

Lecture 01:

Introduction

Markus Hohle

University California, Berkeley

Numerical Methods for Computational Science

MSSE 273, 3 Units

Outline

- Motivation
- Course Map
- Python Libraries
- Lecture Exercise

Outline

- Motivation
- Course Map
- Python Libraries
- Lecture Exercise

Leung & Weitz 2016 drug development

Al driven data analysis (lecture exercise, see Chem 277B)

>BEISA025-19|Culex|COI-5P

AACATTATATTTTATTTTCGGTGCTTGAGCAGGAATAGTAGGAACTTCTTTAAGTATTCTTATTCG

automating workflows (Mass Spec to SMILES, Chem 277B project, Casey Tomlin, Dulce Torres, Esther Mathew, Jesse Maki, Marie Anand)

automating workflows (image to diagnosis, Chem 277B project, Elle MacLennan, Carmen Matar, Timothy Nguyen, Brandon Ton)

Source: CERN/ATLAS

- data analysis
- data extraction
- data modelling
- data fitting
- data generation

math + coding

algorithm development ΑI Machine Learning data analysis data extraction data modelling data fitting data generation **Numerical Methods** Math **Programming**

Why Computational Methods?

LinkedIn: 1st three Job Postings, Jan 10th 2025

Why Computational Methods?

Listen up son, there are three languages you need to learn in order to become successful: - English

- Math

- Python *)

TIOBE index, Jan 2025

Jan 2025	Jan 2024	Change	Program	ming Language	Ratings	Change	
1	1	a	Pv	thon	23.28%		+9.32%
2	3	^	· y		20.2070		0.02
3	4	^	C+	+	10.29%		+0.33%
4	2	·	0				
5	5		3	C#	4.45%	-2.71%	
6	6		JS	JavaScript	4.20%	+1.43%	
7	11	*	-GO	Go	2.61%	+1.24%	
8	9	^	SQL	SQL	2.41%	+0.95%	
9	8	•	VB	Visual Basic	2.37%	+0.77%	
10	12	^	F	Fortran	2.04%	+0.94%	
11	13	^	6	Delphi/Object Pascal	1.79%	+0.70%	
12	10	•	(2000)	Scratch	1.55%	+0.11%	
13	7	*	php	PHP	1.38%	-0.41%	
14	19	*	®	Rust	1.16%	+0.37%	
15	14	•		MATLAB	1.07%	+0.09%	

TIOBE index, Jan 2025

Outline

- Motivation
- Course Map
- Python Libraries
- Lecture Exercise

GSI:

Elizabeth (Lizzie) Gilson
Toxicology Data Scientist at EPA,
UC Berkeley Alumna (MSSE)

Lecturer:

Markus Hohle
Lecturer at UC Berkeley &
Data Analysis Consultant
PhD Physics

Introduction

Lecture:	Monday,	5:00 – 8:00pm PT
_, , , , , ,		

Discussion (Lizzie): Wednesday, 5:30 – 6:30pm PT Lab Session (Markus): Wednesday, 6:30 – 7:30pm PT

Office Hours (Markus): Friday, 5:00 – 7:00pm PT

Material: Recorded Lectures: bcourses

codes/slides bcourses & GitHub

HW assignments bcourses

Grades: HW Assignments: 40%

Programming Projects 20%

Lecture Exercises 20%

Discussion & Lab Participation 20%

Monday May 19th, 2025 **Course Start Date: Course End Date:** Friday, August 15th, 2025

Week 1: Introduction to Scientific Computing and Python Libraries

Week 2: Linear Algebra Fundamentals

Week 3: **Vector Calculus**

Week 4: Numerical Differentiation and Integration

Week 5: **Solving Nonlinear Equations**

Week 6: **Probability Theory Basics**

Week 7: Random Variables and Distributions

Week 8: Statistics for Data Science

Week 9: **Eigenvalues and Eigenvectors**

Week 10: Simulation and Monte Carlo Method

Week 11: Data Fitting and Regression

Week 12: **Optimization Techniques**

Week 13: Machine Learning Fundamentals

Outline

- Motivation
- Course Map
- Python Libraries
- Lecture Exercise

pandas (standard)

+ analyzing/evaluating/manipulating data frames

dask

faster than pandas, but fewer functions

polars

fireducks

FireDucks

pandas (standard)

+ analyzing/evaluating/manipulating data frames

pandas python

FireDucks

pandas (standard)

2) plotting

matplotlib

pandas (standard)

2) plotting

matplotlib, seaborn

3) numerical methods

acos acosh

asin

asinh

atan

atan2

atanh

basics

numpy

math

NumPy NumPy standard

np.random.

hypergeometric
laplace
logistic
lognormal
logseries
mtrand
multinomial

1) reading files (.xlsx, .xls, .csv, .txt, ...) pandas (standard)

2) plotting matplotlib, seaborn

3) numerical methods

math basics

numpy

standard

scipy

- num. integration/differentiation
- Fourier transformation
- optimization
- curve fitting ...

- 1) reading files (.xlsx, .xls, .csv, .txt, ...)
- 2) plotting
- 3) numerical methods
- 4) machine learning

pandas (standard)

matplotlib, seaborn

math, numpy, scipy

scikitlearn

pandas (standard)

2) plotting

matplotlib, seaborn

3) numerical methods

math, numpy, scipy

machine learning

scikitlearn

5) ANN/AI/DeepLearning

Keras O PyTorch

Outline

- Motivation
- Course Map
- Python Libraries
- Lecture Exercise

- reading different file formats (same content)
- benchmarking
- coding warm-up for course
- FYI dynamic programming

see: 01_Lecture_Exercise.ipynb

- reading different file formats (same content)
- benchmarking
- coding warm-up for course
- FYI dynamic programming

see: 01_Lecture_Exercise.ipynb

```
dfPandasCSV = ReadWithAnyToolAnyMethod()
dfPandasCSV = ReadWithAnyToolAnyMethod(filename = 'Data_set_0.xlsx', my_method = 'read_excel')

dfPandasCSV = ReadWithAnyToolAnyMethod(my_tool = 'dd')

dfPandasCSV = ReadWithAnyToolAnyMethod(my_tool = 'pl')
dfPandasCSV = ReadWithAnyToolAnyMethod(filename = 'Data_set_0.xlsx', my_tool = 'pl', my_method = 'read_excel')

Total runtime: 2.937999999994645 seconds
Total runtime: 198.5779999999795 seconds
Total runtime: 0.0 seconds
Total runtime: 0.18700000000053551 seconds
Total runtime: 17.0 seconds
```


Thank you very much for your attention!