SSY097 - Image Analysis

Lecture 2 - Filtering, gradients and scale

Torsten Sattler (slides adapted from Olof Enqvist)

 $\cdot w < \tau$

$$\cdot w < \tau$$

$$\cdot w < \tau$$

$$\cdot w < \tau$$

 $\cdot w < \tau$

$$\cdot w > \tau$$

 $\cdot w < \tau$

Linear filters

Linear filters

Linear filters

1	2	1	2	3	4	2
11	21	22	21	14	6	7
12	20	45	32	21	12	11
11	12	11	16	21	12	21
21	22	23	25	35	22	20
12	11	16	17	16	6	0
0	7	0	21	12	11	0

input result

Nonlinear filters: Non-maximum suppression

Today

- More Filters
- Similarity Measures
- Multi-Scale Processing

More Filters

$\frac{1}{9}$	1	1	1
	1	1	1
	1	1	1

image source: http://graphics.stanford.edu/data/3Dscanrep/

Normalization factor
$$a \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$a \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$$

		l	
)	•	7	3

1	4	7	4	1
4	16	26	16	4
7	26	41	26	7
4	16	26	16	4
1	4	7	4	1

Average filter

Gaussian filter

image source: http://graphics.stanford.edu/data/3Dscanrep/

Iterative application

$$I \times G_{\sigma_{\lambda}}(x, y) \times G_{\sigma_{\lambda}}(x, y) = I \times G_{\sigma_{\lambda}}(x, y)$$

$$With: G_{\lambda}^{2} = G_{\lambda}^{2} + G_{\lambda}^{2}$$

$$E \times \text{ample:}$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y) = I \times G_{\lambda}(x, y) = I$$

$$I \times G_{\lambda}(x, y$$

Image Gradients
$$f'(x) = \lim_{h \to \infty} \frac{f(x)h - f(x-h)}{h}$$

$$abla I(x,y) = \left(egin{array}{c} I'_x \ I'_y \end{array}
ight)$$

Image Gradients

$$abla I(x,y) = \left(egin{array}{c} I_x' \ I_y' \end{array}
ight)$$

$$I'_x(x,y) \approx \frac{I(x+1,y) - I(x-1,y)}{2}$$

Image Gradients

$$abla I(x,y) = \left(\begin{array}{c} I'_x \\ I'_y \end{array} \right)$$

$$I_x'(x,y) \approx \frac{I(x+1,y) - I(x-1,y)}{2}$$

Image Gradients

$$abla I(x,y) = \left(\begin{array}{c} I'_x \\ I'_y \end{array} \right)$$

$$I'_x(x,y) \approx \frac{I(x+1,y) - I(x-1,y)}{2}$$

$$I_x' = I \star (-0.5 \quad 0 \quad 0.5)$$

Application: Edge Detection

Magnitude of gradients

[[] T[x,5]]

Thresholding and non-maximum suppression

Non-Maximum Suppression

Non-Maximum Suppression

Only compare to neighbors along the gradient.

Non-Maximum Suppression

Only compare to neighbors along the gradient. Keep if larger response than these.

Edge Detection

Using Matlab with default thresholds

Edge Detection

Using Matlab with default thresholds

Edge Detection

Using Matlab with default thresholds

Similarity Measures

Measuring Similarity

Measuring similarity between images / patches central problem

Measuring similarity between images / patches central problem

Measuring similarity between images / patches central problem

Measuring similarity between images / patches central problem

slide credit: Marc Pollefeys, Kevin Köser

Measuring similarity between images / patches central problem

slide credit: Marc Pollefeys, Kevin Köser

Covariance:

Is Covariance a good similarity measure?

= & (ov (P1, P1)) (ov (P1, P1)

Is Covariance a good similarity measure?

$$P_{n} = P_{n} = P_{n$$

Correlation:

Also known as Zero-Mean Normalized Cross-Correlation (ZNCC)

When does ZNCC work?

