PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A61K 38/00, 39/00, 39/395, 39/40, C07H 21/04, C07K 1/00, C12N 15/00, C12P 21/06, G01N 33/53

(11) International Publication Number: (43) International Publication Date:

WO 98/19689

14 May 1998 (14.05.98)

(21) International Application Number:

PCT/US97/19226

A1

(22) International Filing Date:

27 October 1997 (27.10.97)

(30) Priority Data:

60/029,930

1 November 1996 (01.11.96) US (74) Agents: GIMMI, Edward, R. et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA

ZARFOS, Phillip, N. [US/US]; 1907 Yorktown North, Nor-

19406-0939 (US).

ristown, PA 19403 (US).

(71) Applicants (for all designated States except US): SMITHK-LINE BEECHAM CORPORATION [US/US]; One Franklin Plaza, Philadelphia, PA 19103 (US). SMITHK-LINE BEECHAM PLC [GB/GB]; New Horizons Court,

Brentford, Middlesex TW8 9EP (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BLACK, Michael, Terance [GB/US]; 502 Milhouse Way, Chester Springs, PA 19425 (US). HODGSON, John, Edward [GB/US]; 260 Lapp Road, Malvern, PA 19355 (US). KNOWLES, David, Justin, Charles [GB/GB]; Downsview House, 45 Cronks Hill Road, Redhill, Surrey RH1 6LY (GB). LONETTO, Michael, Arthur [US/US]; 18 Victoria Circle, Collegeville, PA 19426 (US). NICHOLAS, Richard, Oakley [GB/US]; 355 Carmen Drive, Collegeville, PA 19426 (US). REID, Robert, H., Jr. [US/US]; 8 Pacer Lane, East Norriton, PA 19401 (US). (81) Designated States: CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: NOVEL CODING SEQUENCES

(57) Abstract

This invention relates to newly identified Streptococcal polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	$\mathbf{U}\mathbf{G}$	Uganda
BY	Belarus	IS	Iceland	$\mathbf{M}\mathbf{W}$	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	РТ	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
\mathbf{DE}	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	$\mathbf{s}\mathbf{G}$	Singapore		

NOVEL CODING SEQUENCES

FIELD OF THE INVENTION

This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, in these and in other regards, the invention relates to novel polynucleotides and polypeptides set forth in Table 1.

BACKGROUND OF THE INVENTION

The Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including otitis media, pneumonia and meningitis. Since its isolation more than 100 years ago, *Streptococcus pneumoniae* (herein *S. pneumoniae*) has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact, the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe. Despite the vast amount of research with *S. pneumoniae*, many questions concerning the virulence of this microbe remain.

While certain Streptococcal factors associated with pathogenicity have been identified, e.g., capsule polysaccharides, peptidoglycans, pneumolysins, PspA Complement factor H binding component, autolysin, neuraminidase, peptide permeases, hydrogen peroxide, IgA1 protease, the list is certainly not complete. Further very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.

GUG is used as an initating nucleotide, rather than ATG, for a significant number of mRNA's in both Gram positive and Gram negative bacteria. Statistics on the frequency of NTG codons in the start codon for several bacterial species are available on line via computer at http://biochem.otago.ac.nz:800/Transterm/home_page.html).

A discussion of initiation codons in *B. subtilis* is set forth in Vellanoweth, RL.1993 in *Bacillus subtilis* and other Gram Positive Bacteria, Biochemistry, Physiology and Molecular Genetics, Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-711. Vellenworth indicates a major difference between *B. subtilis* and the gram-negative organisms is in the choice of initiation codon. 91% of the sequenced *E. coli*

genes start with AUG. By contrast, about 30% of *B. subtilis* and other clostridial branch gened start with UUG or GUG. Moreover, CUG functions as a start codon in *B. subtilis*. Mutations of an AUG initiation codon to GUG or UUG often cause decreased expression in *B. subtilis* and *E. coli*. Generally, translation efficiency is higher with AUG initiation codons. A strong Shine-Delgarno ribosome binding site, however, can compensate almost fully for a weak initiation codon. It has been reported that genes with a range of expression levels have initiation codons other than ATG in gram positives (Vellanoweth, RL.1993 in *Bacillus subtilis* and other Gram Positive Bacteria, Biochemistry, Physiology and Molecular Genetics, Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-711).

Provided herein are ORF sequences from genes possessing GUG initiation codons and proteins expressed therefrom and homologues thereto to be used for screening for antimicrobial compounds. Clearly, there is a need for polypeptide and polynucleotide sequences that may be used to screen for antimicrobial compound and which may also be used to determine the roles of such sequences in pathogenesis of infection, dysfunction and disease. There is also need, therefore, for identification and characterization of such sequences which may play a role in preventing, ameliorating or correcting infections, dysfunctions or diseases.

The polypeptides of the invention have amino acid sequence homology to a known protein(s) as set forth in Table 1.

SUMMARY OF THE INVENTION

It is an object of the invention to provide polypeptides that have been identified as novel polypeptides by homology between an amino acid sequence selected from the group consisting of the sequences set out in Table 1 and a known amino acid sequence or sequences of other proteins such as the protein identities listed in Table 1.

It is a further object of the invention to provide polynucleotides that encode novel polypeptides, particularly polynucleotides that encode polypeptides of *Streptococcus pneumoniae*.

In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding a polypeptide comprising a sequence sequence selected from the group consisting of the sequences set out in Table 1, or a variant of any of these sequences.

In another particularly preferred embodiment of the invention there is a novel protein from *Streptococcus pneumoniae* comprising an amino acid sequence selected from the group consisting of the sequences set out in Table 1, or a variant of any of these sequences.

In accordance with another aspect of the invention there is provided an isolated nucleic_acid molecule encoding a mature polypeptide expressible by the *Streptococcus pneumoniae* 0100993 strain contained in the deposited strain.

A further aspect of the invention there are provided isolated nucleic acid molecules encoding a polypeptide of the invention, particularly *Streptococcus pneumoniae* polypeptide, and including mRNAs, cDNAs, genomic DNAs. Further embodiments of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.

In accordance with another aspect of the invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunization. Among the particularly preferred embodiments of the invention are naturally occurring allelic variants of a polypeptide of the invention and polypeptides encoded thereby.

Another aspect of the invention there are provided novel polypeptides of *Streptococcus pneumoniae* as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.

Among the particularly preferred embodiments of the invention are variants of the polypeptides of the invention encoded by naturally occurring alleles of their genes.

In a preferred embodiment of the invention there are provided methods for producing the aforementioned polypeptides.

In accordance with yet another aspect of the invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents, including, for example, antibodies.

In accordance with certain preferred embodiments of the invention, there are provided products, compositions and methods for assessing expression of the polypeptides and polynucleotides of the invention, treating disease, for example, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid, assaying genetic variation, and administering a polypeptide or polynucleotide of the invention to an organism to raise an immunological response against a bacteria, especially a *Streptococcus pneumoniae* bacteria.

In accordance with certain preferred embodiments of this and other aspects of the invention there are provided polynucleotides that hybridize to a polynucleotide sequence of the invention, particularly under stringent conditions.

In certain preferred embodiments of the invention there are provided antibodies against ____ polypeptides of the invention.

In other embodiments of the invention there are provided methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity of a polypeptide or polynucleotide of the invention comprising: contacting a polypeptide or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity of the polypeptide or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide or polynucleotide.

In accordance with yet another aspect of the invention, there are provided agonists and antagonists of the polypeptides and polynucleotides of the invention, preferably bacteriostatic or bacteriocidal agonists and antagonists.

In a further aspect of the invention there are provided compositions comprising a polynucleotide or a polypeptide of the invention for administration to a cell or to a multicellular organism.

Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following descriptions and from reading the other parts of the present disclosure.

GLOSSARY

The following definitions are provided to facilitate understanding of certain terms used frequently herein.

"Disease(s) means any bacterial infection, but preferably a streptococcal infection, such as, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema, endocarditis, meningitis, and infection of cerebrospinal fluid.

"Host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence.

"Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings

of such sequences. "Identity" and "similarity" can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol. 215: 403-410 (1990). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990). As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence it is intended that the nucleotide sequence of the tested polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. Analogously, by a polypeptide having an amino acid sequence having at least, for example, 95% identity to a reference amino acid sequence is intended that the test amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino

acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

"Isolated" means altered "by the hand of man" from its natural state, *i.e.*, if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.

"Polynucleotide(s)" generally refers any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotide(s)" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions. In addition, "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. As used herein, the term "polynucleotide(s)" also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for

example, simple and complex cells. "Polynucleotide(s)" also embraces short polynucleotides often referred to as oligonucleotide(s).

"Polypeptide(s)" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds. "Polypeptide(s)" refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene encoded amino acids. "Polypeptide(s)" include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification Such modifications are well described in basic texts and in more detailed techniques. monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini. Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, lipid attachment, sulfation, gammacarboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins, such as arginylation, and See, for instance, PROTEINS - STRUCTURE AND MOLECULAR ubiquitination. PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993) and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York (1983); Seifter et al., Meth. Enzymol. 182:626-646 (1990) and Rattan et al., Protein Synthesis: Posttranslational Modifications and Aging, Ann. N.Y. Acad. Sci. 663: 48-62 (1992). Polypeptides may be branched or cyclic, with or without branching. Cyclic, branched and branched circular polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well.

"Variant(s)" as the term is used herein, is a polynucleotide or polypeptide that ____ differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans.

DESCRIPTION OF THE INVENTION

Each of polynucleotide and polypeptide sequences provided herein may be used in the discovery and development of antibacterial compounds. Upon expression of the sequences with the appropriate initiation and termination codons the encoded polypeptide can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding preferably the amino terminal regions of the encoded protein or the Shine-Delgarno region can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The

first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. Because each of the sequences contains an open reading frame (ORF) with an appropriate initiation and termination codons, the encoded protein upon expression can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

It is believed that bacteria possess a number of ways of regulating gene expression levels, especially in subtle degrees, and the interplay between ribosome binding site and inititation codon is utilized for this purpose for these genes. It is also believed that such genes will be important targets for antimicrobial drug discovery, particularly since pathogenesis genes are believed undergo gene expression regulation during in the pathogenesis process. Therefore, the invention provides ORF sequences possessing a GTG (GUG) initiation codon and protein targets expressed thereform.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

ORF Gene Expression

Recently techniques have become available to evaluate temporal gene expression in bacteria, particularly as it applies to viability under laboratory and infection conditions. A number of methods can be used to identify genes which are essential to survival *per se*, or essential to the establishment/maintenance of an infection. Identification of an ORF unknown by one of these methods yields additional information about its function and permits the selection of such an ORF for further development as a screening target. Briefly, these approaches include:

1) Signature Tagged Mutagenesis (STM): This technique is described by Hensel et al., Science 269: 400-403(1995), the contents of which is incorporated by reference for background purposes. Signature tagged mutagenesis identifies genes necessary for the establishment/maintenance of infection in a given infection model.

The basis of the technique is the random mutagenesis of target organism by various means (e.g., transposons) such that unique DNA sequence tags are inserted in close proximity to the site of mutation. The tags from a mixed population of bacterial mutants and bacteria recovered from an infected hosts are detected by amplification, radiolabeling and hybridisation analysis. Mutants attenuated in virulence are revealed by absence of the tag from the pool of bacteria recovered from infected hosts.

In *Streptococcus pneumoniae*, because the transposon system is less well developed, a more efficient way of creating the tagged mutants is to use the insertion-duplication mutagenesis technique as described by Morrison et al., <u>J. Bacteriol.</u> 159:870 (1984) the contents of which is incorporated by reference for background purposes.

2) In Vivo Expression Technology (IVET): This technique is described by Camilli et al., Proc. Nat'l. Acad. Sci. USA. 91:2634-2638 (1994), the contents of which is incorporated by reference for background purposes. IVET identifies genes up-regulated during infection when compared to laboratory cultivation, implying an important role in infection. ORF identified by this technique are implied to have a significant role in infection establishment/maintenance.

In this technique random chromosomal fragments of target organism are cloned upstream of a promoter-less recombinase gene in a plasmid vector. This construct is introduced into the target organism which carries an antibiotic resistance gene flanked by resolvase sites. Growth in the presence of the antibiotic removes from the population those fragments cloned into the plasmid vector capable of supporting transcription of the recombinase gene and therefore have caused loss of antibiotic resistance. The resistant pool

is introduced into a host and at various times after infection bacteria may be recovered and assessed for the presence of antibiotic resistance. The chromosomal fragment carried by each antibiotic sensitive bacterium should carry a promoter or portion of a gene normally upregulated during infection. Sequencing upstream of the recombinase gene allows identification of the up regulated gene.

- 3) Differential display: This technique is described by Chuang et al., J. Bacteriol. 175:2026-2036 (1993), the contents of which is incorporated by reference for background purposes. This method identifies those genes which are expressed in an organism by identifying mRNA present using randomly-primed RT-PCR. By comparing pre-infection and post infection profiles, genes up and down regulated during infection can be identified and the RT-PCR product sequenced and matched to ORF 'unknowns'.
- 4) Generation of conditional lethal mutants by transposon mutagenesis: This technique, described by de Lorenzo, V. et al., Gene 123:17-24 (1993); Neuwald, A. F. et al., Gene 125: 69-73(1993); and Takiff, H. E. et al., J. Bacteriol. 174:1544-1553(1992), the contents of which is incorporated by reference for background purposes, identifies genes whose expression are essential for cell viability.

In this technique transposons carrying controllable promoters, which provide transcription outward from the transposon in one or both directions, are generated. Random insertion of these transposons into target organisms and subsequent isolation of insertion mutants in the presence of inducer of promoter activity ensures that insertions which separate promoter from coding region of a gene whose expression is essential for cell viability will be recovered. Subsequent replica plating in the absence of inducer identifies such insertions, since they fail to survive. Sequencing of the flanking regions of the transposon allows identification of site of insertion and identification of the gene disrupted. Close monitoring of the changes in cellular processes/morphology during growth in the absence of inducer yields information on likely function of the gene. Such monitoring could include flow cytometry (cell division, lysis, redox potential, DNA replication), incorporation of radiochemically labeled precursors into DNA, RNA, protein, lipid, peptidoglycan, monitoring reporter enzyme gene fusions which respond to known cellular stresses.

5) Generation of conditional lethal mutants by chemical mutagenesis: This technique is described by Beckwith, <u>J., Methods in Enzymology</u> 204: 3-18(1991), the contents of which are incorporated herein by reference for background purposes. In this technique random chemical mutagenesis of target organism, growth at

temperature other than physiological temperature (permissive temperature) and subsequent replica plating and growth at different temperature (e.g. 42°C to identify ts, 25°C to identify cs) are used to identify those isolates which now fail to grow (conditional mutants). As above close monitoring of the changes upon growth at the non-permissive temperature yields information on the function of the mutated gene. Complementation of conditional lethal mutation by library from target organism and sequencing of complementing gene allows matching with unknown ORF.

6) RT-PCR: Streptococcus pneumoniae messenger RNA is isolated from bacterial infected tissue e.g. 48 hour murine lung infections, and the amount of each mRNA species assessed by reverse transcription of the RNA sample primed with random hexanucleotides followed by PCR with gene specific primer pairs. The determination of the presence and amount of a particular mRNA species by quantification of the resultant PCR product provides information on the bacterial genes which are transcribed in the infected tissue. Analysis of gene transcription can be carried out at different times of infection to gain a detailed knowledge of gene regulation in bacterial pathogenesis allowing for a clearer understanding of which gene products represent targets for screens for novel antibacterials. Because of the gene specific nature of the PCR primers employed it should be understood that the bacterial mRNA preparation need not be free of mammalian RNA. This allows the investigator to carry out a simple and quick RNA preparation from infected tissue to obtain bacterial mRNA species which are very short lived in the bacterium (in the order of 2 minute halflives). Optimally the bacterial mRNA is prepared from infected murine lung tissue by mechanical disruption in the presence of TRIzole (GIBCO-BRL) for very short periods of time, subsequent processing according to the manufacturers of TRIzole reagent and DNA ase treatment to remove contaminating DNA. Preferably the process is optimised by finding those conditions which give a maximum amount of Streptococcus pneumoniae 16S ribosomal RNA as detected by probing Northerns with a suitably labelled sequence specific oligonucleotide probe. Typically a 5' dye labelled primer is used in each PCR primer pair in a PCR reaction which is terminated optimally between 8 and 25 cycles. The PCR products are separated on 6% polyacrylamide gels with detection and quantification using GeneScanner (manufactured by ABI).

Each of these techniques may have advantages or disadvantage depending on the particular application. The skilled artisan would choose the approach that is the most relevant with the particular end use in mind.

Use of the of these technologies when applied to the ORFs of the present invention — enables identification of bacterial proteins expressed during infection, inhibitors of which would have utility in anti-bacterial therapy.

The invention relates to novel polypeptides and polynucleotides as described in greater detail below. In particular, the invention relates to polypeptides and polynucleotides of *Streptococcus pneumoniae*, which is related by amino acid sequence homology to known polypeptide as set forth in Table 1. The invention relates especially to compounds having the nucleotide and amino acid sequence selected from the group consisting of the sequences set out in Table 1, and to the nucleotide sequences of the DNA in the deposited strain and amino acid sequences encoded thereby.

Deposited materials

The deposit has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure. The strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. The deposit is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. §112.

A deposit containing a *Streptococcus pneumoniae* bacterial strain has been deposited with the National Collections of Industrial and Marine Bacteria Ltd. (NCIMB), 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland on 11 April 1996 and assigned NCIMB Deposit No. 40794. The *Streptococcus pneumoniae* bacterial strain deposit is referred to herein as "the deposited bacterial strain" or as "the DNA of the deposited bacterial strain."

The deposited material is a bacterial strain that contains the full length FabH DNA, referred to as "NCIMB 40794" upon deposit.

The sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.

A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.

The deposited strain contains the full length genes comprising the polynucleotides set forth in Table 1. The sequence of the polynucleotides contained in the deposited strain, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.

Polypeptides

The polypeptides of the invention include the polypeptides set forth in Table 1 (in particular the mature polypeptide) as well as polypeptides and fragments, particularly those which have the biological activity of a polypeptide of the invention, and also those which have at least 50%, 60% or 70% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1 or the relevant portion, preferably at least 80% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and more preferably at least 90% similarity (more preferably at least 90% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and still more preferably at least 95% similarity (still more preferably at least 95% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.

The invention also includes polypeptides of the formula:

$$X-(R_1)_n-(R_2)-(R_3)_n-Y$$

wherein, at the amino terminus, X is hydrogen, and at the carboxyl terminus, Y is hydrogen or a metal, R_1 and R_3 are any amino acid residue, n is an integer between 1 and 2000, and R_2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from the group set forth in Table 1. In the formula above R_2 is oriented so that its amino terminal residue is at the left, bound to R_1 , and its carboxy terminal residue is at the right, bound to R_3 . Any stretch of amino acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. In preferred embodiments n is an integer between 1 and 1000 or 2000.

A fragment is a variant polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the aforementioned polypeptides. As with polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region, a single larger polypeptide.

Preferred fragments include, for example, truncation polypeptides having a portion of the amino acid sequence of Table 1, or of variants thereof, such as a continuous series of residues that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus. Degradation forms of the polypeptides of the invention in a host cell, particularly a *Streptococcus pneumoniae*, are also preferred. Further preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil

and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, ___ beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Also preferred are biologically active fragments which are those fragments that mediate activities of polypeptides of the invention, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those fragments that are antigenic or immunogenic in an animal, especially in a human. Particularly preferred are fragments comprising receptors or domains of enzymes that confer a function essential for viability of *Streptococcus pneumoniae* or the ability to initiate, or maintain cause disease in an individual, particularly a human.

Variants that are fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.

In addition to the standard single and triple letter representations for amino acids, the term "X" or "Xaa" is also used. "X" and "Xaa" mean that any of the twenty naturally occuring amino acids may appear at such a designated position in the polypeptide sequence.

Polynucleotides

The nucleotide sequences disclosed herein can be obtained by synthetic chemical techniques known in the art or can be obtained from *S. pneumoniae* 0100993 by probing a DNA preparation with probes constructed from the particular sequences disclosed herein. Alternatively, oligonucleotides derived from a disclosed sequence can act as PCR primers in a process of PCR-based cloning of the sequence from a bacterial genomic source. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

To obtain the polynucleotide encoding the protein using the DNA sequence given herein typically a library of clones of chromosomal DNA of *S.pneumoniae* 0100993 in *E. coli* or some other suitable host is probed with a radiolabelled oligonucleotide, preferably a 17mer or longer, derived from the partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using high stringency washes. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by

Maniatis, T., Fritsch, E.F. and Sambrook, J. in MOLECULAR CLONING, A Laboratory

Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory (see: Screening By

Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70).

Moerover, another aspect of the invention relates to isolated polynucleotides that encode the polypeptides of the invention having a deduced amino acid sequence selected from the group consisting of the sequences in Table 1 and polynucleotides closely related thereto and variants thereof.

Using the information provided herein, such as the polynucleotide sequences set out in Table 1, a polynucleotide of the invention encoding polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using Streptococcus pneumoniae 0100993 cells as starting material, followed by obtaining a full length clone. For example, to obtain a polynucleotide sequence of the invention, such as a sequence set forth in Table 1, typically a library of clones of chromosomal DNA of Streptococcus pneumoniae 0100993 in E.coli or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent conditions. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently, such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). (see in particular Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70). Illustrative of the invention, the polynucleotides set out in Table 1 were discovered in a DNA library derived from Streptococcus pneumoniae 0100993.

The DNA sequences set out in Table 1 each contains at least one open reading frame encoding a protein having at least about the number of amino acid residues set forth in Table 1. The start and stop codons of each open reading frame (herein "ORF") DNA are the first three and the last three nuclotides of each polynucleotide set forth in Table 1.

Certain polynucleotides and polypeptides of the invention are structurally related to known proteins as set forth in Table 1. These proteins exhibit greatest homology to the homologue listed in Table 1 from among the known proteins.

The invention provides a polynucleotide sequence identical over its entire length to each ______ coding sequence in Table 1. Also provided by the invention is the coding sequence for the mature polypeptide or a fragment thereof, by itself as well as the coding sequence for the mature polypeptide or a fragment in reading frame with other coding sequence, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence. The polynucleotide may also contain non-coding sequences, including for example, but not limited to non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence which encode additional amino acids. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain embodiments of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc. Natl. Acad. Sci., USA 86: 821-824 (1989), or an HA tag (Wilson et al., Cell 37: 767 (1984). Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.

The invention also includes polynucleotides of the formula:

$$X-(R_1)_n-(R_2)-(R_3)_n-Y$$

wherein, at the 5' end of the molecule, X is hydrogen, and at the 3' end of the molecule, Y is hydrogen or a metal, R_1 and R_3 is any nucleic acid residue, n is an integer between 1 and 3000, and R_2 is a nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from the group set forth in Table 1. In the polynucleotide formula above R_2 is oriented so that its 5' end residue is at the left, bound to R_1 , and its 3' end residue is at the right, bound to R_3 . Any stretch of nucleic acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. In a preferred embodiment n is an integer between 1 and 1000, or 2000 or 3000.

The term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the *Streptococcus pneumoniae* having an amino acid sequence set out in Table 1. The term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by integrated phage or an insertion sequence or editing) together with additional regions, that also may contain coding and/or non-coding sequences.

The invention further relates to variants of the polynucleotides described herein that encode for variants of the polypeptide having the deduced amino acid sequence of Table 1.

Variants that are fragments of the polynucleotides of the invention may be used to synthesize ______full-length polynucleotides of the invention.

Further particularly preferred embodiments are polynucleotides encoding polypeptide variants, that have the amino acid sequence of a polypeptide of Table 1 in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of such polynucleotide.

Further preferred embodiments of the invention are polynucleotides that are at least 50%, 60% or 70% identical over their entire length to a polynucleotide encoding a polypeptide having the amino acid sequence set out in Table 1, and polynucleotides that are complementary to such polynucleotides. Alternatively, most highly preferred are polynucleotides that comprise a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the deposited strain and polynucleotides complementary thereto. In this regard, polynucleotides at least 90% identical over their entire length to the same are particularly preferred, and among these particularly preferred polynucleotides, those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.

A preferred embodiment is an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of: a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*; and a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 50% identical to the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*.

Preferred embodiments are polynucleotides that encode polypeptides that retain substantially the same biological function or activity as the mature polypeptide encoded by the DNA of Table 1.

The invention further relates to polynucleotides that hybridize to the herein above-described sequences. In this regard, the invention especially relates to polynucleotides that hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the terms "stringent conditions" and "stringent hybridization conditions" mean hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium

citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at about 65°C. Hybridization and wash conditions are well known and exemplified in Sambrook, *et al.*, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein.

The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence set forth in Table 1 under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or a fragment thereof; and isolating said DNA sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers described elsewhere herein.

As discussed additionally herein regarding polynucleotide assays of the invention, for instance, polynucleotides of the invention as discussed above, may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding a polypeptide and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to a polynucleotide set forth in Table 1. Such probes generally will comprise at least 15 bases. Preferably, such probes will have at least 30 bases and may have at least 50 bases. Particularly preferred probes will have at least 30 bases and will have 50 bases or less.

For example, the coding region of each gene that comprises or is comprised by a polynucleotide set forth in Table 1 may be isolated by screening using a DNA sequence provided in Table 1 to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.

The polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for disease, particularly human disease, as further discussed herein relating to polynucleotide assays.

Polynucleotides of the invention that are oligonucleotides derived from the a polynucleotide or polypeptide sequence set forth in Table 1 may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

The invention also provides polynucleotides that may encode a polypeptide that is the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to

the mature polypeptide (when the mature form has more than one polypeptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in vivo*, the additional amino acids may be processed away from the mature protein by cellular enzymes.

A precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.

In addition to the standard A, G, C, T/U representations for nucleic acid bases, the term "N" is also used. "N" means that any of the four DNA or RNA bases may appear at such a designated position in the DNA or RNA sequence, except it is preferred that N is not a base that when taken in combination with adjacent nucleotide positions, when read in the correct reading frame, would have the effect of generating a premature termination codon in such reading frame.

In sum, a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.

Vectors, host cells, expression

The invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention. Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis et al., *BASIC METHODS IN MOLECULAR BIOLOGY*, (1986) and Sambrook et al., *MOLECULAR CLONING: A LABORATORY MANUAL*, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium

phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.

Representative examples of appropriate hosts include bacterial cells, such as streptococci, staphylococci, enterococci *E. coli*, streptomyces and *Bacillus subtilis* cells; fungal cells, such as yeast cells and *Aspergillus* cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used to produce the polypeptides of the invention. Such vectors include, among others, chromosomal, episomal and virus-derived vectors, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression system constructs may contain control regions that regulate as well as engender expression. Generally, any system or vector suitable to maintain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard. The appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, (supra).

For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.

Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.

Diagnostic Assays

This invention is also related to the use of the polynucleotides of the invention for use as diagnostic reagents. Detection of such polynucleotides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of a disease. Eukaryotes (herein also "individual(s)"), particularly mammals, and especially humans, infected with an organism comprising a gene of the invention may be detected at the nucleic acid level by a variety of techniques.

Nucleic acids for diagnosis may be obtained from an infected individual's cells and tissues, such as bone, blood, muscle, cartilage, and skin. Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification technique prior to analysis. RNA or cDNA may also be used in the same ways. Using amplification, characterization of the species and strain of prokaryote present in an individual, may be made by an analysis of the genotype of the prokaryote gene. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the genotype of a reference sequence. Point mutations can be identified by hybridizing amplified DNA to labeled polynucleotide sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in the electrophoretic mobility of the DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase and S1 protection or a chemical cleavage method. See, e.g., Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401 (1985).

Cells carrying mutations or polymorphisms in the gene of the invention may also be detected at the DNA level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations. It is particularly preferred to used RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA or cDNA may also be used for the same purpose, PCR or RT-PCR. As an example, PCR primers complementary to a nucleic acid encoding a polypeptide of the invention can be used to identify and analyze mutations. These primers may be used for, among other things, amplifying a DNA of the invention isolated from a sample derived from an individual. The primers may be used to amplify the gene isolated from an infected individual such that the gene may then be subject to various techniques for elucidation of the DNA sequence. In this way, mutations in the DNA sequence may be detected and used to diagnose infection and to serotype and/or classify the infectious agent.

The invention further provides a process for diagnosing disease, preferably bacterial infections, more preferably infections by *Streptococcus pneumoniae*, and most preferably disease, comprising determining from a sample derived from an individual a increased level of expression of polynucleotide having the sequence of Table 1. Increased or decreased expression of a polynucleotide of the invention can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods.

In addition, a diagnostic assay in accordance with the invention for detecting overexpression of a polypeptide of the invention compared to normal control tissue samples may be used to detect the presence of an infection, for example. Assay techniques that can be used to determine levels of a protein, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

Antibodies

The polypeptides of the invention or variants thereof, or cells expressing them can be used as an immunogen to produce antibodies immunospecific for such polypeptides. "Antibodies" as used herein includes monoclonal and polyclonal antibodies, chimeric, single chain, similarized antibodies and humanized antibodies, as well as Fab fragments, including the products of an Fab immunolglobulin expression library.

Antibodies generated against the polypeptides of the invention can be obtained by administering the polypeptides or epitope-bearing fragments, analogues or cells to an animal, preferably a nonhuman, using routine protocols. For preparation of monoclonal antibodies, any technique known in the art that provides antibodies produced by continuous cell line cultures can be used. Examples include various techniques, such as those in Kohler, G. and Milstein, C., *Nature 256:* 495-497 (1975); Kozbor *et al.*, *Immunology Today 4:* 72 (1983); Cole et al., pg. 77-96 in *MONOCLONAL ANTIBODIES AND CANCER THERAPY*, Alan R. Liss, Inc. (1985).

Techniques for the production of single chain antibodies (U.S. Patent No. 4,946,778) can be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies.

Alternatively phage display technology may be utilized to select antibody genes with binding activities towards the polypeptide either from repertoires of PCR amplified v-genes of lymphocytes from humans screened for possessing recognition of a polypeptide of

the invention or from naive libraries (McCafferty, J. et al., (1990), Nature **348**, 552-554; ___ Marks, J. et al., (1992) Biotechnology *10*, 779-783). The affinity of these antibodies can also be improved by chain shuffling (Clackson, T. et al., (1991) Nature **352**, 624-628).

If two antigen binding domains are present each domain may be directed against a different epitope - termed 'bispecific' antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptides to purify the polypeptides by affinity chromatography.

Thus, among others, antibodies against a polypeptide of the invention may be employed to treat disease.

Polypeptide variants include antigenically, epitopically or immunologically equivalent variants that form a particular aspect of this invention. The term "antigenically equivalent derivative" as used herein encompasses a polypeptide or its equivalent which will be specifically recognized by certain antibodies which, when raised to the protein or polypeptide according to the invention, interfere with the immediate physical interaction between pathogen and mammalian host. The term "immunologically equivalent derivative" as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a vertebrate, the antibodies act to interfere with the immediate physical interaction between pathogen and mammalian host.

The polypeptide, such as an antigenically or immunologically equivalent derivative or a fusion protein thereof is used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the polypeptide. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Alternatively a multiple antigenic peptide comprising multiple copies of the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.

Preferably, the antibody or variant thereof is modified to make it less immunogenic in the individual. For example, if the individual is human the antibody may most preferably be "humanized"; where the complimentarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody, for example as described in Jones, P. et al. (1986), *Nature 321*, 522-525 or Tempest et al., (1991) *Biotechnology 9*, 266-273.

The use of a polynucleotide of the invention in genetic immunization will preferably employ a suitable delivery method such as direct injection of plasmid DNA into

muscles (Wolff et al., Hum Mol Genet 1992, 1:363, Manthorpe et al., Hum. Gene Ther. 1963:4, 419), delivery of DNA complexed with specific protein carriers (Wu et al., J Biol Chem. 1989: 264,16985), coprecipitation of DNA with calcium phosphate (Benvenisty & Reshef, PNAS, 1986:83,9551), encapsulation of DNA in various forms of liposomes (Kaneda et al., Science 1989:243,375), particle bombardment (Tang et al., Nature 1992, 356:152, Eisenbraun et al., DNA Cell Biol 1993, 12:791) and *in vivo* infection using cloned retroviral vectors (Seeger et al., PNAS 1984:81,5849).

Antagonists and agonists - assays and molecules

Polypeptides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, *e.g.*, Coligan *et al.*, *Current Protocols in Immunology* 1(2): Chapter 5 (1991).

The invention also provides a method of screening compounds to identify those which enhance (agonist) or block (antagonist) the action of a polypeptides or polynucleotides of the invention, particularly those compounds that are bacteriostatic and/or bacteriocidal. The method of screening may involve high-throughput techniques. For example, to screen for agonists or antagoists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a polypeptide of the invention and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be an agonist or antagonist of a polypeptide of the invention. The ability of the candidate molecule to agonize or antagonize a polypeptide of the invention is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate. Molecules that bind gratuitously, i.e., without inducing the effects of a polypeptide of the invention are most likely to be good antagonists. Molecules that bind well and increase the rate of product production from substrate are agonists. Detection of the rate or level of production of product from substrate may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric labeled substrate converted into product, a reporter gene that is responsive to changes in polynucleotide or polypeptide activity, and binding assays known in the art.

Another example of an assay for antagonists of polypeptides of the invention is a competitive assay that combines any such polypeptide and a potential antagonist with a compound which binds such polypeptide, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay. A polypeptide of the

invention can be labeled, such as by radioactivity or a colorimetric compound, such that the number of such polypeptide molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.

Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polynucleotide or polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the same sites on a binding molecule, such as a binding molecule, without inducing activities induced by a polypeptide of the invention, thereby preventing the action of such polypeptide by excluding it from binding.

Potential antagonists include a small molecule that binds to and occupies the binding site of the polypeptide thereby preventing binding to cellular binding molecules, such that normal biological activity is prevented. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules. Other potential antagonists J. 56: (1991);include antisense molecules (see Okano, Neurochem. 560 OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988), for a description of these molecules). Preferred potential antagonists include compounds related to and variants of a polypeptide of the invention.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.

The invention also provides the use of the polypeptide, polynucleotide or inhibitor of the invention to interfere with the initial physical interaction between a pathogen and mammalian host responsible for sequelae of infection. In particular the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive bacteria, to mammalian extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block protein-mediated mammalian cell invasion by, for example, initiating phosphorylation of mammalian tyrosine kinases (Rosenshine *et al.*, *Infect. Immun. 60*:2211 (1992); to block bacterial adhesion between mammalian extracellular matrix proteins and bacterial proteins that mediate tissue damage and; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.

The antagonists and agonists of the invention may be employed, for instance, to inhibit ____ and treat disease.

Helicobacter pylori (herein H. pylori) bacteria infect the stomachs of over one-third of the world's population causing stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori Research Cancer, France; (International Agency for on Lyon, http://www.uicc.ch/ecp/ecp2904.htm). Moreover, the international Agency for Research on Cancer recently recognized a cause-and-effect relationship between H. pylori and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen. Preferred antimicrobial compounds of the invention found using screens provided by the invention, particularly broad-spectrum antibiotics, should be useful in the treatment of H. pylori infection. Such treatment should decrease the advent of H. pylori-induced cancers, such as gastrointestinal carcinoma. Such treatment should also cure gastric ulcers and gastritis.

Vaccines

Another aspect of the invention relates to a method for inducing an immunological response in an individual, particularly a mammal which comprises inoculating the individual with a polypeptide of the invention, or a fragment or variant thereof, adequate to produce antibody and/ or T cell immune response to protect said individual from infection, particularly bacterial infection and most particularly Streptococcus pneumoniae infection. Also provided are methods whereby such immunological response slows bacterial Yet another aspect of the invention relates to a method of inducing replication. immunological response in an individual which comprises delivering to such individual a nucleic acid vector to direct expression of a polynucleotide or polypeptide of the invention, or a fragment or a variant thereof, for expressing such polynucleotide or polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response, such as, to produce antibody and/ or T cell immune response, including, for example, cytokineproducing T cells or cytotoxic T cells, to protect said individual from disease, whether that disease is already established within the individual or not. One way of administering the gene is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid.

A further aspect of the invention relates to an immunological composition which, when introduced into an individual capable or having induced within it an immunological response, induces an immunological response in such individual to a polynucleotide of the

invention or protein coded therefrom, wherein the composition comprises a recombinant polynucleotide or protein coded therefrom comprising DNA which codes for and expresses an antigen of said polynucleotide or protein coded therefrom. The immunological response may be used therapeutically or prophylactically and may take the form of antibody immunity or cellular immunity such as that arising from CTL or CD4+ T cells.

A polypeptide of the invention or a fragment thereof may be fused with co-protein which may not by itself produce antibodies, but is capable of stabilizing the first protein and producing a fused protein which will have immunogenic and protective properties. Thus fused recombinant protein, preferably further comprises an antigenic co-protein, such as lipoprotein D from *Hemophilus influenzae*, Glutathione-S-transferase (GST) or betagalactosidase, relatively large co-proteins which solubilize the protein and facilitate production and purification thereof. Moreover, the co-protein may act as an adjuvant in the sense of providing a generalized stimulation of the immune system. The co-protein may be attached to either the amino or carboxy terminus of the first protein.

Provided by this invention are compositions, particularly vaccine compositions, and methods comprising the polypeptides or polynucleotides of the invention and immunostimulatory DNA sequences, such as those described in Sato, Y. *et al.* Science 273: 352 (1996).

Also, provided by this invention are methods using the described polynucleotide or particular fragments thereof which have been shown to encode non-variable regions of bacterial cell surface proteins in DNA constructs used in such genetic immunization experiments in animal models of infection with *Streptococcus pneumoniae* will be particularly useful for identifying protein epitopes able to provoke a prophylactic or therapeutic immune response. It is believed that this approach will allow for the subsequent preparation of monoclonal antibodies of particular value from the requisite organ of the animal successfully resisting or clearing infection for the development of prophylactic agents or therapeutic treatments of bacterial infection, particularly *Streptococcus pneumoniae* infection, in mammals, particularly humans.

The polypeptide may be used as an antigen for vaccination of a host to produce specific antibodies which protect against invasion of bacteria, for example by blocking adherence of bacteria to damaged tissue. Examples of tissue damage include wounds in skin or connective tissue caused, e.g., by mechanical, chemical or thermal damage or by implantation of indwelling devices, or wounds in the mucous membranes, such as the mouth, mammary glands, urethra or vagina.

The invention also includes a vaccine formulation which comprises an immunogenic recombinant protein of the invention together with a suitable carrier. Since the protein may be broken down in the stomach, it is preferably administered parenterally, including, for example, administration that is subcutaneous, intramuscular, intravenous, or intradermal. Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the bodily fluid, preferably the blood, of the individual; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

While the invention has been described with reference to certain protein, such as, for example, those set forth in Table 1, it is to be understood that this covers fragments of the naturally occurring protein and similar proteins with additions, deletions or substitutions which do not substantially affect the immunogenic properties of the recombinant protein.

Compositions, kits and administration

The invention also relates to compositions comprising the polynucleotide or the polypeptides discussed above or their agonists or antagonists. The polypeptides of the invention may be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tissues or organisms, such as a pharmaceutical carrier suitable for administration to a subject. Such compositions comprise, for instance, a media additive or a therapeutically effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient. Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. The formulation should suit the mode of administration. The invention further relates to diagnostic and pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.

Polypeptides and other compounds of the invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

The pharmaceutical compositions may be administered in any effective, convenient _____ manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.

In therapy or as a prophylactic, the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.

Alternatively the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol or oleyl alcohol for lotions. Such carriers may constitute from about 1% to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.

For administration to mammals, and particularly humans, it is expected that the daily dosage level of the active agent will be from 0.01 mg/kg to 10 mg/kg, typically around 1 mg/kg. The physician in any event will determine the actual dosage which will be most suitable for an individual and will vary with the age, weight and response of the particular individual. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

In-dwelling devices include surgical implants, prosthetic devices and catheters, i.e., devices that are introduced to the body of an individual and remain in position for an extended time. Such devices include, for example, artificial joints, heart valves, pacemakers, vascular grafts, vascular catheters, cerebrospinal fluid shunts, urinary catheters, continuous ambulatory peritoneal dialysis (CAPD) catheters.

The composition of the invention may be administered by injection to achieve a systemic effect against relevant bacteria shortly before insertion of an in-dwelling device. Treatment may be continued after surgery during the in-body time of the device. In addition, the composition could also be used to broaden perioperative cover for any surgical technique to prevent bacterial wound infections, especially *Streptococcus pneumoniae* wound infections.

Many orthopedic surgeons consider that humans with prosthetic joints should be considered for antibiotic prophylaxis before dental treatment that could produce a bacteremia. Late deep infection is a serious complication sometimes leading to loss of the prosthetic joint and is accompanied by significant morbidity and mortality. It may therefore be possible to extend the use of the active agent as a replacement for prophylactic antibiotics in this situation.

In addition to the therapy described above, the compositions of this invention may be used generally as a wound treatment agent to prevent adhesion of bacteria to matrix proteins exposed in wound tissue and for prophylactic use in dental treatment as an alternative to, or in conjunction with, antibiotic prophylaxis.

Alternatively, the composition of the invention may be used to bathe an indwelling device immediately before insertion. The active agent will preferably be present at a concentration of 1µg/ml to 10mg/ml for bathing of wounds or indwelling devices.

A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response. A suitable unit dose for vaccination is 0.5-5 microgram/kg of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks. With the indicated dose range, no adverse toxicological effects will be observed with the compounds of the invention which would preclude their administration to suitable individuals.

Each reference disclosed herein is incorporated by reference herein in its entirety. Any patent application to which this application claims priority is also incorporated by reference herein in its entirety.

TABLES

Certain pertinent data for preferred polypeptide and polynucleotide embodiments of the invention are summarized in Tables 1 and 2.

Provided in Table 1 are sequence search results providing characterization information regarding certain preferred polynucleotides (denoted as "Assembly") and polypeptides of the invention encoded thereby. For each polynucleotide in Table 1, there is listed the closest homologue of each polypeptide encoded by each ORF in such polynucleotide. This determination of homology is based on a comparison of the sequences of in Table 1 with sequences available in the public domain (see heading entitled "Description" for the homologue name). Where no significant homologue was detected the term "unknown" appears after the heading "Description". Preferred polypeptides encoded by the ORFs of the invention, particularly full length proteins either obtained using such

ORFs or encoded entirely by such ORFs, are ones that have a biological function of the homologue listed, among other functions. The analysis used to determine each homologue listed in Table 1 was either BlastP and/or BlastX and/or MPSearch, each of which is well known. Also provided in Table 1 is the amino acid sequence encoded by each ORF. An "Assembly ID" number provides a convenient way to correlate the polynucleotide sequence with the ORF or ORFs it comprises and the polypeptides encoded by these ORFs, as well as to correlate such sequences with other pertinent information provided in Tables 1 and 2. Following the heading "ORF Predictions" the nucleotides at the beginning and end of the ORF sequence are set forth ("Start" and "End" respectively). The direction of translation on the polynucleotide depicted is denoted by an "F" for forward or an "R" for reverse (reverse being translated on the opposite strand from the one depicted). The length of each amino acid sequence is also indicated in a column entitled "Length." Below these data is shown the amino acid sequence encoded by the ORF. If a given polynucleotide comprises one ORF, then in the column entitled "ORF #" there is the numeral one. If it encodes two, there are the numerals one and two in the column, and so on.

TABLE 1

Assembly ID: 3049156 Assembly Length: 495bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	236	385	R	50 aa

> 3049156-1 ORF translation from 236-385, direction R VGDDTWLFDPAKDPVIMILPETFFLHAFLLFFALYENFFGYLYLKSRRK*

Description: unknown

Assembly ID: 3049862 Assembly Length: 529bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	383	526	F	48 a a

> 3049862-1 ORF translation from 383-526, direction F VODFYTSIDVLAELDNGTQVIIEIQVHHQNFSSITCGLTCAVRLIKS*

Description: unknown

Assembly ID: 3112810 Assembly Length: 885bp

TTATCCACCAAATCCACCAAAACCATTCTTAGGCCGAATAACGACAGATTCGTCTTCTAT
ATAGAGGCCGTTTCCGATAGAGTTAACGCAGTTGACAAACTTGAGCGGATATTTGTTGAA
AATAGCTGCCGCTTGATCAAAGTGAACAATATCAAAATAAGGTGGCAATTTAATTCCAAG
AGGTTTGGTGAAGTAAGCAAACACTTCTGCCAAAATCCGGTCTGTTGTCTCAAAATCATA
GGCAATCTGAGGTTTACCTGGAACATTTGGACAGGAAAGATTTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	601	804	R	68 aa

> 3112810-2 ORF translation from 601-804, direction R VFAYFTKPLGIKLPPYFDIVHFDQAAAIFNKYPLKFVNCVNSIGNGLYIEDESVVIRPKN GFGGIGG*

Description:

LLCPYRDA NCBI gi: 511014 - Lactococcus lactis. DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1) (DIHYDROOROTATE OXIDASE)

Assembly ID: 3112866 Assembly Length: 925bp

> 3112866 Strep Assembly -- Assembly id#3112866 TCTTGGCCAACTGCATGGAGTTCAGCGGTCAATTTCAACGCACCTGAGAAACAGACCCCT GCACCCTGAAATCTCAGGAGACATGATGGTCTGGATGGAATCAATAATGAGAAAGTCTG GCTGGATACGCTACCACTTCTGCACGAACACTCTGCATATTGGTCTCTGCATAGAGATAA AACTCACTATCAAAATCACCTAAGCGCTCTGCACGTAGTTTAATCTGCTGGGCAGACTCC TCCCCACTGACATAGAGAACTGTCCCCACTTGGGACAACTGGGTTGAGACTTGTAGGAGA AGAGTTGATTTCCCAATCCCAGGATCCCCACCGATGAGGACGAGACTTTCCTGGTACAAC $\tt TCCGCCTCCAAGCACACGGTTGAATTCCTCCATCTCCGTCTTGGTTCGATTGACATTGAT$ GGAAGTCACCTCAGCTAGTTTCATGGGCTTGGTTTTCTCACCTGTCAAGGACACACGCGC ATTCTTGACCTCGGCAACCTCAACCTCTTCCACAAAAGAAGACCAAGACCCACAGTTGGG GCAACGTCCCAGATATTTAGGGGAATTATACCCACAATTTTGACATACAAATGTCGCTTT TTTCTTTGCGATGACAAACCTCTTTCTATATCTCTAACTCACACTCAATCACTTGGCAAA AATCAATCTTCTCATTTGGCACAAACTGGCGCATGAGCATTCGATGAGCAACAACTACCA CAGTCTGATGTTCTCGATACTTAGACATACATTCTAGAAACCGAGACTTCATTTCCGTAG $\tt CTGTCTCATATTGAATAGGACTATTAGGAAGCAACTCCCCCTTGTTTTCTAAAAACAGTC$ TTCTAGCTGTTTCAAAGTTTTCTATTCCTGTTTTATAGACCTGCCATTCATGTAATAAAG GCTCTACTCTTAAAGGAAGACCCGT

ORF Predictions:

ORF #	Start	End	Direction	Length

1 220 513 R 98 aa

> 3112866-2 ORF translation from 220-513, direction R VEEVEVAEVKNARVSLTGEKTKPMKLAEVTSINVNRTKTEMEEFNRVLGGGVVPGKSRPH RWGSWDWEINSSPTSLNPVVPSGDSSLCQWGGVCPAD*

Description:

SMS PROTEIN. - ESCHERICHIA COLI.

Assembly ID: 3113664 Assembly Length: 602bp

> 3113664 Strep Assembly -- Assembly id#3113664

TTATGTCAGTGGGATTACGCCTAATCTCCCAGAAGCAGAATTATTATCCGGTCAGGAAAT

TAAAACCTTGGNAGACATGAAAACTGCAGCGCAGAAATTGCATGATTTAGGAGCGCCAGC

AGTCATTATCAAAGGGAGGCAATCGTCTTAGTCAGGACAAGGCTGTGGATGTCTTTTATG

ATGGACAGACCTTTACTATCCTAGAAAATCCAGTTATCCAAGGCCAAAATGCTGGTGCAG

GTTGTACCTTTGCCTCTAGCATTGCCAGTCACTTGGTTAAAGGTGATAAACTTTTGCCAG

CAGTAGAAAGCTCTAAGGCTTTCGTTTATCGTGCTATTGCACAAGCAGATCAGTATGGAG

TAAGACAATATGAAGCAAACAAAAAACAACTAAAATCGCCCTTGTATCCCTATTAACCGCC

CTTTCTGTGGTTCTAGGTTATTTCTTAAAAATCCCAACACCTACAGGNATTCTAACTCTT

TTAGATGCTGGTGTCTTCTTTGCGGCCTTTTACTTTGGTAGTCGTGAAGGAGCGGTAGTC

GGAGGACTAGCAAGTTTCTTGCTTGACCTCTTATCAGGCTACCCTCAGTGGATGTTTTTTT

AG

ORF Predictions:

ORF #	Start	End	Direction	Length
			time and the sale also time the sale time.	
1	165	392	F	76 aa

> 3113664-1 ORF translation from 165-392, direction F VDVFYDGQTFTILENPVIQGQNAGAGCTFASSIASHLVKGDKLLPAVESSKAFVYRAIAQ ADQYGVRQYEANKNN*

Description:

Thi protein - Rhizobium meliloti

Assembly ID: 3113716 Assembly Length: 456bp

> 3113716 Strep Assembly -- Assembly id#3113716
CTGGATACTAAGAGAAATCAAAAAAGCACTCTAGGATAGAGGCCTAAAGTGCTTAGTTTC
AAGGCTTTACAGCCTATCATATTTAATAAAATATTACAACATCTTGTTGTAGAATTCAAC

GACAAGTGCTTCGTTGATTTCTGGGTTGATTTCGTCGCGTTCTGGCAAGCGAGTCAATGA
ACCTTCCAATTTTTCAGCGTCGAATGATACGAATGCTGGACGTCCAAGAGTAGCTTCTAC
TGCTTCAAGGATTGCTGGAACTTTCAATGATTTTTCACGAACTGAGATCACTTGACCTGC
AGTTACGCGGTATGATGGGATATCAACGCGTTTCCCGTCAACAAGGATGTGACCGCTGGT
TTACAAATTGGACCAAACTTGACGACCAGTAGTCGCGAGACCAAGACGGTAAACAACGTT
ATCCAAACGACGTTCCAAAAGAAGCATAAAGTTGAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	94	291	R	66 aa

> 3113716-1 ORF translation from 94-291, direction R VISVREKSLKVPAILEAVEATLGRPAFVSFDAEKLEGSLTRLPERDEINPEINEALVVEF YNKML*

Description:

30S RIBOSOMAL PROTEIN S4 (BS4). - BACILLUS SUBTILIS.

Assembly ID: 3174176
Assembly Length: 1961bp

> 3174176 Strep Assembly -- Assembly id#3174176 CTAATATAGAATAATCACCGCCGTTGTGAAAGAACGATTGGATGATAATCCAATCGTTCA GGGAAATTGGAAGACCTTGGGTTTCCAATTTAGGCATGAGACACCTTTGGTGGCTGCTGC CGTCCCTCACAAGCTAAGGTGATTGTTGAAAAAGGGGAAAAAGGAGAAAATGAAACCA GTAATTTCCATCATGGGCTCAAAATCCGACTGGGCAACCATGCAAAAAACAGCAGAA GTCCTAGACCGCTTCGGTGTAGCCTACGAAAAGAAAGTTGTTTCCGCACACCGTACACCA GACCTCATGTTCAAACATGCAGAAGAAGCCCGTAGTCGTGGCATCAAGATCATCGCA $\tt GGTGCTGGTGGCGCAGCGCATTTGCCAGGCATGGTAGCTGCCAAAACAACCCTTCCAGTC$ ATTGGTGTGCCAGTCAAGTCTCGTGCTCTTAGTGGAGTGGATTCACTCTATTCTATCGTT CAGATGCCGGGTGGGGTGCCTGTTGCGACCATGGCTATCGGTGAACTCTTTTTTAGGATA TAAAACAGGGTTCGGATAAGTTTTTTTGCAAGGTGGATGATGGCTACATTGTAATGTTTT CCTTGTTCTAACTTAGTCTTAAAAGCAGGTGAAAAGTGAGGGCATGCTTTGGCAGCTTGT TGACCTGACTGATAAATAGAAGAATCCAGTCCAGCGAAAGCTTGTAATTGAGCAGGATTA TCAAAGGCATGAATATTTCGAATCTCGGCTAAAATGACCGCCCCTAAACGATTCTCAATC CCAGTAACCGTCGTGATGACCGAGTTTAACTCAGCCATCAAGTCATTGACACATTTTTCC GCCTTGTCAATGAGCCTCTTGTAATGTTTGATGTTTTCATTACACGAGATAAAACGTCTA TGCGTTATCAAACTCATTACCAATTAAAACAAATGTGGTTAGATCCTTTCGGAAATTGTC AAGCGATTGGAGGAAATGAACTAATCCACAGCGGCTTATTCCAAGTATACCACTTGGGCT TTGGCAGTAGCTAACTGCGCTAAATATAATATAAGGAGGAGTAAAATGAAGACAGTTCAA TTTTTTTGGCATTATTTTAAGGTCTACAAGTTCTCATTTGTAGTTGTCATCCTGATGATT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	139	543	F	135 aa

> 3174176-1 ORF translation from 139-543, direction F VIVEKEEKGEEMKPVISIIMGSKSDWATMQKTAEVLDRFGVAYEKKVVSAHRTPDLMFKH AEEARSRGIKIIIAGAGGAAHLPGMVAAKTTLPVIGVPVKSRALSGVDSLYSIVQMPGGV PVATMAIGELFFRI*

Description:

PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21) (AIR C ARBOXYLASE) (AIRC). - BACILLUS SUBTILIS.

Assembly ID: 3174186 Assembly Length: 375bp

> 3174186 Strep Assembly -- Assembly id#3174186
CTATCTCCAAGTNCGNTTGGAATNCCTCCGCNANCCACAACTCATCCAAGCACTTTNCAA
CGTGNCCTGGTCCGGTCCTCCAGTGCGTCTNACNGCACCTTCAACCTGCNCATGGGTAGG
TCACATGGCTTCGGGTCTACGTCATGATACTAAGGCGCCCTATTCAGACTCGGNTNCCCT
AGGGCTCCGTCTCTCAACTTAACCACGCAACAGAACGTNACCCGCCGGTTCATTCTACA
AAAGGCAGNCTCTCACCCATTAACGGGCTCGAACTTGTTGTAGGCACACNGCTTCAGGTN
CTATTTCACCCCCCTCCCGGGGAGCANCTCAACTGACCCNCACGGCACCGGTGNANNAAA
CGGTCACTTAGGGAG

ORF.	Pred	ictions:		
ORF	#	Start	End	Direction

Length

1 83 283 F 67 aa

> 3174186-1 ORF translation from 83-283, direction F VRXXAPSTCXWVGHMASGLRHDTKAPYSDSXXLGLRLFNLTTQQNXTRRFILQKAXSHPL TGSNLL*

Description:

unknown

Assembly ID: 3174374
Assembly Length: 665bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	154	294	F	47 aa

> 3174374-1 ORF translation from 154-294, direction F VDDTNTLNVHIHALRQELAKYSSDQTPTIKTVWGLGYKIEKPRGQT*

Description:

REGULATORY PROTEIN VANR. - ENTEROCOCCUS FAECIUM (STREPTOCOCCUS FAECIUM).

Assembly ID: 3174972 Assembly Length: 989bp

> 3174972 Strep Assembly -- Assembly id#3174972 CTACGATATCTTTGGTCTTTTGTAAGATATGAGGTCCACCCTTATGCGCCTCAGTTGGCA

TTTCATGCGATTCAAGAAGTTGCCCCTCTTGATCAACCAAACCATACTTGATGTTGGTTC ${\tt CACCGATATCAATTGCAACGTAATATGTCATAAATACCTCCTTTTAGATTAGAGGAAGCG}$ $\tt CTCCTTGGTTTCACGAATCAAGGCAGCCGCTTCTACAACTGGACGATCTTCTTCAGT$ CACTGGTGTCAATGGTGAACGAACAGATCCAATATTCAAGCCTTCATTGATTTTCAAGAC TTCTTTGATGACACCGTACATATTTCCATGAGCAGAAGTGAGTTTACCAATGATTGCGTT GATAGCATACTGCAATTCACGCGCTGTTTCTAGGTCCTTATCCGCAATCAACTGATTGAG TTTCAAGAAGAGTTCTGGCATAGCACCATAAGTACCACCGATACCAGCCCTAGCCCCCAT GAGGCGTCCTCTAGGAACTGCTCATCAGGACCATTAAAGACGATATGGTCTTCTCCACC AAGGCTGACAAAGGTTTGGATATCTTGAACTGGCATAGAAGAGTTCTTCACACCGATAAC ACGAGGATTTTTCAACATTTCTGTGTAAAGGCTTGGAGTCAAAGCAACCCCTGCCAATTG AGGAATGTTGTAAATCACGTAGTCTGTGTTTTGGAGCTGCAGAACTGATATCGTTCCAGTA TTTGGCAACTGAGTTATTCTGGCAAGCGGAAATAAATTGGTGGAATCCGTTGCAATAGCA TCTACTCCCAAGCTTTCAGCATGGCGAGCAAGTTCCATACTATCTTTAGTATTATTGCAA GCAACATGGGCAATAATGGTCAATTTACCTTTGGCTACCGCCATGACTTCTTCCAAAATC AACTTGCGATCTTCAACGCTTTGGTAGATACATTCACCAGAAGAACCATTGACATAAGAC CTTGAACACCTTTATCAATGAAGTATTGA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	169	678	R	170 aa

> 3174972-1 ORF translation from 169-678, direction R VIYNIPQLAGVALTPSLYTEMLKNPRVIGVKNSSMPVQDIQTFVSLGGEDHIVFNGPDEQ FLGGRLMGARAGIGGTYGAMPELFLKLNQLIADKDLETARELQYAINAIIGKLTSAHGNM YGVIKEVLKINEGLNIGSVRSPLTPVTEEDRPVVEAAAALIRETKERFL*

Description:

N-ACETYLNEURAMINATE LYASE SUBUNIT (EC 4.1.3.3) (N-ACETYLNEURAMINIC ACID ALDOLAS E) (N-ACETYLNEURAMINATE PYRUVATE LYASE) (NALASE). - ESCHERICHIA COLI.

Assembly ID: 3175138
Assembly Length: 1450bp

> 3175138 Strep Assembly -- Assembly id#3175138
CTCCATATTTCTTAGCCTTCTCAATTAGGGTCTTGAAGTCTTCGACACCACCGATACGCT
TACCAATATCAGCATAGTTCAAGTGACCAGAGTCATGGCTGTGATATCCTTAACTTTTTC
CCAACCTTGAGGGTTGTTCATAATGCTACGATAAGCAATGGCACCATCTTGCCAATCAAC
TTTCTTGTCTGCATTGGCATCTTCAGTGATAACAACCTTAGCACTTGGAAGTTCCTTCGT
GTATTCTGGGAAAACAATGCCCTTATAAGCTTTTTCCCATTGCCATTCAGAGCTGTGGAT
TCCTACATAGTTGGCATTTCCGACTGTTTCTTTATAAGCTGTCAAACGAGTCCAGTCATT
CGAACCACCACCATAGCTATTTTGAGAGTTACTCCAAACACCAGCAGCAAGCTTATCTGT

AGAAACAAATCCATACATGTAACCCTTAGCCAAATCCTTCATTGGATTGGTTACATCGAT ATGATCATCTCCGCTGACATGCGTATTGTTTGACATGGTTGCCCCATCAAACTTAGCACC AGTTTGATCACTAGAAACAGAGACTAAAGCATTGCCGAGGAAACTAATAGAAGAAAGTAG TTTTCTTTCGTCATCATCTTTTGACCTGGAGTGACTTGATTGTGGTTGACAATCTTTGGT CACATCAAAGTGCAATTGATTGTCCACAACTTGCAAGCGTACTGTCATTTCCGCATTGAT TAAGTGAGCATCATCGCGAAGCTTCATCAAGTACTCTGCTGTTGTCTCATTGATTTTTTT ${\tt ATAAGTGACTTCAGGGGTGATTCGGTGGTTATTGATAAAGACTTGGTTGAATTGTTGCAC}$ AATTACTGCCTTAAGTACCTTAAACTGGATCGTATCATAAGTCACCTTGCTATCGTCAAC AACCGGACCTGTTTCTTGGGCAGGGGTATCCTCTGGGTTTTACCCTCTCTGTGGCTA TCCGTTTCAACGCTTGAACAACTGGTCGCTCATCGTCATAAGAGCCCGCCTTGAGAAAAA TCTTCTTCTCATTTCTAAGATGGTCATTGACCGCAGCTGGTAGAGTCACTGTGTCAAAGA AGATTGACATCCTTATTTGCCTGGCATTTACCTGACCGTCTGACTTGAAGACTGATAGAG AGACGGTTTGTTGATCCTGTTTCAGGAGCAGCAACACGACTACCTCTATACCAAGTGCTA GTTGTTGGAGATTTATACTCCCAGAACCAGCCATCCTTGTCATAACCGACAAAAACATTA TTATTGGTATCTTTAAATTTCAAGGAGACACCAAAGCGTGATTTGCCCTTTTCAGAATCT ${\tt TCTTGAAGGTTAAATCAACAGTTGCATTTCCATTGGCATCAACGGTCAAGCCCTTCTTT}$ TCAAACAGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	79	945	R	289 aa

> 3175138-1 ORF translation from 79-945, direction R VTYDTIQFKVLKAVIDQAFLRVKGYTLNGHTLPGQVQQFNQVFINNHRITPEVTYKKINE TTAEYLMKLRDDAHLINAEMTVRLQVVDNQLHFDVTKIVNHNQVTPGQKIDDERKLLSSI SFLGNALVSVSSDQTGAKFDGATMSNNTHVSGDDHIDVTNPMKDLAKGYMYGFVSTDKLA AGVWSNSQNSYGGGSNDWTRLTAYKETVGNANYVGIHSSEWQWEKAYKGIVFPEYTKELP SAKVVITEDANADKKVDWQDGAIAYRSIMNNPQGWEKVKDITAMTLVT*

Description:

unknown

Assembly ID: 3175860 Assembly Length: 420bp

ORF Predictions:

ORF # Start End Direction Length

1 51 251 F 67 aa

> 3175860-1 ORF translation from 51-251, direction F VILEGNYRATAGREEMKEAILEYQANPAALKDLKEKAKNISREYSEEHLLQIWLDFYEKQ AALGTK*

Description: unknown

Assembly ID: 3175918
Assembly Length: 661bp

ORF	Predic	ctions:			
ORF	#	Start	End	Direction	Length
	1	212	535	F	108 aa

> 3175918-1 ORF translation from 212-535, direction F VTFLDDYHKKHNYPLFYESYLQNVMEFLESQDIKNGVDAFVDDHQNLVFVLYGQGYRAEG KEGILTTQVTVKAYDEDKKPINFANLLDSLIVSEYQMEPNLWEVSYD*

Description: unknown

Assembly ID: 3811220 Assembly Length: 1429bp

> 3811220 Strep Assembly -- Assembly id#3811220 CTGCCCTGTAAGGCTGGACGATTGCCTTTCTTAGTATCCGCAAAGAGGTAAACTGAGAA TAGAGAGGATTTCTCCTTCAATATCTTTGACAGACAGGTTCATCTTGCCTTCTACGTCTG AAAAAATCCGCATATTGACCAGTTTTCTCACAGCATAGTCCAAATCTTCCTCTTGGTCCT CTGGTCCAACCACCAGCAATAAAAGTCCCTGATTGATTTTTCCCTGAATCTGGCCTT CTATACTCACTTGGGCTTTTTTAACCCGTTGGATAATGATTTTCATAATAGCCTTTCTAG TAAGAGCTAGGACAACTAGCCGTTGGTCCGTTTGACAGAGTAAACTTCTGGCACACTCTT AATTTTATCGACAACCGTGGTCAGTGTAGAGAGGGTTGGCAATACCGAAGGACACATGGAT ATTAGCAAACTTCATATCCTTGGTTGGTTGGCCATTGACCGTTGAAATATTCTTGGTTGT ATTTGAAAGAACTTGCAGTACATCGTTCAACAGTCCTGTACGGTTGAGACCGTAGATATC GATATGGGCCATATACTCCTTATTTGAGCTAGAGTACTGGTCTTCCCATTCCACATCAAG GAGACGTTGCTCGTAGTTTTCTTGGGCACGCAGGTTCATACAGTCCACACGGTGAATAGC CACACCACGACCCTTGGTAATGTAGCCAACAATATCGTCACCAGGCACGGGGTTACAACA CTTAGCAATCCGCACTAGGAGACCAGAAGCACCTTCAATAACCACTCCCCCCTCATGCTT GACCTTGGAGAGTTTCTTTATTTTCAACCTTGACCTCGCCACCTTTGACAAGCTCCTCTG ${\tt AGACGGTAATCGCACCGATTTCCCCAAAACCAATGGCCGCAAAGAGGGAGTCTTCTGTCT}$ CCTTATCTTGGTTTTTAAAGAACTGGCGAATCTTATTGCGCGCCCTTGCTAGTCTTGACCA TATTGAGCCAGTCACGGCTAGGTCCAAAGGAGTTCGGGTTGGCGATAATTTCAACCTGAT $\verb|CCCTGTCTTTAACTTGGTTGTCAGTGGAACCATGCGGCCATTGACCTTGGCACCAGTTG|\\$ GAAGAACGGACAGCTCCATCTGGGGTAAAAACGTAAATCTCCTCAGCCAGATAGTTTT CCTTAACAGAGTCCACAAATTCCTTAGCATCATCAGCCTGGTCTTGGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	316	873	R	186 aa

> 3811220-2 ORF translation from 316-873, direction R VRKSVPRPRLRQRSLSKVARSRLKIKKLSKVKHEGGVVIEGASGLLVRIAKCCNPVPGDD IVGYITKGRGVAIHRVDCMNLRAQENYEQRLLDVEWEDQYSSSNKEYMAHIDIYGLNRTG LLNDVLQVLSNTTKNISTVNAQPTKDMKFANIHVSFGIANLSTLTTVVDKIKSVPEVYSV KRTNG*

Description:

stringent response-like protein - Streptococcus equisimilis

Assembly ID: 3811436
Assembly Length: 1513bp

> 3811436 Strep Assembly -- Assembly id#3811436 CTCTGCAATGATGTACTCAAACATCTCCGCTTCTAGTTCCTCCTTAGGCAGAGGCAATTT CCCACGTCGCATCCGGTTCATAAAGACCGTATGGTTTTCTAAAATCAAACTATACAAACT CATGTGGGGAATATCCAATCCAATGGCTTTAGCCACATTTTCCTTTACTTGCTCCATGGT GCGATCGATATTTTCATAAATATCCTTCTCCAAATGACTGCGCCCAATCTTTTTCAACAT CTTATCATCAAAGGTCTGGACACCTAGCGAAACACGATTGACAGCCGAATTTTTCAAAAC AGCTATCTTATCCGCATCCAAATCGCCTGGATTGGCTTCAATGGTCAACTCTTCCAAGAC AGACAAATCCAAGTTTTTAGTCAAGCCATTCAGTAACACCTCCAGTTGCGGAGCCGACAG GGCTGTCGGTGTTCCACCACCGATATAAAGGGTTGACAACTTTTCAATATCATAAGAACG AAACTCTTCCAGCAGATGCTCTAAATAGCTGTCGACTGGCTGATTTTTGATGAAGACCTT $\tt TGAAAAATCACAATAACAAATCTGGGTACAAAATGGGATGTGCACATAGGCTGACGT$ TGGTTTTTTCTGCATAGTAATTATTATACCACAAAGACTAGATTCCAGATAAAAATCACC ATCCCCAGATACATAGTCCGTCCGGAGATGGTGATGGTTTATTCTTCTGTTATATCAATC ACAATCTCTTGAGTCATCAAGAGCTTCGGCTTTTTCTTGCCATTGTTCCTTGAGATTA TTTAATTGATTTTTTGATGCTTCTGTCGCTTGAAAAGCATAGGATTTAGCTTGAGCAAGT ATACTGTCCACAGTGATTTCACCTGACTCAACCTGTTCTTTTGTTTTCAGAACAAAATCT GTAGCCTGCTCCTTAACTTCTGTCAGTTTTTCACAGACTTGCTCCTTGGCATACTCCGGA TCTTCTCTCAAATCATCTAAAAAATCTTGAGCCTGACTGCAAACTTGTTTGCCCTTATCA CTTGTTAAAAACAAGGCAAGAGCTGCACCTGAAACGGTTCCTAAAAGGATTGAGGATAAT TTACCCATAAGGATTCTCCTTTTTTATTTTTTGAAAAATTTACTTGCAAGACGAAGAGCT GACAGACTTGCACCAGTCTTGAGTGTTTTTGAACCAGCTGATGAAGCTTTCTTGCTCAAG ACACGCGCATGGTCATTGAGGTCTGAAACAGATAGAGATAAATCTGCAACAGCACTGAAG AGTGGATCAATCGTAGCCACCTTGACATTGATATCATCTGCCAAGACATTGACCTTAGCC AACAACTCATTGGTGTGATGCAAGGTCACATCCACATCTGAAGTCAAGGTTTTAATCGTC TTTTCTGTTTCATCGATGACACGACCAAGCTTTTGTACAGTAATGATCAGATAGACCAAA AAGACAATCACAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1164	1511	R	116 aa

> 3811436-3 ORF translation from 1164-1511, direction R VIVFLVYLIITVQKLGRVIDETEKTIKTLTSDVDVTLHHTNELLAKVNVLADDINVKVAT IDPLFSAVADLSLSVSDLNDHARVLSKKASSAGSKTLKTGASLSALRLASKFFKK*

Description: unknown

Assembly ID: 3811984 Assembly Length: 505bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	134	454	F	107 aa

> 3811984-2 ORF translation from 134-454, direction F VTGNWQILFQGKMTVFSWLIGPCSSDNEEAVLEYARRLSALQKKVADKIFMVMRVYTAKP RTNGDGYKGLVHQPDTSKAPTLINGLQAVRQLHYRVDYRDWFDNGR*

Description:

PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE, TYR-SENSITIVE (EC 4.1.2.15) (PHOSP HO-2-KETO-3-DEOXYHEPTONATE ALDOLASE) (DAHP SYNTHETASE) (3-DEOXY-D-ARABINO-HEP TULOSONATE 7-PHOSPHATE SYNTHASE). - ESCHERICHIA COLI.

Assembly ID: 3857228 Assembly Length: 1827bp

 ${\tt AGGCTCCAACCAAGTCTCCTGTCCCTGTTATCCAGTCTAATTCAGTACAGCCATTCT}{\tt CAA}$ GTACAGCAACTTGATTCTCCGAAACAATAAGGTCCTTGGGACCTGTGACTAAGAATGACA TACCACGATAGGTCTGACACCAGTCTTTCAAGACTTGAAGCAAATCCTCCGTTTCTTGAT CTTTAGCACTCGCATCGACCCCAACGCCGTGATGCTTTAATCCAACAAGACTTCGAATTT $\tt CTGACATGTTTCCTTTAAGGACCGTAGGTCTATAGTCTAAAAGGTCTTTAACTAAGCTCT$ TACGAATGGATGAAGTCGTTACGCCAACCGCATCTACTACCATCGGGAGAAGATTGGT TTGCATACAAAGCTGCCATGCGGATTGCTTTTTCCTTCTCAGCTGACAAATGCCCCAAAT TGATGAAGAGCCTGGCTTTGCTTAGTAAAATCAAGAACTTCACGGGGATCATCTGCCA TGACAGGTTTGCATCCCAGAGCCAAAATCCCATTTGCCAGCATCTCACAAGAAATCTCAT TGGTCATACAGTGAATGAGGGAACTAGAGCCTATAGGAAAAGGATTTGTCAATGCCTGCA TCATTCTATCCTTTCAGCAAAGAATATCCTTGCACTTTTTTAAAGAATTCCTGCTTGAT TAAAAATCTAAATGCAATAAAGGAAATCGCTGTACCAATCAAGGTTGCTCCGAAAAATCG AGGCGTGTAGATAAACCAACTAAGCTTAGCAGCCGATCCTGTAAAGAGCACCATAACAGG ATAGGAACAATAGAACCAATAATACCTGTTCCCACAATTTCTCCCAAGGCAGAAAAGTA AAATTTTCGACCGTACTTATAAAAGAGACCTGCTAGAAGGGCTCCAAAAGTCGCTCCTGT GAGAGATAAAGGAGCTTATCGGAATACCCTTGAGTCGTCATACGGATAAAGGCTGTCACT GTAGCCATAGCCAAGGCATAAACAGGTCCCATCATGATTCCCGCTAGAATATTGACTACA CTGGACATCGGTGCCATTCCCTCAATCCGAAAGATAGGTGTAAGGACTACATCAAGGGCA ATCATCATAGATAAAATGGTCAATTTGTGAACTTGTAGTTGGTGCTTTCTCAAGTTTCTA TTCTTCTCCTTTTTCTAAAGACTGTAAATCGCTCTTCCATGTCTGGTGTTGGTAAGCCAT $\tt CTCCCAAAACTTGGCTTCCATATGAACACTGATGTGGAAGGCATCTAGCATTTTTTGCTT$ ATCTGTCTCATCACTTTCTCGATAGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1141	1356	R	72 aa

> 3857228-2 ORF translation from 1141-1356, direction R VGTGIIGSIVSYPVMVLFTGSAAKLSWFIYTPRFFGATLIGTAISFIAFRFLIKQEFFKK VOGYFFAERIE*

Description: unknown

Assembly ID: 3857842 Assembly Length: 485bp

> 3857842 Strep Assembly -- Assembly id#3857842 CTATTGCCAATCCATATAGCCTATCAGGTGGTCAATAACAACGTGTGGCCATCGCTCGTGGCCTATCAATGAATCCAGACATCATGCTCTTCGATGAACCAAATTCTGCCCTTGACCCTGAGATGGTTGGAGAAGTAATTAACGTTATGAAGGAATTGGCTGAGCAAGGCATGACCATGATTATCGTAACCCATGAGATGGGATTTGCCCGCCAGGTTGCCAACCGCGTTATCTTTACTG

CAGATGCCGAGTTCCTTGAAGACGGAACACCTGACCAAATCTTTGATAACCCACAACACC
CTCGTCTGAAAGAGTTCTTAGATAAGGTCTTAAACGTCTAAACTCAAACTGCAAGGATTT
CCTTGCAGTTTTTCTACCTCGTATTGGAATTTTTGATTTTTCGGAAAAATTATGTTAGAAT
TAAGTTTATGAAATGAGGTTTCCTCATACCTAGCAAGACTAGGAATAAAAAATAGAAATTA
GGTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	45	341	F	99 a a

> 3857842-1 ORF translation from 45-341, direction F VAIARGLSMNPDIMLFDEPNSALDPEMVGEVINVMKELAEQGMTMIIVTHEMGFARQVAN RVIFTADGEFLEDGTPDQIFDNPQHPRLKEFLDKVLNV*

Description:

GLUTAMINE TRANSPORT ATP-BINDING PROTEIN GLNQ. - BACILLUS STEAROTHERMOPHILUS.

Assembly ID: 3857996 Assembly Length: 1547bp

> 3857996 Strep Assembly -- Assembly id#3857996 NTCTTGGGCNCNGGGCGNNTCCTTTGAGGACNACGGTATCGATGACCTTGATCTCAAGTG ${\tt CAAGCAGTATCTGAATCTGCAGCAGCACCTGTCCGTGCAAAAGTTCGTCCAACATACAGT}$ ACAAACGCTTCAAGTTATCCAATTGGAGAATGTACATGGGGAGTAAAAACATTGGCACCT $\tt TGGGCTGGAGACTACTGGGGTAATGGAGCACAGTGGGCTACAAGTGCAGCAGCAGCAGGT$ $\tt TTCCGTACAGGTTCAACACCTCAAGTTGGAGCAATTGCATGTTGGAATGATGGTGGATAT$ GGTCACGTAGCGGTTGTTACAGCTGTTGAATCAACAACACGTATCCAAGTATCAGAATCA AATTATGCAGGTAATCGTACAATTGGAAATCACCGTGGATGGTTCAATCCAACAACAACT TCTGAAGGTTTTGTTACATATATTTATGCAGATTAATTTACAGAGGGACTCGAATAGAGC $\verb|CCTCTTTCAGGTTTTACCGTGACAATCCCTATTAAAAATTATATCAAAATCGTGAAAAT| \\$ ATTGGAAAAGTATGGTAGAATGAAAATTGTCGTGTGAACGATAATACTCATTCTTGATGA ATTGTGAAGCAGTTGCCCTTGGGTCGTTTTGCGAGTTGAAGTCAAGAAGAGGAAAAAAAC AAAAAGGAGAAATACTCATCGAATTTCAATGAAACAACTTCTTGAGGCTGGTGTACACTT TGGTCACCAAACTCGTCGCTGGAATCCTAAGATGGCTAAGTACATCTTTACTGAACGTAA $\tt CGGAATCCACGTTATCGACTTGCAACAAACTGTAAAATACGCTGACCAAGCATACGACTT$ ${\tt CATGCGTGATGCAGCTAACGATGCAGTTGTATTGTTCGTTGGTACTAAGAAACAAGC}$ AGCTGATGCAGTTGCTGAAGAAGCAGTACGTTCAGGTCAATACTTCATCAACCACCGTTG GTTGGGTGGAACTCTTACAAACTGGGGAACAATCCAAAAACGTATCGCTCGTTTGAAAGA TCTTAACAACAACGTGCGCGTCTTGAAAAATTCTTGGGCGGTATCGAAGATATGCCTCG TATCCCAGATGTGATGTACGTAGTTGACCCACATAAAGAGCCAAATCGCTGTTAAAGAAGC

TAAAAAATTGGGAATCCCAGTTGTAGCGATGGTTGACACCAATACTGATCCAGATGATAT
CGATGTAATCATCCCAGCTAACGATGACGCTATCCGTGCTGTTAAATTGATCACAGCTAA
ATTGGCTGACGCTATTATCGAAGGACGTCAAGGTGAGGATGCAGTAGCAGTTGAAGCAGA
ATTTGCAGCTCCAGAAACTCAAGCAGATTCAATTGAAGAAATCGTTGAAGTTGTAGAAGG
TGACAACGCTTAATTTATACAAATAGTAATTACCTAGGAGGCGGGGCTTAGCCCGGCTC
TCCTATTTTCAAAAAAATATAGGAGAATTAAAATGGCAGAAATTACAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	58	456	F	133 aa

> 3857996-1 ORF translation from 58-456, direction F VQAVSESAAAPVRAKVRPTYSTNASSYPIGECTWGVKTLAPWAGDYWGNGAQWATSAAAA GFRTGSTPQVGAIACWNDGGYGHVAVVTAVESTTRIQVSESNYAGNRTIGNHRGWFNPTT TSEGFVTYIYAD*

Description: unknown

Assembly ID: 3858236 Assembly Length: 740bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1	261	R	87 aa

> 3858236-1 ORF translation from 1-261, direction R ______
VILLNSEEKVKKERRSKERISTTKKGFFRMVLRYHLTLLGQGTGVVTVLFTSAFLPYLMM
IGLISKIRDSQIVPDIHPPYWLPFFL*

Description: unknown

Assembly ID: 3858264 Assembly Length: 2219bp

> 3858264 Strep Assembly -- Assembly id#3858264 ATCGAATTCGTTTTGCAAGTGGCGAAATGCGAACCACGTTTGTGTCTTTATAAGTTTCCA CGTCTTCTTTGTGGACACGACCGTTTGCACCTGAGCCAGAAACGTCGTAGAGGTTTATCC $\tt CTAAATCATCCGCTAACTTTCTAGCTGCAGGAGTCGCTCTTAGCTTGTCATCAGCCATGA$ CCTCTCCAATTCTATTTATGATACAAAGGGCGTCAAAAGCGACTGAAAAATAGGAAATCG ACGATGGCTTCGATGAAGCCAAGGAGTTTATCTTTTTTTCCAAGCTTTTAGCCCGTGCT CTAATCTAAGATATTAAGGACGAAGAGCTCTGCACCTAAAAGATACAAAGTTCTCGTCAG CTTTGTTTTATTTACATAACTTATCTTATGTAACTCTATTCTTTGTTATAAGTTTTTCGG ATTGCATCTTTGATACTTTCAACTGTTGGAATCATTGCACATTTTTAGGTTTTTGCGCATA AGGCATCGGCACATCTTCTCCTGCACAACGGCGGATTGGTGCATCTAGATAGTCAAATGC ${\tt TTCTGATTCTGAAATAATAGCTGAAATTTCACCGATATAGCCACTTGTTTTGTGGGCATC}$ GTTGACCAGAACAACCTTACCAGTCTTCTTCACTGAGTTTATGATGATATCCTTATCAAG $\tt CGGAACAAGGGTACGTGGGTCAACAATTTCAACTGAAATTCCTTCTTCAGCTAATTCTTC$ AGCAGCTTGAACCACACGGCGAAGCATTTTTCCATAAGTGACAACTGTTACATCCGTTCC TTGGCGTTTGATTTCACCAACCCCAAGTGGAATTGTGTAGTCTGGATCAACTGGCACTTC CCCTTTTTGGTTAAATTCTGACTTGTACTCAAGTATAATAACTGGGTTGTTATCACGGAT AGAAGACTTAAGCAGGCCTTTCATGTCCGCAGGTGTTCCAGGTGCCACAACCTTAAGCCC TGGAATGTGAGTAAACCAAGACTCTAGAGATTGTGAGTGCTGGGCGGCAGAGCCAACTCC GTTACCAGCTGCACAACGAACAGTCATTGGAACCTGACCTTTACCACCAAACATGTAACG TGTTTTAGCAGCTTGGTTGACGATATTGTCCATGGCAATAACAGAGAAGTCCATGAAGGT CATATCGACGATTGGACGAAGTCCTGTCATGGCTGCTCCTGCTGCAGCTCCAGAGATGGC AGCTTCAGAAATCGGACAGTCACGGACACGTTCTGGACCAAATTCTTCAAGCATTCCAAC AGAAGTACCGAAGTCTCCTCCGAAGACACCGACGTCTTCTCCCATCAAGAACACATTTTC ATCGCGAACGCATTTCCTCAGACATAGCAAGGATAATGGTGTCACGGAAGGACATTGTTT TTGTTTCCATTTATCTCTTTCTCCTTAGTCTGCGTAAATATCTTCAAAGGCTGATTCAA GCGGTGGGAATGGGCTTTCCTCTGCAAATTTAACAGAAGCTTCTACTGCTTCCTTTACTT GCGCTTGGATTTCTTCCAATTCTTCGGCACTTGCAATGTTATTTTCAATAAGGTAATTGC GGAGGTTTTCGATTGGATCTTTTTGTTTCCACAATTCCACTTCTTCACGCGTACGATATT GACCATTGCCACTGCGAACATGGTCTATAGCTTTCTGAAATCCTTCATAGACATCGATGA CATTGTTACCGTCTTCGATGAACATTCCAGGAATTCCATAAGCGGCGCTACGTTGATGGA TATGTTCTATATTGGTCATTTTCTTGATATCCGCAGAGATACCGTAACCGTTGTTAATGC AATAGAAAATGACTGGCAGGTTCCAGATAGAAGCCATGTTCACTGCTTCGTGGAAAACAC

CTTCATTGGTCGCACCATCTCCAAAGAAGCAGACAACGATTTTACCGGTATTTTGCATTT
GCTGACTGAGGGCTGCACCGACAGCGATCCCCCATACCACCACCACCATACCATTGGCAC
CAAGGTTCCCAGCATCAAGGTCAGCGATATGCATAGATCCACCTTTCCCTTTACAGGTTC
CAGTGTATTTACCAAGGATTTCAGCCATCATTCCGTTGAAGTCAATCCCTTTAGCAATAG
CTTGCCCGTGTCCACGGTGGTTTGAGGTAATCAGATCATCTGGATTGAGAGCTACATAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	439	1365	R	309 aa

> 3858264-1 ORF translation from 439-1365, direction R VTPLSLLCLRKCVRDENVFLMGEDVGVFGGDFGTSVGMLEEFGPERVRDCPISEAAISGA AAGAAMTGLRPIVDMTFMDFSVIAMDNIVNQAAKTRYMFGGKGQVPMTVRCAAGNGVGSA AQHSQSLESWFTHIPGLKVVAPGTPADMKGLLKSSIRDNNPVIILEYKSEFNQKGEVPVD PDYTIPLGVGEIKRQGTDVTVVTYGKMLRRVVQAAEELAEEGISVEIVDPRTLVPLDKDI IINSVKKTGKVVLVNDAHKTSGYIGEISAIISESEAFDYLDAPIRRCAGEDVPMPYAQNL KMCNDSNS*

Description:

2-OXOISOVALERATE DEHYDROGENASE BETA SUBUNIT (EC 1.2.4.4)
(BRANCHED- CHAIN ALPHA -KETO ACID DEHYDROGENASE COMPONENT BETA
CHAIN (E1)) (BCKDH E1-BETA). - BACILL US SUBTILIS.

Assembly ID: 3858610
Assembly Length: 1078bp

> 3858610 Strep Assembly -- Assembly id#3858610 CTAACCCTNGACGGGGCCGCTATCATCAGTCAAACAGCTAAAAATCTTGTCTGCAAAAGT $\tt CTCGATTAACTGAGCTTTTACAAAAGCCGTATTTCCTGGAATAACTTGGAGATTGATCAT$ $\tt CTTATCCATCAATTCAGCCGATTCGATATTGTCTTCAGCCAGTTGCAGACTTTTTACGAT$ TGATTTTGGCAATTCGTAGACATAGGTGTTGTCTCTCAAAGGAATTTTTGACAATACCTAA CTCTTTGATATCTCGGGATACCGTCGCCTGAGTGGCAGTGATACCTGCTTCTTTCAAATG TTCTACAATTTCTTCTTGCGTGCCGATTTGATAATCTGTCACCAATCTTCTAATTTTTTC AAGTCTCTCTTTTTATTCATTTTTAAATTGACTATGCGCCCTCTCTACTGCTTCTTTAA TCTCAGCAAGAATCTGATTGCTTGCTGACTTTTCTTTTTTCAAATACACTAAAAATTCAA TATTTCCATGTCCACCTTGGATGGGAGAAAAGTCCAAGCCAAGGACTGAAAAACCTGCCT CTACTGCCATAGCTGTTACAGATTCAAGGACATTCTGATGAATCTTAGCATCTCGAATAA TTCCATTTTTCCCAATCTGCTCACGTCCTGCCTCAAACTGAGGTTTGACAAGTGCTACCA CCTGACCTTGATCAGCCAAGACACGGTGCAAGGCTGGCAAAATCAGACTAAGGGAAATGA AACTCACATCAATACTGGCAAAGCTCGGCTCCTGCTCGAAATCAGTCTTTTCAGCATAGC GGAAATTGAACTGCTCCATGCTGACAACTCGTGGGTCTTGGCGTAATTTCCAAGCCAACT GATTGGTACCAACATCGACTGCAAAGACCAACTTGGCACTATTCTGTAGCATGACATCGG

TAAAACCTCCAGTAGAGGCCCCGATATCAATCGTAGTCGCGCCATCCACCGACAAATCAA
AGACCTGCAAGGCCCTTTTCCAGTTTCAAACCACCACGGCTGACATACTTGAGTTTCTCC
CCCTTGAGTTTTAATTCGGTGTCATCTGGAATTTCTCTCCTGGCTTGTCAAACCGTTC

ORF Predictions:
ORF # Start End Direction Length

949

374

> 3858610-2 ORF translation from 374-949, direction R VDGATTIDIGASTGGFTDVMLQNSAKLVFAVDVGTNQLAWKLRQDPRVVSMEQFNFRYAE KTDFEQEPSFASIDVSFISLSLILPALHRVLADQGQVVALVKPQFEAGREQIGKNGIIRD AKIHQNVLESVTAMAVEAGFSVLGLDFSPIQGGHGNIEFLVYLKKEKSASNQILAEIKEA VERAHSQFKNE*

R

192 aa

Description:

1

cytotoxin/hemolysin ORF2 tly - Serpula hyodysenteriae

Assembly ID: 3858716 Assembly Length: 928bp

> 3858716 Strep Assembly -- Assembly id#3858716 ACTTTCCTGACCTCTGTTTCCAAATAATCTTCCAAATGGACAGAGATCTACCGTTGTTTG CATCGATAGCTGAGGTCTTTTTTAGAAAATACCATCACTTTTAGAAAAATATAAACACATT TTTCGGATAAGATTAAGGTTAAAAGCAGCTCGTTTATCCAGGGTCTGATGATGGTCTTCA CGATAAACCACATCCAATAACCAATGCATACTTTCTGCTGACCAATGACCTCGAACACTA TGGCAAAAGGTCATCAACATCAAGCTTAAAGTTAAAGATAAAATAGCGAACGTCTTGACT TGTAATACCATCTCTATCAATAGTATTACGAGTCATTCCAATTCCACGCAATTTATGCCA TTTGGGATGGTTTTGACACACCACTTAACATCAGAAGACACCCAGTATTCTCGAACTTC AATCTATCCTCTTTCTATATTCTAACTGAAAGGACAATTCAATGATTCATTAATAATGA TTAGCGCCATTGCTCTAGCCATTGGAATTGGTTACCGCACCAAAATCAATATTGGCCTGC TGGCTATTGCTTTTCTTACCTCATCGCAACCACTCTCATGGGATTAAGTCCCAAAGAAC ACGTTGCAACAACTAACGGTACTCTTGATGTTTTTGGCTCAACACATTCTCTACCGCACAC GCACCCACCCTAACGCCCTCTACATGATTTTATACCTGATGGCAACCCTTTTGTCTGCTT TAGGTGCTGGATTTTCACTACTATGGCCGTTTGCTGTCCTCTAGCGATTACCCTCTGTC AAAAAGCGGACAAACACCCTTTGATTGGAGTCAAAGCGTCAATGGGAACTTCAGGAAGGG TAATTTGATAACCAAAGGAATAAAATTT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	238	402	R	55 aa
		50		

> 3858716-1 ORF translation from 238-402, direction R VSSDVKWLCQNHPKWHKLRGIGMTRNTIDRDGITSQDVRYFIFNFKLDVDDLLP*

Description:

unknown

Assembly ID: 3859124 Assembly Length: 847bp

> 3859124 Strep Assembly -- Assembly id#3859124 AAAAACGCACCATATCAAAAACTAAAAAGTTTGATATCATGCGTCATGTCTTAAACTAAT AACCAAAGGAGCAATTTCTCGGCTTAGCTGACTCTTCTCGGAATCTGAACCATGTACAAC ATTTTGGATAATCTCATTTTCTCCAGCAGCTTTTGCAAAATCACCTCGAATAGTGCCTGG TAAAGCTTCTTCTGGACGAGTTGCACCCATCATGGTCCGCCAAGTTTCGATTACTTTGGG ACCAGAAATGACACCCACAAGAACTGGACCTGAAGTCATGAATTCACGAATCGGTGGGTA AACGAAACTCCAATTTTTCGATTGTAAATCCACGTTGTTCGATGCGCTTTAACACTTCAC TCTCCTTTGTCAGCTTCTTTTTTTTTTTTACCACATCTCGTGGAAAAATGGAGAAAGTT TTCAGAAGAGAGAATGAGAGAACCCTCGGGTTCTCTCATTCTCTCTTATTCTACTGTTTC $\tt TTCCACAGTGTCAACGGCAGTATCCACAACTACTTCTGTTGTTTCTTCATTTCCTTCTTC$ CTCTACTGGAGGATTAAGGTATTCTTCTTCGTTGACAGCATGTGGTTCAAGGTTACGGTA ${\tt ACGGGCCATACCAGTACCAGCTGGGATGATCTTACCGATGAATAACATTTTCCTTTAAAT}$ TCCAAGG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	73	453	R	127 aa

> 3859124-1 ORF translation from 73-453, direction R VDLQSKNWSFVHRFSEELIDQHYQDLVGQSFYPPIREFMTSGPVLVGVISGPKVIETWRT MMGATRPEEALPGTIRGDFAKAAGENEIIQNVVHGSDSEKSQLSREIAPLVLRVDWLNQL VKSSFE*

Description:

NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6) (NDK) (NDP KINASE) (ABNORMAL WING DI SCS PROTEIN) (KILLER-OF-PRUNE PROTEIN). - DROSOPHILA MELANOGASTER (FRUIT FLY) .

Assembly ID: 3859244

Assembly Length: 578bp

> 3859244 Strep Assembly -- Assembly id#3859244

ACAACCTAACTACCGNCTAATTCAGCGCGAACTTCTGCAGTAGCTGCTTCAACAACTTCA
CGACGTGAAAGGATGAAGCGGTTTCTTTAGCGTTAACTTCTTTGATTTTAGTATCAAAT
TCTTGACCTACAAAACGCTCAGCGTTACGTACGAAACGAGTATCCAACATTGAAGCTGGG
ATAAATCCACGAACACCTTCAAATTCTACTGAAAGTCCACCTTTAACGGCACGCGTTCCT
TTAACAGTAACAACTTCTTCTTCGCGACCAACAAGTTTGTCCCATGCTTTGCGAGCTTCA
AGGCGTTTTTTAGATGACAAGGTATGTAACTGTATCAGTATCTTTACCAACTACTTGACG
AAGTACAAGAACATCCAATACTTCTCCTACTTTAACAAAGTCATTGATATCTGCATCACG
ATCGTTTGTCAATTCGCGAAGAGTCAAGACACCCTTCAACACCAGTTCCCAGAAGAATGC
AACGTTAGCTTGAGTCGCATCAACTGTCAATACTTCAGCACTAACACCAGTCTCA
ACTTGACTNACGCTATTGAGCANATCTTCAAATTCGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	310	462	R	51 aa

> 3859244-2 ORF translation from 310-462, direction R VLKGVLTLRELTNDRDADINDFVKVGEVLDVLVLRQVVGKDTDTVTYLVI*

Description: unknown

Assembly ID: 3859250 Assembly Length: 888bp

ATTTCCACAATACGGTCATTTTCCACTTGCTCAATCGACTCAATCAGG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	244	402	R	53 aa

> 3859250-1 ORF translation from 244-402, direction R VGEPFANLSDLLDTYYKDKAERDRVKQQASELIRRVENELQKNRHKLKKQEK*

Description:

STRFBP5A NCBI gi: 496253 - Streptococcus pyogenes. Fibrinogen/Fibronectin binding protein

Assembly ID: 3859588 Assembly Length: 513bp

> 3859588 Strep Assembly -- Assembly id#3859588
ATCGAATTTTGTTCTTTCATAGAGAGCTACCTGAGTTCTATTCAAGCTCAGGTAGTACTT
TCTTATAAACTAGACAAACTAACTGTCATTCTACCATCAGATTACAAGACATCATCGTCA
CTCACCTTGGAATTCAATGTCGTACCCCAATGGGTAATTTTACGGTGGGGTTGAGCTAAA
ATTGGTCTGTTTTCATAGATTGTTTGCCATCTATTCCATAGTAGGCCCCGTCTTTTTCTCA
ATCTTAACTCGCAGATTTCTCATATTTTCTTTGATTGGGAGGTTGAGGACAAAACCTGCA
GTCTGGTTGCGACCGTTTCCTTCCCAAGAATGACTACGAACAACTTGGTTTCCATCTTTA
TCTACTGGAACTTCTTCCCAAGTTATGGAGTAGCGGGCAATGTAAGCTCCACTGTGTTGA
ATTATCAATGTTTTATCTTTCACAGGGAGTCTGACTGATTGGTTGAACTGGCTTAGAAAC
TTGTGTCGCCGTTTCAGCATTCGTAGCTATAAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	102	443	R	114 aa

> 3859588-1 ORF translation from 102-443, direction R VKDKTLIIQHSGAYIARYSITWEEVPVDKDGNQVVRSHSWEGNGRNQTAGFVLNLPIKEN MRNLRVKIEKKTGLLWNRWQTIYENRPILAQPHRKITHWGTTLNSKVSDDDVL*

Description:

PNEUMOLYSIN (THIOL-ACTIVATED CYTOLYSIN). - STREPTOCOCCUS PNEUMONIAE.

Assembly ID: 3859774
Assembly Length: 214bp

> 3859774 Strep Assembly -- Assembly id#3859774
ATCGAATTCTAACATGTGCTTCTCTTCTATTGTTCCTATCTTTAAAATCTACTCCTTCA
TGCTCCAAGAGCCAAGCTTTCTTTTCCACTCCTGCAGCATAACCTGTCAGACGCTTGCCT
GCTCCCAACACACACACACACAGGTACTAGGATAGACCAAGGATTGCGTCCCA
CCAATTGCTTGAGCAGAAGCCACTTGCAGGTCTT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	9	131	R	41 aa

> 3859774-1 ORF translation from 9-131, direction R VLGAGKRLTGYAAGVEKKAWLLEHEGVDFKDRNNRRRSTC*

Description:

GLUTAMATE RACEMASE (EC 5.1.1.3). - ESCHERICHIA COLI.

Assembly ID: 3860140
Assembly Length: 1084bp

> 3860140 Strep Assembly -- Assembly id#3860140 CTCCAGCAATGGATCCAAGTATGATGGGCGGGATGATGTAAGCTTTCTATAGAAAACACC TTATAAAAAACACGAAAGGAGGGAATGACTAACCCTTCTTTTTATAATATTCACTTCTAA GATTGATGGTGAGCTCTCCTAACTTATGATAAAATAAGACTAGAGGAAAGGAGAAGAA $\tt CCGTGTCATGCAGAAAATGGTACAAGCATGGGAAAAAAATGAGTAGCGGCCAACCATTCT$ CGTGCATGTTTGCTGTGCCCCTTGTAGTACCTATACACTAGAATATTTGACCAAGTATGC AGATGTGACCATCTATTTTGCCAATTCTAATATCCATCCCAAGGCAGAATACCATAAGCG GGTCTATGTCACCAAGAAATTTGTTAGTGATTTTAATGAGCAGACAGGAAATACGGTTCA GTACCTAGAAGCTCCCTACGAACCCAATTAATACCGAAAACTAGTTAGGGGGCTAGAGGA GGAGCCGAAGGTGGCGACCGTTGCAAGGTTTGTTTTGACTACCGACTGGATAAAACAGC GCAAGTGGCTATGGACTTGGGCTTTGACTACTTTGGTTCAGCCTTGACCATCAGTCCTCA TAAGAATTCTCAAACTATCAATAGCATCGGAATCGATGTGCAAAAAATTTACACGCCCCA CTATCTTCCCAACGATTTCAAGAAAAATCAAGGCTACAAACGTTCAGTAGAGATGCGTGA GGAGTATGATATCTATCGTCAATGTTATTGTGGCTGCGTCTATGCAGCCCAAGCCCAGAA GAAAGACTATTCTCATATCACATTTATAGTAGATTGAAACTAGAATAGTACACCTTTACT TCTCAAACATTGTTAGAAATCGATTCGGCTGTCCTTATTTCATTTTAATATACTGGTACG AAATTAGATATCAATGATAACTTGCCTCAAGGTAGGTTTTTTGATAGTAGAAAAGCGA TAGA

ORF Predictions:

ORF #	Start	End	Direction Length	
1	302	511	F 70 aa	
2	605	856	F 84 aa	

> 3860140-1 ORF translation from 302-511, direction F VHVCCAPCSTYTLEYLTKYADVTIYFANSNIHPKAEYHKRVYVTKKFVSDFNEQTGNTVQ YLEAPYEPN*

Description:

unknown

> 3860140-2 ORF translation from 605-856, direction F VAMDLGFDYFGSALTISPHKNSQTINSIGIDVQKIYTPHYLPNDFKKNQGYKRSVEMREE YDIYRQCYCGCVYAAQAQNIDLV*

Description:

unknown

Assembly ID: 3860206 Assembly Length: 1124bp

> 3860206 Strep Assembly -- Assembly id#3860206 ${\tt ATCGAATTCATTGACTGCCTGAAAAGACTTCAACTCGTCTGCCTGATAACCGAAAGACTT}$ GGTTACTTGATACCTGATACGGACTCCTGTACCTTGTTATTGAGTTCAGAAAAAGCAGC ${\tt TTGGGATTCGCCAAAGGCCTTATGAGTCTTTCTCCCTAGGCGACTAGTCGTATAGGCCAT}$ GAAAGGTAGGGGGAGAATGGCAACAAGAGTCATCTGCCATGAGATGCTAAAGAGCATGGT CAACAAAGTCACCAGAGCCGTGATAGAGGCATCCACCGCAGACATGACACCGCCACCTGC TAAACGAGTCAAGGAATTGATATCATTGGTTGCGTGTGCCATCAGATCACCCGTCCGATA GGTTTGATAAAAGGCTGACGACATTTTTGTGAAATGCTTAAACAAGCGAGACCGCATGAT CTGTCCCAAGCAATAAGAGGTCCCAAGGATATACATACGCCACACATAGCGCAAATAGTA CATACCAAAGGCTGCAAGTAGCAAGTAAAATAGGCTAAGAAGGAGGTCCTGCTGGGTTAA TTGCCCCGATGTGATGGCATCAATAACCCGCCCCATAACCATAGGAGGAATGAGATTGAG GACGGAAACCAAGACCAGGGCCACAATCCCGACTAGATAACGGCGTTTTTCTAACTTGAA AAACCACCAAAATTTTTGAATAATGGACATAAAATCCCTTTCTGGATTGCAAATAGAAAC CTGAGGCCAATACTCAATGGAAAATCAAAGAGCAAACTAGGAAACTAGCCGCAGGCTGCT ${\tt CAAAGCACTGCTTTGAGGTTGTAGATAGAACTGACGAAGTCAGTAACCTACATACGGCAA}$ GGCGACGTTGACGCCGTTTGAAGAAATTTCCGAAGAATACAAGACCCCAGGTTTTTCTTA TTTATAAGTTACCACTGTAACAGCACCCTTGTCATATTCAGCAATAAAGATATTGGCTAC ATTGTCATGCCCTTGTTTACTGAGGTTATCAAGCAACCACTCCTCGCTACGAACAATCGA TCCCAAGACATCTACTTGAATCACACCGTCAGTCACAACTGGATACTTAGGATTTTCATC TCCCATTTGCACAACGATGAGTTGCCCATTTTTGCTCTTGCACAG

> 3860206-2 ORF translation from 898-1056, direction R VTDGVIQVDVLGSIVRSEEWLLDNLSKQGHDNVANIFIAEYDKGAVTVVTYK*

Description: unknown

Assembly ID: 3860270 Assembly Length: 1242bp

> 3860270 Strep Assembly -- Assembly id#3860270 TTACCTTCATTGCAGCCATTATTGGTTCTTGTGTCAGCCAGATTTTAAGTATTCTTTATA AGACACCTGCTGTGGTCTTTATCTTGGCCATTTTTGGCACCGCTGGTTCCAGGTTATCTCT CCTACCGAACAACTGCCTTTTTTGTGACAGGGGACTATAATAAAGCACTGGCAAGTGCGA $\verb|CCTTGGTTGTCATGTTGGCTTTGGTAATCTCTATTGGAATGGCTAGCGGAACAGTGATTC|\\$ TCAGACTGTATCATTATATAAAAACACATCGAGTATCGTAGACTTTACAGAAATAAAAGA ATTTTCTGAAAAATGAGATAAATAAATTAACAACGCTTTCTATATGTGCGAGAATACCGC ACTTATGAAGAAATTGCGGCTGATTTTGGTATCCACGAAAGCAACTTAATCCGTCGGAGC CAATGGGTTGAAGTAACTCTTGTTCAAAGTGGTGTTACGATTTCAAAAACTCATCTTAGT TTAGCGAATGATTCTGGTAAAAAGAAATTTCACGCTATGAAGGCTCAGGCGATTGTCACA AGTCAAGGGAGAATTGTTTCTTTGGATATCGCTGTGAACTATTGTCATGATATGAAGTTG TTCAAAATGAGTCGCAGAAATATCGGACAAGCTGGAAAAATCTTGGCTGATAGTGGTTAT CAAGGGCCCATGAAGATATATCCTCAAGCACAAACTCCACGTAAATCCAGCAAACTCAAG CCGCTAATAGCTGAAGATAAAGCTTATAACCATGCGCTATCCAAGGAGAAGCAAGGTT GAGAACATCTTTGCCAAAGTAAAAACGTTTAAAATGTTTTCAACAACCTATCGAAATCAT CGTAAACGCTTCGGATTACGAATGAATTTGATTGCTGGCATTATCAATTATGAACTAGGA TTCTAGTTTTGCAGGAAGTCTATTATTTTCCTTATTGTCTGTAAGTCTACTGACCTTGTT GTTTATCCCAGTCATGGTTTCTAGTTCGGGCTCAGAGTTTCAAAGTGGATGGCAAGAGCA TCAATTGATTGCTGAGAAGGTTAGTAAAACACTTGACAAGACATTTGATAAGGATGTCAG AAAAATTCCGACCAGTCAGTTTTATCAAAAATTTGTAGATGAGATGGGAAGGATTTACTC AGGAAATTTGATCCTCCCAGGAGCTGATAACTGTGAATGGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	346	966	F	207 aa

> 3860270-1 ORF translation from 346-966, direction F

VREYRTYEEIAADFGIHESNLIRRSQWVEVTLVQSGVTISKTHLSAENTVIVDATEVKIN RPKKQLANDSGKKKFHAMKAQAIVTSQGRIVSLDIAVNYCHDMKLFKMSRRNIGQAGKIL ADSGYQGPMKIYPQAQTPRKSSKLKPLIAEDKAYNHALSKERSKVENIFAKVKTFKMFST TYRNHRKRFGLRMNLIAGIINYELGF*

Description:

ISL2 protein - Lactobacillus helveticus (Probable transposase)

Assembly ID: 3860438
Assembly Length: 1575bp

> 3860438 Strep Assembly -- Assembly id#3860438 GTGATGGGGCCTCAGGGAAATGGTTTTGACTTGTCTGACCTTGATGAGCAGAATCAGGTT GAACGTGGAGTGAAAGTAGTGACAGTCCTCGGTTTTGCTAATAAGGATGCTGTTATTTTG AAAACGGAATTGGCTCAGTATGGTCAGGTCTTTGTAACGACAGATGATGGTTCTTATGGC ATCAAGGGAAATGTTCCGTTGTTATCAATGATTTAGATAGTCAGTTTGATGCTGTTTACT CGTGTGGGGCTCCAGGAATGATGAAGTATATCAATCAAACCTTTGATGATCACCCAAGAG ${\tt CCTATTTATCTCTGGAATCTCGTATGGCTTGTGGGATGGGAGCTTGCTATGCCTGTGTTC}$ TAAAAGTACCAGAAAGCGAGACGGTCAGCCAACGCGTCTGTGAAGATGGTCCTGTTTTCC GCACAGGAACAGTTGTATTATAAGGAGAAAATTATGACTACAAATCGATTACAAGTGTCT $\tt CTACCTGGTTTGGATTTGAAAAATCCGATTATTCCAGCATCAGGCTGTTTTGGCTTTGGA$ CAAGAGTATGCCAAGTACTATGATTTAGACCTTTTAGGTTCTATTATGATCAAGGCGACA ACCCTTGAACCACGTTTTGGGAATCCAACTCCAAGAGTGGCAGAGACGCCTGCTGGTATG CTCAATGCAATTGGCTTGCAAAATCCTGGTTTAGAGGTTGTTTTGGCTGAAAAGCTACCT TGGCTGGAAAGAGAATATCCAAATCTTCCTATTATTGCCAATGTAGCTGGTTTTTCAAAA CAAGAGTATGCAGCTGTTTCTCATGGGATTTCCAAGGCAACTAATATAAAAGCTATCGAG $\tt CTCAATATTTCTTGTCCCAATGTTGACCACTGTAATCATGGACTTTTGATTGGTCAAGAT$ CCAGATTTGGCTTATGATGTGGTGAAAGCAGCTGTGGAAGCCTCAGAAGTGCCAGTTTATGTCAAATTAACCCCGAGTGTGACCGATATCGTTACTGTCGCAAAAGCTGCAGAAGATGCG GGAGCAAGTGGCTTGACTATGATCATACTCTGGTGGGATGCGCTTTGACCTCAAAACCAG AAAACCAATCTTGGCCAATGGAACAGGTGGAATGTCAGGTCCAGCAGTTTTCCAGTAGCC CTCAAACTCATCCGCCAAGTAGCCCAAACAACAGACCTGCCTATCATTGGAATGGGGGGA GGAACAGCTAACTTTACCAATCCTTATGCCTGCCCTGACATCATCGAAAATTTACCAAAA GTCATGGATAAATACGGTATTAGCAGTCTGGAAGAACTCCGTCAGGAAGTAAAAGAGTCT CTGAGGTAAACTGCAATCAATCTGTTCTTGATTTTTTTATTAGTTTGTAATATGAATTTAG GAGAATTTTGGTACAATAAAATAAATAAGAACAGAGGAAGAAGGTTAATGAAGAAAGTAA GATTTATTTTTTTAG

ORF	#	Start	End	Direction	Length
ORF.	Predic	ctions:			

1	1	276	F	92 aa	
2	460	· 1128	F	223 aa	

> 3860438-1 ORF translation from 1-276, direction F VMGPQGNGFDLSDLDEQNQVLLVGGGIGVPPLLEVAKELHERGVKVVTVLGFANKDAVIL KTELAQYGQVFVTTDDGSYGIKGNVPLLSMI*

Description:

unknown

> 3860438-3 ORF translation from 460-1128, direction F VKMVLFSAQEQLYYKEKIMTTNRLQVSLPGLDLKNPIIPASGCFGFGQEYAKYYDLDLLG SIMIKATTLEPRFGNPTPRVAETPAGMLNAIGLQNPGLEVVLAEKLPWLEREYPNLPIIA NVAGFSKQEYAAVSHGISKATNIKAIELNISCPNVDHCNHGLLIGQDPDLAYDVVKAAVE ASEVPVYVKLTPSVTDIVTVAKAAEDAGASGLTMIILWWDAL*

Description:

DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1) (DIHYDROOROTATE OXIDASE) (DHODEHASE). - BACILLUS SUBTILIS.

Assembly ID: 3860544 Assembly Length: 776bp

> 3860544 Strep Assembly -- Assembly id#3860544
CTAAGATATCAGAATAACAACGAAATCGAAGCATTAAAAACAAATATTACTTCTAAGAAT
AGCGAGATTGATAGTCAACAAAGCAATATTAAGGATATGACCGTACCTATAATGATCCAA
CTTCTCAGGCTTATAATATTTATGCTCAATTAATTAGTGAGCTTAGGTACTGCTCGTTCAA
ACAACAATAAAAGTATTACAGAGCTTGAGGCTAATCTTGGAGTGGCAACAGGTCAAGATA
AAGCTCATAGTATATTAGCGTCAAATGAAGGTACTCTGCATTATCTGGTACCTTTGAAAC
AAGGAATGTCTATTCAGCAGGGGCAAACGATAGCAGAAGTTTCAGGGAAAAGAAAAAGGTT
ACTATGTAGAGGCTTTTGTACTTGCGAGTGATATTTCTCGTGTTTCAAAAGGAGCAAAAG
TTGATGTTGCTATTACTGGTGTGAATAGTCAAAAATATGGAACACTAAAGGGACAAGTCA
GACAGATTGATTCAGGAACAATTTCCCAAGAAACGAAAGAGGGGGAATATTAGCCTCTATA
AAGTCATGATAGAAACCTTAACTCTAAAACATGGAAGCGAGACGGTCATACTCC
AAAAGGATATGCCAGTTGAAGTGCGGATTGTCTATGATAAAAACCTTACTTGATTGGA
TTTTAGAAATGTTAAGTTTCAAGCAATAATTGGTTTTAAACCTTAGGTAACCTTATAAAAA
CAAATAAGGTAGAGAAAGGATATTTTATCTAAGTTAGCTCACATTACTGCCATTCC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	222	689	F	156 aa

> 3860544-1 ORF translation from 222-689, direction F VATGQDKAHSILASNEGTLHYLVPLKQGMSIQQGQTIAEVSGKEKGYYVEAFVLASDISR VSKGAKVDVAITGVNSQKYGTLKGQVRQIDSGTISQETKEGNISLYKVMIELETLTLKHG SETVILOKDMPVEVRIVYDKETYLDWILEMLSFKQ*

Description: unknown

Assembly ID: 3860558 Assembly Length: 1487bp

> 3860558 Strep Assembly -- Assembly id#3860558 ATCTTCCTTTTGCTTTTCAATCGTAATTCCAGATAATTTTTCCCATTCTTTTTGGTGACC $\tt CCGGGAGGCAGGATTGAATGGCTTGAGGGAAATGACAAACTTGTCCTAGCAAGAATGGTC$ ${\tt AAGGCACCTCCGTCTACAATCAAAATCTGATTTGGGCTTAAATTAACAAAGACCTGTTTT}$ ACTAGATTTTCTCCAGAAGCATCGTCTCGTAAACCAGGCCCCAGCAAGATAACTTCTGCC ${\tt TTCTCCAATTGCTCTTTTAACAATTGCTGGTCTTGAAGAGAAAAGGCCATAGGCTCAGGT}$ AAATGGCTGTGCAGAGCCGGGATATTTTCCCTGTCCGTTCCAACGGTCACCAATCCTGCA CCGCTTTTTACAGCTGCTAAAGCAGCCATGATGATGGCACCTCCATAAGGATAAGTACCA CCAAGCAGCAGCAGACGACCATAATCTCCTTTATGACTTGAACGAGAACGTTCAATAATA ACAACAAAAGGAGACGCAGACCTCCTTTTGTAATCTTATATCTAAAATTTAATATTCAT TTCTGCCATTTTAGATATAGCTATAGAAAATACACTCTATTAATCGAATGTTTCTCTTAT $\tt TTTCTATCCAATGTCCGAAGTGCTGCTTGATAAGTTTGCTCCATCAGCATGGTAATGGTC$ ATAGGACCGACACCTCCAGGGACTGGCGTGATATGGCTAGCAAGTGGTGCAACTGCCTCA TAATCAACATCTCCACAGAGCTTCCCATTTTCATCTCGGTTCATCCCAACGTCAATGACA ACCGCACCTGGTTTGACAAAGTCAGCAGTCACAAACTTGGCGCGGCCGATTGCGACTACA A GAATATCTGCTTTAGCAGCCACCTTGGCAAGATTATGAGTTCGTGAGTGGGCCAAGGTTACTGTCGCATTTTTAGCCAAAAGAAGCTGAGCCATAGGTTTTCCAACGATATTTGAACGA $\tt CCGATTACGACCGCATTTTTACCTTCCAAGTCAATCCCATATTCATGAAACATTTCCATA$ ATTCCTGCAGGTGTCGAGGGAATCATGACTGGATGTCCAGACCAAAGACGTCCCATGTTT AGGGGATGGAAACCATCCACATCCTTTTCTGGGTCAATGGCTAATAAAACCGCCTCTTCA TCGATATGTTTTGGTAATGGCAACTGGACCAAAATCCCATGCCAAGCTGGATCCTGATTA TATTTAGCAATCAGGTCTAACAATTCCTCTTGAGTAATGGTCTCTGGAACTCGCACTACT TCGGTACGGGAACCAGCCGCAAGAGCTGACCTCTCCTTGTTGCGAACGTTAAACTTGGCT GGCTGGATTATCCCCAACCAAAATCACTACCAAACCAGGCACTAGAG

		• .		
CADE	Pred	っぺた	7 /	つわせ・
OILT.	E T = CC	エしし	⊥,	JII 0 .

ORF #	Start	End	Direction	Length
1	717	1376	R	220 aa

> 3860558-2 ORF translation from 717-1376, direction R _____ VRVPETITQEELLDLIAKYNQDPAWHGILVQLPLPKHIDEEAVLLAIDPEKDVDGFHPLN MGRLWSGHPVMIPSTPAGIMEMFHEYGIDLEGKNAVVIGRSNIVGKPMAQLLLAKNATVT LAHSRTHNLAKVAAKADILVVAIGRAKFVTADFVKPGAVVIDVGMNRDENGKLCGDVDYE AVAPLASHITPVPGGVGPMTITMLMEQTYQAALRTLDRK*

Description:

5,10-methylene-tetrahydrofolate dehydrogenase (folD) homolog - Haemophilus infl uenzae (strain Rd KW20)

Assembly ID: 3860568
Assembly Length: 1634bp

> 3860568 Strep Assembly -- Assembly id#3860568 CGTGCCTTGGCCAATGATCCAAAAATCTTGATTTCAGACGAGTCGCTTCAAATTTCGGCC CCTGGACCCTTAAGACCAACCCAAGCAGATTTTGGCCCCTTGGTTGCAAGATTTGAACCAA AAATTAGGCTTGACTGTTGTCCTGATTACGCATGAAATGCAGATTGTCAAAGACATTGCC AACCGTGTTGCAGTTATGCAGGATGGGCATTTGATTGAAGAGAGTAGTGTGCTTGAAATC TTCTCAGACCCTAAACAACCTTTGACTCAAGACTTTATCTCAACAGCTACAGGTATTGAC GAAGCCATGGTCAAAATCGAGAAGCAAGAAATCGTGGAACACTTGTCTGAAAACAGTCTC AAGCATTATCAAGTAATGGCTAATATTCTCTATGGGAATATCGAAATCCTCGATGGTACT CCTGTTGGAGAATTGGTGGTGGTCTTGTCAGGTGAAAAAGCAGCGCTGGCAGGTGCTCAA GAAGCCATTCGTCAAGCAGGCGTACAGTTAAAAGTATTGAAGGGAGGACAGTAAGATGGA CTGGGGAACAGCTATCTACCTAACCCTCTATATGACAGTTCTTTCCTTCATTATCGGAGG CTTCTTGGGGCTAGTGGCAGGTCTCTTTCTCGTCTTGACAGCGCCAGGTGGTGTCTTGGA GAATAAAGTCGTATTCTGGATTTTAGACAAAATTACCTCAATTTTTCGTGCGGTTCCCTT GCCAAATGCAAGCCCTTGTCCCACTTTCTTTTGCAGTCTTTTGCCTTCTTTGCCCGTCAGG AGCGACTTTCTGGGACATCGTGGGTGTTTACCTATCAGAAGGTCTTCCAGATTTGATCCG TGTGACGACTGTGACCTTGATTTCCCTTGTTGGGGAAACAGCTATGGCCGGTGCGGTTGG AGCTGGTGGTATCGGTAACGTAGCCATCGCTTATGGATTTAACCGCTACAATCACGATGT GACCATCTTGGCAACCATCGTTATCATTTTGATTATCTTTGCAATCCAATTCTTAGGAGA TTTCTTGACTAAGAAATTGAGCCATAAATAAAAAAGAGCCGTGTGGCTCTTTTTAACTGA TCAGATTTTCTGGGCAAATTTTTTACTCAAGGCTTGTCCAATCAAGGCACCCACTAGGGC TCCGATGACAATACTTGCGATAAATAGAAGGACAGTTCCAGGGTTTGGAGCGACCATGAT GCGGTCGATATATTCTTGGGATTTTCCTCTTGCCAGAAGAGTAGCCATATAGGCTTTGGG GAAGTTCTTTGTTTTGTCCTTGTATTTTCCTAAATGAGCTACTCCATCTGCTAGGAGGCC ACAGATAATTCGAT

ORF Predictions:

ORF # Start End Direction Length

1 1040 1291 F 84 aa

> 3860568-3 ORF translation from 1040-1291, direction F VGVYLSEGLPDLIRVTTVTLISLVGETAMAGAVGAGGIGNVAIAYGFNRYNHDVTILATI VIILIIFAIQFLGDFLTKKLSHK*

Description: unknown

Assembly ID: 3860582 Assembly Length: 1087bp

> 3860582 Strep Assembly -- Assembly id#3860582 GGAATCATGATGTCACTGCTAAATGGTTTCTTAGAAAAAATATTTCCTGAGCGCTTA CAGATTAGTTTGGGCTTGCTGATTTTATCATTGAGCGGTACAGCTCCCTTCTGGTACCAA GCCTATCCCTTTGTCTTTGGAACACGGCTTCTCTTTGGTTTTGGGTCTTGGGATGATCAAT GCCAAGGCCATTTCTATTATCAGTGAACGCTACCAAGGAAAAAGGCGAATTCAGATGTTA GGGCTACGCGCTTCTGCAGAGGTCGTTGGAGCTTCTCTCATTACCTTGGCCGTCGGTCAA GTTGTTGGCCTTTGGTTGGACAGCTATCTTTCTAGCCTATAGTGCTGGATTTTTGGTGCT GAAGGAAGCAAGTCGTTTAACTCGAGAAATGAAAGGCTTGATTTTTACCTTAGCTATCGA AGCGGCAGTTGTAGTTTGTACCAATACAGCTATTACCATCCGTATTCCAAGTTTGATGGT GGAAAGAGGATTGGGGGATGCCCAGTTATCTAGTTTTGTTCTTAGTATCATGCAGTTGAT $\tt CGGGATTGTGGCTGGGGTGAGTTTTTCTTTCTTTGATTTCTATCTTTAAAGAGAAACTGCT$ $\tt CCTCTGGTCTGGTATTACCTTTGGCTTGGGGCAAATCGTGATTGCCTTGTCTTCATCCTT$ GTGGGTGGTAGTAGCAGGAAGTGTTCTGGCTGGATTTGCCTATAGTGTAGTCTTGACGAC TGCTGTATTAGGCTGTAGTTTCGGAGCCTTTACGACCCCATTCGTTCTAGGTGCAATTGG GCTGTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	356	1027	F	224 aa

> 3860582-1 ORF translation from 356-1027, direction F VLPLYLLFVPYGKSKKEVKKRAKEASRLTREMKGLIFTLAIEAAVVVCTNTAITIRIPSL

MVERGLGDAQLSSFVLSIMQLIGIVAGVSFSFLISIFKEKLLLWSGITFGLGQIVIALSS SLWVVVAGSVLAGFAYSVVLTTVFQLVSERIPAKLLNQATSFAVLGCSFGAFTTPFVLGA IGLLTHNGMLVFSILGGWLIVISIFVMYLLQKRALGLIPKFFF*

Description:

unknown

Assembly ID: 3860724 Assembly Length: 1191bp

> 3860724 Strep Assembly -- Assembly id#3860724 GGATTCCAACGATTATGAACTTGACTGGTCCACTGATTCATCCAATGGCTTTAGAAACAC AGCTTTCTTGGAATTAGTCGTCCAGACTCCTAGAAAGTACAGCTCAGGTTTTGAAAATAT GGTCGCAAACGTGCCATCGTGGTTGCTGGACCAGAAGGGTTGGATGAAGCTGGCTTGAAC GGAACAACCNAGATTGCACTTNTTGAAAATGGCGAAATCAGCTTGTCAAGCTTTACTCCA GAGGATTTGGGAATGGAAGGCTATGCTATGGAAGATATTCGTGGTGGGAATGCTCAGGAA AATGCAGAAATTTTGCTTAGCGTTCTGAAAAACGAAGCAAGTCCATTCTTGGAAACGACA GTTGCCTTGGCCCGTCAAGTGATTGCTAGAGGCCAAGGCCCTTGAAAAACTCAGACTGTTA CAGGAGTACCAAAAATGAGTCAGGAATTTTTAGCACGAATCTTAGAGCAGAAGGCGCGTG AGGTGGAGCAGATGAAGCTGGAGCAAATCCAGCCTCTGCGCCAGACCTATCGCTTGGCAG AATTTTTGAAGAATCATCAGGACCGCTTGCAGGTAATCGCTGAGTCAAGAAAGCTAGCCC TAGTTTGGGAGATATCAATCTCGATGTGGATATTGTGCAACAGGCCCAGACTTATGAAGA AAACGGAGCAGTGATGATTTCGGTGTTGACAGATGAGGTTTTCTTTAAAGGGCATTTGGA TTATCTACGGGAAATTTCCAGTCAGGTAGAGATTCCGACGCTCAACAAAGACTTTATCAT AGATGAAAAGCAAATCATCCGCGCTCGCAATGCAGGTGCGACAGTTATCTTGCTTATTGT GGCAGCCTTGTCCGAAGAACGCCTCAAGGAACTGTATGACTACGCGACAGAGCTTGGTCT GGAAGTCTTAGTGGAGACTCACAATCTAGCTGAACTAGAGGTAGCCCACAGACTTGGTGG CTGAGATTATCGGGGTCAACAACCGCAACTTGACTACCTTTGAAGTCGACTTGCAGACCA GTGTAGATTTAGCCCCTTACTTTGAGGAAGGTCGCTATTACATTTCTGAATCTGCCATTT TCACAGGGCAGGATGCGGAACGACTAGCCCCATACTTTAACGGAATTCGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	139	498	F	120 aa
2	686	1024	F	113 aa

> 3860724-1 ORF translation from 139-498, direction F VVAGPEGLDEAGLNGTTXIALXENGEISLSSFTPEDLGMEGYAMEDIRGGNAQENAEILL SVLKNEASPFLETTVLNAGLGFYANGKIDSIKEGVALARQVIARGKALEKLRLLQEYQK*

Description:

ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18). - ___ LACTOCOCCUS LACTIS (SUB SP. LACTIS) (STREPTOCOCCUS LACTIS).

> 3860724-2 ORF translation from 686-1024, direction F VDIVQQAQTYEENGAVMISVLTDEVFFKGHLDYLREISSQVEIPTLNKDFIIDEKQIIRA RNAGATVILLIVAALSEERLKELYDYATELGLEVLVETHNLAELEVAHRLGG*

Description:

INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48) (IGPS). - LACTOCOCCUS LACTIS (SUBSP. LACTIS) (STREPTOCOCCUS LACTIS).

Assembly ID: 3860858 Assembly Length: 858bp

> 3860858 Strep Assembly -- Assembly id#3860858 CATCGTTCGTGATGGTGGGATTCGTGGATTTGTCATCTTGTGTGACAAGCTCAATAACGT CATTGCCCTCCGTCATAGTTTAACTGGCTTTGAGTTTGCTTGTGGTATTCCAGGAAGCGT TGGCGGTGCTGTCTTTATGAATGCGGGTGCCTATGGTGGCGAGATTGCTCACATCTTGCA GTCTTGTAAGGTCTTGACCAAGGATGGAGAAATCGAAACCCTGTCTGCTAAAGACTTGGC TTTTGGTTACCGCCATTCAGCTATTCAGGAGTCTGGTGCAGTTGTCTTGTCAGTTAAATT TGCCCTAGCTCCAGGAACCCATCAGGTTATCAAGCAGGAAATGGACCGCTTGACGCACCT ACGTGAACTCAAGCAACCTTTGGAATACCCATCTTGTGGCTCGGTCTTTAAGCGTCCAGT CGGGCATTTTGCAGGTCAGTTCGAATTTCAGAAGCTGGCTTGAAAGGCTATCGTATCGGT GGCGTAGAAGTGTCAGAAAAGCATGCAGGATTTATGATCAATGTCGCAGATGGAACGGCC AAAGACTACGAGGACTTGATCCAATCGGTTATCGAAAAAGTCAAGGAACACTCAGGTATT ACGCTTGAAAGAGAAGTCCGGATCTTGGGTGAAAGCCTATCGGTAGCGAAGATGTATGCA GGTGGTTTTACTCCCTGCAAGAGGTAGTGGGGACCTGACAGAGCCCCGATCGGTTAATCT ATGAAAAAGAAGGAATTT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	610	807	F	66 aa

> 3860858-1 ORF translation from 610-807, direction F VSEKHAGFMINVADGTAKDYEDLIQSVIEKVKEHSGITLEREVRILGESLSVAKMYAGGF TPCKR*

Description: unknown

PCT/US97/19226 WO 98/19689

Assembly ID: 3860890 Assembly Length: 980bp

> 3860890 Strep Assembly -- Assembly id#3860890 CTGAAAAACAGGTTTTGACTATGNAGATTGACAGACGACCGTTCGGAGGTGCAGATATT GATGCAGCAGGACCTCCCTTACCTGATGAAACCCTTAAGGCAAGTAGGGAAGCAGATGCT ATCCTACTAGTAGCTATCGGTAGTCCTCAGTATGATGGAGTAGCGGTTCGCCCTGAACAA GGCCTGATGGCTCTCCGTAAGAACTCAATCTTTACGCTAATATTCGTCCTGTAAAAATCT TTGACAGTCTCAAGTATTTGTCACCACTCAAACCGGAACGAATTTCTGGTGTAGACTTCG TCGTGGTGCGTGAATTGACTAGGCGAGATTTACTTTGGAGATCATATCCTTGAAGAGCGC AAAGCGCGTGATATCAACGACTATAGCTATGAGGAAGTGGAGCGGATTATTCGCAAAGCC TTTGCCATCGAATTGCAAGAAATCGCAGAAAAATCGTTACTAGTATCGATAAGCAAAATG TTCTAGCGACCTCAAAACTCTGGCGGAAAGTAGCTGAGGAAGTCGCACAGGATTTCTCAG ATGTAACCTTGGAACACCAGCTGGTAGACTCAGCTGCTATGCTTATGATTACCAATCCTG CTAAGTTTGATGTTATTGTAACGGAGAATCTTTTTGGAGATATTTTATCTGATGAATCAA GCGTCTTATCTGGTACACTTGGGGTTATGCCATCAGCCAGTCATTCTGAAAATGGACCAA GTCTCTATGAACCTATTCACGGTTCAGCACCTGATATTGCAGGTCAAGGAATTGCCAATC CTATTTCCATGATTTTATCAGTTGTCATGATGTTGAGAGATAGTTTCGGACGTTATGAGG ATATAGGAGGTCAGGCTTCAACAAAGGAAATGATGGAAGCTATTATTGCAAGGTTATGAA GTTAGACGAAAAAATTCGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	397	486	F	30 aa

> 3860890-2 ORF translation from 397-486, direction F VERIIRKAFAIELQEIAEKSLLVSISKMF*

Description: unknown

Assembly Length: 874bp

Assembly ID: 3860952

> 3860952 Strep Assembly -- Assembly id#3860952 TCGATCTAGAGAATTGCTCCAGAGCTTCCTGACCGTCCGCTGCCTCAATAGTTTCATAGC CACAATCCGTCAAATAATCACTGACCCCCTCACGGATCATCTTCTTCTACAATTA ATTTTCTATTATAGTCTCTTGCTGGCCTTTTGTATGTAAGCAACTGACCACTAGATAAAA CGTTGTGAAATTCCTTTCTCATAAATTCCATAACTTTAGTATATTATATTTAAGCACTAA

TTGTTAAATAGCTATTCCTATCCACTATTCTTGAATAGAAACACAAGATGCAATCTTTAT
TCCAGACTCATTTTTTAAAAAAATCAAATTTATTCACCATCCAGCAAGAGCTCTTTTGGTT
GTTTTCTAAGGAGATTGCTTGAAGCAAGCGCCATAACGAGAACCACTAGAACCAAGGCAA
GGACAAAAATGATGATAAAGTCTGATGTCTGAATGGAAATGTCTAGGCTCGACAAGGTCT
TGCTAAAGCCATCTACTTCTGCACCGCCACCAAGGTTAGAGGCTTGAGCCGCCTTACTAG
CCTGTTTGGCAACACCTGAAGTCACATTGGCAAGGACAGTGTTTCCAATTCGCACGGGCA
GTGTAATTAGCTAGGAAGTAAGCANAAACTAGAGCAGGGATAGCAATCAAGATAGATTCG
GTGATGAATTGACCCAAGATACTTGCCTGCTTGAGACCAATAGAGAGGAGGATTCCCACT
TCCTTGCCGACGGCCATTGATCCAAAGACTGAGC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	449	715	R	89 aa

> 3860952-1 ORF translation from 449-715, direction R VRIGNTVLANVTSGVAKQASKAAQASNLGGGAEVDGFSKTLSSLDISIQTSDFIIIFVLA LVLVVLVMALASSNLLRKOPKELLLDGE*

Description:

unknown

Assembly ID: 3860962 Assembly Length: 762bp

> 3860962 Strep Assembly -- Assembly id#3860962
CTTGTAACGGTCATAAAGTTTCTGCAAACTACCATCCTTGCTCCATTTAGTAACCAAGTT
ATCAAGATAGTCGTTGAGCTCTGTATTTGATTTCTTGGTAACAATACCGTAGTCAGATGG
CTTGAAACTATCATCTAGTAGTTCTGTGCGTTTAACTAGTGTAGCCAGATAGAATAGAGC
GGTCAACGGAAAAGGCATCGATACGATGAGCCGTGAAGGGAAGTAATCAATTCTGGGTAGG
AACCAAGTTCGACGAATTTAAACTTCAGACCTTTCTTTTTACCCAGTTCAGTAATCAGGC
GTTGGGTGATAGAACCTTGGGCGACTCCGATGGTTTTGCCGTTTAGGTCCTCAATCTTTT
TGATTTTGGCAGATTTATTGACCAAAAATCCAGAAGCGTCTGTGTAGTAGGGACTGGTAA
AGTTGTAGAGTTTTTTGCGTTCGTCCGTGATGGTAAAGGTCGCGATATCCATATCGACCT
GTTCATTGTCTAGAAGGGGGCCGCGGGTTTGTGCTGTAACCGGCACATAGTGAATCTTGA
CCTTGAGTTCATCAGCTACCATTTTGGCCAAGTCGGTTTCGATACCAGAATAAGTACCGG
TCTTGGGATCTTTGTTAACCAAAATTGGGAACGTCTTGTTTTGACACCCGACAACCAGTTC
GCCTCTTTTTTTGAATGTCTGCGATACTAGTATTAGCCTGGACTGGTTTTGGCAGCAACAAG
GCCGAAAAGGCTAATCAATAATGCTGATAAAAAAGAATTCGAT

ORF	#	Start	End	Direction	Length
ORF	Predictions:				

1 152 646 R 165 aa

> 3860962-1 ORF translation from 152-646, direction R VSNKTFPILVNKDPKTGTYSGIETDLAKMVADELKVKIHYVPVTAQTRGPLLDNEQVDMD IATFTITDERKKLYNFTSPYYTDASGFLVNKSAKIKKIEDLNGKTIGVAQGSITQRLITE LGKKKGLKFKFVELGSYPELITSLHAHRIDAFSVDRSILSGYTS*

Description:

cell adhesion factor PEB1 precursor - Campylobacter jejuni

Assembly ID: 3861268
Assembly Length: 1942bp

> 3861268 Strep Assembly -- Assembly id#3861268 CTCGAATTTTTGGTGCTCCAGAAACGGTTCCAGCAGGAAGCGTTGCTTTCAAGGCATCCA TGGCAGTGAGTTCTGCAAGCAAACGTCCCTTGACCACACTGGTCAAATGCATGACGTAGC GGAAGAGCTCCACCTCCATATACTTAGTAACTTGGACACTGGCCGTTTCAGAGATGCGGC CAATATCGTTACGCCCCAAGTCTACCAACATTCGATGTTCTGCTGTTTCCTTCTCATCAG AGAGGAGGTCAGTCGCCAAGGCCTTGTCTTCTCCATCCGTAGCCCCTCTTGGTCGCGTCC CTGCAATCGGATTGGTTGTCACGATGCCATTTTTGACAGAAACCAAACTTTCTGGACTAG CTCCGATGATTTGATAATCCCCAAAATCATACAAATAAAGGTAATTAGATGGATTAGTCA CGCGGAGATTTCTGTAGAAGTCAAATGGATTTCCAGTTAACTTCTGCGTGAAGAAACGC TGGCTGAGTTACACATCGGAACATATCTCCGTTACGAATCAAGTCACGAGCTGTTTCTAC CATTCCCTCAAACTTATGTGGAGCGATATGCGGTTTGAAGTCAAGTGGTGATAAATCCAA GTCTTCAAATTCATTTGGAGCAGGAATGCGTAATTCCTCAAGCACTTGGTTCAAGGATTT TTCCAAGGCCTCTTGACTGCGCTCACTATAAAGTGCATCCTCTATGACATGTTATCTTCT CCTTCTTGTTGGTCAAAGACCATATAGCTCTCATAGACAAAGAAATGCATGTCGGGCGTC CCAATTGTATCCTCAGGGATTTGACCAATTTCTTCATAAAGCGAAATCATATCGTAACCA ACAAAACCAATGGCTCCCCCACCAAAAGGGAGGTCTGAATGGTGCTGGCTCTTATGAATC ACTTCATAAAGGAAATCCAAGGGATCCCGATCAATCGCTTGACCATTTTGATAGAGAACT CCATTTTCAAACTTAATCTCAAAAACTGGATTATAGGCTAGGATAGAAAAACGAGCTGTT TCCTTGTCTCTCGGAATACTCTCTAAAATAACCTTATGTTGCCCCTTTAAGCGCATATAA GCCAAGATTGGTGATAAGACATCTCCATGAATGATTCGTTCCATTGTCATTTCCCTTTCA GTTCTAATTCGAGTTCGTGGCGACTGTATGAAAAATCCCCACGCAAAATAACTTGCGTGA GGACGAAATTCGCGGTGCCACCTCAATTATAGGATTTCTCCTATCTCATTCCTGTCTC AGATATCTCCTGTAACAGGCTGTGCGATAAAGGGCACTCCCTTGAGAATGATGTTTTCTT CTCTCGTTTCAGATGAACCCAACTTTACAGCTTTCTCTGCTTGTTTTCAGCAACCACAAG $\mathtt{CTCTCTGTGAGAGAAAAGACTGTAATTTTTCCATCTATTATTTTTTAGCTTCTAGTAATC}$ TGCAATCGCAGCTAGGTCCTTGCCTCCACGACCAGAGACATTGATGAAGAGATGTTCATC TCGGTACACCTTTATACTCTTCGAAAATCTCTTCAAACCGCGTCAACGTCGCCTTGCCGT AGGTATGGTTACTGACTTCGTCAGTTCTATCTGCAACCTCAAAACAGTGTTTTTGAGCTGA CTTCGTCAGTCTTATCGACAACCTCAAAACAGTGTTTTGAGCAGCCTGCAGCTAGTTTCC TAGTTTGCTCTTTGATTTTCATTGAGTATTATTTCATTTCTCCTGCAATTGAATTCTTG

CTCAGCTTTTTGTCTTCTATTTCTTTAAAATCAAAGTAGCTCTTTTGTTAATAACTCGAT CAACAAACATCGTGGTACAAGTATCTACTTTGAAATTTATCAACCACTTAACAACTGATA CTGTATTTCTAGGAAAACGATGACATTCTTCCTAATAAAACTTCTCATATATAGCATAAA TTTCTACTCTTTTTAATTCGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	457	645	R	63 aa

> 3861268-1 ORF translation from 457-645, direction R VLEELRIPAPNEFEDLDLSPLDFKPHIAPHKFEGMVETARDLIRNGDMFRCVTQPAFSSR RS*

Description:

ANTHRANILATE SYNTHASE COMPONENT I (EC 4.1.3.27). - LACTOCOCCUS LACTIS (SUBSP. L ACTIS) (STREPTOCOCCUS LACTIS).

