Санкт-Петербургский государственный университет

РАБОЧАЯ ПРОГРАММА

учебной дисциплины

Maшинное обучение
Machine Learning

Язык(и) обучения русский

Трудоёмкость (границы трудоёмкости) в зачетных единицах: 3

Регистрационный номер рабочей программы: 056748

Раздел 1. Характеристики учебных занятий

1.1. Цели и задачи учебных занятий

Основной целью освоения дисциплины «Машинное обучение» является формирование у обучающихся устойчивого понимания основных понятий и базовых алгоритмов машинного обучения, приобретение практических навыков работы с инструментами, применяемыми в области машинного обучения.

Поставленная цель достигается путем решения следующих задач курса:

- 1) ознакомить студентов с основными задачами, решаемыми в области машинного обучения, базовыми алгоритмами машинного обучения, областями применения алгоритмов;
- 2) способствовать развитию практических навыков работы с инструментами, применяемыми в области машинного обучения;
- 3) ознакомить с основными тенденциями развития подходов в области машинного обучения.

1.2. Требования к подготовленности обучающегося к освоению содержания учебных занятий (пререквизиты)

Освоение дисциплин: дискретная математика, теория вероятностей, линейная алгебра, основы программирования.

Знание одного из высокоуровневых языков программирования (Java, Python).

1.3. Перечень результатов обучения (learning outcomes)

После изучения курса обучающиеся должны

знать: статистические (байесовские), метрические, логические, линейные методы классификации; методы регрессионного анализа; нейросетевые и композиционные методы классификации и регрессии; методы кластеризации;

уметь: осуществлять выбор между различными методами с учетом решаемой задачи; решать задачи обучения с учителем, обучения без учителя, задачи с частичным обучением и задачи обучения с подкреплением; использовать существующие инструментальные средства для решения задач машинного обучения;

владеть: средствами и приемами решения задач классификации, регрессии, кластеризации; навыками работы с существующими инструментальными средствами для решения задач машинного обучения.

1.4. Перечень активных и интерактивных форм учебных занятий

При изложении части тем применяется мультимедиа-проектор для проведения презентаций. В процессе преподавания данной дисциплины используются как классические методы обучения (семинары), так и различные виды самостоятельной работы студентов по заданию преподавателя.

В рамках данного курса используются такие активные формы работы, как:

- подготовка к семинарским занятиям;

- подготовка доклада по предложенной преподавателем теме;
- построение интеллект-карты по курсу;
- выполнение индивидуальных заданий по реализации изученных алгоритмов; *интерактивные формы обучения:*
 - метод групповой работы при решении задач во время практических занятий;
 - экспертная оценка другими обучающимися результатов решения индивидуальных заданий и коллективное обсуждение полученных результатов;
 - экспертная оценка другими обучающимися построенных интеллект-карт.

Общий объем активных и интерактивных форм учебных занятий составляет 32 часа.

Раздел 2. Организация, структура и содержание учебных занятий

2.1. Организация учебных занятий

2.1.1. Профиль Технологии баз данных

Трудоёмкость, объёмы учебной работы и наполняемость групп обучающихся																		
_	Контактная работа обучающихся с преподавателем									Самостоятельная работа			HEIX					
Период обучения (модуль)	лекции	семинары	консультации	практические занятия	лабораторные работы	контрольные работы	коллоквиумы	текущий контроль	промежуточная аттестация	итоговая аттестация	под руководством преподавателя	в присутствии преподавателя	сам.раб. с использованием методических материалов	текущий контроль (сам.раб.)	промежуточная аттестация (сам.раб.)	итоговая аттестация (сам.раб.)	Объём активных и интерактивных форм учебных занятий	Трудоёмкость
ОСНОВНАЯ ТРАЕКТОРИЯ																		
очная форма обучения																		
Семестр 3		32		32					2				35		7		32	3
итого		32		32					2				35		7		32	3

Формы текущего контроля успеваемости, виды промежуточной и итоговой аттестации								
Период обучения (модуль)	Формы текущего контроля успеваемости	Виды промежуточной аттестации	Виды итоговой аттестации (только для программ итоговой аттестации и дополнительных образовательных программ)					
ОСНОВНАЯ ТРАЕКТОРИЯ								
очная форма обучения								
Семестр 3		зачет						

2.2. Структура и содержание учебных занятий

Период обучения (модуль): Семестр 3

$N_{\underline{0}}$	Have cover a vector (near and vector)	Dyna ywofyn yr ogyggyy	Количество
Π/Π	Наименование темы (раздела, части)	Вид учебных занятий	часов
	Oavanyu ta wata u te ta aayah wayuu u	семинары	10
1	Основные методы классификации и	практические занятия	12
	регрессии.	по методическим материалам	7
	Работа с данными. Другие задачи машинного обучения.	семинары	12
2		практические занятия	10
	машинного обучения.	по методическим материалам	14
3	. Наўразатары за намизанными за	семинары	10
	Нейросетевые и композиционные методы. Графические модели.	практические занятия	10
	мотоды, трафические модели.	по методическим материалам	14

Содержание учебных занятий

Раздел 1: Основные методы классификации и регрессии.

