SVC Implementation

1. Problem statement.

- The dataset Comprises of data for red wine quality based on different features that the wine has.
- The problem is a multiclass problem and we need to create a model that predicts the quality of the wine based on other features.
- Prediction result can be used by manufacturer to improve the quality of the wine and the consumer can use it for knowing the qality of wine

2. Data Collection.

Source:

Paulo Cortez, University of Minho, Guimarães, Portugal, http://www3.dsi.uminho.pt/pcortez) A. Cerdeira, F. Almeida, T. Matos and J. Reis, Viticulture Commission of the Vinho Verde Region(CVRVV), Porto, Portugal @2009

Importing Libraries

```
In [1]:
          1 import pandas as pd
          2 import numpy as np
          3 import matplotlib.pyplot as plt
          4 import seaborn as sns
          5 %matplotlib inline
          6 import warnings
          7 | warnings.filterwarnings("ignore")
          8 import pandas profiling
          9 import pickle
         10 | from pandas_profiling import ProfileReport
         11 | from sklearn.preprocessing import StandardScaler
         12 | import statsmodels.api as sm
         13 from sklearn.model selection import train test split
         14 | from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
         15 from sklearn.metrics import classification_report
         16 from sklearn.metrics import accuracy score
         17 | from sklearn.metrics import ConfusionMatrixDisplay
         18 | from statsmodels.stats.outliers_influence import variance_inflation_factor
         19 | from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, roc
         20 import scikitplot as skl
         21 sns.set()
```

Loading Dataset

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
0	7.400000	0.700000	0.000000	1.900000	0.076000	11.000000	34.000000	0.997800	3.510000
1	7.800000	0.880000	0.000000	2.600000	0.098000	25.000000	67.000000	0.996800	3.200000
2	7.800000	0.760000	0.040000	2.300000	0.092000	15.000000	54.000000	0.997000	3.260000
3	11.200000	0.280000	0.560000	1.900000	0.075000	17.000000	60.000000	0.998000	3.160000
4	7.400000	0.700000	0.000000	1.900000	0.076000	11.000000	34.000000	0.997800	3.510000
5	7.400000	0.660000	0.000000	1.800000	0.075000	13.000000	40.000000	0.997800	3.510000
6	7.900000	0.600000	0.060000	1.600000	0.069000	15.000000	59.000000	0.996400	3.300000
7	7.300000	0.650000	0.000000	1.200000	0.065000	15.000000	21.000000	0.994600	3.390000
8	7.800000	0.580000	0.020000	2.000000	0.073000	9.000000	18.000000	0.996800	3.360000
9	7.500000	0.500000	0.360000	6.100000	0.071000	17.000000	102.000000	0.997800	3.350000
4									•

Sample

```
In [3]: 1 df.sample(8)
```

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
1087	7.9	0.19	0.42	1.6	0.057	18.0	30.0	0.99400	3.29	0.69	11
1358	7.4	0.64	0.17	5.4	0.168	52.0	98.0	0.99736	3.28	0.50	9
337	7.8	0.43	0.32	2.8	0.080	29.0	58.0	0.99740	3.31	0.64	10
306	7.6	0.62	0.32	2.2	0.082	7.0	54.0	0.99660	3.36	0.52	9
481	9.4	0.30	0.56	2.8	0.080	6.0	17.0	0.99640	3.15	0.92	11
1525	6.7	0.48	0.08	2.1	0.064	18.0	34.0	0.99552	3.33	0.64	9
289	11.6	0.42	0.53	3.3	0.105	33.0	98.0	1.00100	3.20	0.95	9
97	7.0	0.50	0.25	2.0	0.070	3.0	22.0	0.99630	3.25	0.63	9
4											•

Columns/ Features

Feature Information:

Input Features:

- fixed acidity: most acids involved with wine or fixed or nonvolatile (do not evaporate readily)
- volatile acidity: the amount of acetic acid in wine, which at too high of levels can lead to an
 unpleasant, vinegar taste
- citric acid: found in small quantities, citric acid can add 'freshness' and flavor to wines
- **residual sugar**: the amount of sugar remaining after fermentation stops, it's rare to find wines with less than 1 gram/liter and
- · chlorides: the amount of salt in the wine
- free sulfur dioxide: the free form of SO2 exists in equilibrium between molecular SO2 (as a dissolved gas) and bisulfite ion; it prevents
- total sulfur dioxide: amount of free and bound forms of S02; in low concentrations, SO2 is mostly undetectable in wine, but at free SO2
- density: the density of water is close to that of water depending on the percent alcohol and sugar content
- ph: describes how acidic or basic a wine is on a scale from 0 (very acidic) to 14 (very basic);
 most wines are between 3-4 on the
- **sulphates**: a wine additive which can contribute to sulfur dioxide gas (S02) levels, wich acts as an antimicrobial and
- alcohol: the percent alcohol content of the wine

Output Feature:

quality: scale that describes the quality of the red wine.

Basic Info

In [5]: 1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
#	COTUIIII	Non-Null Count	Drype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64
_			

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

Descriptive Statistics of Numeric Variables

In [6]:

1 df.describe().T.style.background_gradient(cmap = "magma")

Out[6]:

	count	mean	std	min	25%	50%	75%	ma
fixed acidity	1599.000000	8.319637	1.741096	4.600000	7.100000	7.900000	9.200000	15.90000
volatile acidity	1599.000000	0.527821	0.179060	0.120000	0.390000	0.520000	0.640000	1.58000
citric acid	1599.000000	0.270976	0.194801	0.000000	0.090000	0.260000	0.420000	1.00000
residual sugar	1599.000000	2.538806	1.409928	0.900000	1.900000	2.200000	2.600000	15.50000
chlorides	1599.000000	0.087467	0.047065	0.012000	0.070000	0.079000	0.090000	0.61100
free sulfur dioxide	1599.000000	15.874922	10.460157	1.000000	7.000000	14.000000	21.000000	72.0000(
total sulfur dioxide	1599.000000	46.467792	32.895324	6.000000	22.000000	38.000000	62.000000	289.00000
density	1599.000000	0.996747	0.001887	0.990070	0.995600	0.996750	0.997835	1.00369
рН	1599.000000	3.311113	0.154386	2.740000	3.210000	3.310000	3.400000	4.01000
sulphates	1599.000000	0.658149	0.169507	0.330000	0.550000	0.620000	0.730000	2.00000
alcohol	1599.000000	10.422983	1.065668	8.400000	9.500000	10.200000	11.100000	14.90000
quality	1599.000000	5.636023	0.807569	3.000000	5.000000	6.000000	6.000000	8.00000
▲								•

Profiling Report

In [7]:

1 #profiling = pandas_profiling.ProfileReport(df)

2 #profiling

3. Cleaning dataset

Null Values

```
In [8]:
          1 df.isnull().sum()
Out[8]: fixed acidity
                                  0
                                  0
        volatile acidity
        citric acid
                                  0
        residual sugar
                                  0
        chlorides
                                  0
        free sulfur dioxide
        total sulfur dioxide
                                  0
        density
                                  0
        рΗ
                                 0
        sulphates
                                 0
        alcohol
                                  0
        quality
                                  0
        dtype: int64
```

There are **No null values** in the dataframe.

Duplicate entries

Observations:

There are 240 duplicates. The quality ratings for the same/similar wine were given by different wine tasters so there is a possibility of similar reviews. We can thus keep these duplicates.

4. EDA

Unique Values of Quality(Target Variable)

```
In [10]:    1 df['quality'].unique()
Out[10]: array([5, 6, 7, 4, 8, 3], dtype=int64)
```

Observations:

Target variable/Dependent variable is discrete and categorical in nature.

"quality" score scale ranges from 1 to 10; 1 being poor and 10 being the best.

1,2,9 & 10 Quality ratings are not given by any observation. Only scores obtained are between 3 to 8.

