Temperature PID Control

A practical approach using Ziegler-Nichols Caramon Pi

Closed Loop System

PID algorithm
$$\mathbf{u}(t) = \mathbf{M}\mathbf{V}(t) = K_p e(t) + K_i \int_0^t e(\tau) \, d\tau + K_d \frac{de(t)}{dt}$$

Discrete form
$$u(n) = K_p e(n) + K_i \sum_{k=0}^{n} e(k) + K_d (e(n) - e(n-1))$$
 $K_i = \frac{K_p T_d}{T_i}$ $K_d = \frac{K_p T_d}{T}$

Improved controller, by basing the <u>derivative</u> term on the process value only

$$u(n) = K_p e(n) + K_i \sum_{k=0}^{n} e(k) + K_d (y(n) - y(n-1))$$

Ziegler-Nichols

KP=360, KI=0, KD=0 Set=13deg

Closed-loop tuning method

Hitmata gain Ku-260	Р	Ku / 2	-	-
Jlitmate gain, Ku=360	PI	Ku / 2.2	Pu / 1.2	-
Ultimate period, Pu=35 minutes = 2100 sec	PID	Ku / 1.7	Pu / 2	Pu / 8

Kp

Τi

Td

Sample time, Ts = 10 minutes = 600 sec

Controller Parameters

Ku	360
Pu [s]	2100
Ts [s]	600

	Кр	Ti [s]	Td [s]
Р	180.00	-	-
PI	163.64	1750	-
PID	211.76	1050	262.50

$$Ki = (Kp \times Ts) / Ti$$

$$Kd = (Kp \times Td) / Ts$$

	Кр	Ki	Kd	Comment
PID-5	163.64	56.10	-	Z-N, PI
PID-6	211.76	121.01	92.65	Z-N, PID
PID-7	163.64	42.10	-	PID-5, Ki decreased 25%
PID-8	163.64	28.05	-	PID-5, Ki decreased 50%

Comparison, Step-up

Comparison, Step-down

PID-5, Step-up

KP=163.64, KI=56.10, KD=0, Set=13deg Actual Temperature

PID-5, Step-up

PID-5, Step-up

KP=163.64, KI=56.10, KD=0, Set=13deg Duty

PID-5, Step-down

KP=163.64, KI=56.10, KD=0, Set=12deg Actual Temperature

PID-5, Step-down

KP=163.64, KI=56.10, KD=0, Set=12deg Error

PID-5, Step-down

KP=163.64, KI=56.10, KD=0, Set=12deg Duty

PID-6, Step-up

KP=211.76, KI=121.01, KD=92.65, Set=14deg Actual Temperature

PID-6, Step-up

KP=211.76, KI=121.01, KD=92.65, Set=14deg

Error

PID-6, Step-up

KP=211.76, KI=121.01, KD=92.65, Set=14deg Duty

PID-6, Step-down

KP=211.76, KI=121.01, KD=92.65, Set=13deg Actual Temperature

PID-6, Step-down

KP=211.76, KI=121.01, KD=92.65, Set=13deg Error

PID-6, Step-down

KP=211.76, KI=121.01, KD=92.65, Set=13deg Duty

PID-7, Step-up

KP=163.64, KI=42.10, KD=0, Set=13deg Actual Temperature

PID-7, Step-up

PID-7, Step-up

KP=163.64, KI=42.10, KD=0, Set=13deg Duty

PID-7, Step-down

KP=163.64, KI=42.10, KD=0, Set=12deg Actual Temperature

PID-7, Step-down

KP=163.64, KI=42.10, KD=0, Set=12deg Error

PID-7, Step-down

KP=163.64, KI=42.10, KD=0, Set=12deg Duty

PID-8, Step-up

KP=163.64, KI=28.05, KD=0, Set=13deg Actual Temperature

PID-8, Step-up

KP=163.64, KI=28.05, KD=0, Set=13deg Error

PID-8, Step-up

KP=163.64, KI=28.05, KD=0, Set=13deg Duty

PID-8, Step-down

KP=163.64, KI=28.05, KD=0, Set=12deg Actual Temperature

PID-8, Step-down

KP=163.64, KI=28.05, KD=0, Set=12deg Error

PID-8, Step-down

KP=163.64, KI=28.05, KD=0, Set=12deg Duty

