

AD A 071638

U.S. ARMY
MISSILE
RESEARCH
AND
DEVELOPMENT
COMMAND

FILE COPY

Redstone Arsenal, Alabama 35809

LEVE

TECHNICAL REPORT T-78-53

APPLICATION OF A MICROPROGRAMMED, BIT SLICE MICROPROCESSOR TO THE REAL TIME IMAGING TRACKER PROBLEM

Lewis G. Minor Advanced Sensors Directorate Technology Laboratory

30 September 1978

Approved for Public Release; Distribution Unlimited.

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	FAGE	BEFORE COMPLETING FORM
1. REPORT NUMBER T-78-53	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVER
Application of a Microprogrammed	, Bit Slice	
Microprocessor to the Real Time		Technical Report
Tracker Problem		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		S. CONTRACT OR GRANT NUMBER(s)
Lewis G./ Minor	1716110	LAGLA.
9. PERFORMING ORGANIZATION NAME AND ADDRES	is	10. PROGRAM ELEMENT, PROJECT, TAS AREA & WORK UNIT NUMBERS
Commander US Army Missile Research and Dev	elopment Command	DA-PROJECT NO.
ATTN: DRDMI-TE Redstone Arsenal, Alabama 35809		1T1.61101A91A
		AMCMS-611101.91A.0011
11. CONTROLLING OFFICE NAME AND ADDRESS Commander		12. REPORT DATE
US Army Missile Research and Dev ATTN: DRDMI-TI	elopment Command	1 30 September 1978
Redstone Arsenal, Alabama 35809	6	255
14. MONITORING AGENCY NAME & ADDRESS(II dillon		15. SECURITY CLASS. (of this report)
	(12 Vara	UNCLASSIFIED
	(12/2090	154. DECLASSIFICATION/DOWNGRADING
× ×	1	SCHEOULE
17. DISTRIBUTION STATEMENT (of the abetract entere		7 78-53
17. DISTRIBUTION STATEMENT (of the abetract entere		and the same of th
17. DISTRIBUTION STATEMENT (of the abetract entered en		and the same of th
	d in Block 20, il different fr	na Report)
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary of SOLID STATE IMAGE DEVICE TRACKER	d in Block 20, il different fro	m Report)
19. KEY WORDS (Continue on reverse side if necessary of SOLID STATE IMAGE DEVICE TRACKER Following sections detail the designation of the program was well to the original scope of we accomplishments are listed as fol first Army imaging tracker capable contrast tracking, (2) the feasily	and identify by block numbers sign and construct very successful as ork were achieved lows: (1) Design end correlation willity of trackers	cion of an imaging tracker and nearly all of the objective. The program's major ned, built, and tested the and adaptive gate optical a using high speed micro-
19. KEY WORDS (Continue on reverse side if necessary of SOLID STATE IMAGE DEVICE TRACKER Following sections detail the desibuilt inhouse. The program was we tives in the original scope of we accomplishments are listed as fol first Army imaging tracker capable	and identify by block numbers sign and construct very successful as ork were achieved lows: (1) Design end correlation willity of trackers	cion of an imaging tracker and nearly all of the objective. The program's major ned, built, and tested the and adaptive gate optical a using high speed micro-

DO . TAN 73 LOTS EDITION OF ! NOV 65 IS OBSOLETE

393 427

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. Abstract (Continued)

and template matching techniques were studied and implemented in real time microprocessors. Though the tracker was built primarily as a research tool, the hardware concept has the potential for achieving a very small packaging size.

Accession For

NTIS GRALI

INDC TAB

Unannounced
Justification

By

Plainbution/

Availand/or

Special

UNCLASSIFIED

TABLE OF CONTENTS

De	scri	ption Pag	zе
1.	Int	roduction	9
	A.	Background	9
	B.	Summary of Accomplishments	10
2.	Ha	rdware Description of the Computer Interface to the Tracker 1	10
	A.	General 1	0
	B.	Computer Interface Details	0
3.	Vic	leo Interface to Microprocessor	12
	A.	General Description	12
	B.	CCD TV Camera	12
	C.	Video Interface Control Latches	16
	D.	Row and Column Count Logic	18
	E.	Tracking Gate Generation Logic	18
	F.	Image Memory Address Generation	18
	G.	Conversion Control Logic	19
	H.	Image Memory	19
	I.	TV Monitor	19
4.	Mic	croprocessor and Tracker Hardware	21
	A.	Physical Description	21
	B.	Microprocessor and Tracker Architecture	
	C.	Microinstruction Format	
	D.	Bus Control Logic	28
	E.	Function Generation Circuit Details	
	F.	Loop Counting Circuit Details	31
	G.	K Bus Encode Logic	34

TABLE OF CONTENTS (Continued)

De	scri	ption	Page
5.	Uti	ility Software	34
	A.	General Description	34
	B.	Memory Test Software	34
	C.	Microcode Loading Procedure	34
	D.	Macrocode Loading Procedure	34
6.	Co	rrelation and Template Matching Tracker	34
	A.	General Description	34
	B.	Correlation and Template Matching Algorithms	37
	C.	Tracker Description	47
7.	De	tailed Software Description	56
	A.	EAI 640 Emulation Code	56
	B.	Addressing Technique for Image Processing	64
	C.	Tracker Microcode	67
	D.	Execution Times for Tracker Routines	76
8.	Po	wer Consumption and Packaging	76
9.	Co	nclusions	82
Re	fere	nces	85
Ap	pend	dix A	87
Ap	pend	dix B	101
Ap	pend	dix C	189

ILLUSTRATIONS

Fig	ure Page
1.	Memory block diagram
2.	Function of bits in DF latch
3.	Video interface to microprocessor
4.	Fairchild 201 CCD TV
5.	Bit assignments in the MODE latch
6.	Photograph of tracker hardware 20
7.	Photograph of operators panel
8.	Macro and Micro memory boards
9.	Microprocessor, image memory, and video front end boards 24
10.	Block diagram of microprocessor and tracker architecture 25
11.	Microinstruction format (48 bits)
12.	Bus control mnemonics
13.	Simplified bus control logic diagram
14.	Bus control timing
15.	Function generation timing
16.	Details of loop counter hardware

ILLUSTRATIONS (Continued)

Fig	ure Page	
17.	K bus wiring for logic encoding	
18.	Bits patterns required for K bus constants and masks generation	
19.	Definition of image and reference arrays	
20.	Video IR image of the side view of an M48 tank 40	
21.	Image and reference arrays used for testing (See Equation 6.1) 41	
22.	Unnormalized correlation (See Equation 6.3)	
23.	Correlation normalized by norms	
24.	Correlation normalized by means (See Equation 6.4)	
25.	Sum of absolute differences template matching (See Equation 6.5)	
26.	Sum of square differences template matching	
27.	List of variable names and definitions	
28.	Flow chart of scan loop	
29.	Flow chart of track loop 50	
30.	Iterative GAIN and BIAS flow chart	
31.	Plain paper tracking tests	
32.	Results from automatic GAIN and BIAS adjustments 54	

ILLUSTRATIONS (Continued)

Fig	ure Page	е
33.	Results of real time scan and track loop tests on a simulated M48 tank target	5
34.	Memory reference instructions	7
35.	Register operation instructions	8
36.	Skip instructions	9
37.	Other instructions	0
38.	Conditional branches used to select microcode sequence 63	3
39.	Subarray inside larger array 68	5
40.	Addressing technique for image processing 6	6
41.	Flow chart for routine WIN 6	8
42.	Flow chart for routine CROSS	9
43.	Flow chart for routine FRM 6	9
44.	Flow chart for routine WAT 6	9
45.	Flow chart for routine IMG 70	0
46.	Flow chart for routine COR	1
47.	Variable definition for routine MIN	3
48	Flow chart for routine MIN	1

ILLUSTRATIONS (Continued)

Fig	ure	Page
49.	Flow chart for routine REF	75
50.	Flow chart for routine MNV	77
51.	Flow chart for routine STD	78
52.	Estimated execution times of tracker routines	79
53.	Graphic illustration of DIP area needed for tracker	80
54.	Graphic illustration of DIP chip area needed for tracker	81
55.	Part inventory and power consumption	83

ACKNOWLEDGMENT

The development of the tracker contained within this report could not have been achieved without the contributions of Allen Davis and Roy Lee of the Redstone Arsenal Support Agency and Richard Sims of the Technology Laboratory. Allen Davis was responsible for much of the detailed logic design in the tracker and frequently offered significant improvements to designs by the author. Allen Davis and Roy Lee had total responsibility for the construction and debugging of all hardware. Their high motivation and truly outstanding work are largely responsible for the success of the tracker. It should also be acknowledged that Richard Sims wrote and debugged most of the utility software in Section 5, and assisted in the debugging of the emulation code in Section 7.

1. INTRODUCTION

A. Background

High speed microprocessors such as the Intel 3000 bit slice microprocessor (or AMD 2901) offer the highest speeds, the most flexibility, and the greatest computing power available (excluding perhaps the Motorola 10800 ECL microprocessor) in current microprocessor technology. The high speed microprocessors are directly TTL compatible and as such can interface to TTL LSI parts. The processors can achieve from 6-10 million operations per second and are certain to have wide ranging effects on military hardware.

Though slower speed microprocessors such as the Intel 8080 and Motorola 6800 have been applied in limited ways in Army seekers, little has been done to exploit the capability of high speed bipolar microprocessors.

This report details an application of a high speed microprocessor (Intel 3000) to imaging seekers. The work clearly demonstrates that software as opposed to hardware can be used as the basis for a real time imaging tracker. In particular, two dimensional correlation and template matching normally implemented in dedicated hardware can be accomplished in real time software. The bulk of this report contains a general hardware description and detailed description of correlator software. Software for an optical

contrast tracker appears in a separate report. Both trackers operate with the same hardware and the only difference between the two trackers is software changes. Thus, the software approach yields a tracker that is capable of radical changes in tracking mode. The changes can be effected merely by branching to different software. The implication is that trackers can be built that modify their tracking algorithms in response to countermeasures or battlefield conditions. Such changes could even occur after missile launch up to the time of missile and target impact. This capability has the effect of increased countermeasure immunitv.

The bit slice, microprogrammed architecture of the Intel 3000 and other similar microprocessors appears to be well suited to many military applications. This follows because of the following reasons: 1) Architecture may be tailored to fit the application. 2) Microword structure can be configured to control complex hardware in parallel with microprocessor or other peripheral hardware functions. 3) The device operates at very high speeds.

In light of this report the development of future trackers will depend heavily on high speed software and hardware control. This follows since high speed software can replace much hardware. Thus, very complex tracking algorithms not practical in the past because of size and complexity are now feasible.

The following sections detail the design of a microprocessor applied to the image processing problem. The hardware structure and software techniques have general utility and can be used with any microprogrammed microprocessor. The tracking algorithms developed concentrate on correlation and template matching techniques, but the hardware with minimal or no modification can be applied to other tracking algorithms. Though the tracking algorithms were developed for the visible spectrum, they have direct application to other wavelengths.

B. Summary of Accomplishments

Following sections detail the design and construction of an imaging tracker built inhouse. The program was very successful and nearly all of the objectives in the original scope of work were achieved. The program's major accomplishments are listed as follows: 1) Designed, built, and tested the first Army imaging tracker capable of correlation and adaptive gate optical contrast tracking. 2) The feasibility of trackers using high speed microprocessors and CCD TV technology was demonstrated. 3) Several correlation and template matching techniques were studied and implemented in real time microprocessor software.

The work documented in this report is by no means complete and is expected to continue into FY78. The emphasis, however, will shift to trackers using classical pattern recognition concepts involving feature extraction and classification.

2. HARDWARE DESCRIPTION OF THE COMPUTER INTERFACE TO THE TRACKER

A. General

This section is designed to present a general description of hardware used in the interface of the tracker computer to an existing lab minicomputer. The level of detail is sufficient for a complete understanding of the software presented in later sections. A more detailed description will be given in a report now in preparation.

B. Computer Interface Details

In order to develop software for a microprocessor a means must be generated to load software into its memories. By far the most convenient method is to load memory from cards or disks using an external computer. The hardware in this system was interfaced to an existing EAI 640 minicomputer. The interface is an important part of the system since it allows tracker software development to occur with minimum turn around. Figure 1 shows a block diagram of the microprocessor memory interface to the EAI

Figure 1. Memory block diagram.

640. Memory can be loaded with output from cross assemblers resident on the EAI 640 or directly from cards or disk files. The interface is bidirectional so memory can be written into or dumped to a line printer. The play card shown is a standard EAI parallel interface containing two 16 bit output latches (DF and DO) and one 16 bit input line (DI). The DF latch is used to control the mode of operation and address memory. Figure 2 gives the assignment of function to bits in the DF latch. The Decode Logic shown in Figure 1 is driven by the 5 most significant bits of the DF latch. The output from the Decode Logic is used to: put multiplexers in their proper state, select macro or micro memory, select 16 bit byte of memory, select read or write mode, and control the state of the transceivers. As shown in Figure 2 the least significant 11 bits of the DF latch are used to address memory when DFO is low. An extremely important feature of the system diagrammed in Figure 1 is that both macro and micro memories are fabricated with random access memories (RAM). This makes the system developmental in nature and all software can be easily changed. After development most of the RAM can be replaced by programmable read only memory (PROM) or by read only memory (ROM). The use of a ROM in the final system will reduce memory power consumption by almost a factor of 8 and the number of memory integrated circuit packages from 96 to about 6 packages.

3. VIDEO INTERFACE TO MICROPROCESSOR

A. General Description

Figure 3 is a reasonably complete block diagram showing the interface of a CCD TV camera to a microprocessor. The heavy lines represent analog signal paths; conversely, digital signal paths are represented by lines which are not heavy. The diagram shows that camera video is digitized by a 4 bit analog-to-digital converter and stored in an image memory. The image memory can be addressed and read by the microprocessor which is used to generate tracking algorithms.

The 8 bit latches shown at the top of Figure 3 are loaded by the microprocessor and are used to control the video interface hardware.

B. CCD TV Camera

The camera used in the tracker hardware is a Fairchild 201 CCD TV camera shown in Figure 4. This particular camera was selected primarily because of its availability within the lab. Though the camera has some undesirable properties, it proved adequate to demonstrate tracking algorithms. The developed algorithms are independent of the source of the image data. Therefore tracking algorithms developed for the Fairchild 201 CCD TV also have application to

Figure 2. Function of bits in DF latch.

Figure 3. Video interface to microprocessor.

A

imaging cameras operating in the 3-5 micro meter and 8-14 micro meter bands.

The Fairchild camera operates in the visible spectrum at a frame rate of 123 frames/sec with a resolution 100 x 100 elements. The camera uses 2:1 interlace and has non-standard composite video output. The non-standard video required a modified TV monitor to view the TV image, and made recording of the video difficult with standard video recorders. Video recordings could have been made with specialized recorders but the high cost of the units forced the use of available recorders. Recordings of marginal quality have been made of test results with an Ampex recorder by adjusting the recording head rate servo for a fairly stable lock on every 4th sync pulse.

Some problems were also experienced from: the tendency of the camera to bloom on bright objects, nonuniformity in response (pixel to pixel), and camera produced AGC.

C. Video Interface Control Latches

The GAIN latch, Figure 3, is used to control a multiplying digital to analog converter (MDAC). The MDAC in turn controls the gain of the video amplifier. The gain is selectable in the range from 0.0 to 5.0. Higher gains are possible but usable gains depend on the responsivity variation from pixel to pixel and fixed pattern noise. For the

CCD 201 solid state image sensor the photo response nonuniformity is on the order of +15% and higher gains were not indicated.

The BIAS latch, Figure 3, is used to drive a digital to analog converter (DAC). In this case the DAC output is used to "buck out" DC components appearing in the amplified video.

By manipulating the GAIN and BIAS latches it is possible to optimize the video going to the 4 bit analog to digital converter. The clipping circuit shown is used to protect the A/D from over range voltages.

The MODE latch, Figure 3, contains 5 bits of data which are used to control: the state of the address multiplexer (MUX shown in Figure 3), the gate color (black or white), the gate type (box or crosshairs), enable status, and frame requests. Figure 5 shows the bit assignments in the MODE latch. When the microprocessor is reading data from the image memory, the MUX is used to select the memory address register of the microprocessor as the source for image memory address. When status is enabled, the conversion control logic will force the sign bit of the I bus high after a new frame has been stored since the strobe in the pipeline register is enabled in the control logic.

The LEFT COLUMN latch, Figure 3, defines the column location (1 to 100)

Figure 5. Bit assignments in the MODE latch.

of the left vertical side of the tracking gate.

The RIGHT COLUMN latch, Figure 3, defines the column location (1 to 100) of the right vertical side of the tracking gate.

The UPPER ROW latch, in Figure 3, defines the row location (1 to 100) of the upper, horizontal side of the tracking gate.

The LOWER ROW latch, Figure 3, defines the row location (1 to 100) of the lower, horizontal side of the tracking gate.

The video interface control latches can be loaded by addressing the latch by the MAR register, loading the AC register with data, and executing a ROT instruction as defined in Section 7.A. Addresses for the various latches are given in Figure 3.

D. Row and Column Count Logic

The row and column count logic block shown in Figure 3 is driven by the same clocks that are used to scan the CCD image array. The output from the row and column count logic is the true row and column location of the pixel being output from the TV camera. Since the camera uses 2:1 interlace, logic decoding and counters are necessary to produce the true row and

column count. The row count ranges from 1 to 100 starting in the uppermost row. The column count also ranges from 1 to 100 but starts in the left most column.

E. Tracking Gate Generation Logic

The tracking gate generation logic in Figure 3 is driven by the true row and column counts and the mode latch. The left column, right column, upper row and lower row latches define the location and size of the tracking gate. The mode latch determines the color (black or white) and type of gate (rectangle or crosshairs). The output from the tracking gate logic drives the video amplifier feeding the TV monitor to white (black) at the appropriate instants to generate the desired tracking gate.

F. Image Memory Address Generation

The image memory address generation logic in Figure 3 is driven by the true row and column counts. This circuit contains logic to store data sequentially into image memory on a line basis (2:1 interlace). When image data is stored in this manner addressing of image data by the microprocessor becomes an easier task and need not take into account the effect of 2:1 interlace.

G. Conversion Control Logic

The conversion control logic in Figure 3 is driven by the same clocks used to scan the CCD array. When the frame signal is high, any strobes generated by the microprocessor will result in a new TV frame being stored into image memory, and the conversion control logic issues convert requests (REQ) to the analog to digital converter. The converter in turn issues an end of conversion signal (EOC) for each request (REQ). When data has stabilized and an EOC has been issued, data is written into image memory by bringing the memory write enable low (WE).

Since the conversion control logic uses the clocks which are also used to scan the CCD array, conversions take place as pixel data is shifted from the CCD and the row and column address of each new pixel is known for each conversion that takes place.

H. Image Memory

The image memory can store $10K \times 4$ bits of image data (all 100×100 elements of the array). The large memory is not required for tracker operation but is convenient for test purposes. Most correlation trackers would require no more than $32 \times 32 = 1024$ memory locations. The output of the memory is placed on the I bus of the

microprocessor, but the data is meaningful only if addresses are being supplied from the microprocessor MAR bus. When a frame is being stored in image memory, the addresses are generated by the image memory address generation logic.

I. TV Monitor

The TV monitor shown in Figure 6 is used to monitor video and also the location and size of the tracking gate. In normal operation video is supplied directly to the monitor summed with the tracking gate signal. However, the monitor can also be used to display the stored image in image memory. When data is not being written into image memory, image data is available on the output of image memory. The output is used to drive a digital to analog converter (DAC). The output from the DAC is summed with TV sync and the tracking gate signal generating a composite video signal for the monitor. The image memory. address generation logic supplies addresses to image memory in synchronization with the clocks used scan to the CCD image array. The propagation delay form clocks to DAC output causes the video to be shifted relative to real time video, but still produces a very useful display. For example, the display can be used to determine the effects of preprocessing (gain and bias latches) on the video from the camera.

Figure 6. Photograph of tracker hardware.

4. MICROPROCESSOR AND TRACKER HARDWARE

A. Physical Description

Figure 6 is a photograph of the completed tracker and Figure 7 is a close up of the operator's panel. The thumb wheel switches shown in the figure drive address halt hardware. An address halt can be executed at any macroinstruction at any point within its microcode by setting addresses into the thumb wheel switches.

The selector switch shown at the left side of the panel drives multiplexer hardware which can display virtually any bus within the system. The column of switches to the right of the panel are software sense switches used for force branches in software.

The white switches to the lower right are the run (start the clock) and single switches (one clock pulse per depression). Since all memory can be read, modified and written into from the minicomputer there is no need to provide for these functions through front panel switches. The toggle switch located at the center, bottom portion of the panel selects one of two possible sources of video for the TV monitor. Video can be displayed directly from the camera or video generated from stored image data can be displayed. The toggle switch to the far right, bottom of the panel is used to take control of the data bus from the

minicomputer. Finally, the small momentary push button switch located to the left of the run and single switches is used to reset hardware. Figures 8 and 9 show all of the circuit boards used in the tracker. Multiplexer boards are not shown. Some of the components on the memory boards are taken up by minicomputer interface circuit components. It should be noted that no attempt was made to minimize package size. Many improvements could be made along these lines. As an example the 2K x 48 bit RAM micro memory could be implemented with 1024 x 8 PROMs reducing the package count from 96 to 6 and the power requirements by a factor of 8.

B. Microprocessor and Tracker Architecture

The microprocessor shown in Figure 3 is shown in more detail in Figure 10. The microprocessor is the Intel 3000 used in a standard pipelined configuration. The loop counters shown are used extensively in image processing. The counters can be addressed and loaded, or addressed and incremented and tested on a single microcycle. The counters are used primarily to keep track of loop counts in the nested loop computations that occur in image processing (e.g. convolution and correlation computations).

Since counting, loading or testing can occur in parallel with microprocessor functions the overhead

Figure 7. Photograph of operators panel.

20 × 1K MACRO MEMORY

32 × 1K MICRO MEMORY

16 × 2K MACRO MEMORY

32 × 1K MICRO MEMORY

Figure 8. Macro and Micro memory boards.

INTEL 3001 CPU

VIDEO CONTROL

10K × 4 IMAGE MEMORY

INTEL 3002

VIDEO FRONT END

Figure 9. Microprocessor, image memory, and video front end boards.

Figure 10. Block diagram of microprocessor and tracker architecture.

associated with loop counting is reduced to zero. If no more than four loop counters are needed simultaneously, then no registers internal to the microprocessor need be wasted on loop counting.

The function generation hardware also shown in Figure 10 can be programmed to generate several operations which occur frequently in template matching or correlation computations by table look up. The hardware accepts two 4 bit operands A and B, and will output a single 8 bit result C on command. Typical functions which can be generated include: 1. C = A * B, 2. C = A - B, and 3. C = (A - B)B)2. With the arrangement shown operand A is supplied directly from the least significant 4 bits of memory and operand B is placed on the least significant 4 bits of the AC bus. This circuit was specifically designed to minimize the number of microcycles in correlation and template matching processing.

The bit slice architecture of the Intel 3000 allows a maximum of flexibility in designing a system for optimum performance. The word lengths of macromemory and micromemory can be tailored to suit the application. In this case the tracker was built with a 20 bit macromemory and a 48 bit micromemory. The 20 bit word is overkill for the tracker and could be reduced to 16 (possibly 12 bits) with relatively minor modifications to the hardware. On the

other hand micromemory could be expanded to 64 bits if more hardware control is required. More hardware control could be required if hardware external to the microprocessor is needed for tracker development.

C. Microinstruction Format

Figure 11 shows the microinstruction word used in the tracker. The microinstruction detailed in the figure contains a great deal of information concerning the hardware. This is not surprising since the microinstruction controls all elements of the microprocessor hardware. Fields 1, 2, and 3 are standard Intel fields. Notation where possible follows notation used by Intel. Field 4 is the K bus control field which drive the decode logic shown in Figure 10. The decode logic generates the required 20 bit wide word for the K bus input on the 3002 CPU. Field 8 is the logic strobe bit which can be used for a data strobe. The strobe is used to request a new video frame in the conversion control logic shown in Figure 3. Field 5 is used to page micromemory. The Intel 3001 microsequencer is capable of addressing up to 512 memory locations with 9 address lines. Thus in order to address 2K of memory two additional address lines are required and are supplied by the pipeline register. Field 6 is used to control the data buses and clocks. Details are given in Section 4.C. Field 7 is the pause field. The pause field can be used to halt the microprocessor by

stopping the clock. The feature is useful in debugging operations. Field 9 is used to select a loop counted to be loaded, incremented, or tested. Field 10 is used to load input on all loop counters. Field 11 is the last field and is used to control the multiplier hardware.

D. Bus Control Logic

The bus control logic block shown in Figure 10 is driven by a 3 bit field in the pipeline register. The mnemonics, codes and functions associated with the bus control field are given in Figure 12. Figure 13 is a simplified diagram of the bus control logic. The circuit generates the following signals: macromemory chip select (CS), macromemory write enable (WE), memory address enable (MEMAE), and the memory data enable (MEMDE). The circuit contains the necessary logic to generate all clocking signals, and produces stretched microcycles for memory reads and writes as shown in

the timing diagram of Figure 14. The circuit shown is a modification of the one given in Intel literature [1].

E. Function Generation Circuit Details

Figure 10 shows the function generation circuit used in correlation computations. A single bit from micromemory is used to enable the circuit (MULT) and disable normal video memory outputs that are routed to the I bus input (3002). The circuit as shown allows data in the AC register and memory to be simultaneously operated on by the table look up hardware. The memory address is supplied by the MAR register, and the output from the circuit is routed to the I bus input of the CPU (3002). The heart of the circuit is the 512 × 8 programmable read only memory (PROM) which can be programmed to produce any of two (switch selectable) 8 bit results from 4 bit inputs. A typical sequence of microinstructions for function generation is given below.

LMI (ADRB) FFI RRM;

Address of B→ MAR, ADRB=ADRB+1, read - memory

ACM (AC);

B→ AC

Address of A→ Mar, ADRA=ADRA+ read memory

AIA (T) MULT;

Replace T reg with sum of T register and result from enabled function generation circuit (e.g. C = (A - B) 2

MNEMONIC	CODE	FUNCTION
NMO	000	NO BUS OPERATION
INH	001	INHIBIT CPU CLOCK
RMW	010	READ MODIFY WRITE
CNB	011	CPU NEEDS BUS
RIN	100	REQUEST INPUT FROM EXTERNAL DEVICE
ROT	101	REQUEST OUTPUT TO EXTERNAL DEVICE
RRM	110	REQUEST READ MEMORY
RWM	111	REQUEST WRITE MEMORY

Figure 12. Bus control mnemonics.

Figure 13. Simplified bus control logic diagram.

Figure 14. Bus control timing.

Hardware timing is shown in Figure 15 and relates directly to the example given above. The logic signal MEMAE is the macromemory address enable generated by the bus control logic, and the logic signal MULT is asserted (active low) by a bit in the microinstruction word (MULT). The stretched cycles for slow memory are evident in the diagram.

F. Loop Counting Circuit Details

Figure 16 shows the details of loop counting hardware. There are four counters shown, thus, loop counts for four computation loops may be maintained simultaneously. The counters have general utility and are especially useful when dealing with nested loops appearing in image processing. The counters may be loaded (or incremented and tested) simultaneously with CPU operations of the Intel

3002. The field mnemonics and associated hardware control word are shown in Figure 16. In practice a loop counter is initialized by loading a selected counter with the ones complemented of the desired loop count. The counter can be incremented and tested as required by testing for a carry from the counter. When counters are not being tested or loaded, the source of the Intel 3001 FI input is the carry out (CO) from the Intel 3002.

An example segment of code is given below showing how a counter is loaded and then tested by the JFL instruction of the Intel 3001.

The clock signals shown in Figure 16 are delayed ¼ of a microcycle from the MCU clock so that loading (or incrementation and testing) can be accomplished in a single microcycle.

	ILR(R0)	LCNTI M5; { R0 -AC, load counter one with 5
LOOP:	ALR(AC)	ITCNTI; { shift AC register one time to left, } increment and test counter one
	ADR(R1)	JFL(LOOP, CONT); R1 = R1 + AC, if counter had a carry branch to CONT else, go to LOOP

CONT: SDR(R3)

Figure 15. Function generation timing.

1

Figure 16. Details of loop counter hardware.

G. K Bus Encode Logic

Figure 10 shows a K bus encode logic block. This important circuit is used to generate constants and masks in microcode. The circuit accepts 8 bits as an input and produces 20 bits as an output. Figure 17 shows the 10 Intel 3001 slices used to make a 20 bit processor and the K bus wiring. The signals K0 through K7 are generated as a field in micromemory shown in Figure 11. With the proper selection of bit pattens the constants and masks shown in Figure 18 can be generated.

5. UTILITY SOFTWARE

A. General Description

Utility software will be described in detail in the hardware report now being prepared. This section contains only a general description of the software.

B. Memory Test Software

Section 2.B contains a description of the minicomputer interface to memory hardware. Since the minicomputer can load and dump the contents of both memories (macro and micro), software has been written to test memories by loading test bit patterns. The memories are then read to check for the expected patterns. Failures are printed to isolate the source of the problem.

C. Microcode Loading Procedure

The microcode to be tested is first punched into cards. The cards form the source deck for a cross micro assembler CROMIS [2]. The cross assembler operates on the CDC 6600 digital computer and produces punch card output (machine code) along with a listing of the assembly. The card output is then loaded on to the EAI 640 disk (Figure 1) under a file name. The file can be loaded into micromemory as required by calling the file from the disk.

D. Macrocode Loading Procedure

Macrocode is assembled and loaded directly by an EAI 640 cross assembler and loader. The assembler is a two pass assembler which uses mnemonics similar to the EAI 640 instruction set. Some special instructions have been added that relate to special tracker microcode. The complete set of mnemonics used in the tracker is given in Section 7.

6. CORRELATION AND TEMPLATE MATCHING TRACKER

A. General Description

The remainder of this report is devoted to a description of the correlation tracker developed for the hardware described in Sections 2, 3,

Figure 17. K bus wiring for logic encoding.

K Bus Constants	K Bus Control Field K ₇ K ₆ K ₅ K ₄ K ₃ K ₂ K ₁ K ₀
0000000	00000
0000001	00001
0000010	00002
00000011	00003
00000100	00004
00000101	00005
00000110	00006
00000111	00007
00001000	00008
00001001	00009
00001010	0000A
00001011	0000B
00001100	0000C
00001101	0000D
00001110	0000E
00001111	0000F
00010000	00010
00010001	00011
00010010	00012
00010011	00013
00010100	00014
00010101	00015
00010110	00016
00010111	00017
00011000	00018
00011001	00019
00011010	0001A
00011011	0001B
00011100	0001C
00011101	0001D
00011110	0001E
00011111	0001F
00111111	01FFF
1000000	80000
01111111	7FFF
11111111	FFFFF

Figure 18. Bits patterns required for K bus constants and masks generation.

and 4. The tracker is unique in that it operates in real time and uses almost 100% software to execute algorithms.

Appendix A contains a listing of the tracker macrocode. The macrocode contains EAI 640 instructions (emulation) along with some special instructions associated with the tracker. The EAI 640 instructions are given in Section 6.B. The special instructions, described in detail in Section 7, represent the bulk of the tracker software. The software described in these sections is written on the microcode level to achieve maximum efficiency. A complete listing can be found in Appendix B.

B. Correlation and Template Matching Algorithms

The complete tracker will be described in Section 6.C. This section identifies several correlation and template matching algorithms selected for study. Though several algorithms were tested, all operate on two image subarrays as defined in Figure 19. The 17×17 image array I(I,J) is part of the 100×100 image produced by the camera. The smaller 9×9 reference array R(I,J), bounded by the tracking gate, contains a high percentage of target pixels relative to background pixels.

The image array is always centered at the current track point (NX, NY). The image array is read from the 10K video memory 123 times a second during the vertical blanking interval. The reference array is obtained from the image array and stored separately when tracking is initiated. The reference array contains the "signature" of the target and is not changed or updated until correlation quality degrades. Correlation quality degrades typically due to range closure or target aspect changes. The correlation or template matching algorithm is used to locate the point of best match of the reference array and a 9 × 9 subarray of the image array. The point of best match is determined from the maximum or minimum of a function which in some way measures the quality of the match. Equations 6.1 through 6.3 define all the correlation algorithms or normalized correlation algorithms

$$\{C(M,N)\} = \sum_{i=1}^{9} \sum_{j=1}^{9} I(K,L) * R(I,J)$$
6.1
6.2

$$\{C(M,N)\} = \frac{\sum_{\Sigma} \sum_{\Sigma} I(K,L) * R(I,J)}{\sum_{\Sigma} \sum_{\Sigma} I^{2}(K,L) \sum_{\Sigma} \sum_{\Sigma} R^{2}(I,J)}$$

$$I=1 J=1 \qquad I=1 J=1$$

$$\{C(M,N)\} = \sum_{I=1}^{9} \sum_{J=1}^{9} (I(K,L)-I)*(R(I,J)-R)$$

$$I=1 J=1$$

$$\{E(M,N)\}=\sum_{I=1}^{9}\sum_{J=1}^{9}|I(K,L)-R(I,J)|$$

Figure 19. Definition of image and reference arrays.

$$\left\{ E(M,N) \right\} = \begin{array}{ccc} 9 & 9 & \\ \Sigma & \Sigma & \\ I=1 & J=1 \end{array}$$
 (I(K,L)-R(I,J))

where K=I+M-1, L=J+N-1, $1\leq M\leq 9$,

 $1 \le N \le 9$ and where

$$\frac{9}{R} = \frac{9}{1} \sum_{i=1}^{9} \sum_{j=1}^{8} R(1,j)$$

$$\overline{I} = \underbrace{1}_{81} \stackrel{\Sigma}{} \stackrel{\Sigma}{} \stackrel{\Sigma}{} \stackrel{\Sigma}{} I(I,J)$$

tested from imagery from the Fairchild 201 CCD TV. As a preliminary test, a 35MM slide representative of the IR signature of a target was projected on a screen. The image data obtained in this manner is approximately representative of the image data from a camera operating in the IR spectrum.

Figure 20 is a photograph of the TV monitor showing the projected image of such a slide. The bright areas correspond to the hottest areas in target, which in this case, are the tracks and boggey wheels.

The image and reference arrays shown in Figure 21 were obtained from the Fairchild 201 CCD TV and microprocessor hardware. The reference array is the center 9×9 of the 17×17

image array. The arrays were used to test the candidate tracking algorithms listed in Equations 6.1 through 6.5. Each algorithms results in a 9×9 array C (M,N) or E(M,N).

The correlation value and the side lobes of the match point give an indication of the robustness of the algorithm. Results from Equations 6.1 through 6.5 are presented in Figures 22 through 26 respectively. It is clear from the testing that scene brightness variation causes false peaks in the unnormalized correlation result. The results were surprising in view of the fact the shifting distance is so small. This test is representative of other results which also indicate the unnormalized correlation is not adequate as a tracking algorithm. Two normalization schemes were tried on the same data with improved results. In the case of normalization by norms the Cauchy Schwarz inequality guarantees a result less than one and less sensitivity to scene brightness variation. The result is given in Figure 23. Normalization by means as in Equation 6.3 gives similar results as shown in Figure 24. From an implementation point of view normalization by means is more difficult. As shown in Equation 6.3 the mean of the image 9×9 subarray and reference arrays must be known before the computation takes place. On the other hand, though a division is required, the normalization by norms for each correlation result can take place after the standard

Figure 20. Video IR image of the side view of an M48 tank.

	a/addda/a/adddddd	=0	
	るものでもすってってもははははする	~	
	びででいいるとうともとうちょくも	=0	
	P P B B B B B B B B B B B B B B B B B B	= 0	
		=0	でしてとるのでは、
	40mm0v//v/40mm0d	~	และกราย
	กรรพพณจรากษณ์ปัชินัฐธ	~	พกจจากชนีนี
<u>}</u>	เก็พ + + พ า า า า า า า 건 겈 겈 겈 겈	ARRAY	waaaaaabd
IMAGE ARRAY	មក្រុមមួយ ក្រុមក្រុម ក្រុមក្រុមក្រុមក្រុមក្រុមក្រុមក្រុមក្រុម	INCE A	ราบอบ เก็บ เก็บ เก็บ
IMA	モサミア ちょうしゅうしょう かっぱん かっぱん かっぱん かっぱん かっぱん かっぱん ちょうしょう しょうしょう しょうしゃく しょうしょう しょうしょく しょくしょく しょく しょくしょく しょく しょう しょうしょく しょうしょく しょうしょう しょうしょく しょうしょう しょうしょく しょうしょく しょうしょく しょくしょく しょく しょく しょく しょく しょく しょく しょく し	T T	+ N T T N C C M T
		6	พณงขาจ66มี
		40	พดดดดดด
	THE WIND A OB A TO THE THE	5	รางจารจระเกี
	ក្រុក ក	4	
	, , , , , , , , , , , , , , , , , , ,	ig.	
	ក្រុកក្រុក ស ស ស ស ស ក ក ច ច ក ក ស ស ស ស ស ស ស ស ក ក ច ច ច ក ក ស ស ស	검	
	шшшштүйчү	4	

3464 3568 3748 4537 4502 4702 5478 5745 5745
3195 3410 3705 433 5437 5775 5775
3354 3354 1224 1627 1637 5465 5650 5650 5684
2895 31,70 31,70 40,86 46,85 546,3 56,85 57,7 57,7
28.72 34.38 54.55 54.55 54.55 57.56 57.56
2822 3116 3410 3410 4733 5410 5410 6140
2854 31,20 31,50 4007 4007 40,50 40 40,50 40,50 40,50 40 40,50 40 40,50 40 40,50 40 40 40 40 40,50 40 40 40 40 40 40 40 40 40
2797 31,30 34,40 40,22 677 677 61,83 64,83
2834 3202 3202 4152 744 566 673 673 660 660

Figure 22. Unnormalized correlation. (See Equation 6.3)

			CORRELATION	N NORMALIZED	BY NORMS			
-97687	-9683b	.971.29	.9b364	.95890	749EP.	.94968	PHPEP.	.92907
-97082	-96125	.9b32b	.955b4	-4533E	- 45269	.94723	-93532	-92957
.97633	-96432	-96602	-16342	.96134	-96506	.9597b	4995b.	46646.
.97528	- 96819	-96875	.97220	-18025	-97359	.973.80	-47219	.97053
-18507	-97989	-97953	.98524	7.00000	-98627	.98097	58776.	-98027
-9302b	OF47P.	-97294	.97856	-18452	.97798	.47121	.96638	.97101
41779.	-4701.	-96.792	.97093	.97375	.96734	.9b245	.96050	.96371
-9637P	-9547b	-45165	.95364	-95525	-94816	.94251	.93991	-94517
.932bb	.92343	.91631	.91735	.1774.	.91,585	, 93,224	57806.	479Th-

Figure 23. Correlation normalized by norms.

	224.0000 235.0000 365.0000 475.0000 440.0000 376.0000 376.0000
	214.00000 246.00000 380.00000 477.00000 449.00000 423.00000 63.00000
	252-0000 254-0000 379-0000 509-0000 466-0000 327-0000
BY PEANS	247.00000 257.00000 389.00000 356.00000 356.00000 357.00000 357.00000
NORMALIZED	250.0000 256.0000 409.0000 616.0000 600.0000 567.0000 436.0000
CORRELATION NORMALIZED BY MEANS	237.0000 254.0000 354.0000 554.0000 554.0000 551.0000 150.0000
	247.0000 283.0000 384.0000 381.0000 585.0000 567.0000 422.0000
	240.0000 254.0000 376.0000 549.0000 601.0000 613.0000 465.0000
- 836 855	270.0000 350.0000 437.0000 538.0000 652.0000 665.0000 521.0000

Figure 24. Correlation normalized by means. (See Equation 6.4)

	195	158	117	2	149	195	3	700
	200	158	116	명	1.59	151	24g	PUE.
5	502	15.	3,16	87	1.49	197	252	71/1-
DIFFERENCES	E 등 등	158	112	19	品	188	럞	כינב
ABSOLUTE DI	. 223 247	1997	108	0	21.	270	257	31.1
OF	228 191	151	128	2	E C	273	225	325
SUM	₩ 6	158	124	먑	計	195	220	334
	232	191	2	96	142	202	281	343
	231	150	1,12	#8	14		7 9 4	351

Figure 25. Sum of absolute differences template matching. (See Equation 6.5)

	283 057	3	£ 5	169	1066	1436
	838 765	82.2	2 63	763	1194	3,605
	241	55 E C	뎞다	775	1236	25.2
	747 786	3 A	55 % 56 %	足	1190	1660
ETRIC	343	38	۵ ارز در	636	1111	1633
	366 803	38.5	목없	681	1204	1732
	13. 23.	55 BE	85. 8.24	269	1316	1888
	986 759	572 363	45	805	1403	2007
	653 653	292 292	154	811	3428	2059

Figure 26. Sum of square differences template matching.

j

correlation. The norm of the image array may be conveniently computed at the same time as the correlation result. Two template matching algorithms [3] shown in Equation 6.4 and 6.5 were also tested with good results. Template algorithms may be rigorously defined in terms of a distance metric [4]. The result from testing is given in Figure 25 and Figure 26 respectively. It should be noted that Equation 6.5 contains a correlation computation which is evident when the squared term is multiplied out. The algorithms in Equations 6.1, 6.4, and 6.5 have been implemented in real time. This report, however, contains only the software for the algorithms in Equations 6.4 and 6.5. The execution times for these algorithms as defined in the equations is on the order of 6.46 ms with a 160 nsec cycle time and a 320 nsec memory read cycle.

