Квадратичная интерполяция

Если задана последовательность точек x_1, x_2, x_3 и известны соответствующие им значения функции f_1, f_2, f_3 то функция f(x) может быть аппроксимирована квадратичной функцией

$$\varphi(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$$

Определим постоянные коэффициенты a_0 , a_1 , a_2 исходя из условия, что значения функции $\phi(x)$ совпадают со значениями f(x) в контрольных точках.

Для
$$x = x_1$$
 имеем $f_1 = f(x_1) = \varphi(x_1) = a_0$, т.е. $a_0 = f_1$.

Для
$$x = x_2$$
 имеем $f_2 = f(x_2) = \varphi(x_2) = f_1 + a_1(x_2 - x_1)$, откуда $a_1 = \frac{f_2 - f_1}{x_2 - x_1}$.

Для
$$x = x_3$$
: $f_3 = f(x_3) = \varphi(x_3) = f_1 + \frac{(f_2 - f_1)(x_3 - x_1)}{(x_2 - x_1)} + a_2(x_3 - x_1)(x_3 - x_2),$

откуда
$$a_2 = \frac{1}{x_3 - x_1} \left(\frac{f_3 - f_1}{x_3 - x_1} - \frac{f_2 - f_1}{x_2 - x_1} \right)$$

Используем полученный квадратичный полином для оценивания координаты точки оптимума.

$$\frac{dy}{dx} = a_1 + a_2(x - x_1) + a_2(x - x_2) = 0$$

Отсюда, точка минимума функции аппроксимируется значением:

$$x^* = \frac{x_1 + x_2}{2} - \frac{a_1}{2a_2} \ .$$

Метод, разработанный Пауэллом, основан на последовательном применении процедуры оценивания с использованием квадратичной аппроксимации. Схему алгоритма можно описать следующим образом:

Пусть x_1 -начальная точка, Δx - выбранная величина шага по оси x.

- 1. Вычислить $x_2 = x_1 + \Delta x$
- 2. Вычислить $f(x_1)$ и $f(x_2)$
- 3. Если $f(x_1) > f(x_2)$ положить $x_3 = x_1 + 2\Delta x$.

Если
$$f(x_1) \le f(x_2)$$
 положить $x_3 = x_1 - \Delta x$.

4. Вычислить $f(x_3)$ и найти

$$F_{\text{min}} = \min(f_1, f_2, f_3),$$

 $x_{_{\mathit{MUH}}} = moч\kappa a \ x_{_i}$, которая соответствует $F_{_{\mathit{MUH}}}$.

5. По трем точкам x_1, x_2, x_3 вычислить x^* , используя формулу квадратичной аппроксимации.

- 6. Проверка на окончание поиска:
- а) является ли разность $(F_{_{\it MLH}} f(x*))$ достаточно малой?
- б) является ли разность $(x_{_{MIH}} x^*)$ достаточно малой?

Если оба условия выполняются, закончить поиск. В противном случае перейти к п.7.

7. Выбрать наилучшую точку $x_{_{MUH}}$ или x*u две точки по обе стороны от неё, или 3 точки, в которых функция имеет минимальные значения. Перейти к п.5.

