Compiler course

Syntax Analysis

Outline

- Role of parser
- Context free grammars
- Top down parsing
- Bottom up parsing
- Parser generators

The role of parser

SYNTAX ANALYSIS INTRODUCTION

- LEXICAL PHASE IS IMPLEMENTED ON FINITE AUTOMATA & FINITE AUTOMATA CAN REALLY ONLY EXPRESS THINGS WHERE YOU CAN COUNT MODULUS ON K.
- REGULAR LANGUAGES THE WEAKEST FORMAL LANGUAGES
 WIDELY USED
- MANY APPLICATIONS
- - CAN'T HANDLE ITERATION & NESTED LOOPS(NESTED IF ELSE).
- TO SUMMARIZE, THE LEXER TAKES A STRING OF CHARACTER AS INPUT AND PRODUCES A STRING
- OF TOKENS AS OUTPUT.
- THAT STRING OF TOKENS IS THE INPUT TO THE PARSER WHICH TAKES A STRING OF TOKENS AND PRODUCES A PARSE TREE OF THE PROGRAM.
- SOMETIMES THE PARSE TREE IS ONLY IMPLICIT. SO THE, A COMPILER MAY NEVER ACTUALLY BUILD THE FULL PARSE

Error handling

- Common programming errors
 - Lexical errors
 - Syntactic errors
 - Semantic errors
 - Lexical errors
- Error handler goals
 - Report the presence of errors clearly and accurately
 - Recover from each error quickly enough to detect subsequent errors
 - Add minimal overhead to the processing of correct progrms

Error-recover strategies

- Panic mode recovery
 - Discard input symbol one at a time until one of designated set of synchronization tokens is found
- Phrase level recovery
 - Replacing a prefix of remaining input by some string that allows the parser to continue
- Error productions
 - Augment the grammar with productions that generate the erroneous constructs
- Global correction
 - Choosing minimal sequence of changes to obtain a globally least-cost correction

Context free grammars

Terminals

Nonterminals

Start symbol

productions

 $G=(\Sigma,T,P,S)$

expression -> expression + term

expression -> expression - term

expression -> term

term -> term * factor

term -> term / factor

term -> factor

factor -> (expression)

factor -> id

 $\Sigma-$ IS A FINITE SET OF TERMINALS T- IS A FINITE SET OF NONTERMINALS P - IS A FINITE SUBSET OF PRODUCTION RULES

$$\begin{array}{l} {_RS_{_{ICH}}} - _{_A} \\ {_SI_{_H}S_{_{AR}}} T_{_{MA}} HE_{_{(LO}}S_{_{VE}}T_{_{LY}}A_{_{PR}}R_{_{OF}}T_{_{ESS}}S_{_{ION}}Y_{_A}M_{_L} \\ {_{UN}B_{_{IV}}O_{_{ER}}} L_{_{SITY)}} \end{array}$$

A context-free grammar has four components:

- •A set of **non-terminals** (V). Non-terminals are syntactic variables that denote sets of strings. The non-terminals define sets of strings that help define the language generated by the grammar.
- •A set of tokens, known as **terminal symbols** (Σ). Terminals are the basic symbols from which strings are formed.
- •A set of **productions** (P). The productions of a grammar specify the manner in which the terminals and non-terminals can be combined to form strings. Each production consists of a **non-terminal** called the left side of the production, an arrow, and a sequence of tokens and/or **on-terminals**, called the right side of the production.
- •One of the non-terminals is designated as the start symbol (S); from where the production begins.

The strings are derived from the start symbol by repeatedly replacing a non-terminal (initially the start symbol) by the right side of a production, for that non-terminal.

CONTEXT FREE GRAMMAR EXAMPLES

ARITHMETIC EXPRESSIONS

E ::= T | E + T | E - T T ::= F | T * F | T / F F::= id | (E) Steps:

1.Begin with a string with only the start symbol S

2.Replace any non-terminal X in the string by the right-hand side of some production

STATEMENTS

 $X \rightarrow Y1...Yn$

terminals

If Statement::= if Ethen Statement = 3. Repeat (2) until the rearenon on-

Uses of grammars

Derivations

- Productions are treated as rewriting rules to generate a string
- Rightmost and leftmost derivations
 - $E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid id$
 - Derivations for –(id+id)
 - E => -E => -(E) => -(E+E) => -(id+E) => -(id+id)
- A derivation is basically a sequence of production rules, in order to get the input string. During parsing, we take two decisions for some sentential form of input:
- Deciding the non-terminal which is to be replaced.
- Deciding the production rule, by which, the non-terminal will be replaced.
- To decide which non-terminal to be replaced with production rule, we can have two options.

