CSE 406: Computer Security – Assignment 2 Report Website Fingerprinting via Side-Channel Attack

Kowshik Saha 2005006

June 20, 2025

1 Introduction

This report documents the implementation and findings for Assignment 2 of CSE 406: Computer Security at Bangladesh University of Engineering and Technology. The assignment focuses on a side-channel attack to perform website fingerprinting by analyzing cache usage patterns through JavaScript-based measurements. Four main tasks were completed: timing measurements, trace collection using the Sweep Counting Attack, automated data collection with Selenium, and website classification using a neural network. Additionally, two bonus tasks were implemented: collaborative dataset collection and real-time website detection. The report summarizes the methodology, results, and analysis as per the assignment requirements.

2 Task 1: Warming Up with Timing

2.1 Objective

Measure the precision of JavaScript's performance.now() function to estimate cache access latency for varying numbers of cache lines (n = 1 to 10,000,000).

2.2 Implementation

The readNlines(n) function in static/warmup.js was implemented to:

- Allocate a buffer of size $n \times \text{LINESIZE}$ (LINESIZE = 64 bytes, determined via getconf -a grep CACHE).
- Read the buffer at intervals of LINESIZE to access different cache lines.
- Perform 10 iterations and measure time using performance.now().

Return the median access time.

The function was called in a worker thread for $n=1,10,100,\ldots,10,000,000$, and results were displayed in a table in static/index.html.

2.3 Results

N (Cache Lines)	Median Access Latency (ms)
1	0.00
10	0.00
100	0.00
1,000	0.10
10,000	0.65
100,000	2.55
1,000,000	25.45
10,000,000	251.95

Table 1: Latency Measurement Results

2.4 Observations

The resolution of performance.now() was estimated to be approximately 0.05 ms. At least 1000 cache accesses were needed to measure reliable time differences. Latency increased rapidly from n = 1,000 to 10,000 and then almost linearly from n = 10,000 to 10,000,000.

3 Task 2: Trace Collection with the Sweep Counting Attack

3.1 Objective

Implement the Sweep Counting Attack to collect cache access traces and visualize them as heatmaps.

3.2 Implementation

The sweep(P) function in static/worker.js was implemented to:

- Allocate a buffer of size LLCSIZE (16 MB, determined via getconf -a grep CACHE).
- Count sweeps through the buffer at LINESIZE intervals within P ms windows.
- Collect counts for 10 seconds (K = TIME/P).

A suitable P=10 ms was chosen based on Task 1 experiments. The UI was updated in static/index.html with "Collect Trace," "Download Traces," and "Clear Results" buttons. The collectTraceData() function in index.js handled worker communication, and the Flask endpoints /collect_trace and /clear_results in app.py processed and stored trace data, generating heatmaps using matplotlib.

3.3 Results

Distinct heatmap patterns were observed for:

• Idle browser: Uniform low counts.

• YouTube: High variability.

• Gmail: Periodic spikes.

Website	Min. Sweep Count	Max. Sweep Count	Range	Samples
Idle	58	87	29	1000
YouTube	51	85	34	1000
Gmail	57	87	30	1000

Table 2: Trace Statistics

3.4 Observations

The attack successfully captured cache usage patterns, with dynamic websites like YouTube showing more variable traces. The chosen P=10 ms provided sufficient resolution for distinguishing websites.

4 Task 3: Automated Data Collection

4.1 Objective

Automate trace collection using Selenium and store data in a SQLite database.

4.2 Implementation

The collect.py script was completed to:

- Start the Flask server and open the fingerprinting page.
- Open target websites (cse.buet.ac.bd/moodle, google.com, prothomalo.com) in a new tab.
- Simulate random scrolling to mimic user activity.
- Collect and store traces in webfingerprint.db using database.py.

1000 traces per website were collected, with robust error handling to prevent crashes.

4.3 Results

Website	Number of Traces
cse.buet.ac.bd/moodle	1000
google.com	1000
prothomalo.com	1000

Table 3: Collected Traces

4.4 Observations

Automation was reliable, with traces stored persistently in the db.

