Σπύρος Φρονιμός - Μαθηματικός

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ${\bf 28} \ {\bf \Delta εκεμβρίου} \ {\bf 2015}$

ΜΑΘΗΜΑΤΙΚΑ Γ΄ ΓΥΜΝΑΣΙΟΥ

Εξισώσεις

ΕΞΙΣΩΣΕΙΣ 200 ΒΑΘΜΟΥ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΤΡΙΩΝΥΜΟ 200 ΒΑΘΜΟΥ

Τριώνυμο 2^{ου} βαθμού ονομάζεται κάθε πολυώνυμο 2^{ου} βαθμού με τρεις όρους και είναι της μορφής

$$ax^2 + \beta x + \gamma \mu \epsilon \ a \neq 0$$

- Οι πραγματικοί αριθμοί $a, \beta, \gamma \in \mathbb{R}$ ονομάζονται συντελεστές του τριωνύμου.
- Ο συντελεστής $\gamma \in \mathbb{R}$ ονομάζεται σταθερός όρος.

ΟΡΙΣΜΟΣ 2: ΕΞΙΣΩΣΗ 2ου ΒΑΘΜΟΥ

Εξίσωση 2^{ov} βαθμού με έναν άγνωστο ονομάζεται κάθε πολυωνυμική εξίσωση της οποίας η αλγεβρική παράσταση είναι τριώνυμο 2^{ov} βαθμού. Είναι της μορφής :

$$ax^2 + \beta x + \gamma = 0$$
, $a \neq 0$

ΟΡΙΣΜΟΣ 3: ΔΙΑΚΡΙΝΟΥΣΑ

Διακρίνουσα ενός τριωνύμου 200 βαθμού ονομάζεται ο πραγματικός αριθμός

$$\Delta = \beta^2 - 4a\gamma$$

Το πρόσημό της μας επιτρέπει να διακρίνουμε το πλήθος των ριζών του τριωνύμου.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ 200 ΒΑΘΜΟΥ

Αν $ax^2 + \beta x + \gamma = 0$ με $a \neq 0$ μια εξίσωση 2^{ov} βαθμού τότε με βάση το πρόσημο της διακρίνουσας έχουμε τις παρακάτω περιπτώσεις για το πλήθος των λύσεων της :

1. Αν $\Delta > 0$ τότε η εξίσωση έχει δύο άνισες λύσεις οι οποίες δίνονται από τον τύπο :

$$x_{1,2} = \frac{-\beta \pm \sqrt{\Delta}}{2a}$$

2. Αν $\Delta = 0$ τότε η εξίσωση έχει μια διπλή λύση την

$$x = -\frac{\beta}{a}$$

Διακρίνουσα	Πλήθος λύσεων	Λύσεις
$\Delta > 0$	2 λύσεις	$x_{1,2} = \frac{-\beta \pm \sqrt{\Delta}}{2a}$
$\Delta = 0$	1 διπλή λύση	$x = -\frac{\beta}{a}$
$\Delta < 0$	Καμία λύση	

3. Αν $\Delta < 0$ τότε η εξίσωση είναι αδύνατη στο σύνολο $\mathbb R$. Οι περιπτώσεις αυτές φαίνονται επίσης στον παραπάνω πίνακα :

ΘΕΩΡΗΜΑ 2: ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΤΡΙΩΝΥΜΟΥ

Ένα τριώνυμο της μορφής $ax^2+\beta x+\gamma=0$ με $a\neq 0$ μπορεί να γραφτεί ως γινόμενο παραγόντων σύμφωνα με τον παρακάτω κανόνα :

1. Αν η διακρίνουσα του τριωνύμου είναι θετική ($\Delta>0$) τότε το τριώνυμο παραγοντοποιείται ως εξής

$$ax^{2} + \beta x + \gamma = a(x - x_{1})(x - x_{2})$$

όπου x_1, x_2 είναι οι ρίζες του τριωνύμου.

2. Αν η διακρίνουσα είναι μηδενική ($\Delta=0$) τότε το τριώνυμο παραγοντοποιείται ως εξής :

$$ax^2 + \beta x + \gamma = a(x - x_0)^2$$

όπου x_0 είναι η διπλή ρίζα του τριωνύμου.

3. Αν η διακρίνουσα είναι αρνητική ($\Delta < 0$) τότε το τριώνυμο δεν γράφεται ως γινόμενο πρώτων παραγόντων.