VOLUME I PERFORMANCE FLIGHT TESTING

ANNEX 6B NACA 1135

EQUATIONS, TABLES, and CHARTS for COMPRESSIBLE FLOW

FOR

SUPERSONIC AERODYNAMICS

19970116 082

Current as of JANUARY 1991

USAF TEST PILOT SCHOOL EDWARDS AFB CA

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

REPORT 1135

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

By AMES RESEARCH STAFF

Ames Aeronautical Laboratory Moffett Field, Calif.

National Advisory Committee for Aeronautics

Headquarters, 1724 F Street NW, Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act approved March 2, 1929, and to 17 by act approved May 25, 1948. The members are appointed by the President, and serve as such without compensation.

JEROME C. HUNSAKER, Sc. D., Massachusetts Institute of Technology, Chairman

DETLEY W. BRONK, PH. D., President, Rockefeller Institute for Medical Research, Vice Chairman

HON. JOSEPH P. ADAMS, member, Civil Aeronautics Board. ALLEN V. ASTIN, Ph. D., Director, National Bureau of Standards. LEONARD CARMICHAEL, Ph. D., Secretary, Smithsonian Institution.

LAURENCE C. CRAIGIE, Lieutenant General, United States Air Force, Deputy Chief of Staff (Development).

JAMES H. DOOLITTLE, Sc. D., Vice President, Shell Oil Co.

LLOYD HARRISON, Rear Admiral, United States Navy, Deputy and Assistant Chief of the Bureau of Aeronautics.

R. M. HAZEN, B. S., Director of Engineering, Allison Division, General Motors Corp.

WILLIAM LITTLEWOOD, M. E., Vice President-Engineering, American Airlines, Inc.

HON. ROBERT B. MURRAY, JR., Under Secretary of Commerce for Transportation.

RALPH A. OFSTIE, Vice Admiral, United States Navy, Deputy Chief of Naval Operations (Air).

DONALD L. PUTT, Lieutenant General, United States Air Force, Commander, Air Research and Development Command.

ARTHUR E. RAYMOND, Sc. D., Vice President-Engineering, Douglas Aircraft Co., Inc.

FRANCIS W. REICHELDERFER, Sc. D., Chief, United States Weather Bureau.

THEODORE P. WRIGHT, Sc. D., Vice President for Research. Cornell University.

HUGH L. DRYDEN, PH. D., Director JOHN W. CROWLEY, JR., B. S., Associate Director for Research JOHN F. VICTORY, LL. D., Executive Secretary EDWARD H. CHAMBERLIN, Executive Officer

HENRY J. E. REID, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va. SMITH J. DEFRANCE, D. Eng., Director, Ames Aeronautical Laboratory, Moffett Field, Calif. EDWARD R. SHARP, Sc. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio

LANGLEY AERONAUTICAL LABORATORY, Langley Field, Va.

AMES AERONAUTICAL LABORATORY. Moffett Field, Calif.

LEWIS FLIGHT PROPULSION LABORATORY, Cleveland Airport, Cleveland, Ohio

Conduct, under unified control, for all agencies, of scientific research on the fundamental problems of flight

CONTENTS

,	Page
SUMMARY	1
INTRODUCTION	1
SYMBOLS AND NOTATION	1
FUNDAMENTAL RELATIONS	2
THERMODYNAMICS	2
Thermal equations of state	2
Caloric equation of state	2
Energy relations	3
Specific heats	3
Enthalpy	3
Entropy	3
CONTINUOUS ONE-DIMENSIONAL FLOW.	3
Basic equations and definitions	3
Integrated forms of energy equation.	4
Pressure-density relation	4
Bernoulli's equation	4
Relations between local and free-stream conditions	4
Useful ratios	4
Stream-tube-area relations	
SHOCK WAVES	6
NORMAL SHOCK WAVES	6
	6
Basic equations	6
Useful relations	7
OBLIQUE SHOCK WAVES	8
Basic equations.	8
Connection with normal shock.	9
Useful relations.	9
Shock polar	11
SUPERSONIC FLOW PAST WEDGES AND CONES	12
FLOW PAST WEDGES	12
FLOW PAST CONES	12
PRANDTL-MEYER EXPANSION	14
IMPERFECT-GAS EFFECTS	14
THERMODYNAMICS	14
Equations of state	14
Specific heats	15
Continuous One-Dimensional Flow.	15
Basic equations and definitions	15
Integrated forms of energy equation	15
Pressure and density relations	16
Stream-tube-area relations	16
NORMAL SHOCK WAVES	17
OBLIQUE SHOCK WAVES	17
PRANDTL-MEYER EXPANSION.	18
APPENDIX A—VISCOSITY AND THERMODYNAMIC	-0
CONSTANTS FOR AIR	19
APPENDIX B—REYNOLDS NUMBER	19
APPENDIX C—PRESSURE CONVERSION FACTORS	19
REFERENCES	20
TABLES	20
OII + DOO	-0

REPORT 1135

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW 1

By Ames Research Staff

SUMMARY

This report, which is a revision and extension of NACA TN 1428, presents a compilation of equations, tables, and charts useful in the analysis of high-speed flow of a compressible fluid. The equations provide relations for continuous one-dimensional flow, normal and oblique shock waves, and Prandtl-Meyer expansions for both perfect and imperfect gases. The tables present useful dimensionless ratios for continuous one-dimensional flow and for normal shock waves as functions of Mach number for air considered as a perfect gas. One series of charts presents the characteristics of the flow of air (considered a perfect gas) for oblique shock waves and for cones in a supersonic air stream. A second series shows the effects of caloric imperfections on continuous one-dimensional flow and on the flow through normal and oblique shock waves.

INTRODUCTION

The practical analysis of compressible flow involves frequent application of a few basic results. A convenient compilation of equations, tables, and charts embodying these results is therefore of great assistance in both research and design. The present report makes one of the first such compilations (ref. 1) more readily available in a revised and extended form. The revisions include a complete rewriting of the lists of equations, as well as the correction of certain typographical errors which appeared in the earlier work. The extensions are primarily in the directions dictated by increasing flight speeds, that is, to higher Mach numbers and to higher temperatures with the accompanying gaseous imperfections.

Compilations similar to those of reference 1 have been given in other publications, as, for example, references 2 through 6. These references have been utilized in extending the tables and charts to higher values of the Mach number. The extension to imperfect gases is based on the relations presented in references 7 and 8.

SYMBOLS AND NOTATION PRIMARY SYMBOLS

speed of sound cross-sectional area of stream tube or channel

C_N	normal-force coefficient for cones, $\frac{\text{normal force}}{q_{\infty}S_b}$
<i>c</i> ,	specific heat at constant pressure $q_{\infty}S_b$
C _r	specific heat at constant volume
h	enthalpy per unit mass, $u+pv$
ĩ	characteristic reference length
14	Mada and V
M	Mach number, $\frac{V}{a}$
p	pressure ²
q	dynamic pressure, $\rho V^2/2$
q	heat added per unit mass
R	gas constant
R	Reynolds number, $\frac{\rho V l}{\mu}$
S_b	base area of cone
8	entropy per unit mass
T	absolute temperature ²
\boldsymbol{u}	internal energy per unit mass
v	specific volume, $\frac{1}{\rho}$
u, v	velocity components parallel and perpendicular respectively, to free-stream flow direction
$ ilde{m{u}},~ ilde{m{v}}$	velocity components normal and tangential, respectively, to oblique shock wave
1.	speed of flow
V_m	maximum speed obtainable by expanding to zero absolute temperature
$oldsymbol{w}$	external work performed per unit mass
α	angle of attack
β	$\sqrt{ M^2-1 }$
γ	ratio of specific heats, $\frac{c_p}{c_t}$
δ	angle of flow deflection across an oblique shock wave
θ	shock-wave angle measured from upstream flow direction
θ	molecular vibrational-energy constant
μ	Mach angle, $\sin^{-1}\frac{1}{M}$
μ	absolute viscosity
ν	Prandtl-Meyer angle (angle through which a supersonic stream is turned to expand from $M=1$ to $M>1$)

Supersedes NACA TN 1428. "Notes and Tables for Use in the Analysis of Supersonic Flow" by the Staff of the Ames 1- by 3-foot Supersonic Wind-Tunnel Section, 1947. When used without subscripts, p. p. and T denote static pressure, static density, and static temperature, respectively

ξ	pressure ratio across a shock wave, $\frac{p_2}{p_1}$
ρ	mass density 2

σ	semivertex angle of cone
	SUBSCRIPTS
c c	free-stream conditions
1	conditions just upstream of a shock wave
2	conditions just downstream of a shock wave
t	total conditions (i. e., conditions that would
	exist if the gas were brought to rest isen-
	tropically)
*	critical conditions (i. e., conditions where the
	local speed is equal to the local speed of sound)
c	conditions on the surface of a cone
r	reference (or datum) values
perf	quantity evaluated for a gas which is both ther-
•	mally and calorically perfect
therm	perf quantity evaluated for a gas which is thermally
*********	perfect but calorically imperfect
() _v	derivative evaluated at constant pressure
()s	derivative evaluated at constant entropy
$()_{\tau}$	derivative evaluated at constant temperature
() _r	derivative evaluated at constant specific volume
()rev	quantity evaluated over a reversible path
(// 60	•

NOTATION

The notation in brackets [] after many of the equations signifies that the equation is valid only within certain limitations. For example:

perfl

means that the equation is restricted to a gas which is both thermally and calorically perfect. (By "thermally perfect" it is meant that the gas obeys the thermal equation of state $p = \rho RT$. By "calorically perfect" it is meant that the specific heats c_p and c_s are constant.)

[therm perf]

means that the only restriction on the gas is that it must be thermally perfect. Equations so marked may be used for calorically imperfect gases. (They are, of course, also valid for completely perfect gases.)

[isen]

means that the flow process must take place isentropically. Equations so marked may not be applied to the flow across a shock wave.

[adiab]

means that the only restriction on the flow process is that it must take place adiabatically-that is, without heat transfer. (Such a flow process may or may not be isentropic depending on whether it is or is not reversible.) Equations so marked may be applied to the flow across a shock wave.

An equation without notation has no restrictions beyond those basic to the study of thermodynamics and/or inviscid compressible flow.

FUNDAMENTAL RELATIONS

THERMODYNAMICS

THERMAL EQUATIONS OF STATE

A thermal equation of state is an equation of the form

$$p = p(r, T) \tag{}$$

Several of the more commonly used thermal equations state are the following:

Equation for thermally perfect gas

$$p = \frac{RT}{r} = \rho RT \text{ [therm perf]}$$

$$\frac{dp}{p} - \frac{d\rho}{\rho} - \frac{dT}{T} = 0 \text{ [therm perf]}$$
 (

Equations for thermally imperfect gas

Van der Waals' equation (ref. 9)

$$p = \frac{RT}{v - b} - \frac{a}{v^2} \tag{}$$

where a is the intermolecular-force constant and b the molecular-size constant (see ref. 9, pp. 390 et seq. fe numerical values).

Berthelot's equation (ref. 7)

$$p = \frac{RT}{v - b} - \frac{c}{v^2T}$$

where b is the molecular-size constant and c is the intermolecular-force constant (see ref. 7 for numeric values).

Beattie-Bridgeman equation (ref. 10)

$$p = \frac{RT}{v^2} \left(1 - \frac{c}{vT^3} \right) \left[v + B_0 \left(1 - \frac{b}{v} \right) \right] - \frac{A_0}{v^2} \left(1 - \frac{a}{v} \right)$$
 (

where a, A_0 , b, B_0 , and c are constants for a given g (see ref. 10, p. 270 for numerical values).

CALORIC EQUATION OF STATE

A caloric equation of state is an equation of the form

$$u = u(v, T) \tag{}$$

It can be shown that

$$du = c_v dT + \left[T \left(\frac{\partial p}{\partial T} \right)_v - p \right] dv \tag{8}$$

$$du = c_x dT$$
 [therm perf] (8)

If the gas is calorically perfect—that is, the specifiare constant-equation (8b) can be integrated to obt

$$u=c,T+u$$
, [perf]

² When used without subscripts, p. p. and T denote static pressure, static density, and static temperature, respectively.

ENERGY RELATIONS

'he law of conservation of energy gives

$$dq = du + dw \quad \text{(first law of thermodynamics)}$$

$$= du + p \ dr = dh - r \ dp$$
(10a)

SPECIFIC HEATS

The specific heats at constant pressure and constant volume are defined by

$$c_{p} = \left(\frac{\partial q}{\partial T}\right)_{p} = \left(\frac{\partial h}{\partial T}\right)_{p} \tag{11}$$

$$c_{r} = \left(\frac{\partial q}{\partial T}\right) = \left(\frac{\partial u}{\partial T}\right)_{r} \tag{12}$$

It can be shown that

$$c_{p}-c_{r}=\left[\left(\frac{\partial u}{\partial r}\right)_{T}+p\right]\left(\frac{\partial r}{\partial T}\right)_{p}=-T\frac{\left(\frac{\partial p}{\partial T}\right)_{r}^{2}}{\left(\frac{\partial p}{\partial r}\right)_{T}}$$
(13a)

$$c_{r}-c_{r}=R$$
 [therm perf] (13b)

The ratio of specific heats is defined as

$$\gamma \equiv \frac{c_p}{c_r} \tag{14}$$

According to the kinetic theory of gases, for many gases over a moderate range of temperature,

$$\gamma = \frac{n+2}{n} \tag{15}$$

where n is the number of effective degrees of freedom of the gas molecule. Useful relations for thermally perfect gases are

$$c_p = \frac{dh}{dT} = c_r + R = \frac{\gamma R}{\gamma - 1}$$
 [therm perf] (16)

$$c_r = \frac{du}{dT} = c_p - R = \frac{R}{\gamma - 1} \quad \text{[therm perf]}$$
 (17)

ENTHALPY

The enthalpy of a gas is defined by

$$h \equiv u + pr \tag{18}$$

It follows that

$$dh = du + p dv + r dp = dq + r dp$$

$$= \left[c_r + r \left(\frac{\partial p}{\partial T} \right)_r \right] dT + \left[r \left(\frac{\partial p}{\partial r} \right)_T + T \left(\frac{\partial p}{\partial T} \right)_r \right] dr \quad (19a)$$

$$dh = (c_r + R)dT = c_p dT$$
 [therm perf] (19b)

$$h = (c_r + R)T + u_r = c_n T + u_r \text{ [perf]}$$
 (20)

ENTROPY

The entropy is defined by

$$ds = \left(\frac{dq}{T}\right)...$$
 (21)

It follows that

$$ds = \left(\frac{du + dw}{T}\right)_{ret} = \left(\frac{du + p dv}{T}\right)_{ret} = c_t \frac{dT}{T} + \left(\frac{\partial p}{\partial T}\right)_t dv \qquad (22a)$$

$$ds = c_{\tau} \frac{dT}{T} + R \frac{dr}{r}$$

$$= c_{\tau} \frac{dT}{T} - R \frac{d\rho}{\rho}$$

$$= c_{\tau} \frac{dT}{T} - R \frac{d\rho}{\rho}$$

$$= c_{\tau} \frac{dp}{p} - c_{\tau} \frac{d\rho}{\rho}$$
(22b)

$$s-s_{r}=c_{r} \ln \frac{T}{T_{r}}-R \ln \frac{\rho}{\rho_{r}}$$

$$=c_{r} \ln \frac{T}{T_{r}}-R \ln \frac{p}{p_{r}}$$

$$=c_{r} \ln \frac{p}{p_{r}}-c_{r} \ln \frac{\rho}{\rho_{r}}$$
[perf] (23a)

$$s - s_r = c_r \ln \frac{T/T_r}{(\rho/\rho_r)^{\gamma - 1}}$$

$$= c_p \ln \frac{T/T_r}{(p/p_r)^{(\gamma - 1)/\gamma}}$$

$$= c_r \ln \frac{p/p_r}{(\rho/\rho_r)^{\gamma}}$$
[perf] (23b)

$$\frac{p}{\rho^{\gamma}} = \frac{p_{r}}{\rho_{r}^{\gamma}} e^{(s-s_{r})/c_{s}} \quad [perf]$$
 (24)

The second law of thermodynamics requires that

$$s-s_r \ge 0 \quad [adiab] \tag{25}$$

CONTINUOUS ONE-DIMENSIONAL FLOW

BASIC EQUATIONS AND DEFINITIONS

The basic equations for the continuous flow of an inviscid non-heat-conducting gas along a streamline are as follows:

Thermal equation of state

$$\frac{p}{q} = RT$$
 [therm perf] (26)

Dynamic equation

$$\frac{1}{\rho} dp + V dV = 0 \tag{27}$$

Energy equation

$$\frac{du+d\left(\frac{p}{\rho}\right)+VdV=0}{dh+VdV=0}$$
 [abiab] (28a)

$$\frac{c_p dT + V dV = 0}{\frac{\gamma}{\gamma - 1} d\left(\frac{p}{\rho}\right) + V dV = 0}$$
 [adiab, therm perf] (28b)

Additional useful variables are defined as follows: Speed of sound

$$a = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)} = \sqrt{\gamma \left(\frac{\partial p}{\partial \rho}\right)_T}$$
 (29a)

$$= \sqrt{\gamma \frac{p}{\rho}} = \sqrt{\gamma RT} \quad \text{[therm perf]}$$
 (29b)

 \approx 49.0 \sqrt{T} ft/sec for air if T is in degrees Rankine (=degrees Fahrenheit+459.6) (29c)

Mach number

$$M = \frac{V}{a} \tag{30}$$

Dynamic pressure

$$q \equiv \frac{1}{2} \rho V^2 \tag{31a}$$

$$= \frac{\gamma}{2} p M^2 \quad [\text{therm perf}] \tag{31b}$$

INTEGRATED FORMS OF ENERGY EQUATION

The energy equation (28) can be integrated at once to obtain

$$h + \frac{V^2}{2} = \text{constant} = h_t \quad [\text{adiab}]$$
 (32a)

$$c_{p}T + \frac{V^{2}}{2} = c_{p}T_{t}$$

$$\frac{\gamma}{\gamma - 1} \left(\frac{p}{\rho}\right) + \frac{V^{2}}{2} = \frac{\gamma}{\gamma - 1} \left(\frac{p_{t}}{\rho_{t}}\right)$$

$$\frac{a^{2}}{\gamma - 1} + \frac{V^{2}}{2} = \frac{a_{t}^{2}}{\gamma - 1}$$

$$\frac{a^{2}}{\gamma - 1} + \frac{V^{2}}{2} = \frac{1}{2} \left(\frac{\gamma + 1}{\gamma - 1}\right) a_{*}^{2}$$

$$\frac{a^{2}}{\gamma - 1} + \frac{V^{2}}{2} = \frac{V_{m}^{2}}{2}$$
[adiab. perf] (32b)

The three reference speeds a_i , a_* , and V_m are related by

$$\left(\frac{a_t}{a_*}\right)^2 = \frac{\gamma + 1}{2}$$

$$\left(\frac{V_m}{a_*}\right)^2 = \frac{\gamma + 1}{\gamma - 1}$$
[adiab, perf]
$$\left(\frac{V_m}{a_*}\right)^2 = \frac{2}{\gamma - 1}$$
(33)

PRESSURE-DENSITY RELATION

From equations (27) and (28b) it follows that

$$\frac{p}{\rho^{\gamma}} = \text{constant} = \frac{p_t}{\rho_t^{\gamma}}$$
 [isen, perf]

from which

$$\frac{p}{p_t} = \left(\frac{\rho}{\rho_t}\right)^{\gamma} = \left(\frac{T}{T_t}\right)^{\frac{\gamma}{\gamma-1}} = \left(\frac{a}{a_t}\right)^{\frac{2\gamma}{\gamma-1}} \quad \text{[isen, perf]}$$
 (35)

BERNOULLI'S EQUATION

Combination of equations (32b) and (35) gives Bernoulli's equation for compressible flow in the form

$$\frac{\gamma}{\gamma - 1} \left(\frac{p_t}{\rho_t} \right) \left(\frac{p}{p_t} \right)^{\frac{\gamma - 1}{\gamma}} + \frac{V^2}{2} = \frac{\gamma}{\gamma - 1} \left(\frac{p_t}{\rho_t} \right) \quad \text{[isen, perf]} \quad (36)$$

RELATIONS BETWEEN LOCAL AND FREE-STREAM CONDITIONS

With the aid of the foregoing equations it can be shown that

$$\frac{T}{T_{\infty}} = 1 - \frac{\gamma - 1}{2} M_{\infty}^{2} \left[\left(\frac{V}{V_{\infty}} \right)^{2} - 1 \right] \qquad \text{[adiab, perf]} \quad (37)$$

$$\frac{p}{p_{\infty}} = \left\{ 1 - \frac{\gamma - 1}{2} M_{\infty}^{2} \left[\left(\frac{V}{V_{\infty}} \right)^{2} - 1 \right] \right\}^{\frac{\gamma}{\gamma - 1}} \quad \text{[isen, perf]} \quad (38)$$

$$\frac{\rho}{\rho_{\infty}} = \left\{ 1 - \frac{\gamma - 1}{2} M_{\infty}^{2} \left[\left(\frac{V}{V_{\infty}} \right)^{2} - 1 \right] \right\}^{\frac{1}{\gamma - 1}} \quad \text{[isen perf]} \quad (39)$$

In small-disturbance theory, where it is assumed $(V-V_{\infty})\ll V_{\infty}$, these equations take on the simplified form

$$\frac{T}{T_{-}} \cong 1 - (\gamma - 1) M_{\infty}^{2} \frac{V - V_{\infty}}{V_{\infty}} \quad [adiab, perf] \qquad (40)$$

$$\frac{p}{p_{\infty}} \cong 1 - \gamma M_{\infty}^{2} \frac{V - V_{\infty}}{V_{\infty}} \quad \text{[isen, perf]}$$
 (41)

$$\frac{\rho}{\rho_{-}} \cong 1 - M_{\infty}^2 \frac{V - V_{\infty}}{V_{\infty}} \quad \text{[isen, perf]}$$
 (42)

USEFUL RATIOS

On the basis of the above results, useful relations can be derived expressing various dimensionless ratios as functions of a single parameter. These relations are given below grouped according to which of the various parameter $(M, V/a_*, V/a_t, \text{ or } V/V_m)$ is used as the independent variable

In each case the second form of the equation applies for $\gamma = \frac{1}{5}$

$$\frac{T}{T} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1} = \left(1 + \frac{M^2}{5}\right)^{-1} \text{ [adiab, perf]}$$
 (43)

$$\frac{p}{p_1} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\frac{\gamma}{\gamma - 1}} = \left(1 + \frac{M^2}{5}\right)^{-\frac{\gamma}{2}} \text{ [isen, perf]}$$

$$\frac{\rho}{\rho_1} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-\frac{1}{\gamma - 1}} = \left(1 + \frac{M^2}{5}\right)^{-\frac{5}{2}} \text{ [isen, perf]}$$
 (45)

$$\frac{a}{a_t} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\frac{1}{2}} = \left(1 + \frac{M^2}{5}\right)^{-\frac{1}{2}} \text{ [adiab, perf] (46)}$$

$$\frac{q}{p} = \frac{\gamma}{2} M^2 = \frac{7}{10} M^2 \quad \text{[therm perf]}$$
 (47)

$$\frac{q}{p_t} = \frac{\gamma}{2} M^2 \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{-\frac{\gamma}{\gamma - 1}}$$

$$= \frac{7}{10} M^2 \left(1 + \frac{M^2}{5} \right)^{-\frac{7}{2}} \text{ [isen, perf]} \quad (48)$$

$$\left(\frac{V}{a_{t}}\right)^{2} = M^{2} \left(1 + \frac{\gamma - 1}{2}M^{2}\right)^{-1}$$

$$=M^2\left(1+\frac{M^2}{5}\right)^{-1}$$
 [adiab, perf] (49)

$$\left(\frac{V}{a_{*}}\right)^{2} = \frac{\gamma + 1}{2} M^{2} \left(1 + \frac{\gamma - 1}{2} M^{2}\right)^{-1}$$

$$= \frac{6M^{2}}{5} \left(1 + \frac{M^{2}}{5}\right)^{-1} \quad [adiab, perf] \quad (50)$$

$$\left(\frac{V}{V_m}\right)^2 = \frac{\gamma - 1}{2} M^2 \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-1}$$

$$= \frac{M^2}{5} \left(1 + \frac{M^2}{5}\right)^{-1} \quad [adiab, perf] \quad (51)$$

Parameter $\frac{V}{a_+}$.—

$$\frac{T}{T_i} = 1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_*}\right)^2 = 1 - \frac{1}{6} \left(\frac{V}{a_*}\right)^2$$
 [adiab, perf] (52)

$$\frac{p}{p_{i}} = \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_{*}}\right)^{2}\right]^{\frac{\gamma}{\gamma - 1}}$$

$$= \left[1 - \frac{1}{6} \left(\frac{V}{a_{*}}\right)^{2}\right]^{\frac{\gamma}{2}} \quad \text{[isen, perf]} \quad (53)$$

$$\frac{\rho}{\rho_t} = \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_*}\right)^2\right]^{\frac{1}{\gamma - 1}}$$

$$= \left[1 - \frac{1}{6} \left(\frac{V}{a_*}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (54)$$

$$\frac{a}{a_{i}} = \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_{*}}\right)^{2}\right]^{\frac{1}{2}}$$

$$= \left[1 - \frac{1}{6} \left(\frac{V}{a_{*}}\right)^{2}\right]^{\frac{1}{2}} \quad \text{[adiab, perfl} \quad (55)$$

$$\frac{q}{p} = \frac{\gamma}{\gamma + 1} \left(\frac{V}{a_{\star}}\right)^{2} \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_{\star}}\right)^{2}\right]^{-1}$$

$$= \frac{7}{12} \left(\frac{V}{a_{\star}}\right)^{2} \left[1 - \frac{1}{6} \left(\frac{V}{a_{\star}}\right)^{2}\right]^{-1} \quad [adiab, perf] \quad (56)$$

$$\frac{q}{p_t} = \frac{\gamma}{\gamma + 1} \left(\frac{V}{a_{\star}}\right)^2 \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_{\star}}\right)^2\right]^{\frac{1}{\gamma - 1}}$$

$$= \frac{7}{12} \left(\frac{V}{a} \right)^2 \left[1 - \frac{1}{6} \left(\frac{V}{a} \right)^2 \right]^{\frac{5}{2}}$$
 [isen, perf] (57)

$$M^2 {=} \frac{2}{\gamma + 1} \left(\frac{V}{a_{\, \bullet}} \right)^2 \left[1 - \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_{\, \bullet}} \right)^2 \right]^{-1}$$

$$=\frac{5}{6}\left(\frac{V}{a_{\star}}\right)^{2}\left[1-\frac{1}{6}\left(\frac{V}{a_{\star}}\right)^{2}\right]^{-1} \quad [adiab, perf] \quad (58)$$

$$\left(\frac{V}{a_t}\right)^2 = \frac{2}{\gamma + 1} \left(\frac{V}{a_*}\right)^2 = \frac{5}{6} \left(\frac{V}{a_*}\right)^2 \quad [adiab, perf] \tag{59}$$

$$\left(\frac{V}{V_m}\right)^2 = \frac{\gamma - 1}{\gamma + 1} \left(\frac{V}{a_*}\right)^2 = \frac{1}{6} \left(\frac{V}{a_*}\right)^2 \quad [adiab, perf] \tag{60}$$

Parameter $\frac{V}{a}$.

$$\frac{T}{T_t} = 1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_t}\right)^2 = 1 - \frac{1}{5} \left(\frac{V}{a_t}\right)^2 \quad [adiab, perf] \tag{61}$$

$$\frac{p}{p_{t}} = \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_{t}}\right)^{2}\right]^{\frac{\gamma}{\gamma - 1}}$$

$$= \left[1 - \frac{1}{5} \left(\frac{V}{a_{t}}\right)^{2}\right]^{\frac{\gamma}{2}} \quad \text{[isen, perf]} \quad (62)$$

$$\frac{\rho}{\rho_t} = \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_t}\right)^2\right]^{\frac{1}{\gamma - 1}}$$

$$= \left[1 - \frac{1}{5} \left(\frac{V}{a_t}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (63)$$

$$\frac{a}{a_{t}} = \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_{t}}\right)^{2}\right]^{\frac{1}{2}}$$

$$= \left[1 - \frac{1}{5} \left(\frac{V}{a_{t}}\right)^{2}\right]^{\frac{1}{2}} \quad [adiab, perf] \quad (64)$$

$$\frac{q}{p} = \frac{\gamma}{2} \left(\frac{V}{a_i}\right)^2 \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_i}\right)^2\right]^{-1}$$

$$= \frac{7}{10} \left(\frac{V}{a_i}\right)^2 \left[1 - \frac{1}{5} \left(\frac{V}{a_i}\right)^2\right]^{-1} \quad [adiab, perf] \quad (65)$$

$$\frac{q}{p_t} = \frac{\gamma}{2} \left(\frac{V}{a_t}\right)^2 \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_t}\right)^2\right]^{\frac{1}{\gamma - 1}}$$

$$= \frac{7}{10} \left(\frac{V}{a_t}\right)^2 \left[1 - \frac{1}{5} \left(\frac{V}{a_t}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (66)$$

$$M^{2} = \left(\frac{V}{a_{t}}\right)^{2} \left[1 - \frac{\gamma - 1}{2} \left(\frac{V}{a_{t}}\right)^{2}\right]^{-1}$$

$$= \left(\frac{V}{a_t}\right)^2 \left[1 - \frac{1}{5} \left(\frac{V}{a_t}\right)^2\right]^{-1} \quad [adiab, perf] \quad (67)$$

$$\left(\frac{V}{a_{\star}}\right)^{2} = \frac{\gamma + 1}{2} \left(\frac{V}{a_{t}}\right)^{2} = \frac{6}{5} \left(\frac{V}{a_{t}}\right)^{2} \quad [adiab, perf]$$
 (68)

$$\left(\frac{V}{V_m}\right)^2 = \frac{\gamma - 1}{2} \left(\frac{V}{a_t}\right)^2 = \frac{1}{5} \left(\frac{V}{a_t}\right)^2 \quad [adiab, perf] \tag{69}$$

Parameter $\frac{V}{V_{-}}$.—

$$\frac{T}{T} = 1 - \left(\frac{V}{V_m}\right)^2 \quad [\text{adiab, perf}] \tag{70}$$

$$\frac{p}{p_t} = \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{\gamma}{\gamma - 1}} = \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{\gamma}{2}} \quad \text{[isen, perf]} \quad (71)$$

$$\frac{\rho}{\rho_t} = \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{1}{\gamma - 1}} = \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (72)$$

$$\frac{a}{a_{I}} = \left[1 - \left(\frac{V}{V_{m}}\right)^{2}\right]^{\frac{1}{2}} \quad [adiab, perf]$$
 (73)

$$\begin{split} \frac{q}{p} &= \frac{\gamma}{\gamma - 1} \left(\frac{V}{V_m} \right)^2 \left[1 - \left(\frac{V}{V_m} \right)^2 \right]^{-1} \\ &= \frac{7}{2} \left(\frac{V}{V_m} \right)^2 \left[1 - \left(\frac{V}{V_m} \right)^2 \right]^{-1} \quad [adiab. perf] \quad (74) \end{split}$$

$$\frac{q}{p_t} = \frac{\gamma}{\gamma - 1} \left(\frac{V}{V_m}\right)^2 \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{1}{\gamma - 1}}$$

$$= \frac{7}{2} \left(\frac{V}{V_m}\right)^2 \left[1 - \left(\frac{V}{V_m}\right)^2\right]^{\frac{5}{2}} \quad \text{[isen, perf]} \quad (75)$$

$$M^{2} = \frac{2}{\gamma + 1} \left(\frac{V}{V_{m}}\right)^{2} \left[1 - \left(\frac{V}{V_{m}}\right)^{2}\right]^{-1}$$

$$= \frac{5}{6} \left(\frac{V}{V_{m}}\right)^{2} \left[1 - \left(\frac{V}{V_{m}}\right)^{2}\right]^{-1} \quad [adiab. perf] \quad (76)$$

$$\left(\frac{V}{a_t}\right)^2 = \frac{2}{\gamma - 1} \left(\frac{V}{V_m}\right)^2 = 5 \left(\frac{V}{V_m}\right)^2 \quad [adiab, perf]$$
 (77)

$$\left(\frac{V}{a_{\star}}\right)^{2} = \frac{\gamma + 1}{\gamma - 1} \left(\frac{V}{V_{m}}\right)^{2} = 6 \left(\frac{V}{V_{m}}\right)^{2} \quad [adiab, perf]$$
 (78)

Tables I and II list numerical values of the following ratios with Mach number M as the independent variable:

$$\frac{p}{p_t}, \frac{\rho}{\rho_t}, \frac{T}{T_t}, \frac{q}{p_t}, \frac{V}{a_*}$$

STREAM-TUBE-AREA RELATIONS

If it is assumed that the density and speed are uniform across any section of a given stream tube, then the equation of continuity is

$$\rho VA = \text{constant} = \rho_{\star} a_{\star} A_{\star} \tag{79}$$

By combining this and certain of the foregoing equations, the area ratio A_{\star}/A can be expressed as a function of any one of the four parameters used above. The final equations

$$\frac{A_{\star}}{A} = \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}} M \left(1 + \frac{\gamma - 1}{2} M^2\right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$= \frac{216}{125} M \left(1 + \frac{M^2}{5}\right)^{-3} \text{ [isen, perf]} (80)$$

$$\frac{A_{\star}}{A} = \left(\frac{\gamma+1}{2}\right)^{\frac{1}{\gamma-1}} \left(\frac{V}{a_{\star}}\right) \left[1 - \frac{\gamma-1}{\gamma+1} \left(\frac{V}{a_{\star}}\right)^{2}\right]^{\frac{1}{\gamma-1}} \\
= \left(\frac{6}{5}\right)^{\frac{5}{2}} \left(\frac{V}{a_{\star}}\right) \left[1 - \frac{1}{6} \left(\frac{V}{a_{\star}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen. perf]} \quad (\frac{A_{\star}}{A})^{\frac{\gamma+1}{2(\gamma-1)}} \left(\frac{V}{a_{\star}}\right) \left[1 - \frac{\gamma-1}{2} \left(\frac{V}{a_{\star}}\right)^{2}\right]^{\frac{1}{\gamma-1}} \\
= \frac{216}{125} \left(\frac{V}{a_{\star}}\right) \left[1 - \frac{1}{5} \left(\frac{V}{a_{\star}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen. perf]} \quad (82)^{\frac{1}{\gamma-1}} \\
= \frac{A_{\star}}{A} = \left(\frac{2}{\gamma-1}\right)^{\frac{1}{2}} \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}} \left(\frac{V}{V_{m}}\right) \left[1 - \left(\frac{V}{V_{m}}\right)^{2}\right]^{\frac{1}{\gamma-1}} \\
= 5^{\frac{1}{2}} \left(\frac{216}{125}\right) \left(\frac{V}{V_{\star}}\right) \left[1 - \left(\frac{V}{V_{\star}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen. perf]} \quad (83)^{\frac{1}{\gamma-1}} \\
= 5^{\frac{1}{2}} \left(\frac{216}{125}\right) \left(\frac{V}{V_{\star}}\right) \left[1 - \left(\frac{V}{V_{\star}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen. perf]} \quad (83)^{\frac{1}{\gamma-1}} \\
= 5^{\frac{1}{2}} \left(\frac{216}{125}\right) \left(\frac{V}{V_{\star}}\right) \left[1 - \left(\frac{V}{V_{\star}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen. perf]} \quad (83)^{\frac{1}{\gamma-1}} \\
= 5^{\frac{1}{2}} \left(\frac{216}{125}\right) \left(\frac{V}{V_{\star}}\right) \left[1 - \left(\frac{V}{V_{\star}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen. perf]} \quad (83)^{\frac{1}{\gamma-1}} \\
= 5^{\frac{1}{2}} \left(\frac{216}{125}\right) \left(\frac{V}{V_{\star}}\right) \left[1 - \left(\frac{V}{V_{\star}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen. perf]} \quad (83)^{\frac{1}{\gamma-1}} \\
= 5^{\frac{1}{2}} \left(\frac{216}{125}\right) \left(\frac{V}{V_{\star}}\right) \left[1 - \left(\frac{V}{V_{\star}}\right)^{2}\right]^{\frac{5}{2}} \quad \text{[isen. perf]} \quad (83)^{\frac{1}{\gamma-1}} \\
= 5^{\frac{1}{2}} \left(\frac{216}{125}\right) \left(\frac{V}{V_{\star}}\right) \left[1 - \left(\frac{V}{V_{\star}}\right)^{\frac{1}{\gamma-1}}\right] \left[1 - \left(\frac{V}{V_{$$

Numerical values of A_*/A as a function of M are given in tables I and II.

Equation (79) combined with equations (26), (29b), (45) and (46) can be employed to obtain the mass-flow rate pe unit area ρV along a stream tube as a function of Macl number, total temperature, and total pressure. Numerica values can be obtained conveniently from chart 1 where the variation with Mach number of the mass-flow rate per unit cross-sectional area is presented for various total temperatand a total pressure of 1 pound per square inch absolute.

SHOCK WAVES

NORMAL SHOCK WAVES

BASIC EQUATIONS

The previous relations for isentropic flow are valid or either side of a shock wave, but not across it, because at the shock wave the flow quantities have discontinuities. Jump

FIGURE 1.-Notation for normal shock wave.

conditions for a steady normal shock wave (fig. 1) resulting from requiring conservation of

$$\mathbf{mass:} \qquad \qquad \rho_1 u_1 = \rho_2 u_2 \tag{84}$$

momentum:
$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$$
 (8)

energy: 3
$$\frac{1}{2}u_1^2 + h_1 = \frac{1}{2}u_2^2 + h_2$$
 [adiab]

3 The actual relation for conservation of energy is $\rho_1 u_1 \left(\frac{1}{2} u_1^2 + h_1\right) = \rho_1 u_2 \left(\frac{1}{2} u_2^2 + h_1\right)$: reduces to the above form in view of equation (84).

$$\frac{\frac{1}{2} u_1^2 + c_p T_1 = \frac{1}{2} u_2^2 + c_p T_2}{\frac{1}{2} u_1^2 + \frac{\gamma}{\gamma - 1} \frac{p_1}{\rho_1} = \frac{1}{2} u_2^2 + \frac{\gamma}{\gamma - 1} \frac{p_2}{\rho_2}} \left\{ [adiab, perf] \right\} [adiab, perf] (86b)$$

$$\frac{1}{2} u_1^2 + \frac{1}{\gamma - 1} a_1^2 = \frac{1}{2} u_2^2 + \frac{1}{\gamma - 1} a_2^2 \right\}$$

together with the requirement that the entropy does not decrease:

$$\Delta s \equiv s_2 - s_1 \ge 0 \tag{87}$$

It follows immediately from the energy relation (86) that total enthalpy, total temperature, and total speed of sound are constant across the shock and hence (from the previous relations (33) for adiabatic flow) also the critical speed of sound and limiting speed:

$$h_{t_1} = h_{t_2} \quad [adiab]$$

$$T_{t_1} = T_{t_2}$$

$$a_{t_1} = a_{t_2}$$

$$a_{*_1} = a_{*_2}$$

$$[adiab, perf]$$

$$(88a)$$

$$(88b)$$

Combining equations (84) to (86) leads to Prandtl's

$$u_1 u_2 = a_*^2 = \frac{p_2 - p_1}{\rho_2 - \rho_1}$$
 [adiab, perf] (89)

which implies that the flow is supersonic ahead of the shock wave and subsonic behind (the reverse possibility is ruled out by the requirement of nondecreasing entropy), and to the Rankine-Hugoniot relations

$$\frac{p_2}{p_1} = \frac{(\gamma + 1) \ \rho_2 - (\gamma - 1) \ \rho_1}{(\gamma + 1) \ \rho_1 - (\gamma - 1) \ \rho_2} \quad [adiab, perf]$$
 (90)

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) \ p_2 + (\gamma - 1) \ p_1}{(\gamma + 1) \ p_1 + (\gamma - 1) \ p_2} \quad [adiab, perf]$$
 (91)

$$\frac{p_2 - p_1}{\rho_2 - \rho_1} = \gamma \frac{p_2 + p_1}{\rho_2 + \rho_1} \quad [adiab, perf]$$

$$(92)$$

USEFUL RELATIONS

Many relations for normal shock waves are conveniently expressed in terms of either upstream Mach number M_1 or the static-pressure ratio across the shock $\xi \equiv p_2/p_1$. The following relations apply to adiabatic flow of a completely perfect fluid. The last form of each equation holds for $\gamma = 7/5$.

trameter M_1 .—

$$\frac{p_2}{p_1} = \xi = \frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1} = \frac{7M_1^2 - 1}{6}$$
 (93)

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{u_1^2}{a_{\star}^2} = \frac{a_{\star}^2}{u_2^2} = \frac{(\gamma + 1) M_1^2}{(\gamma - 1) M_1^2 + 2} = \frac{6 M_1^2}{M_1^2 + 5}$$
(94)

$$\frac{T_{2}}{T_{1}} = \frac{a_{2}^{2}}{a_{1}^{2}} = \frac{[2\gamma M_{1}^{2} - (\gamma - 1)] [(\gamma - 1) M_{1}^{2} + 2]}{(\gamma + 1)^{2} M_{1}^{2}} \\
= \frac{(7M_{1}^{2} - 1) (M_{1}^{2} + 5)}{36 M_{2}^{2}} \quad (95)$$

$$M_2^2 = \frac{(\gamma - 1) M_1^2 + 2}{2\gamma M_1^2 - (\gamma - 1)} = \frac{M_1^2 + 5}{7 M_1^2 - 1}$$
 (96)

$$\frac{p_2}{p_{l_1}} = \frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1} \left[\frac{2}{(\gamma - 1) M_1^2 + 2} \right]^{\frac{\gamma}{\gamma - 1}} \\
= \frac{7 M_1^2 - 1}{6} \left(\frac{5}{M_1^2 + 5} \right)^{\frac{7}{2}}$$
(97)

$$\frac{p_2}{p_{12}} = \left[\frac{4\gamma M_1^2 - 2(\gamma - 1)}{(\gamma + 1)^2 M_1^2} \right]^{\frac{\gamma}{\gamma - 1}} = \left[\frac{5(7M_1^2 - 1)}{36M_1^2} \right]^{\frac{7}{2}}$$
(98)

$$\frac{p_{t_2}}{p_{t_1}} = \frac{\rho_{t_2}}{\rho_{t_1}} = e^{-\frac{\Delta t}{R}}$$

$$= \left[\frac{(\gamma + 1) M_1^2}{(\gamma - 1) M_1^2 + 2} \right]^{\frac{\gamma}{\gamma - 1}} \left[\frac{\gamma + 1}{2\gamma M_1^2 - (\gamma - 1)} \right]^{\frac{1}{\gamma - 1}}$$

$$= \left(\frac{6M_1^2}{M_1^2 + 5} \right)^{\frac{\gamma}{2}} \left(\frac{6}{7M_1^2 - 1} \right)^{\frac{5}{2}} \tag{99}$$

$$\frac{p_{i_2}}{p_1} = \left[\frac{(\gamma + 1) M_1^2}{2} \right]^{\frac{\gamma}{\gamma - 1}} \left[\frac{\gamma + 1}{2\gamma M_1^2 - (\gamma - 1)} \right]^{\frac{1}{\gamma - 1}} \\
= \left(\frac{6M_1^2}{5} \right)^{\frac{7}{2}} \left(\frac{6}{7M_1^2 - 1} \right)^{\frac{5}{2}} \quad (100)$$

(Rayleigh pitot formula)

$$\frac{\Delta s}{c_{\tau}} = (\gamma - 1) \frac{\Delta s}{R} = -(\gamma - 1) \ln \left(\frac{p_{t_2}}{p_{t_1}} \right)$$

$$= \ln \left[\frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1} \right] - \gamma \ln \left[\frac{(\gamma + 1)M_1^2}{(\gamma - 1)M_1^2 + 2} \right]$$

$$= \ln \left(\frac{7M_1^2 - 1}{6} \right) - \frac{7}{5} \ln \left(\frac{6M_1^2}{M_1^2 + 5} \right) \tag{101}$$

$$\frac{p_2 - p_1}{q_1} = \frac{4(M_1^2 - 1)}{(\gamma + 1)M_1^2} = \frac{5(M_1^2 - 1)}{3M_1^2}$$
(102)

Numerical values from equations (93), (94), (95), (96), (99), and (100) (with $\gamma = 7/5$) are given in table II.

For weak shock waves (M_1 only slightly greater than unity) the following series are useful:

$$\frac{p_{t_2}}{p_{t_1}} = 1 - \frac{2\gamma}{3(\gamma+1)^2} (M_1^2 - 1)^3 + \frac{2\gamma^2}{(\gamma+1)^3} (M_1^2 - 1)^4 + \cdots$$

$$= 1 - \frac{35}{216} (M_1^2 - 1)^3 + \frac{245}{864} (M_1^2 - 1)^4 + \cdots$$
(103)

$$\frac{\Delta s}{R} = \frac{1}{\gamma - 1} \frac{\Delta s}{c_*} = \frac{2\gamma}{3(\gamma + 1)^2} (M_1^2 - 1)^3 - \frac{2\gamma^2}{(\gamma + 1)^3} (M_1^2 - 1)^4 + \cdots$$

$$=\frac{35}{216}(M_1^2-1)^3-\frac{245}{864}(M_1^2-1)^4+\cdots \qquad (104)$$

Parameter $\xi \equiv p_2/p_1$.—

$$M_1^2 = \frac{(\gamma + 1)\xi + (\gamma - 1)}{2\gamma} = \frac{6\xi + 1}{7}$$
 (105)

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{(\gamma+1)\xi + (\gamma-1)}{(\gamma-1)\xi + (\gamma+1)} = \frac{6\xi + 1}{\xi + 6}$$
 (106)

$$\frac{T_2}{T_1} = \frac{a_2^2}{a_1^2} = \xi \frac{(\gamma - 1)\xi + (\gamma + 1)}{(\gamma + 1)\xi + (\gamma - 1)} = \xi \frac{\xi + 6}{6\xi + 1}$$
(107)

$$M_2^2 = \frac{(\gamma - 1)\xi + (\gamma + 1)}{2\gamma\xi} = \frac{\xi + 6}{7\xi}$$
 (108)

$$\frac{p_2}{p_{t_1}} = \xi \frac{p_1}{p_{t_1}} = \xi \left\{ \frac{4\gamma}{(\gamma+1)[(\gamma-1)\xi+(\gamma+1)]} \right\}^{\frac{\gamma}{\gamma-1}} = \xi \left[\frac{35}{6(\xi+6)} \right]^{\frac{1}{2}}$$
(109)

$$\frac{p_2}{p_{i_2}} = \xi \frac{p_1}{p_{i_2}} = \left\{ \frac{4\gamma\xi}{(\gamma+1)[(\gamma+1)\xi+(\gamma-1)]} \right\}^{\frac{\gamma}{\gamma-1}} = \left[\frac{35\xi}{6(6\xi+1)} \right]^{\frac{7}{2}}$$
(110)

$$\frac{p_{i_2}}{p_{i_1}} = \frac{\rho_{i_2}}{\rho_{i_1}} = e^{-\frac{\Delta s}{R}} = \xi^{-\frac{1}{\gamma - 1}} \left[\frac{(\gamma + 1)\xi + (\gamma - 1)}{(\gamma - 1)\xi + (\gamma + 1)} \right]^{\frac{\gamma}{\gamma - 1}}$$

$$= \left(\frac{1}{\xi}\right)^{\frac{5}{2}} \left(\frac{6\xi+1}{\xi+6}\right)^{\frac{7}{2}} \tag{111}$$

$$\frac{\Delta s}{c_{\bullet}} = (\gamma - 1) \frac{\Delta s}{R} = -(\gamma - 1) \ln \left(\frac{p_{i_2}}{p_{i_1}} \right) = \ln \xi -$$

$$\gamma \ln \left[\frac{(\gamma+1)\xi + (\gamma-1)}{(\gamma-1)\xi + (\gamma+1)} \right] = \ln \xi - \frac{7}{5} \ln \left(\frac{6\xi+1}{\xi+6} \right) \quad (112)$$

For weak shock waves (ξ only slightly greater than unity)

$$\frac{p_{i_2}}{p_{i_1}} = 1 - \frac{\gamma + 1}{12\gamma^2} (\xi - 1)^3 + \frac{\gamma + 1}{8\gamma^2} (\xi - 1)^4 + \cdots$$

$$= 1 - \frac{5}{49} (\xi - 1)^3 + \frac{15}{98} (\xi - 1)^4 + \cdots$$
(113)

$$\frac{\Delta s}{R} = \frac{1}{\gamma - 1} \frac{\Delta s}{c_s} = \frac{\gamma + 1}{12\gamma^2} (\xi - 1)^3 - \frac{\gamma + 1}{8\gamma^2} (\xi - 1)^4 + \cdots$$

$$= \frac{5}{49} (\xi - 1)^3 - \frac{15}{98} (\xi - 1)^4 + \cdots \tag{114}$$

In unsteady flow a normal shock wave acts at each instant as a steady shock. Hence all the above relations are valid across a moving normal shock wave if instantaneous velocities are measured relative to the shock.

OBLIQUE SHOCK WAVES

In general, a three-dimensional shock wave will be curved, and will separate two regions of nonuniform flow. However, the shock transition at each point takes place instantaneously, so that it is sufficient to consider an arbitrarily small neighborhood of the point. In such a neighborhood

FIGURE 2.- Notation for oblique shock wave.

the shock wave may be regarded as plane to any desiredegree of accuracy, and the flows on either side as uniform and parallel. Moreover, with the proper orientation of axes the flow is locally two-dimensional. Hence it is sufficient to consider a straight oblique shock wave in uniform parallel two-dimensional stream, as shown in figure 2

BASIC EQUATIONS

For a steady oblique shock wave, jump conditions resul from requiring conservation of

mass:
$$\rho_1 \bar{u}_1 = \rho_2 \bar{u}_2$$
 (115)

normal momentum:
$$p_1 + \rho_1 \tilde{u}_1^2 = p_2 + \rho_2 \tilde{u}_2^2$$
 (116)

tangential momentum:
$$\rho_1 \tilde{u}_1 \tilde{v}_1 = \rho_2 \tilde{u}_2 \tilde{v}_2$$

energy⁴:
$$\frac{1}{2} (\tilde{u}_1^2 + \tilde{v}_1^2) + h_1 = \frac{1}{2} (\tilde{u}_2^2 + \tilde{v}_2^2) + h_2 [adiab]$$
 (118)

$$\frac{1}{2} (\tilde{u}_{1}^{2} + \tilde{v}_{1}^{2}) + c_{p} T_{1} = \frac{1}{2} (\tilde{u}_{2}^{2} + \tilde{v}_{2}^{2}) + c_{p} T_{2}$$

$$\frac{1}{2} (\tilde{u}_{1}^{2} + \tilde{v}_{1}^{2}) + \frac{\gamma}{\gamma - 1} \frac{p_{1}}{\rho_{1}} = \frac{1}{2} (\tilde{u}_{2}^{2} + \tilde{v}_{2}^{2}) + \frac{\gamma}{\gamma - 1} \frac{p_{2}}{\rho_{2}}$$

$$\frac{1}{2} (\tilde{u}_{1}^{2} + \tilde{v}_{1}^{2}) + \frac{1}{\gamma - 1} a_{1}^{2} = \frac{1}{2} (\tilde{u}_{2}^{2} + \tilde{v}_{2}^{2}) + \frac{1}{\gamma - 1} a_{2}^{2}$$
(118b)

together with the requirement that the entropy does no decrease:

$$\Delta s \equiv s_2 - s_1 \ge 0 \tag{119}$$

Again it follows from the energy relation (118) that total enthalpy, total temperature, and total speed of sound ar constant across the shock and hence also the critical speed of sound and limiting speed:

$$h_{i_1} = h_{i_2} \quad [adiab]$$

$$T_{i_1} = T_{i_2}$$

$$\begin{vmatrix}
a_{t_1} = a_{t_2} \\
a_{*_1} = a_{*_2} \\
V = V
\end{vmatrix}$$

$$\begin{bmatrix}
a \text{diab}, \\
perf
\end{bmatrix}$$

⁴ Compare remark for normal shock waves, footnote on page 6.

CONNECTION WITH NORMAL SHOCK

comparison of equation (115) with (117) shows that angential velocity is constant across the shock wave:

$$\tilde{v}_1 = \tilde{v}_2 \quad [adiab] \tag{122}$$

so that the change in velocity is normal to the shock. It follows that

$$\frac{1}{2} \; \tilde{v}_1^2 = \frac{1}{2} \; \tilde{v}_2^2$$

so that the energy equation (118a) reduces to

$$\frac{1}{2}\,\tilde{u}_1^2 + h_1 = \frac{1}{2}\,\tilde{u}_2^2 + h_2 \quad [adiab] \tag{123}$$

Now equations (115), (116), and (123) involve only the component of velocity \tilde{u} normal to the shock, and are identical with equations (84), (85), and (86) for normal shock waves. Hence an oblique shock wave acts as a normal shock to the component of flow perpendicular to it, while the tangential component is unchanged. This is also clear physically from the "sweepback principle" that the oblique flow is reduced to the normal flow by a uniform translation of axes (Galilean transformation).

