

INFORME 9: LABORATORIO DE MAQUINAS

Curvas características de una bomba centrífuga.

Tomás Fierro Sánchez Profesores: Cristóbal Galleguillos Ketterer Tomás Herrera Muñoz Fecha: 11 de diciembre de 2020.

Introducción:

En este informe se analizara una bomba centrifuga mediante un ensayo a distintas velocidades de trabajo, donde estas variarán otros parámetros que se verán mas adelante, para así caracterizar e identificar la bomba ensayada.

Objetivo:

Analizar el comportamiento de una bomba centrífuga mediante sus curvas características.

Ecuaciones:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left[\frac{m^3}{h}\right]$$

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} \quad \left[m_{ca} \right]$$

$$Hx = -pax + pdx$$
 $[m_{ca}]$

$$H = Hx \left(\frac{n}{nx}\right)^2 \quad \left[m_{ca}\right]$$

$$Nex = 0.0007355 Fxnx$$
 [kW]

$$Ne = Nex \left(\frac{n}{nx}\right)^3 \quad [kW]$$

$$Nh = \gamma \frac{QH}{3600}$$
 [kW]

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

$$cm_{2} = \frac{Q}{3600\pi D_{2}B_{2}} \quad \left[\frac{m}{s}\right]$$

$$\phi = \frac{cm_{2}}{U_{2}} \quad [-]$$

$$\psi = \frac{2gH}{U_{2}^{2}} \quad [-]$$

Valores medidos:

Tabla 1

	VALORES MEDIDOS												
					3070	[rpm]							
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}			
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]			
1	3070	115	165	3075	89.5	6.5	146	1.54	16	758.7			
2	3070	115	165	3076	92	13.6	133	1.68	16	758.7			
3	3070	115	165	3076	94.8	19.4	118	1.79	16	758.7			
4	3070	115	165	3076	97	24.5	104	1.85	16	758.7			
5	3070	115	165	3077	99.4	29.1	91	1.89	16	758.7			
6	3070	115	165	3078	101.7	34.4	76	1.91	16	758.7			
7	3070	115	165	3078	105.2	41.3	59	1.92	16	758.7			
8	3070	115	165	3078	107.6	46.2	45	1.89	16	758.7			
9	3070	115	165	3078	110	49.2	32	1.83	16	758.7			
10	3070	115	165	3077	112.5	54.4	17	1.69	16	758.7			
11	3070	115	165	3078	114.3	56.9	9	1.55	16	758.7			
12	3070	115	165	3078	120.5	62.1	0	1.13	16	758.7			

Tabla 2

	VALORES MEDIDOS											
		2900 [rpm]										
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}		
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]		
1	2900	115	165	2903	91.5	6.2	134	1.37	16	758.7		
2	2900	115	165	2903	93.9	12.7	121	1.47	16.5	758.7		
3	2900	115	165	2903	96.3	16.4	109	1.55	16.5	758.7		
4	2900	115	165	2903	98.7	21.4	95	1.62	17	758.7		
5	2900	115	165	2903	100.5	26.1	82	1.65	17	758.7		
6	2900	115	165	2902	103.4	30.5	70	1.68	17	758.7		
7	2900	115	165	2904	105.6	35.5	56	1.69	17	758.7		
8	2900	115	165	2902	108.1	40.2	43	1.68	17	758.7		
9	2900	115	165	2903	110	44.3	30	1.6	17	758.7		
10	2900	115	165	2903	112.3	48.1	17	1.49	17	758.7		
11	2900	115	165	2904	114.6	51.2	8	1.37	17	758.7		
12	2900	115	165	2904	119.5	56.1	0	0.94	17	758.7		
13												

