Midterm report 2024, Binary Heap

Object Oriented Programming 2024 First Semester Shin-chi Tadaki (Saga University) Binary Heap

2 Implementation

Minimum methods

Binary Heap

- A binary heap is a type of data structure for extracting the minimum element from a data set.
- It is a complete binary tree which satisfies the followings.
 - The top level is denoted as $\ell=0$. The second level (daughters of the root) is denoted as $\ell=1$ and so forth.
 - \bullet Each level ℓ has 2^ℓ nodes, with the exception of the last level $\ell=L.$
 - Any remaining nodes at the last level are filled from left to right.

Image of Binary Heap

Rules for nodes

- Each node at the level $\ell < L-1$ has two lower level nodes, called *daughters* or *subnodes*.
- ullet At the level $\ell=L-1$, there exists a boundary node V.
 - \bullet Nodes positions to the left of V has two daughters, while the nodes to the rights has none.
 - ullet The node V may have one or two daughters.
- \bullet A node v must have a value that is not greater than the values of its daughters.

Implementation

- The binary heap is implemented as an list.
- The root node is V_1 .
- Any node V_k has two daughters V_{2k} and V_{2k+1} .
- The parent of a node V_k (k > 1) is $V_{\lfloor k/2 \rfloor}$.

Minimum methods

- Constructor
- Add a new element
- Extract the minimum element
- Check the emptiness

Constructor

- The constructor initializes the binary heap with an empty list.
- The first element of the list is set to Null.
- The number of elements, n is set to zero.

Add a new element

- The new element is added to the end of the list.
- The added element moves up to the adequate position for keeping the binary heap property.

The new element (13, .2) is added at 13-th and moves up to 6-th. The element (7, 0.3) moves down to 13-th by exchanging the positions.

Extract the minimum element

- The minimum element is the root node.
- After removing the root node, the last element of the list is moved to the root position.
- The new root node moves down to the adequate position for keeping the binary heap property.

Check the emptiness

• If the list contains only Null, the binary heap is empty.