Python Machine Learning

GITA315

Professor Emeritus Myungwhan Choi Department of Computer Science & Engineering Sogang University

What is this course about?

- Theoretical concepts behind popular machine learning algorithms will be covered
- How learning algorithms are implemented in Python will be shown.
- Insight into how machine learning actually works can be obtained.
- □ First half portion of the full Python Machine learning course including deep learning
- Will also learn how Numpy, scikit-learn, pandas, TensorFlow2 are used

big picture

- Giving computers the ability to learn from data (Ch. 1)
- Training simple machine learning algorithms for classification (Ch. 2)
- Tour of machine learning classifiers using scikit-learn (Ch. 3)
- Building good training datasets Data Preprocessing (Ch. 4)
- Compressing data via dimensionality reduction (Ch. 5)
- Learning best practices for model evaluation and hyperparameter tuning (Ch. 6)
- Combining different models for ensemble learning (Ch. 7)
- Applying machine learning to sentiment analysis (Ch. 8)
- □ Embedding a machine learning model into a Web application (Ch. 9)
- Predicting continuous target variables with regression analysis (Ch. 10), if time permits
- Working with unlabeled data clustering analysis (Ch. 11), if time permits

- Giving computers the ability to learn from data (Ch. 1)
 - Building intelligent machines to transform data into knowledge
 - Using Python for machine learning
- □ Training simple machine learning algorithms for classification (Ch. 2)
 - Artificial neurons
 - Implementing a perceptron learning algorithm in Python
 - Adaptive linear neurons and the convergence of learning
- □ Tour of machine learning classifiers using scikit-learn (Ch. 3)
 - Modeling class probabilities via logistic regression
 - Maximum margin classification with support vector machines
 - Solving nonlinear problems using a kernel SVM
 - Decision tree learning
 - K-nearest neighbors

- Building good training datasets Data Preprocessing (Ch. 4)
 - Dealing with missing data
 - Handling categorical data
 - Selecting meaningful features
 - Assessing features importance with random forests
- Compressing data via dimensionality reduction (Ch. 5)
 - Unsupervised dimensionality reduction via principal component analysis
 - Supervised data compression via linear discriminant analysis
 - Using kernel principal component analysis for nonlinear mappings
- □ Learning best practices for model evaluation and hyperparameter tuning (Ch. 6)
 - K-fold cross-validation
 - Debugging algorithms with learning and validation curves
 - Fine-tuning machine learning models via grid search

- Combining different models for ensemble learning (Ch. 7)
 - Learning with ensembles
 - Combining classifiers via majority vote
 - Bagging
 - AdaBoost
- Applying machine learning to sentiment analysis (Ch. 8)
 - Preparing the IMDb movie review data for text processing
 - Introducing the bag-of-words model
 - Training a logistic regression model for document classification
- Embedding a machine learning model into a Web application (Ch. 9)
 - o saving the current state of a trained machine learning model
 - Developing a web application using the Flask web framework

- Predicting continuous target variables with regression analysis (Ch. 10), if time permits
 - Simple and Multiple linear regression
 - Implementing an ordinary least squares linear regression model
 - Dealing with nonlinear relationships using random forests
- Working with unlabeled data clustering analysis (Ch. 11), if time permits
 - Grouping objects by similarity using k-means
 - Organizing clusters as a hierarchical tree
 - Locating regions of high density via DBSCAN
- Wide applications areas of machine learning technologies
- Many different ML algorithms, technologies, and associated theories
- implementation and training experience

Course Information

- Who is this course for?
 - MS students
- no prerequisite but helpful:
 - Linear algebra
 - Probability and Statistics
 - Random Variables
 - Optimization Theory
 - Python

Course materials:

- Class notes
- text book
 - S. Raschka and V. Mirjalili, Python Machine Learning: Machine learning and Deep learning with Python, scikit-learn, and TensorFlow2, 3rd Ed., Packt, 2019.
- o references
 - M. Mohri et al., Foundations of Machine Learning, The MIT Press, 2012.
 - Tom M. Mitchell, Machine Learning, McGraw-Hill, 1977.

Course Information (more)

□ Class WWW site:

sogang university, cyber campus

- everything is posted on this site!
 - syllabus
 - class notes (pdf)
 - exercises and/or assignments if any
- Workload:

	<u>Coursework</u>	approx amount	<u>approx %</u>
O	reading assignments		-
O	midterm exam		30%
O	final exam		40%
O	Lab/assignments and	others	30%

□ in-class style: interaction, questions (please!)