Семинары:

- 1.1 Введение в машинное обучение. Основные понятия и примеры решаемых прикладных задач. Оценка качества классификации. Обучающая, проверочная и тестовая выборки, принципы разделения. Метод перекрестного контроля.
- 1.2 Метрические методы классификации. Метод ближайших соседей и его обобщения. Проклятие размерности.
- 1.3 Статистические методы классификации. Байесовские методы классификации. Непараметрические и параметрические оценки плотности.
- 1.4 Линейные методы классификации. Логистическая регрессия. Метод опорных векторов. Нелинейные обобщения SVM, идея Kernel Trick.
- 1.5 Линейные методы регрессии. Принципы регуляризации. Непараметрическая регрессия. Многомерная линейная регрессия и метод главных компонент.
- 1.6 Логические методы классификации и регрессии. Построение деревьев решений, алгоритмы ID3, C4.5, CART.

Практические занятия:

- 1.1 Обзор существующих инструментальных средств разработчика для решения задач машинного обучения: Octave, PyBrain, Weka, R.
- 1.2 Практическое занятие по методу ближайших соседей: распознавание рукописных цифр.
- 1.3 Практическое занятие по использованию байесовского классификатора: задача классификации текстовых документов.
- 1.4 Практическое занятие по линейным методам классификации: задача о кредите.
- 1.5 Практическое занятие по линейным методам регрессии: задача о пожарах.

Раздел 2: Работа с данными. Другие задачи машинного обучения.

Семинары:

- 2.1 Основная схема работы с данными. Этапы подготовки данных.
- 2.2 Работа с пропущенными значениями и метод максимизации ожидания.

- 2.3 Обучение без учителя: кластеризация. Графовые, статистические и иерархические методы решения задачи.
- 2.4 Обучение без учителя: поиск ассоциативных правил. Алгоритм APriory. Алгоритм построения префиксного FP-дерева. Алгоритм выделения частых наборов по FP-дереву.
- 2.5 Задача частичного обучения. Эвристические методы. Порождающие модели. Разделение по низкой плотности. Методы на основе графов. Решение с предварительным обучением без учителя.
- 2.6 Задача обучения с подкреплением. Задача о многоруком бандите. Методы «действиеценность». Конечные марковские процессы принятия решений. Методы динамического программирования. Методы Монте-Карло. Методы временных различий.
- 2.7 Задача коллаборативной фильтрации. Корреляционные модели. Латентные модели.
- 2.8 Построение различных моделей, настройка параметров и выбор модели. Оценка качества для различных задач. Проблема переобучения.

Практические занятия:

- 2.1 Практическое занятие по кластеризации: определение спама.
- 2.2 Практическое занятие по выделению ассоциативных правил: супермаркет.
- 2.3 Практическое занятие по частичному обучению: определение пола клиента.

Раздел 3: Нейросетевые и композиционные методы. Графические модели.

Семинары:

- 3.1 Нейросетевые методы классификации и регрессии. Многослойные нейронные сети. Различные виды нейронных сетей. Алгоритм обратного распространения.
- 3.2 Нейронные сети: современные тенденции. Ограниченная машина Больцмана. Сверточная нейронная сеть. Long-Short Term Memory.
- 3.3 Композиционные методы классификации и регрессии. Линейные композиции, бустинг. Бэггинг и метод случайных подпространств. Смеси алгоритмов.
- 3.4 Байесовские сети доверия. Обучение сетей. Основы выбора оптимальной структуры: детерменированные и недетерменированные алгоритмы. Инструменты для работы с байесовскими сетями.
- 3.5 Задача статистического анализа последовательностей. Вероятностные модели последовательностей. Скрытые марковские модели.
- 3.6 Задачи статистического анализ изображений. Марковские и условные случайные поля. Подход статистической физики. Подход теории вероятностей.

Практические занятия:

- 3.1 Практическое занятие по нейронным сетям: прогнозирование болезни Паркинсона.
- 3.2 Практическое занятие по композиционным методам: задача о депозите.
- 3.3 Практическое занятие по марковским моделям: задача о погоде.

