### DRLProject2

Étude de la non-localité de l'observation et de la considération d'incertitudes

**Emilien VIMONT** 

### Rappel des objectifs du projet

Cas de l'étude la non-localité : Pacman-Series

- → Amélioration des performances dans les problèmes à états/actions discrets non locaux (e.g Pac-Man)
- → Étude de variantes des algorithmes classiques
- → Prise en main du framework ACME

<u>Cas de l'étude de la considération des incertitudes</u> : Mountain Car

- → Étudier l'influence de différentes sources de bruit sur les performances d'apprentissage
- → Analyse graphique des résultats

### Deep Reinforcement Learning

- → RL : Apprentissage par l'expérience
- → Markov Decision Process (MDP)
  - ◆ State: "Where I am"
  - Transition: "Where I end up"
  - Action: "What movement I do"
  - Reward: "Did I reach the goal"
- → Outils du DRL
  - Interaction Agent-Environment
  - Policy π





#### **ACME**

- → Simplifie l'implémentation d'agent (DQN, D4PG, etc.) pour des problèmes de DRL
- → Suivi d'un tutoriel DeepMind avec l'environnement MountainCar



### Deep Q-Learning/Networks pour un environnement discret

- → Intuitivement : Q : évalue la qualité de chaque action
  - Q donnée pour une paire (s,a) état action
  - Représente un potentiel gain (Reward) pour des actions futures
  - Apprendre cette fonction ne nécessite pas de connaître un environnement initial

### Pacman Series

#### **Pacman-Series**

- → Environnement Gym : MsPacman-v0
- → Aspects du projet :
  - ◆ Implications de la non-localité sur le réseau :
  - Modélisation d'un problème non local ou abandonner Markov?
- → Justification choix de l'Agent : DQN pour des États Discrets
- → Adaptation du code DQN pour Atari : wrappers, environnement, définition de l'agent, etc.



Problèmes rencontrés entre l'agent et l'environnement

#### **Pacman**

- → Fastidieux d'utiliser l'agent DQN avec le Pacman
- → Nouvel objectif: faire correspondre la nature des objets ACME avec celle des objets de l'environnement Atari
  - Différences trop importantes pour faire tourner Pacman avec un DQN



### **Mountain Car**

#### Problème continu et local : Open Al Gym - ACME



#### Processus d'apprentissage mis en place :

- 1. Génération de l'environnement par Gym : ici le Mountain Car
- 2. Construire un policy network adapté (MLP)
- 3. Créer l'acteur (FeedForwardActor)
- 4. Critiquer l'acteur : D4PG or Distributed Distributionnal DDPG
- 5. Training Loop
- 6. Evaluation de l'agent

## **Evaluation de D4PG pour le Mountain Car classique**





#### Introduction d'un bruit multiplicatif constant





## Multiplication de l'observation par un bruit Gaussien centré en 1 et avec un écart-type sigma tq $\sigma^2$ =0,05





### Introduction d'un bruit gaussien additif sur l'observation centrée en 0 d'écart type $\sigma$ tq $(\sigma(x)^2=0,05,\sigma(y)^2=0,005)$

observation  $x \in [-1,2,0,6]$ observation  $y \in [-0,07,0,07]$ 





# Introduction d'un bruit gaussien additif sur l'action centré en 0 et d'écart-type sigma tq ( $\sigma^2$ =0,05)

 $action \in [-1,1]$ 



### Introduction d'un bruit gaussien additif sur l'action centré en 0 et d'écart-type sigma tq ( $\sigma^2$ =0,05)





Introduction d'un bruit gaussien additif sur l'observation centrée en 0 d'écart type sigma tq  $(\sigma_{\text{observation}})^2=0,05,\sigma^2(\text{action})=0,005)$  <u>et introduction</u> d'un bruit gaussien additif centrée en 0 d'écart-type tq  $(\sigma^2=0,05)$ 





#### Analyse des résultats expérimentaux et conclusion

- Ajout de bruit blanc sur l'observation
- + Multiplication par un bruit blanc sur l'observation
- Multiplication par un bruit constant de l'observation
- Ajout de bruit blanc sur l'action
- + Multiplication par un bruit blanc sur l'observation
- + Ajout de bruit blanc sur l'action et l'observation

#### Ouverture:

Ajout d'un bruit plus proche de la réalité : effectuer une approche mécanique du Mountain Car Ajout d'un autre type de bruit que le bruit blanc