When does ZNCC work?

Difference image black = no difference white = difference

A Hint?

A Hint?

A Hint?

0.1

0.3

0.1

0.3

0.4

 \mathbf{O}

2.1

SIFT / HOG

Known as **SIFT** or Histogram of Oriented Gradients (**HOG**) More details in next lecture

slide credit: David G. Lowe

Multi-Scale Processing

Scale

How to recognize objects at different distances?

Downsampling?

Averaging

Averaging

Gaussian Filter

$$a \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$$

Gaussian Filter

Scale

Scale

Scale Space Representation

 $L(x, y, \sigma^2)$

$$L(x, y, 16^2)$$

 $L(x, y, 12^2)$

Scale Space Representation Octive

$$L(x, y, 8^2)$$

$$L(x, y, 4^2)$$

$$L(x, y, 2^2)$$

$$L(x, y, 1^2)$$

Gradient Histograms

Gradient Histograms

Estimating Scale

Query. r = 67

Templates:

Estimating Scale

Query. r = 67

Templates:

Estimating Scale

Query. r = 67

Templates:

Estimating Relative Scale

Estimating Relative Scale

Estimating Relative Scale

"Sub-Pixel" Precision

"Sub-Pixel" Precision

2nd Order Taylor expansion
$$f(x) = f(0) + x f'(0) + \frac{x^2}{2} f''(0)$$

$$f'(0) = \frac{f(n) - f(-n)}{2} = a$$

$$f''(0) = \frac{f(n) - 2f(0) + f(-n)}{2} = b$$

$$discrete \ laplacian$$

$$max \ f(x) = f(0) + ax + b = \frac{x^2}{2}$$

$$o = \frac{f'(x)}{2} = a + bx = x = \frac{a}{b}$$

Detect Scale and Position

Detect Scale and Position

1	0	1	2	3	4	2
2	7	8	2	3	3	3
2	3	1	4	5	6	2
2	7	12	15	20	7	2
2	8	12	25	19	11	3
3	9	11	18	16	7	1
1	2	3	2	1	3	1

2	1	2	2	2	3	3
1	2	3	2	2	3	4
5	11	9	8	9	8	1
1	11	15	20	22	9	5
2	12	16	35	22	11	4
3	9	15	18	21	7	1
2	2	9	8	7	9	1

3	3	3	3	3	3	3
3	4	4	4	4	4	3
3	5	6	6	6	5	2
2	7	12	12	12	7	2
2	5	12	20	13	11	3
3	9	12	13	13	9	1
1	2	5	5	5	3	1

Detect Scale and Position

1	0	1	2	3	4	2
2	7	8	2	3	3	3
2	3	1	4	5	6	2
2	7	12	15	20	7	2
2	8	12	25	19	11	3
3	9	11	18	16	7	1
1	2	3	2	1	3	1

2	1	2	2	2	3	3
1	2	3	2	2	3	4
5	11	9	8	9	8	1
1	11	15	20	22	9	5
2	12	16	35	22	11	4
3	9	15	18	21	7	1
2	2	9	8	7	9	1

Larger than neighbors in image and scale!

Sub-Pixel Refinement

Sub-Pixel Refinement

Sub-Pixel Refinement

Lessons Learned

- Main lessons from this lecture
 - Image filters: Gaussian, gradients (edge detection)
 - Similarity measures: ZNCC, histogram of gradients
 - Scale space: Gaussian pyramid by iterative Gaussian Filtering
 - Sub-pixel refinement: Fitting 2nd order surfaces

Lessons Learned

- Main lessons from this lecture
 - Image filters: Gaussian, gradients (edge detection)
 - Similarity measures: ZNCC, histogram of gradients
 - Scale space: Gaussian pyramid by iterative Gaussian Filtering
 - Sub-pixel refinement: Fitting 2nd order surfaces
- Next lecture: Local features