

Aprendizado por Reforço

Programação dinâmica (parte 1)

Recapitulação das aulas passadas

- Processos de decisão de Markov
- Valores de estado
- Valores de ação
- Equação de Bellman
- Equação de otimalidade de Bellman
- Valores de estado ótimos
- Política ótima

Algoritmos

- Alguns algoritmos de programação dinâmica para encontrar políticas ótimas
 - Iteração de valor
 - Iteração de política
 - Iteração de política truncada
- Os algoritmos acima exigem modelo do sistema (isto é, assumem o conhecimento do ambiente)
- Desafio: não é prático para problemas muito grandes

Algoritmo sugerido pelo teorema do ponto fixo

$$v_{k+1} = f(v_k) = \max_{\pi \in \Pi} (r_{\pi} + \gamma P_{\pi} v_k), \qquad k = 0, 1, 2, ...$$

• É garantido que $v_k o v^*$ e $\pi_k o \pi^*$ quando $k o \infty$.

- O algoritmo tem 2 passos em cada iteração
 - 1. Atualização de política
 - 2. Atualização de valor

lteração de valor (forma matricial)

Passo 1: Atualização de Política

$$\pi_{k+1} = \underset{\pi}{\operatorname{argmax}} (r_{\pi} + \gamma P_{\pi} v_{k})$$

 v_k : obtido da iteração anterior

Passo 2: Atualização de Valor

$$[r_{\pi}]_{s} \triangleq \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{r \in \mathcal{R}} p(r|s,a)r$$

$$[r_{\pi}]_{s} \triangleq \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{r \in \mathcal{R}} p(r|s, a)r$$
$$[P_{\pi}]_{s,s'} = p(s'|s) \triangleq \sum_{a \in \mathcal{A}} \pi(a|s)p(s'|s, a)$$

$$v_{k+1} = r_{\pi_{k+1}} + \gamma P_{\pi_{k+1}} v_k$$

 v_{k+1} : vai ser utilizado na próxima iteração

Iteração de valor (forma escalar)

• Passo 1: Atualização de política

$$\pi_{k+1} = \underset{\pi}{\operatorname{argmax}} \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right], \quad s \in \mathcal{S}$$

$$\pi_{k+1} = \underset{\pi}{\operatorname{argmax}} \sum_{a} \pi(a|s) q_k(s, a) , \quad s \in \mathcal{S}$$

• A política ótima (gulosa) que resolve esse problema de otimização é:

$$\pi(a|s) = \begin{cases} 1, & a = a_k^*(s) \\ 0, & a \neq a_k^*(s) \end{cases}, \quad onde \quad a_k^*(s) = \underset{a}{\operatorname{argmax}} q(s, a)$$

lteração de valor (forma escalar)

• Passo 2: Atualização de valor

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right], \qquad s \in \mathcal{S}$$

$$v_{k+1}(s) = \sum_{a} \pi(a|s)q_k(s,a)$$
, $s \in S$

De acordo com o passo 1:

$$v_{k+1}(s) = \max_{a} q_k(s, a)$$
, $s \in S$

Exemplo

$$r_{boundary} = r_{forbidden} = -1$$
 , $r_{target} = 1$, $\gamma = 0.9$

Iteração de valor (forma escalar)

$$k = 0 \text{ e } v_0(s_1) = v_0(s_2) = v_0(s_3) = v_0(s_4) = 0$$

 $q_k(s,a) = \sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s')$

q-table	a_1	a_2	a_3	a_4	a_5
---------	-------	-------	-------	-------	-------

 s_1

 s_2

 s_3

 s_4

Iteração de valor (forma escalar)

$$k = 0 \text{ e } v_0(s_1) = v_0(s_2) = v_0(s_3) = v_0(s_4) = 0$$

 $q_k(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s')$

	,		3		
q-table	a_1	a_2	a_3	a_4	a_5
$\overline{s_1}$	$-1 + \gamma v(s_1)$	$-1 + \gamma v(s_2)$	$0 + \gamma v(s_3)$	$-1 + \gamma v(s_1)$	$0 + \gamma v(s_1)$
$\overline{s_2}$	$-1 + \gamma v(s_2)$	$-1 + \gamma v(s_2)$	$1 + \gamma v(s_4)$	$0 + \gamma v(s_1)$	$-1 + \gamma v(s_2)$
s_3	$0 + \gamma v(s_1)$	$1 + \gamma v(s_4)$	$-1 + \gamma v(s_3)$	$-1 + \gamma v(s_3)$	$0 + \gamma v(s_3)$
	4 / \	4 / \	4 / \	0 /)	4 / \

q-table	a_1	a_2	a_3	a_4	a_5
s_1	-1	-1	0	-1	0
$\overline{s_2}$	-1	-1	1	0	-1
$\overline{s_3}$	0	1	-1	-1	0
S_4	-1	-1	-1	0	1

