Logistic Regresssion Assignment

Problem statement:

- An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.
- The company markets its courses on several websites and search engines like Google. Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos. When these people fill up a form providing their email address or phone number, they are classified to be a lead. Moreover, the company also gets leads through past referrals. Once these leads are acquired, employees from the sales team start making calls, writing emails, etc. Through this process, some of the leads get converted while most do not. The typical lead conversion rate at X education is around 30%.
- Now, although X Education gets a lot of leads, its lead conversion rate is very poor. For example, if, say, they acquire 100 leads in a day, only about 30 of them are converted. To make this process more efficient, the company wishes to identify the most potential leads, also known as 'Hot Leads'. If they successfully identify this set of leads, the lead conversion rate should go up as the sales team will now be focusing more on communicating with the potential leads rather than making calls to everyone. A typical lead conversion process can be represented using the following funnel: •
- As you can see, there are a lot of leads generated in the initial stage (top) but only a few of them come out as paying customers from the bottom. In the middle stage, you need to nurture the potential leads well (i.e. educating the leads about the product, constantly communicating etc.) in order to get a higher lead conversion.
- X Education has appointed you to help them select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires you to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%. Data
- You have been provided with a leads dataset from the past with around 9000 data points. This dataset consists of various attributes such as Lead Source, Total Time Spent on Website, Total Visits, Last Activity, etc. which may or may not be useful in ultimately deciding whether a lead will be converted or not. The target variable, in this case, is the column 'Converted' which tells whether a past lead was converted or not wherein 1 means it was converted and 0 means it wasn't converted. You can learn more about the dataset from the data dictionary provided in the zip folder at the end of the page. Another thing that you also need to check out for are the levels present in the categorical variables. Many of the categorical variables have a level called 'Select' which needs to be handled because it is as good as a null value (think why?). Goals of the Case Study
- There are quite a few goals for this case study.

Build a logistic regression model to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads. A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted.

There are some more problems presented by the company which your model should be able to adjust to if the company's requirement changes in the future so you will need to handle these as well. These problems are provided in a separate doc file. Please fill it based on the logistic regression model you got in the first step. Also, make sure you include this in your final PPT where you'll make recommendations.

Results Expected A well-commented Jupyter note with at least the logistic regression model

1.Importing Data

```
In [1]:
```

```
# Suppressing Warnings
import warnings
warnings.filterwarnings('ignore')
```

```
In [2]:
```

```
# Importing Pandas and NumPy
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
from matplotlib.pyplot import xticks
%matplotlib inline
```

In [3]:

```
lead_data=pd.read_csv("E:\dsw\Leads.csv")
lead_data.head()
```

Out[3]:

	Prospect ID	Lead Number	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	 Get updates on DM Content	Lead Profile	City	A: A
0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	660737	API	Olark Chat	No	No	0	0.0	0	0.0	 No	Select	Select	
1	2a272436- 5132-4136- 86fa- dcc88c88f482	660728	API	Organic Search	No	No	0	5.0	674	2.5	 No	Select	Select	
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	660727	Landing Page Submission	Direct Traffic	No	No	1	2.0	1532	2.0	 No	Potential Lead	Mumbai	
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	660719	Landing Page Submission	Direct Traffic	No	No	0	1.0	305	1.0	 No	Select	Mumbai	
4	3256f628- e534-4826- 9d63- 4a8b88782852	660681	Landing Page Submission	Google	No	No	1	2.0	1428	1.0	 No	Select	Mumbai	

5 rows × 37 columns

1

In [4]:

```
sum(lead_data.duplicated(subset = 'Prospect ID')) == 0
```

Out[4]:

True

In [5]:

```
lead_data.shape
```

Out[5]:

(9240, 37)

In [6]:

```
lead_data.describe()
```

Out[6]:

	Lead Number	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Asymmetrique Activity Score	Asymmetrique Profile Score
count	9240.000000	9240.000000	9103.000000	9240.000000	9103.000000	5022.000000	5022.000000
mean	617188.435606	0.385390	3.445238	487.698268	2.362820	14.306252	16.344883
std	23405.995698	0.486714	4.854853	548.021466	2.161418	1.386694	1.811395
min	579533.000000	0.000000	0.000000	0.000000	0.000000	7.000000	11.000000
25%	596484.500000	0.000000	1.000000	12.000000	1.000000	14.000000	15.000000

	50%	615479.000000 Lead Number	0.000000 Converted	3.000000 TotalVisits		. 3	.,,,	Asymmetrique 4966file
-	75%	637387 250000	1 000000	5 000000	Website 936 000000	7 Visit 3 000000	Score 15 000000	Score 18 000000
	max	660737 000000	1 000000	251 000000	2272 000000	55 000000	18.000000	20 000000

In [7]:

lead_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9240 entries, 0 to 9239
Data columns (total 37 columns):

	columns (total 37 columns):		
#	Column	Non-Null Count	
		0040	
0	Prospect ID	9240 non-null	object
1	Lead Number	9240 non-null	int64
2	Lead Origin	9240 non-null	object
3	Lead Source	9204 non-null	object
4	Do Not Email	9240 non-null	object
5	Do Not Call	9240 non-null	object
6	Converted	9240 non-null	int64
7	TotalVisits	9103 non-null	float64
8	Total Time Spent on Website	9240 non-null	int64
9	Page Views Per Visit	9103 non-null	float64
10	Last Activity	9137 non-null	object
11	Country	6779 non-null	object
12	Specialization	7802 non-null	object
13	How did you hear about X Education	7033 non-null	object
14	What is your current occupation	6550 non-null	object
15	What matters most to you in choosing a course	6531 non-null	object
16	Search	9240 non-null	object
17	Magazine	9240 non-null	object
18	Newspaper Article	9240 non-null	object
19	X Education Forums	9240 non-null	object
20	Newspaper	9240 non-null	object
21	Digital Advertisement	9240 non-null	object
22	Through Recommendations	9240 non-null	object
23	Receive More Updates About Our Courses	9240 non-null	object
24	Tags	5887 non-null	object
25	Lead Quality	4473 non-null	object
26	Update me on Supply Chain Content	9240 non-null	object
27	Get updates on DM Content	9240 non-null	object
28	Lead Profile	6531 non-null	object
29	City	7820 non-null	object
30	Asymmetrique Activity Index	5022 non-null	object
31	Asymmetrique Profile Index	5022 non-null	object
32	Asymmetrique Activity Score	5022 non-null	float64
33	Asymmetrique Profile Score	5022 non-null	float64
34	I agree to pay the amount through cheque	9240 non-null	object
35	A free copy of Mastering The Interview	9240 non-null	object
36	Last Notable Activity	9240 non-null	object
dtype	es: float64(4), int64(3), object(30)		-
	ry usage: 2.6+ MB		

In [8]:

lead_data=lead_data.replace('Select',np.nan)

In [9]:

lead_data.isnull().sum()

Out[9]:

Prospect ID	0
Lead Number	0
Lead Origin	0
Lead Source	36
Do Not Email	0
Do Not Call	0
Converted	0
TotalVisits	137
Total Time Spent on Website	0

Page Views Per Visit 137 Last Activity 103 Country 2461 Specialization 3380 How did you hear about X Education 7250 What is your current occupation 2690 What matters most to you in choosing a course Search Ω Magazine 0 Newspaper Article 0 X Education Forums 0 Newspaper Digital Advertisement 0 0 Through Recommendations Receive More Updates About Our Courses 0 3353 Tags Lead Quality 4767 0 Update me on Supply Chain Content Get updates on DM Content 0 Lead Profile 6855 City 3669 Asymmetrique Activity Index 4218 Asymmetrique Profile Index 4218 Asymmetrique Activity Score 4218 Asymmetrique Profile Score 4218 I agree to pay the amount through cheque 0 A free copy of Mastering The Interview 0 Last Notable Activity 0 dtype: int64

In [10]:

round(100*(lead_data.isnull().sum()/len(lead_data.index)), 2)

Out[10]:

Prospect ID	0.00
Lead Number	0.00
Lead Origin	0.00
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Total Time Spent on Website	0.00
Page Views Per Visit	1.48
Last Activity	1.11
Country	26.63
Specialization	36.58
How did you hear about X Education	78.46
What is your current occupation	29.11
What matters most to you in choosing a course	29.32
Search	0.00
Magazine	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	36.29
Lead Quality	51.59
Update me on Supply Chain Content	0.00
Get updates on DM Content	0.00
Lead Profile	74.19
City	39.71
Asymmetrique Activity Index	45.65
Asymmetrique Profile Index	45.65
Asymmetrique Activity Score	45.65
Asymmetrique Profile Score	45.65
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity	0.00
dtype: float64	

```
In [11]:
```

```
# we will drop the columns having more than 70% NA values.
lead_data =lead_data.drop(lead_data.loc[:,list(round(100*(lead_data.isnull().sum()/len(lead_data.i
ndex)), 2)>70)].columns, 1)
```

Now we will take care of null values in each column one by one.

