Лекции по Теории вероятностей 4 семестр

Ilya Yaroshevskiy

17 апреля 2021 г.

Оглавление

1				:		
	1.1	Статистическая вероятность				
		1.1.1	Пространство элементарных исходов. Случайные со-			
			бытия	;		
		1.1.2	Операции над событиями	4		
		1.1.3	Классическое определение вероятности	4		
		1.1.4	Геометрическое понятие вероятности	(
2						
_	2.1	Аксиоматическое опредление верояности				
		2.1.1	Свойства операция сложения, умножения	1		
		2.1.2	Независимые события	1		
3				1		
J	3.1	Verton	ная вероятность	1.		
	5.1	3.1.1	Формула умножения вероятности	1		
		3.1.1 $3.1.2$		$\frac{1}{1}$		
		7	Полная группа событий			
		3.1.3	Формула полной вероятности	1.		
4				18		
	4.1	Схема	Бернулли	18		
		4.1.1	Наиболее вероятное число успехов	19		
		4.1.2	Предельные теоремы в схеме Бернулли	2		
	4.2	Стати	стическое определение вероятности	2		
		4.2.1	Вероятность отклонения относительной частоты	2		
		4.2.2	Закон больших чисел Бернулли	2		
5				2		
	5.1	Схемь	и испытаний и соответствующие распределения	2		
	J. 1	5.1.1	Схема до первого успешного испытания	2		
		5.1.2	Испытание с несколькими исходами	2		
		5.1.2	Урновая схема	2		
		5.1.4	Схемы Пуассона. Теорема Пуассона для схемы Бернулли			

ОГЛАВЛЕНИЕ 2

6						
	6.1	Случа	йные величины			
		6.1.1	Смысл измеримости			
		6.1.2	Типы распределения			
_						
7	7.1	Столи	артное лискретное распределение			
	1.1	7.1.1	артное дискретное распределение			
		7.1.1	Биноминальное распределение			
		7.1.2	Геометрическое распределение			
		7.1.3	Распределение Пуассона			
		7.1.4				
	7.2					
	1.2		1 1			
		7.2.1 $7.2.2$				
		(.2.2	Числовые характеричтики			
8			4			
	8.1	Станд	артное абсолюютно непрерывное распределение 4			
		8.1.1	Равномерное распределение			
		8.1.2	Экспоненциальное распределение			
		8.1.3	Нормальное распределение			
		8.1.4	Стандартное нормальное рапределение			
		8.1.5	Связь между нормальным и стандартным нормаль-			
			ным распределениями и ее следствия			
		8.1.6	Коэффиценты асимметрии и эксцесса			
		8.1.7	Гамма функция и гамма распределение			
9	10.6	прода	4			
9	9.1	апреля Сингулярное распределение				
	9.2		лярное распределение			
	9.3		разование случайных величин			
	0.0	9.3.1	Стандартизация случайной величины			
		9.3.2	Линейное преобразование			
		9.3.3	Квантильное преобразование			
		9.0.0	Пъвничиное преобразование			
10	17 a	преля	: .			
	10.1	Сингу	лярное распределение			
			й взгляд на математическое ожидание			
	10.3	Преоб	разование случайных величин			
			Стандартизация случайной величины			
			Линейное преобразование			
			Квантильное преобразование			

Лекция 1

1.1 Статистическая вероятность

```
n — ч<br/>сло экспериментов n_A — число выполнения события <br/> A Отношение \frac{n_A}{n} — частота события <br/> A P(A)\approx \frac{n_A}{n},\ n\to +\infty
```

1.1.1 Пространство элементарных исходов. Случайные события

Определение. Пространством элементарных исходов называется множество содержащее все возможные результаты данного эксперимента из которых при испытании происходит ровно один. Элементы этого множества называются элементарными исходами

Обозначение.

- Пространство элементарных исходов Ω
- Элементарный исход $w \in \Omega$

Определение. Случайными событиями называются подмножества $A \subset \Omega$. Событие A наступило если в ходе эксперимента произошел один из элементарных исходов $w \in A$. w — благоприятный к A

```
\Piример. Бросаем один раз монету. \Omega = \{H, T\}. H - \mathrm{Head}(\mathrm{open}), \, T - \mathrm{Tail}(\mathrm{pemka})
```

Пример. Бросаем кубик. = $\{1, 2, 3, 4, 5, 6\}$ Выпало четное число очков. $A = \{2, 4, 6\}$

Пример. Монета бросается дважды

- Учитываем порядок. $\Omega = \{HH, HT, TH, TT\}$
- Не учитываем порядок. $\Omega = \{HH, HT, TT\}$

Пример. Бросается дважды кубик. Учитывем порядок. Число очков кратно 3. $A = \{(1,2),(2,1),(1,5),(5,1),\dots\}$

Пример. Монета бросается до выпадения герба. $\Omega = \{(H), (T, H), (T, T, H), \dots\}$ — счетное число исходов

 $\varPi puмер.$ Монета бросается на плоскость. $\Omega = \{(x,y) \big| x,y \in \mathbb{R}\}$ — нечетное число исходов

1.1.2 Операции над событиями

Определение. Ω — универсальное событие, достоверное, наступает всегда, т.к. содержит все элементарные исходы

 \emptyset — невозможное событие, никогда не выполняется, т.к. не одержит элементарных исходов

Определение. Суммой событий A+B называется событие $A\cup B$ — событие состоящее в том что произошло событие A или событие B, т.е. хотя бы одно из них

Определение. Произведением $A \cdot B$ называется событие $A \cap B$ — событие состоящее в том что произошло событие A и событие B, т.е. оба из них

Определение. Противоположным к A называется событие \overline{A} — состоящее в том событие A не произошло

Определение. Дополнение

Определение. События A и B называются **несовместными** если $A \cdot B = \emptyset$, т.е. в ходе эксперимента может наступить только одно из них

Определение. Событие A влечет событие B, если $A \subset B$

Определение. $P(A) \le 1$ — вероятность наступления события A

1.1.3 Классическое определение вероятности

Пусть Ω содержит конечное число исходов, при чем их можно считать равновозможным. Тогда применимо классическое определение вероятности

Определение. Вероятность события A $P(A) = \frac{|A|}{|\Omega|} = \frac{m}{n}$, где n — число всех возможных элеметарных исходов, m — число элементарных исходов благоприятных событию A. В частности, если $|\Omega| = n$, а A — элементарный исход, то $P(A) = \frac{1}{n}$

Примечание. Свойства:

- 1. $0 \le P(A) \le 1$
- 4. Если события A и B несовместны то вероятность P(A+B) = P(A) + P(B)

Доказательство.
$$]|A|=m_1, |B|=m_2, |A\cup B|=m_1+m_2$$
 $P(A+B)=\frac{m_1+m_2}{n}=\frac{m_1}{n}+\frac{m_2}{n}=P(A)+P(B)$

 $\Pi puмер$. Найти вероятность того, что при бросании кости выпадет четное число очков

$$\Omega = \{1, 2, 3, 4, 5, 6\}, A = \{2, 4, 5\}, P(A) = \frac{3}{6} = \frac{1}{2}$$

Пример. В ящике 3 белых и два черных шара. Вынули 3 шара, найти вероятность того что из них 2 белых и 1 черных

$$n = C_5^3 = 10$$

$$m = C_3^2 \cdot C_2^1 = 6$$

$$P(A) = \frac{6}{10}$$

1.1.4 Геометрическое понятие вероятности

Пусть $\Omega \subset \mathbb{R}^n$ — замкнутая ограниченая область

 $\mu(\Omega)$ — конечная мера множества Ω (например мера Римана, т.е длина, площадь, объем) В эту область hayrad бросаем точку. Термин hayrad означает, что вероятность попадания в область A зависит только от меры этой области, но не зависит от ее положения. Вероятности попадания в любые точки равновозможны. Тогда применимо геометрическое определение вероятности.

Определение. $P(A)=\frac{\mu(A)}{\mu(\Omega)},$ где $\mu(\Omega)$ — мера $\Omega,$ $\mu(A)$ — мера благоприятной области A

 Π римечание. Заметим что по этому определению, мера точки равна 0 и веротяность попадания в конкретную точку равна 0, хотя это событие не является невозможным.

Пример. Игра. Монета диаметром 6 сантиметров бросается на пол, вымощенный квадратной плиткой со стороной 20 сантиметров. Найти вероятность того что монета целиком окажется на одной плитке

$$S(\Omega) = 20^2 = 400$$

$$S(A) = 14^2 = 196$$

$$P(A) = \frac{196}{400} = 0.49$$

Задача 1. Пол выложен ламинатом. На пол бросается игла длиной равной ширине доски. Найти вероятность того что она пересечет стык

7

 $Peшение.\ 2l$ — длина иглы, x — расстояние от центра иглы до ближайшего края, φ — угол к ближайшему краю

Игла пересечет край если $x \leq |AB|,\, |AB| = l\sin\varphi$

Можно считать что положение от центра и угол, независимы друг от друга. $x \in [0,l].\varphi \in [0,\pi]$

$$A: x \le l \sin \varphi$$

$$S(\Omega) = \pi \cdot l$$

$$S(A) = \int_0^{\pi} l \sin \varphi d\varphi = 2l$$

$$P(A) = \frac{S(A)}{S(\Omega)} = \frac{2l}{\pi l} = \frac{2}{\pi}$$

Лекция 2

2.1 Аксиоматическое опредление верояности

Колмагоров

 \bullet Ω — пространство элементарных исходов

Систему $\mathcal{F} \subset \Omega$ называем σ -алгеброй событий если:

- 1. $\Omega \in \mathcal{F}$
- 2. Если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$
- 3. Если $A_1, A_2, \dots \in \mathcal{F}$, то $\bigcup_{i=1}^{+\infty} A_i \in \mathcal{F}$

Примечание. Свойства:

- 1. $\emptyset \in \mathcal{F}$, t.k. $\overline{\Omega} = \emptyset \in \mathcal{F}$
- 2. Если $A_1, A_2, \dots \in \mathcal{F}$, то $\bigcap_{i=1}^{+\infty} A_i \in \mathcal{F}$

Доказательство.
$$A_1,A_2,\cdots\in\mathcal{F}\Rightarrow\overline{A_1},\overline{A_2},\cdots\in\mathcal{F}\Rightarrow\bigcup_{i=1}^{+\infty}\overline{A_i}\in\mathcal{F}\Rightarrow\overline{\bigcup_{i=1}^{+\infty}\overline{A_i}}=\bigcap_{i=1}^{+\infty}A_i\in\mathcal{F}$$

- 3. (a) $F = \{\Omega, \emptyset\}$
 - (b) $F = \{\Omega, \emptyset, A, \overline{A}\}\$

Определение. $]\Omega$ — пространство элементарных исходовб \mathcal{F} — его σ -алгебра. **Вероятностью** на (Ω, \mathcal{F}) обозначается функция $P(A): \mathcal{F} \to \mathbb{R}$ со свойствами:

1. $P(A) \ge 0$ — свойство **неотрицательности**

2. Если события A_1,A_2,\ldots — попарно несовместны $(\forall i,j:\ A_i\cap A_j=\emptyset),$ то:

$$P(\bigsqcup_{i=1}^{+\infty} A_i) = \sum_{i=1}^{+\infty} P(A_i)$$

- свойство **счетной аддитивности**
- 3. $P(\Omega) = 1 \text{свойство }$ **нормированности**

Определение. Тройка (Ω, \mathcal{F}, P) — вероятностное пространство

Примечание. Свойства:

1. $P(\emptyset) = 0$

Доказательство. \emptyset и Ω — несовместные события

$$P(\underbrace{\emptyset + \Omega}_{\Omega}) = P(\emptyset) + P(\Omega) = 1$$

$$P(\emptyset) + 1 = 1$$

$$P(\emptyset) = 0$$

2. Формула обратной вероятноти

$$P(A) = 1 - P(\overline{A})$$

Доказательство. A и \overline{A} — несовместные, $A \cup \overline{A} = \Omega$

$$P(A + \overline{A}) = P(A) + P(\overline{A}) = 1 \Rightarrow P(A) = 1 - P(\overline{A})$$

3. $0 \le P(A) \le 1$

Доказательство.

