Patricia Walsh Coursera practical machine learning Course project

Overview

Using the test and training sets found here working to identify what model is best in terms of accuracy for the fitness data. The models to be compared are decision trees, random forest, and gradient boost.

Data

The training data for this project are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv

The test data are available here:

https://d396gusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

Step 1:

Loading the libraries including ggplot, rattle, kernlab, lattice, caret, coreplot.

Step 2

Set the seed to a value, I used 1234.

Step 3

Clean the data: I removed any irrelevant metadata and NA values.

Step 4

Creating the testing models.

mod_trees <- train(classe~., data=train, method="rpart", trControl = control, tuneLength = 5) fancyRpartPlot(mod_trees\$finalModel)

Random forest

mod_rf <- train(classe~., data=train, method="rf", trControl = control, tuneLength = 5)

mod_gbm <- train(classe~., data=train, method="gbm", trControl = control,
tuneLength = 5, verbose = F)</pre>

Comparing the confusion matrix for all three

For example

```
Prediction
                C
          Α
            В
                    D
                        Е
       A 1519 473 484 451 156
          28
             355
                 45
                    10 130
       C
          83 117 423 131 131
       D
          40
             194
                 74 372 176
       Ε
          4
             0
                  0 0 489
```

Overall Statistics

Accuracy: 0.5366

95% CI: (0.5238, 0.5494)

No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.3957

Mcnemar's Test P-Value : < 2.2e-16

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	0.9074	0.31168	0.41228	0.38589	0.45194
Specificity	0.6286	0.95512	0.90492	0.90165	0.99917
Pos Pred Value	0.4927	0.62500	0.47797	0.43458	0.99189
Neg Pred Value	0.9447	0.85255	0.87940	0.88228	0.89002
Prevalence	0.2845	0.19354	0.17434	0.16381	0.18386
Detection Rate	0.2581	0.06032	0.07188	0.06321	0.08309
Detection Prevalence	0.5239	0.09652	0.15038	0.14545	0.08377
Balanced Accuracy	0.7680	0.63340	0.65860	0.64377	0.72555
>					

The result was that the best model for prediction of the fitness data is actually the random forest.