

TEST REPORT

Test report no.: 1-3585/11-01-02-A

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: ict@cetecom.com

Accredited test laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01 Area of Testing: Radio/Satellite Communications

Applicant

Transrex AG

Bösch 41

6331 Hünenberg ZG / SWITZERLAND

Phone: +41 (0)41 784 24 24
Contact: Stephan Bühler
e-mail: sb@transrex.ch
Phone: +41 41-7842494

Manufacturer

Transrex AG

Bösch 41

6331 Hünenberg ZG / SWITZERLAND

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I

Part 15 - Radio frequency devices

RSS - 210 Issue 8 Spectrum Management and Telecommunications - Radio Standards Specification

Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands):

Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test item

Kind of test item: Alarmwatch

Model name: T-997

FCC ID: ZX4-T997

IC: 9872A-T997 Frequency: 914 MHz

Power supply: 3.00 V by Lithium battery CR2032

Temperature range: -20 °C to +55 °C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:
Marco Bertolino Testing Manager	Stefan Bös Senior Testing Manager

2012-01-13 Page 1 of 37

Table of contents

i abie c	f contents	∠
Genera	l information	3
2.1 I	Notes	3
Test st	andard/s	3
T1		
rest er	vironment	4
Test ite	em	4
Toot lo		4
restra	boratories sub-contracted	4
Summa	ary of measurement results	5
DE ma		_
	·	
•		
		_
9.6 I	Receiver spurious emission (radiated)	20
Te	st equipment and ancillaries used for tests	25
Oh	convetions	26
Ob	servations	20
nex A	Photographs of the test setup	27
nov P	External photographs of the ELIT	20
ICX D		
nex C	Internal photographs of the EUT	32
nev D	Document history	36
IGN D		
nex E	Further information	36
nex F	Accreditation Certificate	37
	Z.1 M Z.2 A Test sta Test en Test ite Test lal Summa RF mea 8.1 E 8.1 8.1 8.2 A 8.3 F Measur 9.1 T 9.2 S 9.3 E 9.4 F 9.5 F 9.6 F Cob nex A nex B nex C nex D nex E	2.2 Application details Test standard/s Test environment. Test item Test laboratories sub-contracted Summary of measurement results RF measurements 8.1 Description of test setup 8.1.1 Radiated measurements 8.1.2 Conducted measurements 8.1.3 RSP100 test report cover sheet / performance test data Measurement results 9.1 Timing of the transmitter 9.2 Switch off time 9.3 Emission bandwidth 9.4 Field strength of the fundamental 9.5 Field strength of the harmonics and spurious 9.6 Receiver spurious emission (radiated) Test equipment and ancillaries used for tests Observations Description details Description of test setup nex A Photographs of the test setup nex B External photographs of the EUT nex D Document history nex E Further information

2 General information

2.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2011-06-06
Date of receipt of test item: 2011-05-25
Start of test: 2011-05-25
End of test: 2011-11-04

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Version	Test standard description
47 CFR Part 15	2009-10	Title 47 of the Code of Federal Regulations; Chapter I Part 15 - Radio frequency devices
RSS - 210 Issue 8	2010-12	Spectrum Management and Telecommunications - Radio Standards Specification Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment

2012-01-13 Page 3 of 37

4 Test environment

Temperature:

T_{nom} +23 °C during room temperature tests

T_{max} +55 °C during high temperature test

T_{min} -20 °C during low temperature test

Relative humidity content: 54 %

Air pressure: not relevant for this kind of testing

 V_{nom} 3.00 V by Lithium battery CR2032

Power supply: V_{max} 3.00 V

 V_{min} 2.55 V

5 Test item

Kind of test item :	Alarmwatch
Type identification :	T-997
S/N serial number :	-
HW hardware status :	unknown
SW software status :	unknown
Frequency band [MHz] :	914 MHz
Type of radio transmission :	Single carrier
Use of frequency spectrum :	Single Carrier
Type of modulation :	FSK
Number of channels :	1
Antenna :	Integrated PCB antenna
Power supply :	3.00 V by Lithium battery CR2032
Temperature range :	-20°C to +55 °C

6 Test laboratories sub-contracted

None

2012-01-13 Page 4 of 37

7	Summary of measurement results		
		No deviations from the technical specifications were ascertained	
		There were deviations from the technical specifications ascertained	

