Fatgraphs of $M_{1,2}$

Automatically generated by FatGHoL 5.4 (See: http://fatghol.googlecode.com/)

2012-02-09

There are a total of 24 undecorated fatgraphs in the Kontsevich graph complex of $M_{1,2}$, originating 43 marked ones.

Contents

Notation	2
Fatgraphs with 3 edges / 1 vertex	3
Fatgraphs with 4 edges / 2 vertices	5
Fatgraphs with 5 edges / 3 vertices	9
Fatgraphs with 6 edges / 4 vertices	16
Markings of fatgraphs with trivial automorphisms	21

Notation

We denote $G_{m,j}$ the j-th graph in the set of undecorated fatgraphs with m edges; the symbol $G_{m,j}^{(k)}$ denotes the k-th inequivalent marking of $G_{m,j}$.

Fatgraph vertices are marked with lowercase latin letters "a", "b", "c", etc.; edges are marked with an arabic numeral starting from "1"; boundary cycles are denoted by lowercase greek letters " α ", " β ", etc.

Automorphisms are specified by their action on the set of vertices, edges, and boundary cycles: for each automorphism A_k , a table line lists how it permutes vertices, edges and boundary cycles relative to the identity morphism A_0 . The automorphism table is printed only if the automorphism group is non-trivial.

Automorphisms that reverse the orientation of the unmarked fatgraph are indicated with a "†" symbol in the automorphism table; those that reverse the orientation of the marked fatgraphs are distinguished with a "‡" sign.

If a fatgraph is orientable, a "Markings" section lists all the inequivalent ways of assigning distinct numbers $\{0, \ldots, n-1\}$ to the boundary cycles; this is of course a set of representatives for the orbits of \mathfrak{S}_n under the action of $\mathrm{Aut}(G)$.

A separate section lists the differential of marked fatgraphs; graphs with null differential are omitted. If no marked fatgraph has a non-zero differential, the entire section is dropped.

Boundary cycles are specified using a "sequence of corners" notation: each corner is represented as $^pL^q$ where L is a latin letter indicating a vertex, and $p,\ q$ are the attachment indices of the incoming and outgoing edges, respectively. Attachment indices match the Python representation of the vertex: e.g., if a=Vertex([0,0,1]), the two legs of edge 0 have attachment indices 0 and 1, and the boundary cycle enclosed by them is represented by the (single) corner $^0a^1$.

Fatgraphs with 3 edges / 1 vertex

There are 3 unmarked fatgraphs in this section, originating 8 marked fatgraphs (3 orientable, and 5 nonorientable).

The Fatgraph $G_{3,0}$ (2 orientable markings)

Boundary cycles

$$lpha=({}^2a^3
ightarrow{}^3a^4
ightarrow{}^1a^2
ightarrow{}^0a^1
ightarrow{}^5a^0) \ eta=({}^4a^5)$$

Markings

Fatgraph $G_{3,0}$ only has the identity automorphism, so the marked fatgraphs $G_{3,0}^{(0)}$ to $G_{3,0}^{(2)}$ are formed by decorating boundary cycles of $G_{3,0}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{3,1}$ (non-orientable, no orientable markings)

Boundary cycles

$$lpha = ({}^3a^4 o {}^0a^1) \ eta = ({}^1a^2 o {}^2a^3 o {}^4a^5 o {}^5a^0)$$

Automorphisms

The Fatgraph $G_{3,2}$ (1 orientable marking)

Boundary cycles

$$lpha = (^2a^3
ightarrow ^4a^5
ightarrow ^0a^1) \ eta = (^1a^2
ightarrow ^3a^4
ightarrow ^5a^0)$$

Automorphisms

A_0	a	0	1	2	α	β
A_1^{\ddagger}	a	2	0	1	β	α
A_2	a	1	2	0	α	β
A_3 [‡]	a	0	1	2	β	α
A_4	a	2	0	1	α	β
${A_5}^{\ddagger}$	a	1	2	0	β	α

Markings

Fatgraphs with 4 edges / 2 vertices

There are 8 unmarked fatgraphs in this section, originating 24 marked fatgraphs (10 orientable, and 14 nonorientable).

