ICCUB School Machine Learning and Data Mining in Physics

October 20

MACHINE LEARNING: A VIEW FROM THE TRENCHES

Dr. Vicens Gaitan Grupo AIA

AGENDA

- Data Science
- Model driven or Data driven
- Some examples on Basic Science Industrialization
- ML + Big Data: The perfect couple
- Closing the loop: Machine Learning in HEP
- Conclusions

DATA SCIENCE

- There is Science without Data?...
- Science: Model from reality, predictive and falsifiable
- Why now? Huge amounts of data + computing power

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 21th century, requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ☆ Experiment design
- ☆ Bayesian inference
- Supervised learning: decision trees, random forests, logistic regression
- ★ Unsupervised learning: clustering, dimensionality reduction
- ☆ Optimization: gradient descent and variants

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Passionate about the business
- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- Strategic, proactive, creative, innovative and collaborative

PROGRAMMING & DATABASE

- ☆ Computer science fundamentals
- ☆ Scripting language e.g. Pythor
- ☆ Statistical computing packages, e.g., R
- ☆ Databases: SQL and NoSQL
- 🖈 Relational algebr
- Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- Custom reducer
- ☆ Experience with xaaS like AWS

COMMUNICATION & VISUALIZATION

- ☆ Able to engage with senio management
- ☆ Story telling skill:
- ☆ Translate data-driven insights into decisions and actions
- ☆ Visual art design
- ☆ R packages like ggplot or lattice
- ☆ Knowledge of any of visualization tools e.g. Flare. D3.is. Tableau

DATA SCIENTIST

- "Leonardo" in the current days:
 - Machine learning
 - Data munging (Tb of them)
 - Fast programmer
 - Hacker
 - Modeler
 - Good communicator
 - Artist;)

MarketingDistillery.com is a group of practitioners in the area of e-commerce marketing. Our fields of expertise include marketing strategy and optimization: customer tracking and on-site analytics; predictive analytics and econometrics: data warehousing and big data systems: marketing channel insights in Paid Search, SEO, Social, CRM and brand.

MODEL DRIVEN O DATA DRIVEN

- Here is where physicist can make a difference...
- The best model is a huge amount of data,... but correlation dose'ny imply causality.
- ...a realistic analytical modes is better than thousand deep neural networks

Data+Models: explosive mixture

Data+Machine Learning= Quantitative

But..

Data+Model= Quantitative+Causal+Predictive

Be aware: use machine learning when analytical models are not enough

EXEMPLES ON BASIC SCIENCE INDUSTRIALIZATION

- Holomorphic embedding: using some properties of algebraic corves on the complex plane, allow to solve nonlilear multivalued equations non iteratively
- Power systems (Load Flow equations).
- Si*/Vi*= Sum Yij Vj
- Automatic action generation
- Working with NASA in autonomous systems

AGORA Restoration

AGORA Restoration. Monitoring as Exp.Recovered Load.

AGORA Restoration. Propagate from strong Bus

AGORA Restoration

AGORA Restoration. Mesh the network

AGORA Restoration

AGORA Restoration. Synchronizes generation

AGORA Restoration. Recovering Larger Loads

AGORA Restoration. Stabilize Flows & Avoid Overloads

AGORA Restoration

AGORA Restoration

AGORA Restoration. Recovering Smaller loads

AGORA Restoration

AGORA Restoration

EXEMPLES ON BASIC SCIENCE INDUSTRIALIZATION

- Phase Space: load forecasting
- Gas, Electricity, ATM cash, phone calls...
- Embedding of the time dynamics on a low dimensional space

PHOTOVOLTAIC: HOURLY FORECASTING

Customer life cycle representes in a State Space

Markov Chains

- -> Stochastic
- -> Quantum

Customer evolution forecasting

ML +BIG DATA: The perfect couple State SPECTROSCOPY

2014

5 - Examples. Propensity Models for Marketing

Goals

- Developing Purchasing Propensity Models of products.
 - Calculate purchasing propensity of specific financial products for each customer.
 - Quick design and development of models, adapted to the campaign's context.

Methods

- **Conceptualization**: Customer characterization according to its commercial relationship with the Financial Institution.
- **Prediction**: Purchasing Propensity Modeling, based on customers previous purchasing identity information and knowledge..

