1

12.10.6

EE23BTECH11040-MANOJ KUMAR AMBATIPUDI*

Question:

A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes in a Young's double-slit experiment.

- (a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength 650 nm.
- (b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?

Solution:

Let the wave equations of the 2 waves coming from λ_1 source be y_1, y_2 . Let the wave equations of the 2 waves coming from λ_2 source be y_3, y_4 ,

$$y_1 = A_1 \sin(2\pi f_1 t) \tag{1}$$

$$y_2 = A_1 \sin(2\pi f_1 t + \phi_1 + \phi_2) \tag{2}$$

$$y_1 = A_2 \sin(2\pi f_2 t) (3)$$

$$y_2 = A_2 \sin(2\pi f_2 t + \phi_3 + \phi_4) \tag{4}$$

Where $\phi_1, \phi_2, \phi_3, \phi_4$ are phase differences arisen because of position of source.

Fig. 1. YDSE SETUP

Using principle of superposition, we get

$$y = y_1 + y_2 (5)$$

$$Y = y_3 + y_4 \tag{6}$$

$$\implies y = A_1(\sin(2\pi f_1 t) + \sin(2\pi f_1 t + \phi_1 + \phi_2))$$
 (7)

$$\implies Y = A_2(\sin(2\pi f_2 t) + \sin(2\pi f_2 t + \phi_3 + \phi_4))$$
 (8)

using

$$\sin(c) + \sin(d) = 2\sin(\frac{c+d}{2})\cos(\frac{c-d}{2})$$
 (9)

we get

$$y = 2A_1 \sin(2\pi f_1 t + \frac{\phi_1 + \phi_2}{2}) \cos(\frac{\phi_1 + \phi_2}{2})$$
 (10)

$$Y = 2A_2 \sin(2\pi f_2 t + \frac{\phi_3 + \phi_4}{2})\cos(\frac{\phi_3 + \phi_4}{2})$$
 (11)

Now for constructive interference to happen,

$$cos(\frac{\phi_1 + \phi_2}{2}) = \pm 1$$
 and
$$cos(\frac{\phi_3 + \phi_4}{2}) = \pm 1$$

$$\implies \phi_1 + \phi_2 = 2n_1\pi \text{ and } \phi_3 + \phi_4 = 2n_2\pi$$
 (12)

path difference in terms of phase difference is

$$\Delta x = \Delta \phi \frac{\lambda}{2\pi} \tag{13}$$

Consider wave from λ_1 source. The phase difference ϕ_1, ϕ_2 corresponding path differences are calculated as

$$\Delta x_1 = \sqrt{\left(\frac{d}{2} + b_1\right)^2 + (a_1)^2} - \sqrt{\left(\frac{d}{2} - b_1\right)^2 + (a_1)^2}$$
(14)

$$\Delta x_2 = \sqrt{\left(\frac{d}{2} + y\right)^2 + (D)^2} - \sqrt{\left(\frac{d}{2} - y\right)^2 + (D)^2}$$
(15)

Assuming the approximations

$$b_1 \ll a_1 \tag{16}$$

$$b_1 \sim d \tag{17}$$

$$d << D \tag{18}$$

$$(1+x)^n \simeq 1 + nx \tag{19}$$

We get

$$\Delta x_1 = \frac{db_1}{a_1} \tag{20}$$

$$\Delta x_2 = \frac{dy}{D} \tag{21}$$

(22)

similarly, path difference of λ_2 source is

$$\Delta x_3 = \frac{db_2}{a_2} \tag{23}$$

The sign of path difference is based on the positioning of sources.(*Table* ??)

Depending on the condition, we use appropriate sign convention and calculate path difference as

$$\Delta x = \Delta x_1 + \Delta x_2 \tag{24}$$

for λ_1 source and

$$\Delta x = \Delta x_3 + \Delta x_2 \tag{25}$$

for λ_2 source.

(a) Finding the distance of the third bright fringe on the screen from the central maximum for wavelength

$$\lambda_1 = 650 \,\mathrm{nm} \tag{26}$$

The path difference for constructive interference is given by:

$$\Delta x_1 = n_1 \lambda_1 \tag{27}$$

where $n_1 = 3$ for the third bright fringe.

Substitute the values:

$$\Delta x_1 = 3 \times 650 = 1950 \,\mathrm{nm}$$
 (28)

$$y_1 = \Delta x_1 \cdot \frac{D}{d} = 1950 \times \frac{D}{d} \tag{29}$$

(b) The least distance from the central maximum where the bright fringes due to both wavelengths coincide: Given

$$\lambda_1 = 650 \text{nm}, \lambda_1 = 520 \text{nm}$$

$$n_1 \lambda_1 = n_2 \lambda_2 \tag{30}$$

$$\frac{n_2}{n_1} = \frac{\lambda_1}{\lambda_2} = \frac{650}{520} \tag{31}$$

$$\frac{n_2}{n_1} = \frac{5}{4} \tag{32}$$

Now we can assume $n_2 = 5k$ and $n_1 = 4k$ where k is some positive integer.

For smallest value of y_1 we shall take k=1.

Path difference $\Delta x_1 = 4 \times 650 = 2600$ nm

Now
$$y_1 = \Delta x_1 \frac{D}{d} = 2600 \frac{D}{d} nm$$

Answer for (b):

Variable	Description	Value
<i>y</i> ₁	Wave Equation of First Wave	none
<i>y</i> ₂	Wave Equation of Second Wave	none
у	Resultant Wave	none
f_c	Frequency of waves	none
A_1	Amplitude of First Wave	none
A_2	Amplitude of Second Wave	none
$\phi_1,\!\phi_2$	Phase Difference(before Interference)	none
I_{net}	Intensity after interference	none
n_1, n_2	Non Negative Integer Values	0,1,2
$\Delta x_1, \Delta x_2$	Path Differences	In soln.
λ_1, λ_2	Wavelengths	650,520
y_1, y_2	Distance between central maxima and point	In soln.
d	distance between the slits	None
D	Distance between Slits and Screen	None
θ_1, θ_2	Angular Distance From Central Maxima	None

TABLE 1 VARIABLES AND THEIR VALUES

Δx measured on $x < 0, y < 0$	-ve
Δx measured on $x < 0, y > 0$	+ve

TABLE 2 SIGN CONVENTION FOR PATH DIFFERENCE