يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۳

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

اتوماتای متناهی معین Deterministic FA

- یک مدل ساده از محاسبات
- شامل چندین حالت و ورودیها به صورت رشته (بدون حافظه خارجی)
 - تعداد حالتها متناهی
- خواندن ورودی سمبل به سمبل از چپ به راست و بروز کردن حالت بر اساس ورودی
 - در نهایت این اتوماتا با بله یا خیر جواب دهد (بپذیرد یا خیر).
 - آیا به همه سوالات جواب میدهد (همه زبانها را تشخیص میدهد)؟
 - دو روش برای توصیف آن: دیاگرام حالت (مثال قبل) یا به صورت صوری (تعریف)

$$\Sigma = \{0,1\}$$

$$\Sigma = \{0,1\}$$

state

$$\Sigma = \{0,1\}$$
 الفبا

$$\Sigma = \{0,1\}$$

$$\Sigma = \{0,1\}$$

$$\Sigma = \{0,1\}$$

ورودى 10111

$$\Sigma = \{0,1\}$$

ورودى 10111

$$\Sigma = \{0,1\}$$

011001

ورودي

$$\Sigma = \{0,1\}$$

ورودى 011001

دیاگرام حالت (مثال):

$$\Sigma = \{0,1\}$$

011001

ورودى

تعریف صوری اتوماتای متناهی معین (DFA)

DEFINITION 1.5

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.²

IUT-ECE

اتوماتای متناهی معین (DFA)

مثال زیر را در نظر بگیرید:

$$\delta(q_0, 0) = q_0$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_1, 0) = q_2$$
....

$$\Sigma = \{0, 1\}$$

$$Q = \{q_0, q_1, q_2\}$$

$$q_0$$

$$F=\{q_0,\,q_1\}$$
 حالتهای پذیرش: •

زبان یک DFA

گوییم DFA یک رشته x را میپذیرد اگر با شروع از حالت اولیه و خواندن x از چپ به راست، نهایتا در
 یک حالت پایانی قرار گیرد.

این DFA رشتههای 0 و 011 را میپذیرد اما 10 و 0101 را نمیپذیرد.

زبان یک DFA

○ زبان یک DFA، مجموعه همه رشتههایی است که توسط آن DFA پذیرفته میشود.

این DFA رشتههای 0 و 011 را میپذیرد اما 10 و 0101 را نمیپذیرد.

رشتههای 0 و 011 در زبان این DFA هستند اما 10 و 0101 نه.

زبان یک DFA

○ فرض کنید M یک DFA است. زبانی را که توسط M تشخیص داده می شود به این صورت تعریف می کنیم:

 $L(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}$

زبان متناظر با DFA

○ دیدیم که هر ماشین، یک زبان متناظر دارد.

○ مدل محاسباتی برای DFA، شامل همه ماشینهایی است که طبق تعریف حاصل میشود.

○ بنابراین، مدل محاسباتی برای DFA، متناظر مجموعهای از زبانهاست.

زبانهای منظم

DEFINITION 1.16

A language is called a *regular language* if some finite automaton recognizes it.

○ اگر یک DFA یک زبان را تشخیص دهد، آنگاه آن زبان منظم است (و برعکس).

چگونه نشان دهیم زبانی منظم است؟

زبانهای منظم

تعریف فرمال محاسبه (DFA)

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string where each w_i is a member of the alphabet Σ . Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

- 1. $r_0 = q_0$,
- **2.** $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and
- **3.** $r_n \in F$.

We say that M recognizes language A if $A = \{w | M \text{ accepts } w\}$.

○ زبان DFA زير را بيابيد (الفبا شامل DFA).

$$L = \{a^n b : n \ge 0\}.$$

○ یک DFA بسازید که فقط رشتههایی که شامل زیررشته 001 هستند را قبول کند (الفبای باینری).

IUT-ECE

مثال

○ نشان دهید زبان زیر یک زبان منظم است.

$$L = \{w \in \{0,1\}^* \mid w \text{ starts with } 00\}$$

○ یک DFA بسازید که فقط رشتههایی که با 00 خاتمه مییابند را قبول کند (الفبای باینری).

یک DFA بسازید که فقط رشتههایی که یک در میان 0 و 1 هستند را قبول کند (الفبای باینری).

یک DFA بسازید که فقط رشتههایی که یک در میان 0 و 1 هستند را قبول کند (الفبای باینری).

○ نشان دهید زبان زیر منظم است.

$$L = \{w \in \{a, b\}^* \mid |w| \mod 3 \neq 0\}$$

○ یک DFA بسازید که فقط رشتههایی را بپذیرد که شامل زیررشته abbaab باشند(الفبای باینری a و d).

○ نشان دهید زبان زیر منظم است (n مقدار معلوم). (در جواب trap رسم نشده است).

$$L = \{a^k b^k \mid k \le n\}$$

