Métodos Estatísticos

Prof. Bruno Santos

Instituto de Matemática e Estatística Universidade Federal da Bahia

Resumindo

Modelos

Modelo de regressão linear simples

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

Modelo de regressão linear múltipla

$$Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{1i} + \cdots + \beta_p X_{pi} + \varepsilon_i$$

- Y: variável resposta ou dependente
- X: variáveis explicativas ou preditoras ou independentes.

Diagrama de dispersão da Tensão da Rede Elétrica e da Variação no Corte

Coeficiente de correlação

- Quantifica a associação entre X e Y.
- Índice que varia entre -1 e 1.
- Valores próximos de -1 indicam uma relação linear negativa.
- Valores próximos de 1 indicam uma relação linear positiva.
- Valores próximos indicam ausência de relação entre as variáveis.
- Pode ser representado pela letra r.

Exemplos r=1

Exemplos r>0 e r≈1

Exemplos r=-1

Exemplos r<0 e r≈-1

Exemplos r≈0

Cálculo do coeficiente de correlação de Pearson

Coeficiente de correlação de Pearson:

$$r = \frac{\mathsf{cov}(X, Y)}{\mathsf{DP}(X)\mathsf{DP}(Y)}$$

Que pode ser escrito como

$$r = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{\sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2} \sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2}}$$

Anscombe (1973) - Graphs in statistical analysis The American Statistician, vol 27, nº 1, pág. 17-21

Banco de dados	1-3	1	2	3	4	4
Variável	Х	У	У	У	Χ	У
Obs. nº 1:	10	8.04	9.14	7.46	8	6.58
2:	8	6.95	8.14	6.77	8	5.76
3:	13	7.58	8.74	12.74	8	7.71
4:	9	8.81	8.77	7.11	8	8.84
5:	11	8.33	9.26	7.81	8	8.47
6:	14	9.96	8.10	8.84	8	7.04
7:	6	7.24	6.13	6;08	8	5.25
8:	4	4.26	3.10	5.39	19	12.50
9:	12	10.84	9.13	8.15	8	5.56
10:	7	4.82	7.26	6.42	8	7.91
11:	5	5.68	4.74	5.73	8	6.89

Gráficos dos dados

Análise de regressão

Modelo de regressão linear simples

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

Estimador de mínimos quadrados

$$\min_{\alpha,\beta} \sum_{i=1}^{n} (Y_i - \alpha - \beta X_i)^2$$

Reta estimada

$$\hat{Y} = \hat{\alpha} + \hat{\beta} X_i$$

Expressão para os estimadores

Derivando e igualando a zero a seguinte soma

$$\sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (Y_i - \alpha - \beta X_i)^2,$$

é possível obter os seguintes estimadores

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

e

$$\hat{\pmb{\alpha}} = \bar{\pmb{Y}} - \hat{\pmb{\beta}}\bar{\pmb{X}}$$

Exemplo apostila

$$\hat{\alpha} = 94,9576$$
 e $\hat{\beta} = -0.3563$

Análise de regressão

Soma de quadrados

Medida de variabilidade total dos dados:

$$SQ_{\text{Total}} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Variabilidade explicada pelo modelo de regressao:

$$SQ_{\text{Regressão}} = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

Variabilidade não explicada pelo modelo de regressão:

$$SQ_{Residual} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

É possível mostrar que

$$SQ_{Total} = SQ_{Regress\~{a}o} + SQ_{Residual}$$

Análise de variância

A tabela de análise de variância (ANOVA) é utilizada para testar a seguinte hipótese:

- $H_0: \beta_1 = 0$
- $H_1 : \beta_1 \neq 0$

Não rejeitar $H_0 \Rightarrow$ Não existe relação linear entre X e Y.

ANOVA:

AIIOTAI									
Fonte de variação	GL	SQ	QM	F					
Regressão	1	SQ _{Reg}	$QM_{Reg} = \frac{SQ_{Reg}}{1}$	$F = \frac{\text{QM}_{\text{Reg}}}{\text{QM}_{\text{Res}}}$					
Residual	n-2	SQ _{Res}	$QM_{Res} = \frac{SQ_{Res}}{n-2}$						
Total	n-1	SQ _{Tot}							

Estatística de teste

Utiliza a estatística de teste

$$F = \frac{\mathsf{QM}_{\mathsf{Reg}}}{\mathsf{QM}_{\mathsf{Res}}}.$$

Supondo que $\varepsilon \sim N(0, \sigma^2)$, é possível mostrar que

$$F \sim \text{Fisher-Snedecor}_{(1,n-2)}$$

O critério do teste é o seguinte:

- Rejeita-se H_0 se $F > F_{1,n-2}(\alpha)$
- $F_{1,n-2}(\alpha)$ é o quantil $1-\alpha$ da dist. Fisher-Snedecor_(1,n-2)
- Caso contrário, não rejeita-se a hipótese.