Assembly ID: 3861270
Assembly Length: 1048bp

> 3861270 Strep Assembly -- Assembly id#3861270 CTGTTAAGATTGTTTCCGTGCATCCACATAGGATTTACCTTGTCTGTATGGGCCAATTCA CCCATCAAAACGCCATAGGTCTCATCTGTCAAGATACTAGACATACCGATATTGTACCAA AGACTGGTATGACGGAAATAAGTCGATGCGTGTAAACTCAACAAAAAGAGACGCAAGTTG ATTAGAAAAACCGTCATAGCAATAGCTGCCACAGGAGCTTGAACCACAATCAGTGCCAAC ATGGCAAACTGGGCACTCCCAGCATAAACAAAGAGACTCATCAAGCCCATCTCAACAGGT GTCACATAGGGCGCACCGATAGTCCCACAGGCCAGGCCGATACTGACATAGCCAAGAGCC GTTGGCATGGCTGCCTCCCTCCTAAAATCCTTTTTCTTCATCTTTCTCCTCATA TTGTCTTAATAATACTCAATGAAAATCAAAGAGCAAACTAGGAAATTAGCCGCAGGNTGC TCAAAACACCGTTTTGAGGTTGCAGATAGAAACTGACGAAGTCAGCTCAAAACACCGTTT TGAGGTTGCAGATAGAACTGACGAAGTCAGTAACATATATACGGCAAGGCGACGTTGACG TGGTTTGAAGAGATTTTCGAAGAGTATTAGAAAATGCCGATAAGGGTCTGCATACCAAGG CTGGTGAGGATGATGGCAATCCAGCAGACGGCTCCGAGAACAATGGATTTTCCACTGGAT TTGACCATAGCGACCAGATTAGTTTTGAGACCGATGGCCATCATGGCCATGATAATGAGG AATTTAGAGAGTTGTTTGAGAGGGGTAAAGAAACTACTAGACACCGAGAGAGGGTCAGA AGGGTGGTTAGGAGCGATGCAAGGATGAAGTAAAAGGATAAAAAGTGGGAAGACTTTTTTC AGTTGTAAGCCTTGCTTATTTTTTTGCTCGCGACTTTGCCAGTAGGAGAGAAAGAGAGTG ATGGGGATGATAGCTAGGGTGCGCGTGAGTTTGACAATGGTTGCGGATTCGAGGGTATTG GTCTGGTAGAGACTGTCCCAAGCGCTAG

ORF Predictions:

ORF # Start End Direction Length

1 627 824 R 66 aa

> 3861270-1 ORF translation from 627-824, direction R. VSSSFFTPLKQLSKFLIIMAMSAIGLKTNLVAMVKSSGKSIVLGAVCWIAIILTSLGMQT LIGIF*

Description: unknown

Assembly ID: 3861288
Assembly Length: 1571bp

> 3861288 Strep Assembly -- Assembly id#3861288 AGAGCTGGTAATATTCCCAAAGAAACGGCTCAAATCGAATTAGAAAGCCTTCTGCAAAAA GGAATCCCAGTCGCTCTGGTATCACGATGCTTTAACGGTATTGCCGAGCCTGTTTATGCC TACCAGGGTGGGGGCGTACAGTTGCAAAAAGCAGGCGTTTTCTTTGTTAAAGAACTCAAC GCCCAAAAAGCCCGCTTGAAACTCCTCATCGCCCTCAATGCCGGACTAACAGGACAGGCT TTGAAAGACTATATGGAAGGCTAATACTCTTCGAAAATCTCTGCAAACCACGTCAGCGTC GCCTTACCGTATGTAGAGCACAAAATCAGGAAATCTTCTCGATTCCCTGATTTTTTCTAT TTACGTTTTCGTGTTGAGCTACGTTCTGTCAAACCATGAGGTAAGAGAACTTCACGTTCT TCCAACTCTTCCTTATGCATAATCTTGGTCAACATACGCATACTAATGGCACCAAGGTCA TAAAGAGGTTGGGCAATCGTTGTCAAGTTTGGACGGGTAAAGCGTGAGATTTGTGAATCA TCACTAGTAATAATTCGATAATCTTCTGGCACAGAAACACCTTATCAGCCAAACCGTTCA AGACTCCTGCCAACTCATCACCTGTCACAACTGCTGCAGTTGCATTTGATGAAATCA AACGCTCTGCTAAGGCGTAACCATCATCATAGCTATATTTAGATTCAAATACCAAACCCT CACTATAAGCGATTCCTGCTTTTTTCAAGGTTTCCTTGTAGCCAACTAAACGAACCTTAC CATTGATGTCATCCACTAGCGGACCGCTAACGAAAGCAATACGCTCATTTTCTTTAGCAA GGTAACTCACTGCATCAATTGTTGCTTGCTTATAGTCAATATTGACACTTGGCAACTGGT GCTCAACATCGACAGTTCCTGCGAGAACAATCGGAGTACGTGAACGCGAAAATTCTGAGC GAATTTTATCTGTCAAGTGATAACCCATATAGATAATGCCATCTACCTGCTTTGAAAAGA GGGTATTGACAACAGAAACTTCTTTCTCGTTATCTTCATCGCTATTAGCTAGGACAATAT TGTACTTGTACATTCTGCAATATCATCAATCCCCTTAGCCAAACTCGAAAAATAACCAT TGGTAATATTTGGAATCACGACACCGACAGTGGTTGTCTTTTTACTTGCAAGACCACGCG CAACTGCATTTGGACGATAATCCAAACGATCAATTACCTCTAGCACTTTTTTTACGGGTAT TCTCTTTTACATTTTATTGCCATTGACCACACGGCTGACCGTCGCCATGGGAAACACCT CTTTCTATCTCCACACATTCTTTTACAAGTAGAAGTGCTGAATTGAAAGCTCTATATCTT ACTTACAAAAATGAAGATGTGAAAATTTCGTTTTCATATTTCTACTTATTCCATTCTATC CCTAGGTTTAG

ORF Predictions:

ORF #	Start	End	Direction	Length	
1	357	572	R	72 aa	

> 3861288-1 ORF translation from 357-572, direction R VPEDYRIITSDDSQISRFTRPNLTTIAQPLYDLGAISMRMLTKIMHKEELEEREVLLPHG LTERSSTRKRK*

Description:

GLUCOSE-RESISTANCE AMYLASE REGULATOR. - BACILLUS SUBTILIS.

Assembly ID: 3861306 Assembly Length: 1682bp

> 3861306 Strep Assembly -- Assembly id#3861306 CTGACGTAAAAAAGATTTTCGGAAAAGTATCATCATCTATTTTAGACCATTTTCTTATAA TAACCATTTTATTTTATTTGTCAAGGTCTTTGAATTCTTTAAACAAGCCTTGTAAT CTCTACTTTTGAAGAATTTATTTTTCCTTACTGACAAGATTTGAGACGGTAGGAATCATT GAAAATAACCTAGCCAACATCAATCACAATCACTTTCTCTCAATTACACTAAATTA GACTTTCCTGATAGAGTTGTTCACATCTTATTTCAATTCACTATACTTTCCCTTATACTC AATGAAAATCAAAGCGCAAACTAGGAAGCTAGCCACAGGCTGCTCAAAGCACTGCTTTGA GGTTGTAGATAAGACTGACGAAGTCAGTTACATATATCTACGGCAAGGCGAAGCTGACGC GGTTTGAAGAGATTTTCGAAGAGTATAAAGTTTGTTTCTGTATCTTTCAGAAAAATAAGG TATACTGTATGTAAACGATTTCAAAGGAGTCCAGTTATGGCAAAAACATTTTTTATTCCA AATAAACAGAGCATTTTAGGAGAACAAGAGATTTTGAATGCCAAGTCGATCTTGGCTATG ATGTAGTCTATCTCCGTCAGCCTCTTAATCGTCTCGAGTATATTGAGTGTGCGATAGTGG GGCAATCACAATTTCTTTTTAAGGTCAGTTATGCTGATGGTCAAAAGGCTTACCGTGTCG ATCTTCCTGACCTACTAACAAGACAGACTGGCAGATTATCAAGTCATTTTTAGATGTTT TGCTTGCTTATACAGGGACTGATATTGAAGGGCTAGATGGTTTTGAATTTTGAAGCTTATT TCCAAGCAAGTATTCAAGCCTATCTAGCAGACCCTGTAGCTCGTTTTACGATTTGCCAAC GAATTTTTAATCCTATTTTCTTTAGTCGTGAGAACTTGAAAAGCTTTTTAGAGGCAGATG GCTTGGCTCAGTTTGAAGCGCGTGTGCGTGCGGTTCAAGAGACAGATGCCTACTTTGCGA GAGTTTCCTTCTATCAGGATGGAGAAGGAAAAGTGCATGGCGTTTACCATCTAGCTCAAG GAGTCAAGACAGTTTTACCGAGAGAACCGTTTGTTCCTGCAGCCTATATTGAGCGAATTG GTGGATAAGGAAGTCCAGTGGGAGATTGACTTGGTTCAAATCACAGGAGACGCTCTAAA CCAGAAGACTATGAATCCATAGCTCGCTTGGACTATGCAAAATTCTTAGAGGTATTACCC CCATCTTTTTACCACCAACTAGACGCCAATCAAATAGAAATACAACCCATCCTAGGACAA GATTTTAAAACATTAGCACAAGAAAAGTAAAGCAGAAGCAGGTCAATCGACTTGCTTTTT TGACATAGAAAAATCCTGCCAAGGATGACAGGATTGCTACTCAATGAAAATCAAAGAGC AAACTAGGAAGCTAGCCGCAGGCTGTACTTGAGTACGGTAAGGCGAAGCTGACGTGTTT GAATTTGATTTTCGAAGAGTATGAATTTTAAAGAAAGGCCAAGATACGAAGATAATCTCC AATCAGTGCCACTTCAGCTTCCAAGAAGAAGAAGATTATAACTCCCGTTCCCCAAGGACA

GA

ORF Predictions:

ORF #		Start	End	Direction	Length
	1	717	1208	F	164 aa
	2	1201	1410	F	70 aa

> 3861306-1 ORF translation from 717-1208, direction F VGQSQFLFKVSYADGQKAYRVDLPDLLTKTDWQIIKSFLDVLLAYTGTDIEGLDGFDFEA YFQASIQAYLADPVARFTICQRIFNPIFFSRENLKSFLEADGLAQFEARVRAVQETDAYF ARVSFYQDGEGKVHGVYHLAQGVKTVLPREPFVPAAYIERIGG*

Description:

unknown

> 3861306-2 ORF translation from 1201-1410, direction F VDKEVQWEIDLVQITGDGSKPEDYESIARLDYAKFLEVLPPSFYHQLDANQIEIQPILGQ DFKTLAOEK*

Description:

unknown

Assembly ID: 3861334
Assembly Length: 3041bp

> 3861334 Strep Assembly -- Assembly id#3861334 ATCGAATTAAAAATGAGGTATTCAGGCTTGTGATTTTCTATGGAAGTTAATAGTGATTGC $\verb|CTCTAATGCTTACAAGTGATATTAAAAATAGAGGACCTAGTGATGTCAATCATTTCAACT|\\$ GATTTAACCCCTTTTCAAATAGATGATACATTGAAAGCAGCCTTGCGAGAAGATGTTCAT ${\tt TCCGAAGATTACAGTACCAATGCCATTTTTGATCATCATGGCCAAGCCAAGGTGTCGCTT}$ ${\tt TTTGCCAAGGAAGCTGGTGTTTTAGCGGGGCTAACCGTTTTTCAAAGGGTTTTTACCCTA}$ $\tt TTTGATGCCGAGGTGACCTTCCAGAATCCTCATCAATTTAAGGATGGGGATCGTTTGACT$ AGTGGCGATTTGGTTTTAGAAATCATAGGCTCGGTGAGAAGTCTCTTAACATGTGAACGC GTTGCCTTGAATTTTTTACAACATTTATCAGGGATCGCTTCGATGACAGCTGCTTATGTA GAAGCCTTAGGCGATGATTGCATTAAGGTATTTGATACTCGAAAAACTACTCCTAATTTA CGTCTTTTTGAGAAATATGCCGTGAGAGTTGGCGGTGGCTATAATCATCGCTTTAATTTA ATTGCTCAAGCGCGTGCCTATGCTCCTTTTGTGAAAATGGTCGAGGTGGAAGTGGAAAGC CTTGCTGCTGCCGAAGAAGCTGCGGCGGCGGCTGCTGATATTATCATGTTGGATAATATG TCATTGGAACAGATTGAACAGGCCATTACCCTAATTGCAGGACGTTCTCGGATTGAATGT TCCAGTGGTAGTTTAACCCATAGTGCTAAGAGTCTTGATTTTTCCATGAAGGGTTTAACC

CGAGTTTTATGTCAGATAGTTTAAACGCCTCTTCAAATATAGTAAAATGAACCAAAAATA $\tt GTACACAATGTGGTATAATCTTCTTATGGCATATTCAATAGATTTTCGTAAAAAAGTTCT$ TTCTTATTGTGAGCGAACAGGTAGTATAACAGAAGCATCACACGTTTTCCAAATCTCACG TAATACCATTTATGGCTGGTTAAAGCTAAAAGAGAAAACAGGAGAGCTAAACCACCAAGT AAAAGGAACAAAACCAAGAAAAGTTGATAGAGATAGACTTAAAAAACTATCTTACTGACAA TCCAGACGCTTATTTGACTGAAATAGCTTCTGAATTTGGCTGTCATCCAACTACCATCCA CTATGCGCTCAAAGCTATGGGCTACACTCGAAAAAAGGACCACCTACTATGAACAAGA CCCAGAAAAGTAGCCTTATTTCTTAAAAATTTTAATAGTTTAAAAGCACCTAGCACCTGT TTAGATTGATGAAACAGGATTCGATACTTATTTTTATCGAGAATATGGTCGCTCATTAAA AGGTCAGTTAATAAGAGGTAAAGTATCTGGAAGAAGATATCAGAGGATTTCTTTGGTTGC AGGTCTAACAAATGGTGAGTTAATCGCTCCAATGACTTACGAAGAGACGATGACGAGCGA $\verb|CTTTTTGAAGCATGGTTTCAGAAGTTTCTCTTACCAACATTAACCACCATCGGTTAT| \\$ TATTATGGATAATGCAAGATTCCATAGAATGGGTAAGTTAGAACTTTTATGCGAGGAGTT TGGGCATAAACTTTTACCTCTTCCTCCCTACTCGCCTGAGTACAATCTTATTGAGAAAAC ATGGGCTCATATCAAAAAGCACCTCAAAAAGGTATTACCAAGTTGCAATACCTTTTATGA GGCTCTTTTGTCCTGCTCTTGTTTCAATTGACTATAGTTCACGGATACAGTTGGGAAAGA AGTTAAATGTAGTTGGATTTCCACTAAAGGTTGATGAGTTATTTGTATCTGAACCTG ATTGGCCGCAAGCAGCTAAAAGCAAAGCAGATGCAAAAGTCAGACCTGCACCAAGGACAC GCTTCTTTATGTTCATCTTCTTCTTCTCTTAATAGTGGGAATTTGTAAAGTTAATTGAATT TCAAGAATGAAGGTTTTATAAACTTTGGTTATAAAAAAACAAAGGATTTCTGTCTTTTATA CAGTCCTCCCCTTGTTTTTATACGATTTCAATTTTAAATTTTTCTGCAAAAAATATTTAT AGTAATTCCACACAGAAAGCATCCCATGGAACTAAGATTTGTTTTTCAAAGACTTCTTGA GCTAGGGTGTTTTCAATCAAGACAGATTTGACTTTTCCTTCTACTGTCAAGTCTTGCTCT TCATTGGACAAGTTAGCCACAACTAGGAAGCGACGGTCGCCATCCTTACGTATATAAGCA AAGACCTTATCAGCCGTATCAAGCAATTCAAAGTCAGCTCGAATTAGCCAACTATTCTCC $\tt TTGCGAATTTGGACCAGTTTCTGATAGGTATAGAAAATAGAATCTGGATTTGCCAGCGCT$ AAACCAGCGTTTTTGCTCTCGTCCCATTGCATAGGGGTACGGGCATTGTCACGTCCAATA ACACGGATACTGTCCATGATTTCTTGCATCGGAACACCTTTTTCAAGAGCCTCACGCGCA TAGTTGAGAGATTCAATATCTTCTACTTGATCCAGTGTTTCAAACGGATAGTTGGTCATC $\verb|CCAATCTCCTCACCTTGGTAGATATAAGGAGTTCCTCTCATAAGATGAAGCAAGATTGCA|\\$ AAGGCTTTGGCAGATTTTTCGCGGTATTCTTGGTCATTTCCCCAGATTGAGACAATACGA GGGAGGTCATGGTTGTTCCAGAAGAGGGAATTCCAGCCGTCCTCAACTCCTAACTCTGTC TGCCATTTGTTGAAGATTTCTTTTAACTTAGCGATATTCAG

ORF	Predic	ctions:			
ORF	#	Start	End	Direction	Length
	1	76	975	F	300 aa

> 3861334-1 ORF translation from 76-975, direction F VILKIEDLVMSIISTDLTPFQIDDTLKAALREDVHSEDYSTNAIFDHHGQAKVSLFAKEA

GVLAGLTVFQRVFTLFDAEVTFQNPHQFKDGDRLTSGDLVLEIIGSVRSLLTCERVALNF LQHLSGIASMTAAYVEALGDDCIKVFDTRKTTPNLRLFEKYAVRVGGGYNHRFNLSDAIL LKDNHIAAVGSVQRAIAQARAYAPFVKMVEVEVESLAAAEEAAAAGADIIMLDNMSLEQI EQAITLIAGRSRIECSGNIDMTTISRFRGLAIDYVSSGSLTHSAKSLDFSMKGLTYLDV*

Description:

PROBABLE NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE (CARBOXYLATING) (EC 2.4.2.19) (QUINOLINATE PHOSPHORIBOSYLTRANSFERASE (DECARBOXYLATING)) (QAPRTASE) (FRAGMENT). - BACILLUS SUBTILIS(BLAST)

Assembly ID: 3864148
Assembly Length: 4694bp

> 3864148 Strep Assembly -- Assembly id#3864148 TTAATTTAAATTCTTAAAATTTTTTCATAATAATCTCCCTATAAAAATAAAGTCGCCCAA AGAAGAAATGGGGAAATATGGTATAATGAAACGATAGATTTTTGAATAGGAATAAGATC ATGTTTGGATTTTTAAGAAAGATAAAGGCTGTGGAAGTAGAGGTTCCGACACAGGTTCC TGCTCATATCGGCATCATCATGGATGGCCAATGGCCGTTGGGCTAAAAAACGTATGCAACC GCGAGTTTTTGGACATAAGGCGGGCATGGAAGCATTGCAAACCGTGACCAAGGCAGCCAA CAAACTGGGCGTCAAGGTTATTACGGTCTATGCTTTTTCTACGGAAAACTGGACCCGTCC AGATCAGGAAGTCAAGTTTATCATGAACTTGCCAGTAGAGTTTTATGATAATTATGTCCC GCAAACCTTCGAAGCTTTAACCAAGGCTGAGGAATTGACTAAGAACAACACAGGATTGAT TCTTAATTTTGCTCTTAACTATGGTGGACGTGCTGAGATTACACAGGCGCTTAAGTTGAT TAACTATCTCTTTACCCAGCATTTGCCTAAGGACTTACGAGACCCAGACTTGATTATCCG TACTAGTGGAGAATTGCGTTTGAGCAATTTCCTTCCATGGCAGGGAGCCTATAGTGAGCT TTATTTTACGGACACCTTATGGCCTGATTTTGACGAAGCGGCCTTGCAGGAAGCTATTCT TGCCTATAATCGTCGCCATCGCCGATTTGGAGGAGTTTAGGAGGAAATATGACCCAGGAT TTACAGAAAAGAACCTTGTTATGCAGGGATTGCCCTGACTATTTTCCTACCAATTTTAAT GATTGGGGGCTCTTGCTTCAGATAGCAATCGGAATCATANCCATGCTAGCCATGCATGAA CTTTTGAAGATGAGAGGTCTAGAGACCATGACGATGGAGGCCTCTTTGACCCTCTTTGCAC NTTNGTATTGACCATTCCCCTGGAATCGAATTACCTGACTTTTTTTGCCAGTTGATGGGAA TGTGGTTGCCTATAGTGTTTTGATTTCAATCATGTTAGGAACGACCGTTTTTAGCAAGTC TTATACGATTGAGGATGCGGTTTTCCCTCTTGCTATGAGCTTCTACGTGGGCTTTGGATT ${\tt TAATGCTTTACTAGATGCTCGTGTTGCAGGTTTGGACAAGGCTCTCTTAGCCTTGTGTAT$ CGTCTGGGCGACAGACAGTGGTGCCTATCTTGTTGGGATGAACTATGGGAAACGAAAGTT AGCACCAAGGGTATCGCCTAATAAAACCCTTGAGGGTGCCTTGGGTGGTATTTTAGGAGC AATTTTAGTAACCATTATCTTTATGATAGTTGACAGTACAGTTGCTCTTCCATATGGAAT ${\tt TTACAAGATGTCAGTCTTTGCTATTTTCTTTAGCATTGCTGGACAATTTGGTGATTTACT}$ AGAAAGTTCGATCAAACGTCATTTTGGTGTTTAAGGATTCTGGGAAATTTATCCCTGGACA

 $\tt TGGTGGTGTTTTGGATCGTTTCGATAGTATGTTGCTTGTATTTCCAATCATGCACTTATT$ TGGACTCTTTTAATCAAAAGACGGAGGAAACGCTATGCTCGGAATTTTAACCTTTATTCT GGTTTTTGGGATTATTGTAGTGGTGCACGAGTTCGGGCACTTCTACTTTGCCAAGAAATC AGGGATTTTAGTACGTGAATTTGCCATCGGTATGGGACCTAAAATCTTTGCTCACATTGG CAAGGATGGAACGGCCTATACCATTCGAATCTTGCCTCTGGGTGGCTATGTCCGCATGGC CGGTTGGGGTGATGATACAACTGAAATCAAGACAGGAACGCCTGTTAGTTTGACACTTGC TGATGATGGTAAGGTTAAACGCATCAATCTCTCAGGTAAAAAATTGGATCAAACAGCCCT $\verb|CCCTATGCAGGTGACCCAGTTTGATTTTGAAGACAAGCTCTTTATCAAAGGATTGGTTCT| \\$ GGAAGAAAAAACATTTGCAGTGGATCACGATGCAACGGTTGTGGAAGCAGATGGTAC TGAGGTTCGGATTGCACCTTTAGATGTTCAATATCAAAATGCGACTTTATCTGGGGCAAA CTGATTACCAATTTTGCAGGTCCTATGAACAATTTTATCTTAGGTGTTGTTGTTTTTTGG GTTTTAATCTTTATGCAGGGTGGTGTCAGAGATGTTGATACCAATCAGTTCCATATCATG CCCCAAGGTGCCTTGGCCAAGGTAGGAGTACCAGAAACGGCACAAATTACCAAGATTGGCTCACATGAGGTTAGCAACTGGGAAAGCTTGATCCAAGCTGTGGAAACAGAAACCAAAGAT GTTACACCGGAGATAGTCAAGGTCGTTACCTTCTAGGTGTTCAACCGGGGGTTAAGTCA GATTTTCTATCCATGTTTGTAGGTGGTTTTACAACTGCTGCTGACTCAGCTCTCCGAATT $\verb|CTCTCAGCTCTGAAAAATCTGATTTTCCAACCGGATTTGAACAAGTTGGGTGGACCTGTT| \\$ GCTATCTTTAAGGCAAGTAGTGATGCTGCTAAAAATGGAATTGAGAATATTCTTGTACTT CTTGGCAATGATTTCCATCAATATTGGGATTTTTAATCTTATTCCGATTCCAGCCTTGGA TGGTGGTAAGATTGTGCTCAATATCCTAGAAGCCATCCGCCGCAAACCATTGAAACAAGA AATTGAAACCTATGTCACCTTGGCCGGAGTGGTCATCATGGTTGTCTTGATGATTGCTGT GACTTGGAATGACATTATGCGACTCTTTTTTAGATAATCGAGGAATATTATGAAACAAAG TAAAATGCCTATCCCAACGCTTCGCGAAATGCCAAGCGATGCTCAAGTTATCAGCCATGC TCTTATGTTGCGTGCTGGTTATGTTCGCCAAGTTTCAGCAGGTGTTTATTCTTATCTACC ACTTGCCAACCGTGTGATTGAAAAAGCTAAAAACATCATGCGCCAAGAATTCGAAAAGAT TGGTGCTGTTGAGATGTTGGCTCCAGCCCTTCTTAGTGCAGAATTGTGGCGTGAATCAGG TCGTTACGAAACCTATGGTGAAGACCTTTACAAACTGAAAAACCGTGAAAAATCAGACTT TATCTTAGGTCCAACTCACGAAGAAACCTTTACAGCTATTGTCCGTGATTCTGTTAAATC TTACAAGCAATTGCCACTCAACCTTTATCAAATTCAGCCCAAGTATCGTGATGAAAAAACG CCCACGTAATGGACTTCTTCGTACACGTGAGTTTATCATGAAGGATGCTTATAGTTTCCA CGCTAACTATGATAGTTTGGATAGTGTTTATGATGAGTACAAAGCAGCCTATGAGCGTAT TTTCACTCGTAGTGGTTTAGACTTCAAGGCTATTATTGGTGACGGTGGAGCCATGGGTGG TAAGGATAGCCAAGAATTTATGGCCATTACATCTGCTCGTACAGACCTTGACCGCTGGGT TGTCTTGGACAAGTCAGTTGCCTCATTTGACGAAATTCCTGCAGAAGTGCAAGAAGAAAAT CAAGGCAGAATTGCTCAAATGGATAGTCTCTGGTGAAGATACCATTGCTTACTCAAGTGA GTCTAGCTATGCAGCTAACTTAGAAATGGCAACAAACGAGTACAAACCAAGCAACCGTGT TGTCGCTGAAGAAGAAGTTACTCGTGTTGAAACGCCAGATGTTAAATCAATTGATGAAGT TGCAGCCTTCCTCAATGTTCCAGAAGAACAAACGATTAAAACCCTCTTCTACATTGCAGA TGGTGAGCTTGTTGCAGCCCTTCTAGTTGGAAATGACCAACTCAACGAAGTCAAGTTGAA AAATCACTTGGGAGCAAATTTCTTTGACGTTGCTAGCGAAGAAGAAGTGGCGAATGTTGT TCAAGCAGGATTTGGTTCACTTGGACCAGTTGGTTTGCCAGAGAATATTAAAATTATTGC AGATCGTAAGGTGCAAGATGTTCGCAATGCAGTTGTCGGTGCTAACGAAGATGGCTACCA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	212	940	F	243 aa
2	1202	1753	F	184 aa
3	2750	3037	F	96 aa

> 3864148-1 ORF translation from 212-940, direction F VEVEVPTQVPAHIGIIMDGNGRWAKKRMQPRVFGHKAGMEALQTVTKAANKLGVKVITVY AFSTENWTRPDQEVKFIMNLPVEFYDNYVPELHANNVKIQMIGETDRLPKQTFEALTKAE ELTKNNTGLILNFALNYGGRAEITQALKLISQDVLDAKINPGDITEELIGNYLFTQHLPK DLRDPDLIIRTSGELRLSNFLPWQGAYSELYFTDTLWPDFDEAALQEAILAYNRRHRRFG GV*

Description: unknown

> 3864148-2 ORF translation from 1202-1753, direction F VVAYSVLISIMLGTTVFSKSYTIEDAVFPLAMSFYVGFGFNALLDARVAGLDKALLALCI VWATDSGAYLVGMNYGKRKLAPRVSPNKTLEGALGGILGAILVTIIFMIVDSTVALPYGI YKMSVFAIFFSIAGQFGDLLESSIKRHFGVKDSGKFIPGHGGVLDRFDSMLLVFPIMHLF GLF*

Description:

CDP-diglyceride synthetase (cdsA) homolog - Haemophilus influenzae (strain Rd K W20)

> 3864148-10 ORF translation from 2750-3037, direction F VDLLLSLRQVVMLLKMELRIFLYFLAMISINIGIFNLIPIPALDGGKIVLNILEAIRRKP LKQEIETYVTLAGVVIMVVLMIAVTWNDIMRLFFR*

Description:

unknown

Assembly ID: 3864172 Assembly Length: 1352bp

> 3864172 Strep Assembly -- Assembly id#3864172 CTCGTAAGTTCGGAAGCTATCTACACAAGAAATTAACCGCTGCCTAAAGGAGAAGCCATG TCAACATATAACTGGGATGAGAAGCATATCCTTACCTTTCCTGAAGAAAAAGTAGCCCTT TCTACTAAGGATGTCCATGTTTACTATGGTAAAAATGAATCCATTAAGGGGATTGATATG CAATTTGAAAGAAATAAAATTACAGCTTTGATTGGTCCGTCGGGATCGGGGAAATCTACC TACTTACGCAGTCTCAATCGCATGAATGATACCATTGATATTGCTAAAGTAACTGGGCAG ATTCTCTATCGTGGAATTGATGTCAACCGTCCAGAAATCAACGTTTATGAAATGCGTAAA CACATTGGAATGGTTTTTCAACGCCCCAATCCATTTGCTAAATCGAATTTACCGTAATAT TACCTTTGCGCATGAACGTGCTGGAGTTAAGGATAAGCAAGTCCTAGATGAAATCGTAGA AACCTCCCTTAGTCAGGCTGCCCTTTGGGATCAGGTTAAAGACGATCTCCACAAGTCAGC CTTGACCTTATCAGGTGGTCAGCAACAACGTCTCTGTATCGCTCGTGCCATCTCTGTTAA GCCAGATATCCTCTTAATGGATGAGCCAGCCTCAGCCTTGGATCCGATTGCGACCATGCA ACTAGAAGAGACCATGTTTGAGCTCAAGAAAAACTTTACCATCATCATGTAACGCATAA TATGCAGCAGGCTGCTCGTGCAAGTGACTATACAGGCTTCTTTTACTTGGGTGATTTGAT TGAGTATGACAAGACTGCAACTATTTTCCAAAATGCCAAGCTACAGTCCACCAATGACTA TGTATCTGGTCACTTTGGTTAGAAAGGAAACCGTATGACAGATGCGATTTTACAGGTATC AGACCTGTCCGTTTATTATAATAAAAAGAAGGCTTTGAATAGTGTTTCCCTATCTTTCCA ACCTAAGGAAATTACAGCCTTGATTGGTCCATCTGGATCAGGGAAGTCAACCCTCCTCAA GTCTCTCAACCGCATGGGAGATCTCAATCCAGAGGTGACCACAACTGGATCCGTGGTGTA CAATGGTCACAACATCTACAGTCCGCGTACAGATACGGTTGAATTACGTAAGGAAATCGG GCTTCGTATCAATGGAATTAAGGATAAGCAGGTTCTGGATGAAGCCGTAGAAAAAGCCTT GCAAGGTGCCTCTATCTGGGATGAGGTCAAGGATCGTCTATATGATTCAGCTATTGGATT GTCAGGTGGTCAACAGCAGCGTGTCTGCGTGG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	311	862	F	184 aa

> 3864172-2 ORF translation from 311-862, direction F VELMSTVQKSTFMKCVNTLEWFFNAPIHLLNRIYRNITFAHERAGVKDKQVLDEIVETSL SQAALWDQVKDDLHKSALTLSGGQQQRLCIARAISVKPDILLMDEPASALDPIATMQLEE TMFELKKNFTIIIVTHNMQQAARASDYTGFFYLGDLIEYDKTATIFQNAKLQSTNDYVSG HFG*

Description:

HYPOTHETICAL ABC TRANSPORTER (ORF75). - BACILLUS SUBTILIS. (BLAST)

Assembly ID: 3864180 Assembly Length: 2258bp

> 3864180 Strep Assembly -- Assembly id#3864180 AACTTCGACCGTGATAAACAAGCTGAGCTTTGACATACTTGTAGCCAACCTAAAAGCCGT TCTTCAAGGCCTCAAACCAGCTGCAACTCATTCAGGAAGCCTGGATGAAAATGAAGTGGC TGCCAATGTTGAAACCAGACCAGAACTCATCACAAGAACTGAAGAATTCCATTTGAAGT TATCAAGAAAGAAAATCCTAATCCCAGCTGGTCAGGAAATATTATCACAGCAGGAGTCAA AGGTGAACGAACTCATTACATCTCTGTACTCACTGAAAATGGAAAAACAACAGAAACAGT CCTTGATAGCCAGGTAACCAAGAAGTTATAAACCAAGTGGTTGAAGTTGGCGCTCCTGT AACTCACAAGGGTGATGAAAGTGGTCTTGCACCAACTACTGAGGTAAAACCTAGACTGGA TATCCAAGAAGAAGAAATTCCATTTACCACAGTGACTCGTGAAAATCCACTCTTACTCAA AGGAAAAACACAAGTCATTACTAAGGGTGTCAATGGACATCGTAGCAACTTCTACTCTGT GAGCACTTCTGCCGATGGTAAGGAAGTGAAAACACTTGTAAATAGTGTCGTAGCACAGGA AGCCGTTACTCAAATAGTCGAAGTCGGAACTATGGTAACACATGTAGGCGATGAAAACGG ACAAGCCGCTATTGCTGAAGAAAACCAAAACTAGAAATCCTAAGCCAACCAGCTCCTGC TGAGGAAAGCAAAGCTCTTCCTCAAGATCCAGCTCCTGTGGTAATAGAGAAAAAACTTCC TGAAACAGGAACTCACGATTCTGCAGGGACTAGTAGTCGCAGGACTCATGGCCACACTAG CAGCCTATGGACTCACTAAAAGAAAAGAAGACTAAGTCTTTTCGATAAAAAATAAACAGC GAGATTGAAGCTCGCTGTTTATTTTTAATTAATCACCTAGTCCAAGACGTTCAAAGATA TCATCCACTCGTTTGGTGTAATAAACTGGGTTGAAGATTTCATCGATTTCTTCTTGTGTG AGACGTGATGTTACTTCTGAATCTGCCTCAAGAAGTGGTTTAAAGTCTACTTGGTTGTCC CAAGAGTAGGCTGTTTTTGGTTGCACCAAGTCATAGGCTTGCTCACGGGTCATGCCTTTT TCAATCAATGTCAACATAGCCCGTTGGCTAAAGATAAGACCAAAAGTCGAGTTCATGTTT CGGATCATATTTTCTGGGAAGACTGTCAAGTTCTTGACGATATTTCCAAAACGGTTGAGC ATGTAGTCAATCAAAATGGTCGTATCTGGTGTGATGATACGCTCAGCTGATGAGTAGAA ATATCGCGTTCGTGCCAGAGAGCGACGTTTTCATAAGCCGTAATCATGTGACCACGAATG ACACGCGCCAGACCAGTCATATTTTCAGAACCGATTGGGTTGCGTTTGTGAGGCATTGCT ${\tt GAAGACCCTTTTGCCCTTTAGCAAGAACTCTTCTACTTCGCGTTGCTCAGATTTTTGT}$ AGACCACGAATCTCAGTCGCCATACGTTCGATTGAAGTCGCAATGCTGGCAAGAACCGCA AAGTACTCAGCGTGAAGGTCACGAGGAAGGACTTGTGTTAAAGATTCCTTGGGCACGGAT GCCAAGATTTATCGCAGACATACTCCTCTACAAATGGTGGGATATTGGCAAAGTTCCCAA CCGCACCAGAAATCTTACCAGCTTCTACACCAGCAGCCGCATGCTCGAAGCGCTCGATAT TGCGTTTCATTTCGCTGTACCAAGTTGCTAATTTAAGACCAAAGGTTGTCGGCTCAGCGT GCACACCATGAGTACGCCCCATCATGATGGTGAACTTGTGCTCCTTGGCCTTGTCAGCGA TGATATTAGTGAAGTTTTCAAGGTCACGACGGATGATGTCGTTGGCCTGCTTGTAGAGGT AACCATAAGCAGTATCCACCACGTCGGTAGAAGTTAACCCATAGTGAACCCACTTGCGCT CTTCACCAAGAGTCTCAGAAACCGCACGCGTGAAAGCCACCACATCGTGGCGCGTCTCCT GCTCAATTTCCAAAATACGGTCGATGTCAAAGTCCGCCTTCTTGCGAATCAAAGCCACAT CTTCCTTAGGGATTTCCCCCAACTCAGCCCATGCCTCGTCAGAGAGGATTTCCACCTCAA GCCAAGCACGGTATTTATTTTCTTCACTCCAAATATTCGCCATCTCAGGGCGAGAGTAAC GGTTGATCATGTGTTAATTTTTTCCTTTCTTCTTAAGAT

ORF Predictions:
ORF # Start End Direction Length

1 930 1616 R 229 aa

> 3864180-2 ORF translation from 930-1616, direction R VPKESLTQVLPRDLHAEYFAVLASIATSIERMATEIRGLQKSEQREVEEFFAKGQKGSSA MPHKRNPIGSENMTGLARVIRGHMITAYENVALWHERDISHSSAERIITPDTTILIDYML NRFGNIVKNLTVFPENMIRNMNSTFGLIFSQRAMLTLIEKGMTREQAYDLVQPKTAYSWD NOVDFKPLLEADSEVTSRLTQEEIDEIFNPVYYTKRVDDIFERLGLGD*

Description:

ADENYLOSUCCINATE LYASE (EC 4.3.2.2) (ADENYLOSUCCINASE) (ASL). - BACILLUS SUBTIL IS.

Assembly ID: 3864184
Assembly Length: 4392bp

> 3864184 Strep Assembly -- Assembly id#3864184 $\verb|CCCTTTTGCCTCTCCTTTTGGTGCAGATTCTTTTGGGAATTGTGATTGGTCTCTTTTTAC| \\$ ${\tt CCAATACTGACTTTCATCTTAATACGGAGTTGTTTTTGGCCTGGTTATCGGACCCTTGCT}$ TTTCCGAGAGGCTGAAGAAGCAGATGTTACGGCTATTTTAAAACACTGGCGAATCATTGT TTATCTCATATTTCCAGTGATTTTTATCTCGACCCTGAGTTTGGGGTGGCCTTGGCCCATCT TCTTTGGTTCAGCCTTCCCTTGGCAGCTTGCTTGGCTGTTGGGGCCAGCCCTTGGTCCTAC GGACTTGGTGGCCTTTGCCTCTTTTCGGAGCGTTTTAGCTTTCCTAAGCGCGTGTCCAA TATTCTTAAGGGCGAAGGACTCTTGAATGATGCTTCTGGTTTGGTGGCTTTTCAGGTAGC ${\tt TTTGACAGCTTGGACAACTGGAGCTTTTTCTCTGGGGCAAGCTAGCAGTTCGCTCATCTT}$ TTCAATCCTAGGCGGTTTTTTAATTGGATTTTTAACAGCCATGACCAACCGCTTCCTCCA TACCTTCTTGCTAAGTGTGCGCGCAACGGATATTGCCAGTGAACTTTTATTAGAATTCGA GTTTGCCTCTAGTGACCTTCTTTCTGGCAGAAGAAGTCCATGTTTCAGGGATTATTGCCG TCGTAGTTGATCGAATTTTAAAGGCAAGTCGCTTCAAGAAAATCACGCTCCTCGAAGCCC AAGTGGATACGGTGACCGAGACGGTCTGGCATACAGTGACCTTTATGCTCAACGGTTCTG TCTTTGTGATTTTAGGGATGGAGTTGGAAATGATAGCAGAACCTATCTTGACCAATCCAA TCTATAATCCTCTACTTTTATTGCTATCTCTCATCGCCCTTACCTTTGTCCTCTTTGTCA TTCGTTTTATTATGATCTATGGCTATTATGCCTATAGAACCCGACGCCTAAAGAAAAAGC TAAATAAGTATATGAAGGACATGTTTCTCTTGACCTTTTCAGGTGTTAAGGGAACGGTGT CGATTGCTACGATTCTCTTGATACCAAGTAATCTAGAACAGGAGTATCCTCTCTTGCTTT TCCTTGTTGCAGGTGTGACGCTTGTCAGCTTTTTAACAGGTCTCTTGGTCTTGCCTCATC TAACGCTAGAGTTGGAAAAAGAGTTGGAAGACACCAGAAATAAACTTCCCCTCTATGCGG CTATTGACAATTCGATCATGGACGTATTGAAAATCTCATTTTAAGCCAAGAAAACCAGGA TGATCAAGAAGACTGGGCTGCTTTGAAAATCGAATTCTTAGTATTGAAAGTGATGGTTTG GAACAGGCCTATGAAGAGGGGAACATTAGCAATCGTGCTTACCGAGTTTACCAACGTTAT

 $\mathtt{CTGAAAAATATAGAACAAGGAATCAATCGTAAACTTGCCTCAAGACTGACCTATTAT\underline{T}\mathtt{T}$ CTTGTTTCCTTGAGGATTTTACGTTTTCTTCTTCATGAAGTTTTTACTCTTGGAAAGACC TTCCGTAGCTGGAAGGACAAGGCCAAAGCCGTCTCCGTGCTCTTGATTATGACCAAATT GCAGAGCTCTATCTTGCCAATACAGAGATGATTATTGAAAGTTTTGGAAAACCTGAAGGGA GTCTACAGACGCTCTTTGATTAGTTTTATGCAGGAGTCTCGTCTTCGAGAAACAGCTATT ATCAGCAGTGGTGCCTTTGTCGAACGGGTTATCAATCGTGTCAAACCCAACAATATCGAT GAAATGCTGAGAGGCTATTATCTGGAGCGCAAGTTGATTTTCGAATACGAAGAAAAACGA TTGATTACGACTAAGTATGCCAAGAAATTACGACAAAATGTAAATAACTTAGAGAACTAT TCCTTGAAGGAAGCTGCCAATACCCTGCCGTATGATATGGTGGAATTGGTAAGAAGAAAT TAGTTAATACTCTTCGAAAATCTCTTCAAACCACGTCAGCGTCGCCTTGGATTATATATG TGACTGACTTCGTCAGTTTCATCTACAACCTCAAAGCAGGGCTTTGAGCAACCTGCGGCT AGCTTCCTAGTTTGCTCTTTGATTTTCATTGAGTATAAGATTGTAAGTGAAGGAGTGTGA CATGAAAAATGGGGAAAGAGCCTGAACTAGTCCTGTCTACTTTTACCCAATCACACTTC CATTTGGTACAGCTGGATCAACTGTGAGAAGGGATCGAATTTGCCATCATGTTCAGCTGA GAGAATCATACCCTGGCTGACATATTTTTTCATCATTTTACGTGGTTTGAGGTTAGCAAC GATTTGAACTTTCTTGCCGACCAATTCTTGTTCATTTGGATAGTATTTTGCAATTCCTGA AAGAATCTGACGATCTTCTCCATCACCAGCATCCAAGCGGAATTGAAGCAACTTATCTGA ACCTTCTACTTTAGACACTTCTTTGACTTCTGCGACACGGATTTCAACCTTGTCAAAGTC TTCAAACTTGATTTCATCCTTGTTTAGTTTGAGCTCAACTTCGTCCGGATTCCATTCTTT TTCGACTGCTGGTTTATTGCCTTCCATTTGTTCCTTGATATAGGCGATTTCTTCTTCCAT ATTTAGACGTGGAAAGATAGGTGTTCCTTTGGCAACTACAGTCACATCTGCTGGGAAGTC AGCCAAACTCAAGTTTTCAAGACTAGAAACTTCTTCCAAACCAAGTTGAGTCAAAACTGC CAAGTGGCTCATGACACTTGCCAATTGGTCACGAAGAGCTTCATCCTTGTCCAAGACCCA TGGTGCAGTCTCATCGATGTATTTATTGGTACGAGAGTCAGAGTCCAGACTGCTTCAAG AACCTCAGCAAGAACATGATCAAATTCAGTCACACCTTCTACATAGGCAGGGATTTGTCC ATCAAAGTACTTATTAATCATGGAAACCGTACGGTTAAGGAGGTTCCCAAGGTCATTAGC CAATTCATAGTTGATACGACCGACATAGTCTTCAGGAGTAAAGGTTCCGTCTGAACCAAC TGGAAGGTTACGCATGAGGTAGTAACGAAGTGGATCTAGTCCATAACGCTCTACCAACAT TTCAGGGTAAACGACATTCCCTTTTGACTTAGACATTTTTCCGTCTTTCATGACAAACCA ACCATGGGCAATCAAACGATCAGGTAATTTAACATCCAACATCATAAGAAGGATTGGCCA GTAGATAGAGTGGAAGCGAAGGATGTCTTTTCCTACCATATGGAAGACTGTTCCATTCCA GAACTTGTCAAAGTTACCATGTTCGTCTTGAGCGTAGCCAAAAGCTGTCGCATAGTTAAG AAGGGCATCAATCCAAACGTAGACAACGTGTTTTTGGATTTGATGGGACAGGCACTCCCCA TGTAAAGGTTGTACGAGATACCGCCAAATCTTCCAAACCTGGCTCGATGAAGTTGCGTAG CATTTCATTAAGACGACCATCTGGCGTGATAAATTCAGGATGAGCTTTGAAAAATTCGAC CAAACGGTCTTGGTATTTGCTAAGGCGAAGGAAGTATGATTCTTCAGAAACCCATTCAAC CTCATGACCTGATGGAGCAATACCACCAGTCACATTTCCAGCTTCATCACGGAAAACTTC ACCCAAGTAGATATCATCTTGAGCAAGTAAGCGTTCAAAGACCTGTGCGACAACTTTTTC ATGGTAGTCATCGGTTGTACGGATAAATTTATCGTATGAGATATCTAGTAATTGCCAGAG TTCTTTAACTCCAACCGCCATTCCATCAACATAGGCTTGAGGTGTAATACCAGATTCGAA

 $\label{totalcont} \begin{tabular}{l} TTCCGCTTTCTGCTGGATTTCTGACCATGTTCATCAAGACCTGTCAGATAAAATAC \underline{A} TC \\ GTAGCCCATCAGGCGTTTGTAACGTGCTAGGACATCACATGCGATAGTTGTGTAGGCAGA \\ ACCGATATGAAGTTTCCCAGATGGATAGTAAATCGGCGTTGTAATATAAAAATTTTTTTC \\ AGACATAATTTTTCCTTTCCAGGCAAATGAAACCTGTTTTTCTAACACTTCATTATATCA \\ CATTTTTAATGAATTTCGATAGGGAAATCCATACCAAAACAAGATAGACGAGTGTCCATC \\ TTGTTGATCTCATTCATAACGAAGGGCTTCAATTGGATCAAGTTTCGATGCCTTGTTGGC \\ TGGCAAGACTCC \end{tabular}$

ORF Predictions:

ORF #	Start	End	Direction	Length	
1	197	670	F	158 aa	
2	612	1304	F	231 aa	

> 3864184-1 ORF translation from 197-670, direction F VIFISTLSLGGLAHLLWFSLPLAACLAVGAALGPTDLVAFASLSERFSFPKRVSNILKGE GLLNDASGLVAFQVALTAWTTGAFSLGQASSSLIFSILGGFLIGFLTAMTNRFLHTFLLS VRATDIASELLLEFEFASSDLLSGRRSPCFRDYCRRS*

Description: unknown

> 3864184-2 ORF translation from 612-1304, direction F VTFFLAEEVHVSGIIAVVVDRILKASRFKKITLLEAQVDTVTETVWHTVTFMLNGSVFVI LGMELEMIAEPILTNPIYNPLLLLLSLIALTFVLFVIRFIMIYGYYAYRTRRLKKKLNKY MKDMFLLTFSGVKGTVSIATILLIPSNLEQEYPLLLFLVAGVTLVSFLTGLLVLPHLSDE EEESKDYLMHIAILNEVTLELEKELEDTRNKLPLYAAIDNSIMDVLKISF*

Description:

unknown

Assembly ID: 3864194 Assembly Length: 1941bp

CAATCTCAGGCTTCATGCGTTACCATGATAATGGTTTTTCCTTCTTTATTCAAATCAACC AATAATTGCATAATTTGGTTACCTGTTTTGGTATCCAAGGCTCCTGTCGGTTCATCCGCT AGGATAATAGAAGGATTGTTTACCAAGGCACGCGCAATGGCTACACGTTGCTTTTGACCA CCAGATAATTCTGAAGGTAAATGGTGACTACGTTCTATCAATTCAACCTTGTCTAAATAT ${\tt TCCTCAGCCAACTTGCGACGTTTTGAAGACGAAACTCCTGCGTAAATCAAGGGCAATTCT}$ ACATTTTGCAGAGCATTGAGCTTCGATAGAAGAAGAACTGCTGAAAGACAAAACCGATT TGTTGGTTACGGACCTTAGCTAGTTGTTTTTCACCAAGCCCAGCCACTTCTTGACCTTCA AGATAATATTCTCCACTGGTTGGTGTATCCAACATGCCAATCGTATTCATCAGAGTGGAC TTACCAGACCCAGATGGTCCCATGATGGCTACAAATTCACCCTCATTCACTTCTAGATTG ATATTTTGAGAACCTGCAGTTCTTGGTCACCATTACGGTAACTTCTGAAGATATTTTTT AGACTAATTAGTTGCTTCATCAGCCTTCACCTCTTTTCCTTCTTCCAAGGAAGATGTTGG ATTACTGATGACCTTAGCACCGTTCGTTAAACCAGAAGTGATTTCTTGATTTTCTGCGTC AGCATTTCCCAATGAAACCTCAACTTTTTTAGCCTTTTTGTTGTTCATCCACAATCCAGAC ATAATTTTACTATCATCCATTACTAGACTGCTAACAGGAACAAGAATAGCCTTAGTTTT GCTTTTAACCTCAATGTTGACAGAAAAACCTTGTTTCAAATCACCAACCTCGCCTGTCAC ATCAATAGTATAAGGGTATTTAGAACCTGTATTATTCCCGGCTGCTGGACTAGCTGCTTC ACCATTGTTTTTAGGATAGTCAGAAATATAGGCTTAATTTCCCAGTCCATTTTTTATCAG GATACACTTTAGAAGTTAAAGCTTACTTCTTGACCTACAGAAAGGTTGGCTAGATTGTACT CAGACAATTCTCCCTTGACTTGTAAATTTTCATTGCTGACAATATGAACCATAACTTGAC TCGCCCCTGTTGGAGATTTAGAAACATTGCTATTGACTTCGACTACAGTTCCCTCTAGGG TACTGAGAACAGTTGTTGCATCCAATTGACTTTGAGCCTTGCTTAATTGCGCTGCAGCAT CTGCACGCGCATCACGGGCATCACCCAATTGAGCATCAATAGAAGCAACAGAATTTCCAG CCACTGGAGTTGGGCTTTGCACCGTTGCATCTTCTCCTCCTACTGGCGCTGGTAACTGTG GAGCCTGAGCTGAAGCGGCTTCATTTCGTGCTTGATTGAGTTCATTGATATGACGATCTG CCTTAGCTACTGCTCGACTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1084	1380	R	99 aa

> 3864194-3 ORF translation from 1084-1380, direction R VTGEVGDLKQGFSVNIEVKSKTKAILVPVSSLVMDDSKNYVWIVDEQQKAKKVEVSLGNA DAENQEITSGLTNGAKVISNPTSSLEEGKEVKADEATN*

Description: unknown

Assembly ID: 3864338
Assembly Length: 1335bp

Assembly Length: 1335bp

TATTATATTTTTGAAAAAATAAAGTCCTTTTTTTCTTTTTTCAGAAAAAAGGGTATA<u>A</u>TA AAAGAAATAAGCAGTAACACTCAATGGAAAATCGAAAAAGCAAACTAGGAAGCTAGCCGC ${\tt AGATTGCTCAAAACACTGTTTTGAGGTTGCAGATAGAGCTGACGTGGTTTGAAGAGATTT}$ TCGAAGAGTATAAAAAGGTGCTAGGCATGTTGATTTTTCCTTTGTTAAATGATTTGTCAA GAAAAATCATCCATATTGGACATGGATGCCTTTTTTGCTGCAGTGGAAATCAGGGATAAT CCTAAACTCAGAGGAAAACCTGTCATTATTGGAAGCGACCCTCGGCAAACAGGTGGACGG GGAGTCGTTTCTACCTGTAGTTATGAGGCAAGAGCTTTTGGTGTCCATTCTGCCATGAGT TCCAAGGAAGCTTATGAACGTTGTCCCCAGGCTGTCTTTATCTCAGGGAATTCGATGAGA AATACAAGTCTGTGGGACTCCAGATTCGAGCTATTTTTAAGCGCTATACAGATTTGATTG AACCCATGAGCATTGACGAAGCCTATTTGGATGTGACAGAAAATAAACTCGGTATCAAGT CAGCGGTCAAAATTGCTCGCCTCATTCAAAAAGATATCTGGCAAGAACTCCATCTAACTG CTTCCGCAGGCGTTTCTTACAACAAATTCTTAGCTAAAATGGCGAGTGATTATCAAAAAC TTTCCAAATTTCATGGAGTAGGAAAAAAGACAGTAGAACGTCTTCATCAAATGGGCGTTT TTACTGGTGCTGATTTACTTGAAGTTCCTGAGGTAACCCTAATAGACCGTTTTGGTAGAC TAGGCTATGATCTGTATCGAAAGGCTCGTGGCATTCACAACTCTCCAGTCAAATCCAATC ACATCCGTAAATCAATCGGCAAGGAGAAAACCTACGGGAAGATTCTCCGTGCTGAGGAAG ATATCAAAAAGAGAGCTGACTCTTCTATCAGAAAAAGTCGCTCTCAATCTACATCAACA AGAAAAAGCTGGAAAAATTGTCATTTTGAAAATCCGCTACGAGGACTTTTCAACTCTTAC CAAACGAAAAGTATTGCTCAAAAAACACAAGATGCTAGTCAGATAAGCCAAATAGCCCT GCAACTCTATGAAGAATTAAGTGAGAAAGAAGAGGTGTCCGCCTATTGGGGATTACCAT GACTGGATTTTAAAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	552	1100	F	183 aa

> 3864338-2 ORF translation from 552-1100, direction F VGLQIRAIFKRYTDLIEPMSIDEAYLDVTENKLGIKSAVKIARLIQKDIWQELHLTASAG VSYNKFLAKMASDYQKPHGLTVILPEQAEDFLKQMDISKFHGVGKKTVERLHQMGVFTGA DLLEVPEVTLIDRFGRLGYDLYRKARGIHNSPVKSNHIRKSIGKEKTYGKILRAEEDIKK ES*

Description:

ECODINJ NCBI - Escherichia coli (sub_strain W3110, strain K-12) DinP, DNA damage inducible protein

Assembly ID: 3864360 Assembly Length: 1796bp

> 3864360 Strep Assembly -- Assembly id#3864360 TCCAAGCTAGCTATTTCGTGGAAGGGGCTTCGGTTGGCAGAACCTGGTGAATTTACCCAA

 ${\tt ACGTGCTTTTTTAAACGGTCGCGTAGACTTGACACAGGCAGAGGCTGTGATGGATATCAT}$ CCGTGCCAAGACTGACAAGGCCATGAACATTGCGGTCAAACAATTAGACGGCTCCCTTTC TGACCTCATTAACAATACCCGTCAAGAAATCCTCAATACACTTGCCCAAGTTGAGGTCAA TATCGACTATCCTGAATATGATGATGTTGAGGAAGCTACTACTGCCGTTGTCCGTGAGAA GACTATGGAGTTTGAGCAATTGCTAACCAAGCTCCTTAGGACAGCACGTCGTGGTAAAAT CCTTCGTGAAGGAATTTCAACGGCTATCATTGGACGTCCCAACGTTGGGAAATCAAGCCT TCTCAACAACCTCTTGCGTGAGGACAAGGCTATCGTAACCGATATCGCTGGGACAACACG TGGTATTCGTGAAACGGATGATATCGTTGAACAAATCGGTGTTGAGCGTTCGAAAAAAGC AGACAGACAACTTCTTGAAATTAGCCAAGATACCAATCGCATTATTCTACTTAATAAAAC CGACCTGCCAGAAACGATTGAAACTTCGAAACTACCTGAAGACGTTATCCGTATTTCAGT CCTTAAAAACCAAAACATCGACAAGATTGAAGAGCGAATCAACAACCTCTTCTTTGAAAA TGCTGGCTTGGTCGAGCAAGATGCTACTTACTTGTCAAACGCCCGTCACATTTCCCTGAT TGAAAAAGCAGTTGAAAGCCTACAAGCCGTTAATCAAGGTCTTGAGCTGGGGATGCCAGT TGATTTGCTTCAAGTTGACTTGACTCGTACTTGGGAAATCCTCGGAGAAATCACTGGGGA TGCTGCTCCAGATGAACTCATCACCCAACTCTTTAGCCAATTCTGTTTAGGAAAATAAGA AAAATCCATGATCCTTCATTCGGTCATGGATTTTATTGTCTTTATTAGTAATCTGGTCTT AAGACCCCTGTTACAGTTGCCTTAGTTGCTTCGTAGTCGCCATCTACGACAACCTTGATA ATGCGTTTGACATCTTCTTCTGGTGCTGGAACAAGAGGTAGACGAGTGGGTCCAGCTTCA AATCCCATATAGTTAAGAATTGCCTTAACTGGAGCAGGACTTGGATAAGAGAAGAGAGCA TTAACCTTAGGAATGAATTTACGCTGAATTGCTGCGGCTTTCTTCATATCGCTTTCTGCA ATGGCAGTAAACATCTCGTGCATTTCATCCCCATTTGTATGAGAGGCAACAGAAATAACC CCATCCGCCCCAAGGTTCATGGCATGGAAAGCATCTCCATCCTCACCTGTATAAATCAAG AACTCTTCAGGCTTGTGCTCAATCAAGTAAGCCATATTAGCCAAGCTAGTACATTCTTTG ACACCGATAATATTTGGATGGTCAGCCAAGCGAAGCATGGTTTCTGGAGTCAATTCGACA ACTACACGCCCTGGAATGTTATAGATAATAATTGGTAGGTCAGAAGCATCTGCAATAGCC TTAAAGTGCTGATACATCCCTTCTTGAGAAGGTTTGTTGTAGTAAGGAACAATAGCAAGC CCAGCTGCGAAACCACCAAATTCCGCTACTTCTTTGACAAACTCAATAGAGTCACG

ORF	Predic	ctions:			
ORF	#	Start	End	Direction	Length
	1	47	1078	F	344 aa

> 3864360-1 ORF translation from 47-1078, direction F VNLPKRAFLNGRVDLTQAEAVMDIIRAKTDKAMNIAVKQLDGSLSDLINNTRQEILNTLA QVEVNIDYPEYDDVEEATTAVVREKTMEFEQLLTKLLRTARRGKILREGISTATIGRPNV GKSSLLNNLLREDKAIVTDIAGTTRDVIEEYVNINGVPLKLIDTAGIRETDDIVEQIGVE RSKKALKEADLVLLVLNASEPLTAQDRQLLEISQDTNRIILLNKTDLPETIETSKLPEDV IRISVLKNQNIDKIEERINNLFFENAGLVEQDATYLSNARHISLIEKAVESLQAVNQGLE LGMPVDLLQVDLTRTWEILGEITGDAAPDELITQLFSQFCLGK*

Description:

THIOPHENE AND FURAN OXIDATION PROTEIN THDF. - ESCHERICHIA COLI.

Assembly ID: 3864388 Assembly Length: 2337bp

> 3864388 Strep Assembly -- Assembly id#3864388 CTTCGTACAGGTGGTTCCTATGCAAGGGTGGAAGCCAATCGTCAGAACAACAAGCATCTT TTCAGAAGAAGTGGCTTTGAAGACCTTGCAAGATGAGATGGCCAGATTGACCGAGTCATT AGAAGCTATTAAATCTCAAGGAGAGCAGGCACGTATTCAGGAGCAAGGCTTGTCCCTCGC TTATCAGCAAACTAGTCAGCAAGTTGAAGAACTGGAAACTCTTTGGAAACTCCAAGAAGA GGAAATAGATCGTCTTTCCGAGGGAGATTGGCAAGCGGATAAGGAAAAATGCCAAGAGCG TCTTGCTGCAATCGCCAGTGACAAGCAAAATCTGGAAGCTGAGATTGAAGAGATTAAGTC TAATAAAATGCCATCCAAGAACGCTATCAAAACTTGCAGGAAGAGCTAGCGCAAGCTCG TTTGCTTAAGACAGAACTGCAAGGGCAAAAACGTTATGAAATTGCTGATATTGAACGCTT AGGCAAGGAATTGGACAATCTTGATTTTGAACAAGAGGAAATCCAGCGCCTTCTTCAAGA AAAGGTTGACAATCTTGAGAAGGTTGATACAGAATTGCTCAGTCAACAGGCGGAAGAATC CAAAACTCAGAAAACGAACCTCCAACAAGGTTTGATTCGCAAACAGTTTGAGTTGGATGA TATAGAAGGTCAGCTGGATGATATTGCTAGTCATTTGGATCAGGCTCGCCAGCAGAATGA TGCCGCCATCTACAAAGTCAATTAACAGACCAGTACCAGATTAGCCATACTGAAGCTCTA GAAAAAGCGCATGAATTGGAAAACCTCAATCTGGCAGAGCAAGAAGTTAAGGATTTAGAG AAGGCTATTCGCTCACTGGGTCCTGTCAATATAGAAGCTATTGACCGGTACGAAGAAGTT CACAACCGTCTGGACTTTCTAAATAGTCAGCGAGATGATATTTTGTCAGCGAAAAATCTG CTCCTTGAAACCATTACAAAGATGAATGATGAGGTTAAGGAACGCTTTAAATCAACCTTT GAAGCTATTCGTGAGTCCTTTAAAGTGACCTTCAAGCAGATGTTTGGCGGAGGTCAGGCA GACTTGATATTGACTGAGGGCGACCTTTTACAGCTGGTGTGGAGATTTCTGTTCAACCTC CAGGTAAGAAAATCCAGTCGCTTAACCTCATGAGTGGTGGTGAAAAAGCCCTATCGGCTC TTGCCTTGCTTTTCTCCATTATTCGTGTCAAGACCATTCCTTTTGTCATCTTGGATGAGG TGGAAGCTGCGTTGGATGAAGCCAATGTTAAACGTTTTGGGGGATTACCTCAACCGCTTTG ACAAGGACAGCCAGTTTATCGTCGTAACCCACCGTAAGGGAACCATGGCAGCGGCCGATT CCATCTATGGAGTGACCATGCAAGAATCGGGTGTTTCAAAGATTGTTTCAGTTAAGTTAA AAGATTTAGAAGTATTGAAGGATGACAATTAAACTAGTAGCAACGGATATGGACGGAAC CTTCCTAGATGAGAATGGGCGCTTTGATATGGACCGCCTCAAGTCTCTCTTGGTTTCCTA CAAGGAAAAAGGGATTTACTTTGCGGTGGCTTCGGGTCGGGGATTTCTGTCTCTGGAAAT CGAATTATTTGCTGGTGTTCGTGATGACATTATTTTCATCGCGGAAAATGGCAGTTTGGT AGAGTATCAAGGTCAGGACTTGTATGAAGCGACTATGTCTCGTGACTTTTATCTGGCAACTTTTGAAAAGCTGAAAACGTCACCTTATATAGATATCAATAAACTGCTCTTGACGGGTAA GAAGGGTTCATATGTTCTAGATACGGTTGATGAGACCTATTTGAAAGTGAGTCAGCATTA TAATGAAAATATCCAAAAAGTAGCGAGTTTGGAAGATATCACAGATGACATTTTCAAATT TACAACCAACTTCACAGAAGAAACGCTAGAAGCTGGTGAAGCTTGGGTCAATGATAATGT CCCTGGTGTCAAGGCTATGACAACTGGCTTTGAATCTATTGATATTGTTCTGGACTATGT

> 3864388-3 ORF translation from 1239-1586, direction F VEISVQPPGKKIQSLNLMSGGEKALSALALLFSIIRVKTIPFVILDEVEAALDEANVKRF GDYLNRFDKDSQFIVVTHRKGTMAAADSIYGVTMQESGVSKIVSVKLKDLESIEG*

Description:

P115 protein - Mycoplasma hyorhinis (SGC3) (similarity to SMC1_YEAST, chromosome segragation protein)

Assembly ID: 3864406 Assembly Length: 2162bp

> 3864406 Strep Assembly -- Assembly id#3864406 CTAAAAGTGAAGCCCGATAGCGTCTCTCTCCTGCAAGGATTTCATAACCAATAACAGGAG ATTGACGAACAATAATCGGTTGAATGACCCCATTTTCTTTGATAGACTGTGCTAGTTCAT TAGAAATCATTTCAAATTTTTCCATGATTCTACACTAACACATCTTTTCTCTTATGTAAA GCTTTCTTTACATAGATGTCAATTAAGATTCTAAATCACCTGAACTCTTGTTAAGTTTGA TAGAGGTAGTTTCTTCTTTCCCGTTACGATAGTAGGTTATCTTAATGGTGTCTCCGATAG AATGGTTGTAAAGAGCACTTTGTAAGTCTGTTGATGAAGCAATCTCTTTGTCATCTACTT GAACAATTACACCAGATGTAACATTACTTGGAATATTGAGTCTTCTGATGTCGCTTGTAC TCACATTAGATAAATTAACCATCTGGATTCCCAAAGCTGGACGCGTCACTTTTCCGTTTT TTTCTAACTGTTCAATAATATTGATAGCATCATTTGCAGGAATTGCGAAACCAAGACCTT CTACAGATGTTCCTCCATTTGTAGCAATTTTACTTGAGGTAATTCCGATAACCTGCCCTT GAATATTGATCAGTGGGCCGCCAGAGTTACCTGGGTTAATAGCAGTATCAGTTTGGATGG CTTTTGTAGAAATAGCTTGTCCATCTTCCGATTTTAAGGATACATTTCTATTGAGACTGG ATACGATACCTTGAGTGACAGTATTTGCATATTCAGAACCTAACGGGCTACCGATGGCAA TAGCAGTTTCTCCTACAGTTAACTTACTAGAATCACCAAACTCAGCTACTGTTGTCACTT TTTCTGAAGAGTTTCGACGACAGCAATATCAGAGAAAGTGTCAGCTCCGACAATTTCTC CAGGTACTTTAGTCCCATCTGACAATCGAATATCTACTTTGCTGGCGCCCATTTATAACGT CACTAGAGATTCGCTGAGAATCTGTCTCAGTATCATCATTGCCAAATACGCTATTTTGTC TGTTTGCCGAATAAGTAATAACAGAAACAACAGCATCTTTTACTTTGTTAACGGCCTGTG TTGTTGAATTTTCCGTTCCTTATAGGCAGTTTGTGTAATAGTACTATTGTTGTTAGAGTT

ORF	Predi	ctions:			
ORF	#	Start	End	Direction	Length
	1	263	958	R	232 aa

> 3864406-1 ORF translation from 263-958, direction R VTTVAEFGDSSKLTVGETAIAIGSPLGSEYANTVTQGIVSSLNRNVSLKSEDGQAISTKA IQTDTAINPGNSGGPLINIQGQVIGITSSKIATNGGTSVEGLGFAIPANDAINIIEQLEK NGKVTRPALGIQMVNLSNVSTSDIRRLNIPSNVTSGVIVRSVQSNMPANGHLEKYDVITK VDDKEIASSTDLQSALYNHSIGDTIKITYYRNGKEETTSIKLNKSSGDLES*

Description:

Bacillus subtilis (strain 168,) DNA. Homologous to E. coli serine protease HtrA (BLAST)

Assembly ID: 3864452 Assembly Length: 1766bp

> 3864452 Strep Assembly -- Assembly id#3864452
ATCGAATTTTCCAAAATGGGGAGCTAGAGCAGTGGAGTGATTATGTGGCAGACGATTTGA
TTCAGCATAATCATGAGATTGGACAAGGAAGTGCTGCTTATAAAAAACTATGTGGCTGAAT
ATATTGTCACTTTTGACTTCCGTTTTCCAACTCTTAGGACAAGGAAACTATGTGGTTAGCT
ATGGTCAGACTCAGATTGATGGCGTTGCTTATGCCAAGTACGATATCTTCCGTTTAAAGA
ACGGGAAAATTGTGGAGCATTGGGATAATAAGGAAGTCATGCCTAAGGTAGAAGACTTGA
CCAATCGAGGGAAGTTTTAAATTGAGGACAAAGAATGATTGAATACAAAAATGTAGCACT
GCGCTACACAGAAAAGGATGTCTTGAGAGATGTCAACTTACAGATTGAGGATGAGTAACCG

TCTTTTGGAACCAACTGATGGAAATATTTATATGGATGGGAAGCGCATCAAAGACTA<u>T</u>GA TGAGCGTGAACTTCGTCTTTCTACTGGTTATGTTTTACAGGCTATTGCTCTTTTTCCAAA TCTAACAGTTGCGGAAAATATTGCTCTCATTCCTGAAATGAAGGGGTGGAGCAAGGAAGA GCATCGCTTACCTAGTGAATTATCTGGTGGAGAACAGCAACGGGTCGGTATTGTCCGAGC TATGATTGGTCAGCCCAAGATTTTCCTCATGGATGAACCCTTTTCGGCCTTGGATGCTAT TTCGAGAAAACAGTTGCAGGTTCTGACAAAAGAATTGCATAAAGAGTTTGGGATGACAAC GATTTTGTAACCCATGATACGGATGAAGCCTTGAAGTTGGCGGACCGTATTGCTGTCTT GCAGGATGGAGAAATTCGCCAGGTAGCGAATCCCGAGACAATTTTAAAAGTGCCTGCAAC AGACTTTGTAGCAGACTTGTTTGGAGGTAGTGTTCATGACTAATTTAATTGCAACTTTTC AGGATCGTTTTAGTGATTGGTTGACAGCTACAATGACATTGGTCGGTTCCTTGAGCAAGA GATAGATTAGCCAGACAGTCATGCCCAAAATCCCTCCAGGTAAGAGCATAGACCGTTGCA CATTAAGTACGATTAAAAAAGTGATAATGGCAAGAAAACTTGCTACTGCTTGTAATAAAA AGGTTGTTAGTGTCATATTAGTTCATCAATACCAAGGCGACAGAAGTTCCTGCCCCTAAA ATAATATCACGGACCGCATTGGTCAAGGCAATACCTGGTACAAACGGCATGACCGCACCA GCTATAATCAAATCTGCCGTTGAAGGAAAACCTGTGTAGCGAGCCCAAAACTGGGCAATT ATCCCAAGACAAAAGCTCCAGCAAAGGCTGTCACAAAGGGAATTCGGATAAATTTTTCC ACATAGAGGGAAAAGGCAAAACCAAATAAGGTCGCCACTCCTGCCCCAAGTGCGTCGTAG ATATTTCCGCTAAACATAACTGAAAAGAAAGGAGCACTAAAGGTCGCAGCCAGAGTTACC $\tt TGCAACTTAGTATAGGGAAGGGGTTGAGCTTGCAAGGCCGTCAATTGCTTAAAGGCTGTT$ TCTAAGTCAATCTGCCCCCCAACTGG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1079	1201	R	41 aa

> 3864452-2 ORF translation from 1079-1201, direction R VORSMLLPGGILGMTVWLIYLLKEPTNVIVAVNQSLKRS*

Description:

unknown

Assembly ID: 3864458
Assembly Length: 1705bp

> 3864458 Strep Assembly -- Assembly id#3864458
CTCTGACGGAGGCTGGTTATGTGGGTGAGGATGTGGAAAATATACTCCTCAAACTCTTGC
AGGTTGCTGACTTTAACATCGAACGTGCAGAGCGTGGCATTATCTATGTGGATGAAATTG
ACAAGATTGCCAAGAAGAGAGTGAGAATGTGTCTATCACACGTGATGTTTCTGGTGAAGGGG
TGCAACAAGCCCTTCTCAAGATTATTGAGGGAACTGTTGCTAGCGTACCGCCTCAAGGTG
GACGCAAACATCCACAACAAGAGATGATTCAAGTGGATACAAAAAAATATCCTCTTCATCG

TGGGTGGTGCTTTTGATGGTATTGAAGAAATTGTCAAACAACGTCTGGGTGAAAAAGTCA TCGGATTTGGTCAAAACAATAAGGCGATTGACGAAAACAGCTCATACATGCAAGAAATCA TCGCTGAAGACATTCAAAAATTTGGTATTATCCCTGAGTTGATTGGACGCTTGCCTGTTT TTGCGGCTCTTGAGCAATTGACCGTTGATGACTTGGTTCGCATCTTGAAAGAGCCAAGAA ATGCCTTGGTGAAACAATACCAAACCTTGCTTTCTTATGATGATGTTGAGTTGGAATTTG ACGACGAAGCCCTTCAAGAGATTGCTAATAAAGCAATCGAACGGAAGACAGGGGCGCGTG GACTTCGCTCCATCATCGAAGAAACCATGCTAGATGTTATGTTTGAGGTGCCGAGTCAGG AAAATGTGAAATTGGTTCGCATCACTAAAGAAACTGTCGATGGAACGGATAAACCGATCC TAGAAACAGCCTAGAGGTGACTATGGAACTTAATACACACAATGCTGAAATCTTGCTCAG TGCAGCTAATAAGTCCCACTATCCGCAGGATGAACTGCCAGAGATTGCCCTAGCAGGGCG TACATCAGGAAAACCTGGTAAAACCCAGCTCCTGAACTTTTTTAACATTGATGACAAGAT GCGCTTTGTGGATGTGCCTGGTTATGGCTATGCTCGTGTTTCTAAAAAGGAACGTGAAAA GTGGGGGTGCATGATTGAGGAGTAATTTAACGACTCGGGAAAATCTCCGTGCGGTTGTCA GTCTAGTTGACCTTCGTCATGACCCGTCAGCAGATGTGCAGATGTACGAATTTCTCA AGTATTATGAGATTCCAGTCATCATTGTGGCGACCAAGGCGGACAAGATTCCTCGTGGTA AATGGAACAAGCATGAATCAGCAATCAAAAAGAAATTAAACTTTGACCCAAGTGACGATT TCATCCTCTTTCATCTGTCAGCAAGGCAGGGATGGATGAGGCTTGGGATGCAATCTTAG AAAAATTGTGAGGAAAAGAAAATGGCAAAAACAATTCATACAGATAAGGCCCCAAAGGCT GTCTTGAAAAACATCGGTGCTATTTTGGCAGAAGCAGGAACAGACTTTGACCATGTTGTC AAAACAACTTGTTTCTTGAGCGATATGAACGACTTTGTTCCTTTTAATGAGGTTTACCAA ACGGCCTTCAAAGAGGAATTCCCAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	797	1105	F	103 aa
2	1179	1391	F	71 aa

> 3864458-2 ORF translation from 797-1105, direction F VTMELNTHNAEILLSAANKSHYPQDELPEIALAGRSNVGKSSFINTMLNRKNLARTSGKP GKTQLLNFFNIDDKMRFVDVPGYGYARVSKKEREKWGCMIEE*

Description: unknown

> 3864458-3 ORF translation from 1179-1391, direction F VQMYEFLKYYEIPVIIVATKADKIPRGKWNKHESAIKKKLNFDPSDDFILFSSVSKAGMD EAWDAILEKL*

Description:

HYPOTHETICAL 22.0 KD PROTEIN IN LON-HEMA INTERGENIC REGION (ORFX). - BACILLUS S UBTILIS.

Assembly ID: 3864474
Assembly Length: 1673bp

> 3864474 Strep Assembly -- Assembly id#3864474 ACGTTTTGGGAACTGTTCGGATAGCAGATTCCGAACAACTGATAATGGTTGGCAAAATC ATTATTCCTAATAGTAACGAAGCTGGTTAGGACAACTCATGCCATTTCCTAAAAAGGTTT TAATCCAAGGCACCAATAATTGTAGGCCGAAAAAACCATAAACAATAGATGGAATGGCTG CCATCAAGTTGATAGCTGATTTTAAGAAGCTATAGACGGGCTTTGGACAATTATAAACCA TAAACACCGATGTCAAGATCGCCTGTTGGCACCCCAATCACAATCGCTCCTAAGGTCGAA TAAATAAGGAACCAACGATCATTGGTAAAATACCATAGCTTGCCGGAATGTTCGTTGGCG ACCAATCACTGCCTAATAAAAAACGGGCAAAGCCGTAGTTAGCTATGAAAGGTAAGCCAT TACTAAAAATAAAGAAACAGATTAGCAAAATAGCTACAACAGCTACTGTTGCACTCATGA AAAAAATTGCCCTAAAAACTGCTTCTTTGAAGGCTTGTTTTGTCACATCTTGTCCTTTCT AGTGAAGAAAGTAAGGGAGATACGACACCTCCCTACTTGCCTTCTTTATCTTATTGTACG AGGTGGTTAATTTGCCACTAAAAACGTCCGCAAGTTCAGCCATACTGACTTGGCTTGCCT TATTGTCATTATTGACCACAACAGCAATACCGTCTAAAGCAATAGCATCATGGGTGAGAC TCTTACCTTCTCAGGAGTTAATTCCCTAGAAACCATACCAATATCAGCGGTTTTCTCCT TAACAGCGGTAATACCTGCTGAAGACCCATTAGAGGTAATATCAATCGTAACTTCTGGAT TTTCTTTTTTATAAGCTTCTGCTAATTTTTCCATTAAAGAAGATACTGAAGTGGAACCTA CAACAGACAACTTGCCTGATAAGTGTTGGCTTGTATATTCTGTGGTTTCGGTTTTAGCTT CAATAAATTTATTATCTGTGACCACTTGTTGACCTTGTTTGGAGTGGATAAAGCTGATAA AATCTTGACCTAGCTTGGAAAGATTAGAAGACCAAACAATGTTGAAGGGACGTTGAAGAG GGTATTCACCATCTAAAACTGTGTCTCGACTAGCCTTGACACCATCAATCTCTAAAGCCT TGACAGATTTCGTTAAAGATCCCAAGGAGATGTAGCCGATAGCATTAGCATTCCCTTGAA CTGCTGAGAGAACACCTTCTGTACTATTTTGAATCACAGCTGTTTTTGGCAGTGTAGTCAA TTTTTTTATCACCGTCTTTTTTGAGAATCCCTGTGATTTCTGTGAAGGCACCCCGTGTTC CAGAGCCATTTTCTCGTGAAATCACCTCAATCGTTCCTGGAGCTGACTGTTTGGAAGCAG CTGACTGATTGCCACAGGCAACAAGCCCAAATCCTGATAAGCCAATGGCTGCAAGAGTAA TACTACATTTATAGTCTAACAAGTCTTTGTAAAGGTTTATCCCTGATTCATGTAAAGATT GTGTAAAGAATCAAAAAAAGCCACTTTTGAAAAATGGCTGCCCCTAAAAATAG

ORF Predictions:

ORF #	Stai	rt E	nd	Direction	Lengtl	a
	1	68	247	R	60	aa
	2	644	1528	R	295	aa

> 3864474-1 ORF translation from 68-247, direction R

VFMVYNCPKPVYSFLKSAINLMAAIPSIVYGFFGLQLLVPWIKTFLGNGMSCPNQLRYY*

Description:

PROBABLE ABC TRANSPORTER PERMEASE PROTEIN (ORF72). - BACILLUS SUBTILIS. (BLAST)

> 3864474-2 ORF translation from 644-1528, direction R VIIMKFKKMLTLAAIGLSGFGLVACGNQSAASKQSAPGTIEVISRENGSGTRGAFTEITG ILKKDGDKKIDYTAKTAVIQNSTEGVLSAVQGNANAIGYISLGSLTKSVKALEIDGVKAS RDTVLDGEYPLQRPFNIVWSSNLSKLGQDFISFIHSKQGQQVVTDNKFIEAKTETTEYTS QHLSGKLSVVGSTSVSSLMEKLAEAYKKENPEVTIDITSNGSSAGITAVKEKTADIGMVS RELTPEEGKSLTHDAIALDGIAVVVNNDNKASQVSMAELADVFSGKLTTWDKIK*

Description:

probable hemolysin precursor - Streptococcus agalactiae (strain 74-360)

Assembly ID: 3864510 Assembly Length: 1702bp

> 3864510 Strep Assembly -- Assembly id#3864510 CTTTTTTATTTCACAACAAGTTCATAACGTGTCTTACTGGTGAAGGTTTGACCAGCTTTA AGAATGACTTGGCCTTTAAGGTCACTGTGAATGGCATCTGGTAAAGCTTGCGCTTCAAGA GCAATCCCATTGTGCTGTAGCATTGGCTGACCTCCTATGATGACACTTTCATCCACAAAG TTTGCTGTGTAGACCACAAAGCAAGGAGCTTCTGTCTTGAAAAGCAGGAAGCGACCTGAA TTTTGGTCATAAAGGAATCCAGCATTGTCATGGCCTGCAGGAAGGGCAAATGGATGATCC AAACCTGATGCCAGCTGGATTTGCTCATCTTCTTCTGCAAAGATATCCTTCAACAAGGCA CCATTGTAGATGTGTTTGACCACATCACGGTTGGCTTCTGGAGTTTTGGCAGGAACACCG TCAGGAGCGATTGAGTAAATGCCCTCTGTGTTTAGTTGGAAGACATGACGGTCAATCGTC TGATCGGTCGTTACCTTGTAGATCGAATTCATGGAGGCACCAGTTTCTTCCAAGTGATAA CTGATCGCCAAATCTTGAGATTTCCAGGGAACCCTCCTGTCCCATCTGTACGCTCTGTGT AGAGAGTCAAGCCATGATCGCTTACTTCTTCAACTTCAAACAAGCTGGAATCCCAACCAG TTGAACCACTGTGATTACAGTTGCTAGCATTATTAACCTCAAGGTCATAGGTCTTACCAT TGAGCTCAAAGGTCGCACCTGCAATACGACCCGCTACAGGACCTACACTTGCTCCATGCT TGGGACTATTGCCTACATAACTATCAAAGTCATCAAATCCCAAGATAACATTGGCAAAAT TTCCAGCCTTGTCAGGTGCGACATAGCGCAAGATAGTCGCACCATAAGTCATAACCTCAA GTTGGTAGCCACCGTCTGTCTCAAATCGATAGGCCAAGACATCCTCACCCTCAACATTTC CAAATACACGCTCTGTGTATGCTTTCATTCTGTTCTCTCTTTTACTATTTCTCTCAAGCAA ACAAACCATAGAAAGCGTACTGACAATCTATGGTTTATCTGATAATTTACAAATCCTCTT GTCAAGAATTCATAAACACTGTCTTACTTTTGATATTCGTGAATTATGACACCTTGTACT ACACGGTTTACTGTACCTGTAGGAGACGGTGTATCTGGTTTATTTTCTACCTTGAGTGAA GTCAATAGGGCAAAGAGTTGGGCATAAACGATGTAAGGGAAGACACGGTAAATATCATTC

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1164	1640	R	159 aa

> 3864510-3 ORF translation from 1164-1640, direction R VSSILGAGPFFGLAHEAQLKILELTAGQVATMYESPVGFRHGPKSLINDNTVVLVFGTTT DYTRKYDLDLVREVAGDQIARRVVLLSDQAFGLENVKEVALGCGGVLNDIYRVFPYIVYAQLFALLTSLKVENKPDTPSPTGTVNRVVQGVIIHEYQK*

Description:

AGAS PROTEIN. - ESCHERICHIA COLI. (Probable tagatose-6-phosphate ketose/aldose isomerase)

Assembly ID: 3864526 Assembly Length: 1940bp

> 3864526 Strep Assembly -- Assembly id#3864526 TGCAGGATTTGATTTGGACGACTTTTATTATTACCAGATTCGCCTAGGAATAGAAAAAG AGCCCAAGAGTTGGACTATGATATCTTGCGCTATTTTAATGACCACCCTTTTTACCCTAAG ${\tt CGAGGAAGTGATTGGGATTCTCTGCATCGGAAAGTTTAGTCGAGCTCAGATTTCTGCCTT}$ TGAAGAATACCAAAAGCCTCTTGTATTTCTAGACAGCGATACACTTTCCCTGGGACATAC $\tt CTGTATTATCACGGATTTTTACACTGCTATGAAACAGGTTGTCGATTATTTCCTCAGTCA$ AGGAATGGACCGTATCGGGATTCTAACAGGCCTTGAAGAAACAACAGACCAAGAAGAAAT CATTCAGGACAAGCGTCTAGAAAACTTCAAAAACTACAGTCAAGCGAGGGGAATCTATCA TGATGAACTGGTCTTTCAAGGAAGATTTACTGCCCAGTCTGGCTATGACTTAATGAAGGA AGCTATCGGTGCCCTCCCAAGAAGCTGGAATCAGCCTGCCAGATCGCGTCAG $\verb|CCTCATTTCCTTTAACGACACTAGTCTGACCAAACAGGTCTATCCTCCCCTCTCTAGTAT| \\$ ${\tt TACAGTTTATACTGAAGAAATGGGCCGAGCAGGTATGGATATTCTTAACAAGGAAGTCCT}$ CCACGGTCGGAAAATCCCTAGCCTGACCATGCTGGGAACCAGACTGACATTAAGAGAAAG TACCCTAAATCAAGAATAGGATAACATAAAAAACGAATAGAGTTCTAAAACTCCTATTCG ${\tt TTTTTTATTCGATTACAATCATAGACTTAATGGTCTTACGTTCATCCATATCTTTGTAGG}$ CTTGGTCGATATCTTCCAGTTTATAACTTGAAGTAAAGACGCGACCTGGATTGATATCAC CATCAAGGACGGCTTTTAGTAAAAATTGCTTATCGTATGTTGTAGCAGAAGCTGCCCCAC

 $\tt CTGCTACAGAGATATTTTGCATAAATGTCGAACCAAGAGCACGATTATTATAGTGTG\overline{G}GA$ CTCCTACAAAGCCCATACGCCCTCCATTATGAAGAACACCTAGCGCCTGTTCTATAGCAG $\tt CCTCCGTACCAACACATTCAAGTGCTGCGTCTGCTCCTCCGCCGAGGATTTCACGCACCT$ TGGTAATTCCTTCTTGACCACGTTCTGCAACAACAGCTGTCGCACCTGACTCCATAGCCA TCTTTTGACGGTCTTCATGACGGCTCATAAGGATAATTTGTGATGCTCCACGCATCTTAG CCGCGATGACAGCACATTGACCAACAGCCCCATCACCGATAACAACAACCTTGTCCCCTT TTTGAACATTTGCAACACGCGCCGCATGATAGCCTGTCGGCATGACATCTGCAAGAGTCA AAAGGGACTTGAGCATCCCTTCTGTATAGTCAGAAGGTTGACCAGGGATTTTAACCAGCG CCCAGTTTGCATAGTGGAAGCGAATATATTCTGCCTGAAAATCACCCCCCAAATTATTGC CAATATGATTGTCGCAAGAACCGTCAAATCCAGCAAGACAGGCATCACACTCACCACATC CATGTGTAAAAGGGACAATCACAAAATCACCTGGTTTCACCGTCGTAATGGCTTCCCCAG AATCACATCATCCGCTTCTATTATTTGCGGACGTTCAATGCTAGCAAGTCCAACCTGACC GAGATTTAAACGATTTAAAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	845	1660	R	272 aa

> 3864526-2 ORF translation from 845-1660, direction R VKPGDFVIVPFTHGCGECDACLAGFDGSCDNHIGNNLGGDFQAEYIRFHYANWALVKIPG QPSDYTEGMLKSLLTLADVMPTGYHAARVANVQKGDKVVVIGDGAVGQCAVIAAKMRGAS QIILMSRHEDRQKMAMESGATAVVAERGQEGITKVREILGGGADAALECVGTEAAIEQAL GVLHNGGRMGFVGVPHYNNRALGSTFMQNISVAGGAASATTYDKQFLLKAVLDGDINPGR VFTSSYKLEDIDQAYKDMDERKTIKSMIVIE*

Description:

ALCOHOL DEHYDROGENASE (EC 1.1.1.1). - ALCALIGENES EUTROPHUS.

Assembly ID: 3864548
Assembly Length: 2051bp

> 3864548 Strep Assembly -- Assembly id#3864548
ATCGAATTTTCTAGCCAGGCTACAGTTTTGGCAAGTAAGGTTTCATCTCAGGCAGTCAA
CTGGGTGAGTGCCTTTATTAGCGGAGCTTCTCAAGTGATTGTTGCCTTGATTATCGTTCC
TTTCATGCTCTTTTATCTCTTGCGTGATGGGAAAGGCTTGCGTAACTATTTGACCCAATT
CATTCCAAGAAAATTGAAGGAACCTGTTGGACAAGTTCTATCAGATGTGAATCAACAGTT
GTCCAACTATGTTCGAGGGCAAGTGACAGTGGCTATTATTGTAGCAGTAATGTTTATCAT
CTTCTTCAAGATTATTGGTCTACGCTATGCGGTTACGCTGGGGGTTACTGCTGGTATTTT
AAATCTGGTCCCTTATCTTGGTAGCTTTCTAGCCATGCTTCCTGCCCTAGTATTGGGTTT

GATTGCTGGTCCAGTCATGCTTTTGAAAGTAGTGATTGTCTTTATTGTAGAACAAACTAT TGAAGGCCGTTTTGTCTCTCCATTGATTTTGGGAAGTCAATTAAACATCCACCCTATTAA TGTTCTCTTTGTTTGTTAACTTCAGGATCTATGTTTGGTATCTGGGGAGTTTTACTTGG TATTCCGGTTTATGCCTCTGCTAAGGTTGTCATTTCAGCCATTTTCGAATGGTATAAGGT AGTCAGTGGTCTATATGAATTAGAGGGTGAGGAAGTCAAGAGTGAACAATAGTCAACAGA TGTTACAGGCTTTGGAGGAGCAAGATTTAACTAAGGCTGAGCATTATTTCGCCAAAGCTT TAGAAAATGATTCAAGTGATCTTCTGTATGAGTTGGCAACTTATCTTGAAGGGATTGGTT TCTATCCTCAGGCCAAGGAAATTTACCTGAAAATTGTAGAAGAATTTCCAGAGGTTCATC TTAATCTAGCTGCAATGGCTAGCGAGGATGGTCAAATAGAAAAAGCCTTTAACTATCTTG AGGAAATCCAAGCTGACAGTGACTGGTATGTCTCGCTCTTTGGCTCTGAAGGCAGACCTA TACCAGCTGGAAGGTTTGACAGATGTGGCACGTGAGAAATTATTGGAGGCCTTGACCTAC TCAAAGGATTCTCTCTTGATATTGGGTTTGGCAAAGTTGGATAGTGAGTTGGAAAATTAC CAAGCGGCTATTCAAGCCTATGCCCAGTTAGATAATCGCTCGATTTATGAGCAAACGGGC ATTTCCACCTATCAACGAATTGGCTTTGCCTATGCTCAGTTAGGGAAATTTGAAACGGCT ACTGAGTTTTTAGAAAAAGCCCTGGAGTTAGAATACGATGACTTAACAGCTTTTGAGTTG GCCAGTCTTTATTTTGATCAAGAAGAATATCAAAAAGCCACCCTCTACTTTAAGCAGCTT GATACCATTTCTCCTGACTTTGAAGGCTATGAGTATGGGTACAGTCAGGCTTTACATAAG GAACATCAAGTTCAAGAAGCCCTGCGTATCGCTAAGCAAGGATTAGAGAAAAATCCCTTT GAAACTCGCCTCTTGCTAGCTGCTTCACAATTTTCTTATGAATTGCATGATGCTAGTGGT GCAGAAATTATCTCCTTACTGCAAAAGAAGACGCTGAGGATACAGAAGAATCTTGCTT CGTTTAGCCACTATTTATCTGGAGCAGGAGCGTTATGAGGATATTCTAGACTTGCAGAGT GAGGAGCCAGAAAATCTTTTGACCAAGTGGATGATTGCTCGTTCTTATCAAGAAATGGAC GATTTGGATACTGCTTATGAGCATTATCAAGAGTTGACAGGAGATTTGAAGGACAATCCA GAATTTCTGGAACACTATATCTATCTCTTGCGTGAATTGGGACATTTTGAAGAAGCAAAA GTCCATGCTCACACTTACTTAAAACTGGTTCCAGATGATGTGCAAATGCAAGAACTGTTT GAGAGATTGTAAGAATGTTTAAACATATAGAACTGTAGTTTATCTCTTTTGATAGCTACG GTCTTTATTTGTACATGGTAGAATCTTTTTACAAAAATACTTGGTAATCTTGTTTATTCA TGCCATAATAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	687	1055	F	123 aa
2	979	1932	F	318 aa

> 3864548-2 ORF translation from 687-1055, direction F VRKSRVNNSQQMLQALEEQDLTKAEHYFAKALENDSSDLLYELATYLEGIGFYPQAKEIY LKIVEEFPEVHLNLAAMASEDGQIEKAFNYLEEIQADSDWYVSLFGSEGRPIPAGRFDRC GT*

Description: unknown

> 3864548-3 ORF translation from 979-1932, direction F VTGMSRSLALKADLYQLEGLTDVAREKLLEALTYSKDSLLILGLAKLDSELENYQAAIQA YAQLDNRSIYEQTGISTYQRIGFAYAQLGKFETATEFLEKALELEYDDLTAFELASLYFD QEEYQKATLYFKQLDTISPDFEGYEYGYSQALHKEHQVQEALRIAKQGLEKNPFETRLLL AASQFSYELHDASGAENYLLTAKEDAEDTEEILLRLATIYLEQERYEDILDLQSEEPENL LTKWMIARSYQEMDDLDTAYEHYQELTGDLKDNPEFLEHYIYLLRELGHFEEAKVHAHTY LKLVPDDVQMQELFERL*

Description: unknown

Assembly ID: 3864582 Assembly Length: 1318bp

> 3864582 Strep Assembly -- Assembly id#3864582 $\tt CTTTAGCAATCAGTTTATTGGGAGATTTGACTGCCACTTCTGTTGGAACCTTGATAATCT$ TTTTACCCTCAAAGCGTTCCATACCAGAAATCTTAACATCAACTGCTAAAATAACTACAT $\tt CCGCTGCATCAATCTGCTCTTGACTCAATTCATTTTCTACCCCTATTGTCCCCTGAGTCT$ CAACATGAATCACATGTCCAGCTACCTTTGCGGCATTCTCTAATTTTTCCTGTGCAATAT AAGTGTGGGCAATTCCCATAGTACAAGCTGCAACACCCAACAATTTTCATACGGATACCCT CCAAAATTTTTTCTTATTAACAAAAAGCTGCAATCACATCATCAGATGTCTGAGCCCGAA CTAATTTGGCAACACTTCGTCATTACCAAGTTTTCGAGCAAAGAGTGATAAGGTCTTCA AATGCTCCCTAGCAGCTTCTGTATCATCACCAACTGCAAAGAGTACAATTACTTTGACCC CTTTCCCATCAATGGTCTCCCAAGGAATCTCATTGTGATTTATAGCTATGACTACCCCCG CCTTCTCCACAGCAGAACTCTAGCTATGGGGAATAGCAATATAATTCCCAATACCGGTCT GTCCTTCTGCCTCTCTGATAAAGACCTTCGATAAATTGGTCTCTATCAGACACATAAC AAATCCGTCTGGATCAGACTCACATTAAGAATATCTTTGATTTCCATATATTATCTCCCG CATCAATGTTTTAATACATGACTTGTCCTGTGATACTGCAATGGCCAAACCGATAATAAG GTCAACACACTGGATATCCTTCGACCATTCTCTGATAGGTGGTTTTAATCTAGTAATCAC TAAGACATGATGTTGAAAGTTTCCTTCACAATGTGGTAGAAGAACACCTTTAGCAACCTC TATACTTCCCTGTCTCTCACGGTAATATAGAAGCTCTTCTATTTTTTCTGTATCTTCAGA AACAAGAAGGCTGATTTGATTTGCTAATTCTTTGTAGGCTTCTTGACGATTTTGAACAGA TATATCCATAAGGACAAGCGAAAGATTATTCATAGTTTATCTCCTGAATTTTTGCTTGAA GACGTTGTTTATCACCCTCGGTTAGAAAAGCACTAACTAGGACAAACGGGACACTTGCTG ${\tt GTTCCTGCAAAGCTACCGTCGTCACAATGAAATCTAAATCTGGATATAGATTTATCAG}$

	1	317	550	R	78 a a
ORF	#	Start	End	Direction	Length
ORF	Predic	ctions:			

> 3864582-1 ORF translation from 317-550, direction R ____ VEKAGVVIAINHNEIPWETIDGKGVKVIVLFAVGDDTEAAREHLKTLSLFARKLGNDEVV AKLVRAOTSDDVIAAFC*

Description:

Probable phosphotransferase enzyme IIa component

Assembly ID: 3864604 Assembly Length: 2077bp

> 3864604 Strep Assembly -- Assembly id#3864604 $\tt CTAGTCTTGGCTACTGTCTAAGTTGGCTTGTGCATAAGCCTGCCAGATTTTTTTGTTGGGG$ TTTGGCAAGTGGGTAATTCTTGAATTCTTCTGGTGAAAGCCAACGAACTTCCCTATCTGA AAAATCATGGAAGTCACTCACCTGACCTGCTACAATCTGTACATGCCATTTTCGATGACT AAAAACATGCTGGACTGTATCAAAACAACATCAAGCCAATCAACATCTAGGTCATAGTC CTGCTGGAAACTCTCTTCTGGGACTGGGGCCAGAGTTCACACTTTCTTCCGCAACCTGAT GAAAGAGGTCAAACTGCTCTTCTTGCGAAAAGTTATCAACTTCTATAAAGGGGAAATGCC AAAAACCTGCCAAGAGCTTTTCGCTTTCATTTTTTTCAAGTAAAAATTGTCCTTGAGAAT TTTTCACAACTAAGGCTTTAAGATAAATAGGAACCGGCTTTTTCTTAGGAGATTTAATTG GATAACGGTCCATGGTTCCATTCTGATATGCCGCACTAAAGTCCTTGACTGGGCTTTCTT CAGGTCTGGGATTTACAGGAGACTCAATATCAGACCCTAAGTCCATCAAGGCTTGATTAA AATCACCCGGACGATCTGGATTAATCAAGATCTCCATCATTGCCTGAAAAATTTTTCGAT TACTTGGAATCCCAATATCGTGGTTGACTTCAAACAGACGCGCCAAGACCCGCATGACAT TACCATCTACAGCTGGCTCAGGCAAGTTAAAAGCAATACTGGAAATGGCTCCTGCTGTGT AAGGTCCAATCCCTTTCAAGCTGGAAATTCCTTCATAGGTATTTGGAAATTGGCCACCAA AGTCAGTCATAATCTGCTGGGCTGCAGCCTGCATATTGCGAACTCGAGAATAATAACCCA AGCCCTCCCAAGCTTTCAGTAAACTCTCCTCAGGCGCAGTTGCCAGACTTTCGACAGTTG GAAACCAGTCCAAAAATCTTTCGTAGTAAGGGATAACTGTATCCACCCTGGTCTGCTGAA GCATGATTTCAGATACCCAGATGTGATAAGGATTTTTACTTCTCCTCCAAGGCAAATCTC TTTTGTTTTCATCATACCAAGCGAGAAGTTTTCTCACCGGAAAGAATGACTTTCTCCTC CGGCCACATGACGATACCGTATTCTTTCAAATCCTAACATATCTCTAGTTATAACACAGA CCTATCTACTTATACTCCAATGAAAATCCAAAGAGCAAACTAAGAAGCTAGCCGCAGGTT GCTCAAAACACTGTTTTGAGGTTGTGGATAGAACTGACAGAGTCAGTATCATATTACCTA CGGCAAGGTGAAGCTGACGTAGTTTGAAAAGATTTTCGAAGAGTATAAATCTTATTGATG AACTGCTTGCAGTCTGAGAAAAAATGAGCTTGGATATTATTTCCAAACTCACTTAAAGTC AATTTCAATCCACTAGAACAAGCCTAGTACAGTTCCATCGCTTTCAACATCCATGTTGAG AGCTGCTGGACGTTTTGGAAGACCTGGCATGGTCATAACATCACCAGTTAAGGCAACGAT GAAGCCTGCACCTAATTTTGGTACCAATTCACGAATGGTAATTTCAAAGTTTTCTGGTGC TCCAAGCGCATTTGGATTGTCTGAGAAACTGTATTGAGTTTTAGCCATACAAATTGGCAA TTTGTCCCAACCGTTTTGAACGATTTGAGCAATTTGTGTTTTGAGCTTTCTTCTCAAAGTT CACTTTGCTACCACGATAGATTTCAGTGACAATTTTTTCAATCTTTTCTTGGACAGAAAG GTCATTATCGTACAAACGTTTATAGTTAGCTGGATTTTCAGCAATTGTCTTAACAACTGT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1	141	R	47 aa
2	1513	1803	R	97 aa

> 3864604-1 ORF translation from 1-141, direction R VSDFHDFSDREVRWLSPEEFKNYPLAKPQQKIWQAYAQANLDSSQD*

Description:

unknown

> 3864604-3 ORF translation from 1513-1803, direction R VNFEKKAQTQIAQIVQNGWDKLPICMAKTQYSFSDNPNALGAPENFEITIRELVPKLGAG FIVALTGDVMTMPGLPKRPAALNMDVESDGTVLGLF*

Description:

FORMATE--TETRAHYDROFOLATE LIGASE (EC 6.3.4.3)
(FORMYLTETRAHYDROFOLATE SYNTHETAS E) (FHS) (FTHFS). CLOSTRIDIUM ACIDI-URICI.

Assembly ID: 3864610 Assembly Length: 1887bp

TGGAAAGAGGTTGGTGGTAAGGACTTACCCATCTCTGTTATCAATCGGGCAGCCGGCTCT GGCTCTCGTGCTACCTTTGATACTGTCATTATGGAAGGTCAGTCTGCCATGCAAAGTCAG GAGCAGGATTCAAATGGAGCGGTAAAATCAATCGTATCAAAAAGTCCAGGAGCTATCTCT TATTTATCTCTTACCTATATAGATGATTCGGTCAAAAGCATGAAGTTGAATGGCTATGAC TTAAGTCCAGAAAATATAAGTAGCAATAATTGGCCCTTGTGGTCTTATGAGCATATGTAT ACATTGGGGCAGCCCAATGAGTTGGCTGCAGAATTTCTCAATTTTGTTCTCTCGGATGAG ACCCAAGAAGGGATTGTCAAAGGATTGAAGTATATTCCGATTAAGGAAATGAAGGTTGAA AAAGATGCTGCCGGAACTGTGACAGTGTTGGAAGGGAGACAATAATGAATCAAGAAGAAT TAGCTAAGAAAATGTTGCTTCCATCAAAGAATTCTCGTCTGGAGAAATTAGGAAAAGGTT TGACCTTTGCCTGTCTTTCTTTGATAGTCATCCTTGTGGCCATGATTTTGGTTTTCGTAG GAGGAACTTGGAATCCTTCTAGTAAAGAATTTGGTGCCCTTCCTATGATTTTTGGGTTCCT TTATCGTTACCATTCTCTCAGCCCTTATCGCAACACCCTTTGCTATTGGTGCAGCAGTTT TTATGACCGAAGTATCACCAAAAGGGGCGAAGATTTTGCAACCAGCTATTGAACTCCTGG TTGGGATTCCTTCAGTAGTGTACGGATTTATTGGCTTGCAAGTCGTCGTTCCCTTTGTTC GCAGTGTCTTTGGTGGACTGGTTTTGGGATTTTGTCAGGGATTTCCGTCCTCTTTGTCA TATCGTGAAGCCAGTTTCGCTATGGGA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	427	1305	F	293 aa

> 3864610-1 ORF translation from 427-1305, direction F VKKRKKLALSLIAFWLTACLVGCASWIDRGESITAVGSTALQPLVEVAADEFGTIHVGKT VNVQGGSSGTGLSQVQSGAVDIGNSDVFAEEKDGIDASALVDHKVAVAGLALIVNKEVDV DNLTTEQLRQIFIGEVTNWKEVGGKDLPISVINRAAGSGSRATFDTVIMEGQSAMQSQEQ DSNGAVKSIVSKSPGAISYLSLTYIDDSVKSMKLNGYDLSPENISSNNWPLWSYEHMYTL GQPNELAAEFLNFVLSDETQEGIVKGLKYIPIKEMKVEKDAAGTVTVLEGRQ*

Description:

PROBABLE ABC TRANSPORTER BINDING PROTEIN PRECURSOR (ORF108). - BACILLUS SUBTILIS. (BLAST)

Assembly ID: 3864716 Assembly Length: 405bp

```
ORF Predictions:

ORF # Start End Direction Length

------

1 57 272 F 72 aa
```

> 3864716-1 ORF translation from 57-272, direction F VQPTQAEQPSTPKESSQQENPKEDRGAEETPKQEDEQPAEAQEIKVEEPVESIEETVIQP VEQPKVETPAV*

Description: unknown

Assembly ID: 3864718
Assembly Length: 1542bp

> 3864718 Strep Assembly -- Assembly id#3864718 ${\tt CTATGGGATTGGTAGTTCTTCCTAGTGCAGGGGCTGTAGACCCAGTTGCGACCCTAGCGC}$ AGGTGACATCCTCAAAACGCTTGGCTTGGACACTGTTTTAGAAGAAACCTCAGCAAAACC TAGGACAGAAAACCAAGTAGTAGAGACAGAGGAAGCTCCAAAAGAAGAAGCACCTAAAAC AGAAGAAGTCCAAAGGAAGAACCAAAATCGGAGGTAAAACCTACTGACGACACCCTTCC TAAAGTAGAAGAGGGGAAAGAAGATTCAGCAGAACCATCTCCAGTTGAAGAAGTAGGTGG AGAAGTTGAGTCAAAACCAGAGGAAAAAGTAGCAGTTAAGCCAGAAAGTCAACCATCAGA CAAACCAGCTGAGGAATCAAAAGTTGAACCACCAGTAGAACAAGCAAAAGTCCCAGAACA ACCCGTGCAACCTACACAAGCTGAGCAACCAAGTACACCAAAAGAATCATCACAACAAGA AGAAGCCCAAGAATCAAGGTTGAAGAACCAGTAGAATCAAAAGAGGAGACTGTTAATCA GGAACCAAAGTTGAAGTAACAAGTATTCCCCAAACTACTCGCTATGAGGAAGACCTTAC TAAGGAACACGGAACGCGTGAAGTTGTTAAGGAAGGTAAGAATGGCAGTAGAACAGTTAC TACTCCATATATCTTGAATGCGACAGATGGTACGACTACAGAAGGCACTTCGACAACTGA TGAAGCTGAGATGGAGAAAGAGGTTGTTCGTGTTTGGCACGAAACCCAAAGAAAAATTAGC TCCAGTCTTAAGTTTGACAAGTGTTACAGATAATGCAATGTTGCGTAGTGCGAGACTTAC TTATCATTTGGAAAATACAGATAGTGTTGATGTGAAAAAAATTCATGCTGAAATTAAAAA TGGCGATAAGGTTGTCAAAACTATTGACTTATCTAAAGAGAGATTATCAGATGCTGTTGA CGGTCTTGAACTTTATAAAGATTATAAGATTGTGACGAGTATGACCTATGATAGAGGTAA TGGTGAAGAACCTCTACGTTGGAAGAACTCCACTACGATTAGACCTCAAGAAGGTTGA ATTGAAAAACATCGGCTCTACTAATCTCGTCAAAGTAAATGAGGATGGTACTGAGGTGGC

 $\label{eq:condition} \textbf{AAGTGACTTCTTAACAAGTAACCTGTGGATGTGCAGAATTACTACCTCAAAGTAACTTCCCCTGCTGATAAAAAATTGAAGAGGTGACTGAGGAAGGTCCACCACCTTTACAAAGTCCCTGCTAAGGCCCTAATTTGAT$

> 3864718-1 ORF translation from 77-1474, direction F
VLLKMDGYRYVGYLSGDILKTLGLDTVLEETSAKPGEVTVVEVETPQSTTNQEQARTENQ
VVETEEAPKEEAPKTEESPKEEPKSEVKPTDDTLPKVEEGKEDSAEPSPVEEVGGEVESK
PEEKVAVKPESQPSDKPAEESKVEPPVEQAKVPEQPVQPTQAEQPSTPKESSQQENPKED
RGAEETPKQEDEQPAEAQEIKVEEPVESKEETVNQPVEQPKVETPAVEKQTEPTEEPKVE
VTSIPQTTRYEEDLTKEHGTREVVKEGKNGSRTVTTPYILNATDGTTTEGTSTTDEAEME
KEVVRVGTKPKEKLAPVLSLTSVTDNAMLRSARLTYHLENTDSVDVKKIHAEIKNGDKVV
KTIDLSKERLSDAVDGLELYKDYKIVTSMTYDRGNGEETSTLEETPLRLDLKKVELKNIG
STNLVKVNEDGTEVASDFLTSKPVDVQNYYLKVTSRDNKVVSPPS*

Description: unknown

Assembly ID: 3864802 Assembly Length: 1321bp

> 3864802 Strep Assembly -- Assembly id#3864802 ATCGAATTACTTCAACTCCAACTTTACTCTCAATAAAAATCAAATGTAAAAAGAGGAGCT AAATTTATCTTTTTCTCCTCCTTCATCGTTCTTACTTTTGACCATAATAAGCATTTGGTC CATGTTTACGTTGGTAGTGTTTTTCTAGTATGTACTGGGGAGCAGGTTCAACTCTTGGAT TGATTTGTTCTGTAAAGCGATTCATCTTTGATACTTCCTCTAGTACGACAGAGTGATAAA CAGCATTCTCTGGATTTTTGCCCCAGGTGAATGGACCGTGATTGCGTACAACAATTCCTG GTACTTCAACCGGGTTAAGTCCGCGATGTTCAAACTCTTCTACGATAACCAGGCCAGTAT CTTTTTCATAGGCCACTTCTACTTCGTCCTTGGTCAAACTACGGGCGCAAGGGATTGAAC AAGCAACAGCTTCTGTCGAATGGGTGTGAACCACACTACCAATTTCTGACCAAGCCTTAT ATAATTGCACATGAGTTGGGAAGTCGGAAGATGGTCTTAAATCCCCTTATAGGATCTTAC CATCTAGATCAGTCACCATGTTTTCAGGTGTCAATTCGTCATAATCCACGCCTGATG GTTTGATAACAATGACACCGAGTTCGCGATTGACTTCAGATACATTCCCCCAGGTAAATT TGACAAGTCCATGTTTTGGCAATGATTGATTGGCATCACAGACTCGTTTACGCATAGCAT TGATTACTTGATTCATCTTACATCAAACCTGCTTTCTTAATGAGTGGATAGAGAAAAGCT TGCGCCTCTTGAATGGCTGCGCGTGTTTCTTCTACTGTTTCACAATTTTCAGACCACATT TCGATTAGGAAAGGTCCATTATAATTGGTTTCCTTTAAAATATCGAAAGCTTCTTCCCAT TTGACACAACCTTGCCCAAAAGGTACATCTCGGAACTGGCCCTTTGAACTTTCTGTCACT

GCATAAGTATCCTTGAGATGGAGAGTTGCGATGGCATGATGACCAAGATAAAACTCACTA TAGATATCATTATGCCATGCAGACACATTACCAATATCTGGATATACAAAGAGGAAGGGA GAGTCAATCTCTTTTCTATAGCCAAATATTTTTCGATGCTATTGATGAAAAGGATCATCC ATAATTTCAATAGCAAGTACCACCTGAGCTTCTTCAGCCCAGTCACAGGCTTTTCTCAAA TTTTTGATAAAACGTTGGCGTGTCTGGGGTGACTTTTCCTCATAGTAAACATCGTAACCA G

ORF Predictions:

ORF #	Start	End	Direction	Length
1	92	550	R	153 aa

> 3864802-1 ORF translation from 92-550, direction R VQLYKAWSEIGSVVHTHSTEAVAWAQAGRDIPFYGTTHADYFYGSIPCARSLTKDEVEVA YEKDTGLVIVEEFEHRGLNPVEVPGIVVRNHGPFTWGKNPENAVYHSVVLEEVSKMNRFT EOINPRVEPAPOYILEKHYQRKHGPNAYYGQK*

Description:

L-RIBULOSE-5-PHOSPHATE 4-EPIMERASE (EC 5.1.3.4). - ESCHERICHIA COLI.

Assembly ID: 3864854 Assembly Length: 1265bp

> 3864854 Strep Assembly -- Assembly id#3864854 TTTTTCTGTTTTTCGGAGCAAACTGGGCTCCAGCCGGTTTTGGCCTTCTTTCCTTAGCTA CAGGTTTTGCTTCTTACTTTCGGAGCAGCTGCAGGCTTAAAGCTGGCAGCAATTTTTGCAG CGACAGCTTCTTCCACACTTGATGAGTGGCTTTTCACATCCAAGCCCAACTCTTTTGCAC GCGCTACAACTTCTTTACTTTCTTTTCCAAGTTCTTTTGCGATTTCGTACAATCTTTTCT TAGACAAATCATGTCCTCTCTTCTATTCCATAAGAGACCTCATTTTCTTTGTAAATCCA GCATCTGTTACAGCCAAAACCTTTCTCGATTTCCCGACTGCTATGATTAATTCCAGTGTT GAAAACACGGTTACAATTTCTACTTGATAATAATGACTTTTATCTTGAATCTTCTTGGTC AGATTGGGTCCAGCATCATGAGCTAGAAAGACCAACTTGGCCTTGCCGTCTTGAATGGCC TTGACCACCAATTCTTCACCCGATATGATGCGCCCTGCTCGCTGAGCAAGCCCCAAGAGA TTACTTATCTTTTGCTTATTCAAGTCCCAACTCTCTTCTTTTCACTTTGTGATCCACATA AGCGATCAACTCGTCATAAAAGCTTTCTTCCACTTCCATGCTAAAGCTGCGGTTAAAGAC $\tt CTTCTTCTTTTTCGCCTCTAGGGCTTCTGCATTGTCTAGTTTGATATAAGCGCCGCGGCC$ CAAATCACGCTTATCAATCACTTCGTTAGACACAACAGACTTGCGCAAAGGGATTTTTCT TGTTTTCATCTTTCCCTCCTCTAGCAGCTTTTATTCTTCTACAGTATCGTTTTCTACTTC CAACTCTACTGAAGCAGCGTCTTCCATGGCTTCAAATTCGCTAGCAGACTTGATATCGAT ACGGTAACCAGTCAAGTGAGCCGCCAAGCGCACGTTTTGTCCACGACGACCAATGGCAAG

AGAAAGCTTGTTATCTGGAACAACCACCAAGGCACGTTTGCTGTCGTTTTCATCAAAGAT
AACTTGGTCAACCTCAGCAGGAGCGATGGCATTGTAGATAAATTCAGCTGGATCTGCTAC
CCACTCGATAACATCGATATTTTCTTCGATTGGTACCATGCGGTCATTTTTAGCATCGTA
ACGAG

ORF Predictions:

ORF	#	Start	End	Direction	Length
	1	324	548	R	75 aa

> 3864854-1 ORF translation from 324-548, direction R VVKAIQDGKAKLVFLAHDAGPNLTKKIQDKSHYYQVEIVTVFSTLELIIAVGKSRKVLAV TDAGFTKKMRSLME*

Description:

PROBABLE 11.1 KD RIBOSOMAL PROTEIN IN NUSA-INFB INTERGENIC REGION (ORF4). - BACILLUS SUBTILIS.

