Building a Personalised Online Course Recommender System with Machine Learning Technologies

Dan Stollenwerk 24/1/24

Outline

- Introduction
- Exploratory Data Analysis 🕎
- Content-Based Recommender System > Unsupervised Learning
- Collaborative Filtering-Based Recommender System > Supervised Learning
- Observations
- Appendix

Introduction

- An online course recommender system enhances personalised learning experiences by suggesting relevant courses based on user preferences as reflected by past activity
 - Promotes continuous skill development
 - Improves **user reach** of educational resources
- Problem: test machine learning technologies using online course data to build optimised recommender system
- **Hypothesis**: implementation of recommender system will improve **completion rate** of online courses

Exploratory Data Analysis

Course Genre Distribution

- BackendDev most common genre with
 78 relevant courses
- Chatbot and Blockchain least common genres with only 4 relevant courses

Course Enrolments Distribution

- Largest group of users (8,320 / 33,901: 24.5%) enrolled in only 1 course
- Next-largest group of users (6,179 / 33,901: 18.2%) enrolled in 5 courses
- Data observes exponential decay
- Some enrolment numbers held by
 users
 - These numbers appear at regular intervals of 4 bars - why?

Top 20 Courses

- Python for Data Science #1 with 14,936 enrolments
- 4 of top 10 courses Python-related
- 10 of top 20 courses marketed to beginner learners (course title containing terms introduction, 101, fundamentals or essentials)

	course	enrolments
0	python for data science	14936
1	introduction to data science	14477
2	big data 101	13291
3	hadoop 101	10599
4	data analysis with python	8303
5	data science methodology	7719
6	machine learning with python	7644
7	spark fundamentals i	7551
8	data science hands on with open source tools	7199
9	blockchain essentials	6719
10	data visualization with python	6709
11	deep learning 101	6323
12	build your own chatbot	5512
13	r for data science	5237
14	statistics 101	5015
15	introduction to cloud	4983
16	docker essentials a developer introduction	4480
17	sql and relational databases 101	3697
18	mapreduce and yarn	3670
19	data privacy fundamentals	3624

Word Cloud of Course Titles

- Terms appearing most frequently in online course descriptions dataset
 - Top terms include data (science/analysis), python and machine learning

Content-Based Recommender System > Unsupervised Learning

Content-Based Recommender System Flowchart (user profile, course genres)

User Profile-Based Recommender System Evaluation Results

_		_df[score_d 6 courses w		
	user	course_id	score	
69	85625	RP0105EN	54.0	
76	85625	DE0205EN	42.0	
81	85625	TMP0105EN	54.0	
86	85625	BD0212EN	54.0	
88	85625	SC0103EN	54.0	
51488	1898770	excourse04	45.0	
51490	1898770	excourse06	45.0	
51521	1898770	excourse65	45.0	
51528	1898770	excourse72	54.0	
51529	1898770	excourse73	54.0	
1776 ro	ws × 3 co	lumns		

```
tot_recs = recs_df.groupby(['USER']).COURSE_ID.value_counts().sum()
num_users = len(recs_df.USER.unique())
avg_recs = tot_recs / num_users
np.round(avg_recs, 2) # average of 14 course recommendations per user
13.66
recs_df = pd.DataFrame(recs_df['COURSE_ID'].value_counts().reset_index())
recs_df.columns = ['course', 'num_recs']
recs_df.head(10) # excourse73 & excourse72 are most commonly recommended courses
        course num_recs
     excourse73
     excourse72
    TMP0105EN
                      92
      SC0103EN
      RP0105EN
     excourse31
                      66
6 GPXX0M6UEN
   GPXX097UEN
                      60
     excourse03
                      60
     excourse05
                      60
```

Content-Based Recommender System Flowchart (course similarity)

Course Similarity-Based Recommender System Evaluation Results

```
user_recs = [len(res_df[res_df.USER==user_id].COURSE_ID.tolist()) for user_id in test_user_ids]
np.round(np.mean(user recs), 2) # average of 4 course recommendations per user
4.14
recs df = pd.DataFrame(res df['COURSE ID'].value counts().reset index())
recs_df.columns = ['course', 'num_recs']
recs_df.head(10) # excourse68 is most commonly recommended course
      course num_recs
0 excourse68
                  226
1 excourse32
                   211
2 excourse67
                   186
3 DS0110EN
                   170
4 excourse23
                   169
5 excourse36
6 excourse63
                   128
     TMP107
                   127
8 excourse65
                   121
9 excourse09
```

Clustering-Based Recommender System Flowchart

Clustering-Based Recommender System Evaluation Results

```
users_list = []
courses_list = []

for user in np.sort(test_users_df.user.unique()).tolist():
    user_cluster = user_item_cluster_df[user_item_cluster_df.user==user].cluster.mode().iloc[0]
    user_courses = courses_cluster[courses_cluster.cluster==user_cluster]

    top_courses = user_courses[user_courses.enrollments>60].item
    enrolled_courses = test_users_df[test_users_df.user==user].item.tolist()
    rec_courses = list(set(top_courses)-set(enrolled_courses))

    users_list.append(user)
    courses_list.append(rec_courses)
```

```
user_recs = [len(list(recs_df.iloc[i, :])[0]) for i in range(1000)]
np.round(np.mean(user_recs), 2) # average of 5 course recommendations per user
5.2
recs_df = pd.DataFrame(recs_df['rec_courses'].explode().value_counts().reset_index())
recs_df.columns = ['course', 'num_recs']
recs_df.head(10) # ML0115EN is most commonly recommended course
     course num_recs
0 ML0115EN
                  469
1 DS0105EN
                  449
2 BD0211EN
                  433
3 DS0103EN
4 DS0101EN
                  412
5 PY0101EN
                  380
6 BD0111EN
                  344
7 BC0101EN
                  326
8 BD0101EN
                  278
9 BD0115EN
                  246
```

Collaborative Filtering-Based Recommender System > Supervised Learning

KNN-Based Recommender System Flowchart

NMF-Based Recommender System Flowchart

Neural Network Embedding-Based Recommender System Flowchart

REGRESSION CLASSIFICATION

Performance of Collaborative Filtering Models Compared

- Artificial neural network (ANN)
 model performed best with RMSE
 score of 0.1189
- Scores of models tested all lie within 0.1 range
 - Overall performance more evenly distributed than expected
- Linear regression model fit to neural network embedding
 - Support vector machine classification model also performed well with 98.4% accuracy, 99.7% recall, 98.7% precision and F1 score of 0.9926

Observations

- User profile-based recommender system most liberal with ~14 course recommendations per user
 - Course similarity- and clustering-based systems discriminate relevant courses from rest more strictly, making ~4 and ~5 recommendations respectively
- Recommended courses vary greatly from model to model
 - No course recommended by all 3 content-based systems
 - User profile- and course similarity-based systems generate **similar** recommendations, clustering-based system noticeably **different**
 - Former systems push course category *excourse* (5 and 8 recommendations in top 10 respectively), latter does not (0 in top 10)
 - Checks out former are similar methodologically (supervised learning; rows of database are users, columns are courses), latter is different (unsupervised learning)
- Diminishing returns on RecommenderNet ANN model train and validation loss after 2nd epoch (see FIGURE →)
 - ~600,000-parameter model potentially overfit; can be regularised and optimised

Appendix

• All Machine Learning Capstone labs accessible here

github.com/danswk/ibm/tree/main/ml-capstone