Introduction to Optimization, and Optimality Conditions for Unconstrained Problems

Robert M. Freund February, 2004

2004 Massachusetts Institute of Technology.

1 Preliminaries

1.1 Types of optimization problems

Unconstrained Optimization Problem:

$$(P) \quad \min_{x} \quad f(x)$$
 s.t. $x \in X$,

where $x = (x_1, \dots, x_n) \in \Re^n$, $f(x) : \Re^n \to \Re$, and X is an open set (usually $X = \Re^n$).

We say that x is a feasible solution of (P) if $x \in X$.

Constrained Optimization Problem:

(P)
$$\min_x \quad f(x)$$

s.t. $g_i(x) \le 0 \quad i = 1, \dots, m$
 $h_i(x) = 0 \quad i = 1, \dots, l$
 $x \in X$,

where
$$g_1(x), \dots, g_m(x), h_1(x), \dots, h_l(x) : \Re^n \to \Re$$
.
Let $g(x) = (g_1(x), \dots, g_m(x)) : \Re^n \to \Re^m, h(x) = (h_1(x), \dots, h_l(x)) :$

 $\Re^n \to \Re^l$. Then (P) can be written as

(P)
$$\min_x f(x)$$
 s.t. $g(x) \le 0$
$$h(x) = 0$$

$$x \in X.$$

$$(1)$$

We say that x is a feasible solution of (P) if $g(x) \leq 0, h(x) = 0$, and $x \in X$.

1.2 Local, Global, and Strict Optima

The *ball* centered at \bar{x} with radius ϵ is the set:

$$B(\bar{x}, \epsilon) := \{x | ||x - \bar{x}|| < \epsilon\}.$$

Consider the following optimization problem over the set \mathcal{F} :

$$P: \min_{x} \text{ or } \max_{x} \quad f(x)$$
 s.t. $x \in \mathcal{F}$

We have the following definitions of local/global, strict/non-strict minima/maxima.

Definition 1.1 $x \in \mathcal{F}$ is a local minimum of P if there exists $\epsilon > 0$ such that $f(x) \leq f(y)$ for all $y \in B(x, \epsilon) \cap \mathcal{F}$.

Definition 1.2 $x \in \mathcal{F}$ is a global minimum of P if $f(x) \leq f(y)$ for all $y \in \mathcal{F}$.

Definition 1.3 $x \in \mathcal{F}$ is a strict local minimum of P if there exists $\epsilon > 0$ such that f(x) < f(y) for all $y \in B(x, \epsilon) \cap \mathcal{F}$, $y \neq x$.

Definition 1.4 $x \in \mathcal{F}$ is a strict global minimum of P if f(x) < f(y) for all $y \in \mathcal{F}$, $y \neq x$.

Definition 1.5 $x \in \mathcal{F}$ is a local maximum of P if there exists $\epsilon > 0$ such that $f(x) \geq f(y)$ for all $y \in B(x, \epsilon) \cap \mathcal{F}$.

Definition 1.6 $x \in \mathcal{F}$ is a global maximum of P if $f(x) \geq f(y)$ for all $y \in \mathcal{F}$.

Definition 1.7 $x \in \mathcal{F}$ is a strict local maximum of P if there exists $\epsilon > 0$ such that f(x) > f(y) for all $y \in B(x, \epsilon) \cap \mathcal{F}$, $y \neq x$.

Definition 1.8 $x \in \mathcal{F}$ is a strict global maximum of P if f(x) > f(y) for all $y \in \mathcal{F}$, $y \neq x$.

