진화게임이론

게임이론, 협력, 그리고 진화

조남운

주제

- 진화
- 진화게임이론
- 협력으로 가는 길

진화 (Evolution)

- 적자생<u>존</u> (The survival of the fittest)
 - 다윈이 쓴 단어가 아님. 다윈은 진화라는 말도 쓰 기를 꺼림
 - 허버트 스펜서의 사회진화 론의 맥락에서 쓰인 단어

사회진화론 Social Darwinism

- 진화과정 = 적자생존의 역사
- 사회 진보의 원동력
 - 이에 대한 개입은 역사의 진보를 막는 것
- 나치, 파시즘 사상의 기반 제공
- 21세기에는 다른 형태로 출현
 - 강한자가 승리한다 = 승리 한 자는 강한자다?
 - 강자의 정당화 논리 (제국 주의, 대기업, 신자유주의 등)

상호부조론

- 무정부주의자 표트르 <u>크로포</u> 트킨
- "Sociability is as much a law of nature as mutual struggle."
- "We at once see that those animals which acquire habits of mutual aid are undoubtedly the fittest."

Nature's Best Achievement

- 자연이 이룬 가장 놀라운 성 과는 무엇일까
 - 생명, 생명의 군집
- 이것은 모두 적자생존의 결과? 아니라면 다른 그 무엇의 결과?
- 투쟁이 생명과 관련한 중요 현상인 것은 분명함
 - 잊고 있는 것은 없을까?

Human Body

- 인간이라는 생명체는 여러 기관, 세포, 유전자 사이의 절묘한 협업 체계
- 만일 세포가 자신의 이익만을 이기적으로 추구한다면?
 - 암
- 자신을 각질화하는 피부 세 포는 적자생존에 반하는 존 재인가?

진화의 특성

- 선택 (Selection)
- 변이 (Mutation)

선택 (Selection)

- 점진적 과정
- 무작위적이지 않은 과정
- 형질을 지니고 있는 존재의 차별적 재생산능력의 결과
- 적합도가 더 높은 성향을 가 진 개체가 더 많아지거나 흔 해지는 과정

- 1. Geospiza magnirostris
- 3. Geospiza parvula
- Geospiza forti:
 Certhidea oliv

Finches from Galapagos Archipelago

변이 (Mutation)

• 유전학적 의미: 염색체와 같은 유전 요소가 지닌 정보의 임의적 변화

진화: 선택과 변이

- (자연) 선택은 더 적합한 쪽으로의 움직임을 만들고
- 변이는 일정한 상태의 안정성 에 변화를 만든다

진화와 협력

- 협력은 선별의 결과
 - 협력에 반하는 변이에도 불구하고 안정성이 있어야 함
- 선별이 더 많은 자손을 남기 는 것이라고 본다면
 - 어떤 상황에서 왜 (자신의 이익에 반할 때조차) 협력 하는가?
- 이러한 분석에 게임이론을 사 용할 수 있음

진화게임이론

Evolution Meets Game Theory

- 지금까지의 게임이론은 합리성 가정과 공통지식에 기 반하여 분석을 진행함
 - 게임 참가자 (플레이어) 들은 자신의 행동들을 선택
- 진화 과정은 선택과 도태, 변이에 초점을 맞춤
 - 엄청나게 많은 게임 참가자들 내에서 게임을 진행
 - 각 참가자들은 일종의 프로그램화 되어 있는 전략 에 따라서 행동
 - 반복 게임 ⇒ 높은 보상을 받는 참가자는 개체수 증가

Evolutionary Game Theory

- 지금까지는 하나의 게임에 초점을 맞추고 전략을 세심하게 검토했다면,
- 진화게임이론에서는 "전략이 고정"된 수많은 플레 이어들이 지속적으로 게임을 실시
- Selection의 구현
 - payoff가 높은 플레이어가 낮은 플레이어보다 더 많아지는 것으로 구현
 - 그 게임과 현재 경기자들의 속성(전략)에 의해 결 정됨

차이점 정리

	(지금까지 배운) 게임이론	진화게임이론
연속게임 여부	단일, 연속	연속
게임 단위	기본적으로 하나	동시 진행하는 다수 게임
전략 수정	자유	고정
플레이어 변동	불변	사라지거나 늘어남
변이	정의안됨	존재가능

