

Buen diseño de bases de datos I

Gestión de Datos

Vicente Calisto

Educación Profesional - Escuela de Ingeniería

Clase diseñada por Matías Toro para GDD, DCDPP 2022

El uso de apuntes de clases estará reservado para finalidades académicas. La reproducción total o parcial de los mismos por cualquier medio, así como su difusión y distribución a terceras personas no está permitida, salvo con autorización del autor.

Hasta ahora

Conocemos el modelo relacional y SQL por lo que podemos comenzar a diseñar una base de datos, pero... ¿Sabemos si lo estamos haciendo bien?

Un error en la modelación puede ser muy costoso!

Por ejemplo: olvidar añadir una columna

Errores en los datos

Investigaciones precisas necesitan valores precisos, sin embargo, tener datos libres de errores es prácticamente imposible.

La propagación de errores tanto a nivel numérico, como computacional y humano debe ser correctamente manejado para obtener resultados confiables

```
PRECISE + PRECISE =
                          SLIGHTLY LESS
                          PRECISE NUMBER
  PRECISE * PRECISE = SLIGHTLY LESS
NUMBER * NUMBER = PRECISE NUMBER
                          PRECISE NUMBER
      PRECISE + GARBAGE = GARBAGE
      PRECISE × GARBAGE = GARBAGE
          (GARBAGE)<sup>2</sup> =
\frac{1}{N}\sum (N PIECES OF STATISTICALLY) = BETTER GARBAGE
                             MUCH WORSE
   GARBAGE - GARBAGE =
                               GARBAGE
                            MUCH WORSE
   PRECISE NUMBER
                      = = GARBAGE, POSSIBLE
 GARBAGE - GARBAGE
                          DIVISION BY ZERO
```


¿Como diagnosticar la falta de calidad?

Para diagnosticar la calidad de un conjunto de datos podemos evaluar las diferentes dimensiones en ellos:

- **Exactitud**: Contrastar valor real con valor en DB.
- Validez: Contrastar un conjunto de reglas de la definición de los datos en la DB.
- Completitud: Contar el porcentaje de datos faltantes.
- Consistencia: Distintas fuentes de datos hacen sentido entre sí.
- Uniformidad: Los datos se encuentran en la misma escala.
- Etc...

Diseño de base de datos

Diseñando una base de datos

- En la práctica es imposible saber de antemano todos los requisitos que debe cumplir una bd.
- De la mano con eso, el esquema de la base de datos va cambiando en el tiempo.
- Un esquema bien diseñado no solo nos permite consultar con facilidad y guardar los datos de forma óptima, si no que también permite modificarlo y aumentarlo con menos dolores de cabeza.
- Los errores en el diseño son muy costosos a la larga!

Diseño conceptual de la BD

- ¿Por qué diseñar y diagramar la base de datos?:
 - Identificar las entidades.
 - Entender cómo se asocian esas entidades.
 - Visualizar las restricciones del dominio.
 - Para lograr un buen diseño!
 - Para mantener el esquema bien documentado.

Diagramas E/R

Objetos básicos

Entidad

Producto

Atributo

nombre

Relación

Diagramas E/R: entidad con sus atributos

Obligatorio: cada entidad debe tener una llave,

i.e. un conjunto de atributos mínimo cuyos valores identifican de manera unívoca a cada entidad del conjunto

Diagramas E/R: entidad con sus atributos

Intuitivamente:

<u>nombre</u>	precio	categoría
Cusqueña	1000	Cerveza
Stella Artois	745	Cerveza
Santa Ema Merlot	6790	Vino
Corona	1200	Cerveza

Dos entidades relacionadas

Entidad con sus atributos

Intuitivamente (spoilers):

Producto

<u>nombre</u>	precio	categoría
Cusqueña	1000	Cerveza
Stella Artois	745	Cerveza
Santa Ema Merlot	6790	Vino
Corona	1200	Cerveza

fabrica

<u>p nombre</u>	<u>p compañia</u>	desde
Cusqueña	Cusqueña	1908
Stella Artois	AB InBev	1926
Santa Ema Merlot	Viña Santa Ema	1956
Corona	AB InBev	1926

Compañía

<u>nombre</u>	valor-acción
Viña Santa Ema	5500
Ab InBev	1224
Cusqueña	5678

Multiplicidades

Multiplicidades

Muchas convenciones distintas

Sólo utilizaremos esta convención:

Sólo utilizaremos esta convención:

Diagramas E/R

Relaciones Múltiples

¿Cómo se puede modelar un alquiler que involucra Personas, Películas y Locales de Videos?

¿Cómo se puede modelar un alquiler que involucra Personas, Películas y Locales de Videos?

¿Por qué no un atributo?

¿Y ahora?

¿Qué significa esto?

¿Y qué pasa si decimos que una persona puede alquilar varias películas pero de un solo local de video?

¿Qué pasa si usamos solo relaciones binarias?

¿Y qué pasa si decimos que una persona puede alquilar varias películas pero de un solo local de video?

¿Cuál es mejor?

Una entidad puede participar más de una vez en una relación

Restricciones Avanzadas

Restricciones Avanzadas

¿Que es más natural?

Restricciones Avanzadas

Participación y participación total

Equivalencia de multiplicidades

Diagramas E/R

Jerarquía de clases

Jerarquía de clases

Jerarquía de clases

FACULTAD DE INGENIERÍA

Solapamiento

Jerarquía de clases

FACULTAD DE INGENIERÍA

No Solapamiento

Jerarquía de clases

FACULTAD DE INGENIERÍA

Cobertura

Jerarquía de clases

Sin Cobertura

Ejemplo

FACULTAD DE INGENIERÍA

¿Hay solapamiento?

Depende (¿datos históricos?)

¿Hay cobertura?

Sí (de alumnos universitarios)

Ejemplo

¿Hay solapamiento?

Sí (profesor ayudante)

¿Hay cobertura?

Depende (¿visitantes?)

Diagramas E/R

Entidades Débiles

FACULTAD DE INGENIERÍA

...entidades cuya llave dependa de la llave de otra entidad

Podemos encadenar entidades débiles

La llave de Nota es la tupla (código, nombre, rut_alumno)

Podemos encadenar entidades débiles

La llave de Nota es la tupla (código, nombre, rut_alumno)

Agregando nombre del alumno

¿Hay algún problema?

FACULTAD DE INGENIERÍA

Agregando nombre del alumno

Agregando nombre del alumno

¿Hay algún problema?

¿Y notas por pregunta?...

Nota por pregunta

¿Hay algún problema?

Nota por pregunta

Diagramas E/R

Modelando vinos y cervezas

Modelando vinos y cervezas

Vendemos vinos y cervezas. Cada vino tiene año, tipo, grados y ciudad-origen. Cada cerveza tiene ciudad-origen, tipo, grados. Vinos y cervezas tienen un precio unitario y una cantidad "en stock" cada día.

Modelando vinos y cervezas

ESCUELA DE INGENIERÍA Facultad de Ingeniería ¿Hay algún problema?

Agregando llaves

ESCUELA DE INGENIERÍA FACULTAD DE INGENIERÍA

¿Hay algún problema?

Usando jerarquía de clases

FACULTAD DE INGENIERÍA

Usando jerarquía de clases

FACULTAD DE INGENIERÍA

Agregando multiplicidades

Agregando multiplicidades

Con sólo stock actual

Con sólo stock actual

¿Preguntas?

