Solución del Taller

 Estimar los efectos de cada uno de los factores principales y los efectos de interacción doble. Grafique los efectos estimados en un gráfico de probabilidad normal, úselo para seleccionar un modelo tentativo.

Solución:

Y: Resistividad de la Oblea hallada en los diferentes niveles de los **cuatro** factores considerados: A, B, C, D.

 $\mathbf{k} = \mathbf{4}$: Número de factores. $\mathbf{n} = \mathbf{1}$: Número de réplicas.

Recuerde que el **estimador del efecto** de cada Factor es: El **contraste** asociado al Factor dividido por $n*2^{k-1}=1\times 2^3=8$.

Y	1,92	11,28	1,09	5,75	2,13	9,53	1,03	5,35	1,6	11,73	1,16	4,68	2,16	9,11	1,07	5,3
Signos de A	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
	-1,92	11,28	-1,09	5,75	-2,13	9,53	-1,03	5,35	-1,6	11,73	-1,16	4,68	-2,16	9,11	-1,07	5,3
Contraste de										X 31,7 61						
Α	50,57															
Efecto estimado de A	6,32125															

En forma análoga se hallan los otros **efectos**, a partir de la multiplicación de la **TABLA** de signos por el respectivo valor de Y y luego sumarlos y dividirlos por 8:

Resistividad	A	В	C	D	AB	AC	AD	вс	BD	CD	ABC	ABD	BCD	ACD	ABCD
1,92	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
11,28	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	-1	1	-1
1,09	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
5,75	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1
2,13	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1
9,53	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	1	-1	1
1,03	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	-1	1	1
5,35	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1
1,6	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
11,73	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	1	-1	1
1,16	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	-1	1	1
4,68	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1
2,16	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1
9,11	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	-1	1	-1
1,07	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	1	-1	-1
5,3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

También, los estimadores de los **efectos** se pueden hallar en ${\bf R}$, a partir de la función ${\bf lm}$


```
datos<- matrix( c( 1.92,-1,-1,-1, 11.28,1,-1,-1, 1.09,-1,1,-1,-1,
5.75, 1, 1, -1, -1, 2.13, -1, -1, 1, -1, 9.53, 1, -1, 1, -1, 1.03, -1, 1, 1, -1, 5.35, 1, 1, 1, -1,
9.11,1,-1,1,1, 1.07,-1,1,1,1, 5.3,1,1,1,1), ncol=5, byrow=T)
y <- datos[,1]; A <- datos[,2]; B <- datos[,3]; C <- datos[,4];D <- datos[,5]</pre>
mod1 < -lim(y^A*B*C*D)
summary (mod1)
coef <- mod1$coefficients</pre>
efectos <- 2*mod1$coefficients
efectos <-efectos[-1]
efectos
      B C D A:B A:C B:C A:D
                                                              B:D
# 6.32125 -3.00375 -0.44125 -0.15875 -2.13875 -0.59625 0.45875 -0.11375 -0.09375
  C:D A:B:C A:B:D A:C:D B:C:D A:B:C:D
# 0.05875 0.68875 -0.19375 -0.02125 0.18875 0.28375
```


Modelo Tentativo:

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}, \ i = 1, 2, j = 1, 2, k = 1, 2, 3, 4, \ \varepsilon_{ijk} \sim NID(0, \sigma^2).$$
 (3)

2. Ajuste el modelo obtenido en la parte 1. y haga el análisis de **residuales** para la verificación de los supuestos. ¿Hay indicios de que el modelo **NO** es adecuado?

NOTA: Observe que tanto el efecto de interacción **AB** como el de los efectos principales **A** y **B** son todos altamente **significativos**, a un nivel de significancia del 5 %.

Verificación de los supuestos del Modelo:

Normalidad:

Shapiro-Wilk normality test

data: res

```
W = 0.94285, p-value = 0.3854
```

```
res<-mod1$residuals
shapiro.test(res)</pre>
```



```
par (mfrow=c(1,2))
plot (y, res, ylab="Residuales", xlab="Yh")
abline (h=0)
qqnorm(res)
qqline (res)

Normal Q-Q Plot
```

Note que al parecer el supuesto de homogeneidad de varianza NO se cumple, existe tendencia en forma de parlante.

En cuanto a la normalidad, este supuesto se verifica al usar la prueba de Shapiro-Wilks a un nivel de significancia del 5%.

