프로젝트 주제 발표

: 빅데이터 기반 머신러닝 시스템 개발

2조 김윤정, 원하은, 정가희, 정준하, 홍혜림

■ **주제** 영·유아 위험 행동 감지 시스템

■ 목차

1. 연구 방향설정

- 1. 연구 배경
- 2. 연구의 필요성

Ⅱ.시스템설계

- 1. 시스템 주요 기능
- 2. 시스템 구조
- 3. 시스템 구축 방법

Ⅲ.시스템구현

- 1. 데이터 수집 방법
- 2. 데이터 모델링
- 3. 단계별 위험 수준 측정

IV. 차별성 및 효과

- 1. 유사 특허와의 차별성
- 2. 기대 효과 swot 분석

1-1 연구 배경

<어린이 안전사고 현황>

구분	2015년	2016년	2017년	2018년	2019년
전체 안전사고 건수	68,002	69,018	71,000	72,013	73,007
어린이 안전사고 건수	25,152	22,545	25,699	24,097	24,971
전년대비 증감률	-	△10.4	14.0	△6.2	3.6
어린이 안전사고 비율	37.0	32.7	36.2	33.5	34.2

^{*}전체 안전사고 중에서 어린이 안전사고가 차지하는 비율

- 어린이 안전사고 비율은 매년 30%이상으로 안전 사고에 매우 취약한 계층
- 뒷좌석 유아용 카시트 장착이 의무화가 되며, 운전 시 뒷좌석 유아를 살피기 힘든 상황 발생
- 가정 내 장난감 및 이물질 삼킴 사고가 다수 발생

1-2 연구의 필요성

항·목	사례수	비율(%)	
보호자의 실수/부주의	217	69,1	
어린이의 실수/부주의	56	17,8	
시설물의 설치 잘못/관리소홀	19	6.1	
기계, 기구, 물품 및 상품의 결함	6	1,9	
안전교육부재	16	5,1	
계	314	100	

- 영유아 안전사고의 약 70%가 보호자의 실수 및 부주의로 인해 발생
- 이에 보호자들은 대부분의 시간을 아이 옆에서 사용하여 개인 시간을 보장 받지 못하고, 육아 스트레스 증가
- 현재 시중에 판매되고 있는 홈카메라는 소리 센서, 동작 센서를 통해 실시간으로 영유아의 행동을 감시하는 기능은 있으나, 위험 행동을 즉각적으로 알려주는 기능 부재

보호자가 주시하고 있지 않더라도 영유아의 위험 행동을 즉각적으로 알려주는 시스템 필요

2-1 주요 기능

00아~ 먹으면 안돼~

② 경고 행동시 아이에게 경고 메시지 전달

① 어플을 실행하여 아이의 행동 촬영

내 아이가 지금 위험합니다.!

③ 위험 행동시 소리 알림을 통해 위험 상황을 부모에게 전달

2-2 시스템 구조

2-3 시스템 구축 방법

데이터 수집부 영유아 행동 데이터 이물질 삼킴 넘어짐 호흡곤란 사물 이미지 데이터 장난감 생활 용품

데이터모델링

3-1 데이터 수집 방법

✓ 영유아의 행동 영상 데이터

- 개방 데이터 : 없음
- 직접 수집: 어린이집 CCTV, 직접 촬영
 - 수집할 행동 데이터
 - EX) 이물질 삼킴, 넘어짐, 호흡곤란 등

✓ 주변 환경 및 사물 인식 데이터

상품

신발, 가방, 화장품, 약세서리 포함 8개 분야 28개 아이템

금속, 화장품, 시계, 악세사리, 신발, 가방, 지갑, 모자, 아이웨어

- 개방 데이터 : AI 허브의 한국형 사물 이미지
- 직접 수집: 크롤링 사용
 - 네이버 이미지, 구글 이미지 등
 - 수집할 사물 데이터 EX) 장난감, 완구, 생활 용품 등

3-2 데이터 모델링 Conv-LSTM

• 일정 행동 구간 or 일정 시간 동안의 연속된 행동 영상을 이미지 레이블링 • 전처리한 데이터를 Conv-LSTM 알고리즘을 사용 하여 행동 분류 모델 생성

3-2 데이터 모델링 Conv-LSTM

✓ Conv-LSTM 사용 이유

- Conv-LSTM은 입/출력, 상태 레이어가 3
 차원 벡터로 연산되며 일반 행렬곱
 대신 합성곱으로 이루어져 시간적, 공간적 특성을 동시에 학습하는 장점 존재
- LSTM은 기존 RNN의 장기간 데이터에 대한 학습능력 저하와 기울기 소실 현상을 보완하여 긴 시퀀스 입력 처리에 장점

움직이는 영유아의 연속된 행동을 통해 다음 행동을 예측하는데 효과적

3-3 단계별 위험 수준 측정

- 아이의 행동에 기반하여 상태를 세가지로 측정
 > 안전, 경고, 위험
- 아이의 행동 단계에 따라 위험 행동을 두 가지로 분류
- 1) 안전 → 경고 → 위험 : 이물질 삼킴

경고 단계 = 아이가 이물질을 잡는다 위험 단계 = 아이가 이물질을 입에 가져다 댄다

2) 안전 → 위험: 넘어짐과 같은 중간 과정이 생략된 사고

4-1 유사 특허와의 차별성

① 유아의 위험 상태 예측을 위한 카메라 장치와 그 방법

- 별도의 카메라와 착용 센서가 필요
- 분석 대상이 몸을 자유롭게 움직이지 못하는 영아기로 한정
- 카메라나 센서 설치가 필요없으며, 영아기부터 유아기까지 (1~6세) 사용 가능

② 이미지 분석 및 딥러닝을 이용한 영유아 위험물 탐지 방법

본 발명의 일 실시예에 따른 이미지 분석 및 딥 러닝을 이용한 영유아 위험물 탐지 방법은 영유아 및 복수의 주 변 사물이 포함된 이미지로부터 딥 러닝 알고리즘을 이용하여 상기 복수의 주변 사물을 인식하는 단계, 상기 이 미지 내에서 상기 인식된 복수의 주변 사물에 대한 좌표 정보를 분석하는 단계, 및 상기 분석에 기초하여, 상기 영유아의 위험 상황을 예측하는 단계를 포함한다.

대 표 도 - 도1

- 물체 인식 위주의 영유아 위험물 탐지 시스템
- 위험 물체 감지뿐만 아니라 영유아의 행동 특성에 기반하여 위험한 행동 및 상태를 탐지 11

4-2 기대 효과 SWOT 분석

- 실시간으로 영유아의 위험행동을 감지해 알려 줘 사고 위험 감소
- 부모의 심리적 안정감 증대 및 스트레스 감소
- 스마트폰 어플을 통한 사용으로 높은 유동성과 편의성
- 기기 구입이 아닌 어플 구입으로 저렴한 가격

- 행동 분석 시 위험 행동과 일반 행동 구분이 어려움
- 데이터 확보의 어려움

Strength(강점)	S	W	Weakness(약점)
Opportunity(기회)	0	T	Threat(위협)

- 어린이 안전 사고 예방의 필요성을 대중화
- 어린이 시설을 통해 추가 데이터 확보 가능
- 유사 시스템의 존재로 인한 시스템 간의 경쟁

감사합니다