In [12]:

```
lead_data['Lead Quality'].describe()
```

Out[12]:

count 4473 unique 5 top Might be freq 1560

Name: Lead Quality, dtype: object

In [13]:

```
sns.countplot(lead_data['Lead Quality'])
```

Out[13]:

<matplotlib.axes. subplots.AxesSubplot at 0x2241f212220>

In [14]:

```
# As Lead quality is based on the intution of employee, so if left blank we can impute 'Not Sure'
in NaN safely.
lead_data['Lead Quality'] = lead_data['Lead Quality'].replace(np.nan, 'Not Sure')
```

In [15]:

```
sns.countplot(lead_data['Lead Quality'])
```

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x2241f2b7820>


```
2000 1000 1000 1000 Might be Lead Quality Worst High in Relevance
```

In [16]:

```
fig, axs = plt.subplots(2,2, figsize = (10,7.5))
plt1 = sns.countplot(lead_data['Asymmetrique Activity Index'], ax = axs[0,0])
plt2 = sns.boxplot(lead_data['Asymmetrique Activity Score'], ax = axs[0,1])
plt3 = sns.countplot(lead_data['Asymmetrique Profile Index'], ax = axs[1,0])
plt4 = sns.boxplot(lead_data['Asymmetrique Profile Score'], ax = axs[1,1])
plt.tight_layout()
```


In [17]:

lead_data = lead_data.drop(['Asymmetrique Activity Index','Asymmetrique Activity Score','Asymmetri
que Profile Index','Asymmetrique Profile Score'],1)

In [18]:

```
round(100*(lead_data.isnull().sum()/len(lead_data.index)), 2)
```

Out[18]:

Prospect ID	0.00
Lead Number	0.00
Lead Origin	0.00
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Total Time Spent on Website	0.00
Page Views Per Visit	1.48
Last Activity	1.11
Country	26.63
Specialization	36.58
	22 44

```
What is your current occupation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               29.11
What matters most to you in choosing a course % \left( 1\right) =\left( 1\right) +\left( 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              29.32
 Search
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
Magazine
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
Newspaper Article
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
X Education Forums
Newspaper
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
Digital Advertisement
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
Through Recommendations
 Receive More Updates About Our Courses
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 36.29
Tags
 Lead Quality
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
Update me on Supply Chain Content
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
Get updates on DM Content
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 39.71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.00
I agree to pay the amount through cheque
A free copy of Mastering The Interview
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
Last Notable Activity
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.00
dtype: float64
```

In [19]:

```
lead_data.City.describe()
```

Out[19]:

count 5571
unique 6
top Mumbai
freq 3222

Name: City, dtype: object

In [20]:

```
sns.countplot(lead_data.City)
xticks(rotation = 90)
```

Out[20]:

```
(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text xticklabel objects>)
```


In [21]:

```
lead_data['City'] = lead_data['City'].replace(np.nan, 'Mumbai')
```

In [22]:

```
lead data.Specialization.describe()
```

Out[22]:

count 5860
unique 18
top Finance Management
freq 976

Name: Specialization, dtype: object

In [23]:

```
sns.countplot(lead_data.Specialization)
xticks(rotation = 90)
```

Out[23]:

In [24]:

```
lead_data['Specialization'] = lead_data['Specialization'].replace(np.nan, 'Others')
```

In [25]:

```
round(100*(lead_data.isnull().sum()/len(lead_data.index)), 2)
```

Out[25]:

Prospect ID	0.00
Lead Number	0.00
Lead Origin	0.00
Lead Source	0.39
Do Not Email	0.00
Do Not Call	0.00
Converted	0.00
TotalVisits	1.48
Total Time Spent on Website	0.00
Page Views Per Visit	1.48
Last Activity	1.11
Country	26.63
Specialization	0.00
What is your current occupation	29.11
What matters most to you in choosing a course	29.32
Search	0.00
Magazine	0 00

nayazıne	0.00
Newspaper Article	0.00
X Education Forums	0.00
Newspaper	0.00
Digital Advertisement	0.00
Through Recommendations	0.00
Receive More Updates About Our Courses	0.00
Tags	36.29
Lead Quality	0.00
Update me on Supply Chain Content	0.00
Get updates on DM Content	0.00
City	0.00
I agree to pay the amount through cheque	0.00
A free copy of Mastering The Interview	0.00
Last Notable Activity	0.00
dtype: float64	

In [26]:

lead_data.Tags.describe()

Out[26]:

count 5887 unique 26 top Will revert after reading the email freq 2072

Name: Tags, dtype: object

In [27]:

fig, axs = plt.subplots(figsize = (15,7.5))
sns.countplot(lead_data.Tags)
xticks(rotation = 90)

Out[27]:

Tags

In [28]:

```
lead_data['Tags'] = lead_data['Tags'].replace(np.nan, 'Will revert after reading the email')
In [29]:
lead_data['What matters most to you in choosing a course'].describe()
Out[29]:
count
                             6531
                               3
unique
         Better Career Prospects
top
                            6528
Name: What matters most to you in choosing a course, dtype: object
In [30]:
lead data['What matters most to you in choosing a course'] = lead data['What matters most to you i
n choosing a course'].replace(np.nan, 'Better Career Prospects')
In [31]:
lead_data['What is your current occupation'].describe()
Out[31]:
                6550
count
                 6
unique
        Unemployed
top
freq
          5600
Name: What is your current occupation, dtype: object
In [32]:
lead data['What is your current occupation'] = lead data['What is your current
occupation'].replace(np.nan, 'Unemployed')
In [33]:
# Country is India for most values so let's impute the same in missing values.
lead data['Country'] = lead data['Country'].replace(np.nan, 'India')
In [34]:
round(100*(lead data.isnull().sum()/len(lead data.index)), 2)
Out[34]:
Prospect ID
                                                 0.00
Lead Number
                                                 0.00
                                                 0.00
Lead Origin
Lead Source
                                                 0.39
Do Not Email
                                                 0.00
Do Not Call
                                                 0.00
Converted
                                                 0.00
TotalVisits
                                                 1.48
                                                 0.00
Total Time Spent on Website
Page Views Per Visit
                                                 1.48
Last Activity
                                                 1.11
                                                 0.00
Country
Specialization
                                                0.00
What is your current occupation
                                                0.00
What matters most to you in choosing a course
                                                0.00
```

```
Search
                                                 0.00
                                                 0.00
Magazine
                                                 0.00
Newspaper Article
X Education Forums
                                                 0.00
Newspaper
                                                 0.00
                                                 0 00
Digital Advertisement
Through Recommendations
                                                 0.00
Receive More Updates About Our Courses
                                                0.00
                                                0.00
Tags
                                                0.00
Lead Quality
Update me on Supply Chain Content
                                                0.00
Get updates on DM Content
                                                 0.00
City
                                                 0.00
I agree to pay the amount through cheque
                                                0.00
                                               0.00
A free copy of Mastering The Interview
Last Notable Activity
                                               0.00
dtype: float64
```

In [35]:

```
# Rest missing values are under 2% so we can drop these rows.
lead_data.dropna(inplace = True)
```

In [36]:

```
round(100*(lead_data.isnull().sum()/len(lead_data.index)), 2)
```

0.0

Out[36]:

Prospect ID

```
0.0
Lead Number
                                                 0.0
Lead Origin
Lead Source
                                                 0.0
                                                 0.0
Do Not Email
Do Not Call
                                                 0.0
Converted
                                                 0.0
TotalVisits
                                                 0.0
Total Time Spent on Website
                                                 0.0
                                                 0.0
Page Views Per Visit
Last Activity
                                                 0.0
Country
                                                 0.0
Specialization
                                                 0.0
What is your current occupation
What matters most to you in choosing a course
                                               0.0
                                                 0.0
Search
Magazine
                                                 0.0
                                                 0.0
Newspaper Article
X Education Forums
                                                 0.0
                                                 0.0
Newspaper
Digital Advertisement
                                                 0.0
Through Recommendations
                                                 0.0
Receive More Updates About Our Courses
                                                 0.0
Tags
                                                 0.0
Lead Quality
                                                0.0
Update me on Supply Chain Content
                                                 0.0
Get updates on DM Content
                                                 0.0
                                                 0.0
City
I agree to pay the amount through cheque
                                                0.0
A free copy of Mastering The Interview
                                                0.0
Last Notable Activity
                                                0.0
dtype: float64
```

In [37]:

```
lead_data.to_csv('Leads_cleaned')
```

The Data is cleaned now and now we will see the analysis part

Exploratory Data Analysis

In [38]:

```
Converted = (sum(lead_data['Converted'])/len(lead_data['Converted'].index))*100
Converted
```

Out[38]:

37.85541106458012

In [39]:

```
#lead origin
sns.countplot(x = "Lead Origin", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[39]:

```
(array([0, 1, 2, 3]), <a list of 4 Text xticklabel objects>)
```


To improve overall lead conversion rate, we need to focus more on improving lead converion of API and Landing Page Submission origin and generate more leads from Lead Add Form.

In [40]:

```
#lead source
fig, axs = plt.subplots(figsize = (15,7.5))
sns.countplot(x = "Lead Source", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[40]:

In [41]:

```
lead_data['Lead Source'] = lead_data['Lead Source'].replace(['google'], 'Google')
lead_data['Lead Source'] = lead_data['Lead Source'].replace(['Click2call', 'Live Chat', 'NC_EDM', '
Pay per Click Ads', 'Press_Release',
    'Social Media', 'WeLearn', 'bing', 'blog', 'testone', 'welearnblog_Home', 'youtubechannel'], 'Oth
ers')
```

In [42]:

```
sns.countplot(x = "Lead Source", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[42]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8]), <a list of 9 Text xticklabel objects>)

In [43]:

```
#Do Not Email & Do nOt Call
fig, axs = plt.subplots(1,2,figsize = (15,7.5))
sns.countplot(x = "Do Not Email", hue = "Converted", data = lead_data, ax = axs[0])
sns.countplot(x = "Do Not Call", hue = "Converted", data = lead_data, ax = axs[1])
```

Out[43]:

<matplotlib.axes._subplots.AxesSubplot at 0x22421b48e20>

In [44]:

```
#Total visits
lead_data['TotalVisits'].describe(percentiles=[0.05,.25, .5, .75, .90, .95, .99])
```

Out[44]:

```
9074.000000
count
            3.456028
mean
std
            4.858802
            0.000000
min
            0.000000
5%
25%
            1.000000
50%
            3.000000
75%
            5.000000
90%
            7.000000
95%
           10.000000
99%
           17.000000
          251.000000
```

Name: TotalVisits, dtype: float64

In [45]:

```
sns.boxplot(lead_data['TotalVisits'])
```

Out[45]:

<matplotlib.axes._subplots.AxesSubplot at 0x22421bac2b0>

In [46]:

```
percentiles = lead_data['TotalVisits'].quantile([0.05,0.95]).values
lead_data['TotalVisits'][lead_data['TotalVisits'] <= percentiles[0]] = percentiles[0]
lead_data['TotalVisits'][lead_data['TotalVisits'] >= percentiles[1]] = percentiles[1]
```

In [47]:

```
sns.boxplot(lead_data['TotalVisits'])
```

Out[47]:

<matplotlib.axes._subplots.AxesSubplot at 0x22421c16910>

In [48]:

```
sns.boxplot(y = 'TotalVisits', x = 'Converted', data = lead_data)
```

Out[48]:

<matplotlib.axes._subplots.AxesSubplot at 0x22421c73400>

In [49]:

```
lead data['Total Time Spent on Website'].describe()
```

Out[49]:

```
    count
    9074.000000

    mean
    482.887481

    std
    545.256560

    min
    0.000000

    25%
    11.000000

    50%
    246.000000

    75%
    922.750000

    max
    2272.0000000
```

Name: Total Time Spent on Website, dtype: float64

In [50]:

```
sns.boxplot(lead_data['Total Time Spent on Website'])
```

Out[50]:

<matplotlib.axes. subplots.AxesSubplot at 0x22421c77790>

In [51]:

```
sns.boxplot(y = 'Total Time Spent on Website', x = 'Converted', data = lead_data)
```

Out[51]:

<matplotlib.axes._subplots.AxesSubplot at 0x22421f202e0>

Website should be made more engaging to make leads spend more time.

In [52]:

```
#pages views per visit
lead_data['Page Views Per Visit'].describe()
```

Out[52]:

```
9074.000000
count
mean
           2.370151
           2.160871
std
min
           0.000000
25%
           1.000000
            2.000000
50%
75%
            3.200000
           55.000000
max
Name: Page Views Per Visit, dtype: float64
```

In [53]:

```
sns.boxplot(lead_data['Page Views Per Visit'])
```

Out[53]:

<matplotlib.axes._subplots.AxesSubplot at 0x22421f16a60>

In [54]:

```
# As we can see there are a number of outliers in the data.
# We will cap the outliers to 95% value for analysis.
percentiles = lead_data['Page Views Per Visit'].quantile([0.05,0.95]).values
lead_data['Page Views Per Visit'][lead_data['Page Views Per Visit'] <= percentiles[0]] =
percentiles[0]
lead_data['Page Views Per Visit'][lead_data['Page Views Per Visit'] >= percentiles[1]] =
percentiles[1]
```

In [55]:

```
sns.boxplot(lead_data['Page Views Per Visit'])
```

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x22422258f10>

In [56]:

```
sns.boxplot(y = 'Page Views Per Visit', x = 'Converted', data = lead_data)
```

Out[56]:

<matplotlib.axes._subplots.AxesSubplot at 0x224222ac160>


```
In [57]:
```

```
#last activity
lead_data['Last Activity'].describe()
```

Out[57]:

count 9074 unique 17 top Email Opened freq 3432

Name: Last Activity, dtype: object

In [58]:

```
fig, axs = plt.subplots(figsize = (15,5))
sns.countplot(x = "Last Activity", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[58]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]), <a list of 17 Text xticklabel objects>)

In [59]:

In [60]:

```
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "Last Activity", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[60]:

```
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), <a list of 11 Text xticklabel objects>)
```


In [61]:

```
#country
lead_data.Country.describe()
```

Out[61]:

count 9074
unique 38
top India
freq 8787

Name: Country, dtype: object

In [62]:

```
lead_data.Specialization.describe()
```

Out[62]:

count 9074 unique 19 top Others freq 3282

Name: Specialization, dtype: object

In [63]:

```
lead_data['Specialization'] = lead_data['Specialization'].replace(['Others'],
'Other_Specialization')
```

In [64]:

```
fig, axs = plt.subplots(figsize = (15,5))
sns.countplot(x = "Specialization", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[64]:

```
2000 -
```

2500

In [65]:

```
#Occupation
lead_data['What is your current occupation'].describe()
```

Out[65]:

count 9074 unique 6 top Unemployed freq 8159

Name: What is your current occupation, dtype: object

In [66]:

```
lead_data['What is your current occupation'] = lead_data['What is your current
occupation'].replace(['Other'], 'Other_Occupation')
```

In [67]:

```
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "What is your current occupation", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[67]:

```
(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text xticklabel objects>)
```



```
In [68]:
#What matters most to you in choosing a course
lead_data['What matters most to you in choosing a course'].describe()
Out[68]:
                            9074
count
unique
top
         Better Career Prospects
                          9072
freq
Name: What matters most to you in choosing a course, dtype: object
In [69]:
#search
lead data.Search.describe()
Out[69]:
         9074
count.
unique
           No
top
freq 9060
Name: Search, dtype: object
In [70]:
#Magazine
lead_data.Magazine.describe()
Out[70]:
count
        9074
          1
unique
           No
top
        9074
Name: Magazine, dtype: object
In [71]:
#Newspaper Article
lead_data['Newspaper Article'].describe()
Out[71]:
count
         9074
         2
unique
          No
top
       9072
freq
Name: Newspaper Article, dtype: object
In [72]:
#X Education Forms
lead data['X Education Forums'].describe()
Out[72]:
        9074
count
unique
         2
          No
       9073
freq
Name: X Education Forums, dtype: object
```

In [73]:

```
#Newspaper
lead_data['Newspaper'].describe()
Out[73]:
count
          9074
          2
unique
           No
top
        9073
freq
Name: Newspaper, dtype: object
In [74]:
#Digital Advertisement
lead_data['Digital Advertisement'].describe()
Out[74]:
         9074
count
            2
unique
top
        9070
freq
Name: Digital Advertisement, dtype: object
In [75]:
#Through recommendations
lead_data['Through Recommendations'].describe()
Out[75]:
         9074
count
            2
unique
           No
       9067
freq
Name: Through Recommendations, dtype: object
In [76]:
#Recieve More Updates About Our Courses
lead data['Receive More Updates About Our Courses'].describe()
Out[76]:
        9074
count
unique
            1
top
           No
        9074
freq
Name: Receive More Updates About Our Courses, dtype: object
In [77]:
#tags
lead_data.Tags.describe()
Out[77]:
                                         9074
count
                                           26
unique
        Will revert after reading the email
top
                                         5343
Name: Tags, dtype: object
In [78]:
fig, axs = plt.subplots(figsize = (15,5))
sns.countplot(x = "Tags", hue = "Converted", data = lead_data)
xticks(rotation = 90)
Out[78]:
```


In [79]:

In [80]:

```
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "Tags", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[80]:

```
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), <a list of 13 Text xticklabel objects>)
```


In [81]:

```
#Lead Quality
lead_data['Lead Quality'].describe()
```

Out[81]:

 count
 9074

 unique
 5

 top
 Not
 Sure

 freq
 5806

Name: Lead Quality, dtype: object

In [82]:

```
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "Lead Quality", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[82]:

```
(array([0, 1, 2, 3, 4]), <a list of 5 Text xticklabel objects>)
```


In [83]:

```
#Update me on Supply Chain Content
lead_data['Update me on Supply Chain Content'].describe()
```

Out[83]:

```
count 9074 unique 1 top No
```

```
freq 9074
Name: Update me on Supply Chain Content, dtype: object
```

Most entries are 'No'. No Inference can be drawn with this parameter.

```
In [84]:
```

```
#Get updates on DM Content
lead_data['Get updates on DM Content'].describe()

Out[84]:

count 9074
unique 1
top No
freq 9074
Name: Get updates on DM Content, dtype: object
```

Most entries are 'No'. No Inference can be drawn with this parameter.

```
In [85]:
```

```
#I agree to pay the amount through cheque
lead_data['I agree to pay the amount through cheque'].describe()
Out[85]:
```

count 9074 unique 1 top No freq 9074

Name: I agree to pay the amount through cheque, dtype: object

Most entries are 'No'. No Inference can be drawn with this parameter.