Passo 1: Atualização de política

q-table	a_1	a_2	a_3	a_4	a_5
s_1	-1	-1	0	-1	0
s_2	-1	-1	1	0	-1
s_3	0	1	-1	-1	0
s_4	-1	-1	-1	0	1

$$\pi_1(a_5|s_1) = 1$$
 $\pi_1(a_3|s_2) = 1$
 $\pi_1(a_2|s_3) = 1$
 $\pi_1(a_5|s_4) = 1$

$$\pi(a|s) = \begin{cases} 1, & a = a_k^*(s) \\ 0, & a \neq a_k^*(s) \end{cases}$$

$$onde \quad a_k^*(s) = \operatorname*{argmax}_a q(s, a)$$

Passo 2: Atualização de valor

q-table	a_1	a_2	a_3	a_4	a_5
$\overline{s_1}$	-1	-1	0	-1	0
$\overline{s_2}$	-1	-1	1	0	-1
$\overline{s_3}$	0	1	-1	-1	0
s_4	-1	-1	-1	0	1

$$v_1(s_1) = 0$$

 $v_1(s_2) = 1$
 $v_1(s_3) = 1$
 $v_1(s_4) = 1$

$$v_{k+1}(s) = \max_{a} q_k(s, a)$$

$$k = 1 \text{ e } v_1(s_1) = 0, v_1(s_2) = 1, v_1(s_3) = 1, v_1(s_4) = 1$$
 $q_k(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s')$

q-table	a_1	a_2	a_3	a_4	a_5
s_1	$-1 + \gamma v(s_1)$	$-1 + \gamma v(s_2)$		$-1 + \gamma v(s_1)$, , – ,
s_2	$-1 + \gamma v(s_2)$	$-1 + \gamma v(s_2)$	$1 + \gamma v(s_4)$	$0 + \gamma v(s_1)$	$-1 + \gamma v(s_2)$
s_3	$0 + \gamma v(s_1)$	$1 + \gamma v(s_4)$	$-1 + \gamma v(s_3)$	$-1 + \gamma v(s_3)$	$0 + \gamma v(s_3)$
s_4	$-1 + \gamma v(s_2)$	$-1 + \gamma v(s_4)$	$-1 + \gamma v(s_4)$	$0 + \gamma v(s_3)$	$1 + \gamma v(s_4)$

q-table	a_1	a_2	a_3	a_4	a_5
s_1	$-1 + \gamma 0$	$-1 + \gamma 1$	$0 + \gamma 1$	$-1 + \gamma 0$	$0 + \gamma 0$
s_2	$-1 + \gamma 1$	$-1 + \gamma 1$	$1 + \gamma 1$	$0 + \gamma 0$	$-1+\gamma 1$
$\overline{s_3}$	$0 + \gamma 0$	$1 + \gamma 1$	$-1 + \gamma 1$	$-1 + \gamma 1$	$0 + \gamma 1$
$\overline{s_4}$	$-1 + \gamma 1$	$-1 + \gamma 1$	$-1 + \gamma 1$	$0 + \gamma 1$	$1 + \gamma 1$

Passo 1: Atualização de política

q-table	a_1	a_2	a_3	a_4	a_5
$\overline{s_1}$	$-1 + \gamma 0$	$-1 + \gamma 1$	$0 + \gamma 1$	$-1 + \gamma 0$	$0 + \gamma 0$
$\overline{s_2}$	$-1 + \gamma 1$	$-1 + \gamma 1$	$1 + \gamma 1$	$0 + \gamma 0$	$-1+\gamma 1$
s_3	$0 + \gamma 0$	$1 + \gamma 1$	$-1 + \gamma 1$	$-1 + \gamma 1$	$0+\gamma 1$
s_4	$-1 + \gamma 1$	$-1 + \gamma 1$	$-1 + \gamma 1$	$0 + \gamma 1$	$1+\gamma 1$

$$\pi_2(a_3|s_1) = 1$$
 $\pi_2(a_3|s_2) = 1$
 $\pi_2(a_2|s_3) = 1$
 $\pi_2(a_5|s_4) = 1$

$$\pi(a|s) = \begin{cases} 1, & a = a_k^*(s) \\ 0, & a \neq a_k^*(s) \end{cases}$$

