EEE108 Electromagnetism and Electromechanics

Lecture 23

Module Revision

Dr. Jinling Zhang

Dept. of Electrical and Electronic Engineering University of Xi'an Jiaotong-Liverpool Email: jinling.zhang@xjtlu.edu.cn

Revision

Mini-review of Electrostatics

Class Revision:

Yourself revision: most important

not necessary to do math too much!

Important

- Make sure you do the homework independently
- Re-work the examples in the lecture notes

Recall

Module Syllabus

Electromagnetism

- Introduction to simple electrostatics
- Electrical Current
- Maxwell's Equation:
 - · Gauss's Law
 - · Ampere's Law
 - Gauss's law for magnetism
 - Faraday's Law

Drives

- Electromagnetic induction
- Moving coil transducers
- Linear actuators
- Transformer
- DC rotating machines
- AC rotating machines

Module EEE108

Vectors, Coordinate Systems and Divergence Theorem

Vectors: Divergence Theorem -- Three Operators:

- 1. What are vectors?
- 2. Vector Notation
- 3. Vector Representation
- Vector Operations:

Addition and subtraction Dot product

Cross product

5. Integral: Line Integral
Surface Integral

1.Gradient

 $\nabla T = \mathbf{a}_x \frac{\partial T}{\partial \mathbf{x}} + \mathbf{a}_y \frac{\partial T}{\partial y} + \mathbf{a}_z \frac{\partial T}{\partial z}$

2. Divergence

 $\nabla \bullet \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$

3.Laplacian Δ

$$\Delta T = \nabla^2 T = \nabla \bullet \nabla T$$

$$\Delta T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$$

Three orthogonal coordinate systems:

1. Cartesian/Rectangular
$$(x, y, z)$$

2.Cylindrical
$$(r, \varphi, z)$$

3.Spherical (R, θ, φ)

Expression :
$$d\mathbf{l}$$
, $d\mathbf{A}$, dV Cartesian :

