Luz Myriam Echeverry N

* Luz Myriam Echeverry N

****** Clase No 5

** Febrero 8/2022

- Recordemos que una EDO general tiene la forma y' = f(t, y), es lineal si f es lineal en y, y no lineal f es no lineal en y.
- # Ejemplos: $y' = ty e^t$, $y' = ty^2$.
- * Vamos a ver que la diferencia entre ecuaciones lineales y no lineales abarcan varios aspectos:
 - En la teoría de existencia y unicidad y en el estudio del dominio de la solución.
 - Usualmente la solución de una ecuación diferencial lineal se puede calcular de la manera más general, lo cual es raro en el caso no lineal.
 - Las ecuaciones lineales frecuentemente tienen soluciones explícitas mientras que las no lineales típicamente no tienen soluciones explícitas, y a veces tampoco tienen soluciones implícitas.
- En los dos tipos de ecuaciones, la construcción de soluciones numéricas y gráficas es un tema importante.

Teorema 2.4.1

* Consideremos el problema de valor inicial:

$$\frac{dy}{dt} + p(t)y = g(t), \ y(0) = y_0$$

Si las funciones p y g son continuas en (α, β) , intervalo abierto que contienen el punto $t = t_0$, entonces existe una única solución $y = \phi(t)$ que cumple el PVI para todo t en (α, β) .

* Idea de la Prueba: Usando el método de factor integrante:

$$y = \frac{\int_{t_0}^{t} \mu(t)g(t)dt + y_0}{\mu(t)}, \text{ where } \mu(t) = e^{\int_{t_0}^{t} p(s)ds}$$

Teorema 2.4.2

* Consideramos el problema de valor inicial:

$$\frac{dy}{dt} = f(t, y), \ y(0) = y_0$$

- Supongamos que f y $\partial f/\partial y$ son continuas en un rectángulo abierto $(t, y) \in (\alpha, \beta)$ x (γ, δ) que contiene a (t_0, y_0) . Entonces en $(t_0 - h, t_0 + h) \subseteq (\alpha, \beta)$ existe una única solución $y = \phi(t)$ del PVI(Problema de valor inicial).
- * Comentario sobre la prueba: Como no existe una fórmula general para el PVI no lineal, la demostración es difícil y se deja para otro curso.
- Las hipótesis del teorema 2.4.2 son suficientes pero no necesarias para garantizar la existencia de la solución, y la continuidad de f garantiza existencia más no la unicidad de la solución ϕ .

Ejemplo 1:PVI Lineal

Recordemos el PVI Cap2.1 $ty'-2y=5t^2$, $y(1)=2 \implies y=5t^2 \ln|t|+2t^2$

- ** La solución del PVI es válida para t > 0, es decir para el intervalo en el que p(t) = -2/t es continua.
- Si la condición inicial fuera y(-1) = 2, la solución tienen la misma expresión pero esta definida para, t < 0.
- * En todo caso, el Teorema 2.4.1 garantiza la unicidad en el intervalo correspondiente.

Ejemplo 2: PVI No lineal (1 of 2)

$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}, \ y(0) = -1$$

 \divideontimes Las funciones f y $\partial f/\partial y$ definidas por

$$f(x,y) = \frac{3x^2 + 4x + 2}{2(y-1)}, \frac{\partial f}{\partial y}(x,y) = -\frac{3x^2 + 4x + 2}{2(y-1)^2},$$

- * son continuas excepto en la recta y = 1.
- # Un rectángulo que contenga a (0, -1) con f y $\partial f/\partial y$ continuas, no toca a y = 1.
- ** Ancho del rectángulo? La solución definida para t > -2, es $y = 1 \sqrt{x^3 + 2x^2 + 2x + 4}$

Ejemplo 2: Cambio en las condiciones Iniciales(2 of 2)

* Nuestro problema de valor inicial es

$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}, \quad y(0) = -1$$

con

$$f(x,y) = \frac{3x^2 + 4x + 2}{2(y-1)}, \frac{\partial f}{\partial y}(x,y) = -\frac{3x^2 + 4x + 2}{2(y-1)^2},$$

continuas excepto sobre y = 1.

* Si cambiamos las condiciones iniciales y(0) = 1, el teorema 2.4.2 no se cumple. Resolviendo el PVI, obtenemos

$$y = 1 \pm \sqrt{x^3 + 2x^2 + 2x}, \ x > 0$$

* La solución existe pero no es única.