Cálculo manual

Os seguintes valores podem ser utilizados

$$SQ_{\mbox{Total}} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} Y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} Y_i \right)^2$$

$$SQ_{Reg} = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 = \hat{\beta} \left[\sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y} \right]$$

E por último,

$$SQ_{Res} = SQ_{Total} - SQ_{Reg}$$

Dados do Exemplo 14.1

Valores para o exemplo

Testes de hipóteses:

- $m{\Theta}$ H_0 : $m{eta}=0$ (Não existe relação linear entre a tensão da rede elétrica e o corte da gaveta)
- ullet $H_1:eta
 eq 0$ (Existe relação linear entre a tensão da rede elétrica e o corte da gaveta)

$$SQ_{\text{Total}} = \sum_{i=1}^{n} Y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} Y_i \right)^2$$
$$= 10.178, 11 - (1/35)(595, 3)^2 \approx 52,907$$

$$SQ_{Reg} = \hat{\beta} \left[\sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y} \right]$$

$$= -0,3563 \left[130103,39 - 35 \left(\frac{7657,60}{35} \right) \left(\frac{595,30}{35} \right) \right]$$

$$\approx 50,397$$

Estatística de teste

Logo,

$$SQ_{Res} = SQ_{Total} - SQ_{Reg}$$

= 52, 907 - 50, 397 = 2, 513

Temos então

$$MQ_{Reg} = \frac{SQ_{Reg}}{1} = 50,397, MQ_{Res} = \frac{SQ_{Reg}}{n-2} = \frac{2,513}{33} = 0,07$$

A estatística de teste F fica dada por

$$F = \frac{50,397}{0,0762} = 661,377$$

Tabela ANOVA - Exemplo

Fonte de variação	GL	SQ	QM	F _{calculado}
Regressão	1	50,397	50,397	F = 661,377
Residual	33	2,513	0,0762	
Total	34	52,907		

Utilizando a tabela da distribuição Fisher-Snedecor, temos que a região de rejeição é definida por

$$[4, 139, \infty)$$

F_{calculado} ∈RC, portanto rejeitamos H₀

 ⇒ Os dados indicam que existe relação linear entre a tensão da rede elétrica e a variação no corte da gaveta

Coeficiente de determinação

Definição:

- Proporção da variabilidade total explicada pelo modelo de regressão
- Varia entre 0 e 1

É calculada como

$$R^2 = \frac{\text{SQ}_{\text{Reg}}}{\text{SQ}_{\text{Total}}} = 1 - \frac{\text{SQ}_{\text{Res}}}{\text{SQ}_{\text{Tot}}}$$

No exemplo,

$$R^2 = \frac{50,397}{52,907} = 0,953$$

Intervalo de confiança para previsão

Suponha que exista o interesse em:

 fazer a previsão de Y para um determinado valor de X*

Uma estimativa pontual pode ser obtida como

$$Y^* = \hat{\alpha} + \hat{\beta}X^*$$

Considerando que $\varepsilon \sim N(0, \sigma^2)$, então um intervalo de confiança para essa predição é dado por

$$\hat{\alpha} + \hat{\beta}X^* \pm t_{1-\alpha/2;n-2}S\sqrt{1 + \frac{1}{n} + \frac{(X^* - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}},$$

em que

$$S^2 = \frac{\text{SQRes}}{n-2}$$

Exemplo - Tensão elétrica

Suponha que se queira predizer a variação no corte (mm) quando a tensão é 200 volts.

$$X^* = 200$$

Estimativa pontual

$$Y^* = 95,03 - (0,36x200) = 23,03$$

O intervalo de confiança para a previsão é

$$23,03 \pm 2,035 \times 0,276 \sqrt{1 + \frac{1}{35} + \frac{(200 - 218,79)^2}{397,015}} = [22,3]$$

Análise de Resíduos

$$y_i = \alpha + \beta x_i + \epsilon_i$$
, $\epsilon_i = y_i - (\alpha + \beta x_i) \rightarrow \text{erro}$
 $\hat{y}_i = \hat{\alpha} + \hat{\beta} x_i$, $e_i = y_i - \hat{y}_i \rightarrow \text{resíduo}$

e_i: quantidade que a equação de regressão não consegue explicar

- efeito de variáveis externas (variáveis explicativas omitidas).
- variabiliade natural entre indivíduos.
- eventuais erros de medida na variável Y.

Suposições do M.R.L.S.: $\epsilon_i \sim N(0, \sigma^2)$ independentes.

