Zadanie 11

Jakub Kędra

Treść

Niech

$$x_n = \int_0^1 \frac{t^n}{t+5} dt$$

Całka powyższa może być obliczona za pomocą wzoru rekurencyjnego:

$$x_n = \frac{1}{n} - 5x_{n-1}$$

przy czym:

$$x_0 = ln6 - ln5 = ln1.2$$

Krok 1

Stosując wzór rekurencyjny obliczamy x_0, x_1, \dots, x_{20} .

$$\begin{cases} x_n = \frac{1}{n} - 5x_{n-1} \\ x_0 = \ln 1.2 \end{cases}$$

i	float	double	long double
0	1,82322E-01	1,82322E-01	1,82322E-01
1	8,83922E-02	8,83922E-02	8,83922E-02
2	5,80391E-02	5,80389E-02	5,80389E-02
3	4,31379E-02	4,31387E-02	4,31387E-02
4	3,43104E-02	3,43063E-02	3,43063E-02
5	2,84481E-02	2,84684E-02	2,84684E-02
6	2,44263E-02	2,43249E-02	2,43249E-02
7	2,07257E-02	2,12326E-02	2,12326E-02
8	2,13717E-02	1,88369E-02	1,88369E-02
9	4,25280E-03	1,69265E-02	1,69265E-02
10	7,87360E-02	1,53676E-02	1,53676E-02
11	-3,02771E-01	1,40713E-02	1,40713E-02
12	1,59719E+00	1,29766E-02	1,29766E-02
13	-7,90902E+00	1,20399E-02	1,20399E-02
14	3,96165E+01	1,12290E-02	1,12290E-02
15	-1,98016E+02	1,05218E-02	1,05218E-02
16	9,90142E+02	9,89117E-03	9,89115E-03
17	-4,95065E+03	9,36767E-03	9,36778E-03
18	2,47533E+04	8,71720E-03	8,71665E-03
19	-1,23767E+05	9,04559E-03	9,04834E-03
20	6,18833E+05	4,77203E-03	4,75829E-03

Krok 1: Wnioski

- Tylko w przypadku float ciąg przyjmuje wartości ujemne
- Przyczyną tego jest bardzo mała precyzja typu float w stosunku do reszty

Krok 1: Kod funkcji

$$\begin{cases} x_n = \frac{1}{n} - 5x_{n-1} \\ x_0 = \ln 1.2 \end{cases}$$

Krok 2: Szereg Taylora

Korzystając z szeregu Taylora zadanego wzorem dla otoczenia (a,b):

$$f(x) = \sum_{k=0}^{\infty} \frac{(x-a)^k}{k!} f^{(k)}(a)$$

W naszym przypadku otoczeniem tym jest przedział (0,1), tak więc szereg naszej funkcji podcałkowej przyjmuje taki wzór:

$$f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} f^{(k)}(0)$$

Krok 2: Funkcja podcałkowa x₂₀

$$x_n = \int_0^1 \frac{t^n}{t+5} dt$$

$$f(x) = \frac{x^{20}}{x+5}$$

Krok 2: Problem z pochodnymi

Pierwsze 19 wyrazów tego szeregu zostanie wyzerowane, ponieważ są mnożone przez x, który dla f(0) jest równy 0

$$\frac{d^{19}}{(x^{19})} \left(\frac{x^{20}}{x+5} \right) = -\frac{121645100408832000 x^{20}}{(x+5)^{20}} + \frac{2432902008176640000 x^{19}}{(x+5)^{19}} - \frac{231125690776780800000 x^{18}}{(x+5)^{18}} + \frac{138675414466068480000 x^{17}}{(x+5)^{17}} - \frac{589370511480791040000 x^{16}}{(x+5)^{16}} + \frac{1885985636738531328000 x^{15}}{(x+5)^{15}} - \frac{4714964091846328320000 x^{14}}{(x+5)^{14}} + \frac{9429928183692656640000 x^{13}}{(x+5)^{13}} - \frac{15323633298500567040000 x^{12}}{(x+5)^{10}} + \frac{20431511064667422720000 x^{11}}{(x+5)^{9}} - \frac{22474662171134164992000 x^{10}}{(x+5)^{8}} + \frac{20431511064667422720000 x^{9}}{(x+5)^{9}} - \frac{15323633298500567040000 x^{8}}{(x+5)^{8}} + \frac{9429928183692656640000 x^{7}}{(x+5)^{9}} - \frac{15323633298500567040000 x^{8}}{(x+5)^{6}} + \frac{9429928183692656640000 x^{7}}{(x+5)^{5}} - \frac{4714964091846328320000 x^{6}}{(x+5)^{6}} + \frac{1885985636738531328000 x^{5}}{(x+5)^{5}} - \frac{589370511480791040000 x^{4}}{(x+5)^{4}} + \frac{138675414466068480000 x^{3}}{(x+5)^{3}} - \frac{231125690776780800000 x^{2}}{(x+5)^{2}} + \frac{24329020081766400000 x}{x+5}$$

