Bewertung Klausur (A)

Statistische Verfahren in der Geographie

Till Straube <straube@geo.uni-frankfurt.de>
Institut für Humangeographie
Goethe-Universität Frankfurt

Aufgabe 1

Teil	Antwort	Punkte	Teil	Antwort	Punkte	Teil	Antwort	Punkte
a)	0	1	f)	richtig	1	k)	3	1
b)	1	1	g)	richtig	1	l)	6	1
c)	1	1	h)	falsch	1	m)	2	1
d)	V	1	i)	richtig	1	n)	3	1
e)	0	1	j)	richtig	1	o)	6	1

Aufgabe 2

Teil	Leistung	Punkte
	$\sum_{i=1}^{n} x_i$	
a)	Formel: $\bar{x} = \frac{\sum_{i=1}^{n}}{n}$	1
	Ergebnis: $\bar{x} = \overset{n}{92},8$	1
	Formel: $Md = x_{(\frac{n+1}{2})}$ (auch implizit)	1
	Ergebnis: $Md = 83$	1
	Antwortsatz: Arithmetisches Mittel ist größer.	1
	$\sum_{i=1}^{n} (x_i - \bar{x})^2$	
b)	Formel: $s^2 = \frac{\sum_{i=1}^{n}}{n-1}$	2
	Eingesetzt: $s^2 = \frac{{4588,8}}{4}$	1
	Ergebnis: $s^2 = 1147,2$	2
c)	Formel: $z_i = \frac{x_i - \bar{x}}{s}$	1,5
	Standardabweichung $s=33{,}87$ benutzt	1
	Werte: $-0.29 0.77 -1.29 -0.41 1.22$	2,5 (anteilig)

Stand: 4. Juli 2018 1/2

Aufgabe 3

Schritt	Leistung	Punkte
1)	Explizit: 1-SP-t-Test	2
2)	$H_0: \mu = \mu_0$	1
	$H_1: \mu \neq \mu_0$	1
3)	$\alpha = 0.05$	1
4)	fg=5 (auch implizit)	1
	$t \leq t_{fg;\alpha/2} \cup t \geq t_{fg;(1-\alpha/2)}$ (auch implizit)	1 (anteilig)
	$t \le -2,571 \cup t \ge 2,571$	2 (anteilig)
5)	$t = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{s}$	1
	$t = \sqrt{6} \cdot \frac{78,17-73}{4.26}$	2
	t = 2.97	1
6)	Düngemittel weicht ab / ist besser.	2

Aufgabe 4

Teil	Leistung	Punkte
a)	$z_p = \frac{x_p - \mu}{\sigma}$ (auch implizit)	1
	$z_p = 0.42$	1
	lpha = P(z < 0.42) (auch implizit)	1
	$\alpha = 0,6628$	1
	Antwortsatz: 100 Unfalle zu 66% unterschritten.	1
b)	lpha=0.01 (auch implizit)	1
	$z_{1\%} = -2.33$	1
	$x_p = \mu + z_p \cdot \sigma$ (auch implizit)	1
	$x_p = 52,72$	1
	Antwortsatz: Weniger als 52 / 53 Unfälle nur alle 100 Jahre.	1
c)	$z_p = \frac{x_p - \mu}{\sigma}$ (auch implizit)	1
	$\alpha = P(-1,43 < z < 1,43)$ (auch implizit)	1
	lpha=0.9236-0.0764 (auch implizit)	1
	$\alpha = 0.8472$	1
	Antwortsatz: Wahrscheinlichkeit von 85%, dass \pm 25.	1

Stand: 4. Juli 2018 2/2