MAS115

Prellberg

Lecture 25

Lecture 2

Lecture 27

MAS115 Calculus I Week 10

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

2007/08

. . -

Lecture 25 Lecture 26

- One-to-One Functions
- Inverse Functions
- Derivatives of Inverse Functions
- Natural Logarithm: $\ln x = \int_1^x \frac{dt}{t}$
- Properties of In x
- Use of ln x for Integration

The Exponential Function

- Lecture 25
- Lecture 2
- Lecture 2

- ullet In x has domain \mathbb{R}^+ and range \mathbb{R}
- In x is strictly increasing, therefore invertible

Definition (Exponential Function)

For every $x \in \mathbb{R}$, $\exp x = \ln^{-1} x$.

Exponential Function and Real Powers

- $1 = \ln e$, so that $\exp 1 = e$
- $r = \ln(e^r)$, so that $\exp r = e^r$ (for $r \in \mathbb{Q}$)

exp x is defined for real x, but so far we have only dealt with rational powers. For base e, it makes now sense to introduce real exponents:

Definition

For every $x \in \mathbb{R}$, $e^x = \exp x$ (= $\ln^{-1} x$).

• $a = \ln(\exp a)$, and, for a > 0, $a = \exp(\ln a)$

We also define real powers of positive real numbers a:

Definition

For every $x \in \mathbb{R}$ and a > 0, $a^x = \exp(x \ln a)$.

 $e^x = \exp(x)$ obeys the familiar laws of exponents:

THEOREM 3 Laws of Exponents for e^x

For all numbers x, x_1 , and x_2 , the natural exponential e^x obeys the following laws:

1.
$$e^{x_1} \cdot e^{x_2} = e^{x_1 + x_2}$$

2.
$$e^{-x} = \frac{1}{e^x}$$

3.
$$\frac{e^{x_1}}{e^{x_2}} = e^{x_1 - x_2}$$

4.
$$(e^{x_1})^{x_2} = e^{x_1x_2} = (e^{x_2})^{x_1}$$

Proof of 1.:

$$\exp(x_1) \cdot \exp(x_2) = \exp \ln(\exp(x_1) \cdot \exp(x_2))$$
$$= \exp(\ln \exp(x_1) + \ln \exp(x_2))$$
$$= \exp(x_1 + x_2).$$

Differentiating and Integrating exp x

Lecture 25

cture 2

As $e^x = f^{-1}(x)$ with $f(x) = \ln x$ and f'(x) = 1/x, we find

$$\frac{d}{dx}e^{x} = \frac{1}{f'(f^{-1}(x))} = f^{-1}(x) = e^{x}.$$

Therefore

$$\frac{d}{dx}e^{x} = e^{x}$$

$$\int e^{x} dx = e^{x} + C$$

By the chain rule,

$$\frac{d}{dx}e^{f(x)} = e^{f(x)}f'(x)$$

so that also

$$\int e^{f(x)}f'(x)dx = e^{f(x)} + C.$$

Lecture 2

Lecture 25 Lecture 26 Solve the initial value problem

$$y' = e^{-y}2x \text{ for } x > \sqrt{3} \text{ with } y(2) = 0$$
:

• Rewrite $e^y y' = 2x$ and integrate both sides:

$$e^y = x^2 + C$$

• Determine C from y(2) = 0:

$$e^0 = 2^2 + C \implies C = -3.$$

Take logarithms to get

$$y = \ln(x^2 - 3)$$

which is valid for $x > \sqrt{3}$.

```
MAS115
Prellberg
```

What is *e*?

We defined e via $\ln e = 1$, and gave e = 2.718281828459...

Theorem (The Number e as a Limit)

$$e = \lim_{x \to 0} (1+x)^{1/x}$$

Proof.

$$\ln\left(\lim_{x \to 0} (1+x)^{1/x}\right) = \lim_{x \to 0} \left(\ln(1+x)^{1/x}\right)$$

$$= \lim_{x \to 0} \left(\frac{1}{x}\ln(1+x)\right)$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x}$$

$$= \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= f'(1) = 1 = \ln(e)$$

General Exponential Functions

Lecture 25

Consider base
$$a > 0$$
.

$$\frac{d}{dx}a^{x} = \frac{d}{dx}e^{x \ln a} = e^{x \ln a} \ln a = a^{x} \ln a,$$

so that

$$\frac{d}{dx}a^{x} = a^{x} \ln a$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C$$

