

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I Examen XIV

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Variable Compleja I.

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Javier Merí de la Maza.

Descripción Convocatoria Ordinaria.

Fecha 10 de Junio de 2024.

Duración 3.5 horas.

Ejercicio 1 (2.5 puntos). Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C}^* \setminus \mathbb{R}^- \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_1^2 \frac{\log(nz + t^2)}{n^2 + t^2} dt.$$

- 1. Probar que $f_n \in \mathcal{H}(\mathbb{C}^* \setminus \mathbb{R}^-)$.
- 2. Probar que la serie de funciones $\sum_{n\geqslant 1} f_n$ converge en $\mathbb{C}^*\setminus\mathbb{R}^-$ y que su suma es una función holomorfa en $\mathbb{C}^*\setminus\mathbb{R}^-$.

Ejercicio 2 (2.5 puntos). Probar que, para $a, t \in \mathbb{R}^+$, se tiene

$$\int_{-\infty}^{+\infty} \frac{\cos(tx)}{(x^2 + a^2)^2} dx = \frac{\pi}{2a^3} (1 + at)e^{-at}.$$

Ejercicio 3 (2.5 puntos). Probar que una función $f \in \mathcal{H}(\mathbb{C}^*)$ que diverge en cero y en infinito tiene al menos un cero. Probar además que el número de ceros de f es finito y mayor o igual que 2 (contando multiplicidad).

Ejercicio 4 (2.5 puntos). Probar el Lema de Schwarz.

Lema (de Schwarz). Sea $f \in \mathcal{H}(D(0,1))$ verificando f(0) = 0 y $|f(z)| \leq 1$ para cada $z \in D(0,1)$. Probar que $|f'(0)| \leq 1$ y $|f(z)| \leq |z|$ para cada $z \in D(0,1)$. Además, si ocurre |f'(0)| = 1 o $|f(z_0)| = |z_0|$ para algún $z_0 \in D(0,1) \setminus \{0\}$, entonces existe $\alpha \in \mathbb{C}$ de modo que $f(z) = \alpha z$ para cada $z \in D(0,1)$.

Observación. Para cada 0 < r < 1, estimar convenientemente el valor máx $\{|g(z)| : z \in \overline{D}(0,r)\}$ donde la función $g: D(0,1) \to \mathbb{C}$ viene dada por g(0) = f'(0) y g(z) = f(z)/z para cada $z \in D(0,1) \setminus \{0\}$.

Ejercicio 1 (2.5 puntos). Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{C}^* \setminus \mathbb{R}^- \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_1^2 \frac{\log(nz + t^2)}{n^2 + t^2} dt.$$

1. Probar que $f_n \in \mathcal{H}(\mathbb{C}^* \setminus \mathbb{R}^-)$.

Definimos la siguiente función:

$$\Phi: [1,2] \times \mathbb{C}^* \setminus \mathbb{R}^- \longrightarrow \mathbb{C}$$

$$(t,z) \longmapsto \frac{\log(nz + t^2)}{n^2 + t^2}$$

Veamos en primer lugar que Φ está bien definida. El denominador no se anula puesto que n, t > 0, por lo que veamos que $nz + t^2 \neq 0$. Tenemos que:

$$nz + t^2 = 0 \iff z = -\frac{t^2}{n} \in \mathbb{R}^-$$

Por tanto, $nz+t^2\neq 0$ para todo $t\in [1,2]$ y $z\in \mathbb{C}^*\setminus \mathbb{R}^-$. Así que Φ está bien definida. Por tanto, Φ es continua en su dominio. Fijado ahora $t\in [1,2]$, veamos que la función $z\mapsto \Phi(t,z)$ es holomorfa en $\mathbb{C}^*\setminus \mathbb{R}^-$. Para ello, es necesario ver que $nz+t^2\notin \mathbb{R}^-$. Supongamos que $nz+t^2\in \mathbb{R}^-$, por lo que $\exists r\in \mathbb{R}^+$ tal que:

$$nz + t^2 = -r \iff z = -\frac{t^2 + r}{n} \in \mathbb{R}^-.$$

Esto es una contradicción, ya que $z \in \mathbb{C}^* \setminus \mathbb{R}^-$. Por tanto, $nz + t^2 \notin \mathbb{R}^-$. Por tanto, hemos visto que, fijado $t \in [1, 2]$, la función $\Phi(t, \cdot)$ es holomorfa en $\mathbb{C}^* \setminus \mathbb{R}^-$. Por tanto, por el Teorema de Holomorfía de Integrales dependientes de un parámetro, tenemos que:

$$f_n \in \mathcal{H}(\mathbb{C}^* \setminus \mathbb{R}^-) \qquad \forall n \in \mathbb{N}.$$

2. Probar que la serie de funciones $\sum_{n\geqslant 1} f_n$ converge en $\mathbb{C}^* \setminus \mathbb{R}^-$ y que su suma es una función holomorfa en $\mathbb{C}^* \setminus \mathbb{R}^-$.

Puesto que $f_n \in \mathcal{H}(\mathbb{C}^* \setminus \mathbb{R}^-)$ para todo $n \in \mathbb{N}$, buscamos aplicar el Teorema de Convergencia de Weierstrass. Para ello, sea $K \subset \mathbb{C}^* \setminus \mathbb{R}^-$ compacto. Tenemos que, para cada $n \in \mathbb{N}$ y $z \in K$:

$$|f_n(z)| = \left| \int_1^2 \frac{\log(nz + t^2)}{n^2 + t^2} dt \right| \le \sup \left\{ \left| \frac{\log(nz + t^2)}{n^2 + t^2} \right| : t \in [1, 2] \right\}$$

Veamos ahora qué acotaciones realizar.

$$|n^{2} + t^{2}| \ge n^{2} + 1^{2} = n^{2} + 1$$

$$|\log(nz + t^{2})| = |\ln|nz + t^{2}| + i\arg(nz + t^{2})| \le \ln|nz + t^{2}| + |\arg(nz + t^{2})| \le |\sin(nz + t^{2})| + |\arg(nz + t^{2})| + |\arg(nz + t^{2})| \le |\sin(nz + t^{2})| + |\arg(nz +$$

donde en la última desigualdad hemos usado que el logaritmo real es creciente y el argumento principal está acotado por π . Como K es compacto, como el módulo es una función continua existe $M \in \mathbb{R}$ tal que:

$$M = \max\{|z| : z \in K\} > 0$$

Por tanto, tenemos que:

$$|f_n(z)| \le \frac{\ln(nM+4) + \pi}{n^2 + 1}$$

Veamos ahora que la serie $\sum_{n\geqslant 1}\frac{\ln(nM+4)+\pi}{n^2+1}$ converge. Tenemos que, para n suficientemente grande, se cumple que:

$$\frac{\ln(nM+4) + \pi}{n^2 + 1} \leqslant \frac{\ln(n(M+1)) + \pi}{n^2} = \frac{\ln(n) + \ln(M+1) + \pi}{n^2} =$$

$$= \frac{\ln(n)}{n^2} + \frac{\ln(M+1) + \pi}{n^2} \leqslant \frac{\sqrt{n}}{n^2} + \frac{\ln(M+1) + \pi}{n^2} =$$

$$= \frac{1}{n^{3/2}} + \frac{\ln(M+1) + \pi}{n^2} \quad \forall n \geqslant 4$$

Como $2, \sqrt[3]{2} > 1$, ambas series sabemos que son convergentes. Por tanto, la serie en cuestión es convergente. Por el Test de Weierstrass, tenemos que la serie de funciones $\sum_{n\geq 1} f_n$ converge uniformemente en K.

Por el Teorema de Convergencia de Weierstrass, tenemos que la serie de funciones $\sum_{n\geqslant 1} f_n$ converge en $\mathbb{C}^*\setminus\mathbb{R}^-$ y que su suma es una función holomorfa en $\mathbb{C}^*\setminus\mathbb{R}^-$.