Parse trees

A parse tree is a graphical depiction of a derivation. It is convenient to see how strings are derived from the start symbol. The start symbol of the derivation becomes the root of the parse tree.

- -(id+id)
- E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id)

Ambiguity

- For some strings there exist more than one parse tree
- Or more than one leftmost derivation
- Or more than one rightmost derivation
- Example: id+id*id

AMBIGUOUS GRAMMAR

Leftmost Derivation #1

E ⇒ E+E ⇒ <u>id</u>+E ⇒ <u>id</u>+E*E ⇒ <u>id</u>+id*E ⇒ id+id*id

Input: id+id*id

<u>Leftmost Derivation #2</u>

E

⇒ E*E

⇒ E+E*E

⇒ <u>id</u>+E*E

⇒ <u>id</u>+id*E

⇒ id+id*id

AMBIGUOUS GRAMMAR

- More than one Parse Tree for some sentence.
- The grammar for a programming language may be ambiguous
- ■Need to modify it for parsing.
- □ Also: Grammar may be left recursive.
- Need to modify it forparsing.

ELIMINATION OF AMBIGUITY

- Ambiguous
- A Grammar is ambiguous if there are multiple parse trees for the same sentence.

- Disambiguation
- Express Preference for one parse tree overothers
 - □ Add disambiguating rule into the grammar

RESOLVING PROBLEMS: AMBIGUOUS GRAMMARS

Consider the following grammar segment:

 $stmt \rightarrow if \ expr \ then \ stmt$

if expr then stmt else stmt

other (any other statement)

If E1 then S1 else if E2 then S2 else S3

simple parse tree:

EXAMPLE: WHAT HAPPENS WITH THIS STRING?

If E_1 then if E_2 then S_1 else S_2

How is this parsed?

2+3+4 mp E=) E*E E=) E*E =>E+E X E =>E+EXE =) Sd+ExE =) id+E*E =) 22+32 YE =) 26+26 +E =) id+ id x id =) id+ 2d + 3d RMO: E=>EXE RMD: E=>EXE => E+E x id => E+E x id =) let ict id JEtick id =) ud tid xid

Elimination of ambiguity

Elimination of ambiguity (cont.)

- Idea:
 - A statement appearing between a then and an else must be matched

REMOVING AMBIGUITY

Take Original Grammar:

```
stmt → if expr then stmt

| if expr then stmt else stmt
| other (any other statement)
```

Rule: Match each else with the closest previous unmatched then.

Revise to remove ambiguity:

```
stmt → matched_stmt | unmatched_stmt

matched_stmt → if expr then matched_stmt else matched_stmt /
other

unmatched_stmt → if expr then stmt

| if expr then matched_stmt else unmatched_stmt
```


R-> R+R /RR /RX. /a /C

$$E \rightarrow E + T/T$$
 $T \rightarrow TF/F$
 $F \rightarrow F \times /a/b/c$

6 Enp -> Exp Stexp / beth and beth / not bExp True / Falx.

E-> E&F/F F -> Fand G/G G -> Not G / True / Fals.

$$A \rightarrow A $B/B$$
 $B \rightarrow B \# c/c$
 $C \rightarrow c @ 0/0$
 $0 \rightarrow d$

* > *

+ < +

Elimination of left recursion

- A grammar becomes left-recursive if it has any non-terminal 'A' whose derivation contains 'A' itself as the left-most symbol.
- Left-recursive grammar is considered to be a problematic situation for top-down parsers. Top-down parsers start parsing from the Start symbol, which in itself is non-terminal.
- So, when the parser encounters the same non-terminal in its derivation, it becomes hard for it to judge when to stop parsing the left non-terminal and it goes into an infinite loop.
- A grammar is left recursive if it has a non-terminal A such that there is a derivation $A => A\alpha$
- Top down parsing methods cant handle left-recursive grammars
- A simple rule for direct left recursion elimination:
 - For a rule like:
 - $A \rightarrow A \alpha | \beta$
 - We may replace it with
 - $A \rightarrow \beta A'$
 - A' -> α A' | ϵ

Left recursion elimination (cont.)

