

Главный редактор академик И. К. Кикоин

Первый заместитель главного редактора академик А.Н. Колмогоров

Редакционная коллегия:

- М. И. Башмаков.
- С. Т. Беляев.
- В. Г. Болтянский,
- Н. Б. Васильев,
- Ю. Н. Ефремов. В. Г. Зубов,
- П. Л. Капица,
- В. А. Кириллин.

главный художник

- А. И. Климанов.
- С. М. Козел.

зам. главного pedakmopa

- В. А. Лешковцев.
- Л. Г. Макар-Лиманов
- А. И. Маркушевич. Н. А. Патрикеева,
- И. С. Петраков,
- Н. Х. Розов,
- А. П. Савин. И. Ш. Слободецкий.

зам. главного редактора

- М Л. Смолянский.
- Я. А. Смородинский
- В. А. Фабрикант,
- А. Т. Цветков.
- М. П. Шаскольская, С. И. Шварцбурд,
- А. И. Ширшов.

Редакция:

- В. Н. Березин. А. Н. Виленкин,
- И. Н. Клумова.

художественный редактор

- Т. М. Макарова,
- Н. А. Минц,
- Т. С. Петрова,
- В. А. Тихомирова.
- зав. редакцией
- Л. В. Чернова

B HOMEPE:

- Я. А. Смородинский. Сила Кориолиса
- 9 И. Н. Бронштейн. Парабола
- 17 В. Н. Ланге. Зачем топят печи?

Лаборатория «Кванта»

- М. И. Емельянов, А. М. Жарков, В. М Загайнов, 19
 - В. С. Маточкин. Суточное вращение Земли

Математический кружок

А. П. Винниченко. Квадратичный треугольник и непрерывные цепочки

Задачник «Квант»

- 25 Задачи М316-М320; Ф328-Ф332
- Решения задач М280-М285; Ф291-Ф295 27

Практикум абитуриента

- 37 С. Т. Берколайко. Использование неравенства Коши при решении задач
- 41 Г. Я. Мякишев. Электростатическое поле
- Г. В. Меледин, А. И. Ширшов. Новосибирский государственный университет

Рецензии, библиография

- 52Д. Бородин. Школьникам о современной физике
 - «Квант» для младших школьников
- 53 Задачи
- 54 Е. Я. Гик. Математические игры на шахматной доске

Ответы, указания, решения

Смесь (с. 18, 24, 47)

На первой странице обложки вы видите известный фонтан «Дружба народов» (Москва, ВДНХ). Струи бъющей воды имеют весьма характерную форму форму параболы. Об этой кривой и некоторых ее свойствах вы можете прочесть в статье «Парабола» (с. 9). Обратите внимание на то, что по сравнению с этой фотографией параболы в статье изображены «вниз головой», но пусть это вас не смущает: интересна сама кривая, и не ее расположение..

Фото Л. 11. Германа.

Рис 1.

Задача5 (НГУ, 1968). Расстояние между двумя параллельными прямыми равно h. Третья прямая, параллельная данным, находится вне полосы между ними на расстоянии H от дальней. Отрезок AB перпендикулярен к прямым, а концы его лежат на первых двух прямых.

Найти на третьей прямой точку M так, чтобы $\angle AMB$ был наибольшим.

Положение точки M на третьей прямой определяется, например, расстоянием от нее до точки K пересечения прямой AB с третьей прямой (рис. 2). Обозначим KM через x. Для решения задачи достаточно найти то значение x, для которого со- ответствующий угол $\alpha = \not <AMB$ достигает наибольшей величины.

Введем вспомогательный угол β = $\angle KMA$ и выразим с помощью него tg a в виде функции от x. Используя формулу тангенса разности двух аргументов и определение тангенса острого угла, получим $tg a = tg[(\alpha + \beta) - \beta] =$

$$= \frac{\frac{\operatorname{tg}(\alpha+\beta) - \operatorname{tg}\beta}{1 + \operatorname{tg}(\alpha+\beta) \cdot \operatorname{tg}\beta}}{\frac{H}{x} - \frac{H-h}{x}} = \frac{h}{x + \frac{H(H-h)}{x^2}}.$$

Отсюда видно, что $\operatorname{tg} a(a, \operatorname{следова-}$ тельно, и $\alpha)$ достигает наибольшего значения, когда сумма $x + \frac{H(H-h)}{x}$

Рис 2. достигает наименьшего значения. Поскольку $x\frac{H(H-h)}{x}$ постоянно, воспользуемся неравенством (2):

 $x + \frac{H(H-h)}{x} \geqslant 2\sqrt{x\frac{H(H-h)}{x}} = 2\sqrt{H(H-h)}.$

Искомое значение x является положительным корнем уравнения $x = \frac{H(H-h)}{x}$, то есть

$$x = \sqrt{H(H - h)}$$

Искомую точку теперь можно найти с помощью несложного построения: опишем на отрезке KB как на диаметре полуокружность, которая пересечет вторую прямую (проходящую через A) в точке C (рис. 2), и отложим на третьей прямой отрезок $KM_1 = KC$; точка M_1 — искомая (докажите это самостоятельно).

