- Résoudre dans \mathbb{C} les équations suivantes :
 - 1. (z i)(2z 6) = 0.
 - 2. (iz + 1)(3z + i) = 0.
 - 3. (z + 2i)(2 + 3i 2iz) = 0.
- Résoudre dans \mathbb{C} les équations suivantes :
 - 1. $-z^2 + 2z 3 = 0$.
 - 2. $z^2 + 4 = 0$.
 - 3. $4z^2 12z + 9 = 0$.
 - 4. $-3z^2 + 3z 1 = 0$.
 - 5. $2z^2 + 2z + 5 = 0$.
- 1. Démontrer que -2 i est solution de l'équation $z^2 + 4z + 5 = 0$.
 - 2. En déduire l'ensemble des solutions de cette équation.
- Résoudre dans \mathbb{C}^* l'équation $z + \frac{1}{z} = 1$.
- Résoudre dans \mathbb{C} les équations suivantes :
 - 1. $z^2 + 2iz = 0$.
 - 2. (-2z+1)(z-1)=1.
 - 3. $i\sqrt{3}z^2 6z = 0$.
 - 4. $(\overline{z} 3i 5)(iz 3) = 0$.
- Dans le plan complexe, à tout point M d'affixe z, on associe le point M' d'affixe z' tel que $z' = z^2 z + 5$.
 - 1. Si le point M' a pour affixe 4, quelle est l'affixe du point M?
 - 2. Démontrer qu'il existe des points M tels que le point M' associé à M soit M lui-même.
- Résoudre dans \mathbb{C} les équations suivantes :
 - 1. $\frac{1}{z} + 2z = 0$.
 - $2. \ \ \tilde{\frac{z}{3}} = \frac{-5}{1+z}.$
 - 3. $\frac{z+1}{z-2} = i$.
 - 4. $\frac{z}{z-1} = \frac{1}{z}$.
- Soit le polynôme P défini par $P(z) = z^3 + z^2 + 4$.
 - 1. Démontrer que -2 est racine de P.
 - 2. Déterminer les trois réels a, b et c tels que :

$$P(z) = (z+2)(az^2 + bz + c).$$

Résoudre dans \mathbb{C} l'équation P(z) = 0.

1. Déterminer un entier naturel n solution de l'équation (E):

$$z^3 + z^2 - 2 = 0$$

2. Déterminer les réels a, b et c tels que

$$z^{3} + z^{2} - 2 = (z - n)(az^{2} + bz + c).$$

- 3. En déduire les solutions de l'équation (E).
- Soit $P(z) = z^3 3z^2 + 4z 12$ avec $z \in \mathbb{C}$.
 - 1. Montrer que pour tout complexe z,

$$\overline{P(z)} = P(\overline{z}).$$

- 2. (a) Vérifier que -2i est une racine de P.
 - (b) En déduire sans aucun calcul que 2i est aussi solution de cette équation.
 - (c) Déduire des questions précédentes une factorisation de P.
- On considère le polynôme P défini sur \mathbb{C} par $P(z) = z^4 iz^3 + z i$ où z est un complexe.
 - 1. Démontrer que pour tout complexe z,

$$P(z) = (z - i)(z^3 + 1).$$

- 2. Factoriser au maximum P(z).
- On considère l'équation d'inconnue z complexe :

$$(E): z^2 - 5z + 4 + 10i = 0.$$

- 1. Développer $(5-4i)^2$.
- 2. Résoudre dans \mathbb{C} l'équation (E).