Lei de Ohm e curva característica do diodo

Eduardo Parducci - 170272 Lucas Koiti Geminiani Tamanaha - 182579 Rodrigo Seiji Piubeli Hirao - 186837 Tanus Vaz Szabo - 187308

29 de Março de 2017

Conteúdo

1	Resumo					
2	Objetivo					
3	Metodologia 3.1 Material Utilizado 3.2 Especificações do Multímetro digital MD-6680 3.3 Procedimento 3.3.1 Medição das Resistências 3.3.2 Curva Característica do Resistor (100Ω) 3.3.3 Curva Característica do Diodo	3 3 4 4 4 4				
4	Resultados	5				
5	Análise de Dados					
6	Discussão					
7	Conclusão	6				
8	Anexo 8.1 Circuitos Utilizados	7 8 10 10 11 12				
9	Referencias	15				

1 Resumo

O experimento em questão foi realizado em busca de analisar o comportamento de um resistor nominal de 100Ω e de um diodo de silício através da aplicação e medição de diferentes tensões e correntes controladas por uma fonte regulável. O resistor mostrou comportamento linear observado no gráfico $(V \times I)$, da mesma forma, o diodo se mostrou um elemento de condutância exponencial a partir de uma certa tensão quando polarizado diretamente, e um elemento de alta impeância quando polarizado inversamente, impedindo a passagem de corrente. Dessa forma, conclui-se que o resistor é um elemento ôhmico enquanto o diodo é um elemento retificador. Os resultados obtidos para o resistor também confirmam seu valor nominal, pois, de acordo com a regressão linear, obtém-se uma resistência $R_{exp}=(99,9\pm0,2)\Omega$ enquanto o ohmímetro obteve $R_{inst}=(99,6\pm0,1)\Omega$.

2 Objetivo

O experimento "Condutividade de dispositivos" tem como principal objetivo estudar o comportamento de componentes resistivos analisando a condutividade (corrente) quando uma tensão é aplicada em seus terminais, a fim de determinar se esse dispositivo é, ou não, Ôhmico.

3 Metodologia

3.1 Material Utilizado

- 1 Resistor de 100Ω
 - 1 Resistor de 10Ω
 - 1 Resistor de 220Ω
 - 2 multímetros
 - 1 Protoboard
 - 1 Diodo de silício
 - 1 Fonte de tensão contínua
 - Cabos de plug "banana"

3.2 Especificações do Multímetro digital MD-6680

Para a medição das **tensões**, coloca-se a chave seletora para a posição ' $V \simeq$ ' e pressiona-se o botão **DC** conectando duas das pontas de prova nos terminais **V** e **COM** e as outras em paralelo com o dispositivo a ser medido. **Obs:**Resistência interna do voltímetro: $R_{Vint} = 10^6 \Omega$

Resolução da escala utilizada: $\Delta V = 10^{-2} V$

Para a medição das **correntes**, coloca-se a chave seletora para a posição ' $mA \simeq$ ' e pressiona-se o botão **DC** conectando duas das pontas de prova nos terminais μ **A**, **mA** e **COM** e as outras em série com o dispositivo a ser medido. **Obs:**Resistência interna do amperímetro: $R_{Iint} = 10\Omega$

Resolução da escala utilizada: $\Delta I = 10^{-4} V$

Para a medição das **resistências**, coloca-se a chave seletora para a posição ' Ω ' e pressiona-se o botão **SELECT** conectando duas das pontas de prova nos terminais $\mathbf{Hz}\ \Omega\ \mathbf{mV}$ e \mathbf{COM} e as outras em paralelo com o dispositivo a ser medido.

Obs: Resolução da escala utilizada: $\Delta\Omega = 10^{-1}\Omega$

3.3 Procedimento

3.3.1 Medição das Resistências

Com o uso do Multímetro, mediu-se as resistências nominais de 10Ω , 100Ω , 220Ω a fim de comparar os valores obtidos e suas incertezas com o nominal.

3.3.2 Curva Característica do Resistor (100Ω)

Para levantar a curva característica (V x I) do resistor, montou-se o circuito 01 utilizando $R_p=10\Omega$ e tomou-se 21 medidas de V e I variando a tensão com o uso da Fonte entre $V_{min}=0V$ e $V_{max}=10V$ aumentando-a gradativamente em 0,5V a fim de verificar a característica ôhmica do resistor respeitando a lei de Ohm ($V=R\times I$)

3.3.3 Curva Característica do Diodo

Para a curva característica (V x I) do diodo de silício montou-se, inicialmente, o circuito 02 utilizando $R_p=10\Omega$ e tomou-se 5 medidas de V e I variando a tensão entre $V_{min}=-10V$ e $V_{max}=0V$ (polarização reversa) e 3 medidas variando a tensão entre $V_{min}=0,2V$ e $V_{max}=0,5V$ (polarização direta).