Examples:

$$\frac{d}{dx} 2^{x} = 2^{x} \ln 2 \quad \text{with } \ln 2 \approx 0.6931$$

$$\int_{0}^{1} 3^{x} dx = \frac{3^{x}}{\ln 3} \Big|_{0}^{1} = \frac{2}{\ln 3} \quad \text{with } \ln 3 \approx 1.0986$$

$$\frac{d}{dx} x^{x} = \frac{d}{dx} e^{x \ln x} = e^{x \ln x} \frac{d}{dx} (x \ln x) = x^{x} (1 + \ln x)$$

Lecture 25 Lecture 26

The inverse of $y = a^x$ is

 $\log_a x$, the logarithm of x with base a,

provided a > 0 and $a \neq 1$.

•
$$x = \log_a(a^x)$$
 and, for $x > 0$, $x = a^{\log_a x}$

•
$$\ln x = \ln \left(a^{\log_a x} \right) = \ln \left(e^{\log_a x \cdot \ln a} \right) = \log_a x \cdot \ln a$$

We therefore have

$$\log_a x = \frac{\ln x}{\ln a}$$

For calculations, always express \log_a in terms of In before differentiating or integrating.

Example:

$$\log_2 3 = \frac{\ln 3}{\ln 2} \approx \frac{1.0986}{0.6931} \approx 1.585$$

Prellberg

Lecture 26 Lecture 27

Just like "0/0", the forms " 0^0 ", " 1^∞ ", and " ∞^0 " are also indeterminate. We handle them using logarithms.

• Compute $\lim_{x\to 0^+} x^x$:

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$$

and therefore $\lim_{x\to 0^+} x^x = e^0 = 1$.

• Compute $\lim_{x\to 0+} (1+x)^{1/x}$:

$$\lim_{x \to 0^+} \frac{\ln(1+x)}{x} = \lim_{x \to 0^+} \frac{1/(1+x)}{1} = \lim_{x \to 0^+} \frac{1}{1+x} = 1$$

and therefore $\lim_{x\to 0^+} (1+x)^{1/x} = e^1 = e$.

Prellberg

Lecture 26

- Exponential Function $\exp x = \ln^{-1} x$
- $\exp x = e^x$, e = 2.71828...
- Differentiating and Integrating exp x
- General Exponential Functions and Logarithms
- Indeterminate Powers

 sin, cos, sec, csc, tan, cot are not one-to-one unless the domain is restricted:

• once the domains are suitably restricted, we can define

$$\arcsin x = \sin^{-1} x$$
 $\operatorname{arccsc} x = \csc^{-1} x$
 $\operatorname{arccos} x = \cos^{-1} x$ $\operatorname{arcsec} x = \sec^{-1} x$
 $\operatorname{arctan} x = \tan^{-1} x$ $\operatorname{arccot} x = \cot^{-1} x$

Lecture 2

Lecture 26

Lactura ?

Domain: $-1 \le x \le 1$ Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$

Lecture 26

Domain: $-\infty < x < \infty$ Range: $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Domain: $x \le -1$ or $x \ge 1$ Range: $0 \le y \le \pi, y \ne \frac{\pi}{2}$

Lecture 2

Lecture 26

Lecture 2

Domain: $x \le -1$ or $x \ge 1$ Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$

Caution: $\sin^{-1} x \neq (\sin x)^{-1}$ (unfortunately this is inconsistent: $\sin^2 x = (\sin x)^2$). Best to avoid $\sin^{-1} x$ and use $\arcsin x$ etc. instead.

The "arc" explained:

Observe that

$$\arcsin x + \arccos x = \pi/2$$

Inverse Trigonometric Functions

• If $\alpha = \arcsin(2/3)$, find $\cos \alpha$, $\tan \alpha$, $\sec \alpha$, $\csc \alpha$, $\cot \alpha$: Construct right triangle with $\sin \alpha = 2/3$:

Read off $\cos \alpha = \sqrt{5}/3$, $\tan \alpha = 2/\sqrt{5}$, $\sec \alpha = 3/\sqrt{5}$, $\csc \alpha = 3/2$, $\cot \alpha = \sqrt{5}/2$.

• Find sec $\arctan(x/3)$: Construct right triangle with $\tan \theta = x/3$:

Read off $\sec \theta = \sqrt{x^2 + 9}/3$.

