Linear Regression

Szymon Bobek

Institute of Applied Computer science AGH University of Science and Technology

Based on Carlos Guestrin adn Emily Fox slides from Coursera Specialization on Machine Learnign http://geist.agh.edu.pl

Outline I

- Roadmap
- 2 Use case
- Model
- Simple linear regression
 - General idea
 - Why RSS?
 - Other cost functions
 - Linearity in linear regression
- 5 Solution to linear regression problem
 - The overall idea
 - Closed form solution
 - Gradient descent
 - Features normalization

Presentation Outline

- Roadmap
- 2 Use case
- Mode
- Simple linear regression
- 5 Solution to linear regression problem

Roadmap

- Regression
 - Linear regression
 - Ridge regression
 - Bias, variance tradeoff
- Classification
 - Logistic regression
 - Support Vector Machines
 - Decision trees

Presentation Outline

- Roadmap
- 2 Use case
- Mode
- Simple linear regression
- Solution to linear regression problem

Problem

Problem

Problem

Presentation Outline

- Roadmap
- 2 Use case
- Model
- 4 Simple linear regression
- (5) Solution to linear regression problem

Data

$$(x_1 = 150 \text{ m}^2, y_1 = 100 000\$)$$

$$(x_2 = 150 \text{ m}^2, y_2 = 100 000\$)$$

$$(x_3 = 150 \text{ m}^2, y_3 = 100 000\$)$$

...

$$(x_m = 150 \text{ m}^2, y_m = 100 000\$)$$

How to get the model

Which model?

Which model?

Presentation Outline

- Roadmap
- 2 Use case
- Model
- Simple linear regression
 - General idea
 - Why RSS?
 - Other cost functions
 - Linearity in linear regression
- Solution to linear regression problem

Representing a model

Representing a model

Cost of using a model

Cost of using a model

Cost of using a model

Outline

- Roadmap
- Use case
- Mode
- 4 Simple linear regression
 - General idea
 - Why RSS?
 - Other cost functions
 - Linearity in linear regression
- Solution to linear regression problem
 - The overall idea
 - Closed form solution
 - Gradient descent
 - Features normalization

Gaussian interpretation

- Prediction is linear function and noise: $y = \theta x + \epsilon$
- We assume that the noise ϵ is drawn from normal distribution:

$$\mathcal{N}(y \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\sigma^2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

We assume that training samples are i.i.d.

Gaussian interpretation

We want to learn

$$\mathcal{P}(y \mid \theta, x, \sigma^2) = \frac{1}{\sqrt{2\sigma^2 \pi}} e^{-\frac{(y - \sum_i \theta_i x_i)^2}{2\sigma^2}}$$

• The best P is when probability is max for every training set:

Other cost functions

Residual sum of squares:

$$RSS(w) = \sum_{i}^{N} (y^{(i)} - \theta x^{(i)})^{2}$$

Mean squared error:

$$\frac{1}{N}\sum_{i}^{N}(y^{(i)}-\theta x^{(i)})^{2}$$

Log error:

$$\frac{1}{N} \sum_{i=1}^{N} (-y^{(i)} log(\theta x^{(i)}) - (1 - y^{(i)}) log(1 - \theta x^{(i)})))$$

Asymetric:

$$\frac{1}{n} \sum_{i=1}^{n} \left| \alpha - \mathbb{1}_{(y^{(i)} - f(x^{(i)})) < 0} \right| \cdot \left(y^{(i)} - f(x^{(i)}) \right)^{2}$$

Assymetric cost function

$$\frac{1}{n} \sum_{i=1}^{n} \left| \alpha - \mathbb{1}_{(y^{(i)} - f(x^{(i)})) < 0} \right| \cdot \left(y^{(i)} - f(x^{(i)}) \right)^{2}$$

Assymetric cost function

$$\frac{1}{n} \sum_{i=1}^{n} \left| \alpha - \mathbb{1}_{(y^{(i)} - f(x^{(i)})) < 0} \right| \cdot \left(y^{(i)} - f(x^{(i)}) \right)^{2}$$

Assymetric cost function

$$\frac{1}{n} \sum_{i=1}^{n} \left| \alpha - \mathbb{1}_{(y^{(i)} - f(x^{(i)})) < 0} \right| \cdot \left(y^{(i)} - f(x^{(i)}) \right)^{2}$$