Ejercicio 2 (2.5 puntos). Probar que, para $a, t \in \mathbb{R}^+$, se tiene

$$\int_{-\infty}^{+\infty} \frac{\cos(tx)}{(x^2 + a^2)^2} dx = \frac{\pi}{2a^3} (1 + at)e^{-at}.$$

Calculamos las raíces del denominador:

$$x^{2} + a^{2} = 0 \implies x^{2} = -a^{2} \implies x \in A := \{-ai, ai\}.$$

Definimos la función:

$$f: \ \mathbb{C} \setminus A \ \longrightarrow \ \mathbb{C}$$
$$z \ \longmapsto \ \frac{e^{itz}}{(z^2 + a^2)^2}$$

Notemos que $f \in \mathcal{H}(\mathbb{C} \setminus A)$, y que $A' = \emptyset$, por lo que podemos aplicar el Teorema de los Residuos. Como \mathbb{C} es homológicamente conexo, podemos aplicar el Teorema de los Residuos para cualquier ciclo Σ en $\mathbb{C} \setminus A$.

Figura 1: Ciclo de integración Σ_R del Ejercicio 2.

Para todo R > a, consideramos el siguiente ciclo $\Sigma_R = \gamma_R + \sigma_R$, representado en la Figura 1, donde:

$$\gamma_R: [-R, R] \longrightarrow \mathbb{C}$$
 $t \longmapsto t$

$$\sigma_R: [0,\pi] \longrightarrow \mathbb{C}$$

$$t \longmapsto Re^{it}$$

De esta forma, tenemos que:

$$\int_{\Sigma_R} f(z) dz = \int_{\gamma_R} f(z) dz + \int_{\sigma_R} f(z) dz = 2\pi i \sum_{z_0 \in A} \operatorname{Res}(f, z_0) \operatorname{Ind}_{\Sigma_R}(z_0)$$

Calculemos la primera integral que nos ha resultado:

$$\int_{2R} f(z) dz = \int_{-R}^{R} \frac{e^{itz}}{(z^2 + a^2)^2} dz = \int_{-R}^{R} \frac{\cos(tz)}{(z^2 + a^2)^2} dz + i \int_{-R}^{R} \frac{\sin(tz)}{(z^2 + a^2)^2} dz$$

Notemos que la integral pedida es la parte real de la integral. Veamos la siguiente integral:

$$\int_{\sigma_R} f(z) dz \leqslant \pi R \cdot \sup \left\{ \left| \frac{e^{itz}}{(z^2 + a^2)^2} \right| : z \in \sigma_R^* \right\} \leqslant \frac{\pi R}{(R^2 - a^2)^2}$$

donde hemos usado que, si $z \in \sigma_R^*$, entonces |z| = R y, como R > a > 0, tenemos que $R^2 > a^2$, por lo que:

$$|z^2 + a^2| \geqslant ||z^2| - |a^2|| = |R^2 - a^2| = R^2 - a^2$$

 $|e^{itz}| = e^{-t\operatorname{Im}(z)} \leqslant e^0 = 1.$

Por tanto, como la expresión anterior es válida para cualquier R > a, podemos hacer $R \to +\infty$ y tenemos que:

$$\lim_{R \to +\infty} \int_{\sigma_R} f(z) \, dz = 0.$$

Calculamos ahora los índices. Por la forma en la que se ha definido el ciclo Σ_R , para todo R > a, tenemos que:

$$\operatorname{Ind}_{\Sigma_R}(-ai) = 0$$
$$\operatorname{Ind}_{\Sigma_R}(ai) = 1.$$

Por tanto, tan solo hemos de calcular el residuo en el polo ai.

$$\lim_{z \to ai} (z - ai) f(z) = \lim_{z \to ai} (z - ai) \cdot \frac{e^{itz}}{[(z - ai)(z + ai)]^2} = \lim_{z \to ai} \frac{e^{itz}}{(z + ai)^2 (z - ai)} = +\infty.$$

$$\lim_{z \to ai} (z - ai)^2 f(z) = \lim_{z \to ai} \frac{e^{itz}}{(z + ai)^2} = \frac{e^{itai}}{(2ai)^2} = \frac{e^{-at}}{-4a^2} = -\frac{e^{-at}}{4a^2} \in \mathbb{C}^*$$