Results

- Customer behavior Knowledge.
- Determining the best campaigns targets, considering all the customers.
- Complete Customers life cycle modeling, including aspects such as Churn.

5 - Examples. Propensity Models for Marketing

Goals

- Improvement in the purchase of financial products with information from previous purchases.
- Customers Target focused on non-traditional company products.

CIALP

Pension Plan

- Improvement in purchasing new financial products (without previous purchases information)
- First targets extrapolated from the Pension Plan model (regular contributions)
- New model and frequent updating.

Consumer Finance

- Estimate the need for funding.
- Discriminate basic needs from variable needs.
- Select the action levers adapting the value proposition (Product, Price, Channel).

Results

- Doubling the number of products purchased.
- New profile of the contractor: regular contributions (youngest, less income, less contribution than traditional contractor)
- Non-stationary sales.
- Accelerating effect of purchasing.

- Use of datalake for achieving models in line with business objectives.
- Continuous improvement by acquired knowledge. Ex: Increased card use: High probability purchasing target identification based on the volatility of forecasting needs.

BIG DATA PROJECT DEVELOPMENT

5 - Examples. Propensity Models for Marketing

Client segments (red) identified as emerging form, represented by the rest (in blue) in a Commercial margin vs Resources diagram.

5 - Examples. Pricing Models in Financial Products

Goals

- Models development that optimize the price of liability products considering:
 - The minimum price that the client will accept for a specific product.
 - The Global Strategies of the Financial Institution.

Methods

- Conceptualization: Client's characteristics, including its negotiation skills.
- **Prediction**: Models based on GBM (Gradient Boosting Machine) to obtain the minimum price that the client will accept for a specific product.
- Optimization: Global optimization considering the Financial Institution's Strategies.

Results

- Optimum prices for the different products:
 - Individualized per client.
 - Alternatively by client's clusters.
- Software for monitoring and pricing simulation.

BIG DATA PROJECT DEVELOPMENT

5 - Examples. Pricing Models for Financial Products

Probability curves of Price Acceptance vs. Price calculated to different clients segments (left.). The actual hiring is monitorable for better follow-up of the activity (r.).

5 - Examples. Monitoring Large Infrastructures

Goals

- Monitor and detect anomalies in large information structures:
 - Using both structured and non-structured information.
 - With real-time processing capacity.

Methods

- Conceptualization:
 - Unsupervised methodology based on auto-encoders to detect anomalies.
 - Unsupervised methodology to identify the different aspects that could be considered anomalies(SIO), to offer results based on business vocabulary.

Results

- Anomalies detection system based on multiple information sources both structured and nonstructured.
- Visualization tools and analysis of detected anomalies, oriented to search explanatory factors.

BIG DATA PROJECT DEVELOPMENT

5 - Examples. Monitoring Large Infrastructures

ATMs in Palma and Ibiza with unusual night activity. Visualization tools helps understand the nature of this anomaly.

5 - Examples. Text analysis applied to campaigns

Goals

- Use of textual descriptive information from customers relationship to improve propensity models to buy financial products.
- Unsupervised use of the large volume of written text in natural language.

Methods

- **Conceptualization:** unsupervised methodologies such as Word2Vec, gather words referring to a common matter.
- **Prediction**: Propensity models based on GBM (Gradient Boosting Machine), to incorporate the information coming from texts to behavioral models.

Results

- Purchase Propensity models which improve the traditional models based only on customers behavior.
- Can be applied to multiple campaigns of financial products.

