Minimalno particionisanje grafa na klike

Jelena Milivojević

Matematički fakultet, Univerzitet u Beogradu https://github.com/ratspeaker/Minimal_Clique_Parition.git

24. septembar 2022.

Sadržaj

- Opis problema
- 2 Algoritam grube sile
- Pohlepni algoritam
- 4 Simulirano kaljenje
- 5 Optimizacija rojem čestica
- 6 Genetski algoritam

Opis problema

- Dat je neusmereni graf G = (V, E) sa skupom čvorova V i skupom ivica E
- Klika C grafa G je podskup čvorovova, $C \subseteq V$, takav da su svaka dva susedna čvora međusobno povezana (kompletan graf)
- Problem predstavlja problem podele čvorova grafa G na minimalan broj podskupova čvorova koji su klike
- Ekvivalentno je problemu minimalnog bojenja komplemetnog grafa \overline{G}

Algoritam gurbe sile

- Iscrpno ispituje sve varijante rešenja i dolazi do egzaktnog rešenja
- Iterativno se poziva funkcija za svaku vrednost num_color redom iz intervala [1, ..., |V|]
- Velika složenost O(nⁿ)

Pohlepni algoritam

- U svakom koraku trenutnom čvoru dodeljuje boju koja nije zauzeta od strane njegovih suseda
- Manji broj poređenja: u hodu održavamo dopustivost, pa nema naknadnog odbacivanja nedopustivog bojenja
- Redosled obilaska čvorova utiče na pronalazak optimalnog rešenja
- Welsh-Powell algoritam obilazi čvorove u opadajućem redosledu prema stepenu čvora

Simulirano kaljenje

- S-metaheuristika
- Osim rešenja koja su bolja od trenutnog, pod određenim uslovima razmatramo i lošija rešenja - pretražujemo veći prostor rešenja
- Verovatnoća prihvatanja lošijeg rešenja opada sa brojem iteracija p $=1/\sqrt{i}$
- Rešenje iz okoline trenutnog rešenja dobija dodelom nove boje jednom od čvorova grafa

Optimizacija rojem čestica

- P-metaheuristika
- Zasnovan na prirodnom ponašanju čestica unutar roja
- Svaka čestica predstavlja neko bojenje grafa
- Čestice predstavljenje pozicijom u n-dimenzionom prostoru
- Ažuriranje brzine po formuli:

$$v_i(t+1) = c_i * v_i(t) + r_l * c_l(min_i - x_i) + r_g * c_g(global - x_i)$$

Ažuriramo poziciju čestice dodavanjem brzine na prethodnu vrednost pozicije

Genetski algoritam

- Evolutivni algoritam baziran na populaciji rešenja
- Jedinka populacije predstavlja bojenje grafa
- Ne održavamo dopustivost rešenja, umesto toga dodeljujemo penal jedinkama u funkciji prilagođenosti
- Penal odgovara broju nepravilno obojenih čvorova nedopustivo bojenje

Genetski algoritam

- **Operator selekcije** turnirska selekcija, pobednik je jedinka sa najmanjom vrednošću fitnes funkcije
- Operator selekcije jednopoziciono ukrštanje
- Operator mutacije sa velikom verovatnoćom (0.8) menja vrednost boje jednog nasumično odabranog čvora
- Koristimo elitizam za očuvanje najboljih jedinki iz populacije
- U svakoj generaciji na najbolju jedinku primenjujemo simulirano kaljenje

Genetski algoritam

graf	greedy(WP varijanta)		SA		PS0		GA	
	x(G)/ reš	Vreme	x(G)/ reš	Vreme iter	x(G)/ reš	Vreme iter	x(G)/ reš	Vreme iter
myciel3.co l	4/4	0.0000391s	4/4	0.000379s 63	4/4	0.017s 4	4/4	0.0039s 2
myciel4.co l	5/5	0.00016s	5/6	0.089s 9999	5/7	215.499s 10000	5/5	0.497s 237
myciel5.co l	6/6	0.00062s	6/11	2.413s 99999	6/15	90.215s 1000	6/8	53.644s 10000
myciel6.co	7/7	0.0021s	7/21	6.497s 99999	7/34	471.407s 1000	7/14	153.916s 10000
david.col	11/11	0.00148s	11/23	4.511s 99999	11/35	23.187s 100	11/14	88.694s 10000
huck.col	11/11	0.00112s	11/15	3.127s 99999	11/29	493.766s 10000	11/13	69.0016s 10000
jean.col	10/10	0.00108s	10/15	2.927s 99999	10/28	1367.840s 10000	10/12	63.686s 10000

HVALA NA PAŽNJI!