Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_pedagogic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_3 = a_1 + 2r =$	3p
	$=5+2\cdot(-2)=1$	2p
2.	$f(1) = 2 \Leftrightarrow 1 + a + 3 = 2$	3р
	a = -2	2p
3.	$x = x^2 - 2 \Rightarrow x^2 - x - 2 = 0$	3p
	x = -1, care nu convine, $x = 2$, care convine	2p
4.	x este prețul unui creion, $5x$ este prețul unui pix, $35x$ este prețul unui stilou și $35x = 70$	3p
	x = 2 lei	2p
5.	$ABCD$ este paralelogram, deci $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$	2 p
	O este mijlocul segmentului AC , deci $\overrightarrow{OC} = \frac{1}{2}\overrightarrow{AC} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD})$	3р
6.	$BC^2 = AB^2 + AC^2$ și $AC = 2AB$, deci $AB = \sqrt{5}$	3p
	$P_{\Delta ABC} = AB + BC + AC = \sqrt{5} + 5 + 2\sqrt{5} = 3\sqrt{5} + 5$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$1 \circ 2 = 1^2 - 1 \cdot 2 + 2^2 =$	3p
	=1-2+4=3	2 p
2.	$x \circ y = x^2 - xy + y^2 = y^2 - yx + x^2 =$	3 p
	$= y \circ x$, pentru orice numere reale x și y , deci legea de compoziție " \circ " este comutativă	2 p
3.	$a = (1 \circ 3) \circ 2 = (1 - 3 + 9) \circ 2 = 7 \circ 2 = 49 - 14 + 4 = 39$	3p
	$b = 1 \circ (3 \circ 2) = 1 \circ (9 - 6 + 4) = 1 \circ 7 = 1 - 7 + 49 = 43 \Rightarrow b - a = 43 - 39 = 4$	2 p
4.	$x \circ x = x^2 - x^2 + x^2 = x^2$, pentru orice număr real x	3p
	$x^2 = 4$, deci $x = -2$ sau $x = 2$	2p
5.	$x \circ y = 0 \Leftrightarrow x^2 - xy + y^2 = 0 \Leftrightarrow x^2 - xy + \frac{y^2}{4} + \frac{3y^2}{4} = 0 \Leftrightarrow \left(x - \frac{y}{2}\right)^2 + \frac{3y^2}{4} = 0$	2p
	$x - \frac{y}{2} = 0$ şi $y = 0$, de unde obţinem $x = y = 0$	3p
6.	$9-3\cdot 2^x + 2^{2x} = 7 \Leftrightarrow (2^x - 1)(2^x - 2) = 0$	3p
	x = 0 sau $x = 1$	2 p

SUBIECTUL al III-lea (30 de puncte)

1.	$A(5) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	3р
	=1-0=1	2 p

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

2.	$A(1) + A(2) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$	2p
	$\det(A(1) + A(2)) = \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} = 4$	3p
3.	$A(a) \cdot A(b) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b+a \\ 0 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix} = A(a+b), \text{ pentru orice numere reale } a \text{ si } b$	2p
4.	$A(a) \cdot A(2a) = A(a+2a) = A(3a)$, pentru orice număr real a	2p
	A(3a) = A(30), de unde obținem $3a = 30$, deci $a = 10$	3 p
5.	$I_2 + xA(x) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1+x & x^2 \\ 0 & 1+x \end{pmatrix} \Rightarrow \det(I_2 + xA(x)) = (1+x)^2, \text{ pentru orice}$ număr real x	3p
	$(1+x)^2 = 25$, deci $x = -6$ sau $x = 4$	2p
6.	$A(n+n) = A(2n^2)$, de unde obținem $2n = 2n^2$	3р
	n=0 sau $n=1$, care convin	2p