Visualización de información

y analítica visual

Clase 4: Rules of thumb / Criterios generales

Hoy veremos ocho guías y consejos para hacer mejores visualizaciones

Tamara Munzner nos presenta 8 rules of thumb para sintetizar el conocimiento general que se tiene hoy de buenas prácticas para visualizaciones.

☐ La elección de marcas y canales es un tema que sigue en investigación y aún hay muchas preguntas sin respuesta ...

- 1. No usar 3D cuando no es necesario
- 2. No usar 2D cuando no es necesario
- 3. La vista le gana a la memoria
- 4. Resolución sobre inmersión
- 5. Resumen primero, zoom, filtros y detalle a demanda
- 6. Se requiere responsividad
- 7. Hazlo bien en blanco y negro
- 8. Función primero, forma después

No usar 3D cuando no es necesario

- 2. No usar 2D cuando no es necesario
- 3. La vista le gana a la memoria
- 4. Resolución sobre inmersión
- 5. Resumen primero, zoom, filtros y detalle a demanda
- 6. Se requiere responsividad
- 7. Hazlo bien en blanco y negro
- 8. Función primero, forma después

"Qué buena quedó esta visualización en 2D. Apuesto que si la dejo en 3D quedará aún mejor, al fin y al cabo, vivimos en un mundo en 3D"

Hmmm en realidad no es tan así ...

Hay varias dificultades con las visualizaciones en 3D y en general solo se justifica cuando

La tarea del usuario implica entender aspectos de forma que son inherentemente expresados en tres dimensiones.

Vale la pena **cuestionarse** el uso de 3D

- realmente necesito tres dimensiones espaciales?
- podemos derivar los datos para usar solo 2D? (abstracción de datos)

Veamos ahora distintos aspectos a considerar al pensar en visualizaciones en 3D

El poder del plano

Los canales de magnitud más efectivos son posición en una misma escala y posición en escalas desalineadas: esto solo aplica en 2D

La disparidad de la profundidad

El ser humano es **peor** percibiendo profundidad que posiciones en el plano

- La percepción de distancia es sublineal (0.67)

La oclusión oculta información

Cuando añadimos la dimensión de profundidad, puede pasar que los objetos **queden ocultos tras de otros.**

Si bien con interactividad se puede sortear esto, la interactividad le cuesta tiempo al usuario

<u>Distorsión de la perspectiva</u>

"Perfecto. Es super complejo hacer cosas en 3D, entonces mejor hago todo siempre en 2D y ni siquiera voy a considerar usar la dimensión de profundidad"

No es tan asi tampoco...

Beneficios del 3D

Como ya mencionamos, el gran beneficio del 3D es que el usuario puede apreciar características de **forma** de lo que se está visualizando

 Se ha demostrado que las visualizaciones en 3D son más efectivas para que el usuario pueda comprender formas.

Entonces, usar o no usar 3D

En los 80s, con la aparición del computador y los sistemas de visualización computarizados, hubo un boom por las visualizaciones en 3D. Luego, los se empezaron a dar cuenta que el costo asociado no se pagaba en efectividad.

 estudiar bien si hay alternativas al 3D: re-pensar la abstracción de datos y tareas, estudiar otros canales.

- 1. No usar 3D cuando no es necesario
- 2. No usar 2D cuando no es necesario
- 3. La vista le gana a la memoria
- 4. Resolución sobre inmersión
- 5. Resumen primero, zoom, filtros y detalle a demanda
- 6. Se requiere responsividad
- 7. Hazlo bien en blanco y negro
- 8. Función primero, forma después

Ubicar datos en el plano también debe estar justificado al contrastarlo con la alternativa de mostrar los datos con una "lista" 1D.

- Visualizaciones en 1D tienen a usar mucho menos espacio
- Muy fácil de ordenar y buscar información en ellas
- Pero en 1D se pierden los aspectos topológicos

No usar 2D cuando no es necesario

- 1. No usar 3D cuando no es necesario
- No usar 2D cuando no es necesario
- 3. La vista le gana a la memoria
- 4. Resolución sobre inmersión
- 5. Resumen primero, zoom, filtros y detalle a demanda
- 6. Se requiere responsividad
- 7. Hazlo bien en blanco y negro
- 8. Función primero, forma después

La vista le gana a la memoria

Ver dos cosas simultáneamente y compararlas tiene una carga cognitiva mucho más baja que estar viendo algo y acordarse de una vista anterior.