Montou-se o circuito 03 utilizando $R_p=220\Omega$ e tomou-se 8 medidas de V e I variando a tensão entre $V_{min}=0,5V$ e $V_{max}=0,75V$.

Obs:Para tensões acima de 0V foi realizada uma redução do intervalo de medição bem como a troca do circuito para tensões acima de 0,5V pois sabe-se que o intervalo de disparo do diodo encontra-se entre 0V e 1V, no qual ocorre um crescimento exponencial da corrente elétrica.

4 Resultados

Como resultado do experimento foram obtidos tipos de dados:

As figuras 5 e 6 em anexo mostram a corrente obtida ao se variar a tensão no resistor de 100Ω .

As figuras 7 e 8 em anexo mostram a corrente obtida ao se variar a tensão no diodo de silício.

As figuras 9 e 10 em anexo mostram a resistência obtida ao se variar a tensão no diodo de silício.

5 Análise de Dados

Com os dados obtidos na tabela da figura 5 podemos construir o gráfico da figura 6.

Através da relação entre a tensão e a corrente, podemos linearizar o gráfico acima, respeitando a relação $U=R\times I$ utilizando o método dos mínimos quadrados juntamente com propagação de erros para calcular sua incerteza, a fim de obtermos uma relação no formato $(R_{exp} \pm \Delta R_{exp})\Omega$. Obtendo o gráfico da figura 11, com o Método dos Mínimos Quadrados:

$$a = \overline{y} - b\overline{x}$$

$$b = \frac{\sum_{i=1}^{n} x_i(y_i - \overline{y})}{\sum_{i=1}^{n} x_i(x_i - \overline{x})}$$

Finalmente, temos $R_{exp} = (99, 9 \pm 0, 1)\Omega$

O diodo apresentou comportamento diferenciado, nota-se abaixo uma curva exponencial, impedindo a passagem de corrente quando aplicado a uma tensão negativa, e possibilitando a passagem de corrente para tensões acima de 0,6V, visível no gráfico da figura 8

Novamente através da lei de Ôhm podemos construir o gráfico da resistência do diodo para cada ponto de medição, com sua devida incerteza calculada através da propagação de erros da seguinte forma: $\sigma_{R_{diodo}} = \sqrt{(\frac{\partial R}{\partial V})^2 \sigma_V^2 + (\frac{\partial R}{\partial i})^2 \sigma_i^2},$ como na figura 10.

6 Discussão

Os resultados obtidos comprovam o fato do resistor utilizado ser ôhmico, sendo isso visível pela figura 6 que mostrou uma função linear com o aumento da tensão.

A figura 8 comprovou que o diodo apresenta um comportamento exponencial com o aumento da tensão, o que significa que o diodo não é ôhmico. Além disso ele apresenta corrente nula ao passar uma tensão menor que 0V, ou seja, ao usá-lo na polarização reversa. Demonstrando características de um componente retificador.

7 Conclusão

Os resultados obtidos no experimento condizem com o esperado teóricamente. Dessa forma, podemos dizer que o experimento foi bem sucedido. Pois, ao verificarmos os valores definidos pelo multimetro, regressao linear e nominal do resistor, chegou-se a valores correspondentes a 100Ohms, e, assim, definimos um grafico experimental que prova sua caracteristica ohmica. No caso do diodo, encontrou-se um grafico experimental no qual verificou-se seu comportamento exponencial para a corrente de acordo com um certo aumento de tensão. E, da mesma forma, sua polarização inversa mostrou-se compativel com a teoria, pois manteve sua ação como um dispositivo retificador.

8 Anexo

Lista de Figuras

1	Circuito para medição de resistências pequenas	8
2	Circuito para medição de resistências grandes	8
3	Circuito de montagem do diodo na polarização direta	Ö
4	Circuito de montagem do diodo na polarização reversa	Ö
5	Tabela de dados da corrente adquirida ao aumentar tensão em	
	resistor	10
6	Gráfico da corrente adquirida ao aumentar tensão em resistor	11
7	Gráfico da corrente adquirida ao aumentar tensão em diodo	11
8	Gráfico da corrente adquirida ao aumentar tensão em diodo	12
9	Gráfico da resitência adquirida ao aumentar tensão em diodo	12
10	Gráfico da resistência adquirida ao aumentar tensão em diodo	13
11	Gráfico do MMO	14

