Three-Period Model

Marco Brianti

Boston College

October 3, 2018

Dissertation Project

Introduction to the Model

To provide an economic intuition of the differential response of **cash holdings** to uncertainty and financial shocks, I present a properly augmented model in the spirit of

- Almeida, Campello, and Weisbach (2004)
- Han and Qiu (2007)

It is a simple representation of a dynamic setting where a profit-maximizing firm have

- present and future investment opportunities
- current cash flow and external sources of finance might not be enough to fund all profitable projects

Main Features

- Model has three periods: 0, 1 and 2.
- There is one representative firm (or a continuum of it)
- ullet Discount factor eta=1, but it can easily be relaxed
- In P0 firm can invest I_0 in a long-term project.
 - I_0 pays a deterministic return $g(I_0) = G(I_0) + qI_0$ in P2
- In P1 firm can invest I_1 in a short-term project.
 - I_1 pays a deterministic return $h(i_0) = H(i_0) + qI_0$ in P2
- Both $G(\cdot)$ and $H(\cdot)$ and thus $g(\cdot)$ and $h(\cdot)$ display the following properties
 - $G'(\cdot)$ and $H'(\cdot)$ strictly positive
 - $G''(\cdot)$ and $H''(\cdot)$ strictly negative
 - $G'''(\cdot)$ and $H'''(\cdot)$ strictly positive

Period 0

- Firm enters the period with c_0 internal liquidity from past and current cash flows
- Firm chooses optimal level of investment I_0 , cash holding C, and borrowing B_0
- Optimal choices are subject to nonnegative dividends constraint,

$$d_0 = c_0 + B_0 - I_0 - C \ge 0$$

and borrowing constraint

$$0 \leq B_0 \leq (1-\tau)qI_0$$

where

- $q \in (0,1]$ is the part of I_0 that can be liquidated after usage
- $1-\tau$ is the part of the liquidation value of \emph{I}_0 that can be captured by creditors

Period 1

- ullet Firm enters the period with $C+c_1$ internal liquidity where
 - C is optimal level of cash holding chosen in P0
 - $c_1 \sim F[c_1, \ \overline{c_1}] \geq 0$ is current cash flow
 - ullet c_1 is unknown in P0 and drawn at the beginning of P1
- Firm chooses optimal schedules of both investment $I_1(c_1)$ and borrowing $B_1(c_1)$
- Optimal choices are subject to nonnegative dividends constraint,

$$d_1 = c_1 + B_1(c_1) - I_1(c_1) + C \geq 0$$

and borrowing constraint

$$0 \leq B_1(c_1) \leq (1-\tau_1)qI_1(c_1)$$

Period 2

- Firm receives deterministic returns $g(I_0)$ and $h(I_1(c_1))$
- Firm pays back loans B_0 and $B_1(c_1)$
- Dividends are defined as

$$d_2 = g(I_0) + h(I_1(c_1)) - B_0 - B_1(c_1)$$

Firm's Problem

$$\max_{C, l_0, B_0, l_1(c_1), B_1(c_1)} d_0 + d_1 + d_2 \tag{1}$$

subject to

$$d_{0} = c_{0} + B_{0} - I_{0} - C \ge 0$$

$$d_{1} = c_{1} + B_{1}(c_{1}) - I_{1}(c_{1}) + C \ge 0$$

$$d_{2} = g(I_{0}) + h(I_{1}(c_{1})) - B_{0} - B_{1}(c_{1})$$

$$0 \le B_{0} \le (1 - \tau)qI_{0}$$

$$0 \le B_{1}(c_{1}) \le (1 - \tau)qI_{1}(c_{1})$$

$$(2)$$

Solution - Unconstrained Firms

A firm is financially unconstrained if it has enough financial resources such that

$$g'(I_0^*)=1$$

and

$$h'(I_1^*(c_1)) = h'(I_1^*) = 1 \quad \forall \ c_1 \in [\underline{c_1}, \ \overline{c_1}]$$

- Both I_0^* and I_1^* are independent of c_1
- ullet Firm is indifferent on optimal C^* , B_0^* , and B_1^*

Solution - Constrained Firms (I)

A firm is financially constrained if its investment levels are always lower than the first-best levels I_0^* and I_1^* .