1.3 Gradients and Hessians

Let $f(x): X \to \Re$, where $X \subset \Re^n$ is open. f(x) is differentiable at $\bar{x} \in X$ if there exists a vector $\nabla f(\bar{x})$ (the gradient of f(x) at \bar{x}) such that for each $x \in X$

$$f(x) = f(\bar{x}) + \nabla f(\bar{x})^{t} (x - \bar{x}) + ||x - \bar{x}|| \alpha(\bar{x}, x - \bar{x}),$$

and $\lim_{y\to 0} \alpha(\bar{x}, y) = 0$. f(x) is differentiable on X if f(x) is differentiable for all $\bar{x} \in X$. The gradient vector is the vector of partial derivatives:

$$\nabla f(\bar{x}) = \left(\frac{\partial f(\bar{x})}{\partial x_1}, \dots, \frac{\partial f(\bar{x})}{\partial x_n}\right)^t.$$

Example 1 Let $f(x) = 3(x_1)^2(x_2)^3 + (x_2)^2(x_3)^3$. Then

$$\nabla f(x) = \left(6(x_1)(x_2)^3, 9(x_1)^2(x_2)^2 + 2(x_2)(x_3)^3, 3(x_2)^2(x_3)^2\right)^T.$$

The directional derivative of f(x) at \bar{x} in the direction d is:

$$\lim_{\lambda \to 0} \frac{f(\bar{x} + \lambda d) - f(\bar{x})}{\lambda} = \nabla f(\bar{x})^t d$$

The function f(x) is twice differentiable at $\bar{x} \in X$ if there exists a vector $\nabla f(\bar{x})$ and an $n \times n$ symmetric matrix $H(\bar{x})$ (the Hessian of f(x) at \bar{x}) such that for each $x \in X$

$$f(x) = f(\bar{x}) + \nabla f(\bar{x})^t (x - \bar{x}) + \frac{1}{2} (x - \bar{x})^t H(\bar{x}) (x - \bar{x}) + \|x - \bar{x}\|^2 \alpha(\bar{x}, x - \bar{x}),$$

and $\lim_{y\to 0} \alpha(\bar{x},y) = 0$. f(x) is twice differentiable on X if f(x) is twice differentiable for all $\bar{x} \in X$. The Hessian is the matrix of second partial derivatives:

$$H(\bar{x})_{ij} = \frac{\partial^2 f(\bar{x})}{\partial x_i \partial x_j}.$$

Example 2 Continuing Example 1, we have

$$H(x) = \begin{pmatrix} 6(x_2)^3 & 18(x_1)(x_2)^2 & 0\\ 18(x_1)(x_2)^2 & 18(x_1)^2(x_2) + 2(x_3)^3 & 6(x_2)(x_3)^2\\ 0 & 6(x_2)(x_3)^2 & 6(x_2)^2(x_3) \end{pmatrix}.$$

1.4 Positive Semidefinite and Positive Definite Matrices

An $n \times n$ matrix M is called

- positive definite if $x^t M x > 0$ for all $x \in \mathbb{R}^n$, $x \neq 0$
- positive semidefinite if $x^t M x \ge 0$ for all $x \in \Re^n$
- negative definite if $x^t M x < 0$ for all $x \in \Re^n$, $x \neq 0$
- negative semidefinite if $x^t M x \leq 0$ for all $x \in \Re^n$, $x \neq 0$

• indefinite if there exists $x, y \in \mathbb{R}^n$ for which $x^t M x > 0$ and $y^t M y < 0$

We say that M is SPD if M is symmetric and positive definite. Similarly, we say that M is SPSD if M is symmetric and positive semi-definite.

Example 3

$$M = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

is positive definite.

Example 4

$$M = \begin{pmatrix} 8 & -1 \\ -1 & 1 \end{pmatrix}$$

is positive definite. To see this, note that for $x \neq 0$,

$$x^{T}Mx = 8x_1^2 - 2x_1x_2 + x_2^2 = 7x_1^2 + (x_1 - x_2)^2 > 0$$
.

1.5 Existence of Optimal Solutions

Most of the topics of this course are concerned with

- existence of optimal solutions,
- characterization of optimal solutions, and
- algorithms for computing optimal solutions.

To illustrate the questions arising in the first topic, consider the following optimization problems:

(P)
$$\min_x \frac{1+x}{2x}$$

s.t.
$$x \ge 1$$
.

Here there is no optimal solution because the feasible region is unbounded

(P)
$$\min_x \frac{1}{x}$$

s.t.
$$1 \le x < 2$$
.

Here there is no optimal solution because the feasible region is not closed.