Tabla 3

	VALORES MEDIDOS												
					2700	[rpm]							
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm			
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]			
1	2700	115	165	2702	94.3	5.8	118	1.16	17	758.7			
2	2700	115	165	2703	96.8	10.5	106	1.24	17	758.7			
3	2700	115	165	2703	98.5	14.5	95	1.3	17	758.7			
4	2700	115	165	2703	100	18.1	84	1.34	17	758.7			
5	2700	115	165	2702	102.4	22.6	72	1.38	17	758.7			
6	2700	115	165	2703	104.8	26.9	60	1.4	17	758.7			
7	2700	115	165	2703	107.1	32.1	47	1.4	17	758.7			
8	2700	115	165	2702	109.1	36.1	35	1.38	17	758.7			
9	2700	115	165	2702	111.3	39.9	23	1.3	17	758.7			
10	2700	115	165	2703	113.6	43.5	11	1.18	17	758.7			
11	2700	115	165	2703	114.9	45.3	5	1.05	17	758.7			
12	2700	115	165	2703	119.6	49.1	0	0.78	17	758.7			

Tabla 4

MARCA - MODELO	DN/DA	DN/D D	D_1	D_2	Dc	B ₁	B_2	b ₁	b ₂	Z
	in	in	mm	mm	mm	mm	mm	0	0	-
Leader - M18	4	4	71	135	30	37	24.3	16	20	5
Leader - M19	5	5	100	165	47		24			7

Desarrollo:

Los Qx se obtendrán del grafico venturimetro mostrado en ilustración 1:

Ilustración 1: Grafico Venturimetro

Valores calculados:

Tabla 5

	Valores medidos 3070 [rpm]												
Qx	Q	pax	pdx	Нх	H	Nex	Ne	Nh	ngl	U2	cm2	ф	Ą
[m^3/	[m^3/	[mc	[mca	[mc							[m/s		
h]	h]	a]]	a]	[mca]	[kW]	[kW]	[kW]	[%]	[m/s]]	[-]	[-]
		-											
114.2	114.0	1.16	2.76	3.9	3.917	3.48	3.46	1.21	35.08	21.70	3.07	0.14	0.16
10	24	5	5	3	2	30	60	59	09	06	33	16	32
		-											
108.8	108.6	0.91	5.60	6.5	6.494	3.80	3.77	1.92	50.85	21.70	2.92	0.13	0.27
99	86	5	5	2	6	08	86	15	29	06	94	50	06
		-											
102.4	102.2	0.63	7.92	8.5	8.526	4.04	4.02	2.37	58.93	21.70	2.75	0.12	0.35
21	22	5	5	6	6	97	60	27	40	06	52	70	53
		-											
95.97	95.79	0.41	9.96	10.	10.33	4.18	4.16	2.69	64.79	21.70	2.58	0.11	0.43
9	1	5	5	38	95	54	10	62	69	06	19	90	08
00.50		-	44.0		44.00				60.00	04 -0			
89.58	89.37	0.17	11.8	11.	11.92	4.27	4.24	2.90	68.30	21.70	2.40	0.11	0.49
3	9	5	05	98	56	73	82	16	20	06	90	10	69
81.59	81.38	0.05	13.9	13.	13.79	4.32	4.29	3.05	71.24	21.70	2.19	0.10	0.57
2	0	5	25	87	80	40	04	67	67	06	34	11	49
71.50	71.31	0.40	16.6	16.	16.19	4.34	4.31	3.14	72.90	21.70	1.92	0.08	0.67
0	4	5	85	28	55	66	28	41	03	06	21	86	48
62.02	61.86	0.64	18.6		17.90	4.27	4.24	3.01	71.03	21.70	1.66	0.07	0.74
9	8	5	45	18	66	87	54	58	61	06	75	68	61
51.81	51.68	0.88	19.8	18.	18.86	4.14	4.11	2.65	64.55	21.70	1.39	0.06	0.78
7	2	5	45	96	16	29	07	37	55	06	30	42	58
37.02	36.93	1.13	21.9	20.	20.69	3.82	3.79	2.08	54.77	21.70	0.99	0.04	0.86
0	6	5	25	79	55	47	87	09	92	06	55	59	23
26.33	26.26	1.31	22.9	21.	21.49	3.50	3.48	1.53	44.14	21.70	0.70	0.03	0.89
2	4	5	25	61	78	90	17	70	56	06	79	26	57
		1.93	25.0	23.	22.95	2.55	2.53	0.00	0.000	21.70	0.00	0.00	0.95
0.000	0.000	5	05	07	02	82	83	00	0	06	00	00	62