C. Tracker Description

This section describes the operation of the tracker macrosoftware given in Appendix A. An examination of the software mnemonics show that the code is basically typical minicomputer code as defined in Section 7.A. The exceptions are: WIN, COR, STD, CROSS, FRM, WAT, IMG, REF, MNV, and LAIBUS.

These instructions are covered here briefly and in more detail in Section 7.C. The variables and constants in cells 208 through 418 can be easily accessed in microcode by constants generated in the K bus logic. A

complete list of variable names and definitions are given in Figure 27.

The tracker code given in Appendix A contains both adaptive gate centroid code and template matching code. The following sections contain only a description of the template matching code which starts at label START 2. The adaptive gate tracker code is documented in a separate report [5].

Tracker operation can be broken into two major computation loops, the scan loop and the track loop. These computation loops are flow charted in Figures 28 and 29 respectively. The hardware reset shown at the top of Figure 28 initializes the tracker hardware and software. When initialization is complete, a crosshair is displayed as an overlay on the TV monitor, centered at column 50, row 50 (NX = NY = 50) as shown in Figure 20. The crosshair is produced by routine CROSS. The operator then aims the camera at the target to be tracked. In roughly .5 seconds the image data is scanned and the GAIN and BIAS latches are set to optimum values. The iterative process of setting the GAIN and BIAS latches continues until the track switch is turned on. At this point the track loop is entered as shown in Figure 29. The AGC conditions existing at the time of track initiation are stored. Then continuing AGC action maintains the quality of the reference in spite of changes in scene brightness and local area responsivity in the CCD TV camera. The reference array is stored

VARIABLE NAME	DEFINITION
SSW7	CONSTANT, USED TO SELECT SSW7
ONEMC1	CONSTANT, USED IN FILTER EQUATION
FRMRQ	CONSTANT
ONE	CONSTANT
IP	CONSTANT, IMAGE POINTER
RP	CONSTANT, REFERENCE POINTER
CP	CONSTANT, CORRELATION POINTER
IP2	(NOT USED)
MEAN	VARIABLE, (MEAN VALUE)*81
STD MAXI	VARIABLE, (MEAN DEVIATION)*81 VARIABLE, MAXIMUM OF CORRELATION ARRAY
MINI	VARIABLE, MAXIMUM OF CORRELATION ARRAY
NX	VARIABLE, CURRENT COLUMN TRACK POINT
NY	VARIABLE, CURRENT ROW TRACK POINT
DELXX	VARIABLE, DELTA ROW TRACK CORRECTION
DELYY	VARIABLE, DELTA COLUMN TRACK CORRECTION
MODE	VARIABLE, CURRENT MODE LATCH
BWC	VARIABLE, CURRENT BLACK/WHITE CONTROL WORD
GAIN	VARIABLE, CURRENT GAIN LATCH VALUE
BIAS	VARIABLE, CURRENT BIAS LATCH VALUE
TP5	CONSTANT, (DEC .5)
TIP5	CONSTANT, (DEC 1.5)
N10	CONSTANT, LIMIT FOR TRACKING AREA
N90	CONSTANT, LIMIT FOR TRACKING AREA
TP5D	CONSTANT, (DEC .5)
TIP5D	CONSTANT, (DEC 1.5)
T7PO	CONSTANT, (DEC 7.0)
T8PO T14P5	CONSTANT, (DEC 8.0) CONSTANT, (DEC 14.5)
T13P5	CONSTANT, (DEC 14.5)
T31	CONSTANT, (DEC 13.3) CONSTANT, INITIAL VALUE FOR GAIN LATCH
DCBLK	CONSTANT, INITIAL VALUE FOR BIAS LATCH
T81	CONSTANT, (DEC 81)
T81PRM	CONSTANT, (DEC 81)
ONEONE	CONSTANT, BIAS ADJUSTMENT CONSTANT
ONEMC2	CONSTANT, FILTER EQUATION
C2	CONSTANT, FILTER EQUATION
GP933	CONSTANT, GAIN ADJUSTMENT FACTOR
FIFTY	CONSTANT, (DEC 50)
FULLG	CONSTANT, MAXIMUM GAIN LIMIT
FULLB	CONSTANT, MINIMUM BIAS LIMIT
ZERO MNSBPK	CONSTANT
	VARIABLE, BIAS ADJUSTMENT PARAMETER VARIABLE, AGC ADJUSTMENT PARAMETER
SDSBPK MNPK	VARIABLE, AGC ADJUSTMENT PARAMETER VARIABLE, BIAS ADJUSTMENT PARAMETER
MNSPK	(NOT USED)
SDPK	VARIABLE, AGC ADJUSTMENT PARAMETER
TEMP	VARIABLE, WORKING
MEANO	VARIABLE, OLD VALUE OF MEAN
STDO	VARIABLE, OLD VALUE OF MEAN DEVIATION
Ci	CONSTANT, FILTER EQUATION

Figure 27. List of variable names and definitions.

Figure 28. Flow chart of scan loop.

Figure 29. Flow chart of track loop.

and a new image array is read in while computation continues (in parallel). At this point the template matching algorithm finds the point of best match and the tracking gate positions are updated. New mean and mean deviation values are computed for the 9 × 9 subarray centered at the track point. The mean and mean deviation are then filtered and subsequently used by the iterative gain and bias adjustment software. The reference array is updated if the quality of match is degraded. This closes the track loop which starts by reading in a new image array. The iterative gain and bias computations appear in both the scan and track loops. The details of the computation are given in Figure 30. The computation starts after the filtered mean and mean deviation have been computed. The mean is computed by the equation.

$$M = \frac{9}{81} \quad \frac{9}{11} \quad \Sigma \quad \Sigma \quad I'(I,J)$$

where I' (I,J) is the 9×9 subarray centered at the current track point. Similarly the mean deviation is computed by

$$MD = \frac{9}{81} \quad \frac{9}{1} \quad \Sigma \quad \Sigma \quad |I'(I,J)-M|$$

The filter equations are given in Figure 28. It should be noted that in the scan

loop the following constants are held to fixed values indicated below.

MNPK = 8

MNSBPK = 7

SDPK = 14.5

SDSBPK = 13.5

This choice of the constants has the effect of optimizing the gain and bias settings so that the full range of the analog-to-digital converter is utilized (0 to 15 counts). The effect of successive iterations is that the 9×9 subarray has a mean value of 7.5 counts and a dispersion $(4\sigma (K+1))$ of 14 counts. Since gain is limited to 5, the dispersion may not reach 14 counts for very low contrast targets, but the mean will always reach 7.5 (filtered value). This technique can cause extremely bright or dark objects to be clipped to 15 or 0 counts respectively, but the overall effect is to enhance the available contrast in the target. The software AGC performed quite well, and enabled the tracker to track the detail that exists in a piece of plain white bond typing paper in preliminary lab tests as shown in Figure 31. Figure 32 shows the enhancement of a very low contrast target which is barely visible on the monitor. Figure 33 shows results of a real time scan and track loop tests on a simulated M48 tank target.

Figure 30. Iterative GAIN and BIAS flow chart.

LIVE VIDEO

DIGITIZED AND ENHANCED VIDEO

Figure 31. Plain paper tracking tests.

LOW CONTRAST CAMERA VIDEO

DIGITIZED AND ENHANCED VIDEO

Figure 32. Results from automatic GAIN and BIAS adjustments.

DIGITIZED AND ENHANCED VIDEO (SCAN LOOP)

DIGITIZED AND ENHANCED VIDEO (TRACK LOOP)

CAMERA VIDEO (SCAN LOOP)

CAMERA VIDEO (TRACK LOOP)

Results of real time scan and track loop tests on a simulated M48 tank target. Figure 33.

The reference update software is not given in this report though several methods for measuring the quality of the template match have been attempted. The methods generally involve the examination of the side lobes of the E(M, N) array about the point of match. No suitable wide range zoom lens was available to make the necessary tests for developing the algorithms. It is hoped that a wide range zoom will be available in FY78 so that the algorithms can be developed. One approach for checking quality is to compute

$$Q = \{E(M,N)\} \mid_{max} - \{E(M,N)\} \mid_{min}$$

and to examine the side lobes about

$$\{m,n\} = \{(m,n) | E(m,n) \text{ minimum}\}$$

Define the set

$$\{D\} = \{E(m,n)-E(k,\ell) \mid |m-k|=1, \\ |n-\ell|=1\}$$

Then if $Q < T_q$ and $D|_{min} < T_s$ (T_q and T_s are thresholds) the reference array is updated. A change in the color in the tracking gate has been used as a que to the operator that a reference update has taken place.

7. DETAILED SOFTWARE DESCRIPTION

A. EAI 640 Emulation Code

A subset of the EAI 640 minicomputer instruction set has been emulated on the Intel 3000 microprocessor. A listing of the code is given in Appendix C. The code operates roughly 4 times faster than the EAI 640 and about 2 times faster than the Pacer 100, a newer model EAI digital computer.

The basic set of macroinstructions shown in Figures 34 through 37 is a modified EAI 640 instruction set. The symbols A,X, P, S, and W in the "operation performed" column refer to the microprogrammed machine's registers: accumulator, index register, program counter, stack pointer and status register respectively. The macroinstructions are all 20 bits wide and have two possible formats shown below.

Memory reference

8 bit OP Code

A	В	6 bit OP Code	12 bit Displacement
3	~		
2 bi	t ad	dress option	
Oth	er		

12 bit Displacement

CODE	BINARY	ост		
LA	AB00 0000	000	C(E) -	Á
STA	AB00 0001	001	A - C(E	E)
LX	AB00 0010	002	C(E)	X
STX	AB00 0011	003	X - C(E	
Α	AB01 0100	004	A+C(E) -	- A
S	AB00 0101	005	A-C(E) -	► A
М	AB00 0110	006	A*C(E) -	- A
D	AB00 0111	007	A/C(E)	- A
AOM	AB00 1000	010	A+1 A	Name and the same
OR	AB00 1001	011	AVC(E) -	→ A
XOR	AB00 1010	012	A+C(E) -	→ A
AND	AB00 1011	013	A C(E) -	→ A
С	AB00 1100	014	SET FLAG	FOR SKIP INSTRUCTIONS
NOT USED	AB00 1101	015		
NOT USED	AB00 1110	016		
NOT USED	AB00 1111	017		
J	AB01 0000	020	D -P (OR C(E) P)
Lien	AB10 0000	040	P-→S, S+1	→ S, D → P (OR C(E) → P)
	est-a	ADDRESS O		AB ADDRESS OPTION 00 Direct
MEMORY REF	ERENCE COD	E Z O	P D	01 Indirect
			bits 12 bits	10 Indexed
		2 bits 6 l	DIES 12 DIES	11 Indirect, Indexed

Figure 34. Memory reference instructions.

CODE	BINARY	ОСТ	
CLR	0011 0000	060	0 → A
AOA	0011 0001	061	A + 1 → A
CAO	0011 0010	062	1 → A
TCA	0011 0011	063	1 + A → A
ARS	0011 0100	064	ARITHMETIC RIGHT SHIFT (D TIMES)
ALS	0011 0101	065	ARITHMETIC LEFT SHIFT (D TIMES)
LRS	0011 0110	066	LOGICAL RIGHT SHIFT (D TIMES)
SSP	0011 0111	067	SET SIGN BIT OF A REG TO ZERO
SSN	0011 1000	070	SET SIGN BIT OF A REG TO ONE
EX	0011 1001	071	$X \longrightarrow A$ and $A \longrightarrow X$
EP	0011 1010	072	$A \longrightarrow P \text{ and } P \longrightarrow A$
ES	0011 1011	073	$A \longrightarrow W$ and $W \longrightarrow A$
ICX	0011 1100	074	X + D → X, SKIP NEXT IF SIGN BIT CHANGES
DCX	0011 1101	075	X - D → X, SKIP NEXT IF SIGN BIT CHANGES
			OP CODE DISPLACEMENT
STRUCT	ION FORMAT F	OR REGIST	ER OPERATIONS OP D
			8 bits 12 bits

Figure 35. Register operation instructions.

CODE	BINARY	ОСТ	
SE	0111 0000	160	SKIP IF C(E) = A
SG	0111 0001	161	SKIP IF A > C(E)
SL	0111 0010	162	SKIP IF A < C(E)
SNE	0111 0011	163	SKIP IF A # C(E)
SGE	0111 0100	164	SKIP IF A > C(E)
SLE	0111 0101	165	SKIP IF A C(E)
SKN	0111 1010	172	SKIP IF A < 0
SKP	0111 1011	173	SKIP IF A>0
so	0111 1100	174	SKIP IF PREVIOUS CAUSED OVERFLOW
SNO	0111 1101	175	SKIP IF PREVIOUS CAUSED NO OVERFLOW
SAE	0111 1110	176	SKIP IF A REG EVEN
NOT USED	0111 1111	177	
ICX	0011 1100	074	SEE REGISTER OPERATIONS
DCX	0011 1101	075	SEE REGISTER OPERATIONS

INSTRUCTION FORMAT FOR SKIP INSTRUCTIONS

OP

8 bits 12 bits

*Valid following compare instruction (C) only.

Figure 36. Skip instructions.

CODE	BINARY	ОСТ	1000 1110 100 1
NOP	0011 1110	076	NO OPERATION
P	0011 1111	077	PAUSE
PUSA	0111 0110	166	PUSH ALL REGISTERS ON STACK, S + 12 - S
PUSX	0111 0111	167	PUSH A, X, P, W ON STACK, S+4 S
POPX	0111 1000	170	POP A, X, P, W FROM STACK, S-4 S
RTN	0111 1001	171	POP P FROM STACK, S - 1 - S
DI	1111 1100	374	DEVICE D - A
DO	1111 1101	375	A DEVICE D
NOT USED	1111 1110	376	
NOT USED	1111 1111	377	The same of the sa

OTHER INSTRUCTION FORMAT-(SAME AS REGISTER OPERATIONS)

Figure 37. Other instructions.

In the	case of	memory	reference in-
struction	s, there	are four	addressing
options.			

ons.	
	AB
Direct	00
Indirect	01
Indexed	10
Indirect, Indexed	11

In Figure 34, the symbol E is used to indicate an effective address formed in one of the four possible ways of. If D is the symbol for a 12 bit displacement in the instruction word, then

Direct E = DIndirect E = C(D)

Indexed E = X + D (sum of Index Register and D)

Indirect, Indexed E = C(D) + X

where the symbol C(D) represents the content of memory location D.

The register assignments in the Intel 3002 chip are made as follows:

Microprogrammed	Intel 3002
Machine	Register
A	RO
X	R1
	R2 (Working)
P	R3

S	R4
	R5 (Working)
	R6 (Working)
W	R7
record at the first of the first	R8 (Working)
	R9 (Working)
	AC (Working)
	T (Working)

Registers R2, R5, R6, R8, R9, AC, and T are used as working registers in microcode operations. Registers RO, R1, R3, R4, and R7 are maintained for the microprogrammed maching. The A and X registers are used as conventional accumulator and index registers respectively. The P register is the program counter and contains the address of the next instruction to be executed. The S register is the stack pointer and contains the next available address for the storage stack located in main memory. The W register is used as a status indicator and will be used in interrupt code.

When the front panel reset switch is activated, a logic high is placed on pin 36 of the Intel 3001 microprogram control unit. The logic high forces the instruction at location 0008 in micromemory to be executed. The initialization code for the microprocessor is placed at this location.

The last instruction in the initialization code is a JZR (FETCH). FETCH is a label for row zero column 15 and is the starting location for the instruction fetch code. The initialization code is given below and assumes that the initial value of the stack pointer and program counter are located in cells 0 and 1 of main memory respectively.

The instruction fetch code is located in row zero column 15 (OOF16), and is used to fetch the next instruction to be executed from macromemory. The code includes a mask so only the 12 bit displacement is loaded into the AC register of the Intel 3002. The AC

000H:	INIT:	CLR (A);	0 - A
		CLR (X);	0-X
		CLR (W);	0-W
		CLR (T);	0-T
		LMI (T);	T-MAR

/*WRITE ZERO TO INTERRUPT STRUCTURE*/

ILR (W)	ROT;	W AC
LMI (T)	FF1 RRM;	0 MAR, $T + T$
ACM (AC);		C (0) Ac AC

/* C ()) = INITIAL VALUE OF STACK POINTER*/

SDR (S)	FF1;	AC-S
LMI (T)	ff1 RRM;	1-MAR, T + 1-T
ACM (AC);		C (1)-AC

/* C (1) =STARTING ADDRESS OF PROGRAM*/

SDR	(P)	FF1	JZR	(FETCH)

register is also copied into R9 for later usage. The last instruction in the fetch sequence contains a JPX instruction which causes a 16-way branch to the various "classes" of instructions. Figure 38 shows all conditional

branches used to determine the macroinstruction to be executed. Note that many unused instructions are shown in Figure 38 (FETCH), allowing for future growth to more complex macroinstructions. The fetch code also

Figure 38. Conditional branches used to select microcode sequence.

forces the P register contents to the memory address register and increments the P counter by one. The fetch code is given below.

OOFH: FETCH: LMI (P) FF1 RRM; P MAR, P Z π π /*LOAD DISPLACEMENT BY MASKING WITH KBUS*/

001FH; LTM (AC) K01FFF; M 01FFP AC

/*SAVE DISPLACEMENT IN REGISTER R9 AND BRANCH TO INSTRUCTION CLASS*/

02FH;

SDR (R9) FF1 JPX (D, J, L, REG, I, JI, LI, MSC, X, JJ, KK, LL, IX, AA, BB, IO);

The binary codes appearing with the mnemonics shown in Figure 37 are completely determined by the conditional branches given in Figure 38.

The primary use of the EAI 640 emulation code is to "glue" special tracker code instructions together, and to ease the software formation problem with easy to use instructions. The bulk of the tracker code is written on the microcode level and most of the software development time is in the tracker special instructions given in Section 7.C.

The emulation code is stored in page 1 of micromemory (first 512 locations) and contains the initialization and instruction fetch sequences.

B. Addressing Technique for Image Processing

This section details a technique which is very useful in many image processing algorithms including those involved in correlation or template matching. The technique is deceptively simple but can save a considerable amount of time when processing rectangular arrays of known sizes. Consider Figure 39 which shows a N × M subarray inside a larger L×K array. The process works best when hardware loop counters can be used, however, they are not necessarily required. Assume that the larger array has been stored line by line, sequentially into memory and that the address of the first element in the subarray is known. Then each element of the subarray can be addressed as shown in the flow chart of Figure 40. The advantage of the technique is that address computation requires only the addition of fixed constants. The correlation or template matching computation is only slightly more complicated. All shifting and addressing associated with correlation or template matching can be computed by the addition or subtraction of fixed

Figure 39. Subarray inside larger array.

Figure 40. Addressing technique for image processing.

constants. Multiplications for address formation are eliminated. An example of template matching addressing can be found in the flow chart of Figure 46.

C. Tracker Microcode

(1) Routine WIN. Routine WIN is used to generate tracking gates to indicate track point on the TV monitor. The track point is defined by (NX, NY) the column and row locations of the tracking gate center. Figure 19 shows the 9 × 9 array which is inclosed by the tracking gate of fixed size, and Section 3.C gives a description of the latches which must be loaded to generate a tracking gate on the TV monitor.

The variables NX and NY are stored in macromemory, and routine WIN reads these values along with the black/white control word which defines the color of the tracking gate.

The mode latch is forced to the tracking gate mode with the requested tracking gate color. The mode latch status word is also updated to give the current mode latch status. Figure 41 is a flow chart of WIN and shows the addressing and loading of the tracking gate control latches with the 3002 MAR register.

(2) Routine CROSS. Routine CROSS is similar to WIN except that the mode latch is enabled to draw a crosshair. The right and left column latches are loaded with NX and the

upper and lower latches are loaded with NY. The crosshair color, as in routine WIN, is determined by the black/white control word in macromemory.

The flow chart for CROSS is shown in Figure 42.

(3) Routine FRM. Routine FRM is analogous to a shutter release on a camera. Execution of FRM causes a new frame to be loaded into image memory (10K memory).

The flow chart for FRM, shown in Figure 43, contains all operations performed in the routine.

- (4) Routine WAT. Routine WAT is used only after FRM has been executed. Routine WAT tests the sign bit of the I bus to determine when a frame has been completely stored. If the frame is not ready, a wait loop is entered until the sign bit goes high (frame ready). The flow chart for WAT is given in Figure 44.
- (5) Routine IMG. Routine IMG is used to read the image array I(I,J), as shown in Figure 19, into macromemory stored starting at address IP (image pointer). The image pointer IP address is located at 20 octal in macromemory. The image is stored line by line, sequentially in memory. The routine is detailed in the flow chart shown in Figure 45. Since image data is read into macromemory during the

Figure 41. Flow chart for routine WIN.

Figure 42. Flow chart for routine CROSS.

Figure 43. Flow chart for routine FRM.

Figure 44. Flow chart for routine WAT.

Figure 45. Flow chart for routine IMG.

Figure 46. Flow chart for routine COR.

vertical blanking interval of the TV camera, processing can involve every frame (123 frames/sec) as required.

- (6) Routine COR. Routine COR is flow charted in Figure 46. Register assignments are also given in the figure. The routine uses addressing techniques detailed in Section 7.B. The variables AC, AI, and AR are the current address of an element in the template match array, image array, and reference arrays respectively. The variable CP, IP and RP are the address pointers for the template match array, image array, and reference arrays respectively. The variable SUM = E(M, N). It should be noted that the program counter and stack pointer are not disturbed by the routine execution. The result from routine COR is a 9×9 array of template match scores defined by Equation 6.5 (or Equation 6.4).
- (7) Routine MIN. Routine MIN is used to find the point of best match after routine COR generates the 9×9 template matching array. Since the possibility exists for multiple minimums, the track point is defined to be the minimum nearest to the old track point. Figure 47 defines some of the variables shown in the flow chart of Figure 48. Note that DX = DY = 0 indicates the target has not moved from the current track point. Variables DX and DY should define the location of the minimum nearest the current track point when execution of MIN is

complete. The variables MAX and MIN define the maximum and minimum of the template match array respectively. The variable I and J correspond to the current column on row being checked. It should be noted variables T and N measure the closeness of a possible minimum to the existing track point, and are used to discriminate between multiple minimums.

- (8) Routine REF. Routine REF is used to store the 9 × 9 array centered at (DX, DY) as defined in Section 7.C(7) in macromemory starting at location RP, the reference pointer. The reference pointer is stored in location 21 octal in macromemory. The data array is read from the image array previously stored in macromemory. Routine REF is flow charted in Figure 49.
- (9) Routine MNV. Routine MNV is used to compute the sum of all elements in the 9×9 array R(I,J) centered in the current track point (DX, DY) as defined in Section 7.C.(7). The sum can then be used to calculate the mean value by dividing by 81. The computation that takes place can be expressed by

SUM =
$$\Sigma \Sigma R$$

 $i=1$ $i=1$ i,j

The mean value obtained from SUM is used in AGC calculations which control the gain and bias latches.

Figure 47. Variable definition for routine MIN.

Figure 48. Flow chart for routine MIN.

Figure 49. Flow chart for routine REF.

The flow chart for routine MNV is shown in Figure 50.

(10) Routine STD. Routine STD is used to calculate the mean deviation a quantity which is similar in nature to a standard deviation calculation. The quantity calculated is a measure of dispersion and is given by

SUM = 81*
$$\sigma_{A} = 4 \sum_{i=1}^{9} \sum_{j=1}^{9} |2^{5}*R'|_{i,j} - \overline{R'}|$$

where (R'i, J) is the 9×9 array centered at (DX, DY) as defined in Section 7.C.(7), and where \overline{R}' is the mean value of the elements of the (R'i, J) array.

The constant 2^5 is used to shift the image data 5 places to the left so that the image data will be consistent with the mean value \overline{R}' which is stored with 5 binary places to the right of the binary point. Since division operations must take place in macrocode, SUM = $81 * {}^{\sigma}A$ is calculated. The quantity ${}^{\sigma}A = SUM/81$ is calculated in macrocode and is used to obtain a measure of the dispersion of image data need for gain determination (GAIN latch).

Figure 51 shows a flow chart of the calculations performed in STD.

D. Execution Times for Tracker Routines

The chart in Figure 52 shows the execution time of each routine along with the number of microcycles not involving a read or write (µ cycles), and the number of microcycles involving a read or write (R/W \(\mu \) cycles). The computations assume a 160 nsec microcycle and a 320 nsec read or write microcycle. It is of interest to note that two correlation tracking operations or one correlation and one adaptive gate tracking operation (simultaneously) could be accomplished at over 60 frames a second. Though the advantages are not clearly defined, this result is indicative of the power of the approach.

8. POWER CONSUMPTION PACKAGING

The packaging problem is a very complex one for the system given in this report, and it is clear that major problems will stem from interconnections of components and high power consumption. However, it is useful to consider chip area used by the DIP chips in the tracker. The needed area can be graphically illustrated by placing all tracker components on two 6 inch diameter circular areas as shown in Figures 53 and 54. The area analysis assumes the use of state of the art memory components available as of this writing and includes only those chips needed for tracker operation. No

Figure 50. Flow chart for routine MNV.

Figure 51. Flow chart for routine STD.

ROUTINE	CYCLE LESS R/W	READS (R)	WRITES (W)	EXECUTION TIME (m sec)
WIN	4	6	36	.0089
CROSS	4	6	21	.0066
FRM	1	2	13	.0030
IMG	85	86	291	.1013
COR	13,127	81	14,137	6.4884
MIN	245	324	3,399	.7259
REF	85	81	112	.0726
MNV	84	1	119	.0462
STD	85	1	1,168	.2144
WAT	0	0	5	.0000*
19,301	13,720	588	TOTAL	7.67

Figure 52. Estimated execution times of tracker routines.

Figure 53. Graphic illustration of DIP area needed for tracker.

Figure 54. Graphic illustration of DIP chip area needed for tracker.

special attempts were made to reduce area, except in the case of memory, analog to digital conversion, video control latches, and operational amplifiers. The bulk of the chips shown actually exist in the current tracker hardware. It should be noted that an area reduction of 3:1 is possible using ceramic chip carrier packaging [6]. As an illustration of what this means consider the chip areas shown in Figures 53 and 54 would become 3.4 inch diameter circular areas. It appears that power consumption rather than package size is a more serious problem. The table shown in Figure 55 is an inventory of parts used in the tracker, along with power consumptions of individual parts. Only limited attempts were made to reduce power consumption. Shottky parts are used routinely throughout the tracker. It is felt that many paths and loading conditions would permit the use of more low power Shottky parts resulting in a considerable savings in power consumption. The power consumption of 39 watts typical, 56 watts maximum is high, but is not the "Hoover Dam Syndrome" expected.

9. CONCLUSIONS

This report contains a new concept for an imaging tracker using a high speed microprocessor. The tracker, capable of adaptive gate centroid tracking and template matching tracking, achieved each type of tracking at frame rates up to 123 frames/second. Therefore, tracker concepts using simultaneous tracking of centroid and templates are possible at rates of 60 frames/second. It is felt that the concept of using a high speed microprocessor can eliminate much hardware associated with image processing trackers. Though power consumption is currently on the high side, the tracker hardware concept will easily fit in a 6 inch missile. The volume consumed could be less than a six (6) inch cylinder one inch in height, exclusive of power supply volume. It must be conceded however, that thermal conduction and interconnection problems could force a much larger package size.

The 1980's will usher in a new era with the advent of VLSI. The speed-power products of digital integrated circuits will plunge to new lows as the use of electron beam lithography becomes wide spread. Packaging will become more dense. All indications are that the tracker in this report could be built with smaller size, lower power consumption, and much higher performance in the 1980's.

NO CHIPS	PART	FUNCTION AND COMMENTS	TYP	MAX	NO PINS
8	3002	CENTRAL PROCESSING ELEMENT	5.800	7.600	28
1	3003	LOOK-AHEAD CARRY GENERATOR	.400	.650	28
1	3001	MICROPROGRAM CONTROL UNIT	.850	1,200	40
22	74504	HEX INVERTER	3.3	5.940	14
5	745174	HEX D FLIP-FLOP WITH CLEAR	2.250	3.600	16
1	74511	DUAL JK FLIP-FLOP	.07	.1025	14
4	745157	QUAD 2 TO 1 MULTIPLEXER	1.0	1.560	16
i	74LS244	OCTAL BUFFER WITH 3-STATE OUTPUTS	.135	.230	20
3	74LS00	POSITIVE NAND GATE	.036	.066	14
4	74508	POSITIVE NAND GATE	.640	1.140	14
3	74510	POSITIVE NAND GATE		The state of the s	
1	74LS02	POSITIVE NOR GATE	.225	.405	14
2	74S20		.007	.013	14
2		POSITIVE NAND GATE	.100	.180	14
	74S175	QUAD D FLIP-FLOP	.600	.960	16
1	74120	DUAL PULSE SYNCRONIZER	.255	.450	. 16
6	74S112	DUAL JK FLIP-FLOP, CLEAR AND PRESENT	.450	.750	16
3	74S260	POSITIVE NOR GATE	.390	.675	14
5	74LS32	POSITIVE OR GATE	.122	.245	14
4	74LS76	DUAL JK FLIP-FLOP, CLEAR AND PRESET	.080	.160	16
1	74LS90	DECADE COUNTER	.045	.075	14
4	74LS93	BINARY COUNTER	.180	.780	14
1	8T26	TRANSCEIVER	.435	.435	16
2	74H21	POSITIVE NAND GATE	.200	.320	14
2	74123	RETRIGGERABLE MONSTABLE	.460	.660	16
8	74LS85	4 bit MAGNITUDE COMPARITOR	.416	.800	16
2	74511	POSITIVE AND GATE	.240	.420	14
7	74LS273	OCTAL D FLIP-FLOP WITH CLEAR	.595	.945	20
1	7442	4 TO 10 LINE DECODER	.140	.280	16
2	7430	POSITIVE NAND GATE	.030	.060	14
3	7432	POSITIVE OR GATE	.345	.570	14
3	745471	256×8 PROM	1.65	2.325	20
4	825208	256×8 RAM (SIGNETICS)	2.700	3.700	20
8	74LS163A				
2	745138		.760	1.280	16
6	82S191	DEMULTIPLEXER (3 TO 8)	.490	.740	16
٥	029191	2048×8 PROM (SIGNETICS) Tac=80 NS	3.900	5.250	24
2	93464	1024×8 ROM FAIRCHILD	1.100	1.500	24
1	DAC80	Tac=45 NS BURR BROWN 8 bit DAC	.900	.900	16
1	MDAC	COMPUTER LABS MULTIPLYING DAC	1.800	1.800	N/A
1	ADC-SH4B	ADC 4 bits WITH S/H	1.375	1.375	N/A
1	3554	OP AMP BURR BROWN	3.025	3.025	N/A
2	?	AMI 1024×4 VMOS RAM TAC=55 NS	1.200	1.800	18
4	74LS193	SYNCHRONOUS 4 bit COUNTER WITH CLEAR	.380	.680	16
4	74LS157	QUAD 2 TO 1 MULTIPLEXER	.194	.320	16
1	74L154	4 TO 16 LINE DECODER	.085	.140	24
151			39.355	56.307	

Figure 55. Part inventory and power consumption.

REFERENCES

- Intel Series 3000 Reference Manual, Publication 98, 221A, 1975 Intel Corp.
- 2. Series 3000 Cross Microprogramming System CROMIS Reference Specification. Intel Corp., 1975 Revision 4.
- Duda, R. O. and Hart, P.E., Pattern Classification and Scene Analysis, John Wiley and Sons, 1973, New York.

- Sebestyen, G. S. Decision-Making Processes in Pattern Recognition, Macmillan Company, New York, 1962.
- 5. Sims, S.R.F., Optical Contrast Variable Gate Centroid Tracker for the Intel 3000 Microprocessor, TE-77-13, June 1977.
- Lyman, J., Growing Pin Count Is Forcing LSI Package Changes, Electronics, March 19, 1977, McGraw Hill, pages 81-90.

APPENDIX A

Macrocode (LISTING #1)

