Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the present application:

Listing of Claims

1

2

1	1 5. (canceled)
1	6. (currently amended) A receiver for receiving and demodulating an RF signal,
2	the receiver comprising:
3	an LNA having a continuously variable gain coupled to receive the RF signal and
4	produce an amplified signal at an LNA output, the LNA including an LNA control input
5	to receive an LNA control signal that adjusts a gain factor of the LNA;
6	a VGA coupled to the LNA output to receive the amplified signal, the VGA
7	including a VGA output that outputs a VGA output signal to downstream components of
8	the receiver, and wherein the VGA includes a VGA control input to receive a VGA
9	control signal that adjusts a gain factor of the VGA; and
10	a control network coupled to the LNA control input and the VGA control input,
11	and wherein the control network operates to adjust the LNA and VGA gain factors based
12	on a received power indicator of the RF signal, and wherein the gain factor of the LNA
13	is adjusted so that a signal-to-noise ratio required for demodulation of the RF signa
14	is met with a selected margin and linearity requirements of the receiver are reduced
1	7 (aminimal). The manning of alaims (substitute a control material) are made at
1	7. (original) The receiver of claim 6, wherein the control network operates to
2	control the gain factors of the LNA and the VGA in tandem and individually.

8. (original) The receiver of claim 7, wherein as the received power of the RF

signal increases to a selected level, the control network operates to maintain the gain

factor of the VGA and decrease the gain factor of the LNA.

1	9. (original) The receiver of claim 8, wherein as the received power of the RF
2	signal increases beyond the selected level, the control network operates to maintain the
3	gain factor of the LNA and decrease the gain factor of the VGA.
_	40 () 1 1) Till ' (C la' () and any in an the I NIA commisses
1	10. (currently amended) The receiver of claim 6, wherein as the LNA comprises
2	a shunt feedback circuit.
1	11. (currently amended) The receiver of claim 6, wherein as the LNA comprises
2	a varactor used as a load of the LNA.
1	12. (currently amended) The receiver of claim 6, wherein as the LNA comprises
2	a pin diode used as a load of the LNA.
1	13. (currently amended) The receiver of claim 6, wherein as the LNA includes a
2	current-steering circuit.
1	14. (original) The receiver of claim 6, wherein the receive power indicator is an
2	estimate of the bit energy per spectral noise density (E_b/N_o) .
1	15. (original) The receiver of claim 6, wherein the receive power indicator is a
2	received signal strength indicator (RSSI) signal.
1	16. (currently amended) A method of operating a receiver to receive an RF
2	signal, the receiver comprises an LNA with continuously variable gain that receives the
3	RF signal and produces an LNA output signal coupled to a VGA, the LNA and VGA
4	have control inputs to receive control signals that set gain factors of the LNA and VGA,
5	respectively, the method comprising steps of:
6	determining that a received power level of the RF signal is varying within a first
7	selected power range;
8	maintaining the gain factor of the VGA; and
9	adjusting the gain factor of the LNA so that a signal-to-noise ratio required for

demodulation of the RF signal is met with a selected margin and the linearity

10

11	requirements of the receiver are reduced.
1	17. (original) The method of claim 16, further comprising steps of:
2	determining that the received power level of the RF signal is varying within a
.3	second selected power range;
4	maintaining the gain factor of the LNA; and
5	adjusting the gain factor of the VGA so that the signal-to-noise ratio required for
6	demodulation of the RF signal is met.
1	18. (currently amended) A method of operating a receiver to receive an RF
2	signal, the receiver comprises an LNA with continuously variable gain that receives the
3	RF signal and produces an LNA output signal coupled to a VGA, the LNA and VGA
4	have control inputs to receive control signals that set gain factors of the LNA and VGA,
5	respectively, the method comprising steps of:
6.	determining that a received power level of the RF signal is varying within a first
7	selected power range;
8	adjusting the gain factor of the VGA; and
9	adjusting the gain factor of the LNA together with the gain factor of the VGA
10	so that a signal-to-noise ratio required for demodulation of the RF signal is met with a
11	selected margin and the linearity requirements of the receiver are reduced.
1	19. (original) The method of claim 18, further comprising steps of:
2	determining that the received power level of the RF signal is varying within a
3	second selected power range;
4	maintaining the gain factor of the LNA; and
5	adjusting the gain factor of the VGA so that the signal-to-noise ratio required for
6	demodulation of the RF signal is met.
1	20. (currently amended) A radio receiver comprising:
2	a continuously variable gain low noise amplifier (LNA) coupled to a subsequent
3	variable gain amplifier (VGA).

ŀ	a demodulator to generate an automatic gain control signal indicating a power-or
5	level of a desired received signal; and
5	a control network coupled to receive the gain control signal to optimally set the
7	gain of the LNA and VGA in a way that minimizes LNA gain while maintaining the
3	required signal quality for proper demodulation.
1	21. (currently amended) The control network of claim 20, wherein the control
2	network adjusts the gain of the continuously variable gain LNA and subsequent
3	VGA in a way that minimizes LNA gain while maintaining the required signal
4	quality for proper demodulation, the control network further comprising:
5	an input for receiving a received signal strength indicator (RSSI);
6	an input for receiving a quality indicator of the demodulated signal; and
7	logic to perform a mapping function wherein the gain of the LNA and VGA are
8	controlled optimally.
1	22. (original) The control network of claim 21, wherein the logic to perform the
2	mapping function operates to lower the gain of the LNA once the desired received signal
3	power exceeds a level where interfering signals are possible until a gain range of the
4	LNA is exhausted, at which point only the gain of the VGA is controlled.
1	23. (original) The control network of claim 21, wherein the logic to perform the
2	mapping function operates to lower the gain of the LNA and VGA together as the power
3	of the received signal increases above a sensitivity threshold until the gain range of the
4	LNA is exhausted, at which point only the gain of the VGA is controlled.
1	24. (original) The control network of claim 21, wherein the quality indicator is one
2	or more of a bit energy per noise spectral density (E_b/N_o) , a bit error rate (BER), and a frame
3	erasure rate (FER).