Learning the governing equations of a dynamical system from data

Dual Degree Project Presentation

V Vasistha Singhal
Department of Chemical Engineering
Guide: Dr. Shankar Narasimhan

Introduction

- Function learning regression problem with the independent variables inputs, dependent variables outputs
- Focus identify some prediction function with small expected error, no insight into the mechanism of the system
- Quality of model measured by interpolating capabilities
- Expected to perform poorly on data outside training domain
- Future data might lie outside training domain, hence extrapolation becomes important!

Symbolic Regression

- Finding equations for observations symbolic regression
- A space of mathematical expressions is searched best model in terms of accuracy and simplicity chosen
- Genetic programming evolutionary computing technique based on Darwin's theory of evolution, used widely for symbolic regression
- Icke et al. and Rad et al. have proposed GP-based SR algorithms that have been successful in solving problems accurately
- Common theme complete traversal of a GP tree to yield all possible subtree functions, eliminating candidates using an optimization algorithm

Neural Networks

- Neural networks collection of interconnected nodes or neurons
- Activation functions tanh and ReLU, not found in physical systems
- Martius and Lampert proposed a novel equation learning network (EQL)
- Specially configured network learns nonlinear functions governing dynamical systems

Figure 1: General architecture of a neural network for function approximation

Objectives

- To critically evaluate and assess the approach by Martius and Lampert
- To reproduce the results obtained by them for simple dynamical systems
- Can EQL be used to learn the analytical expressions describing complex nonlinear dynamical systems?

Description of system

A general nonlinear dynamical system is shown below

$$\dot{y} = f(y, u)$$

- u, y inputs and outputs of the system, f nonlinear function
- Measured values of u and y inputs to neural network
- Derivatives of y target values for the neural network
- Note: Derivatives of y have to be computed numerically

Architecture of the EQL

- Key features multiplication units, sine and cosine as non-linearities
- u unary units, v binary units in each layer
- 4 possible base functions identity, sine, cosine, sigmoid
- Binary units take 2 inputs and produce their product as the output

Figure 2: Network architecture of the proposed Equation Learner for 3 layers and one neuron per type (u=4, v=1).

Network Training

• EQL - fully differentiable, backpropagation training. A lasso-like objective is adopted:

$$L(D) = \frac{1}{N} \sum_{i=1}^{|D|} ||\varphi(xi) - yi||^2 + \lambda \sum_{l=1}^{L} |W^l|_1$$

Stochastic gradient descent algorithm with mini-batches for calculating the updates is used:

$$\theta_{t+1} = \theta_t + Adam\left(\frac{dL(D)}{d\theta}, \alpha\right)$$

• Role of L_1 regularisation is to encourage networks with sparse connections, matching the intuition that a typical formula describing a system contains only a small number of terms

Experimental Evaluation

- Physically inspired model synthetic pendulum data
- x_1 and x_2 are the angle of the pole in radians and angular velocity respectively

$$\dot{x_1} = x_2$$
 and $\dot{x_2} = -g\sin x_1$

• Divide by g in order to balance the output scales and provide the two output values, (also the target equations)

$$y_1 = \frac{x_2}{g} \quad \text{and} \quad y_2 = -\sin x_1$$

Data generation

<u>Training data</u>: 1000 points sampled uniformly in the hypercube [-h, h] x [-h, h] for h=2.

<u>Test sets</u> (1000 points each):

- Interpolation: from the same distribution as training set
- Extrapolation(near): [-1.5h, 1.5h] x [-1.5h, 1.5h] \ [-h, h] x [-h, h]
- Extrapolation(far): [-2h, 2h] x [-2h, 2h] \ [-h, h] x [-h, h]

The target values (derivatives) are computed simply using their analytical expressions

Training and Performance

- 2-layer EQL trained with all weights initialized from a normal distribution
- Hyperparameter tuning regularization and the number of binary nodes
- To ensure **convergence**, the model is trained for **10000 epochs**
- EQL compared with multi-layer perceptron (MLP) and Support Vector Regression (SVR). **EQL extrapolates well**, both SVR and MLP fail. The mean and standard deviations of the RMSE from 10 different runs and different initialisations are shown:

	Interpolation	Extrapolation (near)	Extrapolation (far)
EQL	0.0102 ± 0.0000	0.012 ± 0.002	0.016 ± 0.007
MLP	0.0138 ± 0.0002	0.150 ± 0.012	0.364 ± 0.036
SVR	0.0105	0.041	0.18

Limitations

- Method of data generation non-standard, not representative of a real-world experimental setting
- Derivatives not directly available to be computed numerically
- Data is inevitably corrupted by **noise** and this needs to be addressed
- Now, we wish to examine whether the EQL is successful with data generated in a more realistic manner

