Guía 7: El paradigma imperativo de Neumann: El lenguaje \mathcal{S}^{Σ}

Sintaxis de S^{Σ}

- Definiciones:
 - Definimos $Sig:Num^* o Num^*$ como:

$$Sig(arepsilon) = 1$$
 $Sig(lpha 0) = lpha 1$
 $Sig(lpha 1) = lpha 2$
 $Sig(lpha 2) = lpha 3$
 $Sig(lpha 3) = lpha 4$
 $Sig(lpha 4) = lpha 5$
 $Sig(lpha 5) = lpha 6$
 $Sig(lpha 6) = lpha 7$
 $Sig(lpha 7) = lpha 8$
 $Sig(lpha 8) = lpha 9$
 $Sig(lpha 9) = Sig(lpha) 0$

• Definimos $Dec:\omega \to Num^*$ como:

$$Dec(0) = \varepsilon$$
 $Dec(n+1) = Sig(Dec(n))$

- Notar que para $n \in N$, Dec(n) es la notación usual decimal de n
- Para hacer más ágil la notación, escribiremos \bar{n} en lugar de Dec(n), por lo que $Dec=\lambda n[\bar{n}]$
- Sintaxis: La sintaxis de \mathcal{S}^{Σ} será dada utilizando el alfabeto $\Sigma \cup \Sigma_P$ donde

$$\Sigma_P = Num \cap \{\leftarrow, +, \dot{-}, .,
eq, ^{\smallfrown}, arepsilon, N, K, P, L, I, F, G, O, T, B, E, S\}$$

- Las palabras de la forma:
 - $Nar{k}$ con $k\in N$ son llamadas variables numéricas de \mathcal{S}^Σ
 - $Par{k}$ con $k\in N$ son llamadas $\emph{variables alfabéticas de }\mathcal{S}^{\Sigma}$
 - $Lar{k}$ con $k\in N$ son llamadas *labels de* \mathcal{S}^{Σ}
- Una instrucción básica de S^{Σ} es una palabra $(\Sigma \cup \Sigma_P)^*$ la cual es de alguna de las siguientes formas (donde $a \in \Sigma$; $k, n \in N$):
 - $N\bar{k} \leftarrow N\bar{k} + 1$
 - $N\bar{k} \leftarrow N\bar{k}\dot{-}1$
 - Si el contenido de $N\bar{k}$ es 0, dejarlo sin modificar. Caso contrario, disminuir en 1 el contenido de $N\bar{k}$
 - $N\bar{k} \leftarrow N\bar{n}$
 - Copiar el contenido de $Nar{n}$ en $Nar{k}$ sin modificar el contenido de $Nar{n}$

