Limiti notevoli	Derivate			Integrali immediati		Formula di Taylor
$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$	D: costante $k \rightarrow 0$			$\int x^k = \frac{x^{k+1}}{k+1}$	$\int \frac{1}{\sin^2(x)} = - \cot an(x)$	$e^{x} = 1 + x + \frac{x^{2}}{2!} + + \frac{x^{n}}{n!} + o(x^{n})$
$\lim_{x \to +\infty} \left(1 + \frac{a}{x} \right)^x = e^a$	$D: x^n \to nx^{n-1}$	D: $[f(x)]^m \rightarrow m[f(x)]^{m-1} \cdot f$	'(x)	$\int e^x = e^x$	$\int \frac{1}{\sqrt{1-x^2}} = arcsin(x)$	$sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^n)$
$\lim_{x \to +\infty} \left(1 + \frac{a}{x} \right)^{nx} = e^{na}$	$D: \sqrt{x} \rightarrow \frac{1}{2\sqrt{x}}$	D: $\sqrt{f(x)} \rightarrow \frac{1}{2\sqrt{f(x)}} \cdot f'(x)$		$\int \frac{1}{x} = \ln x $	$\int \frac{1}{\sqrt{1-x^2}} = arctan(x)$	$cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^n)$
$\lim_{x \to -\infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$	$D: \sqrt[n]{x^m} \to \frac{1}{n\sqrt[n]{x^{n-m}}}$	D: $\sqrt[n]{[f(x)]^m} \rightarrow \frac{m}{n\sqrt[n]{[f(x)]^{n-m}}} \cdot f$	'(x)	$\int \cos(x) = \sin(x)$	$\int \frac{1}{\sqrt{1+x^2}} = \ln(x + \sqrt{1+x^2})$	$tan(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \frac{7}{315}x^7 + \frac{62}{2835}x^9 + o(x^n)$
$\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} = e^{a}$	$D: sin(x) \to cos(x)$	D: $sin(f(x)) \rightarrow cos(f(x)) \cdot f(x)$	f'(x)	$\int \sin(x) = -\cos(x)$	$\int \frac{1}{\sqrt{x^2 - 1}} = \ln(x + \sqrt{x^2 - 1})$	$ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} + + (-1)^{n+1} \frac{x^n}{n!} + o(x^n)$
$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$	$D: cos(x) \rightarrow -sin(x)$	D: $cos(f(x)) \rightarrow -sin(f(x))$	$\cdot f'(x)$	$\int \frac{1}{\cos^2(x)} = \tan(x)$	$\int \frac{1}{1-x^2} = \frac{1}{2} ln(\frac{1+x}{1-x})$	$\frac{1}{1+x} = 1 - x + x^2 + + (-1)^n \cdot x^n + o(x^n)$
$\lim_{x \to 0} \frac{\frac{a^x - 1}{x}}{x} = \ln(a)$	D: $tan(x) \rightarrow \frac{1}{\cos^2(x)}$	D: $tan(f(x)) \rightarrow \frac{1}{cos^2(f(x))} \cdot f$	'(x)	Integrali con la prima	regola di sostituzione	$\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3}{8}x^2 + \dots + (-1)^n \cdot \frac{(2n-1)!!}{(2n)!!} \cdot x^n + o(x^n)$
$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a$	D: $cotan(x) \rightarrow -\frac{1}{sin^2(x)}$	D: $cotan(f(x)) \rightarrow -\frac{1}{\sin^2(f(x))}$	$\frac{1}{(x)} \cdot f'(x)$	$\int f(x)^k \cdot f'(x) = \frac{1}{a+1}$	$\frac{1}{1}\left[f(x)\right]^{a+1}$	$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5}{128}x^4 + \frac{7}{256}x^5 + o(x^n)$
$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{ax} = 1$	D: $arcsin(x) \rightarrow \frac{1}{\sqrt{1-x^2}}$	D: $arcsin(f(x)) \rightarrow \frac{1}{\sqrt{1-[f(x)]^2}}$	$\cdot \cdot f'(x)$	$\int \frac{f'(x)}{f(x)} = \ln f(x) $		$\frac{1}{1+x^2} = 1 - x^2 + x^4 + + (-1)^n \cdot x^{2n} + o(x^n)$
$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	D: $arccos(x) \rightarrow -\frac{1}{\sqrt{1-x^2}}$	D: $arccos(f(x)) \rightarrow -\frac{1}{\sqrt{1-[f(x)]}}$	$\frac{1}{(x)]^2} \cdot f'(x)$	$\int e^{f(x)} \cdot f'(x) = e^{f(x)}$		$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{3}{8}x^4 + \dots + \frac{(2n-1)!!}{(2n)!!} \cdot x^{2n} + o(x^n)$
