```
import pandas as pd

data = pd.read_csv('train_u6lujuX_CVtuZ9i.csv')
```

1. Display Top 5 Rows of The Dataset

data.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coa
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
7	.							
4								•

2. Check Last 5 Rows of The Dataset

data.tail()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	(
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	
7								
4)	•

3. Find Shape of Our Dataset (Number of Rows And Number of Columns)

4. Get Information About Our Dataset Like Total Number Rows, Total Number of Columns, Datatypes of Each Column And Memory Requirement

```
data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 614 entries, 0 to 613
    Data columns (total 13 columns):
                          Non-Null Count Dtype
     # Column
    ---
     0
        Loan_ID
                          614 non-null
                                          object
     1
        Gender
                          601 non-null
                                          object
        Married
                          611 non-null
                                          object
```

```
3
    Dependents
                      599 non-null
                                     object
4
    Education
                      614 non-null
                                     object
    Self_Employed
                      582 non-null
                                     object
6
    ApplicantIncome 614 non-null
                                     int64
    CoapplicantIncome 614 non-null
                                     float64
   LoanAmount
                      592 non-null
                                     float64
9
    Loan_Amount_Term 600 non-null
                                     float64
10 Credit_History
                      564 non-null
                                     float64
11 Property_Area
                      614 non-null
                                     object
12 Loan_Status
                      614 non-null
                                     object
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
```

5. Check Null Values In The Dataset

```
data.isnull().sum()
     Loan_ID
     Gender
     Married
                            3
     Dependents
                           15
     Education
                            0
     Self_Employed
                           32
     ApplicantIncome
                           0
     {\tt CoapplicantIncome}
                            0
     LoanAmount
                           22
     Loan Amount Term
                           14
     {\tt Credit\_History}
                           50
     Property_Area
                            0
```

Loan_Status dtype: int64

data.isnull().sum()*100 / len(data)

Loan_ID	0.000000
Gender	2.117264
Married	0.488599
Dependents	2.442997
Education	0.000000
Self_Employed	5.211726
ApplicantIncome	0.000000
CoapplicantIncome	0.000000
LoanAmount	3.583062
Loan_Amount_Term	2.280130
Credit_History	8.143322
Property_Area	0.000000
Loan_Status	0.000000
dtype: float64	

6. Handling The missing Values

```
data = data.drop('Loan_ID',axis=1)
data.head(1)
```

	Gender	Marrieu	Dependents	Education	Selt_Employed	Applicantincome	соарріїсаптіпсоше	Loanamount	Loan_Amount_Term
0	Male	No	0	Graduate	No	5849	0.0	NaN	360.0

```
1
```

Loan_Amount_Term

```
columns = ['Gender','Dependents','LoanAmount','Loan_Amount_Term']
data = data.dropna(subset=columns)
data.isnull().sum()*100 / len(data)
                           0.000000
     {\tt Loan\_ID}
     Gender
                           0.000000
     Married
                           0.000000
     Dependents
                          0.000000
     Education
                           0.000000
     Self_Employed
                           5.424955
     ApplicantIncome
                           0.000000
     {\tt CoapplicantIncome}
                           0.000000
     LoanAmount
                           0.000000
```

```
Credit_History
                          8.679928
     Property_Area
                          0.000000
                          0.000000
     Loan_Status
     dtype: float64
data['Self_Employed'].mode()[0]
     'No'
data['Self_Employed'] =data['Self_Employed'].fillna(data['Self_Employed'].mode()[0])
data.isnull().sum()*100 / len(data)
     Loan_ID
                          0.000000
                          0.000000
     Gender
     Married
                          0.000000
     Dependents
                          0.000000
     Education
                          0.000000
     Self_Employed
                          0.000000
                          0.000000
     {\tt ApplicantIncome}
     CoapplicantIncome
                          0.000000
     LoanAmount
                          0.000000
     Loan_Amount_Term
                          0.000000
     Credit_History
                          8.679928
     Property Area
                          0.000000
     Loan_Status
                          0.000000
     dtype: float64
data['Gender'].unique()
data['Self_Employed'].unique()
data['Credit_History'].mode()[0]
data['Credit_History'] =data['Credit_History'].fillna(data['Credit_History'].mode()[0])
data.isnull().sum()*100 / len(data)
     Gender
                          0.0
     Married
                          0.0
     Dependents
                          0.0
     Education
                          0.0
     Self_Employed
                          0.0
     ApplicantIncome
     CoapplicantIncome
                          0.0
     LoanAmount
                          0.0
     Loan_Amount_Term
                          0.0
     Credit_History
                          0.0
     Property_Area
                          0.0
     Loan_Status
                          0.0
     dtype: float64
```

