

# BEFORE THAT ....







**DISCRETIZATION** 



Differentiable :  $\nabla f$ ,  $\Delta f$ ,  $\frac{\partial u}{\partial x}$ , ...





#### **CONTINUOUS**



**DISCRETIZATION** 

$$f(x, y, z, ...) = a single float$$

$$f(x, y, z, ...) = a single float$$

$$\frac{\partial f}{\partial x} = \text{How } f \text{ changes when } x \text{ changes a tiny bit}$$



$$f(x, y, z, ...) = a$$
 single float

$$\frac{\partial f}{\partial x}$$
 => How  $f$  changes when  $x$  changes a tiny bit



$$\nabla f = \left[ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \dots \right] \Rightarrow \text{How } f \text{ changes when } x, y, z, \dots \text{ change a tiny bit }$$

$$f(x, y, z, ...) = a$$
 single float



$$\nabla f = \left[ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \dots \right]$$

$$f\left(x + \frac{\partial f}{\partial x}, y + \frac{\partial f}{\partial y}, z + \frac{\partial f}{\partial z}, ...\right) =$$

$$f(x, y, z, ...) = a$$
 single float

$$\nabla f = \left[ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \dots \right]$$

$$f\left(x - \frac{\partial f}{\partial x}, y - \frac{\partial f}{\partial y}, z - \frac{\partial f}{\partial z}, ...\right) =$$

# PHYSICS BASED ANIMATION







DISCRETIZATION REAL WORLD

INITIALIZE

PRE STEP

MEASURE DEFORMATION / CHANGE

PENALIZE

TIME INTEGRATION

POST STEP

DISCRETIZATION REAL WORLD

INITIALIZE

PRE STEP

MEASURE DEFORMATION / CHANGE

PENALIZE

TIME INTEGRATION

POST STEP

## DISCRETIZATION



### DISCRETE REPRESENTATION

#### **LAGRANGIAN**



Particle Fluid

Smoothed-particle hydrodynamics (SPH)

Spring Simulation

Position Based Dynamics /
Extended PBD





Tetrahedral Simulation
Tetrahedral FEM (Finite Element Method)

### DISCRETE REPRESENTATION

#### LAGRANGIAN



Particle Fluid

Smoothed-particle hydrodynamics (SPH)

Spring Simulation
Position Based Dynamics /
Extended PBD





Tetrahedral Simulation
Tetrahedral FEM (Finite Element Method)

#### **EULERIAN**



Smoke Simulation

Voxel Based

#### DISCRETE REPRESENTATION

#### LAGRANGIAN



Particle Fluid

Smoothed-particle hydrodynamics (SPH)

Spring Simulation
Position Based Dynamics /
Extended PBD





Tetrahedral Simulation
Tetrahedral FEM (Finite Element Method)



FLIP/PIC/APIC/POLYPIC/...

#### **EULERIAN**



Smoke Simulation
Voxel Based



MPM
Material Point Method

DISCRETIZATION REAL WORLD

INITIALIZE

MEASURE DEFORMATION / CHANGE

PENALIZE

TIME INTEGRATION

POST STEP









# DEFORMATION / CHANGE



## DISCRETE MODEL

GEOMETRIC BASED

Distance

$$x_0$$
  $x_1$ 

$$e = ||x_1 - x_0||$$

Area



$$A = \frac{\|(x_1 - x_0) \times (x_2 - x_0)\|}{2}$$

Dihedral Angle



$$\theta = \arctan 2(|n_0 \times n_1|, n_0 \cdot n_1)$$

#### **CONTINUOUS MODEL - FEM**

#### **CONTINUUM MECHANICS**

 GOAL: Use the object as a continuous medium to apply differential calculus and compute an elastic energy



#### **CONTINUOUS MODEL - FEM**

#### **CONTINUUM MECHANICS**

- Continuity of deformation depends on the Shape Function (Linear / Non-Linear)
- Build a continuous deformation field : u(x)



