Neural Language Models

Sargur N. Srihari srihari@cedar.buffalo.edu

This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/CSE676

Topics in NLP

- 1. N-gram Models
- 2. Neural Language Models
- 3. High-dimensional Outputs
- 4. Combining Neural LMs with n-grams
- 5. Neural Machine Translation
- 6. Attention Models
- 7. Historical Perspective

Topics in Neural Language Models

- Word Embedding as Distributed Representation
- 2. Visualizing word embeddings using t-SNE
- 3. Word-to-Vec training
- 4. Sub-word models
- 5. Glove: unsupervised learning of embeddings
- 6. Power of embeddings

Distributed vs Symbolic representation

1. Distributed Representation

- Ex: extract n binary features (hidden units)
 - A hidden unit divides R^d into pair of half-spaces
 - With n units no. of regions distinguished: $\sum_{j=0}^{d} \binom{n}{j} = n^d$
 - With O(nd) parameters we can represent $O(n^d)$ regions in input space
 - We can get 3^2 =9 regions with 3×2 =6 parameters

2. Symbolic Representation

- For $O(n^d)$ regions, we need $O(n^d)$ examples
 - For 3²=9 regions we would need 9 samples
 - For d=2, that would be 18 parameters
 - For one-hot representation d=|V|

- Fewer parameters means fewer samples needed
- One-hot vector is symbolic
- Embedded representation is a distributed

Learning Embeddings

- Starting with words in one-hot vector space
 - Whose dimensionality is vocabulary size (say, 10,000)
 - Every word is at distance $\sqrt{2}$ from every other word
- Embed them in a space of lower dimension (300)
 - Where words appearing in same context are nearby

Word Embedding Values

- A word embedding W: words $\rightarrow R^n$
 - Word W is mapped into a vector of n = 200 to 300 dimensions

```
W(\text{`cat'})=(0.2, -0.4, 0.7,...) W(\text{`mat'})=(0.0,0.6,-0.1,...)
```

- Typically a lookup-table, parameterized by a matrix θ,
 - With a row for each word: $W_{\theta}(\mathbf{w}_n) = \theta_n$

Representing a phrase

One-hot-vector to Embedded Representation

Deep Learning

Similar words in embedding

- Word embeddings in a machine translation model
 - Zooming in on areas where related words have embeddings nearby
 - (countries, dates)

Neural Network for Machine Translation

Visualizing word embedding

t-SNE: technique for visualizing high-dimensional data

- Resulting map makes intuitive sense
 - Similar words are close together

T-SNE for visualizing high-dimensional data

- t-Distributed Stochastic Neighbor Embedding
- t-SNE Differs from PCA
 - Preserves small pairwise distances (local similarities)
 - PCA preserves large pairwise distances to maximize variance

Mechanics of t-SNE

- Stage 1: Construct distribution over pairs x_i , x_j so that
 - Similar objects have high probability
- $p_{j|i} = \frac{\exp(-\|x_i x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i x_k\|^2 / 2\sigma_i^2)}$

- Dissimilar ones low probability
- Stage 2: Define low-dimensional distribution $|q_{j|i} = \frac{\exp(-||y_i y_j||^2)}{\sum_{k \neq i} \exp(-||y_i y_k||^2)}$

$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$

Minimize KL-divergence between the two distributions

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

 P_i is conditional probability over all other data points given data-point x_i Q_i is conditional probability over all other map points given map point y_i

Using gradient descent

$$\frac{\delta C}{\delta y_i} = 2 \sum_{j} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j}) (y_i - y_j)$$

- Choosing σ_i
 - Binary search for σ_i to produce a P_i
 - With a user-specified perplexity

$$Perp(P_i) = 2^{H(P_i)}$$
 $H(P_i) = -\sum_{j} p_{j|i} \log_2 p_{j|i}$

Perplexity is a smooth measure of effective no of neighbors

Neural Language Models

- Unlike class-based n-gram models
 - Neural Language Models are able to recognize that two words are similar
 - without losing the ability to encode each word as distinct from others

Word-to-vec:

Represent noun by co-occurrences with 25 verbs*


```
Semantic feature values:
"airplane"
0.8673, ride
0.2891, see
0.2851, say
0.1689, near
0.1228, open
0.0883, hear
0.0771, run
0.0749, lift
0.0049, smell
0.0010, wear
0.0000, taste
0.0000, rub
0.0000, manipulate
```

^{*} in a trillion word text collection

Strength of NLMs

- Share statistical strength between one word (and its context) and other similar words and contexts
- Distributed representation allows model to treat words that have features in common similarly
- Overcomes curse of dimensionality for sequences
 - Handled by relating each training sentence to an exponential number of similar sentences

Importance of Word Embedding

- Neural networks in other domains also define embeddings
 - E.g., convolutional neural network provides an image embedding
- Embedding in NLP is more interesting since natural language does not originally lie in a realvalued vector space

Word-to-Vec Training

Training Data

Proxy Task

- Word-to-vec
 - One-hot vector mapped to embedded vector of 300
- Word embedding
 - Similar words are close together

Another word-to-vec trainer

- W initialized with random vectors for each word
- Learns vectors to perform some task
 - Task: tell whether 5-gram is valid or broken
 - Training data: legal 5-grams, e.g., cat sat on the mat
 - Make half of them nonsensical by switching with a random word (cat sat song the mat)


```
R(W(cat), W(sat), W(on)W(the)W(mat))=1

R(W(cat), W(sat), W(song)W(the)W(mat))=0
```

- Need to learn parameters for W and R
 - R is not as interesting as W
 - Entire point of task is to learn W

Words closest in the embedding

Words with embeddings closest to a given word

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	$_{ m BIT/S}$
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	$^{ m HD}$	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	$_{\mathrm{GBIT/S}}$
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

Power of Word Embeddings

- Similar words being close together allows us to generalize from one sentence to a class of similar sentences
- Not just word for synonym but switching a word for a word in a similar class
- E.g., wall is blue → wall is red wall is blue → ceiling is red

Word embeddings and analogies

- Analogies between words are encoded in difference vectors between words
 - E.g., constant male-female difference vector
 - W(woman)-W(man)≈W(aunt)-W(uncle)
 - W(woman)-W(man)≈W(queen)-W(king)
- Not surprising, since
 - we write "she is the aunt" but "he is the uncle"

Word embeddings & relationship pairs

More sophisticated relationships are encoded

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

All these are side-effects

- All these properties of W are side-effects
 - We didn't try to have similar words close together
 - We didn't try to have analogies encoded with difference vectors
- All we tried to do was a simple task, whether a sentence was valid
 - These properties popped out of optimization process
- Neural networks learn better ways to represent data automatically

Sub-word Models

- Same architectures as for word level models
 - But use smaller "word pieces": letter pairs, characters
- Word embeddings can be composed from character embeddings
 - Generates embeddings for unknown words
 - Similar spellings share similar embeddings
 - Solves OOV (out-of-vocabulary) problem
- Character-level embeddings outperformed word level embedding in English-Czech MT

Glove: Global Vectors for Word Representation

- Unsupervised learning to obtain vector representations for words.
 - Training performed on aggregated global wordword co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.
 - Vector differences man woman, king queen and brother - sister roughly equal.

Importance of Word Embedding

- Neural networks in other domains also define embeddings
 - E.g., convolutional neural network provides an image embedding
- Embedding is NLP is more interesting since it does not originally lie in a real-valued vector space
- Using distributed representations is also used with PGM hidden variables