## 第五章 极限定理

第一节 大数定律 第二节 中心极限定理

### 本章主要讨论的两个问题:

大数定律和中心极限定理是概率论中两个重要的理论结果。



### 大数定律

### 背景

将一次试验视为对事物的一次观察(测量某数据D)

各次观察结果依次记为 $X_1, X_2, \dots, X_n, \dots$ 

认为 $\{X_n\}$ 是独立同分布的

在大量观察中,平均结果稳定于真值附近

研究在什么条件下?

在一定条件下,算术平均值具有稳定性 是一种统计规律,这种规律称为**大数定律**。

稳定性 — 依概率收敛于一实数



### 依概率收敛

设 $Y_1,Y_2,\cdots Y_n,\cdots$ 是随机变量序列,a是一个常数,若对任意正数  $\varepsilon$ ,有:

$$\lim_{n\to\infty} P(\mid Y_n-a\mid <\varepsilon)=1$$

则称序列  $Y_1, Y_2, \cdots Y_n, \cdots$  依概率收敛于常数 a。 记为:  $Y_n \xrightarrow{P} a$ 

注: 依概率收敛的理解:

对∀
$$\varepsilon$$
 > 0,

当n充分大时,  $Y_n \in (a-\varepsilon, a+\varepsilon)$  几乎是必然事件。



### 回顾. 切比雪夫不等式

设随机变量X具有数学期望  $E(X) = \mu$ , 方差  $D(X) = \sigma^2$ . 则对任意正数  $\varepsilon > 0$ 

不等式: 
$$P\{|X-\mu| \geq \varepsilon\} \leq \frac{\sigma^2}{\varepsilon^2}$$
 成立。

### 称其为切比雪夫不等式

切比雪夫不等式(chebysev)的另一形式:

$$P(|X-\mu|<\varepsilon)\geq 1-\frac{\sigma^2}{\varepsilon^2}$$



设 $X_1, X_2, \dots$ 是相互独立的随机变量序列,它们都有相同的

期望和方差,记 
$$E(X_i) = \mu$$
,  $D(X_i) = \sigma^2$ ,  $i = 1, 2, ...$ 

则对任意的 
$$\varepsilon > 0$$
, 有  $\lim_{n \to \infty} P\{\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| \le \varepsilon\} = 1$ .

证明 因为  $X_1, X_2, \dots, X_n, \dots$  相互独立,  $E(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{1}{n}\sum_{i=1}^n EX_i = \frac{1}{n}n\mu = \mu$ 

有 
$$D(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n^{2}}\sum_{i=1}^{n}DX_{i} = \frac{1}{n^{2}}n\sigma^{2} = \frac{1}{n}\sigma^{2}$$

由切比雪夫不等式,对任意的  $\varepsilon > 0$ ,

$$0 \le P\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \ge \varepsilon\} \le \frac{1}{\varepsilon^{2}}D(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{\varepsilon^{2}}\frac{1}{n}\sigma^{2} \longrightarrow 0 \ (n \to \infty)$$

$$\Rightarrow \lim_{n\to\infty} P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| \ge \varepsilon\right\} = 0. \quad \text{ If } \lim_{n\to\infty} P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| \le \varepsilon\right\} = 1.$$



设 *X*<sub>1</sub>, *X*<sub>2</sub>, ... 是相互独立的随机变量序列,它们都有相同的期望和方差,记

$$E(X_i) = \mu$$
,  $D(X_i) = \sigma^2$ ,  $i = 1, 2, ...$  则对任意的  $\varepsilon > 0$ ,

$$\lim_{n\to\infty} P\{\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| \le \varepsilon\} = 1.$$

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} \mu = E(\frac{1}{n}\sum_{i=1}^{n}X_{i}).$$
 依概率收敛于 $u$ .

设 X<sub>1</sub>, X<sub>2</sub>, ... 是相互独立的 随机变量序列,它们都有 相同的期望和方差,记

$$E(X_i) = \mu, \ D(X_i) = \sigma^2, i = 1, 2, ...$$

# 频率稳定性

### 伯努利大数定律

设  $X_1, X_2, ...$  是相互独立的随机变量序列,它们都服从参数p 的0-1 分布,

$$\stackrel{\text{d}}{=} E(X_i) = p,$$

$$D(X_i) = p(1-p), i = 1, 2, ...$$

则: 
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} p$$
.

