Adversarial Bandits with Knapsacks

Nicole Immorlica¹, Karthik Abinav Sankararaman², Robert Schapire¹, Aleksandrs Slivkins¹

¹Microsoft Research, New York City

²The University of Maryland, College Park

Overview

- BwK: general model for multi-armed bandits with resource consumption
- First algorithm for Adversarial BwK, matching lower bound.
- Subroutine: new algorithm for Stochastic BwK, with much simpler analysis.
- Modular algorithm \Rightarrow several extensions.

Motivating Examples

Dynamic Pricing/Auctions:

d products, limited supply of each.

Seller adjusts prices (resp., auction params)

over time to maximize total revenue

Crowdsourcing markets:

Many similar tasks, limited budget.

Contractor dynamically adjusts wages
to maximize #completed tasks
(extension: d types of tasks, budget for each)

Many more examples in prior work.

Prior Work on Stochastic BwK

- **Special cases:** Badanidiyuru+ '12; Babaioff+ '12; Tran-Thanh+ '12; Krause & Singla '13; Ding+ '13; ...
- BwK: model & optimal algorithm:

Badanidiyuru, Kleinberg, Slivkins '13Extensions: Agrawal & Devanur '14 '16

• Extensions: Agrawal & Devanur '14 '16; Badanidiyuru, Langford, Slivkins '14; Agrawal, Devanur, Li '16; Sankararaman & Slivkins '18

Simultaneous work on Adversarial BwK: special cases with ratio = 1 (ask us)

BwK: General Framework

K arms, d resources, budgets B_1, \ldots, B_d

In each round $t \in [T]$:

- Choose arm $a_t \in [K]$
- Observe outcome vector $\mathbf{o}_t(a_t) \in [0,1]^{d+1}$: reward r_t , consumption $c_{j,t} \, \forall$ resource $j \in [d]$
- Stop, if some resource runs out of budget

Goal: Maximize the total reward.

Outcome matrix: $\mathbf{M}_t = (\mathbf{o}_t(a) : \text{arms } a \in [K]).$

- Stochastic BwK: M_t chosen IID.
- Adversarial BwK: M_t chosen adversarially.

WLOG rescale s.t. all budgets are $B = \min_j B_j$.

Benchmark

OPT = best fixed distribution over arms (can be d times better than best fixed arm)

$$\mathbb{E}[\text{REW}] \ge \frac{\text{OPT}}{\text{ratio}} - \text{regret}.$$

REW = algorithm's total reward

Lower bound for Adversdarial BwK

Simple construction for ratio $\geq \frac{5}{4}$.

- 2 arms, 1 resource, B = T/2
- Arm 1: consumption 1 in each round.
- Arm 2: 0 reward, 0 consumption.

Rew. for Arm 1	$t \in [1, T/2]$	$t \in (T/2, T]$
Instance 1	Medium	Low
Instance 2		High

More nuanced construction \Rightarrow ratio $\geq \Omega(\log T)$.

Main Algorithm (MAIN)

Two adversarial online learning algorithms:

- (1) ALG₁ for bandit feedback (e.g., EXP3.P)
- (2) ALG₂ for full-feedback (e.g., Hedge).

playing a repeated zero-sum game.

In each round $t \in [T]$:

- Simultaneously: ALG₁ picks arm $a_t \in [K]$, ALG₂ picks resource $j_t \in [d]$.
- Outcome vector $\mathbf{o}_t(a_t)$ is observed.
- Reward for ALG₁, cost for ALG₂:

$$\mathcal{L}_t(a_t, j_t) := r_t + 1 - \frac{T_0}{B} c_{t, j_t}$$

• ... revealed to ALG_2 for each resource j.

 $T_0 = T$ for Stochastic BwK, parameter othw.

Stochastic BwK

 $\mathbb{E}[\mathcal{L}_t]$ is the Lagrangian for linear relaxation

maximize	$T \cdot \sum_{a \in [K]} X(a) \mathbb{E}[r_t(a)]$
s.t.	$\sum_{a \in [K]} X(a) = 1$
$\forall j \in [d]$	$\sum_{a \in [K]} X(a) \mathbb{E}[c_{j,t}(a)] \le B/T$
$\forall a \in [K]$	$0 \le X(a) \le 1.$

Proof Sketch Use facts from prior work:

- **F1**: OPT \leq LP-value.
- **F2**: Minimax Lagrangian \Rightarrow Nash equilibrium.
- $\overline{\mathbf{F3}}$: Average play \rightarrow Nash equilibrium.

F4 (new): Large reward at stopping time.

Regret $\widetilde{\mathcal{O}}\left(\frac{T}{B}\sqrt{TK}\right)$ (optimal for $B=\Omega(T)$)

Adversarial BwK

Use MAIN with T_0 = random guess for OPT \Rightarrow ratio = $\mathcal{O}(d^2 \log T)$ vs. oblivious adversary

Challenge: F1, F3 don't hold, F2 doesn't help.

Proof Sketch completely new analysis

- (a) LP relaxation: pick best stopping time τ , $\mathbb{E}[\mathbf{o}_t] \to \frac{1}{\tau} \sum_{t \in [\tau]} \mathbf{o}_t$.
- (b) $\forall T_0 \text{ REW} \ge \min(T_0, \text{OPT} dT_0) \text{regret.}$ $T_0 = \mathcal{O}(\text{OPT}) \implies \text{REW} \gtrsim \text{OPT} / (d+1)^2.$
- (c) $T_0 = \mathcal{O}(OPT)$ with prob. $1/\log_{d+1} T$.

High-prob guarantee vs. adaptive adversary

Algorithm: each phase runs MAIN with fixed T_0 .

- Start with small guess T_0 , increase it adaptively.
- Observed data \rightarrow IPS estimates \rightarrow approx. LP; Increase T_0 based on the approx. LP value.

Analysis: much more complicated, applies (a,b) to the last complete phase.

Extensions

ALG₁ for X bandits \rightarrow MAIN for X BwK, where $X = \{$ contextual, semi-, convex $\}$.

- No new research needed.
- Stochastic BwK: each extension was a paper (with slightly stronger regret bounds)
- Adversarial BwK: all results new.

Caveat: need ALG₁ to have high-probability regret bound vs. adaptive adversary.