```
GENERAL INFORMATION:
     i) APPLICANT: Sousa, Rui
                     Jendrisak, Jerome J.
        TITLE OF INVENTION: METHODS FOR USING MUTANT RNA POLYMERASES WITH
   (ii)
                               REDUCED DISCRIMINATION BETWEEN NON-CANONICAL
                               AND CANONICAL NUCLEOSIDE TRIPHOSPHATES
  (iii) NUMBER OF SEQUENCES: 5
   (iv) CORRESPONDENCE ADDRESS:
          (A) ADDRESSEE: Quarles & Brady
(B) STREET: 411 East Wisconsin Avenue
          (C) CITY:\Milwaukee
          (D) STATE: Wisconsin
          (E) COUNTRY U.S.A.
(F) ZIP: 53202-4497
    (V) COMPUTER READABLE FORM:
          (A) MEDIUM TYPE:\Floppy disk
          (B) COMPUTER: IBM\PC compatible
          (C) OPERATING SYSTEM: PC-DOS/MS-DOS
          (D) SOFTWARE: Paten In Release #1.0, Version #1.25
   (vi) CURRENT APPLICATION DATA:
          (A) APPLICATION NUMBER
          (B) FILING DATE:
          (C) CLASSIFICATION:
 (viii) ATTORNEY/AGENT INFORMATION:
          (A) NAME: Baker, Jean C.(B) REGISTRATION NUMBER: 35,
          (B) REGISTRATION NUMBER: 35,33
(C) REFERENCE/DOCKET NUMBER: 210307 90067
    (ix) TELECOMMUNICATION INFORMATION:
          (A) TELEPHONE: (414) 277-5709
          (B) TELEFAX: (414) 271-3552
(2) INFORMATION FOR SEQ ID NO:1:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 13 base pairs
           (B) TYPE: nucleic acid
           (C) STRANDEDNESS: double
           (D) TOPOLOGY: linear
    (ii) !OLECULE TYPE: Other Nucleic Acid
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
                                                                                 13
GGGAGACCGG AAU
(2) INFORMATION FOR SEQ ID NO:2:
      (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid
```

-59-

(C) STRANDEDNESS: double

QB3\222428.1

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Other Nucleic Acid	
	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	CGAAATTAAT ACGACTCACT ATA	23
	(2) INFORMATION FOR SEQ ID NO:3:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Other Nucleic Acid	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
•	GGGGGGGGG GACT	14
	(2) INFORMATION FOR SEQ ID NO:4:	
)	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Other Mucleic Acid	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	12
	GGACACGGCG AA	
	(2) INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Other Nucleic Acid	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	CCCGGGATGG AATGGAGTAT TCGCCGTGTC CATGGCTGTA AGTATCC	47

Appendix 1

Table I: Relative Selectivity of Y639F and W.T. Polymerase for rNTPs vs. dNTPs

	rATP/dATP	rUTP/dTTP	rCTP/dCTP	rGTP/dGTP
Y639F W.T.	8.5-10 (Mg)* .9-1.0 (Mn)* 72-83 (Mg)* 6-14 (Mn)*	1.7-1.9 .4876 22-25 2.3-2.8	2.4-2.5 .5580 110-150 4.3-5.1	.93-1.6 .9899 51-67 4.4-6.3

Reactions were carried out with all 4 rNTPs (.5 mM) in great excess over radioactive rNTPs or dNTPs. Relative selectivity was determined from the relative percentages of radioactive rNTP vs. dNTP incorporated into RNA. Maximal. incorporation was less than ~30% of total input radioactivity with all data points used so as to limit effects due to changing NTP concentrations during the experimental time course. The numbers shown give the range for 2 experiments.

*For each rNTP/dNTP and polymerase the upper numbers are those obtained in Mg ** buffer, the lower numbers are from Mn ** buffer. Polymerases at 10^{-8} M. Template was supercoiled pT75 at 10^{-7} M.