La vista le gana a la memoria

Hay muchos idioms que dependen directa o indirectamente de la memoria de las personas.

Una buena práctica es mantener algo de la vista anterior, aunque estemos en una vista nueva.

La vista le gana a la memoria

La vista le gana a la memoria

Memoria y atención

-Memoria de largo plazo-

- puede durar toda una vida
- no tiene un límite superior estricto (que se conozca)

-Memoria de corto plazo-

(también conocida como memoria de trabajo)

- puede durar un par de segundos
- es muy limitada
- puede haber una recarga cognitiva que no te permite retener toda la información

Memoria y atención

La **atención** de los seres humanos también presenta muchas limitantes

- la búsqueda consciente de ítems se vuelve más complicada cuando hay más ítems
- la habilidad de realizar búsquedas visuales se degrada rápidamente
- de por sí el ser humano no puede estar periodos largos de tiempo atento

Animación versus vistas lado-a-lado

Algunas visualizaciones que utilizan animación imponen una gran carga cognitiva para los usuarios. Distinguimos entre distintos tipos de animación

- storytelling narrativo
- transición de estados
- secuencia multi-frame

Que la animación (tipo storytelling) sea un super buen recurso para contar historias no significa que sea el mejor recurso para hacer visualizaciones.

Animación versus vistas lado-a-lado

transición entre estados

- varios estudios indican que es más efectivo tener transiciones suaves en vez de cortes
- los cortes bruscos pueden ser útiles cuando se tiene una animación tipo blink-comparator (se van repitiendo los frames del corte)

secuencia multi-frame

- en estas el usuario controla la animación como si fuera un video
- requiere mucha atención y memoria ir percibiendo los cambios

Animación versus vistas lado-a-lado

En síntesis:

Para tareas donde se requiera comparar cosas, es mucho mejor tener ambas cosas lado a lado, en la misma vista.

El ser humano en general no se da cuenta de cambios (incluso cambios muy drásticos) que se dan en lugares que no son el foco de atención.

Rules of thumb

- 1. No usar 3D cuando no es necesario
- 2. No usar 2D cuando no es necesario
- 3. La vista le gana a la memoria
- 4. Resolución sobre inmersión
- 5. Resumen primero, zoom, filtros y detalle a demanda
- 6. Se requiere responsividad
- 7. Hazlo bien en blanco y negro
- 8. Función primero, forma después

Resolución: cantidad de píxeles disponibles versus el área del display

Inmersión: sensación de presencia en realidad virtual

Si alguna vez nos encontramos con un trade-off de resolución versus inmersión, la resolucion es mas importante

Resolucion sobre inmersión

Resolución sobre inmersión

Los píxeles disponibles en un display son un recurso limitado y es una de las restricciones más importantes a la hora de crear visualizaciones

El costo de la inmersión es resolución: es muy raro que la inmersión valga el costo en resolución

Resolución sobre inmersión

Lograr inmersión es super complicado:

- Normalmente hay que cambiar la manera en que el usuario trabaja con su computador para lograr inmersión
- Casi siempre se usan displays y setups totalmente distintos
- A veces necesitamos que el usuario esté de pie

En general se **rompe el workflow** del usuario

Resolución sobre inmersión

Rules of thumb

- 1. No usar 3D cuando no es necesario
- No usar 2D cuando no es necesario
- 3. La vista le gana a la memoria
- 4. Resolución sobre inmersión
- 5. Resumen primero, zoom, filtros y detalle a demanda
- 6. Se requiere responsividad
- 7. Hazlo bien en blanco y negro
- 8. Función primero, forma después

Siempre vamos a tener una tensión entre la necesidad de tener un **resumen general** (overview) y la necesidad de acceder a **detalles**

Ben Schneiderman plantea que debemos ofrecer primero un overview y tener acceso a filtros y detalle on-demand

Resumen

Un vis idiom que provee un overview tiene que permitir al usuario percibir **todo el espacio** de información.

Tarea abstracta: Resumir (summarize)

Resumen

El overview de los datos normalmente se muestra al principio y guía al usuario para que pueda escoger donde quiere hacer el "doble click"

Resumen: qué pasa si el dataset es muy grande?