Tabla 6

	Valores calculados 2900 [rpm]													
		ра	pd											
Qx	Q	Х	Х	Нх	Н	Nex	Ne	Nh	ngl	U2	cm2	ф	ψ	
[m^	[m^3	[m	[m	[m										
3/h]	/h]	ca]	ca]	ca]	[mca]	[kW]	[kW]	[kW]	[%]	[m/s]	[m/s]	[-]	[-]	
109.	109.	-												
316	2036	0.9	2.6	3.	3.602	2.925	2.916	1.070	36.72	20.49	2.943	0.143	0.168	
6	1	65	45	61	54261	16441	10506	9512	53983	88921	36801	58669	20827	
103.	103.	-												
749	6425	0.7	5.2	5.	5.957	3.138	3.128	1.680	53.72	20.49	2.793	0.136	0.278	
7	0	25	45	97	66742	68006	95944	8839	02202	88921	47939	27465	17268	
		-												
98.3	98.2	0.4	6.7	7.	7.195	3.309	3.299	1.923	58.31	20.49	2.647	0.129	0.335	
282	2660	85	25	21	10587	49258	24295	93274	43699	88921	50449	15354	95059	
		-												
91.5	91.5	0.2	8.7	8.	8.951	3.458	3.448	2.229	64.66	20.49	2.466	0.120	0.417	
979	0325	45	25	97	47014	95353	24102	7411	31453	88921	28966	31331	95795	
		-	10.	10										
84.8	84.7	0.0	60	.6	10.64	3.523	3.512	2.457	69.97	20.49	2.285	0.111	0.497	
769	8922	65	5	7	79583	00823	09733	70951	83996	88921	32629	48536	1696	
			12.	12										
78.1	78.1	0.2	36	.1	12.12	3.585	3.578	2.578	72.04	20.49	2.105	0.102	0.566	
739	2000	25	5	4	32725	82728	41855	13506	67723	88921	5706	71631	0543	
			14.	13										
69.5	69.4	0.4	36	.9	13.88	3.609	3.594	2.625	73.03	20.49	1.872	0.091	0.648	
733	7749	45	5	2	16793	65748	76208	48583	64285	88921	62873	35268	15703	
			16.	15										
60.5	60.5	0.6	24	.5	15.52	3.585	3.578	2.558	71.49	20.49	1.631	0.079	0.725	
628	2109	95	5	5	85739	82728	41855	36144	41924	88921	22676	57634	05307	
			17.											
50.0	50.0	0.8	88		16.96	3.416	3.405	2.310	67.83	20.49	1.348	0.065	0.792	
764	2469	85	5	17	48821	2504	67014	24941	53837	88921	31707	77512	11652	
			19.	18										
37.0	36.9	1.1	40	.2	18.25	3.181	3.171	1.837	57.93	20.49	0.996	0.048	0.852	
198	8159	15	5	9	22173	38319	53032	48896	69824	88921	76578	62535	22419	
			20.											
24.7	24.6	1.3	64	19	19.24	2.926	2.914	1.293	44.37	20.49	0.665	0.032	0.898	
171	8303	45	5	.3	68686	17204	09707	24884	90585	88921	28239	45455	66599	
			22.	20										
0.00		1.8	60	.7	20.71	2.007	1.999			20.49			0.967	
00	0	35	5	7	28218	73848	45346	0	0	88921	0	0	11361	