$$onde \quad a_k^*(s) = \operatorname*{argmax}_a q(s, a)$$

Passo 2: Atualização de valor

q-table	a_1	a_2	a_3	a_4	a_5
$\overline{s_1}$	$-1 + \gamma 0$	$-1 + \gamma 1$	$0 + \gamma 1$	$-1 + \gamma 0$	$0 + \gamma 0$
$\overline{s_2}$	$-1 + \gamma 1$	$-1 + \gamma 1$	$1 + \gamma 1$	$0 + \gamma 0$	$-1+\gamma 1$
s_3	$0 + \gamma 0$	$1 + \gamma 1$	$-1 + \gamma 1$	$-1 + \gamma 1$	$0+\gamma 1$
s_4	$-1 + \gamma 1$	$-1 + \gamma 1$	$-1 + \gamma 1$	$0 + \gamma 1$	$1+\gamma 1$

$$v_2(s_1) = \gamma 1$$

 $v_2(s_2) = 1 + \gamma 1$
 $v_2(s_3) = 1 + \gamma 1$
 $v_2(s_4) = 1 + \gamma 1$

$$v_{k+1}(s) = \max_{a} q_k(s, a)$$

- Continua para $k=2,3,4,5,6\cdots$
- Pode ser observado que π_2 já é a política ótima.

$$r_{boundary} = r_{forbidden} = -1$$
 , $r_{target} = 1$, $\gamma = 0.9$

Algoritmo

Algorithm 4.1: Value iteration algorithm

Initialization: The probability models p(r|s,a) and p(s'|s,a) for all (s,a) are known. Initial guess v_0 .

Goal: Search for the optimal state value and an optimal policy for solving the Bellman optimality equation.

While v_k has not converged in the sense that $||v_k - v_{k-1}||$ is greater than a predefined small threshold, for the kth iteration, do

For every state $s \in \mathcal{S}$, do

For every action $a \in \mathcal{A}(s)$, do

q-value: $q_k(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_k(s')$

Maximum action value: $a_k^*(s) = \arg \max_a q_k(s, a)$

Policy update: $\pi_{k+1}(a|s) = 1$ if $a = a_k^*$, and $\pi_{k+1}(a|s) = 0$ otherwise

Value update: $v_{k+1}(s) = \max_a q_k(s, a)$

$$v_k(s) \rightarrow q_k(s) \rightarrow \pi_{k+1}(s) \ gulosa \rightarrow v_{k+1}(s) = \max_a q_k(s, a)$$

18

- Iteração de política não resolve diretamente a Equação de otimalidade de Bellman.
- Porém, converge para uma política ótima.
- Iteração de política é um algoritmo iterativo aninhado em outro algoritmo iterativo.
- O algoritmo tem 2 passos
 - Avaliação de política
 - Avalia o valor de estado de uma política dada
 - Melhoria de política
 - Gera uma nova política melhor que a anterior

<u>Passo 1</u>: Avaliação de política (resolver a equação de Bellman)

$$v_{\pi_k} = r_{\pi_k} + \gamma P_{\pi_k} v_{\pi_k}$$

 π_k : obtida da iteração anterior $v_{\pi \nu}$: valor de estado que queremos calcular

• Passo 2: Melhoria de política

$$\pi_{k+1} = \underset{\pi}{\operatorname{argmax}} (r_{\pi} + \gamma P_{\pi} v_{\pi_k})$$

 π_{k+1} : vai ser utilizado na próxima iteração

Passo 1: Avaliação de política (resolver a equação de Bellman)

$$v_{\pi_k} = r_{\pi_k} + \gamma P_{\pi_k} v_{\pi_k}$$

Solução analítica (teórico, não prático)

$$v_{\pi_k} = \left(I - \gamma P_{\pi_k}\right)^{-1} r_{\pi_k}$$

Solução iterativa

$$v_{\pi_k}^{(j+1)} = r_{\pi_k} + \gamma P_{\pi_k} v_{\pi_k}^{(j)}, \qquad j = 0,1,2,...$$

• Partindo de um valor inicial $v_{\pi_k}^{(0)}$, é garantido que $v_{\pi_k}^{(j)} \to v_{\pi_k}$ quando $j \to \infty$.

21

- Passo 2: Melhoria de política
 - Nova Política:

$$\pi_{k+1} = \underset{\pi}{\operatorname{argmax}} (r_{\pi} + \gamma P_{\pi} v_{\pi_k})$$

• Lema de melhora da política: (a política resultante é melhor ou igual): se $\pi_{k+1} = \underset{\pi}{\operatorname{argmax}} (r_{\pi} + \gamma P_{\pi} v_{\pi_k})$, então $v_{\pi_{k+1}}(s) \geq v_{\pi_k}(s)$, para todo $s \in \mathcal{S}$.

