EEOR6616

Convex Optimization

Instructed by Prof. Tianyi Lin* Transcribed by Satvik Saha†

Table of Contents

1. Basic Definitions	1
1.1. Convex Sets and Functions	1
1.2. The Optimization Problem	3
2. Projections	4
2.1. Normals	5
2.2. Subdifferentials	6
3. Gradient Descent	7
3.1. L-Lipschitz Functions	8
3.2. ℓ -smoothness	9
Bibliography	11

1. Basic Definitions

1.1. Convex Sets and Functions

Definition 1.1 (Convex set). We say that $\mathcal{K}\subseteq\mathbb{R}^d$ is convex if $\lambda x+(1-\lambda)y\in\mathcal{K}$

for all $x, y \in \mathcal{K}$ and $\lambda \in [0, 1]$.

Example 1.1.1. All linear subspaces of \mathbb{R}^d are convex sets.

^{*}Department of Industrial Engineering and Operations Research (IEOR), Columbia University

[†]Department of Statistics, Columbia University

Example 1.1.2. Consider points $x_1, ..., x_n \in \mathbb{R}^d$. Their *convex hull*, described by

$$\operatorname{conv}(x_1,...,x_n) = \bigg\{\lambda_1 x_1 + ... + \lambda_n x_n : \lambda_1,...,\lambda_n \geq 0, \ \sum_{i=1}^n \lambda_i = 1 \bigg\},$$

is a convex set. In fact, it is the smallest convex set containing $x_1, ..., x_n$.

Definition 1.2 (Convex function). We say that $f: \mathcal{K} \to \mathbb{R}$ is convex if \mathcal{K} is convex, and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in \mathcal{K}$ and $\lambda \in [0, 1]$.

Example 1.2.1. The map $x \mapsto x^2$ is convex.

Example 1.2.2. Indicator functions of convex sets are convex. The indicator function of $\mathcal{X} \subseteq \mathbb{R}^d$ is given by

$$I_{\mathcal{X}}: \mathbb{R}^d \to \overline{\mathbb{R}}, \qquad x \mapsto \begin{cases} 0 & \text{if } x \in \mathcal{X} \\ \infty & \text{if } x \notin \mathcal{X} \end{cases}$$

Proposition 1.3 (Jensen's Inequality). *f is convex if and only if*

$$f(\lambda_1 x_1 + \ldots + \lambda_n x_n) < \lambda_1 f(x_1) + \ldots + \lambda_n f(x_n)$$

for all $x_1,...,x_n \in \mathcal{K}$ and $\lambda_1,...,\lambda_n \geq 0$ such that $\sum_k \lambda_k = 1$,

Definition 1.4 (Epigraph). The epigraph of $f: \mathcal{K} \to \mathbb{R}$ is defined as

$$\operatorname{epi}(f) = \{(x, \alpha) \in \mathcal{K} \times \mathbb{R} : f(x) \le \alpha\}.$$

Remark. The epigraph of f is simply the region above the graph of f,

$$\Gamma(f) = \{(x, \alpha) \in \mathcal{K} \times \mathbb{R} : f(x) = \alpha\}.$$

Proposition 1.5. f is convex if and only if epi(f) is convex.

Proof. (\Longrightarrow) For $(x_1, \alpha_1), (x_2, \alpha_2) \in \operatorname{epi}(f)$ and $\lambda \in [0, 1]$, we have

$$\begin{split} f(\lambda x_1 + (1-\lambda)x_2) &\leq \lambda f(x_1) + (1-\lambda)f(x_2) \\ &\leq \lambda \alpha_1 + (1-\lambda)\alpha_2. \end{split}$$

 $(\Longleftarrow) \text{ For } x_1,x_2 \in \mathcal{K} \text{ and } \lambda \in [0,1] \text{, since } (x_1,f(x_1)), (x_2,f(x_2)) \in \operatorname{epi}(f) \text{, we have } f(x_1,f(x_2)) \in \operatorname{epi}(f) \text{.}$

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2). \qquad \qquad \Box$$

From now on, we will always assume that $f: \mathcal{K} \to \mathbb{R}$ is differentiable, unless stated otherwise. Under this setting, we have a simpler characterization of convexity.

