

THS4031, THS4032

ZHCSI86I - JULY 1999-REVISED MAY 2018

THS403x 100MHz 低噪声高速放大器

1 特性

- 超低 1.6nV/√Hz 电压噪声
- 高速:
 - 100MHz 带宽 [G = 2 (−1), −3dB]
 - 100V/μs 压摆率
- 极低失真
 - THD = -72dBc (f = 1MHz, R_L = 150 Ω)
 - THD = -90dBc (f = 1MHz, R_I = 1k Ω)
- 0.5mV(典型值)低输入失调电压
- 90mA 输出电流驱动(典型值)
- ±5V 至 ±15V 的典型工作电压范围
- 采用标准 SOIC 和 MSOP-PowerPAD™, 封装
- 提供评估模块

2 应用

- 适用于工业应用的低噪声宽带 放大器
- 压控振荡器
- 有源滤波器
- 视频放大器
- 电缆驱动器

适用于 16 位 SAR ADC 的高性能、低噪声驱动器

3 说明

THS4031 和 THS4032 是超低电压噪声、高速电压反馈放大器,适用于 需要 低电压噪声的应用,包括通信和成像应用。单路放大器 THS4031 和双路放大器 THS4032 可提供卓越的交流性能,带宽为 100MHz (G = 2),压摆率为 100V/ μ s,趋稳时间为 60ns (0.1%)。 THS4031 和 THS4032 具有稳定的单位增益以及 275MHz 的带宽。这些放大器具有 90mA 的高驱动能力,每个通道只消耗 8.5mA 的电源电流。THS4031 和 THS4032 在 f = 1MHz 时总谐波失真为 -90dBc,并且具有 1.6nV/ $\sqrt{\text{Hz}}$ 的超低噪声,适用于 需要 低失真和低噪声的应用,例如缓冲模数转换器。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
THS4031	SOIC (8)	4.90mm × 3.91mm
THS4032	MSOP-PowerPAD (8)	3.00mm × 3.00mm

(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。

电压噪声和电流噪声与频率间的关系

		目園	艮		
1	特性	1		8.4 Device Functional Modes	24
2	应用		9	Application and Implementation	25
3				9.1 Application Information	
4	修订历史记录	2		9.2 Typical Application	25
5	Pin Configuration and Functions		10	Power Supply Recommendations	28
6	Specifications		11	Layout	28
·	6.1 Absolute Maximum Ratings			11.1 Layout Guidelines	28
	6.2 ESD Ratings			11.2 Layout Example	28
	6.3 Recommended Operating Conditions			11.3 General PowerPAD™ Design Consideratio	ns <mark>29</mark>
	6.4 Thermal Information: THS4031		12	器件和文档支持	32
	6.5 Thermal Information: THS4032			12.1 器件支持	32
	6.6 Electrical Characteristics: $R_L = 150 \Omega$	6		12.2 文档支持	32
	6.7 Electrical Characteristics: $R_L = 1 \text{ k}\Omega$			12.3 相关链接	
	6.8 Typical Characteristics	10		12.4 接收文档更新通知	32
	6.9 Typical Characteristics	11		12.5 社区资源	32
7	Parameter Measurement Information	19		12.6 商标	
8	Detailed Description			12.7 静电放电警告	
	8.1 Overview			12.8 术语表	
	8.2 Functional Block Diagrams	20	13	机械、封装和可订购信息	33
	8.3 Feature Description	21			
• [nges from Revision H (March 2016) to Revision Deleted Available Options table (POA information Corrected mathematical symbols inside square re	າ)			
Chai					
	nges from Revision G (March 2010) to Revision	on H			Page
	nges from Revision G (March 2010) to Revision 曾加了 <i>ESD 额定值</i> 表、特性 说明 部分、器件功 支持 部分以及机械、封装和可订购信息 部分。	能模式、应用			
3	曾加了 ESD 额定值 表、特性 说明 部分、器件功	能模式、应用			
• # • E	曾加了 <i>ESD 额定值</i> 表、特性 说明 部分、器件功度 支持 部分以及机械、封装和可订购信息 部分。	能模式、应用	peratur	e row for FK package from <i>Absolute Maximun</i>	
• # • E	曾加了 <i>ESD</i> 额定值 表、特性 说明 部分、器件功 支持 部分以及机械、封装和可订购信息 部分。 删除了废弃的 JG 和 FK 封装 Deleted Lead temperature row for JG package ar Ratings	能模式、应原 nd case tem	peratur	e row for FK package from <i>Absolute Maximun</i>	档 1 1 1 1
 册 日 日	曾加了 <i>ESD</i> 额定值 表、特性 说明 部分、器件功度持 部分以及机械、封装和可订购信息 部分。 删除了废弃的 JG 和 FK 封装 Deleted Lead temperature row for JG package ar Ratings	能模式、应用	peratur	e row for FK package from <i>Absolute Maximun</i>	档 1 1 1 4
 册 C F 	曾加了 <i>ESD</i> 额定值 表、特性 说明 部分、器件功度持 部分以及机械、封装和可订购信息 部分。 删除了废弃的 JG 和 FK 封装 Deleted Lead temperature row for JG package ar Ratings Changed <i>Thermal Information</i> tables	能模式、应用 md case tem M Design Co	peratur	e row for FK package from <i>Absolute Maximun</i>	档 1 1 4 5
 册 C F 	曾加了 <i>ESD</i> 额定值 表、特性 说明 部分、器件功度持 部分以及机械、封装和可订购信息 部分。 删除了废弃的 JG 和 FK 封装 Deleted Lead temperature row for JG package ar Ratings	能模式、应用 md case tem M Design Co	peratur	e row for FK package from <i>Absolute Maximun</i>	档 1 1 4 5
 册 C F **	曾加了 <i>ESD</i> 额定值 表、特性 说明 部分、器件功度持 部分以及机械、封装和可订购信息 部分。 删除了废弃的 JG 和 FK 封装 Deleted Lead temperature row for JG package ar Ratings Changed <i>Thermal Information</i> tables	能模式、应用 md case tem M Design Co	peratur	e row for FK package from <i>Absolute Maximun</i>	档 1 1 4 5
• # • C • F • Y	曾加了 <i>ESD</i> 额定值 表、特性 说明 部分、器件功度持 部分以及机械、封装和可订购信息 部分。	能模式、应用 md case tem M Design Co	peratur	e row for FK package from <i>Absolute Maximun</i>	档 1 1 1 4 5 29 32
• # • C • F • *	曾加了 ESD 额定值 表、特性 说明 部分、器件功度持 部分以及机械、封装和可订购信息 部分。	能模式、应用 md case tem M Design Co evision G	peratur	e row for FK package from <i>Absolute Maximun</i>	档 1 1 1 4 5 29 32
• ## • C C Chair	曾加了 ESD 额定值 表、特性 说明 部分、器件功度持 部分以及机械、封装和可订购信息 部分。	能模式、应用 md case tem M Design Co evision G (full range o	perature onsidera	e row for FK package from <i>Absolute Maximum</i>	档 1 1 1 2 4 5 29 32 Page Page