```
In [86]:
```

```
#A free copy of Mastering The Interview
lead_data['A free copy of Mastering The Interview'].describe()

Out[86]:
count 9074
unique 2
top No
freq 6186
```

Most entries are 'No'. No Inference can be drawn with this parameter.

Name: A free copy of Mastering The Interview, dtype: object

sns.countplot(x = "City", hue = "Converted", data = lead data)

```
In [87]:
```

xticks(rotation = 90)

```
lead_data.City.describe()

Out[87]:

count    9074
unique    6
top    Mumbai
freq    6752
Name: City, dtype: object

In [88]:

fig, axs = plt.subplots(figsize = (10,5))
```

Out[88]:

(array([0, 1, 2, 3, 4, 5]), <a list of 6 Text xticklabel objects>)

In [89]:

```
#Last Notable Activity
lead_data['Last Notable Activity'].describe()
```

Out[89]:

count 9074 unique 16 top Modified freq 3267

Name: Last Notable Activity, dtype: object

In [90]:

```
fig, axs = plt.subplots(figsize = (10,5))
sns.countplot(x = "Last Notable Activity", hue = "Converted", data = lead_data)
xticks(rotation = 90)
```

Out[90]:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]), <a list of 16 Text xticklabel objects>)

Results

Based on the univariate analysis we have seen that many columns are not adding any information to the model, heance we can drop them for frther analysis

In [91]:

In [92]:

```
lead_data.shape
```

Out[92]:

(9074, 16)

In [93]:

lead_data.head()

Out[93]:

	Prospect ID	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	Specialization	What i you currer occupatio
C	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	API	Olark Chat	No	No	0	0.0	0	0.0	Page Visited on Website	Other_Specialization	Unemploye
1	2a272436- 5132-4136- 86fa- dcc88c88f482	API	Organic Search	No	No	0	5.0	674	2.5	Email Opened	Other_Specialization	Unemploye
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	Landing Page Submission	Direct Traffic	No	No	1	2.0	1532	2.0	Email Opened	Business Administration	Studei
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	Landing Page Submission	Direct Traffic	No	No	0	1.0	305	1.0	Unreachable	Media and Advertising	Unemploye
4	3256f628- e534-4826- 9d63- 4a8b88782852	Landing Page Submission	Google	No	No	1	2.0	1428	1.0	Converted to Lead	Other_Specialization	Unemploye
4												<u> </u>

Data Preparation

converting soe binary variables (Yes/No) to 1/0

In [94]:

```
# List of variables to map
```

```
varlist = ['Do Not Email', 'Do Not Call']

# Defining the map function
def binary_map(x):
    return x.map({'Yes': 1, "No": 0})

# Applying the function to the housing list
lead_data[varlist] = lead_data[varlist].apply(binary_map)
```

For categorical variables with multiple levels, create dummy features (one-hot encoded)

In [95]:

Out[95]:

	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	Lead Source_Facebook	Lead Source_Google	Lead Source_Olark Chat	Lead Source_Organic Search	Lead Source_Others	Sourc
0	0	0	0	0	0	1	0	0	
1	0	0	0	0	0	0	1	0	
2	1	0	0	0	0	0	0	0	
3	1	0	0	0	0	0	0	0	
4	1	0	0	0	1	0	0	0	

5 rows × 80 columns

In [96]:

```
# Adding the results to the master dataframe
lead_data = pd.concat([lead_data, dummy1], axis=1)
lead_data.head()
```

Out[96]:

	Prospect ID	Lead Origin	Lead Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	 Last Notable Activity_Form Submitted on Website	Last Notabl Activity_Ha a Phon Conversatio
0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	API	Olark Chat	0	0	0	0.0	0	0.0	Page Visited on Website	 0	
1	2a272436- 5132-4136- 86fa- dcc88c88f482	API	Organic Search	0	0	0	5.0	674	2.5	Email Opened	 0	
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	Landing Page Submission	Direct Traffic	0	0	1	2.0	1532	2.0	Email Opened	 0	
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	Landing Page Submission	Direct Traffic	0	0	0	1.0	305	1.0	Unreachable	 0	
4	3256f628- e534-4826- 9d63- 4a8b88782852	Landing Page Submission	Google	0	0	1	2.0	1428	1.0	Converted to Lead	 0	

5 rows × 96 columns

<u>,</u>

```
In [97]:
```

lead_data = lead_data.drop(['Lead Origin', 'Lead Source', 'Last Activity', 'Specialization','What
is your current occupation','Tags','Lead Quality','City','Last Notable Activity'], axis = 1)

In [98]:

lead_data.head()

Out[98]:

	Prospect ID	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	Last Notable Activity_Form Submitted on Website	L A Cı
0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	0	0	0	0.0	0	0.0	0	0	0	. 0	
1	2a272436- 5132-4136- 86fa- dcc88c88f482	0	0	0	5.0	674	2.5	0	0	0	. 0	
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	0	0	1	2.0	1532	2.0	1	0	0	. 0	
3	0cc2df48-7cf4- 4e39-9de9- 19797f9b38cc	0	0	0	1.0	305	1.0	1	0	0	. 0	
4	3256f628- e534-4826- 9d63- 4a8b88782852	0	0	1	2.0	1428	1.0	1	0	0	. 0	

5 rows × 87 columns

In [99]:

from sklearn.model_selection import train_test_split

Putting feature variable to X
X = lead_data.drop(['Prospect ID','Converted'], axis=1)

In [100]:

X.head()

Out[100]:

	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	Lead Source_Facebook	Lead Source_Google	 Last No Activity_ Submitte We
0	0	0	0.0	0	0.0	0	0	0	0	0	
1	0	0	5.0	674	2.5	0	0	0	0	0	
2	0	0	2.0	1532	2.0	1	0	0	0	0	
3	0	0	1.0	305	1.0	1	0	0	0	0	
4	0	0	2.0	1428	1.0	1	0	0	0	1	

5 rows × 85 columns

In [101]:

Putting response variable to y
y = lead_data['Converted']

```
v.head()

Out[101]:

0     0
1     0
2     1
3     0
4     1

Name: Converted, dtype: int64

In [102]:

# Splitting the data into train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=100)
```

Feature Scaling

In [103]:

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']] =
 scaler.fit_transform(X_train[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']])

X_train.head()
```

Out[103]:

	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	Lead Source_Facebook	Lead Source_Google	 A S
3009	0	0	-0.432779	0.160255	0.155018	1	0	0	0	0	
1012	1	0	-0.432779	0.540048	0.155018	1	0	0	0	0	
9226	0	0	-1.150329	0.888650	1.265540	0	0	0	0	0	
4750	0	0	-0.432779	1.643304	0.155018	1	0	0	0	0	
7987	0	0	0.643547	2.017593	0.122613	1	0	0	0	0	

5 rows × 85 columns

| d |

In [104]:

```
# Checking the Churn Rate
Converted = (sum(lead_data['Converted'])/len(lead_data['Converted'].index))*100
Converted
```

Out[104]:

37.85541106458012

We have almost 38% conversion

Model Building

```
In [105]:
```

In [106]:

```
# Logistic regression model
logm1 = sm.GLM(y_train, (sm.add_constant(X_train)), family = sm.families.Binomial())
logm1.fit().summary()
```

Out[106]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	6351
Model:	GLM	Df Residuals:	6265
Model Family:	Binomial	Df Model:	85
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-1250.0
Date:	Mon, 11 May 2020	Deviance:	2500.0
Time:	13:00:17	Pearson chi2:	3.87e+04
No. Iterations:	24		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	23.1423	2.16e+05	0.000	1.000	-4.23e+05	4.23e+05
Do Not Email	-1.3882	0.327	-4.243	0.000	-2.030	-0.747
Do Not Call	23.7150	1.37e+05	0.000	1.000	-2.68e+05	2.68e+05
TotalVisits	0.1816	0.087	2.093	0.036	0.012	0.352
Total Time Spent on Website	1.1457	0.064	17.913	0.000	1.020	1.271
Page Views Per Visit	-0.3272	0.099	-3.309	0.001	-0.521	-0.133
Lead Origin_Landing Page Submission	-0.9762	0.221	-4.420	0.000	-1.409	-0.543
Lead Origin_Lead Add Form	-0.4165	1.287	-0.324	0.746	-2.940	2.107
Lead Origin_Lead Import	29.7289	2.16e+05	0.000	1.000	-4.23e+05	4.23e+05
Lead Source_Facebook	-28.6305	2.16e+05	-0.000	1.000	-4.23e+05	4.23e+05
Lead Source_Google	0.2017	0.155	1.302	0.193	-0.102	0.505
Lead Source_Olark Chat	0.8633	0.234	3.693	0.000	0.405	1.321
Lead Source_Organic Search	0.2278	0.210	1.083	0.279	-0.185	0.640
Lead Source_Others	0.7602	0.816	0.931	0.352	-0.839	2.360
Lead Source_Reference	1.7732	1.344	1.319	0.187	-0.861	4.407
Lead Source_Referral Sites	-0.0945	0.491	-0.193	0.847	-1.056	0.867
Lead Source_Welingak Website	5.4722	1.486	3.682	0.000	2.559	8.385
Last Activity_Email Bounced	-0.5488	0.870	-0.631	0.528	-2.254	1.157
Last Activity_Email Link Clicked	0.8429	0.644	1.309	0.190	-0.419	2.105
Last Activity_Email Opened	-0.0003	0.384	-0.001	0.999	-0.754	0.753
Last Activity_Form Submitted on Website	0.1337	0.593	0.225	0.822	-1.028	1.296
Last Activity_Olark Chat Conversation	-0.5464	0.392	-1.395	0.163	-1.314	0.221
Last Activity_Other_Activity	1.4578	1.200	1.214	0.225	-0.895	3.811
Last Activity_Page Visited on Website	0.5059	0.456	1.110	0.267	-0.387	1.399
Last Activity_SMS Sent	1.1289	0.360	3.134	0.002	0.423	1.835
Last Activity_Unreachable	0.6479	0.840	0.771	0.441	-0.999	2.294
Last Activity_Unsubscribed	0.8348	1.571	0.531	0.595	-2.245	3.914
Specialization_Business Administration	-0.2329	0.392	-0.594	0.553	-1.002	0.536
Specialization_E-Business	-0.3661	0.715	-0.512	0.609	-1.767	1.035
Specialization_E-COMMERCE	0.5774	0.587	0.983	0.326	-0.574	1.728
Specialization_Finance Management	-0.4463	0.346	-1.291	0.197	-1.124	0.231