Por tanto, deducimos que el orden del polo ai es 2, y que el residuo es:

$$\operatorname{Res}(f, ai) = \lim_{z \to ai} \frac{d}{dz} \left((z - ai)^2 f(z) \right) = \lim_{z \to ai} \frac{d}{dz} \left(\frac{e^{itz}}{(z + ai)^2} \right) =$$

$$= \lim_{z \to ai} \frac{ite^{itz} (z + ai)^2 - e^{itz} \cdot 2(z + ai)}{(z + ai)^4} = \lim_{z \to ai} \frac{ite^{itz} (z + ai) - 2e^{itz}}{(z + ai)^3} =$$

$$= \lim_{z \to ai} e^{itz} \frac{it(z + ai) - 2}{(z + ai)^3} = e^{-at} \cdot \frac{it(2ai) - 2}{(2ai)^3} = e^{-at} \cdot \frac{-at - 1}{-4a^3i} = e^{-at} \cdot \frac{at + 1}{4a^3i}$$

Por tanto, tenemos que:

$$\int_{\Sigma_R} f(z) \, dz = 2\pi i \left(e^{-at} \cdot \frac{at+1}{4a^3 i} \cdot 1 \right) = \frac{\pi \cdot e^{-at} (at+1)}{2a^3}.$$

Por tanto, tenemos que:

$$\int_{-R}^{R} \frac{\cos(tz)}{(z^2 + a^2)^2} dz + i \int_{-R}^{R} \frac{\sin(tz)}{(z^2 + a^2)^2} dz + \int_{\sigma_R} f(z) dz = \frac{\pi \cdot e^{-at}(at+1)}{2a^3}.$$

Como esta expresión es válida para cualquier R>a, podemos hacer $R\to +\infty$ y tenemos que:

$$\int_{-\infty}^{+\infty} \frac{\cos(tz)}{(z^2 + a^2)^2} dz + i \int_{-\infty}^{+\infty} \frac{\sin(tz)}{(z^2 + a^2)^2} dz = \frac{\pi \cdot e^{-at}(at+1)}{2a^3}.$$

Igualando las partes reales, tenemos que:

$$\int_{-\infty}^{+\infty} \frac{\cos(tz)}{(z^2 + a^2)^2} dz = \frac{\pi \cdot e^{-at}(at+1)}{2a^3}.$$

como queríamos demostrar.

Ejercicio 3 (2.5 puntos). Probar que una función $f \in \mathcal{H}(\mathbb{C}^*)$ que diverge en cero y en infinito tiene al menos un cero. Probar además que el número de ceros de f es finito y mayor o igual que 2 (contando multiplicidad).

Como f diverge en el origen, sabemos que el 0 es un polo de orden $k \in \mathbb{N}$ de f. Por tanto, $\exists \Psi \in \mathcal{H}(\mathbb{C})$ tal que:

$$f(z) = \frac{\Psi(z)}{z^k} \qquad \forall z \in \mathbb{C}^*$$

donde $\Psi(0) \neq 0$. De esta forma:

$$\Psi(z) = z^k f(z) \qquad \forall z \in \mathbb{C}^*.$$

Puesto que conocemos el comportamiento de f en el infinito, sabemos que $\Psi(z)$ diverge en el infinito. Por tanto, como $\Psi \in \mathcal{H}(\mathbb{C})$ y Ψ diverge en el infinito, por el Corolario del Corolario del Teorema de Casorati, tenemos que Ψ es un polinomio. Estudiemos ahora el grado de Ψ . Haciendo uso de que f diverge en el infinito, tenemos que:

$$\lim_{z\to +\infty} f(z) = \lim_{z\to +\infty} \frac{\Psi(z)}{z^k} = +\infty$$

Este es un límite de un cociente de polinomios que diverge, por lo que el grado del numerador es mayor que el grado del denominador. Por tanto, deg $\Psi=m\in\mathbb{N}$, donde m>k. Por el Teorema Fundamental del Álgebra, sabemos que Ψ tiene m raíces. Como sabemos que:

$$f(z) = \frac{\Psi(z)}{z^k} \qquad \forall z \in \mathbb{C}^*,$$

Sabemos que $Z(f) = Z(\Psi)$, y por tanto f tiene m ceros.

