Research project meeting summary: Trajectory Module for Launcher MDAO

Jorge L. Valderrama ¹
Dr. Annafederica Urbano ² Dr. Mathieu Balesdent ³ Dr. Loïc Brevault ⁴

¹ISAE-SUPAERO, MSc. in Aerospace Engineering ²ISAE-SUPAERO, DCAS ³ONERA, DTIS ⁴ONERA, DTIS

January 28, 2021

Plan:

- Review of previous work
 - Difficulties with the original plan
 - Another approach Complex step
 - Performance comparison
 - Another idea for the original plan
 - On the structural module
- Key points discussed
 - Report Outline As suggested by ISAE-SUPAERO
- Future actions

Difficulties with the original plan

We wanted to know the maximum dynamic pressure $,q_{max},$ to feed it into the structural sizing module. We proposed to:

- Split the gravity turn phase in to two.
- The end of the first phase would correspond to q_{max}.
- Achieved by defining a boundary condition: $\frac{\partial q}{\partial t} = 0$.
- But, I don't have easy access to $\frac{\partial q}{\partial t}$ analytically as $q = \frac{1}{2}\rho v^2$.

Another approach - Complex step

- We keep the same phases as before. No splitting of gravity turn phase.
- Constraints approach based on two variables.
- The value used by the structural sizing module is q_{max_s} .
- The vector of values extracted from the trajectory is \vec{q}_t .
- A coupling component calculates the residual

$$r = q_{max_s} - max(\vec{q_t}) \tag{1}$$

With derivatives

$$\frac{\partial r}{q_{max_s}} = 1$$
 , $\frac{\partial r}{\vec{q_t}} = \text{complex step}$ (2)

Another approach - Complex step

Optimized trajectory for 20 tons payload to 400 km height orbit. Initial guess corresponds to 9 tons.

- Converges successfully. Satisfies r = 0.
- Optimization time 4'8".
- 196 iterations and 704 function evaluations.

Performance comparison

- Finite difference based: 9 loop constraints
- **Example 2 Full analytic :** Instead of using q_{max} it reads q at the 6th node of the gravity turn phase.
- Constant q: It eliminates the constraint loop for dynamic pressure and uses a constant value of 36541.9 Pa to size the structures.

	Complex step	Full analytic	Constant q
Opt time (s)	248.4	171.34	163.1
Function evaluations	704	278	267
Gradient evaluations	196	148	147
Initial mass (kg)	611.6	611.0	611.4

Another idea for the original plan

$$q = \frac{1}{2}\rho v^2 = \frac{1}{2}\rho(h(r(t)))v(t)^2$$
$$\frac{\partial q}{\partial t} = \frac{1}{2}\frac{\partial \rho}{\partial h}\frac{\partial h}{\partial r}\frac{\partial r}{\partial t}v^2 + \rho v\frac{\partial v}{\partial t}$$

All of the partials are already calculated in different modules. I would need to figure out how to access to them from one component.

Defining \dot{q} in the EOM component I should be able to access most of the partials required. if $\frac{\partial q}{\partial h}$ is not available, we could try an exponential atmospheric model wit simpler analytic derivatives.

On the structural module

- As in FELIN, there's a parameter with a value of zero making the mass of the inter-stage equal to zero.
 - The parameter is the surface area of the interstage. I could define a constant length of 2.5m and use the stage diameter to calculate it.
- The diameters of the the stages are constant. The nozzles exit area are functions of these.
- Is there a skin mass for the stages?
 - This is considered in other variables

Key points discussed I

Report Outline - As suggested by ISAE-SUPAERO

- Short abstract: (100-200 words) and Keywords (5 or 6)
- Introduction
- Semester section Distinction between S2 and S3:
 - Context and key issues
 - State of Art
 - Justification of the potential degree of novelty
 - Aims and objectives
 - Work done Distinction between S2 and S3:
- Investigation methods
- Results and analysis
- Conclusion and perspectives
- References
- Appendices: ... Legacy ...

Key points discussed II

Report Outline - As suggested by ISAE-SUPAERO

- The report should be 20 35 pages long
- "You can discuss further details about the content with your advisor as she/he will be the main reader of your report at the end." - ISAE
- I also have to do a 2 page summary and a 20 min presentation

Future actions

- I will continue with the original plan of splitting the gravity turn phase into two. For this i will need the analytic value of \dot{q} but it seems that is going to be possible to calculate it from the EOM module (state variables) as only $\frac{\partial q}{\partial h}$ is calculated outside it.
- This is worth trying to keep the low computation times
- I will do a more detailed outline of the report