Machine Learning Project Checklist

This checklist can guide you through your Machine Learning projects. There are eight main steps:

- 1. Frame the problem and look at the big picture.
- 2. Get the data.
- 3. Explore the data to gain insights.
- 4. Prepare the data to better expose the underlying data patterns to Machine Learning algorithms.
- 5. Explore many different models and short-list the best ones.
- 6. Fine-tune your models and combine them into a great solution.
- 7. Present your solution.
- 8. Launch, monitor, and maintain your system.

Obviously, you should feel free to adapt this checklist to your needs.

Frame the Problem and Look at the Big Picture

- 1. Define the objective in business terms.
- 2. How will your solution be used?
- 3. What are the current solutions/workarounds (if any)?
- 4. How should you frame this problem (supervised/unsupervised, online/offline, etc.)?
- 5. How should performance be measured?
- 6. Is the performance measure aligned with the business objective?

- 7. What would be the minimum performance needed to reach the business objective?
- 8. What are comparable problems? Can you reuse experience or tools?
- 9. Is human expertise available?
- 10. How would you solve the problem manually?
- 11. List the assumptions you (or others) have made so far.
- 12. Verify assumptions if possible.

Get the Data

Note: automate as much as possible so you can easily get fresh data.

- 1. List the data you need and how much you need.
- 2. Find and document where you can get that data.
- 3. Check how much space it will take.
- 4. Check legal obligations, and get authorization if necessary.
- 5. Get access authorizations.
- 6. Create a workspace (with enough storage space).
- 7. Get the data.
- 8. Convert the data to a format you can easily manipulate (without changing the data itself).
- 9. Ensure sensitive information is deleted or protected (e.g., anonymized).
- 10. Check the size and type of data (time series, sample, geographical, etc.).
- 11. Sample a test set, put it aside, and never look at it (no data snooping!).

Explore the Data

Note: try to get insights from a field expert for these steps.

- 1. Create a copy of the data for exploration (sampling it down to a manageable size if necessary).
- 2. Create a Jupyter notebook to keep a record of your data exploration.
- 3. Study each attribute and its characteristics:
 - Name
 - Type (categorical, int/float, bounded/unbounded, text, structured, etc.)

- % of missing values
- Noisiness and type of noise (stochastic, outliers, rounding errors, etc.)
- Possibly useful for the task?
- Type of distribution (Gaussian, uniform, logarithmic, etc.)
- 4. For supervised learning tasks, identify the target attribute(s).
- 5. Visualize the data.
- 6. Study the correlations between attributes.
- 7. Study how you would solve the problem manually.
- 8. Identify the promising transformations you may want to apply.
- 9. Identify extra data that would be useful (go back to "Get the Data" on page 498).
- 10. Document what you have learned.

Prepare the Data

Notes:

- Work on copies of the data (keep the original dataset intact).
- Write functions for all data transformations you apply, for five reasons:
 - So you can easily prepare the data the next time you get a fresh dataset
 - So you can apply these transformations in future projects
 - To clean and prepare the test set
 - To clean and prepare new data instances once your solution is live
 - To make it easy to treat your preparation choices as hyperparameters

1. Data cleaning:

- Fix or remove outliers (optional).
- Fill in missing values (e.g., with zero, mean, median...) or drop their rows (or columns).
- 2. Feature selection (optional):
 - Drop the attributes that provide no useful information for the task.
- 3. Feature engineering, where appropriate:
 - Discretize continuous features.

- Decompose features (e.g., categorical, date/time, etc.).
- Add promising transformations of features (e.g., log(x), sqrt(x), x^2 , etc.).
- Aggregate features into promising new features.
- 4. Feature scaling: standardize or normalize features.

Short-List Promising Models

Notes:

- If the data is huge, you may want to sample smaller training sets so you can train many different models in a reasonable time (be aware that this penalizes complex models such as large neural nets or Random Forests).
- Once again, try to automate these steps as much as possible.
- 1. Train many quick and dirty models from different categories (e.g., linear, naive Bayes, SVM, Random Forests, neural net, etc.) using standard parameters.
- 2. Measure and compare their performance.
 - For each model, use *N*-fold cross-validation and compute the mean and standard deviation of the performance measure on the *N* folds.
- 3. Analyze the most significant variables for each algorithm.
- 4. Analyze the types of errors the models make.
 - What data would a human have used to avoid these errors?
- 5. Have a quick round of feature selection and engineering.
- 6. Have one or two more quick iterations of the five previous steps.
- 7. Short-list the top three to five most promising models, preferring models that make different types of errors.

Fine-Tune the System

Notes:

- You will want to use as much data as possible for this step, especially as you move toward the end of fine-tuning.
- As always automate what you can.

- 1. Fine-tune the hyperparameters using cross-validation.
 - Treat your data transformation choices as hyperparameters, especially when you are not sure about them (e.g., should I replace missing values with zero or with the median value? Or just drop the rows?).
 - Unless there are very few hyperparameter values to explore, prefer random search over grid search. If training is very long, you may prefer a Bayesian optimization approach (e.g., using Gaussian process priors, as described by Jasper Snoek, Hugo Larochelle, and Ryan Adams).¹
- 2. Try Ensemble methods. Combining your best models will often perform better than running them individually.
- 3. Once you are confident about your final model, measure its performance on the test set to estimate the generalization error.

Don't tweak your model after measuring the generalization error: you would just start overfitting the test set.

Present Your Solution

- 1. Document what you have done.
- 2. Create a nice presentation.
 - Make sure you highlight the big picture first.
- 3. Explain why your solution achieves the business objective.
- 4. Don't forget to present interesting points you noticed along the way.
 - Describe what worked and what did not.
 - List your assumptions and your system's limitations.
- 5. Ensure your key findings are communicated through beautiful visualizations or easy-to-remember statements (e.g., "the median income is the number-one predictor of housing prices").

^{1 &}quot;Practical Bayesian Optimization of Machine Learning Algorithms," J. Snoek, H. Larochelle, R. Adams (2012).

Launch!

- 1. Get your solution ready for production (plug into production data inputs, write unit tests, etc.).
- 2. Write monitoring code to check your system's live performance at regular intervals and trigger alerts when it drops.
 - Beware of slow degradation too: models tend to "rot" as data evolves.
 - Measuring performance may require a human pipeline (e.g., via a crowdsourcing service).
 - Also monitor your inputs' quality (e.g., a malfunctioning sensor sending random values, or another team's output becoming stale). This is particularly important for online learning systems.
- 3. Retrain your models on a regular basis on fresh data (automate as much as possible).

SVM Dual Problem

To understand *duality*, you first need to understand the *Lagrange multipliers* method. The general idea is to transform a constrained optimization objective into an unconstrained one, by moving the constraints into the objective function. Let's look at a simple example. Suppose you want to find the values of x and y that minimize the function $f(x,y) = x^2 + 2y$, subject to an *equality constraint*: 3x + 2y + 1 = 0. Using the Lagrange multipliers method, we start by defining a new function called the *Lagrangian* (or *Lagrange function*): $g(x, y, \alpha) = f(x, y) - \alpha(3x + 2y + 1)$. Each constraint (in this case just one) is subtracted from the original objective, multiplied by a new variable called a Lagrange multiplier.

Joseph-Louis Lagrange showed that if (\hat{x}, \hat{y}) is a solution to the constrained optimization problem, then there must exist an $\hat{\alpha}$ such that $(\hat{x}, \hat{y}, \hat{\alpha})$ is a *stationary point* of the Lagrangian (a stationary point is a point where all partial derivatives are equal to zero). In other words, we can compute the partial derivatives of $g(x, y, \alpha)$ with regards to x, y, and α ; we can find the points where these derivatives are all equal to zero; and the solutions to the constrained optimization problem (if they exist) must be among these stationary points.

In this example the partial derivatives are:
$$\begin{cases} \frac{\partial}{\partial x}g(x,y,\alpha) = 2x - 3\alpha \\ \frac{\partial}{\partial y}g(x,y,\alpha) = 2 - 2\alpha \\ \frac{\partial}{\partial \alpha}g(x,y,\alpha) = -3x - 2y - 1 \end{cases}$$

When all these partial derivatives are equal to 0, we find that $2\hat{x} - 3\hat{\alpha} = 2 - 2\hat{\alpha} = -3\hat{x} - 2\hat{y} - 1 = 0$, from which we can easily find that $\hat{x} = \frac{3}{2}$, $\hat{y} = -\frac{11}{4}$, and $\hat{\alpha} = 1$. This is the only stationary point, and as it respects the constraint, it must be the solution to the constrained optimization problem.

However, this method applies only to equality constraints. Fortunately, under some regularity conditions (which are respected by the SVM objectives), this method can be generalized to *inequality constraints* as well (e.g., $3x + 2y + 1 \ge 0$). The *generalized Lagrangian* for the hard margin problem is given by Equation C-1, where the $\alpha^{(i)}$ variables are called the *Karush–Kuhn–Tucker* (KKT) multipliers, and they must be greater or equal to zero.

Equation C-1. Generalized Lagrangian for the hard margin problem

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \cdot \mathbf{w} - \sum_{i=1}^{m} \alpha^{(i)} \left(t^{(i)} \left(\mathbf{w}^T \cdot \mathbf{x}^{(i)} + b \right) - 1 \right)$$
with $\alpha^{(i)} \ge 0$ for $i = 1, 2, \dots, m$

Just like with the Lagrange multipliers method, you can compute the partial derivatives and locate the stationary points. If there is a solution, it will necessarily be among the stationary points $(\widehat{\mathbf{w}}, \widehat{b}, \widehat{a})$ that respect the *KKT conditions*:

- Respect the problem's constraints: $t^{(i)}(\widehat{(\mathbf{w})}^T \cdot \mathbf{x}^{(i)} + \widehat{b}) \ge 1$ for $i = 1, 2, \dots, m$,
- Verify $\hat{\alpha}^{(i)} \ge 0$ for $i = 1, 2, \dots, m$,
- Either $\hat{\alpha}^{(i)} = 0$ or the ith constraint must be an *active constraint*, meaning it must hold by equality: $t^{(i)} \Big((\widehat{\mathbf{w}})^T \cdot \mathbf{x}^{(i)} + \hat{b} \Big) = 1$. This condition is called the *complementary slackness* condition. It implies that either $\hat{\alpha}^{(i)} = 0$ or the ith instance lies on the boundary (it is a support vector).

Note that the KKT conditions are necessary conditions for a stationary point to be a solution of the constrained optimization problem. Under some conditions, they are also sufficient conditions. Luckily, the SVM optimization problem happens to meet these conditions, so any stationary point that meets the KKT conditions is guaranteed to be a solution to the constrained optimization problem.