事件A在n次试验 中出现的频率 事件A在一次试验 中出现的概率

百独立的 设 $X_1, X_2, ...$ 是相互独立的随 它们都有 机变量序列,它们都服从参数

$$E(X_i) = p,$$

伯努利大数定律

设  $X_1, X_2, ...$  是相互独立的随机变量序列,它们都有相同的期望和方差,记

$$E(X_i) = \mu D(Y_i) - \sigma^2 i - 1.2$$

样本的算术平均值去代替或估计其期望值

则:

提供了理论上的依据。

$$i=1$$

i=1

### 辛钦大数定律

设 $X_1, X_2, \cdots X_n$  ···相互独立,并服从同一分布,

且具有数学期望:  $E(X_k) = \mu$   $(k = 1, 2\cdots)$ 

则: 
$$\frac{1}{n}\sum_{k=1}^{n}X_{k} \xrightarrow{P} \mu$$



### 贝努利 大数定律

设 
$$X_1, X_2, \dots, X_n, \dots$$
 独立同  $b(1, p)$ 分布则  $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} p \quad (n \to \infty)$ 

### 切比雪夫 大数定律 特例

设  $1)\{X_n\}$ 为独立随机序列

2) 对任意
$$k$$
  $E(X_k) = \mu$ ,  $D(X_k) = \sigma^2$ 

$$\boxed{\mathbb{N}} \qquad \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mu \quad (n \to \infty)$$

### 辛钦 大数定律

设 
$$1)\{X_n\}$$
独立同分布

2) 
$$\forall i, E(X_i) = \mu$$

$$\boxed{1} \qquad \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mu \quad (n \to \infty)$$

设 $\{X_n\}$ 为独立随机序列

证明 $\{X_n\}$ 服从大数定律

证明:因为 1) $\{X_n\}$ 为独立随机序列

2) 
$$\forall n, E(X_n) = 0, D(X_n) = 1$$

由切比雪夫大数定律特例知:

 $\{X_n\}$  服从大数定律

## 第五章 极限定理

第一节 大数定律 第二节 中心极限定理

### 中心极限定理的客观背景

### 引例1:

一个城市的用电量是一个随机变量:

$$X = \sum_{k=1}^{n} X_k$$
 近似  $\sim N(\mu, \sigma^2)$ 

- (1) 每家每户的用电量  $X_k$  相互独立;
- (2) 每家每户的用电量 $X_k$  对城市用电量总和  $X_k$  的影响都很小.

则由中心极限定理: 当n很大时,X近似服从正态分布.



### 中心极限定理的客观背景

### 引例2:

一台机床已经调试良好,操作正常。但由于 机床的微小震动、工具的微小变形、原材料质量 上的微小差异、工作操作上的微小偏差等等数不 清的随机因素,它们每一个因素在总的影响中 所起的作用都很微小。而综合起来在产品质量上 就形成一定的误差,这一误差近似服从正态分布。

产品质量的误差 
$$X = \sum_{k=1}^{n} X_k$$
  $\sim N(\mu, \sigma^2)$ 



#### 一、林德贝尔格—勒维定理

(独立同分布的中心极限定理)

设1) ${X_n}$ 独立同分布.

2) 
$$\forall i, E(X_i) = \mu, D(X_i) = \sigma^2, 0 < \sigma^2 < \infty.$$

$$\sum_{n\to\infty}^{n} X_{i} - n\mu$$
**则**  $\forall x \in R$ , 有  $\lim_{n\to\infty} P\{\frac{i=1}{\sqrt{n\sigma}} \le x\} = \Phi(x)$ .

这时 
$$E\left(\sum_{i=1}^{n}X_{i}\right)=n\mu$$
,  $D\left(\sum_{i=1}^{n}X_{i}\right)=n\sigma^{2}$ .

定理的应用形式 
$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma}}$$
  $N(0,1)$ ; 或:  $\sum_{i=1}^{n} X_i$   $N(n\mu, n\sigma^2)$ .

