Genomic data formats and conversions

Biocomputing Boot Camp Day 3 – Session 2 Instructor: Jacob Kitzman kitzmanj@umich.edu

Why standardize data formats?

Facilitates reliable exchange of data

 Interoperable tools can be used to reanalyze same data in new ways

 Analysis pipelines can be assembled from individual components

Example: rare variant association study

Study goal: identify genes which, when mutated, increase risk for disease X

Study design: which genes are more frequently mutated in cases vs controls?

Data flow for a variation discovery project

Reads

CTAGAAGGCGGGATGTCGCG AGGCGGGATGTCGCGTGGGA ATGTCGCGTGGGAAGGAGC

Variants

Chr2 12390479 C > G

Joe	Homozygous ref C/C			
Mary	Heterozygous C/G			

Alignment to reference genome

Mutated genes

TP53 (5/20 individuals) BRCA1 (3/20 individuals)

. . .

Common formats for genomic data

Common formats for genomic data

Sequence data: FASTA and FASTQ

- FASTA: text-based sequence format
- Can be DNA, RNA, protein sequences
- Nearly free-form, can be written by hand
- Extension is usually ".fa" or ".fasta"

">" denotes start of a record

Sequence (one line or many)

Rest of the line contains the sequence name (spaces are OK)

my_file.fa

>a_palindrome AATTAA

>sequence#1

ACGTACGATCAGCATCACACACGTACGTACTGAACAACTACACT

>chromosome 20

ACTACGTCAGTCAGCATCGA

FASTA format in one tweet

- Lack of a formal spec sometimes causes confusion
 - Is name everything after ">", or just to the first space?
 - Are symbols (-_|\$@&!></) OK? Emoji?</p>
 - Does every line of sequence have to be the same length?
 - Should sequence be just on one line?
- Programs/scripts may have differing expectations...

Other sequence file formats

- FASTQ: text-based, with quality scores
- Typically for primary sequence data short reads

- FASTG: encode sequence as a graph
 - Haplotypes in diploid genomes
 - Uncertainty
 - "AAACAAA or AAAGAAA"

Common formats for genomic data

Tabular data formats

- Up to now: free form data, 1 record: 2-4 rows
- Next, consider tabular data formats
- Each row has same # of columns
- Values separated by a delimiter (usually tab or comma)

Rank	Name	Number		
1	Mary	161,508		
2	Helen	69,429 57,923 54,917 51,011		
3	Margaret			
4	Anna			
5	Ruth			
6	Elizabeth	41,708		
7	Dorothy	39,112		
8	Marie	37,089		
9	Florence	36,191		

```
Rank \rightarrow name \rightarrow number \checkmark 1 \rightarrow Mary \rightarrow 161,508 \checkmark 2 \rightarrow Helen \rightarrow 69,429 \checkmark 3 \rightarrow Margaret \rightarrow 57,923 . . .
```

Genomic tabular data

- Many genomic datasets are reference-based: a value associated with a genomic location
- Chrom: name of a chromosome (or a sequence in the reference)
- Start: start coordinate for this record, within that chromosome
- End: ending coordinate for this record

			Other fields (data type/application-dependent)					
Chrom	Start	End	Name	Strand	Score	Exons		
1	46860010	46860225	gene1	+	100	5		
1	46867752	46867886	gene2	-	49	3		
2	154410960	154411313	geneN	-	10	1		

Common formats for genomic data

Sequence alignments

The optimal match between two possibly related sequences

```
Sequence 1: ACTACTATCACATGGATACTTT

| | | | | | |

Sequence 2: C-CATGCAT
```

- Examples:
 - A human protein and its related ortholog in mouse
 - A human protein and a related paralog
 - The reference genome and a sequencing read
- Includes any differences between the two sequences.

Sequence alignments

- Basic information we might want to have:
 - For each query seq, which reference sequence is matched
 - Where? (start, end)
 - What strand?
 - Within alignment, where & what are the gaps (indels) and the mismatches?

