DSS5202 Sustainable Systems Analysis Assignment #4 Solutions

Question 1.

SG Capacity = 328,000.

Total demand = 140,000 + 80,000 + 108,000 = 328,000.

Hence the supply-demand is balanced.

Formulation

Sets

C = set of customers

D = set of distribution centers

Parameters

 c_{ij} Transportation cost from DC i to customer j, $\forall i \in D$, $\forall j \in C$

 e_i Transportation cost from SG to DC i, $\forall i \in D$

 d_i Demand at customer j, $\forall j \in C$

 s_i Capacity at DC i, $\forall i \in D$

 f_i Fixed operating cost at DC i if in operation, $\forall i \in D$

g Capacity at SG.

Decision Variables

 x_{ij} Quantity shipped from DC i to customer j, $\forall i \in D, \forall j \in C$

 y_i Quantity shipped from SG to DC i, $\forall i \in D$

$$z_i = \begin{cases} 1 & \text{if DC } i \text{ is operated} \\ 0 & \text{otherwise} \end{cases}$$

Model

$$\operatorname{Min} \sum_{i \in D} e_i y_i + \sum_{i \in D} \sum_{j \in C} c_{ij} x_{ij} + \sum_{i \in D} f_i z_i$$

s.t.
$$\sum_{i \in D} x_{ij} = d_j$$
 $\forall j \in C$ // Demand of customer is satisfied.
$$\sum_{j \in C} x_{ij} \leq s_i z_i \qquad \forall i \in D$$
 // Capacity of DC not exceeded
$$\sum_{j \in C} x_{ij} = y_i \qquad \forall i \in D$$
 // Conservation of flows at DC
$$\sum_{j \in C} y_i \leq g \qquad \text{// Capacity of SG not exceeded}$$

$$x_{ij} \geq 0 \qquad \forall i \in D, \ \forall j \in C$$

$$y_i \geq 0 \qquad \forall i \in D$$

$$z_i \in \{0, 1\} \qquad \forall i \in D$$

dss5202 (2024) Assign-4-soln-1

Optimal Solution:

Optimal Total Monthly Cost: <u>USD 8,076,600.00</u>

Distribution Centers to Open: Switzerland and California

Quantity shipped from Singapore to the Distribution Centers:

Distribution	Number of vials
Center	per month
Switzerland	210,000
California	118,000
New York.	0
Total	328,000

Quantity shipped from Distribution Centers to Key Markets

From \ To	Brazil	Japan	Russia	Total
Switzerland	102,000	0	108,000	210,000
New York	0	0	0	0
California	38,000	80,000	0	118,000
Total	140,000	80,000	108,000	328,000

Question 2

SG Capacity = 300,000 < Total demand = 328,000 Some of the customers will not get their full demand.

We modify two constraints in Q1 model as follows:

$$\sum_{i \in D} x_{ij} \le d_j \qquad \forall j \in C \qquad \qquad \text{// The demand may not be all met}$$

$$\sum_{i \in D} y_i = g \qquad \qquad \text{// SG produces at full capacity}$$

Optimal Solution:

Optimal Total Monthly Cost: USD 7,438,200.00

Distribution Centers to Open: Switzerland and California

Quantity shipped from Singapore to the Distribution Centers:

Distribution	Number of vials	
Center	per month	
Switzerland	210,000	
California	90,000	
New York.	0	
Total	300,000	

dss5202 (2024) Assign-4-soln-2

Quantity shipped from Distribution Centers to Key Markets

From \ To	Brazil	Japan	Russia	Total
Switzerland	102,000	0	108,000	210,000
New York	0	0	0	0
California	10,000	80,000	0	90,000
Total	112,000	80,000	108,000	300,000

Brazil will only receive a total of only112,000 instead of 140,000.

Question 3.

Advantages: The optimal solution provides the *lowest possible total cost* solution without being constrained by other customer or business considerations.

Disadvantage: The solution does not consider customers with different priorities and customer relationships. This may impact the company's future relationship with key customers.

Question 4.

Possible improvements:

- 1. For each customer determine the maximum level of shortfalls permitted based on the customer's importance to the company. Modify the constraint for each customer.
- 2. Reformulate the problem as a goal programming problem. The customers' orders are the goals and set penalty costs for under-supply deviation from the goal.
- 3. Add a second objective function on the cost of the slacks for each of the customer demand constraints. Find a preferred or compromised solution using any multi-objective optimization algorithm.

4. Etc

dss5202 (2024) Assign-4-soln-3