                                Run this cell to mount your Google Drive.
    # Example with Random Forest
                                                Learn more
    param grid = {
        'n_estimators': [100, 200, 300],
        'max_depth': [None, 10, 20, 30],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4]
    }
    rf = RandomForestClassifier(random state=42)
    grid_search = GridSearchCV(estimator=rf, param_grid=param_grid,
                              cv=5, n_jobs=-1, scoring='roc_auc')
    grid_search.fit(X_train, y_train)
    print("Best parameters found: ", grid_search.best_params_)
    print("Best ROC AUC score: ", grid_search.best_score_)
```

```
return grid search.best estimator
# Main execution
def main():
   # Step 1: Load data
    print("Loading data...")
    df = load_data()
    # Step 2: Explore data
    print("\nExploring data...")
    explore_data(df)
    # Step 3: Preprocess data
    print("\nPreprocessing data...")
    X_train, X_test, y_train, y_test, scaler, label_encoders = preprocess data(df)
    # Step 4: Train and evaluate models
    print("\nTraining and evaluating models...")
    results = train_and_evaluate_models(X_train, X_test, y_train, y_test)
    # Step 5: Analyze feature importance (using the best model)
    best_model_name = max(results, key=lambda x: results[x]['roc_auc'])
    best_model = results[best_model_name]['model']
    print(f"\nBest model: {best_model_name} with ROC AUC: {results[best_model_name]['roc_
    feature_names = X_train.columns
    print("\nAnalyzing feature importance...")
    analyze_feature_importance(best_model, feature_names)
    # Step 6: Hyperparameter tuning (optional)
    print("\nPerforming hyperparameter tuning...")
    tuned_model = tune_hyperparameters(X_train, y_train)
    # Evaluate tuned model
    y pred tuned = tuned model.predict(X test)
    y_prob_tuned = tuned_model.predict_proba(X_test)[:, 1]
    roc_auc_tuned = roc_auc_score(y_test, y_prob_tuned)
    print(f"\nTuned model ROC AUC: {roc auc tuned: 4f}")
                                                Run this cell to mount your Google Drive.
    # Plot ROC curves for all models
                                                Learn more
    plt.figure(figsize=(10, 8))
    for name, result in results.items():
        y_prob = result['model'].predict_prob;
        fpr, tpr, _ = roc_curve(y_test, y_prob)
        plt.plot(fpr, tpr, label=f'{name} (AUC = {result["roc_auc"]:.2f})')
    # Add tuned model to ROC plot
    fpr_tuned, tpr_tuned, = roc_curve(y_test, y_prob_tuned)
    plt.plot(fpr_tuned, tpr_tuned, label=f'Tuned {best_model_name} (AUC = {roc_auc_tuned:
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC Curve Comparison')
```

```
plt.legend(loc='lower right')
  plt.show()

if __name__ == "__main__":
  main()
```

Run this cell to mount your Google Drive. Learn more

→ Loading data...

Exploring data...

EXPIOI II	.о	aaca	•
Dataset	0ν	/erview	1:

	customer_id	age	gender	tenure	usage_frequency	support_calls	\
0	0	56	Male	40	26	3	
1	1	69	Male	45	14	1	
2	2	46	Male	62	57	2	
3	3	32	Female	58	37	5	
4	4	60	Male	67	58	4	

	<pre>payment_delay</pre>	subscription_type	monthly_charges	total_charges	churn
0	21	Premium	70.37	287.99	1
1	19	Basic	89.08	2443.69	0
2	29	Premium	30.58	122.50	0
3	5	Premium	98.21	4609.66	0
4	2	Premium	66.61	4881.63	0

Dataset Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	customer_id	1000 non-null	int64
1	age	1000 non-null	int64
2	gender	1000 non-null	object
3	tenure	1000 non-null	int64
4	usage_frequency	1000 non-null	int64
5	support_calls	1000 non-null	int64
6	payment_delay	1000 non-null	int64
7	subscription_type	1000 non-null	object
8	monthly_charges	1000 non-null	float64
9	total_charges	1000 non-null	float64
10	churn	1000 non-null	int64

dtypes: float64(2), int64(7), object(2)

memory usage: 86.1+ KB

None

Descriptive Statistics:

	·			•		
	customer_id	age	tenure	usage_frequency	support_calls	\
count	1000.000000	1000.00000	1000.000000	1000.000000	1000.000000	
mean	499.500000	43.81900	34.627	n this cell to mount your	Coogle Drive	
std	288.819436	14.99103	20.334	arn more	19	
min	0.000000	18.00000	1.000	allillore	10	
25%	249.750000	31.00000	17.0000		10	
50%	499.500000	44.00000	33.5000		10	
75%	749.250000	56.00000	52.000		10	
max	999.000000	69.00000	71.000000	99.000000	9.000000	

	<pre>payment_delay</pre>	monthly_charges	total_charges	churn
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	15.039000	59.841710	2499.624500	0.323000
std	8.409768	22.818466	1440.588333	0.467857
min	0.000000	20.130000	53.110000	0.000000
25%	8.000000	40.445000	1228.335000	0.000000
50%	15.000000	60.120000	2522.160000	0.000000
75%	22.000000	79.607500	3678.687500	1.000000
max	29.000000	99.920000	4999.250000	1.000000

Class Distribution:

churn

677 1 323

Name: count, dtype: int64

usto

Untitled0.ipynb - Colab

total_cl

Preprocessing data...

Training and evaluating models...

Logistic Regression Classification Report:

	repore.	3111CG C1011	CJJION CIGJ	-08-36-6 WCP.
support	f1-score	recall	precision	
203	0.56	0.48	0.66	0
97	0.37	0.47	0.30	1
300	0.48			accuracy
300	0.46	0.48	0.48	macro avg
300	0.50	0.48	0.54	weighted avg

Logistic Regression Confusion Matrix

Random Forest Confusion Matrix

Gradient Boosting Classification Report:

	precision	recall	f1-score	support
0	0.68	0.67	0.68	203
1	0.33	0.33	0.33	97
accuracy			0.56	300
macro avg	0.50	0.50	0.50	300
weighted avg	0.56	0.56	0.56	300

rredicted

SVM Classification Report:

	precision	recall	f1-score	support
0	0.66	0.62	0.64	203
1	0.29	0.33	0.31	97
accuracy			0.52	300
macro avg	0.47	0.47	0.47	300
weighted avg	0.54	0.52	0.53	300

Best model: Random Forest with ROC AUC: 0.5332

usage_frequency

total_charges

age

age

payment_delay

support_calls

subscription_type

Performing hyperparameter tuning...

Best parameters found: {'max_depth': 20, 'min_samples_leaf': 1, 'min_samples_split':

Best ROC AUC score: 0.8234952554959627

Tuned model ROC AUC: 0.5327

