ELECTRÓNICA ANALÓGICA. 2º CURSO ING. TELECOMUNICACIÓN EXAMEN PARCIAL. FEBRERO 2006

- 1. El circuito de la figura es un amplificador de tensión diferencial. Todos los transistores tienen β =100, $|V_{BE}|$ = 0.7 V y r_o = ∞ .
 - a. Para las entradas y la salida a tierra, calcule las corrientes de colector de todos los transistores.
 - b. Calcule la ganancia a bajas frecuencias del amplificador con R_L = 10 k Ω .
 - c. Con R_L del apartado anterior, halle el valor de C_C para obtener una frecuencia superior de corte, f_H, de 100 Hz. ¿Cuánto vale f_t (ancho de banda para ganancia unidad) con este resultado?

Nota: La capacidad para calcular el polo dominante se obtiene al aplicar el Teorema de Miller.

- 2. El amplificador realimentado de la figura es un convertidor tensión/corriente.
 - a. Identifique el tipo y la red de realimentación
 - b. Calcule la ganancia del amplificador realimentado I_o/V_s
 - c. ¿Cuánto valdría I_o/V_s si la ganancia del amplificador básico fuese muy grande?

Los MOSFETs tienen las dimensiones W/L mostradas y k' $_n$ = 20 μ A/V², $|V_t|$ = 1 V y $|V_A|$ = 100 V.

