Formale Grundlagen der Informatik I

Abgabe der Hausaufgaben Übungsgruppe 24 am 22. Mai 2015

Louis Kobras 6658699 4kobras@informatik.uni-hamburg.de

Utz Pöhlmann 6663579 4poehlma@informatik.uni-hamburg.de

Philipp Quach 6706421 4quach@informatik.uni-hamburg.de 22. Mai 2015

Aufgabe 6.4

Aufgabe 6.4.1

 z_E ist ein Endzustand und z_F ist ein Fehlerzustand.

$$L\subseteq L(A)$$

In z_1 wird a^n gelesen: $n \in \mathbb{N}$

In z_2 wird b^{2m} gelesen und alle 2 bs ein B auf den Stack gepusht.

Nach z_2 kann ein λ gelesen werden für den Fall n=0 und ein b für den Fall $m\in\mathbb{N}$. Für m=0 gibt es eine λ -Kante nach z_E von z_1 . Sonst geht es mit $a,B|\lambda$ nach z_3 , wo für jedes a ein B gelöscht wird. Wenn dann der Stack leer ist, geht es in z_E . Sollte dann das Wort nicht zu Ende gelesen sein, geht es in z_F .

$$L(A)\underline{\subseteq}L$$

Zuerst werden beliebig viele as gelesen (auch 0)($\Rightarrow a^n | n \in \mathbb{N}_0$), danach bielebig viele bs (auch 0 möglich durch $\lambda, \perp | \perp$ nach z_E) und alle 2 bs ein B auf das Band geschrieben. ($\Rightarrow b^{2m} | m \in \mathbb{N}_0$). Dann kann für jedes B wieder ein a gelesen werden, bei einer ungeraden Anzahl bs und einem a dahinter wird abgebrochen.

Dann wird für jedes B ein a gelesen ($\Rightarrow a^m$). Sobald danach noch ein Buchstabe kommt, brechen wir ab, somit sind wir fertig.

Aufgabe 6.4.2

Aufgabe 6.5

Aufgabe 6.5.1

Seien L_1, L_2 entscheidbar \Rightarrow start $\xrightarrow{} \left(z_{L1.1}\right) \xrightarrow{*} \left(z_{L1.END}\right)$ L_1 :

 $\Rightarrow ist\ entscheidbar$

 $\Rightarrow ist\ entscheidbar$

Wir konstruieren also einen Automaten, der als Teilautomaten L_1 und L_2 hat:

 λ_a steht für: Diese Kante führt zu den jeweiligen Startzuständen

 λ_b steht für: Diese Kante kommt von den jeweiligen Endzuständen

 λ steht generell für: Diese Kante wird als Erstes gegangen, bevor das Wort angefangen wird zu lesen, oder aber als Letztes, nachdem das Wort fertig gelesen wurde.

Dieser Automat ist klar auch entscheidbar.

Aufgabe 6.5.2

Seien L_3 , L_4 aufzählbar. (Wie in , da DTM \Leftrightarrow NTM).

Wir konstruieren also einen Automaten, der als Teilautomaten L_3 und L_4 hat:

Die a-Kanten sind zu gehen, wenn das Wort aus L_3 kommt. Ist das Wort $\in L_4$, so sind die b-Kanten zu gehen.

Aufgabe 6.5.3

Nein. Sei TM A aufzählbar. Dazu soll es eine TM A' geben. Sei $L(A') = \overline{L(A)}$. A' ist nicht aufzählbar, da L(A') auch Wörter enthält, auf die TM A' nicht hält.

Aufgabe 6.6

Sei F eine TM mit $F : \{ < M, w > | \text{die TM h\"{o}rt irgendwann auf, zu rechnen} \}$.

Hängen wir nun an jedes z_{END} aus F eine Kante zu je einem weiteren Zustand Z_{NEU} mit jeder möglichen Kantenbeschriftung und machen diese Zustände z_{NEU} zu den einzigen Endzuständen. Für jedes Mal, wenn ein Kantenübergang nach z_{NEU} genutzt wird, schreibe eine 1 auf Band 2. Die Anzahl der 1 auf Band ist das n. Damit wäre jedoch das Entscheidungsproblem gelöst, somit kann L nicht entscheidbar sein.