Pose Transfer in Person Re-id 汇报人: 梁天保

Method Overview

Stage-I

Figure 3: Stage-I: disentangled image reconstruction. This framework is composed of three branches: foreground, background and pose. Note that we use a fully-connected auto-encoder network to reconstruct the pose (incl. keypoint coordinates and visibility), so that we can decode the embedded pose features to obtain the heatmaps at the sampling phase.

Stage-II

Figure 4: Sampling phase: Sample foreground, background and pose from Gaussian noise to compose new person images.

Figure 8: Virtual identities for re-ID model training. Each column contains a pair of images of one identity (one FG). BG and Pose are randomly selected from training data.

Model	Training data	Rank-1	mAP 0.141	
Bow [41]	Market	0.344		
Bow* [41]	Market	0.358	0.148	
LOMO* [18]	/	0.272	0.08	
WholeBody feature (Ours)	Market	0.307	0.100	
BodyROI7 feature (Ours)	Market	0.338	0.107	
BodyROI7 feature PCA (Ours)	Market	0.355	0.114	
Res50* [6]	CUHK03 (labeled)	0.300	0.115	
Res50* [6]	Duke (labeled)	0.361	0.142	
Res50	VM	0.338	0.134	
Res50+PUL	VM+Market	0.369	0.156	
Res50+PUL+KISSME	VM+Market	0.375	0.154	

Method Overview

Methods	Marke	t-1501	Duk	e-R
Methods	rank-1	mAP	rank-1	mAP
BoW+kissme [46]	44.42	20.76	25.13	12.17
LOMO+XQDA [19]		14	30.75	17.04
FisherNet [35]	48.15	29.94	-	-
Null Space [40]	55.43	29.87	2	_
Gated SCNN [32]	65.88	39.55		-
Basel (R)* [47]	73.90	47.78	65.22	44.99
ReRank [52]	77.11	63.63	=	29
Basel (R)+LSRO [5]]	78.06	56.23	67.68	47.13
Verif + Identif* [49]	79.51	59.87	68.9	49.3
PAN* [50]	82.81	63.35	71.59	51,55
Transfer* [9]	83.7	65.5	2	-
APR [20]	84.29	64.67	70.69	51.88
SVDNet [30]	82.3	62.1	76.7	56.8
DPFL [7]	-	-	79.2	60.6
TriNet* [13]	84.92	69.14	-	-
DML* [41]	87.73	68.83	parting.	V-12
SVDNet+REDA* [53]	87.08	71.13	79.31	62.44
Pose-transfer (R)	79.75	57.98	68.64	48.06
Basel (D)	84.47	64.17	73.92	50.79
Pose-transfer (D)	85.52	65.33	75.17	52.25
Basel (D, Tri)	86.73	67.78	77.03	55.34
Pose-transfer (D, Tri)	87.65	68.92	78.52	56.91

Methods	Labe	eled	Detected		
Methods	rank-1	mAP	rank-1	mAP	
BoW+XQDA [46]	7.9	7.3	6.4	6.4	
PUL* [8]	-		9.1	9.2	
LOMO+XQDA [19]	14.8	13.6	12.8	11.5	
Basel (R)* [47]	22.2	21.0	21.3	19.7	
Basel (R)+DaF* [39]	27.5	31.5.	26.4	30.0	
Basel (R)+XQ+Re [52]	38.1	40.3	34.7	37.4	
PAN* [50]	36.9	35.0	36.3	34.0	
DPFL [7]	43.0	40.5	40.7	37.0	
SVDNet [30]	40.9	37.8	41.5	37.3	
TriNet+REDA* [53]	58.1	53.8	55.5	50.7	
Pose-Transfer (R)	33.8	30.5	30.1	28.2	
Basel (R, Tri)	42.8	39.2	39.1	36.6	
Pose-Transfer (R, Tri)	45.1	42.0	41.6	38.7	

Methods	Market-1501		DukeMTMC-reID		CUHK03 (labeled)		CUHK03 (detected	
Methods	rank-1	mAP	rank-1	mAP	rank-1	mAP	rank-1	mAP
Basel (R) [47]	73.90	47.78	65.22	44.99	22.2	21.0	21.3	19.7
Basel (R)+LSRO [51]	78.06	56.23	67.68	47.13	-		-	-
Pose-transfer (R)	79.75	57.98	68.64	48.06	33.8	30.5	30.1	28.2

Methods	Marke	t-1501	DukeMTMC-reID		CUHK03 (labeled)		CUHK03 (detected)	
Methods	rank-1	mAP	rank-1	mAP	rank-1	mAP	rank-1	mAP
No Guider	76.93	54.22	66.70	45.98	28.1	26.0	25.2	23.9
With Guider	79.75	57.98	68.64	48.06	33.8	30.5	30.1	28.2

Table 4. Quantifying the effectiveness of guider with the ReID evaluation protocols.