(a)
$$P(A) \ge 0$$

(b)
$$P(A) = 1 - P(\overline{A}) \le 1$$

Аксиома 1. Пусть имеется убывающая цепочка событий $A_1\supset A_2\supset A_3\supset\ldots, \bigcap_{i=1}^{+\infty}A_i=\emptyset$ <u>Тогда</u> $P(A_n)\xrightarrow[n\to\infty]{}0$

 Π римечание. При непрерывном изменении области $A\subset\mathbb{R}^n$ соответствующая вероятность также должна изменяться непрерывно. Аксиома непрерывности следует из аксиомы счетной аддитивности

Доказательство.

$$A_n = \sum_{i=n}^{+\infty} A_i \overline{A_{i+1}} \cup \bigcap_{i=n}^{+\infty} A_i$$

т.к. эти события несовместны

$$P(A_n)=\sum_{i=n}^{+\infty}P(A_i\overline{A_{i+1}})+P(\bigcap_{i=n}^{+\infty}A_i)$$
 т.к. $P(\bigcap_{i=1}^{+\infty}A_i)=\emptyset$ и $\bigcap_{i=n}^{+\infty}A_i=\bigcap_{i=1}^{+\infty}A_i,$ то $P(\bigcap_{i=n}^{+\infty}A_i)=0$
$$P(A_n)=\sum_{i=n}^{+\infty}P(A_i\overline{A_{i+1}})$$

$$\sum_{i=1}^{+\infty} P(A_i \overline{A_{i+1}}) = P(A_i)$$

$$P(A_n) \xrightarrow[n \to +\infty]{} 0$$

Примечание. Аксимома счетной аддитивности следует из аксиомы непрерывности и свойства конечной аддитивности

2.1.1 Свойства операция сложения, умножения

Определение.

- 1. Свойство дистрибутивности $A \cdot (B + C) = AB + AC$
- 2. Формула сложения. Если A и B несовместны, то P(A+B) = P(A) + P(B) если совместны, то P(A+B) = P(A) + P(B) P(AB)

Доказательство.

$$A+B=A\overline{B}+AB+\overline{A}B\Rightarrow P(A+B)=P(A\overline{B})+P(AB)+P(\overline{A}B)=$$

$$=P(A\overline{B})+P(AB)+(P(\overline{A}B)+P(AB))-P(AB)=P(A)+P(B)-P(AB)$$

Задача 2. n писем раскладываются в n конвертов. Найти вероятность того что хотя бы одно письмо попадет в свой коверт. Чему равна эта вероятность при $n \to +\infty$

 $Pewehue. \ A_i - i$ письмо попало в свой коверт A- хотя бы одно письмо попало в свой конверт

$$A = A_1 + A_2 + \dots + A_n$$

$$P(A_i) = \frac{1}{n}, \ P(A_i A_j) = \frac{1}{A_n^2}, \ P(A_i A_j A_k) = \frac{1}{A_n^3}, \dots P(A_1 A_2 \dots A_n) = \frac{1}{n!}$$

$$P(A) = n \cdot \frac{1}{n} - C_n^2 \cdot \frac{1}{A_n^2} + \dots + (-1)^{n+1} \frac{1}{n!} = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n+1} \frac{1}{n!}$$

$$e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \dots$$

$$P(A) \xrightarrow[n \to +\infty]{} 1 - e^{-1}$$

2.1.2 Независимые события

Примечание. $\Omega = n, |A| = m_1, |B| = m_2$ $|\Omega \times \Omega| = n^2, AB = m_1 m_2$

Определение. События A и B называются независимыми, если P(AB) = P(A)P(B)

 Π римечание. Свойство: если A и B — независимы, то A и \overline{B} — независимы

Доказательство.
$$P(A)=P(A(B+\overline{B}))=P(AB+A\overline{B})=P(AB)+P(A\overline{B})\Rightarrow P(A\overline{B})=P(A)-P(AB)=P(A)-P(A)\cdot P(B)=P(A)\cdot (1-P(B))=P(A)\cdot P(\overline{B})\Rightarrow A$$
 и \overline{B} — независимы

Определение. События A_1,A_2,\ldots,A_n называются независимыми в совокупности, если для любого набора $1\leq i_1,i_2,\ldots,i_k\leq n$ $P(A_{i_1}A_{i_2}\ldots A_{i_k})=P(A_{i_1})P(A_{i_2})\ldots P(A_{i_k})$

Примечание. Если события независимы в совокупности, то события независимы попарно(при k=2). Обратное неверно

Пример (Берштейна). Три грани правильного тетраэдра выкрашены в красный, синий, зленый цвета, а четвертая грань во все эти три цвета A— грань содержит красный цвет, B— синий, C— зеленый

$$P(A) = P(B) = P(C) = \frac{2}{4} = \frac{1}{2}$$

$$P(AB) = P(AC) = P(BC) = \frac{1}{4}$$

$$P(AB) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A)P(B)$$

⇒ все события попарно независимы

$$P(ABC) = \frac{1}{4} \neq P(A)P(B)P(C) = \frac{1}{8}$$

⇒ события не независимы в совокупности

Примечание. Если в условии есть "хотябы", т.е. требуется найти вероятность совместных независимых событий, то применяем формулу обратной вероятности

Задача 3. Найти веротяность того, что при 4 бросаниях кости, хотябы один раз выпадет шестерка.

 $Peшение.\]A_1$ — при 1 броске "6", A_2 — при 2х бросках "6", $\ldots,$ A— хотя бы один раз "6"

$$A = A_1 + A_2 + A_3 + A_4$$
$$P(A_1) = P(A_2) = P(A_3) = P(A_4) = \frac{1}{6}$$

$$P(\overline{A_1}) = P(\overline{A_2}) = P(\overline{A_3}) = P(\overline{A_4}) = \frac{5}{6}$$

 \overline{A} — ни разу не выпадет

$$\overline{A} = \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3} \cdot \overline{A_4}$$

$$P(\overline{A}) = \left(\frac{5}{6}\right)^4$$

$$P(A) = 1 - P(\overline{A})$$

Задача 4. Два стрелка стреляют по мишени. Вероятность попадания первого — 0.6, второго — 0.8

 $Peшение.\ A_1-1$ й попал

 A_2-2 й попал

A — один попал

$$A = A_1 \cdot \overline{A_2} + \overline{A_1} \cdot A_2$$

$$P(A) = P(A) \cdot P(\overline{A_2}) + P(\overline{A_1}) \cdot P(A_2)$$

Лекция 3

3.1 Условная вероятность

Обозначение. P(A|B) — вероятность наступления события A, вычисленная в предположении, что событие B уже произошло

Пример. Кубик подбрасывается один раз. Известно что выпало больше трех очков. Найти вероятность того, что выпало четное число очков.

- A четное число очков
- B больше 3 очков

Тогда:

- n = 3 (4, 5, 6)
- m=2 (4,6)

$$P(A|B) = \frac{2}{3} = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{P(A \cdot B)}{P(B)}$$

При интерпретация с геометрическим определением вероятностей также получаем формулу $P(A|B) = \frac{P(A \cdot B)}{P(B)}$

Определение. Условной вероятностью события A при условии того что имело место событие B называется величина:

$$P(A|B) = \frac{P(A \cdot B)}{P(B)}$$

— формула условной вероятности

3.1.1 Формула умножения вероятности

Как следствие формулы условной вероятности получаем:

$$P(AB) = P(B) \cdot P(A|B)$$
или $P(AB) = P(A) \cdot P(B|A)$

ЛЕКЦИЯ 3. 15

Теорема 3.1.1.

$$P(A_1 A_2 ... A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 A_2) ... P(A_n | A_1 ... A_{n-1})$$

Доказательство. По индукции

 Π римечание. $P(A) \neq 0$ и поэтому формула умножения удовлетворяет

$$P(A_1 A_2 \dots A_n) \neq 0$$

Примечание.

$$P(A|B) = P(A) \Leftrightarrow P(AB) = P(A) \cdot P(B)$$

Доказательство. Очевидно

Задача 5. В коробке 3 красных крандаша и 2 синих. Вынули 3 карандаша. Найти вероятность того что первые два красные а третий синий.

Решение.

- $A_1 1$ -й красный
- $A_2 2$ -й красный
- $A_3 3$ -й синий

$$P(A_1 A_2 A_3) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_2 A_1) = \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} = \frac{1}{5} = 0.2$$

Примечание. Прменяем когда учитывается порядок

3.1.2 Полная группа событий

Определение. События $H_1, H_2, \ldots, H_n, \ldots$ образуюти полную группу событий если они попарно несовместны, и содержат все элементарные исходы:

- $P(H_iH_i) = \emptyset \ \forall i \neq j$
- $\sum_{i=1}^{\infty} H_i = \Omega$

Примечание. Часто события из полной группы называются гипотезами

3.1.3 Формула полной вероятности

Теорема 3.1.2 (Баеса). $]H_1,H_2,\ldots,H_n,\ldots$ — полная группа событий Тогда

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{\infty} P(H_i)P(A|H_i)}$$

ЛЕКЦИЯ 3. 16

Пример. В первой коробке 4 белых и два черных шара, во второй 1 белый и два черных. Из первой коробки во вторую переложили два шара, затем из второй коробки достали шар. Найти вероятность того что он оказался белый

Решение.

- $]H_1$ переложили 2 белых
- $|H_2$ переложили 2 черных
-] H_3 переложили 1 черный и 1 белый
- ullet]A- из второй коробки достали белый

$$P(H_1) = \frac{4}{6} \cdot \frac{3}{5} = \frac{6}{15}$$

$$P(H_2) = \frac{2}{6} \cdot \frac{1}{5} = \frac{1}{15}$$

$$P(H_3) = \frac{4}{6} \cdot \frac{2}{5} + \frac{2}{6} \cdot \frac{4}{5} = \frac{8}{15}$$

$$\sum P(H_i) = 1 - \text{ верно}$$

$$P(A|H_1) = \frac{3}{5}$$

$$P(A|H_2) = \frac{1}{5}$$

$$P(A|H_3) = \frac{2}{5}$$

По формуле полной вероятности:

$$P(A) = P(H_1)(A|H_1) + P(H_2)(A|H_2) + P(H_3)(A|H_3) = \frac{6}{15} \cdot \frac{3}{5} + \frac{1}{15} \cdot \frac{1}{5} + \frac{8}{15} \cdot \frac{2}{5} = \frac{7}{15}$$

Задача 6. По статистике 1% населения болен раком. Тест дает правильный результат в 99% случаев. Тест оказался положительным. Найти веротяность того что человек болен.