Suposições corretas: $\Rightarrow e_i$ devem apresentar evidências de modo a confirmar ou pelo menos não rejeitar as suposições.

Exemplos

Gráfico de resíduos vs variável preditora (ou valores ajustados)

Comentários sobre os resíduos Se o modelo é adequado:

- a) Cada *e*^{*i*} deve ser próximo de zero.
- b) Aproximadamente $\int n/2$ devem ser positivos $\int n/2$ devem ser negativos
- c) e_i's não devem produzir sequências muito longas de valores positivos ou negativos
 - ---++++ (embora b) seja válida) não indica linearidade.
 Pode indicar também resíduos positivamente correlacionados
 - + + + + + é indicativo de não aleatoriedade. Pode indicar também correlação negativa entre os resíduos.

Verificação das suposições

1. Homocedasticidade.

• Se $Var(\epsilon_i|x_i) = \sigma^2$, $\forall i$, os resíduos devem se distribuir numa faixa horizontal em torno do zero. (Verif. gráfica)

2. Normalidade $\epsilon_i \sim N(0, \sigma^2)$

• Histograma dos resíduos (se *n* grande)

•
$$z_i = \frac{e_i}{\sqrt{\text{QM}_{Res}}} \approx N(0, 1)$$
 resíduo padronizado. \pm 95% dos z_i 's devem estar no intervalo (-1,96;1,96).

Gráfico de probabilidade normal

$$z_{i} = \frac{e_{i}}{\sqrt{\text{QM}_{Res}}},$$

$$F_{i} = \frac{\#(Z \le z_{i})}{n},$$

$$\Phi(x) = P(Z \le x), Z \sim N(0, 1).$$

z_i ord.	F_i	$\Phi^{-1}(F_i)$
<i>Z</i> ₁	1/n	$\Phi^{-1}(F_1)$
z_2	2/n	$\Phi^{-1}(F_2)$
:	÷	:
Zn	1	

Outros gráficos

a) $e_i \times \hat{y}_i$

No modelo de regressão linear simples: mesma informação que $e_i \times x_i$. Importante no modelo de regressão linear múltipla.

b) $e_i \times y_i$

Desaconselhável. Verifica-se que e_i e y_i são correlacionadas.

c) $e_i \times \text{tempo}$

Se os dados forem tomados numa ordem "temporal" conhecida.

Comum: erros (ϵ_i) num período de tempo serem correlacionados com os do período seguinte.

d) $e_i \times$ valores de uma variável independente omitida. Qualquer "padrão" exibido por este gráfico indica que o modelo pode ser melhorado com a inclusão desta variável independente.

Exemplo variável omitida

Ideia de aderência

Alguma das curvas teóricas está adequada aos dados?

Ideia de aderência

E quando aumentamos o tamanho da amostra?

Caso discreto

A distribuição observada se aproxima da distribuição teórica?

Teste de aderência

- Na análise estatística são sempre feitas suposições.
- Após observar os dados podemos checar essas suposições.
- Até o momento, fizemos testes de hipóteses para os parâmetros de uma distribuição de probabilidade.
- O teste de aderência permite testar se o modelo estatístico proposto é razoável.
- Para isso são comparadas os valores esperados pelo modelo proposto e os valores observados na amostra.

Teste Qui-quadrado de aderência

- Compara as frequências observadas na amostra com as frequências caso o modelo proposto fosse verdadeiro.
- Considere n observações de uma variável aleatória X com função de distribuição de probabilidade não especificada.
- Cada observação é classificada em uma dentre k categorias.

Variável	Cat. 1	Cat. 2	• • •	Cat. k
Frequência observada	O_1	<i>O</i> ₂	• • •	O _k

Estatística de teste

- H_0 : A variável X segue o modelo proposto.
- H₁: A variável X não segue o modelo proposto.

A estatística de teste é dada por

$$\chi_{cal}^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \chi_{\nu}^2$$

- k é o numero de categorias;
- O_i frequência observada na i-ésima categoria;
- E_i frequência esperada na i-ésima categoria: np_i;
- p_i probabilidade da i-ésima categoria;
- $\nu=k-1$ se as frequências esperadas puderem ser calculadas sem estimação dos parâmetros da distribuição.

Regra de decisão

- Para um dado nível de significância α :
 - ♦ Rejeita-se H_0 se $\chi^2_{cal} > \chi^2_{1-\alpha}$, em que

$$P(\chi^2_{\nu}>\chi^2_{1-\alpha})=\alpha$$

- Também rejeita-se H_0 quando o p-valor calculado é menor que o nível de significância, α .
- Note que o teste rejeita a hipótese nula quando as diferenças entre os valores esperados e os observados são grandes.
- A utilização da distribuição Qui-quadrado é um resultado aproximado, por isso alguns cuidados devem ser tomados.

