Supporting Information

Epstein and Robertson 10.1073/pnas.1419828112

SI Text

Demographic Differences in VMP. In study 2, we found substantial differences in how vulnerable different demographic groups were to SEME. Although the groups we examined are somewhat arbitrary, overlapping, and by no means definitive, they do establish a range of vulnerability to SEME. Ten groups ($n \ge 50$) that appeared to be highly vulnerable in study 2, as indicated by their VMP scores, were, in order from highest to lowest, as follows:

- i) Moderate Republicans (80.0%; 95% CI, 62.5–97.5%)
- *ii*) People from North Carolina (66.7%; 95% CI, 42.8–90.5%)
- iii) Moderate Libertarians (73.3%; 95% CI, 51–95.7%)
- iv) Male Republicans (66.1%; 95% CI, 54–78.2%)
- v) Female conservatives age 30 and over (67.7%; 95% CI, 52.5–82.7%)
- vi) People from Virginia (60.0%; 95% CI, 38.5–81.5%)
- vii) People earning between \$15,000 and \$19,999 (60.0%; 95% CI, 42.5–77.5%)
- viii) Hispanics (59.4%; 95% CI, 42.4–76.4%)
- ix) Independents with no political leaning (58.3%; 95% CI, 38.6–78.1%)
- x) Female conservatives (54.7%; 95% CI, 41.3–68.1%)

Ten groups that appeared to show little vulnerability to SEME, as indicated by their VMP scores, were, in order from highest to lowest, as follows:

- i) People from California (24.1%; 95% CI, 15.1–33.1%)
- ii) Moderate independents (24.0%; 95% CI, 15.4–32.5%)
- iii) Liberal independents (23.4%; 95% CI, 13.1–33.8%)
- *iv*) People from Texas (22.9%; 95% CI, 11–34.8%)
- v) Liberal Libertarians (22.7%; 95% CI, 5.2–40.2%)
- vi) People earning between \$40,000 and \$49,999 (22.5%; 95% CI, 13.8–31.1%)
- vii) Female independents (22.0%; 95% CI, 13.5–30.5%)
- viii) Male moderates age 30 and over (19.3%; 95% CI, 9.1–29.5%)
- *ix*) Female independent moderates (17.9%; 95% CI, 13.5–30.5%)
- x) People with an uncommon political party (15.0%; 95% CI, -0.6% to 30.6%)

In study 3, as in study 2, we found substantial differences in how vulnerable different demographic groups were to SEME. Although the groups we examined are somewhat arbitrary, overlapping, and by no means definitive, they do establish a range of vulnerability to SEME. Ten groups ($n \ge 50$) that appeared to be highly vulnerable in study 3, as indicated by their VMP scores, were, in order from highest to lowest, as follows:

- i) Unemployed males from Kerala (72.7%; 95% CI, 46.4–99.1%)
- *ii*) Unemployed Christians (68.8%; 95% CI, 46.0–91.5%)
- iii) Unemployed moderate males (50.0%; 95% CI, 33.2–66.8%)
- *iv*) Moderate Christian males (47.6%; 95% CI, 26.3–69.0%)
- v) Christian moderates (42.9%; 95% CI, 26.5–59.3%)
- vi) Males from Kerala (40.4%; 95% CI, 26.4–54.5%)
- vii) Unemployed moderates (33.3%; 95% CI, 22.0–44.7%)
- viii) Male Christians (32.7%; 95% CI, 19.9–45.4%)
- ix) People from Kerala (32.4%; 95% CI, 21.8–43.1%)
- x) Unemployed females with no political ideology (31.6%; 95% CI, 10.7–52.5%)

Ten groups that appeared to show little vulnerability to SEME, as indicated by their VMP scores, were, in order from highest to lowest, as follows:

- i) People from Tamil Nadu with no political ideology (0.0%; 95% CI, -0.01%-0.04%)
- ii) Employed females with no political ideology (0.0%; 95% CI, -0.01%-0.06%)
- iii) People earning between Rs 10,000 and Rs 29,999 (-3.2%; 95% CI, -7.6%-1.3%)
- iv) Married people who are separated (-3.3%; 95% CI, -10.0%-3.3%)
- v) People with a pre-university education (-4.3%; 95% CI, -10.5%-1.81%)
- vi) Unemployed liberals (-4.3%; 95% CI, -10.5%-1.81%)
- vii) Unemployed conservatives (-5.0%; 95% CI, -15.0%-5.0%)
- viii) People from Gujarat (-5.9%; 95% CI, -17.8%-6.0%)
- ix) Unemployed male liberals (-8.0%; 95% CI, -19.5%-3.5%)
- x) Female conservatives (-11.8%; 95% CI, -29.0%-5.5%)

