Marcelo Barro de Azevedo Vieira

Trabalho da Disciplina de Algoritmos de Inteligência Artificial para classificação

Link no Github: https://github.com/marcelobazevedo/algoritmo_classificacao

1. Faça o módulo do Kaggle Intro to Machine Learning.

CERTIFICATE OF COMPLETION

Marcelo de Azevedo

HAS SUCCESSFULLY COMPLETED THE COURSE

Intro to Machine Learning

ON FEBRUARY 13, 2025

DAN BECKER, KAGGLE INSTRUCTOR

ALEXIS COOK, HEAD OF KAGGLE LEARN

O aluno sabe diferenciar uma regressão linear de uma regressão logística?

A regressão linear é uma técnica estatística usada para modelar a relação entre uma variável dependente (o que você quer prever) e uma ou mais variáveis independentes (os fatores que influenciam a previsão), quando a variável dependente é contínua. Isso significa que ela pode assumir qualquer valor numérico dentro de um intervalo, como altura, peso, temperatura ou preço de uma casa. O objetivo é encontrar uma linha reta (ou plano, no caso de múltiplas variáveis) que melhor represente essa relação. Por exemplo, você pode usar a regressão linear para prever o preço de um imóvel com base no tamanho dele e no número de quartos, enquanto que Regressão Logística

é usada quando a variável dependente é categórica, ou seja, quando você quer prever algo que cai em categorias específicas, como "sim ou não", "0 ou 1", "verdadeiro ou falso". Ela estima a probabilidade de um evento ocorrer com base nas variáveis independentes. Por exemplo, você pode usar a regressão logística para prever se um cliente vai comprar um produto (sim ou não) com base na idade dele e no histórico de compras. Em vez de uma linha reta, ela usa uma curva em forma de "S" (chamada função sigmoide) que limita os resultados entre 0 e 1, representando probabilities.

Principais Diferenças

- 1. Tipo de Variável Dependente:
- Linear: Prevê valores contínuos (ex.: preço, temperatura).
- Logística: Prevê categorias ou probabilidades (ex.: comprar ou não, passar ou falhar).
- 2. Resultado:
- Linear: Dá um valor numérico qualquer, sem limite.
- Logística: Dá uma probabilidade (entre 0 e 1), que pode ser convertida em uma categoria (ex.: acima de 0,5 é "sim").
- 3. Forma da Relação:
- Linear: Assume que a relação entre variáveis é uma linha reta.
- Logística: Usa uma curva sigmoide, porque a relação não é linear quando se trata de probabilidades.
- 4. Uso:
- Linear: Ideal para prever coisas como "qual será o salário de alguém com X anos de experiência?".
- Logística: Ideal para perguntas como "essa pessoa vai votar no candidato X com base na idade e renda?".

Exemplo Prático

Regressão Linear: Você tem dados de casas e quer prever o preço (em reais) com base no tamanho. O resultado pode ser 500 mil, 600 mil, etc. **Regressão Logística:** Você quer prever se uma casa será vendida em um mês (sim ou não) com base no tamanho e localização. O resultado será uma probabilidade, como 0,75 (75% de chance de vender).

Em resumo, a regressão linear é para números contínuos e a logística é para decisões categóricas baseadas em probabilidades.

In [72]: import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import StratifiedKFold, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import numpy as np
from IPython.display import display
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import cross_val_predict
from sklearn.impute import SimpleImputer

In [81]: ## bibliotecas necessárias para a execução do código

!conda list > requirements.txt

In [19]: path = "dataset/winequalityN.csv"
 df = pd.read_csv(path)
 df.head()

Out[19]:

:	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

In [20]: df.describe().T

	count	mean	std	min	25%	50%	75%	max
fixed acidity	6487.0	7.216579	1.296750	3.80000	6.40000	7.00000	7.70000	15.90000
volatile acidity	6489.0	0.339691	0.164649	0.08000	0.23000	0.29000	0.40000	1.58000
citric acid	6494.0	0.318722	0.145265	0.00000	0.25000	0.31000	0.39000	1.66000
residual sugar	6495.0	5.444326	4.758125	0.60000	1.80000	3.00000	8.10000	65.80000
chlorides	6495.0	0.056042	0.035036	0.00900	0.03800	0.04700	0.06500	0.61100
free sulfur dioxide	6497.0	30.525319	17.749400	1.00000	17.00000	29.00000	41.00000	289.00000
total sulfur dioxide	6497.0	115.744574	56.521855	6.00000	77.00000	118.00000	156.00000	440.00000
density	6497.0	0.994697	0.002999	0.98711	0.99234	0.99489	0.99699	1.03898
рН	6488.0	3.218395	0.160748	2.72000	3.11000	3.21000	3.32000	4.01000
sulphates	6493.0	0.531215	0.148814	0.22000	0.43000	0.51000	0.60000	2.00000
alcohol	6497.0	10.491801	1.192712	8.00000	9.50000	10.30000	11.30000	14.90000
quality	6497.0	5.818378	0.873255	3.00000	5.00000	6.00000	6.00000	9.00000

Out[20]:

```
In [21]: # Verificando dados ausentes
missing_values = df.isnull().sum()

# Criando o gráfico de barras para visualizar os dados ausentes
plt.figure(figsize=(5, 3))
plt.bar(missing_values.index, missing_values.values, color='green')
plt.xlabel("Variáveis")
plt.ylabel("Quantidade de Valores Ausentes")
plt.title("Quantidade de Valores Ausentes por Variável")
plt.xticks(rotation=90)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```



```
In [22]: # Tratando os valores ausentes com os valores anteriores da coluna
df.ffill(inplace=True)

In [23]: # Criando o gráfico de barras para visualizar os dados ausentes
missing = df.isnull().sum()
plt.figure(figsize=(5, 3))
plt.bar(missing.index, missing.values, color='red')
plt.xlabel("Variáveis")
plt.ylabel("Quantidade de Valores Ausentes")
plt.title("Quantidade de Valores Ausentes por Variável")
plt.xticks(rotation=90)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```


In [24]: # Gerando os histogramas para todas as variáveis numéricas de forma a entender a distribuição dos dados
df.hist(figsize=(12, 8), bins=30, color='red', edgecolor='black', alpha=0.7)
plt.suptitle("Histogramas das Variáveis Numéricas", fontsize=14)
plt.show()

Histogramas das Variáveis Numéricas

2. Resposta para a questão 2

2.1 Crie uma nova variável, chamada "opinion" que será uma variável categórica igual à 0, quando quality for menor e igual à 5, caso contrário o valor será 1.

```
In [25]: # Criando um dataframe independente já filtrando os vinhos brancos
         df ww = df[df['type'] == 'white'].copy()
         # Criando a variável categórica e definindo os valores 0 ou 1
         df ww['opinion'] = df ww['quality'].apply(lambda x: 0 if x <= 5 else 1)</pre>
         # Fazendo drop da variável quality
         df ww.drop(columns=['quality'], inplace=True)
         # Exibindoo as primeira linhas do novo dataset
         print(df ww.head())
            type fixed acidity volatile acidity citric acid residual sugar \
        0 white
                            7.0
                                             0.27
                                                          0.36
                                                                          20.7
        1 white
                            6.3
                                             0.30
                                                          0.34
                                                                           1.6
        2 white
                            8.1
                                                                           6.9
                                             0.28
                                                          0.40
        3 white
                            7.2
                                             0.23
                                                                           8.5
                                                          0.32
                            7.2
        4 white
                                             0.23
                                                          0.32
                                                                           8.5
           chlorides free sulfur dioxide total sulfur dioxide
                                                                 density
                                                                            / Hg
               0.045
                                     45.0
                                                                  1.0010 3.00
        0
                                                          170.0
                                                                  0.9940 3.30
        1
               0.049
                                     14.0
                                                          132.0
        2
                                                                  0.9951 3.26
               0.050
                                     30.0
                                                           97.0
        3
               0.058
                                     47.0
                                                          186.0
                                                                  0.9956 3.19
               0.058
                                                                  0.9956 3.19
                                     47.0
                                                          186.0
           sulphates alcohol opinion
                0.45
                          8.8
        0
                                     1
        1
                0.49
                          9.5
                                     1
        2
                                     1
                0.44
                         10.1
        3
                0.40
                          9.9
                                     1
                          9.9
                                     1
        4
                0.40
In [26]: df_ww.hist(figsize=(12, 8), bins=30, color='blue', edgecolor='black', alpha=0.7)
         plt.suptitle("Histogramas das Variáveis Numéricas após a exclusão da variáve quality e criação da opinion", fontsize=14)
         plt.show()
```