Proposition 1.6 (Gradient Inequality). *f is convex if and only if*

$$f(y) \geq f(x) + \nabla f(x)^\top (y - x)$$

for all $x, y \in \mathcal{K}$.

Proof. (\Longrightarrow) Note that for $t \in (0,1)$, we may write

$$f(x) + \frac{f(x+t(y-x)) - f(x)}{t} = \frac{f((1-t)x+ty) - (1-t)f(x)}{t}$$

$$\leq f(y).$$

Taking the limit $t \to 0$ gives the desired result.

 (\Leftarrow) Let $x, y \in \mathcal{K}$ and $\lambda \in [0, 1]$. Setting $z = \lambda x + (1 - \lambda)y$, we have

$$f(x) \geq f(z) + \nabla f(z)^\top (x-z), \qquad f(y) \geq f(z) + \nabla f(z)^\top (y-z).$$

Combining these gives $\lambda f(x) + (1 - \lambda)f(y) \ge f(z)$.

Remark. This is often presented as

$$f(x) - f(y) \le \nabla f(x)^{\top} (x - y).$$

1.2. The Optimization Problem

Definition 1.7 (Global Minimizer). We say that x^* is a global minimizer of $f: \mathcal{K} \to \mathbb{R}$ if $f(x) \geq f(x^*)$ for all $x \in \mathcal{K}$.

Definition 1.8 (Local Minimizer). We say that x^* is a local minimizer of $f: \mathcal{K} \to \mathbb{R}$ if $f(x) \geq f(x^*)$ for all $x \in \mathcal{U}$ for some neighborhood $\mathcal{U} \subseteq \mathcal{K}$ of x^* .

Proposition 1.9. Let $x^* \in \text{int}(\mathcal{K})$ be a local minimizer of f. Then, $\nabla f(x^*) = 0$.

The optimization problem for convex f on a convex set $\mathcal K$ can be described as

$$\min_{x \in \mathcal{K}} f(x). \tag{$\mathcal{M}_{\mathcal{K}}$})$$

In the special case $\mathcal{K} = \mathbb{R}^d$, this is

$$\min_{x \in \mathbb{R}^d} f(x). \tag{$\mathcal{M}_{\mathbb{R}^d}$}$$

The convexity of f allows us to characterize solutions of $(\mathcal{M}_{\mathbb{R}^d})$ via its critical points.

Proposition 1.10. Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex. Then, $x^* \in \mathbb{R}^d$ is a global minimizer of f if and only if $\nabla f(x^*) = 0$.

Proof. Follows directly from Proposition 1.9 and Proposition 1.6.

2. Projections

We say that z is the projection of a point y onto a set \mathcal{X} if $z \in \mathcal{X}$ and $||y - z|| \le ||y - x||$ for all $x \in \mathcal{X}$. In general, such projections of points need not exist!

Example 1.10.1. Consider the open unit disk $\mathbb{D}^2 = \{x \in \mathbb{R}^2 : ||x|| < 1\}$ in \mathbb{R}^2 . Projections of points outside \mathbb{D}^2 onto \mathbb{D}^2 do not exist.

We may observe that at least in Euclidean spaces \mathbb{R}^d , closedness of (nonempty) $\mathcal X$ guarantees the existence of a projection of $y \in \mathbb{R}^d$ onto $\mathcal X$. By picking some $x_0 \in \mathcal X$, we need only look at the compact set $\mathcal X \cap \overline{B_r(y)}$ where $r = \|y - x_0\|$, on which the continuous map $x \mapsto \|y - x\|$ must attain its minimum.

On the other hand, projections of points need not be unique.

Example 1.10.2. Consider the unit circle $S^1 = \{x \in \mathbb{R}^2 : ||x|| < 1\}$ in \mathbb{R}^2 . Then, every point in S^1 is a projection of $0 \in \mathbb{R}^2$ onto S^1 .

Theorem 2.1 (Hilbert Projection). Let $\mathcal{K} \subseteq \mathbb{R}^d$ be closed and convex. Then, for each $y \in \mathbb{R}^d$, there exists unique $z \in \mathcal{K}$ such that $||z - y|| \le ||x - y||$ for all $x \in \mathcal{K}$.

