AISAT/Form/QPM7/F10

QUESTION BANK

	Module 3			
Sl. No.	Question	Marks	СО	BL
1	Define eccentricity of a vertex and hence find the center of the following tree.	3	CO3	L1
2	What is the sum of the degrees of any tree of n vertices?	3	CO3	L1
3	A tree has 5 vertices of degree 2, 3 vertices of degree 3 and 4 vertices of degree 4. How many vertices of degree 1 does it have?	3	соз	L2
4	How many spanning trees are there for the following graph?	3	СО3	L1
5	How many labelled trees are there with n vertices? Draw all labelled trees with 4 vertices.	3	СОЗ	L1
6	Find the number of labelled trees with n vertices and hence draw all the labelled trees with 3 vertices	3	соз	L3
7	Define spanning tree with suitable example.	3	CO3	L1
8	Prove that a connected graph G with n vertices and n-1 edges ia a tree.	5	CO3	L2
9	Define binary tree. Prove that the number of pendant vertices in a binary tree with n vertices is $\frac{n+1}{2}$	5	CO3	L2
10	Plot a maximum level and minimum level binary tree with 11 vertices.	5	СОЗ	L2

AISAT/Form/QPM7/F10

QUESTION BANK

				l
11	Prove that in any tree (with 2 or more vertices) there are at least 2	5	CO3	L2
	pendant vertices.			
12	Prove that a tree with n vertices has (n-1) edges.	7	CO3	L3
13	Discuss the centre of a tree and prove that every tree has either one or two centers.	7	CO3	L2
14	Prove that G is a tree if and only if there is one and only one path	7	CO3	L2
14	between every pair of vertices.	,	COS	
15	Write Kruskal's algorithm for finding minimum spanning tree. Find the minimum spanning tree for the weighted graph shown below using Kruskal's algorithm.	9	CO3	L3
16	Write Prim's algorithm for finding minimum spanning tree. Find a minimum spanning tree in the following weighted graph, using Prim's algorithm	9	CO3	L3
17	Write Dijkstra's shortest path algorithm and hence find the shortest path between the vertices A and in the weighted graph given below.	9	CO3	L3

AISAT/Form/QPM7/F10

QUESTION BANK

	oo-draph theory>			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
18	Use Kruskal's algorithm to find a minimum spanning tree for the weighted graph shown below. A 5 B 4 C 3 7 E 1 F 6 8 4 H 2	9	CO3	L3
19	Find the shorted distance matrix and the corresponding shortest path matrix for all the pairs of vertices in the undirected graph given using Warshall's algorithm. $A(v_1) = \frac{3}{4} + \frac{1}{5}$ $D(v_4) = \frac{3}{1} + \frac{1}{5}$ $C(v_3)$	9	CO3	L3
20	Find the shortest distance matrix and the corresponding shortest path matrix for all the pairs of vertices in the following directed weighted graph using Warshall's algorithm.	9	CO3	L3

AISAT/Form/QPM7/F10

QUESTION BANK

	Module 4			
Sl. No.	Question	Marks	со	BL
1	Define edge connectivity, vertex connectivity and separable graphs. Give an example for each.	3	CO4	L1
2	Draw Kuratowski's Two graphs.	3	CO4	L1
3	Explain geometrical dual (G*) of a graph with an example.	3	CO4	L1
4	Show that in a simple connected planar graph G having V-vertices and E-edges E <= 3V - 6.	3	CO4	L2
5	Define fundamental circuits and fundamental cut-sets.	3	CO4	L1
6	If G is a 5-regular simple graph and V = 10, prove that G is non-planar.	3	CO4	L2
7	State Euler's theorem and determine whether a graph G with 1000 vertices and 3000 edges is planar.	5	CO4	L3
8	Prove that the vertex connectivity of any graph G can never exceed the edge connectivity of G.	5	CO4	L2
9	Prove that the maximum vertex connectivity of a graph with n vertices and e edges is the integral part of the number 2e/n.	5	CO4	L2
10	Prove that a connected graph with n vertices and e edges has e-n+2 regions.	7	CO4	L2
11	A vertex v in a connected graph G is a cut-vertex if and only if there exist two vertices x and y in G such that every path between x and y passes through v	7	CO4	L2
12	Prove the statement: Every cut set in a connected graph G must also contain at least one branch of every spanning tree of G.	7	CO4	L2
13	With respect to a given spanning tree T, a chord c_i that determines a fundamental circuit γ occurs in every fundamental cut-set associated with the branches in γ and in no other.	7	CO4	L2

AISAT/Form/QPM7/F10

QUESTION BANK

	State Kuratowski's theorem and use it to show that the graph G below is			
	not planar. Draw G on the plane without edges crossing. Your drawing			
	should use the labelling of the vertices given.			
14	A B C C G	9	CO4	L3
15	State Kuratowski's theorem and show that Petersen Graph is nonplanar	9	CO4	L3
13	using Kuratowski's theorem.		CO4	LJ
16	Define cut-set. Prove that every circuit in G has an even number of edges	7	CO4	L2
	in common with any cut-set.			
	Construct the geometric dual of the graph below			
17	F1 F5 F2 F3	6	CO4	L3
18	Prove the statement: Every cut set in a connected graph G must also	5	CO4	1.2
19	contain at least one branch of every spanning tree of G.	5	CO4	L2
4				
19	Let G be a connected graph and e an edge of G. Show that e is a cut-edge	7	CO4	L3
	if and only if e belongs to every spanning tree.		7	
	Draw the geometrical dual (G*) of the graph given below, also check			
	whether G and G* are self-duals or not, substantiate your answer clearly			
	whether o and o are sen-duals of not, substantiate your answer clearly			
	*			
20		7	CO4	L3