**30** A beam of light of a single wavelength is incident normally on a diffraction grating.

The angle of diffraction  $\theta$  is measured for each order of diffraction n. The distance between adjacent slits in the diffraction grating is d.

A graph is plotted to determine the wavelength of the light.

Which graph should be plotted and how is the wavelength determined from the graph?

|   | <i>y</i> -axis | <i>x</i> -axis | wavelength |
|---|----------------|----------------|------------|
| Α | n              | $d\sin	heta$   | gradient   |
| В | n              | $d\sin	heta$   | 1/gradient |
| С | $\sin	heta$    | d/n            | gradient   |
| D | $\sin	heta$    | $d \times n$   | 1/gradient |

31 A particle has a charge of  $+2.0\,\text{mC}$  and is in a vertical uniform electric field. An electric force of  $1.0\times10^{-2}\,\text{N}$  acts upwards on the particle.

What is the electric field strength?

- **A** 0.20 V m<sup>-1</sup> downwards
- **B**  $0.20\,\mathrm{V\,m^{-1}}$  upwards
- **C** 5.0 V m<sup>-1</sup> downwards
- **D**  $5.0\,\mathrm{V\,m^{-1}}$  upwards
- 32 The diagram shows two parallel metal plates connected to a d.c. power supply through a resistor.



There is a uniform electric field in the region between the plates.

Which change would cause a **decrease** in the strength of the electric field?

- **A** a small increase in the distance between the plates
- **B** a small increase in the potential difference between the plates
- **C** a small increase in the resistance of the resistor
- **D** a small increase to the area of both plates