Realistic Data Generation

- Field experiment pendulum system **released from an initial point**, allowed to oscillate while measurements of the angle of the pole and the angular velocity are taken at regular intervals
- Simulation Runge Kutta method, integrate the differential equations from different initial points
- l=9.8m , the angular frequency of the system becomes 1 rad/s ($w=\sqrt{rac{l}{g}}$)
- The sampling interval is chosen as h=0.02s
- Derivatives numerically calculated using forward finite differencing

Denoising Filters for Noisy Data

- Zero-mean Gaussian noise of varying standard deviations is added in order to have datasets with varying signal-to-noise ratios
- Two different denoising filters were explored Savitzky-Golay (S-G), Hodrick-Prescott (H-P)
- In S-G filters, successive sub-sets of adjacent data points are fitted with a low-degree polynomial by method of linear least squares and the denoising is done using a 1-D convolution of the data with the obtained coefficients
- In H-P filtering, the trend estimate x_t is chosen to **minimize** the weighted sum **objective function**: (y_t is the original noisy signal)

$$\frac{1}{2} \sum_{t=1}^{n} (y_t - xt)^2 + \lambda \sum_{t=2}^{n-1} (x_{t-1} - 2x_t + x_{t+1})^2$$

Visualisation of denoising performance

- 5000 data points generated using the initial point $x_1 = \pi/4$, $x_2 = 0$, zero-mean Gaussian noise added, SNR = 10
- For S-G filter, the hyperparameters to be tuned are the window-length(w) and the order of the polynomial(n)
- For H-P filter, the **regularisation parameter** λ is tuned

Figure 3: Visualisation of denoising using S-G and H-P filters.

Training Results

- 5000 samples are generated (noisy, SNR=10) and the network (one hidden layer, u=4, v=1) is trained for 5000 epochs
- The results with data denoised using S-G filter are:

w	n	\mathbf{x}_{0}	Equation Learned	Train RMSE	Test RMSE
11	4	(π/3,0)	$[0.102x_2, -0.933\sin(1.098x_1)]$	1.45	1.54
11	4	(π/4,0)	$[0.102x_2, -0.269\sin(0.281x_1) - 0.924\sin(0.994x_1)]$	1.10	1.12
11	4	(π/5,0)	$[0.102x_2, -0.953x_1]$	0.87	0.88
11	4	(π/6,0)	$[0.337\sin(0.313x_2), -0.953x_1]$	0.72	0.73

• The results with data denoised using H-P filter are:

\mathbf{x}_{0}	Equation Learned	Train RMSE	Test RMSE
(π/3,0)	$[0.102x_2, -1.008\sin(0.990x_1)]$	0.063	0.064
(π/4,0)	$[0.102x_2, -1.036\sin(0.963x_1)]$	0.048	0.055
(π/5,0)	$[0.101x_2, -1.003\sin(0.991x_1)]$	0.040	0.040
(π/6,0)	$[0.101x_2, -1.018\sin(0.980x_1)]$	0.032	0.033

Inferences

- Lower test errors for H-P filter very good approximation learnt, in fact, true equation learnt
- For S-G filter, success depends on training domain
- Model is successful only for a big enough training domain
- EQL performs better with H-P filter because **denoised estimates are smoother**
- Predicted equations are also more consistent for H-P filter

Modified Architecture

- To expand applicability division units (a/b) are added in the output layer
- Non-trivial step, pole created at $b \to 0$, abrupt change in convexity
- Basis function Single branch of hyperbola $^1\!/_b$ with b>0

Figure 4: Network architecture of the improved Equation Learner for 3 layers and one neuron per type (u=3, v=1). The new division operations are in the final layer.

Regularised Division and Penalty term

The final layer output is given by

$$y^{[L]} = \{h_1^{\theta}(z_1^{[L]}, z_2^{[L]}), \dots, h_m^{\theta}(z_{2m}^{[L]}, z_{2m+1}^{[L]})\}$$

where the division activation function is given by

$$h^{\theta}(a,b) = \begin{cases} \frac{a}{b} & \text{if } b > \theta \\ 0 & \text{otherwise} \end{cases}$$

• Cost term that **penalizes** bad inputs to each division unit and global penalty term n = 1

$$p^{\theta}(b) = max(\theta - b, 0), \qquad P^{\theta} = \sum_{i=1}^{N} \sum_{j=1}^{n} p^{\theta}(z_{2j}^{(L)}(x_i))$$

