9/25/23, 11:19 AM OneNote

09/25

Sunday, September 24, 2023 14:25

Aran, please define these terms.

Consider function f from domain D to codomain C. We say f is **injective**, or **one-to-one**, if for all x, y in D, f(x) = f(y) implies x = y.

We say f is **surjective**, or **onto**, if $\forall y \in C$, there exists some $x \in D$ such that f(x) = y. In other words, f is sujrective if range f = C.

A function that is both injective and surjective is **bijective**, or a **one-to-one correspondence**.

- 1. For each of the following function, determine if it is injective, surjective, and bijective with the above definitions.
 - a. $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 3x + 5.
 - $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = |2x 4|.
 - $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) = x^2 + 2y$.
 - d. $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x,y) = (2x y, x + y).
- 2. Let A,B be two finite sets such that $|A|=n\geq 1, \ |B|=m\geq 1$. Consider function $f:A\to B$. Prove or disprove:
 - a. If f is injective, $n \leq m$.
 - b. If f is surjective, $n \geq m$.
 - c. If n = m, then f is injective iff f is surjective.
- 3. Consider three functions $f:A\to B,\ g:B\to C,\ h:C\to D.$ Show that $(h\circ g)\circ f=h\circ (g\circ f)$. In other words, function compositions are associative.
- 4. Consider three functions $f:A\to B,\ g:B\to C.$ Prove the following.
 - a. If g, f are injective then so is $g \circ f$
 - b. If $g \circ f$ are injective then so is f
 - c. If g, f are surjective then so is $g \circ f$
 - d. If $g \circ f$ are surjective then so is g