STAT 231

November 2, 2016

Roadmap

- · Wrap up Interval estimation usuing Confidence Intervals.
- Relationship between dikelihood Intervals and C.I for large samples
- · Hypothesis Teshué

Care I: CI for y: Gaussian (4,0) r known. Come IV: Binomial problem. YnBin(n, 6 C.I for 0 Corre III: Yis... Yn ~ G (Y, 5) undep. p, o unknown. C. I for Y? PIVOTAL QUANTITY:

n.

PIVOTAL DISTRIBUTION

Student's 1 distribations.

with n-1 dy

COVERAGE INTERVAL

Y ± t* S / 1.

where t = from the t-table

ROW = N-1

Conflere.

CONFIDENCE INTERVAL: [4 + 4 8] 9 : sample mean 8:/1-2(4.-9)2 Y Yn ~ G (4,0) unknown. Objecture: To find the C.I for o

PIVOTAL DISTRIBUTION: 2 N-1

COVERAGE INTERVAL

$$\left[\frac{(n-1)s^2}{b}, \frac{(n-1)s^2}{A}\right]$$

where b, a are computed from the χ^2 table out [5.02]

Confidence Interval: $\left[\frac{(n-1)s^2}{b}, \frac{(n-1)s^2}{a}\right]$ C. I for σ : $\left[\sqrt{(n-1)s^2}, \frac{(n-1)s^2}{a}\right]$

Equal-failed Confidence Interval but that need not be the case.

Cone I	Other	distri	buhōn	
weth lan	ge samp	ble si	ies	
(a) Poiss	ion;	Y	Yn 1	-Poi(t)
r. Q:	マード			
PIVOTA	L DISTR	18011	0 N >	2
Covera	se:	F +	2"/	\/n.

(b) Exponential distribution

Yi, ... Yn ~ Emp (Y)

Objective: To, find the C. I for y.

(The following recoult to true for all n)

Result: If $Y \sim \text{Exp}(Y)$, then $\frac{2Y}{Y} \sim \text{Exp}(2) \longrightarrow 0$ $= \chi^{2}(2)$

From U),

27L

27L

27L

27L

PIVOTAL

PIVOTAL

DISTRIBUTION

Example: n = 2210Go to the χ^2_{20} table and find
the two end points a and b

$$P(a \le \chi^2_{ro} \le b) = 0.95$$

Coverage Interval is

$$\left(\frac{2\Sigma Yi'}{b}, \frac{2\Sigma Yi'}{a}\right)$$

Confidence Interval

$$\left(\frac{2\bar{y}n}{b}, \frac{2n\bar{y}}{a}\right)$$

There are two approaches to enterval eckminhori

- · Through Kikeluhard function.
- . Through Sampling distributions

To Question: How are these two ordervals related?

For large samples, we fellowing theorem.

Theorem: If L(0) is based on (Yis...Yny A: unknown parameter, y nis large Estimator correspondu

1 (8) = LIKELIHOOD RATIO TEST STATISTIC.

Theorem: a 100 p% likelihood interval. is an approximate 100 g% C. J. where $q:2P(2\leq \sqrt{-2\log p})$ application Likelihood Interval. 2 p (2 ≤ √-2logo.1) = 96.8% -1

10%

Outline of the proof

100 p% L. i

Corresponding Overage probability

$$P\left(-2\log \frac{L(\theta)}{L(\theta)} \leq -2\log p\right)$$

$$P\left(\Lambda(\theta) \leq -2 \log p\right)$$

$$P(2^{2} \le -2 \log P)$$
= $P(|2| \le \sqrt{-2 \log P})$

$$P(2 \le 1) - (P(2 \le -1))$$

$$= 1 - P(2 \le 1)$$

$$= 1 - P(2 \le 1)$$

$$= 0.01 = 0.$$

Example: Suppose we have a 95% C.I. What likelihood uterval would this Correspond to,? {θ: R(θ) >, e= 21/2 } where 2d = value from the Z-table For a 95% C. 5% the p would -1.95% = 14.65%

For large Samples, a 95% C. I is equivalent to a 15% L.i approximately

$$P(-2 \log \frac{L(4)}{L(8)} \leq 1.96^{2})$$
 $P(-2 \log \frac{L(4)}{L(8)} \approx 1.96^{2})$
 $P(-2 \log \frac{L(8)}{L(8)} \approx 1.96^{2})$

C.I 90% - 26% L.i