### 一、林德贝尔格—勒维定理

(独立同分布的中心极限定理)

注: 定理 表达了正态分布在概率论中的特殊地位:

尽管  $X_1, X_2 \cdots X_n \cdots$  分布是任意的,

很难求出 $X_1+X_2+...+X_n$  的分布的确切形式,

但当n很大时,它却近似服从正态分布。

$$\sum_{k=1}^{n} X_{k} \sim N(n\mu, n\sigma^{2})$$

### 二、隶莫佛-拉普拉斯定理

设 
$$\eta_n \sim B(n,p), n=1,2,\cdots (0 这时  $E\eta_n = np, D\eta_n = np(1-p).$  则  $\forall x \in R$ 有  $\lim_{n\to\infty} P\{\frac{\eta_n - np}{\sqrt{np(1-p)}} \le x\} = \Phi(x).$$$

应用形式 若 $X \sim B(n, p)$ , n 充分大时近似地有

$$\frac{X-np}{\sqrt{np(1-p)}}$$
 近似 N(0,1), 或  $X$  N( $np$ , $np$ (1- $p$ )).

定理表明: 正态分布是二项分布的极限分布,当n

充分大时可以用正态分布来近似计算二项分布的概率。



#### 中心极限定理的使用场合 说明

独立和 
$$\sum_{i=1}^{n} X_i$$
 近似  $N(n\mu, n\sigma^2)$ 

算术平均值…… 
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \stackrel{\underbrace{L}(M)}{\frown} N\left(\mu, \frac{\sigma^{2}}{n}\right) \qquad \qquad n \text{ 较大}$$

二项分布 
$$X \stackrel{\mathop{\underline{U}}(N)}{\frown} N(np, np(1-p))$$

例1 系统由100个相互独立起作用的部件组成,每

个部件的损坏率为0.1。系统要正常工作,至少有

85个部件正常工作, 求系统正常工作的概率。

解: 设X是损坏的部件数,则 $X \sim B(100,0.1)$ 。

则整个系统能正常工作当且仅当  $X \leq 15$ .

由隶莫佛-拉普拉斯定理有

$$P\{X \le 15\} = P\left\{\frac{X - 100 \times 0.1}{\sqrt{100 \times 0.1 \times 0.9}} \le \frac{15 - 100 \times 0.1}{\sqrt{100 \times 0.1 \times 0.9}}\right\}$$

$$\approx \Phi\left(\frac{15-100\times0.1}{\sqrt{100\times0.1\times0.9}}\right) = \Phi\left(\frac{5}{3}\right) = 0.952.$$

二项分布 
$$X \stackrel{\mathop{\underline{U}}(V)}{\longleftarrow} N(np, np(1-p))$$



例2 一生产线生产的产品成箱包装,每箱的重量是随机的。假设每箱平均重50千克,标准差为5千克。若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977。

解: 设最多可装 n 箱,保障不超载的概率大于0.977。 第i 箱重量为  $X_i$  千克, $i=1,\dots,n$ .

则 
$$EX_i = 50$$
,  $DX_i = 25$ ,  $i = 1, \dots, n$  且  $P\{\sum_{i=1}^n X_i \le 5000\} > 0.977$ 

由中心极限定理有

$$\lim_{n\to\infty} P\{\frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n\sigma}} \le x\} = \Phi(x)$$

$$P\{\sum_{i=1}^{n} X_{i} \leq 5000\} = P\left\{\frac{\sum_{i=1}^{n} X_{i} - 50n}{5\sqrt{n}} \leq \frac{5000 - 50n}{5\sqrt{n}}\right\}$$

$$\approx \Phi(\frac{5000 - 50n}{5\sqrt{n}}) = \Phi(\frac{1000 - 10n}{\sqrt{n}}) > 0.977$$

$$\frac{1000 - 10n}{\sqrt{n}} > 2, \ 100n^2 - 20000n + 1000^2 > 4n,$$

解得 n > 102.02或n < 98.02,由题意知n = 98.

因此最多可装 98 箱,保障不超载的概率大于0.977。

计算机进行加法计算时,把每个加数取为最接近 它的整数来计算。设所有的取数误差是相互独立 的随机变量,并且都在区间[-0.5, 0.5]上服从均 匀分布。

求: (1) 现有1200个数相加,误差总和的绝对值小于 10的概率。 $P(|\sum X_k| < 10)$ 

(2) 应有多少个数相加时可使误差总和的绝对值小 于10 的概率大于0.9  $P(|\sum X_k| < 10) > 0.9$ 

解: 设  $X_1, X_2, \cdots X_n$  为各个加数的取数误差 则这是一列独立同分布的随机变量,其所有加 数的误差总和为:  $\sum X_k$ 

$$X_i \longrightarrow N(n\mu, \mu)$$

设所有的取数误差相互独立,都在[-0.5, 0.5]上

服从均匀分布。 
$$P(\left|\sum_{k=1}^{1200} X_k\right| < 10) P(\left|\sum_{k=1}^{n} X_k\right| < 10) > 0.9$$

