Circle

1	$\pi rad \approx 180^{\circ}$
	$2\pi \ rad \approx 360^{\circ}$
	$1 rad \approx 57.3^{\circ}$

$$\frac{2}{Arc\ Length} = \frac{\theta^{\circ}}{360^{\circ}} * 2\pi r$$

$$Area\ of\ Sector = \frac{\theta^{\circ}}{360^{\circ}} * \pi r^{2}$$

Radian:

$$Arc\ Length = \theta r$$

Area of Sector =
$$\frac{1}{2}\theta r^2$$

3 $= \frac{Area \ of \ Segment}{\theta^{\circ}} * \pi r^{2} - \frac{1}{2}r^{2}sin\theta$

Radiant:

$$= \frac{Area\ of\ Segment}{360^{\circ}} * \pi r^{2} - \frac{1}{2}r^{2}sin\theta$$

8 Geometrical Properties of circles

Angle at the center of the circle is 2x the angle at the circumference subtended by the same arc:

Angle at center = 2x angle at segment

$$\Delta AOB = 2 \Delta APB$$

2	Every angle subtended by the diameter of a semicircle is a 90 degree: Right Angle of Semi-circle $\Delta ACB = 90^{\circ}$	A O B
3	Angle in the same segment	0
	of a circle have the same angle:	
	Angle in the same segment	O' O'
	$\Delta APB = \Delta AQB = \Delta ARB$	A Second
		Figure 1 Figure 2
4	In a cyclic quadrilateral, the opposite angle add up to 180 degree:	P
	Opposite angle of cycle quad.	s
	$\Delta Q + \Delta S = 180^{\circ}$ $\Delta P + \Delta R = 180^{\circ}$	R