Frequency Counts of each Quality Value

Observations:

"quality" has most values concentrated in the categories 5, 6 and 7. Only a few observations made for the categories 3 & 8

Renaming Columns

Distribution of Features

observation:

Analyzing the graphs here, it turns out that the values of the variable 'fixed_acidity' are relatively normally distributed (but a bit left skewed). But there are two peaks in the distributions of other 'volatile_acidity' and 'citric_acid' variables. Features 'residual_sugar', 'chlorides', 'free_sulfur_dioxide', 'sulphates' and 'alcohol' are hoghly skewed to left, showing non normality sign. 'density' and 'ph' columns are almost normally distributed.

```
In [15]:
           1
              plt.figure(figsize=(15, 15))
           2
              plt.suptitle('Hstogram of Features', fontsize=20, fontweight='bold', alpha=0
           3
           4
              for i in range(0,len(df.columns)):
           5
                  plt.subplot(5, 3, i+1)
           6
                  plt.hist(x = df[df.columns[i]] , color = 'g')
           7
                  plt.xlabel(df.columns[i])
           8
                  plt.tight_layout()
```


Observations:

The distribution of the attribute "alcohol" seems to be positively skewed i.e the curve is shifted towards the left. The attributes 'density' and 'pH' are quite normally distributed.

Now looking at the attribute quality, we can observe that the wines with average quality (i.e. quality rating 5 to 7) are more than wines with bad(1-4) or good(8-10) quality.

Pairplot

```
In [16]: 1 sns.pairplot(df, diag_kind = "hist", hue = "quality", height = 3, aspect = 1
```

Out[16]: <seaborn.axisgrid.PairGrid at 0x1d181b49040>

We see here that there is correlation between some variables. And this is what we don't want. This problem is called 'multicollinearity'

Heatmap for multicollinearity

													-1.0
fixed_acidity	1	-0.26	0.67	0.11	0.094	-0.15	-0.11	0.67	-0.68	0.18	-0.062	0.12	
volatile_acidity	-0.26	1	-0.55	0.0019	0.061	-0.011	0.076	0.022	0.23	-0.26	-0.2	-0.39	- 0.8
citric_acid	0.67	-0.55	1	0.14	0.2	-0.061	0.036	0.36	-0.54	0.31	0.11	0.23	- 0.6
residual_sugar	0.11	0.0019	0.14	1	0.056	0.19	0.2	0.36	-0.086	0.0055	0.042	0.014	
chlorides	0.094	0.061	0.2	0.056	1	0.0056	0.047	0.2	-0.27	0.37	-0.22	-0.13	- 0.4
free_sulfur_dioxide	-0.15	-0.011	-0.061	0.19	0.0056	1	0.67	-0.022	0.07	0.052	-0.069	-0.051	- 0.2
total_sulfur_dioxide	-0.11	0.076	0.036	0.2	0.047	0.67	1	0.071	-0.066	0.043	-0.21	-0.19	
density	0.67	0.022	0.36	0.36	0.2	-0.022	0.071	1	-0.34	0.15	-0.5	-0.17	- 0.0
рН	-0.68	0.23	-0.54	-0.086	-0.27	0.07	-0.066	-0.34	1	-0.2	0.21	-0.058	0.2
sulphates	0.18	-0.26	0.31	0.0055	0.37	0.052	0.043	0.15	-0.2	1	0.094	0.25	0.4
alcohol	-0.062	-0.2	0.11	0.042	-0.22	-0.069	-0.21	-0.5	0.21	0.094	1	0.48	0.4
quality	0.12	-0.39	0.23	0.014	-0.13	-0.051	-0.19	-0.17	-0.058	0.25	0.48	1	0.6
	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	total_sulfur_dioxide	density	£	sulphates	alcohol	quality	_

```
In [18]:
             from plotly.subplots import make_subplots
             import plotly.graph_objects as go
           3 colors = ['#FC4F4F', '#FFBC80', '#FF9F45', '#F76E11', '#CD104D', '#820000']
           4 quality = [3,4,5,6,7,8]
           5 fig = make_subplots(rows = 1, cols = 2, specs = [[{"type": "pie"}, {"type":
             fig.add_trace(go.Pie(values = df.quality.value_counts(), labels = df.quality
                                  marker = dict(colors = colors), hole = .3, name=''), ro
           7
             fig.add_trace(go.Bar(x = df.quality.value_counts().index, y = df.quality.val
           8
                                  colorscale = colors)), row = 1, col = 2)
           9
            fig.update_layout(showlegend = False)
          10
          11 fig.show()
```