CONTINUUM MECHANICS - DEFORMATION GRADIENT

#### **Deformation Gradient**

$$F = \frac{\partial x_{i}}{\partial X_{j}} = \begin{vmatrix} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y} \\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} \end{vmatrix}$$



$$u = x - X$$



Rest

**Deformed** 

CONTINUUM MECHANICS - DEFORMATION GRADIENT

#### **Deformation Gradient**

$$F = \frac{\partial x_{i}}{\partial X_{j}} = \begin{vmatrix} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y} \\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} \end{vmatrix}$$

$$F = I + \frac{\partial u}{\partial X}$$

$$u = x - X$$

#### **Rigid Displacement**



$$F = I = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$

CONTINUUM MECHANICS - DEFORMATION GRADIENT

#### **Deformation Gradient**

$$F = \frac{\partial x_{i}}{\partial X_{j}} = \begin{vmatrix} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y} \\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} \end{vmatrix}$$

$$F = I + \frac{\partial u}{\partial X}$$

$$u = x - X$$

#### **Stretching**



$$F = \begin{vmatrix} 2.0 & 0 \\ 0 & 1.5 \end{vmatrix}$$

CONTINUUM MECHANICS – DEFORMATION GRADIENT

#### **Deformation Gradient**

$$F = \frac{\partial x_{i}}{\partial X_{j}} = \begin{vmatrix} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y} \\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} \end{vmatrix}$$

$$F = I + \frac{\partial u}{\partial X}$$

$$u = x - X$$

#### **Shear**



$$F = \begin{vmatrix} 1.0 & 0.5 \\ 0.5 & 1.0 \end{vmatrix}$$

CONTINUUM MECHANICS - DEFORMATION GRADIENT

#### **Deformation Gradient**

$$F = \frac{\partial x_{i}}{\partial X_{j}} = \begin{vmatrix} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y} \\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} \end{vmatrix}$$

$$F = I + \frac{\partial u}{\partial X}$$

$$u = x - X$$

#### **Rigid Rotation**





$$F = \begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix}$$









## PENALIZE



### **PENALIZE**

- FORCE BASED
- VELOCITY BASED (IMPULSE)
- POSITION BASED

### **PENALIZE**

- FORCE BASED
- VELOCITY BASED (IMPULSE)
- POSITION BASED

### ENERGY FROM DISCRETE MODEL

**GEOMETRIC DEFORMATION** 

• Geometric Deformation => Energy (positive scalar function)

Distance Constraint

 $x_0$   $x_1$ 

Area Constraint



**Bending Constraint** 



### **ENERGY FROM DISCRETE MODEL**

**GEOMETRIC DEFORMATION** 

• Geometric Deformation => Energy (positive scalar function)

Distance Constraint



 $C(x0, x1) = (1 - ||e||/||\bar{e}||)^2 ||\bar{e}||$ 

Area Constraint



 $C(x0, x1, x2) = (1 - ||A||/||\bar{A}||)^2 ||\bar{A}||$ 

**Bending Constraint** 



 $C(x0, x1, x2, x3) = (\theta_e - \bar{\theta}_e)^2 ||\bar{e}||/\bar{h}_e$ 

### ENERGY FROM DISCRETE MODEL

GEOMETRIC DEFORMATION

Geometric Deformation => Energy (positive scalar function)

