

CHEMISTRY Chapter 08

NOMENCLATURA INORGANICA 1

Antiguamente cada sustancia tenía un nombre sin mucha relación entre ellas. La nomenclatura inorgánica se basa en las características comunes entre las diversas sustancias. Por ejemplo tenemos a los hidróxidos de sodio, magnesio y potasio con sus fórmulas: NaOH, Mg(OH)₂ y KOH

VALENCIA

Es la capacidad de combinación que posee un átomo para formar un compuesto.

Valencia (N) = 3

Valencia (H) = 1

ESTADO DE OXIDACIÓN

Es la carga real o aparente que tiene un átomo cuando forma un compuesto.

Reglas para determinar el número de oxidación (N.O.)

> Todo elemento libre, tiene NO igual a cero.

El NO del hidrógeno al combinarse es (+1) con excepción de los hidruros metálicos donde es (-1).

 \succ El NO del oxígeno (O) al combinarse es (-2) H_2O

Excepto con peróxidos donde actúa con (-1). H_2O_2

Con el flúor (F) en donde es (+2). O F_2

A) Cero: si es un compuesto neutro.

+1
$$\times$$
 -2
H Br O₄ 1(+1)+ 1(x)+ 4(-2) = 0

B) Carga: si es un ion.

$$\begin{pmatrix} x & -2 \\ S & O_4 \end{pmatrix}^{-2}$$
 1(x) + 4(-2) = -2

ANFOTEROS	Valencia Metálica	Valencia No metálica
Cromo	2,3	3,6
Manganeso	2,3	4,6,7
Vanadio	2,3	4,5
Bismuto	3	5
Nitrógeno	(*)1,2,4	3,5

FUNCIÓN ÓXIDO

a) Óxido Básico

Metal + Oxígeno → Óxido Básico

*Nomenclatura Stock

COMPUESTO	Nomenclatura Stock
Na ₂ O	Óxido de sodio (I)*
FeO	Óxido de hierro (II)
PbO ₂	Óxido de plomo (IV)

* Para un único E.O. algunas universidades colocan el E.O. en números romanos, otras no lo colocan.

*Nomenclatura Sistemática (sugerido por IUPAC)

COMPUESTO	Nomenclatura Sistemática
Na ₂ O	monóxido de disodio*
FeO	monóxido de hierro
Al ₂ O ₃	trióxido de dialuminio

*Algunas universidades omiten el prefijo mono.

b)Óxido Ácido o anhídrido

No Metal + Oxígeno → Óxido Ácido

Obs: En las nomenclaturas se cambia el metal por el no metal y se trabaja como el caso anterior para las nomenclaturas Stock y sistemática.

COMPUESTO	Nomenclatura Sistemática
NO	monóxido de nitrógeno
CO ₂	dióxido de carbono
SO ₃	trióxido de azufre

FUNCIÓN HIDRÓXIDO

Oxido Básico+ Agua → Hidróxido

Formulación:

Características:

*Compuestos ternarios, poseen el grupo (OH).

*Son jabonosos al tacto.

*Tiñen de color azul al papel tornasol.

*Enrojecen a la fenolftaleína

COMPUESTO	Nomenclatura Stock	Nomenclatura Sistemática
Mg(OH) ₂	hidróxido de magnesio (II)*	dihidróxido de magnesio
Fe(OH) ₂	hidróxido de hierro (II)	dihidróxido de hierro
Al(OH) ₃	hidróxido de aluminio (III) *	trihidróxido de aluminio

1. Determine el número de oxidación (NO) para el elemento subrayado.

RESOLUCIÓN:

$$\begin{array}{ccc}
x & 2 - \\
* & N_2 & 0_5 \\
2(x) + 5(-2) = 0 \\
x = 5 +
\end{array}$$

$$x 2-$$
* SO_3
 $1(x) + 3(-2) = 0$

$$x = 6+$$

2. Clasifique el tipo de óxido.

> co. : óxido ácido

3. Clasifique el tipo de óxido.

```
    Óxido de cobre (II):
    Óxido básico
    Óxido básico
    Óxido ácido
    Óxido de cloro (I):
```


4. Clasifique el tipo de compuesto.

Oxido Básico+ Agua → Hidróxido

KOH: Hidróxido

Ca(OH)₂: Hidróxido

Elemento+ Oxígeno → Óxido

SO₃ : Oxido

5. Determine el número de oxidación para el elemento subrayado.

1+
$$\times$$
 2- H_2SO_4
2(1+)+1(x)+4(2-) = 0
 \times = 6+

$$\frac{x}{Mn_2} = 0$$
 $\frac{2}{2(x) + 7(-2) = 0}$

6. Según la teoría de Arrhenius. Establece que una base es una sustancia que cuando se disuelve en agua libera iones (OH)– . Así tenemos NaOH, Fe $(OH)_3$ y Pb $(OH)_2$, como ejemplos. Indique el nombre tradicional de los hidróxidos mencionados.

> NaOH : Hidróxido de sodio

> Fe(OH)₃ : Hidróxido férrico

> Pb(OH)₂ : Hidróxido Plumboso

- 7. Carlos necesita desatorar el baño de su casa, va a la ferretería y compra soda cáustica en solución y ácido muriático, su hijo le pregunta cuál es la fórmula química de los productos que compró; luego por curiosidad hace una pequeña mezcla y observan que la temperatura del envase aumenta. ¿Cuál de las siguientes alternativas representa una afirmación o explicación correcta?
- A) La soda caústica es el hipoclorito de sodio (NaClO).
- El ácido muriático es el ácido clorhídrico (HCI) diluido.
- C) El calor que se percibe se debe a que es una reacción endotérmica.
- D) El ácido muriático es el hipoclorito de sodio (NaClO).