NOMBRES COMPLEXES - BAC S NOUVELLE CALÉDONIE 2016

$$z_0 = 1 \text{ et } z_{n+1} = \left(1 + i \frac{\sqrt{3}}{3}\right) z_n$$

1)

1.a) Soit le nombre complexe $c = 1 + i \frac{\sqrt{3}}{3}$. Il s'écrit $c = re^{i\theta}$ sous forme exponentielle, r étant son module et θ son argument.

On a
$$r = |c| = \sqrt{1 + \left(\frac{\sqrt{3}}{3}\right)^2} = \sqrt{\frac{4}{3}} = \frac{2}{\sqrt{3}}$$

 $\cos \theta = \frac{1}{r} = \frac{\sqrt{3}}{2}$
 $\sin \theta = \frac{\sqrt{3}}{3} \frac{1}{r} = \frac{1}{2}$

dont on déduit que $\theta = \frac{\pi}{6}$ modulo (2π) .

Alors
$$c = 1 + i \frac{\sqrt{3}}{3} = \frac{2}{\sqrt{3}} e^{i \frac{\pi}{6}}$$
.

1.b)
$$z_0 = 1$$
 et $z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right)z_n \implies z_1 = c = 1 + i\frac{\sqrt{3}}{3}$ et, sous forme exponentielle, $z_1 = \frac{2}{\sqrt{3}}e^{i\frac{\pi}{6}}$.

$$z_2 = \left(1 + i\frac{\sqrt{3}}{3}\right)z_1 = z_1^2 = \left(\frac{2}{\sqrt{3}}e^{i\frac{\pi}{6}}\right)^2 = \frac{4}{3}e^{i\frac{\pi}{3}}.$$

2)

2.a) On peut écrire
$$z_1 = \left(\frac{2}{\sqrt{3}}\right)^1 e^{i1\frac{\pi}{6}}$$
 et $z_2 = \left(\frac{2}{\sqrt{3}}\right)^2 e^{i2\frac{\pi}{6}}$.

Si la proposition $z_n = \left(\frac{2}{\sqrt{3}}\right)^n e^{in\frac{\pi}{6}}$ est vraie, elle est aussi vraie pour $z_{n+1} = z_1 z_n = \left(\frac{2}{\sqrt{3}}\right)^{n+1} e^{i(n+1)\frac{\pi}{6}}$ et par récurrence la proposition est vraie pour tout entier naturel n.

- 2.b) Les points O, A_0 et A_n sont respectivement les points d'affixe 0, z_0 et z_n . Pour qu'ils soient alignés, il faut que leurs arguments soient égaux à $k\pi$ près, avec $k \in \mathbb{Z}$. Les arguments de 0 et z_0 sont nuls. Il faut donc que $\arg(z_n) = n\frac{\pi}{6} = 0 + k\pi$, ce qui donne n = 6k.
- 3)
 3.a) $d_n = |z_{n+1} z_n|$ est le module du complexe $z_{n+1} z_n$ dont l'image A_d dans le repère orthonormé $(O; \vec{u}, \vec{v})$ est telle que $\overrightarrow{OA_d} = \overrightarrow{OA_{n+1}} \overrightarrow{OA_n} = \overrightarrow{A_n A_{n+1}}$.

 Ceci revient à dire que d_n est égale à la norme du vecteur $\overrightarrow{A_n A_{n+1}}$: $d_n = \|\overrightarrow{A_n A_{n+1}}\|$.

$$d_{0} = |z_{1} - z_{0}|$$

$$z_{1} - z_{0} = i \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3} e^{i \frac{\pi}{2}}$$

$$d_{0} = \frac{\sqrt{3}}{3}$$

3.c) Pour tout entier n non nul on a :

$$z_{n+2} = \left(1 + i\frac{\sqrt{3}}{3}\right) z_{n+1} \text{ et } z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right) z_n$$

$$\text{donc } z_{n+2} - z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right) (z_{n+1} - z_n).$$

3.d) Le module du produit de deux complexes étant égal au produit de leurs modules, on a :

$$\left|z_{n+2} - z_{n+1}\right| = \left|1 + i\frac{\sqrt{3}}{3}\right| z_{n+1} - z_n$$
, c'est à dire, $d_{n+1} = d_n \frac{2}{\sqrt{3}}$.

