Homework 2

Autoregressive models

- 1. Рассмотрим модель MADE с одним скрытым слоем $\mathbf{x} \in \mathbb{R}^m$. Обозначим за $\mathbf{W} \in \mathbb{R}^{h \times m}$ матрицу весов между входным и скрытым слоем, а за $\mathbf{V} \in \mathbb{R}^{m \times h}$ матрицу весов между скрытым и выходным слоем (h число нейронов в скрытом слое). Пусть мы сгенерировали корректные авторегрессионные маски $\mathbf{M}_{\mathbf{W}} \in \mathbb{R}^{h \times m}$ и $\mathbf{M}_{\mathbf{V}} \in \mathbb{R}^{m \times h}$ (алгоритм генерации приведен в лекции 1) для прямого порядка переменных $(p(\mathbf{x}) = p(x_1) \cdot p(x_2|x_1) \cdot \cdots \cdot p(x_m|x_{m-1}, \dots, x_1))$. Каждая маска является бинарной матрицей из 0 и 1. Введем матрицу $\mathbf{M} = \mathbf{M}_{\mathbf{V}} \mathbf{M}_{\mathbf{W}}$. Докажите, что:
 - (a) (2 pt) M строго нижняя треугольная (имеет нули на диагонали и выше диагонали);
 - (b) **(2 pt)** \mathbf{M}_{ij} равно числу путей в графе сети между выходным нейроном \hat{x}_i и входным нейроном x_j .
- 2. Пусть у нас есть 2 генеративные модели для изображений размера $W \times H \times C$, где W ширина изображения, H высота, C число каналов. Первая модель $p_1(\mathbf{x}|\boldsymbol{\theta})$ выдает дискретное распределение для каждого пикселя Categorical($\boldsymbol{\pi}$), где $\boldsymbol{\pi} = (\pi_1, \dots, \pi_{256})$. Вторая модель $p_2(\mathbf{x}|\boldsymbol{\theta})$ моделирует дискретное распределение непрерывной смесью логистических функций

$$p(\nu|\boldsymbol{\mu}, \mathbf{s}, \boldsymbol{\pi}) = \sum_{i=1}^{K} \pi_k p(\nu|\mu_k, s_k).$$

$$P(x|\boldsymbol{\mu}, \mathbf{s}, \boldsymbol{\pi}) = P(x + 0.5|\boldsymbol{\mu}, \mathbf{s}, \boldsymbol{\pi}) - P(x - 0.5|\boldsymbol{\mu}, \mathbf{s}, \boldsymbol{\pi}).$$

Каждая из моделей выдает параметры распределений пикселей.

- (a) (1 pt) Посчитайте размерность выходного тензора для модели $p_1(\mathbf{x}|\boldsymbol{\theta})$ и для модели $p_2(\mathbf{x}|\boldsymbol{\theta})$.
- (b) (1 pt) При каком числе компонент смеси K число элементов выходного тензора для $p_2(\mathbf{x}|\boldsymbol{\theta})$ становится больше, чем для $p_1(\mathbf{x}|\boldsymbol{\theta})$.

Latent Variable models

- 1. (2 pt) Пусть имеется два распределения $p_1(\mathbf{x}|\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_1) = \mathcal{N}(\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_1), \ p_2(\mathbf{x}|\boldsymbol{\mu}_2,\boldsymbol{\Sigma}_2) = \mathcal{N}(\boldsymbol{\mu}_2,\boldsymbol{\Sigma}_2).$ Выведите формулу для $KL(p_1||p_2).$
- 2. На лекции 3 при выводе градиента ELBO на E-шаге мы столкнулись с проблемой при Монте-Карло оценивании, так как функция распределения зависела от параметров дифференцирования.

$$\nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta}) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] d\mathbf{z}$$

$$\neq \int q(\mathbf{z}|\mathbf{x}, \phi) \nabla_{\phi} \left[\log p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] d\mathbf{z}$$

Reparametrization trick позволил пробросить градиент и получить Монте-Карло оценку. Но есть и другой способ, который использует log-derivative trick:

$$\nabla_{\xi} \log q(\eta|\xi) = \frac{\nabla_{\xi} q(\eta|\xi)}{q(\eta|\xi)}.$$

- (a) **(2 pt)** Используя формулу для производной логарифма получите Монте-Карло оценку градиента.
- (b) (2 pt) Полученная оценка работает существенно хуже, чем reparametrization trick. А именно обладает огромной дисперсий. Попробуйте описать интуицию, почему оценка обладает высоким разбросом (для этого нужно подумать какого порядка и знака будут иметь члены, участвующие в оценке).

1

3. (3 pt) В курсе нам встретятся дивергенции, отличные от KL. Поэтому давайте познакомимся с целым классом α -дивергенций:

$$D_{\alpha}(p||q) = \frac{4}{1-\alpha^2} \left(1 - \int p(x)^{\frac{1+\alpha}{2}} q(x)^{\frac{1-\alpha}{2}} dx\right).$$

Для любого значения $\alpha \in [-\infty; +\infty]$ функция $D_{\alpha}(p||q)$ будет задавать некоторую меру схожести двух распределений, обладающую свои свойствами.

Докажите, что при $\alpha \to 1$ дивергенция $D_{\alpha}(p||q) \to KL(p||q)$, а при $\alpha \to -1$ дивергенция $D_{\alpha}(p||q) \to KL(q||p)$. При доказательстве используйте факт, что $t^{\epsilon} = \exp(\epsilon \ln t) = 1 + \epsilon \ln t + O(\epsilon^2)$.