Foundations of Software Development Unit 3: Systems Analysis and Design

Dr. Priti Sajja Professor

Department of Computer Science S P University, Vallabh Vidyanagar

- Name: Dr. Priti Srinivas Sajja
- Communication:
- Email: priti@pritisajja.info
- Mobile: +91 98249 26020
- URL: http://pritisajja.info
- Academic qualifications: Ph. D in Computer Science
- Thesis title: Knowledge-Based Systems for Socio-
- Economic Development
- Subject area of specialization: Artificial Intelligence
- Publications: 219 in Books, Book Chapters, Journals and in Proceedings of International and National Conferences.

Unit 3: Systems Analysis and Design

- The concept of a System, Basic Components
- Phases of the Classical Systems Development Life Cycle (SDLC) Method
- The Prototype methods
- The structured development approach using Functional Decomposition Diagram (FDD), Data Flow Diagram (DFD)

General Diagram of System

Structure of a system:

Input: Input includes those elements that enters into a system. Examples

are raw materials, cost and resources

Processes: All the elements necessary to convert the input into output are

included in the process. Examples are procedures, tools,

decisions, activities etc.

Output: Outputs describes the finished products or the consequences of

being in the system. (results). Examples are service, finished

product or profit.

Feedback: Flow of information from output component to the decision maker

concerning the system output or performance.

Environment: (No output, no input, no process) Elements outside the system.

Examples are customers, Govt., Banks

Boundary: A system is separated from its environment by its boundary. It may

be physical (e.g. building) or conceptual(e.g.. Time)

Systems Analysis and Design Overview:

- Improving business through better procedures and methods
 - Not for **profit** only
 - Not for **computerization**
 - Not to decide the **<u>change</u>** of info. Systems
 - But for better quality of procedures

What

• Analysis: Process of gathering & interpreting facts and diagnosing problems and using the information to recommend improvements to the system.

Systems Analyst Work:

- Systems Analysis only
- Systems Analysis and Design
- Systems Analysis, Design and Programming

Users:

- Hands on End User → clerk and operational staff
- Indirect End User → supervisor
- User Manager → manager
- Senior Manager → MD

Closed and Open Systems:

• An open system relay on its environment for input and/or feedback. It may exchange information, material or energy.

• A Close system rely on itself(independent) and do not interact with its environment.

 Special type of closed system are known as black box, where process is not well defined.

Closed Vs. Open Inventory System

- Cost and constant lead time
- Vendors and users are excluded from the analysis
- Weather and other environmental factors are ignored

- Variable demand
- Vendors and users are being considered
- Weather and other environmental factors are determining demand and lead time

Approaches:

-to develop computer information system:

• Systems Development Life Cycle Method (Classical or Linear Approach)

• Structured Analysis Development Method

Systems Prototype Method

Systems Development Life Cycle Method

Preliminary investigation:

- Request Clarification
- Feasibility Study
 - Technical feasibility(equipments, technology etc.)
 - Economic feasibility(costs, benefits etc.)
 - Operational feasibility(usage, implementation etc.)
- Request Approval (cost, priority and completion time is estimated now)

Requirements Determination:

- Requirements Anticipation
 - Mixed Blessings
- Requirements Investigations
 - Interview (Structured and Unstructured)
 - Questionnaire (Open end and Close end)
 - Record Review
 - Observation
 - Prototype
- Requirements Specifications
 - Decision Tree
 - Decision Table
 - Structured English

Design of system:

Meeting the requirements

Logical Design and Physical Design

Considering data to input, calculated or stored

Results in design specifications using charts, tables and symbols

...Designers have to assist programmers also.

Development of system:

- Decision: Buy or make?
- Documentation

Documentation is essential in testing and continuing maintenance, if needed

Coding

System testing:

- Unit test and test cases
- Integration testing
- Implementing and Testing directly

Implementation & Evaluation:

- Putting new tools into use...
- Parallel implementation with existing system if any
- Time bound implementation

Implementation & Evaluation:

Operational Evaluation:

• Systems functions, ease of use, response time, representation format and reliability

Organizational impact:

• Benefits, cost, revenue and profits, operational efficiency, impact on internal and external information flows.

User manager assessments:

• Attitudes of senior and user managers and end users.

Development performance:

• Overall development time and efforts, comparison with the standards and budgets.

Systems Prototype Method:

Systems Prototype Method:

- It is a working system/pilot or test model
- Used when high risk, high cost and requirements are not known
- It is an iterative as well as interactive process.
- After testing the model
 - Prototype is redeveloped
 - Implemented
 - Modified
 - Abandoned
- Speed is important with prototype

Structured Approach

Function Decomposition Diagram

Function Decomposition Diagram An Example

Function Decomposition Diagram An Example

Function Decomposition Diagram An Example

Data Flow Diagrams

Symbols of data flow diagrams (DFD)

Symbol description	Yourdon and Constantine method	Gane and Sarson method
Dataflow: shows flow of data from one entity to another entity. It must be labeled	-	—
Process: describes how data are used and processed		
Source or sink: is the external resources that initiate request/query and get the results		
Data stores: stores data in predefined form by a process. It can be in an electronic form or not		

. . .

Example of FDD and DFD: Inventory

Function Decomposition Diagrams

Example of Data Flow Diagrams

Context-level DFD of the inventory example

Next-level DFD of the inventory example

Case Homoeopathy Patient Management System

Function Decomposition Diagram (FDD)

Case Homoeopathy Patient Management System

Context Level Data Flow Diagram (DFD)

Homoeopathy Patient Management System

Homoeopathy Patient Management System

Physical and Logical DFDs

Logical DFDs	Physical DFDs
Logical DFD is an implantation-independent	Physical DFD is the implementation-dependent
view of the current system	view of the current system
Logical DFD focuses on the flow of data between processes and focuses on conceptual working of the system instead of giving importance to the physical entities related to the system	It contains physical information about the system such as people, tasks, location information, names of documents, departments, equipment, devices, and related procedures
Logical DFD is more abstract in nature (in comparison with the physical DFDs)	Physical DFDs are comparatively more specific

Data Dictionary

- A data dictionary is a repository of elements in a system in an organized form.
- It contains systematic information regarding external entities, data stores, data flows, and processes.
- Often the data dictionary is compiled by Systems Analyst manually or by Computer-Aided Systems Engineering (CASE) tool automatically in parallel to the systems development.

Data Dictionary Uses

- DD is used to
- Manages details
- Documents information about systems components
- Facilitates analysis and other systems development activities
- Serves as a platform for testing and cross verification by locating errors and
- omissions
- Communicates with the developers and users

Data Dictionary

DD contains

- Data names
- Data descriptions
- Aliases
- Length, type and permissible values
- Data structures
 - Sequential (first name, middle name...)
 - Iterative (marks)
 - Optional (PAN no.)

References

- Sajja, P.S. "Essence of Systems Analysis and Design: A Workbook Approach", Springer International Publishing, Singapore, 2017
- Amazinganimations.com
- Presentermedia.com