Тема 4. Обратная матрица. Матричные уравнения.

Содержание

Гема 4. Обратная матрица. Матричные уравнения	1
Введение. Обратная матрица. Присоединённая матрица	
Введение. Обратная матрица. Присоединенная матрица	_
Матричные уравнения	3

Введение. Обратная матрица. Присоединённая матрица

 \Rightarrow Обратной матрицей к квадратной матрице A называется такая матрица (обозначается A^{-1}), что $A^{-1} \cdot A = A \cdot A^{-1} = E$.

Замечание. Если матрица A^{-1} существует, то она единственна.

 \Rightarrow Присоединенной матрицей к квадратной матрице $A=(a_{ij})$ называется матрица $\widetilde{A}=(A_{ij})^T$, полученная транспонированием из матрицы, составленной из алгебраических дополнений A_{ij} к элементам a_{ij} .

Теорема 1.3. Если квадратная матрица A — невырожденная (т. е. $\det A \neq 0$), то $A^{-1} = \frac{1}{\det A}\widetilde{A}. \tag{4.1}$

Memod присоединенной матрицы вычисления обратной матрицы к невырожденной матрице A состоит в применении формулы (4.1).

Метод элементарных преобразований (метод Гаусса) вычисления обратной матрицы к невырожденной матрице A состоит в следующем. Приписывая справа к матрице A размера $n \times n$ единичную матрицу размера $n \times n$, получим прямоугольную матрицу $\Gamma = (A|E)$ размера $n \times 2n$. С помощью элементарных преобразований над строками матрицы Γ сначала приведем ее к ступенчатому виду $\Gamma_1 = (A_1|B)$, где матрица A_1 — треугольная, а затем к виду $\Gamma_2 = (E|A^{-1})$.

Матричные уравнения

Матричные уравнения простейшего вида с неизвестной матрицей X записываются следующим образом

$$AX = B, (4.2)$$

$$XA = B, (4.3)$$

$$AXC = B. (4.4)$$

В этих уравнениях A, B, C, X — матрицы таких размеров, что все используемые операции умножения возможны, и с обеих сторон от знаков равенства находятся матрицы одинаковых размеров.

Если в уравнениях (4.2), (4.3) матрица A невырожденная, то их решения записываются следующим образом:

$$X = A^{-1}B,$$
$$X = BA^{-1}.$$

Если в уравнении (4.4) матрицы A и C невырождены, то его решение записывается так: $X = A^{-1}BC^{-1}.$