COSC175 (Systems I): Computer Organization & Design

Professor Lillian Pentecost Fall 2024

Warm-Up September 12

- Where we were
 - Picking up with <u>simplifying</u> boolean equations and <u>proving</u> equality
 - Describing simple circuits in SystemVerilog
- Where we are going
 - Even more tools for simplification, more examples, a fan favorite: **K-Maps**
- Logistics, Reminders
 - Evening help sessions 7-9PM on Sundays, Tuesdays, Thursdays in C107
 - LP Office Hours at 2:30-4PM Today, CANCELED on Monday
 - Weekly Exercises Due Friday 5PM
 - Lab 1 due Monday 10PM
 - Thank you to our volunteers, the lab sections are more balanced now!
- Textbook Tags: 2.4, 2.5, 2.6, 2.7

Day2 Check-In (Recap)

- A. Prove T9 (*covering*) theorem using each method (TT, other theorems)
- B. Simplify the following expressions into *two or fewer terms*, each with *two or fewer literals*, then check your work with a truth table:

a.
$$Y = AC + BC + ABC$$

b.
$$Y = \overline{AB} + \overline{ABC} + \overline{(A + \overline{C})}$$

Number	Theorem	Dual	Name	
T1	B • 1 = B	B + 0 = B	Identity	
Т2	B • 0 = 0	B + 1 = 1	Null Element	
Т3	B • B = B	B + B = B	Idempotency	
T4	 B = B		Involution	
T5	B • B = 0	B + B = 1	Complements	

#	Theorem	Dual	Name
Т6	B•C = C•B	B+C = C+B	Commutativity
T7	(B•C) • D = B • (C•D)	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	(B+C) • (B+ C) = B	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	<u>B•C•D</u> = <u>B</u> +C+D	B+C+D= B • C • D	De Morgan's

Simplify B.b together on board

Define Minimization: **depends on your priorities!** For a boolean equation, we would aim for a sum of fewest, simplest possible <u>implicants</u> (or products), but for a circuit, we might want to minimize **total number of gates**, or **eliminate certain types of gates**, or **reduce the "depth"** of the circuit, to make it optimal.

b.
$$Y = \overline{A}\overline{B} + \overline{A}B\overline{C} + \overline{(A + \overline{C})}$$

Number	Theorem	Dual	Name	
T1	B • 1 = B	B + 0 = B	Identity	
T2	B • 0 = 0	B + 1 = 1	Null Element	
Т3	B • B = B	B + B = B	Idempotency	
T4	 =	B = B		
T5	B • B = 0	B + B = 1	Complements	
	S. S			

#	Theorem	Dual	Name
Т6	B•C = C•B	B+C = C+B	Commutativity
T7	(B•C) • D = B • (C•D)	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	(B+C) • (B+C) = B	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	B•C•D = B+C+D	B+C+D= B•C•D	De Morgan's

Organized Gate Schematics using PLAs

Programmable Logic Arrays are a general structure for constructing canon form schematics, making translating SOP, for example, very straightforward!

See DDCA 2.4, 2.5 for more tips and structures for schematics!

D, X, and Z as Values?

D for a "Don't Care" value in the development of a design

X for an illegal value, the result of a contentious or unclear operation

Z for a **floating value**, not knowably 0 or 1 or somewhere in between

"Don't Care"s in Truth Tables: Example

Imagine a *priority circuit:* Output of "1" corresponding to most significant "1" input

... starting with the truth table

A_3	A_2	$A_{_{1}}$	A_o	Y ₃	Y ₂	Y_1	Y_o
0	0		0	-	-	-	-
0 0	0	0	1				
0	0	1	0				
0	0	1	1 0 1				
0 0 0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0 1 0 1 0 1				
1	0	1	1				
1	1	0	1 0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

"Don't Care"s in Truth Tables: Example

Imagine a *priority circuit*: Output of "1" corresponding to most significant "1" input

A_3	A_{2}	$A_{\scriptscriptstyle 1}$	A_{o}	Y_3	Y ₂	Yı	Y_o
0	0		0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1	0 0 0 1 1 1 1 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0 0 0	0
1	1	1	1	0 0 0 0 0 0 0 1 1 1 1 1	0	0	Y ₀ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Imagine a *priority circuit*: Output of "1" corresponding to most significant "1" input

... we will use a "D" or an "X" in a truth table to denote "don't care"

Remember your majority vote circuit

– are there any potential "Don't

Care"s in that behavior?

$$Y_3 = \underline{A}_3$$

$$Y_2 = \overline{A}_3$$

$$Y_1 = \overline{A}_3$$

$$A_2$$

$$A_1$$

$$Y_0 = \overline{A}_3$$

$$A_2$$

$$A_1$$

$$A_2$$

Contention: X

- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation
- X is also used for:
 - Uninitialized values
 - Don't Care
- Warnings:
 - Contention or uninitialized outputs usually indicate a bug.
 - Look at the context to tell meaning

