Geometria wstępna

Definicja.

Figurą geometryczną nazywamy dowolny zbiór punktów płaszczyzny.

Definicja.

Figurę nazywamy **wypukłą**, gdy dla dowolnych punktów A, B należących do tej figury, odcinek AB zawiera się w tej figurze. Figurę, która nie jest wypukła nazywamy **wklęsłą**.

Przykład.

Twierdzenie.

Część wspólna dwóch figur wypukłych jest figurą wypukłą.

Dowód.

Niech F,G – figury wypukłe; A,B – dowolne punkty należące do $F\cap G.$

 $A, B \in F \cap G \Rightarrow A, B \in F \land A, B \in G.$

F i G są wypukłe więc AB zawiera się w F oraz AB zawiera się w G.

Zatem odcinek AB zawiera się w $F \cap G \Rightarrow F \cap G$ jest wypukła.

Uwaga (Oznaczenia).

- A, B, C, \ldots punkty
- k, l, m, \ldots proste
- $\bullet \ AB$ odcinek o końcach A i B
- |AB| długość odcinka AB
- $\bullet \triangleleft AOB$ kąt o wierzchołku Oi ramionach wyznaczonych przez punkty Ai B
- $| \triangleleft AOB |$ miara kąta AOB
- ▶ kąt prosty

Podział kątów

- I. wypukłe ich miary należą do zbioru $[0^{\circ}, 180^{\circ}] \cup \{360^{\circ}\}$
 - wklęste ich miary należą do zboru (180°, 360°)

- II. ostre mają mniej niż 90° i więcej niż 0°
 - proste mają 90°
 - rozwarte mają więcej niż 90° i mniej niż 180°

Definicja.

Figura jest **ograniczona**, gdy istnieje koło, które ją zawiera.

Definicja.

Symetralną odcinka nazywamy prostą prostopadłą do odcinka, dzielącą go na dwie równe części.

Twierdzenie.

Symetralna odcinka jest zbiorem punktów płaszczyzny równoodległych od końców tego odcinka.

Definicja.

Dwusieczną kąta nazywamy półprostą o początku w wierzchołki kąta, dzielącą ten kąt na dwa kąty równe.

Twierdzenie.

Dwusieczna kąta wypukłego jest zbiorem punktów kąta równoodległych od ramion tego kąta.

Definicja.

Twierdzenie.

Dwie proste leżące na płaszczyźnie przecięte trzecią prostą są równoległe \Leftrightarrow kąty naprzemianległe wewnętrzne (lub zewnętrzne lub odpowiadające) są równe.

Twierdzenie.

Liczba przekątnych w n-kacie $(n \geqslant 3, n \in \mathbb{N})$ wynosi $\frac{n(n-3)}{2}$.

Definicja.

Definicja.

Wielokątem **foremnym** nazywamy taki wielokąt, którego wszystkie boki mają taką samą długość i wszystkie kąty są równe.

Twierdzenie.

Suma katów wewnętrznych w dowolnym trójkącie wynosi 180°.

Twierdzenie.

Suma kątów wewnętrznych n-kąta $(n \ge 3, n \in \mathbb{N})$ jest równa 180° · (n-2).

Twierdzenie.

Suma kątów zewnętrznych w dowolnym wielokącie wypukłym wynosi 720°.

Twierdzenie (Talesa).

Jeżeli ramiona kąta AOA_1 (lub ich przedłużenia) przetniemy dwiema prostymi równoległymi AA_1 i BB_1 , to stosunek długości odcinków wyciętych przez te proste na ramieniu OA (lub jego przedłużeniu) jest równy stosunkowi długości odpowiednich odcinków na ramieniu OA_1 (lub jego przedłużeniu).

Wniosek (z tw. Talesa).

Przy założeniach i oznaczeniach jak powyżej zachodzi:

$$\frac{|AA_1|}{|BB_1|} = \frac{|OA|}{|OB|} = \frac{|OA_1|}{|OB_1|}.$$

Twierdzenie (odwrotne do tw. Talesa).

Jeśli ramiona kąta AOA_1 (lub ich przedłużenia) przetniemy dwiema prostymi AA_1 i BB_1 oraz stosunek długości odcinków wyciętych przez te proste na ramieniu OA (lub jego przedłużeniu) będzie równy stosunkowi długości odpowiednich odcinków wyciętych na ramieniu OA_1 (lub jego przedłużeniu), to proste AA_1 i BB_1 są równoległe.

Twierdzenie (nierówność trójkąta).

W dowolnym trójkącie suma długości dwóch boków jest większa od długości trzeciego boku.

Twierdzenie (o odcinku łączącym środki boków).

Jeśli w trójkącie połączymy środki dwóch jego boków, to powstały odcinek jest równoległy do trzeciego boku i dwukrotnie od niego krótszy.