- $P(H_1) = 0.01$
- $P(H_2) = 0.99$
- $P(A|H_1) = 0.99$
- $P(A|H_2) = 0.01$

$$P(H_1|A) = \frac{P(H_1)P(A|H_1)}{P(H_1)P(A|H_1) + P(H_2)P(A|H_2)} = \frac{1}{2}$$

ЛЕКЦИЯ 3. 17

Сделаем второй тест:

- $P(H_1) = 0.01$
- $P(H_2) = 0.99$
- $P(AA|H_1) = 0.99^2$
- $P(AA|H_2) = 0.01^2$

$$P(H_1|AA) = \frac{0.99}{0.99 + 0.01} = 0.99$$

Лекция 4

4.1 Схема Бернулли

Определение. Схемой Бернулли называется серия независимых испытаний, каждое из которых имеет два исхода, каждое интересующее нас событие лиибо произошло либо не произошло.

- n число испытаний
- \bullet p вероятность события A при одном испытании
- q = 1 p
- ν_k число успехов при k испытаниях
- $P_n(k) = P(\nu_k = k)$

Теорема 4.1.1. Вероятность того что при n испытаниях произойдет ровно k успехов равна:

$$P_n(k) = C_n^k p^k q^{n-k}$$

Доказательство. Рассмотрим один из исходов благоприятных событию A: $A_1 = \underbrace{YY \dots Y}_k \underbrace{HH \dots H}_{n-k}$ — независмые события

- $P(\mathcal{Y}) = p$
- P(H) = q

$$P(A_1) = \underbrace{pp \dots p}_{k} \underbrace{qq \dots q}_{n-k} = p^k q^{n-k}$$
$$P(A) = C_n^k p^k q^{n-k}$$

Задача 7. Вероятность попадания стрелка в цель при одном выстреле 0.8. Найти вероятность того что при 5 выстрелах будут 3 попадания

Решение.

• n = 5

• p = 0.8

• q = 0.2

• k = 3

$$P_5(3) = C_5^3 p^3 q^2 = 0.2048$$

4.1.1 Наиболее вероятное число успехов

Выясним при каком значении k вероятность предшествующего числа успехов k-1 будет не больше чем веротяность k успехов

$$P_n(k-1) \le P_n(k)$$

$$C_n^{k-1}p^{k-1}q^{n-k+1} \le C_n^k p^k qn - k$$

$$\frac{n!}{(k-1)!(n-k+1)!} q \le \frac{n!}{(k!(n-k)!)} p$$

$$\frac{k!}{(k-1)!} q \le \frac{(n-k+1)!}{(n-k)!} p$$

$$k(1-p) \le (n-k+1)p$$

$$k \le np+p$$

Так как k — целое то выполняется: $np+p-1 \le k \le np+p$ Рассмотрим три ситуации:

- 1. np целое. Тогда np+p целое и k=np наиболее вероятное число исходов
- 2. np+p не целое. Тогда $k=\lceil np+p \rceil$
- 3. np+p целое. Тогд np+p-1 целое и $P_n(k-1)=P_n(k)$ и имеем два наиболее вероятных числа успехов:
 - k = np + p
 - k = np + p 1

4.1.2 Предельные теоремы в схеме Бернулли

Определение. Локальная формула Муавра-Лапласса. Применяем когда требуется найти вероятноть точного числа успехов.

$$P_n(\nu_n = k) \approx \frac{1}{\sqrt{npq}} \varphi(x)$$

, где $\varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, x=\frac{k-np}{\sqrt{npq}}$ — функция Гауса. Свойства функции Гауса $\varphi(x)$:

- 1. $\varphi(-x) = \varphi(x)$ четная
- 2. при x > 5, $\varphi(x) \approx 0$

Определение. Интегральная формула Лапласса. Применяем если число успехов лежит в неком диапозоне.

$$P_n(k_1 \le \nu_n \le k_2) \approx \Phi(x_1) - \Phi(x_2)$$

, где

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{z^2}{2}} dz$$

— функция Лапласса

$$x_1 = \frac{k_1 - np}{\sqrt{npq}}, \ x_2 = \frac{k_2 - np}{\sqrt{npq}}$$

Свойства $\Phi(x)$:

1. $\Phi(-x) = \Phi(x)$ — нечетная

2. при
$$x > 5$$
, $\Phi(x) \approx 0.5$

Примечание. В некоторых источниках под функцией Лапласса подразумевается несколько иная функция, чаще всего:

$$F_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{z^2} 2dz$$

$$F_0(x) = 0.5 + \Phi(x)$$
 или $\Phi(x) = F_0(x) - 0.5$

 Πp имечание. Формулу применяем при $n \geq 100$ и $p,q \geq 0.1$

Задача 8. Вероятность попадания стрелка в цель при одном выстреле 0.8. Стрелок сделал 400 выстрелов. Найти вероятность того что

- 1. произошло ровно 330 попаданий
- 2. произошло от 312 до 336 попаданий

Решение.

1.
$$n = 400, p = 0.8, q = 0.2, k = 330$$

$$x = \frac{330 - 400 \cdot 0.8}{\sqrt{400 \cdot 0.8 \cdot 0.2}} = 1.25$$

$$P_{400}(330) \approx \frac{1}{8} \cdot \varphi(1.25) \approx \frac{1}{8} \cdot 0.1826 \approx 0.0228$$

2.
$$n = 400, p = 0.8, q = 0.2, k_1 = 312, k_2 = 336$$

$$x_1 = \frac{312 - 400 \cdot 0.8}{\sqrt{400 \cdot 0.8 \cdot 0.2}} = -1$$

$$x_2 = \frac{336 - 400 \cdot 0.8}{\sqrt{400 \cdot 0.8 \cdot 0.2}} = 2$$

$$P_{400}(312 \le \nu_n \le 336) = \Phi(2) - \Phi(-1) = \Phi(2) + \Phi(1) \approx 0.8185$$

4.2 Статистическое определение вероятности

- n_A число появления события A при n испытаниях
- $\frac{n_A}{n}$ частота события A

$$P(A) pprox rac{n_A}{n},$$
при $n o \infty$

4.2.1 Вероятность отклонения относительной частоты

]p — веротяность события $A, \, \frac{n_A}{n}$ — частота A По интегральной формуле Лапласса:

$$\begin{split} P\left(\left|\frac{n_A}{n} - p\right| \leq \varepsilon\right) &= P(-\varepsilon \leq \frac{n_A}{n} - p \leq \varepsilon) = P(-n\varepsilon \leq n_a - np \leq n\varepsilon) = P(np - n\varepsilon \leq n_A \leq np + n) \\ x_1 &= \frac{np - n\varepsilon - np}{\sqrt{npq}} = -\frac{n\varepsilon}{\sqrt{npq}} \\ x_2 &= \frac{np + n\varepsilon - np}{\sqrt{npq}} = \frac{n}{\sqrt{npq}} \\ P\left(\left|\frac{n_A}{n} - p\right| \leq \varepsilon\right) &= \Phi\left(\frac{n\varepsilon}{\sqrt{npq}}\right) - \Phi\left(-\frac{n\varepsilon}{\sqrt{npq}}\right) = 2\Phi\left(\frac{n\varepsilon}{\sqrt{npq}}\right) \\ P\left(\left|\frac{n_A}{n} - p\right| \leq \varepsilon\right) &= 2\Phi\left(\frac{\sqrt{n}}{\sqrt{pq}}\varepsilon\right) \end{split}$$

4.2.2 Закон больших чисел Бернулли

Более точно последняя формула выглядит так:

$$\begin{split} P\left(\left|\frac{n_A}{n}-p\right| \leq \varepsilon\right) \xrightarrow[n \to \infty]{} 2\Phi\left(\frac{\sqrt{n}}{\sqrt{pq}}\varepsilon\right) \end{split}$$
при $n \to \infty$ $\frac{\sqrt{n}}{\sqrt{pq}}\varepsilon \to \infty$ и $\Phi\left(\frac{\sqrt{n}}{\sqrt{pq}}\right) \to 0.5$
$$P\left(\left|\frac{n_A}{n}-p\right| \leq \varepsilon\right) \to 2 \cdot 0.5 = 1$$

$$\lim_{n \to \infty} P\left(\left|\frac{n_A}{n}-p\right| \leq \varepsilon\right) = 1$$

— закон больших чисел Бернулли

То есть при большом числе испытаний, будет близко к реальной вероятности ${\bf r}$

Лекция 5

5.1 Схемы испытаний и соответствующие распределения

- n число испытаний
- р вероятность при одном испытании
- ullet q=1-p вероятность неудачи при одном испытании

Определение.

$$k \to C_n^k p^k q^{n-k}$$

— биноминальное распределение с параметрами n и p

Обозначение. $B_{n,p} = B(n,p)$

5.1.1 Схема до первого успешного испытания

Определение. Схема до первого успешного испытания. Пусть проводится бесконечная серия испытаний, которая заканчивается после первого успеха под номером τ

Теорема 5.1.1. $p(\tau = k) = q^{k-1}p$

Доказательство.

$$p(\tau = k) = p(\underbrace{\operatorname{HH} \dots \operatorname{H}}_{k-1} \underbrace{\operatorname{Y}}_{k}) = q^{k-1}p$$

Определение. $k \to q^{k-1}p, \ 1 \le k \le \infty$ — называется геометрическим распределением с параметром t

Обозначение. G(p)

Примечание. Это распределение обладает так назыаемым свойством отсутствия после действия или свойством нестарения

Теорема 5.1.2.
$$]p(\tau = k) = q^{k-1}p$$
 Тогда $\forall n, k \in \mathbb{N} \ p(\tau > n + k | \tau > n) = p(\tau > k)$

Доказательство. По формуле условной вероятности:

$$p(\tau > n + k | \tau > k) = \frac{p(\tau > n + k \text{ if } \tau > j)}{p(\tau > n)} = \frac{p(\tau > n + k)}{p(\tau > n)}$$
 (5.1)

 $p(\tau > m) = p(\text{первые } m \text{ неудач}) = q^m$

$$5.1 = \frac{q^{n+k}}{q^n} = q^k$$

 ${\it Примечание}.$ То, проработет ли девайс k часов после этого, не зависит от того сколько проработал до этого