Outline

- Roadmap
- 2 Use case
- Mode
- 4 Simple linear regression
 - General idea
 - Why RSS?
 - Other cost functions
 - Linearity in linear regression
- Solution to linear regression problem
 - The overall idea
 - Closed form solution
 - Gradient descent
 - Features normalization

"Linear" is only regression

"Linear" is only regression

"Linear" is only regression

Even more complex features

Motivating application: Detrending time series

©2015 Emily Fox & Carlos Guestrin

Even more complex features

Trends over time

©2015 Emily Fox & Carlos Guestrin

Even more complex features

Seasonality

©2015 Emily Fox & Carlos Guestrin

An example detrending

Trigonometric identity: sin(a-b)=sin(a)cos(b)-cos(a)sin(b) $\Rightarrow sin(2\pi t_i / 12 - \Phi) = sin(2\pi t_i / 12(cos(\Phi))) cos(2\pi t_i / 12)sin(\Phi)$ $= sin(2\pi t_i / 12(cos(\Phi))) cos(2\pi t_i / 12)sin(\Phi)$ $= sin(2\pi t_i / 12(cos(\Phi))) cos(2\pi t_i / 12)sin(\Phi)$ $= sin(2\pi t_i / 12(cos(\Phi))) cos(2\pi t_i / 12)sin(\Phi)$

An example detrending

```
Equivalently, y_i = \theta_0 + \theta_1 t_i + \theta_2 \sin(2\pi t_i / 12) + \theta_3 \cos(2\pi t_i / 12) + \epsilon_i feature 1 = 1 (constant) feature 2 = t feature 3 = \sin(2\pi t/12) feature 4 = \cos(2\pi t/12)
```

©2015 Emily Fox & Carlos Guestrin

Detrended housing data

Zoom in...

©2015 Emily Fox & Carlos Guestrin

Adding more dimensions to the problem can be done mainly in two ways:

- By addning aditional features (like number of bathrooms)
- By adding artificial features being just a combinations or functions of existing ones (squared, log, etc.)
- To allow more compact notation, usually, we add fake *zero-th* feature that equals one, and is multiplied by θ_0 .

Machine Learning

- N number of observations
- D number of dimensions
- $h_{\theta}(x)$ a hypothesis to be learned

- $x_1^{(j)} \text{sq. ft.}$
- $x_2^{(j)}$ no. of bathrooms
- $x(i)_i$ some uber cool feature
- θ vector of coefficients to learn (each θ_i corresponds to each x_i)
- y ground truth values for training set. $y^{(j)}$ value corresponds to j-th row from X, thus to $x^{(j)}$.
- \bullet We will denote $J(\theta)$ as a cost function which in our case will be RSS. Therefore

$$J(\theta) = \sum_{i=1}^{N} (h_{theta}(x^{(i)}) - y^{(i)})^{2}$$

Presentation Outline

- Roadmap
- 2 Use case
- Model
- Simple linear regression
- Solution to linear regression problem
 - The overall idea
 - Closed form solution
 - Gradient descent
 - Features normalization

Minimizing the error

Machine Learning

Minimizing the error

Minimizing the error

Outline

- Roadmap
- 2 Use case
- Mode
- Simple linear regression
 - General idea
 - Why RSS?
 - Other cost functions
 - Linearity in linear regression
- 5 Solution to linear regression problem
 - The overall idea
 - Closed form solution
 - Gradient descent
 - Features normalization

$$J(\theta) = \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J(\theta) = \sum_{i=1}^{N} (\theta_{0} x_{0}^{(i)} + \theta_{1} x_{1}^{(i)} - y^{(i)})^{2}$$

$$g(\theta) = 5 - (\theta - 10)^{2}$$

$$J(\theta) = \sum_{i=1}^{N} \left(\mathbf{h}_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right)^{2}$$

$$J(\theta) = \sum_{i=1}^{N} \left(\mathbf{\theta}_{0} \mathbf{x}_{0}^{(i)} + \mathbf{\theta}_{1} \mathbf{x}_{1}^{(i)} - \mathbf{y}^{(i)} \right)^{2}$$