(P) $\min_x f(x)$

s.t. $1 \le x \le 2$,

where

$$f(x) = \begin{cases} 1/x, & x < 2 \\ 1, & x = 2 \end{cases}.$$

Here there is no optimal solution because the function $f(\cdot)$ is not sufficiently smooth.

Theorem 1 (Weierstrass' Theorem for sequences) Let $\{x_k\}$, $k \to \infty$ be an infinite sequence of points in the compact (i.e., closed and bounded) set F. Then some infinite subsequence of points x_{k_j} converges to a point contained in F.

Theorem 2 (Weierstrass' Theorem for functions) Let f(x) be a continuous real-valued function on the compact nonempty set $F \subset \mathbb{R}^n$. Then F contains a point that minimizes (maximizes) f(x) on the set F.

Proof: Since the set F is bounded, f(x) is bounded below on F. Since $F \neq \emptyset$, there exists $v = \inf_{x \in F} f(x)$. By definition, for any $\epsilon > 0$, the set $F_{\epsilon} = \{x \in F : v \leq f(x) \leq v + \epsilon\}$ is non-empty. Let $\epsilon_k \to 0$ as $k \to \infty$, and let $x_k \in F_{\epsilon_k}$. Since F is bounded, there exists a subsequence of $\{x_k\}$ converging to some $\bar{x} \in F$. By continuity of f(x), we have $f(\bar{x}) = \lim_{k \to \infty} f(x_k)$, and, since $v \leq f(x_k) \leq v + \epsilon_k$, it follows that $f(\bar{x}) = \lim_{k \to \infty} f(x_k) = v$.

The assumptions of Weierstrass' Theorem can be somewhat relaxed. For example, for a minimization problem, we can assume that

- the set $\{x \in F : f(x) \le f(x')\}$ is compact for some $x' \in F$, and
- f(x) is lower semi-continuous, i.e., for any constant c, the set $\{x \in F: f(x) \leq c\}$ is closed.

The proof is similar to the proof of the Weierstrass' Theorem.

2 Optimality Conditions for Unconstrained Problems

(P) min
$$f(x)$$

s.t. $x \in X$,

where $x = (x_1, \dots, x_n) \in \Re^n$, $f(x) : \Re^n \to \Re$, and X is an open set (usually $X = \Re^n$).

Definition 2.1 The direction \bar{d} is called a descent direction of f(x) at $x = \bar{x}$ if

$$f(\bar{x}+\epsilon\bar{d}) < f(\bar{x})$$
 for all $\epsilon > 0$ and sufficiently small .

A necessary condition for local optimality is a statement of the form: "if \bar{x} is a local minimum of (P), then \bar{x} must satisfy..." Such a condition helps us identify all candidates for local optima.

Theorem 3 Suppose that f(x) is differentiable at \bar{x} . If there is a vector d such that $\nabla f(\bar{x})^t d < 0$, then for all $\lambda > 0$ and sufficiently small, $f(\bar{x} + \lambda d) < f(\bar{x})$, and hence d is a descent direction of f(x) at \bar{x} .

Proof: We have:

$$f(\bar{x} + \lambda d) = f(\bar{x}) + \lambda \nabla f(\bar{x})^t d + \lambda ||d|| \alpha(\bar{x}, \lambda d),$$

where $\alpha(\bar{x}, \lambda d) \to 0$ as $\lambda \to 0$. Rearranging,

$$\frac{f(\bar{x} + \lambda d) - f(\bar{x})}{\lambda} = \nabla f(\bar{x})^t d + ||d|| \alpha(\bar{x}, \lambda d).$$

Since $\nabla f(\bar{x})^t d < 0$ and $\alpha(\bar{x}, \lambda d) \to 0$ as $\lambda \to 0$, $f(\bar{x} + \lambda d) - f(\bar{x}) < 0$ for all $\lambda > 0$ sufficiently small.

Corollary 4 Suppose f(x) is differentiable at \bar{x} . If \bar{x} is a local minimum, then $\nabla f(\bar{x}) = 0$.

Proof: If it were true that $\nabla f(\bar{x}) \neq 0$, then $d = -\nabla f(\bar{x})$ would be a descent direction, whereby \bar{x} would not be a local minimum.

