Metagenomic: Giải trình tự 16s rRNA và Shotgun, từ chuẩn bị thư viện đến giải trình tự

Trình bày: Nguyễn Văn Chiến – Suran's Company

Tổng quan

- 1. Khái niệm và ứng dụng
- 2. Workflow và nguyên lý của giải trình tự 16s rRNA và Shotgun
- 3. Quy trình chuẩn bị thư viện và giải trình tự (Wet-lab)
- 4. Cập nhập các kết quả chuẩn bị thư viện và giải trình tự trên hệ thống GenoLab M (GeneMind)
- 5. Thảo luận

1. Khái niệm và ứng dụng

a. Khái niệm về "Metagenomic Sequencing"

Metagenomics

Giải trình tự Metagenomics: là giải trình tự thông lượng cao bộ gen của các hệ vi sinh vật, tập trung vào độ đa dạng của hệ vi sinh vật, hoạt động chức năng của gen, tương tác vi sinh vật và mối quan hệ giữa vi sinh vật và môi trường.

Isolate

Community

Ưu điểm vượt trội của phương pháp:

- Không cần nuôi cấy và phân lập từng chủng vi sinh vật
- ☐ Phương pháp giúp phân tích được các mẫu vi sinh vật phức tạp
- ☐ Phân tích các con đường chuyển hóa tế bào và tương tác qua lại trong cộng đồng.

b. Phân loại các phương pháp giải trình tự metagenomic

Targeted sequencing

Metagenomic shotgun sequencing

b. Phân loại các phương pháp giải trình tự metagenomic

- Có 2 loại phương pháp tiếp cận metagenomics: Targeted sequencing và Metagenomic shotgun sequencing
- Cả 2 đều có thể trả lời câu hỏi trong mẫu có gì, nhưng để phân tích chức năng thì chỉ có Metagenomic shortgun sequencing

	Targeted sequencing	Metagenomic shortgun sequencing			
	Chỉ giải trình tự cho 1 vùng cụ thể 16S cho rRNA vi khuẩn 18S cho sinh vật nhân thực ITS cho nấm	Xác định được đến mức phân loại <i>"loài "</i> , thậm chí <i>"chủng"</i>			
Ưu điểm	Có lợi khi phân tích môi trường có sinh khối thấp và nhiễm DNA "host" (da, phổi,)	Lắp ráp được toàn bộ gene của nhiều thành viên trong quần thể			
ou ulein	Nhận dạng vi sinh vật, phân tích đa dạng, phân loại và phát sinh loài, xác định loài mới, nghiên cứu mối quan hệ giữa vi sinh vật và bệnh tật, siêu gen	,			
	Chi phí thấp, phân tích đơn giản và nhanh, phù hợp với với số lượng mẫu lớn	Dự đoán chức năng và các con đường chuyển hóa phân tử			
	Không "bắt" được virus	Chi phí GTT cao			
	Thường chỉ xác định được đến mức "chi (genus)"	Tiêu tốn nhiều tài nguyên			
Nhược điểm	Kết quả có thể sai lệch do bước nhân bản gen	Suran			
G I C I I I	Không phân tích chức năng	Medical and Scentiffe foldation			

c. Ứng dụng

Sinh học:

Nghiên cứu sự đa dạng và chức năng của vi sinh vật trong môi trường tự nhiên

Y tế:

- Phát triển các phương pháp điều trị mới cho bệnh truyền nhiễm
- Phát triển thuốc mới
- Chẩn đoán bệnh,...

Nông nghiệp:

- Cải thiện sản xuất nông nghiệp

• • •

2. Workflow và nguyên lý

Nguyên lý

Quy trình chuẩn bị thư viện và giải trình tự

- (1) Extract and test quality of genomic DNA
- (2) Genomic DNA fragmentation
- (3) Repair the end of DNA fragments by adding base A at 3' end as viscous terminal
- (4) Add DNA adapter containing indexed sequence on both sides of the viscous terminal via base complementation
- (5) Collect target fragments in a certain range by Magnetic beads screening
- (6) Index the end of the target fragment with PCR amplification, and complete the construction and detection of the sequencing libraries
- (7) Bind the sequencing libraries to sequencing chips with Bridge PCR
- (8) Sequencing