Because the speed of sound depends on the tangential velocity, Prandtl's relation differs from that for normal shock waves (see ref. 11, pp. 302-303):

$$\tilde{u}_1 \tilde{u}_2 = a_*^2 - \frac{\gamma - 1}{\gamma + 1} \tilde{v}^2$$
 [adiab, perf] (124)

where a_* and \tilde{v} can be evaluated on either side of the shock. The Rankine-Hugoniot relations are the same as for normal shock waves:

$$\frac{p_2}{p_1} = \frac{(\gamma+1)\rho_2 - (\gamma-1)\rho_1}{(\gamma+1)\rho_1 - (\gamma-1)\rho_2} \quad [adiab, perf]$$
 (125)

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)p_2 + (\gamma - 1)p_1}{(\gamma + 1)p_1 + (\gamma - 1)p_2} \quad [adiab, perf]$$
 (126)

$$\frac{p_2 - p_1}{\rho_2 - \rho_1} = \gamma \frac{p_2 + p_1}{\rho_2 + \rho_1} \quad [adiab, perf]$$
 (127)

USEFUL RELATIONS

Because an oblique shock wave acts as a normal shock to the flow perpendicular to it, the previous relations for normal shocks (except those for ratios of static to total pressures) apply to oblique shocks if M_1 and M_2 are replaced by their normal components M_1 sin θ and M_2 sin $(\theta - \delta)$. This gives most of the following relations; the remainder are derived from them by using the kinematic condition that the stream turns through an angle δ , together with the vious isentropic-flow relations.

meters M_1 and θ .—

$$\frac{p_2}{n} = \xi = \frac{2\gamma M_1^2 \sin^2\theta - (\gamma - 1)}{\gamma + 1} = \frac{7M_1^2 \sin^2\theta - 1}{6}$$
 (128)

$$\frac{\rho_2}{\rho_1} = \frac{\tilde{u}_1}{\tilde{u}_2} = \frac{(\gamma + 1)M_1^2 \sin^2 \theta}{(\gamma - 1)M_1^2 \sin^2 \theta + 2} = \frac{6M_1^2 \sin^2 \theta}{M_1^2 \sin^2 \theta + 5}$$
(129)

$$\frac{T_{2}}{T_{1}} = \frac{a_{2}^{2}}{a_{1}^{2}} = \frac{[2\gamma M_{1}^{2} \sin^{2}\theta - (\gamma - 1)][(\gamma - 1)M_{1}^{2} \sin^{2}\theta + 2]}{(\gamma + 1)^{2}M_{1}^{2} \sin^{2}\theta} \\
= \frac{(7M_{1}^{2} \sin^{2}\theta - 1)(M_{1}^{2} \sin^{2}\theta + 5)}{36M_{1}^{2} \sin^{2}\theta} \tag{130}$$

$$M_{2}^{2} \sin^{2}(\theta - \delta) = \frac{(\gamma - 1)M_{1}^{2} \sin^{2}\theta + 2}{2\gamma M_{1}^{2} \sin^{2}\theta - (\gamma - 1)} = \frac{M_{1}^{2} \sin^{2}\theta + 5}{7M_{1}^{2} \sin^{2}\theta - 1}$$
(131)

$$\begin{split} M_{2}^{2} &= \frac{(\gamma+1)^{2}M_{1}^{4}\sin^{2}\theta - 4(M_{1}^{2}\sin^{2}\theta - 1)(\gamma M_{1}^{2}\sin^{2}\theta + 1)}{[2\gamma M_{1}^{2}\sin^{2}\theta - (\gamma - 1)][(\gamma - 1)M_{1}^{2}\sin^{2}\theta + 2]} \\ &= \frac{36M_{1}^{4}\sin^{2}\theta - 5(M_{1}^{2}\sin^{2}\theta - 1)(7M_{1}^{2}\sin^{2}\theta + 5)}{(7M_{1}^{2}\sin^{2}\theta - 1)(M_{1}^{2}\sin^{2}\theta + 5)} \end{split} \tag{132}$$

$$\frac{\tilde{u}_2}{V_1} = \frac{(\gamma - 1)M_1^2 \sin^2\theta + 2}{(\gamma + 1)M_1^2 \sin^2\theta} \sin\theta = \frac{M_1^2 \sin^2\theta + 5}{6M_1^2 \sin^2\theta} \sin\theta$$
(133)

$$\frac{\tilde{r}_2}{V_1} = \frac{\tilde{r}_1}{V_1} = \cos \theta \tag{134}$$

$$\frac{u_2}{V_1} = 1 - \frac{2(M_1^2 \sin^2 \theta - 1)}{(\gamma + 1)M_1^2} = 1 - \frac{5(M_1^2 \sin^2 \theta - 1)}{6M_1^2}$$
(135)

$$\frac{v_2}{V_1} = \frac{2(M_1^2 \sin^2 \theta - 1)}{(\gamma + 1)M_1^2} \cot \theta = \frac{5(M_1^2 \sin^2 \theta - 1)}{6M_1^2} \cot \theta$$
(136)

$$\frac{{{V_2}^2}}{{{V_1}^2}} \!\! = \! 1 - 4\; \frac{{({M_1}^2\;{{\sin }^2}\theta - 1)(\gamma {M_1}^2\;{{\sin }^2}\theta + 1)}}{{(\gamma + 1)^2{M_1}^4\;{{\sin }^2}\theta }}$$

$$=1-\frac{5}{36}\frac{(M_1^2\sin^2\theta-1)(7M_1^2\sin^2\theta+5)}{M_1^4\sin^2\theta}$$
 (137)

$$\cot \delta = \tan \theta \left[\frac{(\gamma + 1)M_1^2}{2(M_1^2 \sin^2 \theta - 1)} - 1 \right]$$

$$= \tan \theta \left[\frac{6M_1^2}{5(M_1^2 \sin^2 \theta - 1)} - 1 \right]$$
(138)

$$\tan \delta = \frac{2 \cot \theta (M_1^2 \sin^2 \theta - 1)}{2 + M_1^2 (\gamma + 1 - 2 \sin^2 \theta)} = \frac{5 \cot \theta (M_1^2 \sin^2 \theta - 1)}{5 + M_1^2 (6 - 5 \sin^2 \theta)}$$
(139a)

$$= \frac{M_1^2 \sin 2\theta - 2 \cot \theta}{2 + M_1^2 (\gamma + \cos 2\theta)} = 5 \frac{M_1^2 \sin 2\theta - 2 \cot \theta}{10 + M_1^2 (7 + 5 \cos 2\theta)}$$
(139b)

$$\frac{p_2}{p_{t_1}} = \frac{2\gamma M_1^2 \sin^2 \theta - (\gamma - 1)}{(\gamma + 1)} \left[\frac{2}{(\gamma - 1)M_1^2 + 2} \right]^{\frac{\gamma}{\gamma - 1}}$$

$$= \frac{7M_1^2 \sin^2 \theta - 1}{6} \left(\frac{5}{M_1^2 + 5} \right)^{7/2} \tag{140}$$

$$\frac{p_2}{p_{i_2}} = \left\{ 2 \frac{\left[2\gamma M_1^2 \sin^2\theta - (\gamma - 1) \right] \left[(\gamma - 1)M_1^2 \sin^2\theta + 2 \right]}{(\gamma + 1)^2 M_1^2 \sin^2\theta \left[(\gamma - 1)M_1^2 + 2 \right]} \right\}^{\frac{\gamma}{\gamma - 1}}$$

$$= \left[5 \frac{(7M_1^2 \sin^2 \theta - 1)(M_1^2 \sin^2 \theta + 5)}{36M_1^2 \sin^2 \theta(M_1^2 + 5)}\right]^{7/2}$$
(141)

$$\begin{split} &\frac{p_{t_2}}{p_{t_1}} = \frac{\rho_{t_2}}{\rho_{t_1}} = e^{-\frac{\Delta^*}{R}} \\ &= \left[\frac{(\gamma+1)M_1^2 \sin^2 \theta}{(\gamma-1)M_1^2 \sin^2 \theta + 2} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_1^2 \sin^2 \theta - (\gamma-1)} \right]^{\frac{1}{\gamma-1}} \\ &= \left(\frac{6M_1^2 \sin^2 \theta}{M_1^2 \sin^2 \theta + 5} \right)^{\frac{\gamma}{2}} \left(\frac{6}{7M_1^2 \sin^2 \theta - 1} \right)^{\frac{1}{\gamma-1}} \times \\ &\frac{p_{t_2}}{p_1} = \left[\frac{\gamma+1}{2\gamma M_1^2 \sin^2 \theta - (\gamma-1)} \right]^{\frac{1}{\gamma-1}} \times \\ &\left\{ \frac{(\gamma+1)M_1^2 \sin^2 \theta}{2[(\gamma-1)M_1^2 \sin^2 \theta + 2]} \right\}^{\frac{\gamma}{\gamma-1}} \\ &= \left(\frac{6}{7M_1^2 \sin^2 \theta - 1} \right)^{\frac{5}{2}} \left[\frac{6M_1^2 \sin^2 \theta (M_1^2 + 5)}{5(M_1^2 \sin^2 \theta + 5)} \right]^{\frac{\gamma}{2}} \\ &= \left(\frac{6}{7M_1^2 \sin^2 \theta - (\gamma-1)} \ln \left(\frac{p_{t_2}}{p_{t_1}} \right) \right] \\ &= \ln \left[\frac{2\gamma M_1^2 \sin^2 \theta - (\gamma-1)}{\gamma+1} \right] - \\ &\gamma \ln \left[\frac{(\gamma+1)M_1^2 \sin^2 \theta}{(\gamma-1)M_1^2 \sin^2 \theta + 2} \right] \end{split}$$

$$\frac{p_2 - p_1}{q_1} = \frac{4(M_1^2 \sin^2 \theta - 1)}{(\gamma + 1)M_1^2} = \frac{5}{3} \frac{M_1^2 \sin^2 \theta - 1}{M_1^2}$$
(145)

 $= \ln \left(\frac{7M_1^2 \sin^2 \theta - 1}{6} \right) - \frac{7}{5} \ln \left(\frac{6M_1^2 \sin^2 \theta}{M_1^2 \sin^2 \theta + 5} \right)$

Values of the following ratios for oblique shock waves can be read from table II, provided $M_1 \sin \theta$ is used instead of M_1 in the first column:

$$\frac{p_2}{p_1}, \frac{\rho_2}{\rho_1}, \frac{T_2}{T_1}, \frac{p_{i_2}}{p_{i_1}}$$

For weak shock waves $(M_1 \sin \theta)$ only slightly greater than unity) the following series are obtained from equations (103) and (104) by replacing M_1 by $M_1 \sin \theta$:

$$\frac{p_{t_2}}{p_{t_1}} = 1 - \frac{2\gamma}{3(\gamma+1)^2} (M_1^2 \sin^2 \theta - 1)^3 + \frac{2\gamma^2}{(\gamma+1)^3} (M_1^2 \sin^2 \theta - 1)^4 + \dots
= 1 - \frac{35}{216} (M_1^2 \sin^2 \theta - 1)^3 + \frac{245}{864} (M_1^2 \sin^2 \theta - 1)^4 + \dots (146)$$

$$\frac{\Delta s}{R} = \frac{1}{\gamma - 1} \frac{\Delta s}{c_r} = \frac{2\gamma}{3(\gamma+1)^2} (M_1^2 \sin^2 \theta - 1)^3 - \frac{2\gamma^2}{(\gamma+1)^3} (M_1^2 \sin^2 \theta - 1)^4 + \dots$$

$$= \frac{35}{216} (M_1^2 \sin^2 \theta - 1)^3 - \frac{245}{864} (M_1^2 \sin^2 \theta - 1)^4 + \dots (147)$$

Parameters θ and δ .—

$$\frac{1}{M_1^2} = \sin^2 \theta - \frac{\gamma + 1}{2} \frac{\sin \theta \sin \delta}{\cos (\theta - \delta)} = \sin^2 \theta - \frac{\gamma + 1}{2} \frac{\tan \delta}{\tan \delta + \cos}$$

$$= \sin^2 \theta - \frac{\gamma + 1}{2} \frac{\tan \theta}{\tan \theta - \cot \delta}$$

$$M_1^2 = \frac{2(\cot \theta + \tan \delta)}{\sin 2\theta - \tan \delta(\gamma + \cos 2\theta)}$$

$$= \frac{10(\cot\theta + \tan\delta)}{5\sin 2\theta - \tan\delta(7 + 5\cos 2\theta)}$$
(148b)

$$\frac{p_2 - p_1}{q_1} = 2 \frac{\sin \theta \sin \delta}{\cos (\theta - \delta)}$$

$$=2\frac{\tan\delta}{\tan\delta + \cot\theta} = 2\frac{\tan\theta}{\tan\theta + \cot\delta}$$
 (149a)

$$\frac{\rho_2 - \rho_1}{\rho_2} = \frac{\sin \delta}{\sin \theta \cos (\theta - \delta)}.$$
 (149b)

Parameters M_1 and δ .—

No convenient explicit relations exist. However, the value of $\sin^2 \theta$ can be found by solving the following cubic equation (ref. 12):

$$\sin^6\theta + b\sin^4\theta + c\sin^2\theta + d = 0 \tag{150}$$

where

(144)

$$b = -\frac{M_1^2 + 2}{M_1^2} - \gamma \sin^2 \delta$$

$$c = \frac{2M_1^2 + 1}{M_1^4} + \left[\frac{(\gamma + 1)^2}{4} + \frac{\gamma - 1}{M_1^2}\right] \sin^2 \delta$$

$$d = -\frac{\cos^2 \delta}{M_1^4}$$
(150b)

The smallest of the three roots corresponds to a decrease in entropy and should be disregarded.

For weak shock waves (small deflections δ) the following series are useful (note that δ must be measured in radians)

$$\frac{p_{2}}{p_{1}} = 1 + \frac{\gamma M_{1}^{2}}{(M_{1}^{2} - 1)^{1/2}} \delta + \gamma M_{1}^{2} \frac{(\gamma + 1)M_{1}^{4} - 4(M_{1}^{2} - 1)}{4(M_{1}^{2} - 1)^{2}} \delta^{2} + \frac{\gamma M_{1}^{2}}{(M_{1}^{2} - 1)^{7/2}} \left[\frac{(\gamma + 1)^{2}}{32} M_{1}^{8} - \frac{7 + 12\gamma - 3\gamma^{2}}{24} M_{1}^{6} + \frac{3}{4} (\gamma + 1)M_{1}^{4} - M_{1}^{2} + \frac{2}{3} \right] \delta^{3} + \dots \quad (151)$$

$$\frac{p_{2} - p_{1}}{q_{1}} = \frac{2}{(M_{1}^{2} - 1)^{1/2}} \delta + \frac{(\gamma + 1)M_{1}^{4} - 4(M_{1}^{2} - 1)}{2(M_{1}^{2} - 1)^{2}} \delta^{2} + \frac{1}{2(M_{1}^{2} - 1)^{2}} \delta^{2} + \frac{1}{2(M_{1}^{2}$$

$$\frac{1}{(M_1^2-1)^{7/2}} \left[\frac{(\gamma+1)^2}{16} M_1^8 - \frac{7+12\gamma-3\gamma^2}{12} M_1^6 + \frac{3}{2} (\gamma+1) M_1^4 - 2 M_1^2 + \frac{4}{3} \right] \delta^3 + \dots$$

$$=1+\frac{M_{1}^{2}}{(M_{1}^{2}-1)^{1/2}}\delta+M_{1}^{2}\frac{(3-\gamma)M_{1}^{2}(M_{1}^{2}-2)+4}{4(M_{1}^{2}-1)^{2}}\delta^{2}+\dots$$

$$=1+\frac{(\gamma-1)M_{1}^{2}}{(M_{1}^{2}-1)^{1/2}}\delta+$$
(153)

$$(\gamma-1)M_1^2 \frac{(\gamma+1)M_1^4-2(M_1^2+2)(M_1^2-1)}{4(M_1^2-1)^2}\delta^2+\dots$$
 (154)

Since flow through weak shock waves is nearly insentropic, compressions through small angles can also be calculated with the aid of table II by regarding them as reversed Prandtl-Meyer expansions (see later section). The resulting numerical accuracy is greater than that obtained by retaining terms up to δ^2 in the above series, and nearly equal to that obtained by retaining terms up to δ^3 .

Charts 2, 3, and 4 show the variation of shock-wave angle, pressure coefficient across a shock wave, and downstream Mach number with flow-deflection angle for various upstream Mach numbers.

Parameter $\xi \equiv p_2/p_1$.—

$$M_1^2 \sin^2 \theta = \frac{(\gamma+1)\xi + (\gamma-1)}{2\gamma} = \frac{6\xi+1}{7}$$
 (155)

$$M_2^2 \sin^2(\theta - \delta) = \frac{(\gamma - 1)\xi + (\gamma + 1)}{2\gamma\xi} = \frac{\xi + 6}{7\xi}$$
 (156)

$$M_{2}^{2} = \frac{M_{1}^{2}[(\gamma+1)\xi+(\gamma-1)]-2(\xi^{2}-1)}{\xi[(\gamma-1)\xi+(\gamma+1)]}$$

$$= \frac{M_{1}^{2}(6\xi+1)-5(\xi^{2}-1)}{\xi(\xi+6)}$$
(157)

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)\xi + (\gamma - 1)}{(\gamma - 1)\xi + (\gamma + 1)} = \frac{6\xi + 1}{\xi + 6}$$
 (158)

$$\frac{T_2}{T_1} = \frac{a_2^2}{a_1^2} = \xi \frac{(\gamma - 1)\xi + (\gamma + 1)}{(\gamma + 1)\xi + (\gamma - 1)} = \xi \frac{\xi + 6}{6\xi + 1}$$
 (159)

$$\tan^2 \delta = \left(\frac{\xi - 1}{\gamma M_1^2 - \xi + 1}\right)^2 \frac{2\gamma M_1^2 - (\gamma - 1) - (\gamma + 1)\xi}{(\gamma + 1)\xi + (\gamma - 1)}$$
$$= \left[\frac{5(\xi - 1)}{7M_1^2 - 5(\xi - 1)}\right]^2 \frac{7M_1^2 - (6\xi + 1)}{6\xi + 1}$$
(160)

$$\frac{p_{\iota_{2}}}{p_{\iota_{1}}} = \frac{\rho_{\iota_{2}}}{\rho_{\iota_{1}}} = e^{-\frac{\Delta s}{R}} = \left[\frac{(\gamma+1)\xi + (\gamma-1)}{(\gamma-1)\xi + (\gamma+1)}\right]^{\frac{\gamma}{\gamma-1}} \xi^{-\frac{1}{\gamma-1}}$$

$$= \left(\frac{6\xi+1}{\xi+6}\right)^{7/2} \xi^{-5/2} \qquad (161)$$

$$\frac{V_{2}^{2}}{V_{1}^{2}} = 1 - \frac{2(\xi^{2}-1)}{M_{1}^{2}[(\gamma+1)\xi + (\gamma-1)]} = 1 - \frac{5(\xi^{2}-1)}{M_{1}^{2}(6\xi+1)}$$

For weak shock waves, equations (113) and (114) apply to oblique as well as normal shocks.

SHOCK POLAR

The velocities associated with an oblique shock wave are conveniently represented in the velocity-vector (hodograph) plane. For a given Mach number ahead of the shock wave, all possible velocity vectors behind the shock lie on a single curve.

Only the closed loop represents real shock waves with nondecreasing entropy, and forms Busemann's shock polar (fig. 3). Its equation is

$$v_{2}^{2} = (V_{1} - u_{2})^{2} \frac{u_{2} - \frac{a_{*}^{2}}{V_{1}^{2}}}{\frac{2}{\gamma + 1} V_{1} + \frac{a_{*}^{2}}{V_{1}} - u_{2}}$$
(163)

Other forms of this equation convenient for computation are, given V_1 and M_1 ,

$$\left(\frac{v_2}{V_1}\right)^2 = \left(1 - \frac{u_2}{V_1}\right)^2 \frac{(M_1^2 - 1) - \frac{\gamma + 1}{2} M_1^2 \left(1 - \frac{u_2}{V_1}\right)}{1 + \frac{\gamma + 1}{2} M_1^2 \left(1 - \frac{u_2}{V_1}\right)}$$

$$= \left(1 - \frac{u_2}{V_1}\right)^2 \frac{5(M_1^2 - 1) - 6M_1^2 \left(1 - \frac{u_2}{V_1}\right)}{5 + 6M_1^2 \left(1 - \frac{u_2}{V_1}\right)} \quad (164a)$$

FIGURE 3.—Shock polar.

given a_* and V_1 ,

$$\left(\frac{V_2}{a_*}\right)^2 = \left(\frac{V_1}{a_*} - \frac{u_2}{a_*}\right)^2 \frac{\frac{V_1}{a_*} \frac{u_2}{a_*} - 1}{1 + \frac{2}{\gamma + 1} \left(\frac{V_1}{a_*}\right)^2 - \frac{V_1}{a_*} \frac{u_2}{a_*}}$$

$$= \left(\frac{V_1}{a_*} - \frac{u_2}{a_*}\right)^2 \frac{6\left(\frac{V_1}{a_*} \frac{u_2}{a_*} - 1\right)}{5\left(\frac{V_1}{a_*}\right)^2 - 6\left(\frac{V_1}{a_*} \frac{u_2}{a_*} - 1\right)}$$
(164b)

and given V_1 and V_m ,

$$\left(\frac{v_2}{V_{\rm m}}\right)^{\!2} \! = \! \left(\frac{V_1}{V_{\rm m}} \! - \! \frac{u_2}{V_{\rm m}}\right)^{\!2} \frac{\frac{V_1}{V_{\rm m}} \frac{u_2}{V_{\rm m}} \! - \! \frac{\gamma - 1}{\gamma + 1}}{\frac{2}{\gamma + 1} \left(\frac{V_1}{V_{\rm m}}\right)^{\!2} \! + \! \frac{\gamma - 1}{\gamma + 1} \! - \! \frac{V_1}{V_{\rm m}} \frac{u_2}{V_{\rm m}}}$$

$$= \left(\frac{V_{1}}{V_{m}} - \frac{u_{2}}{V_{m}}\right)^{2} \frac{\left(6\frac{V_{1}}{V_{m}}\frac{u_{2}}{V_{m}} - 1\right)}{5\left(\frac{V_{1}}{V_{m}}\right)^{2} - \left(6\frac{V_{1}}{V_{m}}\frac{u_{2}}{V_{m}} - 1\right)} (164c)$$

The shock-wave angle θ and wedge angle δ are given in terms of the velocity components by

$$\tan \theta = \frac{V_1 - u_2}{v_2} = \frac{\tilde{u}_1}{\tilde{v}_1} \tag{165}$$

$$\tan \delta = \frac{v_2}{u_2} \tag{166}$$

The shock-wave angle θ_* for sonic flow behind the shock is found (by setting $M_2=1$ in eq. (132)) to be given by

$$\begin{split} \sin^2 \theta_* &= \frac{1}{4\gamma M_1^2} \left\{ (\gamma + 1) M_1^2 - (3 - \gamma) + \\ & \sqrt{(\gamma + 1)[(\gamma + 1) M_1^4 - 2(3 - \gamma) M_1^2 + (\gamma + 9)]} \right\} \\ &= \frac{1}{7M_2^2} \left[3 M_1^2 - 2 + \sqrt{3(3M_1^4 - 4M_1^2 + 13)} \right] \end{split}$$
(167)

The shock-wave angle $\theta_{\delta_{max}}$ for maximum stream deflection behind the shock is given by

$$\sin^{2}\theta_{\frac{1}{2}=ar} = \frac{1}{4\gamma M_{1}^{2}} \{ (\gamma+1) M_{1}^{2} - 4 + \sqrt{(\gamma+1) [(\gamma+1) M_{1}^{4} + 8 (\gamma-1) M_{1}^{2} + 16]} \}
= \frac{1}{7 M_{1}^{2}} [3M_{1}^{2} - 5 + \sqrt{3 (3M_{1}^{4} + 4M_{1}^{2} + 20)}]$$
(168)

For small deflection angles (hence Mach numbers close to unity), the deflection angle (radians) for sonic flow behind the shock is given approximately in terms of the upstream Mach number by

$$\delta_{\bullet} = \frac{1}{\sqrt{2} (\gamma + 1)} \frac{(M_1^2 - 1)^{3/2}}{M_1^2} = 0.2946 \frac{(M_1^2 - 1)^{3/2}}{M_1^2} \quad (169)$$

The maximum stream deflection angle for a specified upstream Mach number is given approximately by

$$\delta_{\text{max}} = \frac{4}{3\sqrt{3}(\gamma+1)} \frac{(M_1^2 - 1)^{3/2}}{M_1^2} = 0.3208 \frac{(M_1^2 - 1)^{3/2}}{M_1^2} \quad (170)$$

In unsteady flow all the above relations are valid across a moving oblique shock wave if instantaneous velocities a measured relative to the shock.

SUPERSONIC FLOW PAST WEDGES AND CONES

A shock wave forms ahead of any body in supersonic flight and remains fixed relative to the body if the flight is steady. It stands ahead of blunt shapes, but may be attached to pointed shapes.

Just at the tip of a pointed airfoil or body of revolution the flow is the same as for the initially tangent wedge or cone. The bow wave is attached at sufficiently high Mach numbers for a wedge of semivertex angle δ less than $\sin^{-1}(1/\gamma) = 45.6^{\circ}$ for $\gamma = 7/5$, and for a circular cone of semivertex angle σ less than 57.5° for $\gamma = 1.405$. Below these limits, the wave is attached above a minimum Mach number whose dependence upon nose angle is shown for wedges and cones in figure 4. (These values can be applied to pointed airfoils and bodies of revolution which are not concave.) Also shown in figure 4 are the slightly higher Mach numbers above which the velocity behind the shock wave is supersonic, and for the cone the still higher Mach number above which the flow is supersonic even at the surface. (For wedges these last two coincide.) For thin wedges, these Mach numbers are given approximately by equations (169) and (170).

FLOW PAST WEDGES

If the bow shock wave is attached to a wedge, it is straigly and the flow behind the shock consists of uniform stream parallel to either face of the wedge. The flow pattern above the upper face (fig. 5) may be regarded as obtained from the straight oblique shock-wave pattern of figure 2 by replacing the streamline behind the shock wave with a solid wall. Flow quantities are determined by the oblique-shock-wave relations, equations (115) to (170). As noted previously, table II can also be applied if $M_1 \sin \theta$ is used in place of M_1 in the first column.

The flows above and below the wedge are independent, so that inclined wedges can be treated if neither face exceeds the attachment angle shown in figure 4. However, if the angle of attack exceeds the semivertex angle, the flow over the upper (leeward) surface is given by a Prandtl-Meyer expansion (see fig. 4) rather than by the shock relations.

It is clear from the shock polar (fig. 3) that two different shock waves and flow patterns are theoretically possible for a given wedge and Mach number. However, it is believed that only the weaker shock wave (larger u_2 and smaller θ) can occur attached to an isolated convex body.

Charts 2, 3, and 4 show the dependence of shock-wave angle, surface pressure coefficient, and downstream Mach number upon wedge angle for various free-stream Mach numbers.

FLOW PAST CONES

If the bow shock wave is attached to an uninclined circular cone, the shock wave too has the form of a circular cone. Flow quantities are constant on all concentric conical surfaces lying between the shock wave and the body, and so depend upon only one space variable. The transition across the shock wave is governed by the oblique-shock relations,

Figure 4.—Upstream Mach numbers for shock attachment and for supersonic flow behind shock wave on wedges and cones, and for supersonic flow at surface of cones.

FIGURE 5.—Flow past a wedge.

and is followed by a continuous isentropic compression to face conditions, as indicated in figure 6. The flow stities have been extensively tabulated in reference 6 =1.405 and for $\gamma=4/3$. As in the case of wedges, two solutions exist for each cone and Mach number, but it is believed that only the weaker shock wave can occur on an isolated convex body. Charts 5, 6, and 7 show the dependence of shock-wave angle, surface-pressure coefficient, and

FIGURE 6.-Flow past a cone.

surface Mach number on cone semivertex angle for various free-stream Mach numbers.

The effects of slightly inclining a cone have been considered by Stone (ref. 13) and numerical results are tabulated in reference 14. Chart 8 shows the variation with Mach number of the initial slope of the normal-force curve for various cone angles. Stone has also sought an approximation for larger inclinations by retaining squares as well as first powers of angle of attack (ref. 15), and numerical results have been tabulated (ref. 16); however, these results are not free of error (see refs. 17 and 18).

PRANDTL-MEYER EXPANSION

A uniform two-dimensional supersonic stream flowing over a convex bend expands isentropically. Convenient relations are found by considering the special case of a stream at Mach number unity flowing around a sharp corner (fig. 7).

FIGURE 7.—Prandtl-Meyer expansion around a corner.

For a perfect gas, the Prandtl-Meyer angle ν through which the stream turns in expanding from M=1 to a supersonic Mach number M is

$$\nu = \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \sqrt{\frac{\gamma - 1}{\gamma + 1}} (M^2 - 1) - (90^\circ - \mu)$$
 (171a)
$$= \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \sqrt{\frac{\gamma - 1}{\gamma + 1}} (M^2 - 1) - \cos^{-1} \frac{1}{M}$$
 (171b)
$$= \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \sqrt{\frac{\gamma - 1}{\gamma + 1}} (M^2 - 1) - \tan^{-1} \sqrt{M^2 - 1}$$
 (171c)

(For
$$\gamma = 7/5$$
, $\sqrt{\frac{\gamma+1}{\gamma-1}} = 2.4495$, and $\sqrt{\frac{\gamma-1}{\gamma+1}} = 0.40825$.) The

maximum expansion angle, for $M = \infty$, is

$$\nu_{max} = \left(\sqrt{\frac{\gamma+1}{\gamma-1}} - 1\right) \times 90^{\circ} = 130.45^{\circ} \text{ for } \gamma = 7/5 \quad (172)$$

The ratio of static to total pressure, corresponding to Mach number M is given by

$$\left(\frac{p}{p_{t}}\right)^{\frac{\gamma-1}{\gamma}} = \frac{1}{\gamma+1} \left\{ 1 + \cos \left[2\sqrt{\frac{\gamma-1}{\gamma+1}} \left(\nu + 90^{\circ} - \mu\right) \right] \right\} \tag{173a}$$

$$= \frac{1}{\gamma+1} \left\{ 1 + \cos \left[2\sqrt{\frac{\gamma-1}{\gamma+1}} \left(\nu + \cos^{-1} \frac{1}{M}\right) \right] \right\} \tag{173b}$$

$$= \frac{1}{\gamma+1} \left\{ 1 + \cos \left[2\sqrt{\frac{\gamma-1}{\gamma+1}} \left(\nu + \tan^{-1}\sqrt{M^{2}-1}\right) \right] \right\}$$
(173c)

which falls to zero as $\nu \to \nu_{max}$. Numerical values of ν , μ , and p/p_i are given in table II as functions of M.

These relations and the values in table II apply to a uniform stream flowing past any convex surface in the ab-

sence of external disturbances. (They also give a very good approximation at all Mach numbers when, as on an airforexternal disturbances arise only from interaction with shock wave, and are disregarded.) If flow quantities known at one point, the values at any second point can be read from table II by identifying the change in flow angle between the two points with $\Delta \nu = \nu_2 - \nu_1$, as indicated in figure 8.

FIGURE 8.—Prandtl-Meyer expansion over a convex surface.

For expansions through small angles $\Delta \nu$, the ratio of final to initial static pressures is given by the following series ($\Delta \nu$ in radians):

$$\frac{p_{2}}{p_{1}} = 1 - \frac{\gamma M_{1}^{2}}{\sqrt{M_{1}^{2} - 1}} (\Delta \nu) + \gamma M_{1}^{2} \frac{(\gamma + 1) M_{1}^{4} - 4 (M_{1}^{2} - 1)}{4(M_{1}^{2} - 1)^{2}} (\Delta \nu)^{2} + \frac{\gamma M_{1}^{2}}{2 (M_{1}^{2} - 1)^{7/2}} \left[\frac{\gamma + 1}{6} M_{1}^{6} - \frac{5 + 7\gamma - 2\gamma^{2}}{6} M_{1}^{6} + \frac{5}{3} (\gamma + 1) M_{1}^{4} - 2M_{1}^{2} + \frac{4}{3} (\Delta \nu)^{3} + \dots \right] (174)$$

Up to and including the term in $(\Delta \nu)^2$ this series is identical with that for compression through an oblique shock wave (eq. (151) with $\delta = -\Delta \nu$).

IMPERFECT-GAS EFFECTS

Methods for calculating the flow of a calorically imperfect, thermally imperfect gas and a calorically imperfect, thermally perfect gas at temperatures up to 5000° R are described in this section. The equations presented are in substantially the same form as those given in references 7 and 8. Effects of gaseous imperfections, such as molecular dissociation, which become important at temperatures greater than about 5000° R are not considered.

Atmospheric and wind-tunnel air flows are of primary concern here. In such flows air generally exhibits only caloric imperfections to any appreciable degree. Consequently, numerical results are presented only for the flow of a calorically imperfect, thermally perfect diatomic gas.

THERMODYNAMICS

EQUATIONS OF STATE

The thermal equation of state used here for a calorically and thermally imperfect gas is the Berthelot equation imperfect, thermal equation of state used for a caloricimperfect, thermally perfect gas is equation (2). The ic equation of state used for a calorically and thermally erfect gas is equation (8a). The caloric equation of state used for a calorically imperfect, thermally perfect gas is equation (8b).

SPECIFIC HEATS

The assumption of a simple harmonic vibrator is used to account for the contribution of the vibrational heat capacity to the specific heats. The equations for the specific heats at constant volume and constant pressure, respectively, are (see ref. 7)

$$c_{i} = (c_{r})_{pert} \left\{ 1 + (\gamma_{pert} - 1) \left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} + \frac{2c\rho}{RT^{2}} \right] \right\}$$
(175)
$$c_{t} = (c_{t})_{pert} \left\{ 1 + (\gamma_{pert} - 1) \left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} \right] \right\} [therm perf]$$

$$c_{p} = (c_{p})_{pert} \left\{ 1 + \frac{\gamma_{pert} - 1}{\gamma_{pert}} \left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} + \frac{2c\rho}{RT^{2}} \right] \right\}$$
(177)
$$\frac{2c\rho}{RT^{2}} \left\{ 1 + \frac{\frac{2-b\rho}{1-b\rho} + \frac{c\rho}{2RT^{2}}}{(1-b\rho)^{2} - \frac{2c\rho}{RT^{2}}} \right\}$$
(177)

$$(c_p)_{pert} \left\{ 1 + \frac{\gamma_{pert} - 1}{\gamma_{pert}} \left[\left(\frac{\Theta}{T} \right)^2 \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^2} \right] \right\} [therm perf]$$
(178)

The ratio of specific heats is then

$$\gamma = \gamma_{perf} \times$$

$$\left[\frac{1 + \frac{\gamma_{pert} - 1}{\gamma_{pert}} \left\{ \left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} + \frac{2c\rho}{RT^{2}} \left[1 + \frac{\frac{2 - b\rho}{1 - b\rho} + \frac{c\rho}{2RT^{2}}}{\frac{1}{(1 - b\rho)^{2}} - \frac{2c\rho}{RT^{2}}} \right] \right\} \\
+ (\gamma_{pert} - 1) \left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} + \frac{2c\rho}{RT^{2}} \right]$$
(179)

or, for a thermally perfect gas,

$$\gamma = 1 + \frac{\gamma_{\text{perf}} - 1}{1 + (\gamma_{\text{perf}} - 1) \left[\left(\frac{\Theta}{T} \right)^2 \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^2} \right]} [\text{therm perf}] \quad (180)$$

The following values of γ are for temperatures from 400° R to 5000° R, with θ =5500° R (see ref. 7). For engineering purposes, these are a satisfactory approximation for air.

T, °R	γ	T, °F	.	γ	ii.	<i>T</i> , °R	7
500	1. 400	1300		1. 361	4	2200	1. 32:
600	1. 399	1400		1. 355		2400	1. 31
700	1.390	1900		1.349	- 5	2600	1. 313 1. 30
800	1. 392 1. 387	1600		1. 344 1. 339	- !:	2800 3000	1. 30
900	1. 381	1700 1800		1. 339	- 1	3500	1. 30
1000	1. 381	1900	i	1. 335	- 1	4000	1. 29
1100 1200	1. 368	2000	1	1. 328		4500	1. 29
1200	1. 308	2000	1	1. 328	- 1	5000	1. 29

CONTINUOUS ONE-DIMENSIONAL FLOW BASIC EQUATIONS AND DEFINITIONS

Basic equations pertinent to this section are equations (26), (27), (28), (29), (30), and (31). The equations for the speed of sound are (see ref. 7)

$$a^{2} = RT \left\{ \frac{1}{(1 - b\rho)^{2}} - \frac{2c\rho}{RT^{2}} + \frac{1}{(1 - b\rho)^{2}} - \frac{(\gamma_{pert} - 1)\left(\frac{c\rho}{RT^{2}} + \frac{1}{1 - b\rho}\right)^{2}}{1 + (\gamma_{pert} - 1)\left[\left(\frac{\Theta}{T}\right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} + \frac{2c\rho}{RT^{2}}\right]} \right\}$$

$$(181)$$

ลท

$$a^{2} = RT \left\{ 1 + \frac{\gamma_{pert} - 1}{\left[1 + (\gamma_{pert} - 1) \left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} \right]} \right\}$$
 [therm perf] (182)

INTEGRATED FORMS OF ENERGY EQUATION

The integrated forms of the energy equation are (see ref. 7)

$$V^{2} = 2RT_{t} \left[\frac{1 - \frac{T}{T_{t}}}{\gamma_{pert} - 1} + \frac{\Theta}{T_{t}} \left(\frac{1}{e^{\Theta/T_{t}} - 1} - \frac{1}{e^{\Theta/T} - 1} \right) + \frac{2c}{RT_{t}} \left(\frac{\rho}{T} - \frac{\rho_{t}}{T_{t}} \right) + \frac{1}{RT_{t}} \left(\frac{p_{t}}{\rho_{t}} - \frac{p}{\rho} \right) \right] \text{ [adiab]} \quad (183)$$

and

$$V^{2} = 2RT_{t} \left[\frac{\gamma_{pert}}{\gamma_{pert} - 1} \left(1 - \frac{T}{T_{t}} \right) + \frac{\Theta}{T_{t}} \left(\frac{1}{e^{\Theta/T_{t}} - 1} - \frac{1}{e^{\Theta/T_{t}} - 1} \right) \right] \text{ [adiab, therm perf]} \quad (184)$$

In terms of Mach number these equations become, respectively.

$$M^{2} = \frac{2T_{t} \left[\frac{1 - \frac{T}{T_{t}}}{\gamma_{pert} - 1} + \frac{\Theta}{T_{t}} \left(\frac{1}{e^{\Theta/T_{t}} - 1} - \frac{1}{e^{\Theta/T} - 1} \right) + \frac{2c}{RT_{t}} \left(\frac{\rho}{T} - \frac{\rho_{t}}{T_{t}} \right) + \frac{1}{RT_{t}} \left(\frac{p_{t}}{\rho_{t}} - \frac{p}{\rho} \right) \right]}{T \left\{ \frac{1}{(1 - b\rho)^{2}} - \frac{2c\rho}{RT^{2}} + \frac{(\gamma_{pert} - 1)\left(\frac{c\rho}{RT^{2}} + \frac{1}{1 - b\rho} \right)^{2}}{1 + (\gamma_{pert} - 1)\left[\left(\frac{\Theta}{T} \right)^{2} \frac{e^{\Theta/T}}{(e^{\Theta/T} - 1)^{2}} + \frac{2c\rho}{RT^{2}} \right]} \right\}}$$
 [adiab]

and

$$M^{2} = \frac{2T_{t}}{\gamma T} \left[\frac{\gamma_{\text{perf}}}{\gamma_{\text{perf}} - 1} \left(1 - \frac{T}{T_{t}} \right) + \frac{\Theta}{T_{t}} \left(\frac{1}{e^{\Theta/T_{t}} - 1} - \frac{1}{e^{\Theta/T} - 1} \right) \right] \quad [\text{adiab, therm perf}]$$
 (186)

where γ is given by equation (180).

The variations of $\frac{\left(\frac{V}{a_*}\right)_{\text{therm perf}}}{\left(\frac{V}{a_*}\right)_{\text{perf}}}$ and $\frac{\left(\frac{T}{T_t}\right)_{\text{therm perf}}}{\left(\frac{T}{T_t}\right)_{\text{perf}}}$ with Mach number for several values of total temperature T_t are given in

charts 9 and 10

PRESSURE AND DENSITY RELATIONS

For isentropic flow, the relations between density and temperature are (see ref. 7)

$$\left(\frac{\rho}{\rho_t}\right)\left(\frac{1-b\rho_t}{1-b\rho}\right) = \left(\frac{e^{\Theta/T_t}-1}{e^{\Theta/T}-1}\right)\left(\frac{T}{T_t}\right)^{\frac{1}{\gamma_{pert}-1}} \exp\left[\frac{c\rho_t}{RT_t^2} - \frac{c\rho}{RT^2} + \left(\frac{\Theta}{T}\right)\frac{e^{\Theta/T}}{e^{\Theta/T}-1} - \left(\frac{\Theta}{T_t}\right)\frac{e^{\Theta/T_t}}{e^{\Theta/T_t}-1}\right] \quad [\text{isen}]$$

and, for a thermally perfect gas,

$$\frac{\rho}{\rho_{i}} = \left(\frac{e^{\Theta/T_{i}} - 1}{e^{\Theta/T} - 1}\right) \left(\frac{T}{T_{i}}\right)^{\frac{1}{\gamma_{wirt} - 1}} \exp\left[\left(\frac{\Theta}{T}\right) \frac{e^{\Theta/T}}{e^{\Theta/T} - 1} - \left(\frac{\Theta}{T_{i}}\right) \frac{e^{\Theta/T_{i}}}{e^{\Theta/T_{i}} - 1}\right] \quad [\text{isen, therm perf}]$$

The variation of $\frac{\left(\frac{\rho}{\rho_I}\right)_{\text{therm perf}}}{\left(\frac{\rho}{\rho_I}\right)_{\text{nexf}}}$ with Mach number for several total temperatures is presented in chart 11.

For the isentropic flow of a thermally imperfect, calorically imperfect gas, the relation between pressure, density, and temperature can be obtained by a trial-and-error procedure using equations (5) and (187).⁵ For the isentropic flow of a thermally perfect gas, the relation between pressure and temperature is

$$\frac{p}{p_{i}} = \left(\frac{e^{\Theta/T_{i}} - 1}{e^{\Theta/T} - 1}\right) \left(\frac{T}{T_{i}}\right)^{\frac{\gamma_{perf} - 1}{\gamma_{perf} - 1}} \exp\left[\left(\frac{\Theta}{T}\right) \frac{e^{\Theta/T}}{e^{\Theta/T} - 1} - \left(\frac{\Theta}{T_{i}}\right) \frac{e^{\Theta/T_{i}}}{e^{\Theta/T_{i}} - 1}\right] \quad [isen, therm perf]$$
(189)

The relation between dynamic and static pressure for a thermally imperfect gas can be obtained by a trial-and-error procedure using equations (5), (31a), (183), and (187). The relation between dynamic and static pressure for a thermally perfect gas can be obtained with equations (31b) and (186), and is

$$\frac{q}{p} = \frac{\gamma_{\text{perf}}}{\gamma_{\text{perf}} - 1} \left(\frac{T_t}{T} - 1 \right) + \frac{\Theta}{T} \left(\frac{1}{e^{\Theta/T_t} - 1} - \frac{1}{e^{\Theta/T} - 1} \right)$$
[adiab, therm perf] (190)

The variations of
$$\frac{\left(\frac{p}{p_t}\right)_{\text{therm perf}}}{\left(\frac{p}{p_t}\right)_{\text{part}}}$$
 and $\frac{\left(\frac{q}{p_t}\right)_{\text{therm perf}}}{\left(\frac{q}{p_t}\right)_{\text{part}}}$ with Mach

number for several total temperatures are given in charts 12 and 13.

STREAM-TUBE-AREA RELATIONS

The stream-tube-area relation is given by equation (79) or, in more convenient form,

$$\frac{A}{A_*} = \frac{\rho_* a_*}{\rho a M} \tag{191}$$

This ratio can be evaluated for a thermally imperfect gas with the aid of equations (187), (181), (5), and (185), and for a thermally perfect gas with the aid of equations (188)

(182), and (186). The variation of
$$\frac{\left(\frac{A}{A_*}\right)_{\text{therm perf}}}{\left(\frac{A}{A_*}\right)_{\text{perf}}}$$
 with Y

number for several values of total temperature is presented in chart 14.

In this, as in many of the cases to be presented, no direct solution for flow properties is possible if the gas exhibits both thermal and caloric imperfections. Approximate solutions of this type can be obtained, however, if the degree of imperfection is small (see ref. 7).

NORMAL SHOCK WAVES

requirements for conservation of mass, momentum, nergy across a normal shock wave are given by equations (84), (85), and (86a). The energy relation can be written

$$\frac{u_{2}^{2}-u_{1}^{2}}{2}+\frac{R}{\gamma_{\text{pert}}-1}(T_{2}-T_{1})-\left(\frac{2c\rho_{2}}{T_{2}}-\frac{2c\rho_{1}}{T_{1}}\right)+\left(\frac{p_{2}}{\rho_{2}}-\frac{p_{1}}{\rho_{1}}\right)+R\Theta\left(\frac{1}{e^{\theta/T_{2}}-1}-\frac{1}{e^{\theta/T_{1}}-1}\right)=0 \quad \text{[adiab]} \quad (192)$$

or, for a thermally perfect gas,

$$\frac{{{u_{2}}^{2}}}{2} - \frac{{{u_{1}}^{2}}}{2} + \left(\frac{{{\gamma _{{\rm perf}}}}}{{{\gamma _{{\rm perf}}} - 1}} \right)R({T_{2}} - {T_{1}}) + \\$$

$$R\Theta\left(\frac{1}{e^{\Theta/T_2}-1}-\frac{1}{e^{\Theta/T_1}-1}\right)=0$$
 [adiab, therm perf] (193)

No explicit equation has been found to relate the temperature downstream of a normal shock wave in thermally imperfect air to the upstream conditions. A trial-and-error procedure, starting with assumed values of ρ_2 and T_2 and involving equations (5), (84), (85), and (192), can be used to determine the downstream temperature.

For the flow of a thermally perfect gas, the simultaneous tion of equations (84), (85), (193), and (2) yields the ging relation from which the temperature behind the wave can be found:

$$\left(u_{1} + \frac{RT_{1}}{u_{1}}\right)^{2} - \left(u_{1} + \frac{RT_{1}}{u_{1}}\right) \sqrt{\left(u_{1} + \frac{RT_{1}}{u_{1}}\right)^{2} - 4RT_{2}} - 2RT_{2} - 2RT_{2} - 2u_{1}^{2} + \left(\frac{\gamma_{pert}}{\gamma_{pert} - 1}\right) 4R(T_{2} - T_{1}) - 4RT_{2} - 2RT_{2} - 2RT_{2} - 4RT_{2} - 4RT_{2}$$

$$4R\Theta\left(\frac{1}{e^{\Theta/T_2}-1}-\frac{1}{e^{\Theta/T_1}-1}\right)=0 \quad [adiab, therm perf] \quad (194)$$

Since the total temperature T_t remains constant across a shock wave, other flow parameters behind the shock wave can be found with the aid of previously presented one-dimensional flow relations. The variations of

$$\frac{\left(\frac{T_2}{\overline{T}_1}\right)_{\text{therm perf}}}{\left(\frac{T_2}{\overline{T}_1}\right)_{\text{perf}}}, \frac{\left(\frac{\rho_2}{\rho_1}\right)_{\text{therm perf}}}{\left(\frac{\rho_2}{\rho_1}\right)_{\text{perf}}}, \frac{\left(\frac{p_1}{p_{t_2}}\right)_{\text{therm perf}}}{\left(\frac{p_1}{p_{t_2}}\right)_{\text{perf}}},$$

$$\frac{\left(\frac{p_2}{p_1}\right)_{\text{therm perf}}}{\left(\frac{p_2}{p_1}\right)_{\text{perf}}}, \frac{M_{2_{\text{therm perf}}}}{M_{2_{\text{perf}}}}, \text{ and } \frac{\left(\frac{p_{t_2}}{p_{t_1}}\right)_{\text{therm perf}}}{\left(\frac{p_{t_2}}{p_{t_1}}\right)_{\text{perf}}}$$

upstream Mach number for several total temperatures presented in charts 15 through 20, respectively.

OBLIQUE SHOCK WAVES

For a thermally imperfect gas, no simple equations can be found to relate the values of the flow parameters across oblique shock waves. In general, trial-and-error procedure, starting with assumed values of ρ_2 and T_2 , and involving the relations for the conservation of mass, momentum, and energy, must be used. (See eqs. (115), (116), (117), and (118a) as well as equations (5) and (183).) For a thermally perfect gas, the Mach number downstream of an oblique shock wave can be found with the aid of the energy equation (see eqs. (118a) and (186)), thus

$$\begin{split} M_{2}^{2} &= \frac{2\,T_{1}}{\gamma_{2}\,T_{2}} \bigg[\frac{\gamma_{1} M_{1}^{2}}{2} + \bigg(\frac{\gamma_{\text{perf}}}{\gamma_{\text{perf}} - 1} \bigg) \bigg(1 - \frac{T_{2}}{T_{1}} \bigg) + \\ & \frac{\Theta}{T_{1}} \bigg(\frac{1}{e^{\Theta/T_{1}} - 1} - \frac{1}{e^{\Theta/T_{2}} - 1} \bigg) \bigg] \quad \text{[adiab, therm perf]} \quad (195) \end{split}$$

where γ_1 and γ_2 are the functions of T_1 and T_2 , respectively, given by equation (180). The pressure ratio across the shock is given by

$$\frac{p_{1}}{p_{2}} = \frac{1}{2} \left\{ (1 + \gamma_{2}M_{2}^{2}) - \frac{T_{1}}{T_{2}} (1 + \gamma_{1}M_{1}^{2}) + \sqrt{\left[(1 + \gamma_{2}M_{2}^{2}) - \frac{T_{1}}{T_{2}} (1 + \gamma_{1}M_{1}^{2}) \right]^{2} + 4 \frac{T_{1}}{T_{2}}} \right\}$$
[adiab, therm perf] (196)

The density ratio can be determined from the equation of state (eq. (2)) with the aid of the pressure and temperature ratios. The shock-wave and deflection angles are given by (see ref. 8)

$$\sin^2 \theta = \frac{\left(\frac{\gamma_2}{\gamma_1}\right) \left(\frac{T_2}{T_1}\right) \left(\frac{M_2}{M_1}\right)^2 - 1}{\left(\frac{\rho_1}{\rho_2}\right)^2 - 1} \quad \text{[adiab, therm perf]} \quad (197)$$

and

$$\cot \delta = \tan \theta \left(\frac{\gamma_1 M_1^2}{\frac{p_2}{p_1} - 1} \right) \quad [adiab, therm perf] \quad (198)$$

respectively.

The variation of θ with δ for various values of M_1 and T_1 is presented in chart 21. In addition, the variations of

$$rac{(M_2)_{ ext{therm pert}}}{(M_2)_{ ext{pert}}} ext{ and } rac{\left(rac{p_2-p_1}{q_1}
ight)_{ ext{therm pert}}}{\left(rac{p_2-p_1}{q_1}
ight)_{ ext{pert}}} ext{ with δ for various M_1 and T_1}$$

are presented in charts 22 and 23.

Values of the ratios

$$\frac{p_2}{p_1}, \frac{\rho_2}{\rho_1}, \frac{T_2}{T_1}, \frac{p_{i_2}}{p_{i_1}}$$

for the flow of a thermally perfect gas across an oblique shock wave can be determined from the normal-shock relations,

provided that M_1 sin θ is used instead of M_1 and that the static temperature T_1 just upstream of the shock wave is the same for the oblique shock wave as for the normal shock wave.

PRANDTL-MEYER EXPANSION

The Prandtl-Meyer angle for the flow of an imperfect gas can be found by graphically integrating the equation (see ref. 8)

$$\nu = -\int_{p_0}^{p} \frac{dp}{\rho V^2 \tan \mu} \quad [isen] \tag{199}$$

The relations between p, ρ , V, and μ can be found with the

aid of equations (5), (187), (183), and (185). For a thermally perfect gas this equation becomes (see, again, ref. 8)

$$\nu = -\int_{p_0}^{p} \frac{\sin 2\mu}{2\gamma p} dp \quad [\text{isen, therm perf}]$$

The relations between γ , p, and μ can be found with the aid of equations (180), (189), and (186) using the temperature as a parameter. The graphical integration of equation (200) has been carried out, and the variations of $\nu_{\text{therm perf}}$ and

 $\frac{\nu_{\text{therm perf}}}{\nu_{\text{perf}}}$ with Mach number for various values of total temperature are presented in chart 24.

APPENDIX A

VISCOSITY AND THERMODYNAMIC CONSTANTS FOR AIR

VISCOSITY

The viscosity of air is nearly independent of pressure; the variation with absolute temperature, between temperatures of about 300° R and 900° R, may be approximated by the formula

$$\frac{\mu}{\mu_*} = \left(\frac{T}{T_*}\right)^{0.76} \tag{A1}$$

For a wider range of temperatures, between about 180° R and 3400° R, Sutherland's formula (see ref. 19) is more accurate:

$$\frac{\mu}{\mu_r} = \frac{T_r + 198.6}{T + 198.6} \left(\frac{T}{T_r}\right)^{3/2} \tag{A2}$$

The viscosity of air, as determined from this relation, may be expressed as

$$\mu = 2.270 \frac{T^{3/2}}{T + 198.6} \times 10^{-8} \frac{\text{lb sec}}{\text{ft}^2}$$
 (A3)

This latter equation has been employed in the calculations of Reynolds number (chart 25).

THERMODYNAMIC CONSTANTS

The value of γ employed for air, when treated as a completely perfect gas, is 7/5. This simple value, which has been employed in table I, table II, charts 1 to 4, and chart 25, is a good approximation to the more precise values obtained from spectroscopic measurements (see ref. 20). Values of c_p , c_p , and R for air, consistent with the approximation $\gamma = 7/5$, are

$$c_p = 6006 \text{ ft}^2/\text{sec}^2 \text{ °R}$$

 $c_t = 4290 \text{ ft}^2/\text{sec}^2 \text{ °R}$
 $R = 1716 \text{ ft}^2/\text{sec}^2 \text{ °R}$

APPENDIX B

REYNOLDS NUMBER

Reynolds number is defined as

$$R = \frac{\rho V l}{\mu} \tag{B1}$$

For sea-level conditions,

$$R \cong 10.000 \ (V \text{ in mph}) \ (l \text{ in ft})$$
 (B2)

In a wind tunnel (subsonic or supersonic), if isentropic expansion is assumed from a total pressure p_t and equation

(A2) is used for the variation of viscosity with temperature, the Reynolds number per unit reference length is given by

$$\frac{R}{l} = \frac{p_t M}{\mu_t} \sqrt{\frac{\gamma}{(\gamma - 1)c_s T_t}} \left(\frac{T_t}{T}\right)^{\frac{\gamma - 2}{\gamma - 1}} \frac{T_t}{T_t} + \frac{198.6}{T_t} \quad \text{[perf]} \quad \text{(B3)}$$

The Reynolds number per unit length for $p_i=1$ psia has been plotted in chart 25 as a function of M for various total temperatures T_i .

APPENDIX C

PRESSURE CONVERSION FACTORS AND CONSTANTS

Multiply—— by to obtain	lb in.2	lb ft²	in. H ₂ O at 70° F	in. Hg at 70° F	em. Hg at 70° F	Standard atmos- pheres
lb/in.² lb/ft² in. H₂O (70° F) in. Hg. (70° F) cm. Hg. (70° F) Standard atmospheres	1	0. 006944	0. 03607	0. 4892	0. 1926	14. 70
	144	1	5. 194	70. 45	27. 74	2117
	27, 73	. 1925	1	13. 56	5. 340	407. 6
	2, 044	. 01420	. 07373	1	. 3937	30. 05
	5, 192	. 03605	. 1873	2. 540	1	76. 33

REFERENCES

- The Staff of the Ames 1- by 3-Foot Supersonic Wind-Tunnel Section: Notes and Tables for Use in the Analysis of Supersonic Flow. NACA TN 1428, 1947.
- Burcher, Marie A.: Compressible Flow Tables for Air. NACA TN 1592, 1948.
- Neice, Mary M.: Tables and Charts of Flow Parameters Across Oblique Shocks. NACA TN 1673, 1948.
- Moeckel, W. E., and Connors, J. F.: Charts for the Determination of Supersonic Air Flow Against Inclined Planes and Axially Symmetric Cones. NACA TN 1373, 1947.
- Anon.: Handbook of Supersonic Aerodynamics. Bur. of Ord., Navy Dept. NAVORD Rep. 1488, 1950.
- Mass. Inst. of Tech., Dept. of Elect. Engr., Center of Analysis.
 Tables of Supersonic Flow Around Cones by the Staff of the Computing Section, under the direction of Zdenek Kopal. Tech. Rep. no. 1. Cambridge, 1947.
- Eggers, A. J., Jr.: One-Dimensional Flows of an Imperfect Diatomic Gas. NACA Rep. 959, 1950.
- Eggers, A. J., Jr., and Syvertson, Clarence A.: Inviscid Flow About Airfoils at High Supersonic Speeds. NACA TN 2646, 1952.
- Van der Waals, J. D.: The Continuity of the Liquid and Gaseous States. Physical Memoirs, Physical Society of London, vol. I. pt. 3, 1888-90, pp. 332-496.
- Beattie, J. A., and Bridgeman, Oscar C.: A New Equation of State for Fluids. Proc. Amer. Acad. of Arts and Sci., vol. 63, no. 5, Dec. 1928, pp. 229-308.
- Courant, R., and Friedrichs, K. O.: Supersonic Flow and Shock Waves. Interscience Publishers, Inc., New York, 1948.
- Thompson, M. J.: A Note on the Calculation of Oblique Shock-Wave Characteristics. Jour. Aero. Sci., vol. 17, no. 11, Nov. 1950, pp. 741-744.
- Stone, A. H.: On Supersonic Flow Past a Slightly Yawing Cone. Jour. Math. and Phys., vol. XXVII. no. 1, April 1948, pp. 67-81.
- Mass. Inst. of Tech., Dept. of Elect. Engr., Center of Analysis-Tables of Supersonic Flow Around Yawing Cones by the Staff of the Computing Section, under the direction of Zdenek Kopal. Tech. Rep. no. 3. Cambridge, 1947.
- Stone, A. H.: On Supersonic Flow Past a Slightly Yawing Cone II. Jour. Math. and Phys., vol. XXX, no. 4, Jan. 1952.
- 16. Mass. Inst. of Tech., Dept. of Elect. Engr., Center of Analysis. Tables of Supersonic Flow Around Cones of Large Yaw by the Staff of the Computing Section under the direction of Zdenek Kopal. Tech. Rep. no. 5. Cambridge, 1949.
- Moore, Franklin K.: Laminar Boundary Layer on a Circular Cone in Supersonic Flow at a Small Angle of Attack. NACA TN 2521, 1951.
- Ferri, Antonio: Supersonic Flow Around Circular Cones at Angles of Attack. NACA Rep. 1045, 1951. (Supersedes NACA TN 2236.)
- 19. Anon.: The NBS-NACA Tables of Thermal Properties of Gases.

Table 2.39 Dry Air, Coefficients of Viscosity. F. C. Morecomp., National Bureau of Standards. Dec. 1950.

20. Anon.: The NBS-NACA Tables of Thermal Properties of Ga. Table 2.10 Dry Air (Ideal Gas State), Specific Heat, Enthal Entropy. Harold W. Wooley, comp., National Bureau Standards. July 1949.

TABLES

The tables that follow contain numerical values for certain quantities often required for the solution of problems in compressible flow. The symbols used in these tables are the same as those used in the preceding sections. For convenience, however, the symbols are redefined at the end of table II.

To conserve space, a modified computing-machine notation has been adopted to indicate the position of the decimal point in the tabulated quantities. The location of the decimal point is governed by the following rules:

(a) A group of digits followed by _n indicates that the decimal point should be n places to the left of the first digit.

Example: $.3268_{-3} = .0003268$

(b) A group of digits followed by +n indicates that the decimal point should be n places to the right of the last digit.

Example: $3268_{+3} = 3,268,000$

(c) A group of digits without a suffix indicates that the decimal point is correctly located as printed.

TABLE I.—SUBSONIC FLOW

The ratios given by equations (43), (44), (45), (48), (5 and (83) are given as functions of Mach number. If, at point in an isentropic flow, any one of these ratios or the Mach number is known, then all other ratios for that point can be read or interpolated from the table. In addition, the parameter $\beta = \sqrt{|M^2 - 1|}$, which is sometimes more convenient to use than the Mach number itself, is also tabulated.

TABLE II.—SUPERSONIC FLOW

The ratios given in table I for subsonic flow are also given in table II for supersonic flow. The Mach angle μ and the Prandtl-Meyer angle ν are also given as functions of Mach number. In addition to these point functions for isentropic flow, the normal-shock relations given by equations (93), (94), (95), (96), (99), and (100) are tabulated as functions of the Mach number M_1 ahead of the shock wave. Although these values are for normal shock waves, the values of p_2/p_1 , ρ_2/ρ_1 , T_2/T_1 , and p_{t_2}/p_{t_1} may also be used for oblique shock waves, provided $M_1 \sin \theta$ is used instead of M_1 in the first column.