Assembly ID: 3864862 Assembly Length: 1305bp

> 3864862 Strep Assembly -- Assembly id#3864862 ${\tt CGTGAAAGACAGGGCCTTAGCAGACTTCTTTTTTACTTCGTTCACCCTTGCTTTTTCTT}$ TGTATGTTTGGGCGTTGGCAGTTGGTTATACATAGCTAAAATCAGGTCTTATAGAAACAT CTTATTATCAAGTTCTTCCACTCAAATCATTTCTTTGGCACCTTTGTATGGAAACTCAAA AGAAGATTGGTCAATCTTATCTAAGACTGCTTGCACGGGTTTAACTAAAAGCGATCGTCA TAAATGCCGCCAATAATCTTGCCGCGGAAGTAAAGAATATACTCCCCCATCATGGAACGG TAAGTCACATCATCTAATCCTGATAATTGTTCCAAAACAAATTCCAAATAGTTCTTACTT GATGCCATTTCTAATCTTCTAGGCTCTGTTCAACGATAACAACCGTATAGAGTTCTTGCT TAACCTCGCATCCAATTGATTTAAAGCCCTGCTTTTCCCAAAAATGCTGAGATTGCGGAT TTCCCTTAACATAAGCCAAACGTGCCTTTCGAAAGTTCTTAGCAAAATAAGCTAGTGCTT CAATAAAAACAGTCTCCTCATCAGGATATGCATAGACAAAATCCATAACAGCCACAAGGT CAAATCCATTCCAAAATCCAACAAAAAACTTATCAGCCTTAGCTTTACCTTCAGGTAGAC AAAGCATGTCCTCTTTTACAGTTGCAAAATTTGGCTCTGGTGGACAATGCTGAAAATACA GAGGATTACTTTCATATAAAGATAAAATACTTGGAATATCCTTTTCAGTTAGTATCCTAC AACTGTAATACTTAGATAGTTGGTCAATCATCTTTTCAAATTCGATACTTTCTTGTGCCC TGTGATTATGACACAGGAAGATGCACTGATCGTCATCAGCCACATAAAAGTTCTTTCCAT CGTGCCTAATCGTTGTCTCAAACCTTTGGATAAAACCTTTAGCCTATACAACTGGATTTT CCTCTCTCAAAAGTATATTCTTTTGCAGGCGAACTTCCTCAAAATCAGTCGTGTGCAACT TCAGTAGAATATTCATAGGCTCGGATAATCTGAGCGACAACAGGATGGCGAACCACATCC TTGGCTGAAAAATGAACAAAGTCAATCTGATGGATGTTCTTGAGTTTCTCTTGAGCATCA

ATCAAACCGGACTTGACATTACGTGGCAGGTCAATCTGACTAATA

ORF Predictions:
ORF # Start End Direction Length

1 431 1003 R 191 aa

> 3864862-1 ORF translation from 431-1003, direction R VADDDQCIFLCHNHRAQESIEFEKMIDQLSKYYSCRILTEKDIPSILSLYESNPLYFQHC PPEPNFATVKEDMLCLPEGKAKADKFFVGFWNGFDLVAVMDFVYAYPDEETVFIGLFMVD QAYQRKGIGSHIVTEALAYFAKNFRKARLAYVKGNPQSQHFWEKQGFKSIGCEVKQELYT VVIVEQSLED*

Description: unknown

Assembly ID: 3864888 Assembly Length: 1742bp

> 3864888 Strep Assembly -- Assembly id#3864888 CTAATCTCCTTAAAACGTGATCTTTTCAAGAATATTTTTATCTAAACAATCCAGCAAGTC ATTATACCAGATAGTGTCAATCCCCGCATTATTGCCACCTTGAATGTCGGCGGTTAGAGA ATCTCCAATCATCAGCGTCTTTTCTTTACTAAATCCAGCAATTTGCTGGCCAATCTTTTC ATAAGGTGCTAGACCAGATTGAGCCAAACGTCCTGTCTGAATGGCAGTAATGCCATTTGT CGCAGCATACAAGTTATAATCACGCTCAATGAGGCTGTCCAAGAGATCATGAGCGCCCGA TAGTGTTTGTCCCTGCTGGGCGAGGTAAAATTGGTAACGCTGGGCAAGAAAACTACCGTC TTTTTCCTGTCCAAAATGAGCAAATAAACGAGAAAAGCGCGTGTTAACCAGCTCTTGTTT ACTGATTTCTTCAGCTCCAAGTCTTTCCAGAGAGCCTTGTTCATAGGAACGTAATAATC TTTATAAGCCGGAATATCCGCAACTCCTTCTTCTTTTAGAAGTGGAGTCAAAGCCACATC CTCAGCAGCATCAAAATCAAGAAGAGTGTGGTCGAGGTCGAAGAGTACAAATTTGTAGAA CAATTTGAGGTTTTCCTTTCTGAAAATTCATTAAGAACATTATATCATAAAGCACCTCAT ACAATTAACTAATTTAATCACTTAAAAAAAATTCGAACACTTTCTATACAACTGACAGCT CAAATCTTTCAGAATAGAACAATACTAACTATCGAACACCCCGTCTTCATAAATACATAT GTAATTCTAGGCCTAGAATTCCTATAAACTAAATGCTTTCATACTCTTCCAAGTAATTGA TTGCCTTAAATTTTAATTTTTGAAGGTTTCTAAAGCTAGAATAGCCCCATCACAATCAGT TTTGATTGATTCACAATTTAGAAACACTATAGTTTCACTCCTGTTAAAATAAAAAGGAAC TGCATAAAGCAATCCCTTTCTGATTTTGAAATCATTTACTTAACATTTTATAGTTGAGAT TCCGCTAACTGTATTTGAATAACTGACAGTTCTGCACCAGCCTGAAAAAGAGCAGCTGCA TTATAGGCACCTTCTACAATTGGAACCCTGTTGATGATGATACTTTTATCACTGAAATCA GTCACCATTTTTAAGTTCATTTTAGCAGAACCTAGGTCAAAAAAGGCAAGTAAAGTATCT

 $\label{eq:constraint} GCTGGATTTCGGAAACCCCTATCTACTTGATCAAAACTCGTTCCAATTCCTCCG\underline{C}CC \\ TCGGTTCCTCCTACATAAGTAATCGGAACATCTTTAGCTACTTTACTAATCAGTTCAACA \\ ACACCTTCTGCAATGTGTTTTGGAATGTGAAACGATAACAAGACCAATACCAATACTTTCC \\ ATCAAACCACTCCAGTTTCTAAAATAGCAGTAAAGAGTAATCCTGATGAGAATGATCCAG \\ GATCAATATGTCCAAGAAACCACATGCTCCTAAGACAAGAGCTAACAGACTGCCATCAA \\ TAATAGTATTGTTCTTTTTTTCATCATTACTCCTTAACTAGTGTTTAACTGATTAATTCG \\ AT$

ORF	Predic	ctions:			
ORF	#	Start	End	Direction	Length
	1	10	657	R	216 aa

> 3864888-1 ORF translation from 10-657, direction R VALTPLLKEEGVADIPAYKDYYVPMNKALWKDLELKKISKQELVNTRFSRLFAHFGQEKD GSFLAQRYQFYLAQQGQTLSGAHDLLDSLIERDYNLYAATNGITAIQTGRLAQSGLAPYF NQVFISEQLQTQKPDALFYEKIGQQIAGFSKEKTLMIGDSLTADIQGGNNAGIDTIWYNP HHLENHTOAOPTYEVYSYQDLLDCLDKNILEKITF*

Description: unknown

Assembly ID: 3864898 Assembly Length: 1136bp

> 3864898 Strep Assembly -- Assembly id#3864898 GTGGAATGCGGGGACGCCTTGTCTAATTTTGGATCAAGCCCTGAGTTTGACACAGGGAAA TGAGCTGGACGGACTGCTATCTCTGAAGAAATTACTGGCACCATTAGCCTATCAGCCTTG $\verb|CTTCTTTTGACAATGGTAAGAGCATGACTCGTTTTGTGACCGATCTTTTGCACTATTTA| \\$ AGAGACTTGTTAATTGTTCAAACAGGGGGAGAAAATACTCATCATAGTTCAGTCTTTGTA GAAAATTTGGCACTTCCTCAAAAAAATCTGTTTGAAATGATTCGCTTAGCAACAGTGAAT TTGGCGGAAATCAAGCCCGAACCAGCTCTATCAGGAGCGGTTGAAAATCGAATTGCTACG $\tt CTGAGACAGGAAGTTGCCCGTCTCAAACAAGAGCTTTCTAATGCAGGTGCGGTTCCTAAA$ CAAGTTGCACCAGCTCCTAGTCGACCAGCTACGGGCAAAACAGTCTATCGTGTCGATCGC AATAAAGTGCAATCTATCTTACAAGAGGCCGTCGAAAATCCTGATTTAGCACGTCAAAAT CTAATTCGTTTGCAGAATGCCTGGGGAGAGGTAATTGAAAGTCTAGGTGGGCCGGACAAG GCTCTGCTAGTTGGTTCTCAACCGGTTGCTGCCAATGAACACCATGCTATTCTTGCTTTT GAGTCTAACTTCAATGCTGGTCAAACTATGAAACGAGACAATCTCAATACCATGTTTGGT AATATCCTCAGTCAGGCGGCAGGTTTTTCACCTGAGATTTTAGCTATTTCCATGGAGGAA TGGAAAGAAGTTCGCGCAGCCTTTTCAGCCAAAGCCAAATCTTCTCAAACTGAAAAAGAA GTAGAAGAAGCCTGATTCCAGAAGGATTTGAATTTTTGGCTGATAAAGTGAAGGTAGAG

GAAGACTAAAGAAAGATTTCATGATACAATAAGTTTATGAATAAACAACAATTTATT<u>AT</u>T ATGGCGCTATTTACAGCTGCTGAGACCTATTTTTTCAATGAAGCCTGGATGACTGG

		130	1029	 F	300 aa
ORF	# 	Start	End	Direction	Length
	41		7		
ORF	Predic	ctions:			

> 3864898-1 ORF translation from 130-1029, direction F VAALSQQDVPKALSCLNLLFDNGKSMTRFVTDLLHYLRDLLIVQTGGENTHHSSVFVENL ALPQKNLFEMIRLATVNLADIKSSLQPKIYAEMMTVRLAEIKPEPALSGAVENRIATLRQ EVARLKQELSNAGAVPKQVAPAPSRPATGKTVYRVDRNKVQSILQEAVENPDLARQNLIR LQNAWGEVIESLGGPDKALLVGSQPVAANEHHAILAFESNFNAGQTMKRDNLNTMFGNIL SQAAGFSPEILAISMEEWKEVRAAFSAKAKSSQTEKEVEESLIPEGFEFLADKVKVEED*

Description: unknown

Assembly ID: 3864938
Assembly Length: 1670bp

> 3864938 Strep Assembly -- Assembly id#3864938 CTGTCTCTGAAACAGTCACATCAAGTGCCTCTGAACAANCGCCCCNCCTAGGTNGACGGT ATCGATAAGCTCGATCTGTGATTTCAGAGAAGAAATCAAGTGCTGTAACAGAAGTAAGAT GTAATTGTATGTAAAGGAGACGTCATGTTAAATAGTATTGTAACCATTATTTGTATTGCC CTTATCGCGTTTATCTTGTTTTGGTTTTTCAAAAAGCCTGAAAAATCTGGACAAAAAGCC CAGCAAAAAACGGATACCAAGAGATTCGAGTGGAAGTCATGGGAGGCTATACTCCTGAG TTGATTGTCCTCAAGAAATCAGTGCCAGCCCGCATTGTCTTTGACCGCAAGGATCCTTCA CCATGTCTGGATCAAATTGTTTTTCCAGATTTTGGTGTACATGCGAACCTGCCAATGGGG GAAGAGTATGTAGTGGAAATCACGCCTGAACAGGCTGGAGAGTTTGGCTTTGCTTGTGGT ATGAACATGATGCACGGCAAGATGATTGTAGAGTAGGTGGAGACTATGACAGAAATTGTG AAAGCAAGCTTAGAAAATGGCATTCAAAAAATCCGTATCCGAGCTGAAAAAGGCTATCAT CCAGCCCATATCCAGCTTCAAAAGGGAATTCCAGCTGAGATTACCTTTCATTCGTGCTAC TCCTTCAAACTGTTATAAGGGAAATTCTGTTTGAAGAAGAAGGTATCTTGGAAGCAATCG GCGTAGATGAGGAGAAAGTCATTCGTTTTACACCTCAAGAATTAGGGAGACATGAATTTT CTTGTGGCATGAAGATGCAAAAGGGAAGCTATATAGTCGTTGAGAAGACTCGAAAATCTC TATCTCTCCTGCAAACGTTTTTGGATTACTAGTATCTTTACTGTGCCTCTTGTGATTCTC ATGATTGGGATGTTGGCAGGTAGCATTAGTCATCAAGTCATGCATTGGGGAACCTTTTTA GCAACAACGCCTATTATGTTAGTTGCGGGTAAGCCATATATCCAGAGTGCTTGGGCCAGT TTTAAAAAGCACAATGCCAACATGGATACCTTGGTTGCGCTGGGAACTCTAGTGGCTTAT TTCTATAGCCTAGTTGCTCTCTTTGCTGGTCTCCCTGTTTACTTCGAAAGTGCTGGATTT ATCCTCTTTTCGTTCTTTTGGGAGCAGTTTTTGAGGAAAAAATGAGGAAAAATACGTCC CAAGCTGTGGAGAAATTACTGGACTTGCAAGCTAAAACCGCAGAAGTCTTGAGTGATGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	883	1326	F	148 aa

> 3864938-2 ORF translation from 883-1326, direction F VPLVILMIGMLAGSISHQVMHWGTFLATTPIMLVAGKPYIQSAWASFKKHNANMDTLVAL GTLVAYFYSLVALFAGLPVYFESAGFILFFVLLGAVFEEKMRKNTSQAVEKLLDLQAKTA EVLSDDSYVQVPLEQVKVRDLDSSASR*

Description: ATCS SYNP7

Assembly ID: 3864956 Assembly Length: 1252bp

> 3864956 Strep Assembly -- Assembly id#3864956 ACAAGAACAATTGGAACAGGTACAGGCTGTTAAAAAAATCGATTAACACAGCTAGTGAAGA AGTGAAAAACCAAGTCTTGCTACCCATGGCTGATCACTTAGTGGCTGCTACTGAGGAAAT TTTAGCGGCTAATGCCCTCGATATGGCAGCGGCTAAGGGGAAAATCTCAGATGTGATGTT GGATCGTCTTTATTTGGATGCAGATCGTATAGAAGCGATGGCAAGAGGGAATTCGTGAAGT GGTTGCCTTACCAGATCCAATCGGTGAAGTTTTAGAAACAAGTCAGCTTGAAAATGGTTT GGTTATCACAAAAAACGTGTAGCTATGGGGGTCATCGGTATTATCTATGAAAGCCGTCC AAATGTGACGTCTGATGCGGCTGCTTTGACTCTTAAGAGTGGAAATGCGGTTGTTCTTCG TAGTGGTAAGGATGCCTATCAAACAACCCATGCCATTGTCACAGCCTTGAAGAAGGGCTT GGAGACGACTACTATTCATCCAAATGTGATTCAACTGGTGGAGGATACTAGCCGTGAAAG TAGTTATGCTATGATGAAGGCCAAGGGCTATCTAGACCTTCTCATTCCTCGTGGAGGAGC TGGCTTGATTAATGCAGTAGTTGAGAATGCCATTGTGCCTGTTATCGAGACAGGAACTGG GATTGTCCATGTTTATGTCGATAAGGACGCAGATGACGACAAGGCACTGTCTATCATCAA CAATGCCAAAACCAGTCGTCCTTCTGTCTGCAATGCCATGGAGGTTCTGCTGGTTCATGA AGACAAGCAGCAGCTTCCTTCGTTGGAGCAAGTGCTGGTTGCAGATCGAAAAGA TCAAGCTGCTCAAGCACAAGACTTTGATACCGAGTTTTTAGACTATATTCTAGCTGTTAA GGTTGTGAGCAGTTTAGAAGAAGCGGTTGCGCATATTGAATCCACAGTACCCATCATTCG GATGCTATTGTGACGGAAAATGCTGAAGCTGCAGCATACTTTACAGATCAAGTGGACTCT

> 3864956-2 ORF translation from 1030-1251, direction F VTENAEAAAYFTDQVDSAAVYVNASTRFTDGGQFGLGCEMGISTQKLHARGPMGLKELTS YKYVVAGDGQIRE*

Description:

gamma-glutamyl phosphate reductase (proA) homolog - Haemophilus influenzae (str ain Rd KW20)

Assembly ID: 3864958 Assembly Length: 1785bp

> 3864958 Strep Assembly -- Assembly id#3864958 CTGCCCTAGCAGGAACGCAAGAAGGAACTGGAGAATAGGCATTTTCAAAATTATAACCTA CACTAGCCATCATATCTAATGTTGGAGTGCTAACTAGCTTATCCTTACTATTCAAGGATA AGGCGTCTGCTCATTTGATCTACAACAATCAAAATAATATTTGGTTGTTTTTGTCTGAA CCATAAAATCTCCTTTCTAATATGGCAAAAGAGGCACAAGAAGATATCTACCTTTACTGC ACCCCTTTCTATATCAATCTCTCTATATAAAGCAATAACATTCTTGTTATGTTTATAGA ACAATGGACTAAAATATGACTAAATCGATTAGGAAATTCAAATCATTTTCTAGTACTGTT TTAGTAAGTTACAGTGTACTATTCCAACTTCAATAAATTATAAACCTTTGTCTAATAACA ATTTTAGTGGAGATAAGAAATCCTACACCTAACTCATCTTACACGTAATCTATTTCTATT TTATCACAAAAAACGCAAGTAAGACCATTAACTCAATTCAGTTTTATCTGCCATTTTCAC AAATGGGAAATAAGTCAAGACACTAATAATCAAACAACAACTGATAAGATGATGGCACG CCAATCAAATGCTGTAGAGAAGAAACCATATAAAATTGGAGGCATTACCCAAGTAACATT TTGTGTAACAGGTGAAACAAGACCCCAGCTTGTTGCCCAGTAAGCTACCGTTGCCATGAA AACCGGGCTAAGTACAAATGGTATAAATAGCAAAGGATTCAAGACAACTGGTAAACCATA ATTCGATACCGGCTCACCAATATTAAACAGAACTGGTGCTAGACCAAGTTTAGCAACTTT TCGATAATGACTGTTTCTTGAAAAAATTAAAATAGCAAGTACTAATCCTAATCCTCCAAA CCAGACAAACGCCCCAAAAGACCCACTTGTCCATATATAAGGAATCGGTTCACCTTTTTG GAAAGCATCCAGATTCGCTAACATAGCAACTCCAAATAGCCCTTCCATGATGGGAGCCAA TACATTTCCTCCATGGAGACCAAAAAACCAGAATAACTTATTCAAAAAGATCATCAGAAT AACTGCAAAGAACTTTGAGACAAACCTAGTAATGGCGTTTGTAACACCTTGTAAACCCA ATCAATCAATAAGTCATTGCTAAGTAAATGGAAAACATAAGTCAAGATGGCTACTATATA CATCGCCATAAATCCTGGAATGATAGAAGTGAACGGCTTAGCAATCGCAGGGGGAACTGA ATCTGGTAACTTGATTACCCAGTTCTTTTTCATTACTTTACAGAAAATAATAGAGGCTAA

AAATCCAATCATGGCTGTAAAGTAGCCTCTGGCATTAATATGGTTTCCTGGAATCAC
ATTCCCAATAGTTACCATCAGATTTTTACCATCAAATGCTAGATTATCAATTCCATGTTA
AGATTTGATCTAATTTCACATCTCCTACATTTGCCAAAGGGAAACTCTTTGTAACTGTAC
TTCCAATCGAAATGACAAACGAAGCAAGTGATACCAAACCAGCAGAAACTGTATCAACCT
TGTAAATCTTAGCGATATTCACTCCCAAGCAATAGATGAACAACAAGGAAACAATTGGTA
TACTTCCCTTGAATACCAAATTATTGATGTCAACAAGCCACTGAAAGGTTTTCGTAATAC
TTCCTAGGTGAAATTGTTGTGGTAAATCCACTAGAAAAGCATTTAATAACAAAGCAATGG
AACCTGTCATAATAACAGGCATAGTCCCCACAAATGAATCACGTT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1427	1711	R	95 aa

> 3864958-2 ORF translation from 1427-1711, direction R VDLPQQFHLGSITKTFQWLVDINNLVFKGSIPIVSLLFIYCLGVNIAKIYKVDTVSAGLV SLASFVISIGSTVTKSFPLANVGDVKLDQILTWN*

Description: unknown

Assembly ID: 3865022 Assembly Length: 1386bp

> 3865022 Strep Assembly -- Assembly id#3865022 AAAGCTGGTCGCTGGTTCAAAACACTGTTTTGAGATTGTCAATAGAACTGACAAACC CTGTAATATACCTGCATATATACATACGACAAGGCGATACTACCCTAGTTTGAAGAGATT CATTCTTATCCTAAAAAATGCTCATTTTTCTTAAATTATCAATCTAAATCTGGTTTATAG AAGGAACGATTATCCATAGCGAAGATTTTATTGGTCATCTCTCTTTATCCACCAAAGCC AGAGCTGTTGACATCATCATCCTTGCATCCAGATTGTCAATCATATGGATAATCTCT AGGATGACATGACGAAGCAAAACGACTTCTTCCTTGGTATCATCGATGCCGAGTTCCATA ACTGTCTTGGTAATTTCGCTATCAATGAGAGCGATATGTCCAAGAAGATTACCTCGCACT GTGTACTCTGTCTGGCCCCGTCAACTCGATAACCTTAGCTAAGTCATGCAGCATA ATCCCCGCATAGAGCAGGCTCTTATTGAGCTGAGGATAAACTTCGCTAATAGCGTCTGCC TTGGCGGCTGGATAGGAGTAGAATTCCTTATCATACTTGGTGTAGAGATTTCGGACAATC CGTTGCCAGACAGGATTTTCAATTTTGAAAATCATTTGCGACATGTAGTCACGAATTTCC TTGACATCAACTGGTGACTTGACCTTGAAATCAGCTGGGTCATTGGGTTCACCAGCTTGA GGCAGGCGGAGAGTAATTTGATTGACTTGAGGGGTATTGTTATAAACTTCTCGGCGTCCT TTCATGTGGACAACCTTACCTGCGGTAAAGGCCTCAATGTTATGAGGTTGGGCATCCCAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	279	1271	R	331 aa

> 3865022-1 ORF translation from 279-1271, direction R VSLRLIYSIFKKMRKNMKISHMKKDELFEGFYLIKSADLRQTRAGKNYLAFTFQDDSGEI DGKLWDAQPHNIEAFTAGKVVHMKGRREVYNNTPQVNQITLRLPQAGEPNDPADFKVKSP VDVKEIRDYMSQMIFKIENPVWQRIVRNLYTKYDKEFYSYPAAKTNHHAFETGLAYHTAT MVRLADAISEVYPQLNKSLLYAGIMLHDLAKVIELTGPDQTEYTVRGNLLGHIALIDSEI TKTVMELGIDDTKEEVVLLRHVILKSTTACLNMEIPVRPRIMEAEIIHMIDNLDASMMMM STALALVDKGEMTNKIFAMDNRSFYKPDLD*

Description:

gi | 710422 (U21636) cmp-binding-factor 1 [Staphylococcus aureus]

Assembly ID: 3865036 Assembly Length: 1167bp

> 3865036 Strep Assembly -- Assembly id#3865036 CTCAGATTACAGAGGACAATCAACTGGTTCATTTTCGTTTCCAGTTTCAAAAAGGCTTAG AAAGGGAGTTCATCTATCGTGGAAAAAGAAAAAGTTAAGGCAGGTGTTCTCCTCTAC GCAGTCACCATAGCAGCCATCTTTAGTCTTTTGTTGCAATTTTATTTGAACCGACAAGTC GCCCACTATCAAGACTATGCTTTGAATAAAGAAAAATTGGTTGCTTTTGCTATGGCTAAA CGAACCAAAGATAAGGTTGAGCAAGAAAGTGGGGAACAGGTTTTTAATCTAGGTCAGGTA AGCTATCAAAACAAGAAAACTGGCTTAGTGACGAGGGGTTCGTACGGATAAGAGCCAATAT GAGTTTCTGTTTCCTTCAGTCAAAATCAAAGAAGAGAAAAAGAGATAAAAAGGAAGAGGTA GCGACCGATTCAAGCGAAAAAGTGGAGAAGAAAAAATCAGAAGAGAAGCCTGAAAAGAAA GAGAATTCCTAGTCAATTCAACTATAATGCGTTGAATCCAGAATAGTCCACTGTAGTTTC TAGAAAATTGCTGGAAATGGATGTTAAGCTCCAATTCATTTGTTTATATCTTATTTCAGT CCACTATACTTTGTGCTAAATTAAAGATATGAAACATGATTTTAACCACAAAGCAGAAAC TTTCGATTTCCCTAAAAATATCTTCCTCGCAAACTTGGTATGTCAAGCAGCCGAGAAACA GATTGATCTTCTATCAGACAAAGAAATTTTAGATTTCGGTGGTGGCACGGGTCTATTAGC CTTGCCCCTAACCCCTAGCCAAGCAGGCTAAGTCAGTCACTCTTGTAGACATTTCTGAGA TGGAGCAAGATTTACCGAAAAATCCCTTGGAGAAAGAGTTTGATTGCCTTGCTGTTAGTC

GGGTTCTTCATCATATGCCTGATTTGGATGCGGCTCTCTCACTGTTTCATCAACATT<u>TG</u>A
AGGAAGATGGGAAACTCATCATTGCTGATTTTACCAAGACAGAAGCTAATCATCATGGAT
TTGATTTAGCTGAACTGGAAAACAAGCTAATTGAGCATGGGTTTTTCATCTGTGCATAGT
CAGATNCTCTATAGCGCTGAAGANCTG

ORF Predictions:

ORF #		Start	End	Direction	Length
	1	79	492	F	138 aa

> 3865036-1 ORF translation from 79-492, direction F VWKKKKVKAGVLLYAVTIAAIFSLLLQFYLNRQVAHYQDYALNKEKLVAFAMAKRTKDKV EQESGEQVFNLGQVSYQNKKTGLVTRVRTDKSQYEFLFPSVKIKEEKRDKKEEVATDSSE KVEKKKSEEKPEKKENS*

Description: unknown

Assembly ID: 3865054 Assembly Length: 916bp

> 3865054 Strep Assembly -- Assembly id#3865054 TCTCCCAACATATAATTTCCGTTTTCCAATCCCCCAGCTGTCATACAGTCTGTGATAAGA GCGATGTTTTCTGTTCCTTTTTGTTTGATAAGAATTTCGCAAGCCTTTGGATCTACGTGG TGACCATCACAGATCAACTCTGCATAGGTATGTGGCAATTGGTACATGGCTCCAACCATA CCCAATTCACGGTGAGTCAACCCACGCATTCCATTGTAGGCATGCACCCAAACACTCGCT CCAGCATCGACTGCTTTTTTGGCTTCATCAAAAGTCGCGTTTGAATGTCCAAGAGCAACC GTCACACCTTCGCCCGTAACTGTACGAACAAAGTCTTCCACCCCATCACGTTCTGGTGCA ATCGAATTTTATTAAGCAAGCCATTTGCCGCTTTTTGCCAAGAATGAAACTCCTCAACAC CCGGGTCTCTCATATAAGTTGGATTTTGTGCCCCCTTAAAAGTTTCTGTGAAATATGGAC CTTCATAATAAATCCCACGAATCTTAGCACCTGTTGCTTCTTTATAATGGTTTCCAAGAT TTTCAGTGACTGCAAGCAATTGCTCATAAGTGGCTGTTAAAGTTGTGGGTAAGAAACTGG TAACACCGGTACTAAGAAGTCCTTCACTCATAGTATGCAATGTACCTTCAATGTTGTTGT CCATCACATCTACACCTGCATATCCATGAATATGAGTATCCACAAGACCTGGGGCAATGC TATAACCTGTATAGTCAATCACCTCAGCCCCTTCAGGAATCTGCTCTACATGTTTCCCAA ACTTGCCGTCCACAAGTTCCAAGTAACCACCTCGACAAATCCGTGTGGGTAGAAAAACTG ATTATGTCAATTCGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	302	793	R	164 aa

> 3865054-1 ORF translation from 302-793, direction R VDGKFGKHVEQIPEGAEVIDYTGYSIAPGLVDTHIHGYAGVDVMDNNIEGTLHTMSEGLL STGVTSFLPTTLTATYEQLLAVTENLGNHYKEATGAKIRGIYYEGPYFTETFKGAQNPTY MRDPGVEEFHSWOKAANGLLNKIRLHONVMGWKTLFVQLRAKV*

Description:

N-acetylglucosamine-6-phosphate deacetylase (nagA) homolog - Haemophilus influe nzae (strain Rd KW20)

Assembly ID: 3865102 Assembly Length: 786bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	27	731	R	235 aa

> 3865102-1 ORF translation from 27-231, direction R VRRIEEKCKLIAQLDTKTVYSFMESVISIEKYVRAAKEYGYTHLAMMDIDNLYGAFDFLE ITKKYGIHPLLGLEMTVFVDDQEVNLRFLALSSVGYQQLMKLSTAKMQGEKTWSVLSQYL EDIAVIVPYFDRVESLELGCDYYIGVYPETLASEFHHPILPLYRVNAFESRDREVLQVLT AIKENLPLREVPLRSRODVFISASSLEKLFQERFPASFGQFRKAYFRHFLRLGY*

Description:

unknown

Assembly ID: 3865156

Assembly Length: 1213bp

> 3865156 Strep Assembly -- Assembly id#3865156 CACTTTCAGCTTCTCTTTTTGAACGGTTATAAACACGAATCAGATTCCCTATTTCTT GCGATTTATGTGATTCCTTATTTTCCAATCTAAAGTATAGTGAAATGAAATAAAACATGC GCAAATCGATTAAGGAATTTAATCTAATTTCTAACAATGTCTTAGAAATCAAAGTGTACT ATTTTAACTTCAATGCACTAAACATCTAATACTCAATAAAAATCAAAGAGCAAACTAGGA AACTAGCCGCAGGTGGCTCAAAACACTGTTTTGAGGTTGTAGATGAAACTGACGAAGTCA GTAACCATACGGCAAGGCGACGCTGACGTGGTTTGAAGAGATTTTCGAAGAGTAGC AAAATGGAAAAAGGAGTGAGTGAAGCACATCGCCTCCCCACTCCTTTTTCTGTTTTTAGG CTGTTTTTCAACCTTCAAGATTTTTACATCATAGCTACCAACAGGCGTTTCAATGGTTG $\tt CTGTATCACCTGTTTTCTTGCCAATCAAGGCCTGCCCAATTGGGCTTTCATTTGAAACCT$ TACCTGCAAAGGCATCCGCACCAGCTGAACCTACGATAATATAAACTTCTTCTTCGTCCT ${\tt CACCAATTTCTTGGATGGTGACTGTTTTACCAATCGCTACTTCGTCCTGGGCAACTGCGT}$ CGCTATTGACGATTTCAGCATAGCGGATTTTTGTTTCTAAGCTAGAGATTTGTCCTTCGA CAAAGGCTTGTTCATCCTTAGCTGCTTCGTACTCACTGTTTTCTGAAAGGTCACCGTATG AACGGGCAATCTTAATGCGTTCTACCACTTCTGGTCGACGAAACCAATTTCAATTCTTCT TTTCTCAACTTTCTGATAATATTTTCTAAAGAAAATTATGTGAAGTATCACATAATT TTAGTTTGTTTAGTTTAATTTGCTGTTGACATGTTCAGCGACATTGCGGTCGTGGTCTTC TTGATTGTTAGCATAGTAAACCTTGCCTTCTGTGACATCTGCTACAAAGTAAAAGTTATC GCTCTTAGTTTGATTGATGCTTGACTCAATCCGCATCCAAGACTTGGACTATCGACTGGA CCAGGCATGAGACCTACATTTTATAAACATTATAAGGTGAATCAATGTTGGTATCAATC GCAACATCCTCAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	416	808	R	131 aa

> 3865156-1 ORF translation from 416-808, direction R VVERIKIARSYGDLSENSEYEAAKDEQAFVEGQISSLETKIRYAEIVNSDAVAQDEVAIG KTVTIQEIGEDEEEVYIIVGSAGADAFAGKVSNESPIGQALIGKKTGDTATIETPVGSYD VKILKVEKTA*

Description:

TRANSCRIPTION ELONGATION FACTOR GREA (TRANSCRIPT CLEAVAGE FACTOR GREA). - ESCHE RICHIA COLI.

Assembly ID: 3865160 Assembly Length: 1173bp

> 3865160 Strep Assembly -- Assembly id#3865160

TGCGGCTGAGTTGGGAATTCCTATCGTTAATAAGCGTGTATCGGTGACACCTATTTCTCT GATTGGGGCAGCGACAGATGCGACGGACTACTGGTTCTGGCAAAAGCGCTTGATAAGGCT GCGAAAGAGATTGGTGGACTTTATTGGTGGTCTTTCTGCCTTAGAACAAAAAGGTTAT CAAAAGGGAGATGAGATTCTCATCAATTCCATTCCTCGCGCTTTGACTGAGACGGATAAG GTCTGCTCGTCAGTCAATATCGGCTCAACCAAGTCTGGTATTAATATGACGGCTGTGGCA GATATGGGACGAATTTATCAAGGAAACGGCAAATCTTTCAGATATGGGAGCGGCCAAGTT GGTTGTATTCGCTAATGCTGTTGAGGACAATCCATTTATGGCGGGTGCCTTTCATGGTGT TGGGGAAGCAGATGTTATCATCAATGTCGGAGTTTCTGGTCCTGGTGTGGTGAAACGTGC TTTGGAAAAAGTTCGTGGACAGAGCTTTGATGTTAGTAACCCGAAAACCAGTTAAGAAAA CTGCCTTTTAAAATCACTCCGTATCCGGTCCAATTGGTTTGGTCAAATGCCCAGTGAGAG ACTGGGTGTGGAGTTTGGTATTGTGGACTTGAGTTTGGCACCAACCCCTGCGGTTGGAGA $\tt CTCTGTGGCACGTGTCCTTGAGGAAATGGGGCTAGAAACAGTTGGCACGCATGGAACGAC$ AGCTGCCTTGGCCCTCTTGAACGACCAAGTTAAAAAGGGTGGAGTGATGGCCTGTAACCA GGTCGGTGGTCTATCTGGTGCCTTTATCCCTGTTTCTGAGGATGAAGGAATGATTGCTGC AGTGCAAAATGGCTCTCTTAATTTAGAAAAACTAGAAGCTATGACGGCTATCTGTTCTTG TTGGATTGGATATGATTGCCATCCCAGAAGATACGCCTGCTGAAACTATTGCGGCTATGA TTGCGGATGAAGCAGCAATCGGTGTTATCAACATGAAAACAACAGCTGTTCGTATCATTC CCAAAGGAAGAGGCGATATGATTGAGTTTGGTGGTCTATTAGGAACTGCACCCGTTA TGAAGGTTAATGGGGCTTCGTCTGTCGACTTCATCTCTCGCGGTGGACAAATCCCAGCAC CAATTCATAGTTTTAAAAATTAAGAAAATAGGA

ORF Predictions:

ORF :	#	Start	End	Direction	Length
	1	136	375	F	80 aa

> 3865160-1 ORF translation from 136-375, direction F
VDFIGGLSALEQKGYQKGDEILINSIPRALTETDKVCSSVNIGSTKSGINMTAVADMGRI
YOGNGKSFRYGSGOVGCIR*

Description: unknown

Assembly ID: 3865172 Assembly Length: 1209bp

> 3865172 Strep Assembly -- Assembly id#3865172
TCGGAATCTGAGCTAGTGTAGCTTCCTTAATCTTATCTGATAAGATAGCTGTCATATCAG
ACTCAATCATTTCCTGGAGCAATCAACATTGACTCGTATATTCCGACTAGCGACCTCGCG
TGCCACAGACTTGGTAAAGCCAACACACACACACACACATATTAATGATAGCACCTTCTCTGGCTTT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	731	1123	R	131 aa

> 3865172-2 ORF translation from 731-1123, direction R VVTPANYNTPAQIVIAGEVVAVDRAVELLQEAGAKRLIPLKVSGPFHTALLEPASQKLAE TLAQVSFSDFTCPLVGNTEAAVMQKEDIAQLLTRQVKEPVRFYESIGVMQEAGISNFIRD WTGESLVRFC*

Description:

malonyl coenzyme A-acyl carrier protein transacylase (fabD) homolog - Haemophil us influenzae (strain Rd KW20)

Assembly ID: 3865228 Assembly Length: 813bp

> 3865228 Strep Assembly -- Assembly id#3865228
ATGACACGTCTGTTCTCTCAAGCAGAAATGGCAGAGTAACAAGCTCGATATTGAGGTAGC
CGATAAAGAATTGGCTGAATTTGAAGCTCAGATTAAACAGGAAGTGGAAGCTCCAACTTG
TAGTGAGTCCTCAGGTTGAAGAAGAGCCTCAGCTCATCCAGTTGGCCCAATGTATGAAGA
ACCAGAAGTAAATCCAGTGCATCCGACAGGTCCAACACCAGCTACAGAAACTGTTGATTC
AATACCGGGATTTGAAGCACCGCAAGAATCTGTTACAATTTTATAAGAAATATTCTGAGA
ACAATATCTTATCCTTATATTTCCAGCGAGCAGGAAATGGTGTGAGTCCTGCATTCCCTA
TCGATAAGATTATCCTCTCAAACTATCAAGTCTGAATCTAGTAAGATTTGACGTTCCCCA
CGTTACGGGATAAGAGAGAGAGAAAGACTAAATCTTTTTCCGAATAAAGGTGGTACCACGAT

TTTCGTCCTTTTTGGAAGTCGTGGTTTTTAATTTGTTATTATTATAAAGGAGATACCAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	197	286	F	30 aa

> 3865230 Strep Assembly -- Assembly id#3865230

> 3865228-1 ORF translation from 197-286, direction F VHPTGPTPATETVDSIPGFEAPQESVTIL*

Description: unknown

Assembly ID: 3865230 Assembly Length: 953bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	272	586	F	105 aa

GAAAAACTAGCAATGCCAAAGGTAATCCAATTGAGGAAGTACCAAGGAAGAAG

> 3865230-1 ORF translation from 272-586, direction F _____ VPTVFHKSAQVLEEEMNRYQPDFVLCIGQAGGRTSLTPERVAINQDDARTSDNEDNQPID RPIRPDGASAYFSSLPIKAMVQAIKKKDYRPLFPIRQGLLSAAI*

Description:

PYRROLIDONE-CARBOXYLATE PEPTIDASE (EC 3.4.19.3) (5-OXOPROLYL-PEPTIDASE). - STR EPTOCOCCUS PYOGENES.

Assembly ID: 3865378
Assembly Length: 1060bp

> 3865378 Strep Assembly -- Assembly id#3865378 CTACTTGAAACAGAACTGAAATTATACCCACTACCTCCCTGATTATCTTCAATGCTTACG TCTAAATAAACTTCCCCACTATTATTTAGCTTAGCAACAACTGTTATAGTAAAATAACAT AAAATTCACATAAATAGATTAGGGAAATCAAAGCAACTTCTAGGAATGTTTTAGCAGTCA CAGTGTACTTTCCCAGCATCAAGCCACTATAACTCTGCACATAAAAATGGAGAAGATGGC CATCCTCTTCTCCAAATATTAACTTCTTTACAAACCAACTATAGTTGACAAAGAACCTAA AATCAATTGATAACACGAGGTCAGGTCGGTCAACTCTTTCAACTGAAGCCCTGTCAACTC TTCCCATTTATCAATCTTGTATTGGAGAGAATTGCGGTGCAGATAGAGTTGCTGGGCTGT TTAAGTGAGAACAGCACTATTTTCCCAAAGAGAGAGAATGATTTCCTGAATCTGATCTTG ${\tt ATCCAAAATCATCTGGTGTAGACATTCCTTGATTGGCTTCAAGTCCACGAGTCTTTCTCC}$ CAGACTCCAAAGATAGAGCTGAGAAAAAGTATGAACACCTTGGTGACCCTGACGCCACCA TGTCTTGAACAAATCCCGCTCAGCTTTGATTAAGTCTGATAGGGCTTGATGTCCCGTCTG AGACCAAACCTGACCCAACATGATAGAAAGACGAAGTCCAAAGTCATACTCAACCGCTTC AATCGTATCACTTAAAATATCTCTTACAGAAGTGTATTTGTCTTGTTGAAGCACGAAAAC ATAATCCTGAGATCCGACCTGTAGCACTGTCTGACAATTCGGAAAAAGAGTCCGCATCAT AATCTTTTTAAAAACTTGCGGTGCCTGTCCCTTGCCTTCAACCAGATAGGAATACCAAGG GCTGAGCCCAGCTTCCTCCAGCAAAATCCACTGCTGAGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	421	807	R	129 aa

> 3865378-1 ORF translation from 421-807, direction R VLQVGSQDYVFVLQQDKYTSVRDILSDTIEAVEYDFGLRLSIMLGQVWSQTGHQALSDLI KAERDLFKTWWRQGHQGVHTFSQLYLWSLGERLVDLKPIKECLHQMILDQDQIQEIILSL WENSAVLT*

Description:

unknown

Assembly ID: 3865470 Assembly Length: 895bp

> 3865470 Strep Assembly -- Assembly id#3865470 ATTTTAGACTTTGATGACAATCCTCAGGCGGTTATCATGCCCAATCACGAGGGGCTTGGAA ${\tt TTGCAGTTGCCAAAGAAGTGTGTTTATGCATTTTTAGGTGAGGAGATCTGACCGCTATGC}$ AAGGGAAGTAGGGGCGGATTGTCTCGCCGAATTCGTTTCTGCTACCAAGACCTATCCAGT $\tt CTCTTTCATCAACTACAAGGGTGAGGAGGTCTGTCTGGATCAGGCTCCTGCTGGCTCCGC$ ${\tt TCCAGCAGCCCAGTTTATGGATGGGTTGATTGGCTATGGTGTGGAGCAGCTTATCTCTAC}$ TGGGACCTGTGGTGTCCTAGCTGATATAGAGGAAAATGCCTTTCTAGTCCCTGTTCGCGC TTTGCGAGATGAGGGAGCCAGTTACCACTATGTGGCACCTTGTCGTTATATGGAAATGCA GCCAGAGGCTATTGCTGCTATTGAGGAAGTTTTTGGAAGACAGAGGGATTCCTTATGAAGA AGTCATGACCTGGACGACAGACGGTTTTTACCGAGAAACGGCTGAAAAGGTGGCTTATCG TAAGGAAGAAGGCTGTGCTGTTGTGGAGATGGAGTGTTCTGCTCTTGCGGCAGTAGCTCA ATTGCGTGGGGTTCTCTGGGGTGAATTGTTGTTCACAGCAAATTCTCTAGCGGACTTGGA CCAGTACAACAGTCGTGACTGGGGCTCGGAACCTTTTAATAAGGCGCTAAAACTGAGTTT AGCAAGTGTCCACCACCTTTAGTTGTACTGGCAAAGGATTTGTTTTATCATAAAATGTCT AGCTCATACTTTTCAAAAATATGTTTAAACGAAGTCACCTTCCTCTTGTCCTAAGCATGT TTGAAGTTGGGAAAAATCTTTAAAATCAGAAAAACGTATCATATCAGGTTGATGA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	98	742	F	215 aa

> 3865470-1 ORF translation from 98-742, direction F VRRSDRYAREVGADCVGEFVSATKTYPVSFINYKGEEVCLDQAPAGSAPAAQFMDGLIGY GVEQLISTGTCGVLADIEENAFLVPVRALRDEGASYHYVAPCRYMEMQPEAIAAIEEVLE DRGIPYEEVMTWTTDGFYRETAEKVAYRKEEGCAVVEMECSALAAVAQLRGVLWGELLFT ANSLADLDQYNSRDWGSEPFNKALKLSLASVHHL*

Description: unknown

Assembly ID: 3865632 Assembly Length: 645bp

> 3865632 Strep Assembly -- Assembly id#3865632
AGGGCTGTCAAGCTTGGTTAGAACGTTTAGAAAAGGAGAGTTAAGGTGGAAAATCTTACG
AATTTTTACGAAAAGTATCGTGTCTATCTGACTCGTCCACGTTTAGAGCTTTTGGCAGTA
GTTACCATTGTTTTANGNGCTGTACTCGTCTTTTTTCTAAATATTCCAGGAAAAGGTGTC
TTAAAACTCGATAATGGAACGATTGTTTATGATGGCAGTCTTGTCCGTGGTAAAATGAAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	46	456	F	137 aa

> 3865632-1 ORF translation from 46-456, direction F VENLTNFYEKYRVYLTRPRLELLAVVTIVLXAVLVFFLNIPGKGVLKLDNGTIVYDGSLV RGKMNGQGTITFQNGDQYTGGFNNGAFNGKGTFQSKEGWTYEGDFVNGQAEGKGKLTTEQ EVVYEGTFKQGVFQQK*

Description: unknown

Assembly ID: 3865710 Assembly Length: 572bp

> 3865710 Strep Assembly -- Assembly id#3865710

GAGATCTGTCTTGACACCAAAAGTGTGGAGTACGCCAGCTAATTCAACGGCGATATAACC
AGCGCCTAGAATCGCAATTGACTCTGGAAGTTCTTCCCAGGCAAATACATCATCAGAAGA
GCCACCTAGCTCAGCACCAGGAATATTAGGAATACTTGGATGGGCACCTGTAGCAATCAC
GATATGTCTAGCACGAATCAGTTCACCATTTACGCTTACAGTATGAGAATCTACAAATTC
AGCATGACCTTCAATCAAGTCTACACCGTTGCGTTTAAAACTACCATCATAGAGAAGAAC
GAGCGCGATCAATGTAGGCTTCACGATTGCGACGTAGGGTTGCAAAGTTAAAGTTAAGAT
CAGTAGTCTCAAAGCCGTAGTCTCCTCCAAATTGATGGAAAGTCTCAGCGATTTGCGCCC
CGCTACCACATGATTCTTTTAGGAACACAACCGACGTTGACACAGGTTCCACCTAATTTC
TTTTCCTCAATAACGGCTGCTTTGGCTCCATGTTCCCAGCACGGTTCATGGTAGCGATCC
TCCGCTACCTCCACGATAGCAATGATATCATA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	287	448	R	54 aa

> 3865710-1 ORF translation from 287-448, direction R VFLKESCGSGAQIAETFHQFGGDYGFETTDLNFNFATLRRNREAYIDRARSSL*

Description:

glutathione reductase (NADPH) (EC 1.6.4.2) - Streptococcus thermophilus

Provided in Table 2 is information on the direction of the ORF (forward or reverse) for each polynucleotide in Table 1. Also listed for each ORF is its start and stop codon positions (refer to the columns containing nucleotide code labeled "Start" and "Stop"). The triplet codon sequence for each start and stop codon is also shown. These codons may be shown in the sense orientation or antisense orientation, such as GTG and CAC, respectively, for start codons. The "Length" column discloses the length of each polynucleotide assembly. The direction of translation on the polynucleotide depicted is denoted by and "Forward" for forward or and "Reverse" for reverse (or being on the opposite strand from the one depicted). As indicated above, the "Assembly ID" number is a unique identifier assigned to each ORF of Table 1 and allows a correlation between the data in Tables 1 and 2.

TABLE 2 Stop Assembly Start Start Stop Length Direction ID 3049156 ~CAC TCA~ 236 385 50 Reverse TGA 383 3049862 GTG 526 48 Forward 3112810 ~CAC TTA~ 601 804 68 Reverse ~CAC TTA~ 220 98 3112866 513 Reverse 3113664 GTG TAA 165 392 76 Forward

Assembly ID	Start	Stop	Start	Stop	Length	Direction
3113716	~CAC	TTA~	94	291	66	Reverse
3174176	GTG	TAA	139	543	135	Forward
3174186	GTG	TAG	83	283	67	Forward
3174374	GTG	TGA	154	294	47	Forward
3174972	~CAC	TTA~	169	678	170	Reverse
3175138	~CAC	TCA~	79	945	289	Reverse
3175860	GTG	TAA	51	251	67	Forward
3175918	GTG	TGA	212	535	108	Forward
3811220	~CAC	CTA~	316	873	186	Reverse
3811436	~CAC	TTA~	1164	1511	116	Reverse
3811984	GTG	TGA	134	454	107	Forward
3857228	~CAC	TCA~	1141	1356	72	Reverse
3857842	GTG	TAA	45	341	99	Forward
3857996	GTG	TAA	58	456	133	Forward
3858236	~CAC	CTA~	1	261	87	Reverse
3858264	~CAC	TCA~	439	1365	309	Reverse
3858610	~CAC	TTA~	374	949	192	Reverse
3858716	~CAC	CTA~	238	402	55	Reverse
3859124	~CAC	CTA~	73	453	127	Reverse
3859244	~CAC	TTA~	310	462	51	Reverse
3859250	~CAC	CTA~	244	402	53	Reverse
3859588	~CAC	TTA~	102	443	114	Reverse
3859774	~CAC	CTA~	9	131	41	Reverse
3860140	GTG	TAA	302	511	70	Forward
3860140	GTG	TAA	605	856	84	Forward
3860206	~CAC	TTA~	898	1056	53	Reverse
3860270	GTG	TAG	346	966	207	Forward
3860438	GTG	TAG	1	276	92	Forward
3860438	GTG	TGA	460	1128	223	Forward
3860544	GTG	TAA	222	689	156	Forward
3860558	~CAC	TTA~	717	1376	220	Reverse
3860568	GTG	TAA	1040	1291	84	Forward
3860582	GTG	TGA	356	1027	224	Forward
3860724	GTG	TGA	139	498	120	Forward

Assembly	Start	Stop	Start	Stop	Length	Direction
ID						
3860724	GTG	TGA.	686	1024	113	Forward
3860858	GTG	TAG	610	807	66	Forward
3860890	GTG	TAG	397	486	30	Forward
3860952	~CAC	TTA~	449	715	89	Reverse
3860962	~CAC	TTA~	152	646	165	Reverse
3861268	~CAC	TTA~	457	645	63	Reverse
3861270	~CAC	TTA~	627	824	66	Reverse
3861288	~CAC	CTA~	357	572	72	Reverse
3861306	GTG	TAA	717	1208	164	Forward
3861306	GTG	TAA	1201	1410	70	Forward
3861334	GTG	TAA	76	975	300	Forward
3864148	GTG	TAG	212	940	243	Forward
3864148	GTG	TAA	1202	1753	184	Forward
3864148	GTG	TAA	2750	3037	96	Forward
3864172	GTG	TAG	311	862	184	Forward
3864180	~CAC	TTA~	930	1616	229	Reverse
3864184	GTG	TGA	197	670	158	Forward
3864184	GTG	TAA	612	1304	231	Forward
3864194	~CAC	CTA~	1084	1380	99	Reverse
3864338	GTG	TGA	552	1100	183	Forward
3864360	GTG	TAA	47	1078	344	Forward
3864388	GTG	TGA	1239	1586	116	Forward
3864406	~CAC	TTA~	263	958	232	Reverse
3864452	~CAC	TCA~	1079	1201	41	Reverse
3864458	GTG	TAA	797	1105	103	Forward
3864458	GTG	TGA	1179	1391	71	Forward
3864474	~CAC	CTA~	68	247	60	Reverse
3864474	~CAC	TTA~	644	1528	295	Reverse
3864510	~CAC	TTA~	1164	1640	159	Reverse
3864526	~CAC	TTA~	845	1660	272	Reverse
3864548	GTG	TGA	687	1055	123	Forward
3864548	GTG	TAA	979	1932	318	Forward
3864582	~CAC	TTA~	317	550	78	Reverse
3864604	~CAC	CTA~	1	141	47	Reverse
3864604	~CAC	CTA~	1513	1803	97	Reverse
3864610	GTG	TAA	427	1305	293	Forward
3864716	GTG	TAA	57	272	72	Forward
3864718	GTG	TGA	77	1474	466	Forward
3864802	~CAC	TTA~	92	550	153	Reverse

Assembly	Start	Stop	Start	Stop	Length	Direction
ID						
3864854	~CAC -	- CTA~	324	548	75	Reverse
3864862	~CAC	CTA~	431	1003	191	Reverse
3864888	~CAC	TTA~	10	657	216	Reverse
3864898	GTG	TAA	130	1029	300	Forward
3864938	GTG	TGA	883	1326	148	Forward
3864956	GTG	TAA	1030	1251	74	Forward
3864958	~CAC	TCA~	1427	1711	95	Reverse
3865022	~CAC	TCA~	279	1271	331	Reverse
3865036	GTG	TAG	79	492	138	Forward
3865054	~CAC	TCA~	302	793	164	Reverse
3865102	~CAC	CTA~	27	731	235	Reverse
3865156	~CAC	TTA~	416	808	131	Reverse
3865160	GTG	TAA	136	375	80	Forward
3865172	~CAC	TTA~	731	1123	131	Reverse
3865228	GTG	TAA	197	286	30	Forward
3865230	GTG	TGA	272	586	105	Forward
3865378	~CAC	TTA~	421	807	129	Reverse
3865470	GTG	TAG	98	742	215	Forward
3865632	GTG	TAA	46	456	137	Forward
3865710	~CAC	TCA~	287	448	54	Reverse

EXAMPLES

The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative, but do not limit the invention.

Example 1

Isolation of DNA coding for a virulence gene in Streptococcus pneumoniae

As mentioned above each of the DNAs disclosed herein by virtue of the fact that it includes an intact open reading frame is useful to a greater or lesser extent as a screen for identifying antimicrobial compounds. A useful approach for selecting the preferred DNA sequences for screen development is evaluation by insertion-duplication mutagenesis. This system disclosed by Morrison et al., <u>J. Bacteriol</u>. 159:870 (1984), is applied as follows.

Briefly, random fragments of *Streptococcus pneumoniae*, strain 0100993 DNA are generated enzymatically (by restriction endonuclease digestion) or physically (by sonication based shearing) followed by gel fractionation and end repair employing T4 DNA

polymerase. It is preferred that the DNA fragments so produced are in the range of 200-400 — base pairs, a size sufficient to ensure homologous recombination and to insure a representative library in *E.coli*. The fragments are then inserted into appropriately tagged plasmids as described in Hensel et al., Science 269: 400-403(1995). Although a number of plasmids can be used for this purpose, a particularly useful plasmid is pJDC9 described by Pearce et al., Mol. Microbiol. 9:1037 (1993) which carries the erm gene facilitating erythromycin selection in either *E. coli* or *S. pneumoniae* previously modified by incorporation of DNA sequence tags into one of the polylinker cloning sites. The tagged plasmids are introduced into the appropriate *S. pneumoniae* strain selected, inter alia, on the basis of serotype and virulence in a murine model of pneumococcal pneumonia.

It is appreciated that a seventeen amino acid competence factor exists (Havastein et al., Proc. Nat'l. Acad. Sci. USA 92:11140-44 (1995)) and may be usefully employed in this protocol to increase the transformation frequencies. A proportion of transformants are analysed to verify homologous integration and as a check on stability. Unwanted levels of reversion are minimized because the duplicated regions will be short (200-400 bp), however if significant reversion rates are encountered they may be modulated by maintaining antibiotic selection during the growth of the transformants in culture and/or during growth in the animal.

The S. pneumoniae transformants are pooled for inoculation into mice, eg., Swiss Preliminary experiments are conducted to establish the optimum and/or C57B1/6. complexity of the pools and level of inoculum. A particularly useful model has been described by Veber et al. (J. Antimicrobiol. Chemother.32:432 (1993) in which 10⁵ cfu inocula sizes are introduced by mouth to the trachea. Strain differences are observed with respect to onset of disease e.g., 3-4 days for Swiss mice and 8-10 days for C57B1/6. Infection yields in the lungs approach 10⁸ cfu/lung. IP administration is also possible when genes mediating blood stream infection are evaluated. Following optimization of parameters of the infection model, the mutant bank normally comprising several thousand strains is subjected to the virulence test. Mutants with attenuated virulence are identified by hybridization analysis using the labelled tags from the "input" and "recovered" pools as probes as described in Hensel et al., Science 269: 400-403(1995). S. pneumoniae DNA is colony blotted or dot blotted, DNA flanking the integrated plasmid is cloned by plasmid rescue in E. coli (Morrison et al., J. Bacteriol. 159:870 (1984)) and sequenced. Following sequencing, the DNA is compared to the nucleotide sequences given herein and the appropriate ORF is identified and function confirmed for example by knock-out studies.

Expression vectors providing the selected protein are prepared and the protein is configured in an appropriate screen for the identification of anti-microbial agents. Alternatively, genomic DNA libraries are probed with restriction fragments flanking the integrated plasmid to isolate full-length cloned virulence genes whose function can be confirmed by "knock-out" studies or other methods, which are then expressed and incorporated into a screen as described above.

What is claimed is 1. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

- (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising an amino acid sequence of Table 1;
- (b) a polynucleotide having at least a 70% identity to a polynucleotide encoding a mature polypeptide expressed by the gene contained in the *S. pneumoniae* of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1;
- (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence of Table 1;
- (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
- (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
 - 2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
 - 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.
- 4. The polynucleotide of Claim 2 comprising the nucleic acid sequence selected from the group consisting of the nucleic acid sequences set forth in Table 1.
- 5. The polynucleotide of Claim 2 which encodes a polypeptide comprising an amino acid sequence sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
 - 6. A vector comprising the polynucleotide of Claim 1.
 - 7. A host cell comprising the vector of Claim 6.
- 8. A process for producing a polypeptide comprising: expressing from the host cell of Claim 7 a polypeptide encoded by said DNA.
- 9. A process for producing a polypeptide or fragment comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide or fragment.
- 10. A polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
- 11. A polypeptide comprising an amino acid sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
 - 12. An antibody against the polypeptide of claim 10.

13. An antagonist or agonist of the activity or expression of the polypeptide of claim 10.

- 14. A method for the treatment or prevention of disease of an individual comprising: administering to the individual a therapeutically effective amount of the polypeptide of claim 10.
- 15. A method for the treatment of an individual having need to inhibit a bacterial polypeptide comprising: administering to the individual a therapeutically effective amount of the antagonist of Claim 13.
- 16. A process for diagnosing a disease related to expression or activity of the polypeptide of claim 10 in an individual comprising:
 - (a) determining a nucleic acid sequence encoding said polypeptide, and/or
- (b) analyzing for the presence or amount of said polypeptide in a sample derived from the individual.
- 17. A method for identifying compounds which interact with and inhibit or activate an activity of the polypeptide of claim 10 comprising:

contacting a composition comprising the polypeptide with the compound to be screened under conditions to permit interaction between the compound and the polypeptide to assess the interaction of a compound, such interaction being associated with a second component capable of providing a detectable signal in response to the interaction of the polypeptide with the compound;

and determining whether the compound interacts with and activates or inhibits an activity of the polypeptide by detecting the presence or absence of a signal generated from the interaction of the compound with the polypeptide.

- 18. A method for inducing an immunological response in a mammal which comprises inoculating the mammal with the polypeptide of claim 10, or a fragment or variant thereof, adequate to produce antibody and/or T cell immune response to protect said animal from disease.
- 19. A method of inducing immunological response in a mammal which comprises delivering a nucleic acid vector to direct expression of a polypeptide of claim 10, or fragment or a variant thereof, for expressing said polypeptide, or a fragment or a variant thereof *in vivo* in order to induce an immunological response to produce antibody and/ or T cell immune response to protect said animal from disease.
- 20. A polynucleotide comprising a polynucleotide sequence selected from the group consisting of the the first ten polynucleotides sequences from the top of Table 1.

21. A polypeptide comprising a polypeptide encoded by the polynculeotide of claim 20.

- 22. The isolated polynucleotide of claim 1 wherein said nucleotide is selected from the group consisting of:
- (a) a polynucleotide having at least a 90% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1;
- (b) a polynucleotide having at least a 90% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the *S. pneumoniae* of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1;
- (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 90% identical to the amino acid sequence of Table 1;
- (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
- (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
 - 23. The isolated polynucleotide of claim 1 selected from the group consisting of:
- (a) a polynucleotide having at least a 95% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1;
- (b) a polynucleotide having at least a 95% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the *S. pneumoniae* of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1;
- (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 95% identical to the amino acid sequence of Table 1;
- (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
- (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
- 24. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
- (a) a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*;

(b) a polynucleotide encoding a polypeptide comprising an amino acid sequence — which is at least 50% identical to the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*; and

- (c) a polynucleotide which is complementary to the polynucleotide of (a) or (b).
- 25. An isolated Streptococcal polypeptide having one of the amino acid sequences given in Table 1.
- 26. An isolated nucleic acid encoding one of the amino acid sequences of Claim 1 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
- 27. Recombinant vectors comprising the nucleic acid sequences of Claim 26 and host cells transformed or transfected therewith.
- 28. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 1 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
 - 29. Antimicrobial compounds identified by the method of Claim 28.
- 30. An isolated Streptococcal polypeptide having one of the amino acid sequences given in Table 1.
- 31. An isolated nucleic acid encoding one of the amino acid sequences of Claim 30 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
- 32. Recombinant vectors comprising the nucleic acid sequences of Claim 31 and host cells transformed or transfected therewith.
- 33. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 30 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
 - 34. Antimicrobial compounds identified by the method of Claim 33.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/19226

IPC(6) : US CL : According to	SSIFICATION OF SUBJECT MATTER Please See Extra Sheet. Please See Extra Sheet. o International Patent Classification (IPC) or to both	national classification and IPC						
	ocumentation searched (classification system followe	ed by classification symbols)						
	424/130.1, 139.1, 184.1; 435/7.1, 69.3, 320.1, 325							
Documentat	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic d	lata base consulted during the international search (n	ame of data base and, where practicable	e, search terms used)					
	DLINE, BIOSIS, CA, EMBASE, WPIDS : Streptococcus, pneumoniae, dna, polypeptide, trea	at, diagnose	-					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.					
X	US 5,476,929 A (BRILES ET AL) 1 document	1-5, 20, 22-24, 26, 31						
A	SEVIER et al. Monoclonal Antibod Clinical Chemistry. 1981, Vol. 27, N entire document	1-34						
A	US 4,601,980 A (GOEDDEL ET Al document.	1-34						
A	A US 5,474,905 A (TAI ET AL) 12 December 1995, see entire document.							
<u> </u>	er documents are listed in the continuation of Box C							
"A" doc	scial categories of cited documents: sument defining the general state of the art which is not considered be of particular relevance	"T" later document published after the inter date and not in conflict with the appli the principle or theory underlying the	cation but cited to understand					
"E" carlier document published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other								
spec	cial reason (as specified) rument referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	step when the document is documents, such combination					
P document published prior to the international filing date but later than *&* document member of the same patent family the priority date claimed								
	actual completion of the international search	Date of mailing of the international sea	rch report					
Commission Box PCT	nailing address of the ISA/US her of Patents and Trademarks	Authonized officer	FULLY					
-	(702) 205 2220	Telephone No. (702) 200 0104	\mathcal{U}					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/19226

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):
A61K 38/00, 39/00, 39/395, 39/40; C07H 21/04; C07K 1/00; C12N 15/00; C12P 21/06; G01N 33/53
A. CLASSIFICATION OF SUBJECT MATTER: US CL:
424/130.1, 139.1, 184.1; 435/7.1, 69.3, 320.1, 325; 530/300, 350; 536/23.7

Form PCT/ISA/210 (extra sheet)(July 1992)*

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 38/00, 39/00, 39/395, 39/40, C07H 21/04, C07K 1/00, C12N 15/00, C12P 21/06, G01N 33/53

(11) International Publication Number:

WO 98/19689

 $\mathbf{A1}$

(43) International Publication Date:

14 May 1998 (14.05.98)

(21) International Application Number:

PCT/US97/19226

(22) International Filing Date:

27 October 1997 (27.10.97)

(30) Priority Data:

60/029,930

1 November 1996 (01.11.96) US

ristown, PA 19403 (US). (74) Agents: GIMMI, Edward, R. et al.; SmithKline Beecham

ZARFOS, Phillip, N. [US/US]; 1907 Yorktown North, Nor-

DE, DK, ES, FI, FR, GB, GR, IÊ, IT, LU, MC, NL, PT,

Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

(71) Applicants (for all designated States except US): SMITHK-(81) Designated States: CA, JP, US, European patent (AT, BE, CH, LINE BEECHAM CORPORATION [US/US]; One Franklin Plaza, Philadelphia, PA 19103 (US). SMITHK-LINE BEECHAM PLC [GB/GB]; New Horizons Court.

Published

SE).

With international search report.

(72) Inventors; and

(75) Inventors/Applicants (for US only): BLACK, Michael, Terance [GB/US]; 502 Milhouse Way, Chester Springs, PA 19425 (US). HODGSON, John, Edward [GB/US]; 260 Lapp Road, Malvern, PA 19355 (US). KNOWLES, David, Justin, Charles [GB/GB]; Downsview House, 45 Cronks Hill Road, Redhill, Surrey RH1 6LY (GB). LONETTO, Michael, Arthur [US/US]; 18 Victoria Circle, Collegeville, PA 19426 (US). NICHOLAS, Richard, Oakley [GB/US]; 355 Carmen Drive, Collegeville, PA 19426 (US). REID, Robert, H., Jr. [US/US]; 8 Pacer Lane, East Norriton, PA 19401 (US).

Brentford, Middlesex TW8 9EP (GB).

(54) Title: NOVEL CODING SEQUENCES

(57) Abstract

This invention relates to newly identified Streptococcal polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	$\mathbf{F}\mathbf{R}$	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	\mathbf{SZ}	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
\mathbf{BE}	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	\mathbf{SG}	Singapore		

NOVEL CODING SEQUENCES

FIELD OF THE INVENTION

This invention relates to newly identified polynucleotides and polypeptides, and their production and uses, as well as their variants, agonists and antagonists, and their uses. In particular, in these and in other regards, the invention relates to novel polynucleotides and polypeptides set forth in Table 1.

BACKGROUND OF THE INVENTION

The Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including otitis media, pneumonia and meningitis. Since its isolation more than 100 years ago, *Streptococcus pneumoniae* (herein *S. pneumoniae*) has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact, the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe. Despite the vast amount of research with *S. pneumoniae*, many questions concerning the virulence of this microbe remain.

While certain Streptococcal factors associated with pathogenicity have been identified, e.g., capsule polysaccharides, peptidoglycans, pneumolysins, PspA Complement factor H binding component, autolysin, neuraminidase, peptide permeases, hydrogen peroxide, IgA1 protease, the list is certainly not complete. Further very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.

GUG is used as an initating nucleotide, rather than ATG, for a significant number of mRNA's in both Gram positive and Gram negative bacteria. Statistics on the frequency of NTG codons in the start codon for several bacterial species are available on line via computer at http://biochem.otago.ac.nz:800/Transterm/home_page.html).

A discussion of initiation codons in *B. subtilis* is set forth in Vellanoweth, RL.1993 in *Bacillus subtilis* and other Gram Positive Bacteria, Biochemistry, Physiology and Molecular Genetics, Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-711. Vellenworth indicates a major difference between *B. subtilis* and the

gram-negative organisms is in the choice of initiation codon. 91% of the sequenced *E. coli* genes start with AUG. By contrast, about 30% of *B. subtilis* and other clostridial branch gened start with UUG or GUG. Moreover, CUG functions as a start codon in *B. subtilis*. Mutations of an AUG initiation codon to GUG or UUG often cause decreased expression in *B. subtilis* and *E. coli*. Generally, translation efficiency is higher with AUG initiation codons. A strong Shine-Delgarno ribosome binding site, however, can compensate almost fully for a weak initiation codon. It has been reported that genes with a range of expression levels have initiation codons other than ATG in gram positives (Vellanoweth, RL.1993 in *Bacillus subtilis* and other Gram Positive Bacteria, Biochemistry, Physiology and Molecular Genetics, Sonenshein, Hoch, Losick Eds. Amer. Soc. Microbiol, Washington DC. p. 699-711).

Provided herein are ORF sequences from genes possessing GUG initiation codons and proteins expressed therefrom and homologues thereto to be used for screening for antimicrobial compounds. Clearly, there is a need for polypeptide and polynucleotide sequences that may be used to screen for antimicrobial compound and which may also be used to determine the roles of such sequences in pathogenesis of infection, dysfunction and disease. There is also need, therefore, for identification and characterization of such sequences which may play a role in preventing, ameliorating or correcting infections, dysfunctions or diseases.

The polypeptides of the invention have amino acid sequence homology to a known protein(s) as set forth in Table 1.

SUMMARY OF THE INVENTION

It is an object of the invention to provide polypeptides that have been identified as novel polypeptides by homology between an amino acid sequence selected from the group consisting of the sequences set out in Table 1 and a known amino acid sequence or sequences of other proteins such as the protein identities listed in Table 1.

It is a further object of the invention to provide polynucleotides that encode novel polypeptides, particularly polynucleotides that encode polypeptides of *Streptococcus pneumoniae*.

In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding a polypeptide comprising a sequence sequence selected from the group consisting of the sequences set out in Table 1, or a variant of any of these sequences.

In another particularly preferred embodiment of the invention there is a novel protein from *Streptococcus pneumoniae* comprising an amino acid sequence selected from the group consisting of the sequences set out in Table 1, or a variant of any of these sequences.

In accordance with another aspect of the invention there is provided an isolated nucleic acid molecule encoding a mature polypeptide expressible by the *Streptococcus pneumoniae* 0100993 strain contained in the deposited strain.

A further aspect of the invention there are provided isolated nucleic acid molecules encoding a polypeptide of the invention, particularly *Streptococcus pneumoniae* polypeptide, and including mRNAs, cDNAs, genomic DNAs. Further embodiments of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.

In accordance with another aspect of the invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunization. Among the particularly preferred embodiments of the invention are naturally occurring allelic variants of a polypeptide of the invention and polypeptides encoded thereby.

Another aspect of the invention there are provided novel polypeptides of *Streptococcus pneumoniae* as well as biologically, diagnostically, prophylactically, clinically or therapeutically useful variants thereof, and compositions comprising the same.

Among the particularly preferred embodiments of the invention are variants of the polypeptides of the invention encoded by naturally occurring alleles of their genes.

In a preferred embodiment of the invention there are provided methods for producing the aforementioned polypeptides.

In accordance with yet another aspect of the invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents, including, for example, antibodies.

In accordance with certain preferred embodiments of the invention, there are provided products, compositions and methods for assessing expression of the polypeptides and polynucleotides of the invention, treating disease, for example, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid, assaying genetic variation, and administering a polypeptide or polynucleotide of the

invention to an organism to raise an immunological response against a bacteria, especially a *Streptococcus pneumoniae* bacteria.

In accordance with certain preferred embodiments of this and other aspects of the invention there are provided polynucleotides that hybridize to a polynucleotide sequence of the invention, particularly under stringent conditions.

In certain preferred embodiments of the invention there are provided antibodies against polypeptides of the invention.

In other embodiments of the invention there are provided methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity of a polypeptide or polynucleotide of the invention comprising: contacting a polypeptide or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity of the polypeptide or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide or polynucleotide.

In accordance with yet another aspect of the invention, there are provided agonists and antagonists of the polypeptides and polynucleotides of the invention, preferably bacteriostatic or bacteriocidal agonists and antagonists.

In a further aspect of the invention there are provided compositions comprising a polynucleotide or a polypeptide of the invention for administration to a cell or to a multicellular organism.

Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following descriptions and from reading the other parts of the present disclosure.

GLOSSARY

The following definitions are provided to facilitate understanding of certain terms used frequently herein.

"Disease(s) means any bacterial infection, but preferably a streptococcal infection, such as, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema, endocarditis, meningitis, and infection of cerebrospinal fluid.

"Host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous polynucleotide sequence.

"Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" and "similarity" can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol. 215: 403-410 (1990). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990). As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence it is intended that the nucleotide sequence of the tested polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another

nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. Analogously, by a polypeptide having an amino acid sequence having at least, for example, 95% identity to a reference amino acid sequence is intended that the test amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

"Isolated" means altered "by the hand of man" from its natural state, *i.e.*, if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.

"Polynucleotide(s)" generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotide(s)" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and doublestranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and doublestranded regions. In addition, "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more

of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. As used herein, the term "polynucleotide(s)" also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. "Polynucleotide(s)" also embraces short polynucleotides often referred to as oligonucleotide(s).

"Polypeptide(s)" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds. "Polypeptide(s)" refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene encoded amino acids. "Polypeptide(s)" include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art. It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini. Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation,

lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins, such as arginylation, and ubiquitination. See, for instance, *PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES*, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993) and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in *POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS*, B. C. Johnson, Ed., Academic Press, New York (1983); Seifter et al., *Meth. Enzymol. 182*:626-646 (1990) and Rattan et al., *Protein Synthesis: Posttranslational Modifications and Aging*, Ann. N.Y. Acad. Sci. 663: 48-62 (1992). Polypeptides may be branched or cyclic, with or without branching. Cyclic, branched and branched circular polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well.

"Variant(s)" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans.

DESCRIPTION OF THE INVENTION

Each of polynucleotide and polypeptide sequences provided herein may be used in the discovery and development of antibacterial compounds. Upon expression of the sequences with the appropriate initiation and termination codons the encoded polypeptide

can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding preferably the amino terminal regions of the encoded protein or the Shine-Delgarno region can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. Because each of the sequences contains an open reading frame (ORF) with an appropriate initiation and termination codons, the encoded protein upon expression can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein can be used to construct antisense sequences to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

It is believed that bacteria possess a number of ways of regulating gene expression levels, especially in subtle degrees, and the interplay between ribosome binding site and inititation codon is utilized for this purpose for these genes. It is also believed that such genes will be important targets for antimicrobial drug discovery, particularly since pathogenesis genes are believed undergo gene expression regulation during in the pathogenesis process. Therefore, the invention provides ORF sequences possessing a GTG (GUG) initiation codon and protein targets expressed thereform.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

ORF Gene Expression

Recently techniques have become available to evaluate temporal gene expression in bacteria, particularly as it applies to viability under laboratory and infection conditions. A number of methods can be used to identify genes which are essential to survival *per se*, or essential to the establishment/maintenance of an infection. Identification of an ORF unknown by one of these methods yields additional information about its function and permits the selection of such an ORF for further development as a screening target. Briefly, these approaches include:

1) Signature Tagged Mutagenesis (STM): This technique is described by Hensel et al., Science 269: 400-403(1995), the contents of which is incorporated by reference for background purposes. Signature tagged mutagenesis identifies genes necessary for the establishment/maintenance of infection in a given infection model.

The basis of the technique is the random mutagenesis of target organism by various means (e.g., transposons) such that unique DNA sequence tags are inserted in close proximity to the site of mutation. The tags from a mixed population of bacterial mutants and bacteria recovered from an infected hosts are detected by amplification, radiolabeling and hybridisation analysis. Mutants attenuated in virulence are revealed by absence of the tag from the pool of bacteria recovered from infected hosts.

In *Streptococcus pneumoniae*, because the transposon system is less well developed, a more efficient way of creating the tagged mutants is to use the insertion-duplication mutagenesis technique as described by Morrison et al., <u>J. Bacteriol.</u> 159:870 (1984) the contents of which is incorporated by reference for background purposes.

2) In Vivo Expression Technology (IVET): This technique is described by Camilli et al., Proc. Nat'l. Acad. Sci. USA. 91:2634-2638 (1994), the contents of which is incorporated by reference for background purposes. IVET identifies genes up-regulated during infection when compared to laboratory cultivation, implying an important role in infection. ORF identified by this technique are implied to have a significant role in infection establishment/maintenance.

In this technique random chromosomal fragments of target organism are cloned upstream of a promoter-less recombinase gene in a plasmid vector. This construct is introduced into the target organism which carries an antibiotic resistance gene flanked by resolvase sites. Growth in the presence of the antibiotic removes from the population those fragments cloned into the plasmid vector capable of supporting transcription of the recombinase gene and therefore have caused loss of antibiotic resistance. The resistant pool is introduced into a host and at various times after infection bacteria may be recovered and assessed for the presence of antibiotic resistance. The chromosomal fragment carried by each antibiotic sensitive bacterium should carry a promoter or portion of a gene normally upregulated during infection. Sequencing upstream of the recombinase gene allows identification of the up regulated gene.

3) Differential display: This technique is described by Chuang et al., J. Bacteriol. 175:2026-2036 (1993), the contents of which is incorporated by reference for background purposes. This method identifies those genes which are expressed in an organism by identifying mRNA present using randomly-primed RT-PCR. By comparing pre-infection and post infection profiles, genes up and down regulated during infection can be identified and the RT-PCR product sequenced and matched to ORF 'unknowns'.

4) Generation of conditional lethal mutants by transposon mutagenesis: This technique, described by de Lorenzo, V. et al., Gene 123:17-24 (1993); Neuwald, A. F. et al., Gene 125: 69-73(1993); and Takiff, H. E. et al., J. Bacteriol. 174:1544-1553(1992), the contents of which is incorporated by reference for background purposes, identifies genes whose expression are essential for cell viability.

In this technique transposons carrying controllable promoters, which provide transcription outward from the transposon in one or both directions, are generated. Random insertion of these transposons into target organisms and subsequent isolation of insertion mutants in the presence of inducer of promoter activity ensures that insertions which separate promoter from coding region of a gene whose expression is essential for cell viability will be recovered. Subsequent replica plating in the absence of inducer identifies such insertions, since they fail to survive. Sequencing of the flanking regions of the transposon allows identification of site of insertion and identification of the gene disrupted. Close monitoring of the changes in cellular processes/morphology during growth in the absence of inducer yields information on likely function of the gene. Such monitoring could include flow cytometry (cell division, lysis, redox potential, DNA replication), incorporation of radiochemically labeled precursors into DNA, RNA, protein, lipid, peptidoglycan, monitoring reporter enzyme gene fusions which respond to known cellular stresses.

- 5) Generation of conditional lethal mutants by chemical mutagenesis: This technique is described by Beckwith, J., Methods in Enzymology 204: 3-18(1991), the contents of which are incorporated herein by reference for background purposes. In this technique random chemical mutagenesis of target organism, growth at temperature other than physiological temperature (permissive temperature) and subsequent replica plating and growth at different temperature (e.g. 42°C to identify ts, 25°C to identify cs) are used to identify those isolates which now fail to grow (conditional mutants). As above close monitoring of the changes upon growth at the non-permissive temperature yields information on the function of the mutated gene. Complementation of conditional lethal mutation by library from target organism and sequencing of complementing gene allows matching with unknown ORF.
- 6) RT-PCR: Streptococcus pneumoniae messenger RNA is isolated from bacterial infected tissue e.g. 48 hour murine lung infections, and the amount of each mRNA species assessed by reverse transcription of the RNA sample primed with random hexanucleotides

followed by PCR with gene specific primer pairs. The determination of the presence and amount of a particular mRNA species by quantification of the resultant PCR product provides information on the bacterial genes which are transcribed in the infected tissue. Analysis of gene transcription can be carried out at different times of infection to gain a detailed knowledge of gene regulation in bacterial pathogenesis allowing for a clearer understanding of which gene products represent targets for screens for novel antibacterials. Because of the gene specific nature of the PCR primers employed it should be understood that the bacterial mRNA preparation need not be free of mammalian RNA. This allows the investigator to carry out a simple and quick RNA preparation from infected tissue to obtain bacterial mRNA species which are very short lived in the bacterium (in the order of 2 minute halflives). Optimally the bacterial mRNA is prepared from infected murine lung tissue by mechanical disruption in the presence of TRIzole (GIBCO-BRL) for very short periods of time, subsequent processing according to the manufacturers of TRIzole reagent and DNAase treatment to remove contaminating DNA. Preferably the process is optimised by finding those conditions which give a maximum amount of Streptococcus pneumoniae 16S ribosomal RNA as detected by probing Northerns with a suitably labelled sequence specific oligonucleotide probe. Typically a 5' dye labelled primer is used in each PCR primer pair in a PCR reaction which is terminated optimally between 8 and 25 cycles. The PCR products are separated on 6% polyacrylamide gels with detection and quantification using GeneScanner (manufactured by ABI).

Each of these techniques may have advantages or disadvantage depending on the particular application. The skilled artisan would choose the approach that is the most relevant with the particular end use in mind.

Use of the of these technologies when applied to the ORFs of the present invention enables identification of bacterial proteins expressed during infection, inhibitors of which would have utility in anti-bacterial therapy.

The invention relates to novel polypeptides and polynucleotides as described in greater detail below. In particular, the invention relates to polypeptides and polynucleotides of *Streptococcus pneumoniae*, which is related by amino acid sequence homology to known polypeptide as set forth in Table 1. The invention relates especially to compounds having the nucleotide and amino acid sequence selected from the group consisting of the sequences set

out in Table 1, and to the nucleotide sequences of the DNA in the deposited strain and amino acid sequences encoded thereby.

Deposited materials

The deposit has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure. The strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. The deposit is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. §112.

A deposit containing a *Streptococcus pneumoniae* bacterial strain has been deposited with the National Collections of Industrial and Marine Bacteria Ltd. (NCIMB), 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland on 11 April 1996 and assigned NCIMB Deposit No. 40794. The *Streptococcus pneumoniae* bacterial strain deposit is referred to herein as "the deposited bacterial strain" or as "the DNA of the deposited bacterial strain."

The deposited material is a bacterial strain that contains the full length FabH DNA, referred to as "NCIMB 40794" upon deposit.

The sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.

A license may be required to make, use or sell the deposited materials, and no such license is hereby granted.

The deposited strain contains the full length genes comprising the polynucleotides set forth in Table 1. The sequence of the polynucleotides contained in the deposited strain, as well as the amino acid sequence of the polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.

Polypeptides

The polypeptides of the invention include the polypeptides set forth in Table 1 (in particular the mature polypeptide) as well as polypeptides and fragments, particularly those which have the biological activity of a polypeptide of the invention, and also those which have at least 50%, 60% or 70% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1 or the relevant portion, preferably at least 80% identity to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and more preferably at least 90% similarity (more preferably at least 90% identity)

to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and still more preferably at least 95% similarity (still more preferably at least 95% identity) to a polypeptide sequence selected from the group consisting of the sequences set out in Table 1, and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.

The invention also includes polypeptides of the formula:

$$X-(R_1)_n-(R_2)-(R_3)_n-Y$$

wherein, at the amino terminus, X is hydrogen, and at the carboxyl terminus, Y is hydrogen or a metal, R_1 and R_3 are any amino acid residue, n is an integer between 1 and 2000, and R_2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from the group set forth in Table 1. In the formula above R_2 is oriented so that its amino terminal residue is at the left, bound to R_1 , and its carboxy terminal residue is at the right, bound to R_3 . Any stretch of amino acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. In preferred embodiments n is an integer between 1 and 1000 or 2000.

A fragment is a variant polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the aforementioned polypeptides. As with polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region, a single larger polypeptide.

Preferred fragments include, for example, truncation polypeptides having a portion of the amino acid sequence of Table 1, or of variants thereof, such as a continuous series of residues that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus. Degradation forms of the polypeptides of the invention in a host cell, particularly a *Streptococcus pneumoniae*, are also preferred. Further preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Also preferred are biologically active fragments which are those fragments that mediate activities of polypeptides of the invention, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those

fragments that are antigenic or immunogenic in an animal, especially in a human. Particularly preferred are fragments comprising receptors or domains of enzymes that confer a function essential for viability of *Streptococcus pneumoniae* or the ability to initiate, or maintain cause disease in an individual, particularly a human.

Variants that are fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.

In addition to the standard single and triple letter representations for amino acids, the term "X" or "Xaa" is also used. "X" and "Xaa" mean that any of the twenty naturally occurring amino acids may appear at such a designated position in the polypeptide sequence.

Polynucleotides

The nucleotide sequences disclosed herein can be obtained by synthetic chemical techniques known in the art or can be obtained from *S. pneumoniae* 0100993 by probing a DNA preparation with probes constructed from the particular sequences disclosed herein. Alternatively, oligonucleotides derived from a disclosed sequence can act as PCR primers in a process of PCR-based cloning of the sequence from a bacterial genomic source. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

To obtain the polynucleotide encoding the protein using the DNA sequence given herein typically a library of clones of chromosomal DNA of *S.pneumoniae* 0100993 in *E. coli* or some other suitable host is probed with a radiolabelled oligonucleotide, preferably a 17mer or longer, derived from the partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using high stringency washes. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook, J. in MOLECULAR CLONING, A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory (see: Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70).

Moerover, another aspect of the invention relates to isolated polynucleotides that encode the polypeptides of the invention having a deduced amino acid sequence selected from

the group consisting of the sequences in Table 1 and polynucleotides closely related thereto and variants thereof.

Using the information provided herein, such as the polynucleotide sequences set out in Table 1, a polynucleotide of the invention encoding polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using Streptococcus pneumoniae 0100993 cells as starting material, followed by obtaining a full length clone. For example, to obtain a polynucleotide sequence of the invention, such as a sequence set forth in Table 1, typically a library of clones of chromosomal DNA of Streptococcus pneumoniae 0100993 in E.coli or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent conditions. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently, such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). (see in particular Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70). Illustrative of the invention, the polynucleotides set out in Table 1 were discovered in a DNA library derived from Streptococcus pneumoniae 0100993.

The DNA sequences set out in Table 1 each contains at least one open reading frame encoding a protein having at least about the number of amino acid residues set forth in Table 1. The start and stop codons of each open reading frame (herein "ORF") DNA are the first three and the last three nuclotides of each polynucleotide set forth in Table 1.

Certain polynucleotides and polypeptides of the invention are structurally related to known proteins as set forth in Table 1. These proteins exhibit greatest homology to the homologue listed in Table 1 from among the known proteins.

The invention provides a polynucleotide sequence identical over its entire length to each coding sequence in Table 1. Also provided by the invention is the coding sequence for the mature polypeptide or a fragment thereof, by itself as well as the coding sequence for the mature polypeptide or a fragment in reading frame with other coding sequence, such as those

encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence. The polynucleotide may also contain non-coding sequences, including for example, but not limited to non-coding 5' and 3' sequences, such as the transcribed, non-translated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence which encode additional amino acids. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain embodiments of the invention, the marker sequence is a hexahistidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc. Natl. Acad. Sci., USA 86: 821-824 (1989), or an HA tag (Wilson et al., Cell 37: 767 (1984). Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.

The invention also includes polynucleotides of the formula:

$$X-(R_1)_n-(R_2)-(R_3)_n-Y$$

wherein, at the 5' end of the molecule, X is hydrogen, and at the 3' end of the molecule, Y is hydrogen or a metal, R_1 and R_3 is any nucleic acid residue, n is an integer between 1 and 3000, and R_2 is a nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from the group set forth in Table 1. In the polynucleotide formula above R_2 is oriented so that its 5' end residue is at the left, bound to R_1 , and its 3' end residue is at the right, bound to R_3 . Any stretch of nucleic acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer. In a preferred embodiment n is an integer between 1 and 1000, or 2000 or 3000.

The term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the *Streptococcus pneumoniae* having an amino acid sequence set out in Table 1. The term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by integrated phage or an insertion sequence or editing) together with additional regions, that also may contain coding and/or non-coding sequences.

The invention further relates to variants of the polynucleotides described herein that encode for variants of the polypeptide having the deduced amino acid sequence of Table 1. Variants that are fragments of the polynucleotides of the invention may be used to synthesize full-length polynucleotides of the invention.

Further particularly preferred embodiments are polynucleotides encoding polypeptide variants, that have the amino acid sequence of a polypeptide of Table 1 in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of such polynucleotide.

Further preferred embodiments of the invention are polynucleotides that are at least 50%, 60% or 70% identical over their entire length to a polynucleotide encoding a polypeptide having the amino acid sequence set out in Table 1, and polynucleotides that are complementary to such polynucleotides. Alternatively, most highly preferred are polynucleotides that comprise a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the deposited strain and polynucleotides complementary thereto. In this regard, polynucleotides at least 90% identical over their entire length to the same are particularly preferred, and among these particularly preferred polynucleotides, those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.

A preferred embodiment is an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of: a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*; and a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 50% identical to the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*.

Preferred embodiments are polynucleotides that encode polypeptides that retain substantially the same biological function or activity as the mature polypeptide encoded by the DNA of Table 1.

The invention further relates to polynucleotides that hybridize to the herein above-described sequences. In this regard, the invention especially relates to polynucleotides that hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the terms "stringent conditions" and "stringent hybridization conditions" mean hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. An example of stringent hybridization conditions is overnight

incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at about 65°C. Hybridization and wash conditions are well known and exemplified in Sambrook, *et al.*, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein.

The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence set forth in Table 1 under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or a fragment thereof; and isolating said DNA sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers described elsewhere herein.

As discussed additionally herein regarding polynucleotide assays of the invention, for instance, polynucleotides of the invention as discussed above, may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding a polypeptide and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to a polynucleotide set forth in Table 1. Such probes generally will comprise at least 15 bases. Preferably, such probes will have at least 30 bases and may have at least 50 bases. Particularly preferred probes will have at least 30 bases and will have 50 bases or less.

For example, the coding region of each gene that comprises or is comprised by a polynucleotide set forth in Table 1 may be isolated by screening using a DNA sequence provided in Table 1 to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.

The polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for disease, particularly human disease, as further discussed herein relating to polynucleotide assays.

Polynucleotides of the invention that are oligonucleotides derived from the a polynucleotide or polypeptide sequence set forth in Table 1 may be used in the processes

herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

The invention also provides polynucleotides that may encode a polypeptide that is the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in vivo*, the additional amino acids may be processed away from the mature protein by cellular enzymes.

A precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.

In addition to the standard A, G, C, T/U representations for nucleic acid bases, the term "N" is also used. "N" means that any of the four DNA or RNA bases may appear at such a designated position in the DNA or RNA sequence, except it is preferred that N is not a base that when taken in combination with adjacent nucleotide positions, when read in the correct reading frame, would have the effect of generating a premature termination codon in such reading frame.

In sum, a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.

Vectors, host cells, expression

The invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.

Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention. Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis et al., *BASIC METHODS IN MOLECULAR BIOLOGY*, (1986) and Sambrook et al., *MOLECULAR CLONING: A LABORATORY MANUAL*, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.

Representative examples of appropriate hosts include bacterial cells, such as streptococci, staphylococci, enterococci *E. coli*, streptomyces and *Bacillus subtilis* cells; fungal cells, such as yeast cells and *Aspergillus* cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used to produce the polypeptides of the invention. Such vectors include, among others, chromosomal, episomal and virus-derived vectors, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression system constructs may contain control regions that regulate as well as engender expression. Generally, any system or vector suitable to maintain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard. The appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, (supra).

For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals

may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.

Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.

Diagnostic Assays

This invention is also related to the use of the polynucleotides of the invention for use as diagnostic reagents. Detection of such polynucleotides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of a disease. Eukaryotes (herein also "individual(s)"), particularly mammals, and especially humans, infected with an organism comprising a gene of the invention may be detected at the nucleic acid level by a variety of techniques.

Nucleic acids for diagnosis may be obtained from an infected individual's cells and tissues, such as bone, blood, muscle, cartilage, and skin. Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification technique prior to analysis. RNA or cDNA may also be used in the same ways. Using amplification, characterization of the species and strain of prokaryote present in an individual, may be made by an analysis of the genotype of the prokaryote gene. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the genotype of a reference sequence. Point mutations can be identified by hybridizing amplified DNA to labeled polynucleotide sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in the electrophoretic mobility of the DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be revealed by nuclease protection assays, such as RNase and S1 protection or a chemical cleavage method. See, e.g., Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401

(1985).

Cells carrying mutations or polymorphisms in the gene of the invention may also be detected at the DNA level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations. It is particularly preferred to used RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA or cDNA may also be used for the same purpose, PCR or RT-PCR. As an example, PCR primers complementary to a nucleic acid encoding a polypeptide of the invention can be used to identify and analyze mutations. These primers may be used for, among other things, amplifying a DNA of the invention isolated from a sample derived from an individual. The primers may be used to amplify the gene isolated from an infected individual such that the gene may then be subject to various techniques for elucidation of the DNA sequence. In this way, mutations in the DNA sequence may be detected and used to diagnose infection and to serotype and/or classify the infectious agent.

The invention further provides a process for diagnosing disease, preferably bacterial infections, more preferably infections by *Streptococcus pneumoniae*, and most preferably disease, comprising determining from a sample derived from an individual a increased level of expression of polynucleotide having the sequence of Table 1. Increased or decreased expression of a polynucleotide of the invention can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods.

In addition, a diagnostic assay in accordance with the invention for detecting overexpression of a polypeptide of the invention compared to normal control tissue samples may be used to detect the presence of an infection, for example. Assay techniques that can be used to determine levels of a protein, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

Antibodies

The polypeptides of the invention or variants thereof, or cells expressing them can be used as an immunogen to produce antibodies immunospecific for such polypeptides. "Antibodies" as used herein includes monoclonal and polyclonal antibodies, chimeric, single chain, simianized antibodies and humanized antibodies, as well as Fab fragments, including the products of an Fab immunolglobulin expression library.

Antibodies generated against the polypeptides of the invention can be obtained by administering the polypeptides or epitope-bearing fragments, analogues or cells to an animal, preferably a nonhuman, using routine protocols. For preparation of monoclonal antibodies, any technique known in the art that provides antibodies produced by continuous cell line cultures can be used. Examples include various techniques, such as those in Kohler, G. and Milstein, C., *Nature 256:* 495-497 (1975); Kozbor *et al.*, *Immunology Today 4:* 72 (1983); Cole et al., pg. 77-96 in *MONOCLONAL ANTIBODIES AND CANCER THERAPY*, Alan R. Liss, Inc. (1985).

Techniques for the production of single chain antibodies (U.S. Patent No. 4,946,778) can be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies.

Alternatively phage display technology may be utilized to select antibody genes with binding activities towards the polypeptide either from repertoires of PCR amplified v-genes of lymphocytes from humans screened for possessing recognition of a polypeptide of the invention or from naive libraries (McCafferty, J. et al., (1990), Nature 348, 552-554; Marks, J. et al., (1992) Biotechnology 10, 779-783). The affinity of these antibodies can also be improved by chain shuffling (Clackson, T. et al., (1991) Nature 352, 624-628).

If two antigen binding domains are present each domain may be directed against a different epitope - termed 'bispecific' antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptides to purify the polypeptides by affinity chromatography.

Thus, among others, antibodies against a polypeptide of the invention may be employed to treat disease.

Polypeptide variants include antigenically, epitopically or immunologically equivalent variants that form a particular aspect of this invention. The term "antigenically equivalent derivative" as used herein encompasses a polypeptide or its equivalent which will be specifically recognized by certain antibodies which, when raised to the protein or polypeptide according to the invention, interfere with the immediate physical interaction between pathogen and mammalian host. The term "immunologically equivalent derivative" as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a vertebrate, the antibodies act to interfere with the immediate physical interaction between pathogen and mammalian host.

The polypeptide, such as an antigenically or immunologically equivalent derivative or a fusion protein thereof is used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the polypeptide. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Alternatively a multiple antigenic peptide comprising multiple copies of the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.

Preferably, the antibody or variant thereof is modified to make it less immunogenic in the individual. For example, if the individual is human the antibody may most preferably be "humanized"; where the complimentarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody, for example as described in Jones, P. et al. (1986), *Nature 321*, 522-525 or Tempest et al.,(1991) *Biotechnology 9*, 266-273.

The use of a polynucleotide of the invention in genetic immunization will preferably employ a suitable delivery method such as direct injection of plasmid DNA into muscles (Wolff et al., Hum Mol Genet 1992, 1:363, Manthorpe et al., Hum. Gene Ther. 1963:4, 419), delivery of DNA complexed with specific protein carriers (Wu et al., J Biol Chem. 1989: 264,16985), coprecipitation of DNA with calcium phosphate (Benvenisty & Reshef, PNAS, 1986:83,9551), encapsulation of DNA in various forms of liposomes (Kaneda et al., Science 1989:243,375), particle bombardment (Tang et al., Nature 1992, 356:152, Eisenbraun et al., DNA Cell Biol 1993, 12:791) and *in vivo* infection using cloned retroviral vectors (Seeger et al., PNAS 1984:81,5849).

Antagonists and agonists - assays and molecules

Polypeptides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et al., Current Protocols in Immunology 1(2): Chapter 5 (1991).

The invention also provides a method of screening compounds to identify those which enhance (agonist) or block (antagonist) the action of a polypeptides or polynucleotides of the invention, particularly those compounds that are bacteriostatic and/or bacteriocidal. The method of screening may involve high-throughput techniques. For example, to screen for

agonists or antagoists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a polypeptide of the invention and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be an agonist or antagonist of a polypeptide of the invention. The ability of the candidate molecule to agonize or antagonize a polypeptide of the invention is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate. Molecules that bind gratuitously, *i.e.*, without inducing the effects of a polypeptide of the invention are most likely to be good antagonists. Molecules that bind well and increase the rate of product production from substrate are agonists. Detection of the rate or level of production of product from substrate may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric labeled substrate converted into product, a reporter gene that is responsive to changes in polynucleotide or polypeptide activity, and binding assays known in the art.

Another example of an assay for antagonists of polypeptides of the invention is a competitive assay that combines any such polypeptide and a potential antagonist with a compound which binds such polypeptide, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay. A polypeptide of the invention can be labeled, such as by radioactivity or a colorimetric compound, such that the number of such polypeptide molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.

Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polynucleotide or polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the same sites on a binding molecule, such as a binding molecule, without inducing activities induced by a polypeptide of the invention, thereby preventing the action of such polypeptide by excluding it from binding.

Potential antagonists include a small molecule that binds to and occupies the binding site of the polypeptide thereby preventing binding to cellular binding molecules, such that normal biological activity is prevented. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules. Other potential antagonists include antisense molecules (see Okano, *J. Neurochem.* 56: 560 (1991); OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION,

CRC Press, Boca Raton, FL (1988), for a description of these molecules). Preferred potential antagonists include compounds related to and variants of a polypeptide of the invention.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.

The invention also provides the use of the polypeptide, polynucleotide or inhibitor of the invention to interfere with the initial physical interaction between a pathogen and mammalian host responsible for sequelae of infection. In particular the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive bacteria, to mammalian extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block protein-mediated mammalian cell invasion by, for example, initiating phosphorylation of mammalian tyrosine kinases (Rosenshine *et al.*, *Infect. Immun. 60*:2211 (1992); to block bacterial adhesion between mammalian extracellular matrix proteins and bacterial proteins that mediate tissue damage and; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.

The antagonists and agonists of the invention may be employed, for instance, to inhibit and treat disease.

Helicobacter pylori (herein H. pylori) bacteria infect the stomachs of over one-third of the world's population causing stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori (International Agency for Research on Cancer. Lyon, France; http://www.uicc.ch/ecp/ecp2904.htm). Moreover, the international Agency for Research on Cancer recently recognized a cause-and-effect relationship between H. pylori and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen. Preferred antimicrobial compounds of the invention found using screens provided by the invention, particularly broad-spectrum antibiotics, should be useful in the treatment of H. pylori infection. Such treatment should decrease the advent of H. pylori-induced cancers, such as gastrointestinal carcinoma. Such treatment should also cure gastric ulcers and gastritis.

Vaccines

Another aspect of the invention relates to a method for inducing an immunological response in an individual, particularly a mammal which comprises inoculating the individual with a polypeptide of the invention, or a fragment or variant thereof, adequate to produce antibody and/ or T cell immune response to protect said individual from infection, particularly bacterial infection and most particularly Streptococcus pneumoniae infection. Also provided are methods whereby such immunological response slows bacterial replication. Yet another aspect of the invention relates to a method of inducing immunological response in an individual which comprises delivering to such individual a nucleic acid vector to direct expression of a polynucleotide or polypeptide of the invention, or a fragment or a variant thereof, for expressing such polynucleotide or polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response, such as, to produce antibody and/ or T cell immune response, including, for example, cytokineproducing T cells or cytotoxic T cells, to protect said individual from disease, whether that disease is already established within the individual or not. One way of administering the gene is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid.

A further aspect of the invention relates to an immunological composition which, when introduced into an individual capable or having induced within it an immunological response, induces an immunological response in such individual to a polynucleotide of the invention or protein coded therefrom, wherein the composition comprises a recombinant polynucleotide or protein coded therefrom comprising DNA which codes for and expresses an antigen of said polynucleotide or protein coded therefrom. The immunological response may be used therapeutically or prophylactically and may take the form of antibody immunity or cellular immunity such as that arising from CTL or CD4+ T cells.

A polypeptide of the invention or a fragment thereof may be fused with co-protein which may not by itself produce antibodies, but is capable of stabilizing the first protein and producing a fused protein which will have immunogenic and protective properties. Thus fused recombinant protein, preferably further comprises an antigenic co-protein, such as lipoprotein D from *Hemophilus influenzae*, Glutathione-S-transferase (GST) or betagalactosidase, relatively large co-proteins which solubilize the protein and facilitate production and purification thereof. Moreover, the co-protein may act as an adjuvant in the

sense of providing a generalized stimulation of the immune system. The co-protein may be attached to either the amino or carboxy terminus of the first protein.

Provided by this invention are compositions, particularly vaccine compositions, and methods comprising the polypeptides or polynucleotides of the invention and immunostimulatory DNA sequences, such as those described in Sato, Y. *et al.* Science 273: 352 (1996).

Also, provided by this invention are methods using the described polynucleotide or particular fragments thereof which have been shown to encode non-variable regions of bacterial cell surface proteins in DNA constructs used in such genetic immunization experiments in animal models of infection with *Streptococcus pneumoniae* will be particularly useful for identifying protein epitopes able to provoke a prophylactic or therapeutic immune response. It is believed that this approach will allow for the subsequent preparation of monoclonal antibodies of particular value from the requisite organ of the animal successfully resisting or clearing infection for the development of prophylactic agents or therapeutic treatments of bacterial infection, particularly *Streptococcus pneumoniae* infection, in mammals, particularly humans.

The polypeptide may be used as an antigen for vaccination of a host to produce specific antibodies which protect against invasion of bacteria, for example by blocking adherence of bacteria to damaged tissue. Examples of tissue damage include wounds in skin or connective tissue caused, e.g., by mechanical, chemical or thermal damage or by implantation of indwelling devices, or wounds in the mucous membranes, such as the mouth, mammary glands, urethra or vagina.

The invention also includes a vaccine formulation which comprises an immunogenic recombinant protein of the invention together with a suitable carrier. Since the protein may be broken down in the stomach, it is preferably administered parenterally, including, for example, administration that is subcutaneous, intramuscular, intravenous, or intradermal. Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the bodily fluid, preferably the blood, of the individual; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier

immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

While the invention has been described with reference to certain protein, such as, for example, those set forth in Table 1, it is to be understood that this covers fragments of the naturally occurring protein and similar proteins with additions, deletions or substitutions which do not substantially affect the immunogenic properties of the recombinant protein.

Compositions, kits and administration

The invention also relates to compositions comprising the polynucleotide or the polypeptides discussed above or their agonists or antagonists. The polypeptides of the invention may be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tissues or organisms, such as a pharmaceutical carrier suitable for administration to a subject. Such compositions comprise, for instance, a media additive or a therapeutically effective amount of a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient. Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. The formulation should suit the mode of administration. The invention further relates to diagnostic and pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.

Polypeptides and other compounds of the invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

The pharmaceutical compositions may be administered in any effective, convenient manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.

In therapy or as a prophylactic, the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.

Alternatively the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug

penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol or oleyl alcohol for lotions. Such carriers may constitute from about 1% to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.

For administration to mammals, and particularly humans, it is expected that the daily dosage level of the active agent will be from 0.01 mg/kg to 10 mg/kg, typically around 1 mg/kg. The physician in any event will determine the actual dosage which will be most suitable for an individual and will vary with the age, weight and response of the particular individual. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

In-dwelling devices include surgical implants, prosthetic devices and catheters, i.e., devices that are introduced to the body of an individual and remain in position for an extended time. Such devices include, for example, artificial joints, heart valves, pacemakers, vascular grafts, vascular catheters, cerebrospinal fluid shunts, urinary catheters, continuous ambulatory peritoneal dialysis (CAPD) catheters.

The composition of the invention may be administered by injection to achieve a systemic effect against relevant bacteria shortly before insertion of an in-dwelling device. Treatment may be continued after surgery during the in-body time of the device. In addition, the composition could also be used to broaden perioperative cover for any surgical technique to prevent bacterial wound infections, especially *Streptococcus pneumoniae* wound infections.

Many orthopedic surgeons consider that humans with prosthetic joints should be considered for antibiotic prophylaxis before dental treatment that could produce a bacteremia. Late deep infection is a serious complication sometimes leading to loss of the prosthetic joint and is accompanied by significant morbidity and mortality. It may therefore be possible to extend the use of the active agent as a replacement for prophylactic antibiotics in this situation.

In addition to the therapy described above, the compositions of this invention may be used generally as a wound treatment agent to prevent adhesion of bacteria to matrix proteins exposed in wound tissue and for prophylactic use in dental treatment as an alternative to, or in conjunction with, antibiotic prophylaxis.

Alternatively, the composition of the invention may be used to bathe an indwelling device immediately before insertion. The active agent will preferably be present at a concentration of 1µg/ml to 10mg/ml for bathing of wounds or indwelling devices.

A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response. A suitable unit dose for vaccination is 0.5-5 microgram/kg of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks. With the indicated dose range, no adverse toxicological effects will be observed with the compounds of the invention which would preclude their administration to suitable individuals.

Each reference disclosed herein is incorporated by reference herein in its entirety. Any patent application to which this application claims priority is also incorporated by reference herein in its entirety.

TABLES

Certain pertinent data for preferred polypeptide and polynucleotide embodiments of the invention are summarized in Tables 1 and 2.

Provided in Table 1 are sequence search results providing characterization information regarding certain preferred polynucleotides (denoted as "Assembly") and polypeptides of the invention encoded thereby. For each polynucleotide in Table 1, there is listed the closest homologue of each polypeptide encoded by each ORF in such polynucleotide. This determination of homology is based on a comparison of the sequences of in Table 1 with sequences available in the public domain (see heading entitled "Description" for the homologue name). Where no significant homologue was detected the term "unknown" appears after the heading "Description". Preferred polypeptides encoded by the ORFs of the invention, particularly full length proteins either obtained using such ORFs or encoded entirely by such ORFs, are ones that have a biological function of the homologue listed, among other functions. The analysis used to determine each homologue listed in Table 1 was either BlastP and/or BlastX and/or MPSearch, each of which is well known. Also provided in Table 1 is the amino acid sequence encoded by each ORF. An "Assembly ID" number provides a convenient way to correlate the polynucleotide sequence with the ORF or ORFs it comprises and the polypeptides encoded by these ORFs, as well as to correlate such sequences with other pertinent information provided in Tables 1 and 2. Following the heading "ORF Predictions" the nucleotides at the beginning and end of the ORF sequence are set forth ("Start" and "End" respectively). The direction of translation

on the polynucleotide depicted is denoted by an "F" for forward or an "R" for reverse (reverse being translated on the opposite strand from the one depicted). The length of each amino acid sequence is also indicated in a column entitled "Length." Below these data is shown the amino acid sequence encoded by the ORF. If a given polynucleotide comprises one ORF, then in the column entitled "ORF #" there is the numeral one. If it encodes two, there are the numerals one and two in the column, and so on.

TABLE 1

Assembly ID: 3049156 Assembly Length: 495bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	236	385	R	50 aa

>[SEQ ID NO:88] 3049156-1 ORF translation from 236-385, direction R VGDDTWLFDPAKDPVIMILPETFFLHAFLLFFALYENFFGYLYLKSRRK*

Description:

unknown

Assembly ID: 3049862 Assembly Length: 529bp

AATGATTTGATTGCTAAGAAAATATTCAGCAATCCAGAAATCACTTGTCAATTTATTCGC
GATATGCTGGACTTGCCAGCAAAAAATGTTGACCATTTTTGGAGGGAAGCGATATTCACGT
ATTACTCTCCATGCCTTACTCAGTGCAGGATTTTTATACCAGTATAGACGTCTTGGCGGA
GTTGGATAACGGTACTCAAGTAATTATTGAGATTCAAGTCCATCATCAGAATTTTTCATC
AATCACTTGTGGACTTACCTGTGCAGTCAGGTTAATCAAATCTTGAAAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	383	526	F	48 aa

>[SEQ ID NO:89] 3049862-1 ORF translation from 383-526, direction F VQDFYTSIDVLAELDNGTQVIIEIQVHHQNFSSITCGLTCAVRLIKS*

Description:

unknown

Assembly ID: 3112810 Assembly Length: 885bp

>[SEQ ID NO:3] 3112810 Strep Assembly -- Assembly id#3112810 CTCATCATCTGTCAAAAAGCGTTTCTTAGCAGTCGTGATATCCATAAAATAATCTAATAT CACGATTTCCTCATCCGCAAAGAAAGGAAGGCTGACCAACTCCAGTGCCACATCCTTGTA AACTACTTCTTGCATATCAAAGTAGGCAAAGTTGAGGTCAGCAGAATCATACCCAATCTG TTTCAACACTTGACTCTTCATCACTTCAAACTGACCCTGATCTGTCCCTGTAAATAGGCG CAGGCTCGGTAAATTCGATAAAGTCAACTTCTGACTTTCTTCAATGGCTAGCATCGTCTC TCCTTTCTTCAGATTTTTCGATTTAATTTAGTCAATATAGCGCAATTTCCCACGGAAATC TTCTAAGCTCTCGTAGCCTTTTTCCACCATGATTGCTTTCAGTTCATTGGTAAAGCGGTC AAAAGCACTGACGCCTTCTTTGTGAAGGGTCGTTCCCACCTGCACCATACTTGCTCCACA GAGGATGTGTTCAAAGGCATCTCGACCAGTCAGAACGCCACCTGTTCCGATAATTTGGAT TTGAGGATTTAAACGTTGATAAAAGGCGTGAACATTGGCTAGAGCAGTCGGTTTGATGTA TTATCCACCAATTCCACCAAAACCATTCTTAGGCCGAATAACGACAGATTCGTCTTCTAT ATAGAGGCCGTTTCCGATAGAGTTAACGCAGTTGACAAACTTGAGCGGATATTTGTTGAA AATAGCTGCCGCTTGATCAAAGTGAACAATATCAAAATAAGGTGGCAATTTAATTCCAAG AGGTTTGGTGAAGTAAGCAAACACTTCTGCCAAAATCCGGTCTGTTGTCTCAAAATCATA GGCAATCTGAGGTTTACCTGGAACATTTGGACAGGAAAGATTTAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	601	804	R	68 aa

>[SEQ ID NO:90] 3112810-2 ORF translation from 601-804, direction R 35

VFAYFTKPLGIKLPPYFDIVHFDQAAAIFNKYPLKFVNCVNSIGNGLYIEDESVVIRPKN GFGGIGG*

Description:

LLCPYRDA NCBI gi: 511014 - Lactococcus lactis. DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1) (DIHYDROOROTATE OXIDASE)

Assembly ID: 3112866 Assembly Length: 925bp

>[SEQ ID NO:4] 3112866 Strep Assembly -- Assembly id#3112866 TCTTGGCCAACTGCATGGAGTTCAGCGGTCAATTTCAACGCACCTGAGAAACAGACCCCT GCTGGATACGCTACCACTTCTGCACGAACACTCTGCATATTGGTCTCTGCATAGAGATAA AACTCACTATCAAAATCACCTAAGCGCTCTGCACGTAGTTTAATCTGCTGGGCAGACTCC TCCCCACTGACATAGAGAACTGTCCCCACTTGGGACAACTGGGTTGAGACTTGTAGGAGA AGAGTTGATTTCCCAATCCCAGGATCCCCACCGATGAGGACGAGACTTTCCTGGTACAAC TCCGCCTCCAAGCACACGGTTGAATTCCTCCATCTCCGTCTTGGTTCGATTGACATTGAT GGAAGTCACCTCAGCTAGTTTCATGGGCTTGGTTTTCTCACCTGTCAAGGACACACGCGC ATTCTTGACCTCGGCAACCTCAACCTCTTCCACAAAAGAAGACCCAAGACCCACAGTTGGG GCAACGTCCCAGATATTTAGGGGAATTATACCCACAATTTTGACATACAAATGTCGCTTT TTTCTTTGCGATGACAAACCTCTTTCTATATCTCTAACTCACACTCAATCACTTGGCAAA AATCAATCTTCTCATTTGGCACAAACTGGCGCATGAGCATTCGATGAGCAACAACTACCA CAGTCTGATGTTCTCGATACTTAGACATACATTCTAGAAACCGAGACTTCATTTCCGTAG $\tt CTGTCTCATATTGAATAGGACTATTAGGAAGCAACTCCCCCTTGTTTTCTAAAAACAGTC$ TTCTAGCTGTTTCAAAGTTTTCTATTCCTGTTTTATAGACCTGCCATTCATGTAATAAAG GCTCTACTCTTAAAGGAAGACCCGT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	220	513	R	98 a a

>[SEQ ID NO:91] 3112866-2 ORF translation from 220-513, direction R VEEVEVAEVKNARVSLTGEKTKPMKLAEVTSINVNRTKTEMEEFNRVLGGGVVPGKSRPH RWGSWDWEINSSPTSLNPVVPSGDSSLCQWGGVCPAD*

Description:

SMS PROTEIN. - ESCHERICHIA COLI.

Assembly ID: 3113664 Assembly Length: 602bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	165	392	F	76 aa

>[SEQ ID NO:92] 3113664-1 ORF translation from 165-392, direction F VDVFYDGQTFTILENPVIQGQNAGAGCTFASSIASHLVKGDKLLPAVESSKAFVYRAIAQ ADQYGVRQYEANKNN*

Description:

Thi protein - Rhizobium meliloti

Assembly ID: 3113716 Assembly Length: 456bp

>[SEQ ID NO:6] 3113716 Strep Assembly -- Assembly id#3113716 CTGGATACTAAGAGAAATCAAAAAAGCACTCTAGGATAGAGGCCTAAAGTGCTTAGTTTC AAGGCTTTACAGCCTATCATATTTAATAAAATATTACAACATCTTGTTGTAGAATTCAAC GACAAGTGCTTCGTTGATTTCTGGGTTGATTTCGTCGCGTTCTGGCAAGCGAGTCAATGA ACCTTCCAATTTTTCAGCGTCGAATGATACGAATGCTGGACGTCCAAGAGTAGCTTCTAC TGCTTCAAGGATTGCTGGAACTTTCAATGATTTTTCACGAACTGAGATCACTTGACCTGC AGTTACGCGGTATGATGGGATATCAACGCGTTTCCCGTCAACAAGGATGTGACCGCTGGT TTACAAATTGGACCAAACTTGACGACCAGTAGTCGCGAGACCAAGACGGTAAACAACGTT ATCCAAACGACGTTCCAAAAAGAAGCATAAAGTTGAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	94	291	R	66 aa

>[SEQ ID NO:93] 3113716-1 ORF translation from 94-291, direction R VISVREKSLKVPAILEAVEATLGRPAFVSFDAEKLEGSLTRLPERDEINPEINEALVVEF YNKML*

Description:

30S RIBOSOMAL PROTEIN S4 (BS4). - BACILLUS SUBTILIS.

Assembly ID: 3174176 Assembly Length: 1961bp

>[SEQ ID NO:7] 3174176 Strep Assembly -- Assembly id#3174176 CTAATATAGAATAATCACCGCCGTTGTGAAAGAACGATTGGATGATAATCCAATCGTTCA CGTCCCTCACAAGCTAAGGTGATTGTTGAAAAAGAGGAAAAAGGAGAAAAGGAAATGAAACCA GTAATTTCCATCATGGGCTCAAAATCCGACTGGGCAACCATGCAAAAAACAGCAGAA GTCCTAGACCGCTTCGGTGTAGCCTACGAAAAGAAAGTTGTTTCCGCACACCGTACACCA GACCTCATGTTCAAACATGCAGAAGAAGCCCGTAGTCGTGGCATCAAGATCATCATCGCA GGTGCTGGTGGCGCAGCGCATTTGCCAGGCATGGTAGCTGCCAAAACAACCCTTCCAGTC ATTGGTGTGCCAGTCAAGTCTCGTGCTCTTAGTGGAGTGGATTCACTCTATTCTATCGTT CAGATGCCGGGTGGGGTGCCTGTTGCGACCATGGCTATCGGTGAACTCTTTTTTAGGATA TAAAACAGGGTTCGGATAAGTTTTTTTGCAAGGTGGATGATGGCTACATTGTAATGTTTT CCTTGTTCTAACTTAGTCTTAAAAGCAGGTGAAAAGTGAGGGCATGCTTTGGCAGCTTGT TGACCTGACTGATAAATAGAAGAATCCAGTCCAGCGAAAGCTTGTAATTGAGCAGGATTA TCAAAGGCATGAATATTTCGAATCTCGGCTAAAATGACCGCCCCTAAACGATTCTCAATC CCAGTAACCGTCGTGATGACCGAGTTTAACTCAGCCATCAAGTCATTGACACATTTTTCC GCCTTGTCAATGAGCCTCTTGTAATGTTTGATGTTTTCATTACACGAGATAAAACGTCTA TGCGTTATCAAACTCATTACCAATTAAAACAAATGTGGTTAGATCCTTTCGGAAATTGTC AAGCGATTGGAGGAAATGAACTAATCCACAGCGGCTTATTCCAAGTATACCACTTGGGCT TTGGCAGTAGCTAACTGCGCTAAATATAATATAAGGAGGAGTAAAATGAAGACAGTTCAA TTTTTTTGGCATTATTTTAAGGTCTACAAGTTCTCATTTGTAGTTGTCATCCTGATGATT GTTCTGGCGACTTTTGCCCAAGCCCTCTTTCCAGTCTTTTCTGGACAAGCGGTGACGCAG $\tt CTAGCCAATTTAGTTCAAGCTTATCAAAATGGGCAATCCAGAACTTGTATGGCAAAGCCT$ ATCAGGAATTCATGGTCAATCTTGGCCTGCTGGTTTTTGGGTTCTATTTATCTCTAGGTGT AATATAAACATGTGTCTCATGACGCGCGTGATTGCAGAATCGACCAACGAGATGCGCAAA GATATCCTGTCTCATTTTACCAGTGATTTGGATAATATCCTCCAAGCCTTTAACGAAAGC TTGATTCAGGTCATGAGCAATATTGTTTTATACATTGGTCTGATTCTTGTCATGTTTTCG AGAAATGTGACGCTGGCTCTCATCACCATTGCCAGCACCCCATTGGCTTTCCTTATGCTG ATTTTCATCGTGAAAATGGCACGTAAATACACCAACCTCCAGCAGAAAGAGGTAGGGAAG CTCAACGCCTATATGGATGAGAGCATCTCAGGCCAAAAAGCCGTGATTGTGCTAGGAATT CAAGAGGATATGATGGCAGGATTTCTTGAACAAAATGAGCGCGTGCGCAAGGCAACCTTT AAAGGAAGAATGTTCTCAGGAATTCTTTTCCCTGTCATGAATGGGATGAGCCTGATTAAT

ACAGCCATCGTCATCTTTGCTGGTTCGGCTGTACTTTTGAA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	139	543	F	135 aa

>[SEQ ID NO:94] 3174176-1 ORF translation from 139-543, direction F VIVEKEEKGEEMKPVISIIMGSKSDWATMQKTAEVLDRFGVAYEKKVVSAHRTPDLMFKH AEEARSRGIKIIIAGAGGAAHLPGMVAAKTTLPVIGVPVKSRALSGVDSLYSIVQMPGGV PVATMAIGELFFRI*

Description:

PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21) (AIR C ARBOXYLASE) (AIRC). - BACILLUS SUBTILIS.

Assembly ID: 3174186 Assembly Length: 375bp

>[SEQ ID NO:8] 3174186 Strep Assembly -- Assembly id#3174186 CTATCTCCAAGTNCGNTTGGAATNCCTCCGCNANCCACAACTCATCCAAGCACTTTNCAA CGTGNCCTGGTCCGGTCCTCCAGTGCGTCTNACNGCACCTTCAACCTGCNCATGGGTAGG TCACATGGCTTCGGGTCTACGTCATGATACTAAGGCGCCCCTATTCAGACTCGGNTNCCCT AGGGCTCCGTCTCTACACCTAACCACGCAACAGAACGTNACCCGCCGGTTCATTCTACA AAAGGCAGNCTCTCACCCATTAACGGGCTCGAACTTGTTGTAGGCACACNGCTTCAGGTN CTATTTCACCCCCCCTCCCGGGGAGCANCTCAACTGACCCNCACGGCACCGGTGNANNAAA CGGTCACTTAGGGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	83	283	F	67 aa

>[SEQ ID NO:95] 3174186-1 ORF translation from 83-283, direction F VRXXAPSTCXWVGHMASGLRHDTKAPYSDSXXLGLRLFNLTTQQNXTRRFILQKAXSHPL TGSNLL*

Description:

unknown

Assembly ID: 3174374 Assembly Length: 665bp

>[SEQ ID NO:9] 3174374 Strep Assembly -- Assembly id#3174374 GGGGGGGGGTNNTTCTGGGGCCGGGTGNNTCCTNGAAAAATGCTGGACTTAACGGTTAA ATCATTTGAATTGGCCTGTGGATTTTAGCTAGCAATCCAGAGCGAGTTTTCTCCAAGACA GACCTCTATGAAAAGATCTGGAAAGAANACTACGTGGATGACACCAATACCTTGAATGTG CATATCCATGCTCTTCGACAGGAGCTGGCAAAATATAGTAGTGACCAAACGCCCACTATT AAGACAGTTTGGGGGTTGGGATATAAGATAGAAACCGAGAGGACAAACATGAAACTAA AAAGTTATATTTTGGTTGGATATATTATTTCAACCCTCTTAACCATTTTGGTTGTTTTTT GGGCTGTTCAAAAAAATGCTGATTGCGAAAGGCGAGAATTTACTTTTTGCTTGGGATGACCA TCGTTGCCAGCCTTGTCGGTGCTGGGATTAGTCTTTTCTCCTATTGCCAGTCTTTACGT CGTTGGGCAAACTCAAGGAGCCAAGCGTAGCGGCCAAGGATTTCCCTCCAATTT GGANGTTCAAGGAGCCTGTTAAATTTCCCCCCATTTAGGGGCCAACCTTTTAATGAAANTTT CCNTNATTTGCCGGGTANCTTTGAATCCCTNGGAAAAAAACCCAACNAAAAAAAAGGGCTTA NNCCC

ORF Predictions:

ORF	#	Start	End	Direction	Length
	1	154	294	F	47 aa

>[SEQ ID NO:96] 3174374-1 ORF translation from 154-294, direction F VDDTNTLNVHIHALRQELAKYSSDQTPTIKTVWGLGYKIEKPRGOT*

Description:

REGULATORY PROTEIN VANR. - ENTEROCOCCUS FAECIUM (STREPTOCOCCUS FAECIUM).

Assembly ID: 3174972 Assembly Length: 989bp

TCTACTCCCAAGCTTTCAGCATGGCGAGCAAGTTCCATACTATCTTTAGTATTATTGCAA GCAACATGGGCAATAATGGTCAATTTACCTTTGGCTACCGCCATGACTTCTTCCAAAATC AACTTGCGATCTTCAACGCTTTGGTAGATACATTCACCAGAAGAACCATTGACATAAGAC CTTGAACACCTTTATCAATGAAGTATTGA

ORF Predictions:

ORF #	Start	End	Direction	Length
1	169	678	R	170 aa

>[SEQ ID NO:97] 3174972-1 ORF translation from 169-678, direction R VIYNIPQLAGVALTPSLYTEMLKNPRVIGVKNSSMPVQDIQTFVSLGGEDHIVFNGPDEQ FLGGRLMGARAGIGGTYGAMPELFLKLNQLIADKDLETARELQYAINAIIGKLTSAHGNM YGVIKEVLKINEGLNIGSVRSPLTPVTEEDRPVVEAAAALIRETKERFL*

Description:

N-ACETYLNEURAMINATE LYASE SUBUNIT (EC 4.1.3.3) (N-ACETYLNEURAMINIC ACID ALDOLAS E) (N-ACETYLNEURAMINATE PYRUVATE LYASE) (NALASE). - ESCHERICHIA COLI.

Assembly ID: 3175138 Assembly Length: 1450bp

>[SEQ ID NO:11] 3175138 Strep Assembly -- Assembly id#3175138 $\tt CTCCATATTTCTTAGCCTTCTCAATTAGGGTCTTGAAGTCTTCGACACCACCGATACGCT$ TACCAATATCAGCATAGTTCAAGTGACCAGAGTCATGGCTGTGATATCCTTAACTTTTTC CCAACCTTGAGGGTTGTTCATAATGCTACGATAAGCAATGGCACCATCTTGCCAATCAAC TTTCTTGTCTGCATTGGCATCTTCAGTGATAACAACCTTAGCACTTGGAAGTTCCTTCGT ${\tt GTATTCTGGGAAAACAATGCCCTTATAAGCTTTTTCCCATTGCCATTCAGAGCTGTGGAT}$ TCCTACATAGTTGGCATTTCCGACTGTTTCTTTATAAGCTGTCAAACGAGTCCAGTCATT CGAACCACCATAGCTATTTTGAGAGTTACTCCAAACACCAGCAGCAAGCTTATCTGT AGAAACAAATCCATACATGTAACCCTTAGCCAAATCCTTCATTGGATTGGTTACATCGAT ATGATCATCTCCGCTGACATGCGTATTGTTTGACATGGTTGCCCCCATCAAACTTAGCACC AGTTTGATCACTAGAAACAGAGACTAAAGCATTGCCGAGGAAACTAATAGAAGAAAGTAG TTTTCTTTCGTCATCATCTTTTGACCTGGAGTGACTTGATTGTGGTTGACAATCTTGGT CACATCAAAGTGCAATTGATTGTCCACAACTTGCAAGCGTACTGTCATTTCCGCATTGAT TAAGTGAGCATCATCGCGAAGCTTCATCAAGTACTCTGCTGTTGTCTCATTGATTTTTTT ATAAGTGACTTCAGGGGTGATTCGGTGGTTATTGATAAAGACTTGGTTGAATTGTTGCAC AATTACTGCCTTAAGTACCTTAAACTGGATCGTATCATAAGTCACCTTGCTATCGTCAAC AACCGGACCTGTTTCTTGGGCAGGGGTATCCTCTGGGTTTTACCCTCTCTGTGGCTA TCCGTTTCAACGCTTGAACAACTGGTCGCTCATCGTCATAAGAGCCCGCCTTGAGAAAA TCTTCTTCTCATTTCTAAGATGGTCATTGACCGCAGCTGGTAGAGTCACTGTGTCAAAGA

AGATTGACATCCTTATTTGCCTGGCATTTACCTGACCGTCTGACTTGAAGACTGATAGAG
AGACGGTTTGTTGATCCTGTTTCAGGAGCAGCAACACGACTACCTCTATACCAAGTGCTA
GTTGTTGGAGATTTATACTCCCAGAACCAGCCATCCTTGTCATAACCGACAAAAACATTA
TTATTGGTATCTTTAAATTTCAAGGAGACACCAAAGCGTGATTTGCCCTTTTCAGAATCT
TCTTTGAAGGTTAAATCAACAGTTGCATTTCCATTGGCATCAACGGTCAAGCCCTTCTTT
TCAAACAGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	79	945	R	289 aa

>[SEQ ID NO:98] 3175138-1 ORF translation from 79-945, direction R VTYDTIQFKVLKAVIDQAFLRVKGYTLNGHTLPGQVQQFNQVFINNHRITPEVTYKKINE TTAEYLMKLRDDAHLINAEMTVRLQVVDNQLHFDVTKIVNHNQVTPGQKIDDERKLLSSI SFLGNALVSVSSDQTGAKFDGATMSNNTHVSGDDHIDVTNPMKDLAKGYMYGFVSTDKLA AGVWSNSQNSYGGGSNDWTRLTAYKETVGNANYVGIHSSEWQWEKAYKGIVFPEYTKELP SAKVVITEDANADKKVDWQDGAIAYRSIMNNPQGWEKVKDITAMTLVT*

Description:

unknown

Assembly ID: 3175860 Assembly Length: 420bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	51	251	F	67 aa

>[SEQ ID NO:99] 3175860-1 ORF translation from 51-251, direction F VILEGNYRATAGREEMKEAILEYQANPAALKDLKEKAKNISREYSEEHLLQIWLDFYEKQ AALGTK*

Description:

unknown

Assembly ID: 3175918 Assembly Length: 661bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	212	535	F	108 aa

>[SEQ ID NO:100] 3175918-1 ORF translation from 212-535, direction F VTFLDDYHKKHNYPLFYESYLQNVMEFLESQDIKNGVDAFVDDHQNLVFVLYGQGYRAEG KEGILTTQVTVKAYDEDKKPINFANLLDSLIVSEYQMEPNLWEVSYD*

Description: unknown

Assembly ID: 3811220 Assembly Length: 1429bp

ATTAGCAAACTTCATATCCTTGGTTGGTTGGGCATTGACCGTTGAAATATTCTTGGTTGT ATTTGAAAGAACTTGCAGTACATCGTTCAACAGTCCTGTACGGTTGAGACCGTAGATATC GATATGGGCCATATACTCCTTATTTGAGCTAGAGTACTGGTCTTCCCATTCCACATCAAG GAGACGTTGCTCGTAGTTTTCTTGGGCACGCAGGTTCATACAGTCCACACGGTGAATAGC CACACCACGACCCTTGGTAATGTAGCCAACAATATCGTCACCAGGCACGGGGTTACAACA CTTAGCAATCCGCACTAGGAGACCAGAAGCACCTTCAATAACCACTCCCCCTCATGCTT ${\tt GACCTTGGAGAGTTTCTTTATTTTCAACCTTGACCTCGCCACCTTTGACAAGCTCCTCTG}$ AGACGGTAATCGCACCGATTTCCCCAAAACCAATGGCCGCAAAGAGGGGAGTCTTCTGTCT $\verb|CCTTATCTTGGTTTTTAAAGAACTGGCGAATCTTATTGCGCGCCCTTGCTAGTCTTGACCA| \\$ TATTGAGCCAGTCACGGCTAGGTCCAAAGGAGTTCGGGTTGGCGATAATTTCAACCTGAT CCCCTGTCTTTAACTTGGTTGTCAGTGGAACCATGCGGCCATTGACCTTGGCACCAGTTG GAAGAGAACGGACAGCTCCATCTGGGGTAAAAACGTAAATCTCCTCAGCCAGATAGTTTT CCTTAACAGAGTCCACAAATTCCTTAGCATCATCAGCCTGGTCTTGGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	316	873	R	186 aa

>[SEQ ID NO:101] 3811220-2 ORF translation from 316-873, direction R VRKSVPRPRLRQRSLSKVARSRLKIKKLSKVKHEGGVVIEGASGLLVRIAKCCNPVPGDD IVGYITKGRGVAIHRVDCMNLRAQENYEQRLLDVEWEDQYSSSNKEYMAHIDIYGLNRTG LLNDVLQVLSNTTKNISTVNAQPTKDMKFANIHVSFGIANLSTLTTVVDKIKSVPEVYSV KRTNG*

Description:

stringent response-like protein - Streptococcus equisimilis

Assembly ID: 3811436 Assembly Length: 1513bp

AGACAAATCCAAGTTTTTAGTCAAGCCATTCAGTAACACCTCCAGTTGCGGAGCCGACAG GGCTGTCGGTGTTCCACCACCGATATAAAGGGTTGACAACTTTTCAATATCATAAGAACG AAACTCTTCCAGCAGATGCTCTAAATAGCTGTCGACTGGCTGATTTTTGATGAAGACCTT TGAAAAATCACAATAATAACAAATCTGGGTACAAAATGGGATGTGCACATAGGCTGACGT TGGTTTTTTCTGCATAGTAATTATTATACCACAAAGACTAGATTCCAGATAAAAATCACC ATCCCCAGATACATAGTCCGTCCGGAGATGGTGATGGTTTATTCTTCTGTTATATCAATC ACAATCTCTTCTGAGTCATCAAGAGCTTCGGCTTTTTCTTGCCATTGTTCCTTGAGATTA ${\tt TTTAATTGATTTTTTGATGCTTCTGTCGCTTGAAAAGCATAGGATTTAGCTTGAGCAAGT}$ ATACTGTCCACAGTGATTTCACCTGACTCAACCTGTTCTTTTGTTTTCAGAACAAAATCT GTAGCCTGCTCATTAACTTCTGTCAGTTTTTCACAGACTTGCTCCTTGGCATACTCCGGA TCTTCTCTCAAATCATCTAAAAAATCTTGAGCCTGACTGCAAACTTGTTTGCCCCTTATCA CTTGTTAAAAACAAGGCAAGAGCTGCACCTGAAAACGGTTCCTAAAAAGGATTGAGGATAAT TTACCCATAAGGATTCTCCTTTTTTTTTTTTTTGAAAAATTTACTTGCAAGACGAAGAGCT GACAGACTTGCACCAGTCTTGAGTGTTTTTGAACCAGCTGATGAAGCTTTCTTGCTCAAG ACACGCGCATGGTCATTGAGGTCTGAAACAGATAGAGATAAATCTGCAACAGCACTGAAG AGTGGATCAATCGTAGCCACCTTGACATTGATATCATCTGCCAAGACATTGACCTTAGCC AACAACTCATTGGTGTGATGCAAGGTCACATCCACATCTGAAGTCAAGGTTTTAATCGTC TTTTCTGTTTCATCGATGACACGACCAAGCTTTTGTACAGTAATGATCAGATAGACCAAA AAGACAATCACAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1164	1511	R	116 aa

>[SEQ ID NO:102] 3811436-3 ORF translation from 1164-1511, direction R VIVFLVYLIITVQKLGRVIDETEKTIKTLTSDVDVTLHHTNELLAKVNVLADDINVKVAT IDPLFSAVADLSLSVSDLNDHARVLSKKASSAGSKTLKTGASLSALRLASKFFKK*

Description: unknown

Assembly ID: 3811984 Assembly Length: 505bp

 ${\tt TGATTACAGAGACTGGTTTGACAACGGCAGATGAGATGCTTTATCCGTCAAATCTGATCTTGGTGGATGACTTTGGTCACCTACC}$

ODB	_	٦.		
ORF	PΥ	ലവ	CEL	ons:

ORF #	Start	End	Direction	Length
1	134	454	F	107 aa

>[SEQ ID NO:103] 3811984-2 ORF translation from 134-454, direction F VTGNWQILFQGKMTVFSWLIGPCSSDNEEAVLEYARRLSALQKKVADKIFMVMRVYTAKP RTNGDGYKGLVHQPDTSKAPTLINGLQAVRQLHYRVDYRDWFDNGR*

Description:

PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE, TYR-SENSITIVE (EC 4.1.2.15) (PHOSP HO-2-KETO-3-DEOXYHEPTONATE ALDOLASE) (DAHP SYNTHETASE) (3-DEOXY-D-ARABINO-HEP TULOSONATE 7-PHOSPHATE SYNTHASE). - ESCHERICHIA COLI.

Assembly ID: 3857228
Assembly Length: 1827bp

>[SEQ ID NO:17] 3857228 Strep Assembly -- Assembly id#3857228 CTCTTTTAACCGTTTTAGCGGTGACACCGAGGATTTTTTCAGGACCCAAGACTTGTCGGG CAACCGAAACTGGGAGTTCGTCATCTCCAATATGCAGACCAGCAGCATCAACCGCAAGAC AAACATCCAACCGATCATCGATTATCAAGGGGACCTGATAGGCATCTGTTATTTCCTTGA TGGTAACCCCTGAACGGCAGGCCGTCTCAACTTTTGCAAGAAAGCTTTCCACGGAATCTT GATAGCGATTGGTTACCAGATATAGTCTAAGCGCTTCTCTATTCATAAACCTCTCCTTTG ATGGTATCTAGCCAATTTTCATCTCTTCTTAGGAGCGAAAGCTGATTGAGTACTTGGTAA CGAAATTCTTCCAATCCCATTCCTTGAACAACTATTTTCTCAGCAGCGATATTGAGATAA GAGACTGCTAAGCAAGAACTTCAAAACCAGTCTTTCCTTGGCTGAGAAAAACAGCTGTTA AGGCTCCAACCAAGTCTCCTGTCCCTGTTATCCAGTCTAATTCAGTACAGCCATTCTCAA GTACAGCAACTTGATTCTCCGAAACAATAAGGTCCTTGGGACCTGTGACTAAGAATGACA TACCACGATAGGTCTGACACCAGTCTTTCAAGACTTGAAGCAAATCCTCCGTTTCTTGAT CTTTAGCACTCGCATCGACCCCAACGCCGTGATGCTTTAATCCAACAAGACTTCGAATTT CTGACATGTTTCCTTTAAGGACCGTAGGTCTATAGTCTAAAAGGTCTTTAACTAAGCTCT TACGAATGGATGAAGTCGTTACGCCAACCGCATCTACTACCATCGGGAGAGAAGATTGGT TTGCATACAAAGCTGCCATGCGGATTGCTTTTTCCTTCTCAGCTGACAAATGCCCCAAAT TGATGAAGAGCCTGGCTTTGCTTAGTAAAATCAAGAACTTCACGGGGATCATCTGCCA TGACAGGTTTGCATCCCAGAGCCAAAATCCCATTTGCCAGCATCTCACAAGAAATCTCAT TGGTCATACAGTGAATGAGGGAACTAGAGCCTATAGGAAAAGGATTTGTCAATGCCTGCA TCATTCTATCCTTTCAGCAAAGAATATCCTTGCACTTTTTTAAAGAATTCCTGCTTGAT TAAAAATCTAAATGCAATAAAGGAAATCGCTGTACCAATCAAGGTTGCTCCGAAAAATCG

AGGCGTGTAGATAAACCAACTAAGCTTAGCAGCCGATCCTGTAAAGAGCACCATAACAGG
ATAGGAAACAATAGAACCAATAATACCTGTTCCCACAATTTCTCCCAAGGCAGAAAAGTA
AAATTTTCGACCGTACTTATAAAAGAGACCTGCTAGAAGGGCTCCAAAAGTCGCTCCTGT
GAGAGATAAAGGAGCTTATCGGAATACCCTTGAGTCGTCATACGGATAAAGGCTGTCACT
GTAGCCATAGCCAAGGCATAAACAGGTCCCATCATGATTCCCGCTAGAATATTGACTACA
CTGGACATCGGTGCCATTCCCTCAATCCGAAAGATAGGTGTAAGGACTACATCAAGGGCA
ATCATCATAGATAAAATGGTCAATTTGTGAACTTGTAGTTGGTGCTTTCTCAAGTTTCTA
TTCTTCTCCTTTTTCTAAAGACTGTAAATCGCTCTTCCATGTCTGGTGTTGGTAAGCCAT
CTCCCAAAACTTGGCTTCCATATGAACACTGATGTGGGAAGGCATCTAGCATTTTTTGCTT
ATCTGTCTCATCACCTTTCTCGATAGAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1141	1356	R	72 a a

>[SEQ ID NO:104] 3857228-2 ORF translation from 1141-1356, direction R VGTGIIGSIVSYPVMVLFTGSAAKLSWFIYTPRFFGATLIGTAISFIAFRFLIKQEFFKK VQGYFFAERIE*

Description:

unknown

Assembly ID: 3857842 Assembly Length: 485bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	45	341	F	99 aa

>[SEQ ID NO:105] 3857842-1 ORF translation from 45-341, direction F 47

VAIARGLSMNPDIMLFDEPNSALDPEMVGEVINVMKELAEQGMTMIIVTHEMGFARQVAN RVIFTADGEFLEDGTPDQIFDNPQHPRLKEFLDKVLNV*

Description:

GLUTAMINE TRANSPORT ATP-BINDING PROTEIN GLNQ. - BACILLUS STEAROTHERMOPHILUS.