 $Dow \acute{o}d.$

$$D, E$$
 – środki boków

$$\frac{|CD|}{|DA|} = 1$$

$$\frac{|CE|}{|EB|} = 1$$

$$\begin{cases} \text{tw. odwrotne} \\ \text{do tw. Talesa} \end{cases} DE \parallel AB.$$

Z wniosku z tw. Talesa
$$\frac{|DE|}{|AB|}=\frac{|CD|}{|CA|}=\frac{1}{2}.$$
 Stąd $|DE|=\frac{1}{2}|AB|.$

Twierdzenie (Pitagorasa).

Jeśli trójkąt jest prostokątny, to kwadrat długości przeciwprostokątnej jest równy sumie kwadratów długości przyprostokatnych.

(ĆW) Przygotować i znać jeden z wielu dowodów tw. Pitagorasa.

Twierdzenie (odwrotne do tw. Pitagorasa).

Jeśli długości boków a,b,c trójkąta spełniają zależność $a^2+b^2=c^2$, to trójkąt jest prostokątny. Wtedy a,b to przyprostokątne, zaś c to przeciwprostokątna.

Wniosek (z tw. cosinusów).

Z: a, b, c – boki trójkata; $a \le b \le c$

T:

- 1) Jeśli $a^2 + b^2 < c^2$, to trójkąt jest rozwartokątny,
- 2) Jeśli $a^2 + b^2 > c^2$, to trójkat jest ostrokatny.

Twierdzenie.

W dowolnym trójkącie wysokości lub ich przedłużenia przecinają się w jednym punkcie.

Definicja.

Punkt przecięcia wysokości nazywamy ortocentrum.

Definicja.

Środkową trójkąta nazywamy odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku.

Twierdzenie.

W dowolnym trójkącie środkowe przecinają się w jednym punkcie, który dzieli każdą z nich w stosunku 1:2 (dłuższa jest przy wierzchołku).

Definicja.

Punkt przecięcia środkowych nazywamy środkiem ciężkości.

Twierdzenie (Różne wzory).

Twierdzenie (cechy przystawania trójkątów).

- 1) (cecha bbb). Jeśli trzy boki w jednym trójkącie są odpowiednio równe trzem bokom w drugim trójkącie, to trójkąty te są przystające.
- 2) (cecha bkb). Jeśli dwa boki i kąt między tymi bokami w jednym trójkącie są równe odpowiednio dwóm bokom i kątowi między tymi bokami w drugim trójkącie, to trójkąty te są przystające.
- 3) (cecha kbk). Jeśli bok i dwa przyległe do niego kąty w jednym trójkącie są odpowiednio równe bokowi i dwóm przyległym do niego kątom w drugim trójkącie, to trójkąty te są przystające.

(ĆW) Podać przykład, ze w cesze 2) założenie o tym, że równe kąty muszą znajdować się pomiędzy odpowiednio równymi bokami jest istotne.

Twierdzenie (cechy podobieństwa trójkątów).

- 1) (cecha bbb). Jeśli trzy boki w jednym trójkącie są odpowiednio proporcjonalne do trzech boków w drugim trójkącie, to trójkąty te są podobne.
- 2) (cecha bkb). Jeśli dwa boki w jednym trójkącie są odpowiednio proporcjonalne do dwóch boków w drugim trójkącie oraz kąty między tymi bokami są równe, to trójkąty te są przystające.
- 3) (cecha kkk). Jeśli dwa kąty jednego trójkąta są odpowiednio równe dwóm kątom drugiego trójkąta, to trójkąty te są podobne.

(ĆW) Wykaż z podobieństwa wzór na wysokość poprowadzoną z wierzchołka kąta prostego tzn. $h = \sqrt{c_1 \cdot c_2}$.

Definicja.

Otoczeniem punktu P na płaszczyźnie nazywamy wnetrze koła o środku P i dowolnym promieniu r.

Definicja.

Punktem brzegowym figury nazywamy taki punkt, w którego każdym otoczeniu znajdują się zarówno punkty tej figury, jak i punkty spoza tej figury. Zbiór punktów brzegowych figury nazywamy jej **brzegiem**.

$$\forall U$$
 – otoczenie $P: (\exists x \in U \cap F \land \exists y \in U \cap F')$

Przykład.

Punkt brzegowy nie musi należeć do figury.

Definicja.

Punktem wewnętrznym figury nazywamy taki punkt, którego pewne otoczenie zawiera się w tej figurze. Zbiór punktów wewnętrznych figury nazywamy jej **wnętrzem.**

$$\exists U-\text{otoczenie}\ P\ : U\subset F$$

Definicja.

Punktem zewnętrznym figury nazywamy taki punkt, w którego pewnym otoczeniu nie ma punktów tej figury. Zbiór punktów zewnętrznych figury nazywamy jej **zewnętrzem**.

$$\exists U$$
 – otoczenie $P:U\cap F=\varnothing$

Definicja.

Figurę nazywamy **domkniętą**, gdy należą do niej wszystkie jej punkty brzegowe. Figurę nazywamy **otwartą**, gdy nie należy do niej żaden jej punkt brzegowy.