Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 5

Aufgabe 5.1 (2+2 Punkte)

Geben Sie jeweils eine kontextfreie Grammatik G_x an, so dass für folgende Sprachen L_x , mit $x \in \{a, b\}$ gilt: $L_x = L(G_x)$.

a)
$$L_a = L_1^*$$
, $L_1 = \{ w \in \{ a, b, c \}^* \mid b^i a^n b^j c^n b^k, n \in \mathbb{N}_+, i, j, k \in \mathbb{N}_0 \}$

b) Ein Wort $w \in \{a, b\}^*$ ist genau dann in L_b , wenn das maximal lange Anfangsstück von w, das nur aus a besteht, und das maximal lange Endstück von w, das nur aus a besteht, gleiche Länge haben.

Lösung 5.1

a) $G_a = (\{S, X, A, B\}, \{a, b\}, S, P), \text{ mit}$

$$\begin{split} P = \{ & S & \rightarrow SS \mid X \mid \varepsilon \ , \\ & X & \rightarrow \mathsf{b}X \mid X\mathsf{b} \mid A \ , \\ & A & \rightarrow \mathsf{a}A\mathsf{c} \mid \mathsf{a}B\mathsf{c} \ , \\ & B & \rightarrow \mathsf{b}B \mid \varepsilon \ \}. \end{split}$$

Hinweis: Das hier recht liberal korrigieren, da zuerst die Aufgabenstellung falsch war. Speziell das ε in der ersten Produktion war in der ersten Fassung nicht vorgesehen.

b) $G_b = (\{S, A\}, \{a, b\}, S, P), \text{ mit}$

$$P = \{ S \rightarrow aSa \mid bAb \mid a \mid b \mid \varepsilon ,$$
$$A \rightarrow bA \mid aA \mid \varepsilon \}.$$

Aufgabe 5.2 (3+3 Punkte)

Bei der Postfix-Notation werden die Operatoren hinter die Operanden geschrieben. Beispiel: Statt (1+2)*(2+3) schreibt man in Postfix-Notation: 12+23+*

a) Geben Sie eine kontextfreie Grammatik an, die die Sprache der korrekten arithmetischen Ausdrücke, die nur Addition, Subtraktion und Multiplikation benutzen, über \mathbb{N}_0 in Postfix-Notation erzeugt. Benutzen Sie das Alphabet $A = \{0,1,2,3,4,5,6,7,8,9,_,+,-,*\}$. Das Zeichen _ markiert dabei das Ende einer Zahl.

b) Geben Sie für das Wort 3_4_+7_18_13_-*+ einen Ableitungsbaum in Ihrer Grammatik an.

Lösung 5.2

a)
$$G_a = (\{S, A, B, C\}, \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, _, +, -, *\}, S, P)$$
, mit
$$P = \{ S \rightarrow SSA \mid B_ \mid 0_, A \rightarrow + \mid -\mid *, B \rightarrow BC \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9, C \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \}.$$

Hinweis: Hier existiert eine zusätzliche Produktion um führende Nullen zu vermeiden. Sollte das nicht berücksichtig worden sein, gibt es keinen Punktabzug.

Aufgabe 5.3 (6 Punkte)

Gegeben ist die kontextfreie Grammatik $G = (\{S\}, \{a, b\}, S, \{S \to abS, S \to \varepsilon\})$ und die formale Sprache $L = \{(ab)^n \mid n \in \mathbb{N}_0\}.$

Zeigen Sie durch vollständige Induktion L(G) = L, indem Sie beide Inklusionen beweisen.

Lösung 5.3

Hinweis: Zur Erinnerung: $L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}$

• erste Teilmengenrelation $L(G) \subseteq L$, Induktion über Ableitungslänge \Rightarrow^n

Induktionsanfang n = 1: Es bedarf mindestens einem Ableitungsschritt, um ein Terminalsymbol zu erzeugen

 $S \Rightarrow^1 \varepsilon = (ab)^0 \sqrt{(\varepsilon \text{ ist das einzige Wort } \in L(G), \text{ das nach einem Ableitungsschritt erzeugt werden kann)}$

Induktionsvoraussetzung:

Für beliebiges, aber festes $n \in \mathbb{N}_+$ gilt: $S \Rightarrow^n (ab)^m$, mit $m \in \mathbb{N}_0$

Induktionsschluss: Wir zeigen, dass dann auch gilt: $S \Rightarrow^{n+1} (ab)^{m'}$ $S \Rightarrow^{n+1} w \Rightarrow S \Rightarrow^1 w' \Rightarrow^n w$

Da die nach n+1-ableitbaren Wörter $\in L(G)$ betrachtet werden und zudem $n+1\geq 2$ gilt, muss nach dem ersten Ableitungsschritt noch ein Nichtterminal vorhanden sein. Als erste Produktionsregel muss also $S\to \mathtt{ab} S$ gewählt werden.

$$\Rightarrow S \Rightarrow^1 abS \overset{\text{Ind.vor.}}{\Rightarrow^n} (ab)(ab)^m = (ab)^{m+1} = (ab)^{m'} \text{ mit } m' \in \mathbb{N}_0$$

• zweite Teilmengenrelation $L \subseteq L(G)$, Induktion über Wortlänge (ab)ⁿ:

Induktionsanfang:
$$n = 0$$
: $(ab)^0 = \varepsilon$
 $S \Rightarrow \varepsilon \sqrt{}$

Induktionsvoraussetzung:

Für beliebiges, aber festes $n \in \mathbb{N}_0$ gilt: $S \Rightarrow^* (ab)^n$

Induktionsschluss: Wir zeigen, dass dann auch gilt: $S \Rightarrow^* (ab)^{n+1}$

$$(\mathsf{ab})^{n+1} = (\mathsf{ab})(\mathsf{ab})^n : S \Rightarrow^1 \mathsf{ab}S \overset{\mathrm{Ind.vor.}}{\Rightarrow^*} \mathsf{ab}(\mathsf{ab})^n = (\mathsf{ab})^{n+1}$$

Aufgabe 5.4 (3+2 Punkte)

Es sei $A = \{a, b, c\}$.

a) Beschreiben Sie unter Benutzung nur der Symbole $\{, \}$, a, b, c, ε , \cup , * und $^+$, sowie runde Klammer auf, runde Klammer zu und Komma, die folgende formale Sprache:

 $L=\{w\in A^*\mid \text{ wenn a in } w \text{ vorkommt, dann auch b}\}$ Hinweis: Die Verwendung von mehr als 25 Zeichen gibt Punktabzug.

b) Geben Sie eine kontextfreie Grammatik G an, so dass L(G) = L.

Lösung 5.4

a) $\{b,c\}^* \cup \{a,c\}^* \{b\} \{a,b,c\}^*$

Hinweis: Ich würde erst ab 30 Zeichen wirklich Punkte abziehen: Also sowas wie: $\{b,c\}^* \cup \{a,b,c\}^* \{b\}\{a,b,c\}^*$ gibt volle Punkte

b) $G = (\{S, A, B\}, \{a, b\}, S, P), \text{ mit}$

$$\begin{split} P = \{ & S \rightarrow \mathsf{b}S \mid \mathsf{c}S \mid A \mid \varepsilon \ , \\ & A \rightarrow \mathsf{a}A \mid \mathsf{c}A \mid \mathsf{b}B \ , \\ & B \rightarrow \mathsf{a}B \mid \mathsf{b}B \mid \mathsf{c}B \mid \varepsilon \ \}. \end{split}$$