ETH zürich

Causal structure learning II

Causality
Christina Heinze-Deml
Spring 2019

Last time

- Faithfulness
- Markov equivalence
- CPDAGs
- SGS algorithm
- PC algorithm

Today

- PC algorithm
- GES algorithm
- Restricted SEMs

PC algorithm

- Assuming Markov and faithfulness, a CPDAG can be estimated by the PCalgorithm of Peter Spirtes and Clark Glymour:
 - Determine the skeleton
 - No edge between i and j \Leftrightarrow i and j are d-separated by $\operatorname{pa}(i,G)$ or $\operatorname{pa}(j,G)$ \Leftrightarrow i and j are d-separated by a subset S' of $\operatorname{adj}(i,G)$ or of $\operatorname{adj}(j,G)$ \Leftrightarrow $X_i \perp\!\!\!\perp X_j \mid X_{S'}$ for a subset S' of $\operatorname{adj}(i,G)$ or of $\operatorname{adj}(j,G)$
 - Start with the complete graph
 - For k = 0, 1, ..., p 2
 - Consider all pairs of adjacent vertices (i, j), and remove edge if X_i and X_j are conditionally independent given some subset of size k of adj(i, G) or of adj(j, G)

PC algorithm

- Assuming Markov and faithfulness, a CPDAG can be estimated by the PCalgorithm of Peter Spirtes and Clark Glymour:
 - Determine the skeleton
 - Determine the v-structures
 - By checking for conditional dependence
 - Direct as many of the remaining edges as possible
 - By consistency with already directed edges

PC algorithm

- Assume that P has a perfect map G. Verify the following statements about the oracle version of the PC algorithm:
 - If an edge i j is removed at some point in the PC algorithm, then i and j are not adjacent in G.
 - At any point in the algorithm, the current skeleton is a supergraph of the skeleton of G.
 - If an edge i j is not removed in the PC algorithm, then i and j are adjacent in G.
 - The output of the skeleton phase of the PC algorithm is the skeleton of G.
 - [See Series 5.]

PC algorithm – sample version

- Instead of a conditional independence "oracle", we perform conditional independence tests
- In the multivariate Gaussian setting, this is equivalent to testing for zero partial correlation: $H_0: \rho_{ij|S} = 0$ versus $H_A: \rho_{ij|S} \neq 0$
- The significance level α serves as a tuning parameter for the PC algorithm
 - Do not necessarily want to treat type I error as in traditional testing

Examples

Partial correlation

We call X and Y uncorrelated if

$$\rho_{X,Y} = \frac{E(XY) - E(X)E(Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}} = 0$$

We say that X and Y are partially uncorrelated given Z if

$$\rho_{X,Y|Z} = \frac{\rho_{X,Y} - \rho_{X,Z} \rho_{Z,Y}}{\sqrt{(1 - \rho_{X,Z}^2)(1 - \rho_{Z,Y}^2)}} = 0$$

• $\rho_{X,Y|Z}$ equals correlation between residuals after linearly regressing X on Z and Y on Z

Partial correlation

In general,

$$\rho_{X,Y|Z} = 0 \implies X \perp\!\!\!\perp Y|Z \quad \text{and} \quad \rho_{X,Y|Z} = 0 \iff X \perp\!\!\!\perp Y|Z$$

See Elements of Causal Inference, Example 7.9

Constraint-based causal structure learning

- Summary
 - Constraint-based methods assume Markov + faithfulness
 - One-to-one correspondence between d-separations in G and conditional independences in P
 - Can reject all graphs outside the correct Markov equivalence class (MEC)
 - Estimand: CPDAG encoding the MEC
- Challenges
 - In finite samples, testing results may contradict each other
 - Choice of tuning parameter α
 - Nonparametric conditional independence tests are difficult to perform with finite samples

Constraint-based causal structure learning

- Partial identification of causal effects
 - IDA algorithm (Maathuis et al., 2009)
 - Estimate causal effects for each DAG in the Markov equivalence class
 - Infer bounds on the causal effects
- Hidden variables
 - FCI (Fast Causal Inference) algorithm and extensions (RFCI, FCI+)
 - Estimand: Partial ancestral graph (PAG)

- So far: directly exploited independence statements to infer the graph
- Now: test different graph structures in their ability to fit the data
 - Address structure learning as a model selection problem

Idea:

- Given n i.i.d. observations $\mathcal{D} = (x_V^1, \dots, x_V^n)$, assign a score $\mathcal{S}(\mathcal{D}, G)$ to each graph G
- $S(\mathcal{D}, G)$ measures how well G fits the data
- Search over the space of DAGs to find the graph with the highest score:

$$\hat{G} = \operatorname{argmax}_{G} \mathcal{S}(\mathcal{D}, G)$$

- How to define $S(\mathcal{D}, G)$?
 - Assume parametric model
 - E.g. linear Gaussian equations
 - Introduces a set of parameters θ
 - Consider the maximum likelihood estimator $\hat{\theta}$ for θ
 - Idea 1: use log-likelihood $\log p(\mathcal{D}|\hat{\theta}, G)$ for the score
 - Issue: will result in the full DAG because more parameters always improve the model fit
 - Solution: use penalized log-likelihood

- How to define $S(\mathcal{D}, G)$?
 - Assume parametric model
 - E.g. linear Gaussian equations
 - Introduces a set of parameters θ
 - Consider the maximum likelihood estimator $\hat{\theta}$ for θ
 - Idea 2: use the Bayesian Information Criterion (BIC) for the score

$$S(\mathcal{D}, G) = 2 \log p(\mathcal{D} | \hat{\theta}, G) - \log n \cdot (\text{\#parameters})$$

- $\log p(\mathcal{D}|\hat{\theta}, G)$ is the log-likelihood
- Second term: complexity penalty for number of parameters
- Other possibilities exist

- Properties of the BIC
 - Score-equivalence: Score is the same for all DAGs within the same MEC
 - Decomposable: Score can be computed as a sum of terms each of which is a function only of one node and its parents

$$S(\mathcal{D},G) = \sum_{j} s(X_{j}, X_{pa(j)})$$

- Computational savings
- Local consistency: Score of a DAG model G ...
 - ... increases if adding an edge that eliminates an independence constraint that does not hold in P
 - ... decreases if adding an edge that does not eliminate such a constraint

Example

- How to search?
 - Recall from week 2 Number of DAGs with p nodes:

p	number of DAGs with p nodes
1	1
2	3
3	25
4	543
5	29281
6	3781503
7	1138779265
8	783702329343
9	1213442454842881
10	4175098976430598143
11	31603459396418917607425
12	521939651343829405020504063
13	18676600744432035186664816926721
14	1439428141044398334941790719839535103
15	237725265553410354992180218286376719253505
16	83756670773733320287699303047996412235223138303
17	62707921196923889899446452602494921906963551482675201
18	99421195322159515895228914592354524516555026878588305014783
19	332771901227107591736177573311261125883583076258421902583546773505
20	2344880451051088988152559855229099188899081192234291298795803236068491263

- How to search?
 - Number of DAGs with p nodes grows super-exponentially
 - Hence, exhaustive search is often infeasible
 - Use greedy search techniques instead
 - At each step, candidate graph and set of "neighboring graphs"
 - For each neighbor, compute score
 - Take the best-scoring graph as the new candidate graph
 - If no neighbor obtains a better score, search procedure terminates
 - Result may be a local optimum only

Greedy Equivalence Search

- Assumes Markov + faithfulness
- Optimizes the BIC
- Searches over Markov equivalence classes instead of DAGs
- Greedy Equivalence Search (GES):
 - Start with empty graph
 - Two phases:
 - 1. Add edges until a local maximum is reached
 - 2. Remove edges until a local maximum is reached
 - Output is the CPDAG attaining the local maximum in phase 2

Greedy Equivalence Search

- \mathcal{E} : an equivalence class of DAG models
- Neighborhood relation in phase 1 of GES:
 - $\mathcal{E}^+(\mathcal{E})$: neighbors of state \mathcal{E} in phase 1
 - An equivalence class \mathcal{E}' is in $\mathcal{E}^+(\mathcal{E})$ if and only if there is some DAG $G \in \mathcal{E}$ to which we can add a single edge that results in a DAG $G' \in \mathcal{E}'$
- Neighborhood relation in phase 2 of GES:
 - $\mathcal{E}^-(\mathcal{E})$: neighbors of state \mathcal{E} in phase 2
 - An equivalence class \mathcal{E}' is in $\mathcal{E}^-(\mathcal{E})$ if and only if there is some DAG $G \in \mathcal{E}$ from which we can remove a single edge that results in a DAG $G' \in \mathcal{E}'$