5 Task 4: Machine Learning for Website Classification

5.1 Objective

Train a neural network to classify websites based on cache traces, achieving at least 60% accuracy.

5.2 Implementation

The train.py script was completed to:

- Load and preprocess trace data from dataset.json, applying standard scaling.
- Split data into 80% training and 20% testing sets.

- Train FingerprintClassifier and ComplexFingerprintClassifier using PyTorch.
- Evaluate models on the test set and save the best model (model.pth).

5.3 Experiments and Findings

The following experiments were conducted to analyze model performance:

- Website Classification Difficulty: Evaluated which websites were easiest/hardest to classify.
- **Model Architecture**: Compared FingerprintClassifier vs. Complex-FingerprintClassifier and tested a modified architecture.
- **Hyperparameter Tuning**: Varied learning rate and batch size.

5.3.1 Website Classification Difficulty

Website	Precision	Recall	F1-Score	Support
cse.buet.ac.bd/moodle	0.96	0.95	0.96	206
google.com	0.99	1.00	1.00	190
prothomalo.com	0.96	0.96	0.96	204

Table 4: Classification Metrics per Website

Observation: **cse.buet.ac.bd/moodle** was the hardest to classify due to having very similar cache patterns as **prothomalo.com**; **google.com** was the easiest due to having quite distinct cache patterns from the other two.

5.3.2 Model Architecture Comparison

Model	Test Accuracy
FingerprintClassifier	0.93
ComplexFingerprintClassifier	0.97

Table 5: Model Performance

Observation: The ComplexFingerprintClassifier model outperformed the FingerprintClassifier. This might be due to the more robust architecture and additional convolution layers.

5.3.3 Hyperparameter Tuning

The accuracy and F1-score of the model were tested using different Learning Rates and Batch Sizes.

Varying Learning Rate

Varying Batch Size

Observation: A learning rate of 1e-3 and batch size of 128 yielded the best accuracy. Here the ComplexFingerprintClassifier model was used with the dataset containing 3000 trace data.

5.4 Overall Performance

The ComplexFingerprintClassifier achieved a test accuracy of 0.97, surpassing the 60% requirement. The model was saved as complex_model.pth.

6 Bonus Task 2: Collaborative Dataset Collection

6.1 Objective

Collect a large dataset ($\geq 50,000$ datapoints) by collaborating with classmates.

6.2 Implementation

Collaborated with 32 classmates to pool traces collected via collect.py. Each contributor provided approximately 30,000 traces, stored in a file **dataset_merged.json**.

6.3 Results

6.3.1 Website Classification Difficulty

Website	Precision	Recall	F1-Score	Support
cse.buet.ac.bd/moodle	0.78	0.77	0.77	7125
google.com	0.86	0.88	0.87	7253
prothomalo.com	0.79	0.78	0.79	7194

Table 6: Classification Metrics per Website

Observation: **cse.buet.ac.bd/moodle** was the hardest to classify due to having very similar cache patterns as **prothomalo.com**; **google.com** was the easiest due to having quite distinct cache patterns from the other two.

6.3.2 Model Architecture Comparison

Model	Test Accuracy	
FingerprintClassifier	0.8111	
ComplexFingerprintClassifier	0.8096	

Table 7: Model Performance

Observation: The FingerprintClassifier model outperformed the ComplexFingerpr This might be due to the complex model overfitting the data. This is a fine example of the idea "Occums's Razor", where the simpler solution to a problem is preferred over a more complex one.

7 Challenges and Solutions

- Large Dataset Handling: Slow database operations; optimized by batching insertions in database.py.
- **Model Overfitting**: Addressed by using dropout and batch normalization.

8 Conclusion

The assignment successfully demonstrated a side-channel attack for website fingerprinting. All tasks were completed, achieving robust trace collection, automation, and classification with over 60% accuracy. Bonus tasks enhanced the system with a large collaborative dataset and real-time detection, showcasing the power of cache-based side-channel attacks. Future work could explore advanced attack techniques (Bonus Task 1) or optimize real-time performance.