2.6 Application to Recurrence Relation

This section contains the applications of formal power series to solving recurrence relations. Let us try to understand it using the following examples.

Example 2.6.1. 1. Determine a formula for the numbers a(n)'s, where a(n)'s satisfy the recurrence relation a(n) = 3 a(n-1) + 2n, for $n \ge 1$ with a(0) = 1.

Solution: Define $A(x) = \sum_{n \geq 0} a(n)x^n$. Then using Example 2.5.1.1, one has

$$A(x) = \sum_{n\geq 0} a(n)x^n = a_0 + \sum_{n\geq 1} a(n)x^n = 1 + \sum_{n\geq 1} (3 \ a(n-1) + 2n) \ x^n$$
$$= 3x \sum_{n\geq 1} a(n-1)x^{n-1} + 2\sum_{n\geq 1} nx^n + 1 = 3xA(x) + 2\frac{x}{(1-x)^2} + 1.$$

So,
$$A(x) = \frac{1+x^2}{(1-3x)(1-x)^2} = \frac{5}{2(1-3x)} - \frac{1}{2(1-x)} - \frac{1}{(1-x)^2}$$
. Thus,

$$a(n) = [x^n]A(x) = \frac{5}{2}3^n - \frac{1}{2} - (n+1) = \frac{5 \cdot 3^n - 1}{2} - (n+1).$$

2. Determine a generating function for the numbers f(n) that satisfy the recurrence relation

$$f(n) = f(n-1) + f(n-2), \text{ for } n \ge 2 \text{ with } f(0) = 1 \text{ and } f(1) = 1.$$

Hence or otherwise find a formula for the numbers f(n).

Solution: Define $F(x) = \sum_{n>0} f(n)x^n$. Then one has

$$F(x) = \sum_{n\geq 0} f(n)x^n = 1 + x \sum_{n\geq 2} (f(n-1) + f(n-2)) x^n$$

$$= 1 + x + x \sum_{n\geq 2} f(n-1)x^{n-1} + x^2 \sum_{n\geq 2} f(n-2)x^{n-2} = 1 + xF(x) + x^2F(x).$$

Therefore, $F(x) = \frac{1}{1-x-x^2}$. Let $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. Then it can be checked that $(1-\alpha x)(1-\beta x) = 1-x-x^2$ and

$$F(x) = \frac{1}{\sqrt{5}} \left(\frac{\alpha}{1 - \alpha x} - \frac{\beta}{1 - \beta x} \right) = \frac{1}{\sqrt{5}} \left(\sum_{n \ge 0} \alpha^{n+1} x^n - \sum_{n \ge 0} \beta^{n+1} x^n \right).$$

Therefore,

$$f(n) = [x^n]F(x) = \frac{1}{\sqrt{5}} \sum_{n>0} (\alpha^{n+1} - \beta^{n+1}).$$

As
$$\beta < 0$$
 and $|\beta| < 1$, we observe that $f(n) \approx \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n+1}$.

Remark 2.6.2. The numbers f(n), for $n \geq 0$ are called Fibonacci numbers. It is related with the following problem: Suppose a couple bought a pair of rabbits (each one year old) in the year 2001. If a pair of rabbits starts giving birth to a pair of rabbits as soon as they grow 2 years old, determine the number of rabbits the couple will have in the year 2025.

3. Determine a formula for the numbers a(n)'s, where a(n)'s satisfy the recurrence relation a(n) = 3 a(n-1) + 4a(n-2), for $n \ge 2$ with a(0) = 1 and a(1) = c, a constant. Solution: Define $A(x) = \sum a(n)x^n$. Then

Solution: Define $A(x) = \sum_{n \ge 0} a(n)x^n$. Then

$$A(x) = \sum_{n\geq 0} a(n)x^n = a_0 + a_1x + \sum_{n\geq 2} a(n)x^n = 1 + cx + \sum_{n\geq 2} (3 \ a(n-1) + 4 \ a(n-2)) \ x^n$$

$$= 1 + cx + 3x \sum_{n\geq 2} a(n-1)x^{n-1} + 4x^2 \sum_{n\geq 2} a_{n-2}x^{n-2}$$

$$= 1 + cx + 3x(A(x) - a_0) + 4x^2A(x).$$

So,
$$A(x) = \frac{1 + (c - 3)x}{(1 - 3x - 4x^2)} = \frac{1 + (c - 3)x}{(1 + x)(1 - 4x)}$$
.

