Question 1(a) [3 marks]

List the features of 8051 Microcontroller.

Answer:

The 8051 microcontroller has several important features:

Feature	Description	
СРИ	8-bit CPU optimized for control applications	
Memory	4KB internal ROM, 128 bytes internal RAM	
I/O Ports	4 bidirectional 8-bit I/O ports (P0-P3)	
Timers	Two 16-bit timer/counters (Timer 0 & Timer 1)	
Interrupts	5 interrupt sources with 2 priority levels	
Serial Port	Full duplex UART for serial communication	

Mnemonic: "CPU Memory Input-Output Timers Interrupts Serial" (C-MIT-IS)

Question 1(b) [4 marks]

Define: Opcode, Operand, Instruction cycle, Machine cycle

Answer:

Term	Definition	
Opcode	Operation code that specifies the operation to be performed	
Operand	Data or address on which the operation is performed	
Instruction Cycle	Complete process of fetching, decoding and executing an instruction	
Machine Cycle	Time required to access memory or I/O device	

Diagram:

Mnemonic: "OOID" - Opcode Operand Instruction-cycle Data-cycle

Question 1(c) [7 marks]

Compare Von Neumann and Harvard Architecture.

Answer:

Parameter	Von Neumann	Harvard	
Memory Structure	Single memory for program and data	Separate memory for program and data	
Bus System	Single bus system	Separate bus for program and data	
Speed	Slower due to bus conflicts	Faster simultaneous access	
Cost	Lower cost	Higher cost	
Complexity	Simple design	Complex design	
Examples	8085, x86 processors	8051, DSP processors	

Diagram:

Mnemonic: "VSBSC vs HSDFC" (Von-Single-Bus-Simple-Cheap vs Harvard-Separate-Dual-Fast-Complex)

Question 1(c) OR [7 marks]

Compare RISC and CISC.

Answer:

Parameter	RISC	CISC
Instruction Set	Reduced, simple instructions	Complex instruction set
Instruction Size	Fixed size instructions	Variable size instructions
Execution Time	Single clock cycle per instruction	Multiple clock cycles
Memory Access	Load/Store architecture	Memory-to-memory operations
Compiler	Complex compiler required	Simple compiler
Examples	ARM, MIPS	8085, x86

Diagram:

Mnemonic: "RISC-SFS vs CISC-CSS" (Simple-Fast-Complex vs Complex-Slow-Simple)

Question 2(a) [3 marks]

List the 16-bit Registers available in 8085 and Explain its Function.

Answer:

Register	Function
PC (Program Counter)	Points to next instruction address
SP (Stack Pointer)	Points to top of stack in memory
BC, DE, HL	General purpose register pairs for data storage

- PC: Automatically increments after each instruction fetch
- **SP**: Decrements during PUSH, increments during POP operations
- Register Pairs: Can store 16-bit addresses or data

Mnemonic: "PC SP BDH" (Program-Counter Stack-Pointer BC-DE-HL)

Question 2(b) [4 marks]

Explain Address and Data Bus De-multiplexing in 8085.

Answer:

De-multiplexing separates address and data signals from AD0-AD7 pins.

Process:

- ALE (Address Latch Enable) signal controls the process
- During **T1 state**: AD0-AD7 contains lower 8-bit address
- ALE goes HIGH: Address is latched in external latch (74LS373)
- During **T2-T3**: AD0-AD7 becomes data bus

Diagram:

Mnemonic: "ALE Latches Address Low"

Question 2(c) [7 marks]

Explain Pin Diagram of 8085 with neat sketch.

Answer:

The 8085 is a 40-pin microprocessor with the following pin configuration:

Pin Group	Function	
AD0-AD7	Multiplexed Address/Data bus (Lower 8-bit)	
A8-A15	Higher order Address bus	
ALE	Address Latch Enable signal	
RD, WR	Read and Write control signals	
IO/M	I/O or Memory operation indicator	
S0, S1	Status signals	

Pin Diagram:

```
SID -- | 5 8085 36 | -- RESET IN
TRAP -- | 6
              35 -- READY
RST7.5--|7
              34|-- IO/M
             33 | -- S1
RST6.5-- | 8
              32 | -- RD
RST5.5--|9
INTR -- 10
              31 | -- WR
INTA -- | 11
              30 -- ALE
 AD0 -- | 12
             29 | -- S0
              28 | -- A15
 AD1 -- 13
 AD2 -- 14
             27 | -- A14
             26 | -- A13
 AD3 -- 15
 AD4 -- 16
              25 -- A12
             24 | -- A11
 AD5 -- 17
 AD6 -- 18
              23 -- A10
 AD7 -- 19
              22 | -- A9
 Vss -- 20
              21 | -- A8
       +----+
```