- $Nar{k} \leftarrow 0$
- $P\bar{k} \leftarrow P\bar{k}$. a
 - Modificar el contenido de $Par{k}$ agregando el símbolo a a la derecha
- $Par{k} \leftarrow {}^{\smallfrown} Par{k}$
 - Si el contenido de $P\bar{k}$ es ε , dejarlo sin modificar. Caso contrario, eliminar el primer símbolo del contenido de $P\bar{k}$
- $P\bar{k} \leftarrow P\bar{n}$
- $P\bar{k} \leftarrow \varepsilon$
- IF $Nar{k}
 eq 0$ GOTO $Lar{n}$
- IF $Par{k}$ BEGINS a GOTO $Lar{n}$
 - Si el contenido de $P\bar{k}$ comienza con el símbolo a, entonces ir a la instrucción con label $L\bar{n}$. Caso contrario, continuar con la siguiente instrucción
- GOTO $L\bar{n}$
- SKIP
- Una instrucción de \mathcal{S}^{Σ} es ya sea una instrucción básica de \mathcal{S}^{Σ} , o una palabra de la forma αI , donde $\alpha \in \{L\bar{n} : n \in N\}$ e I es una instrucción básica de \mathcal{S}^{Σ} .
 - Usaremos Ins^{Σ} para denotar el conjunto de todas las instrucciones de \mathcal{S}^{Σ}
 - Cuando I es de la forma $L\bar{n}J$ con J una instrucción básica, diremos que $L\bar{n}$ es la *label de I*
- Un *programa* de \mathcal{S}^Σ es una palabra de la forma $I_1I_2\ldots I_n$ donde $n\geq 1, I_1,\ldots,I_n\in Ins^\Sigma$ y además se cumple la *ley de los GOTO*: $\forall i\in\{1,\ldots,n\}$, si GOTO $L\bar{m}$ es un tramo final de I_i , entonces $\exists j\in\{1,\ldots,n\}$ tal que I_j tiene label $L\bar{m}$
 - Usaremos Pro^Σ para denotar el conjunto de todos los programas de \mathcal{S}^Σ
 - Definimos $n(\mathcal{P})$ como la cantidad de instrucciones de \mathcal{P} , e $I_i^{\mathcal{P}}$ como la i -ésima instrucción de \mathcal{P} para $i \in \{1,\dots,n(\mathcal{P})\}$. Además, $I_i^{\mathcal{P}} = \varepsilon$ cuando i=0 o $i>n(\mathcal{P})$
 - Notamos con $\lambda \mathcal{P}[n(\mathcal{P})]$ y $\lambda i \mathcal{P}[I_i^{\mathcal{P}}]$
- Lemas:
 - Parseo de programas: Sea Σ un alfabeto finito, se tiene que:
 - Si $I_1\ldots I_n=J_1\ldots J_m$ con $I_1,\ldots,I_n,J_1,\ldots,J_m\in Ins^\Sigma$, entonces n=m y $I_i=J_iorall i\geq 1$
 - Si $\mathcal{P} \in Pro^{\Sigma}$, entonces existe una *única* sucesión de instrucciones I_1, \ldots, I_n tal que $\mathcal{P} = I_1 \ldots I_n$ Luego, esto significa que, dado un programa \mathcal{P} , tenemos unívocamente

Luego, esto significa que, dado un programa \mathcal{P} , tenemos univocamente determinados $n(\mathcal{P})$ e $I_1, \ldots, I_{n(\mathcal{P})}$ tales que $\mathcal{P} = I_1 \ldots I_{n(\mathcal{P})}$

Semántica de \mathcal{S}^{Σ}

Definiciones:

• Bas: Definimos $Bas: Ins^{\Sigma} \to (\Sigma \cup \Sigma_P)^*$ dada por

$$Bas(I) = egin{cases} J & ext{si } I ext{ es de la forma } Lar{k}J ext{ con } J \in Ins^{\Sigma} \ I & ext{en otro caso} \end{cases}$$

