Why do things have eyes?

- To see other things!
- Visual stimulus is an important signal
- Started as photoreceptive protein (eyespots)

Eyespots - the beginning of vision

- Eyespots are sensitive to ambient light
- Just rough direction:
 - Euglena swim towards light for better photosynthesis
 - Snails move away from light
- No nerves, brain, or processing
- Very low acuity (light from many directions all hits same sensitive area)
- Started EVOLVING...

Pit eyes - the first eyes?

- Photosensitive cells in pits
- Block some light
- More information about where light direction
- Very common
 - Evolved 40-65 times
 - 28 of 33 animal phyla have them
- Very simple, low acuity

Simple -> complex eyes

Complex eyes - high acuity

Focussing: changing refraction

(a) Viewing a distant object

(b) Viewing a near object

© 2011 Pearson Education, Inc.

Complex eyes - a huge advantage

- Many different styles, mechanisms
 - >= 10, accounting for many of the ways our cameras work now
- Same goal: better visual acuity (resolution)
- Rare: 6 of 33 animal phyla
- Beneficial: 96% of known species
 - Is it all because of the eyes??
- Image forming high enough acuity to perceive shapes, objects, etc.

So how do human eyes work?

- Complex!
- Light passes through
 - Cornea, humours, lens refract light to focus
- Hit the retina
- Absorbed by photosensitive cells
- Info transmitted through optic nerve, processed by visual cortex

How do we process this light?

- Hit photoreceptive cells (rods and cones)
- ~120 million of them in retina
- Not all the same, not evenly distributed

Rods - low light, monochrome vision

- ~120 million
- Sensitive to 1 photon
- Can pool responses
- Slow response time
- Only operate in low-light conditions
- Saturate quickly in lots of light
- Take ~7 minutes to adjust (night vision)

Cones - detailed, color vision

- ~6 million
- Need many photons to activate, bright light
- Fast response time
- Fine details
- Fast changes over time
- Responsible for most daytime vision
- Mostly packed into one region: Fovea

Peripheral vision: don't get eaten

- Few cones
 - Low acuity
 - Low perception of color
- Lots of rods, good at night
- At night: look at stars straight on vs slightly next to them. Brighter when you don't look right at them!

Fixational eye movement

- Receptors adjust, lose sensitivity over time
- Eye keeps moving to expose new parts to light
- Microsaccades
 - Short linear movement
 - Sporadic
- Ocular drift
 - Constant slow movement
- Microtremors
 - Tiny vibrations
 - Synchronized between eyes
 - For seeing fine details

Visual cortex is split (maybe)

- Ventral/dorsal hypothesis
- Information goes through V1 and V2
- Splits into streams for different purposes

Ventral vs dorsal stream

Factor	Ventral system	Dorsal system
Function	Recognition/identification	Visually guided behaviour
Sensitivity	High spatial frequencies - details	High temporal frequencies - motion
Memory	Long term stored representations	Only very short-term storage
Speed	Relatively slow	Relatively fast
Consciousness	Typically high	Typically low
Frame of reference	Allocentric or object-centered	Egocentric or viewer-centered
Visual input	Mainly foveal or parafoveal	Across retina
Monocular vision	Generally reasonably small effects	Often large effects e.g. motion parallax

What does this split mean?

- Recognition and action are split!
- Damage to dorsal system:
 - Can recognize objects
 - Poor visual control for tasks like grasping
- Damage to ventral system
 - Cannot recognize objects
 - Can still manipulate them, grasping, etc.
- Much of the information in the dorsal system is not consciously accessible

The brain and vision

- Enormous processing power devoted to vision
- Visual cortex is largest "system" in the brain
 - 30% of the cerebral cortex
 - ²/₃ of the electrical activity
- Lots of processing happening "subconsciously"

Case study: How the brain sees 3d

- One eye

- Focus how much your lens must change to make object clear
- Blur objects that are blurry are at different depth
- Parallax observer or object moves, gets multiple views

- Two eyes

- Stereopsis images from eyes are different
- Convergence where your eyes are pointing

- Brain

- Kinetic depth infer 3d shape of moving objects
- Occlusion objects in front are closer
- Familiar objects you know how big a car is...
- Shading 3d shape from light/shadow cues

We don't really understand vision

- Visual cortex highly studied part of the brain
- Only rough idea of what different components do
- New discoveries in vision all the time
 - Eye uses blinking to reset its rotational orientation
 - Visual cortex can make some "high-level" decisions