Differentiating arcsin x

• Differentiate $\sin y = x$:

$$\cos y \frac{dy}{dx} = 1 \ .$$

Solve for $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}}$$

for $-\pi/2 < y < \pi/2$. Therefore, for |x| < 1,

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}}$$

and, conversely,

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C \ .$$

Similarly, $\frac{d}{dx}$ arctan $x = \frac{1}{1+x^2}$ etc.

Derivatives of Inverse Trigonometric Functions

Lecture

Lecture 26

Lecture 2

TABLE 7.3 Derivatives of the inverse trigonometric functions

1.
$$\frac{d(\sin^{-1} u)}{dx} = \frac{du/dx}{\sqrt{1-u^2}}, \quad |u| < 1$$

2.
$$\frac{d(\cos^{-1}u)}{dx} = -\frac{du/dx}{\sqrt{1-u^2}}, \quad |u| < 1$$

3.
$$\frac{d(\tan^{-1}u)}{dx} = \frac{du/dx}{1+u^2}$$

4.
$$\frac{d(\cot^{-1}u)}{dx} = -\frac{du/dx}{1+u^2}$$

5.
$$\frac{d(\sec^{-1}u)}{dx} = \frac{du/dx}{|u|\sqrt{u^2 - 1}}, \quad |u| > 1$$

6.
$$\frac{d(\csc^{-1}u)}{dx} = \frac{-du/dx}{|u|\sqrt{u^2-1}}, \quad |u| > 1$$

Integrals Leading to Inverse Trigonometric Functions

TABLE 7.4 Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant $a \neq 0$.

1.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C \qquad \text{(Valid for } u^2 < a^2\text{)}$$

2.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C$$
 (Valid for all u)

3.
$$\int \frac{du}{u\sqrt{u^2-a^2}} = \frac{1}{a}\sec^{-1}\left|\frac{u}{a}\right| + C$$
 (Valid for $|u| > a > 0$)

Lecture 26

Find the line tangent to $y = \operatorname{arccot} x$ at x = -1:

- $\operatorname{arccot}(-1) = \frac{1}{2}\pi \operatorname{arctan}(-1) = \frac{1}{2}\pi + \operatorname{arctan} 1 = \frac{1}{2}\pi + \frac{1}{4}\pi = \frac{3}{4}\pi$.
- $\frac{d}{dx} \operatorname{arccot} x \Big|_{x=-1} = -\frac{1}{1+x^2} \Big|_{x=-1} = -\frac{1}{2}.$
- The equation of the line is

$$y = \frac{3\pi}{4} - \frac{1}{2}(x+1)$$

Evaluate $\int_0^1 \frac{dx}{1+x^2}$:

We have

$$\int_0^1 \frac{dx}{1+x^2} = \arctan x \Big|_0^1$$

$$= \arctan 1 - \arctan 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

Evaluate

$$\int \frac{dx}{\sqrt{4x-x^2}} :$$

Trick: complete the square!

$$4x - x^2 = 4 - (x - 2)^2$$

Now integrate

$$\int \frac{dx}{\sqrt{4x - x^2}} = \int \frac{dx}{\sqrt{4 - (x - 2)^2}}$$

$$\det u = x - 2: = \int \frac{du}{\sqrt{4 - u^2}}$$

$$= \arcsin \frac{u}{2} + C$$

$$= \arcsin \left(\frac{x}{2} - 1\right) + C$$

Example

Lecture 25

Evaluate

$$\int \frac{dx}{4x^2 + 4x + 2} :$$

• Trick: complete the square!

$$4x^2 + 4x + 2 = (2x + 1)^2 + 1$$

Now integrate

$$\int \frac{dx}{4x^2 + 4x + 2} = \int \frac{dx}{(2x+1)^2 + 1}$$

$$let u = 2x + 1: = \int \frac{\frac{1}{2}du}{u^2 + 1}$$

$$= \frac{1}{2}\arctan u + C$$

$$= \frac{1}{2}\arctan(2x+1) + C$$

Hyperbolic Functions

Split exp x into even and odd part:

$$e^{x} = \underbrace{\frac{e^{x} + e^{-x}}{2}}_{\text{even function}} + \underbrace{\frac{e^{x} - e^{-x}}{2}}_{\text{odd function}}$$

We define the "hyperbolic sine" and "hyperbolic cosine" as

$$cosh x = \frac{e^x + e^{-x}}{2} \qquad sinh x = \frac{e^x - e^{-x}}{2}$$

and define tanh, coth, sech, and csch in analogy to trigonometric functions.