예: 포켓몬 게임

지금까지 배운 게임 방식

진화 게임 방식

진화게임

- 동일 전략을 프로그램되어 있는 경기자들 사이에서도 그들이 어떤 전략이 프로그램되어 있는 경기자를 만나 는가에 따라 다른 보수를 얻게 됨
- 전략의 확산 과정은 경기자들이 얻게 될 보수의 크기 에 의존
- 확산 방법은 다양할 수 있음
 - 유전적 전수: 자신의 전략을 가지고 있는 자손의 생 성
 - 문화적 전수: 자신보다 더 나은 전략을 가지고 있는 다른 경기자들의 전략을 흉내

게임이론과 진화과정

- 게임이론은 원래 합리적 행위 자의 이익추구에 동원되는 사 고법
- 이것이 어떻게 맹목의 과정인 진화와 어울리게 되었을까?
- 결국 선별이란 주어진 집단 (population)에서 어떤 개체 가 더 나은 결과를 얻는지의 문제

진화 게임 이론의 요소

- 플레이어의 합리적 판단은 제 거 혹은 제한
 - 고정전략 구사
- 게임은 집단에 기반하여 진행. 게임의 결과는 이 집단의 구성으로 반영된다.
- 이러한 과정의 무한 반복은 어떤 결과를 낳을까?

진화게임의 이론적 분석

- n명으로 구성된 인구집단이 있다고 하자.
 - 일단 n은 충분히 만큼 크다고 가정
- 행동, 전략은 두 개만 있다고 가정: (A, B)
- 플레이어들은 일정한 시간별로 함께 게임을 벌인다. 예를 들어 5분 간격으로 한번씩 짝을 지워 게임을 한다.
- 일정한 횟수의 상호작용이 있고 난 후 인구 집단에 속한 다 른 플레이어들 혹은 다른 유형의 플레이어들의 보수를 관찰
 - 만일 상대의 보수가 나보다 크다면, 그의 전략을 복제!
 - 만일 상대의 보수가 나보다 작다면, 현재 전략을 고수!

간단한 전화 게임의 개별 게임 구조

- 선수1과 선수2가 만난다.
- 만일 선수1의 유형이 A이고 선수2가 B라면?
- 둘의 게임은 대칭적이기 때문에
- 보수행렬은 옆과 같이 쓸 수 있다!

$$egin{array}{ccc} A & B \ A & \left(egin{array}{ccc} a & b \ c & d \ \end{array}
ight)$$

복제자 동학 Replicator Dynamics

- 1): i라는 전략이 얼마나 변화하는지를 나타냄
- 2): i라는 전략이 올리는 보수가 평균에 비해 얼마 나 큰지를 나타냄

진화의 과정을 나타내는 방정식. i 라는 전략/유형이 평균보다 큰 보수를 누릴 수록, 그들의 숫자가 많을수록 그 증가폭도 커지게 된다.

보수 계산

- 전략이 두 유형밖에 없으므로 A 유형의 비율(xA)을 x라고 하면 B유형의 비율(xB)은 1-x
- 그리고 두 유형이 한 번의 게임을 통해 얻을 수 있는
 는 평균 보수는

$$\pi_A = ax + b(1-x)$$

$$\pi_B = cx + d(1-x)$$

● 전체 평균 보수는 어떻게 구할까?

$$\bar{\pi} = x\pi_A + (1-x)\pi_B$$

계산해보자.

 $(x_A \equiv x)$

$$\dot{x}_A := x_A(\pi_A - \bar{\pi})
= x(\pi_A - (x\pi_A + (1 - x)\pi_B))
= x((1 - x)\pi_A - (1 - x)\pi_B)
= x(1 - x)(\pi_A - \pi_B)
= x(1 - x)(ax + b(1 - x) - cx - d(1 - x))
= x(1 - x)((a - b - c + d)x + b - d).$$

보수계산(계속)

• 이 식을 계산하면,

$$\dot{x} = x(1-x)\underbrace{[(a-b-c+d)x+b-d]}_{(*)}$$

- x는 A전략이 전체에서 차지하는 비율이므로 0<x<1. 따라서 x(1-x)는 양수.
- 결국 이 유형이 증가하는지 여부는 (*) 부분이 양수 인지, 음수인지에 따라 결정됨

$$x^* = \frac{d-b}{a-b-c+d}$$

강우월전략이 존재하는 경우

- a(3) < c(4), b(1) < d(2)
 - 즉, B가 강우월전략

$$\{(a-b-c+d)x+b-d\} < 0$$

$$\dot{x} < 0 \rightarrow \mathsf{A} \downarrow$$

- x=1, x=0 모두 존재 가능한 균형
 - 하지만 이 중 안정적인 것 은 하나 뿐
 - x=1? x=0?
 - x=1이 안정적인 경우는 어떤 때일까?