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 8, Annex 1	Passed	2012-01-13	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	Pass	Fail	NA	NP	Results (max.)
§ 15.35 (c)/ RSS-GEN Issue 2 Section 4.5	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal					complies
§ 15.231 (a) (1)/ RSS-210 Issue 8 Section A1.1.1	Switch off time	Nominal	Nominal	\boxtimes				complies
§ 15.231 (3) (c)/ RSS-210 Issue 8 Section A1.1.3	Emission Bandwidth	Nominal	Nominal	\boxtimes				complies
§ 15.231 (b)/ RSS-210 Issue 8 Section A1.1.2 / 2.7 Table 4	Fieldstrength of Fundamental	Nominal	Nominal	\boxtimes				complies
§ 15.209/ RSS-210 Issue 8 Section 2.7 Table 4	Fieldstrength of harmonics and spurious	Nominal	Nominal					complies
§ 15.209/ RSS-GEN Issue Section 6	Receiver spurious emissions (radiated)	Nominal	Nominal	\boxtimes				complies

Note: NA = Not Applicable; NP = Not Performed

2012-01-13 Page 5 of 37

8 RF measurements

8.1 Description of test setup

8.1.1 Radiated measurements

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 25 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63.2-1996 clause 15 and ANSI C63.4-2009 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-2009 clause 4.2.

Antennas are confirmed with ANSI C63.2-1996 item 15.

Semi anechoic chamber

Picture 1: Diagram radiated measurements

9 kHz - 30 MHz: active loop antenna

30 MHz – 1 GHz: tri-log antenna

> 1 GHz: horn antenna

The EUT is powered by an external power supply with nominal voltage. The signalling is performed from outside the chamber with a signalling unit (CMU200 or other) by air link using signalling antenna.

2012-01-13 Page 6 of 37

8.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is first 10dB attenuated before it is power divided (~6dB loss per branch). One of the signal paths is connected to the communication base Station (CMU200 or other), the other one is connected to the spectrum analyzer. The specific losses for both signal paths are first checked within a calibration. The measurement readings on the signalling unit/spectrum analyzer are corrected by the specific test set-up loss. The attenuator, power divider, signalling unit and the spectrum analyzer are impedance matched on 50 Ohm.

Picture 2: Diagram conducted measurements

8.2 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

2012-01-13 Page 7 of 37

8.3 RSP100 test report cover sheet / performance test data

Test Report Number	:	1-3585/11-01-02-A
Equipment Model Number	:	T-997
Certification Number :		9872A-T997
Manufacturer (complete Address) :		Transrex AG Bösch 41 6331 Hünenberg ZG / SWITZERLAND
Tested to radio standards specification no.	:	RSS 210, Issue 8, Annex 1
Open Area Test Site IC No.	:	IC 3462C-1
Frequency Range or fixed frequency	:	914 MHz
Field Strength [dBµV/m] (at which distance)	:	78.7 dBμV/m @ 3m
Occupied bandwidth (99%-BW) [kHz]	:	63.4 kHz
Type of modulation	:	FSK
Emission Designator (TRC-43)	:	63K4F1D
Antenna Information	:	Integrated PCB-antenna
TX Spurious (worst case) [μV/m @ 3m]	:	431.5 μV/m @ 5484.7 MHz
RX Spurious (worst case) [µV/m @ 3m]	:	178 μV/m @ 12 GHz (noise floor)

ATTESTATION: DECLARATION OF COMPLIANCE:

I attest that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2012-01-13 Stefan Bös Signature

Date Name Signature

2012-01-13 Page 8 of 37

9 Measurement results

9.1 Timing of the transmitter

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	2 s	
Resolution bandwidth:	300 kHz	
Video bandwidth:	1 MHz	
Span:	Zero	
Trace-Mode:	Single sweep	

Limits:

FCC	IC
CFR Part SUBCLAUSE § 15.35 (c)	RSS-GEN Issue 2 Section 4.5
· · · · · ·	

Timing of the transmitter

(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

2012-01-13 Page 9 of 37

Result:

Plot 1: Transmit burst

Date: 26.MAY.2011 11:22:26

Transmit time (Tx on) = 260 ms (Plot 1)

The peak-to-average correction factor is calculated with 20Log [Tx on/100ms].

Hereby the peak-to-average correction factor is 0.0 dB.

Result: The result of the measurement is passed.