- (a) If c = 4 then $A(x) = \frac{1}{1 4x}$ and hence $a_n = [x^n] A(x) = 4^n$.
- (b) If $c \neq 4$ then $A(x) = \frac{1+c}{5} \cdot \frac{1}{1-4x} + \frac{4-c}{5} \cdot \frac{1}{1+x}$ and hence $a_n = [x^n] A(x) = \frac{(1+c) 4^n}{5} + \frac{(-1)^n (4-c)}{5}$.
- 4. Determine a sequence, $\{a(n) \in \mathbb{R} : n \geq 0\}$, such that $a_0 = 1$ and $\sum_{k=0}^{n} a(k)a(n-k) = \binom{n+2}{2}$, for all $n \geq 1$.

Solution: Define $A(x) = \sum_{n>0} a(n)x^n$. Then, using the Cauchy product, one has

$$A(x)^{2} = \sum_{n \ge 0} \left(\sum_{k=0}^{n} a(k)a(n-k) \right) x^{n} = \sum_{n \ge 0} \binom{n+2}{2} x^{n} = \frac{1}{(1-x)^{3}}.$$

Hence,
$$A(x) = \frac{1}{(1-x)^{3/2}}$$
 and thus $a(n) = (-1)^n {\binom{-3/2}{n}} = \frac{3 \cdot 5 \cdot 7 \cdots (2n+1)}{2^n n!}$, for all $n \ge 1$.

5. Determine a generating function for the numbers f(n,m), $n,m \in \mathbb{Z}$, $n,m \geq 0$ that satisfy

$$f(n,m) = f(n-1,m) + f(n-1,m-1), (n,m) \neq (0,0)$$
 with $f(n,0) = 1$, for all $n \ge 0$ and $f(0,m) = 0$, for all $m > 0$.

Hence or otherwise, find a formula for the numbers f(n, m).

Solution: Note that in the above recurrence relation, the value of m need not be $\leq n$.

METHOD 1: Define $F_n(x) = \sum_{m>0} f(n,m)x^m$. Then, for $n \geq 1$, Equation (2.1) gives

$$F_n(x) = \sum_{m\geq 0} f(n,m)x^m = \sum_{m\geq 0} (f(n-1,m) + f(n-1,m-1))x^m$$

$$= \sum_{m\geq 0} f(n-1,m)x^m + \sum_{m\geq 0} f(n-1,m-1)x^m$$

$$= F_{n-1}(x) + xF_{n-1}(x) = (1+x)F_{n-1}(x) = \dots = (1+x)^n F_0(x).$$

Now, using the initial conditions, $F_0(x) = 1$ and hence $F_n(x) = (1+x)^n$. Thus,

$$f(n,m) = [x^m](1+x)^n = \binom{n}{m}$$
 if $0 \le m \le n$ and $f(n,m) = 0$, for $m > n$.

METHOD 2: Define $G_m(y) = \sum_{n\geq 0} f(n,m)y^n$. Then, for $m\geq 1$, Equation (2.1) gives

$$G_m(y) = \sum_{n\geq 0} f(n,m)y^n = \sum_{n\geq 0} (f(n-1,m) + f(n-1,m-1))y^n$$

$$= \sum_{n\geq 0} f(n-1,m)y^n + \sum_{n\geq 0} f(n-1,m-1)y^n$$

$$= yG_m(y) + yG_{m-1}(y).$$

Therefore, $G_m(y) = \frac{y}{1-y}G_{m-1}(y)$. Now, using initial conditions, $G_0(y) = \frac{1}{1-y}$ and hence $G_m(y) = \frac{y^m}{(1-y)^{m+1}}$. Thus, $f(n,m) = [y^n] \frac{y^m}{(1-y)^{m+1}} = [y^{n-m}] \frac{1}{(1-y)^{m+1}} = \binom{n}{m}$, whenever $0 \le m \le n$ and f(n,m) = 0, for m > n.