3. Resposta da Questão 3.

3.1 Quais são as variáveis? Quais são os tipos de variáveis (discreta, categórica, contínua)?

Variáveis do Dataset

Variável	Tipo	Descrição					
type	Categórica	Tipo do vinho ("white" para vinho branco ou "red" para vinho tinto).					
fixed acidity	Contínua	Acidez fixa do vinho, medida em g/dm³. Representa os ácidos não voláteis, como o ácido tartárico.					
volatile acidity	Contínua	Acidez volátil, medida em g/dm³. Refere-se aos ácidos que evaporam facilmente, como o ácido acético. Altos valores podem indicar sabor avinagrado.					
citric acid	Contínua	Quantidade de ácido cítrico no vinho, medida em g/dm³. Ajuda a dar frescor ao vinho.					
residual sugar	Contínua	Açúcar residual do vinho, medido em g/dm³. Refere-se ao açúcar que sobra após a fermentação. Vinhos secos geralmente têm menos de 4 g/dm³.					
chlorides	Contínua	Teor de cloretos (sal), medido em g/dm³. Influencia o sabor salgado do vinho.					
free sulfur dioxide	Contínua	Dióxido de enxofre livre, medido em mg/dm³. Ajuda a prevenir a oxidação e crescimento de microrganismos.					
total sulfur dioxide	Contínua	Dióxido de enxofre total, medido em mg/dm³. Inclui o SO₂ livre e o SO₂ ligado. Regulado por normas para evitar excesso.					
density	Contínua	Densidade do vinho, em g/cm³. Relacionada ao teor alcoólico e teor de açúcar.					
рН	Contínua	Medida da acidez geral do vinho. Um pH baixo indica maior acidez, enquanto um pH alto indica menor acidez. A maioria dos vinhos varia entre 3 e 4 .					
sulphates	Contínua	Sulfatos, medidos em g/dm³. Influenciam a estabilidade microbiológica do vinho.					
alcohol	Contínua	Teor alcoólico do vinho, expresso em % (porcentagem de álcool por volume).					
opinion	Categórica	Nova variável criada a partir da quality . Assume: 0 se qualidade ≤ 5 e 1 se qualidade > 5.					

3.2 Quais são as médias e desvios padrões ?

```
In [27]: # Calculando as médias e os desvios padrões para cada variável
        values = df_ww.describe().loc[['mean', 'std']]
        print(values)
             fixed acidity volatile acidity citric acid residual sugar
                                                                        chlorides \
                  6.855033
                                   0.278312
                                               0.334204
                                                              6.391343
                                                                        0.045773
       mean
                  0.843450
                                   0.100841
                                               0.121020
                                                              5.072120
                                                                        0.021847
       std
             free sulfur dioxide total sulfur dioxide density
                                                                     pH \
                       35.308085
                                          138.360657 0.994027 3.188269
       mean
                      17.007137
                                           42.498065 0.002991 0.150937
       std
             sulphates
                         alcohol opinion
       mean 0.489835 10.514267 0.665169
              0.114141 1.230621 0.471979
       std
```

4. Respostas para a questão 4.

4.a Descreva as estapas necessárias para criar um modelo de classificação eficiente.