We can compute the partial derivatives of the generalized Lagrangian with regards to \mathbf{w} and b with Equation C-2.

Equation C-2. Partial derivatives of the generalized Lagrangian

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) = \mathbf{w} - \sum_{i=1}^{m} \alpha^{(i)} t^{(i)} \mathbf{x}^{(i)}$$
$$\frac{\partial}{\partial b} \mathcal{L}(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{m} \alpha^{(i)} t^{(i)}$$

When these partial derivatives are equal to 0, we have Equation C-3.

Equation C-3. Properties of the stationary points

$$\widehat{\mathbf{w}} = \sum_{i=1}^{m} \widehat{\alpha}^{(i)} t^{(i)} \mathbf{x}^{(i)}$$
$$\sum_{i=1}^{m} \widehat{\alpha}^{(i)} t^{(i)} = 0$$

If we plug these results into the definition of the generalized Lagrangian, some terms disappear and we find Equation C-4.

Equation C-4. Dual form of the SVM problem

$$\mathcal{L}(\widehat{\mathbf{w}}, \widehat{b}, \alpha) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(i)} \alpha^{(j)} t^{(i)} t^{(j)} \mathbf{x}^{(i)^{T}} \cdot \mathbf{x}^{(j)} - \sum_{i=1}^{m} \alpha^{(i)}$$
with $\alpha^{(i)} \ge 0$ for $i = 1, 2, \dots, m$

The goal is now to find the vector $\hat{\alpha}$ that minimizes this function, with $\hat{\alpha}^{(i)} \ge 0$ for all instances. This constrained optimization problem is the dual problem we were looking for.

Once you find the optimal $\hat{\alpha}$, you can compute $\widehat{\mathbf{w}}$ using the first line of Equation C-3. To compute \hat{b} , you can use the fact that a support vector verifies $t^{(i)}(\mathbf{w}^T \cdot \mathbf{x}^{(i)} + b) = 1$, so if the k^{th} instance is a support vector (i.e., $\alpha_k > 0$), you can use it to compute $\hat{b} = 1 - t^{(k)} (\widehat{\mathbf{w}}^T \cdot \mathbf{x}^{(k)})$. However, it is often preferred to compute the average over all support vectors to get a more stable and precise value, as in Equation C-5.

Equation C-5. Bias term estimation using the dual form

$$\hat{b} = \frac{1}{n_s} \sum_{\substack{i=1\\ \hat{\alpha}^{(i)} > 0}}^{m} \left[1 - t^{(i)} \left(\widehat{\mathbf{w}}^T \cdot \mathbf{x}^{(i)} \right) \right]$$

Autodiff

This appendix explains how TensorFlow's autodiff feature works, and how it compares to other solutions.

Suppose you define a function $f(x,y) = x^2y + y + 2$, and you need its partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, typically to perform Gradient Descent (or some other optimization algorithm). Your main options are manual differentiation, symbolic differentiation, numerical differentiation, forward-mode autodiff, and finally reverse-mode autodiff. TensorFlow implements this last option. Let's go through each of these options.

Manual Differentiation

The first approach is to pick up a pencil and a piece of paper and use your calculus knowledge to derive the partial derivatives manually. For the function f(x,y) just defined, it is not too hard; you just need to use five rules:

- The derivative of a constant is 0.
- The derivative of λx is λ (where λ is a constant).
- The derivative of x^{λ} is $\lambda x^{\lambda-1}$, so the derivative of x^2 is 2x.
- The derivative of a sum of functions is the sum of these functions' derivatives.
- The derivative of λ times a function is λ times its derivative.

From these rules, you can derive Equation D-1:

Equation D-1. Partial derivatives of f(x,y)

$$\frac{\partial f}{\partial x} = \frac{\partial (x^2 y)}{\partial x} + \frac{\partial y}{\partial x} + \frac{\partial 2}{\partial x} = y \frac{\partial (x^2)}{\partial x} + 0 + 0 = 2xy$$
$$\frac{\partial f}{\partial y} = \frac{\partial (x^2 y)}{\partial y} + \frac{\partial y}{\partial y} + \frac{\partial 2}{\partial y} = x^2 + 1 + 0 = x^2 + 1$$

This approach can become very tedious for more complex functions, and you run the risk of making mistakes. The good news is that deriving the mathematical equations for the partial derivatives like we just did can be automated, through a process called *symbolic differentiation*.

Symbolic Differentiation

Figure D-1 shows how symbolic differentiation works on an even simpler function, g(x,y) = 5 + xy. The graph for that function is represented on the left. After symbolic differentiation, we get the graph on the right, which represents the partial derivative $\frac{\partial g}{\partial x} = 0 + (0 \times x + y \times 1) = y$ (we could similarly obtain the partial derivative with regards to y).

Figure D-1. Symbolic differentiation

The algorithm starts by getting the partial derivative of the leaf nodes. The constant node (5) returns the constant 0, since the derivative of a constant is always 0. The

variable x returns the constant 1 since $\frac{\partial x}{\partial x} = 1$, and the variable y returns the constant 0 since $\frac{\partial y}{\partial x} = 0$ (if we were looking for the partial derivative with regards to y, it would be the reverse).

Now we have all we need to move up the graph to the multiplication node in function g. Calculus tells us that the derivative of the product of two functions u and v is $\frac{\partial (u \times v)}{\partial x} = \frac{\partial v}{\partial x} \times u + \frac{\partial u}{\partial x} \times u$. We can therefore construct a large part of the graph on the right, representing $0 \times x + y \times 1$.

Finally, we can go up to the addition node in function g. As mentioned, the derivative of a sum of functions is the sum of these functions' derivatives. So we just need to create an addition node and connect it to the parts of the graph we have already computed. We get the correct partial derivative: $\frac{\partial g}{\partial x} = 0 + (0 \times x + y \times 1)$.

However, it can be simplified (a lot). A few trivial pruning steps can be applied to this graph to get rid of all unnecessary operations, and we get a much smaller graph with just one node: $\frac{\partial g}{\partial x} = y$.

In this case, simplification is fairly easy, but for a more complex function, symbolic differentiation can produce a huge graph that may be tough to simplify and lead to suboptimal performance. Most importantly, symbolic differentiation cannot deal with functions defined with arbitrary code—for example, the following function discussed in Chapter 9:

```
def my_func(a, b):
    for i in range(100):
        z = a * np.cos(z + i) + z * np.sin(b - i)
    return z
```

Numerical Differentiation

The simplest solution is to compute an approximation of the derivatives, numerically. Recall that the derivative $h'(x_0)$ of a function h(x) at a point x_0 is the slope of the function at that point, or more precisely Equation D-2.

Equation D-2. Derivative of a function h(x) at point x_0

$$h'(x) = \lim_{x \to x_0} \frac{h(x) - h(x_0)}{x - x_0}$$
$$= \lim_{\epsilon \to 0} \frac{h(x_0 + \epsilon) - h(x_0)}{\epsilon}$$

So if we want to calculate the partial derivative of f(x,y) with regards to x, at x = 3 and y = 4, we can simply compute $f(3 + \epsilon, 4) - f(3, 4)$ and divide the result by ϵ , using a very small value for ϵ . That's exactly what the following code does:

```
def f(x, y):
    return x^{**}2^*y + y + 2
def derivative(f, x, y, x_eps, y_eps):
    return (f(x + x_{eps}, y + y_{eps}) - f(x, y)) / (x_{eps} + y_{eps})
df_dx = derivative(f, 3, 4, 0.00001, 0)
df_{dy} = derivative(f, 3, 4, 0, 0.00001)
```

Unfortunately, the result is imprecise (and it gets worse for more complex functions). The correct results are respectively 24 and 10, but instead we get:

```
>>> print(df_dx)
24.000039999805264
>>> print(df dy)
10.00000000331966
```

Notice that to compute both partial derivatives, we have to call f() at least three times (we called it four times in the preceding code, but it could be optimized). If there were 1,000 parameters, we would need to call f() at least 1,001 times. When you are dealing with large neural networks, this makes numerical differentiation way too inefficient.

However, numerical differentiation is so simple to implement that it is a great tool to check that the other methods are implemented correctly. For example, if it disagrees with your manually derived function, then your function probably contains a mistake.

Forward-Mode Autodiff

Forward-mode autodiff is neither numerical differentiation nor symbolic differentiation, but in some ways it is their love child. It relies on dual numbers, which are (weird but fascinating) numbers of the form $a + b\epsilon$ where a and b are real numbers and ϵ is an infinitesimal number such that $\epsilon^2 = 0$ (but $\epsilon \neq 0$). You can think of the dual number $42 + 24\epsilon$ as something akin to $42.0000 \cdots 000024$ with an infinite number of 0s (but of course this is simplified just to give you some idea of what dual numbers are). A dual number is represented in memory as a pair of floats. For example, 42 + 24ϵ is represented by the pair (42.0, 24.0).

Dual numbers can be added, multiplied, and so on, as shown in Equation D-3.

Equation D-3. A few operations with dual numbers

$$\lambda(a+b\epsilon) = \lambda a + \lambda b\epsilon$$

$$(a+b\epsilon) + (c+d\epsilon) = (a+c) + (b+d)\epsilon$$

$$(a+b\epsilon) \times (c+d\epsilon) = ac + (ad+bc)\epsilon + (bd)\epsilon^2 = ac + (ad+bc)\epsilon$$

Most importantly, it can be shown that $h(a + b\epsilon) = h(a) + b \times h'(a)\epsilon$, so computing $h(a + \epsilon)$ gives you both h(a) and the derivative h'(a) in just one shot. Figure D-2 shows how forward-mode autodiff computes the partial derivative of f(x,y) with regards to x at x = 3 and y = 4. All we need to do is compute $f(3 + \epsilon, 4)$; this will output a dual number whose first component is equal to f(3, 4) and whose second component is equal to $\frac{\partial f}{\partial x}(3,4)$.

Figure D-2. Forward-mode autodiff

To compute $\frac{\partial f}{\partial v}(3,4)$ we would have to go through the graph again, but this time with x = 3 and $y = 4 + \epsilon$.

So forward-mode autodiff is much more accurate than numerical differentiation, but it suffers from the same major flaw: if there were 1,000 parameters, it would require 1,000 passes through the graph to compute all the partial derivatives. This is where reverse-mode autodiff shines: it can compute all of them in just two passes through the graph.

