

TABLE OF CONTENTS

01

Overview

02

Implementation

03

Testing

04

Conclusion

INTRODUCTION

Personal identification can be achieved using biometrics recognition which has emerged as a reliable approach for automated human identification and is attracting significant attention from the researchers in multifaceted disciplines.

we propose the development of a reliable personal identification system which is based on cancelable biometrics and distributed deep learning.

Problem Statement & Significance

The concept of the biometric is the automated recognition of human individuals based on their biological and behavioral traits. Because sometimes People forgetting their passwords all the time even their personal identifications.

If they lost it and it takes space and sometimes you will have to pay for you belongs to get it back or to get new ones.

To Secure personal identification and biomatrices: fingerprint and face ID are safer than password.

It's not easy to hack and if it is hacked, we can cancel Biometrics and change the encryption of the biometric.

Problem Statement & Significance

We will use Personal identification using cancelable biometrics and deep learning to solve this problem by using the biometrics identification (Multi-biometrics) to make people lives easier so they don't have to remember every password.

Their personal identification will be more secure and safe because of cancelable biometrics. The input biometrics are transformed into cancelable templates which are stored in database.

During authentication or identification, the transformed input biometrics is compared to the templates in the database

Proposed Solution & Objective

A program that make use of multi-biometrics for personal identification rather than using the personal information such as (id, license, bank account pin password). So, users don't care about their password as they will open the program using their biometrics (faces, fingerprints).

Proposed and Similar Systems comparison

•		Our System	System based on CAE	System based on CNN
	Solved Problem	Personal Identification	Authentication	Authentication
	Features	 Multi-biometrics (Face + Fingerprint) Feature Extraction using CNN/CAE/SAE/AE Cancelable template using bioconvolution 	 Multi-Biometrics Feature Extraction using CAE Cancelable template using random convolution 	 Multi-instances Feature Extraction using CNN Cancelable template using random projection
	Advantages	Security Feature extraction using transfer learning when using CNN	Security	Security
	Limitations	Requires Training when using CAE/SAE/AE	Requires Training	Requires Training for user Authentication

Functional Requirements:

The Functional Requirements of the system explain the specific functions to be performed or accomplished by the system. We have three main functions:

- Enrollment (sign up)
- System Management
- Personal Identification (Sign in)

Non-functional Requirements:

- Availability
- Security
- Reliability
- Efficiency (fast response)

Hardware Requirements

Laptop with GPU (RTX 3070 or RTX 3080 TI)

Software Requirements:

- Python
- TensorFlow 2.0
- Keras

Proposed System

In this project, we will develop a system for personal identification based on cancelable Multi-biometrics combined with deep learning. This system will be used to access remotely to a bank by using biometrics instead of using a password.

System design

System Architecture

Enrollment Phase (Sign up):

Identification Phase (Sign in):

Cancelable Technique

4 5 2 9 --- 12 9 5 1

Implementation details

data preparation:

in this phase we have the data preparation code.

Firstly, this code for each person will select randomly one face image and the fingerprint for each right index randomly.

These images will be used in the enrollment phase to build the database.

Implementation details

Python code: (Data preparation)

```
"dataset = read_csv("D:/Data/Biometrics/Faces/Datasetfaces.csv")
Faces = dataset.iloc[:, 0].values
Labels = dataset.iloc[:, 1].values

seed(int(time.time()))

for i in range(len(ListofLabels)):
    faces = (Faces[Labels == ListofLabels[i]])[:len(Faces)]
    value = randint(0,len(faces)-1)
    SelectedFaces[i] = faces[value]

filename = 'D:/Data/Biometrics/Faces/selectedfaces.npy'
np.save(filename, SelectedFaces)
```

Implementation details

Python code: (Data preparation)

```
dataset = read_csv("D:/Data/Biometrics/Fingerprints/Datasetfingerprints.csv")
Fingerprints = dataset.iloc[:, 0].values
Labels = dataset.iloc[:, 1].values
seed(int(time.time()))
SelectedFingerprints = ListofLabels.copy()
for i in range(len(ListofLabels)):
  fingerprints = (Fingerprints[Labels == ListofLabels[i]])[:len(Fingerprints)]
  value = randint(0,len(fingerprints)-1)
  SelectedFingerprints[i] = fingerprints[value]
filename = 'D:/Data/Biometrics/Fingerprints/selectedfingerprints.npy'
np.save(filename, SelectedFingerprints)
```

Implementation details

enrollment method:

in this phase, we will use the selected face images and fingerprint in the data preparation phase to build the database of cancelable templates.