Etapas para Criar um Modelo de Classificação

1. Coleta e Entendimento dos Dados		Definição						
		Explorar os dados para entender suas características, variáveis, tipos e distribuições. Identificar possíveis problemas, como dados ausentes e outliers.						
	2. Pré-processamento dos Dados	Limpeza dos dados, tratamento de valores ausentes, remoção ou substituição de outliers e normalização/ padronização das variáveis.						
	3. Criação da Variável-Alvo	No nosso caso, a variável "opinion" foi criada a partir de "quality", transformando o problema em classificação binária.						
	4. Análise Exploratória dos Dados (EDA)	Criar histogramas, gráficos de dispersão, boxplots e matrizes de correlação para entender relações entre as variáveis e a variável-alvo.						
	5. Divisão dos Dados em Treino e Teste	Separar os dados em conjunto de treino (80%) e conjunto de teste (20%) para avaliar o desempenho do modelo.						
	6. Escolha do Algoritmo	Escolher um modelo adequado para classificação, como Regressão Logística, Random Forest, SVM, KNN ou Redes Neurais . Testar diferentes algoritmos para encontrar o melhor.						
	7. Treinamento do Modelo	Ajustar o modelo aos dados de treino e testar diferentes hiperparâmetros para otimização.						

Etapa Definição

8. Avaliação do Modelo	Avaliar a performance do modelo nos dados de teste usando métricas como Acurácia, Precisão, Recall, F1-Score e Matriz de Confusão .				
9. Otimização do Modelo	Ajustar hiperparâmetros, balancear classes (caso necessário) e aplicar técnicas como feature selection para melhorar a precisão do modelo.				
10. Implementação e Monitoramento	Se o modelo atingir um bom desempenho, ele pode ser implementado para prever novas amostras. O monitoramento contínuo é necessário para garantir sua eficácia ao longo do tempo.				

4.b Treine um modelo de regressão logística usando um modelo de validação cruzada estratificada com k-folds (k=10) para realizar a classificação. Calcule para a base de teste:

```
In [59]: # Tratando valores ausentes preenchendo com a média das colunas numéricas
         df_ww.fillna(df.mean(numeric_only=True), inplace=True)
         # Selecionando as features e a variável alvo
         X = df ww.drop(columns=['opinion', 'type'])
         y = df ww['opinion']
In [60]: # Normalizando as variáveis para melhorar a convergência do modelo
         scaler = StandardScaler()
         X scaled = scaler.fit transform(X)
In [61]: # Configurando a validação cruzada estratificada com k=10
         kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
In [62]: # Definindo função para calcular métricas de validação cruzada
         def avaliar modelo(modelo, X, y):
             scores = {
                 'accuracy': cross_val_score(modelo, X, y, cv=kfold, scoring='accuracy', n_jobs=-1),
                 'precision': cross_val_score(modelo, X, y, cv=kfold, scoring='precision', n_jobs=-1),
                 'recall': cross val score(modelo, X, y, cv=kfold, scoring='recall', n jobs=-1),
                 'f1_score': cross_val_score(modelo, X, y, cv=kfold, scoring='f1', n_jobs=-1)
             }
             resultados = {
                 'Média Acurácia': np.mean(scores['accuracy']),
                 'Desvio Acurácia': np.std(scores['accuracy']),
                 'Média Precisão': np.mean(scores['precision']),
                 'Desvio Precisão': np.std(scores['precision']),
                 'Média Recall': np.mean(scores['recall']),
```

```
'Desvio Recall': np.std(scores['recall']),
                  'Média F1-Score': np.mean(scores['f1_score']),
                  'Desvio F1-Score': np.std(scores['f1_score'])
             }
             return pd.DataFrame([resultados])
In [63]: # Treinando e avaliando Regressão Logística
         modelo rl = LogisticRegression(max iter=5000, solver='saga')
         resultados rl = avaliar modelo(modelo rl, X scaled, y)
         # Treinando e avaliando Árvore de Decisão
         modelo dt = DecisionTreeClassifier(random state=42)
         resultados dt = avaliar modelo(modelo dt, X, y)
         # Treinando e avaliando SVM
         modelo svm = SVC(kernel='linear', random state=42)
         resultados svm = avaliar modelo(modelo svm, X scaled, y)
         print("Questão 4.b - Resultados da Regressão Logística:")
In [64]:
         display(resultados rl)
         print("Questão 4.c - Resultados da Árvore de Decisão:")
         display(resultados_dt)
         print("Questão 4.d - Resultados da SVM:")
         display(resultados svm)
        Questão 4.b - Resultados da Regressão Logística:
           Média Acurácia Desvio Acurácia Média Precisão Desvio Precisão Média Recall Desvio Recall Média F1-Score Desvio F1-Score
        0
                 0.748874
                                0.015734
                                                              0.015213
                                                                          0.878753
                                                                                       0.018209
                                                                                                      0.823174
                                                                                                                      0.010585
                                               0.774561
        Ouestão 4.c - Resultados da Árvore de Decisão:
           Média Acurácia Desvio Acurácia Média Precisão Desvio Precisão Média Recall Desvio Recall Média F1-Score Desvio F1-Score
        0
                 0.795021
                               0.014994
                                              0.846172
                                                              0.011828
                                                                          0.845914
                                                                                       0.025754
                                                                                                      0.845762
                                                                                                                      0.013035
        Questão 4.d - Resultados da SVM:
```

