· Uma definição geral de um metal é que este conduz eletricidade.
De certo modo, a razão para isso prende-se ao facto de que existem
eletroes moviveis nesses materiais.
· Nos próximos capítulos, estaremos preocupados com a questão do
porque os eletrões são moveis em alguns materiais, mas não noutros,
apesar de ambos conterem e
Por enquanto, tomamos como dado que existem eletrões e apstariames
de entender as suas propriedades.
TP usado para o calculo das condutividade
Modelo de Drude - e nos melais - térmica e elétrica nos metais!
de Boltzmann
· Paul Drude entendeu que poderia aplicar a teoria cinética de gases ideais
para entender o movimento dos e nos metais. Considerou, portanto,
os <u>eletrões</u> como sendo gases ideais. Esta teoria foi inovadora,
fornecendo um conhecimento inicial de condução metálica.
· Foram assumidas algumas definições / regras para o movimento dos
eletroes:
(1) 4 Os eletrões têm um tempo médio entre chaques (scattering
time), T, o qual depende da densidade e da energia média.
de
(2) A probabilidade de choque em $dt e \frac{dt}{\tau}$, o qual depende
da intensidade do choque!
(3) Quando há um choque, assume-se que o eletrão retorna ao
momento p=0 (e depois recomeça). (Quando há um choque, o e pára,
o que é estranho)→€
(4) Le Entre chaques, os eletroes, que são partículas de carga "-e",
respondem a campos elétricos e magnéticos aplicados externamente,
ou seja obedem ao eletromagnetismo / à Lei de Lorentz.
· lenergia cinética
® + Obviamente, é incorreto pensar que todas as partículas têm T= @ depois de
CADERNO um chaque, sendo isso um defeito de aproximação.

As primeiras três so	posições correspondem as da teoria cinética
dos gases ideais.	
	as uma generalização lógica que tem em conta
	das moléculas no gas, os eletrões estão
•	respondem a campos eletromagnéticos.
· Considerando um ele	trão com momento po no tempo t, qual será
	land us tomas tidt?
- momonis que so	4 quando colide com um obstaculo!
Ex Ex	riste uma probabilidade t de que ele choque e
	momento zero. Casa não atinja o momento zero
· ·	qual terá probalididade (1- dt)), o eletrão vai
•	lesmente acelerar conforme ditado pela equação
	177
	movimento: $\vec{F} = \frac{dP}{dt}$ Força de Lorentz
Tomboudo - a la Journe	
	os obtém-se o valor méclio do momento no
instante t + dt:	
p (truc) =	$= \left(1 - \frac{dt}{T}\right) \left[\hat{p}(t) + \hat{F} \cdot dt\right] + 0 \cdot \frac{dt}{T}$
	<u>†</u>
(*) Escrito como se fosse	Daqui teremos que: (rearranjando)
apenas o momento linear	
mas sabemos que se	$\frac{d\vec{p}}{dt} = \vec{F} - \vec{p} (eq. do movimento)$
trata do valor médio	at C
do momento linear!	
Na verdade, sendo os	, ande a força F é apenas a Força de Lorentz
choques algo probabilistico,	
todas as quantidades/variáveis	$\vec{F} = -e \cdot (\vec{E} + \vec{v} \times \vec{B})$
devem ser tomades como	Lo (= à carga do protão (>0) daí termo
valores médios ao invés	que colocar o "-"!)
de valores exatos!	
	Rodemos pensar no termo de choque - È como
apenas uma força "de	e arrasto", exercida no e- pela colisão.
→	•
"draa	force"

CADERNO INTELIGENTE®

★ Segundo a Lei de Ohm, a corrente (ou velocidade) é proporcional ao C.E. (ou força), a que não devia acontecer. No entanto, Drude defende esta proporcionalidade pelo existência dos chaques.
4 Note que, na auséncia de qualquer campo aplicado externamente, a solução para esta equação diferencial resume-se a um momento em
•
decaimento exponencial: $\vec{p}(t) = \vec{p_0} \cdot e^{-\frac{t}{\tau}}$
momento inicial:
que é o que devemos esperar para partículas que perdem momento
la colisão. Isto explica-se pela terceira lei, segundo a qual se conclui
que, quando houver um choque, ele pararia, o que neste caso faz
000 o sentido já que não há nenhuma força externa aplicada.
J
□ Considerando agora a situação em que é apenas aplicado um
Campo Elétrico (Ē≠© mas B=0). A nossa equação do movimento
ricaria:
$\frac{d\vec{p}}{dt} = -e \cdot \vec{E} - \vec{p}$
No caso estacionário, onde de = 0, teremos um momento médio dos
e proporcional ao C.E. e ao tempo de choque:
$m_e \vec{v} = \vec{p} = -e.\tau.\vec{E}$
, onde me é a massa do eletrão e va sua velocidade.
Se existir uma densidade de n eletrões no metal, cada um com
carga -e, e todos a mover a uma velocidade v, então a corrente
elétrica (mais corretamente chamada de densidade de corrente elétrica, j)
e dada por: velocidade tempo de chaque
$\vec{j} = -e \cdot \vec{n} \cdot \vec{v} = e^2 \cdot \vec{c} \cdot \vec{n} \cdot \vec{E}$
dens de corrente carga me n massa do e-
densidade de e-livres -> depende do material!!
Por cutras palavras, tendo em conta que a condutividade de um
netal, definida na expressão = 6. E, se obtém por:
eq. que preve $\sigma = e^2 \cdot \overline{L} \cdot n$ (*) $\Lambda \rightarrow Em n$ apenas se tem em conta
condutividade) me os e de valência / e livres!!!
Assim, medindo a condutividade do metal (e tendo como variáveis
previamente conhecidas a me e a carga de um e-), podemos obter c
alor do produto entre <u>T</u> e n!
© CADERNO