Proof. Set $\delta = \inf_{x \in \mathcal{K}} \|x - y\|$ and pick a sequence $\{z_n\} \subset \mathcal{K}$ such that $\|z_n - y\| \to \delta$. Note that $(z_n + z_m)/2 \in \mathcal{K}$; the parallelogram law gives

$$\begin{split} \|z_n - z_m\|^2 &= 2\|z_n - y\|^2 + 2\|z_m - y\|^2 - 4\|(z_n + z_m)/2 - y\|^2 \\ &\leq 2\|z_n - y\|^2 + 2\|z_m - y\|^2 - 4\delta^2. \end{split}$$

Since this goes to 0 as $m, n \to \infty$, $\{z_n\}$ is Cauchy and hence has a limit $z \in \mathcal{K}$. Furthermore, if $\delta = \|z' - y\|$ for some other $z' \in \mathcal{K}$, then

$$||z - z'||^2 = 4(\delta^2 - ||(z + z')/2 - y||)^2 \le 0,$$

forcing z = z'.

Definition 2.2. Let $\mathcal{K} \subseteq \mathbb{R}^d$ be closed and convex. The projection operator onto \mathcal{K} is defined by

$$\Pi_{\mathcal{K}}: \mathbb{R}^d \to \mathcal{K}, \quad y \mapsto \mathop{\arg\min}_{x \in \mathcal{K}} \ \|x - y\|.$$

Remark. Theorem 2.1 guarantees that $\Pi_{\mathcal{K}}$ is well defined; the minimizer of $x \mapsto \|x - y\|$ on \mathcal{K} exists and is unique.

Proposition 2.3 (Variational Inequality). Let $y \in \mathbb{R}^d$ and $z \in \mathcal{K}$ for closed convex \mathcal{K} . Then, $z = \Pi_{\mathcal{K}}(y)$ if and only if $\langle z - y, z - x \rangle \leq 0$ for all $x \in \mathcal{K}$.

Proof. (\Longrightarrow) Let $t\in(0,1)$, and $z_t=(1-t)\Pi_{\mathcal{K}}(y)+tx\in\mathcal{K}$. Then,

$$||z - y||^2 \le ||z_t - y||^2 = ||z - y - t(z - x)||^2$$

which simplifies to

$$-2\langle z-y,z-x\rangle+t\|z-x\|^2\geq 0.$$

Taking the limit $t \to 0$ gives the desired inequality.

 (\Leftarrow) For $x \in \mathcal{K}$,

$$\|y - x\|^2 = \|y - z\|^2 + \|z - x\|^2 - 2\langle z - y, z - x \rangle \ge \|y - z\|^2.$$

Lemma 2.4 (Pythagoras). For all $x \in \mathcal{K}$ and $y \in \mathbb{R}^d$,

$$\|\Pi_{\mathcal{K}}(y) - x\|^2 \le \|y - x\|^2 - \|y - \Pi_{\mathcal{K}}(y)\|^2.$$

Proof. It suffices to show that $\langle \Pi_{\mathcal{K}}(y) - y, \Pi_{\mathcal{K}}(y) - x \rangle \leq 0$ for all $x \in \mathcal{K}$, which holds via Proposition 2.3.

Corollary 2.4.1. For all $x, y \in \mathbb{R}^d$,

$$\|\Pi_{\mathcal{K}}(x) - \Pi_{\mathcal{K}}(y)\| \le \|x - y\|.$$

2.1. Normals

A very useful property of closed convex sets $\mathcal K$ is that given a point $w \notin K$, one can find a hyperplane separating w from $\mathcal K$. In other words, there exists a continuous linear functional g and a constant a such that g(x) < a < g(w) for all $x \in \mathcal K$.

Theorem 2.5 (Strict Separation). Let $w \notin \mathcal{K}$ for closed convex \mathcal{K} . There exists $v \neq 0$ such that

$$\sup_{x\in\mathcal{K}}\langle v,x\rangle<\langle v,w\rangle.$$

Proof. Set $v = w - \Pi_{\mathcal{K}}(w)$. Then, Proposition 2.3 gives

$$\langle v, x - (w - v) \rangle = \langle w - \Pi_{\mathcal{K}}(w), x - \Pi_{\mathcal{K}}(w) \rangle \le 0,$$

for all $x \in \mathcal{K}$, which rearranges into

$$\langle v, x \rangle + ||v||^2 \le \langle v, w \rangle.$$

Definition 2.6 (Normal). Let $x \in \mathcal{K}$ for closed convex \mathcal{K} . We say that v is normal to \mathcal{K} at x if $\langle v, y \rangle \leq \langle v, x \rangle$ for all $y \in \mathcal{K}$.