5 Pin Configuration and Functions

THS4031 D or DGN Package 8-Pin SOIC or HVSSOP Top View

NC - No internal connection

Pin Functions: THS4031

PIN		I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
IN-	2	I	Inverting input
IN+	3	I	Noninverting input
NC	5	_	No connection
NULL	1, 8	1	Voltage offset adjust
OUT	6	0	Output of amplifier
V _{CC+}	7	_	Positive power supply
V _{CC} -	4	_	Negative power supply

THS4032 D or DGN Package 8-Pin SOIC or HVSSOP Top View

Cross-Section View Showing PowerPAD $^{\text{TM}}$ Option (DGN)

Pin Functions: THS4032

PIN		1/0	DECODINE
NAME	NO.	1/0	DESCRIPTION
1OUT	1	0	Channel 1 output
1IN-	2	1	Channel 1 inverting input
1IN+	3	1	Channel 1 noninverting input
2IN+	5	1	Channel 2 noninverting input
2IN-	6	I	Channel 2 inverting input
2OUT	7	0	Channel 2 output
V _{CC+}	8	_	Positive power supply
-V _{CC}	4	_	Negative power supply

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted). (1)

		MIN	MAX	UNIT
Supply voltage, V _{CC+} to V _{CC-} , V _{CC}			33	V
Input voltage, V _I			±V _{CC}	
Output current, I _O			150	mA
Differential input voltage, V _{IO}			±4	V
Continuous total power dissipation		See General PowerPAD™ Design Considerations		
	C-suffix	0	70	
Operating free-air temperature, T _A	I-suffix	-40	85	°C
	M-suffix	-55	125	
Maximum junction temperature (any co	ondition), T _J		150	°C
Maximum junction temperature, continuous operation, long term reliability (2)			130	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds			300	°C
Storage temperature, T _{stq}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	\/
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

	<u> </u>		MIN	NOM	MAX	UNIT
\/	Cupply voltage	Dual-supply	±4.5	±15	±16	
v _{CC+} and v _{CC-}	Supply voltage	Single-supply	9	30	32	V
	Operating free-air temperature	C-suffix	0	25	70	
T _A		I-suffix	-40	25	85	°C
		M-suffix	– 55	25	125	

⁽²⁾ The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may result in reduced reliability and/or lifetime of the device. Does not apply to the JG package or FK package.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information: THS4031

THERMAL METRIC ⁽¹⁾		TH		
		D (SOIC)	DGN (HVSSOP)	UNIT
		8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	128.9	61.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	80.9	53.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	69.2	43.2	°C/W
ΨЈТ	Junction-to-top characterization parameter	23.7	3.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	68.8	42.9	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	14.5	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Thermal Information: THS4032

		THS		
THERMAL METRIC ⁽¹⁾		D (SOIC)	DGN (HVSSOP)	UNIT
		8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	121.2	56.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	72.8	48.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	61.4	37.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	18.2	2.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	61	37.5	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	9.9	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.6 Electrical Characteristics: $R_L = 150 \Omega$

150 O for the THS403xC, THS403xI (unless otherwise noted)

	PARAMETER	TEST CONDI	MIN	TYP	MAX	UNIT	
DYNAI	MIC PERFORMANCE	1	"				
	Small-signal bandwidth (–3		100		MHz		
	dB)	$V_{CC} = \pm 5 \text{ V}$ Gain = -1 or 2			90		IVII IZ
BW	B 1 : W 6 0 4 IB (I 4	V _{CC} = ±15 V Gain = -1 or 2			50		
	Bandwidth for 0.1-dB flatness	V _{CC} = ±5 V Gain = -1 or 2			45		MHz
	Full navier handwidth (2)	$V_{O(pp)} = 20 \text{ V}$ $V_{CC} = \pm 15 \text{ V}$ $R_L = 1 \text{ k}\Omega$			2.3		NAL I-
	Full power bandwidth ⁽²⁾	$V_{O(pp)} = 5 V$ $V_{CC} = \pm 5 V$ $R_L = 1 k\Omega$			7.2		MHz
SR	Slew rate (3)	$V_{CC} = \pm 15 \text{ V}$ 20-V step, gain = -1			100		V/µs
SK	Siew fate V	$V_{CC} = \pm 5 \text{ V}$ 5-V step, gain = -1			80		ν/μ5
t _S	Cattling time to 0.40/	$V_{CC} = \pm 15 \text{ V}$ 5-V step, gain = -1		60			
	Settling time to 0.1%	$V_{CC} = \pm 5 \text{ V}$ 2.5-V step, gain = -1		45		ns	
	Cattling times to 0.040/	$V_{CC} = \pm 15 \text{ V}$ 5-V step, gain = -1			90		
	Settling time to 0.01% $V_{CC} = \pm 5 \text{ V}$ 2.5-V step, gain = -1				80		ns
NOISE	AND DISTORTION PERFORMA	NCE					
		THS4031:	$R_L = 150 \Omega$		-81		
TUD	Total harmonic distortion	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V, f} = 1$ MHz $V_{O(pp)} = 2 \text{ V, gain} = 2$	R _L = 1 kΩ		-96		dDo
THD	Total harmonic distortion	THS4032:	$R_L = 150 \Omega$		-72	dB	dBc
		$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V, f} = 1$ MHz $V_{O(pp)} = 2 \text{ V, gain} = 2$	$R_L = 1 \text{ k}\Omega$		-90		
V _n	Input voltage noise	V _{CC} = ±5 V or ±15 V, f > 10 kl	Hz		1.6		nV/√Hz
l _n	Input current noise	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V, f} > 10 \text{ kl}$	Hz		1.2		pA/√Hz
	D.W: 1	V _{CC} = ±15 V	0-1-0	0	.015%		
	Differential gain error	$V_{CC} = \pm 5 \text{ V}$	Gain = 2 40 IRE modulation		0.02%		
	Difference that have a second	V _{CC} = ±15 V	NTSC and PAL		0.025		0
	Differential phase error	$V_{CC} = \pm 5 \text{ V}$ $\pm 100 \text{ IRE ramp}$			0.03		
	Channel-to-channel crosstalk (THS4032 only)	V _{CC} = ±5 V or ±15 V, f = 1 MH	łΖ		-61		dBc
DC PE	RFORMANCE		"			'	
		V _{CC} = ±15 V	T _A = 25°C	93	98		
	Open loop gain	$R_{L} = 1 \text{ k}\Omega$ $V_{O} = \pm 10 \text{ V}$	T _A = Full range	92			dD
	Open loop gain	$V_{CC} = \pm 5 \text{ V}$	T _A = 25°C	90	95		dB
		$R_{L} = 1 \text{ k}\Omega$ $V_{O} = \pm 2.5 \text{ V}$	T _A = Full range	89			