Cuidados com o uso desse teste

- Quando o número de categorias for igual a dois (k = 2) as frequências esperadas dentro de cada categoria devem ser iguais ou superiores a 5.
- Quando k > 2, não deve ter mais de 20% das categorias com frequências esperadas menores que 5 e nenhuma frequência esperada igual a zero.
- Quando as categorias apresentarem pequenas frequências esperadas elas podem ser combinadas com outras categorias, de tal forma que o sentido do trabalho seja conservado.
- Se houver estimação de algum parâmetro no teste, então v = k m 1, em que m é o número de parâmetros estimados.

Exemplo 15.1 - pg 28

- X: porcentagem de cinzas contidas em carvão
- Afirmação: $P \sim N(\mu, \sigma^2)$.

i	Cinzas (em %)	# de observações
1	09,5 -10,5	2
2	10,5 -11,5	5
3	11,5 -12,5	16
4	12,5 -13,5	42
5	13,5 -14,5	69
6	14,5 -15,5	51
7	15,5 -16,5	32
8	16,5 -17,5	23
9	17,5 -18,5	9
_10	18,5 -19,5	1

- Média e variância (μ , σ^2) são desconhecidos.
- Melhores estimadores: \bar{X} e S^2 , respectivamente.

$$\bar{X} = \frac{\sum_{i=1}^{10} x_i f_i}{\sum_{i=1}^{10} f_i} = \frac{10 * 2 + 11 * 5 + \dots + 19 * 1}{2 + 5 + \dots + 1} \approx 14, 5$$

$$S^2 = \frac{\sum_{i=1}^{10} (x_i - \bar{X})^2 f_i}{(\sum_{i=1}^{10} f_i) - 1} = 2, 7$$

• $\hat{X} \sim N(14, 5; 2, 7)$

Hipóteses de interesse:

- H₀: X têm distribuição normal
- H₁: X não têm distribuição normal
- A distribuição normal é definida no intervalo (-∞, ∞).
- Temos que calcular as frequências esperdas em cada um dos intervalos propostos.

$$E_1 = 250 * P(X < 10, 5) = 250 * P\left(Z < \frac{10, 5 - 14, 5}{\sqrt{2, 7}}\right)$$

= 250 * P(Z < -2, 43) = 1, 875.

$$E_2 = 250 * P(10, 5 \le X < 11, 5)$$

$$= 250 * P\left(\frac{10, 5 - 14, 5}{\sqrt{2, 7}} \le Z < \frac{11, 5 - 14, 5}{\sqrt{2, 7}}\right)$$

$$= 250 * P(-2, 43 \le Z < -1, 83) = 6,525.$$

Um cálculo similar deve ser feito para as categorias de 3 a 9.

Por último,

$$E_{10} = 250 * P(X \ge 18, 5)$$

$$= 250 * P\left(Z \ge \frac{18, 5 - 14, 5}{\sqrt{2, 7}}\right)$$

$$= 250 * P(Z \ge 2, 43) = 1, 875.$$

A tabela com valores observados e esperados ficaria da seguinte forma

Categorias	Freq. observada	Freq. esperada
1	2	1,875
2	5	6,525
3	16	19,4
4	42	39,925
5	69	57,275
6	51	57,275
7	32	39,925
8	23	19,4
9	9	6,525
10	1	1,875

Cálculo da estatística de teste

Com isso, podemos calcular a estatística de teste

$$\chi_{cal}^{2} = \sum_{i=1}^{10} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$= \frac{(2 - 1, 875)^{2}}{1, 875} + \frac{(5 - 6, 525)^{2}}{6, 525} + \dots + \frac{(1 - 1, 875)^{2}}{1, 875}$$

$$= 7.74$$

Considerando $\nu=10-2-1=7$ e nível de significância 2,5%, devemos obter o quantil de ordem 97,5% da χ_7^2 , que é 16,01.

Conclusão: Não rejeitamos H_0 , pois 7,74 é menor que 16,01, então aceitamos que os dados são distribuídos normalmente.

Exercícios de fixação 1

- X: Número de acidentes sofridos por um grupo de mineiros durante um trabalho numa mina de carvão.
- Investigar se a distribuição de X segue o modelo Poisson, com $\lambda = 1,45$.

Número de acidentes	0	1	2	3	4	5
Número de mineiros	35	47	39	20	5	2

Lembrando que, se $X \sim P(\lambda)$, então

$$P(X=x)=\frac{e^{-\lambda}\lambda^x}{x!}$$

• $H_0: X \sim P(1, 45)$ contra $H_1: X \not\sim P(1, 45)$

Exercícios de fixação 1 - Cont.

