	irse	UCA20D06J	Course	ARTIFICIAL INTELLIGENC	_	Course	Sayon .	D	37		Disci	inline	e Sp	ecifi	c Ele	ctive	e Co	urse	,		L	T	Р	С
Co	de	00/1202000	Name	AICH IOIAL III LELIOLIIO		Categor	у	_			,,,,,,	P	- OP			-	-	u. 00			4	0	4	6
	requisite ourses se Offeri	Nil ng Department	Computer Applic	Co-requisite Courses Nil Data Bo	ok / Codes/Standards	Prog Co Nil	gress	sive es	Nil															
Cours (CLR		ing Rationale	The purpose of I	earning this course is to,		Le	arni	ing		6			Pı	rogra	ım Le	earni	ng O	utco	mes	(PL	0)			
CLR-	1: Disc	over problems	that are agreeable to	solution by AI methods.	and a visit of	1	2	3	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-		•		agents that can solve general purpos	e problems				1			S					N 2			200000				
CLR-	3 : Disc	over appropria	te Al m <mark>ethods to</mark> solv	e a given problem		E	9			Ф	S	Related Disciplines	Page 1		adge									
CLR-	4: Perf	orm intellectua	l tas <mark>k as decisi</mark> on ma	king, problem solving, perception, und	derstanding	hinking (Bloom)	Proficiency (%)	Proficiency (%) Attainment (%)		Knowledge	Concepts	iscip	dge	9	Knowledge)ata		Skills	Skills			ō	
CLR-	5 : Forn	nalize a given _l	prob <mark>lem usin</mark> g differei	nt Al methods	Figure 1911	B) Gr						O po	wlec	pecialization		βL	Interpret Data	silis	gSk	š			Behavior	ing
CLR-	6 : Prov	vides adaptive i	lear <mark>ning</mark>		The same of	불	rofic	Itair		ntal K	o	elate	Kno	ecia	Utilize	deli	terp	ive Skills	Solving	cation	Skills		al Be	Learning
			-		and the last		P Pe	A be		nent	tion	F R	ural	Sp	o Ut	Mo		Jativ		nic		<u>s</u>		J BL
Cours (CLO		ing Outcomes	At the end of this	s course, learners will be able to:		Level of	Expected	Expected		Fundamer	Applicatio	Link with	Procedural Knowledge	Skills in	Ability to	Skills in Modeling	Analyze,	Investigat	Problem	Communi	Analytical	ICT Skills	Profession	Life Long
CLO-	1: Den	nonstrate funda	m <mark>ental un</mark> derstandin	g of the history of artificial intelligence	and its foundations	2		80		L	Н	Н	Н	Н	-		M	М	L	-	Н	2	0	-
CLO-		ly basic princip esentation, and		hat require problem solving, inference	e, perception, knowled	ge 3	85	80	À	L	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
CLO-	3 : Iden	tify systems wi uation of differe	th <mark>Artificial I</mark> ntelligenc ent a <mark>lgorithm</mark> s on a pi	e. roblem formalization	3	3	85	80		L	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
CLO-	4: Use	classical Artific	cial In <mark>telligenc</mark> e techn	iques, such as search algorithms,	11/2.4-	3	85	80		L	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
CLO-	5 : Abili	ity to apply Artii	ficial I <mark>ntelligence</mark> tech	niques for problem solving.		3	85	80		L	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
CLO-	6: Abii	lity to learn the	current <mark>Artificial In</mark> tell	igence techniques.		3	85	80		L	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
	ration nour)		24	24	24	ρ,	Ī		1	1	F	24								2	4			Y
S-1	Ĺ	Introduction to	Artificial Intelligence	Logical Reasoning-Introduction	Planning: designing search for data or so problems					Learning														
	SLO-2 History of Al- Al Techniques Knowledge Representation Forward search and search		backwa	Quantifying uncertainty Learning agents																				
0.0	SLO-1	Problem Solvi	ng with Al- Al models	Logical Agents: Knowledge based Agents	state-space search				Probability Theory: Uncertain Knowledge Classification of learning				ıg											
SLO-2 Data Acquisition and Learning The Wumpus World & Logic			Represent the currer goal state	nt state a	and		Axioms of probability Learning elements																	