Раздел 3. Обеспечение учебных занятий

3.1. Методическое обеспечение

3.1.1. Методические указания по освоению дисциплины

Самостоятельная работа студентов включает в себя самостоятельную проработку рассмотренных на аудиторных занятиях материалов; выполнение практических заданий по изучаемым разделам; построение интеллект-карты по курсу, выступление с презентацией перед группой; изучение рекомендованной литературы и ресурсов в сети интернет. Время и место самостоятельной работы выбираются студентами по своему усмотрению с учетом рекомендаций преподавателя.

Подготовка к семинару заключается в следующем:

- внимательно изучить материал предыдущего семинара;
- целесообразно составить краткий конспект или схему, отображающую смысл и связи основных понятий данного раздела, включенных в него тем, а затем, полезно изучить выдержки из литературы;
- узнать тему предстоящего семинара (по тематическому плану, по материалам, размещенным в системе дистанционного обучения Blackboard);
- ознакомиться с учебным материалом по учебным пособиям;
- записать возможные вопросы, которые вы зададите преподавателю в ходе аудиторного занятия.

Изучение дисциплины заканчивается зачетом. При непосредственной подготовке к зачету рекомендуется тщательно разобрать все основные определения и алгоритмы. Отметить пробелы в знаниях, которые следует ликвидировать в ходе консультации.

3.1.2. Методическое обеспечение самостоятельной работы

Самостоятельная работа студентов в рамках дисциплины «Машинное обучение» является важным компонентом обучения. Данной программой предусмотрены виды деятельности студента, которые направляются и корректируются преподавателем, и виды учебной деятельности, которые осуществляются студентом самостоятельно в рамках плана изучения данной учебной дисциплины.

К группе видов и форм самостоятельной работы студентов относятся:

- подготовка к семинарским занятиям;
- подготовка доклада по предложенной преподавателем теме;
- построение интеллект-карты по курсу;
- выполнение индивидуальных заданий по реализации изученных алгоритмов.

Для организации самостоятельной работы студентов рекомендуется предоставить презентации с изучаемым материалом, проводить консультации во время аудиторных занятий.

3.1.3. Методика проведения текущего контроля успеваемости и промежуточной аттестации и критерии оценивания

По результатам освоения дисциплины студентам предлагается выполнить доклад по предложенной преподавателем теме или построить интеллект-карту по изученному материалу.

Промежуточная аттестация проходит в форме собеседования по пройденному материалу, с учетом результатов выполнения индивидуальных заданий, доклада или интеллект-карты.

Оценка «зачтено» ставится при условии успешного выполнения не менее 60% практических заданий, а также выполнения доклада или интеллект-карты по курсу, знания основных определений и алгоритмов.

Оценка «зачтено» также может быть поставлена при отсутствии результатов практических заданий в случае ответа на два теоретических вопроса.

Преподаватель имеет право предоставить информацию о задолженностях студента в аттестационную комиссию.

3.1.4. Методические материалы для проведения текущего контроля успеваемости и промежуточной аттестации (контрольно-измерительные материалы, оценочные средства)

Примерный перечень тем докладов:

- 1. Самоорганизующиеся карты Кохонена и их применение к задачам машинного обучения.
- 2. Генетические алгоритмы и их применение к задачам машинного обучения.
- 3. Text Mining. Особенности машинного обучения при работе с текстовыми коллекциями.
- 4. Современные алгоритмы кластеризации: DBScan и Affinity Propagation.
- 5. Нечеткие деревья решений. Сравнение с классическими (Модификация на основе С4.5).

Примерный список обязательных компонентов интеллект-карты:

- 1. Данные, особенности работы.
- 2. Задачи машинного обучения.
- 3. Цикл решения задачи (выборки, оценка качества, критерии выбора модели).
- 4. Методы машинного обучения.
- 5. Литература.
- 6. Творческие элементы.

Для оценки интеллект-карт применяется трансфертный лист:

Я считаю, что	Особенно удачным является
(общая оценка)	(достоинства, интересные моменты)
В то же время, я бы посоветовал (пожелания)	Не кажется ли Вам, что (вопросы)

Примерный перечень теоретических вопросов по курсу:

- 1. Основные понятия и задачи машинного обучения. Постановка задачи обучения с учителем. Примеры решаемых прикладных задач.
- 2. Основные понятия и задачи машинного обучения. Постановка задачи обучения без учителя. Примеры решаемых прикладных задач.