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

TABLE I.—SUBSONIC FLOW

 $\gamma = 7/3$

М	$\frac{p}{p_i}$	<u> </u>	$\frac{T}{T_i}$	В	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	<u>1.</u>	М	$\frac{p}{p_i}$	<u>ρ</u>	$\frac{T}{T}$,	B	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	<u>1'</u>
0 .01 .02 .03 .04	1.0000 .9999 .9997 .9994 .9989	1. 0000 1. 0000 . 9998 . 9996 . 9992	1,0000 1,0000 ,9999 ,9995 ,9995	1, 0000 1, 0000 , 9998 , 9995 , 9992	.7000 -4 .2799 -3 .6296 -3 .1119 -2	57, 8738 28, 9421 19, 3005 14, 4815	0 . 01095 . 02191 . 03286 . 04381	0. 50 . 51 . 52 . 53 . 54	0. 8430 8374 . 8317 . 8259 . 8201	0. 8852 . 8809 . 8766 . 8723 . 8679	0. 9524 . 9506 . 9487 . 9468 . 9449	0. 8660 - 8602 - 8542 - 8480 - 8417	0. 1475 . 1525 . 1574 . 1624 . 1674	1, 3398 1, 3212 1, 3034 1, 2865 1, 2703	0. 53452 . 54469 . 55483 . 56493 . 57501
. 05	. 9983	. 9988	. 9995	. 9987	. 1747 -2	11, 5914	. 05476	. 55	. 8142	. 8634	. 9430	. 8352	. 1724	1. 2550	. 58506
. 06	. 9975	. 9932	. 5993	. 9982	. 2514 -2	9, 6659	. 06570	. 56	. 8082	. 8589	. 9410	. 8285	. 1774	1. 2403	. 59507
. 07	. 9966	. 9976	. 9990	. 9975	. 3418 -2	8, 2915	. 07664	. 57	. 8022	. 8544	. 9390	. 8216	. 1825	1. 2263	. 60505
. 05	. 9955	. 9968	. 9987	. 9988	. 4460 -2	7, 2616	. 08758	. 58	. 7962	. 8498	. 9370	. 8146	. 1875	1. 2130	. 61501
. 09	. 9944	. 9960	. 9984	. 9959	. 5638 -2	6, 4613	. 09851	. 59	. 7901	. 8451	. 9349	. 8074	. 1925	1. 2003	. 62492
. 10	. 9930	. 9950	. 9950	. 9950	. 6951 -2	5, 8218	. 10944	. 60	. 7840	. 8405	. 9328	. 8000	. 1976	1. 1882	. 63481
. 11	. 9916	. 9940	. 9976	. 9939	. 8399 -2	5, 2992	. 12035	. 61	. 7778	. 8357	. 9307	. 7924	. 2026	1. 1767	. 64466
. 12	. 9900	. 9928	. 9971	. 9928	. 9979 -2	4, 8643	. 13126	. 62	. 7716	. 8310	. 9286	. 7846	. 2076	1. 1657	. 65448
. 13	. 9383	. 9916	. 9966	. 9915	. 1169 -1	4, 4969	. 14217	. 63	. 7654	. 8262	. 9265	. 7766	. 2127	1. 1552	. 66127
. 14	. 9364	. 9903	. 9961	. 9902	. 1353 -1	4, 1824	. 15306	. 64	. 7591	. 8213	. 9243	. 7684	. 2177	1. 1452	. 67402
. 15 . 16 . 17 . 18 . 19	. 9344 . 9323 . 9800 . 9776 . 9751	. 9888 . 9873 . 9857 . 9340 . 9822	. 9955 . 9949 . 9943 . 9966 . 9928	. 9887 . 9871 . 9854 . 9837 . 9818	. 1550 =1 . 1760 =1 . 1933 =1 . 2217 =1 . 2464 =1	3, 9103 3, 6727 3, 4635 3, 2779 3, 1123	. 16395 . 17482 . 18569 . 19654 . 20739	. 65 . 66 . 67 . 69	. 7528 . 7465 . 7401 . 7338 . 7274	. 8164 . 8115 . 8066 . 8016 . 7966	. 9221 . 9199 . 9176 . 9153 . 9131	. 7599 . 7513 . 7424 . 7332 . 7238	. 2227 . 2276 . 2326 . 2375 . 2424	1. 1356 1. 1265 1. 1179 1. 1097 1. 1018	. 68374 . 69342 . 70307 . 71263 . 72225
. 20 . 21 . 22 . 23 . 24	. 9725 . 9697 . 9668 . 9638 . 9607	. 9303 . 9783 . 9762 . 9740 . 9718	. 9921 . 9913 . 9904 . 9395 . 9886	. 9795 . 9777 . 9755 . 9732 . 9708	. 2723 -1 . 2994 -1 . 3276 -1 . 3569 -1 . 3874 -1	2, 9635 2, 8293 2, 7076 2, 5968 2, 4956	. 21822 . 22904 . 23984 . 25063 . 26141	. 70 . 71 . 72 . 73 . 74	. 7209 . 7145 . 7080 . 7016 . 6951	. 7916 . 7865 . 7814 . 7763 . 7712	. 9107 . 9084 . 9061 . 9037	. 7141 . 7042 . 6940 . 6834 . 6726	. 2473 . 2521 . 2569 . 2617 . 2664	1. 0944 1. 0873 1. 0806 1. 0742 1. 0681	. 73179 . 74129 . 75076 . 76019 . 76958
. 25	. 9575	. 9694	. 9877	. 9682	. 4189	2, 4027	. 27217	. 75	. 6886	. 7660	. 8989	. 6614	. 2711	1. 0624	. 77894
. 26	. 9541	. 9670	. 9367	. 9656		2, 3173	. 28291	. 76	. 6821	. 7609	. 8964	. 6499	. 2758	1. 0570	. 78825
. 27	. 9506	. 9645	. 9356	. 9629		2, 2385	. 29364	. 77	. 6756	. 7557	. 8940	. 6380	. 2804	1. 0519	. 79753
. 28	. 9470	. 9619	. 9346	. 9600		2, 1656	. 30435	. 78	. 6691	. 7505	. 8915	. 6258	. 2849	1. 0471	. 80677
. 29	. 9433	. 9592	. 9435	. 9570		2, 0979	. 31504	. 79	. 6625	. 7452	. 8890	. 6131	. 2894	1. 0425	. 81597
.30	. 9395	. 9564	. 9823	. 9539	. 5919 -1	2. 0351	. 32572	. 80	. 6560	. 7400	. 8865	. 6000	. 2939	1. 0382	. 82514
.31	. 9355	. 9535	. 9811	. 9507	. 6293 -1	1. 9765	. 33637	. 81	. 6495	. 7347	. 8840	. 5864	. 2983	1. 0342	. 83425
.32	. 9315	. 9506	. 9799	. 9474	. 6677 -1	1. 9219	. 34701	. 82	. 6430	. 7295	. 8815	. 5724	. 3027	1. 0305	. 84335
.33	. 9274	. 9476	. 9787	. 9440	. 7069 -1	1. 8707	. 35762	. 83	. 6365	. 7242	. 8789	. 5578	. 3069	1. 0270	. 85239
.34	. 9231	. 9445	. 9774	. 9404	. 7470 -1	1. 8229	. 36822	. 84	. 6300	. 7189	. 8763	. 5426	. 3112	1. 0237	. 86140
.35	. 9188	. 9413	. 9761	. 9367	7879 -1	1. 7780	.37879	. 85	. 6235	. 7136	. 8737	. 5265	.3153	1. 0207	. 87037
.36	. 9143	. 9380	. 9747	. 9330	8295 -1	1. 7358	.38935	. 86	. 6170	. 7083	. 8711	. 5103	.3195	1. 0179	. 87929
.37	. 9098	. 9347	. 9733	. 9290	8719 -1	1. 6961	.39988	. 87	. 6106	. 7030	. 8685	. 4931	.3235	1. 0153	. 88918
.38	. 9052	. 9313	i . 9719	. 9250	9149 -1	1. 6587	.41039	. 88	. 6041	. 6977	. 8659	. 4750	.3275	1. 0129	. 89703
.39	. 9004	. 9278	. 9705	. 9208	9587 -1	1. 6234	.42087	. 89	. 5977	. 6924	. 8632	. 4560	.3314	1. 0108	. 90583
.40	. 8956	. 9243	. 9690	. 9165	. 1003	1, 5901	. 43133	. 90	. 5913	. 6870	. 8606	. 4359	.3352	1.0089	. 91460
.41	. 8907	. 9207	9675	. 9121	. 1048	1, 5587	. 44177	. 91	. 5849	. 6817	. 8579	. 4146	.3390	1.0071	. 92332
.42	. 8857	. 9170	9659	. 9075	. 1094	1, 5289	. 45218	. 92	. 5785	. 6764	. 8552	. 3919	.3427	1.0056	. 93201
.43	. 8807	. 9132	9643	. 9028	. 1140	1, 5007	. 46257	. 93	. 5721	. 6711	. 8525	. 3676	.3464	1.0043	. 94065
.44	. 8755	. 9094	9627	. 8980	. 1187	1, 4740	. 47293	. 94	. 5658	. 6658	. 8498	. 3412	.3500	1.0031	. 94925
.45 .46 .47 .48	. 8703 . 8650 . 8596 . 8541 . 8486	. 9055 . 9016 . 8976 . 8935 . 8894	. 9611 . 9594 . 9577 . 9560 . 9542	. 8930 . 8879 . 8827 . 8773 . 8717	. 1234 . 1281 . 1329 . 1376 . 1426	1. 4487 1. 4246 1. 4018 1. 3801 1. 3595	. 48326 . 49357 . 50385 . 51410 . 52433	. 95 . 96 . 97 . 98 . 99	. 5595 . 5532 . 5169 . 5407 . 5345	. 6604 . 6551 . 6498 . 6445 . 6392	. 8471 . 8444 . 8416 . 8389 . 8361	.3122 .2800 .2431 .1990 .1411	. 3534 . 3569 . 3602 . 3635 . 3667	1. 0022 1. 0014 1. 0008 1. 0003 1. 0001	. 95781 . 96633 . 97481 . 95325 . 99165
:								1.00	. 523 3	. 6339	. 8333	. 0000	. 3698	1, 0000	1.00000

TABLE II.—SUPERSONIC FLOW

M_i or M_i	$\frac{p}{p_i}$	$\frac{\rho}{\rho_i}$	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{1}{a_{\bullet}}$,	μ	M ₂	$\frac{p_2}{p_1}$	<u>P:</u>	$rac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{I_2}}$
1.00	0. 5283	0. 6339	0. 8333	0	0.3693	1.000	1. 00000	0	90.00	1.000	1.000	1.000	1.000	1.000	0. 5283
1.01	. 5221	. 6237	. 8306	. 1418	. 3728	1.000	1.00831	. 04473	61.9 3	. 9901	1.023	1.017	1.007	1.000	. 5221
1.02	. 5160	. 6234	. 8278	. 2010	. 3755	1.000	1.01658	. 1257	78.64	. 9805	1.047	1. 033	1.013	1.000	. 5160 . 5100
1.03	. 5099	. 6181 . 6129	8250	. 2468	. 3787 . 3815	1, 001 1, 001	1. 02481 1. 03300	. 2294	76. 14	. 9712	1.071	1. 050	1. 020 1. 026	1.000 .9999	. 5039
1.04	. 5059	. 6129	. 8222	. 2857	. 3815	1.001	1.03300	. 3510	74.0 6	. 9620	1.095	1.067	1.026	. 9999	. 3039
1.05	. 4979	. 6077	. 8193	.3202	. 3842	1.002	1.04114	. 4874	72. 25	. 9531	1. 120	1.084	1.033	. 9999	. 4980
1.06	. 4919	6021	. 8165	.3516	. 3869	1.003	1.04925	. 6367	70.63	. 9144	1. 144	1. 101	1.039	. 9997	. 4920
1. 07	. 4860	. 5972	. 8137	. 3807	. 3895	1.004	1. 05731	. 7973	69. 16	. 9360	1. 169	1.118	1.046	. 9996	. 4861
1.08	. 4800	. 5920	. 8108	. 4079	. 3919	1.005	1.06533	. 9580	67. 81	. 9277	1. 194	1, 135	1.052	. 9994	. 4803
1.09	. 4742	. 5869	. 8080	. 4337	. 3944	1.006	1.07331	1. 148	6 6. 5 5	. 9196	1. 219	1.152	1. C59	. 9992	. 4746
1. 10	. 4684	. 5817	. 8052	. 4583	. 3967	1,008	1.08124	1.336	65.38	. 9118	1, 245	1. 169	1.065	. 9939	. 4689
1. 11	. 4626	. 5766	. 8023	. 4818	. 3990	1.010	1.08913	1.532	64, 28	. 9041	1, 271	1. 186	1.071	. 9986	. 4632
1.12	. 4568	. 5714	. 7994	. 5044	. 4011	1.011	1.09699	1.735	63. 23	. 8966	1. 297	1. 203	1.078	. 9982	. 4576
1. 13	. 4511	. 5663	. 7966	. 5262	. 4032	1.013	1. 10479	1.944	62, 25	. 8892	1.323	1. 221	1.084	. 9978	. 4521
1.14	. 4455	. 5612	. 7937	. 5474	. 4052	1.015	1. 11256	2. 160	61.31	. 8820	1.350	1. 238	1.090	. 9973	. 4467
1, 15	. 4398	. 5562	. 7908	. 5679	. 4072	1, 017	1. 12029	2, 381	60.41	. 8750	1.376	1. 255	1.097	. 9967	. 4413
1. 16	. 4343	. 5511	. 7879	. 5879	. 4090	1.020	1. 12797	2, 607	59. 55	. 8682	1.403	1. 272	1, 103	. 9961	, 4360
1. 17	. 4287	. 5461	. 7851	. 6074	. 4105	1.022	1. 13561	2, 839	55. 73	. 8615	1, 430	1. 290	1, 109	. 9953	. 4307
1. 18	. 4232	. 5411	. 7822	. 6264	. 4125	1.025	1. 14321	3.074	57. 94	. 8549	1, 458	1. 307	1. 115	. 9946	. 4255
1. 19	. 4178	. 5361	. 7793	. 6451	. 4141	1. 026	1. 15077	3.314	57. 18	. 8485	1.485	1.324	1. 122	. 9937	. 4204
1. 20	. 4124	. 5311	. 7764	. 6633	. 4157	1.030	1. 15828	3, 558	56, 44	. 8422	1, 513	1.342	1. 128	. 9924	. 4154
1. 21	. 4070	. 5262	. 7735	. 6812	. 4171	1.033	1. 16575	3.806	55. 74	. 8360	1. 541	1.359	1. 134	. 9918	. 4104
1.22	. 4017	. 5213	. 7706i	. 6989	. 4185	1.037	1. 17319	4. 057	55. 05	. 8300	1. 570	1.376	1, 141	. 9907	. 4055
1. 23	. 3964	. 5164	. 7677	. 7162	. 4198	1.040	1. 18057	4.312	54.39	. 8241	1. 595	1.394	1. 147	. 9896	. 4006
1. 24	. 3912	. 5115	. 7648	. 7332	. 4211	1.043	1. 18792	4. 569	53, 75	. 8183	1.627	1.411	1. 153	. 9884	. 3955

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

							7= 1/3								
M or M_1	p p	<u>P</u>	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	1' a.	,	μ	M ₂	$\frac{p_2}{p_1}$	<u>ρ2</u> ρ1	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
1. 25	. 3861	. 5067	. 7619	. 7500	. 4223	1. 047	1. 19523	4. 830	53. 13	. 8126	1. 656	1, 429	1. 159	. 9871	. 3911
1. 26	. 3809	. 5019	. 7590	. 7666	. 4233	1. 050	1. 20249	5. 093	52. 53	. 8071	1. 686	1, 446	1. 166	. 9857	. 3865
1. 27	. 3759	. 4971	. 7561	. 7829	. 4244	1. 054	1. 20972	5. 359	51. 94	. 8016	1. 715	1, 463	1. 172	. 9842	. 3819
1. 28	. 3708	. 4923	. 7532	. 7990	. 4253	1. 058	1. 21690	5. 627	51. 38	. 7963	1. 745	1, 481	1. 178	. 9827	. 3774
1. 29	. 3658	. 4876	. 7503	. 8149	. 4262	1. 062	1. 22404	5. 898	50. 82	. 7911	1. 775	1, 498	1. 185	. 9811	. 3729
1. 30	.3609	. 4829	. 7474	. 8307	. 4270	1. 066	1. 23114	6. 170	50, 28	. 7860	1, 805	1. 516	1. 191	. 9794	.3685
1. 31	.3560	. 4782	. 7445	. 8462	. 4277	1. 071	1. 23819	6. 445	49, 76	. 7809	1, 835	1. 533	1. 197	. 9776	.3642
1. 32	.3512	. 4736	. 7416	. 8616	. 4283	1. 075	1. 24521	6. 721	49, 25	. 7760	1, 866	1. 551	1. 204	. 9758	.3599
1. 33	.3464	. 4690	. 7387	. 8769	. 4289	1. 080	1. 25218	7. 000	48, 75	. 7712	1, 897	1. 568	1. 210	. 9738	.3557
1. 34	.3417	. 4644	. 7358	. 8920	. 4294	1. 084	1. 25912	7. 280	48, 27	. 7664	1, 928	1. 585	1. 216	. 9718	.3516
1. 35	.3370	. 4598	. 7329	. 9069	.4299	1. 089	1. 26601	7, 561	47. 79	.7618	1. 960	1, 603	1. 223	. 9697	.3475
1. 36	.3323	. 4553	. 7300	. 9217	.4303	1. 094	1. 27286	7, 844	47. 33	.7572	1. 991	1, 620	1. 229	. 9676	.3435
1. 37	.3277	. 4508	. 7271	. 9364	.4306	1. 099	1. 27968	8, 128	46. 88	.7527	2. 023	1, 635	1. 235	. 9653	.3395
1. 38	.3232	. 4463	. 7242	. 9510	.4308	1. 104	1. 28645	8, 413	46. 44	.7483	2. 055	1, 655	1. 242	. 9630	.3356
1. 39	.3187	. 4418	. 7213	. 9655	.4310	1. 109	1. 29318	8, 699	46. 01	.7440	2. 087	1, 672	1. 248	. 9607	.3317
1. 40	.3142	. 4374	.7184	. 9798	.4311	1. 115	1, 29987	8, 987	45, 58	. 7397	2. 120	1. 690	1. 255	. 9582	.3280
1. 41	.3098	. 4330	.7155	. 9940	.4312	1. 120	1, 30652	9, 276	45, 17	. 7355	2. 153	1. 707	1. 261	. 9557	.3242
1. 42	.3055	. 4287	.7126	1. 008	.4312	1. 126	1, 31313	9, 565	44, 77	. 7314	2. 186	1. 724	1. 268	. 9531	.3205
1. 43	.3012	. 4244	.7097	1. 022	.4311	1. 132	1, 31970	9, 855	44, 37	. 7274	2. 219	1. 742	1. 274	. 9504	.3169
1. 44	.2969	. 4201	.7069	1. 036	.4310	1. 138	1, 32623	10, 146	43, 98	. 7235	2. 253	1. 759	1. 281	. 9476	.3133
1.45	. 2927	. 4158	. 7040	1. 050	. 4308	1. 144	1, 33272	10. 438	43. 60	.7196	2, 286	1, 776	1, 287	. 9448	. 3098
1.46	. 2886	. 4116	. 7011	1. 064	. 4306	1. 150	1, 33917	10. 731	43. 23	.7157	2, 320	1, 793	1, 294	. 9420	. 3063
1.47	. 2845	. 4074	. 6982	1. 077	. 4303	1. 156	1, 34558	11. 023	42. 86	.7120	2, 354	1, 811	1, 300	. 9390	. 3029
1.48	. 2804	. 4032	. 6954	1. 091	. 4299	1. 163	1, 35195	11. 317	42. 51	.7083	2, 389	1, 828	1, 307	. 9360	. 2996
1.49	. 2764	. 3991	. 6925	1. 105	. 4295	1. 169	1, 35828	11. 611	42. 16	.7047	2, 423	1, 845	1, 314	. 9329	. 2062
1.50	. 2724	. 3950	. 6897	1. 118	. 4290	1. 176	1, 36458	11. 905	41. 81	. 7011	2, 458	1.862	1. 320	. 9298	. 2930
1.51	. 2685	. 3909	. 6868	1. 131	. 4285	1. 183	1, 37083	12. 200	41. 47	. 6976	2, 493	1.879	1. 327	. 9266	. 2898
1.52	. 2646	. 3869	. 6840	1. 145	. 4279	1. 190	1, 37705	12. 495	41. 14	. 6941	2, 529	1.896	1. 334	. 9233	. 2866
1.53	. 2608	. 3829	. 6811	1. 158	. 4273	1. 197	1, 38322	12. 790	40. 81	. 6907	2, 564	1.913	1. 340	. 9200	. 2835
1.54	. 2570	. 3789	. 6783	1. 171	. 4266	1. 204	1, 38936	13. 086	40. 49	. 6874	2, 600	1.930	1. 347	. 9166	. 2804
1, 55	. 2533	.3750	. 6754	1. 184	. 4259	1, 212	1, 39546	13. 381	40. 18	. 6841	2, 636	1, 947	1.354	. 9132	. 2773
1, 56	. 2496	.3710	. 6726	1. 197	. 4252	1, 219	1, 40152	13. 677	39. 87	. 6809	2, 673	1, 964	1.361	. 9097	. 2744
1, 57	. 2459	.3672	. 6698	1. 210	. 4243	1, 227	1, 40755	13. 973	39. 56	. 6777	2, 709	1, 981	1.367	. 9061	. 2714
1, 58	. 2423	.3633	. 6670	1. 223	. 4235	1, 234	1, 41353	14. 269	39. 27	. 6746	2, 746	1, 998	1.374	. 9026	. 2685
1, 59	. 2388	.3595	. 6642	1. 236	. 4226	1, 242	1, 41948	14. 564	38. 97	. 6715	2, 783	2, 015	1.381	. 8989	. 2656
1.60	.2353	.3557	. 6614	1, 249	. 4216	1. 250	1, 42539	14.861	38. 68	. 6684	2, 820	2. 032	1.388	. 8952	. 2628
1.61	.2318	.3520	. 6586	1, 262	. 4206	1. 258	1, 43127	15.156	38. 40	. 6655	2, 857	2. 049	1.395	. 8915	. 2600
1.62	.2284	.3483	. 6558	1, 275	. 4196	1. 267	1, 43710	15.452	38. 12	. 6625	2, 895	2. 065	1.402	. 8877	. 2573
1.63	.2250	.3446	. 6530	1, 287	. 4185	1. 275	1, 44290	15.747	37. 84	. 6596	2, 933	2. 082	1.409	. 8838	. 2546
1.64	.2217	.3409	. 6502	1, 300	. 4174	1. 284	1, 44866	16.043	37. 57	. 6568	2, 971	2. 099	1.416	. 8799	. 2519
1.65	.2184	.3373	. 6475	1.312	. 4162	1. 292	1. 45439	16. 338	37. 31	. 6540	3. 010	2. 115	1. 423	.8760	. 2493
1.66	.2151	.3337	. 6447	1.325	. 4150	1. 301	1. 46008	16. 633	37. 04	. 6512	3. 048	2. 132	1. 430	.8720	. 2467
1.67	.2119	.3302	. 6419	1.337	. 4138	1. 310	1. 46573	16. 928	36. 78	. 6485	3. 087	2. 148	1. 437	.8680	. 2442
1.68	.2088	.3266	. 6392	1.350	. 4125	1. 319	1. 47135	17. 222	36. 53	. 6458	3. 126	2. 165	1. 444	.8640	. 2417
1.69	.2057	.3232	. 6364	1.362	. 4112	1. 328	1. 47693	17. 516	36. 28	. 6431	3. 165	2. 181	1. 451	.8598	. 2392
1.70	. 2026	.3197	. 6337	1. 375	.4098	1. 338	1. 48247	17. 810	36. 03	. 6405	3, 205	2, 198	1, 458	.8557	. 2368
1.71	. 1996	.3163	. 6310	1. 387	.4085	1. 347	1. 48798	18. 103	35. 79	. 6380	3, 245	2, 214	1, 466	.8516	. 2344
1.72	. 1966	.3129	. 6283	1. 399	.4071	1. 357	1. 49345	18. 397	35. 55	. 6355	3, 285	2, 230	1, 473	.8474	. 2320
1.73	. 1936	.3095	. 6256	1. 412	.4056	1. 367	1. 49889	18. 689	35. 31	. 6330	3, 325	2, 247	1, 480	.8431	. 2296
1.74	. 1907	.3062	. 6229	1. 424	.4041	1. 376	1. 50429	18. 981	35. 08	. 6305	3, 366	2, 263	1, 487	.8389	. 2273
1.75	.1878	.3029	.6202	1. 436	. 4026	1. 386	1, 50966	19. 273	34, 85	.6281	3, 406	2. 279	1, 495	.8346	. 2251
1.76	.1850	.2996	.6175	1. 448	. 4011	1. 397	1, 51499	19. 565	34, 62	.6257	3, 447	2. 295	1, 502	.8302	. 2228
1.77	.1822	.2964	.6148	1. 460	. 3996	1. 407	1, 52029	19. 855	34, 40	.6234	3, 488	2. 311	1, 509	.8259	. 2206
1.78	.1794	.2931	.6121	1. 473	. 3980	1. 418	1, 52555	20. 146	34, 18	.6210	3, 530	2. 327	1, 517	.8215	. 2184
1.79	.1767	.2900	.6095	1. 485	. 3964	1. 428	1, 53078	20. 436	33, 96	.6188	3, 571	2. 343	1, 524	.8171	. 2163
1.80	.1740	. 2868	. 6068	1. 497	. 3947	1. 439	1. 53598	20. 725	33. 75	. 6165	3. 613	2, 359	1, 532	.8127	. 2142
1.81	.1714	. 2837	. 6041	1. 509	. 3931	1. 450	1. 54114	21. 014	33. 54	. 6143	3. 655	2, 375	1, 539	.8082	. 2121
1.82	.1688	. 2806	. 6015	1. 521	. 3914	1. 461	1. 54626	21. 302	33. 33	. 6121	3. 698	2, 391	1, 547	.8038	. 2100
1.83	.1662	. 2776	. 5989	1. 533	. 3897	1. 472	1. 55136	21. 590	33. 12	. 6099	3. 740	2, 407	1, 554	.7993	. 2000
1.84	.1637	. 2745	. 5963	1. 545	. 3879	1. 484	1. 55642	21. 877	32. 92	. 6078	3. 783	2, 422	1, 562	.7948	. 2060
1.85	. 1612	. 2715	. 5936	1. 556	. 3862	1. 495	1. 56145	22. 163	32. 72	. 6057	3. 826	2. 438	1, 569	. 7902	. 2040
1.86	. 1587	. 2686	. 5910	1. 568	. 3844	1. 507	1. 56644	22. 449	32. 52	. 6036	3. 870	2. 454	1, 577	. 7857	. 2020
1.67	. 1563	. 2656	. 5884	1. 580	. 3826	1. 519	1. 57140	22. 735	32. 33	. 6016	3. 913	2. 469	1, 585	. 7811	. 2001
1.88	. 1539	. 2627	. 5859	1. 592	. 3808	1. 531	1. 57633	23. 019	32. 13	. 5996	3. 957	2. 485	1, 592	. 7765	. 1982
1.89	. 1516	. 2598	. 5833	1. 604	. 3790	1. 543	1. 58123	23. 303	31. 94	. 5976	4. 001	2. 500	1, 600	. 7720	. 1963
1. 90	. 1492	. 2570	. 5807	1, 616	.3771	1. 555	1. 58609	23. 586	31. 76	. 5956	4, 045	2. 516	1, 608	. 7674	. 1945
1. 91	. 1470	. 2542	. 5782	1, 627	.3753	1. 568	1. 59092	23. 869	31. 57	. 5937	4, 089	2. 531	1, 616	. 7627	. 1927
1. 92	. 1447	. 2514	. 5756	1, 639	.3734	1. 580	1. 59572	24. 151	31. 39	. 5918	4, 134	2. 546	1, 624	. 7581	. 1909
1. 93	. 1425	. 2486	. 5731	1, 651	.3715	1. 593	1. 60049	24. 432	31. 21	. 5899	4, 179	2. 562	1, 631	. 7535	. 1891
1. 94	. 1403	. 2459	. 5705	1, 662	.3696	1. 606	1. 60523	24. 712	31. 03	. 5880	4, 224	2. 577	1, 639	. 7488	. 1873
1. 95	. 1381	. 2432	. 5680	1, 674	. 3677	1. 619	1. 60993	24. 992	30, 85	. 5862	4. 270	2. 592	1, 647	. 7442	. 1856
1. 96	. 1360	. 2405	. 5655	1, 686	. 3657	1. 633	1. 61460	25. 271	30, 68	. 5844	4. 315	2. 607	1, 655	. 7395	. 1839
1. 97	. 1339	. 2378	. 5630	1, 697	. 3638	1. 646	1. 61925	25. 549	30, 51	. 5826	4. 361	2. 622	1, 663	. 7349	. 1822
1. 98	. 1318	. 2352	. 5605	1, 709	. 3618	1. 660	1. 62386	25. 827	30, 33	. 5808	4. 407	2. 637	1, 671	. 7302	. 1806
1. 99	. 1298	. 2326	. 5580	1, 720	. 3598	1. 674	1. 62844	26. 104	30, 17	. 5791	4. 453	2. 652	1, 679	. 7255	. 1789
2. 00	. 1278	. 2300	. 5556	1. 732	.3579	1. 688	1. 63299	26, 380	30, 00	. 5774	4, 500	2. 667	1, 688	. 7209	. 1773
2. 01	. 1258	. 2275	. 5531	1. 744	.3559	1. 702	1. 63751	26, 655	29, 84	. 5757	4, 547	2. 681	1, 696	. 7162	. 1757
2. 02	. 1239	. 2250	. 5506	1. 755	.3539	1. 716	1. 64201	26, 929	29, 67	. 5740	4, 594	2. 696	1, 704	. 7115	. 1741
2. 03	. 1220	. 2225	. 5482	1. 767	.3516	1. 730	1. 64647	27, 203	29, 51	. 5723	4, 641	2. 711	1, 712	. 7069	. 1726
2. 04	. 1201	. 2200	. 5458	1. 778	.3498	1. 745	1. 65090	27, 476	29, 35	. 5707	4, 689	2. 725	1, 720	. 7022	. 1710
2. 05	.1182	.2176	. 5433	1. 790	.3478	1. 760	1, 65530	27, 748	29. 20	. 5691	4, 736	2, 740	1, 729	. 6975	. 1695
2. 06	.1164	.2152	. 5409	1. 801	.3458	1. 775	1, 65967	28, 020	29. 04	. 5675	4, 784	2, 755	1, 737	. 6925	. 1680
2. 07	.1146	.2128	. 5385	1. 812	.3437	1. 790	1, 66402	28, 290	28. 89	. 5659	4, 832	2, 769	1, 745	. 6882	. 1665
2. 08	.1128	.2104	. 5361	1. 824	.3417	1. 806	1, 66833	28, 560	28. 74	. 5643	4, 881	2, 783	1, 754	. 6835	. 1651
2. 09	.1111	.2081	. 5337	1. 835	.3396	1. 821	1, 67262	28, 829	28. 59	. 5628	4, 929	2, 798	1, 762	. 6789	. 1636
2. 10	. 1094	. 2058	. 5313	1. 847	.3376	1. 837	1. 67687	29. 097	28. 44	. 5613	4. 978	2. 812	1. 770	. 6742	. 1622
2. 11	. 1077	. 2035	. 5290	1. 858	.3355	1. 853	1. 68110	29. 364	28. 29	. 5598	5. 027	2. 826	1. 779	. 6696	. 1608
2. 12	. 1060	. 2013	. 5266	1. 869	.3334	1. 869	1. 68530	29. 631	26. 14	. 5583	5. 077	2. 840	1. 787	. 6649	. 1594
2. 13	. 1043	. 1990	. 5243	1. 861	.3314	1. 885	1. 68947	29. 897	28. 00	. 5568	5. 126	2. 854	1. 796	. 6603	. 1580
2. 14	. 1027	. 1968	. 5219	1. 892	.3293	1. 902	1. 69362	30. 161	27. 86	. 5554	5. 176	2. 868	1. 805	. 6557	. 1567

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

TABLE II.—SUPERSONIC FLOW—Continued

f i	$\frac{p}{p_i}$	<u>ρ</u>	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	$\frac{\chi^*}{a_*}$	v	μ ;	M_2	$\frac{p_2}{p_1}$	<u>ρ:</u> ρ:	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{t_2}}$
2. 15 2. 16 2. 17 2. 18	. 1011 . 9956 -1 . 9802 -1 . 9649 -1	. 1946 . 1925 . 1903 . 1882	. 5196 . 5173 . 5150 . 5127	1, 903 1, 915 1, 926 1, 937 1, 948	. 3272 . 3252 . 3231 . 3210 . 3189	1. 919 1. 935 1. 953 1. 970 1. 987	1, 69774 1, 70183 1, 70589 1, 70992 1, 71393	30. 425 30. 689 30. 951 31. 212 31. 473	27. 72 27. 58 27. 44 27. 30 27. 17	. 5540 . 5525 . 5511 . 5498 . 5484	5, 226 5, 277 5, 327 5, 378 5, 429	2, 882 2, 896 2, 910 2, 924 2, 938	1. 813 1. 822 1. 831 1. 839 1. 848	. 6511 . 6464 . 6419 . 6373 . 6327	. 1553 . 1540 . 1527 . 1514 . 1502
2. 19 2. 20 2. 21 2. 22 2. 23 2. 24	. 9500 -1 . 9352 -1 . 9207 -1 . 9064 -1 . 8923 -1 . 8785 -1	. 1841 . 1820 . 1800 . 1780 . 1760	. 5104 . 5081 . 5059 . 5036 . 5014 . 4991	1. 960 1. 971 1. 982 1. 993 2. 004	.3169 .3148 .3127 .3106	2. 005 2. 023 2. 041 2. 059 2. 078	1. 71791 1. 72187 1. 72579 1. 72970 1. 73357	31. 732 31. 991 32. 250 32. 507 32. 763	27. 04 26. 90 26. 77 26. 64 26. 51	. 5471 . 5457 . 5444 . 5431 . 5418	5. 480 5. 531 5. 583 5. 636 5. 687	2. 951 2. 965 2. 978 2. 992 3. 005	1, 857 1, 866 1, 875 1, 883 1, 892	. 6281 . 6236 . 6191 . 6145 . 6100	. 1489 . 1476 . 1464 . 1452 . 1440
2. 25 2. 26 2. 27 2. 28 2. 29	. 8648 -1 . 8514 -1 . 8382 -1 . 8251 -1 . 8123 -1	. 1740 . 1721 . 1702 . 1683 . 1664	. 4969 . 4947 . 4925 . 4903 . 4881	2. 016 2. 027 2. 038 2. 049 2. 060	.3065 .3044 .3023 .3003 .2982	2, 096 2, 115 2, 134 2, 154 2, 173	1, 73742 1, 74125 1, 74504 1, 74882 1, 75257	33, 018 33, 273 33, 527 33, 780 34, 032	26, 39 26, 26 26, 14 26, 01 25, 89	. 5406 . 5393 . 5381 . 5368 . 5356	5, 740 5, 792 5, 845 5, 898 5, 951	3. 019 3. 032 3. 045 3. 058 3. 071	1, 901 1, 910 1, 919 1, 929 1, 938	. 6055 . 6011 . 5966 . 5921 . 5877	. 1428 . 1417 . 1405 . 1394 . 1382
2.30 2.31 2.32 2.33 2.34	.7997 -1 .7873 -1 .7751 -1 .7631 -1 .7512 -1	. 1646 . 1628 . 1609 . 1592 . 1574	. 4859 . 4837 . 4816 . 4794 . 4773	2, 071 2, 082 2, 093 2, 104 2, 116	. 2961 . 2941 . 2920 . 2900 . 2879	2, 193 2, 213 2, 233 2, 254 2, 274	1, 75629 1, 75999 1, 76366 1, 76731 1, 77093	34, 283 34, 533 34, 783 35, 031 35, 279	25. 77 25. 65 25. 53 25. 42 25. 30	. 5344 . 5332 . 5321 . 5309 . 5297	6, 005 6, 059 6, 113 6, 167 6, 222	3. 085 3. 098 3. 110 3. 123 3. 136	1. 947 1. 956 1. 965 1. 974 1. 984	. 5702 . 5658	. 1371 . 1360 1349 ; . 1338 . 1328
2.35 2.36 2.37 2.38 2.39	.7396 -1 .7281 -1 .7168 -1 .7057 -1 .6948 -1	. 1556 . 1539 . 1522 . 1505 . 1486	. 4752 . 4731 . 4709 . 4688 . 4668	2. 127 2. 138 2. 149 2. 160 2. 171	. 2859 . 2839 . 2818 . 2798 . 2778	2. 295 2. 316 2. 338 2. 359 2. 381	1,77453 1,77811 1,78166 1,78519 1,78869	35, 526 35, 771 36, 017 36, 261 36, 504	25. 18 25. 07 24. 96 24. 85 24. 73	. 5286 . 5275 . 5264 . 5253 . 5242	6. 276 6. 331 6. 386 6. 442 6. 497	3. 149 3. 162 3. 174 3. 187 3. 199	1. 993 2. 002 2. 012 2. 021 2. 031	. 5615 . 5572 . 5529 . 5486 . 5444	. 1317 . 1307 . 1297 . 1246
2. 40 2. 41 2. 42 2. 43 2. 44	. 6840 -1 . 6734 -1 . 6630 -1 . 6527 -1 . 6426 -1	. 1472 . 1456 . 1439 . 1424 . 1408	. 4647 . 4626 . 4606 . 4585 . 4565	2, 182 2, 193 2, 204 2, 215 2, 226	. 2758 . 2738 . 2718 . 2698 . 2678	2, 403 2, 425 2, 448 2, 471 2, 494	1, 79218 1, 79563 1, 79907 1, 80248 1, 80587	36, 746 36, 988 37, 229 37, 469 37, 708	24. 62 24. 52 24. 41 24. 30 24. 19	. 5231 . 5221 . 5210 . 5200 . 5189	6, 553 6, 609 6, 666 6, 722 6, 779	3. 212 3. 224 3. 237 3. 249 3. 261	2. 040 2. 050 2. 059 2. 069 2. 079	. 5401 . 5359 . 5317 . 5276 . 5234	. 1266 . 1257 . 1247 . 1237 . 1228
2.45 2.46 2.47 2.48 2.49	. 6327 -1 . 6229 -1 . 6133 -1 . 6038 -1 . 5945 -1	. 1392 . 1377 . 1362 . 1346 . 1332	. 4544 . 4524 . 4514 . 4484 . 4464	2, 237 2, 248 2, 259 2, 269 2, 280	. 2658 . 2639 . 2619 . 2599 . 2580	2, 517 2, 540 2, 564 2, 588 2, 612	1. 80924 1. 81258 1. 61591 1. 81921 1. 82249	37, 946 38, 183 38, 420 38, 655 38, 890	24. 09 23. 99 23. 88 23. 78 23. 68	.5179 .5169 .5159 .5149 .5140	6, 836 6, 894 6, 951 7, 009 7, 067	3. 273 3. 285 3. 298 3. 310 3. 321	2.088 2.098 2.105 2.118 2.128	. 5193 . 5152 . 5111 . 5071 . 5030	.1218 .1209 .1200 .1191 .1182
2. 50 2. 51 2. 52 2. 53 2. 54	. 5853 -1 . 5762 -1 . 5674 -1 . 5586 -1 . 5500 -1	. 1317 . 1302 . 1288 . 1274 . 1260	. 4444 . 4425 . 4405 . 4386 . 4366	2. 291 2. 302 2. 313 2. 324 2. 335	. 2561 . 2541 . 2522 . 2503 . 2484	2, 637 2, 661 2, 686 2, 712 2, 737	1, 82574 1, 82898 1, 83219 1, 83538 1, 83855	39. 124 39. 357 39. 589 39. 820 40. 050	23, 58 23, 48 23, 38 23, 28 23, 18	.5130 .5120 .5111 .5102 .5092	7, 125 7, 183 7, 242 7, 301 7, 360	3. 333 3. 345 3. 357 3. 369 3. 380	2. 138 2. 147 2. 157 2. 167 2. 177	. 4990 . 4950 . 4911 . 4871 . 4832	.1173 .1164 .1155 .1147 .1138
2, 55 2, 56 2, 57 2, 58 2, 59	. 5415 -1 . 5332 -1 . 5250 -1 . 5169 -1 . 5090 -1	. 1246 . 1232 . 1218 . 1205 . 1192	. 4347 . 4328 . 4309 . 4289 . 4271	2. 346 2. 357 2. 367 2. 378 2. 389	. 2465 . 2446 . 2427 . 2409 . 2390	2, 763 2, 789 2, 815 2, 842 2, 869	1. 84170 1. 84483 1. 84794 1. 85103 1. 85410	40, 280 40, 509 40, 736 40, 963 41, 189	23. 09 22. 99 22. 91 22. 81 22. 71	. 5063 . 5074 . 5065 . 5056 . 5047	7. 420 7. 479 7. 539 7. 599 7. 659	3. 392 3. 403 3. 415 3. 426 3. 438	2. 187 2. 198 2. 208 2. 218 2. 228	.4793 .4754 .4715 .4677 .4639	.1130 .1122 .1113 .1105 .1097
2. 60 2. 61 2. 62 2. 63 2. 64	. 5012 -1 . 4935 -1 . 4859 -1 . 784 -1 . 4711 -1	. 1179 . 1166 . 1153 . 1140 . 1128	.4252 .4233 .4214 .4196 .4177	2. 400 2. 411 2. 422 2. 432 2. 443	.2371 .2353 .2335 .2317 .2298	2, 896 2, 923 2, 951 2, 979 3, 007	1. 85714 1. 86017 1. 86318 1. 86616 1. 86913	41. 415 41. 639 41. 863 42. 086 42. 307	22. 62 22. 53 22. 44 22. 35 22. 26	. 5039 . 5030 . 5022 . 5013 . 5005	7, 720 7, 781 7, 842 7, 903 7, 965	3. 449 3. 460 3. 471 3. 483 3. 494	2, 238 2, 249 2, 259 2, 269 2, 280	.4601 .4564 .4526 .4489 .4452	. 1089 . 1081 . 1074 . 1066 . 1058
2, 65 2, 66 2, 67 2, 68 2, 69	.4639 =1 .4568 =1 .4498 =1 .4429 =1 .4362 =1	1 . 1115 1 . 1103 1091 1079 1067	.4159 .4141 .4122 .4104 .4086	2. 454 2. 465 2. 476 2. 486 2. 497	. 2280 . 2262 . 2245 . 2227 . 2209	3. 036 3. 065 3. 094 3. 123 3. 153	1, 87208 1, 87501 1, 87792 1, 88081 1, 88368	42. 529 42. 749 42. 968 43. 187 43. 405	22. 17 22. 08 22. 00 21. 91 21. 82	. 4996 . 4988 . 4980 . 4972 . 4964	8. 026 8. 088 8. 150 8. 213 8. 275	3, 505 3, 516 3, 527 3, 537 3, 548	2. 290 2. 301 2. 311 2. 322 2. 332	.4116 .4379 .4343 .4307 .4271	. 1051 . 1043 . 1036 . 1028 . 1021
2.70 2.71 2.72 2.73 2.74	. 4295 -1 . 4229 -1 . 4165 -1 . 4102 -1 . 4039 -1	. 1056 . 1044 . 1033 . 1022 . 1010	.4068 .4051 .4033 .4015 .3998	2, 508 2, 519 2, 530 2, 540 2, 551	.2192 .2174 .2157 .2140 .2123	3. 183 3. 213 3. 244 3. 275 3. 306	1. 88653 1. 88936 1. 89218 1. 89497 1. 89775	43. 621 43. 838 44. 053 44. 267 44. 481	21. 74 21. 65 21. 57 21. 49 21. 41	.4956 .4949 .4941 .4933 .4926	8, 338 8, 401 8, 465 8, 528 8, 592	3, 580 3, 591	2. 343 2. 354 2. 364 2. 375 2. 386	. 4236 . 4201 . 4166 . 4131 . 4097	. 1014 . 1007 . 9998 . 9929 . 9860
2: 75 2: 76 2: 77 2: 78 2: 79	.3978 -1 .3917 -1 .3858 -1 .3799 -1 .3742 -1	. 9994 -1 . 9885 -1 . 9778 -1 . 9671 -1 . 9566 +1	.3980 .3963 .3945 .3928 .3911	2, 562 2, 572 2, 583 2, 594 2, 605	. 2106 . 2089 . 2072 . 2055 . 2039	3. 338 3. 370 3. 402 3. 434 3. 467	1. 90051 1. 90325 1. 90598 1. 90868 1. 91137	44. 694 44. 906 45. 117 45. 327 45. 537	21. 32 21. 24 21. 16 21. 08 21. 00	. 4918 . 4911 . 4903 . 4896 . 4889	8, 656 8, 721 8, 785 8, 850 8, 915	3. 622 3. 633 3. 643	2. 397 2. 407 2. 418 2. 429 2. 440	. 4062 . 4028 . 3994 . 3961 . 3928	. 9792 . 9724 . 9658 . 9591 . 9526
2.80 2.81 2.82 2.83 2.84	.3685 -1 .3629 -1 .3574 -1 .3520 -1 .3467 -1	. 9463 -1 . 9360 -1 . 9259 -1 . 9158 -1 . 9059 -1	. 3894 . 3877 . 3860 . 3844 . 3827	2. 615 2. 626 2. 637 2. 647 2. 658	. 2022 . 2006 . 1990 . 1973 . 1957	3. 500 3. 534 3. 567 3. 601 3. 636	1. 91404 1. 91669 1. 91933 1. 92195 1. 92455	45. 746 45. 954 46. 161 46. 368 46. 573	20. 92 20. 85 20. 77 20. 69 20. 62	. 4882 . 4875 . 4868 . 4861 . 4854	8. 980 9. 045 9. 111 9. 177 9. 243	3. 674 3. 684 3. 694	2. 451 2. 462 2. 473 2. 484 2. 496	. 3895 . 5862 . 3829 . 3797 . 3765	. 9461 . 9397 . 9334 . 9271 . 9209
2.85 2.86 2.87 2.88 2.89	.3415 -1 .3363 -1 .3312 -1 .3263 -1 .3213 -1	8769 -1 .8675 -1	.3810 .3794 .3777 .3761 .3745	2. 669 2. 679 2. 690 2. 701 2. 711	. 1941 . 1926 . 1910 . 1894 . 1879	3. 671 3. 706 3. 741 3. 777 3. 813	1. 92714 1. 92970 1. 93225 1. 93479 1. 93731	46. 778 46. 982 47. 185 47. 388 47. 589	20. 54 20. 47 20. 39 20. 32 20. 24	. 4847 . 4840 . 4833 . 4827 . 4820	9. 310 9. 376 9. 443 9. 510 9. 577	3. 724 3. 734 3. 743	2. 507 2. 518 2. 529 2. 540 2. 552	. 3733 . 3701 . 3670 . 3639 . 3608	. 9147 9086 9026 8966 8906
2. 90 2. 91 2. 92 2. 93 2. 94	.3165 -1 .3116 -1 .3071 -1 .3025 -1 .2960 -1	.8398 -1 .8307 -1 .8218 -1	. 3712 . 3696 . 3681	2. 722 2. 733 2. 743 2. 754 2. 765	. 1863 . 1848 . 1833 . 1816 . 1803	3. 850 3. 887 3. 924 3. 961 3. 999	1. 93961 1. 94230 1. 94477 1. 94722 1. 94966	47, 790 47, 990 48, 190 48, 388 48, 586	20. 17 20. 10 20. 03 19. 96 19. 89	. 4814 . 4807 . 4801 . 4795 . 4788	9, 645 9, 713 9, 781 9, 849 9, 918	3. 773 3. 782 3. 792	2. 563 2. 575 2. 586 2. 596 2. 609	. 3487	. 8848 . 8790 . 8732 . 8675 . 8619
2. 95 2. 96 2. 97 2. 96 2. 99	. 2935 -1 . 2891 -1 . 2848 -1 . 2805 -1 . 2764 -1	.8043 -1 .7957 -1 .7872 -1 .7788 -1	. 3649 . 3633 . 3618 . 3602	2. 775 2. 786 2. 797 2. 807 2. 818	. 1788 . 1773 . 1758 . 1744 . 1729	4. 038 4. 076 4. 115 4. 155 4. 194	1. 95449 1. 95688 1. 95925	48, 783 45, 980 49, 175 49, 370 49, 564	19. 81 19. 75 19. 68 19. 61 19. 54	. 4782 . 4776 . 4770 . 4764 . 4758	9, 986 10, 06 10, 12 10, 19 10, 26	3. 820 3. 829 3. 839	2. 621 2. 632 2. 644 2. 656 2. 667	.3369	. 8563 . 8507 . 8453 . 8395 . 8345
3. 00 3. 01 3. 02 3. 03 3. 04	. 2722 - . 2682 - . 2642 - . 2603 - . 2564 -	. 7623 - . 7541 - . 7461 - . 7382 -	.3571 .3556 .3541 .3526	2.828 2.839 2.850 2.860 2.871	. 1715 . 1701 . 1687 . 1673 . 1659	4. 235 4. 275 4. 316 4. 357 4. 399	1. 96629 1. 96861 1. 97091	49. 757 49. 950 50. 142 50. 333 50. 523	19. 47 19. 40 19. 34 19. 27 19. 20	. 4740	10. 40 10. 47 10. 54	3.866 3.875 3.884		.3255 .3227 .3200	. 8291 . 8238 . 8186 . 9134 . 8083

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

	1		1	:			γ= i/o		:	;					_
M or M_1	$\frac{p}{p_i}$	<u>P</u>	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	1. a.	1.	μ	M2	$\frac{p_2}{p_1}$	<u>ρ:</u> <u>p</u> 1	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{\ell_2}}$
3. 05	. 2526 1	.7226 -t	. 3496	2. 881	.1645	4. 441	1. 97547	50. 713	19. 14	. 4723	10. 69	3. 902	2 738	. 3145	.8032 -:
3. 06	. 2489 -1	.7149 -t	. 3481	2. 892	.1631	4 483	1. 97772	50. 902	19. 07	. 4717	10. 76	3. 911	2 750	. 3118	.7982 -:
3. 07	. 2452 -1	.7074 -t	. 3466	2. 903	.1618	4. 526	1. 97997	51. 090	19. 01	. 4712	10. 83	3. 920	2 762	. 3091	.7932 -:
3. 08	. 2416 -1	.6999 -t	. 3452	2. 913	.1604	4 570	1. 98219	51. 277	18. 95	. 4706	10. 90	3. 929	2 774	. 3065	.7852 -:
3. 09	. 2380 -1	.6925 -t	. 3437	2. 924	.1591	4. 613	1. 98441	51. 464	18. 88	. 4701	10. 97	3. 938	2 786	. 3038	.7833 -:
3. 10 3. 11 3. 12 3. 13 3. 14	. 2345 -1 . 2310 -1 . 2276 -1 . 2243 -1 . 2210 -1	. 6852 -1 . 6779 -1 . 6708 -1 . 6637 -1 . 6568 -1	. 3422 . 3408 . 3393 . 3379 . 3365	2. 934 2. 945 2. 955 2. 966 2. 977	. 1577 . 1564 . 1551 . 1538 . 1525	4. 657 4. 702 4. 747 4. 792 4. 838	1. 98661 1. 98879 1. 99097 1. 99313 1. 99527	51, 650 51, 835 52, 020 52, 203 52, 386	18. 82 18. 76 18. 69 18. 63 18. 57	. 4695 . 4690 . 4685 . 4679	11. 05 11. 12 11. 19 11. 26 11. 34	3. 947 2. 955 3. 964 3. 973 3. 981	2. 799 2. 811 2. 823 2. 835 2. 848	. 3012 . 2986 . 2960 . 2935 . 2910	. 7785 -1 . 7737 -1 . 7689 -1 . 7642 -1 . 7595 -1
3. 15	. 2177 -1	. 6499 -1	. 3351	2. 987	.1512	4. 884	1, 99740	52, 569	18, 51	. 4669	11. 41	3. 990	2, 860	. 2885	. 7549 -1
3. 16	. 2146 -1	. 6430 -1	. 3337	2. 996	.1500	4. 930	1, 99952	52, 751	18, 45	. 4664	11. 48	3. 998	2, 872	. 2860	. 7503 -1
3. 17	. 2114 -1	. 6363 -1	. 3323	3. 008	.1487	4. 977	2, 00162	52, 931	18, 39	. 4659	11. 56	4 006	2, 885	. 2835	. 7437 -1
3. 18	. 2083 -1	. 6296 -1	. 3309	3. 019	.1475	5. 025	2, 00372	53, 112	18, 33	. 4654	11. 63	4 015	2, 897	. 2811	. 7412 -1
3. 19	. 2053 -1	. 6231 -1	. 3295	3. 029	.1462	5. 073	2, 00579	53, 292	18, 27	. 4648	11. 71	4. 023	2, 909	. 2786	. 7367 -1
3. 20	. 2023 -1	. 6165 =1	. 3281	3. 040	.1450	5. 121	2.00786	53, 470	18. 21	. 4643	11. 78	4. 031	2. 922	. 2762	. 7323
3. 21	. 1993 -1	. 6101 =1	. 3267	3. 050	.1438	5. 170	2.00991	53, 648	18. 15	. 4639	11. 85	· 4. 040	2. 935	. 2738	
3. 22	. 1964 -1	. 6037 =1	. 3253	3. 061	.1426	5. 219	2.01195	53, 826	18. 09	. 4634	11. 93	4. 048	2. 947	. 2715	
3. 23	. 1936 -1	. 5975 =1	. 3240	3. 071	.1414	5. 268	2.01398	54, 003	18. 03	. 4629	12. 01	4. 056	2. 960	. 2691	
3. 24	. 1908 -1	. 5912 =1	. 3226	3. 082	.1402	5. 319	2.01599	54, 179	17. 98	. 4624	12. 08	4. 064	2. 972	. 2668	
3, 25	. 1880 -1	.5851 =1	. 3213	3. 092	. 1390	5, 369	2. 01799	54, 355	17, 92	. 4619	12. 16	4. 072	2, 985	. 2645	.7107 ~:
3, 26	. 1853 -1	.5790 =1	. 3199	3. 103	. 1378	5, 420	2. 01998	54, 529	17, 86	. 4614	12. 23	4. 080	2, 998	. 2622	.7065 ~:
3, 27	. 1826 -1	.5730 =1	. 3186	3. 113	. 1367	5, 472	2. 02196	54, 703	17, 81	. 4610	12. 31	4. 088	3, 011	. 2600	.7023 ~:
3, 28	. 1799 -1	.5671 =1	. 5173	3. 124	. 1355	5, 523	2. 02392	54, 877	17, 75	. 4605	12: 38	4. 096	3, 023	. 2577	.6982 ~:
3, 29	. 1773 -1	.5612 =1	. 3160	3. 134	. 1344	5, 576	2. 02587	55, 050	17, 70	. 4600	12. 46	4. 104	3, 036	. 2555	.6981 ~:
3.30	. 1748 -1	. 5554 =1	. 3147	3, 145	.1332	5, 629	2. 02781	55, 222	17, 64	. 4596	12. 54	4, 112	3, 049	. 2533	. 6600 -1
3.31	. 1722 -1	. 5497 =1	. 3134	3, 155	.1321	5, 682	2. 02974	55, 393	17, 58	. 4591	12. 62	4, 120	3, 062	. 2511	. 6860 -1
3.32	. 1698 -1	. 5440 =1	. 3121	3, 166	.1310	5, 736	2. 03165	55, 564	17, 53	. 4587	12. 69	4, 128	3, 075	. 2489	. 6820 -1
3.33	. 1673 -1	. 5384 =1	. 3105	3, 176	.1299	5, 790	2. 03356	55, 734	17, 48	. 4582	12. 77	4, 135	3, 088	. 2464	. 6781 -1
3.34	. 1649 -1	. 5329 =1	. 3095	3, 187	.1288	5, 845	2. 03545	55, 904	17, 42	. 4578	12. 85	4, 143	3, 101	. 2446	. 6741 -1
3. 35	. 1625 -1	. 5274 -1	.3082	3. 197	. 1277	5. 900	2, 03733	56, 073	17. 37	. 4573	12. 93	4. 151	3, 114	. 2425	. 6702 =:
3. 36	. 1602 -1	. 5220 -1	.3069	3. 208	. 1266	5. 956	2, 05920	56, 241	17. 31	. 4569	13. 00	4. 158	3, 127	. 2404	. 6604 =:
3. 37	. 1579 -1	. 5166 -1	.3057	3. 218	. 1255	6. 012	2, 04106	56, 409	17. 26	. 4565	13. 08	4. 166	3, 141	. 2383	. 6626 =:
3. 38	. 1557 -1	. 5113 -1	.3044	3. 229	. 1245	6. 069	2, 04290	56, 576	17. 21	. 4560	13. 16	4. 173	3, 154	. 2363	. 6588 =:
3. 39	. 1534 -1	. 5061 -1	.3032	3. 239	. 1234	6. 126	2, 04474	56, 742	17. 16	. 4556	13. 24	4. 181	3, 167	. 2342	. 6550 =:
3. 40	. 1512 -1	. 5009 -1	3019	3, 250	. 1224	6. 184	2. 04656	56, 907	17. 10	. 4552	13, 32	4. 188	3. 180	. 2322	6513 -1
3. 41	. 1491 -1	4958 -1	.3007	3, 260	. 1214	6. 242	2. 04837	57, 073	17. 05	. 4548	13, 40	4. 196	3. 194	. 2302	6476 -:
3. 42	. 1470 -1	. 4908 -1	.2995	3, 271	. 1203	6. 301	2. 05017	57, 237	17. 00	. 4544	13, 48	4. 203	3. 207	. 2282	6439
3. 43	. 1449 -1	. 4858 -1	.2982	3, 231	. 1193	6. 360	2. 05196	57, 401	16. 95	. 4540	13, 56	4. 211	3. 220	. 2263	6403
3. 44	. 1428 -1	. 4805 -1	.2970	3, 291	. 1183	6. 420	2. 05374	57, 564	16. 9 0	. 4535	13, 64	4. 218	3. 234	. 2243	6367
3. 45	. 1403 -1	.4759 -1	. 2958	3. 302	. 1173	6. 480	2. 05551	57, 726	16. 85	. 4531	13. 72	4. 225	3, 247	. 2224	. 6331
3. 46	. 1388 -1	.4711 -1	. 2946	3. 312	. 1163	6. 541	2. 05727	57, 888	16. 80	. 4527	13. 80	4. 232	3, 261	. 2205	. 6296
3. 47	. 1368 -1	.4663 -1	. 2934	3. 323	. 1153	6. 602	2. 05901	58, 050	16. 75	. 4523	13. 88	4. 240	3, 274	. 2186	. 6261 -:
3. 48	. 1349 -1	.4616 -1	. 2922	3. 333	. 1144	6. 664	2. 06075	58, 210	16. 70	. 4519	13. 96	4. 247	3, 288	. 2167	. 6226 -:
3. 49	. 1330 -1	.4569 -1	. 2910	3. 344	. 1134	6. 727	2. 06247	58, 370	16. 65	. 4515	14. 04	4. 254	3, 301	. 2148	. 6191 -1
3. 50 3. 51 3. 52 3. 53 3. 54	.1311 -1 .1293 -1 .1274 -1 .1256 -1	.4523 -1 .4478 -1 .4433 -1 .4388 -1 .4344 -1	. 2599 . 2887 . 2875 . 2864 . 2852	3. 354 3. 365 3. 375 3. 385 3. 396	. 1124 . 1115 . 1105 . 1096 . 1087	6. 790 6. 853 6. 917 6. 932 7. 047	2. 06419 2. 06589 2. 06759 2. 06927 2. 07094	58, 530 58, 659 58, 847 59, 004 59, 162	16. 60 16. 55 16. 51 16. 46 16. 41	.4512 .4508 .4504 .4500 .4496	14. 13 14. 21 14. 29 14. 37 14. 45	4. 261 4. 268 4. 275 4. 282 4. 289	3. 315 3. 329 3. 343 3. 356 3. 370	.2129 .2111 .2093 .2075 .2057	6137 =1 6123 =1 6089 =1 6056 =1 6023 =1
3. 55	.1221 -1	. 4300	. 2841	3. 406	. 1078	7. 113	2. 07261	59. 318	16. 36	. 4492	14, 54	4. 296	3. 384	. 2039	. 5990 =1
3. 56	.1204 -1		. 2829	3. 417	. 1069	7. 179	2. 07426	59. 474	16. 31	. 4489	14, 62	4. 303	3. 398	. 2022	. 5957 =1
3. 57	.1188 -1		. 2818	3. 427	. 1059	7. 246	2. 07590	59. 629	16. 27	. 4485	14, 70	4. 309	3. 412	. 2004	. 5925 =1
3. 58	.1171 -1		. 2306	3. 437	. 1051	7. 313	2. 07754	59. 764	16. 22	. 4481	14, 79	4. 316	3. 426	. 1987	. 5892 =1
3. 59	.1155 -1		. 2795	3. 448	. 1042	7. 382	2. 07916	59. 938	16. 17	. 4478	14, 87	4. 323	3. 440	. 1970	. 5891 =1
3. 60	.1138 -1	.4089 -1	. 27#4	3. 458	. 1033	7. 450	2. 08077	60. 091	16. 13	. 4474	14. 95	4. 330	3. 454	. 1953	. 5829 -1
3. 61	.1123 -1	.4049 -1	. 2773	3. 469	. 1024	7. 519	2. 08238	60. 244	16. 08	. 4471	15. 04	4. 336	3. 468	. 1936	. 5798 -1
3. 62	.1107 -1	.4008 -1	. 2762	3. 479	. 1016	7. 589	2. 08397	60. 397	16. 04	. 4467	15. 12	4. 343	3. 482	. 1920	. 5767 -1
3. 63	.1092 -1	.3968 -1	. 2751	3. 490	. 1007	7. 659	2. 08556	60. 549	15. 99	. 4463	15. 21	4. 350	3. 496	. 1903	. 5736 -1
3. 64	.1076 -1	.3929 -1	. 2740	3. 500	. 9984 -1	7. 730	2. 08713	60. 700	15. 95	. 4460	15. 29	4. 356	3. 510	. 1887	. 5705 -1
3. 65 3. 66 3. 67 3. 68 3. 69	. 1062 -1 . 1047 -1 . 1032 -1 . 1018 -1 . 1004 -1	. 3890 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	. 2729 . 2718 . 2707 . 2597 . 2686	3. 510 3. 521 3. 531 3. 542 3. 552	. 9900 -1 . 9817 -1 . 9734 -1 . 9652 -1 . 9570 -1	7. 802 7. 874 7. 947 8. 020 8. 094	2. 08870 2. 09026 2. 09180 2. 09334 2. 09487	60. 851 61. 000 61. 150 61. 299 61. 447	15. 90 15. 86 15. 81 15. 77 15. 72	. 4456 . 4453 . 4450 . 4446 . 4443	15. 38 15. 46 15. 55 15. 63 15. 72	4.363 4.369 4.376 4.382 4.388	3, 525 3, 539 3, 553 3, 568 3, 582	. 1871 . 1855 . 1839 . 1823 . 1807	. 5675 -1 . 5645 -1 . 5615 -1 . 5555 -1
3 70 3.71 3.72 3.73 3.74	. 9903 -2 . 9767 -2 . 9633 -2 . 9500 -2 . 9370 -2	.3702 -1 .3665 -1 .3629 -1 .3594 -1	. 2675 . 2665 . 2654 . 2644 . 2633	3. 562 3. 573 3. 583 3. 593 3. 604	. 9490 -1 . 9410 -1 . 9331 -1 . 9253 -1 . 9175 -1	8. 169 8. 244 8. 320 8. 397 8. 474	2. 09639 2. 09790 2. 09941 2. 10090 2. 10238	61. 595 61. 743 61. 889 62. 036 62. 181	15. 68 15. 64 15. 59 15. 55 15. 51	. 4439 . 4436 . 4433 . 4430 . 4426	15, 81 15, 89 15, 98 16, 07 16, 15	4. 395 4. 401 4. 408 4. 414 4. 420	3. 596 3. 611 3. 625 3. 640 3. 654	. 1792 . 1777 . 1761 . 1746 . 1731	. 5526
3. 75	. 9242 -2	.3524 -1	. 2623	3, 614	. 9098 -1	8. 552	2, 10386	62. 326	15. 47	.4423	16. 24	4. 426	3, 669	. 1717	. 5384 -1
3. 76	. 9116 -2	.3489 -1	. 2613	3, 625	. 9021 -1	8. 630	2, 10533	62. 471	15. 42	.4420	16. 33	4. 432	3, 684	. 1702	. 5356 -1
3. 77	. 8991 -2	.3455 -1	. 2602	3, 635	. 8945 -1	8. 709	2, 10679	62. 615	15. 38	.4417	16. 42	4. 439	3, 698	. 1687	. 5328 -1
3. 78	. 8869 -2	.3421 -1	. 2592	3, 645	. 8870 -1	8. 789	2, 10824	62. 758	15. 34	.4414	16. 50	4. 445	3, 713	. 1673	. 5301 -1
3. 79	. 8748 -2	.3368 -1	. 2582	3, 656	. 8796 -1	8. 870	2, 10968	62. 901	15. 30	.4410	16. 59	4. 451	3, 728	. 1659	. 5274 -1
3. 80	. 8629 -2	.3355 -1	. 2572	3. 666	. 8722 -1	8, 951	2. 11111	63, 044	15. 26	. 4407	16. 68	4. 457	3. 743	. 1645	5247 -1
3. 81	. 8512 -2	.3322 -1	. 2562	3. 676	. 8649 -1	9, 032	2. 11254	63, 186	15. 22	. 4404	16. 77	4. 463	3. 758	. 1631	5220 -1
3. 82	. 8396 -2	.3290 -1	. 2552	3. 687	. 8577 -1	9, 115	2. 11395	63, 327	15. 18	. 4401	16. 86	4. 469	3. 772	. 1617	5193 -1
3. 83	. 8283 -1	.3258 -1	. 2542	3. 697	. 8505 -1	9, 198	2. 11536	63, 468	15. 14	. 4393	16. 95	4. 475	3. 787	. 1603	5167 -1
3. 84	. 8171 -2	.3227 -1	. 2532	3. 708	. 8434 -1	9, 282	2. 11676	63, 608	15. 10	. 4395	17. 04	4. 481	3. 802	. 1589	5140 -1
3. 85 3. 86 3. 87 3. 88 3. 89	. 8060 -3 . 7951 -2 . 7844 -2 . 7739 -2 . 7635 -2	.3195 -1 .3165 -1 .3134 -1 .3104 -1	. 2522 . 2513 . 2503 . 2493 . 2484	3. 718 3. 728 3. 739 3. 749 3. 759	. 8363 -1 . 8293 -1 . 8224 -1 . 8155 -1 . 8087 -1	9, 366 9, 451 9, 537 9, 624 9, 711	2. 11815 2. 11954 2. 12091 2. 12228 2. 12364	63. 748 63. 887 64. 026 64. 164 64. 302	15. 06 15. 02 14. 98 14. 94 14. 90	. 4392 . 4389 . 4386 . 4383 . 4380	17. 13 17. 22 17. 31 17. 40 17. 49	4. 487 4. 492 4. 498 4. 504 4. 510	3, 817 3, 832 3, 847 3, 863 3, 878	. 1576 . 1563 . 1549 . 1536 . 1523	.5114 .5089 .5035 .5036 .5012
3. 90	.7532 -2	.3044 -1	. 2474	3. 770	.8019 -: :	9. 799	2. 12499	64. 440	14. 86	. 4377	17. 58	4. 516	3, 893	. 1510	.4967 -:
3. 91	.7431 -3	.3015 -1	. 2464	3. 780	.7952 -: :	9. 888	2. 12634	64. 576	14. 82	. 4375	17. 67	4. 521	3, 908	. 1497	.4962 -:
3. 92	.7332 -3	.2986 -1	. 2455	3. 790	.7886 -:	9. 977	2. 12767	64. 713	14. 78	. 4372	17. 76	4. 527	3, 923	. 1485	.4935 -:
3. 93	.7233 -2	.2958 -1	. 2446	3. 801	.7820 -: :	10. 07	2. 12900	64. 848	14. 74	. 4369	17. 85	4. 533	3, 939	. 1472	.4913 -:
3. 94	.7137 -2	.2929 -1	. 2436	3. 811	.7755 -:	10. 16	2. 13032	64. 983	14. 70	. 4366	17. 94	4. 538	3, 954	. 1460	.4889 -:

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

TABLE II.—SUPERSONIC FLOW—Continued

			:				A	γ=7/5				<i>p</i> ₂	ρ2	$\frac{T_2}{T_1}$	p_{i_2}	<u>p</u> 1
	M_1	$\frac{p}{p_i}$	PI	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	A.	ā.		μ 	M:	p ₁	ρι 4, 544		1448	. 4865 -1
i	3. 95 3. 96 3. 97 3. 98 3. 99	. 7042 -1 . 6948 -2 . 6855 -2 . 6764 -2 . 6675 -2	. 2902 -1 . 2874 -1 . 2846 -1 . 2819 -1 . 2793 -1	. 2427 . 2418 . 2408 . 2399 . 2390	3, 821 3, 832 3, 842 3, 852 3, 863	. 7691 -1 . 7627 -1 . 7563 -1 . 7500 -1 . 7438 -1	10. 25 10. 34 10. 44 10. 53 10. 62	2. 13163 2. 13294 2. 13424 2. 13553 2. 13681	65, 118 65, 253 65, 386 65, 520 65, 652	14, 67 14, 63 14, 59 14, 55 14, 52	, 4363 , 4360 , 4358 , 4355 , 4352	18, 13 18, 22 18, 31 18, 41	4, 549 4, 555 4, 560 4, 566	3. 985 4. 000 4. 016 4. 031	1435 1423 1411 1399	. 48411 . 48171 . 47931 . 37701
	4. 00 4. 01 4. 02 4. 03	. 6586 -2 1 . 6499 -2 1 . 6413 -2 1 . 628 -2 1 . 6245 -2	. 2766 -1 . 2740 -1 . 2714 -1 . 2658 -1 . 2663 -1	. 2381 . 2372 . 2363 . 2354 . 2345	3, 873 3, 883 3, 894 3, 904 3, 914	.7376 -1 .7315 -1 .7255 -1 .7194 -1 .7135 -1	10. 72 10. 81 10. 91 11. 01 11. 11	2. 13809 2. 13936 2. 14062 2. 14188 2. 14312	65, 785 65, 917 66, 048 66, 179 66, 309	14. 48 14. 44 14. 40 14. 37 14. 33	. 4350 . 4347 . 4344 . 4342 . 4359	18, 59 18, 69 18, 78	4, 571 4, 577 4, 582 4, 588 4, 593	4. 062 4. 075 4. 094	1376 1364 1353 1342	. 4723 =: . 4700 =: . 4678 =: . 4655 =:
1	4. 04 4. 05 4. 06 4. 07 4. 08	.6163 2 .6082 -2 .6002 -2 .5923 -2	. 2638 -1 . 2613 -1 . 2589 -1 . 2564 -1 . 2540 -1	. 2336 . 2327 . 2319 . 2310 . 2301	3, 925 3, 935 3, 945 3, 956 3, 966	.7076 -1 .7017 -1 .6959 -1 .6902 -1 .6845 -1	11, 21 11, 31 11, 41 11, 51 11, 61	2. 14436 2. 14560 2. 14682 2. 14804 2. 14926	66, 439 66, 569 66, 698 66, 826 66, 954	14, 30 14, 26 14, 22 14, 19 14, 15	. 4336 . 4334 . 4331 . 4329 . 4326	19, 06 19, 16 19, 25	4, 59% 4, 604 4, 609 1, 614 4, 619	4. 141 4. 157 4. 173	1319 1308 1297 1286	. 4633 = 1 . 4610 = 1 . 4588 = 1 . 4566 = 1 . 4544 = 1
i	4. 10 4. 11 4. 12 4. 13	. 5769 -2 . 5694 -2 . 5619 -2 . 5546 -2	. 2516 -1 . 2493 -1 . 2470 -1 . 2447 -1	. 2293 . 2284 . 2275 . 2267 . 2258	3, 976 3, 986 3, 997 4, 007 4, 017	. 6788 =: . 6732 =: . 6677 =: . 6622 =: . 6568 =:	11. 71 11. 82 11. 92 12. 03 12. 14	2. 15046 2. 15166 2. 15285 2. 15404 2. 15522	67, 082 67, 209 67, 356 67, 462 67, 585	14, 12 14, 08 14, 05 14, 01 13, 98	. 4324 . 4321 . 4319 . 4316 . 4314	19, 54 19, 64 19, 73	4, 624 4, 650 4, 635 4, 640 4, 645	4. 221 4. 237 4. 253	. 1276 . 1265 . 1254 . 1244 . 1234	.4523 -1 .4501 -1 .4480 -1 .4459 -1 .4438 -1
i	4. 15 4. 16 4. 17 4. 18	. 5403 -2 . 5333 -2 . 5264 -2 . 5195 -2	. 2424		4, 028 4, 038 4, 048 4, 059 4, 069	. 6514 ~1 . 6460 ~1 . 6407 ~1 . 6354 ~1 . 6302 ~1	12. 24 12. 35 12. 46 12. 57 12. 68	2. 15639 2. 15756 2. 15871 2. 15987 2. 16101	67, 713 67, 868 67, 963 68, 057 68, 210	13. 94 13. 91 13. 88 13. 84 13. 81	.4311 .409 .4306 .4304 .4302	19, 93 20, 62 20, 12 20, 22 20, 32	4, 650 4, 655 4, 660 4, 665 4, 670	4, 318 4, 334 4, 350	. 1223 . 1213 . 1203 . 1193 . 1183	. 4417 - 1 :
	4. 19 4. 20 4. 21 4. 22 4. 23 4. 24	. 5128 -2 . 5062 -2 . 4997 -2 . 4952 -2 . 4869 -2 . 4806 -2	. 2292 -1 . 2271 -1 . 2250 -1 . 2229 -1 . 2209 -1	. 2208 . 2200 . 2192 . 2184 . 2176	4, 079 4, 090 4, 160 4, 110 4, 120	. 6251 = 1 . 6260 = 1 . 6149 = 1 . 6098 = 1 . 6049 = 1	12.79 12.90 13.02 13.13 13.25	2. 16215 2. 16329 2. 16442 2. 16554 2. 16665	68, 223 68, 456 68, 578 68, 700 68, 821	13. 77 13. 74 13. 71 13. 67 13. 64	. 4299 . 4297 . 4295 . 4292 . 4290	20, 41 20, 51 20, 61 20, 71 20, 81	4, 680 4, 685 4, 685 4, 690 4, 694	4. 367 4. 383 4. 399 4. 416 4. 432	. 1173 . 1164 . 1154 . 1144 . 1135	. 4314 - 1 . 4294 - 1 . 4274 - 1 . 4255 - 1 . 4235 - 1
	4, 25 4, 26 4, 27 4, 28 4, 29	. 4745 -2 . 4684 -2 . 4624 -2 . 4565 -2 . 4507 -2	. 2189 -1 . 2169 -1 . 2149 -1 . 2129 -1 . 2110 -1	. 2168 . 2160 . 2152 . 2144 . 2136	4. 131 4. 141 4. 151 4. 162 4. 172	5009 -1 5950 -1 5902 -1 5854 -1 5806 -1	13, 36 13, 48 13, 60 13, 72 13, 83	2. 16776 2. 16886 2. 16996 2. 17105 2. 17214	68, 942 69, 053 69, 183 69, 502 69, 422	13. 61 13. 58 13. 54 13. 51 13. 48	. 4258 . 4286 . 4283 . 4281 . 4279	20, 91 21, 01 21, 11 21, 20 21, 30	4 699 4 704 4 709 4 713 4 718	4, 449 4, 466 4, 482 4, 499 4, 516	.1126 .1116 .1107 .1098 .1089	. 4215 = 1 . 4196 = 1 . 4177 = 1 . 4158 = 1 . 4139 = 1
	4. 30 4. 31 4. 32 4. 33 4. 34	. 4449 -2 . 4343 -2 . 4337 -2 . 4282 -2	. 2090 -1 1 . 2071 -1 2052 -1	. 2129 . 2121 . 2113 . 2105 . 2098	4. 182 4. 192 4. 203 4. 213 4. 223	. 5759 -1 . 5712 -1 . 5666 -1 . 5620 -1 . 5574 -1	13. 95 14. 08 14. 20 14. 32 14. 45	2. 17321 2. 17429 2. 17535 2. 17642 2. 17747	69. 541 69. 659 69. 777 69. 895 70. 012	13. 45 13. 42 13. 38 13. 35 13. 32	. 4277 . 4275 . 4272 . 4270 . 4268	21. 41 21. 51 21. 61 21. 71 21. 81	4, 723 4, 728 4, 732 4, 737 4, 741	4, 532 4, 549 4, 566 4, 583 4, 600	. 1080 . 1071 . 1062 . 1054 . 1045	. 4120 -1 . 4101 -1 . 4082 -1 . 4064 -1 . 4046 -1
	4. 35 4. 36 4. 37 4. 38 4. 39	.4174 -2 .4121 -3 .4069 -2 .4018 -2	. 1997 -1 . 1979 -1 . 1961 -1	. 2090 . 2083 . 2075 . 2067 . 2060	4. 233 4. 244 4. 254 4. 264 4. 275	5529 =1 5484 =1 5440 =1 5396 =1 5352 =1	14. 57 14. 70 14. 82 14. 95 15. 08	2. 17852 2. 17956 2. 18060 2. 18163 2. 18266	70. 128 70. 245 70. 361 70. 476 70. 591	13. 29 13. 26 13. 23 13. 20 13. 17	. 4266 . 4264 . 4202 . 4260 . 4258	21. 91 22. 01 22. 11 22. 22 22. 32	4. 746 4. 751 4. 755 4. 760 4. 764	4. 617 4. 633 4. 651 4. 668 4. 685	. 1036 . 1028 . 1020 . 1011 . 1003	. 4027 -1 . 4009 -1 . 3091 -1 . 3973 -1 . 3956 -1
	4. 40 4. 41 4. 42 4. 43 4. 44	. 3918 -2 . 3868 -2 . 3820 -2 . 3772 -2	. 1892 -1 . 1875 -1 . 1858 -1	. 2053 . 2045 . 2038 . 2030 . 2023	4. 285 4. 295 4. 305 4. 316 4. 326	.5309 -: .5266 -: .5224 -: .5182 -: .5140 -:	15. 21 15. 34 15. 47 15. 61 15. 74	2. 18368 2. 18470 2. 18571 2. 18671 2. 187714	70, 706 70, 820 70, 934 71, 048 71, 161	13. 14 13. 11 13. 08 13. 05 13. 02	. 4255 . 4253 . 4251 . 4249 . 4247	22. 42 22. 52 22. 63 22. 73 22. 83	4. 768 4. 773 4. 777 4. 782 4. 786	4, 702 4, 719 4, 736 4, 773 4, 771	. 9648 -1 . 9867 -1 . 9787 -1 . 9707 -1 . 9628 -1	3921 -1 1 3903 -1 3986 -1 3969 -1
	4. 45 4. 46 4. 47 4. 48 4. 49	. 3678 -2 . 3633 -2 . 3587 -2 . 3543 -2	. 1806 -1 . 1792 -1 . 1776 -1	. 2002	4 336 4 346 4 357 4 367 4 377	. 5099 -1 . 5058 -1 . 5017 -1 . 4977 -1 . 4937 -1	15. 87 16. 01 16. 15 16. 28 16. 42	2. 188708 2. 189697 2. 190681 2. 191659 2. 192632	71. 274 71. 386 71. 498 71. 610 71. 721	12. 99 12. 96 12. 93 12. 90 12. 87	. 4245 . 4243 . 4241 . 4239 . 4237	22. 94 23. 04 23. 14 23. 25 23. 35	4. 790 4. 795 4. 799 4. 803 4. 808	4. 788 4. 805 4. 823 4. 840 4. 858	. 9550 -1 . 9473 -1 . 9396 -1 . 9320 -1 . 9244 -1	3835 -1 3818 -1 3801 -1 3785 -1
	4. 50 4. 51 4. 52 4. 53 4. 54	3455 = 3412 = 3370 = 3329 = 3	. 1729 -1 . 1714 -1 . 1699 -1	. 1966	4. 387 4. 398 4. 408 4. 418 4. 428	. 4898 -1 . 4859 -1 . 4820 -1 . 4781 -1 . 4743 -1	16. 56 16. 70 16. 84 16. 99 17. 13	2. 193600 2. 194563 2. 195520 2. 196473 2. 197420	71. 832 71. 942 72. 052 72. 162 72. 271	12.84 12.81 12.78 12.75 12.73	. 4236 . 4234 . 4232 . 4230 . 4228	23. 46 23. 56 23. 67 23. 77 23. 88	4.812 4.816 4.820 4.824 4.829	4. 875 4. 893 4. 910 4. 925 4. 946	. 9170 -1 . 9086 -1 . 9022 -1 . 8950 -1 . 8876 -1	3752
	4. 55 4. 56 4. 55 4. 55 4. 55	3247 - 3 .3207 - 3 .3168 - 3 .3129 -	. 1654 -1 2 . 1640 -1 2 . 1625 -1	. 1932	4. 439 4. 449 4. 459 4. 469 4. 480	.4706 -1 .4668 -1 .4631 -1 .4594 -1 .4558 -1	17. 28 17. 42 17. 57 17. 72 17. 87	2. 198363 2. 199300 2. 200233 2. 201160 2. 202033	72. 380 72. 489 72. 597 72. 705 72. 812	12. 70 12. 67 12. 64 12. 61 12. 58	. 4226 . 4224 . 4222 . 4220 . 4219	23. 99 24. 09 24. 20 24. 31 24. 41	4.833 4.837 4.841 4.845 4.849	4. 963 4. 961 4. 999 5. 017 5. 034	. 8906 -1 . 8735 -1 . 8665 -1 . 8596 -1 . 8527 -1	3671 -1 3656 -1 3640 -1 3624 -1
	4.6 4.6 4.6 4.6	3053 - 1 3015 - 2 2978 - 3 2942 -	2 .1597 -1 2 .1583 -1 2 .1569 -	. 1905 . 1898 . 1891	4, 490 4, 500 4, 510 4, 521 4, 531	. 4522 -1 . 4486 -1 . 4450 -1 . 4415 -1 . 4380 -1	18. 02 18. 17 18. 32 16. 48 18. 63	2. 203000 2. 203913 2. 204822 2. 205725 2. 206624	72. 919 73. 026 73. 132 73. 238 73. 344	12, 56 12, 53 12, 50 12, 47 12, 45	.4217 4215 .4213 .4211 .4210	24. 52 24. 63 24. 74 24. 84 24. 95	4. 853 4. 857 4. 861 4. 865 4. 869	5. 052 5. 070 5. 088 5. 106 5. 124	. 8459	3593 -1 3578 -1 3563 -1 3548 -1
	4.6 4.6 4.6 4.6	5 .2871 6 .2856 7 .2802 8 .2768	2 .1529 - 2 .1515 - 2 .1502 - 2 .1489 - 2 .1476 -	. 1878 . 1872 . 1865 . 1859	4. 541 4. 551 4. 562 4. 572 4. 582	.4345 -1 .4311 -1 .4277 -1 .4243 -1 .4210 -1	18. 94 19. 10 19. 26	2. 207518 2. 208407 2. 209291 2. 210171 2. 211047		12.42 12.39 12.37 12.34 12.31	. 4206 . 4204 . 4203	25. 06 25. 17 25. 28 25. 39 25. 50	4, 873 4, 877 4, 881 4, 885 4, 889	5. 143 5. 160 5. 179 5. 197 5. 215	.8126 = .8062 = .7998 = .7034 = .7871 =	351% =1 3503 =1 3498 =1 3474 =1
_	4.6 4.7 4.7 4.7	0 .2701 1 .2669 2 .2637 3 .2605	-1 .14641451143814261414	1 .1846 1 .1839 1 .1833 1 .1827	4. 592 4. 603 4. 613 4. 623 4. 633	.4177 -1 .4144 -1 .4112 -1 .4079 -1 .4047 -1	19. 58 19. 75 19. 91 20. 07	2. 211918 2. 212784 2. 213646 2. 214503 2. 215350	74. 073 74. 176 74. 279	12. 21	. 4197 . 4196 . 4194	25. 71 25. 82 25. 94	4. 900 4. 904	5. 233 5. 252 5. 270 5. 289 5. 307	. 7809 - . 7747 - . 7685 - . 7625 - . 7561 -	3445 -1 3431 -1 3416 -1 3402 -1
		75 .2543 76 .2512 77 .2482 78 .2452	-1 .1402 -2 .1390 -2 .1378 -2 .1366	1 .1814	4, 644 4, 654 4, 664 4, 674 4, 684	.4016 .3954 .3953 .3922 .3892	20. 58 20. 75 20. 92	2. 21788 2. 21872	9 74, 584 9 74, 685 5 74, 786	12. 13 12. 10 12. 08	3 .4189 3 .4187 5 .4186	26, 27 26, 38 26, 49	4. 915 4. 919 4. 923	5, 325 5, 344 5, 363 5, 381 5, 400	. 7387 . 7329	-1 3374 -1 -1 3360 -1 -1 3346 -1 -1 3333 -1
	4.1	80 .2394 81 .2366 82 .2338 83 .2310	-1 .1343 -1 .1331 -1 .1320 -1 .1309	-1 .1783 -1 .1777 -1 .1771 -1 .1765 -1 .1759	4. 695 4. 705 4. 715 4. 725 4. 736	.3862 - .3832 - .3802 - .3772 -	21.44 21.61 21.79	2. 22120 2. 22202 2. 22283	6 75.086 4 75.186 8 75.28	12.00 11.9 11.9	0 .4181 7 .4171 5 .4171	26. 83 26. 94 5 27. 05	4, 934 4, 937 4, 941		.7157 .7101 .7046	-1 .3319 -1 -1 .3305 -1 -1 .3292 -1 -1 .3278 -1 -1 .3265 -1

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

										,			1		
M or M1	$\frac{p}{p_i}$	P	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	1° a.	ν	μ	M ₂	$\frac{p_2}{p_1}$	P: P1	$\frac{T_1}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
4.85	. 2255 -1	. 1287 -1	. 1753	4, 746	.3714 -1	22. 15	2, 224455	75, 482	11. 90	. 4175	27, 28	4, 948	5, 512	. 6936 -1	. 3252 -:
4.86	. 2229 -2	. 1276 -1	. 1747	4, 756	.3695 -1	22. 33	2, 225257	75, 580	11. 87	. 4173	27, 39	4, 952	5, 531	. 6882 -1	. 3239 -1
4.87	. 2202 -2	. 1265 -1	. 1741	4, 766	.3657 -1	22. 51	2, 226055	75, 678	11. 85	. 4172	27, 50	4, 955	5, 550	. 6828 -1	. 3226 -1
4.88	. 2177 -2	. 1254 -1	. 1735	4, 776	.3628 -1	22. 70	2, 226848	75, 775	11. 83	. 4170	27, 62	4, 959	5, 569	. 6775 -1	. 3213 -1
4.89	. 2151 -1	. 1244 -1	. 1729	4, 787	.3600 -1	22. 86	2, 227638	75, 872	11. 80	. 4169	27, 73	4, 962	5, 588	. 6722 -1	. 3200 -5
4. 90	. 2126 -2	. 1233 -1	.1724	4. 797	.3573 -1	23. 07	2. 228424	75, 969	11. 78	. 4167	27, 85	4. 966	5, 607	. 6670 -1	. 3187 -1
4. 91	. 2101 -2	. 1223 -1	.1718	4. 807	.3545 -1	23. 25	2. 229206	76, 066	11. 75	. 4165	27, 96	4. 969	5, 626	. 6618 -1	. 3174 -1
4. 92	. 2076 -1	. 1213 -1	.1712	4. 817	.3518 -1	23. 44	2. 229984	76, 162	11. 73	. 4164	28, 07	4. 973	5, 646	. 6567 -1	. 3161 -1
4. 93	. 2052 -2	. 1202 -1	.1706	4. 828	.3491 -1	23. 63	2. 230758	76, 258	11. 70	. 4163	28, 19	4. 976	5, 665	. 6516 -1	. 3149 -1
4. 94	. 2028 -3	. 1192 -1	.1700	4. 838	.3464 -1	23. 82	2. 231528	76, 353	11. 68	. 4161	28, 30	4. 980	5, 684	. 6465 -1	. 3136 -1
4. 95	. 2004 -2	.1182 -1	.1695	4, 848	.3437 -1	24, 02	2. 232294	76, 449	11. 66	. 4160	28, 42	4. 983	5, 703	.6415 -1	.3124 -1
4. 96	. 1981 -2	.1173 -1	.1689	4, 858	.3411 -1	24, 21	2. 233056	76, 544	11. 63	. 4158	28, 54	4. 987	5, 723	.6366 -1	.3111 -1
4. 97	. 1957 -2	.1163 -1	.1683	4, 865	.3385 -1	24, 41	2. 233815	76, 638	11. 61	. 4157	28, 65	4. 990	5, 742	.6317 -1	.3099 -1
4. 98	. 1935 -2	.1153 -1	.1678	4, 879	.3359 -1	24, 60	2. 234570	76, 732	11. 58	. 4155	28, 77	4. 993	5, 761	.6268 -1	.3087 -1
4. 99	. 1912 -2	.1144 -1	.1672	4, 889	.3333 -1	24, 80	2. 235321	76, 826	11. 56	. 4154	28, 88	4. 997	5, 781	.6220 -1	.3075 -1
5. 00	. 1890 -2	. 1134 -1	. 1667	4. 899	.3308 -1	25, 00	2 236068	76. 920	11. 54	.4152	29, 00	5. 000	5. 820	.6172 -1	.3062 -1
5. 01	. 1868 -2	. 1125 -1	. 1661	4. 909	.3282 -1	25, 20	2. 236811	77. 013	11. 51	.4151	29, 12	5. 003	5. 829	.6124 -1	.3051 -1
5. 02	. 1847 -2	. 1115 -1	. 1656	4. 919	.3257 -1	25, 40	2. 237551	77. 106	11. 49	.4149	29, 23	5. 007	5. 839	.6077 -1	.3039 -1
5. 03	. 1825 -2	. 1106 -1	. 1650	4. 930	.3233 -1	25, 61	2. 238287	77. 199	11. 47	.4148	29, 35	5. 010	5. 859	.6030 -1	.3027 -1
5. 04	. 1804 -2	. 1097 -1	. 1645	4. 940	.3208 -1	25, 81	2. 239020	77. 291	11. 44	.4147	29, 47	5. 013	5. 878	.5981 -1	.3015 -1
5. 05	. 1783 -2	. 1088 =:	. 1639	4, 950	.3184 -1	26, 02	2. 239749	77, 385	11. 42	.4145	29, 59	5. 016	5. 898	. 5938 -1	. 3003 -1
5. 06	. 1763 -2	. 1079 =:	. 1634	4, 960	.3159 -1	26, 22	2. 240474	77, 477	11. 40	.4144	29, 70	5. 020	5. 918	. 5893 -1	. 2991 -1
5. 07	. 1742 -2	. 1070 =:	. 1628	4, 970	.3135 -1	26, 43	2. 241195	77, 568	11. 38	.4142	29, 82	5. 023	5. 937	. 5848 -1	. 2980 -1
5. 08	. 1722 -2	. 1061 =:	. 1623	4, 981	.3112 -1	26, 64	2. 241914	77, 660	11. 35	.4141	29, 94	5. 026	5. 957	. 5803 -1	. 2968 -1
5. 09	. 1703 -2	. 1053 =:	. 1618	4, 991	.3088 -1	26, 86	2. 242628	77, 751	11. 33	.4140	30, 06	5. 029	5. 977	. 5759 -1	. 2957 -1
5. 10	. 1683 -2	. 1044 -1	. 1612	5. 001	.3065 =1	27. 07	2. 243339	77, 841	11. 31	. 4138	30. 18	5. 033	5. 997	. 5715 -1	. 2945 =1
5. 11	. 1664 -2	. 1035 -1	. 1607	5. 011	.3042 =1	27. 28	2. 244047	77, 931	11. 29	. 4137	30. 30	5. 036	6. 016	. 5672 -1	. 2934 =1
5. 12	. 1645 -2	. 1027 -1	. 1602	5. 021	.3019 =1	27. 50	2. 244751	78, 021	11. 26	. 4136	30. 42	5. 039	6. 036	. 5628 -1	. 2923 =1
5. 13	. 1626 -2	. 1019 -1	. 1597	5. 032	.2996 =1	27. 72	2. 245451	78, 111	11. 24	. 4134	30. 54	5. 042	6. 056	. 5586 -1	. 2911 =1
5. 14	. 1608 -2	. 1010 -1	. 1591	5. 042	.2973 =1	27. 94	2. 246148	78, 201	11. 22	. 4133	30. 66	5. 045	6. 076	. 5543 -1	. 2900 =1
5. 15	. 1589 -2	. 1002 -1	. 1586	5. 052	. 2951 -1	28. 16	2. 246842	78. 290	11. 20	. 4132	30. 78	5. 048	6. 096	.5501 -1	. 2889 -1
5. 16	. 1571 -2	. 9939 -2	. 1581	5. 062	. 2929 -1	28. 38	2. 247532	78. 379	11. 18	. 4130	30. 90	5. 051	6. 117	.5460 -1	. 2878 -1
5. 17	. 1553 -2	. 9658 -2	. 1576	5. 072	. 2907 -1	28. 60	2. 248219	78. 468	11. 15	. 4129	31. 02	5. 054	6. 137	.5418 -1	. 2867 -1
5. 18	. 1536 -2	. 9778 -2	. 1571	5. 083	. 2485 -1	28. 83	2. 248903	78. 556	11. 13	. 4128	31. 14	5. 058	6. 157	.5377 -1	. 2856 -1
5. 19	. 1518 -2	. 9699 -2	. 1566	5. 093	. 2863 -1	29. 06	2. 249583	78. 645	11. 11	. 4126	31. 26	5. 061	6. 177	.5337 -1	. 2845 -1
5. 20	.1501 -2	.9620 -2	. 1561	5. 103	. 2842 -1	29. 28	2. 250260	78. 733	11. 09	. 4125	31. 38	5. 064	6. 197	. 5297 -1	. 2834
5. 21	.1484 -2	.9543 -2	. 1555	5. 113	. 2821 -1	29. 51	2. 250934	78. 820	11. 07	. 4124	31. 50	5. 067	6. 217	. 5257 -1	. 2824
5. 22	.1468 -2	.9466 -2	. 1550	5. 123	. 2799 -1	29. 74	2. 251604	78. 908	11. 04	. 4123	31. 62	5. 070	6. 238	. 5217 -1	. 2817
5. 23	.1451 -2	.9389 -2	. 1545	5. 134	. 2778 -1	29. 98	2. 252271	78. 995	11. 02	. 4121	31. 75	5. 073	6. 258	. 5178 -1	. 280
5. 24	.1435 -2	.9314 -2	. 1540	5. 144	. 2758 -1	30. 21	2. 252935	79. 061	11. 00	. 4120	31. 87	5. 076	6. 278	. 5139 -1	. 279.
5. 25	. 1419 -2	. 9239 -:	. 1536	5. 154	. 2737 -1	30. 45	2. 253596	79. 167	10. 96	.4119	31. 99	5. 079	6. 299	.5100 -1	. 2782
5. 26	. 1403 -2	. 9165 -2	. 1531	5. 164	. 2717 -1	30. 68	2. 254254	79. 254	10. 96	.4118	32. 11	5. 082	6. 319	.5062 -1	. 2771
5. 27	. 1387 -2	. 9092 -2	. 1526	5. 174	. 2697 -1	30. 92	2. 254908	79. 340	10. 94	.4116	32. 24	5. 085	6. 340	.5024 -1	. 2761 -1
5. 28	. 1372 -2	. 9019 -2	. 1521	5. 184	. 2677 -1	31. 16	2. 255559	79. 426	10. 92	.4115	32. 36	5. 086	6. 360	.4987 -1	. 2750 -1
5. 29	. 1356 -2	. 8947 -2	. 1516	5. 195	. 2657 -1	31. 41	2. 256207	79. 511	10. 90	.4114	32. 48	5. 090	6. 381	.4950 -1	. 2740 -1
5. 30	. 1341 -2		. 1511	5. 205	2637 =1	31. 65	2. 256852	79, 597	10. 88	.4113	32. 61	5. 093	6. 401	. 4913 -1	.2730 -1
5. 31	. 1326 -2		. 1506	5. 215	2617 =1	31. 89	2. 257494	79, 681	10. 86	.4112	32. 73	5. 096	6. 422	. 4876 -1	.2720 -1
5. 32	. 1311 -2		. 1501	5. 225	2598 =1	32. 14	2. 258133	79, 765	10. 83	.4110	32. 85	5. 099	6. 443	. 4840 -1	.2710 -1
5. 33	. 1297 -2		. 1497	5. 235	2579 =1	32. 39	2. 258769	79, 850	10. 81	.4109	32. 98	5. 102	6. 464	. 4804 -1	.2700 -1
5. 34	. 1282 -2		. 1492	5. 246	2560 =1	32. 64	2. 259401	79, 934	10. 79	.4108	33. 10	5. 105	6. 484	. 4768 -1	.2690 -1
5. 35 5. 36 5. 37 5. 38 5. 39	. 1268 -2 . 1254 -2 . 1240 -2 . 1227 -2 . 1213 -2	.8394 -2 .8327 -2	. 1487 . 1482 . 1478 . 1473 . 1468	5. 256 5. 266 5. 276 5. 286 5. 296	2541 =1 2522 =1 2504 =1 2485 =1 2467 =1	32. 89 33. 14 33. 40 33. 66 33. 91	2. 260031 2. 260658 2. 261281 2. 261902 2. 262520	80. 018 80. 101 80. 185 80. 268 80. 351	10. 77 10. 75 10. 73 10. 71 10. 69	. 4107 . 4106 . 4104 . 4103 . 4102	33. 23 33. 35 33. 48 33. 60 33. 73	5. 108 5. 111 5. 113 5. 116 5. 119	6, 505 6, 526 6, 547 6, 568 6, 589	.4733 -1 .4697 -1 .4663 -1 .4628 -1 .4594 -1	. 2680 -1 . 2670 -1 . 2660 -1 . 2650 -1 . 2641 -1
5. 40 5. 41 5. 42 5. 43 5. 44	. 1200 -2 . 1187 -2 . 1174 -2 . 1161 -3 . 1148 -2	.8132 -2 .8068 -2 .8005 -2		5 307 5 317 5 327 5 337 5 347	. 2449	34. 17 34. 44 34. 70 34. 97 35. 23	2. 263135 2. 263747 2. 264356 2. 264962 2. 265566	80. 434 80. 515 80. 597 80. 680 80. 760	10. 67 10. 65 10. 63 10. 61 10. 59	. 4101 . 4100 . 4099 . 4096 . 4096	33. 85 33. 98 34. 11 34. 23 34. 36	5. 122 5. 125 5. 127 5. 130 5. 133	6. 610 6. 631 6. 652 6. 673 6. 694	.4560 -1 .4526 -1 .4493 -1 .4460 -1 .4427 -1	. 2631 -1 . 2621 -1 . 2612 -1 . 2602 -1 . 2593 -1
5. 45 5. 46 5. 47 5. 48 5. 49	.1135 -2 .1123 -2 .1111 -2 .1099 -2 .1067 -2	. 7818 -2 . 7757 -2 . 7697 -2	. 1432	5. 357 5. 364 5. 374 5. 388 5. 398	. 2361 -1 . 2444 -1 . 2326 -1 . 2309 -1 . 2293 -1	36. 32	2. 266166 2. 266764 2. 267359 2. 267951 2. 268540	80. 842 80. 923 81. 004 81. 084 81. 165	10. 57 10. 55 10. 53 10. 51 10. 50	. 4095 . 4094 . 4093 . 4092 . 4091	34, 49 34, 61 34, 74 34, 87 35, 00	5. 136 5. 138 5. 141 5. 144 5. 146	6. 715 6. 737 6. 758 6. 779 6. 800	.4395 -1 .4362 -1 .4330 -1 .4299 -1 .4267 -1	. 2583 -1 . 2574 -1 . 2565 -1 . 2566 -1 . 2546 -1
5. 50 5. 51 5. 52 5. 53 5. 54	. 1075 -2 . 1063 -3 . 1052 -2 . 1040 -3 . 1029 -3	.7519 -2 .7460 -2 .7403 -2	. 1414 . 1410 . 1405	5. 408 5. 418 5. 429 5. 439 5. 449	. 2276 -1 . 2260 -1 . 2243 -1 . 2227 -1 . 2211 -1	36. 87 37. 15 37. 43 37. 71 38. 00	2. 269127 2. 269711 2. 270292 2. 270870 2. 271446	81. 245 81. 324 81. 404 81. 484 81. 563	10, 48 10, 46 10, 44 10, 42 10, 40	. 4090 . 4089 . 4088 . 4086 . 4085	35. 13 35. 25 35. 38 35. 51 35. 64	5. 149 5. 152 5. 154 5. 157 5. 159	6. 822 6. 843 6. 865 6. 886 6. 908	.4236 -1 .4205 -1 .4175 -1 .4144 -1 .4114 -1	. 2537 -1 . 2528 -1 . 2519 -1 . 2510 -1 . 2501 -1
5. 55 5. 56 5. 57 5. 58 5. 59	. 1016 -1 . 1007 -2 . 9961 -1 . 9653 -1 . 9748 -1	.7232 .7177 .7121	. 1392 . 1388 . 1384	5. 459 5. 469 5. 479 5. 490 5. 500	. 2195 -1 . 2179 -1 . 2163 -1 . 2148 -1 . 2132 -1	38. 57 38. 86 39. 15	2. 272019 2. 272589 2. 273157 2. 273722 2. 274285	81. 641 81. 720 81. 795 81. 876 81. 955	10. 38 10. 36 10. 34 10. 32 10. 31	. 4084 . 4083 . 4082 . 4081 . 4080	35. 77 35. 90 36. 03 36. 16 36. 29	5. 162 5. 165 5. 167 5. 170 5. 172	6. 929 6. 951 6. 973 6. 994 7. 016	.4084 -1 .4054 -1 .4025 -2 .3996 -1 .3967 -1	.2492 -1 .2483 -1 .2475 -1 .2466 -1 .2457 -1
5. 60 5. 61 5. 62 5. 63 5. 64	. 9643	. 6959 - 6905 - 6853	. 1371	5. 510 5. 520 5. 530 5. 540 5. 551	.2117 -1 .2102 -1 .2087 -1 .2072 -1 .2057 -1	40. 04 40. 34 40. 64	2. 274844 2. 275402 2. 275957 2. 276509 2. 277058	82. 032 82. 109 82. 187 82. 263 82. 340	10. 29 10. 27 10. 25 10. 23 10. 21	. 4079 . 4078 . 4077 . 4076 . 4075	36. 42 36. 55 36. 68 36. 81 36. 94	5. 175 5. 177 5. 180 5. 182 5. 185	7. 038 7. 060 7. 062 7. 103 7. 125	.3938 -1 .3910 -1 .3882 -1 .3854 -1 .3826 -1	
5. 65 5. 66 5. 67 5. 68 5. 69	.9139 .9041 .8945 .8850 .8756	. 6697 . 6646 . 6596	. 1350 2 . 1346 2 . 1342	5. 561 5. 571 5. 581 5. 591 5. 601	. 2042 . 2028 . 2013 . 1999 . 1984	41. 55 41. 86 42. 17	2. 277606 2. 278150 2. 278692 2. 279232 2. 279769	82. 417 82. 493 82. 569 82. 645 82. 720	10. 20 10. 18 10. 16 10. 14 10. 12	. 4074 . 4073 . 4072 . 4071 . 4070	37. 08 37. 21 37. 34 37. 47 37. 61	5. 187 5. 190 5. 192 5. 195 5. 197	7. 147 7. 169 7. 191 7. 213 7. 236	.3798 -1 .3771 -1 .3744 -1 .3717 -1 .3691 -1	. 23 . 2372
5. 70 5. 71 5. 72 5. 73 5. 74	.8572 .8481 .8392	. 6447 . 6398 . 6350	. 1330 2 . 1326 2 . 1322	5. 612 5. 622 5. 632 5. 642 5. 652	.1970 - .1956 - .1942 - .1929 - .1915 -	43. 11 43. 43 1 43. 75	2. 280304 2. 280836 2. 281366 2. 281894 2. 282419	82. 795 82. 871 82. 946 83. 020 83. 095	10. 10 10. 09 10. 07 10. 05 10. 03	. 4069 . 4068 . 4067 . 4066 . 4065	37. 74 37. 87 38. 00 38. 14 38. 27	5. 200 5. 202 5. 205 5. 207 5. 209	7. 258 7. 280 7. 302 7. 324 7. 347	.3586	. 2356 -: 2348 -: 2340 -:

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

TABLE II.—SUPERSONIC FLOW—Continued

								γ=7/5					. 1			
	M or M	$\frac{p}{p_i}$	Pi	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	<u>1°</u>	ν	щ	M ₂	$\frac{p_2}{p_1}$	<u>ρ:</u> ρι	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
	5. 75	.8216 -3	. 6254 -?	. 1314	5. 662	. 1902 -1	44. 40	2. 282942	83. 169	10. 02	. 4064	38. 41	5. 212	7. 369	.3536 -1	. 2324 -1
	5. 76	.8130 -3	. 6207 -2	. 1310	5. 673	. 1888 -1	44. 72	2. 283462	83. 243	9. 996	. 4063	38. 54	5. 214	7. 392	.3510 -1	. 2316 -1
	5. 77	.8044 -3	. 6161 -2	. 1306	5. 683	. 1875 -1	45. 05	2. 283980	83. 317	9. 980	. 4062	38. 68	5. 217	7. 414	.3486 -1	. 2308 -1
	5. 78	.7960 -3	. 6114 -2	. 1302	5. 693	. 1862 -1	45. 38	2. 284496	83. 391	9. 963	. 4061	38. 81	5. 219	7. 436	.3461 -1	. 2300 -1
	5. 79	.7876 -3	. 6069 -2	. 1298	5. 703	. 1848 -1	45. 72	2. 285009	83. 463	9. 946	. 4060	38. 94	5. 221	7. 459	.3436 -1	. 2292 -1
	5. 80 5. 81 5. 82 5. 83 5. 84	.7794 -3 .7713 -3 .7632 -3 .7553 -3 .7474 -3	. 6023 -2 . 5978 -2 . 5934 -2 . 5889 -2 . 5846 -2	. 1294 . 1290 . 1286 . 1282 . 1279	5. 713 5. 723 5. 733 5. 744 5. 754	. 1835 -1 . 1823 -1 . 1810 -1 . 1797 -1 . 1784 -1	46. 05 46. 39 46. 72 47. 07 47. 41	2. 285520 2. 286029 2. 286535 2. 287040 2. 287542	83, 537 83, 609 83, 683 83, 755 83, 827	9. 928 9. 911 9. 894 9. 877 9. 860	. 4059 . 4059 . 4058 . 4057 . 4056	39. 08 39. 22 39. 35 39. 49 39. 62	5. 224 5. 226 5. 228 5. 231 5. 233	7. 481 7. 504 7. 527 7. 549 7. 572	. 3412 -1 . 3388 -1 . 3364 -1 . 3340 -1 . 3317 -1	. 2244 -1 . 2277 -1 . 2269 -1 . 2261 -1 . 2254 -1
1	5. 85	. 7396 -3	.5802 -2	. 1275	5. 764	. 1772 -1	47, 75	2. 288041	83. 899	9. 842	. 4055	39. 76	5. 235	7. 595	.3293 -1	. 2246 -1
	5. 86	. 7320 -3	.5759 -1	. 1271	5. 774	. 1760 -1	48, 10	2. 288539	83. 971	9. 826	. 4054	39. 90	5. 237	7. 618	.3270 -1	. 2238 -1
	5. 87	. 7244 -3	.5716 -2	. 1267	5. 784	. 1747 -1	48, 45	2. 289034	84. 042	9. 809	. 4053	40. 03	5. 240	7. 640	.3247 -1	. 2231 -1
	5. 88	. 7169 -3	.5674 -2	. 1263	5. 794	. 1735 -1	48, 80	2. 289527	84. 114	9. 792	. 4052	40. 17	5. 242	7. 663	.3225 -1	. 2223 -1
	5. 89	. 7095 -3	.5632 -2	. 1260	5. 804	. 1723 -1	49, 15	2. 290018	84. 185	9. 775	. 4051	40. 31	5. 244	7. 686	.3202 -1	. 2216 -1
	5. 90	.7021 -3	. 5590 -2	. 1256	5. 815	. 1711 -1	49, 51	2. 290507	84. 257	9. 758	. 4050	40, 45	5. 246	7. 709	. 3180 -1	. 2208 -1
	5. 91	.6949 -3	. 5549 -2	. 1252	5. 825	. 1699 -1	49, 86	2. 290993	84. 327	9. 742	. 4049	40, 58	5. 249	7. 732	. 3157 -1	. 2201 -1
	5. 92	.6877 -3	. 5508 -2	. 1249	5. 835	. 1687 -1	50, 22	2. 291477	84. 398	9. 725	. 4049	40, 72	5. 251	7. 755	. 3135 -1	. 2194 -1
	5. 93	.6907 -3	. 5468 -2	. 1245	5. 845	. 1676 -1	50, 59	2. 291960	84. 468	9. 708	. 4048	40, 86	5. 253	7. 778	. 3113 -1	. 2186 -1
	5. 94	.6737 -3	. 5428 -2	. 1241	5. 855	. 1664 -1	50, 95	2. 292440	84. 539	9. 692	. 4047	41, 00	5. 255	7. 801	. 3092 -1	. 2179 -1
:	5. 95	. 6668 -1	. 5388 -2	. 1238	5. 865	. 1652 -1	51. 32	2. 292918	84. 609	9. 675	. 4046	41. 14	5. 257	7. 824	. 3070 -1	. 2172 -1
	5. 96	. 6599 -1	. 5348 -2	. 1234	5. 876	. 1641 -1	51. 68	2. 293394	84. 679	9. 659	. 4045	41. 28	5. 260	7. 847	. 3049 -1	. 2165 -1
	5. 97	. 6532 -1	. 5309 -3	. 1230	5. 886	. 1630 -1	52. 05	2. 293867	84. 748	9. 643	. 4044	• 41. 41	5. 262	7. 871	. 3028 -1	. 2157 -1
	5. 98	. 6465 -1	. 5270 -2	. 1227	5. 896	. 1618 -1	52. 43	2. 294339	84. 817	9. 626	. 4043	41. 55	5. 264	7. 894	. 3007 -1	. 2150 -1
	5. 99	. 6399 -3	. 5232 -2	. 1223	5. 906	. 1607 -1	52. 80	2. 294809	84. 887	9. 610	. 4042	41. 69	5. 266	7. 917	. 2986 -1	. 2143 -1
1	6. 00	. 6334 -3	.5194 -2	. 1220	5. 916	. 1596 -1	53. 18	2. 295276	84. 955	9. 594	. 4042	41. 83	5. 268	7. 941	. 2965 -1	. 2136 -1
	6. 01	. 6269 -1	.5156 -2	. 1216	5. 926	. 1585 -1	53. 56	2. 295742	85. 025	9. 578	. 4041	41. 97	5. 270	7. 964	. 2945 -1	. 2129 -1
	6. 02	. 6205 -3	.5118 -2	. 1212	5. 936	. 1574 -1	53. 94	2. 296205	85. 093	9. 562	. 4040	42. 11	5. 273	7. 987	. 2924 -1	. 2122 -1
	6. 03	. 6142 -3	.5081 -2	. 1209	5. 947	. 1563 -1	54. 32	2. 296667	85. 162	9. 546	. 4039	42. 25	5. 275	8. 011	. 2904 -1	. 2115 -1
	6. 04	. 6080 -3	.5044 -3	. 1205	5. 957	. 1553 -1	54. 71	2. 297126	85. 230	9. 530	. 4038	42. 40	5. 277	8. 034	. 2884 -1	. 2108 -1
:	6. 05	.6018 -3	.5008 -2	. 1202	5. 967	. 1542 -1	55. 10	2. 297583	85. 297	9. 514	. 4037	42. 54	5. 279	8. 058	. 2864 -1	. 2101 -1
	6. 06	.5957 -3	.4971 -2	. 1198	5. 977	. 1531 -1	55. 49	2. 298039	85. 366	9. 498	. 4037	42. 69	5. 281	8. 081	. 2844 -1	. 2094 -1
	6. 07	.5897 -3	.4935 -2	. 1195	5. 987	. 1521 -1	55. 88	2. 296492	85. 433	9. 482	. 4036	42. 82	5. 283	8. 105	. 2825 -1	. 2088 -1
	6. 08	.5838 -3	.4900 -2	. 1191	5. 997	. 1511 -1	56. 28	2. 296944	85. 500	9. 467	. 4035	42. 96	5. 285	8. 129	. 2806 -1	. 2081 -1
	6. 09	.5779 -3	.4864 -2	. 1188	6. 007	. 1500 -1	56. 68	2. 299393	85. 568	9. 451	. 4034	43. 10	5. 287	8. 152	. 2786 -1	. 2074 -1
, e ₂	6. 10	. 5721 -3	. 4829 -2	. 1185	6. 017	.1490 -1	57, 08	2. 299841	85. 635	9. 435	. 4033	43, 25	5. 289	8. 176	. 2767 -1	. 2067 -1
	6. 11	. 5663 -3	. 4795 -3	. 1181	6. 028	.1480 -1	57, 48	2. 300286	85. 702	9. 420	. 4033	43, 39	5. 291	8. 200	. 2748 -1	. 2061 -1
	6. 12	. 5606 -3	. 4760 -3	. 1178	6. 038	.1470 -1	57, 88	2. 300730	85. 768	9. 404	. 4032	43, 53	5. 293	8. 223	. 2739 -1	. 2054 -1
	6. 13	. 5550 -3	. 4726 -2	. 1174	6. 048	.1460 -1	58, 29	2. 301172	85. 834	9. 389	. 4031	43, 67	5. 295	8. 247	. 2711 -1	. 2047 -1
	6. 14	. 5494 -3	. 4692 -2	. 1171	6. 058	.1450 -1	58, 70	2. 301612	85. 901	9. 373	. 4030	43, 82	5. 297	8. 271	. 2692 -1	. 2041 -1
	6. 15	. 5439 -3	.4658 -3	.1168	6, 068	.1440 -1	59. 11	2, 302050	85, 967	9. 358	. 4029	43. 96	5. 299	8. 295	. 2674 -1	. 2034 -1
	6. 16	. 5385 -3	.4625 -2	.1164	6, 078	.1430 -1	59. 53	2, 302486	86, 033	9. 343	. 4029	44. 10	5. 301	8. 319	. 2656 -1	. 2028 -1
	6. 17	. 5331 -3	.4592 -2	.1161	6, 088	.1421 -1	59. 94	2, 302920	86, 099	9. 327	. 4028	44. 25	5. 303	8. 343	. 2638 -1	. 2021 -1
	6. 18	. 5278 -3	.4559 -3	.1158	6, 099	.1411 -1	60. 36	2, 303353	86, 164	9. 312	. 4027	44. 39	5. 305	8. 367	. 2620 -1	. 2015 -1
	6. 19	. 5225 -3	.4527 -2	.1154	6, 109	.1402 -1	60. 79	2, 303783	86, 229	9. 297	. 4026	44. 54	5. 307	8. 391	. 2602 -1	. 2008 -1
	6. 20	.5173 -3	.4495 -2	.1151	6. 119	. 1392 -1	61. 21	2. 304212	86, 295	9. 282	. 4025	44. 68	5. 309	8. 415	. 2584 -1	. 2002 -1
	6. 21	.5122 -3	.4463 -2	.1148	6. 129	. 1383 -1	61. 64	2. 304639	86, 360	9. 267	. 4025	44. 82	5. 311	8. 439	. 2567 -1	. 1995 -1
	6. 22	.5071 -3	.4431 -2	.1144	6. 139	. 1373 -1	62. 07	2. 305064	86, 424	9. 252	. 4024	44. 97	5. 313	8. 464	. 2550 -1	. 1989 -1
	6. 23	.5021 -3	.4400 -2	.1141	6. 149	. 1364 -1	62. 50	2. 305487	86, 490	9. 237	. 4023	45. 12	5. 315	8. 488	. 2532 -1	. 1983 -1
	6. 24	.4971 -3	.4369 -2	.1138	6. 159	. 1355 -1	62. 93	2. 305908	86, 554	9. 222	. 4022	45. 26	5. 317	8. 512	. 2515 -1	. 1977 -1
	6, 25	.4922 -3	.4338 -2	. 1135	6. 169	. 1346 -1	63. 37	2. 306328	86. 618	9. 207	. 4022	45. 41	5. 319	8. 536	. 2498 -1	. 1970 -1
	6, 26	.4874 -3	.4307 -2	. 1132	6. 180	. 1337 -1	63. 81	2. 306746	86. 683	9. 192	. 4021	45. 55	5. 321	8. 561	. 2482 -1	. 1964 -1
	6, 27	.4825 -3	.4277 -2	. 1128	6. 190	. 1328 -1	64. 25	2. 307162	86. 746	9. 177	. 4020	45. 70	5. 323	8. 585	. 2465 -1	. 1958 -1
	6, 28	.4778 -3	.4246 -2	. 1125	6. 200	. 1319 -1	64. 69	2. 307576	86. 810	9. 163	. 4019	45. 84	5. 325	8. 610	. 2448 -1	. 1952 -1
	6, 29	.4731 -3	.4217 -2	. 1122	6. 210	. 1310 -1	65. 14	2. 307989	86. 874	9. 148	. 4019	45. 99	5. 327	8. 634	. 2432 -1	. 1945 -1
	6, 30	. 4684 -3	.4187 -2	.1119	6. 220	.1302 -1	65, 59	2. 308400	86. 937	9. 133	. 4018	46. 14	5. 329	8. 658	. 2416 -1	. 1939 -1
	6, 31	. 4638 -3	.4158 -2	.1116	6. 230	.1293 -1	66, 04	2. 308809	87. 000	9. 119	. 4017	46. 29	5. 331	8. 693	. 2399 -1	. 1933 -1
	6, 32	. 4593 -3	.4128 -2	.1113	6. 240	.1284 -1	66, 50	2. 309216	87. 063	9. 104	. 4016	46. 43	5. 332	8. 708	. 2383 -1	. 1927 -1
	6, 33	. 4548 -3	.4100 -2	.1109	6. 251	.1276 -1	66, 95	2. 309622	87. 126	9. 090	. 4016	46. 58	5. 334	8. 732	. 2367 -1	. 1921 -1
	6, 34	. 4504 -3	.4071 -2	.1106	6. 261	.1267 -1	67, 41	2. 310026	87. 189	9. 075	. 4015	46. 73	5. 336	8. 757	. 2352 -1	. 1915 -1
	6. 35	.4460 -3	.4042 -3	.1103	6. 271	.1259 -1	67. 88	2. 310428	87. 251	9. 061	. 4014	46.88	5. 338	8. 781	.2336 -1	. 1909 -1
	6. 36	.4416 -3	.4014 -2	.1100	6. 281	.1250 -1	68. 34	2. 310828	87. 315	9. 046	. 4014	47.02	5. 340	8. 806	.2320 -1	. 1903 -1
	6. 37	.4373 -3	.3986 -2	.1097	6. 291	.1242 -1	68. 81	2. 311227	87. 376	9. 032	. 4013	47.17	5. 342	8. 831	.2305 -1	. 1897 -1
	6. 38	.4331 -3	.3958 -2	.1094	6. 301	.1234 -1	69. 28	2. 311625	87. 438	9. 018	. 4012	47.32	5. 344	8. 856	.2290 -1	. 1891 -1
	6. 39	.4288 -3	.3931 -2	.1091	6. 311	.1226 -1	69. 75	2. 312020	87. 499	9. 004	. 4011	47.47	5. 345	8. 881	.2274 -1	. 1886 -1
erbeiben ein er stellebergeler son ein	6. 40	. 4247 -3	. 3904 -2	.1088	6. 321	.1218 -1	70. 23	2. 312414	87, 561	8. 989	. 4011	47. 62	5. 347	8. 905	. 2259 -1	. 1880 -1
	6. 41	. 4206 -3	. 3877 -2	.1085	6. 332	.1210 -1	70. 57	2. 312806	87, 623	8. 975	. 4010	47. 77	5. 349	8. 930	. 2244 -1	. 1874 -1
	6. 42	. 4165 -3	. 3850 -2	.1082	6. 342	.1202 -1	71. 19	2. 313197	87, 684	8. 961	. 4009	47. 92	5. 351	8. 955	. 2230 -1	. 1868 -1
	6. 43	. 4125 -3	. 3823 -2	.1079	6. 352	.1194 -1	71. 67	2. 313586	87, 745	8. 947	. 4009	48. 07	5. 353	8. 980	. 2215 -1	. 1862 -1
	6. 44	. 4085 -3	. 3797 -2	.1076	6. 362	.1186 -1	72. 16	2. 313973	87, 806	8. 933	. 4008	48. 22	5. 354	9. 005	. 2200 -1	. 1857 -1
	6. 45	. 4045 -3	.3771 -2	.1073	6. 372	.1178 -1	72. 65	2. 314359	87. 867	8. 919	. 4007	48. 37	5. 356	9. 031	. 2186 -1	.1851 -1
	6. 46	. 4006 -3	.3745 -2	.1070	6. 382	.1170 -1	73. 14	2. 314743	87. 927	8. 905	. 4007	48. 52	5. 358	9. 056	. 2171 -1	.1845 -1
	6. 47	. 3968 -3	.3719 -2	.1067	6. 392	.1163 -1	73. 63	2. 315126	87. 988	8. 891	. 4006	48. 67	5. 360	9. 081	. 2157 -1	.1840 -1
	6. 48	. 3930 -3	.3693 -2	.1064	6. 402	.1155 -1	74. 13	2. 315507	88. 048	8. 877	. 4005	48. 82	5. 362	9. 106	. 2143 -1	.1834 -1
	6. 49	. 3892 -3	.3668 -2	.1061	6. 412	.1148 -1	74. 63	2. 315886	88. 108	8. 864	. 4004	48. 97	5. 363	9. 131	. 2129 -1	.1828 -1
	6. 50	. 3855 -3	. 3643 -2	. 1058	6. 423	.1140 -1	75. 13	2. 316264	88. 169	8. 850	. 4004	49. 13	5. 365	9. 156	.2115 -1	. 1823 -1
	6. 51	. 3818 -3	. 3616 -2	. 1055	6. 433	.1133 -1	75. 65	2. 316640	86. 228	8. 836	. 4003	49. 28	5. 367	9. 182	.2101 -1	. 1817 -1
	6. 52	. 3781 -3	. 3593 -2	. 1052	6. 443	.1125 -1	76. 15	2. 317015	88. 288	8. 823	. 4002	49. 43	5. 369	9. 207	.2087 -1	. 1812 -1
	6. 53	. 3745 -3	. 3568 -2	. 1050	6. 453	.1118 -1	76. 66	2. 317388	88. 347	8. 809	. 4002	49. 58	5. 370	9. 232	.2073 -1	. 1806 -1
	6. 54	. 3709 -3	. 3544 -2	. 1047	6. 463	.1111 -1	77. 18	2. 317760	88. 406	8. 795	. 4001	49. 73	5. 372	9. 258	.2060 -1	. 1801 -1
8	6. 55 6. 56 6. 57 6. 58 6. 59	. 3674 -3 . 3639 -3 . 3604 -3 . 3570 -3 . 3536 -3	.3520 -2 .3496 -2 .3472 -2 .3449 -2 .3425 -2	. 1044 . 1041 . 1038 . 1035 . 1032	6. 473 6. 483 6. 493 6. 504 6. 514	. 1103 -1 . 1096 -1 . 1089 -1 . 1082 -t . 1075 -1	77. 69 78. 21 78. 74 79. 26 79. 79	2. 318130 2. 318499 2. 318866 2. 319232 2. 319596	88. 466 86. 525 88. 584 88. 642 88. 701	8. 782 8. 768 8. 755 8. 741 8. 728	. 4000 . 4000 . 3999 . 3998	49, 89 50, 04 50, 19 50, 35 50, 50	5. 374 5. 375 5. 377 5. 379 5. 381	9. 283 9. 309 9. 334 9. 360 9. 386	. 2047 -1 . 2033 -1 . 2020 -1 . 2007 -1 . 1994 -1	.1774 -1
	6. 60 6. 61 6. 62 6. 63 6. 64	.3503 -3 .3470 -3 .3437 -3 .3404 -3 .3372 -3	.3402 -2 .3379 -2 .3356 -2 .3333 -2 .3311 -2	. 1030 . 1027 . 1024 . 1021 . 1019	6. 524 6. 534 6. 544 6. 554 6. 564	.1068 -1 .1061 -1 .1054 -1 .1048 -1 .1041 -1	80. 32 80. 86 81. 40 81. 94 82. 48	2. 319959 2. 320320 2. 320679 2. 321038 2. 321395	88. 760 88. 818 86. 876 88. 934 88. 991	8. 715 8. 702 8. 688 8. 675 8. 662	. 3997 . 3997 . 3996 . 3995 . 3995	50. 65 50. 81 50. 96 51. 12 51. 27	5. 382 5. 384 5. 386 5. 387 5. 389	9. 411 9. 437 9. 463 9. 488 9. 514	. 1981 -1 . 1968 -1 . 1955 -1 . 1943 -1 . 1930 -1	. 1753 -1