- There are cases like following
 - S -> Aa | b
 - A -> Ac | Sd | ε
- Left recursion elimination algorithm:
 - Arrange the nonterminals in some order A1,A2,...,An.
 - For (each i from 1 to n) {
 - For (each j from 1 to i-1) {
 - Replace each production of the form Ai-> Aj γ by the production Ai -> δ 1 γ | δ 2 γ | ... | δ k γ where Aj-> δ 1 | δ 2 | ... | δ k are all current Aj productions
 - }
 - Eliminate left recursion among the Ai-productions
 - •

RESOLVING DIFFICULTIES : LEFT RECURSION

A left recursive grammar has rules that support the derivation : $\mathbf{A} \Rightarrow^+ \mathbf{A} \alpha$, for some α .

Top-Down parsing can't reconcile this type of grammar, since it could consistently make choice which wouldn't allow termination.

$$A\Rightarrow A\alpha\Rightarrow A\alpha\alpha\Rightarrow A\alpha\alpha\alpha$$
 ... etc. $A\rightarrow A\alpha$ | Take left recursive grammar:

$$\mathbf{A} \rightarrow \mathbf{A} \alpha \mid \beta$$

To the following:

$$A \rightarrow \beta A'$$
 $A' \rightarrow \alpha A' \mid \in$

WHY IS LEFT RECURSION A PROBLEM?

Consider:
$$E \rightarrow E + T \quad | \quad T$$

$$T \rightarrow T * F \quad | \quad F \quad F$$

$$\rightarrow (E) \quad | \quad I$$

Derive: id + id + id

$$E \Rightarrow E + T \Rightarrow$$

How can left recursion be removed?

$$E \rightarrow E + T \mid T$$

 $E \rightarrow E + T \mid T$ What does this generate?

$$\mathbf{E} \Rightarrow \mathbf{E} + \mathbf{T} \Rightarrow \mathbf{T} + \mathbf{T}$$

$$E \Longrightarrow E + T \Longrightarrow E + T + T \Longrightarrow T + T + T$$

How does this build strings?

What does each string have to start with?

RESOLVING DIFFICULTIES: LEFT RECURSION (2) Informal Discussion:

Take all productions for $\underline{\mathbf{A}}$ and order as:

$$\mathbf{A} \to \mathbf{A}\alpha_1 |\mathbf{A}\alpha_2| \dots |\mathbf{A}\alpha_m| \beta_1 |\beta_2| \dots |\beta_m|$$

Where no β i begins with A.

Now apply concepts of previous slide: A

$$\rightarrow \beta_1 A' | \beta_2 A' | \dots | \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \in$$

For our example:

RESOLVING DIFFICULTIES: LEFT

RECOLLES MONTE (redursion is two-or-more levels deep, this isn't enough

$$\left. \begin{array}{l} S \rightarrow Aa \mid b \\ A \rightarrow Ac \mid Sd \mid \in \end{array} \right\} \qquad S \Rightarrow Aa \Rightarrow Sda$$

Algorithm:

Input: Grammar G with ordered Non-Terminals A₁, ..., A_n

Output: An equivalent grammar with no left recursion

1. Arrange the non-terminals in some order A_1 =start $NT,A_2,...A_n$

2. for
$$i:=1$$
 to n do begin for $j:=1$ to $i-1$ do begin replace each production of the form $A_i \to A_j \gamma$ by the productions $A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_k \gamma$ where $A_j \to \delta_1 \mid \delta_2 \mid \ldots \mid \delta_k$ are all current A_j productions; end eliminate the immediate left recursion among A_i productions

USING THE

Apply the algorithm to:
$$A_1 \rightarrow A_2 a \mid b \mid \in$$

$$A_2 \rightarrow A_2 c \mid A_1 d$$

$$i = 1$$

For A_1 there is no left recursion

$$i = 2$$

for j=1 to 1 do

Take productions: $A_2 \rightarrow A_1 \gamma$

$$A_2 \rightarrow A_1 \gamma$$

and replace

with

$$A_2 \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid ... \mid \delta_k \gamma \mid \text{ where}$$

$$A_1 \rightarrow \delta_1 \mid \delta_2$$

$$|\ldots|\delta_k$$
 are A_1

productions our case $A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow A_4 \rightarrow A_5 \rightarrow A$ Are we done?

