

## PROBABILISTIC PROGRAMS WITH STOCHASTIC CONDITIONING

# ARXIV:2010.00282

G David Tolpin Yuan Zhou Hongseok Yang



## **Motivation**

### In a probabilistic program

$$p(x|y) \propto p(x)p(y|x)$$

'usual' conditioning is **deterministic:** p(x|y=c).

Works when observations

lacktriangle are samples from joint data distribution.

Won't work when observations

- are summarized or obfuscated
- are collected by multiple parties,
- are noisy and obtained online,
- reflect partial knowledge about future.

# **Definition**

# Probabilistic program computes

$$p(x, z) = p(x)p(z|x)$$

Our objective is to infer  $p(x|D_z)$  when  $z \sim D_z$ .

## Conditioning on $D_z \equiv$ conditioning on **all** values:

$$\begin{aligned} p(x|D_z) &\propto p(x,D_z) = p(x) \prod_{z \in \Omega_D} (p(z|x))^{p_D(z)dz} \\ &= \exp\left(\log p(x) + \int_{z \in \Omega_D} p_D(z) \log p(z|x) dz\right) \\ &\propto \exp\left(\log p(x) - \mathrm{KL}[p_D(z)||p(z|x)]\right), \end{aligned}$$

### **Intuition**

- We know that  $z \sim \mathcal{N}(0, 1)$   $\stackrel{\bigcirc \times}{\underset{\triangleright}{\overleftarrow{z}}} 0.5$
- We want to infer x such that  $y \approx x + z$



#### **Naive**

$$z \sim \mathcal{N}(0, 1)$$

 $x \sim \text{Gamma}(2, 2)$ 

 $y|x, z \sim \mathcal{N}(x+z, 1)$ 

### **Stochastic**

$$z \leftarrow \mathcal{N}(0,1)$$

 $x \sim \text{Gamma}(2, 2)$ 

$$y|x, z \sim \mathcal{N}(x+z, 1)$$

# **Transformed**

$$x \sim \text{Gamma}(2, 2)$$

$$y|x \sim \mathcal{N}(x, 1)$$

# **Population of New York**

#### **Data**

|            | <b>Population</b> | ${\bf Sample 1}$ | Sample2 |
|------------|-------------------|------------------|---------|
|            | (N=804)           | (n=100)          | (n=100) |
| mean       | 17,135            | 19,667           | 38,505  |
| sd         | 139,147           | 142,218          | 228,625 |
| 0%         | 19                | 164              | 162     |
| <b>5%</b>  | 336               | 308              | 315     |
| 25%        | 800               | 891              | 863     |
| <b>50%</b> | 1,668             | 2,081            | 1,740   |
| <b>75%</b> | 5,050             | 6,049            | 5,239   |
| <b>95%</b> | 30,295            | 25,130           | 41,718  |
| 100%       | 2,627,319         | 1,424,815        | 1809578 |

#### Model

$$z_{1...n} \leftarrow Quantiles$$

$$m \sim \text{Normal(mean, } \frac{\text{sd}}{\sqrt{n}})$$

$$s^2 \sim \text{InvGamma(} \frac{n}{2}, \frac{n}{2} \text{sd}^2)$$

$$\sigma = \sqrt{\log(s^2/m^2 + 1)}$$

$$\mu = \log m - \frac{\sigma^2}{2}$$

$$z_{1...n}|m, s^2 \sim \text{LogNormal}(\mu, \sigma)$$