For each person, we use the selected face image and fingerprint to generate the deep features using a pretrained CNN - ResNet50 - as feature extractor.

These deep features are then merged and modified using random convolution. The obtained features correspond to the cancelable template which will be stored in the database to be used in the identification phase.

Implementation details

enrollment method:

```
faceimage = tensorflow.image.resize(faceimage, [224, 224])
fingerprint = tensorflow.image.resize(fingerprint, [224, 224])
images_resized = np.array([faceimage, fingerprint])
# Feature Extraction using pretrained CNN - ResNet50
inputs = ks.applications.resnet50.preprocess_input(images_resized)
Y_proba = resnet50_modelfs.predict(inputs)
deepfeatures = Y_proba
print(deepfeatures)
# random convolution of deepfeatures
X = deepfeatures.copy()
X_new = numpy.append(X[0], X[1], axis=0)
X_final = random_convolution(X_new,RandomKernel)
# Store X final in the database
```

Implementation details

```
1D random convolution
Select randomly a Kernel = [1 2 1]
Deep features (CNN - ResNet50) after fusion = [2 -1 3 0 6 1 2 4]
 Cancelable template = [ 3 3 5 9 ...
                                                        10 ]
      2 \rightarrow (1*0 + 2*2 + 1(-1)) = 3
      -1 \rightarrow (1*2 + 2*(-1) + 1(3)) = 3
      3 \rightarrow (1*(-1) + 2*(3) + 1(0)) = 5
      0 \rightarrow (1*(3) + 2*(0) + 1(6)) = 9
      4 \rightarrow (1*(2) + 2*(4) + 1(0)) = 10
```

Implementation details

Personal identification:

In this phase, we will select randomly a face image and a fingerprint for a certain person.

Then, the selected face image and fingerprint are used to generate the deep features based on a pretrained CNN - ResNet50 - as feature extractor.

These deep features are then merged and modified using random convolution. The obtained features correspond to the cancelable template which will be matched to the cancelable templates present in the database. We select the person with the closest cancelable template. We use Euclidean distance to measure the closeness.

Implementation details

Personal identification:

```
# matching ... using Euclidean Distance between Cancelable template and DB ...
print("matching process")
index = 0
mindist = norm(DB[0]-cancelabletemplate)
for i in range(len(DB)):
  dist = norm(DB[i]-cancelabletemplate)
  print(DB[i])
  print(dist)
  if (dist < mindist):</pre>
    mindist = dist
    index = i
print(IDs[index])
print(mindist)
```

Implementation details

Evaluation:

To evaluate the performance of the system, we calculated the accuracy of the identification process with various number of face and fingerprints images for each person: 5, 10, 15, 20, 25, 30.

Implementation details

```
print("\n Accuracy score (%): ")
print((countaccuracy/(len(ListofLabels)*Nrepeats)*100))
```

```
countaccuracy = 0
Nrepeats =30
```

Accuracy score (%): 95.16129032258065

Test plan

For our testing plan we chose the accuracy test because it is popular among supervised systems.

And also with higher accuracy we will get great and excellent results. we will create six cases to test the level of accuracy and evaluate the performance of the system.

We have tried (5,10,15,20,25,30) repeats and the best final accuracy was excellent which is 30 repeats.

That was our test plan in general.