Bias Awareness. Subjects were counted as showing awareness of the manipulation if (i) they had clicked on a box indicating that something "bothered" them about the rankings and (ii) we found specific terms or phrases in their open-ended comments suggesting that they were aware of bias in the rankings, such as "biased," "bias," "leaning towards," "leaning toward," "leaning against," "slanted," "skewed," "favorable towards," "favorable toward," "favorable for," "favorable against," "favorable results," "favored towards," "favored toward," "favored for," "favored against," "favored results," "favor toward," "results favor," "favor Modi," "favor Kejriwal," "favor Gandhi," "negative toward," "negative for," "negative against," "all negative," "all positive," "mainly negative," "mainly positive," "nothing positive," "nothing negative," "more results for," "less results for," "most of the articles were negative," "most of the articles were positive," "pro Modi," "pro Kejriwal," "pro Gandhi," "Modi leaning," "Kejriwal leaning," "Gandhi leaning," "pro Gillard," "pro Abbott," "favor Gillard," "favor Abbott," "Gillard leaning," and "Abbott leaning."

Derivation of the Formulas for Computing W, the Maximum Win Margin Controllable Through SEME, in Two- and Three- Person Races.

Two-person race. Where T = total number of eligible voters in a population, i = proportion of T who are internet users, u = proportion of i who are undecided, p = proportion of u who are prone to vote for the target candidate, and VMP = proportion of p who can be shifted by SEME.

The number of votes that can be shifted by SEME is given by

$$n = T * i * u * p * VMP.$$

In a two-person race, the number of votes for the candidate favored by SEME when the vote is initially evenly split is

$$\frac{T}{2}+n$$
,

and the number of votes for the losing candidate is

$$\frac{T}{2}-n$$
.

The vote margin in favor of the winning candidate is therefore the larger vote minus the smaller vote, or, simply: 2n.

Therefore, the margin of voters, expressed as a proportion, that can be shifted by SEME is

$$\frac{2n}{T} = \frac{2 * T * i * u * p * VMP}{T} = 2 * i * u * p * VMP.$$

Because the undecided voters in a two-person race have only two voting options, the value of p before outside influence is exercised can reasonably be assumed to be 0.5.

Therefore, W can be calculated as follows:

$$W = 2 * i * u * 0.5 * VMP$$
,

and the calculation can be simplified as follows:

$$W = i * u * VMP$$
.

In other words, the maximum win margin controllable by SEME in a two-person race is equal to the proportion of people who can be influenced by SEME (the VMP) times the proportion of undecided Internet voters in the population. (i *u).

Three-person race. Where T = total number of voters in a population, i = proportion of T who are internet users, u = proportion of i who are undecided, p = proportion of u who are prone to vote for the target candidate, and VMP = proportion of p who can be shifted by SEME.

The number of votes that can be shifted by SEME is given by

$$n = T * i * u * p * VMP.$$

In a three-person race, because the winning candidate can draw votes from either of the two losing candidates, W can vary between two extremes:

 i) At one extreme, one of the two losing candidates draws zero votes, in which case the formula for the two-person case (above) is applicable. *ii*) At the other extreme, voting preferences are initially split three ways evenly, and the winning candidate draws votes equally from the other two. This distribution will give us the lowest possible value of *W* in the three-person race, as follows.

The number of votes for the candidate favored by SEME will still be

$$\frac{T}{2}+n$$
.

However, because of the split, the number of votes for each of the losing candidates will now be

$$\frac{T}{2} - \frac{n}{2}$$

The vote margin in favor of the winning candidate will therefore be the larger vote minus either of the smaller votes or, simply, 1.5n.

Therefore, the margin of voters, expressed as a proportion, that can be shifted by SEME is

$$\frac{2n}{T} = \frac{1.5 * T * i * u * p * VMP}{T} = 1.5 * i * u * p * VMP.$$

Therefore, W can be calculated as follows:

$$W = 1.5 * i * u * 0.5 * VMP$$

and the calculation can be simplified as follows:

$$W = 0.75 * i * u * VMP.$$

Therefore, in a three-person race, W will vary between 75% and 100% of the W found in the two-person case, depending on how votes are distributed between the two losing candidates; the more even the split, the smaller the controllable win margin.