$$\nabla J(\theta) = \begin{bmatrix} 2 \sum_{i=1}^{N} \left(\mathbf{\theta}_{0} \mathbf{x}_{0}^{(i)} + \mathbf{\theta}_{1} \mathbf{x}_{1}^{(i)} - \mathbf{y}^{(i)} \right) \mathbf{x}_{0}^{(i)} \\ 2 \sum_{i=1}^{N} \left(\mathbf{\theta}_{0} \mathbf{x}_{0}^{(i)} + \mathbf{\theta}_{1} \mathbf{x}_{1}^{(i)} - \mathbf{y}^{(i)} \right) \mathbf{x}_{1}^{(i)} \end{bmatrix}$$

$$J(\theta) = \sum_{i=1}^{N} (\theta_{0} x_{0}^{(i)} + \theta_{1} x_{1}^{(i)} - y^{(i)})^{2}$$

$$J(\theta) = \sum_{i=1}^{N} (x_{0}^{(i)} \theta_{0} + x_{1}^{(i)} \theta_{1} - y^{(i)})^{2}$$

$$J(\theta) = \sum_{i=1}^{N} (x_{0}^{(i)} \theta_{0} + x_{1}^{(i)} \theta_{1} - y^{(i)})^{2}$$

$$J(\theta) = \sum_{i=1}^{N} (x_{0}^{(i)} + x_{1}^{(i)} \theta_{1} - y^{(i)})^{2}$$

$$J(\theta) = \sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - \mathbf{y}^{(i)})^{2}$$

$$N = \sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - \mathbf{y}^{(i)})^{2}$$

$$\nabla J(\theta) = \begin{bmatrix} 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - y^{(i)}) x_{0}^{(i)} \\ 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - y^{(i)}) x_{1}^{(i)} \end{bmatrix} = \underbrace{\begin{bmatrix} \sum_{i=1}^{N} (\mathbf{x}_{0}^{(i)} r^{(i)}) \\ \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} r^{(i)}) \end{bmatrix}}_{N}$$

$$\nabla J(\theta) = \begin{bmatrix} 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - y^{(i)}) x_{0}^{(i)} \\ 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - y^{(i)}) x_{1}^{(i)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} (\mathbf{x}_{0}^{(i)} r^{(i)}) \\ \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} r^{(i)}) \end{bmatrix}$$

$$\nabla J(\theta) = \begin{bmatrix} 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - y^{(i)}) x_{0}^{(i)} \\ 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - y^{(i)}) x_{1}^{(i)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} (\mathbf{x}_{0}^{(i)} r^{(i)}) \\ \sum_{i=1}^{N} (\mathbf{x}_{1}^{(i)} r^{(i)}) \end{bmatrix}$$

$$\nabla J(\theta) = \begin{bmatrix} 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{\mathsf{T}} \theta - y^{(i)}) x_0^{(i)} \\ 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{\mathsf{T}} \theta - y^{(i)}) x_1^{(i)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} (\mathbf{x}_0^{(i)} r^{(i)}) \\ \sum_{i=1}^{N} (\mathbf{x}_1^{(i)} r^{(i)}) \end{bmatrix}$$

$$\nabla J(\theta) = \begin{bmatrix} 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - \mathbf{y}^{(i)}) \mathbf{x}_{0}^{(i)} \\ 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - \mathbf{y}^{(i)}) \mathbf{x}_{1}^{(i)} \end{bmatrix} = 2\mathbf{X}^{T}(\mathbf{X}\theta - \mathbf{y})$$

$$N$$

$$\vdots \cdots \vdots \vdots \vdots \vdots \vdots$$

$$N$$

$$\vdots \cdots \vdots \vdots \vdots \vdots \vdots \cdots \vdots \cdots \vdots$$

$$\vdots \cdots \cdots \vdots \vdots \vdots \vdots \vdots \cdots \vdots \cdots \vdots$$

$$J(\theta) = (X \theta - y)^{T} (X \theta - y)$$

$$\nabla J(\theta) = 2X^{T} (X \theta - y)$$

$$\nabla J(\theta) = 0$$

$$2X^{T} (X \theta - y) = 0$$

$$2X^{T} (X \theta - y$$

$$J(\theta) = (X \theta - y)^{T} (X \theta - y)$$

$$\nabla J(\theta) = 2X^{T} (X \theta - y)$$

$$\theta = (X^{T} X)^{-1} X^{T} y$$
Invertible if:
$$\log \theta = \log \theta = \log \theta$$