Table II: Relative Activity of Y639F and W.T. Polymerase with Different rNTP/dNTP Mixes

	W. T. (Mg**)	Y639F (Mg**)	W.T. (Mn**)	Y639F (Mn**)
4 rNTPs	200	200	21-23	9
3 rNTPs, dTTP	11-13	90-96	7-8	4
3 rNTPs, dUTP	9-11	82-91	10-11	7-8
3 rNTPs, dATP	1-2	73	1-2	2.3
3 rNTPs, dCTP	4-9	86	15	7-11
3 rNTPs, dGTP, rGMP	<.5	95-109	1-3	1.4-2.5
3 rNTPs, dGTP	<.5	43-63	.5-2	3
2 rNTPs, dCTP, dUTP	2-6	27-29	3	4-7
2 rNTPs, dCTP, dTTP	2	30	5-7	5
2 rNTPs, dCTP, dATP	<.5	20-29	.59	1 4-7
2 rNTPs, dTTP, dGTP, rGMP	<.5	13-15	<.5	3-6
2 rNTPs, dATP, dTTP	<.5	11-14	<.5	3-4
2 rNTPs, dCTP, dGTP, rGMP	<.5	11-14	<.5	2-5
2 rNTPs, dATP, dGTP, rGMP	<.5	5-6	< .5	1-1.5
1 rNTP, dCTP, dATP, dTTP	<.5	12-14	<.5	.7-2
1 rNTP, dCTP, dATP, dUTP	<.5	10-11	< 5	2-3
1 rNTP, dTTP, dCTP, dGTP	<.5	10-13	< .5	2-4
1 rNTP, dTTP, dATP, dGTP	<.5	11	<.5	1.5-2
1 rNTP, dCTP, dATP, dGTP	<.5	3-5	<.5	1-2
4 dNTPs, rGMP	<.5	<.5	<.5	.5

*These reactions also contain rGMP. Numbers give ranges from 2 experiments. Template was supercoiled pT75 (10^{-7} M) , polymerases at 10^{-8} M (in Mg** buffer) or 10^{-7} M (in Mn** buffer). rNTPs, rGMP, dTTP were at .5 mM; dATP, dGTP were at 1 mM; dUTP was at 2.5 mM, dCTP was at 5 mM. From top to bottom the labeling NTPs were: α -P³² rGTP, α -P³² rCTP, α -P³² dATP, α -P³² dCTP, α -P³² dGTP, α -P³² dGTP, α -P³² dTTP, α -P³³ dTTP, α -P³³ dTTP, α -P³⁴ dTTP, α -P³⁵ dTTP, α -P³⁵ dTTP, α -P³⁶ dTTP, α -P³⁷ dTTP, α -P³⁸ dTTP, α -P³⁹ dTTP,

	W.T.	Y639F	G640A	Y639A	Y639S
rGTP	1000	1000	240 (200-270)	145 (142-151)	48 (47-50)
dGTP	7.4 (5.4-12.5)	964 (684-1257)	< 5	5.3 (4.8-5.5)	.6
dGTP+rGMP	25 (20-27)	1070 (816-1457)	< 5	25 (17-30)	4.4

Numbers give mean and range from 3 experiments. Templates were at .2 mg/ml, polymerases at 10^{-8} M. Labeling NTPs were α -P32 rGTP, α -P32 dGTP, α -P32 rATP, α -P32 dATP, as appropriate. rNTPs or rNMPs at .5 mM; dNTPs at 1 mM.

Table IV: W.T. and Y639F activity on an RNA (poly(rC)) template

	.5 mM GTP	1 mM dGTP	1 mM dGTP+.5 mM GMP
w.t.	1000	<.5	<.5
Y639F	505 (358-733)	62 (48-80)	116 (90-148)

Numbers give mean and range from 3 experiments. Template was at .2 mg/ml, polymerases at 10^{-6} M. Labeling NTPs were $\alpha\text{-P32}$ rGTP, $\alpha\text{-P32}$ dGTP.

