Introduction to Machine Learning

Fall 2021

University of Science and Technology of China

Lecturer: Jie Wang
Posted: Oct. 26, 2021
Homework 3
Due: Nov. 10, 2021

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Convex Sets

Let $C \subset \mathbb{R}^n$ be a convex set. Please show the following statements.

- 1. Both $\mathbf{cl}\ C$ and $\mathbf{int}\ C$ are convex.
- 2. The set **relint** C is convex.
- 3. The intersection $\bigcap_{i \in I} C_i$ of any collection $\{C_i : i \in \mathcal{I}\}$ of convex sets is convex.
- 4. If C_1 and C_2 are convex sets in \mathbb{R}^n , then the set

$$C_1 - C_2 = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2, \mathbf{x}_1 \in C_1, \mathbf{x}_2 \in C_2 \}$$

is convex.

- 5. The set $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{a}, \mathbf{x} \in C\}$ is convex, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{a} \in \mathbb{R}^m$.
- 6. The set $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{x} = \mathbf{B}\mathbf{y} + \mathbf{b}, \mathbf{x} \in C\}$ is convex, where $\mathbf{B} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$.

Exercise 2: Affine Sets

Please show the following statements about affine sets.

- 1. If $U \subset \mathbb{R}^n$ and $\mathbf{0} \in U$, then U is an affine set if and only if it is a subspace.
- 2. If $U \subset \mathbb{R}^n$ is an affine set, there is a unique subspace $V \subset \mathbb{R}^n$ such that $U = \mathbf{u} + V$ for any $\mathbf{u} \in U$.

Exercise 3: Relative Interior

Let $C \subset \mathbb{R}^n$ be a convex set and $\mathbf{x}_0 \in C$. Please show the following statements.

- 1. The set $\mathbf{aff} C \mathbf{x}_0$ is a subspace of \mathbb{R}^n .
- 2. The point $\mathbf{x}_0 \in \mathbf{relint}\ C$ if and only if there exists r > 0 such that $\mathbf{x}_0 + r\mathbf{v} \in C$ for any $\mathbf{v} \in \mathbf{aff}\ C \mathbf{x}_0$ and $\|\mathbf{v}\|_2 \leq 1$.
- 3. Let $\{\mathbf{v}_i\}_{i=1}^m$ be a basis of $\mathbf{aff}\,C \mathbf{x}_0$. Then $\mathbf{x}_0 \in \mathbf{relint}\,C$ if and only if there exists r > 0 such that $\mathbf{x}_0 + r \sum_i \alpha_i \mathbf{v}_i \in C$ for any $\{\alpha_i\}_{i=1}^m$ with $\sum_i \alpha_i^2 \leq 1$.

Exercise 4: Relative Boundary

The relative boundary of a set $S \subset \mathbb{R}^n$ is defined as **relbd** $S = \mathbf{cl}\ S \setminus \mathbf{relint}\ S$. Please show the following statements **or give counter-examples**.

- 1. For a set $S \subset \mathbb{R}^n$, relbd $S \subset \mathbf{bd} S$.
- 2. For a set $S \subset \mathbb{R}^n$, relbd $S = \mathbf{bd} S$.
- 3. For a set $S \subset \mathbb{R}^n$, relbd S = relbd cl S.
- 4. For a convex set $C \subset \mathbb{R}^n$, relbd C = relbd cl C.
- 5. For a set $S \subset \mathbb{R}^n$ and $\mathbf{x}_0 \in \mathbf{cl}\ S$, we can find a sequence $\{\mathbf{x}_k\} \subset \mathbb{R}^n \setminus \mathbf{cl}\ S$ such that $\mathbf{x}_k \to \mathbf{x}_0$ as $k \to \infty$.
- 6. For a convex set $C \subset \mathbb{R}^n$ and $\mathbf{x}_0 \in \mathbf{bd}$ C, we can find a sequence $\{\mathbf{x}_k\} \subset \mathbb{R}^n \setminus \mathbf{cl}$ C such that $\mathbf{x}_k \to \mathbf{x}_0$ as $k \to \infty$.

Exercise 5: Minkowski Summation of Sets (Optional)

The Minkowski sum of two sets S_1 and S_2 is defined by

$$S_1 + S_2 = \{ \mathbf{x} + \mathbf{y} : \mathbf{x} \in S_1, \mathbf{y} \in S_2 \}.$$

- 1. Let $S_1 = \{ \mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}||_2 \le 1 \}$ and $S_2 = \{ \mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}||_{\infty} \le 1 \}$.
 - (a) Please draw the set $S_1 + S_2$.
 - (b) How do you tell if a point \mathbf{x} is in the set $S_1 + S_2$?
- 2. Recall that \mathbb{R}^n can be decomposed as $\mathbb{R}^n = S \oplus S^{\perp}$, i.e., $\mathbb{R}^n = S + S^{\perp}$ and $S \cap S^{\perp} = \emptyset$, where $S \subset \mathbb{R}^n$ is a subspace and $S^{\perp} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} \perp S\}$. Let $C \subset \mathbb{R}^n$ be a convex set. Define $\hat{C} = C + (\mathbf{aff} C \mathbf{x}_0)^{\perp}$. Please show that:
 - (a) $\dim(\mathbf{aff}\,\hat{C}) = n;$
 - (b) relint $C = \text{relint } \hat{C}$;
 - (c) relbd $C = \text{relbd } \hat{C}$.

