Homework 3

Research Methods, Spring 2025

Ryan Scholte

You can access the Repository # 1 Bar Graph

Proportion of States with Cigarette Tax Change (1970-1985)

5 highest states in legend

5 lowest states in legend

Both start with similar sales per capita, but the states with the highest price increases have a steeper decline in sales per capita compared to the states with the smallest price increases. This suggests that significant price increases do decrease cigarette sales per capita further.

7

OLS 1970-1990

OLS Regression Results

Dep. Variable:	ln_sales	R-squared:	0.126
Model:	OLS	Adj. R-squared:	0.125
Method:	Least Squares	F-statistic:	153.9
Date:	Tue, 18 Mar 2025	Prob (F-statistic):	4.18e-33
Time:	14:52:19	Log-Likelihood:	148.99
No. Observations:	1071	AIC:	-294.0
Df Residuals:	1069	BIC:	-284.0
Df Model:	1		

Covariance	Type:	nonrob	ust			
=======	coef	std err	t	P> t	[0.025	0.975]
const	4.7504 -0.1715	0.008 0.014	585.321 -12.404	0.000	4.734 -0.199	4.766 -0.144
ln_price	-0.1715 =======	0.014	-12.404	0.000	-0.199 	-0.144
Omnibus:		64.	611 Durbin	ı-Watson:		0.139

0.000

Notes:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Jarque-Bera (JB):

224.414

/var/folders/mn/l2nrwsxn24g6ywz6ygh2fxp40000gn/T/ipykernel_54710/416662071.py:5: SettingWith A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guidcig_data['ln_sales'] = np.log(cig_data['sales_per_capita'])

/var/folders/mn/l2nrwsxn24g6ywz6ygh2fxp40000gn/T/ipykernel_54710/416662071.py:6: SettingWith A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guidcig_data['ln_price'] = np.log(cig_data['cost_per_pack'])

/var/folders/mn/l2nrwsxn24g6ywz6ygh2fxp40000gn/T/ipykernel_54710/416662071.py:7: SettingWith A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guidcig_data['ln_total_tax'] = np.log(cig_data['tax_dollar'])

8a

first stage 1970-1990

First-stage Regression (ln_price ~ ln_total_tax):

OLS Regression Results

==========	=======		=======			=======	
Dep. Variable:		ln_price	R-square	ed:		0.683	
Model:		OLS	Adj. R-s	squared:		0.683	
Method:	L	east Squares	F-statis	stic:		2301.	
Date:	Tue,	18 Mar 2025	Prob (F-	-statistic):		8.21e-269	
Time:		14:52:19	Log-Like	elihood:		-86.164	
No. Observations	:	1071	AIC:			176.3	
Df Residuals:		1069	BIC:			186.3	
Df Model:		1					
Covariance Type:		nonrobust					
	coef			P> t	[0.025	0.975]	
const	1.1786		35.712	0.000	1.114	1.243	
ln_total_tax	1.0803	0.023	47.973	0.000	1.036	1.125	
Omnibus:		30.760	Durbin-V	Vatson:		0.408	
Prob(Omnibus):		0.000	Jarque-H	Bera (JB):		32.668	
Skew:		0.421	Prob(JB)):		8.06e-08	
Kurtosis:		3.156	Cond. No).		8.72	

Notes:

8b

second stage 1970-1990

Second-stage Regression (ln_sales ~ pricehat):

OLS Regression Results

Dep. Variable:	ln_sales	R-squared:	0.236
Model:	OLS	Adj. R-squared:	0.235
Method:	Least Squares	F-statistic:	330.3
Date:	Tue, 18 Mar 2025	Prob (F-statistic):	1.56e-64
Time:	14:52:19	Log-Likelihood:	221.17
No. Observations:	1071	AIC:	-438.3

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Df Residuals: 1069 BIC: -428.4

Df Model: 1
Covariance Type: nonrobust

========	:=======	========	========	========	:=======	========
	coef	std err	t	P> t	[0.025	0.975]
const 0	4.7101 -0.2843	0.008 0.016	573.443 -18.175	0.000 0.000	4.694 -0.315	4.726 -0.254
========		=======				=======
Omnibus:		83	.338 Durb	oin-Watson:		0.157
Prob(Omnibu	ເຮ):	0	.000 Jaro	ue-Bera (JB)):	430.014
Skew:		0	.023 Prob	(JB):		4.20e-94
Kurtosis:		6	.104 Cond	l. No.		2.98
========	========	========	========	========	========	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

the value of OLS without the instrument is -0.17 and with the instrument is -0.28. This means that a 1% increase in price will decrease sales per capita by 0.17% or 0.28%. They are different and this is due the endogeneity in the naive estimate. For example a state could increase the tax rate because it has a high smoking rate, and this would bias the estimate.