Specialization_Healthcare Management	-0.5197	0.510	-1.018	0.308	-1.520	0.480
Specialization_Hospitality Management	-0.1701	0.544	-0.312	0.755	-1.237	0.897
Specialization_Human Resource Management	-0.2918	0.347	-0.840	0.401	-0.973	0.389
Specialization_IT Projects Management	-0.0187	0.411	-0.045	0.964	-0.824	0.787
Specialization_International Business	-0.8406	0.460	-1.828	0.068	-1.742	0.061
Specialization_Marketing Management	0.0389	0.349	0.112	0.911	-0.645	0.722
Specialization_Media and Advertising	-0.5447	0.488	-1.116	0.264	-1.501	0.412
Specialization_Operations Management	-0.1345	0.392	-0.343	0.732	-0.904	0.635
Specialization_Other_Specialization	-0.7987	0.359	-2.228	0.026	-1.501	-0.096
Specialization_Retail Management	-0.2404	0.562	-0.428	0.669	-1.342	0.861
Specialization_Rural and Agribusiness	0.0798	0.688	0.116	0.908	-1.269	1.428
Specialization_Services Excellence	-0.0560	0.971	-0.058	0.954	-1.960	1.848
Specialization_Supply Chain Management	-0.4389	0.426	-1.030	0.303	-1.274	0.397
Specialization_Travel and Tourism	-0.7866	0.512	-1.537	0.124	-1.790	0.217
What is your current occupation_Housewife	20.6162	7.16e+04	0.000	1.000	-1.4e+05	1.4e+05
What is your current occupation_Other_Occupation	-0.7446	2.036	-0.366	0.715	-4.736	3.246
What is your current occupation_Student	-1.3109	1.548	-0.847	0.397	-4.345	1.723
What is your current occupation_Unemployed	-2.1034	1.446	-1.455	0.146	-4.937	0.730
What is your current occupation_Working Professional	-0.7884	1.483	-0.532	0.595	-3.694	2.117
Tags_Busy	3.9167	0.849	4.611	0.000	2.252	5.582
Tags_Closed by Horizzon	8.8694	1.138	7.792	0.000	6.638	11.100
Tags_Interested in full time MBA	0.3509	1.227	0.286	0.775	-2.054	2.756
Tags_Interested in other courses	0.2322	0.888	0.261	0.794	-1.509	1.973
Tags_Lost to EINS	9.7272	1.087	8.946	0.000	7.596	11.858
Tags_Not doing further education	-0.0911	1.502	-0.061	0.952	-3.035	2.853
Tags_Other_Tags	1.0318	0.865	1.193	0.233	-0.663	2.726
Tags_Ringing	-1.1124	0.857	-1.298	0.194	-2.792	0.568
Tags_Will revert after reading the email	4.1719	0.812	5.138	0.000	2.581	5.763
Tags_invalid number	-22.5334	2.22e+04	-0.001	0.999	-4.35e+04	4.34e+04
Tags_switched off	-1.8183	1.014	-1.792	0.073	-3.807	0.170
Tags_wrong number given	-22.8008	3.02e+04	-0.001	0.999	-5.92e+04	5.91e+04
Lead Quality_Low in Relevance	-0.6390	0.433	-1.474	0.140	-1.488	0.211
Lead Quality_Might be	-1.3393	0.394	-3.403	0.001	-2.111	-0.568
Lead Quality_Not Sure	-4.1142	0.377	-10.912	0.000	-4.853	-3.375
Lead Quality_Worst	-4.8082	1.015	-4.736	0.000	-6.798	-2.819
City_Other Cities	-0.2032	0.224	-0.908	0.364	-0.642	0.236
City Other Cities of Maharashtra	-0.0075	0.261	-0.029	0.977	-0.518	0.504
City Other Metro Cities	0.1117	0.287	0.389	0.697	-0.451	0.674
City_Thane & Outskirts	-0.1038	0.218	-0.477	0.634	-0.530	0.323
City Tier II Cities	0.9188	0.654	1.405	0.160	-0.363	2.200
Last Notable Activity Email Bounced	-20.1482	2.16e+05	-9.33e-05	1.000	-4.23e+05	4.23e+05
Last Notable Activity_Email Link Clicked	-23.1902	2.16e+05	-0.000	1.000	-4.23e+05	4.23e+05
Last Notable Activity Email Marked Spam	0.5190	2.56e+05	2.02e-06	1.000	-5.02e+05	5.02e+05
Last Notable Activity Email Opened	-21.4918	2.16e+05	-9.95e-05	1.000	-4.23e+05	4.23e+05
Last Notable Activity Email Received	-1.9838	3.05e+05	-6.49e-06	1.000	-5.99e+05	5.99e+05
•		3.05e+05			-5.99e+05	5.99e+05
Last Notable Activity Had a Phone Conversation	-45.2737 21.6355		-0.000	1.000		
Last Notable Activity_Had a Phone Conversation	-21.6355	2.16e+05	-0.000	1.000	-4.23e+05	4.23e+05
Last Notable Activity_Modified	-22.7328	2.16e+05	-0.000	1.000	-4.23e+05	4.23e+05
Last Notable Activity_Olark Chat Conversation	-22.7846	2.16e+05	-0.000	1.000	-4.23e+05	4.23e+05
Last Notable Activity Page Visited on Website	-22 5728	2 16e+05	-0 000	1 000	-4 23e+05	

```
      Last Notable Activity_Resubscribed to emails
      -1.7953
      3.05e+05
      -5.88e-06
      1.000
      -5.99e+05
      5.99e+05

      Last Notable Activity_SMS Sent
      -20.2275
      2.16e+05
      -9.37e-05
      1.000
      -4.23e+05
      4.23e+05

      Last Notable Activity_Unreachable
      -21.1488
      2.16e+05
      -9.79e-05
      1.000
      -4.23e+05
      4.23e+05

      Last Notable Activity_Unsubscribed
      -21.3606
      2.16e+05
      -9.89e-05
      1.000
      -4.23e+05
      4.23e+05

      Last Notable Activity_View in browser link Clicked
      -43.1067
      3.05e+05
      -0.000
      1.000
      -5.99e+05
      5.99e+05
```

```
Feature Selection Using RFE
In [107]:
from sklearn.linear model import LogisticRegression
logreg = LogisticRegression()
from sklearn.feature selection import RFE
rfe = RFE(logreg, 15)
                                  # running RFE with 15 variables as output
rfe = rfe.fit(X_train, y_train)
In [108]:
rfe.support
Out[108]:
array([ True, False, False, False, False, False, True, False, False,
       False, False, False, False, False, True, False, False,
       False, False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False,
       False, False, True, False, True, True, False, False, True, False, False, True, True, True, True, False, False,
        True, True, False, False, False, False, False, False,
       False, False, False, False, False, False, False, False, False,
       True, False, False, False])
In [109]:
list(zip(X train.columns, rfe.support , rfe.ranking ))
Out[109]:
[('Do Not Email', True, 1),
 ('Do Not Call', False, 33),
 ('TotalVisits', False, 39),
 ('Total Time Spent on Website', False, 3),
 ('Page Views Per Visit', False, 38),
 ('Lead Origin_Landing Page Submission', False, 16),
 ('Lead Origin_Lead Add Form', True, 1),
 ('Lead Origin Lead Import', False, 2),
 ('Lead Source Facebook', False, 44),
 ('Lead Source Google', False, 41),
 ('Lead Source Olark Chat', False, 5),
 ('Lead Source_Organic Search', False, 42),
 ('Lead Source_Others', False, 47),
 ('Lead Source_Reference', False, 68),
 ('Lead Source Referral Sites', False, 51),
 ('Lead Source_Welingak Website', True, 1),
 ('Last Activity_Email Bounced', False, 29),
 ('Last Activity_Email Link Clicked', False, 35),
 ('Last Activity_Email Opened', False, 66),
 ('Last Activity Form Submitted on Website', False, 67),
 ('Last Activity Olark Chat Conversation', False, 13),
 ('Last Activity_Other_Activity', False, 9),
 ('Last Activity_Page Visited on Website', False, 36),
 ('Last Activity_SMS Sent', False, 7),
 ('Last Activity Unreachable', False, 14),
 ('Last Activity Unsubscribed', False, 18),
 ('Specialization Business Administration', False, 60),
 ('Specialization_E-Business', False, 63),
 /!coosialization E COMMEDCE!
```

```
('Specialization Finance Management', False, 40),
 ('Specialization_Healthcare Management', False, 37),
 ('Specialization Hospitality Management', False, 61),
 ('Specialization Human Resource Management', False, 55),
 ('Specialization_IT Projects Management', False, 50),
 ('Specialization_International Business', False, 21),
 ('Specialization Marketing Management', False, 32),
 ('Specialization Media and Advertising', False, 34),
 ('Specialization_Operations Management', False, 70),
 ('Specialization Other Specialization', False, 20),
 ('Specialization Retail Management', False, 58),
 ('Specialization Rural and Agribusiness', False, 48),
 ('Specialization Services Excellence', False, 56),
 ('Specialization Supply Chain Management', False, 46),
 ('Specialization Travel and Tourism', False, 25),
 ('What is your current occupation Housewife', False, 43),
 ('What is your current occupation_Other_Occupation', False, 45),
 ('What is your current occupation_Student', False, 8),
 ('What is your current occupation_Unemployed', True, 1),
 ('What is your current occupation Working Professional', False, 26),
 ('Tags Busy', True, 1),
 ('Tags_Closed by Horizzon', True, 1),
 ('Tags Interested in full time MBA', False, 19),
 ('Tags Interested in other courses', False, 11),
 ('Tags Lost to EINS', True, 1),
 ('Tags Not doing further education', False, 17),
 ('Tags Other Tags', False, 27),
 ('Tags Ringing', True, 1),
 ('Tags Will revert after reading the email', True, 1),
 ('Tags invalid number', True, 1),
 ('Tags switched off', True, 1),
 ('Tags wrong number given', True, 1),
 ('Lead Quality_Low in Relevance', False, 69),
 ('Lead Quality Might be', False, 10),
 ('Lead Quality Not Sure', True, 1),
 ('Lead Quality_Worst', True, 1),
 ('City Other Cities', False, 49),
 ('City_Other Cities of Maharashtra', False, 64),
 ('City_Other Metro Cities', False, 59),
 ('City Thane & Outskirts', False, 52),
 ('City_Tier II Cities', False, 24),
 ('Last Notable Activity_Email Bounced', False, 23),
 ('Last Notable Activity_Email Link Clicked', False, 12),
 ('Last Notable Activity_Email Marked Spam', False, 54),
 ('Last Notable Activity Email Opened', False, 57),
 ('Last Notable Activity Email Received', False, 71),
 ('Last Notable Activity Form Submitted on Website', False, 53),
 ('Last Notable Activity_Had a Phone Conversation', False, 30),
 ('Last Notable Activity_Modified', False, 6),
 ('Last Notable Activity_Olark Chat Conversation', False, 4),
 ('Last Notable Activity_Page Visited on Website', False, 22),
 ('Last Notable Activity Resubscribed to emails', False, 65),
 ('Last Notable Activity SMS Sent', True, 1),
 ('Last Notable Activity_Unreachable', False, 28),
 ('Last Notable Activity_Unsubscribed', False, 31),
 ('Last Notable Activity View in browser link Clicked', False, 62)]
In [110]:
col = X train.columns[rfe.support ]
col
Out[110]:
Index(['Do Not Email', 'Lead Origin Lead Add Form',
       'Lead Source Welingak Website',
       'What is your current occupation_Unemployed', 'Tags_Busy',
       'Tags Closed by Horizzon', 'Tags Lost to EINS', 'Tags Ringing',
       'Tags_Will revert after reading the email', 'Tags_invalid number',
       'Tags_switched off', 'Tags_wrong number given', 'Lead Quality_Not Sure',
       'Lead Quality Worst', 'Last Notable Activity SMS Sent'],
      dtype='object')
```