Hyperbolic Sine and Cosine

Lecture 25 Lecture 26

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$cosh x = \frac{e^x + e^{-x}}{2}$$

Lecture 26 Lecture 27

$$tanh x = \frac{\sinh x}{\cosh x}$$

$$coth x = \frac{\cosh x}{\sinh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\operatorname{csch} x = \frac{1}{\sinh x}$$

TABLE 7.6 Identities for hyperbolic functions

$$\cosh^{2} x - \sinh^{2} x = 1$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^{2} x + \sinh^{2} x$$

$$\cosh^{2} x = \frac{\cosh 2x + 1}{2}$$

$$\sinh^{2} x = \frac{\cosh 2x - 1}{2}$$

$$\tanh^{2} x = 1 - \operatorname{sech}^{2} x$$

$$\coth^{2} x = 1 + \operatorname{csch}^{2} x$$

Similarities between trigonometric and hyperbolic functions are no accident (but an explanation needs complex numbers and complex functions).

- Lecture 25
- _____
- Lecture 27

- Inverse Trigonometric Functions
- Differentiating and Integrating
- Trick: Completing the Square
- Hyperbolic Functions

Derivatives of Hyperbolic Functions

Formulas for derivatives follow directly from the definition:

$$\frac{d}{dx}\sinh x = \frac{d}{dx}\frac{e^x - e^{-x}}{2} = \frac{e^x + e^{-x}}{2} = \cosh x$$
$$\frac{d}{dx}\cosh x = \frac{d}{dx}\frac{e^x + e^{-x}}{2} = \frac{e^x - e^{-x}}{2} = \sinh x$$

TABLE 7.7 Derivatives of TABLE 7.8 Integral formulas for hyperbolic functions hyperbolic functions $\frac{d}{dx}(\sinh u) = \cosh u \frac{du}{dx}$ $\int \sinh u \, du = \cosh u + C$ $\int \cosh u \, du = \sinh u + C$ $\frac{d}{dx}(\cosh u) = \sinh u \frac{du}{dx}$ $\int \operatorname{sech}^2 u \, du = \tanh u + C$ $\frac{d}{du}(\tanh u) = \operatorname{sech}^2 u \frac{du}{du}$ $\int \operatorname{csch}^2 u \, du = -\operatorname{coth} u + C$ $\frac{d}{dx}(\coth u) = -\operatorname{csch}^2 u \frac{du}{dx}$ $\int \operatorname{sech} u \tanh u \, du = -\operatorname{sech} u + C$ $\frac{d}{dx}(\operatorname{sech} u) = -\operatorname{sech} u \tanh u \frac{du}{dx}$ $\int \operatorname{csch} u \operatorname{coth} u \, du = -\operatorname{csch} u + C$ $\frac{d}{dx}(\operatorname{csch} u) = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$

_ecture 2

Lecture 27

• Find $\int_0^1 \sinh^2 x \, dx$:

$$\int_0^1 \sinh^2 x \, dx = \int_0^1 \frac{\cosh 2x - 1}{2} \, dx = \frac{1}{2} \left[\frac{\sinh 2x}{2} - x \right]_0^1$$
$$= \frac{\sinh 2}{4} - \frac{1}{2} = \frac{1}{8} (e^2 - e^{-2}) - \frac{1}{2} \approx 0.40672$$

• Find $\int_0^{\ln 2} 4e^x \sinh x \, dx$:

$$\int_0^{\ln 2} 4e^x \sinh x \, dx = \int_0^{\ln 2} 4e^x \frac{e^x - e^{-x}}{2} dx$$

$$= \int_0^{\ln 2} (2e^{2x} - 2) dx = \left[e^{2x} - 2x \right]_0^{\ln 2}$$

$$= e^{2\ln 2} - 2\ln 2 - 1 = 2^2 - 2\ln 2 - 1 \approx 1.6137$$

Inverse Hyperbolic Functions

. . .

Lecture 27

As with trigonometric functions, restrict the domains and invert:

Inverse Hyperbolic Functions

Lecture 26

As with trigonometric functions, restrict the domains and invert:

TABLE 7.10 Derivatives of inverse hyperbolic functions

$$\frac{d(\sinh^{-1}u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}
\frac{d(\cosh^{-1}u)}{dx} = \frac{1}{\sqrt{u^2-1}} \frac{du}{dx}, \qquad u > 1
\frac{d(\tanh^{-1}u)}{dx} = \frac{1}{1-u^2} \frac{du}{dx}, \qquad |u| < 1
\frac{d(\coth^{-1}u)}{dx} = \frac{1}{1-u^2} \frac{du}{dx}, \qquad |u| > 1
\frac{d(\coth^{-1}u)}{dx} = \frac{-du/dx}{u\sqrt{1-u^2}}, \qquad 0 < u < 1
\frac{d(\cosh^{-1}u)}{dx} = \frac{-du/dx}{|u|\sqrt{1+u^2}}, \qquad u \neq 0$$