Assembly ID: 3857996 Assembly Length: 1547bp

>[SEQ ID NO:19] 3857996 Strep Assembly -- Assembly id#3857996 NTCTTGGGCNCNGGGCGNNTCCTTTGAGGACNACGGTATCGATGACCTTGATCTCAAGTG CAAGCAGTATCTGAATCTGCAGCAGCACCTGTCCGTGCAAAAGTTCGTCCAACATACAGT ACAAACGCTTCAAGTTATCCAATTGGAGAATGTACATGGGGAGTAAAAACATTGGCACCT TGGGCTGGAGACTACTGGGGTAATGGAGCACAGTGGGCTACAAGTGCAGCAGCAGCAGGT TTCCGTACAGGTTCAACACCTCAAGTTGGAGCAATTGCATGTTGGAATGATGGTGGATAT GGTCACGTAGCGGTTGTTACAGCTGTTGAATCAACAACACGTATCCAAGTATCAGAATCA AATTATGCAGGTAATCGTACAATTGGAAATCACCGTGGATGGTTCAATCCAACAACAACT TCTGAAGGTTTTGTTACATATATTTATGCAGATTAATTTACAGAGGGACTCGAATAGAGC CCTCTTTTCAGGTTTTACCGTGACAATCCCTATTAAAAATTATATCAAAATCGTGAAAAT ATTGGAAAAGTATGGTAGAATGAAAATTGTCGTGTGAACGATAATACTCATTCTTGATGA ATTGTGAAGCAGTTGCCCTTGGGTCGTTTTTGCGAGTTGAAGTCAAGAAGAGGGAAAAAAAC AAAAAGGAGAAATACTCATCGAATTTCAATGAAACAACTTCTTGAGGCTGGTGTACACTT TGGTCACCAAACTCGTCGCTGGAATCCTAAGATGGCTAAGTACATCTTTACTGAACGTAA CGGAATCCACGTTATCGACTTGCAACAAACTGTAAAATACGCTGACCAAGCATACGACTT CATGCGTGATGCAGCTAACGATGCAGTTGTATTGTTCGTTGGTACTAAGAAACAAGC AGCTGATGCAGTTGCTGAAGAAGCAGTACGTTCAGGTCAATACTTCATCAACCACCGTTG GTTGGGTGGAACTCTTACAAACTGGGGAACAATCCAAAAACGTATCGCTCGTTTGAAAGA TCTTAACAACAACGTGCGCGTCTTGAAAAATTCTTGGGCGGTATCGAAGATATGCCTCG TATCCCAGATGTGATGTACGTAGTTGACCCACATAAAGAGCCAAATCGCTGTTAAAGAAGC TAAAAAATTGGGAATCCCAGTTGTAGCGATGGTTGACACCAATACTGATCCAGATGATAT CGATGTAATCATCCCAGCTAACGATGACGCTATCCGTGCTGTTAAATTGATCACAGCTAA ATTGGCTGACGCTATTATCGAAGGACGTCAAGGTGAGGATGCAGTAGCAGTTGAAGCAGA ATTTGCAGCTCCAGAAACTCAAGCAGATTCAATTGAAGAAATCGTTGAAGTTGTAGAAGG TGACAACGCTTAATTTATACAAATAGTAATTACCTAGGAGGGCGGGGCTTAGCCCGGCTC TCCTATTTCAAAAATATAGGAGAATTAAAATGGCAGAAATTACAG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	58	456	F	133 aa

>[SEQ ID NO:106] 3857996-1 ORF translation from 58-456, direction F VQAVSESAAAPVRAKVRPTYSTNASSYPIGECTWGVKTLAPWAGDYWGNGAQWATSAAAA GFRTGSTPQVGAIACWNDGGYGHVAVVTAVESTTRIQVSESNYAGNRTIGNHRGWFNPTT TSEGFVTYIYAD*

Description:

unknown

Assembly ID: 3858236 Assembly Length: 740bp

ORF Predictions:

ORF #	Start	End	Direction	Length
1	1	261	R	87 aa

>[SEQ ID NO:107] 3858236-1 ORF translation from 1-261, direction R VILLNSEEKVKKERRSKERISTTKKGFFRMVLRYHLTLLGQGTGVVTVLFTSAFLPYLMM IGLISKIRDSOIVPDIHPPYWLPFFL*

Description:

unknown

Assembly ID: 3858264 Assembly Length: 2219bp

>[SEQ ID NO:21] 3858264 Strep Assembly -- Assembly id#3858264 ATCGAATTCGTTTTGCAAGTGGCGAAATGCGAACCACGTTTGTGTCTTTATAAGTTTCCA