Fig. S1. A possible synergistic relationship between the impact that search rankings have on voter preferences and the impact that voter preferences have on search rankings. The lower curves (red and green) show slow increases that might occur if each of the processes acted alone over the course of a year (365 iterations of the model). The upper curve (blue) shows the result of a possible synergy between these two processes using the same parameters that generated the two lower curves. The curves are generated by an iterative model using equations of the general form $V_{n+1} = V_n + r[R_n \times (1 - V_n)] + r[O_n \times (1 - V_n)]$, where V is voter preference for one candidate, R is the impact of voter preferences on search rankings, O is the impact (randomized with each iteration) of other influences on voter preferences, and r is a rate-of-change factor. Because a change in voter preference alters the proportion of votes available, its value in the model cannot exceed 1.0.

Table S1. Demographics for studies 1 and 2

		Census 2010 [†]		Study 1		Census and study 1	Study 2	
Category	Value	n	%	n	%	Z	n	%
Age	18–24	26,718	12.7%	51	16.7%	2.097*	446	21.2%
	25–44	70,472	33.4%	122	39.9%	2.385*	1,274	60.7%
	45–64	75,865	36.0%	95	31.0%	1.800	342	16.3%
	65–74	20,605	9.8%	20	6.5%	1.906	33	1.6%
	75+	17,140	8.1%	18	5.9%	1.438	5	0.2%
Race	White	152,929	72.5%	179	58.5%	5.502***	1,645	78.3%
	Black	25,632	11.8%	38	12.4%	0.349	126	6.0%
	Hispanic	21,285	9.8%	52	17.0%	4.169***	121	5.8%
	Asian	7,638	3.9%	7	2.3%	1.528	123	5.9%
	Other	3,316	2.0%	30	9.8%	10.977***	85	4.0%
Sex	Male	101,279	48.0%	162	52.9%	1.715	1,148	54.7%
	Female	109,521	52.0%	144	47.1%	1.715	947	45.1%
	Other	n/a	n/a	0	0.0%	n/a	5	0.2%
Education	Less than ninth grade	6,655	3.2%	2	0.7%	2.504*	0	0.0%
	Ninth to 12th grade	15,931	7.6%	45	14.7%	4.724***	22	1.0%
	High school graduate	65,951	31.3%	68	22.2%	3.417***	231	11.0%
	Some college or associate degree	62,655	29.7%	145	47.4%	6.753***	820	39.0%
	Bachelors	39,272	18.6%	30	9.8%	3.963***	752	35.8%
	Advanced	20,336	9.6%	16	5.2%	2.616**	275	13.1%
Used‡	Yes	126,477	60.0%	119	38.9%	7.531***	1,509	71.9%
	No	84,323	40.0%	187	61.1%	7.531***	591	28.1%
Income	Under \$10,000	5,496	3.6%	67	21.9%	20.009***	137	6.5%
	\$10,000 to \$14,999	5,069	3.3%	33	10.8%	8.538***	131	6.2%
	\$15,000 to \$19,999	4,549	2.9%	28	9.2%	7.446***	124	5.9%
	\$20,000 to \$29,999	12,632	8.2%	45	14.7%	4.800***	282	13.4%
	\$30,000 to \$39,999	13,182	8.5%	34	11.1%	1.857	288	13.7%
	\$40,000 to \$49,999	10,807	7.0%	17	5.6%	1.143	239	11.4%
	\$50,000 to \$74,999	25,516	16.5%	30	9.8%	3.602***	405	19.3%
	\$75,000 to \$99,999	17,597	11.4%	11	3.6%	4.932***	235	11.2%
	\$100,000 to \$149,999	16,586	10.7%	5	1.6%	5.916***	148	7.0%
	\$150,000 and over	12,102	7.8%	0	0.0%	5.893***	46	2.2%
	Prefer not to say	30,875	20.0%	36	11.8%	4.069***	65	3.1%
Marital status	Married	113,421	53.8%	48	15.7%	13.364***	751	35.8%
	Widowed	13,612	6.5%	27	8.8%	1.682	15	0.7%
	Divorced	23,035	10.9%	68	22.2%	6.324***	141	6.7%
	Separated	4,528	2.1%	15	4.9%	3.317***	33	1.6%
	Never married	56,203	26.7%	148	48.4%	8.576***	1,160	55.2%

^{*}P < 0.05; **P < 0.01; and ***P < 0.001.