Case 1-1

100	71140ama = 102/602/104 20194	eritife att			
Bookma	6 F / I F P -				
restors	Biometrics Personal Identification				
C\$ 200	conv5_block3_add (Add) (None, 7, 7, 2048) 0 conv5_block2_out[8][9]	3 =			
= 33	convolutors and the convolutors are the convol				
► #		2 1			
	conv5_blockS_bot (Activation) (None, 7, 7, 2048) 0 conv5_blockS_add[8][0]	> =			
EQ. 100		- I			
+ 6	global_average_posting2d (Globa (None, 2048)	2 15			
		> 10			
	Total params: 23,587,712	100			
	Trainable params: 23,534,592				
	Non-trainable params: 53,120	3 =			
		2 =			
	Start processing data :::				
	Scarc processing takes	3 1			
	Akshay Kumar	2 =			
	Akshay Kumar_8.jpg				
	1_M_Right_index_finger.BMP				
	2822-85-89 22:41:11 468354; I tensorflow/compiler/mlir/mlir_graph_optimization_pass.co:1851 None of the NLIR Optimiz				
		60			
	deep features	2 10			
	(2) 2040)				
	[[2.9188764e-03 1.8773892e-83 1.8750623e-81 1.8179266e-81				
	3.6861917e-01 4.03631650-011				
	[4.0199175e-01 1.9720490e+00 0.0000000e+00 3.2691278e-02 5.3898954e-01 6.3477838e-01]]	100			
	9.38989546-81 0.34778388-8111 [0.80291008 0.80187739 0.14956623 0.83269128 0.53898954 0.6547784]				
	[0.00291008 0.00107/39 0.14950023 0.03209128 0.53898954 0.0547784]	2 =			
	Random Convolution of deep features	- E			
	(40%;)				
	[0.00689754 0.15172181 4.5689647 0.6045721 1.71275747 1.26955676]				
		3 III			
		100			
		> #			
80.000	on Control S Pythin Packages 19 7000 Pythin Console Pythin 25 Terminal				

Case 1-2

Case 1-3

```
- #5 Fouro Biometrics - Duta Propheration Inc. -
                                                                 Particles - Dispersettion - Encodementary -
10-11746356 0.09987184 3.61216807 ... 0.13578664 1.68522292 2.82750807]
78.75896234885171
   [8.94249919 8.06721048 8.42196569 ... 0.80876621 1.06526884 2.12649688]
   64.88593493198313
   [0.2614103 0.53061391 0.86968978 ... 0.80793416 0.92307356 1.02198995]
   81.414286886311
   [0.40724143 0.81468287 2.64183545 ... 0.13171947 1.0083347 1.48979151]
   [0.81439422 0.83484759 3.35337924 ... 8.32882427 3.58819448 3.99832892]
   96.92531453471135
   [8.18167289 0.38898394 4.81147356 ... 0.81483251 0.77671276 1.4972955 ]
   [0.13178271 0.26306942 0.74756949 ... 0.12090918 2.20711229 3.93098777]
   88.06910030002418
   [0.26923888 0.53851616 2.01339269 ... 0.26911785 0.80267316 1.60534632]
   87.54869244847008
   Aksney Kumer
```

\circ

Case 2-1

```
🗢 — 🚜 Irialis - Burriotica - Crata Propositionary - 🚜 (riam - Burriotica - Encoderantary -
        conv5_bluck3_3_conv (Conv2D)
          convb_block5_add (Add)
                     global_everage_pooling2d (Globa (Wone, 2068)
                      Total paramu: 25,587,712
                      frainable paramet 23,534,592
                     Won-trainable params: 55,120
                       Start processing data ....
                    Gittie Elliant
                     BILLIAM ELLISH 72: 100
                        STREET, FRISTIANS
                      [10.05170283 0.13981159 0.76666376 ... 0.07561731 0.11528835 0.
                      [0.28071946 0.80364966 0. . . . 0. 0.80339952 0.6050819 1]
                     [8.85170263 8.15981159 8.76666376 ... C.
                      Random Convolution of deep features ....
                      [0.24821726 1.04608674 3.32603197 ... 0.08939952 0.70388055 1.210165 ]
P. Comming Countries - Parliam Parliament - In Proceedings - Option Committee - Option - Op
```

Case 2-2

Case 2-3

Case 3-1

Case 3-2

Case 3-3

Case 4-1

Im the			æ .≡		×× -	- 85 179				e enaire			1 to main	Mornetics Penemal I
					** -									
TYLOUT -	Historica - Pins	smal felerio	Hieather	A COLUMN										
	conv5_block	3_3_bn	CBat	onNo	rmati	CNone.	9. 9	. 2048)	8192	conv5_b	lock3_3_c	onvieliel		
⊨ —— 	conv5_block			(None		, 7, 2048) , 7, 2948)			conv5_block2_evt[0][0] conv5_block3_3_bn[0][0] conv5_block3_add[0][0]					
	conv5_block	vati	un)	(Nane,	7. 9		•	conv5_b						
	glabal_average_pooling2d (Globa (None, 2048) 8 conv5_block3_out[0][0] Total params: 23,587,712 Trainable params: 23,534,592 Non-trainable params: 53,120													
	Start processing date Zac Efron Zac Efron_0.jpg 126P.Right_index_finger.BMF 2022-05-09-22:50:51.138896: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:1851 None of the MLTR Optimi													
	deep featu (2. 2048) (10. [0.1773266	0.00					0.13	40392 455092 55892 0		.05244951] .80267316] 80267316]				
	Random Convolution of deep features (ADYO.)													
	[0.00899971 0.01799742 4.14890822 0.26711783 0.80267316 1.60534632]													
\$	Mannu 🍝	Pythin Pis	Mages	III (6	Strick	elle Dysteres	Cureste	O 191111	chesses CM Terrorio	at Control	*			