$\lim_{x \to 0} \frac{\sin(ax)}{bx} = \frac{a}{b}$	D: $arctan(x) \rightarrow \frac{1}{1+x^2}$	D: $arctan(f(x)) \rightarrow \frac{1}{1+[f(x)]^2}$	$\cdot f'(x)$	$\int cos(f(x)) \cdot f'(x) =$	= sin(f(x))	$\frac{1}{\sqrt{1-x}} = 1 + \frac{x}{2} + \frac{3}{8}x^2 + \dots + \frac{(2n-1)!!}{(2n)!!} \cdot x^n + o(x^n)$
$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$	D: $arccotan(x) \rightarrow -\frac{1}{1+x^2}$	D: $arccotan(f(x)) \rightarrow -\frac{1}{1+}$	$\frac{1}{\left[f(x)\right]^{2}}\cdot f'(x)$	$\int \sin(f(x)) \cdot f'(x) =$	$=-\cos(f(x))$	$arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \frac{5}{112}x^7 + \frac{35}{1152}x^9 + o(x^n)$
$\lim_{x \to 0} \frac{\tan(ax)}{bx} = \frac{a}{b}$	$D: a^x \to a^x \ln(a)$	D: $a^{f(x)} \rightarrow a^{f(x)} \cdot f'(x) \cdot log$	a(x)	$\int \frac{f'(x)}{\cos^2(f(x))} = \tan(f(x))$	(;))	$arccos(x) = \frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3}{40}x^5 - \frac{5}{112}x^7 - \frac{35}{1152}x^9 + o(x^n)$
$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$	$D: e^x \to e^x$	D: $e^{f(x)} \rightarrow e^{f(x)} \cdot f'(x)$		$\int \frac{f'(x)}{\sqrt{1 - f(x)^2}} = \arcsin(f(x))$	f(x))	$arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} + o(x^n)$
$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$	D: $ln(x) \rightarrow \frac{1}{x}$	D: $ln(f(x)) \rightarrow \frac{1}{f(x)} \cdot f'(x)$		$\int \frac{f'(x)}{1+f(x)^2} = \arctan(f(x))$	(x))	$sinh(x) = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040} + \frac{x^9}{362880} + o(x^n)$
$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1$	D: $log_a(x) \rightarrow \frac{1}{x} log_a(e)$	D: $log_a(f(x)) \rightarrow \frac{1}{f(x)} \cdot f'(x)$	$ \cdot log_{a}(e)$	$\int \frac{f'(x)}{\sqrt{1+f(x)^2}} = \ln(f(x))$	$)+\sqrt{1+f(x)^2})$	$arccos(x) = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \frac{x^8}{40320} + o(x^n)$
$\lim_{x \to 0} \frac{\arcsin(ax)}{bx} = \frac{a}{b}$	Derivate di funzioni			$\int \frac{f'(x)}{\sqrt{f(x)^2 - 1}} = \ln(f(x))$	$)+\sqrt{f(x)^2-1})$	$(1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^{2} + + (\alpha n) x^{n} + o(x^{n})$
$\lim_{x \to 0} \frac{\arctan(x)}{x} = 1$	D: $[f(x)]^{g(x)} \rightarrow [f(x)]^{g(x)}$.	$[g'(x)ln(f(x)) + g(x)\frac{f'(x)}{f(x)}]$		$\int \frac{f'(x)}{1 - f(x)^2} = \frac{1}{2} ln(\frac{1 + f}{1 - f})$	$\frac{f(x)}{f(x)}$	
$\lim_{x \to 0} \frac{\arctan(ax)}{bx} = \frac{a}{b}$	$D \colon [f(g(x))] \to f'[g(x)] \cdot g$	'(x)	Integrali impropri r	notevoli		
$\lim_{x \to 0} \frac{x - \sin(x)}{x^3} = \frac{1}{6}$	D: $[f(x) \cdot g(x)] \rightarrow f'(x) \cdot g(x)$	$g(x) + f(x) \cdot g'(x)$	$\int_{0}^{\alpha} \frac{1}{x^{p}} dx$, converge	se p<1, diverge se p>=	1 $\int_{\alpha}^{+\infty} \frac{1}{x^{p}} dx$, converge se p>1,	diverge se p<=1
$\lim_{x \to 0} \frac{x - arctan(x)}{x^3} = \frac{1}{3}$	D: $\left[\frac{f(x)}{g(x)}\right] \rightarrow \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x)\right]^2}$	<u>x)</u>	$\int_{0}^{\alpha} \frac{1}{x^{a} ln^{b}(x) } dx, \int_{\alpha}^{+\infty} \frac{1}{x^{a}}$	$\frac{1}{\left \ln^b(x)\right }dx$, converge se ((a>1) o se (a=1 e b>1), diverge se (a	<1) o se (a=1 e b<=1).
			$\int_{1}^{a} \frac{1}{\ln^{p}(x)} dx$, converg	ge se p<1, diverge se p	>=1.	