Krok 2: Pochodne od k = 20

Od 20-krotnej pochodnej pojawia nam się pierwszy niezerujący się ułamek

$$\frac{20}{c^{20}} \left(\frac{x^{20}}{x+5}\right) = \frac{2432902008176640000 x^{20}}{(x+5)^{21}} - \frac{48658040163532800000 x^{19}}{(x+5)^{20}} + \frac{462251381553561600000 x^{18}}{(x+5)^{19}} - \frac{2773508289321369600000 x^{17}}{(x+5)^{18}} + \frac{11787410229615820800000 x^{16}}{(x+5)^{17}} - \frac{37719712734770626560000 x^{15}}{(x+5)^{16}} + \frac{94299281836926566400000 x^{14}}{(x+5)^{15}} - \frac{188598563673853132800000 x^{13}}{(x+5)^{14}} + \frac{306472665970011340800000 x^{12}}{(x+5)^{13}} - \frac{408630221293348454400000 x^{11}}{(x+5)^{10}} + \frac{449493243422683299840000 x^{10}}{(x+5)^{11}} - \frac{408630221293348454400000 x^{9}}{(x+5)^{10}} + \frac{306472665970011340800000 x^{8}}{(x+5)^{9}} - \frac{188598563673853132800000 x^{7}}{(x+5)^{8}} + \frac{306472665970011340800000 x^{8}}{(x+5)^{7}} - \frac{37719712734770626550000 x^{5}}{(x+5)^{6}} + \frac{11787410229615820800000 x^{4}}{(x+5)^{5}} - \frac{2773508289321369600000 x^{3}}{(x+5)^{4}} + \frac{462251381553561600000 x^{2}}{(x+5)^{3}} - \frac{2432902008176640000}{(x+5)^{3}} + \frac{2432902008176640000}{(x+5)^{3}} - \frac{2432902008176640000}{(x+5)^{3}} - \frac{2432902008176640000}{(x+5)^{3}} - \frac{2432902008176640000}{(x+5)^{3}} + \frac{2432902008176640000}{(x+5)^{3}} - \frac{2432902008176640000}{(x+5)^{3}} - \frac{2432902008176640000}{(x+5)^{3}} + \frac{2432902008176640000}{(x+5)^{3}} - \frac$$

Krok 2: Uogólnienie pochodnej

Po usunięciu zbędnych zerowych wyrazów, nasza funkcja dla $n \geq 20$ wygląda następująco

$$f^{(n)}(x) = (-1)^n \frac{n!}{(x+5)^{(n-19)}} + g(x)$$

Gdzie: g(x) – stanowi początkowy szereg zerujących się wyrazów w x = 0 Podstawiając x = 0 otrzymujemy:

$$f^{(n)}(0) = (-1)^n \frac{n!}{5^{(n-19)}}$$

Krok 2: Uproszczenie wzoru

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} f^{(n)}(0) = \sum_{n=20}^{\infty} \frac{x^n}{n!} f^{(n)}(0) =$$

$$=\sum_{n=20}^{\infty} \frac{x^n}{n!} \frac{n!}{5^{(n-19)}} (-1)^n = \sum_{n=20}^{\infty} \frac{x^n}{5^{(n-19)}} (-1)^n =$$

$$=\sum_{n=0}^{\infty} \frac{x^{(n+20)}}{5^{(n+1)}} (-1)^n$$

Krok 2: Funkcja podcałkowa

$$F(X) = \int f(x)dx = \int \sum_{n=0}^{\infty} (-1)^n \frac{x^{(n+20)}}{5^{(n+1)}} dx =$$

$$=\sum_{n=0}^{\infty}\int (-1)^n \frac{x^{(n+20)}}{5^{(n+1)}} dx =$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n+21} \frac{x^{(n+21)}}{5^{(n+1)}} dx$$

Krok 2: Wzór na x₂₀

$$x_n = \int_0^1 f(x) dx = F(1) - F(0)$$

Ponieważ

$$F(0) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+21} \frac{0^{(n+21)}}{5^{(n+1)}} = 0$$

 x_{20} przyjmuje wartość:

$$x_{20} = F(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+21} \frac{1^{(n+21)}}{5^{(n+1)}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+21} \frac{1}{5^{(n+1)}}$$