⁽¹⁾ Full range = 0°C to 70°C for THS403xC and -40°C to +85°C for THS403xI suffix. (2) Full power bandwidth = slew rate / $[\sqrt{2} \pi V_{OC(Peak)}]$. (3) Slew rate is measured from an output level range of 25% to 75%.

Electrical Characteristics: $R_L = 150 \Omega$ (continued)

at T_A = 25°C, V_{CC} = ±15 V, and R_L = 150 Ω for the THS403xC, THS403xI (unless otherwise noted)

	PARAMETER	TEST CONI	DITIONS (1)	MIN	TYP	MAX	UNIT
.,	land effect veltage	\\ .5\\ -= .45\\	T _A = 25°C		30	250	A
Vos	Input offset voltage	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = Full range			400	nA
	Offset voltage drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$ $T_A = \text{Full range}$			2		μV/°C
	Input offset current drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$ $T_A = \text{Full range}$			0.2		nA/°C
INPUT (CHARACTERISTICS						
\/	Common-mode input voltage	V _{CC} = ±15 V		±13.5	±14		V
V_{ICR}	range	$V_{CC} = \pm 5 \text{ V}$		±3.8	±4		V
		V _{CC} = ±15 V	T _A = 25°C	85	95		
CMRR	Common made rejection ratio	$V_{ICR} = \pm 12.V$	T _A = Full range	80			dB
CIVIKK	Common-mode rejection ratio	$V_{CC} = \pm 5 \text{ V}$	$T_A = 25^{\circ}C$	90	100		uБ
		$V_{ICR} = \pm 2.5 \text{ V}$	T _A = Full range	85			
r _i	Input resistance				2		$M\Omega$
Ci	Input capacitance				1.5		pF
OUTPU	T CHARACTERISTICS	•		•		· ·	
	Output voltage swing	V _{CC} = ±15 V	D 410	±13	±13.6		
.,		$V_{CC} = \pm 5 \text{ V}$	$R_L = 1 \text{ k}\Omega$	±3.4	±3.8		
Vo		$V_{CC} = \pm 15 \text{ V}, R_L = 150 \Omega$		±12	±12.9		V
		V_{CC} = ±5 V, R_L = 250 Ω		±3	±3.5		
	Output current (4)	V _{CC} = ±15 V	D 00.0	60	90		Α.
I _O	Output current (1)	$V_{CC} = \pm 5 \text{ V}$	$R_L = 20 \Omega$	50	70		mA
I _{SC}	Short-circuit current (4)	V _{CC} = ±15 V			150		mA
Ro	Output resistance	Open loop			13		Ω
POWER	SUPPLY					*	
.,	Supply voltage operating	Dual supply		±4.5		±16.5	
V_{CC}	range	Single supply		9		33	V
		.,	T _A = 25°C		8.5	10	
	Supply current (each	$V_{CC} = \pm 15 \text{ V}$	T _A = Full range			11	
I _{CC}	amplifier)	V .5.V	T _A = 25°C		7.5	9	mA .
		$V_{CC} = \pm 5 \text{ V}$	T _A = Full range			10.5	
D000		.,	T _A = 25°C	85	95		dB
PSRR	Power-supply rejection ratio	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = Full range	80			

⁽⁴⁾ Observe power dissipation ratings to keep the junction temperature below the absolute maximum rating when the output is heavily loaded or shorted. See the *Absolute Maximum Ratings* in this data sheet for more information.