(Specialization_E-commerce, raise, 13),

In [111]:

```
Out[111]:
Index(['Do Not Call', 'TotalVisits', 'Total Time Spent on Website',
        'Page Views Per Visit', 'Lead Origin Landing Page Submission',
       'Lead Origin_Lead Import', 'Lead Source_Facebook', 'Lead Source_Google', 'Lead Source_Olark Chat', 'Lead Source_Organic Search',
        'Lead Source Others', 'Lead Source Reference',
        'Lead Source Referral Sites', 'Last Activity_Email Bounced',
        'Last Activity_Email Link Clicked', 'Last Activity Email Opened',
        'Last Activity_Form Submitted on Website',
'Last Activity_Olark Chat Conversation', 'Last Activity_Other_Activity',
        'Last Activity Page Visited on Website', 'Last Activity SMS Sent',
        'Last Activity Unreachable', 'Last Activity Unsubscribed',
        'Specialization_Business Administration', 'Specialization_E-Business',
        'Specialization E-COMMERCE', 'Specialization Finance Management',
        'Specialization_Healthcare Management',
        'Specialization Hospitality Management',
        'Specialization Human Resource Management',
        'Specialization_IT Projects Management',
        'Specialization_International Business',
        'Specialization Marketing Management',
        'Specialization_Media and Advertising',
        'Specialization Operations Management',
        'Specialization Other Specialization',
        'Specialization_Retail Management',
        'Specialization Rural and Agribusiness',
        'Specialization Services Excellence',
        'Specialization Supply Chain Management',
        'Specialization Travel and Tourism',
        'What is your current occupation_Housewife',
        'What is your current occupation_Other_Occupation',
        'What is your current occupation Student',
        'What is your current occupation Working Professional',
       'Tags_Interested in full time MBA', 'Tags_Interested in other courses', 'Tags_Not doing further education', 'Tags_Other_Tags',
        'Lead Quality Low in Relevance', 'Lead Quality Might be',
        'City_Other Cities', 'City_Other Cities of Maharashtra',
        'City Other Metro Cities', 'City Thane & Outskirts',
        'City Tier II Cities', 'Last Notable Activity_Email Bounced',
       'Last Notable Activity Email Link Clicked',
       'Last Notable Activity_Email Marked Spam',
        'Last Notable Activity_Email Opened',
        'Last Notable Activity Email Received',
        'Last Notable Activity_Form Submitted on Website',
       'Last Notable Activity Had a Phone Conversation',
       'Last Notable Activity Modified',
       'Last Notable Activity_Olark Chat Conversation',
        'Last Notable Activity_Page Visited on Website',
        'Last Notable Activity_Resubscribed to emails',
       'Last Notable Activity Unreachable',
       'Last Notable Activity Unsubscribed',
       'Last Notable Activity_View in browser link Clicked'],
      dtype='object')
```

Assessing the model with StatsModels

X train.columns[~rfe.support]

In [112]:

```
X_train_sm = sm.add_constant(X_train[col])
logm2 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
```

Out[112]:

Generalized Linear Model Regression Results

o. Variable:	Converted	No. Observations:	6351
Model:	GLM	Df Residuals:	6335
del Family:	Binomial	Df Model:	15

```
1.0000
  Link Function:
                               logit
                                                Scale:
                              IRLS
                                       Log-Likelihood:
                                                         -1580.1
        Method:
                       Mon, 11 May
           Date:
                                            Deviance:
                                                          3160.2
                              2020
           Time:
                           13:00:31
                                         Pearson chi2: 3.11e+04
   No. Iterations:
                                24
Covariance Type:
                          nonrobust
                                                         std err
                                                                       z P>|z|
                                                 coef
                                              -0.7920
                                                          0.278
                                                                  -2.845 0.004
                                      const
                               Do Not Email
                                              -1.3202
                                                          0.212
                                                                  -6.236 0.000
                Lead Origin_Lead Add Form
                                               1.0521
                                                          0.363
                                                                   2.897 0.004
             Lead Source_Welingak Website
                                               3.4638
                                                          0.819
                                                                   4.231 0.000
                       What is your current
                                                          0.237
                                                                  -4.713 0.000
                                              -1.1148
                   occupation_Unemployed
                                               3.5772
                                                          0.333
                                                                  10.752 0.000
                                Tags_Busy
                   Tags_Closed by Horizzon
                                               7.7760
                                                          0.762
                                                                  10.203 0.000
                          Tags_Lost to EINS
                                               8.9986
                                                          0.754
                                                                  11.931 0.000
```

Tags_Ringing

Tags_switched off

Lead Quality_Not Sure

Last Notable Activity_SMS Sent

Lead Quality_Worst

Tags_Will revert after reading the email

-1.9203

3.7576

-2.5224

-3.3269

-3.9922

2.7952

Tags_invalid number -23.4125 2.21e+04

Tags_wrong number given -23.0270 3.17e+04

0.340

0.229

0.589

0.129

0.832

0.122

-5.640 0.000

16.412 0.000

-4.279 0.000

-0.001 0.999

-25.702 0.000

-4.798 0.000

22.846 0.000

In [113]:

```
col1 = col.drop('Tags_invalid number',1)
```

[0.025

-1.338

-1.735

0.340

1.859

-1.578

2.925

6.282

7.520

-2.588

3.309

-3.678

-3.581

-5.623

2.555

-6.21e+04

-0.001 0.999 -4.34e+04 4.34e+04

0.975]

-0.246

-0.905

1.764

5.068

-0.651

4.229

9.270

10.477

-1.253

4.206

-1.367

6.2e+04

-3.073

-2.361

3.035

In [114]:

```
col1
```

Out[114]:

In [115]:

```
X_train_sm = sm.add_constant(X_train[col1])
logm2 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
```

Out[115]:

Generalized Linear Model Regression Results

6351	No. Observations:	Converted	Dep. Variable:
6336	Df Residuals:	GLM	Model:
14	Df Model:	Binomial	Model Family:
4 0000	A - 1 -	1 9	11.1 E

Link Function:	logit		Scale:	1.0000				
Method:	IRLS L	.og-L	.ikelihood:	-1585.9				
Date:	Mon, 11 May 2020		Deviance:	3171.8				
Time:	13:00:31	Pea	rson chi2:	3.07e+04				
No. Iterations:	22							
Covariance Type:	nonrobust							
			coef	std err	z	P> z	[0.025	0.975]
	co	nst	-0.9144	0.282	-3.245	0.001	-1.467	-0.362
	Do Not Er	nail	-1.3129	0.211	-6.218	0.000	-1.727	-0.899
L	Lead Origin_Lead Add F	orm	1.0839	0.365	2.969	0.003	0.368	1.800
Lead	d Source_Welingak Web	site	3.4275	0.819	4.184	0.000	1.822	5.033
	What is your curr occupation_Unemplo		-1.1577	0.239	-4.848	0.000	-1.626	-0.690
	Tags_B	usy	3.7579	0.331	11.338	0.000	3.108	4.407
	Tags_Closed by Horiz	zon	7.9271	0.763	10.394	0.000	6.432	9.422
	Tags_Lost to E	INS	9.1535	0.755	12.128	0.000	7.674	10.633
	Tags_Ring	jing	-1.7229	0.339	-5.089	0.000	-2.386	-1.059
Tags_Will re	evert after reading the e	mail	3.9200	0.230	17.026	0.000	3.469	4.371
	Tags_switched	off	-2.3187	0.588	-3.942	0.000	-3.471	-1.166
	Tags_wrong number gi	ven	-20.8331	1.17e+04	-0.002	0.999	-2.29e+04	2.28e+04
	Lead Quality_Not S	ure	-3.3174	0.129	-25.685	0.000	-3.571	-3.064
	Lead Quality_We	orst	-3.9830	0.834	-4.777	0.000	-5.617	-2.349
Last	Notable Activity_SMS S	ent	2.7537	0.121	22.849	0.000	2.518	2.990