$$d\mathbf{l} = dx \, \mathbf{a}_x + dy \, \mathbf{a}_y + dz \, \mathbf{a}_z$$

$$dl = \sqrt{(dx)^2 + (dy)^2 + (dz)^2}$$

Module EEΕ108 4 Module EEΕ10

Summary of Vector Relations

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates		
Coordinate variables	x,y,z	r,φ,z	R, θ, ϕ		
Vector representation, A	$\mathbf{a}_x A_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z$	$\mathbf{a}_{x}A_{y}+A_{y}\mathbf{a}_{y}+A_{z}\mathbf{a}_{z}$	$\mathbf{a}_R A_R + A_\theta \ \mathbf{a}_\theta + A_\phi \ \mathbf{a}_\phi$		
Magnitude of A, $ A $	$t\sqrt{A_x^2 + A_y^2 + A_z^2}$	$t\sqrt{A_r^2 + A_\phi^2 + A_z^2}$	$\sqrt[4]{A_R^2 + A_{\theta}^2 + A_{\phi}^2}$		
Base vectors properties	$\mathbf{a}_{x} \bullet \mathbf{a}_{x} = \mathbf{a}_{y} \bullet \mathbf{a}_{y} = \mathbf{a}_{z} \bullet \mathbf{a}_{z} = 1$	$\mathbf{a}_r \bullet \mathbf{a}_r = \mathbf{a}_\phi \bullet \mathbf{a}_\phi = \mathbf{a}_r \bullet \mathbf{a}_r = 1$	$\mathbf{a}_R \bullet \mathbf{a}_R = \mathbf{a}_\theta \bullet \mathbf{a}_\theta = \mathbf{a}_\phi \bullet \mathbf{a}_\phi = 1$		
	$\mathbf{a}_{x} \bullet \mathbf{a}_{y} = \mathbf{a}_{y} \bullet \mathbf{a}_{z} = \mathbf{a}_{z} \bullet \mathbf{a}_{z} = 0$	$\mathbf{a}_r \bullet \mathbf{a}_{\phi} = \mathbf{a}_{\phi} \bullet \mathbf{a}_z = \mathbf{a}_z \bullet \mathbf{a}_r = 0$	$\mathbf{a}_{R} \bullet \mathbf{a}_{\theta} = \mathbf{a}_{\theta} \bullet \mathbf{a}_{\phi} = \mathbf{a}_{\phi} \bullet \mathbf{a}_{R} = 0$		
	$\mathbf{a}_{x} \times \mathbf{a}_{y} = \mathbf{a}_{z}, \mathbf{a}_{y} \times \mathbf{a}_{z} = \mathbf{a}_{x}$	$\mathbf{a}_{r} \times \mathbf{a}_{\phi} = \mathbf{a}_{z}, \qquad \mathbf{a}_{\phi} \times \mathbf{a}_{z} = \mathbf{a}_{r}$	$\mathbf{a}_{R} \times \mathbf{a}_{\theta} = \mathbf{a}_{\phi}, \qquad \mathbf{a}_{\theta} \times \mathbf{a}_{\phi} = \mathbf{a}_{R}$		
	$\mathbf{a}_{x} \times \mathbf{a}_{x} = \mathbf{a}_{y}$	$\mathbf{a}_x \times \mathbf{a}_y = \mathbf{a}_d$	$\mathbf{a}_{\theta} \times \mathbf{a}_{R} = \mathbf{a}_{\theta}$		
Dot product, A · B	$A_x B_x + A_y B_y + A_z B_z$	$A_rB_r + A_{\phi}B_{\phi} + A_zB_z$	$A_R B_R + A_{\theta} B_{\theta} + A_{\phi} B_{\phi}$		
Cross product, A × B	$\begin{vmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\left \begin{array}{ccc} \mathbf{a}_x & \mathbf{a}_{\phi} & \mathbf{a}_z \\ A_r & A_{\varphi} & A_z \\ B_r & B_{\varphi} & B_z \end{array}\right $	$\left egin{array}{ccc} \mathbf{a}_R & \mathbf{a}_{\sigma} & \mathbf{a}_{\phi} \ A_R & A_{\Phi} & A_{\Phi} \ B_R & B_{\Phi} & B_{\Phi} \end{array} ight $		

Module EEE108

Electrostatics

> Coulomb's Law: electrical force: two point charges: $\mathbf{F}_{12} = k_e \frac{Q_1 Q_2}{a^2} \mathbf{a}_r$

Electric field and electric potential: electric field for a point charge:

$$\mathbf{E} = k_e \frac{q}{r^2} \mathbf{a},$$

Electric flux and electric lines

► Gauss's law:
$$\Phi_E = \iint_S \mathbf{E} \cdot d\mathbf{s} = \frac{Q_{enc}}{\varepsilon_0}$$
 or $\iint_S \mathbf{D} \cdot d\mathbf{s} = Q_{enc}$

Calculating the electric field for a system that possesses planar, cylindrical or spherical symmetry.

> Electric potential
$$\varphi_{21} = \varphi_2 - \varphi_1 = -\int_{p}^{p_2} \mathbf{E} \cdot d\mathbf{L}$$
 $\varphi = -\int_{\infty}^{p} \mathbf{E} \cdot d\mathbf{L}$ (V

Electric energy/electric potential energy $\Delta U = q_0 \Delta \varphi$

Module EE

Electromagnetism

Introduction to Simple Electrostatics

– Gauss's Law

- Gauss's Law for Magnetism

- Ampere's Law

- Faraday's Law

- Magnetic Circuits

- Be able to state the laws in words and in equations in the integral form
- Understand the meaning of each item in the equations
- And know how to use them to solve the problems directly in the special conditions.

Examples

The total "flux" of field lines penetrating any of these surfaces is the same and depends only on the amount of charge inside.

$$\Phi_E = \iint_S \mathbf{E} \bullet d\mathbf{s} = \frac{Q_{en}}{\varepsilon_0}$$

Module EEE108

Magnetism

- Gauss's Law for Magnetism
- ❖ Ampere's Law
- ❖ Faraday's Law
- * Magnetic Circuits
- •Be able to state the laws in words and in equations in the integral form
- •Understand the meaning of each item in the equations
- •And know how to use them to solve the problems directly in the special conditions.