SSW 5 ON FOR CENTROID TRACKING

SSW 12 ON FOR SWITCH TO CORRELATOR WHILE CENTROID TRACKER IS ON

SSW 10 OFF SWITCHES BACK TO CAGE MODE ON CENTROID TRACKER IF SSW 5 IS OFF

IF SENSE SWITCH 7 IS ON .. YOU WILL GO TO THE AGC SCAN LOOP IN EITHER CENTROID OR CORRELATION

```
1: 00000 000002 100000
                                         OCT
                                                50
 2: 00001 000004 000000
                                                100
                                        OCT
 3: 00002 000001 000002
                             DELX
                                        BSS
 4: 02003 2000001 000003
                             DELY
                                         BSS
                                                1
 5: 00004 000001 000004
                             ASUM
                                       BSS
 6: 00005 000001 000005
                             MEAN2
                                       BSS
 7: 20006 300001 000006
                             XEEG
                                       BSS
 8: 00307 000001 000007
                                       BSS
                             XAEG
 9: 00010 000001 000010
                                       BSS
                             XBLG2
10: 00011 000001 000011
                             XALG
                                        BSS
11: 00012 000001 000012
                                        BSS
                             YEEG
12: 00013 000001 000013
                             YAEG
                                       BSS
13: 00014 000001 000014
                             YBLG2
                                       BSS
14: 03015 000001 000015
                             YALG
                                       BSS
15: 20016 002001 000016
                             XBAR
                                       BSS
16: 03017 000001 000017
                             YBAR .
                                        BSS
17: 00020 000001 000020
                             BWF
                                         BSS
                                        ABS
                                               100
19: 00100 125400 000356
                             CAGE
                                        START
                                                INIT
20: 00101 000000 000367
                                                TEN
                                        LA
21: 00102 176400 0600003
                                         DO
22: 00103 124400 000000
                                         WINDOW
                                                SAGC
23: 00104 020000 000705
24: 00105 000000 000752
                                                FIFTY
25: 00100 000400 000030
                                         STA NX
26: 03107 000490 000031
                                         STA NY
27: 00110 030000 000000
                                         CLR
28: 00111 000400 000032
                                         STA
                                                DELXX
29: 00112 000400 000033
                                         STA
                                                DELYY
39: 09113 099090
                 000401
                                                IPC
                                         LA
31: 00114 000400 000020
                                                IP
                                         STA
32: 00115 000000 000470
                                                C36
                                         LA
33: 07116 176400 060000
                                         DO
                                                6
                             AGCS
34: 00117 020000 000771
                                                SCANN
```

```
35: 00120 077430 000000
                                        LAIBUS
36: 02121 025400 000766
                                        AND
                                               SSW7
37: 00122 000400 000003
                                        SZ
38: 02123 319000 000117
                                                AGCS
                                        J
39: 20124 202000 900037
                                        LA
                                                BIAS
49: 99125 309409 030494
                                        STA
                                                SBIAS
41: 00126 200000 300036
                                        LA
                                                GAIN
42: 24127 000440 000405
                                        STA
                                                SGAIN
43: 00130 125400 000356
                                        START
                                                INIT
44: 00131 124477 000000
                             CAGE1
                                        WINDOW
45: 00132 077400 000000
                                        LAIBUS
46: 00133 005400 000766
                                             SSW7
                                        AND
47: 98134 996499 988986
                                        SZ
48: 00135 010000 000100
                                                CAGE
                                        J
49: 30136 020000 001003
                                                ZERR
59: 00137 000000 000374
                                                562
                                        LA
51: 00149 000400 000346
                                                CX
                                        STA
52: 00141 000400 000347
                                        STA
                                                CY
53: 00142 000000 000400
                                        LA
                                                C36
54: 20143 004430 030372
                                        OR
                                                TARGET
55: 00144 176400 060000
                                        DO
                                        FRAMEW
56: 20145 125000 000000
57: 00146 000000 000377
                                                C33
                                        LA
58: 00147 004400 000372
                                        OR
                                               TARGET
59: 03150 176400 060000
                                        DO
60: 00151 120400 000350
                                        MEAN
                                               ECOUNT
61: 30152 174400 000000
                                       EQ
62: 80153 400000 800350
                                                ECOUNT
                                        LA
63: 33154 432400 070040
                                        ALS
64: 33155 490449 409350
                                                ECOUNT
                                        STA
65: 00156 030000 000000
                                        CLR
66: 00157 174400 000000
                                       EQ
67: 00160 003400 000350
                                               ECOUNT
                                        D
68: 00161 033000 140000
                                        LRS
                                                14
69: 00162 006000 000366
                                        C
                                                SEVEN
70: 00163 072000 000000
                                        SGE
71: 39164 919099 909171
                                                BLACK
72: 00165 033000 000000
                                        CLR
73: 00166 000400 000372
                                        STA
                                                TARGET
74: 00167 000400 000020
                                        STA
                                                BWF
75: 00170 010000 000175
                                                WHITE
                                        J
76: 00171 000000 000371
                             BLACK
                                                OONE
                                       LA
77: 00172 400400 000020
                                        STA
                                                BWF
78: 00173 000000 000370
                                        LA
                                                TWENTY
79: 00174 000400 000372
                                        STA
                                                TARGET
80: 00175 125400 000356
                             WHITE
                                        START INIT
       STORE MODE LATCH FOR VIDEO
81: 00176 000000 000364
                                                SIX
                             START
                                       LA
82: 00177 004400 000372
                                        OR
                                               TARGET
83: 00200 176400 060000
                                       DO
```

```
64: 00201 335000 000404
                                      LA
                                                 SBIAS
 85: 00202 1/6430 040000
                                          DO
                                                 4
 86: 90203 000330 000405
                                          LA
                                                 SGAIN
 87: 00204 176400 050000
                                          DO
                                                 5
 REQUEST FRAME AND PRUCESS CORRELATOR AGC GAIN AND BIAS
 88: 20235 125000 000000
                                         FRAMEW
        SET MODE LATCH FOR READ MODE
 89: 00206 000000 000362
                                        LA
                                                 ONE
 90: 00207 004400 090372
                                       OR
                                                 TARGET
 91: 00210 176400 060000
                                         DO
 92: 00211 124400 000000
                                         WINDOW
 93: 98212 477400 000000
                                  LAIBUS
 94: 00213 005400 000376
                                                 SSW1
                                     SNZ
 95: 00214 007090 000000
 96: 00215 010000 000341
                                                 TT
                                  SAVEIJ I
 97: 00216 121000 000351
                                  MEAN ECOUNT
 98: 03217 120400 000350
 99: 00220 174400 000000
                                  EQ
                                  LA
100: 00221 000000 000350
                                                 ECOUNT
                                  ALS 7
101: 07222 752495 070000
                                ALS 7
STA ECOUNT
CLR
EQ
D ECOUNT
LRS 14
STA MEAN2
RESTIJ I
EGATES DELX
ADR XG
ADR CX
ADR CY
SAVELJ I
142: 00223 000400 000350
103: 00224 030000 000000
184: 20225 174400 000009
105: 00226 003400 000357
106: 00227 033000 140000
107: 00230 000400 000005
108: 00231 121404 000351
109: 00232 122000 000002
110: 00233 003000 000344
111: 00234 000090 000346
112: 00235 000000 0003347
113: 00236 121000 000351
114: 00237 123000 000007
115: 00240 000000 000004
                                  SAVEIJ I
CNTRD XAEG
LA ASU
ALS 7
                                         CNTRD XAEG
                                                ASUM
116: 00241 032400 070000
                                                 7
117: 00242 000400 000004
                                     STA
                                                ASUM
                                  CLR
EQ
LA
D
118: 00243 030000 000000
119: 00244 174400 000000
120: 00245 000000 000016
                                                XBAR
121: 00246 003400 000004
                                                ASUM
                                 STA
LRS
STA
LA
D
STA
LRS
122: 00247 000400 001012
                                                CXS
123: 00250 033000 140000
                                                 14
124: 00251 000400 000346
                                                CX
125: 00252 000000 000017
                                                YBAR
                                                ASUM
126: 00253 003400 000004
127: 00254 000400 001011
                                                 CYS
128: 00255 033000 140000
129: 00256 000400 000347
                                                14
                                   STA
                                                CY
130: 00257 000000 001012
131: 00260 033000 110000
                                                 CXS
                                    LA
                                        LRS
                                                 11
```

```
132: 00261 032400 031010
                                               0620
133: 90262 020000 000406
                                               CONVET
134: 00263 176400 070000
                                        DO
                                               7
135: 00264 600000 001011
                                               CYS
                                        LA
136: 00265 033000 110000
                                        LRS
                                               11
137: 00266 002400 001010
                                        S
                                               0620
138: 00267 020000 000406
                                               CONVET
139: 00270 176400 100000
                                        DO
                                               10
140: 00271 000000 000003
                                       LA
                                              DELY
141: 00272 003000 000344
                                       M
                                              XG
142: 00273 174400 000000
                                       EQ
143: 00274 000400 000353
                                       STA
                                              AXGH
144: 00275 000000 000002
                                       LA
                                              DELX
145: 20276 203000 000345
                                       M
                                              YG
146: 00277 174400 000000
                                       EQ
147: 00300 000400 000354
                                       STA
                                              AYGH
148: 00301 121400 000351
                                       RESTIJ I
149: 00302 122400 000353
                                       NGATEA AXGH
150: 00303 030000 000002
                                        ADR
                                               DELX
151: 00304 174400 000000
                                        EQ
152: 00305 000000 000353
                                               AXGH
                                        LA
                                    ALS
153: 00306 032400 070000
154: 00307 000400 000353
                                        STA
                                               AXGH
155: 00310 030000 000000
                                        CLR
156: 62311 174400 000000
                                        EQ
157: 00312 003400 000353
                                       D
                                              AXGH
158: 00313 032000 140000
                                        ARS
                                              14
159: 00314 123000 000002
                                       NGATEB DELX
                                       ADR
160: 00315 000000 000346
                                              CX
161: 00316 123400 000354
                                       NGATEC AYGH
162: 06317 000600 000003
                                       ADR
                                               DELY
163: 00320 174400 000000
                                        EQ
164: 00321 000000 000354
                                        LA
                                               AYGH
165: 00322 032400 070000
                                        ALS
166: 00323 000400 000354
                                        STA
                                               AYGH
167: 00324 030000 000000
                                        CLR
168: 00325 174400 000000
                                        EQ
169: 00326 003400 000354
                                              AYGH
                                       D
170: 00327 032000 140000
                                       ARS
                                              14
171: 00330 124000 000003
                                       NGATEL DELY
172: 00331 000000 000347
                                       ADR
                                              CY
173: 00332 077400 000000
                                        LAIBUS
174: 06333 005400 000402
                                        AND
                                               SSW10
175: 00334 007000 000000
                                        SNZ
176: 00335 010000 000176
                                               START
                                        J
177: 00336 000000 000401
                                               IPC
                                        LA
178: 90337 000400 000020
                                        STA
                                               IP
179: 00340 610000 000430
                                        J
                                               START2
180: 00341 000000 000372
                            TT
                                        LA
                                               TARGET
181: 02342 004400 000367
                                        OR
                                               TEN
```

```
182: 00343 816600 600131
                                                   CAGE1
183: 00344 000001 000344
                               XG
                                          BSS
184: 00345 000001 000345
                               YG
                                          BSS
185: 00346 400001 000346
                               CX
                                          BSS
                                                 1
186: 06347 600001 000347
                               CY
                                          BSS
                               ECOUNT
187: 00350 000001 000350
                                          BSS
188: 00351 000001 000351
                                          BSS
                               I
189: 06352 066661 600352
                                          BSS
190: 00353 404001 006353
                               AXGH
                                          BSS
191: 00354 600001 600354
                               AYGH
                                                  1
                                          BSS
192: 00355 600001 000355
                               AG2
                                          BSS
                                                 1
193: 00356 0000003 010000
                                                 61
                               INIT
                                          OCT
194: 60357 600003 010000
                                          OCT
                                                 61
195: 66366 900093 030000
                                           OCT
                                                   63
196: 00361 000003 030000
                                           OCT
                                                   63
197: 06362 480000 010000
                               ONE
                                          OCT
198: 00363 460000 020000
                               TWO
                                          OCT
                                                 2
199: 00364 CYARRY 060000
                                           OCT
                               SIX
                                                   6
200: 60365 499000 030000
                               THREE
                                          OCT
                                                  3
201: 00366 606060 070000
                               SEVEN
                                                   7
                                           OCT
202: 00367 000000 100000
                               TEN
                                           OCT
                                                   10
203: 603/0 600001 000000
                               TWENTY
                                          OCT
                                                   20
204: 00371 177777 170000
                               DONE
                                                   3777777
                                           OCT
205: 06372 000001 000372
                               TARGET BSS 1
206: 00373 066066 000000
                                           OCT
                               G
                                                   14000000
207: 00374 000003 020000
                               562
                                           OCT
                                                   62
                                                   1777777
208: 00375 677777 170000
                               CONN
                                           OCT
209: 06376 000001 000000
                               SSW1
                                           OCT
                                                   20
210: 00377 700000 130000
                               C33
                                           OCT
                                                   13
211: 06400 666000 160000
                               C36
                                           OCT
                                                   16
212: 20441 200055 160000
                               IPC
                                           OCT
                                                   1336
213: 00402 000040 000000
                               SSW10
                                           OCT
                                                   1000
214: 00403 000001 000403
                               SBWF
                                           BSS
                                                   1
215: 86404 868601 888484
                                           BSS
                               SBIAS
                                                   1
216: 00405 000001 000405
                                           BSS
                               SGAIN
                                                   1
217: 00406 002000 000413
                               CONVET
                                                   BIAX
218: 08407 931400 000000
                                           TCA
219: 00410 002400 000362
                                           S
                                                   ONE
220: 00411 074400 000000
                                           RTN
                               0 62
221: 00412 700003 020000
                                           OC T
                                                   62
                               BIAX
222: 00413 000040 000000
                                           OCT
                                                   1000
         COMBINE POTH TRACKERS ......
                                           ABS 20
224: 00020 000055 160000
                               IP
                                                   1336
                                           OCT
                               RP
225: 00021 000050 140000
                                           OCT
                                                   1214
226: 00022 000043 120000
                               CP
                                           OCT
                                                   1872
```

```
227: 06023 600051 040000
                                            OCT
                                                   1224
                                IP2
  228: 00024 000001 000024
                                MEAN
                                            BSS
                                                   1
  229: 00025 000001 000025
                                STD
                                            BSS
                                                   1
  230: 00026 000001 000026
                                MAXI
                                            BSS
                                                   1
  231: 00627 000001 000027
                                MINI
                                            BSS
                                                   1
  232: 90030 000001 000030
                                NX
                                            BSS
  233: 02031 000001 000031
                                NY
                                            BSS
  234: 00032 000001 000032
                                DELXX
                                            BSS
  235: 00033 000001 000033
                                DELYY
                                            BSS
  236: 00034 900001 000034
                                MODE
                                            BSS
 237: 006-35 000001 000035
                                BWC.
                                            BSS
  238: 00036 000001 000036
                                GAIN
                                            BSS
  239: 00037 000001 000037
                                BIAS
                                            BSS
  240: 00848 177766 676880
                                            OCT
                                                   3777547
                                M153
  241: 00041 177766 170000
                                            OCT
                                                   3777557
                                M145
                                            ABS
                                                   430
 243: 60430 600066 006346
                                START2
                                                   CX
                                            LA
 244: 00431 000400 000031
                                            STA
                                                   NY
  245: 00432 666000 000347
                                                   CY
                                            LA
  246: 00433 000400 000030
                                            STA
                                                   NX
  247: 00434 000000 000755
                                                   ZERO
                                            LA
  248: 00435 000400 000032
                                            STA
                                                   DELXX
  249: 00436 200400 000633
                                            STA
                                                   DELYY
  250: 00437 000000 000362
                                                   ONE
                                            LA
  251: 00440 000400 000035
                                            STA
                                                    BWC
           CROSS
                                                    3440000
  252: 00441 162040 000400
                                            OCT
* BEGIN SCAN LOOP
* GO TO TRACK IF SSW7 OFF ELSE CONTINUE SCAN
  253: 00442 020000 000771
                                SCANNG
                                            L
                                                   SCANN
                                            LAIBUS
 254: 66443 677466 66666
 255: 00444 605400 000766
                                            AND
                                                   SSW7
 256: 00445 606400 000000
                                            SZ
  257: 00446 016000 006442
                                                   SCANNG
                                            J
* GO TO TRACK MODE
 START TRACKING, STORE AGC PARAMETERS
  258: 00447 166412 160000
                                            REF
  259: 00450 220000 000763
                                            LA MEANO
                                                     TP5
  260: 00451 002000 000727
                                            A
                                            STA
  261: 00452 000400 000760
                                                    MNPK
  262: 00453 002400 000730
                                            S
                                                    T1P5
  263: 00454 000400 000756
                                            STA
                                                    MNSBPK
  264: 00455 000000 000764
                                                    STDO
                                            LA
  265: 00456 002000 000734
                                                    TP5D
                                            A
  266: 00457 000400 000761
                                            STA
                                                    SDPK
  267: 00460 006600 000741
                                            C
                                                    T13P5
  268: 99461 072400 000000
                                            SLE
  269: 00462 000000 000731
                                            LA
                                                    T14P0
  270: 00463 002400 000730
                                            S
                                                   T1P5
  271: 02464 000400 000757
                                            STA
                                                    SDSBPK
```

```
272: 00465 910000 000473
                                                   OVER
                                            WAT
  273: 88466 164488 888888
                                LOOP
  274: 00467 477460 000000
                                            LAIBUS
  275: 00470 005400 000402
                                            AND
                                                   SSW10
  276: 08471 007000 000000
                                            SNZ
  277: 00472 019000 000100
                                            J
                                                   CAGE
  278: 00473 165372 120000
                                CVER
                                            IMG
  279: 00474 000000 000037
                                            LA
                                                   BIAS
  280: 06475 176406 040000
                                            DO
                                                   4
  281: 00476 000000 000036
                                            LA
                                                   GAIN
  282: 20477 176400 050002
                                            DO
                                                   5
  283: 09500 164000 000000
                                            FRM
 264: 02501 167000 000000
                                            COR
  285: 00502 163024 160000
                                            MIN
* MOVE WINDOW TO NEW TRACKING POSITION
  286: 00503 000000 000032
                                            LA
                                                   DELXX
  287: 66264 642666 666836
                                                   NX
  288: 02505 000400 000030
                                            STA
                                                   NX
  289: 00506 000000 000033
                                                   DELYY
                                            LA
 290: 00507 062000 000031
                                                   NY
 291: 00510 000400 000031
                                            STA
                                                   NY
* BOUND ON NX AND NY
  292: 60511 600000 000030
                                            LA
                                                   NX.
 293: 00512 006000 000732
                                            C
                                                   N10
 294: 02513 072400 000000
 295: 20514 212000 000520
                                            J
                                                   NCK
 296: 02515 002000 000732
                                            LA
                                                   N18
 297: 00516 000400 000030
                                            STA
                                                   NX
 298: 00517 010000 000525
                                                   DUTH
                                            Č
 299: 00520 006000 000733
                                NCK
                                                   N98
 300: 00521 072000 000000
                                            SGE
 301: 00522 010000 000525
                                                   OUTH
 302: 00523 000000 000733
                                            LA
                                                   N9Ø
 303: 00524 000400 000030
                                            STA
                                                   NX
 304: 00525 000000 000031
                                OUTH
                                                   NY
                                            LA
                                                   N1Ø
 365: 00526 006000 000732
                                            C
  306: 00527 072400 000000
                                            SLE
  307: 00530 010000 000534
                                                   NCK2
                                            J
  308: 00531 000000 000732
                                                   N10
  309: 00532 000400 000031
                                            STA
                                                   NY
  310: 00533 010000 000541
                                                   OUTH2
  311: 00534 006000 000733
                                NCK2
                                                   N90
  312: 00535 072000 000000
                                            SGE
  313: 00536 010000 000541
                                                   OUTH2
                                            J
 314: 00537 000000 000733
                                                   N9Ø
                                            LA
                                            STA
 315: 00540 000400 000031
                                                   NY
  316: 00541 163400 000000
                                OUTH2
                                            WIN
 317: 00542 066000 000030
                                                   NX
                                            LA
 318: 00543 002400 000412
                                            S
                                                   062
 319: 00544 032400 030000
                                            ALS
                                                   3
```

```
320: 00545 020000 000406
                                                CONVET
 321: 26546 176466 100060
                                          DO
                                                 10
 322: 02547 206222 008031
                                          LA
                                                  NY
 323: 00550 022400 000412
                                          S
                                                  062
 324: 00551 032400 030000
                                          ALS
                                                  3
 325: 00552 020000 000406
                                                  CONVET
                                        L
 326: 00553 176400 070000
                                          DO
 327: 66554 626000 000564
                                                  AGC
 328: 00555 077400 000000
                                          LAIBUS
 329: 00556 005400 000766
                                                  SSW7
                                          AND
 330: 00557 007000 000000
                                          SNZ
 331: 00560 010000 000563
                                                  JOOV
                                          J
 332: 00561 164400 000000
                                          WAT
 333: 00562 010000 000430
                                                  START2
                                          J
 334: 00563 010000 000466
                               VOOO
                                                  LOOP
* SUBROUTINE AGC FOLLOWS
           MNV
 335: 20564 166000 000000
                           AGC
                                          OCT
                                                  3540000
 336: 60565 000000 000024
                                          LA
                                                  MEAN
 337: 00566 023400 000744
                                          D
                                                  T81
 338: 00567 032000 050000
                                          ARS
 339: 00570 000400 000024
                                          STA
                                                  MEAN
 340: 00571 161400 000000
                                          OCT
                                                  3430000
 341: 00572 000000 000025
                                          LA
                                                  STD
 342: 00573 003400 000745
                                          D
                                                  T81PRM
 343: 08574 032000 020000
                                          ARS
                                                  2
 344: 00575 000400 000025
                                                 STD
                                          STA
* FILTER STANDARD DEVIATION
 345: 00576 020000 000764
                                                  STDO
                                          LA
 346: 00577 203000 000750
                                                  C2
                                          M
 347: 00600 000400 000762
                                          STA
                                                  TEMP
 348: 00601 000000 000025
                                          LA
                                                  STD
 349: 00602 003000 000747
                                          M
                                                  ONEMC2
 350: 00603 002000 000762
                                                  TEMP
 351: 00604 000400 000764
                                          STA
                                                  STDO
 352: 00605 006000 000757
                                                  SDSBPK
 353: 00606 072000 000000
                                          SGE
 354: 00607 010000 000622
                                          J
                                                  INCRE
 355: 00610 006000 000761
                                                  SDPK
 356: 00611 072000 000000
                                          SGE
 357: 00612 010000 000647
                                                  NOCHG
                                          J
 358: 00613 000000 000036
                                                  GAIN
                                          LA
 359: 00614 003000 000751
                                          M
                                                  GP 933
 360: 00615 000400 000036
                                          STA
                                                  GAIN
 361: 00616 000000 000037
                                          LA
                                                  BIAS
 362: 00617 003000 000751
                                          M
                                                  GP933
 363: 00620 000400 000037
                                          STA
                                                  BIAS
 364: 00621 010000 000647
                                          J
                                                  NOCHG
 365: 00622 900000 000036
                              INCRE
                                          LA
                                                  GAIN
 366: 00623 006000 000753
                                                 FULLG
```

NCLASSI	IFIED	SEP 78	RDMI-T-	78-53							NL.		1
	2 of 3	Common Lab and the 13	W// Lanaster		±	VV3Ē0ZE		# 15 A		ij			
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1111			300000 300000 300000						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- 100 miles				11111			Control of the contro		
			\$1111 \$1111 \$1111	- 100 mm				in the state of th)(II)			
						TTOJZON				11111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.111 20.0000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.0000 20.0000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000	
				11111 24111 111111 1111111						11111 141111 141111			
		u iii	Taki I			1,		÷	NAMERIA		SALES OF THE SALES		


```
367: 08624 671000 000000
                                          SL
368: 02625 610000 000647
                                                  NOCHG
369: 00626 003400 000751
                                                  GP933
370: 00627 406400 000753
                                                  FULLG
3711 00630 072400 000000
                                          SLE
                                                 FULL
372: 00:631 010000 000637
                                          STA
                                                  GAIN
373: 00632 000400 000036
374: 00633 000000 000037
                                          LA
                                                  BIAS
375: 00634 003400 000751
                                                  GP933
                                          STA
376: 00635 000400 000037
                                                  BIAS
377: 00636 010000 000647
                                                  NOCHG
                                          J
                               FULL
378: 00637 000000 000036
                                                  GAIN
379: 00640 003400 000753
                                          D
                                                  FULLG
380: 00641 000400 000762
                                          STA
                                                  TEMP
381: 00642 000000 000037
382: 00643 003400 000762
                                                  BIAS
                                          LA
                                          D
                                                  TEMP
383: 00644 000400 000037
                                          STA
                                                  BIAS
384: 07645 000000 000753
                                                  FULLG
                                          LA
385: 00646 000400 000036
                                          STA
                                                  GAIN
                               NOCHG
386: 00647 037000 000000
                                          NOP
FILTER MEAN VALUE
387: 00650 000000 000763
                                                  MEANO
                                          LA
388: 00651 003000 000765
                                                  C1
389: 00652 000400 000762
                                          STA
                                                  TEMP
390: 00653 000000 000024
                                          LA
                                                  MEAN
391: 00654 003000 000767
                                          M
                                                  ONEMC1
392: 00655 002000 000762
                                                  TEMP
393: 00656 000400 000763
                                          STA
                                                  MEANO
394: 00657 006000 000760
                                          C
                                                  MNPK
395: 00660 072000 000000
                                          SGE
396: 00661 018000 000666
                                                  NEXT
                                          J
397: 00662 000000 000037
                                          LA
                                                  BIAS
398: 00663 002000 000746
                                                  ONEONE
399: 00664 000400 000037
                                          STA
                                                  BIAS
400: 00665 010000 000674
                                                  NEXT2
401: 00666 006000 000756
                               NEXT
                                                  MNSBPK
402: 00667 072400 000000
                                          SLE
403: 00670 010000 000674
                                                  NEXT2
                                          J
404: 60671 600000 000037
                                          LA
                                                  BIAS
405: 00672 002400 000746
                                          S
                                                  ONEONE
406: 00673 000400 000037
                                          STA
                                                  BIAS
407: 02674 020000 000037
                               NEXT2
                                          LA
                                                  BIAS
408: 00675 006000 000755
                                          C
                                                  ZERO
409: 00676 072000 000000
                                          SGE
410: 00677 030000 000000
                                          CLR
411: 00700 006000 000754
                                          C
                                                  FULLB
412: 00701 072400 000000
                                          SLE
413: 00702 000000 000754
                                          LA
                                                  FULLB
414: 00703 000400 000037
                                          STA
                                                  BIAS
415: 60704 074400 000000
                                          RTN
```

```
416: 00705 037000 000000
                              SAGC
                                         NOP
  417: 00706 000000 000736
                                        LA TTPE
  418: 00707 000400 000756
                                         STA MNSBPK
  419: 00710 000400 000763
                                        STA
                                             MEANO
                                         LA T14P5
  420: 00711 000000 000740
 421: 00712 000400 000761
                                         STA SDPK
 422: 00713 000400 000764
                                        STA STDO
  423: 00714 000000 000737
                                        LA TSPØ
  424: 00715 000400 000760
                                         STA MNPK
 425: 00716 000000 000741
                                        LA T13P5
  426: 00717 000400 000757
                                         STA
                                               SDSBPK
* INITALIZE GAIN TO APPROXIMATELY UNITY
  427: 00720 000000 000742
                                        LA T31
  428: 00721 000400 000036
                                         STA
  429: 00722 176400 050000
                                         DO 5
* INITALIZE BIAS TO APPROXIMATELY BLACK LEVEL
 430: 00723 000000 000743
                                        LA DCBLK
 431: 00724 000400 000037
                                        STA
                                               BIAS
 432: 00725 176400 040000
                                        DO 4
 433: 00726 074400 000000
                                         RTN
                           TP5
T1P5
T14PØ
  434: 00727 000001 000000
                                         OCT
                                               20
                             T1P5
  435: 00730 000003 000000
                                         OCT
                                               60
  436: 00731 001600 000000
                                         OCT
                                               34000
                            N10
N90
  437: 00732 000000 120000
                                         OCT
                                               12
  438: 00733 000005 120000
                                         OCT
                                               132
                             TP5D
  439: 00734 000040 000000
                                        OCT
                                               1000
  440: 00735 000140 000000
                              T1P5D
                                        OCT
                                               3000
  441: 00736 000016 000000
                              T7PØ OCT
                                               340
                                   OCT
  442: 00737 000020 000000
                              T8PØ
                                               400
                             T14P5
T13P5
  443: 02740 001640 000000
                                        OCT
                                               35000
 444: 00741 001540 000000
                                        OCT
                                               33000
 445: 00742 000001 110000
                              T31
                                        OCT
                                               31
                            DCBLK
  446: 00743 000000 060000
                                         OCT
 447: 00744 005040 000000
                              T81
                                         OCT
                                               121000
  448: 00745 050400 000000
                             T81PRM
                                         OCT
                                                1210000
                             ONEONE
  449: 00746 000000 010000
                                         OCT
  450: 00747 040000 000000
                                         OCT
                              ONEMC2
                                               1000000
                             C2
  451: 00750 040000 000000
                                         OCT
                                               10000000
                             GP933
  452: 00751 075660 000000
                                         OCT
                                               1735400
                             FIFTY
  453: 00752 000003 020000
                                         OCT
                                               62
                            FULLG
  454: 00753 000017 170000
                                         OCT
                                               377
  455: 00754 000017 170000
                              FULLB
                                         OCT
                                                377
  456: 00755 000000 000000
                              ZERO
                                         OCT
                                               Ø
                            MNSBPK
  457: 00756 000016 000000
                                         OCT
                                               340
                          SDSBPK
 458: 02757 001540 000000
                                         OCT
                                               33000
                          MNPK
SDPK
  459: 00760 000020 000000
                                        OCT
                                               400
 460: 00761 001640 000000
                                         OCT
                                                35000
                          TEMP
MEANO
 461: 06762 000001 000762
                                        BSS
                                               1
 462: 07763 000001 000763
                                         BSS
 463: 00764 000001 000764
                            STDO
                                         BSS
```

464:	00765	366669	399996	C1	OCT	1400000
4651	€2766	PHUPP4	900000	SSW7	OCT	100
466:	00767	626060	000000	ONEMC1	OCT	400000
4671	00776	000001	160000	FRMRG	OCT	36
468:	00771	164600	000000	SCANN	FRM	
469:	00772	164400	000000	0071111	WAT	
470:	00773	165006	170000		IMG	
471:	00774	620000	000564			100
			A Comment		L	AGC
472:	00775	000000	000037		LA	BIAS
473:	22776	176400	040000		DO	4
4741	26777	606000	000036		LA	GAIN
475:	01000	176489	050000		DO	5
476:	01801	656666	001003		L	ZERR
477:	01602	074400	999999		RTN	
478:	01003	999999	001007	ZERR	LA	C777
479:	01004	176488	070000		DO	7
488:	01005	176490	100000		DO	10
481:	Ø1006	67440G	00 00 00		RTN	
482:	01207	000037	170000	C777	OCT	777
483:	21010	000031	000000	0620	OCT	620
484:	01011	900001	001011	CYS	BSS	1
485:	01012	909991	001012	CXS	BSS	ī
	D-1E	1		00	200	

APPENDIX B

Correlation Tracker Microcode (Page 2)
(LISTING #2)

Correlation Tracker Microcode (Page 3)
(LISTING #3)

(LISTING #2)

	44	**	*4	***	484	ettette	55	448 8	55555	5545555
22	55	**	**	**	**	55		5	55 55	-55
22	45	**	22		**	55	55	***	55	55
**	44	**	**	\$	***	****	**	5 55	5555	\$\$ e \$ \$
	88	22	**		44	55	55	55 55	55	55
**	55				**	55	88	5 55	55	55
**	55	55	85		55	**	E & &	55	55	55
85	55	\$8	88	55	2.2	85		88	85	55
•	5	•	\$	555	***	2224444		4844	*****	\$\$e\$ 5555

ERRORS= 0 DAGE 1

•	
7543	
140	

SLISTILE=2 SAITS SCROSSREF \$IMAGE			11121	23311
SMIDTH=132 STITLE=.CORPELATION MICROCODE SPISPLAY(ALL)				
AITS=1 LFFT=1 916HT=72	FORMS=0	IMAGE=1	LINES=60	Pol
TITLF=:CORRELATION MICROCODE	LISTFILE=2	SOURCEFILE=2	WICROMEMORY=512	

XMAS VERS 2.0 CHARFLATION MICROCODE	CORPELATIO	N W	CROC	300							ERRO	ERRORS= 0 PAGE 2	4GF 2
RECORD VIJMBER	CPE 6543210	12	50	FT FO JUNE 10 10 10 6543210	KAUSS PAGEF 19US PAUSFF STRB LPCNT EMIT 76543210 10 210 0 0 43210 76543210	PAGEF	210	PAUSEF	STRB	LPCNT 43210	EMIT 76543210	MULTIPL SPAF	SPAF
1 7 KAIISS	FTELD	i.	D LFNGTH=A	σ	OFF AULT=0	7=0			•				
			1 ×	CRUPS (K00	MICRUPS(K0000=00H K00001=01H K00002=02H K00001=03H K00004=04H	0001=01	1 4000	HZ0=20			3.5		
uv			55	0005=05H	K00005=05H K00006=06H K00007=07H K00008=08H								
			¥ 2	H60=6000	K00009=09H K00000A=04H								
			25	HQ0=Q000	K00000=00H K0000F=0EH								
9:			× 2	000F=0FH	X00010=10H						,		
2:			X	0013=13H	10001 10000 10000								
			2	0015=15H	400016=16H								
4 0			2 2	0017=17H	400018=18H								

AIR MICROPS (MIEOFFH M2=0FEM M3=0FDH W4=0FCH M5=0FEM M5=0FAH M6=0FAH M1=0FBH M8=0FAH M9=0FAH M1=0FEH M1=0FEH M1=0FEH M1=0FEH M1=0FEH M1=0FEH M1=0FEH M1=0FEH) 8 MICROPS(CO=000109 LCNT)=00109 LCNT2=010009 LCNT3=011009 LCNT4=100009 ITCNT1=001119 ITCNT4=100118): Rud=1119) : DEFAULT=1 FIELD LENGTH=2 MICROPS (PAGE1=008 PAGE2=019 PAGE3=108 PAGE4=118) 8 DEFAULT=0 19 PMW=0108 19 RRW=1108 DEFAULT=0 DEFAULT=0 K0001D=1DH K0001E=1EH K0001F=1FH K01FFF=3FH K90000=A0H K7FFFF=7FH KFFFF=377Q KFFFFA=0FAH)3 DEFAULT=0 KODDIR=18H KODDIC=1CH MICROPS(STRORE=19) # FIELD LENGTH=5 FIELD LENGTH=1 DFP FIELD LENGTH=1 MICROPS(PAUSE=0) : 1NH=0018 ROT=1019 FIELD LFNGTH=3 MTCROPS(NRO=000B RTN=100B FIELD LENGTH=8 FIELD LENGTH=1 MULTIPLY FIFLD LENGTH=1 KRUS PAUSEF LPCNT PAGEF KBUSS STRA EMIT SPRF CRUS

WAS VE	E85 2.0 (CORRELATIO	JM MI	СРОСО	10E	XMAS VERS 2.0 CORRELATION MICROCODE						ERRO	ERRORS= 0 P	PAGE 3
RECORD VI JMBFR		19F 6543710	F1 F0		JUMP 6543210	KRUSS 76543210	PAGEF 10	210	CAUSEF	STRB	LPCNT 43210	EMIT 76543210	MULTIPL	SPA
5.5 5.7	OSEH!	1101101	NOP (AC)		JPR(NOTI	JPR(NOTI.NOT2.NOT3.STD.CRNSS.NOT6.MIN.WIN.FRM.WAT.IMG.NOT12.WNV.REF.CORR.NOT16):	STD.CR NV.REF.	0055•NO	76.MIN.W 0716) 1	O O	01000	00000000	0	•
ą.	070H! (1070H)	110111	NOP	11 90	PAGE1 JZ 0101111	PAGE1 JZR(FFTCH):	00	000	100	0	00010	00000000	•	•
50	(0071H!	101101			PAGE1 JZ-	PAGE1 JZ2(FETCH) &	00	000	1	•	00010	00000000	•	c
ç	(1070H)	101101	11	(AC)	PAGET JZ 0191111	NOP (AC) PAGE1 JZR(FFTCH):	00	000		0	00010	00000000	•	•
2	975H! (0075H)	1101101	11	NOP (AC)	PAGE1 JZ 0101111	PAGE1 JZQ(FETCH): 01011111 00000000	00	000	-	•	000010	00000000		•
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$														
5.0	/* POUTINE	-	IN NI	N	NIN NIN	/+ NIV NIW NIW NIW NIW NIW NIW NIV	. NI							
40	076H! (0076H)	MIN! 11:1101		900	PAGE3 JC 0110110	NOP(AC) PAGE3 JCR(MIN) 1	2	. 000	-	•	000010	00000 00000000	•	•

•		•	•
			•
•			
0 00010 00000000		0 00010 00000000	1 0 00010 00000000
000010		000010	0000
		•	•
-		-	-
00 in 00		900	900
00	CORR	2	
NOTIZ: NOP.(AC) PAGE1 JZR(FFTCH);	CORR CORR CORR CORR CORR CORR	CORRI NOP (AC) PAGE3 JCR (CORR) !	NOTI6! NOP(AC) PAGEL JZR(FETCH)!
NOP (AC)	JRR CORR	NOP (AC)	NOP (AC)
=			101101
078H! (9078H)	/* ROUTINE	07EH! (007EH) 1]	07FH! (007FH)
7	525K 52 8	60	

MAS V	ERS 2.0	XMAS VERS 2.0 CORRELATION MICROCODE	NO	1CROC	30c							ERRO	ERRORS= 0 P	PAGE
PECORD		FPE 6543210	10	55	PE FT FO JUMP 6543210 10 10 6543210	KBUSS PAGEF COUS PAUSFF STRB LPCNT 75543710 10 210 0 43210	PAGEF 10	210	PAUSEF	STRB	43210	EMIT MULTIPL SPRI 76543210 0 0	MULTIPL	o Sp
8														
2 4 6 5														
2 6.	/* IMG IMG	_	MG IV	MG IM	G IMO IMG	THE ING ING ING ING ING ING ING ING	/* 9M							
8 0														
06	/* R	/* R7=93*/												
. 6	/*RA=SA		*											
6	*	FORM STAR	TING	ADDR	STARTING ADDRESS #/									
*6	07AH!	-		R (AC)	0001000	CLR(AC) 4 11 00 0001000 0000000	10	000	-	•	000010	00010 00000000	•	•
46	09AH! (008AH)	1011100	3:	1 (AC)	K00019 R	LMI(AC) KOO019 RRM 8		110	-	•	00010	00010 00000000	0	•
*	(100FH!	ACM(T) 1 /*T=NY */ 0001010 11 00 0001001	Ę=	* 00	0001000	00000000	.0	960	-	•	000010	000000000000000000000000000000000000000	•	•
16	(009FH)	9	ਰੋਵ	R (AC)	0101000	CLR(AC):	7	000	-	•	000010	00010 00000000	•	•
6	(00AFH)	8	3:	I (AC)	K00009 8	TI101 11 00 0001011 00001001	5	000	ñ00 1	•	00010	00010 00000000	•	•

	,	•			•
1171101 11 00 0001100 00000000 01 000 1 0 00010 000000	1 0 00010 0000000	1 0 00010 00000000	1 0 00010 00000000 6 9	ñ00 1 0 00010 0000000	104 10FH! ADR(T) : /*AC TO T */ (010FH) 01 100 00010 00600000 0 0
01000	00010	00010	00010	00010	000010
•	•	•	•	•	•
-	-	-	-	84	-
000	000	000	000	900	900
10	25	10	35	10 °	ı i
00000000	ALR(T) FF1 \$ /*\Y-9 TO T. AC */ 0001100 11 11 0001101 11111111 01 000	1001100 11 00 0001110 00000000 01 000	102 0EFH! ADR(AC) # /+2(NY-9) TO AC +/	ADR(AC) 1 7* 4(NY-9) TO AC */ 0111101 11 00 0010000 11111111 01	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
0001100	FF1 4 /*	0001110	1 /*2(N	0010000	1 /*AC T
11 00	ALR(T)	CLR(T)	ADR (AC)	ADR (AC)	ADR (T)
11111101	0001100	1001100	0111101	0111101	0111100
(009FH)	100 OCFH! (00CFH)	101 00FH1 (000FH)	(00EFH)	103 OFFH! (00FFH)	10FH! (010FH)
\$	100	101	102	103	101

105 11 11 11 11 11 11 10	XMAS V	EKS 2.0	CORRELATIO	2	1000	JUE	.XMAS VERS Z.U CORRELATION MICROCUDE						ERRO	EKKOKS. 0 P	PAGE 5
0171101 11 00 0010010 11111111 01 00 1 0 0 0 0111101 111111	PECORD VUMBER		CPE 6543210	101	10	11JMP 6543210	KBUSS 76543210	PAGEF 10	79US	PAUSE	STRB 0	LPCNT 43210	EMIT 76543210	MULTIPL SPRF	SPR
ADR (AC) 1	105	11FH! (011FH)		ADR (OO OO	00100100	11111111	\ ē	000	-	0	000010	00000000	•	c
ADP (AC)	104	12FH! (012FH)	คาเกาค่า	ADR (00 °	1 /*16(0010011	11111111	• 2	000	-	•	000010	00000000	P	c
0171100 11 00 0010101 11711111	101	13FH! (13FH)		Ane (00 00	0010100	11111111	: =	000	-	•	000010	00000000	0	c
0011101 11 00 0010110 11111111 01 00 00	109	14FH!		ADR (E8	0010101	70.T */	ίĵ	000	-	c	00010	00000000	•	c
0001100 11 00 0010111 11111111 01 000 1 0	100	15F4! (015F4)		ADR ((AC)	0010110		4 (NY-9	, TO A	`- •	•	000010	00000000	•	•
17FH! (017FH) 1001100 11 00 0011000 0000000 01 000 1 0 19FH! (018FH) 0011100 11 00 0011001 00011000 01 110 1 0	110	16FH! (916FH)		ALR (E8	1 /*AC+T	TO T-ACE 10	0 (NY-9	:00	-	•	00010	00000000		•
0011100 11 00 0011001 00011000 01 110 1 0	īi	_	1001100		ES	0011000	00000000	10	000	-	•	00010	00000000	•	•
	112	19FH! (018FH)		FI	ES	0011001	00011000	10	110	-		00010	0000000	•	•

1 0 00010 0000000 0 0	0	0 0000	. 0 0000	0 0000	0101000 11 11 0000101 11111111 01 000 1 0 00010 000000
10 0000	10 0000	0 00010 0000000	10 0000	0 00010 00000000	10 0000
000	000	000	000	000	
_	-	_	_	> -	-
	000	, 000	000	TO AC.T	900
10 AC	6	6	10	• NX-9	16
0001011 11 00 0011010 11111111 01 000	CLR(T) ; 1001100 11 00 0000001 0000000 01 000 1 0 00010 000000	0011100 11 00 0000010 00001001 01 ñ00 1	is ozfH! CMR(T) 8 (002FH) 1111100 11 00 0000011 00000000 01 000 1 0 00010 000000	0001100 11 11 0000100 11111111 01 000 1	/*SA=AC */
0011010	0000001	K00000 8	0000011	FF1 1 0000	FF 1 1
AMA (AC)	CLR(T)	LMI(T) 11 00	CMR (T)	ALR(T)	SDR (R8)
1101000	1001100		1111100	0001100	0101000
113 19FH! (019FH)	1 AFH! (01 AFH)	1FH!	(002FH)	117 03FH! (003FH)	118 04FH! (004FH) 0]
113	114	iis o	116	iii	118

SECOSO VIJMBER		6543210 10 10 6543210	101	201	JIJNP 654710	KAUSS 76543210		73US	PAGEF 13US PAUSFF STRB LPCNT	STRB	LPCNT 43210	EMIT 76543210	MULTIPL SPRF	900
119	/*F0R 05FH! (035FH)	/*FORM CANSTANT P7=83 AND LOAD COUNTEPS H: CLP(R7) 1 5FH) 1000111 11 00 0000110 0000000	CLP (83 A 87)	NO LOAD 1 0000110	/*FORM CANSTANT P7=83 AND LOAD COUNTEPS 05F4! CLP(R7) 1 (05F4) 1 00 0000110 0000000	; 6	900	-	•	00010	00000000	•	•
121	04FH! (094FH)	1110100	12.	62	KOOOIF L	LMI(R7) KOOOIF LCUTI MIR 8	5	000	-	•	00100	011101110		c
155	122 04EH! (206EH)	0010111	12.1	100	KOOOIF L	LM(R7) K0001F LCNT2 MIR 8	10	900	-	•	01000	11101110	•	•
151	01FH! (901EH)	01FH! (90ĨEH) 00Í0111	LMIC	00 00	LHI(R7) K00015 8	/*R7=83 */ 00010101 . 01	16	000	-	0	01000	00000000	•	e
124	/* FETCH 1 07EH! (002EH) 1061	TCH IMAGE POINTER */ CLP(T) 8 1001110 11 90 00	CLP(T) 8	TER TO	0000011	00000000	10	000	-	•	00010	00000000	•	•
124	126 03EH!	0011100	17.	20	00010 RR	LYI(T) K00010 RRY :	5	110	-	•	01000	00000000	•	•
127	ואטרני) (אחרניי)	1011011	ACM C	€00 000	000000	ACM(AC) 1 1001011 11 00 0000001 0000000	0.0	900	-	•	00010	0000000	•	•

•	•	•	•	•	•
•			•	•	•
129 010H: SDR(R9) FF: 1 /*R9=1P=STA */ 00010 00000000 0 0 0010 00000000 0 0	1 0 00010 0000000	00000000	0 000000 00000000	1 0 00010 00000000	OITITIO 11 11 0001000 00000000 01 00 00010 000000
00010	000010	0000	01000	00010	90010
•	•	•	•	. •	•
-	-	-	-	-	-
900	990	110	980		000
`£	- =	16	15	=	2
11111111111	/* GO TO READ WODF */ /* UPDATE MODE STATUS WORD */ 02DH! CLR(T) 1 (002DH) 1001100 11 00 0000100 00000000 01	0011100 11 00 0000101 00011100 01 110 1 0 00010 000000	0001011 11 00 0000110 0000000 91 780	10011100 11 00 0011111 00000000 n1 ngo	00000000
00000010	1US 40RD 1 0000100	K0001C RR	00000110	00111111	FF1 :
SDR (R9)	MODE STAT	LMI (T)	ACM (AC)	CLR(T)	INR (T)
0101001	TO READ PDATE MO 1001100	0011100		1001100	
010H1 (0010H)	/* 60 /* U 020H! (0020H)	040H1 (0040H)	(0050H)	(E040H)	1FDH! (01FDH)
128	130	132	133	134	135

134 139 140		0156275 001100 001100	10 000 (T) 11 00 1	50 to to to to t	FT FO JUMP K 10 10 6543210 74 ODD (T) : 11 00 0001110 00 CL P(T) : 11 00 0011111 00 CL P(T) : LM (T) K0001C RWW : 11 00 0010001 00	6543210 74543210 10011001 111111111 100011110 00000000	01 01 01 01 01	000 000 000 111	PAUSFF	E 0 0 0 0	43711 00010 00010	74543210 00000000 00000000	MULTIPL 0	9. c c c c
141	(1104) 1204!	(**1100) 1001100 1204! (**1100) (**1100		8 ±8	11 00 0010010 00000000 LMI(T) K00006 ROT 1 11 00 0111010 00000110	00000000	2 2	101		c o	00010	00000000		
143	1241	/* REGIN LOOPS 1244! 'P1! L	LMT (0)	13	S */ LM(CA) FF1 RIN : 11 11 0910011 00	FF1 RIN \$ 00000000	16	.00		•	000010	00000000	•	
144	13aH!	ואומו	101	40	KODOOF I	LOTICAC) KODOOF ITCNTI FFIE						0000000		