0.3	SLO-1	Problem-Solving Process	Propositional logic	Problems to solve: Water Jug Problem	Bayes Theorem	Inductive Learning methods
S-3	SLO-2	Formulating Problems	Propositional logic: Syntax & Syntax grammar	State representation: Initial, operator, goal state	Bayes' Rules & uses	Learning decision tree
	SLO-1	Problem Types and Characteristics	Inference	Train travel problem	probabilistic Reasoning	Attribute based representation
S-4	SLO-2	Problem Analysis and Representation	Implication by inference Types of reasoning	State representation, initial	Uncertainty: Causes of uncertainty:	Choosing an attributes
			La43: program for Tic Tac Toe	Lah7: Program for building a magic		Lah 13: Drogram which domonstrate
_	SI O 2	possibilities involved in solving a water jug problem.	game played by Single player against automated Computer player.		Lab10: Program for solving A* shortest path algorithm.	Lab13: Program which demonstrate the precedence properties of operators in C language.
0.0	SLO-1	Agents- Examples of Agents	First-Order logic	partial-order planning	Probability	Decision tree learning
S-9	SLO-2	Types of agents	Syntax of First-Order logic	Basic representation Operator representation	Probability of occurrence\	Hypothesis Spaces
C 10	SLU-1		Basic elements of First order logic Reducing first-order inference	planning graphs	Conditional probability	Information theory
S-10		Heuristic Search Techniques	Quantifiers in First-order logic	Planning grann of teening	Probability occurrence for the problem	Information gain
C 11		BFS, Uniform Cost Search	Inference in first order logic and Generalized rules for FOL	Uses of planning graph	Bayesian networks	Explanation based learning
S-11	SI 0-2	Depth First search , Depth Limited search (DLS)	FOL inference rules for quantifier	Planning graph example	Types of Bayesian Network	Hypothesis
S-12		Iterative Deepening search algorithm	Forward chaining	Glabii bian algoriiiiii	Building model op Bayesian Network	Statistical Learning methods
	SLO-2	Iterative Deepening search for DFS	Properties of forward chaining	Using planning graphs for heuristics	Directed Acyclic Graph	Naïve Bayes
S 13- 16			game played by the amerent	Lab8: Program for building a magic square of Even number of Rows and columns.	Lab11: Program which demonstrates Best First Search.	Lab14:program to calculate factorial of a number
	SLO-1	Informed Search-Introduction	rasi conversion of lorward challing	planning and acting in the real world	Conditional probability	Instance base learning
S-17	SI O-2	General tree search: Evaluation function	Properties of forward chaining Examples for forward chaining	Basic Planning	Bayesian Network Graph	Neural Networks
0.40	SLU-1	General graph search: Evaluation function		Real world: JOB shop scheduling	Inferences in Bayesian networks	Reinforcement Learning
S-18		Generate and Test BFS	Properties of Backward chaining Examples for Backward chaining	Critical path method	Components of Bayesian Network	Elements of reinforce learning
5/2003/00/05/09/09	102000000000000000000000000000000000000	Generate and Test A* algorithm	Unification	Forward march	Temporal models	Reinforcement learning problem
S-19		Generate and Test AO* algorithm	Conditions for Unification & Unification algorithm	Backward march	Inference in temporal models	Agent environment interface
S-20	SLO-1	constraint satisfaction	Resolution for inference rule	Limited resources	Hidden Markov models	Steps for Reinforcement learning
6. 0			Steps for Resolution	Hierarchical Planning	HMM components	Problem solving methods for RL
S	SLO-1	Lab3: program to find out route	Lab6:program to implement Tower	Lab 9:program to implement five	Lab12:program to solve 8-Queens	Lab15:program to implement five

	U 000000 U 00 00 00 000	April 1997	19695 397 53 45 5993	V 34700X	
21-	distance between two cities	of Hanoi	House logic puzzle problem	problem	House logic puzzle problem
24	SLU-2		4 RV (18)		27.00 12

Learning Resources	Russel SandNorvig P, (2003), "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education

Learning A	ssessment						11 11					
	Disam's Lavel		Final Examination									
Level	Bloom's Level of Thinking	CLA - 1 (10%)		CLA - 2 (10%)		CLA -	3 (20%)	CLA -	4 (10%)#	(50% weightage)		
	Of Tilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level I	Understand	2070	20 /0	1370	1370	1376	10 /0	1370	13 /0	13 /6	13 /0	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze		20 /6	2076		2070	20 /0	2076	20 /0	20 /0	20 /0	
Level 3	Evaluate	10%	100/	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 3	Create	10 76	10 /0	1370	1376	1370	13 /0	1570	15 /6	13 /0	13 /0	
Total		10	0 %	10	% 0	10	0 %	10	0 %	100	0 %	

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.G.Muruganandam, Group Project Manager, HCL Technologies, Chennai	Dr. S. Gopinathan, Professor, University of Madras, Chennai	Dr.B.Rebecca Jeyavadhanam, SRMIST
Mr.M. Hemachandar, Tech Lead, Wipro Limited, Chennai		Dr. R. Jayashree, SRM IST