[†]Census numbers are in hundred thousands. [‡]For census data, "No" includes "unemployed" and "not in labor force."

Table S2. Voting preferences by group for study 1

Mean (SE)

			Wiedii (SL)				
Experiment	Voting preferences	Group 1 (Gillard bias)	Group 2 (Abbott bias)	Group 3 (control)	Kruskal–Wallis (χ²)	Mann–Whitney <i>u</i>	
1	PreImpressionAbbott	8.09 (0.34)	7.74 (0.40)	7.41 (0.26)	3.979	525.0	
	PreImpressionGillard	7.06 (0.42)	7.47 (0.35)	6.88 (0.32)	1.395	529.5	
	PreTrustAbbott	7.82 (0.31)	7.85 (0.39)	7.35 (0.28)	3.275	538.5	
	PreTrustGillard	6.38 (0.40)	7.56 (0.30)	6.88 (0.32)	5.213	407.0	
	PreLikeAbbott	6.06 (0.52)	5.68 (0.47)	5.79 (0.38)	0.296	538.5	
	PreLikeGillard	5.29 (0.48)	5.76 (0.41)	5.29 (0.37)	1.335	500.0	
	PostImpressionAbbott	4.24 (0.49)	7.29 (0.51)	5.85 (0.38)	19.029***	252.0***	
	PostImpressionGillard	7.26 (0.45)	4.71 (0.47)	5.65 (0.46)	14.667**	286.0**	
	PostTrustAbbott	4.59 (0.43)	7.32 (0.51)	6.15 (0.38)	18.385***	260.5***	
	PostTrustGillard	6.91 (0.42)	4.97 (0.43)	6.15 (0.40)	10.809**	326.5**	
	PostLikeAbbott	3.88 (0.43)	6.24 (0.58)	5.18 (0.42)	11.026**	341.5**	
	PostLikeGillard	5.68 (0.49)	4.15 (0.45)	5.41 (0.42)	5.836	403.0*	
2	PreImpressionAbbott	6.76 (0.43)	7.50 (0.34)	6.76 (0.44)	1.761	477.0	
	PreImpressionGillard	6.50 (0.36)	7.29 (0.43)	6.12 (0.45)	4.369	449.5	
	PreTrustAbbott	6.41 (0.44)	7.12 (0.30)	7.32 (0.44)	2.700	499.0	
	PreTrustGillard	6.56 (0.41)	7.32 (0.36)	6.35 (0.43)	3.094	465.0	
	PreLikeAbbott	5.56 (0.46)	5.65 (0.43)	5.76 (0.49)	0.170	575.0	
	PreLikeGillard	5.79 (0.44)	5.79 (0.48)	5.47 (0.45)	0.306	568.0	
	PostImpressionAbbott	3.79 (0.41)	7.15 (0.49)	5.24 (0.48)	20.878***	226.5***	
	PostImpressionGillard	7.35 (0.39)	4.79 (0.47)	6.00 (0.38)	15.270***	279.5***	
	PostTrustAbbott	3.82 (0.40)	7.18 (0.47)	5.53 (0.51)	21.917***	207.5***	
	PostTrustGillard	7.32 (0.41)	4.97 (0.46)	6.18 (0.36)	13.410**	302.0**	
	PostLike Abbott	3.91 (0.42)	6.09 (0.53)	5.56 (0.48)	9.822**	353.0**	
	PostLikeGillard	6.68 (0.45)	4.29 (0.48)	5.79 (0.40)	12.905**	311.5**	
3	PreImpressionAbbott	7.24 (0.39)	7.18 (0.39)	7.88 (0.27)	1.346	568.5	
	PreImpressionGillard	6.12 (0.43)	7.09 (0.39)	7.26 (0.34)	4.134	452.0	
	PreTrustAbbott	7.18 (0.35)	6.41 (0.41)	7.53 (0.32)	3.837	478.0	
	PreTrustGillard	6.65 (0.38)	6.68 (0.40)	6.97 (0.33)	0.259	568.5	
	PreLikeAbbott	6.59 (0.42)	5.94 (0.39)	6.59 (0.43)	2.301	491.0	
	PreLikeGillard	5.85 (0.46)	5.85 (0.43)	6.26 (0.41)	1.065	576.5	
	PostImpressionAbbott	5.29 (0.48)	6.82 (0.41)	6.26 (0.48)	5.512	384.0*	
	PostImpressionGillard	6.50 (0.45)	5.47 (0.43)	6.21 (0.48)	3.027	445.5	
	PostTrustAbbott	5.38 (0.49)	6.85 (0.45)	6.47 (0.47)	5.091	399.0*	
	PostTrustGillard	6.44 (0.45)	5.76 (0.47)	6.29 (0.44)	1.365	493.0	
	PostLikeAbbott	5.29 (0.48)	6.03 (0.48)	5.79 (0.53)	1.129	487.0	
	PostLikeGillard	6.12 (0.47)	5.26 (0.54)	6.09 (0.51)	1.475	491.5	

