

- **9.** No; (ρ, θ, ϕ) y $(-\rho, \theta + \pi, \pi \phi)$ representan el mismo punto.
- **11.** $r^2 + z^2 = R^2$.
- 13. (a) $\mathbf{e}_{\rho} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})/\sqrt{x^2 + y^2 + z^2}$ $= (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})/\rho$ $\mathbf{e}_{\theta} = (-y\mathbf{i} + x\mathbf{j})/\sqrt{x^2 + y^2} = (-y\mathbf{i} + x\mathbf{j})/r$ $\mathbf{e}_{\phi} = (xz\mathbf{i} + yz\mathbf{j} - (x^2 + y^2)\mathbf{k})/r\rho$.
 - (b) $\mathbf{e}_{\theta} \times \mathbf{j} = -y\mathbf{k}/\sqrt{x^2 + y^2}, \mathbf{e}_{\phi} \times \mathbf{j}$ = $(xz/r\rho)\mathbf{k} + (r/\rho)\mathbf{i}$.
- **15.** (a) La longitud de $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ es $(x^2 + y^2 + z^2)^{1/2} = \rho$.
 - (b) $\cos \phi = z/(x^2 + y^2 + z^2)^{1/2}$.
 - (c) $\cos \theta = x/(x^2 + y^2)^{1/2}$.
- 17. $0 \le r \le a, 0 \le \theta \le 2\pi$ significa que (r, θ, z) está dentro del cilindro de radio a centrado en el eje

z, y $|z| \le b$ significa que la distancia al plano xy es como máximo b.

- **19.** $-d/(6\cos\phi) \le \rho \le d/2, 0 \le \theta \le 2\pi$, y $\pi \cos^{-1}(\frac{1}{3}) \le \phi \le \pi$.
- **21.** Esta es una superficie cuya sección transversal con cada superficie z=c es una rosa de cuatro pétalos. Los pétalos se contraen hacia cero cuando |c| varía de 0 a 1.

Sección 1.5

- **1.** 7.
- 3. $|\mathbf{x} \cdot \mathbf{y}| = 10 = \sqrt{5}\sqrt{20} = \|\mathbf{x}\| \|\mathbf{y}\|$, luego $|\mathbf{x} \cdot \mathbf{y}| \le \|\mathbf{x}\| \|\mathbf{y}\|$ es cierto. $\|\mathbf{x} + \mathbf{y}\| = 3\sqrt{5} = \|\mathbf{x}\| + \|\mathbf{y}\|$, luego $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ es cierto.
- **5.** $|\mathbf{x} \cdot \mathbf{y}| = 5 < \sqrt{65} = ||\mathbf{x}|| ||\mathbf{y}||$, luego $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$ es cierto. $||\mathbf{x} + \mathbf{y}|| = \sqrt{28} < \sqrt{5} + \sqrt{13} = ||\mathbf{x}|| + ||\mathbf{y}||$, luego $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$ es cierto.
- 7. Suponemos que $\|\mathbf{v}\| = \|\mathbf{w}\|$. Entonces $\|\mathbf{v}\|^2 = \|\mathbf{w}\|^2$, so $(\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} \mathbf{w}) = \mathbf{v} \cdot \mathbf{v} \mathbf{w} \cdot \mathbf{w} = \|\mathbf{v}\|^2 \|\mathbf{w}\|^2 = 0$.
- 9. $AB = \begin{bmatrix} -1 & -1 & 3 \\ -1 & 11 & 3 \\ -6 & 5 & 8 \end{bmatrix}$, $\det A = -5$, $\det B = -24$, $\det AB = 120 (= \det A \det B)$, $\det (A + B) = -61 (\neq \det A + \det B)$.
- **11.** *B*.
- **13.** SUGERENCIA: para k=2 utilizar la desigualdad triangular para demostrar que $\|\mathbf{x}_1 + \mathbf{x}_2\| \le \|\mathbf{x}_1\| + \|\mathbf{x}_2\|$; entonces para k=i+1 observar que $\|\mathbf{x}_1 + \mathbf{x}_2 + \cdots + \mathbf{x}_{i+1}\| \le \|\mathbf{x}_1 + \mathbf{x}_2 + \cdots + \mathbf{x}_{i+1}\| \le \|\mathbf{x}_1 + \mathbf{x}_2 + \cdots + \mathbf{x}_{i+1}\|$.
- **15.** (a) Comprobar directamente n=1 y n=2. A continuación, reducir un determinante $n \times n$ a una suma de $(n-1) \times (n-1)$ determinantes y usar inducción.
 - (b) El argumento es similar al del apartado (a). Suponemos que la primera fila está multiplicada por λ . El primer término de la suma será λa_{11} veces un determinante $(n-1)\times (n-1)$ sin factores de λ . Los otros términos obtenidos (al desarrollar por la primera fila) son similares.