$$\log \theta = \log \theta = \log \theta$$

$$\log \theta$$

$$\log \theta = \log \theta$$

$$\log \theta$$

$$\log \theta = \log \theta$$

$$\log \theta$$

$$\log \theta = \log \theta$$

$$\log \theta$$

$$\log$$

Outline

- Roadmap
- 2 Use case
- Mode
- Simple linear regression
 - General idea
 - Why RSS?
 - Other cost functions
 - Linearity in linear regression
- 5 Solution to linear regression problem
 - The overall idea
 - Closed form solution
 - Gradient descent
 - Features normalization

$$\nabla J(\theta) = \begin{bmatrix} 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - y^{(i)}) x_{0}^{(i)} \\ 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - y^{(i)}) x_{1}^{(i)} \end{bmatrix} = 2 \mathbf{X}^{T} (\mathbf{X} \theta - y)$$

28 / 32

$$\nabla J(\theta) = \begin{bmatrix} 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - \mathbf{y}^{(i)}) \mathbf{x}_{0}^{(i)} \\ 2\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{T} \theta - \mathbf{y}^{(i)}) \mathbf{x}_{1}^{(i)} \end{bmatrix} = 2\mathbf{X}^{T} (\mathbf{X} \theta - \mathbf{y})$$

$$\vdots = \vdots - \mathbf{X}^{T} (\mathbf{X} \theta - \mathbf{y})$$

$$\vdots = \mathbf{X}^{T} (\mathbf{X} \theta - \mathbf{y})$$

$$\begin{array}{c|c} \hline \mathbf{while} \ | \overline{\frac{\partial J(\theta)}{\partial \theta}}| > \epsilon \ \mathbf{do} \\ \mathbf{2} & | \ \mathbf{for} \ i \in \{1, \dots, D\} \ \mathbf{do} \\ \mathbf{3} & | \ \frac{\partial J(\theta)}{\partial \theta_i} = 2 \sum_{j}^{N} (\theta x^{(j)} - y^{(j)}) x_i^{(j)} \\ \mathbf{4} & | \ \mathbf{end} \\ \mathbf{5} & | \ \mathbf{for} \ i \in \{1, \dots, D\} \ \mathbf{do} \\ \mathbf{6} & | \ \theta_i = \theta_i - \alpha \frac{\partial J(\theta)}{\partial \theta_i} \\ \mathbf{7} & | \ \mathbf{end} \\ \hline \end{array}$$


```
 \begin{array}{c|c} \hline \\ \mathbf{while} \mid \frac{\partial J(\theta)}{\partial \theta} \mid > \epsilon \ \mathbf{do} \\ \mathbf{2} \quad & \mathbf{for} \ i \in \{1, \dots, D\} \ \mathbf{do} \\ \mathbf{3} \quad & \mid \frac{\partial J(\theta)}{\partial \theta_i} = 2 \sum_{j}^{N} (\theta x^{(j)} - y^{(j)}) x_i^{(j)} \\ \mathbf{4} \quad & \mathbf{end} \\ \mathbf{5} \quad & \mathbf{for} \ i \in \{1, \dots, D\} \ \mathbf{do} \\ \mathbf{6} \quad & \mid \theta_i = \theta_i - \alpha \frac{\partial J(\theta)}{\partial \theta_i} \\ \mathbf{7} \quad & \mathbf{end} \\ \mathbf{8} \quad \mathbf{end} \\ \end{array}
```

Outline

- Roadmap
- 2 Use case
- Mode
- Simple linear regression
 - General idea
 - Why RSS?
 - Other cost functions
 - Linearity in linear regression
- Solution to linear regression problem
 - The overall idea
 - Closed form solution
 - Gradient descent
 - Features normalization

Features scaling

Min-Max scaling

- Values afetr scaling are within fixed range. Usually [0; 1].
- We use following equation:

$$x_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

Mean standarization

- Values are oriented around zero-mean and standard deviation 1
- We use the following equation:

$$x_i = \frac{x_i - \mu}{\sigma}$$

Thank you!

Szymon Bobek

Institute of Applied Computer Science AGH University of Science and Technology 21 March 2017

http://geist.agh.edu.pl