^{*}P < 0.05; **P < 0.01; and ***P < 0.001: Kruskal-Wallis tests were conducted between all three groups, and Mann-Whitney u tests were conducted between groups 1 and 2. Preferences were measured for each candidate separately on 10-point Likert scales.

Table S3. Voting preferences by group for study 2

Mean (SE)

Voting preferences	Group 1 (Gillard bias)	Group 2 (Abbott bias)	Group 3 (control)	Kruskal–Wallis (χ²)	Mann–Whitney <i>u</i>	
PreImpressionAbbott	7.40 (0.07)	7.36 (0.08)	7.37 (0.07)	0.458	241,861.5	
PreImpressionGillard	7.13 (0.07)	7.12 (0.08)	7.13 (0.07)	0.081	243,115.0	
PreTrustAbbott	7.26 (0.07)	7.22 (0.08)	7.18 (0.07)	0.954	241,924.5	
PreTrustGillard	6.95 (0.07)	6.89 (0.08)	6.92 (0.07)	0.222	241,779.0	
PreLikeAbbott	6.42 (0.08)	6.39 (0.08)	6.23 (0.08)	2.987	243,677.5	
PreLikeGillard	6.24 (0.08)	6.30 (0.08)	6.11 (0.08)	3.178	239,556.0	
PostImpressionAbbott	4.61 (0.09)	6.88 (0.09)	5.53 (0.09)	289.065***	120,660.0***	
PostImpressionGillard	6.87 (0.08)	4.95 (0.09)	6.21 (0.09)	237.034***	133,106.5***	
PostTrustAbbott	4.56(0.10)	6.94 (0.09)	5.57 (0.10)	281.560***	121,786.5***	
PostTrustGillard	6.84 (0.09)	4.95 (0.09)	6.19 (0.09)	221.709***	136,689.0***	
PostLike Abbott	4.55 (0.09)	6.31 (0.09)	5.21 (0.09)	177.225***	146,957.0***	
PostLikeGillard	6.34(0.09)	4.64 (0.09)	5.71 (0.09)	176.066***	147,372.5***	

^{***}P < 0.001: Kruskal–Wallis tests were conducted between all three groups, and Mann–Whitney *u* tests were conducted between groups 1 and 2. Preferences were measured for each candidate separately on 10-point Likert scales.

Table S4. Treatment effect estimates for study 2 voting preferences

	Presearc	h vote	Postsearch vote		
Predictor variable	Coefficient	SE	Coefficient	SE	
Intercept	-0.073	0.540	0.062	0.543	
Sex					
Female	0	Referent	0	Referent	
Male	0.039	0.110	-0.135	0.119	
Other	-0.430	0.922	-0.568	0.924	
Race/ethnicity					
White	0	Referent	0	Referent	
Black	0.115	0.224	0.090	0.245	
Hispanic	-0.435	0.235	-0.280	0.237	
Asian	0.366	0.238	0.668	0.291*	
Other	0.133	0.274	-0.072	0.291	
Age group					
18–24	0	Referent	0	Referent	
25–44	-0.024	0.144	-0.083	0.157	
45–64	0.241	0.184	0.029	0.200	
65+	0.258	0.411	0.685	0.519	
Education level					
Less than ninth grade	0	Referent	0	Referent	
Ninth to 12th grade	0.024	0.548	0.732	0.550	
High school graduate	0.074	0.528	0.927	0.528	
Bachelors	0.094	0.529	0.842	0.530	
Advanced	-0.050	0.543	0.549	0.544	

The presearch and postsearch columns report the estimate and variance for both treatment groups using classical regression poststratification. Data for sex, race/ethnicity, age group, and education level came from the 2010 US Census. Data on the number of people who identify their sex as "other" came from a 2011 Gallup study. *P < 0.05.