Outliers

quality

5. Data Preprocessing

selecting dependent and independent columns

Splitting training and test data

```
In [21]:
             x_train, x_test, y_train, y_test = train_test_split(x, y,
           1
                                                                  test_size = 0.25,
           2
           3
                                                                  shuffle = True,
                                                                  random state = 15)
           4
In [22]:
             print("shape of train input data:",x_train.shape,"\n shape of train output d
           1
                    "\nshape of test input data ",x_test.shape,"\nshape of test output dat
           2
         shape of train input data: (1199, 11)
          shape of train output data (1199,)
         shape of test input data (400, 11)
         shape of test output data (400,)
         Feature scaling
In [23]:
             def scaler_standard(X_train, X_test):
           1
           2
                  scaler = StandardScaler()
                 X_train_scaled = scaler.fit_transform(X_train)
           3
                 X_test_scaled = scaler.transform(X_test)
           4
           5
           6
                  return X_train_scaled, X_test_scaled
In [24]:
           1 x train scaled, x test scaled = scaler standard(x train, x test)
In [25]:
           1 x_train_scaled
Out[25]: array([[-0.08984359, 0.37434335, -1.41618799, ..., 1.26371731,
                 -0.0589426 , -1.06214829],
                [-0.03317738, 0.20506646, -0.28926993, ..., 0.41840095,
                 -0.23984409, -0.87351189],
                [1.32681172, -0.52846674, 0.58153039, ..., -2.70276713,
                 -0.96345004, -0.77919369],
                [-0.37317466, -0.07706169, 0.01807136, ..., 0.74352263,
                  0.48376186, -1.1564665 ],
                [-0.31650845, 0.6564715, -0.90395251, ..., 0.41840095,
                  0.18225938, -0.30760268],
                [-1.56316512, 0.54362024, -1.26251735, ..., 2.30410667,
                 -0.23984409, -0.30760268]])
```

Variance Inflation Factor

```
In [27]: 1  vif = pd.DataFrame()
  vif["vif"] = [variance_inflation_factor(x_train_scaled,i) for i in range(x_t
  vif["Features"] = x_train.columns
  #Let's check the values
  vif
```

Out[27]:

	vif	Features
0	8.214155	fixed_acidity
1	1.800195	volatile_acidity
2	3.300791	citric_acid
3	1.642138	residual_sugar
4	1.598401	chlorides
5	1.910315	free_sulfur_dioxide
6	2.143245	total_sulfur_dioxide
7	6.385594	density
8	3.403990	рН
9	1.512904	sulphates
10	2.931158	alcohol

6. ML Model: Support Vector Classifier

```
In [28]: 1 from sklearn.svm import SVC
2 svc_model=SVC()
```

```
In [29]: 1 svc_model.fit(x_train_scaled,y_train)
Out[29]: SVC()
```

