FEUILLE D'EXERCICES # 0

Exercice 1 : Variables aléatoires réelles et moments

- 1. Montrer qu'une variable aléatoire réelle positive dont l'espérance est nulle est nulle presque sûrement.
- 2. Soit X une variable aléatoire réelle. Montrer que $\{x \in \mathbb{R}, \mathbb{P}(X=x) > 0\}$ est un ensemble au plus dénombrable.
- 3. Soit $m \geq 1$ un entier. Donner un exemple d'une variable aléatoire réelle qui admet un moment d'ordre m mais pas de moment d'ordre m+1.

Exercice 2 : Gaussienne et changements de variables

Soit (X,Y) un vecteur aléatoire sur \mathbb{R}^2 dont la loi admet la densité suivante par rapport à la mesure de Lebesgue :

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}$$

Déterminer les lois de $X, Y, X + Y, X^2 + Y^2$.

Exercice 3: Indépendance

- 1. Déterminer à quelle condition une variable aléatoire réelle est indépendante d'elle-même.
- 2. Montrer que si la somme de deux variables aléatoires discrètes indépendantes a la loi de Bernoulli de paramètre $p \in [0, 1]$, alors l'une des deux variables aléatoires est constante.
- 3. Soient N_1, \ldots, N_r des variables aléatoires indépendantes qui suivent des lois de Poisson de paramètres respectifs $\lambda_1, \ldots; \lambda_r$. Déterminer la loi de $N_1 + \ldots + N_r$.

Exercice 4 : Convergence de variables aléatoires

- 1. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités. Soient $(A_n)_{n\geq 1}$ une suite d'évènements sur cet espace et $p\geq 1$ un réel. Déterminer pour chacune des convergences suivantes à quelle condition sur la suite $(A_n)_{n\geq 1}$ elle a lieu.
 - (a) La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge en probabilité vers 0.
 - (b) La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge dans \mathbb{L}^p vers 0.
 - (c) La suite $((\mathbb{1}_{A_n})_{n\geq 1}$ converge presque sûrement vers 0.
- 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes. On suppose que $\sum_{n\geq 1} X_n$ converge presque sûrement. Montrer que pour tout réel c>0, on a $\sum_{n\geq 1} \mathbb{P}(|X_n|>c)<+\infty$.
- 3. Construire une suite de variables aléatoires intégrables $(X_n)_{n\geq 1}$ et une variable aléatoire intégrable X telles qu'on ait $X_n \stackrel{loi}{\to} X$ et $\lim_{n\to +\infty} \mathbb{E}[X_n] \neq \mathbb{E}[X]$.
- 4. Montrer que si une suite de variables aléatoires converge en loi et si chaque terme de la suite a une loi exponentielle, alors la loi limite est exponentielle ou la masse de Dirac en 0.

Exercice 5 : Loi des grands nombres et théoreme limite central

1. Soit $(U_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes toutes de loi uniforme sur l'intervalle [0,1]. Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. Que peut-dire de la suite

$$\frac{f(U_1) + \ldots + f(U_n)}{n}$$

lorsque n tend vers $+\infty$?

2. Calculer $\lim_{n\to+\infty}e^{-n}\sum_{k=0}^n\frac{n^k}{k!}$. Plus généralement, si $f:\mathbb{R}\to\mathbb{R}$ est une fonction continue bornée, montrer que l'on a

$$\lim_{n \to +\infty} e^{-n} \sum_{k=0}^{+\infty} f\left(\frac{k-n}{\sqrt{n}}\right) \frac{n^k}{k!} = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) e^{-t^2/2} dt.$$

- 3. Un écrivain qui commet en moyenne une faute d'orthographe toutes les 10 pages vient d'écrire un roman de 400 pages. Quelle est la probabilité qu'il ait commis plus de 50 fautes?
- 4. Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires i.i.d. définies sur le même espace probabilisé et telle que la suite des somme partielles renormalisées S_n/\sqrt{n} converge en loi vers une variable $\mathcal{N}(0,1)$. Montrer que X_1 est de carré intégrable, avec $\mathbb{E}[X_1] = 0$ et $\mathbb{E}[X_1^2] = 1$.