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

γ=7/5

M or M	$\frac{p}{p_t}$	<u>ρ</u>	$\frac{T}{T_i}$	β	$\frac{q}{p_t}$	$\frac{A}{A_{\bullet}}$	1 · a.	ν	μ :	M_2	$\frac{p_2}{p_1}$	<u>ρ:</u> ρι	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$	7%
6. 65 6. 66 6. 67 6. 68 6. 69	.3341 -3 .3309 -3 .3278 -3 .3247 -3 .3217 -3	. 3289 -3 . 3267 -2 . 3245 -2 . 3223 -3 . 3201 -2	. 1016 . 1013 . 1010 . 1008 . 1005	6. 574 6. 584 6. 595 6. 605 6. 615	. 1034 -1 . 1028 -1 . 1021 -1 . 1014 -1 . 1006 -1	83. 03 83. 58 84. 13 84. 68 85. 24	2. 321750 2. 322104 2. 322456 2. 322807 2. 323157	89. (M9 89. 106 89. 164 89. 221 89. 278	8. 649 8. 636 8. 623 8. 610 8. 597	. 3994 . 3993 . 3993 . 3992 . 3992	51. 43 51. 58 51. 74 51. 89 52. 05	5. 391 5. 392 5. 394 5. 395 5. 397	9, 540 9, 566 9, 592 9, 618 9, 644	. 1918 -1 . 1905 -1 . 1893 -1 . 1881 -1 . 1869 -1	. 1742 -1 . 1737 -1 . 1732 -1 . 1727 -1 . 1721 -1	
6. 70 6. 71 6. 72 6. 73 6. 74	.3187 -3 .3157 -3 .3127 -3 .3098 -3 .3069 -3	. 3180 -2 . 3158 -2 . 3137 -2 . 3116 -2 . 3096 -2	.1002 .9995 -: .9968 -: .9942 -: .9915 -:		. 1001 -1 . 9950 -2 . 9886 -2 . 9823 -2 . 9761 -2	85. 80 86. 37 86. 94 87. 51 88. 08	2. 323505 2. 323852 2. 324196 2. 324542 2. 324884	89, 335 89, 391 89, 448 89, 504 89, 561	8. 584 8. 571 8. 558 8. 545 8. 532	. 3991 . 3990 . 3990 . 3989 . 3988		5. 399 5. 400 5. 402 5. 403 5. 405	9, 670 9, 696 9, 722 9, 748 9, 775	. 1857 -1 . 1945 -1 . 1833 -1 . 1821 -1 . 1810 -1	.1716 -1 .1711 -1 .1706 -1 .1701 -1 .1696 -1	
6. 75 6. 76 6. 77 6. 78 6. 79	. 3041 -3 . 3013 -3 . 2985 -3 . 2957 -3 . 2930 -3	. 3075 -2 . 3055 -2 . 3034 -2 . 3014 -2 . 2994 -2	. 9889 -1 . 9862 -1 . 9836 -1 . 9810 -1 . 9784 -1	6. 676 6. 686 6. 696 6. 706 6. 716	. 9699 -2 . 9637 -2 . 9576 -2 . 9515 -2 . 9454 -2	89. 66 89. 24 89. 82 90. 41 91. 00	2, 325226 2, 325566 2, 325904 2, 326242 2, 326578	89, 617 89, 673 89, 729 89, 784 89, 840	8. 520 8. 507 8. 494 8. 482 8. 469	. 3988 . 3987 . 3987 . 3986 . 3986		1 5, 407 5, 408 5, 410 5, 411 5, 413	9, 801 9, 827 9, 853 9, 880 9, 906	. 1798 -1 . 1786 -1 . 1775 -1 . 1764 -1 . 1753 -1	. 1691 -1 . 1686 -1 . 1681 -1 . 1677 -1 . 1671 -1	
6, 80	. 2902 -3 . 2876 -3 . 2849 -3 . 2823 -3 . 2797 -3	. 2974 = 2 . 2955 = 2 . 2935 = 2 . 2916 = 2 . 2897 = 2	. 9758 =1 . 9732 =1 . 9706 =1 . 9681 =1 . 9655 =1	6, 726 6, 736 6, 746 6, 756 6, 767	.9395 === .9335 === .9276 === .9218 === .9160 ===	91. 59 92. 19 92. 79 93. 39 94. 00	2. 326912 2. 327245 2. 327577 2. 327908 2. 328237	89, 895 89, 950 90, 005 90, 060 90, 116	8, 457 8, 444 8, 432 8, 419 8, 407	. 3985 . 3984 . 3984 . 3983 . 3983	53. 78 53. 94 54. 10 54. 26 54. 42	5. 415 5. 416 5. 418 5. 419 5. 421	9, 933 9, 959 9, 986 10, 01 10, 04	. 1741 -1 . 1730 -1 . 1719 -1 . 1709 -1 . 1698 -1	. 1667 -1 . 1662 -1 . 1657 -1 . 1652 -1 . 1647 -1	
6, 85 6, 86 6, 87 6, 88 1 6, 89	2771 -3 2746 -3 2720 -3 2696 -3 2671 -3	. 2878 -2 . 2859 -2 . 2840 -2 . 2821 -2 . 2803 -2	. 9630 =1 . 9604 =1 . 9579 =1 . 9554 =1 . 9529 =1	6, 777 6, 787 6, 797 6, 807 6, 817	. 9102 =2 . 9045 =2 . 8968 =2 . 8931 =2 . 8875 =2	94. 61 95. 22 95. 83 96. 45 97. 08	2, 328565 2, 328892 2, 329217 2, 329541 2, 329864	90, 170 90, 225 90, 279 90, 333 90, 387	8, 394 8, 382 8, 370 8, 357 8, 345	.3982 .3981 .3981 .3980 .3980	54. 58 54. 74 54. 90 55. 06 55. 22	5. 422 5. 424 5. 425 5. 427 5. 428	10, 07 10, 09 10, 12 10, 15 10, 17	. 1687 -1 . 1676 -1 . 1686 -1 . 1655 -1 . 1645 -1	. 1643 -1 . 1648 -1 . 1633 -1 . 1628 -1 . 1624 -1	
6, 90 6, 91 6, 92 6, 93 6, 94	2646 -3 2622 -3 2598 -3 2575 -3 2551 -3	. 2785 -2 . 2766 -2 . 2748 -2 . 2730 -2 . 2713 -2	. 9504 -: . 9479 -: . 9454 -: . 9450 -: . 9405 -:	6, 827 6, 857 6, 847 6, 857 6, 868	.8820 =2 .8764 =2 .8710 =2 .8655 =2 .8601 =2	97, 70 98, 33 98, 96 99, 60 100, 2	2, 330186 2, 330506 2, 330825 2, 331143 2, 331460	90, 441 90, 495 90, 549 90, 602 90, 655	8, 333 8, 321 8, 309 8, 297 8, 285	.3979 .3979 .3978 .3977 .3977	55, 38 55, 54 55, 70 55, 86 56, 02	5, 430 5, 431 5, 433 5, 434 5, 436	10, 20 10, 23 10, 25 10, 28 10, 31	. 1634 -1 . 1624 -1 . 1614 -1 . 1604 -1 . 1594 -1	. 1619 -1 . 1614 -1 . 1610 -1 . 1605 -1 . 1601 -1	
6, 95 6, 96 6, 97 6, 98 6, 99	. 2528 -3 . 2505 -3 . 2482 -3 . 2460 -1 . 2438 -3	. 2695 +2 . 2677 -2 . 2660 -2 . 2643 -2 . 2626 -2	. 9380 +1 . 9356 +1 . 9332 +1 . 9307 +1 . 9283 +1	6, 878 6, 885 6, 893 6, 908 6, 918	. 8548 -2 . 8495 -2 . 8442 -2 . 8499 -7 . 8337 -2	100. 9 101. 5 102. 2 102. 8 103. 5	2.331775 2.332089 2.332402 2.332714 2.333024	90, 709 90, 762 90, 815 90, 867 90, 920	8, 273 5, 261 6, 249 8, 237 8, 225	.3976 .3976 .3975 .3975 .3974	56, 19 56, 35 56, 51 56, 67 56, 84	5. 437 5. 439 5. 440 5. 442 5. 443	10, 33 10, 36 10, 39 10, 42 10, 44	. 1584 -1 . 1574 -1 . 1564 -1 . 1554 -1 . 1545 -1	. 1596 = 4 . 1592 = 4 . 1587 = 1 . 1582 = 4 . 1578 = 4	
7. 00 7. 01 7. 02 7. 03 7. 04	. 2416 -3 . 2394 -3 . 2372 -3 . 2351 -3 . 2360 -3	. 2609 -2 . 2592 -2 . 2575 -2 . 2559 -2 . 2542 -2	. 9259 -1 . 9255 -1 . 9211 -1 . 9188 -1 . 9164 -1	6, 928 6, 938 6, 948 6, 959 6, 969	. 8286 -2 . 8234 -2 . 8183 -2 . 8133 -2 . 8082 -2	104. 1 104. 8 105. 5 106. 1 106. 8	2, 33,1333 2, 333641 2, 333948 2, 334254 2, 334558	90, 973 91, 026 91, 078 91, 130 91, 182	8, 213 8, 201 8, 190 8, 178 8, 166	.3974 .3973 .3973 .3972 .3971	57. 00 57. 16 57. 33 57. 49 57. 66	5, 444 5, 446 5, 447 5, 449 5, 450	10, 47 10, 50 10, 52 10, 55 10, 58	. 1535 +1 . 1526 +1 . 1516 +1 . 1507 +1 . 1497 +1	. 1574 =1 . 1569 =1 . 1565 =1 . 1560 =1 . 1556 =1	
7, 05 7, 06 7, 07 7, 08 7, 09	. 2309 -3 . 2288 -3 . 2267 -3 . 2247 -3 . 2227 -3	. 2526 -3 . 2510 -3 . 2494 -3 . 2478 -3 . 2462 -3	. 9140 -1 . 9117 -1 . 9093 -1 . 9070 -1 . 9047 -1	6, 979 6, 989 6, 999 7, 009 7, 019	.8032 -2 .7983 -2 .7934 -2 .7885 -2 .7857 -2	107. 5 108. 2 108. 9 109. 5 110. 2	2. 334862 2. 335164 2. 335465 2. 335765 2. 336063	91, 234 91, 286 91, 337 91, 389 91, 440	8. 155 8. 143 8. 131 8. 120 8. 108	.3971 .3970 .3970 .3969 .3969	57, 82 57, 98 58, 15 58, 31 58, 48	5, 452 5, 453 5, 454 5, 456 5, 457	10, 61 10, 63 10, 66 10, 69 10, 72	. 1488 -1 . 1479 -1 . 1470 -1 . 1461 -1 . 1452 -1	. 1551 -1 . 1547 -4 . 1543 -1 . 1538 -1 . 1534 -1	
7. 10 7. 11 7. 12 7. 13 7. 14	. 2207 -3 . 2187 -3 . 2168 -3 . 2149 -3 . 2130 -3	. 2446 -2 . 2430 -2 . 2415 -2 . 2400 -2 . 2384 -2	. 9024 -1 . 9001 -1 . 8978 -1 . 8955 -1 . 8932 -1	7, 029 7, 039 7, 049 7, 060 7, 070	.7789 -2 .7741 -2 .7693 -2 .7646 -2 .7600 -2	110. 9 111. 6 112. 3 113. 0 113. 7	2, 336361 2, 336657 2, 336952 2, 337246 2, 337559	91, 492 91, 543 91, 594 91, 645 91, 695	8, 097 8, 085 8, 074 8, 062 8, 051	.3968 .3968 .3967 .3966	58, 65 58, 81 58, 98 59, 14 59, 31	5. 459 5. 460 5. 461 5. 463 5. 464	10. 74 10. 77 10. 80 10. 83 10. 85	. 1443 =: 1434 =: 1425 =: 1416 =: 1408 =:	. 1530 -1 . 1525 -1 . 1521 -1 . 1517 -1 . 1513 -1	
7. 15 7. 16 7. 17 7. 18 7. 19	. 2111 -3 . 2092 -3 . 2073 -3 . 2055 -3 . 2037 -3	. 2369 -2 . 2354 -2 . 2339 -2 . 2524 -2 . 2310 -2	. 8909 -1 . 8966 -1 . 8664 -1 . 8641 -1 . 8819 -1	7. 080 7. 090 7. 100 7. 110 7. 120	.7553 -2 .7507 -2 .7461 -2 .7416 -2 .7571 -2	114. 5 115. 2 115. 9 116. 6 117. 3	2.337831 2.338122 2.338412 2.338700 2.338988	91, 746 91, 796 91, 847 91, 897 91, 947	8, 040 8, 028 8, 017 8, 006 7, 995	.3966 .3965 .3965 .3964 .3964	59, 48 59, 64 59, 61 59, 98 60, 15	5, 465 5, 467 5, 468 5, 470 5, 471	10, 88 10, 91 10, 94 10, 97 10, 9 9	.1399 =: .1390 =: .1382 =: .1374 =: .1365 =:	.1509 *** .1504 *** .1500 *** .1496 *** .1492 ***	
7. 20 7. 21 7. 22 7. 23 7. 24	. 2019 -3 . 2001 -3 . 1983 -3 . 1966 -3 . 1949 -3	. 2295 -2 . 2281 -2 . 2266 -2 . 2252 -2 . 2238 -2	. 8774 -1 . 8752 -1 . 8730 -1	7. 100 7. 140 7. 150 7. 161 7. 171	. 7326 -2 . 7281 -2 . 7237 -2 . 7194 -2 . 7150 -2	118. 1 118. 8 119. 6 120. 3 121. 0	2. 339274 2. 339559 2. 339643 2. 340127 2. 340409	91, 907 92, 047 92, 097 92, 146 92, 196	7, 984 7, 972 7, 961 7, 950 7, 939	.3963 .3963 .3962 .3962 .3961	60, 31 60, 48 60, 65 60, 82 60, 99	5. 472 5. 474 5. 475 5. 476 5. 478	11, 02 11, 05 11, 08 11, 11 11, 13	. 1357 -1 . 1349 -1 . 1340 -1 . 1332 -1 . 1324 -1	.1488 =1 .1484 =1 .1480 =1 .1476 =1 .1472 =1	
7. 25 7. 26 7. 27 7. 28 7. 29	. 1952 -3 . 1915 -3 . 1898 -3 . 1881 -3 . 1865 -3	. 2224 -2 . 2210 -2 . 2196 -2 . 2182 -2	. 8664 -1 . 8643 -1 . 8621 -1	7, 181 7, 191 7, 201 7, 211 7, 221	.7107 -2 .7064 -2 .7021 -2 .6979 -2 .6937 -2	121. 8 122. 5 123. 3 124. 1 124. 8	2. 340690 2. 340969 2. 341248 2. 341526 2. 341803	92. 245 92. 294 92. 343 92. 392 92. 441	7. 928 7. 917 7. 906 7. 895 7. 884	.3961 .3960 .3960 .3959 .3959	61. 16 61. 33 61. 50 61. 66 61. 83	5, 479 5, 480 5, 481 5, 483 5, 484	11. 16 11. 19 11. 22 11. 25 11. 28	. 1316 -1 . 1308 -1 . 1300 -1 . 1292 -1 . 1285 -1	. 1456 -1	
7.30 7.31 7.32 7.33 7.34	. 1848 -3 . 1832 -3 . 1816 -3 . 1801 -3 . 1785 -3	. 2128 . 2115	. 8556 -1 . 8535 -1 . 8514 -1	7. 261	.6896 -2 .6854 -2 .6813 -2 .6772 -2 .6731 -2	125. 6 126. 4 127. 2 127. 9 128. 7	2, 342079 2, 342353 2, 342627 2, 342900 2, 343171	92, 490 92, 538 92, 587 92, 635 92, 684	7, 874 7, 863 7, 852 7, 841 7, 830	. 3958 . 3958 . 3957 . 3957 . 3956	62. 01 62. 18 62. 35 62. 52 62. 69	5. 485 5. 487 5. 486 5. 489 5. 490	11. 30 11. 33 11. 36 11. 39 11. 42	. 1277 -1 . 1269 -1 . 1262 -1 . 1254 -1 . 1246 -1	. 1444 . 1440 . 1436	
7.35 7.36 7.37 7.38 7.39	. 1769 -1 . 1754 -3 . 1739 -3 . 1724 -3 . 1709 -3	2076 2063 2050		7.302 7.312	.6691 -2 .6651 -2 .6612 -2 .6572 -2 .6533 -2	129. 5 130. 3 131. 1 131. 9 132. 7	2, 343442 2, 343711 2, 343980 2, 344248 2, 344514	92, 732 92, 780 92, 828 92, 876 92, 923	7.820 7.809 7.798 7.788	. 3956 . 3955 . 3955 . 3955 . 3954	62, 86 63, 03 63, 20 63, 38 63, 55	5, 492 5, 493 5, 494 5, 495 5, 497	11. 45 11. 48 11. 50 11. 53 11. 56	. 1239	.1424 -: .1421 -: .1417 -:	
7, 40 7, 41 7, 42 7, 43 7, 44	. 1694 -3	. 2025 - . 2012 - . 2000 - . 1988 -	8367 =1 2 .8346 =1 2 .8326 =1 2 .8305 =1	7. 352 7. 362	.6494 -2 .6456 -2 .6417 -2 .6379 -2 .6341 -2	133, 5 134, 3 135, 2 136, 0 136, 8	2, 344780 2, 345944 2, 345308 2, 345571 2, 345832	92, 971 93, 018 93, 066 93, 112 93, 160	7, 766 7, 756 7, 745 7, 735 7, 724	. 3954 . 3953 . 3953 . 3952 . 3952	63, 72 63, 89 64, 07 64, 24 64, 41	5, 499 5, 500 5, 502	11. 59 11. 62 11. 65 11. 68 11. 71	.1202 - .1195 - .1188 - .1181 - .1174 -	1 1405 =1 1 1402 =1 1 1394 =1	
7.45 7.46 7.47 7.48 7.49	. 1623 -1 . 1609 -1 . 1595 -1 . 1581 -1 . 1568 -1	. 1963 - . 1951 - . 1939 - . 1927 -	. 8244 - . 8224 - . 8203 -	7, 393 7, 403 7, 413	.6304 -2 .6207 -2 .6229 -3 .6193 -2 .6156 -2	137. 6 138. 5 139. 3 140. 1 141. 0	2. 346093 2. 346353 2. 346612 2. 346870 2. 347126	93, 207 93, 254 93, 300 93, 347 93, 394	7, 714 7, 704 7, 693 7, 683 7, 673	. 3951 . 3951 . 3950 . 3950 . 3950	64, 59 64, 76 64, 93 65, 11 65, 25	5. 505 5. 507 5. 508	11, 73 11, 76 11, 79 11, 82 11, 85	. 1167 - . 1160 - . 1153 - . 1146 - . 1140 -	. 1387 . 1383 . 1379 . 1376	
7. 50 7. 51 7. 52 7. 53 7. 54	. 1554 -3 . 1541 -3 . 1528 -3 . 1515 -3 . 1502 -3	. 1892 - . 1881 - . 1869 -	.8143 - .8123 - .8104 -	7. 443 7. 453 7. 463	.6120 -2 .6084 -2 .6048 -2 .6013 -2 .5977 -3	141.8 142.7 143.6 144.4 145.3	2. 347382 2. 347637 2. 347892 2. 348145 2. 348397	93, 440 93, 487 93, 533 93, 579 93, 624	7, 662 7, 652 7, 642 7, 632 7, 621	. 3949 . 3949 . 3948 . 3948 . 3947	65, 46 65, 63 65, 81 65, 96 66, 16	5. 511 5. 513 5. 514	11, 58 11, 91 11, 94 11, 97 12, 00	.1133 - .1126 - .1120 - .1113 - .1106 -	1 .1368 -1 1 .1365 -1 1 .1361 -1	

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

TABLE II.—SUPERSONIC FLOW—Continued

								γ=7/5								
	M or M_1	$\frac{p}{p_i}$	<u>P</u>	$\frac{T}{T_i}$	β	<u>q</u> p:	<u>.4</u> .4.	1 ·	ν	μ	M ₂	$\frac{p_2}{p_1}$	<u>P2</u>	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{I_2}}$
	7. 55	. 1489 -3	. 1847 -2	.8064 =1	7. 483	.5942 -2	146. 2	2. 348648	93, 670	7. 611	.3947	66. 34	5. 516	12. 03	. 1100 -1	. 1354 -1
	7. 56	. 1477 -3	. 1836 -2	.8045 =1	7. 494	.5908 -2	147. 0	2. 348899	93, 716	7. 601	.3946	66. 51	5. 517	12. 06	. 1093 -1	. 1351 -1
	7. 57	. 1464 -3	. 1824 -2	.8025 =1	7. 504	.5873 -2	147. 9	2. 349148	93, 762	7. 591	.3946	66. 69	5. 518	12. 09	. 1087 -1	. 1347 -1
	7. 58	. 1452 -3	. 1813 -2	.8006 =1	7. 514	.5839 -2	148. 8	2. 349397	93, 807	7. 581	.3946	66. 87	5. 520	12. 11	. 1081 -1	. 1343 -1
	7. 59	. 1439 -3	. 1802 -2	.7986 =1	7. 524	.5805 -2	149. 7	2. 349644	93, 853	7. 571	.3945	67. 04	5. 521	12. 14	. 1074 -1	. 1340 -1
	7, 60 7, 61 7, 62 7, 63 7, 64	. 1427 -3 . 1415 -2 . 1403 -1 . 1391 -3 . 1380 -3	.1792 -2 .1781 -2 .1770 -2 .1759 -2 .1749 -2	.7967 -1 .7948 -1 .7928 -1 .7909 -1	7. 534 7. 544 7. 554 7. 564 7. 574	.5771 -2 .5737 -2 .5704 -2 .5671 -2 .5638 -2	150. 6 151. 5 152. 4 153. 3 154. 2	2, 349891 2, 350137 2, 350382 2, 350626 2, 350869	93, 898 93, 943 93, 988 94, 033 94, 078	7, 561 7, 551 7, 541 7, 531 7, 521	.3945 .3944 .3944 .3943 .3943	67, 22 67, 40 67, 58 67, 75 67, 93	5. 522 5. 523 5. 524 5. 525 5. 527	12. 17 12. 20 12. 23 12. 26 12. 29	. 1068 -1 . 1062 -1 . 1056 -1 . 1049 -3 . 1043 -1	. 1336 -: . 1333 -: . 1329 -: . 1326 -: . 1322 -:
	7, 65 7, 66 7, 67 7, 68 7, 69	. 1368 -1 . 1357 -1 . 1345 -3 . 1334 -3 . 1323 -3	. 1738 -2 . 1728 -2 . 1717 -2 . 1707 -2 . 1697 -2	.7871 -1 .7852 -1 .7833 -1 .7815 -1 .7796 -1	7. 584 7. 594 7. 605 7. 615 7. 625	.5605 -2 . .5572 -2 . .5540 -2 . .5508 -2 . .5476 -2 .	155. 1 156. 0 157. 0 157. 9 158. 8	2. 351112 2. 351353 2. 351594 2. 351834 2. 352072	94. 123 94. 168 94. 212 94. 257 94. 301	7. 511 7. 501 7. 491 7. 482 7. 472	. 3943 . 3942 . 3942 . 3941 . 3941	68. 11 68. 29 68. 47 68. 65 68. 83	5. 528 5. 529 5. 530 5. 531 5. 532	12. 32 12. 35 12. 38 12. 41 12. 44	. 1037 -1 . 1031 -1 . 1025 -3 . 1019 -1 . 1013 -1	. 1319 -1 . 1316 -1 . 1312 -1 . 1309 -1 . 1305 -1
	7, 70	.1312 -3	. 1687 -2	.7777 -1	7, 635	.5445 -2	159. 8	2, 352310	94, 345	7. 462	.3940	69. 01	5. 533	12. 47	. 1008 -1	.1302 -1
	7, 71	.1301 -3	. 1677 -2	.7759 -1	7, 645	.5413 -2	160. 7	2, 352548	94, 389	7. 452	.3940	69. 18	5. 534	12. 50	. 1002 -1	.1299 -1
	7, 72	.1290 -3	. 1667 -2	.7740 -1	7, 655	.5382 -2	161. 7	2, 352784	94, 433	7. 443	.3940	69. 36	5. 536	12. 53	. 9959 -2	.1295 -1
	7, 73	.1279 -3	. 1657 -2	.7722 -1	7, 665	.5351 -2	162. 6	2, 353019	94, 477	7. 433	.3939	69. 55	5. 537	12. 56	. 9902 -2	.1292 -1
	7, 74	.1269 -3	. 1647 -2	.7703 -1	7, 675	.5320 -2	163. 6	2, 353254	94, 521	7. 423	.3939	69. 73	5. 538	12. 59	. 9845 -2	.1289 -1
	7, 75 7, 76 7, 77 7, 78 7, 79	.1258 -3 .1248 -3 .1237 -3 .1227 -3 .1217 -3	. 1637 -2 . 1627 -2 . 1618 -2 . 1608 -2 . 1599 -2	. 7685 -1 . 7667 -1 . 7648 -1 . 7630 -1 . 7612 -1	7, 685 7, 695 7, 705 7, 715 7, 726	. 5290 -2 . 5259 -2 . 5229 -2 . 5199 -2 . 5170 -2	164, 5 165, 5 166, 5 167, 4 168, 4	2. 353488 2. 353721 2. 353953 2. 354184 2. 354415	94, 565 94, 608 94, 652 94, 695 94, 739	7. 414 7. 404 7. 395 7. 385 7. 375	. 3939 . 3938 . 3938 . 3937 . 3937	69. 91 70. 09 70. 27 70. 45 70. 63	5. 539 5. 540 5. 541 5. 542 5. 543	12. 62 12. 65 12. 68 12. 71 12. 74	. 9788 -2 . 9732 -2 . 9676 -2 . 9620 -2 . 9565 -2	. 1285
	7, 80	. 1207 -3	.1589 -2	. 7594 -1	7, 736	.5140 -2	169. 4	2. 354644	94. 782	7. 366	. 3937	70. 81	5. 544	12.77	. 9510 -2	. 1269 -1
	7, 81	. 1197 -3	.1580 -2	. 7576 -1	7, 746	.5111 -2	170. 4	2. 354873	94. 825	7. 356	. 3936	71. 00	5. 545	12.80	. 9456 -2	. 1266 -1
	7, 82	. 1187 -3	.1571 -2	. 7558 -1	7, 756	.5082 -2	171. 4	2. 355101	94. 868	7. 347	. 3936	71. 18	5. 547	12.83	. 9402 -2	. 1263 -1
	7, 83	. 1177 -3	.1561 -2	. 7540 -1	7, 766	.5053 -2	172. 4	2. 355328	94. 911	7. 338	. 3935	71. 36	5. 548	12.86	. 9348 -2	. 1259 -1
	7, 84	. 1168 -3	.1552 -2	. 7523 -1	7, 776	.5024 -2	173. 4	2. 355555	94. 954	7. 328	. 3935	71. 54	5. 549	12.89	. 9295 -2	. 1256 -1
	7, 85	.1158 -3	. 1543 -2	.7505 -1	7, 786	. 4995 -2	174. 4	2. 355780	94. 996	7. 319	. 3935	71. 73	5. 550	12. 92	. 9242 -2	. 1253 -1
	7, 86	.1149 -3	. 1534 -2	.7487 -1	7, 796	. 4967 -2	175. 4	2. 356005	95. 039	7. 309	. 3934	71. 91	5. 551	12. 96	. 9189 -2	. 1250 -1
	7, 87	.1139 -3	. 1525 -2	.7470 -1	7, 806	. 4939 -2	176. 4	2. 356229	95. 082	7. 300	. 3934	72. 09	5. 552	12. 99	. 9137 -2	. 1247 -1
	7, 88	.1130 -3	. 1516 -2	.7452 -1	7, 816	. 4911 -2	177. 5	2. 356453	95. 124	7. 291	. 3933	72. 28	5. 553	13. 02	. 9085 -2	. 1244 -1
	7, 89	.1121 -3	. 1507 -2	.7435 -1	7, 826	. 4883 -2	178. 5	2. 356675	95. 166	7. 281	. 3933	72. 46	5. 554	13. 05	. 9033 -2	. 1241 -1
	7. 90 7. 91 7. 92 7. 93 7. 94	. 1111 -3 . 1102 -3 . 1093 -3 . 1084 -3 . 1076 -3	. 1498 -2 . 1490 -2 . 1481 -2 . 1472 -2 . 1464 -2	. 7417 -1 . 7400 -1 . 7383 -1 . 7365 -1 . 7348 -1	7. 836 7. 847 7. 857 7. 867 7. 877	. 4855 -2 . 4828 -2 . 4801 -2 . 4774 -2 . 4747 -2	179, 5 180, 5 181, 6 182, 6 183, 7	2. 356897 2. 357118 2. 357338 2. 357557 2. 357776	95. 208 95. 251 95. 293 95. 334 95. 376	7. 272 7. 263 7. 254 7. 245 7. 235	. 3933 . 3932 . 3932 . 3932 . 3931	72. 65 72. 83 73. 01 73. 20 73. 38	5. 555 5. 556 5. 557 5. 558 5. 559	13. 08 13. 11 13. 14 13. 17 13. 20	8982 -2 .9931 -2 .8880 -2 .8880 -2 .8880 -2 .8780 -2	. 1237 -1 . 1234 -1 . 1231 -1 . 1228 -1 . 1225 -1
	7. 95 7. 96 7. 97 7. 98 7. 99	.1067 -3 .1058 -2 .1050 -3 .1041 -3 .1033 -3	.1455 -2 .1447 -2 .1438 -2 .1430 -2 .1422 -2	.7331 -1 .7314 -1 .7297 -1 .7280 -1 .7263 -1	7, 887 7, 897 7, 907 7, 917 7, 927	.4720 -2 .4693 -2 .4667 -2 .4641 -2 .4615 -2	184. 7 185. 8 186. 9 188. 0 189. 0	2. 357994 2. 358211 2. 358427 2. 358642 2. 358857	95. 418 95. 460 95. 501 95. 542 95. 584	7. 226 7. 217 7. 208 7. 199 7. 190	. 3931 . 3930 . 3930 . 3930 . 3929	73. 57 73. 76 73. 94 74. 13 74. 31	5. 560 5. 561 5. 562 5. 563 5. 564	13. 23 13. 26 13. 29 13. 33 13. 36	. 8731	. 1222 -1 . 1219 -1 . 1216 -1 . 1213 -1 . 1210 -1
	8. 00	.1024 -3	.1414 -2	.7246 -1	7. 937	.4589 -2	190. 1.	2. 359071	95. 625	7. 181	. 3929	74. 50	5. 565	13. 39	.8488 -2	.1207 -1
	8. 01	.1016 -3	.1405 -2	.7230 -1	7. 947	.4563 -2	191. 2	2. 359285	95. 666	7. 172	. 3929	74. 69	5. 566	13. 42	.8440 -2	.1204 -1
	8. 02	.1008 -3	.1397 -2	.7213 -1	7. 957	.4538 -2	192. 3	2. 359497	95. 707	7. 163	. 3928	74. 87	5. 567	13. 45	.8393 -2	.1201 -1
	8. 03	.9997 -4	.1389 -2	.7196 -1	7. 967	.4512 -1	193. 4	2. 359709	95. 748	7. 154	. 3928	75. 06	5. 568	13. 48	.8346 -2	.1198 -1
	8. 04	.9916 -4	.1381 -2	.7180 -1	7. 978	.4487 -2	194. 5	2. 359920	95. 789	7. 145	. 3927	75. 25	5. 569	13. 51	.8299 -2	.1195 -1
	8. 05	.9837 -4	.1373 =2	.7163 -1	7. 988	. 4462 -1	195. 6	2. 360130	95. 830	7. 136	. 3927	75. 44	5. 570	13. 54	. 8253 -2	. 1192 -1
	8. 03	.9758 -4	.1365 =2	.7147 -1	7. 998	. 4437 -2	196. 7	2. 360340	95. 871	7. 127	. 3927	75. 62	5. 571	13. 57	. 8207 -2	. 1189 -1
	8. 07	.9679 -4	.1358 =2	.7130 -1	8. 008	. 4413 -2	197. 8	2. 360549	95. 911	7. 118	. 3926	75. 81	5. 572	13. 61	. 8161 -2	. 1186 -1
	8. 08	.9602 -4	.1350 =2	.7114 -1	8. 018	. 4388 -2	199. 0	2. 360757	95. 951	7. 109	. 3926	76. 00	5. 573	13. 64	. 8115 -2	. 1183 -1
	8. 09	.9525 -4	.1342 =2	.7097 -1	8. 028	. 4364 -2	200. 1	2. 360965	95. 992	7. 100	. 3926	76. 19	5. 574	13. 67	. 8070 -2	. 1180 -1
	8. 10	. 9449 -4	.1334 -2	.7081 -1	8. 038	. 4339 -2	201. 2	2. 361172	96. 032	7, 092	. 3925	76. 38	5. 575	13. 70	.8025 -2	.1177 -1
	8. 11	. 9373 -4	.1327 -3	.7065 -1	8. 048	. 4315 -2	202. 4	2. 361378	96. 073	7, 083	. 3925	76. 57	5. 576	13. 73	.7981 -2	.1174 -1
	8. 12	. 9298 -4	.1319 -2	.7049 -1	8. 058	. 4292 -2	203. 5	2. 361583	96. 112	7, 074	. 3925	76. 76	5. 577	13. 76	.7937 -2	.1172 -1
	8. 13	. 9224 -4	.1312 -2	.7033 -1	8. 068	. 4268 -2	204. 6	2. 361788	96. 153	7, 065	. 3924	76. 95	5. 578	13. 80	.7893 -2	.1169 -1
	8. 14	. 9150 -4	.1304 -2	.7017 -1	8. 078	. 4244 -2	205. 8	2. 361992	96. 193	7, 057	. 3924	77. 14	5. 579	13. 83	.7849 -2	.1166 -1
	8. 15	. 9078 -4	.1297 -2	. 7001 -1	8. 088	.4221 -2	207. 0	2. 362195	96. 233	7. 048	. 3924	77. 33	5. 580	13. 86	.7805 -2	. 1163 -1
	8. 16	. 9005 -4	.1289 -2	. 6985 -1	8. 098	.4197 -2	208. 1	2. 362397	96. 272	7. 039	. 3923	77. 52	5. 581	13. 89	.7762 -2	. 1160 -1
	8. 17	. 8934 -4	.1282 -3	. 6969 -1	8. 109	.4174 -2	209. 3	2. 362599	96. 312	7. 031	. 3923	77. 71	5. 582	13. 92	.7719 -2	. 1157 -1
	8. 18	. 8863 -4	.1275 -2	. 6953 -1	8. 119	.4151 -2	210. 5	2. 362800	96. 352	7. 022	. 3923	77. 90	5. 583	13. 95	.7677 -2	. 1155 -1
	8. 19	. 8793 -4	.1267 -2	. 6937 -1	8. 129	.4129 -2	211. 7	2. 363001	96. 391	7. 013	. 3922	78. 09	5. 584	13. 99	.7634 -2	. 1152 -1
,	8. 20 8. 21 8. 22 8. 23 8. 24	.8723 -4 .8654 -4 .8586 -4 .8518 -4 .8451 -4	. 1260 -2 . 1253 -2 . 1246 -2 . 1239 -2 . 1232 -2	.6921 =1 .6906 =1 .6890 =1 .6874 =1 .6859 =1	8. 139 8. 149 6. 159 8. 169 8. 179	. 4106 -2 . 4083 -2 . 4061 -2 . 4039 -2 . 4017 -2	212.8 214.0 215.2 216.4 217.7	2. 363201 2. 363400 2. 363598 2. 363796 2. 363993	96. 430 96. 470 96. 509 96. 548 96. 587	7. 005 6. 996 6. 988 6. 979 6. 971	.3922 .3921 .3921 .3921 .3920	78. 28 78. 47 78. 66 78. 86 79. 05	5. 585 5. 586 5. 587 5. 588 5. 588	14. 02 14. 05 14. 08 14. 11 14. 15	.7592 -1 .7551 -2 .7509 -2 .7468 -2 .7427 -2	.1149 -1 .1146 -1 .1143 -1 .1141 -1 .1138 -1
:	8. 25	.8384 -4	. 1225 -2	. 6843 -1	8. 189	. 3995 -2	218. 9	2. 364190	96. 626	6. 962	.3920	79. 24	5. 589	14. 18	. 7386 -3	. 1135 -1
	8. 26	.8318 -4	. 1218 -2	. 6826 -1	8. 199	. 3973 -2	220. 1	2. 364385	96. 665	6. 954	.3920	79. 43	5. 590	14. 21	. 7346 -3	. 1132 -:
	8. 27	.8253 -4	. 1211 -2	. 6813 -1	8. 209	. 3951 -2	221. 3	2. 364581	96. 704	6. 945	.3919	79. 63	5. 591	14. 24	. 7306 -3	. 1130 -1
	8. 28	.8188 -4	. 1205 -2	. 6797 -1	8. 219	. 3930 -2	222. 5	2. 364775	96. 742	6. 937	.3919	79. 82	5. 592	14. 27	. 7266 -3	. 1127 -1
	8. 29	.8124 -4	. 1196 -2	. 6782 -1	8. 229	. 3906 -2	223. 8	2. 364969	96. 781	6. 928	.3919	80. 01	5. 593	14. 31	. 7226 -3	. 1124 -1
	8. 30	.8060 -4	.1191 -2	. 6767 -1	8. 240	.3887 -2	225. 0	2. 365162	96. 820	6. 920	. 3918	80. 21	5. 594	14. 34	. 7187 -3	.1122 -1
	8. 31	.7997 -4	.1184 -2	. 6752 -1	8. 250	.3866 -2	226. 3	2. 365354	96. 858	6. 912	. 3918	80. 40	5. 595	14. 37	. 7147 -2	.1119 -1
	8. 32	.7935 -4	.1178 -2	. 6737 -1	8. 260	.3845 -2	227. 5	2. 365546	96. 896	6. 903	. 3918	80. 59	5. 596	14. 40	. 7109 -2	.1116 -1
	8. 33	.7873 -4	.1171 -2	. 6721 -1	8. 270	.3824 -2	228. 8	2. 365738	96. 935	6. 895	. 3917	60. 79	5. 597	14. 44	. 7070 -2	.1114 -1
	8. 34	.7811 -4	.1165 -2	. 6706 -1	8. 280	.3803 -2	230. 0	2. 365928	96. 973	6. 887	. 3917	80. 98	5. 598	14. 47	. 7031 -2	.1111 -1
	8. 35 8. 36 8. 37 8. 38 8. 39	.7750 -4 .7690 -4 .7630 -4 .7571 -4 .7512 -4	.1158 =2 .1152 =2 .1145 =2 .1145 =2 .1139 =2 .1133 =2	. 6691 -1 . 6676 -1 . 6662 -1 . 6647 -1 . 6632 -1	8. 290 8. 300 8. 310 8. 320 8. 330	.3783 -2 .3762 -2 .3742 -2 .3722 -2 .3702 -2	231. 3 232. 6 233. 9 235. 2 236. 5	2. 366118 2. 366307 2. 366496 2. 366684 2. 366871	97. 011 97. 049 97. 087 97. 125 97. 162	6. 878 6. 870 6. 862 6. 854 6. 845	. 3917 . 3917 . 3916 . 3916	81. 18 81. 37 81. 57 81. 76 81. 96	5. 599 5. 599 5. 600 5. 601 5. 602	14. 50 14. 53 14. 57 14. 60 14. 63	. 6993 -2 . 6955 -2 . 6919 -2 . 6840 -2 . 6843 -2	. 1103 -1
:-	8. 40 8. 41 8. 42 8. 43 8. 44	.7454 -4 .7396 -4 .7339 -4 .7282 -4 .7226 -4	. 1126 -3 . 1120 -2 . 1114 -2 . 1106 -2 . 1102 -2	. 6617 -1 . 6603 -1 . 6588 -1 . 6573 -1 . 6559 -1	8. 340 8. 350 8. 360 8. 370 8. 381	.3662 -2 .3662 -2 .3642 -2 .3623 -2 .3603 -2		2.367058 2.367244 2.367430 2.367615 2.367799	97, 200 97, 238, 97, 276 97, 313 97, 350	6, 837 6, 829 6, 821 6, 813 6, 805	. 3915 . 3915 . 3915 . 3914 . 3914	82. 15 82. 35 82. 55 82. 74 82. 94	5. 603 5. 604 5. 605 5. 606 5. 606	14. 66 14. 70 14. 73 14. 76 14. 79	6806 -2 6769 -2 6733 -2 6697 -2 6861 -2	. 1093 -1 . 1090 -1 . 1087 -1

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

γ=7/5

M	<u>p</u>	<u> </u>	<u>T</u>	β	<u>q</u>	$\frac{A}{A_{\bullet}}$	<u>1</u>	ν	щ	M ₂	<u>p:</u>	<u>P1</u>	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
8.45	.7170 -4	1096 ~=	6544 -1 6530 -1	8.791	. 3584 -2 . 3565 -2	244. 4 245. 7	2. 367983 2. 368166	97. 388 97. 424	6 797 6 788	. 3914	83. 14	5. 607 5. 608	14.83 14.86	. 6625 -2 . 6589 -2	. 1082 =t . 1080 =t
8, 46 8, 47 8, 48 5, 49	.7115 -4 .7060 -4 .7006 -4 .6952 -4	. 1090 -2 . 1084 -2 . 1078 -2 . 1072 -2	. 6530 -1 ; . 6515 -1 ; . 6501 -1 ; . 6487 -1	8. 401 8. 411 8. 421 8. 431	. 3545 -2 . 3526 -2 . 3508 -2	247. 0 248. 4 249. 7	2. 368348 2. 368530 2. 368712	97, 462 97, 499 97, 536	6. 780 6. 772 6. 764	. 3913 . 3913 . 3912	83, 53 83, 73 83, 93	5. 609 5. 610 5. 611 5. 612	14. 89 14. 93 14. 96	. 6554 =2 . 6519 =2 . 6484 =2 . 6449 =2	. 1077 -1 . 1075 -1 . 1072 -1
8. 50 8. 51 8. 52 8. 53 8. 54	. 6896 -4 . 6846 -4 . 6793 -4 . 6741 -4 . 6690 -4	. 1066 -2 . 1060 -2 . 1054 -2 . 1048 -2 . 1043 -2	. 6472 -1 . 6458 -1 . 6444 -1 . 6430 -1 . 6416 -1	8. 441 8. 451 8. 461 8. 471 8. 481	. 3489 -2 . 3470 -2 . 3452 -2 . 3433 -2 . 3415 -2	251. 1 252. 5 253. 8 255. 2 256. 6	2 368892 2 369072 2 369252 2 369431 2 369609	97, 573 97, 609 97, 646 97, 683 97, 719	6, 756 6, 748 6, 740 6, 732 6, 725	. 3912 . 3912 . 3911 . 3911 . 3911	84, 13 84, 32 84, 52 84, 72 84, 92	5. 613 5. 613 5. 614 5. 615	15. 02 15. 06 15. 09 15. 12	. 6415 =2 . 6380 =2 . 6346 =2 . 6313 =2	. 1067
8, 55 8, 56 8, 57 8, 56 8, 59	. 6638 -4 . 6588 -4 . 6538 -4 . 6488 -4 . 6438 -4	.1037 -2 .1031 -2 .1026 -2 .1020 -2 .1015 -2	. 6402 -1 . 6386 -1 . 6374 -1 . 6360 -1 . 6346 -1	8. 491 8. 501 8. 511 8. 522 8. 532	3397 -2 .3379 -2 .3361 -2 .3343 -2 .3326 -2	258. 0 259. 4 260. 8 262. 2 263. 6	2 369787 2 369964 2 370140 2 370316 2 370492	97, 756 97, 792 97, 828 97, 865 97, 901	6, 709 6, 709 6, 701 6, 693 6, 685	. 3910 . 3910 . 3910 . 3909	85. 12 85. 32 85. 52 85. 72 85. 92	5. 616 5. 617 5. 618 5. 618 5. 618	15. 16 15. 19 15. 22 15. 26 15. 29	.6279 -2 .6246 -2 .6212 -2 .6179 -2 .6147 -2	. 1057 -4 . 1055 -4 . 1052 -4 . 1050 -4 . 1048 -4
8. 60 8. 61 8. 62 8. 63 8 64	.6390 -4 .6341 -4 .6293 -4 .6245 -4 .6196 -4	.1009 -2 .1004 -2 .9981 -3 .9927 -3 .9673 -3	. 6332 -1 . 6319 -1 . 6305 -1 . 6291 -1 . 6277 -1	8, 542 8, 552 8, 562 8, 572 8, 582	.3308 -2 .3291 -2 .3273 -2 .3256 -2 .3239 -2	265. 0 266. 4 267. 9 269. 3 270. 8	2 370667 2 370841 2 371015 2 371188 2 371360	97, 937 97, 973 98, 609 95, 045 98, 081	6 677 6 670 6 662 6 654 6 646	. 3909 . 3909 . 3908 . 3908	86, 12 86, 32 86, 52 86, 72 86, 92	5. 620 5. 621 5. 622 5. 623 5. 623	15. 32 15. 36 15. 39 15. 42 15. 46	.6114 =2 .6082 =2 .6050 =2 .6018 =2 .5986 =2	. 1045 -1 . 1043 -1 . 1040 -1 . 1038 -1 . 1035 -1
8, 65 8, 66 8, 67 8, 68	.6151 -4 .6105 -4 .6059 -4 .6013 -4 .5968 -4	. 9820 -3 . 9767 -1 . 9714 -3 . 9662 -3 . 9610 -3	. 6264 -1 . 6250 -1 . 6237 -1 . 6223 -1 . 6210 -1	8, 592 8, 602 8, 612 8, 622 8, 632	.3222 -2 .3205 -2 .3188 -2 .3171 -2 .3155 -2	272. 2 273. 7 275. 1 276. 6 278. 1	2. 371532 2. 371704 2. 371875 2. 372045 2. 372215	98. 116 98. 152 98. 187 98. 223 98. 258	6, 639 6, 631 6, 623 6, 616 6, 608	.3908 .3907 .3907 .3907 .3906	87, 13 87, 33 87, 53 87, 73 87, 94	5. 624 5. 625 5. 626 5. 627 5. 627	15. 49 15. 53 15. 56 15. 59 15. 63	.5954 -2 .5923 -2 .5892 -2 .5861 -2 .5830 -2	. 1033 -1 . 1031 -1 . 1028 -1 . 1026 -1 . 1024 -1
8. 69 8. 70 8. 71 8. 72 8. 73 8. 74	.5923 -1 .5876 -1 .5834 -4 .5790 -1 .5747 -4	. 9558 -3 . 9507 -3 . 9456 -3 . 9405 -3 . 9355 -3	.6197 -1 .6183 -1 .6170 -1 .6157 -1 .6143 -1	8, 642 8, 652 8, 662 8, 673 8, 683	.3138 -: .3122 -: .3105 -: .3089 -: .3073 -:	279. 6 281. 1 282. 6 284. 1 285. 6	2, 372384 2, 372553 2, 372721 2, 372889 2, 373056	98, 293 98, 329 98, 364 98, 399 98, 434	6, 600 6, 593 6, 585 6, 578 6, 570	.3906 .3906 .3906 .3905	88.54	5. 628 5. 629 5. 630 5. 631 5. 631	15. 66 15. 69 15. 73 15. 76 15. 80	. 5799 -2 . 5769 -2 . 5739 -2 . 5709 -2 . 5679 -2	. 1021 -1 . 1019 -1 . 1017 -1 . 1014 -1 . 1012 -4
8.75	.5704 -4	. 9305 -3	.6130 -1	8, 693	.3057 -2	287. 1	2. 373222	95, 469	6, 562	.3905	89, 16	5. 632	15, 83	.5649 -2	. 1010 -1
8.76	.5661 -4	. 9255 -3	.6117 -1	8, 703	.3041 -2	288. 6	2. 373389	95, 504	6, 555	.3904	89, 36	5. 633	15, 86	.5620 -2	. 1007 -1
8.77	.5619 -4	. 9205 -1	.6104 -1	8, 713	.3025 -2	290. 1	2. 373554	96, 539	6, 547	.3904	89, 57	5. 634	15, 90	.5590 -2	. 1005 -1
8.78	.5577 -4	. 9156 -1	.6091 -1	8, 723	.3010 -2	291. 7	2. 373719	98, 573	6, 540	.3904	89, 77	5. 635	15, 93	.5561 -2	. 1003 -1
8.79	.5536 -4	. 9106 -1	.6078 -1	8, 733	.2994 -2	293. 2	2. 373883	98, 608	6, 532	.3904	89, 97	5. 635	15, 97	.5532 -2	. 1001 -1
8.80	.5494 -4	. 9059 -3	.6065 -1	8. 743	.2978 -2	294. 8	2. 374047	98. 642	6. 525	.3903	90. 18	5. 636	16. 00	. 5504 -2	. 9983 -7
8.81	.5453 -4	. 9011 -3	.6052 -1	8. 753	.2063 -2	296. 3	2. 374210	98. 677	6. 518	.3903	90. 39	5. 637	16. 04	. 5475 -2	. 9960 -2
8.82	.5413 -4	. 8963 -3	.6039 -1	8. 763	.2948 -2	297. 9	2. 374373	98. 711	6. 510	.3903	90. 59	5. 638	16. 07	. 5447 -2	. 9938 -7
8.83	.5373 -4	. 8915 -3	.6026 -1	8. 773	.2932 -2	299. 5	2. 374535	95. 745	6. 503	.3903	90. 80	5. 638	16. 10	. 5418 -2	. 9916
8.84	.5333 -4	. 8868 -3	.6014 -1	6. 783	.2917 -2	301. 0	2. 374697	96. 780	6. 495	.3902	91. 00	5. 639	16. 14	. 5390 -2	. 9893
8.85	. 5293 -4	. 8821 -3	.6001 -1	8, 793	. 2902 -2	302. 6	2, 374859	98. 814	6. 488	.3902	91, 21	5. 640	16. 17	. 5362 -2	. 9871
8.86	. 5254 -4	. 8774 -3	.5988 -1	8, 803	. 2887 -2	304. 2	2, 375019	96. 848	6. 481	.3902	91, 42	5. 641	16. 21	. 5335 -2	. 9849
8.87	. 5215 -4	. 8728 -3	.5975 -1	8, 813	. 2872 -2	305. 8	2, 375180	96. 882	6. 473	.3901	91, 62	5. 641	16. 24	. 5307 -2	. 9827 -2
8.88	. 5177 -4	. 8682 -3	.5963 -1	8, 824	. 2857 -2	307. 4	2, 375339	96. 916	6. 466	.3901	91, 83	5. 642	16. 28	. 5260 -2	. 9905 -2
8.89	. 5139 -4	. 8636 -3	.5950 -1	8, 834	. 2843 -2	309. 0	2, 375499	96. 950	6. 459	.3901	92, 04	5. 643	16. 31	. 5253 -2	. 9783 -2
8. 90	.5101 =4	.8590 -3	.5938 -1	8. 844	. 2828 -2	310. 6	2. 375657	98. 984	6. 451	.3901	92, 25	5. 644	16, 35	.5226 -2	. 9761 -2
8. 91	.5063 =4	.8545 -3	.5925 -1	8. 854	. 2814 -2	312. 3	2. 375816	99. 018	6. 444	.3900	92, 45	5. 645	16, 38	.5199 -2	. 9739 -2
8. 92	.5026 =4	.8500 -3	.5913 -1	8. 864	. 2799 -2	313. 9	2. 375973	99. 051	6. 437	.3900	92, 66	5. 645	16, 41	.5172 -2	. 9718 -2
8. 93	.4989 =4	.8456 -3	.5900 -1	8. 874	. 2785 -2	315. 5	2. 376131	99. 085	6. 430	.3900	92, 87	5. 646	16, 45	.5145 -2	. 9696 -2
8. 94	.4952 =4	.8411 -3	.5888 -1	5. 884	. 2771 -2	317. 2	2. 376287	99. 119	6. 422	.3900	93, 08	5. 647	16, 48	.5119 -2	. 9675 -2
8. 95	.4916 -4	. 8367 -1	. 5875 -1	8. 894	. 2756 -2	318. 8	2. 376444	99, 152	6. 415	.3899	93, 29	5. 647	16. 52	.5093 -2	. 9653 -2
8. 96	.4880 -4	. 8323 -3	. 5863 -1	8. 904	. 2742 -2	320. 5	2. 376599	99, 186	6. 408	.3899	93, 50	5. 648	16. 55	.5067 -2	. 9631 -2
8. 97	.4844 -4	. 8280 -3	. 5851 -1	8. 914	. 2728 -2	322. 1	2. 376755	99, 219	6. 401	.3899	93, 70	5. 649	16. 59	.5041 -2	. 9610 -2
8. 96	.4809 -4	. 8236 -3	. 5839 -1	8. 924	. 2714 -2	323. 8	2. 376909	99, 252	6. 394	.3899	93, 91	5. 650	16. 62	.5015 -2	. 9589 -2
8. 99	.4773 -4	. 8193 -3	. 5826 -1	8. 934	. 2701 -2	325. 5	2. 377064	99, 286	6. 387	.3898	94, 12	5. 650	16. 66	.4989 -2	. 9567 -2
9.00	.4739 -4	.8150 +3	.5814 =1	8. 944	. 2687 -2	327. 2	2.377217	99, 319	6, 379	. 3898	94. 33	5. 651	16, 69	4964 -2	. 9546 -2
9.01	.4704 -4	.8108 +3	.5802 =1	8. 954	. 2673 -2	328. 9	2.377371	99, 352	6, 372	. 3898	91. 54	5. 652	16, 73	4939 -2	. 9525 -2
9.02	.4670 -4	.8066 +3	.5790 =1	8. 964	. 2660 -2	330. 6	2.377524	99, 384	6, 365	. 3897	94. 75	5. 653	16, 76	4913 -2	. 9504 -2
9.03	.4636 -4	.8024 +3	.5778 =1	8. 974	. 2646 -2	332. 3	2.377676	99, 417	6, 358	. 3897	94. 96	5. 653	16, 80	4858 -2	. 9443 -2
9.04	.4602 -4	.7982 +3	.5766 =1	8. 985	. 2633 -2	334. 0	2.377828	99, 451	6, 351	. 3897	95. 18	5. 654	16, 83	4864 -2	. 9462 -2
9. 05	.4569 -4	.7940 -3	.5754 -1	8. 995	. 2619 -2	335. 7	2. 377979	99, 483	6. 344	.3897	95, 39	5. 655	16. 87	.4939 -2	.9441 -2
9. 06	.4535 -4	.7899 -3	.5742 -1	9. 005	. 2606 -2	337. 5	2. 378130	99, 516	6. 337	.3896	95, 60	5. 656	16. 90	.4814 -2	.9421 -2
9. 07	.4503 -4	.7858 -3	.5730 -1	9. 015	. 2593 -2	339. 2	2. 378281	99, 549	6. 330	.3896	95, 81	5. 656	16. 94	.4790 -2	.9400 -2
9. 08	.4470 -4	.7818 -3	.5718 -1	9. 025	. 2580 -2	340. 9	2. 378431	99, 581	6. 323	.3896	96, 02	5. 657	16. 97	.4766 -2	.9350 -2
9. 09	.4438 -4	.7777 -3	.5706 -1	9. 035	. 2567 -2	342. 7	2. 378580	99, 614	6. 316	.3896	96, 23	5. 658	17. 01	.4742 -2	.9359 -2
9. 10	.4405 -4	.7737 -3	.5694 =1	9. 045	. 2554 -2	344. 5	2. 378729	99, 646	6. 309	. 3895	96. 45	5. 658	17. 05	. 1718 -2	.9318 -2
9. 11	.4374 -4	.7697 -3	.5682 =1	9. 055	. 2541 -2	346. 2	2. 378878	99, 679	6. 302	. 3895	96. 66	5. 659	17. 08	.4694 -2	.9318 -2
9. 12	.4342 -4	.7657 -3	.5671 =1	9. 065	. 2528 -2	346. 0	2. 379026	99, 711	6. 295	. 3895	96. 87	5. 660	17. 12	.4670 -2	.9298 -2
9. 13	.4311 -4	.7618 -3	.5659 =1	9. 075	. 2515 -2	349. 8	2. 379174	99, 743	6. 288	. 3895	97. 08	5. 660	17. 15	.4646 -2	.9277 -2
9. 14	.4280 -4	.7578 -3	.5647 =1	9. 085	. 2503 -2	351. 6	2. 379321	99, 775	6. 281	. 3894	97. 30	5. 661	17. 19	.4623 -2	.9257 -2
9. 15	.4249 -4	.7539 -3	. 5636 -1	9. 095	. 2490 -2	353. 4	2. 379468	99, 807	6. 274	. 3894	97. 51	5. 662	17. 22	. 4600 -2	. 9237 -2
9. 16	.4218 -4	.7501 -3	. 5624 -1	9. 105	. 2478 -2	355. 2	2. 379614	99, 840	6. 269	. 3894	97. 72	5. 663	17. 26	. 4577 -2	. 9217 -2
9. 17	.4188 -4	.7462 -3	. 5612 -1	9. 115	. 2465 -2	357. 0	2. 379760	99, 872	6. 261	. 3894	97. 94	5. 663	17. 29	. 4554 -2	. 9197 -2
9. 18	.4158 -4	.7424 -3	. 5601 -1	9. 125	. 2453 -2	358. 8	2. 379905	99, 904	6. 254	. 3893	98. 15	5. 664	17. 33	. 4531 -2	. 9177 -2
9. 19	.4128 -4	.7386 -3	. 5589 -1	9. 135	. 2441 -2	360. 6	2. 380050	99, 936	6. 247	. 3893	98. 37	5. 665	17. 37	. 4508 -2	. 9158 -2
9. 20	.4099 -4	.7348 -3	. 5578 -1	9. 145	. 2428 -2	362. 5	2. 380195	99. 967	6. 240	. 3893	98. 58	5, 665	17.40	. 4496 -2	. 9138 -2
9. 21	.4069 -4	.7310 -3	. 5566 -1	9. 156	. 2416 -2	364. 3	2. 380339	99. 999	6. 233	. 3893	98. 79	5, 666	17.44	. 4463 -2	. 9118 -2
9. 22	.4040 -4	.7273 -3	. 5555 -1	9. 166	. 2404 -2	366. 2	2. 380483	100. 031	6. 227	. 3892	99. 01	5, 667	17.47	. 4441 -2	. 9098 -2
9. 23	.4011 -4	.7236 -3	. 5544 -1	9. 176	. 2392 -2	368. 0	2. 380626	100. 062	6. 220	. 3992	99. 23	5, 667	17.51	. 4419 -2	. 9078 -2
9. 24	.3983 -4	.7199 -3	. 5532 -1	9. 186	. 2380 -2	369. 9	2. 380769	100. 094	6. 213	. 3892	99. 44	5, 668	17.54	. 4397 -2	. 9059 -2
9, 25 9, 26 9, 27 9, 28 9, 29	.3954	.7162 -3 .7126 -3 .7090 -3 .7054 -3		9. 196 9. 206 9. 216 9. 226 9. 236	. 2368 -2 . 2357 -2 . 2345 -2 . 2333 -2 . 2322 -3	371. 7 373. 6 375. 5 377. 4 379. 3	2.380911 2.381053 2.381194 2.381335 2.381476	100. 125 100. 157 100. 188 100. 219 100. 251	6. 206 6. 200 6. 193 6. 186 6. 179	. 3892 . 3892 . 3891 . 3891 . 3891	99. 66 99. 87 100. 1 100. 3 100. 5	5, 669 5, 669 5, 670 5, 671 5, 671	17, 58 17, 62 17, 65 17, 69 17, 72	4375 = 2 .4353 = 2 .4331 = 2 .4310 = 2 .4286 = 2	. 8962
9.30 9.31 9.32 9.33 9.34	.3816 -4 .3789 -1 .3762 -4 .3735 -4 .3709 -1	.6982 -3 .6947 -3 .6912 -1 .6877 -3	. 5443 -1 . 5432 -1	9, 246 9, 256 9, 266 9, 276 9, 286	. 2310 -: . 2299 -: . 2287 -: . 2276 -: . 2265 -:	381.2 383.1 385.1 387.0 389.0	2. 381616 2. 381756 2. 381895 2. 382034 2. 382173	100, 282 100, 313 100, 344 100, 375 100, 406	6. 173 6. 166 6. 160 6. 153 6. 146	. 3891 . 3890 . 3890 . 3890 . 3990	100.7 101.0 101.2 101.4 101.6	5, 672 5, 673 5, 673 5, 674 5, 675	17. 76 17. 80 17. 83 17. 87 17. 91	. 4267 -2 . 4246 -2 . 4225 -2 . 4204 -2 . 4183 -2	. 8904 -2 . 8885 -2

