

28.7 First In First Out Module (FIFO)

28.7.1 Overview

The FIFO unit is the storage part of the FIFO sub-module. The F2A described in (FIFO to ARU Unit) and the AFD described in chapter "AEI to FIFO Data Interface" implement the interface part of the FIFO sub-module to the ARU and the AEI bus. Each FIFO unit embeds eight logical FIFOs. These logical FIFOs are configurable in the following manner:

- FIFO size (defines start and end address)
- FIFO operation modes (normal mode or ring buffer operation mode)
- Fill level control / memory region read protection

Each logical FIFO represents a data stream between the sub-modules of the GTM and the microcontroller connected to AFD sub-module (see chapter AEI to FIFO Data Interface). The FIFO RAM counts 1K words, where the word size is 29 bit. This gives the freedom to program or receive 24 bit of data together with the five control bits inside an ARU data word.

The FIFO unit provides three ports for accessing its content. One port is connected to the F2A interface, one port is connected to the AFD interface and one port has its own AEI bus interface.

The AFD interface has always the highest priority. Accesses to the FIFO from AFD interface and direct AEI interface in parallel - which means at the same time - is not possible, because both interfaces are driven from the same AEI bus interface of the GTM.

The priority between F2A and direct AEI interface can be defined by software. This can be done by using the register FIFO[i]_CH[x]_CTRL for all FIFO channels of the sub-module.

The FIFO is organized as a single RAM that is also accessible through the FIFO AEI interface connected to one of the FIFO ports. To provide the direct RAM access, the RAM is mapped into the address space of the microcontroller. The addresses for accessing the RAM via AEI can be found in [1].

After reset, the FIFO RAM isn't initialized by hardware.

The FIFO channels can be flushed individually. Each of the eight FIFO channels can be used whether in normal FIFO operation mode or in ring buffer operation mode.

Beside the possibility of flushing each FIFO channel directly, a write access to FIFO[i]_CH[x]_END_ADDR or to FIFO[i]_CH[x]_START_ADDR will also flush the regarding channel which means that the read and write pointer and also the fill level of the regarding channel will be reset. In consequence of this existing data in the concerned FIFO channel are not longer valid- thereafter the channel is empty.

28.7.2 Operation Modes

28.7.2.1 FIFO Operation Mode

In normal FIFO operation mode the content of the FIFO is written and read in first-in first-out order, where the data is destroyed after it is delivered to the system bus or the F2A sub-module (see chapter "FIFO to ARU Unit").

The upper and lower watermark registers (registers FIFO[i]_CH[x]_UPPER_WM and FIFO[i]_CH[x]_LOWER_WM) are used for controlling the FIFO's fill level. If the fill level falls below the lower watermark or it exceeds the upper watermark, an interrupt signal is triggered by the FIFO sub-module if enabled inside the FIFO[i]_IRQ_EN.

The interrupt signals are sent to the Interrupt Concentrator Module (ICM) (see chapter "Interrupt Concentrator Module"). The ICM can also initiate specific DMA transfers.

28.7.2.2 Ring Buffer Operation Mode

The ring buffer mode can be used to provide a continuous data or configuration stream to the other GTM sub-modules without CPU interaction. In ring buffer mode the FIFO provides a continuous data stream to the F2A sub-module. The first word of the FIFO is delivered first and after the last word is provided by the FIFO to the ARU, the first word can be obtained again.

If in ring buffer mode the read pointer reaches the write pointer it will be set again to the configured start address. So the read pointer always rotates cyclic between the configured start address of the regarding FIFO channel (first written data) and the write pointer which points to the last written data of the channel.

It is possible to add data to the FIFO channel via the AEI to FIFO interface (AFD) using the register AFD[i]_CH[x]_BUF_ACC while running in ring buffer mode. The new written data will be added in the next ring buffer cycle.

However, the register AFD[i]_CH[x]_BUF_ACC should not be read in read buffer mode.

It is recommended to fill the FIFO channel first before enabling the data stream in the FIFO to ARU interface (F2A). Modifications of the continuous data stream can be achieved by using direct memory access which is provided by the FIFO AEI interface.

28.7.2.3 DMA Hysteresis Mode

The DMA hysteresis mode can be enabled by setting bit DMA_HYSTERESIS=1 in the **FIFO[i]_CH[x]_IRQ_MODE** register.

In the DMA hysteresis mode the lower and upper watermark will be masked to generate the DMA request (=fifo_irg) in the following manner.

