Contents

Linear Discriminant Functions	1
Gradient Descent	1
What modifications will reduce $J(w)$?	1
Gradient Descent Algorithm	1

Read Turk and Pentland.

Linear Discriminant Functions

Line is like a 2-class classifier

Put point in line equation

• positive value: 1st class • negative values: 2nd class

Gradient Descent

We iteratively modify w_i so that each sample is correctly classified.

We are gonna define loss function J(w), which will be minimum when the training samples are correctly classified.

We are creating another space J(w) vs w_1 vs w_2 etc

We want to minimize J(w)

What modifications will reduce J(w)?

- Compute partial derivatives
- $\frac{\partial J}{\partial w}$ will be a vector of all partial derivatives. Gradient Vector:

$$\nabla J = \frac{\partial J}{\partial w}$$

• η : Learning rate

Gradient Descent Algorithm