

Aula 03 - Frequências e Axiomas de Probabilidade

Probabilidade e Estatística - CRT 0029

Prof. Marciel Barros Pereira Ciência da Computação / Sistemas de Informação

2025.1

Sumário

- Revisão Teoria dos Conjuntos
- Frequência e Probabilidades
- Axiomas da Probabilidade

- Um conjunto é uma coleção de objetos;
- Descrição dos elementos:
 - A = { Estudantes matriculados em Probabilidade e Estatística };
 - B = $\{n : n \in \text{inteiro e } 1 \le n \le 6\};$
- Enumeração dos elementos:
 - C = Alice, Bruno, Camila, Diego;
 - \circ D = {3, 2, 5, 4, 6, 1};

Diagramas de Conjuntos

Pertinência e Continência

- Pertinência: entre elementos e conjuntos elemento ∈
 conjunto;
- Note que: $A = B \rightarrow A \subset B \in B \subset A$;

Conjuntos e Elementos

- Elemento é cada objeto distinto de um conjunto:
 - Bruno \subseteq A, $x = 1 \rightarrow x \subseteq B$
- Conjunto Vazio: conjunto sem elementos;
 - E = Estudantes que comecem com a letra C no conjunto A = {} → E = {};
- Conjunto Unitário: conjunto com um único elemento;
 - $F = \{n : n \in inteiro e 1 \le n < 2\} = \{1\};$

Conjuntos e Elementos

- Conjunto Universo: TODOS os elementos em um dado contexto
 - Ex: Pesquisa de opinião, S = { eleitores cadastrados na zona estudada }
- Conceito importante: Conjunto Finito × Infinito × Infinitamente Contável;

- União U , adição, operação OU:
 - A + B = A U B elementos pertencem a A OU a B OU a ambos;
- Intersecção ∩ , produto, operação E:
 - AB = A ∩ B elementos pertencem a A E a B simultaneamente;

 Diferença: A – B elementos que pertencem a A exceto os que pertencem a B;

 Complementar: A = A^C = S - A todos os elementos de S exceto os que pertencem a A;

 As operações de união e intersecção aplicadas a complementar

EXEMPLOS

- \circ A = {1, 2, 3, 5, 6, 7} e B = {4, 5, 6, 7}
- Determinar:
 - A U B;
 - \circ A \cap B;
 - A B;
 - B A;

• Síntese de Propriedades

Comutativa	$A \cup B = B \cup A$ $A \cap B = B \cap A$
Associativa	$(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$

• Síntese de Propriedades

Distributiva	$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
Absorção	$(A \cup B) \cap A = A$ $(A \cap B) \cup A = A$
Leis de De Morgan	$A - (B \cup C) = (A - B) \cap (A - C)$ $A - (B \cap C) = (A - B) \cup (A - C)$

Introdução

Vamos dar enfoque a eventos que se relacionam com variáveis que expressam grandezas **quantitativas de nível ordinal**, ou seja, grandezas discretas, enumeráveis;

- Suponha que o experimento ξ é repetido N vezes;
- Os eventos A e B são associados a ξ e ocorrem N_A e N_B vezes, respectivamente;
- Define-se Frequência Relativa do evento A :

$$f_a = \frac{N_A}{N}$$

Propriedades:

- $0 \le f_{\Delta} \le 1$;
- $f_A = 1 \Leftrightarrow N_A = N$ (A ocorre em todas as repetições);
- $f_{\Delta} = 0 \Leftrightarrow N_{\Delta} = 0$ (A jamais ocorre);
- Se A e B forem mutuamente exclusivos, $f_{A \cap B} = 0$, ou seja, $f_{A \cup B} = f_A + f_B$

Frequência × Probabilidades:

- Dado um experimento aleatório ξ, procura-se um número P que indique o quão provável é a ocorrência de um evento A.
- Abordagem da Frequência Relativa:

$$P(A) = \lim_{N \to \infty} f_A = \lim_{N \to \infty} \frac{N_A}{N}$$

Na prática, N deve ser grande. Quanto? N = 100, N = 3000,
 N = 50000, · · · ?

Lei dos Grandes Números

 A Lei dos Grandes Números nos diz que as estimativas dadas pelas frequências relativas tendem a ficar melhores com mais observações.

$$P(A) = \lim_{N \to \infty} f_A = \lim_{N \to \infty} \frac{N_A}{N}$$

Frequência × Probabilidades:

- A frequência relativa f_A depende de uma realização específica do experimento ξ;
- A probabilidade de A não deve depender da sorte (acaso);
- Importante relembrar, o resultado de um único evento é aleatório, mas a probabilidade de ocorrência do mesmo não!

Experimentos Aleatórios e Espaços Amostrais

Para definir um Experimento Aleatório E é preciso conhecer

- O Espaço Amostral: conjunto de todos os resultados possíveis de ξ;
- Os Eventos: subconjuntos do Espaço Amostral, i.e. qualquer conjunto de resultados possíveis;
- As **probabilidades** de todos os possíveis eventos.