Distance Constraint

 $x_0$   $x_1$ 

 $C(x0, x1) = (1 - ||e||/||\bar{e}||)^2 ||\bar{e}||$ 

Area Constraint



 $C(x0, x1, x2) = (1 - ||A||/||\bar{A}||)^2 ||\bar{A}||$ 

**Bending Constraint** 



 $C(x0, x1, x2, x3) = (\theta_e - \bar{\theta}_e)^2 ||\bar{e}||/\bar{h}_e$ 



CONTINUUM MECHANICS - DEFORMATION TO ENERGY



$$F = I + \frac{\partial u}{\partial X}$$

CONTINUUM MECHANICS – DEFORMATION TO ENERGY

**Deformation Gradient** 

Strain

**Constitutive Model** 

Energy

$$F = I + \frac{\partial u}{\partial X}$$

Linear Cauchy

$$E = \frac{1}{2}(F^T + F) - I$$

Non-linear Green

$$E = \frac{1}{2}(F^T F - I)$$

CONTINUUM MECHANICS – DEFORMATION TO ENERGY



 $F = I + \frac{\partial u}{\partial X}$ 

#### Strain

Linear Cauchy

$$E = \frac{1}{2}(F^T + F) - I$$

Non-linear Green

$$E = \frac{1}{2}(F^T F - I)$$

#### **Constitutive Model**

- Saint-Venant Kirchhoff
- Corotated Linear Elasticity
- Neo-Hookean
- ..

# User Parameters $\begin{array}{c} Poisson\ ratio\ (v) \\ \hline Young's\ modulus\ (Y) \end{array} \longrightarrow \begin{array}{c} \lambda = \dfrac{vY}{(1+v)(1-2v)} \\ \mu = \dfrac{E}{2(1+v)} \end{array}$

Energy

CONTINUUM MECHANICS – DEFORMATION TO ENERGY



Strain

Constitutive Model Strain Energy Density Function  $(\psi)$ 

Energy

 $F = I + \frac{\partial u}{\partial X}$ 

Linear Cauchy

$$E = \frac{1}{2}(F^T + F) - I$$

Non-linear Green

$$E = \frac{1}{2}(F^T F - I)$$

- Saint-Venant Kirchhoff
- Corotated Linear Elasticity
- Neo-Hookean
- •••

$$\Psi(\mathbf{F}) = \mu \mathbf{E} : \mathbf{E} + \frac{\lambda}{2} tr^2(\mathbf{E})$$

User Parameters

Poisson ratio (v)

Young's modulus (Y)

 $=\frac{vY}{}$ 

Lamé constants (μ, λ)

$$\mu = \frac{E}{2(1+v)}$$

CONTINUUM MECHANICS – DEFORMATION TO ENERGY



 $F = I + \frac{\partial u}{\partial X}$ 

#### Strain

Linear Cauchy

$$E = \frac{1}{2}(F^T + F) - I$$

• Non-linear Green

$$E = \frac{1}{2}(F^T F - I)$$

### Constitutive Model Strain Energy Density Function (ψ)

- Saint-Venant Kirchhoff
- Corotated Linear Elasticity
- Neo-Hookean
- ...

$$\Psi(\mathbf{F}) = \mu \|\mathbf{S} - \mathbf{I}\|_F^2 + (\lambda/2) \operatorname{tr}^2(\mathbf{S} - \mathbf{I})$$

$$\mathbf{F} = \mathbf{RS}$$

Energy



$$\lambda = \frac{vY}{(1+v)(1-2v)}$$

$$\mu = \frac{E}{2(1+v)}$$

Lamé constants (μ, λ)

CONTINUUM MECHANICS – DEFORMATION TO ENERGY



 $F = I + \frac{\partial u}{\partial X}$ 

#### Strain

Linear Cauchy

$$E = \frac{1}{2}(F^T + F) - I$$

Non-linear Green

$$E = \frac{1}{2}(F^T F - I)$$

#### Constitutive Model Strain Energy Density Function $(\psi)$

Energy

- Saint-Venant Kirchhoff
- Corotated Linear Elasticity
- Neo-Hookean
- ...

$$\Psi(I_1, I_3) = \frac{\mu}{2} (I_1 - \log(I_3) - 3) + \frac{\lambda}{8} \log^2(I_3)$$

$$I_1 = \operatorname{tr}(\mathbf{F}^T \mathbf{F})$$

$$I_3 = \det(\mathbf{F}^T \mathbf{F})$$

#### Lamé constants (μ, λ)

User Parameters

Poisson ratio (v)

