

UNIVERSITY OF NAIROBI

UNIVERISTY EXAMINATIONS 2018/2019

FOURTH YEAR EXAMINATIONS FOR THE DEGREES OF BACHELOR OF ECONOMICS AND BACHELOR OF ARTS

XEQ/CEC 401: ECONOMETRICS 1

DATE: SEPTEMBER 12, 2019

TIME: 9.00 A.M. – 11.00 A.M.

INSTRUCTIONS:

Answer question ONE and any other TWO questions.

Question One: (compulsory)

The following data related to the quantity supplied and the price of a commodity from five different markets.

Price	5	8	7	10	12
Quantity supplied	3	8	14	10	15

(a) Estimate a linear supply function.

(10 marks)

(b) Interpret your result based on economic theory.

(4 marks)

(c) Compute the standard error for B1.

(6 marks)

(d) Test the statistical reliability of the slope ($\alpha = 5\%$).

(6 marks)

(e) Discuss four assumptions that need to be made in order to apply the ordinary least squares method. (4 marks)

Question Two:

(a) Discuss the criteria used in evaluating parameters of an econometric model.

(14 marks)

(b) Explain the three goals of econometrics. Use relevant examples.

(6 marks)

Question Three:

- (a) Distinguish between heteroscedasticity and multicollinearity. (2 marks)
- (b) Describe the informal procedures used for detecting heroscedasticity. Use diagrams where necessary. (8 marks)
- (c) Discuss the consequences of heteroscedasticity. (6 marks)
- (d) Explain two remedial measures for heteroscedasticity. (4 marks)

Question Four:

You are given the following regression equation:

$$Y = 81 - 6.3X_1 - 0.011 X_2$$

(0.001) (0.003)
 $n = 10$
 $R^2 = 90\%$

- (a) Interpret the coefficient of determination. (2 marks)
- (b) Test for the significance of R^2 . (8 marks)
- (c) Compute the adjusted R^2 and interpret your result. (6 marks)
- (d) Discuss four applications of multiple linear regression. (4 marks)

Question Five:

- (a) Discuss five divisions of Econometrics. (10 marks)
- (b) Distinguish between cross-section data and time-series data. (4 marks)
- (c) Describe three limitations of simple linear regression. (6 marks)

ECONOMETRIC FORMULAE (OPTIONAL)

$$r = \frac{n\sum XY - (\sum X)(\sum Y)}{\sqrt{n(\sum X^2) - (\sum X)^2} \sqrt{n(\sum Y^2) - (\sum Y)^2}}$$

$$\sigma_{\alpha}^2 = Var(\hat{\alpha}) = \frac{\delta^2 \sum X_i^2}{n \sum X_i^2}$$

$$\sigma_{\beta_i}^2 = Var(\hat{\beta}) = \frac{\delta^2}{\sum x_i^2}$$

$$\delta^2 = \frac{\sum_{i=1}^n e_i^2}{n-k-1}$$

$$F^* = \frac{R^2/k}{(1-R^2)/n - k - 1}$$

Table A.1

Cumulative Standardized Normal Distribution

A(z) is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives the probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance:

Z	A(z)	
1.645	0.9500	Lower limit of right 5% tail
1.960	0.9750	Lower limit of right 2.5% tail
2.326	0.9900	Lower limit of right 1% tail
2.576	0.9950	Lower limit of right 0.5% tail
3.090	0.9990	Lower limit of right 0.1% tail
3.291	0.9995	Lower limit of right 0.05% tail

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.00
0.0	0.5000	0.5040	0.5080	0.5120	0.5160				0.08	0.09
0.1	0.5398	0.5438	0.5478	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.2	0.5793	0.5832	0.5871	0.5910	0.5548	0.5596	0.5636	0.5675	0.5714	0.5753
0.3	0.6179	0.6217	0.6255	0.6293	0.3948	0.5987	0.6026	0.6064	0.6103	0.6141
0.4	0.6554	0.6591	0.6628	0.6664	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.5	0.6915	0.6950	0.6985	0.7019	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.6	0.7257	0.7291	0.7324	0.7357	0.7034	0.7088	0.7123	0.7157	0.7190	0.7224
0.7	0.7580	0.7611	0.7642	0.7673	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.8	0.7881	0.7910	0.7939	0.7967	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.9	0.8159	0.8186	0.8212	0.8238	0.7993	0.8023	0.8051	0.8078	0.8106	0.8133
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8289	0.8315	0.8340	0.8365	0.8389
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8531	0.8554	0.8577	0.8599	0.8621
1.2	0.8849	0.8869	0.8888	0.8907	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.3	0.9032	0.9049	0.9066	0.9082	0.8923	0.8944	0.8962	0.8980	0.8997	0.9015
1.4	0.9192	0.9207	0.9222	0.9236	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.5	0.9332	0.9345	0.9357	0.9230	0.9231	0.9265	0.9279	0.9292	0.9306	0.9319
1.6	0.9452	0.9463	0.9474	0.9484		0.9394	0.9406	0.9418	0.9429	0.9441
1.7	0.9554	0.9564	0.9573	0.9582	0.9495 0.9591	0.9505	0.9515	0.9525	0.9535	0.9545
1.8	0.9641	0.9649	0.9656	0.9664		0.9599	0.9608	0.9616	0.9625	0.9633
1.9	0.9713	0.9719	0.9726	0.9004	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
2.0	0.9772	0.9778	0.9783	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.1	0.9821	0.9826	0.9830	0.9834	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.2	0.9861	0.9864	0.9868	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.3	0.9893	0.9896	0.9898	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.4	0.9918	0.9920	0.9922	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.5	0.9938	0.9940	0.9941	0.9923	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.6	0.9953	0.9955	0.9956	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.7	0.9965	0.9966	0.9967	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.8	0.9974	0.9975	0.9976	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.9	0.9981	0.9982	0.9982	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
3.0	0.9987	0.9987	0.9987	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.1	0.9990	0.9991	0.9991	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.2	0.9993	0.9993	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.3	0.9995	0.9995	0.9994	0.9994 0.9996	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.4	0.9997	0.9997	0.9993	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.5	0.9998	0.9998	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.6	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
-		0.2270	U.2277							-

