МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС»

ИНСТИТУТ Информационных технологий и автоматизированных систем управления КАФЕДРА Инженерной кибернетики

ЛАБОРАТОРНАЯ РАБОТА №8 по дисциплине «ЧИСЛЕННЫЕ МЕТОДЫ» Решение краевой задачи для ОДУ 2-ого порядка методом конечных разностей.

Вариант 10 Кущ А. А. Группа БПМ-18-1

Оглавление

Теоретическая часть	3
Практическая часть	4
Задание №1	5
Залание No2.	- 6

Теоретическая часть

Решение ОДУ 2го порядка методом конечных разностей:

$$y'' + 4y' + 4y = e^{-2x} \ln(x)$$
; $y(1) = 0$; $y(2) = -1$

И

$$v'' + v = 1$$
; $v(0) = 0$; $v(\pi) = 0$

Алгоритм и необходимые формулы:

Все формулы взяты из книги «Демидович Б. П., Марон И. А. — Численные методы анализа [1967]», стр. 224-227:

1) Приведем уравнение к "корректному" виду и распишем краевые условия:

$$y'' + p(x)y' + q(x)y = f(x), x \in [a, b]$$

$$\alpha_0 y(a) + \alpha_1 y'(a) = A$$

$$\beta_0 y(b) + \beta_1 y'(b) = B$$

$$y'' + 4y' + 4y = e^{-2x} \ln(x)$$
, $x \in [1, 2]$
 $p(x) = 4$, $q(x) = 4$, $f(x) = e^{-2x} \ln(x)$,

2) Преобразуем уравнение к следующему виду:

$$y_{i+1}+m_iy_i+n_iy_{i-1}=\widehat{f_i}h^2$$
 , где:
$$m_i=-rac{2-q_ih^2}{1+rac{p_i}{2}h}\;,\qquad n_i=rac{1-rac{p_i}{2}h}{1+rac{p_i}{2}h}\;,\qquad \widehat{f_i}=rac{f_i}{1+rac{p_i}{2}h}$$

3) Распишем производные в уравнении (1) и сравним с (2), получим:

$$y_i = c_i(d_i - y_{i+1}) \text{ , где:}$$

$$c_i = \frac{1}{m_i - n_i c_{i-1}} \text{ , } \qquad d_i = \widehat{f_i} h^2 - n_i c_{i-1} d_{i-1}$$

Практическая часть

В случае
$$y(1)=0$$
 ; $y(2)=-1$ имеем:
$$\alpha_0=\beta_0=1, \qquad \alpha_1=\beta_1=0, \qquad c_0=0, \qquad y_0=A, \qquad y_n=B$$

Для применения метода прогонки необходимо составить таблицу размера N+1 x 3 вида:

Схема метода прогонки

i	0	1	2		n-2	n — 1	n	
ci	c ₀ (11)	c_1	c ₂		c _{n-2}	c_{n-1}		
d_i	d ₀ (11)	d_1	d ₂		d_{n-2}	d_{n-1}		
x_i	$x_0 = a$	<i>x</i> ₁	x ₂		x_{n-2}	x _{n-1}	$x_n = b$	
y_i	y ₀	y_1	y ₂		y_{n-2}	y _{n-1}	y_n (13)	

Таблица 1. Демидович стр. 226.

Первым делом необходимо заполнить поля для коэффициентов d_i и c_i . Далее, обратным ходом заполняем поля для y_i .

Для проверки точности алгоритма применил его для примера из книги Демидовича стр. 227:

	Method	larget
0.0	0.000000	0.000000
0.1	-0.014755	-0.014766
0.2	-0.028658	-0.028680
0.3	-0.040848	-0.040878
0.4	-0.050446	-0.050483
0.5	-0.056548	-0.056591
0.6	-0.058216	-0.058260
0.7	-0.054466	-0.054507
0.8	-0.044260	-0.044295
0.9	-0.026498	-0.026518
1.0	0.000000	0.000000

Сравнив две таблички, можем сделать вывод, что алгоритм работает верно.