CGTCTTCTTTGTGGACACGACCGTTTGCACCTGAGCCAGAAACGTCGTAGAGGTTTATCC CTAAATCATCCGCTAACTTTCTAGCTGCAGGAGTCGCTCTTAGCTTGTCATCAGCCATGA CCTCTCCAATTCTATTATGATACAAAGGGCGTCAAAAGCGACTGAAAAATAGGAAATCG ACGATGGCTTCGATGAAGCCAAGGAGATTTATCTTTTTTTCCAAGCTTTTAGCCCGTGCT CTAATCTAAGATATTAAGGACGAAGAGCTCTGCACCTAAAAGATACAAAGTTCTCGTCAG CTTTGTTTATTTACATAACTTATCTTATGTAACTCTATTCTTTGTTATAAGTTTTTCGG ATTGCATCTTTGATACTTTCAACTGTTGGAATCATTGCACATTTTTAGGTTTTTGCGCATA AGGCATCGGCACATCTTCTCCTGCACAACGGCGGATTGGTGCATCTAGATAGTCAAATGC TTCTGATTCTGAAATAATAGCTGAAATTTCACCGATATAGCCACTTGTTTTTGTGGGCATC GTTGACCAGAACAACCTTACCAGTCTTCTTCACTGAGTTTATGATGATATCCTTATCAAG CGGAACAAGGGTACGTGGGTCAACAATTTCAACTGAAATTCCTTCTTCAGCTAATTCTTC AGCAGCTTGAACCACACGGCGAAGCATTTTTCCATAAGTGACAACTGTTACATCCGTTCC ${\tt TTGGCGTTTGATTTCACCAACCCCAAGTGGAATTGTGTAGTCTGGATCAACTGGCACTTC}$ CCCTTTTTGGTTAAATTCTGACTTGTACTCAAGTATAATAACTGGGTTGTTATCACGGAT AGAAGACTTAAGCAGGCCTTTCATGTCCGCAGGTGTTCCAGGTGCCACAACCTTAAGCCC TGGAATGTGAGTAAACCAAGACTCTAGAGATTGTGAGTGCTGGGCGGCAGAGCCAACTCC GTTACCAGCTGCACAACGAACAGTCATTGGAACCTGACCTTTACCACCAAACATGTAACG TGTTTTAGCAGCTTGGTTGACGATATTGTCCATGGCAATAACAGAGAAGTCCATGAAGGT CATATCGACGATTGGACGAAGTCCTGTCATGGCTGCTGCTGCAGCTCCAGAGATGGC AGCTTCAGAAATCGGACAGTCACGGACACGTTCTGGACCAAATTCTTCAAGCATTCCAAC AGAAGTACCGAAGTCTCCTCCGAAGACACCGACGTCTTCTCCCATCAAGAACACATTTTC ATCGCGAACGCATTTCCTCAGACATAGCAAGGATAATGGTGTCACGGAAGGACATTGTTT TTGTTTCCATTTTATCTCTTTCTCCTTAGTCTGCGTAAATATCTTCAAAGGCTGATTCAA GCGGTGGGAATGGGCTTTCCTCTGCAAATTTAACAGAAGCTTCTACTGCTTCCTTTACTT GCGCTTGGATTTCTTCCAATTCTTCGGCACTTGCAATGTTATTTTCAATAAGGTAATTGC GGAGGTTTTCGATTGGATCTTTTTGTTTCCACAATTCCACTTCTTCACGCGTACGATATT GACCATTGCCACTGCGAACATGGTCTATAGCTTTCTGAAATCCTTCATAGACATCGATGA CATTGTTACCGTCTTCGATGAACATTCCAGGAATTCCATAAGCGGCGCTACGTTGATGGA TATGTTCTATATTGGTCATTTTCTTGATATCCGCAGAGATACCGTAACCGTTGTTAATGC AATAGAAAATGACTGGCAGGTTCCAGATAGAAGCCATGTTCACTGCTTCGTGGAAAACAC CTTCATTGGTCGCACCATCTCCAAAGAAGCAGACAACGATTTTACCGGTATTTTGCATTT GCTGACTGAGGGCTGCACCGACAGCGATCCCCATACCACCACCTACGATACCATTGGCAC CAAGGTTCCCAGCATCAAGGTCAGCGATATGCATAGATCCACCTTTCCCTTTACAGGTTC CAGTGTATTTACCAAGGATTTCAGCCATCATTCCGTTGAAGTCAATCCCTTTAGCAATAG CTTGCCCGTGTCCACGGTGGTTTGAGGTAATCAGATCATCTGGATTGAGAGCTACATAG

~~~		- ·			
()RB.	Pro	$\sim$	~ + 1	ons:	

ORF #	Start	End	Direction	Length
1	439	1365	R	309 aa

>[SEQ ID NO:108] 3858264-1 ORF translation from 439-1365, direction R 50

VTPLSLLCLRKCVRDENVFLMGEDVGVFGGDFGTSVGMLEEFGPERVRDCPISEAAISGA AAGAAMTGLRPIVDMTFMDFSVIAMDNIVNQAAKTRYMFGGKGQVPMTVRCAAGNGVGSA AQHSQSLESWFTHIPGLKVVAPGTPADMKGLLKSSIRDNNPVIILEYKSEFNQKGEVPVD PDYTIPLGVGEIKRQGTDVTVVTYGKMLRRVVQAAEELAEEGISVEIVDPRTLVPLDKDI IINSVKKTGKVVLVNDAHKTSGYIGEISAIISESEAFDYLDAPIRRCAGEDVPMPYAQNL KMCNDSNS*

### Description:

2-OXOISOVALERATE DEHYDROGENASE BETA SUBUNIT (EC 1.2.4.4) (BRANCHED-CHAIN ALPHA -KETO ACID DEHYDROGENASE COMPONENT BETA CHAIN (E1)) (BCKDH E1-BETA). - BACILL US SUBTILIS.

Assembly ID: 3858610 Assembly Length: 1078bp

>[SEQ ID NO:22] 3858610 Strep Assembly -- Assembly id#3858610 CTAACCCTNGACGGGGCCGCTATCATCAGTCAAACAGCTAAAAATCTTGTCTGCAAAAGT CTCGATTAACTGAGCTTTTACAAAAGCCGTATTTCCTGGAATAACTTGGAGATTGATCAT CTTATCCATCAATTCAGCCGATTCGATATTGTCTTCAGCCAGTTGCAGACTTTTTACGAT TGATTTTGGCAATTCGTAGACATAGGTGTTGTCTCTCAAAGGAATTTTGACAATACCTAA CTCTTTGATATCTCGGGATACCGTCGCCTGAGTGGCAGTGATACCTGCTTCTTTCAAATG TTCTACAATTTCTTCTTGCGTGCCGATTTGATAATCTGTCACCAATCTTCTAATTTTTTC AAGTCTCTCTTTTTTATTCATTTTTAAATTGACTATGCGCCCTCTCTACTGCTTCTTTAA TCTCAGCAAGAATCTGATTGCTTGCTGACTTTTTTTTTCAAATACACTAAAAATTCAA TATTTCCATGTCCACCTTGGATGGGAGAAAAGTCCAAGCCAAGGACTGAAAAACCTGCCT CTACTGCCATAGCTGTTACAGATTCAAGGACATTCTGATGAATCTTAGCATCTCGAATAA TTCCATTTTTCCCAATCTGCTCACGTCCTGCCTCAAACTGAGGTTTGACAAGTGCTACCA CCTGACCTTGATCAGCCAAGACACGGTGCAAGGCTGGCAAAATCAGACTAAGGGAAATGA AACTCACATCAATACTGGCAAAGCTCGGCTCCTGCTCGAAATCAGTCTTTTCAGCATAGC GGAAATTGAACTGCTCCATGCTGACAACTCGTGGGTCTTGGCGTAATTTCCAAGCCAACT GATTGGTACCAACATCGACTGCAAAGACCAACTTGGCACTATTCTGTAGCATGACATCGG TAAAACCTCCAGTAGAGGCCCCGATATCAATCGTAGTCGCGCCATCCACCGACAAATCAA  ${\tt AGACCTGCAAGGCCCTTTTCCAGTTTCAAACCACCACGGCTGACATACTTGAGTTTCTCC}$ CCCTTGAGTTTTAATTCGGTGTCATCTGGAATTTCTCTCCTGGCTTGTCAAACCGTTC

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	374	949	R	192 aa

>[SEQ ID NO:109] 3858610-2 ORF translation from 374-949, direction R VDGATTIDIGASTGGFTDVMLQNSAKLVFAVDVGTNQLAWKLRQDPRVVSMEQFNFRYAE KTDFEQEPSFASIDVSFISLSLILPALHRVLADQGQVVALVKPQFEAGREQIGKNGIIRD

AKIHQNVLESVTAMAVEAGFSVLGLDFSPIQGGHGNIEFLVYLKKEKSASNQILAEIKEA VERAHSQFKNE*

### Description:

cytotoxin/hemolysin ORF2 tly - Serpula hyodysenteriae

Assembly ID: 3858716 Assembly Length: 928bp

>[SEQ ID NO:23] 3858716 Strep Assembly -- Assembly id#3858716 ACTTTCCTGACCTCTGTTTCCAAATAATCTTCCAAATGGACAGAGATCTACCGTTGTTTG CATCGATAGCTGAGGTCTTTTTTAGAAAATACCATCACTTTTAGAAAATATAAACACATT TTTCGGATAAGATTAAGGTTAAAAGCAGCTCGTTTATCCAGGGTCTGATGATGGTCTTCA CGATAAACCACATCCAATAACCAATGCATACTTTCTGCTGACCAATGACCTCGAACACTA TGGCAAAAGGTCATCAACATCAAGCTTAAAGTTAAAGATAAAATAGCGAACGTCTTGACT TGTAATACCATCTCTATCAATAGTATTACGAGTCATTCCAATTCCACGCAATTTATGCCA TTTGGGATGGTTTTGACACAACCACTTAACATCAGAAGACACCCAGTATTCTCGAACTTC AATCTATCCTCTTTCTATATTCTAACTGAAAGGACAATTCAATGATTCATTTAATAATGA  ${\tt TTAGCGCCATTGCTCTAGCCATTGGAATTGGTTACCGCACCAAAATCAATATTGGCCTGC}$ TGGCTATTGCTTTTCTTACCTCATCGCAACCACTCTCATGGGATTAAGTCCCAAAGAAC ACGTTGCAACAACTAACGGTACTCTTGATGTTTTGGCTCAACACATTCTCTACCGCACAC GCACCCACCCTAACGCCCTCTACATGATTTTATACCTGATGGCAACCCTTTTGTCTGCTT  ${\tt TAGGTGCTGGATTTTCACTACTATGGCCGTTTGCTGTCTCTAGCGATTACCCTCTGTC}$ AAAAAGCGGACAAACACCCTTTGATTGGAGTCAAAGCGTCAATGGGAACTTCAGGAAGGG TAATTTGATAACCAAAGGAATAAAATTT

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	238	402	R	55 aa

>[SEQ ID NO:110] 3858716-1 ORF translation from 238-402, direction R VSSDVKWLCQNHPKWHKLRGIGMTRNTIDRDGITSQDVRYFIFNFKLDVDDLLP*

## Description:

unknown

Assembly ID: 3859124 Assembly Length: 847bp

>[SEQ ID NO:24] 3859124 Strep Assembly -- Assembly id#3859124 AAAAACGCACCATATCAAAAACTAAAAAGTTTGATATCATGCGTCATGTCTTAAACTAAT

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	73	453	R	127 aa

>[SEQ ID NO:111] 3859124-1 ORF translation from 73-453, direction R VDLQSKNWSFVHRFSEELIDQHYQDLVGQSFYPPIREFMTSGPVLVGVISGPKVIETWRT MMGATRPEEALPGTIRGDFAKAAGENEIIQNVVHGSDSEKSQLSREIAPLVLRVDWLNQL VKSSFE*

#### Description:

NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6) (NDK) (NDP KINASE) (ABNORMAL WING DI SCS PROTEIN) (KILLER-OF-PRUNE PROTEIN). - DROSOPHILA MELANOGASTER (FRUIT FLY)

Assembly ID: 3859244 Assembly Length: 578bp

## ACTTGACTNACGCTATTGAGCANATCTTCAAATTCGAT

ORF Predictions:

ORF #	Start	End	Direction	Length
1	310	462	R	51 aa

>[SEQ ID NO:112] 3859244-2 ORF translation from 310-462, direction R VLKGVLTLRELTNDRDADINDFVKVGEVLDVLVLRQVVGKDTDTVTYLVI*

Description:

unknown

Assembly ID: 3859250 Assembly Length: 888bp

>[SEQ ID NO:26] 3859250 Strep Assembly -- Assembly id#3859250 GTAGTTATAGTAGGGGTCGGATTGAAATGCCACNGCGCTTCTTGGAGTTTCTGATACCGT TTAAAATAGCGTTGGGCATTCTGGTTGGGAGTCAGAGCCTTATCAAGCGCAATCATGATA GGTTGGTTGGTATAGTAGTTGTCTAGGATAACCTGGTTCTTGGTCGTTAGGCACCTGGTG TAACTATTTTTCCTGTTTTTTTGAGTTTGTGTCGGTTTTTTCTGAAGTTCATTTTCAACACG ACGAATCAGTTCACTGGCCTGTTTTGACGCGGTCGCGCTCAGCCTTATCCTTATAGTA GGTGTCCAACAATCAGAAAGGATTTGCAAAAGGCTCTCCCACCTGATTTGCAAAAGGAAC TGGACTGAAGGAAGTCTCAGTCAAGCATGGCTTGGTTTCCTGATTGAAAAAATTTCGGAA AGCGGAAAGTTTTTCACTAACCAGTATCCTTTCCAATTCATTTGCCGTATCGCGTCCCAG ACCTTGAAAGAGGCTTTGAAGATTTTTTGCTGTTAGTTCTTGGGTTTGCAGGATTTCAAA GAGCTTTTCATCCTTGATAGTAAAAGGATTGAGAGATTCTGTACTTGGCGGAGCGATATA GGTCGATCCTGGAAGTAAGGTGCGGTAGCTATTTTGTGAAAAGCCGACGTGTTTGATAAC TTCGAGGATTTTATGACTGCTTTTATCCGACCAGTTAGAATATTACTGTGTTTTCCCCATA ATTTCGATAATCAAGGTAGCCTGGATATGGTCTCCAATCTCGTTTTTATTGGAAACTGTA ATTTCCACAATACGGTCATTTTCCACTTGCTCAATCGACTCAATCAGG

### ORF Predictions:

ORF #	Start	End	Direction	Length
		<b>-</b>		
1	244	402	R	53 aa

>[SEQ ID NO:113] 3859250-1 ORF translation from 244-402, direction R VGEPFANLSDLLDTYYKDKAERDRVKQQASELIRRVENELQKNRHKLKKQEK*

Description:

STRFBP5A NCBI gi: 496253 - Streptococcus pyogenes. Fibrinogen/Fibronectin binding protein

Assembly ID: 3859588 Assembly Length: 513bp

>[SEQ ID NO:27] 3859588 Strep Assembly -- Assembly id#3859588 ATCGAATTTGTTCTTTCATAGAGAGCTACCTGAGTTCTATTCAAGCTCAGGTAGTACTT TCTTATAAACTAGACAAACTAACTGTCATTCTACCATCAGATTACAAGACATCATCGTCA CTCACCTTGGAATTCAATGTCGTACCCCAATGGGTAATTTTACGGTGGGGTTGAGCTAAA ATTGGTCTGTTTTCATAGATTGTTTGCCATCTATTCCATAGTAGGCCCGTCTTTTTCTCA ATCTTAACTCGCAGATTTCTCATATTTTCTTTGATTGGGAGGTTGAGGACAAAACCTGCA GTCTGGTTGCGACCGTTTCCTCCCAAGAATGACTACGAACAACTTGGTTTCCATCTTTA TCTACTGGAACTTCTTCCCAAGTTATGGAGTAGCGGGCAATGTAAGCTCCACTGTGTTGA ATTATCAATGTTTTATCTTTCACAGGGAGTCTGACTGATTGGTTGAACTGGCTTAGAAAC TTGTGTCGCCGTTTCAGCATTCGTAGCTATAAA

## ORF Predictions:

ORF #	Start	End	Direction	Length
1	102	443	R	114 aa

>[SEQ ID NO:114] 3859588-1 ORF translation from 102-443, direction R VKDKTLIIQHSGAYIARYSITWEEVPVDKDGNQVVRSHSWEGNGRNQTAGFVLNLPIKEN MRNLRVKIEKKTGLLWNRWQTIYENRPILAQPHRKITHWGTTLNSKVSDDDVL*

## Description:

PNEUMOLYSIN (THIOL-ACTIVATED CYTOLYSIN). - STREPTOCOCCUS PNEUMONIAE.

Assembly ID: 3859774 Assembly Length: 214bp

>[SEQ ID NO:28] 3859774 Strep Assembly -- Assembly id#3859774 ATCGAATTCTAACATGTGCTTCTATTGTTCCTATCTTTAAAATCTACTCCTTCA TGCTCCAAGAGCCAAGCTTTCTTTTCCACTCCTGCAGCATAACCTGTCAGACGCTTGCCT GCTCCCAACACACGATGACAAGGTACTAGGATAGACCAAGGATTGCGTCCCACTGCTCCA CCAATTGCTTGAGCAGAAGCCACTTGCAGGTCTT

## ORF Predictions:

ORF #	Start	End	Direction	Length
1	9	131	R	41 aa

>[SEQ ID NO:115] 3859774-1 ORF translation from 9-131, direction R VLGAGKRLTGYAAGVEKKAWLLEHEGVDFKDRNNRRRSTC*

### Description:

GLUTAMATE RACEMASE (EC 5.1.1.3). - ESCHERICHIA COLI.

Assembly ID: 3860140 Assembly Length: 1084bp

>[SEQ ID NO:29] 3860140 Strep Assembly -- Assembly id#3860140  $\tt CTCCAGCAATGGATCCAAGTATGATGGGCGGGATGATGTAAGCTTTCTATAGAAAACACC$ TTATAAAAAACACGAAAGGAGGGAATGACTAACCCTTCTTTTTATAATATTCACTTCTAA GATTGATGGTGAGCTCTCCTAACTTATATGATAAAATAAGACTAGAGGAAAGGAGAAGAA  $\verb|CCGTGTCATGCAGAAAATGGTACAAGCATGGGAAAAAAATGAGTAGCGGCCAACCATTCT||$ CGTGCATGTTTGCTGTGCCCCTTGTAGTACCTATACACTAGAATATTTGACCAAGTATGC AGATGTGACCATCTATTTTGCCAATTCTAATATCCATCCCAAGGCAGAATACCATAAGCG GGTCTATGTCACCAAGAAATTTGTTAGTGATTTTAATGAGCAGACAGGAAATACGGTTCA GTACCTAGAAGCTCCCTACGAACCCAATTAATACCGAAAACTAGTTAGGGGGGCTAGAGGA GGAGCCCGAAGGTGGCGACCGTTGCAAGGTTTGTTTTGACTACCGACTGGATAAAACAGC GCAAGTGGCTATGGACTTGGGCTTTGACTACTTTGGTTCAGCCTTGACCATCAGTCCTCA TAAGAATTCTCAAACTATCAATAGCATCGGAATCGATGTGCAAAAAATTTACACGCCCCA CTATCTTCCCAACGATTTCAAGAAAAATCAAGGCTACAAACGTTCAGTAGAGATGCGTGA GGAGTATGATATCTATCGTCAATGTTATTGTGGCTGCGTCTATGCAGCCCAAGCCCAGAA GAAAGACTATTCTCATATCACATTTATAGTAGATTGAAACTAGAATAGTACACCTTTACT TCTCAAACATTGTTAGAAATCGATTCGGCTGTCCTTATTTCATTTTAATATACTGGTACG AAATTAGATATCAATGATAACTTGCCTCAAGGTAGGTTTTTTGATAGTAGAAAAGCGA TAGA

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	302	511	F	70 aa
2	605	856	F	84 aa

>[SEQ ID NO:116] 3860140-1 ORF translation from 302-511, direction F VHVCCAPCSTYTLEYLTKYADVTIYFANSNIHPKAEYHKRVYVTKKFVSDFNEQTGNTVQ YLEAPYEPN*

Description:

unknown

>[SEQ ID NO:117] 3860140-2 ORF translation from 605-856, direction F VAMDLGFDYFGSALTISPHKNSQTINSIGIDVQKIYTPHYLPNDFKKNQGYKRSVEMREE YDIYRQCYCGCVYAAQAQNIDLV*

Description: unknown

Assembly ID: 3860206 Assembly Length: 1124bp

>[SEQ ID NO:30] 3860206 Strep Assembly -- Assembly id#3860206 ATCGAATTCATTGACTGCCTGAAAAGACTTCAACTCGTCTGCCTGATAACCGAAAGACTT GGTTACTTTGATACCTGATACGGACTCCTGTACCTTGTTATTGAGTTCAGAAAAAGCAGC TTGGGATTCGCCAAAGGCCTTATGAGTCTTTCTCCCTAGGCGACTAGTCGTATAGGCCAT GAAAGGTAGGGGGAGAATGGCAACAAGAGTCATCTGCCATGAGATGCTAAAGAGCATGGT CAACAAAGTCACCAGAGCCGTGATAGAGGCATCCACCGCAGACATGACACCGCCACCTGC TAAACGAGTCAAGGAATTGATATCATTGGTTGCGTGTGCCATCAGATCACCCGTCCGATA GGTTTGATAAAAGGCTGACGACATTTTTGTGAAATGCTTAAACAAGCGAGACCGCATGAT CTGTCCCAAGCAATAAGAGGTCCCAAGGATATACATACGCCACACATAGCGCAAATAGTA CATACCAAAGGCTGCAAGTAGCAAGTAAAATAGGCTAAGAAGGAGGTCCTGCTGGGTTAA TTGCCCCGATGTGATGGCATCAATAACCCGCCCCATAACCATAGGAGGAATGAGATTGAG GACGGAAACCAAGACCAGGGCCACAATCCCGACTAGATAACGGCGTTTTTCTAACTTGAA AAACCACCAAAATTTTTGAATAATGGACATAAAATCCCTTTCTGGATTGCAAATAGAAAC CTGAGGCCAATACTCAATGGAAAATCAAAGAGCAAACTAGGAAACTAGCCGCAGGCTGCT CAAAGCACTGCTTTGAGGTTGTAGATAGAACTGACGAAGTCAGTAACCTACATACGGCAA GGCGACGTTGACGCCGTTTGAAGAAATTTCCGAAGAATACAAGACCCCAGGTTTTTCTTA TTTATAAGTTACCACTGTAACAGCACCCTTGTCATATTCAGCAATAAAGATATTGGCTAC ATTGTCATGCCCTTGTTTACTGAGGTTATCAAGCAACCACTCCTCGCTACGAACAATCGA TCCCAAGACATCTACTTGAATCACACCGTCAGTCACAACTGGATACTTAGGATTTTCATC TCCCATTTGCACAACGATGAGTTGCCCCATTTTTGCTCTTGCACAG

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	898	1056	R	53 aa

>[SEQ ID NO:118] 3860206-2 ORF translation from 898-1056, direction R VTDGVIQVDVLGSIVRSEEWLLDNLSKOGHDNVANIFIAEYDKGAVTVVTYK*

Description:

unknown

Assembly ID: 3860270

Assembly Length: 1242bp

>[SEQ ID NO:31] 3860270 Strep Assembly -- Assembly id#3860270 TTACCTTCATTGCAGCCATTATTGGTTCTTGTGTCAGCCAGATTTTAAGTATTCTTTATA AGACACCTGCTGTGGTCTTTATCTTGGCCATTTTGGCACCGCTGGTTCCAGGTTATCTCT CCTACCGAACAACTGCCTTTTTTGTGACAGGGGACTATAATAAAGCACTGGCAAGTGCGA CCTTGGTTGTCATGTTGGCTTTGGTAATCTCTATTGGAATGGCTAGCGGAACAGTGATTC TCAGACTGTATCATTATAAAAACACATCGAGTATCGTAGACTTTACAGAAATAAAAGA ATTTTCTGAAAAATGAGATAAATTAACAACGCTTTCTATATGTGCGAGAATACCGC ACTTATGAAGAAATTGCGGCTGATTTTGGTATCCACGAAAGCAACTTAATCCGTCGGAGC CAATGGGTTGAAGTAACTCTTGTTCAAAGTGGTGTTACGATTTCAAAAACTCATCTTAGT TTAGCGAATGATTCTGGTAAAAAGAAATTTCACGCTATGAAGGCTCAGGCGATTGTCACA AGTCAAGGGAGAATTGTTTCTTTGGATATCGCTGTGAACTATTGTCATGATATGAAGTTG TTCAAAATGAGTCGCAGAAATATCGGACAAGCTGGAAAAATCTTGGCTGATAGTGGTTAT CAAGGGCCCATGAAGATATATCCTCAAGCACAAACTCCACGTAAATCCAGCAAACTCAAG CCGCTAATAGCTGAAGATAAAGCTTATAACCATGCGCTATCCAAGGAGAGAAGCAAGGTT GAGAACATCTTTGCCAAAGTAAAAACGTTTAAAATGTTTTCAACAACCTATCGAAATCAT CGTAAACGCTTCGGATTACGAATGAATTTGATTGCTGGCATTATCAATTATGAACTAGGA  ${\tt TTCTAGTTTTGCAGGAAGTCTATTATTTTCCTTATTGTCTGTAAGTCTACTGACCTTGTT}$ GTTTATCCCAGTCATGGTTTCTAGTTCGGGCTCAGAGTTTCAAAGTGGATGGCAAGAGCA TCAATTGATTGCTGAGAAGGTTAGTAAAACACTTGACAAGACATTTGATAAGGATGTCAG AAAAATTCCGACCAGTCAGTTTTATCAAAAATTTGTAGATGAGATGGGAAGGATTTACTC AGGAAATTTGATCCTCCCAGGAGCTGATAACTGTGAATGGAG

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	346	966	F	207 aa

>[SEQ ID NO:119] 3860270-1 ORF translation from 346-966, direction F VREYRTYEEIAADFGIHESNLIRRSQWVEVTLVQSGVTISKTHLSAENTVIVDATEVKIN RPKKQLANDSGKKKFHAMKAQAIVTSQGRIVSLDIAVNYCHDMKLFKMSRRNIGQAGKIL ADSGYQGPMKIYPQAQTPRKSSKLKPLIAEDKAYNHALSKERSKVENIFAKVKTFKMFST TYRNHRKRFGLRMNLIAGIINYELGF*

#### Description:

ISL2 protein - Lactobacillus helveticus (Probable transposase)

Assembly ID: 3860438 Assembly Length: 1575bp

>[SEQ ID NO:32] 3860438 Strep Assembly -- Assembly id#3860438 58

GTGATGGGGCCTCAGGGAAATGGTTTTGACTTGTCTGACCTTGATGAGCAGAATCAGGTT GAACGTGGAGTGAAAGTAGTGACAGTCCTCGGTTTTGCTAATAAGGATGCTGTTATTTTG AAAACGGAATTGGCTCAGTATGGTCAGGTCTTTGTAACGACAGATGATGGTTCTTATGGC ATCAAGGGAAATGTTCCGTTGTTATCAATGATTAGATAGTCAGTTTGATGCTGTTTACT CGTGTGGGGCTCCAGGAATGATGAAGTATATCAATCAAACCTTTGATGATCACCCAAGAG CCTATTTATCTCTGGAATCTCGTATGGCTTGTGGGATGGGAGCTTGCTATGCCTGTGTTC TAAAAGTACCAGAAAGCGAGACGGTCAGCCAACGCGTCTGTGAAGATGGTCCTGTTTTCC GCACAGGAACAGTTGTATTATAAGGAGAAAATTATGACTACAAATCGATTACAAGTGTCT CTACCTGGTTTGGATTTGAAAAATCCGATTATTCCAGCATCAGGCTGTTTTGGCTTTGGA CAAGAGTATGCCAAGTACTATGATTTAGACCTTTTTAGGTTCTATTATGATCAAGGCGACA ACCCTTGAACCACGTTTTGGGAATCCAACTCCAAGAGTGGCAGAGACGCCTGCTGGTATG CTCAATGCAATTGGCTTGCAAAATCCTGGTTTAGAGGTTGTTTTGGCTGAAAAGCTACCT TGGCTGGAAAGAGAATATCCAAATCTTCCTATTATTGCCAATGTAGCTGGTTTTTCAAAA CAAGAGTATGCAGCTGTTTCTCATGGGATTTCCAAGGCAACTAATATAAAAGCTATCGAG CTCAATATTTCTTGTCCCAATGTTGACCACTGTAATCATGGACTTTTGATTGGTCAAGAT CCAGATTTGGCTTATGATGTGGTGAAAGCAGCTGTGGAAGCCTCAGAAGTGCCAGTTTAT GTCAAATTAACCCCGAGTGTGACCGATATCGTTACTGTCGCAAAAGCTGCAGAAGATGCG GGAGCAAGTGGCTTGACTATGATCATACTCTGGTGGGATGCGCTTTGACCTCAAAACCAG AAAACCAATCTTGGCCAATGGAACAGGTGGAATGTCAGGTCCAGCAGTTTTCCAGTAGCC CTCAAACTCATCCGCCAAGTAGCCCAAACAACAGACCTGCCTATCATTGGAATGGGGGGA GGAACAGCTAACTTTACCAATCCTTATGCCTGCCCTGACATCATCGAAAATTTACCAAAA GTCATGGATAAATACGGTATTAGCAGTCTGGAAGAACTCCGTCAGGAAGTAAAAGAGTCT GAGAATTTTGGTACAATAAAATAAATAAGAACAGAGGAAGAAGGTTAATGAAGAAAGTAA GATTTATTTTTTAG

#### ORF Predictions:

ORF	#	Start	End	Direction	Length	
						-
	1	1	276	F	92 a	a
	2	460	1128	F	223 a	a

>[SEQ ID NO:120] 3860438-1 ORF translation from 1-276, direction F VMGPQGNGFDLSDLDEQNQVLLVGGGIGVPPLLEVAKELHERGVKVVTVLGFANKDAVIL KTELAQYGQVFVTTDDGSYGIKGNVPLLSMI*

Description: unknown

>[SEQ ID NO:121] 3860438-3 ORF translation from 460-1128, direction F VKMVLFSAQEQLYYKEKIMTTNRLQVSLPGLDLKNPIIPASGCFGFGQEYAKYYDLDLLG

SIMIKATTLEPRFGNPTPRVAETPAGMLNAIGLQNPGLEVVLAEKLPWLEREYPNLPIIA NVAGFSKQEYAAVSHGISKATNIKAIELNISCPNVDHCNHGLLIGQDPDLAYDVVKAAVE ASEVPVYVKLTPSVTDIVTVAKAAEDAGASGLTMIILWWDAL*

## Description:

DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1) (DIHYDROOROTATE OXIDASE) (DHODEHASE). - BACILLUS SUBTILIS.

Assembly ID: 3860544 Assembly Length: 776bp

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	222	689	F	156 aa

>[SEQ ID NO:122] 3860544-1 ORF translation from 222-689, direction F VATGQDKAHSILASNEGTLHYLVPLKQGMSIQQGQTIAEVSGKEKGYYVEAFVLASDISR VSKGAKVDVAITGVNSQKYGTLKGQVRQIDSGTISQETKEGNISLYKVMIELETLTLKHG SETVILQKDMPVEVRIVYDKETYLDWILEMLSFKO*

#### Description:

unknown

Assembly ID: 3860558 Assembly Length: 1487bp

>[SEQ ID NO:34] 3860558 Strep Assembly -- Assembly id#3860558

ATCTTCCTTTTGCTTTTCAATCGTAATTCCAGATAATTTTTCCCATTCTTTTTGGTGACC CCGGGAGGCAGGATTGAATGGCTTGAGGGAAATGACAAACTTGTCCTAGCAAGAATGGTC AAGGCACCTCCGTCTACAATCAAAATCTGATTTGGGCTTAAATTAACAAAGACCTGTTTT ACTAGATTTTCTCCAGAAGCATCGTCTCGTAAACCAGGCCCCAGCAAGATAACTTCTGCC TTCTCCAATTGCTCTTTTAACAATTGCTGGTCTTGAAGAGAAAAGGCCATAGGCTCAGGT AAATGGCTGTGCAGAGCCGGGATATTTTCCCTGTCCGTTCCAACGGTCACCAATCCTGCA CCGCTTTTTACAGCTGCTAAAGCAGCCATGATGATGGCACCTCCATAAGGATAAGTACCA CCAAGCAGCAGACGACCATAATCTCCTTTATGACTTGAACGAGAACGTTCAATAATA ACAACAAAAAGGAGACGCAGACCTCCTTTTGTAATCTTATATCTAAAATTTAATATTCAT TTCTGCCATTTTAGATATAGCTATAGAAAATACACTCTATTAATCGAATGTTTCTCTTAT TTTCTATCCAATGTCCGAAGTGCTGCTTGATAAGTTTGCTCCATCAGCATGGTAATGGTC ATAGGACCGACACCTCCAGGGACTGGCGTGATATGGCTAGCAAGTGGTGCAACTGCCTCA TAATCAACATCTCCACAGAGCTTCCCATTTTCATCTCGGTTCATCCCAACGTCAATGACA ACCGCACCTGGTTTGACAAAGTCAGCAGTCACAAACTTGGCGCGGCCGATTGCGACTACA AGAATATCTGCTTTAGCAGCCACCTTGGCAAGATTATGAGTTCGTGAGTGGGCCAAGGTT ACTGTCGCATTTTTAGCCAAAAGAAGCTGAGCCATAGGTTTTCCAACGATATTTGAACGA CCGATTACGACCGCATTTTTACCTTCCAAGTCAATCCCATATTCATGAAACATTTCCATA ATTCCTGCAGGTGTCGAGGGAATCATGACTGGATGTCCAGACCAAAGACGTCCCATGTTT AGGGGATGGAAACCATCCATTTTTTTGGGTCAATGGCTAATAAAACCGCCTCTTCA TCGATATGTTTTGGTAATGGCAACTGGACCAAAATCCCATGCCAAGCTGGATCCTGATTA TATTTAGCAATCAGGTCTAACAATTCCTCTTGAGTAATGGTCTCTGGAACTCGCACTACT TCGGTACGGGAACCAGCCGCAAGAGCTGACCTCTCCTTGTTGCGAACGTTAAACTTGGCT GGCTGGATTATCCCCAACCAAAATCACTACCAAACCAGGCACTAGAG

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	717	1376	R	220 aa

>[SEQ ID NO:123] 3860558-2 ORF translation from 717-1376, direction R VRVPETITQEELLDLIAKYNQDPAWHGILVQLPLPKHIDEEAVLLAIDPEKDVDGFHPLN MGRLWSGHPVMIPSTPAGIMEMFHEYGIDLEGKNAVVIGRSNIVGKPMAQLLLAKNATVT LAHSRTHNLAKVAAKADILVVAIGRAKFVTADFVKPGAVVIDVGMNRDENGKLCGDVDYE AVAPLASHITPVPGGVGPMTITMLMEQTYQAALRTLDRK*

#### Description:

5,10-methylene-tetrahydrofolate dehydrogenase (folD) homolog - Haemophilus infl uenzae (strain Rd KW20)

Assembly ID: 3860568 Assembly Length: 1634bp

>[SEQ ID NO:35] 3860568 Strep Assembly -- Assembly id#3860568 CGTGCCTTGGCCAATGATCCAAAAATCTTGATTTCAGACGAGTCGCTTCAAATTTCGGCC CCTGGACCCTTAAGACCAACCCAAGCAGATTTTGGCCCCTTGGTTGCAAGATTTGAACCAA AAATTAGGCTTGACTGTTGTCCTGATTACGCATGAAATGCAGATTGTCAAAGACATTGCC AACCGTGTTGCAGTTATGCAGGATGGGCATTTGATTGAAGAGAGTAGTGTGCTTGAAATC TTCTCAGACCCTAAACAACCTTTGACTCAAGACTTTATCTCAACAGCTACAGGTATTGAC GAAGCCATGGTCAAAATCGAGAAGCAAGAAATCGTGGAACACTTGTCTGAAAACAGTCTC AAGCATTATCAAGTAATGGCTAATATTCTCTATGGGAATATCGAAATCCTCGATGGTACT CCTGTTGGAGAATTGGTGGTGGTCTTGTCAGGTGAAAAAGCAGCGCTGGCAGGTGCTCAA GAAGCCATTCGTCAAGCAGGCGTACAGTTAAAAGTATTGAAGGGAGGACAGTAAGATGGA CTGGGGAACAGCTATCTACCTAACCCTCTATATGACAGTTCTTTCCTTCATTATCGGAGG GAATAAAGTCGTATTCTGGATTTTAGACAAAATTACCTCAATTTTTCGTGCGGTTCCCTT  ${\tt GCCAAATGCAAGCCCTTGTCCCACTTTTTTTGCAGTCTTTTGCCTTCTTTGCCCGTCAGG}$ AGCGACTTTCTGGGACATCGTGGGTGTTTACCTATCAGAAGGTCTTCCAGATTTGATCCG TGTGACGACTGTGACCTTGATTTCCCTTGTTGGGGAAACAGCTATGGCCGGTGCGGTTGG AGCTGGTGGTATCGGTAACGTAGCCATCGCTTATGGATTTAACCGCTACAATCACGATGT GACCATCTTGGCAACCATCGTTATCATTTTGATTATCTTTGCAATCCAATTCTTAGGAGA TTTCTTGACTAAGAAATTGAGCCATAAATAAAAAAGAGCCGTGTGGCTCTTTTTAACTGA  ${\tt TCAGATTTTCTGGGCAAATTTTTTACTCAAGGCTTGTCCAATCAAGGCACCCACTAGGGC}$ TCCGATGACAATACTTGCGATAAATAGAAGGACAGTTCCAGGGTTTGGAGCGACCATGAT GCGGTCGATATATTCTTGGGATTTTCCTCTTGCCAGAAGAGTAGCCATATAGGCTTTGGG GAAGTTCTTTGTCTTGTATTTTCCTAAATGAGCTACTCCATCTGCTAGGAGGCC ACAGATAATTCGAT

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	1040	1291	F	84 aa

>[SEQ ID NO:124] 3860568-3 ORF translation from 1040-1291, direction F VGVYLSEGLPDLIRVTTVTLISLVGETAMAGAVGAGGIGNVAIAYGFNRYNHDVTILATI VIILIFAIOFLGDFLTKKLSHK*

Description: unknown

Assembly ID: 3860582 Assembly Length: 1087bp

>[SEQ ID NO:36] 3860582 Strep Assembly -- Assembly id#3860582 GGAATCATGATGATGTCACTGCTAAATGGTTTCTTAGAAAAAATATTTCCTGAGCGCTTA CAGATTAGTTTGGGCTTGCTGATTTTATCATTGAGCGGTACAGCTCCCTTCTGGTACCAA GCCTATCCCTTTGTCTTTGGAACACGGCTTCTCTTTGGTTTTGGGTCTTGGGATGATCAAT GCCAAGGCCATTTCTATTATCAGTGAACGCTACCAAGGAAAAAGGCGAATTCAGATGTTA GGGCTACGCGCTTCTGCAGAGGTCGTTGGAGCTTCTCTCATTACCTTGGCCGTCGGTCAA GTTGTTGGCCTTTGGTTGGACAGCTATCTTTCTAGCCTATAGTGCTGGATTTTTGGTGCT GAAGGAAGCAAGTCGTTTAACTCGAGAAATGAAAGGCTTGATTTTTACCTTAGCTATCGA AGCGGCAGTTGTAGTTTGTACCAATACAGCTATTACCATCCGTATTCCAAGTTTGATGGT GGAAAGAGGATTGGGGGATGCCCAGTTATCTAGTTTTGTTCTTAGTATCATGCAGTTGAT  $\tt CGGGATTGTGGCTGGGGTGAGTTTTCTTTCTTTGATTTCTATCTTTAAAGAGAAACTGCT$  $\verb|CCTCTGGTCTGGTATTACCTTTGGCTTGGGGCAAATCGTGATTGCCTTGTCTTCATCCTT|\\$ GTGGGTGGTAGTAGCAGGAAGTGTTCTGGCTGGATTTGCCTATAGTGTAGTCTTGACGAC TGCTGTATTAGGCTGTAGTTTCGGAGCCTTTACGACCCCATTCGTTCTAGGTGCAATTGG GCTGTAG

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	356	1027	F	224 aa

>[SEQ ID NO:125] 3860582-1 ORF translation from 356-1027, direction F VLPLYLLFVPYGKSKKEVKKRAKEASRLTREMKGLIFTLAIEAAVVVCTNTAITIRIPSL MVERGLGDAQLSSFVLSIMQLIGIVAGVSFSFLISIFKEKLLLWSGITFGLGQIVIALSS SLWVVVAGSVLAGFAYSVVLTTVFQLVSERIPAKLLNQATSFAVLGCSFGAFTTPFVLGA IGLLTHNGMLVFSILGGWLIVISIFVMYLLOKRALGLIPKFFF*

### Description:

unknown

Assembly ID: 3860724 Assembly Length: 1191bp

>[SEQ ID NO:37] 3860724 Strep Assembly -- Assembly id#3860724 GGATTCCAACGATTATGAACTTGACTGGTCCACTGATTCATCCAATGGCTTTAGAAACAC

AGCTTTCTTGGAATTAGTCGTCCAGACTCCTAGAAAGTACAGCTCAGGTTTTGAAAATAT GGTCGCAAACGTGCCATCGTGGTTGCTGGACCAGAAGGGTTGGATGAAGCTGGCTTGAAC GGAACAACCNAGATTGCACTTNTTGAAAATGGCGAAATCAGCTTGTCAAGCTTTACTCCA GAGGATTTGGGAATGGAAGGCTATGCTATGGAAGATATTCGTGGTGGGAATGCTCAGGAA AATGCAGAAATTTTGCTTAGCGTTCTGAAAAACGAAGCAAGTCCATTCTTGGAAACGACA GTTGCCTTGGCCCGTCAAGTGATTGCTAGAGGCCAAGGCCCTTGAAAAACTCAGACTGTTA CAGGAGTACCAAAAATGAGTCAGGAATTTTTTAGCACGAATCTTAGAGCAGAAGGCGCGTG AGGTGGAGCAGATGAAGCTGGAGCAAATCCAGCCTCTGCGCCAGACCTATCGCTTGGCAG AATTTTTGAAGAATCATCAGGACCGCTTGCAGGTAATCGCTGAGTCAAGAAAGCTAGCCC TAGTTTGGGAGATATCAATCTCGATGTGGATATTGTGCAACAGGCCCAGACTTATGAAGA AAACGGAGCAGTGATGATTTCGGTGTTGACAGATGAGGTTTTCTTTAAAGGGCATTTGGA TTATCTACGGGAAATTTCCAGTCAGGTAGAGATTCCGACGCTCAACAAGACTTTATCAT AGATGAAAAGCAAATCATCCGCGCTCGCAATGCAGGTGCGACAGTTATCTTGCTTATTGT GGCAGCCTTGTCCGAAGAACGCCTCAAGGAACTGTATGACTACGCGACAGAGCTTGGTCT GGAAGTCTTAGTGGAGACTCACAATCTAGCTGAACTAGAGGTAGCCCACAGACTTGGTGG CTGAGATTATCGGGGTCAACAACCGCAACTTGACTACCTTTGAAGTCGACTTGCAGACCA  $\tt GTGTAGATTTAGCCCCTTACTTTGAGGAAGGTCGCTATTACATTTCTGAATCTGCCATTT$ TCACAGGGCAGGATGCGGAACGACTAGCCCCATACTTTAACGGAATTCGAT

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	139	498	F	120 aa
2	686	1024	F	113 aa

>[SEQ ID NO:126] 3860724-1 ORF translation from 139-498, direction F VVAGPEGLDEAGLNGTTXIALXENGEISLSSFTPEDLGMEGYAMEDIRGGNAQENAEILL SVLKNEASPFLETTVLNAGLGFYANGKIDSIKEGVALARQVIARGKALEKLRLLQEYQK*

#### Description:

ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18). - LACTOCOCCUS LACTIS (SUB SP. LACTIS) (STREPTOCOCCUS LACTIS).

>[SEQ ID NO:127] 3860724-2 ORF translation from 686-1024, direction F VDIVQQAQTYEENGAVMISVLTDEVFFKGHLDYLREISSQVEIPTLNKDFIIDEKQIIRA RNAGATVILLIVAALSEERLKELYDYATELGLEVLVETHNLAELEVAHRLGG*

## Description:

INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48) (IGPS). - LACTOCOCCUS LACTIS (SUBSP. LACTIS) (STREPTOCOCCUS LACTIS).

Assembly ID: 3860858

Assembly Length: 858bp

>[SEQ ID NO:38] 3860858 Strep Assembly -- Assembly id#3860858 CATCGTTCGTGATGGTGGGATTCGTGGATTTGTCATCTTGTGTGACAAGCTCAATAACGT CATTGCCCTCCGTCATAGTTTAACTGGCTTTGAGTTTGCTTGTGGTATTCCAGGAAGCGT TGGCGGTGCTGTCTTTATGAATGCGGGTGCCTATGGTGGCGAGATTGCTCACATCTTGCA GTCTTGTAAGGTCTTGACCAAGGATGGAGAAATCGAAACCCTGTCTGCTAAAGACTTGGC TTTTGGTTACCGCCATTCAGCTATTCAGGAGTCTGGTGCAGTTGTCTTGTCAGTTAAATT TGCCCTAGCTCCAGGAACCCATCAGGTTATCAAGCAGGAAATGGACCGCTTGACGCACCT ACGTGAACTCAAGCAACCTTTGGAATACCCATCTTGTGGCTCGGTCTTTAAGCGTCCAGT  ${\tt CGGGCATTTGCAGGTCAGTTCGAATTTCAGAAGCTGGCTTGAAAGGCTATCGTATCGGT}$ GGCGTAGAAGTGTCAGAAAAGCATGCAGGATTTATGATCAATGTCGCAGATGGAACGGCC AAAGACTACGAGGACTTGATCCAATCGGTTATCGAAAAAGTCAAGGAACACTCAGGTATT ACGCTTGAAAGAGAGTCCGGATCTTGGGTGAAAGCCTATCGGTAGCGAAGATGTATGCA GGTGGTTTTACTCCCTGCAAGAGGTAGTGGGGACCTGACAGAGCCCCGATCGGTTAATCT ATGAAAAAGAAGGAATTT

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	610	807	F	66 aa

>[SEQ ID NO:128] 3860858-1 ORF translation from 610-807, direction F VSEKHAGFMINVADGTAKDYEDLIQSVIEKVKEHSGITLEREVRILGESLSVAKMYAGGF TPCKR*

Description: unknown

Assembly ID: 3860890 Assembly Length: 980bp

>[SEQ ID NO:39] 3860890 Strep Assembly -- Assembly id#3860890 CTGAAAAAACAGGTTTTGACTATGNAGATTGACAGACGACCGTTCGGAGGTGCAGATATT GATGCAGCAGGACCTCCCTTACCTGATGAAACCCTTAAGGCAAGTAGGGAAGCAGATGCT ATCCTACTAGTAGCTATCGGTAGTCCTCAGTATGATGAGGGAGCGGTTCGCCCTGAACAA GGCCTGATGGCTCTCCGTAAGAACTCAATCTTTACGCTAATATTCGTCCTGTAAAAATCT TTGACAGTCTCAAGTATTTGTCACCACTCAAACCGGAACGAATTTCTGGTGTAGACTTCG TCGTGGTGCGTGAATTGACTAGGCGAGATTTACTTTGGAGATCATATCCTTGAAGAGCGC AAAGCGCGTGATATCCAACCGAAAGCC

TTCTAGCGACCTCAAAACTCTGGCGGAAAGTAGCTGAGGAAGTCGCACAGGATTTCTCAG
ATGTAACCTTGGAACACCAGCTGGTAGACTCAGCTGCTATGCTTATGATTACCAATCCTG
CTAAGTTTGATGTTATTGTAACGGAGAATCTTTTTTGGAGATATTTTATCTGATGAATCAA
GCGTCTTATCTGGTACACTTGGGGTTATGCCATCAGCCAGTCATTCTGAAAATGGACCAA
GTCTCTATGAACCTATTCACGGTTCAGCACCTGATATTGCAGGTCAAGGAATTGCCAATC
CTATTTCCATGATTTTATCAGTTGTCATGATGTTGAGAGATAGTTTCGGACGTTATGAGG
ATACAGAGCGTATCAAACGTGCTGTTGAGACAAGTCTGGCGGCAGGAATTTTAACGAGAG
ATATAGGAGGTCAGGCTTCAACAAAGGAAATGATGGAAGCTATTATTGCAAGGTTATGAA
GTTAGACGAAAAAATTCGAT

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	. 397	486	F	30 aa

>[SEQ ID NO:129] 3860890-2 ORF translation from 397-486, direction F VERIIRKAFAIELQEIAEKSLLVSISKMF*

Description: unknown

Assembly ID: 3860952 Assembly Length: 874bp

>[SEQ ID NO:40] 3860952 Strep Assembly -- Assembly id#3860952 TCGATCTAGAGAATTGCTCCAGAGCTTCCTGACCGTCCGCTGCCTCAATAGTTTCATAGC CACAATCCGTCAAATAATCACTGACCCCCTCACGGATCATCTTCTTCATCTTCTACAATTA ATTTTCTATTATAGTCTCTTGCTGGCCTTTTGTATGTAAGCAACTGACCACTAGATAAAA CGTTGTGAAATTCCTTTCTCATAAATTCCATAACTTTAGTATATTTAATTTAAGCACTAA TTGTTAAATAGCTATTCCTATCCACTATTCTTGAATAGAAACACAAGATGCAATCTTTAT TCCAGACTCATTTTTTAAAAAATCAAATTTATTCACCATCCAGCAAGAGCTCTTTTGGTT GTTTTCTAAGGAGATTGCTTGAAGCAAGCGCCATAACGAGAACCACTAGAACCAAGGCAA GGACAAAAATGATGATAAAGTCTGATGTCTGAATGGAAATGTCTAGGCTCGACAAGGTCT TGCTAAAGCCATCTACTTCTGCACCGCCACCAAGGTTAGAGGCTTGAGCCGCCTTACTAG CCTGTTTGGCAACACCTGAAGTCACATTGGCAAGGACAGTGTTTCCAATTCGCACGGGCA GTGTAATTAGCTAGGAAGTAAGCANAAACTAGAGCAGGGATAGCAATCAAGATAGATTCG GTGATGAATTGACCCAAGATACTTGCCTGCTTGAGACCAATAGAGAGGAGGATTCCCACT TCCTTGCCGACGGGCATTGATCCAAAGACTGAGC

ORF Predictions:

ORF # Start End Direction Length

66

1 449 715 R 89 aa

>[SEQ ID NO:130] 3860952-1 ORF translation from 449-715, direction R VRIGNTVLANVTSGVAKQASKAAQASNLGGGAEVDGFSKTLSSLDISIQTSDFIIIFVLA LVLVVLVMALASSNLLRKQPKELLLDGE*

# Description:

unknown

Assembly ID: 3860962 Assembly Length: 762bp

>[SEQ ID NO:41] 3860962 Strep Assembly -- Assembly id#3860962 CTTGTAACGGTCATAAAGTTTCTGCAAACTACCATCCTTGCTCCATTTAGTAACCAAGTT ATCAAGATAGTCGTTGAGCTCTGTATTTGATTTCTTGGTAACAATACCGTAGTCAGATGG CTTGAAACTATCATCTAGTAGTTCTGTGCGTTTAACTAGTGTAGCCAGATAGAATAGAGC GGTCAACGGAAAAGGCATCGATACGATGAGCGTGAAGGGAAGTAATCAATTCTGGGTAGG AACCAAGTTCGACGAATTAAACTTCAGACCTTTCTTTTTACCCAGTTCAGTAATCAGGC GTTGGGTGATAGAACCTTGGGCGACTCCGATGGTTTTGCCGTTTAGGTCCTCAATCTTTT TGATTTTGGCAGATTTATTGACCAAAAATCCAGAAGCGTCTGTGTAGTAGGGACTGGTAA AGTTGTAGAGTTTTTTGCGTTCGTCCGTGATGGTAAAGGTCGCGATATCCATATCGACCT GTTCATTGTCTAGAAGGGGGCCGCGGGTTTGTGCTGTAACCGGCACATAGTGAATCTTGA CCTTGAGTTCATCAGCACATTTTGGCCAAGTCGGTTTCGATACCAGAATAAGTACCGG TCTTGGGATCTTTGTTAACCAAAATTGGGAACGTCTTTTTTGACACCCGACAACCAGTTC GCCTCTTTTTTGAATGTCTGCGATACTAGTATTAGCCTGACTAGGTTTTGGCAACCAGATAGGACAACCAGTTC GCCTCTTTTTTTGAATGTCTGCGATACTAGTATTAGCCTGGACTTTTTTTGGCAACAACAAGGCCCCGACAACCAAGTCGCCCCCAAAAAATCCAGAATAAAAAAGAATTCGAT

## ORF Predictions:

ORF #	Start	End	Direction	Length
1	152	646	R	165 aa

>[SEQ ID NO:131] 3860962-1 ORF translation from 152-646, direction R VSNKTFPILVNKDPKTGTYSGIETDLAKMVADELKVKIHYVPVTAQTRGPLLDNEQVDMD IATFTITDERKKLYNFTSPYYTDASGFLVNKSAKIKKIEDLNGKTIGVAQGSITQRLITE LGKKKGLKFKFVELGSYPELITSLHAHRIDAFSVDRSILSGYTS*

### Description:

cell adhesion factor PEB1 precursor - Campylobacter jejuni

Assembly ID: 3861268
Assembly Length: 1942bp

>[SEQ ID NO:42] 3861268 Strep Assembly -- Assembly id#3861268 CTCGAATTTTTGGTGCTCCAGAAACGGTTCCAGCAGGAAGCGTTGCTTTCAAGGCATCCA TGGCAGTGAGTTCTGCAAGCAAACGTCCCTTGACCACACTGGTCAAATGCATGACGTAGC GGAAGAGCTCCACCTCCATATACTTAGTAACTTGGACACTGGCCGTTTCAGAGATGCGGC CAATATCGTTACGCCCCAAGTCTACCAACATTCGATGTTCTGCTGTTTCCTTCATCAG  ${\tt AGAGGAGGTCAGTCGCCAAGGCCTTGTCTTCTCCATCCGTAGCCCCTCTTGGTCGCGTCC}$  $\tt CTGCAATCGGATTGTTAGCAGATGCCATTTTTGACAGAAACCAAACTTTCTGGACTAG$ CTCCGATGATTTGATAATCCCCAAAATCATACAAATAAAGGTAATTAGATGGATTAGTCA CGCGGAGATTTCTGTAGAAGTCAAATGGATTTCCAGTTAACTTCTGCGTGAAGAAAACGC TGGCTGAGTTACACATCGGAACATATCTCCGTTACGAATCAAGTCACGAGCTGTTTCTAC CATTCCCTCAAACTTATGTGGAGCGATATGCGGTTTGAAGTCAAGTGGTGATAAATCCAA GTCTTCAAATTCATTTGGAGCAGGAATGCGTAATTCCTCAAGCACTTGGTTCAAGGATTT TTCCAAGGCCTCTTGACTGCGCTCACTATAAAGTGCATCCTCTATGACATGTTATCTTCT CCTTCTTGTTGGTCAAAGACCATATAGCTCTCATAGACAAAGAAATGCATGTCGGGCGTC CCAATTGTATCCTCAGGGATTTGACCAATTTCTTCATAAAGCGAAATCATATCGTAACCA ACAAAACCAATGGCTCCCCCACCAAAAGGGAGGTCTGAATGGTGCTGGCTCTTATGAATC ACTTCATAAAGGAAATCCAAGGGATCCCGATCAATCGCTTGACCATTTTGATAGAGAACT CCATTTTCAAACTTAATCTCAAAAACTGGATTATAGGCTAGGATAGAAAAACGAGCTGTT TCCTTGTCTCTCGGAATACTCTCTAAAATAACCTTATGTTGCCCCTTTAAGCGCATATAA GCCAAGATTGGTGATAAGACATCTCCATGAATGATTCGTTCCATTGTCATTTCCCTTTCA GTTCTAATTCGAGTTCGTGGCGACTGTATGAAAAATCCCCCACGCAAAATAACTTGCGTGA GGACGAAATTCGCGGTGCCACCTCAATTATAGGATTTCTCCTATCTCTCATTCCTGTCTC AGATATCTCCTGTAACAGGCTGTGCGATAAAGGGCACTCCCTTGAGAATGATGTTTTCTT CTCTCGTTTCAGATGAACCCAACTTTACAGCTTTCTCTGCTTGTTTTCAGCAACCACAAG CTCTCTGTGAGAGAAAAGACTGTAATTTTTCCATCTATTATTTTTTAGCTTCTAGTAATC TGCAATCGCAGCTAGGTCCTTGCCTCCACGACCAGAGACATTGATGAAGAGATGTTCATC TCGGTACACCTTTATACTCTTCGAAAATCTCTTCAAACCGCGTCAACGTCGCCTTGCCGT AGGTATGGTTACTGACTTCGTCAGTTCTATCTGCAACCTCAAAACAGTGTTTTGAGCTGA CTTCGTCAGTCTTATCGACAACCTCAAAACAGTGTTTTGAGCAGCCTGCAGCTAGTTTCC TAGTTTGCTCTTTGATTTCATTGAGTATTATTTCATTTTCTCCTGCAATTGAATTCTTG  $\tt CTCAGCTTTTTGTCTTTTTTTTTTAAAATCAAAGTAGCTCTTTTGTTAATAACTCGAT$ CAACAACATCGTGGTACAAGTATCTACTTTGAAATTTATCAACCACTTAACAACTGATA CTGTATTTCTAGGAAAACGATGACATTCTTCCTAATAAAACTTCTCATATATAGCATAAA TTTCTACTCTTTTTAATTCGAT

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	457	645	R	63 aa

>[SEQ ID NO:132] 3861268-1 ORF translation from 457-645, direction R VLEELRIPAPNEFEDLDLSPLDFKPHIAPHKFEGMVETARDLIRNGDMFRCVTQPAFSSR

RS*

Description:

ANTHRANILATE SYNTHASE COMPONENT I (EC 4.1.3.27). - LACTOCOCCUS LACTIS (SUBSP. L ACTIS) (STREPTOCOCCUS LACTIS).

Assembly ID: 3861270 Assembly Length: 1048bp

>[SEQ ID NO:43] 3861270 Strep Assembly -- Assembly id#3861270 CTGTTAAGATTGTTTCCGTGCATCCACATAGGATTTACCTTGTCTGTATGGGCCAATTCA CCCATCAAAACGCCATAGGTCTCATCTGTCAAGATACTAGACATACCGATATTGTACCAA AGACTGGTATGACGGAAATAAGTCGATGCGTGTAAACTCAACAAAAAGAGACGCAAGTTG ATTAGAAAAACCGTCATAGCAATAGCTGCCACAGGAGCTTGAACCACAATCAGTGCCAAC ATGGCAAACTGGGCACTCCCAGCATAAACAAAGAGACTCATCAAGCCCATCTCAACAGGT GTCACATAGGGCGCACCGATAGTCCCACAGGCCAGGCCGATACTGACATAGCCAAGAGCC TTGTCTTAATAATACTCAATGAAAATCAAAGAGCAAACTAGGAAATTAGCCGCAGGNTGC TCAAAACACCGTTTTGAGGTTGCAGATAGAAACTGACGAAGTCAGCTCAAAACACCGTTT TGAGGTTGCAGATAGAACTGACGAAGTCAGTAACATATATACGGCAAGGCGACGTTGACG TGGTTTGAAGAGATTTTCGAAGAGTATTAGAAAATGCCGATAAGGGTCTGCATACCAAGG CTGGTGAGGATGATGGCAATCCAGCAGACGGCTCCGAGAACAATGGATTTTCCACTGGAT TTGACCATAGCGACCAGATTAGTTTTGAGACCGATGGCACTCATGGCCATGATAATGAGG AATTTAGAGAGTTGTTTGAGAGGGGTAAAGAAACTACTAGACACCCGAGAGAGGTCAGA  ${\tt AGGGTGGTTAGGAGCGATGCAAGGATGAAGTAAAAGGATAAAAAGTGGGAAGACTTTTTTC}$ AGTTGTAAGCCTTGCTTATTTTTTTGCTCGCGACTTTGCCAGTAGGAGAAAGAGAGTG ATGGGGATGATAGCTAGGGTGCGCGTGAGTTTGACAATGGTTGCGGATTCGAGGGTATTG GTCTGGTAGAGACTGTCCCAAGCGCTAG

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	627	824	R	66 aa

>[SEQ ID NO:133] 3861270-1 ORF translation from 627-824, direction R VSSSFFTPLKQLSKFLIIMAMSAIGLKTNLVAMVKSSGKSIVLGAVCWIAIILTSLGMQT LIGIF*

Description:

unknown

Assembly ID: 3861288 Assembly Length: 1571bp

>[SEQ ID NO:44] 3861288 Strep Assembly -- Assembly id#3861288 AGAGCTGGTAATATTCCCAAAGAAACGGCTCAAATCGAATTAGAAAGCCTTCTGCAAAAA GGAATCCCAGTCGCTCTGGTATCACGATGCTTTAACGGTATTGCCGAGCCTGTTTATGCC TACCAGGGTGGGGCGTACAGTTGCAAAAAGCAGGCGTTTTCTTTGTTAAAGAACTCAAC GCCCAAAAAGCCCGCTTGAAACTCCTCATCGCCCTCAATGCCGGACTAACAGGACAGGCT TTGAAAGACTATATGGAAGGCTAATACTCTTCGAAAATCTCTGCAAACCACGTCAGCGTC GCCTTACCGTATGTAGAGCACAAAATCAGGAAATCTTCTCGATTCCCTGATTTTTTCTAT TTACGTTTTCGTGTTGAGCTACGTTCTGTCAAACCATGAGGTAAGAGAACTTCACGTTCT TCCAACTCTTCCTTATGCATAATCTTGGTCAACATACGCATACTAATGGCACCAAGGTCA TAAAGAGGTTGGGCAATCGTTGTCAAGTTTGGACGGGTAAAGCGTGAGATTTGTGAATCA TCACTAGTAATAATTCGATAATCTTCTGGCACAGAAACACCTTATCAGCCAAACCGTTCA AGACTCCTGCTGCCAACTCATCACCTGTCACAACTGCTGCAGTTGCATTTGATGAAATCA AACGCTCTGCTAAGGCGTAACCATCATCATAGCTATATTTAGATTCAAATACCAAACCCT CACTATAAGCGATTCCTGCTTTTTTCAAGGTTTCCTTGTAGCCAACTAAACGAACCTTAC CATTGATGTCATCCACTAGCGGACCGCTAACGAAAGCAATACGCTCATTTTCTTTAGCAA GGTAACTCACTGCATCAATTGTTGCTTGCTTATAGTCAATATTGACACTTGGCAACTGGT GCTCAACATCGACAGTTCCTGCGAGAACAATCGGAGTACGTGAACGCGAAAATTCTGAGC GAATTTTATCTGTCAAGTGATAACCCATATAGATAATGCCATCTACCTGCTTTGAAAAGA GGGTATTGACAACAGAAACTTCTTTCTCGTTATCTTCATCGCTATTAGCTAGGACAATAT TGTACTTGTACATTCTGCAATATCATCAATCCCCTTAGCCAAACTCGAAAAATAACCAT TGGTAATATTTGGAATCACGACACCGACAGTGGTTGTCTTTTTACTTGCAAGACCACGCG CAACTGCATTTGGACGATAATCCAAACGATCAATTACCTCTAGCACTTTTTTACGGGTAT TCTCTTTTACATTTTTATTGCCATTGACCACACGGCTGACCGTCGCCATGGGAAACACCT  ${\tt CTTTCTATCTCCACACATTCTTTTACAAGTAGAAGTGCTGAATTGAAAGCTCTATATCTT}$ ACTTACAAAAATGAAGATGTGAAAATTTCGTTTTCATATTTCTACTTATTCCATTCTATC CCTAGGTTTAG

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	357	572	R	72 aa

>[SEQ ID NO:134] 3861288-1 ORF translation from 357-572, direction R VPEDYRIITSDDSQISRFTRPNLTTIAQPLYDLGAISMRMLTKIMHKEELEEREVLLPHG LTERSSTRKRK*

#### Description:

GLUCOSE-RESISTANCE AMYLASE REGULATOR. - BACILLUS SUBTILIS.

Assembly ID: 3861306

Assembly Length: 1682bp

>[SEQ ID NO:45] 3861306 Strep Assembly -- Assembly id#3861306 CTGACGTAAAAAAGATTTTCGGAAAAGTATCATCATCTATTTTAGACCATTTTCTTATAA CTCTACTTTTGAAGAATTTATTTTTCCTTACTGACAAGATTTGAGACGGTAGGAATCATT GAAAATAACCTAGCCAACATCAATCACAATCATTTCTCCTTTCTCAATTACACTAAATTA GACTTTCCTGATAGAGTTGTTCACATCTTATTTCAATTCACTATACTTTCCCTTATACTC AATGAAAATCAAAGCGCAAACTAGGAAGCTAGCCACAGGCTGCTCAAAGCACTGCTTTGA GGTTGTAGATAAGACTGACGAAGTCAGTTACATATATCTACGGCAAGGCGAAGCTGACGC GGTTTGAAGAGATTTTCGAAGAGTATAAAGTTTGTTTCTGTATCTTTCAGAAAAATAAGG TATACTGTATGTAAACGATTTCAAAGGAGTCCAGTTATGGCAAAAACATTTTTTATTCCA AATAAACAGAGCATTTTAGGAGAACAAGAGATTTTGAATGCCAAGTCGATCTTGGCTATG ATGTAGTCTATCTCCGTCAGCCTCTTAATCGTCTCGAGTATATTGAGTGTGCGATAGTGG GGCAATCACAATTTCTTTTTAAGGTCAGTTATGCTGATGGTCAAAAGGCTTACCGTGTCG ATCTTCCTGACCTACTAACAAAGACAGACTGGCAGATTATCAAGTCATTTTTAGATGTTT TGCTTGCTTATACAGGGACTGATATTGAAGGGCTAGATGGTTTTGATTTTGAAGCTTATT TCCAAGCAAGTATTCAAGCCTATCTAGCAGACCCTGTAGCTCGTTTTACGATTTGCCAAC GAATTTTTAATCCTATTTTCTTTAGTCGTGAGAACTTGAAAAGCTTTTTAGAGGCAGATG GCTTGGCTCAGTTTGAAGCGCGTGTGCGTGCGGTTCAAGAGACAGATGCCTACTTTGCGA GAGTTTCCTTCTATCAGGATGGAGAAGGAAAAGTGCATGGCGTTTACCATCTAGCTCAAG GAGTCAAGACAGTTTTACCGAGAGAACCGTTTGTTCCTGCAGCCTATATTGAGCGAATTG GTGGATAAGGAAGTCCAGTGGGAGATTGACTTGGTTCAAATCACAGGAGACGGCTCTAAA CCAGAAGACTATGAATCCATAGCTCGCTTGGACTATGCAAAATTCTTAGAGGTATTACCC CCATCTTTTTACCACCAACTAGACGCCAATCAAATAGAAATACAACCCATCCTAGGACAA GATTTTAAAACATTAGCACAAGAAAAGTAAAGCAGAAGCAGGTCAATCGACTTGCTTTTT TGACATAGAAAAATCCTGCCAAGGATGACAGGATTGCTACTCAATGAAAATCAAAGAGC AAACTAGGAAGCTAGCCGCAGGCTGTACTTGAGTACGGTAAGGCGAAGCTGACGTGGTTT GAATTTGATTTTCGAAGAGTATGAATTTTAAAGAAAGGCCAAGATACGAAGATAATCTCC AATCAGTGCCACTTCAGCTTCCAAGAAGAAGAAGATTATAACTCCCGTTCCCCAAGGACA GA

#### ORF Predictions:

ORF #	Start	End	Direction	Length	
1	717	1208	F	164 aa	L
2	1201	1410	F	70 aa	Ĺ

>[SEQ ID NO:135] 3861306-1 ORF translation from 717-1208, direction F VGQSQFLFKVSYADGQKAYRVDLPDLLTKTDWQIIKSFLDVLLAYTGTDIEGLDGFDFEA YFQASIQAYLADPVARFTICQRIFNPIFFSRENLKSFLEADGLAQFEARVRAVQETDAYF ARVSFYQDGEGKVHGVYHLAQGVKTVLPREPFVPAAYIERIGG*

Description:

unknown

>[SEQ ID NO:136] 3861306-2 ORF translation from 1201-1410, direction F VDKEVQWEIDLVQITGDGSKPEDYESIARLDYAKFLEVLPPSFYHQLDANQIEIQPILGQ DFKTLAQEK*

Description:

unknown

Assembly ID: 3861334 Assembly Length: 3041bp

>[SEQ ID NO:46] 3861334 Strep Assembly -- Assembly id#3861334 ATCGAATTAAAAATGAGGTATTCAGGCTTGTGATTTTCTATGGAAGTTAATAGTGATTGC CTCTAATGCTTACAAGTGATATTAAAAATAGAGGACCTAGTGATGTCAATCATTTCAACT GATTTAACCCCTTTTCAAATAGATGATACATTGAAAGCAGCCTTGCGAGAAGATGTTCAT TCCGAAGATTACAGTACCAATGCCATTTTTGATCATCATGGCCAAGCCAAGGTGTCGCTT TTTGCCAAGGAAGCTGGTGTTTTAGCGGGGCTAACCGTTTTTCAAAGGGTTTTTACCCTA TTTGATGCCGAGGTGACCTTCCAGAATCCTCATCAATTTAAGGATGGGGATCGTTTGACT AGTGGCGATTTGGTTTTAGAAATCATAGGCTCGGTGAGAAGTCTCTTAACATGTGAACGC GTTGCCTTGAATTTTTTACAACATTTATCAGGGATCGCTTCGATGACAGCTGCTTATGTA GAAGCCTTAGGCGATGATTGCATTAAGGTATTTGATACTCGAAAAACTACTCCTAATTTA CGTCTTTTTGAGAAATATGCCGTGAGAGTTGGCGGTGGCTATAATCATCGCTTTAATTTA ATTGCTCAAGCGCGTGCCTATGCTCCTTTTGTGAAAATGGTCGAGGTGGAAGTGGAAAGC CTTGCTGCTGCCGAAGAAGCTGCGGCGGCGGTGCTGATATTATCATGTTGGATAATATG TCATTGGAACAGATTGAACAGGCCATTACCCTAATTGCAGGACGTTCTCGGATTGAATGT TCCAGTGGTAGTTTAACCCATAGTGCTAAGAGTCTTGATTTTTCCATGAAGGGTTTAACC TACCTTGATGTCTAAGTTGTAAAATAAACTAACTTTTTAAAGGATGTCTTTCCTCTAGAA CGAGTTTTATGTCAGATAGTTTAAACGCCTCTTCAAATATAGTAAAATGAACCAAAAATA GTACACAATGTGGTATAATCTTCTTATGGCATATTCAATAGATTTTCGTAAAAAAGTTCT TTCTTATTGTGAGCGAACAGGTAGTATAACAGAAGCATCACACGTTTTCCAAATCTCACG TAATACCATTTATGGCTGGTTAAAGCTAAAAGAGAAAACAGGAGAGCTAAACCACCAAGT AAAAGGAACAAAACCAAGAAAAGTTGATAGAGATAGACTTAAAAACTATCTTACTGACAA TCCAGACGCTTATTTGACTGAAATAGCTTCTGAATTTGGCTGTCATCCAACTACCATCCA CTATGCGCTCAAAGCTATGGGCTACACTCGAAAAAAGGACCACCTACTATGAACAAGA CCCAGAAAAAGTAGCCTTATTTCTTAAAAATTTTAATAGTTTAAAGCACCTAGCACCTGT TTAGATTGATGAAACAGGATTCGATACTTATTTTTATCGAGAATATGGTCGCTCATTAAA AGGTCAGTTAATAAGAGGTAAAGTATCTGGAAGAAGATATCAGAGGATTTCTTTGGTTGC AGGTCTAACAAATGGTGAGTTAATCGCTCCAATGACTTACGAAGAGACGATGACGAGCGA

CTTTTTTGAAGCATGGTTTCAGAAGTTTCTCTTACCAACATTAACCACACCATCGGTTAT TATTATGGATAATGCAAGATTCCATAGAATGGGTAAGTTAGAACTTTTATGCGAGGAGTT TGGGCATAAACTTTTACCTCTTCCTCCCTACTCGCCTGAGTACAATCTTATTGAGAAAAC ATGGGCTCATATCAAAAAGCACCTCAAAAAGGTATTACCAAGTTGCAATACCTTTTATGA GGCTCTTTTGTCCTGCTCTTGTTTCAATTGACTATAGTTCACGGATACAGTTGGGAAAGA AGTTAAATGTAGTTGGATTTCCACTAAAGGTTGATGAGTAAGTTTTTGTATCTGAACCTG ATTGGCCGCAAGCAGCTAAAAGCAAAGCAGATGCAAAAGTCAGACCTGCACCAAGGACAC GCTTCTTTATGTTCATCTTCTTCTCCTTAATAGTGGGAATTTGTAAAGTTAATTGAATT TCAAGAATGAAGGTTTTATAAAACTTTGGTTATAAAAAAACAAAGGATTTCTGTCTTTTATA CAGTCCTCCCTTGTTTTATACGATTTCAATTTTTAAATTTTTCTGCAAAAAAATATTTAT AGTAATTCCACACAGAAAGCATCCCATGGAACTAAGATTTGTTTTTCAAAGACTTCTTGA GCTAGGGTGTTTTCAATCAAGACAGATTTGACTTTTCCTTCTACTGTCAAGTCTTGCTCT TCATTGGACAAGTTAGCCACAACTAGGAAGCGACGGTCGCCATCCTTACGTATATAAGCA AAGACCTTATCAGCCGTATCAAGCAATTCAAAGTCAGCTCGAATTAGCCAACTATTCTCC TTGCGAATTTGGACCAGTTTCTGATAGGTATAGAAAATAGAATCTGGATTTGCCAGCGCT AAACCAGCGTTTTTGCTCTCGTCCCATTGCATAGGGGGTACGGGCATTGTCACGTCCAATA ACACGGATACTGTCCATGATTTCTTGCATCGGAACACCTTTTTCAAGAGCCTCACGCGCA TAGTTGAGAGATTCAATATCTTCTACTTGATCCAGTGTTTCAAACGGATAGTTGGTCATC CCAATCTCCTCACCTTGGTAGATATAAGGAGTTCCTCTCATAAGATGAAGCAAGATTGCA AAGGCTTTGGCAGATTTTTCGCGGTATTCTTGGTCATTTCCCCAGATTGAGACAATACGA GGGAGGTCATGGTTGTTCCAGAAGAGGGAATTCCAGCCGTCCTCAACTCCTAACTCTGTC TGCCATTTGTTGAAGATTTCTTTTAACTTAGCGATATTCAG

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	76	975	F	300 aa

>[SEQ ID NO:137] 3861334-1 ORF translation from 76-975, direction F VILKIEDLVMSIISTDLTPFQIDDTLKAALREDVHSEDYSTNAIFDHHGQAKVSLFAKEA GVLAGLTVFQRVFTLFDAEVTFQNPHQFKDGDRLTSGDLVLEIIGSVRSLLTCERVALNF LQHLSGIASMTAAYVEALGDDCIKVFDTRKTTPNLRLFEKYAVRVGGGYNHRFNLSDAIL LKDNHIAAVGSVQRAIAQARAYAPFVKMVEVEVESLAAAEEAAAAGADIIMLDNMSLEQI EQAITLIAGRSRIECSGNIDMTTISRFRGLAIDYVSSGSLTHSAKSLDFSMKGLTYLDV*

### Description:

PROBABLE NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE (CARBOXYLATING) (EC 2.4.2.19) (QUINOLINATE PHOSPHORIBOSYLTRANSFERASE (DECARBOXYLATING)) (QAPRTASE) (FRAGMENT). - BACILLUS SUBTILIS(BLAST)

Assembly ID: 3864148
Assembly Length: 4694bp

>[SEQ ID NO:47] 3864148 Strep Assembly -- Assembly id#3864148 TTAATTTAAATTCTTAAAATTTTTTCATAATAATCTCCCTATAAAAATAAAGTCGCCCAA AGAAGAAAATGGGGAAATATGGTATAATGAAACGATAGATTTTTGAATAGGAATAAGATC ATGTTTGGATTTTTAAGAAAGATAAAGGCTGTGGAAGTAGAGGTTCCGACACAGGTTCC TGCTCATATCGGCATCATCATGGATGGCCAATGGCCGTTGGGCTAAAAAACGTATGCAACC GCGAGTTTTTGGACATAAGGCGGGCATGGAAGCATTGCAAACCGTGACCAAGGCAGCCAA CAAACTGGGCGTCAAGGTTATTACGGTCTATGCTTTTTCTACGGAAAACTGGACCCGTCC AGATCAGGAAGTCAAGTTTATCATGAACTTGCCAGTAGAGTTTTATGATAATTATGTCCC GCAAACCTTCGAAGCTTTAACCAAGGCTGAGGAATTGACTAAGAACAACACACGGATTGAT TCTTAATTTTGCTCTTAACTATGGTGGACGTGCTGAGATTACACAGGCGCTTAAGTTGAT TAACTATCTCTTTACCCAGCATTTGCCTAAGGACTTACGAGACCCAGACTTGATTATCCG TACTAGTGGAGAATTGCGTTTGAGCAATTTCCTTCCATGGCAGGGAGCCTATAGTGAGCT TTATTTTACGGACACCTTATGGCCTGATTTTGACGAAGCGGCCTTGCAGGAAGCTATTCT TGCCTATAATCGTCGCCATCGCCGATTTGGAGGAGTTTAGGAGGAAATATGACCCAGGAT TTACAGAAAAGAACCTTGTTATGCAGGGATTGCCCTGACTATTTTCCTACCAATTTTAAT GATTGGGGGCTCTTGCTTCAGATAGCAATCGGAATCATANCCATGCTAGCCATGCATGAA CTTTTGAAGATGAGAGGTCTAGAGACCATGACGATGGAGGCCTCTTGACCCTCTTTGCAC NTTNGTATTGACCATTCCCCTGGAATCGAATTACCTGACTTTTTTTGCCAGTTGATGGGAA TGTGGTTGCCTATAGTGTTTTGATTTCAATCATGTTAGGAACGACCGTTTTTAGCAAGTC TTATACGATTGAGGATGCGGTTTTCCCTCTTGCTATGAGCTTCTACGTGGGCTTTGGATT TAATGCTTTACTAGATGCTCGTGTTGCAGGTTTGGACAAGGCTCTCTTAGCCTTGTGTAT CGTCTGGGCGACAGACAGTGGTGCCTATCTTGTTGGGATGAACTATGGGAAACGAAAGTT AGCACCAAGGGTATCGCCTAATAAAACCCTTGAGGGTGCCTTGGGTGGTATTTTAGGAGC AATTTTAGTAACCATTATCTTTATGATAGTTGACAGTACAGTTGCTCTTCCATATGGAAT TTACAAGATGTCAGTCTTTGCTATTTTCTTTAGCATTGCTGGACAATTTGGTGATTTACT AGAAAGTTCGATCAAACGTCATTTTGGTGTTAAGGATTCTGGGAAATTTATCCCTGGACA TGGTGGTGTTTTGGATCGTTTCGATAGTATGTTGCTTGTATTTCCAATCATGCACTTATT TGGACTCTTTTAATCAAAAGACGGAGGAAACGCTATGCTCGGAATTTTAACCTTTATTCT GGTTTTTGGGATTATTGTAGTGGTGCACGAGTTCGGGCACTTCTACTTTGCCAAGAAATC AGGGATTTTAGTACGTGAATTTGCCATCGGTATGGGACCTAAAATCTTTGCTCACATTGG CAAGGATGGAACGGCCTATACCATTCGAATCTTGCCTCTGGGTGGCTATGTCCGCATGGC CGGTTGGGGTGATGATACAACTGAAATCAAGACAGGAACGCCTGTTAGTTTGACACTTGC TGATGATGGTAAGGTTAAACGCATCAATCTCTCAGGTAAAAAATTGGATCAAACAGCCCT CCCTATGCAGGTGACCCAGTTTGATTTTGAAGACAAGCTCTTTATCAAAGGATTGGTTCT GGAAGAAAAAAACATTTGCAGTGGATCACGATGCAACGGTTGTGGAAGCAGATGGTAC TGAGGTTCGGATTGCACCTTTAGATGTTCAATATCAAAATGCGACTTTATCTGGGGCAAA CTGATTACCAATTTTGCAGGTCCTATGAACAATTTTATCTTAGGTGTTGTTGTTTTTTGG GTTTTAATCTTTATGCAGGGTGGTGTCAGAGATGTTGATACCAATCAGTTCCATATCATG CCCCAAGGTGCCTTGGCCAAGGTAGGAGTACCAGAAACGGCACAAATTACCAAGATTGGC

TCACATGAGGTTAGCAACTGGGAAAGCTTGATCCAAGCTGTGGAAACAGAAACCAAAGAT GTTACACCCGAAGATAGTCAAGGTCGTTACCTTCTAGGTGTTCAACCGGGGGTTAAGTCA GATTTTCTATCCATGTTTGTAGGTGGTTTTACAACTGCTGCTGACTCAGCTCTCCGAATT CTCTCAGCTCTGAAAAATCTGATTTTCCAACCGGATTTGAACAAGTTGGGTGGACCTGTT GCTATCTTTAAGGCAAGTAGTGATGCTGCTAAAAATGGAATTGAGAATATTCTTGTACTT CTTGGCAATGATTTCCATCAATATTGGGATTTTTAATCTTATTCCGATTCCAGCCTTGGA TGGTGGTAAGATTGTGCTCAATATCCTAGAAGCCATCCGCCGCAAACCATTGAAACAAGA AATTGAAACCTATGTCACCTTGGCCGGAGTGGTCATCATGGTTGTTGATGATTGCTGT GACTTGGAATGACATTATGCGACTCTTTTTTAGATAATCGAGGAATATTATGAAACAAAG TAAAATGCCTATCCCAACGCTTCGCGAAATGCCAAGCGATGCTCAAGTTATCAGCCATGC TCTTATGTTGCGTGCTGGTTATGTTCGCCAAGTTTCAGCAGGTGTTTATTCTTATCTACC ACTTGCCAACCGTGTGATTGAAAAAGCTAAAAACATCATGCGCCAAGAATTCGAAAAGAT TGGTGCTGTTGAGATGTTGGCTCCAGCCCTTCTTAGTGCAGAATTGTGGCGTGAATCAGG TCGTTACGAAACCTATGGTGAAGACCTTTACAAACTGAAAAACCGTGAAAAATCAGACTT TATCTTAGGTCCAACTCACGAAGAAACCTTTACAGCTATTGTCCGTGATTCTGTTAAATC TTACAAGCAATTGCCACTCAACCTTTATCAAATTCAGCCCAAGTATCGTGATGAAAAACG CCCACGTAATGGACTTCTTCGTACACGTGAGTTTATCATGAAGGATGCTTATAGTTTCCA CGCTAACTATGATAGTTTTGGATAGTGTTTATGATGAGTACAAAGCAGCCTATGAGCGTAT TTTCACTCGTAGTGGTTTAGACTTCAAGGCTATTATTGGTGACGGTGGAGCCATGGGTGG TAAGGATAGCCAAGAATTTATGGCCATTACATCTGCTCGTACAGACCTTGACCGCTGGGT TGTCTTGGACAAGTCAGTTGCCTCATTTGACGAAATTCCTGCAGAAGTGCAAGAAGAAAT CAAGGCAGAATTGCTCAAATGGATAGTCTCTGGTGAAGATACCATTGCTTACTCAAGTGA GTCTAGCTATGCAGCTAACTTAGAAATGGCAACAAACGAGTACAAACCAAGCAACCGTGT TGTCGCTGAAGAAGAAGTTACTCGTGTTGAAACGCCAGATGTTAAATCAATTGATGAAGT TGCAGCCTTCCTCAATGTTCCAGAAGAACAAACGATTAAAACCCTCTTCTACATTGCAGA TGGTGAGCTTGTTGCAGCCCTTCTAGTTGGAAATGACCAACTCAACGAAGTCAAGTTGAA AAATCACTTGGGAGCAAATTTCTTTGACGTTGCTAGCGAAGAAGAAGTGGCGAATGTTGT TCAAGCAGGATTTGGTTCACTTGGACCAGTTGGTTTGCCAGAGAATATTAAAATTATTGC AGATCGTAAGGTGCAAGATGTTCGCAATGCAGTTGTCGGTGCTAACGAAGATGGCTACCA CTTGACTGGTGTGAACCCAGGCCGTGATTTTACTGCAGAATATGTGGATATCCGTGAAGT TCGTGAGGGTGAAATTTCCCCAGATGGACAAGGTGTCCTTAACTTTGCGCGTGGTATTGA GGATGAAAATGGTCGTGCTGTGCCAATCATCATGGGATGTTACGGTATCGGTGTCAGCCG TCTTCTTTCAGCAGTGATGGAGCAACACGCTCGCCTCTTTGTTAACAAAACGCCAAAAGG TGAATACCGTTACGCTTGGGGAATCAATTTCCCTAAAGAATTGGCACCATTTGATGTGCA TTTGATTACTGTTAATGTCAAGGATGAAGAAGCGCAAGCCTTGACAGAAAAACTTGAAGC AAGCTTGATGGGAG

ORF #	Start	End	Direction	Length
1	212	940	F	243 aa

ORF Predictions:

75

2	1202	1753	F	184 aa
3	2750	3037	F	96 aa

>[SEQ ID NO:138] 3864148-1 ORF translation from 212-940, direction F VEVEVPTQVPAHIGIIMDGNGRWAKKRMQPRVFGHKAGMEALQTVTKAANKLGVKVITVY AFSTENWTRPDQEVKFIMNLPVEFYDNYVPELHANNVKIQMIGETDRLPKQTFEALTKAE ELTKNNTGLILNFALNYGGRAEITQALKLISQDVLDAKINPGDITEELIGNYLFTQHLPK DLRDPDLIIRTSGELRLSNFLPWQGAYSELYFTDTLWPDFDEAALQEAILAYNRRHRRFG GV*

### Description:

unknown

>[SEQ ID NO:139] 3864148-2 ORF translation from 1202-1753, direction F VVAYSVLISIMLGTTVFSKSYTIEDAVFPLAMSFYVGFGFNALLDARVAGLDKALLALCI VWATDSGAYLVGMNYGKRKLAPRVSPNKTLEGALGGILGAILVTIIFMIVDSTVALPYGI YKMSVFAIFFSIAGQFGDLLESSIKRHFGVKDSGKFIPGHGGVLDRFDSMLLVFPIMHLF GLF*

### Description:

CDP-diglyceride synthetase (cdsA) homolog - Haemophilus influenzae (strain Rd K W20)

>[SEQ ID NO:140] 3864148-10 ORF translation from 2750-3037, direction FVDLLLSLRQVVMLLKMELRIFLYFLAMISINIGIFNLIPIPALDGGKIVLNILEAIRRKP LKQEIETYVTLAGVVIMVVLMIAVTWNDIMRLFFR*

#### Description:

unknown

Assembly ID: 3864172 Assembly Length: 1352bp

>[SEQ ID NO:48] 3864172 Strep Assembly -- Assembly id#3864172 CTCGTAAGTTCGGAAGCTATCTACACAAGAAATTAACCGCTGCCTAAAGGAGAAGCCATG TCAACATATAACTGGGATGAGAAGCCATATCCTTACCTTTCCTGAAGAAAAAGTAGCCCTT TCTACTAAGGATGTCCATGTTTACTATGGTAAAAATGAATCCATTAAGGGGATTGATATG CAATTTGAAAGAAAAATTACAGCTTTGATTGGTCCGTCGGGATCGGGGAAATCTACC TACTTACGCAGTCTCAATCGCATGAATGATACCATTGATATTGCTAAAGTAACTGGGCAG ATTCTCTATCGTGGAATTGATACCGTCCAGAAATCAACGTTTATGAAATGCGTAAA CACATTGGAATGGTTTTCAACGCCCCAATCCATTTGCTAAATCGAATTTACCGTAATAT TACCTTTGCGCATGAACGTGCTGGAGTTAAGGATAAGCAAGTCCTAGATGAAATCGTAGA AACCTCCCTTAGTCAGGCTGCCCTTTGGGGATCAGGTTAAAGACGATCTCCACAAGTCAGC

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	311	862	F	184 aa

>[SEQ ID NO:141] 3864172-2 ORF translation from 311-862, direction F VELMSTVQKSTFMKCVNTLEWFFNAPIHLLNRIYRNITFAHERAGVKDKQVLDEIVETSL SQAALWDQVKDDLHKSALTLSGGQQQRLCIARAISVKPDILLMDEPASALDPIATMQLEE TMFELKKNFTIIIVTHNMQQAARASDYTGFFYLGDLIEYDKTATIFQNAKLQSTNDYVSG HFG*

#### Description:

HYPOTHETICAL ABC TRANSPORTER (ORF75). - BACILLUS SUBTILIS. (BLAST)

Assembly ID: 3864180 Assembly Length: 2258bp

AGCCGTTACTCAAATAGTCGAAGTCGGAACTATGGTAACACATGTAGGCGATGAAAACGG ACAAGCCGCTATTGCTGAAGAAAACCAAAACTAGAAATCCTAAGCCAACCAGCTCCTGC TGAGGAAAGCAAAGCTCTTCCTCAAGATCCAGCTCCTGTGGTAATAGAGAAAAACTTCC TGAAACAGGAACTCACGATTCTGCAGGGACTAGTAGTCGCAGGACTCATGGCCACACTAG CAGCCTATGGACTCACTAAAAGAAAAGAAGACTAAGTCTTTTCGATAAAAAATAAACAGC GAGATTGAAGCTCGCTGTTTATTTTTTAATTAATCACCTAGTCCAAGACGTTCAAAGATA TCATCCACTCGTTTGGTGTAATAAACTGGGTTGAAGATTTCATCGATTTCTTGTGTG AGACGTGATGTTACTTCTGAATCTGCCTCAAGAAGTGGTTTAAAGTCTACTTGGTTGTCC CAAGAGTAGGCTGTTTTTGGTTGCACCAAGTCATAGGCTTGCTCACGGGTCATGCCTTTT TCAATCAATGTCAACATAGCCCGTTGGCTAAAGATAAGACCAAAAGTCGAGTTCATGTTT CGGATCATATTTTCTGGGAAGACTGTCAAGTTCTTGACGATATTTCCAAAACGGTTGAGC ATATCGCGTTCGTGCCAGAGAGCGACGTTTTCATAAGCCGTAATCATGTGACCACGAATG ACACGCGCCAGACCAGTCATATTTTCAGAACCGATTGGGTTGCGTTTGTGAGGCATTGCT GAAGACCCTTTTTGCCCTTTAGCAAAGAACTCTTCTACTTCGCGTTGCTCAGATTTTTGT AGACCACGAATCTCAGTCGCCATACGTTCGATTGAAGTCGCAATGCTGGCAAGAACCGCA AAGTACTCAGCGTGAAGGTCACGAGGAAGGACTTGTGTTAAAGATTCCTTGGGCACGGAT GCCAAGATTTATCGCAGACATACTCCTCTACAAATGGTGGGATATTGGCAAAGTTCCCAA CCGCACCAGAAATCTTACCAGCTTCTACACCAGCAGCCGCATGCTCGAAGCGCTCGATAT TGCGTTTCATTTCGCTGTACCAAGTTGCTAATTTAAGACCAAAGGTTGTCGGCTCAGCGT GCACACCATGAGTACGCCCCATCATGATGGTGAACTTGTGCTCCTTGGCCTTGTCAGCGA TGATATTAGTGAAGTTTTCAAGGTCACGACGGATGATGTCGTTGGCCTTGTTAGAGGT AACCATAAGCAGTATCCACCACGTCGGTAGAAGTTAACCCATAGTGAACCCACTTGCGCT CTTCACCAAGAGTCTCAGAAACCGCACGCGTGAAAGCCACCACATCGTGGCGCGTCTCCT GCTCAATTTCCAAAATACGGTCGATGTCAAAGTCCGCCTTCTTGCGAATCAAAGCCACAT CTTCCTTAGGGATTTCCCCCAACTCAGCCCATGCCTCGTCAGAGAGGATTTCCACCTCAA GCCAAGCACGGTATTTATTTTCTTCACTCCAAATATTCGCCATCTCAGGGCGAGAGTAAC GGTTGATCATGTGTTAATTTTTCCTTTCTTTAAGAT

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	930	1616	R	229 aa

>[SEQ ID NO:142] 3864180-2 ORF translation from 930-1616, direction R VPKESLTQVLPRDLHAEYFAVLASIATSIERMATEIRGLQKSEQREVEEFFAKGQKGSSA MPHKRNPIGSENMTGLARVIRGHMITAYENVALWHERDISHSSAERIITPDTTILIDYML NRFGNIVKNLTVFPENMIRNMNSTFGLIFSQRAMLTLIEKGMTREQAYDLVQPKTAYSWD NQVDFKPLLEADSEVTSRLTQEEIDEIFNPVYYTKRVDDIFERLGLGD*

# Description:

ADENYLOSUCCINATE LYASE (EC 4.3.2.2) (ADENYLOSUCCINASE) (ASL). - BACILLUS SUBTIL IS.

Assembly ID: 3864184 Assembly Length: 4392bp

>[SEQ ID NO:50] 3864184 Strep Assembly -- Assembly id#3864184 CCCTTTTGCCTCTCTTTGGTGCAGATTCTTTTGGGAATTGTGATTGGTCTCTTTTTAC  $\tt CCAATACTGACTTTCATCTTAATACGGAGTTGTTTTTGGCCTGGTTATCGGACCCTTGCT$ TTTCCGAGAGGCTGAAGAAGCAGATGTTACGGCTATTTTAAAACACTGGCGAATCATTGT TTATCTCATATTTCCAGTGATTTTTATCTCGACCCTGAGTTTGGGTGGCTTGGCCCATCT TCTTTGGTTCAGCCTTCCCTTGGCAGCTTGCTTGGCTGTTGGGGCAGCCCTTGGTCCTAC GGACTTGGTGGCCTTTGCCTCTTTTCGGAGCGTTTTAGCTTTTCCTAAGCGCGTGTCCAA TATTCTTAAGGGCGAAGGACTCTTGAATGATGCTTCTGGTTTGGTGGCTTTTCAGGTAGC TTTGACAGCTTGGACAACTGGAGCTTTTTCTCTGGGGCAAGCTAGCAGTTCGCTCATCTT TTCAATCCTAGGCGGTTTTTTAATTGGATTTTTAACAGCCATGACCAACCGCTTCCTCCA TACCTTCTTGCTAAGTGTGCGCGCAACGGATATTGCCAGTGAACTTTTATTAGAATTCGA GTTTGCCTCTAGTGACCTTCTTTCTGGCAGAAGAAGTCCATGTTTCAGGGATTATTGCCG TCGTAGTTGATCGAATTTTAAAGGCAAGTCGCTTCAAGAAAATCACGCTCCTCGAAGCCC AAGTGGATACGGTGACCGAGACGGTCTGGCATACAGTGACCTTTATGCTCAACGGTTCTG TCTTTGTGATTTTAGGGATGGAGTTGGAAATGATAGCAGAACCTATCTTGACCAATCCAA TCTATAATCCTCTACTTTATTGCTATCTCTCATCGCCCTTACCTTTGTCCTCTTTGTCA TTCGTTTTATTATGATCTATGGCTATTATGCCTATAGAACCCGACGCCTAAAGAAAAAGC TAAATAAGTATATGAAGGACATGTTTCTCTTGACCTTTTCAGGTGTTAAGGGAACGGTGT CGATTGCTACGATTCTCTTGATACCAAGTAATCTAGAACAGGAGTATCCTCTTTGCTTT TCCTTGTTGCAGGTGTGACGCTTGTCAGCTTTTTAACAGGTCTCTTGGTCTTGCCTCATC TAACGCTAGAGTTGGAAAAAGAGTTGGAAGACACCAGAAATAAACTTCCCCTCTATGCGG CTATTGACAATTCGATCATGGACGTATTGAAAATCTCATTTTAAGCCAAGAAAACCAGGA TGATCAAGAAGACTGGGCTGCTTTGAAAATCGAATTCTTAGTATTGAAAGTGATGGTTTG GAACAGGCCTATGAAGAGGGGAACATTAGCAATCGTGCTTACCGAGTTTACCAACGTTAT CTGAAAAATATAGAACAAGGAATCAATCGTAAACTTGCCTCAAGACTGACCTATTATTTT CTTGTTTCCTTGAGGATTTTACGTTTTCTTCTTCATGAAGTTTTTACTCTTGGAAAGACC TTCCGTAGCTGGAAGGACAAGGCAAAGCCGTCTCCGTGCTCTTGATTATGACCAAATT GCAGAGCTCTATCTTGCCAATACAGAGATGATTATTGAAAGTTTGGAAAACCTGAAGGGA GTCTACAGACGCTCTTTGATTAGTTTTATGCAGGAGTCTCGTCTTCGAGAAACAGCTATT ATCAGCAGTGGTGCCTTTGTCGAACGGGTTATCAATCGTGTCAAACCCAACAATATCGAT GAAATGCTGAGAGGCTATTATCTGGAGCGCAAGTTGATTTTCGAATACGAAGAAAAACGA TTGATTACGACTAAGTATGCCAAGAAATTACGACAAAATGTAAATAACTTAGAGAACTAT TCCTTGAAGGAAGCTGCCAATACCCTGCCGTATGATATGGTGGAATTGGTAAGAAGAAAT TAGTTAATACTCTTCGAAAATCTCTTCAAACCACGTCAGCGTCGCCTTGGATTATATATG TGACTGACTTCGTCAGTTTCATCTACAACCTCAAAGCAGGGCTTTGAGCAACCTGCGGCT AGCTTCCTAGTTTGCTCTTTGATTTTCATTGAGTATAAGATTGTAAGTGAAGGAGTGTGA CATGAAAAAATGGGGAAAGAGCCTGAACTAGTCCTGTCTACTTTTACCCAATCACACTTC CATTTGGTACAGCTGGATCAACTGTGAGAAGGGATCGAATTTGCCATCATGTTCAGCTGA

GAGAATCATACCCTGGCTGACATATTTTTCATCATTTTACGTGGTTTGAGGTTAGCAAC GATTTGAACTTTCTTGCCGACCAATTCTTGTTCATTTGGATAGTATTTTGCAATTCCTGA AAGAATCTGACGATCTTCTCCATCACCAGCATCCAAGCGGAATTGAAGCAACTTATCTGA ACCTTCTACTTTAGACACTTCTTTGACTTCTGCGACACGGATTTCAACCTTGTCAAAGTC TTCAAACTTGATTTCATCCTTGTTTAGTTTGAGCTCAACTTCGTCCGGATTCCATTCTTT TTCGACTGCTGGTTTATTGCCTTCCATTTGTTCCTTGATATAGGCGATTTCTTCCAT ATTTAGACGTGGAAAGATAGGTGTTCCTTTGGCAACTACAGTCACATCTGCTGGGAAGTC AGCCAAACTCAAGTTTTCAAGACTAGAAACTTCTTCCAAACCAAGTTGAGTCAAAACTGC CAAGTGGCTCATGACACTTGCCAATTGGTCACGAAGAGCTTCATCCTTGTCCAAGACCCA TGGTGCAGTCTCATCGATGTATTTATTGGTACGAGAGTCAGAGTCCAGACTGCTTCAAG AACCTCAGCAAGAACATGATCAAATTCAGTCACACCTTCTACATAGGCAGGGATTTGTCC ATCAAAGTACTTATTAATCATGGAAACCGTACGGTTAAGGAGGTTCCCAAGGTCATTAGC CAATTCATAGTTGATACGACCGACATAGTCTTCAGGAGTAAAGGTTCCGTCTGAACCAAC TGGAAGGTTACGCATGAGGTAGTAACGAAGTGGATCTAGTCCATAACGCTCTACCAACAT TTCAGGGTAAACGACATTCCCTTTTGACTTAGACATTTTTCCGTCTTTCATGACAAACCA ACCATGGGCAATCAAACGATCAGGTAATTTAACATCCAACATCATAAGAAGGATTGGCCA GTAGATAGAGTGGAAGCGAAGGATGTCTTTTCCTACCATATGGAAGACTGTTCCATTCCA GAACTTGTCAAAGTTACCATGTTCGTCTTGAGCGTAGCCAAAAGCTGTCGCATAGTTAAG AAGGGCATCAATCCAAACGTAGACAACGTGTTTTTGGATTTGATGGGACAGGCACTCCCCA TGTAAAGGTTGTACGAGATACCGCCAAATCTTCCAAACCTGGCTCGATGAAGTTGCGTAG CATTTCATTAAGACGACCATCTGGCGTGATAAATTCAGGATGAGCTTTGAAAAATTCGAC CAAACGGTCTTGGTATTTGCTAAGGCGAAGGAAGTATGATTCTTCAGAAACCCATTCAAC CTCATGACCTGATGGAGCAATACCACCAGTCACATTTCCAGCTTCATCACGGAAAACTTC ACCCAAGTAGATATCATCTTGAGCAAGTAAGCGTTCAAAGACCTGTGCGACAACTTTTTC ATGGTAGTCATCGGTTGTACGGATAAATTTATCGTATGAGATATCTAGTAATTGCCAGAG TTCTTTAACTCCAACCGCCATTCCATCAACATAGGCTTGAGGTGTAATACCAGATTCGAA TTCCGCTTTCTGCTGGATTTTCTGACCATGTTCATCAAGACCTGTCAGATAAAATACATC GTAGCCCATCAGGCGTTTGTAACGTGCTAGGACATCACATGCGATAGTTGTGTAGGCAGA AGACATAATTTTCCTTTCCAGGCAAATGAAACCTGTTTTTCTAACACTTCATTATATCA CATTTTTAATGAATTTCGATAGGGAAATCCATACCAAAACAAGATAGACGAGTGTCCATC TTGTTGATCTCATAACGAAGGGCTTCAATTGGATCAAGTTTCGATGCCTTGTTGGC TGGCAAGACTCC

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	197	670	F	158 aa
2	612	1304	F	231 aa

>[SEQ ID NO:143] 3864184-1 ORF translation from 197-670, direction F VIFISTLSLGGLAHLLWFSLPLAACLAVGAALGPTDLVAFASLSERFSFPKRVSNILKGE GLLNDASGLVAFQVALTAWTTGAFSLGQASSSLIFSILGGFLIGFLTAMTNRFLHTFLLS VRATDIASELLLEFEFASSDLLSGRRSPCFRDYCRRS*

# Description:

unknown

>[SEQ ID NO:144] 3864184-2 ORF translation from 612-1304, direction F VTFFLAEEVHVSGIIAVVVDRILKASRFKKITLLEAQVDTVTETVWHTVTFMLNGSVFVI LGMELEMIAEPILTNPIYNPLLLLLSLIALTFVLFVIRFIMIYGYYAYRTRRLKKKLNKY MKDMFLLTFSGVKGTVSIATILLIPSNLEQEYPLLLFLVAGVTLVSFLTGLLVLPHLSDE EEESKDYLMHIAILNEVTLELEKELEDTRNKLPLYAAIDNSIMDVLKISF*

### Description:

unknown

Assembly ID: 3864194 Assembly Length: 1941bp

>[SEQ ID NO:51] 3864194 Strep Assembly -- Assembly id#3864194 AATTAGTATTCTCAACCTTTTTATCTTGATAGTTCAAGATGGCATTCGTTGAATTGGTAA CATAGTAACTATCCACTCCCTTCAGTTTAGCTGCCTCTTGAACCCAGGATTCTTGCGGTT TTGGCGGTTCAACAGGAATTCTTTTTCTTTTCCAGAAACCGTAAAAGCTGATTGTTTCTG AGTAAAAGACCCATCTTTACTTTTTTAGGAGAGAAAAAGACGCTAATATTTTTCTGAGA TTTAGTCATATCTTTATTGACTTGACGAGATAGGGAATCACCCAAAGCCATAATCACAAC AACTGATGAAACACCGATAATAATCCCAATCATAGTAAGCAAAGAACGCATCTTGTGAGC CATGATAGATGAAAAGGCAAATTTCAGATTCTGCATCTTAGTTTTCCTCCTTACCT GAGCACTGTCAGACGAAATGACCCCATCCCGAATGACAATCTGACGTTTGGCATAGGCAG CAATCTCAGGCTTCATGCGTTACCATGATAATGGTTTTTTCCTTCTTTATTCAAATCAACC AATAATTGCATAATTTGGTTACCTGTTTTGGTATCCAAGGCTCCTGTCGGTTCATCCGCT AGGATAATAGAAGGATTGTTTACCAAGGCACGCGCAATGGCTACACGTTGCTTTTGACCA CCAGATAATTCTGAAGGTAAATGGTGACTACGTTCTATCAATTCAACCTTGTCTAAATAT TCCTCAGCCAACTTGCGACGTTTTGAAGACGAAACTCCTGCGTAAATCAAGGGCAATTCT ACATTTTGCAGAGCATTGAGCTTCGATAGAAGAAACTGCTGAAAGACAAAACCGATT TGTTGGTTACGGACCTTAGCTAGTTGTTTTTCACCAAGCCCAGCCACTTCTTGACCTTCA AGATAATATTCTCCACTGGTTGGTGTATCCAACATGCCAATCGTATTCATCAGAGTGGAC TTACCAGACCCAGATGGTCCCATGATGGCTACAAATTCACCCTCATTCACTTCTAGATTG ATATTTTTGAGAACCTGCAGTTCTTGGTCACCATTACGGTAACTTCTGAAGATATTTTTT AGACTAATTAGTTGCTTCATCAGCCTTCACCTCTTTTTCCTTCTTCCAAGGAAGATGTTGG ATTACTGATGACCTTAGCACCGTTCGTTAAACCAGAAGTGATTTCTTGATTTTCTGCGTC AGCATTTCCCAATGAAACCTCAACTTTTTTAGCCTTTTGTTGTTCATCCACAATCCAGAC ATAATTTTTACTATCATCATTACTAGACTGCTAACAGGAACAAGAATAGCCTTAGTTTT

GCTTTTAACCTCAATGTTGACAGAAAAACCTTGTTTCAAATCACCAACCTCGCCTGTCAC
ATCAATAGTATAAGGGTATTTAGAACCTGTATTATTCCCGGCTGCTGGACTAGCTGCTTC
ACCATTGTTTTTAGGATAGTCAGAAATATAGGCTTAATTTCCCAGTCCATTTTTTTATCAG
GATACACTTTAGAAGTAAAGCTTACTTCTTGACCTACAGAAAGGTTGGCTAGATTGTACT
CAGACAATTCTCCCTTGACTTGTAAATTTTCATTGCTGACAATATGAACCATAACTTGAC
TCGCCCCTGTTGGAGATTTAGAAACATTGCTATTGACTTCGACTACAGTTCCCTCTAGGG
TACTGAGAACAGTTGTTGCATCCAATTGACTTTGAGCCTTGCTTAATTGCGCTGCAGCAT
CTGCACGCGCATCACGGGCATCACCCAATTGAGCATCAATAGAAGCAACAGAATTTCCAG
CCACTGGAGTTGGGCTTTGCACCGTTGCATCTCCTCCTACTGGCGCTGGTAACTGTG
GAGCCTGAGCTGAAGCGGCTTCATTTCGTGCTTGATTTGAGTTCATTGATATGACGATCTG
CCTTAGCTACTGCTCGACTAG

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	1084	1380	R	99 aa

>[SEQ ID NO:145] 3864194-3 ORF translation from 1084-1380, direction R VTGEVGDLKQGFSVNIEVKSKTKAILVPVSSLVMDDSKNYVWIVDEQQKAKKVEVSLGNA DAENQEITSGLTNGAKVISNPTSSLEEGKEVKADEATN*

Description: unknown

Assembly ID: 3864338 Assembly Length: 1335bp

>[SEQ ID NO:52] 3864338 Strep Assembly -- Assembly id#3864338 ATCGAATTCCCTATTTTAACACTTTCTTTTCTAAAACAGTCTATATTTTATTTCAAACTG AAAGAAAATAAGCAGTAACACTCAATGGAAATCGAAAAAGCAAACTAGGAAGCTAGCCGC AGATTGCTCAAAACACTGTTTTGAGGTTGCAGATAGAGCTGACGTGGTTTGAAGAGATTT TCGAAGAGTATAAAAAGGTGCTAGGCATGTTGATTTTTCCTTTGTTAAATGATTTGTCAA GAAAAATCATCCATATTGGACATGGATGCCTTTTTTGCTGCAGTGGAAATCAGGGATAAT CCTAAACTCAGAGGAAAACCTGTCATTATTGGAAGCGACCCTCGGCAAACAGGTGGACGG GGAGTCGTTTCTACCTGTAGTTATGAGGCAAGAGCTTTTGGTGTCCATTCTGCCATGAGT TCCAAGGAAGCTTATGAACGTTGTCCCCAGGCTGTCTTTATCTCAGGGAATTCGATGAGA AATACAAGTCTGTGGGACTCCAGATTCGAGCTATTTTTAAGCGCTATACAGATTTGATTG AACCCATGAGCATTGACGAAGCCTATTTGGATGTGACAGAAAATAAACTCGGTATCAAGT CAGCGGTCAAAATTGCTCGCCTCATTCAAAAAGATATCTGGCAAGAACTCCATCTAACTG CTTCCGCAGGCGTTTCTTACAACAATTCTTAGCTAAAATGGCGAGTGATTATCAAAAAC TTTCCAAATTTCATGGAGTAGGAAAAAAGACAGTAGAACGTCTTCATCAAATGGGCGTTT

TTACTGGTGCTGATTTACTTGAAGTTCCTGAGGTAACCCTAATAGACCGTTTTGGTAGAC
TAGGCTATGATCTGTATCGAAAGGCTCGTGGCATTCACAACTCTCCAGTCAAATCCAATC
ACATCCGTAAATCAATCGGCAAGGAGAAAACCTACGGGAAGATTCTCCGTGCTGAGGAAG
ATATCAAAAAAGAGAGCTGACTCTTCTATCAGAAAAAAGTCGCTCTCAATCTACATCAACA
AGAAAAAGCTGGAAAAAATTGTCATTTTGAAAATCCGCTACGAGGACTTTTCAACTCTTAC
CAAACGAAAAAGTATTGCTCAAAAAAACACAAGATGCTAGTCAGATAAGCCAAATAGCCCT
GCAACTCTATGAAGAATTAAGTGAGAAAAGAAGAGGTGTCCGCCTATTGGGGATTACCAT
GACTGGATTTTAAAG

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	552	1100	F	183 aa

>[SEQ ID NO:146] 3864338-2 ORF translation from 552-1100, direction F VGLQIRAIFKRYTDLIEPMSIDEAYLDVTENKLGIKSAVKIARLIQKDIWQELHLTASAG VSYNKFLAKMASDYQKPHGLTVILPEQAEDFLKQMDISKFHGVGKKTVERLHQMGVFTGA DLLEVPEVTLIDRFGRLGYDLYRKARGIHNSPVKSNHIRKSIGKEKTYGKILRAEEDIKK ES*

### Description:

ECODINJ NCBI - Escherichia coli (sub_strain W3110, strain K-12) DinP, DNA damage inducible protein

Assembly ID: 3864360 Assembly Length: 1796bp

>[SEQ ID NO:53] 3864360 Strep Assembly -- Assembly id#3864360 TCCAAGCTAGCTATTTCGTGGAAGGGGCTTCGGTTGGCAGAACCTGGTGAATTTACCCAA ACGTGCTTTTTTAAACGGTCGCGTAGACTTGACACAGGCAGAGGCTGTGATGGATATCAT  ${\tt CCGTGCCAAGACTGACAAGGCCATGAACATTGCGGTCAAACAATTAGACGGCTCCCTTTC}$ TGACCTCATTAACAATACCCGTCAAGAAATCCTCAATACACTTGCCCAAGTTGAGGTCAA TATCGACTATCCTGAATATGATGATGTTGAGGAAGCTACTACTGCCGTTGTCCGTGAGAA GACTATGGAGTTTGAGCAATTGCTAACCAAGCTCCTTAGGACAGCACGTCGTGGTAAAAT  $\verb|CCTTCGTGAAGGAATTTCAACGGCTATCATTGGACGTCCCAACGTTGGGAAATCAAGCCT|\\$ TCTCAACAACCTCTTGCGTGAGGACAAGGCTATCGTAACCGATATCGCTGGGACAACACG TGGTATTCGTGAAACGGATGATATCGTTGAACAAATCGGTGTTGAGCGTTCGAAAAAAGC AGACAGACAACTTCTTGAAATTAGCCAAGATACCAATCGCATTATTCTACTTAATAAAAC  $\tt CGACCTGCCAGAAACGATTGAAACTTCGAAACTACCTGAAGACGTTATCCGTATTTCAGT$ CCTTAAAAACCAAAACATCGACAAGATTGAAGAGCGAATCAACAACCTCTTCTTTGAAAA TGCTGGCTTGGTCGAGCAAGATGCTACTTACTTGTCAAACGCCCGTCACATTTCCCTGAT

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	47	1078	F	344 aa

>[SEQ ID NO:147] 3864360-1 ORF translation from 47-1078, direction F VNLPKRAFLNGRVDLTQAEAVMDIIRAKTDKAMNIAVKQLDGSLSDLINNTRQEILNTLA QVEVNIDYPEYDDVEEATTAVVREKTMEFEQLLTKLLRTARRGKILREGISTAIIGRPNV GKSSLLNNLLREDKAIVTDIAGTTRDVIEEYVNINGVPLKLIDTAGIRETDDIVEQIGVE RSKKALKEADLVLLVLNASEPLTAQDRQLLEISQDTNRIILLNKTDLPETIETSKLPEDV IRISVLKNQNIDKIEERINNLFFENAGLVEQDATYLSNARHISLIEKAVESLQAVNQGLE LGMPVDLLQVDLTRTWEILGEITGDAAPDELITQLFSQFCLGK*

### Description:

THIOPHENE AND FURAN OXIDATION PROTEIN THDF. - ESCHERICHIA COLI.

Assembly ID: 3864388 Assembly Length: 2337bp

TAATAAAAATGCCATCCAAGAACGCTATCAAAACTTGCAGGAAGAGCTAGCGCAAGCTCG TTTGCTTAAGACAGAACTGCAAGGGCAAAAACGTTATGAAATTGCTGATATTGAACGCTT AGGCAAGGAATTGGACAATCTTGATTTTGAACAAGAGGAAATCCAGCGCCTTCTTCAAGA AAAGGTTGACAATCTTGAGAAGGTTGATACAGAATTGCTCAGTCAACAGGCGGAAGAATC CAAAACTCAGAAAACGAACCTCCAACAAGGTTTGATTCGCAAACAGTTTGAGTTGGATGA TATAGAAGGTCAGCTGGATGATATTGCTAGTCATTTGGATCAGGCTCGCCAGCAGAATGA TGCCGCCATCTACAAAGTCAATTAACAGACCAGTACCAGATTAGCCATACTGAAGCTCTA GAAAAAGCGCATGAATTGGAAAACCTCAATCTGGCAGAGCAAGAAGTTAAGGATTTAGAG AAGGCTATTCGCTCACTGGGTCCTGTCAATATAGAAGCTATTGACCGGTACGAAGAAGTT CACAACCGTCTGGACTTTCTAAATAGTCAGCGAGATGATATTTTGTCAGCGAAAAATCTG CTCCTTGAAACCATTACAAAGATGAATGATGAGGTTAAGGAACGCTTTAAATCAACCTTT GAAGCTATTCGTGAGTCCTTTAAAGTGACCTTCAAGCAGATGTTTGGCGGAGGTCAGGCA GACTTGATATTGACTGAGGGCGACCTTTTACAGCTGGTGTGGAGATTTCTGTTCAACCTC CAGGTAAGAAAATCCAGTCGCTTAACCTCATGAGTGGTGGTGAAAAAGCCCTATCGGCTC TTGCCTTGCTTTTCTCCATTATTCGTGTCAAGACCATTCCTTTTGTCATCTTGGATGAGG TGGAAGCTGCGTTGGATGAAGCCAATGTTAAACGTTTTGGGGATTACCTCAACCGCTTTG ACAAGGACAGCCAGTTTATCGTCGTAACCCACCGTAAGGGAACCATGGCAGCGGCCGATT CCATCTATGGAGTGACCATGCAAGAATCGGGTGTTTCAAAGATTGTTTCAGTTAAGTTAA AAGATTTAGAAAGTATTGAAGGATGACAATTAAACTAGTAGCAACGGATATGGACGGAAC  $\tt CTTCCTAGATGAGAATGGGCGCTTTGATATGGACCGCCTCAAGTCTCTTTGGTTTCCTA$ CAAGGAAAAAGGGATTTACTTTGCGGTGGCTTCGGGTCGGGGATTTCTGTCTCTGGAAAT  $\tt CGAATTATTTGCTGGTGTTCGTGATGACATTATTTTCATCGCGGAAAATGGCAGTTTGGT$ AGAGTATCAAGGTCAGGACTTGTATGAAGCGACTATGTCTCGTGACTTTTATCTGGCAAC TTTTGAAAAGCTGAAAACGTCACCTTATATAGATATCAATAAACTGCTCTTGACGGGTAA GAAGGGTTCATATGTTCTAGATACGGTTGATGAGACCTATTTGAAAGTGAGTCAGCATTA TAATGAAAATATCCAAAAAGTAGCGAGTTTGGAAGATATCACAGATGACATTTTCAAATT TACAACCAACTTCACAGAAGAAACGCTAGAAGCTGGTGAAGCTTGGGTCAATGATAATGT CCCTGGTGTCAAGGCTATGACAACTGGCTTTGAATCTATTGATATTGTTCTGGACTATGT CGATAAGGGTGTAGCTATTGTTGAATTAGCTAAAAAACTTGGCATCACAATGGATCAGGT CATGGCTTTTGGAGACAATCTTAATGACTTACATATGATGCAGGTTGTGGGACATCCTGT AGCTCCTGAAAATGCACGACCAGAGATTTTAGAATTAGCATAAGACTGTGATTGGTC

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	1239	1586	F	116 aa

>[SEQ ID NO:148] 3864388-3 ORF translation from 1239-1586, direction F VEISVQPPGKKIQSLNLMSGGEKALSALALLFSIIRVKTIPFVILDEVEAALDEANVKRF GDYLNRFDKDSQFIVVTHRKGTMAAADSIYGVTMQESGVSKIVSVKLKDLESIEG*

Description:

P115 protein - Mycoplasma hyorhinis (SGC3) (similarity to SMC1_YEAST, chromosome segragation protein)

Assembly ID: 3864406 Assembly Length: 2162bp

>[SEQ ID NO:55] 3864406 Strep Assembly -- Assembly id#3864406 CTAAAAGTGAAGCCCGATAGCGTCTCTCTCCTGCAAGGATTTCATAACCAATAACAGGAG ATTGACGAACAATAATCGGTTGAATGACCCCATTTTCTTTGATAGACTGTGCTAGTTCAT CTAGCTTTTCTCTATCAAATTCTTTTCGGGGTTGATAGGGATTTTTTTGTATATCTGTGA TAGAAATCATTTCAAATTTTTCCATGATTCTACACTAACACATCTTTTCTCTTATGTAAA GCTTTCTTTACATAGATGTCAATTAAGATTCTAAATCACCTGAACTCTTGTTAAGTTTGA TAGAGGTAGTTTCTTCTTTCCCGTTACGATAGTTAGGTTATCTTAATGGTGTCTCCGATAG AATGGTTGTAAAGAGCACTTTGTAAGTCTGTTGATGAAGCAATCTCTTTGTCATCTACTT GAACAATTACACCAGATGTAACATTACTTGGAATATTGAGTCTTCTGATGTCGCTTGTAC TCACATTAGATAAATTAACCATCTGGATTCCCAAAGCTGGACGCGTCACTTTTCCGTTTT TTTCTAACTGTTCAATAATATTGATAGCATCATTTGCAGGAATTGCGAAACCAAGACCTT CTACAGATGTTCCTCCATTTGTAGCAATTTTACTTGAGGTAATTCCGATAACCTGCCCTT GAATATTGATCAGTGGGCCGCCAGAGTTACCTGGGTTAATAGCAGTATCAGTTTGGATGG CTTTTGTAGAAATAGCTTGTCCATCTTCCGATTTTAAGGATACATTTCTATTGAGACTGG ATACGATACCTTGAGTGACAGTATTTGCATATTCAGAACCTAACGGGCTACCGATGGCAA TAGCAGTTTCTCCTACAGTTAACTTACTAGAATCACCAAACTCAGCTACTGTTGTCACTT TTTCTGAAGAGATTTCGACGACAGCAATATCAGAGAAAGTGTCAGCTCCGACAATTTCTC CAGGTACTTTAGTCCCATCTGACAATCGAATATCTACTTTGCTGGCGCCATTTATAACGT CACTAGAGATTCGCTGAGAATCTGTCAGTATCATCATTGCCAAATACGCTATTTTGTC TGTTTGCCGAATAAGTAATAACAGAAACAACAGCATCTTTTACTTTGTTAACGGCCTGTG TTGTTGAATTTTCCGTTCCTTATAGGCAGTTTGTGTAATAGTACTATTGTTGTTAGAGTT GTTTACACTACTTTTTTGAGTTAGTTGAGTTATTGAAAAACTACCCAAGGCTCCACTAAA AAAGCTAATGACGATAACGACTAATAATTGAAACCATTTTTTGTAAAATGTTTTTAGATG TTTCATATTTGCCTCCATATGTTTGAATTACTGAAAGTATAAACTGACTAGCTTAATTAT AACTTAAACACAAAAGTTTTACACAAACTGTGGATAACTCTTTTGAAACTGTGATTTTCT TAATTGAAATCTATTTTTTTTTTTTGTGAATAAGATGTGAAAAAATAGAGAATATGTTAGA ATGGTATCGCAGAGTATTCAAAACGAATTTCTAGATTTGCTAAGTTTGAAATGATTGAGT TATCAGATGAAAAAACACCAGATAAGGCCAGTGAATCAGAAAATCAAAAGATTTTAGAAA TAGAAGGTCAGAGAATTTTATCAAAAATTGCTGACCGTGATTTCGTTATTGTGTTAGCCA TTGAAGGGAAAACTTTCTCAGAAGAATTTAGTAAGCAGTGAGAAGAAACTTCTATAA GGAAGGATGTCTACTCTTACTTTATTATTGGGGGAAGTTTAGGATTGTCATCATCTGTA AAAAATAGAGCCAATCTTTCTGTCAGTTTTGGTCGCCTAACCTTGCCTCATCAGTTAATG AGACTAGTTCTTGTTGAACAAATCTATCGCGCTTTTACGATTCAGCAGGGATTCCCCTAC CATAAATAGAGAATTGACTTTTAATTGAATTTTTGGTAGAATAATTGTGTTAGGTCTCAT

AG

ORF Predictions:

ORF #	Start	End	Direction	Length
1	263	958	R	232 aa

>[SEQ ID NO:149] 3864406-1 ORF translation from 263-958, direction R VTTVAEFGDSSKLTVGETAIAIGSPLGSEYANTVTQGIVSSLNRNVSLKSEDGQAISTKA IQTDTAINPGNSGGPLINIQGQVIGITSSKIATNGGTSVEGLGFAIPANDAINIIEQLEK NGKVTRPALGIQMVNLSNVSTSDIRRLNIPSNVTSGVIVRSVQSNMPANGHLEKYDVITK VDDKEIASSTDLQSALYNHSIGDTIKITYYRNGKEETTSIKLNKSSGDLES*

#### Description:

Bacillus subtilis (strain 168, ) DNA. Homologous to E. coli serine protease HtrA (BLAST)

Assembly ID: 3864452 Assembly Length: 1766bp

>[SEQ ID NO:56] 3864452 Strep Assembly -- Assembly id#3864452 ATCGAATTTTCCAAAATGGGGAGCTAGAGCAGTGGAGTGATTATGTGGCAGACGATTTGA TTCAGCATAATCATGAGATTGGACAAGGAAGTGCTGCTTATAAAAACTATGTGGCTGAAT ATATTGTCACTTTTGACTTCGTTTTCCAACTCTTAGGACAAGGAAACTATGTGGTTAGCT ATGGTCAGACTCAGATTGATGGCGTTGCTTATGCCAAGTACGATATCTTCCGTTTAAAGA ACGGGAAAATTGTGGAGCATTGGGATAATAAGGAAGTCATGCCTAAGGTAGAAGACTTGA CCAATCGAGGGAAGTTTTAAATTGAGGACAAAGAATGATTGAATACAAAAATGTAGCACT GCGCTACACAGAAAAGGATGTCTTGAGAGATGTCAACTTACAGATTGAGGATGGGGAATT TATGGTTTTAGTAGGGCCTTCTGGGTCAGGTAAGACGACCATGCTCAAGATGATTAACCG TCTTTTGGAACCAACTGATGGAAATATTTATATGGATGGGAAGCGCATCAAAGACTATGA TGAGCGTGAACTTCGTCTTTCTACTGGTTATGTTTTACAGGCTATTGCTCTTTTTCCAAA TCTAACAGTTGCGGAAAATATTGCTCTCATTCCTGAAATGAAGGGGTGGAGCAAGGAAGA GCATCGCTTACCTAGTGAATTATCTGGTGGAGAACAGCAACGGGTCGGTATTGTCCGAGC TATGATTGGTCAGCCCAAGATTTTCCTCATGGATGAACCCTTTTCGGCCTTGGATGCTAT TTCGAGAAAACAGTTGCAGGTTCTGACAAAAGAATTGCATAAAGAGTTTGGGATGACAAC GATTTTTGTAACCCATGATACGGATGAAGCCTTGAAGTTGGCGGACCGTATTGCTGTCTT GCAGGATGGAGAAATTCGCCAGGTAGCGAATCCCCGAGACAATTTTAAAAGTGCCTGCAAC AGACTTTGTAGCAGACTTGTTTGGAGGTAGTGTTCATGACTAATTTAATTGCAACTTTTC AGGATCGTTTTAGTGATTGGTTGACAGCTACAATGACATTGGTCGGTTCCTTGAGCAAGA GATAGATTAGCCAGACAGTCATGCCCAAAATCCCTCCAGGTAAGAGCATAGACCGTTGCA CATTAAGTACGATTAAAAAAGTGATAATGGCAAGAAAACTTGCTACTGCTTGTAATAAAA AGGTTGTTAGTGTCATATTAGTTCATCAATACCAAGGCGACAGAAGTTCCTGCCCCTAAA

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	1079	1201	R	41 aa

>[SEQ ID NO:150] 3864452-2 ORF translation from 1079-1201, direction R VQRSMLLPGGILGMTVWLIYLLLKEPTNVIVAVNQSLKRS*

# Description:

unknown

Assembly ID: 3864458
Assembly Length: 1705bp

>[SEQ ID NO:57] 3864458 Strep Assembly -- Assembly id#3864458 CTCTGACGGAGGCTGGTTATGTGGGTGAGGATGTGGAAAATATACTCCTCAAACTCTTGC AGGTTGCTGACTTTAACATCGAACGTGCAGAGCGTGGCATTATCTATGTGGATGAAATTG ACAAGATTGCCAAGAAGAGTGAGAATGTGTCTATCACACGTGATGTTTCTGGTGAAGGGG TGCAACAAGCCCTTCTCAAGATTATTGAGGGAACTGTTGCTAGCGTACCGCCTCAAGGTG GACGCAAACATCCACAACAAGAGATGATTCAAGTGGATACAAAAAATATCCTCTTCATCG TGGGTGGTGCTTTTGATGGTATTGAAGAAATTGTCAAACAACGTCTGGGTGAAAAAGTCA TCGGATTTGGTCAAAACAATAAGGCGATTGACGAAAACAGCTCATACATGCAAGAAATCA TCGCTGAAGACATTCAAAAATTTGGTATTATCCCTGAGTTGATTGGACGCTTGCCTGTTT TTGCGGCTCTTGAGCAATTGACCGTTGATGACTTGGTTCGCATCTTGAAAGAGCCAAGAA ATGCCTTGGTGAAACAATACCAAACCTTGCTTTCTTATGATGATGTTGAGTTGGAATTTG ACGACGAAGCCCTTCAAGAGATTGCTAATAAAGCAATCGAACGGAAGACAGGGGCGCGTG GACTTCGCTCCATCATCGAAGAAACCATGCTAGATGTTATGTTTGAGGTGCCGAGTCAGG AAAATGTGAAATTGGTTCGCATCACTAAAGAAACTGTCGATGGAACGGATAAACCGATCC TAGAAACAGCCTAGAGGTGACTATGGAACTTAATACACACAATGCTGAAATCTTGCTCAG TGCAGCTAATAAGTCCCACTATCCGCAGGATGAACTGCCAGAGATTGCCCTAGCAGGGCG TACATCAGGAAAACCTGGTAAAACCCAGCTCCTGAACTTTTTTAACATTGATGACAAGAT GCGCTTTGTGGATGTGCCTGGTTATGGCTATGCTCGTGTTTCTAAAAAGGAACGTGAAAA GTGGGGTGCATGATTGAGGAGTAATTTAACGACTCGGGAAAATCTCCGTGCGGTTGTCA

#### ORF Predictions:

ORF #	ŧ	Start	End	Direction	Length	1
	1	797	1105	F	103	aa
	2	1179	1391	F	71	aa

>[SEQ ID NO:151] 3864458-2 ORF translation from 797-1105, direction F VTMELNTHNAEILLSAANKSHYPQDELPEIALAGRSNVGKSSFINTMLNRKNLARTSGKP GKTQLLNFFNIDDKMRFVDVPGYGYARVSKKEREKWGCMIEE*

# Description:

unknown

>[SEQ ID NO:152] 3864458-3 ORF translation from 1179-1391, direction F VQMYEFLKYYEIPVIIVATKADKIPRGKWNKHESAIKKKLNFDPSDDFILFSSVSKAGMD EAWDAILEKL*

#### Description:

HYPOTHETICAL 22.0 KD PROTEIN IN LON-HEMA INTERGENIC REGION (ORFX). - BACILLUS S UBTILIS.

Assembly ID: 3864474
Assembly Length: 1673bp

>[SEQ ID NO:58] 3864474 Strep Assembly -- Assembly id#3864474 ACGTTTTGGGAACTGATAGCAGATTCCGAACAAACTGATAATGGTTGGCAAAATC ATTATTCCTAATAGTAACGAAGCTGGTTAGGACAACTCATGCCATTTCCTAAAAAGGTTT TAATCCAAGGCACCAATAATTGTAGGCCGAAAAAACCATAAACAATAGATGGAATGGCTG CCATCAAGTTGATAGCTGATTTTAAGAAGCTATAGACGGGCTTTGGACAATTATAAACCA TAAACACCGATGTCAAGATCGCCTGTTGGCACCCCAATCACAATCGCTCCTAAGGTCGAA TAAATAAGGAACCAACGATCATTGGTAAAATACCATAGCTTGCCGGAATGTTCGTTGGCG ACCAATCACTGCCTAATGAAAGCCAT

TACTAAAAATAAAGAAACAGATTAGCAAAATAGCTACAACAGCTACTGTTGCACTCATGA AAAAAATTGCCCTAAAAACTGCTTCTTTGAAGGCTTGTTTTGTCACATCTTGTCCTTTCT AGTGAAGAAAGTAAGGGAGATACGACACCTCCCTACTTGCCTTCTTTATCTTATTGTACG AGGTGGTTAATTTGCCACTAAAAACGTCCGCAAGTTCAGCCATACTGACTTGGCTTGCCT TATTGTCATTATTGACCACAACAGCAATACCGTCTAAAGCAATAGCATCATGGGTGAGAC TCTTACCTTCTCAGGAGTTAATTCCCTAGAAACCATACCAATATCAGCGGTTTTCTCCT TAACAGCGGTAATACCTGCTGAAGACCCATTAGAGGTAATATCAATCGTAACTTCTGGAT TTTCTTTTTTATAAGCTTCTGCTAATTTTTCCATTAAAGAAGATACTGAAGTGGAACCTA CAACAGACAACTTGCCTGATAAGTGTTGGCTTGTATATTCTGTGGTTTCGGTTTTAGCTT CAATAAATTTATTATCTGTGACCACTTGTTGACCTTGTTTGGAGTGGATAAAGCTGATAA AATCTTGACCTAGCTTGGAAAGATTAGAAGACCAAACAATGTTGAAGGGACGTTGAAGAG GGTATTCACCATCTAAAACTGTGTCTCGACTAGCCTTGACACCATCAATCTCTAAAGCCT TGACAGATTTCGTTAAAGATCCCAAGGAGATGTAGCCGATAGCATTAGCATTCCCTTGAA CTGCTGAGAGAACACCTTCTGTACTATTTTGAATCACAGCTGTTTTTGGCAGTGTAGTCAA  ${\tt TTTTTTTATCACCGTCTTTTTTGAGAATCCCTGTGATTTCTGTGAAGGCACCCCGTGTTC}$ CAGAGCCATTTTCTCGTGAAATCACCTCAATCGTTCCTGGAGCTGACTGTTTGGAAGCAG CTGACTGATTGCCACAGGCAACAAGCCCAAATCCTGATAAGCCAATGGCTGCAAGAGTAA TACTACATTTATAGTCTAACAAGTCTTTGTAAAGGTTTATCCCTGATTCATGTAAAGATT GTGTAAAGAATCAAAAAAAGCCACTTTTGAAAAATGGCTGCCCCTAAAAATAG

#### ORF Predictions:

ORF #	Start	End	Direction	Length	1
1	68	247	R	60	aa
2	644	1528	R	295	aa

>[SEQ ID NO:153] 3864474-1 ORF translation from 68-247, direction R VFMVYNCPKPVYSFLKSAINLMAAIPSIVYGFFGLQLLVPWIKTFLGNGMSCPNQLRYY*

# Description:

PROBABLE ABC TRANSPORTER PERMEASE PROTEIN (ORF72). - BACILLUS SUBTILIS. (BLAST)

>[SEQ ID NO:154] 3864474-2 ORF translation from 644-1528, direction R VIIMKFKKMLTLAAIGLSGFGLVACGNQSAASKQSAPGTIEVISRENGSGTRGAFTEITG ILKKDGDKKIDYTAKTAVIQNSTEGVLSAVQGNANAIGYISLGSLTKSVKALEIDGVKAS RDTVLDGEYPLQRPFNIVWSSNLSKLGQDFISFIHSKQGQQVVTDNKFIEAKTETTEYTS QHLSGKLSVVGSTSVSSLMEKLAEAYKKENPEVTIDITSNGSSAGITAVKEKTADIGMVS RELTPEEGKSLTHDAIALDGIAVVVNNDNKASQVSMAELADVFSGKLTTWDKIK*

### Description:

probable hemolysin precursor - Streptococcus agalactiae (strain 74-360)

Assembly ID: 3864510 Assembly Length: 1702bp

>[SEQ ID NO:59] 3864510 Strep Assembly -- Assembly id#3864510  $\tt CTTTTTTATTTCACAACAAGTTCATAACGTGTCTTACTGGTGAAGGTTTGACCAGCTTTA$ AGAATGACTTGGCCTTTAAGGTCACTGTGAATGGCATCTGGTAAAGCTTGCGCTTCAAGA GCAATCCCATTGTGCTGTAGCATTGGCTGACCTCCTATGATGACACTTTCATCCACAAAG TTTGCTGTGTAGACCACAAAGCAAGGAGCTTCTGTCTTGAAAAGCAGGAAGCGACCTGAA TTTTGGTCATAAAGGAATCCAGCATTGTCATGGCCTGCAGGAAGGGCAAATGGATGATCC AAACCTGATGCCAGCTGGATTTGCTCATCTTCTTCTGCAAAGATATCCTTCAACAAGGCA CCATTGTAGATGTTTTGACCACATCACGGTTGGCTTCTGGAGTTTTGGCAGGAACACCG TCAGGAGCGATTGAGTAAATGCCCTCTGTGTTTAGTTGGAAGACATGACGGTCAATCGTC TGATCGGTCGTTACCTTGTAGATCGAATTCATGGAGGCACCAGTTTCTTCCAAGTGATAA CTGATCGCCAAATCTTGAGATTTCCAGGGAACCCTCCTGTCCCATCTGTACGCTCTGTGT AGAGAGTCAAGCCATGATCGCTTACTTCTTCAACTTCAAACAAGCTGGAATCCCAACCAG TTGAACCACTGTGATTACAGTTGCTAGCATTATTAACCTCAAGGTCATAGGTCTTACCAT TGAGCTCAAAGGTCGCACCTGCAATACGACCCGCTACAGGACCTACACTTGCTCCATGCT TGGGACTATTGCCTACATAACTATCAAAGTCATCAAATCCCAAGATAACATTGGCAAAAT TTCCAGCCTTGTCAGGTGCGACATAGCGCAAGATAGTCGCACCATAAGTCATAACCTCAA GTTGGTAGCCACCGTCTGTCTCAAATCGATAGGCCAAGACATCCTCACCCTCAACATTTC CAAATACACGCTCTGTGTATGCTTTCATTCTGTTCTCCTTTTACTATTTCTCTCAAGCAA ACAAACCATAGAAAGCGTACTGACAATCTATGGTTTATCTGATAATTTACAAATCCTCTT GTCAAGAATTCATAAACACTGTCTTACTTTTGATATTCGTGAATTATGACACCTTGTACT ACACGGTTTACTGTACCTGTAGGAGACGGTGTATCTGGTTTATTTTCTACCTTGAGTGAA GTCAATAGGGCAAAGAGTTGGGCATAAACGATGTAAGGGAAGACACGGTAAATATCATTC AAGACACCGCCACAACCAAGGGCCACTTCTTTGACATTTTCAAGACCAAAAGCTTGATCA CTCAAAAGCACAACACGACGAGCAATCTGGTCACCAGCAACTTCACGAACCAAGTCCAAG TCGTACTTACGAGTGTAGTCCGTCGTTGTACCAAAGACCAAAACAACTGTATTGTCGTTG ATAAGAGATTTTGGACCGTGACGGAAGCCAACTGGGCTTTCATACATGGTCGCAACTTGA GCGCCTAGAATAGATGACACGGTTAAAGTCTAAATCAACGAGATCTTTGACATCTTCTGC CTTGTCTAAAACTTTACGGGCA

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	1164	1640	R	159 aa

>[SEQ ID NO:155] 3864510-3 ORF translation from 1164-1640, direction R 91

VSSILGAGPFFGLAHEAQLKILELTAGQVATMYESPVGFRHGPKSLINDNTVVLVFGTTT DYTRKYDLDLVREVAGDQIARRVVLLSDQAFGLENVKEVALGCGGVLNDIYRVFPYIVYA QLFALLTSLKVENKPDTPSPTGTVNRVVQGVIIHEYQK*

#### Description:

AGAS PROTEIN. - ESCHERICHIA COLI. (Probable tagatose-6-phosphate ketose/aldose isomerase)

Assembly ID: 3864526 Assembly Length: 1940bp

>[SEQ ID NO:60] 3864526 Strep Assembly -- Assembly id#3864526 TGCAGGATTTGATTTGGACGACTTTTATTATTACCAGATTCGCCTAGGAATAGAAAAAG AGCCCAAGAGTTGGACTATGATATCTTGCGCTATTTTAATGACCACCCTTTTACCCTAAG  $\tt CGAGGAAGTGATTGGGATTCTCTGCATCGGAAAGTTTAGTCGAGCTCAGATTTCTGCCTT$ TGAAGAATACCAAAAGCCTCTTGTATTTCTAGACAGCGATACACTTTCCCTGGGACATAC CTGTATTATCACGGATTTTTACACTGCTATGAAACAGGTTGTCGATTATTTCCTCAGTCA AGGAATGGACCGTATCGGGATTCTAACAGGCCTTGAAGAAACAACAGACCAAGAAGAAAT CATTCAGGACAAGCGTCTAGAAAACTTCAAAAACTACAGTCAAGCGAGGGGAATCTATCA TGATGAACTGGTCTTTCAAGGAAGATTTACTGCCCAGTCTGGCTATGACTTAATGAAGGA AGCTATCGGTGCCCTCCAAGAAGCTGGAATCAGCCTGCCAGATCGCGTCAG CCTCATTTCCTTTAACGACACTAGTCTGACCAAACAGGTCTATCCTCCCCTCTCTAGTAT TACAGTTTATACTGAAGAAATGGGCCGAGCAGGTATGGATATTCTTAACAAGGAAGTCCT CCACGGTCGGAAAATCCCTAGCCTGACCATGCTGGGAACCAGACTGACATTAAGAGAAAG TACCCTAAATCAAGAATAGGATAACATAAAAAACGAATAGAGTTCTAAAACTCCTATTCG TTTTTTTTTTCGATTACAATCATAGACTTAATGGTCTTACGTTCATCCATATCTTTGTAGG CTTGGTCGATATCTTCCAGTTTATAACTTGAAGTAAAGACGCGACCTGGATTGATATCAC CATCAAGGACGGCTTTTAGTAAAAATTGCTTATCGTATGTTGTAGCAGAAGCTGCCCCAC CTGCTACAGAGATATTTTGCATAAATGTCGAACCAAGAGCACGATTATTATAGTGTGGGA CTCCTACAAAGCCCATACGCCCTCCATTATGAAGAACACCTAGCGCCTGTTCTATAGCAG CCTCCGTACCAACACATTCAAGTGCTGCGTCTGCTCCTCCGCCGAGGATTTCACGCACCT TGGTAATTCCTTCTTGACCACGTTCTGCAACAACAGCTGTCGCACCTGACTCCATAGCCA TCTTTTGACGGTCTTCATGACGGCTCATAAGGATAATTTGTGATGCTCCACGCATCTTAG CCGCGATGACAGCACATTGACCAACAGCCCCATCACCGATAACAACCATGTCCCCTT TTTGAACATTTGCAACACGCGCCGCATGATAGCCTGTCGGCATGACATCTGCAAGAGTCA AAAGGGACTTGAGCATCCCTTCTGTATAGTCAGAAGGTTGACCAGGGATTTTAACCAGCG CCCAGTTTGCATAGTGGAAGCGAATATATTCTGCCTGAAAATCACCCCCCAAATTATTGC CAATATGATTGTCGCAAGAACCGTCAAATCCAGCAAGACAGGCATCACACTCACCACATC CATGTGTAAAAGGGACAATCACAAAATCACCTGGTTTCACCGTCGTAATGGCTTCCCCAG CTTCTTCAACAATCCCAATCGCTTCGTGTCCACTTATTTTTTGTGTCCAACTTTCGTTTT AATCACATCATCCGCTTCTATTATTTGCGGACGTTCAATGCTAGCAAGTCCAACCTGACC

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	845	1660	R	272 aa

>[SEQ ID NO:156] 3864526-2 ORF translation from 845-1660, direction R VKPGDFVIVPFTHGCGECDACLAGFDGSCDNHIGNNLGGDFQAEYIRFHYANWALVKIPG QPSDYTEGMLKSLLTLADVMPTGYHAARVANVQKGDKVVVIGDGAVGQCAVIAAKMRGAS QIILMSRHEDRQKMAMESGATAVVAERGQEGITKVREILGGGADAALECVGTEAAIEQAL GVLHNGGRMGFVGVPHYNNRALGSTFMQNISVAGGAASATTYDKQFLLKAVLDGDINPGR VFTSSYKLEDIDQAYKDMDERKTIKSMIVIE*

# Description:

ALCOHOL DEHYDROGENASE (EC 1.1.1.1). - ALCALIGENES EUTROPHUS.

Assembly ID: 3864548
Assembly Length: 2051bp

>[SEQ ID NO:61] 3864548 Strep Assembly -- Assembly id#3864548 ATCGAATTTTTCTAGCCAGGCTACAGTTTTGGCAAGTAAGGTTTCATCTCAGGCAGTCAA  $\tt CTGGGTGAGTGCCTTTATTAGCGGAGCTTCTCAAGTGATTGTTGCCTTGATTATCGTTCC$ TTTCATGCTCTTTTATCTCTTGCGTGATGGGAAAGGCTTGCGTAACTATTTGACCCAATT CATTCCAAGAAATTGAAGGAACCTGTTGGACAAGTTCTATCAGATGTGAATCAACAGTT GTCCAACTATGTTCGAGGGCAAGTGACAGTGGCTATTATTGTAGCAGTAATGTTTATCAT  ${\tt CTTCTTCAAGATTATTGGTCTACGCTATGCGGTTACGCTGGGGGGTTACTGCTGGTATTTT}$ AAATCTGGTCCCTTATCTTGGTAGCTTTCTAGCCATGCTTCCTGCCCTAGTATTGGGTTT GATTGCTGGTCCAGTCATGCTTTTGAAAGTAGTGATTGTCTTTATTGTAGAACAAACTAT TGAAGGCCGTTTTGTCTCTCCATTGATTTTGGGAAGTCAATTAAACATCCACCCTATTAA TGTTCTCTTTGTTTAACTTCAGGATCTATGTTTGGTATCTGGGGAGTTTTACTTGG TATTCCGGTTTATGCCTCTGCTAAGGTTGTCATTTCAGCCATTTTCGAATGGTATAAGGT AGTCAGTGGTCTATATGAATTAGAGGGTGAGGAAGTCAAGAGTGAACAATAGTCAACAGA TGTTACAGGCTTTGGAGGAGCAAGATTTAACTAAGGCTGAGCATTATTTCGCCAAAGCTT TAGAAAATGATTCAAGTGATCTTCTGTATGAGTTGGCAACTTATCTTGAAGGGATTGGTT TCTATCCTCAGGCCAAGGAAATTTACCTGAAAATTGTAGAAGAATTTCCAGAGGTTCATC TTAATCTAGCTGCAATGGCTAGCGAGGATGGTCAAATAGAAAAAGCCTTTAACTATCTTG AGGAAATCCAAGCTGACAGTGACTGGTATGTCTCGCTCTTTGGCTCTGAAGGCAGACCTA TACCAGCTGGAAGGTTTGACAGATGTGGCACGTGAGAAATTATTGGAGGCCTTGACCTAC TCAAAGGATTCTCTCTTGATATTGGGTTTGGCAAAGTTGGATAGTGAGTTGGAAAATTAC CAAGCGGCTATTCAAGCCTATGCCCAGTTAGATAATCGCTCGATTTATGAGCAAACGGGC ATTTCCACCTATCAACGAATTGGCTTTGCCTATGCTCAGTTAGGGAAATTTGAAACGGCT

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	687	1055	F	123 aa
2	979	1932	F	318 aa

>[SEQ ID NO:157] 3864548-2 ORF translation from 687-1055, direction F VRKSRVNNSQQMLQALEEQDLTKAEHYFAKALENDSSDLLYELATYLEGIGFYPQAKEIY LKIVEEFPEVHLNLAAMASEDGQIEKAFNYLEEIQADSDWYVSLFGSEGRPIPAGRFDRC GT*

# Description:

unknown

>[SEQ ID NO:158] 3864548-3 ORF translation from 979-1932, direction F VTGMSRSLALKADLYQLEGLTDVAREKLLEALTYSKDSLLILGLAKLDSELENYQAAIQA YAQLDNRSIYEQTGISTYQRIGFAYAQLGKFETATEFLEKALELEYDDLTAFELASLYFD QEEYQKATLYFKQLDTISPDFEGYEYGYSQALHKEHQVQEALRIAKQGLEKNPFETRLLL AASQFSYELHDASGAENYLLTAKEDAEDTEEILLRLATIYLEQERYEDILDLQSEEPENL LTKWMIARSYQEMDDLDTAYEHYQELTGDLKDNPEFLEHYIYLLRELGHFEEAKVHAHTY LKLVPDDVQMQELFERL*

#### Description:

unknown

Assembly ID: 3864582 Assembly Length: 1318bp

>[SEQ ID NO:62] 3864582 Strep Assembly -- Assembly id#3864582 CTTTAGCAATCAGTTTATTGGGAGATTTGACTGCCACTTCTGTTGGAACCTTGATAATCT TTTTACCCTCAAAGCGTTCCATACCAGAAATCTTAACATCAACTGCTAAAATAACTACAT CCGCTGCATCAATCTGCTCTTGACTCAATTCATTTTCTACCCCTATTGTCCCCTGAGTCT CAACATGAATCACATGTCCAGCTACCTTTGCGGCATTCTCTAATTTTTCCTGTGCAATAT AAGTGTGGGCAATTCCCATAGTACAAGCTGCAACACCAACAATTTTCATACGGATACCCT CCAAAATTTTTTCTTATTAACAAAAAGCTGCAATCACATCATCAGATGTCTGAGCCCGAA CTAATTTGGCAACACTTCGTCATTACCAAGTTTTCGAGCAAAGAGTGATAAGGTCTTCA AATGCTCCCTAGCAGCTTCTGTATCATCACCAACTGCAAAGAGTACAATTACTTTGACCC CTTTCCCATCAATGGTCTCCCAAGGAATCTCATTGTGATTTATAGCTATGACTACCCCCG  $\verb|CCTTCTCCACAGCAGAACTCTAGCTATGGGGAATAGCAATATAATTCCCAATACCGGTCT|\\$ GTCCTTCTGCCTCTCTGATAAAGACCTTCGATAAATTGGTCTCTATCAGACACATAAC  $\verb|CCGTCTCAACCAATAGTATGAGCTAATGCCTCAAAAACCTCTTCTTTGCTCTGCATCTGT|\\$ AAATCCGTCTGGATCAGACTCACATTAAGAATATCTTTGATTTCCATATATTATCTCCCG CATCAATGTTTTAATACATGACTTGTCCTGTGATACTGCCAATGGCCAAACCGATAATAAG GTCAACACTGGATATCCTTCGACCATTCTCTGATAGGTGGTTTTAATCTAGTAATCAC TAAGACATGATGTTGAAAGTTTCCTTCACAATGTGGTAGAAGAACACCTTTAGCAACCTC TATACTTCCCTGTCTCACGGTAATATAGAAGCTCTTCTATTTTTTCTGTATCTTCAGA AACAAGAAGGCTGATTTGATTTGCTAATTCTTTGTAGGCTTCTTGACGATTTTGAACAGA TATATCCATAAGGACAAGCGAAAGATTATTCATAGTTTATCTCCTGAATTTTTGCTTGAA GACGTTGTTTATCACCCTCGGTTAGAAAAGCACTAACTAGGACAAACGGGACACTTGCTG GTTCCTGCAAAGCTACCGTCGTCACAATGAAATCTAAATCTGGATATAGATTTATCAG

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	317	550	R	78 aa

>[SEQ ID NO:159] 3864582-1 ORF translation from 317-550, direction R VEKAGVVIAINHNEIPWETIDGKGVKVIVLFAVGDDTEAAREHLKTLSLFARKLGNDEVV AKLVRAOTSDDVIAAFC*

# Description:

Probable phosphotransferase enzyme IIa component

Assembly ID: 3864604 Assembly Length: 2077bp

AAAAACATGCTGGACTGTATCAAAACAAACATCAAGCCAATCAACATCTAGGTCATAGTC CTGCTGGAAACTCTCTTCTGGGACTGGGGCCAGAGTTCACACTTTCTTCCGCAACCTGAT GAAAGAGGTCAAACTGCTCTTCTTGCGAAAAGTTATCAACTTCTATAAAGGGGAAATGCC AAAAACCTGCCAAGAGCTTTTCGCTTTCATTTTTTTCAAGTAAAAATTGTCCTTGAGAAT TTTTCACAACTAAGGCTTTAAGATAAATAGGAACCGGCTTTTTCTTAGGAGATTTAATTG GATAACGGTCCATGGTTCCATTCTGATATGCCGCACTAAAGTCCTTGACTGGGCTTTCTT CAGGTCTGGGATTTACAGGAGACTCAATATCAGACCCTAAGTCCATCAAGGCTTGATTAA AATCACCCGGACGATCTGGATTAATCAAGATCTCCATCATTGCCTGAAAAATTTTTCGAT TACTTGGAATCCCAATATCGTGGTTGACTTCAAACAGACGCGCCAAGACCCGCATGACAT TACCATCTACAGCTGGCTCAGGCAAGTTAAAAGCAATACTGGAAATGGCTCCTGCTGTGT AAGGTCCAATCCCTTTCAAGCTGGAAATTCCTTCATAGGTATTTGGAAATTGGCCACCAA AGTCAGTCATAATCTGCTGGGCTGCAGCCTGCATATTGCGAACTCGAGAATAATAACCCA AGCCCTCCCAAGCTTTCAGTAAACTCTCCTCAGGCGCAGTTGCCAGACTTTCGACAGTTG GAAACCAGTCCAAAAATCTTTCGTAGTAAGGGATAACTGTATCCACCCTGGTCTGCTGAA GCATGATTTCAGATACCCAGATGTGATAAGGATTTTTACTTCTCCTCCAAGGCAAATCTC CGGCCACATGACGATACCGTATTCTTTCAAATCCTAACATATCTCTAGTTATAACACAGA CCTATCTACTTATACTCCAATGAAAATCCAAAGAGCAAACTAAGAAGCTAGCCGCAGGTT GCTCAAAACACTGTTTTGAGGTTGTGGATAGAACTGACAGAGTCAGTATCATATTACCTA CGGCAAGGTGAAGCTGACGTAGTTTGAAAAGATTTTCGAAGAGTATAAATCTTATTGATG AACTGCTTGCAGTCTGAGAAAAATGAGCTTGGATATTATTTCCAAACTCACTTAAAGTC AATTTCAATCCACTAGAACAAGCCTAGTACAGTTCCATCGCTTTCAACATCCATGTTGAG AGCTGCTGGACGTTTTGGAAGACCTGGCATGGTCATAACATCACCAGTTAAGGCAACGAT GAAGCCTGCACCTAATTTTGGTACCAATTCACGAATGGTAATTTCAAAGTTTTCTGGTGC TCCAAGCGCATTTGGATTGTCTGAGAAACTGTATTGAGTTTTAGCCATACAAATTGGCAA TTTGTCCCAACCGTTTTGAACGATTTGAGCAATTTGTGTTTTGAGCTTTCTCAAAGTT CACTTTGCTACCACGATAGATTTCAGTGACAATTTTTTCAATCTTTTCTTGGACAGAAAG GTCATTATCGTACAAACGTTTATAGTTAGCTGGATTTTCAGCAATTGTCTTAACAACTGT TTCGGCAAGTGCTACTCCACCTTCTGCTCCATCAGCCCAGACACTAGCCAATTCAACTGG TACATCGATTGAGGCACAGAGTTCTTTTAAGGCTGCAATTTCAGCTTCTGTATCAGATAC AAATTCGTTAATAGATACAAGCTAATGGAATACCGAA

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	1	141	R	47 aa
2	1513	1803	R	97 aa

>[SEQ ID NO:160] 3864604-1 ORF translation from 1-141, direction R VSDFHDFSDREVRWLSPEEFKNYPLAKPQQKIWQAYAQANLDSSQD*

Description:

unknown

>[SEQ ID NO:161] 3864604-3 ORF translation from 1513-1803, direction R VNFEKKAQTQIAQIVQNGWDKLPICMAKTQYSFSDNPNALGAPENFEITIRELVPKLGAG FIVALTGDVMTMPGLPKRPAALNMDVESDGTVLGLF*

#### Description:

FORMATE--TETRAHYDROFOLATE LIGASE (EC 6.3.4.3) (FORMYLTETRAHYDROFOLATE SYNTHETAS E) (FHS) (FTHFS). - CLOSTRIDIUM ACIDI-URICI.

Assembly ID: 3864610 Assembly Length: 1887bp

>[SEQ ID NO:64] 3864610 Strep Assembly -- Assembly id#3864610 CTCAAAACNCTGCTTTGAAGAGATTTTCAAAGAGTACAAGAAGTTTAGTTATTAGCGTTC TTACCGCTTGTAAACTAGATTTCTCATAAAATAGAATCTTTTCCTTTTAGTTGTAAACTA GTCTGGGAGAGTAGAGAGGTTTGAGATACCTTTCTAGCTTTTGGATTATCATCTAAGAAG AGTAATTTCCCTTGCATTAAAAAGGGGGAAAAAGAGACACGAAATGACTATAATGGGTGAC AATGGGGGAAGGGATAGACAAGAGATTTTATCCACATATGAAAAAAGGAGGTTAGGAAAG AGTTATATATCCTATATTATATAAATAATCAATTGCGCAGAAATTTGGTAAGAATTCATG CGTCAACTCATAAAGAACTACTTAAAAAATTCACAGTATTCATAATTATTTTCGAGGAGA AAAACAGTGAAAAAAAGCATGCTCTGTCTCTTATCGCTTTTTTGGCTGACGGCT TGTTTAGTAGGCTGTGCTAGCTGGATTGATCGTGGAGAATCCATAACGGCTGTTGGCTCA  ${\tt AAAACGGTCAATGTCCAAGGGGGAAGTTCTGGTACAGGCTTGTCCCAGGTTCAGTCTGGG}$ GCAGTTGATATAGGAAACTCAGATGTATTTGCTGAGGAAAAAGACGGAATTGATGCTTCT GATGTTGATAACCTAACGACAGAGCAACTTCGTCAAATCTTCATAGGTGAGGTAACCAAT TGGAAAGAGGTTGGTGGTAAGGACTTACCCATCTCTGTTATCAATCGGGCAGCCGGCTCT GGCTCTCGTGCTACCTTTGATACTGTCATTATGGAAGGTCAGTCTGCCATGCAAAGTCAG GAGCAGGATTCAAATGGAGCGGTAAAATCAATCGTATCAAAAAGTCCAGGAGCTATCTCT TATTTATCTCTTACCTATATAGATGATTCGGTCAAAAGCATGAAGTTGAATGGCTATGAC TTAAGTCCAGAAAATATAAGTAGCAATAATTGGCCCTTGTGGTCTTATGAGCATATGTAT ACATTGGGGCAGCCCAATGAGTTGGCTGCAGAATTTCTCAATTTTGTTCTCTCGGATGAG ACCCAAGAAGGATTGTCAAAGGATTGAAGTATATTCCGATTAAGGAAATGAAGGTTGAA AAAGATGCTGCCGGAACTGTGACAGTGTTGGAAGGGAGACAATAATGAATCAAGAAGAAT TAGCTAAGAAATGTTGCTTCCATCAAAGAATTCTCGTCTGGAGAAATTAGGAAAAGGTT TGACCTTTGCCTGTCTTTCTTTGATAGTCATCCTTGTGGCCATGATTTTGGTTTTCGTAG GAGGAACTTGGAATCCTTCTAGTAAAGAATTTGGTGCCCTTCCTATGATTTTTGGGTTCCT TTATCGTTACCATTCTCAGCCCTTATCGCAACACCCTTTGCTATTGGTGCAGCAGTTT TTATGACCGAAGTATCACCAAAAGGGGCGAAGATTTTGCAACCAGCTATTGAACTCCTGG TTGGGATTCCTTCAGTAGTGTACGGATTTATTGGCTTGCAAGTCGTCGTTCCCTTTGTTC

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	427	1305	F	293 aa

>[SEQ ID NO:162] 3864610-1 ORF translation from 427-1305, direction F VKKRKKLALSLIAFWLTACLVGCASWIDRGESITAVGSTALQPLVEVAADEFGTIHVGKT VNVQGGSSGTGLSQVQSGAVDIGNSDVFAEEKDGIDASALVDHKVAVAGLALIVNKEVDV DNLTTEQLRQIFIGEVTNWKEVGGKDLPISVINRAAGSGSRATFDTVIMEGQSAMQSQEQ DSNGAVKSIVSKSPGAISYLSLTYIDDSVKSMKLNGYDLSPENISSNNWPLWSYEHMYTL GQPNELAAEFLNFVLSDETQEGIVKGLKYIPIKEMKVEKDAAGTVTVLEGRO*

### Description:

PROBABLE ABC TRANSPORTER BINDING PROTEIN PRECURSOR (ORF108). - BACILLUS SUBTILIS. (BLAST)

Assembly ID: 3864716 Assembly Length: 405bp

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	57	272	F	72 aa

>[SEQ ID NO:163] 3864716-1 ORF translation from 57-272, direction F VQPTQAEQPSTPKESSQQENPKEDRGAEETPKQEDEQPAEAQEIKVEEPVESIEETVIQP VEQPKVETPAV*

Description:

unknown

Assembly ID: 3864718 Assembly Length: 1542bp

>[SEQ ID NO:66] 3864718 Strep Assembly -- Assembly id#3864718  $\tt CTATGGGATTGGTAGTTCTTCCTAGTGCAGGGGGCTGTAGACCCAGTTGCGACCCTAGCGC$ AGGTGACATCCTCAAAACGCTTGGCTTGGACACTGTTTTAGAAGAAACCTCAGCAAAACC TAGGACAGAAAACCAAGTAGTAGAGACAGAGGAAGCTCCAAAAGAAGAAGCACCTAAAAC AGAAGAAAGTCCAAAGGAAGAACCAAAATCGGAGGTAAAACCTACTGACGACACCCTTCC TAAAGTAGAAGAGGGGAAAGAAGATTCAGCAGAACCATCTCCAGTTGAAGAAGTAGGTGG AGAAGTTGAGTCAAAACCAGAGGAAAAAGTAGCAGTTAAGCCAGAAAGTCAACCATCAGA CAAACCAGCTGAGGAATCAAAAGTTGAACCACCAGTAGAACAAGCAAAAGTCCCAGAACA ACCCGTGCAACCTACACAAGCTGAGCAACCAAGTACACCAAAAGAATCATCACAACAAGA AGAAGCCCAAGAAATCAAGGTTGAAGAACCAGTAGAATCAAAAGAGGAGACTGTTAATCA GGAACCAAAAGTTGAAGTAACAAGTATTCCCCAAACTACTCGCTATGAGGAAGACCTTAC TAAGGAACACGGAACGCGTGAAGTTGTTAAGGAAGGTAAGAATGGCAGTAGAACAGTTAC TACTCCATATATCTTGAATGCGACAGATGGTACGACTACAGAAGGCACTTCGACAACTGA TGAAGCTGAGATGGAGAAAGAGGTTGTTCGTGTTGGCACGAAACCCAAAGAAAAATTAGC TCCAGTCTTAAGTTTGACAAGTGTTACAGATAATGCAATGTTGCGTAGTGCGAGACTTAC TTATCATTTGGAAAATACAGATAGTGTTGATGTGAAAAAAATTCATGCTGAAATTAAAAA TGGCGATAAGGTTGTCAAAACTATTGACTTATCTAAAGAGAGATTATCAGATGCTGTTGA CGGTCTTGAACTTTATAAAGATTATAAGATTGTGACGAGTATGACCTATGATAGAGGTAA TGGTGAAGAACCTCTACGTTGGAAGAACTCCACTACGATTAGACCTCAAGAAGGTTGA ATTGAAAAACATCGGCTCTACTAATCTCGTCAAAGTAAATGAGGATGGTACTGAGGTGGC AAGTGACTTCTTAACAAGTAAACCTGTGGATGTGCAGAATTACTACCTCAAAGTAACTTC CCGTGATAATAAAGTTGTTTCCCCTCCCAGTTGAAAAAATTGAAGAGGTGACTGAGGAAG GTCCACCACTTTACAAAGTCCCTGCTAAGGCCCTAATTTGAT

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	77	1474	F	466 aa

>[SEQ ID NO:164] 3864718-1 ORF translation from 77-1474, direction F VLLKMDGYRYVGYLSGDILKTLGLDTVLEETSAKPGEVTVVEVETPQSTTNQEQARTENQ VVETEEAPKEEAPKTEESPKEEPKSEVKPTDDTLPKVEEGKEDSAEPSPVEEVGGEVESK PEEKVAVKPESQPSDKPAEESKVEPPVEQAKVPEQPVQPTQAEQPSTPKESSQQENPKED RGAEETPKQEDEQPAEAQEIKVEEPVESKEETVNQPVEQPKVETPAVEKQTEPTEEPKVE VTSIPQTTRYEEDLTKEHGTREVVKEGKNGSRTVTTPYILNATDGTTTEGTSTTDEAEME

KEVVRVGTKPKEKLAPVLSLTSVTDNAMLRSARLTYHLENTDSVDVKKIHAEIKNGDKVV KTIDLSKERLSDAVDGLELYKDYKIVTSMTYDRGNGEETSTLEETPLRLDLKKVELKNIG STNLVKVNEDGTEVASDFLTSKPVDVQNYYLKVTSRDNKVVSPPS*

Description: unknown

Assembly ID: 3864802 Assembly Length: 1321bp

>[SEQ ID NO:67] 3864802 Strep Assembly -- Assembly id#3864802 ATCGAATTACTTCAACTCCAACTTTACTCTCAATAAAAATCAAATGTAAAAAGAGGGGCT AAATTTATCTTTTTCTCCTCCTTCATCGTTCTTACTTTTGACCATAATAAGCATTTGGTC  ${\tt CATGTTTACGTTGGTAGTTTTTCTAGTATGTACTGGGGAGCAGGTTCAACTCTTGGAT}$ TGATTTGTTCTGTAAAGCGATTCATCTTTGATACTTCCTCTAGTACGACAGAGTGATAAA CAGCATTCTCTGGATTTTTGCCCCAGGTGAATGGACCGTGATTGCGTACAACAATTCCTG GTACTTCAACCGGGTTAAGTCCGCGATGTTCAAACTCTTCTACGATAACCAGGCCAGTAT  $\tt CTTTTTCATAGGCCACTTCTACTTCGTCCTTGGTCAAACTACGGGCGCAAGGGATTGAAC$ AAGCAACAGCTTCTGTCGAATGGGTGTGAACCACACTACCAATTTCTGACCAAGCCTTAT ATAATTGCACATGAGTTGGGAAGTCGGAAGATGGTCTTAAATCCCCTTATAGGATCTTAC CATCTAGATCAGTCACCATGTTTTCAGGTGTCAATTCGTCATAATCCACGCCTGATG GTTTGATAACAATGACACCGAGTTCGCGATTGACTTCAGATACATTCCCCCAGGTAAATT TGACAAGTCCATGTTTTGGCAATGATTGATTGGCATCACAGACTCGTTTACGCATAGCAT TGATTACTTGATTCATCTTACATCAAACCTGCTTTCTTAATGAGTGGATAGAGAAAAGCT TGCGCCTCTTGAATGGCTGCGCGTGTTTCTTCTACTGTTTCACAATTTTCAGACCACATT TCGATTAGGAAAGGTCCATTATAATTGGTTTCCTTTAAAATATCGAAAGCTTCTTCCCAT TTGACACAACCTTGCCCAAAAGGTACATCTCGGAACTGGCCCTTTGAACTTTCTGTCACT GCATAAGTATCCTTGAGATGGAGAGTTGCGATGGCATGATGACCAAGATAAAACTCACTA TAGATATCATTATGCCATGCAGACACATTACCAATATCTGGATATACAAAGAGGAAGGGA GAGTCAATCTCTTTTTCTATAGCCAAATATTTTTCGATGCTATTGATGAAAGGATCATCC ATAATTTCAATAGCAAGTACCACCTGAGCTTCTTCAGCCCAGTCACAGGCTTTTCTCAAA TTTTTGATAAAACGTTGGCGTGTCTGGGGTGACTTTTCCTCATAGTAAACATCGTAACCA G

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	92	550	R	153 aa

>[SEQ ID NO:165] 3864802-1 ORF translation from 92-550, direction R VQLYKAWSEIGSVVHTHSTEAVAWAQAGRDIPFYGTTHADYFYGSIPCARSLTKDEVEVA YEKDTGLVIVEEFEHRGLNPVEVPGIVVRNHGPFTWGKNPENAVYHSVVLEEVSKMNRFT

EQINPRVEPAPQYILEKHYQRKHGPNAYYGQK*

### Description:

L-RIBULOSE-5-PHOSPHATE 4-EPIMERASE (EC 5.1.3.4). - ESCHERICHIA COLI.

Assembly ID: 3864854 Assembly Length: 1265bp

>[SEQ ID NO:68] 3864854 Strep Assembly -- Assembly id#3864854 TTTTTCTGTTTTTCGGAGCAAACTGGGCTCCAGCCGGTTTTGGCCTTCTTTCCTTAGCTA CAGGTTTTGCTTCTACTTTCGGAGCAGCTGCAGGCTTAAAGCTGGCAGCAATTTTTGCAG CGACAGCTTCTTCCACACTTGATGAGTGGCTTTTCACATCCAAGCCCAACTCTTTTGCAC GCGCTACAACTTCTTTACTTTTCTTTTCCAAGTTCTTTTGCGATTTCGTACAATCTTTTCT TAGACAAATCATGTCCTCTCTTCTATTCCATAAGAGACCTCATTTTCTTTGTAAATCCA GCATCTGTTACAGCCAAAACCTTTCTCGATTTCCCGACTGCTATGATTAATTCCAGTGTT GAAAACACGGTTACAATTTCTACTTGATAATAATGACTTTTATCTTGAATCTTCTTGGTC AGATTGGGTCCAGCATCATGAGCTAGAAAGACCAACTTGGCCTTGCCGTCTTGAATGGCC TTGACCACCAATTCTTCACCCGATATGATGCGCCCTGCTCGCTGAGCAAGCCCCAAGAGA TTACTTATCTTTTGCTTATTCAAGTCCCAACTCTCTTCTTTTCACTTTGTGATCCACATA AGCGATCAACTCGTCATAAAAGCTTTCTTCCACTTCCATGCTAAAGCTGCGGTTAAAGAC  $\tt CTTCTTCTTTTTCGCCTCTAGGGCTTCTGCATTGTCTAGTTTGATATAAGCGCCGCGGCC$ CAAATCACGCTTATCAATCACTTCGTTAGACACAACAGACTTGCGCAAAGGGATTTTTCT TGTTTTCATCTTTCCCTCCTCTAGCAGCTTTTATTCTTCTACAGTATCGTTTTCTACTTC CAACTCTACTGAAGCAGCGTCTTCCATGGCTTCAAATTCGCTAGCAGACTTGATATCGAT ACGGTAACCAGTCAAGTGAGCCGCCAAGCGCACGTTTTGTCCACGACGACCAATGGCAAG AGAAAGCTTGTTATCTGGAACAACCACCAAGGCACGTTTGCTGTCGTTTTCATCAAAGAT AACTTGGTCAACCTCAGCAGGAGCGATGGCATTGTAGATAAATTCAGCTGGATCTGCTAC CCACTCGATAACATCGATATTTTCTTCGATTGGTACCATGCGGTCATTTTTAGCATCGTA ACGAG

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	324	548	R	75 aa

>[SEQ ID NO:166] 3864854-1 ORF translation from 324-548, direction R VVKAIQDGKAKLVFLAHDAGPNLTKKIQDKSHYYQVEIVTVFSTLELIIAVGKSRKVLAV TDAGFTKKMRSLME*

Description:

PROBABLE 11.1 KD RIBOSOMAL PROTEIN IN NUSA-INFB INTERGENIC REGION (ORF4). - BACILLUS SUBTILIS.

Assembly ID: 3864862 Assembly Length: 1305bp

>[SEQ ID NO:69] 3864862 Strep Assembly -- Assembly id#3864862 TGTATGTTTGGGCGTTGGCAGTTGGTTATACATAGCTAAAATCAGGTCTTATAGAAACAT CTTATTATCAAGTTCTTCCACTCAAATCATTTCTTTGGCACCTTTGTATGGAAACTCAAA AGAAGATTGGTCAATCTTATCTAAGACTGCTTGCACGGGTTTAACTAAAAGCGATCGTCA TAAATGCCGCCAATAATCTTGCCGCGGAAGTAAAGAATATACTCCCCCATCATGGAACGG TAAGTCACATCATCTAATCCTGATAATTGTTCCAAAACAAATTCCAAATAGTTCTTACTT GATGCCATTTCTAATCTTCTAGGCTCTGTTCAACGATAACAACCGTATAGAGTTCTTGCT TAACCTCGCATCCAATTGATTTAAAGCCCTGCTTTTCCCAAAAATGCTGAGATTGCGGAT TTCCCTTAACATAAGCCAAACGTGCCTTTCGAAAGTTCTTAGCAAAATAAGCTAGTGCTT CAATAAAAACAGTCTCCTCATCAGGATATGCATAGACAAAATCCATAACAGCCACAAGGT CAAATCCATTCCAAAATCCAACAAAAAACTTATCAGCCTTAGCTTTACCTTCAGGTAGAC AAAGCATGTCCTCTTTTACAGTTGCAAAATTTGGCTCTGGTGGACAATGCTGAAAATACA GAGGATTACTTTCATATAAAGATAAAATACTTGGAATATCCTTTTCAGTTAGTATCCTAC AACTGTAATACTTAGATAGTTGGTCAATCATCTTTTCAAATTCGATACTTTCTTGTGCCC TGTGATTATGACACAGGAAGATGCACTGATCGTCATCAGCCACATAAAAGTTCTTTCCAT CGTGCCTAATCGTTGTCTCAAACCTTTGGATAAAACCTTTAGCCTATACAACTGGATTTT CCTCTCTCAAAAGTATATTCTTTTGCAGGCGAACTTCCTCAAAATCAGTCGTGTGCAACT TCAGTAGAATATTCATAGGCTCGGATAATCTGAGCGACAACAGGATGGCGAACCACATCC TTGGCTGAAAAATGAACAAAGTCAATCTGATGGATGTTCTTTGAGCTTCTTTGAGCATCA ATCAAACCGGACTTGACATTACGTGGCAGGTCAATCTGACTAATA

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	431	1003	R	191 aa

>[SEQ ID NO:167] 3864862-1 ORF translation from 431-1003, direction R VADDDQCIFLCHNHRAQESIEFEKMIDQLSKYYSCRILTEKDIPSILSLYESNPLYFQHC PPEPNFATVKEDMLCLPEGKAKADKFFVGFWNGFDLVAVMDFVYAYPDEETVFIGLFMVD QAYQRKGIGSHIVTEALAYFAKNFRKARLAYVKGNPQSQHFWEKQGFKSIGCEVKQELYT VVIVEQSLED*

Description: unknown

Assembly ID: 3864888 Assembly Length: 1742bp

>[SEQ ID NO:70] 3864888 Strep Assembly -- Assembly id#3864888 CTAATCTCCTTAAAACGTGATCTTTTCAAGAATATTTTTTATCTAAACAATCCAGCAAGTC ATTATACCAGATAGTGTCAATCCCCGCATTATTGCCACCTTGAATGTCGGCGGTTAGAGA ATCTCCAATCATCAGCGTCTTTTCTTTACTAAATCCAGCAATTTTGCTGGCCAATCTTTTC ATAAGGTGCTAGACCAGATTGAGCCAAACGTCCTGTCTGAATGGCAGTAATGCCATTTGT CGCAGCATACAAGTTATAATCACGCTCAATGAGGCTGTCCAAGAGATCATGAGCGCCCGA TAGTGTTTGTCCCTGCTGGGCGAGGTAAAATTGGTAACGCTGGGCAAGAAAACTACCGTC TTTTTCCTGTCCAAAATGAGCAAATAAACGAGAAAAAGCGCGTGTTAACCAGCTCTTGTTT ACTGATTTTCTTCAGCTCCAAGTCTTTCCAGAGGCCTTGTTCATAGGAACGTAATAATC TTTATAAGCCGGAATATCCGCAACTCCTTCTTCTTTTAGAAGTGGAGTCAAAGCCACATC CTCAGCAGCATCAAAATCAAGAAGAGTGTGGTCGAGGTCGAAGAGTACAAATTTGTAGAA CAATTTGAGGTTTTCCTTTCTGAAAATTCATTAAGAACATTATATCATAAAGCACCTCAT ACAATTAACTAATTTAATCACTTAAAAAAAATTCGAACACTTTCTATACAACTGACAGCT CAAATCTTTCAGAATAGAACAATACTAACTATCGAACACCCCGTCTTCATAAATACATAT GTAATTCTAGGCCTAGAATTCCTATAAACTAAATGCTTTCATACTCTTCCAAGTAATTGA TTGCCTTAAATTTTAATTTTTGAAGGTTTCTAAAGCTAGAATAGCCCCATCACAATCAGT TTTGATTGATTCACAATTTAGAAACACTATAGTTTCACTCCTGTTAAAATAAAAAGGAAC TGCATAAAGCAATCCCTTTCTGATTTTGAAATCATTTACTTAACATTTTATAGTTGAGAT TCCGCTAACTGTATTTGAATAACTGACAGTTCTGCACCAGCCTGAAAAAGAGCAGCTGCA TTATAGGCACCTTCTACAATTGGAACCCTGTTGATGATGATACTTTTATCACTGAAATCA GTCACCATTTTTAAGTTCATTTTAGCAGAACCTAGGTCAAAAAAGGCAAGTAAAGTATCT GCTGGATTTTCGGAAACACCCTATCTACTTGATCAAAACTCGTTCCAATTCCTCCGCCC TCGGTTCCTCCTACATAAGTAATCGGAACATCTTTAGCTACTTTACTAATCAGTTCAACA ACACCTTCTGCAATGTGTTTTGGAATGTGAAACGATAACAAGACCAATACCAATACTTTCC ATCAAACCACTCCAGTTTCTAAAATAGCAGTAAAGAGTAATCCTGATGAGAATGATCCAG GATCAATATGTCCAAGAAACCACATGCTCCTAAGACAAGAGCTAACAGACTGGCCATCAA TAATAGTATTGTTCTTTTTTCATCATTACTCCTTAACTAGTGTTTAACTGATTAATTCG AT

### ORF Predictions:

ORF #	Start	End	Direction	Length
1	10	657	R	216 aa

>[SEQ ID NO:168] 3864888-1 ORF translation from 10-657, direction R VALTPLLKEEGVADIPAYKDYYVPMNKALWKDLELKKISKQELVNTRFSRLFAHFGQEKD

GSFLAQRYQFYLAQQGQTLSGAHDLLDSLIERDYNLYAATNGITAIQTGRLAQSGLAPYF NQVFISEQLQTQKPDALFYEKIGQQIAGFSKEKTLMIGDSLTADIQGGNNAGIDTIWYNP HHLENHTQAQPTYEVYSYQDLLDCLDKNILEKITF*

Description: unknown

Assembly ID: 3864898 Assembly Length: 1136bp

>[SEQ ID NO:71] 3864898 Strep Assembly -- Assembly id#3864898 GTGGAATGCGGGGACGCCTTGTCTAATTTTGGATCAAGCCCTGAGTTTGACACAGGGAAA TGAGCTGGACGGACTGCTATCTCTGAAGAAATTACTGGCACCATTAGCCTATCAGCCTTG CTTCTTTTTGACAATGGTAAGAGCATGACTCGTTTTGTGACCGATCTTTTGCACTATTTA AGAGACTTGTTAATTGTTCAAACAGGGGGAGAAAATACTCATCATAGTTCAGTCTTTGTA GAAAATTTGGCACTTCCTCAAAAAATCTGTTTGAAATGATTCGCTTAGCAACAGTGAAT TTGGCGGAAATCAAGCCCGAACCAGCTCTATCAGGAGCGGTTGAAAATCGAATTGCTACG CTGAGACAGGAAGTTGCCCGTCTCAAACAAGAGCTTTCTAATGCAGGTGCGGTTCCTAAA CAAGTTGCACCAGCTCCTAGTCGACCAGCTACGGGCAAAACAGTCTATCGTGTCGATCGC AATAAAGTGCAATCTATCTTACAAGAGGCCGTCGAAAATCCTGATTTAGCACGTCAAAAT CTAATTCGTTTGCAGAATGCCTGGGGAGAGGTAATTGAAAGTCTAGGTGGGCCGGACAAG GCTCTGCTAGTTGGTTCTCAACCGGTTGCTGCCAATGAACACCATGCTATTCTTGCTTTT GAGTCTAACTTCAATGCTGGTCAAACTATGAAACGAGACAATCTCAATACCATGTTTGGT AATATCCTCAGTCAGGCGGCAGGTTTTTCACCTGAGATTTTAGCTATTTCCATGGAGGAA TGGAAAGAAGTTCGCGCAGCCTTTTCAGCCAAAGCCAAATCTTCTCAAACTGAAAAAGAA GTAGAAGAAGCCTGATTCCAGAAGGATTTGAATTTTTGGCTGATAAAGTGAAGGTAGAG GAAGACTAAAGAAGATTTCATGATACAATAAGTTTATGAATAAACAACAATTTATTATT ATGGCGCTATTTACAGCTGCTGAGACCTATTTTTTCAATGAAGCCTGGATGACTGG

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	130	1029	F	300 aa

>[SEQ ID NO:169] 3864898-1 ORF translation from 130-1029, direction F VAALSQQDVPKALSCLNLLFDNGKSMTRFVTDLLHYLRDLLIVQTGGENTHHSSVFVENL ALPQKNLFEMIRLATVNLADIKSSLQPKIYAEMMTVRLAEIKPEPALSGAVENRIATLRQ EVARLKQELSNAGAVPKQVAPAPSRPATGKTVYRVDRNKVQSILQEAVENPDLARQNLIR LQNAWGEVIESLGGPDKALLVGSQPVAANEHHAILAFESNFNAGQTMKRDNLNTMFGNIL SQAAGFSPEILAISMEEWKEVRAAFSAKAKSSQTEKEVEESLIPEGFEFLADKVKVEED*

Description: unknown

Assembly ID: 3864938 Assembly Length: 1670bp

>[SEQ ID NO:72] 3864938 Strep Assembly -- Assembly id#3864938 CTGTCTCTGAAACAGTCACATCAAGTGCCTCTGAACAANCGCCCCNCCTAGGTNGACGGT ATCGATAAGCTCGATCTGTGATTTCAGAGAAGAAATCAAGTGCTGTAACAGAAGTAAGAT  $\tt GTAATTGTAAAGGAGACGTCATGTTAAATAGTATTGTAACCATTATTTGTATTGCC$ CTTATCGCGTTTATCTTGTTTTTGGTTTTTCAAAAAGCCTGAAAAATCTGGACAAAAAGCC CAGCAAAAAAACGGATACCAAGAGATTCGAGTGGAAGTCATGGGAGGCTATACTCCTGAG TTGATTGTCCTCAAGAAATCAGTGCCAGCCCGCATTGTCTTTGACCGCAAGGATCCTTCA CCATGTCTGGATCAAATTGTTTTTCCAGATTTTGGTGTACATGCGAACCTGCCAATGGGG  ${\tt GAAGAGTATGTAGTGGAAATCACGCCTGAACAGGCTGGAGAGTTTGGCTTTGTGGT}$ ATGAACATGATGCACGGCAAGATGATTGTAGAGTAGGTGGAGACTATGACAGAAATTGTG AAAGCAAGCTTAGAAAATGGCATTCAAAAAATCCGTATCCGAGCTGAAAAAGGCTATCAT CCAGCCCATATCCAGCTTCAAAAGGGAATTCCAGCTGAGATTACCTTTCATTCGTGCTAC TCCTTCAAACTGTTATAAGGGAAATTCTGTTTGAAGAAGAAGGTATCTTGGAAGCAATCG GCGTAGATGAGGAGAAAGTCATTCGTTTTACACCTCAAGAATTAGGGAGACATGAATTTT CTTGTGGCATGAAGATGCAAAAGGGAAGCTATATAGTCGTTGAGAAGACTCGAAAATCTC TATCTCTCCTGCAAACGTTTTTGGATTACTAGTATCTTTACTGTGCCTCTTGTGATTCTC ATGATTGGGATGTTGGCAGGTAGCATTAGTCATCAAGTCATGCATTGGGGAACCTTTTTA GCAACAACGCCTATTATGTTAGTTGCGGGTAAGCCATATATCCAGAGTGCTTGGGCCAGT TTTAAAAAGCACAATGCCAACATGGATACCTTGGTTGCGCTGGGAACTCTAGTGGCTTAT TTCTATAGCCTAGTTGCTCTCTTTGCTGGTCTCCCTGTTTACTTCGAAAGTGCTGGATTT ATCCTCTTTTTCGTTCTTTTGGGAGCAGTTTTTTGAGGAAAAATGAGGAAAAATACGTCC CAAGCTGTGGAGAAATTACTGGACTTGCAAGCTAAAACCGCAGAAGTCTTGAGTGATGAT AGTTATGTCCAAGTTCCTTTGGAACAAGTCAAGGTACGCGACCTTGATTCCAGTGCGTCC CGGTGAAAAGATTGCTGTTGATGGTGTCGTAGTAGAAGGTGTCTCTAGTATTGACGAATC  ${\tt CATGGTGACAGGTGAGAGTCTGCCTGTGGACAAGACAGTTGGAGATACTGTCATTGGCTC}$ AACCATCAATCATAGTGGAACGCTTGTCTTTAGAGCAGAAAAAGTTGGCTCAGAGACTGT TTTGGCTCAGATTGTAGATTTTGTGAAGAAAGCTCAGACAAGTCGTGCGCCGATTCAGGA CTTGACGGATAAGATTTCAGGGATTTTTGTCCCAGTAGTTGTCATTTTAGGAATCATGAC CTTTTGGGTTTGGTCTTGCTCAGGGATAGTGTGGTCGTGCTTGGAG

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	883	1326	F	148 aa

>[SEQ ID NO:170] 3864938-2 ORF translation from 883-1326, direction F VPLVILMIGMLAGSISHQVMHWGTFLATTPIMLVAGKPYIQSAWASFKKHNANMDTLVAL

 ${\tt GTLVAYFYSLVALFAGLPVYFESAGFILFFVLLGAVFEEKMRKNTSQAVEKLLDLQAKTA} \\ {\tt EVLSDDSYVQVPLEQVKVRDLDSSASR*}$ 

Description: ATCS_SYNP7

Assembly ID: 3864956 Assembly Length: 1252bp

>[SEQ ID NO:73] 3864956 Strep Assembly -- Assembly id#3864956 ACAAGAACAATTGGAACAGGTACAGGCTGTTAAAAAATCGATTAACACAGCTAGTGAAGA AGTGAAAAACCAAGTCTTGCTACCCATGGCTGATCACTTAGTGGCTGCTACTGAGGAAAT TTTAGCGGCTAATGCCCTCGATATGGCAGCGGCTAAGGGGAAAATCTCAGATGTGATGTT GGATCGTCTTTATTTGGATGCAGATCGTATAGAAGCGATGGCAAGAGGAATTCGTGAAGT GGTTGCCTTACCAGATCCAATCGGTGAAGTTTTAGAAACAAGTCAGCTTGAAAATGGTTT GGTTATCACAAAAAACGTGTAGCTATGGGGGTCATCGGTATTATCTATGAAAGCCGTCC AAATGTGACGTCTGATGCGGCTGCTTTGACTCTTAAGAGTGGAAATGCGGTTGTTCTTCG TAGTGGTAAGGATGCCTATCAAACAACCCATGCCATTGTCACAGCCTTGAAGAAGGGCTT GGAGACGACTACTATTCATCCAAATGTGATTCAACTGGTGGAGGATACTAGCCGTGAAAG TAGTTATGCTATGATGAAGGCCAAGGGCTATCTAGACCTTCTCATTCCTCGTGGAGGAGC TGGCTTGATTAATGCAGTAGTTGAGAATGCCATTGTGCCTGTTATCGAGACAGGAACTGG GATTGTCCATGTTTATGTCGATAAGGACGCAGATGACGACAAGGCACTGTCTATCATCAA CAATGCCAAAACCAGTCGTCCTTCTGTCTGCAATGCCATGGAGGTTCTGCTGGTTCATGA AGACAAGGCAGCAAGCTTCCTTCCTCGCTTGGAGCAAGTGCTGGTTGCAGATCGAAAAGA TCAAGCTGCTCAAGCACAAGACTTTGATACCGAGTTTTTAGACTATATTCTAGCTGTTAA GGTTGTGAGCAGTTTAGAAGAAGCGGTTGCGCATATTGAATCCACAGTACCCATCATTCG GATGCTATTGTGACGGAAAATGCTGAAGCTGCAGCATACTTTACAGATCAAGTGGACTCT GCAGCGGTGTATGTTAATGCCTCAACTCGTTTCACAGATGGAGGACAATTTGGTCTTGGT TGTGAAATGGGGATTTCTACTCAGAAATTGCACGCGCGTGGTCCAATGGGCTTGAAAGAG TTGACCAGCTACAAGTATGTGGTTGCTGGTGATGGGCAGATAAGGGAGTAAG

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	1030	1251	F	74 <b>a</b> a

>[SEQ ID NO:171] 3864956-2 ORF translation from 1030-1251, direction F VTENAEAAAYFTDQVDSAAVYVNASTRFTDGGQFGLGCEMGISTQKLHARGPMGLKELTS YKYVVAGDGQIRE*

Description:

gamma-glutamyl phosphate reductase (proA) homolog - Haemophilus
influenzae (str ain Rd KW20)

Assembly ID: 3864958 Assembly Length: 1785bp

>[SEQ ID NO:74] 3864958 Strep Assembly -- Assembly id#3864958 CTGCCCTAGCAGGAACGCAAGAAGGAACTGGAGAATAGGCATTTTCAAAATTATAACCTA CACTAGCCATCATATCTAATGTTGGAGTGCTAACTAGCTTATCCTTACTATTCAAGGATA AGGCGTCTGCTCTCATTTGATCTACAACAATCAAAATAATATTTGGTTGTTTTGTCTGAA CCATAAAATCTCCTTTCTAATATGGCAAAAGAGGCACAAGAAGATATCTACCTTTACTGC ACCCCTTTCTATATCAATCTCTCTATATAAAGCAATAACATTCTTGTTATGTTTTATAGA ACAATGGACTAAAATATGACTAAATCGATTAGGAAATCAAATCATTTTCTAGTACTGTT TTAGTAAGTTACAGTGTACTATTCCAACTTCAATAAATTATAAACCTTTGTCTAATAACA ATTTTAGTGGAGATAAGAAATCCTACACCTAACTCATCTTACACGTAATCTATTTCTATT TTATCACAAAAAACGCAAGTAAGACCATTAACTCAATTCAGTTTTATCTGCCATTTTCAC CCAATCAAATGCTGTAGAGAAGAAACCATATAAAATTGGAGGCATTACCCAAGTAACATT TTGTGTAACAGGTGAAACAAGACCCCAGCTTGTTGCCCAGTAAGCTACCGTTGCCATGAA AACCGGGCTAAGTACAAATGGTATAAATAGCAAAGGATTCAAGACAACTGGTAAACCATA ATTCGATACCGGCTCACCAATATTAAACAGAACTGGTGCTAGACCAAGTTTAGCAACTTT TCGATAATGACTGTTTCTTGAAAAAATTAAAATAGCAAGTACTAATCCTAATCCTCCAAA CCAGACAAACGCCCCAAAAGACCCACTTGTCCATATATAAGGAATCGGTTCACCTTTTTG GAAAGCATCCAGATTCGCTAACATAGCAACTCCAAATAGCCCTTCCATGATGGGAGCCAA TACATTTCCTCCATGGAGACCAAAAAACCAGAATAACTTATTCAAAAAGATCATCAGAAT AACTGCAAAGAAACTTTGAGACAAACCTAGTAATGGCGTTTGTAACACCTTGTAAACCCA ATCAATCAATAAGTCATTGCTAAGTAAATGGAAAACATAAGTCAAGATGGCTACTATATA CATCGCCATAAATCCTGGAATGATAGAAGTGAACGGCTTAGCAATCGCAGGGGGAACTGA ATCTGGTAACTTGATTACCCAGTTCTTTTTCATTACTTTACAGAAAATAATAGAGGCTAA AAATCCAATCATGGCTGTAAAGTAGCCTCTGGCATTAATATGGTTTCCTGGAATCAC ATTCCCAATAGTTACCATCAGATTTTTACCATCAAATGCTAGATTATCAATTCCATGTTA AGATTTGATCTAATTTCACATCTCCTACATTTGCCAAAGGGAAACTCTTTGTAACTGTAC TTCCAATCGAAATGACAAACGAAGCAAGTGATACCAAACCAGCAGAAACTGTATCAACCT TGTAAATCTTAGCGATATTCACTCCCAAGCAATAGATGAACAACAAGGAAACAATTGGTA TACTTCCCTTGAATACCAAATTATTGATGTCAACAAGCCACTGAAAGGTTTTCGTAATAC TTCCTAGGTGAAATTGTTGTGGTAAATCCACTAGAAAAGCATTTAATAACAAAGCAATGG AACCTGTCATAATAACAGGCATAGTCCCCACAAATGAATCACGTT

$\Delta$ DD	D	
()KH	Predic	tions:
$\circ$	CU+C	. CTOTIS .

ORF #	Start	End	Direction	Length
	<del>-</del>			<b></b>
1	1427	1711	R	95 aa

>[SEQ ID NO:172] 3864958-2 ORF translation from 1427-1711, direction R VDLPQQFHLGSITKTFQWLVDINNLVFKGSIPIVSLLFIYCLGVNIAKIYKVDTVSAGLV SLASFVISIGSTVTKSFPLANVGDVKLDQILTWN*

Description: unknown

Assembly ID: 3865022 Assembly Length: 1386bp

>[SEQ ID NO:75] 3865022 Strep Assembly -- Assembly id#3865022 ATCGAATTTCATTTCCTATTCCATTTTTATTCAAAAAATCAAAAAGCAAACTAG AAAGCTGGTCGCTGGTTCAAAACACTGTTTTGAGATTGTCAATAGAACTGACAAACC  $\tt CTGTAATATACCTGCATATATACATACGACAAGGCGATACTACCCTAGTTTGAAGAGATT$ CATTCTTATCCTAAAAAATGCTCATTTTTCTTAAATTATCAATCTAAATCTGGTTTATAG AGAGCTGTTGACATCATCATCATGCTTGCATCCAGATTGTCAATCATATGGATAATCTCT AGGATGACATGACGAAGCAAAACGACTTCTTCCTTGGTATCATCGATGCCGAGTTCCATA ACTGTCTTGGTAATTTCGCTATCAATGAGAGCGATATGTCCAAGAAGATTACCTCGCACT GTGTACTCTGTCTGGCCCCGTCAACTCGATAACCTTAGCTAAGTCATGCAGCATA ATCCCCGCATAGAGCAGGCTCTTATTGAGCTGAGGATAAACTTCGCTAATAGCGTCTGCC TTGGCGGCTGGATAGGAGTAGAATTCCTTATCATACTTGGTGTAGAGATTTCGGACAATC CGTTGCCAGACAGGATTTTCAATTTTGAAAATCATTTGCGACATGTAGTCACGAATTTCC TTGACATCAACTGGTGACTTGACCTTGAAATCAGCTGGGTCATTGGGTTCACCAGCTTGA GGCAGGCGGAGAGTAATTTGATTGACTTGAGGGGGTATTGTTATAAACTTCTCGGCGTCCT TTCATGTGGACAACCTTACCTGCGGTAAAGGCCTCAATGTTATGAGGTTGGGCATCCCAG AGCTTCCCATCAATCTCGCCACTATCATCTTGGAAGGTAAAGGCTAGGTAGTTTTTCCCA GCTCGAGTTTGCCTCAGGTCAGCTGATTTGATTAGGTAAAAGCCTTCAAATAACTCATCT TTTTTCATGTGACTAATCTTCATATTCTTCCTCATTTTCTTGAAAATGGAGTAGATCAAG CGCAGGCTCACCTTCTGACAACTCAATGTGACGGAGCGTCCGCTCGATAGCTATGGTACG ACGGTTTAATAATTCGATCAATATTGCCAGAGGCATGTTGGAGATGTTTTTGTGCCTTGA CCAGAA

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	279	1271	R	331 aa

>[SEQ ID NO:173] 3865022-1 ORF translation from 279-1271, direction R VSLRLIYSIFKKMRKNMKISHMKKDELFEGFYLIKSADLROTRAGKNYLAFTFODDSGEI

DGKLWDAQPHNIEAFTAGKVVHMKGRREVYNNTPQVNQITLRLPQAGEPNDPADFKVKSP VDVKEIRDYMSQMIFKIENPVWQRIVRNLYTKYDKEFYSYPAAKTNHHAFETGLAYHTAT MVRLADAISEVYPQLNKSLLYAGIMLHDLAKVIELTGPDQTEYTVRGNLLGHIALIDSEI TKTVMELGIDDTKEEVVLLRHVILKSTTACLNMEIPVRPRIMEAEIIHMIDNLDASMMMM STALALVDKGEMTNKIFAMDNRSFYKPDLD*

# Description:

gi | 710422 (U21636) cmp-binding-factor 1 [Staphylococcus aureus]

Assembly ID: 3865036 Assembly Length: 1167bp

>[SEQ ID NO:76] 3865036 Strep Assembly -- Assembly id#3865036 CTCAGATTACAGAGGACAATCAACTGGTTCATTTTCGTTTTCCAGTTTCAAAAAGGCTTAG AAAGGGAGTTCATCTATCGTGTGGAAAAAGAAAAAGTTAAGGCAGGTGTTCTCCTCTAC GCAGTCACCATAGCAGCCATCTTTAGTCTTTTGTTGCAATTTTATTTGAACCGACAAGTC  ${\tt GCCCACTATCAAGACTATGCTTTGAATAAAGAAAATTGGTTGCTTTTGCTATGGCTAAA}$ CGAACCAAAGATAAGGTTGAGCAAGAAAGTGGGGAACAGGTTTTTAATCTAGGTCAGGTA AGCTATCAAAACAAGAAAACTGGCTTAGTGACGAGGGTTCGTACGGATAAGAGCCAATAT GAGTTTCTGTTTCCTTCAGTCAAAATCAAAGAAGAGAAAAAGAGATAAAAAGGAAGAGGTA GAGAATTCCTAGTCAATTCAACTATAATGCGTTGAATCCAGAATAGTCCACTGTAGTTTC TAGAAAATTGCTGGAAATGGATGTTAAGCTCCAATTCATTTGTTTATATCTTATTTCAGT CCACTATACTTTGTGCTAAATTAAAGATATGAAACATGATTTTAACCACAAAGCAGAAAC TTTCGATTTCCCTAAAAATATCTTCCTCGCAAACTTGGTATGTCAAGCAGCCGAGAAACA GATTGATCTTCTATCAGACAAAGAAATTTTAGATTTCGGTGGTGGCACGGGTCTATTAGC  $\tt CTTGCCCCTAACCCCTAGCCAAGCAGGCTAAGTCAGTCACTCTTGTAGACATTTCTGAGA$ TGGAGCAAGATTTACCGAAAAATCCCTTGGAGAAAGAGTTTGATTGCCTTGCTGTTAGTC GGGTTCTTCATCATATGCCTGATTTGGATGCGGCTCTCTCACTGTTTCATCAACATTTGA AGGAAGATGGGAAACTCATCATTGCTGATTTTACCAAGACAGAAGCTAATCATCATGGAT TTGATTTAGCTGAACTGGAAAACAAGCTAATTGAGCATGGGTTTTTCATCTGTGCATAGT CAGATNCTCTATAGCGCTGAAGANCTG

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	79	492	F	138 aa

>[SEQ ID NO:174] 3865036-1 ORF translation from 79-492, direction F VWKKKKVKAGVLLYAVTIAAIFSLLLQFYLNRQVAHYQDYALNKEKLVAFAMAKRTKDKV EQESGEQVFNLGQVSYQNKKTGLVTRVRTDKSQYEFLFPSVKIKEEKRDKKEEVATDSSE KVEKKKSEEKPEKKENS*

Description: unknown

Assembly ID: 3865054
Assembly Length: 916bp

>[SEQ ID NO:77] 3865054 Strep Assembly -- Assembly id#3865054 TCTCCCAACATATAATTTCCGTTTTCCAATCCCCCAGCTGTCATACAGTCTGTGATAAGA GCGATGTTTTCTGTTTCTTTTGTTTGATAAGAATTTCGCAAGCCTTTGGATCTACGTGG TGACCATCACAGATCAACTCTGCATAGGTATGTGGCAATTGGTACATGGCTCCAACCATA CCCAATTCACGGTGAGTCAACCCACGCATTCCATTGTAGGCATGCACCCAAACACTCGCT CCAGCATCGACTGCTTTTTTGGCTTCATCAAAAGTCGCGTTTGAATGTCCAAGAGCAACC GTCACACCTTCGCCCGTAACTGTACGAACAAAGTCTTCCACCCCATCACGTTCTGGTGCA ATCGAATTTTATTAAGCAAGCCATTTGCCGCTTTTTTGCCAAGAATGAAACTCCTCAACAC  ${\tt CCGGGTCTCTCATATAAGTTGGATTTTGTGCCCCCTTAAAAGTTTCTGTGAAATATGGAC}$  $\verb|CTTCATAATAAATCCCACGAATCTTAGCACCTGTTGCTTCTTATAATGGTTTCCAAGAT|\\$ TTTCAGTGACTGCAAGCAATTGCTCATAAGTGGCTGTTAAAGTTGTGGGTAAGAAACTGG TAACACCGGTACTAAGAAGTCCTTCACTCATAGTATGCAATGTACCTTCAATGTTGTTGT CCATCACATCTACACCTGCATATCCATGAATATGAGTATCCACAAGACCTGGGGCAATGC TATAACCTGTATAGTCAATCACCTCAGCCCCTTCAGGAATCTGCTCTACATGTTTCCCAA ACTTGCCGTCCACAAGTTCCAAGTAACCACCTCGACAAATCCGTGTGGGTAGAAAAACTG ATTATGTCAATTCGAT

#### ORF Predictions:

ORF #	Start	End	Direction Length	
1	302	793	R	164 aa

>[SEQ ID NO:175] 3865054-1 ORF translation from 302-793, direction R VDGKFGKHVEQIPEGAEVIDYTGYSIAPGLVDTHIHGYAGVDVMDNNIEGTLHTMSEGLL STGVTSFLPTTLTATYEQLLAVTENLGNHYKEATGAKIRGIYYEGPYFTETFKGAQNPTY MRDPGVEEFHSWQKAANGLLNKIRLHQNVMGWKTLFVQLRAKV*

#### Description:

N-acetylglucosamine-6-phosphate deacetylase (nagA) homolog -Haemophilus influe nzae (strain Rd KW20)

Assembly ID: 3865102 Assembly Length: 786bp

>[SEQ ID NO:78] 3865102 Strep Assembly -- Assembly id#3865102 CTGGATTAAAACGAGGCAGTTTCAGACTAATATCCAAGTCGTAAGAAATGCCTGAAATAA

# ORF Predictions:

ORF #	Start	End Direction		Length	
1	27	731	R	235 aa	

>[SEQ ID NO:176] 3865102-1 ORF translation from 27-231, direction R VRRIEEKCKLIAQLDTKTVYSFMESVISIEKYVRAAKEYGYTHLAMMDIDNLYGAFDFLE ITKKYGIHPLLGLEMTVFVDDQEVNLRFLALSSVGYQQLMKLSTAKMQGEKTWSVLSQYL EDIAVIVPYFDRVESLELGCDYYIGVYPETLASEFHHPILPLYRVNAFESRDREVLQVLT AIKENLPLREVPLRSRQDVFISASSLEKLFQERFPASFGQFRKAYFRHFLRLGY*

# Description: unknown

Assembly ID: 3865156 Assembly Length: 1213bp

#### ORF Predictions:

ORF #	Start	End	Direction Length		
			<b></b>		
1	416	808	R	131 aa	

>[SEQ ID NO:177] 3865156-1 ORF translation from 416-808, direction R VVERIKIARSYGDLSENSEYEAAKDEQAFVEGQISSLETKIRYAEIVNSDAVAQDEVAIG KTVTIQEIGEDEEEVYIIVGSAGADAFAGKVSNESPIGQALIGKKTGDTATIETPVGSYD VKILKVEKTA*

#### Description:

TRANSCRIPTION ELONGATION FACTOR GREA (TRANSCRIPT CLEAVAGE FACTOR GREA). - ESCHE RICHIA COLI.

Assembly ID: 3865160 Assembly Length: 1173bp

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	136	375	F	80 aa

>[SEQ ID NO:178] 3865160-1 ORF translation from 136-375, direction F VDFIGGLSALEQKGYQKGDEILINSIPRALTETDKVCSSVNIGSTKSGINMTAVADMGRI YQGNGKSFRYGSGQVGCIR*

Description: unknown

Assembly ID: 3865172 Assembly Length: 1209bp

>[SEQ ID NO:81] 3865172 Strep Assembly -- Assembly id#3865172 TCGGAATCTGAGCTAGTGTAGCTTCCTTAATCTTATCTGATAAGATAGCTGTCATATCAG ACTCAATCATTTCCTGGAGCAATCAACATTGACTCGTATATTCCGACTAGCGACCTCGCG TGCCACAGACTTGGTAAAGCCAATCAAGCCAGCCTTAGAAGCAGCATAGTTAGCTTGACC AATATTCCCCATCAAACCAACACACTAGACATATTAATGATAGCACCTTCTCTGGCTTT CATCATCGGTTTCAAGACTGATTGTCATATTAAAGGCACCAGTCAGATTGACCTTGAG CACTTTTTCAAAATCTGCTTCTGTCATCTTGAGCATAAGAGTATCTTGGGTAATCCCTGC AGCGTCTGCAAAATCTGATACATCTCCTGAAATGGGAACCACCTTGATACCATAGTTTGA AAACTCAGCGAGCAATTCTTCTGAGATTGCCCCACGACTGTTTAAGACAATGTTGGCTCC TGCTTGAGCAAACTTGTGGGCGATGGCAAGACCAATTCCACGACTCGAACCTGTAATAAA GATATTTTATGTTCTAGTTTCATTTTTTCCTTCAAAACTTCTACTTATTTTAGTCTA TTTTTCTAAAAGTGCTACTAAACTCGCTTGATCTTCCACATGAGCTAAGTGAGCAGTTTG ATCAATTTTTTTAACAAAACCTGACAAGACTTTCCCCGGTCCAATCTCGAATAAAGTTGC GACGCGTCAAGAGCTGAGCAATGTCCTCTTTTTGCATCACAGCAGCTTCTGTATTGCCGA CTAGGGGACAAGTAAAATCTGAAAAACTTACCTGAGCTAGAGTTTCAGCTAGTTTCTGGC TAGCAGGCTCAAGGAGAGCGTGTGAAAGGGACCTGACACCTTAAGAGGAATCAAGCGTT TGGCACCTGCTTCTTGCAAAAGTTCAACCGCTCGATCAACTGCAACCACTTCTCCAGCAA TGACGATTTGTGCAGGTGTTTATAGTTGGCTGGAGTAACCACTCCAAGTTCCAGAAGCT TTTTGACAGGCTTCTTCAATGACCTCTACTGGCGTATTGAGAACTGCTACCATCTTGCCA

#### **AGTTCAGCA**

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	731	1123	R	131 aa

>[SEQ ID NO:179] 3865172-2 ORF translation from 731-1123, direction R VVTPANYNTPAQIVIAGEVVAVDRAVELLQEAGAKRLIPLKVSGPFHTALLEPASQKLAE TLAQVSFSDFTCPLVGNTEAAVMQKEDIAQLLTRQVKEPVRFYESIGVMQEAGISNFIRD WTGESLVRFC*

# Description:

malonyl coenzyme A-acyl carrier protein transacylase (fabD) homolog - Haemophil us influenzae (strain Rd KW20)

Assembly ID: 3865228 Assembly Length: 813bp

>[SEQ ID NO:82] 3865228 Strep Assembly -- Assembly id#3865228
ATGACACGTCTGTTCTCTCAAGCAGAAATGGCAGAGTAACAAGCTCGATATTGAGGTAGC
CGATAAAGAATTGGCTGAATTTGAAGCTCAGATTAAACAGGAAGTGGAAGCTCCAACTTG
TAGTGAGTCCTCAGGTTGAAGAAGAGCCTCAGCTCATCCAGTTGGCCCAATGTATGAAGA
ACCAGAAGTAAATCCAGTGCATCCGACAGGTCCAACACAGCTACAGAAACTGTTGATTC
AATACCGGGATTTGAAGCACCGCAAGAATCTGTTACAATTTTATAAGAAATATTCTGAGA
ACAATATCTTATCCTTATATTTCCAGCGGAGCAGGAAATGGTGTGAGTCCTGCATTCCCTA
TCGATAAGATTATCCTCTCAAACTATCAAGTCTGAATCTAGTAAGATTTGACGTTCCCCA
CGTTACGGGATAAGAGAGAGAAAAGACTAAATCTTTTTCCGAATAAAGGTGGTACCACGAT
TTTCGTCCTTTTTGGAAGTCGTGGTTTTTAATTTGTTATTATTATAAAGGAGATACCAT
GAAACTCAAAGACACCCTTAATCTTGGGAAAACTGAATTCCCAATGCGTGCAGCCTTCC
TACCAAAGAGCCAGTTTGGCAAAAGGAATGGGAAGATGCAAAACTTTATCAACGTCGTCA
AGAATTGAACCAAGGAAAACCTCATTTCACCTTGCATGATGGCCCTCCATACGCTAACGG
AAATTGAACCAAGGAAAACCTCATTTCACCTTGCATGATGGCCCTCCATACGCTAACGG
AAATATCCACGTTGGACATGCTATGAACAAGATTTCAAAAGATATCATTGTTCTTAA
GTCTATGTCAGGATTTTACGCGCCATTTATTCC

# ORF Predictions:

ORF #	Start	End Direction		Length	
1	197	286	F	30 <b>a</b> a	

>[SEQ ID NO:180] 3865228-1 ORF translation from 197-286, direction F VHPTGPTPATETVDSIPGFEAPQESVTIL*

Description:

unknown

Assembly ID: 3865230 Assembly Length: 953bp

