МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра ЕОМ

Звіт

Лабораторна робота 2 з дисципліни «Моделювання комп'ютерних систем» Варіант 4

Виконав: ст.гр. КІ-202

Коваль О.В.

Прийняв:

Козак Н.Б.

Тема роботи:

Структурний опис цифрового автомата Перевірка роботи автомата за допомогою стенда Elbert V2 – Spartan 3A FPGA

Мета роботи:

На базі стенда Elbert V2 – Spartan 3A FPGA реалізувати цифровий автоматсвітлових ефектів згідно наступних вимог:

- 1. Інтерфейс пристрою та функціонал реалізувати згідно отриманоговаріанту завдання
- 2. Логіку переходів реалізувати з використанням мови опису апаратних засобів VHDL. Заборонено використовувати оператори if, switch, for, when
- 3. Логіку формування вихідних сигналів реалізувати з використанням мовиопису апаратних засобів VHDL. Заборонено використовувати оператори if, switch, for, when
- 4. Згенерувати Schematic символи для VHDL описів логіки переходів талогіки формування вихідних сигналів
- 5. Зінтегрувати всі компоненти (логіку переходів логіку формування вихідних сигналів та пам'ять станів) в єдину систему за допомогою ISEWebPACK Schematic Capture. Пам'ять станів реалізувати за допомогоюграфічних компонентів з бібліотеки
- 6. Промоделювати роботу окремих частин автомата та автомата в цілому задопомогою симулятора ISim
- 7. Інтегрувати створений автомат зі стендом Elbert V2 Spartan 3A FPGA (додати подільник частоти для вхідного тактового сигналу призначитифізичні виводи на FPGA)
- 8. Згенерувати ВІТ файл та перевірити роботу за допомогою стенда ElbertV2 Spartan 3A FPGA
- 9. Підготувати і захистити звіт

Завдання:

Мій номер по списку 10, тому номер варіанту 4.

Варіант – 4:

Пристрій повинен реалізувати 8 комбінацій вихідних сигналів згідно таблиці;

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	1
1	0	1	0	0	0	0	1	0
2	0	0	1	0	0	1	0	0
3	0	0	0	1	1	0	0	0
4	0	0	1	1	1	1	0	0
5	0	1	1	1	1	1	1	0
6	1	1	1	1	1	1	1	1
7	0	0	0	0	0	0	0	0

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда Elbert V2 – Spartan 3A FPGA. Тактовий сигнал заведено нв вхід LOC = P129 FPGA (див. Додаток – 1).
- Інтерфейс пристрою повинен мати вхід синхронного скидання (RESET).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (MODE):
 - Якщо MODE=0 то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - Якщо MODE=1 то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід керування швидкістю роботи(SPEED):
 - Якщо SPEED=0 то автомат працює зі швидкістю, визначеною за замовчуванням.
 - \circ Якщо *SPEED=1* то автомат працює зі швидкістю, <u>В 4 РАЗИ НИЖЧОЮ</u> ніж в режимі (*SPEED= 0*).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. Додаток – 1).
- Для керування сигналами RESET/SPEED використати будь якІ з PUSH BUTTON кнопок (див. Додаток – 1).

Виконання роботи:

- 1. У середовищі Xilinx ISE створив новий проєкт. Налаштував цільову FPGA, обрала інструменти для синтезу і симуляції.
- 2. Додав VHDL файл OutputLogic до проєкту та імплементував інтерфейс логіки формування вихідних сигналів, а також логічні вирази для формування кожного вихідного сигналу, залежно від поточного стану автомата.

(VHDL OutputLogic)

Company:
Engineer:

Create Date: 20:07:40 03/27/2024
Design Name:
Module Name: out_logic_intf - out_logic_arch
Project Name:
Target Devices:
Tool versions:
Description:
Dependencies:

