

## CS6660: MATHEMATICAL FOUNDATIONS OF DATA SCIENCE (PROBABILITY)

Quiz 2

DATE: 14 SEPTEMBER 2024

| Question     | 1 | 2(a) | 2(b) | Total |
|--------------|---|------|------|-------|
| Marks Scored |   |      |      |       |

## Instructions:

- Fill in your name and roll number on each of the pages.
- You may use any result covered in class directly without proving it.
- Unless explicitly stated in the question, DO NOT use any result from the homework without proof.

## 1. (1 Mark)

Suppose that two batteries are chosen simultaneously and uniformly at random from the following group of 12 batteries: 3 new, 4 used (yet working), 5 defective. You may assume that all batteries within a particular group are identical. Let X be the number of **new** batteries chosen, and let Y be the number of **defective** batteries chosen. If the value of  $\mathbb{P}(\{X \geq Y\})$  is expressed as  $\frac{\alpha}{\beta}$ , determine the value of  $\frac{\alpha+\beta}{\beta-\alpha}$ . Give your answer up to 1 decimal place only.

## Name: Roll Number:



2. Fix a probability space  $(\Omega, \mathscr{F}, \mathbb{P})$ .

Assume that all random variables appearing below are defined with respect to  $\mathscr{F}$ .

Numbers from  $\left[0,1\right]$  are picked uniformly, independently, and sequentially over time.

Let  $X_n$  denote the number picked at time n, where  $n \in \{0, 1, 2, \ldots\}$ . Let N be the random variable defined as

$$N=\min\{n\geq 1: X_n>X_0\}.$$

That is, N denotes the first time index n at which the value of  $X_n$  exceeds the value of  $X_0$ .

(a) (3 Marks)

For any fixed  $n \in \mathbb{N}$ , determine  $\mathbb{P}(\{N=n\})$ .

Hint: The event that N=n is identical to the event that  $X_1 \leq X_0, \ldots, X_{n-1} \leq X_0, X_n > X_0$ .

(b) **(1 Mark)** 

Compute  $\mathbb{P}(\{N>2\})$ .