Exercise 6: Convex Sets and Linear Functions

Let $C \subset \mathbb{R}^n$ be a convex set and $l(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle$ be a linear function on \mathbb{R}^n . The linear function is nontrivial if $\mathbf{a} \neq \mathbf{0}$. Suppose $\mathbf{x}_0 \in C$ and denote

$$\mathcal{B}_C(\mathbf{x}_0, r) = \mathcal{B}(\mathbf{x}_0, r) \cap \mathbf{aff} C.$$

Please show the following statements.

- 1. If $l(\mathbf{x}) = \alpha, \forall \mathbf{x} \in \mathcal{B}_C(\mathbf{x}_0, r)$, then $l(\mathbf{x}) = \alpha, \forall \mathbf{x} \in C$.
- 2. The linear function $l(\mathbf{x}) = \alpha, \forall \mathbf{x} \in \mathcal{B}_C(\mathbf{x}_0, r)$ for some constant α if and only if $\mathbf{a} \perp (\mathbf{aff} C \mathbf{x}_0)$.
- 3. The linear function $l(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle$ is not constant if and only if $\Pi_{(\mathbf{aff}C \mathbf{x}_0)}(\mathbf{a}) \neq \mathbf{0}$, where Π means the projection.
- 4. If **relbd** $C \neq \emptyset$, then there exists a nontrivial linear function l, and a constant α such that $l(\mathbf{x}) \leq \alpha$ for $\forall \mathbf{x} \in C$.

Exercise 7: Convex Set and Unit Ball (Optimal)

Let $C \subset \mathbb{R}^n$ be a nonempty **compact** convex set. Without loss of generality, we can assume that $\mathbf{0} \in C$.

- 1. Please show that C must have a relative interior. (**Hint:** Take $\{\mathbf{e}_i\}_{i=1}^m \subset C$ such that it is a basis of **aff** C. Then consider $\mathbf{e}_0 = \frac{1}{m+1} \sum_{i=1}^m \mathbf{e}_i$.)
- 2. Without loss of generality, suppose **0** is a relative interior of C. Then the Minkowski functional $p: \mathbf{aff} C \to \mathbb{R}_{\geq 0}$ is defined as $p(\mathbf{x}) = \inf\{\lambda > 0 : \frac{\mathbf{x}}{\lambda} \in C\}$. Please prove its following properties:
 - (a) $p(\mathbf{x}) = 0 \iff \mathbf{x} = \mathbf{0}$.
 - (b) p is continuous on **aff** C.
 - (c) There exist constants c_1 and c_2 such that $c_1 \|\mathbf{x}\|_2 \le p(\mathbf{x}) \le c_2 \|\mathbf{x}\|_2$ for $\forall \mathbf{x} \in \mathbf{aff} C$.
- 3. Still we suppose that $\mathbf{0}$ is a relative interior of C. Let $\overline{\mathcal{B}}_1(0) = \{\mathbf{x} \in \mathbf{aff} \, C : \|\mathbf{x}\|_2 \leq 1\}$. Define $\varphi : \overline{\mathcal{B}}_1(0) \to C$ as

$$arphi(\mathbf{z}) = egin{cases} rac{\|\mathbf{z}\|_2}{p(\mathbf{z})}\mathbf{z}, & \mathbf{z}
eq \mathbf{0} \ 0, & \mathbf{z} = \mathbf{0}. \end{cases}$$

Please show that φ is a homeomorphism, i.e., φ is a bijection and both φ and φ^{-1} are continuous.

Exercise 8: Separation Theorems

Let $C_1, C_2, C \subset \mathbb{R}^n$ be convex sets. Please show the following statements.

- 1. If C_1 is compact and $C_1 \cap C_2 \neq \emptyset$, then C_1 and C_2 can be strongly separated.
- 2. The sets C_1 and C_2 can be properly separated if and only if **relint** $C_1 \cap \mathbf{relint}$ $C_2 = \emptyset$.
- 3. If $\dim(\mathbf{aff}\,C) = n$ and $\mathbf{x} \in \mathbb{R}^n \setminus C$, then \mathbf{x} and C can be properly separated.

Exercise 9: Farkas' Lemma

Let $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n) \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Consider a set $A = {\mathbf{a}_1, \dots, \mathbf{a}_n}$. Its conic hall **cone** A is defined as

$$\mathbf{cone}\,A = \{\sum_{i=1}^n \alpha_i \mathbf{a}_i : \alpha_i \ge 0, \mathbf{a}_i \in A\}.$$

- 1. Please show that $\mathbf{cone} A$ is closed and convex.
- 2. If $\mathbf{b} \in \mathbf{cone} A$, please show that there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.
- 3. If $\mathbf{b} \notin \mathbf{cone} A$, use separation theorems to show that there exists $\mathbf{y} \in \mathbb{R}^m$, such that $\mathbf{A}^{\top} \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^{\top} \mathbf{y} < 0$.
- 4. Now you can prove Farkas' Lemma: for given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, one and only one of the two statements hold:
 - $\exists \mathbf{x} \in \mathbb{R}^n$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.
 - $\exists \mathbf{y} \in \mathbb{R}^m$, $\mathbf{A}^{\top} \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^{\top} \mathbf{y} < 0$.