- Asumiremos siempre que en una computación vía un programa de \mathcal{S}^{Σ} , todas excepto una cantidad finita de las variables numéricas tienen el valor 0 y todas excepto una cantidad finita de las variables alfabéticas tienen el valor ε
- *Estado*: Un estado es un par $(\vec{s}, \vec{\sigma}) = ((s_1, s_2, \dots), (\sigma_1, \sigma_2, \dots)) \in \omega^{[N]} \times \Sigma^{*[N]}$ y, si $i \geq 1$, entonces diremos que s_i es el contenido o valor de la variable $N\bar{i}$ en el estado $(\vec{s}, \vec{\sigma})$ y σ_i es el contenido o valor de la variable $P\bar{i}$ en el estado $(\vec{s}, \vec{\sigma})$
- Descripción instantánea: Una descripción instantánea es una terna $(i, \vec{s}, \vec{\sigma})$ tal que $(\vec{s}, \vec{\sigma})$ es un estado e $i \in \omega$.
 - Es decir, $\omega imes \omega^{[N]} imes \Sigma^{*[N]}$ es el conjunto de todas las descripciones instantáneas
 - Intuitivamente, $(i, \vec{s}, \vec{\sigma})$ nos dice que las variables están en el estado $(\vec{s}, \vec{\sigma})$ y que la instrucción que debemos realizar es $I_i^{\mathcal{P}}$
- Sucesora: Dado un programa \mathcal{P} , definimos $S_{\mathcal{P}}:\omega\times\omega^{[N]}\times\Sigma^{*[N]}\to\omega\times\omega^{[N]}\times\Sigma^{*[N]}$ como la función que asignará a una descripción instantánea $(i,\vec{s},\vec{\sigma})$ la descripción instantánea sucesora de $(i,\vec{s},\vec{\sigma})$ con respecto a \mathcal{P} . Es decir, hay varios casos posibles:
 - Si $i \notin \{1, \dots, n(\mathcal{P})\}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i, \vec{s}, \vec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}})=Nar{k}\leftarrow Nar{k}\dot{-}1$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma})=(i+1,(s_1,\ldots,s_{k-1},s_k\dot{-}1,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^\mathcal{P})=Nar{k}\leftarrow Nar{k}+1$, entonces $S_\mathcal{P}(i,ec{s},ec{\sigma})=(i+1,(s_1,\ldots,s_{k-1},s_k+1,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = Nar{k} \leftarrow Nar{n}$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma}) = (i+1,(s_1,\ldots,s_{k-1},s_n,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}})=Nar{k}\leftarrow 0$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma})=(i+1,(s_1,\ldots,s_{k-1},0,s_{k+1},\ldots),ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = ext{IF } Nar{k}
 eq 0 ext{ GOTO } Lar{m}$, entonces hay dos posibilidades:
 - ullet Si el valor de $Nar{k}$ es 0, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma})=(i+1,ec{s},ec{\sigma})$
 - Si el valor de $Nar{k}$ es no nulo, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma})=(\min\{l:I_l^{\mathcal{P}} ext{ tiene label }Lar{m}\},ec{s},ec{\sigma})$
 - Si $Bas(I_i^{\mathcal{P}}) = Par{k} \leftarrow {}^{\curvearrowright} Par{k}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, (\sigma_1, \ldots, \sigma_{k-1}, \, {}^{\curvearrowright} \sigma_k, \sigma_{k+1}, \ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = Par{k} \leftarrow Par{k}.\,a$, entonces $S_{\mathcal{P}}(i,ec{s},ec{\sigma}) = (i+1,ec{s},(\sigma_1,\ldots,\sigma_{k-1},\sigma_k a,\sigma_{k+1},\ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = Par{k} \leftarrow Par{n}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, (\sigma_1, \ldots, \sigma_{k-1}, \sigma_n, \sigma_{k+1}, \ldots))$
 - Si $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow \varepsilon$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, (\sigma_1, \ldots, \sigma_{k-1}, \varepsilon, \sigma_{k+1}, \ldots))$

- Si $Bas(I_i^{\mathcal{P}}) = \text{IF } P\bar{k} \text{ BEGINS } a \text{ GOTO } L\bar{m}$, entonces hay dos posibilidades:
 - Si el valor de $Par{k}$ comienza con a, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l: I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$
 - Si el valor de $P\bar{k}$ no comienza con a, entonces $S_{\mathcal{P}}(i,\vec{s},\vec{\sigma})=(i+1,\vec{s},\vec{\sigma})$
- Si $Bas(I_i^{\mathcal{P}}) = \operatorname{GOTO} L\bar{m}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l: I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$
- Si $Bas(I_i^{\mathcal{P}}) = \text{SKIP}$, entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, \vec{\sigma})$
- Computación partiendo de un estado: Dado un programa \mathcal{P} y un estado $(\vec{s}, \vec{\sigma})$, a la infinitupla

$$((1, \vec{s}, \vec{\sigma}), S_{\mathcal{P}}(1, \vec{s}, \vec{\sigma}), S_{\mathcal{P}}(S_{\mathcal{P}}(1, \vec{s}, \vec{\sigma})), \dots)$$

la llamaremos la computación de \mathcal{P} partiendo del estado $(\vec{s}, \vec{\sigma})$.

- Diremos que $S_{\mathcal{P}}(S_{\mathcal{P}}(\dots(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma}))\dots)) = (j,\vec{u},\vec{\eta})$ con $S_{\mathcal{P}}$ aplicado t veces, es la descripción instantánea obtenida luego de t pasos partiendo del estado $(\vec{s},\vec{\sigma})$, y $(\vec{u},\vec{\eta})$ es el estado obtenido luego de t pasos partiendo del estado $(\vec{s},\vec{\sigma})$
- Detención:
 - Cuando la primer coordenada de $S_{\mathcal{P}}(S_{\mathcal{P}}(\dots(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma}))\dots))$ (con $S_{\mathcal{P}}$ aplicado t veces) es $n(\mathcal{P})+1$, diremos que \mathcal{P} se detiene (luego de t pasos), partiendo desde el estado $(\vec{s},\vec{\sigma})$
 - Caso contrario, si ninguna de las primeras coordenadas en la infinitupla de la computación es igual a $n(\mathcal{P})+1$, diremos que \mathcal{P} no se detiene partiendo desde el estado $(\vec{s},\vec{\sigma})$