9a

OLS 1991-2015

OLS Regression Results

Dep. Variable	:	ln_	sales	R-sqı	uared:		0.533
Model:			OLS	Adj.	R-squared:		0.532
Method:		Least Sq	uares	F-sta	atistic:		1451.
Date:		Tue, 18 Mar	2025	Prob	(F-statistic):		1.52e-212
Time:		14:	52:19	Log-I	Likelihood:		-296.47
No. Observation	ons:		1275	AIC:			596.9
Df Residuals:			1273	BIC:			607.2
Df Model:			1				
Covariance Typ	pe:	nonr	obust				
==========		=======	======	=====			
	coef	std err		t	P> t	[0.025	0.975]
const	5.0395	0.023	219	.934	0.000	4.995	5.084
<pre>ln_price</pre>	-0.6656	0.017	-38	.094	0.000	-0.700	-0.631
Omnibus:	======	 1	====== 9.351	===== Durb:	========= in-Watson:		0.158
Prob(Omnibus)	:		0.000	Jarqı	ue-Bera (JB):		33.046
Skew:			0.064	Prob			6.67e-08
Kurtosis:			3.778	Cond	. No.		5.37
==========		=======					=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

/var/folders/mn/l2nrwsxn24g6ywz6ygh2fxp40000gn/T/ipykernel_54710/1062089729.py:3: SettingWitz A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guidcig_data2['ln_sales'] = np.log(cig_data2['sales_per_capita']) /var/folders/mn/l2nrwsxn24g6ywz6ygh2fxp40000gn/T/ipykernel_54710/1062089729.py:4: SettingWitz

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guidcig_data2['ln_price'] = np.log(cig_data2['cost_per_pack'])

/var/folders/mn/l2nrwsxn24g6ywz6ygh2fxp40000gn/T/ipykernel_54710/1062089729.py:5: SettingWith A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guidcig_data2['ln_total_tax'] = np.log(cig_data2['tax_dollar'])

9b

first stage 1991-2015

First-stage Regression (ln_price ~ ln_total_tax):

OLS Regression Results

=======================================				========		
Dep. Variable:		<pre>ln_price</pre>	R-squar	R-squared:		
Model:		OLS	Adj. R-	squared:		0.869
Method:	Le	east Squares	F-stati	stic:		8442.
Date:	Tue,	18 Mar 2025	Prob (F	-statistic):		0.00
Time:		14:52:19	Log-Lik	elihood:		396.65
No. Observations	:	1275	AIC:			-789.3
Df Residuals:		1273	BIC:			-779.0
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	1.2072	0.005	242.906	0.000	1.197	1.217
<pre>ln_total_tax</pre>	0.6300	0.007	91.881	0.000	0.617	0.643
Omnibus:		 10.474	Durbin-	======================================		0.330
Prob(Omnibus):		0.005	Jarque-	Bera (JB):		10.642
Skew:		0.223	Prob(JB):		0.00489
Kurtosis:		2.965	Cond. N	ο.		1.38

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

9c

second stage 1991-2015

Second-stage Regression (ln_sales ~ pricehat):

OLS Regression Results

=======================================	=====		=====	=====		======	
Dep. Variable:		ln_s	ales	R-sq	uared:		0.608
Model:			OLS	Adj.	R-squared:		0.607
Method:		Least Squ	ares	F-st	atistic:		1972.
Date:	Т	ue, 18 Mar	2025	Prob	(F-statistic):		6.43e-261
Time:		14:5	2:19	Log-	Likelihood:		-184.97
No. Observations	:		1275	AIC:			373.9
Df Residuals:			1273	BIC:			384.2
Df Model:			1				
Covariance Type:		nonro	bust				
=======================================		=======	=====	=====	==========	======	=========
	coef	std err		t	P> t	[0.025	0.975]
const 5	. 1575	0.022	23:	1.116	0.000	5.114	5.201
0 -0	.7626	0.017	-44	4.405	0.000	-0.796	-0.729
Omnibus:	=====	======== 44	===== .690	Durb	======== in-Watson:	======	0.217
Prob(Omnibus):		0	.000	Jarq	ue-Bera (JB):		107.551
Skew:		0	.134	-	(JB):		4.42e-24
Kurtosis:		4	.397	Cond	. No.		5.71

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Time Period	Model	ATE (Price Elasticity)
1970-1990	OLS	-0.171540
1970-1990	2SLS	-0.284348
1991-2015	OLS	-0.665626
1991-2015	2SLS	-0.762650

The trend of the increase in effect shown by the IV estimate is consistent in both time periods. This is due to the same issues of endogeneity in both time periods. Comparing the two time periods, the effect of the price increase on sales per capita is larger in the second time period. This could be due to the fact that the taxes increased more steaply in the second time period. Another explaination for a higher elasticity in the second time period (less addictive/more price sensitive) could be that cultural values have shifted due to more education on the health risks of smoking or preferences. Another explanation could be that increases access to alternative like E-cigarettes or other smoking cessation products.