Young's modulus (Y)

$$\lambda = \frac{vY}{(1+v)(1-2v)}$$

$$\mu = \frac{E}{2(1+v)}$$

CONTINUUM MECHANICS – DEFORMATION TO ENERGY



 $F = I + \frac{\partial u}{\partial X}$ 

#### Strain

Linear Cauchy

$$E = \frac{1}{2}(F^T + F) - I$$

Non-linear Green

$$E = \frac{1}{2}(F^T F - I)$$

### Constitutive Model Strain Energy Density Function $(\psi)$

scale by volume

- Saint-Venant Kirchhoff
- Corotated Linear Elasticity
- Neo-Hookean
- ..

Energy

W(X)

# User Parameters Poisson ratio (v)

Young's modulus (Y)

Lamé constants ( $\mu$ ,  $\lambda$ )

$$\lambda = \frac{vY}{(1+v)(1-2v)}$$

$$\mu = \frac{E}{2(1+v)}$$

#### **DEFINITIONS**

• A force is the negative of the derivate(slope) of the potential energy



*ILLUSTRATIONS* 

# Distance Constraint To Forces

$$f0 = \frac{\partial W}{\partial x_0} \qquad \qquad f1 = \frac{\partial W}{\partial x_1}$$

# Area Constraint to Forces



# Bending Constraint to Forces



$$f0 + f1 = (0,0)$$

*ILLUSTRATIONS* 

Distance Constraint
To Forces

$$f0 = -\frac{\partial W}{\partial x_0} \qquad \qquad x_1$$

$$f1 = -\frac{\partial W}{\partial x_1}$$

# Area Constraint to Forces



$$f0 + f1 = (0,0)$$

$$f0 + f1 + f2 = (0,0)$$

# Bending Constraint to Forces



**ILLUSTRATIONS** 

# Distance Constraint To Forces

$$f0 = \frac{\partial W}{\partial x_0} \qquad \qquad f1 = \frac{\partial W}{\partial x_1}$$

# Area Constraint to Forces



$$f0 + f1 = (0,0)$$

$$f0 + f1 + f2 = (0,0)$$

# Bending Constraint to Forces

$$f0 = \frac{\partial W}{\partial x_0}$$

$$x_0$$

$$f1 = \frac{\partial W}{\partial x_1}$$

$$x_1$$

$$f3 = \frac{\partial W}{\partial x_3}$$

$$f2 = \frac{\partial W}{\partial x_2}$$

$$x_2$$

$$x_3$$

$$f0 + f1 + f2 + f3 = (0,0,0)$$

### WHAT DO SOLVERS DO



### WHAT DO SOLVERS DO



### WHAT DO SOLVERS DO



# TIME INTEGRATION

### PARTICLE STATE



TIME INTEGRATION

#### **EXPLICIT INTEGRATOR**

- Forward Euler (Explicit Euler)
- Runge Kutta (RK2, RK4, RK...)
- Mid point

- Easy to implement
- Conditionally stable

- Backward Euler (Implicit Euler)
- Higher order methods

- Difficult to implement
- Unconditionally stable

TIME INTEGRATION

*h* : timestep (float)

m: mass (float)

v : current velocity(vector2)

*p* : current position(vector2)

f( ): force function (vector2)

TIME INTEGRATION



$$next_v = v + h \frac{f(p)}{m}$$
$$next_p = p + hv$$

```
h: timestep (float)m: mass (float)v: current velocity(vector2)p: current position(vector2)
```

f( ): force function (vector2)

TIME INTEGRATION



m: mass (float)

v : current velocity(vector2)

*p* : current position(vector2)

f( ) : force function (vector 2)