Definition 2.7 (Normal Cone). Let $x \in \mathcal{K}$ for closed convex \mathcal{K} . The normal cone $N_{\mathcal{K}}(x)$ at x is the collection of normals to \mathcal{K} at x.

Note that if v is normal to $\mathcal K$ at x, so is αv for $\alpha \geq 0$, hence $N_{\mathcal K}(x)$ is indeed a cone; it is also convex. Furthermore, $N_{\mathcal K}(x)$ is nontrivial only when $x \notin \operatorname{int}(X)$; if $x \in B_\delta(x) \subseteq \mathcal K$, then for any v with $\|v\| = 1$, we have $x \pm \frac{\delta}{2} v \in B_\delta(x) \subseteq \mathcal K$, and

$$\langle v, x - \frac{\delta}{2}v \rangle = \langle v, x \rangle - \frac{\delta}{2} < \langle v, x \rangle < \langle v, x \rangle + \frac{\delta}{2} = \langle v, x + \frac{\delta}{2}v \rangle.$$

Thus, we need only look at normal cones at boundary points $x \in \partial \mathcal{K}$. At these points, nonzero $v \in N_{\mathcal{K}}(x)$ describe supporting hyperplanes to \mathcal{K} at x.

Proposition 2.8. Let $x \in \partial \mathcal{K}$ for closed convex $K \subseteq \mathbb{R}^d$. Then, $N_{\mathcal{K}}(x)$ is nontrivial, i.e. there exists a supporting hyperplane to \mathcal{K} at x.

Proof. Pick a sequences $\{x_n\}\subseteq \mathcal{K}^c$ such that $x_n\to x$, and a corresponding sequence $\{v_n\}\subset S^{d-1}$ of directions via Theorem 2.5, such that $\sup_{y\in\mathcal{K}}\langle v_n,y\rangle<\langle v_n,x_n\rangle$. Using the compactness of S^{d-1} , descend to a subsequence and relabel so that $v_n\to v\in S^{d-1}$. Then, for $y\in K$, we have

$$\langle v,y\rangle = \lim_{n\to\infty} \langle v_n,y\rangle \leq \lim_{n\to\infty} \langle v_n,x_n\rangle = \langle v,x\rangle. \qquad \Box$$

Proposition 2.9. Let $x \in \mathcal{K}$ for closed convex \mathcal{K} , and let $v \in N_{\mathcal{K}}(x)$. Then, $\Pi_{\mathcal{K}}(x + \alpha v) = x$ for all $\alpha > 0$.

Proof. For all $y \in \mathcal{K}$, we have

$$\langle x - (x + \alpha v), x - y \rangle = \alpha \langle v, y - x \rangle \le 0,$$

whence $x = \Pi_{\mathcal{K}}(x + \alpha v)$ by Proposition 2.3.

2.2. Subdifferentials

Definition 2.10 (Subdifferential). Let $f: \mathcal{K} \to \mathbb{R}$ be convex. The subdifferential of f at $x \in \mathcal{K}$ is the collection of all directions v such that

$$f(y) \ge f(x) + v^{\top}(y - x)$$

for all $y \in \mathcal{K}$, and is denoted $\partial f(x)$.

Compare with the gradient inequality (Proposition 1.6) for differentiable convex f.

Example 2.10.1. Consider $f: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$. Then,

$$\partial f(x) = \begin{cases} \{-1\} & \text{if } x < 0 \\ [-1, 1] & \text{if } x < 0 \\ \{+1\} & \text{if } x > 0 \end{cases}$$

It is clear that the subgradient $\partial f(x)$ is convex. Showing that it is nontrivial requires more work.

Proposition 2.11. Let $f: \mathcal{K} \to \mathbb{R}$ be convex. Then, $\partial f(x)$ is nonempty for all $x \in ri(\mathcal{K})$.