Примечание. Также $p(\tau = n + k | \tau > n) = p(\tau = k)$

5.1.2 Испытание с несколькими исходами

Пусть при n испытаниях могут произойти m несовместных исходов

ullet p_i — вероятность i-го исхода при одном отдельном испытании

Теорема 5.1.3. Вероятность того, что при n испытаниях первый исход появится n_1 раз, второй n_2 раз, ..., m-й n_m раз. $n_1+n_2+\cdots+n_m=n$ Тогда

$$p(n_1, n_2, \dots, n_m) = \frac{n!}{n_1! n_2! \dots n_m!} p_1^{n_1} p_2^{n_2} \dots p_m^{n_m}$$

Доказательство. $A_1 = \underbrace{11 \dots 1}_{n_1} \underbrace{22 \dots 2}_{n_2} \dots \underbrace{m \dots m}_{n_m}$

$$p(A_1) = p_1^{n_1} \dots p_n^{n_m}$$

Остальные благоприятные исходы отличаются лишь расположением i-х исходов по n местам, а веротяности будут те-же. Всего таких исходов будет:

$$C_n^{n_1}C_{n-n_1}^{n_2}C_{n-n_1-n_2}^{n_3}\dots C_{n_m}^{n_m} = \frac{n!}{n_1!n_2!\dots n_m!}$$

— формула для перестановок с повторениями

Задача 9. Два одинаковых по силе шахматиста играют матч из 6 партий. Вероятность ничьи при одной партии — 0.5. Найти веротяность того, что второй игрок две партии выиграл, а три партии свел в ничью

Решение. Исходы:

1. первый выиграл

- 2. второй выиграл
- 3. ничья

$$p_3 = \frac{1}{2}; \ p_1 = p_2 = \frac{1}{2} \left(1 - \frac{1}{2} \right) = \frac{1}{4}; \ n = 6$$
$$P(1, 2, 3) = \frac{6!}{1!2!3!} \cdot \left(\frac{1}{4} \right)^1 \cdot \left(\frac{1}{4} \right)^2 \cdot \left(\frac{1}{2} \right)^3 = \frac{15}{2^7}$$

5.1.3 Урновая схема

В урне N шаров. Из них K белых, а черных N-K. Из нее выбираем n шаров без учета порядка. k — число вынутых белых

Теорема 5.1.4 (Схема с возвратом). Вероятность вынуть белый шар не менятеся.

Тогда

$$p = \frac{K}{N}$$
 $p_n(k) = C_n^k p^k (1-p)^{n-k}$

— биноминальное распределение

Теорема 5.1.5 (Схема без возврата). Тогда

$$P_{N,K}(n,k) = \frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}$$

Определение.

$$k \to \frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}, \ k \le K$$

назвается гипергеометрическим распределением веротяности

Лемма 1.

$$C_K^k \sim \frac{K^k}{k!}$$

, $npu K \to \infty, K = const$

Доказательство.

$$C_K^k = \frac{K!}{k!(K-k)!} = \frac{K(K-1)\dots(K-k+1)}{K^k} \cdot \frac{K^k}{k!} =$$

$$= \underbrace{1 \cdot \left(1 - \frac{1}{K}\right) \cdot \left(1 - \frac{2}{K}\right) \dots \left(1 - \frac{k-1}{K}\right)}_{\dagger} \cdot \frac{K^k}{k!} \sim \frac{K^k}{k!}$$

Теорема 5.1.6.

- $N \to \infty$
- $K \to \infty$
- $\frac{K}{N} \to p \in (0,1)$
- n и $0 \le k \le K$ фиксированны

Тогда

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k}$$

Доказательство.

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \xrightarrow[N \to \infty]{} \frac{K^k}{k!} \cdot \frac{(N-K)^{n-k}}{(n-k)!} \cdot \frac{n!}{N^n} = \frac{n!}{k! \cdot (n-k)!} \cdot \frac{K^k}{N^k} \cdot \frac{(N-K)^{n-k}}{N^{n-k}} =$$

$$= C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k} \xrightarrow[N \to \infty]{} C_n^k \cdot p^k \cdot (1-p)^{n-k}$$

5.1.4 Схемы Пуассона. Теорема Пуассона для схемы Бернулли

Схема: вероятность успеха при одном отдельном испытании зависит от числа испытаний n таким образом, чтобы $n\cdot p_n=\lambda (\text{точнее } np_n\xrightarrow[n\to\infty]{}\lambda)$ Появление очень редких событий в длинном потоке испытаний

Теорема 5.1.7 (Формула Пуассона). Пусть $n\to\infty,\ p_n\to 0,$ так что $np_n\to\lambda>0$

Тогда вероятность k успехов при n испытаниях

$$p(\nu_n = k) = C_n^k p_n^k (1 - p_n)^{n-k} \xrightarrow[n \to \infty]{} \frac{\lambda^k}{k!} e^{-\lambda}$$

Доказательство. Положим $\lambda_n = np_n$

$$p(\nu_n = k) = C_n^k p_n^k (1 - p_n)^{n-k} \xrightarrow[n \to \infty]{} \frac{n^k}{k!} \cdot \frac{\lambda_n^k}{n^k} \cdot \left(1 - \frac{\lambda_n}{n}\right)^{n-k} = \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^n \cdot \left(1 - \frac{\lambda_n}{n}\right)^{-k} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^n \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^{-k} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^n \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^{-k} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^{n-k} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n$$

1. Оценка погрешности в формуле Пуссона

Теорема 5.1.8. Пусть ν_n – число успехов при n испытаниях в схеме Бернулли с вероятностью p

$$\lambda = np \quad A \subset \{0,1,2,\cdots n\}$$
 — произвольное подм
ножество

Тогда погрешность

$$\left| p(\nu_n \in A) - \sum_{k \in A} \frac{\lambda_k}{k!} e^{-\lambda} \right| \le \min(p, \lambda p) = \min(p, np^2) = \min\left(p, \frac{\lambda^2}{n}\right)$$

Примечание. Формулу Пуасснона иногда называют формулой редких событий. Применяем при малых $p, \, n \geq 100$

Задача 10. Прибор состоит из 1000 элементов. Вероятность отказа каждого элемента $\frac{1}{1000}$. Какова вероятность отказа больше двух элементов

Решение.

$$p_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

, где $\lambda = np$

- n = 1000
- p = 0.001
- $\lambda = np = 1$
- *k* > 2

$$\begin{split} p(\nu_n > 2) &= 1 - p(\nu_n \le 2) = 1 - (p(0) + p(1) + p(2)) \approx 1 - \left(\frac{\lambda^0}{0!}e^{-\lambda} + \frac{\lambda^1}{1!}e^{-\lambda} + \frac{\lambda^2}{2!}e^{-\lambda}\right) = \\ &= 1 - 2.5e^{-1} \approx 0.0803 \end{split}$$

Погрешность $\varepsilon \leq \min(p, \lambda p) = 0.001$

Лекция 6

6.1 Случайные величины

Обозначение. ξ — Случаная величина

 $\ensuremath{\varPipumep}.\ \xi$ — число выпавших очков. $\xi \in \{1,2,3,4,5,6\}$

 $\Pi puмер. \xi$ — время работы микросхемы до отказа

- 1. Время работы в часах $\xi = \{1, 2, 3, \dots\}$
- 2. Время работы измеряем точно $\xi \in [0,+\infty]$

 $Пример.~\xi$ — температура воздуха в случайный момент вермени. $\xi \in (-50^\circ, 50^\circ)$ Пример.~ Индикатор события A.

$$I_A(\omega) \in \begin{cases} 0 &, \omega \notin A \\ 1 &, \omega \in A \end{cases}$$

Определение. Пусть имеется вероятностное пространство (Ω, \mathcal{F}, p) . Функция $\xi: \Omega \to \mathbb{R}$ называется \mathcal{F} -измеримой, если $\forall x \in \mathbb{R}: \ \{\omega | \xi(\omega) < x\} \in \mathcal{F}$. Т.е прообраз $\xi^{-1}((-\infty, x)) \in \mathcal{F}$

Определение. Случаной величиной ξ заданной на вероятностном пространстве (Ω, \mathcal{F}, p) назывется \mathcal{F} -измеримая функция Исправить, ставящая в соответсвие каждому элементарному исходу ω некоторое вещественное число

Пример. Бросаем кость.

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $\mathcal{F} = \{\emptyset, \Omega, \{1, 3, 5\}, \{2, 4, 6\}\}$
- $|\xi(i)| = i$

Если x=4, то $\{\omega|\xi(\omega)<4\}=\{1,2,3\}\not\in\mathcal{F}\Rightarrow\xi$ не является \mathcal{F} -измеримой

ЛЕКЦИЯ 6. 29

6.1.1 Смысл измеримости

Пусть случайная величина $\xi:\Omega\to\mathbb{R}$ — измеримая. Тогда $P(\xi< x)=P(\{\omega|\xi(\omega)< x\}),$ т.к. $A_x=\{\omega|\xi(\omega)< x\}\in\mathcal{F}.$ Тогда

$$\overline{A_x} = \{\omega | \xi(\omega) \ge x\} \in \mathcal{F}$$
 $A_x \setminus B_y = \{\omega | t \le \xi(\omega) lex\} \in \mathcal{F}$ $B_x =$ Доделать $B_x \setminus A_x = \{\omega | \xi(\omega) = x\} \in \mathcal{F}$

Отсюда видим, по теореме Каво? Исправить можно однозначно продолжить до любого Борелевского множества на прямой. $B \in \mathcal{B}$ — Борелевская σ -алгебра. $P(B \in \mathcal{B}) = P\{\omega|\xi(\omega) \in B\}$

Пусть случаная величина задана на вероятностном пространстве (Ω, \mathcal{F}, p) . Тогда:

1.
$$(\Omega, \mathcal{F}, p) \xrightarrow{\xi} (\mathbb{R}, \mathcal{B}, p)$$
 — новое веротяностное пространство

2.
$$\xi^{-1}(B)\ \forall B\in\mathcal{B}$$

$$\mathcal{F}_\xi\subset\mathcal{F}$$
 $\mathcal{F}_\xi-\sigma$ -алгебра порожденная величной ξ

Задача 11. Найти σ -алгебру порожденную индикатором

Определение. Функция P(B) $B \in \mathcal{B}$ называется распределнием вероятностей случаной величниы $\xi(\omega)$. Т.е. распределение случайной величны это соответсвие множествами на вещественной прямой и вероятностями случаной величны попасть в это множество

6.1.2 Типы распределения

- Дискретные
- Абсолютно непрерывные
- Смешанные
- Сингулярные (непрерывные но не абсолютно непрерывные)
- 1. Дискретные Случайная величина ξ имеет дискретное распределение, если она принимает не более чем счетное число значений, т.е. существует конечный или счетный набор чисел $\{x_1, x_2, \ldots, x_n, \ldots\}$, такой что

(a)
$$p_i = p(\xi = x_i) > 0$$

(b)
$$\sum_{i} p_{i} = 1$$

ЛЕКЦИЯ 6. 30

Доделать

Пример. Кость

Доделать

- (а) Основные числовые характеристики
 - і. Математическое ожидание(среднее значение) **Математическим ожиданием** случаной величины ξ называется число:

$$E\xi = \sum_{i} x_i p_i$$

при условии что данный ряд сходится абсолютно, иначе говрят что что математическое ожидание не существует

