Activity Sheet 2

Reporter:
Speaker:
Section 1.3
1. Consider the complete graph in 5 vertices. In each of the following explain your reasoning.
a. Determine how many path subgraphs of this graph there are (these would be identical to P_1 , P_2 , P_3 or P_4 , count separately for each case).
b. Determine how many cycle subgraphs of this graph there are (C_3 or C_4 , count separately for each case).

	c.	Determine how K_3 , count separate	many complete prately for each case	roper subgraphs of this graphe).	there are $(K_1 \text{ through})$
2.	Can	the complemen	nt of a path/cycle	graph be a path/cycle graph	? Explain (there are 4
2.	Can	the complemer binations in thi	nt of a path/cycle s question).	graph be a path/cycle graph	? Explain (there are 4
2.	Can com	the complemer binations in thi	nt of a path/cycle s question).	graph be a path/cycle graph	? Explain (there are 4
2.	Can	the complemer binations in thi	nt of a path/cycle s question).	graph be a path/cycle graph	? Explain (there are 4
2.	Can	the complemer binations in thi	nt of a path/cycle s question).	graph be a path/cycle graph	? Explain (there are 4
2.	Can	the complemer binations in thi	nt of a path/cycle s question).	graph be a path/cycle graph	? Explain (there are 4
2.	Can	the complemer binations in thi	nt of a path/cycle s question).	graph be a path/cycle graph	? Explain (there are 4
2	Can	the complement binations in thi	nt of a path/cycle s question).	graph be a path/cycle graph	? Explain (there are 4

3.	Consider a bipartite graph of order n . What is the largest possible value for the size of such a graph? Prove your answer (you may end up using some basic calculus).
4.	Prove that for every n , the n -th cube is bipartite. You will likely need to do induction on n to formally prove it, but try to get some intuition by manually trying the cases up to $n \le 3$.
4.	Prove that for every n , the n -th cube is bipartite. You will likely need to do induction on n to formally prove it, but try to get some intuition by manually trying the cases up to $n \leq 3$.
4.	Prove that for every n , the n -th cube is bipartite. You will likely need to do induction on n to formally prove it, but try to get some intuition by manually trying the cases up to $n \leq 3$.
4.	Prove that for every n , the n -th cube is bipartite. You will likely need to do induction on n to formally prove it, but try to get some intuition by manually trying the cases up to $n \leq 3$.
4.	Prove that for every n , the n -th cube is bipartite. You will likely need to do induction on n to formally prove it, but try to get some intuition by manually trying the cases up to $n \leq 3$.
4.	Prove that for every n , the n -th cube is bipartite. You will likely need to do induction on n to formally prove it, but try to get some intuition by manually trying the cases up to $n \leq 3$.

Section 1.4

4. Consider a digraph whose vertices are the courses offered in a department (say mathematics, but your answers below should apply to any department), and where an arc/edge from u to v indicates that the course v has the course u as a prerequisite. a. Must such a digraph be **oriented**? Explain. b. What does it mean to have multiple edges from the same vertex? What does it mean to have multiple edges to the same vertex? c. Can such a digraph have a directed cycle in it? d. What practical significance does the diameter in such a digraph have?