UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA BIOMÉDICA

Gabriel Del Cesare Barros

Trabalho de Conclusão de Curso de Graduação UMA APLICAÇÃO DE INTELIGÊNCIA COMPUTACIONAL EM PHYTON PARA APOIO AO DIAGNÓSTICO DE CÂNCER DE MAMA

Recife,

Gabriel Del Cesare Barros

UMA APLICAÇÃO DE INTELIGÊNCIA COMPUTACIONAL EM PHYTON PARA APOIO AO DIAGNÓSTICO DE CÂNCER DE MAMA

Recife,

Agradecimentos

AGRADECIMENTOS

AGRADECIMENTOS

AGRADECIMENTOS

AGRADECIMENTOS

Resumo

RESUMO

Palavras-chave: Inteligência computacional. Apoio ao diagnóstico. Script. Phyton. Câncer de mama.

Abstract

ABSTRACT

Key-words: Computational Intelligence. Diagnostic Support. Script. Phyton. Breast Cancer.

Lista de ilustrações

Figura 1 -	Incidência mundial de câncer
$Figura\ 2\ -$	K Vizinhos Mais Próximos
Figura 3 -	Árvore de Decisão
Figura 4 $-$	Floresta Aleatória
Figura 5 $-$	Máquina de Vetor de Suporte
Figura 6 -	Naive Bayes
Figura 7 $-$	Artificial Neural Network
Figura 8 –	Validação Cruzada

Lista de Códigos

Código 1	Executar Script.py	18
Código 2	Sintaxe Simples	19
Código 3	Sintaxe com Parâmetro	19
Código 4	Código Final	24

Lista de tabelas

Tabela 1 – Resultado Final		9
----------------------------	--	---

Lista de abreviaturas e siglas

UFPE Universidade Federal de Pernambuco

EUA Estados Unidos da América

IC Inteligência Computacional

IBM International Business Machines Corporation

OMS Organização Mundial de Saúde

Sumário

1	INTRODUÇÃO 10
2	O CÂNCER NO MUNDO
2.1	Etapas do diagnóstico de câncer
2.2	Importância do diagnóstico precoce
3	INTELIGÊNCIA COMPUTACIONAL E SAÚDE
3.1	Phyton
3.2	A base de dados
4	OS MÉTODOS DE ANÁLISE
4.1	K Vizinhos Mais Próximos
4.2	Árvore de Decisão
4.3	Floresta Aleatória
4.4	Máquina de Vetor de Suporte
4.5	Naive bayes
4.6	Artificial Neural Network
5	O SCRIPT DO CÂNCER DE MAMA
5.1	Validação Cruzada
5.2	Sintaxe
6	CONCLUSÃO 20
7	TRABALHOS FUTUROS
	REFERÊNCIAS
	APÊNDICE A – O CÓDIGO

1 Introdução

```
TEXTO (Orgnização Pan-Americana de Saúde - OPAS Brasil, 2018).

TEXTO (Luiz Carlos Lobo, 2018).

TEXTO (DUA; GRAFF, 2017),
```

2 O Câncer no Mundo

(CÂNCER, 2018). (BRASIL, 2018)

Referência figura 1.

Figura 1 – Incidência mundial de câncer

Fonte: https://www.iarc.fr/wp-content/uploads/2018/09/Globocan_01.jpg (ORGANIZATION, 2018)

2.1 Etapas do diagnóstico de câncer

```
(BRASIL, 2018).
(CÂNCER, 2017).
```

2.2 Importância do diagnóstico precoce

(BRASIL, 2020).

3 Inteligência Computacional e Saúde

3.1 **Phyton**

(FOUNDATION, 2020).

- Pandas (MANAGEMENT, 2020).
- Scikit-learn (COURNEPEAU, 2020).

3.2 A base de dados

"Breast Cancer Wisconsin" (<https://www.kaggle.com/uciml/breast-cancer-wisconsin-data>) GRAFF, 2017).

4 Os Métodos de Análise

4.1 K Vizinhos Mais Próximos

2

Figura 2 – K Vizinhos Mais Próximos

4.2 Árvore de Decisão

3

4.3 Floresta Aleatória

4.

