Diverse Human Motion Prediction via Gumbel-Softmax Sampling from an Auxiliary Space

Lingwei Dang ¹, Yongwei Nie ^{1*}, Chengjiang Long ², Qing Zhang ³, Guiqing Li ¹

- ¹ South China University of Technology, ² Meta Reality Lab, ³ Sun Yat-sen University
- *Corresponding author: nieyongwei@scut.edu.cn

Background & Motivation

- Diverse human motion prediction aims at predicting multiple possible future sequences from the observed one.
- Poses obtained by previous deep generative networks are not diverse enough.
- Recent work attempted to model the conditional distribution of data but it can only cover a fixed number of modes.
- We propose a novel sampling strategy for sampling very diverse results from an imbalanced multimodal distribution.

Proposed Approach

Architecture of the pretrained CVAE

Pseudocode for the overall approach and the Gumbel-Softmax sampling strategy

Algorithm 1 Diverse sampling from a complex distribution by random Gumbel-Softmax sampling from an auxiliary space

Input: Observed pose sequence \mathbf{x} , number of samples K, auxiliary space generation network \mathcal{N}_{β} , Gaussian distribution generation network $\mathcal{N}_{\mathcal{V}}$, CVAE decoder network \mathcal{G}_{θ} that models the target complex distribution

Output: A set of samples $\{\tilde{y}_k\}_{k=1}^K$

- 1: $B = N_{\beta}(x) // generate$ an auxiliary space given input poses 2: $\mathbf{W} \leftarrow \text{Gumbel-Softmax sampling} // generate a coefficient ma$ *trix by* Algorithm 2
- 3: P = WB // Multiply W and B to obtain a point matrix P 4: $\{A_k, b_k\}_{k=1}^K = \mathcal{N}_{\gamma}(P)$ // convert points into means and variances
- 5: $\epsilon \sim \mathcal{N}(0,1)$ // sampling an ϵ from the normal distribution
- variance A_k and mean b_k by reparameterization trick
- $\mathbf{z}_k = \mathbf{A}_k \boldsymbol{\epsilon} + \mathbf{b}_k$ // sample \mathbf{z}_k from Gaussian distribution of 8: $\tilde{\mathbf{y}}_k = \mathcal{G}_{\theta}(\mathbf{x}, \mathbf{z}_k)$ // decode \mathbf{z}_k and \mathbf{x} into a result $\tilde{\mathbf{y}}_k$

Algorithm 2 Gumbel-Softmax coefficient matrix generation

Input: Number of coefficient vectors K, dimension size M of a coefficient vector, Gumbel distribution parameters π and τ **Output:** A coefficient matrix $\mathbf{W} \in \mathbb{R}^{K \times M}$

- 1: Declare a matrix $\mathbf{W} \in \mathbb{R}^{K \times M}$
- 2: **for** i = 1 to K **do**
- for j = 1 to M do
- $u \sim U(0,1)$ // sample a value from uniform distribution $g = -\log(-\log(u))$
- end for
- $\mathbf{W}_i = \text{Softmax}(\mathbf{W}_i) / \text{normalize the } i^{th} \text{ row of } \mathbf{W}$ 9: end for

9: end for

Loss functions

6: **for** k = 1 to K **do**

 $\mathcal{L}_{hdiv} = rac{1}{K(K-1)} \sum_{i=1}^K \sum_{j=1}^K \max\left(0, \eta - \left\| ilde{\mathbf{y}}_i - ilde{\mathbf{y}}_j
ight\|_2
ight) \quad \mathcal{L}_{acc} = \min_k \left\|\mathbf{y} - ilde{\mathbf{y}}_k
ight\|_2, k \in [1, K] \quad \mathcal{L}_{KL}' = \mathcal{KL}(r_{eta, \gamma}(\mathbf{z}_k \mid \mathbf{x}) \|p(\mathbf{z})), k \in [1, K]$

Contributions

- A novel sampling method converts the sampling of the distribution into randomly sampling of points from an auxiliary space for diverse and accurate sampling.
- A Gumbel-Softmax sampling method and a hinge-diversity loss both improve the performance of our method.
- Extensive experimental results demonstrate the effectiveness of our approach.