The above corollary is a first order necessary optimality condition for an unconstrained minimization problem. The following theorem is a second order necessary optimality condition

Theorem 5 Suppose that f(x) is twice continuously differentiable at $\bar{x} \in X$. If \bar{x} is a local minimum, then $\nabla f(\bar{x}) = 0$ and $H(\bar{x})$ is positive semidefinite.

Proof: From the first order necessary condition, $\nabla f(\bar{x}) = 0$. Suppose $H(\bar{x})$ is not positive semi-definite. Then there exists d such that $d^t H(\bar{x})d < 0$. We have:

$$f(\bar{x} + \lambda d) = f(\bar{x}) + \lambda \nabla f(\bar{x})^t d + \frac{1}{2} \lambda^2 d^t H(\bar{x}) d + \lambda^2 ||d||^2 \alpha(\bar{x}, \lambda d)$$
$$= f(\bar{x}) + \frac{1}{2} \lambda^2 d^t H(\bar{x}) d + \lambda^2 ||d||^2 \alpha(\bar{x}, \lambda d),$$

where $\alpha(\bar{x}, \lambda d) \to 0$ as $\lambda \to 0$. Rearranging,

$$\frac{f(\bar{x} + \lambda d) - f(\bar{x})}{\lambda^2} = \frac{1}{2} d^t H(\bar{x}) d + ||d||^2 \alpha(\bar{x}, \lambda d).$$

Since $d^t H(\bar{x})d < 0$ and $\alpha(\bar{x}, \lambda d) \to 0$ as $\lambda \to 0$, $f(\bar{x} + \lambda d) - f(\bar{x}) < 0$ for all $\lambda > 0$ sufficiently small, yielding the desired contradiction.

Example 5 Let

$$f(x) = \frac{1}{2}x_1^2 + x_1x_2 + 2x_2^2 - 4x_1 - 4x_2 - x_2^3.$$

Then

$$\nabla f(x) = \left(x_1 + x_2 - 4, x_1 + 4x_2 - 4 - 3x_2^2\right)^T,$$

and

$$H(x) = \begin{pmatrix} 1 & 1 \\ 1 & 4 - 6x_2 \end{pmatrix} .$$

 $\nabla f(x) = 0$ has exactly two solutions: $\bar{x} = (4,0)$ and $\tilde{x} = (3,1)$. But

$$H(\tilde{x}) = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$$

is indefinite, therefore, the only possible candidate for a local minimum is $\bar{x} = (4,0)$.

A sufficient condition for local optimality is a statement of the form: "if \bar{x} satisfies ..., then \bar{x} is a local minimum of (P)." Such a condition allows us to automatically declare that \bar{x} is indeed a local minimum.

Theorem 6 Suppose that f(x) is twice differentiable at \bar{x} . If $\nabla f(\bar{x}) = 0$ and $H(\bar{x})$ is positive definite, then \bar{x} is a (strict) local minimum.

Proof:

$$f(x) = f(\bar{x}) + \frac{1}{2}(x - \bar{x})^t H(\bar{x})(x - \bar{x}) + \|x - \bar{x}\|^2 \alpha(\bar{x}, x - \bar{x}).$$

Suppose that \bar{x} is not a strict local minimum. Then there exists a sequence $x_k \to \bar{x}$ such that $x_k \neq \bar{x}$ and $f(x_k) \leq f(\bar{x})$ for all k. Define $d_k = \frac{x_k - \bar{x}}{\|x_k - \bar{x}\|}$. Then

$$f(x_k) = f(\bar{x}) + ||x_k - \bar{x}||^2 \left(\frac{1}{2} d_k^t H(\bar{x}) d_k + \alpha(\bar{x}, x_k - \bar{x}) \right) ,$$

and so

$$\frac{1}{2}d_k^t H(\bar{x})d_k + \alpha(\bar{x}, x_k - \bar{x}) = \frac{f(x_k) - f(\bar{x})}{\|x_k - \bar{x}\|^2} \le 0.$$

Since $||d_k|| = 1$ for any k, there exists a subsequence of $\{d_k\}$ converging to some point d such that ||d|| = 1. Assume without loss of generality that $d_k \to d$. Then

$$0 \ge \lim_{k \to \infty} d_k^t H(\bar{x}) d_k + \alpha(\bar{x}, x_k - \bar{x}) = \frac{1}{2} d^t H(\bar{x}) d,$$

which is a contradiction of the positive definiteness of $H(\bar{x})$.