解: 
$$E(X_k) = \frac{-0.5 + 0.5}{2} = 0$$
,  $D(X_k) = \frac{[0.5 - (-0.5)]^2}{12} = \frac{1}{12}$ 

从证: 
$$\sum_{k=1}^{n} E(X_k) = 0$$
,  $\sqrt{\sum_{k=1}^{n} D(X_k)} = \sqrt{\frac{n}{12}} = 10$ 

$$P\left(\left|\sum_{k=1}^{1200} X_{k}\right| < 10\right) = P\left(-10 < \sum_{k=1}^{1200} X_{k} < 10\right)$$

$$=P(\frac{-10-0}{10}<\frac{\sum_{k=1}^{1200}X_k-0}{10}<\frac{10-0}{10})=P(-1<\frac{\sum_{k=1}^{1200}X_k}{10}<1)$$

$$\approx \Phi(1) - \Phi(-1) = 2 \Phi(1) - 1 = 2 \times 0.8453 - 1 = 0.6826$$

独立和······· 
$$\sum_{i=1}^{n} X_{i}$$
  $\sum_{i=1}^{n} N(n\mu, n\sigma^{2})$  概率统计5-1

$$P(|\sum_{k=1}^{n} X_{k}| < 10) > 0.9$$
  $\sum_{k=1}^{n} X_{k} - E(\sum_{k=1}^{n} X_{k})$   $\sim N(0,1)$  解: 误差总和为:  $\sum_{k=1}^{n} X_{k}$ 

是差总和为: 
$$\sum_{k=1}^{n} X_{k}$$

$$\sum_{k=1}^{n} E(X_k) = 0, \quad \sqrt{\sum_{k=1}^{n} D(X_k)} = \sqrt{\frac{n}{12}}$$

$$0.9 < P(\left|\sum_{k=1}^{n} X_{k}\right| < 10) = P(-10 < \sum_{k=1}^{n} X_{k} < 1)$$

$$= P(\frac{-10-0}{\sqrt{n/12}} < \frac{\sum_{k=1}^{n} X_{k} - 0}{\sqrt{n/12}} < \frac{10-0}{\sqrt{n/12}}) = P(-20\sqrt{\frac{3}{n}} < \frac{\sum_{k=1}^{n} X_{k} + 10}{\sqrt{n/12}})$$

$$= 2\Phi(20\sqrt{\frac{3}{n}}) - 1 \longrightarrow \Phi(20\sqrt{\frac{3}{n}}) > 0.95 \approx \Phi(1.65)$$

## 小结

### 大数定律及中心极限定理

| 定理 <b>1</b><br>(贝努利)   | $X_1, X_2, \cdots, X_n, \cdots$ 相互独立 $\sim (0-1)$ 分布(参数 $p$ )                | $\frac{n_A}{n} = \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow{P} p$ |
|------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|
| 定理 <b>2</b><br>(切比雪夫)  | $X_1, X_2, \cdots, X_n, \cdots$ 相互独立 $E(X_k) = \mu  D(X_k) = \sigma^2$       | $\frac{1}{n}\sum_{k=1}^{n}X_{k} \xrightarrow{P} \mu$             |
| 定理 <b>3</b><br>(辛钦)    | $X_1, X_2, \dots, X_n, \dots$ 相互独立 $E(X_k) = \mu$ 同分布                        | $\frac{1}{n}\sum_{k=1}^{n}X_{k} \xrightarrow{P} \mu$             |
| 定理 <b>1</b><br>(隶莫弗)   | $\eta_1, \eta_2 \cdots \eta_n \cdots$ 相互独立, $\eta_n \sim B(n, p)$            | $\frac{\eta_n - np}{\sqrt{np(1-p)}}$ 近似 $\sim N(0,1)$            |
| 定理 <b>2</b><br>(独立同分布) | $X_1, X_2, \cdots, X_n, \cdots$ 相互独立<br>同分布 $E(X_k) = \mu D(X_k) = \sigma^2$ | $\sum_{k=1}^{n} X_{k} - n\mu \text{ if } W$                      |