Dis. Experimentos 02-2022 Escuela de Estadistica

Theoretical Quantiles


```
bartlett.test(res,A)
# Bartlett test of homogeneity of variances
#data: res and A
#Bartlett's K-squared = 12.857, df = 1,
#p-value = 0.0003363

bartlett.test(res,B)
# Bartlett test of homogeneity of variances
#data: res and B
#Bartlett's K-squared = 6.4881, df = 1,
#p-value = 0.01086
Conclusión Se obtiene una conclusión similar con la prueba de Bartlett, para cada factor individual NO hay homogeneidad de varianza en los errores del modelo.
```


3. Repita el análisis de las partes **1** y **2** con ln(y) como variable respuesta. ¿Existen indicios de que la transformación ha sido apropiada?

Observe que sólo los factores principales $\bf A$ y $\bf B$ tienen efectos importantes en la resistividad de la Oblea (en escala logarítmica).


```
mod2 < -aov(y^A*B)
summary (mod2)
            Df Sum Sq Mean Sq F value Pr(>F)
             1 10.572 10.572 954.04 8.33e-13 ***
Α
             1 1.580 1.580 142.61 5.10e-08 ***
             1 0.010 0.010
                              0.88
A:B
                                         0.367
            12 0.133
                        0.011
Residuals
Note que la interacción entre los factores A y B no es significativa, a un nivel de significancia del 5%.
Verificación de los Supuestos:
###Modelo sin Interacción######
mod3 <- aov(y^A+B)
summary(mod3)
res <- mod3$residuals
shapiro.test(res)
####
      Shapiro-Wilk normality test
####
     data: res
      W = 0.91145, p-value = 0.1228
bartlett.test(res,A)
         Bartlett test of homogeneity of variances
         data: res and A
         Bartlett's K-squared = 0.33025, df = 1, p-value = 0.5655
bartlett.test(res,B)
         Bartlett test of homogeneity of variances
         data: res and B
         Bartlett's K-squared = 0.24004, df = 1, p-value = 0.6242
```

Dis. Experimentos 02 - 2022 Escuela de Estadistica

4. Ajuste un modelo en términos de las variables codificadas que puede ser usado para predecir la resistividad.

$$\hat{\log}(y) = \; \hat{\beta}_0 + \hat{\beta}_1 \; A \; + \; \hat{\beta}_2 \; B$$

$$\hat{\log}(y) = \; 1.1854 \; + \; 0.8129 \; A \; - \; 0.3143 \; B, \; \; A = \; \pm \; 1, \; B = \; \pm \; 1$$

— Dis. Experimentos 02 - 2022 Escuela de Estadistica

5. Suponga que el experimentador ha realizado cuatro corridas al centro junto con las 16 corridas experimentales anteriores. Las medidas de resistividad en el centro fueron: 8.15, 7.63, 8.95 y 6.48. Analice el experimento otra vez con los puntos centrales.

¿Qué conclusiones se pueden obtener?

- Ptos al Centro: 8.15, 7.63, 8.9, 6.48 y $n_c = 4$.
- Media en los puntos centrales usando el log: $y_c^* = \log(y)$ $\overline{y}_c^* = 2.04762$.
- Media cuadrática del Error para probar curvatura:

$$MS_E = \frac{SS_E}{n_c-1} = \frac{\Sigma_{\text{puntos centrales}}(y_i^* - \overline{y}_c^*)^2}{4-1} = 0.0185.$$

- **Promedio** en los puntos factoriales: $\bar{\mathbf{y}}_{\mathbf{f}}^* = 1.1854$
- Suma de cuadrados asociada a la curvatura:

$$SS_{curvatura} = \frac{n_f n_c \left(\overline{\mathbf{y}_f^*} - \overline{\mathbf{y}_c^*}\right)^2}{n_f + n_c} = \frac{16 * 4 * (1.1854 - 2.04762)^2}{16 + 4} = 2.3788$$

Modelo:

$$\label{eq:log_final} \text{log}(Y) = \beta_0 + \sum_{j=1}^2 \beta_j x_j + \sum_{i < j} \beta_{ij} x_i x_j + \sum_{j=1}^2 \beta_{jj} x_j^2 + \epsilon,$$

Dis. Experimentos 02 – 2022 Escuela de Estadistica

Hipótesis para curvatura:

$$H_0: \beta_{11}+\beta_{22}=0$$

Estadístico de Prueba:

$$F = rac{SS_{curvatura}}{MSE} \, \sim \, F_{1,\,n_c-1} = \, F_{1,\,3}$$

Además $F_{cal}=\frac{2.3788}{0.0185}=128.58$, y como $F_{0.05,1,3}=qf(0.95,1,3)=10.12$ se rechaza H_0 indicando, con un nivel de significancia del $5\,\%$ que existe curvatura en la superficie esperada.