EQUATIONS, TABLES, AND CHARTS FOR COMPRESSIBLE FLOW

TABLE II.—SUPERSONIC FLOW—Continued

								7-7.5								
	M or M_1	$\frac{p}{p_i}$	p pı	$\frac{T}{T_i}$	β	$\frac{q}{p_{\pm}}$.1_ .1.	$\frac{1}{a_*}$	ν	μ	M_2	P2 P1	<u>p:</u> p:	$\frac{T_z}{T_1}$	$\frac{p_{t_2}}{p_{t_1}}$	$\frac{p_i}{p_{i_2}}$
	9, 35 9, 36 9, 37 9, 38 9, 39	.3683 =1 .3657 =1 .3631 =4 .3605 =4 .3580 =4	. 6807 -3 . 6773 -3 . 6739 -3 . 6705 -3 . 6671 -3	.5410 =1 .5399 =1 .5388 =1 .5377 =1 .5366 =1	9, 296 9, 306 9, 316 9, 327 9, 337	. 2254 -7 . 2243 -7 . 2232 -7 . 2232 -7 . 2210 -7	390, 9 392, 9 394, 8 396, 8	2, 382311 2, 382448 2, 382585 2, 382722 2, 382859	100, 436 100, 467 100, 498 100, 529 100, 559	6, 140 6, 133 6, 127 6, 120 6, 113	.3889 .3889 .3889 .3889 .3888	101. 8 102. 0 102. 3 102. 5 102. 7	5, 675 5, 676 5, 677 5, 677 5, 678	17, 94 17, 98 18, 01 18, 05 18, 09	. 4162 -2 . 4142 -2 . 4121 -2 . 4101 -2 . 4081 -2	. 8849 . 8828 . 8809 . 8791 . 8773
:	9, 40 9, 41 9, 42 9, 43 9, 44	.3555 -4 .3530 -1 .3505 -4 .3481 -4 .3456 -4	.6638 -3 .6604 -3 .6571 -3 .6538 -3 .6506 -3	.5356 =1 .5345 =1 .5334 =1 .5323 =1 .5313 =1	9, 347 9, 357 9, 367 9, 377 9, 387	. 2197) -2 . 2188 -2 . 2177 -2 . 2167 -2 . 2156 -2	400, 8 402, 8 404, 8 406, 8 408, 8	2, 382995 2, 383130 2, 383265 2, 383400 2, 383534	100, 590 100, 620 100, 651 100, 681 100, 711	6, 107 6, 100 6, 094 6, 087 6, 081	.3888 .3888 .3888 .3887	102, 9 103, 1 103, 4 103, 6 103, 8	5, 679 5, 679 5, 680 5, 681 5, 681	18, 12 18, 16 18, 20 18, 23 18, 27	406) =2 .4641 =2 .4021 =2 .4001 =2 .3982 =2	. 8754 -2 . 8736 -2 . 8718 -2 . 8699 -2 . 8681 -2
	9. 45 9. 46 9. 47 9. 45 9. 49	.3432 = 4 .3408 = 4 .3384 = 4 .3361 = 4 .3337 = 4	. 6473 -3 . 6441 -3 . 6409 -3 . 6377 -3 . 6345 -3	.5302 -1 .5291 -1 .5281 -1 .5270 -1 .5260 -1	9, 397 9, 407 9, 417 9, 427 9, 437	.2146 -2 .2135 -2 .2125 -3 .2114 -2 .2101 -2	410, 9 412, 9 414, 9 417, 0 419, 1	2, 383668 2, 383802 2, 383935 2, 384068 2, 384200	100, 742 100, 772 100, 802 100, 832 100, 862	6, 074 6, 068 6, 062 6, 055 6, 049	.3887 .3887 .3887 .3886 .3886	104 0 104, 2 104, 5 104, 7 104, 9	5, 682 5, 683 5, 683 5, 684 5, 684	18, 31 18, 34 18, 38 18, 42 18, 45	. 3962	. 8662 -2 . 8644 -7 . 8626 -2 . 8607 -2 . 8589 -2
	9, 50 9, 51 9, 52 9, 53 9, 54	.3314 -1 .3291 -1 .3268 -1 .3246 -1 .3223 -1	.6313 =3 .6282 =3 .6251 =3 .6220 =3 .6189 =3	.5249 -1 .5239 -1 .5228 -1 .5218 -1 .5208 -1	9, 447 9, 457 9, 467 9, 477 9, 487	. 2084 - 1 . 2084 - 1 . 2073 - 2 . 2063 - 2 . 2053 - 2	421, 1 423, 2 425, 3 427, 4 429, 5	2, 384332 2, 384464 2, 384595 2, 384726 2, 384856	100, 892 100, 922 100, 952 100, 981 101, 011	6, 042 6, 036 6, 030 6, 023 6, 017	,3886 ,3886 ,3886 ,3885 ,3885	105, 8 106, 0	5, 685 5, 686 5, 687 5, 687	18, 49 18, 53 18, 57 18, 60 18, 61	3866 == 3848 == 3829 == 3816 == 3792 ==	8572 =2
1	9, 55 9, 56 9, 57 9, 58 9, 59	.3201 = 4 .3179 = 1 .3157 = 4 .3135 = 4 .3113 = 3	. 6158 = 3 . 6128 = 2 . 6098 = 3 . 6067 = 3 . 6037 = 3	.5197 =1 .5187 =1 .5177 =1 .5167 =1 .5156 =1	9, 498 9, 508 9, 518 9, 528 9, 538	. 2043 -2 . 2034 -2 . 2024 -1 . 2014 -2 . 2004 -2	431 6 433 7 435 9 436 0 440.2	2, 384986 2, 385116 2, 385245 2, 385374 2, 385502	101, 041 101, 070 101, 100 101, 129 101, 159	6, 011 6, 004 5, 998 5, 992 5, 985	3885 3885 3884 3884 3884	106, 2 106, 5 106, 7 106, 9 107, 1	5, 688 5, 689 5, 689 5, 690 5, 691	18, 68 18, 71 18, 75 18, 79 18, 83	.3773 -: .3755 -: .3737 -: .3719 -: .3701 -:	.8483 ===================================
	9 66 9 61 9 62 9 63 9 64	.3092 -4 .3070 -4 .3049 -4 .3025 -4 .3007 -4	. 6008 -3 . 5978 -3 . 5949 -3 . 5919 -2 . 5890 -2	.5146 -: .5136 -: .5126 -: .5116 -: .5106 -:	9, 548 9, 558 9, 568 9, 578 9, 588	. 19952 . 19852 . 19752 . 19662 . 19562	442.3 444.5 446.7 448.8 451.0	2, 385630 2, 385758 2, 385885 2, 386012 2, 386139	101, 198 101, 217 101, 247 101, 276 101, 305	5, 979 5, 973 5, 967 5, 960 5, 954	.3884 .3884 .3883 .3883 .3883	107, 4 107, 6 107, 8 108, 0 108, 3	5, 691 5, 692 5, 692 5, 693 5, 694	18, 86 18, 90 18, 94 18, 95 19, 01	.3683 -2 .3665 -2 .3647 -2 .3630 -2 .3612 -2	.8394 ====================================
	9, 65 9-66 9-67 9, 68 9-69	. 2987 -4 . 2966 -4 . 2946 -4 . 2926 -4 . 2906 -4	.5861 -3 .5833 -3 .5804 -1 .5776 -3 .5747 -3	.5096 ~1 .5086 ~1 .5076 ~1 .5066 ~1 .5056 ~1	9, 598 9, 608 9, 618 9, 628 9, 638	. 1947 -2 . 1938 -2 . 1928 -2 . 1919 -2 . 1910 -2	453, 2 455, 4 457, 7 459, 9 462, 1	2, 386265 2, 386391 2, 386516 2, 386641 2, 386766	101, 334 101, 363 101, 392 101, 421 101, 450	5, 948 5, 942 5, 936 5, 930 5, 923	. 3883 . 3883 . 3882 . 3882 . 3882	108, 5 108, 7 108, 9 109, 2 109, 4	5. 694 5. 695 5. 695 5. 696 5. 697	19, 05 19, 09 19, 13 19, 16 19, 20	.3595 -2 .3576 -2 .3560 -2 .3543 -2 .3526 -2	.8308 -2 .8291 -2 .8275 -2 .8257 -2 .8240 -2
	9, 70 9 71 9 72 9 73 9 74	. 2886 -4 . 2866 -4 . 2847 -4 . 2827 -4 . 2808 -4	. 5719 -2 . 5691 -7 . 5664 -2 . 5636 -3 . 5609 -2	. 5046 =1 . 5036 =1 . 5026 =1 . 5016 =1 . 5007 =1	9, 648 9, 658 9, 668 9, 678 9, 689	. 1901 -2 . 1892 -2 . 1883 -2 . 1874 -2 . 1865 -2	464 4 466 6 468 9 471 2 473 4	2. 386890 2. 387014 2. 387138 2. 387261 2. 387384	101, 479 101, 507 101, 536 101, 564 101, 593	5, 917 5, 911 5, 905 5, 899 5, 893	.3882 .3882 .3881 .3881 .3881	109.6 109.8 130.1 110.3 110.5	5, 697 5, 698 5, 698 5, 699 5, 700	19. 24 19. 28 19. 31 19. 35 19. 39	3510 -2 3493 -2 3476 -2 3459 -2 3443 -2	8206 -2 8190 -2 8174 -2 8155 -2 8139 -2
	9, 75 9, 76 9, 77 9, 78 9, 79	. 2789 -4 . 2770 -4 . 2751 -4 . 2733 -4 . 2714 -4	. 5581 -3 . 5554 -3 . 5527 -3 . 5501 -3 . 5474 -3	. 4997 -1 . 4987 -1 . 4977 -1 . 4968 -1 . 4958 -1	9, 699 9, 709 9, 719 9, 729 9, 739	. 1856 -2 . 1847 -2 . 1838 -2 . 1830 -2 . 1821 -2	475. 7 478. 0 480. 3 482. 6 485. 0	2. 387507 2. 387629 2. 387751 2. 387872 2. 387993	101, 621 101, 650 101, 678 101, 707 101, 735	5, 887 5, 881 5, 875 5, 869 5, 863	. 3881 . 3880 . 3880 . 3880 . 3880	110.7 111.0 111.2 111.4 111.7	5, 700 5, 701 5, 701 5, 702 5, 703	19, 43 19, 47 19, 50 19, 54 19, 58	.3427 -2 .3410 -2 .3394 -2 .3378 -2 .3362 -2	.8123 -2 .8107 -2 .8090 -3 .8073 -2
	9, 50 9, 51 9, 82 9, 83 9, 84	. 2696 -4 . 2677 -4 . 2659 -4 . 2641 -4 . 2624 -4	. 5447 -3 . 5421 -3 . 5395 -3 . 5369 -3 . 5343 -3	. 4949 -1 . 4939 -1 . 4929 -1 . 4920 -1 . 4910 -1	9, 749 9, 759 9, 769 9, 779 9, 789	. 1812 -2 . 1804 -2 . 1795 -2 . 1787 -2 . 1778 -2	487. 3 489. 6 492. 0 494. 4 496. 7	2. 388114 2. 388234 2. 388354 2. 388474 2. 388593	101. 763 101. 791 101. 820 101. 848 101. 876	5, 857 5, 851 5, 845 5, 839 5, 833	.3880 .3879 .3879 .3879 .3879	111. 9 112. 1 112. 3 112. 6 112. 8	5. 703 5. 704 5. 704 5. 705 5. 705	19. 62 19. 66 19. 69 19. 73 19. 77	.3346 -2 .3330 -2 .3314 -2 .3298 -2 .3283 -2	8040 == 8025 == 8008 == 7992 == 2
	9, 85 9, 86 9, 87 9, 88 9, 89	. 2606 -4 . 2588 -4 . 2571 -4 . 2554 -4 . 2537 -4	. 5317 -3 . 5292 -3 . 5266 -3 . 5241 -3 . 5216 -3	. 4882 -1	9. 799 9. 809 9. 819 9. 829 9. 839	.1770 -2 .1762 -2 .1753 -2 .1745 -2 .1737 -2	499. 1 501. 5 503. 9 506. 3 508. 7	2. 388712 2. 388831 2. 388949 2. 389967 2. 389185	101. 904 101. 932 101. 960 101. 987 102. 015	5. 827 5. 821 5. 815 5. 809 5. 803	.3879 .3878 .3878 .3878 .3878	113. 0 113. 3 113. 5 113. 7 113. 9	5. 706 5. 707 5. 708 5. 708	19. 81 19. 85 19. 89 19. 92 19. 96	. 3252 -2 . 3237 -2 . 3221 -2 . 3206 -2	. 7960 -2 . 7944 -2 . 7926 -2 . 7912 -2 . 7896 -2
	9, 90 9, 91 9, 92 9, 93 9, 94	. 2520 -4 . 2503 -4 . 2486 -4 . 2469 -4 . 2453 -4	. 5191 -3 . 5166 -3 . 5141 -1 . 5117 -3 . 5092 -3		9. 849 9. 859 9. 869 9. 880 9. 890	.1729 -2 .1720 -2 .1712 -2 .1704 -2 .1696 -2	511. 2 513. 6 516. 0 518. 5 521. 0	2. 389302 2. 389419 2. 389536 2. 389652 2. 389768	102. 043 102. 070 102. 096 102. 126 102. 153	5. 797 5. 792 5. 786 5. 780 5. 774	. 3878 . 3877 . 3877 . 3877 . 3877	114. 2 114. 4 114. 6 114. 9 115. 1	5. 709 5. 709 5. 710 5. 710 5. 711	20. 00 20. 04 20. 08 20. 12 20. 15	.3176 -2 .3161 -2 .3146 -2 .3132 -2	. 7880 -2 . 7864 -2 . 7846 -2 . 7831 -2 . 7817 -2
	9, 95 9, 96 9, 97 9, 98 9, 99	. 2436 -4 . 2420 -4 . 2404 -4 . 2388 -4 . 2372 -4	. 5068 -3 . 5044 -3 . 5020 -1 . 4996 -3 . 4972 -3	. 4789 -1 . 4780 -1	9. 930	. 1689 -2 . 1681 -2 . 1673 -2 . 1665 -2 . 1657 -2	523, 4 525, 9 528, 4 530, 9 533, 4	2. 389684 2. 389999 2. 390114 2. 390229 2. 390343	102, 180 102, 208 102, 235 102, 262 102, 290	5. 768 5. 762 5. 756 5. 751 5. 745	. 3877 . 3876 . 3876 . 3876	116.0	5. 712 5. 712 5. 713 5. 713 5. 714	20, 19 20, 23 20, 27 20, 31 20, 35	3117 -2 3102 -2 3088 -2 3073 -2 3059 -2	. 7801 -2 . 7785 -2 . 7770 -2 . 7755 -2
	10 00 10 02 10 04 10 06 10 08	.2356 -4 .2325 -4 .2294 -4 .2264 -4 .2234 -1	.4948 -3 .4901 -3 .4855 -3 .4809 -3 .4764 -3	. 4726 -1 . 4708 -1	9. 990 10. 01	. 1649 -2 . 1634 -2 . 1619 -2 . 1604 -2 . 1589 -2	535. 9 541. 0 546. 1 551. 3 556. 4	2, 390457 2, 390684 2, 390910 2, 391134 2, 391358		5, 739 5, 728 5, 716 5, 705 5, 693	. 3875	117. 0 117. 4 117. 9 118. 4	5. 714 5. 715 5. 717 5. 718 5. 719	20, 39 20, 47 20, 54 20, 62 20, 70	. 3045 -2 . 3016 -2 . 2988 -2 . 2961 -2 . 2934 -2	.7706 -2 .7676 -2 .7646 -2 .7616 -2
	10. 10 10. 12 10. 14 10. 16 10. 18	. 2205 -4 . 2176 -4 . 2148 -4 . 2120 -4 . 2092 -4	. 4631 -1 . 4588 -1	. 4655 -1 . 4637 -1 . 4620 -1	10. 09 10. 11	.1575 -2 .1560 -2 .1546 -2 .1532 -2 .1518 -2	561. 7 567. 0 572. 3 577. 6 583. 0	2. 391579 2. 391800 2. 392020 2. 392238 2. 392455	102. 64 102. 70 102. 75	5. 682 5. 671 5. 660 5. 648 5. 637	. 3874 . 3873 . 3873	119.3 119.8 120.3 120.7	5. 720 5. 721 5. 722 5. 723 5. 724	20, 78 20, 86 20, 94 21, 01 21, 09	. 2827	. 7558 -2 . 7528 -2 . 7498 -2 . 7469 -2
!	10, 20 10, 22 10, 24 10, 26 10, 28	. 2065 -4 . 2038 -4 . 2011 -4 . 1985 -4 . 1960 -4	. 4461 = . . 4419 = . . 4378 = .	. 4568 = 1 3 . 4551 = 1 4534 = 1	10. 17 10. 19 10. 21	.1504 -2 .1490 -2 .1476 -2 .1463 -2 .1450 -2	599, 5 605, 0	2. 392670 2. 392885 2. 393098 2. 393310 2. 393521	102. 90 102. 95 103. 01	5, 626 5, 615 5, 604 5, 593 5, 582	3872 3871 3871 3871 3871	121. 7 122. 2 122. 7 123. 1	5, 725 5, 726 5, 727 5, 725 5, 729	21. 17 21. 25 21. 33 21. 41 21. 49	. 2775 . 2750 . 2725 . 2700 . 2676	7411 -2 7382 -2 7354 -2 7324 -2
	10. 30 10. 32 10. 34 10. 36 10. 38	.1934 = 4 .1909 = 4 .1885 = 5 .1861 = 5 .1837 = 6	4258 - 4219 - 4180 -	4484 = 4468 = 4468 = 4451 = 44	10. 27 10. 29 10. 31	.1437	621. 9 627. 6 633. 4	2, 393731 2, 39394(2, 394147 2, 394354 2, 394556	1 103, 16 1 103, 21 1 103, 27	5, 571 5, 561 5, 556 5, 539 5, 529	3870 3870 3869	124. 1 124. 6 125. 1	5, 730 5, 731 5, 732 5, 733 5, 734	21, 57 21, 65 21, 73 21, 81 21, 89	. 2651 2627 2603 2580 2557 -	7268 -2 7240 -3 7213 -3 7185 -2
_	10. 40 10. 42 10. 44 10. 46 10. 48	. 1813 . 1790 . 1767 . 1745 . 1723	. 4066 - . 4029 - . 3993 -	3 .4402 = 3 .4386 = 3 .4370 =	10. 37 10. 39 10. 41	. 1373	651. 0 656. 9 662. 9	2, 39476; 2, 39496; 2, 39516; 2, 39536; 2, 39556	6 103.41 7 103.47 8 103.52	5, 518 5, 507 5, 497 5, 486 5, 476	7 . 386 7 . 386 6 . 386	6 126.5 8 127.0 8 127.5	5, 735 5, 736 5, 737 6, 735 5, 739	21. 97 22. 06 22. 14 22. 22 22. 30		2 .7130 -2

TABLE II.—SUPERSONIC FLOW—Continued

M or M	$\frac{p}{p_t}$	<u>p</u>	$\frac{T}{T_i}$: _B	$\frac{q}{p_i}$.1.	₹* a•	ν	щ	M ₂	<i>p</i> ₂ <i>p</i> ₁	<u>P2</u>	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{I_2}}$
10. 50	.1701 -4	. 3927 -3	. 4338 -1	10. 45	. 1313 -2	675. 0	2, 395766	103. 61	5. 465	. 3867	128. 5	5. 740	22, 38	. 2422 -2	. 7022 -2
10. 52	.1679 -4	. 3885 -3	. 4323 -1	10. 47	. 1301 -2	681. 1	2, 395964	103. 66	5. 455	. 3867	129. 0	5. 741	22, 46	. 2400 -2	. 6996 -2
10. 54	.1658 -4	. 3850 -1	. 4307 -1	10. 49	. 1289 -2	687. 3	2, 396160	103. 71	5. 444	. 3866	129. 4	5. 742	22, 54	. 2379 -2	. 6968 -2
10. 56	.1637 -4	. 3815 -3	. 4291 -1	10. 51	. 1278 -2	693. 5	2, 396355	103. 76	5. 434	. 3866	129. 9	5. 743	22, 63	. 2358 -2	. 6942 -2
10. 58	.1616 -4	. 3780 -3	. 4276 -1	10. 53	. 1267 -2	699. 7	2, 396550	103. 81	5. 424	. 3866	130. 4	5. 744	22, 71	. 2337 -2	. 6917 -2
10. 60	.1596 -4	. 3747 -3	. 4260 -1	10. 55	.1255 -2	706. 0	2. 396743	103. 86	5. 413	. 3865	130. 9	5. 744	22. 79	. 2317 -2	. 6891 -:
10. 62	.1576 -4	. 3713 -3	. 4245 -1	10. 57	.1244 -2	712. 3	2. 396935	103. 90	5. 403	. 3865	131. 4	5. 745	22. 87	. 2296 -2	. 6866 -:
10. 64	.1556 -4	. 3680 -3	. 4230 -1	10. 59	.1233 -3	718. 7	2. 397126	103. 96	5. 393	. 3865	131. 9	5. 746	22. 96	. 2276 -2	. 6839 -:
10. 66	.1537 -4	. 3647 -3	. 4215 -1	10. 61	.1223 -3	725. 2	2. 397316	104. 01	5. 383	. 3864	132. 4	5. 747	23. 04	. 2256 -2	. 6814 -:
10. 68	.1518 -4	. 3614 -3	. 4200 -1	10. 63	.1212 -2	731. 6	2. 397505	104. 05	5. 373	. 3864	132. 9	5. 748	23. 12	. 2236 -2	. 6789 -:
10. 70	. 1499 -4	. 3582 -3	.4185 =1	10. 65	. 1201	738. 2	2. 397693	104. 10	5. 363	. 3864	133. 4	5. 749	23, 21	. 2216 -2	. 6763 -2
10. 72	. 1480 -1	. 3550 -3	.4170 =1	10. 67		744. 8	2. 397880	104. 14	5. 353	. 3863	133. 9	5. 750	23, 29	. 2197 -2	. 6737 -2
10. 74	. 1462 -4	. 3518 -1	.4155 =1	10. 69		751. 4	2. 398066	104. 19	5. 343	. 3863	134. 4	5. 751	23, 37	. 2178 -2	. 6712 -2
10. 76	. 1444 -4	. 3487 -3	.4140 =1	10. 71		758. 1	2. 398251	104. 24	5. 333	. 3863	134. 9	5. 752	23, 46	. 2159 -2	. 6688 -2
10. 78	. 1426 -4	. 3456 -3	.4125 =1	10. 73		764. 8	2. 398435	104. 29	5. 323	. 3862	135. 4	5. 753	23, 54	. 2140 -2	. 6663 -2
10. 80	.1408 -4	. 3426 -3	. 4111 =1	10, 75	.1150 -2	771. 5	2. 398618	104. 33	5. 313	. 3862	135. 9	5. 753	23. 62	. 2121 -2	. 6638 -2
10. 82	.1391 -4	. 3395 -3	. 4096 =1	10, 77	.1140 -2	778. 4	2. 398801	104. 38	5. 303	. 3862	136. 4	5. 754	23. 71	. 2103 -2	. 6614 -2
10. 84	.1374 -4	. 3365 -3	. 4081 =1	10, 79	.1130 -2	785. 2	2. 398982	104. 43	5. 293	. 3862	136. 9	5. 755	23. 79	. 2085 -2	. 6589 -2
10. 86	.1357 -4	. 3336 -3	. 4067 =1	10, 81	.1120 -2	792. 1	2. 399162	104. 48	5. 283	. 3861	137. 4	5. 756	23. 88	. 2067 -2	. 6565 -2
10. 88	.1340 -4	. 2306 -3	. 4053 =1	10, 83	.1110 -2	799. 1	2. 399341	104. 52	5. 274	. 3861	137. 9	5. 757	23. 96	. 2048 -2	. 6542 -2
10. 90	. 1324 -4	.3277 -3	. 4038 -1	10, 85	.1161 -7	806. 1	2, 399519	104. 57	5. 264	. 3861	138. 5	5. 758	24. 05	. 2031 -2	. 6518 -2
10. 92	. 1307 -4	.3249 -3	. 4024 -1	10, 87	.1091 -2	813. 1	2, 399697	104. 61	5. 254	. 3860	139. 0	5. 759	24. 13	. 2013 -2	. 6494 -2
10. 94	. 1291 -4	.3220 -3	. 4010 -1	10, 89	.1082 -2	820. 3	2, 399873	104. 66	5. 245	. 3860	139. 5	5. 759	24. 21	. 1996 -2	. 6469 -2
10. 96	. 1276 -4	.3192 -3	. 3996 -1	10, 91	.1073 -2	827. 4	2, 400049	104. 71	5. 235	. 3860	140. 0	5. 760	24. 30	. 1979 -2	. 6447 -2
10. 98	. 1260 -4	.3165 -3	. 3982 -1	10, 93	.1064 -2	834. 6	2, 400223	104. 75	5. 225	. 3860	140. 5	5. 761	24. 39	. 1962 -2	. 6424 -2
11.00	.1245 -4	.3137 -3	.3968 -1	10. 95	. 1054 -2	841. 9	2. 400397	104. 80	5. 216	. 3859	141. 0	5. 762	24. 47	. 1945	. 6400 -:
11.02	.1230 -4	.3169 -3	.3954 -1	10. 97	. 1045 -2	849. 2	2. 400570	104. 85	5. 206	. 3859	141. 5	5. 763	24. 56		. 6376 -:
11.04	.1215 -4	.3083 -3	.3941 -1	11. 00	. 1036 -2	856. 6	2. 400741	104. 89	5. 197	. 3859	142. 0	5. 764	24. 64		. 6354 -:
11.06	.1200 -4	.3056 -3	.3927 -1	11. 02	. 1028 -2	864. 0	2. 400912	104. 93	5. 188	. 3858	142. 5	5. 764	24. 73		. 6330 -:
11.08	.1186 -4	.3030 -3	.3913 -1	11. 04	. 1019 -2	871. 5	2. 401082	104. 98	5. 178	. 3858	143. 1	5. 765	24. 81		. 6308 -:
11. 10	.1171 -4	. 3003 -3	.3900 =1	11.06	.1010 -2	879. 0	2. 401252	105. 02	5. 169	.3858	143. 6	5. 766	24. 90	. 1864 -:	. 6286
11. 12	.1157 -4	. 2978 -3	.3896 =1	11.08	.1002 -2	886. 6	2. 401420	105. 06	5. 159	.3858	144. 1	5. 767	24. 99	. 1848 -:	
11. 14	.1143 -4	. 2952 -3	.3873 =1	11.10	.9932 -3	894. 2	2. 401587	105. 11	5. 150	.3857	144. 6	5. 768	25. 08	. 1832 -:	
11. 16	.1130 -4	. 2927 -3	.3860 =1	11.12	.9847 -3	901. 9	2. 401754	105. 16	5. 141	.3857	145. 1	5. 768	25. 16	. 1817 -:	
11. 18	.1116 -4	. 2902 -3	.3846 =1	11.14	.9765 -3	909. 6	2. 401919	105. 20	5. 132	.3857	145. 7	5. 769	25. 25	. 1801 -:	
11. 20	.1103 -4	. 2877 -3	.3833 =1	11. 16	. 9683 -3	917. 4	2, 402084	105. 24	5. 123	. 3856	146. 2	5. 770	25. 33	. 1786 -2	.6174 -2 1
11. 22	.1090 -4	. 2852 -3	.3820 =1	11. 18	. 9602 -3	925. 2	2, 402248	105. 28	5. 113	. 3856	146. 7	5. 771	25. 42	. 1771 -2	.6152 -2
11. 24	.1077 -4	. 2828 -3	.3807 =1	11. 20	. 9521 -3	933. 1	2, 402412	105. 33	5. 104	. 3856	147. 2	5. 772	25. 51	. 1756 -2	.6131 -7
11. 26	.1064 -4	. 2804 -3	.3794 =1	11. 22	. 9440 -3	941. 1	2, 402574	105. 37	5. 095	. 3856	147. 8	5. 772	25. 60	. 1742 -2	.6108
11. 28	.1051 -4	. 2780 -3	.3781 =1	11. 24	. 9362 -3	949. 1	2, 402735	105. 42	5. 086	. 3855	148. 3	5. 773	25. 69	. 1727 -2	.6087
11.30	.1039 -4	. 2756 -3	.3768 -1	11. 26	. 9283 -3	957. 1	2. 402896	105. 46	5. 077	. 3855	148. 8	5. 774	25. 77	.1712 -2	.6066 -
11.32	.1026 -4	. 2733 -3	.3755 -1	11. 28	. 9206 -3	965. 3	2. 403056	105. 50	5. 068	. 3855	149. 3	5. 775	25. 86	.1698 -1	.6044 -2
11.34	.1014 -4	. 2710 -1	.3743 -1	11. 30	. 9130 -3	973. 5	2. 403215	105. 55	5. 059	. 3855	149. 9	5. 775	25. 95	.1694 -2	.6023 -2
11.36	.1002 -4	. 2687 -3	.3730 -1	11. 32	. 9054 -3	981. 6	2. 403373	105. 59	5. 050	. 3854	150. 4	5. 776	26. 04	.1670 -2	.6002 -2
11.38	.9905 -5	. 2664 -3	.3717 -1	11. 34	. 8979 -3	989. 9	2. 403531	105. 63	5. 041	. 3854	150. 9	5. 777	26. 12	.1656 -2	.5981 -2
11. 40	. 9788 -3	. 2642 -3	. 3705 -1	11.36	. 8904 -3	998, 3	2. 403687	105. 67	5. 032	.3854	151. 5	5. 778	26, 21	.1642 -2	. 5959 -2
11. 42	. 9673 -3	. 2620 -3	. 3692 -1	11.38	. 8830 -3	1007	2. 403843	105. 71	5. 024	.3854	152. 0	5. 779	26, 30	.1629 -1	15939 -2
11. 44	. 9559 -3	. 2598 -3	. 3680 -1	11.40	. 8757 -3	1015	2. 403996	105. 75	5. 015	.3853	152. 5	5. 779	26, 39	.1615 -2	. 5918 -2
11. 46	. 9447 -3	. 2576 -3	. 3668 -1	11.42	. 8685 -3	1024	2. 404152	105. 80	5. 006	.3853	153. 1	5. 780	26, 48	.1602 -2	. 5897 -2
11. 48	. 9337 -3	. 2554 -1	. 3655 -1	11.44	. 8613 -3	1032	2. 404306	105. 84	4. 997	.3853	153. 6	5. 781	26, 57	.1589 -2	. 5877 -2
11. 50 11. 52 11. 54 11. 56 11. 58	.9228 -1 .9120 -1 .9014 -1 .8909 -1 .8806 -3	. 2533 -3 . 2512 -3 . 2491 -3 . 2470 -3 . 2450 -3	.3643 -1 .3631 -1 .3619 -1 .3607 -1	11. 46 11. 48 11. 50 11. 52 11. 54	.8543 -3 .8472 -3 .8403 -3 .8334 -3 .8266 -3	1041 1050 1058 1067 1076	2. 404459 2. 404610 2. 404762 2. 404912 2. 405062	105. 88 105. 92 105. 97 106. 01 106. 05	4. 989 4. 980 4. 971 4. 963 4. 954	. 3853 . 3852 . 3852 . 3852 . 3852	154. 1 154. 7 155. 2 155. 7 156. 3	5. 781 5. 782 5. 783 5. 784 5. 784	26. 66 26. 75 26. 84 26. 93 27. 02	.1575 -2 .1563 -2 .1550 -2 .1537 -2 .1525 -2	. 5858 -2 . 5836 -2 . 5816 -2 . 5797 -2 . 5776 -2
11.60	. 8704 -3	. 2430 -3	. 3583 -1	11. 56	.8199 -3	1085	2. 405211	106. 09	4. 945	.3851	156, 8	5. 785	27.11	.1512 -2	. 5757 -7
11.62	. 8604 -3	. 2409 -3	. 3571 -1	11. 58	.8132 -3	1094	2. 405359	106. 13	4. 937	.3851	157, 4	5. 786	27.20	.1500 -2	. 5737 -2
11.64	. 8505 -3	. 2390 -3	. 3559 -1	11. 60	.8066 -3	1103-	2. 405506	106. 17	4. 928	.3851	157, 9	5. 787	27.29	.1488 -2	. 5717 -2
11.66	. 8406 -3	. 2370 -3	. 3547 -1	11. 62	.8000 -3	1112	2. 405653	106. 21	4. 920	.3851	158, 5	5. 787	27.38	.1475 -2	. 5698 -2
11.68	. 8310 -3	. 2350 -3	. 3536 -1	11. 64	.7935 -3	1121	2. 405799	106. 25	4. 912	.3850	159, 0	5. 788	27.47	.1464 -2	. 5678 -3
11. 70	. 8215 -:	. 2331 -3	.3524 -1	11. 66	. 7871 -3	1130	2. 405944	106. 29	4. 903	.3850	159. 5	5. 789	27, 56	.1452 -2	. 5659 -7
11. 72	. 8120 -3	. 2312 -3	.3512 -1	11. 68	. 7806 -3	1140	2. 406089	106. 33	4. 895	.3850	160. 1	5. 789	27, 65	.1440 -2	. 5639 -2
11. 74	. 8027 -3	. 2293 -3	.3501 -1	11. 70	. 7744 -3	1149	2. 406233	106. 37	4. 886	.3850	160. 6	5. 790	27, 74	.1428 -2	. 5620 -2
11. 76	. 7935 -3	. 2274 -3	.3489 -1	11. 72	. 7682 -3	1158	2. 406376	106. 41	4. 878	.3849	161. 2	5. 791	27, 84	.1417 -2	. 5601 -2
11. 78	. 7845 -3	. 2256 -3	.3478 -1	11. 74	. 7620 -3	1168	2. 406518	106. 45	4. 870	.3849	161. 7	5. 791	27, 93	.1465 -2	. 5583 -2
11. 80 11. 82 11. 84 11. 86 11. 88	.7755 -: .7667 -s .7580 -s .7494 -s .7409 -:	. 2237 -1 . 2219 -1 . 2201 -3 . 2183 -3 . 2165 -1	. 3466 -1 . 3455 -1 . 3444 -1 . 3433 -1 . 3422 -1	11. 76 11. 78 11. 80 11. 82 11. 84	.7559 -3 .7498 -3 .7438 -3 .7379 -3 .7320 -2	1177 1187 1197 1206 1216	2. 406660 2. 406801 2. 406942 2. 407081 2. 407220	106, 49 106, 53 106, 57 106, 61 106, 65	4. 861 4. 853 4. 845 4. 837 4. 829	.3849 .3849 .3848 .3848	162. 3 162. 8 163. 4 163. 9 164. 5	5. 792 5. 793 5. 793 5. 794 5. 795	28. 02 28. 11 28. 20 26. 30 28. 39	. 1394 -2 . 1383 -2 . 1372 -7 . 1361 -7 . 1350 -2	. 5564 -7 . 5544 -2 . 5526 -2 . 5508 -2 . 5489 -2
11. 90	. 7325 -3	.2148 -3	. 3410 -1	11. 86	. 7261 -3	1226	2. 407359	106. 69	4. 820	.3848	165. 1	5. 795	28. 48	. 1339 -2	. 5471 -7
11. 92	. 7243 -3	.2131 -3	. 3399 -1	11. 88	. 7201 -3	1236	2. 407496	106. 73	4. 812	.3848	165. 6	5. 796	28. 57	. 1328 -2	. 5453 -2
11. 94	. 7161 -3	.2113 -3	. 3388 -1	11. 90	. 7146 -3	1246	2. 407633	106. 76	4. 801	.3847	166. 2	5. 797	28. 67	. 1318 -7	. 5435 -7
11. 96	. 7080 -3	.2096 -3	. 3377 -1	11. 92	. 7089 -3	1256	2. 407770	106. 81	4. 796	.3847	166. 7	5. 797	28. 76	. 1307 -2	. 5416 -2
11. 98	. 7000 -5	.2079 -3	. 3367 -1	11. 91	. 7033 -3	1266	2. 407905	106. 84	4. 788	.3847	167. 3	5. 798	28. 85	. 1297 -2	. 5397 -2
12.00 12.02 12.04 12.06 12.08	. 6922 -3 . 6845 -3 . 6768 -3 . 6692 -3 . 6618 -3	. 2063 -1 . 2046 -1 . 2030 -1 . 2014 -1 . 1998 -1	.3356 -1 .3345 -1 .3334 -1 .3324 -1	11. 96 11. 98 12. 00 12. 02 12. 01	. 6978 -3 . 6922 -3 . 6868 -3 . 6814 -2 . 6760 -3	1276 1287 1297 1307 1318	2. 408040 2. 408175 2. 408303 2. 408441 2. 408574	106. 88 106. 92 106. 95 106. 99 107. 03	4. 780 4. 772 4. 764 4. 756 4. 748	.3847 .3846 .3846 .3846 .3946	167. 8 168. 4 169. 0 169. 5 170. 1	5. 799 5. 799 5. 800 5. 801 5. 801	28, 94 29, 04 29, 13 29, 23 29, 32	. 1287 -2 . 1277 -2 . 1266 -2 . 1256 -2 . 1247 -2	. 5380 -2 . 5362 -2 . 5345 -2 . 5327 -7 . 5309 -2
12. 10	. 6544 -3	. 1982 -1	.3302 -1	12.06	. 6707 -3	1328	2. 408706	107. 07	4. 741	.3846	170. 7	5. 802	29. 41	. 1237 -2	. 5292
12. 12	. 6472 -3	. 1966 -3	.3292 -1	12.06	. 6655 -3	1359	2. 408837	107. 11	4. 733	.3845	171. 2	5. 901	29. 51	. 1227 -2	. 5275
12. 14	. 6400 -3	. 1950 -3	.3281 -1	12.10	. 6602 -3	1349	2. 408967	107. 14	4. 725	.3845	171. 8	5. 801	29. 60	. 1217 -2	. 5257
12. 16	. 6328 -3	. 1935 -1	.3271 -1	12.12	. 6550 -3	1360	2. 409097	107. 18	4. 717	.3845	172. 3	5. 801	29. 70	. 1208 -2	. 5240
12. 18	. 6259 -3	. 1920 -3	.3261 -1	12.14	. 6500 -3	1371	2. 409226	107. 22	4. 709	.3845	172. 9	£. 801	29. 79	. 1198 -2	. 5223
12. 20	. 6189 -3	. 1904 -1	.3250 -1	12. 16	. 6448 -3	1382	2. 409355	107. 26	4. 702	.3844	173. 5	5. 805	29. 89	.1189 -2	. 5205 -2
12. 22	. 6122 -3	. 1889 -1	.3240 -1	12. 18	. 6399 -3	1393	2. 409483	107. 29	4. 694	.3844	174. 1	5. 806	29. 98	.1180 -7	. 5189 -2
12. 24	. 6054 -3	. 1874 -1	.3230 -1	12. 20	. 6349 -3	1404	2. 409611	107. 33	4. 686	.3544	174. 6	5. 806	30. 08	.1171 -2	. 5172 -2
12. 26	. 5967 -3	. 1860 -1	.3219 -1	12. 22	. 6299 -3	1415	2. 409738	107. 36	4. 679	.3544	175. 2	5. 807	30. 17	.1161 -2	. 5155 -2
12. 28	. 5922 -3	. 1945 -2	.3209 -1	12. 24	. 6251 -3	1426	2. 409864	107. 41	4. 671	.3544	175. 8	5. 807	30. 27	.1153 -2	. 5138 -2

TABLE II.—SUPERSONIC FLOW—Continued

γ=7/5

							γ=7/5								
M or M	$\frac{p}{p_i}$	<u>ρ</u>	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	1.	ν	"	M_2	$\frac{p_2}{p_1}$	<u>p:</u> p1	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
12. 30 12. 32 12. 34 12. 36 12. 38		. 1831 -3 . 1816 -3 . 1802 -3 . 1788 -3 . 1774 -3	.3199 -1 .3189 -1 .3179 -1 .3169 -1 .3159 -1	12. 26 12. 28 12. 30 12. 32 12. 34	. 6202 -3 . 6154 -3 . 6107 -3 . 6060 -3 . 6013 -3	1437 1448 1460 1471 1482	2. 409989 2. 410115 2. 410239 2. 410363 2. 410486	107, 44 107, 48 107, 51 107, 55 107, 59	4. 663 4. 656 4. 648 4. 641 4. 633	. 3843 . 3843 . 3843 . 3843 . 3843	176.3 176.9 177.5 178.1 178.6	5, 808 5, 809 5, 809 5, 810 5, 810	30, 36 30, 46 30, 55 30, 65 30, 75	.1144 -2 .1135 -2 .1126 -2 .1117 -2 .1109 -2	.5122 -2 .5105 -2 .5088 -2 .5072 -2 .5056 -2
12.40 12.42 12.44 12.46 12.48	.5544 -5 .5484 -5 .5424 -3 .5365 -3	.1760 -3 .1747 -3 .1733 -3 .1720 -3 .1706 -3	.3149 -1 .3140 -1 .3130 -1 .3120 -1 .3110 -1	12.36 12.38 12.40 12.42 12.44	. 5967 -3 . 5921 -3 . 5876 -3 . 5831 -3 . 5786 -3	1494 1506 1517 1529 1541	2. 410609 2. 410731 2. 410853 2. 410974 2. 411094	107. 62 107. 66 107. 69 107. 73 107. 77	4. 626 4. 618 4. 611 4. 603 4. 596	.3842 .3842 .3842 .3842 .3842	179. 2 179. 8 180. 4 181. 0 181. 5	5. 811 5. 812 5. 812 5. 813 5. 813	30, 84 30, 94 31, 04 31, 13 31, 23	. 1100 -2 . 1092 -2 . 1083 -2 . 1075 -2 . 1067 -2	.5039 -2 .5023 -2 .5007 -2 .4991 -2 .4975 -2
12. 50 12. 52 12. 54 12. 56 12. 58	. 5250 -3 .5193 -5 .5137 -3 .5052 -5	. 1693 -3 . 1680 -3 . 1667 -1 . 1654 -3 . 1642 -3	.3101 -1 .3091 -1 .3082 -1 .3072 -1 .3063 -1	12.46 12.48 12.50 12.52 12.54	. 5742 -3 . 5698 -3 . 5655 -3 . 5612 -3 . 5570 -3	1553 1565 1577 1589 1601	2. 411214 2. 411333 2. 411452 2. 411571 2. 411688	107, 80 107, 84 107, 87 107, 90 107, 94	4. 589 4. 581 4. 574 4. 367 4. 559	.3841 .3841 .3841 .3841 .3841	182. 1 182. 7 183. 3 183. 9 184. 5	5, 814 5, 815 5, 815 5, 816 5, 816	31. 33 31. 42 31. 52 31. 62 31. 72	. 1059 -1 . 1051 -2 . 1043 -2 . 1035 -2 . 1027 -2	.4960 -2 .4944 -2 .4927 -2 .4912 -2 .4897 -2
12. 66 12. 62 12. 64 12. 66 12. 68	. 4973 -5 . 4920 -5 . 4868 -5 . 4816 -5	. 1629 -3 . 1617 -3 . 1604 -3 . 1592 -3 . 1580 -3	.3053 -1 .3044 -1 .3035 -1 .3025 -1 .3016 -1	12. 56 12. 58 12. 60 12. 62 12. 64	. 5527 -3 . 5486 -3 . 5444 -3 . 5403 -3 . 5362 -3	1614 1626 1639 1651 1664	2. 411805 2. 411922 2. 412038 2. 412154 2. 412269	107. 98 108. 01 108. 05 108. 08 108. 12	4. 552 4. 545 4. 538 4. 530 4. 523	.3840 .3840 .3840 .3840 .3840	185. 1 185. 6 186. 2 186. 8 187. 4	5. 817 5. 817 5. 818 5. 819 5. 819	31. 81 31. 91 32. 01 32. 11 32. 21	. 1019 -2 . 1011 -3 . 1004 -2 . 9961 -3 . 9885 -3	.4881 -2 .4865 -1 .4850 -2 .4835 -2 .4820 -1
12. 70 12. 72 12. 74 12. 76 12. 76	. 4714 -5 2 . 4663 -5 3 . 4614 -5 5 . 4565 -3	. 1568 -3 . 1556 -3 . 1544 -3 . 1532 -1 . 1521 -3	.3007 -1 .2998 -1 .2989 -1 .2979 -1 .2970 -1	12. 66 12. 68 12. 70 12. 72 12. 74	. 5322 -3 . 5282 -3 . 5242 -3 . 5203 -3 . 5164 -3	1676 1689 1702 1715 1728	2. 412383 2. 412497 2. 412611 2. 412723 2. 412836	108. 15 108. 18 108. 22 106. 25 108. 29	4. 516 4. 509 4. 502 4. 495 4. 488	.3839 .3839 .3839 .3839 .3839	188. 0 188. 6 *189. 2 189. 8 190. 4	5. 820 5. 820 5. 821 5. 821 5. 822	32. 31 32. 41 32. 50 32. 60 32. 70	.9810 -3 .9737 -3 .9664 -3 .9591 -3 .9520 -3	4805 -2 4790 -2 4775 -2 4760 -2 4745 -3
12. 8 12. 8 12. 8 12. 8 12. 8	. 4469 -5 2 . 4422 -5 4 . 4376 -5 5 . 4329 -5	.1509 -3 .1498 -3 .1487 -3 .1475 -3 .1464 -3	. 2961 -1 . 2952 -1 . 2944 -1 . 2935 -1 . 2926 -1	12. 76 12. 78 12. 80 12. 82 12. 84	.5126 -3 .5087 -3 .5070 -3 .5012 -4 .4975 -3	1741 1754 1767 1781 1794	2. 412948 2. 413059 2. 413170 2. 413280 2. 413390	108. 32 108. 35 108. 39 108. 42 108. 45	4. 481 4. 474 4. 467 4. 460 4. 453	.3839 .3838 .3638 .3838 .3838	191. 0 191. 6 192. 2 192. 8 193. 4	5. 822 5. 823 5. 823 5. 824 5. 825	32.80 32.90 33.00 33.10 - 33.20	9448 -1 1978 -3 19308 -3 19239 -3 19170 -3	.4730 -2 .4715 -2 .4701 -2 .4686 -2 .4672 -3
12. 9 12. 9 12. 9 12. 9 12. 9	. 4239 -3 2 . 4195 -3 4 . 4151 -3 5 . 4107 -3	. 1453 -3 . 1442 -3 . 1432 -3 . 1421 -3 . 1410 -3	. 2917 -1 . 2908 -1 . 2900 -1 . 2891 -1 . 2882 -1	12. 86 12. 88 12. 90 12. 92 12. 94	. 4938 -3 . 4901 -3 . 4865 -3 . 4829 -3 . 4794 -8	1807 1821 1835 1848 1862	2. 413500 2. 413609 2. 413717 2. 413825 2. 413932	108. 49 108. 52 108. 55 108. 59 108. 62	4. 446 4. 439 4. 432 4. 425 4. 419	.3838 .3837 .3837 .3837 .3837	194. 0 194. 6 195. 2 195. 8 196. 4	5. 825 5. 826 5. 826 5. 827 5. 827	33. 30 33. 40 33. 50 33. 60 33. 70	.9102 -3 .9035 -3 .8968 -1 .8902 -3 .8836 -3	. 4657 -? . 4643 -2 . 4629 -2 . 4614 -2 . 4600 -2
13. 0 13. 0 13. 0 13. 0 13. 0	. 4023 -5 2 .3981 -5 4 .3939 -5 5 .3898 -5	.1400 -3 .1389 -3 .1379 -3 .1369 -3 .1359 -3	. 2874 -1 . 2865 -1 . 2857 -1 . 2848 -1 . 2840 -1	12. 96 12. 98 13. 00 13. 02 13. 04	.4759 -1 .4723 -2 .4689 -1 .4655 -3 .4620 -3	1876 1890 1904 1918 1933	2. 414039 2. 414146 2. 414252 2. 414357 2. 414462	108. 65 108. 69 108. 72 108. 75 108. 78	4. 412 4. 405 4. 398 4. 391 4. 385	.3837 .3837 .3836 .3836 .3836	197. 0 197. 6 198. 2 198. 8 199. 4	5. 828 5. 828 5. 829 5. 829 5. 830	33. 81 33. 91 34. 01 34. 11 34. 21	.8771 -3 .8706 -3 .8642 -3 .8580 -3 .8517 -3	.4586 -2 .4572 -2 .4559 -3 .4544 -2 .4530 -2
13. 1 13. 1 13. 1 13. 1 13. 1	3818 -5 2 .3779 -5 4 .3740 -5 6 .3701 -5	. 1349 -3 . 1339 -3 . 1329 -3 . 1319 -3 . 1309 -3	. 2831 -1 . 2823 -1 . 2814 -1 . 2806 -1 . 2798 -1	13.06 13.08 13.10 13.12 13.14	.4586 -3 .4553 -3 .4520 -3 .4487 -3 .4454 -3	1947 1961 1976 1990 2005	2. 414567 2. 414671 2. 414775 2. 414878 2. 414981	108.82 108.85 108.88 108.91 108.94	4.378 4.371 4.365 4.358 4.351	.3836 .3836 .3836 .3835 .3835	200. 1 200. 7 201. 3 201. 9 202. 5	5. 830 5. 831 5. 831 5. 832 5. 832	34. 31 34. 42 34. 52 34. 62 34. 72	. 8453 -1 . 8392 -3 . 8331 -1 . 8271 -3 . 8210 -3	.4517 -1 .4503 -2 .4489 -1 .4475 -2 .4462 -2
13. 2 13. 2 13. 2 13. 2 13. 2	2 .3589 -3 4 .3552 -3 6 .3516 -3	. 1300 -3 . 1290 -3 . 1281 -3 . 1271 -3 . 1262 -3	. 2790 -1 . 2781 -1 . 2773 -1 . 2765 -1 . 2757 -1	13. 16 13. 18 13. 20 13. 22 13. 24	.4422 -3 .4390 -3 .4358 -3 .4327 -3 .4296 -3	2020 2034 2049 2064 2079	2. 415083 2. 415185 2. 415286 2. 415387 2. 415488	108. 97 109. 01 109. 04 109. 07 109. 10	4. 345 4. 338 4. 332 4. 325 4. 319	.3835 .3835 .3835 .3835 .3834	203. 1 203. 7 204. 4 205. 0 205. 6	5, 833 5, 833 5, 834 5, 834 5, 835	34. 82 34. 93 35. 03 35. 13 35. 24	.8151 -3 .8091 -3 .8032 -3 .7974 -3 .7918 -3	.4448 -2 .4435 -2 .4422 -2 .4409 -2 .4395 -2
13. 3 13. 3 13. 3 13. 3	2 .3409 -1 4 .3374 -3 6 .3340 -1	. 1253 -3 . 1244 -3 . 1235 -3 . 1226 -3 . 1217 -3	. 2749 -1 . 2741 -1 . 2733 -1 . 2725 -1 . 2717 -1	13.30	.4264 -1 .4234 -1 .4203 -3 .4173 -2 .4143 -3	2095 2110 2125 2141 2156	2. 415588 2. 4156876 2. 4157868 2. 4159856 2. 4159839	109. 13 109. 16 109. 20 109. 23 109. 26	4. 312 4. 306 4. 299 4. 293 4. 286	.3834 .3834 .3834 .3834 .3834	206. 2 206. 8 207. 5 208. 1 208. 7	5. 835 5. 836 5. 836 5. 837 5. 837	35. 34 35. 44 35. 55 35. 65 35. 76	.7860 -3 .7802 -3 .7747 -3 .7691 -3 .7636 -3	.4382 -2 .4369 -2 .4356 -3 .4342 -2 .4330 -3
13. 4 13. 4 13. 4 13. 4	2 .3240 -4 4 .3207 -4 6 .3175 -3	. 1208 -3 . 1199 -3 . 1191 -3 . 1182 -3 . 1174 -3	. 2709 -1 . 2701 -1 . 2694 -1 . 2686 -1 . 2678 -1	13. 38 13. 40 13. 42	.4113 -3 .4084 -3 .4055 -3 .4026 -3 .3997 -3	2172 2188 2204 2219 2236	2. 4160518 2. 4161793 2. 4162763 2. 4163730 2. 4164692	109. 29 109. 32 109. 35 109. 38 109. 41	4. 280 4. 273 4. 267 4. 261 4. 254	.3833 .3833 .3833 .3833 .3833	209. 3 210. 0 210. 6 211. 2 211. 8	5. 838 5. 838 5. 838 5. 839 5. 839	35. 86 35. 96 36. 07 36. 17 36. 28	.7582 -3 .7527 -3 .7474 -3 .7420 -3 .7367 -3	.4291 -1 .4278 -2
13. 5 13. 5 13. 5 13. 5	0 .3111 -3 2 .3080 -3 4 .3049 -3 6 .3019 -3	.1149 -3	. 2670 -1 . 2663 -1 . 2655 -1 . 2647 -1 . 2640 -1	13. 50 13. 52	.3969 -3 .3941 -3 .3913 -3 .3885 -3 .3858 -3	2252 2268 2284 2300 2317	2. 4165650 2. 4166604 2. 4167554 2. 4168499 2. 4169441	109. 44 109. 47 109. 51 109. 54 109. 57	4. 248 4. 242 4. 235 4. 229 4. 223	.3833 .3832 .3832 .3832 .3832	212. 5 213. 1 213. 7 214. 4 215. 0	5. 840 5. 840 5. 841 5. 841 5. 842	36. 38 36. 49 36. 59 36. 70 36. 80	.7315 -3 .7263 -3 .7212 -3 .7161 -3 .7109 -3	.4228 -3 .4216 -2 .4204 -2
13. 6 13. 6 13. 6 13. 6	2 .2929 -5 4 .2900 -5 6 .2871 -5	.1108 -3	. 2617 -1 . 2610 -1	13. 58 13. 60 13. 62	.3930 -8 .3803 -3 .3777 -3 .3750 -3 .3724 -3	2334 2350 2367 2384 2401	2. 4170379 2. 4171312 2. 4172242 2. 4173167 2. 4174089	109. 59 109. 62 109. 65 109. 69 109. 72	4. 217 4. 211 4. 204 4. 198 4. 192	. 3832 . 3832 . 3832 . 3831 . 3831	215. 6 216. 3 216. 9 217. 5 218. 2	5. 842 5. 843 5. 843 5. 843 5. 844	36. 91 37. 02 37. 12 37. 23 37. 33	.7059 -1 .7009 -1 .6960 -1 .6911 -1	.4179 -2 .4166 -2 .4155 -2
13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	70 .2814 -5 72 .2787 -5 74 .2759 -5 76 .2732 -5	.1077 -3 .1069 -3 .1062 -3	. 2588 -1 . 2580 -1 . 2573 -1	13. 68 13. 70 13. 72	.3697 -2 .3672 -3 .3646 -2 .3620 -3 .3595 -2	2470	2. 4175007 2. 4175921 2. 4176831 2. 4177737 2. 4178639	109. 75 109. 77 109. 81 109. 84 109. 86	4. 186 4. 180 4. 174 4. 168 4. 162	.3831 .3831 .3831 .3831 .3831	218.8 219.4 220.1 220.7 221.4	5.844 5.845 5.845 5.846 5.846	37. 44 37. 55 37. 65 37. 76 37. 87	.6814 -1 .6767 -1 .6719 -1 .6672 -1 .6626 -1	.4118 -2 .4106 -2 .4094 -2 .4082 -3
13.1 13.1 13.1 13.1	30 .2678 = 32 .2652 = 34 .2626 = 36 .2600 =	. 1040 -3 . 1032 -3 . 1025 -3	. 2551 -1 . 2544 -1 . 2537 -1	13.78 13.80 13.82	. 3570 -3 . 3545 -3 . 3521 -3 . 3497 -3 . 3472 -3	2522 2540 2558	2. 4179537 2. 4180432 2. 4181323 2. 4182210 2. 4183093	109. 92 109. 95 109. 98	4. 156 4. 150 4. 144 4. 137 4. 132	. 3830 . 3830 . 3830 . 3830 . 3830	222. 0 222. 7 223. 3 224. 0 224. 6	5.847 5.847 5.847 5.848 5.848	37. 97 38. 08 38. 19 38. 30 38. 41	.6580 .6533 .6489 .6443 .6398	4059 -2 4047 -2 3 4036 -2 3 4024 -3
13. 13. 13. 13. 13.	90 .2550 - 92 .2525 - 94 .2500 - 96 .2476 -	9966 - 9897 -	. 2516 - . 2509 - . 2502 -	1 13.88 1 13.90 1 13.92	.3448 -3 .3424 -3 .3401 -3 .3377 -1 .3354 -3	2612 2630 2648	2. 4183973 2. 4184846 2. 4185721 2. 4186590 2. 418745	110.07 110.09 110.12	4. 126 4. 120 4. 114 4. 108 4. 102	. 3830 . 3830 . 3829 . 3829 . 3829		5. 849 5. 849 5. 850 5. 850 5. 850	38. 51 38. 62 38. 73 38. 84 38. 95	.6354 - .6310 - .6267 - .6223 - .6180 -	3 .4001 -2 3 .3989 -2 2 .3978 -2 3 .3967 -2
14. 14. 14. 14. 14.	00 .2428 - 02 .2404 - 04 .2381 - 06 .2358 -	9692 - 9625 -	. 2481 - . 2474 - . 2467 -	1 13.98 1 14.00	. 3263	2704 2723 2742	2. 4188310 2. 418917- 2. 419002 2. 419087- 2. 419172	110.21 8 110.24 9 110.26	4.096 4.090 4.084 4.079 4.073	. 3829 . 3829 . 3829 . 3829 . 3828	229. 2 229. 8 230. 5	5.851 5.851 5.852 5.852 5.852	39. 38	.6138 .6096 .6054 .6013 .5971	3933 -1