Funciones Σ -computables

- Consideraciones:
 - Dados $x_1,\ldots,x_n\in\omega$ y $\alpha_1,\ldots,\alpha_m\in\Sigma^*$ con $n,m\in\omega$, usaremos $||x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m||$ para denotar al estado $((x_1,\ldots,x_n,0,\ldots),(\alpha_1,\ldots,\alpha_m,\varepsilon,\ldots))$
 - Dado $\mathcal{P} \in Pro^{\Sigma}$, definamos las funciones $\Psi^{n,m,\#}_{\mathcal{P}}$ y $\Psi^{n,m,*}_{\mathcal{P}}$ como:
 - $\bullet \ \ D_{\Psi^{n,m,\#}_{\mathcal{P}}} = \{(\vec{x},\vec{\alpha}) \in \omega^n \times \Sigma^{*m} : \mathcal{P} \text{ termina partiendo de } ||\vec{x},\vec{\alpha}||\}$
 - $\bullet \ \ D_{\Psi^{n,m,*}_{\mathcal{P}}} = \{(\vec{x},\vec{\alpha}) \in \omega^n \times \Sigma^{*m} : \mathcal{P} \text{ termina partiendo de } ||\vec{x},\vec{\alpha}||\}$
 - $\Psi^{n,m,\#}_{\mathcal{D}}(ec{x},ec{lpha})= ext{valor de N1 cuando }\mathcal{P}$ termina partiendo de $||ec{x},ec{lpha}||$
 - $\Psi^{n,m,*}_{\mathcal{P}}(ec{x},ec{lpha})= ext{valor de P1 cuando }\mathcal{P}$ termina partiendo de $||ec{x},ec{lpha}||$
- Definición de función Σ -computable: Una función Σ -mixta $f:S\subseteq \omega^n\times \Sigma^{*m}\to \omega$ es Σ -computable si existe un programa $\mathcal{P}\in\mathcal{S}^\Sigma$ tal que $f=\Psi^{n,m,\#}_{\mathcal{P}}$
 - Se define de forma análoga para funciones Σ -mixtas $f:S\subseteq\omega^n imes\Sigma^{*m}\to\Sigma^*$ con $f=\Psi^{n,m,*}_{\mathcal D}$
 - En tal caso decimos que f es *computada* por \mathcal{P}
- Propiedades:

• Si f es Σ -computable, entonces f es Σ -efectivamente computable

Macros

- Hay dos tipos de macros:
 - Los de asignación: cuando son expandidos nos dan un programa que simula la asignación a una variable dada del resultado de aplicar una función a los contenidos de ciertas otras variables
 - Los de tipo IF: cuando son expandidos nos dan un programa salvo por la ley de los GOTO, el cual direcciona al label cuando se cumple cierta propiedad (predicado) relativa a los contenidos de las variables
- Idea: consideraremos que una macro es un "molde" (que llamaremos M), el cual puede ser de la siguiente forma (ejemplo)

$$V4 \leftarrow V2$$
 $V5 \leftarrow V3$
 $V1 \leftarrow V1$
 $A1 \quad IFV5 \neq 0 \text{ GOTO } A2$
 $GOTO \quad A3$
 $A2 \quad V5 \leftarrow V5 \dot{-}1$
 $V1 \leftarrow V1 + 1$
 $GOTO \quad A1$
 $A3 \quad SKIP$

Luego, la forma de usar esta *macro* será "reemplazando" cada ocurrencia de V1, V2, V3 por las variables numéricas que correspondan, y cada ocurrencia de V4, V5 por variables que no nos importen en el programa (*auxiliares*). De igual modo, cada ocurrencia de A1, A2, A3 serán reemplazadas por labels auxiliares.