6.7 Electrical Characteristics: $R_L = 1 \text{ k}\Omega$

	PARAMETER	TEST CONDITIONS (1)			TYP	MAX	UNIT
DYNA	MIC PERFORMANCE						
	Unity-gain bandwidth		100 ⁽²⁾	120		MHz	
	Small-signal bandwidth	$V_{CC} = \pm 15 \text{ V}$ Gain = -1 or 2			100		MHz
BW	(-3 dB)	$V_{CC} = \pm 5 \text{ V}$ Gain = -1 or 2			90		IVIIIZ
	Dandwidth for 0.1 dD flatness	$V_{CC} = \pm 15 \text{ V}$ Gain = -1 or 2			50		NAL I-
	Bandwidth for 0.1-dB flatness	$V_{CC} = \pm 5 \text{ V}$ Gain = -1 or 2			45		MHz
	Full power bandwidth (3)	$V_{O(pp)} = 20 \text{ V}$ $V_{CC} = \pm 15 \text{ V}$ $R_L = 1 \text{ k}\Omega$			2.3		MHz
	Tuli power bandwidth	$\begin{aligned} V_{O(pp)} &= 5 \text{ V} \\ V_{CC} &= \pm 5 \text{ V} \\ R_L &= 1 \text{ k} \Omega \end{aligned}$			7.1		1711 12
SR	Slew rate	$V_{CC} = \pm 15 \text{ V R}_{L} = 1 \text{ k}\Omega$		80 ⁽²⁾	100		V/µs
	Settling time to 0.1% $V_{CC} = \pm 15 \text{ V}$ $5-\text{V step, gain} = -1$				60		ns
•	Octuming time to 0.176	$V_{CC} = \pm 5 \text{ V}$ 2.5-V step, gain = -1		45		113	
t _S	Settling time to 0.01%	V _{CC} = ±15 V 5-V step, gain = -1			90		ns
	Setting time to 0.01%	$V_{CC} = \pm 5 \text{ V}$ 2.5-V step, gain = -1			80	80	
NOISE	AND DISTORTION PERFORMA	NCE					
		$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	$R_L = 150 \Omega$		-81		
THD	Total harmonic distortion	f = 1 MHz, gain = 2 $V_{O(pp)} = 2 \text{ V}$ $T_A = 25^{\circ}\text{C}$	$R_L = 1 \text{ k}\Omega$		96		dBc
V _n	Input voltage noise	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$ $T_A = 25^{\circ}\text{C}$ $f > 10 \text{ kHz}, R_L = 150 \Omega$			1.6		nV/√Hz
In	Input current noise	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$ $T_A = 25^{\circ}\text{C}, \text{ f} > 10 \text{ kHz}, R_L = 15$	50 Ω		1.2		pA/√Hz
	Differential gain error		$V_{CC} = \pm 5 \text{ V}$		0.015%		
	Differential gain end	Gain = 2, 40 IRE modulation, $T_A = 25^{\circ}$ C, NTSC and PAL,	V _{CC} = ±15 V		0.02%		
	Differential phase error	± 100 IRE ramp, R _L = 150 Ω	$V_{CC} = \pm 5 \text{ V}$		0.025		0
			$V_{CC} = \pm 15 \text{ V}$		0.03		
DC PE	RFORMANCE						
		$V_{CC} = \pm 15 \text{ V}, R_L = 1 \text{ k}\Omega, V_O =$	T _A = 25°C	93	98		
	Open loop gain	±10 V	T _A = Full range	92			dB
		$V_{CC} = \pm 15 \text{ V}, R_L = 1 \text{ k}\Omega, V_O = \pm 2.5 \text{ V}$	$T_A = 25^{\circ}C$	92	95		
		-z v	T _A = Full range	91	0.5		
V_{OS}	Input offset voltage	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = 25°C		0.5	2	mV
			T _A = Full range		2	3	
	Input bias current	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	$T_A = 25^{\circ}C$		3	6	μA

 ⁽¹⁾ Full range = 0°C to 70°C for THS403xC and −40°C to +85°C for THS403xI suffix.
 (2) This parameter is not tested.
 (3) Full power bandwidth = slew rate / √2 π√2000 11

Electrical Characteristics: $R_L = 1 \text{ k}\Omega$ (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDI	TIONS (1)	MIN	TYP	MAX	UNIT	
	hand effect comment	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$ $T_A = 25^{\circ}C$ $T_A = \text{Full range}$			30	250	nA	
los	Input offset current					400		
	Offset voltage drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}, T_A = \text{ful}$		2		μV/°C		
	Input offset current drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}, T_A = \text{ful}$	I range		0.2		nA/°C	
INPUT	CHARACTERISTICS			<u> </u>		<u>.</u>		
.,	Common-mode input voltage	V _{CC} = ±15 V		±13.5	±14.3		V	
V_{ICR}	range	$V_{CC} = \pm 5 \text{ V}$		±3.8	±4.3		V	
		V .45 V V .40 V	T _A = 25°C	85	95			
CMDD		$V_{CC} = \pm 15 \text{ V}, V_{ICR} = \pm 12 \text{ V}$	T _A = Full range	80			dB	
CIVIRR	Common-mode rejection ratio	$V_{CC} = \pm 5 \text{ V}, V_{ICR} = \pm 2.5 \text{ V}$	T _A = 25°C	90	100			
		$V_{CC} = \pm 5 \text{ V}, V_{ICR} = \pm 2.5 \text{ V}$	T _A = Full range	85				
ri	Input resistance				2		$M\Omega$	
C_d	Input capacitance				1.5		pF	
OUTPU	IT CHARACTERISTICS			·		·		
	Output voltage swing	V_{CC} = ±15 V, R_L = 1 k Ω	±13	±13.6		V		
\/		$V_{CC} = \pm 5 \text{ V}, R_L = 1 \text{ k}\Omega$	±3.4	±3.8				
Vo		V_{CC} = ±15 V, R_L = 150 Ω		±12	±12.9		v	
		V_{CC} = ±5 V, R_L = 250 Ω		±3	±3.5			
	Output current (4)	V_{CC} = ±15 V, R_L = 20 Ω	60	90		mA		
lo	Output current V	V_{CC} = ±5 V, R_L = 20 Ω	50	70				
I _{SC}	Short-circuit current (4)	$V_{CC} = \pm 15 \text{ V}$			150		mA	
R_{O}	Output resistance	Open loop			13		Ω	
POWER	R SUPPLY							
\/	Supply voltage energting range	Dual supply		±4.5		±16.5	V	
V _{CC}	Supply voltage operating range	Single supply		9		33	V	
		\/ - 145\/	$T_A = 25^{\circ}C$		8.5	10		
	Supply current (each amplifier)	$V_{CC} = \pm 15 \text{ V}$	T _A = Full range			11	m۸	
I _{CC}	Supply current (each amplifier)	\/ - +5 \/	T _A = 25°C		7.5	9	mA	
		$V_{CC} = \pm 5 \text{ V}$	T _A = Full range			10		
Debb	Dower cumply rejection ratio	\\F.\\ or :45.\\	T _A = 25°C	85	95		٩D	
POKK	Power supply rejection ratio	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = Full range	80			dB	

⁽⁴⁾ Observe power dissipation ratings to keep the junction temperature below the absolute maximum rating when the output is heavily loaded or shorted. See the Absolute Maximum Ratings in this data sheet for more information.