Quantitative Results

Comparisons with baselines

	Method]	Human3.	6M [18]		HumanEva-I [36]						
	Method	APD↑	ADE ↓	FDE ↓	MMADE ↓	MMFDE ↓	APD↑	ADE ↓	FDE ↓	MMADE↓	MMFDE ,		
deterministic	LTD [31]	0.000	0.516	0.756	0.627	0.795	0.000	0.415	0.555	0.509	0.613		
deterministic	MSR [13]	0.000	0.508	0.742	0.621	0.791	0.000	0.371	0.493	0.472	0.548		
stochastic	Pose-Knows [41]	6.723	0.461	0.560	0.522	0.569	2.308	0.269	0.296	0.384	0.375		
	MT-VAE [42]	0.403	0.457	0.595	0.716	0.883	0.021	0.345	0.403	0.518	0.577		
	HP-GAN [6]	7.214	0.858	0.867	0.847	0.858	1.139	0.772	0.749	0.776	0.769		
	BoM [7]	6.265	0.448	0.533	0.514	0.544	2.846	0.271	0.279	0.373	0.351		
	GMVAE [14]	6.769	0.461	0.555	0.524	0.566	2.443	0.305	0.345	0.408	0.410		
	DeLiGAN [17]	6.509	0.483	0.534	0.520	0.545	2.177	0.306	0.322	0.385	0.371		
	DSF [43]	9.330	0.493	0.592	0.550	0.599	4.538	0.273	0.290	0.364	0.340		
	DLow [44]	11.741	0.425	0.518	0.495	0.531	4.855	0.251	0.268	0.362	0.339		
	GSPS [30]	14.757	0.389	0.496	0.476	0.525	5.825	0.233	0.244	0.343	0.331		
	Ours	15.310	0.370	0.485	0.475	0.516	6.109	0.220	0.234	0.342	0.316		

Ablation study results

	① Number of basis vectors					② Dimension of auxiliary space				③ Sampling method			$\textcircled{4} N_{\gamma}$		\bigcirc \mathcal{L}_{hdiv} v.s. \mathcal{L}_{div}			
	20	30	40*	50	60	32	64	128*	256	512	Gumbel*	Gaussian	Uniform	w/N_{γ}^*	w/o N _γ	$\mathcal{L}_{hdiv}(25)^*$	\mathcal{L}_{div} (25)	\mathcal{L}_{div} (1300)
APD↑	5.929	5.946	5.993	5.969	5.951	5.885	5.931	5.993	5.963	5.957	5.993	5.847	5.730	5.993	5.182	5.993	3.843	5.993
$ADE \downarrow$	0.234	0.234	0.231	0.229	0.233	0.236	0.233	0.231	0.233	0.236	0.231	0.240	0.233	0.231	0.229	0.231	0.211	0.235
FDE ↓	0.240	0.243	0.240	0.239	0.241	0.245	0.243	0.240	0.241	0.243	0.240	0.246	0.241	0.240	0.236	0.240	0.218	0.242
MMADE ↓	0.345	0.345	0.340	0.339	0.338	0.337	0.342	0.340	0.336	0.342	0.340	0.343	0.344	0.340	0.322	0.340	0.309	0.343
MMFDE ↓	0.321	0.319	0.313	0.315	0.312	0.312	0.318	0.313	0.310	0.316	0.313	0.320	0.323	0.313	0.298	0.313	0.287	0.321

Qualitative Results

Comparisons with baselines

Holistic views of results after the dimension reduction by PCA

Datasets & Metric & Project

- Datasets: Human3.6M, HumanEva-I Dataset
- Metrics: APD, ADE, FDE, MMADE, MMFDE
- Link: https://github.com/Droliven/diverse sampling

[MSRGCN] Dang L, Nie Y, Long C, et al. MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction. ICCV, 2021. [DLow] Yuan Y, Kitani K. Dlow: Diversifying latent flows for diverse1 human motion prediction. ECCV, 2020.

[GSPS] Mao W, Liu M, Salzmann M. Generating smooth pose sequences for diverse human motion prediction. ICCV, 2021.

Key References

Acknowledgement •

This work is sponsored by Prof. Yongwei Nie's and Prof. Guiging Li's Natural Science Foundation of China projects (62072191, 61972160), and their Natural Science Foundation of Guangdong Province projects (2019A1515010860, 2021A1515012301).