Table S5. Demographics for study 3

		Stu	ıdy 3	Indian Census 2011 (literates)		
Category	Value	n	%	n	%	
Age	18–24	602	28.0%	160,241,457	21.0%	
	25–44	1410	65.6%	347,587,712	45.6%	
	45–64	124	5.8%	188,197,343	24.7%	
	65+	14	0.7%	66,185,333	8.7%	
Religion	Buddhism	14	0.7%	_	_	
	Christianity	262	12.2%	_	_	
	Hinduism	1512	70.3%	_	_	
	Islam	314	14.6%	_	_	
	Jainism	21	1.0%	_	_	
	Other	15	0.7%	_	_	
	Sikhism	12	0.6%	_	_	
Sex	Male	1518	70.6%	388,428,872	51.0%	
	Female	632	29.4%	373,782,973	49.0%	
Education	None	0	0.0%	_	_	
	Primary school	4	0.2%	_	_	
	Higher secondary	71	3.3%	_	_	
	Pre-university	136	6.3%	_	_	
	Bachelors	1225	57.0%	_	_	
	Masters	699	32.5%	_	_	
	Doctorate	15	0.7%	_	_	
Used	Yes	1635	76.0%	_	_	
	No	515	24.0%	_	_	
Income	Under Rs 10,000	121	5.6%	_	_	
	Rs 10,000 to Rs 29,999	206	9.6%	_	_	
	Rs 30,000 to Rs 49,999	131	6.1%	_	_	
	Rs 50,000 to Rs 69,999	106	4.9%	_	_	
	Rs 70,000 to Rs 89,999	146	6.8%	_	_	
	Rs 90,000 to Rs 109,999	181	8.4%	_	_	
	Rs 110,000 to Rs 129,999	172	8.0%	_	_	
	Rs 130,000 to Rs 149,999	132	6.1%	_	_	
	Rs 150,000 to Rs 169,999	124	5.8%	_	_	
	Rs 170,000 to Rs 189,999	118	5.5%	_	_	
	Rs 190,000 and over	486	22.6%	_	_	
	I prefer not to say	227	10.6%	_	_	
Marital status	Married	1,144	53.2%	_	_	
	Widowed	5	0.2%	_	_	
	Divorced	4	0.2%	_	_	
	Separated	78	3.6%	_	_	
	Never married	919	42.7%	_	_	
Location	State	1,144	53.2%	749,758,470	98.4%	
	Union Territory	5	0.2%	12,453,375	1.6%	

Table S6. Voting Preferences by Group for Study 3

Mean (SE)

Voting preferences	Group 1 (Gandhi bias)	Group 2 (Kejriwal bias)	Group 3 (Modi bias)	Kruskal–Wallis (χ²)	
PreImpressionGandhi	5.94 (0.10)	5.73 (0.10)	5.65 (0.10)	4.782	
PreImpressionKejriwal	6.80 (0.09)	7.07 (0.09)	7.09 (0.08)	6.230*	
PreImpressionModi	7.49 (0.10)	7.46 (0.10)	7.48 (0.09)	0.188	
PreLikableGandhi	5.71 (0.10)	5.64 (0.10)	5.61 (0.10)	0.722	
PreLikableKejriwal	6.68 (0.09)	6.78 (0.09)	6.87 (0.09)	2.030	
PreLikableModi	7.40 (0.10)	7.29 (0.10)	7.29 (0.10)	1.483	
PreTrust Gandhi	5.57 (0.11)	5.52 (0.11)	5.42 (0.10)	0.955	
PreTrustKejriwal	6.54 (0.10)	6.74 (0.10)	6.85 (0.09)	4.546	
PreTrustModi	7.22 (0.11)	7.31 (0.11)	7.27 (0.10)	0.159	
PreLikelyToVoteGandhi	0.10 (0.12)	0.08 (0.12)	0.08 (0.12)	1.587	
PreLikelyToVoteKejriwal	1.19 (0.11)	1.38 (0.11)	1.55 (0.10)	5.178	
PreLikelyToVoteModi	2.15 (0.12)	2.12 (0.12)	2.06 (0.12)	0.202	
PostImpression Gandhi	5.78 (0.10)	5.52 (0.10)	5.35 (0.10)	9.552**	
PostImpressionKejriwal	6.50 (0.09)	6.96 (0.09)	6.70 (0.08)	14.288**	
PostImpression Modi	7.27 (0.10)	7.26 (0.10)	7.60 (0.09)	7.860*	
PostLikable Gandhi	5.62 (0.10)	5.46 (0.10)	5.26 (0.10)	6.322*	
PostLikableKejriwal	6.37 (0.09)	6.84 (0.09)	6.64 (0.08)	13.456**	
PostLikable Modi	7.24 (0.11)	7.20 (0.11)	7.47 (0.10)	3.874	
PostTrustGandhi	5.71 (0.11)	5.48 (0.10)	5.22 (0.10)	11.386*	
PostTrustKejriwal	6.38 (0.10)	6.89 (0.10)	6.68 (0.08)	15.840***	
PostTrustModi	7.18 (0.11)	7.20 (0.11)	7.49 (0.10)	4.758	