Note:

- If $\nabla f(\bar{x}) = 0$ and $H(\bar{x})$ is negative definite, then \bar{x} is a local maximum.
- If $\nabla f(\bar{x}) = 0$ and $H(\bar{x})$ is positive *semi*definite, we cannot be sure if \bar{x} is a local minimum.

Example 6 Continuing Example 5, we compute

$$H(\bar{x}) = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix}$$

is positive definite. To see this, note that for any $d = (d_1, d_2)$, we have

$$d^{T}H(\bar{x})d = d_{1}^{2} + 2d_{1}d_{2} + 4d_{2}^{2} = (d_{1} + d_{2})^{2} + 3d_{2}^{2} > 0 \text{ for all } d \neq 0$$
.

Therefore, \bar{x} satisfies the sufficient conditions to be a local minimum, and so \bar{x} is a local minimum.

Example 7 Let

$$f(x) = x_1^3 + x_2^2 \ .$$

Then

$$\nabla f(x) = \left(3x_1^2, 2x_2\right)^T ,$$

and

$$H(x) = \begin{pmatrix} 6x_1 & 0 \\ 0 & 2 \end{pmatrix} .$$

At $\bar{x} = (0,0)$, we have $\nabla f(\bar{x}) = 0$ and

$$H(\bar{x}) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

is positive semi-definite, but \bar{x} is not a local minimum, since $f(-\epsilon,0) = -\epsilon^3 < 0 = f(0,0) = f(\bar{x})$ for all $\epsilon > 0$.

Example 8 Let

$$f(x) = x_1^4 + x_2^2 \ .$$

Then

$$\nabla f(x) = \left(4x_1^3, 2x_2\right)^T ,$$

and

$$H(x) = \begin{pmatrix} 12x_1^2 & 0\\ 0 & 2 \end{pmatrix} .$$

At $\bar{x} = (0,0)$, we have $\nabla f(\bar{x}) = 0$ and

$$H(\bar{x}) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

is positive semi-definite. Furthermore, \bar{x} is a local minimum, since for all x we have $f(x) \ge 0 = f(0,0) = f(\bar{x})$.

2.1 Convexity and Minimization

- Let $x, y \in \Re^n$. Points of the form $\lambda x + (1 \lambda)y$ for $\lambda \in [0, 1]$ are called *convex combinations* of x and y.
- A set $S \subset \mathbb{R}^n$ is called a *convex* set if for all $x, y \in S$ and for all $\lambda \in [0, 1]$ it holds that $\lambda x + (1 \lambda)y \in S$.
- A function $f(x): S \to \Re$, where S is a nonempty convex set, is a convex function if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in S$ and for all $\lambda \in [0, 1]$.

- A function f(x) as above is called a *strictly convex* function if the inequality above is strict for all $x \neq y$ and $\lambda \in (0,1)$.
- A function $f(x): S \to \Re$, where S is a nonempty convex set, is a concave function if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in S$ and for all $\lambda \in [0, 1]$.

• A function f(x) as above is called a *strictly concave* function if the inequality above is strict for all $x \neq y$ and $\lambda \in (0,1)$.

Consider the problem:

(CP)
$$\min_x f(x)$$

s.t.
$$x \in S$$
.

Theorem 7 Suppose S is a convex set, $f(x): S \to \Re$ is a convex function, and \bar{x} is a local minimum of (CP). Then \bar{x} is a global minimum of f(x) over S.

Proof: Suppose \bar{x} is not a global minimum, i.e., there exists $y \in S$ for which $f(y) < f(\bar{x})$. Let $y(\lambda) := \lambda \bar{x} + (1 - \lambda)y$, which is a convex combination of \bar{x} and y for $\lambda \in [0,1]$ (and therefore, $y(\lambda) \in S$ for $\lambda \in [0,1]$). Note that $y(\lambda) \to \bar{x}$ as $\lambda \to 0$.