The Fatgraph $G_{4,0}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^3a^4 o {}^1a^2 o {}^0a^1 o {}^4a^0 o {}^2a^3 o {}^2b^0 o {}^1b^2) \ eta = ({}^0b^1)$$

Markings

Fatgraph $G_{4,0}$ only has the identity automorphism, so the marked fatgraphs $G_{4,0}^{(0)}$ to $G_{4,0}^{(2)}$ are formed by decorating boundary cycles of $G_{4,0}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{4,1}$ (2 orientable markings)

$$lpha = ({}^2a^3
ightarrow {}^0a^1
ightarrow {}^0b^1
ightarrow {}^1a^2
ightarrow {}^2b^0
ightarrow {}^4a^0
ightarrow {}^1b^2) \ eta = ({}^3a^4)$$

Markings

Fatgraph $G_{4,1}$ only has the identity automorphism, so the marked fatgraphs $G_{4,1}^{(0)}$ to $G_{4,1}^{(2)}$ are formed by decorating boundary cycles of $G_{4,1}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{4,2}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^3a^0
ightarrow {}^1a^2
ightarrow {}^0a^1
ightarrow {}^1b^2
ightarrow {}^2a^3
ightarrow {}^3b^0
ightarrow {}^0b^1) \ eta = ({}^2b^3)$$

Markings

Fatgraph $G_{4,2}$ only has the identity automorphism, so the marked fatgraphs $G_{4,2}^{(0)}$ to $G_{4,2}^{(2)}$ are formed by decorating boundary cycles of $G_{4,2}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{4,3}$ (2 orientable markings)

$$lpha = ({}^2a^3
ightarrow {}^2b^0
ightarrow {}^1b^2
ightarrow {}^0a^1
ightarrow {}^4a^0) \ eta = ({}^1a^2
ightarrow {}^3a^4
ightarrow {}^0b^1)$$

Markings

Fatgraph $G_{4,3}$ only has the identity automorphism, so the marked fatgraphs $G_{4,3}^{(0)}$ to $G_{4,3}^{(2)}$ are formed by decorating boundary cycles of $G_{4,3}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{4,4}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^3a^4 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^2b^0 o {}^4a^0) \ eta = ({}^2a^3 o {}^1b^2)$$

Markings

Fatgraph $G_{4,4}$ only has the identity automorphism, so the marked fatgraphs $G_{4,4}^{(0)}$ to $G_{4,4}^{(2)}$ are formed by decorating boundary cycles of $G_{4,4}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{4,5}$ (non-orientable, no orientable markings)

$$lpha = ({}^2a^3 o {}^0a^1 o {}^0b^1 o {}^1a^2 o {}^3b^0 o {}^2b^3) \ eta = ({}^3a^0 o {}^1b^2)$$

Automorphisms

The Fatgraph $G_{4,6}$ (non-orientable, no orientable markings)

Boundary cycles

$$lpha = ({}^2a^3 o {}^2b^3 o {}^0a^1 o {}^0b^1) \ eta = ({}^1a^2 o {}^3a^0 o {}^3b^0 o {}^1b^2)$$

Automorphisms

A_0	a	b	0	1	2	3	α	β
$A_1^{\dagger \ddagger}$	a	b	1	3	0	2	β	α
A_2	a	b	3	2	1	0	α	β
A_3 †‡	a	b	2	0	3	1	β	α
A_4^{\dagger}	b	a	1	3	0	2	α	β
${A_5}^{\ddagger}$	b	a	3	2	1	0	β	α
$A_6{}^\dagger$	b	a	2	0	3	1	α	β
${A_7}^{\ddagger}$	b	a	0	1	2	3	β	α

The Fatgraph $G_{4,7}$ (non-orientable, no orientable markings)

Boundary cycles

$$lpha = ({}^3a^0 o {}^3b^0 o {}^0a^1 o {}^0b^1) \ eta = ({}^1a^2 o {}^2a^3 o {}^1b^2 o {}^2b^3)$$

Automorphisms

A_0	a	b	0	1	2	3	α	β
$A_1^{\dagger \ddagger}$	a	b	3	1	2	0	β	α
A_2^{\dagger}	b	a	0	2	1	3	α	β
A_3^{\ddagger}	b	a	3	2	1	0	β	α

Fatgraphs with 5 edges / 3 vertices

There are 8 unmarked fatgraphs in this section, originating 30 marked fatgraphs (15 orientable, and 15 nonorientable).

The Fatgraph $G_{5,0}$ (2 orientable markings)


```
Fatgraph([
    Vertex([1, 0, 2, 3]),# a
    Vertex([1, 0, 2]), # b
    Vertex([4, 4, 3]), # c
])
```

Boundary cycles

$$lpha = ({}^2a^3 o {}^1a^2 o {}^0a^1 o {}^2c^0 o {}^3a^0 o {}^1c^2 o {}^2b^0 o {}^1b^2 o {}^0b^1)$$

 $eta = ({}^0c^1)$

Markings

Fatgraph $G_{5,0}$ only has the identity automorphism, so the marked fatgraphs $G_{5,0}^{(0)}$ to $G_{5,0}^{(2)}$ are formed by decorating boundary cycles of $G_{5,0}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{5,0}^{(0)}) = +G_{4,0}^{(0)}$$
 $D(G_{5,0}^{(1)}) = +G_{4,0}^{(1)}$