Obtendo as frequências esperadas:

$$E_0 = 148 * P(X = 0)$$

$$= 148 * \frac{e^{-1,45}1,45^0}{0!}$$

$$= 148 * 0,22 = 34,7164$$

Assim por diante até

$$E_5 = 148 * P(X = 5)$$

$$= 148 * \frac{e^{-1,45}1,45^5}{5!}$$

$$= 148 * 0,0125 = 1,8544$$

Cálculo da estatística de teste

Cat.	0	1	2	3	4	
Oi	35	47	39	20	5	
E_i	34,7164	50,3388	36,4956	17,6396	6,3943	1,8

A estatística de teste fica dada por

$$\chi_{cal}^{2} = \sum_{i=0}^{5} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$= \frac{(35 - 34,7164)^{2}}{34,7164} + \frac{(47 - 50,3388)^{2}}{50,3388} + \dots + \frac{(2 - 1,8544)^{2}}{1,8544}$$

$$= 1,027$$

A região crítica é [11, 0705; ∞), logo não rejeitamos H_0 .

Definições

Alguns termos que serão utilizados:

- Fator e nível
 - Fator é a variável independente num estudo
 - Nível são as formas particulares do fator
- Efeito de diferentes açúcares no crescimento de bactérias
 - Acúcar = fator
 - Glicose, sacarose e frutose são os níveis do fator
- Efeito da concentração de madeira de lei em polpa sobre a resistência à tração das sacolas fabricadas da polpa
 - Concentração de madeira de lei em polpa = fator
 - 5%, 10%, 15% e 20% são os níveis do fator

Definições

Tratamento

- Objeto que se deseja medir ou avaliar em um experimento
- Nível do fator sobre análise
- Combinação de fator e nível em estudos com dois ou mais fatores
- Efeitos de cinco marcas de gasolina na eficiência operacional
 - Fator é a marca
 - Cada marco constitui um tratamento
- Efeitos de horário e fábrica na fabricação de um certo produto
 - Fatores: fábrica e horário
 - Níveis: {A, B} {Manhã, Noite}
 - Tratamento: {(A Manhã), (A Noite), (B Manhã), (B - Noite)}

Definições

Unidade experimental

- Unidade que recebe o tratamento
- Fornece os dados para análise
 - Motor
 - Pessoa
 - Animal
 - Planta

Repetição

- Número de vezes que aparece um tratamento
- Depende dos recursos disponíveis
- Deveria depender da variabilidade do experimento
- Existem metodologias para estimar um número satisfatório

Análise de variância

- Suponha um experimento com k tratamentos (ou populações)
- A variável resposta de cada unidade experimental em cada tratamento é uma variável aleatória

Tratamento	Observações			Total	Média	
1	<i>y</i> ₁₁	<i>y</i> ₁₂	• • •	y 1n	<i>y</i> _{1.}	$\bar{y}_{1.}$
2	y 21	<i>y</i> ₂₂	• • •	y 2n	y 2.	$ar{y}_{2.}$
÷	÷	÷	٠	:	÷	:
k	y _{k1}	y _{k2}	• • •	Уkп	y k.	$ar{y}_{n.}$
					У	<u> </u>

$$y_{i.}=\sum_{j=1}^n y_{ij},\quad ar{y}_{i.}=rac{y_{i.}}{n},\quad i=1,\ldots,k.$$
 $y_{..}=\sum_{i=1}^k \sum_{j=1}^n y_{ij},\quad ar{y}_{..}=rac{y_{..}}{N},\quad N=n imes k.$ Prof. Bruno Santos (IME-UFBA)

Modelo estatístico

Um modelo para descrever os dados é:

$$y_{ij} = \mu_i + \epsilon_{ij}, \quad i = 1, \ldots, k, j = 1, \ldots, n.$$

- y_{ij}: observação do i-ésimo tratamento na j-ésima unidade
- μ_i: média do i-ésimo tratamento, valor fixo e desconhecido
- ϵ_{ij} : erro aleatório associado ao *i*-ésimo tratamento na *j*-ésima unidade experimental
- $\epsilon_{ij} \sim N(0, \sigma^2)$, independentes.
- $y_{ij} \sim N(\mu_i, \sigma^2)$
- μ_i parte sistemática que representa a média da população i, que é fixa
- ϵ_{ij} é a parte aleatória, informação referente a outras informações que podem influenciar o resultado

Representação alternativa

Podemos representar o modelo anterior de uma maneira diferente:

$$\mu_i = \mu + \tau_i$$

O modelo anterior fica dado como

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}, \quad i = 1, \ldots, k, j = 1, \ldots, n.$$

- μ : média global, parâmetro comum a todos tratamento
- τ_i : efeito de tratamento, parâmetro do i-ésimo tratamento

Análise de variância

Esses dois modelos são denominados Análise de Variância (ANOVA) de fator único.