BIG DATA PROJECT DEVELOPMENT

5 - Examples. Text analysis applied to campaigns

pca\$x[, 1]

Combined Word2Vec + Behavioral

The choice of the most suitable structuring technology of unsupervised text

COMPETITIVE DATA SCIENCE

"Flavour of Physics" Kaggle Challenge

Completed • \$15,000 • 673 teams

Flavours of Physics: Finding $\tau \rightarrow \mu \mu \mu$

Mon 20 Jul 2015 - Mon 12 Oct 2015 (4 months ago)

#	Δrank	Team Name 1 model uploaded * in the money	Score ②	Entries	Last Submission UTC (Best – Last Submission)
1	-	Go Polar Bears # ‡ *	1.000000	49	Mon, 12 Oct 2015 22:57:38
2	†1	Alexander Gramolin ‡ *	0.999998	12	Mon, 12 Oct 2015 18:38:07
3	‡1	Josef Slavicek ‡ *	0.999897	25	Mon, 12 Oct 2015 21:49:53
4	_	Michal Wojcik	0.999225	35	Mon, 12 Oct 2015 23:57:46 (-3h)
5	_	rakhlin	0.998338	31	Mon, 12 Oct 2015 23:32:18 (-5.8h)
6	_	Archy ‡	0.997784	47	Mon, 12 Oct 2015 20:31:53 (-7.8h)
7	-	Faron	0.995918	66	Mon, 12 Oct 2015 18:15:46
8	-	Alejandro Mosquera	0.994946	28	Mon, 12 Oct 2015 15:23:51 (-19.7h)
9	_	Anton Laptiev	0.994894	61	Mon, 12 Oct 2015 23:56:37
10	_	Andrzej Prałat	0.993957	14	Mon, 12 Oct 2015 18:25:39 (-0.3h)
11	_	Ivanhoe	0.993692	35	Mon, 12 Oct 2015 23:17:39
12	_	George Solymosi	0.993646	95	Mon, 12 Oct 2015 23:58:45 (-0.6h)
13	_	PhysicsTau #	0.993099	90	Mon, 12 Oct 2015 22:30:42
14	†1	Grzegorz Sionkowski	0.992031	49	Mon, 12 Oct 2015 23:50:56 (-27.2h)
15	Į1	Vicens Gaitan [0.989012 physically sound]	0.991860	85	Mon, 12 Oct 2015 20:56:04 (-5.9h)
16	_	achm	0.991841	105	Mon, 12 Oct 2015 13:06:31 (-44.1h)
17	_	bgeol	0.991709	14	Tue, 06 Oct 2015 03:56:14 (-5.3d)

Neural Networks in High Energy Physics: From Pattern Recognition to Exploratory Data Analysis 1

Vicens Gaitan Alcalde Universitat Autònoma de Barcelona Institut de Física d'Altes Energies E-08193 Bellaterra (Barcelona) Spain

November 1993

¹Thesis Dissertation

CLOSING THE LOOP

Machine Learning in HEP

Todat we have:

- Good tools
- Open Data
- CPU power

MACHINE LEARNING IN HEP

Example: exploring tau decay at LEP (ALEPH 1993) (yes, e+ e- physics is cleaner...)

Feeding an autoencoder with "elaborated" detector data we are able to "discover" different decay modes looking at the compressed representation without a physics model (MC)

Today is possible to do "end to end" autoencoding from

raw detector data

Input neuron	Variable Description	Kolmogorov C.L.
1	Number of charged tracks in hemisphere +	0.947
2	Number of charged tracks in hemisphere -	0.339
3	Number of neutral tracks in hemisphere +	0.010
4	Number of neutral tracks in hemisphere -	0.047
5	Total charged energy in hemisphere +	0.131
6	Total charged energy in hemisphere -	0.078
7	Total neutral energy in hemisphere +	0.874
8	Total neutral energy in hemisphere -	0.995
9	Number of identified μ in hemisphere +	1.000
10	Number of identified μ in hemisphere -	1.000
11	Number of identified electrons in hemisphere +	0.367
12	Number of identified electrons in hemisphere -	0.921
13	Number of identified γ in hemisphere +	0.258
14	Number of identified γ in hemisphere -	0.746
15	Planarity	0.489
16	Total momentum in hemisphere +	0.523
17	Total momentum in hemisphere -	0.534
18	Invariant mass	0.90621
-	Output neuron	0.457

CONCLUSIONS

- The combination of Data + Models + Machine learning is changing the way we see the world
 - We can forecast, optimize, action and learn from the experience
- Physicist had good skills and knowledge for the modeling aspects
 - But is also necessary programming, hacking, data munging...
- Problems beyond basic science are also challenging;).
 - Thera are interesting problems and solutions outside the academia. Cross breedin can be fruitful