電子回路:第4回 交流回路

基礎工学部情報科学科 粟野 皓光 awano@ist.osaka-u.ac.jp

RL交流回路(再掲)

回路方程式: $L\frac{di}{dt} + Ri = E_m \sin \varpi t$

(Step1)複素数表示に変換:

$$L \cdot j\varpi I + RI = E_m(\cos 0 + j \cdot \sin 0) = E_m$$

I: 電流i(t)の複素数表示

(Step2)代数的に解く:

$$I = \frac{E_m}{j\varpi L + R} = \frac{E_m}{\varpi^2 L^2 + R^2} (R - j\varpi L)$$

(Step1)の式 $L \cdot j\varpi I + RI = E_m$ は $(j\varpi L + R)I = E_m$ と書き換えられるこれは、インダクタの抵抗を $j\varpi L$ とみなせば、直流回路解析と同じ

つまり、複素変換してから直流回路と同じように解けば良い

この様な解き方を記号法と呼ぶ

- ・アメリカの電気工学者Charles Proteus Steinmetzが考案
- ・微分方程式を介することなく交流回路解析が出来るため 現在の標準的な解き方になっている

交流回路における素子特性一覧

	瞬時値表示	複素数表示
交流電圧源 (1	$v(t) = V_m \sin(\omega t + \theta)$ $i(t) = I_m \sin(\omega t + \theta)$ θ : 初期位相	$V = V_m e^{j\theta}$ $I = I_m e^{j\theta}$
抵抗 $i, I \rightarrow R$		V = RI
インダクタ $i,I \rightarrow L$	v, V $v(t) = L \frac{di(t)}{dt}$	V = jϖLI 高周波:インピーダンス高 直流:導線
$+ \nu \gamma > 0$ $i, I \rightarrow \downarrow$	$i(t) = C \frac{dv(t)}{dt}$ $\left(v(t) = \frac{1}{C} \int i(t) dt\right)$	$V=rac{1}{j\varpi C}I$ 高周波:導線 直流:抵抗無限大

インピーダンス

インピーダンス

線形素子(抵抗・インダクタ・キャパシタ)に交流電圧v(t)(複素数表示:V)

を加えた時に流れる電流をi(t)(複素数表示:I)とすると

$$Z, Y$$
 $Z = \frac{V}{I}$ をインピーダンス, $Y = \frac{I}{V}$ をアドミタンスと呼ぶ

線形素子から 成る回路

直列接続

 $V = (Z_1 + Z_2)I$

から合成インピーダンスZは

$$Z = Z_1 + Z_2$$

となる

並列接続

 $I = I_1 + I_2$ であり、インピーダンスの 定義から $V = I_1Z_1, V = I_2Z_2$ なので、

$$I = \left(\frac{1}{Z_1} + \frac{1}{Z_2}\right)V$$

よって合成インピーダンスは

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2}$$

合成インピーダンスの計算例

電源の角周波数はωとする

$$Z = j\varpi L + \frac{1}{\frac{1}{R} + j\varpi C} = j\varpi L + \frac{R}{1 + j\varpi CR}$$

$$= j\varpi L + \frac{R(1 - j\varpi CR)}{1 + (\varpi CR)^2}$$

$$= \frac{R}{1 + (\varpi CR)^2} + j\left(\varpi L - \frac{\varpi CR^2}{1 + (\varpi CR)^2}\right)$$

RLC直列回路

交流電圧源Eの角 周波数はωとする

□ 回路方程式

$$\left(R+j\varpi L+rac{1}{j\varpi C}
ight)I=E$$
 $Iについて解くと R-j\left(\varpi L-rac{1}{2}
ight)$

$$I = \frac{1}{R + j\left(\varpi L - \frac{1}{\varpi C}\right)}E = \frac{R - j\left(\varpi L - \frac{1}{\varpi C}\right)}{R^2 + \left(\varpi L - \frac{1}{\varpi C}\right)^2}E$$