- A las palabras de la forma $V ar{n}$, con $n \in N$, las llamaremos *variables numéricas de macro*
- A las palabras de la forma $W\bar{n}$, con $n\in N$, las llamaremos *variables alfabéticas* de macro
- A las palabras de la forma $A\bar{n}$, con $n \in N$, las llamaremos *labels de macro*
- Nota: siempre supondremos que la primera instrucción de las macros no es labeleada, porque muchas veces cuando expandamos un macro nos interesará labelear la primera instrucción de dicha expansión

Macros asociados a funciones Σ -computables

- Dada una función $f:D_f\subseteq\omega^n imes\Sigma^{*m}\to\omega$, usaremos $[V\overline{n+1}\leftarrow f(V1,\ldots,V\bar{n},W1,\ldots,W\bar{m})]$ para denotar a la macro M que cumpla las siguientes propiedades
 - Las variables oficiales de M son $V1, \dots, V\overline{n+1}, W1, \dots, W\overline{m}$
 - M no tiene labels oficiales
 - Si reemplazamos:

- las variables oficiales de M por variables concretas $N\overline{k_1},\ldots,N\overline{k_{n+1}},P\overline{j_1},\ldots,P\overline{j_m}$,
- las variables auxiliares de M por variables concretas distintas de a dos y NO pertececientes a $\{N\overline{k_1},\dots,N\overline{k_{n+1}},P\overline{j_1},\dots,P\overline{j_m}\}$,
- los labels auxiliares de M por labels concretos distintos de a dos, entonces la palabra obtenida es un programa de \mathcal{S}^Σ que denotaremos con $[N\overline{k_{n+1}} \leftarrow f(N\overline{k_1},\dots,N\overline{k_n},P\overline{j_1},\dots,P\overline{j_m})]$ y tiene la siguiente propiedad:
 - Si corremos $[N\overline{k_{n+1}} \leftarrow f(N\overline{k_1},\ldots,N\overline{k_n},P\overline{j_1},\ldots,P\overline{j_m})]$ partiendo de un estado e que asigne a $N\overline{k_1},\ldots,N\overline{k_n},P\overline{j_1},\ldots,P\overline{j_m}$ los valores $x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m$ respectivamente, entonces independientemente de los valores que les asigne e a las demás variables, se dará que:
 - Si $(\vec{x},\vec{lpha})
 otin D_f$, entonces $[N\overline{k_{n+1}} \leftarrow f(N\overline{k_1},\dots,N\overline{k_n},P\overline{j_1},\dots,P\overline{j_m})]$ no se detiene partiendo de e
 - Si $(\vec{x}, \vec{\alpha}) \in D_f$, entonces $[N\overline{k_{n+1}} \leftarrow f(N\overline{k_1}, \dots, N\overline{k_n}, P\overline{j_1}, \dots, P\overline{j_m})]$ se detiene partiendo de e y llega a un estado e' que cumple que:
 - e' le asigna a $N\overline{k_{n+1}}$ el valor $f(x_1,\ldots,x_n,lpha_1,\ldots,lpha_m)$
 - e' solo puede diferir de e en los valores que le asigna a $N\overline{k_{n+1}}$ o a las variables que fueron a reemplazar a las variables auxiliares de M
- De forma análoga se define para $f:D_f\subseteq \omega^n imes \Sigma^{*m} o \Sigma^*$ con $[W\overline{m+1}\leftarrow f(V1,\ldots,Var{n},W1,\ldots,War{m})]$
- Propiedades:
 - Sea Σ un alfabeto finito, entonces:
 - Sea $f:D_f\subseteq \omega^n imes \Sigma^{*m} o \omega$ una función Σ -computable, entonces en S^Σ hay un macro $[V\overline{n+1}\leftarrow f(V1,\ldots,Var{n},W1,\ldots,War{m})]$
 - Sea $f:D_f\subseteq \omega^n imes \Sigma^{*m} o \Sigma^*$ una función Σ -computable, entonces en S^Σ hay un macro $[W\overline{m+1}\leftarrow f(V1,\ldots,Var{n},W1,\ldots,War{m})]$
 - Si $f:D_f\subseteq \omega^n imes \Sigma^{*m} o \omega$ es tal que en S^Σ hay un macro $[V\overline{n+1}\leftarrow f(V1,\ldots,Var{n},W1,\ldots,War{m})]$, entonces f es Σ -computable