Method Overview

• Image Generator

Method Overview

(a) Eight canonical poses on Market-1501 (b) t-SNE visualization of different poses.

Methods	Single	-Query	Multi-Query		
Wethods	R-1	mAP	R-1	mAP	
TMA [31]	47.90	22.3	_	_	
SCSP [6]	51.90	26.40	(122)	_	
DNS [54]	61.02	35.68	71.56	46.03	
LSTM Siamese [41]		<u>===</u>	61.60	35.31	
Gated_Sia [42]	65.88	39.55	76.50	48.50	
HP-net [29]	76.90	-	_	-	
Spindle [57]	76.90	=	-	:=-3	
Basel.+LSRO [65]*	78.06	56.23	85.12	68.52	
PIE [62]	79.33	55.95	_	_	
VerifIdentif. [64]	79.51	59.87	85.84	70.33	
DLPAR[58]	81.00	63.40	_		
DeepTransfer [12]	83.70	65.50	89.60	73.80	
Verif-Identif.+LSRO[65]*	83.97	66.07	88.42	76.10	
PDC [39]	84.14	63.41		1 	
DML [56]	87.7	68.8	-	_	
SSM [3]	82.2	68.8	88.2	76.2	
JLML [26]	85.10	65.50	89.70	74.50	
ResNet-50-A	87.26	69.32	91.81	77.85	
Ours (SL)	89.43	72.58	92.93	80.19	

Method	R-1	R-5	R-10					
DeepReid [25]	19.89	50.00	64.00					
Imp-Deep [2]	44.96	76.01	83.47					
EMD [38]	52.09	82.87	91.78					
SI-CI [43]	52.17	84.30	92.30					
LSTM Siamese [41]	57.30	80.10	88.30					
PIE [62]	67.10	92.20	96.60					
Gated_Sia [42]	68.10	88.10	94.60					
Basel. $+$ LSRO [65]	73.10	92.70	96.70					
DGD [46]	75.30	-	-					
OIM [48]	77.50	-	_					
PDC [39]	78.92	94.83	97.15					
DLPAR[58]	81.60	97.30	98.40					
ResNet-50-A (SL)	76.83	93.79	97.27					
Ours (SL)	79.76	96.24	98.56					
ResNet-50-A (TL)	16.50	38.60	52.84					
Ours (TL)	16.85	39.05	53.32					
(a) Results on CUHK03								

Method	R-1	R-5	R-10
eSDC [59]	19.76	32.72	40.29
kLFDA [49]	32.76	59.01	69.63
mFilter [60]	34.30	55.00	65.30
Imp-Deep [2]	47.53	71.50	80.00
DeepRanking [7]	50.41	75.93	84.07
Ensembles [33]	53.40	76.30	84.40
ImpTrpLoss [10]	53.70	84.30	91.00
GOG [32]	57.80	79.10	86.20
Quadruplet [8]	62.55	83.44	89.71
NullReid [55]	64.98	84.96	89.92
ResNet-50-A (SL)	64.56	83.66	89.74
Ours (SL)	67.65	86.64	91.82
ResNet-50-A (TL)	27.20	48.60	59.20
Ours (TL)	27.58	49.17	59.57

⁽b) Results on CUHK01

Dataset	Market-1501		DukeMTMC-reID		CUE	IK03	CUF	IK01
Methods	R-1	mAP	R-1	mAP	R-1	R-5	R-1	R-5
ResNet-50-A	87.26	69.32	72.80	52.48	76.83	93.79	64.56	83.66
ResNet-50-B	63.75	41.29	26.62	14.30	32.54	55.12	36.18	51.17
Ours	89.43	72.58	73.58	53.20	79.76	96.24	67.65	86.64

Table 4. The Ablation Study of Rank-1 and Rank-5 on benchmarks.