Dynamic Programming [chapter 6]

Knapsack Problem

Input: 1) Set of items 1, 2, ... N, Wights $\{3, 25, 10, 8, 5, 13\}$ Each item i has a value v_i and weight w_i . W=202) The maximum capacity W of prapact.

Output: Subset $S \subseteq \{1, 2, --- n\}$ s.t.

- a) $\sum_{i \in S} Wi \leq W$ and
- b) $\sum_{i \in S} v_i$ is as large as possible subject to a).

Defining. OPT(j) - most value we can steal if only allowed to steal items \(\frac{1}{2}\), \(\frac{1}{2}\),

 $j = 1, \ldots, n$

Ex opt(1) = 100, opt(2) = 100, opt(3) = 600, opt(4) = 1500 ...

opt(j) $\begin{cases} \text{select item } j - \text{V} j + \text{Opt(} j - i) \\ \text{don't select} \end{cases} \times \text{OPT(} j - i).$

We need to define subproblem considering not only the items, but also the weight. \Rightarrow nW subproblems.

OPT
$$(j, s)$$
 - the max. value we can steal if $1 \le j \le n$ a) only allowed to steal items $\{1, \dots, j\}$. and $1 \le s \le W$ b) knapsnack of capacity s .

A -if all OPT (j, s) were known, we would ordput $OPT(n, W)$.

Select item $j = V_j + OPT(j-1, s-W_j)$

opt
$$(\hat{j}, s)$$
 select item $j = V_j + OPT(\hat{j}-1, s-W_j)$

don't select

item $j = OPT(\hat{j}-1, s)$

OPT: Weight 1 2 3 --- S W

Initialization 2

for S = 1 + 0 W.

if $S < W_1$ OPT (1, S) = 0else

OPT $(1, S) = V_1$ N

for
$$j=2$$
 to n .
for $s=2$ to W .
 $OPT(j,s)=\max\left(V_j+OPT(j-1,s-W_j),OPT(j-1,s)\right)$

endfor endfor return OPT (n, W). 4 max value.

Runtine: O(nW)

- not polynomial in log W.

- psedopolynomial.

Longest Common Subsequence.

X- ABBADCA

Y-BACADBB

Is BBC a subseq. of x ? Yes Y? No.

Is BDC a subseq of x? Yes Y? No.

Is BAD a subseq of X? Yes Y? Yes.

BACA is X common subsequence. The longest.

Input: Two strings X and Y, X with length n and LCS(X,Y)

Y with length m.

Output: The longest Common subsequence of X and Y.

(length)

O(nm) algorithm to compute LCS(X,Y) using DP.

OPT (i,j) - the max length of LCS (
$$X_i$$
, Y_j)
 $X_i = x_i \times_{2} \cdots \times_{i}$
 $Y_j = y_1 y_2 \cdots y_j$

Example:

$$X_3$$
 ABBADCA OPT(3,5) = 1
 Y_5 BACADBB

We will compute OPT (i,j) for all $1 \le i \le n$, $1 \le j \le m$.

and output OPT (n, m).

OPT (1,1) =
$$\begin{cases} 0 & \text{if } x_1 \neq y_1 \\ 1 & \text{if } x_1 = y_1 \end{cases}$$

OPT
$$(i,j) = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ 1 + \text{OPT}(i-1,j-1) & \text{if } x_i = y_j \end{cases}$$

$$\max(\text{OPT}(i-1,j), \text{OPT}(i,j-1)) & \text{if } x_i \neq y_j$$

Algorithm:

Initialize a matrix OPT - n+1 rows and m+1 cols. S

for i=0 to n

for j = 0 to m

if $\bar{i} = 0$ or $\bar{j} = 0$: OPT(\bar{i}, \bar{j})= 0. $S(\bar{i}, \bar{i}) = \phi$

else if $x_i = y_i : opt(i,j) = opt(i-1,j-1)+1$ $s(i,j) = s(i-1,j-1) \times i$

else if OPT(i-1,j) > OPT(i,j-1):

OPT (i,j) = OPT (i-1,j)S(i,j) = S(i-1,j)

S(i,j) = S(i-1,j)

 $(1-\hat{\zeta}, \hat{\zeta}) = C(\hat{\zeta}, \hat{\zeta}) + QC$ $(1-\hat{\zeta}, \hat{\zeta}) = Q(\hat{\zeta}, \hat{\zeta}) + QC$

else:

endfor

between OPT(n, m) = length of LCS(X, Y). S(n, m)

What if we want to output LCS (X,Y)?

s[i,j] = LCS(Xi, Yj) is string.

OPT (n, m) = length (s[n, m]).