Experimentos Aleatórios e Espaços Amostrais

Exemplos

- ξ_1 : Número de horas de trabalho para conclusão de uma atividade;
- ξ_2 : Número de peças defeituosas de um lote de 10 peças até que a terceira peça defeituosa seja retirada;
- ξ_3 : Medida do tempo de duração de vida de uma lâmpada;
- ξ_4 : Contagem do número de caras obtido após quatro lançamentos de uma moeda;

Lei Discreta Uniforme

Se todos os resultados que compõem o evento A forem **equiprováveis**, então a probabilidade do evento A é dada por:

$$P(A) = \frac{\mathsf{N}^{\circ} \mathsf{de} \mathsf{resultados} \mathit{favoráveis} \mathsf{ao} \mathsf{evento} A}{\mathsf{N}^{\circ} \mathsf{de} \mathsf{Resultados} \mathsf{Possíveis}}$$

Equiprovável: mesma probabilidade de ocorrência

Propriedades

- $P(\{\}) = 0$
 - Qual a probabilidade de não sair nenhum número no lançamento de um dado de seis faces?
- $P(A^c) = 1 P(A)$
 - Qual a probabilidade de sair o número 4 em um dado de 6 faces?
 - E a probabilidade de saírem os números 1, 2, 3, 5 ou 6?
- Para eventos A e B quaisquer, tem-se:
 P(A ∪ B) = P(A) + P(B) P(A ∩ B) → Diagrama de Ven

Lei Discreta Uniforme

Exemplos

- Dois dados não-viciados são lançados. Qual a probabilidade de a soma dos resultados dos dois dados ser igual a 7?
- Um baralho contém as cartas 2, 3, 5, 6, 7 e 9 nos 4 naipes.
 Qual a probabilidade de ocorrência de uma carta PAR retirada ao acaso?
- E se houver apenas 3 naipes?

Definição Axiomática

- Seja S o espaço amostral de um experimento ξ;
- A cada evento A ∈ S associa-se um número real P(A)
 , denominado Probabilidade de A;
- P(A): S → R, ou seja, associa um evento no espaço amostral S a um número real;

Definição Axiomática

P(A) satisfaz aos seguintes **Axiomas da Probabilidade**:

- 1. $0 \le P(A) \le 1$;
- 2. P(S) = 1;
- 3. Se P(A ∪ B) = P(A) + P(B) ⇔ A e B são mutuamente exclusivos;
 - a. Em outras palavras, $P(A \cap B)$ é nula.

Extrapolando o Axioma 3 - Eventos mutuamente exclusivos

Para um número K finito de eventos:

$$P(A_1 \cup A_2 \cup \dots \cup A_K) = P\left(\bigcup_{k=1}^K A_k\right) = \sum_{k=1}^K P(A_k)$$

• Para um número infinito de eventos ($K \rightarrow \infty$)

$$P\left(\bigcup_{k=1}^{K} A_k\right) = P(A_1) + P(A_2) + \dots + P(A_k) + \dots$$

Propriedades

- $P(\{\}) = 0$
 - Qual a probabilidade de não sair nenhum número no lançamento de um dado de seis faces?
- $P(A^c) = 1 P(A)$
 - Qual a probabilidade de sair o número 4 em um dado de 6 faces?
 - E a probabilidade de saírem os números 1, 2, 3, 5 ou 6?

Extrapolando o Axioma 3 – Eventos Quaisquer

- Para eventos A e B quaisquer, tem-se:
 P(A ∪ B) = P(A) + P(B) P(A ∩ B) → Diagrama de Ven
- Para eventos A, B e C quaisquer, tem-se:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$- P(A \cap B) - P(A \cap C) - P(B \cap C)$$
$$+ P(A \cap B \cap C)$$

E como fica para K eventos A₁, A₂, ···, A_K?

Exemplos

Considere um experimento ξ cujo espaço amostral é dado por S=1, $2,3,\cdots$. Sabe-se que $P(n)=2^{-n}$. Determine a probabilidade de n ser número par;

E a probabilidade de um número ímpar?

Lembrando que, para uma PG infinita: $S = \frac{\alpha_1}{1 - \alpha_2}$

Regra da adição: Observe a notação de tabela de dupla entrada ou tabela de contingência a seguir:

	А	В	Total
X	$P(A \cap X)$	$P(B \cap X)$	P(X)
Υ	$P(A \cap Y)$	$P(B \cap Y)$	P(Y)
Total	P(A)	P(B)	1

Probabilidades marginais: são as probabilidades individuais nas margens da tabela

Probabilidades conjuntas: são as probabilidades de ocorrência de dois eventos simultâneos

EXEMPLO: Considere a tabela de dupla entrada abaixo, que mostra o número de estudantes por gênero (F e M) e turma (A e B)

	F	М	Total
A	21	5	26
В	16	8	24
Total	37	13	50

Determine a probabilidade de um estudante selecionado ao acaso ser:

- Do gênero feminino, P(F)
- Do gênero masculino, P(M)
- Da turma A, P(A)
- Da turma B, P(B)

Regra da adição: A probabilidade da união entre dois eventos quaisquer, A e B, é dada pela regra da adição de probabilidades:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Regra da adição: Note que a regra da adição pode ser simplificada, se e somente se os eventos A e B forem disjuntos (ou mutuamente exclusivos)

$$P(A \cup B) = P(A) + P(B)$$

pois, neste caso, $A \cap B = \emptyset \Rightarrow P(A \cap B) = P(\emptyset) = 0$

Regra do complementar: Como consequência da regra da adição, obtemos que, para qualquer evento A:

$$P(A) = 1 - P(A^{C})$$

Exercício: Um rio pode ter três condições de risco:

- 40% das amostras apresentam coliformes fecais em excesso;
- 30% apresentam pH fora da faixa permitida;
- 12% apresentam ambos os problemas.
- 1. Qual a probabilidade de uma amostra apresentar pelo menos um problema?
- 2. Qual a probabilidade de apresentar os dois problemas?
- Qual a probabilidade de uma amostra estar sem problemas?

Aula 03 - Frequências e Axiomas de Probabilidade

Probabilidade e Estatística - CRT 0029

Prof. Marciel Barros Pereira Ciência da Computação / Sistemas de Informação

2025.1