

TRATAMENTO DE DADOS

Prof. Julio Cesar dos Reis

<u>ireis@ic.unicamp.br</u>

www.ic.unicamp.br/~jreis

<u>Vídeo</u>

Objetivos da aula

Aprender tipos de dados e dos conjunto de dados

Estudar o problema da qualidade dos dados

 Introduzir aspectos relacionados ao préprocessamento e transformação de dados

Tipos de dados e tipos de conjunto de dados

Atributos, instâncias e classes

Instâncias		Attribution							
\									
	k	A_1	A_2 A_3		λ_4	A_5	classe		
\\ \	1	010	0.60	0.70	1.7	Ι	alto		
	2	060	0.70	0.60	1.3	P	alto		
	3	100	0.40	0.30	1.8	P	médio		
	4	120	0.20	0.10	1.3	P	médio		
	5	130	0.45	0.32	1.9	I	baixo		
*	6	090	?	0.18	2.2	I	?		
	7	110	0.45	0.22	1.4	P	?		

Atributos

Valores de atributos

- Valores de atributos são números ou símbolos atribuídos a um atributo
- Distinção entre atributos e valores de atributos
 - Algum atributo pode ser mapeado a diferentes valores de atributos
 - Exemplo: altura pode ser medida em pés e metros

Valores de atributos

- Valores de atributos são números ou símbolos atribuídos a um atributo
- Distinção entre atributos e valores de atributos
 - Algum atributo pode ser mapeado a diferentes valores de atributos
 - Exemplo: altura pode ser medida em pés e metros
 - Diferentes atributos podem ser mapeados para o mesmo conjunto de valores
 - Exemplo: Valores de atributos para ID e idade são inteiros
 - Propriedades de atributos podem ser diferentes
 - ID não tem limite mas idade tem um valor máximo e um valor mínimo

Tipos de atributos

- A maior parte dos algoritmos diferenciam
 - Atributo nominal e ordinal
- Atributos nominais são também chamados "categorical",
 "enumerated" ou "discrete" [eg: cor dos olhos]
 - Porém "enumerated" e "discrete" implicam uma ordem
 - Caso especial: dicotomia ("boolean")

Tipos de atributos

- A maior parte dos algoritmos diferenciam
 - Atributo nominal e ordinal
- Atributos nominais são também chamados "categorical",
 "enumerated" ou "discrete" [eg: cor dos olhos]
 - "enumerated" e "discrete" implicam uma ordem
 - Caso especial: dicotomia ("boolean")
- □ Atributos ordinais são chamados de "numeric", ou "continuous"
 - "continuous" implica continuidade matemática
 - Eg: altura

Atributos nominais

Os valores são símbolos diferentes

- □ Exemplo: atributo "outlook" da base condições tempo
 - Valores: "sunny", "overcast", e "rainy"

 Não existe relação entre os valores nominais (sem ordem ou medida de distância)

Somente testes de igualdade podem ser realizados

Atributos ordinais

- Impõem uma ordem nos valores
 - Exemplo
 - Atributo "temperature" nos dados de condição do tempo
 - Valores: "hot" > "mild" > "cool"
- Adição e subtração não tem sentido
 - Exemplo de regra:
 temperature < hot => play = yes
- A diferença entre atributos nominais e ordinais nem sempre é clara

Atributos intervalares

- Os <u>intervalos</u> são ordenados e medidos em unidades fixas e iguais (numéricos)
 - Exemplo 1: atributo "temperature" expresso em graus Fahrenheit
 - Exemplo 2: atributo "year"

□ A diferença entre 2 valores faz sentido

A soma ou produto podem não fazer sentido

Propriedades de valores de atributos

- O tipo de um atributo depende das propriedades que possui:
 - $lue{}$ Distinção: $= \neq$
 - □ Ordem: < >
 - Adição/Sub: + -
 - Multiplicação:
 * /
 - Atributo nominal: dinstinção
 - Atributo ordinal: distinção & ordem
 - Atributo Intervalo: distinção, ordem & adição
 - Atributo racional: todas as 4 propriedades

Tipo de Atributo	Descrição	Exemplos	Operações
Nominal	Os valores de atributos nominais são apenas nomes diferentes, i.e., atributos nominais têm informação suficiente para distinguir um objeto de outro.	zip codes, número de ID, cor dos olhos, sexo: {homem, mulher}	moda, entropia, contingência correlação, teste χ ²
Ordinal	Os valores de um atributo ordinal têm informação suficiente para <u>ordenar</u> objetos. (<, >)	dureza de minerais, { good, better, best }, notas números de ruas	mediana, porcentagens, correlação de rank, testes de corrida, testes do sinal
Intervalo	Para atributos intervalares, as diferenças entre valores são significativas, <i>i.e.</i> , uma unidade de medida existe. (+, -)	datas, temperatura em Celsius ou Fahrenheit	média, desvio padrão, correlação de Pearson, teste <i>t</i> e teste <i>F</i>
Racional	Para variáveis racionais, tanto diferenças como proporções são importantes (*, /)	Quantidades monetárias, contagens, idade, massa, comprimento, corrente elétrica	média geométrica, média harmônica, variação percentual

Tipos de conjuntos de dados

Registro

- Matriz de dado
- Documentos
- Transações

□ Grafos

- WWW
- Estruturas moleculares

Ordenados

- Dados espaciais
- Dados temporais
- Dados sequenciais
- Dados de sequenciamento genético

Tabelas

 Dados como <u>coleção de registros</u> definidos em termos de um <u>conjunto fixo de atributos</u>

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Matrizes

- Se os objetos têm o mesmo conjunto de atributos numéricos, então os objetos podem ser pensados como pontos em um espaço multidimensional
 - Cada dimensão representa um atributo distinto
- Conjunto de dados representado por uma matriz m x n
 - m colunas, uma para cada atributo, e n linhas, uma para cada objeto

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Documentos

- Cada documento é representado como um vetor de 'termos'
 - Cada termo é um componente (atributo) do vetor
 - O valor de cada componente é o número de vezes que o termo ocorre no documento

Exemplo de dados em documentos

	team	coach	pla y	ball	score	game	n wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transações

- □ Tipo especial de registro
 - Cada registro (transação) inclui um conjunto de itens
 - Por exemplo, considere um supermercado
 - O conjunto de produtos comprados por um cliente em um determinado dia constitui uma transação, enquanto os produtos comprados são itens

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Grafos

Exemplos: Grafo genérico e ligações HTML

Data Mining

Graph Partitioning

Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers

Dados ordenados

Sequência de transações

Um elemento da sequência

Exemplo de dados ordenados

Dados sequenciais genômicos

Exemplo de dados ordenados

Dados espaço-temporais

Temperatura média mensal dos continentes e oceanos

Cuidados no tratamento de dados

- Atributos com representação inadequada para tarefa e algoritmo
- Atributos cujos valores não tenham informações adequadas
- Excesso de atributos (podem ser redundantes ou desnecessários)

Cuidados no tratamento de dados

- Atributos com representação inadequada para tarefa e algoritmo
- Atributos cujos valores não tenham informações adequadas
- Excesso de atributos (podem ser redundantes ou desnecessários)
- Atributos insuficientes
- Excesso de instâncias (afetam tempo de processamento)
- Instâncias insuficientes
- Instâncias incompletas (sem valores para alguns atributos)

Seleção de dados

Processo de descoberta de conhecimento

Amostragem

- □ Técnica principal empregada para seleção de dados
 - Usada frequentemente tanto para estudos preliminares quanto para análise final de dados
- Estatísticos realizam amostragens porque obter o conjunto inteiro de dados de interesse é caro ou demanda muito tempo

 Amostragem é usada em mineração de dados porque processar o conjunto inteiro de dados de interesse é muito caro ou demanda muito tempo

Amostragem

- Princípio chave para amostragens bem sucedidas
 - Usar uma amostra é tão bom quanto usar o conjunto inteiro de dados
 - Amostra precisa ser representativa
 - Uma amostra é representativa se tem aproximadamente a mesma propriedade (de interesse) do conjunto original de dados

□ Há 4 tipos

Tipos de amostragem

Amostragem aleatória

Há uma probabilidade igual de selecionar um item particular

Amostragem sem reposição

 Na medida em que cada item é selecionado, é removido da população

Tipos de amostragem

□ Amostragem com reposição

- Objetos não são removidos da população quando são selecionados para a amostra
 - Na amostragem com reposição, o mesmo objeto pode ser selecionado mais de uma vez

Amostragem estratificada

- Particiona o dado em várias partições
- Seleciona-se amostras aleatórias de cada partição

Tamanho da amostra

Pré-processamento de dados

Qualidade dos dados

Quais os tipos de problemas de qualidades de dados?

Como podemos detectar problemas com os dados?

Como podemos proceder para tratar desses problemas?