Reverse-Mode Autodiff

Reverse-mode autodiff is the solution implemented by TensorFlow. It first goes through the graph in the forward direction (i.e., from the inputs to the output) to compute the value of each node. Then it does a second pass, this time in the reverse direction (i.e., from the output to the inputs) to compute all the partial derivatives. Figure D-3 represents the second pass. During the first pass, all the node values were computed, starting from x = 3 and y = 4. You can see those values at the bottom right of each node (e.g., $x \times x = 9$). The nodes are labeled n_1 to n_7 for clarity. The output node is n_7 : $f(3,4) = n_7 = 42$.

Figure D-3. Reverse-mode autodiff

The idea is to gradually go down the graph, computing the partial derivative of f(x,y) with regards to each consecutive node, until we reach the variable nodes. For this, reverse-mode autodiff relies heavily on the *chain rule*, shown in Equation D-4.

Equation D-4. Chain rule

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial n_i} \times \frac{\partial n_i}{\partial x}$$

Since n_7 is the output node, $f = n_7$ so trivially $\frac{\partial f}{\partial n_7} = 1$.

Let's continue down the graph to n_5 : how much does f vary when n_5 varies? The answer is $\frac{\partial f}{\partial n_5} = \frac{\partial f}{\partial n_7} \times \frac{\partial n_7}{\partial n_5}$. We already know that $\frac{\partial f}{\partial n_7} = 1$, so all we need is $\frac{\partial n_7}{\partial n_5}$. Since n_7 simply performs the sum $n_5 + n_6$, we find that $\frac{\partial n_7}{\partial n_5} = 1$, so $\frac{\partial f}{\partial n_5} = 1 \times 1 = 1$.

Now we can proceed to node n_4 : how much does f vary when n_4 varies? The answer is $\frac{\partial f}{\partial n_4} = \frac{\partial f}{\partial n_5} \times \frac{\partial n_5}{\partial n_4}$. Since $n_5 = n_4 \times n_2$, we find that $\frac{\partial n_5}{\partial n_4} = n_2$, so $\frac{\partial f}{\partial n_4} = 1 \times n_2 = 4$.

The process continues until we reach the bottom of the graph. At that point we will have calculated all the partial derivatives of f(x,y) at the point x=3 and y=4. In this example, we find $\frac{\partial f}{\partial x}=24$ and $\frac{\partial f}{\partial y}=10$. Sounds about right!

Reverse-mode autodiff is a very powerful and accurate technique, especially when there are many inputs and few outputs, since it requires only one forward pass plus one reverse pass per output to compute all the partial derivatives for all outputs with regards to all the inputs. Most importantly, it can deal with functions defined by arbitrary code. It can also handle functions that are not entirely differentiable, as long as you ask it to compute the partial derivatives at points that are differentiable.

If you implement a new type of operation in TensorFlow and you want to make it compatible with autodiff, then you need to provide a function that builds a subgraph to compute its partial derivatives with regards to its inputs. For example, suppose you implement a function that computes the square of its input $f(x) = x^2$. In that case you would need to provide the corresponding derivative function f'(x) = 2x. Note that this function does not compute a numerical result, but instead builds a subgraph that will (later) compute the result. This is very useful because it means that you can compute gradients of gradients (to compute second-order derivatives, or even higher-order derivatives).

Other Popular ANN Architectures

In this appendix we will give a quick overview of a few historically important neural network architectures that are much less used today than deep Multi-Layer Perceptrons (Chapter 10), convolutional neural networks (Chapter 13), recurrent neural networks (Chapter 14), or autoencoders (Chapter 15). They are often mentioned in the literature, and some are still used in many applications, so it is worth knowing about them. Moreover, we will discuss *deep belief nets* (DBNs), which were the state of the art in Deep Learning until the early 2010s. They are still the subject of very active research, so they may well come back with a vengeance in the near future.

Hopfield Networks

Hopfield networks were first introduced by W. A. Little in 1974, then popularized by J. Hopfield in 1982. They are associative memory networks: you first teach them some patterns, and then when they see a new pattern they (hopefully) output the closest learned pattern. This has made them useful in particular for character recognition before they were outperformed by other approaches. You first train the network by showing it examples of character images (each binary pixel maps to one neuron), and then when you show it a new character image, after a few iterations it outputs the closest learned character.

They are fully connected graphs (see Figure E-1); that is, every neuron is connected to every other neuron. Note that on the diagram the images are 6×6 pixels, so the neural network on the left should contain 36 neurons (and 648 connections), but for visual clarity a much smaller network is represented.

Figure E-1. Hopfield network

The training algorithm works by using Hebb's rule: for each training image, the weight between two neurons is increased if the corresponding pixels are both on or both off, but decreased if one pixel is on and the other is off.

To show a new image to the network, you just activate the neurons that correspond to active pixels. The network then computes the output of every neuron, and this gives you a new image. You can then take this new image and repeat the whole process. After a while, the network reaches a stable state. Generally, this corresponds to the training image that most resembles the input image.

A so-called *energy function* is associated with Hopfield nets. At each iteration, the energy decreases, so the network is guaranteed to eventually stabilize to a low-energy state. The training algorithm tweaks the weights in a way that decreases the energy level of the training patterns, so the network is likely to stabilize in one of these low-energy configurations. Unfortunately, some patterns that were not in the training set also end up with low energy, so the network sometimes stabilizes in a configuration that was not learned. These are called *spurious patterns*.

Another major flaw with Hopfield nets is that they don't scale very well—their memory capacity is roughly equal to 14% of the number of neurons. For example, to classify 28×28 images, you would need a Hopfield net with 784 fully connected neurons and 306,936 weights. Such a network would only be able to learn about 110 different characters (14% of 784). That's a lot of parameters for such a small memory.

Boltzmann Machines

Boltzmann machines were invented in 1985 by Geoffrey Hinton and Terrence Sejnowski. Just like Hopfield nets, they are fully connected ANNs, but they are based on stochastic neurons: instead of using a deterministic step function to decide what value to output, these neurons output 1 with some probability, and 0 otherwise. The probability function that these ANNs use is based on the Boltzmann distribution (used in statistical mechanics) hence their name. Equation E-1 gives the probability that a particular neuron will output a 1.

Equation E-1. Probability that the ith neuron will output 1

$$p(s_i^{(\text{next step})} = 1) = \sigma\left(\frac{\sum_{j=1}^N w_{i,j} s_j + b_i}{T}\right)$$

- s_i is the jth neuron's state (0 or 1).
- $w_{i,j}$ is the connection weight between the ith and jth neurons. Note that $w_{i,j} = 0$.
- b_i is the ith neuron's bias term. We can implement this term by adding a bias neuron to the network.
- *N* is the number of neurons in the network.
- *T* is a number called the network's *temperature*; the higher the temperature, the more random the output is (i.e., the more the probability approaches 50%).
- σ is the logistic function.

Neurons in Boltzmann machines are separated into two groups: *visible units* and *hidden units* (see Figure E-2). All neurons work in the same stochastic way, but the visible units are the ones that receive the inputs and from which outputs are read.

Figure E-2. Boltzmann machine

Because of its stochastic nature, a Boltzmann machine will never stabilize into a fixed configuration, but instead it will keep switching between many configurations. If it is left running for a sufficiently long time, the probability of observing a particular configuration will only be a function of the connection weights and bias terms, not of the original configuration (similarly, after you shuffle a deck of cards for long enough, the configuration of the deck does not depend on the initial state). When the network reaches this state where the original configuration is "forgotten," it is said to be in thermal equilibrium (although its configuration keeps changing all the time). By setting the network parameters appropriately, letting the network reach thermal equilibrium, and then observing its state, we can simulate a wide range of probability distributions. This is called a generative model.

Training a Boltzmann machine means finding the parameters that will make the network approximate the training set's probability distribution. For example, if there are three visible neurons and the training set contains 75% (0, 1, 1) triplets, 10% (0, 0, 1) triplets, and 15% (1, 1, 1) triplets, then after training a Boltzmann machine, you could use it to generate random binary triplets with about the same probability distribution. For example, about 75% of the time it would output the (0, 1, 1) triplet.

Such a generative model can be used in a variety of ways. For example, if it is trained on images, and you provide an incomplete or noisy image to the network, it will automatically "repair" the image in a reasonable way. You can also use a generative model for classification. Just add a few visible neurons to encode the training image's class (e.g., add 10 visible neurons and turn on only the fifth neuron when the training image represents a 5). Then, when given a new image, the network will automatically turn on the appropriate visible neurons, indicating the image's class (e.g., it will turn on the fifth visible neuron if the image represents a 5).

Unfortunately, there is no efficient technique to train Boltzmann machines. However, fairly efficient algorithms have been developed to train *restricted Boltzmann machines* (RBM).

Restricted Boltzmann Machines

An RBM is simply a Boltzmann machine in which there are no connections between visible units or between hidden units, only between visible and hidden units. For example, Figure E-3 represents an RBM with three visible units and four hidden units.

Figure E-3. Restricted Boltzmann machine

A very efficient training algorithm, called *Contrastive Divergence*, was introduced in 2005 by Miguel Á. Carreira-Perpiñán and Geoffrey Hinton. Here is how it works: for each training instance \mathbf{x} , the algorithm starts by feeding it to the network by setting the state of the visible units to x_1, x_2, \dots, x_n . Then you compute the state of the hidden units by applying the stochastic equation described before (Equation E-1). This gives you a hidden vector \mathbf{h} (where h_i is equal to the state of the i^{th} unit). Next you compute the state of the visible units, by applying the same stochastic equation. This gives you a vector $\dot{\mathbf{x}}$. Then once again you compute the state of the hidden units, which gives you a vector $\dot{\mathbf{h}}$. Now you can update each connection weight by applying the rule in Equation E-2.

Equation E-2. Contrastive divergence weight update

$$w_{i,j}^{(\text{next step})} = w_{i,j} + \eta \left(\mathbf{x} \mathbf{h}^T - \dot{\mathbf{x}} \dot{\mathbf{h}}^T \right)$$

The great benefit of this algorithm it that it does not require waiting for the network to reach thermal equilibrium: it just goes forward, backward, and forward again, and that's it. This makes it incomparably more efficient than previous algorithms, and it was a key ingredient to the first success of Deep Learning based on multiple stacked RBMs.

Deep Belief Nets

Several layers of RBMs can be stacked; the hidden units of the first-level RBM serves as the visible units for the second-layer RBM, and so on. Such an RBM stack is called a *deep belief net* (DBN).

