

Robust Pricing and Hedging via Neural SDEs: a tutorial

Keryann MASSIN & Anna LIFFRAN

ENSAE Paris

Presentation Overview

- 1 Introduction
- 2 Model design and calibration
- 3 Implementation
- 4 Simulation results
- **5** Conclusion

Introduction

Introduction - Problem Overview

Objective: Pricing an illiquid derivative of discounted payoff $\Psi \in L^2(\mathcal{F}_T)$ (interest rate r > 0 is given and fixed).

Two-step process: Calibrate the diffusion of the underlying $(X_t)_{t \in [0,T]}$ and price Ψ .

How? By using neural networks! We talk about *Neural SDEs*.

$$dX_t^{\theta} = b(t, X_t^{\theta}, \theta) dt + \sigma(t, X_t^{\theta}, \theta) dW_t$$
 (1)

Introduction

Data: Observed prices of liquid derivatives (call options for instance). We denote their payoffs by $\{\Phi_i\}_{i=1}^{N_{\text{prices}}}$ and their prices by $\{\mathfrak{p}(\Phi_i)\}_{i=1}^{N_{\text{prices}}}$.

Optimization problem: To calibrate the neural networks b and σ , we must find θ^* such that

$$\theta^* \in \arg\min_{\theta \in \Theta} \sum_{i=1}^{N_{\mathrm{prices}}} \ell(\mathbb{E}^{\mathbb{Q}(\theta)}[\Phi_i], \mathfrak{p}(\Phi_i))$$
 (2)

where $\mathbb{Q}(\theta)$ denotes the law of $(X_t^{\theta})_{t\in[0,T]}$, and ℓ is a loss (e.g. $\ell(x, y) = |x - y|^2$).

Introduction

Introduction - Robust bounds

Arising issue: (2) may present many solutions. Thus, \mathbb{Q}^{θ^*} might not be similar to $\mathbb{O}^{\text{market}}$.

Potential solution: Instead of solving (2), we can provide lower and upper bounds for the output price of the illiquid derivative Ψ . We seek for these bounds by solving

$$\theta^{l,*} \in \arg\min_{\theta \in \Theta} \mathbb{E}^{\mathbb{Q}(\theta)}[\Psi] \quad \text{subject to} \quad \sum_{i=1}^{N_{\text{prices}}} \ell\left(\mathbb{E}^{\mathbb{Q}(\theta)}[\Phi_i], \mathfrak{p}(\Phi_i)\right) = 0$$

$$\theta^{u,*} \in \arg\max_{\theta \in \Theta} \mathbb{E}^{\mathbb{Q}(\theta)}[\Psi] \quad \text{subject to} \quad \sum_{i=1}^{N_{\text{prices}}} \ell\left(\mathbb{E}^{\mathbb{Q}(\theta)}[\Phi_i], \mathfrak{p}(\Phi_i)\right) = 0$$
(3)

Model design and calibration - Variance reduction

Issue: To compute $\mathbb{E}^{\mathbb{Q}(\theta)}[\Phi]$, we need to simulate many Monte Carlo paths, which is memory and resources expensive.

Solution: Leveraging the *Martingale representation theorem*, we look for $(Z_t)_{t \in [0,T]}$ such that $\Phi^{cv} := \Phi - \int_0^T Z_s dW_s$ is a control variate.

Second learning task: We shall approximate Z_t by a new neural network \mathfrak{h} , of parameters ξ , whose goal is to solve

$$\xi^* \in \arg\min_{\xi} \mathbb{V}\mathrm{ar}\left[\phi((X_t^{\theta})_{t \in [0,T]}) - \int_0^T \mathfrak{h}(t,(X_{s \wedge t})_{s \in [0,T]},\xi) \,\mathrm{d}W_t \mid \mathcal{F}_0\right] \tag{4}$$

In (4), we then replace any Φ by Φ^{cv} .

Issue: In case where X = (S, V) with a non-tradable component V, the abstract hedge Z found is not usable in practice, as it relies on exchanges of V.

Solution: We must alter the hedging strategy optimization problem in practice, from (4) to (5):

$$\bar{\xi}^* \in \arg\min_{\bar{\xi}} \mathbb{V}\mathrm{ar} \left[\phi((X_t^{\theta})_{t \in [0,T]}) - \int_0^T \bar{\mathfrak{h}}(t,(X_{s \wedge t})_{s \in [0,T]},\bar{\xi}) \,\mathrm{d}\bar{S}_t^{\theta} \mid \mathcal{F}_0 \right]$$
(5)

where $dS_t^{\theta} = rS_t^{\theta} dt + \sigma^{S}(t, X_t^{\theta}, \theta) dW_t$ and $\bar{S}_t^{\theta} := e^{-rt}S_t^{\theta}$ defines a local martingale.