Problemas de qualidade dos dados

□ Ruído

Outliers

Valores faltantes

Dados duplicados

Processo de descoberta de conhecimento

Pré-processamento de dados

- □ Rotinas de limpeza de dados visam
 - Suprir valores ausentes
 - Reduzir discrepâncias de valores ruidosos
 - □ Corrigir inconsistências

Valores faltantes

- Motivos para valores faltantes
 - □ Informação não é coletada
 - Exemplo: Pessoas não informam idade ou peso
 - Atributos podem não ser aplicados a todos os casos
 - Exemplo: rendimento anual não é aplicável às crianças

Tratamento de valores faltantes

- Eliminar objetos
- Estimar valores faltantes

- Ignorar valores faltantes durante análise
- Trocar por média de todos os valores possíveis (ponderados por suas probabilidades)

Técnicas sobre valores ausentes

- 1. Ignorar a tupla
- 2. Suprir valores ausentes
 - a) Manualmente;
 - b) Através de uma constante global;
 - c) Utilizando a média do atributo;
 - d) Utilizando a média do atributo para todas as instâncias da mesma classe;
 - e) Com o valor mais provável (regressão, inferência etc.)

Técnicas sobre valores ausentes

□ As técnicas 2b, 2c, 2d e 2e podem "viciar" os dados

A técnica 2e é uma estratégia interessante, pois em comparação com outros métodos utiliza um maior número de informações dos dados disponíveis

Ruído nos dados

- Ruído refere-se as modificações dos valores originais
 - Exemplos: distorções da voz de uma pessoa quando falando em um telefone ruim

Duas ondas senoidais

Duas ondas senoidais + Ruído

Ruídos nos dados

□ São erros aleatórios ou variâncias numa variável mensurada

- □ Eliminação de ruídos pode ser realizada através de:
 - 1 Interpolação
 - 2 Agrupamento
 - 3 Inspeção humana e computacional combinadas
 - 4 Regressão

Inconsistências

 Corrigidas manualmente através de referências externas

 Rotinas de consistência evitam a inserção de dados incorretos

 Discrepâncias podem ser combatidas através de dependências funcionais

Outliers

 São objetos com características que são consideravelmente diferentes da maioria dos outros objetos do conjunto de dados

Dados duplicados

- Conjuntos de dados podem conter objetos que são duplicatas, ou quase duplicatas de algum outro
 - Questão relevante quando se integra dados de fontes heterogêneas
- Exemplos:
 - Mesma pessoa com múltiplos endereços de e-mail
- Necessário um procedimento para tratar questões de dados duplicados
 - Ex. removê-los

Transformação de dados

Processo de descoberta de conhecimento

Transformação de dados

Seleção de atributos

- Redução de dimensionalidade (grande quantidade de atributos)
 - Seleção de características
 - Agregação

Criação de atributos

- Discretização e "binarização"
- Transformação de atributos

Transformação de dados

□ Seleção de atributos

- Redução de dimensionalidade (grande quantidade de atributos)
 - Seleção de características
 - Agregação
- □ Criação de atributos
 - Discretização e "binarização"
 - Transformação de atributos

Maldição da dimensionalidade

- Quando a dimensionalidade cresce, os dados tornam-se esparsos no espaço que ocupam
- Definições de densidade e distância entre pontos, que são críticos para técnicas de agrupamento e detecção outliers, tornam-se menos significativos

- Gere 500 pontos aleatoriamente
- Compute a diferença entre a distância máxima e a mínima entre pares de pontos

Redução de dimensionalidade

Objetivo

- Evitar a maldição de dimensionalidade
- Reduzir a quantidade de tempo e memória necessários considerando algoritmos de mineração
- Permitir que dados sejam mais facilmente visualizados
- Poder ajudar a eliminar características irrelevantes ou reduzir ruído

Seleção de características

- Características redundantes
 - Duplicar muito ou toda informação contida em um ou mais atributos
 - Exemplo: preço de compra de um produto e quantidade de impostos pagos na venda
- Características irrelevantes
 - Contém nenhuma informação que seja útil para tarefa de mineração
 - Exemplo: ID de estudante não é relevante para cálculo de média de notas

Agregação

 Combinar dois ou mais atributos (ou objetos) em um atributo único (ou objeto)

- Objetivo
 - Redução de dados
 - Reduzir o número de atributos ou objetos
 - Mudança de escala
 - Cidades agregadas em regiões, estados, países, etc.
 - Dados mais "estáveis"
 - Dados agregados tendem a ter menos variabilidade

Agregação

Variação de precipitação na Austrália

Desvio padrão da precipitação média mensal

Desvio padrão da precipitação média anual

Transformação de dados

- □ Seleção de atributos
 - Redução de dimensionalidade (grande quantidade de atributos)
 - Seleção de características
 - Agregação

- Criação de atributos
 - Discretização e "binarização"
 - Transformação de atributos

Criação de características

- Novos atributos podem capturar informação importante no conjunto de dados muito mais eficientemente do que nos atributos originais
- □ Três metodologias gerais
 - Extração de característica
 - Específico de domínio
 - Transformação de característica
 - Mapear dados para novo espaço
 - Construção de característica
 - Combinação de característica