- 3. Основные понятия и задачи машинного обучения. Постановка задачи частичного обучения. Примеры решаемых прикладных задач.
- 4. Основные понятия и задачи машинного обучения. Постановка задачи обучения с подкреплением. Примеры решаемых прикладных задач.
- 5. Основные понятия и задачи машинного обучения. Постановка задачи коллаборативной фильтрации. Примеры решаемых прикладных задач.
- 6. Основная схема работы с данными. Этапы подготовки данных.
- 7. Работа с пропущенными значениями. Метод максимизации ожидания.
- 8. Оценка качества классификации и кластеризации. Обучающая, проверочная и тестовая выборки, принципы разделения. Метод перекрестного контроля.
- 9. Проблема переобучения. Принцип минимизации среднего риска. Принцип минимизации эмпирического риска.
- 10. Построение различных моделей обучения, настройка параметров и критерии выбора модели.
- 11. Метрические методы классификации. Метод ближайших соседей и его обобщения.
- 12. Статистические методы классификации. Наивный байесовский классификатор.
- 13. Линейные методы классификации. Логистическая регрессия.
- 14. Линейные методы классификации. Метод опорных векторов. Нелинейные обобщения метода опорных векторов.
- 15. Задача восстановления регрессии. Случай линейно разделимой выборки. Принципы регуляризации.
- 16. Задача восстановления регрессии. Многомерная линейная регрессия. Метод главных компонент.
- 17. Логические методы классификации. Построение деревьев решений, алгоритм ID3.
- 18. Логические методы классификации. Построение деревьев решений, алгоритм С4.5.
- 19. Нейросетевые методы классификации и регрессии. Многослойные нейронные сети и их виды.
- 20. Обучение нейронных сетей. Алгоритм обратного распространения ошибки.
- 21. Обучение нейронных сетей. Градиентный спуск и его вариации.
- 22. Нейронные сети: современные тенденции. Ограниченная машина Больцмана.
- 23. Нейронные сети: современные тенденции. Сверточная нейронная сеть.
- 24. Нейронные сети: современные тенденции. Long-Short Term Memory.
- 25. Композиционные методы классификации. Бустинг и алгоритм AdaBoost.
- 26. Стохастические методы построения композиций: бэггинг и метод случайных подпространств.
- 27. Обучение без учителя: кластеризация. Графовые методы решения задачи.
- 28. Обучение без учителя: кластеризация. Статистические методы решения задачи.
- 29. Обучение без учителя: кластеризация. Иерархические методы решения задачи.
- 30. Обучение без учителя: поиск ассоциативных правил. Алгоритм APriory.
- 31. Задача частичного обучения. Эвристические методы: метод самообучения, метод со-training, метод со-learning, метод активного обучения.
- 32. Задача частичного обучения. Решение с помощью порождающих моделей.
- 33. Задача частичного обучения. Low-Density Separation. T3SVM.
- 34. Задача частичного обучения. Методы на основе графов. Решение с предварительным обучением без учителя.
- 35. Задача обучения с подкреплением. Задача о многоруком бандите. Жадная стратегия. ε-жадная стратегия. Стратегия softmax.

- 36. Задача обучения с подкреплением. Фундаментальные методы решения: метод итераций, методы временных различий (TD), метод SARSA, метод Q-обучения.
- 37. Задача обучения с подкреплением. Многошаговые обобщения методов: $TD(\lambda)$, $SARSA(\lambda)$, $Q(\lambda)$.
- 38. Задача коллаборативной фильтрации. Корреляционные модели.
- 39. Задача коллаборативной фильтрации. Латентные модели.
- 40. Байесовские сети доверия. Понятие условной независимости. D-разделение. Обучение сетей.
- 41. Байесовские сети доверия. Основы выбора оптимальной структуры: детерменированные и недетерменированные алгоритмы.
- 42. Задача статистического анализа последовательностей. Скрытые марковские модели. Вычисление вероятностей и алгоритм Forward-Backward.
- 43. Задача статистического анализа последовательностей. Скрытые марковские модели и их применение. Алгоритм Витерби.
- 44. Задача статистического анализа последовательностей. Обучение скрытых марковских моделей. Обобщения.
- 45. Задачи статистического анализа изображений. Марковские и условные случайные поля: подход статистической физики.
- 46. Задачи статистического анализа изображений. Марковские и условные случайные поля: подход теории вероятностей.

3.1.5. Методические материалы для оценки обучающимися содержания и качества учебного процесса

Для оценки обучающимися содержания и качества учебного процесса используется анкета-отзыв установленная локальными актами СПбГУ.