Key Features:

- 40-pin DIP package
- Multiplexed bus reduces pin count
- Control signals for timing and operation
- Interrupt pins for external device communication

Mnemonic: "Address Data Control Power Interrupt" (ADCPI)

Question 2(a) OR [3 marks]

Explain Instruction Fetching Operation in 8085.

Answer:

Instruction fetching is the first step in instruction cycle:

Steps:

- 1. PC contents placed on address bus (A0-A15)
- 2. ALE signal goes high to latch address
- 3. **RD signal** goes low to read memory
- 4. **Instruction** fetched from memory to data bus
- 5. **PC incremented** to point to next instruction

Timing:

- Occurs during **T1 and T2** states of machine cycle
- Takes 4 clock cycles for simple instructions

Mnemonic: "PC ALE RD Fetch Increment" (PARFI)

Question 2(b) OR [4 marks]

Explain Flag Register of 8085.

Answer:

The Flag Register stores status information after arithmetic/logical operations:

Bit	Flag	Function
D7	S (Sign)	Set if result is negative
D6	Z (Zero)	Set if result is zero
D5	-	Not used
D4	AC (Auxiliary Carry)	Set if carry from bit 3 to 4
D3	-	Not used
D2	P (Parity)	Set if result has even parity
D1	-	Not used
D0	CY (Carry)	Set if carry/borrow generated

Diagram:

Mnemonic: "S-Z-X-AC-X-P-X-CY"

Question 2(c) OR [7 marks]

Explain Architecture of 8085 with neat sketch.

Answer:

The 8085 architecture consists of several functional blocks:

Major Components:

- ALU (Arithmetic Logic Unit): Performs arithmetic and logical operations
- Registers: Store data and addresses temporarily
- Control Unit: Generates control signals for operation
- Address/Data Bus: Communicates with external devices

Block Diagram:

Key Features:

- 8-bit microprocessor with 16-bit address bus
- Von Neumann architecture with shared bus
- Register-based operations for faster execution
- Interrupt capability for real-time applications

Mnemonic: "ALU Registers Control Address Data" (ARCAD)

Question 3(a) [3 marks]

Explain Internal RAM Organization of 8051 Microcontroller.

Answer:

The 8051 has 128 bytes of internal RAM organized as:

Address Range	Purpose
00H-1FH	Register Banks (4 banks of 8 registers each)
20H-2FH	Bit Addressable Area (16 bytes)
30H-7FH	General Purpose RAM (80 bytes)

Organization:

• Bank 0: 00H-07H (Default register bank)

• **Bank 1**: 08H-0FH

Bank 2: 10H-17H

• Bank 3: 18H-1FH

Diagram:

Mnemonic: "Register Bit General" (RBG)

Question 3(b) [4 marks]

Explain Function of Each bit of TMOD SFR of 8051 Microcontroller.

Answer:

TMOD (Timer Mode) register controls the operation of Timer 0 and Timer 1:

Bit	Name	Function
D7	GATE1	Timer 1 gate control
D6	C/T1	Timer/Counter select for Timer 1
D5	M11	Mode bit 1 for Timer 1
D4	M01	Mode bit 0 for Timer 1
D3	GATE0	Timer 0 gate control
D2	C/T0	Timer/Counter select for Timer 0
D1	M10	Mode bit 1 for Timer 0
D0	M00	Mode bit 0 for Timer 0

Bit Functions:

• **GATE**: 1 = External gate control, 0 = Internal control

• **C/T**: 1 = Counter mode, 0 = Timer mode

• M1,M0: Timer operating modes (00=Mode0, 01=Mode1, 10=Mode2, 11=Mode3)

Mnemonic: "GATE C/T Mode1 Mode0" for each timer

Question 3(c) [7 marks]

Explain Architecture of 8051 with neat sketch.

