BioSolveAl

Predicting Molecule Solubility

Raiyann Jacob, Shahd Abu Gharbieh, Tanish Sharma

Problem

AQSoIDB: 9,982 molecular compounds, 26 attributes

SMILES: Compact String Representation

SMILES to RDKit "Mol" Object

Histogram of Yeo-Johnson Transformed Solubility (Outliers removed)

Baseline Model

XGBoost Regression Model

GNN Architecture

Initial Molecule Tensor Representation

"Graph Tensors"

Glucose 6-Phosphate 260.136 g/mol $U = 1 \times 1$ $X = 16 \times 6$ DOUBLE CYCLIC $A = 16 \times 16$ $E = 16 \times 3$

```
# Node features (X)
atom_features = []
for atom in mol.GetAtoms():
    atom_features.append([
        atom.GetAtomicNum(),
        atom.GetIsAromatic(),
        atom.GetDegree(),
        atom.GetFormalCharge(),
        atom.GetTotalNumHs(),
        atom.IsInRing()
    ])
```

```
# Edge features (E)
bond_type_to_idx = {
   Chem.rdchem.BondType.SINGLE: 0,
   Chem.rdchem.BondType.DOUBLE: 1,
   Chem.rdchem.BondType.TRIPLE: 2,
   Chem.rdchem.BondType.AROMATIC: 3,
}
```

GNN Architecture

Hyperparameter Tuning

- LayerNorm
- Dropout
- Learning Rate Decay
- AdamW (Adam L2 Regularized)
- Xavier Weight Initialization

Final hyperparams

```
BATCH_SIZE = 32

EPOCHS = 60

LEARNING_RATE = 0.00089355

WEIGHT_DECAY = 0.006956
```

Bayesian Optimization

Evaluation

Model	RMSE	95% CI	R2	95% CI
XGBoost Regression	1.2430	[1.1644, 1.3171]	0.7297	[0.6927, 0.7641]
BioSolveAl GNN	0.4362	[0.4103, 0.4606]	0.7144	[0.6743, 0.7509]

Interpretability - Single Sample

Sample Molecule

Prediction: -0.7181, True Value: -0.7026

Interpretability - Multiple Samples

Interpretability - Node Attribution Pattern

Next Steps

Hypertune number of GINEConv layers

Account for intermolecular forces