Ejemplo 3:PVI no lineal

* Nuestro problema de valor inicial es

$$y' = y^{1/3}, y(0) = 0$$
 $(t \ge 0)$

* Las funciones $f y \partial f/\partial y$ dadas por

$$f(t, y) = y^{1/3}, \frac{\partial f}{\partial y}(t, y) = \frac{1}{3}y^{-2/3}$$

* f continua en todas partes , pero $\partial f/\partial y$ no existe en y = 0, y el Teorema 2.4.2 no se cumple.las soluciones existen pero no son únicas. Separando variables, obtenemos

$$y^{-1/3}dy = dt \implies \frac{3}{2}y^{2/3} = t + c \implies y = \pm \left(\frac{2}{3}t\right)^{3/2}, \ t \ge 0$$

* Si la condición inicial no esta en el eje *t*, el teorema2.4.2garantiza la existencia y unicidad de la solución.

Ejemplo 4: PVI no lineal

* Nuestro problema de valor inicial es

$$y' = y^2, y(0) = 1$$

* Las funciones f y $\partial f/\partial y$ dadas por

$$f(t, y) = y^2, \frac{\partial f}{\partial y}(t, y) = 2y$$

***** Separando variables

$$y^{-2}dy = dt \implies -y^{-1} = t + c \implies y = \frac{-1}{t + c} \implies y = \frac{1}{1 - t}$$

* La solución y(t) esta definida en $(-\infty, 1)$. La singularidad t = 1 no se deduce del PVI.

Intervalo de Definición, Caso Lineal

* Por el teorema 2.4.1, la solución de un problema de valor inicial lineal

$$y' + p(t)y = g(t), y(0) = y_0$$

existe en cualquier intervalo que contenga a $t = t_0$ y en el que p y g sean continuas.

- * Asíntotas verticales y otras discontinuidades de *p* o *g* generan discontinuidades en la solución.
- ** Pero pueden existir soluciones continuas en puntos de discontinuidad de *p* o *g*. En el Cap.2.1: Ejemplo 3 del texto pasa esto.

Intervalo de definición: Ecuaciones no Lineales

- *El intervalo de existencia de la solución es difícil de calcular.
- ** La solución $y = \phi(t)$ existe si $(t, \phi(t))$ esta en el rectángulo del Teorema 2.4.2. Lo usual es que no se conoce $\phi(t)$ entonces es imposible dar el rectángulo.
- La relación del intervalo con f en y' = f(t, y), no es simple.
- * Las singularidades de la solución dependen de la función y del punto inicial. .

Soluciones Generales

- *En el caso lineal se tienen TODAS las soluciones.
- *En el caso no lineal es posible que la solución no exista.
- ** Considere el Ejemplo 4: La función y = 0 es solución, pero ningún c nos la da:

$$\frac{dy}{dt} = y^2 \implies y = \frac{-1}{t+c}$$

Soluciones explícitas: Ecuaciones Lineales

** Por el Teorema 2.4.1, una solución al PVI

$$y' + p(t)y = g(t), y(0) = y_0$$

existe en el intervalo en el que esté $t = t_0$ y p y g son continuas, la solución es única.

* Es explícita,

$$y = \frac{\int_{t_0}^{t} \mu(t)g(t)dt + y_0}{\mu(t)}, \text{ where } \mu(t) = e^{\int_{t_0}^{t} p(s)ds},$$

puede evaluarse en cualquier valor t.

Aproximación de la solución

- * Para las ecuaciones lineales se conoce la fórmula.
- * Si no podemos integrar, se aproxima numéricamente.

$$y = \frac{\int_{t_0}^t \mu(t)g(t)dt + C}{\mu(t)}, \quad \text{where } \mu(t) = e^{\int_{t_0}^t p(s)ds}$$

$$\int_{t_0}^t \mu(t)g(t)dt \approx \sum_{k=1}^n \mu(t_k)g(t_k)\Delta t_k$$

Soluciones Implícitas: Ecuaciones no lineales

- * La solución explicita en el caso no lineal usualmente no existe.
- En los ejemplos se vieron varias soluciones implícitas.
- ** Es decir se necesitan soluciones numéricas de y para los valores deseados de t. Se representan usualmente de manera gráfica.
- Recordemos el ejemplo

$$y' = \frac{y \cos x}{1 + 3v^3}$$
, $y(0) = 1 \implies \ln y + y^3 = \sin x + 1$

- * El bosquejo del campo direccional es de gran ayuda.
- * Da una idea del comportamiento de la solución, identifica regiones en el plano *ty*-en donde es interesante la solución..
- * El 2.7 y cap. 8 se ven métodos numéricos.

Ejercicios

- ** Sin resolver el problema determine el intervalo más grande en donde la solución existe
- $#1-(4-t^2)y' + 2ty = 3t^2y(1) = -3$
- $2 (\ln t)y' + y = \cot t, y(2) = 3$
- ★ Establezca el rectángulo más grande en donde se cumplen las hipótesis del teorema 2.4.2

$$3-y' = \frac{\ln t}{1-t^2+y^2}$$

- ** W.E. Boyce, R.C. DiPrima, "Elemtary Differential Equations and Boundary Value Problems". Willey, 8e ed.
- * https://www.geogebra.org/m/Pd4Hn4BR