$$A_2 \rightarrow A_2 c \mid A_2 ad \mid bd \mid d$$

USING THE ALGORITHM (2)

No! We must still remove A_2 left recursion!

$$A_1 \rightarrow A_2 a \mid b \mid \in$$

$$A_2 \rightarrow A_2 c \mid A_2 ad \mid bd \mid d$$

Recall:

$$\mathbf{A} \rightarrow \mathbf{A}\alpha_1 | \mathbf{A}\alpha_2 | \dots | \mathbf{A}\alpha_m | \beta_1 | \beta_2 | \dots | \beta_n$$

$$A \rightarrow \beta_1 A' | \beta_2 A' | \dots | \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \in$$

$$A_1 \rightarrow A_2 a \mid b \mid \in$$

$$A_2 \rightarrow bdA_2' \mid dA_2'$$

$$A_2' \rightarrow c A_2' | adA_2' | \in$$

Apply to above case. What do you get?

REMOVING DIFFICULTIES : ∈MOVES

Transformation: In order to remove $A \rightarrow \in$ find all rules of the form $B \rightarrow uAv$ and add the rule $B \rightarrow uv$ to the grammar G. Why does

this work?

Examples:

$$E \rightarrow TE'$$

$$T_{\in} \rightarrow^{E'} F \rightarrow^{T'} T''$$

$$F \in T \rightarrow ' \rightarrow (E^*)^{FT} |i'd|$$

$A_1 \rightarrow A_2 a \mid b$

$$A_2 \rightarrow bd A_2' | A_2'$$

$$A_2$$
, $\rightarrow c A_2$, $|bd A_2$, $|\in$

A is Grammar ∈-free if:

- 1. It has no \in -production or
- 2. There is exactly one \in -production
- $S \rightarrow \in$ and then the start symbol S does not appear on the right side of any production.

REMOVING DIFFICULTIES: CYCLES

How would cycles be removed?

Make sure every production is adding some terminal(s) (except a single \in -production in the start NT)...

e.g.

$$S \rightarrow SS | (S) | \in$$

Has a cycle:
$$S \Rightarrow SS \Rightarrow S$$

 $S \rightarrow \in$

Transform to:

$$S \rightarrow S(S)|(S)| \in$$

A-> B6(*)

Left factoring

- If more than one grammar production rules has a common prefix string, then the top-down parser cannot make a choice as to which of the production it should take to parse the string in hand
- Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive or top-down parsing.
- Then it cannot determine which production to follow to parse the string as both productions are starting from the same terminal (or non-terminal). To remove this confusion, we use a technique called left factoring.
- Left factoring transforms the grammar to make it useful for top-down parsers. In this technique, we make one production for each common prefixes and the rest of the derivation is added by new productions.
- Consider following grammar:
 - Stmt -> **if** expr **then** stmt **else** stmt
 - | **if** expr **then** stmt
- On seeing input if it is not clear for the parser which production to use
- We can easily perform left factoring:
 - If we have A-> $\alpha\beta1$ | $\alpha\beta2$ then we replace it with
 - A $\rightarrow \alpha A'$
 - A' -> $\beta 1 \mid \beta 2$

Left factoring (cont.)

Algorithm

- For each non-terminal A, find the longest prefix α common to two or more of its alternatives. If $\alpha <> \epsilon$, then replace all of A-productions A-> α β 1 α β 2 α β 1 α β 2 α β 1
 - A -> α A' | γ
 - A' -> β 1 | β 2 | ... | β n

• Example:

- S->IEtS | iEtSeS | a
- E -> b

A-) & B, / & B2 / & B3.

S->iEtS / GEtSeS E->b S-> SEtSS1/a. s'→ E/eS F -> b.

$$S \rightarrow \underbrace{\text{LEtSeS}}_{\text{LEtSeS}}$$

$$|a|$$

$$E \rightarrow b$$

$$S \rightarrow \underbrace{\text{LEtSeS}}_{\text{LSS}}/a$$

SETSETSES.

S->assbs /asasb /abb S->bSSaas /bSSasb /bSb

EXAMPLES OF LEFT FACTORING

1. $S \rightarrow iEtS|iEtSES|a$

 $E \rightarrow b$

- 2. $S \rightarrow aSSbS|aSaSb|abb|b$
- $3. S \rightarrow bSSaaS|bSSaSb|bSb|a$