→ Considerando que é aplicado um Campo Elétrico e um Campo Magnético (É + 0 e B + 0), teremos a seguinte equação do movimento: $d\vec{p} = -e(\vec{E} + v \times \vec{B}) - \vec{p}$ No caso estacionário $(\frac{d\vec{p}}{dt} = \hat{\omega})$, e usando a expressões $\vec{p} = m \cdot \vec{v}$ e = n.e.v, obtemos a sequinte equação para a corrente no estado estac.: $0 = -e.\vec{E} + \vec{j} \times \vec{B} + m \cdot \vec{j} \Leftrightarrow \vec{E} = \left(\frac{1}{\text{n.e}}, \vec{j} \times \vec{B} + m \cdot \vec{j}\right)$ Define-se, agera, uma matriz (3×3) conhecida por resistividade (inverso da condutividade), , que relaciona o vetor corrente com o vetor do Campo Elétrico: E= poi de tal forma que: $\rho_{XX} = \rho_{YY} = \rho_{ZZ} = m_0$ $n.e^2.T$ e se considerarmos um Campo Magnético orientado segundo \(\hat{\mathcal{E}}\) (\(\hat{B} = B.\hat{e}_z\), então : poxy = -pyx = B Estes termos da resistividade são conhecidos como a resistividade de Hall, de onde retiramos que, quando um C.M. é aplicado L a uma corrente elétrica, conseguimos detetar/medir uma tensão perpendicular a ambos. > Efeito de Hall Essa tensão é conhecida por Tensão de Hall, VH, proporcional à intensidade de C.M. (B) e inversamente proporcional à densidade de e (n), isto pelo menos segundo a teoria de Drude! Jexperiência de Hall Fisicamente, temos: corrente inicial (sem efeito do C.M.) *1 > devido ao C.M., os evão "curvar-se" e acumular-se numa das extremidades

Daqui vamos saber o n (basta aplicar um B qualquer e, já sabendo o valor de e, basta apenas medir pxy). característico do material e dos e-Define-se como coeficiente de Hall, RH, como sendo: RH = pyx o qual, na Teoria de Drude, é dada por : RH = -1 Utilizando o valor da densidade de e- no metal, n, obtido pelo Efeito de Hall e utilizando a expressão da condutividade do metal, consequimos descolorir o valor de T (normalmente T=10-14s para a majoria dos metais a uma temp. ambjente): medido! $\sigma = e^2 \cdot T \cdot n \Rightarrow T = 6 \cdot me$ constante 4 obtido no Efeito de Hall · Mais tarde, Drude decide também calcular a condutividade termica, K, devido aos e livres usando a teoria cinética de Boltzmann. ₩ → Em qualquer experiência, existivá também uma certa quantidade de condutividade térmica fruto de vibrações estruturais do material (mais conhecida por condutividade térmica de fonces). No entanto, para a majoria dos metais, a condutividade térmica deve-se principalmente do movimento dos e e não das vibrações. Obtemos: K = 4 N. KB.T Apesar de ainda conter este parâmetro desconhecido, trata-se do mesmo que apareceu na (ver subcapítulo 3.2) condutividade · elétrica (falada anteriormente) L) (+ Vantagens e Desvantagens do modelo de Drude)

Successes of Drude theory:

- Wiedemann–Franz ratio $\kappa/(\sigma T)$ (ratio of thermal conductivity to electrical conductivity, known as the Lorenz number) comes out close to right for most materials
- Many other transport properties predicted correctly (for example, conductivity at finite frequency)
- Hall coefficient measurement of the density seems reasonable for many metals.

Failures of Drude theory:

- Hall coefficient frequently is measured to have the wrong sign, indicating a charge carrier with charge opposite to that of the electron.
- There is no 3kB/2 heat capacity per particle measured for electrons in metals. In fact, in most metals we measure only a vibrational (Debye) specific heat, plus a very small term linear in T at low temperatures. This then makes the Peltier and Seebeck coefficients come out wrong by a factor of 100.