Yee-Whye Teh, one of Geoffrey Hinton's students, observed that it was possible to train DBNs one layer at a time using Contrastive Divergence, starting with the lower

^{1 &}quot;On Contrastive Divergence Learning," M. Á. Carreira-Perpiñán and G. Hinton (2005).

layers and then gradually moving up to the top layers. This led to the groundbreaking article that kickstarted the Deep Learning tsunami in 2006.²

Just like RBMs, DBNs learn to reproduce the probability distribution of their inputs, without any supervision. However, they are much better at it, for the same reason that deep neural networks are more powerful than shallow ones: real-world data is often organized in hierarchical patterns, and DBNs take advantage of that. Their lower layers learn low-level features in the input data, while higher layers learn high-level features.

Just like RBMs, DBNs are fundamentally unsupervised, but you can also train them in a supervised manner by adding some visible units to represent the labels. Moreover, one great feature of DBNs is that they can be trained in a semisupervised fashion. Figure E-4 represents such a DBN configured for semisupervised learning.

Figure E-4. A deep belief network configured for semisupervised learning

First, the RBM 1 is trained without supervision. It learns low-level features in the training data. Then RBM 2 is trained with RBM 1's hidden units as inputs, again without supervision: it learns higher-level features (note that RBM 2's hidden units include only the three rightmost units, not the label units). Several more RBMs could be stacked this way, but you get the idea. So far, training was 100% unsupervised.

^{2 &}quot;A Fast Learning Algorithm for Deep Belief Nets," G. Hinton, S. Osindero, Y. Teh (2006).

Lastly, RBM 3 is trained using both RBM 2's hidden units as inputs, as well as extra visible units used to represent the target labels (e.g., a one-hot vector representing the instance class). It learns to associate high-level features with training labels. This is the supervised step.

At the end of training, if you feed RBM 1 a new instance, the signal will propagate up to RBM 2, then up to the top of RBM 3, and then back down to the label units; hopefully, the appropriate label will light up. This is how a DBN can be used for classification.

One great benefit of this semisupervised approach is that you don't need much labeled training data. If the unsupervised RBMs do a good enough job, then only a small amount of labeled training instances per class will be necessary. Similarly, a baby learns to recognize objects without supervision, so when you point to a chair and say "chair," the baby can associate the word "chair" with the class of objects it has already learned to recognize on its own. You don't need to point to every single chair and say "chair"; only a few examples will suffice (just enough so the baby can be sure that you are indeed referring to the chair, not to its color or one of the chair's parts).

Quite amazingly, DBNs can also work in reverse. If you activate one of the label units, the signal will propagate up to the hidden units of RBM 3, then down to RBM 2, and then RBM 1, and a new instance will be output by the visible units of RBM 1. This new instance will usually look like a regular instance of the class whose label unit you activated. This generative capability of DBNs is quite powerful. For example, it has been used to automatically generate captions for images, and vice versa: first a DBN is trained (without supervision) to learn features in images, and another DBN is trained (again without supervision) to learn features in sets of captions (e.g., "car" often comes with "automobile"). Then an RBM is stacked on top of both DBNs and trained with a set of images along with their captions; it learns to associate high-level features in images with high-level features in captions. Next, if you feed the image DBN an image of a car, the signal will propagate through the network, up to the top-level RBM, and back down to the bottom of the caption DBN, producing a caption. Due to the stochastic nature of RBMs and DBNs, the caption will keep changing randomly, but it will generally be appropriate for the image. If you generate a few hundred captions, the most frequently generated ones will likely be a good description of the image.3

Self-Organizing Maps

Self-organizing maps (SOM) are quite different from all the other types of neural networks we have discussed so far. They are used to produce a low-dimensional repre-

³ See this video by Geoffrey Hinton for more details and a demo: http://goo.gl/7Z5QiS.

sentation of a high-dimensional dataset, generally for visualization, clustering, or classification. The neurons are spread across a map (typically 2D for visualization, but it can be any number of dimensions you want), as shown in Figure E-5, and each neuron has a weighted connection to every input (note that the diagram shows just two inputs, but there are typically a very large number, since the whole point of SOMs is to reduce dimensionality).

Figure E-5. Self-organizing maps

Once the network is trained, you can feed it a new instance and this will activate only one neuron (i.e., hence one point on the map): the neuron whose weight vector is closest to the input vector. In general, instances that are nearby in the original input space will activate neurons that are nearby on the map. This makes SOMs useful for visualization (in particular, you can easily identify clusters on the map), but also for applications like speech recognition. For example, if each instance represents the audio recording of a person pronouncing a vowel, then different pronunciations of the vowel "a" will activate neurons in the same area of the map, while instances of the vowel "e" will activate neurons in another area, and intermediate sounds will generally activate intermediate neurons on the map.

One important difference with the other dimensionality reduction techniques discussed in Chapter 8 is that all instances get mapped to a discrete number of points in the low-dimensional space (one point per neuron). When there are very few neurons, this technique is better described as clustering rather than dimensionality reduction.

The training algorithm is unsupervised. It works by having all the neurons compete against each other. First, all the weights are initialized randomly. Then a training instance is picked randomly and fed to the network. All neurons compute the distance between their weight vector and the input vector (this is very different from the artificial neurons we have seen so far). The neuron that measures the smallest distance wins and tweaks its weight vector to be even slightly closer to the input vector, making it more likely to win future competitions for other inputs similar to this one. It also recruits its neighboring neurons, and they too update their weight vector to be slightly closer to the input vector (but they don't update their weights as much as the winner neuron). Then the algorithm picks another training instance and repeats the process, again and again. This algorithm tends to make nearby neurons gradually specialize in similar inputs.⁴

⁴ You can imagine a class of young children with roughly similar skills. One child happens to be slightly better at basketball. This motivates her to practice more, especially with her friends. After a while, this group of friends gets so good at basketball that other kids cannot compete. But that's okay, because the other kids specialize in other topics. After a while, the class is full of little specialized groups.

Index

Symbols	arg_scope(), 285
call(), 385	array_split(), 217
ε-greedy policy, 459, 464	artificial neural networks (ANNs), 253-274
ε-insensitive, 155	Boltzmann Machines, 516-518
χ 2 test (see chi square test)	deep belief networks (DBNs), 519-521
ℓ 0 norm, 39	evolution of, 254
ℓ 1 and ℓ 2 regularization, 303-304	Hopfield Networks, 515-516
l 1 norm, 39, 130, 139, 300, 303	hyperparameter fine-tuning, 270-272
l 2 norm, 39, 128-130, 139, 142, 303, 307	overview, 253-255
ℓ k norm, 39	Perceptrons, 257-264
$\ell \infty \text{ norm}, 39$	self-organizing maps, 521-523
	training a DNN with TensorFlow, 265-270
A	artificial neuron, 256
accuracy, 4, 83-84	(see also artificial neural network (ANN))
actions, evaluating, 447-448	assign(), 237
activation functions, 262-264	association rule learning, 12
active constraints, 504	associative memory networks, 515
actors, 463	assumptions, checking, 40
actual class, 85	asynchronous updates, 348-349
AdaBoost, 192-195	asynchrous communication, 329-334
Adagrad, 296-298	atrous_conv2d(), 376
Adam optimization, 293, 298-300	attention mechanism, 409
adaptive learning rate, 297	attributes, 9, 45-48
adaptive moment optimization, 298	(see also data structure)
agents, 438	combinations of, 58-59
AlexNet architecture, 367-368	preprocessed, 48
algorithms	target, 48
preparing data for, 59-68	autodiff, 238-239, 507-513
AlphaGo, 14, 253, 437, 453	forward-mode, 510-512
Anaconda, 41	manual differentiation, 507
anomaly detection, 12	numerical differentiation, 509
Apple's Siri, 253	reverse-mode, 512-513
apply_gradients(), 286, 450	symbolic differentiation, 508-509
area under the curve (AUC), 92	autoencoders, 411-435

adversarial, 433	Boltzmann Machines, 516-518
contractive, 432	(see also restricted Boltzman machines
denoising, 424-425	(RBMs))
efficient data representations, 412	boosting, 191-200
generative stochastic network (GSN), 433	AdaBoost, 192-195
overcomplete, 424	Gradient Boosting, 195-200
PCA with undercomplete linear autoen-	bootstrap aggregation (see bagging)
coder, 413	bootstrapping, 72, 185, 442, 469
reconstructions, 413	bottleneck layers, 369
sparse, 426-428	brew, 202
stacked, 415-424	
stacked convolutional, 433	C
undercomplete, 413	_
variational, 428-432	Caffe model zoo, 291
visualizing features, 421-422	call_(), 398
winner-take-all (WTA), 433	CART (Classification and Regression Tree)
automatic differentiating, 231	algorithm, 170-171, 176
autonomous driving systems, 379	categorical attributes, 62-64
Average Absolute Deviation, 39	cell wrapper, 392
average pooling layer, 364	chi square test, 174
avg_pool(), 364	classification versus regression, 8, 101
	classifiers
D	binary, 82
B	error analysis, 96-99
backpropagation, 261-262, 275, 291, 422	evaluating, 96
backpropagation through time (BPTT), 389	MNIST dataset, 79-81
bagging and pasting, 185-188	multiclass, 93-96
out-of-bag evaluation, 187-188	multilabel, 100-101
in Scikit-Learn, 186-187	multioutput, 101-102
bandwidth saturation, 349-351	performance measures, 82-93
BasicLSTMCell, 401	precision of, 85
BasicRNNCell, 397-398	voting, 181-184
Batch Gradient Descent, 114-117, 130	clip_by_value(), 286
batch learning, 14-15	closed-form equation, 105, 128, 136
Batch Normalization, 282-286, 374	cluster specification, 324
operation summary, 282	clustering algorithms, 10
with TensorFlow, 284-286	clusters, 323
batch(), 341	coding space, 429
batch_join(), 341	codings, 411
batch_norm(), 284-285	complementary slackness condition, 504
Bellman Optimality Equation, 455	components_, 214
between-graph replication, 344	computational complexity, 110, 153, 172
bias neurons, 258	compute_gradients(), 286, 449
bias term, 106	concat(), 369
bias/variance tradeoff, 126	config.gpu_options, 318
biases, 267	ConfigProto, 317
binary classifiers, 82, 134	confusion matrix, 84-86, 96-99
biological neurons, 254-256	connectionism, 260
black box models, 170	constrained optimization, 158, 503
blending, 200-203	Contrastive Divergence, 519
-	-