8.1 Circuitos Utilizados

Figura 1: Circuito para medição de resistências pequenas

Figura 2: Circuito para medição de resistências grandes

Figura 3: Circuito de montagem do diodo na polarização direta

Figura 4: Circuito de montagem do diodo na polarização reversa

8.2 Gráficos Produzidos

8.2.1 Resistor ixU

U[V]	i[mA]	$\Delta U[V]$	$\Delta i[mA]$
$1 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
0.51	$4.89\cdot10^{-3}$	$1\cdot 10^{-3}$	$1\cdot 10^{-5}$
1.01	$1 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
1.5	$1.5 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
1.94	$1.96 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
2.53	$2.55 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
3	$3 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
3.53	$3.55\cdot10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
3.95	$3.98 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
4.52	$4.54 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
4.93	$4.94 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1\cdot 10^{-5}$
5.42	$5.45 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
5.92	$5.92 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
6.46	$6.49 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1\cdot 10^{-5}$
6.98	$7 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1\cdot 10^{-5}$
7.55	$7.58 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
7.99	$8.02 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1 \cdot 10^{-5}$
8.48	$8.52 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1\cdot 10^{-5}$
9.06	$9.09 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1\cdot 10^{-5}$
9.45	$9.49 \cdot 10^{-2}$	$1 \cdot 10^{-3}$	$1\cdot 10^{-5}$
10.1	0.1	$1 \cdot 10^{-3}$	$1\cdot 10^{-5}$

Figura 5: Tabela de dados da corrente adquirida ao aumentar tensão em resistor

Figura 6: Gráfico da corrente adquirida ao aumentar tensão em resistor

8.2.2 Diodo ixU

U[V]	i[mA]	$\Delta U[V]$	$\Delta i[mA]$
-0.5	0	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.27	$2 \cdot 10^{-2}$	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.47	0.12	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.59	1.13	$1\cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.65	6.73	$1\cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.67	8.47	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.7	17.18	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.71	25.24	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.72	26.24	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.73	43.15	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.74	43.15	$1\cdot 10^{-2}$	$1 \cdot 10^{-2}$

Figura 7: Gráfico da corrente adquirida ao aumentar tensão em diodo

Figura 8: Gráfico da corrente adquirida ao aumentar tensão em diodo

8.2.3 Diodo RxU

$R[\Omega]$	$\Delta U[V]$	$\Delta R[\Omega]$
0	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
13.5	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
3.91	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
0.52	$1\cdot 10^{-2}$	$1\cdot 10^{-2}$
$9.6 \cdot 10^{-2}$	$1\cdot 10^{-2}$	$1\cdot 10^{-2}$
$7.9 \cdot 10^{-2}$	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
$4 \cdot 10^{-2}$	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
$2.8 \cdot 10^{-2}$	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
$2.7 \cdot 10^{-2}$	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
$1.6 \cdot 10^{-2}$	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
$1.7\cdot 10^{-2}$	$1\cdot 10^{-2}$	$1\cdot 10^{-2}$
	$\begin{matrix} 0 \\ 13.5 \\ 3.91 \\ 0.52 \\ 9.6 \cdot 10^{-2} \\ 7.9 \cdot 10^{-2} \\ 4 \cdot 10^{-2} \\ 2.8 \cdot 10^{-2} \\ 2.7 \cdot 10^{-2} \\ 1.6 \cdot 10^{-2} \end{matrix}$	$\begin{array}{cccc} 0 & 1 \cdot 10^{-2} \\ 13.5 & 1 \cdot 10^{-2} \\ 3.91 & 1 \cdot 10^{-2} \\ 0.52 & 1 \cdot 10^{-2} \\ 9.6 \cdot 10^{-2} & 1 \cdot 10^{-2} \\ 7.9 \cdot 10^{-2} & 1 \cdot 10^{-2} \\ 4 \cdot 10^{-2} & 1 \cdot 10^{-2} \\ 2.8 \cdot 10^{-2} & 1 \cdot 10^{-2} \\ 2.7 \cdot 10^{-2} & 1 \cdot 10^{-2} \\ 1.6 \cdot 10^{-2} & 1 \cdot 10^{-2} \end{array}$

Figura 9: Gráfico da resitência adquirida ao aumentar tensão em diodo

Figura 10: Gráfico da resistência adquirida ao aumentar tensão em diodo

Figura 11: Gráfico do MMQ

9 Referencias

- \bullet ICEL. Manual de Instruções do Multímetro Manual de Bancada Modelo MD-6880
- $\bullet\,$ Minipa. Fonte de Alimentação Regulada MLP-1303M