

定点小数原/反/补码的转换 一样一样的,大哥 $[X]_{\overline{\mathbb{Q}}}$ [-X]_{*} 正数相同; 负数末位+1 正数相同; 全部位按位取 负数"数值 反、末位+1 位"按位取反 0正1负 正数相同; [X]* X_{真值} 负数从右往左找到第一个1,这个1 左边的所有"数值位"按位取反 王道考研/CSKAOYAN.COM

定点小数的加/减运算

对两个定点小数A、B进行加法/减法时,需要先转换为补码

计算机硬件如何做<mark>定点小数补码</mark>的<mark>加法</mark>:从最低位开始,按位相加(<mark>符号位参与运算</mark>),并往更高位进位

- 计算机硬件如何做<mark>定点小数补码的减法</mark>: ①"被减数"不变,"减数"全部位按位取反、末位+1,<mark>减法变加法</mark> ②从最低位开始,按位相加,并往更高位进位

不一样? 其实都一样

王道考研/CSKAOYAN.COM

定点小数

符 2⁻¹ 2⁻² 2⁻³ 2⁻⁴ 2⁻⁵ 2⁻⁶ 2⁻⁷

定点小数 vs 定点整数

定点整数

符 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

n+1 bit	合法表示范围	最大的数	最小的数	真值0的表示
定点整数:原码	$-(2^n-1) \le x \le 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,111111 = -(2 ⁿ -1)	[+0] _原 = 0 ,000000 [-0] _原 = 1 ,000000
定点整数:反码	$-(2^n-1) \le x \le 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -(2 ⁿ -1)	$[+0]_{\overline{\bowtie}} = 0,000000$ $[-0]_{\overline{\bowtie}} = 1,111111$
定点整数:补码	$-2^n \le x \le 2^n - 1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -2 ⁿ	[0] _补 = 0 ,000000 真值0只有一种补码
定点小数:原码	$-(1-2^{-n}) \le x \le 1-2^{-n}$	0 ,111111 = 1-2 ⁻ⁿ	1 ,111111 = -(1-2-1/2)	[+0] _原 = 0 ,000000 [-0] _原 = 1 ,000000
定点小数:反码	$-(1-2^{-n}) \le x \le 1-2^{-n}$	0 ,111111 = 1-2 ⁻ⁿ	1 ,000000 = -(1-2 ⁻¹⁷)	[+0] _反 = 0 ,000000 [-0] _反 = 1 ,111111
定点小数:补码	$-1 \leq x \leq 1 - 2^{-n}$	0 ,111111 = 1-2 ⁻ⁿ	1 ,000000 = -1	[0] _补 = 0 ,000000 真值0只有一种补码

王道考研/CSKAOYAN.COM

定点小数 vs 定点整数

特别注意: 位数扩展时, 拓展位置不一样

定点小数

符 2⁻¹ 2⁻² 2⁻³ 2⁻⁴ 2⁻⁵ 2⁻⁶ 2⁻⁷

定点整数

符 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

定点小数: [x]原= 1.110

[x]原 = **1.**1100000

定点整数: [x]原= **1,**110

[x]原=**1,**0000110

王道考研/CSKAOYAN.COM

7

整数补码的加法运算(例1)

A: +19 → 补码

B: -19 → 补码

0 0 0 1 0 0 1 1

1 1 0 1 1 0 1 8bit寄存器

按位

A+B=0 → 补码

0 0 0 0 0 0 0

8bit寄存器

8bit寄存器

计算机硬件如何做<mark>补码</mark>的<mark>加法</mark>:从最低位开始,按位相加(<mark>符号位参与运算</mark>),并往更高位进位

王道考研/CSKAOYAN.COM

