

Department of Mathematics, IIT Delhi

MTL733: Assignment-3

Q.1) Find the process $f(t,\omega) \in \mathcal{Y}(0,T)$ such that $F = \mathbb{E}[F] + \int_0^T f(t,\omega) dB(t)$ for $F = B^2(T)$ and $F = e^{B(T)}$.

Q.2) Find the Ito representation form for the martingales:

- i) $X(t) := B^3(t) 3tB(t), t \ge 0$
- ii) $Y(t) := B^4(t) 6tB^2(t) + 3t^2, \ t \ge 0$
- iii) $Z(t) = \mathbb{E}[B^2(T)|\mathcal{F}_t], \ 0 \le t \le T.$

Q.3) Let X be a standard normal random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Find a probability measure $\bar{\mathbb{P}}$ on (Ω, \mathcal{F}) such that the random variable

$$Y = X + \theta, \quad 0 \neq \theta \in \mathbb{R}$$

becomes a standard normal under the measure $\bar{\mathbb{P}}$.

Q.4) Consider a 2-dimensional Ito process $\mathbf{Y}(t) = (Y_1(t), Y_2(t))$ given by

$$dY_1(t) = dB_1(t) + 3dB_2(t), \quad dY_2(t) = dt - dB_1(t) - 2dB_2(t)$$

where $\mathbf{B}(t) = (B_1(t), B_2(t))$ is a 2-dimensional Brownian motion. Find a probability measure $\bar{\mathbb{P}}$ such that \mathbb{P} and $\bar{\mathbb{P}}$ are equivalent, and $\mathbf{Y}(t)$ is a martingale with respect to $\bar{\mathbb{P}}$.

Q.5) Suppose $\mathbf{Y}(t) = (Y_1(t), Y_2(t)) \in \mathbb{R}^2$ is given by

$$dY_1(t) = \beta_1(t) dt + dB_1(t) + 2dB_2(t) + 3dB_3(t)$$

$$dY_2(t) = \beta_2(t) dt + dB_1(t) + 2dB_2(t) + 2dB_3(t)$$

where β_1 , β_2 are bounded adapted processes and $\mathbf{B}(t) = (B_1(t), B_2(t), B_3(t))$ is 3-dimensional Brownian motion. Show that there are infinitely many equivalent martingale measures Q for $\mathbf{Y}(t)$.

 $\mathbf{Q.6}$) Let B(t) be a 1-dimensional Brownian motion. Use Girsanov's theorem to evaluate

$$\mathbb{E}\Big[\big(B^2(T)-T\big)\exp\{-\int_0^T s^2\,dB(s)\}\Big],\quad\text{for any }T>0.$$

Q.7) Let $\mathbf{B}(t) := (B_1(t), B_2(t)) : 0 \le t \le T$ be a 2-dimensional Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$. Show that there exists a probability measure $\bar{\mathbb{P}}$ on (Ω, \mathcal{F}) such that the stochastic process $\bar{\mathbf{B}}(t) = (\bar{B}_1(t), \bar{B}_2(t)) : 0 \le t \le T$ given by

$$\bar{B}_1(t) = B_1(t), \quad \bar{B}_2(t) = B_2(t) + \int_0^t B_1(s) \, ds$$

is a 2-dimensional Brownian motion under $\bar{\mathbb{P}}$. Show that

$$\bar{\text{Cov}}(B_1(T), B_2(T)) \neq \text{Cov}(B_1(T), B_2(T))$$

Q.8) Show that solution of the SDE

$$dX(t) = \kappa(\alpha - \log(X(t)))X(t) dt + \sigma X(t) dB(t); \quad X(0) = x > 0$$

is given by the formula

$$X(t) = \exp\Big\{e^{-\kappa t}\ln(x) + \left(\alpha - \frac{\sigma^2}{2\kappa}\right)\left(1 - e^{-\kappa t}\right) + \sigma e^{-\kappa t}\int_0^t e^{\kappa s} dB(s)\Big\},\,$$

where $\sigma, \kappa, \alpha, x$ are positive constant. Find the mean of X(t).

Q.9) Consider a nonlinear SDE of the form

$$dX(t) = f(t, X(t)) dt + \alpha X(t) dB(t), \quad X(0) = x$$
 (0.1)

where $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a given continuous deterministic function, and $\alpha \in \mathbb{R}$ is a constant.

a) Show that

$$d(F(t)X(t)) = F(t)f(t, X(t)) dt,$$

where the process F(t) is given by $F(t) = \exp\{-\alpha B(t) + \frac{\alpha^2 t}{2}\}$.

- b) Define the process Y(t) = F(t)X(t) so that $X(t) = (F(t))^{-1}Y(t)$. Deduce that Y(t) satisfies a deterministic differential equation in the function $t \mapsto Y(t,\omega)$ for each $\omega \in \Omega$.
- Q.10) Use Q. 9) to solve the following SDEs:
 - i) $dX(t) = \frac{1}{X(t)} dt + \alpha X(t) dB(t);$ X(0) = x > 0, where α is a constant. ii) $dX(t) = X^{\gamma}(t) dt + 4X(t) dB(t);$ X(0) = x > 0, where γ is a constant.
- Q.11) For any positive, smooth function f, show that the process

$$M(t) := f(B(t)) \exp\{-\frac{1}{2} \int_0^t f''(B(s)) \, ds\}$$

is a martingale.