Решение краевой задачи (16) — (17) методом прогонки									
i	0	1	2	3	4	5			
c_i	0	-0,498	-0,662	-0,878	0,890	-0,900			
d_i		0,001	0,002	0,004	0,008	0,012			
yı	0	-0,025	-0,049	-0,072	0,078	-0,081			
y _I	0	-0,015	-0,029	-0,041	-0,050	-0,057			

			Продол	лжение та	блицы 62
i	6	7	8	9	10
cį	-0,908	-0,915	-0,921	0,926	
d _i	0,016	0,022	0,028	0,035	
y _i	-0,078	-0,070	0,055	-0,032	0
\tilde{y}_i	-0,058	-0,054	-0,044	-0,026	0

Задание №1.

Имеем для N=10 точек:

	(1	2	3	4	5	6	7	8	9	10
•	0.0	-0.612245	-0.816213	-0.918112	-0.979184	-1.019842	-1.048835	-1.070538	-1.087380	-1.100821	-1.111787
C	0.0	0.000088	0.000174	0.000257	0.000328	0.000382	0.000420	0.000441	0.000449	0.000445	0.000432
)	0.0	-0.617320	-1.008201	-1.235044	-1.344942	-1.373205	-1.346106	-1.283010	-1.198031	-1.101310	-1.000000

Затем, применим алгоритм для 2N точек и сравним общие узлы:

Как видим, ошибка достаточно мала и входит в допустимый 1%.

Задание №2.

Аналогично рассчитаем y_i для второго ОДУ:

	0	1	2	3	4	5	6	7	8	9	10
С	0.0	-0.525955	-0.727088	-0.851632	-0.952679	-1.054157	-1.180433	-1.387211	-1.945172	22.795592	-0.040491
d	0.0	0.098696	0.150606	0.208200	0.276006	0.361641	0.479922	0.665212	1.021485	2.085660	-47.445166
у	-0.0	47.543862	90.494029	124.611489	146.528984	154.083344	146.528984	124.611489	90.494029	47.543862	0.000000

А теперь сравним значения в общих узлах для N и 2N точек:

	First	Second
0.000000	-0.000000	-0.000000
0.314159	47.543862	191.059866
0.628319	90.494029	363.477286
0.942478	124.611489	500.340309
1.256637	146.528984	588.224422
1.570796	154.083344	618.509313
1.884956	146.528984	588.224422
2.199115	124.611489	500.340309
2.513274	90.494029	363.477286
2.827433	47.543862	191.059866
3.141593	0.000000	0.000000

Как видим, значения расходятся.

Аналитическое решение – периодическая функция вида:

$$y(x) = c_2 Sin(x) + c_1 Cos(x) + 1$$

Воспользуемся определением сходимости к функции:

Определение. Говорят, что последовательность сеточных функций $v_h \in U_h$ сходится к функции $v \in U$ непрерывных аргументов, если выполняется условие $\lim_{h \to 0} \bigl| |v_h - [v_h]| \bigr|_{U_h} = 0.$

Выполним несколько итераций с увеличением шага и проанализируем таблицу:

	N=10	N=20	N=40	N=80	N=160
0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000
0.314159	47.543862	191.059866	765.117563	3061.346790	12246.263204
0.628319	90.494029	363.477286	1455.399812	5823.087325	23293.836533
0.942478	124.611489	500.340309	2003.242635	8014.848737	32061.272078
1.256637	146.528984	588.224422	2354.991997	9422.058799	37690.324815
1.570796	154.083344	618.509313	2476.198653	9906.952425	39629.966285
1.884956	146.528984	588.224422	2354.991997	9422.058799	37690.324815
2.199115	124.611489	500.340309	2003.242635	8014.848737	32061.272078
2.513274	90.494029	363.477286	1455.399812	5823.087325	23293.836533
2.827433	47.543862	191.059866	765.117563	3061.346790	12246.263204
3.141593	0.000000	0.000000	0.000000	0.000000	0.000000

Легко заметить, что $\lim_{h\to 0} \bigl| |v_h - [v_h]| \bigr|_{U_h} = \infty$, следовательно, последовательность сеточных функций не сходится и задача не имеет решения.

