I. Notations complexes

$$\omega = 2\pi f$$

$$a(t) = A_{max} \cos(\omega t + \phi_a)$$

$$\underline{a}(t) = A_{max} e^{j(\omega t + \phi_a)} \qquad |\underline{a}| = A_{max} \qquad \arg(\underline{a}) = \phi_a$$

$$\frac{d\underline{a}}{dt} = \underline{a}j\omega \qquad \int \underline{a} = \frac{\underline{a}}{j\omega}$$

$$\underline{z} = \frac{\underline{u}}{\underline{i}} = R + jX \qquad \text{R : Résistance}$$

$$\underline{Y} = \frac{\underline{i}}{\underline{u}} = G + jB \qquad \text{R : Conductance}$$

$$\underline{S} : \text{Susceptance}$$

II. Résistance, Condensateur, Bobine

Résistance	Condensateur	Bobine
u = Ri	$i = \frac{dq}{dt} = C \frac{du_C}{dt}$	$u_L = L \frac{di}{dq}$
	${\cal E}_{\it C}=rac{1}{2}{\it C}u_{\it C}^2$	$\mathcal{E}_L = \frac{1}{2}Li^2$
$\underline{z}_R = R$	$\underline{z}_{C} = \frac{1}{jC\omega}$	$\underline{z_L} = jL\omega$
	$u_{\mathcal{C}}$ régime continu $ ightarrow \sim$ inter. ouvert	i_L régime continu $ ightarrow \sim$ inter. fermé
$R_{scute{e}rie} = \sum R_i$	$\frac{1}{C_{s\acute{e}rie}} = \sum \frac{1}{C}$	$L_{\mathit{s\'erie}} = \sum L_i$
$\frac{1}{R_{para.}} = \sum G_i$	$C_{para.} = \sum C_i$	$\frac{1}{L_{para}} = \sum \frac{1}{L_i}$
$\underline{z_{s\'erie}} = \sum \underline{z_i}$ $\underline{Y_{para.}} = \sum \underline{Y_i}$		

III. Lois électriques

Loi d'Ohm :	u = Ri	$\underline{u} = \underline{z}\underline{i}$
Loi des nœuds :	$\sum \varepsilon_k i_k = 0$	$\sum \varepsilon_k \underline{i_k} = 0$
Loi des mailles	$\sum \varepsilon_k u_k = 0$	$\sum \varepsilon_k \underline{u_k} = 0$
Ponts diviseurs :	$u_k = \frac{R_k}{\sum R_i} u_e$	$i_k = \frac{G_k}{\sum G_k} i_e$
Equivalence Thévenin-Norton :	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Théorème de superposition :	Dans un réseau linéaire contenant plusieurs sources, l'intensité parcourant chaque dipôle et la tension à leur bornes sont les sommes de ces grandeurs dues à chaque source supposée seule.	
Théorème de Millman :	$V_A = \frac{\sum G_i V_i}{\sum G_i}$	$V_A = \frac{\sum \underline{Y_i} V_i}{\sum \underline{Y_i}}$

Résumé de P3

IV. Amplificateur opérationnel

Si idéal :
$$i_+=i_-=0$$
 et $\varepsilon=V_+-V_-=0$

En régime saturé,
$$V_{+} > V_{-} \Rightarrow V_{S} = +V_{sat}$$
 $V_{+} < V_{-} \Rightarrow V_{S} = -V_{sat}$

Amplificateur inverseur:

Amplificateur non-inverseur:

Comparateur à deux seuils inverseur :

Comparateur à deux seuils non-inverseur :

V. **Circuits RLC**

$$\ddot{s} + 2m\omega \dot{s} + \omega_0^2 s$$

- $\Delta > 0 \Leftrightarrow m > 1$: Régime apériodique
- $\Delta = 0 \Leftrightarrow m = 1$: Régime apériodique critique
- $T = \frac{2\pi}{\omega_0 \sqrt{1 m^2}}$ $\Delta < 0 \Leftrightarrow m < 1$: Régime pseudo-périodique

VI. Résonance

Pulsation de résonance ω_r :

Pulsation pour laquelle A_{max} est maximale.

Bande passante à -3dB:

Ensemble des pulsations ω telles que $A_{max} \geq \frac{A_r}{\sqrt{2}}$.

Facteur de qualité :
$$Q = \frac{1}{2m} = \frac{\omega_0}{\Delta \omega}$$

Résonance en tension (RLC parallèle)	Résonance en intensité (RLC série)
$\Delta\omega = \frac{1}{RC}$	$\Delta\omega = \frac{R}{L}$
$Q = RC\omega_0$	$Q = \frac{R}{L\omega_0}$

VII. Puissance en régime sinusoïdal

Valeur moyenne et efficace:

$$\langle g(t) \rangle = \frac{1}{T} \int_{0}^{T} g(t) dt$$
 $G_{eff} = \sqrt{\langle g(t) \rangle^{2}}$ $U_{eff} = \frac{U_{max}}{\sqrt{2}}$

$$G_{eff} = \sqrt{\langle g(t) \rangle^2}$$

$$U_{eff} = \frac{U_{max}}{\sqrt{2}}$$

Puissances:

$$P(t) = Ri^2 = \frac{\delta W}{dt}$$

$$P_{abs} = UI$$

$$P(t) = Ri^2 = \frac{\delta W}{dt}$$
 $P_{abs} = UI$ $P = \langle P(t) \rangle = U_{eff}I_{eff}\cos\varphi = \text{Re}(\underline{z})I_{eff}^2$