

Rumi Nakagawa Tokyo, Japan

John Calzaretta
Denver, CO

Mary Chau
Seattle, WA

Our Advisors

Berkeley iSchool (MIDS)

Alberto Todeschini Puya H. Vahabi **Faculty**

Faculty

The Quantitative Ecosystem Dynamics Lab

Yanghui Kang Postdoctoral Researcher

Maoya Bassiouni **Postdoctoral** Researcher

ling

Result

Analysis

Problem Background

Quantifying Carbon Uptake /
Gross Primary Productivity (GPP) Matters
Rapidly growing concern on CO2 reduction in
governments and industries

Regional Discrepancy Around Real GPP Data

Most flux towers are located in North America and Europe.

High burden to add new sites to measure actual GPP

High equipment and operational cost to sustainably measure actual GPP

Limitation of Existing Solutions to Predict Hourly GPP

- Hourly data are limited.
- Features are often in larger granularity and high variance.

Lack of Long-Term Memory

Past memory is lost quickly. Chronological order not captured

Computationally Expensive Resources

Complex models requires significant compute power

Temporal Fusion Transformer (TFT)

How TFT Can Overcome the Challenges

Short- & Long-Term Memory

Combination of LSTMs and self-attention allows for models to recognize short- and long-term patterns

Capability of Upscaling

Global inference is possible as model can work on new sites that unseen in training data.

Variety of Input Features

TFT accepts time-varying known and unknown features, as well as static features for model input

Novel Components: Efficiency & Interpretability

Compute efficient and model interpretability via feature importance and interpretable self attention layers

Our Objectives

- Improve model performance of hourly GPP models through Temporal Fusion Transformer (TFT) across global regions with no flux towers.
- Expand to scientific understanding of GPP trends and their contributing factors through TFT's interpretability.

Our Accomplishments

- Outperformed past studies by 2% NSE (Efficiency) and 10% RMSE
- Successfully implemented TFT with unconventional application to solve time-series forecasting problem without past target values.
- Novel approach of analytics based on TFT's Interpretability outputs to provide insight on temporal dynamics of feature importance before predictions

These findings are applicable to other fields to studies!

Project Workflow

Major Features and Sources

Category	Features	Resolution	Source(s)	Availability at Upscaling
Target Variable	Gross Primary Productivity (GPP)	Half-Hourly, Sensor-Level	FLUXNET	NO
Radiation	Surface reflectance Band, SWIR, PAR, Longwave/shortwave radiation, SIF etc.	Daily, 7km	MODIS/ BESS_Rad	
Temperature	Land surface temperature(Daytime, Nighttime), Air/ Skin temperature	Hourly, 9km	ERA5-Land	
Water	Precipitation, Soil Moisture, Snow, Water index(NDWI) etc	Hourly, 9 km/ Daily/7km	ERA5-Land/ MODIS	YES
Pressure	Atmospheric pressure, Vapor pressure	Hourly, 9km	ERA5-Land	
Time	Year, Month, Day, Hour	-	-	
Land/Climate Type	IGBP, MODIS IGBP, koppen, koppen sub	Static, 1km	MODIS	

Analysis

Data Pipeline

= Gap-Filled w/ KNN Imputer

Categorize Earth by Land Cover Types

Stratified Split by Land Cover Type

Study Overview & Performance Metrics

Supervised Learning

- Train with flux tower sites
- Validate/test with "new, unseen" sites
- Mimic upscaling scenario: areas with no flux tower

3 Key Metrics of the Domain

Nash Sutcliffe Equilibrium (NSE)

$$NSE = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$$

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Experimental Design

TFT Model Overview

Analysis

How Does TFT Work?

Train data(Ex. 2 years)

TFT Experiments Overview

Analysis

Model Results

Algorithms	Model	RMSE	MAE	NSE/R^2
Past Literature	Bodesheim(2018) - RFR	3.94	-	0.67
Tree	1. Baseline RFR	3.66	2.01	0.68
	2-1. Tuned RFR	3.54	1.83	0.70
	2-2. Tuned XGBoost	3.53	1.85	0.69
TFT	3. GPP-TFT*	2.23*	1.05*	0.88*
	4. No-GPP-TFT	3.60	1.90	0.68
Hybrid	5-1. Tree-FT (RFR)	3.61	1.88	0.67
	5-2. Tree-FT (XGBOOST) 🗫	3.81	2.00	0.64

RMSE	MAE	NSE/R^2
3.315	1.742	0.859
2.939	1.525	0.733
3.441	2.154	0.650
4.025	2.211	0.634
2.933	1.632	0.595
3.900	2.126	0.571
5.246	2.941	0.536
1.252	0.698	0.193
4.391	2.607	0.050
	3.315 2.939 3.441 4.025 2.933 3.900 5.246 1.252	3.315 1.742 2.939 1.525 3.441 2.154 4.025 2.211 2.933 1.632 3.900 2.126 5.246 2.941 1.252 0.698

Demo: TFT Analysis

On Carbon Chaser Website

NO-GPP-TFT Analysis: IGBP Attention

Finding: The TFT model applies attention differently across IGBP groups. Future work should explore training models for each distinct IGBP group

Influence of b4 is smaller than GPP-TFT, while the influence of TA(Air Temperature) if closer to GPP-TFT

- 'b4','BESS-PAR','VPD_ERA', 'P_ERA', 'ESACCI-sm','TA_ERA'

Model NO-GPP-TFT Encoder Length 14 days Year 2010 Month 1 Day 15 Time 0AM

Conclusion

- Improved model performance
- Established groundworks for unconventional TFT application on generic upscaling problems
- Enabled new insights through novel approach of analysis

Future Work

- Multi-model solution by IGBP (land cover) type looks promising
- Apply improved models to upscaling data products
- Upcoming research sharing with:

The Quantitative Ecosystem Dynamics Lab
UC Berkeley & Lawrence Berkeley National Lab

Thank You

Question, Feedback, Suggestion?

https://carbonchaser.wixsite.com/GlobalUpscale

GitHub & Paper 🥊

https://github.com/CarbonChaser/GlobalHourlyGppUpscale