If a DMA is writing data to a FIFO (configured by setting bit DMA_HYST_DIR=1 in register FIFO[i]_CH[x]_IRQ_MODE), the DMA request will be generated by the lower watermark. The upper watermark does not generate a DMA request. The next DMA request will be generated by the next lower watermark until the upper watermark was reached.

If a DMA is reading data from a FIFO (configured by setting bit DMA_HYST_DIR=0 in register FIFO[i]_CH[x]_IRQ_MODE), the DMA request will be generated by the upper watermark. The lower watermark does not generate a DMA request. The next DMA request will be generated by the next upper watermark until the lower watermark was reached.

Note that the watermarks have to achieve the following condition depending on the irq mode

- IRQ_MODE = Level / Pulse / Pulse-Notify mode:
 - Upper watermark > Lower watermark
- IRQ_MODE = Single-Pulse mode:
 - Upper watermark > Lower watermark + 1

28.7.3 FIFO Interrupt

Table 17 FIFO Interrupt Signals

Signal	Description
FIFO[i]_CH[x]_EMPTY	Indicating empty FIFO x (x:07) was reached
FIFO[i]_CH[x]_FULL	Indicating full FIFO x (x:07) was reached

Table 17 FIFO Interrupt Signals (cont'd)

Signal	Description
FIFO[i]_CH[x]_LOWER_WM	Indicating FIFO x (x:07) reached lower watermark.
FIFO[i]_CH[x]_UPPER_WM	Indicating FIFO x (x:07) reached upper watermark.

28.7.4 FIFO Configuration Register Overview

Table 18 FIFO Configuration Register Overview

Register Name	Description	see Page
FIFO[i]_CH[z]_CTR	FIFOi channel z control register	84
FIFO[i]_CH[z]_END_ADDR	FIFOi channel z end address register	85
FIFO[i]_CH[z]_START_ADDR	FIFOi channel z start address register	85
FIFO[i]_CH[z]_UPPER_WM	FIFOi channel z upper watermark register	86
FIFO[i]_CH[z]_LOWER_WM	FIFOi channel z lower watermark register	86
FIFO[i]_CH[z]_STATUS	FIFOi channel z status register	87
FIFO[i]_CH[z]_FILL_LEVEL	FIFOi channel z fill level register	88
FIFO[i]_CH[z]_WR_PTR	FIFOi channel z write pointer register	88
FIFO[i]_CH[z]_RD_PTR	FIFOi channel z read pointer register	89
FIFO[i]_CH[z]_IRQ_NOTIFY	FIFOi channel z interrupt notification register	90
FIFO[i]_CH[z]_IRQ_EN	FIFOi channel z interrupt enable register	91
FIFO[i]_CH[z]_EIRQ_EN	FIFOi channel z error interrupt enable register	94
FIFO[i]_CH[z]_IRQ_FORCINT	FIFOi channel z force interrupt register	92
FIFO[i]_CH[z]_IRQ_MODE	FIFOi channel z interrupt mode control register	93

28.7.5 FIFO Configuration Registers Description

28.7.5.1 Register FIFO[i]_CH[z]_CTRL

FIFOi Channel z Control Register

	CHz_C Channe		-		(018400	0 _H +i*40)00 ^H +z,	*40 _H)	Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	i	i	i		i			0		i	i.	1			
	1		l				1	r		I			1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	' '	0	1	1	1	1	1	WULO CK	FLUSH	RAP	RBM
*	*					r						rw	rw	rw	rw

Field	Bits	Туре	Description
RBM	0	rw	Ring buffer mode enable 0 _B Normal FIFO operation mode 1 _B Ring buffer mode
RAP	1	rw	RAM access priority RAP bit is only functional in register FIFO_0_CTRL. The priority is defined for all FIFO channels there. 0 _B FIFO ports have higher access priority than AEI-IF 1 _B AEI-IF has higher access priority than FIFO ports
FLUSH	2	rw	FIFO Flush control A FIFO Flush operation resets the FIFO[i]_CH[z]_FILL_LEVEL, FIFO[i]_CH[z]_WR_PTR and FIFO[i]_CH[z]_RD_PTR registers to their initial values. 0 _B Normal operation 1 _B Execute FIFO flush (bit is automatically cleared after flush)
WULOCK	3	rw	RAM write unlock Enable/disable direct RAM write access to the memory mapped FIFO region. Only the bit WULOCK of register FIFO[i]_CH0_CTRL enables/disables the direct RAM write access for all FIFO channel (whole FIFO RAM). The WULOCK bits of the other channels are writeable but have no effect. 0 _B Direct RAM write access disabled 1 _B Direct RAM write access enabled
0	31:4	r	Reserved Read as zero, shall be written as zero.