- É necessário que a alocação do material experimental às diversas condições experimentais seja aleatória
- E que o meio em que os tratamentos sejam aplicados (chamado de unidades experimentais) seja tão uniforme quanto possível
- O planejamento experimental é denominado de completamente aleatorizado
- O objetivo será o de testar hipóteses apropriadas sobre as médias dos tratamentos

Análise de um modelo com efeitos fixos

- Considere um experimento completamente aleatorizado
- A análise de variância será para um único fator com efeitos fixos
- O interesse é testar a igualdade média dos tratamentos.

As hipóteses apropriadas para isso são

- $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$
- $H_1: \mu_i \neq \mu_j$ para algum $i \in j$ tal que $i \neq j$

A hipótese nula supõe que as observações amostrais dentro de cada tratamento podem ser vistas como provenientes de populações com médias iguais

Representação alternativa

Se reescrevermos a média de cada tratamento como

$$\mu_i = \mu + \tau_i$$

Então, a média global pode ser escrita como

$$\mu = \frac{\sum_{i=1}^k \mu_i}{k}$$

Implicando que $\sum_{i=1}^{k} \tau_i = 0$. Logo podemos reescrever as

hipóteses de interesse como

- $H_0: \tau_1 = \tau_2 = \cdots = \tau_k = 0$
- $H_1: \tau_i \neq 0$ para algum i

Suposições do modelo

A idéia básica é de que existe uma distribuição de probabilidade para a variável resposta Y_{ij} em cada nível do fator.

Nesse caso, é necessário assumir que:

- i) Y_{ij} são variáveis aleatórias independentes
- ii) Y_{ij} tem distribuição normal com média μ_i
- iii) $Var(Y_{ij}) = \sigma^2$, ou seja, todas as k populações devem ter var. homogêneas $(\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2 = \sigma^2)$
- A última propriedade também é conhecida como homocedasticidade.
- Em outras palavras, a variância σ^2 deve ser constante para todos nos níveis de fator.

Decomposição da soma de quadrados

- O termo análise de variância pode induzir a um equívoco
- Investigar diferenças entre médias dos tratamentos
- E não diferenças significativas entre as variâncias dos grupos
- Vamos analisar os componentes da variância dos dados para concluir sobre as médias

A soma de quadrado total é dada por

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2$$

Que pode ser decomposta em

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2 = n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2$$

Considere novamente

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2 = n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2$$

Podemos definir essa igualdade como

$$SST = SSTrat + SSE$$

- SST: Variabilidade total dos dados
- SSTrat: Variabilidade entre os tratamentos
- SSE: Variabilidade entre as observações do mesmo tratamento

Considerações sobre essas somas de quadrados

Considere o segundo termo do lado direito da expressão

$$\sum_{i=1}^{k} \left[\sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^{2} \right]$$

A soma dentro do colchete dividido por (n-1) é a variância amostral do *i*-ésimo tratamento

$$S_i^2 = \frac{\sum_{j=1}^n (y_{ij} - \bar{y}_{i.})^2}{n-1}$$

Combinando essa variância amostral pra todos os tratamento, temos

$$\frac{(n-1)S_1^2 + (n-1)S_2^2 + \dots + (n-1)S_k^2}{(n-1) + (n-1) + \dots + (n-1)} = \frac{\sum_{i=1}^k \left[\sum_{j=1}^n (y_{ij} - \bar{y}_{i.})^2\right]}{\sum_{i=1}^k (n-1)} = \frac{SSE}{N-k}$$

Sobre estimadores para σ^2

Logo,
$$\frac{SSE}{N-k}$$
 é um estimador para σ^2 .

De maneira similiar, analisando o primeiro termo de SST, temos que

$$\frac{SSTrat}{k-1} = \frac{n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2}{k-1}$$

também é um estimador para σ^2 , se não existe diferença entre os tratamentos.

Assim, temos que

$$\frac{SSE}{N-k}$$
 e $\frac{SSTrat}{k-1}$

são estimadores para σ^2 quando as médias dos tratamentos são iguais.

