Assignment#4: Perceptron

Part 1

- Plot data from data.csv
- Implement perceptron using the heuristic approach (left box next page)
- Plot the initial separation line as red, subsequent ones after each iteration in dashed green, and the last one in black (see page 4)
- Play with the learning rate
- Analysis the results in a report

• Part 2

- Plot data from data.csv
- Implement perceptron using the Gradient
 Descent approach (right box next page)
- Play with learning rate, number of epochs.
- Plot the initial separation line as red, subsequent ones after each iteration in dashed green, and the last one in black
- Compute log loss (error) and plot the error graph every 10 epoch (see page 5)
- Analysis the results in a report

Learning by Gradient Descent (Right Side)

- 1. Start a perceptron with random weights and bias: w₁, w₂, ..., w_n, b
- 2. For **each of** all points (data) with their corresponding labels (answers):
 - 2.1. Classify according to the perceptron
 - 2.2. For a misclassified point $(x_1, x_2, ..., x_n)$:
 - 2.2.1. If classification==0:

2.2.1.1.
$$b + r \rightarrow b$$

2.2.1.2. For all
$$w_i$$
: $w_i + rx_i \rightarrow w_i$

2.2.2. If classification==1:

2.2.2.1.
$$b - r \rightarrow b$$

2.2.2.2. For all
$$w_i$$
: $w_i - rx_i \rightarrow w_i$

3. Repeat #2 enough number of times

Earlier heuristic approach with binary classification

- 1. Start a perceptron with random weights and bias: w₁, w₂, ..., w_n, b
- 2. For **each of** all points (data) with their corresponding labels (answers):
 - 2.1. Compute prediction output (ŷ)
 - 2.2. Compute error function $(y \hat{y})$
 - 2.3. $b + r(y \hat{y}) \rightarrow b$
 - 2.4. For all w_i : $w_i + r(y \hat{y})x_i \rightarrow w_i$
- 3. Repeat #2 until error is small

Note: $\hat{\mathbf{y}}$ is no longer 0 or 1 from a step function.

See next page

Perceptron

Linear Function → Biased Sum of Weighted input

$$z = WX + b$$

$$W \cdot X^t + b$$

Sigmoid → Continuous Classification

$$\hat{y} = \sigma (WX + b)$$

Learning rate (samples, your results may be different)

learning_rate = 0.01

iteration = 65

learning_rate = 0.1

iteration = 65

learning_rate = 1

iteration = 65

For Part 2 (samples, your results may be different)

Submission

- In Canvas Assignments:
 - Submit as File Uploads: A PDF report with snippets of your code, all the plots and the analysis of them.
 - Submit as Web URL: Link to your Github repo/project/ with folder name Assignment_4, which include all your Jupyter Notebook code and any other associated files.
- Make sure you have invited me to your Github repo/project/folder

Grading Rubric (Total 100% of 10 pts in final grade)

- Data Loading (10%)
 - Dataset is correctly retrieved and plotted.
- Part1 Implementation (40%)
 - Experiments with learning rate and number of epochs
 - Analysis of results
- Part 2 Implementation (40%)
 - Experiments with learning rate and number of epochs
 - Analysis of results
- PDF Report (10%)