>[SEQ ID NO:83] 3865230 Strep Assembly -- Assembly id#3865230 ATCGAATTATTTGAAACAAGGTGGATCAGCTATTTTGGCCTTGATTAGTATTTTACTCT TTAAATACACTTGAAGGTCGATTCTAATCTCGCTAATCCTTTTTAATCCAGAATAAGGGA AATATGTTATACTTGTTTTTAAGAAAAAGTTTCATTGAATTGGTTTTGAGGAGTTAGAA ATGAAAGTATTAGTGACAGGTTTTGAGCCCTTTTTGAGGCCATTAAAGGTTTACCAGCTGA AATCCATGGTGCTGAGGTCCGTTGGCTAGAGGTGCCGACAGTTTTTCACAAATCTGCTCA AGTATTGGAAGAAGAGATGAATCGTTATCAACCTGACTTTGTCCTTTGTATTGGGCAAGC TGGTGGAAGAACTAGTTTGACACCTGAACGAGTGGCCATTAATCAAGACGATGCACGTAC TTCTGATAACGAAGATAATCAACCGATTGACCGTCCCATTCGCCCAGATGGTGCTTCGGC CTACTTTAGTAGTTTGCCGATTAAAGCGATGGTTCAAGCTATAAAAAAAGAAGGATTACCG GCCTCTGTTTCCAATACGGCAGGGACTTTTGTCTGCAGCCATTTGATGTATCAGGCTCTC TATTTGGTAGAAAAGAAATTCCCATATGTTAAGGCAGGTTTTATGCATATTCCTTATATG ATGGAACAGGTGGTGAACAGACCGACTACTCCAACTATGAGTTTAGTGGATATTCGGCGA GGGATAGAAGCAGCAATCGGCGCTATGATAGAACATGGAGATCAGGAACTCAAGTTGGTA GGCGGAGAAATTCATTGATAGAAAAAAGCTTGAGGGGAAAACCTTCAAGCTTTTGGACGT TTTCGAGCCAATACTGCTCGGTAAAACATAATTTTAGTGCATTGGATATAAGGTAGGAGT GAAAAACTAGCAATGCCAAAGGTAATCCAATTGAGGAAGTACCAAGGAAGAAG

#### ORF Predictions:

ORF #	Start	End	Direction	Length	
1	272	586	F	105 aa	

>[SEQ ID NO:181] 3865230-1 ORF translation from 272-586, direction F VPTVFHKSAQVLEEEMNRYQPDFVLCIGQAGGRTSLTPERVAINQDDARTSDNEDNQPID RPIRPDGASAYFSSLPIKAMVQAIKKKDYRPLFPIRQGLLSAAI*

#### Description:

PYRROLIDONE-CARBOXYLATE PEPTIDASE (EC 3.4.19.3) (5-OXOPROLYL-PEPTIDASE). - STR EPTOCOCCUS PYOGENES.

Assembly ID: 3865378 Assembly Length: 1060bp

>[SEQ ID NO:84] 3865378 Strep Assembly -- Assembly id#3865378 CTACTTGAAACAGAACTGAAATTATACCCACTACCTCCCTGATTATCTTCAATGCTTACGTCAAAAATAACAT

AAAATTCACATAAATAGATTAGGGAAATCAAAGCAACTTCTAGGAATGTTTTAGCAGTCA CAGTGTACTTTCCCAGCATCAAGCCACTATAACTCTGCACATAAAAATGGAGAAGATGGC CATCCTCTCTCCAAATATTAACTTCTTTACAAACCAACTATAGTTGACAAAGAACCTAA AATCAATTGATAACACGAGGTCAGGTCGGTCAACTCTTTCAACTGAAGCCCTGTCAACTC TTCCCATTTATCAATCTTGTATTGGAGAGAATTGCGGTGCAGATAGAGTTGCTGGGCTGT TTAAGTGAGAACAGCACTATTTTCCCAAAGAGAGAGAATGATTTCCTGAATCTGATCTTG ATCCAAAATCATCTGGTGTAGACATTCCTTGATTGGCTTCAAGTCCACGAGTCTTTCTCC CAGACTCCAAAGATAGAGCTGAGAAAAAGTATGAACACCTTGGTGACCCTGACGCCACCA TGTCTTGAACAAATCCCGCTCAGCTTTGATTAAGTCTGATAGGGCTTGATGTCCCGTCTG AGACCAAACCTGACCCAACATGATAGAAAGACGAAGTCCAAAGTCATACTCAACCGCTTC AATCGTATCACTTAAAATATCTCTTACAGAAGTGTATTTGTCTTGTTGAAGCACGAAAAC ATAATCCTGAGATCCGACCTGTAGCACTGTCTGACAATTCGGAAAAAGAGTCCGCATCAT AATCTTTTTAAAAACTTGCGGTGCCTGTCCCTTGCCTTCAACCAGATAGGAATACCAAGG GCTGAGCCCAGCTTCCTCCAGCAAAATCCACTGCTGAGAG

#### ORF Predictions:

ORF #	Start	End	Direction	Length
1	421	807	R	129 aa

>[SEQ ID NO:182] 3865378-1 ORF translation from 421-807, direction R VLQVGSQDYVFVLQQDKYTSVRDILSDTIEAVEYDFGLRLSIMLGQVWSQTGHQALSDLI KAERDLFKTWWRQGHQGVHTFSQLYLWSLGERLVDLKPIKECLHQMILDQDQIQEIILSL WENSAVLT*

Description: unknown

Assembly ID: 3865470 Assembly Length: 895bp

>[SEQ ID NO:85] 3865470 Strep Assembly -- Assembly id#3865470 ATTTTAGACTTTGATGACAATCCTCAGGCGGTTATCATGCCCAATCACGAGGGGCTGGAA TTGCAGTTGCCAAAGAAGTGTGTTTATGCATTTTTAGGTGAGGAGATCTGACCGCTATGC AAGGGAAGTAGGGGGGGGTTGTCGGCGAATTCGTTTCTGCTACCAAGACCTATCCAGT CTCTTCATCAACTACAAGGGTGAGGAGGTCTGTCTGGATCAGGCTCCTGCTGGCTCCGC TCCAGCAGCCCAGTTTATGGATGGGTTGATTGGCTATGGTGTGGAGCAGCTTATCTCTAC TGGGACCTGTGGTGTCCTAGCTGATATAGAGGAAAATGCCTTTCTAGTCCCTGTTCGCGC TTTGCGAGATGAGGGAGCCAGTTACCACTATGTGGCACCTTGTCGTTATATGGAAATGCA GCCAGAGGCTATTGCTGCTATTGAGGAAGTTTTGGAAGACAGAGGGATTCCTTATGAAGA AGTCATGACCTGGACGACAGACGGTTTTTACCGAGAAACGGCTGAAAAGGTGGCTTATCG

TAAGGAAGAAGCTGTGCTGTTGTGGAGATGGAGTGTTCTGCTCTTGCGGCAGTAGCTCA
ATTGCGTGGGGTTCTCTGGGGTGAATTGTTCTCACAGCAAATTCTCTAGCGGACTTGGA
CCAGTACAACAGTCGTGACTGGGGCTCGGAACCTTTTAATAAGGCGCTAAAACTGAGTTT
AGCAAGTGTCCACCACCTTTAGTTGTACTGGCAAAGGATTTGTTTTATCATAAAATGTCT
AGCTCATACTTTTCAAAAAATATGTTTAAACGAAGTCACCTTCCTCTTGTCCTAAGCATGT
TTGAAGTTGGGAAAAAATCTTTAAAATCAGAAAAACGTATCATGATCAGGTTGATGA

#### ORF Predictions:

ORF #	Start	tart End		Length
1	98	742	F	215 aa

>[SEQ ID NO:183] 3865470-1 ORF translation from 98-742, direction F VRRSDRYAREVGADCVGEFVSATKTYPVSFINYKGEEVCLDQAPAGSAPAAQFMDGLIGY GVEQLISTGTCGVLADIEENAFLVPVRALRDEGASYHYVAPCRYMEMQPEAIAAIEEVLE DRGIPYEEVMTWTTDGFYRETAEKVAYRKEEGCAVVEMECSALAAVAQLRGVLWGELLFT ANSLADLDQYNSRDWGSEPFNKALKLSLASVHHL*

# Description: unknown

Assembly ID: 3865632 Assembly Length: 645bp

# ORF Predictions:

ORF #	Start	End	Direction	Length
1	46	456	F	137 aa

>[SEQ ID NO:184] 3865632-1 ORF translation from 46-456, direction F

VENLTNFYEKYRVYLTRPRLELLAVVTIVLXAVLVFFLNIPGKGVLKLDNGTIVYDGSLV RGKMNGQGTITFQNGDQYTGGFNNGAFNGKGTFQSKEGWTYEGDFVNGQAEGKGKLTTEQ EVVYEGTFKQGVFQQK*

Description:

unknown

Assembly ID: 3865710 Assembly Length: 572bp

>[SEQ ID NO:87] 3865710 Strep Assembly -- Assembly id#3865710 GAGATCTGTCTTGACACCAAAAGTGTGGAGTACGCCAGCTAATTCAACGGCGATATAACC AGCGCCTAGAATCGCAATTGACTCTGGAAGTTCTTCCCAGGCAAATACATCATCAGAAGA GCCACCTAGCACCAGCACCAGGAATATTAGGAATACTTGGATGGGCACCTGTAGCAATCAC GATATGTCTAGCACGAATCACCATTTACGCTTACAGTATGAGAATCTACAAATTC AGCATGACCTTCAATCAAGTCTACACCGTTGCGTTTAAAACTACCATCATAGAGAAGAC GAGCGCGATCAATGTAGGCTTCACGATTGCGACGTAGGGTTGCAAAGTTAAAGTTAAGAT CAGTAGTCTCAAAGCCGTAGTCTCCCAAATTGATGGAAAGTCTCAGCGATTTGCGCCC CGCTACCACATGATTCTTTTAGGAACACCAGCGTTGACACAGGTTCCACCTAATTTC TTTTCCTCAAATACGGCTGCTTTGGCTCCATGTTCCCAGCACGGTTCATGGTAGCGATCC TCCGCTACCTCCACGATAGCAATGATATCATA

#### ORF Predictions:

ORF #	Start	End	Direction Length		
1	287	448	R	54 aa	

>[SEQ ID NO:185] 3865710-1 ORF translation from 287-448, direction R VFLKESCGSGAQIAETFHQFGGDYGFETTDLNFNFATLRRNREAYIDRARSSL*

#### Description:

glutathione reductase (NADPH) (EC 1.6.4.2) - Streptococcus thermophilus

Provided in Table 2 is information on the direction of the ORF (forward or reverse) for each polynucleotide in Table 1. Also listed for each ORF is its start and stop codon positions (refer to the columns containing nucleotide code labeled "Start" and "Stop"). The triplet codon sequence for each start and stop codon is also shown. These codons may be shown in the sense orientation or antisense orientation, such as GTG and CAC, respectively, for start codons. The "Length" column discloses the length of each polynucleotide assembly. The direction of translation on the polynucleotide depicted is denoted by and "Forward" for forward or and "Reverse" for reverse (or being on the opposite strand from the one depicted). As indicated above, the "Assembly ID" number is a unique identifier assigned to each ORF of Table 1 and allows a correlation between the data in Tables 1 and 2.

·	<u>1</u>	CABLE 2			•	
Assembly	Start	Stop	Start	Stop	Length	Direction
ID				_		
3049156	~CAC	TCA~	236	385	50	Reverse
3049862	GTG	TGA	383	526	48	Forward
3112810	~CAC	TTA~	601	804	68	Reverse
3112866	~CAC	TTA~	220	513	98	Reverse
3113664	GTG	TAA	165	392	76	Forward

Assembly	Start	Stop	Start	Stop	Length	Direction
ID						
3113716	~CAC	TTA~	94	291	66	Reverse
3174176	GTG	TAA	139	543	135	Forward
3174186	GTG	TAG	83	283	67	Forward
3174374	GTG	TGA	154	294	47	Forward
3174972	~CAC	TTA~	169	678	170	Reverse
3175138	~CAC	TCA~	79	945	289	Reverse
3175860	GTG	TAA	51	251	67	Forward
3175918	GTG	TGA	212	535	108	Forward
3811220	~CAC	CTA~	316	873	186	Reverse
3811436	~CAC	TTA~	1164	1511	116	Reverse
3811984	GTG	TGA	134	454	107	Forward
3857228	~CAC	TCA~	1141	1356	72	Reverse
3857842	GTG	TAA	45	341	99	Forward
3857996	GTG	TAA	58	456	133	Forward
3858236	~CAC	CTA~	1	261	87	Reverse
3858264	~CAC	TCA~	439	1365	309	Reverse
3858610	~CAC	TTA~	374	949	192	Reverse
3858716	~CAC	CTA~	238	402	55	Reverse
3859124	~CAC	CTA~	73	453	127	Reverse
3859244	~CAC	TTA~	310	462	51	Reverse
3859250	~CAC	CTA~	244	402	53	Reverse
3859588	~CAC	TTA~	102	443	114	Reverse
3859774	~CAC	CTA~	9	131	41	Reverse
3860140	GTG	TAA	302	511	70	Forward
3860140	GTG	TAA	605	856	84	Forward
3860206	~CAC	TTA~	898	1056	53	Reverse
3860270	GTG	TAG	346	966	207	Forward
3860438	GTG	TAG	1	276	92	Forward
3860438	GTG	TGA	460	1128	223	Forward
3860544	GTG	TAA	222	689	156	Forward
3860558	~CAC	TTA~	717	1376	220	Reverse
3860568	GTG	TAA	1040	1291	84	Forward
3860582	GTG	TGA	356	1027	224	Forward
3860724	GTG	TGA	139	498	120	Forward

Assembly	Start	Stop	Start	Stop	Length	Direction
ID		•				
3860724	GTG	TGA	686	1024	113	Forward
3860858	GTG	TAG	610	807	66	Forward
3860890	GTG	TAG	397	486	30	Forward
3860952	~CAC	TTA~	449	715	89	Reverse
3860962	~CAC	TTA~	152	646	165	Reverse
3861268	~CAC	TTA~	457	645	63	Reverse
3861270	~CAC	TTA~	627	824	66	Reverse
3861288	~CAC	CTA~	357	572	72	Reverse
3861306	GTG	TAA	717	1208	164	Forward
3861306	GTG	TAA	1201	1410	70	Forward
3861334	GTG	TAA	76	975	300	Forward
3864148	GTG	TAG	212	940	243	Forward
3864148	GTG	TAA	1202	1753	184	Forward
3864148	GTG	TAA	2750	3037	96	Forward
3864172	GTG	TAG	311	862	184	Forward
3864180	~CAC	TTA~	930	1616	229	Reverse
3864184	GTG	TGA	197	670	158	Forward
3864184	GTG	TAA	612	1304	231	Forward
3864194	~CAC	CTA~	1084	1380	99	Reverse
3864338	GTG	TGA	552	1100	183	Forward
3864360	GTG	TAA	47	1078	344	Forward
3864388	GTG	TGA	1239	1586	116	Forward
3864406	~CAC	TTA~	263	958	232	Reverse
3864452	~CAC	TCA~	1079	1201	41	Reverse
3864458	GTG	TAA	797	1105	103	Forward
3864458	GTG	TGA	1179	1391	71	Forward
3864474	~CAC	CTA~	68	247	60	Reverse
3864474	~CAC	TTA~	644	1528	295	Reverse
3864510	~CAC	TTA~	1164	1640	159	Reverse
3864526	~CAC	TTA~	845	1660	272	Reverse
3864548	GTG	TGA	687	1055	123	Forward
3864548	GTG	TAA	979	1932	318	Forward
3864582	~CAC	TTA~	317	550	78	Reverse
3864604	~CAC	CTA~	1	141	47	Reverse
3864604	~CAC	CTA~	1513	1803	97	Reverse
3864610	GTG	TAA	427	1305	293	Forward
3864716	GTG	TAA	57	272	72	Forward
3864718	GTG	TGA	77	1474	466	Forward
3864802	~CAC	TTA~	92	550	153	Reverse

Assembly	Start	Stop	Start	Stop	Length	Direction
ID						
3864854	~CAC	CTA~	324	548	75	Reverse
3864862	~CAC	CTA~	431	1003	191	Reverse
3864888	~CAC	TTA~	10	657	216	Reverse
3864898	GTG	TAA	130	1029	300	Forward
3864938	GTG	TGA	883	1326	148	Forward
3864956	GTG	TAA	1030	1251	74	Forward
3864958	~CAC	TCA~	1427	1711	95	Reverse
3865022	~CAC	TCA~	279	1271	331	Reverse
3865036	GTG	TAG	79	492	138	Forward
3865054	~CAC	TCA~	302	793	164	Reverse
3865102	~CAC	CTA~	27	731	235	Reverse
3865156	~CAC	TTA~	416	808	131	Reverse
3865160	GTG	TAA	136	375	80	Forward
3865172	~CAC	TTA~	731	1123	131	Reverse
3865228	GTG	TAA	197	286	30	Forward
3865230	GTG	TGA	272	586	105	Forward
3865378	~CAC	TTA~	421	807	129	Reverse
3865470	GTG	TAG	98	742	215	Forward
3865632	GTG	TAA	46	456	137	Forward
3865710	~CAC	TCA~	287	448	54	Reverse

#### **EXAMPLES**

The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples are illustrative, but do not limit the invention.

#### Example 1

### Isolation of DNA coding for a virulence gene in Streptococcus pneumoniae

As mentioned above each of the DNAs disclosed herein by virtue of the fact that it includes an intact open reading frame is useful to a greater or lesser extent as a screen for identifying antimicrobial compounds. A useful approach for selecting the preferred DNA sequences for screen development is evaluation by insertion-duplication mutagenesis. This system disclosed by Morrison et al., <u>J. Bacteriol</u>. 159:870 (1984), is applied as follows.

Briefly, random fragments of *Streptococcus pneumoniae*, strain 0100993 DNA are generated enzymatically (by restriction endonuclease digestion) or physically (by sonication based shearing) followed by gel fractionation and end repair employing T4 DNA

polymerase. It is preferred that the DNA fragments so produced are in the range of 200-400 base pairs, a size sufficient to ensure homologous recombination and to insure a representative library in *E.coli*. The fragments are then inserted into appropriately tagged plasmids as described in Hensel et al., Science 269: 400-403(1995). Although a number of plasmids can be used for this purpose, a particularly useful plasmid is pJDC9 described by Pearce et al., Mol. Microbiol. 9:1037 (1993) which carries the erm gene facilitating erythromycin selection in either *E. coli* or *S. pneumoniae* previously modified by incorporation of DNA sequence tags into one of the polylinker cloning sites. The tagged plasmids are introduced into the appropriate *S. pneumoniae* strain selected, inter alia, on the basis of serotype and virulence in a murine model of pneumococcal pneumonia.

It is appreciated that a seventeen amino acid competence factor exists (Havastein et al., Proc. Nat'l. Acad. Sci. USA 92:11140-44 (1995)) and may be usefully employed in this protocol to increase the transformation frequencies. A proportion of transformants are analysed to verify homologous integration and as a check on stability. Unwanted levels of reversion are minimized because the duplicated regions will be short (200-400 bp), however if significant reversion rates are encountered they may be modulated by maintaining antibiotic selection during the growth of the transformants in culture and/or during growth in the animal.

The *S. pneumoniae* transformants are pooled for inoculation into mice, eg., Swiss and/or C57B1/6. Preliminary experiments are conducted to establish the optimum complexity of the pools and level of inoculum. A particularly useful model has been described by Veber et al. (<u>J. Antimicrobiol. Chemother.</u>32:432 (1993) in which 10⁵ cfu inocula sizes are introduced by mouth to the trachea. Strain differences are observed with respect to onset of disease e.g.,3-4 days for Swiss mice and 8-10 days for C57B1/6. Infection yields in the lungs approach 10⁸ cfu/lung. IP administration is also possible when genes mediating blood stream infection are evaluated. Following optimization of parameters of the infection model, the mutant bank normally comprising several thousand strains is subjected to the virulence test. Mutants with attenuated virulence are identified by hybridization analysis using the labelled tags from the "input" and "recovered" pools as probes as described in Hensel et al., Science 269: 400-403(1995). *S. pneumoniae* DNA is colony blotted or dot blotted, DNA flanking the integrated plasmid is cloned by plasmid rescue in *E. coli* (Morrison et al., <u>J. Bacteriol</u>. 159:870 (1984)) and sequenced. Following sequencing, the DNA is compared to the nucleotide sequences given herein and the

appropriate ORF is identified and function confirmed for example by knock-out studies. Expression vectors providing the selected protein are prepared and the protein is configured in an appropriate screen for the identification of anti-microbial agents. Alternatively, genomic DNA libraries are probed with restriction fragments flanking the integrated plasmid to isolate full-length cloned virulence genes whose function can be confirmed by "knock-out" studies or other methods, which are then expressed and incorporated into a screen as described above.

#### SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: SmithKline Beecham Corporation and SmithKline Beecham p.l.c.
  - (ii) TITLE OF THE INVENTION: Novel Coding Sequences
  - (iii) NUMBER OF SEQUENCES: 185
  - (iv) CORRESPONDENCE ADDRESS:
    - (A) ADDRESSEE: SmithKline Beecham Corporation
    - (B) STREET: 709 Swedeland Road
    - (C) CITY: King of Prussia
    - (D) STATE: PA
    - (E) COUNTRY: USA
    - (F) ZIP: 19046
  - (v) COMPUTER READABLE FORM:
    - (A) MEDIUM TYPE: Diskette
    - (B) COMPUTER: IBM Compatible
    - (C) OPERATING SYSTEM: DOS
    - (D) SOFTWARE: FastSEQ for Windows Version 2.0
  - (vi) CURRENT APPLICATION DATA:
    - (A) APPLICATION NUMBER: PCT/US97/19226
    - (B) FILING DATE: 27-OCT-1998
    - (C) CLASSIFICATION:
  - (vii) PRIOR APPLICATION DATA:
    - (A) APPLICATION NUMBER: 60/029,930
    - (B) FILING DATE:
  - (viii) ATTORNEY/AGENT INFORMATION:
    - (A) NAME: Gimmi, Edward R
    - (B) REGISTRATION NUMBER: 38,891
    - (C) REFERENCE/DOCKET NUMBER: P50577
  - (ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 610-270-4478
- (B) TELEFAX: 610-270-5090
- (C) TELEX:
- (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 495 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CTCGGTGATA	GAAATAGTGT	AATCATGCTT	$\tt TTCTCTTCTT$	${\tt ATCTATACTT}$	TGCTACTTCT	60
ATTATACAAA	AAAATAAAGC	GCTTGACTAG	${\tt GGATTTTTAG}$	AAAAAAAGCC	TATTTTTCA	120
AGAAAAATAG	GCTTTTTGCG	AACGATTGAC	ACAATTGGAT	${\tt TTGGTTAATT}$	CACTCTTAAC	180
GATGGTTTTA	AACGATATAT	${\tt ATTTTTATAT}$	${\tt ATGTAAATTA}$	AAAACTTCTT	TCCTTTCACT	240
TCCTACGACT	TTTCAGATAC	AGATAGCCAA	AGAAGTTTTC	ATAGAGGGCA	AAAAAGAGGA	300
GGAAGGCATG	AAGAAAGAAG	GTCTCTGGCA	AAATCATAAT	AACAGGATCC	TTGGCTGGAT	360
CAAAAAGCCA	GGTATCATCT	CCCACAAAGA	${\tt GAATTTGATG}$	GAAAAGAGTA	AAGAATTGGT	420
CAAAACCAAT	CAAAACTCCC	CCAAGTCCAT	CATCACAGGT	AAGACTACTA	GAGCCAGGAG	480
ACTTTTTCGA	TAAAG					495

- (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 529 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CTAGAGCAAG	TATTTTTCAA	ACTTTTTCCG	AATAAATAGA	TAGAGCCAGA	GAATTTAGTA	60
AACCTAGATT	TAAAAATGTG	CTATAACATA	ATATATTGAA	${\tt TCTATAATAG}$	TACACCTTGA	120
CTGCTAAAAT	ATTTCTATAA	ATTAATTTGA	$\mathtt{CTTTCCTGAT}$	${\tt AGAGTTATTC}$	ACATCTTATT	180
TCAACTCACT	ATAGAAGGAG	GAATAGGAGG	ATTCTCAGAC	ATCCGGGCAT	CAGCCCAACT	240
AATGATTTGA	TTGCTAAGAA	AATATTCAGC	AATCCAGAAA	TCACTTGTCA	ATTTATTCGC	300
GATATGCTGG	ACTTGCCAGC	AAAAAATGTT	GACCATTTTG	GAGGGAAGCG	ATATTCACGT	360
ATTACTCTCC	ATGCCTTACT	CAGTGCAGGA	TTTTTATACC	AGTATAGACG	TCTTGGCGGA	420

GTTGGATAAC GGTACTCAAG TAATTATTGA GATTCAAGTC AATCACTTGT GGACTTACCT GTGCAGTCAG GTTAATCAAA		ATTTTTCATC	480 529
(2) INFORMATION FOR SEQ ID NO:3:			
-			
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 885 base pairs			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear		•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	3:		
CTCATCATCT GTCAAAAAGC GTTTCTTAGC AGTCGTGATA	ТССАТААААТ	<u>ልልጥ</u> ርጥል ልጥልጥ	60
CACGATTTCC TCATCCGCAA AGAAAGGAAG GCTGACCAAC			120
AACTACTTCT TGCATATCAA AGTAGGCAAA GTTGAGGTCA			180
TTTCAACACT TGACTCTTCA TCACTTCAAA CTGACCCTGA			240
CAGGCTCGGT AAATTCGATA AAGTCAACTT CTGACTTTCT	TCAATGGCTA	GCATCGTCTC	300
TCCTTTCTTC AGATTTTTCG ATTTAATTTA GTCAATATAG	CGCAATTTCC	CACGGAAATC	360
TTCTAAGCTC TCGTAGCCTT TTTCCACCAT GATTGCTTTC	AGTTCATTGG	TAAAGCGGTC	420
AAAAGCACTG ACGCCTTCTT TGTGAAGGGT CGTTCCCACC	TGCACCATAC	TTGCTCCACA	480
GAGGATGTGT TCAAAGGCAT CTCGACCAGT CAGAACGCCA	CCTGTTCCGA	TAATTTGGAT	540
TTGAGGATTT AAACGTTGAT AAAAGGCGTG AACATTGGCT	AGAGCAGTCG	GTTTGATGTA	600
TTATCCACCA ATTCCACCAA AACCATTCTT AGGCCGAATA	ACGACAGATT	CGTCTTCTAT	660
ATAGAGGCCG TTTCCGATAG AGTTAACGCA GTTGACAAAC			720
AATAGCTGCC GCTTGATCAA AGTGAACAAT ATCAAAATAA			780
AGGTTTGGTG AAGTAAGCAA ACACTTCTGC CAAAATCCGG		CAAAATCATA	840
GGCAATCTGA GGTTTACCTG GAACATTTGG ACAGGAAAGA	TTTAG		885
(2) INFORMATION FOR SEQ ID NO:4:			
(i) SEQUENCE CHARACTERISTICS:			
(A) LENGTH: 925 base pairs			
(B) TYPE: nucleic acid			
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear			
(-,			
( · )			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4	ł:		
TCTTGGCCAA CTGCATGGAG TTCAGCGGTC AATTTCAACG	CACCTGAGAA	ACAGACCCCT	60
GCACCCTGA AATCTCAGGA GACATGATGG TCTGGATGGA	ATCAATAATG	AGAAAGTCTG	120
127			

GCTGGATACG	CTACCACTTC	TGCACGAACA	${\tt CTCTGCATAT}$	${\tt TGGTCTCTGC}$	ATAGAGATAA	180
AACTCACTAT	CAAAATCACC	TAAGCGCTCT	GCACGTAGTT	TAATCTGCTG	GGCAGACTCC	240
TCCCCACTGA	CATAGAGAAC	TGTCCCCACT	TGGGACAACT	GGGTTGAGAC	TTGTAGGAGA	300
AGAGTTGATT	TCCCAATCCC	AGGATCCCCA	CCGATGAGGA	CGAGACTTTC	CTGGTACAAC	360
TCCGCCTCCA	AGCACACGGT	TGAATTCCTC	CATCTCCGTC	${\tt TTGGTTCGAT}$	TGACATTGAT	420
GGAAGTCACC	${\tt TCAGCTAGTT}$	${\tt TCATGGGCTT}$	${\tt GGTTTTCTCA}$	CCTGTCAAGG	ACACACGCGC	480
ATTCTTGACC	TCGGCAACCT	CAACCTCTTC	CACAAAAGAA	GACCAAGACC	CACAGTTGGG	540
GCAACGTCCC	AGATATTTAG	$\operatorname{GGGAATTATA}$	${\tt CCCACAATTT}$	TGACATACAA	ATGTCGCTTT	600
$\mathtt{TTTCTTTGCG}$	ATGACAAACC	TCTTTCTATA	TCTCTAACTC	ACACTCAATC	ACTTGGCAAA	660
AATCAATCTT	${\tt CTCATTTGGC}$	ACAAACTGGC	GCATGAGCAT	TCGATGAGCA	ACAACTACCA	720
CAGTCTGATG	TTCTCGATAC	TTAGACATAC	ATTCTAGAAA	CCGAGACTTC	ATTTCCGTAG	780
CTGTCTCATA	TTGAATAGGA	${\tt CTATTAGGAA}$	GCAACTCCCC	CTTGTTTTCT	AAAAACAGTC	840
TTCTAGCTGT	${\tt TTCAAAGTTT}$	${\tt TCTATTCCTG}$	TTTTATAGAC	CTGCCATTCA	TGTAATAAAG	900
GCTCTACTCT	TAAAGGAAGA	CCCGT				925

#### (2) INFORMATION FOR SEQ ID NO:5:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 602 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTATGTCAGT	GGGATTACGC	${\tt CTAATCTCCC}$	AGAAGCAGAA	TTATTATCCG	GTCAGGAAAT	60
${\tt TAAAACCTTG}$	GNAGACATGA	AAACTGCAGC	GCAGAAATTG	CATGATTTAG	GAGCGCCAGC	120
AGTCATTATC	AAAGGGAGGC	AATCGTCTTA	GTCAGGACAA	GGCTGTGGAT	GTCTTTTATG	180
ATGGACAGAC	CTTTACTATC	${\tt CTAGAAAATC}$	CAGTTATCCA	AGGCCAAAAT	GCTGGTGCAG	240
${\tt GTTGTACCTT}$	TGCCTCTAGC	ATTGCCAGTC	ACTTGGTTAA	AGGTGATAAA	CTTTTGCCAG	300
CAGTAGAAAG	${\tt CTCTAAGGCT}$	${\tt TTCGTTTATC}$	${\tt GTGCTATTGC}$	ACAAGCAGAT	CAGTATGGAG	360
TAAGACAATA	${\tt TGAAGCAAAC}$	AAAAACAACT	AAAATCGCCC	TTGTATCCCT	ATTAACCGCC	420
${\tt CTTTCTGTGG}$	${\tt TTCTAGGTTA}$	$\mathtt{TTTCTTAAAA}$	ATCCCAACAC	CTACAGGNAT	TCTAACTCTT	480
${\tt TTAGATGCTG}$	$\tt GTGTCTTCTT$	TGCGGCCTTT	TACTTTGGTA	GTCGTGAAGG	AGCGGTAGTC	540
GGAGGACTAG	${\tt CAAGTTTCTT}$	GCTTGACCTC	TTATCAGGCT	ACCCTCAGTG	GATGTTTTTT	600
AG						602

## (2) INFORMATION FOR SEQ ID NO:6:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 456 base pairs
- (B) TYPE: nucleic acid

128

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CTGGATACTA	AGAGAAATCA	AAAAAGCACT	CTAGGATAGA	${\tt GGCCTAAAGT}$	GCTTAGTTTC	60
AAGGCTTTAC	AGCCTATCAT	${\tt ATTTAATAAA}$	ATATTACAAC	ATCTTGTTGT	AGAATTCAAC	120
GACAAGTGCT	TCGTTGATTT	CTGGGTTGAT	TTCGTCGCGT	TCTGGCAAGC	GAGTCAATGA	180
ACCTTCCAAT	TTTTCAGCGT	CGAATGATAC	GAATGCTGGA	CGTCCAAGAG	TAGCTTCTAC	240
TGCTTCAAGG	ATTGCTGGAA	${\tt CTTTCAATGA}$	TTTTTCACGA	ACTGAGATCA	CTTGACCTGC	300
AGTTACGCGG	TATGATGGGA	TATCAACGCG	TTTCCCGTCA	ACAAGGATGT	GACCGCTGGT	360
TTACAAATTG	GACCAAACTT	GACGACCAGT	AGTCGCGAGA	CCAAGACGGT	AAACAACGTT	420
ATCCAAACGA	CGTTCCAAAA	GAAGCATAAA	GTTGAA			456

### (2) INFORMATION FOR SEQ ID NO:7:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1961 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CTAATATAGA	ATAATCACCG	CCGTTGTGAA	AGAACGATTG	GATGATAATC	CAATCGTTCA	60
GGGAAATTGG	AAGACCTTGG	GTTTCCAATT	TAGGCATGAG	ACACCTTTGG	TGGCTGCTGC	120
CGTCCCTCAC	AAGCTAAGGT	GATTGTTGAA	AAAGAGGAAA	AAGGAGAAGA	AATGAAACCA	180
GTAATTTCCA	TCATCATGGG	${\tt CTCAAAATCC}$	GACTGGGCAA	CCATGCAAAA	AACAGCAGAA	240
GTCCTAGACC	GCTTCGGTGT	AGCCTACGAA	AAGAAAGTTG	TTTCCGCACA	CCGTACACCA	300
GACCTCATGT	TCAAACATGC	AGAAGAAGCC	CGTAGTCGTG	GCATCAAGAT	CATCATCGCA	360
GGTGCTGGTG	GCGCAGCGCA	TTTGCCAGGC	ATGGTAGCTG	CCAAAACAAC	CCTTCCAGTC	420
ATTGGTGTGC	CAGTCAAGTC	TCGTGCTCTT	AGTGGAGTGG	ATTCACTCTA	TTCTATCGTT	480
CAGATGCCGG	GTGGGGTGCC	TGTTGCGACC	ATGGCTATCG	GTGAACTCTT	TTTTAGGATA	540
TAAAACAGGG	${\tt TTCGGATAAG}$	${\tt TTTTTTTGCA}$	AGGTGGATGA	TGGCTACATT	GTAATGTTTT	600
CCTTGTTCTA	ACTTAGTCTT	AAAAGCAGGT	GAAAAGTGAG	GGCATGCTTT	GGCAGCTTGT	660
ATGAGTACCT	ACCGCAGATA	AGGGGAACCC	CGTTTGACCA	TCCTCCCAGC	TAAATCAATC	720
TGACCTGACT	GATAAATAGA	AGAATCCAGT	CCAGCGAAAG	CTTGTAATTG	AGCAGGATTA	780
TCAAAGGCAT	GAATATTTCG	AATCTCGGCT	AAAATGACCG	CCCCTAAACG	ATTCTCAATC	840
CCAGTAACCG	TCGTGATGAC	CGAGTTTAAC	TCAGCCATCA	AGTCATTGAC	ACATTTTTCC	900
GCCTTGTCAA	TGAGCCTCTT	GTAATGTTTG	ATGTTTTCAT	TACACGAGAT	AAAACGTCTA	960
TGCGTTATCA	AACTCATTAC	CAATTAAAAC	AAATGTGGTT	AGATCCTTTC	GGAAATTGTC	1020

AAGCGATTGG	AGGAAATGAA	CTAATCCACA	GCGGCTTATT	CCAAGTATAC	CACTTGGGCT	1080
${\tt TTGGCAGTAG}$	CTAACTGCGC	$\mathtt{TAAATATAAT}$	ATAAGGAGGA	GTAAAATGAA	GACAGTTCAA	1140
${\tt TTTTTTTGGC}$	${\tt ATTATTTAA}$	GGTCTACAAG	TTCTCATTTG	TAGTTGTCAT	CCTGATGATT	1200
${\tt GTTCTGGCGA}$	${\tt CTTTTGCCCA}$	AGCCCTCTTT	CCAGTCTTTT	${\tt CTGGACAAGC}$	GGTGACGCAG	1260
${\tt CTAGCCAATT}$	TAGTTCAAGC	${\tt TTATCAAAAT}$	GGGCAATCCA	GAACTTGTAT	GGCAAAGCCT	1320
ATCAGGAATT	CATGGTCAAT	$\mathtt{CTTGGCCTGC}$	TGGTTTTGGG	TTCTATTTAT	CTCTAGGTGT	1380
AATATAAACA	TGTGTCTCAT	GACGCGCGTG	${\tt ATTGCAGAAT}$	CGACCAACGA	GATGCGCAAA	1440
GGTCTCTTTG	GTAAGCTTGC	${\tt TCAGTTGACG}$	${\tt GTTTCTTTCT}$	TTGACCGTCG	ACAAGATGGC	1500
GATATCCTGT	$\mathtt{CTCATTTTAC}$	${\tt CAGTGATTTG}$	${\tt GATAATATCC}$	TCCAAGCCTT	TAACGAAAGC	1560
TTGATTCAGG	TCATGAGCAA	${\tt TATTGTTTTA}$	TACATTGGTC	TGATTCTTGT	CATGTTTTCG	1620
AGAAATGTGA	CGCTGGCTCT	CATCACCATT	GCCAGCACCC	CATTGGCTTT	CCTTATGCTG	1680
ATTTTCATCG	TGAAAATGGC	ACGTAAATAC	ACCAACCTCC	AGCAGAAAGA	GGTAGGGAAG	1740
CTCAACGCCT	ATATGGATGA	GAGCATCTCA	GGCCAAAAAG	CCGTGATTGT	GCTAGGAATT	1800
CAAGAGGATA	${\tt TGATGGCAGG}$	ATTTCTTGAA	CAAAATGAGC	GCGTGCGCAA	GGCAACCTTT	1860
AAAGGAAGAA	TGTTCTCAGG	AATTCTTTTC	CCTGTCATGA	ATGGGATGAG	CCTGATTAAT	1920
ACAGCCATCG	TCATCTTTGC	TGGTTCGGCT	GTACTTTTGA	A		1961

# (2) INFORMATION FOR SEQ ID NO:8:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 375 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CTATCTCCAA	${\tt GTNCGNTTGG}$	${\tt AATNCCTCCG}$	CNANCCACAA	${\tt CTCATCCAAG}$	CACTTTNCAA	60
CGTGNCCTGG	TCCGGTCCTC	CAGTGCGTCT	NACNGCACCT	TCAACCTGCN	CATGGGTAGG	120
TCACATGGCT	TCGGGTCTAC	GTCATGATAC	TAAGGCGCCC	TATTCAGACT	CGGNTNCCCT	180
AGGGCTCCGT	CTCTTCAACT	TAACCACGCA	ACAGAACGTN	ACCCGCCGGT	TCATTCTACA	240
AAAGGCAGNC	TCTCACCCAT	TAACGGGCTC	GAACTTGTTG	TAGGCACACN	GCTTCAGGTN	300
CTATTTCACC	CCCCTCCCGG	${\tt GGAGCANCTC}$	AACTGACCCN	CACGGCACCG	GTGNANNAAA	360
CGGTCACTTA	GGGAG					375

### (2) INFORMATION FOR SEQ ID NO:9:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 665 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

130

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

$\tt GGGGGGGTN$	${\tt NNTTCTGGGG}$	CCGGGTGNNT	CCTNGAAAAA	ATGCTGGACT	TAACGGTTAA	60
ATCATTTGAA	TTGGCCTGTG	GATTTTAGCT	AGCAATCCAG	AGCGAGTTTT	CTCCAAGACA	120
GACCTCTATG	AAAAGATCTG	GAAAGAANAC	TACGTGGATG	ACACCAATAC	CTTGAATGTG	180
CATATCCATG	CTCTTCGACA	GGAGCTGGCA	AAATATAGTA	GTGACCAAAC	GCCCACTATT	240
AAGACAGTTT	GGGGGTTGGG	ATATAAGATA	GAGAAACCGA	GAGGACAAAC	ATGAAACTAA	300
AAAGTTATAT	${\tt TTTGGTTGGA}$	${\tt TATATTATTT}$	CAACCCTCTT	AACCATTTTG	GTTGTTTTTT	360
${\tt GGGCTGTTCA}$	AAAAATGCTG	${\tt ATTGCGAAAG}$	${\tt GCGAGATTTA}$	$\mathtt{CTTTTTGCTT}$	GGGATGACCA	420
TCGTTGCCAG	CCTTGTCGGT	$\tt GCTGGGATTA$	GTCTCTTTCT	CCTATTGCCA	GTCTTTACGT	480
${\tt CGTTGGGCAA}$	ACTCAAGGAG	CATGCCAAGC	GGGTAGCGGC	CAAGGATTTC	CCTCCAATTT	540
${\tt GGANGTTCAA}$	$\tt GGTCCCTGTT$	AAATTTCCCC	${\tt CATTTAGGGG}$	${\tt CAACCTTTTA}$	ATGAAANTTT	600
${\tt CCNTNATTTG}$	CCGGGTANCT	TTGAATCCCT	NGGAAAAAAC	CCAACNAAAA	AAAGGGCTTA	660
NNCCC						665

## (2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 989 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CTACGATATC	TTTGGTCTTT	TGTAAGATAT	GAGGTCCACC	${\tt CTTATGCGCC}$	TCAGTTGGCA	60
${\tt TTTCATGCGA}$	TTCAAGAAGT	$\mathtt{TGCCCCTCTT}$	GATCAACCAA	ACCATACTTG	ATGTTGGTTC	120
CACCGATATC	AATTGCAACG	TAATATGTCA	TAAATACCTC	$\mathtt{C} \bar{\mathtt{T}} \mathtt{T} \mathtt{T} \mathtt{T} \mathtt{A} \mathtt{G} \mathtt{A} \mathtt{T} \mathtt{T}$	AGAGGAAGCG	180
CTCCTTGGTT	TCACGAATCA	AGGCAGCAGC	CGCTTCTACA	ACTGGACGAT	CTTCTTCAGT	240
CACTGGTGTC	AATGGTGAAC	GAACAGATCC	AATATTCAAG	CCTTCATTGA	TTTTCAAGAC	300
TTCTTTGATG	ACACCGTACA	TATTTCCATG	AGCAGAAGTG	AGTTTACCAA	TGATTGCGTT	360
GATAGCATAC	TGCAATTCAC	GCGCTGTTTC	${\tt TAGGTCCTTA}$	TCCGCAATCA	ACTGATTGAG	420
TTTCAAGAAG	AGTTCTGGCA	TAGCACCATA	AGTACCACCG	ATACCAGCCC	TAGCCCCCAT	480
GAGGCGTCCT	CCTAGGAACT	GCTCATCAGG	ACCATTAAAG	ACGATATGGT	CTTCTCCACC	540
AAGGCTGACA	AAGGTTTGGA	TATCTTGAAC	TGGCATAGAA	GAGTTCTTCA	CACCGATAAC	600
ACGAGGATTT	TTCAACATTT	CTGTGTAAAG	GCTTGGAGTC	AAAGCAACCC	CTGCCAATTG	660
AGGAATGTTG	TAAATCACGT	AGTCTGTGTT	TGGAGCTGCA	${\tt GAACTGATAT}$	CGTTCCAGTA	720
TTTGGCAACT	GAGTTATTCT	GGCAAGCGGA	${\tt AATAAATTGG}$	${\tt TGGAATCCGT}$	TGCAATAGCA	780
TCTACTCCCA	AGCTTTCAGC	ATGGCGAGCA	AGTTCCATAC	TATCTTTAGT	ATTATTGCAA	840

GCAACATGGG	CAATAATGGT	CAATTTACCT	TTGGCTACCG	CCATGACTTC	TTCCAAAATC	900
AACTTGCGAT	${\tt CTTCAACGCT}$	${\tt TTGGTAGATA}$	CATTCACCAG	AAGAACCATT	GACATAAGAC	960
CTTGAACACC	TTTATCAATG	AAGTATTGA				989

### (2) INFORMATION FOR SEQ ID NO:11:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1450 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CTCCATATTT	${\tt CTTAGCCTTC}$	TCAATTAGGG	TCTTGAAGTC	TTCGACACCA	CCGATACGCT	60
TACCAATATC	AGCATAGTTC	AAGTGACCAG	AGTCATGGCT	GTGATATCCT	TAACTTTTTC	120
CCAACCTTGA	${\tt GGGTTGTTCA}$	${\tt TAATGCTACG}$	ATAAGCAATG	GCACCATCTT	GCCAATCAAC	180
TTTCTTGTCT	GCATTGGCAT	CTTCAGTGAT	AACAACCTTA	GCACTTGGAA	GTTCCTTCGT	240
GTATTCTGGG	AAAACAATGC	CCTTATAAGC	TTTTTCCCAT	TGCCATTCAG	AGCTGTGGAT	300
TCCTACATAG	TTGGCATTTC	CGACTGTTTC	TTTATAAGCT	GTCAAACGAG	TCCAGTCATT	360
CGAACCACCA	CCATAGCTAT	TTTGAGAGTT	ACTCCAAACA	CCAGCAGCAA	GCTTATCTGT	420
AGAAACAAAT	CCATACATGT	AACCCTTAGC	CAAATCCTTC	${\tt ATTGGATTGG}$	TTACATCGAT	480
ATGATCATCT	CCGCTGACAT	GCGTATTGTT	TGACATGGTT	GCCCCATCAA	ACTTAGCACC	540
AGTTTGATCA	CTAGAAACAG	AGACTAAAGC	ATTGCCGAGG	AAACTAATAG	AAGAAAGTAG	600
TTTTCTTTCG	TCATCAATCT	TTTGACCTGG	AGTGACTTGA	${\tt TTGTGGTTGA}$	CAATCTTGGT	660
CACATCAAAG	TGCAATTGAT	TGTCCACAAC	TTGCAAGCGT	ACTGTCATTT	CCGCATTGAT	720
TAAGTGAGCA	TCATCGCGAA	GCTTCATCAA	GTACTCTGCT	GTTGTCTCAT	TGATTTTTT	780
ATAAGTGACT	TCAGGGGTGA	TTCGGTGGTT	ATTGATAAAG	ACTTGGTTGA	ATTGTTGCAC	840
CTGTCCTGGC	AAAGTATGTC	CATTCAAGGT	GTATCCCTTG	ACACGAAGGA	AGGCTTGGTC	900
AATTACTGCC	TTAAGTACCT	TAAACTGGAT	CGTATCATAA	GTCACCTTGC	TATCGTCAAC	960
AACCGGACCT	GTTTCTTTCT	GGGCAGGGGT	ATCCTCTGGG	TTTTACCCTC	TCTGTGGCTA	1020
TCCGTTTCAA	CGCTTGAACA	ACTGGTCGCT	CATCGTCATA	AGAGCCCGCC	TTGAGAAAAA	1080
TCTTCTTCTC	ATTTCTAAGA	TGGTCATTGA	CCGCAGCTGG	${\tt TAGAGTCACT}$	GTGTCAAAGA	1140
AGATTGACAT	CCTTATTTGC	CTGGCATTTA	CCTGACCGTC	${\tt TGACTTGAAG}$	ACTGATAGAG	1200
AGACGGTTTG	TTGATCCTGT	TTCAGGAGCA	GCAACACGAC	TACCTCTATA	CCAAGTGCTA	1260
GTTGTTGGAG	ATTTATACTC	CCAGAACCAG	${\tt CCATCCTTGT}$	CATAACCGAC	AAAAACATTA	1320
TTATTGGTAT	CTTTAAATTT	CAAGGAGACA	CCAAAGCGTG	ATTTGCCCTT	TTCAGAATCT	1380
TCTTTGAAGG	TTAAATCAAC	AGTTGCATTT	CCATTGGCAT	CAACGGTCAA	GCCCTTCTTT	1440
TCAAACAGAG						1450

## (2) INFORMATION FOR SEQ ID NO:12:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 420 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

$\mathtt{CTGCGAGTTG}$	TGAGGCTCCT	${\tt ATTATGTCTC}$	${\tt GTGATTAAAA}$	TCTCTATAAG	GTGATTTTGG	60
${\tt AGGGAAATTA}$	TCGGGCGACA	GCGGGTAGAG	AAGAGATGAA	AGAGGCTATT	TTGGAATATC	120
AAGCAAATCC	${\tt TGCTGCCTTA}$	AAAGATCTCA	AAGAAAAGGC	TAAGAATATT	TCCAGAGAGT	180
ATTCTGAAGA	${\tt GCATCTGTTA}$	${\tt CAAATCTGGT}$	${\tt TGGACTTTTA}$	TGAGAAACAA	GCCGCTTTAG	240
GGACAAAGTA	${\tt AAAAGTGAGG}$	${\tt TAATCTATGC}$	${\tt GAATTGGTTT}$	ATTTACAGAT	ACCTATTTTC	300
${\tt CTCAGGTTTC}$	${\tt TGGTGTTGCG}$	ACCAATATCC	CAACCTTGAA	AACCCACCTT	GAAAACACGG	360
ACTTGCCTGC	ATTTNTATCT	CATACAATCC	ACCGAATTTC	GATGTCCCCC	TCCCTACAAC	420

### (2) INFORMATION FOR SEQ ID NO:13:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 661 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

$\mathtt{CTCCCCAAAC}$	${\tt TTTTATTTGA}$	GAGTGAACGG	TATAAGAATA	TGAAACCGGA	GGTTAAGGTG	60
${\tt GTTTACTCAG}$	TTTTAAAAGA	${\tt TCGGTTGGAG}$	${\tt TTGTCTTTGA}$	GCAAAGGTTG	GATTGATGAG	120
GATGGGACTA	${\tt TTTATTTGAT}$	${\tt TTATTCCAAT}$	TCAAATTTGA	${\tt TGGCACTTTT}$	AGGCTGTTCA	180
AAGTCAAAAT	TACTCTCCAT	${\tt GTGAGTTTGA}$	AGTGACATTT	${\tt TTAGATGATT}$	ACCATAAAAA	240
ACATAACTAC	${\tt CCACTATTTT}$	ACGAATCCTA	TCTTCAAAAC	${\tt GTTATGGAAT}$	TCCTTGAAAG	300
TCAAGACATA	AAGAATGGGG	TTGATGCCTT	${\tt TGTAGATGAT}$	CATCAAAATC	TCGTTTTTGT	360
TTTATATGGA	${\tt CAAGGCTATC}$	GAGCCGAGGG	AAAAGAGGGA	ATACTTACAA	CCCAAGTAAC	420
TGTAAAAGCT	TATGATGAAG	ACAAGAAACC	${\tt GATTAACTTC}$	${\tt GCAAATTTAT}$	TAGATTCCTT	480
AATCGTGTCA	${\tt GAATATCAAA}$	TGGAACCGAA	${\tt TCTTTGGGAG}$	GTCTCCTATG	ATTGATCTCT	540
ATCTAAGTAA	AAATAGCCGA	AGAAATCAAC	${\tt TTCTTTTAGA}$	${\tt CTTCTTCCAA}$	AACTATGGCA	600
TCGAGGTATC	TTGTCATTCA	${\tt GTTTCTGAAA}$	TGACAAAGGA	${\tt CAAATTAATT}$	GAGATGATGA	660
G						661

#### (2) INFORMATION FOR SEQ ID NO:14:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1429 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTGCCCCTGT	AAGGCTGGAC	GATTGCCTTT	CTTAGTATCC	GCAAAGAGGT	AAACTGAGAA	60
TAGAGAGGAT	TTCTCCTTCA	ATATCTTTGA	CAGACAGGTT	CATCTTGCCT	TCTACGTCTG	120
AAAAAATCCG	CATATTGACC	AGTTTTCTCA	CAGCATAGTC	CAAATCTTCC	TCTTGGTCCT	180
${\tt CTGGTCCAAC}$	ACCAACCAGC	AATAAAAGTC	CCTGATTGAT	TTTTCCCTGA	ATCTGGCCTT	240
CTATACTCAC	${\tt TTGGGCTTTT}$	TTAACCCGTT	GGATAATGAT	TTTCATAATA	GCCTTTCTAG	300
TAAGAGCTAG	GACAACTAGC	CGTTGGTCCG	TTTGACAGAG	TAAACTTCTG	GCACACTCTT	360
AATTTTATCG	ACAACCGTGG	TCAGTGTAGA	GAGGTTGGCA	ATACCGAAGG	ACACATGGAT	420
ATTAGCAAAC	TTCATATCCT	TGGTTGGTTG	GGCATTGACC	GTTGAAATAT	TCTTGGTTGT	480
ATTTGAAAGA	ACTTGCAGTA	CATCGTTCAA	CAGTCCTGTA	CGGTTGAGAC	CGTAGATATC	540
GATATGGGCC	ATATACTCCT	TATTTGAGCT	AGAGTACTGG	TCTTCCCATT	CCACATCAAG	600
GAGACGTTGC	TCGTAGTTTT	CTTGGGCACG	CAGGTTCATA	CAGTCCACAC	GGTGAATAGC	660
	CCCTTGGTAA		AATATCGTCA			720
CTTAGCAATC	CGCACTAGGA	GACCAGAAGC	ACCTTCAATA	ACCACTCCCC	CCTCATGCTT	780
GACCTTGGAG	AGTTTCTTTA	TTTTCAACCT	TGACCTCGCC	ACCTTTGACA	AGCTCCTCTG	840
CCTCAGCCTT	GGCCTTGGCA	CGCTCTTCCT	CACGGCGTTC	TTTTTCAGTC	AGACGGTTAA	900
AGACGGTAAT	CGCACCGATT	TCCCCAAAAC	CAATGGCCGC	AAAGAGGGAG	TCTTCTGTCT	960
TGTAACTGGT	CTTTTGCAGA	ACTTGATCCA	TGTGGCGCTT	GTCCATAAAT	TTATTTGCCA	1020
CATAGCCATT	TTCTTGGAAC	TGAGCCATCA	GCATCTCACG	ACCCTTGTTG	ACAGACAATT	1080
CCTTATCTTG	GTTTTTAAAG	AACTGGCGAA	TCTTATTGCG	CGCCTTGCTA	GTCTTGACCA	1140
TATTGAGCCA	GTCACGGCTA	GGTCCAAAGG	AGTTCGGGTT	GGCGATAATT	TCAACCTGAT	1200
CCCCTGTCTT	TAACTTGGTT	GTCAGTGGAA	CCATGCGGCC	ATTGACCTTG	GCACCAGTTG	1260
CTTTTTCACC	GACCTTGGTA	TGGATTTCGT	AGGCAAAATC	AATCGGTCCT	GAATCTTTGG	1320
		TCTGGGGTAA			AGATAGTTTT	1380
CCTTAACAGA	GTCCACAAAT	TCCTTAGCAT	CATCAGCCTG	GTCTTGGAG		1429

## (2) INFORMATION FOR SEQ ID NO:15:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CTCTGCAATG	ATGTACTCAA	ACATCTCCGC	TTCTAGTTCC	TCCTTAGGCA	GAGGCAATTT	60
CCCACGTCGC	ATCCGGTTCA	TAAAGACCGT	ATGGTTTTCT	AAAATCAAAC	TATACAAACT	120
CATGTGGGGA	ATATCCAATC	CAATGGCTTT	AGCCACATTT	TCCTTTACTT	GCTCCATGGT	180
CTGACCAGGC	AGAGCATAAA	TCAAATCAAT	GGAGATGTTG	TCAAAACCAG	CCAGTTTCAG	240
GCGATCGATA	TTTTCATAAA	TATCCTTCTC	CAAATGACTG	CGCCCAATCT	TTTTCAACAT	300
CTTATCATCA	AAGGTCTGGA	CACCTAGCGA	AACACGATTG	ACAGCCGAAT	TTTTCAAAAC	360
AGCTATCTTA	TCCGCATCCA	AATCGCCTGG	ATTGGCTTCA	ATGGTCAACT	CTTCCAAGAC	420
AGACAAATCC	AAGTTTTTAG	TCAAGCCATT	CAGTAACACC	TCCAGTTGCG	GAGCCGACAG	480
GGCTGTCGGT	GTTCCACCAC	CGATATAAAG	GGTTGACAAC	TTTTCAATAT	CATAAGAACG	540
AAACTCTTCC	AGCAGATGCT	CTAAATAGCT	GTCGACTGGC	TGATTTTTGA	TGAAGACCTT	600
TGAAAAATCA	CAATAATAAC	AAATCTGGGT	ACAAAATGGG	ATGTGCACAT	AGGCTGACGT	660
TGGTTTTTTC	TGCATAGTAA	TTATTATACC	ACAAAGACTA	GATTCCAGAT	AAAAATCACC	720
ATCCCCAGAT	ACATAGTCCG	TCCGGAGATG	GTGATGGTTT	ATTCTTCTGT	TATATCAATC	780
ACAATCTCTT	CTGAGTCATC	AAGAGCTTCG	GCTTTTTCTT	GCCATTGTTC	CTTGAGATTA	840
TTTAATTGAT	${\tt TTTTTGATGC}$	TTCTGTCGCT	TGAAAAGCAT	AGGATTTAGC	TTGAGCAAGT	900
ATACTGTCCA	CAGTGATTTC	ACCTGACTCA	ACCTGTTCTT	TTGTTTTCAG	AACAAAATCT	960
${\tt GTAGCCTGCT}$	$\tt CCTTAACTTC$	${\tt TGTCAGTTTT}$	TCACAGACTT	GCTCCTTGGC	ATACTCCGGA	1020
TCTTCTCTCA	${\tt AATCATCTAA}$	AAAATCTTGA	GCCTGACTGC	AAACTTGTTT	GCCCTTATCA	1080
${\tt CTTGTTAAAA}$	ACAAGGCAAG	AGCTGCACCT	GAAACGGTTC	CTAAAAGGAT	TGAGGATAAT	1140
${\tt TTACCCATAA}$	${\tt GGATTCTCCT}$	${\tt TTTTTATTTT}$	${\tt TTGAAAAATT}$	TACTTGCAAG	ACGAAGAGCT	1200
GACAGACTTG	CACCAGTCTT	${\tt GAGTGTTTTT}$	GAACCAGCTG	ATGAAGCTTT	CTTGCTCAAG	1260
ACACGCGCAT	${\tt GGTCATTGAG}$	GTCTGAAACA	GATAGAGATA	AATCTGCAAC	AGCACTGAAG	1320
AGTGGATCAA	TCGTAGCCAC	${\tt CTTGACATTG}$	ATATCATCTG	CCAAGACATT	GACCTTAGCC	1380
AACAACTCAT	TGGTGTGATG	CAAGGTCACA	TCCACATCTG	AAGTCAAGGT	TTTAATCGTC	1440
${\tt TTTTCTGTTT}$	CATCGATGAC	ACGACCAAGC	${\tt TTTTGTACAG}$	TAATGATCAG	ATAGACCAAA	1500
AAGACAATCA	CAG					1513

# (2) INFORMATION FOR SEQ ID NO:16:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 505 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

		CATCAAGGCT				120
CTCAAGGAAA	GCCGTGACAG	GGAATTGGCA	GATATTATTT 35	CAGGGGAAGA	TGACCGTATT	180

CTCTTGGCTG	ATTGGTCCTT	${\tt GCTCTTCTGA}$	${\tt TAATGAAGAG}$	GCGGTCTTGG	AATATGCTCG	240
CCGTTTATCC	GCCTTGCAAA	AGAAGGTAGC	GGATAAGATT	TTCATGGTCA	TGCGCGTGTA	300
TACTGCTAAG	CCTCGTACCA	ATGGAGACGG	${\tt CTATAAAGGG}$	TTGGTTCACC	AGCCAGATAC	360
TTCTAAGGCT	CCAACCCTGA	${\tt TTAACGGCTT}$	GCAGGCTGTG	CGCCAGTTGC	ACTACCGCGT	420
TGATTACAGA	${\tt GACTGGTTTG}$	ACAACGGCAG	ATGAGATGCT	TTATCCGTCA	AATCTGATCT	480
TGGTGGATGA	CTTTGGTCAC	CTACC				505

### (2) INFORMATION FOR SEQ ID NO:17:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1827 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

$\mathtt{CTCTTTTAAC}$	CGTTTTAGCG	GTGACACCGA	${\tt GGATTTTTC}$	AGGACCCAAG	ACTTGTCGGG	60
CAACCGAAAC	TGGGAGTTCG	TCATCTCCAA	TATGCAGACC	AGCAGCATCA	ACCGCAAGAC	120
AAACATCCAA	CCGATCATCG	ATTATCAAGG	GGACCTGATA	GGCATCTGTT	ATTTCCTTGA	180
${\tt CTTGTTTTGC}$	CAGTTGATAA	TATTGATTGG	TTGTGAGATT	TTTTTCTCGC	AATTGGACTA	240
TGGTAACCCC	TGAACGGCAG	GCCGTCTCAA	CTTTTGCAAG	AAAGCTTTCC	ACGGAATCTT	300
GATAGCGATT	GGTTACCAGA	TATAGTCTAA	GCGCTTCTCT	ATTCATAAAC	CTCTCCTTTG	360
ATGGTATCTA	${\tt GCCAATTTTC}$	ATCTCTTCTT	AGGAGCGAAA	GCTGATTGAG	TACTTGGTAA	420
${\tt CGAAATTCTT}$	CCAATCCCAT	TCCTTGAACA	ACTATTTTCT	CAGCAGCGAT	ATTGAGATAA	480
GAGACTGCTA	AGCAAGAACT	TCAAAACCAG	TCTTTCCTTG	GCTGAGAAAA	ACAGCTGTTA	540
AGGCTCCAAC	CAAGTCTCCT	GTCCCTGTTA	TCCAGTCTAA	TTCAGTACAG	CCATTCTCAA	600
GTACAGCAAC	${\tt TTGATTCTCC}$	GAAACAATAA	GGTCCTTGGG	ACCTGTGACT	AAGAATGACA	660
TACCACGATA	GGTCTGACAC	${\tt CAGTCTTTCA}$	AGACTTGAAG	CAAATCCTCC	GTTTCTTGAT	720
${\tt CTTTAGCACT}$	CGCATCGACC	CCAACGCCGT	GATGCTTTAA	TCCAACAAGA	CTTCGAATTT	780
CTGACATGTT	TCCTTTAAGG	ACCGTAGGTC	TATAGTCTAA	AAGGTCTTTA	ACTAAGCTCT	840
TACGAATGGA	TGAAGTCGTT	ACGCCAACCG	CATCTACTAC	CATCGGGAGA	GAAGATTGGT	900
TTGCATACAA	AGCTGCCATG	CGGATTGCTT	TTTCCTTCTC	AGCTGACAAA	TGCCCCAAAT	960
TGATGAAGAG	AGCCTGGCTT	TGCTTAGTAA	AATCAAGAAC	TTCACGGGGA	TCATCTGCCA	1020
${\tt TGACAGGTTT}$	GCATCCCAGA	GCCAAAATCC	CATTTGCCAG	CATCTCACAA	GAAATCTCAT	1080
TGGTCATACA	GTGAATGAGG	GAACTAGAGC	CTATAGGAAA	AGGATTTGTC	AATGCCTGCA	1140
TCATTCTATC	${\tt CTTTCAGCAA}$	AGAAATATCC	TTGCACTTTT	TTAAAGAATT	CCTGCTTGAT	1200
TAAAAATCTA	AATGCAATAA	AGGAAATCGC	TGTACCAATC	AAGGTTGCTC	CGAAAAATCG	1260
AGGCGTGTAG	ATAAACCAAC	TAAGCTTAGC	AGCCGATCCT	GTAAAGAGCA	CCATAACAGG	1320
ATAGGAAACA	ATAGAACCAA	TAATACCTGT	TCCCACAATT	TCTCCCAAGG	CAGAAAAGTA	1380
AAATTTTCGA	CCGTACTTAT	AAAAGAGACC	TGCTAGAAGG	GCTCCAAAAG	TCGCTCCTGT	1440
GAGAGATAAA	GGAGCTTATC	GGAATACCCT	TGAGTCGTCA	TACGGATAAA	GGCTGTCACT	1500

GTAGCCATAG	CCAAGGCATA	AACAGGTCCC	ATCATGATTC	${\tt CCGCTAGAAT}$	ATTGACTACA	1560
CTGGACATCG	GTGCCATTCC	CTCAATCCGA	AAGATAGGTG	TAAGGACTAC	ATCAAGGGCA	1620
ATCATCATAG	ATAAAATGGT	CAATTTGTGA	ACTTGTAGTT	GGTGCTTTCT	CAAGTTTCTA	1680
TTCTTCTCCT	${\tt TTTTCTAAAG}$	ACTGTAAATC	GCTCTTCCAT	GTCTGGTGTT	GGTAAGCCAT	1740
CTCCCAAAAC	${\tt TTGGCTTCCA}$	TATGAACACT	GATGTGGAAG	GCATCTAGCA	TTTTTTGCTT	1800
ATCTGTCTCA	TCACTTTCTC	GATAGAG				1827

#### (2) INFORMATION FOR SEQ ID NO:18:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 485 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CTATTGCCAA	TCCATATAGC	CTATCAGGTG	GTCAATAACA	ACGTGTGGCC	ATCGCTCGTG	60
GCCTATCAAT	GAATCCAGAC	ATCATGCTCT	TCGATGAACC	AAATTCTGCC	CTTGACCCTG	120
${\tt AGATGGTTGG}$	${\tt AGAAGTAATT}$	AACGTTATGA	AGGAATTGGC	TGAGCAAGGC	ATGACCATGA	180
TTATCGTAAC	CCATGAGATG	GGATTTGCCC	GCCAGGTTGC	CAACCGCGTT	ATCTTTACTG	240
CAGATGGCGA	${\tt GTTCCTTGAA}$	GACGGAACAC	CTGACCAAAT	CTTTGATAAC	CCACAACACC	300
${\tt CTCGTCTGAA}$	${\tt AGAGTTCTTA}$	GATAAGGTCT	TAAACGTCTA	AACTCAAACT	GCAAGGATTT	360
${\tt CCTTGCAGTT}$	TTTCTACCTC	GTATTGGAAT	TTTTGATTTT	TCGGAAAATT	ATGTTAGAAT	420
${\tt TAAGTTTATG}$	AAATGAGGTT	TCCTCATACC	TAGCAAGACT	AGGAATAAAA	ATAGAAATTA	480
GGTAG						485

#### (2) INFORMATION FOR SEQ ID NO:19:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1547 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

NTCTTGGGCN	CNGGGCGNNT	CCTTTGAGGA	${\tt CNACGGTATC}$	${\tt GATGACCTTG}$	ATCTCAAGTG	60
CAAGCAGTAT	CTGAATCTGC	AGCAGCACCT	GTCCGTGCAA	AAGTTCGTCC	AACATACAGT	120
ACAAACGCTT	CAAGTTATCC	AATTGGAGAA	${\tt TGTACATGGG}$	GAGTAAAAAC	ATTGGCACCT	180
TGGGCTGGAG	ACTACTGGGG	TAATGGAGCA	CAGTGGGCTA	CAAGTGCAGC	AGCAGCAGGT	240

TTCCGTACAG	GTTCAACACC	TCAAGTTGGA	GCAATTGCAT	GTTGGAATGA	TGGTGGATAT	300
GGTCACGTAG	CGGTTGTTAC	AGCTGTTGAA	TCAACAACAC	GTATCCAAGT	ATCAGAATCA	360
AATTATGCAG	${\tt GTAATCGTAC}$	AATTGGAAAT	CACCGTGGAT	GGTTCAATCC	AACAACAACT	420
TCTGAAGGTT	TTGTTACATA	TATTTATGCA	${\tt GATTAATTTA}$	CAGAGGGACT	CGAATAGAGC	480
${\tt CCTCTTTTCA}$	GGTTTTACCG	TGACAATCCC	TATTAAAAAT	TATATCAAAA	TCGTGAAAAT	540
${\tt ATTGGAAAAG}$	TATGGTAGAA	TGAAAATTGT	CGTGTGAACG	ATAATACTCA	TTCTTGATGA	600
ATTGTGAAGC	AGTTGCCCTT	${\tt GGGTCGTTTT}$	GCGAGTTGAA	GTCAAGAAGA	GGAAAAAAAC	660
AAAAAGGAGA	AATACTCATC	GAATTTCAAT	GAAACAACTT	CTTGAGGCTG	GTGTACACTT	720
TGGTCACCAA	ACTCGTCGCT	GGAATCCTAA	GATGGCTAAG	TACATCTTTA	CTGAACGTAA	780
CGGAATCCAC	${\tt GTTATCGACT}$	TGCAACAAAC	TGTAAAATAC	GCTGACCAAG	CATACGACTT	840
CATGCGTGAT	GCAGCAGCTA	ACGATGCAGT	TGTATTGTTC	GTTGGTACTA	AGAAACAAGC	900
AGCTGATGCA	${\tt GTTGCTGAAG}$	AAGCAGTACG	TTCAGGTCAA	TACTTCATCA	ACCACCGTTG	960
${\tt GTTGGGTGGA}$	ACTCTTACAA	ACTGGGGAAC	AATCCAAAAA	CGTATCGCTC	GTTTGAAAGA	1020
AATTAAACGT	ATGGAAGAAG	ATGGAACTTT	CGAAGTTCTT	CCTAAGAAAG	AAGTTGCACT	1080
TCTTAACAAA	CAACGTGCGC	GTCTTGAAAA	ATTCTTGGGC	GGTATCGAAG	ATATGCCTCG	1140
TATCCCAGAT	GTGATGTACG	TAGTTGACCC	ACATAAAGAG	CAAATCGCTG	TTAAAGAAGC	1200
${\tt TAAAAAATTG}$	GGAATCCCAG	TTGTAGCGAT	GGTTGACACC	AATACTGATC	CAGATGATAT	1260
CGATGTAATC	ATCCCAGCTA	ACGATGACGC	TATCCGTGCT	GTTAAATTGA	TCACAGCTAA	1320
ATTGGCTGAC	GCTATTATCG	AAGGACGTCA	AGGTGAGGAT	GCAGTAGCAG	TTGAAGCAGA	1380
ATTTGCAGCT	CCAGAAACTC	AAGCAGATTC	AATTGAAGAA	ATCGTTGAAG	TTGTAGAAGG	1440
TGACAACGCT	TAATTTATAC	AAATAGTAAT	TACCTAGGAG	GGCGGGGCTT	AGCCCGGCTC	1500
TCCTATTTTC	$\mathtt{AAAAAATATA}$	GGAGAATTAA	AATGGCAGAA	ATTACAG		1547

### (2) INFORMATION FOR SEQ ID NO:20:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 740 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: cDNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

СТАТААААА	AAGGGTAACC	AGTATGGAGG	ATGAATGTCT	GGAACTATCT	GAGAATCTCG	60
GATTTTGGAA	ATCAGACCGA	TCATCATGAG	ATAAGGAAGG	AAAGCACTTG	TAAAAAGCAC	120
TGTAACCACG	CCAGTCCCCT	GTCCCAAGAG	GGTGAGGTGG	TAGCGTAAAA	CCATGCGGAA	180
AAATCCCTTT	${\tt TTAGTGGTTG}$	AAATTCTCTC	CTTGCTGCGA	CGTTCTTTTT	TGACCTTCTC	240
CTCACTATTA	AGCAGGATCA	${\tt CGTCATAAAA}$	ACGAGGAAGG	ACCTTCTTTT	TGGTCAGATA	300
AAGCAGGAAG	AGAGTTAGTC	CTATCCAAGC	GAGCAGACCC	AATATGGCTT	CTATTGAAAA	360
AGGCTCCACT	${\tt GCTATTTGT}$	AAAAGATATG	AAGAGGATAA	AGGAGAAATG	GAATGTCTCT	420
AACTTTGTCA	ACAATACTTC	CAAAAGTCGA	CTGAAGAAAG	AAGATAAATA	TTAAAGGTAT	480

GAGAACTCCT	ATCCCAATCA	TCACATTCGA	AAAAATAGAC	TGATACTTTC	TGAAGACCCT	540
AGTCTGAGCC	AAGAAATGTA	CTGCCACTAC	CGTCACTAAA	GTAACAGAGA	CAAATAATAA	600
GGTCAAGGAC	AGTAGCATCA	AAGGCAAACC	CAGCCAAAGA	GAAGGAGCTA	GACTAATATA	660
GAGGGCTAGA	AAATAAGCTA	${\tt GGATTGGTAC}$	AATTCCAGTT	AGAGCTGGCA	AGAGGACAGA	720
CAGTCCTTTA	GCAATTCGAT					740

## (2) INFORMATION FOR SEQ ID NO:21:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2219 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATCGAATTCG	TTTTGCAAGT	${\tt GGCGAAATGC}$	GAACCACGTT	${\tt TGTGTCTTTA}$	TAAGTTTCCA	60
${\tt CGTCTTCTTT}$	GTGGACACGA	CCGTTTGCAC	CTGAGCCAGA	AACGTCGTAG	AGGTTTATCC	120
${\tt CTAAATCATC}$	CGCTAACTTT	CTAGCTGCAG	GAGTCGCTCT	TAGCTTGTCA	TCAGCCATGA	180
CCTCTCCAAT	${\tt TCTATTTATG}$	ATACAAAGGG	CGTCAAAAGC	GACTGAAAAA	TAGGAAATCG	240
ACGATGGCTT	CGATGAAGCC	AAGGAGATTT	ATCTTTTTT	CCAAGCTTTT	AGCCCGTGCT	300
${\tt CTAATCTAAG}$	ATATTAAGGA	CGAAGAGCTC	TGCACCTAAA	AGATACAAAG	TTCTCGTCAG	360
${\tt CTTTGTTTTA}$	${\tt TTTACATAAC}$	TTATCTTATG	TAACTCTATT	CTTTGTTATA	AGTTTTTCGG	420
ATTGCATCTT	${\tt TGATACTTTC}$	AACTGTTGGA	ATCATTGCAC	ATTTTTAGGT	TTTGCGCATA	480
AGGCATCGGC	ACATCTTCTC	CTGCACAACG	GCGGATTGGT	GCATCTAGAT	AGTCAAATGC	540
${\tt TTCTGATTCT}$	${\tt GAAATAATAG}$	${\tt CTGAAATTTC}$	ACCGATATAG	CCACTTGTTT	TGTGGGCATC	600
GTTGACCAGA	ACAACCTTAC	${\tt CAGTCTTCTT}$	CACTGAGTTT	ATGATGATAT	CCTTATCAAG	660
CGGAACAAGG	${\tt GTACGTGGGT}$	CAACAATTTC	AACTGAAATT	CCTTCTTCAG	CTAATTCTTC	720
AGCAGCTTGA	ACCACACGGC	${\tt GAAGCATTTT}$	TCCATAAGTG	ACAACTGTTA	CATCCGTTCC	780
${\tt TTGGCGTTTG}$	ATTTCACCAA	CCCCAAGTGG	AATTGTGTAG	TCTGGATCAA	CTGGCACTTC	. 840
CCCTTTTTGG	${\tt TTAAATTCTG}$	ACTTGTACTC	AAGTATAATA	ACTGGGTTGT	TATCACGGAT	900
AGAAGACTTA	AGCAGGCCTT	TCATGTCCGC	AGGTGTTCCA	GGTGCCACAA	CCTTAAGCCC	960
TGGAATGTGA	GTAAACCAAG	ACTCTAGAGA	TTGTGAGTGC	TGGGCGGCAG	AGCCAACTCC	1020
GTTACCAGCT	GCACAACGAA	${\tt CAGTCATTGG}$	AACCTGACCT	TTACCACCAA	ACATGTAACG	1080
TGTTTTAGCA	$\tt GCTTGGTTGA$	CGATATTGTC	CATGGCAATA	ACAGAGAAGT	CCATGAAGGT	1140
CATATCGACG	ATTGGACGAA	GTCCTGTCAT	GGCTGCTCCT	GCTGCAGCTC	CAGAGATGGC	1200
AGCTTCAGAA	ATCGGACAGT	CACGGACACG	TTCTGGACCA	AATTCTTCAA	GCATTCCAAC	1260
AGAAGTACCG	AAGTCTCCTC	CGAAGACACC	GACGTCTTCT	CCCATCAAGA	ACACATTTTC	1320
ATCGCGAACG	CATTTCCTCA	GACATAGCAA	GGATAATGGT	GTCACGGAAG	GACATTGTTT	1380
TTGTTTCCAT	${\tt TTTATCTCTT}$	TCTCCTTAGT	CTGCGTAAAT	ATCTTCAAAG	GCTGATTCAA	1440
GCGGTGGGAA	TGGGCTTTCC	TCTGCAAATT	TAACAGAAGC	TTCTACTGCT	TCCTTTACTT	1500
GCGCTTGGAT	TTCTTCCAAT	TCTTCGGCAC	TTGCAATGTT	ATTTTCAATA	AGGTAATTGC	1560

GGAGGTTTTC	${\tt GATTGGATCT}$	TTTTGTTTCC	ACAATTCCAC	TTCTTCACGC	GTACGATATT	1620
TACCAGGGTC	AGATGATGAG	TGACCGAGCC	AGCGATAAGT	TACACTTTCA	ATCAAGACTG	1680
GACCATTGCC	ACTGCGAACA	${\tt TGGTCTATAG}$	CTTTCTGAAA	TCCTTCATAG	ACATCGATGA	1740
CATTGTTACC	${\tt GTCTTCGATG}$	AACATTCCAG	GAATTCCATA	AGCGGCGCTA	CGTTGATGGA	1800
TATGTTCTAT	ATTGGTCATT	${\tt TTCTTGATAT}$	CCGCAGAGAT	ACCGTAACCG	TTGTTAATGC	1860
AATAGAAAAT	GACTGGCAGG	TTCCAGATAG	AAGCCATGTT	CACTGCTTCG	TGGAAAACAC	1920
CTTCATTGGT	CGCACCATCT	CCAAAGAAGC	AGACAACGAT	TTTACCGGTA	TTTTGCATTT	1980
GCTGACTGAG	GGCTGCACCG	ACAGCGATCC	CCATACCACC	ACCTACGATA	CCATTGGCAC	2040
CAAGGTTCCC	AGCATCAAGG	${\tt TCAGCGATAT}$	GCATAGATCC	ACCTTTCCCT	TTACAGGTTC	2100
CAGTGTATTT	ACCAAGGATT	TCAGCCATCA	TTCCGTTGAA	GTCAATCCCT	TTAGCAATAG	2160
CTTGCCCGTG	TCCACGGTGG	TTTGAGGTAA	TCAGATCATC	TGGATTGAGA	GCTACATAG	2219

## (2) INFORMATION FOR SEQ ID NO:22:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1078 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

CTAACCCTNG	ACGGGGCCGC	TATCATCAGT	CAAACAGCTA	AAAATCTTGT	CTGCAAAAGT	60
CTCGATTAAC	TGAGCTTTTA	CAAAAGCCGT	ATTTCCTGGA	ATAACTTGGA	GATTGATCAT	120
CTTATCCATC	AATTCAGCCG	ATTCGATATT	GTCTTCAGCC	AGTTGCAGAC	TTTTTACGAT	180
TGATTTTGGC	AATTCGTAGA	CATAGGTGTT	GTCTCTCAAA	GGAATTTTGA	CAATACCTAA	240
CTCTTTGATA	TCTCGGGATA	CCGTCGCCTG	AGTGGCAGTG	ATACCTGCTT	CTTTCAAATG	300
TTCTACAATT	TCTTCTTGCG	TGCCGATTTG	ATAATCTGTC	ACCAATCTTC	TAATTTTTTC	360
AAGTCTCTCT	TTTTTATTCA	TTTTTAAATT	GACTATGCGC	CCTCTCTACT	GCTTCTTTAA	420
TCTCAGCAAG	AATCTGATTG	CTTGCTGACT	${\tt TTTCTTTTT}$	CAAATACACT	AAAAATTCAA	480
TATTTCCATG	TCCACCTTGG	ATGGGAGAAA	AGTCCAAGCC	AAGGACTGAA	AAACCTGCCT	540
CTACTGCCAT	AGCTGTTACA	GATTCAAGGA	CATTCTGATG	AATCTTAGCA	TCTCGAATAA	600
TTCCATTTTT	CCCAATCTGC	TCACGTCCTG	CCTCAAACTG	AGGTTTGACA	AGTGCTACCA	660
CCTGACCTTG	ATCAGCCAAG	ACACGGTGCA	AGGCTGGCAA	AATCAGACTA	AGGGAAATGA	720
AACTCACATC	AATACTGGCA	AAGCTCGGCT	CCTGCTCGAA	${\tt ATCAGTCTTT}$	TCAGCATAGC	780
GGAAATTGAA	CTGCTCCATG	CTGACAACTC	${\tt GTGGGTCTTG}$	${\tt GCGTAATTTC}$	CAAGCCAACT	840
GATTGGTACC	AACATCGACT	GCAAAGACCA	ACTTGGCACT	ATTCTGTAGC	ATGACATCGG	900
TAAAACCTCC	AGTAGAGGCC	CCGATATCAA	${\tt TCGTAGTCGC}$	GCCATCCACC	GACAAATCAA	960
AGACCTGCAA	GGCCCTTTTC	CAGTTTCAAA	CCACCACGGC	${\tt TGACATACTT}$	GAGTTTCTCC	1020
CCCTTGAGTT	${\tt TTAATTCGGT}$	${\tt GTCATCTGGA}$	ATTTCTCTCC	TGGCTTGTCA	AACCGTTC	1078

(2) INFORMATION FOR SEQ ID NO:23:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 928 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ACTTTCCTGA	CCTCTGTTTC	CAAATAATCT	TCCAAATGGA	CAGAGATCTA	CCGTTGTTTG	60
CATCGATAGC	${\tt TGAGGTCTTT}$	${\tt TTTAGAAAAT}$	ACCATCACTT	TTAGAAAATA	TAAACACATT	120
TTTCGGATAA	${\tt GATTAAGGTT}$	AAAAGCAGCT	${\tt CGTTTATCCA}$	GGGTCTGATG	ATGGTCTTCA	180
CGATAAACCA	CATCCAATAA	CCAATGCATA	${\tt CTTTCTGCTG}$	ACCAATGACC	TCGAACACTA	240
TGGCAAAAGG	TCATCAACAT	CAAGCTTAAA	${\tt GTTAAAGATA}$	AAATAGCGAA	CGTCTTGACT	300
TGTAATACCA	TCTCTATCAA	TAGTATTACG	AGTCATTCCA	ATTCCACGCA	ATTTATGCCA	360
TTTGGGATGG	TTTTGACACA	ACCACTTAAC	ATCAGAAGAC	ACCCAGTATT	CTCGAACTTC	420
AATCTATCCT	CTTTCTATAT	TCTAACTGAA	AGGACAATTC	AATGATTCAT	TTAATAATGA	480
TTAGCGCCAT	TGCTCTAGCC	ATTGGAATTG	GTTACCGCAC	CAAAATCAAT	ATTGGCCTGC	540
TGGCTATTGC	TTTTTCTTAC	CTCATCGCAA	CCACTCTCAT	${\tt GGGATTAAGT}$	CCCAAAGAAC	600
TTCTTCATTT	TTGGCCAACC	TCACTCTTTT	${\tt TTACCATTTT}$	TAGCGTCTCT	CTCTTTTATA	660
ACGTTGCAAC	AACTAACGGT	ACTCTTGATG	${\tt TTTTGGCTCA}$	ACACATTCTC	TACCGCACAC	720
GCACCCACCC	TAACGCCCTC	TACATGATTT	TATACCTGAT	GGCAACCCTT	TTGTCTGCTT	780
TAGGTGCTGG	ATTTTTCACT	ACTATGGCCG	${\tt TTTGCTGTCC}$	${\tt TCTAGCGATT}$	ACCCTCTGTC	840
AAAAAGCGGA	CAAACACCCT	TTGATTGGAG	TCAAAGCGTC	AATGGGAACT	TCAGGAAGGG	900
TAATTTGATA	ACCAAAGGAA	TAAAATTT				928

### (2) INFORMATION FOR SEQ ID NO:24:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 847 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

AAAAACGCAC	CATATCAAAA	ACTAAAAAGT	TTGATATCAT	GCGTCATGTC	TTAAACTAAT	60
TGACTATACT	TTCTATTCAA	ATGAGCTTTT	AACCAATTGA	TTGAGCCAAT	CCACTCTTAA	120
AACCAAAGGA	GCAATTTCTC	GGCTTAGCTG	ACTCTTCTCG	GAATCTGAAC	CATGTACAAC	180
ATTTTGGATA	ATCTCATTTT	CTCCAGCAGC	TTTTGCAAAA	TCACCTCGAA	TAGTGCCTGG	240
TAAAGCTTCT	TCTGGACGAG	TTGCACCCAT	CATGGTCCGC	CAAGTTTCGA	TTACTTTGGG	300

ACCAGAAATG	ACACCCACAA	GAACTGGACC	TGAAGTCATG	AATTCACGAA	TCGGTGGGTA	360
AAAACTCTGA	CCAACCAAGT	CCTGATAGTG	CTGGTCAATC	AACTCTTCTG	AAAACCTGTG	420
AACGAAACTC	${\tt CAATTTTTCG}$	ATTGTAAATC	CACGTTGTTC	GATGCGCTTT	AACACTTCAC	480
CCACTAGCCC	TCTTTTTACA	CCATCTGGTT	TGATGATAAA	GAATGTTTGT	TCCATACCCG	540
TCTCCTTTGT	${\tt CAGCTTCTTT}$	${\tt CTTTTATTTT}$	ACCACATCTC	GTGGAAAAAT	GGAGAAAGTT	600
TTCAGAAGAG	AGAATGAGAG	AACCCTCGGG	TTCTCTCATT	CTCTCTTATT	CTACTGTTTC	660
TTCCACAGTG	TCAACGGCAG	TATCCACAAC	TACTTCTGTT	GTTTCTTCAT	TTCCTTCTTC	720
CTCTACTGGA	GGATTAAGGT	ATTCTTCTTC	GTTGACAGCA	TGTGGTTCAA	GGTTACGGTA	780
ACGGGCCATA	CCAGTACCAG	${\tt CTGGGATGAT}$	CTTACCGATG	AATAACATTT	TCCTTTAAAT	840
TCCAAGG						847

## (2) INFORMATION FOR SEQ ID NO:25:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 578 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

ACAACCTAAC	TACCGNCTAA	TTCAGCGCGA	ACTTCTGCAG	TAGCTGCTTC	AACAACTTCA	60
CGACGTGAAA	GGATGAAGCG	${\tt GTTTTCTTTA}$	GCGTTAACTT	CTTTGATTTT	AGTATCAAAT	120
TCTTGACCTA	CAAAACGCTC	AGCGTTACGT	ACGAAACGAG	TATCCAACAT	TGAAGCTGGG	180
ATAAATCCAC	GAACACCTTC	AAATTCTACT	GAAAGTCCAC	CTTTAACGGC	ACGCGTTCCT	240
TTAACAGTAA	${\tt CAACTTCTTC}$	TTCGCGACCA	ACAAGTTTGT	CCCATGCTTT	GCGAGCTTCA	300
${\tt AGGCGTTTTT}$	TAGATGACAA	${\tt GGTATGTAAC}$	TGTATCAGTA	TCTTTACCAA	CTACTTGACG	360
AAGTACAAGA	ACATCCAATA	$\mathtt{CTTCTCCTAC}$	TTTAACAAAG	TCATTGATAT	CTGCATCACG	420
${\tt ATCGTTTGTC}$	AATTCGCGAA	GAGTCAAGAC	ACCCTTCAAC	ACCAGTTCCC	AGAAGAATGC	480
AACGTTAGCT	${\tt TGAGTCGCAT}$	${\tt CAACTGTCAA}$	TACTTCAGCA	CTAACACATC	ACCAGTCTCA	540
ACTTGACTNA	CGCTATTGAG	CANATCTTCA	AATTCGAT			578

### (2) INFORMATION FOR SEQ ID NO:26:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 888 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GTAGTTATAG	TAGGGGTCGG	ATTGAAATGC	CACNGCGCTT	CTTGGAGTTT	CTGATACCGT	60
TTAAAATAGC	GTTGGGCATT	CTGGTTGGGA	GTCAGAGCCT	TATCAAGCGC	AATCATGATA	120
GGTTGGTTGG	TATAGTAGTT	GTCTAGGATA	ACCTGGTTCT	TGGTCGTTAG	GCACCTGGTG	180
GAGGAAGGTT	GTCAGCAATT	CTCCTTTTTG	ACGAAATTCT	TCAGCGTTGT	CTGTCGCCAG	240
TAACTATTTT	TCCTGTTTTT	${\tt TGAGTTTGTG}$	TCGGTTTTTC	TGAAGTTCAT	TTTCAACACG	300
ACGAATCAGT	TCACTGGCCT	${\tt GCTGTTTGAC}$	GCGGTCGCGC	TCAGCCTTAT	CCTTATAGTA	360
GGTGTCCAAC	AAATCAGAAA	GATTTGCAAA	AGGCTCTCCC	ACCTGATTTG	CAAAAGGAAC	420
TGGACTGAAG	GAAGTCTCAG	TCAAGCATGG	CTTGGTTTCC	TGATTGAAAA	AATTTCGGAA	480
AGCGGAAAGT	TTTTCACTAA	CCAGTATCCT	TTCCAATTCA	TTTGCCGTAT	CGCGTCCCAG	540
ACCTTGAAAG	AGGCTTTGAA	${\tt GATTTTTTGC}$	TGTTAGTTCT	TGGGTTTGCA	GGATTTCAAA	600
GAGCTTTTCA	TCCTTGATAG	TAAAAGGATT	GAGAGATTCT	GTACTTGGCG	GAGCGATATA	660
GGTCGATCCT	GGAAGTAAGG	TGCGGTAGCT	ATTTTGTGAA	AAGCCGACGT	GTTTGATAAC	720
TTCGAGGATT	TTATGACTGC	TTTTATCCGA	CCAGTTAGAA	TATTACTGTG	TTTCCCCATA	780
ATTTCGATAA	TCAAGGTAGC	${\tt CTGGATATGG}$	TCTCCAATCT	CGTTTTTATT	GGAAACTGTA	840
ATTTCCACAA	TACGGTCATT	TTCCACTTGC	TCAATCGACT	CAATCAGG		888

### (2) INFORMATION FOR SEQ ID NO:27:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 513 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

${\tt ATCGAATTTT}$	${\tt GTTCTTTCAT}$	AGAGAGCTAC	$\mathtt{CTGAGTTCTA}$	TTCAAGCTCA	GGTAGTACTT	60
${\tt TCTTATAAAC}$	TAGACAAACT	AACTGTCATT	CTACCATCAG	ATTACAAGAC	ATCATCGTCA	120
$\mathtt{CTCACCTTGG}$	AATTCAATGT	CGTACCCCAA	${\tt TGGGTAATTT}$	TACGGTGGGG	TTGAGCTAAA	180
ATTGGTCTGT	${\tt TTTCATAGAT}$	TGTTTGCCAT	${\tt CTATTCCATA}$	GTAGGCCCGT	CTTTTTCTCA	240
ATCTTAACTC	${\tt GCAGATTTCT}$	CATATTTTCT	TTGATTGGGA	GGTTGAGGAC	AAAACCTGCA	300
${\tt GTCTGGTTGC}$	GACCGTTTCC	TTCCCAAGAA	TGACTACGAA	CAACTTGGTT	TCCATCTTTA	360
TCTACTGGAA	${\tt CTTCTTCCCA}$	AGTTATGGAG	TAGCGGGCAA	TGTAAGCTCC	ACTGTGTTGA	420
ATTATCAATG	${\tt TTTTATCTTT}$	CACAGGGAGT	CTGACTGATT	GGTTGAACTG	GCTTAGAAAC	480
TTGTGTCGCC	GTTTCAGCAT	TCGTAGCTAT	AAA			513

### (2) INFORMATION FOR SEQ ID NO:28:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 214 base pairs

(B) TYPE: nucleic acid

143

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

ATCGAATTCT	AACATGTGCT	TCTCCTTCTA	TTGTTCCTAT	CTTTAAAATC	TACTCCTTCA	60
TGCTCCAAGA	GCCAAGCTTT	$\mathtt{CTTTTCCACT}$	CCTGCAGCAT	AACCTGTCAG	ACGCTTGCCT	120
GCTCCCAACA	CACGATGACA	AGGTACTAGG	ATAGACCAAG	GATTGCGTCC	CACTGCTCCA	180
CCAATTGCTT	GAGCAGAAGC	CACTTGCAGG	TCTT			214

#### (2) INFORMATION FOR SEQ ID NO:29:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1084 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

CTCCAGCAAT	GGATCCAAGT	ATGATGGGCG	$\operatorname{GGATGATGTA}$	AGCTTTCTAT	AGAAAACACC	60
TTATAAAAAA	CACGAAAGGA	GGGAATGACT	AACCCTTCTT	${\tt TTTATAATAT}$	TCACTTCTAA	120
GATTGATGGT	GAGCTCTCCT	AACTTATATG	ATAAAATAAG	ACTAGAGGAA	AGGAGAAGAA	180
CATGATCGAT	GTACAAGAAA	TTCTGTGCAA	GATGACCCCC	AATCAGAAGA	TTAATTATGA	240
CCGTGTCATG	CAGAAAATGG	TACAAGCATG	GGAAAAAAAT	GAGTAGCGGC	CAACCATTCT	300
CGTGCATGTT	TGCTGTGCCC	CTTGTAGTAC	CTATACACTA	${\tt GAATATTTGA}$	CCAAGTATGC	360
AGATGTGACC	ATCTATTTTG	CCAATTCTAA	TATCCATCCC	AAGGCAGAAT	ACCATAAGCG	420
GGTCTATGTC	ACCAAGAAAT	${\tt TTGTTAGTGA}$	TTTTAATGAG	CAGACAGGAA	ATACGGTTCA	480
GTACCTAGAA	GCTCCCTACG	AACCCAATTA	ATACCGAAAA	${\tt CTAGTTAGGG}$	GGCTAGAGGA	540
GGAGCCCGAA	GGTGGCGACC	GTTGCAAGGT	${\tt TTGTTTTGAC}$	TACCGACTGG	ATAAAACAGC	600
GCAAGTGGCT	ATGGACTTGG	GCTTTGACTA	$\mathtt{CTTTGGTTCA}$	GCCTTGACCA	TCAGTCCTCA	660
TAAGAATTCT	CAAACTATCA	ATAGCATCGG	AATCGATGTG	${\tt CAAAAAATTT}$	ACACGCCCCA	720
CTATCTTCCC	AACGATTTCA	AGAAAAATCA	AGGCTACAAA	${\tt CGTTCAGTAG}$	AGATGCGTGA	780
GGAGTATGAT	ATCTATCGTC	AATGTTATTG	TGGCTGCGTC	TATGCAGCCC	AAGCCCAGAA	840
TATTGACCTG	${\tt GTTTAAGTTG}$	AGTAGGACGC	CACAGCATGC	TTGCTGGATA	AGGATGTTGA	900
GAAAGACTAT	TCTCATATCA	CATTTATAGT	AGATTGAAAC	TAGAATAGTA	CACCTTTACT	960
TCTCAAACAT	${\tt TGTTAGAAAT}$	CGATTCGGCT	${\tt GTCCTTATTT}$	${\tt CATTTTAATA}$	TACTGGTACG	1020
AAATTAGATA	TATCAATGAT	AACTTGCCTC	AAGGTAGGTT	TTTTGATAGT	AGAAAAGCGA	1080
TAGA						1084

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1124 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

ATCGAATTCA	TTGACTGCCT	GAAAAGACTT	CAACTCGTCT	GCCTGATAAC	CGAAAGACTT	60
GGTTACTTTG	ATACCTGATA	CGGACTCCTG	TACCTTGTTA	TTGAGTTCAG	AAAAAGCAGC	120
${\tt TTGGGATTCG}$	CCAAAGGCCT	${\tt TATGAGTCTT}$	TCTCCCTAGG	CGACTAGTCG	TATAGGCCAT	180
GAAAGGTAGG	$\tt GGGAGAATGG$	CAACAAGAGT	CATCTGCCAT	GAGATGCTAA	AGAGCATGGT	240
CAACAAAGTC	ACCAGAGCCG	TGATAGAGGC	ATCCACCGCA	GACATGACAC	CGCCACCTGC	300
TAAACGAGTC	AAGGAATTGA	TATCATTGGT	TGCGTGTGCC	ATCAGATCAC	CCGTCCGATA	360
GGTTTGATAA	AAGGCTGACG	ACATTTTTGT	GAAATGCTTA	AACAAGCGAG	ACCGCATGAT	420
CTGTCCCAAG	CAATAAGAGG	TCCCAAGGAT	ATACATACGC	CACACATAGC	GCAAATAGTA	480
CATACCAAAG	GCTGCAAGTA	GCAAGTAAAA	TAGGCTAAGA	AGGAGGTCCT	GCTGGGTTAA	540
TTGCCCCGAT	GTGATGGCAT	CAATAACCCG	CCCCATAACC	ATAGGAGGAA	TGAGATTGAG	600
GACGGAAACC	AAGACCAGGG	CCACAATCCC	GACTAGATAA	${\tt CGGCGTTTTT}$	CTAACTTGAA	660
AAACCACCAA	AATTTTTGAA	TAATGGACAT	AAAATCCCTT	TCTGGATTGC	AAATAGAAAC	720
CTGAGGCCAA	TACTCAATGG	AAAATCAAAG	AGCAAACTAG	GAAACTAGCC	GCAGGCTGCT	780
CAAAGCACTG	CTTTGAGGTT	GTAGATAGAA	CTGACGAAGT	CAGTAACCTA	CATACGGCAA	840
GGCGACGTTG	ACGCCGTTTG	AAGAAATTTC	CGAAGAATAC	AAGACCCCAG	GTTTTTCTTA	900
TTTATAAGTT	ACCACTGTAA	CAGCACCCTT	GTCATATTCA	GCAATAAAGA	TATTGGCTAC	960
ATTGTCATGC	CCTTGTTTAC	TGAGGTTATC	AAGCAACCAC	${\tt TCCTCGCTAC}$	GAACAATCGA	1020
TCCCAAGACA	TCTACTTGAA	TCACACCGTC	AGTCACAACT	GGATACTTAG	GATTTTCATC	1080
TCCCATTTGC	ACAACGATGA	${\tt GTTGCCCATT}$	TTGCTCTTGC	ACAG		1124

- (2) INFORMATION FOR SEQ ID NO:31:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1242 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TTACCTTCAT TGCAGCCATT ATTGGTTCTT GTGTCAGCCA GATTTTAAGT ATTCTTTATA 60
145

AGACACCTGC	TGTGGTCTTT	ATCTTGGCCA	TTTTGGCACC	GCTGGTTCCA	GGTTATCTCT	120
CCTACCGAAC	AACTGCCTTT	TTTGTGACAG	GGGACTATAA	TAAAGCACTG	GCAAGTGCGA	180
${\tt CCTTGGTTGT}$	CATGTTGGCT	${\tt TTGGTAATCT}$	CTATTGGAAT	GGCTAGCGGA	ACAGTGATTC	240
TCAGACTGTA	TCATTATATA	AAAACACATC	GAGTATCGTA	GACTTTACAG	AAATAAAAGA	300
ATTTTCTGAA	${\tt AAATGAGATA}$	${\tt AATAAATTAA}$	CAACGCTTTC	TATATGTGCG	AGAATACCGC	360
ACTTATGAAG	AAATTGCGGC	${\tt TGATTTTGGT}$	ATCCACGAAA	GCAACTTAAT	CCGTCGGAGC	420
${\tt CAATGGGTTG}$	AAGTAACTCT	${\tt TGTTCAAAGT}$	GGTGTTACGA	TTTCAAAAAC	TCATCTTAGT	480
GCTGAGAATA	CGGTGATTGT	GGATGCAACA	GAGGTAAAAA	TCAATCGCCC	TAAAAAACAA	540
${\tt TTAGCGAATG}$	ATTCTGGTAA	${\tt AAAGAAATTT}$	CACGCTATGA	AGGCTCAGGC	GATTGTCACA	600
AGTCAAGGGA	${\tt GAATTGTTTC}$	${\tt TTTGGATATC}$	GCTGTGAACT	ATTGTCATGA	TATGAAGTTG	660
TTCAAAATGA	GTCGCAGAAA	TATCGGACAA	GCTGGAAAAA	TCTTGGCTGA	TAGTGGTTAT	720
CAAGGGCCCA	${\tt TGAAGATATA}$	TCCTCAAGCA	CAAACTCCAC	GTAAATCCAG	CAAACTCAAG	780
CCGCTAATAG	${\tt CTGAAGATAA}$	AGCTTATAAC	CATGCGCTAT	CCAAGGAGAG	AAGCAAGGTT	840
GAGAACATCT	TTGCCAAAGT	AAAAACGTTT	$\mathtt{AAAATGTTTT}$	CAACAACCTA	TCGAAATCAT	900
CGTAAACGCT	TCGGATTACG	AATGAATTTG	${\tt ATTGCTGGCA}$	${\tt TTATCAATTA}$	TGAACTAGGA	960
$\mathtt{TTCTAGTTTT}$	GCAGGAAGTC	${\tt TATTATTTTC}$	${\tt CTTATTGTCT}$	${\tt GTAAGTCTAC}$	TGACCTTGTT	1020
${\tt GTTTATCCCA}$	${\tt GTCATGGTTT}$	${\tt CTAGTTCGGG}$	CTCAGAGTTT	CAAAGTGGAT	GGCAAGAGCA	1080
TCAATTGATT	GCTGAGAAGG	TTAGTAAAAC	ACTTGACAAG	ACATTTGATA	AGGATGTCAG	1140
AAAAATTCCG	ACCAGTCAGT	TTTATCAAAA	ATTTGTAGAT	GAGATGGGAA	GGATTTACTC	1200
AGGAAATTTG	ATCCTCCCAG	GAGCTGATAA	CTGTGAATGG	AG		1242

# (2) INFORMATION FOR SEQ ID NO:32:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1575 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

GTGATGGGGC	CTCAGGGAAA	${\tt TGGTTTTGAC}$	TTGTCTGACC	TTGATGAGCA	GAATCAGGTT	60
CTCCTTGTTG	${\tt GTGGTGGGAT}$	TGGTGTTCCA	CCCTTGCTTG	AGGTGGCCAA	GGAATTGCAT	120
GAACGTGGAG	TGAAAGTAGT	GACAGTCCTC	$\tt GGTTTTGCTA$	ATAAGGATGC	TGTTATTTTG	180
AAAACGGAAT	TGGCTCAGTA	TGGTCAGGTC	TTTGTAACGA	CAGATGATGG	TTCTTATGGC	240
ATCAAGGGAA	ATGTTCCGTT	GTTATCAATG	ATTTAGATAG	${\tt TCAGTTTGAT}$	GCTGTTTACT	300
CGTGTGGGGC	TCCAGGAATG	ATGAAGTATA	TCAATCAAAC	$\mathtt{CTTTGATGAT}$	CACCCAAGAG	360
CCTATTTATC	TCTGGAATCT	CGTATGGCTT	${\tt GTGGGATGGG}$	AGCTTGCTAT	GCCTGTGTTC	420
TAAAAGTACC	AGAAAGCGAG	ACGGTCAGCC	AACGCGTCTG	${\tt TGAAGATGGT}$	CCTGTTTTCC	480
GCACAGGAAC	AGTTGTATTA	TAAGGAGAAA	ATTATGACTA	CAAATCGATT	ACAAGTGTCT	540
CTACCTGGTT	${\tt TGGATTTGAA}$	AAATCCGATT	ATTCCAGCAT	${\tt CAGGCTGTTT}$	TGGCTTTGGA	600
CAAGAGTATG	CCAAGTACTA	TGATTTAGAC	${\tt CTTTTAGGTT}$	CTATTATGAT	CAAGGCGACA	660

ACCCTTGAAC CACC	GTTTTGG GAATCCAAC	T CCAAGAGTGG	CAGAGACGCC	TGCTGGTATG	720
CTCAATGCAA TTG	GCTTGCA AAATCCTGG	T TTAGAGGTTG	TTTTGGCTGA	AAAGCTACCT	780
TGGCTGGAAA GAGA	AATATCC AAATCTTCC	T ATTATTGCCA	ATGTAGCTGG	TTTTTCAAAA	840
CAAGAGTATG CAG	CTGTTTC TCATGGGAT	T TCCAAGGCAA	СТААТАТААА	AGCTATCGAG	900
CTCAATATTT CTTC	GTCCCAA TGTTGACCA	C TGTAATCATG	GACTTTTGAT	TGGTCAAGAT	960
CCAGATTTGG CTT	ATGATGT GGTGAAAGC	A GCTGTGGAAG	CCTCAGAAGT	GCCAGTTTAT	1020
GTCAAATTAA CCCC	CGAGTGT GACCGATAT	C GTTACTGTCG	CAAAAGCTGC	AGAAGATGCG	1080
GGAGCAAGTG GCT	TGACTAT GATCATACT	C TGGTGGGATG	CGCTTTGACC	TCAAAACCAG	1140
AAAACCAATC TTGO	GCCAATG GAACAGGTG	G AATGTCAGGT	CCAGCAGTTT	TCCAGTAGCC	1200
CTCAAACTCA TCCC	GCCAAGT AGCCCAAAC	A ACAGACCTGC	CTATCATTGG	AATGGGGGGA	1260
GTGGATTCGG CTG	AAGCTGC CCTAGAAAT	G TATCTGGCTG	GGGCATCTGC	TATCGGAGTT	1320
GGAACAGCTA ACT	TTACCAA TCCTTATGC	C TGCCCTGACA	TCATCGAAAA	TTTACCAAAA	1380
GTCATGGATA AATA	ACGGTAT TAGCAGTCT	G GAAGAACTCC	GTCAGGAAGT	AAAAGAGTCT	1440
CTGAGGTAAA CTG	CAATCAA TCTGTTCTT	G ATTTTTTATT	AGTTTGTAAT	ATGAATTTAG	1500
GAGAATTTTG GTAC	СААТААА АТАААТААG	A ACAGAGGAAG	AAGGTTAATG	AAGAAAGTAA	1560
GATTTATTTT TTT	AG				1575

### (2) INFORMATION FOR SEQ ID NO:33:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 776 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

${\tt CTAAGATATC}$	AGAATAACAA	CGAAATCGAA	GCATTAAAAA	CAAATATTAC	TTCTAAGAAT	60
AGCGAGATTG	ATAGTCAACA	AAGCAATATT	AAGGATATGA	CCGTACCTAT	AATGATCCAA	120
CTTCTCAGGC	${\tt TTATAATATT}$	TATGCTCAAT	TAATTAGTGA	GTTAGGTACT	GCTCGTTCAA	180
ACAACAATAA	AAGTATTACA	${\tt GAGCTTGAGG}$	CTAATCTTGG	AGTGGCAACA	GGTCAAGATA	240
AAGCTCATAG	TATATTAGCG	TCAAATGAAG	GTACTCTGCA	TTATCTGGTA	CCTTTGAAAC	300
AAGGAATGTC	TATTCAGCAG	GGGCAAACGA	TAGCAGAAGT	TTCAGGGAAA	GAAAAAGGTT	360
ACTATGTAGA	GGCTTTTGTA	CTTGCGAGTG	ATATTTCTCG	TGTTTCAAAA	GGAGCAAAAG	420
TTGATGTTGC	TATTACTGGT	GTGAATAGTC	${\tt AAAAATATGG}$	AACACTAAAG	GGACAAGTCA	480
GACAGATTGA	TTCAGGAACA	ATTTCCCAAG	AAACGAAAGA	${\tt GGGGAATATT}$	AGCCTCTATA	540
AAGTCATGAT	AGAATTAGAA	ACCTTAACTC	${\tt TAAAACATGG}$	AAGCGAGACG	GTCATACTCC	600
AAAAGGATAT	GCCAGTTGAA	${\tt GTGCGGATTG}$	TCTATGATAA	AGAAACCTAT	CTTGATTGGA	660
TTTTAGAAAT	${\tt GTTAAGTTTC}$	AAGCAATAAT	$\mathtt{TGGTTTTAAA}$	CCTTAGGTAA	ССТАТАААА	720
CAAATAAGGT	AGAGAAAGGA	TATTTTATCT	AAGTTAGCTC	ACATTACTGC	CATTCC	776

(2) INFORMATION FOR SEQ ID NO:34:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1487 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

CTGGCCTTTC	TCCACCAAAA	${\tt TTGTTCCTTG}$	AGGGAAGGAA	GTCAGAACAC	TAGCCGTTGC	60
ATCTTCCTTT	TGCTTTTCAA	${\tt TCGTAATTCC}$	AGATAATTTT	TCCCATTCTT	TTTGGTGACC	120
CCGGGAGGCA	${\tt GGATTGAATG}$	GCTTGAGGGA	AATGACAAAC	TTGTCCTAGC	AAGAATGGTC	180
AAGGCACCTC	${\tt CGTCTACAAT}$	CAAAATCTGA	TTTGGGCTTA	AATTAACAAA	GACCTGTTTT	240
ACTAGATTTT	CTCCAGAAGC	ATCGTCTCGT	AAACCAGGCC	CCAGCAAGAT	AACTTCTGCC	300
TTCTCCAATT	${\tt GCTCTTTTAA}$	CAATTGCTGG	TCTTGAAGAG	AAAAGGCCAT	AGGCTCAGGT	360
AAATGGCTGT	GCAGAGCCGG	${\tt GATATTTTCC}$	CTGTCCGTTC	CAACGGTCAC	CAATCCTGCA	420
CCGCTTTTTA	CAGCTGCTAA	AGCAGCCATG	ATGATGGCAC	CTCCATAAGG	ATAAGTACCA	480
CCAAGCAGCA	GCAGACGACC	ATAATCTCCT	TTATGACTTG	AACGAGAACG	TTCAATAATA	540
ACTTTTTCTA	${\tt GTAAGGTTTG}$	ATTAATCACT	TTCATCCTTT	TTCCCTCTCA	CTTTTATTAT	600
ACAACAAAAA	GGAGACGCAG	ACCTCCTTTT	${\tt GTAATCTTAT}$	ATCTAAAATT	TAATATTCAT	660
TTCTGCCATT	${\tt TTAGATATAG}$	CTATAGAAAA	TACACTCTAT	TAATCGAATG	TTTCTCTTAT	720
${\tt TTTCTATCCA}$	ATGTCCGAAG	${\tt TGCTGCTTGA}$	TAAGTTTGCT	CCATCAGCAT	GGTAATGGTC	780
ATAGGACCGA	CACCTCCAGG	GACTGGCGTG	ATATGGCTAG	CAAGTGGTGC	AACTGCCTCA	840
TAATCAACAT	CTCCACAGAG	$\mathtt{CTTCCCATTT}$	TCATCTCGGT	TCATCCCAAC	GTCAATGACA	900
ACCGCACCTG	GTTTGACAAA	GTCAGCAGTC	ACAAACTTGG	CGCGGCCGAT	TGCGACTACA	960
AGAATATCTG	${\tt CTTTAGCAGC}$	CACCTTGGCA	AGATTATGAG	TTCGTGAGTG	GGCCAAGGTT	1020
ACTGTCGCAT	TTTTAGCCAA	AAGAAGCTGA	GCCATAGGTT	TTCCAACGAT	ATTTGAACGA	1080
CCGATTACGA	${\tt CCGCATTTTT}$	ACCTTCCAAG	TCAATCCCAT	ATTCATGAAA	CATTTCCATA	1140
ATTCCTGCAG	GTGTCGAGGG	AATCATGACT	GGATGTCCAG	ACCAAAGACG	TCCCATGTTT	1200
AGGGGATGGA	AACCATCCAC	ATCCTTTTCT	GGGTCAATGG	${\tt CTAATAAAAC}$	CGCCTCTTCA	1260
TCGATATGTT	${\tt TTGGTAATGG}$	CAACTGGACC	AAAATCCCAT	GCCAAGCTGG	ATCCTGATTA	1320
TATTTAGCAA	${\tt TCAGGTCTAA}$	CAATTCCTCT	${\tt TGAGTAATGG}$	TCTCTGGAAC	TCGCACTACT	1380
TCGGTACGGG	AACCAGCCGC	AAGAGCTGAC	CTCTCCTTGT	TGCGAACGTT	AAACTTGGCT	1440
GGCTGGATTA	TCCCCAACCA	AAATCACTAC	CAAACCAGGC	ACTAGAG		1487

## (2) INFORMATION FOR SEQ ID NO:35:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1634 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

148

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

CGTGCCTTGG	CCAATGATCC	AAAAATCTTG	ATTTCAGACG	AGTCGCTTCA	AATTTCGGCC	60
CCTGGACCCT	TAAGACCAAC	CCAAGCAGAT	TTTGGCCCTT	GGTTGCAAGA	TTTGAACCAA	120
AAATTAGGCT	TGACTGTTGT	CCTGATTACG	CATGAAATGC	AGATTGTCAA	AGACATTGCC	180
AACCGTGTTG	CAGTTATGCA	GGATGGGCAT	TTGATTGAAG	AGAGTAGTGT	GCTTGAAATC	240
TTCTCAGACC	CTAAACAACC	TTTGACTCAA	GACTTTATCT	CAACAGCTAC	AGGTATTGAC	300
GAAGCCATGG	TCAAAATCGA	GAAGCAAGAA	ATCGTGGAAC	ACTTGTCTGA	AAACAGTCTC	360
TTGGTGCAAC	TCAAGTACGC	TGGATCTTCA	ACAGACGAGC	CACTTTTGAA	TGAATTGTAC	420
AAGCATTATC	AAGTAATGGC	TAATATTCTC	TATGGGAATA	TCGAAATCCT	CGATGGTACT	480
CCTGTTGGAG	AATTGGTGGT	GGTCTTGTCA	GGTGAAAAG	CAGCGCTGGC	AGGTGCTCAA	540
GAAGCCATTC	GTCAAGCAGG	CGTACAGTTA	AAAGTATTGA	AGGGAGGACA	GTAAGATGGA	600
ATCATTGATT	CAAACCTATT	TACCAAATGT	CTATAAGATG	GGTTGGTCTG	GTCAGGCAGG	660
CTGGGGAACA	GCTATCTACC	TAACCCTCTA	TATGACAGTT	CTTTCCTTCA	TTATCGGAGG	720
CTTCTTGGGG	CTAGTGGCAG	GTCTCTTTCT	CGTCTTGACA	GCGCCAGGTG	GTGTCTTGGA	780
GAATAAAGTC	GTATTCTGGA	TTTTAGACAA	AATTACCTCA	ATTTTTCGTG	CGGTTCCCTT	840
TATCATCCTC	${\tt TTGGCAATCT}$	TGTCACCACT	TTCTCACTTG	ATTGAAAAA	CAAGTATCGG	900
GCCAAATGCA	AGCCCTTGTC	${\tt CCACTTTCTT}$	TTGCAGTCTT	TGCCTTCTTT	GCCCGTCAGG	960
TGCAGGTTGT	${\tt CTTGGCTGAA}$	ATGGATGGCG	GTGTCATTGA	GGCGGGCTCA	AAGCGAGCGG	1020
AGCGACTTTC	TGGGACATCG	${\tt TGGGTGTTTA}$	CCTATCAGAA	GGTCTTCCAG	ATTTGATCCG	1080
TGTGACGACT	${\tt GTGACCTTGA}$	${\tt TTTCCCTTGT}$	TGGGGAAACA	GCTATGGCCG	GTGCGGTTGG	1140
AGCTGGTGGT	ATCGGTAACG	TAGCCATCGC	${\tt TTATGGATTT}$	AACCGCTACA	ATCACGATGT	1200
GACCATCTTG	GCAACCATCG	TTATCATTTT	GATTATCTTT	GCAATCCAAT	TCTTAGGAGA	1260
TTTCTTGACT	AAGAAATTGA	GCCATAAATA	AAAAAGAGCC	$\tt GTGTGGCTCT$	TTTTAACTGA	1320
TCAGATTTTC	$\mathtt{TGGGCAAATT}$	${\tt TTTTACTCAA}$	GGCTTGTCCA	ATCAAGGCAC	CCACTAGGGC	1380
TCCGATGACA	ATACTTGCGA	${\tt TAAATAGAAG}$	GACAGTTCCA	GGGTTTGGAG	CGACCATGAT	1440
GCGGTCGATA	TATTCTTGGG	ATTTTCCTCT	TGCCAGAAGA	GTAGCCATAT	AGGCTTTGGG	1500
CGCAATCCAC	ATAAGCAAGA	TTGGTCCTGT	TGTACTAAAG	GCGAAAATAA	TGAAAGAAAG	1560
GAAGTTCTTT	GTTTTGTCCT	TGTATTTTCC	TAAATGAGCT	ACTCCATCTG	CTAGGAGGCC	1620
ACAGATAATT	CGAT					1634

### (2) INFORMATION FOR SEQ ID NO:36:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1087 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GGAATCATGA	TGATGTCACT	GCTAAATGGT	TTCTTAGAAA	AAATATTTCC	TGAGCGCTTA	60
CAGATTAGTT	${\tt TGGGCTTGCT}$	${\tt GATTTTATCA}$	TTGAGCGGTA	CAGCTCCCTT	CTGGTACCAA	120
GCCTATCCCT	${\tt TTGTCTTTGG}$	AACACGGCTT	CTCTTTGGTT	TGGGTCTTGG	GATGATCAAT	180
GCCAAGGCCA	$\mathtt{TTTCTATTAT}$	CAGTGAACGC	TACCAAGGAA	AAAGGCGAAT	TCAGATGTTA	240
GGGCTACGCG	${\tt CTTCTGCAGA}$	$\tt GGTCGTTGGA$	${\tt GCTTCTCTCA}$	${\tt TTACCTTGGC}$	CGTCGGTCAA	300
GTTGTTGGCC	${\tt TTTGGTTGGA}$	CAGCTATCTT	TCTAGCCTAT	AGTGCTGGAT	TTTTGGTGCT	360
GCCCCTTTAT	CTGCTCTTTG	${\tt TCCCTTATGG}$	AAAATCAAAG	AAAGAAGTCA	AGAAAAGAGC	420
GAAGGAAGCA	AGTCGTTTAA	CTCGAGAAAT	GAAAGGCTTG	ATTTTTACCT	TAGCTATCGA	480
AGCGGCAGTT	${\tt GTAGTTTGTA}$	CCAATACAGC	TATTACCATC	CGTATTCCAA	GTTTGATGGT	540
GGAAAGAGGA	${\tt TTGGGGGATG}$	CCCAGTTATC	${\tt TAGTTTTGTT}$	CTTAGTATCA	TGCAGTTGAT	600
CGGGATTGTG	GCTGGGGTGA	${\tt GTTTTTCTTT}$	${\tt CTTGATTTCT}$	ATCTTTAAAG	AGAAACTGCT	660
CCTCTGGTCT	GGTATTACCT	TTGGCTTGGG	${\tt GCAAATCGTG}$	ATTGCCTTGT	CTTCATCCTT	720
GTGGGTGGTA	GTAGCAGGAA	GTGTTCTGGC	TGGATTTGCC	${\tt TATAGTGTAG}$	TCTTGACGAC	780
GGTCTTTCAA	CTTGTCTCTG	AACGAATTCC	AGCTAAACTC	CTCAATCAAG	CAACTTCATT	840
TGCTGTATTA	GGCTGTAGTT	TCGGAGCCTT	TACGACCCCA	TTCGTTCTAG	GTGCAATTGG	900
CTTACTAACT	CACAATGGGA	TGTTGGTCTT	${\tt TAGTATCTTA}$	$\tt GGAGGTTGGT$	TGATTGTAAT	960
CTCTATCTTT	GTCATGTACC	TACTTCAGAA	GAGAGCTCTA	GGATTGATTC	CTAAGTTTTT	1020
CTTTTGATAC	TCAATGAAAA	TCAAAGAGCA	AACTATAGTT	${\tt GATTGAGTTT}$	GGAATAGTAT	1080
GCTGTAG						1087

# (2) INFORMATION FOR SEQ ID NO:37:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1191 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GGATTCCAAC	GATTATGAAC	TTGACTGGTC	CACTGATTCA	TCCAATGGCT	TTAGAAACAC	60
AGCTTTCTTG	GAATTAGTCG	TCCAGACTCC	TAGAAAGTAC	AGCTCAGGTT	TTGAAAATAT	120
GGTCGCAAAC	GTGCCATCGT	GGTTGCTGGA	CCAGAAGGGT	TGGATGAAGC	TGGCTTGAAC	180
GGAACAACCN	AGATTGCACT	TNTTGAAAAT	GGCGAAATCA	${\tt GCTTGTCAAG}$	CTTTACTCCA	240
GAGGATTTGG	GAATGGAAGG	CTATGCTATG	${\tt GAAGATATTC}$	${\tt GTGGTGGGAA}$	TGCTCAGGAA	300
AATGCAGAAA	TTTTGCTTAG	CGTTCTGAAA	AACGAAGCAA	${\tt GTCCATTCTT}$	GGAAACGACA	360
GTCTTGAATG	CTGGTCTTGG	TTTCTATGCT	AATGGTAAGA	TTGATAGCAT	CAAGGAAGGA	420
GTTGCCTTGG	CCCGTCAAGT	GATTGCTAGA	GGCAAGGCCC	TTGAAAAACT	CAGACTGTTA	480
CAGGAGTACC	AAAAATGAGT	CAGGAATTTT	TAGCACGAAT	${\tt CTTAGAGCAG}$	AAGGCGCGTG	540
AGGTGGAGCA	GATGAAGCTG	GAGCAAATCC	AGCCTCTGCG	CCAGACCTAT	CGCTTGGCAG	600
AATTTTTGAA	GAATCATCAG	GACCGCTTGC	AGGTAATCGC	TGAGTCAAGA	AAGCTAGCCC	660

${\tt TAGTTTGGGA}$	${\tt GATATCAATC}$	${\tt TCGATGTGGA}$	TATTGTGCAA	CAGGCCCAGA	CTTATGAAGA	720
AAACGGAGCA	${\tt GTGATGATTT}$	${\tt CGGTGTTGAC}$	AGATGAGGTT	TTCTTTAAAG	GGCATTTGGA	780
${\tt TTATCTACGG}$	${\tt GAAATTTCCA}$	${\tt GTCAGGTAGA}$	GATTCCGACG	CTCAACAAAG	ACTTTATCAT	840
AGATGAAAAG	CAAATCATCC	GCGCTCGCAA	${\tt TGCAGGTGCG}$	ACAGTTATCT	TGCTTATTGT	900
GGCAGCCTTG	TCCGAAGAAC	GCCTCAAGGA	ACTGTATGAC	TACGCGACAG	AGCTTGGTCT	960
GGAAGTCTTA	GTGGAGACTC	ACAATCTAGC	TGAACTAGAG	GTAGCCCACA	GACTTGGTGG	1020
CTGAGATTAT	CGGGGTCAAC	AACCGCAACT	${\tt TGACTACCTT}$	${\tt TGAAGTCGAC}$	TTGCAGACCA	1080
GTGTAGATTT	AGCCCCTTAC	${\tt TTTGAGGAAG}$	$\tt GTCGCTATTA$	CATTTCTGAA	TCTGCCATTT	1140
TCACAGGGCA	GGATGCGGAA	CGACTAGCCC	CATACTTTAA	CGGAATTCGA	${f T}$	1191

#### (2) INFORMATION FOR SEQ ID NO:38:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 858 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

${\tt ATCGAATTTG}$	CCAACCAAGA	AAAATATCCC	TTGGATGGTT	${\tt CTTGGCAATG}$	CAAGCAATAT	60
CATCGTTCGT	${\tt GATGGTGGGA}$	${\tt TTCGTGGATT}$	${\tt TGTCATCTTG}$	TGTGACAAGC	TCAATAACGT	120
$\tt TTCTGTTGAT$	GGCTATACCA	TTGAAGCAGA	AGCTGGGGCT	AACTTGATTG	AAACAACTCG	180
CATTGCCCTC	CGTCATAGTT	TAACTGGCTT	${\tt TGAGTTTGCT}$	TGTGGTATTC	CAGGAAGCGT	240
$\tt TGGCGGTGCT$	${\tt GTCTTTATGA}$	ATGCGGGTGC	CTATGGTGGC	GAGATTGCTC	ACATCTTGCA	300
${\tt GTCTTGTAAG}$	${\tt GTCTTGACCA}$	AGGATGGAGA	AATCGAAACC	CTGTCTGCTA	AAGACTTGGC	360
${\tt TTTTGGTTAC}$	CGCCATTCAG	CTATTCAGGA	${\tt GTCTGGTGCA}$	GTTGTCTTGT	CAGTTAAATT	420
TGCCCTAGCT	CCAGGAACCC	ATCAGGTTAT	CAAGCAGGAA	ATGGACCGCT	TGACGCACCT	480
ACGTGAACTC	AAGCAACCTT	TGGAATACCC	ATCTTGTGGC	TCGGTCTTTA	AGCGTCCAGT	540
${\tt CGGGCATTTT}$	$\tt GCAGGTCAGT$	TCGAATTTCA	GAAGCTGGCT	TGAAAGGCTA	TCGTATCGGT	600
GGCGTAGAAG	TGTCAGAAAA	GCATGCAGGA	${\tt TTTATGATCA}$	ATGTCGCAGA	TGGAACGGCC	660
AAAGACTACG	${\tt AGGACTTGAT}$	CCAATCGGTT	ATCGAAAAAG	TCAAGGAACA	CTCAGGTATT	720
ACGCTTGAAA	GAGAAGTCCG	GATCTTGGGT	GAAAGCCTAT	CGGTAGCGAA	GATGTATGCA	780
${\tt GGTGGTTTTA}$	${\tt CTCCCTGCAA}$	GAGGTAGTGG	GGACCTGACA	GAGCCCCGAT	CGGTTAATCT	840
ATGAAAAAGA	AGGAATTT					858

## (2) INFORMATION FOR SEQ ID NO:39:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 980 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CTGAAAAAAC	AGGTTTTGAC	TATGNAGATT	GACAGACGAC	CGTTCGGAGG	TGCAGATATT	60
GATGCAGCAG	${\tt GACCTCCCTT}$	ACCTGATGAA	ACCCTTAAGG	CAAGTAGGGA	AGCAGATGCT	120
ATCCTACTAG	TAGCTATCGG	TAGTCCTCAG	TATGATGGAG	TAGCGGTTCG	CCCTGAACAA	180
GGCCTGATGG	${\tt CTCTCCGTAA}$	${\tt GAACTCAATC}$	${\tt TTTACGCTAA}$	TATTCGTCCT	GTAAAAATCT	240
${\tt TTGACAGTCT}$	${\tt CAAGTATTTG}$	TCACCACTCA	AACCGGAACG	AATTTCTGGT	GTAGACTTCG	300
TCGTGGTGCG	${\tt TGAATTGACT}$	AGGCGAGATT	TACTTTGGAG	ATCATATCCT	TGAAGAGCGC	360
AAAGCGCGTG	ATATCAACGA	${\tt CTATAGCTAT}$	${\tt GAGGAAGTGG}$	AGCGGATTAT	TCGCAAAGCC	420
TTTGCCATCG	AATTGCAAGA	AATCGCAGAA	AAATCGTTAC	TAGTATCGAT	AAGCAAAATG	480
TTCTAGCGAC	CTCAAAACTC	TGGCGGAAAG	TAGCTGAGGA	AGTCGCACAG	GATTTCTCAG	540
ATGTAACCTT	GGAACACCAG	CTGGTAGACT	CAGCTGCTAT	${\tt GCTTATGATT}$	ACCAATCCTG	600
CTAAGTTTGA	${\tt TGTTATTGTA}$	ACGGAGAATC	${\tt TTTTTGGAGA}$	TATTTTATCT	GATGAATCAA	660
GCGTCTTATC	TGGTACACTT	GGGGTTATGC	CATCAGCCAG	TCATTCTGAA	AATGGACCAA	720
GTCTCTATGA	ACCTATTCAC	GGTTCAGCAC	CTGATATTGC	AGGTCAAGGA	ATTGCCAATC	780
CTATTTCCAT	GATTTTATCA	GTTGTCATGA	${\tt TGTTGAGAGA}$	TAGTTTCGGA	CGTTATGAGG	840
ATACAGAGCG	TATCAAACGT	GCTGTTGAGA	CAAGTCTGGC	${\tt GGCAGGAATT}$	TTAACGAGAG	900
ATATAGGAGG	TCAGGCTTCA	ACAAAGGAAA	TGATGGAAGC	TATTATTGCA	AGGTTATGAA	960
GTTAGACGAA	AAAATTCGAT					980

# (2) INFORMATION FOR SEQ ID NO:40:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 874 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

TCGATCTAGA	GAATTGCTCC	AGAGCTTCCT	GACCGTCCGC	TGCCTCAATA	GTTTCATAGC	60
CACAATCCGT	CAAATAATCA	CTGACCCCCT	CACGGATCAT	CTCTTCATCT	TCTACAATTA	120
AAATTTTCAT	ACTTTAACTG	$\mathtt{CTCTCTATTT}$	${\tt TTTATTTTC}$	TTAGAATAAA	TACCTACTCT	180
ATTTTCTATT	ATAGTCTCTT	GCTGGCCTTT	${\tt TGTATGTAAG}$	CAACTGACCA	CTAGATAAAA	240
CGTTGTGAAA	TTCCTTTCTC	ATAAATTCCA	${\tt TAACTTTAGT}$	ATATTATATT	TAAGCACTAA	300
AGTACAAAGA	AAGCAACTGA	AAGCAATGAT	$\tt TTTCACCACT$	GCTTTCAGAT	TTATTTTGAA	360
TTGTTAAATA	GCTATTCCTA	TCCACTATTC	TTGAATAGAA	ACACAAGATG	CAATCTTTAT	420
TCCAGACTCA	TTTTTTAAAA	AATCAAATTT	ATTCACCATC	CAGCAAGAGC	TCTTTTGGTT	480

GTTTTCTAAG	${\tt GAGATTGCTT}$	GAAGCAAGCG	CCATAACGAG	AACCACTAGA	ACCAAGGCAA	540
GGACAAAAAT	${\tt GATGATAAAG}$	TCTGATGTCT	GAATGGAAAT	GTCTAGGCTC	GACAAGGTCT	600
TGCTAAAGCC	ATCTACTTCT	GCACCGCCAC	CAAGGTTAGA	GGCTTGAGCC	GCCTTACTAG	660
CCTGTTTGGC	AACACCTGAA	${\tt GTCACATTGG}$	CAAGGACAGT	GTTTCCAATT	CGCACGGGCA	720
GTGTAATTAG	${\tt CTAGGAAGTA}$	AGCANAAACT	AGAGCAGGGA	TAGCAATCAA	GATAGATTCG	780
GTGATGAATT	GACCCAAGAT	ACTTGCCTGC	TTGAGACCAA	TAGAGAGGAG	GATTCCCACT	840
TCCTTGCCGA	CGGGCATTGA	TCCAAAGACT	GAGC			874

### (2) INFORMATION FOR SEQ ID NO:41:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 762 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

CTTGTAACGG	TCATAAAGTT	TCTGCAAACT	ACCATCCTTG	CTCCATTTAG	TAACCAAGTT	60
ATCAAGATAG	TCGTTGAGCT	CTGTATTTGA	TTTCTTGGTA	ACAATACCGT	AGTCAGATGG	120
CTTGAAACTA	${\tt TCATCTAGTA}$	${\tt GTTCTGTGCG}$	TTTAACTAGT	GTAGCCAGAT	AGAATAGAGC	180
GGTCAACGGA	AAAGGCATCG	ATACGATGAG	CGTGAAGGGA	AGTAATCAAT	TCTGGGTAGG	240
AACCAAGTTC	${\tt GACGAATTTA}$	AACTTCAGAC	$\mathtt{CTTTCTTTTT}$	ACCCAGTTCA	GTAATCAGGC	300
GTTGGGTGAT	AGAACCTTGG	GCGACTCCGA	TGGTTTTGCC	GTTTAGGTCC	TCAATCTTTT	360
TGATTTTGGC	AGATTTATTG	ACCAAAAATC	CAGAAGCGTC	TGTGTAGTAG	GGACTGGTAA	420
AGTTGTAGAG	${\tt TTTTTTGCGT}$	${\tt TCGTCCGTGA}$	$\tt TGGTAAAGGT$	CGCGATATCC	ATATCGACCT	480
GTTCATTGTC	TAGAAGGGGG	CCGCGGGTTT	GTGCTGTAAC	CGGCACATAG	TGAATCTTGA	540
CCTTGAGTTC	ATCAGCTACC	ATTTTGGCCA	AGTCGGTTTC	GATACCAGAA	TAAGTACCGG	600
TCTTGGGATC	TTTGTTAACC	AAAATTGGGA	ACGTCTTGTT	TGACACCCGA	CAACCAGTTC	660
GCCTCTTTTT	${\tt TGAATGTCTG}$	CGATACTAGT	ATTAGCCTGG	ACTGGTTTGG	CAGCAACAAG	720
GCCGAAAAGG	CTAATCAATA	ATGCTGATAA	AAAGAATTCG	AT		762

### (2) INFORMATION FOR SEQ ID NO:42:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1942 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

153

СФССААФФФФ	<b>ТССТССТСС</b> А	GAAACGGTTC	CAGCAGGAAG	CCTTCCTTTC	$\lambda$ $\lambda$ CCC $\lambda$ TCC $\lambda$	60
			TGACCACACT			120
			CTTGGACACT			180
			TTCGATGTTC			240
			CTCCATCCGT			300
			TTTTGACAGA			360
			ACAAATAAAG			420
			TTCCAGTTAA			480
TGGCTGAGTT	ACACATCGGA	ACATATCTCC	GTTACGAATC	AAGTCACGAG	CTGTTTCTAC	540
CATTCCCTCA	AACTTATGTG	GAGCGATATG	CGGTTTGAAG	TCAAGTGGTG	ATAAATCCAA	600
GTCTTCAAAT	TCATTTGGAG	CAGGAATGCG	TAATTCCTCA	AGCACTTGGT	TCAAGGATTT	660
TTCCAAGGCC	TCTTGACTGC	GCTCACTATA	AAGTGCATCC	TCTATGACAT	GTTATCTTCT	720
CCTTCTTGTT	GGTCAAAGAC	CATATAGCTC	TCATAGACAA	AGAAATGCAT	GTCGGGCGTC	780
CCAATTGTAT	CCTCAGGGAT	TTGACCAATT	TCTTCATAAA	GCGAAATCAT	ATCGTAACCA	840
ACAAAACCAA	TGGCTCCCCC	ACCAAAAGGG	AGGTCTGAAT	GGTGCTGGCT	CTTATGAATC	900
ACTTCATAAA	GGAAATCCAA	GGGATCCCGA	TCAATCGCTT	GACCATTTTG	ATAGAGAACT	960
CCATTTTCAA	ACTTAATCTC	AAAAACTGGA	TTATAGGCTA	GGATAGAAAA	ACGAGCTGTT	1020
TCCTTGTCTC	TCGGAATACT	СТСТААААТА	ACCTTATGTT	GCCCCTTTAA	GCGCATATAA	1080
GCCAAGATTG	GTGATAAGAC	ATCTCCATGA	ATGATTCGTT	CCATTGTCAT	TTCCCTTTCA	1140
GTTCTAATTC	GAGTTCGTGG	CGACTGTATG	AAAAATCCCC	ACGCAAAATA	ACTTGCGTGA	1200
GGACGAAATT	CGCGGTGCCA	CCTCAATTAT	AGGATTTCTC	CTATCTCTCA	TTCCTGTCTC	1260
AGATATCTCC	TGTAACAGGC	TGTGCGATAA	AGGGCACTCC	CTTGAGAATG	ATGTTTTCTT	1320
CTCTCGTTTC	AGATGAACCC	AACTTTACAG	CTTTCTCTGC	TTGTTTTCAG	CAACCACAAG	1380
CTCTCTGTGA	GAGAAAAGAC	TGTAATTTTT	CCATCTATTA	TTTTTTAGCT	TCTAGTAATC	1440
TGCAATCGCA	GCTAGGTCCT	TGCCTCCACG	ACCAGAGACA	TTGATGAAGA	GATGTTCATC	1500
TCGGTACACC	TTTATACTCT	TCGAAAATCT	CTTCAAACCG	CGTCAACGTC	GCCTTGCCGT	1560
			CTGCAACCTC			1620
			AGTGTTTTGA			1680
			ATTTCATTTT			1740
			TCAAAGTAGC			1800
			TGAAATTTAT			1860
			ССТААТААА			1920
	TTTTAATTCG		CCIIIIIIIMM	CITCICATAT	MINGCAINA	1942
TITCIACICI	TITIANTICG	***				1742

# (2) INFORMATION FOR SEQ ID NO:43:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1048 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

CTGTTAAGAT	TGTTTCCGTG	CATCCACATA	GGATTTACCT	TGTCTGTATG	GGCCAATTCA	60
CCCATCAAAA	CGCCATAGGT	CTCATCTGTC	AAGATACTAG	ACATACCGAT	ATTGTACCAA	120
AGACTGGTAT	GACGGAAATA	AGTCGATGCG	TGTAAACTCA	ACAAAAAGAG	ACGCAAGTTG	180
${\tt ATTAGAAAAA}$	CCGTCATAGC	AATAGCTGCC	ACAGGAGCTT	GAACCACAAT	CAGTGCCAAC	240
ATGGCAAACT	GGGCACTCCC	AGCATAAACA	AAGAGACTCA	TCAAGCCCAT	CTCAACAGGT	300
GTCACATAGG	GCGCACCGAT	AGTCCCACAG	GCCAGGCCGA	TACTGACATA	GCCAAGAGCC	360
${\tt GTTGGCATGG}$	CTGCCTGCGC	CCCCTCCTAA	AATCCTTTTT	CTTTCATCTT	TCTCCTCATA	420
TTGTCTTAAT	AATACTCAAT	GAAAATCAAA	GAGCAAACTA	GGAAATTAGC	CGCAGGNTGC	480
TCAAAACACC	$\tt GTTTTGAGGT$	TGCAGATAGA	AACTGACGAA	GTCAGCTCAA	AACACCGTTT	540
TGAGGTTGCA	GATAGAACTG	ACGAAGTCAG	${\tt TAACATATAT}$	ACGGCAAGGC	GACGTTGACG	600
TGGTTTGAAG	AGATTTTCGA	${\tt AGAGTATTAG}$	AAAATGCCGA	TAAGGGTCTG	CATACCAAGG	660
CTGGTGAGGA	TGATGGCAAT	CCAGCAGACG	GCTCCGAGAA	CAATGGATTT	TCCACTGGAT	720
TTGACCATAG	CGACCAGATT	${\tt AGTTTTGAGA}$	CCGATGGCAC	TCATGGCCAT	GATAATGAGG	780
AATTTAGAGA	GTTGTTTGAG	AGGGGTAAAG	AAACTACTAG	ACACACCGAG	AGAGGTCAGA	840
AGGGTGGTTA	GGAGCGATGC	AAGGATGAAG	TAAAGGATAA	AAAGTGGGAA	GACTTTTTTC	900
AGTTGTAAGC	CTTGCTTATT	${\tt TTTTTGCTCG}$	${\tt CGACTTTGCC}$	AGTAGGAGAG	AAAGAGAGTG	960
ATGGGGATGA	TAGCTAGGGT	GCGCGTGAGT	${\tt TTGACAATGG}$	TTGCGGATTC	GAGGGTATTG	1020
GTCTGGTAGA	GACTGTCCCA	AGCGCTAG				1048

## (2) INFORMATION FOR SEQ ID NO:44:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1571 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

AGAGCTGGTA	ATATTCCCAA	AGAAACGGCT	CAAATCGAAT	TAGAAAGCCT	TCTGCAAAAA	60
GGAATCCCAG	TCGCTCTGGT	ATCACGATGC	TTTAACGGTA	TTGCCGAGCC	TGTTTATGCC	120
TACCAGGGTG	GGGGCGTACA	GTTGCAAAAA	GCAGGCGTTT	TCTTTGTTAA	AGAACTCAAC	180
GCCCAAAAAG	CCCGCTTGAA	ACTCCTCATC	GCCCTCAATG	CCGGACTAAC	AGGACAGGCT	240
TTGAAAGACT	ATATGGAAGG	CTAATACTCT	TCGAAAATCT	CTGCAAACCA	CGTCAGCGTC	300
GCCTTACCGT	ATGTAGAGCA	CAAAATCAGG	AAATCTTCTC	GATTCCCTGA	TTTTTTCTAT	360
TTACGTTTTC	GTGTTGAGCT	ACGTTCTGTC	AAACCATGAG	GTAAGAGAAC	TTCACGTTCT	420
TCCAACTCTT	CCTTATGCAT	AATCTTGGTC	AACATACGCA	TACTAATGGC	ACCAAGGTCA	480
TAAAGAGGTT	GGGCAATCGT	TGTCAAGTTT	${\tt GGACGGGTAA}$	AGCGTGAGAT	TTGTGAATCA	540
TCACTAGTAA	TAATTCGATA	ATCTTCTGGC	ACAGAAACAC	CTTATCAGCC	AAACCGTTCA	600

AGACTCCTGC	TGCCAACTCA	TCACCTGTCA	CAACTGCTGC	AGTTGCATTT	GATGAAATCA	660
AACGCTCTGC	${\tt TAAGGCGTAA}$	CCATCATCAT	AGCTATATTT	AGATTCAAAT	ACCAAACCCT	720
CACTATAAGC	GATTCCTGCT	${\tt TTTTTCAAGG}$	TTTCCTTGTA	GCCAACTAAA	CGAACCTTAC	780
CATTGATGTC	ATCCACTAGC	GGACCGCTAA	CGAAAGCAAT	ACGCTCATTT	TCTTTAGCAA	840
GGTAACTCAC	TGCATCAATT	GTTGCTTGCT	TATAGTCAAT	ATTGACACTT	GGCAACTGGT	900
GCTCAACATC	GACAGTTCCT	GCGAGAACAA	TCGGAGTACG	TGAACGCGAA	AATTCTGAGC	960
GAATTTTATC	TGTCAAGTGA	TAACCCATAT	AGATAATGCC	ATCTACCTGC	TTTGAAAAGA	1020
GGGTATTGAC	AACAGAAACT	TCTTTCTCGT	TATCTTCATC	GCTATTAGCT	AGGACAATAT	1080
TGTACTTGTA	CATTTCTGCA	ATATCATCAA	TCCCCTTAGC	CAAACTCGAA	AAATAACCAT	1140
TGGTAATATT	TGGAATCACG	ACACCGACAG	${\tt TGGTTGTCTT}$	TTTACTTGCA	AGACCACGCG	1200
CAACTGCATT	TGGACGATAA	TCCAAACGAT	CAATTACCTC	TAGCACTTTT	TTACGGGTAT	1260
TCTCTTTTAC	ATTTTTATTG	CCATTGACCA	CACGGCTGAC	CGTCGCCATG	GGAAACACCT	1320
GCTTCACGAG	CGACATCATA	AATGGTTACT	GTATCATCTG	CATTCATTCC	TTTTCCTGTC	1380
CTTTCTATCT	CCACACATTC	TTTTACAAGT	AGAAGTGCTG	AATTGAAAGC	TCTATATCTT	1440
ACTTACAAAA	ATGAAGATGT	${\tt GAAAATTTCG}$	${\tt TTTTCATATT}$	TCTACTTATT	CCATTCTATC	1500
ACTAATTGTA	AACACTTTCA	AGTGTTTTTT	GAAGATTGAT	TGAAAAAATT	TCATAGAAAA	1560
CCTAGGTTTA	G					1571

### (2) INFORMATION FOR SEQ ID NO:45:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1682 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CTGACGTAAA	AAAGATTTTC	GGAAAAGTAT	CATCATCTAT	TTTAGACCAT	TTTCTTATAA	60
TAACCATTTT	$\mathbf{ATTTTTATTT}$	${\tt GTCAAGGTCT}$	${\tt TTGAATTCTT}$	TCTTAAACAA	GCCTTGTAAT	120
CTCTACTTTT	GAAGAATTTA	$\mathtt{TTTTTCCTTA}$	CTGACAAGAT	TTGAGACGGT	AGGAATCATT	180
GAAAATAACC	TAGCCAACAT	CAATCACAAT	CATTTCTCCT	$\tt TTCTCAATTA$	CACTAAATTA	240
TAGTGTATTG	AATCTATAAC	AGTGCACCTT	GGCTGCTAAA	ATATTTCTAT	AAATTAATTT	300
GACTTTCCTG	ATAGAGTTGT	TCACATCTTA	${\tt TTTCAATTCA}$	${\tt CTATACTTTC}$	CCTTATACTC	360
AATGAAAATC	AAAGCGCAAA	${\tt CTAGGAAGCT}$	AGCCACAGGC	TGCTCAAAGC	ACTGCTTTGA	420
GGTTGTAGAT	AAGACTGACG	AAGTCAGTTA	CATATATCTA	CGGCAAGGCG	AAGCTGACGC	480
GGTTTGAAGA	${\tt GATTTTCGAA}$	GAGTATAAAG	${\tt TTTGTTTCTG}$	TATCTTTCAG	AAAAATAAGG	540
TATACTGTAT	${\tt GTAAACGATT}$	TCAAAGGAGT	CCAGTTATGG	CAAAAACATT	TTTTATTCCA	600
AATAAACAGA	GCATTTTAGG	AGAACAAGAG	${\tt ATTTTGAATG}$	${\tt CCAAGTCGAT}$	CTTGGCTATG	660
ATGTAGTCTA	${\tt TCTCCGTCAG}$	CCTCTTAATC	$\tt GTCTCGAGTA$	TATTGAGTGT	GCGATAGTGG	720
GGCAATCACA	ATTTCTTTTT	AAGGTCAGTT	ATGCTGATGG	TCAAAAGGCT	TACCGTGTCG	780
ATCTTCCTGA	CCTACTAACA	AAGACAGACT	GGCAGATTAT	CAAGTCATTT	TTAGATGTTT	840

TGCTTGCTTA	TACAGGGACT	GATATTGAAG	GGCTAGATGG	${\bf TTTTGATTTT}$	GAAGCTTATT	900
TCCAAGCAAG	TATTCAAGCC	TATCTAGCAG	ACCCTGTAGC	TCGTTTTACG	ATTTGCCAAC	960
GAATTTTTAA	TCCTATTTTC	${\tt TTTAGTCGTG}$	AGAACTTGAA	AAGCTTTTTA	GAGGCAGATG	1020
GCTTGGCTCA	GTTTGAAGCG	CGTGTGCGTG	CGGTTCAAGA	GACAGATGCC	TACTTTGCGA	1080
GAGTTTCCTT	CTATCAGGAT	GGAGAAGGAA	AAGTGCATGG	CGTTTACCAT	CTAGCTCAAG	1140
GAGTCAAGAC	AGTTTTACCG	AGAGAACCGT	TTGTTCCTGC	AGCCTATATT	GAGCGAATTG	1200
GTGGATAAGG	AAGTCCAGTG	${\tt GGAGATTGAC}$	TTGGTTCAAA	TCACAGGAGA	CGGCTCTAAA	1260
CCAGAAGACT	ATGAATCCAT	AGCTCGCTTG	GACTATGCAA	AATTCTTAGA	GGTATTACCC	1320
CCATCTTTTT	ACCACCAACT	AGACGCCAAT	CAAATAGAAA	TACAACCCAT	CCTAGGACAA	1380
GATTTTAAAA	CATTAGCACA	AGAAAAGTAA	AGCAGAAGCA	GGTCAATCGA	CTTGCTTTTT	1440
TGACATAGAA	AAAATCCTGC	CAAGGATGAC	AGGATTGCTA	CTCAATGAAA	ATCAAAGAGC	1500
AAACTAGGAA	GCTAGCCGCA	${\tt GGCTGTACTT}$	GAGTACGGTA	AGGCGAAGCT	GACGTGGTTT	1560
${\tt GAATTTGATT}$	${\tt TTCGAAGAGT}$	ATGAATTTTA	AAGAAAGGCC	AAGATACGAA	GATAATCTCC	1620
AATCAGTGCC	ACTTCAGCTT	CCAAGAAGAA	GAAGATTATA	ACTCCCGTTC	CCCAAGGACA	1680
GA						1682

## (2) INFORMATION FOR SEQ ID NO:46:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3041 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

	ATCGAATTAA	AAATGAGGTA	TTCAGGCTTG	TGATTTTCTA	TGGAAGTTAA	TAGTGATTGC	60		
	CTCTAATGCT	TACAAGTGAT	${\tt ATTAAAAATA}$	GAGGACCTAG	TGATGTCAAT	CATTTCAACT	120		
	GATTTAACCC	$\mathtt{CTTTTCAAAT}$	AGATGATACA	TTGAAAGCAG	CCTTGCGAGA	AGATGTTCAT	180		
	TCCGAAGATT	ACAGTACCAA	TGCCATTTTT	GATCATCATG	GCCAAGCCAA	GGTGTCGCTT	240		
	TTTGCCAAGG	AAGCTGGTGT	${\tt TTTAGCGGGG}$	${\tt CTAACCGTTT}$	TTCAAAGGGT	TTTTACCCTA	300		
	TTTGATGCCG	AGGTGACCTT	CCAGAATCCT	CATCAATTTA	AGGATGGGGA	TCGTTTGACT	360		
	AGTGGCGATT	${\tt TGGTTTTAGA}$	AATCATAGGC	TCGGTGAGAA	GTCTCTTAAC	ATGTGAACGC	420		
	GTTGCCTTGA	ATTTTTTACA	ACATTTATCA	GGGATCGCTT	CGATGACAGC	TGCTTATGTA	480		
	GAAGCCTTAG	$\tt GCGATGATTG$	CATTAAGGTA	TTTGATACTC	GAAAAACTAC	TCCTAATTTA	540		
	CGTCTTTTTG	AGAAATATGC	CGTGAGAGTT	GGCGGTGGCT	ATAATCATCG	CTTTAATTTA	600		
	TCAGATGCTA	TCCTGCTAAA	AGACAATCAC	ATTGCGGCAG	TAGGTAGTGT	TCAAAGGGCA	660		
	ATTGCTCAAG	CGCGTGCCTA	TGCTCCTTTT	GTGAAAATGG	TCGAGGTGGA	AGTGGAAAGC	720		
	CTTGCTGCTG	CCGAAGAAGC	TGCGGCGGCG	GGTGCTGATA	TTATCATGTT	GGATAATATG	780		
	TCATTGGAAC	AGATTGAACA	GGCCATTACC	CTAATTGCAG	GACGTTCTCG	GATTGAATGT	840		
	TCTGGAAATA	TTGATATGAC	CACTATTAGC	CGTTTTCGTG	GTTTAGCGAT	TGATTACGTC	900		
	TCCAGTGGTA	GTTTAACCCA	${\tt TAGTGCTAAG}$	AGTCTTGATT	TTTCCATGAA	GGGTTTAACC	960		
157									
			-	<i>.</i> .					

TACCTTGATG	TCTAAGTTGT	AAAATAAACT	AACTTTTTAA	AGGATGTCTT	TCCTCTAGAA	1020
${\tt CGAGTTTTAT}$	GTCAGATAGT	TTAAACGCCT	CTTCAAATAT	AGTAAAATGA	ACCAAAAATA	1080
GTACACAATG	TGGTATAATC	${\tt TTCTTATGGC}$	ATATTCAATA	GATTTTCGTA	AAAAAGTTCT	1140
TTCTTATTGT	GAGCGAACAG	${\tt GTAGTATAAC}$	AGAAGCATCA	CACGTTTTCC	AAATCTCACG	1200
TAATACCATT	${\tt TATGGCTGGT}$	TAAAGCTAAA	AGAGAAAACA	GGAGAGCTAA	ACCACCAAGT	1260
AAAAGGAACA	AAACCAAGAA	AAGTTGATAG	AGATAGACTT	AAAAACTATC	TTACTGACAA	1320
TCCAGACGCT	${\tt TATTTGACTG}$	AAATAGCTTC	TGAATTTGGC	TGTCATCCAA	CTACCATCCA	1380
CTATGCGCTC	AAAGCTATGG	GCTACACTCG	AAAAAAGGAC	CACACCTACT	ATGAACAAGA	1440
CCCAGAAAAA	${\tt GTAGCCTTAT}$	TTCTTAAAAA	$\mathtt{TTTTAATAGT}$	TTAAAGCACC	TAGCACCTGT	1500
TTAGATTGAT	GAAACAGGAT	TCGATACTTA	TTTTTATCGA	GAATATGGTC	GCTCATTAAA	1560
AGGTCAGTTA	${\tt ATAAGAGGTA}$	AAGTATCTGG	AAGAAGATAT	CAGAGGATTT	CTTTGGTTGC	1620
AGGTCTAACA	AATGGTGAGT	TAATCGCTCC	AATGACTTAC	GAAGAGACGA	TGACGAGCGA	1680
${\tt CTTTTTTGAA}$	GCATGGTTTC	AGAAGTTTCT	CTTACCAACA	TTAACCACAC	CATCGGTTAT	1740
TATTATGGAT	AATGCAAGAT	TCCATAGAAT	${\tt GGGTAAGTTA}$	${\tt GAACTTTTAT}$	GCGAGGAGTT	1800
TGGGCATAAA	${\tt CTTTTACCTC}$	$\tt TTCCTCCCTA$	CTCGCCTGAG	TACAATCTTA	TTGAGAAAAC	1860
ATGGGCTCAT	ATCAAAAAGC	ACCTCAAAAA	$\operatorname{GGTATTACCA}$	AGTTGCAATA	CCTTTTATGA	1920
GGCTCTTTTG	TCCTGCTCTT	${\tt GTTTCAATTG}$	ACTATAGTTC	ACGGATACAG	TTGGGAAAGA	1980
AGTTAAATGT	${\tt AGTTGGATTT}$	CCACTAAAGG	${\tt TTGATGAGTA}$	AGTTTTTGTA	TCTGAACCTG	2040
ATTGGCCGCA	AGCAGCTAAA	AGCAAAGCAG	ATGCAAAAGT	CAGACCTGCA	CCAAGGACAC	2100
GCTTCTTTAT	GTTCATCTTC	$\mathtt{TTTCTCCTTA}$	${\tt ATAGTGGGAA}$	${\tt TTTGTAAAGT}$	TAATTGAATT	2160
TCAAGAATGA	AGGTTTTATA	AACTTTGGTT	ATAAAAAACA	AAGGATTTCT	GTCTTTTATA	2220
CAGTCCTCCC	$\mathtt{CTTGTTTTA}$	TACGATTTCA	${\tt ATTTTAAATT}$	${\tt TTTCTGCAAA}$	AAATATTTAT	2280
AGTAATTCCA	CACAGAAAGC	ATCCCATGGA	ACTAAGATTT	${\tt GTTTTTCAAA}$	GACTTCTTGA	2340
GCTAGGGTGT	TTTCAATCAA	GACAGATTTG	ACTTTTCCTT	${\tt CTACTGTCAA}$	GTCTTGCTCT	2400
TCATTGGACA	AGTTAGCCAC	AACTAGGAAG	CGACGGTCGC	CATCCTTACG	TATATAAGCA	2460
AAGACCTTAT	CAGCCGTATC	AAGCAATTCA	AAGTCAGCTC	GAATTAGCCA	ACTATTCTCC	2520
TTGCGAATTT	GGACCAGTTT	CTGATAGGTA	TAGAAAATAG	AATCTGGATT	TGCCAGCGCT	2580
TCTTGGACGT	TGATCATCTC	GTAATTTGGA	TTAACTGCCA	ACCAAGGTTG	ACCTGTTGAG	2640
AAACCAGCGT	TTTTGCTCTC	GTCCCATTGC	ATAGGGGTAC	GGGCATTGTC	ACGTCCAATA	2700
ACACGGATAC	TGTCCATGAT	TTCTTGCATC	GGAACACCTT	TTTCAAGAGC	CTCACGCGCA	2760
TAGTTGAGAG	ATTCAATATC	TTCTACTTGA	TCCAGTGTTT	CAAACGGATA	GTTGGTCATC	2820
CCAATCTCCT	CACCTTGGTA	GATATAAGGA	GTTCCTCTCA	TAAGATGAAG	CAAGATTGCA	2880
AAGGCTTTGG	CAGATTTTTC	GCGGTATTCT	TGGTCATTTC	CCCAGATTGA	GACAATACGA	2940
GGGAGGTCAT	GGTTGTTCCA	GAAGAGGGAA	TTCCAGCCGT	CCTCAACTCC	TAACTCTGTC	3000
TGCCATTTGT	TGAAGATTTC	TTTTAACTTA	GCGATATTCA	G		3041

## (2) INFORMATION FOR SEQ ID NO:47:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4694 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

${\tt TTAATTTAAA}$	TTCTTAAAAT	${\tt TTTTTCATAA}$	TAATCTCCCT	АТАААААТАА	AGTCGCCCAA	60
${\tt TCAGGCGGCT}$	$\mathtt{TATTTTTTG}$	AAAAATGGGC	TTGGTGCCTG	${\tt AGAATAAATA}$	GCTTAGTGAT	120
AGAAGAAAAT	GGGGAAATAT	GGTATAATGA	AACGATAGAT	${\tt TTTTGAATAG}$	GAATAAGATC	180
${\tt ATGTTTGGAT}$	TTTTTAAGAA	AGATAAAGGC	${\tt TGTGGAAGTA}$	GAGGTTCCGA	CACAGGTTCC	240
TGCTCATATC	GGCATCATCA	TGGATGGCAA	TGGCCGTTGG	GCTAAAAAAC	GTATGCAACC	300
$\tt GCGAGTTTTT$	GGACATAAGG	CGGGCATGGA	AGCATTGCAA	ACCGTGACCA	AGGCAGCCAA	360
CAAACTGGGC	${\tt GTCAAGGTTA}$	TTACGGTCTA	TGCTTTTTCT	ACGGAAAACT	GGACCCGTCC	420
AGATCAGGAA	${\tt GTCAAGTTTA}$	TCATGAACTT	GCCAGTAGAG	TTTTATGATA	ATTATGTCCC	480
GGAACTACAT	${\tt GCGAATAATG}$	TTAAGATTCA	AATGATTGGG	GAGACAGACC	GCCTGCCTAA	540
${\tt GCAAACCTTC}$	${\tt GAAGCTTTAA}$	CCAAGGCTGA	GGAATTGACT	AAGAACAACA	CAGGATTGAT	600
TCTTAATTTT	GCTCTTAACT	ATGGTGGACG	TGCTGAGATT	ACACAGGCGC	TTAAGTTGAT	660
TTCCCAGGAT	${\tt GTTTTAGATG}$	CCAAAATCAA	CCCAGGTGAC	ATCACAGAGG	AATTGATTGG	720
TAACTATCTC	TTTACCCAGC	ATTTGCCTAA	GGACTTACGA	GACCCAGACT	TGATTATCCG	780
TACTAGTGGA	GAATTGCGTT	TGAGCAATTT	CCTTCCATGG	CAGGGAGCCT	ATAGTGAGCT	840
TTATTTTACG	GACACCTTAT	${\tt GGCCTGATTT}$	TGACGAAGCG	GCCTTGCAGG	AAGCTATTCT	900
TGCCTATAAT	CGTCGCCATC	${\tt GCCGATTTGG}$	${\tt AGGAGTTTAG}$	${\tt GAGGAAATAT}$	GACCCAGGAT	960
TTACAGAAAA	GAACCTTGTT	ATGCAGGGAT	TGCCCTGACT	${\tt ATTTTCCTAC}$	CAATTTTAAT	1020
GATTGGGGGC	TCTTGCTTCA	GATAGCAATC	GGAATCATAN	CCATGCTAGC	CATGCATGAA	1080
CTTTTGAAGA	TGAGAGGTCT	AGAGACCATG	ACGATGGAGG	CCTCTTGACC	CTCTTTGCAC	1140
NTTNGTATTG	ACCATTCCCC	TGGAATCGAA	TTACCTGACT	${\tt TTTTTGCCAG}$	TTGATGGGAA	1200
TGTGGTTGCC	TATAGTGTTT	TGATTTCAAT	CATGTTAGGA	ACGACCGTTT	TTAGCAAGTC	1260
TTATACGATT	GAGGATGCGG	TTTTCCCTCT	TGCTATGAGC	TTCTACGTGG	GCTTTGGATT	1320
TAATGCTTTA	CTAGATGCTC	GTGTTGCAGG	TTTGGACAAG	GCTCTCTTAG	CCTTGTGTAT	1380
CGTCTGGGCG	ACAGACAGTG	GTGCCTATCT	TGTTGGGATG	AACTATGGGA	AACGAAAGTT	1440
AGCACCAAGG	GTATCGCCTA	ATAAAACCCT	TGAGGGTGCC	${\tt TTGGGTGGTA}$	TTTTAGGAGC	1500
AATTTTAGTA	ACCATTATCT	TTATGATAGT	TGACAGTACA	GTTGCTCTTC	CATATGGAAT	1560
TTACAAGATG	TCAGTCTTTG	CTATTTTCTT	TAGCATTGCT	GGACAATTTG	GTGATTTACT	1620
AGAAAGTTCG	ATCAAACGTC	ATTTTGGTGT	TAAGGATTCT	GGGAAATTTA	TCCCTGGACA	1680
TGGTGGTGTT	TTGGATCGTT	TCGATAGTAT	GTTGCTTGTA	TTTCCAATCA	TGCACTTATT	1740
TGGACTCTTT	TAATCAAAAG	ACGGAGGAAA	CGCTATGCTC	GGAATTTTAA	CCTTTATTCT	1800
GGTTTTTGGG	ATTATTGTAG	TGGTGCACGA	GTTCGGGCAC	TTCTACTTTG	CCAAGAAATC	1860
AGGGATTTTA	GTACGTGAAT	TTGCCATCGG	TATGGGACCT	AAAATCTTTG	CTCACATTGG	1920
CAAGGATGGA	ACGGCCTATA	CCATTCGAAT	CTTGCCTCTG	GGTGGCTATG	TCCGCATGGC	1980
CGGTTGGGGT	GATGATACAA	CTGAAATCAA	GACAGGAACG	CCTGTTAGTT	TGACACTTGC	2040
TGATGATGGT	AAGGTTAAAC	GCATCAATCT	${\tt CTCAGGTAAA}$	AAATTGGATC	AAACAGCCCT	2100
CCCTATGCAG	GTGACCCAGT	TTGATTTTGA	AGACAAGCTC	TTTATCAAAG	GATTGGTTCT	2160
GGAAGAAGAA	AAAACATTTG	CAGTGGATCA	CGATGCAACG	${\tt GTTGTGGAAG}$	CAGATGGTAC	2220
TGAGGTTCGG	ATTGCACCTT	TAGATGTTCA	ATATCAAAAT	GCGACTTTAT	CTGGGGCAAA	2280
CTGATTACCA	ATTTTGCAGG	TCCTATGAAC	AATTTTATCT	TAGGTGTTGT	TGTTTTTTGG	2340
		_				

GTTTTAATCT	TTATGCAGGG	TGGTGTCAGA	GATGTTGATA	CCAATCAGTT	CCATATCATG	2400
CCCCAAGGTG	CCTTGGCCAA	GGTAGGAGTA	CCAGAAACGG	CACAAATTAC	CAAGATTGGC	2460
TCACATGAGG	TTAGCAACTG	GGAAAGCTTG	ATCCAAGCTG	TGGAAACAGA	AACCAAAGAT	2520
AAGACGGCAC	CGACTTTGGA	TGTGACTATT	TCTGAAAAGG	GGAGTGACAA	ACAAGTCACT	2580
GTTACACCCG	AAGATAGTCA	AGGTCGTTAC	CTTCTAGGTG	TTCAACCGGG	GGTTAAGTCA	2640
GATTTTCTAT	CCATGTTTGT	AGGTGGTTTT	ACAACTGCTG	CTGACTCAGC	TCTCCGAATT	2700
CTCTCAGCTC	TGAAAAATCT	GATTTTCCAA	CCGGATTTGA	ACAAGTTGGG	TGGACCTGTT	2760
GCTATCTTTA	AGGCAAGTAG	TGATGCTGCT	AAAAATGGAA	TTGAGAATAT	TCTTGTACTT	2820
CTTGGCAATG	ATTTCCATCA	ATATTGGGAT	${\tt TTTTAATCTT}$	ATTCCGATTC	CAGCCTTGGA	2880
TGGTGGTAAG	ATTGTGCTCA	ATATCCTAGA	AGCCATCCGC	CGCAAACCAT	TGAAACAAGA	2940
AATTGAAACC	TATGTCACCT	TGGCCGGAGT	GGTCATCATG	GTTGTCTTGA	TGATTGCTGT	3000
GACTTGGAAT	GACATTATGC	GACTCTTTTT	TAGATAATCG	AGGAATATTA	TGAAACAAAG	3060
TAAAATGCCT	ATCCCAACGC	TTCGCGAAAT	GCCAAGCGAT	GCTCAAGTTA	TCAGCCATGC	3120
TCTTATGTTG	CGTGCTGGTT	ATGTTCGCCA	AGTTTCAGCA	GGTGTTTATT	CTTATCTACC	3180
ACTTGCCAAC	CGTGTGATTG	AAAAAGCTAA	AAACATCATG	CGCCAAGAAT	TCGAAAAGAT	3240
TGGTGCTGTT	GAGATGTTGG	CTCCAGCCCT	TCTTAGTGCA	GAATTGTGGC	GTGAATCAGG	3300
TCGTTACGAA	ACCTATGGTG	AAGACCTTTA	CAAACTGAAA	AACCGTGAAA	AATCAGACTT	3360
TATCTTAGGT	CCAACTCACG	AAGAAACCTT	TACAGCTATT	GTCCGTGATT	CTGTTAAATC	3420
TTACAAGCAA	TTGCCACTCA	ACCTTTATCA	AATTCAGCCC	AAGTATCGTG	ATGAAAAACG	3480
CCCACGTAAT	GGACTTCTTC	GTACACGTGA	GTTTATCATG	AAGGATGCTT	ATAGTTTCCA	3540
CGCTAACTAT	GATAGTTTGG	ATAGTGTTTA	TGATGAGTAC	AAAGCAGCCT	ATGAGCGTAT	3600
TTTCACTCGT	AGTGGTTTAG	ACTTCAAGGC	TATTATTGGT	GACGGTGGAG	CCATGGGTGG	3660
TAAGGATAGC	CAAGAATTTA	TGGCCATTAC	ATCTGCTCGT	ACAGACCTTG	ACCGCTGGGT	3720
TGTCTTGGAC	AAGTCAGTTG	CCTCATTTGA	CGAAATTCCT	GCAGAAGTGC	AAGAAGAAAT	3780
CAAGGCAGAA	TTGCTCAAAT	GGATAGTCTC	TGGTGAAGAT	ACCATTGCTT	ACTCAAGTGA	3840
GTCTAGCTAT	GCAGCTAACT	TAGAAATGGC	AACAAACGAG	TACAAACCAA	GCAACCGTGT	3900
TGTCGCTGAA	GAAGAAGTTA	CTCGTGTTGA	AACGCCAGAT	GTTAAATCAA	TTGATGAAGT	3960
TGCAGCCTTC	CTCAATGTTC	CAGAAGAACA	AACGATTAAA	ACCCTCTTCT	ACATTGCAGA	4020
TGGTGAGCTT	GTTGCAGCCC	TTCTAGTTGG	AAATGACCAA	CTCAACGAAG	TCAAGTTGAA	4080
AAATCACTTG	GGAGCAAATT	TCTTTGACGT	TGCTAGCGAA	GAAGAAGTGG	CGAATGTTGT	4140
TCAAGCAGGA	TTTGGTTCAC	TTGGACCAGT	TGGTTTGCCA	GAGAATATTA	AAATTATTGC	4200
AGATCGTAAG	GTGCAAGATG	TTCGCAATGC	AGTTGTCGGT	GCTAACGAAG	ATGGCTACCA	4260
CTTGACTGGT	GTGAACCCAG	GCCGTGATTT	TACTGCAGAA	TATGTGGATA	TCCGTGAAGT	4320
TCGTGAGGGT	GAAATTTCCC	CAGATGGACA	AGGTGTCCTT	AACTTTGCGC	GTGGTATTGA	4380
GATCGGTCAT	ATTTTCAAAC	TCGGAACTCG	CTATTCAGCA	AGCATGGGAG	CAGATGTCTT	4440
GGATGAAAAT	GGTCGTGCTG	TGCCAATCAT	CATGGGATGT	TACGGTATCG	GTGTCAGCCG	4500
TCTTCTTTCA	GCAGTGATGG	AGCAACACGC	TCGCCTCTTT	GTTAACAAAA	CGCCAAAAGG	4560
TGAATACCGT	TACGCTTGGG	GAATCAATTT	CCCTAAAGAA	TTGGCACCAT	TTGATGTGCA	4620
TTTGATTACT	GTTAATGTCA	AGGATGAAGA	AGCGCAAGCC	TTGACAGAAA	AACTTGAAGC	4680
AAGCTTGATG	GGAG					4694

(2) INFORMATION FOR SEQ ID NO:48:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1352 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

$\mathtt{CTCGTAAGTT}$	CGGAAGCTAT	CTACACAAGA	AATTAACCGC	TGCCTAAAGG	AGAAGCCATG	60
TCAACATATA	ACTGGGATGA	GAAGCATATC	CTTACCTTTC	CTGAAGAAAA	AGTAGCCCTT	120
${\tt TCTACTAAGG}$	ATGTCCATGT	TTACTATGGT	AAAAATGAAT	CCATTAAGGG	GATTGATATG	180
${\tt CAATTTGAAA}$	${\tt GAAATAAAAT}$	TACAGCTTTG	ATTGGTCCGT	CGGGATCGGG	GAAATCTACC	240
TACTTACGCA	GTCTCAATCG	CATGAATGAT	ACCATTGATA	TTGCTAAAGT	AACTGGGCAG	300
ATTCTCTATC	${\tt GTGGAATTGA}$	TGTCAACCGT	CCAGAAATCA	ACGTTTATGA	AATGCGTAAA	360
CACATTGGAA	${\tt TGGTTTTTCA}$	ACGCCCCAAT	CCATTTGCTA	AATCGAATTT	ACCGTAATAT	420
TACCTTTGCG	CATGAACGTG	CTGGAGTTAA	GGATAAGCAA	GTCCTAGATG	AAATCGTAGA	480
AACCTCCCTT	AGTCAGGCTG	CCCTTTGGGA	TCAGGTTAAA	GACGATCTCC	ACAAGTCAGC	540
CTTGACCTTA	TCAGGTGGTC	AGCAACAACG	TCTCTGTATC	GCTCGTGCCA	TCTCTGTTAA	600
GCCAGATATC	CTCTTAATGG	ATGAGCCAGC	CTCAGCCTTG	GATCCGATTG	CGACCATGCA	660
ACTAGAAGAG	ACCATGTTTG	AGCTCAAGAA	AAACTTTACC	ATCATCATTG	TAACGCATAA	720
TATGCAGCAG	GCTGCTCGTG	CAAGTGACTA	TACAGGCTTC	TTTTACTTGG	GTGATTTGAT	780
TGAGTATGAC	AAGACTGCAA	${\tt CTATTTTCCA}$	AAATGCCAAG	CTACAGTCCA	CCAATGACTA	840
TGTATCTGGT	CACTTTGGTT	AGAAAGGAAA	CCGTATGACA	GATGCGATTT	TACAGGTATC	900
AGACCTGTCC	${\tt GTTTATTATA}$	ATAAAAAGAA	GGCTTTGAAT	AGTGTTTCCC	TATCTTTCCA	960
ACCTAAGGAA	ATTACAGCCT	TGATTGGTCC	ATCTGGATCA	GGGAAGTCAA	CCCTCCTCAA	1020
GTCTCTCAAC	CGCATGGGAG	ATCTCAATCC	AGAGGTGACC	ACAACTGGAT	CCGTGGTGTA	1080
CAATGGTCAC	AACATCTACA	GTCCGCGTAC	AGATACGGTT	GAATTACGTA	AGGAAATCGG	1140
AATGGTTTTC	CAACAACCTA	ATCCTTTCCC	TATGACTATC	TATGAGAATG	TTGTCTACGG	1200
GCTTCGTATC	AATGGAATTA	AGGATAAGCA	${\tt GGTTCTGGAT}$	GAAGCCGTAG	AAAAAGCCTT	1260
GCAAGGTGCC	TCTATCTGGG	ATGAGGTCAA	GGATCGTCTA	TATGATTCAG	CTATTGGATT	1320
GTCAGGTGGT	CAACAGCAGC	GTGTCTGCGT	GG			1352

### (2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2258 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

AACTTCGACC	GTGATAAACA	AGCTGAGCTT	TGACATACTT	GTAGCCAACC	TAAAAGCCGT	60
TCTTCAAGGC	CTCAAACCAG	CTGCAACTCA	TTCAGGAAGC	CTGGATGAAA	ATGAAGTGGC	120
TGCCAATGTT	GAAACCAGAC	CAGAACTCAT	CACAAGAACT	GAAGAAATTC	CATTTGAAGT	180
TATCAAGAAA	GAAAATCCTA	ATCCCAGCTG	GTCAGGAAAT	ATTATCACAG	CAGGAGTCAA	240
AGGTGAACGA	ACTCATTACA	TCTCTGTACT	CACTGAAAAT	GGAAAAACAA	CAGAAACAGT	300
CCTTGATAGC	CAGGTAACCA	AAGAAGTTAT	AAACCAAGTG	GTTGAAGTTG	GCGCTCCTGT	360
AACTCACAAG	GGTGATGAAA	GTGGTCTTGC	ACCAACTACT	GAGGTAAAAC	CTAGACTGGA	420
TATCCAAGAA	GAAGAAATTC	CATTTACCAC	AGTGACTCGT	GAAAATCCAC	TCTTACTCAA	480
AGGAAAAACA	CAAGTCATTA	CTAAGGGTGT	CAATGGACAT	CGTAGCAACT	TCTACTCTGT	540
GAGCACTTCT	GCCGATGGTA	AGGAAGTGAA	AACACTTGTA	AATAGTGTCG	TAGCACAGGA	600
AGCCGTTACT	CAAATAGTCG	AAGTCGGAAC	TATGGTAACA	CATGTAGGCG	ATGAAAACGG	660
ACAAGCCGCT	ATTGCTGAAG	AAAAACCAAA	ACTAGAAATC	CTAAGCCAAC	CAGCTCCTGC	720
TGAGGAAAGC	AAAGCTCTTC	CTCAAGATCC	AGCTCCTGTG	GTAATAGAGA	AAAAACTTCC	780
TGAAACAGGA	ACTCACGATT	CTGCAGGGAC	TAGTAGTCGC	AGGACTCATG	GCCACACTAG	840
CAGCCTATGG	ACTCACTAAA	AGAAAAGAAG	ACTAAGTCTT	TTCGATAAAA	AATAAACAGC	900
GAGATTGAAG	CTCGCTGTTT	${\tt ATTTTTTAAT}$	TAATCACCTA	GTCCAAGACG	TTCAAAGATA	960
TCATCCACTC	GTTTGGTGTA	ATAAACTGGG	${\tt TTGAAGATTT}$	CATCGATTTC	TTCTTGTGTG	1020
AGACGTGATG	TTACTTCTGA	ATCTGCCTCA	AGAAGTGGTT	TAAAGTCTAC	TTGGTTGTCC	1080
CAAGAGTAGG	CTGTTTTTGG	TTGCACCAAG	TCATAGGCTT	GCTCACGGGT	CATGCCTTTT	1140
TCAATCAATG	TCAACATAGC	CCGTTGGCTA	AAGATAAGAC	CAAAAGTCGA	GTTCATGTTT	1200
CGGATCATAT	TTTCTGGGAA	GACTGTCAAG	TTCTTGACGA	TATTTCCAAA	ACGGTTGAGC	1260
ATGTAGTCAA	TCAAAATGGT	CGTATCTGGT	GTGATGATAC	GCTCAGCTGA	TGAGTGAGAA	1320
ATATCGCGTT	CGTGCCAGAG	AGCGACGTTT	TCATAAGCCG	${\tt TAATCATGTG}$	ACCACGAATG	1380
ACACGCGCCA	GACCAGTCAT	ATTTTCAGAA	CCGATTGGGT	${\tt TGCGTTTGTG}$	AGGCATTGCT	1440
GAAGACCCTT	TTTGCCCTTT	AGCAAAGAAC	TCTTCTACTT	CGCGTTGCTC	AGATTTTTGT	1500
AGACCACGAA	TCTCAGTCGC	CATACGTTCG	ATTGAAGTCG	CAATGCTGGC	AAGAACCGCA	1560
AAGTACTCAG	CGTGAAGGTC	ACGAGGAAGG	ACTTGTGTTA	AAGATTCCTT	GGGCACGGAT	1620
GCCAAGATTT	ATCGCAGACA	TACTCCTCTA	CAAATGGTGG	GATATTGGCA	AAGTTCCCAA	1680
	AATCTTACCA					1740
	TTCGCTGTAC					1800
	AGTACGCCCC					1860
TGATATTAGT	GAAGTTTTCA	AGGTCACGAC	GGATGATGTC	GTTGGCCTGC	TTGTAGAGGT	1920
	AGTATCCACC					1980
	AGTCTCAGAA					2040
	CAAAATACGG					2100
	GATTTCCCCC					2160
	GTATTTATTT			CATCTCAGGG	CGAGAGTAAC	2220
GGTTGATCAT	GTGTTAATTT	TTCCTTTCTT	CTTAAGAT			2258

⁽²⁾ INFORMATION FOR SEQ ID NO:50:

162

⁽i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4392 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

CCCTTTTGCC	TCTCCCTTTG	${\tt GTGCAGATTC}$	TTTTGGGAAT	TGTGATTGGT	CTCTTTTTAC	60
CCAATACTGA	${\tt CTTTCATCTT}$	AATACGGAGT	TGTTTTTGGC	CTGGTTATCG	GACCCTTGCT	120
TTTCCGAGAG	GCTGAAGAAG	CAGATGTTAC	GGCTATTTTA	AAACACTGGC	GAATCATTGT	180
${\tt TTATCTCATA}$	TTTCCAGTGA	TTTTTATCTC	GACCCTGAGT	TTGGGTGGCT	TGGCCCATCT	240
TCTTTGGTTC	AGCCTTCCCT	TGGCAGCTTG	CTTGGCTGTT	GGGGCAGCCC	TTGGTCCTAC	300
GGACTTGGTG	GCCTTTGCCT	CTCTTTCGGA	GCGTTTTAGC	TTTCCTAAGC	GCGTGTCCAA	360
TATTCTTAAG	GGCGAAGGAC	TCTTGAATGA	TGCTTCTGGT	TTGGTGGCTT	TTCAGGTAGC	420
TTTGACAGCT	TGGACAACTG	GAGCTTTTTC	TCTGGGGCAA	GCTAGCAGTT	CGCTCATCTT	480
TTCAATCCTA	GGCGGTTTTT	TAATTGGATT	TTTAACAGCC	ATGACCAACC	GCTTCCTCCA	540
TACCTTCTTG	CTAAGTGTGC	GCGCAACGGA	TATTGCCAGT	GAACTTTTAT	TAGAATTCGA	600
GTTTGCCTCT	AGTGACCTTC	TTTCTGGCAG	AAGAAGTCCA	TGTTTCAGGG	ATTATTGCCG	660
TCGTAGTTGA	TCGAATTTTA	AAGGCAAGTC	GCTTCAAGAA	AATCACGCTC	CTCGAAGCCC	720
AAGTGGATAC	GGTGACCGAG	ACGGTCTGGC	ATACAGTGAC	CTTTATGCTC	AACGGTTCTG	780
TCTTTGTGAT	TTTAGGGATG	GAGTTGGAAA	TGATAGCAGA	ACCTATCTTG	ACCAATCCAA	840
TCTATAATCC	TCTACTTTTA	TTGCTATCTC	TCATCGCCCT	TACCTTTGTC	CTCTTTGTCA	900
$\mathtt{TTCGTTTTAT}$	TATGATCTAT	GGCTATTATG	CCTATAGAAC	CCGACGCCTA	AAGAAAAAGC	960
TAAATAAGTA	TATGAAGGAC	ATGTTTCTCT	TGACCTTTTC	AGGTGTTAAG	GGAACGGTGT	1020
CGATTGCTAC	GATTCTCTTG	ATACCAAGTA	ATCTAGAACA	GGAGTATCCT	CTCTTGCTTT	1080
TCCTTGTTGC	AGGTGTGACG	CTTGTCAGCT	TTTTAACAGG	TCTCTTGGTC	TTGCCTCATC	1140
${\tt TTTCTGATGA}$	AGAGGAAGAA	AGCAAGGATT	ATCTCATGCA	TATCGCCATT	TTGAATGAAG	1200
TAACGCTAGA	${\tt GTTGGAAAAA}$	GAGTTGGAAG	ACACCAGAAA	TAAACTTCCC	CTCTATGCGG	1260
CTATTGACAA	${\tt TTCGATCATG}$	GACGTATTGA	AAATCTCATT	TTAAGCCAAG	AAAACCAGGA	1320
TGATCAAGAA	GACTGGGCTG	CTTTGAAAAT	CGAATTCTTA	GTATTGAAAG	TGATGGTTTG	1380
GAACAGGCCT	ATGAAGAGGG	GAACATTAGC	AATCGTGCTT	ACCGAGTTTA	CCAACGTTAT	1440
CTGAAAAATA	TAGAACAAGG	AATCAATCGT	AAACTTGCCT	CAAGACTGAC	CTATTATTTT	1500
CTTGTTTCCT	${\tt TGAGGATTTT}$	ACGTTTTCTT	CTTCATGAAG	TTTTTACTCT	TGGAAAGACC	1560
TTCCGTAGCT	GGAAGGACAA	GGAGCAAAGC	CGTCTCCGTG	CTCTTGATTA	TGACCAAATT	1620
GCAGAGCTCT	ATCTTGCCAA	TACAGAGATG	ATTATTGAAA	GTTTGGAAAA	CCTGAAGGGA	1680
GTCTACAGAC	${\tt GCTCTTTGAT}$	${\tt TAGTTTTATG}$	CAGGAGTCTC	GTCTTCGAGA	AACAGCTATT	1740
ATCAGCAGTG	$\tt GTGCCTTTGT$	CGAACGGGTT	ATCAATCGTG	TCAAACCCAA	CAATATCGAT	1800
GAAATGCTGA	GAGGCŤATTA	TCTGGAGCGC	AAGTTGATTT	TCGAATACGA	AGAAAAACGA	1860
TTGATTACGA	CTAAGTATGC	CAAGAAATTA	CGACAAAATG	TAAATAACTT	AGAGAACTAT	1920
TCCTTGAAGG	AAGCTGCCAA	TACCCTGCCG	TATGATATGG	TGGAATTGGT	AAGAAGAAAT	1980
TAGTTAATAC	TCTTCGAAAA	TCTCTTCAAA	CCACGTCAGC	GTCGCCTTGG	ATTATATATG	2040

		ATCTACAACC				2100
		GATTTTCATT				2160
		GCCTGAACTA				2220
		ACTGTGAGAA				2280
		CATATTTTTT				2340
		CCAATTCTTG				2400
AAGAATCTGA	CGATCTTCTC	CATCACCAGC	ATCCAAGCGG	AATTGAAGCA	ACTTATCTGA	2460
ACCTTCTACT	TTAGACACTT	CTTTGACTTC	TGCGACACGG	ATTTCAACCT	TGTCAAAGTC	2520
TTCAAACTTG	ATTTCATCCT	TGTTTAGTTT	GAGCTCAACT	TCGTCCGGAT	TCCATTCTTT	2580
TTCGACTGCT	GGTTTATTGC	CTTCCATTTG	TTCCTTGATA	TAGGCGATTT	CTTCTTCCAT	2640
ATTTAGACGT	GGAAAGATAG	GTGTTCCTTT	GGCAACTACA	${\tt GTCACATCTG}$	CTGGGAAGTC	2700
AGCCAAACTC	AAGTTTTCAA	GACTAGAAAC	TTCTTCCAAA	CCAAGTTGAG	TCAAAACTGC	2760
ACGACTAGTT	TCCATCATAA	${\tt ATGGTTCAAT}$	CAAGTGAGCA	ACTACACGAA	TGCTGGCTGC	2820
${\tt CAAGTGGCTC}$	ATGACACTTG	CCAATTGGTC	ACGAAGAGCT	TCATCCTTGT	CCAAGACCCA	2880
TGGTGCAGTC	TCATCGATGT	ATTTATTGGT	ACGAGAGATC	AGAGTCCAGA	CTGCTTCAAG	2940
CGCACGTGGA	TAGTCAACTG	CTTCCATGTG	TGTATGGAAG	TCTGCGATTG	ATTTTTCTGC	3000
AACCTCAGCA	AGAACATGAT	CAAATTCAGT	CACACCTTCT	ACATAGGCAG	GGATTTGTCC	3060
ATCAAAGTAC	TTATTAATCA	TGGAAACCGT	ACGGTTAAGG	AGGTTCCCAA	GGTCATTAGC	3120
CAATTCATAG	TTGATACGAC	CGACATAGTC	TTCAGGAGTA	AAGGTTCCGT	CTGAACCAAC	3180
TGGAAGGTTA	CGCATGAGGT	AGTAACGAAG	TGGATCTAGT	CCATAACGCT	CTACCAACAT	3240
TTCAGGGTAA	ACGACATTCC	${\tt CTTTTGACTT}$	AGACATTTTT	CCGTCTTTCA	TGACAAACCA	3300
ACCATGGGCA	ATCAAACGAT	CAGGTAATTT	AACATCCAAC	ATCATAAGAA	GGATTGGCCA	3360
GTAGATAGAG	TGGAAGCGAA	GGATGTCTTT	TCCTACCATA	TGGAAGACTG	TTCCATTCCA	3420
GAACTTGTCA	AAGTTACCAT	GTTCGTCTTG	AGCGTAGCCA	AAAGCTGTCG	CATAGTTAAG	3480
AAGGGCATCA	ATCCAAACGT	AGACAACGTG	TTTTGGATTT	GATGGGACAG	GCACTCCCCA	3540
TGTAAAGGTT	GTACGAGATA	CCGCCAAATC	TTCCAAACCT	GGCTCGATGA	AGTTGCGTAG	3600
CATTTCATTA	AGACGACCAT	CTGGCGTGAT	AAATTCAGGA	TGAGCTTTGA	AAAATTCGAC	3660
CAAACGGTCT	TGGTATTTGC	TAAGGCGAAG	GAAGTATGAT	TCTTCAGAAA	CCCATTCAAC	3720
CTCATGACCT	GATGGAGCAA	TACCACCAGT	CACATTTCCA	GCTTCATCAC	GGAAAACTTC	3780
TGCCAGCTGG	CTTTCTGTAA	AGAATTCTTC	GTCTGATACT	GAATACCAAC	CAGAGTATTC	3840
ACCCAAGTAG	ATATCATCTT	GAGCAAGTAA	GCGTTCAAAG	ACCTGTGCGA	CAACTTTTTC	3900
ATGGTAGTCA	TCGGTTGTAC	GGATAAATTT	ATCGTATGAG	ATATCTAGTA	ATTGCCAGAG	3960
TTCTTTAACT	CCAACCGCCA	TTCCATCAAC	ATAGGCTTGA	GGTGTAATAC	CAGATTCGAA	4020
TTCCGCTTTC	TGCTGGATTT	TCTGACCATG	TTCATCAAGA	CCTGTCAGAT	AAAATACATC	4080
GTAGCCCATC	AGGCGTTTGT	AACGTGCTAG	GACATCACAT	GCGATAGTTG	TGTAGGCAGA	4140
ACCGATATGA	AGTTTCCCAG	ATGGATAGTA	AATCGGCGTT	GTAATATAAA	AATTTTTTC	4200
AGACATAATT	TTTCCTTTCC	AGGCAAATGA	AACCTGTTTT	TCTAACACTT	CATTATATCA	4260
CATTTTTAAT	GAATTTCGAT	AGGGAAATCC	ATACCAAAAC	AAGATAGACG	AGTGTCCATC	4320
TTGTTGATCT	CATTCATAAC	GAAGGGCTTC	AATTGGATCA	AGTTTCGATG	CCTTGTTGGC	4380
TGGCAAGACT						4392

(2) INFORMATION FOR SEQ ID NO:51:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1941 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

AATTAGTATT	$\mathtt{CTCAACCTTT}$	${\tt TTATCTTGAT}$	AGTTCAAGAT	${\tt GGCATTCGTT}$	GAATTGGTAA	60
CATAGTAACT	ATCCACTCCC	${\tt TTCAGTTTAG}$	CTGCCTCTTG	AACCCAGGAT	TCTTGCGGTT	120
${\tt TTGGCGGTTC}$	AACAGGAATT	$\mathtt{CTTTTTCTTT}$	TCCAGAAACC	GTAAAAGCTG	ATTGTTTCTG	180
AGTAAAAGAC	${\tt CCATCTTTAC}$	${\tt TTTTTTTAGG}$	AGAGAAAAAG	ACGCTAATAT	TTTTCTGAGA	240
TTTAGTCATA	${\tt TCTTTATTGA}$	${\tt CTTGACGAGA}$	TAGGGAATCA	CCCAAAGCCA	TAATCACAAC	300
AACTGATGAA	ACACCGATAA	TAATCCCAAT	CATAGTAAGC	AAAGAACGCA	TCTTGTGAGC	360
CATGATAGAT	GAAAAGGCAA	ATTTCAGATT	CTGCATCTTA	GTTTTCCTCC	TTTCCTAACT	420
GAGCACTGTC	AGACGAAATG	ACCCCATCCC	GAATGACAAT	${\tt CTGACGTTTG}$	GCATAGGCAG	480
CAATCTCAGG	${\tt CTTCATGCGT}$	TACCATGATA	${\tt ATGGTTTTTC}$	$\mathtt{CTTCTTTATT}$	CAAATCAACC	540
AATAATTGCA	${\tt TAATTTGGTT}$	ACCTGTTTTG	GTATCCAAGG	CTCCTGTCGG	TTCATCCGCT	600
AGGATAATAG	AAGGATTGTT	TACCAAGGCA	CGCGCAATGG	CTACACGTTG	CTTTTGACCA	660
CCAGATAATT	CTGAAGGTAA	ATGGTGACTA	CGTTCTATCA	ATTCAACCTT	GTCTAAATAT	720
TCCTCAGCCA	ACTTGCGACG	${\tt TTTTGAAGAC}$	GAAACTCCTG	CGTAAATCAA	GGGCAATTCT	780
ACATTTTGCA	GAGCATTGAG	${\tt CTTCGATAGA}$	AGAAAGAACT	GCTGAAAGAC	AAAACCGATT	840
TGTTGGTTAC	GGACCTTAGC	${\tt TAGTTGTTTT}$	TCACCAAGCC	CAGCCACTTC	TTGACCTTCA	900
AGATAATATT	CTCCACTGGT	TGGTGTATCC	AACATGCCAA	TCGTATTCAT	CAGAGTGGAC	960
TTACCAGACC	CAGATGGTCC	CATGATGGCT	ACAAATTCAC	CCTCATTCAC	TTCTAGATTG	1020
ATATTTTTGA	GAACCTGCAG	${\tt TTCTTGGTCA}$	CCATTACGGT	AACTTCTGAA	GATATTTTTT	1080
AGACTAATTA	${\tt GTTGCTTCAT}$	CAGCCTTCAC	$\mathtt{CTCTTTTCCT}$	TCTTCCAAGG	AAGATGTTGG	1140
ATTACTGATG	ACCTTAGCAC	${\tt CGTTCGTTAA}$	ACCAGAAGTG	ATTTCTTGAT	TTTCTGCGTC	1200
AGCATTTCCC	AATGAAACCT	${\tt CAACTTTTTT}$	AGCCTTTTGT	${\tt TGTTCATCCA}$	CAATCCAGAC	1260
ATAATTTTTA	${\tt CTATCATCCA}$	${\tt TTACTAGACT}$	GCTAACAGGA	ACAAGAATAG	CCTTAGTTTT	1320
GCTTTTAACC	TCAATGTTGA	CAGAAAAACC	TTGTTTCAAA	TCACCAACCT	CGCCTGTCAC	1380
ATCAATAGTA	${\tt TAAGGGTATT}$	TAGAACCTGT	ATTATTCCCG	GCTGCTGGAC	TAGCTGCTTC	1440
ACCATTGTTT	TTAGGATAGT	CAGAAATATA	${\tt GGCTTAATTT}$	CCCAGTCCAT	TTTTTATCAG	1500
GATACACTTT	AGAAGTAAAG	${\tt CTTACTTCTT}$	GACCTACAGA	AAGGTTGGCT	AGATTGTACT	1560
CAGACAATTC	TCCCTTGACT	${\tt TGTAAATTTT}$	CATTGCTGAC	AATATGAACC	ATAACTTGAC	1620
TCGCCCCTGT	${\tt TGGAGATTTA}$	GAAACATTGC	TATTGACTTC	GACTACAGTT	CCCTCTAGGG	1680
TACTGAGAAC	AGTTGTTGCA	TCCAATTGAC	${\tt TTTGAGCCTT}$	GCTTAATTGC	GCTGCAGCAT	1740
CTGCACGCGC	ATCACGGGCA	TCACCCAATT	GAGCATCAAT	AGAAGCAACA	GAATTTCCAG	1800
CCACTGGAGT	TGGGCTTTGC	ACCGTTGCAT	CTTCTCCTCC	TACTGGCGCT	GGTAACTGTG	1860
GAGCCTGAGC	TGAAGCGGCT	TCATTTCGTG	CTTGATTGAG	TTCATTGATA	TGACGATCTG	1920
CCTTAGCTAC	TGCTCGACTA	G	-			1941

#### (2) INFORMATION FOR SEQ ID NO:52:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1335 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ATCGAATTCC	CTATTTTAAC	ACTTTCTTTT	CTAAAACAGT	CTATATTTTA	TTTCAAACTG	60
TATTATATTT	TTGAAAAAAT	AAAGTCCTTT	${\bf TTTCTTTTT}$	TCAGAAAAA	GGGTATAATA	120
AAAGAAAATA	AGCAGTAACA	CTCAATGGAA	ATCGAAAAAG	CAAACTAGGA	AGCTAGCCGC	180
AGATTGCTCA	AAACACTGTT	TTGAGGTTGC	AGATAGAGCT	GACGTGGTTT	GAAGAGATTT	240
TCGAAGAGTA	TAAAAAGGTG	CTAGGCATGT	TGATTTTTCC	TTTGTTAAAT	GATTTGTCAA	300
GAAAAATCAT	CCATATTGGA	CATGGATGCC	TTTTTTGCTG	CAGTGGAAAT	CAGGGATAAT	360
CCTAAACTCA	GAGGAAAACC	TGTCATTATT	GGAAGCGACC	CTCGGCAAAC	AGGTGGACGG	420
GGAGTCGTTT	CTACCTGTAG	TTATGAGGCA	AGAGCTTTTG	GTGTCCATTC	TGCCATGAGT	480
TCCAAGGAAG	CTTATGAACG	TTGTCCCCAG	GCTGTCTTTA	TCTCAGGGAA	TTCGATGAGA	540
AATACAAGTC	TGTGGGACTC	CAGATTCGAG	${\tt CTATTTTTAA}$	GCGCTATACA	GATTTGATTG	600
AACCCATGAG	CATTGACGAA	GCCTATTTGG	ATGTGACAGA	AAATAAACTC	GGTATCAAGT	660
CAGCGGTCAA	AATTGCTCGC	CTCATTCAAA	AAGATATCTG	GCAAGAACTC	CATCTAACTG	720
CTTCCGCAGG	CGTTTCTTAC	AACAAATTCT	TAGCTAAAAT	GGCGAGTGAT	TATCAAAAAC	780
CACATGGTTT	GACAGTGATT	CTACCTGAAC	AGGCTGAGGA	TTTTCTCAAA	CAAATGGATA	840
TTTCCAAATT	TCATGGAGTA	GGAAAAAAGA	CAGTAGAACG	TCTTCATCAA	ATGGGCGTTT	900
TTACTGGTGC	TGATTTACTT	GAAGTTCCTG	AGGTAACCCT	AATAGACCGT	TTTGGTAGAC	960
TAGGCTATGA	TCTGTATCGA	AAGGCTCGTG	GCATTCACAA	CTCTCCAGTC	AAATCCAATC	1020
ACATCCGTAA	ATCAATCGGC	AAGGAGAAAA	CCTACGGGAA	GATTCTCCGT	GCTGAGGAAG	1080
АТАТСААААА	AGAGAGCTGA	CTCTTCTATC	AGAAAAAGTC	GCTCTCAATC	TACATCAACA	1140
AGAAAAAGCT	GGAAAAATTG	TCATTTTGAA	AATCCGCTAC	${\tt GAGGACTTTT}$	CAACTCTTAC	1200
CAAACGAAAA	AGTATTGCTC	AAAAAACACA	AGATGCTAGT	CAGATAAGCC	AAATAGCCCT	1260
GCAACTCTAT	GAAGAATTAA	GTGAGAAAGA	AAGAGGTGTC	CGCCTATTGG	GGATTACCAT	1320
GACTGGATTT	TAAAG					1335

### (2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1796 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

TCCAAGCTAG	${\tt CTATTTCGTG}$	${\tt GAAGGGGCTT}$	CGGTTGGCAG	AACCTGGTGA	ATTTACCCAA	60
ACGTGCTTTT	${\tt TTAAACGGTC}$	GCGTAGACTT	GACACAGGCA	GAGGCTGTGA	TGGATATCAT	120
CCGTGCCAAG	ACTGACAAGG	CCATGAACAT	TGCGGTCAAA	CAATTAGACG	GCTCCCTTTC	180
${\tt TGACCTCATT}$	AACAATACCC	GTCAAGAAAT	CCTCAATACA	CTTGCCCAAG	TTGAGGTCAA	240
TATCGACTAT	CCTGAATATG	ATGATGTTGA	GGAAGCTACT	ACTGCCGTTG	TCCGTGAGAA	300
GACTATGGAG	TTTGAGCAAT	TGCTAACCAA	GCTCCTTAGG	ACAGCACGTC	GTGGTAAAAT	360
CCTTCGTGAA	GGAATTTCAA	CGGCTATCAT	TGGACGTCCC	AACGTTGGGA	AATCAAGCCT	420
TCTCAACAAC	${\tt CTCTTGCGTG}$	AGGACAAGGC	TATCGTAACC	GATATCGCTG	GGACAACACG	480
AGATGTCATC	GAAGAGTACG	TCAACATCAA	TGGTGTTCCT	CTAAAATTGA	TTGACACAGC	540
TGGTATTCGT	GAAACGGATG	ATATCGTTGA	ACAAATCGGT	GTTGAGCGTT	CGAAAAAAGC	600
CCTCAAGGAA	GCCGACTTGG	TTCTACTAGT	GCTAAATGCC	AGTGAACCAC	TGACTGCGCA	660
AGACAGACAA	${\tt CTTCTTGAAA}$	TTAGCCAAGA	TACCAATCGC	ATTATTCTAC	TTAATAAAAC	720
CGACCTGCCA	GAAACGATTG	AAACTTCGAA	ACTACCTGAA	GACGTTATCC	GTATTTCAGT	780
CCTTAAAAAC	CAAAACATCG	ACAAGATTGA	AGAGCGAATC	AACAACCTCT	TCTTTGAAAA	840
TGCTGGCTTG	GTCGAGCAAG	ATGCTACTTA	${\tt CTTGTCAAAC}$	GCCCGTCACA	TTTCCCTGAT	900
TGAAAAAGCA	GTTGAAAGCC	TACAAGCCGT	TAATCAAGGT	CTTGAGCTGG	GGATGCCAGT	960
TGATTTGCTT	CAAGTTGACT	${\tt TGACTCGTAC}$	${\tt TTGGGAAATC}$	CTCGGAGAAA	TCACTGGGGA	1020
TGCTGCTCCA	GATGAACTCA	TCACCCAACT	${\tt CTTTAGCCAA}$	TTCTGTTTAG	GAAAATAAGA	1080
AAAATCCATG	ATCCTTCATT	CGGTCATGGA	${\tt TTTTATTGTC}$	TTTATTAGTA	ATCTGGTCTT	1140
AAGACCCCTG	TTACAGTTGC	${\tt CTTAGTTGCT}$	${\tt TCGTAGTCGC}$	CATCTACGAC	AACCTTGATA	1200
ATGCGTTTGA	CATCTTCTTC	${\tt TGGTGCTGGA}$	ACAAGAGGTA	GACGAGTGGG	TCCAGCTTCA	1260
AATCCCATAT	AGTTAAGAAT	TGCCTTAACT	GGAGCAGGAC	TTGGATAAGA	GAAGAGAGCA	1320
TTAACCTTAG	GAATGAATTT	ACGCTGAATT	GCTGCGGCTT	${\tt TCTTCATATC}$	GCTTTCTGCA	1380
ATGGCAGTAA	ACATCTCGTG	${\tt CATTTCATCC}$	CCATTTGTAT	GAGAGGCAAC	AGAAATAACC	1440
CCATCCGCCC	CAAGGTTCAT	GGCATGGAAA	GCATCTCCAT	CCTCACCTGT	ATAAATCAAG	1500
AACTCTTCAG	GCTTGTGCTC	AATCAAGTAA	GCCATATTAG	CCAAGCTAGT	ACATTCTTTG	1560
ACACCGATAA	TATTTGGATG	GTCAGCCAAG	${\tt CGAAGCATGG}$	${\tt TTTCTGGAGT}$	CAATTCGACA	1620
ACTACACGCC	CTGGAATGTT	ATAGATAATA	ATTGGTAGGT	CAGAAGCATC	TGCAATAGCC	1680
TTAAAGTGCT	GATACATCCC	TTCTTGAGAA	${\tt GGTTTGTTGT}$	AGTAAGGAAC	AATAGCAAGC	1740
CCAGCTGCGA	AACCACCAAA	TTCCGCTACT	TCTTTGACAA	ACTCAATAGA	GTCACG	1796

### (2) INFORMATION FOR SEQ ID NO:54:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2337 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

			~~~~~			
CTTCGTACAG G						60
CATCAAGCCA G.						120
TTCAGAAGAA G						180
AGAAGCTATT A						240
TTATCAGCAA A						300
GGAAATAGAT C						360
TCTTGCTGCA A						420
ТААТАААААТ С	CCATCCAAG	AACGCTATCA	AAACTTGCAG	GAAGAGCTAG	CGCAAGCTCG	480
TTTGCTTAAG A	CAGAACTGC	AAGGGCAAAA	ACGTTATGAA	ATTGCTGATA	TTGAACGCTT	540
AGGCAAGGAA T	TGGACAATC	TTGATTTTGA	ACAAGAGGAA	ATCCAGCGCC	TTCTTCAAGA	600
AAAGGTTGAC A	ATCTTGAGA	AGGTTGATAC	AGAATTGCTC	AGTCAACAGG	CGGAAGAATC	660
CAAAACTCAG A	AAACGAACC	TCCAACAAGG	TTTGATTCGC	AAACAGTTTG	AGTTGGATGA	720
TATAGAAGGT C	AGCTGGATG	ATATTGCTAG	TCATTTGGAT	CAGGCTCGCC	AGCAGAATGA	780
GGAGTGGATT C	GCAAGCAAA	CACGTGCTGA	AGCTAAGAAA	GAAAAGGTCA	GCGAGCGCTT	840
TGCCGCCATC T.	ACAAAGTCA	ATTAACAGAC	CAGTACCAGA	${\tt TTAGCCATAC}$	TGAAGCTCTA	900
GAAAAAGCGC A	TGAATTGGA	AAACCTCAAT	CTGGCAGAGC	AAGAAGTTAA	GGATTTAGAG	960
AAGGCTATTC G	CTCACTGGG	TCCTGTCAAT	ATAGAAGCTA	${\tt TTGACCGGTA}$	CGAAGAAGTT	1020
CACAACCGTC T	GGACTTTCT	AAATAGTCAG	CGAGATGATA	${\tt TTTTGTCAGC}$	GAAAAATCTG	1080
CTCCTTGAAA C	CATTACAAA	GATGAATGAT	GAGGTTAAGG	AACGCTTTAA	ATCAACCTTT	1140
GAAGCTATTC G	TGAGTCCTT	TAAAGTGACC	TTCAAGCAGA	TGTTTGGCGG	AGGTCAGGCA	1200
GACTTGATAT T	GACTGAGGG	CGACCTTTTA	CAGCTGGTGT	GGAGATTTCT	GTTCAACCTC	1260
CAGGTAAGAA A	ATCCAGTCG	${\tt CTTAACCTCA}$	TGAGTGGTGG	TGAAAAAGCC	CTATCGGCTC	1320
TTGCCTTGCT T	TTCTCCATT	ATTCGTGTCA	AGACCATTCC	TTTTGTCATC	TTGGATGAGG	1380
TGGAAGCTGC G	TTGGATGAA	GCCAATGTTA	AACGTTTTGG	GGATTACCTC	AACCGCTTTG	1440
ACAAGGACAG C	CAGTTTATC	GTCGTAACCC	ACCGTAAGGG	AACCATGGCA	GCGGCCGATT	1500
CCATCTATGG A	GTGACCATG	CAAGAATCGG	GTGTTTCAAA	GATTGTTTCA	GTTAAGTTAA	1560
AAGATTTAGA A	AGTATTGAA	GGATGACAAT	TAAACTAGTA	GCAACGGATA	TGGACGGAAC	1620
CTTCCTAGAT G	AGAATGGGC	GCTTTGATAT	GGACCGCCTC	AAGTCTCTCT	TGGTTTCCTA	1680
CAAGGAAAAA G	GGATTTACT	TTGCGGTGGC	TTCGGGTCGG	GGATTTCTGT	CTCTGGAAAT	1740
CGAATTATTT G	CTGGTGTTC	GTGATGACAT	TATTTTCATC	GCGGAAAATG	GCAGTTTGGT	1800
AGAGTATCAA G	GTCAGGACT	TGTATGAAGC	GACTATGTCT	CGTGACTTTT	ATCTGGCAAC	1860
TTTTGAAAAG C	TGAAAACGT	CACCTTATAT	AGATATCAAT	AAACTGCTCT	TGACGGGTAA	1920
GAAGGGTTCA T	ATGTTCTAG	ATACGGTTGA	TGAGACCTAT	TTGAAAGTGA	GTCAGCATTA	1980
TAATGAAAAT A	TCCAAAAAG	TAGCGAGTTT	GGAAGATATC	ACAGATGACA	TTTTCAAATT	2040
TACAACCAAC T	TCACAGAAG	AAACGCTAGA	AGCTGGTGAA	GCTTGGGTCA	ATGATAATGT	2100
CCCTGGTGTC A	AGGCTATGA	CAACTGGCTT	TGAATCTATT	GATATTGTTC	TGGACTATGT	2160
CGATAAGGGT G	TAGCTATTG	TTGAATTAGC	TAAAAAACTT	GGCATCACAA	TGGATCAGGT	2220
CATGGCTTTT G						2280
AGCTCCTGAA A	ATGCACGAC	CAGAGATTTT	AGAATTAGCA	TAAGACTGTG	ATTGGTC	2337