	A(C)	B(D)
A(C)	3, 3	1, 4
B(D)	4, 1	2, 2

$$\begin{array}{ccc}
A & B \\
A & \begin{pmatrix} 3 & 1 \\ a & b \\
 & d \\
 & 4 & 2 \end{array}$$

균형이 두 개인 경우 Bistability

- 만일 a>c, d>b 라면.. 어떤 게 임인가?
- MSNE?

$$1 \cdot x + 0 \cdot (1 - x) = 0 \cdot x + 2 \cdot (1 - x)$$
$$\rightarrow x = \frac{2}{3}$$

- \bullet $\{(a-b-c+d)x+b-d\}>0$ (즉, $\dot{x}>0$) 가 되려면, $x>\frac{2}{3}$
- x=1, x=0 중에 안정적인 것은?
- x*의 역할은?
- 앞서 배운 내쉬 균형과 다른 점은?

	A(L)	B(R)
A(L)	1, 1	0, 0
B(R)	0, 0	2, 2

Co-existence

- a<c, d<b 라면?
- 어떤 게임인가?
- MSNE? $\frac{1}{2} \cdot x + 0 \cdot (1 - x) = 1 \cdot x - \frac{1}{2} \cdot (1 - x)$ $\rightarrow x = \frac{1}{2}$
- $\{(a-b-c+d)x+b-d\} > 0$ (즉, $\dot{x} > 0$) 가 되려면, $x < \frac{1}{2}$
- $\dot{x} > 0$ if $x < \frac{1}{2}$, $\dot{x} < 0$ if $x > \frac{1}{2}$
- x=1, x=0 중에 안정적인 것은?
- x*의 역할은?

	A(H)	B(D)
A(H)	$-rac{1}{2}$, $-rac{1}{2}$	1, 0
B(D)	0, 1	$\frac{1}{2}$, $\frac{1}{2}$

Neutrality

- a=c, d=b라면?
- 어떤 게임과 비슷?
- x=1과 x=0 중에 안정적인 것은?
- x*의 역할은?
- 앞서 배운 내쉬 균형과 어떻 게 다른가?

	А	В
Α	1, 1	3, 1
В	1, 3	3, 3

진화적으로 안정적인 전략 Evolutionary Stable Strategy

- 우리는 암묵적으로 "안정성"이라는 개념을 썼다.
- 이 개념은 앞서 배운 진화의 두 개념과 연결해서 생 각해보자.
- 선택은 어느 쪽으로 나아갈지를 결정한다.
- 변이는 그 나아감이 멈추었을 때 그 멈춤이 지속될 것인지를 결정
- Evolutionarily stable strategy
- 진화적으로 안정적인 전략

협력의 진화 (개관)

Bad News

● 진화적 관점의 도입 만으로는 죄수의 딜레마를 해 결할 수 없다!

PDG의 진화게임버젼

- 앞으로 PDG를 주로 다루게 될 것이므로, a,b,c,d 네 개 의 변수를 가능한한 적은 수 의 변수로 표현할 필요가 있 음
- 최소 표현 가능한 변수의 수 는 두 개: b,c 라고 하자
 - b:benefit, c:cost
 - b>c 이면 PDG의 구조와 동일해짐

$$egin{array}{ccc} C & D \ C & b-c & -c \ D & b & 0 \ \end{array}$$

Martin Nowak

- PDG를 기반으로 협력의 진화를 크게 다섯 가지 방법으로 변형하여 설명함
 - 이후 강의의 주제
 - 물론 이 다섯가지가 전부 이거나 절대적인 것은 아 님
- 게임이론을 통해 일관적으로 설명하고 종합하는 데에 기여 함

협력으로의 다섯가지 길 (1-3)

- Kin Selection
 - 너의 이익 = 나의 이익
- Direct Reciprocity
 - 니가 날 돕는다면 나도 널 돕겠다
- Indirect Reciprocity
 - 협력적으로 대하는 사람 에게는 나도 잘해주겠다

협력으로의 다섯가지 길 (4-5)

- Network Reciprocity
 - 서로 얽혀 얻을 수 있는 것이 많다면
- Group Selection
 - 우리 그룹이 상대 그룹을 이길 수 있다면

종합 (요약)