SAM file format

```
VN:1.4 SO:coordinate
@HD
                                                          Header – metadata, e.g.,
      SN:1
             LN:249250621
@SO
      SN:2
             LN:243199373
@SO
                                                          names and lengths of
@SO
      SN:3
             LN:198022430
      SN:4
             LN:191154276
@SQ
                                                          reference sequences
@SO
      SN:5
             LN:180915260@SO
                              SN:6
                                     LN:171115067
@SO
      SN:7
             LN:159138663@SO
                              SN:8
                                     LN:146364022
      SN:9
             LN:141213431
@SO
```

Tab-delimited with:

Column 1 – query name (e.g., read name from sequencing run)

Column 2 – binary flags

Column 3 – reference sequence name (e.g., "1" for chromosome 1)

Column 4 – position on reference

Column 5 – mapping quality score

Column 6 – Alignment string (encodes insertions/deletions)

Column 10 – query sequence

Column 11 – query base quality scores

Visualizing sequence alignments

Alignment data as a common starting point

Common formats for genomic data

Annotation data

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly

Annotation data

Common formats for genomic data

- A value for every location (single base or window) in the genome.
- e.g., for RNA-seq, read density as a measure of gene expression

- A value for every location (single base or window) in the genome.
- e.g., for RNA-seq, read density as a measure of gene expression

- A value for every location (single base or window) in the genome.
- e.g., for RNA-seq, read density as a measure of gene expression

- Wiggle track (WIG/bigWig)
 - Stores one continuous-valued measurement at a regular step
 - E.g., depth of sequencing reads over every single base in the genome
 - Or, count of (C+G) bases in windows of 500 bp
- Bedgraph
 - Stores a measurement for each given chrom/start/end interval
- BED track (BED/bigBed)
 - Intended for storing a list of intervals, each potentially associated with a value
 - E.g., linkage interval and LOD score
 - Or, a ChIP-seq peak and associated score

Common formats for genomic data

Variation data

- Genetic variants, defined by:
 - Location (chromosome, start, stop)
 - Allele
 - Reference allele plus alternate allele(s)
 - Per-variant annotations
 - Confidence that it is a true variant
 - Number of samples carrying this variant
 - Name in dbSNP or other databases
- Per-sample genotypes

```
0/0 = homozygous REF
```

0/1 = heterozygous

1/1 = homozygous ALT

./. = missing

meta-information lines

- Info about this file
- How it was generated (processing options, etc.)
- Meaning and type (numerical vs categorical) of information fields

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
```

7	#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA00001	NA00002	NA00003
:	20	14370	rs6054257	G	A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ:DP:HQ	0 0:48:1:51,51	1 0:48:8:51,51	1/1:43:5:.,
:	20	17330		T	A	3	q10	NS=3;DP=11;AF=0.017	GT:GQ:DP:HQ	0 0:49:3:58,50	0 1:3:5:65,3	0/0:41:3
:	20	1110696	rs6040355	A	G,T	67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;DB	GT:GQ:DP:HQ	1 2:21:6:23,27	2 1:2:0:18,2	2/2:35:4
:	20	1230237		T		47	PASS	NS=3;DP=13;AA=T	GT:GQ:DP:HQ	0 0:54:7:56,60	0 0:48:4:51,51	0/0:61:2
:	20	1234567	microsat1	GTC	G,GTCT	50	PASS	NS=3;DP=9;AA=G	GT:GQ:DP	0/1:35:4	0/2:17:2	1/1:40:3

VCF is tab-separated (from header onward)

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allala Fraguerau">
##INFO=<ID=AA, Number=1, Type=String, Description="A:
                                                # header line
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbS1
##INFO=<ID=H2, Number=0, Type=Flag, Description="Hapl
                                                 Columns #1-8 always the same
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of sar
                                                 Column #9 = FORMAT of the per-sample columns
##FORMAT=<ID=GT, Number=1, Type=String, Description='
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description:
                                                 Column #10... = one per sample
##FORMAT=<ID=DP, Number=1, Type=Integer, Description:
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description:
#CHROM POS
                      REF ALT
                                  OUAL FILTER INFO
                                                                                            NA00001
                                                                                                           NA00002
                                                                                                                          NA00003
20
      14370
             rs6054257 G
                             Α
                                          PASS
                                                 NS=3;DP=14;AF=0.5;DB;H2
                                                                                  GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
                                                                                  GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
      17330
                                           q10
                                                 NS=3;DP=11;AF=0.017
                                                                                                                          0/0:41:3
20
                                           PASS
                                                 NS=2:DP=10:AF=0.333,0.667;AA=T;DB GT:GO:DP:HO 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
      1110696 rs6040355 A
                                                                                  GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
      1230237 .
                                           PASS
                                                 NS=3;DP=13;AA=T
      1234567 microsat1 GTC
                              G.GTCT 50
                                           PASS
                                                 NS=3;DP=9;AA=G
                                                                                  GT:GO:DP
                                                                                                                          1/1:40:3
                                                                                             0/1:35:4
                                                                                                            0/2:17:2
```