Proof. Note that $\operatorname{epi}(f)$ is convex via Proposition 1.5. Use Proposition 2.8 to find a supporting hyperplane to $\operatorname{epi}(f)$ at $(x^\top f(x))^\top$, i.e. $(v^\top s)^\top \neq 0$ such that for all $(y^\top \alpha)^\top \in \operatorname{epi}(f)$,

$$v^{\top}(y-x) + s(\alpha - f(x)) \le 0.$$

By considering y=x and $\alpha>f(x)$, we must have $s\leq 0$. If s=0, we would need $v^{\top}(y-x)\leq 0$ for all $y\in \mathcal{K}$, which would force v=0 since $x\in \mathrm{ri}(\mathcal{K})$. Thus, s<0; putting $\alpha=f(y)$, we have

$$f(y) \ge f(x) - \frac{v^{\top}}{s}(y - x),$$

whence $-v^{\top}/s \in \partial f(x)$.

The next result follows immediately from the definition of the subdifferential; compare this with Proposition 1.10.

Proposition 2.12. Let $f: \mathcal{K} \to \mathbb{R}$ be convex. Then, $x^* \in \mathcal{K}$ is a global minimizer of f if and only if $0 \in \partial f(x^*)$.

When f is differentiable at $x \in \text{int}(\mathcal{X})$, the subgradient reduces to the usual gradient, with $\partial f(x) = \{\nabla f(x)\}$. Indeed, Proposition 1.6 shows that $\nabla f(x) \in \partial f(x)$. To check that there are no other elements, pick $v \in \partial f(x)$, and note that for $\lambda \geq 0$,

$$v^\top u \leq \frac{f(x+\lambda u) - f(x)}{\lambda} \to \nabla f(x)^\top u \quad \text{as } \lambda \to 0,$$

hence $(\nabla f(x) - v)^{\top} u \ge 0$ for all directions u. This forces $v = \nabla f(x)$.

The converse of the above result also holds, in the following form.

Theorem 2.13. Let $f: \mathcal{K} \to \mathbb{R}$ be convex and $x \in \text{int}(\mathcal{K})$. If f is differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$. Conversely, if $\partial f(x) = \{v\}$, then f is differentiable at x with $\nabla f(x) = v$.

Gradient Descent

Gradient descent algorithms for solving $(\mathcal{M}_{\mathbb{R}^d})$ follow the iterative scheme

$$x_{t+1} = x_t - \eta_t \nabla f(x_t). \tag{\mathcal{GD}}$$

It is possible for (\mathcal{GD}) to take our iterates x_t outside \mathcal{K} ; we can rectify this using projections. Projected gradient descent algorithms for solving $(\mathcal{M}_{\mathcal{K}})$ follow the iterative scheme

$$\begin{aligned} y_{t+1} &= x_t - \eta_t \nabla f(x_t), \\ x_{t+1} &= \Pi_{\mathcal{K}}(y_{t+1}). \end{aligned} \tag{\mathcal{PGD}}$$

We can establish rates of convergence of (\mathcal{GD}) and (\mathcal{PGD}) under certain regularity conditions on f.

3.1. L-Lipschitz Functions

Definition 3.1 (L-Lipschitz). We say that $f: \mathcal{K} \to \mathbb{R}$ is L-Lipschitz for some $L \geq 0$ if

$$|f(x) - f(y)| \le L||x - y||$$

for all $x, y \in \mathcal{K}$.

Remark. When f is differentiable, f is L-Lipschitz if and only if $\|\nabla f\| \le L$.