□ 電流の大きさ

$$|I| = \frac{E}{R^2 + \left(\varpi L - \frac{1}{\varpi C}\right)^2} \sqrt{R^2 + \left(\varpi L - \frac{1}{\varpi C}\right)^2}$$

$$=\frac{E}{\sqrt{R^2+\left(\varpi L-\frac{1}{\varpi C}\right)^2}}$$

$$arpi L - rac{1}{arpi C} = \mathbf{0}$$
の時,つまり $arpi = \sqrt{1/LC}$ の時に最大値 E/R をとる(共振周波数)

□ 電流の位相

$$\theta = \tan^{-1} \left(-\frac{\varpi L - \frac{1}{\varpi C}}{R} \right)$$

・
$$\varpi L - \frac{1}{\varpi C} > 0 \Leftrightarrow \varpi > \sqrt{1/LC}$$
 : 電流は電圧より位相が遅れる インダクタが支配的

・
$$\boldsymbol{\varpi}L - \frac{1}{\boldsymbol{\varpi}C} = \mathbf{0} \Leftrightarrow \boldsymbol{\varpi} = \sqrt{1/LC}$$
 : 電流と電圧は同相

・
$$\omega L - \frac{1}{\omega C} < 0 \Leftrightarrow \omega < \sqrt{1/LC}$$
:
電流は電圧より位相が進む
キャパシタが支配的

複素表現を用いた交流回路解析

インダクタに流れる電流iを求めよ

交流電圧源 E_1 , E_2 の角周波数はともに σ とする

閉路電流法により

$$\square RI_1 + j\varpi L(I_1 - I_2) - E_1 = 0$$

$$\square RI_2 - j\varpi L(I_1 - I_2) + E_2 = 0$$

行列表示すると...

$$\begin{pmatrix} R + j\varpi L & -j\varpi L \\ -j\varpi L & R + j\varpi L \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} E_1 \\ -E_2 \end{pmatrix}$$

クラメルの公式を使うと

$$I_{1} = \frac{\begin{vmatrix} E_{1} & -j\varpi L \\ -E_{2} & R+j\varpi L \end{vmatrix}}{\begin{vmatrix} R+j\varpi L & -j\varpi L \\ -j\varpi L & R+j\varpi L \end{vmatrix}} = \frac{E_{1}(R+j\varpi L)-j\varpi L E_{2}}{R^{2}+2j\varpi L R}$$

$$I_2 = rac{ig| R + j arpi L \quad E_1 \ ig|}{ig| R + j arpi L \quad -E_2 ig|} = rac{-E_2(R + j arpi L) + j arpi L E_1}{R^2 + 2j arpi L R}$$

インダクタに流れる電流は

$$I_1 - I_2 = \frac{E_1(R + j\varpi L) - j\varpi L E_2 + E_2(R + j\varpi L) - j\varpi L E_1}{R^2 + 2j\varpi L R}$$
$$= \frac{E_1 + E_2}{R + 2j\varpi L}$$

交流回路における諸定理(1/2)

テブナンの定理・ノートンの定理・重ね合わせの理は交流回路でも適用可能

テブナンの定理を用いた別解

Step1: 開放電圧を求める

図の様に電流をおくと

$$2RI + E_2 = E_1$$

$$\Leftrightarrow I = \frac{E_1 - E_2}{2R}$$

よって, 開放電圧は

$$E_o = RI + E_2 = \frac{E_1 + E_2}{2}$$

Step2: 等価抵抗を求める

これは明らかに $R_o = \frac{R}{2}$

Step3: 等価回路を描く

よってコイルに流れる電流は

$$I = \frac{E_o}{R_o + j\omega L} = \frac{\frac{E_1 + E_2}{2}}{\frac{R}{2} + j\omega L}$$
$$= \frac{E_1 + E_2}{R + 2j\omega L}$$

電圧源を取り除く=0Vにする=短絡 電流源を取り除く=0Aにする=開放

交流回路における諸定理(2/2)

重ね合わせの理を用いた別解

Step1: 片方の電圧源を除去 した回路を解析

合成インピーダンスは

$$R + \frac{1}{\frac{1}{j\omega L} + \frac{1}{R}} = R + \frac{j\omega LR}{R + j\omega L}$$