Answer:

The 8051 microcontroller has Harvard architecture with separate program and data memory:

Key Components:

• 8-bit CPU with Boolean processor

• Internal ROM: 4KB program memory

• Internal RAM: 128 bytes data memory

• Four I/O Ports: P0, P1, P2, P3 (8-bit each)

• Two Timers: 16-bit Timer/Counter 0 and 1

• Serial Port: Full duplex UART

Architecture Diagram:

Special Features:

• Harvard Architecture: Separate buses for program and data

• SFR (Special Function Registers): Control various peripherals

• Interrupt System: 5 interrupt sources

• Power Saving Modes: Idle and Power-down modes

Mnemonic: "CPU ROM RAM Ports Timers Serial Interrupts" (CRRRPTI)

Question 3(a) OR [3 marks]

Explain PSW SFR of 8051 Microcontroller.

Answer:

PSW (Program Status Word) contains status flags and register bank selection:

Bit	Flag	Function
D7	СҮ	Carry flag
D6	AC	Auxiliary carry flag
D5	F0	Flag 0 (user defined)
D4	RS1	Register bank select bit 1
D3	RS0	Register bank select bit 0
D2	ov	Overflow flag
D1	-	Reserved
D0	P	Parity flag

Register Bank Selection:

• **RS1=0**, **RS0=0**: Bank 0 (00H-07H)

• RS1=0, RS0=1: Bank 1 (08H-0FH)

• **RS1=1, RS0=0**: Bank 2 (10H-17H)

• **RS1=1**, **RS0=1**: Bank 3 (18H-1FH)

Mnemonic: "CY AC F0 RS1 RS0 OV - P"

Question 3(b) OR [4 marks]

Explain Function of Each bit of SCON SFR of 8051 Microcontroller.

Answer:

SCON (Serial Control) register controls the serial port operation:

Bit	Name	Function
D7	SM0	Serial mode bit 0
D6	SM1	Serial mode bit 1
D5	SM2	Multiprocessor communication
D4	REN	Receive enable
D3	ТВ8	9th bit to transmit
D2	RB8	9th bit received
D1	TI	Transmit interrupt flag
D0	RI	Receive interrupt flag

Serial Modes:

• Mode 0: Shift register, fixed baud rate

• Mode 1: 8-bit UART, variable baud rate

• Mode 2: 9-bit UART, fixed baud rate

• Mode 3: 9-bit UART, variable baud rate

Control Functions:

• **REN**: Must be set to enable reception

• TI/RI: Set by hardware, cleared by software

Mnemonic: "SM0 SM1 SM2 REN TB8 RB8 TI RI"

Question 3(c) OR [7 marks]

Explain Pin Diagram of 8051 with neat sketch.

Answer:

The 8051 is available in 40-pin DIP package:

Pin Groups:

• Ports 0-3: I/O pins with dual functions

• Power: VCC, VSS pins

• Crystal: XTAL1, XTAL2 for clock

• Control: RST, EA, ALE, PSEN

Pin Diagram:

```
+---\\ /---+
 P1.0 -- | 1 40 | -- Vcc
                39|-- P0.0/AD0
 P1.1 -- 2
 P1.2 -- 3
                38|-- P0.1/AD1
 P1.3 -- | 4 37 | -- P0.2/AD2
 P1.4 -- | 5 8051 36 | -- P0.3/AD3
            35|-- P0.4/AD4
 P1.5 -- 6
 P1.6 -- | 7
                 34 -- P0.5/AD5
                33 | -- P0.6/AD6
 P1.7 -- 8
  RST -- | 9
                32|-- P0.7/AD7
P3.0/RXD -- | 10
                31 -- EA/VPP
P3.1/TXD -- | 11
                 30 -- ALE/PROG
                29 | -- PSEN
P3.2/INT0--|12
P3.3/INT1--|13
                28 -- P2.7/A15
P3.4/T0 --|14
                27 | -- P2.6/A14
P3.5/T1 -- 15
                26 -- P2.5/A13
P3.6/WR -- | 16
                25|-- P2.4/A12
P3.7/RD -- | 17
                24 | -- P2.3/A11
XTAL2 -- | 18
                 23 | -- P2.2/A10
XTAL1 -- | 19
                22 | -- P2.1/A9
  Vss -- 20
                  21 -- P2.0/A8
         +----+
```

Port Functions:

• Port 0: Multiplexed address/data bus

• Port 1: General purpose I/O

• Port 2: Higher order address bus

• Port 3: Alternate functions (UART, interrupts, timers)

Mnemonic: "Port Power Crystal Control" (PPCC)

Question 4(a) [3 marks]

Write and Explain any Three Data Transfer Instructions of 8051 Microcontroller.

