Compiled Nonlocal Games from Any TCF

K. Bacho¹ A. Kulpe² G. Malavolta³ S. Schmidt² M. Walter²

¹University of Edinburgh

²Ruhr-University Bochum

³Bocconi University

QUASAR Seminar, 2025-05-16

RUHR UNIVERSITÄT **BOCHLIM**

RUB CASA BOCCONI

Table of Contents

- 1 Motivation
- (Compiled) Nonlocal Games
- Blind Quantum Computation
- 4 New Compiler

Quantum Computer?

♠ How to test that this box is a quantum computer?

- A How to test that this box is a quantum computer?
 - Ask it to factor an RSA-2048 number

- A How to test that this box is a quantum computer?
 - Ask it to factor an RSA-2048 number
 - We would be impressed
 - Maybe factoring is in P?

- A How to test that this box is a quantum computer?
 - Ask it to factor an RSA-2048 number
 - Run some quantum protocol (i.e. QKD) between two boxes

- ♠ How to test that this box is a quantum computer?
 - Ask it to factor an RSA-2048 number
 - Run some quantum protocol (i.e. QKD) between two boxes
 - Practical
 - Need two quantum devices that communicate

- A How to test that this box is a quantum computer?
 - Ask it to factor an RSA-2048 number
 - Run some quantum protocol (i.e. QKD) between two boxes
 - ♠ Send some quantum state to the box and have it apply some operation

- A How to test that this box is a quantum computer?
 - Ask it to factor an RSA-2048 number
 - Run some quantum protocol (i.e. QKD) between two boxes
 - A Send some *quantum state* to the box and have it apply some operation
 - In principle easy
 - Verifier needs to be quantum

- A How to test that this box is a quantum computer?
 - Ask it to factor an RSA-2048 number
 - Run some quantum protocol (i.e. QKD) between two boxes
 - ♠ Send some quantum state to the box and have it apply some operation
- **?** Question: Can a *classical* verifier check that the box is quantum?

Motivation: Classically Verifying Quantum Computation

Motivation: Classically Verifying Quantum Computation

** Question: Can a *classical* verifier check that the output is correct, i.e. can we verify the quantum computation *classically*?

Motivation: Classically Verifying Quantum Computation

- ♠ Question: Can a classical verifier check that the output is correct, i.e. can we verify the quantum computation classically?
- Answer: All this and more is possible with *nonlocal games*!

Table of Contents

- (Compiled) Nonlocal Games

Nonlocal Games

- ♠ Players are not allowed to communicate during the game
- ightharpoonup They win if $V(a, b \mid x, y) = 1$

Nonlocal Games

- Players are not allowed to communicate during the game
- ightharpoonup They win if $V(a, b \mid x, y) = 1$

Alice and Bob want to maximize their winning probability

$$\omega(S,G) = \sum_{x,y} \pi(x,y) \sum_{a,b} V(a,b \mid x,y) p(a,b \mid x,y).$$

Strategies

There are different classes of strategies, the optimal winning probability for this class is called a *value*:

They can all be different!

Amazing fact: For certain games, the optimal quantum strategies are "unique" giving a starting point for many applications (self-testing, verifying quantum computation,...)

Nonlocality Approach

Advantages of Nonlocality Approach

- Can be used to verify arbitrary quantum computation [Reichardt-Unger, Vazirani, Grilo]
- No computational assumptions

Disadvantages of Nonlocality Approach

- Need two quantum devices
- A Have to ensure nonlocality (the players are not communicating)

Nonlocality Approach

Advantages of Nonlocality Approach

- Can be used to verify arbitrary quantum computation [Reichardt-Unger, Vazirani, Grilo]
- No computational assumptions

Disadvantages of Nonlocality Approach

- Need two quantum devices
- A Have to ensure nonlocality (the players are not communicating)

Instead: Can one verify quantum computation by interacting with a single device?

Yes, under computational assumptions [Mahadev]

Question

Can we eliminate space-like separation and play a nonlocal game with a single device?

Compiled Nonlocal Game: Naive attempt

Compiled Nonlocal Game: Naive attempt

Cannot work since it even allows forward signaling! Idea: Use cryptography!

Compiled Nonlocal Game: Clever attempt

Approach of [Kalai-Lombardi-Vaikuntanathan-Yang]

- Reneration Encrypt Alice's question
- ♠ Bob's question can be sent in the plain.
- When the discontinuous states are the states of the states scheme, to allow computing on encrypted data

Compiled Nonlocal Game

- The prover is computationally bounded, that is, quantum strategies consist of QPT algorithms
- We Using the properties of QHE scheme, the post-measurement states $\rho_x = \sum_a \rho_{xa}$ after Alice's answer are computationally indistinguishable, $\rho_{x_1} \approx \rho_{x_2}$ (no QPT algorithm can tell the difference)

Values for Compiled Nonlocal Games

Let \mathcal{G} be a nonlocal game.

Theorem 1 ([KLVY])

- 1. Classical soundness: Any classical strategy for the compiled game has winning probability at most $\omega_c(\mathcal{G}) + \text{negl}(\lambda)$
- 2. Quantum completeness: For every quantum strategy S of G there exists a quantum strategy for the compiled game with winning probability at least $\omega(S, \mathcal{G})$ – negl(λ).

Values for Compiled Nonlocal Games

Let \mathcal{G} be a nonlocal game.

Theorem 1 ([KLVY])

- 1. Classical soundness: Any classical strategy for the compiled game has winning probability at most $\omega_c(\mathcal{G}) + \text{negl}(\lambda)$
- 2. Quantum completeness: For every quantum strategy S of G there exists a quantum strategy for the compiled game with winning probability at least $\omega(S, \mathcal{G})$ – negl(λ).

Theorem 2 ([K-Malavolta-Paddock-Schmidt-Walter])

Quantum Soundness: For large enough security parameter λ , no QPT strategy can win the compiled nonlocal game with probability exceeding the quantum commuting operator value of the game by any constant:

$$\limsup_{\lambda \to \infty} \omega_{\lambda}(\mathcal{G}_{\text{comp}}, S) \leq \omega_{\text{qc}}(\mathcal{G}).$$

Additional properties:

Revaluation of Alice's circuit from some optimal strategy has to be supported

Additional properties:

- ➡ Evaluation of Alice's circuit from some optimal strategy has
 to be supported
- ♠ Correctness with auxiliary input

Additional properties:

- ♠ Evaluation of Alice's circuit from some optimal strategy has to be supported
- Correctness with auxiliary input

Security

$$\mathsf{Enc}(m) \approx_{\mathsf{c}} \mathsf{Enc}(m') \quad \forall m, m'$$

Additional properties:

- ♠ Evaluation of Alice's circuit from some optimal strategy has to be supported
- Correctness with auxiliary input

Security

 $\mathsf{Enc}(m) \approx_{\mathsf{C}} \mathsf{Enc}(m') \quad \forall m, m'$

Question: How to construct such QHE schemes?

Constructions for QHE scheme

Constructions based on

Mahadev, Brakerski]

♠ iO + dual-mode TCF [Gupte-Vaikuntanathan]

Constructions for QHE scheme

Constructions based on

M LWE (special TCF with additional properties) [Mahadev, Brakerski]

♠ iO + dual-mode TCF [Gupte-Vaikuntanathan]

Question: Do we need QHE?

Note that QHE is minimally interactive version of blind classical delegation of quantum

computation

Idea: Blindly delegate Alice's computation instead of using QHE

Table of Contents

- Blind Quantum Computation

Universal Blind Quantum Computation [Broadbent-Fitz-Kashefi]

Goal: Blind Delegation of $|+\rangle^{\otimes n} \mapsto U|+\rangle^{\otimes n}$

1. Client prepares specific single-qubit states and sends them to the server

Universal Blind Quantum Computation [Broadbent-Fitz-Kashefi]

Goal: Blind Delegation of $|+\rangle^{\otimes n} \mapsto U|+\rangle^{\otimes n}$

- 1. Client prepares specific single-qubit states and sends them to the server
- 2. Server entangles them \rightarrow brickwork state

Universal Blind Quantum Computation [Broadbent-Fitz-Kashefi]

Goal: Blind Delegation of $|+\rangle^{\otimes n} \mapsto U|+\rangle^{\otimes n}$

- 1. Client prepares specific single-qubit states and sends them to the server
- 2. Server entangles them \rightarrow brickwork state
- 3. Client adaptively chooses measurement basis and server measures and responds with the measurement result

- 1. Client prepares specific single-qubit states and sends them to the server
- 2. Server entangles them \rightarrow brickwork state
- 3. Client adaptively chooses measurement basis and server measures and responds with the measurement result

- 1. Client prepares specific single-qubit states and sends them to the server
- 2. Server entangles them \rightarrow brickwork state
- 3. Client adaptively chooses measurement basis and server measures and responds with the measurement result

- 1. Client prepares specific single-qubit states and sends them to the server
- 2. Server entangles them \rightarrow brickwork state
- 3. Client adaptively chooses measurement basis and server measures and responds with the measurement result

- 1. Client prepares specific single-qubit states and sends them to the server
- 2. Server entangles them \rightarrow brickwork state
- 3. Client adaptively chooses measurement basis and server measures and responds with the measurement result

- 1. Client prepares specific single-qubit states and sends them to the server
- 2. Server entangles them \rightarrow brickwork state
- 3. Client adaptively chooses measurement basis and server measures and responds with the measurement result

- 1. Client prepares specific single-qubit states and sends them to the server
- 2. Server entangles them \rightarrow brickwork state
- 3. Client adaptively chooses measurement basis and server measures and responds with the measurement result

Goal: Blind Delegation of $|+\rangle^{\otimes n} \mapsto U|+\rangle^{\otimes n}$

- 1. Client prepares specific single-qubit states and sends them to the server
- 2. Server entangles them \rightarrow brickwork state
- Client adaptively chooses measurement basis and server measures and responds with the measurement result

In the end, prover measures his one-time padded state $(X^{x_1}Z^{z_1}\otimes\cdots\otimes X^{x_n}Z^{z_n})U|+)^{\otimes n}$ Client knows measurement result of $U|+)^{\otimes n}$

Question: Can we use UBQC instead of QHE?

Half-Blind Quantum Computation

Allow arbitrary input state

$$U|\psi\rangle$$
 instead of $U|+\rangle^{\otimes n}$

 \Rightarrow Teleport $|\psi\rangle$ into brickwork state

Half-Blind Quantum Computation

Allow arbitrary input state

$$U|\psi\rangle$$
 instead of $U|+\rangle^{\otimes n}$

- \Rightarrow Teleport $|\psi\rangle$ into brickwork state
- Preserve entanglement between Alice and Bob

$$(U_A \otimes I) |\psi\rangle_{AB}$$

⇒ Pauli errors do not propagate to Bob's subsystem

Half-Blind Quantum Computation

Allow arbitrary input state

$$U|\psi\rangle$$
 instead of $U|+\rangle^{\otimes n}$

- \Rightarrow Teleport $|\psi\rangle$ into brickwork state
- n Preserve entanglement between Alice and Bob

$$(U_A \otimes I) |\psi\rangle_{AB}$$

- ⇒ Pauli errors do not propagate to Bob's subsystem
- Quantum Communication

$$|+_{ heta}
angle = rac{1}{\sqrt{2}}(|0
angle + e^{i heta}\,|1
angle), \quad heta \in \left\{0,rac{\pi}{4},\ldots,rac{7\pi}{4}
ight\}$$

⇒ Let the server blindly prepare these states using only classical communication

Blind Remote State Preparation

RSP is called *blind* if the server does not learn anything about $|+_{\theta}\rangle$ during the interaction

Blind Remote State Preparation

RSP is called *blind* if the server does not learn anything about $|+_{\theta}\rangle$ during the interaction

Constructions of blind RSP for $|+_{\theta}\rangle$ based on

★ LWE [Gheorghiu-Vidick]

Question: Can we weaken that assumption?

Now: Blind RSP from any TCF

Trapdoor Claw-Free Functions

<u>Trapdoor Claw-Free Function (TCF)</u> pair f_0, f_1

- $((f_0, f_1), \mathsf{td}) \leftarrow \mathsf{Gen}(1^{\lambda})$
- \Re f_0 , f_1 injective with same image
- \blacksquare Efficient inversion given trapdoor: $(x_0, x_1) \leftarrow \text{Invert}(\text{td}, y)$ s.th. $f_0(x_0) = f_1(x_1) = y$
- \P Hard to find claw (x_0, x_1) such that $f_0(x_0) = f_1(x_1)$

Trapdoor Claw-Free Functions

Trapdoor Claw-Free Function (TCF) pair f_0, f_1

- $((f_0, f_1), \mathsf{td}) \leftarrow \mathsf{Gen}(1^{\lambda})$
- \Re f_0 , f_1 injective with same image
- \blacksquare Efficient inversion given trapdoor: $(x_0, x_1) \leftarrow \text{Invert}(\text{td}, y)$ s.th. $f_0(x_0) = f_1(x_1) = v$
- \P Hard to find claw (x_0, x_1) such that $f_0(x_0) = f_1(x_1)$

Known TCFs:

- **LWE**
- cryptographic group actions [Alamati-Malavolta-Rahimi]
- **?**

Client Server

$$((f_0,f_1),\operatorname{\sf td})\leftarrow\operatorname{\sf Gen}(1^\lambda)$$
 (f_0,f_1)

Client Server

$$((f_0,f_1),\mathsf{td}) \leftarrow \mathsf{Gen}(1^\lambda) \underbrace{\qquad \qquad (f_0,f_1) \qquad \qquad }_{} \quad \mathsf{initial state:} \ |\psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle$$

$$\leftarrow \qquad \qquad \qquad \qquad \qquad \mathsf{Prepare} \ \alpha \, |0,x_0\rangle + \beta \, |1,x_1\rangle$$

$$\qquad \qquad \qquad \qquad \mathsf{where} \ f_0(x_0) = f_1(x_1) = y$$

Client Server

$$((f_0, f_1), \mathsf{td}) \leftarrow \mathsf{Gen}(1^{\lambda}) \qquad \qquad (f_0, f_1) \qquad \qquad \mathsf{initial state:} \ |\psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle$$

$$\leftarrow \qquad \qquad \qquad \mathsf{Prepare} \ \alpha \, |0, x_0\rangle + \beta \, |1, x_1\rangle$$

$$\mathsf{where} \ f_0(x_0) = f_1(x_1) = y$$

$$\mathsf{Compute} \ \alpha \, |0, x_0, -\underbrace{(x_0 \cdot r_0)}_{z_0}\rangle + \beta \, |1, x_1, \underbrace{x_1 \cdot r_1}_{z_1}\rangle$$

$$\qquad \qquad \qquad \mapsto \alpha \, |0, x_0\rangle + \omega_{z_0^{t_0 + z_1}}^{z_0 + z_1}\beta \, |1, x_1\rangle$$

 $r_0, r_1 \leftarrow \{0, 1\}^{p(\lambda)}$

$$((f_0,f_1),\operatorname{td})\leftarrow\operatorname{\mathsf{Gen}}(1^\lambda)$$
 (f_0,f_1) initial state: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

$$\rightarrow$$
 milital state. $|\psi\rangle = \alpha |0\rangle$

Prepare
$$\alpha |0,x_0\rangle + \beta |1,x_1\rangle$$
 where $f_0(x_0) = f_1(x_1) = y$

$$\begin{array}{c} \text{Where } r_0(x_0) = r_1(x_1) = y \\ \hline r_0, r_1 \\ \end{array}$$

$$\begin{array}{c} r_0, r_1 \\ \end{array}$$

$$\begin{array}{c} \text{Compute } \alpha \mid 0, x_0, -\underbrace{\left(x_0 \cdot r_0\right)}_{z_1}\right) + \beta \mid 1, x_1, \underbrace{x_1 \cdot r_1}_{z_2}\right)$$

$$\mapsto \alpha |0, x_0\rangle + \omega_n^{z_0 + z_1} \beta |1, x_1\rangle$$

$$(x_0, x_1) \leftarrow \mathsf{Invert}(\mathsf{td}, y) \longleftarrow \qquad \qquad d \qquad \qquad d \in \{0, 1\}^{p(\lambda)}, |\psi'\rangle = \alpha |0\rangle + \beta (-1)^{d \cdot (x_0 \oplus x_1)} \omega_n^{z_0 + z_1} |1\rangle$$

$$b := d \cdot (x_0 \oplus x_1)$$

$$\theta := z_0 + z_1$$

Blind RSP from TCFs: Construction II - Protocol

$$(b,\theta), \alpha |0\rangle + \beta(-1)^b \omega_n^\theta |1\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, n, \alpha |0\rangle + \beta |1\rangle)$$

$$(b_1,\theta_1), |\psi_1\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, 2, |+\rangle)$$

$$(b_2,\theta_2), |\psi_2\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, 4, |\psi_1\rangle)$$

$$(b_3,\theta_3), |\psi_3\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, 8, |\psi_2\rangle)$$

$$b := b_1 \oplus b_2 \oplus b_3$$

$$\theta := 4\theta_1 + 2\theta_2 + \theta_3 \mod 8$$

$$\mathbf{return} \ (b, \theta \cdot \frac{\pi}{4}), |\psi_3\rangle$$

$$(b, \theta), \alpha \ket{0} + \beta (-1)^b \omega_n^\theta \ket{1} \leftarrow \mathsf{Subprotocol}(1^\lambda, n, \alpha \ket{0} + \beta \ket{1})$$

$$\frac{1}{\sqrt{2}} (\ket{0} + \ket{1})$$

$$(b_1, \theta_1), |\psi_1\rangle \leftarrow \text{Subprotocol}(1^{\lambda}, 2, |+\rangle)$$

 $(b_2, \theta_2), |\psi_2\rangle \leftarrow \text{Subprotocol}(1^{\lambda}, 4, |\psi_1\rangle)$
 $(b_3, \theta_3), |\psi_3\rangle \leftarrow \text{Subprotocol}(1^{\lambda}, 8, |\psi_2\rangle)$

$$egin{aligned} b &:= b_1 \oplus b_2 \oplus b_3 \ & heta &:= (4 heta_1 + 2 heta_2 + heta_3 mod 8) \ & \mathbf{return} \ ig(b, heta \cdot rac{\pi}{4} ig), |\psi_3
angle \end{aligned}$$

$$(b,\theta), \alpha |0\rangle + \beta (-1)^b \omega_n^\theta |1\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, n, \alpha |0\rangle + \beta |1\rangle)$$

$$\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$(b_1,\theta_1), |\psi_1\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, 2, |+\rangle)$$

$$(b_2,\theta_2), |\psi_2\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, 4, |\psi_1\rangle)$$

$$(b_3,\theta_3), |\psi_3\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, 8, |\psi_2\rangle)$$

$$egin{aligned} b &:= b_1 \oplus b_2 \oplus b_3 \ & heta &:= (4 heta_1 + 2 heta_2 + heta_3 mod 8) \ & \mathbf{return} \ (b, heta \cdot rac{\pi}{4}), |\psi_3
angle \end{aligned}$$

$$(b,\theta), \alpha |0\rangle + \beta(-1)^b \omega_n^\theta |1\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, n, \alpha |0\rangle + \beta |1\rangle)$$

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$(b_1,\theta_1), |\psi_1\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, 2, |+\rangle)$$

$$(b_2,\theta_2), |\psi_2\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, 4, |\psi_1\rangle)$$

$$(b_3,\theta_3), |\psi_3\rangle \leftarrow \mathsf{Subprotocol}(1^\lambda, 8, |\psi_2\rangle)$$

$$\mapsto \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{b_1}\omega_2^{\theta_1} |1\rangle)$$

$$\mapsto \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{b_1\oplus b_2}\omega_2^{\theta_1}\omega_4^{\theta_2} |1\rangle)$$

$$egin{aligned} b &:= b_1 \oplus b_2 \oplus b_3 \ & heta &:= \left(4 heta_1 + 2 heta_2 + heta_3 mod 8
ight) \ & \mathbf{return} \ \left(b, heta \cdot rac{\pi}{4}
ight), |\psi_3
angle \end{aligned}$$

$$(b,\theta),\alpha\ket{0}+\beta(-1)^b\omega_n^\theta\ket{1}\leftarrow\mathsf{Subprotocol}\big(1^\lambda,n,\alpha\ket{0}+\beta\ket{1}\big)$$

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$(b_1, \theta_1), |\psi_1\rangle \leftarrow \text{Subprotocol}(1^{\lambda}, 2, |+\rangle)$$

$$(b_2, \theta_2), |\psi_2\rangle \leftarrow \text{Subprotocol}(1^{\lambda}, 4, |\psi_1\rangle)$$

$$(b_3, \theta_3), |\psi_3\rangle \leftarrow \text{Subprotocol}(1^{\lambda}, 8, |\psi_2\rangle)$$

$$\Rightarrow \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{b_1}\omega_2^{\theta_1}|1\rangle)$$

$$\Rightarrow \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{b_1\oplus b_2}\omega_2^{\theta_1}\omega_4^{\theta_2}|1\rangle)$$

$$\Rightarrow \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{b_1\oplus b_2}\omega_2^{\theta_1}\omega_4^{\theta_2}|1\rangle)$$

$$\Rightarrow \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{b_1\oplus b_2\oplus b_3}\omega_2^{\theta_1}\omega_4^{\theta_2}\omega_3^{\theta_3}|1\rangle)$$

$$\Rightarrow \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{b_1\oplus b_2\oplus b_3}\omega_2^{\theta_1}\omega_4^{\theta_2}\omega_3^{\theta_3}|1\rangle)$$

$$egin{aligned} eta &:= b_1 \oplus b_2 \oplus b_3 \ eta &:= (4 heta_1 + 2 heta_2 + heta_3 mod 8) \ \mathbf{return} \ (b, heta \cdot rac{\pi}{4}), |\psi_3
angle \end{aligned}$$

$$egin{aligned} &\mapsto rac{1}{\sqrt{2}}(\ket{0} + (-1)^{b_1 \oplus b_2 \oplus b_3} \omega_2^{\theta_1} \omega_4^{\theta_2} \omega_8^{\theta_3} \ket{1}) \ &= rac{1}{\sqrt{2}}(\ket{0} + (-1)^{b_1 \oplus b_2 \oplus b_3} \omega_8^{4 heta_1 + 2 heta_2 + heta_3} \ket{1}) \ &= rac{1}{\sqrt{2}}(\ket{0} + (-1)^b \omega_8^{ heta} \ket{1}) \end{aligned}$$

Blind RSP from TCFs: Blindness I

Theorem 3 (Quantum Goldreich-Levin)

If there exists a quantum algorithm that given a random r and an auxiliary quantum input ρ_{x} computes $r \cdot x$ with probability at least $1/2 + \varepsilon$, then there exists a quantum algorithm that takes ρ_x and extracts x with probability $4\varepsilon^2$.

$$z_0 \oplus z_1 = (x_0 \cdot r_0) \oplus (x_1 \cdot r_1) = (x_0||x_1) \cdot (r_0||r_1) = r \cdot x$$

Blind RSP from TCFs: Blindness I

Theorem 3 (Quantum Goldreich-Levin)

If there exists a quantum algorithm that given a random r and an auxiliary quantum input ρ_x computes $r \cdot x$ with probability at least $1/2 + \varepsilon$, then there exists a quantum algorithm that takes ρ_x and extracts x with probability $4\varepsilon^2$.

$$z_0 \oplus z_1 = (x_0 \cdot r_0) \oplus (x_1 \cdot r_1) = (x_0 || x_1) \cdot (r_0 || r_1) = r \cdot x$$

If (Gen, Invert) is a TCF, then $z_0 \oplus z_1 \approx_c z^*$ where $z^* \leftarrow \{0, 1\}$.

Blind RSP from TCFs: Blindness II

$$\theta = 4\theta_{1} + 2\theta_{2} + \theta_{3} \mod 8$$

$$= 4(z_{1,0} + z_{1,1}) + 2(z_{2,0} + z_{2,1}) + (z_{3,0} + z_{3,1}) \mod 8$$

$$= 4(z_{1,0} + z_{1,1}) + 2(z_{1,0} + z_{1,1} + \tilde{z}_{3}) + (z_{3,0} \oplus z_{3,1}) \mod 8$$

$$= 4(z_{1,0} + z_{1,1} + \tilde{z}_{2}) + 2(z_{1,0} \oplus z_{1,1} \oplus \tilde{z}_{3}) + (z_{3,0} \oplus z_{3,1}) \mod 8$$

$$= 4\underbrace{(z_{1,0} \oplus z_{1,1} \oplus \tilde{z}_{2})}_{\theta'_{1}} + 2\underbrace{(z_{2,0} \oplus z_{2,1} \oplus \tilde{z}_{3})}_{\theta'_{2}} + \underbrace{(z_{3,0} \oplus z_{3,1})}_{\theta'_{3}}$$

Blind RSP from TCFs: Blindness II

$$\theta = 4\theta_{1} + 2\theta_{2} + \theta_{3} \mod 8$$

$$= 4(z_{1,0} + z_{1,1}) + 2(z_{2,0} + z_{2,1}) + (z_{3,0} + z_{3,1}) \mod 8$$

$$= 4(z_{1,0} + z_{1,1}) + 2(z_{1,0} + z_{1,1} + \tilde{z}_{3}) + (z_{3,0} \oplus z_{3,1}) \mod 8$$

$$= 4(z_{1,0} + z_{1,1} + \tilde{z}_{2}) + 2(z_{1,0} \oplus z_{1,1} \oplus \tilde{z}_{3}) + (z_{3,0} \oplus z_{3,1}) \mod 8$$

$$= 4\underbrace{(z_{1,0} \oplus z_{1,1} \oplus \tilde{z}_{2})}_{\theta'_{1}} + 2\underbrace{(z_{2,0} \oplus z_{2,1} \oplus \tilde{z}_{3})}_{\theta'_{2}} + \underbrace{(z_{3,0} \oplus z_{3,1})}_{\theta'_{3}}$$

If (Gen, Invert) is a TCF, then

$$4\theta_1' + 2\theta_2' + \theta_3' \approx_c 4\theta_1^* + 2\theta_2' + \theta_3' \approx_c \cdots \approx_c 4\theta_1^* + 2\theta_2^* + \theta_3^* = \theta^*$$

where $\theta_i^* \leftarrow \{0,1\}, \theta^* \leftarrow \mathbb{Z}_8$. Thus $\theta \cdot \frac{\pi}{4}$ indistinguishable from $\alpha \leftarrow \{0,\ldots,\frac{7\pi}{4}\}$.

Table of Contents

- Motivation
- (Compiled) Nonlocal Games
- Blind Quantum Computation
- 4 New Compiler

New Compiler

Half-Blind Quantum Computing + Blind Remote State Preparation = CHBQC

Comparison

	KLVY	this work
Assumption	QHE	any TCF
Round complexity	constant	linear in Alice's circuit
Quantum Completeness	\checkmark	\checkmark
Quantum Soundness	\checkmark	\checkmark

Application: CVQC from any TCF

- CVQC from LWE using Hamiltonian-based approach [Mahadev]
- A CVQC from QHE using compiled CHSH nonlocal game [Natarajan-Zhang]

Application: CVQC from any TCF

- CVQC from LWE using Hamiltonian-based approach [Mahadev]
- A CVQC from QHE using compiled CHSH nonlocal game [Natarajan-Zhang]

Adapting the proofs of [Natarajan-Zhang] to new compiler

⇒ CVQC from any TCF

Open Questions

- ♠ Compiler from any TCF with constant round complexity?
- Other applications for blind RSP protocol from any TCF?

Thank you!

ePrint:2024/1829, accepted at CRYPTO'25