Lecture 27

TABLE 7.11 Integrals leading to inverse hyperbolic functions

1.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \sinh^{-1}\left(\frac{u}{a}\right) + C, \qquad a > 0$$

$$2. \int \frac{du}{\sqrt{u^2 - a^2}} = \cosh^{-1}\left(\frac{u}{a}\right) + C, \qquad u > a > 0$$

3.
$$\int \frac{du}{a^2 - u^2} = \begin{cases} \frac{1}{a} \tanh^{-1} \left(\frac{u}{a} \right) + C & \text{if } u^2 < a^2 \\ \frac{1}{a} \coth^{-1} \left(\frac{u}{a} \right) + C, & \text{if } u^2 > a^2 \end{cases}$$

4.
$$\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \operatorname{sech}^{-1} \left(\frac{u}{a}\right) + C, \quad 0 < u < a$$

5.
$$\int \frac{du}{v\sqrt{a^2+v^2}} = -\frac{1}{a}\operatorname{csch}^{-1}\left|\frac{u}{a}\right| + C, \qquad u \neq 0 \text{ and } a > 0$$

Example

Lecture 2

Lecture 2

Lecture 27

Find
$$\int_0^1 \frac{2dx}{\sqrt{3+4x^2}}$$
:

• Substitute u = 2x:

$$\int \frac{2dx}{\sqrt{3+4x^2}} = \int \frac{du}{\sqrt{3+u^2}}$$

• Use $\int \frac{du}{\sqrt{a^2+u^2}} = \sinh^{-1}(u/a) + C$:

$$\int \frac{2dx}{\sqrt{3+4x^2}} = \sinh^{-1}\left(\frac{2x}{\sqrt{3}}\right) + C$$

• Now compute the definite integral:

$$\int_{0}^{1} \frac{2dx}{\sqrt{3+4x^{2}}} = \sinh^{-1} \left(\frac{2x}{\sqrt{3}}\right) \Big|_{0}^{1} = \sinh^{-1} \left(\frac{2}{\sqrt{3}}\right) \approx 0.98665$$

Lecture 25
Lecture 26
Lecture 27

- Basic properties (Thomas' Calculus, Chapter 5)
- Rules (substitution, integration by parts today)
- Basic formulas, integration tables (Thomas' Calculus, pages T1-T6)
- Procedures to simplify integrals (bag of tricks, methods)

this needs practice, practice, practice, ...: exerciseclass 9, coursework 10/11, and end-of-term test

Integration Tables

Lecture

ecture 2

Lecture 27

TABLE 8.1 Basic integration formulas

$$1. \int du = u + C$$

2.
$$\int k \, du = ku + C$$
 (any number k)

3.
$$\int (du + dv) = \int du + \int dv$$

4.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C \qquad (n \neq -1)$$

$$5. \int \frac{du}{u} = \ln|u| + C$$

$$6. \int \sin u \, du = -\cos u + C$$

7.
$$\int \cos u \, du = \sin u + C$$

8.
$$\int \sec^2 u \, du = \tan u + C$$

9.
$$\int \csc^2 u \, du = -\cot u + C$$

10.
$$\int \sec u \tan u \, du = \sec u + C$$

11.
$$\int \csc u \cot u \, du = -\csc u + C$$

12.
$$\int \tan u \, du = -\ln|\cos u| + C$$
$$= \ln|\sec u| + C$$

13.
$$\int \cot u \, du = \ln|\sin u| + C$$
$$= -\ln|\csc u| + C$$

14.
$$\int e^u du = e^u + C$$

15.
$$\int a^u du = \frac{a^u}{\ln a} + C$$
 $(a > 0, a \ne 1)$

$$16. \int \sinh u \, du = \cosh u + C$$

17.
$$\int \cosh u \, du = \sinh u + C$$

$$18. \int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C$$

19.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C$$

20.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + C$$

21.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \sinh^{-1}\left(\frac{u}{a}\right) + C \quad (a > 0)$$

22.
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \cosh^{-1}\left(\frac{u}{a}\right) + C \quad (u > a > 0)$$