16

Generic Timer Module (GTM)

28.7.5.2 Register FIFO[i]_CH[z]_END_ADDR

FIFOi Channel z End Address Register

FIFOi_CHz_END_ADDR (i=0-2;z=0-7)

FIFOi C	hanne	l z End	Addre	ss Regi	ister (018404	4 _H +i*40)00 _H +z	*40 _H)			R	eset Va	alue: T	able 19
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								0							
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		()	ı	1		1			AD	DR			1	
		ı	r							r	W				

Field	Bits	Туре	Description
ADDR	9:0	rw	End address for FIFO channel z value for ADDR is calculated as ADDR = 128*(x+1)-1 A write access will flush the regarding channel
0	31:10	r	Reserved Read as zero, shall be written as zero.

Table 19 Reset Values of FIFOi_CHz_END_ADDR (i=0-2;z=0-7)

Reset Type	Reset Value	Note
Application Reset	0x80 * (z + 1) - 1	

28.7.5.3 Register FIFO[i]_CH[z]_START_ADDR

FIFOi Channel z Start Address Register

FIFOi_CHz_START_ADDR (i=0-2;z=0-7)

FIFOi Channel z Start Address Register (018408_H+i*4000_H+z*40_H) **Reset Value: Table 20** 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

)							
					1	l		r	1		I	l	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		()							AD	DR				
<u> </u>	1		r	1	1		1		1	r	W	1	1	l	

Field	Bits	Туре	Description
ADDR	9:0	rw	Start address for FIFO channel z
			Initial value for ADDR is calculated as ADDR = 128*z. A write access will flush the regarding channel.

Field	Bits	Туре	Description
0	31:10	r	Reserved
			Read as zero, shall be written as zero.

Table 20 Reset Values of FIFOi_CHz_START_ADDR (i=0-2;z=0-7)

Reset Type	Reset Value	Note
Application Reset	0x80 * z	

28.7.5.4 Register FIFO[i]_CH[z]_UPPER_WM

FIFOi Channel z Upper Watermark Register

FIFOi_CHz_UPPER_WM (i=0-2;z=0-7)

FIFOi Channel z Upper Watermark Register(01840C_H+i*4000_H+z*40_H) Application Reset Value: 0000 0060_H

•		- PP					о . о он		т – .	'H' ''P	P 1. Cu 1.				Н
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	ı	ı	ı	ı	ı	•	D	ı	ı	1	I	ı	I	1
	1	1	1	Ī	1	I		r	1	I	1	Ī	1	Ĭ	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			0					ı	·	AD	DR	I	ı	I	'
<u> </u>			r	1		<u> </u>		1		r	W		1		

Field	Bits	Туре	Description
ADDR	9:0	rw	Upper watermark address for channel z The upper watermark is configured as a relative fill level of the FIFO. ADDR must be in range: 0 <= ADDR <= FIFO[i]_CH[x]_END_ADDR - FIFO[i]_CH[x]_START_ADDR. Initial value for ADDR is defined as ADDR = 0x60.
0	31:10	r	Reserved Read as zero, shall be written as zero.

28.7.5.5 Register FIFO[i]_CH[z]_LOWER_WM

FIFOi Channel z Lower Watermark Register

FIFOi_CHz_LOWER_WM (i=0-2;z=0-7)

FIFOi Channel z Lower Watermark Register(018410_H+i*4000_H+z*40_H) Application Reset Value: 0000 0020_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	ı	1	ı	ı	' (0	1	1	1	I	ı	I	ı
	1	I	I.	1	I	I.	1	1	1	1	1	1	I	1	I
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ı	' ()		ı		ı	ı	ı	AD	DR	I	ı	I	ı
	1	1	1	1	1		1	1	1	1	1		1		1
			r							r	W				

Field	Bits	Туре	Description
ADDR	9:0	rw	Lower watermark address for channel z The lower watermark is configured as a relative fill level of the FIFO. ADDR must be in range: 0 <= ADDR <= FIFO[i]_CH[z]_END_ADDR - FIFO[i]_CH[z]_START_ADDR. Initial value for ADDR is defined as ADDR = 0x20.
0	31:10	r	Reserved Read as zero, shall be written as zero.