From the convexity of f(x),

$$f(y(\lambda)) = f(\lambda \bar{x} + (1 - \lambda)y) \le \lambda f(\bar{x}) + (1 - \lambda)f(y) < \lambda f(\bar{x}) + (1 - \lambda)f(\bar{x}) = f(\bar{x})$$

for all $\lambda \in (0,1)$. Therefore, $f(y(\lambda)) < f(\bar{x})$ for all $\lambda \in (0,1)$, and so \bar{x} is not a local minimum, resulting in a contradiction.

Note:

- If f(x) is strictly convex, a local minimum is the *unique* global minimum.
- If f(x) is concave, a local maximum is a global maximum.
- If f(x) is strictly concave, a local maximum is the unique global maximum.

Theorem 8 Suppose S is a non-empty open convex set, and $f(x): S \to \Re$ is differentiable. Then f(x) is a convex function if and only if f(x) satisfies the following gradient inequality:

$$f(y) \ge f(x) + \nabla f(x)^t (y - x)$$
 for all $x, y \in S$.

Proof: Suppose f(x) is convex. Then for any $\lambda \in [0,1]$,

$$f(\lambda y + (1 - \lambda)x) \le \lambda f(y) + (1 - \lambda)f(x)$$

which implies that

$$\frac{f(x+\lambda(y-x))-f(x)}{\lambda} \le f(y)-f(x) .$$

Letting $\lambda \to 0$, we obtain: $\nabla f(x)^t (y-x) \leq f(y) - f(x)$, establishing the "only if" part.

Now, suppose that the gradient inequality holds for all $x, y \in S$. Let w and z be any two points in S. Let $\lambda \in [0,1]$, and set $x = \lambda w + (1-\lambda)z$. Then

$$f(w) \ge f(x) + \nabla f(x)^t (w - x)$$
 and $f(z) \ge f(x) + \nabla f(x)^t (z - x)$.

Taking a convex combination of the above inequalities, we obtain

$$\lambda f(w) + (1 - \lambda)f(z) \ge f(x) + \nabla f(x)^t (\lambda(w - x) + (1 - \lambda)(z - x))$$

$$= f(x) + \nabla f(x)^t 0$$

$$= f(\lambda w + (1 - \lambda)z),$$

which shows that f(x) is convex.

Theorem 9 Suppose S is a non-empty open convex set, and $f(x): S \to \Re$ is twice differentiable. Let H(x) denote the Hessian of f(x). Then f(x) is convex if and only if H(x) is positive semidefinite for all $x \in S$.

Proof: Suppose f(x) is convex. Let $\bar{x} \in S$ and d be any direction. Then for $\lambda > 0$ sufficiently small, $\bar{x} + \lambda d \in S$. We have:

$$f(\bar{x} + \lambda d) = f(\bar{x}) + \nabla f(\bar{x})^t (\lambda d) + \frac{1}{2} (\lambda d)^t H(\bar{x})(\lambda d) + \|\lambda d\|^2 \alpha(\bar{x}, \lambda d),$$

where $\alpha(\bar{x}, y) \to 0$ as $y \to 0$. Using the gradient inequality, we obtain

$$\lambda^2 \left(\frac{1}{2} d^t H(\bar{x}) d + \|d\|^2 \alpha(\bar{x}, \lambda d) \right) \ge 0.$$

Dividing by $\lambda^2>0$ and letting $\lambda\to 0$, we obtain $d^tH(\bar x)d\geq 0$, proving the "only if" part.

Conversely, suppose that H(z) is positive semidefinite for all $z \in S$. Let $x, y \in S$ be arbitrary. Invoking the second-order version of Taylor's theorem, we have:

$$f(y) = f(x) + \nabla f(x)^{t} (y - x) + \frac{1}{2} (y - x)^{t} H(z) (y - x)$$

for some z which is a convex combination of x and y (and hence $z \in S$). Since H(z) is positive semidefinite, this means that

$$f(y) \ge f(x) + \nabla f(x)^t (y - x)$$
.

Therefore the gradient inequality holds, and hence f(x) is convex.