	Média Acurácia	Desvio Acurácia	Média Precisão	Desvio Precisão	Média Recall	Desvio Recall	Média F1-Score	Desvio F1-Score
0	0.752548	0.014146	0.772727	0.011673	0.890108	0.021559	0.827082	0.010598

5. Em relação à questão anterior, qual o modelo deveria ser escolhido para uma eventual operação. Responda essa questão mostrando a comparação de todos os modelos, usando um gráfico mostrando a curva ROC média para cada um dos gráficos e justifique.

```
In [65]: # Criando dicionário para armazenar as curvas ROC
         modelos = {
             "Regressão Logística": modelo_rl,
             "Árvore de Decisão": modelo dt,
             "SVM": modelo svm
         plt.figure(figsize=(10, 7))
         # Gerando a curva ROC para cada modelo
         for nome, modelo in modelos.items():
             if nome == "SVM":
                 y scores = cross val predict(modelo, X scaled, y, cv=kfold, method="decision function")
             else:
                 y scores = cross val predict(modelo, X scaled, y, cv=kfold, method="predict proba")[:, 1]
             # Calculando FPR, TPR e AUC
             fpr, tpr, _ = roc_curve(y, y_scores)
             roc_auc = auc(fpr, tpr)
             # Plotando a curva ROC
             plt.plot(fpr, tpr, label=f'{nome} (AUC = {roc_auc:.2f})')
         # Adicionando linha diagonal de referência
         plt.plot([0, 1], [0, 1], 'k--', lw=2)
         # Configurações do gráfico
         plt.xlabel('Taxa de Falsos Positivos (FPR)')
         plt.ylabel('Taxa de Verdadeiros Positivos (TPR)')
         plt.title('Curva ROC - Comparação de Modelos')
         plt.legend(loc="lower right")
         plt.grid()
         plt.show()
```


Justificativa da Questão 5.

A curva ROC mede o desempenho do modelo em termos da taxa de verdadeiros positivos (TPR) contra a taxa de falsos positivos (FPR) para diferentes limiares de decisão. O AUC (Área Sob a Curva) quantifica a capacidade do modelo de distinguir entre classes.

Escolha do Melhor Modelo

O modelo com a maior área sob a curva (AUC) é o que apresenta melhor desempenho para a tarefa de classificação.

- Se um modelo tem um **AUC maior**, significa que ele é melhor em separar as classes.
- Se as curvas de dois modelos forem próximas, a escolha pode depender de outros fatores como interpretabilidade e tempo de treinamento.

