	nã	o usar
-	1	18-13
	2	Bag.
-	3	and the
-	4	2 62
	5	me e
	T	

Nome:

1. Uma dada máquina tem uma frequência do relógio de 2GHz e a respectiva cache apresenta uma miss rate de instruções de 2% e de dados de 4%. A miss penalty é de 20 nanosegundos. O CPI do CPU é dado pela tabela abaixo para diferentes tipos de instruções:

Tipo instrução	CPICPU	Tipo instrução	CPICPU
Acesso memória	4	Restantes	2

Para um valor de %ecx = 1000 um dos excertos do programa abaixo executa em 7.4 microsegundos. Indique, justificando, qual.

excertol:	excerto2:
addl %eax, (%ebx)	addl %eax, %ebx
addl \$4, %ebx	addl \$4, %ebx
decl %ecx	subl \$2, %ecx
jnz excertol	jnz excerto2

2. A lógica combinatória de um dado processador tem uma latência de 400 ps e pode ser dividida em sub-blocos com latências arbitrárias (a soma das latências de todos os sub-blocos combinatórios tem que ser 400 ps). Um bloco de registos tem uma latência de 20 ps. Calcule, para este processador, a máxima frequência do relógio possível para a organização sequencial e para organizações em pipeline com 2 e 10 estágios.

E .
The state of the s

Número:

3. A tabela abaixo apresenta o estado de uma cache com um total de 4 linhas e para 2 organizações: direct mapping (S=4, E=1, B=4, m=5) e 2-way set associative (S=2, E=2, B=4, m=5). As colunas S e L identificam o set e a linha para cada uma das organizações. A coluna tag apresenta o valor deste campo para cada uma das organizações. O valid bit indica se essa linha da cache é válida. As 4 colunas mais à direita da seguinte tabela apresentam, em hexadecimal, o valor de cada um dos bytes carregados na respectiva linha da cache.

direct map		2-way set associative				Bytes			
L	tag	5	L	tag	valid	00	01	10	11
00	1	0_	0	10	1	0x23	0x7B	0xFF	0x00
01		0	1		0				
10		1	0		0				
11	1	1	1	11	1	0x12	0x05	0x8F	0xD0

Para a sequência de endereços indicados abaixo (em base 10), indique, para cada uma das organizações, se se trata de um hit, cold miss ou colisão. Indique o set e a linha (dentro do set) em que o endereço mapeia. No caso de um cold miss ou colisão indique o valor da tag após o acesso. Considere um algoritmo de substituição LRU para a organização 2-way set associative.

addr=07 (direct map)	
addr=07 (2-way) ************************************	
Stylinga em sua-propi se sensitad se em laterne es soma das laternes se consiste	- 1
susces combins, repos cere que se e 5 mã. Um bloco de registos cere um exércu	
os Stricta bara suto processado — maxima frequencial de clidado adribies	
organização sequencial a para organización de oripidable com 2 o 10 estrator	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
addr=14 (direct map)	
addr=14 (2-way)	

4. Para cada um dos ciclos abaixo indique, justificando, se é vectorizável. Se identificar dependências de dados entre iterações calcule a respectiva distância e indique o seu tipo: Write After Read (WAR) ou Read After Write (RAW).

```
float a[SIZE], b[SIZE]; float a[SIZE], b[SIZE];

for (i=1; i <SIZE-1; i++) for (i=1; i < SIZE-2; i++) a[i] = a[i+1] * b[i-1]; a[i] = a[i-1] / b[i+2];
```

	1	
Nome:		Número:
95		

5. Para o código abaixo proponha uma implementação que explore *Thread Level Parallelism* usando o OpenMP. Justifique as suas opções; em particular justifique cada uma das directivas e/ou cláusulas OpenMP utilizadas.

```
#define S 1000000
float a[S];
int i ,j;
for (i=0 ; i < S ; i++) {
   a[i] = 0.;
   for (j=0 ; j < i ; j++) {
      a[i] += (float)j;
}</pre>
```