3. Quy trình chuẩn bị thư viện và giải trình tự 16S/Shotgun (Wet-lab)

Qui trình chuẩn bị thư viện và giải trình tự

(1) Extract and test quality of genomic DNA

- (2) Genomic DNA fragmentation
- (3) Repair the end of DNA fragments by adding base A at 3' end as viscous terminal
- (4) Add DNA adapter containing indexed sequence on both sides of the viscous terminal via base complementation
- (5) Collect target fragments in a certain range by Magnetic beads screening
- (6) Index the end of the target fragment with PCR amplification, and complete the construction and detection of the sequencing libraries
- (7) Bind the sequencing libraries to sequencing chips with Bridge PCR
- (8) Sequencing

Nguyên lý tách chiết

Phá vỡ thành và màng tế bào

Loại bỏ các thành phần không mong muốn

Thu hồi axit nucleic

Các mẫu đầu vào Sample Environmental Animals, human

Một số thách thức khi thu thập, xử lý và tách chiết mẫu

- Khó để thu thập được mẫu đại diện
- Tính đa dạng, phức tạp của mẫu
- Yêu cầu cao về độ tinh sạch của DNA sau tách chiết
- Sự có mặt của DNA vật chủ

(QIAGEN)

(MOLYSIS™ COMPLETE5)

(DEVIN™ MICROBIAL DNAENRICHMENT KIT)

Qui trình chuẩn bị thư viện và giải trình tự

- (1) Extract and test quality of genomic DNA
- (2) Genomic DNA fragmentation
- (3) Repair the end of DNA fragments by adding base A at 3' end as viscous terminal
- (4) Add DNA adapter containing indexed sequence on both sides of the viscous terminal via base complementation
- (5) Collect target fragments in a certain range by Magnetic beads screening
- (6) Index the end of the target fragment with PCR amplification, and complete the construction and detection of the sequencing libraries
- (7) Bind the sequencing libraries to sequencing chips with Bridge PCR
- (8) Sequencing

(2) Genomic DNA fragmentation

Shotgun

Phương pháp phân mảnh vật lý

Phương pháp phân mảnh bẳng enzyme

- DNasel Endonuclease
- Transposon
- Hỗn hợp enzym thương mại: Ion Share (Ion Torrent), Fragmentase (NEB)

16S/18S/ITS - Targeted

- + Kit khuếch đại toàn bộ vùng 16S: IDT, Qiagen, Thermo
- + Kit In- house: Khuếch đại vùng V3, V4 (GeneMind)

(2) Genomic DNA fragmentation

Tiêu chí	Phương pháp vật lý	Phương pháp enzyme	Phương pháp khuếch đại
Định nghĩa	Là phương pháp phân mảnh DNA dựa trên các tác động vật lý như song siêu âm, áp suất,	Sử dụng enzyme có hoạt tính bám và phân mảnh DNA tại các vị trí	Sử dụng mồi thiết kế khuếch đại vùng gene mục tiêu cần phân tích (16S/18S/ITS)
Ưu điểm	 Không bị ảnh hưởng phản ứng bởi hoạt động của enzyme Không ảnh hưởng với các chất ức chế Khó điều chỉnh hơn 	 Nhanh Không yêu cầu số lượng lớn DNA Không làm hỏng DNA 	Chọn được vùng mục tiêu phân tích
Nhược điểm	 Điều chỉnh không phù hợp có thể làm hỏng DNA Yêu cầu số lượng DNA lớn 	 Bị ảnh hưởng bởi hoạt động của enzyme và thành phần DNA cần phân mảnh Bị ảnh hưởng bới các tạp chất và chất ức chế ví dụ EDTA Có thể điều chỉnh 	Bị ảnh hưởng bởi độ nhạy và độ ảnh hưởng của mồi
Kiểu giải trình tự	Shotgun	Shotgun	Targeted

(3) & (4) Adapter attachment

(3) & (4) Adapter attachment

(5) Collect target fragments in a certain range by Magnetic beads screening

Với sự hiện diện của Polyethylene Glycol (PEG) và Natri Clorua, DNA liên kết với các hạt từ. Khi bổ sung **Elution Buffer** sự liên kết này được loại bỏ và thu nhận được DNA sạch cho các bước chuẩn bị sau.

Kiểm tra chất lượng thư viện trước khi giải trình tự

Tại sao cần phải kiểm tra chất lượng thư viện DNA?