 $(d_n)_{n\geq 0}$ est une suite géométrique de premier terme $d_0 = \frac{\sqrt{3}}{3}$ et de raison $q = \frac{2}{\sqrt{3}}$.

Ainsi pour tout entier n naturel, $d_n = d_0 q^n = \left(\frac{\sqrt{3}}{3}\right) \left(\frac{2}{\sqrt{3}}\right)^n$.

4.a) D'après 2.a), on a
$$\left|z_n\right| = \left(\frac{2}{\sqrt{3}}\right)^n$$

d'où
$$|z_{n+1}|^2 = \left(\frac{2}{\sqrt{3}}\right)^{2(n+1)} = \left(\frac{4}{3}\right)\left(\frac{2}{\sqrt{3}}\right)^{2n}$$
 et $|z_n|^2 = \left(\frac{2}{\sqrt{3}}\right)^{2n}$. Par ailleurs $d_n^2 = \left(\frac{1}{3}\right)\left(\frac{2}{\sqrt{3}}\right)^{2n}$.

Donc
$$|z_n|^2 + d_n^2 = \left(\frac{2}{\sqrt{3}}\right)^{2n} + \left(\frac{1}{3}\right)\left(\frac{2}{\sqrt{3}}\right)^{2n} = \left(\frac{4}{3}\right)\left(\frac{2}{\sqrt{3}}\right)^{2n} \text{ et,}$$

$$|z_{n+1}|^2 = |z_n|^2 + d_n^2.$$

4.b) D'après 3.a), l'égalité précédente est équivalente à : $\|\overrightarrow{OA_{n+1}}\|^2 = \|\overrightarrow{OA_n}\|^2 + \|\overrightarrow{A_nA_{n+1}}\|^2$. Ceci implique que le triangle OA_nA_{n+1} est rectangle en A_n .

4.c) On construit le symétrique A'_1 de A_1 par rapport à l'axe des abscisses. Pour cela on trace les cercles de centre O et de rayon OA_1 et de centre A_0 et de rayon A_0A_1 . Ces deux cercles se coupent en A_1 et A'_1 . On trace la droite OA'_1 , (D), en vert sur le graphe ci-dessous. On trace la droite A_1A_2 et le cercle de centre A_1 et de rayon $R = OA_4$. Ils se coupent en A'_4 . On trace la droite A'_4A_4 , (D'), en rouge sur le graphe. Le point d'intersection de (D) et (D') est A_5 .

4.d) L'argument de l'affixe de A_5 est $5\frac{\pi}{6}$. L'argument de l'affixe de A_1 , conjugué de l'affixe de A_1 , est $2\pi - \frac{\pi}{6} = 11\frac{\pi}{6} = \pi + 5\frac{\pi}{6}$. Donc A_1 et A_5 sont alignés avec O sur la droite (D).

Les arguments des affixes de A_1 et A_4 diffèrent de $4\frac{\pi}{6} - \frac{\pi}{6} = \frac{\pi}{2}$. Donc OA_1 et OA_4 sont perpendiculaires. Par ailleurs, d'après 4.b), A_1A_2 est perpendiculaire à OA_1 . Donc A_1A_2 est parallèle à OA_4 . Par construction, $A_1A'_4 = OA_4$. On en déduit que $OA_1A'_4A_4$ est un rectangle et que A'_4A_4 est perpendiculaire à OA_4 .

D'après 4.b), A_5 doit se trouver sur la droite (D') perpendiculaire à OA_4 . Donc, A5 se trouve à l'intersection de (D) et (D').