Mapeamento de dados para novo espaço

- Uma função que mapeia o conjunto de valores de um atributo em um novo conjunto de tal forma que o valor antigo possa ser identificado com um dos novos valores
 - □ Funções simples: x^k, log(x), e^x, |x|
 - Padronização e normalização

Discretização de variáveis contínuas

- Transforma atributos contínuos em atributos categóricos
 - Categóricos: Somente conjunto de valores finito e contável
 - Contínuos: Tem números reais como valores de atributos

 Absolutamente essencial se a tarefa de mineração apenas manuseia atributos categóricos

 Em alguns casos, mesmo métodos que manuseiam atributos contínuos têm melhor desempenho com atributos categóricos

Discretização de variáveis contínuas

Métodos de discretização

- Discretização supervisionada
 - Leva em consideração o atributo classe

- Discretização não-supervisionada
 - Atributo contínuo é discretizado ignorando-se o atributo classe
 - Não leva em consideração o atributo classe

Discretização supervisionada

- □ Discretização pelo Método 1R (1-rule)
 - Sub-produto de uma técnica de extração automática de regras
 - Utiliza as classes de saída para discretizar cada atributo de entrada separadamente
 - □ Ex:
 - Base de dados hipotética: Meteorologia
 - Decisão: Realizar ou não um certo jogo

Discretização usando rótulos de classe

3 categorias tanto para x quanto para y

5 categorias tanto para x quanto para y

Discretização não-supervisionada

 O método 1R é supervisionado. Considera a variável de saída (classe) na discretização

- Métodos Não-Supervisionados consideram somente o atributo a ser discretizado
 - São a única opção no caso de problemas de agrupamento (clustering), em que não se conhecem as classes de saída

Discretização não-supervisionada

- □ Três abordagens básicas:
 - Número pré-determinado de intervalos
 - uniformes (equal-interval binning)
 - Número uniforme de amostras por intervalo
 - (equal-frequency binning)
 - Agrupamento (clustering): intervalos arbitrários

Discretização sem usar rótulos de classes

Método com mesmo tamanho de intervalo

- Número pré-determinado de intervalos uniformes
 - (equal-interval binning)
- No exemplo (temperatura):
 64 65 68 69 70 71 72 72 75 75 80 81 83 85
- □ Bins com largura 6:

$$x \le 60$$
 $60 < x \le 66$
 $66 < x \le 72$
 $72 < x \le 78$
 $78 < x \le 84$
 $84 < x < 90$

Método com mesmo tamanho de intervalo

- Número pré-determinado de intervalos uniformes
 - (equal-interval binning)
- No exemplo (temperatura):
 64 65 68 69 70 71 72 72 75 75 80 81 83 85

□ Bins com largura 6:

$$x \le 60$$
: n.a.
 $60 < x \le 66$: 64 , 65
 $66 < x \le 72$: 68 , 69 , 70 , 71 , 72 , 72
 $72 < x \le 78$: 75 , 75
 $78 < x \le 84$: 80 , 81 , 83
 $84 < x \le 90$: 85

Problemas com mesmo tamanho intervalo

 Como qualquer método não supervisionado, arrisca destruir distinções úteis, devido às divisões muito grandes ou fronteiras inadequadas

- Distribuição das amostras muito irregular
 - alguns bins com muitas amostras
 - outros com poucas amostras

Método de intervalo por frequência

- Número uniforme de amostras por intervalo
 - (equal-frequency binning)
- Chamado de equalização do histograma
- Cada bin tem o mesmo número aproximado de amostras
- □ Histograma é plano
- □ Heurística para o número de bins: √N
 - $\square N = \text{número de amostras}$

Método de intervalo por frequência

- Número uniforme de amostras por intervalo
 - (equal-frequency binning)
- □ No exemplo (temperatura):
 - 64 65 68 69 | 70 71 72 72 | 75 75 80 | 81 83 85

- □ 14 amostras: 4 Bins
 - $x \le 69,5$: 64, 65, 68, 69
 - 69,5 < x \leq 73,5: 70,71,72,72
 - \square 73,5 < x \le 80,5: 75,75,80
 - x > 80,5: 81, 83, 85

Método de agrupamento

Agrupamento (Clustering)

Pode-se aplicar um algoritmo de agrupamento

No caso unidimensional

Para cada grupo (cluster) se atribui um valor discreto

Síntese da aula

 Atributos podem ser de diversos tipos: nominal, ordinal, intervalado e racional

- Dados podem ser organizados de diferentes maneiras: registros, matriz, grafos, etc.
- Necessário tratar problemas de qualidade dos dados como ruído, outliers, valores faltantes e duplicados
- Tratamento de dados envolve agregar dados e efetuar seleção e criação de características

Fontes*

 Slides sobre mineração de dados. Prof. Júlio Cesar Nievola Data Mining (PUCPR)