- Podemos usar técnicas de reducción
- o técnicas de zooming (todo se hace más pequeño)
- o de agregación (agrupamos más de un dato en una misma marca)

Recuerden que queremos poder

mostrarle al usuario todo "de una"

Maneras de hacer overview

- Utilizando múltiples vistas (overview y detail view)
 - Podemos lograr esto con interacción (selección)
 - o dejando ambas vistas estáticas side-by-side
- Permitiendo al usuario hacer acciones de reducción de datos: zooming y filtering

¿Qué pasa con la Big Data?

Hay veces que simplemente no podemos mostrar todos los datos de una sola vez. En esos casos, hay otro mantra propuesto

Rules of thumb

- 1. No usar 3D cuando no es necesario
- No usar 2D cuando no es necesario
- 3. La vista le gana a la memoria
- 4. Resolución sobre inmersión
- 5. Resumen primero, zoom, filtros y detalle a demanda

6. Se requiere responsividad

- 7. Hazlo bien en blanco y negro
- 8. Función primero, forma después

La **latencia** es un aspecto
tremendamente importante a la hora
de diseñar sistemas interactivos

responsividad

Se requiere

Latencia: el tiempo que se demora el sistema en responder a una acción del usuario.

Se requiere responsividad

Los humanos tendemos a irritarnos mucho cuando un sistema se demora en responder...

Buenas prácticas:

- darle feedback al usuario acerca de la acción
- cuidar los tiempos de respuesta
- no abusar pensando que el usuario tiene mucho tiempo para estar interactuando

Rules of thumb

- 1. No usar 3D cuando no es necesario
- 2. No usar 2D cuando no es necesario
- 3. La vista le gana a la memoria
- 4. Resolución sobre inmersión
- 5. Resumen primero, zoom, filtros y detalle a demanda
- 6. Se requiere responsividad
- 7. Hazlo bien en blanco y negro
- 8. Función primero, forma después

Hazlo bien en blanco y negro

Asegurarse que los aspectos mas relevantes de la visualizacion sean legibles incluso si la imagen se transforma de colores a blanco y negro

Hazlo bien en blanco y negro

Hazlo bien en blanco y negro

Rules of thumb

- 1. No usar 3D cuando no es necesario
- No usar 2D cuando no es necesario
- 3. La vista le gana a la memoria
- 4. Resolución sobre inmersión
- 5. Resumen primero, zoom, filtros y detalle a demanda
- 6. Se requiere responsividad
- 7. Hazlo bien en blanco y negro
- 8. Función primero, forma después

Una visualización excelente debe brillar tanto en función como en forma

Pero la **función** es indiscutiblemente en lo que más nos debemos enfocar. No nos sirve que una visualización sea linda, pero que no cumpla su función

Función primero, forma después

Función primero, forma después

El enfoque de función primero, forma despues se basa en la siguiente idea:

Una visualización no-tan-linda, pero funcional (efectiva) puede embellecerse sin comprometer su base de efectividad.

Función primero, forma después

Pero si tenemos una visualización hermosa, pero inefectiva... va a ser difícil que podamos hacerla más efectiva, sin comprometer sus cualidades estéticas.

Lo más probable es que uno tenga que partir desde 0 con el re-diseño.

Laboratorio #2 Re-diseñar una visualización

Opción #1: How much do you spend on groceries every week?

Opción #2: Women receive 58% of college degrees today

Opción #3: Why people keep dogs in China?

Opción #4: Americans who have tried Marijuana

Opción #5: Opioid-Related Overdose Deaths by Gender

Laboratorio #2 Re-diseñar una visualización

Caracterización del dominio

Identifique el usuario y la tarea específica. Puede hacer los supuestos que estime convenientes

Abstracción de datos y tareas

Realice la abstracción de datos y tareas. Para los datos, reconozca sus tipos. Formule una (o más) tareas abstractas

Codificación visual

Escoja las marcas y canales para la visualización. Justifique en términos de efectividad

Implementación algorítmica

Cree la visualización usando Altair

Entrega: un archivo .ipynb. Fecha: jueves 30 de junio

Visualización de información

y analítica visual

Clase 4: Rules of thumb / Criterios generales