Theorem 3.2. Let f be convex and L-Lipschitz, $x^* \in \mathcal{K}$ be its global minimizer, and $||x_1 - x^*|| \leq R$. Further let $x_1, ..., x_T$ be T iterates of (\mathcal{PGD}) with $\eta = R/L\sqrt{T}$. Then,

$$f\bigg(\frac{1}{T}\sum_{t=1}^T x_t\bigg) - f(x^*) \leq \frac{RL}{\sqrt{T}}.$$

Proof. Compute

$$\begin{split} f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right) - f(x^{*}) &\leq \frac{1}{T}\sum_{t=1}^{T}f(x_{t}) - f(x^{*}) \\ &\leq \frac{1}{T}\sum_{t=1}^{T}\nabla f(x_{t})^{\top}(x_{t} - x^{*}) \\ &= \frac{1}{T\eta}\sum_{t=1}^{T}\left(x_{t} - y_{t+1}\right)^{\top}(x_{t} - x^{*}) \\ &= \frac{1}{2T\eta}\sum_{t=1}^{T}\left[\left\|x_{t} - y_{t+1}\right\|^{2} + \left\|x_{t} - x^{*}\right\|^{2} - \left\|y_{t+1} - x^{*}\right\|^{2}\right] \\ &= \frac{\eta}{2}\|\nabla f(x_{t})\|^{2} + \frac{1}{2T\eta}\sum_{t=1}^{T}\left[\left\|x_{t} - x^{*}\right\|^{2} - \left\|y_{t+1} - x^{*}\right\|^{2}\right] \\ &\leq \frac{\eta L^{2}}{2} + \frac{1}{2T\eta}\sum_{t=1}^{T}\left[\left\|x_{t} - x^{*}\right\|^{2} - \left\|\underbrace{\Pi_{\mathcal{K}}(y_{t+1})}_{x_{t+1}} - x^{*}\right\|^{2}\right] \\ &= \frac{\eta L^{2}}{2} + \frac{1}{2T\eta}\left[\left\|x_{1} - x^{*}\right\|^{2} - \left\|x_{T+1} - x^{*}\right\|^{2}\right] \\ &\leq \frac{\eta L^{2}}{2} + \frac{R^{2}}{2T\eta} \end{split}$$
 (Lemma 2.4)

$$=\frac{RL}{\sqrt{T}}.$$

3.2. ℓ -smoothness

Definition 3.3 (ℓ -smoothness). We say that $f: \mathcal{K} \to \mathbb{R}$ is ℓ -smooth for some $\ell \geq 0$ if

$$\|\nabla f(x) - \nabla f(y)\| \leq \ell \|x - y\|$$

for all $x, y \in \mathcal{K}$.

Lemma 3.4. Let $f: \mathcal{K} \to \mathbb{R}$ for convex \mathcal{K} be ℓ -smooth. Then,

$$|f(y)-f(x)-\nabla f(x)^\top (y-x)| \leq \frac{\ell}{2}\|y-x\|^2.$$

Proof. Using the Fundamental Theorem of Calculus,

$$\begin{split} |f(y) - f(x) - \nabla f(x)^\top (y - x)| &= \left| \int_0^1 \left(\nabla f(x + t(y - x)) - \nabla f(x) \right)^\top (y - x) \; dt \right| \\ &\leq \int_0^1 \| \nabla f(x + t(y - x)) - \nabla f(x) \| \cdot \| y - x \| \; dt \\ &\leq \int_0^1 \ell t \| y - x \| \cdot \| y - x \| \; dt \\ &= \frac{\ell}{2} \| y - x \|^2. \end{split}$$

When f is convex, the norm on the left hand side is redundant, giving the estimate

$$0 \leq f(y) - f(x) - \nabla f(x)^\top (y-x) \leq \frac{\ell}{2} \|y-x\|^2.$$

In fact, we can use ℓ -smoothness to improve upon the estimate in Proposition 1.6.

Lemma 3.5. Let f be convex and ℓ -smooth. Then,

$$f(x) - f(y) \leq \nabla f(x)^\top (x - y) - \frac{1}{2\ell} \|\nabla f(x) - \nabla f(y)\|^2.$$

Proof. Set $z = y + (\nabla f(x) - \nabla f(y))/\ell$. Using Proposition 1.6, Lemma 3.4,

$$\begin{split} f(x) - f(y) &= (f(x) - f(z)) + (f(z) - f(y)) \\ &\leq \nabla f(x)^\top (x - z) + \nabla f(y)^\top (z - y) + \frac{\ell}{2} \|z - y\|^2 \\ &= \nabla f(x)^\top (x - y) + (\nabla f(y) - \nabla f(x))^\top (z - y) + \frac{\ell}{2} \|z - y\|^2 \end{split}$$

$$\begin{split} &= \nabla f(x)^\top (x-y) - \frac{1}{\ell} \|\nabla f(x) - \nabla f(y)\|^2 + \frac{1}{2\ell} \|\nabla f(x) - \nabla f(y)\|^2 \\ &= \nabla f(x)^\top (x-y) - \frac{1}{2\ell} \|\nabla f(x) - \nabla f(y)\|^2. \end{split}$$