^{*}P < 0.05; **P < 0.01; and ***P < 0.001: Kruskal–Wallis tests were conducted between all three groups. Preferences were measured for each candidate separately on 10-point Likert scales.

Table S7. Treatment effect estimates for study 3 voting preferences

	Presearc	h vote	Postsearch vote			
Predictor variable	Coefficient	SE	Coefficient	SE		
Intercept	-0.716	0.090***	-0.552	0.088***		
Sex						
Male	0	Referent	0	Referent		
Female	0.168	0.100	0.030	0.099		
Age group, y						
18–24	0	Referent	0	Referent		
25–44	0.031	0.103	0.067	0.101		
45-64	-0.222	0.217	-0.057	0.208		
65+	-0.213	0.598	-0.366	0.598		
Location						
State	0	Referent	0	Referent		
Union Territory	-0.401	0.294	-0.321	0.279		

The presearch and postsearch columns report the estimate and variance for both of the treatment groups using classical regression poststratification. Data for sex, age group, and location came from the 2011 India Census.

^{***}P < 0.001.

Table S8. Minimum VMP levels needed to impact two-person races with various projected win margins and proportions of undecided Internet voters

Proportion of undecided		Projected win margin								
Internet voters in the population (<i>i</i> * <i>u</i>)	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
0.01	1.000	_	_	_	_	_	_	_	_	_
0.02	0.500	1.000	_	_	_	_	_	_	_	_
0.03	0.333	0.667	1.000	_	_	_	_	_	_	_
0.04	0.250	0.500	0.750	1.000	_	_	_	_	_	_
0.05	0.200	0.400	0.600	0.800	1.000	_	_	_	_	_
0.06	0.167	0.333	0.500	0.667	0.833	1.000	_	_	_	_
0.07	0.143	0.286	0.429	0.571	0.714	0.857	1.000	_	_	_
0.08	0.125	0.250	0.375	0.500	0.625	0.750	0.875	1.000	_	_
0.09	0.111	0.222	0.333	0.444	0.556	0.667	0.778	0.889	1.000	_
0.10	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000
0.11	0.091	0.182	0.273	0.364	0.455	0.545	0.636	0.727	0.818	0.909
0.12	0.083	0.167	0.250	0.333	0.417	0.500	0.583	0.667	0.750	0.833
0.13	0.077	0.154	0.231	0.308	0.385	0.462	0.538	0.615	0.692	0.769
0.14	0.071	0.143	0.214	0.286	0.357	0.429	0.500	0.571	0.643	0.714
0.15	0.067	0.133	0.200	0.267	0.333	0.400	0.467	0.533	0.600	0.667
0.16	0.063	0.125	0.188	0.250	0.313	0.375	0.438	0.500	0.563	0.625
0.17	0.059	0.118	0.176	0.235	0.294	0.353	0.412	0.471	0.529	0.588
0.18	0.056	0.111	0.167	0.222	0.278	0.333	0.389	0.444	0.500	0.556
0.19	0.053	0.105	0.158	0.211	0.263	0.316	0.368	0.421	0.474	0.526
0.20	0.050	0.100	0.150	0.200	0.250	0.300	0.350	0.400	0.450	0.500

Other Supporting Information Files

Dataset S1 (XLS)