Примеры более сложных атрибутных грамматик

Первый

S o L	L.i=0
$L o L_1 1$	$L_1.i=L.i+1$
$L o \lambda$	PRINT(L.i)

Эта грамматику нельзя транслировать в ходе LR-анализа, потому что первая свёртка произойдёт по правилу $L \to \lambda$ и нам сразу же надо будет напечатать атрибут L.i- количество единиц в строке. Но в этот момент мы ещё ничего про них не знаем!

Можно превратить эту грамматику в *S-атрибутную*:

S o L	PRINT(L.s)
$L ightarrow 1 L_1$	$L.s=L_1.s+1$
$L ightarrow \lambda$	L. s = 0

А можно оставить L-атрибутную грамматику, но ввести маркеры:

S o ML	L.i=M.s
$L o 1 N L_1$	$egin{aligned} N.i &= L.i + 1, \ L_1.i &= N.s \end{aligned}$
$L ightarrow \lambda$	PRINT(L.i)
$M o \lambda$	M.s=0
$N o \lambda$	N.s=N.i

Теперь можно использовать восходящий транслятор!

Второй

$S o L_1 L_2$	$egin{aligned} S. s &= f_1(L_1. s, L_2. s) \ L_1. i &= g_1(S. i) \ L_2. i &= h_1(S. i, L_1. i) \end{aligned}$
$S o R_1 R_2$	$egin{aligned} S. s &= f_2(R_1. s, R_2. s) \ R_1. i &= g_2(R_2. s) \ R_2. i &= h_2(S. i) \end{aligned}$

За один проход транслировать эту грамматику не получится! И вообще это не L-атрибутная грамматика, потому что во втором правиле R_1 зависит от атрибутов правого брата R_2

Сначала надо построить дерево вывода, потом вычислить атрибуты, при этом:

ullet в правилах $S o L_1L_2$ сыновей обходить слева направо

ullet в правилах $S o R_1R_2$ сыновей обходить справа налево

Третий

S o E	$egin{aligned} E_i &= h_1(E.s) \ S.t &= E.t \end{aligned}$
$E o E_1E_2$	$egin{aligned} E. s &= f_1(E_1. s, E_2. s) \ E_1. s &= g_1(E. i) \ E_2. i &= g_2(E. i) \ E. t &= h_2(E_1. t, E_2. t) \end{aligned}$
E o x	$egin{aligned} E.s &= x.s \ E.t &= E.i \end{aligned}$

Синтезируемые атрибуты:

- ullet . s зависит от одноимённых атрибутов сыновей
- . t зависит от одноимённых атрибутов сыновей или, если сын лист, от атрибута . i самого узла

Наследуемые атрибуты:

• .i — зависит от одноимённого атрибута родителя или, если родитель — аксиома, от атрибута .s самого узла

Следовательно, для вычисления всех атрибутов нужно:

- 1. пройти по дереву вывода *снизу вверх*, вычисляя атрибут .s;
- 2. пройти по дереву вывода *сверху вниз*, вычисляя атрибут .i;
- 3. ещё раз пройти *снизу вверх*, вычисляя атрибут $\cdot t$.

На практике можно транслировать данную атрибутную грамматику в два прохода. Сначала провести синтаксический анализ *снизу вверх* с построением дерева и вычислением значений атрибута .s во всех узлах, а затем по дереву рекурсивно вычислить значения атрибутов .i и .t (требуется один стандартный обход дерева в глубину).