control dependencies, 323	cross-validation, 30, 69-71, 83-84
conv1d(), 376	CUDA library, 315
conv2d_transpose(), 376	cuDNN library, 315
conv3d(), 376	curse of dimensionality, 205-207
convergence rate, 117	(see also dimensionality reduction)
convex function, 113	custom transformers, 64-65
convolution kernels, 357, 365, 370	
convolutional neural networks (CNNs),	D
353-378	data, 30
architectures, 365-376	(see also test data; training data)
AlexNet, 367-368	creating workspace for, 40-43
GoogleNet, 368-372	
LeNet5, 366-367	downloading, 43-45 finding correlations in, 55-58
ResNet, 372-375	
convolutional layer, 355-363, 370, 376	making assumptions about, 30 preparing for Machine Learning algorithms,
feature maps, 358-360	59-68
filters, 357	test-set creation, 49-53
memory requirement, 362-363	
evolution of, 354	working with real data, 33
pooling layer, 363-365	data augmentation, 309-310 data cleaning, 60-62
TensorFlow implementation, 360-362	data mining, 6
Coordinator class, 338-340	data parallelism, 347-351
correlation coefficient, 55-58	
correlations, finding, 55-58	asynchronous updates, 348-349 bandwidth saturation, 349-351
cost function, 20, 39	synchronous updates, 348
in AdaBoost, 193	•
in adagrad, <mark>297</mark>	TensorFlow implementation, 351
in artificial neural networks, 264, 267-268	data pipeline, 36 data snooping bias, 49
in autodiff, 238	data structure, 45-48
in batch normalization, 285	data visualization, 53-55
cross entropy, 367	DataFrame, 60
deep Q-Learning, 465	
in Elastic Net, 132	dataquest, <mark>xvi</mark> decay, <mark>284</mark>
in Gradient Descent, 105, 111-112, 114,	decision boundaries, 136-139, 142, 170
117-119, 200, 275	decision function, 87, 156-157
in Logistic Regression, 135-136	Decision Stumps, 195
in PG algorithms, 449	decision threshold, 87
in variational autoencoders, 430	Decision Trees, 69-70, 167-179, 181
in Lasso Regression, 130-131	binary trees, 170
in Linear Regression, 108, 113	class probability estimates, 171
in Momentum optimization, 294-295	computational complexity, 172
in pretrained layers reuse, 293	decision boundaries, 170
in ridge regression, 127-129	GINI impurity, 172
in RNNs, 389, 393	instability with, 177-178
stale gradients and, 349	numbers of children, 170
creative sequences, 396	predictions, 169-171
credit assignment problem, 447-448	Random Forests (see Random Forests)
critics, 463	regression tasks, 175-176
cross entropy, 140-141, 264, 428, 449	regularization hyperparameters, 173-174
	105 and 12 action my perparameters, 1/3-1/4

training and visualizing, 167-169	and data visualization, 205
decoder, 412	Isomap, 224
deconvolutional layer, 376	LLE (Locally Linear Embedding), 221-223
deep autoencoders (see stacked autoencoders)	Multidimensional Scaling, 223-224
deep belief networks (DBNs), 13, 519-521	PCA (Principal Component Analysis),
Deep Learning, 437	211-218
(see also Reinforcement Learning; Tensor-	t-Distributed Stochastic Neighbor Embed-
Flow)	ding (t-SNE), 224
about, xiii, xvi	discount rate, 447
libraries, 230-231	distributed computing, 229
deep neural networks (DNNs), 261, 275-312	distributed sessions, 328-329
(see also Multi-Layer Perceptrons (MLP))	DNNClassifier, 264
faster optimizers for, 293-302	drop(), 60
regularization, 302-310	dropconnect, 307
reusing pretrained layers, 286-293	dropna(), 60
training guidelines overview, 310	dropout, 272, 399
training with TensorFlow, 265-270	dropout rate, 304
training with TF.Learn, 264	dropout(), 306
unstable gradients, 276	DropoutWrapper, 399
vanishing and exploding gradients, 275-286	DRY (Don't Repeat Yourself), 247
Deep Q-Learning, 460-469	Dual Averaging, 300
Ms. Pac Man example, 460-469	dual numbers, 510
deep Q-network, 460	dual problem, 160
deep RNNs, 396-400	duality, 503
applying dropout, 399	dying ReLUs, 279
distributing across multiple GPUs, 397	dynamic placements, 320
long sequence difficulties, 400	dynamic placer, 318
truncated backpropagation through time,	Dynamic Programming, 456
400	dynamic unrolling through time, 387
DeepMind, 14, 253, 437, 460	dynamic_rnn(), 387, 398, 409
degrees of freedom, 27, 126	, <u> </u>
denoising autoencoders, 424-425	E
depth concat layer, 369	-
depth radius, 368	early stopping, 133-134, 198, 272, 303 Elastic Net, 132
depthwise_conv2d(), 376	embedded device blocks, 327
dequeue(), 332	
dequeue_many(), 332, 334	Embedded Reber grammars, 410 embeddings, 405-407
dequeue_up_to(), 333-334	embedding_lookup(), 406
dequeuing data, 331	encoder, 412
describe(), 46	Encoder-Decoder, 383
device blocks, 327	end-of-sequence (EOS) token, 388
device(), 319	energy functions, 516
dimensionality reduction, 12, 205-225, 411	enqueuing data, 330
approaches to	Ensemble Learning, 70, 74, 181-203
Manifold Learning, 210	bagging and pasting, 185-188
projection, 207-209	boosting, 191-200
choosing the right number of dimensions,	in-graph versus between-graph replication,
215	343-345
curse of dimensionality, 205-207	Random Forests, 189-191
·	101100111 1 010000, 107-171

(see also Random Forests)	first-order partial derivatives (Jacobians), 300
random patches and random subspaces, 188	fit(), 61, 66, 217
stacking, 200-202	fitness function, 20
entropy impurity measure, 172	fit_inverse_transform=, 221
environments, in reinforcement learning,	fit_transform(), 61, 66
438-447, 459, 464	folds, 69, 81, 83-84
episodes (in RL), 444, 448-449, 451-452, 469 epochs, 118	Follow The Regularized Leader (FTRL), 300 forget gate, 402
ε-insensitive, 155	forward-mode autodiff, 510-512
equality contraints, 504	framing a problem, 35-37
error analysis, 96-99	frozen layers, 289-290
estimators, 61	fully_connected(), 267, 278, 284-285, 417
Euclidian norm, 39	Tully_connected(), 207, 278, 284-283, 417
eval(), 240	•
evaluating models, 29-31	G
	game play (see reinforcement learning)
explained variance, 215	gamma value, 152
explained variance ratio, 214 exploding gradients, 276	gate controllers, 402
	Gaussian distribution, 37, 429, 431
(see also gradients, vanishing and explod-	Gaussian RBF, 151
ing)	Gaussian RBF kernel, 152-153, 163
exploration policies, 459	generalization error, 29
exponential decay, 284 exponential linear unit (ELU), 280-281	generalized Lagrangian, 504-505
exponential scheduling, 301	generative autoencoders, 428
Extra-Trees, 190	generative models, 411, 518
Extra-frees, 170	genetic algorithms, 440
г	geodesic distance, 224
F	get_variable(), 249-250
F-1 score, 86-87	GINI impurity, 169, 172
face-recognition, 100	global average pooling, 372
fake X server, 443	global_step, 466
false positive rate (FPR), 91-93	global_variables(), 308
fan-in, 277, 279	global_variables_initializer(), 233
fan-out, 277, 279	Glorot initialization, 276-279
feature detection, 411	Google, 230
feature engineering, 25	Google Images, 253
feature extraction, 12	Google Photos, 13
feature importance, 190-191	GoogleNet architecture, 368-372
feature maps, 220, 357-360, 374	gpu_options.per_process_gpu_memory_frac-
feature scaling, 65	tion, 317
feature selection, 26, 74, 130, 191, 499	gradient ascent, 441
feature space, 218, 220	Gradient Boosted Regression Trees (GBRT),
feature vector, 39, 107, 156, 237	195
features, 9	Gradient Boosting, 195-200
FeatureUnion, 66	Gradient Descent (GD), 105, 111-121, 164, 275,
feedforward neural network (FNN), 263	294, 296
feed_dict, 240	algorithm comparisons, 119-121
FIFOQueue, 330, 333	automatically computing gradients, 238-239
fillna(), 60	Batch GD, 114-117, 130
first-in first-out (FIFO) queues, 330	defining, 111

local minimum versus global minimum, 112	
manually computing gradients, 237	identity matrix, 128, 160
Mini-batch GD, 119-121, 239-241	ILSVRC ImageNet challenge, 365
optimizer, 239	image classification, 365
Stochastic GD, 117-119, 148	impurity measures, 169, 172
with TensorFlow, 237-239	in-graph replication, 343
Gradient Tree Boosting, 195	inception modules, 369
GradientDescentOptimizer, 268	Inception-v4, 375
gradients(), 238	incremental learning, 16, 217
gradients, vanishing and exploding, 275-286,	inequality constraints, 504
400	inference, 22, 311, 363, 408
Batch Normalization, 282-286	info(), 45
Glorot and He initialization, 276-279	information gain, 173
gradient clipping, 286	information theory, 172
nonsaturating activation functions, 279-281	init node, 241
graphviz, 168	input gate, 402
greedy algorithm, 172	input neurons, 258
grid search, 71-74, 151	input_put_keep_prob, 399
group(), 464	instance-based learning, 17, 21
GRU (Gated Recurrent Unit) cell, 404-405	InteractiveSession, 233
	intercept term, 106
H	Internal Covariate Shift problem, 282
hailstone sequence, 412	inter_op_parallelism_threads, 322
hard margin classification, 146-147	intra_op_parallelism_threads, 322
hard voting classifiers, 181-184	inverse_transform(), 221
harmonic mean, 86	in_top_k(), 268
He initialization, <mark>276-279</mark>	irreducible error, 127
Heaviside step function, 257	isolated environment, 41-42
Hebb's rule, 258, 516	Isomap, 224
Hebbian learning, 259	is_training, 284-285, 399
hidden layers, 261	
hierarchical clustering, 10	J
hinge loss function, 164	jobs, 323
histograms, 47-48	join(), 325, 339
hold-out sets, 200	Jupyter, 40, 42, 48
(see also blenders)	
Hopfield Networks, 515-516	K
hyperbolic tangent (htan activation function),	K-fold cross-validation, 69-71, 83
262, 272, 276, 278, 381	k-Nearest Neighbors, 21, 100
hyperparameters, 28, 65, 72-74, 76, 111, 151,	Karush–Kuhn–Tucker (KKT) conditions, 504
154, 270	keep probability, 306
(see also neural network hyperparameters)	Keras, 231
hyperplane, 157, 210-211, 213, 224	Kernel PCA (kPCA), 218-221
hypothesis, 39	kernel trick, 150, 152, 161-164, 218
manifold, 210	kernelized SVM, 161-164
hypothesis boosting (see boosting)	kernels, 150-153, 321
hypothesis function, 107	Kullback–Leibler divergence, 141, 426
hypothesis, null, 174	Time and Deloter divergence, 111, 120