Table V: Relative rates of incorporation of complementary and non-complementary rNTPs on homopolymeric templates by w.t. and mutant polymerases

	I. Template: poly(dC)				
	W.T.		Y639F G640A		Y639S
GTP/UTP	>2000 (Mg***) 53 (Mn**)	>1760 55	>1320 n.d.	>184 n.d.	>50 n.d.
GTP/CTP	400 32	550 40	508 n.d.	>184 n.d.	>50 n.d. >50
GTP/ATP	233 9.3	338	388 n.d.	>184 n.d.	n.d.
	II.	Template:	poly(dT)		
	W.T.	Y639F	G640A	Y639A	Y639S
ATP/GTP	170 50	94 27	n.d.	n.d.	n.d.
ATP/UTP	121	94	n.d.	n.d.	n.d.
ATP/CTP	>340 77	>94	n.d.	n.d.	n.d.

Numbers are averages from 2 experiments and reflect the ratio of the percentages of labeled rNTPs incorporated into RNA in reactions in which unlabeled complementary rNTPs were in great excess (.5 mM) to labeled complementary or non-complementary rNTPs. Templates were at .1 mg/ml. Polymerases were at 10⁻⁸ M in Mg⁻⁻ buffer and 10⁻⁷ M in Mn⁻⁻ buffer.

*The upper number refers to results obtained in Mg**
buffer, the lower number to results in Mn** buffer. n.d.:
G640A, Y639A, Y639S were poorly active in Mn** buffer, or on poly(dT) under all conditions.

		fATP	птР	₫ПР	dUTP	dCTP	dGTP	dATP
Y639F:	K _m	.063125 150-210 s ⁻¹	.034094 180-200 s ⁻¹	.038059 70-110 s ⁻¹	.052092 70-130 s ⁻¹	.92-1.6 50-90 s ⁻¹	.185264 30-60 s ⁻¹	.2035 50-70 s ⁻¹
W.T.:	k _{cat} K _m	.034068	.029059	.209262	4.4-9.0	4.3-13.5	.602701	2.0-5.0
	k _{cat}	190-220 s ⁻¹	170-230 s ⁻¹	26-29 s 1	25-39 s ⁻¹	9-14 s ⁻¹	5-9 s ⁻¹	6-9 s

Table VII: 2',3'-dideoxy NTP preferences of the Y639F mutant

ATP/ddATP	TTP/ddUTP	CTP/ddCTP	GTP/ddGTP
9.0	7.0	10.0	5.0

Numbers reflect the relative specificity $(k_{\text{cat}}/K_{\text{m}})$ for an NTP vs. the corresponding ddNTP. Relative specificities could not be evaluated for the wild-type T7 RNAP because the ddNTPs are such poor substrates, but these relative specificities appear to be at least 150-fold.

at 10⁻⁸ M.

Table VIII: Activity of W.T. and Y639 mutants with NTPs containing different 2'-substituents

NTP	W.T.	Y639F	Y639M
UTP	100	95±6.7	50±1.2
2'-NH2-UTP	5.9±.27	12±.41	3.6±.19
2'-F-UTP	3.1±.14	73±2.6	23±.72
2'-dUTP	2.4±.11	46±2.4	11±.46
CTP	100	103±2.3	54±3.9
2'-NH2-CTP	34±.86	60±2.5	21±.38
2'-F-CTP	3.4±.22	63±3.1	47±.70
2'-dCTP	1.6±.16	57±1.7	32±1.1
ATP	100	96±3.0	51±1.3
2'-NH2-ATP	18±.39	21±.75	.92±.035
2'-F-ATP	6.6±.12	50±1.4	9.7±.20
2'-dATP	2.7±.28	40±1.3	3.2±.11

Activity was determined with pT75 as template but with one of the rNTPs replaced with a dNTP or a 2'-modified NTP. The labeling NTP was UTP (in reactions with 2'-modified CTPs or ATPs) or CTP (in reactions with 2'-modified UTPs). Y639F and Y639M represent enzymes with substitutions of the wild-type (W.T.) tyrosine at position 639 by phenyalanine (F) or methionine (M), respectively.

