COCKYCE COESCIA

1/22



Fig. 1
(PRIOR ART)

NCE PART I:

.NCE PART I:



ogguados obecon

TOSKHOGS CESTS



Fig. 3 (PRIOR ART)





DOGHLOGG GORDOT

5/22



 $\mathsf{ACCARMZ}$ 





COSTOS CESTOS

Fig. 6 (PRIOR ART)

TOOTION TOUTS



Fig. 7



Fig. 8



Fig. 9



Fig. 10

FOOTA TOTAL

ANCE PART I:

H/NV STRUCTURES & DEVICES WITH ENHANCED STRUCTURES INVENTORS NAME: Arup Bhattacharyya DOCKET NO.: 1303.023US1



Fig. 11



Fig. 12



Fig. 13



Fig. 14

H/NV STRUCTURES & DEVICES WITH ENHANCED EXAMPLES ANCE PART I:
STRUCTURES
INVENTORS NAME: Arup Bhottacharyya
DOCKET NO.: 1303.023US1

TITLE: SCALABL



H/NV STRUCTURES & DEVICES WITH ENHANCED E STRUCTURES
INVENTORS NAME: Arup Bhattacharyya
DOCKET NO.: 1303.023US1



H/NV STRUCTURES & DEVICES WITH ENHANCED E ANCE PART I:
STRUCTURES
INVENTORS NAME: Arup Bhattacharyya
DOCKET NO.: 1303.023US1 TITLE: SCALABL

13/22



Fig. 17

1842

1942



Fig. 18



Fig. 19

H/NV STRUCTURES & DEVICES WITH ENHANCED E ANCE PART I:
STRUCTURES
INVENTORS NAME: Arup Bhattacharyya
DOCKET NO.: 1303.023US1

| 2042   |                                                |                           |                          |                 |              |
|--------|------------------------------------------------|---------------------------|--------------------------|-----------------|--------------|
|        | PE                                             | THICKNESS                 | t ox.eq.                 | EFFECTIVE RANGE | <del> </del> |
| 2054 ~ | SRN (INJECTOR)                                 | 5nm                       | 1.5nm                    | 3-10nm          |              |
| 2060   | SILICON-RICH<br>Al <sub>2</sub> O <sub>3</sub> | 10-12nm                   | 5nm                      | 6-30. nm        |              |
| 2050   | TUNNEL<br>Al <sub>2</sub> O <sub>3</sub>       | 9 enm                     | 2.5nm                    | 5-8nm           |              |
|        | SE                                             |                           |                          |                 |              |
|        |                                                | $t_{ox.eq.total} \approx$ | ≫ 9nm                    |                 | -            |
|        |                                                | \<br>У                    | $V_{\rm P} \approx 3.6V$ | WOX             |              |
|        |                                                | Д<br>П                    | 2                        |                 | •            |

H/NV STRUCTURES & DEVICES WITH ENHANCED E ANCE PART I:
STRUCTURES
INVENTORS NAME: Arup Bhottacharyya
DOCKET NO.: 1303.023US1

| ,        |                            |                                |                                   |                 |
|----------|----------------------------|--------------------------------|-----------------------------------|-----------------|
| <b>A</b> | PE                         | THICKNESS                      | . tox.eq.                         | EFFECTIVE RANGE |
| 2154     | SRN (INJECTOR)             | 5nm                            | 1.5nm                             | 3-10nm          |
| 2160     | SILICON-RICH<br>Al 203     | 10-12nm                        | 5nm                               | 6-30nm          |
| 2150     | TUNNEL<br>SiO <sub>2</sub> | 5nm                            | 5nm                               | 4-8nm           |
|          | SE                         |                                |                                   |                 |
|          |                            | $t_{ox.eq.total} pprox 11.5nm$ | 11.5nm                            |                 |
|          |                            | $^{Vp}$                        | $V_{ m p} pprox 4.6V$             |                 |
|          |                            | $\approx$ 6                    | $E_P \approx 4x10^6 \text{ V/CM}$ | W:              |

Fig. 21

H/NV STRUCTURES & DEVÎCES WITH ENHANCED E STRUCTURES INVENTORS NAME: Arup Bhattacharyya DOCKET NO.: 1303.023US1 ANCE PART I:

16/22



Fig. 22

SE.



Fig. 23

COCHPOR COCHPOR

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                 |                                                         |                                     |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|---------------------------------------------------------|-------------------------------------|-----------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2442         | ,<br>U                          | THICKNESS                                               | tox.eq.                             | EFFECTIVE RANGE |
| BLOCKING AI $_2O_3$ AI $_2O_3$ WITH Si Anm 1.6nm In MANO CRYSTALS Ship Single | 2454 ~       | SRN (INJECTOR)                  | 5nm                                                     | 1.5nm                               | 3-10nm          |
| Al $_2O_3$ WITH Si NANO CRYSTALS TUNNEL Shm $_2O_3$ SE $se$ $se$ $tox.eq.total \approx 10 \text{nm} v_p \approx 4V v_p \approx 4V v_p \approx 4V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2462         | BLOCKING<br>Al 203              | 10nm                                                    | 4.5nm                               | 6-30.nm         |
| TUNNEL Snm 2.5nm $A_{12}O_{3}$ SE $t_{0x.eq.total} \approx 10$ nm $t_{0x.eq.total} \approx 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2464         | Al 203 WITH Si<br>NANO CRYSTALS | 4nm                                                     | 1.6nm                               | 3-5nm           |
| t ox.eq.total ≈ VP ≈                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2450         | TUNNEL<br>Al 203                | 5nm                                                     | 2.5nm                               | 5-8nm           |
| tox.eq.total $\approx$ 10nm $V_{P} \approx 4V$ $E_{P} \approx 4 \times 10^{6} \text{ V/CM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>-</del> | SE                              |                                                         |                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                 | $t_{ox.eq.total} \approx V_{P} \approx V_{P} \approx 0$ | 10nm<br>4V<br>4x10 <sup>6</sup> V/C | <b>∑</b>        |



