Theorem 1. A problem A is polynomial-time reducible to problem B, denoted $A \leq_P B$, if all instance of A can be reduced to B.

Parallel to set theory: $A\subseteq B,\, \forall a\in A, a\in B$ Let $A\leq_P B,$ if I can solve B in polynomial time, then I can solve A in polynomial time.

Theorem 2. A problem P is a complexity class in NP such that there is a polynomial time to solve them

$$P\subseteq NP$$

$$\forall Q\in P,Q\in NP$$

Theorem 3. A problem H is NP-complete if for all $q \in NP$ are polynomially reducible to H.

In notation,

$$H \in NP \wedge \forall Q \in NP : Q \leq_P H$$