Revision:
Revision 0.01 - File Created
Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
Uncomment the following library declaration if using
arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;
Uncomment the following library declaration if instantiating
 Uncomment the following library declaration if instantiating any Xilinx primitives in this code.
library UNISIM;
•
use UNISIM.VComponents.all;

```
entity out_logic_intf is
port ( IN_BUS : in std_logic_vector(2 downto 0) ;
    OUT_BUS: out std_logic_vector(7 downto 0));
end out_logic_intf;
architecture out_logic_arch of out_logic_intf is
begin
   OUT_BUS(0) \le ((not(IN_BUS(2)))) and not(IN_BUS(1)) and
not(IN_BUS(0))) or ((IN_BUS(2)) and (IN_BUS(1)) and not (IN_BUS(0)));
   OUT_BUS(1) \le ((not(IN_BUS(2)))) and not(IN_BUS(1)) and (IN_BUS(0))) or
((IN BUS(2)) and not (IN BUS(1)) and (IN BUS(0))) or ((IN BUS(2)) and
(IN_BUS(1)) and not (IN_BUS(0)));
   OUT_BUS(2) \le ((not(IN_BUS(2)) \text{ and}(IN_BUS(1)) \text{ and } not(IN_BUS(0))) \text{ or }
((IN_BUS(2)) and not (IN_BUS(1)) and not (IN_BUS(0))) or ((IN_BUS(2)) and
not (IN_BUS(1)) and (IN_BUS(0))) or ((IN_BUS(2)) and (IN_BUS(1)) and not
(IN_BUS(0)));
   OUT BUS(3) \le ((not(IN BUS(2)) and(IN BUS(1)) and(IN BUS(0))) or
((IN BUS(2)) and not (IN BUS(1)) and not (IN BUS(0))) or ((IN BUS(2)) and
not (IN_BUS(1)) and (IN_BUS(0))) or ((IN_BUS(2)) and (IN_BUS(1)) and not
(IN_BUS(0)));
   OUT BUS(4) \leftarrow ((not(IN BUS(2)) and(IN BUS(1)) and(IN BUS(0))) or
((IN BUS(2)) and not (IN BUS(1)) and not (IN BUS(0))) or ((IN BUS(2)) and
not (IN_BUS(1)) and (IN_BUS(0))) or ((IN_BUS(2)) and (IN_BUS(1)) and not
(IN_BUS(0)));
   OUT_BUS(5) \le ((not(IN_BUS(2)) \text{ and}(IN_BUS(1)) \text{ and } not(IN_BUS(0))) \text{ or }
((IN BUS(2)) and not (IN BUS(1)) and not (IN BUS(0))) or ((IN BUS(2)) and
not (IN_BUS(1)) and (IN_BUS(0))) or ((IN_BUS(2)) and (IN_BUS(1)) and not
(IN_BUS(0)));
   OUT BUS(6) \leq ((not(IN BUS(2)) and not(IN BUS(1)) and(IN BUS(0))) or
((IN_BUS(2)) and not (IN_BUS(1)) and (IN_BUS(0))) or ((IN_BUS(2)) and
(IN BUS(1)) and not (IN BUS(0)));
   OUT_BUS(7) \le ((not(IN_BUS(2)))) and not(IN_BUS(1)) and
not(IN_BUS(0))) or ((IN_BUS(2)) and (IN_BUS(1)) and not (IN_BUS(0)));
```

end out_logic_arch;

3. За допомогою симулятора Isim провів моделювання роботи схеми при всіх можливих комбінаціях сигналів на входах.

Рис.1: виконання роботи схеми

4. Додав до проєкту VHDL файл Transition_Logic, в якому реалізував логіку формування переходів.

-- Dependencies:

```
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity transition_logic_intf is
 Port (CUR_STATE: in std_logic_vector(2 downto 0);
      MODE: in std_logic;
      NEXT_STATE : out std_logic_vector(2 downto 0)
               );
end transition_logic_intf;
```

```
begin
 NEXT_STATE(0) <= (not(MODE) and not(CUR_STATE(2)) and
not(CUR_STATE(1)) and not(CUR_STATE(0))) or
                                  (not(MODE) and
not(CUR_STATE(2)) and CUR_STATE(1) and not(CUR_STATE(0))) or
                                  (not(MODE) and
                                                   CUR STATE(2)
and not(CUR_STATE(1)) and not(CUR_STATE(0))) or
                                  (not(MODE) and CUR STATE(2)
and
     CUR_STATE(1) and not(CUR_STATE(0))) or
                                  ( MODE and not(CUR STATE(2))
     CUR_STATE(1) and not(CUR_STATE(0))) or
and
                                  ( MODE and
                                                 CUR STATE(2)
and not(CUR_STATE(1)) and not(CUR_STATE(0))) or
                                     MODE and CUR_STATE(2)
     CUR STATE(1) and not(CUR STATE(0))) or
and
                                    MODE and not(CUR STATE(2))
and not(CUR_STATE(1)) and not(CUR_STATE(0)))
 NEXT_STATE(1) <= (not(MODE) and not(CUR_STATE(2)) and
not(CUR STATE(1)) and CUR STATE(0)) or
                                  (not(MODE) and
not(CUR_STATE(2)) and CUR_STATE(1) and not(CUR_STATE(0))) or
                                  (not(MODE) and
                                                  CUR STATE(2)
and not(CUR STATE(1)) and CUR STATE(0)) or
```

