Transza 3

Sebastian Trojan

1 Zadanie 1

Korzystając z symetryczności \sum i równości $\sum^{-1} = \sum^{-\frac{1}{2}} \sum^{-\frac{1}{2}}$ mamy:

$$\hat{\sigma}^{2} = \frac{(Y - X\hat{\beta}_{MUNK})' \sum^{-1} (Y - X\hat{\beta}_{MUNK})}{n - p} = \frac{(Y' - \hat{\beta}'_{MUNK}X') \sum^{-1} (Y - X\hat{\beta}_{MUNK})}{n - p} = \frac{(Y' \sum^{-\frac{1}{2}} - \hat{\beta}'_{MUNK}X' \sum^{-\frac{1}{2}})(\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})'][\sum^{-\frac{1}{2}} Y - \sum^{-\frac{1}{2}} Xb\hat{e}ta_{MUNK}]}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})']}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}} X\hat{\beta}_{MUNK})']}{n - p} = \frac{[(\sum^{-\frac{1}{2}} Y)' - (\sum^{-\frac{1}{2}$$

Niech: $\tilde{Y} := \sum^{-\frac{1}{2}} Y, \tilde{X} := \sum^{-\frac{1}{2}} X$ oraz $\tilde{\varepsilon} := \sum^{-\frac{1}{2}} \varepsilon$. Z wykładu wiemy, że $\hat{\beta}_{MUNK}$ jest estymatorem MNK w modelu $\tilde{Y} = \tilde{X}\beta + \tilde{\varepsilon}$. Stąd:

 $=\frac{(\tilde{Y}-\tilde{X}\hat{\beta}_{MUNK})'(\tilde{Y}-\tilde{X}\hat{\beta}_{MUNK})}{n-p}=s^2,\,s^2\text{ jest nieobciążony więc estymator }\hat{\sigma}^2\text{ rónież jest nieobciążony.}$

2 Zadanie 2

Z wykładu wiemy, że: $\hat{\beta}_r = (X'X + \lambda I)^{-1}X'Y$, skoro naszym Y jest z_r , to:

$$\hat{\beta}_r = (X'X + \lambda I)^{-1}X'z_r = V(D^2 + \lambda I)^{-1}V'VDU'd_{rr}u_{rr} = V(D^2 + \lambda I)^{-1}DU'd_{rr}u_{rr}$$

Zatem:

$$\frac{\hat{\beta}_r}{||\hat{\beta}_r||} = \frac{d_{rr}V(D^2 + \lambda I)^{-1}DU'u_r}{d_{rr}||V(D^2 + \lambda I)^{-1}DU'u_r||} = \frac{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{ii}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >}{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >} = \frac{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >}{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >} = \frac{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >}{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >} = \frac{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >}{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >} = \frac{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >}{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >} = \frac{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >}{\sum_{i=1}^p v_{\cdot i} \frac{d_{ii}}{d_{i:+}^2 + \lambda} < u_{\cdot i}, u_{\cdot r} >}$$

Wektory $u_{\cdot i}$ są ortonormalne, więc kiedy i = r, to $< u_{\cdot i}, u_{\cdot r} > = 1$, a kiedy $i \neq r$, to $< u_{\cdot i}, u_{\cdot r} > = 0$. Zatem:

$$=\frac{v._{r}\frac{d_{rr}}{d_{rr}^{2}+\lambda}}{||v._{r}\frac{d_{rr}}{d_{-}^{2}+\lambda}||}=\frac{v._{r}\frac{d_{rr}}{d_{rr}^{2}+\lambda}}{\frac{d_{rr}}{d_{-}^{2}+\lambda}||v._{r}||}=\frac{v._{r}}{||v._{r}||}=v._{r}.$$

Ostatnia równość wynika z ortonormalności wektora $v_{\cdot r}$.

3 Zadanie 3

Ustalmy i.

Z tego, że $H=H^2$ i H=H' wynika, że:

$$h_{ii} = \sum_{j=1}^{n} h_{ij}^2.$$

Dla dowolnego j mamy: $h_{ij} = x'_{i\cdot}(X'X)^{-1}x_{j\cdot}$ co wynika z prostego rozpisania mnożenia: $X(X'X)^{-1}X$. Zatem jeśli j takie, że: $x_{j\cdot} = x_{i\cdot}$, to $h_{ij} = h_{ii}$, a skoro mamy c-1 takich $j \neq i$ spełniających tę równość, to:

$$h_{ii} = \sum_{j=1}^{n} h_{ij}^2 = ch_{ii}^2 + \sum_{j: x_j. \neq x_i.} h_{ij}^2 \ge ch_{ii}^2 \Longrightarrow \frac{1}{c} \ge h_{ii}.$$

1