Appendix 2

REFERENCES

U.S. PATENTS

U.S. patent 4,683,202

U.S. patent 4,965,188

INTERNATIONAL PATENTS

Tabor, S and Richardson, C.C. (Filed 24.11.94) European Patent Application Number 94203433.1; Publication Number 0 655 506 Al.

PUBLICATIONS

Astatke, M., Grindley, N.D.F., and Joyce, C.M. (1995)

J. Biol. Chem. 270, 1945-1954.

Axelrod, V.D, Vartikyan, R.M., Aivazashvilli, V.A., and Bebelashvilly, R.S. (1978) Nucleic Acids Res. 5, 3549-3563.

Axelrod, V.D, and Kramer, P.R. (1985) Biochemistry 24, 5716-5723.

Barnes, W.M. (1978) J. Mol. Biol. 119, 83-99.

Beese, L.S., Friedman, J.M., and Steitz, T.A.

(1993) Biochemistry 31, 9636.

Blank, A., Gallant, J.A., Burgess, R.R., Loeb, L.A. (1986) Biochemistry 25, 5920-5928.

Bonner, G., Patra, D., Lafer, E.M., and Sousa, R. (1992) EMBO J. 11, 3767-3775.

Bonner, G., Lafer, E.M., and Sousa, R. (1994) J. Biol. Chem. 42, 25120-25128.

-67-

Butler, E.T. and Chamberlin, M.J. (1982) J. Biol. Chem. 257, 5772-5778.

Carroll, S.S., Cowart, M., and Benkovic, S.J. (1991)

Biochemistry 30, 804-13.

Cazenave, C., and Uhlenbeck, O.C. (1994) Proc. Natl. Acad. Sci. USA 91, 6972-6976.

Chapman, K.A., and Burgess, R.R. (1987) Nucl. Acids
Res. 15, 5413-5426.

Chapman, K.A., Gunderson, S.I., Arnello, M., Wells, R.D., and Burgess, R.R. (1988) Nucl. Acids Res. 16, 4511-4530.

Compton, J. (1991) Nature 350:91-92.

Cotton (1993) Mutation Res. 285:125-144.

Cunningham, P.R., and Ofengand, J. (1990) BioTechniques 9(6), 713-714.

Duck, P.G., Alvarado-Urbina, B., Burdick, B., and Collier, B. (1990) BioTechniques 9, 142-148.

Fahy, et al. (1991) PCR Methods & Applications 1, 25-

Glazer, R.I. (1978) Nucleic Acids Res. 5, 2607-2616.

Golomb and Chamberlin, (1974) J. Biol. Chem. 249, 2858-2863.

DeLarue, M., Poch, O., Tordo, N., Moras, D., and Argos, P. (1990) J. Protein Engineering 10, 461-467.

Hill, C.S. (1996) "Gen-Probe Transcription-mediated Amplification System Principles," Tech. Bulletin No: L137/01/96, of Gen-Probe, Inc.

Ikeda, R.A., Richardson, C.C. (1987) J. Biol. Chem.
262, 2800-3808.

-68-

Jacobo-Molina, A, Ding., J., Nanni, R.G., Clark, A.D., Lu, X., Tantillo, C., Williams, R.L., Kramer, G., Ferris, A. L., Clark, P., Hizi, A., Hughes, S.H. & Arnold, E. (1993)

Proc. Natl. Acad. Sci. (USA) 90, 6320.

Kassavetis, G.A., Butler, E.T., Roulland, D., and Chamberlin, M.J. (1982) J. Biol. Chem. 257, 5779-5788.

Katani, H., Ishizaki, Y., Hiraoka, N., and Obayashi, A. (1987) Nucleic Acids Res. 15, 2653-2664.

Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A., and Steitz, T. A. (1992) Science 256, 1783-1790.

Konarska, M.M., and Sharp, P.A. (1989) Cell 57, 423-431.