6.8 Typical Characteristics

表 1. Table of Graphs

		FIGURE
Input Offset Voltage Distribution		图 1, 图 2
Input Offset Voltage	vs Free-Air Temperature	图 3
Input Bias Current	vs Free-Air Temperature	图 4
Output Voltage Swing	vs Supply Voltage	图 5
Maximum Output Voltage Swing	vs Free-Air Temperature	图 6
Maximum Output Current	vs Free-Air Temperature	图 7
Supply Current	vs Free-Air Temperature	图 8
Common-Mode Input Voltage	vs Supply Voltage	图 9
Closed-Loop Output Impedance	vs Frequency	图 10
Open-Loop Gain and Phase Response	vs Frequency	图 11
Power-Supply Rejection Ratio	vs Frequency	图 12
Common-Mode Rejection Ratio	vs Frequency	图 13
Crosstalk	vs Frequency	图 14
Harmonic Distortion	vs Frequency	图 15, 图 16
Harmonic Distortion	vs Peak-to-Peak Output Voltage	图 17, 图 18
Slew Rate	vs Free-Air Temperature	图 19
0.1% Settling Time	vs Output Voltage Step Size	图 20
Small-Signal Frequency Response with Varying Feedback Resistance	Gain = 1, $V_{CC} = \pm 15 \text{ V}$, $R_{L} = 1 \text{ k}\Omega$	图 21
Frequency Response with Varying Output Voltage Swing	Gain = 1, $V_{CC} = \pm 15 \text{ V}$, $R_L = 1 \text{ k}\Omega$	图 22
Small-Signal Frequency Response with Varying Feedback Resistance	Gain = 1, V_{CC} = ±15 V, R_L = 150 k Ω	图 23
Frequency Response with Varying Output Voltage Swing	Gain = 1, V_{CC} = ±15 V, R_L = 150 k Ω	图 24
Small-Signal Frequency Response with Varying Feedback Resistance	Gain = 1, V_{CC} = ±5 V, R_L = 1 k Ω	图 25
Frequency Response with Varying Output Voltage Swing	Gain = 1, V_{CC} = ±5 V, R_L = 1 k Ω	图 26
Small-Signal Frequency Response with Varying Feedback Resistance	Gain = 1, $V_{CC} = \pm 5 \text{ V}$, $R_L = 150 \text{ k}\Omega$	图 27
Frequency Response with Varying Output Voltage Swing	Gain = 1, $V_{CC} = \pm 5 \text{ V}$, $R_L = 150 \text{ k}\Omega$	图 28
Small-Signal Frequency Response with Varying Feedback Resistance	Gain = 2, V_{CC} = ±5 V, R_L = 150 k Ω	图 29
Small-Signal Frequency Response with Varying Feedback Resistance	Gain = 2, V_{CC} = ±5 V, R_L = 150 k Ω	图 30
Small-Signal Frequency Response with Varying Feedback Resistance	Gain = -1, V_{CC} = ±15 V, R_L = 150 k Ω	图 31
Frequency Response with Varying Output Voltage Swing	Gain = -1, V_{CC} = ±5 V, R_L = 150 k Ω	图 32
Small-Signal Frequency Response	Gain = 5, V _{CC} = ±15 V, ±5 V	图 33
Output Amplitude	vs Frequency, Gain = 2, V _S = ±15 V	图 34
Output Amplitude	vs Frequency, Gain = 2, V _S = ±5 V	图 35
Output Amplitude	vs Frequency, Gain = -1 , $V_S = \pm 15$ V	图 36
Output Amplitude	vs Frequency, Gain = −1, V _S = ±5 V	图 37
Differential Phase	vs Number of 150-Ω Loads	图 38, 图 39
Differential Gain	vs Number of 150-Ω Loads	图 40, 图 41
1-V Step Response	vs Time	图 42, 图 43
4-V Step Response	vs Time	图 44
20-V Step Response	vs Time	图 45

6.9 Typical Characteristics

图 29. Small-Signal Frequency Response With Varying

Feedback Resistance

图 30. Small-Signal Frequency Response With Varying

Feedback Resistance

7 Parameter Measurement Information

图 46. THS4032 Crosstalk Test Circuit

图 47. Step Response Test Circuit

图 48. Step Response Test Circuit

8 Detailed Description

8.1 Overview

The THS403x is a high-speed operational amplifier configured in a voltage feedback architecture. The family is built using a 30-V, dielectrically isolated, complementary bipolar process with NPN and PNP transistors that possess f_T s of several GHz. This results in an exceptionally high-performance amplifier that features wide bandwidth, high slew rate, fast settling time, and low distortion. 849 shows a simplified schematic.

图 49. THS4031 Simplified Schematic

8.2 Functional Block Diagrams

Functional Block Diagrams (接下页)

8.3 Feature Description

8.3.1 Noise Calculations and Noise Figure

Noise can cause errors on small signals. This is especially true when amplifying small signals. The noise model for the THS403x (shown in ₹ 50) includes all of the noise sources as follows:

- $e_n = Amplifier internal voltage noise (nV/<math>\sqrt{Hz}$)
- IN+ = Noninverting current noise (pA/√Hz)
- IN- = Inverting current noise (pA/√Hz)
- e_{Rx} = Thermal voltage noise associated with each resistor (e_{Rx} = 4 kTR_x)

图 50. Noise Model

The total equivalent input noise density (e_{ni}) is calculated by using $\Delta \pm 1$:

$$e_{ni} = \sqrt{\left(e_n\right)^2 + \left(IN + \times R_S\right)^2 + \left(IN - \times \left(R_F \parallel R_G\right)\right)^2 + 4kTR_s + 4kT\left(R_F \parallel R_G\right)}$$

where:

- $k = Boltzmann's constant = 1.380658 \times 10^{-23}$
- T = Temperature in degrees Kelvin (273+°C)
- $R_F \parallel R_G = Parallel resistance of R_F and R_G$ (1)

To calculate the equivalent output noise of the amplifier, multiply the equivalent input noise density (e_{ni}) by the overall amplifier gain (A_V) in $\Delta \vec{\Xi}$ 2.

Feature Description (接下页)

$$e_{no} = e_{ni} A_{V} = e_{ni} \left(1 + \frac{R_{F}}{R_{G}} \right)$$
 (Noninverting Case)

As the previous equations show, to keep noise at a minimum, use resistors with a small value. As the closed-loop gain increases (by reducing $R_{\rm G}$), the input noise is reduced considerably because of the parallel resistance term. As a result, the general conclusion is that the most dominant noise sources are the source resistor ($R_{\rm S}$) and the internal amplifier noise voltage ($e_{\rm n}$). Because noise is summed in a root-mean-squares method, noise sources smaller than 25% of the largest noise source can be effectively ignored. This advantage can simplify the formula and noise calculations.

For more information on noise analysis, see the *Noise Analysis for High-Speed Op Amps* application note.