- > Đảm bảo độ chính xác trong phản ứng PCR
- > Đảm bảo độ tin cậy của kết quả giải trình tự
- > Tiết kiệm hóa chất

Allsheng

(Invitrogen)

Yêu cầu thư viện

- Nồng độ: >1 ng/ul
- ☐ Độ tinh sạch cao
- ☐ Kích thước thư viện

Kiểm tra chất lượng thư viện trước khi giải trình tự

Spectrometry (Nanodrop)

- Good for determining total nucleic acid concentration and amount.
- Requires very little sample
- Fast
- Does not differentiate between DNA and RNA or ds and ss DNA
- Can not tell about adapter presence
- Not so accurate in low sample concentration range

Fluorometry (Qubit)

- Good for determining total nucleic acid concentration and amount.
- Requires very little sample
- Fast
- Differentiates between ds and ss DNA and RNA
 - Can not tell about adapter presence

Capillary Electrophoresis (Bioanalyzer)

- Relatively fast
- Requires small sample amounts
- Provides DNA/RNA size and quantity information
 - Cannot tell about adapter presence

qPCR

- The only method providing information on sequencable library quantity
- Slow. Depending on the instrument and number of libraries can take up to several hours

Một số kit chuẩn bị thư viện khác

Search

Order by stock part number »

PRODUCTS & SERVICES ▼

APPLICATIONS & SOLUTIONS ▼

SUPPORT & EDUCATION

Products > Next Generation Sequencing > Amplicon sequencing > Predesigned Amplicon Panels >

xGen™ Metagenomics Amplicon Panels

Research identities in mixed microbial community

Qui trình chuẩn bị thư viện và giải trình tự

- (1) Extract and test quality of genomic DNA
- (2) Genomic DNA fragmentation
- (3) Repair the end of DNA fragments by adding base A at 3' end as viscous terminal
- (4) Add DNA adapter containing indexed sequence on both sides of the viscous terminal via base complementation
- (5) Collect target fragments in a certain range by Magnetic beads screening
- (6) Index the end of the target fragment with PCR amplification, and complete the construction and detection of the sequencing libraries
- (7) Bind the sequencing libraries to sequencing chips with Bridge PCR
- (8) Sequencing

(7) Bind the sequencing libraries to sequencing chips with Bridge PCR

(8) Sequencing

Hệ thống máy Giải trình tự Genemind

Product Model	FASTASeq 300 Series	GenoLab M Series
Launch	2022	2020
Feature	Flexible·Easy-to-use·Rapid	Flexible-Efficient
Qualification	\	CE
Application	mNGS/tNGS/small genome sequencing	WGS/tNGS/mNGS/RNA-seq
Flow cell/run	1 Flow Cell	2 Flow Cell
Max output/run	75 Gb	300 Gb
Max read length	PE150	PE150

Cách thiết kế dung lượng mẫu cho 1 lần chạy 16S/Shotgun trên hệ thống FASTASeq 300 (GeneMind)

Unit	Flowcell Type	Lane	Reads	Read Length	Output (Gb)	Q30	Sequencing Time (h) index (0)	Sequencing Time (h) index (8+8)
				SE50	5.0		4.5	5.5
	FCM		100M	SE75	7.5	≥85%	6.0	7.0
		4		PE75	15.0		11.5	13.0
				PE150	30.0	≥80%	19.5	21.0
Single				SE50	12.5		5.0	6.5
	FCH		250M	SE75	18.5	≥85%	6.5	8.0
		4		PE75	37.5		12.5	14.0
				PE150	75.0	≥80%	22.5	24.0

Cách thiết kế dung lượng mẫu cho 1 lần chạy 16S/ Shotgun trên hệ thống FASTASeq 300 (GeneMind)

	Application	Read length	Data per sample	(100M)	(250M)
	Metagenomics for pathogen detection(mNGS)	SE50	25 M reads	4	12
Pathogenic microorganism	Microbial whole genome sequencing	PE150	~1Gb	24~32	48~64
sequencing	Targeted pathogen next generation sequencing(tpNGS)	PE150	~ 1M reads	>96	> 192

Cách thiết kế dung lượng mẫu cho 1 lần chạy 16S/ Shotgun trên hệ thống FASTASeq 300 (GeneMind)