L	Logistic Regression, 9, 134-142
l1_l2_regularizer(), 303	decision boundaries, 136-139
LabelBinarizer, 66	estimating probablities, 134-135
labels, 8, 37	Softmax Regression model, 139-142
Lagrange function, 504-505	training and cost function, 135-136
Lagrange multiplier, 503	log_device_placement, 320
landmarks, 151-152	LSTM (Long Short-Term Memory) cell,
large margin classification, 145-146	401-405
Lasso Regression, 130-132	
latent loss, 430	M
latent space, 429	machine control (see reinforcement learning)
law of large numbers, 183	Machine Learning
leaky ReLU, 279	large-scale projects (see TensorFlow)
learning rate, 16, 111, 115-118	notations, 38-39
learning rate scheduling, 118, 300-302	process example, 33-77
LeNet-5 architecture, 355, 366-367	project checklist, 35, 497-502
Levenshtein distance, 153	resources on, xvi-xvii
liblinear library, 153	uses for, xiii-xiv
libsvm library, 154	Machine Learning basics
Linear Discriminant Analysis (LDA), 224	attributes, 9
linear models	challenges, 22-29
early stopping, 133-134	algorithm problems, 26-28
Elastic Net, 132	training data problems, 25
Lasso Regression, 130-132	definition, 4
Linear Regression (see Linear Regression)	features, 9
regression (see Linear Regression)	overview, 3
Ridge Regression, 127-129, 132	reasons for using, 4-7
SVM, 145-148	spam filter example, 4-6
Linear Regression, 20, 68, 105-121, 132	summary, 28
computational complexity, 110	testing and validating, 29-31
Gradient Descent in, 111-121	types of systems, 7-22
learning curves in, 123-127	batch and online learning, 14-17
Normal Equation, 108-110	instance-based versus model-based
regularizing models (see regularization)	learning, 17-22
using Stochastic Gradient Descent (SGD),	supervised/unsupervised learning, 8-14
119	workflow example, 18-22
with TensorFlow, 235-236	machine translation (see natural language pro-
linear SVM classification, 145-148	cessing (NLP))
linear threshold units (LTUs), 257	make(), 442
Lipschitz continuous, 113	Manhattan norm, 39
LLE (Locally Linear Embedding), 221-223	manifold assumption/hypothesis, 210
load_sample_images(), 360	Manifold Learning, 210, 221
local receptive field, 354	(see also LLE (Locally Linear Embedding)
local response normalization, 368	MapReduce, 37
local sessions, 328	margin violations, 147
location invariance, 363	Markov chains, 453
log loss, 136	Markov decision processes, 453-457
logging placements, 320-320	master service, 325
logistic function, 134	Matplotlib, 40, 48, 91, 97
,	

max margin learning, 293	N
max pooling layer, 363	naive Bayes classifiers, 94
max-norm regularization, 307-308	name scopes, 245
max_norm(), 308	natural language processing (NLP), 379,
max_norm_regularizer(), 308	405-410
max_pool(), 364	encoder-decoder network for machine
Mean Absolute Error (MAE), 39-40	translation, 407-410
mean coding, 429	TensorFlow tutorials, 405, 408
Mean Square Error (MSE), 107, 237, 426	word embeddings, 405-407
measure of similarity, 17	Nesterov Accelerated Gradient (NAG), 295-296
memmap, 217	Nesterov momentum optimization, 295-296
memory cells, 346, 382	network topology, 270
Mercer's theorem, 163	neural network hyperparameters, 270-272
meta learner (see blending)	activation functions, 272
min-max scaling, 65	neurons per hidden layer, 272
Mini-batch Gradient Descent, 119-121, 136,	number of hidden layers, 270-271
239-241	neural network policies, 444-447
mini-batches, 15	neurons
minimize(), 286, 289, 449, 466	biological, 254-256
min_after_dequeue, 333	logical computations with, 256
MNIST dataset, 79-81	neuron_layer(), 267
model parallelism, 345-347	next_batch(), 269
model parameters, 114, 116, 133, 156, 159, 234,	No Free Lunch theorem, 30
268, 389	node edges, 244
defining, 19	nonlinear dimensionality reduction (NLDR),
model selection, 19	221
model zoos, 291	(see also Kernel PCA; LLE (Locally Linear
model-based learning, 18-22	Embedding))
models	nonlinear SVM classification, 149-154
analyzing, 74-75	computational complexity, 153
evaluating on test set, 75-76	Gaussian RBF kernel, 152-153
moments, 298	with polynomial features, 149-150
Momentum optimization, 294-295	polynomial kernel, 150-151
Monte Carlo tree search, 453	similarity features, adding, 151-152
Multi-Layer Perceptrons (MLP), 253, 260-263,	nonparametric models, 173
	nonresponse bias, 25
training with TF.Learn, 264 multiclass classifiers, 93-96	nonsaturating activation functions, 279-281
Multidimensional Scaling (MDS), 223	normal distribution (see Gaussian distribution)
multilabel classifiers, 100-101	Normal Equation, 108-110
Multinomial Logistic Regression (see Softmax	normalization, 65
Regression)	normalized exponential, 139
multinomial(), 446	norms, 39
multioutput classifiers, 101-102	notations, 38-39
MultiRNNCell, 398	NP-Complete problems, 172
multithreaded readers, 338-340	null hypothesis, 174 numerical differentiation, 509
multivariate regression, 37	
	NumPy, 40 NumPy arrays, 63
	NVidia Compute Capability, 314
	14 v Idia Compute Capability, 314

nvidia-smi, 318	multiple devices across multiple servers,
n_components, 215	323-342
	asynchronous communication using
0	queues, 329-334
observation space, 446	loading training data, 335-342
off-policy algorithm, 459	master and worker services, 325
offline learning, 14	opening a session, 325
one-hot encoding, 63	pinning operations across tasks, 326
one-versus-all (OvA) strategy, 94, 141, 165	sharding variables, 327
one-versus-one (OvO) strategy, 94	sharing state across sessions, 328-329
online learning, 15-17	multiple devices on a single machine,
online SVMs, 164-165	314-323
OpenAI Gym, 441-444	control dependencies, 323
operation_timeout_in_ms, 345	installation, 314-316
Optical Character Recognition (OCR), 3	managing the GPU RAM, 317-318
optimal state value, 455	parallel execution, 321-322
optimizers, 293-302	placing operations on devices, 318-321
AdaGrad, 296-298	one neural network per device, 342-343
Adam optimization, 293, 298-300	parameter efficiency, 271
Gradient Descent (see Gradient Descent	parameter matrix, 139
optimizer)	parameter server (ps), 324
learning rate scheduling, 300-302	parameter space, 114
Momentum optimization, 294-295	parameter vector, 107, 111, 135, 139
Nesterov Accelerated Gradient (NAG),	parametric models, 173
295-296	partial derivative, 114
RMSProp, 298	partial_fit(), 217
out-of-bag evaluation, 187-188	Pearson's r, 55
out-of-core learning, 16	peephole connections, 403
out-of-memory (OOM) errors, 386	penalties (see rewards, in RL)
out-of-sample error, 29	percentiles, 46
OutOfRangeError, 337, 339	Perceptron convergence theorem, 259
output gate, 402	Perceptrons, 257-264
output layer, 261	versus Logistic Regression, 260
OutputProjectionWrapper, 392-395	training, 258-259
output_put_keep_prob, 399	performance measures, 37-40
overcomplete autoencoder, 424	confusion matrix, 84-86
overfitting, 26-28, 49, 147, 152, 173, 176, 272	cross-validation, 83-84
avoiding through regularization, 302-310	precision and recall, 86-90
	ROC (receiver operating characteristic)
P	curve, 91-93
p-value, 174	performance scheduling, 301
PaddingFIFOQueue, 334	permutation(), 49 PG algorithms, 448
Pandas, 40, 44	photo-hosting services, 13
scatter_matrix, 56-57	pinning operations, 326
parallel distributed computing, 313-352	pinning operations, 326 pip, 41
data parallelism, 347-351	Pipeline constructor, 66-68
in-graph versus between-graph replication,	pipelines, 36
343-345	placeholder nodes, 239
model parallelism, 345-347	placeholder flodes, 207

placers (see simple placer; dynamic placer)	producer functions, 341
policy, 440	projection, 207-209
policy gradients, 441 (see PG algorithms)	propositional logic, 254
policy space, 440	pruning, 174, 509
polynomial features, adding, 149-150	Python
polynomial kernel, 150-151, 162	isolated environment in, 41-42
Polynomial Regression, 106, 121-123	notebooks in, 42-43
learning curves in, 123-127	pickle, 71
pooling kernel, 363	pip, 41
pooling layer, 363-365	
power scheduling, 301	Q
precision, 85	·
precision and recall, 86-90	Q-Learning algorithm, 458-469
F-1 score, 86-87	approximate Q-Learning, 460
precision/recall (PR) curve, 92	deep Q-Learning, 460-469
precision/recall tradeoff, 87-90	Q-Value Iteration Algorithm, 456
predetermined piecewise constant learning	Q-Values, 456
rate, 301	Quadratic Programming (QP) Problems,
predict(), 62	159-160
predicted class, 85	quantizing, 351
predictions, 84-86, 156-157, 169-171	queries per second (QPS), 343
predictors, 8, 62	QueueRunner, 338-340
preloading training data, 335	queues, 329-334
PReLU (parametric leaky ReLU), 279	closing, 333
preprocessed attributes, 48	dequeuing data, 331
pretrained layers reuse, 286-293	enqueuing data, 330
auxiliary task, 292-293	first-in first-out (FIFO), 330
caching frozen layers, 290	of tuples, 332
freezing lower layers, 289	PaddingFIFOQueue, 334
model zoos, 291	RandomShuffleQueue, 333
other frameworks, 288	q_network(), 463
TensorFlow model, 287-288	
unsupervised pretraining, 291-292	R
upper layers, 290	Radial Basis Function (RBF), 151
Pretty Tensor, 231	Random Forests, 70-72, 94, 167, 178, 181,
primal problem, 160	189-191
principal component, 212	Extra-Trees, 190
Principal Component Analysis (PCA), 211-218	feature importance, 190-191
explained variance ratios, 214	random initialization, 111, 116, 118, 276
finding principal components, 212-213	Random Patches and Random Subspaces, 188
for compression, 216-217	randomized leaky ReLU (RReLU), 279
Incremental PCA, 217-218	Randomized PCA, 218
Kernel PCA (kPCA), 218-221	randomized search, 74, 270
projecting down to d dimensions, 213	RandomShuffleQueue, 333, 337
Randomized PCA, 218	random_uniform(), 237
Scikit Learn for, 214	reader operations, 335
variance, preserving, 211-212	recall, 85
probabilistic autoencoders, 428	recognition network, 412
probabilities, estimating, 134-135, 171	reconstruction error, 216
	reconstruction loss, 413, 428, 430