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
                                                                       Each row = 1 variant
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
                                                                                                                               NA00003
#CHROM POS
                        REF
                              ALT
                                     QUAL FILTER INFO
                                                                                                 NA00001
                                                                                                                NA00002
                                                   NS=3;DP=14;AF=0.5;DB;H2
                                                                                      GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:
20
       14370
              rs6054257 G
                                            PASS
                               A
20
                                                                                      GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
       17330
                               A
                                      - 3
                                             q10
                                                   NS=3;DP=11;AF=0.017
                                                                                                                               0/0:41:3
20
       1110696 rs6040355 A
                               G.T
                                      67
                                            PASS
                                                   NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
                                                                                                                               2/2:35:4
20
                                                                                      GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
       1230237 .
                                        47
                                             PASS
                                                   NS=3:DP=13:AA=T
20
                                            PASS
                                                   NS=3;DP=9;AA=G
       1234567 microsat1 GTC
                               G,GTCT 50
                                                                                               0/1:35:4
                                                                                                                0/2:17:2
                                                                                                                               1/1:40:3
```

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
                                                                        Each row = 1 variant
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                                        QUAL FILTER INFO
                                                                                      GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20
       14370 rs6054257 G
                                             PASS
                                                   NS=3;DP=14;AF=0.5;DB;H2
20
                                                    NS=3:DP=11:AF=0.017
                                                                                      GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
       17330
                                             q10
20
       1110696 rs6040355 A
                               G.T
                                             PASS
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1 2:21:6:23,27 2 1:2:0:18,2
                                             TADD
                                                    NS=3;DP=13;AA=1
                                                                                       01:00:0F:00 0|0:04:7:00,00 0|0:40:4:01,01 0/0:01:2
                                                    NS=3;DP=9;AA=G
```

Chromosome 20 position 1110696 reference allele is A

- short-hand for reference = 0

We have called two alternate alleles:

G and T

- short-hand for first ALT = 1, second ALT = 2, ...

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
                                                                     Look down to columns
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
                                                                     to get each sample's genotype
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
                                       OUAL FILTER INFO
#CHROM POS
                        REF
                              ALT
                                                                                                                             NA00003
                                                                                    GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20
      14370 rs6054257 G
                                           PASS
                                                  NS=3;DP=14;AF=0.5;DB;H2
20
                                                  NS=3:DP=11:AF=0.017
                                                                                    GT:GQ:DP:HQ 0|0:49:3:58.50 0|1:3:5:65,3
      17330
                                            q10
                                                                                                                            0/0:41:3
20
      1110696 rs6040355 A
                              G.T
                                            PASS
                                                  NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HC 1/2:21:6:23,27 2/1:2:0:18,2
                                                                                                                             2/2:35:4
                                            PASS
20
                                                  NS=3:DP=13:AA=T
                                                                                    GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
      1230237 .
                                            PASS
                                                  NS=3;DP=9;AA=G
       1234567 microsat1 GTC
                                                                                    GT:GO:DP 0/1:35:4
                                                                                                                             1/1:40:3
```

Sample NA00001 is heterozygous for each ALT allele "1|2" → "G/T"

Sample NA00003 is homozygous for ALT allele #2
"2/2" → "T/T"

Visualizing VCF files

- UCSC and IGV browsers will load VCFs
- Here, IGV displaying a 100 kbp interval
- Color = allele; Ref, Het, Hmz

Manipulating VCF files

VCFs are just tab delimited files

Could parse with linux command line tools

 Or, write a script to read each line, extract the needed information.

But they're huge!

Analogy to reading an encyclopedia

To go through and find everything having to do with dinosaurs, would you:

Dinosaurs pg. 194, 535, 789, 1004, 2039

Read end-to-end, or use the index?

Manipulating VCF files

- Compressing and indexing are keys to efficiently extracting records from VCF and similar files
- This strategy requires the input to be sorted by chromosome and coordinate
 - This guarantees that the record for chr1:10,000,00 is after the index entry for chr1:9,000,000 but before the index entry for chr1:11,000,000
- A package called tabix will construct the index and allow for fast lookup
- Can use from the command line and via parsers in Python, C++, Perl, etc.