Proprietà dei numeri complessi
$$z=a+bi$$
 x^2 +grande z^2 +grande z^3 ordine formula classica z^2 z^2 z^2 z^2 z^2 ordine omogeneo z^2 z^2 z^2 z^2 ordine omogeneo z^2 z^2 z^2 z^2 z^2 ordine omogeneo z^2 $z^$

1° ordine con variabili separabili

$$y'(x) = f(t) \cdot g(x) \rightarrow \int \frac{1}{g(x)} dx = \int f(t) dt$$

2° ordine omogeneo

$$ay'' + by' + cy = 0$$
, da risolvere per $\lambda_{1,2}$

$$\lambda_1 = \alpha + i\beta, \lambda_2 = \alpha - i\beta$$

$$ay'' + by' + cy = 0$$
, da risolvere per $\lambda_{1,2}$
$$\lambda_1 = \alpha + i\beta, \lambda_2 = \alpha - i\beta$$
1°caso: $\Delta > 0, y = C_1 \cdot e^{\lambda_1 t} + C_2 \cdot e^{\lambda_2 t}$ 2°caso: $\Delta = 0, y = C_1 \cdot e^{\lambda_1 t} + C_2 \cdot t \cdot e^{\lambda_1 t}$ 3°caso: $\Delta < 0, y = C_1 \cdot e^{\alpha t} \cdot sin(\beta t) + C_2 \cdot e^{\alpha t} \cdot cos(\beta t)$

2° ordine non omogeneo

ay'' + by' + cy = f(x), si risolve il sistema come se fosse omogenea, si ricava yp(x) e lo si deriva per ricavare le varie costanti, rispettando la formula y = yo + yp si mette tutto a sistema e si trovano le costanti tramite Cauchy.

gradi	sin	cos	tan	cotan
0°	0	1	0	± 8
30°	1 2	$\frac{\sqrt{3}}{2}$	<u>√3</u> 3	$\sqrt{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
60°	$\frac{\sqrt{3}}{2}$	1 2	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
90°	1	0	± ∞	0
180°	0	-1	0	± ∞

$y = \cosh x$	$y \uparrow$ 3		y = s	$\mathrm{inh}x$
-3 -2 -1	9	y =	tanl	3 x
	-2			

Funzione	Dominio	Codominio	Monotonia
Sin	-∞:+∞	-1:+1	oscillante
Cos	-∞:+∞	-1:+1	oscillante
Tan	-∞:+∞	-∞:+∞	crescente
Cotan	-∞:+∞	-∞:+∞	decrescente
Arcsin	-1:+1	-π/2:+π/2	crescente
Arccos	-1:+1	0:+π	decrescente
Arctan	-∞:+∞	-π/2:+π/2	crescente