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

							γ= 1/5								
M or M_1	$\frac{p}{p_t}$	P	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	1° a.	ν	μ ,	M ₁	$\frac{p_2}{p_1}$	P2 P1	T: T1	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
14. 10 14. 12 14. 14 14. 16 14. 18	. 2313 -3 . 2290 -3 . 226× -3 . 2246 -3 . 2225 -3	. 9427 -4 . 9362 -4 . 9297 -4 . 9233 -4 . 9170 -4	. 2453 -1 . 2447 -1 . 2440 -1 . 2433 -1 . 2426 -1	14.06 14.08 14.10 14.13 14.15	.3219 -3 .3197 -3 .3175 -3 .3153 -3 .3132 -3	2780 2799 2818 2838 2857	2. 4192569 2. 4193409 2. 4194246 2. 4195079 2. 4195909	110. 32 110. 35 110. 38 110. 41 110. 44	4, 067 4, 061 4, 055 4, 050 4, 044	.3828 .3828 .3828 .3828 .3828	233. 8 234. 4	5, 853 5, 853 5, 854 5, 854 5, 854 5, 854	39. 60 39. 71 39. 82 39. 93 40. 04	. 5931 -3 . 5890 -3 . 5849 -3 . 5810 -3 . 5770 -3	. 3900 - 2 . 3889 - 2 . 3878 - 2 . 3867 - 2 . 3856 - 2
14. 20 14. 22 14. 24 14. 26 14. 28	.2204 -5 .2183 -5 .2162 -5 .2141 -5 .2121 -5	.9108 -4 .9045 -4 .8983 -4 .8922 -4 .8861 -4	. 2420 -1 . 2413 -1 . 2406 -1 . 2400 -1 . 2393 -1	14. 17 14. 19 14. 21 14. 23 14. 25	.3111 =3 .3069 =3 .3068 =3 .3048 =3 .3027 =3	2877 2897 2916 2936 2956	2. 4196735 2. 4197558 2. 4198378 2. 4199194 2. 4200007	110, 46 110, 49 110, 52 110, 54 110, 57	4, 038 4, 033 4, 027 4, 021 4, 016	.3828 .3827 .3827 .3827 .3827		5. 855 5. 855 5. 856 5. 856 5. 856	40. 15 40. 26 40. 37 40. 48 40. 60	. 5732 -3 . 5693 -3 . 5654 -3 . 5616 -3 . 5578 -3	.3845 = 2 .3834 = 2 .3824 = 2 .3813 = 2 .3802 = 2
14. 30 14. 32 14. 34 14. 36 14. 38	. 2100 -5 . 2060 -5 . 2061 -5 . 2041 -5 . 2022 -5	.8800 -4 .8740 -4 .8682 -4 .8623 -4 .8565 -4	. 2387 -1 . 2380 -1 . 2374 -1 . 2367 -1 . 2361 -1	14, 27 14, 29 14, 31 14, 33 14, 35	3006 -3 2986 -3 2967 -3 2946 -3 2927 -3	2977 2997 3017 3038 3058	2. 4200816 2. 4201622 2. 4202425 2. 4203225 2. 4204021	110, 60 110, 63 110, 65 110, 68 110, 71	4. 010 4. 004 3. 999 3. 993 3. 988	.3827 .3827 .3827 .3827 .3826	238, 4 239, 1 239, 7 240, 4 241, 1	5, 857 5, 857 5, 858 5, 858 5, 858	40. 71 40. 82 40. 93 41. 04 41. 15	. 5540 -3 . 5503 -3 . 5466 -3 . 5429 -3 . 5393 -3	.3791 -2 .3780 -2 .3771 -2 .3760 -2 .3750 -2
14. 40 14. 42 14. 44 14. 46	. 2003 -5 . 1984 -3 . 1965 -5 . 1947 -3 . 1929 -5	.8506 -4 .8449 -4 .8392 -4 .8335 -4 .8280 -4	. 2355 -1 . 2348 -1 . 2342 -1 . 2335 -1 . 2329 -1	14. 37 14. 39 14. 41 14. 43	. 2907 -3 . 2888 -3 . 2869 -3 . 2849 -3 . 2830 -3	3079 3100 3121 3142 3163	2. 4204815 2. 4205604 2. 4206391 2. 4207175 2. 4207955	110, 74 110, 76 110, 79 110, 81 110, 84	3. 982 3. 977 3. 971 3. 966 3. 960	.3826 .3826 .3826 .3826 .3826	241. 8 242. 4 243. 1 243. 8 244. 5	5, 859 5, 859 5, 860 5, 860 5, 860	41. 26 41. 38 41. 49 41. 60 41. 71	.5357 -3 .5321 -3 .5285 -3 .5250 -3 .5215 -3	.3739 -2 .3729 -2 .3719 -2 .3708 -2 .3698 -2
14. 48 14. 50 14. 52 14. 54 14. 56	. 1910 -5 . 1892 -3 . 1875 -3 . 1857 -3 . 1840 -5	.8224 -4 .8168 -4 .8114 -4 .8059 -4 .8005 -4	. 2323 -1 .2317 -1 .2310 -1 .2304 -1 .2298 -1	14. 47 14. 49 14. 51 14. 53 14. 55	. 2812 -3 . 2793 -3 . 2774 -3 . 2756 -3 . 2737 -3	3184 3206 3227 3249 3271	2. 4208732 2. 4209506 2. 4210277 2. 4211045 2. 4211810	110, 87 110, 90 110, 92 110, 95 110, 97	3. 955 3. 949 3. 944 3. 938 3. 933	. 3826 . 3825 . 3825 . 3825 . 3825	245. 1 245. 8 246. 5° 247. 2 247. 8	5.861 5.861 5.861 5.862 5.862	41, 83 41, 94 42, 05 42, 17 42, 28	.5180 -3 .5146 -3 .5111 -3 .5078 -1 .5044 -3	. 3688
14. 58 14. 60 14. 62 14. 64 14. 66 14. 68	. 1823 -3 . 1806 -3 . 1789 -3 . 1772 -3 . 1756 -3	.7952 -4 .7899 -4 .7847 -4 .7794 -4 .7743 -4	. 2292 -1 . 2286 -1 . 2280 -1 . 2274 -1 . 2268 -1	14. 57 14. 59 14. 61 14. 63 14. 65	. 2720 -3 . 2702 -3 . 2684 -3 . 2666 -3 . 2649 -3	3292 3314 3336 3359 3381	2. 4212572 2. 4213330 2. 4214086 2. 4214838 2. 4215588	111. 00 111. 03 111. 05 111. 08 111. 10	3. 927 3. 922 3. 917 3. 911 3. 906	. 3825 . 3825 . 3825 . 3825 . 3825	248. 5 249. 2 249. 9 250. 6 251. 3	5. 863 5. 863 5. 863 5. 864 5. 864	42. 39 42. 51 42. 62 42. 73 42. 85	.5011 -3 .4978 -3 .4945 -3 .4912 -3 .4880 -3	. 3638 -2 . 3628 -2 . 3618 -2 . 3608 -2 . 3598 -2
14. 70 14. 72 14. 74 14. 76 14. 78	.1739 -5 .1723 -5 .1707 -5 .1692 -5 .1676 -5	.7691 -4 .7640 -4 .7590 -4 .7540 -4 .7490 -4	. 2262 -1 . 2256 -1 . 2250 -1 . 2244 -1 . 2238 -1	14. 67 14. 69 14. 71 14. 73 14. 75	. 2631 -3 . 2614 -3 . 2597 -3 . 2580 -3 . 2563 -3	3404 3426 3449 3472 3494	2, 4216335 2, 4217078 2, 4217819 2, 4218557 2, 4219292	111. 13 111. 16 111. 18 111. 21 111. 23	3. 901 3. 895 3. 890 3. 885 3. 880	. 3824 . 3824 . 3824 . 3924 . 3824	251. 9 252. 6 253. 3 254. 0 254. 7	5. 864 5. 865 5. 865 5. 865 5. 866	42, 96 43, 08 43, 19 43, 31 43, 42	. 4847 -3 . 4816 -3 . 4784 -3 . 4753 -3 . 4722 -3	3588 -2 3578 -2 3569 -2 3559 -2 3550 -2
14. 80 14. 82 14. 84 14. 86 14. 88	.1660 -5 .1645 -3 .1630 -5 .1615 -3 .1600 -3	.7440 -4 .7392 -4 .7343 -4 .7295 -4 .7247 -4	. 2232 -1 . 2226 -1 . 2220 -1 . 2214 -1 . 2208 -1	14. 77 14. 79 14. 81 14. 83 14. 85	. 2546 -3 . 2530 -3 . 2513 -3 . 2497 -3 . 2480 -3	3518 3541 3564 3588 3611	2. 4220023 2. 4220752 2. 4221479 2. 4222202 2. 4222922	111. 26 111. 28 111. 31 111. 34 111. 36	3. 874 3. 869 3. 864 3. 859 3. 853	. 3824 . 3824 . 3824 . 3823 . 3823	255. 4 256. 1 256. 8 257. 5 258. 2	5. 866 5. 866 5. 867 5. 867 5. 868	43. 54 43. 65 43. 77 43. 88 44. 00	.4691 -3 .4660 -3 .4630 -3 .4600 -3 .4570 -3	. 3531 -7 . 3521 -7 . 3512 -7 . 3502 -7
14. 90 14. 92 14. 94 14. 96 14. 98	.1586 -3 .1571 -3 .1557 -3 .1543 -3 .1529 -3	.7199 -4 .7153 -4 .7106 -4 .7059 -4 .7014 -4	. 2203 -1 . 2197 -1 . 2191 -1 . 2185 -1 . 2180 -1	14. 87 14. 89 14. 91 14. 93 14. 95	. 2464 -1 . 2449 -1 . 2433 -1 . 2417 -1 . 2401 -1	3635 3659 3683 3707 3731	2. 4223640 2. 4224355 2. 4225066 2. 4225776 2. 4226482		3. 848 3. 843 3. 838 3. 833 3. 828	. 3823 . 3823 . 3823 . 3823 . 3823	258. 9 259. 5 260. 2 260. 9 261. 6	5. 868 5. 868 5. 869 5. 869 5. 869	44. 11 44. 23 44. 35 44. 46 44. 58	. 4540 -3 . 4511 -3 . 4481 -3 . 4452 -3 . 4424 -3	. 3465 -2 . 3456 -2
15. 00 15. 02 15. 04 15. 06 15. 08	.1515 -5 .1501 -5 .1487 -5 .1474 -5 .1461 -4	. 6968 -4 . 6923 -4 . 6878 -4 . 6833 -4 . 6789 -4	.2174 -1 .2168 -1 .2163 -1 .2157 -1 .2151 -1	14. 97 14. 99 15. 01 15. 03 15. 05	. 2386 -3 . 2371 -3 . 2355 -3 . 2340 -3 . 2325 -3	3755 3779 3804 3829 3854	2. 4227186 2. 4227886 2. 4228585 2. 4229280 2. 4229973	111. 53 111. 56 111. 59	3. 823 3. 817 3. 812 3. 807 3. 802	. 3823 . 3823 . 3822 . 3822 . 3922	262. 3 263. 0 263. 7 264. 4 265. 1	5. 870 5. 870 5. 870 5. 871 5. 871	44. 69 44. 81 44. 93 45. 05 45. 16	. 4395 -3 . 4367 -3 . 4339 -3 . 4311 -3 . 4283 -3	.3437 -2 .3428 -2 .3419 -2 .3410 -2
15. 10 15. 12 15. 14 15. 16 15. 18	. 1447 -5 . 1434 -5 . 1421 -5 . 1409 -6 . 1396 -5	. 6745	. 2146 -1 . 2140 -1 . 2135 -1 . 2129 -1 . 2124 -1	15. 07 15. 09 15. 11 15. 13 15. 15	. 2310 -3 . 2296 -3 . 2281 -3 . 2266 -3 . 2252 -3	3879 3904 3929 3955 3960	2. 4230663 2. 4231350 2. 4232035 2. 4232717 2. 4233396	111.66 111.68 111.71	3. 797 3. 792 3. 787 3. 782 3. 777	. 3822 . 3822 . 3822 . 3822 . 3822	265. 9 266. 6 267. 3 268. 0 268. 7	5. 871 5. 872 5. 872 5. 872 5. 873	45, 28 45, 40 45, 52 45, 63 45, 75	. 4256	3392 -2 3383 -2 3374 -2 3365 -2
15. 20 15. 22 15. 24 15. 26 15. 28	. 1383 -3 . 1371 -3 . 1359 -3 . 1347 -4 . 1335 -3	.6531 -4 .6489 -4 .6447 -4 .6406 -4 .6365 -4	.2118 -1 .2113 -1 .2107 -1 .2102 -1 .2097 -1	15. 19 15. 21 15. 23	. 2237 -3 . 2223 -3 . 2209 -3 . 2195 -3 . 2181 -3	4005 4032 4057 4063 4110	2. 4234073 2. 4234747 2. 4235419 2. 4236088 2. 4236754	111. 78 111. 80 111. 83	3. 772 3. 767 3. 762 3. 757 3. 752	. 3822 . 3821 . 3821 . 3821 . 3821	269. 4 270. 1 270. 8 271. 5 272. 2	5. 873 5. 873 5. 874 5. 874 5. 874	45. 87 45. 99 46. 11 46. 22 46. 34	. 4122 . 4096 . 4070 . 4044 . 4018	3 .3347 -2 3 .3339 -2 3 .3330 -2
15. 30 15. 32 15. 34 15. 36 15. 38	. 1323 -3 . 1311 -3 . 1299 -3 . 1288 -3 . 1276 -3	.6325 -4 .6284 -4 .6244 -4 .6204 -4 .6165 -4	. 2091 -1 . 2086 -1 . 2081 -1 . 2075 -1 . 2070 -1	15. 27 15. 29 15. 31	.2167 -3 .2154 -3 .2140 -3 .2127 -3 .2113 -3	4135 4162 4189 4215 4242	2. 4237418 2. 4238079 2. 4238738 2. 4239394 2. 4240048	111. 90 111. 92 111. 95	3. 748 3. 743 3. 738 3. 733 3. 728	. 3821 . 3821 . 3821 . 3821 . 3821	272. 9 273. 7 274. 4 275. 1 275. 8	5. 875 5. 875 5. 875 5. 876 5. 876	46, 46 46, 58 46, 70 46, 82 46, 94	. 3992 . 3967 . 3942 . 3917 . 3893	3 3304 3 3295 3 3287
15. 40 15. 42 15. 44 15. 46 15. 48	.1265 -3 .1254 -3 .1243 -3 .1232 -8 .1221 -6	. 6049 - . 6010 -	. 2065 -1 . 2060 -1 . 2054 -1 . 2049 -1	15. 39 15. 41 15. 43	. 2100 -3 . 2087 -3 . 2074 -4 . 2061 -4 . 2048 -3	4269 4296 4323 4351 4378	2. 4240699 2. 4241348 2. 424199 2. 424263 2. 424328	6 112.02 4 112.04 6 112.06	3. 723 3. 718 3. 714 3. 709 3. 704	. 3820 . 3820 . 3820 . 3820 . 3820	276. 0 278. 7	5. 876 5. 876 5. 877 5. 877 5. 877	47. 06 47. 18 47. 30 47. 42 47. 54	.3796 -	
15. 50 15. 52 15. 54 15. 56 15. 58	.1210 -8 .1199 -8 .1189 -3 .1178 -8 .1168 -3	. 5935 . 5897 . 5861 . 5824	. 2039 . 2034 . 2029 . 2023 . 2018	15. 47 15. 49 15. 51 15. 53	. 2035 -1 . 2022 -1 . 2010 -2 . 1997 -1 . 1985 -2		2. 4243911 2. 424455 2. 424518 2. 424582 2. 424645	5 112.14 9 112.16 1 112.18	3. 699 3. 694 3. 690 3. 685 3. 680	. 3820 . 3820 . 3820 . 3820 . 3819	280. 9 281. 6 282. 3	5. 878 5. 878 5. 878 5. 879 5. 879	47, 66 47, 78 47, 90 48, 02 48, 14		3 3220 -2 3 3211 -2 3 3203 -2
15. 60 15. 62 15. 64 15. 66 15. 68	.1158 -4 .1146 -4 .1138 -5 .1126 -3 .1118 -5	.5751 .5715 .5679 .5643	.2013 - .2008 - .2003 - .1998 - .1993 -	15. 57 15. 59 15. 61 15. 63	. 1972 -3 . 1960 -3 . 1948 -3 . 1936 -3 . 1924 -3	4546 4575 4604 4633 4662	2. 424707 2. 424770 2. 424832 2. 424894 2. 424956	7 112.23 2 112.25 4 112.27 4 112.30	3. 675 3. 671 3. 666 3. 661 3. 657	. 3819 . 3819 . 3819 . 3819	284. 5 285. 2 285. 9	5. 879 5. 880 5. 880 5. 880 5. 880	48. 26 48. 39 48. 51 48. 63 48. 75	. 3588 . 3566	-2 .3187 -2 -3 .3179 -2 -3 .3170 -3 -3 .3162 -3 -3 .3154
15. 70 15. 72 15. 74 15. 76 15. 78	.1108 -4 .1099 -3 .1089 -3 .1079 -4	. 5574 -4 . 5539 -4 . 5505 -4 . 5470 -4	.1988 - .1983 - .1978 -	1 5. 67 1 15. 69 1 15. 71 1 15. 73	.1912 -3 .1900 -3 .1889 -3 .1877 -3 .1865 -3	4749 4779	2. 425017 2. 425079 2. 425140 2. 425200 2. 425261	7 112.34 0 112.37 1 112.39 9 112.41	3, 652 3, 647 3, 643 3, 635 3, 633	. 3819 . 3819 . 3819 . 3819	288. 1 288. 9 289. 6	5. 881 5. 881 5. 881 5. 882 5. 882	48. 87 49. 00 49. 12 49. 24 49. 36	.3500 .3479 .3457	-1 .3147 -3 .3139 -3 .3131 -3 .3122 -3 .3114
15. 80 15. 82 15. 84 15. 86 15. 88	.1061 -4 .1052 -4 .1043 -4 .1034 -4	.5403 -4 .5369 -4 .5336 -4 .5303 -4	.1964 - .1959 - .1954 - .1949 -	15.77 1 15.79 1 15.81	.1854 -3 .1843 -1 .1831 -3 .1820 -3 .1809 -1	4899 4929	2. 425322 2. 425382 2. 425442 2. 425501 2. 425561	1 112.48 1 112.50 8 112.52	3. 629 3. 624 3. 620 3. 615 3. 610	.3818 .3818 .3818 .3818	291.8 292.6 293.3	5, 882 5, 883 5, 883 5, 883 5, 883	49. 49 49. 61 49. 73 49. 86 49. 98	. 3373	-1 3099 7 -1 3091 2 -1 3083 2

TABLE II.—SUPERSONIC FLOW—Continued

								γ=7/5								
	M or M	<u>p</u>	<u>P</u>	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	<u>u.</u>	ν	μ.	М:	$\frac{p_2}{p_1}$	<u>P2</u> P1	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_i}{p_{i_2}}$
	15. 90 15. 92 15. 94 15. 96 15. 98	. 1016 -3 .1007 -3 .9986 -6 .9899 -6 .9815 -6	. 5238 -4 . 5206 -4 . 5174 -4 . 5142 -4 . 5111 -4	. 1939 -1 . 1935 -1 . 1930 -1 . 1925 -1 . 1920 -1	15. 87 15. 89 15. 91 15. 93 15. 95	.1798 -3 .1787 -3 .1776 -3 .1765 -3 .1754 -3	4990 5020 5051 5082 5113	2. 4256206 2. 4256797 2. 4257385 2. 4257971 2. 4258555	112, 57 112, 59 112, 61 112, 63 112, 66	3, 606 3, 601 3, 597 3, 592 3, 588	.3818 .3818 .3818 .3818	294. 8 295. 5 296. 3 297. 0 297. 8	5. 884 5. 884 5. 884 5. 885 5. 885	50. 10 50. 23 50. 35 50. 47 50. 60	. 3311 -3 . 3291 -3 . 3271 -3 . 3251 -3 . 3232 -3	. 3068 -2 . 3060 -2 . 3053 -2 . 3045 -2 . 3037 -2
	16. 00 16. 02 16. 04 16. 06 16. 08	.9731 → .9647 → .9565 → .9484 → .9404 →	.5079	.1916 -1 .1911 -1 .1906 -1 .1902 -1 .1897 -1	15. 97 15. 99 16. 01 16. 03 16. 05	.1744 -3 .1733 -3 .1723 -1 .1712 -3 .1702 -3	5145 5176 5208 5239 5271	2. 4259137 2. 4259717 2. 4260295 2. 4260871 2. 4261444	112. 68 112. 70 112. 72 112. 74 112. 76	3. 583 3. 579 3. 574 3. 570 3. 566	.3817 .3817 .3817 .3817 .3817	298. 5 299. 3 300. 0 300. 7 301. 5	5, 885 5, 885 5, 886 5, 886 5, 886	50. 72 50. 85 50. 97 51. 10 51. 22	. 3212 -3 . 3192 -3 . 3173 -1 . 3154 -3 . 3135 -3	.3030 -2 .3022 -2 .3015 -2 .3007 -2 .3000 -2
	16. 10 16. 12 16. 14 16. 16 16. 18	.9323 -6 .9244 -6 .9165 -6 .9089 -6 .9011 -6	. 4926 -4 . 4897 -4 . 4867 -4 . 4838 -4 . 4808 -4	. 1892 -1 . 1883 -1 . 1883 -1 . 1879 -1 . 1874 -1	16. 07 16. 09 16. 11 16. 13 16. 15	.1692 -1 .1681 -3 .1671 -3 .1661 -1 .1651 -3	5304 5336 5369 5401 5434	2. 4262015 2. 4262585 2. 4263152 2. 4263717 2. 4264280	112, 79 112, 81 112, 83 112, 85 112, 87	3. 561 3. 557 3. 552 3. 548 3. 543	. 3817 . 3817 . 3817 . 3817 . 3817	302. 3 303. 0 303. 8 304. 5 305. 3	5. 887 5. 887 5. 887 5. 887 5. 888	51.35 51.47 51.60 51.72 51.85	. 3116 -1 . 3097 -3 . 3079 -3 . 3060 -3 . 3042 -3	. 2992 -2 . 2985 -7 . 2977 -2 . 2970 -2 . 2963 -2
1	16, 20 16, 22 16, 24 16, 26 16, 28	.8936 -6 .8860 -6 .8784 -6 .8712 -6 .8638 -6	.4779 -4 .4751 -4 .4721 -4 .4694 -4 .4665 -4	.1870 -1 .1865 -1 .1861 -1 .1856 -1 .1852 -1	16. 17 16. 19 16. 21 16. 23 16. 25	.1642 -1 .1632 -1 .1622 -3 .1612 -3 .1603 -1	5466 5499 5533 5566 5600	2. 4264841 2. 4265400 2. 4265958 2. 4266513 2. 4267066	112, 89 112, 91 112, 94 112, 96 112, 98	3. 539 3. 535 3. 530 3. 526 3. 522	.3817 .3816 .3816 .3816 .3816	306. 0 306. 8 307. 5 308. 3 309. 0	5. 888 5. 888 5. 888 5. 889 5. 889	51, 97 52, 10 52, 23 52, 35 52, 48	. 3024 -3 . 3005 -3 . 2987 -3 . 2969 -3 . 2952 -3	. 2955 -2 . 2948 -2 . 2941 -2 . 2934 -2 . 2926 -2
:	16, 30 16, 32 16, 34 16, 36 16, 38	.8565 =6 .8491 =6 .8423 =6 .8352 =6 .8283 =6	. 4637 -1 . 4609 -1 . 4582 -1 . 4554 -1 . 4527 -1	.1847 -1 .1843 -1 .1838 -1 .1834 -1 .1830 -1	16. 27 16. 29 16. 31 16. 33 16. 35	.1593 -3 .1584 -3 .1574 -3 .1565 -3 .1556 -3	5634 5667 5701 5735 5770	2. 4267617 2. 4268166 2. 4268713 2. 4269258 2. 4269801	113, 00 113, 02 113, 04 113, 06 113, 08	3, 517 3, 513 3, 509 3, 504 3, 500	. 3816 . 3816 . 3816 . 3816 . 3816	309. 8 310. 6 311. 3 312. 1 312. 9	5. 889 5. 889 5. 890 5. 890 5. 890	52, 61 52, 73 52, 86 52, 99 53, 12	. 2934 -3 . 2916 -3 . 2899 -3 . 2882 -3 . 2865 -3	. 2919 -2 . 2912 -2 . 2905 -2 . 2898 -2 . 2891 -2
	16, 40 16, 42 16, 44 16, 46 16, 48	.8213 = .8144 = .8077 = .8109 = .7942 = .	.4500 -4 .4473 -1 .4447 -4 .4420 -4 .4394 -4	.1825 -1 .1821 -1 .1816 -1 .1812 -1 .1808 -1	16. 37 16. 39 16. 41 16. 43 16. 45	.1546 -3 .1537 -3 .1528 -3 .1519 -3 .1510 -3	5804 5839 5874 5910 5945	2. 4270342 2. 4270861 2. 4271418 2. 4271954 2. 4272487	113, 11 113, 13 113, 15 113, 17 113, 19	3. 496 3. 492 3. 487 3. 483 3. 479	.3816 .3816 .3815 .3815 .3815	313. 6 314. 4 315. 2 315. 9 316. 7	5. 891 5. 891 5. 891 5. 891 5. 892	53, 24 53, 37 53, 50 53, 63 53, 75	. 2848 -3 . 2831 -3 . 2814 -3 . 2798 -3 . 2781 -3	. 2884 -2 . 2877 -2 . 2870 -2 . 2863 -2 . 2856 -2
1	16, 50 16, 52 16, 54 16, 56 16, 58	. 7876 -5 . 7811 -6 . 7747 -5 . 7682 -5 . 7620 -6	.4367 -4 .4341 -4 .4316 -4 .4290 -4 .4265 -4	.1803 -: .1799 -: .1795 -: .1791 -: .1786 -:	16. 47 16. 49 16. 51 16. 53 16. 55	.1501 -3 .1492 -3 .1484 -3 .1475 -3 .1466 -3	5980 6016 6051 6087 6123	2. 4273019 2. 4273548 2. 4274076 2. 4274602 2. 4275126	113, 21 113, 23 113, 25 113, 27 113, 29	3. 475 3. 470 3. 466 3. 462 3. 458	. 3815 . 3815 . 3815 . 3815 . 3815	317, 5 318, 2 319, 0 319, 8 320, 6	5. 892 5. 892 5. 892 5. 893 5. 893	53, 88 54, 01 54, 14 54, 27 54, 40	.2765 -3 .2749 -3 .2732 -3 .2716 -3 .2700 -3	. 2849 -2 . 2842 -2 . 2836 -2 . 2828 -2 . 2822 -2
Pi Pi	16, 60 16, 62 16, 64 16, 66 16, 68	.7556 -6 .7493 -4 .7432 -6 .7372 -6 .7311 -6	.4240 -4 .4215 -4 .4190 -4 .4166 -4 .4141 -4	. 1782 -1 . 1778 -1 . 1774 -1 . 1770 -1 . 1765 -1	16. 57 16. 59 16. 61 16. 63 16. 65	.1457 -3 .1449 -3 .1440 -3 .1432 -3 .1424 -3	6160 6196 6233 6268 6306	2. 4275648 2. 4276169 2. 4276687 2. 4277204 2. 4277719	113. 31 113. 33 113. 35 113. 37 113. 39	3. 454 3. 449 3. 445 3. 441 3. 437	. 3815 . 3815 . 3815 . 3815 . 3814	321.3 322.1 322.9 323.7 324.4	5. 893 5. 893 5. 894 5. 894 5. 894	54, 53 54, 66 54, 78 54, 91 55, 04	. 2685 -3 . 2669 -3 . 2653 -3 . 2638 -3 . 2622 -3	. 2814 -2 . 2808 -2 . 2801 -2 . 2795 -2 . 2788 -2
	16, 70 16, 72 16, 74 16, 76 16, 78	.7250 -6 .7191 -6 .7132 -6 .7074 -6 .7016 -6	.4117 -4 .4093 -4 .4069 -4 .4045 -4 .4021 -4	.1761 -1 .1757 -1 .1753 -1 .1749 -1 .1745 -1	16. 67 16. 69 16. 71 16. 73 16. 75	.1415 -3 .1407 -3 .1399 -3 .1391 -3 .1383 -3	6343 6380 6417 6455 6493	2. 4278232 2. 4278743 2. 4279252 2. 4279760 2. 4280266	113. 41 113. 43 113. 45 113. 47 113. 49	3. 433 3. 429 3. 425 3. 421 3. 417	. 3814 . 3814 . 3814 . 3814 . 3814	325. 2 326. 0 326. 8 327. 6 328. 3	5. 894 5. 895 5. 895 5. 895 5. 895	55. 17 55. 30 55. 43 55. 56 55. 69	. 2607 -3 . 2592 -3 . 2577 -1 . 2562 -3 . 2547 -3	. 2781 -2 . 2774 -2 . 2768 -2 . 2762 -2 . 2755 -2
	16, 80 16, 82 16, 84 16, 86 16, 88	6959 -6 6902 -4 6846 -6 6790 -6 6735 -6	.3998 -4 .3974 -4 .3951 -4 .3928 -4 .3905 -4	.1741 -1 .1737 -1 .1733 -1 .1729 -1 .1725 -1	16. 77 16. 79 16. 81 16. 83 16. 85	.1375 -3 .1367 -3 .1359 -3 .1351 -3 .1343 -3	6531 6570 6607 6647 6685	2. 4280770 2. 4281272 2. 4281772 2. 4282271 2. 4282768	113. 51 113. 53 113. 55 113. 57 113. 59	3. 413 3. 408 3. 404 3. 400 3. 396	. 38!4 . 38!4 . 38!4 . 38!4 . 38!4	329. 1 329. 9 330. 7 331. 5 332. 3	5. 896 5. 896 5. 896 5. 896 5. 897	55, 82 55, 96 56, 09 56, 22 56, 35	. 2532 -3 . 2517 -3 . 2503 -4 . 2488 -4 . 2474 -3	. 2748 -: . 2742 -: . 2735 -: . 2729 -: . 2722 -:
:	16, 90 16, 92 16, 94 16, 96 16, 98	. 6680 -6 . 6626 -6 . 6572 -6 . 6520 -6 . 6467 -9	.3883 -4 .3860 -4 .3838 -4 .3816 -4 .3794 -4	1721 -1 1717 -1 1713 -1 1709 -1 1705 -1	16. 87 16. 89 16. 91 16. 93 16. 95	.1336 -3 .1328 -3 .1320 -3 .1313 -3 .1305 -3	6724 6763 6802 6841 6881	2. 4283264 2. 4283757 2. 4284249 2. 4284739 2. 4285228	113. 61 113. 63 113. 65 113. 67 113. 69	3. 392 3. 386 3. 384 3. 380 3. 376	.3814 .3813 .3813 .3813 .3813	333. 1 333. 8 334. 6 335. 4 336. 2	5. 897 5. 897 5. 897 5. 898 5. 898	56, 48 56, 61 56, 74 56, 88 57, 01	. 2460 -3 . 2446 -3 . 2432 -1 . 2418 -3 . 2404 -3	2716 -2 1 2709 -2 2703 -2 2697 -2 2690 -2
	17. 00 17. 02 17. 04 17. 06 17. 08	6311 -6 6361 -6 6311 -6 6261 -6 6211 -6	.3772 -4 .3750 -4 .3725 -4 .3707 -4 .3686 -4	1697 -1 1697 -1 1693 -1 1689 -1	16. 97 16. 99 17. 01 17. 03 17. 05	.1298 -3 .1290 -2 .1283 -3 .1276 -3 .1268 -3	6920 6960 7001 7042 7081	2. 4285714 2. 4286199 2. 4286683 2. 4287164 2. 4287645	113. 71 113. 73 113. 75 113. 77 113. 79	3. 372 3. 368 3. 364 3. 360 3. 356	. 3813 . 3813 . 3813 . 3813 . 3813	337. 0 337. 8 338. 6 339. 4 340. 2	5. 898 5. 898 5. 898 5. 899 5. 899	57. 14 57. 27 57. 40 57. 54 57. 67	. 2390 -3 . 2376 -3 . 2363 -3 . 2349 -3 . 2336 -3	. 2684 -2 . 2678 -2 . 2671 -2 . 2665 -2 . 2659 -2
	17. 10 17. 12 17. 14 17. 16 17. 18	.6161 -8 .6111 -4 .6063 -4 .6014 -4 .5966 -6	.3665 -4 .3644 -4 .3623 -4 .3602 -4 .3581 -4	.1681 -1 .1677 -1 .1674 -1 .1670 -1 .1666 -1	17. 07 17. 09 17. 11 17. 13 17. 15	.1261 -3 .1254 -3 .1247 -3 .1240 -3 .1233 -3	7122 7163 7204 7246 7287	2. 4288123 2. 4288600 2. 4289075 2. 4289548 2. 4290020	113. 81 113. 83 113. 85 113. 87 113. 88	3. 353 3. 349 3. 345 3. 341 3. 337	. 3813 . 3813 . 3813 . 3813 . 3812	341. 0 341. 8 342. 6 343. 4 344. 2	5, 899 5, 899 5, 900 5, 900 5, 900	57. 80 57. 94 58. 07 58. 20 58. 34	. 2322 -3 . 2309 -3 . 2296 -4 . 2283 -3 . 2270 -3	. 2653 -2 . 2646 -2 . 2641 -2 . 2634 -2 . 2628 -2
	17, 20 17, 22 17, 24 17, 26 17, 28	.5918 -6 .5871 -6 .5824 -4 .5779 -6 .5732 -6	.3561 -4 .3541 -4 .3520 -4 .3501 -4 .3481 -4		17. 17 17. 19 17. 21 17. 23 17. 25	.1226 -3 .1219 -3 .1212 -3 .1205 -3 .1198 -3	7329 7371 7413 7454 7497	2. 4290490 2. 4290959 2. 4291426 2. 4291891 2. 4292355	113. 90 113. 92 113. 94 113. 96 113. 98	3. 333 3. 329 3. 325 3. 321 3. 318	.3812 .3812 .3812 .3812 .3812	345. 0 345. 8 346. 6 347. 4 348. 2	5. 900 5. 901 5. 901 5. 901 5. 901	58. 47 58. 60 58. 74 58. 87 59. 01	. 2257 -4 . 2245 -3 . 2232 -3 . 2219 -3 . 2207 -3	.2622 -7 .2616 -2 .2610 -2 .2604 -3 .2598 -2
	17. 30 17. 32 17. 34 17. 36 17. 38	.5687 -6 .5642 -6 .5597 -4 .5553 -4 .5509 -6	.3461 -4 .3441 -4 .3422 -4 .3403 -4 .3383 -4	.1643 -: .1639 -: .1636 -: .1632 -: .1628 -:	17. 27 17. 29 17. 31 17. 33 17. 35	.1192 -3 .1185 -3 .1178 -3 .1171 -3 .1165 -3	7539 7583 7626 7669 7713	2. 4292818 2. 4293278 2. 4293737 2. 4294195 2. 4294651	114.00 114.01 114.03 114.05 114.07	3. 314 3. 310 3. 306 3. 302 3. 299	.3812 .3812 .3812 .3812 .3812	349. 0 349. 8 350. 6 351. 4 352. 2	5. 901 5. 902 5. 902 5. 902 5. 902	59. 14 59. 27 59. 41 59. 54 59. 68	.2194 -3 .2182 -3 .2170 -3 .2157 -3 .2145 -3	. 2592 -3 . 2586 -2 . 2580 -3 . 2574 -2 . 2568 -3
	17. 40 17. 42 17. 44 17. 46 17. 48	. 5465 -4 . 5423 -4 . 5380 -4 . 5338 -4 . 5295 -8	.3364 = .3346 = .3326 = .3308 = .3289 = .	.1625 -1 .1621 -1 .1617 -1 .1614 -1 .1610 -1	17. 37 17. 39 17. 41 17. 43 17. 45	.1158 -1 .1152 -1 .1145 -3 .1139 -3 .1133 -3	7757 7799 7844 7888 7933	2. 4295105 2. 4295558 2. 4296010 2. 4296460 2. 429690S	114.09 114.11 114.13 114.15 114.16	3. 295 3. 291 3. 287 3. 283 3. 280	. 3812 . 3812 . 3811 . 3811 . 3811	353. 1 353. 9 354. 7 355. 5 356. 3	5. 903 5. 903 5. 903 5. 903 5. 903	59, 81 59, 95 60, 09 60, 22 60, 36	. 2133 -3 . 2121 -3 . 2109 -3 . 2096 -3 . 2086 -3	. 25622 . 25573 . 25502 . 25453 . 25392
	17, 50 17, 52 17, 54 17, 56 17, 58	. 5254 → . 5213 → . 5172 → . 5131 → . 5092 →	.3271 -4 .3252 -4 .3234 -4 .3216 -4 .3198 -4	.1606 =1 .1603 =1 .1599 =1 .1596 =1 .1592 =1	17. 47 17. 49 17. 51 17. 53 17. 55	.1126 -3 .1120 -3 .1114 -3 .1108 -3 .1102 -3	7977 8022 8067 8113 8157	2. 4297355 2. 4297800 2. 4298244 2. 4298686 2. 4299127	114. 18 114. 20 114. 22 114. 24 114. 26	3. 276 3. 272 3. 268 3. 265 3. 261	. 3811 : . 3811 : . 3811 : . 3811 : . 3811	357. 1 357. 9 358. 8 359. 6 360. 4	5. 904 5. 904 5. 904 5. 904 5. 905	60. 49 60. 63 60. 77 60. 90 61. 04	. 2074 -3 . 2063 -3 . 2051 -3 . 2040 -3 . 2029 -3	. 2533 . 2527 . 2522 . 2516 . 2510
:	17. 60 17. 62 17. 64 17. 66 17. 68	.5052 -4 .5013 -4 .4973 -4 .4935 -4 .4897 -4	.3180 -4 .3163 -4 .3145 -4 .3126 -4 .3110 -4	.1589 -1 .1585 -1 .1581 -1 .1576 -1 .1574 -1	17. 57 17. 59 17. 61 17. 63 17. 65	.1095 -3 .1090 -3 .1083 -3 .1077 -3 .1071 -3	8203 8248 8295 8341 8387	2. 4299566 2. 4300004 2. 4300441 2. 4300876 2. 4301309	114. 27 114. 29 114. 31 114. 33 114. 35	3. 257 3. 254 3. 250 3. 246 3. 242	.3811 .3811 .3811 .3811 .3811	361. 2 362. 0 362. 9 363. 7 364. 5	5. 905 5. 905 5. 905 5. 905 5. 906	61.18 61.31 61.45 61.59 61.72	. 2017 -3 . 2006 -3 . 1995 -3 . 1984 -3 . 1973 -3	. 2489 -2

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

					1	1	γ=7/5			i I		1		i	
M or M ₁	$\frac{p}{p_i}$	<u>ρ</u> βι	$\frac{T}{T_i}$	β	$\frac{q}{p_i}$	$\frac{A}{A_{\bullet}}$	1° a.	ν	μ	М;	$\frac{p_2}{p_1}$	<u>P?</u> P1	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{i_2}}$
17. 70	.4859 -4	.3093 -4	.1571 =1	17. 67	.1066 -3	8434	2. 4301741	114, 36	3. 239	.3811	365, 3	5. 906	61, 86	. 1962 -3	. 2476 -2
17. 72	.4821 -4	.3076 -4	.1567 =1	17. 69	.1060 -3	8481	2. 4302172	114, 38	3. 235	.3810	366, 2	5. 906	62, 00	. 1951 -3	. 2471 -3
17. 74	.4783 -4	.3059 -4	.1564 =1	17. 71	.1054 -3	8529	2. 4302601	114, 40	3. 231	.3810	367, 0	5. 906	62, 14	. 1941 -3	. 2465 -2
17. 76	.4747 -5	.3012 -4	.1561 =1	17. 73	.1048 -3	9575	2. 4303029	114, 42	3. 228	.3810	367, 8	5. 906	62, 28	. 1930 -3	. 2460 -2
17. 78	.4710 -4	.3025 -4	.1557 =1	17. 75	.1042 -3	8623	2. 4303155	114, 44	3. 224	.3810	368, 7	5. 907	62, 41	. 1919 -3	. 2454 -2
17. 80	.4674 → 4	.3009 -4	.1554 -1	17. 77	.1037 -3	8670	2. 4303880	114. 45	3. 221	. 3810	369. 5	5. 907	62, 55	.1909 -3	. 2449 -3
17. 82	.4637 → 6	.2992 -4	.1550 -1	17. 79	.1031 -3	8719	2. 4304304	114. 47	3. 217	. 3810	370. 3	5. 907	62, 69	.1898 -3	. 2443 -2
17. 84	.4602 → 6	.2975 -4	.1547 -1	17. 81	.1025 -3	8767	2. 4304726	114. 49	3. 213	. 3810	371. 1	5. 907	62, 83	.1888 -3	. 2437 -3
17. 86	.4566 → 6	.2959 -4	.1543 -1	17. 83	.1020 -3	8815	2. 4305147	114. 51	3. 210	. 3810	372. 0	5. 907	62, 97	.1878 -3	. 2432 -2
17. 88	.4531 → 6	.2943 -4	.1540 -1	17. 85	.1014 -3	8864	2. 4305566	114. 52	3. 206	. 3810	372. 8	5. 908	63, 11	.1867 -3	. 2427 -2
17. 90 17. 92 17. 94 17. 96 17. 98	.4496 → .4462 → .4428 → .4394 → .4361 →	.2926 → .2910 → .2895 → .2879 → .2863 →	.1537 -1 .1533 -1 .1530 -1 .1526 -1 .1523 -1	17. 87 17. 89 17. 91 17. 93 17. 95	.1009 -3 .1003 -3 .9976 -4 .9921 -4 .9868 -4	. 8962 9010	2. 4305984 2. 4306401 2. 4306816 2. 4307230 2. 4307642	114, 54 114, 56 114, 58 114, 59 114, 61	3. 203 3. 199 3. 195 3. 192 3. 188	.3810 .3810 .3810 .3810 .3810	373. 7 374. 5 375. 3 376. 2 377. 0	5. 908 5. 908 5. 909 5. 909	63, 25 63, 39 63, 53 63, 67 63, 80	.1857 -3 .1847 -3 .1837 -3 .1827 -3 .1817 -3	. 2421 -2 . 2416 -2 . 2411 -2 . 2405 -2 . 2400 -2
18. 00 18. 02 18. 04 18. 06 '8. 08	.4328 -4 .4294 -4 .4261 -4 .4229 -4 .4197 -4	. 2948 -4 . 2332 -4 . 2816 -4 . 2801 -4 . 2786 -4	.1529 -1 .1516 -3 .1513 -1 .1510 -1 .1507 -1	17. 97 17. 99 18. 01 18. 03 18. 05	.9815 = 9760 = 9707 = 9655 = 9602 = 9		2. 4308053 2. 4308463 2. 4308872 2. 4309279 2. 4309685	114. 63 114. 65 114. 66 114. 68 114. 70	3. 185 3. 181 3. 178 3. 174 3. 171	.3810 .3809 .3809 .3809	377. 8 378. 7 379. 5 380. 4 381. 2	5, 909 5, 909 5, 909 5, 909 5, 910	63. 94 64. 06 64. 23 64. 37 64. 51	.1807 -1 .1797 -2 .1788 -3 .1778 -3 .1768 -2	. 2395 -2 . 2389 -2 . 2384 -2 . 2379 -2 . 2373 -2
18. 10	.4165 -4	.2771 = .2756 = .2741 = .2726 = .2711 = .	.1503 -1	18. 07	.9552	9411	2. 4310089	114. 72	3. 167	. 3809	382. 1	5. 910	64, 65	.1759 -3	. 2368 -2
18. 12	.4134 -4		.1500 -1	18. 09	.9500	9463	2. 4310192	114. 73	3. 164	. 3809	382. 9	5. 910	64, 79	.1749 -3	. 2363 -2
18. 14	.4102 -4		.1497 -1	18. 11	.9448	9515	2. 4310894	114. 75	3. 160	. 3809	383. 7	5. 910	64, 93	.1740 -3	. 2357 -2
18. 16	.4071 -6		.1494 -1	18. 13	.9398	9566	2. 4311295	114. 77	3. 157	. 3809	384. 6	5. 910	65, 07	.1731 -3	. 2353 -2
18. 18	.4041 -4		.1490 -1	18. 15	.9349	9617	2. 4311694	114. 78	3. 153	. 3809	385. 4	5. 911	65, 21	.1721 -3	. 2348 -2
18. 20	.4010 →	. 2696 -1	.1487 -1	18. 17	.9297 -4	9671	2. 4312092	114, 80	3. 150	. 3809	386. 3	5. 911	65. 35	.1712 -3	. 2342
18. 22	.3979 →	. 2682 -1	.1484 -1	18. 19	.9247 -4	9723	2. 4312488	114, 82	3. 146	. 3809	387. 1	5. 911	65. 49	.1703 -3	
18. 24	.3949 →	. 2667 -1	.1481 -1	18. 21	.9198 -4	9775	2. 4312884	114, 83	3. 143	. 3809	388. 0	5. 911	65. 64	.1694 -3	
18. 26	.3920 →	. 2653 -1	.1477 -1	18. 23	.9148 -4	9828	2. 4313278	114, 85	3. 139	. 3809	388. 8	5. 911	65. 78	.1685 -3	
18. 28	.3890 →	. 2639 -1	.1474 -1	18. 25	.9099 -4	9881	2. 4313671	114, 87	3. 136	. 3809	389. 7	5. 912	65. 92	.1676 -3	
18. 30	.3961 →	.2625	.1471 -1	18. 27	.9052 -4		2. 4314062	114. 89	3. 133	. 3809	390. 5	5. 912	66. 06	.1667 -1	. 2317 -2
18. 32	.3932 →	.2611	.1468 -1	18. 29	.9003 -4		2. 4314452	114. 90	3. 129	. 3809	391. 4	5. 912	66. 20	.1658 -1	. 2312 -2
18. 34	.3803 →	.2596	.1465 -1	18. 31	.8954 -4		2. 4314841	114. 92	3. 126	. 3808	392. 3	5. 912	66. 35	.1649 -1	. 2306 -2
18. 36	.3775 →	.2583	.1462 -1	18. 33	.8907 -4		2. 4315229	114. 94	3. 122	. 3808	393. 1	5. 912	66. 49	.1640 -1	. 2302 -2
18. 38	.3747 →	.2569	.1459 -1	18. 35	.8861 -4		2. 4315616	114. 95	3. 119	. 3808	394. 0	5. 913	66. 63	.1632 -1	. 2297 -2
18. 40	.3718 →	.2555 = .2541 = .2528 = .2514 = .2501 = .2501	.1455 -1	18. 37	.8812 ~4	1020 +1	2. 4316001	114. 97	3. 115	. 3808	394. 8	5. 913	66. 78	.1623 -3	. 2291 -:
18. 42	.3691 →		.1452 -1	18. 39	.8765 ~4	1026 +1	2. 4316385	114. 99	3. 112	. 3808	395. 7	5. 913	66. 92	.1614 -2	. 2287 -:
18. 44	.3663 →		.1449 -1	18. 41	.8719 ~4	1031 +1	2. 4316768	115. 00	3. 109	. 3808	396. 5	5. 913	67. 06	.1606 -3	. 2281 -:
18. 46	.3636 →		.1446 -1	18. 43	.8673 ~4	1037 +1	2. 4317149	115. 02	3. 105	. 3808	397. 4	5. 913	67. 21	.1597 -3	. 2277 -:
18. 48	.3609 →		.1443 -1	18. 45	.8628 ~4	1042 +1	2. 4317530	115. 04	3. 102	. 3809	398. 3	5. 913	67. 35	.1589 -2	. 2272 -:
18. 50	.3582 ←	.2488 -4	.1440 -1	18. 47	.8582	1048 +1	2. 4317909	115. 05	3. 099	. 3808	399. 1	5. 914	67. 49	.1580 -3	. 2267 -2
18. 52	.3555 ←	.2475 -4	.1437 -1	18. 49	.8536	1054 +1	2. 4318287	115. 07	3. 095	. 3808	400. 0	5. 914	67. 64	.1572 -4	. 2262 -2
18. 54	.3530 ←	.2462 -4	.1434 -1	18. 51	.8492	1059 +1	2. 4318661	115. 08	3. 092	. 3808	400. 9	5. 914	67. 79	.1564 -3	. 2257 -2
18. 56	.3503 ←	.2448 -4	.1431 -1	18. 53	.8446	1065 +1	2. 4319039	115. 10	3. 089	. 3808	401. 7	5. 914	67. 93	.1555 -3	. 2252 -2
18. 58	.3477 ←	.2436 -4	.1428 -1	18. 55	.8403	1070 +1	2. 4319113	115. 12	3. 085	. 3808	402. 6	5. 914	68. 07	.1547 -3	. 2248 -2
18. 60	.3452 → .3426 → .3400 → .3375 → .3351 →	.2423 -4	. 1425 -1	18. 57	.8359 -4	1076 +1	2. 4319787	115. 13	3. 082	. 3808	403. 5	5. 915	68. 21	.1539 -3	. 2243 -1
18. 62		.2410 -4	. 1422 -1	18. 59	.8315 -4	1082 +1	2. 4320159	115. 15	3. 079	. 3808	404. 3	5. 915	68. 36	.1531 -3	. 2238 -2
18. 64		.2397 -4	. 1419 -1	18. 61	.8270 -4	1088 +1	2. 4320529	115. 17	3. 075	. 3808	405. 2	5. 915	68. 50	.1523 -3	. 2233 -2
18. 66		.2384 -4	. 1416 -1	18. 63	.8226 -4	1093 +1	2. 4320899	115. 18	3. 072	. 3807	406. 1	5. 915	68. 65	.1515 -3	. 2228 -2
18. 68		.2372 -4	. 1413 -1	18. 65	.8185 -4	1099 +1	2. 4321267	115. 20	3. 069	. 3807	406. 9	5. 915	68. 79	.1507 -3	. 2224 -2
18. 70	.3326 ←	.2359 -4	.1410 -1	18. 67	.8142 -4	1105 +1	2. 4321635	115. 21	3. 065	. 3807	407. 8	5. 915	68. 94	.1499 -3	. 2219 -2
18. 72	.3301 ←	.2347 -4	.1407 -1	18. 69	.8099 -4	1111 +1	2. 4322001	115. 23	3. 062	. 3807	408. 7	5. 916	69. 09	.1491 -3	. 2214 -2
18. 74	.3278 ←	.2335 -4	.1404 -1	18. 71	.8058 -4	1116 +1	2. 4322366	115. 25	3. 059	. 3807	409. 6	5. 916	69. 23	.1484 -2	. 2209 -2
18. 76	.3253 ←	.2322 -4	.1401 -1	18. 73	.8015 -4	1122 +1	2. 4322729	115. 26	3. 056	. 3807	410. 4	5. 916	69. 38	.1476 -3	. 2205 -2
18. 78	.3230 ←	.2310 -4	.1398 -1	18. 75	.7974 -4	1128 +1	2. 4323092	115. 28	3. 052	. 3807	411. 3	5. 916	69. 52	.1468 -3	. 2200 -2
18, 80	.3206 ←	. 2298 -4	.1395 -1	18. 77	.7931	1134 +1	2. 4323454	115. 29	3. 049	.3807	412.2	5. 916	69. 67	.1460 -1	. 2195 -2
18, 82	.3182 ←	. 2286 -4	.1392 -1	18. 79		1140 +1	2. 4323814	115. 31	3. 046	.3807	413.1	5. 917	69. 82	.1453 -3	. 2191 -2
18, 84	.3159 ←	. 2274 -4	.1389 -1	18. 81		1146 +1	2. 4324173	115. 33	3. 043	.3807	413.9	5. 917	69. 96	.1445 -3	. 2186 -2
18, 86	.3136 ←	. 2262 -4	.1386 -1	18. 83		1152 +1	2. 4324531	115. 34	3. 039	.3807	414.8	5. 917	70. 11	.1438 -1	. 2182 -2
15, 88	.3113 ←	. 2251 -4	.1393 -1	18. 85		1158 +1	2. 4324888	115. 36	3. 036	.3807	415.7	5. 917	70. 26	.1430 -3	. 2177 -2
18. 90 18. 92 18. 94 18. 96 18. 98	.3090 -4 .3068 -4 .3046 -6 .3024 -6 .3002 -4	.2239	.1380 -1 .1378 -1 .1375 -1 .1372 -1 .1369 -1	18. 87 18. 89 18. 91 18. 93 18. 95	.7727	1164 +1 1170 +1 1176 +1 1182 +1 1188 +1	2. 4325244 2. 4325599 2. 4325953 2. 4326305 2. 4326657	115. 38 115. 39 115. 41 115. 42 115. 44	3. 033 3. 030 3. 027 3. 023 3. 020	.3807 .3807 .3807 .3807 .3807	416.6 417.5 418.3 419.2 420.1	5. 917 5. 917 5. 918 5. 918 5. 918	70. 40 70. 55 70. 70 70. 84 70. 99	.1423 -3 .1416 -3 .1408 -3 .1401 -2 .1394 -3	.2172 -2 .2167 -2 .2163 -2 .2158 -2 .2154 -2
19.00	.2980 →	.21812170215921482136	. 1366 -1	18. 97	.7530	1195 +1	2. 4327007	115. 45	3. 017	.3806	421. 0	5. 918	71. 14	. 1387 -3	.2149 -2
19.02	.2959 →		. 1363 -1	18. 99	.7492	1201 +1	2. 4327356	115. 47	3. 014	.3806	421. 9	5. 918	71. 29	. 1379 -3	.2145 -2
19.04	.2937 →		. 1361 -1	19. 01	.7454	1207 +1	2. 4327705	115. 48	3. 011	.3806	422. 8	5. 918	71. 44	. 1372 -3	.2141 -2
19.06	.2915 →		. 1358 -1	19. 03	.7414	1213 +1	2. 4328052	115. 50	3. 006	.3806	423. 7	5. 919	71. 58	. 1365 -3	.2136 -2
19.08	.2894 →		. 1355 -1	19. 05	.7376	1220 +1	2. 4328398	115. 52	3. 004	.3806	424. 6	5. 919	71. 73	. 1358 -3	.2131 -2
19. 10 19. 12 19. 14 19. 16 19. 48	.2874 -4 .2854 -4 .2833 -4 .2812 -4 .2792 -4	.2125 = .2115 = .2104 = .2093 = .2082 = .	. 1352 -1 . 1349 -1 . 1347 -1 . 1344 -1 . 1341 -1	19.07 19.09 19.11 19.13 19.15	.7338 → .7302 → .7264 → .7227 → .7189 →	1226 +1 1232 +1 1239 +1 1245 +1 1252 +1	2. 4328743 2. 4329087 2. 4329430 2. 4329771 2. 4330112	115. 53 115. 55 115. 56 115. 58 115. 59	3. 001 2. 998 2. 995 2. 992 2. 989	.3806 .3806 .3806 .3806 .3806	425. 5 426. 3 427. 2 428. 1 429. 0	5. 919 5. 919 5. 919 5. 919 5. 920	71. 88 72. 03 72. 18 72. 33 72. 48	. 1351 -3 . 1344 -3 . 1337 -3 . 1331 -3 . 1324 -3	. 2123 -2 . 2118 -2 . 2114 -2 . 2109 -2
19. 20 19. 22 19. 24 19. 26 19. 28	.27722752273327132694	.2072	. 1338 -1 . 1335 -1 . 1333 -1 . 1330 -1 . 1327 -1	19. 17 19. 19 19. 21 19. 23 19. 25	.7154 ¬ .7116 ¬ .7081 ¬ .7045 ¬ .7010 ¬	1258 +1 1264 +1 1271 +1 1277 +1 1284 +1	2. 4330452 2. 4330790 2. 4331128 2. 4331464 2. 4331800	115. 61 115. 62 115. 64 115. 65 115. 67	2. 986 2. 982 2. 979 2. 976 2. 973	.3806 .3806 .3806 .3806 .3806	429. 9 430. 8 431. 7 432. 6 433. 5	5. 920 5. 920 5. 920 5. 920 5. 920	72. 62 72. 77 72. 92 73. 07 73. 22	. 1317 -3 . 1310 -3 . 1304 -3 . 1297 -3 . 1291 -3	.2105 -2 .2100 -2 .2096 -2 .2092 -2 .2088 -2
19.30	.2674 -4	.2019 -	.1325 -1	19. 27	.6973 -4	1291 +1	2. 4332135	115. 68	2. 970	.3806	434. 4	5. 921	73. 37	. 1284 -1	. 2083
19.32	.2655 -4	.2009 -	.1322 -1	19. 29	.6937 -4	1297 +1	2. 4332468	115. 70	2. 967	.3806	435. 3	5. 921	73. 52	. 1277 -3	. 2079
19.34	.2636 -4	.1999 -	.1319 -1	19. 31	.6902 -4	1304 +1	2. 4332800	115. 71	2. 964	.3806	436. 2	5. 921	73. 67	. 1271 -3	. 2074
19.36	.2617 -4	.1988 -	.1316 -1	19. 33	.6867 -4	1310 +1	2. 4333132	115. 73	2. 961	.3805	437. 1	5. 921	73. 82	. 1265 -1	. 2070
19.38	.2599 -4	.1979 -	.1314 -1	19. 35	.6834 -4	1317 +1	2. 4333462	115. 74	2. 958	.3805	438. 0	5. 921	73. 96	. 1258 -3	. 2066
19. 40	.2581 -4	.1968 -	. 1311 -1	19.37	.6799 -4	1324 +1	2. 4333792	115.76	2. 955	.3805	438. 9	5, 921	74. 13	. 1252 -1	
19. 42	.2562 -4	.1958 -	. 1308 -1	19.39	.6764 -4	1330 +1	2. 4334120	115.78	2. 952	.3805	439. 5	5, 922	74. 28	. 1245 -3	
19. 44	.2544 -4	.1949 -	. 1306 -1	19.41	.6731 -4	1337 +1	2. 433447	115.79	2. 949	.3805	440. 7	5, 922	74. 43	. 1239 -1	
19. 46	.2526 -4	.1938 -	. 1303 -1	19.43	.6696 -4	1344 +1	2. 4334774	115.80	2. 946	.3805	441. 6	5, 922	74. 58	. 1233 -3	
19. 48	.2508 -4	.1929 -	. 1301 -1	19.45	.6663 -4	1351 +1	2. 4335099	115.82	2. 943	.3805	442. 6	5, 922	74. 73	. 1227 -3	