2012-01-13 Page 10 of 37

9.2 Switch off time

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	10 s	
Resolution bandwidth:	300 kHz	
Video bandwidth:	1 MHz	
Span:	Zero Span	
Trace-Mode:	Max Hold / Single Sweep	

Limits:

FCC	IC		
CFR Part SUBCLAUSE § 15.231 (a) (1)	RSS-GEN Issue 2 Section 4.5		
Switch off time			

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Results:

Plot 1:

Date: 4.NOV.2011 10:10:42

The EUT only transmits one pulse chain by pressing the button. The maximum transmit time for one pulse train is 720 ms. Therefore the maximum transmit time is not more than 720 ms after releasing the switch.

Result: The result of the measurement is passed.

2012-01-13 Page 11 of 37

9.3 Emission bandwidth

Measurement:

Measurement of the 20 dB bandwidth of the modulated signal

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	1 kHz		
Video bandwidth:	3 kHz		
Span:	100 kHz		
Trace-Mode:	Max Hold		

Limits:

FCC	IC			
CFR Part SUBCLAUSE § 15.231 (c)	RSS-210 Issue 8 Section A1.1.3			
Emission bandwidth				
The OBW shall not be wider than 0.5% of the centre frequency, here maximum 4570 kHz.				

Result:

Plot 1:

The emission bandwidth at 20 dB is 63.4 kHz

Result: The result of the measurement is passed.

2012-01-13 Page 12 of 37

9.4 Field strength of the fundamental

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	1 MHz		
Resolution bandwidth:	1 MHz		
Span:	3 MHz		
Trace-Mode:	Max Hold		

Limits:

FCC	IC
CFR Part SUBCLAUSE § 15.231 (b)	RSS-210 Issue 8 Section A1.1.2 / 2.7 Table 4

Field strength of the fundamental.

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field strength of Fundamental (µV/m)	Measurement distance (m)
40.66 – 40.70	2,250	3
70-130	1,250	3
130-174	1,250 to 3,750	3
174-260	3,750	3
260-470	3,750 to 12,500	3
Above 470	12,500	3

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) 6136.3636;
- for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) 7083.3333.

Result:

TEST CONDITIONS		MAXIMUM POWER (dBμV/m at 3 m distance)				
Frequ	uency	914	MHz	914 MHz		
Mode		Peak		Average		
		@ 10 m	@ 3m	@ 10 m	@ 3m	
T _{nom} V _{nom}		68.2 78.7 68.2* 78.7*				
Measurement uncertainty		±3dB				

^{*}Value recalculated from Peak-to-Average correction factor described in 9.1 and from 10 m to 3 m measurement distance with 20dB per decade (here +10.5 dB from 10 m to 3 m)

Result: The result of the measurement is passed.

2012-01-13 Page 13 of 37

9.5 Field strength of the harmonics and spurious

Measurement:

Measurement parameter			
Detector: Average / Quasi Peak			
Sweep time:	Auto		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz		
Video bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz		
Span:	See plots		
Trace-Mode:	Max Hold		

Limits:

FCC	IC		
CFR Part SUBCLAUSE § 15.231 (b)	RSS-210 Issue 8 Section A1.1.2 / 2.7 Table 4		

Field strength of the fundamental.

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field strength of spurious (μV/m)	Measurement distance (m)
40.66 – 40.70	225	3
70-130	125	3
130-174	125 to 375	3
174-260	375	3
260-470	375 to 1,250	3
Above 470	1,250	3

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC			IC		
SUBCLAUSE § 15.209					
Field	Field strength of the harmonics and spurious.				
Frequency (MHz)	Frequency (MHz) Field streng		Measurement distance (m)		
0.009 - 0.490	2400/F(kHz)		300		
0.490 – 1.705	24000/F(kHz)		30		
1.705 – 30	0 30		30		
30 – 88	100		3		
88 – 216	150		3		
216 – 960	200		3		
above 960	50	0	3		

2012-01-13 Page 14 of 37

Results:

	EMISSION LIMITATIONS						
f [MHz] Detector Limit max. allowed Amplitude of emission [dBμV/m] Results							
			See tables below plots				

Result: The result of the measurement is passed.