Case 4-2

Case 4-3

Case 5-1

```
    man - Burnelika - This Preparation by -
                                                                                                                                                                                                                                                                                   Frank - Signature - Encodingentary
           IN conve blocks 3 bn (BatchNormall (None, 7, 7, 2048)
                        conv6_block3_add (Add)
                                                                                                                                                                                                                                                                                 conv6_block2_out[8][6]
.
                        global_average_posting2d (Slobe Imone, 2068)
                        Total parame: 23,587,712
                        Trainable paramet 23,534,592
                        Non-treinable peramu: 53,320
                          Start processing data ....
                        Jessics Alba
                        $15_F_Right_index_finger_BMP
                          GOND PRICESPES
                         [8.66827361 8.66878696 8: ... 8.88366761 8.16328196 8.81866886]]
                        [0.00615482 0.2526642 0.01399829 ... 0.08344761 0.16320196 0.81044854]
                          Random Convolution of deep features ...
                         [0.26697385 B.6393367 2.75633368 ... 0.17009717 1.13686666 1.62888188]
  B* Wassesson Consumous
                                                       * Python Flathages | III FOOD | Python Connects | Python III Included | Included | Included | Included | Included | Included |
```

Case 5-2

```
mancelable template . Person ...
   (4096.)
   us [0.26497385 0.5193267 2.75633148 ... 0.17009717 1.13684446 1.62088108]
co Jennica Alba
      matching process
      [0.05232857 0.13999171 1.02264976 ... 0.6043721 1.71275747 1.26955676]
      85.92988B465939DE
      [0.59365906 1.18611813 2.94786374 ... 0.66566688 1.39867006 2.63491259]
      T0.02291724 8.
                            1.52950191 ... 0.05320633 1.23897035 2.382734541
      55.85377787674965
      [0.14915297 0.29230374 1.76903379 ... 0.17857076 1.46012726 2.20597148]
      93.5379183817536
      [0.03068314 8.06136628 5.90776157 ... 8.47288373 1.83084178 1.82292726]
      85.71662379535995
      [8.07778A32 0.0597268c 2.408725A4 ... 0.27096814 1.76765689 2.45143962]
      [0.76297086 0.76811099 4.38808358 ... 0.88939952 0.78388093 1.210163 ]
      93,38587520097819
      T0.37672564 0.75345129 2.67622471 ... 0.45389555 1.23333395 0.657859431
      68.7968197436386
      [0.89222794 0.18445889 2.33694386 ... 0.18681362 3.85874453 5.86687565]
      59.87886786843739
      [8.01322721 8.02906968 4.89252296 ... 8.40666514 1.77010292 1.99771583]
      71.79332796967033
      [0.00349503 0.00942268 1.83865686 ... 0.31674704 1.09517568 0.92336319]
      25.70537480653745
      [8.11295865 0.21992682 2.28861514 ... 0.10284165 0.79500796 1.17864931]
```

Case 5-3

0

Test results

Nrepeats	accuracy
5	90.9677%
10	91.3548%
15	91.9929%
20	92.3271%
25	94.2580%
30	95.1612%

Conclusion

In this project, we have reviewed some of the latest research, which related to cancelable biometrics using deep learning.

Our system is composite of two biometrics face, fingerprint. These biometrics, in our system will be used cancelable templets, and it will help us to overcome the standard security and privacy problems of traditional biological systems and increase the security levels.

This project presented a cancelable-biometrics security system that depends on merging two biometrics for the same person based on the random convolution, our system will merge two encrypted and cancelable biomatrices which are the face and fingerprint per person. The encrypted biometrics will be saved in cancelable template. Therefore, an original template is distorted and encrypted to be stored in the database.

It can be seen that the project has achieved the main aims which increase the security level of authentication, and protection technology to ensure reliable identification of people.

0

Future work

In future work, we plan to explore the potential of deep learning to extract high-level representations from data. The system should be tested on a larger database with noisy samples to validate the robustness of the model.

THANKS!