model score

```
In [30]: 1 svc_model.score(x_train_scaled,y_train)
```

Out[30]: 0.6755629691409508

Saving the model

Prediction

```
In [32]:
             y pred = svc model.predict(x test scaled)
In [33]:
             y_pred
           1
Out[33]: array([5, 6, 6, 6, 6, 5, 7, 6, 5, 6, 7, 5, 6, 6, 5, 7, 5, 6, 6, 6, 6, 5,
                6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 6, 5, 6, 6, 6, 6, 5, 5, 6, 6, 7,
                5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 5, 5, 6, 6, 6, 5, 5, 6, 5, 6,
                7, 6, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6,
                5, 6, 6, 5, 6, 5, 7, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 5, 5, 7, 5, 6,
                5, 7, 5, 5, 6, 5, 6, 6, 6, 6, 5, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6,
                5, 5, 6, 5, 6, 6, 5, 6, 5, 5, 5, 6, 5, 6, 5, 5, 5, 6, 5, 6, 6,
                5, 5, 5, 6, 5, 6, 6, 6, 5, 5, 5, 6, 7, 6, 6, 5, 5, 6, 6, 5, 6, 7,
                5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 5, 5, 6, 6, 6, 7, 5, 6, 5, 6, 5,
                5, 6, 6, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 6,
                6, 5, 5, 5, 6, 5, 6, 5, 5, 6, 7, 5, 6, 6, 7, 6, 5, 6, 6, 6, 6, 6,
                5, 5, 5, 5, 6, 7, 5, 5, 5, 6, 5, 6, 5, 5, 5, 6, 5, 6, 6, 6, 6, 5,
                6, 6, 6, 6, 5, 6, 6, 5, 5, 5, 5, 6, 5, 5, 7, 5, 6, 5, 5, 5, 7, 5,
                6, 5, 5, 5, 5, 6, 6, 5, 5, 6, 5, 5, 5, 6, 6, 6, 5, 5, 5, 5, 6, 5,
                6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5, 7, 5, 5, 6, 5, 5, 5, 7, 5, 6,
                5, 5, 6, 7, 5, 6, 5, 6, 6, 5, 6, 5, 6, 6, 6, 6, 5, 5, 7, 5, 5,
                6, 5, 6, 5, 5, 5, 5, 7, 6, 6, 7, 6, 6, 5, 6, 5, 6, 5, 5, 5, 5, 6,
                6, 5, 5, 6, 6, 5, 5, 5, 5, 6, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5,
                5, 5, 6, 5], dtype=int64)
```

Performence Metrics

```
In [34]:
              # Accuracy score
           2
              accuracy = accuracy_score(y_test,y_pred)
              accuracy
Out[34]: 0.6225
In [35]:
              score = accuracy_score(y_test,y_pred)
              cr = classification_report(y_test,y_pred)
           3
             print("SVC ")
              print ("Accuracy Score value: {:.4f}".format(score))
              print (cr)
         SVC
         Accuracy Score value: 0.6225
                                      recall f1-score
                        precision
                                                          support
                     3
                             0.00
                                        0.00
                                                  0.00
                                                                4
                     4
                             0.00
                                        0.00
                                                  0.00
                                                               14
                     5
                             0.63
                                        0.78
                                                  0.69
                                                              163
                     6
                             0.63
                                        0.65
                                                  0.64
                                                              171
                     7
                             0.50
                                        0.26
                                                  0.34
                                                               43
                                                                5
                     8
                             0.00
                                        0.00
                                                  0.00
                                                  0.62
                                                              400
              accuracy
             macro avg
                             0.29
                                        0.28
                                                  0.28
                                                              400
                             0.58
                                                  0.59
         weighted avg
                                        0.62
                                                              400
In [36]:
              svc_cm = ConfusionMatrixDisplay.from_estimator(svc_model, x_test_scaled, y_t
                                                - 120
            3
```


observation:

3

The accuracy of our model is 62.25%.