Implementation - Finite schemes

Tamed Euler scheme: To diffuse X^{θ} from t=0 to t=T, we define a time mesh $\pi := \{0 = t_0 < t_1 < \cdots < t_{N_{\text{steps}}} = T\}$ and rely on the Tamed Euler scheme.

$$\Delta X_{t_k}^{\pi,\theta} = \frac{b(t_k, X_{t_k}^{\pi,\theta}, \theta)}{1 + |b(t_k, X_{t_k}^{\pi,\theta}, \theta)|\sqrt{\Delta t_k}} \Delta t_k + \frac{\sigma(t_k, X_{t_k}^{\pi,\theta}, \theta)}{1 + |\sigma(t_k, X_{t_k}^{\pi,\theta}, \theta)|\sqrt{\Delta t_k}} \Delta W_{t_k}$$
(6)

Discretization of the hedge:

$$\bar{\xi}^* \in \widehat{\operatorname{arg\,min}} \sum_{j=1}^{N_{\operatorname{prices}}} \mathbb{V}\operatorname{ar}^{\mathbb{Q}^{N_{\operatorname{trn}}}(\theta)} \left[\Phi_j(X^{\pi,\theta}) - \sum_{k=0}^{N_{\operatorname{steps}}-1} \bar{\mathfrak{h}}(t_k, X_{t_k}, \bar{\xi}_j) \Delta \bar{S}_{t_k}^{\pi,\theta} \right]$$
(7)

Implementation - Algorithm for pricing and hedging

Augmented Lagrangian: To solve (3), we iteratively solve the following optimization problems

$$\theta_k \in \underset{\theta \in \Theta}{\operatorname{arg \, min}} \ \pm f(\theta) + \lambda_k \cdot \operatorname{MSE}(\theta) + c_k/2 \cdot \operatorname{MSE}(\theta)^2$$
 (8)

where $\lambda_{k+1} = \lambda_k + c_k \text{MSE}(\theta)$ and $c_{k+1} = 2c_k (\lambda_0, c_0 > 0)$. $f(\theta)$ is the price of the exotic derivative.

In practice: We started with $\lambda_0 = 10,000$ and $c_0 = 20,000$ and bounded $\lambda_{\nu} < 10^6$, $c_{\nu} < 10^{10}$.

Simulation results - Data

Exotic product chosen: Lookback put option, of payoff

$$LP((S_t)_{t \in [0,T]}) = S_{\max} - S_T$$

Data to train models: 121 call options with strikes in [0.8, 1.2] and maturities in [1/6, 1]. Data generated using 10^7 MC paths of an Heston model.

Diffusion:

$$dS_t^{\theta} = rS_t^{\theta} dt + S_t^{\theta} \sigma(t, S_t^{\theta}, \theta) dW_t, \quad S_0^{\theta} = s_0 > 0$$
 (9)

Calibration error: We estimated the Implied Volatity curves below.

Simulation results - Local Stochastic Volatility model

Diffusion:

$$dS_{t}^{\theta} = rS_{t}^{\theta} dt + S_{t}^{\theta} \sigma^{S}(t, S_{t}^{\theta}, V_{t}^{\theta}, \alpha) dW_{t}^{S}, \qquad S_{0}^{\theta} = s_{0} > 0$$

$$dV_{t}^{\theta} = b^{V}(V_{t}^{\theta}, \beta) dt + \sigma^{V}(V_{t}^{\theta}, \gamma) dW_{t}^{V}, \qquad V_{0}^{\theta} = v_{0} > 0 \quad (10)$$

$$d\langle W^{S}, W^{V} \rangle_{t} = \rho dt$$

Simulation results - Exotic pricing

Price of the Exotic Lookback Put			
Model	Problem	Price	MSE on call prices
LV	lower bound	0.1601	5 · 10 ⁻⁸
LV	standard	0.1813	1 · 10 ⁻⁸
LV	upper bound	0.1852	$2 \cdot 10^{-7}$
LSV	lower bound	0.1671	1 · 10 ⁻⁸
LSV	standard	0.1723	$4 \cdot 10^{-9}$
LSV	upper bound	0.1896	$7 \cdot 10^{-7}$

Conclusion & Perspectives

New framework: Neural SDEs, highly accurate calibration is possible, and computation speed is excellent.

Drawbacks: Output's variance not low enough, and difficulties to correctly train the model on computing lower/upper bounds. Also, usage restricted to predefinite exotic payoffs.

Perspectives: Include path-dependent volatility and drift.

Thanks for your attention