Optimization Method homework 3

Qingfu Wen

2015213495

October 6, 2015

CONTENTS

i. Problem 1

I. PROBLEM 1

solve the following LP problem using two-step algorithm.

1.

max
$$3x_1 - 5x_2$$

s.t. $-x_1 + 2x_2 + 4x_3 \le 4$
 $x_1 + x_2 + 2x_3 \le 5$
 $-x_1 + 2x_2 + x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$

Solution:

Lead slack variable x_4 , x_5 , x_6 into it.

max
$$3x_1 - 5x_2$$

s.t. $-x_1 + 2x_2 + 4x_3 + x_4 = 4$
 $x_1 + x_2 + 2x_3 + x_5 = 5$
 $-x_1 + 2x_2 + x_3 - x_6 = 1$
 $x_j \ge 0, j = 1, \dots, 6$

solve it using two-step algorithm. Add artificial variable x_7 .

min
$$x_7$$

s.t. $-x_1 + 2x_2 + 4x_3 + x_4 = 4$
 $x_1 + x_2 + 2x_3 + x_5 = 5$
 $-x_1 + 2x_2 + x_3 - x_6 + x_7 = 1$
 $x_j \ge 0, j = 1, \dots, 7$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
x_4	-1	2	4	1	0	0	0	4
<i>x</i> ₅	1	1	2	0	1	0	0	5
<i>x</i> ₇	-1	2	1	0	0	-1	1	1
f	-1	2	1	0	0	-1	0	1
x_4	0	0	3	1	0	1	-1	3
<i>x</i> ₅	$-\frac{3}{2}$	0	$\frac{3}{2}$	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{9}{2}$
x_2	$-\frac{1}{2}$	1	$\frac{3}{2}$ $\frac{1}{2}$	0	0	$-\frac{1}{2}$	$\frac{\Gamma}{2}$	9 1 2
f	0	0	0	0	0	0	-1	0

we get a basic feasible of original LP problem $\mathbf{x} = (0, \frac{1}{2}, 0, 3, \frac{9}{2}, 0)$.

	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	x_6	
x_4	0	0	3	1	0	1	3
x_5	$\frac{\frac{3}{2}}{-\frac{1}{2}}$	0	$\frac{3}{2}$	0	1	$\frac{1}{2}$	$\frac{9}{2}$
x_2	$-\frac{1}{2}$	1	$\frac{\overline{1}}{2}$	0	0	$\frac{\frac{1}{2}}{\frac{\frac{1}{2}}{5}}$	$\frac{\frac{9}{2}}{\frac{1}{2}}$
f	$-\frac{1}{2}$	0	$\frac{\frac{3}{2}}{\frac{1}{2}}$	0	0		$-\frac{5}{2}$
x_3	0	0	1	$\frac{1}{3}$	0	$\frac{1}{3}$	1
x_5	$\frac{3}{2}$	0	0	$-\frac{1}{2}$	1	ő	3
x_2	$-\frac{1}{2}$	1	0	$-\frac{\overline{1}}{6}$	0	$-\frac{2}{3}$	0
f	$-\frac{1}{2}$	0	0	1 3 1 2 1 5 6	0	$-\frac{2}{3}$ $\frac{10}{3}$	0
x_3	0	0	1	$\frac{1}{3}$	0	$\frac{1}{3}$	1
$ x_1 $	1	0	0	$-\frac{1}{3}$	$\frac{2}{3}$		2
x_2	0	1	0	$-\frac{1}{3}$	$\frac{2}{3}$ $\frac{1}{3}$	$-\frac{2}{3}$	1
f	0	0	0	1 3 -1 3 -1 3 -2 3	$\frac{1}{3}$	$-\frac{2}{3}$ $\frac{10}{3}$	1

From the above table, we can see that solution $\mathbf{x}=(2,1,1,0,0), f_{max}=1$.

2.

min
$$x_1 - 3x_2 + x_3$$

s.t. $2x_1 - x_2 + x_3 = 8$
 $2x_1 + x_2 \ge 2$
 $x_1 + 2x_2 \le 10$
 $x_1, x_2, x_3 \ge 0$

Solution:

Lead slack variable x_4 , x_5 into it.

min
$$x_1 - 3x_2 + x_3$$

s.t. $2x_1 - x_2 + x_3 = 8$
 $2x_1 + x_2 - x_4 = 2$
 $x_1 + 2x_2 + x_5 = 10$
 $x_j \ge 0, j = 1, \dots, 5$

solve it using two-step algorithm. Add artificial variable x_6 .

min
$$x_6$$

s.t. $2x_1 - x_2 + x_3 = 8$
 $2x_1 + x_2 - x_4 + x_6 = 2$
 $x_1 + 2x_2 + x_5 = 10$
 $x_j \ge 0, j = 1, \dots, 6$

	x_1	x_2	x_3	x_4	x_5	x_6	
x_3	2	-1	1	0	0	0	8
x_6	2	1	0	-1	0	1	2
x_5	1	2	0	0	1	0	10
f	2	1	0	0	0	0	2
x_3	0	-2	1	1	0	-1	6
x_1	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
x_5	0	$\frac{\frac{1}{2}}{\frac{3}{2}}$	0	$\frac{1}{2}$	1	$-\frac{1}{2}$	9
f	0	0	0	0	0	-1	0

we get a basic feasible of original LP problem $\mathbf{x} = (1, 0, 6, 0, 9)$.

	x_1	x_2	x_3	x_4	x_5	
x_3	0	-2	1	1	0	6
x_1	1	$\frac{\frac{1}{2}}{\frac{3}{2}}$	0	$-\frac{1}{2}$	0	1
<i>x</i> ₅	0	$\frac{3}{2}$	0	$\frac{1}{2}$	1	9
f	0	$\frac{3}{2}$	0	$\frac{\overline{1}}{2}$	0	7
$\overline{}$						
	x_1	\bar{x}_2	x_3	\bar{x}_4	<i>x</i> ₅	
<i>x</i> ₃	x_1		<i>x</i> ₃	x_4		18
x_3 x_1		x_2		x_4		18 -2
	0	x_2	1		x_5 $\frac{4}{3}$ $-\frac{1}{3}$ $\frac{2}{3}$	

From the above table, we can see that solution $\mathbf{x}=(-2,6,18,0,0), f_{min}=-2.$