4.4 Máquina de Vetor de Suporte

5

Figura 3 – Árvore de Decisão

Árvores de Decisão - Exemplo

Fonte: https://slideplayer.com.br/slide/358847/2/images/5/%C3%81rvores+de+Decis%C3%A3o+-+Exemplo.jpg(FARINHA, 2014)

Tigula 4 Tioresta Alcatoria

X

+

y

Figura 4 – Floresta Aleatória

Fonte: https://www.paradigmadigital.com/techbiz/machine-learning-dummies/ (ZA-FORAS, 2017)

4.5 Naive bayes

4.6 Artificial Neural Network

Vetor de Suporte

Vetor de Suporte

margem maximizada

Figura 5 – Máquina de Vetor de Suporte

Fonte: <https://www.codigofluente.com.br/wp-content/uploads/2019/06/SVM04.png> (CAVALCANTI, 2019)

Figura 6 – Naive Bayes

Fonte: https://www.researchgate.net/profile/Paolo_Dellaversana/publication/328020065/figure/fig5/AS:677213301121033@1538471641906/
Naive-Bayes-classification-of-three-different-rock-types-based-on-nine-mineralogical. png> (DELL'AVERSANA, 2020)

Figura 7 – Artificial Neural Network

Fonte: https://www.researchgate.net/profile/Anderson_Oliveira6/ publication/240772105/figure/fig2/AS:667857415319554@1536241024122/
Figura-1-Rede-Neural-Artificial-Multicamadas.png> (OLIVEIRA et al., 2010)

5 O Script do Câncer de Mama

No apêndice A, seção 4, página 24. Na seção 5.2.

(FOUNDATION, 2020) A

(<https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/download>) (DUA; GRAFF, 2017).

executa-se:

1 python script.py

Código 1 – Executar Script.py

5.1 Validação Cruzada

Na figura 8

k = 5Treino Treino **Treino Teste Treino Treino Treino Teste Treino Treino Treino** Treino Treino **Teste Treino Teste** Treino **Treino Treino Treino Treino Treino** 0,78 0,85 0,83 0,73 0,80

Figura 8 – Validação Cruzada

Fonte: ktps://didatica.tech/wp-content/uploads/2019/10/Kfold_Resultados.png (TECH, 2020)

5.2 Sintaxe

É chamada na primeira linha do código 2.

```
1 svm = SVC(kernel='poly',degree=1)
2 scores = cross_val_score(svm, X, y, cv=10, scoring='accuracy')
3 function_print = 'SuppotVectorMachine:\t' + str(scores.mean())
4 print(function_print)
5 if scores.mean() > best_score:
    best_score = scores.mean()
    best_function=function_print
                            Código 2 – Sintaxe Simples
        3.
1 max_score = 0
2 for n in range(1,10):
    tree = DecisionTreeClassifier(max_depth=n, random_state=0)
    scores = cross_val_score(tree, X, y, cv=10, scoring='accuracy')
    if scores.mean() > max_score:
      max_score = scores.mean()
      max_n = n
8 function_print = 'DecisionTreeClassifier:\t' + str(max_score) + '\t(
     max_depth=' + str(max_n) + ')'
9 print(function_print)
10 if max_score > best_score:
    best_score = max_score
    best_function=function_print
                        Código 3 – Sintaxe com Parâmetro
```

Tabela 1.

Função	Acurácia	Parâmetro			
KneighborsClassifier	0.9297619047619048	$n_{neighbors} = 8$			
DecisionTreeClassifier	0.9280701754385964	$max_depth = 5$			
RandomForestClassifier	0.9649122807017543	$max_depth = 80$			
SuppotVectorMachine	0.9051065162907269				
GaussianNB	0.9367794486215537				
MLPClassifier	0.8963032581453634				
Melhor Função					
RandomForestClassifier:	0.9649122807017543	$max_depth = 80$			

Tabela 1 – Resultado Final

6 Conclusão

CONCLUSÃO

7 Trabalhos Futuros

(GOOGLE, 2020) (MOZILLA, 2020)