In [116]:

```
col2 = col1.drop('Tags_wrong number given',1)
```

In [117]:

col2

Out[117]:

In [118]:

```
X_train_sm = sm.add_constant(X_train[col2])
logm2 = sm.GLM(y_train,X_train_sm, family = sm.families.Binomial())
res = logm2.fit()
res.summary()
```

Out[118]:

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	6351
Model:	GLM	Df Residuals:	6337
Model Family:	Binomial	Df Model:	13
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Loa-Likelihood:	-1587.9

```
Mon, 11 May
                                                       3175 8
          Date:
                                          Deviance:
                             2020
          Time:
                          13:00:32
                                       Pearson chi2: 3.08e+04
   No. Iterations:
Covariance Type:
                         nonrobust
                                              coef std err
                                                                 z P>|z| [0.025 0.975]
                                    const -0.9661
                                                    0.283
                                                            -3.417 0.001 -1.520
                                                                                  -0.412
                             Do Not Email -1.3127
                                                    0.211
                                                            -6.223 0.000 -1.726
                                                                                  -0.899
                Lead Origin_Lead Add Form 1.0963
                                                    0.366
                                                             2.995 0.003
                                                                          0.379
                                                                                  1.814
            Lead Source Welingak Website 3.4147
                                                    0.820
                                                             4.166 0.000
                                                                          1.808
                                                                                  5.021
                      What is your current
                                          -1.1746
                                                    0.240
                                                            -4.899 0.000 -1.644
                                                                                  -0.705
                  occupation_Unemployed
                               Tags_Busy 3.8305
                                                    0.330
                                                            11.598 0.000
                                                                          3.183
                                                                                  4.478
                  Tags_Closed by Horizzon 7.9914
                                                    0.763
                                                            10.480 0.000
                                                                           6.497
                                                                                  9.486
                                                                          7.739 10.697
                        Tags_Lost to EINS 9.2178
                                                    0.755
                                                            12.217 0.000
                            Tags_Ringing -1.6472
                                                    0.337
                                                            -4.885 0.000 -2.308
                                                                                  -0.986
      Tags_Will revert after reading the email 3.9881
                                                            17.380 0.000
                                                    0.229
                                                                          3.538
                                                                                  4 438
                                                    0.587
                                                            -3.816 0.000 -3.392
                         Tags_switched off -2.2412
                                                                                  -1.090
                     Lead Quality_Not Sure -3.3158
                                                    0.129 -25.690 0.000 -3.569
                                                                                  -3.063
                       Lead Quality_Worst -3.9600
                                                    0.836
                                                            -4.734 0.000 -5.599
                                                                                  -2.321
            Last Notable Activity_SMS Sent 2.7443
                                                    0.120 22.856 0.000
                                                                           2.509
                                                                                  2.980
```

In [119]:

```
# Getting the predicted values on the train set
y_train_pred = res.predict(X_train_sm)
y_train_pred[:10]
```

Out[119]:

```
3009
      0.187192
1012
      0.167079
       0.000821
9226
4750
       0.781753
7987
       0.977276
       0.989966
1281
2880
       0.187192
4971
       0.753675
7536
       0.863827
1248
       0.000821
dtype: float64
```

In [120]:

```
y_train_pred = y_train_pred.values.reshape(-1)
y_train_pred[:10]
```

Out[120]:

```
array([1.87191534e-01, 1.67078806e-01, 8.21369066e-04, 7.81753466e-01, 9.77276034e-01, 9.89966304e-01, 1.87191534e-01, 7.53674840e-01, 8.63826796e-01, 8.21369066e-04])
```

Creating a dataframe with the actual churn flag and the predicted probabilities

In [121]:

```
y_train_pred_final = pd.DataFrame({'Converted':y_train.values, 'Converted_prob':y_train_pred})
y_train_pred_final['Prospect ID'] = y_train.index
y_train_pred_final.head()
```

Out[121]:

	Converted	Converted_prob	Prospect ID
0	0	0.187192	3009
1	0	0.167079	1012
2	0	0.000821	9226
3	1	0.781753	4750
4	1	0.977276	7987

Creating new column 'predicted' with 1 if Churn_Prob > 0.5 else 0¶

In [122]:

```
y_train_pred_final['predicted'] = y_train_pred_final.Converted_prob.map(lambda x: 1 if x > 0.5 else
0)
# Let's see the head
y_train_pred_final.head()
```

Out[122]:

Converted Converted_prob Prospect ID predicted 0 0 0.187192 3009 0 1 0 0.167079 1012 0 2 0 0.000821 9226 0 3 1 0.781753 4750 1

0.977276

7987

In [123]:

```
from sklearn import metrics

# Confusion matrix
confusion = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final.predicted)
print(confusion)
[[3756 149]
```

In [124]:

[363 2083]]

In [125]:

```
# Let's check the overall accuracy.
print(metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.predicted))
```

0.9193827743662415

Checking VIFs

In [126]:

```
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

ورمضيا ببد

```
# Create a dataframe that will contain the names of all the feature variables and their respective
VIFs
vif = pd.DataFrame()
vif['Features'] = X_train[col2].columns
vif['VIF'] = [variance_inflation_factor(X_train[col].values, i) for i in range(X_train[col2].shape[
1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[127]:

	Features	VIF
3	What is your current occupation_Unemployed	7.37
12	Last Notable Activity_SMS Sent	4.05
8	Tags_Will revert after reading the email	4.02
7	Tags_Ringing	1.86
1	Lead Origin_Lead Add Form	1.58
2	Lead Source_Welingak Website	1.34
5	Tags_Closed by Horizzon	1.25
10	Lead Quality_Not Sure	1.17
4	Tags_Busy	1.15
0	Do Not Email	1.11
6	Tags_Lost to EINS	1.08
9	Tags_switched off	1.06
11	Lead Quality_Worst	1.03

Metrics beyond simply accuracy

```
In [128]:
```

```
TP = confusion[1,1] # true positive
TN = confusion[0,0] # true negatives
FP = confusion[0,1] # false positives
FN = confusion[1,0] # false negatives
```

In [129]:

```
# Let's see the sensitivity of our logistic regression model
TP / float(TP+FN)
```

Out[129]:

0.8515944399018807

In [130]:

```
# Let us calculate specificity
TN / float(TN+FP)
```

Out[130]:

0.9618437900128041

In [131]:

```
# Calculate false postive rate - predicting churn when customer does not have churned
print(FP/ float(TN+FP))
```

0.038156209987195905

```
In [132]:
```

```
# positive predictive value
print (TP / float(TP+FP))
```

0.9332437275985663

```
In [133]:
```

```
# Negative predictive value
print (TN / float(TN+ FN))
```

0.9118718135469774

Plotting the ROC Curve

An ROC curve demonstrates several things:

It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease in specificity). The closer the curve follows the left-hand border and then the top border of the ROC space, the more accurate the test. The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the test.

In [134]:

In [135]:

```
fpr, tpr, thresholds = metrics.roc_curve( y_train_pred_final.Converted, y_train_pred_final.Converte
d_prob, drop_intermediate = False )
```

In [136]:

```
draw_roc(y_train_pred_final.Converted, y_train_pred_final.Converted_prob)
```



```
0.0 V 0.2 0.4 0.6 0.8 1.0 False Positive Rate or [1 - True Negative Rate]
```

Finding Optimal Cutoff Point

```
In [137]:
```

```
# Let's create columns with different probability cutoffs
numbers = [float(x)/10 for x in range(10)]
for i in numbers:
    y_train_pred_final[i] = y_train_pred_final.Converted_prob.map(lambda x: 1 if x > i else 0)
y_train_pred_final.head()
```

Out[137]:

	Converted	Converted_prob	Prospect ID	predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
0	0	0.187192	3009	0	1	1	0	0	0	0	0	0	0	0
1	0	0.167079	1012	0	1	1	0	0	0	0	0	0	0	0
2	0	0.000821	9226	0	1	0	0	0	0	0	0	0	0	0
3	1	0.781753	4750	1	1	1	1	1	1	1	1	1	0	0
4	1	0.977276	7987	1	1	1	1	1	1	1	1	1	1	1

In [138]:

```
# Now let's calculate accuracy sensitivity and specificity for various probability cutoffs.
cutoff df = pd.DataFrame( columns = ['prob', 'accuracy', 'sensi', 'speci'])
from sklearn.metrics import confusion_matrix
# TP = confusion[1,1] # true positive
# TN = confusion[0,0] # true negatives
# FP = confusion[0,1] # false positives
# FN = confusion[1,0] # false negatives
num = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
for i in num:
   cml = metrics.confusion_matrix(y_train_pred_final.Converted, y_train_pred_final[i] )
   total1=sum(sum(cm1))
   accuracy = (cm1[0,0]+cm1[1,1])/total1
    speci = cm1[0,0]/(cm1[0,0]+cm1[0,1])
    sensi = cm1[1,1]/(cm1[1,0]+cm1[1,1])
    cutoff df.loc[i] =[ i ,accuracy,sensi,speci]
print(cutoff df)
```

```
prob accuracy
                      sensi
                               speci
     0.0 0.385136 1.000000 0.000000
0.0
     0.1 0.705086 0.981603 0.531882
0.1
0.2
     0.2 0.909148 0.860589 0.939565
0.3
     0.3 0.920013 0.859771 0.957746
     0.4 0.919855 0.858953
0.4
                            0.958003
     0.5 0.919383
                   0.851594
0.5
                            0.961844
     0.6 0.920170 0.851594 0.963124
0.6
     0.7 0.919383 0.845462 0.965685
0.7
0.8
    0.8 0.878917 0.706868 0.986684
     0.9 0.818769 0.538839 0.994110
0.9
```