Electrostatics

Electric dipole: dipole moment vector: $\mathbf{p} = Qd\mathbf{a}_n$

>Insulators and conductors: the basic properties of conductors in electrostatic equilibrium

ightharpoonup Capacitance: definition: C = Q/V, connections: Series, Parallel

energy density stored in: $u_E = \frac{U_E}{\text{Volume}} = \frac{1}{2} \varepsilon E^2$, energy stored: $\frac{1}{2} CV^2$

with dielectrics: $C = \varepsilon_r C_0$

three typical capacitors: Prototypical, Cylindrical and Spherical

What should you remember?

·Parallel plate capacitor: very well

•Be able to derive the other standard geometries:

cylindrical and spherical

More information: Mini-review of Electrostatics

Module EEE108

Magnetism

- ➤ Magnetic field: **B** and **H**, the relationship between them
- ➤ Magnetic flux and magnetic flux lines
- ➤ Moving charges/current create magnetic field : **B** magnitude and direction
- Magnetic field exerts a force on any other moving charges/current:
- F magnitude and direction
- ightharpoonup Lorentz Force: $\mathbf{F}_{\text{Lorentz}} = \mathbf{F}_{E} + \mathbf{F}_{B} = q\mathbf{E} + q(\mathbf{v} \times \mathbf{B})$
- ➤ Torque on a current loop
- ➤ Gauss's Law for Magnetism: $\oint \mathbf{B} \cdot d\mathbf{A} = 0$
- ightharpoonup Ampere's Law: $\oint \mathbf{B} \cdot d\mathbf{L} = \mu_0 I_{enc}$

An infinite wire, an ideal solenoid, a toroid and infinite current sheet. > Faraday's law: $\varepsilon = -\frac{d\Phi_B}{dt}$

- >Lenz's Law: The induced emf must be in the direction that opposes the change.

Magnetism

$$ightharpoonup$$
 Mutual Inductance: $\varepsilon_{21} = -N_2 \frac{d\Phi_{21}}{dt} = M \frac{dI_1}{dt}$

Self-Inductance:
$$\varepsilon_{L} = -N \frac{d\Phi_{B}}{dt} = -L \frac{di}{dt}$$

►Inductor: energy stored
$$\frac{1}{2}LI^2$$

RL circuit: time constant $\tau = L/R$

> Magnetic Materials: Ferromagnetic, Paramagnetic, and Diamagnetic Then the density of energy: $w_m = \int_a^B H dB$ J/m³

$$ightharpoonup M$$
 agnetic circuits : $F = \Re_{eq} \Phi$

$$\Re_{eq} = \Re_1 + \Re_2 + ... + \Re_n = \sum_{i=1}^n \Re_i$$
 in series

$$\frac{1}{\mathfrak{R}_{ea}} = \frac{1}{\mathfrak{R}_1} + \frac{1}{\mathfrak{R}_2} + \dots + \frac{1}{\mathfrak{R}_n} = \sum_{i=1}^n \frac{1}{\mathfrak{R}_i} \text{ in parallel}$$

Module EEE108

Magnetic Dipole Moment

magnetic dipole moment:

 $\mathbf{m} = I\mathbf{A}$

In terms of **m**, the torque vector

T can be written as:

$$T = m \times B$$

magnetic dipole moment

of a loop with N turns:

$$\mathbf{m} = NI\mathbf{A}$$

Right-hand rule:

When the thumb of the right hand is pointed along the direct of the torque, the four fingers indicate the direction that the torque is trying to rotate the body.