Corollary 3.5.1. Let f be convex and ℓ -smooth. Then,

$$(\nabla f(x) - \nabla f(y))^\top (x - y) \geq \frac{1}{\ell} \|\nabla f(x) - \nabla f(y)\|^2.$$

Theorem 3.6. Let f be convex and ℓ -smooth, $x^* \in \mathbb{R}^d$ be its global minimizer. Further let $\{x_t\}_{t \in \mathbb{N}}$ be iterates of (\mathcal{GD}) with $\eta = 1/\ell$. Then,

$$||x_{t+1} - x^*|| \le ||x_t - x^*||$$

for all $t \in \mathbb{N}$.

Proof. Using $\nabla f(x^*) = 0$ and Corollary 3.5.1,

$$\begin{split} \left\| x_{t+1} - x^* \right\|^2 &= \left\| x_{t+1} - x_t \right\|^2 + 2 (x_{t+1} - x_t)^\top (x_t - x^*) + \left\| x_t - x^* \right\|^2 \\ &= \frac{1}{\ell^2} \| \nabla f(x_t) \|^2 - \frac{2}{\ell} \nabla f(x_t)^\top (x_t - x^*) + \left\| x_t - x^* \right\|^2 \\ &\leq \frac{1}{\ell^2} \| \nabla f(x_t) \|^2 - \frac{2}{\ell^2} \| \nabla f(x_t) \|^2 + \left\| x_t - x^* \right\|^2 \\ &= -\frac{1}{\ell^2} \| \nabla f(x_t) \|^2 + \left\| x_t - x^* \right\|^2 \\ &\leq \left\| x_t - x^* \right\|^2. \end{split}$$

Theorem 3.7. Let f be convex and ℓ -smooth, $x^* \in \mathbb{R}^d$ be its global minimizer, and $\|x_1 - x^*\| \leq R$. Further let $x_1, ..., x_T$ be T iterates of (\mathcal{GD}) with $\eta = 1/\ell$. Then,

$$f(x_T) - f(x^*) \leq \frac{2R^2\ell}{T-1}.$$

Proof. Using Lemma 3.4, note that

$$\begin{split} f(x_{t+1}) - f(x_t) &\leq \nabla f(x_t)^\top \big(x_{t+1} - x_t \big) + \frac{\ell}{2} \big\| x_{t+1} - x_t \big\|^2 \\ &= -\frac{1}{2\ell} \| \nabla f(x_t) \|^2. \end{split}$$

Setting $\delta_t = f(x_t) - f(x^*)$, this reads

$$\delta_{t+1} \leq \delta_t - \frac{1}{2\ell} \|\nabla f(x)\|^2.$$

Now,

$$\delta_t \leq \nabla f({x_t})^\top (x_t - x^*) \leq \|\nabla f(x_t)\| \|x_t - x^*\| \leq \|\nabla f(x_t)\| \|x_1 - x^*\|,$$

with the last inequality guaranteed by Theorem 3.6. Setting $w=1/2\ell\|x_1-x^*\|^2$, this is $\|\nabla f(x_t)\|^2/2\ell \geq w\delta_t^2$. Thus, $\delta_{t+1} \leq \delta_t - w\delta_t^2$, which rearranges to

$$\frac{1}{\delta_{t+1}} - \frac{1}{\delta_t} \ge w \frac{\delta_t}{\delta_{t+1}} \ge w.$$

Summing over t gives $1/\delta_T \ge w(T-1)$, which is the desired estimate.

Remark. We have shown that

$$\frac{1}{\ell} \|\nabla f(x_t)\|^2 \leq f(x_t) - f\big(x_{t+1}\big) \leq \frac{1}{2\ell} \|\nabla f(x_t)\|^2.$$

Bibliography

- [1] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.
- [2] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
- [3] Y. Nesterov, Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2018.