ANOVA

A ANOVA para testar as hipóteses:

- $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$
- $H_1: \mu_i \neq \mu_j$ para algum $i \in j$ tal que $i \neq j$

Pode ser resumida como

-	_	_	•	_	
Λ	NI	O	\ /	^	
_	14	u	w	м	

			<i>,</i>	
Fonte de variação	GL	SQ	QM	F
Entre Tratamentos	k-1	SSTrat	$QMTrat = \frac{SSTrat}{k-1}$	$F_{calc} = \frac{QMTrat}{OME}$
Dentre Tratamentos	N-k	SSE	$QME = \frac{SSE}{N-k}$	•
Total	N-1	SQ _{Tot}		

A estatística de teste F tem distribuição Fisher-Snedecor, com k-1 graus de liberdade no numerador e N-k graus de liberdade no denominador.

Regras de decisão

Temos que

$$F_{calc} \sim F_{k-1;N-k}$$

• A hipótese nula deve ser rejeitada para valores grandes de F_{calc} .

O critério do teste é o seguinte então:

- Rejeita-se H_0 se $F_{calc} > F_{k-1,N-k}(\alpha)$
- $F_{k-1,N-k}(\alpha)$ é o quantil $1-\alpha$ da dist. Fisher-Snedecor_(k-1,N-k)
- Caso contrário, não rejeita-se a hipótese.

Cálculo manual dessas quantidades

Os seguintes valores podem ser utilizados para facilitar o cálculo manual dessas quantidades

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n} y_{ij}^{2} - \frac{y_{..}^{2}}{N}$$

$$SSTrat = \frac{1}{n} \sum_{i=1}^{k} \bar{y}_{i.}^2 - \frac{y^2}{N}$$

Além disso, SSE pode ser obtida com

$$SSE = SST - SSTrat$$

Teste de Tukey

- Ao se rejeitar H_0 é interessante apontar quais médias podem ser consideradas diferentes.
- Para isso é necessário fazer vários testes de hipótese de forma simultânea.
- Porém, deve-se tomar cuidado com comparações múltiplas

XKCD

Teste de Tukey

- O teste de Tukey é uma dentre outras alternativas de se controlar essas comparações múltiplas.
- Esse teste permite testar qualquer contraste, sempre, entre duas médias de tratamentos
- Nesse caso, as hipóteses estatísticas são:
 - \bullet $H_0: \mu_i = \mu_i$
 - $\bullet \ H_1: \mu_i \neq \mu_j,$

para todo $i \neq j$.

Formulação do teste

- O teste proposto por Tukey baseia-se na diferença significante HSD=∆.
- HSD = Honestly Significant Difference
- Essa diferença para dados balanceados é

$$\Delta_{\alpha} = q_{\alpha}(k; f) \sqrt{\frac{QME}{n}}$$

• Duas médias, μ_i e μ_j são consideradas significativamente diferentes quando

$$|\bar{y}_{i.} - \bar{y}_{j.}| > \Delta_{\alpha}$$

Fazer exemplo da apostila

Análise de variância

- Suponha um experimento com k tratamentos (ou populações)
- A variável resposta de cada unidade experimental em cada tratamento é uma variável aleatória

Tratamento	Observações			Total	Média	
1	<i>y</i> ₁₁	<i>y</i> ₁₂	• • •	y 1n	<i>y</i> _{1.}	$\bar{y}_{1.}$
2	y 21	<i>y</i> ₂₂	• • •	y 2n	y 2.	$ar{y}_{2.}$
÷	÷	÷	٠	:	÷	:
k	y _{k1}	y _{k2}	• • •	Уkп	y k.	$ar{y}_{n.}$
					У	<u> </u>

$$y_{i.}=\sum_{j=1}^n y_{ij},\quad ar{y}_{i.}=rac{y_{i.}}{n},\quad i=1,\ldots,k.$$
 $y_{..}=\sum_{j=1}^k \sum_{j=1}^n y_{ij},\quad ar{y}_{..}=rac{y_{..}}{N},\quad N=n imes k.$ Prof. Bruno Santos (IME-UFBA)

Modelo estatístico

Um modelo para descrever os dados é:

$$y_{ij} = \mu_i + \epsilon_{ij}, \quad i = 1, ..., k, j = 1, ..., n.$$

- y_{ij}: observação do i-ésimo tratamento na j-ésima unidade
- μ_i: média do i-ésimo tratamento, valor fixo e desconhecido
- ϵ_{ij} : erro aleatório associado ao *i*-ésimo tratamento na *j*-ésima unidade experimental
- $\epsilon_{ii} \sim N(0, \sigma^2)$, independentes.
- $y_{ij} \sim N(\mu_i, \sigma^2)$

Análise de um modelo com efeitos fixos

- Considere um experimento completamente aleatorizado
- A análise de variância será para um único fator com efeitos fixos
- O interesse é testar a igualdade média dos tratamentos.

