Table 1. Correctness of different models for integrals evaluation

Question	GPT4	GPT3.5	GPT3.5 w/ FT	Davinci w/ FT
$\int e^{5x} dx$	Yes	Yes	Yes	Yes
$\int 2e^{2x} dx$	Yes	Yes	Yes	Yes
$\int_{1}^{2} \frac{1}{(3-5x)^{2}} dx$	Yes	No	No	No
$\int \frac{x}{\sqrt{1-4x^2}} dx$	Yes	Yes	Yes	No
$\int \sqrt{1+x^2}x^5 dx$	No	No	No	No
$\int_0^4 \sqrt{2x+1} dx$	Yes	Yes	Yes	No
$\int_1^e \frac{\ln x}{x} dx$	Yes	Yes	Yes	No
$\int x\sqrt{1-x^2}dx$	Yes	Yes	Yes	Yes
$\int x^2 e^{x^3} dx$	Yes	Yes	Yes	Yes
$\int \sin t \sqrt{1 + \cos t} dt$	Yes	No	Yes	No
$\int_0^1 \cos(\frac{\pi t}{2}) dt$	Yes	No	No	No
$\int sec^2 2\theta d\theta$	Yes	Yes	Yes	No
$\int \frac{1}{5-3x} dx$	Yes	Yes	Yes	No
$\int y^2 (4-y^3)^{\frac{2}{3}} dy$	Yes	Yes	Yes	No
$\int xe^{-x^2}dx$	Yes	Yes	Yes	Yes
$\int x^2 \sqrt{x^3 + 1} dx$	Yes	Yes	Yes	No
$\int \sin^2 \theta \cos \theta d\theta$	Yes	Yes	Yes	No
$\int \frac{x^3}{x^4 - 5} dx$	Yes	Yes	Yes	No
$\int \frac{1}{x^2} \sqrt{1 + \frac{1}{x}} dx$	Yes	Yes	Yes	No
$\int \frac{\cos\sqrt{t}}{\sqrt{t}} dt$	Yes	Yes	Yes	No
$\int z\sqrt{z-1}dz$	Yes	No	Yes	No
$\int (5-3x)^{10} dx$	Yes	Yes	Yes	No
$\int t^3 e^{-t^4} dt$	Yes	Yes	Yes	Yes
$\int \frac{\cos \theta}{1 + \sin \theta} d\theta$	Yes	Yes	Yes	No
$\int \frac{z^2}{z^3+1} dz$	Yes	Yes	Yes	No
$\int \cos^3 \theta \sin \theta d\theta$	Yes	Yes	Yes	No
$\int \frac{e^u}{(1-e^u)^2} du$	Yes	Yes	Yes	No
$\int \frac{e^u}{(1-e^u)^2} du$ $\int \frac{\sin\frac{1}{x}}{x^2} dx$	Yes	Yes	No	No
$\int \frac{a+bx^2}{\sqrt{3ax+3x^3}} dx$	Yes	No	No	No
	Yes	No	Yes	Yes
$\int \frac{t+1}{3t^2+6t-5} dx$ $\int \frac{(\ln x)^2}{x} dx$	Yes	Yes	Yes	Yes

Table 2. Correctness of different models for integrals evaluation

Question	GPT4	GPT3.5	GPT3.5 w/ FT	Davinci w/ FT
$\int (x - \frac{1}{x^2})(x^2 + \frac{2}{x})^5 dx$	Yes	Yes	Yes	No
$\int \frac{\sec^2 \theta}{\tan \theta} d\theta$	Yes	Yes	Yes	No
$\int \frac{(\arctan x)^2}{x^2 + 1} dx$	Yes	Yes	Yes	No
$\int \frac{1}{(x^2+1)arctanx}dx$	Yes	Yes	Yes	No
$\int 5^t sin(5^t) dt$	Yes	Yes	Yes	No
$\int \sin x \sin(\cos x) dx$	Yes	Yes	Yes	No
$\int sec^2 \theta tan^3 \theta d\theta$	Yes	Yes	Yes	No
$\int x\sqrt{x+2}dx$	Yes	Yes	Yes	No
$\int \frac{2^t}{2^t + 3} dt$	Yes	Yes	Yes	No
$\int \frac{1+x}{1+x^2} dx$	Yes	No	No	No
$\int_0^1 \cos(\frac{\pi t}{2}) dt$	Yes	Yes	Yes	No
$\int_0^1 \sqrt[3]{1+7x} dx$	Yes	Yes	Yes	No
$\int_1^2 \frac{e^{\frac{1}{x}}}{x^2} dx$	Yes	Yes	Yes	No
$\int_1^4 \frac{\sqrt{2+\sqrt{x}}}{\sqrt{x}} dx$	No	No	No	No
$\int_0^1 (3t - 1)^{50} dt$	Yes	Yes	Yes	No
$\int_0^{\frac{\pi}{6}} \frac{\sin t}{\cos^2 t} dt$	Yes	Yes	Yes	No
$\int_0^4 \frac{x}{\sqrt{1+2x}} dx$	No	No	No	No
$\int_{1}^{2} x \sqrt{x - 1} dx$	Yes	Yes	Yes	No
$\int 2x\sqrt{1+x^2}dx$	Yes	Yes	Yes	No
Total 50	47	40	42	8
Success rate	94%	80%	82%	16%