Temporal and spatial variations of PM2 and PM10 concentrations in Mongolia

Erdenebayar Munkhtsetseg^{1,2}, Atsushi Shimizu³

4	¹ National University of Mongolia (NUM), Mongolia,
5	² Kanazawa University, Japan,
6	³ National Institute for Environmental Studies (NIES), Japan

Corresponding author: Atsushi Shimizu, shimizua@nies.go.jp

Abstract

- 8 PM2.5 and PM10 data for the 4 distinct sites of Mongolia from 2008 to 2020 is
- o found

10 Plain Language Summary

- PM2.5 and PM10 data for the 4 distinct sites of Mongolia from 2008 to 2020 is
- 12 found ...
- 0.1 Data & Methods
- 1 01_datawork
- 15 Munkhtsetseg
- 16 Library

21

1.1 Import the dataset and remove the duplicates

- Import the dataset from the directory of: ~/Data Input/Preprocessing data/Preprocessing
- data.csv, assign the dataset as object of df:
- Remove the duplicates with the function of distinct(), assign the dataset as df_01:

1.2 Produce a table with missing data

1.2.0.1 For date options as year, month, etc:

- # A tibble: 35 × 9
- # Groups: Station.name [4]

25		Station.name	Year	NA_date	NA_PM2	NA_PM10	NA_Vis	NA_WD	NA_WS	NA_OPC
26		<chr></chr>	<int></int>							
27	1	Dalanzadgad	2009	8760	715	929	659	748	748	8760
28	2	Dalanzadgad	2010	8784	921	1086	756	787	787	8784
29	3	Dalanzadgad	2011	8760	2652	3309	1759	2394	2394	8760
30	4	Dalanzadgad	2012	5088	1074	3016	693	1412	1412	5088
31	5	Dalanzadgad	2013	6096	1766	1809	2479	1240	1240	6096
32	6	Dalanzadgad	2014	7800	843	921	6068	1482	1482	7800
33	7	Dalanzadgad	2015	8760	1539	1587	8115	2635	2635	8760
34	8	Dalanzadgad	2016	6288	1654	1613	5995	3306	3306	6288
35	9	Sainshand	2009	8688	376	424	423	587	587	8688
36	10	Sainshand	2010	8784	2557	2577	1113	1210	1210	8784

- $_{37}$ # 25 more rows
- 1.2.0.2 For station
- 39 # A tibble: 4 × 8

40		${\tt Station.name}$	NA_date	NA_PM2	NA_PM10	${\tt NA_Vis}$	NA_WD	NA_WS	NA_OPC
41		<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
42	1	Dalanzadgad	60336	11164	14270	26524	14004	14004	60336
43	2	Sainshand	59040	11727	11929	9320	8527	8527	59040
44	3	UB	76656	7879	8716	3770	4053	4053	43415
45	4	Zamvnuud	67392	8880	10075	3444	4960	4960	67392

46 1.2.1 By percentages

- 47 # A tibble: 4 × 6
 - # Groups: Station.name [4]

49		Station.name	missing_PM2	${\tt missing_PM10}$	${\tt missing_Vis}$	${\tt missing_WS}$	missing_WD
50		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
51	1	Dalanzadgad	25.7	19.2	44.5	24.3	24.3
52	2	Sainshand	20.0	19.7	15.7	14.6	14.6
53	3	UB	11.9	11.0	4.53	4.85	4.85
54	4	Zamvnuud	14.4	12.7	5.49	7.44	7.44

1.3 Note that:

- We use the data in the period of 2009-2018, which has been regarded as a monitor-
- ing work stabilized since 2008 when is the beginning of the monitoring. According to
- NIES, site maintenance was consistent up to 2018.
- +Sainshand site, data 2009-2015 get used; + Dalanzad site: 2009-2016. + UB: 2009-
- 60 2018 + Zamyn uud: 2009-2018

2 Remove the spikes, and produce an extended table

- Remove the spikes in the datasets, and produce the table with NA, with removed
- spikes; express it in a percentages. ### Remove the spikes Method 1. Mean value
- + (3-5)SD Find Monthly mean
 - # A tibble: 1,798 × 12