The Fatgraph $G_{5,1}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^3a^0 o {}^1a^2 o {}^0a^1 o {}^1b^2 o {}^2a^3 o {}^1c^2 o {}^2c^0 o {}^2b^0 o {}^0b^1)$$

 $eta = ({}^0c^1)$

Markings

Fatgraph $G_{5,1}$ only has the identity automorphism, so the marked fatgraphs $G_{5,1}^{(0)}$ to $G_{5,1}^{(2)}$ are formed by decorating boundary cycles of $G_{5,1}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{5,1}^{(0)}) = -G_{4,0}^{(0)}$$
 $D(G_{5,1}^{(1)}) = -G_{4,0}^{(1)}$

The Fatgraph $G_{5,2}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^2a^0
ightarrow {}^0c^1
ightarrow {}^1a^2
ightarrow {}^0a^1
ightarrow {}^3c^0
ightarrow {}^1b^2
ightarrow {}^1c^2
ightarrow {}^2b^0
ightarrow {}^0b^1) \ eta = ({}^2c^3)$$

Markings

Fatgraph $G_{5,2}$ only has the identity automorphism, so the marked fatgraphs $G_{5,2}^{(0)}$ to $G_{5,2}^{(2)}$ are formed by decorating boundary cycles of $G_{5,2}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{5,2}^{(0)}) = +2G_{4,0}^{(0)}$$
 $D(G_{5,2}^{(1)}) = +2G_{4,0}^{(1)}$

The Fatgraph $G_{5,3}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^2a^3 o {}^0a^1 o {}^2c^0 o {}^1a^2 o {}^0c^1 o {}^2b^0 o {}^1b^2) \ eta = ({}^3a^0 o {}^1c^2 o {}^0b^1)$$

Markings

Fatgraph $G_{5,3}$ only has the identity automorphism, so the marked fatgraphs $G_{5,3}^{(0)}$ to $G_{5,3}^{(2)}$ are formed by decorating boundary cycles of $G_{5,3}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{5,3}^{(0)}) = +G_{4,0}^{(2)}$$
 $D(G_{5,3}^{(1)}) = +G_{4,0}^{(2)}$

The Fatgraph $G_{5,4}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^2a^3 o {}^2c^0 o {}^0a^1 o {}^0b^1) \ eta = ({}^1c^2 o {}^1a^2 o {}^1b^2 o {}^3a^0 o {}^0c^1 o {}^2b^0)$$

Automorphisms

Markings

Fatgraph $G_{5,4}$ only has the identity automorphism, so the marked fatgraphs $G_{5,4}^{(0)}$ to $G_{5,4}^{(2)}$ are formed by decorating boundary cycles of $G_{5,4}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{5,4}^{(0)}) = +2G_{4,0}^{(0)}$$
 $D(G_{5,4}^{(1)}) = +2G_{4,0}^{(1)}$

The Fatgraph $G_{5,5}$ (2 orientable markings)

$$lpha = ({}^2a^0 o {}^0c^1 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^3c^0 o {}^2b^0 o {}^2c^3) \ eta = ({}^1c^2 o {}^1b^2)$$

Markings

Fatgraph $G_{5,5}$ only has the identity automorphism, so the marked fatgraphs $G_{5,5}^{(0)}$ to $G_{5,5}^{(2)}$ are formed by decorating boundary cycles of $G_{5,5}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,6}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^1c^2 o {}^3a^0 o {}^1a^2 o {}^0a^1 o {}^0b^1 o {}^2a^3 o {}^0c^1 o {}^2b^0) \ eta = ({}^2c^0 o {}^1b^2)$$

Automorphisms

Markings

Fatgraph $G_{5,6}$ only has the identity automorphism, so the marked fatgraphs $G_{5,6}^{(0)}$ to $G_{5,6}^{(2)}$ are formed by decorating boundary cycles of $G_{5,6}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{5,7}$ (non-orientable, 1 orientable marking)

Boundary cycles

$$lpha = ({}^3a^0 o {}^2b^0 o {}^0a^1 o {}^1c^2 o {}^0b^1)$$

 $eta = ({}^1a^2 o {}^2a^3 o {}^2c^0 o {}^0c^1 o {}^1b^2)$

Automorphisms

Markings

Fatgraphs with 6 edges / 4 vertices

There are 5 unmarked fatgraphs in this section, originating 18 marked fatgraphs (9 orientable, and 9 nonorientable).