3	(1) (1) (H)	1001100		1000010	to consons and the second of t	2		-	0	00000	111 1 0 00010 0000000	c	
14,	1294!	0000111	11 00	17CYT2 1	00000000	16	000	-	6	11010	CTI! ILP(R7) ITCYT2 :	•	
147	12CH! (012CH)		ADP (RB)	LCNT1 M1	ADR(R8) LCNT1 M19 JFL(LP2.CT2) & /*5A=5A+R3 */ 01111000 11 00 10n0101 11111111 01 000 1 0	10	000 U	SA+R3	•	00100	00100 11101110	•	
149	15AH! (015AH)		LWT (RB)	FFI RIN	14P (LP1X)	. 7	1,90	-	c	01000	1 P2! LW1(RB) FF1 RIN JMP(LP1X) 8		
150		TO STORE CT2!	MONE WI CLP(AC)	/* GO TO STORE MONE WITH NO RFO 1584! CT2! CL0(AC) (01584) 1001101 11 00 01111109 0	00v00v0v	7	000	-	6	01000	TO STORE MONE WITH NO REG */ CTP! CLP(AC) # 1001101 11 00 0111109 00000000 01 500 1 9 00010 00000000	•	

XMAS VE	0°C SH	XMAS VERS 2.0 CORPELATION MICROCODE	N MICE	ROCO	30t							FRRO	FRRORS= 0 P	b yee d
PECORD VIJARED		CPF 654 1210		10	FO	14543210	PAGEF	SUF	OTO 0 0 0	STRR	LPCNT 43210	EMIT 76543210	MULTIPL	SPR
īSi	15CH! (015CH)	1011101	LMI (AC)	AC 00	KON01C RRW 0010110 00	KONDIC RRM # 00101100	10	110	-	c	01000	00000000	c	c
. 155	1564!	1101000	11	90	# /*AC=	ACW(AC) : /*AC=40DF #/	5	000	-	•	000010	00000000	•	c
153	(1754)	1001100	11	£ 8	CL 2(T) :	00000000	5	000	-	e.	000010	00000000	c	c
154	19CH! (^19CH)	0011100	LMT	t 5	LWI(T) KOONO3 8	110000000	7	600	-	•	01000	00000000	•	c
155	(H361c)	11111100		58	/#T=KF	CMP(T) : /*T=KFFFFC +/	5	000		٠.	000010	00000000	•	6
154	1ACH!	1001190	AND (58	7*T=T	ANR(T) : /*T=T.AND.KFFFFC */ 11 00 0011011 1111111 01	• =	000	-	•	000010	00000000	•	•
157	19CH! (119CH)	0011100	110	£8	ILP(T) : 00111,00	00000000	=	000	-	• .	00010	00000000	•	c
İSA	ICCH! (*)ICCH)	1901100		58	CLP(T) \$	00000000	=	000	-		000010	00000000	•	•

8	10CH!	9	LMICT)	LMI(T) KODOIC PAN : /*MODE=MODE.AMS.KFFFFC */	1 /*MODE	n409E.	in in			000010	000000000 01000		
99	109H! (9109H)		11 00	1001100 11 00 0011110 00000000 01 50m 1 0 00010 0000000	00000000	7	50.	-	•	01000	00000000		•
15	IFAH!	9011100	LW1(T)	LMI(T) KOONOK ROT DAGE! JZR(FETCH) & /*MODF! AT=MODE *	PAGE1 JZR	(FETCH)	- 2	1	TeMODE	01000	00000000		•
5 5 4 4												•	
69	/* ROUTINE	-	2 2 2 2	TO MIN	WIN WIN WI	:							
100	0774!	1001100	CLPIT	0001001	0000000	7	900	-	•	01000	UNI CLE(T) t		c

PAGE 9	SPRF 0	c	•	c	•	c	•	•	•
ERRORS= 0	WULTIPL 0	•	•	•	0	•	•	•	•
ERRO	EMIT 76543210	00000000	00000000	00000000	00000000	60000000	00000000	00000000	00000000
	LPCNT 43210	000010	00010	00010	00010	01000	00010	000010	00010
	5189	c	e	c	0	0	•	•	•
	PAUSFF	-	-	-	-	-	-	-	-
	210	110	000	000	iıo	000	000	000	900
	PAGEF 10	10	7	***	7	16	10	10	. 10
	KRUSS 76543210	F1 88M \$	00000000	Sno(95) FF1 : /*85=C(18)=NX*/ 11 11 0791011 1111111 01	00000000	000000000	SDR(R6) FF: : /*R6=C(19)=NY*/ 11 11 0001110 11111111 01	00000000	10100000
INE	July 6543219	K00018 F	0001010	FF1 : /	Rew :	1011000	FF1 : /	*/ 0001111	LMI (P7) K30005 1
OPREI ATTON MICROCODE	FT F0	LWT(T.)	ACM (AC)	Sno (25)	LMI(T) ROM 8	AC4(4C) 11 00 0	S0# (#6)	CLR(R7)	11 00
	4543210	0011100	0001011	11/0101	0011100	1101000	01100110	74LAAD COLIUMN LEFT LATCH AF9H! COF9H! 19A0111 11 00	0010111
XMAS VERS 2.0 COPRE		(142600)	(1666)	(10004)	(1994)	175 OC94!	174 9094! (4,3794)	/*LNA9 (3594! (10694)	(30F9H)
XMAS VE	SFCORD	171	i7.	ir	174	i75	174	177	179

•	c	c	c	c	
•	•	•			
1 0 00010 00000000	0 00010 00000000	000000000000000000000000000000000000000	0000000 01000	000000000000000000000000000000000000000	
99010	01000	01000	00010	00000	
•	•	•	c	•	
-	-	-	-	; -	
9	6	900	900	1 ATCH	
=	7	7	=	מסך ר	
ТВО 109H! СМР(ЯТ) 1 00 0010001 0000000 01 0000	1[P(RS) : 0000101 11 00 0010910 00000000 n1 hon	0000111 11 11 0010011 11111111 01 500	1394! CLP(T) # CLP(T) # (01394) 1001100 11 00 0110100 0010100 01 000	0011100 11 11 0010101 00000000 01 191 1	
1000100	0160100	0010011	0010100	0010101	:.
CMP (27)	1LP (RS)	AL 0 (97)	CLP(T)	וו וו	IMN PIGHT LATCH +/
เบื้อไป	1010000	1116000	1001100		COLIMN PIC
1034!	IA1 1194! 00	12941	139H!	184 149H! (0149H)	185 /* LOAD COL!
180	Ē	182	183	184	185

XMAS V	0.0 503	OBBELATIO	N MTCRO	C00F	XMAS VERS 2.0 CORRELATION MICROCODE						ERRORS= 0		DA6F 10
SECORD VIJMBER		6543210		FI FO JINP 10 10 6543210	KRUSS 76543210	PAGEF	2305	CBUS PAUSEF STRR LPCNT	STRR	LPCNT	EMIT 76543210	MULTIPL SPRI	SP C
194	146Hi (+651+)	1010101	Lwt (RS)	0010100 t	10100000	7	000	-	c	01000	00000000		•
197	14641	กกลักากไ	11 00	11,8(85) t	00000000	=	000	-	•	01000	00000000	•	c
184	1794! · (*1794)	1794! . (*1794) coilling	E1 11	LM(T) FF1 90T 8	/*NX+5 TO COL R LATCH */	0 coL P	LATCH 101	->-	6	01000	00000000	c	c
190	/* L0 1494! (-1994)	/* LOAD DOW UP LATCH [1994] CLP(RT (-1994) 1000111 11 00	CLR(RT)	*/ 1 1 0011001	00000000	2	000	-	c	00010	00000000	•	c
	(1001.)	1110100	LwJ (R7)	LWICRT) KONDOS 1	0000000	7	, 00 v	-	0	01000	00000000	•	•
192	(Hoste)	1110111	CMP (R7) \$	1101110	00000000	16	٥٥٥	-	•	01000	00000000	•	
193	1494! (51894)	0000110	11. P (P.6)	11.9(P6) ; 11.00 0011100 0000000	00000000	16	000	-	•	00010	00000000	•	•
194	10941	0000111	AL 9 (R7)	0011101	ALP (R7) FF1 t	16	000	-	•	000010	00000000	•	•

	•	c	٠	•
	. •	•		•
0 00010 00000000 0	40W NOWN LATCH */ LMI(R6) KN0005 1 0010110 11 00 00111111 00000101 01 000 10 00 0	1LR(R6) 1 0900110 11 00 0111000 0000000 01 000 1 0 00010 000000	0071100 11 11 0001011 00000000 01 101 1 0 00010 000000	200 - /* READ BLACK/WHITE CONTROL WORD */ 201 08941 COMMON! (00884) 1001101 11 00 0931100 00000000 01 0 00010 0000000 0 0
00010	00010	01000	0000	00010
•	•	•	•	•
:-	-	-	ATCH */	-
101	ig.		NEGO.	000
904 U	16	10	FO ROW	-==
/*NY-5 TC	0100000	00000000	000000000	CL.P (AC
0011100 11 11 0011110 000000 01 101 1	K00005 8	0111000	FF1 90T t	OL WORD */
511	LMT (R6)	ILR (R6)	511	TE CONTR
0011100	ROW DOWN 0010110		0011100	PLACK /WHE COMMON
195 1094! (01094) 0	7* LOAD ROW 1E941 (01F94) 001	199 1F94! (n1F94)	199 1FAH! (31F9H)	/* READ 039H! (0098H)
195	194	194	199	200

6547210 10 10 6547210 75543210 0 903441 LWT(AC) KODOLD RRW : 1 0 00010 000000 0 0035441 LWT(AC) KODOLD RRW : 1 0 00010 000000 0 003441 ACW(AC) 1 0 00010 000000 0 0 003441 ACW(AC) 1 0 00010 0 0 0 0 05441 OBCRES FF1 : /* R/W TO BS ** ** 0	PFCOPA		يەن	FT	60	dy(i)	KRIJSS	PAGEF	SUE	PAUSEF	STRA	LPCNT		MULTIPL	SPR
00344; 0011101 11 00 0001101 01011101 01 110 1 1 0 00010 000000	A IMBER		6141710	10	10	6543210	01667571	10	010		•	43510	74543210	c	c
00-944; 00-00-11 1 00 00-00-00 0 0 0 0 0 0 0 0	202	(40060)		11	(AC)	K0301D R:	24 :	7	110	-	•	01000	00000000	•	c
OF SHI! SDB (RS) FF!: /* R/W TO BS */ 0	203	(HEGG))		ACM	(AC)	0111100	00000000	12	100	-	•	01000	00000000		c
(** PFAD CHROENT MODE LATCH */ 0F3H; CLO(T) : (** PFAD CHROENT MODE LATCH */ 1 (** PFAH) 1 (** PAH)	700	0F94! (00F94)		Sne	(85)	0.001111	/* R/W TO	P5 */	990	-	•	000010	00000000	0	c
1194! (-11094)	200	/* PFAN 0F3H! (^1F8H)	CHROENT W	100F L	ATC.	0001000		1	000	-	•	00010	00000000	•	c
11944!	207	1084! (11894)			· É É	1000100	1 : 1000		ila		•	01000	00000000	6	c
1444! SDR(R6) FFI : /* MONE TO R6 */	208	1194!		ACM 11	(AC)	0011010	00000000		900	-	•		00000000	•	•
	503			Sna	(86)	FF1 1 /*	MONE TO R	2.5	00.0		e	000010	00000000	•	•

•	c	c	•	·	•
•	•	c		•	•
0 0000000 00000000	0 00010 00000000	00010 00000000	0 00010 0000000	1 0 00010 00000000	00000000
01000	00010	00010	00010	00000	00010
c	•	•		•	0
-	-	-	-	-	-
	000	000	0000	1000	000
=	6	=	=	, KFFFE	7
/* TEST FOR ALACK OF WHITE */ 129H; 178(R5) FFA ; (178H) 1910101 11 00 0110000 11111111 A1 A0	CLR(AC) JFL(WHITE, RLACK) 1	MHITE! LMT(AC) KOOOIR :	CMR(AC) 1 0000101 00000000 01 000 1	ANR (R6) 1 /* MODE=MODF.AND.KFFFF7 */	00000000 1 1 00 0010111 00000000 01 0 00010 000000
FF. :	JFL (WHIT	K00018 :	0010100	0110100	0010111
00 WHITE 178(RS) 11 00	CLP (AC)	LMT (AC)	CMR (AC)	ANR (R6)	ILR (85)
1910101	-			1000110	0000110
/* TEST 128H! (0128H)	1204!	142H! (0142H)	14141	; 1514! (0151H)	216 1514!
210	212	213	214	215	216

KMAS V	C 5 5 0 C	ORRELATIO	N MTCR	XMAS VERS 2.0 CORRELATION MICROCODE							ERROR	ERRORS= 0 PA	D46F 12
RECORD		CPE 454	FT F	CPE FT FO JUNP 454210	KRUSS 74543210		2010	PAGEF CAUS PAUSEF STRB LPCNT	STRB	43210	. EMIT 76543710	MULTIPL SPRF	SPRF
217	217 /* WDITE HP.ATED 219 171H! 0011100	11P - ATED		217 /* WETTE HP-ATED MODE INTO MODE CELL */ 219 1714! LMT(T) RWM : (01714) 0011100 11 00 0011000 0000000	00000000	10	ii	-	c	01000	00000 0000000	•	c
219	1414! (01614)	1901100	CL P (T	1914! CLP(T) :	00000000	16	000	-	0	01000	00000000	. 0	c
220	/* 1100AT	6 WADE LA	17CH F0 LMT (T	220 /* HPDATE WADE LATCH FOR WHITE BOX */ 221 132H: LWI(T) KOOOOK BOT DAGFI JZR(FETCH) 1 (A182H) 0011100 11 00 0101111 00000110 00 101	*/ T DAGF1 JZ 00000110	IR (FETCH)	101	-	0	000010	00010 0000000	e	c
252	1474!	aLACK!	LMT CA	ALACK! LMT(AC) K00010 :	0001000	10	000	-	•	000010	00000000	•	c
ددد	(H77[v)	1100110		1110110 00 11	ווווווווו מ	15	000		0	01000	00010 00000000	•	•
224	724 147H! (6147H)	1011001		CLP(AC) 1 11 00 0010010 0000000	00000000	010	000	-	•	00010	00010 00000000	•	•
222	1274! (01274)	1011100	LWTCA	LMI (AC) KOOOAB 1	00001000	10	000	1	٠.	01000	00000000	•	•

	•		•	•	•
•	•	•	•	•	e
0 00010 00000000	00010 0000000	00000000 01000	00010 00000000	0 00010 0000000	1 0 00000000
01000	00010	01000	00010	00010	01000
	•	•	•	•	
-	-	-			-
900	, vou	900	į,	000	101
6	D.KFF	5	2	7 E	P (FET(
00000000	E=MODE.AN	00000000	00000000 01 111 1	00000000	PAGE1 37
171101 11 00 0010001 00000000 01 400 1	ANR(R6) : /* MODE=MODF.AND.KFFFFT */	IL9(86) 4 000110 11 00 0010110	MANE FOR PLACK BOX */ LMI(T) RWM : 011100 11 00 0010111	231 /* UPDATE MODE LATCH FOR BLACK BOX */ 232 174H; CLR(T) : CLR(T) : (0174H) 1001100 11 00 0011000 0000000 01	0011100 11 00 0101111 00000110 00 101
11 00	ANR (R6)	11 00	R PLACK LMI(T) 11 00	СР FOR 11 00	LMT(T)
11111101	1000110	0000110	. MODE FO	1001100	0011100
224 124H! (0124H)	7 1144!	184Hi (194Hi	/* UPDATE. M 1644! (01544) 00	/* UPDATI 174H! (0174H)	1944!
556	155	224	229	233	233

WAS V	XMAS VERS 2.0 COPREL	OPREL AT IO	Z	CROC	ODE	ATION MICROCODE						EPRORS= 0		046F 13
PECORO		0168459 6543210	FT F0		JUMP 6547219	KRUSS 74543210	PAGEF 10	SUE	PAGEF ANS PAUSEF STRB	STRB	LPCNT 43210	EMIT 76543210	MULTIPL SPRF	SPRF
234														
239	/* POUT	NF FRO FR	ī.	7 P.	MAJ CAJ	/* GOUTINF FRO FRM FRW FRO FRW FRM FRM FRM FRM #/	M FRM	;						
242	079H! (£979H)	1011101	15	(AC)	CLP(AC) 1 11 00 0000001	00000000	11	000	-	•	000010	00000000	•	c
24.	(HH101)	1011101	L.	(AC)	Knnn1C R: 0000010	LMT(AC) KODDIC RRM 8	=	110	-		000010	00000000	•	c
344	(1928H)	1101000	ACM 11	ACM (AC)	0000011	000000000	16	000	_	•	000010	00000000	•	•
245	(1946)	0110010	Sag	(86)	FF1 : /	Sne(R6) FF1 # /*WONE TO 86 */	35	000	-	•	000010	00000000		•
244	/* FO 049H! (1048H)	/* FORCF 9EQ SIT HIGH */ 049H! CLR(AC); (0049H) 1051101 11 00 0	F==	H2 00	00000101	00000000	10	000	-	•	00000	00000000	•	• •
249	(48500)	1011101	3:	90	LMT(AC) Kr00021	00000000	7	000	-	•	01000	00000000	•	c

•		٠	•	•
•		•	•	•
1 0 00010 0000000 0	00000000	00000000	00000000	1 0 00010 0000000
0000	00010	000010	0000	01000
•	•	•	•	•
	-	-	-	-
600	000	000	900	000
91000	10	=	12	FFFF
	ICE R/W SIT LOW */ CLR(AC) : 1001101 11 00 0001001 01000000 01 100 1 0 00010 000000	1 LMI(AC) K000nl 1 00 0101010 01000001 01 000 000000000	CMR(AC) 1 111111 11 00 0110000 00000000 01 00 00010 000000	1900110 11 00 0001011 11111111 01 000
0001000	0001000	K00001 8	01.10000	1 /************************************
11 00	11 LOW *.	LMT (AC) 11 00	CWR (AC)	ANR (R6)
1100110	1061101	9011101	1111111	1966110
(0048H)	/* FORCE 0994! (3098H) 10	(0098H)	253 0AAH!	254 040H! (0040H)
540	25.2	\$2	25	254

PECO20	350	195 1954	0 10	0.0	FT FO JUMP 6543210	KRUSS PAGEF CAUS PAUSFF STRB LPCNT EMIT MULTIPL SPRF 76543210 10 0 0 43210 76543210 0 0	PAGEF	210 010	PAUSFF	STRB	LPCNT 43210	EMIT 76543210	MULTIPL 0	3000
χ.	255 080H!	£	11.	966	0011000	11 00 0001100 0001000 01	16	. 000	1 . 000		000010	0 00010 00000000	•	c
Υ.	140000 55c		2=	(T) 0	1011000	CLP(T) : 100 0001101 0000000 01 000	01	000	-	c	000010	0 000000000 0 0		c
K.	(HUUGO)	. 6	5.7	E	KO0004 20	LMT(T) K00005 ROT :	5		-	•	00010	0 00010 00000000	•	•
K.	25a 950H! (1050H)	÷	٥٦٠	(T) e	11111000	CL 2(T) 8 10 00 11 00 0001111 0000000 01 700 1	10	0000	-	•	01000	0 00010 00000000	•	c
X.	(10694)	î	71	11(7)	KO001C PA	LMI(T) KOOOIC PAGFI RWM STRORE JZR(FETCH) 8	RORE .	IZR (FETCH		-	000010	1 00010 00000000 0 0	•	•

						•	•	•
							9	
				110	000	000	000	000
				Ξ	000	000	900	000
				00100 11110110	000000000000000000000000000000000000000	00010 0000000	00010 0000000	00010 0000000
				•	•		•	•
				- 8	-	-	-	-
				900	900	110	. 00	000
	:		:	:=	5	5	7	915
	IE STO STO STO STO STO STO STO STO	1167	CEMPRING #/ TINE CALCULATES 4SUM (ARS(I)I-MEAN)) */	STD: CLP(T) LCNT1 M10: /* SUM=0 +/	CHLATE STARTING ADDRESS */ CLR(R9) 1 10/1001 11 00 011/101 0/000000	LMT (R9) K00010 R9M :	00000000 0101000	SDR(R9) FF1 1 /* R9=TP */
	0 ST0 ST0		SUM (ABS (T.)	O001000	CHLATE STARTING ADDRESS +/ CLR(R9) 1 10/1001 11 00 011/101 0	K00010 R4	0101000	FF1 8
	O STD ST		IG #/	11 00	CLR (89)	LMT (R9)	0001011 11 00 0	Sng (R9)
	NE STD ST	AN 2445 4/	AC=WORKING TINE CALCUL	1001100	LCULATE S 10A1001	1001100	1101100	0161001
	/* ROUTIN	/* RR=WF	/*POUT	(4F700)	/* CAL 043#! (0043#)	(H240t)	(H5600)	045H! (1045H)
£2823	265	2569	522	275	775	878	979	280.

2000		100			-		-		-	4.10		-		
VI JMBER		4543210		101	6543210	76543210	10	210	0	2188	43210	76543210	MULTIPL	SPRE
28.	(H5364)	1001100	3:	LMT (R9)	K0101F :	111111000	10	٥٥٥	-	0	000010	00000000	e	c
6	(אַטטייייייייייייייייייייייייייייייייייי	1001100	22	90	LMI (49) KONO1F ;	/*R9=SA=TD+62 */	10.62	200	-		01000	00000000	•	c
283	(47074)	1601100	3=	99	LWT (R9) KOOOOAE	/* R9=SA=IP+72 */ 00001010 01	10	000	-	•	01000	00000000 01000	•	c
284	(H2501)	1201000	5,5	CL 0 (88) 1	00 0110110 0000000	00000000	16	000	-	c	01000	00000000000000	•	·
£	(H956c)	00011000	3=	11	LMT(PR) KOOOLA FFL RRWE 11 11 0001010 000110	KOOOLA FFL RAWE	10	110	-	c	000010	00010 00000000	•	•
284	044H!	1101000	ACM 11	(AC)	ACM(AC): /* AC=DX */ 11 00 0001001 0000000	00000000	10	000	-	•	01000	00000000	•	•
797	(14660)	0001001	A C	ALR (R9) ;	0	/*R9=IP+72+0X #/	٤ .	000	-	•	00010	00000000	•	•
288	289 חפקען (המפקע)	0011000		90	LMI (RA) RPM:	00000000	6	110	-	•	0000	00000000	•	•

280	(00E4H)	0001011	11 00	0110111	0001011 11 00 0110111 00000000 01 00 00010 000000	2	000	-	0	01000	00000000	0	c
290	0F74! (30F7H)		ADR (R9)	0001000	0171001 11 00 0010000 11111111 01 000	7	000	-		00010	0 00010 00000000	•	c
791	107H! (3107H)	0001101	ALR (AC)	\$ /*AC=	4 Q(AC) \$ /*AC=DX*> */ 0001101 11 00 0010001 11111111 11	7	non 1	-		01000	0 00010 00000000	0	c
262	117 <u>H!</u> (0117H)	1011000	ALR (AC)	0110110	0001101 11 00 0110110 11111111 01 000 1	2	000	-	c	01000	0 00010 00000000	0	c
293	1164!	0001101	ALR (AC)	0001000	116H; (0116H) 0001101 11 00 0010000 11111111 01 000 1 0 00010 000000	5	000	-	0	01000	00000000	c	c
294	1764!	0001101	ALP (AC)	1 /* AC	=0x*16 */	16	, 00 v	-	0	00010	0001101 11 00 0001110 11111111 01 000 1 0 00010 000000	0	

V SAMX	0.0 503	COPREL AT I	NO	1090	onf	XMAS VERS 2.0 CORRELATION MICROCODE						EPROR	EPRORS= 0 PA	P&GF 14
PECO20		101 654 4210	F1	10	CPE FT F0 JIMP 4543210 10 10 6543210	KBUSS 74547210	PAGEF	210	PAGEF CAUS PAUSFF STOR LPCNT	STOR	LPCNT 43219	EMIT 76543210	MULTIPL SPRF	SP C
295	295 9564! (00564)	0111001		00	. /* R9= 0110101	Anp(pq): /* R9=[P+77+NX+]7*N: 11 00 0110101 1111111 01		000	-	o	000010	00000000	0	c
294	(+546)	1001101	ME AN	VAL 00	MEAN VALUE */ . CLP(AC) LCNT? M1(AN VALUE */ - CLP(AC) LCNT? MID:	7	0 G y	-	0	01000	01000 11110110	0	c
996	1,54! (01,54)	9011101		(40)	LMT(AC) KOND14 RRW :	KOODI4 RZW ;	16	110		0	01000	00000000 01000	c	c
66	1154!	1101000		ACM (AC)	0100100	00000000	16	000	-	•	000010	00000000	0	c
300	125H! (3125H)	บบับเ		P (AC)	CMP(AC) : 11 09 0)10110	00000000	7	000	-	0	01000	00000000	0	0
301	1244!	SDR(RB) FF1 : 0101000 11 11 001001	SO	11	FFi :	/* RR=COMP OF MEANS */	P 0F M	EANS	-	•	000010	00010 00000000	•	•
302	ואינוט) ואינוט)	/* AFGTN LOOPS */ 1344! ILR(RR) : 111011 00 0110111	2000. 11.	\$ (88) 00		00000000	10	000	-	•	0000	00010 0000000	•	c

c	c	c	c	0	c
•	•	c		•	0
		-1			
1 0 00010 0000000	0 00010 00000000	0 00010 00000000	00010 00000000	0 00010 00000000	0 00010 00000000
00010	01000	0000	000010	01000	000010
•	•		•	0	c
-	y	-	-		
000	110		000		000
, E	16	10	16	7 7	10
SAR(R7) FFI : /**EÁN TO R7 */	LXXP! LMT(R9) FF1 RRM :	LXXP2! ACM(AC); 0001011 11 00 0110000 00000000 01 nnn	ALR(AC) : 0061101 11 00 0010100 11111111 01	ALR(AC) ; 0001101 11 00 0010111 11111111 11 000	ALP(AC) 1 1001101 11 00 0011000 111111111 01 000 1
FF1 1 /*	FF1 RRM 0010101	0110000	0010100	11110100	001100
Sna (87)	LMT (R9)	ACM (AC)	ALR (AC)	ALR (AC)	ALP (AC)
0100111	LXXP! 0011001				1011101
304 1374!	132H! (H2619)	152H! (0152H)	1504! (0150H)	(01404)	1704!
304	305	306	307	304	309

RECOSO		016F 42A	120	100	JUMP 6543210	KAUSS 74543210	PAGEF 10	73US	PAUSEF	STRR I	LPCNT 43210	EMIT 76543210	MULTIPL	Spar
310	310 1404!	9961101	4 =	ALD (AC)	1001100		16	060	-	0	01000	00000000	•	c
m	(1904)	0001101	11	AL P (AC)	0110010 1111111	เก็บเก็บ	12	000	-	0	01000	00000000		c
31.		1110000 (H2011)	ALR.	11	ALR(R7) FF1: /* (2**5*C(SA)-MEANS) TO AC */ 1) 11 01:01:0 11:11:11:1 01 000 1	(2**5*C(SA) -MEAN	15) TO	AC */	0	01000	00000000	0	c
113	1364)	וסווסנו	200	NOP (AC) 1	1010100	00000000	10	, ngr	1	c	000010	00000000	c	c
314	/* TA 156H! (0156H)	/* TAKF ARSALUTE VALUE 1564! (01564) 1011101 11 00 (170 I	(AC)	E VALUE */ T7P(AC) KRODOO INH 1 11 00 0010110 10000000	10000000	91	100	-	6	01000	00000000	c	•
316	1454!	ויוויוו	NOP	(AC)	NOP (AC) JFL (APX.ANX) :	100000000	5	000	-	c	000010	00000000	•	c
317	143H! (1163H)	1111100	CTA	(AC)	CTA(AC) FF1 :	00000000	2	000	-	•	000010	00000000	•	•
114	14241	, PX1		£ 80	AL2(T) FF0 11 00 0111000	: /* SUM=SUM+ARC(C(A(I))-MEAN) */ 11111111	UM=SUM+A	18c (C (A	((1)) -MEA		000010	00000000	•	•

•	•	c	c	c	
•	•	•	•	•	
0 001111 000000000	00000000	00000000	00100 11110110	00000000	
00111	00010 00000000	0 01011 00000000	00100	00010 00000000	
•	•	0	•	•	
-	-	• -	NTX2):	-	
980	ñ 00 û	000	110		
7	16	7	JFL (LX 01	- 5	
ILR(RB) ITCVII: noniooo ii oo olinooo nonoonon ni	SDR(R7) FF1 JFL (LXXP.CONTXX): 0150111 11 11 1200011 11111111 01	ONTXX! LMI(R9) K0000A ITCNT2: 0011001 11 00 0110100 00001000 01	1011001 11 11 1000101 0000000 01 110 1	CONTX21 0001100 11 00 0110111 00000000 01	
17CVT1 8	FFI JFL(1900011	K0000H 0110100	FF1 RRM 1900101	011/1111	
00	11	4I (R9)	11	00	ALR (AC)
==	S	3=	3=	, =	AL
0001000	9150111	0011001	10011001	CONTX 0001100	
1484! (0148H)	140H!	1 1334! (n1334)	134H! (n134H)	153H! (HF210)	1574!
319	320	321	325	323	324

PECORO		PE 454.3210	F 5	0.5	PE FT FO JUNE	KBUSS 7454710	PAGEF	SUF	PAGEF CAUS PAUSFF STRR LPCNT	STRB	LPCNT	EMIT 74543210	MULTIPL SPRE	g c
	((157H)	0001101	: =		11111111 0110100	ummu	2 7	000			000010	00000000		
325	157H! (^157H)		AL R	(AC)	ALR(AC) : /*SUM=4(SIJM) */ ngñlinl ll 00 0910111 llllill	(SIJM) */	12	060	-	c	01000	00010 0000000	•.	c
324	** 177H! (+771?)	ST. PF STD IN MEMORY CLR(R9) 1 Indign1 1) 00 0011000	510 CL .	IN (89) 00	MEMORY 1 00111000	ST. PF STD IN MEMORY */ CLR(R9) t 1001001 11 00 0011000 00000000	10	000	-	9	00010	00010 00000000	0	c
324	1474! (~1874)	0011001		(89)	KO0015 RY	LMI(R9) KONDIS RWW PAGEL J7R(FETCH) 8	J72 (FET	£	-	c	000010	00000000	0	•
33330	/* enUTI	INF OFF RE	نو هنا	REF	BE SEL	/* ONUTINF OFF REF OFF REF REF REF REF REF	EF REF	:						
334 334 334 334	***	69=514 #/ R9=5A #/ FORM STARTI	ING	ADDRE	\$5.	=574 */ =5A */ pw <7ARTING ADDRESS SA */								
į	(HUZ00)	1001101	7=	00	0010011	0000000	10		000	0	01000	טייייייייייייייייייייייייייייייייייייי	•	

341	1304!		E E	Ç e	K00010 R	0011101 11 00 0110101 0001000	7	1 011 10	-		00010	0 00010 00000000	•	
342	(HSE 16)		11 0	ű e	0010160	ACM(AC) 1 /*IP TO T */	12	برقو	-	c	01000	0 00010 0000000	•	•
343	1454!		LMTCA	Ç o	K0001F :	1011101 11 00 0010101 00011111	15	080	-	0	01000	00010 00000000	c	c
344	1554! (01554)		LMICA	00	KO001F :	0011101 11 00 0010110 00011111 01 500	7	900	-	0	01000	00010 00000000		C
r	345 165HI (0165H)	1011101	LMTCA	Ç ₀	K0000A #	9011191 11 00 0010111 00001010 01	10	984	-	•	000010	000000 00000000	•	c
•	346 - 175H! (0175H)	10101	SDR (R	6=	FF1 t /	SDR(R9) FF1 : /*R9=IP+72=54 */	10	990	-	•	000010	0 00000000 00000000 0	c	c

WAS VI	F45 2.0 C	COPRELATIO	N	CROCI	00F	XMAS VERS 2.0 CORRELATION MICROCODE			•			ERRORS= 0		PAGF 19
RECORD VI IMBED		197 5543710	13	10	1114P 6543210	KRUSS 76543210	PAGEF 19	210	PAUSEF	STAB	LPCNT 43210	EMIT 76543210	MULTIPL	SPRE
147	347 174H! (1176H)	1001000	1,0	CLP (28):	1101100	00000000	5	000	1	c	000010	00000000	o	•
44.	1964! (61964)	0001100	7:	Lwf (RB)	RAM FF1	<00011A:	10	110	-	0	000010	00000000	•	c
349	1064! (01064)	1101000	AC.	(AC)	1 /*AC=DX 0011101	4C4(AC): /*AC=DX*/ 11 00 0011101 0000000	7	000	-	c	01000	00000000	o	c
350	350 106H! (A106H)	0111001	11	(89)	1 /*R9= 0611110	AD9(R9) : /*R9=IP+5A+DX*/	7	000	-	0	00010	00000000	0	0
151	1564! (31564)	טטטונטט	32	99	LMI (84) RPW:	00000000	10	110	-	c	000010	06000000	0	c
352	1£74! (01£74)	1001000	A C	00 00	* /*AC=D	ACM(AC): /*AC=DY*/ 11 00 0011101 0000000	01	000	-	0	000010	00000000	•	•
151	107H! (6107H)	0111001	Ang 11	99	* /*R9=IP	Ane(R9): /*R9=IP+nX+72+DY*	10	000		c	00010	00000000	•	c
354	354 1674!	1674!	ALP 11	(AC)	* /*AC=D	ALP(AC): /*AC=DY*> */	5	000	-	0	01000	00010 00000000	•	•

355	355 [17.4] (9197H)	0001101	11 00	0011010	0001101 11 00 0011010 11111111	01 600	900	-	c	00000	1 0 00010 0000000	•	c
356	356 147H! (01A7H)		ALP (AC)	. /*AC= 0110110	0001101 11 00 0110110 11111111	7	, 00 i	-	•	01000	0 0000000000000000000000000000000000000		c
357	1464!		ALP(AC)	1 /*AC=0 0011000	ALP(AC): /*AC=DY*16 */ 0001101 11 00 0011000 11111111	7	000	-	0	01000	000000000	•	•
354	1864!	0111001	Ans (89)	1 /*P9=I	354 1864! APP(R9): /*P9=I9+72+Dx+DY*17 */	17 ./	000	-	0	000010	0 00010 00000000		c
359		JRM STORA	GE ADDRE CLR(AC) 11 00	SS STA LCNT1 M1 0011001	/* FORM STORAGE ADDRESS STA */ 185H!	10		-	0	00100	0 00100 11110116		c
	10501		CALL	. 200 (1000)									

SANX	XMAS VERS 2.0 COPRFLATION MICROCODE	COPRELATIO	I W NO	CAOC	ODF.							FRRORS= 0		PAGF 2
PECOSO	6.4	19F 6543210	10	10	A114P	KRUSS 76543210	PAGEF 10	73US	CAUS PAUSFF	STRB	43210	EMIT 76543210	MULTIPL SPR	ag c
	(1195H)	0011101	=	00	0101100	10001000	10	110	-	0	000010	00000000	6	•
	145H! (+145H)	1101005	1.1	(4C)	LCNT? W1	ACM(AC) LCNT> W10: 11 00 0011011 0000000	12	000	-	0	01000	111101110	۰.	c
363	1454!	0101000	SDR	11	FF1 : 0	SDR(R8) FF; ; /*R4=RP=ST4 11 11 0110100 11111111	÷ 7	000	-	0	000010	00000000	0	c
364	1444!	1901100	בר ב	£ (1) \$	01100110	1961100 11 00 01)0010 00000000	10	000	-	6	000010	00000000	•	•
365.		/* STADT LOOPS */ 147H! LMI (R9) FF1 RRM 1 (X11 LMI (R9) FF1 RRM 1 (X1170) 11 11 00111100	DPS LM1	(89)	FF1 88M	000000000	15	110		0	01000	00010 0000000	•	c
367	1024! (01024)	1, 72!	AC.	1(AC)	0110100	ACM(AC): 11 00 0110100 0000000	01	000	-	•	000010	00010 00000000	•	c
368	1044!	0011000		11	FF1 RWM 1061011	LWI (RA) FF1 RWM JFL (LX1.CX1) 8	91	į	-	•	00010	00000000	•	c
369	1434!	CX1.		(64)	K00008 I	LMT(P9) KOGOOB ITCNT2 :	12	000	-	•	01011	01011 00000000	•	•

	A WAS	0.	יייייייייייייייייייייייייייייייייייייי	1	2020		אשבא ערבא לים ניטימין פונסת אונאטנטטר הייייייייייייייייייייייייייייייייייי			•			-	ביאנואכם ח בכאוואה לד	
*	V.MAFP		4543210	10	10	94111 6545210	CPE FT FO JUMP KRUSS DAGEF CRUS PAUSFF STRA LPCNT FMIT MULTIPL SPAF 4547210 10 10 6543210 74543210 10 210 0 0 43210 74543210 0	PAGEF	SUES	PAUSEF	STRB	LPCNT 43210	FMIT 76543210	MULTIPL	SPAF
	745	(4066) (66)	1011101	170	90	K40000 :		7	000	-	c	0 00010	00000000	•	•
	£ #£	ואפרט.) ראך (אטרט.)	1011911	20N	CAC)	JFL (NRDY	NOP(AC) JFL(NRDY-RNY) : 11 00 1990011 0000000	10	000	-	c	01000	0 00010 00000000	•	c
	384	(אשבנונ) אשנ	1151151	,	(AC)	JZ9 (FETC- 01 ^ 11111	PDY! NOP(AC) J79(FETCH) PASF1 1	00	000	-	6	000010	0 0000000000000000000000000000000000000	•	•
	795	(HAFUA)	ווחווחוו	NOP 1.	(AC)	JZ9(XX2) 0101010	100 11 100 0191001 0000000	01 000	000	-	•	00010	00000000	•	c
	344	344 00041	1011011	ach.	(AC)	JCC (WAT)	101101 11 00 0000000 01 000 1 000 1 0 000000	10	000	-	0	00000	00000000	•	c

**	2 1 2 3 1		14	AND UNM UNM WAN WAN WAN WAN WAN WAN WAN WAN AND THE							
	/* P8=	/* P8=WOPKING */	/*								
V\$ 80=54	/# 45=0									0.000.000	
/erfa	/# MIS										
/* AC	SWINSKING	CAL CHI AT	F MEAN OF	/* AC=WNRKING */.							
07CH!	N.	CLR(T)	LCNT1 M10	WNV CLR(T) LCNT1 M10:		14.			Lings.	well on 980	
(H3160)	1001100	11 00	1000000	00000000	10	000	-	0	00100	01101111 00100	0
	CALCINLATE	START	STARTING ADDRESS #/	ESS */							
91CH!	1001001	CL P (P9)	0110100	CL9(P9) LCNT2 M10; 11 00 0110100 0000000	10	uau	-	·	01000	01101111 00010	•
014H!	1001100	LMI (P9)	LMI (P9) KOOO10 R24 :	KOOOLO RAM 1	7	,		•	01000		
				nontrana.					01000		
(100241)	1101000	ACM (AC)	0000000	11 00 000000 0000000	7	non	-	c	000010	00010 00000000	•
405 0044!	1001010		FF11 /	Sne (R9) FF1: /* R9=TP */	=	, and	_		01000	000000000000000000000000000000000000000	