Referências

- BRASIL, M. da S. *Atlas do Câncer Relacionado ao Trabalho no Brasil.* 1. ed. Brasília DF, 2018. Citado na página 12.
- BRASIL, M. da S. *Diagnóstico*. 2020. Disponível em: http://www.saude.gov.br/atencao-especializada-e-hospitalar/especialidades/oncologia/diagnostico. Acesso em: 21/09/2019. Citado na página 12.
- BRASIL, M. de O. C. Publicado novo relatório sobre dados mundiais de incidência e mortalidade por câncer. 2018. Disponível em: https://mocbrasil.com/blog/noticias/ publicado-novo-relatorio-sobre-dados-mundiais-de-incidencia-e-mortalidade-por-cancer/ >. Acesso em: 20/09/2019. Citado na página 11.
- CAVALCANTI, T. Support Vector Machine ou máquina de vetores de suporte. 2019. Disponível em: https://www.codigofluente.com.br/wp-content/uploads/2019/06/SVM04.png>. Acesso em: 30/04/2020. Citado na página 16.
- COURNEPEAU, D. Machine Learning in Python. 2020. Disponível em: https://scikit-learn.org/stable/. Acesso em: 26/09/2019. Citado na página 13.
- CÂNCER, I. N. D. O que é câncer? 2018. Disponível em: https://www.inca.gov.br/o-que-e-cancer. Acesso em: 10/09/2019. Citado na página 11.
- CÂNCER, I. V. o. É comum a imunidade cair durante o tratamento oncológico? 2017. Disponível em: <https://www.vencerocancer.org.br/dia-a-dia-do-paciente/efeitos-colaterais/e-comum-a-imunidade-cair-durante-o-tratamento-oncologico/>. Acesso em: 16/09/2019. Citado na página 12.
- DELL'AVERSANA, P. Naïve Bayes classification of three different rock types based on nine mineralogical. 2020. Disponível em: https://www.researchgate.net/profile/Paolo_Dellaversana/publication/328020065/figure/fig5/AS:677213301121033@1538471641906/Naive-Bayes-classification-of-three-different-rock-types-based-on-nine-mineralogical.png>. Acesso em: 30/04/2020. Citado na página 17.
- DUA, D.; GRAFF, C. *UCI Machine Learning Repository*. 2017. Disponível em: http://archive.ics.uci.edu/ml. Acesso em: 25/09/2019. Citado 3 vezes nas páginas 10, 13 e 18.
- FARINHA, R. Inteligência Artificial. 2014. Disponível em: https://slideplayer.com.br/slide/358847/. Acesso em: 30/09/2019. Citado na página 15.
- FOUNDATION, P. S. Python. 2020. Disponível em: https://www.python.org/>. Acesso em: 25/09/2019. Citado 2 vezes nas páginas 13 e 18.
- GOOGLE. Go. 2020. Disponível em: https://golang.org/>. Acesso em: 04/10/2019. Citado na página 21.
- $\rm JOSÉ,~I.~\it KNN~\it (K-Nearest~\it Neighbors).~2018.$ Disponível em: https://medium.com/brasil-ai/knn-k-nearest-neighbors-1-e140c82e9c4e. Acesso em: 17/09/2019. Citado na página 14.

Referências 23

Luiz Carlos Lobo. *Inteligência Artificial e Medicina*. 2018. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-55022017000200185&lng=pt&tlng=pt>. Acesso em: 20/08/2019. Citado na página 10.

MANAGEMENT, A. C. *Python Data Analysis Library*. 2020. Disponível em: https://pandas.pydata.org/. Acesso em: 14/05/2020. Citado na página 13.

MOZILLA. JavaScript. 2020. Disponível em: https://developer.mozilla.org/pt-BR/docs/Glossario/JavaScript. Acesso em: 04/10/2019. Citado na página 21.

OLIVEIRA, A. et al. Aplicação de redes neurais artificiais na previsão da produção de álcool. *Ciencia E Agrotecnologia - CIENC AGROTEC*, v. 34, 04 2010. Citado na página 17.