Kramer, F.R., and Mills, D.R., (1978) *Proc. Natl. Acad.*Sci. (USA) 75, 5334-5338.

Kuchta, R.D., Mizrahi, V., Benkovic, P.A., Johnson,
K.A., and Benkovic, S.J. (1987) Biochemistry 26, 8410-8417.

Kunkel, T.A., Bebenek, K., and McClary, J. (1991)
Methods in Enzymology 204, 125.

Makarova, O.V., Makarov, E.M., Sousa R., Dreyfus, M. (1995) Proc. Natl. Acad. Sci. USA. (submitted).

Martin, C.T., Coleman, J.E. (1987) Biochemistry 26, 2690-2696.

Martin, C.T., Muller, D.K., Coleman, J.E. (1988)

Biochemistry 27, 3966-3974.

Martin, C.T., and Coleman, J.E. (1989) *Biochemistry* 28, 2760-2762.

McAllister, W.T. (1993) Cellular & Molecular Biol. Res. 39, 385.

McClure, W.R., and Chow, Y. (1980) Methods of Enzymology 64, 277-297.

-69-

Milligan, J.F., Groebe, D.R., Witherwell, G.W., and Uhlenbeck, O.C. (1987) Nucl. Acids. Res. 15, 8783-8798.

Mizrahi, V., Henrie, R.N., Marlier, J.F., Johnson, K.A., and Benkovic, S.J. (1985) Biochemistry 24, 4010-4018.

Moroney, S.E., and Picirrilli, J.A. (1991) Biochemistry 30, 10343-10349.

Niyogi, S.K., Feldman, R.P. (1981) Nucleic Acids Res. 9, 2615-2627.

Myers and Gelfand, D. (1991) *Biochemistry* 30, 7661-7666.

Patra, D., Sousa, R., and Lafer, E.M. (1992) J. Mol. Biol. 224, 307-318.

Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H., and Kraut, J. (1994) Science 264, 1891.

Polesky, A.H., Steitz, T.A., Grindley, N.D., and Joyce, C.M. (1989) J. Biol. Chem. 265, 14579-14591.

Ricchetti, M. and Buc, H. (1993) EMBO J. 12, 387-396.

Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Sanger, et al. (1977) Proc. Natl. Acad. Sci. (USA) 74, 5463-5468.

Schmidt, G. and Tannhauser, S.J. (1945) J. Biol. Chem. 159, 83-89.

Shi, Y., Gamper, H., Hearst, J.E. (1988) J. Biol. Chem. 263, 527-534.

Sawaya, M.R., Pelletier, H., Kumar, A., Wilson, S.H., and Kraut, J. (1994) Science 264, 1930.

Sousa, R., and Padilla, R. (1995) EMBO J. 14, 4609-4621. (Incorporated by reference as if set forth herein.)

Sousa, R., Lafer, E.M., and Wang, B.-C. (1991) J. Crystal Growth 110, 237-246.

Sousa, R., Chung, Y.J., Rose, J.R., and Wang, B.C. (1993) Nature 364, 593-599.

Steitz, T.A., Smerdon, S.J., Jager, J., and Joyce, C.M. (1994) Science 266, 2022-2025.

Tabor, S., and Richardson, C.C. (1990) J. Biol. Chem. 265: 8322.

Tantillo, C., Jianoing, D., Jacobo-Molina, A., Nanni, R.G., Boyer, P.L., Hughes, S.H., Pauwels, R., Andiries, K., Janssen, P.A.J., and Arnold, E. (1994) J. Mol. Biol. 243, 369-387.

Tabor, S., and Richardson, C.C. (1989) Proc. Natl. Acad. Sci. USA 82, 1074-1078.

Tabor, S., and Richardson, C.C. (1985) Proc. Natl. Acad. Sci. USA 82, 1074-1078.

Osumi-Davis, P.A., Sreerama N., Volkin, D.B., Middaugh, C.R., Woody, R.W., Woody, A.Y. (1994) J. Mol. Biol. 237, 5-19.