reconstruction pre-image, 220	PG algorithms, 448-453
reconstructions, 413	policy search, 440-441
recurrent neural networks (RNNs), 379-410	Q-Learning algorithm, 458-469
deep RNNs, 396-400	rewards, learning to optimize, 438-439
exploration policies, 459	Temporal Difference (TD) Learning,
GRU cell, 404-405	457-458
input and output sequences, 382-383	ReLU (rectified linear units), 246-248
LSTM cell, 401-405	ReLU activation, 374
natural language processing (NLP), 405-410	ReLU function, 262, 272, 278-281
in TensorFlow, 384-388	relu(z), 266
dynamic unrolling through time, 387	render(), 442
static unrolling through time, 385-386	replay memory, 464
variable length input sequences, 387	replica_device_setter(), 327
variable length output sequences, 388	request_stop(), 339
training, 389-396	reset(), 442
backpropagation through time (BPTT),	reset_default_graph(), 234
389	reshape(), 395
creative sequences, 396	residual errors, 195-196
sequence classifiers, 389-391	residual learning, 372
time series predictions, 392-396	residual network (ResNet), 291, 372-375
recurrent neurons, 380-383	residual units, 373
memory cells, 382	ResNet, 372-375
reduce_mean(), 268	resource containers, 328-329
reduce_sum(), 427-428, 430, 466	restore(), 241
regression, 8	restricted Boltzmann machines (RBMs), 13,
Decision Trees, 175-176	291, 518
regression models	reuse_variables(), 249
linear, 68	reverse-mode autodiff, 512-513
regression versus classification, 101	rewards, in RL, 438-439
regularization, 27-28, 30, 127-134	rgb_array, 443
data augmentation, 309-310	Ridge Regression, 127-129, 132
Decision Trees, 173-174	RMSProp, 298
dropout, 304-307	ROC (receiver operating characteristic) curve
early stopping, 133-134, 303	91-93
Elastic Net, 132	Root Mean Square Error (RMSE), 37-40, 107
Lasso Regression, 130-132	RReLU (randomized leaky ReLU), 279
max-norm, 307-308	run(), 233, 345
Ridge Regression, 127-129	
shrinkage, 197	S
ℓ 1 and ℓ 2 regularization, 303-304	Sampled Softmax, 409
REINFORCE algorithms, 448	sampling bias, 24-25, 51
Reinforcement Learning (RL), 13-14, 437-470	sampling bias, 24-23, 31
actions, 447-448	sampling noise, 24 save(), 241
credit assignment problem, 447-448	Saver node, 241
discount rate, 447	Scikit Flow, 231
examples of, 438	Scikit-Learn, 40
Markov decision processes, 453-457	about, xiv
neural network policies, 444-447	bagging and pasting in, 186-187
OpenAI gym, 441-444	CART algorithm, 170-171, 176
2 01	OAKI aiguitiiii, 1/0-1/1, 1/0

sklearn.linear_model.SGDRegressor,
119-120, 129, 132-133
sklearn.manifold.LocallyLinearEmbedding,
221-222
sklearn.metrics.accuracy_score(), 184, 188,
264
sklearn.metrics.confusion_matrix(), 85, 96
sklearn.metrics.f1_score(), 87, 100
sklearn.metrics.mean_squared_error(),
68-69, 76, 124, 133, 198-199, 221
sklearn.metrics.precision_recall_curve(), 88
sklearn.metrics.precision_score(), 86, 90
sklearn.metrics.recall_score(), 86, 90
sklearn.metrics.roc_auc_score(), 92-93
sklearn.metrics.roc_curve(), 91-92
sklearn.model_selection.cross_val_pre-
dict(), 84, 88, 92, 96, 100
sklearn.model_selection.cross_val_score(),
69-70, 83-84
sklearn.model_selection.GridSearchCV,
72-74, 77, 96, 179, 219
sklearn.model_selection.StratifiedKFold, 83
sklearn.model_selection.StratifiedShuffleS-
plit, 52
sklearn.model_selection.train_test_split(),
50, 69, 124, 178, 198
sklearn.multiclass.OneVsOneClassifier, 95
sklearn.neighbors.KNeighborsClassifier,
100, 102
sklearn.neighbors.KNeighborsRegressor, 22
sklearn.pipeline.FeatureUnion, 66
sklearn.pipeline.Pipeline, 66, 125, 148-149,
219
sklearn.preprocessing.Imputer, 60, 66
sklearn.preprocessing.Imputer, 60, 66
sklearn.preprocessing.LabelEncoder, 62
sklearn.preprocessing.OneHotEncoder, 63
sklearn.preprocessing.PolynomialFeatures,
122-123, 125, 128, 149
sklearn.preprocessing.StandardScaler,
65-66, 96, 114, 128, 146, 148-150, 152,
237, 264
sklearn.svm.LinearSVC, 147-149, 153-154,
156, 165
sklearn.svm.LinearSVR, 155-156
sklearn.svm.SVC, 148, 150, 152-154, 156,
165, 184
sklearn.svm.SVR, 77, 156

sklearn.tree.DecisionTreeClassifier, 173,	sparse_softmax_cross_entropy_with_logits(),
179, 186-187, 189, 195	268
sklearn.tree.DecisionTreeRegressor, 69, 167,	sparsity loss, 426
175, 195-196	specificity, 91
sklearn.tree.export_graphviz(), 168	speech recognition, 6
StandardScaler, 114, 237, 264	spurious patterns, 516
SVM classification classes, 154	stack(), 385
TF.Learn, 231	stacked autoencoders, 415-424
user guide, <mark>xvi</mark>	TensorFlow implementation, 416
score(), <mark>62</mark>	training one-at-a-time, 418-420
search space, 74, 270	tying weights, 417-418
second-order partial derivatives (Hessians), 300	unsupervised pretraining with, 422-424
self-organizing maps (SOMs), 521-523	visualizing the reconstructions, 420-421
semantic hashing, 434	stacked denoising autoencoders, 422, 424
semisupervised learning, 13	stacked denoising encoders, 424
sensitivity, 85, 91	stacked generalization (see stacking)
sentiment analysis, 379	stacking, 200-202
separable_conv2d(), 376	stale gradients, 348
sequences, 379	standard correlation coefficient, 55
sequence_length, 387-388, 409	standard deviation, 37
Shannon's information theory, 172	standardization, 65
shortcut connections, 372	StandardScaler, 66, 237, 264
show(), 48	state-action values, 456
show_graph(), 245	states tensor, 388
shrinkage, 197	state_is_tuple, 398, 401
shuffle_batch(), 341	static unrolling through time, 385-386
shuffle_batch_join(), 341	static_rnn(), 385-386, 409
sigmoid function, 134	stationary point, 503-505
sigmoid_cross_entropy_with_logits(), 428	statistical mode, 185
similarity function, 151-152	statistical significance, 174
simulated annealing, 118	stemming, 103
simulated environments, 442	step functions, 257
(see also OpenAI Gym)	step(), 443
Singular Value Decomposition (SVD), 213	Stochastic Gradient Boosting, 199
skewed datasets, 84	Stochastic Gradient Descent (SGD), 117-119,
skip connections, 310, 372	148, 260
slack variable, 158	training, 136
smoothing terms, 283, 297, 299, 430	Stochastic Gradient Descent (SGD) classifier,
soft margin classification, 146-148	82, 129
soft placements, 321	stochastic neurons, 516
soft voting, 184	stochastic policy, 440
softmax function, 139, 263, 264	stratified sampling, 51-53, 83
Softmax Regression, 139-142	stride, 357
source ops, 236, 322	string kernels, 153
spam filters, 3-6, 8	string_input_producer(), 341
sparse autoencoders, 426-428	strong learners, 182
sparse matrix, 63	subderivatives, 164
sparse models, 130, 300	subgradient vector, 131
. , ,	subsample, 199, 363
	1 · · · · · · · · · · · · · · · · · · ·

supervised learning, 8-9	installation, 232
Support Vector Machines (SVMs), 94, 145-166	l1 and l2 regularization with, 303
decision function and predictions, 156-157	learning schedules in, 302
dual problem, 503-505	Linear Regression with, 235-236
kernelized SVM, 161-164	max pooling layer in, 364
linear classification, 145-148	max-norm regularization with, 307
mechanics of, 156-165	model zoo, 291
nonlinear classification, 149-154	modularity, 246-248
online SVMs, 164-165	Momentum optimization in, 295
Quadratic Programming (QP) problems,	name scopes, 245
159-160	neural network policies, 446
SVM regression, 154-165	NLP tutorials, 405, 408
the dual problem, 160	node value lifecycle, 235
training objective, 157-159	operations (ops), 235
support vectors, 146	optimizer, 239
svd(), 213	overview, 229-231
symbolic differentiation, 238, 508-509	parallel distributed computing (see parallel
synchronous updates, 348	distributed computing with TensorFlow)
oynomene up unite, e 10	Python API
Т	construction, 265-269
-	execution, 269
t-Distributed Stochastic Neighbor Embedding	using the neural network, 270
(t-SNE), 224	queues (see queues)
tail heavy, 48	reusing pretrained layers, 287-288
target attributes, 48	RNNs in, 384-388
target_weights, 409	(see also recurrent neural networks
tasks, 323	(RNNs))
Temporal Difference (TD) Learning, 457-458	saving and restoring models, 241-242
tensor processing units (TPUs), 315	sharing variables, 248-251
TensorBoard, 231	simple placer, 318
TensorFlow, 229-252	sklearn.metrics.accuracy_score(), 286
about, xiv	sparse autoencoders with, 427
autodiff, 238-239, 507-513	and stacked autoencoders, 416
Batch Normalization with, 284-286	TensorBoard, 242-245
construction phase, 234	tf.abs(), 303
control dependencies, 323	tf.add(), 246, 303-304
convenience functions, 341	tf.add_n(), 247-248, 250-251
convolutional layers, 376	tf.add_to_collection(), 308
convolutional neural networks and, 360-362	tf.assign(), 237, 288, 307-308, 482
data parallelism and, 351	tf.bfloat16, 350
denoising autoencoders, 425-425	tf.bool, 284, 306
dropout with, 306	tf.cast(), 268, 391
dynamic placer, 318	tf.clip_by_norm(), 307-308
execution phase, 234	tf.clip_by_value(), 286
feeding data to the training algorithm,	
239-241	tf.concat(), 312, 369, 446, 450 tf.ConfigProto, 317, 320-321, 345, 487
Gradient Descent with, 237-239	tf.constant(), 235-237, 319-320, 323,
graphs, managing, 234	ti.constant(), 235-237, 319-320, 323, 325-326
initial graph creation and session run,	
232-234	tf.constant_initializer(), 249-251