Обозначение. Е ξ

Примечание. Смысл: среднее значение, число вокруг которого группируеются значения случаной величины. Физический смысл: центр масс. Статистический смысл: среднее арифметическое наблюдаемых значений при большои значении реальных экспериментов

іі. Дисперсия

Определение. Дисперсией $D\xi$ случайной величины ξ называется среднее квадратов отклонений ее от математического ожидания

$$D\xi = E(\xi - E\xi)^2$$

или

$$D\xi = \sum_{i} (x_i - E\xi)^2 p_i$$

При условии что данное среднее значение существует (конечно) Примечание. Вычислять дисперсию удобнее по формуле

$$D\xi = E\xi^2 - (E\xi)^2 = \sum_{i} x_i^2 p_i - (E\xi)^2$$

Примечание. Смысл: квадрат среднего разброса(рассейния) случайной величины около ее математического ожидания

ііі. Среднее квадратическое отклонение

Определение. Средним квадратическим отклонением ($\sigma_{\xi} = \sigma(\xi)$) случайной величины ξ называется число

$$\sigma = \sqrt{D\xi}$$

 Π римечание. Смысл: характеризует средний разброс случайной величины около ее математического ожидания Π ример. Бросаем кость

$$E\xi = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

$$D\xi = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + 4^2 \cdot \frac{1}{6} + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6} - 3.5^2 = 2.92$$

$$\sigma = \sqrt{2.92} \approx 1 \neq 1$$

(b) Свойства математического ожидания и дисперсии

Определение. Случайная величина ξ имеет вырожденное распределение, если $\xi(\omega)=C=const\ \forall \omega\in\Omega$ или $p(\xi=C)=1$

$$E\xi = C = const$$
$$D\xi = 0$$

Доказательство. Доделать

Определение (Свойство сдвига).

$$E(\xi + C) + E\xi + C$$

$$D(\xi+C)=D\xi$$

Доказательство. Доделать

Определение.

$$E(C\xi) = CE\xi$$

$$D(C\xi)=C^2D\xi$$

Доказательство. Доделать

Определение.

$$E(\xi + \eta) = E\xi + E\eta$$

Доказательство.

• Пусть x_i, y_i — соответсвующие значения случайных величин xi и mu

ЛЕКЦИЯ 6. 32

$$E(\xi+\eta) = \sum_{i,j} (x_i + y_j) p(\xi = x_i, \eta = y_j) = \sum_i x_i \sum_j p(\xi = x_i, \eta = y_j) + \sum_j y_j \sum_j p(\xi = x_i, \eta = y_j)$$

Доделать

Определение. Дискретные случаные величины **независимы** если $\forall i,j \ p(\xi=x_i,\eta=y_j)=p(\xi=x_i)\cdot p(\eta=y_j)$

Примечание. Если xi и η независимы, то

$$E(\xi\eta) = E\xi \cdot E\eta$$

обратное не верно

Доказательство.

$$E(\xi\eta) = \sum_{ij} (x_i y_j) p(\xi = x_i, \eta = y_j) = \sum_i x_i \sum_j y_j (\xi = x_i, \eta = y_j) =$$

$$= \sum_i x_i \sum_j y_j p(\xi = x_j) p(\eta = y_j) = \sum_i x_i p(\xi = x_i) \cdot \sum_j y_j p(\eta = y_j) = E \xi \cdot E \eta$$

Доказательство.

$$D\xi = E\xi^2 - (E\xi)^2$$

$$D\xi = E(\xi - E\xi)^2 = E(\xi - 2\xi E\xi + (E\xi)^2) = E\xi^2 - 2E\xi E\xi + E(E\xi)^2 = E\xi^2 - 2(E\xi)^2 + (E\xi)^2 = E\xi^2 - (E\xi)^2$$

Примечание.

$$D(\xi + \eta) = D\xi + D\eta + 2\operatorname{Cov}(\xi, eta)$$

, где
$$\mathrm{Cov}(\xi,\eta) = E(\xi\eta) - E\xi \cdot E\eta$$
 — ковариация

Доказательство.

$$D(\xi+\eta) = E(\xi+\eta)^2 - (E(\xi+\eta))^2 = E\xi^2 + 2E\xi\eta + E\eta^2 - (E\xi)^2 - 2E\xi \cdot E\eta - (E\eta)^2 = E\xi + D\eta + 2(E(\xi\eta) - E\xi \cdot E\eta)$$

Примечание. Если случайные величины ξ и η независимые, то

$$D(\xi + \eta) = D\xi + \eta$$

Доказательство. По свойству $Cov(\xi, \eta) = 0$

ЛЕКЦИЯ 6.

Примечание. Среднее квадратическое отклонение — минимум отклонения случайной величины от точек вещественной прямой, т.е.

$$D\xi = \min_{a} (y - a)$$
 Исправить

Доказательство.

$$E(\xi - a)^{2} = E((\xi - E\xi) + (E\xi - a))^{2} = E(\xi - E\xi)^{2} + \underbrace{2E(\xi - E\xi) \cdot (E\xi - a)}_{0} + (E\xi - a)^{2} =$$

$$= D\xi + (E\xi - a)^{2} \le D\xi$$

33

(с) Другие числовые характеристики

Примечание.

$$m_k = E\xi^k$$

— момент *k*-того порядка

В частности $m_1 = E\xi$

 Π римечание.

$$E|\xi|^k$$

— абсолютный момент k-того порядка

Примечание.

$$\mu_k = E(\xi - E\xi)^k$$

— центральный момент k-того порядка

В частности $\mu_2 = D\xi$

Примечание.

$$E|\xi - E\xi|^2$$

— абсолютный центральный момент k-того порядка

Примечание. Центральные моменты можно выразить через относительные моменты Доделать

Примечание. **Модой** Мо называется такое значение случайной величины, где вероятность события является наибольшей

$$p(\xi = Mo) = \max_{i} p_i$$

Определение. Медианой Ме называется значение случайной величины такое что,

$$p(\xi < Me) = p(\xi > Me) = \frac{1}{2}$$

Лекция 7

7.1 Стандартное дискретное распределение

7.1.1 Распределение Бернулли

Обозначение. $B_p, \ 0$

Определение.

- ullet ξ число успехов при одном испытии
- p вероятность успеха при одном испытании

$$\begin{array}{c|c} \xi & 1 & 0 \\ \hline p & p & 1-p \end{array}$$

$$E\xi = 0 \cdot (1-p) + 1 \cdot p = p$$

$$D\xi = pq$$

7.1.2 Биноминальное распределение

Обозначение. $B_{n,p}$

Определение.

- ξ число успехов при n испытаниях
- \bullet p вероятность успеха при одном испытании

$$\xi \in B_{n,p} \Leftrightarrow p(\xi = x) = \binom{n}{k} p^k q^{n-k}$$

Примечание. $B_p = B_{1,p}$

ЛЕКЦИЯ 7. 35

, при
$$\xi_i \in B_{n,p}$$

$$E\xi = 0 \cdot (1-p) + 1 \cdot p = p$$

$$D\xi = pq$$

$$E\xi = \sum_{i=0}^n E\xi_i = np$$

$$D\xi = \sum_{j=0}^n D\xi_j = npq$$

7.1.3 Геометрическое распределение

Обозначение. G_p

Определение.

- ullet ξ номер первого успешного испытания
- p вероятность успеха при одном испытании

$$\xi \ inG_p \Leftrightarrow p(\xi = k) = (1 - p)^{k - 1} \cdot p \quad , 1 \le k \le \infty$$

$$\frac{xi \mid 1}{p \mid p \quad (1 - p) \cdot p \quad \dots \quad (1 - p)^{k - 1} \cdot p \quad \dots}$$

$$E\xi = \sum_{k = 1}^{\infty} kq^{k - 1}p = p\sum_{k = 0}^{\infty} (q^k)' = p\left(\sum_{n = 0}^{\infty} q\right)' = p \cdot \left(\frac{1}{1 - q}\right)' = \frac{1}{p}$$

$$E\xi^2 = \sum_{k = 1}^p k^2 q^{k - 1}p = p\sum_{k = 1}^{\infty} (k \cdot (k - 1) + k) \cdot q^{k - 1} + p\sum_{k = 1}^{\infty} k\dot{q}^{k - 1} = \frac{22q}{p^2} + \frac{1}{p}$$

$$D\xi = \frac{q}{p^2}$$

7.1.4 Распределение Пуассона

Определение. Слкчайная величина ξ имеет распределение ПУассона с парметром k>0, если

$$p(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda} \quad , 0 \le k < \infty$$

$$\frac{\xi \mid 0 \quad 1 \quad 2 \quad \dots \quad k \quad \dots}{p \mid e^{-\lambda} \quad \lambda \cdot e^{-\lambda} \quad \frac{\lambda^2}{2} \cdot e^{-\lambda} \quad \dots \quad \frac{\lambda^k}{k!} \cdot e^{-\lambda} \quad \dots}$$

$$E\xi = \lambda$$

$$E\xi^2 = \lambda^2 + \lambda$$

$$D\xi = \lambda$$

$$= \sqrt{\lambda}$$

7.1.5 Функция распределения

Определение. $F\xi(x)$ случайной величины ξ называется функция

$$F\xi(x) = p(\xi < x)$$
 Пример.
$$\frac{\xi \mid 0 \quad 1}{p \mid 1 - p \quad p}$$

$$F(x) = \begin{cases} 0 & x \le 0 \\ 1 - p \quad 0 < x \le 1p, x > 1 \end{cases}$$

1. Свойства функции распределения

Свойство 1. F(x) — ограниченая функция

Свойство 2. F(x) — неубывающая функция

$$x_1 < x_2 \Rightarrow F(x_1) \le F(x_2)$$

Доказательство. Доделать

Свойство 3.

$$p(x_1 \le \xi < x_2) = F(x_2) - F(x_1)$$

Доказательство. Доделать

Следствие 7.1.0.1. Т.к. Борелевская σ -алгебра порождается интервалами, то зная функцию распределения можем найти вероятность попадания случайной величины в любое Борелевское ножество $B \in \mathfrak{B}$, а значит полностью задается функцией распределения

Свойство 4.

$$\lim_{x \to 0} F(x) = 0$$
$$\lim_{x \to +\infty} F(x) = 1$$

 $T.\kappa.$ функция F(x) — ограничена и монотонна, то эти пределы существуют.

Свойство 5. $x_n \to \pm \infty$

$$|A_n = \{ \omega \in \Omega | n - 1 \le \xi(\omega) < n \}$$

$$1 = p(\Omega) = \sum_{n=0}^{\infty} p(A_n) = \sum_{n=0}^{\infty} (F(n) - F(n-1)) = \lim_{n \to 0} \left(\sum_{N=0}^{N} F(n) - F(n-1) \right) = \lim_{N \to 0} \left(F(N) - F(-N-1) \right) = \lim_{N \to 0} F(N) - \lim_{N \to \infty} F(N) - \lim_{N \to \infty} F(-N-1) = 1 \Rightarrow \lim_{N \to \infty} F(N) = 1$$

Доделать

Свойство 6. F(x) — непрерывна слева, т.е. $F(x_0 - 0) = F(x_0)$

Доказательство.