EXPLICIT INTEGRATOR

$$next_v = v + h \frac{f(p)}{m}$$

$$next_p = p + hv$$

$$next_v = v + h \frac{f(next_p)}{m}$$

$$next_p = p + h next_v$$

TIME INTEGRATION



*h* : timestep (float)

m: mass (float)

v : current velocity(vector2)

*p* : current position(vector2)

f( ): force function (vector2)

#### EXPLICIT INTEGRATOR

- Single line
- Conditionally stable

- Solve sparse system
- Unconditionally stable

$$next_v = v + h \frac{f(p)}{m}$$
$$next_p = p + hv$$

$$next_v = v + h \frac{f(next_p)}{m}$$

$$next_p = p + h next_v$$

### **Example: particle-on-line**

- A particle *P* in the plane.
- Interactive "dragging" force  $[f_x, f_y]$ .
- A penalty force [0,-ky] tries to keep P on the x-axis.



- Suppose you want P to stay within a miniscule  $\varepsilon$  of the x-axis when you try to pull it off with a huge force  $f_{\text{max}}$ .
- How big does *k* have to be? How *small* must *h* be?

Baraff, David, and Andrew Witkin. "Implicit Methods: how to not blowup." ACM Transactions on Graphics (SIGGRAPH 1997) (1997).

TIME INTEGRATION





• A spring force -ky tries to keep the particle on the blue line

TIME INTEGRATION

у



• A spring force -ky tries to keep the particle on the blue line

EXPLICIT INTEGRATOR

$$next_y = y + h \frac{-ky}{m}$$

$$next_y = y + h \frac{-k \cdot next_y}{m}$$

TIME INTEGRATION

у



• A spring force -ky tries to keep the particle on the blue line

EXPLICIT INTEGRATOR

$$next_y = y + h \frac{-ky}{m}$$

$$next_y = y + h \frac{-k. next_y}{m}$$

TIME INTEGRATION

У



• A spring force -ky tries to keep the particle on the blue line

EXPLICIT INTEGRATOR

$$next_y = y + h \frac{-ky}{m}$$

$$next_y = y + h \frac{-k \cdot next_y}{m}$$

$$next_y + h \frac{k \cdot next_y}{m} = y$$

TIME INTEGRATION

У



• A spring force -ky tries to keep the particle on the blue line

# EXPLICIT INTEGRATOR

$$next_y = y + h \frac{-ky}{m}$$

$$next_y = y + h \frac{-k \cdot next_y}{m}$$

$$next_y + h \frac{k \cdot next_y}{m} = y$$

$$next_y(1 + \frac{hk}{m}) = y$$

TIME INTEGRATION

У



• A spring force -ky tries to keep the particle on the blue line

# EXPLICIT INTEGRATOR

$$next_y = y + h \frac{-ky}{m}$$

$$next_y = y + h \frac{-k \cdot next_y}{m}$$

$$next_y + h \frac{k \cdot next_y}{m} = y$$

$$next_y(1 + \frac{hk}{m}) = y$$

$$next_y = \frac{y}{1 + \frac{hk}{m}}$$



Baraff, David, and Andrew Witkin. "Implicit Methods: how to not blowup." ACM Transactions on Graphics (SIGGRAPH 1997) (1997).

### VARIATIONAL IMPLICIT EULER

$$next_v = v + h \frac{f(next_p)}{m}$$
  
 $next_p = p + h next_v$ 

### VARIATIONAL IMPLICIT EULER

$$next_v = v + h \frac{f(next_p)}{m}$$

$$next_p = p + h next_v$$



$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$

$$x_{n+1} = x_n + hv_{n+1}$$

### VARIATIONAL IMPLICIT EULER

$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$
$$x_{n+1} = x_n + hv_{n+1}$$

$$x_{n+1} = x_n + h(v_n + hM^{-1}f(x_{n+1}))$$

$$x_{n+1} = x_n + hv_n + h^2M^{-1}f(x_{n+1}))$$

$$x_{n+1} - x_n - hv_n = h^2M^{-1}f(x_{n+1}))$$

$$M(x_{n+1} - x_n - hv_n) = h^2f(x_{n+1})$$

#### VARIATIONAL IMPLICIT EULER

$$M(x_{n+1} - x_n - hv_n) = h^2 f(x_{n+1})$$



$$e(x_{n+1}) = \frac{1}{2h^2} (x_{n+1} - x_n - hv_n)^T M(x_{n+1} - x_n - hv_n) + W(x_{n+1})$$