RECORU VI JMBF P		CPF 6543210	F1 F0 10 10	JE14P	KRUSS 76543210	PAGEF		13US PAUSFF STR9 LECNT	9128	LPCNT 43210	EM17 76543210	MULTIPL SPRF	400
404	(+9E03)	1001000	CL 9 (P.8) 1	0110110	00000000	16	000	-	0	000010	0000000	o	•
407	(ווארניי)	0001100	LMT (PS)	¥	OGOGIA FFI REM:	10	110	-	c	00010	00000000000000	e .	c
404	(45600)	1101000	AC4(AC	ACH(AC): /* AC	/* AC=Dx */	7	000	-	c	000010	00000000	•	c
400	(H5CU)	1011100	11 00	LWT (AC) KPOOIF:	00011111	11	00v	-	c	00010	00000000	•	c
410	(אשבטר)	1011100	11 90	LMI(AC) KOODIF:	/* AC=DX+62 */ 00011111 01	62 */	000	-	c	000010	00000000	•	c
411	(4756")	1011101	11 00	LMT (AC) KC000A:	/* AC=DX+72 */ 00001010	72 %/ n1	000	-	e	000010	00000000	•	•
412	(10174)	1001/60	ALP (89)		7*49*AC=TP+Dy+7?	` ē	000	-	•	00010	00010 00000000	•	c
417	(+1500)	0011000	LWI (RB)	0010000	00000000	1	110	-	c	01000	00000000	•	•

•	c	•	•	c	٠
•	•	•	. •	•	•
0 00010 00000000	00010 00000000	00010 0000000	00000000 01000	00010 00000000	ñon 1 0 00010 0000000
000010	01000	01000	01000	000010	000010
	c	•	•	•	0
-	-	-	-	-	-
000	000	000	000	ů Đ v	
=	:=	7	7	5	5
ACM(AC): /* AC=37 */	409(89): /*49=IP+0x+7>+0Y */	ALP(AC): /* AC=5x*2 */ 11 00 0001010 11111111	ALP(AC): /* AC=3x*4 */ 0901101 11 00 0001011 11111111	9001101 11 00 0000101 11111111	ALR(AC): /* AC=7x*16 */
1101000	01110	0001101	0001101	1011000	
(0047H)	415 0674! (n347H)	(1904)	047H! (0047H)	097H! (0097H)	057H! (0057H)
41	415	414	417	414	419

PECOPO		10F 4543710	FT F0	0 6547210	KRUSS 10 76543210	DAGEF 0 10	210	PAUSFF	STRA	LPCNT 43210	FMIT 76543219	MULTIPL	SPOF
420	054H! (0054H)	1001110	Ano (29) :	9); /* R9= 0 0110001	/* R9=S4=TP+72+Dx+DY*17	+5x+5y*17	2000	-	c	00011	00000000	c	c
124	(41503)	0514! (c0514) 1061131	CLP(4C):	4C): 90 0110010	00000000 01	0 01	ugu	-	c	000010	00000000	•·	c
653	0524! (10524)	100011 LMT (49)	LWT (R	9) FF1 BRM	PET RRM ITCNT1 :	/*\$A=\$A+1 */	* 1.0	-	c	00111	00000000	0	c
453	(HC90C) . 624	LINXXI	4MA (AC)	C) JFL (LOO	JEL (LOOP1.50NT1):		060	-	c	00010	00000000	•	د
454	(HES61)	0011001	11	99) KOOOO9	KOOOA LTCHT? :	0 01	000	-	0	11010	00000000	•	c
453	055H! (1055H)	1001100	LMT (P	11 11 1000110	LCNT1 M10	LCNT1 M10 JFL (LOOP2.CONT2) 8	00 × CON	12) 1	0	00100	01101111	•	•
454	(H296v)	1101101	100		ITCUTI RRY JCC(LXXX):	xxx) t 0 01	110	-	•	00111	00000000	•	c
753	363H! (9663H)	1001001	CL.º (R9)	9) 1	00000000 01	0 01	000	-	•	000010	00000000		c

(3064H)	(6055H)	33	433 434 /***********************************	074H! (1174H)	1H780 6E7
011001	161161		32 SS042	001101	
11 0	NOP (A		80ss C	CLP (1	LMIC
6.00	000		2805	000	0
0110101	RWW PAGEI		S CRUSS	0001000	K00018 P
ONTION II 00 0110101 00010100 1 408 OF WEANS #/	NOP(AC) RWW PAGE1 J7R(FETCH):		/*ROUTINE CROSS CROSS CROSS CROSS CROSS */	CPOSS! CLP(AC) 4 10611101 11 00 0001000 00000000 01	LMI (AC) KODDIB RRW 1
* 40 1.	. 2		*	10	7
6	-				
WEANS	i.			060	
` -	-			-	
0	•			•	c
000010	00010			000010	01000
00000000000000	00010 00000000			000000000 01000	0000000
•	•			c	•
c	•			c	•

PECOPO		016F428	FT F0		01ct 754	KRIJSS 76543210	DAGEF 10	210	PAIJSEF.	STER	LPCNT 43210	FMIT 74543210	MULTIPL	Spage
440	(11944)	1001000	ACM (AC)	AC)	0101000	(AC) :	5	000	-	c	01000	00000000	•	0
1441	9444! (09444)	1961190	11	£ 8	CL2(T) :	00000000	16	000	-	c	01000	00000000	c	c
644	(444)	0011100	LMTC	5 = =	LWI(T) FF1 907 ;	7* 50=4X COL LL */	מאר רו	101	-	c	00000	00000000	0	c
443	(+430°)	0011100		-E=	LMT(T) FF1 30T :	7* D1=NX CDL PL	rol Pl	101	-		00010	00000000	0	•
77	נו אטנין (ני אטלא)	191101	11	AC)	t 0001110	CLP(AC) : 11 00 0^^1111^ 0^000^^00	7	000	_		01000	00000000	0	0
14	445 354H!	1011100	11	AC)	LMT (AC) KONDI9 RRW :	KOND19 RRW 1 00011111 00011001	7	110		•	01000	00000000	. •	c
444	(1064H)	ากกุ้าก1	ACM (PC)	ACM(AC) :	00000000	7	000	-	0	00010	00000000	•	c
447	(1) (1) (1) (1) (1) (1)	0011100	LMI	51	LMI(T) FF1 30T 1	/+DZENY ROW UL	ROW UL	101	-	•	00010	00000000	•	•

c .	c	•	0	
c	c	•	•	•
1 00010 0000000		1 0 00010 00000000	00000000	ñon 1 0 00010 0000000
00010	00000	000010	000010	01000
c	c	•	* 6	•
-	-	-	-	-
3.5	900	:	900	000
POW DI	7	5	5	} =
ADDITION IN THE CONTROL OF THE	/* PFAN BLACK/#HITE CONTROL WORD */ 1F5H! CLP(AC) : 11100 00000000 01 000 1 00010 00000000	0011101 11 00 0011110 00011101 01 110	4CM(4C):	0100101 11 11 0010111 1111111 01
F1 Q0T ;	1TPOL WOR	K0001D R	10111110	FF1 : /
EMT. 11	RIACK/#HITE CONTROL WORD .*/	LMT (AC)	4CM (4C)	Sna (85)
0011100	AD BL ACK/ 1001101	0011101	4001011	0100101
(095H)	/* RFAN 1F5H! (01F5H) 10	T IFCH! (AIFCH)	452 1ECH! (01ECH)	453 1EDH! (01EDH)
444	450	451	452	453

/* READ CHERENT MODE +/

RECOPU VI JMRER		6541210	FT F0		015F428	KRUSS 74543210	PAGEF 10	210	PAUSFF STRB	STR8 0	LPCNT 43210	EMIT 76543210	MULTIPL SPR	90
455	170H! (+170H)	1001100	CLP(T)	100	(T) t 00 0e11900	00000000	01	000	-	c	000010	00000000	•	•
454	1904!	0011100	LMI	E.S	LMI(T) KOJANC RRM : 11 00 0011001 000	KODATC RRM : 0011001 00011100	5	01.1	-	c	01000	0000000	e.	•
457	1904!	1101500	ACM (AC)	0011010	ACM(AC) :	10	non	-	0	000010	00000000		c
454	1494!	0110010	Sna (11 8	FF1 : 0011011	SDR(06) FF1 : /* WODE TO RK #/ 11 11 0811011 11111111 AL	P6 .1	000	-	e	000010	00000000	0	•
459	(HUETC)	FST	HLACK 09 179(85) 11 90	90	FOR BLACK OR WHITE #/ 179(85) FF7:	#HTF */ FF.: 0011100 1111111	16	000		o	01000	00000000		•
194	100H!	1011001	CI. 9 (00 00	JFL (WHIT	CL. 9 (AC) JFL (WHITE? BLACK?)	. 5	000	-		000010	00000000	•	•
462	104H! (0104H)	PHTTE21		00	07111110 00	000	LMT (AC) K00015 8	1000	-	•	00010	00000000	•	c
463	10EH! (010EH)	1111111	CMP (AC 00	CMP (AC) 1 11 00 0010101	00000000	10	000	-	c	00000	00010 00000000	•	c

464	15EH! (015EH)	1000110	ANR (R6)	0010110	1000110 11 00 0010110 11111111 91 480 1	16	990	-	•	000010	00010 00000000	•	•
465	15EH! (016EH)	1001101	CLR (AC)	1110100	1001101 11 00 0010111 0000000 01	16	non	-	c	00010	00010 00000000	•	c
464	17EH! (017EH)		LMI (AC)	K00008 8	LMI(AC) K0000A 1 0011101 11 00 0010100 00001000	5	900		0	000010	00010 00000000	•	c
194	145H! (3146H):	1100110	08¤ (P6)	00011000	088 (86): 1160110 11 00 0011000 11111111 01 606	16	000	-	0	01000	00010 00000000	٠.	•
469	469 19EH! (319EH)	0000110	11,9 (96)	1LR(R6) 1 0000110 11 00 0011001	000000000 01 000	10		0	•	01000	00010 0000000	•	c
.99	10501		· MAG (F) IN									•	

V KMAX	EKS 2.0 C	OWFLATIO	2	2022		XMAS VERS 2.0 CORMELATION MICROCODE			•			ACAN A	FRENKS= 0 DAGE 24	20
SECOOD SECOOD		FPF 6547710	F	10	AS43210 10 10 6543210	KBUSS 76547210	PAGEF 10	210	PAGEF CAUS PAUSFF STRB LECNT	STRB		EMIT 74543210	MULTIPL SPRF	90
	(11954)	0011100	Ξ	00	9011010	00000000	10	iii	-	0	01000	00000000	0	c
410	1 AFH! (., 1 AFH)		5=	E .	1101160	CI P(T) :	16	000	-	o	01000	00000000	c	•
471	(H361:)	0011100	3:	Es	K00005 RO	LMT(T) KOGONS ROT PAGET JZR (FETCH) : 0013100 11 00 0!01111 00000110 00 101	9 (FETCH	101	-	0	00010	0000000000000		•
472	109H; (196H)	PLACK?	_=	90	011110	PLACK?! ACTION 11 00 0111101 00011000 01 030	C) K000	12 1	-	0	000010	00000000000000	•	•
473	10041	1169110	11	96)		009(36) : 1160110 11 00 0111111 11111111	10	000	-	•	000010	000000000000000000000000000000000000000	0	0
474	Joen!	ขากกุกก		90	ILP(96) : 11 90 0111011 0000000	00000000	2	000	-	•	00010	00010 00000000		•
475	475 JAFH! (0 RFH)	0011190	11	E	0011100	0011190 11 00 0011100 00000000 01 111 1 0	7	=		•	00010	00010 00000000	•	0

. •	•	·
•	•	•
1001100 11 00 0111110 0000000 01 000 1 0 00010 000000	0011100 11 00 01011111 00000110 00 101 1 0 00010 000000	FFTCH! NOD(AC) JZR(FETCH) :
000010	01000	01000
•	c	c
-	-	-
000	101	000
16	00	7
00000000	r PAGE1 JZE 00000110	00000000
01111110	K00004 RD 0101111	JZR (FETC)
CLR(T)	LMI(T)	NOD (AC)
1001100		FETCH!
474 1CFH! (01CFH)	ICEH! (01CEH)	00FH!
474	477	474

479 ENF NO PROGRAM ERRORS END OF PROGRAM

ERRORS= 0 PAGE 27

XMAS VERS 2.0 COOKEL ATION WICHOCODE

WICROPROGRAM MEMORY THAGE

	*******************	*******	******		********				********					-	-
				DOC.					320						97t
.000				1 10 16 1					. 0079H						. 000FH
				. 405					346						479
				-					-						
				2007			200	1 2	295			25	300	326	300
			•	+ 5000			H1400		. 0020H			# 9014H	. 0020H	. 002EH	. 002FH
				107			412		301			405	124		115
				-			-	-	-			-	-		:
				220	2	3	2		100						, ,
				+9600	. C0354	. 0025н	. 0047H	Hat 00 =	. 0039H				HU900	. 00 3FH	HALUU .
				404	419	404	413		382					125	711
			•	-	-	-	-	"	-						
				2	2	2	2		1	170			2	2	
				- AF 00 .	HILL .	. 0326H	00174	Ha500 =	. 90344	. HOUUU .	. 000F-1		1010H	HUE .00 .	. 004FH
100		• •	• •	, ,											
				-	-		;- 	-		ţ-	-		<u>.</u> -	<u>.</u> -	È
		JEL .					101	101					,,,		
		45500 a					. 0067H	HO500 =	•				HU506 .		HASOO .
+ 900		4													
						•	414	7 7 -					135		- 1.
								- 1					- !		- !
	our .	יוכנ	001	100	F.		CR	24					200	ad.	200
#566		1796. 4	. בכרוווו פ	ו לורטף	12400		H9560	10000 1					. 0040H	. 0070H	. 004FW
	169 .	c2+ +	. 767 .	623	425		619	# 24R					133	. 56	120
				-	-		-	-					-		-
		* 33/ *	، کری ه	305	170		201	י בר					20	700	5
		H2700 0	* 00564	10454	1 000E4		. 09874	- 10404					. DIENH	. 001EH	. 004FH
		424	427	667	430		416						**	. 133	
		-	-	-				-					-		<u>-</u>
112	976	173	200	100	179	200	100	1 2 1	700	200	325	200	2	205	170
. 90 154	. 3005	H 9000 4	HER64 4	- DAROO .	HJUOU .	. n074H	H2600 .	- 101aH	. 9019H	. 00844	H 1000	+0100 ·	. 01 30H	. 307FH	. 000F
	65	. 09	275 "	434		70	170	200	380	**		400	360		
•															

4	
_	
-Saua	
۶	
46.	
:	
:	
•	
:	
:	
:	
:	
:	
:	
:	
:	
:	
ĕ	
ROCOD	
č	
7	
Z	
=	
4	
PF	
C	
0	
:	
XMAS VERS 2.0 CORRE	
8	
>	
AS	
×	

	10	=	H.	34	4	T S	T.	12	9	16	I	I	J	E	ī	Z
• •				JCR .	200	. 0995H	JCC . noF6H	JCC .	Э-00-		.JCR .	• •		DOODH) NC
				. 777	614	. 278	. 288	416	- 2rl		۶۰.	• • •		136		8.
	:				- 25	700	- 1 22	2	- 12	100	•		:			
. 1600				••	90A44	. 00A5H	. 0086н	H6600	- NOABH	. H6400	••	• •		. 90FDH		. H3000
				••	440	979		E		177	•••	• • •		137		6-
	330				100 DOG 1	300	30° 00	JCC	00 ANH	30°	• •	* * •				DOME H
	25				441	280		1,		13	• • •	• • •				8 -
٠٠٠;	3000				2200	10C)OC .	ODC SH	1000e	• • •					00.51
	255				442			418	2i1	174		• • •				8-
	30° 00				JCC 000044	. JCC .	. 00A6H	# H9200	- 2	+ H6000	• •	•				100 HCC
	\$ -				£43 		285	284		175	• • •	•••				100
	300 00E0H				JCC 90E44	100 HZ		00.7H	90EPH	. JCC 9069H	• • •					POFFE
	23				***	 	• • •	283	243	176	• • •	•••				Ξ- -
3	00 P				200	91054	OOESH		OPPOH Hado) JC 00 00 00 00 00 00 00 00 00 00 00 00 00		• • •		OF THE		NCC .
	259				* * · ·	797	295		2ña	178	••	•		¥-		- 195
	975 000FH				JC2	. 0095H	JC9	0107H	Plean	9109H	•••	•••				PIOFH
	520				445	447	289	£-	204 -	179	••			136		£

MICROPROGRAM WEMORY THASE

• •	•••			JF1 .				117.4.91	ā -	10. 10.		11 124 . 91		14.4.0	
* *	* * * *			• • •	• • •	• • • •	• • • •	91516	216	. 30F	215) JCC 4	1.0	11914	*
						JCC 01524	305	JC9 01414	בל -	JC9 01504	401	ol ABA	415		
						4 JCP		, oltth	222	47210 e	۲. ۲. ۲	* 1162H	317		•
	• • • •	3)CC +	222	. JCC *	232	9 91524		. 163		337 .		2000	950	. JCC .	•
. 115H	208	35.10	266	JCP	300	100	745	JJC .	- 36-	201 C	344	331.0	745	10.	
ЭЭС .	30%)106H	293	136 In	101	137H	343			22610	315	JFL .	916	11864	
JCC =		9116	262	JCP	225	HCF 10	30.	JCC 1974	200	JCC 10.	45¢	JCC 10	. 254	JC JC HTRIO	
Hello =	207 1	JOC I	2.A	John 1	7.1							oleon	310	•	
. JCC	180	12CC	 E.	JUC .	182	37,10	 	159H	** - · ·) JCC	184	1179H	187	19 JCC	
	• • • •			JCC •	143	JCR 013CH	441			JCC 014H	148				•
				JCR 012CH	146					JCP 015CH	150				
				JFL 91544	147	JFL 01244	145			91454	<u> </u>	1771	152	19 CH	•
		1204	140	JCB 0124H	3_	135.10	ž -					:		OLANOH OLAN	
				: : :		:		JCC OLOFT	467	300	***	JCC .	465	91454	
. OIIFH		JCC.	501	DI SEH		716.		DI TE		PIAFF	100	17710	=	PIRE	

XMAS VERS 2.0 CORPFLATION MICROCODE

MICROPROGRAM MEMORY IMAGE

							1. 4. 4.			• •. •	1. 4. 4					
£	9197	Ξ-	200	=	DOI:	<u>=</u>	25.5	ř.	91.00 10.00	\$- 	01960	\$- 				
-	36 TO	464	OJAEH.	094	JCC 01 REH	470	J70	£*	000 H	1,)) () ()	64.				
Ę	JCC 0199H	456 1	JCC 01 ADH	+57	JCC 019DH	458	500	460	OLDAH	<u>\$</u> -	JCP 010FH	*73 1	1,100 1,704	. 53	DO ADH	135
£	JCC 9190H	45.	JCC 91 ACH	155	OIACH.	156	200	157	1000	138	JCR 0109H	150	153	5:	JCC .	<u>-</u>
ī	• • •	• • •	•••	• • •				• • •	• •	• • • •	OLDON.	472	•••	••		
3	• • •	• • •	•••	• • • •			••	•		• • •	JCR 010EH	462		•••		•••
ı	JCC 0	00-	1,000	<u>6</u>	1894	192 -	100 H	193	JCC •	<u>3</u> -	220		200	191	JCR 1	100
ē		• • •		• • •	UPC 012AH	240		•••	• •	•••	Line Olent	8-	170 000FTF	£-	1009 Marie 00	<u>6</u> -
ī	JZR = 0000FH =	324 =	" " " ' ' '		JCP = 0146H =	356 = 1	JCC	355 =	JCC = 10187H =) 107H		250	352 =	••••	• • •
3	JCR .	354	1, 100 1,	313	JCC 9186H	357	100 P	348	3CC 0106H	349	JCC ,	350	JCR 1	351		• • •
Ŧ	. 331 0105H	160	. ICC .	195	JCC .	767	JCR 0184H	763 1		•••		•••		•••	91.04 	450
I 4	. F3000	£		•••	; · ·	•	JCR .	364	JFL 01824	368		•••		•••		•••
¥	•••	• • •		• • •		•••	JCR .	369	17R •	371		• • •		• • •		•••
24	JZR •	221 :	JCR •	312 •	••	13	JCC 01C2H	366	DICAH .	367 *	•••	•••		100	•	•••
11	JCR •	219		•••		•••	15 HZ 31	370		• • •		• • • •		•••		•••
16	JCC .	310	JC8 .	31.		•••		• • •	• •	•••				• • •		• • •
											• • •				3	

CROSS REFERENCE DIRECTORY

REFERENCES

ANX
AAPX
CONTIN

(LISTING #3)

35525355	eekeeek	54452	224444 2	\$55:5555	5	*	9	5
75	**	24 2	35	55	55	35	55	25
4.5	>>	25 62	3 35	\$9	35	55	35	35
45	33	35 2 2	* **	33	33	>>	**	35
**	**	35 43 3	* **	33	33	55	35	55
+5	33	55 4 4	צננננ נ	22:5	**	>5	33	>>
4.5	>>	355 5	÷ 55	55	>>	**	55	35
433	335	3 3	2 45	33 35	>>	>>	55	>>
4.5	55	\$ 44335	Eltectet	22255	**	33	55	25

\$LISTFILE=> \$415 \$415 \$415 \$6415 \$130 \$640586F \$14466 \$41014=130 \$711LE=!\$0000ELATION MICROCONF \$115PLAY(4L1) \$115PLAY(4L1) \$115PLAY(6L1) \$115			Polntel	
LATION MICROCODF LFFT=1 F)AMG=0 ICROCODF CROSSRFF=1 LISTFILF=2			LINFS=60	MICROMEMORY=512
PEFLATION MICROCOUF LI Fyre=0 N MICROCONF CROSSRFF=1 LISTFILF=2			TMAGE=1	_
PEFLATION MICROCONF LI LEFT=1 N MICROCONF CROSSRFF=1			F 7245=0	LISTFILF=2
\$LIGTFILF=2 \$AITS \$CANSSPF \$TYAGE \$AINTH=132 \$TITLE="CORDE \$TTLE="CORDE AIGHT=7? TITLE="CORDELATION M	\$LIGTFILF=2 \$AITS \$GAOSSRFF \$144GF	\$410TH=132 \$TITLE=*CORDELATION MICROCONE \$11CPLAY(ALI)	12 [cfT=]	COURFLATION MICROCORF

465 2	900									
FRRORS= 0 PAGE 3	MULTIPL									
FRRO	EMIT 76543710									
	LPCNT 43210								,	
	STPB 0									
	PAUSFF		H20=20							
	210		4 4000							
	PAGEF	•	0001=01						T	
	CRE FT FO JIMP KRUSS PAGEF SAUS PAUSFF STRB LPCNT EMIT MULTIPL SPAN SEATOTO 10 10 10 10 10 10 0		MICROPS (K00000=00H K00001=01H K00002=02H	K00001=03H K00004=04H	K00005=05H K00006=064	K00008=084	K000000	MD0=00000	K00000=00H K0000F=0EH	H01=01000)
onf.	ANIND 6543210		CROPS (K00)	HE0=1000	MS0=5000	. HZU=ZCOO	H60=6000	H80=6000	HQ0=U000	1000E=06H
CROC	13	17.6	Σ	×	Š	Š	Š	¥	S S	ě V
Z	1 6	-								
COMPELATIO	4543710	0-11210	2						,	*
XMAS VERS 2.0 CORPELATION MICROCODE	DECOON WINNES	- C		•	ır	•		ď	•	ĵų

```
11 12 13
                                      K00011=114 <00017=174
                                      K00017=13H <00014=14H
                                      K00015=15H <00016=164
14
15
16
17
18
19
20
21
22
23
24
25
27
28
                                      K00017=17H <00019=19H
                                      K00019=19H <0001A=1AH

K00019=19H <0001C=1CH

K0001D=13H <0001F=1EH

K0001F=1FH <01FFF=3FH

KH0000=80H <7FFFF=7FH
                                      KFFFFF=3770 KFFFFA=0FAH) $
     KAUSS
                    Kq1151
     PAGFF
                                     H=2 DFFAILT=10A
MICROPS (PAGE1=00B PAGE2=01B
                     FIFLO LENGTH=2
                                      PAGE 3=108 PAGE4=119) #
     C4115
                  FIFLD LENGTH=3
                                                        DFF AULT=0
                    MICROPS (NRO=000R
                                              INH=0015
                                                            PMW=0108
                                                                             CM3=011A
29
30
31
32
                                              90T=101A
                               PTM=1004
                                                             PRM=110A
                                                                             1 (A111=P. 0
     PAUSEF
                                      FIELD LENGTH=1
                                                                  DEFAULT=1
                                      MICROPS (PAUSE=0) :
3345
367
378
378
378
447
446
446
446
446
446
446
446
446
     STUR
                     FIELD LENGTH=1
                                                            DFFAULT=0
                                     MICROPS (STROSF=18) 1'
     LPCNT
                     FIELD LENGTH=5
                                                            OFFAULT=00010A
                                     MICRUPS (CO=00010R LCNT1=00100P LCNT2=01000P LCNT3=011003 LCNT4=10070R ITCNT1=00111R
                                      ITCNT == 010118 ITCMT 3= 011118 ITCNT4=100118):
     EMIT
                     FIFLD LENGTHER
                                                            OFFAULT=0
                                      MICROPS ( MI=OFFH MZ=OFFH M3=OFOH M4=OFCH
                                      M5=0FRH M6=0FAH M7=0F9H M8=0FRH M9=0F7H M10=0F6H
                                      M11=0F5H M12=0F4H M13=0F3H M14=0F7H M15=0F1H
M16=0F0H M17=0FFH M18=0FEH) $
     MULTIPLY FIFLD LENGTH=1
                                                            DEFAULT=0
48
                                     MICROPS (MULT=1R) &
49
50
51
52
     SPOF
                     FIELD LENGTH=1
                                                            DFFAULT=0
                                     HICROPS (SPARE=01H) :
53
```

XMAS V	FBC 2.0 (COPREL ATT	N WICE	9000	JE	XMAS VERS 2.0 CORRELATION MICROCODE						FRRO	FRRORS= 0 P	PAGE 3
RECORD VIJMBER		rPF FT 654710 10	10 1	0.0	FO JUNP 10 6543210	KRUSS 76543210	PAGEF 10	CAUS 210	PAGEF CAUS PAUSFF STRB LPCNT	STRB	LPCNT 43210	EMIT 76543210	MULTIPL SPRF	SPRI
55														
7. 8.0	/* COB 0	/* COR COR COR COR COR */	OR COR	COR	;									
4 5	1. TENDLATE		HING AL	GOR	MATCHING ALGORITHIN #/									
5	1-=004/	/*PA=157 P7=AT												
2.5	10-=26	CO=50 57[-=20												
24	T=SIN	M D = AC												
6.5	ST-WOOKING	PKTNC												
2,4	AC=WORKING PO=WORKING	SKING */												
69														
69	/* LOAD	/* LOAD ADDOFSS POINTERS #/	POINTER	4 SE	,									
5	(1)7FH)	1001	2:	- 0	0001000	00 00011000 00000000	10	00ر	21 9 G	•	01000	00000000	•	•
17	0954!		LMTCT	2	01000	1 6613								
	(+3800)	0011100	=	=	1001000	11 11 0001001 00010000	0	110		0	000010	00000000	•	c
22	-			0	AC4 (AC) 8	160					91000			
	(Habby)	1101065		2	0161600	00000000	01	000		•	01000	00000000 01000	•	•
2	94FH!	0100010		25	PF11 /* :	Sne(R2) FF1: /* 42=TP */	92	000	-	•	00010	00000000	•	•

	•	c	•	•	•
	•	•	•		•
00000000	00010 00000000	00010 0000000	000000000000000000000000000000000000000	00010 0000000	Sne(R6) FF1: /*R4=CP */
01000	000010	00000	90010	00010	00010
•	0	•	•	0	c
-	-	-	-	-	-
110	000	000	110	000	060
2	9	2	2	. 61	2
0011100 11 11 0001100 00000000 10 110 1	0001011 11 00 0001101 0000000 10	SOR(RS) FF1: /* RS=RP */	OT1100 11 11 0111100 00000000 10	00000000	11111111
0001100	0001101	FF11 /*	FF1 28ME 0111100	9061011 11 00 0701111 00000000	FF1; /*9
LMT(T) R	ACW (AC) 11 00	Sna (R5) 11 11	UMI (1)	AC4 (AC)	Sne (86)
0011100	1101000		•	1101000	0100110
09FH! (C09EH)	75 OCFH! (09CFH)	(990EH)	0EEH! (10FFH)	78 0ECH! (00FCH)	79. OFCH!
2	7.	٤	=	47	5

SECOPU VIJMBED		4547210	FT F0	654710 10 10 6547210	KRUSC 76543210	PAGEF 10	210 210	PAUSFF	0	LPCNT 43210	EMIT 76543210	MULTIPL SPRE	SP c
6.6	ODCH!	č	COUNTE ILP (92	LOOP COMMTERS AND LOAD PEGISTERS */ ILP (92) LCNT1 M10: /* AC=IP. */ 3010 11 00 0010101 00000000 10) PFGISTERS 01 /* AC=1P	>>°	000	-	•	00100	111101110	•	•
ζ.	15CH!	15C4! (015C4) 0160131		519(97) FF! LCNT2 MINt /* R7=AI=IP */	FF1 LCNT2 MIR: /* R	7=AI=IP	200	-	•	01000	111101110		•
2. 3.	/* TNITALI7 16CH! (916CH) 100	CON 1	CONSTANTS #/ CLP(T)	STANTS */ CLP(T) LCNT3 M101 11 00 0910111 00000000	00000000	2	900	-	0	01100	111101110	•	c
۴.	17CH!	9011100	11 11	LM(T) KOONIF FFI LCNT4 MID:	1 LCNT4 M10		000	-	c	10000	111101110	0	c
4	1ach! (elach)	0011100	Lwr (T)	LMT(T) FF1 32M:	00000000	. 01	110	-		000010	00000000	•	c
4	19CH1 (019CH)	11011000	11 00	ACW(AC) #	00000000	01	000	-	•	000010	00000000	•	•
ď	100H; (*100H)	910000	Sna (R0 11 11	SDR(R0) FF1: /* R0=-153 */	80=-153 *, 11111111	. 0	000	-	•	000010	00000000	•	•
6	10cH (110CH)	0011100	LM1 (T)	LMI(T) RRM: 11 00 0011111	00000000	9	110		•	000010	00000000	•	•

	•			•
0 00010 00000000	0 00010 00000000	0 00010 00000000	000000000000000000000000000000000000000	00000000
000010	00010	01000	0000	000010
	•	•	c	•
-	-	-	-	-
000		10 v 00	10 Ann	000
0	R2=-145	2	2	9
ACM(AC): 0001011 11 00 0011110 00000000 10 660 1	SDR(92) FF1 JZR(LOOD)1 /* R2=-145 */	POTNT FOR NEW CORRELATION VALUE */ LOOP! CLP(T) ; /* SUM=0 */ 1001100 11 00 0111101 00000000	100PP! ILR(RS); /* RP TO AC */	SDR(RR) FF1 : /* RA=RP */
ACM(AC):	Sna (92)	CLP(T)	ILR(RS)	SOR (RR)
1101900	0100010		1,00001	0101010
1FCH! (31FCH)	JFCH! (0)ECH)	7* ENTRY 005H! (000FH)	(HQ00U)	95 030H!
6	16	3.6	*	٩.

WAS V	KMAS VERS 2.0 CORRELATION MICROCODE	DRREL ATIO	N S	CROC	one							FRROF	FRRORS= 0 P.	PAGE S
RECORD VIJMBER		CPE 654.1210	10	FT F0 10 10	MIMP 6543210	KBUSS 76543210	PAGEF 10	23US	PAGEF FRUS PAUSFF STRB	STRB	LPCNT 43210	EMIT 76543210	MULTTPL SPRF	SPRF
*	(HAFOr)	1 PINR! LMI (R7)	וו	(87)	FFT RRMS	00000000	01	110	-	0	00000	00000000	c	•
76	044H!	PINES	1 AC	M (AC	001110	PINR2! ACM(AC)	AC */	. 000	1	c	000010	000000000 01000	0	•
8	(00404)	0011000		11	LMI(RR) FF1 RRW ITCNT1: 11 11 0000011 000000	1TCNT1 :	6	110	-	c	00111	00000000	•	c
8	(40500)	0111110	ATA	Ee	MULT KOIF	AIA(T) MULT KOIFFF JFL(LPINR,CONON);	INR.CONC	#/ # LNO	T=T+(I- 1	0	000010	00000000	-	c
100	HBEUD)	NON! LMI	11	900	08 ITCNT?	NON! LMI(R7) K00008 TICNT2:	e.	900	,	0	11010	01011 00000000	0	c
101	(1) 3FH!	1110100	121	11	FF1 PRM 1000100	LMI(R7) FF1 RRM LCNT1 M10 JFL(LPINA2.GOON):	JFL (LP)	110	ON) #	c	00100	00100 11110110	•	•
102	048H! (^)48H)	9001100		E.	00111100	11 00 0111100 00000000	10 590	000	-	•	00010	00000000	•	c
103	103 04CH!	0110100		(86)	FF1 RWM	LMI (R6) FF1 RWM LCNT? W10 JFL (LOPOP, GOONZ) 8	JFL (LOF	111	N2) 1	•	01000	010000 11110110	•	0

	c	c	c	c	•
•	•	•		•	•
00000000	000000 0000000	00000000 1 0 10011 00000000	01100 11110110	00010 0000000	00010 00000000
01000	01000	10011	01100	01000	000010
•	•	.c	•	0	•
-	-	-	-	-	-
000	10 500	990	000	000	000
10		. 2	FND) :	9-	00
1000P: ILR(RO): 0000000 11 00 0111001 0000000 10 000 1 0 00010 000000	ALP(R7) J7R(L00P): 00ñ0111 11 00 0101119 11111111	000000000	ALR(R7) LCNT3 M10 JFL (GOLP.FND):	GOLP! CLR(R1) JZR(LOOPP); 000001 11 00 0101101 00000000 10 000	END! NOP (AC) PAGE1 JZR(FETCH)!
1001110	J7R(L00P	GOONZ! II.9(RZ) ITCYT41 0000010 11 00 0111111	LCNT3 M1 1000111	JZR (L00P	PAGEL JZ 0101111
ILR (R0)	ALP (R7)	11.9 (82)	ALR(R7)	CLR(R1)	NOP (AC)
0000000		G00021		_	1161161
(005AH)	059H! (0059H)	5 059н!	05FH! (n05FH)	07AH! (907AH)	078H! (0078H)
104	105	106	107	109	109

RECORD NUMBER		6543210	10	10	6543210 10 10 6543210	KRUSS 76543210	PAGEF 10	210	10 210 0 0 43210	STRB	LPCNT 43210	EMIT 76543210	MULTIPL SPR	g o
61111														
11111	/#HTCROCODE		OCATE	COR	TO LOCATE CORRELATION 4IN+/	/*N1x								
6.1	/* 1=1c */													
120	* XDM=14 */	/* ×						•						
121	14 PS= JM-3	-3 4/												
122	/* DA=COR+K	18+K #/												
123	/* E-1=10 #/	14 6												
120	/# F-C=kg #/	/ 4 7												
125	074H!	MIN		(98)	PAGES	MINS								
	(H920U)	1000110		00	11 00 0010111 0000000	00000000	01	000	1	0	00100	00100 11110110	•	c
121	1764!		2	(86)	K00012 R	SW LCNT? WI								
	(+174H)	0110100	=	00	0001000	10110 11 00 0001000 00010010 1	0	110	-	•	01000	01000 11110110	•	•
129	(10964)	0001011	ACM (AC) 8	ACM(AC) #	00000000	92	000	-	۰	000010	00000000	•	•
129	14960	010010	SDR	69	FF11	SDR(R6) FF11 . SDR(R6) FF11 . 10	9		-	•	0000	00010 0000000	•	•

•	•	c	c	e	
0		0			
•	•	•	•	•	
00000000	1 0 00010 00000000	0 00010 0000000	0 00000000 00000000	0 00010 00000000	
000010	01000	01000	01000	01000	
6	•	•	•	•	
-	-	-	-	-	
000	900	900	990	000	
9	2	.0	10	10	
/* INITALIZE REGISTERS */ OCKH! CLR(AC) : 0000101 0000000 10 000 1 3 00010 00000000	000 01 00100000	AC */ 00000000	SDR(R0) FF1;/*IM-5 TO PO */ 0150000 11 11 0911101 11111111 10	508(R5) FF11/4JM-5 TO R5 4/ 0100101 11 11 0011100 11111111 10	SAR(R7) FF11/* 1-5 TO R7 */
1011000	LMI(AC) K000041	0001111	FF18/#14	FF11/4JM	FF11/* I
TFRS */	LMI (AC)	11 00	Sng (R0)	SDR (R5)	SNR (R7)
LIZE REGIS CLR(AC) 1001101	•	00544! CMR(AC) 1/4 -5 TO AC */		0100101	
7* INITAL 0C64! (00C64)	0 (149000)	0E6H! (07E6H)	134 0F6H! (00F6H)	135 105H! (0106H)	136 1С6н!
130	132	133	134	135	136

ALIMBER (91C6H) 01 137 166H) 01 134 105H; 01	6547210 10 10												
(9106H)		10	50	JIJWP 6543710	KRUSS 76543210	PAGEF 10	210	PAUSEF STRB LPCNT 0 0 43210	STRB	LPCNT 43210	EMIT 76543210	MULTIPL SPAF	SPA
1664! (91664)	0100111		11 11	11111111 0110100		0.	000		c	000010	00000000	•	•
10541	0101000	Sye	11	Sne(R8) FF1:/*J-5 TO R8 #/	TO 84 */	91	000	-	•	00010	00010 0000000	•	•
	0110110	LMT	96	10010110 11 00 0010001	00000000	. 61	110	1	•	00010	00000000	•	c
139 116H! (1116H) 00	9001011 11 90	ACM C	90	0010010	00000000	91	000,	-	•	00010	00000000	•	0
140 1244! (91244) 91	SDR(R9)	SDP (I	13	FF11/* C(C	SDR(R9) FF11/* C(COR) TO 49*/ 11 11 0010011 11111111 10	.02	000	-	•	00010	00000000	•	c
141 134H! (APFIA)	1,00010	SDR	11	FF1: /*C(C	SDR(R2) FF1: /*C(COR) TO R2*/	10	900	-	•	00010	00000000	. •	•
142 1444! (A144H) 19	10000	נר	200	CLP(P1) 8 101001 11 00 0001010 00000000	00000000	9	000	-	•	00010	00000000	•	•
141 045H! (10146H) 001	LMT (R1	11	9008	MI(R1) K0000A:	00010000	2	000	ñ00 1		01000	0 00010 00000000		•

. •	c	c	c	•	
•	•	•		•	
00010 0000000	00010 00000000	0 00010 00000000	0 00010 00000000	00010 00000000	
00010	00010	01000	01000	00010	
•	•	•	•	•	
-	-	-	-	-	
000	ņoņ	110	000	000	
2	2	2	10	2	
/* REGIN COMPUTATION LOOP*/ 016H! LOOP2! LM(R8) FF1: /* J=J+1 */ (016H) 0011000 11 11 0000010 0000000	LOOP1! LMI(R7) FF1: /* I=1+1 */ 0010111 11 11 0000011 0000000	000000000	/* TEST FOR MAXIMUM */ 046H! LCM(T): /*COMP OF DATA TO T */ (0046H) 1111010 11 00 0000101 00000000 10	0000010 11 00 0000110 0000000 10 000	
FF11 /*	FF1: /*	0010110 11 11 0000100	/*COMP 0	0000110	113
10N L00P LMT (RB) 11 11	LM (R7)	LMI (R6)	LCM(T):	11 00	Anorth FF11
COMPUTAT LOOP21 0011000		00101100	1111010	0000010	
/* REGIN 016H! (0016H)	146 026H! (0026H)	(19E00)	7* TEST ! 046H! (9046H)	150 056H! (0056H)	151 066HI
144	146	141	149	150	

														*
QFCORD VIMBED		6543210	101	100	FO HIMP 10 6543210	KRUSS 76543210	PAGEF 10	210	CAUS PAUSFF STRR LPCNT	STRB	LPCNT 43210	EMIT 76543210	MULTIPL SPR	90
	(19461)	9111100	=	Ξ	011010	mmin	01	000	-	•	000010	00000000	•	c
152	(n345H)	11/1101		(AC)	RRW JFL (NOP (AC) RRW JFL (MLTD+MGED):	2	110	-	•	000010	00000000	•	•
153	0124! (03124)	0124! MLTD! (93124) 0061011		(AC)	0110100	ACM(AC): 11 00 0110100 00000000	9	000	-	•	000010	00010 00000000	•	C
154	014H! (10014H)	0100010	SDR (62	FF1 TTCNT 0101001	SDR(R2) FF1 TTCNT1 J7R(NODE):	. =	000	-	•	111100	00000000	•	c
155	155 013H!	"GED!		E 00	0110110	LCM(T): 11 00 0110101 00000000	2	000	-	•	00010	00000000	•	c
15 6	015H! (1015H)	1LR(R9) (0001001 11 00	11.	1 68	/* AC=M	/* AC=MIN */ 0000010 00000000	92	000	-	•	000010	00000000	•	•
157	(00224)	0111100	11	12	0000011	ADP(T) FF1:	2	000	-	•	00010	00000000	•	•
159	0354!	1101101		OB OB	RPM JFL (NOP (AC) RPW JFL (DGTWN.DLEWN) #	. O	110	-	0	0000	00010 00000000	•	•