⁽²⁾ INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2162 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

${\tt CTAAAAGTGA}$	AGCCCGATAG	CGTCTCTCTC	CTGCAAGGAT	TTCATAACCA	ATAACAGGAG	60
ATTGACGAAC	AATAATCGGT	TGAATGACCC	${\tt CATTTTCTTT}$	GATAGACTGT	GCTAGTTCAT	120
${\tt CTAGCTTTTC}$	TCTATCAAAT	TCTTTTCGGG	GTTGATAGGG	ATTTTTTTGT	ATATCTGTGA	180
TAGAAATCAT	TTCAAATTTT	TCCATGATTC	TACACTAACA	CATCTTTTCT	CTTATGTAAA	240
$\tt GCTTTCTTTA$	CATAGATGTC	AATTAAGATT	CTAAATCACC	TGAACTCTTG	TTAAGTTTGA	300
TAGAGGTAGT	TTCTTCTTTC	CCGTTACGAT	AGTAGGTTAT	CTTAATGGTG	TCTCCGATAG	360
AATGGTTGTA	AAGAGCACTT	TGTAAGTCTG	TTGATGAAGC	AATCTCTTTG	TCATCTACTT	420
${\tt TTGTAATTAC}$	ATCGTATTTT	TCAAGGTGAC	CATTGGCAGG	CATATTACTT	TGTACCGAAC	480
GAACAATTAC	ACCAGATGTA	ACATTACTTG	GAATATTGAG	TCTTCTGATG	TCGCTTGTAC	540
TCACATTAGA	TAAATTAACC	ATCTGGATTC	CCAAAGCTGG	ACGCGTCACT	TTTCCGTTTT	600
${\tt TTTCTAACTG}$	TTCAATAATA	TTGATAGCAT	CATTTGCAGG	AATTGCGAAA	CCAAGACCTT	660
CTACAGATGT	TCCTCCATTT	GTAGCAATTT	TACTTGAGGT	AATTCCGATA	ACCTGCCCTT	720
GAATATTGAT	CAGTGGGCCG	CCAGAGTTAC	CTGGGTTAAT	AGCAGTATCA	GTTTGGATGG	780
${\tt CTTTTGTAGA}$	AATAGCTTGT	CCATCTTCCG	ATTTTAAGGA	TACATTTCTA	TTGAGACTGG	840
ATACGATACC	${\tt TTGAGTGACA}$	GTATTTGCAT	ATTCAGAACC	TAACGGGCTA	CCGATGGCAA	900
${\tt TAGCAGTTTC}$	TCCTACAGTT	AACTTACTAG	AATCACCAAA	CTCAGCTACT	GTTGTCACTT	960
${\tt TTTCTGAAGA}$	GATTTCGACG	ACAGCAATAT	CAGAGAAAGT	GTCAGCTCCG	ACAATTTCTC	1020
CAGGTACTTT	AGTCCCATCT	GACAATCGAA	TATCTACTTT	GCTGGCGCCA	TTTATAACGT	1080
GATTGTTGGT	GACGATGTAA	GCTTCTTTAT	CATTCTTTTT	ATAAATAACT	CCAGATCCTT	1140
CACTAGAGAT	TCGCTGAGAA	TCTGTGTCAG	TATCATCATT	GCCAAATACG	CTATTTTGTC	1200
TGTTTGCCGA	${\tt ATAAGTAATA}$	ACAGAAACAA	CAGCATCTTT	TACTTTGTTA	ACGGCCTGTG	1260
TTGTTGAATT	TTCCGTTCCT	TATAGGCAGT	TTGTGTAATA	GTACTATTGT	TGTTAGAGTT	1320
${\tt GTTTACACTA}$	${\tt CTTTTTTGAG}$	TTAGTTGAGT	TATTGAAAAA	CTACCCAAGG	CTCCACTAAA	1380
AAAGCTAATG	ACGATAACGA	CTAATAATTG	AAACCATTTT	TTGTAAAATG	TTTTTAGATG	1440
$\mathtt{TTTCATATTT}$	GCCTCCATAT	GTTTGAATTA	CTGAAAGTAT	AAACTGACTA	GCTTAATTAT	1500
AACTTAAACA	CAAAAGTTTT	ACACAAACTG	TGGATAACTC	TTTTGAAACT	GTGATTTTCT	1560
TAATTGAAAT	${\tt CTATTTTTA}$	TTTTGTGAAT	AAGATGTGAA	AAAATAGAGA	ATATGTTAGA	1620
ATAGAGTCAT	GAAAATTAAA	GTTGTAACAG	TTGGGAAACT	GAAAGAAAAG	TATTTAAAAG	1680
ATGGTATCGC	AGAGTATTCA	AAACGAATTT	CTAGATTTGC	TAAGTTTGAA	ATGATTGAGT	1740
TATCAGATGA	AAAAACACCA	GATAAGGCCA	GTGAATCAGA	AAATCAAAAG	ATTTTAGAAA	1800
TAGAAGGTCA	GAGAATTTTA	TCAAAAATTG	CTGACCGTGA	TTTCGTTATT	GTGTTAGCCA	1860
TTGAAGGGAA	AACTTTCTTC	TCAGAAGAAT	TTAGTAAGCA	GTGAGAAGAA	ACTTCTATAA	1920
GGAAGGATGT	CTACTCTTAC	TTTTATTATT	GGGGGAAGTT	TAGGATTGTC	ATCATCTGTA	1980

AAAAATAGAG	CCAATCTTTC	TGTCAGTTTT	GGTCGCCTAA	CCTTGCCTCA	TCAGTTAATG	2040
AGACTAGTTC	${\tt TTGTTGAACA}$	AATCTATCGC	GCTTTTACGA	TTCAGCAGGG	ATTCCCCTAC	2100
CATAAATAGA	${\tt GAATTGACTT}$	${\tt TTAATTGAAT}$	${\tt TTTTGGTAGA}$	ATAATTGTGT	TAGGTCTCAT	2160
AG						2162

(2) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1766 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

ATCGAATTTT	CCAAAATGGG	GAGCTAGAGC	AGTGGAGTGA	TTATGTGGCA	GACGATTTGA	60
TTCAGCATAA	TCATGAGATT	GGACAAGGAA	GTGCTGCTTA	TAAAAACTAT	GTGGCTGAAT	120
ATATTGTCAC	TTTTGACTTC	GTTTTCCAAC	TCTTAGGACA	AGGAAACTAT	GTGGTTAGCT	180
ATGGTCAGAC	TCAGATTGAT	GGCGTTGCTT	ATGCCAAGTA	CGATATCTTC	CGTTTAAAGA	240
ACGGGAAAAT	TGTGGAGCAT	TGGGATAATA	AGGAAGTCAT	GCCTAAGGTA	GAAGACTTGA	300
CCAATCGAGG	GAAGTTTTAA	ATTGAGGACA	AAGAATGATT	GAATACAAAA	ATGTAGCACT	360
GCGCTACACA	GAAAAGGATG	TCTTGAGAGA	TGTCAACTTA	CAGATTGAGG	ATGGGGAATT	420
TATGGTTTTA	GTAGGGCCTT	CTGGGTCAGG	TAAGACGACC	ATGCTCAAGA	TGATTAACCG	480
TCTTTTGGAA	CCAACTGATG	GAAATATTTA	TATGGATGGG	AAGCGCATCA	AAGACTATGA	540
TGAGCGTGAA	CTTCGTCTTT	CTACTGGTTA	TGTTTTACAG	GCTATTGCTC	TTTTTCCAAA	600
TCTAACAGTT	GCGGAAAATA	TTGCTCTCAT	TCCTGAAATG	AAGGGGTGGA	GCAAGGAAGA	660
AATTACGAAG	AAAACAGAAG	AGCTTTTGGC	TAAGGTTGGT	TTACCAGTAG	CCGAGTATGG	720
GCATCGCTTA	CCTAGTGAAT	TATCTGGTGG	AGAACAGCAA	CGGGTCGGTA	TTGTCCGAGC	780
TATGATTGGT	CAGCCCAAGA	TTTTCCTCAT	GGATGAACCC	${\tt TTTTCGGCCT}$	TGGATGCTAT	840
TTCGAGAAAA	CAGTTGCAGG	TTCTGACAAA	AGAATTGCAT	AAAGAGTTTG	GGATGACAAC	900
GATTTTTGTA	ACCCATGATA	CGGATGAAGC	$\mathtt{CTTGAAGTTG}$	GCGGACCGTA	TTGCTGTCTT	960
GCAGGATGGA	GAAATTCGCC	AGGTAGCGAA	TCCCGAGACA	ATTTTAAAAG	TGCCTGCAAC	1020
AGACTTTGTA	GCAGACTTGT	${\tt TTGGAGGTAG}$	TGTTCATGAC	${\tt TAATTTAATT}$	GCAACTTTTC	1080
AGGATCGTTT	${\tt TAGTGATTGG}$	TTGACAGCTA	CAATGACATT	GGTCGGTTCC	TTGAGCAAGA	1140
GATAGATTAG	CCAGACAGTC	ATGCCCAAAA	TCCCTCCAGG	TAAGAGCATA	GACCGTTGCA	1200
CATTAAGTAC	GATTAAAAAA	${\tt GTGATAATGG}$	CAAGAAAACT	TGCTACTGCT	TGTAATAAAA	1260
AGGTTGTTAG	${\tt TGTCATATTA}$	${\tt GTTCATCAAT}$	ACCAAGGCGA	CAGAAGTTCC	TGCCCCTAAA	1320
GCGAGGGTAA	TGAGCAGGGA	TTCAAACATC	TTACTCATAC	CAGAGTTTAT	GTGGTTGGTC	1380
ATAATATCAC	GGACCGCATT	GGTCAAGGCA	ATACCTGGTA	CAAACGGCAT	GACCGCACCA	1440
GCTATAATCA	AATCTGCCGT	TGAAGGAAAA	CCTGTGTAGC	GAGCCCAAAA	CTGGGCAATT	1500
ATCCCAAAGA	CAAAAGCTCC	AGCAAAGGCT	GTCACAAAGG	GAATTCGGAT	AAATTTTTCC	1560
ACATAGAGGG	AAAAGGCAAA	ACCAAATAAG	GTCGCCACTC	CTGCCCCAAG	TGCGTCGTAG	1620

ATATTTCCGC	TAAACATAAC	TGAAAAGAAA	GGAGCACTAA	AGGTCGCAGC	CAGAGTTACC	1680
TGCAACTTAG	TATAGGGAAG	GGGTTGAGCT	TGCAAGGCCG	TCAATTGCTT	AAAGGCTGTT	1740
TCTAAGTCAA	TCTGCCCCCC	AACTGG				1766

(2) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1705 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

CTCTGACGGA	${\tt GGCTGGTTAT}$	${\tt GTGGGTGAGG}$	ATGTGGAAAA	TATACTCCTC	AAACTCTTGC	60
AGGTTGCTGA	${\tt CTTTAACATC}$	GAACGTGCAG	AGCGTGGCAT	TATCTATGTG	GATGAAATTG	120
ACAAGATTGC	CAAGAAGAGT	GAGAATGTGT	CTATCACACG	TGATGTTTCT	GGTGAAGGGG	180
TGCAACAAGC	CCTTCTCAAG	ATTATTGAGG	GAACTGTTGC	TAGCGTACCG	CCTCAAGGTG	240
GACGCAAACA	TCCACAACAA	GAGATGATTC	AAGTGGATAC	AAAAAATATC	CTCTTCATCG	300
${\tt TGGGTGGTGC}$	${\tt TTTTGATGGT}$	ATTGAAGAAA	TTGTCAAACA	ACGTCTGGGT	GAAAAGTCA	360
${\tt TCGGATTTGG}$	TCAAAACAAT	AAGGCGATTG	ACGAAAACAG	CTCATACATG	CAAGAAATCA	420
TCGCTGAAGA	CATTCAAAAA	TTTGGTATTA	TCCCTGAGTT	GATTGGACGC	TTGCCTGTTT	480
TTGCGGCTCT	${\tt TGAGCAATTG}$	ACCGTTGATG	ACTTGGTTCG	CATCTTGAAA	GAGCCAAGAA	540
ATGCCTTGGT	GAAACAATAC	CAAACCTTGC	TTTCTTATGA	TGATGTTGAG	TTGGAATTTG	600
ACGACGAAGC	CCTTCAAGAG	ATTGCTAATA	AAGCAATCGA	ACGGAAGACA	GGGGCGCGTG	660
GACTTCGCTC	CATCATCGAA	GAAACCATGC	${\tt TAGATGTTAT}$	GTTTGAGGTG	CCGAGTCAGG	720
AAAATGTGAA	ATTGGTTCGC	ATCACTAAAG	AAACTGTCGA	${\tt TGGAACGGAT}$	AAACCGATCC	780
TAGAAACAGC	CTAGAGGTGA	CTATGGAACT	TAATACACAC	AATGCTGAAA	TCTTGCTCAG	840
TGCAGCTAAT	AAGTCCCACT	ATCCGCAGGA	TGAACTGCCA	GAGATTGCCC	TAGCAGGGCG	900
TTCAAATGTT	GGTAAATCCA	GCTTTATCAA	CACTATGTTG	AACCGTAAGA	ATCTCGCTCG	960
TACATCAGGA	AAACCTGGTA	AAACCCAGCT	${\tt CCTGAACTTT}$	${\tt TTTAACATTG}$	ATGACAAGAT	1020
GCGCTTTGTG	GATGTGCCTG	GTTATGGCTA	TGCTCGTGTT	${\tt TCTAAAAAGG}$	AACGTGAAAA	1080
GTGGGGGTGC	ATGATTGAGG	AGTAATTTAA	CGACTCGGGA	AAATCTCCGT	GCGGTTGTCA	1140
GTCTAGTTGA	CCTTCGTCAT	GACCCGTCAG	CAGATGATGT	GCAGATGTAC	GAATTTCTCA	1200
AGTATTATGA	GATTCCAGTC	ATCATTGTGG	CGACCAAGGC	GGACAAGATT	CCTCGTGGTA	1260
AATGGAACAA	GCATGAATCA	GCAATCAAAA	AGAAATTAAA	${\tt CTTTGACCCA}$	AGTGACGATT	1320
TCATCCTCTT	TTCATCTGTC	AGCAAGGCAG	${\tt GGATGGATGA}$	GGCTTGGGAT	GCAATCTTAG	1380
AAAAATTGTG	AGGAAAAGAA	AATGGCAAAA	ACAATTCATA	CAGATAAGGC	CCCAAAGGCT	1440
ATCGGGCCCT	ATGTTCAAGG	AAAAATCGTT	GGCAACCTTT	${\tt TGTTTGCTAG}$	CGGTCAAGTT	1500
CCCCTATCCC	CTGAAACTGG	GGAAATTGTA	GGAGAGAATA	TCCAAGAACA	GACAGAGCAA	1560
GTCTTGAAAA	ACATCGGTGC	TATTTTGGCA	GAAGCAGGAA	CAGACTTTGA	CCATGTTGTC	1620
AAAACAACTT	GTTTCTTGAG	CGATATGAAC	GACTTTGTTC	CTTTTAATGA	GGTTTACCAA	1680

ACGGCCTTCA AAGAGGAATT CCCAG

1705

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1673 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

ACGTTTTGGG	AACTGTTCGG	ATAGCAGATT	CCGAACAAAC	TGATAATGGT	TGGCAAAATC	60
ATTATTCCTA	ATAGTAACGA	AGCTGGTTAG	GACAACTCAT	GCCATTTCCT	AAAAAGGTTT	120
TAATCCAAGG	CACCAATAAT	TGTAGGCCGA	AAAAACCATA	AACAATAGAT	GGAATGGCTG	180
CCATCAAGTT	GATAGCTGAT	TTTAAGAAGC	TATAGACGGG	CTTTGGACAA	TTATAAACCA	240
TAAACACCGA	TGTCAAGATC	GCCTGTTGGC	ACCCCAATCA	CAATCGCTCC	TAAGGTCGAA	300
TAAATAAGGA	ACCAACGATC	ATTGGTAAAA	TACCATAGCT	TGCCGGAATG	TTCGTTGGCG	360
ACCAATCACT	GCCTAATAAA	AAACGGGCAA	AGCCGTAGTT	AGCTATGAAA	GGTAAGCCAT	420
TACTAAAAAT	AAAGAAACAG	ATTAGCAAAA	TAGCTACAAC	AGCTACTGTT	GCACTCATGA	480
${\tt AAAAAATTGC}$	$\tt CCTAAAAACT$	GCTTCTTTGA	AGGCTTGTTT	TGTCACATCT	TGTCCTTTCT	540
AGTGAAGAAA	${\tt GTAAGGGAGA}$	TACGACACCT	CCCTACTTGC	CTTCTTTATC	TTATTGTACG	600
ATGAAACGTC	${\tt TGCATCTCTT}$	TAGAGATTTA	TGGAGCAAAC	ATTTTATTTA	ATCTTGTCCC	660
${\tt AGGTGGTTAA}$	${\tt TTTGCCACTA}$	AAAACGTCCG	CAAGTTCAGC	CATACTGACT	TGGCTTGCCT	720
${\tt TATTGTCATT}$	ATTGACCACA	ACAGCAATAC	CGTCTAAAGC	AATAGCATCA	TGGGTGAGAC	780
${\tt TCTTACCTTC}$	${\tt TTCAGGAGTT}$	AATTCCCTAG	AAACCATACC	AATATCAGCG	GTTTTCTCCT	840
TAACAGCGGT	AATACCTGCT	GAAGACCCAT	TAGAGGTAAT	ATCAATCGTA	ACTTCTGGAT	900
${\tt TTTCTTTTT}$	ATAAGCTTCT	GCTAATTTTT	CCATTAAAGA	AGATACTGAA	GTGGAACCTA	960
CAACAGACAA	${\tt CTTGCCTGAT}$	AAGTGTTGGC	TTGTATATTC	TGTGGTTTCG	GTTTTAGCTT	1020
${\tt CAATAAATTT}$	ATTATCTGTG	ACCACTTGTT	GACCTTGTTT	GGAGTGGATA	AAGCTGATAA	1080
AATCTTGACC	${\tt TAGCTTGGAA}$	${\tt AGATTAGAAG}$	ACCAAACAAT	GTTGAAGGGA	CGTTGAAGAG	1140
GGTATTCACC	ATCTAAAACT	GTGTCTCGAC	TAGCCTTGAC	ACCATCAATC	TCTAAAGCCT	1200
${\tt TGACAGATTT}$	${\tt CGTTAAAGAT}$	CCCAAGGAGA	TGTAGCCGAT	AGCATTAGCA	TTCCCTTGAA	1260
CTGCTGAGAG	AACACCTTCT	GTACTATTTT	GAATCACAGC	TGTTTTGGCA	GTGTAGTCAA	1320
$\mathtt{TTTTTTTATC}$	ACCGTCTTTT	TTGAGAATCC	${\tt CTGTGATTTC}$	TGTGAAGGCA	CCCCGTGTTC	1380
CAGAGCCATT	${\tt TTCTCGTGAA}$	ATCACCTCAA	TCGTTCCTGG	AGCTGACTGT	TTGGAAGCAG	1440
CTGACTGATT	GCCACAGGCA	ACAAGCCCAA	ATCCTGATAA	GCCAATGGCT	GCAAGAGTAA	1500
GCATTTTTTT	GAATTTCATA	ATAATCACCT	TTATCTCTAT	GTATTTTCT	TGTGTAGGCT	1560
TACTACATTT	ATAGTCTAAC	AAGTCTTTGT	AAAGGTTTAT	CCCTGATTCA	TGTAAAGATT	1620
GTGTAAAGAA	TCAAAAAAAG	CCACTTTTGA	AAAATGGCTG	CCCCTAAAAA	TAG	1673

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1702 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

$\mathtt{CTTTTTTATT}$	TCACAACAAG	${\tt TTCATAACGT}$	${\tt GTCTTACTGG}$	TGAAGGTTTG	ACCAGCTTTA	60
AGAATGACTT	${\tt GGCCTTTAAG}$	${\tt GTCACTGTGA}$	ATGGCATCTG	GTAAAGCTTG	CGCTTCAAGA	120
GCAATCCCAT	TGTGCTGTAG	CATTGGCTGA	CCTCCTATGA	TGACACTTTC	ATCCACAAAG	180
${\tt TTTGCTGTGT}$	AGACCACAAA	GCAAGGAGCT	TCTGTCTTGA	AAAGCAGGAA	GCGACCTGAA	240
${\tt TTTTGGTCAT}$	AAAGGAATCC	AGCATTGTCA	TGGCCTGCAG	GAAGGGCAAA	TGGATGATCC	300
AAACCTGATG	CCAGCTGGAT	TTGCTCATCT	TCTTCTGCAA	AGATATCCTT	CAACAAGGCA	360
CCATTGTAGA	${\tt TGTGTTTGAC}$	CACATCACGG	TTGGCTTCTG	GAGTTTTGGC	AGGAACACCG	420
TCAGGAGCGA	${\tt TTGAGTAAAT}$	GCCCTCTGTG	TTTAGTTGGA	AGACATGACG	GTCAATCGTC	480
$\mathtt{TGCGTGAAAT}$	CACCAGACAA	GTTGAAATAG	CTGTGGTTGG	TTGGATTGAC	CAGCGTATCC	540
${\tt TGATCGGTCG}$	TTACCTTGTA	GATCGAATTC	ATGGAGGCAC	CAGTTTCTTC	CAAGTGATAA	600
CTGATCGCCA	AATCTTGAGA	TTTCCAGGGA	ACCCTCCTGT	CCCATCTGTA	CGCTCTGTGT	660
AGAGAGTCAA	GCCATGATCG	CTTACTTCTT	CAACTTCAAA	CAAGCTGGAA	TCCCAACCAG	720
TTGAACCACT	GTGATTACAG	TTGCTAGCAT	TATTAACCTC	AAGGTCATAG	GTCTTACCAT	780
TGAGCTCAAA	GGTCGCACCT	GCAATACGAC	CCGCTACAGG	ACCTACACTT	GCTCCATGCT	840
${\tt TGGGACTATT}$	GCCTACATAA	${\tt CTATCAAAGT}$	CATCAAATCC	CAAGATAACA	TTGGCAAAAT	900
$\mathtt{TTCCAGCCTT}$	GTCAGGTGCG	ACATAGCGCA	AGATAGTCGC	ACCATAAGTC	ATAACCTCAA	960
GTTGGTAGCC	ACCGTCTGTC	${\tt TCAAATCGAT}$	AGGCCAAGAC	ATCCTCACCC	TCAACATTTC	1020
CAAATACACG	CTCTGTGTAT	$\tt GCTTTCATTC$	TGTTCTCCTT	${\tt TTACTATTTC}$	TCTCAAGCAA	1080
ACAAACCATA	GAAAGCGTAC	TGACAATCTA	TGGTTTATCT	GATAATTTAC	AAATCCTCTT	1140
GTCAAGAATT	CATAAACACT	${\tt GTCTTACTTT}$	TGATATTCGT	GAATTATGAC	ACCTTGTACT	1200
ACACGGTTTA	CTGTACCTGT	AGGAGACGGT	GTATCTGGTT	${\tt TATTTTCTAC}$	CTTGAGTGAA	1260
GTCAATAGGG	CAAAGAGTTG	GGCATAAACG	ATGTAAGGGA	AGACACGGTA	AATATCATTC	1320
AAGACACCGC	CACAACCAAG	GGCCACTTCT	TTGACATTTT	CAAGACCAAA	AGCTTGATCA	1380
CTCAAAAGCA	CAACACGACG	AGCAATCTGG	TCACCAGCAA	CTTCACGAAC	CAAGTCCAAG	1440
TCGTACTTAC	GAGTGTAGTC	${\tt CGTCGTTGTA}$	CCAAAGACCA	AAACAACTGT	ATTGTCGTTG	1500
ATAAGAGATT	${\tt TTGGACCGTG}$	ACGGAAGCCA	ACTGGGCTTT	CATACATGGT	CGCAACTTGA	1560
CCAGCAGTTA	ATTCCAAAAT	${\tt CTTGAGCTGA}$	GCTTCATGAG	CAAGTCCAAA	GAAAGGACCA	1620
GCGCCTAGAA	TAGATGACAC	GGTTAAAGTC	TAAATCAACG	AGATCTTTGA	CATCTTCTGC	1680
CTTGTCTAAA	ACTTTACGGG	CA				1702

(2) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:

173

(A) LENGTH: 1940 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

${\tt TGCAGGATTT}$	GATTTGGACG	ACTTTTATTA	TTACCAGATT	CGCCTAGGAA	TAGAAAAAAG	60
AGCCCAAGAG	${\tt TTGGACTATG}$	ATATCTTGCG	CTATTTTAAT	GACCACCCTT	TTACCCTAAG	120
CGAGGAAGTG	${\tt ATTGGGATTC}$	TCTGCATCGG	AAAGTTTAGT	CGAGCTCAGA	TTTCTGCCTT	180
TGAAGAATAC	CAAAAGCCTC	TTGTATTTCT	AGACAGCGAT	ACACTTTCCC	TGGGACATAC	240
CTGTATTATC	ACGGATTTTT	ACACTGCTAT	GAAACAGGTT	GTCGATTATT	TCCTCAGTCA	300
AGGAATGGAC	CGTATCGGGA	TTCTAACAGG	CCTTGAAGAA	ACAACAGACC	AAGAAGAAAT	360
CATTCAGGAC	AAGCGTCTAG	AAAACTTCAA	AAACTACAGT	CAAGCGAGGG	GAATCTATCA	420
TGATGAACTG	GTCTTTCAAG	GAAGATTTAC	TGCCCAGTCT	GGCTATGACT	TAATGAAGGA	480
GGCCATTCAG	AGCTTGGGAG	ACCAACTTCC	GCCAGCATTT	TTCGCAGCCA	GCGATAGTTT	540
AGCTATCGGT	GCCCTCCGTG	CCCTCCAAGA	AGCTGGAATC	AGCCTGCCAG	ATCGCGTCAG	600
CCTCATTTCC	TTTAACGACA	CTAGTCTGAC	CAAACAGGTC	TATCCTCCCC	TCTCTAGTAT	660
TACAGTTTAT	ACTGAAGAAA	TGGGCCGAGC	AGGTATGGAT	ATTCTTAACA	AGGAAGTCCT	720
CCACGGTCGG	AAAATCCCTA	GCCTGACCAT	GCTGGGAACC	AGACTGACAT	TAAGAGAAAG	780
${\tt TACCCTAAAT}$	CAAGAATAGG	ATAACATAAA	AAACGAATAG	AGTTCTAAAA	CTCCTATTCG	840
${\tt TTTTTTATTC}$	GATTACAATC	ATAGACTTAA	TGGTCTTACG	TTCATCCATA	TCTTTGTAGG	900
CTTGGTCGAT	ATCTTCCAGT	TTATAACTTG	AAGTAAAGAC	GCGACCTGGA	TTGATATCAC	960
CATCAAGGAC	GGCTTTTAGT	AAAAATTGCT	TATCGTATGT	TGTAGCAGAA	GCTGCCCCAC	1020
CTGCTACAGA	GATATTTTGC	ATAAATGTCG	AACCAAGAGC	${\tt ACGATTATTA}$	TAGTGTGGGA	1080
CTCCTACAAA	GCCCATACGC	CCTCCATTAT	GAAGAACACC	TAGCGCCTGT	TCTATAGCAG	1140
CCTCCGTACC	AACACATTCA	AGTGCTGCGT	CTGCTCCTCC	GCCGAGGATT	TCACGCACCT	1200
TGGTAATTCC	TTCTTGACCA	CGTTCTGCAA	CAACAGCTGT	CGCACCTGAC	TCCATAGCCA	1260
TCTTTTGACG	GTCTTCATGA	CGGCTCATAA	GGATAATTTG	TGATGCTCCA	CGCATCTTAG	1320
CCGCGATGAC	AGCACATTGA	CCAACAGCCC	CATCACCGAT	AACAACAACC	TTGTCCCCTT	1380
TTTGAACATT	TGCAACACGC	GCCGCATGAT	AGCCTGTCGG	CATGACATCT	GCAAGAGTCA	1440
AAAGGGACTT	GAGCATCCCT	TCTGTATAGT	CAGAAGGTTG	ACCAGGGATT	TTAACCAGCG	1500
CCCAGTTTGC	ATAGTGGAAG	CGAATATATT	CTGCCTGAAA	ATCACCCCC	AAATTATTGC	1560
CAATATGATT	GTCGCAAGAA	CCGTCAAATC	CAGCAAGACA	GGCATCACAC	TCACCACATC	1620
CATGTGTAAA	AGGGACAATC	ACAAAATCAC	CTGGTTTCAC	${\tt CGTCGTAATG}$	GCTTCCCCAG	1680
CTTCTTCAAC	AATCCCAATC	GCTTCGTGTC	CACTTATTTT	TTGTGTCCAA	CTTTCGTTTT	1740
CCNTGGATTA	CGGTACCTCC	ATAAATTTGA	ACCACAAACG	CACGCACGAA	CCACACGAAT	1800
AATCACATCA	TCCGCTTCTA	TTATTTGCGG	ACGTTCAATG	${\tt CTAGCAAGTC}$	CAACCTGACC	1860
TGCCTTTGTA	TATACTGCTG	ATTTCATTTA	AAATTTTCCT	TCCTTATAAA	GTTTAATTTT	1920
GAGATTTAAA	CGATTTAAAG		-			1940

(2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2051 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

ATCGAATTTT	TCTAGCCAGG	CTACAGTTTT	GGCAAGTAAG	GTTTCATCTC	AGGCAGTCAA	60
CTGGGTGAGT	GCCTTTATTA	GCGGAGCTTC	TCAAGTGATT	GTTGCCTTGA	TTATCGTTCC	120
TTTCATGCTC	TTTTATCTCT	TGCGTGATGG	GAAAGGCTTG	CGTAACTATT	TGACCCAATT	180
CATTCCAAGA	AAATTGAAGG	AACCTGTTGG	ACAAGTTCTA	TCAGATGTGA	ATCAACAGTT	240
GTCCAACTAT	GTTCGAGGGC	AAGTGACAGT	GGCTATTATT	GTAGCAGTAA	TGTTTATCAT	300
CTTCTTCAAG	ATTATTGGTC	TACGCTATGC	GGTTACGCTG	GGGGTTACTG	CTGGTATTTT	360
AAATCTGGTC	CCTTATCTTG	${\tt GTAGCTTTCT}$	AGCCATGCTT	CCTGCCCTAG	TATTGGGTTT	420
GATTGCTGGT	CCAGTCATGC	TTTTGAAAGT	AGTGATTGTC	TTTATTGTAG	AACAAACTAT	480
TGAAGGCCGT	TTTGTCTCTC	CATTGATTTT	GGGAAGTCAA	TTAAACATCC	ACCCTATTAA	540
TGTTCTCTTT	GTTTTGTTAA	CTTCAGGATC	TATGTTTGGT	ATCTGGGGAG	TTTTACTTGG	600
TATTCCGGTT	TATGCCTCTG	CTAAGGTTGT	CATTTCAGCC	ATTTTCGAAT	GGTATAAGGT	660
AGTCAGTGGT	CTATATGAAT	TAGAGGGTGA	GGAAGTCAAG	AGTGAACAAT	AGTCAACAGA	720
TGTTACAGGC	${\tt TTTGGAGGAG}$	CAAGATTTAA	CTAAGGCTGA	GCATTATTTC	GCCAAAGCTT	780
TAGAAAATGA	TTCAAGTGAT	CTTCTGTATG	AGTTGGCAAC	TTATCTTGAA	GGGATTGGTT	840
TCTATCCTCA	GGCCAAGGAA	ATTTACCTGA	AAATTGTAGA	AGAATTTCCA	GAGGTTCATC	900
${\tt TTAATCTAGC}$	TGCAATGGCT	AGCGAGGATG	GTCAAATAGA	AAAAGCCTTT	AACTATCTTG	960
AGGAAATCCA	AGCTGACAGT	GACTGGTATG	TCTCGCTCTT	TGGCTCTGAA	GGCAGACCTA	1020
TACCAGCTGG	AAGGTTTGAC	AGATGTGGCA	CGTGAGAAAT	TATTGGAGGC	CTTGACCTAC	1080
TCAAAGGATT	CTCTCTTGAT	${\tt ATTGGGTTTG}$	${\tt GCAAAGTTGG}$	ATAGTGAGTT	GGAAAATTAC	1140
CAAGCGGCTA	${\tt TTCAAGCCTA}$	$\tt TGCCCAGTTA$	GATAATCGCT	CGATTTATGA	GCAAACGGGC	1200
ATTTCCACCT	ATCAACGAAT	TGGCTTTGCC	TATGCTCAGT	TAGGGAAATT	TGAAACGGCT	1260
${\tt ACTGAGTTTT}$	TAGAAAAAGC	CCTGGAGTTA	GAATACGATG	ACTTAACAGC	TTTTGAGTTG	1320
GCCAGTCTTT	${\tt ATTTTGATCA}$	AGAAGAATAT	CAAAAAGCCA	CCCTCTACTT	TAAGCAGCTT	1380
${\tt GATACCATTT}$	CTCCTGACTT	${\tt TGAAGGCTAT}$	GAGTATGGGT	ACAGTCAGGC	TTTACATAAG	1440
GAACATCAAG	TTCAAGAAGC	CCTGCGTATC	GCTAAGCAAG	GATTAGAGAA	AAATCCCTTT	1500
GAAACTCGCC	TCTTGCTAGC	TGCTTCACAA	TTTTCTTATG	AATTGCATGA	TGCTAGTGGT	1560
${\tt GCAGAAAATT}$	ATCTCCTTAC	TGCAAAAGAA	GACGCTGAGG	ATACAGAAGA	AATCTTGCTT	1620
CGTTTAGCCA	${\tt CTATTTATCT}$	GGAGCAGGAG	CGTTATGAGG	ATATTCTAGA	CTTGCAGAGT	1680
GAGGAGCCAG	AAAATCTTTT	GACCAAGTGG	ATGATTGCTC	GTTCTTATCA	AGAAATGGAC	1740
GATTTGGATA	CTGCTTATGA	GCATTATCAA	GAGTTGACAG	GAGATTTGAA	GGACAATCCA	1800
${\tt GAATTTCTGG}$	AACACTATAT	${\tt CTATCTCTTG}$	CGTGAATTGG	GACATTTTGA	AGAAGCAAAA	1860
GTCCATGCTC	ACACTTACTT	AAAACTGGTT	CCAGATGATG	TGCAAATGCA	AGAACTGTTT	1920

GAGAGATTGT AAGAATGTTT AAACATATAG AACTGTAGTT TATCTCTTTT GATAGCTACG 1980
GTCTTTATTT GTACATGGTA GAATCTTTTT ACAAAAATAC TTGGTAATCT TGTTTATTCA 2040
TGCCATAATA G 2051

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1318 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

TTTTACCCTC AAAGCGTTCC ATACCAGAAA TCTTAACATC AACTGCTAAA ATAACTACAT	120
CCGCTGCATC AATCTGCTCT TGACTCAATT CATTTTCTAC CCCTATTGTC CCCTGAGTCT	180
CAACATGAAT CACATGTCCA GCTACCTTTG CGGCATTCTC TAATTTTTCC TGTGCAATAT	240
AAGTGTGGGC AATTCCCATA GTACAAGCTG CAACACCAAC AATTTTCATA CGGATACCCT	300
CCAAAATTTT TTCTTATTAA CAAAAAGCTG CAATCACATC ATCAGATGTC TGAGCCCGAA	360
CTAATTTGGC AACAACTTCG TCATTACCAA GTTTTCGAGC AAAGAGTGAT AAGGTCTTCA	420
AATGCTCCCT AGCAGCTTCT GTATCATCAC CAACTGCAAA GAGTACAATT ACTTTGACCC	480
CTTTCCCATC AATGGTCTCC CAAGGAATCT CATTGTGATT TATAGCTATG ACTACCCCCG	540
CCTTCTCCAC AGCAGAACTC TAGCTATGGG GAATAGCAAT ATAATTCCCA ATACCGGTCT	600
GTCCTTCTGC CTCTCTGA TAAAGACCTT CGATAAATTG GTCTCTATCA GACACATAAC	660
CCGTCTCAAC CAATAGTATG AGCTAATGCC TCAAAAACCT CTTCTTTGCT CTGCATCTGT	720
AAATCCGTCT GGATCAGACT CACATTAAGA ATATCTTTGA TTTCCATATA TTATCTCCCG	780
TAATTCTTCT TTTGTTAACT GTTTTAATTG ATTTATGAAT GATTCATCTG CTAGTCTTCT	840
CATCAATGTT TTAATACATG ACTTGTCCTG TGATACTGCA ATGGCCAAAC CGATAATAAG	900
GTCAACACA TGGATATCCT TCGACCATTC TCTGATAGGT GGTTTTAATC TAGTAATCAC	960
TAAGACATGA TGTTGAAAGT TTCCTTCACA ATGTGGTAGA AGAACACCTT TAGCAACCTC	1020
TATACTTCCC TGTCTCTCAC GGTAATATAG AAGCTCTTCT ATTTTTTCTG TATCTTCAGA	1080
AACAAGAAGG CTGATTTGAT TTGCTAATTC TTTGTAGGCT TCTTGACGAT TTTGAACAGA	1140
TATATCCATA AGGACAAGCG AAAGATTATT CATAGTTTAT CTCCTGAATT TTTGCTTGAA	1200
GACGTTGTTT ATCACCCTCG GTTAGAAAAG CACTAACTAG GACAAACGGG ACACTTGCTG	1260
GTTCCTGCAA AGCTACCGTC GTCACAATGA AATCTAAATC TGGATATAGA TTTATCAG	1318

(2) INFORMATION FOR SEQ ID NO:63:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2077 base pairs

(B) TYPE: nucleic acid

176

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

OM A COOMBOO	CITA CITICIDADA	3 COMPAGAMEA				
	CTACTGTCTA					60
	GGGTAATTCT					120
AAAATCATGG	AAGTCACTCA	CCTGACCTGC	TACAATCTGT	ACATGCCATT	TTCGATGACT	180
	TGGACTGTAT					240
CTGCTGGAAA	CTCTCTTCTG	GGACTGGGGC	CAGAGTTCAC	ACTTTCTTCC	GCAACCTGAT	300
GAAAGAGGTC	AAACTGCTCT	TCTTGCGAAA	AGTTATCAAC	TTCTATAAAG	GGGAAATGCC	360
AAAAACCTGC	CAAGAGCTTT	TCGCTTTCAT	TTTTTTCAAG	TAAAAATTGT	CCTTGAGAAT	420
TTTTCACAAC	TAAGGCTTTA	AGATAAATAG	${\tt GAACCGGCTT}$	TTTCTTAGGA	GATTTAATTG	480
GATAACGGTC	CATGGTTCCA	TTCTGATATG	CCGCACTAAA	GTCCTTGACT	GGGCTTTCTT	540
CAGGTCTGGG	ATTTACAGGA	GACTCAATAT	CAGACCCTAA	GTCCATCAAG	GCTTGATTAA	600
AATCACCCGG	ACGATCTGGA	TTAATCAAGA	TCTCCATCAT	TGCCTGAAAA	ATTTTTCGAT	660
TACTTGGAAT	CCCAATATCG	TGGTTGACTT	CAAACAGACG	CGCCAAGACC	CGCATGACAT	720
TACCATCTAC	AGCTGGCTCA	GGCAAGTTAA	AAGCAATACT	GGAAATGGCT	CCTGCTGTGT	780
AAGGTCCAAT	CCCTTTCAAG	CTGGAAATTC	CTTCATAGGT	ATTTGGAAAT	TGGCCACCAA	840
AGTCAGTCAT	AATCTGCTGG	GCTGCAGCCT	GCATATTGCG	AACTCGAGAA	TAATAACCCA	900
AGCCCTCCCA	AGCTTTCAGT	AAACTCTCCT	CAGGCGCAGT	TGCCAGACTT	TCGACAGTTG	960
GAAACCAGTC	CAAAAATCTT	TCGTAGTAAG	GGATAACTGT	ATCCACCCTG	GTCTGCTGAA	1020
GCATGATTTC	AGATACCCAG	ATGTGATAAG	GATTTTTACT	TCTCCTCCAA	GGCAAATCTC	1080
TTTTGTTTTC	ATCATACCAA	GCGAGAAGTT	TTCTCACCGG	AAAGAAATGA	CTTTCTCCTC	1140
CGGCCACATG	ACGATACCGT	ATTCTTTCAA	ATCCTAACAT	ATCTCTAGTT	ATAACACAGA	1200
AGGTTTCACC	TGTCTTTGTA	TCTGATTTAT	AATATTTTCA	ATAGATAGTA	TATAACTTTT	1260
CCTATCTACT	TATACTCCAA	TGAAAATCCA	AAGAGCAAAC	TAAGAAGCTA	GCCGCAGGTT	1320
GCTCAAAACA	CTGTTTTGAG	GTTGTGGATA	GAACTGACAG	AGTCAGTATC	ATATTACCTA	1380
CGGCAAGGTG	AAGCTGACGT	AGTTTGAAAA	GATTTTCGAA	GAGTATAAAT	CTTATTGATG	1440
AACTGCTTGC	AGTCTGAGAA	AAAATGAGCT	TGGATATTAT	TTCCAAACTC	ACTTAAAGTC	1500
AATTTCAATC	CACTAGAACA	AGCCTAGTAC	AGTTCCATCG	CTTTCAACAT	CCATGTTGAG	1560
AGCTGCTGGA	CGTTTTGGAA	GACCTGGCAT	GGTCATAACA	TCACCAGTTA	AGGCAACGAT	1620
GAAGCCTGCA	CCTAATTTTG	GTACCAATTC	ACGAATGGTA	ATTTCAAAGT	TTTCTGGTGC	1680
TCCAAGCGCA	TTTGGATTGT	CTGAGAAACT	GTATTGAGTT	TTAGCCATAC	AAATTGGCAA	1740
TTTGTCCCAA	CCGTTTTGAA	CGATTTGAGC	AATTTGTGTT	TGAGCTTTCT	TCTCAAAGTT	1800
	CCACGATAGA					1860
	TACAAACGTT					1920
	GCTACTCCAC					1980
	GAGGCACAGA					2040
	ATAGATACAA					2077
						_ 5 , ,

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1887 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

CTCAAAACNC	TGCTTTGAAG	AGATTTTCAA	AGAGTACAAG	AAGTTTAGTT	ATTAGCGTTC	60
TTACCGCTTG	TAAACTAGAT	TTCTCATAAA	ATAGAATCTT	TTCCTTTTAG	TTGTAAACTA	120
GTCTGGGAGA	GTAGAGAGGT	TTGAGATACC	TTTCTAGCTT	TTGGATTATC	ATCTAAGAAG	180
AGTAATTTCC	CTTGCATTAA	AAAGGGGAAA	AAGAGACACG	AAATGACTAT	AATGGGTGAC	240
AATGGGGGAA	GGGATAGACA	AGAGATTTTA	TCCACATATG	AAAAAAGGAG	GTTAGGAAAG	300
${\tt AGTTATATAT}$	CCTATATTAT	ATAAATAATC	AATTGCGCAG	AAATTTGGTA	AGAATTCATG	360
CGTCAACTCA	TAAAGAACTA	$\mathtt{CTTAAAAAAAT}$	TCACAGTATT	CATAATTATT	TTCGAGGAGA	420
AAAACAGTGA	AAAAAAGAAA	AAAGCTTGCT	CTGTCTCTTA	TCGCTTTTTG	GCTGACGGCT	480
${\tt TGTTTAGTAG}$	GCTGTGCTAG	CTGGATTGAT	CGTGGAGAAT	CCATAACGGC	TGTTGGCTCA	540
ACTGCCTTGC	AACCCTTGGT	TGAAGTAGCG	GCAGATGAAT	TTGGCACCAT	CCATGTTGGA	600
AAAACGGTCA	ATGTCCAAGG	${\tt GGGAAGTTCT}$	GGTACAGGCT	TGTCCCAGGT	TCAGTCTGGG	660
${\tt GCAGTTGATA}$	TAGGAAACTC	AGATGTATTT	GCTGAGGAAA	AAGACGGAAT	TGATGCTTCT	720
$\tt GCTCTTGTTG$	ACCACAAGGT	CGCGGTAGCT	GGCTTGGCTC	TGATTGTCAA	TAAGGAGGTT	780
GATGTTGATA	ACCTAACGAC	AGAGCAACTT	CGTCAAATCT	TCATAGGTGA	GGTAACCAAT	840
TGGAAAGAGG	${\tt TTGGTGGTAA}$	GGACTTACCC	ATCTCTGTTA	TCAATCGGGC	AGCCGGCTCT	900
GGCTCTCGTG	${\tt CTACCTTTGA}$	TACTGTCATT	ATGGAAGGTC	AGTCTGCCAT	GCAAAGTCAG	960
GAGCAGGATT	CAAATGGAGC	GGTAAAATCA	ATCGTATCAA	AAAGTCCAGG	AGCTATCTCT	1020
${\tt TATTTATCTC}$	${\tt TTACCTATAT}$	AGATGATTCG	GTCAAAAGCA	TGAAGTTGAA	TGGCTATGAC	1080
TTAAGTCCAG	${\tt AAAATATAAG}$	TAGCAATAAT	TGGCCCTTGT	GGTCTTATGA	GCATATGTAT	1140
ACATTGGGGC	AGCCCAATGA	GTTGGCTGCA	GAATTTCTCA	ATTTTGTTCT	CTCGGATGAG	1200
ACCCAAGAAG	${\tt GGATTGTCAA}$	AGGATTGAAG	TATATTCCGA	TTAAGGAAAT	GAAGGTTGAA	1260
AAAGATGCTG	CCGGAACTGT	GACAGTGTTG	GAAGGGAGAC	AATAATGAAT	CAAGAAGAAT	1320
TAGCTAAGAA	AATGTTGCTT	CCATCAAAGA	ATTCTCGTCT	GGAGAAATTA	GGAAAAGGTT	1380
TGACCTTTGC	$\mathtt{CTGTCTTTCT}$	TTGATAGTCA	TCCTTGTGGC	CATGATTTTG	GTTTTCGTAG	1440
CGCAAAAAGG	CTTGTCGACC	${\tt TTCTTTGTCA}$	ATGGTGTGAA	TATCTTTGAC	TTTCTTTTGG	1500
GAGGAACTTG	GAATCCTTCT	AGTAAAGAAT	TTGGTGCCCT	TCCTATGATT	TTGGGTTCCT	1560
TTATCGTTAC	CATTCTCTCA	GCCCTTATCG	CAACACCCTT	TGCTATTGGT	GCAGCAGTTT	1620
TTATGACCGA	AGTATCACCA	AAAGGGGCGA	AGATTTTGCA	ACCAGCTATT	GAACTCCTGG	1680
TTGGGATTCC	TTCAGTAGTG	TACGGATTTA	TTGGCTTGCA	AGTCGTCGTT	CCCTTTGTTC	1740
GCAGTGTCTT	TGGTGGGACT	GGTTTTGGGA	TTTTGTCAGG	GATTTCCGTC	CTCTTTGTCA	1800
TGATTTTGCC	GACCGTAACC	TTTATGACAA	CGGATAGCTT	GCGTGCGGTT	CCTCCNTTAT	1860
TATCGTGAAG	CCAGTTTCGC	TATGGGA				1887

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 405 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

${\tt CTGAGGAATC}$	${\tt AAAAGTTGAA}$	CCACCAGTAG	AACAAGCATA	AGTCCCAGAA	CAACCCGTGC	60
AACCTACACA	AGCTGAGCAA	CCAAGTACAC	CAAAAGAATC	ATCACAACAA	GAAAATCCTA	120
AAGAAGATAG	GGGAGCGGAA	GAGACTCCGA	AACAAGAAGA	TGAACAGCCA	GCAGAAGCCC	180
AAGAAATCAA	GGTTGAAGAA	CCAGTAGAAT	CTATAGAGGA	GACTGTCATT	CAACCTGTTG	240
AACAACCAAA	AGTGGAAACG	CCTGCTGTTT	AATAACTAAC	GGAACCTACA	GAGGAACCTA	300
AAGTTGAAGT	AACTAGTATT	CCCCTCACTA	CTCGCTATGA	GGAAGACCTT	ACTTACGAAC	360
ACGGAACGCG	TTGAAGTTGT	TAAGGAAGGT	TATAATTGGC	AGTAT		405

(2) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1542 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

CTATGGGATT	GGTAGTTCTT	CCTAGTGCAG	GGGCTGTAGA	CCCAGTTGCG	ACCCTAGCGC	60
TGGACTAGTC	GAGAGGGTGT	TGTTGAAAAT	GGATGGCTAT	CGCTATGTTG	GTTATCTATC	120
AGGTGACATC	CTCAAAACGC	${\tt TTGGCTTGGA}$	CACTGTTTTA	GAAGAAACCT	CAGCAAAACC	180
TGGAGAGGTG	ACTGTAGTCG	AAGTTGAGAC	TCCTCAATCA	ACAACAAATC	AGGAGCAAGC	240
TAGGACAGAA	AACCAAGTAG	TAGAGACAGA	GGAAGCTCCA	AAAGAAGAAG	CACCTAAAAC	300
AGAAGAAAGT	CCAAAGGAAG	AACCAAAATC	GGAGGTAAAA	CCTACTGACG	ACACCCTTCC	360
TAAAGTAGAA	GAGGGGAAAG	AAGATTCAGC	AGAACCATCT	CCAGTTGAAG	AAGTAGGTGG	420
AGAAGTTGAG	TCAAAACCAG	${\tt AGGAAAAAGT}$	AGCAGTTAAG	CCAGAAAGTC	AACCATCAGA	480
CAAACCAGCT	GAGGAATCAA	AAGTTGAACC	ACCAGTAGAA	CAAGCAAAAG	TCCCAGAACA	540
ACCCGTGCAA	CCTACACAAG	CTGAGCAACC	AAGTACACCA	AAAGAATCAT	CACAACAAGA	600
AAATCCTAAA	GAAGATAGGG	GAGCGGAAGA	GACACCGAAA	CAAGAAGATG	AACAGCCAGC	660
AGAAGCCCAA	GAAATCAAGG	TTGAAGAACC	AGTAGAATCA	AAAGAGGAGA	CTGTTAATCA	720
ACCTGTTGAA	CAACCAAAAG	TGGAAACGCC	TGCTGTAGAA	AAACAAACGG	AACCAACAGA	780

GGAACCAAAA	GTTGAAGTAA	CAAGTATTCC	CCAAACTACT	CGCTATGAGG	AAGACCTTAC	840
TAAGGAACAC	GGAACGCGTG	AAGTTGTTAA	GGAAGGTAAG	AATĠGCAGTA	GAACAGTTAC	900
TACTCCATAT	ATCTTGAATG	CGACAGATGG	TACGACTACA	GAAGGCACTT	CGACAACTGA	960
TGAAGCTGAG	ATGGAGAAAG	AGGTTGTTCG	TGTTGGCACG	AAACCCAAAG	AAAAATTAGC	1020
TCCAGTCTTA	AGTTTGACAA	GTGTTACAGA	TAATGCAATG	TTGCGTAGTG	CGAGACTTAC	1080
TTATCATTTG	GAAAATACAG	ATAGTGTTGA	TGTGAAAAA	ATTCATGCTG	AAATTAAAA	1140
TGGCGATAAG	${\tt GTTGTCAAAA}$	${\tt CTATTGACTT}$	ATCTAAAGAG	AGATTATCAG	ATGCTGTTGA	1200
CGGTCTTGAA	CTTTATAAAG	ATTATAAGAT	TGTGACGAGT	ATGACCTATG	ATAGAGGTAA	1260
TGGTGAAGAA	ACCTCTACGT	TGGAAGAAAC	TCCACTACGA	TTAGACCTCA	AGAAGGTTGA	1320
ATTGAAAAAC	ATCGGCTCTA	${\tt CTAATCTCGT}$	CAAAGTAAAT	GAGGATGGTA	CTGAGGTGGC	1380
AAGTGACTTC	TTAACAAGTA	AACCTGTGGA	TGTGCAGAAT	TACTACCTCA	AAGTAACTTC	1440
CCGTGATAAT	AAAGTTGTTT	CCCCTCCCAG	TTGAAAAAAT	TGAAGAGGTG	ACTGAGGAAG	1500
GTCCACCACT	TTACAAAGTC	CCTGCTAAGG	CCCTAATTTG	AT		1542

(2) INFORMATION FOR SEQ ID NO:67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1321 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

ATCGAATTAC	TTCAACTCCA	ACTTTACTCT	CAATAAAAAT	CAAATGTAAA	AAGAGGAGCT	60
			CTTACTTTTG			120
CATGTTTACG	TTGGTAGTGT	TTTTCTAGTA	TGTACTGGGG	AGCAGGTTCA	ACTCTTGGAT	180
TGATTTGTTC	TGTAAAGCGA	TTCATCTTTG	ATACTTCCTC	TAGTACGACA	GAGTGATAAA	240
CAGCATTCTC	${\tt TGGATTTTG}$	CCCCAGGTGA	ATGGACCGTG	ATTGCGTACA	ACAATTCCTG	300
GTACTTCAAC	CGGGTTAAGT	CCGCGATGTT	CAAACTCTTC	TACGATAACC	AGGCCAGTAT	360
CTTTTTCATA	GGCCACTTCT	ACTTCGTCCT	TGGTCAAACT	ACGGGCGCAA	GGGATTGAAC	420
CGTAGAAATA	ATCTGCATGG	${\tt GTTGTTCCGT}$	AGAAAGGAAT	ATCACGACCT	GCCTGAGCCC	480
AAGCAACAGC	${\tt TTCTGTCGAA}$	${\tt TGGGTGTGAA}$	CCACACTACC	AATTTCTGAC	CAAGCCTTAT	540
ATAATTGCAC	ATGAGTTGGG	AAGTCGGAAG	ATGGTCTTAA	ATCCCCTTAT	AGGATCTTAC	600
CATCTAGATC	AGTCACTACC	${\tt ATGTTTTCAG}$	${\tt GTGTCAATTC}$	GTCATAATCC	ACGCCTGATG	660
GTTTGATAAC	AATGACACCG	AGTTCGCGAT	TGACTTCAGA	TACATTCCCC	CAGGTAAATT	720
TGACAAGTCC	ATGTTTTGGC	${\tt AATGATTGAT}$	TGGCATCACA	GACTCGTTTA	CGCATAGCAT	780
TGATTACTTG	ATTCATCTTA	CATCAAACCT	${\tt GCTTTCTTAA}$	TGAGTGGATA	GAGAAAAGCT	840
TGCGCCTCTT	GAATGGCTGC	$\tt GCGTGTTTCT$	${\tt TCTACTGTTT}$	CACAATTTTC	AGACCACATT	900
TCGATTAGGA	AAGGTCCATT	${\tt ATAATTGGTT}$	$\mathtt{TCCTTTAAAA}$	TATCGAAAGC	TTCTTCCCAT	960
TTGACACAAC	CTTGCCCAAA	AGGTACATCT	CGGAACTGGC	CCTTTGAACT	TTCTGTCACT	1020
GCATAAGTAT	CCTTGAGATG	GAGAGTTGCG	ATGGCATGAT	GACCAAGATA	AAACTCACTA	1080
		4	00			

TAGATATCAT	TATGCCATGC	AGACACATTA	CCAATATCTG	GATATACAAA	GAGGAAGGGA	1140
GAGTCAATCT	CTTTTTCTAT	AGCCAAATAT	TTTTCGATGC	TATTGATGAA	AGGATCATCC	1200
ATAATTTCAA	TAGCAAGTAC	CACCTGAGCT	TCTTCAGCCC	AGTCACAGGC	TTTTCTCAAA	1260
${\tt TTTTTGATAA}$	AACGTTGGCG	${\tt TGTCTGGGGT}$	GACTTTTCCT	CATAGTAAAC	ATCGTAACCA	1320
G						1321

(2) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1265 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

TTTTTCTGTT	TTTCGGAGCA	AACTGGGCTC	CAGCCGGTTT	TGGCCTTCTT	TCCTTAGCTA	60
CAGCTGGTTT	AGCTGGCTCA	GATTTTTCGG	CTTTCTTTTC	TGCACTTACT	TTTGGTGCTG	120
CAGGTTTTGC	TTCTACTTTC	GGAGCAGCTG	CAGGCTTAAA	GCTGGCAGCA	ATTTTTGCAG	180
CGACAGCTTC	TTCCACACTT	GATGAGTGGC	TTTTCACATC	CAAGCCCAAC	TCTTTTGCAC	240
GCGCTACAAC	TTCTTTACTT	TCTTTTCCAA	GTTCTTTTGC	GATTTCGTAC	AATCTTTTCT	300
TAGACAAATC	ATGTCCTCCT	CTTCTATTCC	ATAAGAGACC	TCATTTTCTT	TGTAAATCCA	360
GCATCTGTTA	CAGCCAAAAC	CTTTCTCGAT	TTCCCGACTG	CTATGATTAA	TTCCAGTGTT	420
GAAAACACGG	TTACAATTTC	TACTTGATAA	TAATGACTTT	TATCTTGAAT	CTTCTTGGTC	480
AGATTGGGTC	CAGCATCATG	AGCTAGAAAG	ACCAACTTGG	CCTTGCCGTC	TTGAATGGCC	540
TTGACCACCA	ATTCTTCACC	CGATATGATG	CGCCCTGCTC	GCTGAGCAAG	CCCCAAGAGA	600
TTACTTATCT	TTTGCTTATT	CAAGTCCCAA	CTCTCTTCTT	TTCACTTTGT	GATCCACATA	660
AGCGATCAAC	TCGTCATAÃA	AGCTTTCTTC	CACTTCCATG	CTAAAGCTGC	GGTTAAAGAC	720
CTTCTTCTTT	TTCGCCTCTA	GGGCTTCTGC	ATTGTCTAGT	TTGATATAAG	CGCCGCGGCC	780
ATTGGCCTTG	CCCGTAGGAT	CAATAAAGAC	TTGTCCTTCC	TTGTTCTTGA	CAATGCGGAG	840
CAAATCACGC	TTATCAATCA	CTTCGTTAGA	CACAACAGAC	TTGCGCAAAG	GGATTTTTCT	900
TGTTTTCATC	TTTCCCTCCT	CTAGCAGCTT	TTATTCTTCT	ACAGTATCGT	TTTCTACTTC	960
CAACTCTACT	GAAGCAGCGT	CTTCCATGGC	TTCAAATTCG	CTAGCAGACT	TGATATCGAT	1020
ACGGTAACCA	GTCAAGTGAG	CCGCCAAGCG	CACGTTTTGT	CCACGACGAC	CAATGGCAAG	1080
AGAAAGCTTG	TTATCTGGAA	CAACCACCAA	GGCACGTTTG	CTGTCGTTTT	CATCAAAGAT	1140
AACTTGGTCA	ACCTCAGCAG	GAGCGATGGC	ATTGTAGATA	AATTCAGCTG	GATCTGCTAC	1200
CCACTCGATA	ACATCGATAT	TTTCTTCGAT	TGGTACCATG	CGGTCATTTT	TAGCATCGTA	1260
ACGAG						1265

(2) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHARACTERISTICS:

181

(A) LENGTH: 1305 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

ATAAACCAAA	GGAAGCTGAG	CTCTTTAGTC	CCAGCTTCTT	TTTATATATA	AAATTTTACC	60
CGTGAAAAGA	CAGGGCCTTA	GCAGACTTCT	TTTTTACTTC	GTTCACCCTT	GCTTTTTCTT	120
${\tt TGTATGTTTG}$	GGCGTTGGCA	GTTGGTTATA	CATAGCTAAA	ATCAGGTCTT	ATAGAAACAT	180
${\tt CTTATTATCA}$	AGTTCTTCCA	CTCAAATCAT	TTCTTTGGCA	CCTTTGTATG	GAAACTCAAA	240
AGAAGATTGG	TCAATCTTAT	CTAAGACTGC	TTGCACGGGT	TTAACTAAAA	GCGATCGTCA	300
TAAATGCCGC	CAATAATCTT	GCCGCGGAAG	TAAAGAATAT	ACTCCCCCAT	CATGGAACGG	360
TAAGTCACAT	CATCTAATCC	TGATAATTGT	TCCAAAACAA	ATTCCAAATA	GTTCTTACTT	420
GATGCCATTT	${\tt CTAATCTTCT}$	AGGCTCTGTT	CAACGATAAC	AACCGTATAG	AGTTCTTGCT	480
TAACCTCGCA	TCCAATTGAT	TTAAAGCCCT	${\tt GCTTTTCCCA}$	AAAATGCTGA	GATTGCGGAT	540
TTCCCTTAAC	ATAAGCCAAA	CGTGCCTTTC	${\tt GAAAGTTCTT}$	AGCAAAATAA	GCTAGTGCTT	600
CTGTCACAAT	ATGACTACCA	ATCCCTTTCC	TCTGATAGGC	TTGATCAACC	ATAAACAAAC	660
CAATAAAAAC	AGTCTCCTCA	TCAGGATATG	CATAGACAAA	ATCCATAACA	GCCACAAGGT	720
CAAATCCATT	CCAAAATCCA	ACAAAAAACT	TATCAGCCTT	AGCTTTACCT	TCAGGTAGAC	780
AAAGCATGTC	CTCTTTTACA	GTTGCAAAAT	${\tt TTGGCTCTGG}$	TGGACAATGC	TGAAAATACA	840
GAGGATTACT	TTCATATAAA	GATAAAATAC	TTGGAATATC	$\mathtt{CTTTTCAGTT}$	AGTATCCTAC	900
AACTGTAATA	CTTAGATAGT	TGGTCAATCA	TCTTTTCAAA	TTCGATACTT	TCTTGTGCCC	960
TGTGATTATG	ACACAGGAAG	ATGCACTGAT	CGTCATCAGC	CACATAAAAG	TTCTTTCCAT	1020
CGTGCCTAAT	CGTTGTCTCA	AACCTTTGGA	TAAAACCTTT	AGCCTATACA	ACTGGATTTT	1080
CCTCTCTCAA	AAGTATATTC	${\tt TTTTGCAGGC}$	GAACTTCCTC	AAAATCAGTC	GTGTGCAACT	1140
TCAGTAGAAT	ATTCATAGGC	TCGGATAATC	TGAGCGACAA	CAGGATGGCG	AACCACATCC	1200
TTGGCTGAAA	AATGAACAAA	GTCAATCTGA	TGGATGTTCT	${\tt TGAGTTTCTC}$	TTGAGCATCA	1260
ATCAAACCGG	ACTTGACATT	ACGTGGCAGG	TCAATCTGAC	TAATA		1305

(2) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1742 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID-NO:70:

CTAATCTCCT	TAAAACGTGA	TCTTTTCAAG	AATATTTTTA	TCTAAACAAT	CCAGCAAGTC	60
TTGGTAAGAA	TAGACTTCGT	AAGTCGGCTG	GGCTTGTGTG	TGATTTTCGA	GGTGATGAGG	120
ATTATACCAG	${\tt ATAGTGTCAA}$	TCCCCGCATT	ATTGCCACCT	TGAATGTCGG	CGGTTAGAGA	180
ATCTCCAATC	ATCAGCGTCT	${\tt TTTCTTTACT}$	AAATCCAGCA	ATTTGCTGGC	CAATCTTTTC	240
ATAAAAAAGA	GCATCCGGCT	${\tt TTTGAGTTTG}$	CAACTGTTCT	GAGATAAAGA	CTTGATTGAA	300
ATAAGGTGCT	AGACCAGATT	GAGCCAAACG	TCCTGTCTGA	ATGGCAGTAA	TGCCATTTGT	360
CGCAGCATAC	AAGTTATAAT	CACGCTCAAT	GAGGCTGTCC	AAGAGATCAT	GAGCGCCCGA	420
TAGTGTTTGT	CCCTGCTGGG	CGAGGTAAAA	TTGGTAACGC	TGGGCAAGAA	AACTACCGTC	480
TTTTTCCTGT	CCAAAATGAG	CAAATAAACG	AGAAAAGCGC	GTGTTAACCA	GCTCTTGTTT	540
ACTGATTTTC	TTCAGCTCCA	AGTCTTTCCA	GAGAGCCTTG	TTCATAGGAA	CGTAATAATC	600
TTTATAAGCC	GGAATATCCG	CAACTCCTTC	TTCTTTTAGA	AGTGGAGTCA	AAGCCACATC	660
CTCAGCAGCA	TCAAAATCAA	GAAGAGTGTG	GTCGAGGTCG	AAGAGTACAA	ATTTGTAGAA	720
CAATTTGAGG	TTTTCCTTTC	TGAAAATTCA	TTAAGAACAT	TATATCATAA	AGCACCTCAT	780
ACAATTAACT	AATTTAATCA	CTTAAAAAAA	ATTCGAACAC	TTTCTATACA	ACTGACAGCT	840
CAAATCTTTC	AGAATAGAAC	AATACTAACT	ATCGAACACC	CCGTCTTCAT	AAATACATAT	900
${\tt GTAATTCTAG}$	GCCTAGAATT	CCTATAAACT	AAATGCTTTC	ATACTCTTCC	AAGTAATTGA	960
TTGCCTTAAA	${\tt TTTTAATTTT}$	${\tt TGAAGGTTTC}$	TAAAGCTAGA	ATAGCCCCAT	CACAATCAGT	1020
${\tt TTTGATTGAT}$	${\tt TCACAATTTA}$	GAAACACTAT	AGTTTCACTC	CTGTTAAAAT	AAAAAGGAAC	1080
TGCATAAAGC	AATCCCTTTC	TGATTTTGAA	ATCATTTACT	TAACATTTTA	TAGTTGAGAT	1140
AATCAATAGC	${\tt TTATCTATAA}$	AAAGAGTTAT	AGTAAAATTC	CTTATTTATT	GATTCCAAGC	1200
TCCGCTAACT	GTATTTGAAT	AACTGACAGT	TCTGCACCAG	CCTGAAAAAG	AGCAGCTGCA	1260
TTATAGGCAC	CTTCTACAAT	TGGAACCCTG	TTGATGATGA	TACTTTTATC	ACTGAAATCA	1320
GTCACCATTT	TTAAGTTCAT	TTTAGCAGAA	CCTAGGTCAA	AAAAGGCAAG	TAAAGTATCT	1380
GCTGGATTTT	CGGAAACAAC	CCTATCTACT	TGATCAAAAC	TCGTTCCAAT	TCCTCCGCCC	1440
TCGGTTCCTC	CTACATAAGT	AATCGGAACA	TCTTTAGCTA	CTTTACTAAT	CAGTTCAACA	1500
ACACCTTCTG	CAATGTGTTT	GGAATGTGAA	ACGATAACAA	GACCAATACC	AATACTTTCC	1560
ATCAAACCAC	${\tt TCCAGTTTCT}$	AAAATAGCAG	TAAAGAGTAA	TCCTGATGAG	AATGATCCAG	1620
GATCAATATG	TCCAAGAAAC	CACATGCTCC	TAAGACAAGA	GCTAACAGAC	TGGCCATCAA	1680
TAATAGTATT	GTTCTTTTTT	TCATCATTAC	TCCTTAACTA	GTGTTTAACT	GATTAATTCG	1740
AT						1742

(2) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1136 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

GTGGAATGCG GGGACGCCTT GTCTAATTTT GGATCAAGCC CTGAGTTTGA CACAGGGAAA 60

TGAGCTGGAC	GGACTGCTAT	CTCTGAAGAA	ATTACTGGCA	CCATTAGCCT	ATCAGCCTTG	120
${\tt GATGATTATG}$	${\tt TGGCGGCCTT}$	GTCTCAACAG	GATGTTCCCA	AAGCTTTGTC	TTGCTTGAAT	180
$\mathtt{CTTCTTTTG}$	ACAATGGTAA	GAGCATGACT	CGTTTTGTGA	CCGATCTTTT	GCACTATTTA	240
AGAGACTTGT	TAATTGTTCA	AACAGGGGGA	GAAAATACTC	ATCATAGTTC	AGTCTTTGTA	300
${\tt GAAAATTTGG}$	CACTTCCTCA	AAAAAATCTG	${\tt TTTGAAATGA}$	TTCGCTTAGC	AACAGTGAAT	360
TTAGCAGATA	TTAAGTCTAG	TTTGCAGCCC	AAGATTTATG	CTGAAATGAT	GACCGTCCGT	420
TTGGCGGAAA	TCAAGCCCGA	ACCAGCTCTA	TCAGGAGCGG	TTGAAAATCG	AATTGCTACG	480
CTGAGACAGG	AAGTTGCCCG	TCTCAAACAA	GAGCTTTCTA	ATGCAGGTGC	GGTTCCTAAA	540
CAAGTTGCAC	CAGCTCCTAG	TCGACCAGCT	ACGGGCAAAA	CAGTCTATCG	TGTCGATCGC	600
AATAAAGTGC	AATCTATCTT	ACAAGAGGCC	${\tt GTCGAAAATC}$	${\tt CTGATTTAGC}$	ACGTCAAAAT	660
CTAATTCGTT	TGCAGAATGC	CTGGGGAGAG	${\tt GTAATTGAAA}$	GTCTAGGTGG	GCCGGACAAG	720
GCTCTGCTAG	${\tt TTGGTTCTCA}$	ACCGGTTGCT	GCCAATGAAC	ACCATGCTAT	TCTTGCTTTT	780
GAGTCTAACT	TCAATGCTGG	TCAAACTATG	AAACGAGACA	ATCTCAATAC	CATGTTTGGT	840
AATATCCTCA	GTCAGGCGGC	${\tt AGGTTTTTCA}$	CCTGAGATTT	TAGCTATTTC	CATGGAGGAA	900
TGGAAAGAAG	TTCGCGCAGC	CTTTTCAGCC	AAAGCCAAAT	CTTCTCAAAC	TGAAAAAGAA	960
GTAGAAGAAA	GCCTGATTCC	AGAAGGATTT	${\tt GAATTTTTGG}$	$\mathtt{CTGATAAAGT}$	GAAGGTAGAG	1020
GAAGACTAAA	GAAAGATTTC	ATGATACAAT	AAGTTTATGA	ATAAACAACA	ATTTATTATT	1080
ATGGCGCTAT	${\tt TTACAGCTGC}$	TGAGACCTAT	${\tt TTTTTCAATG}$	AAGCCTGGAT	GACTGG	1136

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1670 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

CTGTCTCTGA	AACAGTCACA	TCAAGTGCCT	CTGAACAANC	GCCCCCCTA	GGTNGACGGT	60		
ATCGATAAGC	TCGATCTGTG	ATTTCAGAGA	AGAAATCAAG	TGCTGTAACA	GAAGTAAGAT	120		
GTAATTGTAT	${\tt GTAAAGGAGA}$	CGTCATGTTA	AATAGTATTG	TAACCATTAT	TTGTATTGCC	180		
CTTATCGCGT	${\tt TTATCTTGTT}$	${\tt TTGGTTTTTC}$	AAAAAGCCTG	AAAAATCTGG	ACAAAAAGCC	240		
CAGCAAAAAA	ACGGATACCA	AGAGATTCGA	GTGGAAGTCA	TGGGAGGCTA	TACTCCTGAG	300		
TTGATTGTCC	TCAAGAAATC	AGTGCCAGCC	CGCATTGTCT	TTGACCGCAA	GGATCCTTCA	360		
CCATGTCTGG	ATCAAATTGT	$\tt TTTTCCAGAT$	${\tt TTTGGTGTAC}$	ATGCGAACCT	GCCAATGGGG	420		
GAAGAGTATG	TAGTGGAAAT	CACGCCTGAA	CAGGCTGGAG	AGTTTGGCTT	TGCTTGTGGT	480		
ATGAACATGA	TGCACGGCAA	GATGATTGTA	${\tt GAGTAGGTGG}$	AGACTATGAC	AGAAATTGTG	540		
AAAGCAAGCT	TAGAAAATGG	${\tt CATTCAAAAA}$	ATCCGTATCC	GAGCTGAAAA	AGGCTATCAT	600		
CCAGCCCATA	TCCAGCTTCA	${\tt AAAGGGAATT}$	CCAGCTGAGA	TTACCTTTCA	TTCGTGCTAC	660		
TCCTTCAAAC	${\tt TGTTATAAGG}$	${\tt GAAATTCTGT}$	TTGAAGAAGA	AGGTATCTTG	GAAGCAATCG	720		
GCGTAGATGA	GGAGAAAGTC	ATTCGTTTTA	CACCTCAAGA	ATTAGGGAGA	CATGAATTTT	780		
184								

${\tt CTTGTGGCAT}$	GAAGATGCAA	AAGGGAAGCT	ATATAGTCGT	TGAGAAGACT	CGAAAATCTC	840
TATCTCTCCT	GCAAACGTTT	TTGGATTACT	AGTATCTTTA	CTGTGCCTCT	TGTGATTCTC	900
ATGATTGGGA	TGTTGGCAGG	TAGCATTAGT	CATCAAGTCA	TGCATTGGGG	AACCTTTTTA	960
GCAACAACGC	CTATTATGTT	AGTTGCGGGT	AAGCCATATA	TCCAGAGTGC	TTGGGCCAGT	1020
TTTAAAAAGC	ACAATGCCAA	CATGGATACC	TTGGTTGCGC	TGGGAACTCT	AGTGGCTTAT	1080
TTCTATAGCC	TAGTTGCTCT	CTTTGCTGGT	CTCCCTGTTT	ACTTCGAAAG	TGCTGGATTT	1140
ATCCTCTTTT	${\tt TCGTTCTTTT}$	GGGAGCAGTT	TTTGAGGAAA	AAATGAGGAA	AAATACGTCC	1200
CAAGCTGTGG	AGAAATTACT	GGACTTGCAA	GCTAAAACCG	CAGAAGTCTT	GAGTGATGAT	1260
AGTTATGTCC	AAGTTCCTTT	${\tt GGAACAAGTC}$	AAGGTACGCG	ACCTTGATTC	CAGTGCGTCC	1320
CGGTGAAAAG	ATTGCTGTTG	ATGGTGTCGT	AGTAGAAGGT	GTCTCTAGTA	TTGACGAATC	1380
CATGGTGACA	$\tt GGTGAGAGTC$	TGCCTGTGGA	CAAGACAGTT	GGAGATACTG	TCATTGGCTC	1440
AACCATCAAT	CATAGTGGAA	${\tt CGCTTGTCTT}$	TAGAGCAGAA	AAAGTTGGCT	CAGAGACTGT	1500
TTTGGCTCAG	ATTGTAGATT	TTGTGAAGAA	AGCTCAGACA	AGTCGTGCGC	CGATTCAGGA	1560
CTTGACGGAT	AAGATTTCAG	${\tt GGATTTTTGT}$	CCCAGTAGTT	GTCATTTTAG	GAATCATGAC	1620
CTTTTGGGTT	${\tt TGGTTCGTCT}$	TGCTCAGGGA	TAGTGTGGTC	GTGCTTGGAG		1670

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1252 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

ACAAGAACAA	TTGGAACAGG	TACAGGCTGT	TAAAAAATCG	ATTAACACAG	CTAGTGAAGA	60
AGTGAAAAAC	CAAGTCTTGC	TACCCATGGC	TGATCACTTA	GTGGCTGCTA	CTGAGGAAAT	120
${\tt TTTAGCGGCT}$	AATGCCCTCG	ATATGGCAGC	GGCTAAGGGG	AAAATCTCAG	ATGTGATGTT	180
${\tt GGATCGTCTT}$	${\tt TATTTGGATG}$	CAGATCGTAT	AGAAGCGATG	GCAAGAGGAA	TTCGTGAAGT	240
${\tt GGTTGCCTTA}$	CCAGATCCAA	${\tt TCGGTGAAGT}$	TTTAGAAACA	AGTCAGCTTG	AAAATGGTTT	300
GGTTATCACA	AAAAAACGTG	TAGCTATGGG	GGTCATCGGT	ATTATCTATG	AAAGCCGTCC	360
AAATGTGACG	TCTGATGCGG	${\tt CTGCTTTGAC}$	TCTTAAGAGT	GGAAATGCGG	TTGTTCTTCG	420
TAGTGGTAAG	GATGCCTATC	AAACAACCCA	TGCCATTGTC	ACAGCCTTGA	AGAAGGGCTT	480
GGAGACGACT	ACTATTCATC	CAAATGTGAT	TCAACTGGTG	GAGGATACTA	GCCGTGAAAG	540
TAGTTATGCT	ATGATGAAGG	CCAAGGGCTA	TCTAGACCTT	CTCATTCCTC	GTGGAGGAGC	600
TGGCTTGATT	AATGCAGTAG	${\tt TTGAGAATGC}$	CATTGTGCCT	GTTATCGAGA	CAGGAACTGG	660
GATTGTCCAT	GTTTATGTCG	ATAAGGACGC	AGATGACGAC	AAGGCACTGT	CTATCATCAA	720
CAATGCCAAA	ACCAGTCGTC	CTTCTGTCTG	CAATGCCATG	GAGGTTCTGC	TGGTTCATGA	780
AGACAAGGCA	GCAAGCTTCC	TTCCTCGCTT	GGAGCAAGTG	CTGGTTGCAG	ATCGAAAAGA	840
AGCTGGGTTG	GAACCAATTC	AATTCCGCCT	AGATAGCAAA	GCAAGCCAGT	TTGTTTCAGG	900
TCAAGCTGCT	CAAGCACAAG	ACTTTGATAC	${\tt CGAGTTTTTA}$	GACTATATTC	TAGCTGTTAA	960

GGTTGTGAGC	AGTTTAGAAG	AAGCGGTTGC	GCATATTGAA	TCCACAGTAC	CCATCATTCG	1020
GATGCTATTG	TGACGGAAAA	TGCTGAAGCT	GCAGCATACT	TTACAGATCA	AGTGGACTCT	1080
GCAGCGGTGT	ATGTTAATGC	CTCAACTCGT	TTCACAGATG	GAGGACAATT	TGGTCTTGGT	1140
TGTGAAATGG	GGATTTCTAC	TCAGAAATTG	CACGCGCGTG	GTCCAATGGG	CTTGAAAGAG	1200
TTGACCAGCT	ACAAGTATGT	GGTTGCTGGT	GATGGGCAGA	TAAGGGAGTA	AG	1252

(2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1785 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

CTGCCCTAGC	AGGAACGCAA	GAAGGAACTG	GAGAATAGGC	ATTTTCAAAA	TTATAACCTA	60
CACTAGCCAT	CATATCTAAT	GTTGGAGTGC	TAACTAGCTT	ATCCTTACTA	TTCAAGGATA	120
AGGCGTCTGC	TCTCATTTGA	TCTACAACAA	TCAAAATAAT	ATTTGGTTGT	TTTGTCTGAA	180
CCATAAAATC	TCCTTTCTAA	TATGGCAAAA	GAGGCACAAG	AAGATATCTA	CCTTTACTGC	240
ACCCCTTTCT	ATATCAATCT	CTCTATATAA	AGCAATAACA	TTCTTGTTAT	GTTTTATAGA	300
ACAATGGACT	AAAATATGAC	TAAATCGATT	AGGAAATTCA	AATCATTTTC	TAGTACTGTT	360
TTAGTAAGTT	ACAGTGTACT	ATTCCAACTT	СААТАААТТА	TAAACCTTTG	TCTAATAACA	420
ATTTTAGTGG	AGATAAGAAA	TCCTACACCT	AACTCATCTT	ACACGTAATC	TATTTCTATT	480
TTATCACAAA	AAACGCAAGT	AAGACCATTA	ACTCAATTCA	GTTTTATCTG	CCATTTTCAC	540
AAATGGGAAA	TAAGTCAAGA	CACTAATAAT	CAAACAAACA	ACTGATAAGA	TGATGGCACG	600
CCAATCAAAT	GCTGTAGAGA	AGAAACCATA	TAAAATTGGA	GGCATTACCC	AAGTAACATT	660
TTGTGTAACA	GGTGAAACAA	GACCCCAGCT	TGTTGCCCAG	TAAGCTACCG	TTGCCATGAA	720
AACCGGGCTA	AGTACAAATG	GTATAAATAG	CAAAGGATTC	AAGACAACTG	GTAAACCATA	780
ATTCGATACC	GGCTCACCAA	TATTAAACAG	AACTGGTGCT	AGACCAAGTT	TAGCAACTTT	840
TCGATAATGA	CTGTTTCTTG	AAAAAATTAA	AATAGCAAGT	ACTAATCCTA	ATCCTCCAAA	900
CCAGACAAAC	GCCCCAAAAG	ACCCACTTGT	CCATATATAA	GGAATCGGTT	CACCTTTTTG	960
GAAAGCATCC	AGATTCGCTA	ACATAGCAAC	TCCAAATAGC	CCTTCCATGA	TGGGAGCCAA	1020
TACATTTCCT	CCATGGAGAC	CAAAAAACCA	GAATAACTTA	TTCAAAAAGA	TCATCAGAAT	1080
AACTGCAAAG	AAACTTTGAG	ACAAACCTAG	TAATGGCGTT	TGTAACACCT	TGTAAACCCA	1140
ATCAATCAAT	AAGTCATTGC	TAAGTAAATG	GAAAACATAA	GTCAAGATGG	CTACTATATA	1200
CATCGCCATA	AATCCTGGAA	TGATAGAAGT	GAACGGCTTA	GCAATCGCAG	GGGGAACTGA	1260
ATCTGGTAAC	TTGATTACCC	AGTTCTTTTT	CATTACTTTA	CAGAAAATAA	TAGAGGCTAA	1320
AAATCCAATC	ATCATGGCTG	TAAAGTAGCC	TCTGGCATTA	ATATGGTTTC	CTGGAATCAC	1380
ATTCCCAATA	GTTACCATCA	GATTTTTACC	ATCAAATGCT	AGATTATCAA	TTCCATGTTA	1440
AGATTTGATC	TAATTTCACA	TCTCCTACAT	TTGCCAAAGG	GAAACTCTTT	GTAACTGTAC	1500
TTCCAATCGA	AATGACAAAC	GAAGCAAGTG	ATACCAAACC	AGCAGAAACT	GTATCAACCT	1560

TGTAAATCTT	AGCGATATTC	ACTCCCAAGC	AATAGATGAA	CAACAAGGAA	ACAATTGGTA	1620
TACTTCCCTT	GAATACCAAA	${\tt TTATTGATGT}$	CAACAAGCCA	CTGAAAGGTT	TTCGTAATAC	1680
TTCCTAGGTG	AAATTGTTGT	GGTAAATCCA	CTAGAAAAGC	ATTTAATAAC	AAAGCAATGG	1740
AACCTGTCAT	AATAACAGGC	ATAGTCCCCA	CAAATGAATC	ACGTT		1785

(2) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1386 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

ATCGAATTTC	ATTTCTATTT	CCTATTCCAT	TTTTATTCAA	ААААТСАААА	AGCAAACTAG	60
AAAGCTGGTC	GCTGGTGGTT	CAAAACACTG	TTTTGAGATT	GTCAATAGAA	CTGACAAACC	120
CTGTAATATA	CCTGCATATA	TACATACGAC	AAGGCGATAC	TACCCTAGTT	TGAAGAGATT	180
TTCGAAGAGT	ATTCATTTTT	GTCTTTTACT	TATTATACCA	TATTCACATA	AAAAAACGAA	240
CATTCTTATC	CTAAAAAATG	CTCATTTTTC	TTAAATTATC	AATCTAAATC	TGGTTTATAG	300
AAGGAACGAT	TATCCATAGC	GAAGATTTTA	TTGGTCATCT	CTCCTTTATC	CACCAAAGCC	360
AGAGCTGTTG	ACATCATCAT	CATGCTTGCA	TCCAGATTGT	CAATCATATG	GATAATCTCT	420
GCCTCCATAA	TACGTGGACG	GACTGGAATT	TCCATATTCA	AGCAAGCCGT	GGTGGACTTG	480
AGGATGACAT	GACGAAGCAA	AACGACTTCT	TCCTTGGTAT	CATCGATGCC	GAGTTCCATA	540
ACTGTCTTGG	TAATTTCGCT	ATCAATGAGA	GCGATATGTC	CAAGAAGATT	ACCTCGCACT	600
GTGTACTCTG	TCTGGTCTGG	CCCCGTCAAC	TCGATAACCT	TAGCTAAGTC	ATGCAGCATA	660
ATCCCCGCAT	AGAGCAGGCT	CTTATTGAGC	TGAGGATAAA	CTTCGCTAAT	AGCGTCTGCC	720
AAACGTACCA	TGGTCGCCGT	ATGATAAGCC	AACCCCGTTT	CAAAGGCATG	GTGGTTGGTC	780
TTGGCGGCTG	GATAGGAGTA	GAATTCCTTA	TCATACTTGG	TGTAGAGATT	TCGGACAATC	840
CGTTGCCAGA	CAGGATTTTC	AATTTTGAAA	ATCATTTGCG	ACATGTAGTC	ACGAATTTCC	900
TTGACATCAA	CTGGTGACTT	GACCTTGAAA	TCAGCTGGGT	CATTGGGTTC	ACCAGCTTGA	960
GGCAGGCGGA	GAGTAATTTG	ATTGACTTGA	GGGGTATTGT	TATAAACTTC	TCGGCGTCCT	1020
TTCATGTGGA	CAACCTTACC	TGCGGTAAAG	GCCTCAATGT	TATGAGGTTG	GGCATCCCAG	1080
AGCTTCCCAT	CAATCTCGCC	ACTATCATCT	TGGAAGGTAA	AGGCTAGGTA	GTTTTTCCCA	1140
GCTCGAGTTT	GCCTCAGGTC	AGCTGATTTG	ATTAGGTAAA	AGCCTTCAAA	TAACTCATCT	1200
TTTTTCATGT	GACTAATCTT	CATATTCTTC	CTCATTTTCT	TGAAAATGGA	GTAGATCAAG	1260
CGCAGGCTCA	CCTTCTGACA	ACTCAATGTG	ACGGAGCGTC	CGCTCGATAG	CTATGGTACG	1320
ACGGTTTAAT	AATTCGATCA	ATATTGCCAG	AGGCATGTTG	GAGATGTTTT	TGTGCCTTGA	1380
CCAGAA						1386
	AAAGCTGGTC CTGTAATATA TTCGAAGAGT CATTCTTATC AAGGAACGAT AGAGCTGTTG GCCTCCATAA AGGATGACAT ACTGTCTTGG GTGTACTCTG ATCCCCGCAT AAACGTACCA TTGGCGGCTG CGTTGCCAGA TTGACATCAA GGCAGGCGGA TTCATGTGGA AGCTTCCCAT GCTCGAGTTT TTTTTCATGT CGCAGGCTCA ACGGTTTAAT	CTGTAATATA CCTGCATATA TTCGAAGAGT ATTCATTTTT CATTCTTATC CTAAAAAATG AAGGAACGAT TATCCATAGC AGAGCTGTTG ACATCAT GCCTCCATAA TACGTGGACG AGGATGACAT GACGAAGCAA ACTGTCTTGG TAATTTCGCT GTGTACTCTG TCTGGTCTGG ATCCCGCAT AGAGCAGGCT AAACGTACCA TGGTCGCGT TTGGCGGCTG GATAGGAGTA CGTTGCCAGA CAGGATTTTC TTGACATCAA CTGGTGACTT GGCAGGCGGA GAGTAATTTG TTCATGTGGA CAACCTTACC AGCTTCCCAT CAATCTCGCC GCTCGAGTTT GCCTCAGGTC TTTTTCATGT GACTAATCTT CGCAGGCTCA CCTTCTGACA ACGGTTTAAT AATTCGATCA	AAAGCTGGTC GCTGGTGGTT CAAAACACTG CTGTAATATA CCTGCATATA TACATACGAC TTCGAAGAGT ATTCATTTTT GTCTTTTCCATTCTTCATTC CATTCTTATC CTAAAAAATG CTCATTTTTC AAGGAACGAT TATCCATAGC GAAGATTTTA AGAGCTGTTG ACATCATCAT CATGCTTGCA GCCTCCATAA TACGTGGACG GACTGGAATT AGGATGACAT GACGAAGCAA AACGACTTCT ACTGTCTTGG TAATTTCGCT ATCAATGAGA GTGTACTCTG TCTGGTCTGG CCCCGTCAAC ATCCCCGCAT AGAGCAGGCT CTTATTGAGC AAACGTACCA TGGTCGCCGT ATGATAAGCC TTGGCGGCTG GATAGGAGTA GAATTCCTTA CGTTGCCAGA CAGGATTTTC AATTTTGAAA TTGACATCAA CTGGTGACTT GACCTTGAAA GCCAGGCGGA GAGTAATTTG ATTGACTTGA TTCATGTGGA CAACCTTACC TGCGGTAAAG AGCTTCCCAT CAATCTCGCC ACTATCATCT GCTCGAGTTT GCCTCAGGTC AGCTGATTTG TTTTTCATGT GACTAATCTT CATATTCTC CGCAGGCTCA CCTTCTGACA ACTCAATGTG ACGGTTTAAT AATTCGATCA ACTCAATGTG	AAAGCTGGTC GCTGGTGGTT CAAAACACTG TTTTGAGATT CTGTAATATA CCTGCATATA TACATACGAC AAGGCGATAC TTCGAAGAGT ATTCATTTTT GTCTTTACT TATTATACCA CATTCTTATC CTAAAAAATG CTCATTTTT TTGGTCATCT AAGGAACGAT TATCCATAGC GAAGATTTTA TTGGTCATCT AGAGCTGTTG ACATCATCAT CATGCTGCA TCCAGATTGT GCCTCCATAA TACCGTGGACG GACTGGAATT TCCATATTCA AGGATGACAT GACGAAGCAA AACGACTTCT TCCTTGGTAT ACTGTCTTGG TAATTTCGCT ATCAATGAGA GCGATATGTC GTGTACTCTG TCTGGTCTGG CCCCGTCAAC TCGATAACCT ATCCCCGCAT AGAGCAGCA ATGATAGAGA GCGATATGTC AAACCGTACCA TGGTCGCCGT ATGATAAGCC TCGATAAAC AAACGTACCA TGGTCGCCGT ATGATAAGCC AACCCCGTTT TTGGCGGCTG GATAGGAGTA GAATTCCTTA TCATACTTGG CGTTGCCAGA CAGGATTTC AATTTTGAAA ATCATTTGCG TTGACATCAA CTGGTGACTT GACCTTGAAA TCATCTTGG GGCAGGCGGA GAGTAATTTG ATTGACTTGA GGGGTATTGT TTCATGTGGA CAACCTTACC TGCGGTAAAG GCCTCAATGT AGCTTCCCAT CAATCTCGCC ACTATCATCT TGGAAGGTAA ACGTTCCCAT CAATCTCGCC ACTATCATCT TGGAAGGTAA CTTTTTCATGT GACTTACCT CATATTCTC CTCATTTTCT CGCAGGCTCA CCTTCTGACA ACTCAATGTG ACTGATGTAAA ACGGTTTAAT AATTCGATCA ACTCAATGTG ACGGAGCGTC ACGCAGGCTCA CCTTCTGACA ACTCAATGTG ACGGAGCGTC ACGGAGCTCA ACTTCTCTC CTCATTTTCT CGCAGGCTCA ACTTCTCAATGTG ACGGAGCGTC ACGGTTTAAT AATTCGATCA ACTCAATGTG ACGGAGCGTC ACGGTTTAAT AATTCGATCA ACTCAATGTG ACGGAGCGTC ACGGTTTAAT AATTCGATCA ACTCAATGTG ACGGAGCGTC ACGGTTTAAT AATTCGATCA ACTCAATGTG ACGGAGCGTC	AAAGCTGGTC GCTGGTGGTT CAAAACACTG TTTTGAGATT GTCAATAGAA CTGTAATATA CCTGCATATA TACATACGAC AAGGCGATAC TACCCTAGTT TTCGAAGAGT ATTCATTTTT GTCTTTTACT TATATACCA TATTCACATA CATTCTTATC CTAAAAAATG CTCATTTTC TTAAATTATC AATCTAAATC AAGGAACGAT TATCCATAGC GAAGATTTTA TTGGTCATCT CTCCTTTATC AGAGCTGTTG ACATCAT CATGCTTGCA TCCAGATTGT CAATCATATG GCCTCCATAA TACGTGGACG GACTGGAATT TCCATATTCA AGCAAGCCGT AGGATGACAT GACGAAGCAA AACGACTTCT TCCTTGGTAT CAACGAAGACAT ACTGTCTTGG TAAATTCGCT ATCAATGAGA GCGATATGTC CAAGAAGATT GTGTACTCTG TAAATTCGCT ATCAATGAGA GCGATATGTC CAAGAAGATT ACCCCGCAT AGAGCAGGCT CTTATTGAGC TGGAGAACAC TTCGCTAAT AAACGTACCA TGGTCGCGT ATGATAAGCC AACCCCGTTT CAAAGGCATG TTGGCGGCTG GATAGGAGTA GAATTCCTTA TCATACTTGG TGTAGAGATT CGTTGCCAGA CAGGATTTC AATTTGAAA ATCATTTGCG ACATGAGTC TTGACATCAA CTGGTGACTT GACCTTGAAA TCAATTTGCG ACATGAGTC TTGACATCAA CTGGTGACTT GACCTTGAAA TCAGCTGGGT CATTGGGTTC GCCAGGCGGA GAGTAATTG ATTTGACAT TCAGCTGGGT CATTGGGTTC TTCATGTGGA CAACCTTACC TGCGGTAAAG GCCTCAATGT TATAAACTTC TTCATGTGGA CAACCTTACC TGCGGTAAAG GCCTCAATGT TATAAACTTC TTCATGTGGA CAACCTTACC TGCGGTAAAG GCCTCAATGT TATGAGGTTA AGCTTCCCAT CAATCTCGCC ACTATCATT TGGAAGGTAA AGCCTTCAAA ACCTTCCAT CAATCTCGCC ACTATCTT TGGAAGGTAA AGCCTTCAAA TTTTTCATGT GACTTACC ACTATCTT TGGAAGGTAA AGCCTTCAAA CCTCGAGTTT GCCTCAGGTC ACTATCTT TGGAAGGTAA AGCCTTCAAA TTTTTCATGT GACTTACC ACTATCTT TGGAAGGTAA AGCCTTCAAA CCTCGAGGTT GACTTACCT CATATCTT TGGAAGGTAA AGCCTTCAAA CCTCCAGGTC ACTTCTACAC ACTATCTT TGGAAGGTAA AGCCTTCAAA CCTCCAGGTC ACTTCTACAC ACTATCTT TGGAAGGTAA AGCCTTCAAA CCCCGGTTAACC ACTTCTACC ACTATCTT TGGAAGGTAA AGCCTTCAAA CCCCGGTTAACC ACCTTCACA ACTATCTT TGGAAGGTAA AGCCTTCAAA CCCCGGTTAACC ACTATCTT TGGAAGGTAA AGCCTTCAAA CCCGGTTAACC ACTTCTACC ACTATCTT TGGAAGGTAA AGCCTTCAAA CCCCGGTTAACC ACTATCTT TGGAAGGTAA AGCCTTCAAA CCCCGGTTAACC ACTTCTACC ACTATCTT TGGAAGGTAA AGCCTTCAAA CCCGGTTAATCT ACTATCTT TGGAAGGTAA AGCCTTCAAA CCCGGTTAATCT ACTATCTT TGGAAGGTAA AGCCTTCAAA CCCGGTTAATCT ACTATCTT TGGAAGGTAA AGCCTTCAAAA CCCGGTTAATCT ACTATCTT TGGAAGGTAA AGCCTTCAAAA CCCGGTTAATCT ACTATCTT TGGAAGGTAA AGCCTTCAAAA CCCGGTTAATCT	AAAGCTGGTC GCTGGTGTT CAAAACACTG TTTTGAGATT GTCAATAGAA CCTGACAAACC CTGTAATATA CCTGCATATA TACATACGAC AAGGCGATAC TACCCTAGTT TGAAGAGATT TCGAAGAGA ATTCATTTT GTCTTTTACT TATTATACCA TATTCACATA AAAAAACGAA CTTCTTATC CTAAAAAATG CTCATTTTC TTAAATTATC AATCTAAATC TGGTTTATAGAGACTA TATCCATAGAC GAAGACGAT TATCCATAGC GAAGATTTTA TTGGTCATCT CAATCATATG GATCATACTC CACCAAAGCC AAGGCCGT GACGACACAC TACCCATAAA TACCATAGC GAAGATTTTA TTGGTCATCT CAATCATATG GATAATCTCT GCCCCCATAA TACCGTGACA AACGACTTCT TCCATATTCA AGCAAGCCGT GGTGGACTTG AACTCTTGGACGAAGCAA AACGACTTCT TCCTTGGTAT CATCGATGCC GAGTTCCATAA ACCGACTCG TACTCTTGGTCATC TCCGTGTAT CAAGAAGAATT ACCTCGCACT ACCAGAAGCACA AACGACTTCT TCCTTGGTAT CAAGAAGAATT ACCTCGCACT TCGGTACTCG TACTTTGGTC TCGGTCAAC TCGATAACCT TAGCTAAGTC ATCCACACACACACACACACACACACACACACACACA

(2) INFORMATION FOR SEQ ID NO:76:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1167 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

CTCAGATTAC	AGAGGACAAT	CAACTGGTTC	ATTTTCGTTT	CCAGTTTCAA	AAAGGCTTAG	60
AAAGGGAGTT	CATCTATCGT	GTGGAAAAAG	AAAAAAGTTA	AGGCAGGTGT	TCTCCTCTAC	120
GCAGTCACCA	TAGCAGCCAT	CTTTAGTCTT	TTGTTGCAAT	TTTATTTGAA	CCGACAAGTC	180
GCCCACTATC	AAGACTATGC	TTTGAATAAA	GAAAAATTGG	TTGCTTTTGC	TATGGCTAAA	240
CGAACCAAAG	ATAAGGTTGA	GCAAGAAAGT	GGGGAACAGG	TTTTTAATCT	AGGTCAGGTA	300
AGCTATCAAA	ACAAGAAAAC	TGGCTTAGTG	ACGAGGGTTC	GTACGGATAA	GAGCCAATAT	360
GAGTTTCTGT	TTCCTTCAGT	СААААТСААА	GAAGAGAAAA	GAGATAAAAA	GGAAGAGGTA	420
GCGACCGATT	CAAGCGAAAA	AGTGGAGAAG	AAAAAATCAG	AAGAGAAGCC	TGAAAAGAAA	480
GAGAATTCCT	AGTCAATTCA	ACTATAATGC	${\tt GTTGAATCCA}$	GAATAGTCCA	CTGTAGTTTC	540
TAGAAAATTG	CTGGAAATGG	ATGTTAAGCT	CCAATTCATT	TGTTTATATC	TTATTTCAGT	600
CCACTATACT	TTGTGCTAAA	TTAAAGATAT	GAAACATGAT	TTTAACCACA	AAGCAGAAAC	660
TTTCGATTTC	CCTAAAAATA	TCTTCCTCGC	AAACTTGGTA	TGTCAAGCAG	CCGAGAAACA	720
GATTGATCTT	CTATCAGACA	AAGAAATTTT	AGATTTCGGT	GGTGGCACGG	GTCTATTAGC	780
CTTGCCCCTA	ACCCCTAGCC	AAGCAGGCTA	AGTCAGTCAC	TCTTGTAGAC	ATTTCTGAGA	840
AAATGTTGGA	GCAAGCTCGT	TTGAAAGTGG	AGCAGCAAGC	AATCAAGAAT	ATCCAGTTTT	900
TGGAGCAAGA	TTTACCGAAA	AATCCCTTGG	AGAAAGAGTT	TGATTGCCTT	GCTGTTAGTC	960
GGGTTCTTCA	TCATATGCCT	GATTTGGATG	CGGCTCTCTC	ACTGTTTCAT	CAACATTTGA	1020
AGGAAGATGG	GAAACTCATC	ATTGCTGATT	TTACCAAGAC	AGAAGCTAAT	CATCATGGAT	1080
TTGATTTAGC	TGAACTGGAA	AACAAGCTAA	TTGAGCATGG	GTTTTTCATC	TGTGCATAGT	1140
CAGATNCTCT	ATAGCGCTGA	AGANCTG				1167

(2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 916 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

TCTCCCAACA	TATAATTTCC	GTTTTCCAAT	CCCCCAGCTG	TCATACAGTC	TGTGATAAGA	60		
GCGATGTTTT	$\mathtt{CTGTTCCTTT}$	TTGTTTGATA	AGAATTTCGC	AAGCCTTTGG	ATCTACGTGG	120		
188								

TGACCATCAC	AGATCAACTC	TGCATAGGTA	TGTGGCAATT	GGTACATGGC	TCCAACCATA	180
CCCAATTCAC	GGTGAGTCAA	CCCACGCATT	CCATTGTAGG	CATGCACCCA	AACACTCGCT	240
CCAGCATCGA	CTGCTTTTTT	GGCTTCATCA	AAAGTCGCGT	TTGAATGTCC	AAGAGCAACC	300
GTCACACCTT	CGCCCGTAAC	TGTACGAACA	AAGTCTTCCA	CCCCATCACG	TTCTGGTGCA	360
ATCGAATTTT	ATTAAGCAAG	CCATTTGCCG	CTTTTTGCCA	AGAATGAAAC	TCCTCAACAC	420
CCGGGTCTCT	CATATAAGTT	GGATTTTGTG	CCCCCTTAAA	AGTTTCTGTG	AAATATGGAC	480
CTTCATAATA	AATCCCACGA	ATCTTAGCAC	CTGTTGCTTC	TTTATAATGG	TTTCCAAGAT	540
TTTCAGTGAC	TGCAAGCAAT	TGCTCATAAG	TGGCTGTTAA	AGTTGTGGGT	AAGAAACTGG	600
TAACACCGGT	ACTAAGAAGT	CCTTCACTCA	TAGTATGCAA	TGTACCTTCA	ATGTTGTTGT	660
CCATCACATC	TACACCTGCA	TATCCATGAA	TATGAGTATC	CACAAGACCT	GGGGCAATGC	720
TATAACCTGT	ATAGTCAATC	ACCTCAGCCC	CTTCAGGAAT	CTGCTCTACA	TGTTTCCCAA	780
ACTTGCCGTC	CACAAGTTCC	AAGTAACCAC	CTCGACAAAT	CCGTGTGGGT	AGAAAACTG	840
ATCCGCTTTA	ATATAGTTAG	GCATAATGTT	AACCTCCTTA	AAAGATTGAT	TCTACAATTT	900
ATTATGTCAA	TTCGAT					916

(2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 786 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

CTGGATTAAA	ACGAGGCAGT	TTCAGACTAA	TATCCAAGTC	GTAAGAAATG	CCTGAAATAA	60
GCTTTTCTAA	ATTGTCCAAA	GCTTGCGGGA	AAACGCTCTT	GGAATAGTTT	CTCTAAAGAA	120
CTTGCTGATA	TAAAGACATC	TTGTCTCGAA	CGCAAGGGAA	CTTCTCTGAG	CGGTAGATTT	180
${\tt TCTTTAATCG}$	CTGTTAAAAC	TTGAAGAACT	TCTCTATCCC	TGCTTTCAAA	AGCGTTGACC	240
CGATAAAGAG	${\tt GTAAGATAGG}$	ATGATGAAAT	TCGCTTGCTA	GTGTTTCTGG	ATAAACCCCT	300
ATATAGTAAT	CACAGCCTAG	TTCTAACGAC	TCAACTCTAT	CAAAATAAGG	CACAATGACC	360
GCGATATCCT	CCAGGTACTG	GGACAGGACT	GACCAAGTTT	TCTCCCCCTG	CATCTTGGCT	420
GTCGAAAGCT	TCATCAACTG	CTGATAGCCC	ACACTAGATA	GAGCTAAAAA	GCGCAAATTC	480
ACTTCCTGAT	CATCTACAAA	CACTGTCATT	TCAAGCCCTA	GCAAAGGATG	AATGCCGTAT	540
${\tt TTTTTTGTAA}$	TCTCTAGAAA	GTCGAAAGCG	CCATAAAGAT	TGTCAATATC	CATCATAGCC	600
AAATGAGTGT	AGCCGTATTC	TTTAGCTGCT	CTCACATACT	TTTCGATCGA	AATGACGCTT	660
TCCATAAAAC	TATAGACTGT	TTTTGTATCT	AGTTGTGCGA	TCAATTTACA	CTTCTCCTCT	720
ATCCTTCTCA	CTATATTATA	CCATTTTCAC	CTATAAATGG	CTTCTCTTGA	GAAAAATTTC	780
GATCAG						786

(2) INFORMATION FOR SEQ ID NO:79:

```
(i) SEQUENCE CHARACTERISTICS:
```

(A) LENGTH: 1213 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

CACTTTCAGC	TTCTTCTCTT	TTTGAACGGT	TATAAACACG	AATCAGATTC	CCTATTTCTT	60
GCGATTTATG	TGATTCCTTA	TTTTCCAATC	TAAAGTATAG	TGAAATGAAA	TAAAACATGC	120
GCAAATCGAT	TAAGGAATTT	AATCTAATTT	CTAACAATGT	CTTAGAAATC	AAAGTGTACT	180
ATTTTAACTT	CAATGCACTA	AACATCTAAT	ACTCAATAAA	AATCAAAGAG	CAAACTAGGA	240
AACTAGCCGC	AGGTGGCTCA	AAACACTGTT	TTGAGGTTGT	AGATGAAACT	GACGAAGTCA	300
GTAACCATAC	ATACGGCAAG	GCGACGCTGA	CGTGGTTTGA	AGAGATTTTC	GAAGAGTAGC	360
AAAATGGAAA	AAGGAGTGAG	TGAAGCACAT	CGCCTCCCCA	CTCCTTTTTC	TGTTTTTAGG	420
CTGTTTTTTC	AACCTTCAAG	ATTTTTACAT	CATAGCTACC	AACAGGCGTT	TCAATGGTTG	480
CTGTATCACC	TGTTTTCTTG	CCAATCAAGG	CCTGCCCAAT	TGGGCTTTCA	TTTGAAACCT	540
TACCTGCAAA	GGCATCCGCA	CCAGCTGAAC	CTACGATAAT	ATAAACTTCT	TCTTCGTCCT	600
CACCAATTTC	TTGGATGGTG	ACTGTTTTAC	CAATCGCTAC	TTCGTCCTGG	GCAACTGCGT	660
CGCTATTGAC	GATTTCAGCA	${\tt TAGCGGATTT}$	TTGTTTCTAA	GCTAGAGATT	TGTCCTTCGA	720
CAAAGGCTTG	TTCATCCTTA	GCTGCTTCGT	ACTCACTGTT	TTCTGAAAGG	TCACCGTATG	780
AACGGGCAAT	CTTAATGCGT	TCTACCACTT	CTGGTCGACG	AAACCAATTT	CAATTCTTCT	840
AATTCTTTTT	CAAGTTTTTC	$\mathtt{CTTTTCCTCA}$	AGGGTCATAG	GATATGTTTT	TTCTGCCATT	900
TTTCTCAACT	TTCTTCTGAT	AATATTTTCT	AAAGAAAATT	ATGTGAAGTA	TCACATAATT	960
TTAGTTTGTT	TAGTTTAATT	TGCTGTTGAC	ATGTTCAGCG	ACATTGCGGT	CGTGGTCTTC	1020
TTGATTGTTA	GCATAGTAAA	CCTTGCCTTC	TGTGACATCT	GCTACAAAGT	AAAAGTTATC	1080
GCTCTTAGTT	TGATTGATGC	TTGACTCAAT	CCGCATCCAA	GACTTGGACT	ATCGACTGGA	1140
CCAGGCATGA	GACCTACATT	TTTATAAACA	TTATAAGGTG	AATCAATGTT	GGTATCAATC	1200
GCAACATCCT	CAG					1213

(2) INFORMATION FOR SEQ ID NO:80:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1173 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

TGCGGCT					TCGGTGACAC		60
					CAAAAGCGCT	TGATAAGGCT	120
GCGAAAG.	AGA	TTGGTGTGGA	CTTTATTGGT	GGTCTTTCTG	CCTTAGAACA	AAAAGGTTAT	180
CAAAAGG	GAG	ATGAGATTCT	CATCAATTCC	ATTCCTCGCG	CTTTGACTGA	GACGGATAAG	240
GTCTGCT	CGT	CAGTCAATAT	CGGCTCAACC	AAGTCTGGTA	TTAATATGAC	GGCTGTGGCA	300
GATATGG	GAC	GAATTTATCA	AGGAAACGGC	AAATCTTTCA	GATATGGGAG	CGGCCAAGTT	360
GGTTGTA'	TTC	GCTAATGCTG	TTGAGGACAA	TCCATTTATG	GCGGGTGCCT	TTCATGGTGT	420
TGGGGAA	GCA	GATGTTATCA	TCAATGTCGG	AGTTTCTGGT	CCTGGTGTGG	TGAAACGTGC	480
TTTGGAA	AAA	GTTCGTGGAC	AGAGCTTTGA	TGTTAGTAAC	CCGAAAACCA	GTTAAGAAAA	540
CTGCCTT'	ΓTA	AAATCACTCC	GTATCCGGTC	CAATTGGTTT	GGTCAAATGC	CCAGTGAGAG	600
ACTGGGT	GTG	GAGTTTGGTA	TTGTGGACTT	GAGTTTGGCA	CCAACCCCTG	CGGTTGGAGA	660
CTCTGTG	GCA	CGTGTCCTTG	AGGAAATGGG	GCTAGAAACA	GTTGGCACGC	ATGGAACGAC	720
AGCTGCC	ΓTG	GCCCTCTTGA	ACGACCAAGT	TAAAAAGGGT	GGAGTGATGG	CCTGTAACCA	780
GGTCGGT	GGT	CTATCTGGTG	CCTTTATCCC	TGTTTCTGAG	GATGAAGGAA	TGATTGCTGC	840
AGTGCAA	AΑΤ	${\tt GGCTCTCTTA}$	ATTTAGAAAA	ACTAGAAGCT	ATGACGGCTA	TCTGTTCTTG	900
TTGGATT	GGA	TATGATTGCC	ATCCCAGAAG	ATACGCCTGC	TGAAACTATT	GCGGCTATGA	960
TTGCGGA	ГGА	AGCAGCAATC	${\tt GGTGTTATCA}$	ACATGAAAAC	AACAGCTGTT	CGTATCATTC	1020
CCAAAGG	AAG	AGAAGGCGAT	ATGATTGAGT	TTGGTGGTCT	ATTAGGAACT	GCACCCGTTA	1080
TGAAGGTT	PAA	TGGGGCTTCG	TCTGTCGACT	TCATCTCTCG	CGGTGGACAA	ATCCCAGCAC	1140
CAATTCAT	ΓAG	$\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{T}^{\top}$	TAAGAAAATA	GGA			1173

(2) INFORMATION FOR SEQ ID NO:81:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1209 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

TCGGAATCTG	AGCTAGTGTA	GCTTCCTTAA	TCTTATCTGA	TAAGATAGCT	GTCATATCAG	60
ACTCAATCAT	TTCCTGGAGC	AATCAACATT	GACTCGTATA	TTCCGACTAG	CGACCTCGCG	120
TGCCACAGAC	TTGGTAAAGC	CAATCAAGCC	AGCCTTAGAA	GCAGCATAGT	TAGCTTGACC	180
AATATTCCCC	ATCAAACCAA	CAACACTAGA	CATATTAATG	ATAGCACCTT	CTCTGGCTTT	240
CATCATCGGT	${\tt TTCAAGACTG}$	ATTGTGTCAT	ATTAAAGGCA	CCAGTCAGAT	TGACCTTGAG	300
CACTTTTTCA	AAATCTGCTT	CTGTCATCTT	GAGCATAAGA	GTATCTTGGG	TAATCCCTGC	360
ATTGTTGACC	AAAACATCTA	CTGAACCCAG	TTCTGCAATA	GCTTGATCAA	TCATACGCTT	420
AGCGTCTGCA	AAATCTGATA	CATCTCCTGA	AATGGGAACC	ACCTTGATAC	CATAGTTTGA	480
AAACTCAGCG	AGCAATTCTT	CTGAGATTGC	CCCACGACTG	TTTAAGACAA	TGTTGGCTCC	540
TGCTTGAGCA	AACTTGTGGG	CGATGGCAAG	ACCAATTCCA	CGACTCGAAC	CTGTAATAAA	600
GATATTTTTA	TGTTCTAGTT	TCATTTTTTT	CCTTTCAAAA	CTTCTACTTA	TTTTAGTCTA	660
		_				

TTTTTCTAAA	AGTGCTACTA	AACTCGCTTG	ATCTTCCACA	TGAGCTAAGT	GAGCAGTTTG	720
ATCAATTTTT	TTAACAAAAC	CTGACAAGAC	TTTCCCCGGT	CCAATCTCGA	ATAAAGTTGC	780
TTATGCCTGC	TTCTTGCATG	ACCCCAATAC	TTTCATAGAA	ACGAACGGGT	TCCTTGACCT	840
GACGCGTCAA	GAGCTGAGCA	ATGTCCTCTT	TTTGCATCAC	AGCAGCTTCT	GTATTGCCGA	900
CTAGGGGACA	AGTAAAATCT	GAAAAACTTA	CCTGAGCTAG	AGTTTCAGCT	AGTTTCTGGC	960
TAGCAGGCTC	AAGGAGAGCG	GTGTGAAAGG	GACCTGACAC	CTTAAGAGGA	ATCAAGCGTT	1020
TGGCACCTGC	TTCTTGCAAA	AGTTCAACCG	CTCGATCAAC	TGCAACCACT	TCTCCAGCAA	1080
TGACGATTTG	TGCAGGTGTG	TTATAGTTGG	CTGGAGTAAC	CACTCCAAGT	TCCAGAAGCT	1140
TTTTGACAGG	CTTCTTCAAT	GACCTCTACT	GGCGTATTGA	GAACTGCTAC	CATCTTGCCA	1200
AGTTCAGCA						1209
	ATCAATTTT TTATGCCTGC GACGCGTCAA CTAGGGGACA TAGCAGGCTC TGGCACCTGC TGACGATTTG TTTTGACAGG	ATCAATTTT TTAACAAAAC TTATGCCTGC TTCTTGCATG GACGCGTCAA GAGCTGAGCA CTAGGGGACA AGTAAAATCT TAGCAGGCTC AAGGAGAGCG TGGCACCTGC TTCTTGCAAA TGACGATTTG TGCAGGTGTG TTTTTGACAGG CTTCTTCAAT	ATCAATTTT TTAACAAAAC CTGACAAGAC TTATGCCTGC TTCTTGCATG ACCCCAATAC GACGCGTCAA GAGCTGAGCA ATGTCCTCTT CTAGGGGACA AGTAAAATCT GAAAAAACTTA TAGCAGGCTC AAGGAGAGCG GTGTGAAAGG TGGCACCTGC TTCTTGCAAA AGTTCAACCG TGACGATTTG TGCAGGTGTG TTATAGTTGG TTTTTGACAGG CTTCTTCAAT GACCTCTACT	ATCAATTTT TTAACAAAAC CTGACAAGAC TTTCCCGGT TTATGCCTGC TTCTTGCATG ACCCCAATAC TTTCATAGAA GACGCGTCAA GAGCTGAGCA ATGTCCTCTT TTTGCATCAC CTAGGGGACA AGTAAAATCT GAAAAACTTA CCTGAGCTAG TAGCAGCTC AAGGAGAGCG GTGTGAAAGG GACCTGACAC TGGCACCTGC TTCTTGCAAA AGTTCAACCG CTCGATCAAC TGACGATTTG TGCAGGTGTG TTATAGTTGG CTGGAGTAAC TTTTGACAGG CTTCTCAAT GACCTCTACT GGCGTATTGA	ATCAATTTT TTAACAAAC CTGACAAGAC TTTCCCCGGT CCAATCTCGA TTATGCCTGC TTCTTGCATG ACCCCAATAC TTTCATAGAA ACGAACGGGT GACGCGTCAA GAGCTGAGCA ATGTCCTCTT TTTGCATCAC AGCAGCTTCT CTAGGGGACA AGTAAAATCT GAAAAACTTA CCTGAGCTAG AGTTTCAGCT TAGCAGGCTC AAGGAGAGCG GTGTGAAAGG GACCTGACAC CTTAAGAGGA TGGCACCTGC TTCTTGCAAA AGTTCAACCG CTCGATCAAC TGCAACCACT TGACGATTTG TGCAGGTGTG TTATAGTTGG CTGGAGTAAC CACTCCAAGT TTTTGACAGG CTTCTTCAAT GACCTCTACT GGCGTATTGA GAACTGCTAC	ATCAATTTT TTAACAAAC CTGACAAGAC TTTCCCCGGT CCAATCTCGA ATAAAGTTGC TTATGCCTGC TTCTTGCATG ACCCCAATAC TTTCATAGAA ACGAACGGGT TCCTTGACCT GACGCGTCAA GAGCTGAGCA ATGTCCTCTT TTTGCATCA AGCAGCTTCT GTATTCCGA CTAGGGGACA AGTAAAATCT GAAAAACTTA CCTGAGCTAG AGTTTCAGCT AGTTTCTGGC TAGCAGGCTC AAGGAGAGCG GTGTGAAAGG GACCTGACAC CTTAAGAGGA ATCAAGCGTT TGGCACCTGC TTCTTGCAAA AGTTCAACCG CTCGATCAAC TGCAACCACT TCTCCAGCAA TGACGATTTG TGCAGGTGTG TTATAGTTGG CTGGAGTAAC CACTCCAAGT TCCAGAAGCT TTTTGACAGG CTTCTTCAAT GACCTCTACT GGCGTATTGA GAACTGCTAC CATCTTGCCA

(2) INFORMATION FOR SEQ ID NO:82:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 813 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

