NP is asymmetric. "Yes" instances of a language can be easily verified. "No" instances not so easily.

What about the class where "No" answers can be easily verified?

TAUT = { $\varphi \mid \varphi$ is a tautology } vs TAUT' = { $\varphi \mid \varphi$ is not a tautology}.

HAMCYCLE = { G | G contains a hamiltonian cycle }, vs HAMCYCLE'.

2.6.1 coNP

If $L \subseteq \{0, 1\}^*$ is a language, then we denote by \overline{L} the *complement* of L. That is, $\overline{L} = \{0, 1\}^* \setminus L$. We make the following definition:

Definition 2.19
$$\operatorname{coNP} = \{ L : \overline{L} \in \operatorname{NP} \}.$$

Theorem: Each co-NP-complete problem is the complement of an NP-complete problem.

Prove that TAUT is coNP-Complete.

Definition 2.20 (coNP, alternative definition) For every $L \subseteq \{0, 1\}^*$, we say that $L \in \mathbf{coNP}$ if there exists a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time TM M such that for every $x \in \{0, 1\}^*$,

$$x \in L \Leftrightarrow \forall u \in \{0, 1\}^{p(|x|)}, \ M(x, u) = 1$$

Note the use of the "∀" quantifier in this definition where Definition 2.1 used ∃. We can define **coNP**-completeness in analogy to **NP**-completeness: A language is **coNP**-complete if it is in **coNP** and every **coNP** language is polynomial-time Karp reducible to it.

Theorem. $P \subseteq NP \cap coNP$

Theorem. If P = NP, then NP = coNP.

FACTOR = $\{ (m, r) | r \text{ is prime}, \exists s < r, s \text{ is prime}, s \text{ divides m} \}$

Integer Factorization is both in NP and co-NP but not known to be in P.

Proof that Each co-NP-complete problem is the complement of an NP-complete problem:

Consider $L \in \text{coNP-complete}$, i.e. $L \in \text{coNP}$ and all problems in coNP reduce to L

 $L' \in NP$ by definition. The definition of karp-reduction ensures that a valid function f is one such that

$$\forall x \quad x \in A \text{ iff } f(x) \in L$$

which is logically equivalent to

$$x \notin A \text{ iff } f(x) \notin L, \text{ i.e. } x \in A' \text{ iff } f(x) \in L'$$

Therefore, the same reduction function can be used to reduce A' to L', and L' is NP-Hard as well.