CUR_STATE(1) and not(CUR_STATE(0))) or

and

(not(MODE) and CUR_STATE(2)

```
( MODE and not(CUR STATE(2))
     CUR STATE(1) and CUR STATE(0)) or
and
                                 ( MODE and CUR STATE(2)
and not(CUR STATE(1)) and not(CUR STATE(0))) or
         ( MODE and CUR STATE(2) and CUR STATE(1) and
CUR STATE(0)) or
         ( MODE and not(CUR STATE(2)) and not(CUR STATE(1)) and
not(CUR STATE(0)))
 NEXT STATE(2) <= (not(MODE) and not(CUR STATE(2)) and
CUR STATE(1) and CUR STATE(0)) or
         (not(MODE) and CUR STATE(2) and not(CUR STATE(1)) and
not(CUR STATE(0))) or
         (not(MODE) and CUR STATE(2) and not(CUR STATE(1)) and
CUR_STATE(0)) or
         (not(MODE) and CUR STATE(2) and CUR STATE(1) and
not(CUR STATE(0))) or
         ( MODE and CUR STATE(2) and not(CUR STATE(1)) and
CUR_STATE(0)) or
         ( MODE and CUR STATE(2) and CUR STATE(1) and
not(CUR STATE(0))) or
         ( MODE and CUR STATE(2) and CUR STATE(1) and
CUR STATE(0)) or
         ( MODE and not(CUR STATE(2)) and not(CUR STATE(1)) and
not(CUR STATE(0)))
```

5. За допомогою симулятора Isim провів моделювання роботи схеми при всіх можливих комбінаціях сигналів на входах.

Рис.2: промодельована робота схеми формування вихідних сигналів з усіма можливими наборами сигналів

6. Додав до проєкту Schematic файл LightController, виконав для нього команду Set as Top Module. Згенерував Schematic символи для файлів OutputLogic і TransitionLogic. Використовуючи новостворені символи та елементи з бібліотеки, реалізував у файлі Light_Controller.sch пам'ять стану автомата.

Рис.3: згенеровані Schematic символи

Рис.4: cxeмa LightController

7. За допомогою симулятора Isim провів моделювання роботи схеми при всіх можливих комбінаціях сигналів на входах.

При MODE 0:

MODE 1:

RESET:

8. Додав до проєкту Schematic файл TopLevel, виконав для нього команду Set as Top Module. Згенерував Schematic символ для файлу LightController. Використовуючи новостворений символ та елементи з бібліотеки, реалізував у файлі подільник вхідної частоти та логіку сигналу SPEED.

Рис.5: Schematic файл для кінцевої схеми.(TopLevel.sch)

Inp	Outputs	
D	С	Q
0	↑	0
1	1	1

Схематичне зображення D-тригера та його таблиця істинності

	Outputs		
S0	D1	D0	0
1	D1	X	D1
0	X	D0	D0

Схематичне зображення мультиплексора 2-1 та його таблиця істинності

9. За допомогою симулятора Isim провів моделювання роботи схеми з різними значеннями сигналів MODE, RESET та SPEED при подачі на вхід CLOCK тактового сигналу 12 MHz.

Рис.6: Діаграма проведеної симуляції для TopLevel

Автомат працює відповідно до завдання.

NET "CIk" LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;

LED

Clock 12 MHz

```
LOC = P46 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "OUT_BUS(0)"
                      LOC = P47 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "OUT_BUS(1)"
NET "OUT BUS(2)"
                      LOC = P48 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
                      LOC = P49 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "OUT_BUS(3)"
                      LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "OUT_BUS(4)"
NET "OUT BUS(5)"
                      LOC = P51 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "OUT BUS(6)"
                      LOC = P54 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
NET "OUT BUS(7)"
                       LOC = P55 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
```

DP Switches

```
NET "MODE" LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
```

Switches

```
NET "reset" LOC = P80 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

NET "speed" LOC = P79 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
```

11. Генерую ВІТ файл, який названий *TopLevel.bin* для цільової FPGA. Для цього послідовно запускаю процеси Synthesize — XST, Implement Design та Generate Programming File.

toplevel.bin	30.03.2024 21:16	Файл BIN	54 KG
toplevel.bit	30.03.2024 21:16	Файл BIT	54 KB

Рис.7: згенерований бінарний файл

12. Перевіряю роботу на стенді. Програмування стенду згенерованим *TopLevel.bin* файлом.

Висновок: під час виконання цієї лабораторної роботи я реалізував цифровий автомат світлових ефектів у середовищі Xilinx ISE і стендом Elbert V2 - Spartan 3A FPGA. Я реалізував схему автомату та провів симуляцію його роботи.