# Pneumonia detection on chest X-ray images

# Meet our team





Alsu Vakhitova Alsu.Vakhitova@skoltech.ru



Batyrkhan Gainitdinov

Batyrkhan.Gainitdinov@skoltech.ru Mohammed.Deifallah@skoltech.ru



Mohammed Deifallah

# 1. Problem Description



people died from pneumonia in 2017



#### Death rate from pneumonia, 2017

Our World in Data

The annual number of deaths from pneumonia per 100,000 people.



Source: Global Burden of Disease Study, IHME (2018)

OurWorldInData.org/pneumonia • CC BY

Note: To allow comparisons between countries and over time this metric is age-standardized. Deaths from 'clinical pneumonia', which refers to a diagnosis based on disease symptoms such as coughing and difficulty breathing and may include other lower respiratory diseases.



# **Expected value**

- Rapid screen of all patients
- Aid in early detection of the disease
- Protection of health care workers



### Dataset description

- Patients of 1-5 years old
- ► 5,863 X-Ray images
- 2 categories:Pneumonia/Normal



### Additional dataset description

- From the personal archive by the doctor of Sechenov university, department of Pulmonology prof.
   Gainitdinova Viliya Vilevna
- ► 64 X-Ray images
- Only pneumonia



# 2. CV Algorithms

# Data augmentation







**Original** 



**Random Brightness** 



**Random Rotation** 



**Horizontal Flip** 



### Feature extraction: HOG





#### Feature extraction: LBP

- Local Binary Patterns
- Texture descriptor
- Labels the pixels of an image by thresholding the neighborhood of each pixel and considers the result as a binary number



# 3. Results



# HOG + SVC (with data augmentation)

1. GridSearch parameters (cv = 5, verbose = 10):

```
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100],
'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}

grid_search.best_params_
{'C': 10, 'gamma': 0.1}
```

2. With the accuracy:

```
print(accuracy_score(labels_test,labels_hog_aug_pred))
0.708974358974359
```



# HOG + SVC (without data augmentation)

#### 1. GridSearch parameters (cv = 5):

#### 2. With the accuracy:

```
print(accuracy_score(labels_test,labels_hog_pred))
0.7532051282051282
```



# LBP + SVC (with data augmentation)

#### GridSearch parameters (cv = 5):

```
C vals = np.logspace(start=-1, stop=4, num=10, endpoint=True, dtype=float)
params = {'C': C vals,
           'gamma': np.logspace(start=-1, stop=3, num=10)}
```



```
[51] grid search lbp.best params
    {'C': 215.44346900318845, 'gamma': 1000.0}
```

#### With the accuracy:

```
print(accuracy score(y aug test, y aug test pred))
print(grid search lbp.best estimator .score(X=X aug test, y=y aug test))
0.7318840579710145
0.7318840579710145
```



# LBP + SVC (without data augmentation)

#### 1. GridSearch parameters (cv = 5):



```
grid_search_lbp.best_params_
{'C': 517.9474679231213, 'gamma': 26.826957952797272}
```

#### 2. With the accuracy:

```
print(accuracy_score(y_test, y_test_pred))
print(grid_search_lbp.best_estimator_.score(X=X_test, y=y_test))
0.75625
0.75625
```



# 4. Conclusion

### Results analysis

- Augmentation+LBP+SVC is the best according to confusion matrix
- Data augmentation may not help if imbalance is too dramatic
- Simple classical algorithms can still give decent results
- Results can be improved by:
  - Stronger classification algorithms (for example, Logistic Regression)
  - Neural Networks

# THANKS!

#### Any questions?

You can find us at:

- Alsu.Vakhitova@skoltech.ru
- ► Batyrkhan.Gainitdinov@skoltech.ru
- Mohammed.Deifallah@skoltech.ru