28.7.5.6 Register FIFO[i]_CH[z]_STATUS

FIFOi Channel z Status Register

FIFOi_ FIFOi (-	(01841	4 _H +i*4(000 _H +z	*40 _H)	Ар	plicati	on Res	et Valu	e: 0000	0005 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								0							
		II.	I		1			r				1	<u>I</u>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	,	0	1		1			UP_W M	LOW_ WM	FULL	EMPT Y
						r						r	r	r	r

Field	Bits	Туре	Description						
ЕМРТҮ	0	r	FIFO is empty Bit only applicable in normal mode. 0 _B Fill level greater then 0 1 _B Fill level = 0						
FULL	1	r	FIFO is full Bit only applicable in normal mode. 0 _B Fill level less than FIFO[i]_CH[z]_END_ADDR - FIFO[i]_CH[z]_START_ADDR + 1 1 _B Fill level = FIFO[i]_CH[z]_END_ADDR - FIFO[i]_CH[z]_START_ADDR + 1						
LOW_WM	2	r	Lower watermark reached Bit only applicable in normal mode. 0 _B Fill level greater than lower watermark 1 _B Fill level less than or equal to lower watermark						
UP_WM	3	r	Upper watermark reached Bit only applicable in normal mode. 0 _B Fill level less than upper watermark 1 _B Fill level greater than or equal to upper watermark						

Field	Bits	Туре	Description
0	31:4	r	Reserved
			Read as zero, shall be written as zero.

28.7.5.7 Register FIFO[i]_CH[z]_FILL_LEVEL

FIFOi Channel z Fill Level Register

FIFOi CHz FILL LEVEL (i=0-2:z=0-7)

FIFOi (_	_	•	Registe	•	(01841	8 _H +i*40)00 _H +z	'40 _H)	Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							(0							
	1	1	I	I	1		1	r	I		I	I	I	I	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		0								LEVEL					
1	1	r	1	1	1		1	1	1	r	1	1	1	1	

Field	Bits	Туре	Description
LEVEL	10:0	r	Fill level of the current FIFO
			LEVEL is in range:
			$0 \le LEVEL \le FIFO[i]_CH[z]_END_ADDR - FIFO[i]_CH[z]_START_ADDR + 1$
			Register content is compared to the upper and lower watermark values
			for this channel to detect watermark over- and underflow.
0	31:11	r	Reserved
			Read as zero, shall be written as zero.

28.7.5.8 Register FIFO[i]_CH[z]_WR_PTR

FIFOi Channel z Write Pointer Register

FIFOi_CHz_WR_PTR (i=0-2;z=0-7)

FIFOi (Channe	l z Writ	te Poin	ter Re	gister (018410	C _H +i*40	00 _H +z	*40 _H)			R	eset Va	alue: T	able 21
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	ı	I	ı	ı	I	•)	ı	!	I	I	I	I	!
	1	I		1	I			r	I.						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	•	,)	1	1					AD	DR			1	,
1			r		1						r				

Field	Bits	Туре	Description
ADDR	9:0	r	Position of the write pointer
			ADDR must be in range 0 <= ADDR <= 1023. Initial value for ADDR is defined as ADDR = FIFO[i]_CH[z]_START_ADDR
0	31:10	r	Reserved
			Read as zero, shall be written as zero.

Table 21 Reset Values of FIFOi_CHz_WR_PTR (i=0-2;z=0-7)

Reset Type	Reset Value	Note
Application Reset	0x80 * z	

28.7.5.9 Register FIFO[i]_CH[z]_RD_PTR

FIFOi Channel z Read Pointer Register

FIFOi_CHz_RD_PTR (i=0-2;z=0-7)

FIFOi Channel z Read Pointer Register (018420_H+i*4000_H+z*40_H) **Reset Value: Table 22** 31 30 25 24 26 21 20 19 18 17 16 0 15 14 13 12 11 10 8 7 6 0 **ADDR** 0

Field	Bits	Туре	Description
ADDR	9:0	r	Position of the read pointer ADDR must be in range 0 ≤ ADDR ≤ 1023. Initial value for ADDR is defined as ADDR = FIFO[i]_CH[z]_START_ADDR
0	31:10	r	Reserved Read as zero, shall be written as zero.