Magnetic Force

$$\mathbf{F}_{\mathrm{B}} = q\mathbf{v} \times \mathbf{B} = |q|vB\sin\theta$$

Force on moving charge partical

$$\mathbf{F}_{\mathrm{B}} = I(\mathbf{l} \times \mathbf{B})$$

Force on Current-Carrying Wire

SI unit of
$$\mathbf{B} = \frac{N}{C \cdot m/s} = \frac{N}{A \cdot m}$$

Module EEE108

Gauss's Law for Magnetism

Magnetic Monopoles

Electric Dipole

When cut:

2 monopoles (charges)

Magnetic Dipole

When cut: 2 dipoles

Magnetic monopoles do not exist in isolation

$$\iint_{S} \mathbf{E} \bullet d\mathbf{s} = \frac{q_{en}}{\varepsilon_{0}}$$

Gauss's Law

$$\iint_{S} \mathbf{B} \bullet d\mathbf{s} = 0$$

Gauss's Law for Magnetism

Biot-Savart Law

Current I flowing through a different length dL (or equivalently charge q with velocity \mathbf{v}) produces a magnetic field:

$$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{Id\mathbf{L} \times \mathbf{a}_r}{r^2}$$

$\mathbf{B} = \frac{\mu_0}{4\pi} \frac{q\mathbf{v} \times \mathbf{a}_r}{r^2}$

Right-hand rule:

Thumb: points direction of the current.

Four fingers curl in the direction of the magnetic field lines.

Module EEE108

Ampere's Law: $\oint \mathbf{B} \bullet d\mathbf{L} = \mu_0 I_{enc}$ $B = \frac{\mu_0 Ir}{2\pi R^2} r < R$ $B = \frac{\mu_0 I}{2\pi r} r \ge R$ Long Circular Symmetry $B = \frac{\mu_0 I}{2\pi r} \mathbf{a}_y, z > b/2$ $B = \frac{\mu_0 I}{2\pi r} \mathbf{a}_y, z > b/2$ $B = \frac{\mu_0 I}{2\pi r} \mathbf{a}_y, z < -b/2$ $B = \frac{\mu_0 I}{2\pi r} \mathbf{a}_y, z < -b/2$ $B = \frac{\mu_0 I}{2\pi r} \mathbf{a}_y, z < -b/2$ $B = \frac{\mu_0 I}{2\pi r} \mathbf{a}_y, z < -b/2$ $B = \frac{\mu_0 I}{2\pi r} \mathbf{a}_y, z < -b/2$

Ampere's Law

The line integral of $\oint \mathbf{B} \cdot d\mathbf{L}$ around any closed

Amperian loop is proportional to I_{enc} , the current encircled by the loop.

$$\oint \mathbf{B} \cdot d\mathbf{L} = \mu_0 I_{enc} \iff Ampere' \ s \ law \ integral \ form$$

Differential form

By the Kelvin - Stokes theorem, this equation can also be written in a differential form:

 $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$ \Leftarrow *Ampere' s law differential form* where \mathbf{J} is the current density through the surface enclosed by the Amperian loop.

Module EEE108

Faraday's Law of Inductance

The induced emf ε in a coil with N turns is proportional to the negative of the rate of change of magnetic flux.

$$\varepsilon = -N \frac{d\Phi_B}{dt}$$

$$\varepsilon = \oint_{l} \mathbf{E} \bullet d\mathbf{L} = -\frac{d\Phi_{B}}{dt} \quad \text{Integral form}$$

Minus sign? Lenz's law:

The induced current produces magnetic fields which tend to oppose the change in magnetic flux that induces such currents.

- •A changing magnetic flux induces an EMF.
- •Ways to induce EMF:

Change:

- *Magnitude of B
- *Area A enclosed by the loop
- *Angle θ between B and loop normal

Mutual Inductance and Self Inductance

By varying I_1 with time, there will be an induced

emf in coil 2:
$$\varepsilon_{21} = -N_2 \frac{d\Phi_{21}}{dt}$$

The rate of change of Φ_{21} in coil 2 is proportional to the time rate of change of the current in coil 1:

$$N_2 \frac{d\Phi_{21}}{dt} = M_{21} \frac{dI_1}{dt}$$

M: mutual inductance

$$M_{21} = \frac{N_2 \Phi_{21}}{I_2} \qquad M_{12} = M_{21} = M$$

The self - induced emf:

$$\varepsilon_L = -N \frac{d\Phi_B}{dt} = -L \frac{dI}{dt}$$

where the self - inductance:

$$L = \frac{N\Phi_B}{I}$$

L: self inductance

Module EEE108

Module EEE108

Magnetic Materials

23

RL Circuits

Kirchhoff's loop rule

$$\sum V_i = V_s - iR - L\frac{di}{dt} = 0$$

$$\Rightarrow \frac{L}{R}\frac{di}{dt} = -(I - \frac{V_s}{R})$$

The magnetic energy stored in a inductor

$$U_B = \frac{1}{2}LI^2$$
 Stored in magnetic field.

