Regularitet og Automater: Assignment 6

Rasmus Dalsgaard (201605295)

May 2017

Introduction

In this assignment, we're tasked to use the pumping lemma on languages such as to show that the given language is not a CFL.

The exercise processed is $[Martin]^1$ 6.2 (a):

$$L = \{a^i b^j c^k | i < j < k\}$$

Pumping lemma

The lemma for context-free languages states that if L is context-free and $n=2^{p+1}$, then

- $\exists n > 0 : \forall \omega \in L$
- $|\omega| \ge n$
- $\exists v, w, x, y, z \in \Sigma^*$
- $\omega = vwxyz$
- $|wxy| \leq n$
- |wy| > 0
- $\forall m \geq 0 : vw^m xy^m z \in L$

To show that a language is not context-free, we must break out of the constraints in a mathematically valid fashion to reach an out-of-bounds state that invalidates the status of CFL such that

$$\forall m \geq 0 : vw^m xy^m z \notin L$$

 $^{^{\}rm 1}{\rm John}$ Martin: Introduction to Languages and The Theory of Computation, Fourth Edition

Process

Considering that $L = \{a^i b^j c^k | i < j < k\}$ and n > 0 as per the lemma, let an arbitrary string $\omega \in L$.

In order to employ the pumping lemma, let an n-bound string be

$$\omega = a^n b^{n+1} c^{n+2} \in L$$
$$|\omega| = 3n + 3 \ge n$$

Splitting ω into vwxyz such that $|wxy| \leq n$ and |wy| > 0, according to the lemma, we know that |wy| > 0 and that the precursive a^n fills out the n first characters of ω . A visual way of representing this would be writing out generated string from a random n value of, say, n = 3

$$\omega = a^n b^{n+1} c^{n+2} = \underbrace{aaa}_{\text{n}} \underbrace{bbbb}_{\text{n+1}} \underbrace{ccccc}_{\text{n+2}}$$

The reach of $|wxy| \le n$ allows us to reach only a's, b's or c's, or an overlap of a maximum of two of these, but not all three symbols. For example

$$\omega = \underbrace{aaa}^{\leq n} \underbrace{bbb}^{\leq n} \underbrace{b ccc} cc$$

$$\omega = \underbrace{a\underbrace{abb}_{bbc} cccc}^{\leq n}$$

$$|wxy|$$

Breaking stuff

Considering the structure of $L = \{a^i b^j c^k | i < j < k\}$ we know that if a^i is greater or equal to j or k then the language is not context-free. This effect can be obtained by utilizing the pumping formula

$$\omega = uv^m xy^m z \in L$$

Evaluating the syntax based on $|wxy| \le n$ and looking at bracings above, we have the cases chalked up: either $wxy \in \omega$ contains a's, a'a and b's, just b's, b's and c's or merely c's. Visually clearer with a defined n, say n=3, merely for examplified clarity:

Case 1: pure a

 $\forall \epsilon: 0 < \epsilon \leq n | wxy = a^\epsilon$

$$\omega = a^n b^{n+1} c^{n+2} \to vwxyz = \underbrace{v}_{\text{wxy}} \underbrace{aaa}_{\text{wxy}} \underbrace{bbbbccccc}_{\text{z}}$$

Having $wxy = a^{\epsilon}$ and pumping w^mxy^m by letting $m = n = 2^{p+1}$, we get that $a^{n\epsilon+n-\epsilon}b^{n+1}c^{n+2}$ breaks the syntax of i < j < k because $i = n\epsilon + n - \epsilon > j = n+1$ and thus the pumped $\omega \notin L$

Case 2: a and b

 $wxy = a^{\epsilon}b^{\delta}$ where $0 < \epsilon < n$ and $n < \delta < n$ and $|wxy| \le n$

$$\omega = a^n b^{n+1} c^{n+2} \to vwxyz = \underbrace{aa}_{\mathbf{v}} \underbrace{abb}_{\mathbf{wxy}} \underbrace{bbccccc}_{\mathbf{z}}$$

Having $wxy = a^{\epsilon}b^{\delta}$, we may utilize the procedure from above to pump w^mxy^m with an m = n and thus reach a state with $a^{n+(n-1)\cdot\epsilon}$ and/or $b^{2n\cdot\delta}$, smashing the valid syntax of i < j < k and thus the pumped $\omega \notin L$.

Case 3: pure b

 $\forall \epsilon : 0 < \epsilon \le n | wxy = b^{\epsilon}$

$$\omega = a^n b^{n+1} c^{n+2} \to vwxyz = \underbrace{aaa}_{\mathbf{v}} \underbrace{bbb}_{\mathbf{wxv}} \underbrace{bccccc}_{\mathbf{z}}$$

Having $wxy = b^{\epsilon}$ and pumping w^mxy^m by letting $m = n = 2^{p+1}$, we get that $a^nb^{n\epsilon+n-\epsilon+1}c^{n+2}$ breaks the syntax of i < j < k because $j = n\epsilon + n - \epsilon + 1 > k = n+2$ and thus the pumped $\omega \notin L$

Case 4: b and c

 $wxy = b^{\epsilon}c^{\delta}$ where $0 < \epsilon < n$ and $0 < \delta < n$ and $|wxy| \le n$

$$\omega = a^n b^{n+1} c^{n+2} \to vwxyz = \underbrace{aaabb}_{\mathbf{v}} \underbrace{bbc}_{\mathbf{wxy}} \underbrace{ccc}_{\mathbf{z}}$$

Considering b^{ϵ} and c^{ϵ} Let m=0 such that $\omega=vw^0xy^0z$. This pumps down ω and removes $\epsilon+\delta$ symbols from wxy, such that $\omega=a^nb^{n+1-\epsilon}c^{n+2-\delta}$, which leaves us with an amount of b's and c's out of the syntatically valid range, and thus the pumped $\omega \notin L$.

Case 5: pure c

 $\forall \epsilon : 0 < \epsilon \le n | wxy = c^{\epsilon}$

$$\omega = a^n b^{n+1} c^{n+2} \to vwxyz = \underbrace{aaabbbb}_{\mathbf{v}} \underbrace{ccc}_{\mathbf{wxv}} \underbrace{cc}_{\mathbf{z}}$$

Having $wxy = c^{\epsilon}$ and pumping w^mxy^m by letting m = 0, we get that $a^nb^{n+1}c^{n+2-\epsilon}$ breaks the syntax of i < j < k because $|wxy| \ge 1$ and by removing at least that many c's we get that $j = n + 1 \ge k = n + 2 - \epsilon$ and thus the pumped $\omega \notin L$

Conclusion

 $L = \{a^i b^j c^k | i < j < k\}$ is pumped out of bounds by m = n whenever $c \notin L$ and m = 0 when $c \in L$, and is not a context-free language.