

MODELING EMPLOYEE LIFE TIME VALUE (ELTV)

Dr Jay B. Simha^{1,2}

¹Abiba Systems, ²RACE

Dr Shinu Abhi RACE, REVA University

Human Capital Management

60% to 70% is the Human Capital Cost

Can we Optimise Employee Cost?

Can we build High Performing Team at optimal Cost?

Motivation for Research

Money Ball in HR?

Is it possible to build a High Performing

Team at

Optimal Cost?

Strategic Human Resource Management

Role of CHRO

Develop Talent Strategy and systems to enable Sustainable Growth.

Question

Are we losing key talent?

Are we providing career development opportunities? Are we rewarding employees competitively?

- What is the turnover trend? Where are the retention Insight
 - hotspots?
 - What is the skill loss from the turnover?
 - · What is the cost of turnover?

- What skills and job experiences produce high performance?
- Are there adequate crossteam, cross-functional experiences?
- · Is top talent groomed for leadership positions?

- How is our compensation compared to the market?
- Are we rewarding high performance?
- How did compensation affect employee retention historically?

Action

Identify at-risk key talent for retention.

Identify development and training opportunities for employee development.

Offer competitive compensation packages for key retention roles

Implementation Challenges

- Data Scattered through multiple systems
- No single source of truth, many metrics
- Management by spreadsheet
- Inconsistent business processes

Business Challenges

No accurate view of workforce profile

Lack of visibility into the effectiveness of HR programs

Poor alignment of talent management strategy with corporate strategy

Time wasted gathering data to manage and report

Employee Data

havioura

m

Tenure

Projects

Over time

Years since last promotion

Total working hours

Percent Salary Hike

Performance Rating

<u>~</u> J

Job Satisfaction

Work life balance

No of companies worked

Tenure in each company

Net Promoter Score

Age

Marital Status

Education

Gender

Distance from home

Compensation and

Benefits

Literature Review

Authors	Description	Techniques	Results
Pasha R. (2016)	ELTV model	Heuristics	Operational Framework
Bednarska, M. A. (2014)	Attrition model	Logistic regression	Attrition prediction
Frye et.al (2018)	Attrition model	Random Forest	Attrition Prediction
Simha et.al (2018)	Employee Performance	SOM/FIS	Performance recommendation
Lukic, R. (2015)	Cost/Revenue	Business Intelligence	Profitability computation

Conceptual Model and Performance Matrix

Exploratory Data Analysis

Data Preparation and Business Rules

Dataset

- Approx. 1800 Employees
- Attriters Vs. Active: 270 (~18%)

Rules

- Only employees with at least one year of tenure
- Three different segments
 - Segment 1: Executives
 - Segment 2: Mid Management
 - Segment 3: Senior Management
- Different segments have different attrition rates.
- Combining them will diffuse the heterogeneity

Sampling

- 70/30, 60/40 and 50/50 (Training/Testing)
- 50/50 data set is used for final modeling

	Active	Attrite	Attrition %
Segment 1	744	233	24
Segment 2	610	175	22
Segment 3	99	9	8

Experiments – 5 Stages

Employee Cost and Revenue

Attrition Propensity

ELTV

Performance Score

Recommendation

Rule Based

Employee Cost

Acquisition cost Salary and Benefits

Employee RevenueApportioned

ML Model

Demographic, Behavioral Psychographic Attributes αί Χ ρί Χ λί

αi = Attrition probability derived from a predictive model for the human capital i ρi = Expected revenue for the human capital i and

pi = Cost or compensation for the human capital i Performance score through the organization's appraisal system.

Four grid Model recommendation system
ELTV score

Attrition Propensity for Three segments

Segment 1 - Executives				
	Accuracy	TP Rate	Coverage	
Naïve Bayes	0.91616	0.74051	1	
Logistic regression	0.78528	1	0.10256	
Decision tree	0.90798	1	0.61538	
Random forests	0.98978	1	0.95726	
Support Vector Machi	0.99796	1	0.99145	
Neural networks	1	1	1	

Segment 3 - Senior Management				
	Accuracy	TP Rate	Coverage	
Naïve Bayes	0.12963	0.07843	1	
Logistic regression	0.92593	0	0	
Decision tree	0.92593	0	0	
Random forests	0.98148	1	0.75	
Support Vector Machi	0.98148	1	0.75	
Neural networks	1	1	1	

Segment 2 - Mid Management				
Accuracy	TP Rate	Coverage		
0.73469	0.30579	0.97368		
0.89796	1	0.07895		
0.9621	1	0.65789		
0.99417	1	0.94737		
1	1	1		
1	1	1		
	0.73469 0.89796 0.9621 0.99417	Accuracy TP Rate 0.73469 0.30579 0.89796 1 0.9621 1 0.99417 1		

Results and Recommendation

	ELTV		
Performance	Low	High	Total
0	25	90	115
1	6	6	12
2	20	60	80
3	48	318	366
4	12	100	112
Grand Total	111	574	685

	ELTV		
Performance	Low	High	Total
0	25	90	115
1	6	6	12
2	20	60	80
3	48	318	366
4	12	100	112
Grand Total	111	574	685

Segment 1

Segment 2

	ELTV		
Performance	Low	High	Total
0	7	5	12
1	1	5	6
2	1	17	18
3	0	55	55
4	0	17	17
Grand Total	9	99	108

Overall, 25% of the workforce has low performance, Low ELTV and High cost.

Segment 3

Conclusion

- ELTV can be the single metric in ELCA.
- **ELTV** predicts the future value of an individual for multiple decisions.
- **ELTV** model appears non linear in the reference study.
- Neural networks perform excellent on the data used for the research
- 25% of the work force scores Low ELTV/Low performance, who can be re-looked for replacement.
- ELTV can be easily incorporated into ELCA.