Gradient Descent in Practice II: Learning Rate

Multivariate Linear Regression

Linear Regression with Multiple Variables

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Gradient descent not working.

Use smaller α .

Gradient descent not working.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Exercise

• Suppose a friend ran gradient descent three times, with

•
$$\alpha$$
=0.01,

•
$$\alpha$$
=0.1,

•
$$\alpha$$
=1,

• and got the following three plots (labeled A, B, and C):

• Which plots corresponds to which values of α ?

	•	A	В	С
Α		0.01	0.1	1
В		0.1	0.01	1
С		1	0.1	0.01
D		1	0.01	0.1

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try

$$\dots, 0.001,$$

$$,1,\ldots$$

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge also possible)

To choose α , try

$$\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.03, 1, \dots$$