Constraints are always expected to bind since it is not profitable to

- paying out dividends in the first two periods
- borrowing less than the maximum amount

Solution - Constrained Firms (II)

Since constraints bind,

$$I_0 = rac{c_0 - C}{1 - q + q au}$$
 and $I_1(c_1) = rac{c_1 + C}{1 - q + q au}$

Firm faces now a trade of on choosing optimal cash holding C^*

- the cost of saving an additional unit of cash holding *C* is forgoing a unit of current investment projects
- the benefit of saving an additional unit of cash holding C is the higher ability to fund future investment projects

Solution - Constrained Firms (III)

Optimal $C^*(0, F)$ should be chosen to maximize

Objective =
$$g(I_0) - I_0 + \mathbb{E}\left[h(I_1) - I_1|F\right]$$

= $g\left(\frac{c_0 - C}{1 - q + q\tau}\right) - \frac{c_0 - C}{1 - q + q\tau}$
+ $\mathbb{E}\left[h\left(\frac{c_1 + C}{1 - q + q\tau}\right) - \frac{c_1 + C}{1 - q + q\tau}|F\right]$ (3)

Solution for $C^*(0, F)$ solves

$$g'\left(\frac{c_0 - C^*(0, F)}{1 - q + q\tau}\right) = \mathbb{E}\left[h'\left(\frac{c_1 + C^*(0, F)}{1 - q + q\tau}\right)\middle|F\right] \tag{4}$$

where SOC is negative by assumption on $G(\cdot)$ and $H(\cdot)$.

Analysis

I analyze the effect of an uncertainty and credit supply shocks in period 0 in order to see the differential response of cash holding C^*

Uncertainty Shock. Mean-preserving spread of perceived distribution F of c_1 .

Credit Supply Shock. Decrease by ε of the part of the liquidation value of I_0 that can be captured by creditors,

$$B_0 \leq (1 - (\tau + \varepsilon))qI_0$$

Uncertainty Shock (I)

Assume that $C^*(0, F)$ is the optimal cash holding when distribution of c_1 is F and no credit supply shocks are in place.

Then the following two relations hold,

$$g'\left(\frac{c_0 - C^*(0, F)}{1 - q + q\tau}\right) = \mathbb{E}\left[h'\left(\frac{c_1 + C^*(0, F)}{1 - q + q\tau}\right)\middle|F\right]$$
(5)

and

$$\mathbb{E}\left[h'\left(\frac{c_1+C^*(0,F)}{1-q+q\tau}\right)\Big|Q\right] > \mathbb{E}\left[h'\left(\frac{c_1+C^*(0,F)}{1-q+q\tau}\right)\Big|F\right]$$
(6)

where

- Equation 5 holds because $C^*(0, F)$ is optimal cash flow with F
- Equation 6 holds because of Jensen's inequality.

Uncertainty Shock (II)

Combining 5 and 6 yields

$$g'\left(\frac{c_0 - C^*(0, F)}{1 - q + q(\tau + \varepsilon)}\right) > \mathbb{E}\left[h'\left(\frac{c_1 + C^*(0, F)}{1 - q + q\tau}\right)\middle|F\right]$$
(7)

which implies that $C^*(0, Q) > C^*(0, F)$.

Result. In response to an uncertainty shock firm tends to accumulate additional cash holding from the motive of precautionary savings.

Credit Supply Shock (I)

Given $C^*(0, F)$, then the following two relations hold,

$$g'\left(\frac{c_0-C^*(0,F)}{1-q+q\tau}\right)=\mathbb{E}\left[h'\left(\frac{c_1+C^*(0,F)}{1-q+q\tau}\right)\Big|F\right]$$
(8)

and

$$g'\left(\frac{c_0 - C^*(0, F)}{1 - q + q(\tau + \varepsilon)}\right) > g'\left(\frac{c_0 - C^*(0, F)}{1 - q + q\tau}\right)$$
(9)

where

- Equation 8 holds because $C^*(0, F)$ is optimal cash flow with F
- Equation 9 holds because of Jensen's inequality.

Credit Supply Shock (II)

Combining 8 and 9 yields

$$g'\left(\frac{c_0-C^*(0,F)}{1-q+q\tau}\right) < \mathbb{E}\left[h'\left(\frac{c_1+C^*(0,F)}{1-q+q\tau}\right)\middle|Q\right]$$
 (10)

which implies that $C^*(\varepsilon, F) < C^*(0, F)$.

Result. In response to a negative credit supply shock firm tends to accumulate less cash to finance current projects which are more financially constrained.

Lesson learned

As a precautionary motive, firms prefer to increase cash holdings if they expect future outcomes to be more volatile.

After a financial shock, firms substitute more cash today with less cash tomorrow because they expect to me more financially constrained today than tomorrow.