2022年度 卒業論文

未定

松本 航平

早稲田大学 基幹理工学部 情報理工学科

学籍番号 1W193102

提出日 2022/

指導教授 菅原 俊治

目次

1	序論	1
2	関連研究	1
3	モデルの定義	1
	3.1 環境	
	3.2 エージェント	1
	3.3 評価指標	1
4	準備	1
	4.1 Adaptive meta target decision strategy (AMTDS)	1
	4.1.1 目標決定戦略	
	419 経路生成戦略	2

概要

本研究では、

- 1 序論
- 2 関連研究
- 3 モデルの定義

本研究は

- 3.1 環境
- 3.2 エージェント
- 3.3 評価指標
- 4 準備

この章では,

- 4.1 Adaptive meta target decision strategy (AMTDS)
- 4.1.1 目標決定戦略

Random selection (R)

環境全体のノード集合Vからランダムに v_{tar}^i を選ぶ.

Probabilistic greedy selection (PGS)

環境全体のノード集合 V 内のノード v におけるイベント発生量の推定値 $EL^i_t(v)$ の上位 N_g 個のノードから,ランダムに 1 つ v^i_{tar} を選ぶ.上位 N_g 個の中からランダムに選択する理由は, v^i_{tar} の偏りを防ぐためである.また,学習初期における v^i_{tar} の偏りを防ぐため, N_g 番目のノードと $EL^i_t(v)$ の値が同じノードが存在する場合,そのノードをすべて含めた中から v^i_{tar} を選ぶ.

Prioritizing unvisited interval (PI)

環境全体のノード集合 V 内のノード v における訪問間隔 $I_t^i(v)$ の上位 N_i 個のノード から, ランダムに1つ v_{tar}^i を選ぶ.上位 N^i 個の中からランダムに選択する理由は、 v_{tar}^i の偏りを防ぐためである.また、学習初期における v_{tar}^i の偏りを防ぐため、 N_i 番目の ノードと $I_t^i(v)$ の値が同じノードが存在する場合,そのノードをすべて含めた中から v_{tar}^i を選ぶ.

Balanced neighbor-preferential selection (BNPS)

近隣のノードにイベント発生量が多いと判断したとき, 近隣を優先的に巡回する. v^i_{tar} の決定時にエージェントの現在地 v^i_t との距離が d_{rad} 以下のノード集合を近領域 V^i_{area} とする. ここで, V^i_{area} における 1 ステップあたりのイベント処理量の期待値 EV^i_t は以下の式で求められる.

$$EV_t^i = \frac{\sum_{v \in V_{area}^i} EL_t^i(v)}{|V_{area}^i|}$$

エージェントiは近領域内のイベントを処理するか判断するための閾値 $EV_{threshold}$ と EV_t^i の値を比較し, EV_t^i > $EV_{threshold}$ の間は PGS によって近領域内から v_{tar}^i を選ぶ、その後, EV_t^i ≤ $EV_{threshold}$ となった場合, 環境全体を対象とし, PGS で v_{tar}^i を選ぶ、環境全体から v_{tar}^i を選択した後, V_{area}^i を更新する。 更新後の V_{area}^i の 1 ステップ あたりのイベント処理量の期待値を EV_{t+1}^i とし, $EV_{threshold}$ の値を以下の式に従って 更新する.

$$EV_{threshold} \leftarrow EV_{threshold} + \alpha(EV_{t+1}^i - EV_{threshold})$$

ここで, $\alpha(0 < /alpha < 1)$ は学習率である. また, $EV_{threshold}$ の初期値は初めに V_{area}^i を設定した際の EV_t^i の値である.

4.1.2 経路生成戦略

経路生成戦略に関しても