tf.container(), 328-330, 351-352, 481	tf.int32, 321-332, 337, 387, 390, 406, 466
tf.contrib.framework.arg_scope(), 285, 416,	tf.int64, 265
430	tf.InteractiveSession, 233
tf.contrib.layers.batch_norm(), 284-285	TF.Learn, 264
tf.contrib.layers.convolution2d(), 463	tf.log(), 427, 430, 446, 450
tf.contrib.layers.fully_connected(), 267	tf.matmul(), 236-237, 246, 265, 384, 417,
tf.contrib.layers.l1_regularizer(), 303, 308	420, 425, 427-428
tf.contrib.layers.l2_regularizer(), 303,	tf.matrix_inverse(), 236
416-417	tf.maximum(), 246, 248-251, 281
tf.contrib.layers.variance_scaling_initial-	tf.multinomial(), 446, 450
izer(), 278-279, 391, 416-417, 430, 446,	tf.name_scope(), 245, 248-249, 265,
450, 463	267-268, 419-420
tf.contrib.learn.DNNClassifier, 264	tf.nn.conv2d(), 360-361
tf.contrib.learn.infer_real_valued_col-	tf.nn.dynamic_rnn(), 386-387, 390, 392,
umns_from_input(), 264	395, 397-399, 409-410, 491-492
tf.contrib.rnn.BasicLSTMCell, 401, 403	tf.nn.elu(), 281, 416-417, 430, 446, 450
tf.contrib.rnn.BasicRNNCell, 385-387, 390,	tf.nn.embedding_lookup(), 406
392-393, 395, 397-399, 401	tf.nn.in_top_k(), 268, 391
tf.contrib.rnn.DropoutWrapper, 399	tf.nn.max_pool(), 364-365
tf.contrib.rnn.GRUCell, 405	tf.nn.relu(), 265, 392-393, 395, 463
tf.contrib.rnn.LSTMCell, 403	tf.nn.sigmoid_cross_entropy_with_logits(),
tf.contrib.rnn.MultiRNNCell, 397-399	428, 431, 449-450
tf.contrib.rnn.OutputProjectionWrapper,	tf.nn.sparse_soft-
392-394	max_cross_entropy_with_logits(),
tf.contrib.rnn.RNNCell, 398	267-268, 390
tf.contrib.rnn.static_rnn(), 385-387,	tf.one_hot(), 466
409-410, 491-492	tf.PaddingFIFOQueue, 334
tf.contrib.slim module, 231, 377	tf.placeholder(), 239-240, 482
tf.contrib.slim.nets module (nets), 377	tf.placeholder_with_default(), 425
tf.control_dependencies(), 323	tf.RandomShuffleQueue, 333, 337-338,
tf.decode_csv(), 336, 340	340-341
tf.device(), 319-321, 326-327, 397-398	tf.random_normal(), 246, 384, 425, 430
tf.exp(), 430-431	tf.random_uniform(), 237, 241, 406, 482
tf.FIFOQueue, 330, 332-333, 336, 340	tf.reduce_mean(), 237, 245, 267-268, 303,
tf.float32, 236, 482	390-391, 414, 416, 418, 420, 425, 427,
tf.get_collection(), 288-289, 304, 308, 416,	466
463	tf.reduce_sum(), 303, 427-428, 430-431,
tf.get_default_graph(), 234, 242	465-466
tf.get_default_session(), 233	tf.reset_default_graph(), 234
tf.get_variable(), 249-251, 288, 303-308	tf.reshape(), 395, 463
tf.global_variables(), 308	tf.RunOptions, 345
tf.global_variables_initializer(), 233, 237	tf.Session, 233, 482
tf.gradients(), 238	tf.shape(), 425, 430
tf.Graph, 232, 234, 242, 335, 343	tf.square(), 237, 245, 393, 414, 416, 418, 420
tf.GraphKeys.REGULARIZATION_LOS-	425, 427, 430-431, 466
SES, 304, 416	tf.stack(), 336, 340, 386
tf.GraphKeys.TRAINABLE_VARIABLES,	tf.string, 336, 340
288-289, 463	tf.summary.FileWriter, 242-243
tf.group(), 464	tf.summary.scalar(), 242
u.group(), tot	u.summai y.scaiai (), 272

tf.tanh(), 384	irrelevant features, 25
tf.TextLineReader, 336, 340	loading, 335-342
tf.to_float(), 449-450	nonrepresentative, 24
tf.train.AdamOptimizer, 293, 299, 390, 393,	overfitting, 26-28
414, 416-417, 419, 427, 431, 449-450, 466	poor quality, 25
tf.train.ClusterSpec, 324	underfitting, 28
tf.train.Coordinator, 338-340	training instance, 4
tf.train.exponential_decay(), 302	training models, 20, 105-143
tf.train.GradientDescentOptimizer, 239,	learning curves in, 123-127
268, 286, 293, 295	Linear Regression, 105, 106-121
tf.train.MomentumOptimizer, 239, 295-296,	Logistic Regression, 134-142
302, 311, 351, 485-486	overview, 105-106
tf.train.QueueRunner, 338-341	Polynomial Regression, 106, 121-123
tf.train.replica_device_setter(), 327-328	training objectives, 157-159
tf.train.RMSPropOptimizer, 298	training set, 4, 29, 53, 60, 68-69
tf.train.Saver, 241-242, 268, 377, 399, 450,	cost function of, 135-136
466	shuffling, 81
tf.train.Server, 324	transfer learning, 286-293
tf.train.start_queue_runners(), 341	(see also pretrained layers reuse)
tf.transpose(), 236-237, 386, 417	transform(), 61, 66
tf.truncated_normal(), 265	transformation pipelines, 66-68
tf.unstack(), 385-387, 395, 492	transformers, 61
tf.Variable, 232, 482	transformers, custom, 64-65
tf.variable_scope(), 249-251, 288, 307-308,	transpose(), 385
328, 391, 463	true negative rate (TNR), 91
tf.zeros(), 265, 384, 417	true positive rate (TPR), 85, 91
truncated backpropagation through time,	truncated backpropagation through time, 400
400	tuples, 332
visualizing graph and training curves,	tying weights, 417
242-245	
TensorFlow Serving, 343	U
tensorflow.contrib, 267	underfitting, 28, 68, 152
test set, 29, 49-53, 81	univariate regression, 37
testing and validating, 29-31	unstack(), 385
text attributes, 62-64	unsupervised learning, 10-12
TextLineReader, 336	anomaly detection, 12
TF-slim, 231	association rule learning, 10, 12
TF.Learn, 231, 264	clustering, 10
thermal equilibrium, 518	dimensionality reduction algorithm, 12
thread pools (inter-op/intra-op, in TensorFlow,	visualization algorithms, 11
322	unsupervised pretraining, 291-292, 422-424
threshold variable, 248-251	upsampling, 376
Tikhonov regularization, 127	utility function, 20
time series data, 379	
toarray(), 63	V
tolerance hyperparameter, 154	validation set, 30
trainable, 288	Value Iteration, 455
training data, 4	value_counts(), 46
insufficient quantities, 22	vanishing gradients, 276
	00

(see also gradients, vanishing and explodweight-tying, 417 weights, 267, 288 ing) variables, sharing, 248-251 freezing, 289 variable_scope(), 249-250 while_loop(), 387 variance white box models, 170 bias/variance tradeoff, 126 worker, 324 variance preservation, 211-212 worker service, 325 variance_scaling_initializer(), 278 worker_device, 327 variational autoencoders, 428-432 workspace directory, 40-43 VGGNet, 375 visual cortex, 354 X visualization, 242-245 Xavier initialization, 276-279 visualization algorithms, 11-12 voice recognition, 353 γ voting classifiers, 181-184 YouTube, 253 W Z warmup phase, 349 zero padding, 356, 361 weak learners, 182

About the Author

Aurélien Géron is a Machine Learning consultant. A former Googler, he led the You-Tube video classification team from 2013 to 2016. He was also a founder and CTO of Wifirst from 2002 to 2012, a leading Wireless ISP in France; and a founder and CTO of Polyconseil in 2001, the firm that now manages the electric car sharing service Autolib.

Before this he worked as an engineer in a variety of domains: finance (JP Morgan and Société Générale), defense (Canada's DOD), and healthcare (blood transfusion). He published a few technical books (on C++, WiFi, and internet architectures), and was a Computer Science lecturer in a French engineering school.

A few fun facts: he taught his three children to count in binary with their fingers (up to 1023), he studied microbiology and evolutionary genetics before going into software engineering, and his parachute didn't open on the second jump.

Colophon

The animal on the cover of *Hands-On Machine Learning with Scikit-Learn and Ten-*sorFlow is the far eastern fire salamander (*Salamandra infraimmaculata*), an amphibian found in the Middle East. They have black skin featuring large yellow spots on their back and head. These spots are a warning coloration meant to keep predators at bay. Full-grown salamanders can be over a foot in length.

Far eastern fire salamanders live in subtropical shrubland and forests near rivers or other freshwater bodies. They spend most of their life on land, but lay their eggs in the water. They subsist mostly on a diet of insects, worms, and small crustaceans, but occasionally eat other salamanders. Males of the species have been known to live up to 23 years, while females can live up to 21 years.

Although not yet endangered, the far eastern fire salamander population is in decline. Primary threats include damming of rivers (which disrupts the salamander's breeding) and pollution. They are also threatened by the recent introduction of predatory fish, such as the mosquitofish. These fish were intended to control the mosquito population, but they also feed on young salamanders.

Many of the animals on O'Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to *animals.oreilly.com*.

The cover image is from *Wood's Illustrated Natural History*. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag's Ubuntu Mono.