Нетрудно заметить, что точка M_2 , симметричная точке M_1 относительно точки κ , обладает тем же свойством, что и точка M_1 . Итак, искомых точек — две: M_1 и M_2 .

Задача б (МГУ, 1971). Автомобиль едет от пункта A до пункта B с постоянной скоростью 42 км/ч. B пункте B он переходит на равнозамедленное движение, причем за каждый час его скорость уменьшается на а км/ч, и едет так до полной остановки. Затем он сразу же начинает двигаться равноускоренно с ускорением α км/ч². $3.\ 3\sqrt[3]{2}/4$. Можно найти это значение г как максимальное при котором уравнения $y=x^4,x^2+(y-r)^2=r^2$ имеют общее решение, отличное от x=y=0. А можно кроме этих двух уравнений получить третье используя тот факт для критического значения окружность имеет с графиком $y=x^4$ общие касательные(в некоторой точке, отличной от x=y=0, см.рис.13).

Избранные задачи Московской физической олимпиады

Первый тур

9 класс

1. $v=\sqrt{a/M}t$. 2. Горки разъезжаются в противоположные стороны с почти одинаковыми скоростями $v=\sqrt{mgH/M}.//$ 3. $T_1^2/T_2^2=h_1/h_2$.

10 класс

1. Брусок притягивается к стенке с силой $F = (2a^2l)/(pga^a)$

Второй тур

9 класс

1. См. таблицу, в которой $t_0 = 1$

 $2. \ w_{\min} < w < w_{\max},$ где

$$\begin{split} w_{\min} &= \sqrt{\frac{g\left(\sqrt{h\left(2R-h\right)} - \mu\left(R-h\right)\right)}{\sqrt{h\left(2R-h\right)}\left(\left(R-h\right) + \mu\sqrt{h\left(2R-h\right)}\right)}}} \quad \text{при } \mu < \frac{\sqrt{h\left(2R-h\right)}}{R-h} \\ w_{\min} &= 0 \quad \text{при } \mu \geq \sqrt{h\left(2R-h\right)/\left(R-h\right)} \\ w_{\min} &= \sqrt{\frac{g\left(\sqrt{h\left(2R-h\right)} + \mu\left(R-h\right)\right)}{\sqrt{h\left(2R-h\right)}\left(\left(R-h\right) - \mu\sqrt{h\left(2R-h\right)}\right)}}} \\ w_{\min} &= \infty \quad \text{при } \mu \geq (R-h)/\sqrt{h(2R-h)} \end{split}$$

Таблица

			<u> </u>
Возможный случай	При каких <i>s</i> возможен	Начальная скорость	Путь, пройденный за вторую секунду
В течении двух секунд камень движется вверх	$s>rac{3}{2}gt_0^2$	$\frac{s}{t_0} + \frac{gt_0}{2}$	$s-gt_0^2$
Камень поворачивает в течении второй секунды	$\frac{gt_0^2}{2} < s < \frac{3}{2}gt_0^2$	$\frac{s}{t_0} + \frac{gt_0}{2}$	$\frac{5}{4}gt_0^2 - 2s + \frac{s^2}{gt_0^2}$
Камень поворачивает в течении первой секунды	$\frac{gt_0^2}{4} < s < \frac{gt_0^2}{2}$	$\frac{gt_0+\sqrt{4gs-g^2t_0^2}}{2}$	$\frac{2gt_0^2 - \sqrt{4gst_0^2 - g^2t_0^4}}{2}$
Камень поворачивает в течении первой секунды	$\frac{gt_0^2}{4} < s < \frac{gt_0^2}{2}$	$\frac{gt_0 - \sqrt{4gs - g^2t_0^2}}{2}$	$\frac{2gt_0^2\!-\!\sqrt{4gst_0^2\!-\!g_0^2t_0^4}}{2}$