Fig. 25

H/NV STRUCTURES & DEVICES WITH ENHANCED L STRUCTURES INVENTORS NAME: Arup Bhottacharyya DOCKET NO.: 1303.023US1

ANCE PART I:

|      |                 |                |                                     | 19                            | 9/22                                                              | _  | ·                                                                                  |
|------|-----------------|----------------|-------------------------------------|-------------------------------|-------------------------------------------------------------------|----|------------------------------------------------------------------------------------|
|      |                 | *              |                                     |                               |                                                                   |    |                                                                                    |
|      | EFFECTIVE RANGE | 3-10nm         | 6-30nm                              | 5-8nm                         | 3-10nm                                                            |    | 0 <sup>6</sup> V/CM                                                                |
|      | tox.eq.         | 1.5nm          | 5nm                                 | 2.5nm                         | 2.5nm                                                             |    | 11.5nm<br>3 TO 3.3V<br>2.6 TO 3.0x10 <sup>6</sup> V/CM                             |
|      | THICKNESS       | 5nm            | 10-12nm                             | 5-6nm                         | 5nm                                                               |    | tox.eq.total $pprox$ 11.5nm $ m V_{P} pprox$ 3 TO 3.3V $ m E_{P} pprox$ 2.6 TO 3.0 |
|      |                 | ſ              | 1                                   |                               |                                                                   | I  | <b>–</b>                                                                           |
|      | В               | SRN (INJECTOR) | SILICON-RICH<br>Al 2 <sup>O</sup> 3 | TUNNEL<br>Al 2 <sup>O</sup> 3 | SRN (INJECTOR)<br>{"NH <sub>3</sub> " OR "NO" SURFACE<br>TREATED} | SE |                                                                                    |
| 2642 |                 | 2654           | 2660                                | 2650                          | 2656                                                              |    |                                                                                    |

20/22



Fig. 27

| 2842  PE  SF4 SRN (INJECTOR)  862 BLOCKING Al <sub>2</sub> O <sub>3</sub> 864 Al <sub>2</sub> O <sub>3</sub> WITH Si NAÑO CRYSTALS SRN (INJECTOR)  SSN (INJECTOR)  SPN (INJECTOR)  SPN (INJECTOR)  SPN (INJECTOR)  SN (INJECTOR) |                 |                     |        |       | 21/22              |                                                      |                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|--------|-------|--------------------|------------------------------------------------------|------------------------------------------------------|
| PE  SRN (INJECTOR)  BLOCKING AI <sub>2</sub> O <sub>3</sub> AI <sub>2</sub> O <sub>3</sub> WITH Si NAÑO CRYSTALS TUNNEL AI <sub>2</sub> O <sub>3</sub> SRN (INJECTOR) {"NH <sub>3</sub> " OR "NO" SURFACE SE  toxeq.t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EFFECTIVE RANGE | 3-10nm              | 6-30nm | 3-5nm | 5-8nm              | 3-10nm                                               | 5                                                    |
| PE  SRN (INJECTOR)  BLOCKING AI <sub>2</sub> O <sub>3</sub> AI <sub>2</sub> O <sub>3</sub> WITH Si NAÑO CRYSTALS TUNNEL AI <sub>2</sub> O <sub>3</sub> SRN (INJECTOR) {"NH <sub>3</sub> " OR "NO" SURFACE SE  toxeq.t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t ox.eq.        | 1.5nm               | 4.5nm  | 1.6nm | 2.5nm              | 2.5nm                                                | .6nm<br>25nm<br>3x10 <sup>6</sup> V/CN               |
| PE  SRN (INJECTOR)  BLOCKING  AI <sub>2</sub> O <sub>3</sub> AI <sub>2</sub> O <sub>3</sub> WITH Si  NANO CRYSTALS  TUNNEL  AI <sub>2</sub> O <sub>3</sub> SRN (INJECTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THICKNESS       | 5nm                 | 10nm   | 4nm   | 5-6nm              | 5nm                                                  | ox.eq.total $pprox$ 12 Vp $pprox$ 3.2 Ep $pprox$ 2.6 |
| 284,<br>2854<br>2864<br>2850<br>2856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A               | 2854 SRN (INJECTOR) |        |       | 2850 TUNNEL AI 203 | SRN (INJECTOR)  2856 {"NH3" OR "NO" SURFACE TREATED} |                                                      |



22/22

2970



Fig. 29