1011100 11 00 0110100 11111111 10 1011100 11 11 10 1000011 00000000
159 023441 CLEMNI 72P(T) FF01 160 02441 NOP(AC) RRM JFL(ZZRO.NTZZRO) I 10 00010 0000000 161 02241 NOP(AC) RRM JFL(ZZRO.NTZZRO) I 10 00010 0000000 161 02241 067441 1101101 11 00 0100001 00010 10 0000000 162241 067441 1101101 11 00 0101001 00000000 10 00011 0001011 161 02241 067441 1101100 11 00 0101001 00000000 10 00011 00000000 162 03241 2 ROI NOP(T) I 0001010 00000000 10 00010 0000000 10 00010 0000000 163 03441 1101100 11 00 0000110 00000000 10 0001 0000000 10 00010 0000000

WAS V	XMAS VERS 2.0 CORRFL	COPRELATION	IN NO	СРОСС	ATION MICROCODE							FRRO	FRORS= 0	PAGE 9
AFC03D		CPE FT F0 6543210 10 10	1.5	10	JIIMP 6543210	KRUSS 74543210	PAGEF 10	210	CAUS PAUSEF STRB	STRB	LPCNT 43210	EMIT 76543210	MULTIPL	SPRF
165 165	74 TAKE 084H! (0084H)	/* TAKE ARSALUTE VALUE */ 084H! TZR(AC) KR0000 (0084H) 1011101 11 00	C) KALU	E */	1001000	10000000	2	101	_	•	00010	00000000	•	•
167	(10944)	1161	NOP (. (T	NOP(T) JFL(POSS+NEGG):	00000000	10	600	-	•	000010	00000000	•	c
169	042H! (0042H)	P055!	NOP (AC)	90 90	POSS! NOP (AC) JCR (OVER) :	00000000	10	000	-	•	000010	00010 00000000	•	c
169	043H! (0043H)	NFGG! CMP(AC):	CMP (CMP (AC) 1	0110110	00000000	92	000	-		000010	00010 0000000	•	•
<u>1</u> 70	(0944)	0111101	INP	INP(AC) FF1:	FF1: 0110101	00000000	5	000		•	000010	00000000	.	c
171	045H! (0745H)		SDR (1 1	SDR(T) FF1: /*ARS(I-5) TO 11 11 0001011 11111111	VER! SDR(T) FF14 /*ARS(I-5) TO T */	101	000	-		000010	00000000	•	•
112	095H! (*)95H)	0001000		(88)	1LR(R8):/* J-5 TO AC */	00000000	2	900	-		000010	00000000	•	•
173	/* TAKE 005H! (1005H)	/* TAKE ABSOLUTE 005H! (1005H) 1011101		* 00 ×	VALUE #/ TZP(AC) KAONON INHS 11 00 0001110 10000000	10000100	2	100	-	•	00010	00010 00000000		•

•	•	•	•	•
00000000	00010 00000000	00000000	000000000000000000000000000000000000000	00000000
000010	000010	01000	00000	01000
•	0	•	•	o
-	4C.T*/	-	,-	-
080	(1-3) TC	900	1000	000
9	10	.0	10.	2
NOP(AC) JFL(POSS-VEGS); 1161101 11 00 1001011 00000000 10 000 10 000000	POSS! ALR(T) JCR(~V2): /* ABS(J-3).ABS(T-3) TO AC.T*/0001100 11 00 0110100 11111111 10 000 1	NEG2! CMR(AC)! 1111101 11 00 0110001 00000000 10 600 1 0 00010 00000000	ALR(T) FF14 /*ABSJ-5)+ARS(I-5) TO ACAT #/	0 21 ILR(R1)1 00001100 0000100 10 000 10 00010 000000
JFL (2052.	JCR (1,42) 1 0110100	0110001	F11 /*4B	0001100
11 00	ALP(T)	11 00	ALP(T) F	ILR(R1)
1161161	POS21 0001100	NFG2!	0001100	0000001
(00554)	092H! (1082H)	083H! (0583H)	091H! (0091H)	179 094H1
175	17.6	in	178	179

PL SPRF	•		•	c	•	e	c	•
MULTIPL	•	•	•	•	•	•	•	•
EMIT 76543210	00000000	00000000	000000000000000000000000000000000000000	00000000	00000000	00000000	00010 0000000	00000000
43210	00010	000010	000010	000010	000010	00000	000010	000010
STPB 0	•	•	0		6	•	•	•
PAUSFF STRB	-	-	-	-	-	-	-	-
73US	000	000	000	, 00¢	900	000	000	000
PAGEF C3US	0	92	2	0.	02	91	7.01	2
KBUSS 76543210	00000000		.NTGEO) 8	00000000	=v TO R1*.	00000000	14-5 TO 1-	00000000
JIINP 6543210	0001101 00000000	ALO(7) FF1 1VH4 0001100 11 11 0001110	NOP(AC) JFL (NTLTO .NTGEn):	0110000 00000000	SOP(Q1) FF1 : /* T=V TO R1*/	0000001 0000000	SAR(R0) FFj: /* IM-5 TO I-5*/	0000101 00000000
FI F0	CMP(AC):	11 11	11 00	11 00	508 (91) 11 11	11 00 II	SnR (R0)	1LP (RA) 1
656.3210	1611111	0011100	1101101	NTLTO! ILR(T):	010001	ILP(P7):	0160000	1LP(RA) #
	140 0C4H!	(10004H)	0F4H! (09E4H)	143 042H!	(1080H)	(00814)	0114!	021H! (9021H)
RECORD	140	181	Î A 2	191	184	195	196	187

SDR(R5) FF1 TCNT1 178(ND)E) 1 /* JM-1 */	NTGED! NOP(AC) ITCNT! JZP(NNDE): 10 500 1 0 00111 00000000 0	NYZZRO! ACM(AC): 0001011 11 00 0110111 00009000 10 ñ00 1 0 00019 0000000 0	191 0174! SDR(R9) FF1: (00101001 11 11 0000000 0 0 00010 0000000	12.00 0000010 0000010 10 000 10 000 10 000000	191 027H! SAR(RO) FF; /*I4-5=1-5 */
0101001 1111	TCNT1 JZ4(WOD	0110111 0000	F1: 0000001 1111	0000010 0000	FF 1 /* I4-5=1
SDR (R5) FI	11 00 II	ACM (AC) :	SDR (89) FI	ILR(R7) ;	SnR (R0)
010010			0101001	0000111	
(10051H)	(10093H)	190 017H!	(47800)	192 0174t (ATTON)	027н!
188	189	190	191	66]	191

			,										
PECORD VIJMBER		CPE FT F0	FT F(0 6547210	KAUSS 7654710	PAGEF 10	210	CAUS PAUSFF STRR LPCNT	STRA	LPCNT 43210	EMIT 74543210	MULTIPL SPRF	SP
194	047H!	1Lp(pa);	1LP (98	0 0110011	00000000	01	000	-	۰	00010	00000000	۰	•
195	(HE900)	508 (85 0150101	11 1	508(85) FF11/* JA-5=J-5 */	, */ 11111111	01	000	1	•	00010	00000000	•	•
196	195 003H!	0000000	11 00	II P (R0) : /*TM-3 TO AC */	3 TO AC #/	0	000	1	0	01000	00000000	•	•
197	197 OCFH!	1011101	11 00	778(AC) K40000 IVH:	Kanggo IVH:	6	001	-	•	00010	00010 00000000	•	c
199	10FH! (010FH)	1101101	NOD (A)	NOP (AC) JFL (POSSS-NFGGG):	55.VFGGG) 1	10	000	-	•	00010	00000000	e	·
190	1094! (0109H)	NFGGG1	11 00	NEGEGI CMP(AC):	00000000	9	000	-	•	00010	000000000000000	•	e
200	1954! (0105H)	9111101	INRCA	INR(AC) FF1: 11 11 0111010 0000000	00000000	0.	000	-	•	000010	00000000	•	•
201	1044!		Sne (T	FF1: /* 1	01'1100 11 11 0111110 11111111 10	10 1 .	000	-		00010	00000000	•	0

•	c	•	•	c	•
•	•	•		•	•
00000000	0 00010 00000000	1 0 00010 00000000	0 00010 00000000	1 0 00010 00000000	00000000
01000	000010	00010	000010	0000	0000
•		•	e	•	•
-	-	-	-	-	-
900	900	ñoı			, oo
2	2	2	2	2	2
1101100 11 00 0001111 00000000 10 400 1 0 00010 0000000	1LR (R5): /* JM-5 TO AC */	1011101 11 00 0110101 10000000 10 A01	205 0F5H! 40P(AC) JFL(POSI+NFG1) # (00F5H) 11A1101 11 00 10A1111 0000000 19 A00	"FG11 CMP(AC):	0111101 11 11 0110010 00000000 10 A00 1 0 00010 0000000
0001111	1 /* JM-5	KA0000 IV	S1 •NFG1) \$	0110100	FF1:
11 00	11 00	178 (AC)	11 90	11 00	INP (AC)
1101100		1011101	1101101	FG[]	011110
(010EH)	203 OFFH! (00FEH)	204 OFBH! 1(90FBH) 1	0F5H! (00F5H)	206 0F3H! (10F3H) 13	(00044)
202	28	204	205	204	207

######################################														
0674!	RECORD		CPE 5543210	10			PAGEF 10	79US		STRB	43210	EM1T 76543210	MULTIPL SPRF	SPR
7.4 TEST FOR 1=9 4/ 0F1H!	204	(100F2H)	00211	ALR(T) 1	7# TW=ABS	11111111	10	T. AC.	>-	•	000010	00000000	•	e
009H; NODE! NOP(AC) JFL(INE2-IFG2); (00AH; TNF2! NOP(T); (005AH; TNF2! NOP(T); (005AH; TNF2! NOP(T); (005AH; TNF2! NOP(T); (005AH; TNF2! NOP(T); (005AH; TNF2! CLP(R7) LCNT; M10; (005AH; TFG2! CLP(R7) LCNT; M10; (005AH; TFG2! CLP(R7) LCNT; M10; (005AH; TFG2! CLP(R7) K00004; (006AH; TFG2! CLP(R7) K00004; (006AH; TFG2! CMP(R7) ITCNT2; /* -5 TO R7 */ (006AH; TGMP(R7) ITCNT2; /* -5 TO R7 */ (00		/* TEST 0F1H! (00F1H)	FOR 1=9	\$/ Sna(8] 11 11	1) FF1 TTCN	JTI_JZR(NODE	110	000	-	0	11100	00000000	0	•
064H; TNF2! NOP(T); (0064H) 1101100 11 00 0000000 10 000 10 000 1 0 000000	211	_	1161161		2) JFL (INEZ	00000000	5	000	-	0	01000	00000000	•	c
02AH; (-02AH) 1101100 11 00 0110110 00000000 10 000 1 0	515	064H!	1101100				01	000	-		000010	00000000	•	•
0694! TEO2! CLP(R7) LCNT1 M10: (99584) Innn111 11 00 0110010 00000000 10 00 1 0 0 (60624) C010111 11 00 0110011 00000100 10 00 0 (60634) C010111 11 00 011100 00000000 10 00 1 0	נוג		1101100		JCP (L00P1	00000000	10	000		0	90010	00000000	•	c
067H! (0067H) (010111 11 00 0110011 00000100 10 000 1 0 0 063H! CMP(R7) ITCNT24 /* -5 TO R7 */ 000 1 0 0 0111100 00000000 10 000 1 0 0	214		10001		LCNT1 910	00000000	10	000		•	00100	01101111	•	•
CMP(R7) ITCNT2: /* -5 TO R7 */	215		1116160		7) K000048		10.	000	-	•	000010	00000000	•	•
	216	(HE 90 u)	1110111		7) ITCNT24	/* -5 TO 97 00000000	10	000	-	•	11010	00000000	•	•

. •	c	•		•
•	. •	6		•
219 05CH! NOP (AC) JFL (JNE2+JFR2): 1000600 10 0000 10 00010 00000000 0	JNE2! NOP(T) JCR(LOOP2) # 1101100 10 00000000 10 00010 00000000	00000000	221 /* WRITE RESULTS OT MACRO MEMORY */ 222 01CH! CLR(AC): (001CH) 1051101 11 00 0000010 00000000 10 000 10 00010 000000	0011101 11 00 0111011 000101111 10 000 1 0 00010 000000
000010	000010	0000	01000	000010
•	•	•	•	. •
-	-	-	-	-
0.00	000	000	000	900
2	2	2	2	2
00000000	000000000	JEG21 NOP(T): 11A1100 11 00 0111100 00000000 10 A00 1 0 00010 00000000	00000000	00010111
JFL (JNE2	CR(LOOP2)	0111100	MEMORY *	K00017:
NOP (AC)	11 00	11 00	OT MACRO	LMI (AC)
1161161	JNE2!	JE021	RESULTS 1001101	0011101
(006CH)	219 01AH! (001AH)	220 0194! (00194) 11	V* WRITE 01CH! (001CH)	223 02CH1 (002CH)
218	219	220	222	122

RECORD NUMBER		6543210 10 10	10	10	JIIND 6547210	KRUSS 76543210	PAGEF 10	210	PAUSEF STRR LPCNT	STRB	LPCNT 43210	EMIT 76543210	MULTIPL SPRF	SP c
554	929H! (٢028H)	11.R(R9	11 PWM	. 00	112(R9) RUM! /* MIN TO AC*/	00000000	10	in	1	c	000010	00000000	0	•
225	(40204)	1011001	מני נו	AC) :	CLP(AC): 11 00 0000110 0000000	00000000	0.	uGv	-	0	000010	00000000		c
226	(HUYUU) 522	1011100	11	AC)	LMT(AC) K000168	01101000	0	000	-	0	000010	00000000	•	c
757	14000H;	0100000	11.0	95)	Rwwt /**	II.P(92) RWW1 /*WAX TO AC*/ 11 00 0001110 00000000	6.	Ē	-	. 0	01000	00010 0000000	6	•
929	229 0E0H! (10FDH)	1061101	נופנ	AC):	CLR(AC):	00000000	02	000	-		01000	00000000 01000	•	•
556	(40610)	0011101	LMI	AC)	LMT(AC) K0001A 11 00 0111110	01011000	01	000	-	•	000010	00010 0000000	•	c
230	13EH! (013EH)	9000000	ILP (90	ILP(R0) RWM1	00000000	6	Ē	-	•	01000	00000000	•	•
231	1364!	1961101	200	AC) :	CL P (AC) :	00000000	10	000	-	•	01000	00010 00000000	•	c

e	c	•
•	•	•
ONILIO1 11 00 0711011 00011011 10 700 1 0 00010 0000000 0 0	1LR(R5) RWM 2AGE1 J7R(FFTCH): 00000101 000000000 0 000000000 0 000000	FETCH! NOP(AC) JZP(FETCH):
00010	00010	00010
c	•	c
-	-	-
964	E	000
92	. 8	9
11011000	J7R(FF1CH)	00000000
K9001B1	RWM 24GE1	JZP (FETC- 0101111
LMI (AC)	11 00	NOP (AC)
		FETCHI
232 1ACH!	233 19CH! (019CH)	00FH!
235	233	234

VO PROGRAM ERRORS END OF PROGRAM

, 235 EOF

:	
•	
:	
:	
:	
0000	
MICA	
NOI	
FLAT	
HOO.	
0.0	
88	
S VE	
XMX	

FRRORS= 0 PAGE 14

1	70	=	24	H	14	Ŧ	Į,	ī	9	ī	H.	H	3	H	F	E
153 154										JFL 006AH				DOL 00	9000H	J78 .
153 154 154 154 1054 1057 1 1 1 1 1 1 1 1 1										2115	• • •		• • •	* 2		23.
153 155 156 156 156 145 197 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. 3021 ·	00	JCR :	620)025H	JCC - 9026H	# JCC #			JC# 0016H	901CR	JCC 003CH			
161 159 150 167 167 1067 17 166 167 167 167 167 167 167 167 16			153	155	154	156	145	192			219	220	222			
161 159 160 157 146 193		1000	# 7ZC *	45C00	16.324	JCC JCC	JC00	JCC = 0047H =			JCR 0026H	HUZ00	JCR 0023H	JOC 0040H		
152 193 154 147 191 99 96 100 95 95 95 95 95 95 95		 1 A Z	191	150	160	157	146	193			213	224	233	275		
162 199 163 154 147 191 = 99 96 100 95 103 154 109 164 109 106 106 106 105 105 109 106 106 106 106 106 106 106 106 106 106		· · ·	JC2 4	JCP 4	00644	JFL 9022H	JCC 0046H	JCC .	 ! !	JFL 003AH	JCC 004AH	JCR 003FH		DO JCB	JFL Ontah	:
10CC 3.CC 3.CC 3.CC 3.CC 3.CC 3.CC 3.CC 3			162 4	199	163	15.8	14.7	191	•	8-	9~	100		£ -	<u> </u>	
195 103 1				33C			JCC 9956H	JCR =		22r 66	46700	407 10400	JFL 0054H			
JCC				195			671	196		6-	5 N	192	5-			
150 104 106 104 106 106 106 106 106 106 106 106 106 106		170 OO					JCC 0066H			178 000FH	JCR 0059H	JCR 005FH				. 007AH
JC9 1CC JF1 JC3 00544 00624 00184 00904 005674 164 152 151 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							150			105	104	106				
216 164 152 151 = 226 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		:	, 1CR		100 PART	. 0012H	JC .			!	JCC 002AH	405 HC900	JFL 00144	32V		
178 - 178 - 178 - 108 - 108 - 109 - 1			215	710	164	152	151				212	216	218	226		
							JCC 11764				J7R 0000H	17H 0000			OOAFH	
							124				104	100			20	

XMAS VE	FRS 2.	XMAS VERS 2.0 CORPFLA	LATION M	TION MICROCODE				:						ERR	ERRORS= 0	PARE 19
4ICROPR	POGRAM	HICROPROGRAM MEMORY	IMAGE													
		Ŧ	24	¥	ī	Ŧ	19	Ŧ	2	F	¥	£	3	£	E	ŧ
	J. C.	JCR . JCC .		3ZR •)))) ()) 1960e								DOOF H	
H800	•			•			•			•	•	•				
• •	184	185	183	189	166	•	128			••	••	••			 	
	:						1.5			•	-					
	• •		••		. 00A2H	• •	, H9200			• •	••	•		DOEDH	DOAFH	
H600	•					•				•	•	•				
• •	• •		••		167	• •	- 2			••	••	•		257		
:			931	2			1.									
• •	• •		* 00ASH	. 00A4H	. 00454	H5H00	0016H	•		•	•	•			. DORFH	
DOAH	•		1,001	1,691			14.3	* '		• •	•	• •				
	• •		- 100	-			-	•		•	•				-	
:				2			1.		:	• •						
	• •	H9800	• 0084H	* 0091H	1000	9005H	• •			• •	••				. DOCEH	
H600	•						•			• •	•	• •				
• •	• •	-	2-	-			•			••	••	•			•-	
-	-			-			-			•	•			-		
	• •			OOCEH :	2000	•	100			• •	••	• •			POPLE	DOC TO THE
H200	•									•	•	•				
	• •			196	190	•	E -	• •		••	••	••			٤-	6
. :				-						• • • • •	•	•				
	• •		•••	• •	30C .	. JCC .	OPERH C	••		••	••	••	91504		DOEFH	
HUOO	•							•		•	•	•				
	• •					-	-			••	• •	•	-		e-	
:									:	• • • • •	******					
•	•				JFL .	ONBOH .	S S S S S S S S S S S S S S S S S S S			• •	••	••	200	200	DOP CH	
. H300	• •							•		•	•	•				
	•				192	. 175	133	• •		• •	••	••	ž-	828		
.:				-							•					
• •	• •	97L	. JCR .	. JCR .	JC4 .	JEL .	300 e	••		••	••	90F5H	90000		DOF BH	
HJUO	•			•				•		•	•	•				
		210	208	902	207	. 202 .	134			• •	• •	204	2 -		. 203	
			2 2 2 2 2 2 3					******						******		*******

MICAN	VICROPROSESM MEMORY	MEMORY	TWAGE													
		=	¥	34	1	Ŧ.	£	ī	16	£	1	H	ક	E	£	
						JCR	JCR . JCC . 0106H . 0116H .		 H H H		JCR 010EH	JCR •			JCC	9104
1010	•••		• • •			200	13A .		• • •		2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	199		10 to	202	
		:						 								
	• • •						139		•••			•••				
							ЭЭС 9136Н	" " " ' '								
+	•••						140		• • •			• • • •				
		•					JCC .) 		1			JCC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DI3CH	
£	•••		• • •				141		•••			• • • •	15.	220		
							JCC .		• •							
1410	•••			• • •			142		• • •			• • •				
						! !	 ! !		• • • • 				916. 916.4			
.11.		1					30C 030L 130EH			:			20 te			
		;					JCC DOBSH			•			1991		<u>.</u>	
	•						. 1.		• •				ţ-			

TICKUPRUSKAM MEMUKY IMAGE	T MEMURY	TOUR T													
10	Ŧ	3	æ	1		9	¥	2	£	¥	£	S	£	2	ŧ
									• •			200			
018H		•	•	• •	• •				•	•	•		• •		•
		• •	• •	•	•	•		٠	• •	• •	• •	96			•
		*******	*******		• • • • • • • • • • • • • • • • • • • •						-				
		•		•	•	. •			•	• •	•	200		•	•
1610		• •	• •	•	• •	• •			• •	• •	• •	. HODIO			
	•	•	•				*		•	•	•	. 16			•
		*	*						•	•	•				
						1. 4				•	•	700			
	• •	• •	• •	•	•	•		•	• •	• •	• •	· IBCH .			
חושו		• •	• •	• •	• •	• •			• •	•	• •	232 .			•
	•	•	•	•	•			•	•	•	•	-			
			*			1. •				*	•	, a2c			
•		•	•	•	•	•			•	• •	• •	. H-000			
018н		• •	• •	•	•	•		• :	• •	• •	• •		•	•	•
• •		•	•	• •	• •	• •		• •	•	•	•	-			•••
		•	•						•	•	•	Jec			
	•	•	•	• •		, H9910			•	•	•	DIDCH .			•
91СН	• •	• •	• •	•					• •	• •	• •			•	
			•		• •	-		• •	• •	•	•	· -	•		•
		*******	•			1.				-	•				
	•	•	•	• •		11CeH			•	•	•	DIECH .			
910н	•	•	•	•	•				•	•	•	•	•		
		• •	• •	•	•	SE!		•	• •	• •	• •	· ·	•		
		*	-		• • • • • • • • • • • • • • • • • • • •					•	-				
	•	•	•	•	•	. •			•	•	•	J78 .			
nien.	• •	• •	• •	•	•	•		• :	• •	• •	• •	. H3000			
	•	•		• •		• •			•	•	•				
		•	•	•	•	•	•	•	•	•	•	-			
		•						,	•	•	•	700			
	• •	• •	• •	•	•	•		•	• •	• •	• •	DIECH .			
		• •	• •	•	•	•		,	• •	•	•			•	
				•	•						•				

SA		2000 C C C C C C C C C C C C C C C C C C		188.189.210.(21
REFERENCE	158.(16) 158.(16) 158.(159) 109.233.	211. (214) 211. (214) 214. (22) 218. (22) 218. (23) 218. (23)	(94) 108 (95) 108 (95) 109 (97) 101 (120) 157 (150) (170) 175 (170) 175 (170) 189 (170) 189	187.1189 187.1189 176.1183 175.1179 175.179 175.179 175.176 198.(201
LABEL	CONON COR DISTAN PLEM FND FETCH SOLE	30002 TEG2 TNE2 JEG2 JEG2 JOOP	1,000 pp 1,0	VODE VTGEO VTZPO VVER 2051 2055 2055 2055

APPENDIX C

Pacer Emulation Microcode (Page 1)
(LISTING #4)

		*******	355	2 20	222225	,	*	77	*		8
4		**	55	*	. 33	31	35	35	44	55	88
,		35	**	222	15	15	35	**	2.2	55	33
4	150	33	55	3 55	33	**	55	**	**	**	>>
9		33	35 9	20 62	**	**	85	**	**	32	55
*		55	25 5	2 35	33335	**	35	**	23	31	>>
35		55	355	24	55	33	55	33	**	**	>>
55		335	4	55	55	45	55	>>	>>	**	33
**	44	33	\$ 55	2226	222266	>>	35	33	35	**	23

KS 2.0	FRRORS= 0 OAGE 1	
SLISTFILE=? SCROSSREF \$ATTS		
FI32		
LEFT=1 FORMS=0	IMAGE=1	LINFS=40
PACER EMULATOR MICROCODE FOR INTEL 3000.	SOURCEF II F=2	MICROMEM

PRINT=1

ERRORS= 0 PAGF 2 FMIT MULTF SPRF 76543210 0 0	
ERRORS= 0 P	
ERRORS	
765	
43210	
STRB 0	
PAUSFF 0 02=02H	
010 010	
PAGEF 10 10 10 11 11 11	
PE FT FO JUMP KRUSS PAGEF 73US PAUSF STRB 13210 10 10 6543210 76543210 10 210 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	(00014=14+ (00016=16+ (00018=18+
6543210 6543210 6543210 6643210 6003=03H 6007=07H 60009=09H 6000=00H 6000=00H	0015=15H 0015=15H 0017=17H
THE THE PROPERTY OF THE PROPER	222
ATOR 10 LEN	
# KRIJSS FIELD LFNGTH=R # KOOC	
RS 2.0	
KAB.	
AECORD NIMBER	15.4

```
KOOOIF=IFH KOIFFF=3F4
14
17
19
19
20
21
22
24
26
27
29
29
30
31
33
33
34
35
37
                                         K00019=174 <00014=144
                                         K00019=13H <0001C=1CH
                                         K00110=10H <0001E=1EH
K90000=00H <7FFFF=7FH
KFFFFF=3770 KFFFFA=0FAH) $
      KHIISS
                     KRIIS:
      /* ALL MICROCODE IS ON PAGE 1 */
PAGEF FIELD LENGTH=2
                                                                 DFFAULT=0
                                         MICRIPS (PAGE1=008 PAGE2=018
                                         PAGE 7=104 PAGE 4=11918
      Calle
                       FIFLD LENGTH=3
                                                             DFFAILT=0
                     MTCPOPS (NRO=0003
                                                  INH=0019
                                                                  PRIOTYM
                                                                                    C"3=011A
                                  RTN=1004
                                                   90T=1014
                                                                   BOILEAGO
                                                                                    Q::WE1119) $
                                NORUS OPERATION
INHIBIT CPE ARRAY
READ-MODIFY-WRITE
                     Nan
                     TVH
                     D .W
                                CPII NEEDS 3115
                     CHA
                                RECHEST INPUT
                     Q N
                     RAT
39
39
                                REDUEST READ MEMORY
REDUEST WRITE MEMORY
                     POM
                     RWM
4123445679901274
                                                                  DFFAULT=19
      PAIISFF
                       FIELD LENGTH=1
                                         MICOOPS (SPO=0):
                                                                  DFFAULT=0
                       FIFLD LENGTH=1
      STIPA
                                         MICROPS (STROBF=18) :
                                         DFFAULT=000109
MICROPS(CO=00010R LCNT1=00100P LCNT2=01000P
LCNT3=011009 LCNT4=10000R ITCMT1=00111R
ITCNT2=01011R ITCNT3=01111R ITCNT4=100118):
      LPCNT
                       FIFLD LENGTH=5
                                         H=8 DFFAULT=0
MICROPS (MI=OFFH M2=OFFH M3=OFDH M4=OFCH
      EMIT
                       FIFLO LENGTH=8
```

•	אישקט עבתט בייס דשנבת הייסבאונות אוניתטניוטב יסי וייינו טיסט												
	CPE . 6543210	10 1	0 JIMP	10	CPE FI FO JUMP KRUSS PAGEF CRUS PAUSFF STRB LPCNT 547210 10 10 6543210 74543210 10 0 10 0 0 43210	PAGEF 10	SUF	PAUSFF 0	STRB	LPCNT 43210	EMIT 76543210	MIJLTF SPOF	Sage
			MS=0FB4 M11=0F5H M16=0F0H	M5=0 M12	MS=0FR4 M6=0FA4 M7=0F94 M8=0FA4 M9=0F74 MIñ=0F64 M11=0F54 M12=0F44 M13=0F34 M14=0F74 W1q=0F14 M16=0F04 M17=0FF4 M18=0FE4);	94 48=0 =9534 M =0554) \$	FA4 MG)=0F7H M	1 <u>ñ</u> =0F64 FīH	2) 81 (1945) 81 (1945)			
MIJLTF	FIELD LENGTH=1	TH=1	1 MTCROPS (MIILT=19) \$	=13)		DEFAULT=08	193						
SPRF	FTFLO	LENGI	H=1 MICROPS	SPAR	H=1 DEFAULT=0 MICROPS(SPAZE=01H);	LT=0							
	STPING	RO . 1											
	STRING												
	STRING	82.							¥				
	STRING	. R4 . :											
	STRING	Re. :											
	STRING	. R6 . 1											
	De l'aire												
(10001)	-	INIT! CLR(A) #		10	0000000 0000000	00	000	-	c	01000	00010 0000000	•	•
10H1 (0010H)	-	CLR(X) 8		10	0000010 00000000	00	000		•	000010	00010 00000000	c	•
204!		CLR (W)	JCC (1VT	T1) 8	1000111 11 00 0000100 0000000	00	000	-	•	000010	000000000000000000000000000000000000000	•	•

	•	•	•	•	0	•
	•		•		•	•
	1 0 00010 0000000 0	0 00000 00000000 0	0 0000000000000000000000000000000000000	0 0000000000000000000000000000000000000	0 0000000 0000000 0	[4172] LMI(T):
	01000	00010	000010	00010	01000	00010
*OK	•			•		•
AOM ORI	-	-	-	-	-	-
21 4 0	-	964	980	001	190	400
1X A1	00	9	9	00	00	00
A STA LX S	00 11 00 1100111 00000000 00 FEF 1 0	INTTI! CLP(T) JCC(TV[T2); 1001100 11 00 0001001 00000000 00	SF! NOP(A) JCF(NTFOL. EOL) # 1150000 11 00 1010010 00000000	1.A! ACM(AC): 10A1011 11 00 0001009 00000000 00 +60	SDR(A) FF1 JZR(FETCH):	00000000
אמר שאא	1110011	0901001	1010010	0001000	F1 J7R(FE	0001010
LMI (AC)	11 99	CLP(T)	11 00	11 00	SDR(A) F	11 00
icit	1011100	1001100	SF!	1011011	010000	141721
11.4	(+620-)	(40500)	(40464)	(+0200)	97H!	(10000)
		5	C.	5	5	83

PAGE 4	Soaf	•	•		•	•	•	•	•
	MULTF SDRF	•		•	•	•		•	•
FRRORS= 0	EMIT 76543210	00010 0000000	00010 0000000	00010 0000000	00010 0000000	00010 0000000	00010 0000000	00010 0000000	00010 00000000
	LPCNT 43210	000010	01000	01000	000010	000010	000010	00000	000010
	STRB	•	0	•		•	•	•	•
	PAGEF CAUS PAUSEF STRR LPCNT	-	-	-	-	-	-	-	-
	53US	161	110	000	000	110	000	000	000
60	PAGEF 10	.00	00	00	00	00	. 00	00	00
INTEL 30	KBUSS 76543210	00000000	00000000	00000000	mmm	00000000	00000000	11111111	00000000
XMAS VERS 2.0 PACER EMULATOR MICROCODE FOR INTEL 3000	FT FO JIMP 10 10 6543210	1LP(W) ROT! 00A0111 11 00 0051011		0061011 11 00 0001101	SOR(S) FF14 0100100 11 11 0001110 11111111	0011100 11 00 0001111 0000000	0001011 11 00 0010000 00000000	SDR(P) FF1 JZR(FETCH): 0150011 11 11 0101111 1111111	CLRI! CLRIA) JZRIFETCH):
ATOR MIC	F1 F0	ILP(W) RO	LMIČĖ E	ACM (AC) #	SOR(S) F	LMŢ(Ť) R	11 00	SDR(P) FI	CLR(A) J
ICER EMUL	10E 6543210	0000111	100 11 11 0001100	1101000	0100100	0011100	0001011	0150011	CLR1!
4S 2.0 PA		0A0H!	(10800)	(10000)	(+0000)	(00504)	(00504)	100H! (0100H)	110H! (0110H)
XMAS VE	RECORD	\$	78	¥	6	æ	6	6	16

	•	c	•	•	•
•	•	•	•	•	•
00000000	1 0 000000000 0 0	00000000	00000000	0 000000000 0	00000000
000010	00010	000010	000010	000010	0000
6	•	•	•	•	•
-	-	-	-	-	-
900	984 00	980	i	900	900
00	.0	8	6	00	8
92 1EAM! NI! NOP(A) JZR(FFTCH); (CLEAM) 1150000 11 00 01011111 0000000 00 00 000 0	93 314! J! SDP(P) FFI JZR(FETCH) 6 (1931H) 6160011 11 11 0191111 1111111	94. 51H! SE! NOP(A) JCC(SSC): (A051H) 11AAAQ 11 9A QAA1QOI QAQQAQO 00 ABA 1 0 0001A 00000000 0 A	95 714! STA! ILR(A) RWM .179(FETCH); (CA714) 0000000 11 00 0101111 00000000 0 0	91H! SAC! NOP(A) JCF (NTFOL2+EOL7): (AA914) 11AA000 11 00 1010001 00000000 00 Å00 1	97 111H! AAA! ILR(A) FF! STC JZ3(FETCH)! 00 600 1 0 00010 00000000 0 0
JZR (FETCH 0101111	F1 J2R(F	JCC (55C) 1	WH .179 (F	JOF (NTFOL	FFI STC J
11 00 00	SDP (P) F	NOP (A)	ILR(A) 1	10 (A)	ILR(A)
110000	J! 00710	Se!	STAI	SAC!	0000000
1504!	314! (4176^)	514! (^0614)	(41707)	(HI600)	CHILLE
6	6	*	ę.	4	4

RECORD		CPE 6543210	15	10	FI FO JIMP KBUSS 10 10 6543210 74543210	KBUSS 76543210	OAGEF 10	210	PAGEF CAUS PAUSFF STRB LPCNT	STRB	43210	EMIT 76543210	MULTF SOOF	Sop
\$	(1)		11	A) F	YV: SDP(A) FF1 JZR(FETCH): 0100000 11 11 0101111 1111111	TCH) t	00	000	-	•	000010	00010 00000000	•	e
8	1514!		SDR (A	WW! SDR(A) FF1 JZR(FETCH): 0100000 11 11 0101111 11111111	111111111	00	000	-	•	000010	00010 0000000		c
100	1514! (01514)		11	A 00	NOP(A) JZR(FETCH); 11 00 0101111	N2! NOP(A) JZR(FETCH) # 11n0000 11 00 0101111 0000000	00	900	-	•	000010	00000000000000	•	c
101	(H2000)	NTEQ31	11	A	ZF (LT.NTL	NTEG3! NOP(A) JZF(LT.NTLT) # 1100000 11 00 1011001 00000000	00	900	-		01000	00010 00000000	•	c
102		0000011	ILR 11	21	F1 J7R(FE 0101111	12H; LT! ILR(P) FF1 J7R(FETCH) (00172H) 0000000	00	000	-	•	000010	00010 00000000	•	•
103	22H! (0022H)	NTEOL!	NOP	₹ 00	ZR (FETCH) 0101111	NTEOL! NOP(A) JZR(FETCH) #	00	000	-	•	01000	00010 0000000	•	·
104	104, 32H! (0032H)	0010100	LAI (S F	L! LMI(S) FF1: 0010100 11 11 0000100	00000000	00	000	-	•	00010	00010 0000000	•	c
105	42H! (0042H)		ILR (800	1LR(P) RWM! 0000011 11 00 000101	00000000	00	īn	-		000010	00010 00000000	•	•

. •	6	•		•	•
•	•	•		•	•
0 00010 00000000	00010 0000000	000000 01000	0 00010 00000000	00010 0000000	0000000
0000	00000	00000	01000	000010	90010
•	•	•	•	•	•
-	-	-	-	-	-
00¢	, , , , , , , , , , , , , , , , , , ,	, , o	ů0ů	1000	990
8	0	0	66	00 00	9
1LP(R9) JCP(CL) 1 00 0110101 0000000 00	Si 1 NOP(A) JCF (NTE 23+E03) 1	LX! ACM/AC) +	SDR(X) FF1 .12R(FETCH) 8 0150001 11 11 0101111 111111 00	NOP (A) JZF (NTGT+GT) 8 00000000 00 00	NTGT! NOP(A) JZR(FETCH) 4
JCR (CL) 1	1010000	0001000	F1 JZR(FE)	NTFOL2! 1140000 11 00 1011010	JZR (FETCH) 0101111
ILP(R9) 11 00	11 00	ACM (AC) 8	SDP (X) F	11 .00	NOP (A)
1001900	Si ! 11^0000	0001011	0150001	NTF0[2!	NTGT!
(42500)	(H2960)	(H2200)	(10824)	(H2600)	(00424)
106	101	104. 7	Îno	110	Ē

6547210 10 10 6543210 76543210 10 210 N FOL4!				KRUSS 7654321		PAGEF CAUS 10 210		PAUSEF STOR LPCNT	STRB 0	LPCNT 43210	FMIT 76543210	MULTF SORF	SPAF
NTE	11	NO N	= 38	NTF05! NOP.(A) JZF (NTGTS+ST5)!	375) \$	0 0	000		c 0	00010	00010 00000000	0 0	
NTG	121	11	30	NIGTS! NOP(A) JZQ(FETCH): 11AAAAO 11 00 01011111 0000000	00000000	00	000	-		0000	00010 00000000	•	
CAO	000	CLR (÷ 00	CAO! CLR(A); 1070000 11 00 0110010 0000000	00000000	00	600	-	•	000010	00010 00000000	•	0
0000	000	11.	A F	1LP(A) FF1 17R(FETCH): 0000000 11 il 0101111 0000000	00000000	00	000	-	•	000010	00010 00000000	۰	
Don		ALR (AC)	0001101 11 10 0110001 1111111	minini	60	000	_	•	000010	00010 00000000	•	c
Tion 1160	31	NOP (A 00	OUT3! NOP(A) JZR(FETCH); 1160000 11 00 0101111 00000000	00000000	8	900	_	•	000010	00010 0000000	•	•
NTE 1100	200	NOP	60	NTFO6! NOP(A) JZF (NTGT6+5T6)!	376) \$	00	000	-	•	00010	00010 00000000	•	

.0	•	•	c	•	•
•	•	•			•
0 00010 00000000 0	00010 00000000	0 00010 00000000 0 0	0 000000000 0 0	0 000000000 0	0 00010 00000000 0
00010	00010	000010	000010	000010	000010
	•	•	•		
1 900	-	3	ñ00 1	-	-
986	180	990	900	00 60	9
2	8	. 8	00	8	8
NTGT4! ILR(P) FF1 179(FETCH) #	NA! NOP(A) JZR(FETCH);	FA31 NOP(A) JZR(FETCH) 4	NTLT! NOP(A) JZR(FFTCH);	EOL! ILR(P) FF1 JZR(FETCH)!	REGI ILR(A) JCC(REGC):
010111	JZR (FETC 010111	JZR (FFT	010111	FF1 JZR	JCC (REG 00100
11 11	NOP (A)	11 00	NOP (A)	11 11	ILP(A)
NTGTA!	1100001	F03!	1100000	50L!	ReG1 0000000
172H! (9172H)	1624! (01524)	(HE000)	134!	(46500)	3341
120	121	. 221	123	124	125