In [139]:

```
# Let's plot accuracy sensitivity and specificity for various probabilities.
cutoff_df.plot.line(x='prob', y=['accuracy','sensi','speci'])
plt.show()
```



```
0.4 - 0.2 - accuracy sensi speci speci
```

In [140]:

```
#### From the curve above, 0.2 is the optimum point to take it as a cutoff probability.

y_train_pred_final['final_predicted'] = y_train_pred_final.Converted_prob.map( lambda x: 1 if x > 0
.2 else 0)

y_train_pred_final.head()
```

Out[140]:

	Converted	Converted_prob	Prospect ID	predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	final_predicted
0	0	0.187192	3009	0	1	1	0	0	0	0	0	0	0	0	0
1	0	0.167079	1012	0	1	1	0	0	0	0	0	0	0	0	0
2	0	0.000821	9226	0	1	0	0	0	0	0	0	0	0	0	0
3	1	0.781753	4750	1	1	1	1	1	1	1	1	1	0	0	1
4	1	0.977276	7987	1	1	1	1	1	1	1	1	1	1	1	1

Assigning Lead Score

In [141]:

```
y_train_pred_final['Lead_Score'] = y_train_pred_final.Converted_prob.map( lambda x: round(x*100))
y_train_pred_final.head()
```

Out[141]:

	Converted	Converted_prob	Prospect ID	predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	final_predicted	Lead_Score
0	0	0.187192	3009	0	1	1	0	0	0	0	0	0	0	0	0	19
1	0	0.167079	1012	0	1	1	0	0	0	0	0	0	0	0	0	17
2	0	0.000821	9226	0	1	0	0	0	0	0	0	0	0	0	0	0
3	1	0.781753	4750	1	1	1	1	1	1	1	1	1	0	0	1	78
4	1	0.977276	7987	1	1	1	1	1	1	1	1	1	1	1	1	98

In [142]:

```
# Let's check the overall accuracy.
metrics.accuracy_score(y_train_pred_final.Converted, y_train_pred_final.final_predicted)

confusion2 = metrics.confusion_matrix(y_train_pred_final.Converted,
    y_train_pred_final.final_predicted)

confusion2

TP = confusion2[1,1] # true positive
    TN = confusion2[0,0] # true negatives
    FP = confusion2[0,1] # false positives
    FN = confusion2[1,0] # false negatives
```

In [143]:

```
# Let's see the sensitivity of our logistic regression model
TP / float(TP+FN)
```

```
Out[143]:
0.8605887162714636
In [144]:
# Let us calculate specificity
TN / float(TN+FP)
Out[144]:
0.9395646606914213
In [145]:
# Calculate false postive rate - predicting churn when customer does not have churned
print(FP/ float(TN+FP))
0.060435339308578744
In [146]:
# Positive predictive value
print (TP / float(TP+FP))
0.8991883810337462
In [147]:
# Negative predictive value
print (TN / float(TN+ FN))
0.9149625935162095
Precision and Recall
In [148]:
#Looking at the confusion matrix again
confusion
Out[148]:
array([[3756, 149],
      [ 363, 2083]], dtype=int64)
In [149]:
##### Precision
TP / TP + FP
confusion[1,1]/(confusion[0,1]+confusion[1,1])
Out[149]:
0.9332437275985663
In [150]:
##### Recall
TP / TP + FN
confusion[1 1]//confusion[1 0]+confusion[1 1])
```

```
CONTRACTOR [ + , + ] / (CONTRACTOR [ + , O ] + CONTRACTOR [ + , + ] ,
Out[150]:
0.8515944399018807
Using sklearn utilities for the same
In [151]:
from sklearn.metrics import precision_score, recall_score
In [152]:
precision_score(y_train_pred_final.Converted , y_train_pred_final.predicted)
Out[152]:
0.9332437275985663
In [153]:
recall score(y train pred final.Converted, y train pred final.predicted)
Out[153]:
0.8515944399018807
Precision and recall tradeoff
In [154]:
from sklearn.metrics import precision_recall_curve
In [155]:
y_train_pred_final.Converted, y_train_pred_final.predicted
Out[155]:
(0
 1
         0
         0
 3
 6346
 6347
 6348
 6349
 6350
        Ω
 Name: Converted, Length: 6351, dtype: int64,
         0
 1
        1
 3
 4
         1
 6346
 6347
 6348
         0
 6349
 Name: predicted, Length: 6351, dtype: int64)
p, r, thresholds = precision_recall_curve(y_train_pred_final.Converted, y_train_pred_final.Converte
d prob)
```

In [157]:

```
plt.plot(thresholds, p[:-1], "g-")
plt.plot(thresholds, r[:-1], "r-")
plt.show()
```


Making predictions on the test set

In [158]:

```
X_test[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']] =
scaler.fit_transform(X_test[['TotalVisits','Total Time Spent on Website','Page Views Per Visit']])
X_train.head()
```

Out[158]:

	Do Not Email	Do Not Call	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Lead Origin_Landing Page Submission	Lead Origin_Lead Add Form	Lead Origin_Lead Import	Lead Source_Facebook	Lead Source_Google	A	
3009	0	0	-0.432779	0.160255	0.155018	1	0	0	0	0		
1012	1	0	-0.432779	0.540048	0.155018	1	0	0	0	0		
9226	0	0	-1.150329	0.888650	1.265540	0	0	0	0	0		
4750	0	0	-0.432779	1.643304	0.155018	1	0	0	0	0		
7987	0	0	0.643547	2.017593	0.122613	1	0	0	0	0		

5 rows × 85 columns

1

In [159]:

```
X_test = X_test[col2]
X_test.head()
```

Out[159]:

	Do Not Email	Lead Origin_Lead Add Form	Lead Source_Welingak Website	What is your current occupation_Unemployed	Tags_Busy	Tags_Closed by Horizzon	Tags_Lost to EINS	Tags_Ringing	Tags_Will revert after reading the email
3271	0	0	0	1	0	0	0	0	1
1490	0	0	0	0	0	0	0	0	1
7936	0	0	0	1	0	0	0	0	1
4216	0	1	0	0	0	1	0	0	0
2020	٥	٥	n	1	٥	٥	٥	٥	1

```
303U U U U U U U U Tags_Will
4
In [160]:
X_test_sm = sm.add_constant(X_test)
Making predictions on the test set
In [161]:
y_test_pred = res.predict(X_test_sm)
In [162]:
y_test_pred[:10]
Out[162]:
     0.187192
3271
     0.953558
1490
7936
       0.187192
      0.999703
4216
     0.187192
3830
1800
     0.953558
      0.012624
6507
4821
       0.000454
     0.996625
4223
4714
dtype: float64
In [163]:
# Converting y_pred to a dataframe which is an array
y_pred_1 = pd.DataFrame(y_test_pred)
In [164]:
# Let's see the head
y pred 1.head()
Out[164]:
          0
3271 0.187192
 1490 0.953558
 7936 0.187192
 4216 0.999703
 3830 0.187192
In [165]:
# Converting y_test to dataframe
y test df = pd.DataFrame(y test)
In [166]:
# Putting CustID to index
y_test_df['Prospect ID'] = y_test_df.index
In [167]:
# Removing index for both dataframes to append them side by side
y_pred_1.reset_index(drop=True, inplace=True)
y_test_df.reset_index(drop=True, inplace=True)
```

```
In [168]:
```

```
# Appending y_test_df and y_pred_1
y_pred_final = pd.concat([y_test_df, y_pred_1],axis=1)
```

In [169]:

```
y_pred_final.head()
```

Out[169]:

	Converted	Prospect ID	0
0	0	3271	0.187192
1	1	1490	0.953558
2	0	7936	0.187192
3	1	4216	0.999703
4	0	3830	0.187192

In [172]:

```
# Renaming the column
y_pred_final= y_pred_final.rename(columns={ 0 : 'Converted_prob'})
```

In [175]:

```
# Let's see the head of y_pred_final y_pred_final.head()
```

Out[175]:

Converted Prospect ID Converted_prob

0	0	3271	0.187192
1	1	1490	0.953558
2	0	7936	0.187192
3	1	4216	0.999703
4	0	3830	0.187192

In [176]:

```
y_pred_final['final_predicted'] = y_pred_final.Converted_prob.map(lambda x: 1 if x > 0.2 else 0)
```

In [177]:

```
y_pred_final.head()
```

Out[177]:

Converted Prospect ID Converted_prob final_predicted

0	0	3271	0.187192	0
1	1	1490	0.953558	1
2	0	7936	0.187192	0
3	1	4216	0.999703	1
4	0	3830	0.187192	0

In [178]:

```
# Let's check the overall accuracy.
```

```
metrics.accuracy_score(y_pred_final.Converted, y_pred_final.final_predicted)
Out[178]:
0.9045170767535806
In [179]:
confusion2 = metrics.confusion_matrix(y_pred_final.Converted, y_pred_final.final_predicted)
confusion2
Out[179]:
array([[1628, 106],
[ 154, 835]], dtype=int64)
In [180]:
TP = confusion2[1,1] # true positive
TN = confusion2[0,0] # true negatives
FP = confusion2[0,1] # false positives
FN = confusion2[1,0] # false negatives
In [181]:
# Let's see the sensitivity of our logistic regression model
TP / float(TP+FN)
Out[181]:
0.8442871587462083
In [182]:
# Let us calculate specificity
TN / float(TN+FP)
Out[182]:
0.9388696655132641
```