Elektronikpraktikum Auswertung: Versuchstag 6 Lock-in Verstärker

Gruppe 01 Patrick Heuer Benjamin Lotter

Übersicht

- Aufbau eines Lock-In Verstärkers
 - Phasenschieber
 - Komparatorenschaltung
 - Eingangsverstärker
 - Analogschalter
- 2 Test und Andwendung des Lock-In-Verstärkers
 - Erster Funktionstest

Übersicht

- Aufbau eines Lock-In Verstärkers
 - Phasenschieber
 - Komparatorenschaltung
 - Eingangsverstärker
 - Analogschalter
- 2 Test und Andwendung des Lock-In-Verstärkers
 - Erster Funktionstest

Phsenscheiber

Phasenschieber

• Verschiebung der Phase $U=e^{-i\omega} \to e^{-i\omega+\varphi}$ in Abhängigkeit vom Potentiometer R_{pot}

Phsenscheiber

Funktionsweise

Aus Vorbereitung wissen wir:

$$U_{out} pprox \underbrace{\frac{1 - if2\pi R_{poti}C}{1 + if2\pi R_{poti}}}_{|\cdot|=1} \cdot U_{in}$$

$$\varphi = \arctan\left(\frac{2CR_{poti}f2\pi}{1 - C^2R_{poti}^2(f2\pi)^2}\right)$$

Phsenscheiber

Phase(1-1): 0.0° Phase(2-1): -122°
Undo Autroscale Of All Normal

Figure: $\varphi = 0^{\circ}$

Figure: $\varphi = 130^{\circ}$

Phasenschieber

$R_{poti}/k\Omega$	$\varphi/^{\circ}$
6.18	17
16.8	43
23.8	57
42.38	90
71.2	120

Phasenschieber

Funktioniert der Phasenschieber auch für andere Signalformen?

Figure: Rechtecksspannung

Figure: Dreicksspannung

Phasenschieber

Funktioniert der Phasenschieber auch für andere Signalformen?

Erklärung

???

Komparatoren

Komparatoren

• Wandlung des Sinus-Signals in Rechteckssignal

Komparatoren

Funktionsweise

 Funktion wie Komparator aus Versuch ???

$$U_{out} = \begin{cases} U_{CC} & \text{falls} \quad U_1 > U_2 \\ U_{EE} & \text{falls} \quad U_1 < U_2 \end{cases}$$

- Sinus and Komparator erzeugt Rechteckssignal
- Anschlüsse entgegengesetzt geschalten → Signale gegengleich

Komparatoren Messungen

Figure: ohne Phasenverschiebung

Figure: mit Phasenverschiebung

Bemerkung

• Amplituden erreichen nicht ganz 14V

Eingangsverstärker

Eingangsverstärker¹

- Sinn: Signal soll einmal invertiert und einmal nichtinvertiert weitergeleitet werden
- Spannungsfolger: Impedanzwandlung zum Schutz des Analogschalters
- invertierender Verstärker: Signal wird "umgedreht"

Eingangsverstärker

Widerstande

- ullet Spannungsfolger: v=1
 ightarrow kein Widerstand
- invertierender Verstärker:

$$G = -\frac{R_2}{R_1} = -1 \rightarrow R_2 = R_1 = 10k\Omega$$

Messung

Messung

Verschiebung um 177° (Theorie 180°)

Tiefpass

Tiefpass

- Tiefpassfilter zum ... ???
- $R = 10k\Omega$, $C = 10\mu F$
- Grenzfrequenz

$$f_G = \frac{1}{2\pi RC} = 1.59Hz$$

Übersicht

- Aufbau eines Lock-In Verstärkers
 - Phasenschieber
 - Komparatorenschaltung
 - Eingangsverstärker
 - Analogschalter
- 2 Test und Andwendung des Lock-In-Verstärkers
 - Erster Funktionstest

Testsignalschaltung

U_{in}

• Uin liegt an Tiefpass:

$$U_{in} = \frac{1}{\sqrt{(1 + (R2\pi fC)^2)}} \cdot U_{fr} = 0.892V$$

für
$$f = 777Hz$$
, $U_{fr} = 1V$

Testsignalschaltung

Phase

• Theoretische Phasenverschiebung:

$$\varphi_{Th} = -\arctan(2\pi fCR) = 26.78^{\circ}$$

$$f \ddot{u} r f = 777 Hz$$

Gemessene Phasenverschiebung:

$$\varphi_{Ge} = 21^{\circ}$$