XMAS V	XMAS VERS 2.0 PACER	ACER EMU	LATOR !	4ICROCA	DE F03	EMULATOR MICROCODE FOR INTEL 3000	00					ERRORS= 0		DAGE 7
RECORD NUMBER		CPE 6543210	101	F0 JH		KRUSS 74543210	PAGEF	210	PAUSFF	STRB	LPCNT 43210	EMIT 76543210	MULTF	Sapr 0
126	(HE 900)	SNE!	NOP (A)	NOP(A) JCC(SVEC) 8		00000000	0	000	-	•	000010	00000000	•	e
127	734! (10073H)	STX! 0000001	ILR(X)	DO 010	ZR (FET)	ILR(X) RWM JZR(FETCH) # 11 00 0101111 0000000	. 6	Ē	-	c	000010	00000000		0
129	83H! (0083H)	SNEC!	NOP (A)	NOP (A) JCF (NTEQL4+EGL4):	TEQL4.	00000000	00	000	-	•	000010	00000000	•	•
129	9341	1100000	NOP (A)	JZR(F	ETCH) :	NOP(A) JZR(FETCH): 11 00 0101111 0000000	00	000	-	•	000010	00000000	c	•
130	0A3H! (00A3H)	671	11.	1LR(P) FF1 J7R(FETCH): 11 11 0101111 0000	1111	00000000	00	000	-	•	01000	00000000	6	•
131	(HE000)	110000	NOP (A)	NOP(A) JZR(FETCH):	ETCH) :	00000000	00	000	-	•	01000	00000000	•	•
132	0E3H! (00E3H)	E951		ILR(P) FF1 JZR(FETCH):	28 (FET	00000000	00	00 U	-	•	00010	00000000	•	•
133	0F3H! (00F3H)	6751	ILR (P)	11 11 0101111 0000	78 (FET	00000000	00	000	-	•	01000	00000000	•	c

		•		•	
0 000000000 0	0 00010 0000000 0	1LP(A) FF1 STC JZ2(FFTCH): 00000000 00 ADD 1 0 00010 00000000 0 0	0 000000000 0	ACM 1 DSW(R9) JCR (BACK) # 00 00000000 0 0 0011001 11 00 0110101 111111	
0000	01000	00010	01000	01000	
•		•	•	•	
285	-	-	-	-	
24 000 24 000 240			900	999	
DCX OO	8	8	6	6	
17744; P-GC! NOP(A) JPR(CLR1 ADA CAO TCA ARS ALS LINS SSP SSN EX EP ES ICK NOME PE): (71574) 1170010 11 00 176001 0000000 00 ADD	134 1134! TCA! CMP(A): (~1134! 11000 11 00 0010010 00 MOD 1	2 (FFTCH) 1 000000000	I DE 111111 00 DEMIRS) JCR(XX) 1 PET	, immii	TCH) E
JPR (CLR1 A SSN EX 1) AAA	0010010	F1 STC JZ 0101111	JCR(XX) 1	JCR (BACK)	Endi ILA(P) FF1 J7R(FETCH)
11 00	11 00	ILP(A) 1	DSW(R9)	DSW(R9)	ILR(P)
11,00,0	1111000	0000000	A5N2!	1001100	Eaki
ואריון ארון ארון ארון ארון ארון ארון ארון אר	11349	[HESTO)	HEFT (HEFT O)	139 147H! (0147H)	140 14341
134	134	137	134	139	140

XMAS V	ERS 2.0 F	ACER EMU	LATOR	¥ 10	XMAS VERS 2.0 PACER EMULATOR MICROCOBE FOR INTEL 3000	NTEL 30	00					FPRORS	ERRORS= 0 PAGE A	AGF A
RECORD		6543210	F	100	FPE FI FO JIMP 6547210	KRUSS 76543210	PAGEF 10	210	PAGEF CAUS PAUSFF STRB LPCNT	STRB	LPCNT 43210	EMIT 76543210	MULTE SORE	Sage
	(45819)	0000011	Ξ		11 0101111	00000000	00	000	-	•	000010	00000000	•	•
141	173H! (0173H)	110000	11	80	NOP(A) JZR(FETCH): 11 00 0101111 0000000	00000000	. 00	000	-	•	01000	00000000000000	•	•
149	1E3H! (01E3H)	110000	NOP	38	N4! NOP(A) JZR(FETCH); 1160000 11 00 0101111 00000000	000000000	00	000	-	e	000010	00010 00000000		c
143	143 34H! (0034H)	1011100	1	90	11 CMT(AC) RRM: 0011101 11 00 0000100 0000000	00000000	00	110	-	•	01000	00010 00000000	•	•
144	(00444)	1101000	ACM (AC) 8	ACM(AC) 8 0061011 11 00 0090101 00000000 00	00000000	00	v v	_	•	01000	00010 00000000	•	0
145	(0054H)	1011100	LAT.	(AC)	LMT(AC) RRM JPR(LA STA LX STX A1 S1 W D AOW NP1 XOR1 ANDD C SZ SNZ GG); 00[1101 11 00 1100111 00000000 00 710 1 0	A STA LX S	TX A1 S	110	AOM OR1	xOR1	01000	00010 00000000	•	•
147	(0064H)	SGE!	NOP	₹8	NOP(A) JCC(SGEC) #	00000000	00	000	-		000010	00010 0000000	•	•
149	744!	ATI	ACM	AC) 8	AT1 .ACM(AC):	00000000	00	000	-	•	000010	00010 0000000	•	•

. •	e	•	.0	•	•
•	•		•		•
0 00010 00000000 0	000000000000000000000000000000000000000	0 00010 00000000	0 000000000 0 0	0 00010 00000000	0 04010 00000000 0
000010	00010	0000	000010	000010	01000
	•		•		•
ñ90 l	-	-	-	-	ñ00 . 1
000	,000	, io1	900	900	000
	2	8	.6	1 (24)	00
ALP(A) STC ./ZR(FETCH)!	SGEC! NOP(A) JCF(NTEUS.EQS)!	4951 TZP(A) STC K40000 INHI	DSM(R9) t DSM(R9	xx; SRA(AC) STZ FFC JFL(OUT>+AGN>);	DWN1; LMT(P9) FF1 JCR(PUSA4):
STC 17R (FE 0101111	JCF (NTEUS.	STC K40000	1 0010011	STZ FFC J	FF1 JCR(P
ALP(A) 10 00	11 00	12P(A)	DSM(R9)	SRA(AC)	LMT (P9)
0000000	SAECI	1010000	1001100		DWN1!
844! (0)944)	0F4H! (10F4H)	1144!	1244!	(1344)	1044!
140	150	151	152	isı	154

CALA	ATAS VENS COU PACE	ACEN L'AG	20.47		יי שניטיטה,	ב בייסראומא אוכייסיטיב ויסי ויייבר אמים	3					o ecuona		-
RECORD		CPE 6543210	F 2	50	CPE FT FO JUMP 6547210 10 10 6543210	KRUSS 76543210		c3US	PAGEF CRUS PAUSFF STRB LPCNT 10 210 0 0 43210	STRB	LPCNT 43210	EMIT 76543210	MULTE	MULTF SPQF
155	155 1E4H! (01F4H)	11,0000	NOP	A 00	JZR (FETCH) 0101111	NG! NOD(A) JZR(FETCH):	00	ûûû	-	•	000010	00000000000000	•	c
156	156 35H! (10035H)	111100	E I	90 P	JI LMI(AC) RRM; 0011101 11 00 0000100	00 00000000	. 00	110	-	•	01000	00000000 01000	• .	•
157	157 454! (00454)		ACM	AC) 1	0000101	ACM(AC) # 0000101 00000000	00	00 y	-	0	01000	000000000000000000000000000000000000000	•	c
154	159 55H! (9055H)	0100011	SDR (11	CL! SDR(P) FF1 JZR(FETCH): 0160611 11 11 0101111 1111111	TCH)!	00	000	-		01000	000000000000000000000000000000000000000	•	•
159	65H! (0065H)	SLE!	NOP	A 00	SLE! NOP(A) JCC(SLEC):	00000000	00	000		•	01000	00010 00000000	•	•
160	75H! (0075H)	Sī! 0001011	ACM 11	AC) 8	ST: ACM(AC) 8 0001011 11 00 0001000	00000000	00	000	-	0	000010	00000 00000000	•	•
161	161 85H! . (00A5H)	111111	CIAC	Ş	0911111 11 11 0001001	00000000	00	000	-	•	000010	000000000000000000000000000000000000000	•	•
162	162 95H! (0095H)	0000000	ALR (8 00 S	TC JZR (FE	ALR(A) STC JZR(FETCH) 8	00	000	-	0	000010	00010 00000000	•	•

. •	•	•		*)	•
•	•	•	•	•	
0 00010 00000000	00000000 01000	0 00010 00000000	00010 0000000	00010 0000000	00010 00000000
000010	00010	00000	00010	000010	00000
	•	•	•	•	•
-	-	-	-	-	-
900	400	909	900	000	in
00	8	9	8	6	00
AIS! DSM(R9): 0011001 11 00 0010010 11111111 00 A00 1	00 00000000	054(R9): 0011001 11 00 0010100 11111111 00	T3.46N3) t	SLEC! NOP(A) JCF (NTEQS+EQS) #	DWN2! ILP(R8) RWM JCR(DWN1)!
010010	0010011	0010100	84CK! ALP(A) STC JFL(OUT3,4GN3)!	1010110	RWM JCR (D
DSM(R9) 8	1LP(A) 8	DSW(R9) 1	ALP(A) S	11 00 II	ILP (R9)
AI S!	0000000	0011001	94041	SLECT	9442!
115H! (0115H)	1254!	13541	1454!	1554!	105H! (*105H)
โ๋ยา	164	165	156	167	169

XMAS V	ERS 2.0 F	PACEP EMUI	LATOR	MIC	XMAS VERS 2.0 PACER EMULATOR MICROCODE FOR INTEL 3000	TINTEL 30	00					FRRORS= 0		PAGE 10
RECORD NUMBER		CPE 6543210	1.01	50	CPE FT FO JIMP 6543210 10 6543210	KRUSS 76543210	PAGEF 10	79US	PAGEF CRUS PAUSFF STRB LPCNT	STRB		EMIT 76543210	MULTF SPAF	Sage
169	169 1E5H! (A)E5H)		11	A 00	TAP! NOP(A) JZR(FETCH):	00000000	00	000	-	•	00010	00010 00000000	•	c
17a	364!	0010100	LMI	S) F	LT! LMI(S) FF1: 0010100 11 11 0000100	00000000	60	000	-	•	01000	00000000 01000	• .	•
<u>ī</u> 71		0000011	ILR (9 00 R	46H! ILR(P) RWM: (0046H) 00ñ0011 11 00 0000101 00000000	00000000	00	į	-	•	000010	00000000000000	0	c
57.1	172 56H! (0056H)	0011001	LMT.	600	LMI(R9) RRM JCR(CLI):	00000000	0	110	-	•	000010	00000000 01000	•	•
เนี	(1996H)	PUSA!	FI	11	PISA! LMT(R9) FF1 JCC(PUSAC);	JSAC) ;	00	060	-		00010	00000000 01000	•	0
175		AD MILTIP	ACM (100	74 LOAD MILTIPLIERMLT-4T */ 764! M! ACM(T); (1076H) 0001010 11 00 0001000 00000000	**		000	-	•	00000	00010 00000000	•	•
176	176 ./* SAV 177 8641 (00864)	VE STGN B	ILB(0.58	/* SAVE STGN BIT IN C FLAG */ 8641 (00864) 0001100 11 00 0111110 00000000 00	00000000	0	000	000 1		00010	00010 00000000		•

•	•	•	c	•	•
•				•	•
00000000	0 00010 0000000	0 00010 00000000	0 00010 00000000	0 00010 00000000	0011101 11 00 0001011 00000100 00 00 00
000010	000010	00010	000010	0000	00010
•	•	•	•	. •	•
-	-	-	-	-	
000	ř91	000	000	000	900
00	8	00	8	60	
0101001 11 11 0001001 1111111 00 \$00 1 0 00010 0000000	STC: 10000000	WIPF OUT SIGN BIT */ TZR(T) K7FFFFF 1011100 11 00 0001010 01111111 00	T !! LOOP COUNTER */ CLP(AC) ! 1/61101 11 00 0110101 00000000 00	00001111 00 00	00000000
00v1001	TZR(A) KR0000 INH STC:	*/ 7FFFF 0001010	1010110	0011101 11 00 0110100	K000041 0001011
1 11	R(A) K	T (1) 8	OUNTER	T (AC)	T (AC)
20.	17	SIG TZ	29-	. 5-	3-
01010	101000	10 11100	ד וו במל הפוזפינ	001110	001110
(n)4FH)	9EH!	190 /* 191 964! (0996H)	142 /* SET 143 046H! (1046H)	0A5H!	044H! (9044H)
178	179	190	142	194	185

XMAS VI	XMAS VERS 2.0 PACER	-	LATOR	MIC	ROCODE FO	EMULATOR MICROCODE FOR INTEL 3000	00					ERRORS 0		P46F 11
RECORD		CPE 6543210	10	100	CPE FI FO JUMP 6543210 10 10 6543210	KRUSS 76543710	PAGEF 10	73US	PAGEF CAUS PAUSEF STRR LPCNT	STRB		EMIT 76543210	MULTF SORF	Sage
186	084H! (9094H)	0011111	CIAC	AC 11	0011111 11 11 0110101	00000000	00	900	-	•	000010	00000000	•	•
181	085H! (0085H)	0101000	SDR (11	FF11 0001100	SDR(R9) FF14 0161000 11 11 0001100 11111111	.0	000	-	•	00010	00010 0000000		c
189	(0055H)	CLEAR PART	PARTIAL PRODUCT CLR(AC): 11101 11 00 01	AC) 1	/* CLEAR PARTIAL PRODUCT */ 0C54! CLR(AC)! (00C5H) 1061101 11 00 0110100	00000000	00	000	-	•	00010	00010 0000000	•	0
190 191	/* FE 0C4H! (00C4H)	TCH AND 0001110	SRA (#JLT 13.4	AND TEST MULTIPLIER SRA(T) 1 11110 11 00 0110010	/* FETCH AND TEST MULTIPLIER LSR */ 0C4H! SRA(T)! (00C4H) 0001110 11 00 0110010 0000000	8	000	-	•	00010	000000000	•	6
192	(00C2H)	MLP!	LMI	113	FF1 STZ J	MLP! LMI(RR) FFI STZ JFL(MBZ.MBI):	00	000		•	000010	00010 0000000	•	•
194	/* ADD 083H! (0083H)	SECUENCI MR11 0100111	SOR (181	FF1 JCR (0	ADD SERUENCE */ M911 SDR(R7) FF1 JCR(DV1); H) 0100111 11 11 0111111 1111111		000	-	•	00010	00000000	•	
195	09FH! (009FH)	0011	ILR	A 60	F01 0111110	00/1; ILR(A) FF0; 0000000 11 00 0111110 0000000	00	900	-	•	000010	00010 0000000	•	•

	•	•		•	
•		•	•	•	
0 000000000 01000 0	0 00010 00000000	0 0 00000000 01000	00010 00000000	00010 0000000	
00010	000010	01000	00010	00000	
•		•	•	•	
-	-	-			
00 000 1	000	190	, 100	000	2000
00	0	2	. 2	8	
ALR(R7) FF0 JCR(W472); 0000111 11 00 0110010 111111111	SHIFT PIGHT FILL WITH ONES */ MYZ! SRA(AC) FFC STZ1 1) 90011111 01 01 0110001 00000000 09	SRA(T) FFZ JZF(MLP.MFX):	APPLY CORPECTION */ MFX! TZR(R9) K80000 INH JCR(XXX):	XXX! NOP(A) JFL(POS+NEG): 1100000 11 00 1001100 00000000 00 000	SECOND CAND SERVICE CAND SERVIC
1110000	MAZI SOOTIII	noglijo	MEXI 1011001	1100000	Nega
(000EH)	(H2806)	(41400)	(HE300)	(H630u)	11000 000
19,	194	199	200	202	200

XMAS	KERS 2.0	PACER EMUL	LATOR N	AT CR	OCNJE FOR	XMÁS VERS 2.0 PACER EMULATOR MICROCOJE FOR INTEL 3000	00					ERRORS= 0		PAGE 12
RECORD		CPE FI FO JUMP 6543210 10 10 6543210	1.01	00	JIJ4P 6543210	XRUSS 74543210		210	PAGEF CAUS PAUSEF STRB LPCNT 10 210 0 43210	STRB	LPCNT 43210	EMIT 74543210	MULTF SORF	Sapr
	(00CRH)	=	=	0	10000 11 00 0111101	00000000	00	000	-	•	01000	00010 00000000	•	c
204	(0000H)		ALR (A)	11 FF	01111010	0000000 11 11 0111010 11111111		000	-	•	000010	00010 00000000	•	•
205	0CAH! (00CAH)		SOR (A)	F	1 JCR (0V3	Post SDR(A) FF1 JCR(OV3) : 0100000 11 11 0111110 11111111	0	000	-	•	00010	00000000		•
506	(00CEH)	0031 ILR(T) 1 0001100 11 00	ILR(T)		0110001	00000000	8	000	-	•	000010	00010 00000000	•	•
207	0C1H! (00C1H)		SRA (AC	08	0111111	SRA(AC) FFOR 0001111 11 00 0111111 00000000	.0	900	-	•	000010	00010 00000000	•	•
208	00FH! (00CFH)		SOR (0)	7-	1 JZR (FET	SOR(0) FF1 JZR(FETCH) t 0100010 11 11 0101111 11111111		900	-	•	000010	00010 00000000	•	•
500	096H1 (0096H)	PUSACI		60	ILR(R0) RWMs	00000000	8	3,5	-	•	000010	00000000	•	•
210	210 OC6H! (00C6H)		ENT C	ê =	FF11	0011001 11 11 0001101 00000000 00 000 1	8	000	-	•	. 0000	00010 00000000	•	•

•	•	•	•	•	•
•	•	•	•	•	•
00000000	0000000	00000000	00000000	1 0 000100 00000000 0 0	0000000
00010	000010	000010	000010	000010	0000
•	•	•	0	•	•
-	-	-	-		-
Ē		ii	000	000	900
2	.8	. 6	00	00	8
211 00541 1 1 1 1 1 0 0001110 0000000 0 111 1 0 00010 000000	COILCO1 11 11 0001111 00000000 00 00 00 1 0 00010 000000	1LR(R2) RWM1 00000010 11 00 0010000 00000000 00 111 1 0 00010 000000	214 105H! LMT(R9) FFI JCC(FUSAP); (0105H) 001001 1 00000000 0 0	215 1164! LES! ILP(A) 4 00 0010010 0000000 00 000	05w(R9) JCC(22): 0000000 0 0000000 0 00010 0000000 0 0
RWM1 0001110	0001111	RWW1 0010000	FF1 JCC (F	0100100	JCC (22) 1
1(8(81)	Lwt (R9)	ILR(R?)	LM7 (89) 11 11	ILP(A) 8	05w(R9)
000000	0011001	000000	1001100	1531	10011001
(0004H)	212 0E4H1 (00E6H)	213 OFFH! (COFFH)	1054!	(1164)	214 1244!
211	212	213	214	213	215

Y WAS V	ERS 2.0 P	ACER EMU	LATOR	MI	ROCODE FO	XMAS VERS 2.0 PACER EMULATOR MICROCODE FOR INTEL 3000	00					ERRORS= 0		PAGF 13
RECORD		CPE 6543210	10	55	FPE FI FO JUMP 6543210	KRUSS 76543210	PAGEF	73US	PAGEF CAUS PAUSFF STRB	STRB	43210	EMIT 76543210	MULTF SPAF	S of
217	217 136H! (0136H)	PUSA?!	ILR (F	93	RWM # 0010100	PUSA21 ILR(R3) RWM! 0000011 11 00 0010100 00000000	8	in	-	•	000010	00000000	•	c
214	146H! (0146H)	1001100	LATE	6=	LMI(R9) FF1 JCC(PUSA1); 0011001 11 11 0010110 00000000	00000000	. 00	000	-	•	00010	00000000	•	•
219	156H! (0156H)	9001111	SRACE	00	ZZ! SRA(AC) STZ JFL(OUT, AGN); 0001111 01 00 1000101 00000000	UT . AGN) #	8	000	-	•	000010	00010 00000000	•	c
220	152H1 (0152H)	0001101	ALR (1	10	0001101 11 10 0110001 11111111	minin	00	000	-	• .	000010	00010 0000000	•	c
isi	153H! (0153H)	AGN! 0011001	DSM(F	68	AGN! DSM(R9) JCR(ZZ) (0011001 11 00 0110110	nimm	8	000	-	•	000010	00010 00000000	۰	•
525	1664! (01664)		1LR (F	648	PISA31 ILR(R4) RWH: 0000100 11 00 0010111	00000000	8	i	-	•	000010	00000000	•	•
223	176H! (0176H)		15.	£ =	0011001 11 11 0011000	00000000	0	000	-	•	00010	00000000	•	•
524	18641		ILRÍG	63	1LR(R5) RWM: 0000101 11 00 0011001	00000000	.0		fin 1	•	000010	00010 0000000	•	•

. •		c		•	•
•	•	•	•	•	•
2255 19544; LMIRO) FFIE CONTIONO 0000000 00 Å00 1 0 00010 0000000 0 0	224 145H! ILB(RS) RWM! (0146H) 00000000 00 111 1 0 00010 0000000 0 0	1 0 00000000 0 0	1 0 00010 00000000 0 0	229 024H! LMI(P9) FF1; 0110111 00000000 00 000 1 0 00010 000000	230 27H; ILR(RA) RWM! (0027H) 000111000 0111000 0000000 00 1111 1 0 00010 000000
00010	000010	000010	000010	0000	00010
•	•	•	•	•	•
-	-	-		-	-
90 ¥	Ē	, Å00	Ë	000	Ē
8	00	8	8		
00000000	00000000	227 175H! CATION 11 11 0011100 00000000 00 600	224 1C5H! ILB(R7) RWM! (91C5H) 000011 11 00 0000010 0000000 00 111	00000000	00000000
0011010	RW41 0011011	0011100	PWM: 0000010	0110111	0111000
LMT (R9)	ILE(R6)	LMT (R9)	1LP (R7)	fris 11 11	11 00
9011001	0000110	0011001	0000111	LMI (P9)	11 R (R8)
19613)	145H! (0146H)	146H! (3186H)	10641	(19201)	274! (00274)
256	528	155	224	523	230

RECORD VIJMBFR		CPE 6543210	10	F1 F0	JIJ4P 6543210	KAUSS 76547210	PAGEF	79US	PAGEF FRUS PAUSEF STRB LPCNT	STRB	LPCNT 43210	EM1T 76543210	MULTF SPRF	SPRE
23]	294! (0028H)	LMI (R9) 0011001	11	11 11	0111001	00000000	00	900	-	•	01000	00000000	•	•
232	232 29H! (0029H)	1(R(T) 0001100	N. I.	JZR (ILR(T) RWM JZR(FETCH) #	00000000	00	ín		•	000010	00000000	•	•
233	1E64! (01E64)		11	₹00	N7! NOP(A) JZR(FETCH):	00000000	00	000	-	•	00010	00000000	•	•
234	1064! (01064)		F	6 =	LMT(R9) FF1 JCR(DMN2) #	00000000	00	000	-	•	000010	00000000	•	•
235	37H! (0037H)	MSC!	NOP (€ 00 00	PR(SF S6 S RTN SKN 1100110	MSCI NOP(A) JPR(SF SG SL SNE SGE SLE PUSA PUSX POPX RTN SKY SKP SO SNO SAE LAIRUS):	SLE PU	SA PUSX LAIBUS)	# 1		00010	00000000	•	•
782	237 57H! (0057H)	1011011	LTM	€ 8	Ci II LTM(AC) JCR(CL) i	пини	000 000	000	-	•	000010	00000000	•	•
538	67H! (1067H)	PUSX!	FI	SF	PISX! LMI(S) FFI JCC(PUSXI) 8 0010100 11 11 0001000 0000	3x1) 8	8	000	-		00010	00000000	•	•
240	77H1 (9677H)	DIVINE	25	96	77H1 DI CLR(R6):	DIVINE CLR(R6):	. 00	000	•	•	00010	000000000000000000000000000000000000000	•	•

. •	•	•	•	c
•		•	•	•
CLR(AC): 10100 0010000 00000000 00 600 1 0 00010 00000000	0 000000000 0 0	0 00010 00000000	1 0 00010 0000000	00000000
01000	000010	000010	000010	000010
•	•	•	•	•
-	-	-	-	
900	900	000	000	000
0	8		00	90
00000000	007:1101 11 00 0010010 00001111 00 600	00000101 00 600	CIA(AC) FF1; coilli 11 11 0010100 0000000 00 600	SDR(RA) FF1: 0101000 11 11 0010101 11111111 00 000 1 0 00010 000000
0010100	K0000F1	LMT(AC) K000051	FF1; 0010100	FF11 0010101
(AC)	CAC	CAC	CAC	(88)
-g	£=	E	CI	SOR
1011101	0011101	0011101	0011111	0101000
0F7H!	14701C) C45	1274! (1771)	1374! (1777H)	1474! (0147H)
241	240	24.	244	245

XMAS V	XMAS VERS 2.0 PACED	ACEP EMU	LATOR	0 MIC	EMULATOR MICROCODE FOR INTEL 3000	TNTEL 30	000					ERRORS= 0		PAGF 15
RECORD VUMBER		CPE 6543210	FI	55	JIIMP 6543210	KRUSS 76543210	PAGEF	79US	PAUSFF STRB LPCNT 0 0 43210	STRB	LPCNT 43210	EMIT 76543210	MULTF SPRF	SPRE
44	157H! (9157H)	LMI(R9) RRM: 0011001 11 00 001	3=	(83)	0110	00000000	00	110	-	0	000010	00000000	•	•
247	16741	ACM(AC) 1 0001011 11 00	ACM 11	(AC) 8	0010111	00000000	00	000	-	•	000010	00000000		•
248	177H! (0177H)	0101001	11	113	SDR(R9) FF1: 61001 11 11 0011000	mmin	00	000	1	•	06010	00000000	•	•
540	187H! (0187H)	011100	SDR	SDR(T) FF11	SDR(T) FF11 0101100 11 11 0110101	mmm	00	000	-	•	000010	00000000	•	•
250	185H! (0185H)	1LP(A):	11	(A) 8	9110100	00000000	00	000	-	•	01000	00000000	•	•
25.	1944!	5	11	(82)	SDR(R2) FF11 60010 11 11 0110010 11111111	mmi	00	900	-	•	000010		•	•
25.2	7* START 182H! D (0182H) 11		XNR	COMP (R9) 1	DARE SIGN	Y WITH SI	IGN RI	, 000		•	01000	00000000	•	•
254	254 191H! (0181H)	1011001		(89)	TZR(R9) FF0 KA0000 INH:	10000000	0	iei	-		000010	00000000	•	

•	•	•	•	•
•				•
ILR(RK) JFL(SZERO-SONE):	/* DIFFERENT SIGNS */ 1924: SZEP9! ALR(R6) FF0! (1824) ngṇn110 11 00 011n001 11111111 no ṇ00 1 0 00010 0000000 0 0	ILP(R2);	ALR(R2) FF01 0950010 11 00 0011010 11111111 50 500 1 0 00010 00000000	1 LP(T) t 000011011 00000000 00 000 000 1 0 00010 000000
000010	00010	000010	00010	000010
•	•	•	•	•
-	-	-	-	-
000	900	900	000	900
00	9	00	00	8
.SONE) :	mmim	00000000	ıimmı	00000000
JFL (S7ERO 1001001	FF0 E 011 no01	0110000	0011010	0011011
11 00	SNS +/	11 00 11	11 00	11 00
0010000	STEBOL SIC	0100000	000000	0001100
140H! (1140H)	/* 01F	259 191H! 3(19041	1404!
255	25.	. 554	250	960

WAS V	ERS 2.0 P	ACER EMUI	LATOR	MIC	XMÁS VERS 2.0 PACFR EMULATOR MICROCODE FOR INTEL 3000	INTEL 30	600					ERRORS= 0		PAGE 16
RECORD		CPE FI FO 6543210 10 10	101	10	JIJ4P 6543210	KBUSS 76543210	PAGEF 10	73US	CAUS PAUSFF	STRB	LPCNT 43210	EMIT 76543210	MULTE	SORF
26.	140Hi (0190H)	0101001	SDR (R9) FF18	11	1100	mmin	. 00	000	-	•	000010	00000000	•	c
292	100H!		ALR (6	. 656	ALR(R2) JCP(3VER) #	ıinını	00	000	-	c	000010	00000000		c
264	/* SAME 193H! (9193H) (SONE!	ALR.	51	ALR(R6) FF1; 11 11 0110100 11111111	เก็บเก	00	000	-	0	00000	00000000	۰	•
592	1944!	000000	ILR(R2) 1	162	0110101	00000000	00	000	-	•	000010	00000000		•
566	1954! (01954)	0000010 11 00	ALR (6	95) 1	1110110	nnnin	00	000	-	•	000010	00000000	•	c
267	197H! (0197H)	1LR(T):	ILR (:00	0011010	00000000	00	000	-	•	000010	00000000	•	•
568	147H! (01A7H)	0101001	SDR(R9) (600	1101100	mmin	0	000	-	•	000010	00000000	•	•
569	18741	11,111,01	CMR	000	171101 11 00 0110001	00000000	8	000	-	•	000010	00010 00000000	•	•

	•	c	•	•
			•	
02	•	•	•	•
00000000	0 00010 00000000 0	00000000	00000000	0000000
000010	00010	000010	00010	0000
•	•	•	•	•
-	-	-	~	-
900	900	000	900	900
0	8	00		8
ALR(R2) FFI:	/* CHECK FOR I=0 */ 1C1H! OVER! LMI(RA) FF1! (31C1H) 0011000 11 11 0110111 00000000 00 500 1	NOP(A) JFL(nIV.DONE):	LY CORRECTION +/ DONE! CLR(AC); IDAILIO 11 00 0111000 00000000 00 ñ00 1 0 00010 0000000 0 0	CO11101 11 11 0011001 10000000 00 500 1 0 00010 0000000 0 0
0011100	FF11 0110111	JFL (010.00	0111000	K89000 FF
ALR (R2)	LMI (R9)	NOP (A)	CLR (AC)	LMT (AC)
000000	CK FOR I=		APPLY CORRECTION DONE! CLR(AC):	
1914! (*1914)	7. CHE 101H! (31C1H)	107H!	1934! (HFRIG)	189H! (0189H)
27.0	27.5	573	275	274

NAAS V	ERS 2.0 P	ACED EMUI	LATOO	MIC	XMAS VERS 2.0 PACED EMULATOD MICROCODE FOR INTEL 3000	TNTEL 30	00					ERRORS= 0		PAGF 17
RECORD		CPE 6543210	10	50	CPE FT FO JUMP 6543210 10 10 6543210	KRUSS 76543210		210	PAGEF 19US PAUSFF STRB	STRB	LPCNT 43210	EMIT 76543210	MULTE SPRE	Sock .
1112	277 199H! (0199H)	0000110 11 00	ALR (F	98	11111111 0101100	ninnin	. 00	000	-	0	01000	00000000	•	•
278	148H! (0148H)	5	SDR (4	21.	SDR(A) FF1 JZR(FETCH) 8	I THILLIA	00	000	-	0	01000	00000000 01000	•	0
279	279 87H! (0087H)	PUSX11	ILR (4	800	PUSXII ILRIA) RWMI	00000000	00	Ē	-	0	000010	00010 0000000	•	
280	280 974!	0010100	LMICS	2.1	LM((S) FF11 0010100 11 11 0001010	00000000	00	00 y	-		000010	00010 00000000	۰	•
281	047H! (0047H)	000000		88	ILR(X) RWM!	00000000	00	Ē	-	•	00000	00000000	•	•
282	087H! (0097H)	0010100		(8)	LMI(S) FF1:	00000000	00	900	-	•	00010	00000000	•	•
283	0C7H1 (00C7H)	0000011		68	11 00 0001101	00000000	.00	i.	-		000010	00000000	•	•
284	284 00741	0010100	3:1	(5)	LMI(S) FF1:	00000000	00	000	-	0	00010	00010 00000000	•	•

	•	•	•	•	•
•	•	•			
ILR(W) RWM JZR(FETCH):	1 0 0000000	00 111 1 0 00010 00000000	0 00010 00000000	0 00010 30000000	00000000
00000	00010	00010	00010	00010	000010
•	•	•		•	•
-	-	-	-	-	-
ï	00 400	ij	000	060	900
:	2	8	00		
ETCH) 1 00000000	SSP! TZB(A) K7FFFF JZR(FFTCH)!	PIISAKI ILDIT) RWM 17R(FETCH): 0061100 11 00 0101111 0000000	RVI! NOP(A) JZR(FFTCH):	yk! ILP(X)	0001001 11 00 0000100 11111111 00 000 1 0 00010 000000
RWM JZR(F	Olniiii	WM 17R (FE 0101111	0101111	000000	0010000
1LP(4)	12B(A) K	ILPÍT) R	11 00	ILP(X) 8	ALP (P9)
กๆกัด111	SeP!	PusA41	11 A 0000	Spinoni	9901001
(10674)	1174! (*1174)	1074!	1674! (1167H)	344!	0194! (0019H)
29.5	28.	787	288	585	290

WAS V	ERS 2.0 P	ACER EMUL	ATOR	MICE	XMAS VERS 2.0 PACER EMULATOR MICROCODE FOR INTEL 3000	INTEL 3	000					ERRORS= 0		PAGE 18
RECORD NIJMBER		CPE 6543210	7.0	00	CPE FT F0 JUMP KRUSS 6543210 10 10 6543210 76543210	KBUSS 76543210		r9US	PAGEF 19US PAUSFF STRB LPCNT	STRB	LPCNT 43210	EMIT 76543210	MULTF SPAF	Sac S
262	48H!	1011101	LMT (AC	C 8	LMT(AC) RRM JPR(LA STA LX STX AI SI W D AOM ORI YORI AVDD C SZ SNZ GG); 1000111 000000000 00 110 1 0	100 C SZ 0000000	STX A1 SI SNZ GG) \$	S1 4 0	AOM OR1	0 0	000010	00000000	•	c
293	(0069H)	PDPX!	DSM(S)	. J.	PAPK! DSM(S) JCC(POPK1): 0010100 11 00 0001000 1111111	nimm	00	900	-	•	01000	00000000	٥	c
594	78H! (0078H)	AOM! 0001011	ACM (ACM)	92	AOM! ACM(AC) FF1 RWM J7R(FETCH) 8	000000000	00	Ē	-	0	000010	00000000	•	- c
295	89H! (008AH)	POPX11	LMICS	800	POPKTI LMICS) RRM:	00000000	00	110	-	•	00010	00000000	•	•
294	9ян! (1009ян)	0001011	ACM(AC) 8	00	0001010	00000000	00	000		•	000010	00000000	•	•
29.7	0A9H! (00A9H)	0160111		92	SDR(W) FF1t		* 8	900	-	•	000010	00000000	•	•
298	298 088H! (0088H)	0010100		300	DSW(S) # 11 00 000Th00 11111111	ıímini	.00	900	-	•	000010	00000000	•	•
599	0CAH! (00CAH)	0010100	LATE	60	0010100 11 00 0001101	00000000		110	-	•	00010	00010 .00000000	•	•

•	•	•	•	•	
•	•	•	•	•	
00010 0000000	00010 00000000	00010 00000000	00010 0000000	0001.0 00000000	
000010	00010	00010	01000	0000	
•	•	•	•	•	
-	-	-	-	-	
900	400	000	110	000	
9	2	00	8	00	
ACM(AC) 1 00 0001110 0000000 00 400	Sne(P)FF14 A150011 11 11 0001111 1111111 00	00 11111111 00 0010000 111111111 00	LMI(S) RRM JCC(PO5X2) 8 0010100 11 00 0010011 0000000	SSN: CSP(AC); 0101101 11 00 0010010 00000000 00 00	(FETCH)
0001110	0001111	001000	RM JCC (PO	0010010	ORRIAN KABBOO JZR(FETCH)
ACM (AC)	Sne(P) F	05w(5) #	LMI (S) R	CSP (AC) #	ORP (A) K
een1011	1100011			Sen! 0101010	
(100041)	(00F9H!	0F3H! (0,0F8H)	1094!	119H! (0119H)	305 12AH!
300	301	302	303	304	305

RECORD		CPE FT F0 6543210 10 10	101	65	JIINP 6543210	KAUSS 76543210	PAGEF CHUS	210	PAUSFF STRB LPCNT	STRB	43210	EMIT 76543210	MULTF SOOF	Sope
	(012AH)	11,00000 11	=	0	0101111	100000001	00	000	-	•	01000	00000000	•	c
306	139H! (0139H)		SOR (× = = = = = = = = = = = = = = = = = = =	POPX21 SOR(X) FF1: 0100001 11 11 0010100 11111111	nimmi		000	-	•	01000	00000000	•	•
307	1494!	0010100	DSMC	5) 1	0100 11 00 0010101	mmim	00	000	-	•	01000	00000000		•
304	158H! (0158H)	0010100	LMT(S) RRM:	S) R	0010100 11 00 0010110	00000000	9	110	1		01000	00000000	•	•
306	169H! (0169H)	010000	SDP (4 =====================================	SDP(A) FF1 JZP(FETCH) t 01n0000 11 11 0101111 11111111	11111111	8	000	-	•	01000	00000000	•	•
310	310 108H1 (0108H)	PIJSA51	LAT C	11	PUSAS! LMT(R9) FF1 JCR(PUSAK):	1546) 1	00	900	-	•	000010	00000000	•	•
3ii	1E8H! (01E8H)	Sw1!	11	A 00	NOP(A) JZR(FETCH):	000000000	00	000	-	•	01000	00000000	•	•
312	312 .394!	110000	11	€ 00 E	JJ! NOP(A) JZR(FETCH)!	00000000	8	000	-	•	01000	00000000	•	•

• •	•	•	•		•
•	•	•		•	6
1 0 00010 00000000	000000000000000000000000000000000000000	0 00010 00000000	1 0 00010 00000000	1 0 00010 00000000	Ex! SDR(T) FF14 01011100 11 11 0010010 111111111 00 000 1 0 00010 000000
000010	000010	000010	00010	00000	0000
•	c	c	•	•	•
-		-	-	-	-
À60	110		000	300	900
00	8	00	9	8	8
00000000	00000000	umm	00000000	mmm	mmin
PTN2! ACM(AC) JCR(PTN3) #	PTATE LMI(S) RRM JCC(RT42):	RTN: DSM(S) JCC(RTN1);	0011 ACM(AC): 0051011 11 00 0001000 0000000 00	116,0000 11 00 0101111 1111111 00 Ron	FF1 \$ 0010010
ACM (AC)	LMT(S) R	USW(S) J	ACM (AC) 8	ORR(A) J	SDR(T) 11 11
PTN2!		910100	9001011	1150000	Ex! 0101100
(46960)	(P6500)	(Hoy61)	794! (90794)	(46864)	119H! (^119H)
נונ	316	315.	316	317	318

XMAS	VERS 2.0 P	ACED FWUI	LATOR	MIC	ROCODE FOR	XMAS VERS 2.0 PACED FMULATOD MICROCODE FOR INTEL 3000	00					ERRORS= 0		PAGE 20
RECORD	C	CPE 6543210	F.01	0.0	CPE FT F0 JUMP 6543710 10 10 6543710	KRUSS 74543210	PAGEF 10	79US	PAGEF 19US PAUSFF STRB LPCNT	STRB	LPCNT 43210	EMIT 76543210	MULTF SORF	Sape
319	319 129H! (0129H)	000000	ILR (* 00	1LR(x); 00 0010011 0000000	00000000		000	-	•	000010	000000000 01000	•	•
320	139H! (0139H)	010000	SDR (. E	SDR(A) FF1: 01/00000 11 11 0010100 11111111	ເກົານານ	. 8	000	-	•	000010	00010 00000000	•	•
321	1494!	00011000	ILP	100	1LP(T); 0001100 11 00 0010101 0000000	00000000	00	000	1	•	00010	00010 00000000	c	c
322	159H! (0159H)	010001	SDR (3	× 11	SDR(X) FF1 J7R(FETCH): 0100001 11 11 0101111 1111111	11111111	00	000	-	•	00010	00010 00000000	c	•
323	189H! (0189H)	DA1!	SDP (11	0011001	DM11 SDR(T) FF11 0151100 11 11 0011001 11111111 00	00	000	-	0	000010	000000000000000000000000000000000000000	•	•
324	199H! (0199H)	000000	ILR (÷ 00	0000010 11 00 0011010 0000000	00000000	9	000	-	•	000010	0 00010 00000000	•	•
325	149H! . (0149H)	•	SDR (A	0011011	SDR(A) FF1: 100000 11 11 0011011 11111111 00	00	000	-	•	01000	00000000	•	•
326	189H! (0189H)		ILP (100	0011100	0001100 11 00 0011100 0000000 00 500	00	000	-	•	01000	0 00000000 01000 0	•	•