5

Predicted label

6

7

8

Hyperparameter Tuning

Grid Search CV

Best parameters

Using the best parameters and creating new model

```
In [115]: 1 svc_model2=SVC(C= 1.6, gamma= 1, kernel='rbf')
2 svc_model2.fit(x_train_scaled,y_train)
Out[115]: SVC(C=1.6, gamma=1)
```

```
In [116]:
              # new predictions
              y_pred_new=svc_model2.predict(x_test_scaled)
            2
            3
              y_pred_new
Out[116]: array([5, 5, 5, 6, 7, 6, 7, 6, 5, 6, 6, 5, 6, 6, 5, 7, 5, 5, 5, 7, 5, 5,
                 6, 7, 5, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 7,
                 5, 5, 5, 6, 6, 6, 5, 7, 5, 6, 6, 5, 5, 5, 5, 7, 5, 5, 5, 6, 5, 6,
                 7, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 5,
                 5, 7, 6, 6, 5, 5, 6, 6, 5, 5, 6, 6, 6, 5, 8, 6, 6, 5, 6, 6, 5,
                 5, 7, 5, 5, 6, 5, 7, 5, 6, 6, 6, 5, 6, 5, 5, 6, 6, 5, 6, 5, 5, 5,
                 5, 5, 6, 5, 5, 6, 5, 6, 5, 5, 5, 6, 6, 5, 6, 5, 5, 5, 7, 5, 6, 5,
                 6, 5, 5, 6, 6, 5, 6, 6, 5, 5, 5, 6, 7, 7, 6, 5, 5, 6, 5, 5, 7, 7,
                 6, 6, 5, 5, 5, 6, 6, 6, 6, 5, 6, 5, 5, 6, 6, 6, 6, 6, 6, 5, 6, 5,
                 5, 6, 6, 5, 6, 6, 5, 5, 6, 5, 6, 6, 5, 6, 5, 6, 5, 5, 5, 5,
                 6, 5, 5, 5, 6, 5, 6, 5, 5, 6, 7, 5, 6, 6, 6, 5, 5, 6, 7, 6, 6, 5,
                 6, 5, 5, 5, 5, 6, 5, 5, 6, 5, 5, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 5,
                 6, 6, 7, 6, 5, 6, 6, 5, 5, 5, 6, 6, 5, 5, 7, 5, 5, 5, 5, 7, 6,
                 5, 5, 5, 5, 6, 6, 5, 5, 7, 5, 5, 5, 6, 5, 6, 6, 5, 6, 6, 5,
                 6, 6, 5, 6, 5, 5, 6, 6, 7, 6, 6, 5, 7, 5, 5, 6, 5, 5, 5, 7, 6, 6,
                 5, 5, 5, 7, 5, 5, 5, 6, 6, 5, 7, 5, 6, 6, 6, 6, 5, 5, 6, 5, 5, 6,
                 6, 5, 6, 5, 5, 5, 6, 7, 6, 6, 6, 7, 6, 5, 6, 5, 6, 5, 5, 5, 6, 6,
                 6, 6, 5, 6, 6, 5, 5, 5, 5, 6, 5, 5, 7, 5, 5, 6, 5, 6, 5, 7, 5, 5,
                 5, 6, 6, 6], dtype=int64)
In [117]:
              print("Accuracy Score:",accuracy_score(y_pred_new,y_test))
              print("Classification Report:\n",classification report(y pred new,y test))
            2
              print("Confusion Matrix:\n",confusion_matrix(y_pred_new,y_test))
          Accuracy Score: 0.6475
          Classification Report:
                         precision
                                      recall f1-score
                                                          support
                     3
                             0.00
                                       0.00
                                                  0.00
                                                               0
                     4
                             0.00
                                       0.00
                                                  0.00
                                                               0
                     5
                             0.79
                                       0.65
                                                 0.71
                                                             199
                     6
                             0.64
                                       0.65
                                                 0.64
                                                             168
                     7
                             0.49
                                       0.66
                                                 0.56
                                                              32
                     8
                             0.00
                                       0.00
                                                 0.00
                                                               1
              accuracy
                                                 0.65
                                                             400
             macro avg
                             0.32
                                       0.33
                                                 0.32
                                                             400
          weighted avg
                             0.70
                                       0.65
                                                 0.67
                                                             400
          Confusion Matrix:
           [[
               0
                   0
                       0
                           0
                               0
                                   0]
              0
                      0
                          0
                                  0]
```

observation:

3

[1

[0

[0 0

6

0

0

8 129

52

10

0

34 109

0

0

0

6

15

21

1

1]

3]

1]

0]]

We are able to Increase the accuracy of our model from 62.25% to 64.75% by Hyperparameter Tuning the model