Tabla 7

	Valores calculados 2700 [rpm]													
		ра	pd					_						
Qx	Q	x	×	Нх	Н	Nex	Ne	Nh	ngl	U2	cm2	ф	ψ	
[m^	[m^3	[m	[m	[m										
3/h]	/h]	ca]	ca]	ca]	[mca]	[kW]	[kW]	[kW]	[%]	[m/s]	[m/s]	[-]	[-]	
102.	102.	-												
421	3456	0.6	2.4	3.	3.165	2.305	2.300	0.881	38.33	19.08	2.758	0.144	0.170	
5	5	85	85	17	30892	29236	17707	87911	96185	51754	52526	53759	49938	
		-												
96.9	96.8	0.4	4.3	4.	4.789	2.465	2.456	1.262	51.37	19.08	2.609	0.136	0.257	
252	1767	35	65	8	35108	19006	99099	27764	494	51754	52959	73071	97841	
		1												
91.5	91.4	0.2	5.9	6.	6.216	2.584	2.575	1.548	60.10	19.08	2.466	0.129	0.334	
979	9624	65	65	23	1786	47345	87765	28288	7004	51754	10088	21552	83448	
		-												
85.9	85.8	0.1	7.4	7.	7.503	2.663	2.655	1.753	66.04	19.08	2.313	0.121	0.404	
445	4915	15	05	52	3167	99571	13542	52861	29067	51754	89468	24042	16618	
79.3	79.2	0.1	9.2	9.	9.066	2.742	2.736	1.956	71.49	19.08	2.136	0.111	0.488	
292	7050	25	05	80	56308	50298	41755	49108	82655	51754	58018	94973	37045	
			10.	10										
72.1	72.0	0.3	92	.5	10.53	2.783	2.774	2.066	74.49	19.08	1.941	0.101	0.567	
308	5076	65	5	6	65724	2791	02208	6242	9198	51754	98632	75365	55251	
			13.	12										
63.4	63.3	0.5	00	.4	12.38	2.783	2.774	2.136	77.03	19.08	1.708	0.089	0.666	
637	9324	95	5	1	24681	2791	02208	84864	07003	51754	63993	52708	98169	
			14.	13										
54.3	54.2	0.7	60	.8	13.78	2.742	2.736	2.038	74.47	19.08	1.463	0.076	0.742	
317	9144	95	5	1	95635	50298	41755	00593	71547	51754	31874	67306	77488	
			16.	15										
43.4	43.4	1.0	12	.1	15.08	2.583	2.577	1.784	69.24	19.08	1.171	0.061	0.812	
895	5735	15	5	1	76397	5173	78465	8762	07025	51754	30718	37262	69576	
20.0	20.0	4.0	17.	16	46.36	2 2 4 5	2 222	4 200	FF 50	40.00	0.700	0.044	0.67-	
29.3	29.2	1.2	56	.3	16.28	2.345	2.338	1.298	55.53	19.08	0.789	0.041	0.877	
272	9468	45	5	2	37937	90667	10433	57758	97622	51754	58033	37139	12661	
40.4	10.1	4.0	18.	16	46.07	2.00=	2.000	0.000	42.24	40.00	0.516	0.00=	0.000	
19.1	19.1	1.3	28	.9	16.87	2.087	2.080	0.880	42.31	19.08	0.516	0.027	0.908	
883	6700	75	5	1	24848	45933	51656	3526	41355	51754	60858	06858	83645	
0.00		1 0	19.	17	17.00	1 550	1 545			10.00			0.005	
0.00	_	1.8	80	.9	17.92	1.550	1.545			19.08	_		0.965	
00	0	45	5	6	01553	68407	52659	0	0	51754	0	0	26923	

Trace el siguientes gráficos en una hoja completa:

De isorendimiento y potencia vs caudal.

Gráfico 1

¿Cuáles son las condiciones óptimas de operación de esta bomba?

Observando los valores de rendimiento global, se puede indicar que las condiciones óptimas de operación son en valores de caudal alrededor de 60-80 [m^3/h] y los valores máximos de rendimiento se encuentran en los valores calculados para 2700 [rpm]

¿Las curvas tiene la forma esperada?

Si, se presentan las curvas típicas para bombas centrífugas similar a las curvas vistas en clases con el profesor.

¿Cuál es la potencia máxima consumida?

La potencia eléctrica consumida máxima corresponde a 4.3128 [kW] medida en el ensayo de 3070 [rpm], y la altura máxima observada en el gráfico, tiene un valor de 22.9 metros.

Curva ψ vs Φ.

Gráfico 2

¿La nube de puntos que conforman esta curva son muy dispersos?

En el grafico construido se puede ver que los puntos están bastante cerca uno de otro, superponiéndose las curvas en gran parte de este.

Conclusión:

En este ensayo se pudieron ver distintas curvas características de una bomba centrifuga, se identificaron las condiciones opimas de operación, considerando sus rendimientos globales y se calcularon diversos parámetros importantes en la operación de estos equipos

Referencias:

PPT visto en clase preparado por el Profesor Tomas Herrera.