

1. Design a CMOS logic circuit to implement the given compound gate in Figure below. First derive the logical expression of output Y and then design the CMOS network.

- 2. a) Design a static CMOS logic circuit that implements the logic function Y= AB
 - b) Design a static CMOS logic circuit that implements the logic function Y= (A+B)
- 3. Design a static CMOS logic circuit that will implement the following logic
 - a. NAND gate ($Y = \overline{AB}$)
 - b. XOR gate ($Y = A\overline{B} + \overline{A}B$)
- 3. Design a static CMOS logic circuit that will implement the following logic
 - a. NOR gate ($Y = \overline{A + B}$)
 - b. XNOR gate ($Y = AB + \overline{AB}$)
- 4. Design static CMOS circuit for the following expression,

a.
$$Y = AB + CD$$

b.
$$Y = AB + C$$

c.
$$Y = (A+B)C$$

d.
$$Y = (A+B)(C+D)$$

e. Y =
$$\overline{AB + CD}$$

f. Y =
$$\overline{AB + C}$$

g.
$$Y = \overline{(A + B)C}$$

g.
$$Y = \overline{(A + B)C}$$

h. $Y = \overline{(A + B)(C + D)}$
i. $Y = \overline{A} + \overline{B} + \overline{C}$

i.
$$Y = \overline{A} + \overline{B} + \overline{C}$$

5.

Truth Table

Input A	Input B	Output
0	0	1
0	1	0
1	0	0
1	1	1

Design a static CMOS logic circuit that will implement the above truth table.

CMOS logie design 1. AB + CD e Mos,

AB + AB TVDD VDD AT +AO = AB+AB

web: www.ulkasemi.com e-mail: info@ulkasemi.com

4. Try Yourself

5.

A	Q	Y
0	0	1
0	1	0
1	0	0
1	1	0

$$Y = \overline{A0} + \overline{A0}$$

= $A0 + \overline{A0}$ (XNOR Gale)

See previous solution for CMOS
(3(6))

web: www.ulkasemi.com e-mail: info@ulkasemi.com

60

8