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between
 - A voltmeter won't indicate whether a node is floating
 - But if you touch the node or wait a while, it may change values

Tristate Buffer

Ε	Α	Y
0	0	Z
0		Z
	0	0
		1

Tristate Busses for mediating components

- Floating nodes are used in tristate busses
 - Many different drivers
 - Exactly one is active at once

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically and efficiently
- Multi-bit inputs are listed in gray code ordering

Α	В	С	Y
0	0	0	1
0	0	1	
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	
1	1	0	0
1	1	1	0

Y	P			
C	00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	ABC
1	ĀĒC	ĀBC	ABC	ABC

Making K-Maps Useful

- Circle 1's in adjacent squares
- In groups of 1, 2, 4, 8... (powers of two)

Α	В	С	Y	Y AE	2				Y	
0	0	0	1		00	01	11	10	AB 00	01
0	0	1		C				10	C 00	
0	1	0	0	0	()		_		0 (7==	\
0	1	1	0	U		0	0	0	0 ABC	ĀB
1	0	0	0							-
1	0	1	0						4 750	II
1	1	0	0	1	$ abla^1$	0	0	0	ABC	ĀB
1	1	1	0							

11

 $ABar{C}$

ABC

10

AĒC

 $A\bar{B}C$

3-Input K-Map

- Circle 1's in adjacent squares
- In Boolean expression: include only literals whose true and complement form are not in the circle

Truth Table						
A	В	С	Y			
0	0	0	0			
Ο	0	1	0			
Ο		Ο	1			
0		1	1			
	0	0	0			
	0	1	0			
		0	0			
		1	1			

$$Y = \overline{AB} + BC$$

Rules for K-Map Minimization

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges

Crank it up!! 4-input example

Α	В	С	D	Y
0 0 0 0 0 0 0	0		0	1
0	0	0	1	
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1	1 0 1 0 1 1 1 1 0 0 0 0
1	1	1	0	0
1	1	1	1	0

Y					
CD A	00 B	01	11	10	
00	1	0	0	1	
01		1	0		
11	1	1	0	0	
10	1	1	0	1	

Crank it up!! 4-input example

Α	В	С	D	Y
A 0 0 0 0 0 0 0 1 1 1 1 1	0	C 0 0 1 1 0 0 1 1 0 0 1 1	D 0 1 0 1 0 1 0 1 0 1	1 0 1 0 1 1 1 1 1 0 0 0 0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	0 0 0 0 1 1 1 0 0 0 0 1 1 1 1	0	1	0
1	1	1	0	0
1	1	1	1	0

... Now let's add another rule

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- Circle a "don't care" (D) only if it helps minimize the equation

"Don't Care"s in K-Maps

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0 0 0 0 0 0 1 1	1	0	1	
0	1	0 1	1 0 1	1
0	1	1	1	1
1	0	0	0	1
1		0	1	
1	0 0	1	0	X
1	0	1	0 1	X
1	1	0		X
1 1 1 1 1	1		0 1	1 0 1 0 x 1 1 1 1 x x x
1	1	0 1 1	0	X
1	1	1	1	X

"Don't Care"s in K-Maps

Α	В	С	D	Y
$\frac{A}{0}$	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	1 0	0	0
0	1	0	0 1 0 1	X
0	1	1		1
0	1	1 1	0 1	1
1	0	0	0	1
0 0 0 0 0 0 0 1 1	0	0	0 1 0 1	1
1	0	1	0	X
1	0	1	1	X
1	1	0		X
1 1 1 1	1	0	0 1 0 1	0 1 0 X 1 1 1 X X X X
1	1	1	0	X
1	1	1	1	X

Wrap-Up September 12

- Coming up next!
 - \circ Bigger, better, multi-component designs \rightarrow building computational units
 - On your own: be sure to read DDCA 2.4 and 2.5 to inform your designs and schematic drawing!
- Logistics, Reminders
 - Evening help sessions 7-9PM on Sundays, Tuesdays, Thursdays in C107
 - LP Office Hours at 2:30-4PM Today, CANCELED on Monday
 - Weekly Exercises Due Friday 5PM
 - Lab 1 due Monday 10PM (<u>you have keycard access to C107, the laptops and FPGAs</u> <u>must stay in that room at all times, no propping door open, clean up when you leave</u>)
 - Thank you to our volunteers, the lab sections are more balanced now!
- FEEDBACK
 - https://forms.gle/5Aafcm3iJthX78jx6