•
$$]B_n = \{x_0 - \frac{1}{n} \le \xi < x_o\}$$

$$B_0 \supset B_1 \supset \dots \supset B_n \supset \dots$$

$$\bigcap_{n=0}^{\infty} B_n = \emptyset$$

Следовательно по аксиоме непрерывности

$$\lim_{n \to \infty} p(B_n) = 0 \Rightarrow \lim_{n \to \infty} p(B_n) = \lim_{n \to \infty} (F(x_0) - F(x_0 - \frac{1}{n})) =$$

$$= F(x_0) - \lim_{n \to \infty} F\left(x_0 - \frac{1}{n}\right) = 0$$

$$\lim_{n \to \infty} F\left(x_0 - \frac{1}{n}\right) = F(x_0) \Rightarrow F(x_0 - 0) = F(x_0)$$

Свойство 7. Скачок в точке x_0 равен вероятности в этой точке.

$$F(x_0 + 0) - F(x_0) = p(\xi = x_0)$$

$$unu$$

$$F(x_0 + 0) = F(x_0) + p(\xi = x_0) = p(\xi \le x_0)$$

Доказательство.

•
$$C_n = \{x_0 < \xi < x_0 + \frac{1}{n}\}$$

По аксиоме непрерывности $\lim_{n\to\infty} p(C_n) = 0$

$$p(C_n) + p(\xi < x_0) = p(\xi = x_0)$$

$$p(x_0 \le \xi < x_0 + \frac{1}{n}) \xrightarrow[n \to \infty]{} p(\xi = x_0)$$

$$F(x_0 + \frac{1}{n}) - F(x_n) \xrightarrow[n \to \infty]{} p(\xi = x_0)$$

$$F(x_0 + 0) - F(x_0) = p(\xi = x_0)$$

Свойство 8. Если F(x) непрерывна в точке x_0 , то $p(\xi=0)=0$. Следствие из θ

Свойство 9. Если F(x) непрерывна то, $p(x_1 \le \xi < x_2) = p(x_1 < \xi < x_2) = p(x_1 \le \xi \le x_2) = p(x_1 < \xi \le x_2) = F(x_2) - F(x_1)$

Свойство 10. Случайная величина ξ имеет дискретное распредление \Leftrightarrow ее функция распределения – ступенчатая функция

7.2 Абсолютно непрерывные случайные величины

Определение. Случайная величина ξ имеет абсолютно непрерывное распределение, если для любового Борелевского множества $B \in \mathfrak{B}$

$$p(\xi \in B) = \int_{B} f_{\xi}(x)dx$$

для некоторой функции $f_{\xi}(x)$. Интеграл Лебега а не Римана.

Определение. $f_{\xi}(x)$ — плотность распределения случайной величины ξ

7.2.1 Свойства плотности и функции распределения

Свойство 1. Вероятностный геометрический смысл плотности.

$$p(\alpha < \xi < \beta) = \int_{\alpha}^{\beta} f_{\xi}(x) dx$$

$$S = p(\alpha < \xi < \beta)$$

Доказательство. Из определения распределения $B=(\alpha,\beta)$

Свойство 2. Условие нормировки

$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

Доказательство. По определению $p(\xi \in \mathbb{R}) = 1$ а $B = \mathbb{R} \in \mathfrak{B}$ Исправить

Свойство 3.

$$F\xi(x) = \int_{-\infty}^{+\infty} f(x)dx$$

Доказательство. По поределению

$$F_{\xi}(x) = p(\xi < x) = \int_{-\infty}^{x} f(x)dx \quad B = (-\infty, x)$$

Свойство 4. $F_{\xi}(x)$ — непрерывная функция. Как интеграл с переменным верхним пределом

Свойство 5. $F_{\xi}(x) - \partial u \phi \phi$ еренцируема почти всюду и

$$f_{\mathcal{E}}(x) = F'(x)$$

nочти для всеx x

Доказательство. Теорема Барроу.

 $\ensuremath{\mathit{Примечаниe}}.$ Почти для всех, кроме возможно x из множества нулевой меры Лебега.

Свойство 6. $f_{\xi}(x) > 0$

Доказательство. Из определения или из 5

Свойство 7. $p(\xi = x_0) = 0$

Свойство 8. $p(x_1 < / \le \xi < / \le x_2) = F(x_2) - f(x_1)$

Свойство 9. Если для f(x) выолнено свойства 2 и 6 то она является плотностью некоторой случайной величины

7.2.2 Числовые характеричтики

Определение. Математическим ожиданием абсолютно непрерывной случайной величины ξ называется число

$$E\xi = \int_{-\infty}^{+\infty} x f(x) dx$$

при условии что данный интеграл сходится абсолютно, т.е. $\int\limits_{-\infty}^{+\infty}|x|f(x)dx<\infty$

Определение. Дисперсией абсолютно непрерывной случайной величины ξ называется число

$$D\xi = E(\xi - E\xi) = \int_{-\infty}^{+\infty} (x - E\xi)^2 f(x) dx$$

при условии что интеграл сходится абсолютно

Примечание.

$$D\xi = E\xi^{2} - (E\xi)^{2} = \int_{-\infty}^{+\infty} x^{2} f(x) dx - (E\xi)^{2}$$

Определение. Среднее квадратическое отклонение $\sigma_\xi = \sqrt{D\xi}$

Примечание. Смысл свойств этих числовых характеристик полоностью идентичны дискретной случайной величины

Лекция 8

8.1 Стандартное абсолюютно непрерывное распределение

8.1.1 Равномерное распределение

Определение. Случайная величина ξ равномерно распределена на [a,b] если ее плотность постоянна на этом отрезке

$$f(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$$

$$F(x) = \int_{a}^{x} \frac{1}{b-a} dx = \frac{x-a}{b-a}$$

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

$$E\xi = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} x \cdot \frac{1}{b-a} dx = \frac{a+b}{2}$$

$$E\xi^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{a}^{b} x^{2} \frac{dx}{b-a} dx = \frac{a^{2} + ab + b^{2}}{3}$$

$$D\xi = E\xi^{2} - (E\xi)^{2} = \frac{a^{2} - 2ab + b^{2}}{12} = \frac{(b-a)^{2}}{12}$$

$$\sigma = \frac{b-a}{2\sqrt{3}}$$

$$p(\alpha < \xi < \beta) = \frac{\beta - \alpha}{b-a} \quad \alpha, \beta \in [a, b]$$

Обозначение. $\xi \in U_{[a,b]}$

Примечание. Датчики случайных чисел имеют равномерное распределение, и с их помощью можно смоделировать другие распределения, если знаем их функции распределения

8.1.2 Экспоненциальное распределение

Определение. Случайная величина ξ имеет **показательное** распределение, если ее плотность имеет вид:

$$f(x) = \begin{cases} 0 & x < 0 \\ \alpha e^{-\alpha x} & x \ge 0 \end{cases}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\alpha x} & x \ge 0 \end{cases}$$

$$E\xi^k = \int_{-\infty}^{\infty} x^k f(x) dx = \int_0^{\infty} x^k \alpha e^{-\alpha x} dx = \frac{1}{\alpha^k} \int_0^{\infty} \alpha (\alpha x)^k e^{-\alpha x} dx = \frac{k!}{\alpha^k}$$

$$E\xi = \frac{1}{\alpha}$$

$$E\xi^2 = \frac{2}{\alpha^2}$$

$$D\xi = E\xi^2 - (E\xi)^2 = \frac{1}{\alpha^2}$$

$$\sigma = \frac{1}{\alpha}$$

$$p(a < \xi < b) = e^{-a\alpha} - e^{-b\alpha}$$

Примечание. Свойство нестарения. Если $\xi \in E_{\alpha}$, то $p(\xi > x + y | \xi > x) = p(\xi > y)$

Примечание. Гамма функция Эйлера:

$$\Gamma(\lambda) = \int_0^\infty t^{\lambda - 1} e^{-t} dt$$

 $\Gamma(\lambda - 1) = \lambda! \quad \lambda \in \mathbb{N}$

Обозначение. $\xi \in E_{\alpha}$

Пример. Время работы прибора до поломки

 $\Pi pumep.$ Время между появлениями двух соседних редких событий в простейшем потоке событий

8.1.3 Нормальное распределение

Определение. Случайная величина ξ имеет **нормальное** распределение с параметрами $a, \sigma > 0$, если ее плотность имеет вид

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Смысл параметров распределения: $a=E\xi,\ \sigma$ — среднее квадратическое отклонения. $D=\sigma^2$

Функция распределения

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-a)^2}{2\sigma^2}} dt$$

Обозначение. $\xi \in N_{a,\sigma}$

8.1.4 Стандартное нормальное рапределение

Определение. Стандартным нормальным распределением называется нормальное распределение с параметрами $a=0,\ \sigma=1$ т.е. $\xi\in N_{0,1}$. Плотность

$$\varphi(x) = \frac{1\sqrt{2\pi}^{-\frac{x^2}{2}}}{e}$$

Функиця распределения

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} dz$$

 Π римечание.

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^0 e^{-\frac{z^2}{2}} dz + \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{z^2}{2}} dz = 0.5 + \Phi(x) - \text{функция Лапласса}$$

Примечание. Интеграл Пуассона

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

8.1.5 Связь между нормальным и стандартным нормальным распределениями и ее следствия

Свойство 10. $\xi \in N_{a,\sigma}$. Тогда

$$F_{\xi}(x) = \Phi_{\xi}\left(\frac{x-a}{\sigma}\right)$$

Доказательство.

$$F_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(t-a)^2}{2\sigma^2}} dt$$

Доделать

Свойство 11. Если $\xi \in N_{a,\sigma}$, тогда $\eta = \frac{1-a}{\sigma} \in N_{0,1}$

Доказательство. Доделать

Свойство 12. $\xi \in N_{a,\sigma}$. Тогда $E\xi = a, D\xi = \sigma^2$

Доказательство.

$$\eta = \frac{\xi - a}{\sigma} \in N_{0,1} \Rightarrow E\eta = 0, \ D\eta = 1$$
$$\xi = \sigma\eta + a$$
$$E\xi = \sigma \cdot 0 + a = a$$
$$D\xi = \sigma^2 \cdot 1 = \sigma^2$$

Свойство 13. Вероятность попадания случайной величины в заданый интервал

$$p(\alpha < \xi < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$$

Доказательство.

$$p(\alpha < \xi < \beta) = F_{\xi}(\beta) - F_{\xi}(\alpha) = \Phi_{0}\left(\frac{\beta - a}{\sigma}\right) - \Phi_{0}\left(\frac{\alpha - a}{\sigma}\right) =$$

$$= \left(0, 5 + \Phi\left(\frac{\beta - a}{\sigma}\right)\right) - \left(0, 5 + \Phi\left(\frac{\alpha - a}{\sigma}\right)\right) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$$