FASTASeq 300 mNGS (SE75-20M reads/Sample, SE50-35 ~ 50M reads/Sample)

		100M			250M					
Read	Pooling		Single Lane		Read	Рс	oling	Single Lane		
Length	Run Time	Sample	le Run Time Sample			Run Time	Sample	Run Time	Sample	
SE50-D	N/A	N/A	4.5h	4 35M+/sample	SE50-D	6.5h	6 ~ 8 35M+/sample	N/A	N/A	
SE75-D	7.0h	5 ^{20M/sample}	6.0h	4 35M+/sample	SE75-D	8.0h	12 ^{20M/sample}	N/A	N/A	

Mức độ tương thích kit chuẩn bị thư viện illumine/ IDT/Qiagen chạy trên máy GeneMind

4. Kết quả CBTV và GTT sử dụng hệ thống GenoLab M (GeneMind)

DỊCH VỤ MNGS SỬ DỤNG HỆ THỐNG GIẢI TRÌNH TỰ GENOLAB M (GENEMIND)

	Dịch vụ 20240223											
		Metric/Sample	Data achieved (445M read (20240223)		Desired MB	QC of (450M reads, 135.000M) (20240223)						
STT			Number of reads ((R1 + R2)/2) (x10^3 reads)	Total based (MB)								
	NA	raw_NA_L00_R1	12,226	3,668	#N/A							
1	23018001	raw_2301S001_L00_R1	32,793	9,838	6,000	Pass						
2	RI0002302A03	raw_RI0002302A03	797	239	200	Pass						
3	RI0002302A05	raw_RI0002302A05	900	270	150	Pass						
4	RI0272310A02	raw_RI0272310A02	548	164	150	Pass						
5	RI0272310A04	raw_RI0272310A04	739	222	100	Pass						
6	RI0502304A23	raw_RI0502304A23	419	126	100	Pass						
7	RI1022312A02	raw_RI1022312A02	414	124	100	Pass						
8	RI1022312A03	raw_RI1022312A03	370	111	100	Pass						
9	RI1022312A05	raw_RI1022312A05	419	126	100	Pass						
10	RM1022307A02	raw_RM1022307A02	561	168	100	Pass						
11	SI0002303A02	raw_SI0002303A02	9,968	2,990	2,000	Pass						
12	SI0682302A02	raw_SI0682302A02	28,121	8,436	50	Pass						
13	SI0742311A01	raw_SI0742311A01	3,897	1,169	500	Pass						
14	SM0002311A03	raw_SM0002311A03	12,845	3,853	1,000	Pass						
15	SM1172310A21	raw_SM1172310A21	2,628	788	100	Pass						
16	TM0572310A02	raw_TM0572310A02	22,144	6,643	2,500	Pass						
17	WH0682302A11	raw_WH0682302A11	1,924	577	450	Pass						
18	WH1142309A02	raw_WH1142309A02	1,505	452	450	Pass						
19	WI0002305A14	raw_WI0002305A14	3,786	1,136	500	Pass						
20	WI0002305A17	raw_WI0002305A17	1,906	572	500	Pass						
21	WI0322305A01	raw_WI0322305A01	12,435	3,731	3,000	Pass						
22	WI0392401A01	raw_WI0392401A01	44,413	13,324	3,000	Pass						
23	WI0682312A01	raw_WI0682312A01	21,418	6,426	5,000	Pass						
24	WI1242312A01	raw_WI1242312A01	20,951	6,285	5,000	Pass						
25	WI1242312A02	raw_WI1242312A02	30,433	9,130	5,000	Pass						
26	WI1242312A03	raw_WI1242312A03	28,674	8,602	5,000	Pass						
27	WI1242312A04	raw_WI1242312A04	28,981	8,694	5,500	Pass						
28	WI1242312A05	raw_WI1242312A05	21,833	6,550	5,000	Pass						
29	WI1242312A06	raw_WI1242312A06	21,018	6,305	5,000	Pass						
	TOTAL		369,065	110,719	56,650	Pass:29						

➤ Loading concentraion: 2.3 pM

Achieved data: <u>133.613 MB</u>, ~ 369M reads. ((Read 1+ Read 2)/2)