ORGANIZATION, W. H. Globocan 2018 Latest global cancer data. 2018. Disponível em: https://www.iarc.fr/infographics/globocan-2018-latest-global-cancer-data/. Acesso em: 08/10/2019. Citado na página 11.

Orgnização Pan-Americana de Saúde - OPAS Brasil. Organização Mundial da Saúde divulga novas estatísticas mundiais de saúde. 2018. Disponível em: https://www.paho.org/bra/index.php?option=com_content&view=article&id=5676: organização-mundial-da-saude-divulga-novas-estatisticas-mundiais-de-saude&Itemid=843>. Acesso em: 08/08/2019. Citado na página 10.

TECH, D. O pacote Caret – linguagem R. 2020. Disponível em: https://didatica.tech/o-pacote-caret-linguagem-r/. Acesso em: 08/05/2019. Citado na página 18.

ZAFORAS, M. Machine Learning para dummies. 2017. Disponível em: https://www.paradigmadigital.com/techbiz/machine-learning-dummies/. Acesso em: 30/04/2020. Citado na página 15.

APÊNDICE A - O Código

```
#!/bin/python
# Importar Bibliotecas
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import cross val score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
import warnings
warnings.filterwarnings('ignore')
# Banco de Dados
cancer = pd.read_csv('./data.csv', index_col=0)
# Configurar Variaveis
diag = {'M':0, 'B':1}
cancer.diagnosis = [diag[item] for item in cancer.diagnosis]
X = cancer[cancer.columns[1:31]].to_numpy()
y = cancer[['diagnosis']].to_numpy()
# Funcoes
best_score = 0
max_score = 0
for n in range(1,10):
  knn = KNeighborsClassifier(n_neighbors=n, weights='uniform')
  scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')
      scores.mean() > max_score:
    max_score = scores.mean()
    max_n = n
function_print = 'KneighborsClassifier:\t' + str(max_score) + '\t(
   n_neighbors=' + str(max_n) + ')'
print(function_print)
if max_score > best_score:
  best_score = max_score
  best_function=function_print
max_score = 0
for n in range (1,10):
  tree = DecisionTreeClassifier(max_depth=n, random_state=0)
  scores = cross_val_score(tree, X, y, cv=10, scoring='accuracy')
```

```
if scores.mean() > max_score:
    max_score = scores.mean()
    max_n = n
function_print = 'DecisionTreeClassifier:\t' + str(max_score) + '\t(
   max_depth=' + str(max_n) + ')'
print(function_print)
if max_score > best_score:
  best_score = max_score
  best_function=function_print
max_score = 0
for n in range(1,10):
  forest = RandomForestClassifier(n_estimators= n*10, random_state=0)
  scores = cross_val_score(forest, X, y, cv=10, scoring='accuracy')
  if scores.mean() > max_score:
    max_score = scores.mean()
    max n = n*10
function_print = 'RandomForestClassifier:\t' + str(max_score) + '\t(
   max_depth='+ str(max_n) + ')'
print(function_print)
if max_score > best_score:
  best_score = max_score
  best_function=function_print
svm = SVC(kernel='poly',degree=1)
scores = cross_val_score(svm, X, y, cv=10, scoring='accuracy')
function_print = 'SuppotVectorMachine: \t' + str(scores.mean())
print(function_print)
if scores.mean() > best_score:
  best_score = scores.mean()
  best_function=function_print
gnb = GaussianNB()
scores = cross_val_score(gnb, X, y, cv=10, scoring='accuracy')
function_print = 'GaussianNB:\t\t' + str(scores.mean())
print(function_print)
if scores.mean() > best_score:
  best_score = scores.mean()
  best_function=function_print
mlp = MLPClassifier(solver='adam', alpha=0.0001, hidden_layer_sizes
   =(10,20,40),
random_state=42, learning_rate='constant', learning_rate_init=0.01,
   max_iter=100,
activation='logistic', momentum=0.9, tol=0.0001)
scores = cross_val_score(mlp, X, y, cv=10, scoring='accuracy')
function_print = 'MLPClassifier:\t\t' + str(scores.mean())
```