 $t = 0^+$: Current is changing. Inductor works: to stop the changing $t = \infty$: Current is steady. Inductor does nothing.

Module EEE108

Ferromagnetic Material

Magnetic Hysteresis

- Hysteresis loop
- Residual flux density
- Coercive force
- Saturation
- Soft magnetic materials

Energy in a Magnets

Then the density of energy is:

$$w_m = \int_0^B HdB \quad J/m^3$$

The area between the cure and the B axis is a measure of the energy density.

Transformer

- A transformer converts AC power at one voltage level to AC power of the same frequency at another voltage level.
- Operation Principles: Faraday's induction law
- Ideal transformers: a lossless device with an input winding and an output winding:
 - · the windings have no resistance,
 - · loss-less magnetic core.
 - · reluctance of the core is zero.

$$\frac{V_p}{V_s} = n \qquad \frac{I_p}{I_s} = \frac{1}{n} \qquad \frac{Z_p}{Z_s} = n^2$$

$$P_{in} = P_{out}$$

Real Transformers

- Copper (I²R) Losses
- · Eddy Current Losses
- · Hysteresis Losses
- · Leakage Flux

Two important performance characteristics:

Voltage regulation:

$$VR = \frac{V_{2,nl} - V_{2,fl}}{V_{2,fl}} \times 100\%$$

Efficiency

$$\eta = \frac{P_{out}}{P_{in}} \times 100\% = \frac{P_{out}}{P_{out} + P_{loss}} \times 100\%$$

The maximum efficiency: when the copper loss is equal to the core loss:

$$I_2^2 R_{eq} = P_{core}$$

Module EEE108

Synchronous Induction Generators Motors (popular) Electrical Machines DC Machines Motors (Three-phase)

Magnetic Circuits

By Ampere's law

Module EEE108

Linear DC Machine

Recall Linear DC Machine

Example

A linear machine has a magnetic flux density of 0.5 T directed into the page, a resistance of 0.25 Ω , a bar length l = 1.0 m, and a battery voltage of 100 V.

- (a) What is the initial force on the bar at starting? What is the initial current flow?
- (b) What is the no-load steady-state speed of the bar?
- (c) If the bar runs off into a region where the flux density falls to 0.40 T, what is the no-load steady-state speed of the bar?
- (d) If the bar is loaded with a force of 25 N opposite to the direction of motion, what is the new steady state speed? What is the efficiency of the machine under these circumstances?

29

Module EEE108

DC Machines

DC shunt motors

Terminal characteristics:

Equivalent circuits:

Speed control:

Two common methods:

- •Adjusting the field resistance R_E
- •Adjusting the terminal voltage applied to the armature.

The cause-and-effect behavior involved in the field resistance increases:

DC Machines

- Operating principle
- Construction:

two windings: field windings on stator

armature windings on rotor

Types:

separately excited, shunt, permanent-magnet, series, and compounded.

- · Equivalent circuits, terminal characteristics, speed/voltage control
- · Efficiency and losses

Module EEE108

Electrical Frequency and Speed of Rotor

$f_e = \frac{n_m P}{120}$	or	$n_{\scriptscriptstyle m}$	$=\frac{120f_0}{P}$
$J_e = \frac{120}{120}$	OI	n_m	=P

where is f_e electric frequency, in Hz n_m : mechanical speed of magnetic field (= rotor speed), in r/min

P: number of poles

$$f_m = \frac{n_m}{60} \implies f_e = \frac{P}{2} f_m$$

$$\theta_e = \frac{P}{2} \, \theta_m \qquad \quad \omega_e = \frac{P}{2} \, \omega_m$$