Answer:

Data transfer instructions move data between registers, memory, and I/O:

Instruction	Function
MOV A,R0	Move contents of R0 to Accumulator
MOV R1,#50H	Move immediate data 50H to R1
MOV 30H,A	Move Accumulator contents to address 30H

Code Examples:

```
MOV A,R0 ; A = R0

MOV R1,#50H ; R1 = 50H

MOV 30H,A ; [30H] = A
```

Key Features:

- No flags affected during data transfer
- Various addressing modes supported
- Single cycle execution for most instructions

Mnemonic: "MOV Between Register Immediate Direct" (MBRID)

Question 4(b) [4 marks]

Write 8051 Assembly Language Program to Multiply Content of R0 and R1 and Store Result in R5 (Lower Byte) and R6 (Higher Byte).

Answer:

```
ORG 0000H
                   ; Origin at 0000H
START:
   MOV A, RO
                   ; Load R0 into Accumulator
   MOV B,R1
                   ; Load R1 into B register
   MUL AB
                   ; Multiply A and B
   MOV R5,A
                  ; Store lower byte in R5
   MOV R6,B
                   ; Store higher byte in R6
   SJMP $
                   ; Stop program
                   ; End of program
```

Program Flow:

- 1. Load multiplicand from R0 to A
- 2. Load multiplier from R1 to B
- 3. Execute multiplication using MUL AB
- 4. Store lower byte of result in R5

5. Store higher byte of result in R6

Note: MUL AB instruction automatically stores 16-bit result with lower byte in A and higher byte in B.

Question 4(c) [7 marks]

List Addressing Modes of 8051 Microcontroller and Explain each with Example.

Answer:

The 8051 supports several addressing modes:

Mode	Description	Example	
Immediate	Data specified in instruction	MOV A,#50H	
Register	Register contains data	MOV A,R0	
Direct	Memory address specified	MOV A,30H	
Indirect	Register contains address	MOV A,@R0	
Indexed	Base + offset addressing	MOVC A,@A+DPTR	
Relative	PC + offset	SJMP LABEL	
Bit	Bit-specific operations	SETB P1.0	

Detailed Examples:

1. Immediate Addressing:

```
MOV A,#25H ; A = 25H (immediate data)
```

2. Register Addressing:

```
MOV A,R1 ; A = contents of R1
```

3. Direct Addressing:

```
MOV A,40H ; A = contents of memory location 40H
```

4. Indirect Addressing:

```
MOV R0,#40H ; R0 = 40H (address)
MOV A,@R0 ; A = contents of location pointed by R0
```

Mnemonic: "I-R-D-I-I-R-B" (Immediate Register Direct Indirect Indexed Relative Bit)

Question 4(a) OR [3 marks]

Write and Explain any Three Logical Instructions 8051 Microcontroller.

Answer:

Logical instructions perform bitwise operations:

Instruction	Function	
ANL A,R0	AND Accumulator with R0	
ORL A,#0FH	OR Accumulator with immediate data 0FH	
XRL A,30H	XOR Accumulator with contents of address 30H	

Code Examples:

```
ANL A,RO ; A = A AND RO

ORL A,#0FH ; A = A OR OFH

XRL A,30H ; A = A XOR [30H]
```

Applications:

• ANL: Masking specific bits (clear unwanted bits)

• ORL: Setting specific bits

• XRL: Toggling bits, checksum calculations

Mnemonic: "AND OR XOR" logical operations

Question 4(b) OR [4 marks]

Write 8051 Assembly Language Program to Subtract Number Stored in 2000h from 2001h and Store result in 2002h. All given memory locations are External Memory locations.

Answer:

```
ORG 0000H
                   ; Origin at 0000H
START:
   MOV DPTR, #2001H; Point to minuend address
   MOVX A, @DPTR ; Load minuend from external memory
   MOV RO, A
                 ; Store minuend in R0
   MOV DPTR, #2000H ; Point to subtrahend address
   MOVX A, @DPTR ; Load subtrahend from external memory
   MOV R1,A
            ; Store subtrahend in R1
   MOV A,R0
                 ; Load minuend into A
   CLR C
                 ; Clear carry flag
   SUBB A,R1 ; Subtract: A = R0 - R1
   MOV DPTR, #2002H; Point to result address
```

```
MOVX @DPTR,A ; Store result in external memory

SJMP $ ; Stop program

END ; End of program
```

Program Steps:

- 1. Load minuend from external memory 2001H
- 2. Load subtrahend from external memory 2000H
- 3. **Perform subtraction** using SUBB instruction
- 4. Store result in external memory location 2002H

Note: MOVX instruction is used for external memory access.

