农业大车串口通信协议

修订: 2017-12-05 (V1.0)

- **通信接口:** 串口(波特率 115200、数据位 8 位、起始位 1 位、无奇偶位: 停止位 1 位)
- **硬件接口芯片:** RS-232 (主控芯片: STM32)
- **名称定义:** 硬件控制器以英文 HW 表示,上位机软件用英文 PC 表示。

一、通信协议的模型

- 1. 本通信协议由数据帧构成,必须使用帧数据流进行判别。
- 2. 协议编码原始数据类型: **Hex16**表示,以 Bvte (8Bit) 为单位。
- 3. 每个协议帧包括: 帧起始标志, 传输码, 功能码, 数据长度, 数据域, 校验码, 帧结束标志。(每帧最大 32Byte)
- 4. 为了满足实时性的要求,接收方不做是否收到信息反馈。帧错误的处理是丢掉数据帧,不再重新发送。

帧结构	帧项目	字节数	帧内容
1	帧起始标志	1	0x73 (固定字节's')
2	传输码	1	0x11 是 PC 传给 HW 的
			0x22 是 HW 传给 PC 的
3	功能码	1	代码帧执行的功能
4	数据长度	1	表示数据域长度
5	数据域	N	数据内容
6	校验码	1	从帧起始标志到数据域最后一个 Byte
			的累加和校验
7	帧结束标志	1	0x65 (固定字节'e')

二、 帧项目的定义

1、 帧开始标志:

用一个固定字节 0x73 表示,代表一个数据帧的开始。

2、传输码

0x11 是 PC 传给 HW 的帧, 0x22 是 HW 传给 PC 的帧。

3、功能码:

用于表示本帧执行的功能,程序对数据域的解析需要根据功能码进行,功能码列表如下:

功能码 代表功能			
0x01	速度、位置收发		
0x02	电量上传		
OxEE	错误信息收发		

4、数据长度

用于表示帧的数据长度 L (不包含帧起始标志、传输码、功能码、数据 长度、校验码、和帧结束码这 6 个字节)。

注意:数据长度可以为 0! 当数据长度等于 0 时,数据域的内容为空,接着发送校验码,跳过数据域。

5、数据域

用于存放帧的数据,以字节 Byte 为单位,大小由数据长度 L 控制。帧的数据大小应**控制在 32 个字节以下**。

6、校验码:

用于校验数据帧的传输是否正确,使用累加和进行校验:从帧起始标志 开始,以字节(Byte)为单位,对逐个数据进行累加,直到数据域的最后 一个Byte,然后取累加和校验。

假设对 4 个数据 0x58, 0x11, 0x01, 0xE4 进行累加和计算,则 CS= (0x58 + 0x11 + 0x01 + 0xE4) %256 = 14E % 256 = 0x4E.

7、帧结束码:

用一个固定字节 0x65 表示,代表一个数据帧的结束。

三、 功能码的解析

1. 速度、位置收发(0x01)

PC 端运行程序后,会通过串口发送 0x01 功能帧,HW 收到帧后对电机进行控制,随后持续发送实际速度和位置的反馈帧。当 PC 在 1s 内不持续发

送目标速度和位置帧,HW则停止发送反馈帧。

帧详细定义如下:

帧	传输码	功能	数据			数挑	居域		
起始		码	长度						
标志									
0x73	0x11/0x22	0x01	Ox1A	V1	V1	V1	V1	S1	S1
	数据域								
V2	V2	V2	V2	S2	S2	V3	V3	V3	V3
				数据域					
S3	S3	V4	V4	V4	V4	S4	S4	保留	保留
校验	帧结束								
码	标志								
CS	0x65								

V1、V2、V3、V4: 各电机运行速度; 数据类型: int

S1、S2、S3、S4: 各电机方向位置; 数据类型: unsigned short int

2. 电量上传

电量信息每隔 1s 反馈一次。(按实际情况可以延迟,甚至为了不影响实时性,可以选择不发送)。

帧详细定义如下:

帧起始	传输码	功能	数据		数据域				校
标志		码	长度						验
									码
0x73	0x11/0x22	0x02		P0	P1	P2	Р3	P4	CS
帧结束									
标志									
0x65									

PO: 芯片电量, P1、P2、P3、P4: 各个电机电量

3. 错误信息收发

当 HW 检测到电机运行状态异常时,将停止各个电机的运行,并持续发送错误类型反馈帧给 PC。当 PC 检测到 HW 运行的速度或者状态有问题,将发送错误信息给 HW,HW 应立即停止电机的运行。

错误类型: 0x01: 电机运行错误

0x02: 电量异常

帧详细定义如下:

帧	传输码	功能	数据	数据域					
起始		码	长度						
标志				错误					
				类型					
0x73	0x11/0	0xEE	0x09	0x01	V1_f	V2_f	V3_f	V4_f	S1_f1
	x22				lag	lag	lag	lag	ag
	数据域		校验	帧 结	错误	的电机	对应的	flag 将	置 1,
			码	束 标	反之置 0				
				志					
S2_f1	S3_f1a	S4_f1	CS	0x65					
ag	g	ag							

帧详细定义如下:

帧	传输码	功能	数据	数据域					
起始		码	长度						
标志				错误					
				类型					
0x73	0x11/0	OxEE	0x06	0x02	P0_f	P1_f	P2_f	P3_f	P4_f1
	x22				lag	lag	lag	lag	ag
校验码	帧结束					\			

	标志	错误的电量对应的 flag 将置 1, 反之置 0
CS	0x65	