Table 22 Reset Values of FIFOi_CHz_RD_PTR (i=0-2;z=0-7)

Reset Type	Reset Value	Note
Application Reset	0x80 * z	

28.7.5.10 Register FIFO[i]_CH[z]_IRQ_NOTIFY

FIFOi Channel z Interrupt Notification Register

FIFOi_CHz_IRQ_NOTIFY (i=0-2;z=0-7)

FIFOi Channel z Interrupt Notification Register(018424_H+i*4000_H+z*40_H) Application Reset Value: 0000 0005_H

OOO3H															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	ı	1	ı	ı	ı		0	ı	ı	ı	1	ı	I	ı
	ı	ı	1	ı	I	I	1	r	ı	1	ı	1	ı	I	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1		1	•	0		1	1			FIFO_ UWM	FIFO_ LWM	FIFO_ FULL	FIFO_ EMPT Y
1	1	1	ı	1		r	_1	1	1	_1	1	rw	rw	rw	rw

Field	Bits	Type	Description
FIFO_EMPTY	0	rw	FIFO is empty
			This bit will be cleared on a CPU write access of value '1'. A read access
			leaves the bit unchanged.
			0 _B No interrupt occurred
			1 _B FIFO Empty interrupt occurred
FIFO_FULL	1	rw	FIFO is full
			See bit 0.
FIFO_LWM	2	rw	FIFO lower watermark was under-run
			See bit 0.
FIFO_UWM	3	rw	FIFO upper watermark was over-run
			See bit 0.
0	31:4	r	Reserved
			Read as zero, shall be written as zero.

28.7.5.11 Register FIFO[i]_CH[z]_IRQ_EN

FIFOi Channel z Interrupt Enable Register

FIFOi_CHz_IRQ_EN (i=0-2;z=0-7)

FIFOi C				•	Regist	er(018	428 _H +i	*4000 _H	+z*40 _H) Ар	plicati	ion Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	,	·	'	ı	Į.		D	,	ı	,	•	•	•	'
	I	1	1	ı	I	I	1	r	1	I	1		1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	l	ı	ı	()	ı	l	l	I	ı	IRQ_E	LWM_I RQ_E	FIFO_ FULL_ IRQ_E	EMPT Y_IRQ
	1	1	1	1	1	1	1	1	1	1	1	N	N	N	_EN
					I	r						rw	rw	rw	rw

Field	Bits	Туре	Description
FIFO_EMPTY_ IRQ_EN	0	rw	FIFO Empty interrupt enable 0 _B Disable interrupt, interrupt is not visible outside GTM 1 _B Enable interrupt, interrupt is visible outside GTM
FIFO_FULL_IR Q_EN	1	rw	FIFO Full interrupt enable 0 _B Disable interrupt, interrupt is not visible outside GTM 1 _B Enable interrupt, interrupt is visible outside GTM
FIFO_LWM_IR Q_EN	2	rw	FIFO Lower Watermark interrupt enable 0 _B Disable interrupt, interrupt is not visible outside GTM 1 _B Enable interrupt, interrupt is visible outside GTM
FIFO_UWM_IR Q_EN	3	rw	FIFO Upper Watermark interrupt enable 0 _B Disable interrupt, interrupt is not visible outside GTM 1 _B Enable interrupt, interrupt is visible outside GTM
0	31:4	r	Reserved Read as zero, shall be written as zero.

28.7.5.12 Register FIFO[i]_CH[z]_IRQ_FORCINT

FIFOi Channel z Force Interrupt Register

FIFOi_CHz_IRQ_FORCINT (i=0-2;z=0-7)

	_	l z For	,		egiste:	r(0184	2C _H +i*4	1000 _H +	z*40 _H)	Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'	ļ	,	ļ		ļ	•)	' '		'	,	!	!	
		1	1	1	1			r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	()	1	1	1 1		1	TRG_F IFO_U WM	_	TRG_F IFO_F ULL	TRG_F IFO_E MPTY
						•			•			rw	r\A/	r\A/	r\A/

