NOM:

Exercice 1 : Soit $n, p \in \mathbb{N}$ vérifiant $p \leq n$ et $z \in \mathbb{C}$. Que vaut $\sum_{k=p}^{n} z^{k}$? Le démontrer.

Exercice 2: Soit f définie sur [a,b] et $c \in]a,b[$. On suppose f dérivable sur $[a,b] \setminus \{c\}$ et $\lim_{x \to c^-} f'(x) = \lim_{x \to c^+} f'(x) = l \in \mathbb{R}$. En général, f est-elle dérivable en c? Donner un exemple.

De même, si on suppose que f' n'a pas de limite en c, f peut-elle être dérivable en c? Donner un exemple.

Exercice 3 : Énoncer le théorème des accroissements finis.

Exercice 4 : Décomposer $\frac{X^3 - 1}{(X+1)X^2}$ en éléments simples.