2012-01-13 Page 15 of 37

Plots of the measurements

Plot 1: 9 kHz - 30 MHz;

Part 15.209 Magnetics, Measurement distance 3 m

2012-01-13 Page 16 of 37

Plot 2: 30 MHz – 1000 MHz, Measurement distance 10 m

Common Information

EUT: Alarm watch 914

Serial Number: ---

Test Description: FCC Part 15.231

Operating Conditions: cont TX
Operator Name: Kraus

Comment: bat powered (with -6dB power reduction)

Data Reduction 1 [1]

Frequency (MHz)	MaxPeak-MaxHold (dBµV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Comment
682.162500	27.6	100.0	٧	-2.0	22.0	
914.085000	68.2	100.0	Н	137.0	25.2	

2012-01-13 Page 17 of 37

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.42

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (1005)

Antenna Tower: Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

EMC 32 Version 8.10.00

2012-01-13 Page 18 of 37

Plot 2: 1 GHz – 10 GHz, Measurement distance 3 m

Common Information

EUT: Alarm watch 914

Serial Number: ---

Test Description: FCC Part 15.231

Operating Conditions: cont TX
Operator Name: Kraus
Comment: bat powered

Peaks

Frequency (MHz)	MaxPeak-MaxHold (dBμV/m)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Comment
1828.000000	41.6	155.0	Н	154.0	-4.2	
3655.900000	48.5	155.0	V	32.0	1.6	
5484.700000	52.7	155.0	V	118.0	4.2	
2742.400000	45.4	155.0	V	208.0	-1.1	

2012-01-13 Page 19 of 37

9.6 Receiver spurious emission (radiated)

Measurement:

Measurement parameter						
Detector:	Average / Quasi Peak					
Sweep time:	Auto					
Video bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz					
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz					
Span:	See plots					
Trace-Mode:	Max Hold					

Limits:

FCC		IC						
SUBCLAUSE § 15	.109	RSS-GEN Issue Section 6						
ı	Receiver Spurious Emission (radiated)							
Frequency (MHz)	Field streng	gth (μV/m)	Measurement distance (m)					
30 - 88	100)	3					
88 - 216	150)	3					
216 - 960	200)	3					
above 960	500)	3					

2012-01-13 Page 20 of 37

Plot 1: 9 kHz – 30 MHz; Part 15.209 Magnetics, Measurement distance 3m

2012-01-13 Page 21 of 37

Plot 2: 30 MHz - 1000 MHz

Common Information

EUT: Alarm watch 914

Serial Number: ---

Test Description: FCC Part 15

Operating Conditions: idle
Operator Name: KRA

Comment: bat powered

Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)

Level Unit: dBµV/m

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30 MHz - 2 GHzQuasiPeak120 kHz15 sReceiver

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
40.743300	10.5	15000.000	120.000	291.0	٧	135.0	13.4	19.5	30.0	
64.132650	6.9	15000.000	120.000	169.0	V	-3.0	10.6	23.1	30.0	
296.219100	10.8	15000.000	120.000	148.0	Н	80.0	14.4	25.2	36.0	
401.869350	13.4	15000.000	120.000	200.0	V	210.0	16.9	22.6	36.0	
682.587600	19.2	15000.000	120.000	108.0	V	191.0	22.0	16.8	36.0	
901.732050	22.4	15000.000	120.000	400.0	Н	1.0	25.2	13.6	36.0	

2012-01-13 Page 22 of 37

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.42

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (1005)