なので、電源を流れる電流は

$$I_1 = \frac{E_1}{R + \frac{j\omega LR}{R + j\omega L}}$$

この電流が抵抗とインダクタで分流 されるので、インダクタに流れる電流は

$$I' = \frac{R}{R + j\omega L} I$$

$$= \frac{R}{R + j\omega L} \frac{E_1}{R + \frac{j\omega LR}{R + j\omega L}}$$

$$= \frac{RE_1}{R^2 + 2j\omega LR} = \frac{E_1}{R + 2j\omega L}$$

Step2: もう片方の電圧源を除去した 回路を解析

Step1の結果で E_1 を E_2 と入れ替えれば良い

$$I^{\prime\prime} = \frac{E_2}{R + 2j\omega L}$$

Step3: 重ね合わせる

$$I = I' + I'' = \frac{E_1 + E_2}{R + 2j\omega L}$$

ブリッジ回路 (1/2)

 \square 図中の Z_5 に流れる電流Iを求めたい $(Z_i:$ 複素インピーダンス)

テブナンの定理で等価回路に変換

(1) E₀の導出

(2) Z₀の導出

左の回路で分圧の法則からaの電位は $rac{Z_4}{Z_2+Z_4}E$

$$\ddagger \frac{Z_4}{Z_2 + Z_4} E$$

同様にbの電位は $\frac{Z_3}{Z_1+Z_3}E$ なので

$$E_0 = \left(\frac{Z_3}{Z_1 + Z_3} - \frac{Z_4}{Z_2 + Z_4}\right) E$$

「 Z_1 と Z_3 の並列」と「 Z_2 と Z_4 の並列」が直列 になっていると考えるとZoは

$$Z_0 = \frac{1}{\frac{1}{Z_1} + \frac{1}{Z_3}} + \frac{1}{\frac{1}{Z_2} + \frac{1}{Z_4}}$$
$$= \frac{Z_1 Z_3}{Z_1 + Z_3} + \frac{Z_2 Z_4}{Z_2 + Z_4}$$

ブリッジ回路 (2/2)

以上から、 Z_5 に流れる電流Iは

$$\begin{split} I &= \frac{E_0}{Z_0 + Z_5} = \frac{\left(\frac{Z_3}{Z_1 + Z_3} - \frac{Z_4}{Z_2 + Z_4}\right) E}{\frac{Z_1 Z_3}{Z_1 + Z_3} + \frac{Z_2 Z_4}{Z_2 + Z_4} + Z_5} \\ &= \frac{\left(Z_3 (Z_2 + Z_4) - Z_4 (Z_1 + Z_3)\right) E}{Z_1 Z_3 (Z_2 + Z_4) + Z_2 Z_4 (Z_1 + Z_3) + Z_5 (Z_1 + Z_3) (Z_2 + Z_4)} \\ &= \frac{(Z_2 Z_3 - Z_4 Z_1) E}{S_0 + Z_5 S_1} \end{split}$$

- $S_0 = Z_1 Z_2 Z_3 + Z_2 Z_3 Z_4 + Z_3 Z_4 Z_1 + Z_4 Z_1 Z_2$
- $S_1 = Z_1Z_2 + Z_2Z_3 + Z_3Z_4 + Z_4Z_1$

ブリッジの平衡条件 -

 $Z_2Z_3 = Z_4Z_1$ の時にI = 0となる. これをブリッジの平衡条件と呼ぶ

平衡条件を利用したインピーダンス測定

右の回路でブリッジが平衡している(電流計が0を示している)とき, LとRを求めよ. 電源の周波数は100/2π [Hz]とする.

- $Z_1 = 20$
- $Z_2 = 12 + j \cdot 100 \cdot 240 \cdot 10^{-3} = 12 + j \cdot 24$
- $Z_3 = 50$
- $Z_4 = R + j \cdot 100 \cdot L$

平衡条件から $20(R+j\cdot 100\cdot L)=50(12+j\cdot 24)$

実部・虚部を等しいと置くと ・ R=30 [Ω] ・ L=0.6 [H]