Table A.2

t Distribution: Critical Values of t

		Diotino								
		P.		Significance			0.10/			
Degrees of freedom	Two-tailed test: One-tailed test:	10% 5%	5% 2.5%	2% 1%	1% 0.5%	0.2% 0.1%	0.1% 0.05%			
1 C 2 3 4		6.314 2.920 2.353 2.132 2.015	12.706 4.303 3.182 2.776 2.571	31.821 6.965 4.541 3.747 3.365	63.657 9.925 5.841 4.604 4.032	318.309 22.327 10.215 7.173 5.893	636.619 31.599 12.924 8.610 6.869			
5 6 7 8 9		1.943 1.894 1.860 1.833	2.447 2.365 2.306 2.262 2.228	3.143 2.998 2.896 2.821 2.764	3.707 3.499 3.355 3.250 3.169	5.208 4.785 4.501 4.297 4.144	5.959 5.408 5.041 4.781 4.587			
10 11 12 13 14		1.812 1.796 1.782 1.771 1.761 1.753	2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602	3.106 3.055 3.012 2.977 2.947	4.025 3.930 3.852 3.787 3.733	4.437 4.318 4.221 4.140 4.073			
15 16 17 18 19		1.746 1.740 1.734 1.729 1.725	2.120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.921 2.898 2.878 2.861 2.845	3.686 3.646 3.610 3.579 3.552	4.015 3.965 3.922 3.883 3.850			
20 21 22 23 24		1.721 1.717 1.714 1.711 1.708	2.080 2.074 2.069 2.064 2.060	2.518 2.508 2.500 2.492 2.485	2.831 2.819 2.807 2.797 2.787	3.527 3.505 3.485 3.467 3.450	3.819 3.792 3.768 3.745 3.725			
25 26 27 28 29		1.706 1.703 1.701 1.699 1.697	2.056 2.052 2.048 2.045 2.042	2.479 2.473 2.467 2.462 2.457	2.779 2.771 2.763 2.756 2.750	3.435 3.421 3.408 3.396 3.385	3.707 3.690 3.674 3.659 3.646			
30 32 34 36 38		1.694 1.691 1.688 1.686 1.684	2.037 2.032 2.028 2.024 2.021	2.449 2.441 2.434 2.429 2.423	2.738 2.728 2.719 2.712 2.704		3.622 3.601 3.582 3.566 3.551			
40 42 44 46 48		1.682 1.680 1.679 1.677 1.676	2.018 2.015 2.013 2.011 2.009	2.418 2.414 2.410 2.407 2.403	2.698 2.692 2.687 2.682 2.678	3.286 3.277 3.269	3.538 3.526 3.515 3.505 3.496			
50 60 70 80 90		1.671 1.667 1.664 1.662 1.660	2.000 1.994 1.990 1.987	2.390 2.381 2.374 2.368 2.364		3.211 9 3.195 2 3.183	3.435 3.416 3.402			
100 120 150 200 300 400		1.658 1.655 1.653 1.650 1.649	1.980 1.976 1.972 1.968	2.351 2.345 2.339	2.60 2.60 2.59	3.145 3.13 3.2 3.115	3.357 3.340 3.323 3.315			
500 600 ∞		1.648 1.647	1.964	2.333	3 2.58	3.10	4 3.307			

Table A.3 F Distribution: Critical Values of F (5% significance level)