. •	•	•	•	•	
•	•	•		•	
0 00010 00000000	0 00010 00000000	0 00010 00000000	0 00010 00000000	0 00010 00000000	
000010	000010	000010	000010	000010	
•	•	•	e	•	
-	-	-	-	-	
00 . 800 1	in	460	999	000	
00	8	9	00	00	
SDR(0) FF1 J7R(FETCH):	PISA4! ILR(R9) RW4 JCR(PUSA5):	Eg: ILR(A) JCC(nyl); 0040000 11 00 0011000 0000000 00	POSI: ILR(P) FF1 178(FETCH):	POSS! NOP(A) JZR(FETCH):	FOR PAGE 2 CENTROIN TRACKER */ CTOACKI NOP(A) JZR(FETCH) PAGE31
0100010	P115441	Eg!	PoS1!	1100000	FOR PAGE CTOACK!
(4651v)	10941	1F94! (3]F94)	144! (99]4H)	24H!	7. FNTRY
327	328	350	330	331	332

XMAS V	ERS 2.0 6	PACED EMUI	LATOR	MICE	XMAS VERS 7.0 PACES EMULATOR MICROCODE FOR INTEL 3000	R INTEL 30	000					FRRORS= 0		PAGF 21
RECORD VUMBER		CPE 6543210	1.0	100	414P	KRUSS 7654210	PAGEF	210	CAUS PAUSFF	STRB	LPCNT 43210	EMIT 76543210	MULTF SPRF	SPAF
	(10344)	1150000 11	=	0	11111010	00000000	0.	000	-	•	01000	90000000	•	•
334	44H!	ATN3!	SDR	11	SDR(P) FF1 J7R(FETCH):	1000	.00	000		•	000010	00000000	•	•
335	5AH! (005AH)	SKN1!	NOP (. €	NOP(A) JFL(POSS.NEGG):	00000000	00	000	-	•	01000	00000000		•
336	6AH! (006AH)		120(A 60	SKN! TZP(A) K80000 INH JCC(SFN!) #	JCC (SKN1)	00	100	-	•	000010	00000000	•	c
337	74H! (0074H)	X0R1!	Ž=	ACM (AC) #	001000	00000000	00	000	-	•	000010	00000000	۰	•
338	(0084H) 11	1110000	NA II	00 A	XNR(A) JCR(hyN5) 8	nnnin	. 00	000	-	•	000010	00000000	. •	•
339	TF A OAAH!	A -LT - MEI -EO - MEM NTSAMI	CF=1 CF=1 L1	00 ZF=(1 .LT. MEM CF=0 ZF=0. IF A .GT. MFM CF=0 ZF=1 .EO. WFM CF=1 ZF=0 */ NOP(A) JF(APOS? 1100000 11 00 1001111 00000000 00	.GT. MFM CF=0 ZF=1 NOP(A) JFL(APOS2,ANEG2):	JFL (APOS	7 - ANEG?		•	00010	0000000	•	•
345	(OBAHI (OBBAH)		NOP (A	NACRY! NOP(A) JZR(FETCH): 1100000 11 00 0101111 0000000	00000000	0	000		e	000010	00010 00000000	•	•

V SAWX	KMAS VERS 2.0 PACED	ACED EMUL	LATOR	410	ROCODE F	EMULATOR WICROCODE FOR INTEL 3000	00					FRRORS= 0		PAGF 22
SECORD VIJMBER		CPE 6543210	7.5	10	JUMP 6543210	KRUSS 76543210	PAGEF	73US	CRUS PAUSFF STRB	STRB	LPCNT 43210	EMIT 76543210	MULTF SORF	Saar
	(0134H)	010000	=	Ξ	0010100	າການກຳນ	00	000	-	0	000010	00000000	0	0
343	14AH! (014AH)	1,8(T)	_=	00	0010101	(1) 1 00 0010101 0000000	00	000	-	0	01000	00000000	•	c
350	1544! (31544)		SDP (9 =	F1 J28(F	SDR(P) FF1 JZR(FETCH) t	00	000	-	0	000010	00010 0000000		c
151	151 1544! (*154H)	NSKIP!	11	A)	128 (FETCH 0101111	NSKIP! NOP(A) JZR(FETCH);	00	000	-	•	00010	00000000	•	•
352	1744!	COCOOII	118	9 =	F1 J2R(F	ILR(P) FF1 JZR(FETCH): 11 11 0!01111 00000000	00	000	-	0	000010	00000000	۰	•
151	laqui (nlaqu)		11	€ 00	JEL (NOVEF	N-! NOP(A) JFL(NOVEF1.0VEF1) #	00	000	-	•	000010	00000000	•	•
156	1344!	NOVEF1!	:	00	00 0101114	NNP(A) JZR(FETCH):	R (FETCH 00	000	-	•	000010	00010 00000000	•	c
155	1AAH!	0000011	11.8	9	F1 JZR(F	OVEF21 ILR(P) FF1 JZR(FETCH) #	00	000	-	•	000010	00000000 01000	•	•

•	0	0	0	0	•
•	•	•	0		•
1 0 00010 00000000	0 00010 00000000	000000000000000000000000000000000000000	0 00010 00000000	00010 00000000	00000000
000010	000010	01000	000010	000010	0000
•	•	. 0		•	•
-	-	-	-	-	-
900	(FFTCH) 8	200	100	00 000	000
00	1ZB	60	00	00	00
00000000	ILR(P) FF1	00000000	00000000	000000000	00000000 00000000
NC2! NOP(A) JFL(NOVEF3.0VEF3)!	NOVEF3! ILR(P) FF1 12R(FFTCH): 9000011 11 11 01011111 00000000 00 000	0 EF41 ILR(P) FF1 JZR(FETCH) # 0000011 11 11 0101111 0000000	NII! NOP(A) JZR(FETCH): 11AABBO 11 90 01A1111 0000000	NEG1: NOP(A) JZR(FETCH); 1100000 11 00 0101111 0000000	NFGG! ILR(P) FF1 JZR(FETCH) #
11 0	= -	ILR(P)	NOP (A)	NOP (A)	ILR(P)
110000	NOVEF3!	0 EF41	110000	NFG1!	NFGG!
184H! (7184H)	ICAH! (01CAH)	359 1044!	IEAH! (01FAH)	194!	28H! (1029H)
356	357	354	353	360	361

×	WAS VE	XMAS VERS 2.0 PACED		ATOR	MIC	EMULATOR MICROCODE FOR INTEL 3000	INTEL 30	00					FRRORS= 0		PAGE 23
0.2	RECORD NUMBER		CPE 654.3710	10	10	JUMP 6543210	KRUSS 76543210	PAGEF	210	PAUSFF	STRR	43210	EMIT 74543210	MULTF	SPRF
	362	38H! (00)38H)	1150000	NOP (00	NOP(A) JZR(FFTCH):	00000000	00	000	-	c	000010	00000000	c	•
	363	58H! (005RH)	SKP1!	11	€ 00	NOP(A) JFL(POS1.NEG1):	00000000		000	-	•	000010	00000000	0	c
	364	68H! (0068H)	SKP! 1010000	12R(A 00	90000 INH 0000101	JCC(SKP]) :	00	, i 0 1	-	0	00010	00000000	0	o
	365	78H! (0078H)	ANDD! 0001011	ACM (AC) 8	AC) \$	0001000	000000000	00	000	-	0	000010	00000000	•	•
	366	366 8RH! (004RH)	1000000	ANR	(A)	ANR(A) JZR(FETCH); 1000000 11 00 0101111 1111111	umm	00	000	_	0	000010	00000000	0	0
	367	0ABH! (00ABH)	SAME!	CMR	99	CMR(R8) JCR(5WN7) 8 11 00 0111101 0000000	00000000	00	000	-	•	000010	00000000	c	0
	368	368 088H! (0088H)	Cevi 1100000	11	₹ 00	NOP(A) JFL(NGCRY2.CRY2):	00000000	00	000	-	•	00010	00000000	•	
	369	369 008H1 (1008H)	1100000	NOP	A	Cey2! NOP(A) FFI STZ JZR(FFTCH):	18 (FFTCH) 1 00000000	00	000	-	•	000010	00000000	۰	•

•	•	•	•	•	•
000000000000	00010 00000000	000000000000000000000000000000000000000	00010 00000000	000000000000000000000000000000000000000	0 000000000 0
000010	000010	01000	000010	000010	000010
0	•	•	•	0	•
-	-	-	-	-	-
000	994	000	000	000	000
00 000	60	. 00	00	00	00
110000 11 00 0101111 0000000	00000000	FS! SDR(T) FF1:	1LP(W): 00 0010011 0000000 00 000	SDR(A) FF11 0150000 11 11 0010100 11111111 00 600	1 1 00 0010101 00000000 00 000 1
0101111	NSP! NOP(A) JZR(FETCH):	FF1:	00100	F11 0010100	0010100
11 20	11 00	SDR(T) 11 11	ILP(W):	SDR(A) F	1LP(T):
1100000	110000	FS!	1110000	กากกกกก	0011000
170 OF 4H;	371 108H! (0109H)	372 1184! (A1184)	177 129H!	1344!	375 149H! (*148H)
37.0	37.1	375	17.	374	375

XMA	S VFR	4 0°C S	ACED EMUI	LATOR	MIC	CROCONE FO	XMAS VFRS 2.0 PACED EMULATOR MICROCODE FOR INTEL 3000	c					ERRORS= 0		PAGF 24
RECORD	ORD BFR		CPE 6543210		0.0	FT FO JUMP 10 10 6547210	KRUSS 74543210	PAGEF 10	210	PAGEF CAUS PAUSFF STRB LPCNT	STRB	LPCNT	EMIT 76543210	MULTF SORF	Sop
3.	376 1	1584! (0158H)	0160111	SDR 11	3.1	SDR(W) FF1 JZR(FETCH): 0100111 11 11 0101111 1111111	11111111	00	000	-	0	000010	00000000	•	c
	377 1	158H! (0158H)	SKIP! 000000	11	(9)	SKIP! ILP(P) FF1 JZR(FETCH): 0000011 11 11 0101111 0000000	00000000	. 00	000	-	0	01000	000000000 01000	•	•
9.	378 1	178H! (0178H)	110000	NOP	(A)	000! NOP(A) JZR(FETCH): 100000 11 00 0101111 00000000	000000000	00	060	-	•	000010	00010 00000000	0	c
.6	379 1	1884! (01884)	110000	NOP	₹ 00	CR! NOP(A) JFL(OVEF2,NOVFF2); 100000 11 00 1991010 00000000	10VFF2) 1 000000000	90	000	-	c	00010	00010 00000000	•	0
36	380 1	198H! (0198H)	OVEF11	11.	(9)	OVEF11 ILP(P) FF1 J7R(FETCH): 0000011 11 11 0101111 0000000	00000000	. 00	000	-	•	01000	00010 0000000	•	c
	181	148H!	NOVEF2!	=	00	100000 11 00 0101111	NOP(A) JZR(FETCH) :	O O	900	-	0	01000	00000000 01000	0	c
ř.	382 1	188H! (0188H)	1100000	11	(A)	CR22! NOP(A) JFL (OVEF4.NOVFF4);	MOVEF4) 8 00000000	00	000	-	•	000010	00000000	•	c
Ħ	383 1	1CBH! (01CBH)	0VEF31	11	(A)	0VEF31 NOP(A) JZR(FFTCH) 1 100000 11 00 0101111 00000000	00000000	00	000	-	•	01000	000000000	•	c

. 0	•	•	•	0	•
0		0		•	•
0 00010 00000000	0 00010 00000000	00000000	0 00010 00000000	0 00010 00000000 0	SOI NOP(A) JCC(501) 1 1100000 11 00 0011000 00000000 00 0500 1 0 00010 00000000
000010	000010	000010	00010	000010	01000
0	•	c	•	•	•
-	-	-	-	-	-
- 640 640	960	110	004	000	0.80
00 00	00	00	00	00	00
00000000 00 696	NI2! NOP(A) JZR(FETCH):	IV: LMI(R9) RRM:	ACM(AC) # 00 0000101 00000000 00 100	11111111 00 000 1	00000000
NAVEF4!	2R (FETCH) 1	RRM: 00001100	1010000	ALR(X) JCR(CIX) #	0001100
00	ه 00	00	ACM (AC) 1	Ž o	€0
Ξ	11	FI	ACM (ALR (11
11 00000	NT2!	17!	0001011	9640901	1100000
1094! (0109H)	1ёян! (о1еян)	3CH; (1003CH)	4CH!	SCH!	6CH! (006CH)
384	385	384	387	388	389

XMAS V	ERS 2.0	PACED EMUL	LATOR MI	CROCOJE FO	XMAS VERS 2.0 PACED EMULATOR MICROCODE FOR INTEL 3000	00					FRRORS= 0		56 3580
RECORD		CPE 6543210	FT F0	CPE FT FO JUNE 6543210	KBUSS 76543210	PAGEF.	210 210	PAGEF FRUS PAUSEF STRB LPCNT	STRB	LPCNT 43210	EMIT 76543210	MULTF SPRF	SORF
390	AND AND	REGISTER ACCUMULATO	EIGHT IS	SET TO ST IFFERENT	REGISTER EIGHT IS SET TO STACK POINTER WHEN STONS OF MEMORY LOCAT AND ACCUMULATOR ARE DIFFERENT	N AHEN	ST3NS (DF MFMOR	LOCA	_			
367	ACCUM	TER FIGHT	IS SET	TO THE DIF	REGISTER FIGHT IS SET TO THE DIFFERENCE OF THE MEMORY LOCATION AND THE ACCUMULATOR WHEN THE SIGNS OF MEMORY LOCATION AND ACCUMULATOR ARE DIFF	THE ME	ASCUM	JEATON A	NO THE	W 16			
396	7CH!	00,1011	ACM (AC)	C1 ACMIAC) 8 00A1011 11 00 0001000 0000000	00000000	ę	000	-	0	00000	0 00010 00000000		c
397	8CH! (008CH)		SDR (R8)	SDR(R8) FF1: 0161000 11 11 0001001 1111111	กับเกา	6	000	-	•	000010	00010 00000000	•	e
394	(H360U)	6	SOR(T)	SDR(T) FF1 KA00001	FF1 KA00001; 0001010 10000000	00	000	-		000010	00000000	۰	c
399	OACH!	0000000		ILR(A) STC: 10 00 0001011 0000000	00000000	9	000	-	•	00010	00000000	۰	•
007	08CH! (90ACH)	010010	SOR (RS	SDR (RS) FF1 K800001 11 11 0001100 1000000	10000000	00	000	-		000010	00010 0000000	•	c
401	401 OCCH! (90CCH)	0000101		JLR(R5) FF0 STZ8 01 00 0001101 0000000	00000000	8	000	-	•	000010	00010 0000000	•	•

	•	•	•	c	•
	•	•		0	•
0 00010 00000000	0 00010 00000000	1 0 00010 00000000	0 00010 00000000	0 00010 00000000	00000001 11 00 0010011 11111111 00 600 1 0 00010 00000000
00010	00000	01000	01000	000010	00010
		•			•
-	-	-	f00 1	-	-
994	Her	100	000	000	900
00	00	(E) :	00	8	00
1111100 11 00 0010000 11111111 00 100 1	CX1: T7P(T) INH; 1011100 11 00 0001111111 1111110 00 11	178(85) INH JFL(VTSAME.SAME):	CX2! TLR(A) FF0 JCC(CX3) #	17x1 1LP(R9)1	minn
0000100	INH: 0001111	1001010	JCC (CX3) 8	0100100	1100100
11 00 11	17P(T)	178 (RS)	2(A) FF0 11 00	ILP (89) 1	ALP(x) 8
1111100	CX3!		Cx2! ILF		
(13004)	05CH! (19FCH)	(99ECH)	10CH!	11CH!	12041
405	F04	*0*	405	404	407

-			:					-	2			-1		-
NUMBER		6543210	::	22	6543210	76543210	0 10	210	O O O	0	43210	76543210	0 0	0
404	13CH! (013CH)	1011111		(AC)	K80000 I	TZA(AC) K80000 IN-11 11 00 0010100 10000000	. 00 0	io1	-	•	000010	00000000	•	c
604	14CH! (014CH)	1160000	NOP	(A)	NOP(A) JFL(NSKIP,SKIP) #	. SKIP) #	00	000	-	•	000010	00000000	•	•
410	16CH! (016CH)	DHN3! LTM(AC)!	7=	(AC) 8	1110100	nimin	1 00	000	-	•	00010	00000000	•	c
ii.	17CH1 (017CH)	SnR(A) 0100000	E	JZR (SOR(A) FF1 JZR(FETCH): 0100000 11 11 0101111	nimm	1 00	000	-	0	00010	00000000	0	6
412	18CH! (019CH)	1010000	12R	£ 00	1010000 IN	SOLI TZR(A) K80000 INH JCF (NC+CR) :	00 00	, ioi	-	c	00010	00000000	•	•
413	(O)ECH!	0011001	FI	600	RIN JCC (0010110	DI: LMI(R9) RIN JCC(DWN3) # 0011001 11 00 0010110 00000000	. 00	100	-	•	00010	00000000	•	•
* 15	304!	1190000	NOP	38	JZR (FETCH 0101111	NOP(A) JZR(FETCH); 11 00 0101111 00000000	00	000	-	•	00010	00000000	•	•
415	50H! (0050H)	CTX1 .	E.	(AC)	RRM JPR	CTX! - LMI(AC) RRM JPR(LA STA LX STX A1 S1 4 D AOM OR1 xOR1 0011101 11 00 1100111 00000000 00 110 1 0	STX A1 SNZ 66)	Si 4 0	AOM OR1	xOR1	00010	00000000	•	•
											1			

0 000000000 u1000	0 000000000 0	0 00000000 01000	0 00000000 01000	0 000000	
	000000000	00000000 0	00000000	000000	
01000	01000	•		8	
		1000	01000	0 00010 00000000	
•	o	•	•		
-	-	-	-	-	
000	ioi	000	000	000	
00	00	06	00	90	
SUD! NOP(A) JCC(SUD1):	TZP(A) INH:	00000000	O0000000	52! NOP(A) JZP(FFTCH):	
0011001	INH: 001000	1100000 11 00 1001001 00000000	C1A! LWT(P) FF1 JZR(FETCH):	JZR (FFTCH 0101111	DWNS' CMR(A) J7R(FETCH) &
NOP (A)	17P(A)	11 00	LWT (P)	11 00	CMP (A)
11,0000	1010000	11,0000	C14!	1100000	SNAC
11 (+050-)	(10201)	(10000)	(((HV6(4)	(+9904)	422 AD11
417	414	619	450	124	455

Y SAMY	ERS 2.0 P	ACED EMUL	LATOR	MICA	OCODE FOR	XMAS VERS 2.0 PACEP EMULATOR MICROCOJE FOR INTEL 3000	00					FRRORS= 0		PAGF 27
RECORD VIMBER		CPF 6543210	F1 F0	10	0155458	KRUSS 76543210	PAGEF		CAUS PAUSEF STRR	STRR	43210	EMIT 74543210	MULTF SPRF	Sapr
	(HU80+)	1110000111	=	00	0101111	00000000	00	000	-	•	000010	00000000	c	0
453	040H! (0040H)	9001000	ALP (F	11 5	ALR(R9) FF1:	minim	60	000,	-	e	000010	00010 0000000	c	c
454	(40000)	1011000	72R (6	682	COXXXI TZR(R8) JFL (40CRY+CRY); 1011000 11 00 1091011 11111111	11111111	00	000	-	•	000010	00010 00000000	•	c
455	1104! (91104)	0001001 11 00	1LR(R9) 1		0010010	00000000	6	000	-		000010	000000000	0	
454	120H! (0120H)	niniii	CMA C	90	CMA(AC) #	00000000	00	000	-	0	000010	00000000	0	c
457	130H! (0130H)	000000	ALR O	11	ALR(X) FF1:	шшш	00	000	-	•	000010	00000000	•	•
458	1404!	1160000	NOP C	A 00	1900000	NOP(A) JFL(SP.NSP):	00	000	-	•	000010	00000000	•	•
459	19041	SNOT!	1728(1	A 60	10000 INH 1010011	SNOT : TZR(A) KA0000 INH JCF (NC? CR??) :	00	no1	1	•	000010	00010 0000000	•	

•	c	•	c	0	•
	0	0		c	•
00000000	1 0 00010 0000000	0 00010 00000000	0 00010 00000000	1 0 0000000 00000000	SM7: T7R(A) INH:
00011	00010	00000	000010	000010	00010
•	•			0	•
-	-	-	-	-	-
1.01	000	000	000) O	, ioi
6		7	00	00	00
00000000	00000000	DUNA):	00000000	JCC(SAE1) 1	nimin
0411001 11 00 0101111 00000000 00 FB. 1 0 00010 0000000	00 11 00 0011101 0000000 00	Cha! NOP(A) PAGE? JCC(DUNR):	DUNING 1 NOD (A) JCC (SAF) 1	SAF! TZP(A) KONOO! INH JCC(SAE!):	INH: 0001110
11 00	ILP(A) 11 00	11 00	NOP (A)	TZP(4) K	178 (A)
001100	,000 000000	11,0000	1100000	5.F! 1010000	1010000
430 100H;	(STFOH)	432 3FH! (193FH)	SEA!	(1946H)	754!
430	431	435	433	434	435

		*												
RECORD		CPF 6543210		FT F0	JUNP 6543210	KRUSS 76543210	PAGEF	210	PAGEF CAUS PAUSFF STRB	STRA	LPCNT 43210	EMIT 76543210	MIJLTF SOOF	S. c
436	(10EEH)	110000		€00	NOP(A) JFL(51.54); 11 00 1001110 00000000	00000000	00	vov	-	•	000010	00000000		
437	0FAH! (00FAH)	1100000		€8	NOP(A) JZR(FFTCH); 11 00 0101111 0000000	00000000	00	000	-	•	00010	00010 00000000	•	•
434	(00FRH)	0010011		<u>@</u> =	LMI(P) FFI JZR(FETCH):	ETCH) t	00	00 v	-	•	00010	00010 0000000	•	•
439	11EH! (01TEH)		NOP (60	NAPP! NOP(A) JZR(FETCH):	00000000	00	000	1	•	000010	00010 04000000	•	
649	16EH! (*16EH)		11	€ 00	SAF1: NOP(A) JFL(FVEN.03D): 1100000 11 00 1000111 0000000	00000000	00	000	-	0	000010	00010 0000000	•	c
.13	(O)EEH!	110000 11 00	11	A 06	0101111	000000000	00	000	-	•	000010	0000000	•	•
4	. (000FH)	FFTCH!	F	11	FETCH! LMT(P) FF1 RRW!	00000000	00	110	-	•	00010	00000000	•	
	1FH!		LI	90	LTM(AC) KOIFFF1 1011011 11 00 0000010	00111111	00	û	-	•	000010	00000000	•	

	c	•	c	c	c	
	0	•	•		•	
	00010 00000000	00000000 01000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	00000	000010	00010	000010	01000	
	0	•	•	•	•	
CC XX	-	-	-	-	-	•
LIF VSC	000	000	110	000	,000°	
1.18	4 C C C C C C C C C C C C C C C C C C C	00	9	00	00	
TR J L PFG	ololool li li liiloll lillilli oo ago l	00- 00 00000000	1419US! LMI(R9) FFJ RRM:	9161111 11 11 0111000 11111111 00 500	SDR(A) FF1 J7R(FETCH): 0160000 11 11 01011111 11111111	
O) xdf (Ja	1111111	In: NOP(A) JCC(T31):) FF 3 RRM 0000101	FF11 01111000	FF1 J7R(F	NOP (A) JZP (FETCH) :
S0p (R9)	n n	11 00 11	31 LWI (R9 11 11	Lnf (AC)	SD2(A)	NOP (A) J
	101010	101	1 ATRUS	9101111	010000	199
ЭЕНІ	(4) (A)	3F4! (193F4)	447 6FH! (036FH)	5FH!	(16500)	7641
444	4	444	447	4 4	644	450

XMAS V	ERS 2.0 B	ACED ENU	LATOR	D I	ROCAJE FO	XMAS VERS 2.0 PACED EMULATOR MICROCOJE FOR INTEL 3000	061					ERRORS= 0 PAGE 29	0	6. 2
RECORD NUMBER		CPE 6543210	15	00	JUNP 6547210	KRUSS 74543210	PAGEF 10	210	PAUSEF	STPR 0	LPCNT 43210	CPE FI FO JUNP KAUSS PAGEF CAUS PAUSFF STDA LPCNT EMIT MULTF SPAF 654.3710 10 10 654.3210 7654.3210 0 0 0 0 43.210 7654.3210 0 0	MULTF	Seco
	(1007FH)	1100000	Ξ	0	0101111	00000000	00	000	-	0	01000	100000 11 00 0101111 0000000 00 000 1 0 00010 000000	0	0
451	11FH!		11	A) S	00 JZP (FE)	P7! NOP(A) SP0 17P(FETCH) t	00	000		•	000010	0 0 0000000000 0 0	•	•
452	14FH! (014FH)		11	900	0011101	00000000	00	000	-	c	01000			c
453	10FH1 (010FH)	1150000	NOP	. A	1100110	43.N4.N5.T	PAP.N7.	000 000	I.EQ.N1	0 0	01000	JK! NOP(A) JPR(NI.NZ.NZ.N4.NS.TRAP.NZ.PMI.SMI.EQ.NIII.NIZ NI DO HH II): 1150000 11 00 11500110 00000000 00 600 1 0 00010 00000000	•	•
455	JEFH! (OTFFH)		NOP (00	0101111	000000000	00	000	-	•	01000	Tri NOP(A) J7R(FFTCH): Iñ0000 11 00 0101111 00000000 00 000 000	c	•

VO PROGRAM ERRORS END OF PROGRAM

_	
=	
•	
1000	
•	
_	
4	
1	
JAL	
NTFL	
TNTFL	
FOR THTFL	
F03	
F03	
MICROCODE FOR	
FMULATOR MICROCOPF FOR	
FMULATOR MICROCOPF FOR	
FMULATOR MICROCOPF FOR	
FMULATOR MICROCOPF FOR	
FMULATOR MICROCOPF FOR	
FMULATOR MICROCOPF FOR	
MICROCODE FOR	
FMULATOR MICROCOPF FOR	
FMULATOR MICROCOPF FOR	
FMULATOR MICROCOPF FOR	
FMULATOR MICROCOPF FOR	
2.0 PACED FMULATOR MICROCOPF FOR	
2.0 PACED FMULATOR MICROCOPF FOR	
2.0 PACED FMULATOR MICROCOPF FOR	
FMULATOR MICROCOPF FOR	
VERS 2.0 PACED FMULATOR MICROCOTE FOR	
VERS 2.0 PACED FMULATOR MICROCOTE FOR	
VERS 2.0 PACED FMULATOR MICROCOTE FOR	
2.0 PACED FMULATOR MICROCOPF FOR	

•															
E		£	E	1,	£	¥	£	į	F	Ŧ	ī	3	¥	E.	£
3		12C .	JZR *					,							25
100		# 901cm	# H 4000 #	•											Dulen.
		101	122												38
															3 :
שניבטים		AZC .	* 970 *					THE THE		JZR .	17R				100
-															
		* 102	123 *					200		130	340				:
										-	-				- :
300		* JZR *	. J7P .			JCR .	JCR :	TOPON .	976 ·	. 128 ·	325				700
HC00															
		* 103	124 .			556	230	E	232	Ē.	ž.				***
										-					- :
cet .	• •	. JCC .	. JCC .	JC5 .	100 1045H	JCC .	46400 ·	- 100 =	174 ·	JZR -	174 000FH	1000	DANFH.	300	16.50
		701	125 *		156	170	۶۲۲ .		3.5	. 66	342	£-	:		-
					-		-	-			-	-		-	
7,00		. JCC .		10564	337	JOC		# 007aH	900	90064		10500			
		201 •		**-	151	Ξ-		7=	£ .	ğ-		£-			
:		COI .		õ		30	3		2	ξ,	5	. 5		2	è
		* +4-00 *		+0100		. 60574	HS500 .			H 200	H 100	10 500	H0400	. 0000	- DOC-
				16.5	Ĕ.	5-	۴-	=	<u>.</u>	35	363	1-	£-		1-
100	2000	JCF .	9 336 0	20100	10C	DASH OF	JCC 0047H	-	250	JCC 005AH	DOC HWS00	55	3261	22.56	90,00
		107	 	3	65-		£-	£=	315	Ĕ-	<u>*</u> -	ž-	-	ş~ 	3
0.00	170 T	330 .	JZR .	JCC 00844	57.00	335 P	200	5	216	200	200 PM	50.00	2 E	35,50	BOOF
,	05	109	. 121 .	164	140	175	040	1	314	111	345	396	•	. 435	
	4	. 4	. ,	*	•	•	•		•				•	•	

	3000
	_
	NTEL
	Z
	~
	50
	Ä
	ICEOCU
-	Š
1	Ē
1	I
	8
1	ATOR
-	3
	EMUL
	PACED
1	2
	0
	?
1	-
	VERS
1	MAS
	Ĭ

ERRORS= 0 PAGE 31

	10	н0	24		34	4	H.	Н9	7.		4	I	HB	5	-	H	13	1
12P	J28		* 000FH		JCF .	JZR .	JCC 0095H	908FH) DCC			* 00AOH			• •	J7R .	DOGEH .	
	1		100		128	149		771	976 .	205	317	338	366	39		422	178	
• • •	90 A OH	JCF 1 0092H	12F		72B .		JZR .	JCC 00A6H	JCC .	1 0	!	JZR .	12R • 000FH	+ OOACH		JFL .	. H9600	
		•••	110		129		162				• • •	420		394	• • •	419	179	
	2000 1000 1000		. 000FH		JZR .	JCC 00844	JCR 00A4H	JCR 00ASH	JCC .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		OOF AH	* 00ADH	00 PC		JCC .		:
	8		= -		170	185	18.	183				¥-		339		423		
	20C0H	JZF 1 00C2H	1 • 0081H		JCR .	JCR .	JCC 0005H	JOC 000	. 00c7H	1 000 H		3ZR • 000FH	OODAH	• • •		JFL .	JCR .	JCA
1500			198		194	186 .	187					342				424	196	195
	ЭЭС	. OOCFH	7 . JFL		10000	JC3 00C2H	PDI DO	, DOC ,	30°C	# JCC #	. BOCAH	* 00CEH	90COH)))) ()	91	OCAH .	JCR .	178 000FH
	8-	207	261 . 1	• • •	201		189		. 283			202	203				206 .	204
	OOEOH		JZR • 000FH		JZR .			00E6H	DOC 3	1 00 m		JZR 000FH	. JZR .	DOC 1	188			
	. 87	• • •	211		5-	•••		2	782	300	• • •	£_		20,		• • •	•••	
	100 HOLO		JZF • 00F2H	• • •	JZR .	JCF		9976	JZR 000FH	1 00 H		000FH	. 000FH	• • •	187		JFL .	
• • •	98	• • •	=		132 •	150	•	212	285			£-	438	*03		• • •	436	
H	200		3ZR • 000FH		JZR .			910	9107C			17R 000FH	4 000FH	JFL 00AAH	<u>. د د</u>			
• •	. 1		=	• • •	133 •	• • •		213	- · ·	352		*-	07¢.	0,	*-	•		

27.00 174 152 154 157 157 157 157 157 157 157 TWAGE 900 A P 4ICROPROGUANI 01 177 100 178

DAGE

FRRORS.

3000

FOS INTEL

PACFO FWILATOP MICROCODE

MICROPROGRAM MEMORY IMAGE

FRRORS= 0 PAGF 33

XMAS VERS 2.0 PACED EMULATOR MICROCODE FOR INTEL 3000

	10	H		æ	i	ň	3	H	e i	16	AH	Ŧ	3	40	£	ž
	JFL 0192H	JFL JCR *	* JCR * 0181H	JCR 0188H	JCR 91824	JCP 9194H	JCC 0195H	JCR =	019aH	JCC •	JFL 019AH	JFL 01AAH	JCF 0184H			. • •
• •	255	254		275	251	250	32.	249	276	323	353 1	379	412	• • •		• • •
	1 AOH	JCR .	10191H	JCR 194H	JC2 01954	JCR 0197H	19CC	JCC = 01A7H =	DIA9H	JCC 01A9H	JZR 000FH	JZR 000FH		OL BAH		6. •. •. f f
	259	258.	257	36 1	765	946	225	767	277	324	35¢ 1	340		6,7	• • •	•
• • •	100 0180H				,		196H	JCC	178 000FH	0199H	J7R *	17R 000FH				
	260		• • •				226	268	278	325	355 1	34				
٠٠٠	91094	30°C1					106H	OINIH.		91094	JFL 01CAH	OIDAH				
	261	270					722	569		326	156 1	342 1				• • •
	91010	JCR . JCR					JCC 00.66H	JFL =		JZR 000FH	JZR 000FH	JZR 000FH				• •
	262	. 272		•••			228	£.		327	157	343				• • •
					01094	1CR 0104H	105H	JZR =	0107H	Oldan Oldan	JZR .	JZR 000FH		JZR .		1PR 0110
					154	168	£0°	287		328 1	358	384		430	• • •	£.
	75000 ·	JZR . 000FH	. 000FH	JZR • 000FH	JZR 000F4	JZR	JZR 000FH	JZR 000FH	178 000FH	JCC 0189H	JZR 000FH	JZR 000FH	1500 1500	JCC 9100H	JZR .	J74 .
	6-	190	121	142	155	169	23	788	3.1	329	359	385	413	£,	3 -	. 55
916															•••	
• •												٠				

CROSS REFERENCE DIDECTORY

	517.162.1						414. (345)			(294) -415.				13961.414			12												1.291.415																							
BEFERENCES	77.145.(149	(414) • 444	11601011	(138) • 151	1139) . 164	134.(143	78.144.202.	141.(77)	461. (70)	17.145.201.	341.1344	134.(151)	139.(144)	78.144.202.	"Ele (SII)	344. (415	106.(15A	1750,071	451.(10)	(437) .445	(424)	(179).412	0640 (545)	13581.424	344. (369	333) . 445	407. (405.	364 (FOA)	77.145.(240	175. (425	1413) . 454	444 (11)	175. (1750)	(323) . 720	(431) • 45%	273. (275)	(154) .160	312. (HY)	(4)0) .417	1290 (017)	124. (472.	147. (471)	(117. (477)	135.(346)	17701.457	107.(122	11321.157	(141).147	1961) **	94.(129)	124.(131)	135. (372)
LABEL	•	44	NEW	AGNZ	EN94	ALS	CONT	ANEGO	AOA	MOM	APOSO	SAV	AACK	c	040	XIC	ಕ	271	ואינ	208	COXXX	0	4000	127	char	CTRACK	cxi	CX3	,)Cx	11	214	710	ivc	2	JONE.	1441	CNA	2443	3446	SNAC	LANT	2449	C.	0:	103	202	. 90=	-7°-	:11.5	470=	52

CROSS REFERENCE DIRECTORY

REFERENCES LABEL PA X

i

DIPECTORY	
REFERENCE	
CROSS	

BEFERENCES	(343).360 135.(439 353.(354)	179. (341)	145. (384)	(351) • 403	(101) .107	(113)-150	49.(103)	94.(117)	(112),120	113-011	119.(120)	(191.(123)	19411.404	(378) .44	77.145.201.13	.1171.152	(118) 144	194.(195	1465). 505	213.(2641	353. (384)	275 (175)	CBE . 1935	242. (272	275. (297)	203.12941	1466). 646	1370,000	13311.32-	212.15711	214.(217	214.(2221	154. (324)	. 065. (r [F)	116. (196)	173.(200	1866).566	1616).856	115.1451)	125,134	124618867	236.(315,	
LAREL	VOCAYS	NOVEF?	VOVEF4	oly5N	VTEO3	VIEDS	LTFO	UTEOLP	VTEOLA	בבטבו	41614	VILT.	VISAVE	טיר	191	Tir	STILL STILL	יואכ	CNL	FWT	JAEFI	JVFF	794	2000	xalic	Ixeuc	cxeuc	500	1566	2016	211542	205616	2.1544	5421.C	21544	2,154	x5i.c	1x5iic		25.6	, LAC	17.	

515.14

=	
504	
MICAUCODE	
5	
2	
2	
2	
2	
2	
200	
100	
ACC.	
A COL	
200	
1	
A COL	
ALUS CO PACER	

CROSS REFERENCE DIRECTORY

REFERENCES	(314).315	7 8	77.145.(160).291.415	419. (420	436, (437)	436 (438)	236.433. (434)	636. (640)	(80) -235	(94) ,235	-	(147),235	8	3	Š	32	2	2	25	(31).453	(126) -235	126,1128	236.(417,	417. (429)	236. (369.	389. (412)	255, (264)	13451.424	135. (304.	145.291.61	1.145	202-416-(418	755.652	(169) -453	060, 1991	(249).444	77.145.291. (337).415	134,(153	(98) .117	216. (219) . 221
ריינו	PTS.1	9TN3	3	VIS.	22	3	SAE	SAME	35	98	200	SGE	SOEC	LI NO	SKNI	SKP	SKPI		מיני							501	0	3	955	STA	STX.	25	704	TRAP	*	×	XOR1	XXX		22

DISTRIBUTION

Defense Documentation Center US Army Materiel Systems Analysis Activity	
Cameron Station 12 ATTN: DRXSY-MP	1
Alexandria, VA 22314 Aberdeen Proving Ground, Maryland 21005	
Deputy Chief of Research and Development University of California Deputy Chief of Research and Development	
and the American	
ATTN: Dr. Jack Skiensky	2
Washington, D. C. 20310 Irvine, California 92664	
Office, Assistant Chief of Staff US Army Research Office	
for Force Development ATTN: Information Processing Office	1
Department of the Army Box CM, Duke Station	
ATTN: FORSD, MG W. A. Burke 1 Durham, NC 27706	
FORSD-FS, COL J. N. Hale Defense Advanced Research Project	
Weshington, D. C. 20310 Agency	
ATTN: Maj. Karam	1
Commander Dr. Tegnelia	1
US Army Combat Developments Command 1400 Wilson Boulevard	
Field Artillery Agency Arlington, Virginia 22209	
ATTN: COCFA-WC, F. Shelton	
Fort SW, Oklehoma 78603 Martin Marietta Corp.	
ATTN: A. G. Layton	
Commander P. O. Box 5837 MP 251	
US Army Weapons Command Orlando, Florida 32805	
ATTN: AMSWE-RD, COL C. Alter	
J. Brinkman 1 Texas Instruments, Inc.	
AMSWE-RDP, Dr. M. Amoruso 1 ATTN: L. J. Freeman	1
AMSWE-RDF, G. Schlenker 1 Dr. Clay Shultz	1
AMCPM-CAWS, H. Noble 1 P. O. Box 6015	
SWEER-R-ST, H. Garver 1 Dallas, Texas 75222	
Rock Island, Illinois 61201	
Dr. Dave Casasent	. 1
Carnegie-Mellon University	
Director Pittsburgh, PA 15213	
Aberdeen Research and Development	
Center ATTN: AMXRD-RAD, Dr. R. Eichelberger 2	1
-W	1
Aberdeen Proving Ground, Maryland 21005 DRDMI-X Commander	1
-T, Dr. Kobler	1
Commander -T, Mr. James J. Fagan	1
Picatinny Arsenal -TE, Mr. Lindberg	1
ATTN: SMUPA-DWO, J. Brooks 1 -TE, Mr. Pittman	1
Dover, New Jersey 07801 -TEO, Dr. Minor	25
Mr. Sitton	1
Commander Mr. Widenhofer	1
US Army Material Command Mr. Wylie	1
ATTN: DRCRD-MT-MT 5 Mr. Farmer	1
501 Eisenhower Avenue Dr. Kulas	1
Alexandria, Virginia 22304 -C, Maj. W. Ward	1
Maj. W. Adams	1
Director -TG, Mr. J. Huff	1
Night Vision Laboratory (US AECOM) -HF, Mr. N. Mangns	1
ATTN: Dr. John Dehue DRESL-NV-VI 2 -TD, Dr. McCorkie	1
Dr. George Jones -TI, (Record Set)	
Fort Belvoir, Virginia 22060 (Reference Set)	