TABLE II.—SUPERSONIC FLOW—Continued

γ≈7/5

							γ=7/5								
Mf or M1	$\frac{p}{p_t}$	P	$\frac{T}{T_t}$	β	$\frac{q}{p_i}$		1° a.	ν	μ	M ₂	$\frac{p_2}{p_1}$	<u>ρ2</u> ρι	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{I_2}}$
19. 50	.2491 -6	. 1919 -4	.1298 -1 .	19. 47	. 6630 =4	1357 +t	2, 4335424	115, 83	2, 940	. 3505	443. 5	5. 922	74, 89	. 1221 -3	. 2041 -2
19. 52	.2473 -6	. 1909 -4	.1295 -1 .	19. 49	. 6595 =4	1365 +t	2, 4335747	115, 85	2, 937	. 3505	444. 4	5. 922	75, 03	. 1214 -3	. 2036 -3
19. 54	.2455 -6	. 1900 -4	.1293 -1 .	19. 51	. 6563 =4	1371 +t	2, 4336070	115, 86	2, 934	. 3805	445. 3	5. 922	75, 19	. 1208 -3	. 2032 -1
19. 56	.2438 -6	. 1890 -4	.1290 -1 .	19. 53	. 6530 =4	1378 +t	2, 4336391	115, 98	2, 931	. 3805	446. 2	5. 923	75, 34	. 1202 -3	. 2028 -2
19. 58	.2421 -6	. 1881 -4	.1287 -1	19. 55	. 6497 =4	1385 +t	2, 4336712	115, 89	2, 928	. 3805	447. 1	5. 923	75, 49	. 1196 -3	. 2024 -2
19. 60	. 2404 -4	. 1871 -4	.1285 -1	19. 57	. 6464 -4	1392 +1	2, 4337031	115, 91	2. 925	. 3805	448. 9	5. 923	75, 64	.1190 -3	. 2020 -2
19. 62	. 2387 -4	. 1862 -4	.1282 -1	19. 59	. 6432 -4	1399 +1	2, 4337350	115, 92	2. 922	. 3805	448. 9	5. 923	75, 80	.1184 -3	. 2016 -2
19. 64	. 2371 -4	. 1853 -4	.1280 -1	19. 61	. 6401 -4	1406 +1	2, 4337667	115, 94	2. 919	. 3805	449. 9	5. 923	75, 95	.1178 -3	. 2012 -2
19. 66	. 2354 -4	. 1843 -4	.1277 -1	19. 63	. 6369 -4	1413 +1	2, 4337984	115, 95	2. 916	. 3805	450. 8	5. 923	76, 10	.1173 -3	. 2008 -2
19. 68	. 2337 -4	. 1834 -4	.1275 -1	19. 65	. 6336 -4	1420 +1	2, 4338300	115, 97	2. 913	. 3805	451. 7	5. 924	76, 25	.1167 -3	. 2003 -2
19. 70 19. 72 19. 74 19. 76 19. 78	. 2321 → . 2305 → . 2289 → . 2273 → . 2257 →	.1825 -4 .1816 -4 .1807 -4 .1798 -4 .1788 -4	. 1272 -1 . 1269 -1 . 1267 -1 . 1264 -1 . 1262 -1	19. 67 19. 69 19. 72 19. 74 19. 76	. 6306 =4 . 6274 =4 . 6243 =4 . 6213 =4 . 6180 =4	1427 +1 1435 +1 1442 +1 1449 +1 1456 +1	2, 4338615 2, 4338928 2, 4339241 2, 4339553 2, 4339864	115, 98 116, 00 116, 01 116, 03 116, 04	2, 910 2, 907 2, 904 2, 901 2, 898	. 3805 . 3805 . 3805 . 3804 . 3804	452. 6 453. 5 454. 5 455. 4 456. 3	5, 924 5, 924 5, 924 5, 924 5, 924	76. 41 76. 56 76. 71 76. 87 77. 02	. 1161 -3 . 1155 -3 . 1149 -3 . 1144 -3 . 1138 -3	.2000 -2 .1995 -2 .1991 -2 .1988 -2 .1983 -2
19. 80	. 2241 → . 2226 → . 2210 → . 2195 → . 2179 →	.1780 -4	. 1259 -1	19. 78	.6150 =4	1464 +1	2, 4340174	116, 05	2, 895	.3904	457, 2	5, 924	77, 17	.1132 -3	1979 -2
19. 82		.1771 -4	. 1257 -1	19. 80	.6120 =1	1471 +1	2, 4340483	116, 07	2, 892	.3804	458, 1	5, 925	77, 33	.1127 -3	1975 -2
19. 84		.1762 -4	. 1254 -1	19. 82	.6090 =4	1478 +1	2, 4340792	116, 08	2, 889	.3804	459, 1	5, 925	77, 48	.1121 -3	1971 -2
19. 86		.1753 -4	. 1252 -1	19. 84	.6059 =4	1486 +1	2, 4341099	116, 10	2, 886	.3804	460, 0	5, 925	77, 64	.1116 -3	1967 -2
19. 88		.1745 -4	. 1249 -1	19. 86	.6029 =4	1493 +1	2, 4341405	116, 11	2, 883	.3804	460, 9	5, 925	77, 79	.1110 -3	1963 -2
19. 90 19. 92 19. 94 19. 96 19. 98	.2165 → .2150 → .2135 → .2120 → .2105 →	.1736 - 1 .1727 - 1 .1719 - 1 .1710 - 1	. 1247 -1 . 1244 -1 . 1242 -1 . 1249 -1 . 1237 -1	19. 88 19. 97 19. 92 19. 94 19. 96	. 5941 -4	1500 +1 1508 +1 1515 +1 1523 +1 1530 +1	2. 4341711 2. 4342015 2. 4342319 2. 4342622 2. 4342924	116. 13 116. 14 116. 15 116. 17 116. 18	2. 880 2. 878 2. 875 2. 872 2. 869	. 3804 . 3804 . 3804 . 3804 . 3804	461. 9 462. 8 463. 7 464. 6 465. 6	5. 925 5. 925 5. 926 5. 926 5. 926	77, 95 78, 10 78, 26 78, 41 78, 57	. 1105 -1 . 1099 -1 . 1094 -1 . 1088 -1 . 1083 -3	.1960 -= .1956 -= .1952 -= .1948 -= .1944 -=
20. 03 20. 20 20. 40 20. 63 20. 80	. 2091 -4 . 1952 -6 . 1823 -6 . 1704 -6 . 1594 -4	. 1694 -4 . 1612 -4 . 1536 -4 . 1463 -4 . 1395 -4	. 1235 -1 . 1211 -1 . 1187 -1 . 1165 -1 . 1143 -1	19. 98 20. 18 21. 38 21. 58 20. 78	. 5855 =4 . 5574 =4 . 5311 =4 . 5062 =4 . 4827 =4	1538 +1 1615 +1 1695 +1 1779 +1 1866 +1	2. 4343225 2. 4346186 2. 4349062 2. 4351855 2. 4354569	116. 20 116. 34 116. 47 116. 61 116. 74	2. 866 2. 838 2. 810 2. 782 2. 756	. 3804 . 3803 . 3802 . 3802	466, 5 475, 9 485, 4 494, 9 504, 6	5, 926 5, 927 5, 929 5, 939 5, 932	78. 72 80. 29 81. 86 83. 46 85. 07	. 1078 -3 . 1026 -3 . 9778 -4 . 9319 -4 . 8887 -4	. 1940 . 1902 . 1865 . 1829 . 1794
21. 00	.1492 → .1397 → .1399 → .1227 → .1151 →	.1331 -4	.1121 -1	20, 98	. 4696 -4	1956 +1	2. 4357297	116, 87	2. 729	. 3892	514. 3	5. 933	86, 69	. 8478 -4	. 1760 -2
21. 20		.1270 -4	.1100 -1	21, 18	. 4396 -4	2049 +1	2. 4359772	117, 00	2. 704	. 3801	524. 2	5. 934	88, 34	. 8091 -4	. 1727 -3
21. 40		.1212 -4	.1089 -1	21, 38	. 4197 -4	2147 +1	2. 4362265	117, 12	2. 678	. 3801	534. 1	5. 935	89, 99	. 7725 -4	. 1695 -2
21. 60		.1158 -4	.1069 -1	21, 58	. 4009 -4	2248 +1	2. 4364690	117, 24	2. 654	. 3800	544. 2	5. 936	91, 66	. 7380 -4	. 1663 -2
21. 80		.1106 -4	.1041 -1	21, 78	. 3830 -4	2353 +1	2. 4367050	117, 36	2. 629	. 3800	554. 3	5. 938	93, 35	. 7052 -4	. 1633 -2
72. 00	.1081 -6	. 1057 -4	. 1023 -1	21. 98	. 3662 -4	2461 +t	2. 4369346	117, 48	2. 605	. 3800	564. 5	5, 939	95. 05	. 6742 -4	. 1694 -2
20	.1015 -6	. 1011 -4	. 1004 -1	22. 18	. 3502 -4	2574 +t	2. 4371581	117, 69	2. 582	. 3799	574. 8	5, 940	96. 77	. 6447 -4	. 1575 -2
40	.9541 -7	. 9670 -3	. 9867 -2	22. 38	. 3351 -4	2690 +t	2. 4373757	117, 71	2. 559	. 3799	585. 2	5, 941	98. 51	. 6168 -4	. 1547 -2
. 60	.8971 -7	. 9253 -3	. 9694 -2	22. 58	. 3207 -4	2811 +t	2. 4375876	117, 82	2. 536	. 3799	595. 7	5, 942	100. 3	. 5904 -4	. 1520 -2
. 80	.8139 -7	. 8858 -5	. 9527 -2	22. 78	. 3071 -4	2936 +t	2. 4377940	117, 93	2. 514	. 3798	696. 3	5, 943	102. 0	. 5653 -4	. 1493 -2
23. 00	. 7943 -7	.8483 -3	. 9363 -2	22. 98	. 2941 -4	3065 +1	2. 4379951	118. 04	2. 492	. 3798	617. 0	5. 944	103. 8	.5414	. 1467 -2
23. 20	. 7480 -7	.8127 -3	. 9204 -2	23. 18	. 2418 -4	3199 +1	2. 4381911	118. 15	2. 470	. 3798	627. 8	5. 945	105. 6		. 1442 -2
23. 40	. 7048 -7	.7789 -3	. 9049 -2	23. 38	. 2701 -4	3338 +1	2. 4383821	118. 25	2. 449	. 3797	638. 7	5. 946	107. 4		. 1418 -2
23. 60	. 6644 -7	.7467 -3	. 8897 -2	23. 58	. 2590 -4	3481 +1	2. 4385683	118. 36	2. 429	. 3797	649. 6	5. 947	109. 2		. 1394 -2
23. 80	. 6266 -7	.7161 -3	. 8750 -2	23. 78	. 2485 -4	3630 +1	2. 4387499	118. 46	2. 408	. 3797	660. 7	5. 948	111. 1		. 1370 -2
24. 00	. 5913 -7	. 6871 -3	. 8606 -2	23. 98	. 2384 -4	3783 +1	2. 4389270	118, 56	2, 388	. 3796	671. 8	5. 948	112. 9	.4388 -4	. 1348 -2
24. 20	. 5582 -7	. 6594 -3	. 8465 -2	24. 18	. 2288 -4	3942 +1	2. 4390998	118, 65	2, 368	. 3796	683. 1	5. 949	114. 8	.4211 -4	. 1325 -2
24. 40	. 5272 -7	. 6330 -3	. 8328 -2	24. 38	. 2197 -4	4106 +1	2. 4392683	118, 75	2, 349	. 3796	694. 4	5. 959	116. 7	.4044 -4	. 1394 -2
24. 60	. 4981 -7	. 6079 -3	. 8195 -2	24. 58	. 2110 -4	4275 +1	2. 4394328	118, 85	2, 337	. 3796	705. 9	5. 951	118. 6	.3984 -4	. 1283 -2
24. 80	. 4709 -7	. 5839 -3	. 8364 -2	24. 78	. 2027 -4	4450 +1	2. 4395334	118, 94	2, 311	. 3795	717. 4	5. 952	120. 5	.3731 -4	. 1262 -2
25. 00 25. 20 25. 49 25. 60 25. 80	. 4454 -7 . 4214 -7 . 3989 -7 . 3777 -7 . 3578 -7	. 5611 -3 . 5394 -3 . 5187 -3 . 4988 -5 . 4800 -5	.7937 -2 .7812 -2 .7690 -2 .7572 -2 .7456 -2	24. 98 25. 18 25. 38 25. 58 25. 78	. 1948	4631 +1 4817 +1 5019 +1 5208 +1 5412 +1	2. 4397502 2. 4399033 2. 4400528 2. 4401988 2. 4403415	119. 03 119. 12 119. 21 119. 30 119. 35	2. 292 2. 274 2. 256 2. 239 2. 221	. 3795 . 3795 . 3795 . 3794 . 3794	729. 0 740. 7 752. 5 764. 4 776. 4	5, 952 5, 953 5, 954 5, 955 5, 955	122, 5 124, 4 126, 4 128, 4 130, 4	.3596	. 1242 -2 . 1222 -2 . 1203 -2 . 1184 -2 . 1166 -2
26. 03	. 3391 -7	. 4619 -3	.7342 -2	25, 98	.1605 = 1.1545 = 1.1498 = 1.1434 = 1.1381 = 1	5624 +1	2. 4404899	119. 47	2. 204	. 3794	789. 5	5. 956	132. 4	. 2953 -4	. 1148 -2
26. 23	. 3216 -7	. 4447 -3	.7231 -2	26, 18		5841 +1	2. 4496172	119. 55	2. 187	. 3794	800. 7	5. 957	134. 4	. 2844 -4	. 1131 -2
26. 40	. 3950 -7	. 4282 -5	.7123 -2	26, 38		6766 +1	2. 4497504	119. 63	2. 171	. 3794	813. 0	5. 957	136. 5	. 2739 -4	. 1114 -2
26. 63	. 2894 -7	. 4125 -5	.7017 -2	26, 58		6297 +1	2. 4498896	119. 71	2. 154	. 3793	825. 3	5. 958	138. 5	. 2638 -4	. 1097 -2
26. 80	. 2747 -7	. 3974 -3	.6913 -2	26, 78		6535 +1	2. 4410080	119. 79	2. 138	. 3793	837. 8	5. 959	140. 6	. 2542 -4	. 1081 -2
27. 00	. 2609 -7	. 3830 -3	.6812 -2	26. 98	.1331 -4	6781 +1	2. 4411325	119. 87	2. 123	. 3793	850. 3	5. 959	142.7	.2459 -4	. 1065 -2
27. 20	. 2479 -7	. 3692 -3	.6713 -2	27. 18	.1284 -4	7033 +1	2. 4412544	119. 95	2. 107	. 3793	863. 0	5. 960	144.8	.2362 -4	. 1049 -2
27. 40	. 2355 -7	. 3560 -3	.6616 -2	27. 39	.1238 -4	7294 +1	2. 4413736	120. 03	2. 092	. 3793	875. 7	5. 960	146.9	.2278 -4	. 1034 -2
27. 60	. 2239 -7	. 3434 -3	.6521 -2	27. 58	.1194 -4	7562 +1	2. 4414902	120. 10	2. 076	. 3792	889. 6	5. 961	149.1	.2197 -4	. 1019 -3
27. 80	. 2130 -7	. 3313 -3	.6426 -2	27. 78	.1152 -4	7837 +1	2. 4416013	120. 18	2. 061	. 3792	901. 5	5. 961	151.2	.2120 -4	. 1035 -2
28. 09	.2026 -7	.3197 -3	.6337 -2	27, 98	.1112 -4	8121 +1	2. 4417169	120, 25	2. 047	. 3792	914. 5	5, 962	153. 4	. 2046 -4	. 9902 -3
28. 20	.1928 -7	.3086 -3	.6248 -2	28, 18	.1073 -4	8413 +1	2. 4418254	129, 32	2. 032	. 3792	927. 6	5, 963	155. 6	. 1975 -4	. 9762 -3
28. 40	.1836 -7	.2979 -3	.6161 -2	28, 38	.1036 -4	8713 +1	2. 4419325	129, 39	2. 018	. 3792	940. 8	5, 963	157. 8	. 1907 -4	. 9626 -3
28. 60	.1748 -7	.2877 -3	.6376 -2	28, 58	.1001 -4	9022 +1	2. 4420373	120, 46	2. 014	. 3792	954. 1	5, 964	160. 0	. 1842 -4	. 9491 -3
28. 80	.1665 -7	.2779 -3	.5992 -2	28, 78	.9669 -5	9340 +1	2. 4421400	120, 53	1. 990	. 3791	967. 5	5, 964	162. 2	. 1779 -4	. 9360 -3
29. 00	. 1587 -7	. 2685 -3	.5910 -2	28, 98	. 9343 -3	9666 +1	2. 4422406	120, 60	1. 976	. 3791	981. 0	5, 965	164. 5	. 1719 -4	. 9232 -3
29. 23	. 1513 -7	. 2595 -3	.5830 -2	29, 18	. 9339 -3	1000 +2	2. 4423391	120, 67	1. 963	. 3791	994. 6	5, 965	166. 7	. 1662 -4	. 9106 -3
29. 40	. 1443 -7	. 2509 -3	.5751 -2	29, 35	. 8730 -3	1035 +2	2. 4424356	120, 73	1. 949	. 3791	1006	5, 966	169. 0	. 1606 -4	. 8983 -3
29. 60	. 1376 -7	. 2425 -3	.5674 -2	29, 58	. 8440 -3	1070 +2	2. 4425332	120, 80	1. 936	. 3791	1022	5, 966	171. 3	. 1553 -4	. 8860 -3
29. 80	. 1313 -7	. 2346 -3	.5599 -2	29, 78	. 8164 -5	1107 +2	2. 4426230	120, 86	1. 923	. 3791	1036	5, 966	173. 6	. 1502 -4	. 8743 -3
30, 00	.1254 -7	. 2269 -3	. 5525	29, 98	.7897 -3	1144 +2	2. 4427138	120, 93	1, 910	. 3790	1050	5, 967	175. 9	. 1453 -4	.8626 -3
30, 20	.1197 -7	. 2195 -3	. 5452	30, 18	.7641 -3	1182 +2	2. 4428929	120, 99	1, 895	. 3790	1064	5, 967	178. 3	. 1496 -4	.8512 -3
30, 40	.1143 -7	. 2124 -3	. 5381	30, 38	.7395 -3	1222 +2	2. 4428902	121, 05	1, 895	. 3790	1078	5, 968	189. 6	. 1361 -4	.840.1 -3
30, 60	.1092 -7	. 2056 -3	. 5312	30, 58	.7158 -3	1262 +2	2. 4429759	121, 11	1, 873	. 3790	1092	5, 968	183. 0	. 1317 -4	.8292 -3
1, 80	.1044 -7	. 1991 -3	. 5243	30, 78	.6931 -3	1304 +2	2. 4430599	121, 17	1, 861	. 3790	1107	5, 969	185. 4	. 1275 -4	.8185 -3
03 20 31.63 31.89	9977 -4 9540 -4 9124 -4 8730 -4 8354 -2	. 1928 -3 . 1867 -3 . 1806 -3 . 1752 -3 . 1698 -3	.5176 -2 .5110 -2 .5046 -2 .4982 -2 .4920 -2	30.98 31.48 31.38 31.58 31.58	. 6711 -3 . 650) -3 . 6297 -3 . 6102 -3 . 5914 -3	1346 +2 1390 +2 1435 +2 1481 +2 1526 +2	2. 4431423 2. 4432231 2. 4433023 2. 4433801 2. 4434564	121, 23 121, 29 121, 35 121, 41 121, 46	1, 849 1, 837 1, 825 1, 813 1, 802	. 3790 . 3790 . 3789 . 3789 . 3789	1121 1136 1150 1165 1180	5, 969 5, 969 5, 970 5, 970 5, 971	187, 8 190, 2 192, 7 195, 1 197, 6	. 1235 -4 . 1196 -4 . 1159 -4 . 1123 -4 . 1088 -4	. 8079 -3 . 7976 -3 . 7874 -3 . 7775 -1 . 7677 -3
32. 00 32. 20 32. 40 32. 60 32. 80	.7997 -6 .7658 -5 .7334 -6 .7026 -5 .6733 -5	.1646 -3 .1596 -3 .1547 -3 .1501 -3 .1456 -3	.4859 -2 .4799 -2 .4749 -2 .4683 -2 .4626 -2	31, 98 32, 18 32, 35 32, 58 32, 78	. 5733 -3 . 5558 -3 . 5389 -3 . 5227 -3 . 5071 -3	1677 +2 1729 +2	2. 4435314 2. 4436049 2. 4436770 2. 4437479 2. 4438175	121, 52 121, 57 121, 63 121, 68 121, 74	1, 791 1, 780 1, 769 1, 758 1, 747	. 3789 . 3789 . 3789 . 3789 . 3789	1195 1210 1225 124) 1255	5, 971 5, 971 5, 972 5, 972 5, 972	200, 1 202, 6 205, 1 207, 6 210, 1	. 1055 -4 . 1023 -4 . 9916 -5 . 9618 -5 . 9330 -5	

REPORT 1135-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II.—SUPERSONIC FLOW—Continued

							γ=7/5								
M or M1	$\frac{p}{p_i}$	<u>ρ</u>	$\frac{T}{T_i}$	в	$\frac{q}{p_i}$	<u>.1</u> .4.	1.	ν	μ	M:	<u>p:</u>	<u>ρ2</u> ρ1	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{I_2}}$
33. 00 33. 20 33. 40 33. 60 33. 80	.6454 -4 .6188 -4 .5935 -4 .5692 -4 .5462 -7	. 1412 -5 . 1370 -5 . 1330 -5 . 1291 -5 . 1253 -5	.4570 =2 .4516 =2 .4462 =2 .4409 =2 .4358 =2	32. 98 33. 18 33. 39 33. 59 33. 79	. 4920 -3 . 4774 -3 . 4634 -3 . 4499 -5 . 4368 -3	1837 +2 1893 +2 1950 +2 2009 +2 2069 +2	2, 4438858 2, 4439529 2, 4440188 2, 4440835 2, 4441471	121, 79 121, 84 121, 89 121, 94 121, 99	1, 737 1, 726 1, 716 1, 706 1, 695	.3789 .3788 .3788 .3788 .3788	1270 1286 1301 1317 1333	5. 973 5. 973 5. 973 5. 974 5. 974	212. 7 215. 3 217. 9 220. 5 223. 1	. 9053 = 5 . 8785 = 5 . 8527 = 5 . 8277 = 5 . 8037 = 3	.7129 -3 .7044 -3 .6960 -3 .6878 -3 .6796 -3
34. 00 34. 20 34. 40 34. 60 34. 80	. 5242	. 1217 -3 . 1182 -3 . 1148 -5 . 1116 -3 . 1084 -3	. 4307 -2 . 4257 -2 . 4206 -2 . 4159 -2 . 4112 -2	33. 99 34. 19 34. 39 34. 59 34. 79	.4242 -3 .4120 -3 .4002 -3 .3889 -3 .3779 -1	2131 *2 2194 *2 2259 *2 2325 *2 2392 *2	2. 4442709 2. 4442709 2. 4443312 2. 4443905 2. 4444488	122. 04 122. 09 122. 14 122. 19 122. 24	1. 685 1. 676 1. 666 1. 656 1. 647	. 3788 . 3789 . 3788 . 3788 . 3788	1349 1364 1380 1397 1413	5. 974 5. 975 5. 975 5. 975 5. 975	225. 7 226. 4 231. 0 233. 7 236. 4	.7805 -5 .7581 -5 .7364 -3 .7155 -3 .6952 -5	. 6716 -3 . 6638 -3 . 6561 -3 . 6486 -1 . 6411 -3
35, 00 35, 20 35, 40 35, 60	4283 4116 3957 3804 3658	.1054 -5 .1024 -5 .9956 -6 .9680 -5 .9414 -6	. 4065 = 2 . 4019 = 2 . 3974 = 2 . 3930 = 2 . 3886 = 2	34, 99 35, 19 35, 39 35, 59 35, 79	.3672 -5 .3570 -5 .3471 -5 .3375 -3 .3282 -3	2462 +2 2532 +2 2605 +2 2679 +2 2754 +2	2, 4445060 2, 4445623 2, 4446177 2, 4446721 2, 4447256	122, 28 122, 33 122, 37 122, 42 122, 47	1. 637 1. 628 1. 619 1. 610 1. 601	. 3788 . 3787 . 3787 . 3787 . 3787	1429 1445 1462 1478 1495	5, 976 5, 976 5, 976 5, 976 5, 977	239. 1 241. 9 244. 6 247. 4 250. 2	6757 -5 6568 -5 6385 -5 6210 -3 6039 -5	. 6338 -3 . 6267 -3 . 6197 -3 . 6126 -3 . 6059 -3
35, 80 36, 00 36, 20 36, 40 36, 60	.3519 = 4 .3386 = 4 .3258 = -1 .3136 = 4	. 9156 =6 . 8907 =6 . 8666 =6 . 8433 =6 . 8207 =6	. 3843 -2 . 3801 -2 . 3764 -2 . 3719 -2 . 3679 -2	35, 99 36, 19 36, 39 36, 59 36, 79	. 3192 -3 . 3106 -3 . 3022 -3 . 2941 -3 . 2862 -3	2832 +2 2911 +2 2992 +2 3075 +2 3159 +2	2. 4448810 1 2. 4449311	122, 51 122, 55 122, 60 122, 64 122, 68	1. 592 1. 583 1. 574 1. 566 1. 557	. 3787 . 3787 . 3787 . 3787 . 3787	1512 1529 1546 1563 1580	5. 977 5. 977 5. 977 5. 978 5. 978	252. 9 255. 8 258. 6 261. 4 264. 3	. 5874 -3 . 5714 -3 . 5560 -3 . 5410 -3 . 5265 -3	, 5991 -3 , 5925 -3 , 5860 -3 , 5797 -3 , 5734 -3
36. 80 37. 00 37. 20 37. 40 37. 60	. 2907	.7988 -4 .7777 -4 .7572 -4 .7373 -4 .7181 -6	. 3639 -2 . 3600 -2 . 3502 -2 . 3524 -2 . 3487 -2	36. 99 37. 19 37. 39 37. 59 37. 79	. 2786 -5 . 2712 -5 . 2641 -5 . 2572 -3 . 2504 -5	3246 +2 1 3334 +2 1 3424 +2 1 3516 +2 1 3611 +2 1	2. 4450288 2. 4450765 2. 4451235 2. 4451697 2. 4452152	122. 72 122. 77 122. 81 122. 85 122. 89	1. 549 1. 540 1. 532 1. 524 1. 516	. 3787 . 3787 . 3787 . 3787 . 3786	1597 1614 1632 1649 1667	5. 978 5. 978 5. 979 5. 979 5. 979	267. 1 270. 0 272. 9 275. 8 278. 8	. 5126 -5 . 4990 -5 . 4858 -5 . 4732 -3 . 4608 -5	.5671 -1 .5611 -3 .5551 -3 .5492 -3 .5434 -3
37, 80 38, 00 38, 20 38, 40 38, 60 38, 80	. 2504 - 4 . 2414 - 4 . 2327 - 4 . 2244 - 4 . 2164 - 4 . 2087 - 5	.6995 -4 .6814 -4 .6639 -4 .6469 -6 .6305 -6	.3451 =2 .3415 =2 .3379 =2 .3345 =2 .3310 =2	37, 99 38, 19 38, 39 38, 59 38, 79	. 2440 -3 . 2377 -3 . 2316 -3 . 2257 -3 . 2199 -3	3706 +2 3805 +2 3905 +2 4007 +2 4112 +2	2. 4452599 2. 4453940 2. 4453474 2. 4453901 2. 4454321	122. 93 122. 97 123. 00 123. 04 123. 08	1, 508 1, 500 1, 492 1, 485 1, 477	. 3786 . 3786 . 3786 . 3786 . 3786	1685 1702 1720 1738 1756	5. 979 5. 980 5. 980 5. 980 5. 980	281. 7 284. 7 287. 7 290. 7 293. 7	. 4489 -3 . 4373 -5 . 4260 -3 . 4152 -3 . 4046 -3	. 5377 -3 . 5321 -3 . 5266 -3 . 5212 -3 . 5158 -3
39, 00 39, 20 39, 40 39, 60 39, 80	.2013 -4 .1943 -4 .1875 -4 .1810 -4	.6145 -4 .5991 -6 .5841 -6 .5695 -6 .5554 -6	.3277 -2 .3243 -2 .3211 -2 .3178 -2 .3147 -2	38. 99 39. 19 39. 39 39. 59 39. 79	. 2144 -3 . 2090 -3 . 2038 -3 . 1987 -5 . 1938 -3	4219 +2 4327 +2 4438 +2 4552 +2 4667 +2	2, 4454735 2, 4455143 2, 4455545 2, 4455940 2, 4456330	123. 12 123. 16 123. 19 123. 23 123. 27	1. 469 1. 462 1. 454 1. 447 1. 440	. 3786 . 3786 . 3786 . 3786 . 3786	1774 1793 1811 1829 1848	5, 980 5, 981 5, 981 5, 981 5, 981	296. 7 299. 7 302. 8 305. 9 309. 0	. 3944 -5 . 3845 -5 . 3749 -5 . 3655 -5 . 3565 -5	.5105 =3 .5053 =3 .5002 =3 .4952 =3 .4902 =3
40.00 40.20 40.40 40.60 40.80	.1688 -4 .163°) -5 .1574 -4 .1521 -4 .1470 -5	.5417 -6 .52×4 -6 .5155 -6 .5029 -6 .490e -6	.3115 == .3084 == .3054 == .3024 == .2905 ==	39, 99 40, 19 40, 39 40, 59 40, 79	. 1890 -3 . 1844 -5 . 1799 -3 . 1755 -3 . 1713 -3	4783 +2 4996 +2 5028 +2 5154 +2 5281 +2	2. 4456714 2. 4457092 2. 4457464 2. 4457831 2. 4458193	123, 39 123, 34 123, 37 123, 41 123, 44	1. 433 1. 425 1. 418 1. 411 1. 404	. 3786 . 3786 . 3786 . 3786 . 3785	1867 1885 1904 1923 1942	5. 981 5. 982 5. 982 5. 982 5. 982	312. 1 315. 2 318. 3 321. 5 324. 6	. 3477 -5 . 3392 -5 . 3309 -5 . 3229 -5 . 3151 -5	. 4853 -3 . 4805 . 4757 . 4710 . 4665
41. 00 41. 20 41. 40 41. 60 41. 80	.1420	.4789 = 6 .4675 = 6 .4563 = 6 .4455 = 6 .4349 = 6	. 296% -2 . 2937 -2 . 2909 -2 . 2981 -2 . 2854 -2	40. 99 41. 19 41. 39 41. 59 41. 79	. 1671 -3 . 1631 -3 . 1592 -3 . 1555 -3 . 1518 -3	5412 +2 5544 +2 5680 +2 5818 +2 5959 +2	2. 4458549 2. 4458901 2. 4459247 2. 4459588 2. 4459924	123, 48 123, 51 123, 54 123, 58 123, 61	1. 398 1. 391 1. 384 1. 377 1. 371	. 3785 . 3785 . 3785 . 3785 . 3785	1961 1980 2000 2019 2038	5. 982 5. 982 5. 983 5. 983 5. 983	327. 8 331. 0 334. 2 337. 4 340. 7	. 3075 -3 . 3001 -3 . 2929 -3 . 2860 -3 . 2793 -3	. 4619 . 4575 -1 . 4531 -1 . 4487 -3 . 4444 -3
42. 00 42. 20 42. 40 42. 60 42. 80	.1201 -4 .1161 -4 .1124 -4 .1087 -4 .1052 -4	. 4247 -6 . 4148 -4 . 4051 -4 . 3957 -6 . 3866 -6	. 2827 -2 . 28(H) -2 . 2774 -2 . 2746 -2 . 2722 -2	41. 99 42. 19 42. 39 42. 59 42. 79	. 1482 -3 . 1448 -3 . 1414 -3 . 1381 -3 . 1349 -3	6102 +2 6248 +2 6397 +2 6549 +2 6704 +2	2. 4460256 2. 4460583 2. 4460905 2. 4461223 2. 4461536	123. 64 123. 67 123. 71 123. 74 123. 77	1. 364 1. 358 1. 351 1. 345 1. 339	. 3785 . 3785 . 3785 . 3785 . 3785	2058 2178 2097 2117 2137	5. 983 5. 983 5. 983 5. 984 5. 984	343. 9 347. 2 350. 5 353. 8 357. 1	. 2727 -3 . 2663 -3 . 2602 -3 . 2541 -3 . 2483 -3	. 4402 -3 . 4360 -3 . 4319 -3 . 4279 -3 . 4239 -3
43. 00 43. 20 43. 40 43. 60 43. 80	. 1019 - 1 . 9861 - 1 . 9548 - 1 . 9246 - 1 . 8956 - 1	.3777 → .3691 → .3697 → .3525 → .3445 →	. 2697 -2 . 2672 -2 . 2648 -2 . 2623 -2 . 2690 -2		. 1318 -3 . 1286 -3 . 1259 -3 . 1230 -3 . 1203 -3	6861 +2 7022 +3 7186 +2 7352 +1 7522 +2	2. 4461845 2. 4462150 2. 4462451 2. 4462747 2. 4463339	123. 80 123. 83 123. 86 123. 89 123. 92	1. 333 1. 326 1. 320 1. 314 1. 308	. 3785 . 3785 . 3785 . 3785 . 3785	2157 2177 2197 2218 2238	5, 984 5, 984 5, 984 5, 984 5, 984	360. 5 363. 8 367. 2 370. 6 374. 0	. 2426 -5 . 2370 -5 . 2316 -5 . 2264 -5 . 2213 -5	. 4200 -3 . 4161 -3 . 4122 -3 . 4084 -3 . 4048 -3
44. 00 44. 20 44. 40 44. 60 41. 80	.8676 -+ .8405 -+ .8144 -+ .7893 -+ .7650	.3368 -6 .3293 -6 .3219 -6 .3148 -6 .3078 -6	. 2576 -2 . 2553 -2 . 2530 -2 . 2507 -2 . 2485 -2	43. 99 44. 19 44. 39 44. 59 44. 79	.1176 -5 .1150 -5 .1124 -5 .1099 -5 .1075 -5	7694 +2 7870 +2 8049 +2 8232 +2 8418 +2	2. 4463328 2. 4463612 2. 4463893 2. 4464170 2. 4464443	123. 95 123. 98 124. 01 124. 04 124. 07	1. 302 1. 296 1. 291 1. 285 1. 279	. 3785 . 3785 . 3785 . 3785 . 3784	2259 2279 2300 2321 2341	5. 985 5. 985 5. 985 5. 985 5. 985	377. 4 380. 8 384. 3 387. 7 391. 2	. 2163 -5 . 2115 -5 . 2068 -5 . 2022 -3 . 1977 -3	. 4011 -3 . 3975 -3 . 3939 -3 . 3904 -3 . 3869 -3
45, 09 45, 20 45, 49 45, 69 45, 89	.7416 -9 .7190 -9 .6971 -4 .6760 -9 .6557 -9	.3011 =6 .2945 =6 .2881 =6 .2818 =6 .2758 =6	. 2463 -2 . 2411 -2 . 2420 -2 . 2399 -2 . 2378 -2	45. 39 45. 59	.1051 -3 .1028 -3 .1006 -3 .9640 -4 .9629 -6	8606 +2 8798 +2 8995 +2 9194 +2 9396 +2	2. 4464713 2. 4464979 2. 4465241 2. 4465500 2. 4465756		1. 273 1. 268 1. 262 1. 257 1. 251	. 3784 . 3784 . 3784 . 3784 . 3784	2362 2383 2405 2426 2447	5, 985 5, 985 5, 986 5, 986 5, 986	394. 7 398. 2 401. 7 405. 3 496. 8	. 1934 -5 . 1892 -5 . 1851 -5 . 1810 -5 . 1771 -3	. 3835 -3 . 3801 -3 . 3767 -3 . 3735 -3 . 3702 -3
46, 00 46, 20 46, 40 46, 60 46, 80	.6361 -4 .6171 -4 .5987 -4 .5810 -4 .5639 -4	. 2696 -4 . 2641 -4 . 2584 -4 . 2529 -5 . 2476 -6	. 2357 -2 . 2337 -2 . 2317 -2 . 2297 -2 . 2278 -2	46, 19 46, 39 46, 59	.9422 -4 .9220 -4 .9023 -4 .8832 -4 .8646 -4	9603 +2 9513 +2 1003 +3 1024 +3 1047 +3	2. 4466009 2. 4466258 2. 4466504 2. 4466746 2. 4466986	124. 26 124. 29 124. 31	1. 246 1. 240 1. 235 1. 230 1. 224	.3784 .3784 .3784 .3784		5. 986 5. 986 5. 986 5. 986 5. 986	412. 4 416. 0 419. 6 423. 2 426. 8	. 1733 -3 . 1696 -3 . 1660 -3 . 1625 -3 . 1591 -3	.3670 -1 .3638 -3 .3607 -3 .3576 -3 .3546 -3
47. 00 47. 20 47. 40 47. 60 47. 80	.5474 -9 .5314 -9 .5159 -9 .5009 -9 .4865 -9	.2424 -4 .2373 -4 .2323 -4 .2275 -4 .2228 -4	. 2258 -2 . 2239 -2 . 2221 -2 . 2202 -2 . 2184 -2	47, 19 47, 39 47, 59	.8464 -6 .8287 -6 .8114 -6 .7945 -6 .7782 -6	1069 +3 1092 +3 1115 -3 1139 +3 1163 +3	2. 4467223 2. 4467456 2. 4467687 2. 4467915 2. 4468140	124. 39 124. 42 124. 44	1. 219 1. 214 1. 209 1. 204 1. 199	. 3784 . 3784 . 3784 . 3784		5. 986 5. 987 5. 987 5. 987 5. 987	430. 5 434. 1 437. 8 441. 5 445. 2	.1557 -3 .1525 -3 .1493 -3 .1462 -3 .1431 -3	.3516 -3 .3486 3 .3457 -3 .3427 -3 .3399 -3
45.00 48.20 45.40 48.60 48.80	. 4725 -9 . 4590 -9 . 4459 -9 . 4332 -9 . 4210 -9	.2182 = .2137 = .2094 = .2051 = .2009 =	. 2165 -3 . 2146 -3 . 2130 -3 . 2112 -3 . 2095 -3	48. 39 48. 39 48. 59	.7620	1187 +3 1212 +3 1238 +3 1263 +3 1289 +3	2, 4468362 2, 4468581 2, 4468798 2, 4469012 2, 4469223	124, 52 124, 54 124, 56	1. 194 1. 189 1. 184 1. 179 1. 174	.3784 .3784 .3784 .3784 .3784	2733 2756	5, 987 5, 987 5, 987 5, 987 5, 987	448. 9 452. 7 456. 4 460. 2 464. 0	.1402 -3 .1373 -3 .1345 -3 .1318 -3 .1291 -3	. 3370 -3 . 3342 -3 . 3315 -3 . 3288 -3 . 326
49, 00 49, 20 49, 40 49, 60 49, 80	. 4091 -7 . 3976 . 3865 -7 . 3758 . 3653	. 1969 -6 . 1929 -7 . 1890 -5 . 1853 -6 . 1816 -4	. 2078	49, 19 49, 39 49, 59	.6876 -6 .6738 -6 .6603 -6 .6472 -6	1370 -1 1398 +2	2. 4469432 2. 4469639 2. 4469642 2. 4470044 2. 4470243	124.64 2 124.66 1 124.68	1, 169 1, 165 1, 160 1, 155 1, 151	. 3784 . 3784 . 3784 . 3784	2847 2870	5, 985 5, 985 5, 985 5, 985 5, 985	467. 8 471. 6 475. 5 479. 3 483. 2	. 1265 - 5 . 1240 - 3 . 1215 - 3 . 1191 - 3 . 1167 - 5	.3151 -1
50, 00 51, 00 52, 00 53, 00 54, 00	. 3553 → . 3093 → . 2701 → . 2365 → . 2075 →		. 1777 -	50.99 51.99 52.99	.6217 -6 .5632 -4 .5113 -4649 -4 .4235 -4	1607 +1 1770 +1 1947 +1	2. 4470431 2. 4471380 2. 4472283 2. 4473120 2. 447392	124.84 2 124.95 6 125.05	1. 146 1. 124 1. 102 1. 081 1. 061	.378	3034 3155 3277	5. 988 5. 989 5. 989 5. 989 5. 990	487. 1 506. 7 526. 7 547. 1 567. 9	. 1144 -5 . 1036 -5 . 9406 -6 . 8553 -7	. 2955 -3 . 2872 -3 . 2765 -3

TABLE II.-SUPERSONIC FLOW-Concluded

$\gamma = \tilde{i} \cdot \tilde{i}$

N																
M or M ₁	$\frac{p}{p_t}$	<u>ρ</u>	$\frac{T}{T_t}$	β	$\frac{q}{p_t}$	$\frac{A}{A_{\bullet}}$	<u>".</u>	ν		μ	M ₂	$\frac{p_2}{p_1}$	<u>ν:</u> Αι	$\frac{T_2}{T_1}$	$\frac{p_{i_2}}{p_{i_1}}$	$\frac{p_1}{p_{t_2}}$
55, 00 56, 00 57, 00 58, 00 59, 00	. 1826 . 1609 . 1422 . 1259 . 1118	.1106 == .1011 == .9256 == .8485 == .7791 == .7	. 1650 = 2 . 1592 = 2 . 1537 = 2 . 1484 = 2 . 1434 = 2	54, 99 55, 99 56, 99 57, 99 58, 99	.3868 = .3533 = .3235 = .2965 = .2723 = 6	2341 +3 2562 +3 2795 +3 3052 +3 3324 +3	2, 4474679 2, 4475394 2, 4476071 2, 4476714 2, 4477325	125, 25 125, 34 125, 43 125, 52 125, 60		1.042 1.023 1.095 .9879 .9712	. 3783 . 3783 . 3783 . 3783 . 3782	3529 , 3659 3790 3925 4061	5, 993 5, 993 5, 991 5, 991 5, 991	589. 1 610. 7 632. 7 655. 1 677. 8	.7111 =6 .6499 =6 .5950 =6 .5455 =6 .5009 =6	. 2567 -1 . 2476 -3 . 2490 -3 . 2304 -3 . 2231 -3
60.00 61.00 62.00 63.00 64.00	. 9937 -10	.7165 =7 .6596 =3 .6082 =7 .5615 =7 .5190 =7	. 1387 -2 . 1342 -2 . 1299 -2 . 1258 -2 . 1219 -2	59, 99 60, 99 61, 99 62, 99 63, 99	. 2504 → 6 . 230.6 → 6 . 2126 → 6 . 1963 → 6 . 1814 → 6	3615 +3 3926 +3 4258 +3 4612 +3 4990 +3	2. 4477905 2. 4478457 2. 4478932 2. 4479483 2. 4479961	125, 68 125, 76 125, 84 125, 91 125, 98	1 :	. 9550 - 9393 - 9241 - 9095 - 8953	. 3782 . 3782 . 3782 . 3782 . 3782	4200 4341 4485 4630 4779	5, 992 5, 992 5, 992 5, 993 5, 993	700, 9 724, 5 748, 4 772, 7 797, 4	. 4605 → 6 . 4241 → 6 . 3911 → 6 . 3611 → 6 . 3335 → 6	. 2157 -3 . 2037 -3 . 2020 -3 . 1957 -3 . 1896 -3
65, 00 66, 00 67, 00 68, 00 69, 00	. 5678 -10 . 5103 -10 . 4594 -10 . 4141 -10 . 3740 -16	.4803 = .4451 = .4129 = .3834 = .3565 = .	.1182 -2 .1147 -2 .1113 -2 .1080 -2 .1049 -2	64. 99 65. 99 66. 99 67. 99 68. 99	.1679 -6 .1556 -6 .1444 -6 .1340 -6 .1246 -6	5391 +3 5818 +3 6271 +3 6754 +3 7264 +3	2. 4480416 2. 4480651 2. 4431267 2. 4481665 2. 4482045	126, 05 126, 12 126, 18 126, 24 126, 30	i	.8815 .8682 .8552 .8426 .8304	. 3782 . 3782 . 3782 . 3782 . 3782	4929 5032 5237 5395 5554	5. 993 5. 993 5. 994 5. 994	822, 5 847, 9 873, 8 900, 1 926, 7	.3039 → .2563 → .2655 → .2466 → .2291 →	. 1838 -3 . 1783 -3 . 1730 -3 . 1679 -3 . 1631 -3
70, 00 71, 00 72, 00 73, 00 74, 00	3382 -10 3062 -10 2777 -10 2522 -10 2293 -10	.3318 =	. 1019 -2 . 9990 -3 . 9336 -3 . 9374 -3 . 9122 -3	69, 99 70, 99 71, 99 72, 99 73, 99	.1160 =6 .10×1 =0 .100× =6 .9406 =7 .8789 =7	7804 +3 8378 +3 8934 +3 9625 +3 1030 +4	2, 4482410 2, 4482759 2, 4483093 2, 4483414 2, 4483722	125, 36 126, 42 125, 48 125, 53 126, 59		.8185 .8070 .7958 .7849 .7742	. 3782 . 3782 . 3732 . 3781 . 3781	5717 5481 6045 6217 6389	5, 994 5, 994 5, 994 5, 994 5, 995	953, 7 981, 1 1009 1037 1066	.2134 -6 .1985 .1854 .1730 -6 .1617 - 6	. 1585 -3 . 1540 -3 . 1494 -3 . 1457 -3 . 1418 -3
75. 00 76. 00 77. 00 78. 00 79. 00	. 2088 -1° . 1903 -1° . 1737 -1° . 1587 -1° . 1451 -1°	. 2351 -7 . 2200 -7 . 2061 -7 . 1932 -7 . 1813 -7	.8881 -3 .8649 -3 .8426 -3 .8212 -3 .8005 -3	74, 99 75, 99 76, 99 77, 99 78, 99	.8220 -7 .7693 -7 .7207 -7 .6757 -7 .6341 -7	1102 +4 1177 +4 1256 +4 1340 +4 1425 +4	2. 4484018 2. 4484302 2. 4484576 2. 448488 2. 4485091	126, 64 126, 69 126, 74 126, 78 126, 83	•	. 7639 . 7539 . 7441 . 7345 . 7253	.3781 .3781 .3781 .3781 .3781	6562 6739 6917 7098 7231	5. 995 5. 995	1095 1124 1154 1184 1215	.1512	. 13×1 -3 . 1345 -3 . 1310 -3 . 1276 -1 . 1244 -3
80, 00 81, 00 82, 00 83, 00 84, 00	. 1329 -10 . 1219 -10 . 1118 -10 . 1027 -10 . 9448 -11	.1703 -7 .1600 -7 .1505 -7 .1417 -7 .1334 -7	.7806 -3 .7615 -3 .7431 -3 .7253 -3 .7081 -3	79, 99 80, 99 81, 99 82, 99 83, 99	. 5954 -7 . 5593 -7 . 5264 -7 . 4954 -7 . 4607 -7	1521 ** 1618 ** 1720 ** 1828 ** 1940 **	2. 4485335 2. 4485569 2. 4485795 2. 4486013 2. 4486223	126, 88 126, 92 126, 96 127, 00 127, 05		. 7162 . 7074 . 6937 . 6933 . 6821	. 3781 . 3781 . 3781 . 3781 . 3781	7467 7654 7845 8037 8232	5, 995 5, 995 5, 995 5, 995 5, 996	1245 1277 1308 1341 1373	.1095 → .1030 → .9682 → .9113 → .8585 →	.1214 -3 .1184 -3 .1155 -3 .1127 -3 .1101 -3
85, 00 86, 00 87, 00 88, 00 89, 00	.8697 -11 .8014 -11 .7391 -11 .6823 -11 .6305 -11	.1258 = 1 .1186 = 1 .1120 = 1 .1058 = 1	.6916 -3 .6756 -3 .6662 -3 .6452 -3 .6305 -3	84, 99 85, 99 86, 99 87, 99 85, 99	.3916 -	2059 +4 2182 +4 2312 +4 2444 +4 2590 +4	2. 4486426 2. 4486522 2. 4496811 2. 4486994 2. 4487170	127, 09 127, 12 127, 16 127, 20 127, 24	:	. 6741 . 6662 . 6586 . 6511 . 6438	.3781 .3781 .3781 .3781 .3781	8429 8529 8530 9035 9241	5. 996 5. 996 5. 996 5. 996 5. 996	1406 1439 1473 1507 1541	.8092 -7 .7632 -7 .7204 -7 .6804 -7 .6431 -7	. 1075 -3 . 1050 -3 . 1026 -3 . 1003 -3 . 9805 -4
90. 00 91. 00 92. 00 93. 00 94. 00	. 5831 -0 . 5397 -0 . 5000 -0 . 4636 -0 . 4302 -0	. 9452	.6169 -3 .6034 -3 .5994 -3 .5778 -3 .5656 -3	89, 99 90, 99 91, 99 92, 99 93, 9 9	.3305 -1 .3129 -1 .2962 -1 .2807 -1 .2661 -1	2739 +1 2894 +4 3057 +4 3226 +1 3403 +4	2. 4487341 2. 4487506 2. 4487666 2. 4487820 2. 4487970	127, 27 127, 31 127, 34 127, 38 127, 41	•	. 6366 . 6296 . 6228 . 6160 . 6095	.3781 .3781 .3781 .3781 .3781	9450 9661 9875 1009 +1 1031 +1	5. 996 5. 996 5. 997 5. 997 5. 997	1576 1611 1647 1683 1719	.6032 -: .5755 -: .5450 -: .5163 -: .4894 -:	.9585
95, 00 96, 00 97, 00 95, 00 99, 00	.3995 -11 .3712 -11 .3453 -11 .3214 -13 .2993 -11	.7214	. 5537 -1 . 5422 -1 . 5311 -1 . 5204 -1 . 5099 -3	94, 99 95, 99 96, 99 97, 99 98, 99	. 2524	3598 *4 3781 *4 3982 *4 4191 *4 4410 *4	2. 4493115 2. 4498255 2. 4498392 2. 4498524 2. 4489652	127. 44 127. 47 127. 50 127. 53 127. 56		. 6031 . 5968 . 5907 . 5947 . 5787	.3781 .3781 .3781 .3781 .3781	1053 +1 1075 +1 1093 +1 1121 +1 1143 +1	5. 997 5. 997 5. 997 5. 997 5. 997	1756 1793 1831 1869 1907	.4612 -7 .4405 -7 .4183 -7 .3974 -7 .3778 -7	. 8605 -1 . 8427 -4 . 8254 -1 . 8087 -4 . 7923 -1
100. 0 0	. 2790	. 5583	. 4995 -3	100.00	. 1953 "	4637 +4	2. 4485776	127.59		. 5730	. 3781	1167 +1	5. 997	1945	.3593	.7765 -4

NOTATIONS FOR TABLES I AND II

	local Mach number or Mach number upstream of a normal shock wave ratio of static pressure to total pressure	ν	Prandtl-Meyer angle (angle through which a supersonic stream is turned to expand from $M=1$ to $M>1$), deg
$\frac{p}{p_i}$	Tatle of State pressure to total pressure	μ	Mach angle, $\sin^{-1}\frac{1}{M}$, deg
ρ	ratio of static density to total density	-	A1-A
Pı	Tatto of state density to total action,	M_2	Mach number downstream of a normal shock wave
T		n.	
$\frac{T}{T_i}$	ratio of static temperature to total temperature	$rac{m{p}_2}{m{p}_1}$	static pressure ratio across a normal shock wave
1 1		p_1	
β	$\sqrt{M^2-1}$	ρ_2	static density ratio across a normal shock wave
a	1 779		Static delisity ratio across a normal should wave
$\frac{q}{p_t}$	ratio of dynamic pressure, $\frac{1}{2} \rho V^2$, to total pressure	$rac{oldsymbol{ ho}_1}{T_2}$	
Pt 1		\overline{r}	static temperature ratio across a normal shock wave
	ratio of local cross-sectional area of an isentropic	- 1	
	ratio of local cross-sectional area of an isentropic stream tube to cross-sectional area at the point	p_{t_2}	total pressure ratio across a normal shock wave
	where $M=1$	$\overline{p_{\iota_1}}$	total pressure ratio across a normal shook wave
I.		p_1	ratio of static pressure upstream of a normal shock
	ratio of local speed to speed of sound at the point	<u>n.</u>	ratio of static pressure upstream of a normal shock

where M=1

CHARTS

The charts that follow present numerical values of certain physical quantities that are functions of two variables and hence are cumbersome to tabulate. These charts are designed to provide accuracy to three significant figures.

Charts 1 through 8 and chart 25 are for a perfect gas. The values presented in charts 1 through 4 and chart 25 were calculated for a ratio of specific heats of 7/5. The values presented in charts 5 through 8 were taken from references 6 and 14 and are for a ratio of specific heats of 1.405.

Charts 9 through 24 provide correction factors to account for the effects of caloric imperfections on the quantities tabulated in tables I and II and plotted in charts 2, 3, and 4.

On many charts, points corresponding to static temperatures of 5000° R and 100°R (-360° F) have been indicated. These temperatures represent very approximately the limits of validity of the charts. Exact limits cannot be stated simply as they depend on pressure as well as temperature. At temperatures near 5000° R dissociation effects, which were neglected in the calculations, can be significant at high altitudes though perhaps not at sea level. At temperatures less than about 100° R, air may condense at the pressures encountered in many wind tunnels.

On the Reynolds number chart (chart 25), points corresponding to a static temperature of 180° R (-280° F) also are indicated since this is the lowest temperature for which experimental viscosity data have been obtained. At temperatures much lower than -280° F, Sutherland's equation (A2) may significantly underestimate the true viscosity.

The contents of the charts are as follows:

The contents of the charts are as follows.	
Chart	Page
 Variation of mass-flow rate per unit area with Mach number for various total temperatures. Perfect gas, 	
$\gamma = 7/5$	41
2. Variation of shock-wave angle with flow-deflection angle	
for various upstream Mach numbers. Perfect gas, $\gamma = 7/5$.	42
3. Variation of pressure coefficient across shock waves with	
flow-deflection angle for various upstream Mach numbers.	
Perfect gas, $\gamma = 7/5$	44
 Variation of Mach number downstream of a shock wave with flow-deflection angle for various upstream Mach numbers. 	
Perfect gas, $\gamma = 7/5$	46
5. Variation of shock-wave angle with cone semivertex angle	
for various upstream Mach numbers. Perfect gas, $\gamma =$	
1.405	48

6.	Variation of surface pressure coefficient with cone semivertex angle for various upstream Mach numbers. Perfect gas,	
7.	γ = 1.405. Variation of Mach number at the surface of a cone with cone semivertex angle for various upstream Mach numbers.	3
8.	Perfect gas, $\gamma = 1.405$. Variation of the initial slope of the normal-force curve with upstream Mach number for various cone semivertex	5
9.	angles. Perfect gas, $\gamma = 1.405$. Effect of caloric imperfections on the ratio of local speed to	5
10.	speed of sound at the point where $M=1$. Effect of caloric imperfections on the ratio of static tempera-	5
11.	ture to total temperature	5
12.	Effect of caloric imperfections on the ratio of static pressure to total pressure	5
13.	Effect of caloric imperfections on the ratio of dynamic pressure to total pressure.	5
14.	Effect of caloric imperfections on the ratio of local cross-sectional area of a stream tube to the cross-sectional area at the point where $M=1$.	ā
	Effect of caloric imperfections on the static-temperature ratio across a normal shock wave	:
	Effect of caloric imperfections on the static-density ratio across a normal shock wave	;
17.	Effect of caloric imperfections on the ratio of static pressure upstream of a normal shock wave to total pressure downstream	
	Effect of caloric imperfections on the static-pressure ratio across a normal shock wave	4
	Effect of caloric imperfections on the Mach number down- stream of a normal shock wave.	
	Effect of caloric imperfections on the total-pressure ratio across a normal shock wave	,
	deflection angle of the shock-wave angle for a weak oblique shock wave	
	Effect of caloric imperfections on the variation with flow- deflection angle of the Mach number downstream of a weak oblique shock wave	
	Effect of caloric imperfections on the variation with flow- deflection angle of the pressure coefficient across a weak oblique shock wave.	
24.	Effect of caloric imperfections on the Prandtl-Meyer angle	
2 5.	Variation of Reynolds number per unit length with Mach number for various total temperatures. Perfect gas,	

Por

CHART I...-Variation of mass-flow rate per unit area with Mach number for various total temperatures. Perfect gas, y

Chart 2.—Variation of shock-wave angle with flow-deflection angle for various upstream Mach numbers. Perfect gas, $\gamma = \%$.

CHART 2.—Concluded

Chart 3.—Variation of pressure coefficient across shock waves with flow-deflection angle for various upstream Mach numbers. Perfect gas, γ :

CHART 3.—Concluded

Chart 4.—Variation of Mach number downstream of a shock wave with flow-deflection angle for various upstream Mach numbers. Perfect g $\gamma = \frac{7}{3}$.

CHART 4.—Concluded

Chart 5.—Variation of shock-wave angle with cone semivertex angle for various upstream Mach numbers. Perfect gas, $\gamma = 1.405$.

CHART 5 .- Concluded

Chart 6.—Variation of surface pressure coefficient with cone semivertex angle for various upstream Mach numbers. Perfect gas, $\gamma = 1.405$.

Chart 7.—Variation of Mach number at the surface of a cone with cone semivertex angle for various upstream Mach numbers. Perfect a vertical surface of a cone with cone semivertex angle for various upstream Mach numbers.

CHART 7.—Concluded

CHART 8.--Variation of the initial slope of the normal-force curve with upstream Mach number for various cone semivertex angles. Perfect gas,

Chart 9.—Effect of caloric imperfections on the ratio of local speed to speed of sound at the point where M=1,

CHART 10.—Effect of caloric imperfections on the ratio of static temperature to total temperature

CHART 11.—Effect of caloric imperfections on the ratio of static density to total density.

Chart 12.—Effect of caloric imperfections on the ratio of static pressure to total pressure.

CHART 13.—Effect of caloric imperfections on the ratio of dynamic pressure to total pressure.

Chart 14.—Effect of caloric imperfections on the ratio of local cross-sectional area of a stream tube to the cross-sectional area at the point where M=1.

Chart 15.—Effect of caloric imperfections on the static-temperature ratio across a normal shock wave.

CHART 16.—Effect of caloric imperfections on the static-density ratio across a normal shock wave.

CHART 17.—Effect of caloric imperfections on the ratio of static pressure upstream of a normal shock wave to total pressure downstream.

CHART 18.—Effect of caloric imperfections on the static-pressure ratio across a normal shock wave.

Chart 19.—Effect of caloric imperfections on the Mach number downstream of a normal shock wave.

CHART 20.—Effect of caloric imperfections on the total-pressure ratio across a normal shock wave.

CHART 21.—Effect of caloric imperfections on the variation with flow-deflection angle of the shock-wave angle for a weak oblique shock wav

CHART 21.—Continued

(c) $T_1 = 500^{\circ} \text{ R}$ CHART 21.—Continued

(d) $T_1 = 630^{\circ} \text{ R}$ Chart 21.—Concluded

CHART 22.—Effect of caloric imperfections on the variation with

Chart 23.—Effect of caloric imperfections on the variation with flow-deflection angle of the pressure coefficient across a weak oblique shock wave.

Chart 24.—Effect of caloric imperfections on the Prandtl-Meyer angle.

per unit length with Mach number for various total temperatures. CHART 25.- Variation of Reynolds number