

Базовая математика

Урок 9. Формула Ньютона—Лейбница. Примеры вычисления интегралов

Пусть на некотором отрезке [a;b] оси Ox задана некоторая непрерывная функция f(x). Положим, что эта функция не меняет своего знака на всем отрезке.

Теорема 1. Если f(x) есть непрерывная и неотрицательная на некотором отрезке [a;b] функция, а F(x) есть её некоторая первообразная на этом отрезке, то площадь криволинейной трапеции S, ограниченная осью Ox, кривой y=f(x) и двумя прямыми x=a и x=b, равна приращению первообразной на данном отрезке:

$$S = F(b) - F(a)$$

Значение площади S из теоремы выше называется *определённым интегралом* функции f(x) на отрезке [a;b] и обозначается:

$$\int_{a}^{b} f(x) \, dx$$

Итак, справедлива формула Ньютона-Лейбница:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \tag{1}$$

Выражение F(b) - F(a) часто обозначают следующим образом:

$$F(x)\Big|_a^b$$

Формула Ньютона-Лейбница применяется для вычисления интегралов. Рассмотрим несколько примеров.

Пример 1. Вычислить определенный интеграл $\int_{1}^{2} 2x^{2} dx$.

Решение.

$$\int_{1}^{2} 2x^{2} dx = 2 \cdot \int_{1}^{2} x^{2} dx = \frac{2}{3} x^{3} \Big|_{1}^{2} = \frac{2}{3} (2^{3} - 1^{3}) = \frac{2}{3} (8 - 1) = \frac{14}{3} = 4\frac{2}{3}$$

В первом равенстве мы выносим константу за знак интеграла. Далее, чтобы посчитать первообразную от функции x^2 , можно воспользоваться табличной формулой:

$$\int x^a \, dx = \frac{x^{a+1}}{a+1} + C$$

Поскольку речь идёт об определённом интеграле, записываем приращение функции x^3 на отрезке [1;2] в соответствии с формулой Ньютона—Лейбница (1).

Omsem: $4\frac{2}{3}$.

Пример 2. Вычислить определенный интеграл $\int_{-1}^{2} x^2 dx$.

Peшение. Находим первообразную для подынтегральной функции x^2 . Одной из первообразных будет являться функция $\frac{x^3}{3}$. Используем формулу Ньютона–Лейбница (1):

$$\left. \int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \right|_{-1}^{2} = \frac{2^{3}}{3} - \frac{(-1)^{3}}{3} = 3$$

Ответ: 3.

Пример 3. Вычислить определенный интеграл $\int_0^{\pi} \sin x \, dx$.

Peшение. Находим первообразную для подынтегральной функции $\sin x$. Одной из первообразных будет являться функция — $\cos x$. Теперь по формуле Ньютона—Лейбница:

$$\int_0^{\pi} \sin x \, dx = (-\cos x) \Big|_0^{\pi} = -\cos \pi + \cos 0 = 2$$

Ответ: 2.

Площадь фигуры

Случай 1. Ранее мы сформулировали Теорему 1: если непрерывная кривая задана уравнением $y = f(x), f(x) \ge 0$, то площадь криволинейной трапеции S, ограниченная осью Ox, кривой y = f(x) и двумя прямыми x = a и x = b, равна:

$$S = \int_{a}^{b} f(x) \, dx$$

Пример 4. Вычислить площадь фигуры, ограниченной параболой $y=x^2$, прямыми $x=-1,\,x=2$ и осью Ox.

Решение.

$$S = \int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{2} = \frac{2^{3}}{3} - \frac{(-1)^{3}}{3} = 3$$

Ответ: 3.

Случай 2. Если площадь S ограничена графиками непрерывных функций y=f(x) и y=g(x) и двумя прямыми $x=a, \ x=b$ и $f(x)\leq g(x)$ при $a\leq x\leq b$, то:

$$S = \int_{a}^{b} (g(x) - f(x)) dx$$

Пример 5. Вычислить площадь сегмента, отсекаемого прямой y=-x от параболы $(x-1)^2=-(y-1).$

Решение. Найдём точки пересечения параболы и прямой, т.е. решим систему уравнений:

$$y = 2x - x^2, y = -x$$

Решения системы:

$$x_1 = 0, y_1 = 0; x_2 = 3, y_2 = -3$$

По рисунку видно, что функция $y=2x-x^2$ находится выше, чем функция y=-x. Поэтому для нахождения площади примем $g(x)=2x-x^2, \ f(x)=-x$. Итак, искомая площадь:

$$S = \int_0^3 (2x - x^2 - (-x)) \, dx = \int_0^3 (3x - x^2) \, dx = \left(\frac{3x^2}{2} - \frac{x^3}{3}\right) \Big|_0^3 = \frac{9}{2} = 4.5$$

Omeem: 4.5.

Случай 3. Если криволинейная трапеция ограничена кривой $x=\varphi(y)$, прямыми $y=c,\,y=d$ и отрезком [c;d] оси Oy, то площадь такой трапеции вычисляется по формуле:

$$S = \int_{c}^{d} \varphi(y) dy$$

Пример 6. Найти площадь фигуры, ограниченной линиями $x = \sqrt{y},$ $x = 0, \ y = 4.$

Peшение. В принципе эту задачу можно решить и интегрированием по x. Заметим, что

$$S = S_{OABC} - S_{OBC},$$

где OABC — квадрат, OBC — криволинейный треугольник.

Найдём координату точки B с помощью системы:

$$\begin{cases} y = 4 \\ x = \sqrt{y} \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 4 \end{cases}$$

Итак, найдём нужные площади:

$$S_{OABC} = \int_0^2 4 \, dx = 8, \ S_{OBC} = \int_0^2 x^2 dx = \frac{8}{3}$$

Теперь искомая площадь:

$$S = 8 - \frac{8}{3} = \frac{16}{3}$$

Отметим, что в данном случае по y интегрировать проще. Чтобы сделать это, нам не хватает только нижнего предела интегрирования. Найдём его из системы:

$$\begin{cases} x = 0 \\ x = \sqrt{y} \end{cases} \Rightarrow y = 0$$

Итак, интегрируем по y:

$$S = \int_0^4 \sqrt{y} \, dy = \frac{2y\sqrt{y}}{3} \bigg|_0^4 = \frac{2 \cdot 4 \cdot 2}{3} - 0 = \frac{16}{3}$$

Omeem: $\frac{16}{3}$.

Домашнее задание

- 1. Вычислить интеграл $\int_{0}^{2} (x^{3} x^{2}) dx$.
- 2. Вычислить интеграл $\int_0^1 \left(\sqrt[3]{x} \sqrt{x}\right) dx.$
- 3. Вычислить интеграл $\int_{-1}^{1} (4x^3 + 5x^4) dx$.
- 4. Найти площадь фигуры, ограниченной линией $3x^2 + 2y 4 = 0$ и осью Ox.