Modified objective function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} ||\psi(x_i) - y_i||^2 + \lambda \sum_{l=1}^{L} |W^{(l)}|_1 + P^{\theta}$$

Training Results

- To showcase improved learning capabilities, we attempt to learn
 - Inverse function
 - Exponential function
- Possible for SGD to get stuck in local minima
- To circumvent this problem, 5 independent runs are made

Set name	Base functions	
S-1	Identity	
S-2	Identity, exponential	
S-3	Identity, reciprocal	
S-4	Identity, sine, cosine	
S-5	Identity, exponential, reciprocal	

Inverse function

- Training set: [0.1,1) 500 points and [1,50] 2000 points
- Test set: [51,65] 100 points
- For each x, target value evaluated as 1/x
- 2-layer EQL_DIV model trained for 3000 epochs, 5 independent runs

Base set	Equation Learned	Train RMSE	Test RMSE
S-1	$\frac{0.3031}{0.3031x + 4.74 \times 10^{-9}}$	1.05 x 10 ⁻⁹	4.7 x 10 ⁻⁸
S-2	$\frac{-1.64(0.0033x)(0.0025x + 0.528) + 0.326}{-x(0.0025x + 0.528)}$	0.014	0.032
S-3	$\frac{-0.7119}{-0.7119x + 5.035 \times 10^{-9}}$	4.5 x 10 ⁻⁸	1.49 x 10 ⁻⁶
S-4	$\frac{0.3604}{0.3604x + 7.45 \times 10^{-9}}$	1.77 x 10 ⁻⁹	5.65 x 10 ⁻⁸
S-5	$\frac{0.3643}{0.3643x - 1.28 \times 10^{-8}}$	4.42 x 10 ⁻⁸	1.42 x 10 ⁻⁶

Exponential function

- Training set: [-5, 30] 1000 points
- Test set: [-6,-5] 100 points and [30,32] 100 points
- For each x, target value evaluated as e^{-x}
- 2-layer EQL_DIV model trained for 3000 epochs, 5 independent runs

Pade approximation

- Training set: [1, 5] 500 points
- Test set: [6, 8] 100 points
- For each x, target value evaluated as $\frac{1-0.5x}{1+0.5x}$
- 2-layer EQL_DIV model trained for 3000 epochs, 5 independent runs

Base set	Equation Learned	Train RMSE	Test RMSE
S-1	$\frac{-1.4x + 0.95(0.34x + 0.88)(0.19x + 0.53) + 0.43}{0.12x + 0.28(0.34x + 0.89)(0.19x + 0.53) + 0.58}$	0.75	4.2
S-2	$\frac{-x + 2.58(0.14x + 0.16)(0.15x + 0.1) + 0.96}{0.1x + 0.29(0.14x + 0.16)(0.15x + 0.1) + 0.46}$	1.98	20
S-3	$\frac{-1.54x + 1.36(0.21x + 0.48)(0.25x + 0.66) + 0.63}{0.14x + 0.36(0.21x + 0.48)(0.25x + 0.66) + 0.66}$	0.85	9.82
S-4	$\frac{-2.54x + 1.36(0.24x + 0.81)(0.31x + 1.27) + 0.89}{0.18x + 0.69(0.24x + 0.81)(0.31x + 1.27) + 0.94}$	0.43	34.6
S-5	$\frac{-2.28x + 0.86(0.31x + 0.53)(0.42x + 0.61) + 1.12}{0.28x + 0.22(0.31x + 0.53)(0.42x + 0.61) + 1.16}$	0.84	3.9

Base set	Equation Learned	RMSE (train)	RMSE (test)
S-1	$\frac{0.0150 - 0.0075x}{0.015 + 0.0075x}$	1.14 x 10 ⁻⁵	1.17 x 10 ⁻⁵
S-2	$\frac{-0.007x + 0.014}{0.007x + 0.014}$	7.73 x 10 ⁻⁵	2.18 x 10 ⁻⁴
S-3	$\frac{0.014 - 0.0035x^2}{0.0058x^2 + 0.029}$	0.0074	0.054
S-4	$\frac{0.0144 - 0.0072x}{0.0072x + 0.0144}$	0.0015	0.0019
S-5	$\frac{0.0146 - 0.0073x}{0.0073x + 0.0146}$	7.61 x 10 ⁻⁸	9.03 x 10 ⁻⁸

Conclusion

- EQL **impressive extrapolating** capabilities
- Limitations addressed Runge-Kutta, numerical methods
- Division units added to enhance learning scope
- Successfully learns inverse, approximation to exponential
- Challenge to combine these ideas
- Limitations **domain dependence**, SGD stuck in local optima
- Extension to complex systems direction for future