CLAIMS

The embodiment of the invention in which an exclusive property or privilege is claimed is defined as follows:

- 1 1. A process for rapidly heating a fuel processor to its operating temperature, the process comprising:
- a) reforming fuel with a catalyst to produce steam, carbon monoxide, and hydrogen
 gas;
- b) homogeneously mixing air with the carbon monoxide and hydrogen gas to create
 a mixture which will react and produce heat;
- 7 c) using the heat to raise the temperature of catalysts in the fuel processor;
- d) combining the mixture with an oxidant to decrease the concentration of carbon monoxide:
- 10 e) using the heat to produce steam; and
- 11 f) mixing the steam with the mixture to increase the yield of hydrogen gas.
- 1 2. The process as recited in claim 1 wherein a front edge of the reforming catalyst is heated to a temperature at which a fuel-air mixture ignites and generates heat which can be used for vaporization of subsequent fuel.

1	3.	The process as regited in claim 1 wherein the establish access establish	
	3. The process as recited in claim 1 wherein the catalyst causes catalytic partial oxidation (CPOX).		
2	partial oxid	ation (CPOX).	
1	4.	The process as recited in claim 3 wherein the partial oxidation is of	
2		ons with oxygen (O_2) to produce carbon monoxide (CO) , hydrogen (H_2) ,	
3		dioxide (CO ₂), and water (H ₂ O).	
	odiboli dio		
1	5.	The process as recited in claim 1 wherein the mixture is subjected to	
2	catalyst at	catalyst at a temperature of from about 25°C to 500°C.	
4			
1	6.	The process as recited in claim 1 wherein the oxidizing agent facilitates	
2	the oxidation	on of hydrogen and carbon monoxide.	
1	7.	The process as recited in claim 1 wherein the air-carbon monoxide-	
2	hydrogen gas mixture contains an oxygen/carbon ratio of more than one and less than		
3	2.		
1	8.	The process as recited in claim 1 wherein the fuel can be liquid, vapor, or	
2 a combination thereof.			
2	a combina	don thereor.	
1	9.	The process as recited in claim 5 wherein the temperature is reached	
2	within 30 s	within 30 seconds.	
1	10.	The process as recited in claim 1 wherein the air-to-fuel and steam-to-fue	
		•	
2	ratios are adjusted to have temperatures in the reforming fuel catalyst from between about 600°C to 850°C.		
3	ลมบนเ 600	C (0 650°C)	
1	11.	The process as recited in claim 1 wherein the maximum temperature in	
2	the reformi	the reforming fuel catalyst is about 900°C.	
		-	

12. 1 A method for converting hydrocarbon fuels to a reformate gas, the 2 method comprising: producing combustible moieties from the fuels; 3 a) 4 b) oxidizing the combustible moieties to generate heat; 5 c) utilizing the heat to increase the surface temperatures of catalysts; and d) 6 contacting the reactants to the catalysts. 1 13. The method as recited in claim 12 wherein the step of producing 2 combustible moieties further comprises combining the fuel with an oxidant to create a 3 mixture. 1 14. The method as recited in claim 13 wherein the oxygen/carbon ratio of the 2 mixture is more than one and less than 2. 1 15. The method as recited in claim 12 wherein the combustible moieties are 2 carbon monoxide and hydrogen. 16. 1 The method as recited in claim 12 wherein the step of contacting the fuel 2 to the catalyst results in the formation of carbon monoxide and hydrogen gas. 17. 1 The method as recited in claim 15 wherein a portion of the carbon 2 monoxide and hydrogen is reacted with oxygen to create heat. 1 18. The method as recited in claim 17 wherein the heat raises the 2 temperature of a water-gas shift catalyst so the catalyst becomes active for its water-3 gas shift reaction which converts carbon monoxide and generates additional heat. 19. 1 The method as recited in claim 12 wherein air is injected downstream of 2 the catalysts to have complete oxidation of all combustible moieties before

the combustible moieties have egress from the system.

3

1	20.	The method as recited in claim 12 wherein liquid water is injected when		
2	the water-gas shift catalyst temperature exceeds 400°C.			
1	21.	The method as recited in claim 19 wherein the liquid water is injected in		
2	the form of water droplets having diameters less than 50 microns (μ).			
1	22.	A device for the vaporization of fuel, the device comprising:		
2		a) a means to provide the latent heat of vaporization of the fuel; and		
3		b) a means to provide superheating of the fuel.		
1	23.	The device as recited in claim 22 wherein the means to provide the		
2	latent heat of vaporization of the fuel is a first heating element.			
1	24.	The device as recited in claim 22 wherein the means to provide		
2	superheating	superheating of the fuel is a second heating element.		