- Sequências geradas:
 - 1. Políticas: $\{\pi_0, \pi_1, \cdots, \pi_k, \cdots\}$
 - 2. Valores de estado: $\{v_{\pi_0}, v_{\pi_1}, \cdots, v_{\pi_k}, \cdots\}$
- De acordo com o lema de melhora da política:

$$v_{\pi_0} \le v_{\pi_1} \le v_{\pi_2} \le \dots \le v_{\pi_k} \le \dots \le v^*$$

- Teorema da convergência da iteração de política: A sequência $\left\{v_{\pi_k}\right\}_{k=0}^{\infty}$ gerada pelo algoritmo de iteração de política converge para o valor de estado ótimo v^* . Como consequência, a sequência de políticas $\left\{\pi_k\right\}_{k=0}^{\infty}$ converge para uma política ótima.
 - $v_{\pi_k} \to v^*$ (valor de estado ótimo)
 - $\pi_k \to \pi^*$ (política ótima)

- Iteração de política vs. Iteração de valor
 - Iteração de política requer múltiplas iterações internas (avaliação de política)
 - Iteração de política converge em menos iterações externas, porém cada iteração pode ser custosa
 - Iteração de valor faz uma atualização mais simples, mas pode precisar de mais iterações para convergir.

02 de abril de 2025 Programação dinâmica (parte 1)

lteração de política (forma escalar)

Passo 1: Avaliação de política

$$v_{\pi_k}^{(j+1)}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi_k}^{(j)}(s') \right], \quad s \in \mathcal{S}, \quad j = 0,1,2,...$$

Passo 2: Melhoria de política

$$\pi_{k+1}(s) = \underset{\pi}{\operatorname{argmax}} \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi_{k}}(s') \right], \quad s \in \mathcal{S}$$

$$\pi_{k+1}(s) = \underset{\pi}{\operatorname{argmax}} \sum_{a} \pi(a|s) \ q_{\pi_{k}}(s,a), \quad s \in \mathcal{S}$$

A política ótima (gulosa):

$$\begin{vmatrix}
\pi_{k+1}(a|s) = \begin{cases} 1, & a = a_k^*(s) \\ 0, & a \neq a_k^*(s) \end{vmatrix}, & onde & a_k^*(s) = \underset{a}{\operatorname{argmax}} q_{\pi_k}(s, a)$$

lteração de valor (forma escalar)

• Passo 2: Atualização de valor

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right], \qquad s \in \mathcal{S}$$

$$v_{k+1}(s) = \sum_{a} \pi(a|s)q_k(s,a)$$
, $s \in S$

• De acordo com o passo 1:

$$v_{k+1}(s) = \max_{a} q_k(s, a), \quad s \in \mathcal{S}$$

Algoritmo

Algorithm 4.2: Policy iteration algorithm

Initialization: The system model, p(r|s,a) and p(s'|s,a) for all (s,a), is known. Initial guess π_0 .

Goal: Search for the optimal state value and an optimal policy.

While v_{π_k} has not converged, for the kth iteration, do

Policy evaluation:

Initialization: an arbitrary initial guess $v_{\pi_k}^{(0)}$

While $v_{\pi_k}^{(j)}$ has not converged, for the jth iteration, do

For every state $s \in \mathcal{S}$, do

$$v_{\pi_k}^{(j+1)}(s) = \sum_{a} \pi_k(a|s) \left[\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a) v_{\pi_k}^{(j)}(s') \right]$$

Policy improvement:

For every state $s \in \mathcal{S}$, do

For every action $a \in \mathcal{A}$, do

$$q_{\pi_k}(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi_k}(s')$$

$$a_k^*(s) = \arg\max_a q_{\pi_k}(s, a)$$

$$\pi_{k+1}(a|s) = 1$$
 if $a = a_k^*$, and $\pi_{k+1}(a|s) = 0$ otherwise

Referências

- Shiyu Zhao. Mathematical Foundations of Reinforcement Learning. Springer Singapore, 2025. [capítulo 4]
 - disponível em: https://github.com/MathFoundationRL/Book-Mathematical-Foundation-of-Reinforcement-Learning
- Richard S. Sutton e Andrew G. Barto. An Introduction Reinforcement Learning, Bradford Book, 2018. [capítulo 4]
 - disponível em: http://incompleteideas.net/book/the-book-2nd.html

Slides construídos com base nos livros supracitados, os quais estão disponibilizados publicamente pelos seus respectivos autores.

02 de abril de 2025 Programação dinâmica (parte 1)