1

Assignment

GATE-EE-50

EE23BTECH11034 - Prabhat Kukunuri

I. QUESTION

The discrete-time Fourier transform of a signal x[n] is $X(\Omega) = (1 + \cos \Omega) e^{-j\Omega}$. Consider that $x_p[n]$ is a periodic signal of period N = 5 such that

$$x_n[n] = x[n]$$
, for n= 0, 1, 2 (1)

$$= 0, \text{ for } n = 3, 4$$
 (2)

Note that $x_p[n] = \sum_{k=0}^{N-1} a_k e^{j\frac{2\pi}{N}kn}$. The magnitude of the Fourier series coefficient a_3 is ______ (Round off to 3 decimal places).

Solution:

Using Euler's form of representation of complex numbers,

$$e^{j\Omega} = \cos \Omega + j \sin \Omega \tag{3}$$

 $X(\Omega)$ can be expressed as,

$$X(\Omega) = \frac{1}{2} + e^{-j\Omega} + \frac{e^{-j2\Omega}}{2}$$
 (4)

As sampling frequency is 1Hz ($\omega = \Omega$) from DTFT(discrete time fourier transform) we get,

$$X(\Omega) = \sum_{n=0}^{n=2} x(n) e^{-j\Omega n}, \Omega \in (-\pi, \pi)$$
 (5)

$$\implies \sum_{n=0}^{n=2} x(n) e^{-j\Omega n} = \frac{1}{2} + e^{-j\Omega} + \frac{e^{-j2\Omega}}{2}$$
 (6)

On comparing coefficients we get,

$$\mathbf{x}(n) = \left\{ \frac{1}{2}, 1, \frac{1}{2} \right\}$$

$$x_p(n) = \left\{\frac{1}{2}, 1, \frac{1}{2}, 0, 0\right\}$$
 with period, N=5 (7)

$$X(3) = \frac{1}{5} \sum_{n=0}^{4} x(n) e^{-\frac{j6\pi}{5}n}$$
 (8)

$$|X(3)| = 0.038\tag{9}$$

Symbol	Value	Description	
$X(\Omega)$	$(1+\cos\Omega)e^{-j\Omega}$	Frequency function	
Ω	ωF_s	angular frequency	
ω	$\omega \in (-\pi,\pi)$	radian frequency	
F_s	1Hz	Sampling frequency	
$X(\omega)$	$\sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$	D.T.F.T	
<i>x</i> (<i>n</i>)	x(n)	Signal	
X(k)	$\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-\frac{j2\pi}{N}kn}$	Fourier coefficient	
N	5	Period of the signal	

TABLE 0 VARIABLE DESCRIPTION

X(k)	Real part	Imaginary part	X(k)
X(0)	0.400	0	0.400
X(1)	0.081	-0.249	0.262
X(2)	-0.031	-0.225	0.038
X(3)	-0.031	0.225	0.038
X(4)	0.081	0.249	0.262

TABLE 0 values of $X(\kappa)$

Fig. 0. Plot of x(n) vs n

Fig. 0. Plot of $x_p(n)$ vs n

Fig. 0. Plot of X(k) vs k