8.3.2 Optimizing Frequency Response

Internal frequency compensation of the THS403x was selected to provide very wide bandwidth performance and still maintain a very low noise floor. To meet these performance requirements, the THS403x must have a minimum gain of 2 (-1). Because everything is referred to the noninverting pin of an operational amplifier, the noise gain in a G = -1 configuration is the same as a G = 2 configuration.

One of the keys to maintaining a smooth frequency response, and and as a result, a stable pulse response, is to pay particular attention to the inverting pin. Any stray capacitance at this node causes peaking in the frequency response (see \$\mathbb{B}\$ 51 and \$\mathbb{S}\$ 52). There are two techniques to minimize this effect. The first is to remove any ground planes under the inverting pin of the amplifier, including the trace that connects to this terminal. Additionally, the length of this trace must be minimized. The capacitance at this node causes a lag in the voltage feedback due to the charging and discharging of the stray capacitance. If this lag becomes too long, the amplifier is unable to correctly keep the noninverting pin voltage at the same potential as the voltage of the inverting pin. Peaking and possible oscillations can occur if this happens.

图 52. Output Amplitude vs Frequency

The second precaution to help maintain a smooth frequency response is to keep the feedback resistor (R_f) and the gain resistor (R_g) values low. These two resistors are in parallel when looking at the AC small-signal response. But, as 图 21 through 图 32 show, an insufficient value reduces the bandwidth of the amplifier. 表 2 shows some recommended feedback resistors to use with the THS403x.

表 2. R	Recommended	Feedback	Resistors
--------	-------------	----------	-----------

GAIN	R _f FOR V _{CC} = ±15 V AND ±5 V
1	50 Ω
2	300 Ω
-1	360 Ω
5	3.3 kΩ (low stray-c PCB only)

8.3.3 Driving a Capacitive Load

Driving capacitive loads with high-performance amplifiers is not a problem as long as certain precautions are taken. The first is to realize that the THS403x is internally compensated to maximize the bandwidth and slew-rate performance. When the amplifier is compensated in this manner, capacitive loading directly on the output decreases the phase margin of the device, which results in high-frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, TI recommends placing a resistor in series with the output of the amplifier, as \blacksquare 53 shows. A minimum value of 20 Ω should work well for most applications. For example, in 75- Ω transmission systems, setting the series resistor value to 75 Ω isolates any capacitance loading and provides the proper line impedance matching at the source end.

图 53. Driving a Capacitive Load

8.3.4 Offset Voltage

The output offset voltage (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. 854 shows a schematic and formula that can be used to calculate the output offset voltage:

图 54. Output Offset Voltage Model

8.3.5 General Configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting pin of the amplifier (see 图 55).

图 55. Single-Pole Low-Pass Filter

If even more attenuation is required, a multiple-pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier must have a bandwidth that is eight to 10 times the filter frequency bandwidth. Otherwise, phase shift of the amplifier can occur.

图 56. Two-Pole Low-Pass Sallen-Key Filter

8.4 Device Functional Modes

8.4.1 Offset Nulling

The THS403x has low input offset voltage for a high-speed amplifier. However, if additional correction is required, the designer can use an offset nulling function provided on the THS4031. By placing a potentiometer between pins 1 and 8 of the device and tying the wiper to the negative supply, the input offset can be adjusted. This is shown in \$\mathbb{Z}\$ 57.

图 57. Offset Nulling Schematic

Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

This application report is intended as a guide for using an analog multiplexer to multiplex several input signals to a high-performance driver amplifier which subsequently drives a single high-resolution, high-speed SAR analogto-digital converter (ADC). This example uses the ADS8411 and the TS5A3159 or TS5A3359 as the ADC and the multiplexer, respectively. This application uses the THS4031 as the operational amplifier.

9.2 Typical Application

As \bigsize 58 shows, the evaluation system consists of the ADC (ADS8411), a driving operational amplifier (THS4031), the multiplexer (TS5A3159), an AC source, a DC source, and two driving operational amplifiers (two THS4031s or a single THS4032) for the sources to make them a low-impedance source, a passive band-pass filter after the AC source to filter the source noise and distortion.

图 58. Evaluation Set Up

9.2.1 Design Requirements

Design a multiplexed digitizer system with the dynamic performance as 表 3 lists:

į	表 3. Design Specificat	ions
(kHz)	SNR (dB)	THD (dB)

DEVICE SPEED (MSPS)	INPUT FREQUENCY (kHz)	SNR (dB)	THD (dB)	CROSSTALK (dB)
2	20	> 84	< -90	< -110
2	100	> 84	< -90	< -96

9.2.2 Detailed Design Procedure

The ADS8411 is a 16-bit, 2-MSPS analog-to-digital converter (ADC) with a 4-V reference. The device includes a 16-bit capacitor-based SAR ADC with inherent sample and hold. It has a unipolar single-ended input. The device offers a 16-bit parallel interface.

The TS5A3159 is a single-pole, double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ON state resistance and an excellent ON resistance matching with the break-before-make feature to prevent signal distortion during the transfer of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes low power. The TS5A3359 is a single-pole, triple-throw (SP3T) version of the same switch.

9.2.2.1 Selection of Multiplexer

 \boxtimes 59 shows an equivalent circuit diagram of one of the channels of a multiplexer. C_S is the input capacitance of the channel; C_D is the output capacitance of the channel. R_{ON} is the resistance of the channel when the channel is ON. C_L and R_L are the load capacitance and resistance, respectively. V_{IN} is the input voltage of the source. R_S is the source resistance of the source. V_{OUT} is the output voltage of the multiplexer.

图 59. Multiplexer Equivalent Circuit

To improve settling time, the values of R_S , R_{ON} , C_S , C_D , and C_L must be smaller, and the value of R_L must be large.

For TS5A3159:

- $R_S = 1 \Omega$
- $C_S = C_D = 84 pF$

Considering

- $R_S = 50 \Omega$
- $C_L = 5 pF$
- R_L = 10 kΩ
- T_{RC} (time constant) = 8.65 ns

For a 16-bit system, at least 18-bit settling is required. For 18-bit settling, the time required is $(18 \times ln2) \times T_{RC} = 108$ ns, which is better than 2 MSPS (500 ns). If the settling time is more than the conversion time of the ADC, the output of the multiplexer does not settle to the required accuracy which results in harmonic distortion.