		Dovoff	matrix	Cooperation is			
		C Payon	matrix D	ESS	RD	AD	
Kin selection	C D	(b-c)(1+r) b-rc	br − c 0	$\frac{\boldsymbol{b}}{\boldsymbol{c}} > \frac{1}{\boldsymbol{r}}$	$\frac{\boldsymbol{b}}{\boldsymbol{c}} > \frac{1}{\boldsymbol{r}}$	$\frac{\boldsymbol{b}}{\boldsymbol{c}} > \frac{1}{\boldsymbol{r}}$	rgenetic relatedness
Direct reciprocity	C D	$(\boldsymbol{b}-\boldsymbol{c})/(1-\boldsymbol{w})$	- c 0	$\frac{\boldsymbol{b}}{\boldsymbol{c}} > \frac{1}{\boldsymbol{w}}$	$\frac{b}{c} > \frac{2-w}{w}$	$\frac{b}{c} > \frac{3-2w}{w}$	wprobability of next round
Indirect reciprocity	C D	$oldsymbol{b-c} oldsymbol{b}(1-oldsymbol{q})$	$-\boldsymbol{c}(1-\boldsymbol{q})$	$\frac{\boldsymbol{b}}{\boldsymbol{c}} > \frac{1}{\boldsymbol{q}}$	$\frac{\boldsymbol{b}}{\boldsymbol{c}} > \frac{2-\boldsymbol{q}}{\boldsymbol{q}}$	$\frac{\boldsymbol{b}}{\boldsymbol{c}} > \frac{3-2\boldsymbol{q}}{\boldsymbol{q}}$	qsocial acquaintanceship
Network reciprocity	C D	$egin{aligned} oldsymbol{b-c} \ oldsymbol{b-H} \end{aligned}$	H − c 0	$\frac{b}{c} > k$	$\frac{b}{c} > k$	$\frac{b}{c} > k$	knumber of neighbors
Group selection	C D	(b-c)(m+n) bn	$(\boldsymbol{b}-\boldsymbol{c})\boldsymbol{m}-\boldsymbol{c}\boldsymbol{n}$	$\frac{b}{c} > 1 + \frac{n}{m}$	$\frac{b}{c} > 1 + \frac{n}{m}$	$\frac{b}{c} > 1 + \frac{n}{m}$	ngroup size mnumber of groups

이것을 모두 수리적으로 검토하지는 않을 것임.

Kin Selection

- 형제 혹은 자매와 협력하는 이유: 친족이 같은 유전자를 지니고 있을 가능성이 높기 때문
- 리처도 도킨스의 "이기적 유 전자"
- 매트 리들리의 "이타적 유전 자" 두 가지 방식으로 진행
 - 자손의 번식을 통해서
 - 동일한 유전자를 지니고 있는 친척의 번식을 높임 으로써

Direct Reciprocity

- 작은 공동체에서의 협력
- 다른이에 대한 나의 경험에 기반
- 반복게임을 통해서 형성

Indirect Reciprocity

- 대규모 사회 (이 거대한 사회 가 굴러가는 방식) → 사회적 분업
- 다른이에 대한 다른 사람의 경험 또한 고려
- 언젠가 만날 수 있겠지?
- "뇌"의 진화와 평판을 매개 로
- 도덕체계의 진화 (그리스 철학, 불교, 기독교, 힌두교, 도교등)

Network Reciprocity

- 집단의 구조가 죄수의 딜레 마를 푸는 또 다른 방법을 제 시할 수 있지 않을까?
- 현실의 모든 상태에는 일정 한 구조가 있다. 이것이 차이 를 낳을까?
- 어떻게 얼룩말의 세포들이 얼룩말의 무늬를 만들어 내는 가? (EvoDevo)
- 협력자가 배신자 보다 더 나은 성과를 거두게 하는 그런 집단 구조가 있을까?

Group Selection

- 집단은... 지하철 선로에 떨어진 어린 아이를 구한 학생에게 상장과 존경을 제공한다.
- 바람직한 사회규범을 가진 집단은 그렇지 않은 집단들 과의 경쟁에서 승리할 것이다.
- 간접 상호성은 집단 선택과 협력하여 인간다움을 형성할 수 있다.

진화게임의 순환 패턴

게임실습

- KLAS 과제란에 공지함
- 자신의 전략을 해당 엑셀 파일에 작성하여 KLAS 과제란에 올릴 것
 - 기한: 다음주 금요일 (11/24) 23:50
 - 형식이 맞지 않는 경우 0.5확률의 혼합전략으로 간주
- "모든 참가자"들과 10회씩 연속게임을 할 것임
 - 본 게임 실습 결과는 오늘차 실험으로 간주

다음 주제

- 협력의 진화
- 초협력자 (1-5장)

수고하셨습니다!