# Predictive Modeling for Bank -Telemarketing By: Mohammad Zarei

### CONTENTS

- 1. Data Overview
- 2. Exploratory Data Analysis (EDA)
- 3. Data Preprocessing
- **4.** Model Development
- 5. Model Deployment
- **6.** Model Monitoring
- **7.** Potential Improvement Suggestions

# Data Overview: From Portugal bank marketing campaigns (41176, 21)

#### Bank Client Info (7)

Age, job, marital, education, loan, housing, default





#### Current Campaign (4)

Contact, month, day of week, **duration** 

#### Socioeconomic (4)

EVR, CPI, CCI, Euribor, # of Employees





#### Other (4)

Campaign, pdays, previous number of contacts, previous outcome



# Target (1): client subscription (yes:11.3%, no:88.7%)

## EDA results (1)



Success rate for the calls is more for clients upto 20 and above 60 years of age.

—Age



In relative terms singles was responded better

---Marital



The probability of success reduces far greatly as the number of calls increase

—# of calls



Educated clients are more likely to subscribe.

—Education



32% of students and 25% of retirees say 'yes'!

—Job



Best communication channel is cellular

—Contact

## EDA results (2)



Home ownership and having personal loan does not greatly affect performance

—Housing, Loan



It seems it's more likely to get 'yes' during Mar, Dec, Sep, Oct.

—Month, Dayofweek



65% of the people who agreed for previous campaign agreed for this campaign as well.

—Previous Outcome

# EDA results (3)



|                | age    | duration | campaign | pdays  | previous | emp.var.rate | cons.price.idx | cons.conf.idx | euribor3m | nr.employed | у      |
|----------------|--------|----------|----------|--------|----------|--------------|----------------|---------------|-----------|-------------|--------|
| age            | 1.000  | -0.001   | 0.005    | -0.034 | 0.024    | -0.000       | 0.001          | 0.129         | 0.011     | -0.018      | 0.030  |
| duration       | -0.001 | 1.000    | -0.072   | -0.048 | 0.021    | -0.028       | 0.005          | -0.008        | -0.033    | -0.045      | 0.405  |
| campaign       | 0.005  | -0.072   | 1.000    | 0.053  | -0.079   | 0.151        | 0.128          | -0.014        | 0.135     | 0.144       | -0.066 |
| pdays          | -0.034 | -0.048   | 0.053    | 1.000  | -0.588   | 0.271        | 0.079          | -0.091        | 0.297     | 0.373       | -0.325 |
| previous       | 0.024  | 0.021    | -0.079   | -0.588 | 1.000    | -0.421       | -0.203         | -0.051        | -0.455    | -0.501      | 0.230  |
| emp.var.rate   | -0.000 | -0.028   | 0.151    | 0.271  | -0.421   | 1.000        | 0.775          | 0.196         | 0.972     | 0.907       | -0.298 |
| cons.price.idx | 0.001  | 0.005    | 0.128    | 0.079  | -0.203   | 0.775        | 1.000          | 0.059         | 0.688     | 0.522       | -0.136 |
| cons.conf.idx  | 0.129  | -0.008   | -0.014   | -0.091 | -0.051   | 0.196        | 0.059          | 1.000         | 0.278     | 0.101       | 0.055  |
| euribor3m      | 0.011  | -0.033   | 0.135    | 0.297  | -0.455   | 0.972        | 0.688          | 0.278         | 1.000     | 0.945       | -0.308 |
| nr.employed    | -0.018 | -0.045   | 0.144    | 0.373  | -0.501   | 0.907        | 0.522          | 0.101         | 0.945     | 1.000       | -0.355 |
| у              | 0.030  | 0.405    | -0.066   | -0.325 | 0.230    | -0.298       | -0.136         | 0.055         | -0.308    | -0.355      | 1.000  |

## Data Preprocessing

#### Categorical Features

- Binary variables encoded to (1,0).
   Unknowns are counted as 0.
- *pdays* = 999 is replaced by zero.
- previous # of calls mapped to 0, 1 (>0)
- job, marital, education is encoded using target encoding
- month, dayofweek are encoded using sine/cosine to keep cyclical information.

#### Numerical Features

- nr.employed, age, CPI are log-transformed.
- *CCI* signed is changed to be positive.
- duration dropped to avoid data leakage.

#### Scaling and Balancing

- X\_train: without any scaling or balance
- X\_train\_scaled: scaled using StandardScaler
- X\_train\_balanced: balanced with SMOTE

## Model Development (1)







X\_train

X\_train\_scaled

X\_train\_balanced

## Model Development (2)



## Model Development (3)







## Model Deployment



## Locally

Using Docker/Flask and a local machine as server

## Cloud (AWS)

Register model image, deploy in an endpoint



## **Model Monitoring**

Data/Feature Drift: perform distribution tests by measuring distribution changes using
distance metrics - mean/std/min/max/correlation comparison, KL/KS for continuous,
Chi2/entropy for category variables, PCA - Retrain new model using new data or give
higher weight to new data and compare new models using A/B testing

Model/Concept Drift: learned relationship/patterns have changed over time Instantaneous (data issue, new domain), Gradual (preference change), Recurring
(seasonal), Temporary (adversarial attack, unintended use) - monitor prediction metrics,
label distribution

## Potential Improvement Suggestions

- Binning numerical features like age, EVR, etc which different ranges seems to have different impact
- Perform feature selection (drop collinear features such EVR, nr\_employees)
- Explore larger hyper parameter space (random grid search)
- Data augmentation techniques (GANs, VAE)
- Use complex models such as NN, kernel-SVM



- Other Data sources
  - Location/geospatial data (states, cities, postal code)
  - Account related data (type, number of holders, credit score, balance, product\_num)
  - Other data (gender, estimated salary)