Rotor speed n_m (r/min)		
60 Hz	50 Hz	
3600	3000	
1800	1500	
1200	1000	
900	750	
720	600	
600	500	
450	375	
400	333	
360	300	
300	250	
225	188	
180	150	
	3600 Hz 3600 1800 1200 900 720 600 450 400 360 300 225	

AC Machines

- Operating principle
- •Construction: two windings: field windings on rotor: advantages

armature windings on stator

Synchronous generators

Magnetic field current is supplied by a separate DC power source

$$f_{e} = \frac{n_{m}P}{120}$$

Induction motors

Field current is supplied by magnetic induction into their field windings.

$$\text{stator magnetic field} \qquad n_{\text{sync}} = \frac{120\,f_{e}}{P}$$

$$slip speed \quad n_{slip} = n_{sync} - n_m$$

$$\mathrm{slip} \quad s = \frac{n_{\mathrm{step}}}{n_{\mathrm{sync}}} \times 100\% = \frac{n_{\mathrm{sync}} - n_{\mathrm{m}}}{n_{\mathrm{sync}}} \times 100\%$$

the slip/rotor frequency, electrical frequency on rotor $f_{re} = \frac{(n_{sync} - n_m)P}{120}$

otor
$$f_{re} = \frac{synt - m}{120}$$

or $f_{re} = sf_{se}$

AC Machines

33

Synchronous generators

Induction motors

- Equivalent circuits, terminal characteristics, speed/voltage control
- · Efficiency and losses

Example

The rotor of a six-pole synchronous generator is rotating at a mechanical speed of 1200 r/min.

What is the frequency of the generated voltage in hertz?

Example

A 50 kW, 460 V, 50 Hz, two-pole induction motor has a slip of 5% at full-load conditions.

What are the shaft speed, the load torque and the rotor frequency at fullload?

Module EEE108

AC Machines

•Induction motors: speed limitation:

an induction motor can speed up to near synchronous speed but it can never reach synchronous speed in its normal operation

Module EEE108

Final Exam

2017/18 SEMESTER 2 - FINAL EXAM

BACHELOR DEGREE - Year 2

Electromagnetism and Electromechanics

TIME ALLOWED: 3 Hours

INSTRUCTIONS TO CANDIDATES

Multiple-choice questions: 40 marks

- 1. This is a CLOSED BOOK exam. Total marks available are 100.
- 2. Answer ALL questions in Section A and Section B.
- 3. Multiple choice question answers for Section A should be written in pencil on the MCQ answer sheet.
- 4. Section B Answers must be written in the answer booklet(s) provided.
- The number in the column on the right indicates the approximate marks for
- 6. In answering the questions in Section B, it is particularly important to give reasons for your answer. Only partial marks will be awarded for correct answers with inadequate reasons.
- 7. The university approved calculator Casio FS82ES/83ES can be used.
- 8. A list of useful equations and constant values is provided at the end of this examination paper.

Final Exam – Time and Location

2017/18 Semester 2 Final Examination Timetable								
Module	Module Leader	Date	Day	Start Time	Duration	Exam Room	No. of Students in Room	Senior Invigilator(s)
EEE108	Jinling Zhang	12-Jun	Tue	2:00 pm	3.00h	Science Building- SC176	115	Jinling Zhang ;
EEE108	Jinling Zhang	12-Jun	Tue	2:00 pm	3.00h	Science Building- SD154	60	Derek Paul Gray ;
EEE108	Jinling Zhang	12-Jun	Tue	2:00 pm	3.00h	Science Building- SD114	46	Shaofeng Lu ;

2017-18-S2 final exam timetable on e-Bridge

7 Module EEE108

Thanks for your attendance and

Good Luck!

39 Module EEE108

This Friday - No Class

Module Feedback Questionnaires (MQs)

- The MQs will be live from Monday, 21st May to Sunday, 3rd June, Weeks 13-14.
- You will be able to access the MQs in two ways:
 - ✓ You will receive emails and reminders of the links directly to your MO.
 - ✓ You can also fill-out MQ via the ICE MQ page.
- Please fill out the questionnaires.
- Your feedback will help us to improve our TL.