ATGACACGTC	TGTTCTCTCA	AGCAGAAATG	GCAGAGTAAC	AAGCTCGATA	TTGAGGTAGC	60
CGATAAAGAA	TTGGCTGAAT	TTGAAGCTCA	GATTAAACAG	GAAGTGGAAG	CTCCAACTTG	120
TAGTGAGTCC	TCAGGTTGAA	GAAGAGCCTC	AGCTCATCCA	GTTGGCCCAA	TGTATGAAGA	180
ACCAGAAGTA	AATCCAGTGC	ATCCGACAGG	TCCAACACCA	GCTACAGAAA	CTGTTGATTC	240
AATACCGGGA	TTTGAAGCAC	CGCAAGAATC	TGTTACAATT	TTATAAGAAA	TATTCTGAGA	300
ACAATATCTT	ATCCTTATAT	TTCCAGCGAG	CAGGAAATGG	TGTGAGTCCT	GCATTCCCTA	360
TCGATAAGAT	TATCCTCTCA	AACTATCAAG	TCTGAATCTA	GTAAGATTTG	ACGTTCCCCA	420
CGTTACGGGA	TAAGAGAGAG	AAAGACTAAA	TCTTTTTCCG	AATAAAGGTG	GTACCACGAT	480
TTTCGTCCTT	TTTGGAAGTC	${\tt GTGGTTTTTA}$	ATTTGTTATT	ATTTATAAAG	GAGATACCAT	540
GAAACTCAAA	${\tt GACACCCTTA}$	ATCTTGGGAA	AACTGAATTC	CCAATGCGTG	CAGGCCTTCC	600
TACCAAAGAG	CCAGTTTGGC	AAAAGGAATG	GGAAGATGCA	AAACTTTATC	AACGTCGTCA	660
AGAATTGAAC	CAAGGAAAAC	CTCATTTCAC	CTTGCATGAT	GGCCCTCCAT	ACGCTAACGG	720
AAATATCCAC	GTTGGACATG	CTATGAACAA	GATTTCAAAA	GATATCATTG	TTCGTTCTAA	780
GTCTATGTCA	GGATTTTACG	CGCCATTTAT	TCC			813

(2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 953 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

192

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

ATCGAATTAT	TTTGAAACAA	GGTGGATCAG	CTATTTTGGC	CTTGATTAGT	ATTTTACTCT	60
TTAAATACAC	TTGAAGGTCG	ATTCTAATCT	CGCTAATCCT	TTTTAATCCA	GAATAAGGGA	120
AATATGTTAT	ACTTGTTTTT	AAGAAAAAG	TTTCATTGAA	TTGGTTTTGA	GGAGTTAGAA	- 180
ATGAAAGTAT	TAGTGACAGG	TTTTGAGCCC	TTTTGAGGCC	ATTAAAGGTT	TACCAGCTGA	240
AATCCATGGT	GCTGAGGTCC	GTTGGCTAGA	GGTGCCGACA	GTTTTTCACA	AATCTGCTCA	300
AGTATTGGAA	GAAGAGATGA	ATCGTTATCA	ACCTGACTTT	GTCCTTTGTA	TTGGGCAAGC	360
TGGTGGAAGA	ACTAGTTTGA	CACCTGAACG	AGTGGCCATT	AATCAAGACG	ATGCACGTAC	420
TTCTGATAAC	GAAGATAATC	AACCGATTGA	CCGTCCCATT	CGCCCAGATG	GTGCTTCGGC	480
CTACTTTAGT	AGTTTGCCGA	TTAAAGCGAT	GGTTCAAGCT	ATAAAAAAGA	AGGATTACCG	540
GCCTCTGTTT	CCAATACGGC	AGGGACTTTT	GTCTGCAGCC	ATTTGATGTA	TCAGGCTCTC	600
TATTTGGTAG	AAAAGAAATT	CCCATATGTT	AAGGCAGGTT	TTATGCATAT	TCCTTATATG	660
ATGGAACAGG	TGGTGAACAG	ACCGACTACT	CCAACTATGA	GTTTAGTGGA	TATTCGGCGA	720
GGGATAGAAG	CAGCAATCGG	CGCTATGATA	GAACATGGAG	ATCAGGAACT	CAAGTTGGTA	780
GGCGGAGAAA	TTCATTGATA	GAAAAAAGCT	TGAGGGGAAA	ACCTTCAAGC	TTTTGGACGT	840
TTTCGAGCCA	ATACTGCTCG	GTAAAACATA	ATTTTAGTGC	ATTGGATATA	AGGTAGGAGT	900
GAAAAACTAG	CAATGCCAAA	GGTAATCCAA	TTGAGGAAGT	ACCAAGGAAG	AAG	953

(2) INFORMATION FOR SEQ ID NO:84:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1060 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

${\tt CTACTTGAAA}$	CAGAACTGAA	ATTATACCCA	CTACCTCCCT	GATTATCTTC	AATGCTTACG	60
TCTAAATAAA	CTTCCCCACT	ATTATTTAGC	TTAGCAACAA	CTGTTATAGT	ААААТААСАТ	120
AAAATTCACA	TAAATAGATT	AGGGAAATCA	AAGCAACTTC	TAGGAATGTT	TTAGCAGTCA	180
CAGTGTACTT	TCCCAGCATC	AAGCCACTAT	AACTCTGCAC	ATAAAAATGG	AGAAGATGGC	240
CATCCTCTTC	$\mathtt{TCCAAATATT}$	AACTTCTTTA	CAAACCAACT	ATAGTTGACA	AAGAACCTAA	300
AATCAATTGA	TAACACGAGG	TCAGGTCGGT	CAACTCTTTC	AACTGAAGCC	CTGTCAACTC	360
TTCCCATTTA	TCAATCTTGT	ATTGGAGAGA	ATTGCGGTGC	AGATAGAGTT	GCTGGGCTGT	420
TTAAGTGAGA	ACAGCACTAT	TTTCCCAAAG	AGAGAGAATG	ATTTCCTGAA	TCTGATCTTG	480
ATCCAAAATC	ATCTGGTGTA	GACATTCCTT	GATTGGCTTC	AAGTCCACGA	GTCTTTCTCC	540
CAGACTCCAA	AGATAGAGCT	GAGAAAAAGT	ATGAACACCT	TGGTGACCCT	GACGCCACCA	600
		_	^ ^			

TGTCTTGAAC	AAATCCCGCT	CAGCTTTGAT	TAAGTCTGAT	AGGGCTTGAT	GTCCCGTCTG	660
AGACCAAACC	TGACCCAACA	TGATAGAAAG	ACGAAGTCCA	AAGTCATACT	CAACCGCTTC	720
AATCGTATCA	CTTAAAATAT	CTCTTACAGA	AGTGTATTTG	TCTTGTTGAA	GCACGAAAAC	780
ATAATCCTGA	GATCCGACCT	GTAGCACTGT	CTGACAATTC	GGAAAAAGAG	TCCGCATCAT	840
ATCTAGCCAA	GAAGCCAGAT	TTTCCTGCTG	AAAATAAGAA	AGATGGCAAT	AAACCAACTG	900
AATCTTTTTA	AAAACTTGCG	GTGCCTGTCC	CTTGCCTTCA	ACCAGATAGG	AATACCAAGG	960
GTTTAGCGAA	CGAACCTGCT	CCTGCTGGGT	CAAAAGGGCA	ACCAACTGCT	TTTCACGCTC	1020
GCTGAGCCCA	${\tt GCTTCCTCCA}$	GCAAAATCCA	CTGCTGAGAG			1060

(2) INFORMATION FOR SEQ ID NO:85:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 895 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

ATTTTAGACT	TTGATGACAA	TCCTCAGGCG	GTTATCATGC	CCAATCACGA	GGGGCTGGAA	60
TTGCAGTTGC	CAAAGAAGTG	TGTTTATGCA	TTTTTAGGTG	AGGAGATCTG	ACCGCTATGC	120
AAGGGAAGTA	GGGGCGGATT	GTGTCGGCGA	ATTCGTTTCT	GCTACCAAGA	CCTATCCAGT	180
CTCTTTCATC	AACTACAAGG	GTGAGGAGGT	CTGTCTGGAT	CAGGCTCCTG	CTGGCTCCGC	240
TCCAGCAGCC	CAGTTTATGG	ATGGGTTGAT	TGGCTATGGT	GTGGAGCAGC	TTATCTCTAC	300
TGGGACCTGT	GGTGTCCTAG	CTGATATAGA	GGAAAATGCC	TTTCTAGTCC	CTGTTCGCGC	360
TTTGCGAGAT	GAGGGAGCCA	GTTACCACTA	TGTGGCACCT	TGTCGTTATA	TGGAAATGCA	420
GCCAGAGGCT	ATTGCTGCTA	TTGAGGAAGT	TTTGGAAGAC	AGAGGGATTC	CTTATGAAGA	480
AGTCATGACC	TGGACGACAG	ACGGTTTTTA	CCGAGAAACG	GCTGAAAAGG	TGGCTTATCG	540
TAAGGAAGAA	GGCTGTGCTG	TTGTGGAGAT	${\tt GGAGTGTTCT}$	GCTCTTGCGG	CAGTAGCTCA	600
ATTGCGTGGG	GTTCTCTGGG	GTGAATTGTT	GTTCACAGCA	AATTCTCTAG	CGGACTTGGA	660
CCAGTACAAC	AGTCGTGACT	GGGCTCGGA	ACCTTTTAAT	AAGGCGCTAA	AACTGAGTTT	720
AGCAAGTGTC	CACCACCTTT	AGTTGTACTG	GCAAAGGATT	TGTTTTATCA	TAAAATGTCT	780
AGCTCATACT	TTTCAAAAAT	ATGTTTAAAC	GAAGTCACCT	TCCTCTTGTC	CTAAGCATGT	840
TTGAAGTTGG	GAAAAATCTT	TAAAATCAGA	AAAACGTATC	ATATCAGGTT	GATGA	895

(2) INFORMATION FOR SEQ ID NO:86:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 645 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

194

10-0.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

AGGGCTGTCA	AGCTTGGTTA	${\tt GAACGTTTAG}$	AAAAGGAGAG	TTAAGGTGGA	AAATCTTACG	60
AATTTTTACG	AAAAGTATCG	${\tt TGTCTATCTG}$	ACTCGTCCAC	GTTTAGAGCT	TTTGGCAGTA	120
GTTACCATTG	TTTTANGNGC	TGTACTCGTC	$\mathtt{TTTTTTTTAA}$	ATATTCCAGG	AAAAGGTGTC	180
TTAAAACTCG	ATAATGGAAC	GATTGTTTAT	GATGGCAGTC	TTGTCCGTGG	TAAAATGAAT	240
GGCCAAGGTA	CCATTACCTT	CCAAAATGGA	GACCAATATA	CAGGTGGCTT	CAACAATGGA	300
GCCTTCAACG	GAAAAGGTAC	CTTTCAATCT	AAAGAAGGCT	GGACCTACGA	AGGTGATTTT	360
GTAAATGGTC	AGGCTGAAGG	AAAAGGGAAA	CTAACAACAG	AACAAGAAGT	CGTTTATGAA	420
GGAACTTTTA	AACAAGGCGT	TTTTCAACAA	AAATAAAGCC	TCCTTATCAA	AGGAGGTATT	480
ATTAGAATTA	CAAGGTAAGC	GTTTACCTGT	AAATCCCTTT	CTTTCCAAAT	CCCTCTTCCA	540
AGCAAGTTTG	TGAAATAAAA	AATATTTGAA	ATAAATTTCA	CAAACTTCAA	AGATAAAACC	600
TGATAAGAAA	AGAAAATGAG	AAAAGTTTCG	CAAGAGTTTA	AAAAT		645

(2) INFORMATION FOR SEQ ID NO:87:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 572 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

GAGATCTGTC	TTGACACCAA	AAGTGTGGAG	TACGCCAGCT	AATTCAACGG	CGATATAACC	60
AGCGCCTAGA	ATCGCAATTG	ACTCTGGAAG	TTCTTCCCAG	GCAAATACAT	CATCAGAAGA	120
GCCACCTAGC	TCAGCACCAG	GAATATTAGG	AATACTTGGA	TGGGCACCTG	TAGCAATCAC	180
GATATGTCTA	GCACGAATCA	GTTCACCATT	TACGCTTACA	GTATGAGAAT	CTACAAATTC	240
AGCATGACCT	TCAATCAAGT	CTACACCGTT	GCGTTTAAAA	CTACCATCAT	AGAGAAGAAC	300
GAGCGCGATC	AATGTAGGCT	TCACGATTGC	GACGTAGGGT	TGCAAAGTTA	AAGTTAAGAT	360
CAGTAGTCTC	AAAGCCGTAG	TCTCCTCCAA	ATTGATGGAA	AGTCTCAGCG	ATTTGCGCCC	420
CGCTACCACA	TGATTCTTTT	AGGAACACAA	CCGACGTTGA	CACAGGTTCC	ACCTAATTTC	480
TTTTCCTCAA	TAACGGCTGC	TTTGGCTCCA	TGTTCCCAGC	ACGGTTCATG	GTAGCGATCC	540
TCCGCTACCT	CCACGATAGC	AATGATATCA	TA			572
	AGCGCCTAGA GCCACCTAGC GATATGTCTA AGCATGACCT GAGCGCGATC CAGTAGTCTC CGCTACCACA TTTTCCTCAA	AGCGCCTAGA ATCGCAATTG GCCACCTAGC TCAGCACCAG GATATGTCTA GCACGAATCA AGCATGACCT TCAATCAAGT GAGCGCGATC AATGTAGGCT CAGTAGTCTC AAAGCCGTAG CGCTACCACA TGATTCTTTT TTTTCCTCAA TAACGGCTGC	AGCGCCTAGA ATCGCAATTG ACTCTGGAAG GCCACCTAGC TCAGCACCAG GAATATTAGG GATATGTCTA GCACGAATCA GTTCACCATT AGCATGACCT TCAATCAAGT CTACACCGTT GAGCGCGATC AATGTAGGCT TCACGATTGC CAGTAGTCT AAAGCCGTAG TCTCCTACAA CGCTACCACA TGATTCTTTT AGGAACACAA TTTTCCTCAA TAACGGCTGC TTTGGCTCCA	AGCGCCTAGA ATCGCAATTG ACTCTGGAAG TTCTTCCCAG GCCACCTAGC TCAGCACCAG GAATATTAGG AATACTTGGA GATATGTCTA GCACGAATCA GTTCACCATT TACGCTTACA AGCATGACCT TCAATCAAGT CTACACCGTT GCGTTTAAAA GAGCGCGATC AATGTAGGCT TCACGATTGC GACGTAGGGT CAGTAGTCTC AAAGCCGTAG TCTCCTCCAA ATTGATGGAA CGCTACCACA TGATTCTTTT AGGAACACAA CCGACGTTGA	AGCGCCTAGA ATCGCAATTG ACTCTGGAAG TTCTTCCCAG GCAAATACAT GCCACCTAGC TCAGCACCAG GAATATTAGG AATACTTGGA TGGGCACCTG GATATGTCTA GCACGAATCA GTTCACCATT TACGCTTACA GTATGAGAAT AGCATGACCT TCAATCAAGT CTACACCGTT GCGTTTAAAA CTACCATCAT GAGCGCGATC AATGTAGGCT TCACGATTGC GACGTAGGGT TGCAAAGTTA CAGTAGTCT AAAGCCGTAG TCTCCCAA ATTGATGGAA AGTCTCAGCG CGCTACCACA TGATTCTTT AGGAACACAA CCGACGTTGA CACAGGTTCC TTTTCCTCAA TAACGGCTGC TTTGGCTCCA TGTTCCCAGC ACGGTTCATG	GATATGTCTA GCACGAATCA GTTCACCATT TACGCTTACA GTATGAGAAT CTACAAATTC AGCATGACCT TCAATCAAGT CTACACCGTT GCGTTAAAA CTACCATCAT AGAGAAGAAC GAGCGCGATC AATGTAGGCT TCACGATTGC GACGTAGGGT TGCAAAGTTA AAGTTAAGAT CAGTAGTCTC AAAGCCGTAG TCTCCTCCAA ATTGATGGAA AGTCTCAGCG ATTTGCGCCC CGCTACCACA TGATTCTTT AGGAACACAA CCGACGTTGA CACAGGTTCC ACCTAATTTC TTTTCCTCAA TAACGGCTGC TTTGGCTCCA TGTTCCCAGC ACGGTTCAT GTAGCGATCC

(2) INFORMATION FOR SEQ ID NO:88:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 49 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

- - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: None
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

(2) INFORMATION FOR SEQ ID NO:89:

Val Gln Asp Phe Tyr Thr Ser Ile Asp Val Leu Ala Glu Leu Asp Asn

1 5 5 10 10 15

Gly Thr Gln Val Ile Ile Glu Ile Gln Val His His Gln Asn Phe Ser
20 25 30

Ser Ile Thr Cys Gly Leu Thr Cys Ala Val Arg Leu Ile Lys Ser
35 40 45

- (2) INFORMATION FOR SEQ ID NO:90:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 67 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

 Val
 Phe
 Ala
 Tyr
 Phe
 Thr
 Lys
 Pro
 Leu
 Gly
 Ile
 Lys
 Leu
 Pro
 Tyr

 1
 5
 5
 1
 10
 1
 1
 15
 15

 Phe
 Asp
 Ile
 Asp
 Ile
 Ala
 Ala
 Ala
 Ile
 Phe
 Asp
 Lys
 Tyr

 Pro
 Leu
 Lys
 Phe
 Val
 Asp
 Cys
 Val
 Asp
 Ser
 Ile
 Gly
 Asp
 Gly
 Leu
 Tyr

 Ile
 Glu
 Asp
 Glu
 Ser
 Val
 Val
 Ile
 Arg
 Pro
 Lys
 Asp
 Gly
 Phe
 Gly
 Gly

 Ile
 Gly
 Gly
 Gly
 Fro
 Ile
 <

- (2) INFORMATION FOR SEQ ID NO:91:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

Val Glu Glu Val Glu Val Ala Glu Val Lys Asn Ala Arg Val Ser Leu 10 Thr Gly Glu Lys Thr Lys Pro Met Lys Leu Ala Glu Val Thr Ser Ile 25 Asn Val Asn Arg Thr Lys Thr Glu Met Glu Glu Phe Asn Arg Val Leu 40 Gly Gly Val Val Pro Gly Lys Ser Arg Pro His Arg Trp Gly Ser 55 Trp Asp Trp Glu Ile Asn Ser Ser Pro Thr Ser Leu Asn Pro Val Val 65 70 Pro Ser Gly Asp Ser Ser Leu Cys Gln Trp Gly Gly Val Cys Pro Ala 85 90 95 Asp

- (2) INFORMATION FOR SEQ ID NO:92:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 75 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

Val Asp Val Phe Tyr Asp Gly Gln Thr Phe Thr Ile Leu Glu Asn Pro 1 5 10 15

Val Ile Gln Gly Gln Asn Ala Gly Ala Gly Cys Thr Phe Ala Ser Ser 20 25 30

Ile Ala Ser His Leu Val Lys Gly Asp Lys Leu Leu Pro Ala Val Glu 35 40 45

Ser Ser Lys Ala Phe Val Tyr Arg Ala Ile Ala Gln Ala Asp Gln Tyr 50 55 60

Gly Val Arg Gln Tyr Glu Ala Asn Lys Asn Asn 65 70 75

- (2) INFORMATION FOR SEQ ID NO:93:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 65 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

Val Ile Ser Val Arg Glu Lys Ser Leu Lys Val Pro Ala Ile Leu Glu

1 5 10 15

Ala Val Glu Ala Thr Leu Gly Arg Pro Ala Phe Val Ser Phe Asp Ala 20 25 30

Glu Lys Leu Glu Gly Ser Leu Thr Arg Leu Pro Glu Arg Asp Glu Ile 35 40 45

Asn Pro Glu Ile Asn Glu Ala Leu Val Val Glu Phe Tyr Asn Lys Met 50 55 60

Leu 65

- (2) INFORMATION FOR SEQ ID NO:94:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 134 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:
- Val Ile Val Glu Lys Glu Glu Lys Gly Glu Glu Met Lys Pro Val Ile

 1 5 10 15
- Ser Ile Ile Met Gly Ser Lys Ser Asp Trp Ala Thr Met Gln Lys Thr
 20 25 30
- Ala Glu Val Leu Asp Arg Phe Gly Val Ala Tyr Glu Lys Lys Val Val
 35 40 45
- Ser Ala His Arg Thr Pro Asp Leu Met Phe Lys His Ala Glu Glu Ala 50 55 60
- Arg Ser Arg Gly Ile Lys Ile Ile Ile Ala Gly Ala Gly Gly Ala Ala 65 70 75 80
- His Leu Pro Gly Met Val Ala Ala Lys Thr Thr Leu Pro Val Ile Gly 85 90 95
- Val Pro Val Lys Ser Arg Ala Leu Ser Gly Val Asp Ser Leu Tyr Ser

 100 105 110
- Ile Val Gln Met Pro Gly Gly Val Pro Val Ala Thr Met Ala Ile Gly
 115 120 125
- Glu Leu Phe Phe Arg Ile 130
 - (2) INFORMATION FOR SEQ ID NO:95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 66 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

 Val
 Arg
 Xaa
 Ala
 Pro
 Ser
 Thr
 Cys
 Xaa
 Trp
 Val
 Gly
 His
 Met
 Ala

 1
 5
 5
 10
 10
 15
 15

 Ser
 Gly
 Leu
 Arg
 His
 Asp
 Thr
 Lys
 Ala
 Pro
 Tyr
 Ser
 Asp
 Ser
 Xaa
 Xaa

 Leu
 Gly
 Leu
 Arg
 Leu
 Phe
 Asn
 Leu
 Thr
 Thr
 Gln
 Gln
 Asn
 Arg
 Arg
 Pro
 Leu
 Thr
 Gly
 Ser
 His
 Pro
 Leu
 Thr
 Gly
 Ser
 Asn

 50
 55
 55
 60
 60
 His
 <

- (2) INFORMATION FOR SEQ ID NO:96:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 46 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

- (2) INFORMATION FOR SEQ ID NO:97:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 169 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

Val Ile Tyr Asn Ile Pro Gln Leu Ala Gly Val Ala Leu Thr Pro Ser 10 Leu Tyr Thr Glu Met Leu Lys Asn Pro Arg Val Ile Gly Val Lys Asn 20 25 Ser Ser Met Pro Val Gln Asp Ile Gln Thr Phe Val Ser Leu Gly Gly 35 Glu Asp His Ile Val Phe Asn Gly Pro Asp Glu Gln Phe Leu Gly Gly Arg Leu Met Gly Ala Arg Ala Gly Ile Gly Gly Thr Tyr Gly Ala Met 70 Pro Glu Leu Phe Leu Lys Leu Asn Gln Leu Ile Ala Asp Lys Asp Leu 85 90 Glu Thr Ala Arg Glu Leu Gln Tyr Ala Ile Asn Ala Ile Ile Gly Lys 100 105 Leu Thr Ser Ala His Gly Asn Met Tyr Gly Val Ile Lys Glu Val Leu 115 120 Lys Ile Asn Glu Gly Leu Asn Ile Gly Ser Val Arg Ser Pro Leu Thr 135 140 Pro Val Thr Glu Glu Asp Arg Pro Val Val Glu Ala Ala Ala Leu 150 155 160 Ile Arg Glu Thr Lys Glu Arg Phe Leu 165

- (2) INFORMATION FOR SEQ ID NO:98:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 288 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

Ile Thr Pro Glu Val Thr Tyr Lys Lys Ile Asn Glu Thr Thr Ala Glu Tyr Leu Met Lys Leu Arg Asp Asp Ala His Leu Ile Asn Ala Glu Met 75 70 Thr Val Arg Leu Gln Val Val Asp Asn Gln Leu His Phe Asp Val Thr 90 85 Lys Ile Val Asn His Asn Gln Val Thr Pro Gly Gln Lys Ile Asp Asp 100 105 Glu Arg Lys Leu Leu Ser Ser Ile Ser Phe Leu Gly Asn Ala Leu Val 120 Ser Val Ser Ser Asp Gln Thr Gly Ala Lys Phe Asp Gly Ala Thr Met 135 140 Ser Asn Asn Thr His Val Ser Gly Asp Asp His Ile Asp Val Thr Asn 150 155 Pro Met Lys Asp Leu Ala Lys Gly Tyr Met Tyr Gly Phe Val Ser Thr 165 170 Asp Lys Leu Ala Ala Gly Val Trp Ser Asn Ser Gln Asn Ser Tyr Gly 180 185 190 Gly Gly Ser Asn Asp Trp Thr Arg Leu Thr Ala Tyr Lys Glu Thr Val 200 Gly Asn Ala Asn Tyr Val Gly Ile His Ser Ser Glu Trp Gln Trp Glu 210 215 Lys Ala Tyr Lys Gly Ile Val Phe Pro Glu Tyr Thr Lys Glu Leu Pro 230 235 Ser Ala Lys Val Val Ile Thr Glu Asp Ala Asn Ala Asp Lys Lys Val 245 250 Asp Trp Gln Asp Gly Ala Ile Ala Tyr Arg Ser Ile Met Asn Asn Pro 265 270 Gln Gly Trp Glu Lys Val Lys Asp Ile Thr Ala Met Thr Leu Val Thr 275 280 285

- (2) INFORMATION FOR SEQ ID NO:99:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 66 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

 Val
 Ile
 Leu
 Glu
 Gly
 Asn
 Tyr
 Arg
 Ala
 Thr
 Ala
 Gly
 Arg
 Glu
 Met

 1
 5
 10
 10
 15
 15

 Lys
 Glu
 Ala
 Ile
 Leu
 Glu
 Tyr
 Glu
 Asn
 Pro
 Ala
 Ala
 Leu
 Lys
 Asp

 Leu
 Lys
 Ala
 Lys
 Asn
 Ile
 Ser
 Arg
 Glu
 Tyr
 Ser
 Glu
 Glu
 Glu
 Glu
 His

 35
 40
 45
 45
 45
 46
 45
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46
 46</t

- (2) INFORMATION FOR SEQ ID NO:100:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

Val Thr Phe Leu Asp Asp Tyr His Lys Lys His Asn Tyr Pro Leu Phe 1 10 15 Tyr Glu Ser Tyr Leu Gln Asn Val Met Glu Phe Leu Glu Ser Gln Asp 25 Ile Lys Asn Gly Val Asp Ala Phe Val Asp Asp His Gln Asn Leu Val 40 Phe Val Leu Tyr Gly Gln Gly Tyr Arg Ala Glu Gly Lys Glu Gly Ile 50 55 60 Leu Thr Thr Gln Val Thr Val Lys Ala Tyr Asp Glu Asp Lys Lys Pro 70 Ile Asn Phe Ala Asn Leu Leu Asp Ser Leu Ile Val Ser Glu Tyr Gln 85 95 Met Glu Pro Asn Leu Trp Glu Val Ser Tyr Asp 100 105

- (2) INFORMATION FOR SEQ ID NO:101:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 185 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

Val Arg Lys Ser Val Pro Arg Pro Arg Leu Arg Gln Arg Ser Leu Ser 10 Lys Val Ala Arg Ser Arg Leu Lys Ile Lys Lys Leu Ser Lys Val Lys 25 His Glu Gly Gly Val Val Ile Glu Gly Ala Ser Gly Leu Leu Val Arg 40 Ile Ala Lys Cys Cys Asn Pro Val Pro Gly Asp Asp Ile Val Gly Tyr Ile Thr Lys Gly Arg Gly Val Ala Ile His Arg Val Asp Cys Met Asn 70 75 Leu Arg Ala Gln Glu Asn Tyr Glu Gln Arg Leu Leu Asp Val Glu Trp 85 90 Glu Asp Gln Tyr Ser Ser Ser Asn Lys Glu Tyr Met Ala His Ile Asp 105 Ile Tyr Gly Leu Asn Arg Thr Gly Leu Leu Asn Asp Val Leu Gln Val 120 Leu Ser Asn Thr Thr Lys Asn Ile Ser Thr Val Asn Ala Gln Pro Thr 135 130 140 Lys Asp Met Lys Phe Ala Asn Ile His Val Ser Phe Gly Ile Ala Asn 150 155 Leu Ser Thr Leu Thr Thr Val Val Asp Lys Ile Lys Ser Val Pro Glu 165 175 Val Tyr Ser Val Lys Arg Thr Asn Gly 180

- (2) INFORMATION FOR SEQ ID NO:102:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 115 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102: 204

Val Ile Val Phe Leu Val Tyr Leu Ile Ile Thr Val Gln Lys Leu Gly 10 Arg Val Ile Asp Glu Thr Glu Lys Thr Ile Lys Thr Leu Thr Ser Asp 20 Val Asp Val Thr Leu His His Thr Asn Glu Leu Leu Ala Lys Val Asn 40 Val Leu Ala Asp Asp Ile Asn Val Lys Val Ala Thr Ile Asp Pro Leu 55 60 Phe Ser Ala Val Ala Asp Leu Ser Leu Ser Val Ser Asp Leu Asn Asp 70 75 His Ala Arg Val Leu Ser Lys Lys Ala Ser Ser Ala Gly Ser Lys Thr 85 90 Leu Lys Thr Gly Ala Ser Leu Ser Ala Leu Arg Leu Ala Ser Lys Phe 100 105 110 Phe Lys Lys 115

- (2) INFORMATION FOR SEQ ID NO:103:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 106 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

Val Thr Gly Asn Trp Gln Ile Leu Phe Gln Gly Lys Met Thr Val Phe 5 10 Ser Trp Leu Ile Gly Pro Cys Ser Ser Asp Asn Glu Glu Ala Val Leu 25 Glu Tyr Ala Arg Arg Leu Ser Ala Leu Gln Lys Lys Val Ala Asp Lys 40 Ile Phe Met Val Met Arg Val Tyr Thr Ala Lys Pro Arg Thr Asn Gly 50 Asp Gly Tyr Lys Gly Leu Val His Gln Pro Asp Thr Ser Lys Ala Pro 70 75 Thr Leu Ile Asn Gly Leu Gln Ala Val Arg Gln Leu His Tyr Arg Val 85 - 90 95 Asp Tyr Arg Asp Trp Phe Asp Asn Gly Arg

100 105

- (2) INFORMATION FOR SEQ ID NO:104:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

Val Gly Thr Gly Ile Ile Gly Ser Ile Val Ser Tyr Pro Val Met Val

1 5 10 15

Leu Phe Thr Gly Ser Ala Ala Lys Leu Ser Trp Phe Ile Tyr Thr Pro
20 25 30

Arg Phe Phe Gly Ala Thr Leu Ile Gly Thr Ala Ile Ser Phe Ile Ala 35 40 45

Phe Arg Phe Leu Ile Lys Gln Glu Phe Phe Lys Lys Val Gln Gly Tyr 50 55 60

Phe Phe Ala Glu Arg Ile Glu

5 7

- (2) INFORMATION FOR SEQ ID NO:105:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 98 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

Val Ala Ile Ala Arg Gly Leu Ser Met Asn Pro Asp Ile Met Leu Phe

5 10 15

Asp Glu Pro Asn Ser Ala Leu Asp Pro Glu Met Val Gly Glu Val Ile
20 25 30

Asn Val Met Lys Glu Leu Ala Glu Gln Gly Met Thr Met Ile Ile Val

35 40 45

- (2) INFORMATION FOR SEQ ID NO:106:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

Val Gln Ala Val Ser Glu Ser Ala Ala Ala Pro Val Arg Ala Lys Val 10 Arg Pro Thr Tyr Ser Thr Asn Ala Ser Ser Tyr Pro Ile Gly Glu Cys 30 25 Thr Trp Gly Val Lys Thr Leu Ala Pro Trp Ala Gly Asp Tyr Trp Gly 40 Asn Gly Ala Gln Trp Ala Thr Ser Ala Ala Ala Ala Gly Phe Arg Thr 55 60 Gly Ser Thr Pro Gln Val Gly Ala Ile Ala Cys Trp Asn Asp Gly Gly 70 75 Tyr Gly His Val Ala Val Val Thr Ala Val Glu Ser Thr Thr Arg Ile 90 Gln Val Ser Glu Ser Asn Tyr Ala Gly Asn Arg Thr Ile Gly Asn His 100 105 Arg Gly Trp Phe Asn Pro Thr Thr Ser Glu Gly Phe Val Thr Tyr 120 125 Ile Tyr Ala Asp 130

- (2) INFORMATION FOR SEQ ID NO:107:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 86 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

Val Ile Leu Leu Asn Ser Glu Glu Lys Val Lys Lys Glu Arg Arg Ser

1 5 10 15

Lys Glu Arg Ile Ser Thr Thr Lys Lys Gly Phe Phe Arg Met Val Leu
20 25 30

Arg Tyr His Leu Thr Leu Leu Gly Gln Gly Thr Gly Val Val Thr Val
35 40 45

Leu Phe Thr Ser Ala Phe Leu Pro Tyr Leu Met Met Ile Gly Leu Ile
50 55 60

Ser Lys Ile Arg Asp Ser Gln Ile Val Pro Asp Ile His Pro Pro Tyr 70 75 80

Trp Leu Pro Phe Phe Leu

85

- (2) INFORMATION FOR SEQ ID NO:108:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 308 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

Val Thr Pro Leu Ser Leu Leu Cys Leu Arg Lys Cys Val Arg Asp Glu

1 5 10 15

Asn Val Phe Leu Met Gly Glu Asp Val Gly Val Phe Gly Gly Asp Phe
20 25 30

Gly Thr Ser Val Gly Met Leu Glu Glu Phe Gly Pro Glu Arg Val Arg

Asp Cys Pro Ile Ser Glu Ala Ala Ile Ser Gly Ala Ala Ala Gly Ala 50 55 60

Ala Met Thr Gly Leu Arg Pro Ile Val Asp Met Thr Phe Met Asp Phe 208

65		70		75			80
Ser Val I	le Ala Met 85	Asp Asn	Ile Va	l Asn Gln 90	Ala Ala	Lys Thr 95	Arg
Tyr Met F	he Gly Gly 100	Lys Gly	Gln Va 10		Thr Val	Arg Cys 110	Ala
	sn Gly Val 15	Gly Ser	Ala Al 120	a Gln His	Ser Gln 125	Ser Leu	Glu
Ser Trp P	he Thr His	Ile Pro 135	Gly Le	u Lys Val	Val Ala 140	Pro Gly	Thr
Pro Ala A 145	sp Met Lys	Gly Leu 150	Leu Ly	s Ser Ser 155		Asp Asn	Asn 160
Pro Val I	le Ile Leu 165	Glu Tyr	Lys Se	r Glu Phe 170	Asn Gln	Lys Gly 175	Glu
Val Pro V	al Asp Pro 180	Asp Tyr	Thr I1		Gly Val	Gly Glu 190	Ile
	ln Gly Thr 95	Asp Val	Thr Val	l Val Thr	Tyr Gly 205	Lys Met	Leu
Arg Arg V 210	al Val Gln	Ala Ala 215	Glu Gl	u Leu Ala	Glu Glu	Gly Ile	Ser
Val Glu I 225	le Val Asp	Pro Arg 230	Thr Le	u Val Pro 235	Leu Asp	Lys Asp	Ile 240
Ile Ile A	sn Ser Val 245	Lys Lys	Thr Gl	y Lys Val 250	Val Leu	Val Asn 255	Asp
Ala His L	ys Thr Ser 260	Gly Tyr	Ile Gly		Ser Ala	Ile Ile 270	Ser
	lu Ala Phe 75	Asp Tyr	Leu Asp 280	o Ala Pro	Ile Arg 285	Arg Cys	Ala
Gly Glu A 290	sp Val Pro	Met Pro 295	Tyr Ala	a Gln Asn	Leu Lys	Met Cys	Asn
Asp Ser A	sn Ser						

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 191 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109: 209

Val Asp Gly Ala Thr Thr Ile Asp Ile Gly Ala Ser Thr Gly Gly Phe 1.0 Thr Asp Val Met Leu Gln Asn Ser Ala Lys Leu Val Phe Ala Val Asp 20 25 Val Gly Thr Asn Gln Leu Ala Trp Lys Leu Arg Gln Asp Pro Arg Val 40 Val Ser Met Glu Gln Phe Asn Phe Arg Tyr Ala Glu Lys Thr Asp Phe Glu Gln Glu Pro Ser Phe Ala Ser Ile Asp Val Ser Phe Ile Ser Leu 75 Ser Leu Ile Leu Pro Ala Leu His Arg Val Leu Ala Asp Gln Gly Gln 85 90 Val Val Ala Leu Val Lys Pro Gln Phe Glu Ala Gly Arg Glu Gln Ile 100 105 Gly Lys Asn Gly Ile Ile Arg Asp Ala Lys Ile His Gln Asn Val Leu 120 Glu Ser Val Thr Ala Met Ala Val Glu Ala Gly Phe Ser Val Leu Gly Leu Asp Phe Ser Pro Ile Gln Gly Gly His Gly Asn Ile Glu Phe Leu 145 150 155 Val Tyr Leu Lys Lys Glu Lys Ser Ala Ser Asn Gln Ile Leu Ala Glu 165 170 Ile Lys Glu Ala Val Glu Arg Ala His Ser Gln Phe Lys Asn Glu 180 185 190

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 54 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

Val Ser Ser Asp Val Lys Trp Leu Cys Gln Asn His Pro Lys Trp His

1 5 10 15

Lys Leu Arg Gly Ile Gly Met Thr Arg Asn Thr Ile Asp Arg Asp Gly
20 25 30

Ile Thr Ser Gln Asp Val Arg Tyr Phe Ile Phe Asn Phe Lys Leu Asp
210

35 40 45 Val Asp Asp Leu Leu Pro

val Asp Asp Leu Leu Pr 50

- (2) INFORMATION FOR SEQ ID NO:111:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 126 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

Val Asp Leu Gln Ser Lys Asn Trp Ser Phe Val His Arg Phe Ser Glu

1 5 10 15

Glu Leu Ile Asp Gln His Tyr Gln Asp Leu Val Gly Gln Ser Phe Tyr
20 25 30

Pro Pro Ile Arg Glu Phe Met Thr Ser Gly Pro Val Leu Val Gly Val 35 40 45

Ile Ser Gly Pro Lys Val Ile Glu Thr Trp Arg Thr Met Met Gly Ala 50 55 60

Thr Arg Pro Glu Glu Ala Leu Pro Gly Thr Ile Arg Gly Asp Phe Ala 65 70 75 80

Lys Ala Ala Gly Glu Asn Glu Ile Ile Gln Asn Val Val His Gly Ser
85 90 95

Asp Ser Glu Lys Ser Gln Leu Ser Arg Glu Ile Ala Pro Leu Val Leu 100 105 110

Arg Val Asp Trp Leu Asn Gln Leu Val Lys Ser Ser Phe Glu
115 120 125

- (2) INFORMATION FOR SEQ ID NO:112:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 50 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None

PCT/US97/19226 WO 98/19689

(xi) SEQUENCE DESCRIPTION: SEO ID NO:112:

Val Leu Lys Gly Val Leu Thr Leu Arg Glu Leu Thr Asn Asp Arg Asp 5 10 Ala Asp Ile Asn Asp Phe Val Lys Val Gly Glu Val Leu Asp Val Leu 20 25 Val Leu Arg Gln Val Val Gly Lys Asp Thr Asp Thr Val Thr Tyr Leu 40 Val Ile

- - 50
- (2) INFORMATION FOR SEQ ID NO:113:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 52 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:113:

Val Gly Glu Pro Phe Ala Asn Leu Ser Asp Leu Leu Asp Thr Tyr Tyr 1 5 15 Lys Asp Lys Ala Glu Arg Asp Arg Val Lys Gln Gln Ala Ser Glu Leu 20 25 Ile Arg Arg Val Glu Asn Glu Leu Gln Lys Asn Arg His Lys Leu Lys 35 40 45 Lys Gln Glu Lys 50

- (2) INFORMATION FOR SEO ID NO:114:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114: 212

Val Lys Asp Lys Thr Leu Ile Ile Gln His Ser Gly Ala Tyr Ile Ala 10 Arg Tyr Ser Ile Thr Trp Glu Glu Val Pro Val Asp Lys Asp Gly Asn 25 30 Gln Val Val Arg Ser His Ser Trp Glu Gly Asn Gly Arg Asn Gln Thr 40 Ala Gly Phe Val Leu Asn Leu Pro Ile Lys Glu Asn Met Arg Asn Leu 55 Arg Val Lys Ile Glu Lys Lys Thr Gly Leu Leu Trp Asn Arg Trp Gln 70 75 Thr Ile Tyr Glu Asn Arg Pro Ile Leu Ala Gln Pro His Arg Lys Ile 90 Thr His Trp Gly Thr Thr Leu Asn Ser Lys Val Ser Asp Asp Val 100 105 110 Leu

- (2) INFORMATION FOR SEQ ID NO:115:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

Val Leu Gly Ala Gly Lys Arg Leu Thr Gly Tyr Ala Ala Gly Val Glu

1 5 10 15

Lys Lys Ala Trp Leu Leu Glu His Glu Gly Val Asp Phe Lys Asp Arg
20 25 30

Asn Asn Arg Arg Arg Ser Thr Cys
35 40

- (2) INFORMATION FOR SEQ ID NO:116:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

 Val
 His
 Val
 Cys
 Ala
 Pro
 Cys
 Ser
 Thr
 Tyr
 Thr
 Leu
 Glu
 Tyr
 Leu

 Thr
 Lys
 Tyr
 Ala
 Asp
 Val
 Thr
 Ile
 Tyr
 Phe
 Ala
 Asn
 Ser
 Asn
 Ile
 His

 Pro
 Lys
 Ala
 Glu
 Tyr
 His
 Lys
 Arg
 Val
 Tyr
 Val
 Thr
 Lys
 Lys
 Phe
 Val

 Ser
 Asp
 Phe
 Asn
 Glu
 Thr
 Glu
 Tyr
 Val
 Thr
 Lys
 Lys
 Phe
 Val

 Ser
 Asp
 Phe
 Asn
 Glu
 Thr
 Glu
 Tyr
 Val
 Tyr
 Leu
 Glu
 Ala

 Ser
 Asp
 Phe
 Asn
 Glu
 Thr
 Glu
 Tyr
 Leu
 Glu
 Ala

 Fragge
 Tyr
 Glu
 Tyr
 Tyr
 Tyr
 Tyr
 Leu
 Glu
 Ala

 Fragge
 Tyr
 Glu
 Tyr

- (2) INFORMATION FOR SEQ ID NO:117:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 83 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

 Val
 Ala
 Met
 Asp
 Leu
 Gly
 Phe
 Asp
 Tyr
 Phe
 Gly
 Ser
 Ala
 Leu
 Thr
 Ile

 Ser
 Pro
 His
 Lys
 Asn
 Ser
 Gln
 Thr
 Ile
 Asn
 Ser
 Ile
 Asp
 Val

 Gln
 Lys
 Ile
 Tyr
 Pro
 His
 Tyr
 Leu
 Pro
 Asn
 Ser
 Ile
 Asn

 Gln
 Lys
 Ile
 Tyr
 Pro
 His
 Tyr
 Leu
 Pro
 Asn
 Asp
 Pro
 Asn
 Asn

 Gln
 Lys
 Ile
 Tyr
 Pro
 His
 Ile
 Pro
 Ile
 Asn
 Ile
 Tyr
 Asn
 Asn
 Asn
 Asn
 Asn
 Ile
 Tyr
 Asn
 Asn
 Asn
 Asn
 Ile
 Tyr
 Asn
 Asn
 Ile
 Tyr
 Asn
 Ile
 Tyr
 Asn
 Asn
 I

(2) INFORMATION FOR SEQ ID NO:118:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 52 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

 Val
 Thr
 Asp
 Gly
 Val
 Ile
 Gln
 Val
 Asp
 Val
 Leu
 Gly
 Ser
 Ile
 Val
 Arg

 1
 5
 5
 10
 15
 15

 Ser
 Glu
 Glu
 Trp
 Leu
 Asp
 Asn
 Leu
 Ser
 Lys
 Glu
 Gly
 His
 Asp
 Asn

 Val
 Ala
 Asn
 Ile
 Phe
 Ile
 Ala
 Glu
 Tyr
 Asp
 Lys
 Gly
 Ala
 Val
 Thr
 Val

 Val
 Thr
 Tyr
 Lys
 Lys
 Gly
 Ala
 Val
 Thr
 Val

- val Thr Tyr Lys
 - 50
- (2) INFORMATION FOR SEQ ID NO:119:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 206 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:
- Val Arg Glu Tyr Arg Thr Tyr Glu Glu Ile Ala Ala Asp Phe Gly Ile

 1 5 10 15
- His Glu Ser Asn Leu Ile Arg Arg Ser Gln Trp Val Glu Val Thr Leu
 20 25 30
- Val Gln Ser Gly Val Thr Ile Ser Lys Thr His Leu Ser Ala Glu Asn
 35 40 45
- Thr Val Ile Val Asp Ala Thr Glu Val Lys Ile Asn Arg Pro Lys Lys
 50 55 60
- Gln Leu Ala Asn Asp Ser Gly Lys Lys Lys Phe His Ala Met Lys Ala 65 70 . 75 80
- Gln Ala Ile Val Thr Ser Gln Gly Arg Ile Val Ser Leu Asp Ile Ala 215

85 90 Val Asn Tyr Cys His Asp Met Lys Leu Phe Lys Met Ser Arg Asn 105 Ile Gly Gln Ala Gly Lys Ile Leu Ala Asp Ser Gly Tyr Gln Gly Pro 115 120 Met Lys Ile Tyr Pro Gln Ala Gln Thr Pro Arg Lys Ser Ser Lys Leu 130 135 Lys Pro Leu Ile Ala Glu Asp Lys Ala Tyr Asn His Ala Leu Ser Lys 150 155 Glu Arg Ser Lys Val Glu Asn Ile Phe Ala Lys Val Lys Thr Phe Lys 165 170 Met Phe Ser Thr Thr Tyr Arg Asn His Arg Lys Arg Phe Gly Leu Arg 185 Met Asn Leu Ile Ala Gly Ile Ile Asn Tyr Glu Leu Gly Phe 195 200

(2) INFORMATION FOR SEQ ID NO:120:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 91 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

(2) INFORMATION FOR SEQ ID NO:121:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 222 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:
- Val Lys Met Val Leu Phe Ser Ala Gln Glu Gln Leu Tyr Tyr Lys Glu 10 Lys Ile Met Thr Thr Asn Arg Leu Gln Val Ser Leu Pro Gly Leu Asp 25 Leu Lys Asn Pro Ile Ile Pro Ala Ser Gly Cys Phe Gly Phe Gly Gln 40 Glu Tyr Ala Lys Tyr Tyr Asp Leu Asp Leu Leu Gly Ser Ile Met Ile 55 Lys Ala Thr Thr Leu Glu Pro Arg Phe Gly Asn Pro Thr Pro Arg Val 70 75 Ala Glu Thr Pro Ala Gly Met Leu Asn Ala Ile Gly Leu Gln Asn Pro 85 90 Gly Leu Glu Val Val Leu Ala Glu Lys Leu Pro Trp Leu Glu Arg Glu 100 105 Tyr Pro Asn Leu Pro Ile Ile Ala Asn Val Ala Gly Phe Ser Lys Gln 120 Glu Tyr Ala Ala Val Ser His Gly Ile Ser Lys Ala Thr Asn Ile Lys 135 140 Ala Ile Glu Leu Asn Ile Ser Cys Pro Asn Val Asp His Cys Asn His 150 155 Gly Leu Leu Ile Gly Gln Asp Pro Asp Leu Ala Tyr Asp Val Val Lys 165 170 Ala Ala Val Glu Ala Ser Glu Val Pro Val Tyr Val Lys Leu Thr Pro 180 185 Ser Val Thr Asp Ile Val Thr Val Ala Lys Ala Ala Glu Asp Ala Gly
 - (2) INFORMATION FOR SEQ ID NO:122:

215

Ala Ser Gly Leu Thr Met Ile Ile Leu Trp Trp Asp Ala Leu

(i) SEQUENCE CHARACTERISTICS:

210

(A) LENGTH: 155 amino acids

217

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

Val Ala Thr Gly Gln Asp Lys Ala His Ser Ile Leu Ala Ser Asn Glu 10 Gly Thr Leu His Tyr Leu Val Pro Leu Lys Gln Gly Met Ser Ile Gln 20 25 Gln Gly Gln Thr Ile Ala Glu Val Ser Gly Lys Glu Lys Gly Tyr Tyr 40 Val Glu Ala Phe Val Leu Ala Ser Asp Ile Ser Arg Val Ser Lys Gly 55 Ala Lys Val Asp Val Ala Ile Thr Gly Val Asn Ser Gln Lys Tyr Gly 65 75 Thr Leu Lys Gly Gln Val Arg Gln Ile Asp Ser Gly Thr Ile Ser Gln 90 Glu Thr Lys Glu Gly Asn Ile Ser Leu Tyr Lys Val Met Ile Glu Leu 105 Glu Thr Leu Thr Leu Lys His Gly Ser Glu Thr Val Ile Leu Gln Lys 120 Asp Met Pro Val Glu Val Arg Ile Val Tyr Asp Lys Glu Thr Tyr Leu 135

155

- (2) INFORMATION FOR SEQ ID NO:123:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 219 amino acids

Asp Trp Ile Leu Glu Met Leu Ser Phe Lys Gln

150

(B) TYPE: amino acid

145

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Val Arg Val Pro Glu Thr Ile Thr Gln Glu Glu Leu Leu Asp Leu Ile 1 5 10 15

Ala Lys Tyr Asn Gln Asp Pro Ala Trp His Gly Ile Leu Val Gln Leu 20 Pro Leu Pro Lys His Ile Asp Glu Glu Ala Val Leu Leu Ala Ile Asp Pro Glu Lys Asp Val Asp Gly Phe His Pro Leu Asn Met Gly Arg Leu 55 Trp Ser Gly His Pro Val Met Ile Pro Ser Thr Pro Ala Gly Ile Met 65 70 75 Glu Met Phe His Glu Tyr Gly Ile Asp Leu Glu Gly Lys Asn Ala Val 85 90 Val Ile Gly Arg Ser Asn Ile Val Gly Lys Pro Met Ala Gln Leu Leu 100 Leu Ala Lys Asn Ala Thr Val Thr Leu Ala His Ser Arg Thr His Asn 120 125 Leu Ala Lys Val Ala Ala Lys Ala Asp Ile Leu Val Val Ala Ile Gly 135 Arg Ala Lys Phe Val Thr Ala Asp Phe Val Lys Pro Gly Ala Val Val 145 150 155 Ile Asp Val Gly Met Asn Arg Asp Glu Asn Gly Lys Leu Cys Gly Asp 165 170 Val Asp Tyr Glu Ala Val Ala Pro Leu Ala Ser His Ile Thr Pro Val 180 185 Pro Gly Gly Val Gly Pro Met Thr Ile Thr Met Leu Met Glu Gln Thr 195 200 Tyr Gln Ala Ala Leu Arg Thr Leu Asp Arg Lys 210 215

- (2) INFORMATION FOR SEQ ID NO:124:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 83 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Val Gly Val Tyr Leu Ser Glu Gly Leu Pro Asp Leu Ile Arg Val Thr 1 5 10 15

Thr Val Thr Leu Ile Ser Leu Val Gly Glu Thr Ala Met Ala Gly Ala 20 25 30 30

 Val
 Gly
 Ala
 Gly
 Gly
 Ile
 Ala
 Val
 Ala
 Ile
 Ala
 Tyr
 Gly
 Phe
 Asn

 Arg
 Tyr
 Asn
 His
 Asp
 Val
 Thr
 Ile
 Leu
 Ala
 Thr
 Ile
 Val
 Ile
 Ile
 Leu

 50
 55
 55
 60
 60
 Thr
 Lys
 Lys
 Leu

 65
 70
 75
 75
 75
 80

 80

 Ser
 His
 Lys

(2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 223 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

Val Leu Pro Leu Tyr Leu Leu Phe Val Pro Tyr Gly Lys Ser Lys Lys 10 Glu Val Lys Lys Arg Ala Lys Glu Ala Ser Arg Leu Thr Arg Glu Met 25 Lys Gly Leu Ile Phe Thr Leu Ala Ile Glu Ala Ala Val Val Cys 40 Thr Asn Thr Ala Ile Thr Ile Arg Ile Pro Ser Leu Met Val Glu Arg 55 Gly Leu Gly Asp Ala Gln Leu Ser Ser Phe Val Leu Ser Ile Met Gln 70 75 Leu Ile Gly Ile Val Ala Gly Val Ser Phe Ser Phe Leu Ile Ser Ile 85 90 Phe Lys Glu Lys Leu Leu Trp Ser Gly Ile Thr Phe Gly Leu Gly 100 Gln Ile Val Ile Ala Leu Ser Ser Ser Leu Trp Val Val Val Ala Gly 120 125 Ser Val Leu Ala Gly Phe Ala Tyr Ser Val Val Leu Thr Thr Val Phe 135 Gln Leu Val Ser Glu Arg Ile Pro Ala Lys Leu Leu Asn Gln Ala Thr 145 150 155 Ser Phe Ala Val Leu Gly Cys Ser Phe Gly Ala Phe Thr Thr Pro Phe 165 170 175

- (2) INFORMATION FOR SEQ ID NO:126:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

Val Val Ala Gly Pro Glu Gly Leu Asp Glu Ala Gly Leu Asn Gly Thr 1 5 Thr Xaa Ile Ala Leu Xaa Glu Asn Gly Glu Ile Ser Leu Ser Ser Phe Thr Pro Glu Asp Leu Gly Met Glu Gly Tyr Ala Met Glu Asp Ile Arg Gly Gly Asn Ala Gln Glu Asn Ala Glu Ile Leu Leu Ser Val Leu Lys 55 60 Asn Glu Ala Ser Pro Phe Leu Glu Thr Thr Val Leu Asn Ala Gly Leu 70 75 Gly Phe Tyr Ala Asn Gly Lys Ile Asp Ser Ile Lys Glu Gly Val Ala 85 90 Leu Ala Arg Gln Val Ile Ala Arg Gly Lys Ala Leu Glu Lys Leu Arg 100 105 110

- (2) INFORMATION FOR SEO ID NO:127:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 112 amino acids
 - (B) TYPE: amino acid

Leu Leu Gln Glu Tyr Gln Lys

115

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Val Asp Ile Val Gln Gln Ala Gln Thr Tyr Glu Glu Asn Gly Ala Val 10 Met Ile Ser Val Leu Thr Asp Glu Val Phe Phe Lys Gly His Leu Asp 25 Tyr Leu Arg Glu Ile Ser Ser Gln Val Glu Ile Pro Thr Leu Asn Lys 40 Asp Phe Ile Ile Asp Glu Lys Gln Ile Ile Arg Ala Arg Asn Ala Gly 55 Ala Thr Val Ile Leu Leu Ile Val Ala Ala Leu Ser Glu Glu Arg Leu 70 Lys Glu Leu Tyr Asp Tyr Ala Thr Glu Leu Gly Leu Glu Val Leu Val 85 Glu Thr His Asn Leu Ala Glu Leu Glu Val Ala His Arg Leu Gly Gly 100 105 110

- (2) INFORMATION FOR SEQ ID NO:128:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 65 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

 Val
 Ser
 Glu
 Lys
 His
 Ala
 Gly
 Phe
 Met
 Ile
 Asn
 Val
 Ala
 Asp
 Gly
 Thr

 Ala
 Lys
 Asp
 Tyr
 Glu
 Asp
 Leu
 Ile
 Gln
 Ser
 Val
 Ile
 Glu
 Lys
 Val
 Lys
 Val
 Lys
 Glu
 Arg
 Ile
 Leu
 Glu
 Arg
 Glu
 Val
 Arg
 Ile
 Leu
 Glu
 Arg
 Glu
 Val
 Arg
 Ile
 Leu
 Glu
 Arg
 Glu
 Val
 Arg
 Ile
 Leu
 Gly
 Arg
 Gly
 Phe
 Thr
 Pro
 Cys
 Lys

 Arg
 Ile
 I

- (2) INFORMATION FOR SEQ ID NO:129:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

Val Glu Arg Ile Ile Arg Lys Ala Phe Ala Ile Glu Leu Gln Glu Ile

1 5 10 15

Ala Glu Lys Ser Leu Leu Val Ser Ile Ser Lys Met Phe
20 25

- (2) INFORMATION FOR SEQ ID NO:130:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

Val Arg Ile Gly Asn Thr Val Leu Ala Asn Val Thr Ser Gly Val Ala

1 5 10 15

Lys Gln Ala Ser Lys Ala Ala Gln Ala Ser Asn Leu Gly Gly Ala 20 25 30

.Glu Val Asp Gly Phe Ser Lys Thr Leu Ser Ser Leu Asp Ile Ser Ile 35 40 45

Gln Thr Ser Asp Phe Ile Ile Ile Phe Val Leu Ala Leu Val Leu Val 50 55 60

Val Leu Val Met Ala Leu Ala Ser Ser Asn Leu Leu Arg Lys Gln Pro 65 70 75 80

Lys Glu Leu Leu Leu Asp Gly Glu

85

(2) INFORMATION FOR SEQ ID NO:131:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 164 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

Val Ser Asn Lys Thr Phe Pro Ile Leu Val Asn Lys Asp Pro Lys Thr Gly Thr Tyr Ser Gly Ile Glu Thr Asp Leu Ala Lys Met Val Ala Asp 30 Glu Leu Lys Val Lys Ile His Tyr Val Pro Val Thr Ala Gln Thr Arg Gly Pro Leu Leu Asp Asn Glu Gln Val Asp Met Asp Ile Ala Thr Phe 55 Thr Ile Thr Asp Glu Arg Lys Lys Leu Tyr Asn Phe Thr Ser Pro Tyr 70 75 Tyr Thr Asp Ala Ser Gly Phe Leu Val Asn Lys Ser Ala Lys Ile Lys 85 90 Lys Ile Glu Asp Leu Asn Gly Lys Thr Ile Gly Val Ala Gln Gly Ser 100 105 Ile Thr Gln Arg Leu Ile Thr Glu Leu Gly Lys Lys Lys Gly Leu Lys 120 Phe Lys Phe Val Glu Leu Gly Ser Tyr Pro Glu Leu Ile Thr Ser Leu 135

His Ala His Arg Ile Asp Ala Phe Ser Val Asp Arg Ser Ile Leu Ser

155

- (2) INFORMATION FOR SEQ ID NO:132:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 62 amino acids

150

(B) TYPE: amino acid

145

Gly Tyr Thr Ser

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

 Val
 Leu
 Glu
 Leu
 Arg
 Ile
 Pro
 Ala
 Pro
 Asn
 Glu
 Phe
 Leu
 Asp
 Leu
 Ile
 Asn
 Glu
 Phe
 Leu
 Ile
 Asp
 Phe
 Lys
 Pro
 His
 Ile
 Ala
 Pro
 His
 Lys
 Phe

 Asp
 Leu
 Pro
 His
 Ile
 Ala
 Pro
 His
 Lys
 Phe

 Glu
 Met
 Val
 Glu
 Thr
 Ala
 Arg
 Asp
 Leu
 Ile
 Arg
 Asn
 Gly
 Asp
 Met

 Arg
 Cys
 Val
 Thr
 Gln
 Pro
 Ala
 Phe
 Ser
 Ser
 Arg
 Arg
 Ser
 Inc
 I

- (2) INFORMATION FOR SEQ ID NO:133:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 65 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

 Val
 Ser
 Ser
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Leu
 Lys
 Gln
 Leu
 Lys
 Phe
 Leu
 Leu
 15

 Ile
 Ile
 Met
 Ala
 Met
 Ser
 Ala
 Ile
 Gly
 Leu
 Lys
 Thr
 Asn
 Leu
 Val
 Ala
 Ala
 Ala
 Ala
 Ala
 Ile
 Val
 Leu
 Gly
 Ala
 Val
 Leu
 Trp
 Ala
 Val
 Leu
 Ile
 Ala
 Val
 Leu
 Ile
 Ala
 Val
 Cys
 Trp

 Ala
 Ile
 Ile

- (2) INFORMATION FOR SEQ ID NO:134:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

Val Pro Glu Asp Tyr Arg Ile Ile Thr Ser Asp Asp Ser Gln Ile Ser

1 10 15

Arg Phe Thr Arg Pro Asn Leu Thr Thr Ile Ala Gln Pro Leu Tyr Asp
20 25 30

Leu Gly Ala Ile Ser Met Arg Met Leu Thr Lys Ile Met His Lys Glu 35 40 45

Glu Leu Glu Glu Arg Glu Val Leu Leu Pro His Gly Leu Thr Glu Arg
50 55 60

Ser Ser Thr Arg Lys Arg Lys

5 70

- (2) INFORMATION FOR SEQ ID NO:135:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 163 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Val Gly Gln Ser Gln Phe Leu Phe Lys Val Ser Tyr Ala Asp Gly Gln

1 5 10 15

Lys Ala Tyr Arg Val Asp Leu Pro Asp Leu Leu Thr Lys Thr Asp Trp
20 25 30

Gln Ile Ile Lys Ser Phe Leu Asp Val Leu Leu Ala Tyr Thr Gly Thr
35 40 45

Asp Ile Glu Gly Leu Asp Gly Phe Asp Phe Glu Ala Tyr Phe Gln Ala 50 55 60

Ser Ile Gln Ala Tyr Leu Ala Asp Pro Val Ala Arg Phe Thr Ile Cys 65 70 75 80

Gln Arg Ile Phe Asn Pro Ile Phe Phe Ser Arg Glu Asn Leu Lys Ser 85 90 95

Phe Leu Glu Ala Asp Gly Leu Ala Gln Phe Glu Ala Arg Val Arg Ala
100 105 110

Val Gln Glu Thr Asp Ala Tyr Phe Ala Arg Val Ser Phe Tyr Gln Asp 115 120 125

- (2) INFORMATION FOR SEQ ID NO:136:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

 Val
 Asp
 Lys
 Glu
 Val
 Gln
 Trp
 Glu
 1ee
 Asp
 Leu
 Val
 Gln
 Thr
 Gly

 1
 1
 5
 1
 5
 10
 1e
 1e
 1e
 1s
 1e
 1s
 1s</td

- (2) INFORMATION FOR SEQ ID NO:137:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 299 amino acids
 - (B) TYPE: amino acid

65

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Val Ile Leu Lys Ile Glu Asp Leu Val Met Ser Ile Ile Ser Thr Asp 227

10 Leu Thr Pro Phe Gln Ile Asp Asp Thr Leu Lys Ala Ala Leu Arg Glu 20 25 Asp Val His Ser Glu Asp Tyr Ser Thr Asn Ala Ile Phe Asp His His 40 Gly Gln Ala Lys Val Ser Leu Phe Ala Lys Glu Ala Gly Val Leu Ala 55 Gly Leu Thr Val Phe Gln Arg Val Phe Thr Leu Phe Asp Ala Glu Val 70 75 Thr Phe Gln Asn Pro His Gln Phe Lys Asp Gly Asp Arg Leu Thr Ser 85 90 Gly Asp Leu Val Leu Glu Ile Ile Gly Ser Val Arg Ser Leu Leu Thr 100 105 Cys Glu Arg Val Ala Leu Asn Phe Leu Gln His Leu Ser Gly Ile Ala 115 125 Ser Met Thr Ala Ala Tyr Val Glu Ala Leu Gly Asp Asp Cys Ile Lys 135 Val Phe Asp Thr Arg Lys Thr Thr Pro Asn Leu Arg Leu Phe Glu Lys 150 155 Tyr Ala Val Arg Val Gly Gly Gly Tyr Asn His Arg Phe Asn Leu Ser 165 170 Asp Ala Ile Leu Leu Lys Asp Asn His Ile Ala Ala Val Gly Ser Val 180 185 Gln Arg Ala Ile Ala Gln Ala Arg Ala Tyr Ala Pro Phe Val Lys Met 195 200 Val Glu Val Glu Ser Leu Ala Ala Glu Glu Ala Ala Ala 215 Ala Gly Ala Asp Ile Ile Met Leu Asp Asn Met Ser Leu Glu Gln Ile 230 Glu Gln Ala Ile Thr Leu Ile Ala Gly Arg Ser Arg Ile Glu Cys Ser 245 250 Gly Asn Ile Asp Met Thr Thr Ile Ser Arg Phe Arg Gly Leu Ala Ile 265 Asp Tyr Val Ser Ser Gly Ser Leu Thr His Ser Ala Lys Ser Leu Asp 280 285 Phe Ser Met Lys Gly Leu Thr Tyr Leu Asp Val 290 295

(2) INFORMATION FOR SEQ ID NO:138:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 242 amino acids-
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

Val Glu Val Glu Val Pro Thr Gln Val Pro Ala His Ile Gly Ile Ile 10 Met Asp Gly Asn Gly Arg Trp Ala Lys Lys Arg Met Gln Pro Arg Val 25 Phe Gly His Lys Ala Gly Met Glu Ala Leu Gln Thr Val Thr Lys Ala 40 Ala Asn Lys Leu Gly Val Lys Val Ile Thr Val Tyr Ala Phe Ser Thr 55 Glu Asn Trp Thr Arg Pro Asp Gln Glu Val Lys Phe Ile Met Asn Leu 70 Pro Val Glu Phe Tyr Asp Asn Tyr Val Pro Glu Leu His Ala Asn Asn 85 90 Val Lys Ile Gln Met Ile Gly Glu Thr Asp Arg Leu Pro Lys Gln Thr 100 105 Phe Glu Ala Leu Thr Lys Ala Glu Glu Leu Thr Lys Asn Asn Thr Gly 120 Leu Ile Leu Asn Phe Ala Leu Asn Tyr Gly Gly Arg Ala Glu Ile Thr 135 140 Gln Ala Leu Lys Leu Ile Ser Gln Asp Val Leu Asp Ala Lys Ile Asn 150 155 Pro Gly Asp Ile Thr Glu Glu Leu Ile Gly Asn Tyr Leu Phe Thr Gln 165 170 His Leu Pro Lys Asp Leu Arg Asp Pro Asp Leu Ile Ile Arg Thr Ser 180 185 Gly Glu Leu Arg Leu Ser Asn Phe Leu Pro Trp Gln Gly Ala Tyr Ser 200 Glu Leu Tyr Phe Thr Asp Thr Leu Trp Pro Asp Phe Asp Glu Ala Ala 210 Leu Gln Glu Ala Ile Leu Ala Tyr Asn Arg Arg His Arg Arg Phe Gly 230 235 Gly Val

- (2) INFORMATION FOR SEQ ID NO:139:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 183 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

35 40 45

Ala Gly Leu Asp Lys Ala Leu Leu Ala Leu Cys Ile Val Trp Ala Thr 50 55 60

Asp Ser Gly Ala Tyr Leu Val Gly Met Asn Tyr Gly Lys Arg Lys Leu 65 70 75 80

Ala Pro Arg Val Ser Pro Asn Lys Thr Leu Glu Gly Ala Leu Gly Gly
85 90 95

Ile Leu Gly Ala Ile Leu Val Thr Ile Ile Phe Met Ile Val Asp Ser
100 105 110

Thr Val Ala Leu Pro Tyr Gly Ile Tyr Lys Met Ser Val Phe Ala Ile 115 120 125

Phe Phe Ser Ile Ala Gly Gln Phe Gly Asp Leu Leu Glu Ser Ser Ile 130 135 140

Lys Arg His Phe Gly Val Lys Asp Ser Gly Lys Phe Ile Pro Gly His 145 150 155 160

Gly Gly Val Leu Asp Arg Phe Asp Ser Met Leu Leu Val Phe Pro Ile 165 170 175

Met His Leu Phe Gly Leu Phe

180

- (2) INFORMATION FOR SEQ ID NO:140:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 95 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

(2) INFORMATION FOR SEQ ID NO:141:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 183 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

Val Glu Leu Met Ser Thr Val Gln Lys Ser Thr Phe Met Lys Cys Val Asn Thr Leu Glu Trp Phe Phe Asn Ala Pro Ile His Leu Leu Asn Arg 20 25 Ile Tyr Arg Asn Ile Thr Phe Ala His Glu Arg Ala Gly Val Lys Asp 40 Lys Gln Val Leu Asp Glu Ile Val Glu Thr Ser Leu Ser Gln Ala Ala 55 Leu Trp Asp Gln Val Lys Asp Asp Leu His Lys Ser Ala Leu Thr Leu 65 70 75 80 Ser Gly Gly Gln Gln Arg Leu Cys Ile Ala Arg Ala Ile Ser Val 90 Lys Pro Asp Ile Leu Leu Met Asp Glu Pro Ala Ser Ala Leu Asp Pro 100 105 Ile Ala Thr Met Gln Leu Glu Glu Thr Met Phe Glu Leu Lys Lys Asn 231

(2) INFORMATION FOR SEQ ID NO:142:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 228 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

Val Pro Lys Glu Ser Leu Thr Gln Val Leu Pro Arg Asp Leu His Ala 5 10 Glu Tyr Phe Ala Val Leu Ala Ser Ile Ala Thr Ser Ile Glu Arg Met 25 Ala Thr Glu Ile Arg Gly Leu Gln Lys Ser Glu Gln Arg Glu Val Glu 45 Glu Phe Phe Ala Lys Gly Gln Lys Gly Ser Ser Ala Met Pro His Lys 55 Arg Asn Pro Ile Gly Ser Glu Asn Met Thr Gly Leu Ala Arg Val Ile 70 75 Arg Gly His Met Ile Thr Ala Tyr Glu Asn Val Ala Leu Trp His Glu 85 90 Arg Asp Ile Ser His Ser Ser Ala Glu Arg Ile Ile Thr Pro Asp Thr 100 105 Thr Ile Leu Ile Asp Tyr Met Leu Asn Arg Phe Gly Asn Ile Val Lys 115 120 125 Asn Leu Thr Val Phe Pro Glu Asn Met Ile Arg Asn Met Asn Ser Thr 135 Phe Gly Leu Ile Phe Ser Gln Arg Ala Met Leu Thr Leu Ile Glu Lys 145 150 155 Gly Met Thr Arg Glu Gln Ala Tyr Asp Leu Val Gln Pro Lys Thr Ala 232

(2) INFORMATION FOR SEQ ID NO:143:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:
- Val Ile Phe Ile Ser Thr Leu Ser Leu Gly Gly Leu Ala His Leu Leu 5 10 Trp Phe Ser Leu Pro Leu Ala Ala Cys Leu Ala Val Gly Ala Ala Leu 25 Gly Pro Thr Asp Leu Val Ala Phe Ala Ser Leu Ser Glu Arg Phe Ser 35 Phe Pro Lys Arg Val Ser Asn Ile Leu Lys Gly Glu Gly Leu Leu Asn 55 Asp Ala Ser Gly Leu Val Ala Phe Gln Val Ala Leu Thr Ala Trp Thr 75 Thr Gly Ala Phe Ser Leu Gly Gln Ala Ser Ser Ser Leu Ile Phe Ser 90 Ile Leu Gly Gly Phe Leu Ile Gly Phe Leu Thr Ala Met Thr Asn Arg 100 105 Phe Leu His Thr Phe Leu Leu Ser Val Arg Ala Thr Asp Ile Ala Ser 115 120 Glu Leu Leu Glu Phe Glu Phe Ala Ser Ser Asp Leu Leu Ser Gly 135 Arg Arg Ser Pro Cys Phe Arg Asp Tyr Cys Arg Arg Ser 145 150 155

(2) INFORMATION FOR SEQ ID NO:144:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 230 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

Val 1	Thr	Phe	Phe		Ala	Glu	Glu	Val		Val	Ser	Gly	Ile		Ala
				5					10					15	
Val	Val	Val	Asp	Arg	Ile	Leu	Lys	Ala	Ser	Arg	Phe	Lys	Lys	Ile	Thr
			20					25					30		
Leu	Leu	Glu	Ala	Gln	Val	Asp	Thr	Val	Thr	Glu	Thr	Val	Trp	His	Thr
		35					40					45			
Val	Thr	Phe	Met	Leu	Asn	Gly	Ser	Val	Phe	Val	Ile	Leu	Gly	Met	Glu
	50					55					60				
Leu	Glu	Met	Ile	Ala	Glu	Pro	Ile	Leu	Thr	Asn	Pro	Ile	Tvr	Asn	Pro
65					70					75			-1-		80
Leu	Leu	Leu	Leu	Leu	Ser	Leu	Ile	Ala	Leu		Phe	Val	Len	Phe	
				85					90			val	Lea	95	Val
T1e	Ara	Phe	Tle	•	Ile	Тугт	Glaz	П1 г2 г		77-	TT	Λ 20.00	mb		7
110	1119	1110	100	1100	116	TYT	Сту		TAT	Ala	тут	Arg		Arg	Arg
T 011	T	T		T	3	.		105	_	_			110		_
ьeu	гух		ьуѕ	ьeu	Asn	ьуs		Met	Lys	Asp	Met		Leu	Leu	Thr
		115	_				120					125			
Phe		Gly	Val	Lys	Gly		Val	Ser	Ile	Ala	Thr	Ile	Leu	Leu	Ile
	130					135					140				
Pro	Ser	Asn	Leu	Glu	Gln	Glu	Tyr	Pro	Leu	Leu	Leu	Phe	Leu	Val	Ala
145					150					155					160
Gly	Val	Thr	Leu	Val	Ser	Phe	Leu	Thr	Gly	Leu	Leu	Val	Leu	Pro	His
				165					170					175	
Leu	Ser	Asp	Glu	Glu	Glu	Glu	Ser	Lys	Asp	Tyr	Leu	Met	His	Ile	Ala
			180					185					190		
Ile	Leu	Asn	Glu	Val	Thr	Leu	Glu	Leu	Glu	Lvs	Glu	Len		Asn	Thr
		195					200			-1~		205	0_u		
Ara	Asn		Len	Pro	Leu	ጥኒያዮ		λl =	т10	7 an	7 ~~		т1.	M	7
9	210	<i>ت</i> رـــ	u	0	Lou	215	1110	мта	-TG	vsb		ser	тте	Met	ASP
17~ T		T ~	T1 -	C	DI.	Z13					220				
	ьeu	ьys	Ile	ser											
225					230				-						

- (2) INFORMATION FOR SEQ ID NO:145:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 98 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

 Val
 Thr
 Gly
 Glu
 Val
 Gly
 Asp
 Leu
 Lys
 Gln
 Gly
 Phe
 Ser
 Val
 Asn
 Ile

 1
 5
 1
 5
 10
 1
 15
 15

 Glu
 Val
 Lys
 Asp
 Lys
 Ala
 Ile
 Leu
 Val
 Pro
 Val
 Ser
 Ser
 Leu

 Val
 Asp
 Asp
 Asp
 Lys
 Asp
 Asp
 Tyr
 Val
 Trp
 Ile
 Val
 Asp
 Glu
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Gln
 Asp
 Ala
 Gln
 Gln
 Asp
 Ala
 Gln
 Asp
 Ala
 Asp
 Ala
 Asp
 Ala
 Asp
 Asp

65 70 75 80 Pro Thr Ser Ser Leu Glu Glu Gly Lys Glu Val Lys Ala Asp Glu Ala

85 90 95

Thr Asn

- (2) INFORMATION FOR SEQ ID NO:146:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 182 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

Val Gly Leu Gln Ile Arg Ala Ile Phe Lys Arg Tyr Thr Asp Leu Ile

1 5 10 15

Glu Pro Met Ser Ile Asp Glu Ala Tyr Leu Asp Val Thr Glu Asn Lys
20 25 30

Leu Gly Ile Lys Ser Ala Val Lys Ile Ala Arg Leu Ile Gln Lys Asp 40 Ile Trp Gln Glu Leu His Leu Thr Ala Ser Ala Gly Val Ser Tyr Asn 55 Lys Phe Leu Ala Lys Met Ala Ser Asp Tyr Gln Lys Pro His Gly Leu Thr Val Ile Leu Pro Glu Gln Ala Glu Asp Phe Leu Lys Gln Met Asp 90 Ile Ser Lys Phe His Gly Val Gly Lys Lys Thr Val Glu Arg Leu His 105 Gln Met Gly Val Phe Thr Gly Ala Asp Leu Leu Glu Val Pro Glu Val 115 120 Thr Leu Ile Asp Arg Phe Gly Arg Leu Gly Tyr Asp Leu Tyr Arg Lys 135 Ala Arg Gly Ile His Asn Ser Pro Val Lys Ser Asn His Ile Arg Lys 150 155 Ser Ile Gly Lys Glu Lys Thr Tyr Gly Lys Ile Leu Arg Ala Glu Glu 165 170 Asp Ile Lys Lys Glu Ser 180

(2) INFORMATION FOR SEQ ID NO:147:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 343 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

 Val
 Asn
 Leu
 Pro
 Lys
 Arg
 Ala
 Phe
 Leu
 Asn
 Gly
 Arg
 Val
 Asp
 Leu
 Phe

 1
 1
 5
 5
 2
 1
 10
 1
 1
 15
 1
 1

 Glu
 Ala
 Ala
 Val
 Met
 Asp
 Ile
 Arg
 Ala
 Lys
 Lys
 Asp
 Ala
 Arg
 Ile
 Arg
 Ala
 Arg
 Ile
 Arg
 Arg
 Arg
 Ile
 Arg
 Arg

Val	Val	Arg	Glu	Lys 85	Thr	Met	Glu	Phe	Glu 90	Gln	Leu	Leu	Thr	Lys 95	Leu
Leu	Arg	Thr	Ala 100	Arg	Arg	Gly	Lys	Ile 105	Leu	Arg	Glu	Gly	Ile 110	Ser	Thr
Ala	Ile	Ile 115		Arg	Pro	Asn			Lys	Ser	Ser			Asn	Asn
T OU	Lou		C1.,	7 ~~	T	77-	120	77- T	m1		~ 7	125	~ 7	_,	
пец	130	Arg	GIU	Asp	Lys		тте	vai	Thr	Asp		Ala	GIY	Thr	Thr
7 ~~		۲ <i>۲</i> م ۲	T1.	C1	01	135	77- 7	7	77. 3	_	140		_	_	_
	Asp	vaı	TIE	GIU	Glu	ıyr	vaı	Asn	TTE		GLY	Val	Pro	Leu	
145	~ 1	_	 1		150				_	155					160
ьeu	TTE	Asp	Thr		Gly	Ile	Arg	Glu		Asp	Asp	Ile	Val	Glu	Gln
				165					170					175	
Ile	Gly	Val		Arg	Ser	Lys	Lys	Ala	Leu	Lys	Glu	Ala	Asp	Leu	Val
			180					185					190		
Leu	Leu	Val	Leu	Asn	Ala	Ser	Glu	Pro	Leu	Thr	Ala	Gln	Asp	Arg	Gln
		195					200					205			
Leu	Leu	Glu	Ile	Ser	Gln	Asp	Thr	Asn	Arg	Ile	Ile	Leu	Leu	Asn	Lys
	210					215					220				
Thr	Asp	Leu	Pro	Glu	Thr	Ile	Glu	Thr	Ser	Lys	Leu	Pro	Glu	Asp	Val
225					230					235					240
Ile	Arg	Ile	Ser	Val	Leu	Lys	Asn	Gln	Asn	Ile	Asp	Lys	Ile	Glu	Glu
				245					250					255	
Arg	Ile	Asn	Asn	Leu	Phe	Phe	Glu	Asn	Ala	Gly	Leu	Val	Glu	Gln	Asp
			260					265					270		
Ala	Thr	Tyr	Leu	Ser	Asn	Ala	Arg	His	Ile	Ser	Leu	Ile	Glu	Lys	Ala
		275					280					285			
Val	Glu	Ser	Leu	Gln	Ala	Val	Asn	Gln	Gly	Leu	Glu	Leu	Gly	Met	Pro
	290					295					300		_		
Val	Asp	Leu	Leu	Gln	Val	Asp	Leu	Thr	Arg	Thr	Trp	Glu	Ile	Leu	Glv
305					310				_	315	_				320
Glu	Ile	Thr	Gly	Asp	Ala	Ala	Pro	Asp	Glu	Leu	Ile	Thr	Gln	Leu	
			_	325				-	330					335	
Ser	Gln	Phe	Cys		Gly	Lys								223	
			340		-	-									

(2) INFORMATION FOR SEQ ID NO:148:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 115 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

Val Glu Ile Ser Val Gln Pro Pro Gly Lys Lys Ile Gln Ser Leu Asn 1.0 Leu Met Ser Gly Gly Glu Lys Ala Leu Ser Ala Leu Ala Leu Leu Phe 25 Ser Ile Ile Arg Val Lys Thr Ile Pro Phe Val Ile Leu Asp Glu Val Glu Ala Ala Leu Asp Glu Ala Asn Val Lys Arg Phe Gly Asp Tyr Leu 50 Asn Arg Phe Asp Lys Asp Ser Gln Phe Ile Val Val Thr His Arg Lys 70 75 Gly Thr Met Ala Ala Asp Ser Ile Tyr Gly Val Thr Met Gln Glu 90 Ser Gly Val Ser Lys Ile Val Ser Val Lys Leu Lys Asp Leu Glu Ser 105 110 Ile Glu Gly

- (2) INFORMATION FOR SEQ ID NO:149:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 231 amino acids
 - (B) TYPE: amino acid

115

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

 Val
 Thr
 Val
 Ala
 Glu
 Phe
 Gly
 Asp
 Ser
 Ley
 Leu
 Thr
 Val
 Gly
 Ala
 A

Gly Gln Val Ile Gly Ile Thr Ser Ser Lys Ile Ala Thr Asn Gly Gly 90 Thr Ser Val Glu Gly Leu Gly Phe Ala Ile Pro Ala Asn Asp Ala Ile 100 105 Asn Ile Ile Glu Gln Leu Glu Lys Asn Gly Lys Val Thr Arg Pro Ala 120 Leu Gly Ile Gln Met Val Asn Leu Ser Asn Val Ser Thr Ser Asp Ile 130 135 140 Arg Arg Leu Asn Ile Pro Ser Asn Val Thr Ser Gly Val Ile Val Arg 150 155 Ser Val Gln Ser Asn Met Pro Ala Asn Gly His Leu Glu Lys Tyr Asp 165 170 175 Val Ile Thr Lys Val Asp Asp Lys Glu Ile Ala Ser Ser Thr Asp Leu 180 185 Gln Ser Ala Leu Tyr Asn His Ser Ile Gly Asp Thr Ile Lys Ile Thr 200 Tyr Tyr Arg Asn Gly Lys Glu Glu Thr Thr Ser Ile Lys Leu Asn Lys 210 215 220 Ser Ser Gly Asp Leu Glu Ser 225 230

- (2) INFORMATION FOR SEQ ID NO:150:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

Val Gln Arg Ser Met Leu Leu Pro Gly Gly Ile Leu Gly Met Thr Val

1 5 10 15

Trp Leu Ile Tyr Leu Leu Leu Lys Glu Pro Thr Asn Val Ile Val Ala
20 25 30

Val Asn Gln Ser Leu Lys Arg Ser
35 40

- (2) INFORMATION FOR SEQ ID NO:151:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 102 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

Val Thr Met Glu Leu Asn Thr His Asn Ala Glu Ile Leu Leu Ser Ala 1 5 10 15

Ala Asn Lys Ser His Tyr Pro Gln Asp Glu Leu Pro Glu Ile Ala Leu 20 25 30

Ala Gly Arg Ser Asn Val Gly Lys Ser Ser Phe Ile Asn Thr Met Leu 35 40 45

Asn Arg Lys Asn Leu Ala Arg Thr Ser Gly Lys Pro Gly Lys Thr Gln 50 55 60

Leu Leu Asn Phe Phe Asn Ile Asp Asp Lys Met Arg Phe Val Asp Val 65 70 75 80

Pro Gly Tyr Gly Tyr Ala Arg Val Ser Lys Lys Glu Arg Glu Lys Trp
85 90 95

Gly Cys Met Ile Glu Glu

100

- (2) INFORMATION FOR SEQ ID NO:152:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

Val Gln Met Tyr Glu Phe Leu Lys Tyr Tyr Glu Ile Pro Val Ile Ile

1 5 10 15

Val Ala Thr Lys Ala Asp Lys Ile Pro Arg Gly Lys Trp Asn Lys His
20 25 30

Glu Ser Ala Ile Lys Lys Leu Asn Phe Asp Pro Ser Asp Asp Phe
35 40 45

Ile Leu Phe Ser Ser Val Ser Lys Ala Gly Met Asp Glu Ala Trp Asp 240

50 55 60 Ala Ile Leu Glu Lys Leu 65 70

- (2) INFORMATION FOR SEQ ID NO:153:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 59 amino acids
 - (B) TYPE: amino acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

- (2) INFORMATION FOR SEQ ID NO:154:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 294 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

Val Ile Ile Met Lys Phe Lys Lys Met Leu Thr Leu Ala Ala Ile Gly

1 5 10 15

Leu Ser Gly Phe Gly Leu Val Ala Cys Gly Asn Gln Ser Ala Ala Ser
20 25 30

Lys Gln Ser Ala Pro Gly Thr Ile Glu Val Ile Ser Arg Glu Asn Gly
35 40 45

Ser Gly Thr Arg Gly Ala Phe Thr Glu Ile Thr Gly Ile Leu Lys Lys 55 Asp Gly Asp Lys Lys Ile Asp Tyr Thr Ala Lys Thr Ala Val Ile Gln 70 75 Asn Ser Thr Glu Gly Val Leu Ser Ala Val Gln Gly Asn Ala Asn Ala 85 90 Ile Gly Tyr Ile Ser Leu Gly Ser Leu Thr Lys Ser Val Lys Ala Leu 100 105 Glu Ile Asp Gly Val Lys Ala Ser Arg Asp Thr Val Leu Asp Gly Glu 120 Tyr Pro Leu Gln Arg Pro Phe Asn Ile Val Trp Ser Ser Asn Leu Ser 130 135 Lys Leu Gly Gln Asp Phe Ile Ser Phe Ile His Ser Lys Gln Gly Gln 150 155 Gln Val Val Thr Asp Asn Lys Phe Ile Glu Ala Lys Thr Glu Thr Thr 165 170 Glu Tyr Thr Ser Gln His Leu Ser Gly Lys Leu Ser Val Val Gly Ser 185 190 Thr Ser Val Ser Ser Leu Met Glu Lys Leu Ala Glu Ala Tyr Lys Lys 200 Glu Asn Pro Glu Val Thr Ile Asp Ile Thr Ser Asn Gly Ser Ser Ala 210 215 Gly Ile Thr Ala Val Lys Glu Lys Thr Ala Asp Ile Gly Met Val Ser 230 235 Arg Glu Leu Thr Pro Glu Glu Gly Lys Ser Leu Thr His Asp Ala Ile 245 250 Ala Leu Asp Gly Ile Ala Val Val Val Asn Asn Asp Asn Lys Ala Ser 260 270 Gln Val Ser Met Ala Glu Leu Ala Asp Val Phe Ser Gly Lys Leu Thr 275 280 285 Thr Trp Asp Lys Ile Lys 290

(2) INFORMATION FOR SEQ ID NO:155:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 158 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

Val Ser Ser Ile Leu Gly Ala Gly Pro Phe Phe Gly Leu Ala His Glu 5 Ala Gln Leu Lys Ile Leu Glu Leu Thr Ala Gly Gln Val Ala Thr Met 20 Tyr Glu Ser Pro Val Gly Phe Arg His Gly Pro Lys Ser Leu Ile Asn 35 45 Asp Asn Thr Val Val Leu Val Phe Gly Thr Thr Thr Asp Tyr Thr Arg 55 Lys Tyr Asp Leu Asp Leu Val Arg Glu Val Ala Gly Asp Gln Ile Ala 65 70 Arg Arg Val Val Leu Leu Ser Asp Gln Ala Phe Gly Leu Glu Asn Val 85 90 Lys Glu Val Ala Leu Gly Cys Gly Gly Val Leu Asn Asp Ile Tyr Arg Val Phe Pro Tyr Ile Val Tyr Ala Gln Leu Phe Ala Leu Leu Thr Ser 115 120 Leu Lys Val Glu Asn Lys Pro Asp Thr Pro Ser Pro Thr Gly Thr Val Asn Arg Val Val Gln Gly Val Ile Ile His Glu Tyr Gln Lys 145 150 155

(2) INFORMATION FOR SEQ ID NO:156:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 271 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

Tyr Thr Glu Gly Met Leu Lys Ser Leu Leu Thr Leu Ala Asp Val Met 65 75 Pro Thr Gly Tyr His Ala Ala Arg Val Ala Asn Val Gln Lys Gly Asp 85 90 Lys Val Val Ile Gly Asp Gly Ala Val Gly Gln Cys Ala Val Ile 105 Ala Ala Lys Met Arg Gly Ala Ser Gln Ile Ile Leu Met Ser Arg His 115 120 Glu Asp Arg Gln Lys Met Ala Met Glu Ser Gly Ala Thr Ala Val Val 135 Ala Glu Arg Gly Gln Glu Gly Ile Thr Lys Val Arg Glu Ile Leu Gly 145 155 Gly Gly Ala Asp Ala Ala Leu Glu Cys Val Gly Thr Glu Ala Ala Ile 165 170 Glu Gln Ala Leu Gly Val Leu His Asn Gly Gly Arg Met Gly Phe Val 180 185 Gly Val Pro His Tyr Asn Asn Arg Ala Leu Gly Ser Thr Phe Met Gln 195 200 Asn Ile Ser Val Ala Gly Gly Ala Ala Ser Ala Thr Thr Tyr Asp Lys 215 Gln Phe Leu Leu Lys Ala Val Leu Asp Gly Asp Ile Asn Pro Gly Arg 225 230 235 Val Phe Thr Ser Ser Tyr Lys Leu Glu Asp Ile Asp Gln Ala Tyr Lys 250 Asp Met Asp Glu Arg Lys Thr Ile Lys Ser Met Ile Val Ile Glu 260 265 270

(2) INFORMATION FOR SEQ ID NO:157:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 122 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

Val Arg Lys Ser Arg Val Asn Asn Ser Gln Gln Met Leu Gln Ala Leu

1 5 10 15

Glu Glu Gln Asp Leu Thr Lys Ala Glu His Tyr Phe Ala Lys Ala Leu
20 25 30

(2) INFORMATION FOR SEQ ID NO:158:

120

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 317 amino acids
 - (B) TYPE: amino acid

115

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

Val Thr Gly Met Ser Arg Ser Leu Ala Leu Lys Ala Asp Leu Tyr Gln 10 Leu Glu Gly Leu Thr Asp Val Ala Arg Glu Lys Leu Leu Glu Ala Leu 25 Thr Tyr Ser Lys Asp Ser Leu Leu Ile Leu Gly Leu Ala Lys Leu Asp 40 Ser Glu Leu Glu Asn Tyr Gln Ala Ala Ile Gln Ala Tyr Ala Gln Leu 55 Asp Asn Arg Ser Ile Tyr Glu Gln Thr Gly Ile Ser Thr Tyr Gln Arg 70 65 Ile Gly Phe Ala Tyr Ala Gln Leu Gly Lys Phe Glu Thr Ala Thr Glu 90 Phe Leu Glu Lys Ala Leu Glu Leu Glu Tyr Asp Asp Leu Thr Ala Phe 105 Glu Leu Ala Ser Leu Tyr Phe Asp Gln Glu Glu Tyr Gln Lys Ala Thr 115 120 125 Leu Tyr Phe Lys Gln Leu Asp Thr Ile Ser Pro Asp Phe Glu Gly Tyr 130 135 140

Glu Tyr Gly Tyr Ser Gln Ala Leu His Lys Glu His Gln Val Gln Glu 145 150 Ala Leu Arg Ile Ala Lys Gln Gly Leu Glu Lys Asn Pro Phe Glu Thr 165 170 Arg Leu Leu Ala Ala Ser Gln Phe Ser Tyr Glu Leu His Asp Ala 180 185 Ser Gly Ala Glu Asn Tyr Leu Leu Thr Ala Lys Glu Asp Ala Glu Asp 195 200 205 Thr Glu Glu Ile Leu Leu Arg Leu Ala Thr Ile Tyr Leu Glu Gln Glu 215 220 Arg Tyr Glu Asp Ile Leu Asp Leu Gln Ser Glu Glu Pro Glu Asn Leu 225 230 235 Leu Thr Lys Trp Met Ile Ala Arg Ser Tyr Gln Glu Met Asp Asp Leu 245 250 Asp Thr Ala Tyr Glu His Tyr Gln Glu Leu Thr Gly Asp Leu Lys Asp 260 265 Asn Pro Glu Phe Leu Glu His Tyr Ile Tyr Leu Leu Arg Glu Leu Gly 275 285 His Phe Glu Glu Ala Lys Val His Ala His Thr Tyr Leu Lys Leu Val 295 Pro Asp Asp Val Gln Met Gln Glu Leu Phe Glu Arg Leu 305 310 315

(2) INFORMATION FOR SEQ ID NO:159:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 77 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

Val Glu Lys Ala Gly Val Val Ile Ala Ile Asn His Asn Glu Ile Pro 1 '5 '5 '5 '5 '6 '7 '10 '7 '

Arg Ala Gln Thr Ser Asp Asp Val Ile Ala Ala Phe Cys 65 70 75

- (2) INFORMATION FOR SEQ ID NO:160:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 46 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

- (2) INFORMATION FOR SEQ ID NO:161:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

65 70 75 80

Ala Leu Asn Met Asp Val Glu Ser Asp Gly Thr Val Leu Gly Leu Phe
85 90 95

(2) INFORMATION FOR SEQ ID NO:162:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 292 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:

Val Lys Lys Arg Lys Leu Ala Leu Ser Leu Ile Ala Phe Trp Leu 5 Thr Ala Cys Leu Val Gly Cys Ala Ser Trp Ile Asp Arg Gly Glu Ser 25 Ile Thr Ala Val Gly Ser Thr Ala Leu Gln Pro Leu Val Glu Val Ala 40 Ala Asp Glu Phe Gly Thr Ile His Val Gly Lys Thr Val Asn Val Gln 55 Gly Gly Ser Ser Gly Thr Gly Leu Ser Gln Val Gln Ser Gly Ala Val 70 Asp Ile Gly Asn Ser Asp Val Phe Ala Glu Glu Lys Asp Gly Ile Asp 85 Ala Ser Ala Leu Val Asp His Lys Val Ala Val Ala Gly Leu Ala Leu 105 Ile Val Asn Lys Glu Val Asp Val Asp Asn Leu Thr Thr Glu Gln Leu 120 Arg Gln Ile Phe Ile Gly Glu Val Thr Asn Trp Lys Glu Val Gly Gly 135 140 Lys Asp Leu Pro Ile Ser Val Ile Asn Arg Ala Ala Gly Ser Gly Ser 150 155 Arg Ala Thr Phe Asp Thr Val Ile Met Glu Gly Gln Ser Ala Met Gln 165 170 Ser Gln Glu Gln Asp Ser Asn Gly Ala Val Lys Ser Ile Val Ser Lys 185 Ser Pro Gly Ala Ile Ser Tyr Leu Ser Leu Thr Tyr Ile Asp Asp Ser 195 200 -Val Lys Ser Met Lys Leu Asn Gly Tyr Asp Leu Ser Pro Glu Asn Ile 248

210 215 220 Ser Ser Asn Asn Trp Pro Leu Trp Ser Tyr Glu His Met Tyr Thr Leu 225 230 235 Gly Gln Pro Asn Glu Leu Ala Ala Glu Phe Leu Asn Phe Val Leu Ser 245 250 Asp Glu Thr Gln Glu Gly Ile Val Lys Gly Leu Lys Tyr Ile Pro Ile 265 Lys Glu Met Lys Val Glu Lys Asp Ala Ala Gly Thr Val Thr Val Leu 275 . 280 Glu Gly Arg Gln 290

- (2) INFORMATION FOR SEQ ID NO:163:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 71 amino acids
 - (B) TYPE: amino acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:

 Val
 Gln
 Pro
 Thr
 Gln
 Ala
 Glu
 Gln
 Pro
 Ser
 Thr
 Pro
 Lys
 Glu
 Ser
 Ser

 1
 5
 5
 10
 10
 10
 10
 15
 15
 15

 Gln
 Glu
 Asn
 Pro
 Lys
 Glu
 Asp
 Gly
 Asp
 Glu
 Glu
 Asp
 Glu
 Asp
 Glu
 Asp
 Glu
 Glu

- (2) INFORMATION FOR SEQ ID NO:164:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 465 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

Val 1	Leu	Leu	Lys	Met 5	Asp	Gly	Tyr	Arg	Tyr 10	Val	Gly	Tyr	Leu		Gly
	T1 -	т	T		.	~ 1	-	_						15	
Asp	тте	ьеи		Thr	ьeu	GIY	ьeu		Thr	Val	Leu	Glu	Glu	Thr	Ser
			20					25					30		
Ala	Lys	Pro	Gly	Glu	Val	Thr	Val	Val	Glu	Val	Glu	Thr	Pro	Gln	Ser
		35					40					45			
Thr	Thr	Asn	Gln	Glu	Gln	Ala	Arg	Thr	Glu	Asn	Gln	Val	Val	Glu	Thr
	50					55					60				
Glu	Glu	Ala	Pro	Lys	Glu	Glu	Ala	Pro	Lys	Thr	Glu	Glu	Ser	Pro	Lys
65					70					75					80
Glu	Glu	Pro	Lys	Ser	Glu	Val	Lys	Pro	Thr	Asp	Asp	Thr	Leu	Pro	Lys
				85					90					95	
Val	Glu	Glu	Gly	Lys	Glu	Asp	Ser	Ala	Glu	Pro	Ser	Pro	Val	Glu	Glu
			100					105					110		
Val	Gly	Gly	Glu	Val	Glu	Ser	Lys	Pro	Glu	Glu	Lvs	Val	Ala	Val	Lvs
		115					120				-	125			-2
Pro	Glu	Ser	Gln	Pro	Ser	Asp	Lys	Pro	Ala	Glu	Glu		Lys	Val	Glu
	130					135	-				140		-1-	V 0	
Pro	Pro	Val	Glu	Gln	Ala		Val	Pro	Glu	Gln		Val	Gln	Pro	Thr
145					150	- 				155	110	val	0111	110	160
Gln	Ala	Glu	Gln	Pro		Thr	Pro	Lvs	Glu		Ser	Gln	Gln	Glu	
				165				_, 5	170	DCI	DCI	0111	OIII	175	ASII
Pro	Lvs	Glu	Asp		Glv	Δla	Glu	Glu		Pro	Two	Cln	Glu		C1.,
	-1-		180	9		1114	GIG	185	1111	110	пуз	GIII	190	ASP	Giu
Gln	Pro	Δla		Δla	Gln	Glu	Tlo		Ual	Clu	C1.1	Dro	Val	C1	Com
0111		195	Olu	1114	0111	Giu	200	пуз	vaı	Gru	Giu		vai	Giu	ser
Lvs	Glu		Thr	Val	Δen	Gln		1751	Clu	C1 n	Dro	205	Val	Q1	mb
בעט	210	OIU	1111	Val	ASII	215	FIO	vai	Giu	GIII		ьys	Val	GIU	THE
Pro		17a l	C1.,	Tara	C1 m		C1	D	m1	01	220	_	-		~ 7
225	мта	vaı	GIU	пуѕ		1111	GIU	Pro	Thr		GIU	Pro	Lys	Val	
	mh sa	Com	T1.	Desc	230	m1	m1	2		235	~ 7	_	_		240
val	THE	ser	тте		GIN	Thr	Thr	Arg		GIu	Glu	Asp	Leu		Lys
~ 1		~ 7	m1	245	~ 7			_	250	_				255	
GIU	HIS	GIY		Arg	GIu	Val	Val		Glu	Gly	Lys	Asn	Gly	Ser	Arg
			260					265					270		
Thr	Val		Thr	Pro	Tyr	Ile	Leu	Asn	Ala	Thr	Asp	Gly	Thr	Thr	Thr
		275					280					285			
Glu		Thr	Ser	Thr	Thr		Glu	Ala	Glu	Met	Glu	Lys	Glu	Val	Val
	290					295			-		300				
Arg	Val	Gly	Thr	Lys	Pro	Lys			Leu	Ala	Pro	Val	Leu	Ser	Leu
								250							

305 310 315 320 Thr Ser Val Thr Asp Asn Ala Met Leu Arg Ser Ala Arg Leu Thr Tyr 325 330 His Leu Glu Asn Thr Asp Ser Val Asp Val Lys Lys Ile His Ala Glu 340 345 Ile Lys Asn Gly Asp Lys Val Val Lys Thr Ile Asp Leu Ser Lys Glu 360 Arg Leu Ser Asp Ala Val Asp Gly Leu Glu Leu Tyr Lys Asp Tyr Lys 370 375 380 Ile Val Thr Ser Met Thr Tyr Asp Arg Gly Asn Gly Glu Glu Thr Ser 390 395 Thr Leu Glu Glu Thr Pro Leu Arg Leu Asp Leu Lys Lys Val Glu Leu 405 410 Lys Asn Ile Gly Ser Thr Asn Leu Val Lys Val Asn Glu Asp Gly Thr 420 425 430 Glu Val Ala Ser Asp Phe Leu Thr Ser Lys Pro Val Asp Val Gln Asn 440 445 Tyr Tyr Leu Lys Val Thr Ser Arg Asp Asn Lys Val Val Ser Pro Pro 455 460 Ser 465

(2) INFORMATION FOR SEQ ID NO:165:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 152 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

65 70 75 80 Val Glu Val Pro Gly Ile Val Val Arg Asn His Gly Pro Phe Thr Trp 85 90 Gly Lys Asn Pro Glu Asn Ala Val Tyr His Ser Val Val Leu Glu Glu 100 105 Val Ser Lys Met Asn Arg Phe Thr Glu Gln Ile Asn Pro Arg Val Glu 115 120 Pro Ala Pro Gln Tyr Ile Leu Glu Lys His Tyr Gln Arg Lys His Gly 135 140 Pro Asn Ala Tyr Tyr Gly Gln Lys 145 150

- (2) INFORMATION FOR SEQ ID NO:166:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 74 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

 Val
 Val
 Lys
 Ala
 Ile
 Gln
 Asp
 Gly
 Lys
 Ala
 Lys
 Leu
 Phe
 Leu
 Ala

 His
 Asp
 Ala
 Gly
 Pro
 Asn
 Leu
 Thr
 Lys
 Lys
 Ile
 Ala
 Asp
 Lys
 Ser
 His

 Asp
 Ala
 Gly
 Pro
 Asn
 Leu
 Thr
 Lys
 Lys
 Ile
 Asp
 Lys
 Ser
 His

 Asp
 Tyr
 Gln
 Val
 Glu
 Ile
 Val
 Thr
 Leu
 Ser
 Thr
 Leu
 Ala
 Ile
 Asp
 Ala
 Ala
 Asp
 Ala
 Gly

 Ala
 Thr
 Lys
 Lys
 Arg
 Ser
 Leu
 Met
 Glu
 Ile
 Ile
 Ala
 Ile
 I

- (2) INFORMATION FOR SEQ ID NO:167:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 190 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:167:

Val Ala Asp Asp Asp Gln Cys Ile Phe Leu Cys His Asn His Arg Ala 10 Gln Glu Ser Ile Glu Phe Glu Lys Met Ile Asp Gln Leu Ser Lys Tyr Tyr Ser Cys Arg Ile Leu Thr Glu Lys Asp Ile Pro Ser Ile Leu Ser Leu Tyr Glu Ser Asn Pro Leu Tyr Phe Gln His Cys Pro Pro Glu Pro 55 Asn Phe Ala Thr Val Lys Glu Asp Met Leu Cys Leu Pro Glu Gly Lys 70 75 Ala Lys Ala Asp Lys Phe Phe Val Gly Phe Trp Asn Gly Phe Asp Leu 85 Val Ala Val Met Asp Phe Val Tyr Ala Tyr Pro Asp Glu Glu Thr Val 100 Phe Ile Gly Leu Phe Met Val Asp Gln Ala Tyr Gln Arg Lys Gly Ile Gly Ser His Ile Val Thr Glu Ala Leu Ala Tyr Phe Ala Lys Asn Phe 135 140 Arg Lys Ala Arg Leu Ala Tyr Val Lys Gly Asn Pro Gln Ser Gln His 150 155 Phe Trp Glu Lys Gln Gly Phe Lys Ser Ile Gly Cys Glu Val Lys Gln 170 Glu Leu Tyr Thr Val Val Ile Val Glu Gln Ser Leu Glu Asp 180 185

- (2) INFORMATION FOR SEQ ID NO:168:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 215 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

Val Ala Leu Thr Pro Leu Leu Lys Glu Glu Gly Val Ala Asp Ile Pro

1 10 15

Ala Tyr Lys Asp Tyr Tyr Val Pro Met Asn Lys Ala Leu Trp Lys Asp 20 25 Leu Glu Leu Lys Lys Ile Ser Lys Gln Glu Leu Val Asn Thr Arg Phe 40 Ser Arg Leu Phe Ala His Phe Gly Gln Glu Lys Asp Gly Ser Phe Leu Ala Gln Arg Tyr Gln Phe Tyr Leu Ala Gln Gln Gly Gln Thr Leu Ser 70 80 Gly Ala His Asp Leu Leu Asp Ser Leu Ile Glu Arg Asp Tyr Asn Leu 85 90 Tyr Ala Ala Thr Asn Gly Ile Thr Ala Ile Gln Thr Gly Arg Leu Ala 100 105 Gln Ser Gly Leu Ala Pro Tyr Phe Asn Gln Val Phe Ile Ser Glu Gln 115 120 Leu Gln Thr Gln Lys Pro Asp Ala Leu Phe Tyr Glu Lys Ile Gly Gln Gln Ile Ala Gly Phe Ser Lys Glu Lys Thr Leu Met Ile Gly Asp Ser 145 150 155 160 Leu Thr Ala Asp Ile Gln Gly Gly Asn Asn Ala Gly Ile Asp Thr Ile 170 Trp Tyr Asn Pro His His Leu Glu Asn His Thr Gln Ala Gln Pro Thr 180 185 190 Tyr Glu Val Tyr Ser Tyr Gln Asp Leu Leu Asp Cys Leu Asp Lys Asn 200 205 Ile Leu Glu Lys Ile Thr Phe 210 215

(2) INFORMATION FOR SEQ ID NO:169:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 299 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

Val Ala Ala Leu Ser Gln Gln Asp Val Pro Lys Ala Leu Ser Cys Leu

1 5 10 15

Asn Leu Leu Phe Asp Asn Gly Lys Ser Met Thr Arg Phe Val Thr Asp
20 25 30

254

Leu	Leu	His	Tyr	Leu	Arg	Asp	Leu	Leu	Ile	Val	Gln	Thr	Gly	Gly	Glu
		35					40					45			
Asn	Thr	His	His	Ser	Ser	Val	Phe	Val	Glu	Asn	Leu	Ala	Leu	Pro	Gln
	50					55					60				
Lys	Asn	Leu	Phe	Glu	Met	Ile	Arg	Leu	Ala	Thr	Val	Asn	Leu	Ala	Asp
65					70					75					80
Ile	Lys	Ser	Ser	Leu	Gln	Pro	Lys	Ile	Tyr	Ala	Glu	Met	Met	Thr	Val
				85					90					95	
Arg	Leu	Ala	Glu	Ile	Lys	Pro	Glu	Pro	Ala	Leu	Ser	Gly	Ala	Val	Glu
			100					105					110		
Asn	Arg	Ile	Ala	Thr	Leu	Arg	Gln	Glu	Val	Ala	Arg	Leu	Lys	Gln	Glu
		115					120					125			
Leu	Ser	Asn	Ala	Gly	Ala	Val	Pro	Lys	Gln	Val	Ala	Pro	Ala	Pro	Ser
	130					135					140				
Arg	Pro	Ala	Thr	Gly	Lys	Thr	Val	Tyr	Arg	Val	Asp	Arg	Asn	Lys	Val
145					150					155					160
Gln	Ser	Ile	Leu		Glu	Ala	Val	Glu	Asn	Pro	Asp	Leu	Ala	Arg	Gln
				165					170					175	
Asn	Leu	Ile		Leu	Gln	Asn	Ala	Trp	Gly	Glu	Val	Ile	Glu	Ser	Leu
			180					185					190		
Gly	Gly		Asp	Lys	Ala	Leu		Val	Gly	Ser	Gln	Pro	Val	Ala	Ala
		195					200					205			
Asn		His	His	Ala	Ile	Leu	Ala	Phe	Glu	Ser	Asn	Phe	Asn	Ala	Gly
	210					215					220				
	Thr	Met	Lys	Arg	Asp	Asn	Leu	Asn	Thr	Met	Phe	Gly	Asn	Ile	Leu
225					230					235					240
Ser	GIn	Ala	Ala		Phe	Ser	Pro	Glu		Leu	Ala	Ile	Ser	Met	Glu
~ 7	_	_		245		_			250					255	
GIu	Trp	Lys		Val	Arg	Ala	Ala		Ser	Ala	Lys	Ala	Lys	Ser	Ser
~ 7	m)	~ 3	260					265					270		
GIn	Thr		Lys	Glu	Val	Glu		Ser	Leu	Ile	Pro	Glu	Gly	Phe	Glu
5.1	_	275	_	_			280					285			
rne		Ala	Asp	ГÀЗ	Val		Val	Glu	Glu	Asp					
	290					295									

(2) INFORMATION FOR SEQ ID NO:170:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 147 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

Val Pro Leu Val Ile Leu Met Ile Gly Met Leu Ala Gly Ser Ile Ser His Gln Val Met His Trp Gly Thr Phe Leu Ala Thr Thr Pro Ile Met Leu Val Ala Gly Lys Pro Tyr Ile Gln Ser Ala Trp Ala Ser Phe Lys Lys His Asn Ala Asn Met Asp Thr Leu Val Ala Leu Gly Thr Leu Val 55 60 Ala Tyr Phe Tyr Ser Leu Val Ala Leu Phe Ala Gly Leu Pro Val Tyr 70 75 Phe Glu Ser Ala Gly Phe Ile Leu Phe Phe Val Leu Leu Gly Ala Val 85 Phe Glu Glu Lys Met Arg Lys Asn Thr Ser Gln Ala Val Glu Lys Leu 100 105 Leu Asp Leu Gln Ala Lys Thr Ala Glu Val Leu Ser Asp Asp Ser Tyr 120 Val Gln Val Pro Leu Glu Gln Val Lys Val Arg Asp Leu Asp Ser Ser 130 135 140

- (2) INFORMATION FOR SEQ ID NO:171:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 73 amino acids
 - (B) TYPE: amino acid

Ala Ser Arg

145

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

 Val
 Thr
 Glu
 Asn
 Ala
 Glu
 Ala
 A

Ala Arg Gly Pro Met Gly Leu Lys Glu Leu Thr Ser Tyr Lys Tyr Val 50 55 60

Val Ala Gly Asp Gly Gln Ile Arg Glu
65 70

- (2) INFORMATION FOR SEQ ID NO:172:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 94 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

 Val
 Asp
 Leu
 Pro
 Gln
 Phe
 His
 Leu
 Gly
 Ser
 Ile
 Thr
 Lys
 Thr
 Phe
 Phe

 1
 1
 5
 1
 4
 10
 1
 1
 15
 15
 15

 Gln
 Tr
 Leu
 Val
 Asp
 Ile
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Tr
 Cys
 Leu
 Gly
 Val
 Asp
 Asp
 Lys

 11e
 Tyr
 Lys
 Lys
 Asp
 Thr
 Val
 Ser
 Asp
 A

- (2) INFORMATION FOR SEQ ID NO:173:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 330 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

Val Ser Leu Arg Leu Ile Tyr Ser Ile Phe Lys Lys Met Arg Lys Asn 257

1				5					10					15	
Met	Lys	Ile	Ser	His	Met	Lys	Lys	Asp	Glu	Leu	Phe	Glu	Gly	Phe	Tyr
			20					25					30		
Leu	Ile	Lys	Ser	Ala	Asp	Leu	Arg	Gln	Thr	Arg	Ala	Gly	Lys	Asn	Tyr
		35					40					45			
Leu	Ala	Phe	Thr	Phe	Gln	Asp	Asp	Ser	Gly	Glu	Ile	Asp	Gly	Lys	Leu
	50					55					60				
Trp	Asp	Ala	Gln	Pro	His	Asn	Ile	Glu	Ala	Phe	Thr	Ala	Gly	Lys	Val
65					70					75					80
Val	His	Met	Lys	Gly	Arg	Arg	Glu	Val	Tyr	Asn	Asn	Thr	Pro	Gln	Val
				85					90					95	
Asn	Gln	Ile	Thr	Leu	Arg	Leu	Pro	Gln	Ala	Gly	Glu	Pro	Asn	Asp	Pro
			100					105					110		
Ala	Asp		Lys	Val	Lys	Ser	Pro	Val	Asp	Val	Lys	Glu	Ile	Arg	Asp
_		115					120					125			
Tyr		Ser	Gin	Met	Ile		Lys	Ile	Glu	Asn		Val	Trp	Gln	Arg
T1.	130	7	7	T	m	135	_	_	_		140	_			
145	vaı	Arg	Asn	ьeu		Thr	Lys	Tyr	Asp		Glu	Phe	Tyr	Ser	
	Δla	Δla	Lare	Thr.	150	uia	T7 - ~	77.	Dl	155	ml	G.	_	~ 7	160
110	AIa	AIA	шуѕ	165	ASII	піѕ	His	Ата		GIU	Tnr	GTA	Leu		Tyr
His	Thr	Δla	Thr		Va 1	Δνα	Leu	Nla	170	77~	T1.	C 0 20	G1	175	П
			180	1100	Val	1119	Lea	185	Asp	Ата	TTE	ser	190	Val	TÄT
Pro	Gln	Leu		Lvs	Ser	Leu	Leu		Ala	Glv	Tle	Met		Hic	Aen
		195		-			200	-1-		011		205	Dea	111.5	пър
Leu	Ala	Lys	Val	Ile	Glu	Leu	Thr	Gly	Pro	Asp	Gln		Glu	Tvr	Thr
	210					215		-		-	220			-4-	
Val	Arg	Gly	Asn	Leu	Leu	Gly	His	Ile	Ala	Leu	Ile	Asp	Ser	Glu	Ile
225					230					235					240
Thr	Lys	Thr	Val	Met	Glu	Leu	Gly	Ile	Asp	Asp	Thr	Lys	Glu	Glu	Val
				245					250					255	
Val	Leu	Leu	Arg	His	Val	Ile	Leu	Lys	Ser	Thr	Thr	Ala	Cys	Leu	Asn
			260					265					270		
Met	Glu	Ile	Pro	Val	Arg	Pro	Arg	Ile	Met	Glu	Ala	Glu	Ile	Ile	His
		275					280					285			
Met		Asp	Asn	Leu	Asp	Ala	Ser	Met	Met	Met	Met	Ser	Thr	Ala	Leu
	290					295					300				
	Leu	Val	Asp	Lys	Gly	Glu	Met	Thr	Asn	Lys	Ile	Phe	Ala	Met	Asp
305					310					315					320
Asn	Arg	Ser	Phe		Lys	Pro	Asp	Leu	Asp						
				325					330						

(2) INFORMATION FOR SEQ ID NO:174:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 137 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

Val Trp Lys Lys Lys Lys Val Lys Ala Gly Val Leu Leu Tyr Ala Val

1 5 10 15

Thr Ile Ala Ala Ile Phe Ser Leu Leu Gln Phe Tyr Leu Asn Arg

20 25 30

Gln Val Ala His Tyr Gln Asp Tyr Ala Leu Asn Lys Glu Lys Leu Val 35 40 45

Ala Phe Ala Met Ala Lys Arg Thr Lys Asp Lys Val Glu Gln Glu Ser 50 55 60

Gly Glu Gln Val Phe Asn Leu Gly Gln Val Ser Tyr Gln Asn Lys Lys 65 70 75 80

Thr Gly Leu Val Thr Arg Val Arg Thr Asp Lys Ser Gln Tyr Glu Phe 85 90 95

Leu Phe Pro Ser Val Lys Ile Lys Glu Glu Lys Arg Asp Lys Lys Glu
100 105 110

Glu Val Ala Thr Asp Ser Ser Glu Lys Val Glu Lys Lys Lys Ser Glu
115 120 125

Glu Lys Pro Glu Lys Lys Glu Asn Ser 130 135

- (2) INFORMATION FOR SEQ ID NO:175:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 163 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

Val Asp Gly Lys Phe Gly Lys His Val Glu Gln Ile Pro Glu Gly Ala 259

1 10 15 Glu Val Ile Asp Tyr Thr Gly Tyr Ser Ile Ala Pro Gly Leu Val Asp 20 25 Thr His Ile His Gly Tyr Ala Gly Val Asp Val Met Asp Asn Asn Ile 40 45 Glu Gly Thr Leu His Thr Met Ser Glu Gly Leu Leu Ser Thr Gly Val 55 Thr Ser Phe Leu Pro Thr Thr Leu Thr Ala Thr Tyr Glu Gln Leu Leu 70 Ala Val Thr Glu Asn Leu Gly Asn His Tyr Lys Glu Ala Thr Gly Ala 85 90 Lys Ile Arg Gly Ile Tyr Tyr Glu Gly Pro Tyr Phe Thr Glu Thr Phe 105 Lys Gly Ala Gln Asn Pro Thr Tyr Met Arg Asp Pro Gly Val Glu Glu 120 125 Phe His Ser Trp Gln Lys Ala Ala Asn Gly Leu Leu Asn Lys Ile Arg 135 140 Leu His Gln Asn Val Met Gly Trp Lys Thr Leu Phe Val Gln Leu Arg 145 150 155 160 Ala Lys Val

(2) INFORMATION FOR SEQ ID NO:176:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 234 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

 Val
 Arg
 Ile
 Glu
 Glu
 Lys
 Cys
 Lys
 Leu
 Ile
 Ala
 Glu
 Asp
 Thr

 1
 5
 1
 5
 10
 1
 1
 15
 15

 Lys
 Thr
 Val
 Tyr
 Ser
 Phe
 Met
 Glu
 Ser
 Val
 Ile
 Ser
 Ile
 Glu
 Lys
 Tyr

 Val
 Arg
 Ala
 Ala
 Lys
 Glu
 Tyr
 Gly
 Tyr
 Thr
 His
 Leu
 Ala
 Met
 Asp

 Asp
 Asp
 Asp
 Leu
 Tyr
 Gly
 Ala
 Phe
 Leu
 Glu
 Ile
 Thr
 Lys
 Lys

 Tyr
 Gly
 Ile
 His
 Pro
 Leu
 Gly
 Leu
 Glu
 Met
 Thr
 Val
 Asp

 Tyr
 Gly
 Ile
 His
 Pro
 Leu
 Gly
 Leu
 Glu
 Met
 Thr
 Val
 Phe
 Val
 Asp

 Tyr
 Gly
 Ile
 His
 <

65 70 75 80 Asp Gln Glu Val Asn Leu Arg Phe Leu Ala Leu Ser Ser Val Gly Tyr 85 90 Gln Gln Leu Met Lys Leu Ser Thr Ala Lys Met Gln Gly Glu Lys Thr 105 Trp Ser Val Leu Ser Gln Tyr Leu Glu Asp Ile Ala Val Ile Val Pro 120 125 Tyr Phe Asp Arg Val Glu Ser Leu Glu Leu Gly Cys Asp Tyr Tyr Ile 130 135 Gly Val Tyr Pro Glu Thr Leu Ala Ser Glu Phe His His Pro Ile Leu 150 155 Pro Leu Tyr Arg Val Asn Ala Phe Glu Ser Arg Asp Arg Glu Val Leu 165 170 Gln Val Leu Thr Ala Ile Lys Glu Asn Leu Pro Leu Arg Glu Val Pro 185 Leu Arg Ser Arg Gln Asp Val Phe Ile Ser Ala Ser Ser Leu Glu Lys 200 205 Leu Phe Gln Glu Arg Phe Pro Ala Ser Phe Gly Gln Phe Arg Lys Ala 210 215 220 Tyr Phe Arg His Phe Leu Arg Leu Gly Tyr 230

(2) INFORMATION FOR SEQ ID NO:177:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

- (2) INFORMATION FOR SEQ ID NO:178:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 79 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

- (2) INFORMATION FOR SEQ ID NO:179:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None

PCT/US97/19226 WO 98/19689

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

Val Val Thr Pro Ala Asn Tyr Asn Thr Pro Ala Gln Ile Val Ile Ala 10 Gly Glu Val Val Ala Val Asp Arg Ala Val Glu Leu Leu Gln Glu Ala 25 30 Gly Ala Lys Arg Leu Ile Pro Leu Lys Val Ser Gly Pro Phe His Thr 40 Ala Leu Leu Glu Pro Ala Ser Gln Lys Leu Ala Glu Thr Leu Ala Gln 55 Val Ser Phe Ser Asp Phe Thr Cys Pro Leu Val Gly Asn Thr Glu Ala 65 70 Ala Val Met Gln Lys Glu Asp Ile Ala Gln Leu Leu Thr Arg Gln Val 85 90 Lys Glu Pro Val Arg Phe Tyr Glu Ser Ile Gly Val Met Gln Glu Ala 105 110 Gly Ile Ser Asn Phe Ile Arg Asp Trp Thr Gly Glu Ser Leu Val Arg 120 125 Phe Cys

- 130
- (2) INFORMATION FOR SEQ ID NO:180:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

Val His Pro Thr Gly Pro Thr Pro Ala Thr Glu Thr Val Asp Ser Ile 1 5 15 Pro Gly Phe Glu Ala Pro Gln Glu Ser Val Thr Ile Leu 20 25

- (2) INFORMATION FOR SEQ ID NO:181:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

Val Pro Thr Val Phe His Lys Ser Ala Gln Val Leu Glu Glu Met 5

Asn Arg Tyr Gln Pro Asp Phe Val Leu Cys Ile Gly Gln Ala Gly Gly 20 25

Arg Thr Ser Leu Thr Pro Glu Arg Val Ala Ile Asn Gln Asp Asp Ala

Arg Thr Ser Asp Asn Glu Asp Asn Gln Pro Ile Asp Arg Pro Ile Arg 55 60

Pro Asp Gly Ala Ser Ala Tyr Phe Ser Ser Leu Pro Ile Lys Ala Met 75

Val Gln Ala Ile Lys Lys Lys Asp Tyr Arg Pro Leu Phe Pro Ile Arg 85 90

Gln Gly Leu Leu Ser Ala Ala Ile 100

- (2) INFORMATION FOR SEQ ID NO:182:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 128 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

Val Leu Gln Val Gly Ser Gln Asp Tyr Val Phe Val Leu Gln Gln Asp 1

Lys Tyr Thr Ser Val Arg Asp Ile Leu Ser Asp Thr Ile Glu Ala Val 25 30

Glu Tyr Asp Phe Gly Leu Arg Leu Ser Ile Met Leu Gly Gln Val Trp 40

Ser Gln Thr Gly His Gln Ala Leu Ser Asp Leu Ile Lys Ala Glu Arg 50 55

Asp Leu Phe Lys Thr Trp Trp Arg Gln Gly His Gln Gly Val His Thr 264

65 70 75 80

Phe Ser Gln Leu Tyr Leu Trp Ser Leu Gly Glu Arg Leu Val Asp Leu 85 90 90 55

Lys Pro Ile Lys Glu Cys Leu His Gln Met Ile Leu Asp Gln Asp Gln 100 105 105 110 110

Ile Gln Glu Ile Ile Leu Ser Leu Trp Glu Asn Ser Ala Val Leu Thr 115 120 125

(2) INFORMATION FOR SEQ ID NO:183:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 214 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:
- Val Arg Arg Ser Asp Arg Tyr Ala Arg Glu Val Gly Ala Asp Cys Val 5 Gly Glu Phe Val Ser Ala Thr Lys Thr Tyr Pro Val Ser Phe Ile Asn 25 Tyr Lys Gly Glu Glu Val Cys Leu Asp Gln Ala Pro Ala Gly Ser Ala 40 Pro Ala Ala Gln Phe Met Asp Gly Leu Ile Gly Tyr Gly Val Glu Gln Leu Ile Ser Thr Gly Thr Cys Gly Val Leu Ala Asp Ile Glu Glu Asn 70 75 Ala Phe Leu Val Pro Val Arg Ala Leu Arg Asp Glu Gly Ala Ser Tyr 90 His Tyr Val Ala Pro Cys Arg Tyr Met Glu Met Gln Pro Glu Ala Ile 105 Ala Ala Ile Glu Glu Val Leu Glu Asp Arg Gly Ile Pro Tyr Glu Glu 115 120 Val Met Thr Trp Thr Thr Asp Gly Phe Tyr Arg Glu Thr Ala Glu Lys 135 130 140 Val Ala Tyr Arg Lys Glu Glu Gly Cys Ala Val Val Glu Met Glu Cys 155 Ser Ala Leu Ala Ala Val Ala Gln Leu Arg Gly Val Leu Trp Gly Glu 165 170 Leu Leu Phe Thr Ala Asn Ser Leu Ala Asp Leu Asp Gln Tyr Asn Ser 265

Arg Asp Trp Gly Ser Glu Pro Phe Asn Lys Ala Leu Lys Leu Ser Leu 195

Ala Ser Val His His Leu 210

- (2) INFORMATION FOR SEQ ID NO:184:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 136 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

Val Glu Asn Leu Thr Asn Phe Tyr Glu Lys Tyr Arg Val Tyr Leu Thr Arg Pro Arg Leu Glu Leu Leu Ala Val Val Thr Ile Val Leu Xaa Ala 25 30 Val Leu Val Phe Phe Leu Asn Ile Pro Gly Lys Gly Val Leu Lys Leu 40 45 Asp Asn Gly Thr Ile Val Tyr Asp Gly Ser Leu Val Arg Gly Lys Met 55 60 Asn Gly Gln Gly Thr Ile Thr Phe Gln Asn Gly Asp Gln Tyr Thr Gly 65 70 75 Gly Phe Asn Asn Gly Ala Phe Asn Gly Lys Gly Thr Phe Gln Ser Lys 85 90 Glu Gly Trp Thr Tyr Glu Gly Asp Phe Val Asn Gly Gln Ala Glu Gly 100 105 Lys Gly Lys Leu Thr Thr Glu Gln Glu Val Val Tyr Glu Gly Thr Phe 125 Lys Gln Gly Val Phe Gln Gln Lys 130 135

- (2) INFORMATION FOR SEQ ID NO:185:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 53 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

What is claimed is

1. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

- (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising an amino acid sequence of Table 1;
- (b) a polynucleotide having at least a 70% identity to a polynucleotide encoding a mature polypeptide expressed by the gene contained in the *S. pneumoniae* of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1;
- (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence of Table 1;
- (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
- (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
 - 2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
 - 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.
- 4. The polynucleotide of Claim 2 comprising the nucleic acid sequence selected from the group consisting of the nucleic acid sequences set forth in Table 1.
- 5. The polynucleotide of Claim 2 which encodes a polypeptide comprising an amino acid sequence sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
 - 6. A vector comprising the polynucleotide of Claim 1.
 - 7. A host cell comprising the vector of Claim 6.
- 8. A process for producing a polypeptide comprising: expressing from the host cell of Claim 7 a polypeptide encoded by said DNA.
- 9. A process for producing a polypeptide or fragment comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide or fragment.
- 10. A polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence selected from the group consisting of the amino acid sequences set forth in Table 1.
- 11. A polypeptide comprising an amino acid sequence selected from the group consisting of the amino acid sequences set forth in Table 1.

- 12. An antibody against the polypeptide of claim 10.
- 13. An antagonist or agonist of the activity or expression of the polypeptide of claim 10.
- 14. A method for the treatment or prevention of disease of an individual comprising: administering to the individual a therapeutically effective amount of the polypeptide of claim 10.
- 15. A method for the treatment of an individual having need to inhibit a bacterial polypeptide comprising: administering to the individual a therapeutically effective amount of the antagonist of Claim 13.
- 16. A process for diagnosing a disease related to expression or activity of the polypeptide of claim 10 in an individual comprising:
 - (a) determining a nucleic acid sequence encoding said polypeptide, and/or
- (b) analyzing for the presence or amount of said polypeptide in a sample derived from the individual.
- 17. A method for identifying compounds which interact with and inhibit or activate an activity of the polypeptide of claim 10 comprising:

contacting a composition comprising the polypeptide with the compound to be screened under conditions to permit interaction between the compound and the polypeptide to assess the interaction of a compound, such interaction being associated with a second component capable of providing a detectable signal in response to the interaction of the polypeptide with the compound;

and determining whether the compound interacts with and activates or inhibits an activity of the polypeptide by detecting the presence or absence of a signal generated from the interaction of the compound with the polypeptide.

- 18. A method for inducing an immunological response in a mammal which comprises inoculating the mammal with the polypeptide of claim 10, or a fragment or variant thereof, adequate to produce antibody and/or T cell immune response to protect said animal from disease.
- 19. A method of inducing immunological response in a mammal which comprises delivering a nucleic acid vector to direct expression of a polypeptide of claim 10, or fragment or a variant thereof, for expressing said polypeptide, or a fragment or a variant thereof *in vivo* in order to induce an immunological response to produce antibody and/ or T cell immune response to protect said animal from disease.

20. A polynucleotide comprising a polynucleotide sequence selected from the group consisting of the the first ten polynucleotides sequences from the top of Table 1.

- 21. A polypeptide comprising a polypeptide encoded by the polynculeotide of claim 20.
- 22. The isolated polynucleotide of claim 1 wherein said nucleotide is selected from the group consisting of:
- (a) a polynucleotide having at least a 90% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1;
- (b) a polynucleotide having at least a 90% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the *S. pneumoniae* of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1;
- (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 90% identical to the amino acid sequence of Table 1;
- (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
- (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
 - 23. The isolated polynucleotide of claim 1 selected from the group consisting of:
- (a) a polynucleotide having at least a 95% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1;
- (b) a polynucleotide having at least a 95% identity to a polynucleotide encoding the same mature polypeptide expressed by the gene contained in the *S. pneumoniae* of the deposited strain that was sequenced to obtain a polynucleotide sequence of Table 1;
- (c) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 95% identical to the amino acid sequence of Table 1;
- (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
- (e) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b), (c) or (d).
- 24. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

(a) a polynucleotide having at least a 50% identity to a polynucleotide encoding a polypeptide comprising the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*;

- (b) a polynucleotide encoding a polypeptide comprising an amino acid sequence which is at least 50% identical to the amino acid sequence of Table 1 and obtained from a prokaryotic species other than *S. pneumoniae*; and
 - (c) a polynucleotide which is complementary to the polynucleotide of (a) or (b).
- 25. An isolated Streptococcal polypeptide having one of the amino acid sequences given in Table 1.
- 26. An isolated nucleic acid encoding one of the amino acid sequences of Claim 1 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
- 27. Recombinant vectors comprising the nucleic acid sequences of Claim 26 and host cells transformed or transfected therewith.
- 28. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 1 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
 - 29. Antimicrobial compounds identified by the method of Claim 28.
- 30. An isolated Streptococcal polypeptide having one of the amino acid sequences given in Table 1.
- 31. An isolated nucleic acid encoding one of the amino acid sequences of Claim 30 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.
- 32. Recombinant vectors comprising the nucleic acid sequences of Claim 31 and host cells transformed or transfected therewith.
- 33. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 30 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
 - 34. Antimicrobial compounds identified by the method of Claim 33.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/19226

	SSIFICATION OF SUBJECT MATTER									
` ,	Please See Extra Sheet. Please See Extra Sheet.									
	o International Patent Classification (IPC) or to both	national classification and IPC								
B. FIEL	DS SEARCHED									
Minimum de	ocumentation searched (classification system followed	by classification symbols)								
U.S. :	424/130.1, 139.1, 184.1; 435/7.1, 69.3, 320.1, 325;	530/300, 350; 536/23.7								
Documentat	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
Electronic d	data base consulted during the international search (na	me of data base and, where practicable	search terms used)							
	DLINE, BIOSIS, CA, EMBASE, WPIDS	or cam case and, where practically	, search terms used)							
	: Streptococcus, pneumoniae, dna, polypeptide, treat	, diagnose								

	UMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.							
X	US 5,476,929 A (BRILES ET AL) 19 document	9 December 1995, see entire	1-5, 20, 22-24, 26, 31							
	document		20, 31							
A	SEVIER et al. Monoclonal Antibodi	es in Clinical Immunology.	1-34							
	Clinical Chemistry. 1981, Vol. 27, N	o. 11, pages 1797-1806, see	:							
	entire document									
	110 1 (01 000 1 (GOTDDT) TO 11									
Α	US 4,601,980 A (GOEDDEL ET AL) 22 July 1986, see entire 1-34									
	document.									
A	US 5,474,905 A (TAI ET AL) 12 December 1995, see entire document.									
	document.									
		×								
Furth	er documents are listed in the continuation of Box C.	See patent family annex.								
• Spe	ecial categories of cited documents:	"T" later document published after the inte								
	cument defining the general state of the art which is not considered be of particular relevance	date and not in conflict with the appli the principle or theory underlying the								
	•	"X" document of particular relevance; the considered novel or cannot be considered.	claimed invention cannot be							
"L" doc	nument which may throw doubts on priority claim(s) or which is do to establish the publication date of another citation or other	when the document is taken alone	miloure are milourita such							
spe	cial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	claimed invention cannot be							
"O" doc	cument referring to an oral disclosure, use, exhibition or other ans	combined with one or more other such being obvious to a person skilled in the	documents, such combination							
"P" doc the	rument published prior to the international filing date but later than priority date claimed	"&" document member of the same patent	family							
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report							
21 JANU	ARY 1998	2 0 FEB 1898								
	nailing address of the ISA/US	Authorized officer \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	IA (IA)							
Box PCT	ner of Patents and Trademarks	MARK TAVARRO	7/ WWY /							
_	, D.C. 20231	Talanta and Manager and Assault								

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/19226

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):
A61K 38/00, 39/00, 39/395, 39/40; C07H 21/04; C07K 1/00; C12N 15/00; C12P 21/06; G01N 33/53
A. CLASSIFICATION OF SUBJECT MATTER: US CL:
424/130.1, 139.1, 184.1; 435/7.1, 69.3, 320.1, 325; 530/300, 350; 536/23.7