> Q30: 93,082%

Q30R1: 93,799%

Q30R2: 92,364%

> GC%: 43,865%

→ Dữ liệu trả ra đúng yêu cầu

MỘT SỐ NGHIÊN CỨU MNGS SỬ DỤNG HỆ THỐNG GIẢI TRÌNH TỰ GENOLAB M (GENEMIND)

OPEN ACCESS

EDITED BY
Guan-Zhu Han,
Nanjing Normal University,
China

REVIEWED BY
Eric J. Kremer,
Université de Montpellier,
France
Xingui Tian,
First Affiliated Hospital of Guangzhou
Medical University,
China

Genetic characterization of human adenoviruses in patients using metagenomic next-generation sequencing in Hubei, China, from 2018 to 2019

Bin Fang^{1†}, Juan Lai^{2†}, Yongfeng Liu^{2†}, Tian-tian Yu³, Xiao Yu¹, Xiang Li¹, Lijun Dong², Xin Zhang², Wei Yang², Qin Yan², Lei Sun^{2*} and Lin-lin Liu^{1*}

Mục tiêu:

*CORRESPONDENCE

Đánh giá công dụng của mNGS trong mô tả đặc điểm nhiễm HAdV ở Hồ Bắc, Trung Quốc. 25 mẫu HAdV được giải trình tự sử dụng nền tảng NextSeq 550 và GenoLab M. Từ đó xác định mối quan hệ tiến hóa của các chủng và các sự kiện tái tổ hợp tiềm năng thông qua việc xác định đặc điểm bộ gen và kiểu phân tử.

Nguyên liệu và phương pháp:

- Lấy 400 mẫu tách chiết tự động bằng The KingFisher Flex platform (Prefill Viral Total NA Kit 2×96 preps, KFRPF-805296)
 → phát hiện 21 mẫu dương tính với HadV sử dụng kit AgPath-ID™ One-Step RT-PCR Reagent (Thermo Fisher Scientific, United States).
- 2. 4 mẫu được nuôi cấy trong tế bào HEp-2, dòng tế bào ung thư biểu mô thanh quản ở người → phân lập và nuôi cấy virus.
- 3. Tách chiết DNA từ mẫu dịch phết mũi họng (EZ1 Virus Mini Kit (Qiagen, Hilden, Germany)) và xác định nồng độ Qubit dsDNA HS Assay Kit and Qubit 4.0 fluorometers (Thermo Fisher Scientific, United States) → bảo quản -80°C.
- 4. Nuôi cấy virus và tách chiết (mẫu chuẩn).
- 5. Chuẩn bị thư viện: VAHTSTM Universal DNA Library Prep Kit for Illumina® V3 (Vazyme, China) với 100 pg 4 μg DNA đầu vào.
- 6. Thư viện được chia thành 2 GTT bằng Illumina NextSeq 550 or GeneMind GenoLab M platform.

TABLE 1 Assembly statistics of 25 samples sequenced via two platforms.