Field	Bits	Туре	Description							
TRG_FIFO_EM PTY	0	rw	Force interrupt of FIFO Empty status This bit is cleared automatically after write. This bit is write protected by bit RF_PROT of register GTM_CTRL 0 _B Corresponding bit in status register will not be forced 1 _B Assert corresponding field in FIFO[i]_CH[z]_IRQ_NOTIFY register							
TRG_FIFO_FU LL	1	rw	Force interrupt of FIFO Full status This bit is cleared automatically after write. This bit is write protected by bit RF_PROT of register GTM_CTRL. O _B Corresponding bit in status register will not be forced 1 _B Assert corresponding field in FIFO[i]_CH[z]_IRQ_NOTIFY register							
TRG_FIFO_LW M	2	rw	Force interrupt of Lower Watermark This bit is cleared automatically after write. This bit is write protected by bit RF_PROT of register GTM_CTRL. 0 _B Corresponding bit in status register will not be forced 1 _B Assert corresponding field in FIFO[i]_CH[z]_IRQ_NOTIFY register							
TRG_FIFO_U WM	3	rw	Force interrupt of Upper Watermark This bit is cleared automatically after write. This bit is write protected by bit RF_PROT of register GTM_CTRL. O _B Corresponding bit in status register will not be forced 1 _B Assert corresponding field in FIFO[i]_CH[z]_IRQ_NOTIFY register							
0	31:4	r	Reserved Read as zero, shall be written as zero.							

28.7.5.13 Register FIFO[i]_CH[z]_IRQ_MODE

FIFOi Channel z Interrupt Mode Control Register

FIFOi_CHz_IRQ_MODE (i=0-2;z=0-7)

FIFOi Channel z Interrupt Mode Control Register(018430_H+i*4000_H+z*40_H) Application Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	1	1	1	1	ı		0	1	ı	ı	1			1
	1	1	1	1	I.	ı	1	r	1	ı	ı	1	11		1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ı	ı	ı	I	•)	ı	I	I	I	I	DMA_ HYST_ DIR	DMA_ HYSTE RESIS	IRQ_	MODE
	1	1	1	i	l .	r	1	i	i	l .	ı	rw	rw	r	w

Field	Bits	Туре	Description							
IRQ_MODE	1:0	rw	IRQ mode selection The interrupt modes are described in Section 28.4.5. 00 _B Level mode 01 _B Pulse mode 10 _B Pulse-Notify mode 11 _B Single-Pulse mode							
DMA_HYSTER ESIS	2	rw	Enable DMA hysteresis mode 0 _B Disable FIFO hysteresis for DMA access 1 _B Enable FIFO hysteresis for DMA access							
DMA_HYST_DI	3	rw	In the case of DMA writing data to a FIFO, the DMA requests must be generated by the lower watermark. If the DMA hysteresis is enabled, the FIFO does not generate a new DMA request until the upper watermark is reached. In the case of DMA reading data from FIFO, the DMA requests must be generated by the upper watermark. If the DMA hysteresis is enabled, the FIFO does not generate a new DMA request until the lower watermark is reached. 0_B DMA direction read in hysteresis mode 1_B DMA direction write in hysteresis mode							
0	31:4	r	Reserved Read as zero, shall be written as zero.							

28.7.5.14 Register FIFO[i]_CH[z]_EIRQ_EN

FIFOi Channel z Error Interrupt Enable Register

FIFOi_CHz_EIRQ_EN (i=0-2;z=0-7)

FIFOi Channel z Error Interrupt Enable Register(018434_H+i*4000_H+z*40_H) Application Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		ı	ı				0		1	1			ı	'
	1	1	1	1	Ī.		Ť.	1	T.	1	1	1	Ĭ.	1	
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	I	I	1		ı	I	ı	1	1	FIFO_	FIFO_	FIFO_	FIFO_
					()						UWM_	LWM_	FULL_	EMPT
												EIRQ_	EIRQ_	EIRQ_	Y_EIR
	1	ı	ı	ı	1	Ī	1	1	ı	1	1	EN	EN	EN	Q_EN
	•				ı	•				•		rw	rw	rw	rw

Field	Bits	Туре	Description
FIFO_EMPTY_ EIRQ_EN	0	rw	FIFO Empty error interrupt enable 0 _B Disable error interrupt, error interrupt is not visible outside GTM 1 _B Enable error interrupt, error interrupt is visible outside GTM
FIFO_FULL_EI RQ_EN	1	rw	FIFO Full error interrupt enable 0 _B Disable error interrupt, error interrupt is not visible outside GTM 1 _B Enable error interrupt, error interrupt is visible outside GTM
FIFO_LWM_EI RQ_EN	2	rw	FIFO Lower Watermark error interrupt enable 0 _B Disable error interrupt, error interrupt is not visible outside GTM 1 _B Enable error interrupt, error interrupt is visible outside GTM
FIFO_UWM_EI RQ_EN	3	rw	FIFO Upper Watermark error interrupt enable 0 _B Disable error interrupt, error interrupt is not visible outside GTM 1 _B Enable error interrupt, error interrupt is visible outside GTM
0	31:4	r	Reserved Read as zero, shall be written as zero.