Question 4(c) OR [7 marks]

Explain Instructions: (i) RET (ii) PUSH (iii) CLR PSW.0 (iv) RLC A (v) CJNE A,#DATA,LABEL (vi) NOP (vii) ANL A,#DATA

Answer:

Instruction	Function	Description
RET	Return from subroutine	Pops PC from stack and returns control
PUSH 30H	Push to stack	Pushes contents of address 30H to stack
CLR PSW.0	Clear carry flag	Clears bit 0 of PSW (Carry flag)
RLC A	Rotate left through carry	Rotates A left through carry flag
CJNE A,#50H,NEXT	Compare and jump	Jump to NEXT if A ≠ 50H
NOP	No operation	Does nothing, consumes one cycle
ANL A,#0FH	AND with immediate	A = A AND 0FH

Detailed Explanations:

RET: Used to return from subroutine calls

```
CALL SUB1 ; Call subroutine
...
SUB1:
MOV A,#10H
RET ; Return to caller
```

PUSH: Saves data on stack

```
PUSH ACC ; Save accumulator on stack
```

RLC A: Bit rotation with carry

```
CY <- A7 <- A6 <- A5 <- A4 <- A3 <- A2 <- A1 <- A0 <- CY
```

CJNE: Conditional branching

```
CJNE A,#50H,NOT_EQUAL ; If A≠50H, jump to NOT_EQUAL ; A equals 50H
NOT_EQUAL:
; A not equal to 50H
```

Mnemonic: "Return Push Clear Rotate Compare No-op AND" (RPCRNA)

Question 5(a) [3 marks]

List the application of Microcontroller in various fields.

Answer:

Microcontrollers are used in numerous applications across various fields:

Field	Applications
Consumer Electronics	TV remotes, washing machines, microwaves
Automotive	Engine control, ABS, airbag systems
Industrial	Process control, robotics, automation
Medical	Pacemakers, blood glucose meters, ventilators
Communication	Mobile phones, modems, routers
Home Automation	Smart thermostats, security systems, lighting

Key Advantages:

- Low cost and compact size
- Low power consumption
- Real-time operation
- Easy interfacing with sensors and actuators

Mnemonic: "Consumer Automotive Industrial Medical Communication Home" (CAIMCH)

Question 5(b) [4 marks]

Interface Stepper Motor with 8051 Microcontroller and Explain in brief.

Answer:

Stepper motor interfacing requires driver circuit due to current requirements:

Interface Circuit:

```
8051 ULN2003 Stepper Motor
P1.0 ----+---> Input1 -----> Coil A
P1.1 ----+---> Input2 -----> Coil B
P1.2 ----+---> Input3 -----> Coil C
P1.3 ----+---> Input4 -----> Coil D
```

Control Sequence (Half-Step):

Step	P1.3	P1.2	P1.1	P1.0	Binary
1	0	0	0	1	01H
2	0	0	1	1	03H
3	0	0	1	0	02H
4	0	1	1	0	06H
5	0	1	0	0	04H
6	1	1	0	0	0CH
7	1	0	0	0	08H
8	1	0	0	1	09H

Driver Circuit:

• ULN2003: Darlington driver IC provides current amplification

• Protection diodes: Protect against back EMF

• Common ground: Between 8051 and motor supply

Mnemonic: "Step Sequence Driver Protection" (SSDP)

Question 5(c) [7 marks]

Draw interfacing circuit to interface 4 LED at port 2.0 to 2.3 of microcontroller 8051 and write assembly language program to flash it.