3.2. Кадровое обеспечение

3.2.1. Образование и (или) квалификация преподавателей и иных лиц, допущенных к проведению учебных занятий

К чтению лекций должны привлекаться преподаватели, имеющие ученую степень и/или ученое звание, опыт планирования и организации учебного процесса, или специалисты в этой области.

3.2.2. Обеспечение учебно-вспомогательным и (или) иным персоналом

Для технического обеспечения учебного процесса необходима возможность прибегать к помощи специалистов, ответственных за надлежащее функционирование компьютеров и программного обеспечения, а также за своевременное поддержание в рабочем состоянии другой используемой техники.

3.3. Материально-техническое обеспечение

3.3.1. Характеристики аудиторий (помещений, мест) для проведения занятий

Аудитории и помещения, предназначенные для проведения занятий по данной дисциплине должны отвечать санитарным нормам, предусмотренным Образовательным стандартом реализации программ высшего профессионального образования Санкт-Петербургского государственного университета.

В аудиториях требуется наличие компьютеризированных рабочих мест для проведения совместных практических работ и демонстрации материалов курса.

3.3.2. Характеристики аудиторного оборудования, в том числе неспециализированного компьютерного оборудования и программного обеспечения общего пользования

Для реализации программы необходим доступ преподавателей к офисной технике (персональный компьютер, копировальный аппарат, принтер), а также достаточное количество расходных материалов к ней, выделенных для использования в учебном процессе.

Минимально необходимый для реализации курса перечень материально-технического обеспечения включает: мультимедийный проектор для презентаций и демонстраций, компьютеры для проведения практических работ.

3.3.3. Характеристики специализированного оборудования

Нет специальных требований.

3.3.4. Характеристики специализированного программного обеспечения

При практической работе каждый обучающийся во время занятий и самостоятельной подготовки должен быть обеспечен рабочим местом в компьютерном классе с выходом в Интернет.

Необходим доступ к инструментам и библиотекам для разработки:

Eclipse или NetBeans с установленной Java / MS Visual Studio 2015 Ultimate Edition / Python; Matlab или Octave; PyBrain; Weka; R и RStudio.

3.3.5. Перечень и объёмы требуемых расходных материалов

Фломастеры цветные, губки, бумага формата A4, канцелярские товары, картриджи принтеров, диски, флеш-накопители и др. в объёме, необходимом для организации и проведения занятий, по заявкам преподавателей, подаваемым в установленные сроки

3.4. Информационное обеспечение

3.4.1. Список обязательной литературы

- 1. C. Sammut, G.I. Webb (Ed.) "Encyclopedia of Machine Learning" (2011) (электронный доступ через библиотеку университета).
- Hastie, T., Tibshirani, R., Friedman, J. "Elements of Statistical Learning: Data Mining, Inference and Prediction" (2nd ed., 2009) (электронный доступ через библиотеку университета).
- 3. Galushkin, A. I. "Neural Networks Theory" (2007) (электронный доступ через библиотеку университета).

3.4.2. Список дополнительной литературы

- 1. Christmann, A., Steinwart, I. "Support Vector Machines" (2008) (электронный доступ через библиотеку университета).
- 2. Sivanandam, S.N., Deepa, S.N. "Introduction to Genetic Algorithms" (2008) (электронный доступ через библиотеку университета).

- Cios, K.J., Swiniarski, R.W., Pedrycz, W., Kurgan L.A. "Data Mining: A Knowledge Discovery Approach" (2007)
 (электронный доступ через библиотеку университета).
- 4. Bramer, M. "Principles of Data Mining" (2nd ed., 2013) (электронный доступ через библиотеку университета).

3.4.3. Перечень иных информационных источников

- 1. Сайт проекта PyBrain: http://www.pybrain.org
- 2. Машинное обучение, курс лекций: http://www.machinelearning.ru/
- 3. IIIAД Yandex: http://shad.yandex.ru/lectures/machine_learning.xml
- 4. Официальный сайт Weka: http://www.cs.waikato.ac.nz/ml/weka/
- 5. Официальный сайт Encog: http://www.heatonresearch.com/encog
- 6. Сайт компании BaseGroup: http://www.basegroup.ru
- 7. Официальный сайт FANN: http://leenissen.dk/fann/wp/

Раздел 4. Разработчики программы

Фамилия, имя, отчество	Учёная степень	Учёное звание	Должность	Контактная информация (служебный адрес электронной почты, служебный телефон)
Романенко Елена Станиславовна			ст. преп.	e.s.romanenko@spbu.ru