		(on digitificance level)													
		2 - 1	3	4	5	6	7	8	9	10	12	1.4	1.0		
ν_2	! 1 161 /	5 100 5	0.215.5									14	16	18	20
,	2° 18.5	1 199.3 1 10 0	0 215.71 0 19.16	10.25	230.16	233.99	236.77	238.88	3 240.54	4 241.88	243.91	245 36	246.46	247.22	249.01
	3 10.1	3 9.5	5 9.28					17.51	17.50	3 19.40	19.41	19.42	19.43	19.44	19.45
	4 7.7					8.94							8.69	8.67	8.66
4	5 6.6					4.95	6.09					5.87		5.82	5.80
	6 5.9					4.93	4.88	4.82	4.77	4.74	4.68	4.64	4.60	4.58	4.56
	6 5.9 7 5.5				4.39	4.28		4.15	4.10	4.06	4.00	3.96	3.92	2.00	
8					3.97	3.87		3.73			3.57		3.49	3.90 3.47	3.87
9					3.69	3.58	3.50	3.44	3.39			3.24	3.49	3.47	3.44
10					3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.03	2.99	2.96	3.15 2.94
				3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.86	2.83	2.80	2.77
11				3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79				
12 13				3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.79	2.74	2.70	2.67	2.65
13				3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.64 2.55	2.60 2.51	2.57	2.54
15				3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.48	2.31	2.48	2.46
			3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.42	2.38	2.41 2.35	2.39
16			3.24	3.01	2.85	2.74	2.66	2.59	2.54					2.33	2.33
17			3.20	2.96	2.81	2.70	2.61	2.55	2.54 2.49	2.49	2.42	2.37	2.33	2.30	2.28
18			3.16	2.93	2.77	2.66	2.58	2.51	2.49	2.45 2.41	2.38	2.33	2.29	2.26	2.23
19 20	4.38		3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34 2.31	2.29	2.25	2.22	2.19
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.26 2.22	2.21	2.18	2.16
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42					2.18	2.15	2.12
22	4.30	3.44	3.05	2.82	2.66	2.55	2.49	2.42 2.40	2.37	2.32	2.25	2.20	2.16	2.12	2.10
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.40	2.34 2.32	2.30	2.23	2.17	2.13	2.10	2.07
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.32	2.27	2.20	2.15	2.11	2.08	2.05
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.25 2.24	2.18	2.13	2.09	2.05	2.03
26	4.22	3.37	2.98	2.74	2.59	2.47					2.16	2.11	2.07	2.04	2.01
27	4.21	3.35	2.96	2.73	2.57	2.47 2.46	2.39 2.37	2.32	2.27	2.22	2.15	2.09	2.05	2.02	1.99
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.31 2.29	2.25	2.20	2.13	2.08	2.04	2.00	1.97
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.29	2.24	2.19	2.12	2.06	2.02	1.99	1.96
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.22 2.21	2.18	2.10	2.05	2.01	1.97	1.94
35	4.12	3.27	2.87	2.64					2.21	2.16	2.09	2.04	1.99	1.96	1.93
40	4.08	3.23	2.84	2.61	2.49 2.45	2.37	2.29	2.22	2.16	2.11	2.04	1.99	1.94	1.91	1.88
50	4.03	3.18	2.79	2.56	2.43	2.34 2.29	2.25	2.18	2.12	2.08	2.00	1.95	1.90	1.87	1.84
60	4.00	3.15	2.76	2.53	2.37	2.25	2.20 2.17	2.13	2.07	2.03	1.95	1.89	1.85	1.81	1.78
70	3.98	3.13	2.74	2.50	2.35	2.23	2.17	2.10 2.07	2.04	1.99	1.92	1.86	1.82	1.78	1.75
80	3.96	3.11	2 72	2.40				2.07	2.02	1.97	1.89	1.84	1.79	1.75	1.72
90	3.95	3.11	2.72 2.71	2.49	2.33	2.21	2.13	2.06	2.00	1.95	1.88	1.82	1.77	1.73	1.70
100	3.94	3.09	2.71	2.47 2.46	2.32	2.20	2.11	2.04	1.99	1.94	1.86	1.80		1.73	1.69
120	3.92	3.07	2.68	2.45		2.19	2.10	2.03	1.97	1.93	1.85	1.79			1.68
150	3.90	3.06	2.66			2.18 2.16	2.09	2.02	1.96	1.91	1.83	1.78		1.69	1.66
200	2.80					2.10	2.07	2.00	1.94	1.89	1.82	1.76			1.64
250 250	3.89 3.88	3.04	2.65				2.06	1.98	1.93	1.88	1.80	1.74	1.60		
300	3.87	3.03 3.03	2.64					1.98	1.92	1.87		1.73			1.62
400	3.86	3.03	2.63						1.91	1.86		_			1.61
500	3.86	3.02	2.63 2.62						1.90	1.85					1.61 1.60
					2.23	2.12	2.03	1.96	1.90	1.85					1.59
600 750	3.86	3.01			2.23	2.11	2.02	1.95	1.90	1.85					
750 1000	3.85 3.85	3.01			2.23										1.59
1000	3.03	3.00	2.61	2.38	2.22										1.58
											5		1.05	1.61	1.58