Minimize the scalar function e(...) with argument  $x_{n+1}$ 

#### VARIATIONAL IMPLICIT EULER

Minimize this scalar function with Newton Iterations



### WHAT DO SOLVERS DO



#### WHAT DO SOLVERS DO



#### DISCRETE SHELLS



### **EXPLICIT MPM**



#### IMPLICIT COROTATED LINEAR FEM



# (X)PBD, nCloth, Bullet ...











**REAL WORLD** 



### WHAT DID WE LEARN!

- Three discretizations
- Discrete vs Continuous
- Time Integrators (Explicit vs Implicit)
- FEM is not about tetrahedron but continuity
- Implicit integration is hard => Workaround (PBD ...)



#### BEYOND THIS PRESENTATION

- Penalty Method vs Lagrange Multiplier
- Direct vs Iterative Linear Solver
- Collision Detection (Discrete vs Continuous)
- Quasi-Static vs Dynamic
- Linear System Assembly
- Other Techniques (SPH / FDM)

# **END**

#### **RESOURCES**

- Houdini PBD Training
- SIGGRAPH 2019 PBA Course
- Ladislav Kavan's Youtube Channel
- Baraff, David, and Andrew Witkin. "Implicit Methods: how to not blow up." ACM Transactions on Graphics (SIGGRAPH 1997) (1997).

# MORE DETAILS

TIME INTEGRATION

EXPLICIT INTEGRATOR

$$v_{n+1} = v_n + hM^{-1}f(x_n)$$

$$x_{n+1} = x_n + hv_{n+1}$$

IMPLICIT INTEGRATOR

$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$

$$x_{n+1} = x_n + hv_{n+1}$$

h: timestep

 $M^{-1}$ : mass inverse

f( ): force function

 $v_n$ : current velocity

 $x_n$ : current position

 $v_{n+1}$ : next velocity

 $x_{n+1}$ : next position

TIME INTEGRATION

EXPLICIT INTEGRATOR

$$v_{n+1} = v_n + hM^{-1}f(x_n)$$

$$x_{n+1} = x_n + hv_{n+1}$$

IMPLICIT INTEGRATOR

$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$

$$x_{n+1} = x_n + hv_{n+1}$$

*h* : timestep

 $M^{-1}$ : mass inverse

f(): force function

 $v_n$ : current velocity

 $x_n$ : current position

 $v_{n+1}$ : next velocity

 $x_{n+1}$ : next position

TIME INTEGRATION

EXPLICIT INTEGRATOR

$$v_{n+1} = v_n + hM^{-1}f(x_n)$$

$$x_{n+1} = x_n + hv_{n+1}$$

IMPLICIT INTEGRATOR

$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$

$$x_{n+1} = x_n + hv_{n+1}$$

h: timestep

 $M^{-1}$ : mass inverse

f( ): force function

 $v_n$ : current velocity

 $x_n$ : current position

 $v_{n+1}$ : next velocity

 $x_{n+1}$ : next position

TIME INTEGRATION

EXPLICIT INTEGRATOR

$$v_{n+1} = v_n + hM^{-1}f(x_n)$$

$$x_{n+1} = x_n + hv_{n+1}$$

- Single line
- Conditionally stable

IMPLICIT INTEGRATOR

$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$

$$x_{n+1} = x_n + hv_{n+1}$$

- Solve sparse system
- Unconditionally stable

#### STABILITY PROOF

#### **Example: particle-on-line**

- A particle *P* in the plane.
- Interactive "dragging" force  $[f_x, f_y]$ .
- A penalty force [0,-ky] tries to keep P on the x-axis.