Свойство 14. Вероятность отклонения случайной величины от ее среднего значения или попадание в интервал симметричный относительно а

$$p(|\xi - a| < t) = 2\Phi\left(\frac{t}{\sigma}\right)$$

Доказательство.

$$P(|\xi - a| < t) = p(-t < \xi - a < t) = p(a - t < \xi a + t) = \Phi\left(\frac{a + t - a}{\sigma}\right) - \Phi\left(\frac{a - t - a}{\sigma}\right) = \Phi\left(\frac{t}{\sigma}\right) - \Phi\left(-\frac{t}{\sigma}\right) = 2\Phi\left(\frac{t}{\sigma}\right)$$

Доказательство. При замене в этой формуле Phi(x) на $\Phi_0(x)$ получится

$$p(|\xi - a| < t) = 2\Phi_0 \left(\frac{t}{\sigma}\right) - 1$$

Свойство 15 (Правило трех σ).

$$p(|\xi - a| < 3\sigma) \approx 0.9973$$

8.1.6 Коэффиценты асимметрии и эксцесса

Определение. Асимметрией распределения называется число

$$A_{\xi} = E \left(rac{\xi - a}{\sigma}
ight)^3 = rac{N_{a,\sigma}}{\sigma^3}$$
 Исправить

Определение. Эксцессом распределения называется число

$$E_{\xi}=E\left(rac{\xi-a}{\sigma}
ight)^4-3=rac{N_{a,\sigma}}{\sigma^4}-3$$
 Исправить

Примечание. Если $\xi \in N_{a,\sigma^2}$, то $A\xi = 0$ и $E\xi = 0$. Таким образом эти коэффиценты показывают насколько сильно данное распределение отличается от нормального

8.1.7 Гамма функция и гамма распределение

Определение. Гамма функцией Гаусса называется функия

$$\Gamma(\lambda) = \int_0^\infty t^{\lambda - 1} e^{-t} dt$$

Свойство 1.

$$\Gamma(\lambda) = (\lambda - 1) \cdot \Gamma(\lambda - 1)$$

Свойство 2.

$$\Gamma(1) = 1$$

Свойство 3.

$$\Gamma(x) = (x-1)! \quad x \in \mathbb{N}$$

Свойство 4.

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

Определение. Случайная величина ξ имеет гамма распределение с параметрами $\alpha, \lambda > 0$, если ее плотность имеет вид:

$$f_{\xi}(x) = egin{cases} 0 & x < 0 \ rac{lpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda-1} e^{-lpha x} & x \geq 0 \end{cases}$$
 Исправить

$$F_{\xi}(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} \int_{0}^{x} t^{\lambda - 1} e^{-\alpha t} dt \quad x \ge 0$$

Если $\lambda \in \mathbb{N}$, то

$$F_{\xi}(x) = \sum_{k=\lambda}^{\infty} rac{(\alpha x)^k}{x^k} e^{-\alpha x}$$
 Исправить

Обозначение. $\xi \in \Gamma_{\alpha,\lambda}$

Свойство 1. $E\xi = \frac{\lambda}{\alpha}$, $D\xi = \frac{\lambda}{\alpha^2}$

Свойство 2. $\Gamma_{\alpha,\lambda} = E_{\alpha}$

Свойство 3. Доделать

Свойство 4. Если $\xi \in N_{0,1}, \ mo \ \xi^2 \in \Gamma_{\frac{1}{2},\frac{1}{2}}$

Лекция 9

10 апреля

9.1 Сингулярное распределение

Определение. Случайная величина ξ имеет сингулярное распределение, если существует Борелевское множество $B \in \mathfrak{B}$, с нулевой мерой Лебега $\lambda B = 0$, такое что $p(\xi \in B) = 1$, но $\forall x \in B \ p(\xi = x) = 0$

Примечание.

$$\forall x \in B \ p(\xi = x) = 0 \implies p(\xi \in B) = 0$$

Иными словами, при сингулярном распределении, случайная величина распределена на несчетном множестве меры 0

Примечание. Функция распределения — непрерывная функция, по свойству 7 функци распределения.

Пример. Случайная величина ξ , задана функция распределения, которая — лестница Кантора Доделать

Теорема 9.1.1 (Лебега). Пусть $F_{\xi}(x)$ — функция распределения произвольной случайной величины ξ Тогда

$$F_{\xi}(x) = p_1 F_1(x) + p_2 F_2(x) + p_3 F_3(x)$$
 $p_1 + p_2 + p_3 = 1$

, где $F_1(x)$ — фунция дискретного распределения, $F_2(x)$ — функция абсолютно непрерывного распределения, $F_3(x)$ — функция сингулярного распределения. Т.е. все распределения делятся на дискретные, абсолютно непрерывные, сингуряные и их смеси

9.2 Общий взгляд на математическое ожидание

Пусть случайная величина ξ задана на вероятностном пространстве (Ω, \mathcal{F}, p) . Математическим ожиданием случайной величины ξ называется интеграл

Лебега:

$$E\xi = \int_{\Omega} \xi(\omega) dp(\omega) \tag{9.1}$$

, при условии, что данный интеграл существует. Использую интеграл Стилтьеса, эту формулу можно записать в виде:

$$E\xi = \int_{-\infty}^{\infty} x dF_{\xi}(x) \tag{9.2}$$

Из определения интеграла Стилтьеса можно получить геометрическую интерпретацию математического ожидания

Рассмотрим две ситуации:

1. Вероятностное пространство (Ω, \mathcal{F}, p) — дискретное вероятностное пространство, т.е. Ω состоит из н.б.ч.с числа точек. Тогда из 10.1 получаем:

$$E\xi = \sum_{i=1}^{\infty} \xi(\omega_i) p(\omega_i)$$

Пример. Доделать

2. (Ω, \mathcal{F}, p) — непрерывное вероятностное пространство. например $\Omega \subset \mathbb{R}^m, \ \omega = (x_1, x_2, \dots, x_m),$ тогда из 10.2 получаем:

$$E\xi = \iint \cdots \int_{\Omega} \xi(x_1, x_2, \dots, x_m) \cdot p(x_1, x_2, \dots, x_m) dx_1 dx_2 \dots dx_m$$

 $\mathit{Пример}$. В круг радиуса 3 наугад бросается точка, случайная величина ξ , расстояния от центра круга до данной точки. Найти мат. ожидание ξ .

$$\Omega = \{(x,y) | x^2 + y^2 \le 9\}$$
$$\xi = \sqrt{x^2 + y^2}$$
$$p(x,y) = p = const$$

Из условия нормировки:

$$\int_{\Omega} \alpha p(\omega) = 1 \text{ или } \iint_{\Omega} p \, dx \, dy = 1 \implies \frac{1}{9\pi}$$

$$E\xi = \iint_{\Omega} \xi(x,y) \cdot p dx dy = \iint_{\Omega} \sqrt{x^2 + y^2} \frac{1}{9\pi} dx dy =$$

$$= \frac{1}{9\pi} \int_{0}^{\pi} d\varphi \int_{0}^{3} \rho \cdot \rho d\rho = \frac{1}{9\pi} \cdot \pi \cdot \frac{\rho^3}{3} \bigg|_{0}^{3} = 2$$

Исправить

9.3 Преобразование случайных величин

 ξ — случайная величина на $(\Omega, \mathcal{F}, p), g : \mathbb{R} \to \mathbb{R}$. Тогда функция $g(\xi)$

Определение. Функция $g(x): \mathbb{R} \to \mathbb{R}$ — Борелевская функция, если $\forall B \in mathfrak B, \ g^{-1}(B) \in \mathfrak{B}$

Теорема 9.3.1. Если g(x) — Борелевская функция и ξ — случайная величина на (Ω, \mathcal{F}, p) , то $g(\xi)$ — случайная величина на (Ω, \mathcal{F}, p)

Доказательство. Доделать

Примечание. Если ξ — дискретная случайная величина, то ее закон распределения находится просто из определения, поэтому в дальнейшем будем считать, что ξ имеет абсолютно непрерывное распределние

9.3.1 Стандартизация случайной величины

Определение. Пусть имеется случайная величина ξ с соответствующей ей стандортной величиной:

$$\eta = \frac{\xi - E\xi}{\sigma}$$

Свойство 1. $E\eta = 0, \, D\eta = 1$

Доказательство. Доделать

Примечание. При стандартизации тип распределения не всегда сохраняется

9.3.2 Линейное преобразование

Теорема 9.3.2. Пусть случайная величина ξ имеет плотность $f_{\xi}(x)$ Тогда случайная величина $\eta = a\xi + b, \ a \neq 0$ имеет плотность:

$$f_{\eta}(x) = \frac{1}{|a|} \cdot f_{\xi}\left(\frac{x-b}{a}\right)$$

Доказательство.

1. a > 0, тогда:

$$F_{\eta}(x) = p(a\xi + b < x) = p(\xi < \frac{x - b}{a}) = \int_{-\infty}^{\frac{x - b}{a}} f_{\xi}(t)dt$$
$$= \begin{bmatrix} t = \frac{y - b}{a} & dt = \frac{1}{a}dy & y = at + b \\ y(-\infty) = -\infty & y\left(\frac{x - b}{a}\right) = x \end{bmatrix}$$

Доделать

Свойство 1. Если $\xi \in N(0,1)$, то $\eta = \sigma \xi + a \in N(a,\sigma^{-1})$

Доказательство. Доделать

Свойство 2. Если $\eta \in N(a, \sigma^2)$, то $\xi = \frac{\eta - a}{\sigma} \in N(0, 1)$

Свойство 3. Если $\eta \in N(a, \sigma^2)$, то $\xi = \gamma \eta + b \in N(a\gamma + b, \gamma^2 \sigma^2)$

Свойство 4. Если $\xi \in U(0,1), \ mo \ \eta = a\xi + b \in U(b,a+b) \ npu \ a > 0$

Свойство 5. Если $\xi \in E_{\alpha}$, то $\eta = \alpha \xi \in E_1$

Теорема 9.3.3. Пусть $f_{\xi}(x)$ — плотность случайной величины ξ и функция (x) — монотонная. Тогда существует обратная $h(t)=g^{-1}(x)$ и случайная величина $\eta=g(\xi)$ имеет плотность:

$$f_{\eta}(x) = \frac{1}{|h'(x)|} f_{\xi}(h(x))$$

9.3.3 Квантильное преобразование

Теорема 9.3.4. Пусть функция распределения F(x) случайной величины ξ — непрерывная, тогда случайная величина $\eta = F(\xi) \in U(0,1)$ — имеет стандартное равномерное распределение

Доказательство. Ясно, что $0 \le \eta \le 1$

1. Предположим сначала, что F(x) — строго возрастающая функция. Тогда она имеет обратную функцию $F^{-1}(x)$ и

$$F_{\eta}(x) = p(F(\xi) < x) = p(\xi < F^{-1}(x)) = \begin{cases} 0 & x < 0 \\ F(F^{-1}(x)) = x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

$$\implies \eta \in U(0,1)$$

2. Пусть функция не является строго возрастающей, т.е. у нее есть интервалы постоянства, в этом случае через $F^{-1}(x)$ обозначим, самую левую точку такого интервала:

$$F^{-1}(x) = \min_{t} \{t | F(t) = x\}$$

— корректно, т.к. F(x) непрерывна слева. Тогда снова будет верна цепочка:

$$F_{\eta}(x) = p(F(\xi) < x) = p(\xi < F^{-1}(x)) = F(F^{-1}(x)) = x \quad 0 \le x \le 1$$

Сформулируем теперь обратную теорему:

Пусть F(x) — функция распределения случаайной величины ξ , при чем не обязательно непрерывная. Обозначим через $F^{-1}(x)=\inf\{t\Big|F(t)\geq x\}$

Теорема 9.3.5. Пусть $\eta \in U(0,1), F(x)$ — произвольная функция распреления.

