Project Euler #210: Obtuse Angled Triangles

This problem is a programming version of Problem 210 from projecteuler.net

Consider the set S(r) of points (x,y) with integer coordinates satisfying $|x|+|y|\leq r$.

Let a,b,n,r be natural numbers and let A be the point $(\frac{a}{b},\frac{a}{b})$ and B the point $(2n-\frac{a}{b},2n-\frac{a}{b})$.

Let N(r,a,b,n) be the number of points C in S(r), so that the triangle ABC has an obtuse angle, i.e. the largest angle α satisfies $90^{\circ} < \alpha < 180^{\circ}$.

So, for example, N(8,0,1,1)=100. Given a, b, n and r, what is N(r,a,b,n)?

Input Format

The only line of the input contains exactly three space-separated integers: r, a, b, n.

Constraints

- $1 < r \le 10^9$.
- b > 0.
- The points A and B both lie within S(r).

Output Format

Print one line containing the answer.

Sample Input 0

8011

Sample Output 0

100

Sample Input 1

17 3 7 2

Sample Output 1

486

Sample Input 2

15 -13 10 1

Sample Output 2

364

Sample Input 3

17 -5 13 3

Sample Output 3

438