As hipóteses apropriadas para isso são

- $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$
- $H_1: \mu_i \neq \mu_j$ para algum $i \in j$ tal que $i \neq j$

A hipótese nula supõe que as observações amostrais dentro de cada tratamento podem ser vistas como provenientes de populações com médias iguais

Suposições do modelo

A idéia básica é de que existe uma distribuição de probabilidade para a variável resposta Y_{ij} em cada nível do fator.

Nesse caso, é necessário assumir que:

- i) Y_{ij} são variáveis aleatórias independentes
- ii) Y_{ij} tem distribuição normal com média μ_i
- iii) $Var(Y_{ij}) = \sigma^2$, ou seja, todas as k populações devem ter var. homogêneas $(\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2 = \sigma^2)$
- A última propriedade também é conhecida como homocedasticidade.
- Em outras palavras, a variância σ^2 deve ser constante para todos nos níveis de fator.

Considere novamente

$$\sum_{i=1}^k \sum_{j=1}^n (y_{ij} - \bar{y}_{..})^2 = n \sum_{i=1}^k (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{i=1}^k \sum_{j=1}^n (y_{ij} - \bar{y}_{i.})^2$$

Podemos definir essa igualdade como

$$SST = SSTrat + SSE$$

- SST: Variabilidade total dos dados
- SSTrat: Variabilidade entre os tratamentos
- SSE: Variabilidade entre as observações do mesmo tratamento

ANOVA

A ANOVA para testar as hipóteses:

- $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$
- $H_1: \mu_i \neq \mu_j$ para algum $i \in j$ tal que $i \neq j$

Pode ser resumida como

-	_	_	•	_	
Λ	NI	O	\ /	^	
_	14	u	w	м	

			<i>,</i>	
Fonte de variação	GL	SQ	QM	F
Entre Tratamentos	k-1	SSTrat	$QMTrat = \frac{SSTrat}{k-1}$	$F_{calc} = \frac{QMTrat}{OME}$
Dentre Tratamentos	N-k	SSE	$QME = \frac{SSE}{N-k}$	•
Total	N-1	SQ _{Tot}		

A estatística de teste F tem distribuição Fisher-Snedecor, com k-1 graus de liberdade no numerador e N-k graus de liberdade no denominador.

Regras de decisão

Temos que

$$F_{calc} \sim F_{k-1;N-k}$$

• A hipótese nula deve ser rejeitada para valores grandes de F_{calc} .

O critério do teste é o seguinte então:

- Rejeita-se H_0 se $F_{calc} > F_{k-1,N-k}(\alpha)$
- $F_{k-1,N-k}(\alpha)$ é o quantil $1-\alpha$ da dist. Fisher-Snedecor_(k-1,N-k)
- Caso contrário, não rejeita-se a hipótese.

Análise de diagnóstico

Precisamos verificar se o modelo

$$y_{ij} = \mu_i + \epsilon_{ij}$$

é adequado. Para isso, devemos analisar o resíduo

$$e_{ij}=y_{ij}-\hat{y}_{ij}.$$

O valor predito é obtido como

$$\hat{y}_{ij} = \hat{\mu}_i = \bar{y}_{i.}$$

Algumas violações do modelo podem ser observadas pelos resíduos.

Gráfico de probabilidade normal

- Histograma dos resíduos (se n grande)
- $z_i = \frac{e_i}{\sqrt{\text{QME}}} \approx N(0, 1)$ resíduo padronizado. ± 95% dos z_i 's devem estar no intervalo (-1,96;1,96).
- Um teste estatístico também pode ser usado.

Gráfico de probabilidade normal

$$z_i = \frac{e_i}{\sqrt{\mathsf{QME}}},$$
 $F_i = \frac{\#(Z \leqslant z_i)}{n},$
 $\Phi(x) = P(Z \leqslant x), Z \sim N(0, 1).$

z_i ord.	F_i	$\Phi^{-1}(F_i)$
z_1	1/n	$\Phi^{-1}(F_1)$
z_2	2/n	$\Phi^{-1}(F_2)$
÷	÷	:
Zn	1	

Gráfico de Resíduos Contra Ordem das Observações Coletadas

Se o modelo é adequado:

- a) Cada e_i deve ser próximo de zero.
- b) Aproximadamente $\int n/2$ devem ser positivos $\int n/2$ devem ser negativos
- c) e_i's não devem produzir sequências muito longas de valores positivos ou negativos
 - 1 - - + + + + + não é esperado.
 - 2 + + + + + também não é razoável.

Gráficos dos Resíduos (e_{ij}) contra os Valores Preditos (y_{ij})

Suposição verificada:

- Homogeneidade das variâncias dos erros em todos os níveis do fator:
 - dispersão dos resíduos não pode depender dos valores preditos.