65

66		Year	${\tt Month}$	Day	Hour	PM2	PM10	Visibility	WD	WS	OPC	Station.name
67		<int $>$	<int></int>	<int></int>	<int $>$	<chr>></chr>	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<chr></chr>
68	1	2009	1	2	17	${\tt Outl}$	0.29	3622	141	0.524	NA	UB
69	2	2009	1	3	12	${\tt Outl}$	0.446	2399	109	0.117	NA	UB
70	3	2009	1	3	13	${\tt Outl}$	0.288	1347	17	0.492	NA	UB
71	4	2009	1	3	14	${\tt Outl}$	0.504	1241	12	0.829	NA	UB
72	5	2009	1	3	15	${\tt Outl}$	0.478	1341	11	0.39	NA	UB
73	6	2009	1	3	16	${\tt Outl}$	0.449	2945	136	0.123	NA	UB
74	7	2009	1	3	18	Out1	0.341	1436	13	0.742	NA	UB
75	8	2009	1	3	19	${\tt Outl}$	0.397	1847	13	0.453	NA	UB
76	9	2009	1	3	20	${\tt Outl}$	0.297	3359	22	0.462	NA	UB
77	10	2009	1	4	2	${\tt Outl}$	0.311	3167	96	0.759	NA	UB

- 78 # 1,788 more rows
- # 1 more variable: Date <chr>
- # A tibble: 4,014 × 12

81		Year	${\tt Month}$	Day	Hour	PM2	PM10	Visibility	WD	WS	OPC	${\tt Station.name}$
82		<int></int>	<int></int>	<int></int>	<int></int>	<chr>></chr>	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<chr></chr>
83	1	2009	1	3	15	${\tt Outl}$	0.292	3444	119	0.856	NA	Dalanzadgad
84	2	2009	1	5	13	${\tt Outl}$	0.419	1383	260	1.7	NA	Dalanzadgad
85	3	2009	1	5	14	${\tt Outl}$	0.415	1072	266	1.84	NA	Dalanzadgad
86	4	2009	1	5	15	${\tt Outl}$	0.466	1099	261	0.83	NA	Dalanzadgad
87	5	2009	1	5	16	${\tt Outl}$	0.509	1814	260	0.788	NA	Dalanzadgad
88	6	2009	1	6	0	${\tt Outl}$	0.547	744	248	1.23	NA	Dalanzadgad
89	7	2009	1	6	1	${\tt Outl}$	0.728	1093	277	0.738	NA	Dalanzadgad
90	8	2009	1	6	2	${\tt Outl}$	0.597	1723	0	1.62	NA	Dalanzadgad
91	9	2009	1	6	3	${\tt Outl}$	0.33	8186	95	1.1	NA	Dalanzadgad
92	10	2009	1	6	11	Out1	0.39	1150	258	1.48	NA	Dalanzadgad

- 93 # 4,004 more rows
- 94 # 1 more variable: Date <chr>
- 95 2.1 Save dataset in folder: 01_data_raw
- 3 Tidy data
- 3.1 Fill the missing data
- Method 1. Fill the gap Method 2. Relationship equation Method 3. Look-up table
- 99 3.2 Save dataset in folder: 02_data_tidy
- Source: 01_datawork
- 3.3 Introduction
- Source: Article Notebook

Figure 1: Timeline of recent earthquakes on La Palma

103 Source: Article Notebook

104 Source: Article Notebook

115

116

Based on data up to and including 1971, eruptions on La Palma happen every 79.8 years on average.

Studies of the magma systems feeding the volcano, such as Marrero et al. (2019), have proposed that there are two main magma reservoirs feeding the Cumbre Vieja volcano; one in the mantle (30-40km depth) which charges and in turn feeds a shallower crustal reservoir (10-20km depth).

Eight eruptions have been recorded since the late 1400s (Figure 1).

Data and methods are discussed in Section 0.1.

Let x denote the number of eruptions in a year. Then, x can be modeled by a Poisson distribution

$$p(x) = \frac{e^{-\lambda}\lambda^x}{x!} \tag{1}$$

where λ is the rate of eruptions per year. Using Equation 1, the probability of an eruption in the next t years can be calculated.

Table 1: Recent historic eruptions on La Palma

Name	Year
Current	2021
Teneguía	1971
Nambroque	1949
El Charco	1712
Volcán San Antonio	1677
Volcán San Martin	1646
Tajuya near El Paso	1585
Montaña Quemada	1492

Table 1 summarises the eruptions recorded since the colonization of the islands by Europeans in the late 1400s.