Antenna Tower: Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

EMC 32 Version 8.10.00

Plot 3: 1 GHz – 12.75 GHz, Antenna vertical

2012-01-13 Page 23 of 37

Plot 4: 1 GHz – 12.75 GHz, Antenna horizontal

2012-01-13 Page 24 of 37

10 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Labor/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Highpass Filter	WHKX2.9/18G- 12SS	Wainwright	1	300003492	ev		
2	n. a.	Highpass Filter	WHK1.1/15G- 10SS	Wainwright	3	300003255	ev		
3	n. a.	Highpass Filter	WHKX7.0/18G- 8SS	Wainwright	18	300003789	ne		
4	n. a.	PSA Spectrum Analyzer 3 Hz - 26.5 GHz	E4440A	Agilent Technologies	MY48250080	300003812	k	08.09.2010	08.09.2012
5	n. a.	MXG Microwave Analog Signal Generator	N5183A	Agilent Technologies	MY47420220	300003813	k	13.09.2010	13.09.2012
6	n. a.	RF Filter Section 9kHz - 1GHz	N9039A	Agilent Technologies	MY48260003	300003825	vIKI!	08.09.2010	08.09.2012
7	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vlKI!	17.12.2008	17.12.2011
8	n. a.	Spectrum- Analyzer	FSU26	R&S	200809	300003874	k	10.01.2011	10.01.2013
9	n. a.	Isolating Transformer	RT5A	Grundig	8041	300001626	g		
10	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2818A03450	300001040	Ve	08.01.2009	08.01.2012
11	n. a.	Coaxial Attenuator 30dB/500W	8325	Bird	1530	300001595 ev			
12	n. a.	Double- Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	300001032 viKI!		05.09.2011
13	n. a.	Active Loop Antenna	6502	EMCO	2210	300001015	ne		
14	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996		23.03.2009	
15	Spec.A. 2_2e	System rack for EMI measurement solution	85900	HP I.V.	*	300000222	ne		
16	9	Artificial Mains 9 kHz to 30 MHz	ESH3-Z5	R&S	828576/020	300001210	Ve	06.01.2010	06.01.2012
17	n. a.	Relais Matrix	3488A	HP Meßtechnik	2719A15013	300001156	ne		
18	n. a.	Relais Matrix	PSU	R&S	890167/024	300001168	ne		
19	n. a.	Isolating Transformer	RT5A	Grundig	9242	300001263	ne		
20	n. a.	Three-Way Power Splitter, 50 Ohm	11850C	HP Meßtechnik		300000997	ne		
21	n. a.	Switch / Control Unit	3488A	HP	2605e08770	300001443	ne		
22	n. a.	Amplifier	js42-00502650- 28-5a	Parzich GMBH	928979	300003143	ne		
23	45	Switch-Unit	3488A	HP Meßtechnik	2719A14505	300000368	g		

2012-01-13 Page 25 of 37

24	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2920A04466	300000580	ne		
25	n. a.	software	SPS_PHE 1.4f	Spitzberger & Spieß	B5981; 5D1081;B5979	300000210	ne		
26	n. a.	EMI Test Receiver	ESCI 1166.5950.03	R&S	100083	300003312	k	05.01.2011	05.01.2013
27	n. a.	Analyzer- Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	k	31.07.2009	31.07.2011
28	n. a.	Amplifier	JS42-00502650- 28-5A	MITEQ	1084532	300003379	ev		
29	n. a.	Antenna Tower	Model 2175	ETS- LINDGREN	64762	300003745	izw		
30	n. a.	Positioning Controller	Model 2090	ETS- LINDGREN	64672	300003746	izw		
31	n. a.	Turntable Interface-Box	Model 105637	ETS- LINDGREN	44583	300003747	izw		
32	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	01.04.2010	01.04.2012
33	n. a.	Band Reject filter	WRCG1855/1910- 1835/1925- 40/8SS	Wainwright	7	300003350	ev		
34	n. a.	Band Reject filter	WRCG2400/2483- 2375/2505- 50/10SS	Wainwright	11	300003351	ev		
35	n. a.	TILE-Software Emission	Quantum Change, Modell TILE- ICS/FULL	EMCO	none	300003451	ne		

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

11 Observations

No observations exceeding those reported with the single test cases have been made.

2012-01-13 Page 26 of 37

Annex A Photographs of the test setup

Photo documentation:

Photo 1:

2012-01-13 Page 27 of 37

Annex B External photographs of the EUT

Photo documentation:

Photo 1:

Photo 2:

2012-01-13 Page 28 of 37

Photo 3:

Photo 4:

2012-01-13 Page 29 of 37

Photo 5:

Photo 6:

2012-01-13 Page 30 of 37

Photo 7:

2012-01-13 Page 31 of 37

Annex C Internal photographs of the EUT

Photo documentation:

Photo 1:

Photo 2:

2012-01-13 Page 32 of 37

Photo 3:

Photo 4:

2012-01-13 Page 33 of 37

Photo 5:

Photo 6:

2012-01-13 Page 34 of 37

Photo 7:

Photo 8:

2012-01-13 Page 35 of 37

Annex D Document history

Version	Applied changes	Date of release
1.0	Initial release	2011-11-07
	Correction of Model Name and IC-certification number.	2042.04.42
-A	This test report replaces the report 1-3585/11-01-02 dated from 2011-11-07.	2012-01-13

Annex E Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

2012-01-13 Page 36 of 37

Annex F Accreditation Certificate

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/fileadmin/de/CETECOM_D_Saarbruecken/accreditations_Jan_2010/DAKKS_Akkredi_Urk_EN17025-En_incl_Annex.pdf

2012-01-13 Page 37 of 37