One more important parameter of a multiplexer is the ON-state resistance variation with voltage. This also affects distortion because R_{ON} and R_{L} act like a resistor divider circuit and any variation of R_{ON} with voltage affects the output voltage.

9.2.2.2 Signal Source

The input signal source must be a low-noise, low-distortion source with low source resistance. As discussed in the earlier section, RS must be low to improve settling time. If the source is not a low-noise and low-distortion source, a passive band-pass filter can be added to improve the signal quality as shown in ₹ 58.

9.2.2.3 Driving Amplifier

The driving operational amplifier (OPA3 in 🛭 58) in this application must have good slew rate, bandwidth, low noise, and distortion. The input of the operational amplifier can result in a maximum step of 4 V because of MUX switching. As a result, even if the signal bandwidth is low, the driving amplifier must settle from 0 V to 4 V (or 4 V to 0 V) within one ADC sampling frame. When selecting the operational amplifier, one must ensure that the amplifier settles from 0 V to 4 V (or from 4 V to 0 V) within the ADC sampling time (in this case 500 ns). The amplifier used for driving the ADC is the THS4031. The operational amplifiers (OPA1, OPA2 in 🖺 58) used before the MUX is for signal conditioning. These operational amplifiers must have low noise and distortion.

9.2.2.4 Driving Amplifier Bandwidth Restriction

The restriction of bandwidth by an RC filter (after OPA3 in \$\beload{8}\$ 58) may result in better SNR and THD, but the restriction makes the operational amplifier difficult to settle within the required accuracy. If the output does not settle properly, some residual charge of the previous channel remains in the next sampling and appears as a crosstalk. If the throughput of the ADC is reduced, allowing the output of the operational amplifier to settle properly, the problem becomes smaller. Therefore, using a larger capacitor slows down the settling of the operational amplifier output. Within the ADC sampling frame, the operational amplifier output does not settle to the final level. \$\begin{align*} 60 and \$\beta\$ 61 show SNR and crosstalk as a function of the filter capacitor.

图 62 shows input settling behavior with three different bandwidths. The value of the capacitor changes to change the bandwidth. As the bandwidth increases, the settling time improves (see 公式 3).

Bandwidth
$$\cong \frac{1}{2\pi R_1 C_1}$$
 (3)

9.2.3 Application Curves

10 Power Supply Recommendations

The THS4031 can operate off a single supply or with dual supplies if the input CM voltage range (CMIR) contains the required headroom to either supply rail. Operating from a single supply can have numerous advantages. With the negative supply at ground, the DC errors due to the –PSRR term are minimized. Supplies must be decoupled with low inductance, often ceramic, capacitors to ground less than 0.5 inches from the device pins. TI recommends using a ground plane. In most high-speed devices, removing the ground plane close to device sensitive pins (such as the inputs) is advisable. An optional supply decoupling capacitor across the two power supplies (for split-supply operation) improves second harmonic distortion performance.

11 Layout

11.1 Layout Guidelines

In order to achieve the levels of high-frequency performance of the THS403x, it is essential that proper printed-circuit board (PCB) high-frequency design techniques be followed. A general set of guidelines is shown below. In addition, a THS403x evaluation board is available to use as a guide for layout or for evaluating the performance of the device.

- Ground planes: TI highly recommends using a ground plane on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance.
- Proper power-supply decoupling: Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor must always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor must be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer must strive for distances of less than 0.1 inch between the device power pins and the ceramic capacitors.
- Sockets: TI does not recommend sockets for high-speed operational amplifiers. The additional lead inductance in the socket pins often leads to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation.
- Short trace runs andcompact part placements: Optimum high-frequency performance is achieved when stray
 series inductance is minimized. To realize this, the circuit layout must be made as compact as possible,
 thereby minimizing the length of all trace runs. Particular attention must be paid to the inverting input of the
 amplifier. The length must be kept as short as possible. This helps minimize stray capacitance at the input of
 the amplifier.
- Surface-mount passive components: TI recommends using surface-mount passive components for high-frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing stray inductance and capacitance. If leaded components are used, TI recommends that the lead lengths are kept as short as possible.

11.2 Layout Example

An evaluation board is available for the THS4031 and THS4032. This board is configured for very low parasitic capacitance to realize the full performance of the amplifier. 图 63 shows the a schematic of the evaluation board. The circuitry is designed so that the amplifier can be used in an inverting or noninverting configuration. For more information, see *THS4031 EVM User's Guide* or the *THS4032 EVM User's Guide*. To order the evaluation board, contact your local TI sales office or distributor.

Layout Example (接下页)

图 63. THS4031 Evaluation Board

11.3 General PowerPAD™ Design Considerations

The THS403x is available in a thermally-enhanced DGN package, which is a member of the PowerPAD™ family of packages. This package is constructed using a downset leadframe upon which the die is mounted [see 图 64 (a) and 图 64(b)]. This arrangement results in the leadframe exposed as a thermal pad on the underside of the package [see 图 64(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad.

The PowerPAD™ package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad can be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into a ground plane or other heat-dissipating device.

The PowerPAD™ package represents a breakthrough in combining the small area and ease of assembly of surface mount with the heretofore awkward mechanical methods of heat sinking.

General PowerPAD™ Design Considerations (接下页)

A. The thermal pad is electrically isolated from all pins in the package.

图 64. Views of Thermally-Enhanced DGN Package

Although there are many ways to properly heat sink this device, the following steps show the recommended approach.

图 65. PowerPAD™ PCB Etch and Via Pattern

- 1. Prepare the PCB with a top-side etch pattern as shown in <a>8 65. There must be etch for the leads as well as etch for the thermal pad.
- 2. Place five holes in the area of the thermal pad. These holes must be 13 mils (0.3302 mm) in diameter. They are kept small so that solder wicking through the holes is not a problem during reflow.
- 3. Additional vias can be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the THS403xDGN device. These additional vias may be larger than the 13-mil diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be soldered so that wicking is not a problem.
- 4. Connect all holes to the internal ground plane.
- 5. When connecting these holes to the ground plane, *do not* use the typical web or spoke via connection methodology. Web connections have a high thermal-resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the THS403xDGN package must connect to the internal ground plane with a complete connection around the entire circumference of the plated-through hole.
- 6. The top-side solder mask must leave the pins of the package and the thermal pad area with the five holes exposed. The bottom-side solder mask must cover the five holes of the thermal pad area, which prevents solder from pulling away from the thermal pad area during the reflow process.
- 7. Apply solder paste to the exposed thermal pad area and to all the device pins.
- 8. With these preparatory steps in place, the THS403xDGN device is placed in position and run through the solder reflow operation as any standard surface-mount component. This results in a part that is properly installed.