Ejercicio 4 (2.5 puntos). Probar el Lema de Schwarz.

Lema (de Schwarz). Sea $f \in \mathcal{H}(D(0,1))$ verificando f(0) = 0 y $|f(z)| \le 1$ para cada $z \in D(0,1)$. Probar que $|f'(0)| \le 1$ y $|f(z)| \le |z|$ para cada $z \in D(0,1)$. Además, si ocurre |f'(0)| = 1 o $|f(z_0)| = |z_0|$ para algún $z_0 \in D(0,1) \setminus \{0\}$, entonces existe $\alpha \in \mathbb{C}$ de modo que $f(z) = \alpha z$ para cada $z \in D(0,1)$.

Observaci'on. Para cada 0 < r < 1, estimar convenientemente el valor del siguiente conjunto:

$$\max\{|g(z)|:z\in\overline{D}(0,r)\}$$

donde la función $g: D(0,1) \to \mathbb{C}$ viene dada por g(0) = f'(0) y g(z) = f(z)/z para cada $z \in D(0,1) \setminus \{0\}$.

Definimos la siguiente función:

$$g: \ D(0,1) \ \longrightarrow \ \mathbb{C}$$

$$z \ \longmapsto \ \begin{cases} f'(0) & \text{si } z = 0 \\ \frac{f(z)}{z} & \text{si } z \in D(0,1) \setminus \{0\} \end{cases}$$

Veamos que g es continua en el origen.

$$\lim_{z \to 0} g(z) = \lim_{z \to 0} \frac{f(z)}{z} = \lim_{z \to 0} \frac{f(z) - 0}{z - 0} = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = f'(0) = g(0).$$

Por tanto, g es continua en D(0,1) y holomorfa en $D(0,1) \setminus \{0\}$. Por el Teorema de Extensión de Riemman, $g \in \mathcal{H}(D(0,1))$.

Fijado ahora $r \in]0,1[$, consideramos la restricción de g a $\overline{D}(0,r)$, y aplicamos el corolario del Principio del Módulo Máximo. Por tanto, tenemos que:

$$\max\{|g(z)|:z\in\overline{D}(0,r)\} = \max\{|g(z)|:|z|=r\} = \max\left\{\frac{|f(z)|}{|z|}:|z|=r\right\} \stackrel{(*)}{\leqslant} \max\left\{\frac{1}{|z|}:|z|=r\right\} = \frac{1}{r}$$

donde en (*) hemos usado que $|f(z)| \leq 1$ para todo $z \in D(0,1)$, por hipótesis del enunciado. Tomando límite con $r \to 1$, tenemos que:

$$\max\{|g(z)|:z\in D(0,1)\}=\max\left\{\frac{|f(z)|}{|z|}:z\in D(0,1)\right\}\leqslant 1\Longrightarrow |f(z)|\leqslant |z|\qquad \forall z\in D(0,1).$$

Además, también tenemos que $|g(0)|=|f'(0)|\leqslant 1$. Por tanto, hemos probado que:

$$|f'(0)| \le 1$$

$$|f(z)| \le |z| \qquad \forall z \in D(0,1).$$

Por otro lado, si ocurre que |f'(0)| = 1 o $|f(z_0)| = |z_0|$ para algún $z_0 \in D(0,1) \setminus \{0\}$, entonces $\exists z_0 \in D(0,1)$ tal que:

$$|g(z)| \le |g(z_0)| = 1$$
 $\forall z \in D(0, 1).$

Como g es holomorfa en D(0,1), por el Principio del Módulo Máximo, tenemos que g es constante. Por lo que $g(z) = \alpha$ para algún $\alpha \in \mathbb{C}$, y por tanto:

$$f(z) = \alpha z \qquad \forall z \in D(0,1) \setminus \{0\}.$$

Como además f(0) = 0, tenemos que:

$$f(z) = \alpha z \qquad \forall z \in D(0, 1).$$