The Fatgraph $G_{6,0}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0 o {}^2a^0 o {}^0c^1 o {}^1a^2 o {}^0a^1 o {}^1b^2 o {}^1c^2 o {}^2b^0 o {}^2c^0 o {}^0b^1 o {}^1d^2)$$
 $eta = ({}^0d^1)$

Markings

Fatgraph $G_{6,0}$ only has the identity automorphism, so the marked fatgraphs $G_{6,0}^{(0)}$ to $G_{6,0}^{(2)}$ are formed by decorating boundary cycles of $G_{6,0}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{5,0}^{(0)}) = -G_{5,0}^{(0)} - G_{5,0}^{(2)}$$
 $D(G_{6,0}^{(1)}) = -G_{5,0}^{(1)} - G_{5,1}^{(3)}$

The Fatgraph $G_{6,1}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^2d^0
ightarrow {}^2a^0
ightarrow {}^1c^2
ightarrow {}^0a^1
ightarrow {}^1b^2
ightarrow {}^0c^1
ightarrow {}^0d^1
ightarrow {}^2b^0) \ eta = ({}^1a^2
ightarrow {}^2c^0
ightarrow {}^1d^2
ightarrow {}^0b^1)$$

Automorphisms

A_0												
A_1	b	d	a	С	2	4	5	0	1	3	α	β
A_2	С	a	d	b	3	4	0	5	1	2	α	β
A_3	d	С	b	a	5	1	3	2	4	0	α	β

Markings

Fatgraph $G_{6,1}$ only has the identity automorphism, so the marked fatgraphs $G_{6,1}^{(0)}$ to $G_{6,1}^{(2)}$ are formed by decorating boundary cycles of $G_{6,1}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

Differentials

$$D(G_{6,1}^{(0)}) = +2G_{5,0}^{(0)} - G_{5,1}^{(4)} \qquad \qquad D(G_{6,1}^{(1)}) = +2G_{5,0}^{(1)} - G_{5,2}^{(5)}$$

The Fatgraph $G_{6,2}$ (2 orientable markings)

Boundary cycles

$$lpha = ({}^2a^0
ightarrow {}^1a^2
ightarrow {}^0a^1
ightarrow {}^2c^0
ightarrow {}^0c^1
ightarrow {}^0d^1
ightarrow {}^2b^0
ightarrow {}^0b^1
ightarrow {}^1d^2) \ eta = ({}^2d^0
ightarrow {}^1c^2
ightarrow {}^1b^2)$$

Automorphisms

A_0	a	b	С	d	0	1	2	3	4	5	α	β
A_1	a	d	b	С	2	0	1	4	5	3	α	β
A_2	a	С	d	b	1	2	0	5	3	4	α	β

Markings

Fatgraph $G_{6,2}$ only has the identity automorphism, so the marked fatgraphs $G_{6,2}^{(0)}$ to $G_{6,2}^{(2)}$ are formed by decorating boundary cycles of $G_{6,2}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,3}$ (2 orientable markings)

Boundary cycles

$$\alpha = ({}^2a^0 \to {}^1a^2 \to {}^0a^1 \to {}^1b^2 \to {}^0c^1 \to {}^0d^1 \to {}^2b^0 \to {}^2c^0 \to {}^0b^1 \to {}^1d^2)$$

$$\beta = ({}^2d^0 \to {}^1c^2)$$

Automorphisms

	A_0	a	b	С	d	0	1	2	3	4	5	α	β
ĺ	A_1	b	a	d	С	5	1	2	4	3	0	α	β

Markings

Fatgraph $G_{6,3}$ only has the identity automorphism, so the marked fatgraphs $G_{6,3}^{(0)}$ to $G_{6,3}^{(2)}$ are formed by decorating boundary cycles of $G_{6,3}$ with all permutations of (0,1) in lexicographic order. See Section "Markings of fatgraphs with trivial automorphisms" for a complete table.

The Fatgraph $G_{6,4}$ (non-orientable, 1 orientable marking)

Boundary cycles

$$lpha = ({}^{1}a^{2}
ightarrow {}^{0}a^{1}
ightarrow {}^{0}b^{1}
ightarrow {}^{0}c^{1}
ightarrow {}^{2}c^{0}
ightarrow {}^{1}d^{2}) \ eta = ({}^{2}d^{0}
ightarrow {}^{2}a^{0}
ightarrow {}^{1}b^{2}
ightarrow {}^{1}c^{2}
ightarrow {}^{0}d^{1}
ightarrow {}^{2}b^{0})$$

Automorphisms

A_0												
$A_1^{\dagger \ddagger}$	b	a	d	С	5	1	2	3	4	0	β	α
A_2												
$A_3^{\dagger \ddagger}$	d	С	b	a	5	3	4	1	2	0	β	α

Markings

Markings of fatgraphs with trivial automorphisms

This appendix shows the numbering of marked fatgraphs when the base unmarked fatgraph G has only the trivial automorphism.

	$G^{(0)}$	$G^{(1)}$
α	0	1
β	1	0