Answer:

Interface Circuit:

```
8051 Pin Resistor LED

P2.0 ----> 330Ω ----> LED1 ----> GND

P2.1 ----> 330Ω ----> LED2 ----> GND

P2.2 ----> 330Ω ----> LED3 ----> GND

P2.3 ----> 330Ω ----> LED4 ----> GND
```

Assembly Program:

```
ORG 0000H
                       ; Start address
MAIN:
   MOV P2,#0FH
                      ; Turn ON all LEDs (P2.0-P2.3)
   CALL DELAY
                       ; Call delay subroutine
   MOV P2,#00H
                      ; Turn OFF all LEDs
   CALL DELAY
                      ; Call delay subroutine
   SJMP MAIN
                       ; Repeat flashing
DELAY:
   MOV R0,#255
                     ; Outer loop counter
LOOP1:
   MOV R1,#255
                      ; Inner loop counter
LOOP2:
   DJNZ R1,LOOP2
                      ; Decrement and jump if not zero
   DJNZ R0,LOOP1
                      ; Decrement outer counter
   RET
                       ; Return from delay
END
                       ; End of program
```

Circuit Components:

- **Current limiting resistors**: 330Ω to limit LED current
- LEDs: Connected in active HIGH configuration
- Common ground: All LED cathodes connected to ground

Program Operation:

1. Turn ON LEDs: Set P2.0-P2.3 high

2. **Delay**: Wait for visible flash duration

3. Turn OFF LEDs: Clear P2.0-P2.3

4. Repeat: Continuous flashing loop

Mnemonic: "Resistor LED Ground Program" (RLGP)

Question 5(a) OR [3 marks]

Draw Interfacing of Push button switch and LED with 8051 Microcontroller.

Answer:

Interface Circuit:

Circuit Description:

• Push Button: Connected to P1.0 with pull-up resistor

• **Pull-up Resistor**: 10KΩ ensures logic HIGH when switch open

• LED: Connected to P1.1 through current limiting resistor

• **Current Limiting**: 330Ω resistor protects LED

Operation:

• **Switch Open**: P1.0 = 1 (HIGH)

• Switch Pressed: P1.0 = 0 (LOW)

• LED Control: Through P1.1 pin

Mnemonic: "Pull-up Switch LED Current-limit" (PSLC)

Question 5(b) OR [4 marks]

Interface Relay with 8051 Microcontroller and Explain in brief.

Answer:

Interface Circuit:

Components:

• Transistor BC547: Switching element for relay coil

• **Base Resistor**: 1KΩ limits base current

• Flyback Diode: 1N4007 protects against back EMF

• Relay: 12V DC relay with NO/NC contacts

Operation:

- 1. **Logic HIGH** on P1.0 \rightarrow Transistor ON \rightarrow Relay energized
- 2. **Logic LOW** on P1.0 \rightarrow Transistor OFF \rightarrow Relay de-energized
- 3. Relay contacts switch the load circuit

Protection:

- Flyback diode prevents damage from relay coil's back EMF
- Current limiting through base resistor

Mnemonic: "Transistor Resistor Diode Relay" (TRDR)

Question 5(c) OR [7 marks]

Interface 7 segment LED with 8051 Microcontroller and write assembly language program to print 0 on it.

Answer:

Interface Circuit:

```
a
------
f | b | g |
------
e | C |
8051 Connections:
P1.0 — 330Ω — a segment
P1.1 — 330Ω — b segment
P1.2 — 330Ω — c segment
P1.3 — 330Ω — d segment
P1.4 — 330Ω — e segment
P1.5 — 330Ω — f segment
P1.6 — 330Ω — g segment
P1.7 — 330Ω — dp (decimal point)

Common Cathode: All cathodes to GND
```

7-Segment Code Table:

Digit	Display	gfedcba	Hex Code
0	Display 0	0111111	3FH
1	Display 1	0000110	06H
2	Display 2	1011011	5BH

Assembly Program to Display '0':

```
ORG 0000H ; Start address

MAIN:

MOV P1,#3FH ; Display '0' on 7-segment
; a,b,c,d,e,f ON, g OFF
SJMP MAIN ; Keep displaying

END ; End of program
```

Segment Pattern for '0':

• **Segments ON**: a, b, c, d, e, f (bits 0-5 = 1)

• **Segment OFF**: g (bit 6 = 0)

• **Binary**: 00111111 = 3FH

Circuit Features:

• Common Cathode: All segment cathodes connected to ground

• **Current Limiting**: 330Ω resistors for each segment

• Active HIGH: Logic 1 turns ON segment

Alternative Patterns:

```
; Other digits can be displayed using:

MOV P1,#06H ; Display '1'

MOV P1,#5BH ; Display '2'
```

Mnemonic: "Seven Segments Common Cathode Current-limit" (SSCCC)