Macros asociados a predicados Σ -computables

- Dado un predicado $P:D_P\subseteq\omega^n\times\Sigma^{*m}\to\omega$, usaremos $[\operatorname{IF}P(V1,\ldots,V\bar{n},W1,\ldots,W\bar{m})\ \operatorname{GOTO}\ A1]$ para denotar un macro M el cual cumpla las siguientes propiedades:
 - Las variables oficiales de M son $V1, \dots, V\bar{n}, W1, \dots, W\bar{m}$
 - A1 es el único label oficial de M
 - Si reemplazamos
 - las variables oficiales de M por variables concretas $N\overline{k_1},\dots,N\overline{k_n},P\overline{j_1},\dots,P\overline{j_m},$
 - el label oficial A1 por el label concreto $Lar{k}$
 - las variables auxiliares de M por variables concretas distintas de a dos y NO pertececientes a $\{N\overline{k_1},\ldots,N\overline{k_n},P\overline{j_1},\ldots,P\overline{j_m}\}$,

- los labels auxiliares de M por labels concretos distintos de a dos y ninguno de ellos igual a $L\bar{k}$,
 - entonces la palabra obtenida es un programa de \mathcal{S}^{Σ} , salgo por la *lev de los GOTO* respecto de $L\bar{k}$, que denotaremos con
 - $[\operatorname{IF} P(N\overline{k_1},\ldots,N\overline{k_n},P\overline{j_1},\ldots,P\overline{j_m}) \operatorname{GOTO} L\overline{k}]$ y tiene la propiedad de que si lo hacemos correr partiendo de un estado e que asigne a
 - $N\overline{k_1},\ldots,N\overline{k_n},P\overline{j_1},\ldots,P\overline{j_m}$ los valores $x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m$ respectivamente, entonces independientemente de los valores que les asigne e a las demás variables, se dará que:
 - Si $(\vec{x},\vec{lpha})
 ot\in D_P$, entonces $[\operatorname{IF}P(N\overline{k_1},\ldots,N\overline{k_n},P\overline{j_1},\ldots,P\overline{j_m})\ \operatorname{GOTO}\ Lar{k}]$ **no** se detiene partiendo de e
 - Si $(\vec{x},\vec{lpha})\in D_P$ y $P(x_1,\ldots,x_n,lpha_1,\ldots,lpha_m)=1$, entonces, luego de una cantidad finita de pasos, [IF $P(N\overline{k_1},...,N\overline{k_n},P\overline{j_1},...,P\overline{j_m})$ GOTO $L\overline{k}$] direcciona al label $L\bar{k}$ quedando en un estado e', el cual solo puede diferir de e en los valores que le asigna a las variables que fueron a reemplazar a las variables auxiliares de M
 - Si $(\vec{x},\vec{lpha})\in D_P$ y $P(x_1,\ldots,x_n,lpha_1,\ldots,lpha_m)=0$, entonces, luego de una cantidad finita de pasos, [IF $P(N\overline{k_1},...,N\overline{k_n},P\overline{j_1},...,P\overline{j_m})$ GOTO $L\overline{k}$] se detiene partiendo de e, y quedando en un estado e' que solo puede diferir de e en los valores que le asigna a las variables que fueron a reemplazar a las variables auxiliares de M
- Propiedades:
 - Sea $P:D_P\subseteq\omega^n imes\Sigma^{*m} o\omega$ un predicado Σ -computable, entonces en S^Σ hay un macro [IF $P(V1, ..., V\bar{n}, W1, ..., W\bar{m})$ GOTO A1]
 - Si $P:D_P\subseteq\omega^n imes\Sigma^{*m}\to\omega$ es tal que en S^Σ hay un macro [IF $P(V1, ..., V\bar{n}, W1, ..., W\bar{m})$ GOTO A1], entonces P es Σ -computable
 - Si $P:S\subseteq\omega^n imes\Sigma^{*m} o\omega$ y $Q:S\subseteq\omega^n imes\Sigma^{*m} o\omega$ son predicados Σ -computables, entonces $P \wedge Q, P \vee Q, \neg P$ son Σ -computables

