Azzolini Riccardo 2019-02-20

Insiemi limitati

1 Insiemi limitati

Sia $A \subseteq \mathbb{R}$. A si dice:

- limitato superiormente se $\exists M \in \mathbb{R}$ tale che $x \leq m \quad \forall x \in A$;
- limitato inferiormente se $\exists K \in \mathbb{R}$ tale che $x \geq K \quad \forall x \in A$;
- limitato se è limitato sia superiormente che inferiormente.

Osservazione: Se A è limitato, $\exists M > 0$ tale che $|x| \leq M \quad \forall x \in A$.

Dimostrazione: Se A è limitato, $\exists M, K \in \mathbb{R}$ tali che $K \leq x \leq M \quad \forall x \in A$. Sia $M' \in \mathbb{R}$, con M' > 0, tale che $M' \geq M$ e $-M' \leq K$. Allora, $\forall x \in A$:

$$-M' \le K \le x \le M \le M'$$
$$-M' \le x \le M'$$
$$|x| \le M'$$

1.1 Esempi

- $A = (-\infty, 7]$ $\forall x \in A \quad x \leq 7$, quindi A è limitato superiormente ma non inferiormente.
- $A = \{-100\} \cup (0,1)$ $\forall x \in A \quad -100 \le x \le 1$, quindi A è limitato.

2 Maggiorante e minorante

Sia $A \subseteq \mathbb{R}$.

- Un numero $M \in \mathbb{R}$ tale che $x \leq M \quad \forall x \in A$ si dice **maggiorante** di A.
- Un numero $K \in \mathbb{R}$ tale che $K \leq x \quad \forall x \in A$ si dice **minorante** di A.

Osservazione: Se un insieme possiede un maggiorante, allora ne possiede infiniti. Analogamente per i minoranti.

3 Massimo e minimo

- Se un maggiorante di $A \subseteq \mathbb{R}$ appartiene ad A, esso si dice **massimo** di A.
- Se un minorante di $A \subseteq \mathbb{R}$ appartiene ad A, esso si dice **minimo** di A.

Proposizione: Sia $A \subseteq \mathbb{R}$ limitato (anche solo superiormente o inferiormente). Se esistono il minimo e/o il massimo di A, questi sono unici.

Dimostrazione: Siano M_1 e M_2 due massimi di A, con $M_1 \neq M_2$. Allora $x \leq M_1 \quad \forall x \in A$, ma $M_2 \in A$ (per la definizione di massimo), quindi $M_2 \leq M_1$. D'altra parte $x \leq M_2 \quad \forall x \in A$, ma $M_1 \in A$, quindi $M_1 \leq M_2$. Di conseguenza, deve essere $M_1 = M_2$. Analogamente per il minimo. \square

3.1 Esempi

- $A = (-\infty, 7]$ $7 \in A$ è un maggiorante, quindi $7 = \max A$.
- $A = \{-100\} \cup (0, 1)$ # un maggiorante appartenente ad A (cioè un massimo). Invece, $-100 \in A$ ed è un minorante, quindi $-100 = \min A$.

4 Estremi

- Se A è un insieme limitato superiormente, allora il più piccolo dei maggioranti si chiama **estremo superiore** e si indica con sup A.
- Se A è limitato inferiormente, il più grande dei minoranti si dice **estremo inferiore** e si indica con inf A.

Con abuso di notazione, se A è illimitato superiormente si scrive sup $A=+\infty$, e se è illimitato inferiormente si scrive inf $A=-\infty$.

4.1 Esistenza degli estremi

Teorema: Sia $A \subseteq \mathbb{R}$ limitato superiormente e $A \neq \emptyset$. Allora $\exists \sup A$. Analogamente per insiemi limitati inferiormente e inf A. Tale proprietà è chiamata completezza dei reali.

Se $A\subseteq \mathbb{Q}$, questa proprietà non è necessariamente vera. Ad esempio, l'insieme

$$A = \{1, 1.4, 1.41, 1.414, 1.4142, \ldots\}$$

di approssimazioni razionali di $\sqrt{2}$ è limitato superiormente

$$\forall x \in A \quad x \le 1.5 \in \mathbb{Q}$$

ma non ha un estremo superiore perché

$$\sup A = \sqrt{2} \notin \mathbb{Q}$$

4.2 Esempi

$$A = \left\{ x \in \mathbb{R} : x = \frac{1}{r}, n \in \mathbb{N} \setminus \{0\} \right\}$$
$$= \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \right\}$$

- A è limitato superiormente perché $x \leq 1 \quad \forall x \in A$, quindi $1 = \max A = \sup A$.
- A è limitato inferiormente perché $x \geq 0 \quad \forall x \in A$, quindi $0 = \inf A$, ma $\nexists \min A$ perché $0 \notin A$.

$$A = \left\{ x \in \mathbb{R} : x = \frac{(-1)^n}{n}, \ n \in \mathbb{N} \setminus \{0\} \right\}$$
$$= \left\{ -1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \frac{1}{6}, \dots \right\}$$

- $-1 = \min A = \inf A$
- $\frac{1}{2} = \max A = \sup A$