	Reference	Reference length (bp)	ba	ned se/ ence %)		ntig nber	Larg cor lengt		Total (b	length p)	N50	(bp)	N90	(bp)
Sample			GL	NS	GL	NS	GL	NS	GL	NS	GL	NS	GL	NS
S11	MW816005.1	35,226	99.53	99.59	1	1	35,215	35,209	35,215	35,209	35,215	35,209	35,215	35,209
S15	MT424875.1	35,994	88.75	88.64	1	1	36,070	36,044	36,070	36,044	36,070	36,044	36,070	36,044
S16-C1	MW748645.1	35,255	99.62	99.56	1	2	35,423	19,799	35,423	35,262	35,423	19,799	35,423	15,463
S16	MW748645.1	35,255	99.66	99.66	1	1	35,277	35,277	35,277	35,277	35,277	35,277	35,277	35,277
S21	MW748657.1	35,255	99.49	99.60	1	1	35,292	35,397	35,292	35,397	35,292	35,397	35,292	35,397
S28-C1	MF315029.1	35,958	98.65	98.60	1	1	35,952	36,019	35,952	36,019	35,952	36,019	35,952	36,019
S28	MF315029.1	35,958	98.51	98.54	4	1	11,907	35,985	36,158	35,985	11,581	35,985	9,394	35,985
S3	KF006344.1	35,960	97.04	98.63	5	2	14,957	25,385	35,357	35,871	9,912	25,385	4,246	10,486
S33	MW748657.1	35,255	99.50	99.60	1	1	35,284	35,292	35,284	35,292	35,284	35,292	35,284	35,292
S4	KF006344.1	35,960	98.79	98.79	1	1	35,780	35,780	35,780	35,780	35,780	35,780	35,780	35,780
S41	MW748657.1	35,255	99.53	99.77	1	1	35,260	35,363	35,260	35,363	35,260	35,363	35,260	35,363
S43-C1	KF006344.1	35,960	79.12	98.49	11	3	9,835	12,959	29,236	35,983	2,936	12,407	1,455	10,617
S43	KF006344.1	35,960	98.67	98.68	1	1	35,796	35,796	35,796	35,796	35,796	35,796	35,796	35,796
S48	MK041241.1	35,951	94.51	94.64	2	1	29,692	35,907	35,929	35,907	29,692	35,907	6,237	35,907
S5	MW748654.1	35,264	99.38	99.44	3	2	15,069	24,507	35,319	35,318	10,860	24,507	9,390	10,811
S50-C1	MW748657.1	35,255	99.44	99.33	2	3	24,287	19,818	35,264	35,335	24,287	19,818	10,977	3,605
S50	MW748657.1	35,255	99.51	99.60	2	1	19,728	35,291	35,246	35,291	19,728	35,291	15,518	35,291
S55	MT263140.1	35,935	97.01	97.09	7	6	10,569	11,276	36,660	36,672	8,296	10,953	4,321	2,890
S58	MF315029.1	35,958	92.12	81.51	10	10	6,037	8,141	35,177	36,316	4,468	4,756	1,881	2,294
S59	MW748672.1	35,256	99.52	58.88	1	1	35,371	35,368	35,371	35,368	35,371	35,368	35,371	35,368
S60	MN513344.1	35,986	78.70	81.78	13	10	4,155	7,430	31,084	31,526	2,852	4,620	1,247	1,727
S63	MF681662.1	35,805	92.37	92.54	3	3	18,579	32,250	36,227	35,874	18,579	32,250	15,191	2,073
S64	KX289874.1	34,755	99.45	99.26	1	2	34,724	33,712	34,724	34,737	34,724	33,712	34,724	33,712
S71	KX289874.1	34,755	99.43	99.32	1	1	34,716	34,821	34,716	34,821	34,716	34,821	34,716	34,821
S9	MZ151863.1	35,936	98.04	97.93	1	1	36,035	35,990	36,035	35,990	36,035	35,990	36,035	35,990

GL, GenoLab M. NS, NextSeq 550.

N50 size was calculated by arranging all sequences and then adding the lengths of sequences from the longest to the shortest until the summed length exceeded 50% of the total length of all sequences. N90 is similarly defined as N50.

→ Các chỉ số phân tích về aligned, Contid, bp,.. tương đối tương đồng giữa hệ thống (Nextseq) Illumina và (GenoLab M) Genemind

FIGURE 1

Heat map showing abundance clustering of the top 50 species. (A) SE150 and (B) SE75 sequencing mode. Z values represent the corresponding value of the heat map, which were obtained after normalization to the relative abundance of the species in each row. The color gradient from green to purple indicates low to high relative abundance. The x-axis displays the samples and groups and the y-axis represents the species annotation information. Horizontal clustering indicates the similarity of species richness in different samples.

→ Phân tích đa dạng loài tương đương giữa 2 hệ thống

Kết luận: Công bố chứng minh tính đồng nhất về dữ liệu, kết quả lắp ráp và phân loại vi sinh vật cho thấy Hệ thống giải trình tự GenoLab M với hệ thống Illumina NextSeq 550. Cho thấy hệ thống Genolab M phù hợp sử dụng cho mNGS

Phát hiện đồng nhiễm *SARS-CoV-2* và cúm A (*H3N2*) trong dịch rửa phế nang phế quản của bệnh nhân mắc hội chứng COVID kéo dài

- Nguyên liệu: Dịch rửa phế nang, phế quản (BALF)
- Phương pháp: Giải trình tự thế hệ mới metagenomic (mNGS) trên Genolab M

Kết luận: mNGS trên Genolab M chẩn đoán kịp thời đồng nhiễm SARS-CoV-2 và cúm A (H3N2)

Kết quả giải trình tự mNGS của dịch rửa phế quản phế nang (BALF)

5. Thảo luận

Thanks for listening!