Conjuntos Σ -enumerables

- Un conjunto $S\subseteq\omega^n imes\Sigma^{*m}$ es Σ -enumerable si es vacío o existe una función $F:\omega o\omega^n imes\Sigma^{*m}$ tal que $I_F=S$ y $F_{(i)}$ sea una función Σ -computable para todo $i\in 1,\ldots,n+m$
 - Es decir, un conjunto no vacío $S \subseteq \omega^n \times \Sigma^{*m}$ es Σ -enumerable si y solo si hay programas $\mathcal{P}_1, \dots, \mathcal{P}_{n+m}$ tales que:
 - $Dom(\Psi_{\mathcal{P}_1}^{1,0,\#}) = \ldots = Dom(\Psi_{\mathcal{P}_n}^{1,0,\#}) = \omega$

 - $egin{aligned} m{\bullet} & Dom(\Psi_{\mathcal{P}_{n+1}}^{0,1,*}) = \ldots = Dom(\Psi_{\mathcal{P}_{n+m}}^{0,1,*}) = \omega \ m{\bullet} & S = Im[\Psi_{\mathcal{P}_{1}}^{1,0,\#}, \ldots, \Psi_{\mathcal{P}_{n}}^{1,0,\#}, \Psi_{\mathcal{P}_{n+1}}^{0,1,*}, \ldots, \Psi_{\mathcal{P}_{n+m}}^{0,1,*}] \end{aligned}$ es decir, $\mathcal{P}_1,\ldots,\mathcal{P}_{n+m}$ enumeran a S.
- Propiedad: Sea $S\subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío, entonces son equivalentes:
 - S es Σ -enumerable

• Hay un programa $\mathcal{P} \in Pro^{\Sigma}$ tal que $\forall x \in \omega, \mathcal{P}$ se detiene partiendo de ||x|| y llega a un estado de la forma $((x_1,\ldots,x_n,y_1,\ldots),(\alpha_1,\ldots,\alpha_m,\beta_1,\ldots))$ con $(x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m) \in S$ $\forall (x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m) \in S, \ \exists x \in \omega \ \text{tal que } \mathcal{P} \ \text{se detiene partiendo de } ||x|| \ \text{y llega}$ a un estado de la forma $((x_1,\ldots,x_n,y_1,\ldots),(\alpha_1,\ldots,\alpha_m,\beta_1,\ldots))$ Decimos que \mathcal{P} enumera a S

Conjuntos Σ -computables

- Un conjunto $S\subseteq\omega^n imes \Sigma^{*m}$ es Σ -computable si $\chi_S^{\omega^n imes \Sigma^{*m}}$ es Σ -computable
 - Es decir, $S\subseteq\omega^n\times\Sigma^{*m}$ es Σ -computable si y solo si hay un programa $\mathcal{P}\in Pro^{\Sigma}$ que computa a $\chi_S^{\omega^n\times\Sigma^{*m}}$:
 - Si $(\vec{x}, \vec{\alpha}) \in S$, entonces \mathcal{P} se detiene partiendo de $||x_1, \dots, x_n, \alpha_1, \dots, \alpha_m||$ y la variable N1 queda con contenido igual a 1
 - Si $(\vec{x},\vec{\alpha}) \not\in S$, entonces \mathcal{P} se detiene partiendo de $||x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m||$ y la variable N1 queda con contenido igual a 0 Decimos que \mathcal{P} decide la pertenencia a S respecto al conjunto $\omega^n \times \Sigma^{*m}$
- *Macros*: Si $S\subseteq \omega^n \times \Sigma^{*m}$ es Σ -computable entonces, como $\chi_S^{\omega^n \times \Sigma^{*m}}$ es Σ -computable, hay un macro $[\operatorname{IF} \chi_S^{\omega^n \times \Sigma^{*m}}(V1,\ldots,V\bar{n},W1,\ldots,W\bar{m}) \text{ GOTO } A1]$
 - Lo escribiremos mejor como [IF $(V1, ..., V\bar{n}, W1, ..., W\bar{m}) \in S$ GOTO A1]