7. Handling Categorical Columns

data.sample(5)

da

data['Dependents'].unique()

array(['1', '0', '2', '4'], dtype=object)

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term
569	LP002841	Male	Yes	0	Graduate	No	3166	2064.0	104.0	360.0
585	LP002912	Male	Yes	1	Graduate	No	4283	3000.0	172.0	84.0
410	LP002318	Female	No	1	Not Graduate	Yes	3867	0.0	62.0	360.0
193	LP001658	Male	No	0	Graduate	No	3858	0.0	76.0	360.0
380	LP002226	Male	Yes	0	Graduate	No	3333	2500.0	128.0	360.0
7.										
4 ■										•
'Depe	ndents'] =	data['De	pendents'].replace(to	o_replace=":	3+",value='4')				

```
https://colab.research.google.com/drive/1GJcH5ZTTg-WzVJyOQOO_NJbaeHlHMGGl#scrollTo=AmzpeXvZMVsU&printMode=true
```

```
data['Loan_Status'].unique()
    array(['N', 'Y'], dtype=object)
data['Gender'] = data['Gender'].map({'Male':1,'Female':0}).astype('int')
data['Married'] = data['Married'].map({'Yes':1,'No':0}).astype('int')
data['Education'] = data['Education'].map({'Graduate':1,'Not Graduate':0}).astype('int')
data['Self_Employed'] = data['Self_Employed'].map({'Yes':1,'No':0}).astype('int')
data['Property_Area'] = data['Property_Area'].map({'Rural':0,'Semiurban':2,'Urban':1}).astype('int')
data['Loan_Status'] = data['Loan_Status'].map({'Y':1,'N':0}).astype('int')
data.head()
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Cr
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
5	LP001011	Male	Yes	2	Graduate	Yes	5417	4196.0	267.0	360.0	
7	*										

8. Store Feature Matrix In X And Response (Target) In Vector y

```
X = data.drop('Loan_Status',axis=1)
y = data['Loan_Status']
           0
     1
     2
           1
     3
           1
     4
           1
     5
           1
     609
           1
     610
     611
     612
           1
     613
     Name: Loan_Status, Length: 553, dtype: int64
```

9. Feature Scaling

data.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Cr
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
5	LP001011	Male	Yes	2	Graduate	Yes	5417	4196.0	267.0	360.0	


```
cols = ['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term']
from \ sklearn.preprocessing \ import \ StandardScaler
st = StandardScaler()
```

```
X[cols]=st.fit_transform(X[cols])
```

Χ

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
1	1	1	1	1	0	-0.128694	-0.049699	-0.214368	0.279961	
2	1	1	0	1	1	-0.394296	-0.545638	-0.952675	0.279961	
3	1	1	0	0	0	-0.464262	0.229842	-0.309634	0.279961	
4	1	0	0	1	0	0.109057	-0.545638	-0.059562	0.279961	
5	1	1	2	1	1	0.011239	0.834309	1.440866	0.279961	
609	0	0	0	1	0	-0.411075	-0.545638	-0.893134	0.279961	
610	1	1	4	1	0	-0.208727	-0.545638	-1.262287	-2.468292	
611	1	1	1	1	0	0.456706	-0.466709	1.274152	0.279961	
612	1	1	2	1	0	0.374659	-0.545638	0.488213	0.279961	
613	0	0	0	1	1	-0.128694	-0.545638	-0.154828	0.279961	
553 rd	ows × 11 c	columns								
7										
4										•

10. Splitting The Dataset Into The Training Set And Test Set & Applying K-Fold Cross Validation

```
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
import numpy as np
model_df={}
def model val(model,X,y):
   X_train,X_test,y_train,y_test=train_test_split(X,y,
                                                   test_size=0.20,
                                                   random state=42)
   model.fit(X_train,y_train)
   y_pred=model.predict(X_test)
   print(f"{model} accuracy is {accuracy_score(y_test,y_pred)}")
   score = cross_val_score(model,X,y,cv=5)
   print(f"{model} Avg cross val score is {np.mean(score)}")
   model_df[model]=round(np.mean(score)*100,2)
model_df
     {}
 11. Logistic Regression
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model_val(model,X,y)
     LogisticRegression() accuracy is 0.8018018018018
     LogisticRegression() Avg cross val score is 0.8047829647829647
```

✓ 0s completed at 20:01