- Suppose you want P to stay within a miniscule  $\varepsilon$  of the x-axis when you try to pull it off with a huge force  $f_{\text{max}}$ .
- How big does *k* have to be? How *small* must *h* be?

Baraff, David, and Andrew Witkin. "Implicit Methods: how to not blowup." ACM Transactions on Graphics (SIGGRAPH 1997) (1997).

#### STABILITY PROOF

### Implicit Euler for $\dot{x} = -kx$

$$x(t+h) = x(t) + h f(x(t+h))$$

$$= x(t) - h kx(t+h)$$

$$= \frac{x(t)}{1+hk}$$

- Nonlinear: Approximate as linear, using  $\partial f/\partial x$ .
- Multidimensional: (sparse) matrix equation.

Baraff, David, and Andrew Witkin. "Implicit Methods: how to not blowup." ACM Transactions on Graphics (SIGGRAPH 1997) (1997).

#### STABILITY PROOF



Baraff, David, and Andrew Witkin. "Implicit Methods: how to not blowup." ACM Transactions on Graphics (SIGGRAPH 1997) (1997).

## SOME MORE

#### VARIATIONAL IMPLICIT EULER

$$next_v = v + h \frac{f(next_p)}{m}$$
  
 $next_p = p + h next_v$ 



$$v_{n+1} = v_n + hM^{-1}f(x_{n+1})$$

$$x_{n+1} = x_n + hv_{n+1}$$



TRANSFORM INTO OPTIMIZATION PROBLEM

$$e(x_{n+1}) = \frac{1}{2h^2} (x_{n+1} - x_n - hv_n)^T M(x_{n+1} - x_n - hv_n) + W(x_{n+1})$$

Find  $x_{n+1}$  to get a minimization of e by using the newton iteration

### QUASI-STATIC VS DYNAMIC

**EXAMPLE: ENERGY MINIMIZATION OF GRAVITIONAL ENERGY** 



POTENTIAL ENERGY

#### OTHER MODELS

#### FINITE ELEMENT METHOD (FEM)

|    | (0,N-1) | (1,N-1) | (2,N-1)<br>→ ⊙ | (M-1,N-1)   |
|----|---------|---------|----------------|-------------|
|    | (0,2)   | (1,2)   | (2,2)          | (M-1,2)     |
| δy | (0,1)   | (1,1)   | (2,1)          | (M-1,3)     |
| -  | (0,0)   | (1,0)   | (2,0)          | <br>(M-1,0) |

| Operator   | Definition                                                                                | Finite Difference Form                                                                                |  |  |
|------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| Gradient   | $\nabla p = \left[\frac{\partial p}{\partial x}, \frac{\partial p}{\partial y}\right]$    | $\frac{p_{i+1,j}-p_{i-1,j}}{2\delta x}$ , $\frac{p_{i,j+1}-p_{i,j-1}}{2\delta y}$                     |  |  |
| Divergence | $\nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$ | $\frac{u_{i+1,j} - u_{i-1,j}}{2\delta x} + \frac{v_{i,j+1} - v_{i,j-1}}{2\delta y}$                   |  |  |
| Laplacian  | $\nabla^2 p = \frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2}$      | $\frac{p_{i+1,j}-2p_{i,j}+p_{i-1,j}}{(\delta x)^2}+\frac{p_{i,j+1}-2p_{i,j}+p_{i,j-1}}{(\delta y)^2}$ |  |  |

Smoothed-particle hydrodynamics (SPH)

### PENALTY SYSTEM ASSEMBLY

#### **VECTOR ASSEMBLY**



#### **MATRIX ASSEMBLY**