Lecture 2

Lecture 27

Procedures for Matching Integrals to Basic Formulas

PROCEDURE	EXAMPLE
Making a simplifying substitution	$\frac{2x-9}{\sqrt{x^2-9x+1}}dx = \frac{du}{\sqrt{u}}$
Completing the square	$\sqrt{8x - x^2} = \sqrt{16 - (x - 4)^2}$
Using a trigonometric identity	$(\sec x + \tan x)^2 = \sec^2 x + 2 \sec x \tan x + \tan^2 x$ = $\sec^2 x + 2 \sec x \tan x$ + $(\sec^2 x - 1)$
	$= 2 \sec^2 x + 2 \sec x \tan x - 1$
Eliminating a square root	$\sqrt{1+\cos 4x} = \sqrt{2\cos^2 2x} = \sqrt{2} \cos 2x $
Reducing an improper fraction	$\frac{3x^2 - 7x}{3x + 2} = x - 3 + \frac{6}{3x + 2}$
Separating a fraction	$\frac{3x+2}{\sqrt{1-x^2}} = \frac{3x}{\sqrt{1-x^2}} + \frac{2}{\sqrt{1-x^2}}$
Multiplying by a form of 1	$\sec x = \sec x \cdot \frac{\sec x + \tan x}{\sec x + \tan x}$
	$= \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x}$

Lecture 2

Lecture 27

 $\mathsf{Differentation} \longleftrightarrow \mathsf{Integration}$

• chain rule ←→ substitution

$$\int f(g(x))g'(x)dx = \int f(u)du , \quad u = g(x)$$

● product rule ←→ ?

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

Integrate:

$$\int \frac{d}{dx} (f(x)g(x)) dx = \int (f'(x)g(x) + f(x)g'(x)) dx$$

Therefore

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx$$

Locture 2

Lecture 27

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$
 (1)

Integration by Parts Formula

$$\int u\,dv = uv - \int v\,du \tag{2}$$

Integration by Parts Formula for Definite Integrals

$$\int_{a}^{b} f(x)g'(x) dx = f(x)g(x)\Big]_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx$$
 (3)

Example

Lecture 27

then

and

gives

$$\int x \cos x \, dx :$$

$$u = x$$
, $dv = \cos x \, dx$

$$du = dx$$
, $v = \sin x$

$$\int u\,dv=uv-\int v\,du$$

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

Are there other choices of u and dv for

$$\int x \cos x \, dx ?$$

Some choices are

- u = 1 and $dv = x \cos x dx$
- u = x and $dv = \cos x dx$
- $u = \cos x$ and dv = x dx
- $u = x \cos x$ and dv = dx

Which one should we choose?

- \bullet u = 1 and $dv = x \cos x dx$: Computing v is the same as the original problem: no good!
- u = x and $dv = \cos x dx$: Done above, works!

Other choices of u and dv for

$$\int x \cos x \, dx :$$

• $u = \cos x$ and dv = x dx:

Now
$$du = -\sin x \, dx$$
 and $v = x^2/2$, so that

$$\int x \cos x \, dx = \frac{1}{2}x^2 \cos x + \int \frac{1}{2}x^2 \sin x \, dx$$

This makes the situation worse!

• $u = x \cos x$ and dv = dx:

Now
$$du = (\cos x - x \sin x) dx$$
 and $v = x$, so that

$$\int x \cos x \, dx = x^2 \cos x - \int x (\cos x - x \sin x) dx$$

This again is worse!

Lecture 26 Lecture 27

Integration by Parts

General advice:

- Choose dv to have "as much of the integrand as possible", provided you can compute v.
- If it looks more complicated after doing integration by parts, it's most likely not right. Try something else.
- Remember: generally

$$\int f(x)g(x)dx \neq \int f(x)dx \int g(x)dx$$

```
MAS115
```

Example

Lecture 27

Evaluate

$$\int I$$

 $\int \ln x \, dx$:

Choose $u = \ln x$ and dv = dx, so that

 $du = \frac{1}{x} dx$, v = x

Integrate by parts:

 $\int \ln x \, dx = x \ln x - \int x \frac{1}{x} dx$ $= x \ln x - \int dx = x \ln x - x + C$

Could we have obtained this by guessing? $\frac{d}{dx}(x \ln x) = 1 \cdot \ln x + x \frac{1}{x} = \ln x + 1 = \ln x + \frac{d}{dx}x$

Well, maybe . . .

MAS115

Prellberg

Lecture 2

. . .

Lecture 27

The End