Тогда случайная величина $\xi = F^{-1}(\eta)$ имеет функцию распределения F(x)

 $\Pi pume\mbox{-}anue.\ F^{-1}(\eta)$ называется квантильным преобразованием над случайной величиной η

Следствие 9.3.5.2. Датчики случайных чисел обычно имеют стандартное равномерное распределение. Из теоремы следует, что при помощи датчика случайных числе и квантильного преобразования, мы можем смоделировать любое желаемое распределение, в том числе дискретное.

Пример. E_{α} :

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\alpha x} & x \ge 0 \end{cases}$$
$$\eta = 1 - e^{-\alpha x} \implies x = -\frac{1}{\alpha} \ln(1 - \eta)$$

Если $\eta \in U(0,1),$ то $\xi = \frac{1}{\alpha} \ln(1-\eta) \in E_{\alpha}$

 Π ример. N(0,1):

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} dz$$

$$\Phi_0^{-1} \in N(0, 1)$$

Лекция 10

17 апреля

10.1 Сингулярное распределение

Определение. Случайная величина ξ имеет сингулярное распределение, если существует Борелевское множество $B \in \mathfrak{B}$, с нулевой мерой Лебега $\lambda B = 0$, такое что $p(\xi \in B) = 1$, но $\forall x \in B \ p(\xi = x) = 0$

Примечание.

$$\forall x \in B \ p(\xi = x) = 0 \implies p(\xi \in B) = 0$$

Иными словами, при сингулярном распределении, случайная величина распределена на несчетном множестве меры 0

Примечание. Функция распределения — непрерывная функция, по свойству 7 функци распределения.

Пример. Случайная величина ξ , задана функция распределения, которая — лестница Кантора Доделать

Теорема 10.1.1 (Лебега). Пусть $F_{\xi}(x)$ — функция распределения произвольной случайной величины ξ Тогда

$$F_{\xi}(x) = p_1 F_1(x) + p_2 F_2(x) + p_3 F_3(x)$$
 $p_1 + p_2 + p_3 = 1$

, где $F_1(x)$ — фунция дискретного распределения, $F_2(x)$ — функция абсолютно непрерывного распределения, $F_3(x)$ — функция сингулярного распределения. Т.е. все распределения делятся на дискретные, абсолютно непрерывные, сингуряные и их смеси

10.2 Общий взгляд на математическое ожидание

Пусть случайная величина ξ задана на вероятностном пространстве (Ω, \mathcal{F}, p) . Математическим ожиданием случайной величины ξ называется интеграл

Лебега:

$$E\xi = \int_{\Omega} \xi(\omega) dp(\omega) \tag{10.1}$$

, при условии, что данный интеграл существует. Использую интеграл Стилтьеса, эту формулу можно записать в виде:

$$E\xi = \int_{-\infty}^{\infty} x dF_{\xi}(x) \tag{10.2}$$

Из определения интеграла Стилтьеса можно получить геометрическую интерпретацию математического ожидания

Рассмотрим две ситуации:

1. Вероятностное пространство (Ω, \mathcal{F}, p) — дискретное вероятностное пространство, т.е. Ω состоит из н.б.ч.с числа точек. Тогда из 10.1 получаем:

$$E\xi = \sum_{i=1}^{\infty} \xi(\omega_i) p(\omega_i)$$

Пример. Доделать

2. (Ω, \mathcal{F}, p) — непрерывное вероятностное пространство. например $\Omega \subset \mathbb{R}^m, \ \omega = (x_1, x_2, \dots, x_m),$ тогда из 10.2 получаем:

$$E\xi = \iint \cdots \int_{\Omega} \xi(x_1, x_2, \dots, x_m) \cdot p(x_1, x_2, \dots, x_m) dx_1 dx_2 \dots dx_m$$

 $\mathit{Пример}$. В круг радиуса 3 наугад бросается точка, случайная величина ξ , расстояния от центра круга до данной точки. Найти мат. ожидание ξ .

$$\Omega = \{(x,y) | x^2 + y^2 \le 9\}$$
$$\xi = \sqrt{x^2 + y^2}$$
$$p(x,y) = p = const$$

Из условия нормировки:

$$\int_{\Omega} \alpha p(\omega) = 1 \text{ или } \iint_{\Omega} p \, dx \, dy = 1 \implies \frac{1}{9\pi}$$

$$E\xi = \iint_{\Omega} \xi(x,y) \cdot p dx dy = \iint_{\Omega} \sqrt{x^2 + y^2} \frac{1}{9\pi} dx dy =$$

$$= \frac{1}{9\pi} \int_{0}^{\pi} d\varphi \int_{0}^{3} \rho \cdot \rho d\rho = \frac{1}{9\pi} \cdot \pi \cdot \frac{\rho^3}{3} \bigg|_{0}^{3} = 2$$

Исправить

10.3 Преобразование случайных величин

 ξ — случайная величина на $(\Omega, \mathcal{F}, p), g : \mathbb{R} \to \mathbb{R}$. Тогда функция $g(\xi)$

Определение. Функция $g(x): \mathbb{R} \to \mathbb{R}$ — Борелевская функция, если $\forall B \in mathfrak B, \ g^{-1}(B) \in \mathfrak{B}$

Теорема 10.3.1. Если g(x) — Борелевская функция и ξ — случайная величина на (Ω, \mathcal{F}, p) , то $g(\xi)$ — случайная величина на (Ω, \mathcal{F}, p)

Доказательство. Доделать

Примечание. Если ξ — дискретная случайная величина, то ее закон распределения находится просто из определения, поэтому в дальнейшем будем считать, что ξ имеет абсолютно непрерывное распределние

10.3.1 Стандартизация случайной величины

Определение. Пусть имеется случайная величина ξ с соответствующей ей стандортной величиной:

$$\eta = \frac{\xi - E\xi}{\sigma}$$

Свойство 1. $E\eta = 0, \, D\eta = 1$

Доказательство. Доделать

Примечание. При стандартизации тип распределения не всегда сохраняется

10.3.2 Линейное преобразование

Теорема 10.3.2. Пусть случайная величина ξ имеет плотность $f_{\xi}(x)$ Тогда случайная величина $\eta = a\xi + b, \ a \neq 0$ имеет плотность:

$$f_{\eta}(x) = \frac{1}{|a|} \cdot f_{\xi}\left(\frac{x-b}{a}\right)$$

Доказательство.

1. a > 0, тогда:

$$F_{\eta}(x) = p(a\xi + b < x) = p(\xi < \frac{x - b}{a}) = \int_{-\infty}^{\frac{x - b}{a}} f_{\xi}(t)dt$$
$$= \begin{bmatrix} t = \frac{y - b}{a} & dt = \frac{1}{a}dy & y = at + b \\ y(-\infty) = -\infty & y\left(\frac{x - b}{a}\right) = x \end{bmatrix}$$

Доделать

Свойство 1. Если $\xi \in N(0,1)$, то $\eta = \sigma \xi + a \in N(a,\sigma^{-1})$

Доказательство. Доделать

Свойство 2. Если $\eta \in N(a, \sigma^2)$, то $\xi = \frac{\eta - a}{\sigma} \in N(0, 1)$

Свойство 3. Если $\eta \in N(a, \sigma^2)$, то $\xi = \gamma \eta + b \in N(a\gamma + b, \gamma^2 \sigma^2)$

Свойство 4. Если $\xi \in U(0,1), \ mo \ \eta = a\xi + b \in U(b,a+b) \ npu \ a > 0$

Свойство 5. Если $\xi \in E_{\alpha}$, то $\eta = \alpha \xi \in E_1$

Теорема 10.3.3. Пусть $f_{\xi}(x)$ — плотность случайной величины ξ и функция (x) — монотонная. Тогда существует обратная $h(t) = g^{-1}(x)$ и случайная величина $\eta = g(\xi)$ имеет плотность:

$$f_{\eta}(x) = \frac{1}{|h'(x)|} f_{\xi}(h(x))$$

10.3.3 Квантильное преобразование

Теорема 10.3.4. Пусть функция распределения F(x) случайной величины ξ — непрерывная, тогда случайная величина $\eta = F(\xi) \in U(0,1)$ — имеет стандартное равномерное распределение

Доказательство. Ясно, что $0 \le \eta \le 1$

1. Предположим сначала, что F(x) — строго возрастающая функция. Тогда она имеет обратную функцию $F^{-1}(x)$ и

$$F_{\eta}(x) = p(F(\xi) < x) = p(\xi < F^{-1}(x)) = \begin{cases} 0 & x < 0 \\ F(F^{-1}(x)) = x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

$$\implies \eta \in U(0,1)$$

2. Пусть функция не является строго возрастающей, т.е. у нее есть интервалы постоянства, в этом случае через $F^{-1}(x)$ обозначим, самую левую точку такого интервала:

$$F^{-1}(x) = \min_{t} \{t | F(t) = x\}$$

— корректно, т.к. F(x) непрерывна слева. Тогда снова будет верна цепочка:

$$F_{\eta}(x) = p(F(\xi) < x) = p(\xi < F^{-1}(x)) = F(F^{-1}(x)) = x \quad 0 \le x \le 1$$

Сформулируем теперь обратную теорему:

Пусть F(x) — функция распределения случаайной величины ξ , при чем не обязательно непрерывная. Обозначим через $F^{-1}(x)=\inf\{t\Big|F(t)\geq x\}$

Теорема 10.3.5. Пусть $\eta \in U(0,1), F(x)$ — произвольная функция распределения.

Тогда случайная величина $\xi = F^{-1}(\eta)$ имеет функцию распределения F(x)

 $\Pi pume\mbox{-}anue.\ F^{-1}(\eta)$ называется квантильным преобразованием над случайной величиной η

Следствие 10.3.5.3. Датчики случайных чисел обычно имеют стандартное равномерное распределение. Из теоремы следует, что при помощи датчика случайных числе и квантильного преобразования, мы можем смоделировать любое желаемое распределение, в том числе дискретное.

Пример. E_{α} :

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\alpha x} & x \ge 0 \end{cases}$$
$$\eta = 1 - e^{-\alpha x} \implies x = -\frac{1}{\alpha} \ln(1 - \eta)$$

Если $\eta \in U(0,1),$ то $\xi = \frac{1}{\alpha} \ln(1-\eta) \in E_{\alpha}$

 Π ример. N(0,1):

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} dz$$

$$\Phi_0^{-1} \in N(0, 1)$$