Returning to the optimization problem (P), knowing that the function f(x) is convex allows us to establish a *global* optimality condition that is both necessary and sufficient:

Theorem 10 Suppose $f(x): X \to \Re$ is convex and differentiable on X. Then $\bar{x} \in X$ is a global minimum if and only if $\nabla f(\bar{x}) = 0$.

Proof: The necessity of the condition $\nabla f(\bar{x}) = 0$ was established in Corollary 4 regardless of the convexity of the function f(x).

Suppose $\nabla f(\bar{x}) = 0$. Then by the gradient inequality we have $f(y) \ge f(\bar{x}) + \nabla f(\bar{x})^t (y - \bar{x}) = f(\bar{x})$ for all $y \in X$, and so \bar{x} is a global minimum.

Example 9 Continuing Example 5, recall that

$$H(x) = \begin{pmatrix} 1 & 1 \\ 1 & 4 - 6x_2 \end{pmatrix} .$$

Suppose that the domain of of $f(\cdot)$ is $X = \{(x_1, x_2) \mid x_2 < 0\}$. Then $f(\cdot)$ is a convex function on this domain.

Example 10 Let

$$f(x) = -\ln(1 - x_1 - x_2) - \ln x_1 - \ln x_2.$$

Then

$$\nabla f(x) = \begin{bmatrix} \frac{1}{1 - x_1 - x_2} - \frac{1}{x_1} \\ \frac{1}{1 - x_1 - x_2} - \frac{1}{x_2} \end{bmatrix},$$

and

$$H(x) = \begin{bmatrix} \left(\frac{1}{1-x_1-x_2}\right)^2 + \left(\frac{1}{x_1}\right)^2 & \left(\frac{1}{1-x_1-x_2}\right)^2 \\ \left(\frac{1}{1-x_1-x_2}\right)^2 & \left(\frac{1}{1-x_1-x_2}\right)^2 + \left(\frac{1}{x_2}\right)^2 \end{bmatrix}.$$

It is actually easy to prove that f(x) is a strictly convex function, and hence that H(x) is positive definite on its domain $X = \{(x_1, x_2) \mid x_1 > 0, x_2 > 0, x_1 + x_2 < 1\}$. At $\bar{x} = \left(\frac{1}{3}, \frac{1}{3}\right)$ we have $\nabla f(\bar{x}) = 0$, and so \bar{x} is the unique global minimum of f(x).

3 Exercises on Unconstrained Optimization

1. Find points satisfying necessary conditions for extrema (i.e., local minima or local maxima) of the function

$$f(x) = \frac{x_1 + x_2}{3 + x_1^2 + x_2^2 + x_1 x_2}.$$

Try to establish the nature of these points by checking sufficient conditions.

2. Find minima of the function

$$f(x) = (x_2^2 - x_1)^2$$

among all the points satisfying necessary conditions for an extremum.

- 3. Consider the problem to minimize $||Ax b||^2$, where A is an $m \times n$ matrix and b is an m vector.
 - **a.** Give a geometric interpretation of the problem.
 - **b.** Write a necessary condition for optimality . Is this also a sufficient condition?

- **c.** Is the optimal solution unique? Why or why not?
- **d.** Can you give a closed form solution of the optimal solution? Specify any assumptions that you may need.
- **e.** Solve the problem for A and b given below:

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$

4. Let S be a nonempty set in \Re^n . Show that S is convex if and only if for each integer $k \geq 2$ the following holds true:

$$x^1, \dots, x^k \in S \implies \sum_{j=1}^k \lambda_j x^j \in S$$

whenever $\lambda_1, \ldots, \lambda_k$ satisfy $\lambda_1, \ldots, \lambda_k \geq 0$ and $\sum_{j=1}^k \lambda_j = 1$.

- 5. Bertsekas, Exercise 1.1.1, page 16. (Note: x^* is called a *stationary* point of $f(\cdot)$ if $\nabla f(x^*) = 0$.)
- 6. Bertsekas, Exercise 1.1.2, page 16, parts (a), (b), (c), and (d). (Note: x^* is called a *stationary point* of $f(\cdot)$ if $\nabla f(x^*) = 0$.)