Conclusão

- Se a Regressão Logística ou SVM tiverem AUC maior, um deles deve ser escolhido, pois são mais estáveis para classificação.
- Se a Árvore de Decisão apresentar desempenho similar, pode ser escolhida se houver necessidade de interpretabilidade.

```
In [82]: # Filtrando apenas os dados de vinho tinto da base original
         df wr = pd.read csv(path)
         df wr = df wr[df wr['type'] == 'red'].copy()
         # Removendo a coluna 'type' e garantindo que apenas colunas numéricas sejam usadas
         df_wr = df_wr.drop(columns=['type'], errors='ignore')
         # Criando a variável 'opinion' com base na coluna 'quality'
         df wr['opinion'] = df wr['quality'].apply(lambda x: 0 if x <= 5 else 1)</pre>
         # Tratando valores ausentes preenchendo com a média das colunas numéricas
         imputer = SimpleImputer(strategy='mean')
         X wr imputed = imputer.fit transform(df wr.drop(columns=['opinion', 'quality'], errors='ignore'))
         # Separando os atributos de entrada (X) e a variável alvo (y)
         X wr = pd.DataFrame(X wr imputed, columns=df wr.drop(columns=['opinion', 'quality'], errors='ignore').columns)
         y_wr = df_wr['opinion']
         # Normalizando os dados do vinho tinto com o mesmo scaler usado para os brancos
         scaler = StandardScaler()
         X_wr_scaled = scaler.fit_transform(X_wr)
         # Escolhendo o melhor modelo (com base no gráfico ROC)
         melhor_modelo = LogisticRegression(random_state=42)
         # Garantindo que o modelo foi treinado apenas nos vinhos brancos antes da inferência
         X_scaled = scaler.fit_transform(imputer.fit_transform(df[df['type'] == 'white'].drop(columns=['quality', 'type'])))
```

```
y = df[df['type'] == 'white']['quality'].apply(lambda x: 0 if x <= 5 else 1)
melhor_modelo.fit(X_scaled, y) # Treinado *somente* com os vinhos brancos
# Realizando inferência nos vinhos tintos (sem re-treinamento)
y_pred_wr = melhor_modelo.predict(X_wr_scaled)
# Contando quantos vinhos tintos foram classificados como bons (1) ou ruins (0)
resultados_wr = pd.DataFrame({
    'Total de Vinhos': [len(y_pred_wr)],
    'Vinhos Bons (quality > 5)': [np.sum(y pred wr)],
    'Vinhos Ruins (quality <= 5)': [len(y_pred_wr) - np.sum(y_pred_wr)]
})
# Exibindo resultados
print("Inferência nos Vinhos Tintos:")
display(resultados wr)
# Criando gráfico de barras para visualizar os resultados
plt.figure(figsize=(7, 5))
ax = plt.bar(['Ruins (<=5)', 'Bons (>5)'], [resultados wr['Vinhos Ruins (quality <= 5)'][0], resultados wr['Vinhos Bons
# Adicionando os valores nas barras
for p in ax:
    plt.annotate(f"{p.get_height()}", (p.get_x() + p.get_width() / 2., p.get_height()),
                 ha='center', va='bottom', fontsize=10, fontweight='bold', color='black')
# Configurando o gráfico
plt.xlabel('Classificação')
plt.vlabel('Número de Vinhos Tintos')
plt.title('Distribuição de Vinhos Tintos Preditos')
plt.grid(axis="y", linestyle="--", alpha=0.7)
# Exibindo o gráfico
plt.show()
```

Inferência nos Vinhos Tintos:

Total de Vinhos Vinhos Bons (quality > 5) Vinhos Ruins (quality <= 5)

Distribuição de Vinhos Tintos Preditos

6. Resposta da questão 6.

Ele funciona da mesma forma para essa nova base?

Não.

Justifique.

O modelo pode não generalizar bem, porque foi treinado **apenas com vinhos brancos** e pode não capturar corretamente as características dos vinhos tintos.

Motivos para não usar o mesmo modelo diretamente

1. Diferenças nas características dos vinhos:

- Vinhos tintos e brancos têm **composições químicas diferentes** (pH, acidez, açúcar, álcool, etc.).
- O modelo treinado só com vinhos brancos pode ter aprendido padrões específicos desses vinhos, que não se aplicam aos tintos.

2. Risco de viés e baixa acurácia:

- Como os dados de vinho tinto não foram usados no treinamento, o modelo pode errar mais na previsão dos vinhos tintos.
- Se a distribuição dos atributos for muito diferente, o modelo pode estar "fora da sua zona de conforto".

3. O modelo pode não generalizar bem:

- Modelos de machine learning funcionam melhor quando o treinamento reflete bem os dados de inferência.
- O ideal seria treinar um modelo com dados de ambos os vinhos para melhorar a generalização.

O que fazer então? Treinar um novo modelo combinando vinhos brancos e tintos no treinamento. Desta forma, o modelo aprende características de ambos os tipos de vinho. A previsão será mais precisa e confiável para os vinhos tintos.

7. Disponibilize os códigos usados para responder da questão 2-6 em uma conta github e indique o link para o repositório.

https://github.com/marcelobazevedo/algoritmo_classificacao