Lecture 7: RSA ~ Balanced Power Mod Operation

LEARNING OUTCOME

By the end of the lesson the student will be able to:

- a) to understand Pubic Key RSA Algorithm
- b) to understand the generation process of public and private keys
- c) to relate encryption and decryption process using RSA to PKI.
- d) to sign and verify a digital signature

RSA is popular

- 1. It is the first popular PKI
- 2. It is written in a simple formula.
- 3. It follows few thousand years concept of prime numbers.
- 4. It is being written and taught in crypto textbook.
- 5. It is part of the early standard to reckon with.

Key Generation Process:

- 1. Generate primes P and Q of size n=512 bits.
- 2. Compute the modulus $N = P \cdot Q$
- 3. Set the public exponent $E = 2^{16}+1$.
- 4. Compute private exponent $D = E^{-1} \mod (P-1) \cdot (Q-1)$
- 5. Set Public key (N, E) and Private key(N, D).

Encryption Process

- 1. Alice takes a plaintext message M and public key (N, E) of the receiver Bob.
- 2. Alice computes the ciphertext $C = M^E \pmod{N}$ and send to Bob

Decryption Process

- 1. Bob takes the ciphertext C and his Private key (N, D)
- 2. Bob computes the message $M = C^D \pmod{N}$.

Next Algorithm we need to learn is power mod operation.

Let the exponent $b = b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots b_{n-1} \cdot 2^{n-1}$

For example: $b = 2^{16} + 1 = 1000000000000001$ in big endian

Take smaller example $b = 11_{10} = 1101_2$ in big endian

Normally, we write $b = 11_{10} = 1011_2$ in little endian.

Take M = 3. To compute M^b

Note: A current answer is always on the left.

b _i	b	1	1	0	1
Left	0	1	3	3	11
Right	1	2	4	8	16

How to get to 11?

Start from Left = 0 and Right = 1. Then upon seeing the first bit 1,

We add on the left, L=L+R. We double on the right. R=2R

b_{i}	M^b	1	1	0	1
Left	1	3	27	27	177147
Right	3	9	81	6561	43046721

In this mode, we always square on the right. We only multiply on the left when we see bit 1.

Algorithm 1: Power(M, b, N)

This is a textbook powermod operation

Let $b = b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots + b_{n-1} \cdot 2^{n-1}$ in big endian

Left =1. Right = M.
for i = 0; i
if
$$b_i$$
 = 1, then
Left = Left*Right mod N;
end(*if*)
Right = Right*Right mod N;
end(*for*)

Take smaller example $b = 11_{10} = 1011_2$ in little endian

Take M = 3. To compute M^b , Right = Left +1

b _i	b	1	0	1	1
Left	0	1	2	5	11
Right	1	2	3	6	12

bi	M^b	1	0	1	1
Left	1	3	9	243	177147
Right	3	9	27	729	531441

```
Algorithm 2: Power(M, b, N)

Let b = b_{n-1} \cdot 2^{n-1} + b_1 \cdot 2^1 + ... + b_0 \cdot 2^0 in little endian

= [b_{n-1} ... b_1 b_0]
```

```
Left =1. Right = M.
for i = 0; i<n; i++;
    if b_i = 0, then

Right = Left*Right mod N;
Left = Left*Left mod N;
end(*if*)

if b_i = 1, then
Left = Left*Right mod N;
Right = Right*Right mod N;
end(*if*)
end(*if*)
```

Algorithm 2 use little endian structure to avoid side channel attacks.

Given a target K, how to reach K?

Traditionally, we will have a binary sequence of K.

Take $K = 200_{10} = 11001000_2$ which is typically written in little endian.

Let $K = 200 = a_7 a_6 \dots a_2 a_1 a_0$ in little endian.

In the textbook, 200 = 8 + 64 + 128 in big endian. = $0.1 + 0.2 + 0.2^2 + 1.2^3 + 0.2^4 + 0.2^5 + 1.2^6 + 1.2^7$

Let $K = 200 = a_0 a_1 a_2 \dots a_6 a_7$ in big endian.

Algorithm 1: Moving toward a target from Right to Left Input $A = a_{n-1} \ a_6 \dots a_2 \ a_1 \ a_0$

```
Left=1, Right =0.

for i from 0 to n-1.

Left = 2 \cdot \text{Left}

if a_i = 1 then

Right = Left + Right

end*if*

end*for*
```

Table 3. Getting a target from right to left.

i	a_i	Left	Right
-1		0	0
0	0	1	0
1	0	2	0
2 3	0	4	0
3	1	8	8
4	0	16	8
5	0	32 64	8
6	1	64	72
7	1	128	200

Algorithm 2: Moving toward a target from Left to Right Input $A = a_{n-1} a_0 \dots a_2 a_1 a_0$ in little endian

```
Left=0, Right =0.

for i from n-1 down to 0.

if a_i = 0 then

Right = Left + Right

Left = 2·Left

end*if**

if a_i = 1 then

Left = Left + Right

Right = 2·Right

end*if**
```

Table 3. Getting a target from right to left.

i	a_i	Left	Right
		0	1
7	1	1	2
6	1	3	4
5	0	6	7
4	0	12	13
3	1	25	26
2	0	50	51
1	0	100	101
0	0	200	201

Note: 1. A target answer is on the left

2. Right is always Left plus 1.

The objective here is to have a balance computation regardless of a bit sequence a_i .

Algorithm 3: ECC point multiplication Moving toward a target from Left to Right Input $A = a_{n-1} a_6 \dots a_2 a_1 a_0$

```
Left=P_0(x_0, y_0), Right = P_1(x_1, y_1)

for i from n-1 down to 0,

if a_i = 0 then

Right = Left + Right //Add Point

Left = 2 \cdot \text{Left} //Double Point

end*if*

if a_i = 1 then

Left = Left + Right //Add Point

Right = 2 \cdot \text{Right} //Double Point

end*if*

end*for*
```

```
Algorithm 3: Power Mod Operation
Moving toward a target from Left to Right
Inputs M, N
Input exponent A = a_{n-1} \ a_6 \dots a_2 \ a_1 \ a_0
Output: C = M^A \mod N
```

```
L=1, R = M \mod N.
for i from n-1 down to 0,
       if a_i = 0 then
               R = L \cdot R \mod N
                                      //Multiply Mod
               L = L^2 \mod N
                                      //Square Mod
       end*if*
       if a_i = 1 then
               L = L \cdot R \bmod N
                                      //Multiply Mod
               R = R^2 \mod N
                                      //Square Mod
       end*if*
end*for*
return L.
```

Now, please select your partner to do next Tutorial 7 in pairs.