The actual thermal performance achieved with the THS403xDGN in the PowerPAD package depends on the application. In the example above, if the size of the internal ground plane is approximately 3 inches \times 3 inches (7.62 cm \times 7.62 cm), then the expected thermal coefficient, $R_{\theta JA}$, is approximately 58.4°C/W. For a given $R_{\theta JA}$, the maximum power dissipation is calculated by $\triangle \vec{x}$ 4:

$$\mathsf{P}_{\mathsf{D}} = \left(\frac{\mathsf{T}_{\mathsf{MAX}} - \mathsf{T}_{\mathsf{A}}}{\mathsf{R}_{\mathsf{\theta}\mathsf{JA}}}\right)$$

where

General PowerPAD™ Design Considerations (接下页)

- P_D = Maximum power dissipation of THS403x device (watts)
- T_{MAX} = Absolute maximum operating junction temperature (125°C)
- T_A = Free-ambient air temperature (°C)
- $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$
 - R_{θ JC} = Thermal coefficient from junction to case
 - R_{θCA} = Thermal coefficient from case to ambient air (°C/W)

(4)

More complete details of the PowerPAD installation process and thermal management techniques can be found in the Texas Instruments technical brief *PowerPADTM Thermally-Enhanced Package*. This document can be found at the TI web site (www.ti.com) by searching on the key word PowerPAD. The document can also be ordered through your local TI sales office (see *PowerPADTM Thermally-Enhanced Package* when ordering).

The next thing to be considered is package constraints. The two sources of heat within an amplifier are quiescent power and output power. The designer must never forget about the quiescent heat generated within the device, especially multiamplifier devices. Because these devices have linear output stages (Class A-B), most of the heat dissipation is at low output voltages with high output currents. When using $V_{CC}=\pm 5$ V, heat is generally not a problem, even with SOIC packages. When using $V_{CC}=\pm 15$ V, the SOIC package is severely limited in the amount of heat the package dissipates. The other key factor is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat dissipation. But, the device must always be soldered to a copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the device, $R_{\theta JA}$ decreases and the heat dissipation capability increases. For the dual amplifier package (THS4032), the sum of the RMS output currents and voltages must be used to choose the proper package.

12 器件和文档支持

12.1 器件支持

12.1.1 开发支持

有关开发支持,请参阅相关器件:

- THS4051 70MHz 高速放大器
- THS4052 70MHz 高速放大器
- THS4081 175MHz 低功耗高速放大器
- THS4082 175MHz 低功耗高速放大器
- ADS8411 16 位 2 MSPS ADC, 带有 P8/P16 并行输出、内部时钟和内部基准电压
- TS5A3159 1Ω SPDT 模拟开关
- TS5A3359 1Ω SP3T 模拟开关 5V/3.3V 单通道 3:1 多路复用器/多路解复用器
- THS4031 单路、低噪声前置放大器 EVM 模块
- THS4032 双路、低噪声前置放大器 EVM 模块

12.2 文档支持

12.2.1 相关文档

请参阅如下相关文档:

- 德州仪器 (TI), 《高速运算放大器噪声分析》
- 德州仪器 (TI), 《PowerPAD™ 热增强型封装》
- 德州仪器 (TI), 《THS4031 EVM 用户指南》
- 德州仪器 (TI), 《THS4032 EVM 用户指南》

12.3 相关链接

下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链接。

表 4. 相关链接

器件	产品文件夹	立即订购	技术文档	工具与软件	支持和社区
THS4031	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处
THS4032	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处

12.4 接收文档更新通知

如需接收文档更新通知,请导航至 Tl.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.5 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 71 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

12.6 商标

PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.7 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

12.8 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2018 德州仪器半导体技术(上海)有限公司

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9959501Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9959501Q2A THS4031MFKB	Samples
5962-9959501QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	9959501QPA THS4031M	Samples
THS4031CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4031C	Samples
THS4031CDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM		ACM	Samples
THS4031CDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM		ACM	Samples
THS4031CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4031C	Samples
THS4031ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	40311	Samples
THS4031IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	40311	Samples
THS4031IDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM		ACN	Samples
THS4031IDGNG4	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM		ACN	Samples
THS4031IDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM		ACN	Samples
THS4031IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	40311	Samples
THS4031MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9959501Q2A THS4031MFKB	Samples
THS4031MJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	THS4031MJG	Samples
THS4031MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	9959501QPA THS4031M	Samples
THS4032CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4032C	Samples

PACKAGE OPTION ADDENDUM

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
THS4032CDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	ABD	Samples
THS4032CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	4032C	Samples
THS4032ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	40321	Samples
THS4032IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	40321	Samples
THS4032IDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ABG	Samples
THS4032IDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ABG	Samples
THS4032IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	40321	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

24-Aug-2018

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Feb-2019

TAPE AND REEL INFORMATION

4.0	Discoursing decisioned to accompany data the company width
A0	
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
THS4031CDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
THS4031CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS4031IDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
THS4031IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS4032CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS4032IDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
THS4032IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 26-Feb-2019

*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
THS4031CDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
THS4031CDR	SOIC	D	8	2500	350.0	350.0	43.0
THS4031IDGNR	THS4031IDGNR MSOP-PowerPAD		8	2500	364.0	364.0	27.0
THS4031IDR	SOIC	D	8	2500	350.0	350.0	43.0
THS4032CDR	SOIC	D	8	2500	350.0	350.0	43.0
THS4032IDGNR MSOP-PowerPAD		DGN	8	2500	364.0	364.0	27.0
THS4032IDR	SOIC	D	8	2500	350.0	350.0	43.0

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

DGN (S-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-187 variation AA-T

PowerPAD is a trademark of Texas Instruments.

DGN (S-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE

THERMAL INFORMATION

This PowerPAD $^{\text{M}}$ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

4206323-2/1 12/11

NOTE: All linear dimensions are in millimeters

DGN (R-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司