CS321 Notes

Trevor Bramwell

October 7, 2013

Languages

- $\lambda \in \Sigma^*$.
- $\overline{L} = \Sigma^* L$.
- $\bullet L^*|\{aa,bb\} = L.$
- |L| = 2.
- $L^* = \{aa, aabb, bbaa, \ldots\}.$
- $bbbaa \notin L^*$.

Decision Problems

 $L = \{w : w \text{ is a validCprogram}\}$. This is the first thing a syntax checker does. Ensure the strings in the program are in the Language.

Halting Problem

 $L = \{w: w \text{ is a valid C program that halts given no input }\}.$

DFA: Deterministic Finite (Acceptor—Automatan)

 $M = (Q, \Sigma, \delta, q_0, F), F \subseteq Q$

 $\delta(q_0, b) = q_1$

 $\delta^*(q, w) =$ What state will DFA be in after reading w from q.

 $\delta^*(q_0, aabb) = q_1.$

L(M) is the language of machine M (The set of strings accepted by M).

 $L(M) = \{w: w \in \Sigma^*, \delta^*(q_0, w) \in F\}$

M Represents the DFA. $\delta^*(q_0, w) \in F$ - end up in final sate starting in q_0 and reading w.

Regular Language A language L is regular iff there exists a DFA M such that L = L(M).

Examples

Show the following language is regular.

 $L = \{w : w \in \{a, b\}^*, \text{ each } a \text{ in } w \text{ is immediately preceded by a } b \}.$

 $a \not\in L$

 $ba \in L$

 $\lambda \in L$

 $bbaa \not\in L$

 $bb \in L$

$$\delta^*(q,\lambda) = q_1$$

$$\delta^*(q,a) = \dots$$