Ołtarzewski Przemysław Szczepański Paweł Wieleba Piotr

Dokumentacja wstępna projektu z przedmiotu Metody Bioinformatyki

Implementacja algorytmu Needlemana-Wunscha, badającego podobieństwo dwu sekwencji

Przedstawienie algorytmu

Algorytm Needlemana-Wunsha jest jedną z pierwszych prób zaprzęgnięcia programowania dynamicznego w celu wsparcia inżynierii biomedycznej w porównywaniu dwóch sekwencji. Opiera się on na zastosowaniu tzw. macierzy podobieństwa (ang. similarity matrix), która opisuje "nagrody" za znalezienie części wspólnej dwóch sekwencji oraz "kary" naliczane w wypadku wystąpienia niezgodności (różniącego się symbolu).

W macierzy podobieństwa należy umieścić po jednym wierszu dla każdego unikalnego symbolu znajdującego się w pierwszej sekwencji oraz po jednej kolumnie dla każdego unikalnego symbolu występującego w sekwencji drugiej. Przykładowa macierz podobieństwa stosowana przy porównywaniu łańcuchów DNA mogłaby wyglądać następująco:

-	Α	G	C	T	
Α	10	-1	-3	-4	
G	-1	7	-5	-3	
С	-3	-5	9	0	
Т	-4	-3	0	8	

Na przecięciu się każdego wiersza i kolumny znajduje się liczba, która określa nagrodę lub karę, w zależności od tego, czy znajdujące się w wierszu i kolumnie symbole są jednakowe, czy też różnią się między sobą.

Dodatkowo, w celu umożliwienia porównania sekwencji o różnych długościach, należy uwzględni tzw. karę za przerwę (ang. gap penalty). Kara za przerwę naliczana jest w momencie, gdy uznajemy, że w jednej z sekwencji znajduje się symbol nie posiadający odpowiednika w drugiej sekwencji.

W celu znalezienia dopasowania dwóch sekwencji (nazwijmy je A i B) cechującego się największym stopniem zgodności tworzymy macierz F zawierającą po jednej kolumnie dla każdego kolejnego symbolu znajdującego się w sekwencji A (plus jedna kolumna przerw) oraz po jednym wierszu dla każdego symbolu w sekwencji B (plus jeden wiersz przerw). Gdy sekwencja A zawiera n symboli, zaś sekwencja B – m symboli powstała macierz cechuje się rozmiarem (n+1)*(m+1). Algorytm Needlemana-Wunsha służy do wypełnienia tej macierzy.

W lewym górnym rogu macierzy F wpisujemy 0. Kolejne komórki macierzy wyznaczamy jako wartość maksymalną z trzech wartości:

- 1. $F(i-1, j-1) + e(b_i, a_i) w przypadku połączenia$
- 2. F(i, j-1) + d w przypadku przerwy na sekwencji A
- 3. F(i-1, j) + d w przypadku przerwy na sekwencji B

Gdzie:

 a_i – jest to i-ty symbol sekwencji A b_j – jest to j-ty symbol sekwencji B $e(b_i,\,a_j)$ – jest wartością wyznaczoną przez macierz podobieństwa d – kara za przerwę

W powyższy sposób wypełniamy całą macierz F. Warto zauważyć, iż w prawym dolnym rogu otrzymamy komórkę z maksymalną wartością ze wszystkich wyborów. Kolejnym krokiem jest wyznaczenie optymalnych ścieżek, które doprowadziły do jej powstania. Wykonuje się to poprzez analizę tego, z jakiego wyboru (1,2,3) powstała każda komórka, co odpowiednio wskaże nam kierunek ścieżki. Może się tak zdarzyć, iż niektóre wybory w ramach jednej komórki będą dawały ten sam rezultat, co będzie skutkowało więcej niż jedną optymalną ścieżką.

Przykład działania algorytmu

Mając dane:

2 sekwencje S_1 = ATGC i S_2 = ATTGC ,

karę za przerwę = -2,

oraz funkcję podobieństwa opisaną wzorem:

sim (a,b) =
$$\begin{cases} -2 \text{ , gdy a= '-' lub b = '-'} \\ -1 \text{ , gdy a <>b} \\ 1 \text{ , gdy a = b} \end{cases}$$

Macierz F po wypełnieniu będzie wyglądała następująco:

		Α	Т	G	С				Α	Т	G
	0	-2	-4	-6	-8			0	-2 ◆	-4◆	-6◆
Α	-2	1	-1	-3	-5	١ ,	Α	-2 ♠	1 🔨	-1◆	-3◀
Т	-4	-1	2	0	-2		Т	-4 ♠	-1 🕇	2 📉	0 🗲
Т	-6	-3	0	1	-1	<u> </u>	Т	-6 ♠	-3 ♠	0 ▶ ↑	1 📉
G	-8	-5	-2	1	0		G	-8 ♠	-5 ♠	-2 ♠	1 🔨
С	-10	-7	-4	-1	2		С	-10 ♠	-7 ♠	-4 ♠	-1 ♠

Jak widać na powyższym rysunku, kolorem zielonym zostały wyznaczone dwie optymalne ścieżki, co odzwierciedla się w dwóch optymalnych dopasowaniach:

-1**←**×

$$S_1 = AT - GC$$
 $S_1 = A - TGC$
 $S_2 = ATTGC$ $S_2 = ATTGC$

Projekt rozwiązania

Projekt architektury rozwiązania przedstawiono na diagramie 1. Użytkownik ma do dyspozycji moduł klienta zrealizowany w technologii Adobe Flex. Korzysta z niego za pośrednictwem przeglądarki sieciowej, która pobiera z serwera plik SWF i uruchamia go lokalnie na komputerze użytkownika.

Moduł klienta komunikuje się z serwerem za pośrednictwem protokołu AMF3. Za serializację danych przekazywanych pomiędzy front-endem i back-endem odpowiada zestaw usług Adobe BlazeDS.

Moduł serwera zostanie zrealizowany w technologii Java EE i będzie funkcjonował w kontenerze aplikacji Apache Tomcat. W celu optymalizacji wydajności, do implementacji algorytmu zostanie wykorzystana biblioteka Colt, oferująca zestaw struktur danych

umożliwiających szybkie operacje między innymi na macierzach.

Diagram 1 - Projekt architektury

Przewidywaną interakcję użytkownika z systemem można opisać według następującego scenariusza:

- 1. Użytkownik wpisuje w przeglądarce URL, pod którym została osadzona aplikacja
- 2. Przeglądarka pobiera i uruchamia komponent klienta w postaci pliku SWF
- **3.** Użytkownik korzystając z interfejsu wprowadza porównywane sekwencje DNA, macierz podobieństwa oraz karę za przerwę. Opcjonalnie, wczytuje dane z pliku.

- **4.** Użytkownik zatwierdza dane, inicjując proces obliczeń. Dane wysyłane są przez kanał AMF do modułu serwera.
- 5. Moduł serwera otrzymuje żądanie użytkownika, przetwarza dane z wykorzystaniem implementacji algorytmu Needlemana-Wunsha. Opcjonalnie, cząstkowe wyniki lub aktualny stan obliczeń (np. w procentach wykonania), może być przekazywany do klienta i prezentowany użytkownikowi.
- **6.** Moduł serwera po przetworzeniu danych odsyła wyniki do klienta: macierz kar dla ścieżek częściowych oraz optymalne dopasowania sekwencji.
- **7.** Moduł klienta wyświetla wyniki. Opcjonalnie pozwala na zapisanie rezultatu obliczeń do pliku.