

Applications of Electronic Structure Methods

Local Structure Optimization

Structure Determines Property

Figure 10. Evolution of the INDO-calculated transfer integrals for electron and hole transfer in a tetracene cofacial dimer, as a function of intermolecular distance.

Example: Even small changes in the geometry have a large impact on band width → carrier mobility!

Global Structure Search

Multiple minima in PES

System in equilibrium is given by ensemble average over all minima

Methods to find the global minimum:

- (Experiment)
- Stochastical or Monte-Carlo
- Basin Hopping
- Molecular dynamics
- Cluster expansion
- Genetic algorithm
- Diffusion methods

Separate Lecture

Local Structure

Properties of a material:

- In theory determined by average of geometry
- In practise, the (local) minimum geometry contributes most

Target:

Find any (preferably: the closest) minimum on the potential energy surface

Different approaches possible:

- Mapping of the whole potential energy surface
- Gradient free methods: e.g,. Simplex method [1]
- Gradient-based methods

[1]: J. Nelder and R. Mead, Comp J (1965), 308

Mapping the potential energy surface

Degrees of freedom (DoF): 3N-6

Points per DoF: p

Calculations required: p^{3N-6}

Example: 5 atoms, 10 points: $10^{15-6} = 10^9$

Intractable for anything realistic!

In practice:

- Cuts through PES (freeze DoFs)
- Parameterized PES
- Partial PES (molecular dynamics)

Full PESs are hardly needed

Gradient-Free Methods

- Choose n+1 start points
- Determine best and worst energy
- Remove worst point
- Project new point by reflection
- > Expand, contract, compress
- Repeat until self-consistent

In practice:

- Only certain DoFs
- Only when gradients are not available or too expensive (highly correlated methods)
- Rarely used