Exercices de probabilités MDI104

2. Mesures

2023-2024

Exercice 1 (Tribu). Soit \mathcal{F} la tribu de $\Omega = \{\{1, 2, 3, 4\}\}$ engendrée par la collection $\{\{1\}, \{1, 2, 3\}\}$. Donner tous les éléments de la tribu \mathcal{F} .

Exercice 2 (Tribu). Soit \mathcal{F} la tribu de $\Omega = \mathbb{R}$ engendrée par la collection $\{[a,b], a,b \in \mathbb{Z}\}$. L'intervalle [0,1[appartient-il à \mathcal{F} ?

Exercice 3 (Translation d'un borélien). Soit A un borélien de \mathbb{R} . On veut montrer que pour tout $x \in \mathbb{R}$, l'ensemble A + x est un borélien. On fixe x et on note $\mathcal{F} = \{A \in \mathcal{B}(\mathbb{R}) : A + x \in \mathcal{B}(\mathbb{R})\}$.

- 1. Montrer que \mathcal{F} est une tribu.
- 2. Vérifier que \mathcal{F} contient les intervalles [a, b], a < b.
- 3. Conclure.

Exercice 4 (Mesure sur \mathbb{R}). Existe-t-il une mesure μ sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ telle que $\mu([a, b]) = (b - a)^2$ pour tous a < b?

Exercice 5 (Mesure sur \mathbb{R}). Soit μ la mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ définie par $\mu = \delta_{-1} + 2\delta_0 + 3\delta_1$. Calculer $\mu(A)$ dans les cas suivants : $A = [-1, 0], [0, 1], [-\frac{1}{2}, \frac{1}{2}], [-1, 1], \mathbb{R}, \{1\}$.

Exercice 6 (Mesure sur \mathbb{R}). Soit μ la mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ définie par $\mu = \delta_0 + \lambda$, où λ désigne la mesure de Lebesgue. Calculer $\mu(A)$ dans les cas suivants : $A = [-1, 0], [0, 1], [-\frac{1}{2}, \frac{1}{2}], \mathbb{R}$.

Exercice 7 (Mesure de probabilité). Soit μ la mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ définie par

$$\mu = \alpha(\delta_0 + 2\delta_1 + \lambda_{[0,2]}),$$

où α est un réel positif et pour tout borélien $B,\,\lambda_B$ désigne la restriction de la mesure de Lebesgue λ au borélien B:

$$\forall A \in \mathcal{B}(\mathbb{R}^2), \quad \lambda_B(A) = \lambda(A \cap B)$$

Pour quelle valeur de α la mesure μ est-elle une mesure de probabilité ?

Exercice 8 (Mesure sur \mathbb{R}^2). Soit $\mu = \delta_{(0,0)} + \lambda + \lambda_D$ où λ désigne la mesure de Lebesgue sur \mathbb{R}^2 et λ_D la restriction de λ au disque unité $D = \{x \in \mathbb{R}^2 : ||x||^2 \le 1\}$:

$$\forall A \in \mathcal{B}(\mathbb{R}^2), \quad \lambda_D(A) = \lambda(A \cap D)$$

Calculer $\mu(A)$ dans les cas suivants : $A = D, [-1, 1]^2, [-1, 1] \times \{0\}$.

Exercice 9 (Mesure sur \mathbb{R}^2). Soit $\mu = \lambda \times \delta_0 + \delta_0 \times \lambda$ où λ désigne la mesure de Lebesgue sur \mathbb{R} . Calculer $\mu(A)$ dans les cas suivants : $A = [-1, 1]^2, [0, 1] \times [-1, 1], [-1, 1] \times \{0\}, \mathbb{R}^2$.

Exercice 10 (Mesure de Lebesgue et isomorphisme). On note φ un isomorphisme de \mathbb{R}^d et M sa matrice dans la base canonique. Le but de l'exercice est de montrer que :

$$\forall A \in \mathcal{B}(\mathbb{R}^d), \quad \lambda(\varphi(A)) = |\det(M)|\lambda(A),$$

avec

$$\varphi(A) = \{ \varphi(x), x \in A \}.$$

- 1. Montrer que pour tout borélien $A, \varphi(A)$ est un borélien. On pourra considérer $\mathcal{F} = \{A \in \mathcal{B}(\mathbb{R}^d) : \varphi(A) \in \mathcal{B}(\mathbb{R}^d)\}$ et montrer que $\mathcal{F} = \mathcal{B}(\mathbb{R}^d)$.
- 2. Montrer que l'application $\mu:A\mapsto \lambda(\varphi(A))$ est une mesure.
- 3. Vérifier que la mesure μ est σ -finie et invariante par translation.
- 4. En déduire que $\mu = \alpha \lambda$ avec $\alpha = \mu([0,1]^d)$.
- 5. Montrer le résultat pour une matrice M diagonale.
- 6. Montrer le résultat pour une matrice M orthogonale.
- 7. Montrer le résultat pour une matrice M symétrique.
- 8. Conclure en utilisant une décomposition polaire de M, soit M=QS avec Q matrice orthogonale et S matrice symétrique positive.

Exercice 11 (Mesure de Lebesgue dans \mathbb{R}^2). Soit φ l'isomorphisme de \mathbb{R}^2 de matrice :

$$M = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$$

dans la base canonique. On note $C = [0,1]^2$ le carré unité et D le disque unité.

- 1. Représenter graphiquement $\varphi(C)$ et $\varphi(D)$.
- 2. Calculer leurs mesures de Lebesgue.