Krok 2: Wzór na x₂₀

Ostatecznie otrzymujemy:

$$x_{20} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5^n(n+20)}$$

Krok 3: Obliczenia

Do obliczenia wyników tabeli wykorzystano poniższy odwrócony wzór rekurencyjny:

$$x_{n-1} = \frac{1}{n} - \frac{x_n}{5} \iff x_n = \frac{1}{n+1} - \frac{x_{n+1}}{5}$$

i	float	double	long double
0	6,77172E-01	6,77172E-01	6,77172E-01
1	3,22828E-01	3,22828E-01	3,22828E-01
2	1,77172E-01	1,77172E-01	1,77172E-01
3	1,56161E-01	1,56161E-01	1,56161E-01
4	9,38386E-02	9,38386E-02	9,38386E-02
5	1,06161E-01	1,06161E-01	1,06161E-01
6	6,05052E-02	6,05052E-02	6,05052E-02
7	8,23519E-02	8,23519E-02	8,23519E-02
8	4,26481E-02	4,26481E-02	4,26481E-02
9	6,84630E-02	6,84630E-02	6,84630E-02
10	3,15370E-02	3,15370E-02	3,15370E-02
11	5,93721E-02	5,93721E-02	5,93721E-02
12	2,39612E-02	2,39612E-02	2,39612E-02
13	5,29619E-02	5,29619E-02	5,29619E-02
14	1,84667E-02	1,84667E-02	1,84667E-02
15	4,82000E-02	4,82000E-02	4,82000E-02
16	1,43000E-02	1,43000E-02	1,43000E-02
17	4,45235E-02	4,45235E-02	4,45235E-02
18	1,10321E-02	1,10321E-02	1,10321E-02
19	4,15995E-02	4,15995E-02	4,15995E-02
20	8,40050E-03	8,40050E-03	8,40050E-03

Krok 3: Kod funkcji

$$x_n = \frac{1}{n+1} - \frac{x_{n+1}}{5}$$

```
template <typename Type>
Type reverse_x_n (int precision, int n = 0) {
    return n < 20
          ? 1 / ((Type) n + 1) -
    reverse_x_n<Type>(precision, n + 1)
                : get_x_20<Type>(precision);
}
```

Rekurencyjny wzór pierwotny

i	float	double	long double
0	1,82322E-01	1,82322E-01	1,82322E-01
1	8,83922E-02	8,83922E-02	8,83922E-02
2	5,80391E-02	5,80389E-02	5,80389E-02
3	4,31379E-02	4,31387E-02	4,31387E-02
4	3,43104E-02	3,43063E-02	3,43063E-02
5	2,84481E-02	2,84684E-02	2,84684E-02
6	2,44263E-02	2,43249E-02	2,43249E-02
7	2,07257E-02	2,12326E-02	2,12326E-02
8	2,13717E-02	1,88369E-02	1,88369E-02
9	4,25280E-03	1,69265E-02	1,69265E-02
10	7,87360E-02	1,53676E-02	1,53676E-02
11	-3,02771E-01	1,40713E-02	1,40713E-02
12	1,59719E+00	1,29766E-02	1,29766E-02
13	-7,90902E+00	1,20399E-02	1,20399E-02
14	3,96165E+01	1,12290E-02	1,12290E-02
15	-1,98016E+02	1,05218E-02	1,05218E-02
16	9,90142E+02	9,89117E-03	9,89115E-03
17	-4,95065E+03	9,36767E-03	9,36778E-03
18	2,47533E+04	8,71720E-03	8,71665E-03
19	-1,23767E+05	9,04559E-03	9,04834E-03
20	6,18833E+05	4,77203E-03	4,75829E-03

Odwrócony wzór rekurencyjny

i	float	double	long double
0	6,77172E-01	6,77172E-01	6,77172E-01
1	3,22828E-01	3,22828E-01	3,22828E-01
2	1,77172E-01	1,77172E-01	1,77172E-01
3	1,56161E-01	1,56161E-01	1,56161E-01
4	9,38386E-02	9,38386E-02	9,38386E-02
5	1,06161E-01	1,06161E-01	1,06161E-01
6	6,05052E-02	6,05052E-02	6,05052E-02
7	8,23519E-02	8,23519E-02	8,23519E-02
8	4,26481E-02	4,26481E-02	4,26481E-02
9	6,84630E-02	6,84630E-02	6,84630E-02
10	3,15370E-02	3,15370E-02	3,15370E-02
11	5,93721E-02	5,93721E-02	5,93721E-02
12	2,39612E-02	2,39612E-02	2,39612E-02
13	5,29619E-02	5,29619E-02	5,29619E-02
14	1,84667E-02	1,84667E-02	1,84667E-02
15	4,82000E-02	4,82000E-02	4,82000E-02
16	1,43000E-02	1,43000E-02	1,43000E-02
17	4,45235E-02	4,45235E-02	4,45235E-02
18	1,10321E-02	1,10321E-02	1,10321E-02
19	4,15995E-02	4,15995E-02	4,15995E-02
20	8,40050E-03	8,40050E-03	8,40050E-03

Porównanie wykresów obu wzorów rekurencyjnych

Wnioski

- Na dokładność wyników ma wpływ zastosowany typ
- Wyniki różnią się w zależności od użytego wzoru