La Palma is one of the west most islands in the Volcanic Archipelago of the Canary Islands (Figure 2).

Figure 2: Map of La Palma

Figure $\,$ 3: Locations of earthquakes on La Palma since 2017

- Source: Explore Earthquakes
- 122 kk

121

123

- 4 Explore Earthquakes
- Munkhtsetseg

Library 125

126

130

131

5 Import the dataset and remove the duplicates

Import the dataset from the directory of: ~/Data Input/Preprocessing data/Preprocessing 127 data.csv, assign the dataset as object of df: 128

Remove the duplicates with the function of distinct(), assign the dataset as df_01:

5.1 Produce a table with missing data

For date options as year, month, etc:

```
# A tibble: 52 \times 9
132
133
```

Groups: Station.name [4]

134		Station.name	Vear	NA date	MA DMO	NA PM10	NA Vie	MA WD	NA WS	NA OPC
134				_	_	_	_	_	_	_
135		<chr></chr>	<int></int>							
136	1	Dalanzadgad	2008	4630	1543	1672	1463	1566	1566	4630
137	2	Dalanzadgad	2009	8760	715	929	659	748	748	8760
138	3	Dalanzadgad	2010	8784	921	1086	756	787	787	8784
139	4	Dalanzadgad	2011	8760	2652	3309	1759	2394	2394	8760
140	5	Dalanzadgad	2012	5088	1074	3016	693	1412	1412	5088
141	6	Dalanzadgad	2013	6096	1766	1809	2479	1240	1240	6096
142	7	Dalanzadgad	2014	7800	843	921	6068	1482	1482	7800
143	8	Dalanzadgad	2015	8760	1539	1587	8115	2635	2635	8760
144	9	Dalanzadgad	2016	6288	1654	1613	5995	3306	3306	6288
145	10	Dalanzadgad	2017	3264	36	45	3264	3264	3264	3264

42 more rows

For station 147

```
# A tibble: 4 \times 8
148
```

```
Station.name NA_date NA_PM2 NA_PM10 NA_Vis NA_WD NA_WS NA_OPC
149
        <chr>
                       <int>
                              <int>
                                      <int>
                                             <int> <int> <int>
150
     1 Dalanzadgad
                       69454
                              13081
                                      16327
                                              32475 20058 20058 69454
151
152
     2 Sainshand
                      101230
                              27588
                                      36117
                                              28986 13768 13768 101230
     3 UB
                       95662
                              7895
                                       8785
                                               3775
                                                    4121
                                                           4121
153
                       99742 32281
                                      33597
     4 Zamynuud
                                              22525 5373 5373
154
```

By percentages 155

169

```
# A tibble: 4 \times 2
156
```

Groups: Station.name [4] 157

Station.name sdq 158 <chr> <dbl> 159 1 Dalanzadgad 10.7 160 2 Sainshand 25.9 161 3 UB 17.9 162 4 Zamynuud 39.6 163

Note that the echo = FALSE parameter was added to the code chunk to prevent 164 printing of the R code that generated the plot. 165

6 Remove the spikes, and produce an extended table

Remove the spikes in the datasets, and produce the table with NA, with removed 167 spikes; express it in a percentages. 168

6.0.1 Remove the spikes Method 1. Mean value +- (3-5)SD

Method 2. Seasonal variations, and trend-mean 170

6.1 Save dataset in folder: 01_data_raw

7 Tidy data

172

173

175

176

177

7.1 Fill the missing data

Method 1. Fill the gap Method 2. Relationship equation Method 3. Look-up table

7.2 Save dataset in folder: 02_data_tidy

Read a clean version of data:

Create spatial plot:

Figure 4: Locations of earthquakes on La Palma since 2017

Source: Explore Earthquakes

Figure 4 shows the location of recent Earthquakes on La Palma.

7.3 Results

178

179

180

183

185

186

187

7.4 Discussion

7.5 Conclusions

References

Marrero, J., García, A., Berrocoso, M., Llinares, Á., Rodríguez-Losada, A., & Ortiz, R. (2019). Strategies for the development of volcanic hazard maps in monogenetic volcanic fields: The example of La Palma (Canary Islands). *Journal of Applied Volcanology*, 8. https://doi.org/10.1186/s13617-019-0085-5