Satz 1

Ist **A** eine $n \times n$ Matrix dann sind die Eigenwerte der Matrix **A** genau die Nullstellen der charakteristischen Gleichung

$$\det (\boldsymbol{A} - \lambda \boldsymbol{E}) = 0$$

Das Polynom n-ten Grades

$$P_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{E}) = c_0 + c_1 \lambda + c_2 \lambda^2 + \ldots + c_{n-1} \lambda^{n-1} + \left(-1\right)^n \lambda^n$$

heißt charakteristisches Polynom von \mathbf{A} und besitzt, unter Berücksichtigung der Vielfachheiten, n komplexe Nullstellen. Die zugehörigen Eigenvektoren sind die **nichttrivialen** Lösungen des homogenen LGS

$$(\mathbf{A} - \lambda \mathbf{E}) \vec{x} = \vec{0}$$

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

Satz 2

Ist **A** eine $n \times n$ Matrix mit den – n nicht notwendig verschiedenen (!) - Eigenwerten $\lambda_1, \lambda_2, \ldots, \lambda_n$

dann gilt

$$\mathsf{det}(\mathbf{A}) = \lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_n$$

$$spur(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = \lambda_1 + \lambda_2 + ... + \lambda_n$$

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

$$det(A) = \lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda$$

 ${\underline{\bf Merke}}$ Man kann an den Eigenwerten ablesen, ob eine Matrix

A invertierbar ist: (

A invertierbar(regulär) \Leftrightarrow det(**A**) \neq 0 \Leftrightarrow $\forall i = 1, 2, ..., n : \lambda_i \neq 0$

A nicht invertierbar(singulär) \Leftrightarrow det(**A**) = 0 \Leftrightarrow $\exists \lambda_i = 0$

Satz 3

Für eine invertierbare Matrix A gilt:

Ist λ Eigenwert von **A**, dann ist λ^{-1} Eigenwert von **A** $^{-1}$

$$\left(\lambda, \overrightarrow{x}\right)$$
 Eigenpaar von $\mathbf{A} \Rightarrow \left(\frac{1}{\lambda}, \overrightarrow{x}\right)$ Eigenpaar von \mathbf{A}^{-1}

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzi