Licenciatura em Engenharia Informática e de Computadores Computação Gráfica

Transformações Geométricas

Composição, Mudança de Coordenadas e Grafos de Cena

Questão 2, exame de 20/07/11

- [3.0v] Considere os polígonos "A" e "B" e o ponto "P" representados na figura abaixo.
- a) calcule a matriz final que representa a transformação a aplicar ao polígono "A" para que este se transforme no polígono "B".
- **b)** Calcule as coordenadas do ponto "Q" resultante da aplicação da transformação referida anteriormente a "P"

Questão 2, exame de 20/07/11

[2.0v] (...) calcular a matriz de transformação (...)

Questão 2, exame de 20/07/11

[I.0v] (...) calcular as coordenadas de "Q" (...)

Transformações Geométricas

Transformações em 3D

Transformações Elementares 3D

Translação

$$\mathbf{M}_{T} = \mathbf{T}(dx, dy, dz) = \begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Transformações Elementares 3D

Escala

$$M_{S} = S(Sx, Sy, Sz) = \begin{bmatrix} Sx & 0 & 0 & 0 \\ 0 & Sy & 0 & 0 \\ 0 & 0 & Sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} Sx & 0 & 0 & 0 \\ 0 & Sy & 0 & 0 \\ 0 & 0 & Sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Transformações Elementares 3D

Rotação

 $R_z(\psi)$: em torno do eixo dos ZZ

$$\begin{bmatrix} \cos \psi & -\sin \psi & 0 & 0 \\ \sin \psi & \cos \psi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $R_x(\theta)$: em torno do eixo dos XX

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $R_y(\phi)$: em torno do eixo dos YY

$$\begin{bmatrix} \cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}$$

Instâncias de Objectos

Cada instância de um objecto na cena conjunto de Transformações Geométricas

Transformações Geométricas

Matriz de Transformação Composta

Matriz de Transformação Composta

Qualquer sequência de Translações, Rotações e Escalas

Pode ser representada numa única matriz:

$$\mathbf{M} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Composição de Transformações

Coordenadas homogéneas -

Composição de Transformações \Leftrightarrow Produto de Matrizes

$$P \xrightarrow{T_1} P' \xrightarrow{T_2} P''$$
 $P' = T_1 \cdot P \quad e \quad P'' = T_2 \cdot P'$
$$P'' = T_2 \cdot (T_1 \cdot P)$$

$$P'' = (T_2 \circ T_1) \cdot P = (T_2 \cdot T_1) \cdot P$$

Transformações associam-se

- Da direita para a esquerda
- Pela ordem inversa de aplicação

Mudança do Sistema de Coordenadas

Mudança do Sistema de Coordenadas

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_e \\ 0 & 1 & y_e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x & v_x & 0 \\ u_y & v_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix} = \begin{bmatrix} u_x & v_x & x_e \\ u_y & v_y & y_e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix}$$

$$p_{xy} = \begin{bmatrix} u & v & e \\ 0 & 0 & 1 \end{bmatrix} p_{uv}$$

Composição de Transformações em 3D

Exemplo Prático

Composição de Transformações em 3D Exemplo Prático

Mudança de Sistema de Coordenadas

Transformações Geométricas

Mudança de Sistema de Coordenadas

Grafo de Cena

Motivação:

Modelo de um carro

Chassis e quatro rodas

Movimento do carro e rotação das rodas relacionados

Grafo de Cena

Grafo Acíclico Orientado

Cada nó (excepto raiz) pode ter um ou mais parents

Pode ter inúmeros filhos

Folha não tem filhos (usualmente é uma primitiva)

Exemplo: Grafo do Carro

Grafo de Cena

- Cenas 3D armazenadas em DAG
 - Grafo de Cena
 - Java3D
 - VRML
 - OpenSceneGraph
 - OpenSG

- Grafo de Cena contém
 - Objectos (primitivas gráficas)
 - Cubos, esferas, cones, superfícies,....
 - Atributos e Transformações

Transformações em Grafos de Cena

Exemplo de um Grafo de Cena raíz t0 t5 p3 p4 t1 g3 g2 transformações primitivas

- Neste grafo de cena
 - A transformação t0 afecta todos os objectos
 - Enquanto t2 só afecta p2 e uma instância do grupo g3
 - t2 não afecta p1 e a outra instância de g3

Múltipla Instanciação

- Múltiplas instâncias de uma sub-árvore
 - Podem utilizar-se várias
 - É necessário definir antes de instanciar
 - Mais simples de concretizar

Transformações Hierárquicas (1/2)

Matriz de Transformação Corrente (CTM) Matriz a aplicar a todos os vértices

Cálculo da CTM

Concatenação de todas as transformações em nós superiores no caminho

Transformações Hierárquicas (2/2)

Exemplo

- No grafo
 - para g_0 , temos MTC = m_0
 - para p_1 , MTC = $m_0 * m_1$
 - para p_3 , MTC = $m_0 * m_2$
 - para p₄, MTC = ?
- Em que
 - m_i matriz de transformação
 - p_i primitiva associada ao nó i
 - g_i sub-árvore com raíz em i

Grafo para um Robot

Realizar o Robot

Primitivas Geoméricas Simples (e.g. boxes)

Matrizes descrevem posição e orientação do nó relativamente ao seu *pai*

 $\mathbf{M}_{\mathrm{lla}}$ posiciona left lower arm relativamente ao left upper arm

Grafo com Matrizes

Transformações Geométricas

Construção de uma cena em Three.js

- Primitivas (*P1*, *P2* e *P3*)
 - Cubo Unitário
- Transformações
 - Translação e Escala

- P3 = Cubo Unitário
- M4 = Escala

- P3 = Cubo Unitário
- M4 = Escala

Um exemplo

P2 = Cubo Unitário

M3 = Escala seguida de Translação

Um exemplo

P2 = Cubo Unitário

M3 = Escala seguida de Translação

Um exemplo

G2 = composição de duas primitivas

M2 = Translação

Um exemplo

G2 = composição de duas primitivas

M2 = Translação

Um exemplo

- PI = Cubo Unitário
- MI = Escala

Um exemplo

PI = Cubo Unitário

MI = Escala

Um exemplo

G0 = Objecto Composto

M0 = Translação

Um exemplo

G0 = Objecto Composto

M0 = Translação


```
var g0, g2, p1, p2, p3;
p3 = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.2, 0.2), mat);
```



```
Um exemplo
```

```
var g0, g2, p1, p2, p3;
p3 = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.2, 0.2), mat);
p2 = new THREE.Mesh(new THREE.BoxGeometry(0.1, 0.1, 0.1), mat);
```



```
var g0, g2, p1, p2, p3;

p3 = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.2, 0.2), mat);

p2 = new THREE.Mesh(new THREE.BoxGeometry(0.1, 0.1, 0.1), mat);
p2.position.set(0.5, 0.1, 0.0);
```



```
var g0, g2, p1, p2, p3;

p3 = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.2, 0.2), mat);

p2 = new THREE.Mesh(new THREE.BoxGeometry(0.1, 0.1, 0.1), mat);
p2.position.set(0.5, 0.1, 0.0);

g2 = new THREE.Object3D();
g2.add(p3);
g2.add(p2);
g2.position.set(1.2, 0.0, 0.0);
```


Um exemplo

```
var g0, g2, p1, p2, p3;

p3 = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.2, 0.2), mat);

p2 = new THREE.Mesh(new THREE.BoxGeometry(0.1, 0.1, 0.1), mat);

p2.position.set(0.5, 0.1, 0.0);

g2 = new THREE.Object3D();
g2.add(p3);
g2.add(p2);
g2.position.set(1.2, 0.0, 0.0);

p1 = new THREE.Mesh(new THREE.BoxGeometry(1.5, 1.5, 1.5), mat);
```


Um exemplo

```
var g0, g2, p1, p2, p3;
p3 = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.2, 0.2), mat);
p2 = new THREE.Mesh(new THREE.BoxGeometry(0.1, 0.1, 0.1), mat);
p2.position.set(0.5, 0.1, 0.0);
g2 = new THREE.Object3D();
g2.add(p3);
g2.add(p2);
g2.position.set(1.2, 0.0, 0.0);
p1 = new THREE.Mesh(new THREE.BoxGeometry(1.5, 1.5, 1.5), mat);
g0 = new THREE.Object3D();
g0.add(p1);
g0.add(g2);
```



```
var g0, g2, p1, p2, p3;
p3 = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.2, 0.2), mat);
p2 = new THREE.Mesh(new THREE.BoxGeometry(0.1, 0.1, 0.1), mat);
p2.position.set(0.5, 0.1, 0.0);
g2 = new THREE.Object3D();
g2.add(p3);
g2.add(p2);
g2.position.set(1.2, 0.0, 0.0);
p1 = new THREE.Mesh(new THREE.BoxGeometry(1.5, 1.5, 1.5), mat);
g0 = new THREE.Object3D();
g0.add(p1);
g0.add(g2);
g0.position.set(0.0, 0.0, 2.0);
scene.add(g0);
```



```
var g0, g2, p1, p2, p3;
p3 = new THREE.Mesh(new THREE.BoxGeometry(1.2, 0.2, 0.2), mat);
p2 = new THREE.Mesh(new THREE.BoxGeometry(0.1, 0.1, 0.1), mat);
p2.position.set(0.5, 0.1, 0.0);
g2 = new THREE.Object3D();
g2.add(p3);
g2.add(p2);
g2.position.set(1.2, 0.0, 0.0);
p1 = new THREE.Mesh(new THREE.BoxGeometry(1.5, 1.5, 1.5), mat);
g0 = new THREE.Object3D();
g0.add(p1);
g0.add(g2);
g0.position.set(0.0, 0.0, 2.0);
scene.add(g0);
```


Hierarquia: Modular Swinging Robot vs Hover Robot