Clicker question – Neighborhood relations in GES

- Greedy Equivalence Search (GES):
 - Start with empty graph
 - Two phases:
 - 1. Add edges until a local maximum is reached
 - 2. Remove edges until a local maximum is reached
 - Output is the CPDAG attaining the local maximum in phase 2
- Phase 1: Hope is to identify a model that is as simple as possible
 - Ignoring computational cost, one could also start with a full DAG and only do phase 2

- Greedy Equivalence Search (GES):
 - Start with empty graph
 - Two phases:
 - 1. Add edges until a local maximum is reached
 - 2. Remove edges until a local maximum is reached
 - Output is the CPDAG attaining the local maximum in phase 2
- Chickering (2002): GES identifies the true CPDAG as $n \to \infty$
- GES can be improved by including a "turning phase" (Hauser and Bühlmann (2012))

- Seen so far:
 - Constraint-based methods: PC, SGS
 - Score-based method: GES
- Estimand: CPDAG

- Constraint-based methods assume Markov condition + faithfulness
 - One-to-one correspondence between d-separations in G and conditional independences in P
 - Can reject all graphs outside the correct Markov equivalence class
 - Because Markov condition and faithfulness only restrict the conditional independences in P, cannot distinguish between two Markov equivalent graphs
 - I.e. under Markov + faithfulness, the Markov equivalence class (MEC) of G is identifiable from P

Example: $X \to Y$, $X \leftarrow Y$ imply the same d-separation: $X \pm Y$

- Score-based methods assume Markov condition and a parametric model
 - E.g. linear Gaussian equations
 - Cannot distinguish between Markov equivalent graphs
 - Search is over Markov equivalence classes instead of DAGs
 - Typically faithfulness or causal minimality is assumed as well

Example: Linear models with additive Gaussian noise

- Consider the two variable case
- $X \rightarrow Y$, $X \leftarrow Y$ imply the same d-separation: $X \pm Y$
- Either graph can induce any distribution

- Alternative to
 - Only assuming Markov + faithfulness
 - Or assuming Markov + faithfulness and linear Gaussian eqs.

use structural equation model framework and restrict function class differently

• Recall: In a SEM, each X_i is generated as a function of its graphical parents in G and noise ϵ_i :

$$X_i \leftarrow h_i(X_{pa(i)}, \epsilon_i), \qquad i \in V$$

where ϵ_i , $i \in V$, are jointly independent

Recall: In a SEM, each X_i is generated as a function of its graphical parents in G and noise ϵ_i :

$$X_i \leftarrow h_i(X_{\text{pa}(i)}, \epsilon_i), \qquad i \in V$$

where ϵ_i , $i \in V$, are jointly independent

- Various options to restrict the function class
- We will refer to this class of models as restricted SEMs

Additive noise models

 We call an SEM an additive noise model (ANM) if the structural assignments are of the form

$$X_i \leftarrow h_i(X_{\text{pa}(i)}) + \epsilon_i, \quad i \in V,$$

i.e., the noise is additive.

- Assume causal minimality; here, this means that each function $h_i(\cdot)$ is not constant in any of its arguments
- Question: Can we now obtain full structure identifiability?

Linear models with additive Gaussian noise

- Two variable case
- Theorem: Assume that P admits the linear model

$$Y = \alpha X + N_Y, \qquad N_Y \perp \!\!\! \perp X,$$

with continuous random variables X, N_Y and Y. Then there exist $\beta \in \mathbb{R}$ and a random variable N_X such that

$$X = \beta Y + N_X, \qquad N_X \perp \!\!\!\perp Y,$$

if and only if N_Y and X are Gaussian.

Recap

- Concepts to know:
 - Partial correlation and conditional independence
 - Score-based causal structure learning
 - GES
 - Structure identifiability
 - Linear models with Gaussian noise
 - Restricted SEMs
 - Additive noise models

References and acknowledgments

- Score-based structure learning
 - Peters, Janzing and Schölkopf (2017). Elements of Causal Inference. Chapter 7.2.2
 - (Optional) Chickering (2002). Optimal Structure Identification with Greedy Search. JMLR.
 - (Optional) Hauser and Bühlmann (2012). Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. JMLR.
- Restricted SEMs
 - Peters, Janzing and Schölkopf (2017). Elements of Causal Inference. Chapters 4.1.1 4.1.4,
 4.2.1