Corso di Programmazione 3 Progetto Esame

Docenti: Proff. Angelo Ciaramella e Raffaele Montella

A.A. 2020/2021

Studente

Cognome: Di BiaseNome: ValentinaMatricola: 124/1342

Traccia - Marine Electronics

Si vuole sviluppare un sistema per il monitoraggio (locale e a distanza) di un'imbarcazione da diporto. Le imbarcazioni da diporto sono quasi tutte equipaggiate di una serie di sensori i cui dati raccolti e opportunamente elaborati e visualizzati contribuiscono al miglioramento della qualità e alla sicurezza della navigazione (sicurezza in mare).

Si suppone di dover raccogliere i dati dai seguenti sensori:

- Posizione geografica tramite GPS (latitudine e longitudine, in gradi, 1 dato al secondo)
- Velocità della barca rispetto al fondo marino (in nodi, 1 dato al secondo)
- Direzione della barca rispetto al fondo marino (in gradi nord, 1 dato al secondo)
- Velocità della barca rispetto all'acqua (senza tenere con di eventuali correnti marine, in nodi, un dato ogni 0.25 secondi)
- Direzione della barca rispetto all'acqua (bussola, senza tenere con di eventuali correnti marine, in nodi, un dato ogni 0.25 secondi)
- \bullet Direzione del vento rispetto alla prua (fra -179 e +180, in gradi, 1 dato ogni0.5 secondi)
- Velocità del vento apparente (senza tenere conto della velocità della barca, in nodi, ogni 2 secondi)

- Livello di carica della batteria (In volt, minore di 10.5v: scarica; fra 11.5 e 12.5v carica, fra 12.5 e 14.5 in carica, oltre 14.5 sovraccarica, 1 dato ogni minuto)
- Livello di acqua nella sentina (sensore on/off, se il livello supera i 5 litri è on, altrimenti è off).

Inoltre l'imbarcazione dispone dei seguenti attuatori

- Attivazione pompa di sentina
- Attivazione frigorifero

Infine la barca può comunicare dati all'armatore/responsabile di bordo su telefono cellulare tramite sms.

Sviluppare una dashboard (cruscotto) per la visualizzazione dei dati prodotti da tutti i sensori. Di ogni dato visualizzare il valore istantaneo e il grafico di un intervallo temporale prefissato. Calcolare e visualizzare i seguenti dati:

- Velocità del vento reale (ovvero tenendo conto della velocità e direzione della barca, in nodi)
- Direzione del vento reale (ovvero tenendo conto della velocità e direzione della barca, in gradi nord)
- La direzione e l'intensità della corrente marina superficiale.

La barca ha 3 stati: ormeggiata, all'ancora, in navigazione. Ciascuno stato è caratterizzato dai seguenti automatismi:

- Ormeggiata. Gli allarmi sono inviati tramite SMS.
 - Se il livello dell'acqua in sentina supera i 5 litri, attivare la pompa di sentina. Se la pompa di sentina rimane attiva per più di 5 minuti, attiva un'allarme.
 - Dare la possibilità di impostare nessuna, una o più soglie relative alla velocità del vento. Superata una soglia per più di un tempo stabilito, è attivato un'allarme.
 - Se la carica della batteria scende sotto gli 11.5v attivare un'allarme.
 - Se la carica della batteria scende sotto 10.5v spegnere il frigorifero e attivare un'allarme.
- All'ancora. Gli allarmi sono inviati tramite SMS.
 - Se il livello dell'acqua in sentina supera i 5 litri, attivare la pompa di sentina. Se la pompa di sentina rimane attiva per più di 5 minuti, attiva un'allarme.
 - Dare la possibilità di impostare nessuna, una o più soglie relative alla velocità del vento. Superata una soglia per più di un tempo stabilito, è attivato un'allarme.

- Al momento dell'ancoraggio è memorizzata la posizione GPS. Se la barca si allontana più di una soglia in metri dalla posizione memorizzata, attiva un'allarme.
- Se la carica della batteria scende sotto gli 11.5v attivare un'allarme.
- Se la carica della batteria scende sotto 10.5v spegnere il frigorifero e attivare un'allarme.
- Navigazione. Gli allarmi sono palesati attraverso segnali acustici.
 - Se il livello dell'acqua in sentina supera i 5 litri, attivare la pompa di sentina. Se la pompa di sentina rimane attiva per più di 5 minuti, attiva un'allarme.
 - Dare la possibilità di impostare nessuna, una o più soglie relative alla velocità del vento. Superata una soglia per più di un tempo stabilito, è attivato un'allarme.
 - Se la carica della batteria super 14.5v attivare un'allarme.
 - Se la carica della batteria scende sotto gli 11.5v attivare un'allarme.
 - Se la carica della batteria scende sotto 10.5v spegnere il frigorifero e attivare un'allarme.

SFIDA FACOLTATIVA: Si supponga la disponibilità anche di un sensore di assetto Yaw, Pitch, Roll (Imbardata, beccheggio, rollio - in +/- gradi rispetto alla posizione in bolla, 1 dato ogni .5 secondi). Sarebbe possibile attivare un'allarme relativo al moto ondoso eccessivo usando opportunamente questi valori? Come? In quale stato del sistema (Ormeggio, Ancora, Navigazione)?

Note di sviluppo

La prova d'esame richiede la progettazione e lo sviluppo della traccia proposta. I sensori, gli attuatori e il sistema di invio e ricezione degli SMS deve essere opportunamente simulato.

Lo studente può scegliere se usare JavaFX o Swing come interfaccia utente. Il progetto deve essere sviluppato secondo le seguenti linee:

- usare almeno due pattern tra i design pattern noti;
- attenersi ai principi della programmazione **SOLID**;
- usare il linguaggio Java;
- inserire sufficienti commenti (anche per Javadoc) e annotazioni;
- gestione delle **eccezioni**;
- usare i file o database.

Lo studente deve presentare una relazione sintetica (per chi usa *latex* è possibile scaricare un template dalla piattaforma e-learning). La relazione deve contenere:

- una breve descrizione dei requisiti del progetto;
- il diagramma UML delle classi;
- altri diagrammi se opportuni;
- parti rilevanti del codice sviluppato.

Consegna progetto

La relazione e il codice del progetto devono essere messi a disposizione su https://github.com (account legato alla propria mail istituzionale, licenza open source opportuna) entro la data di scadenza della prenotazione on-line dell'esame.

Modalità di esame

La prima parte della prova di esame verterà sulla discussione del progetto. Lo studente deve preparare una **presentazione sintetica** (slide) per descrivere il progetto svolto. La seconda parte della prova verterà sulla discussione degli argomenti affrontati a lezione.