Physik Arbeitsblatt: Geschwindigkeit – Lösung

Vervollständige die Tabelle. Achte auf das Vorzeichen. Zwei Einheiten für die Geschwindigkeit sind möglich: $\frac{m}{s}$ und $\frac{km}{h}$.

		6 1 1 1 1 1
zurückgelegter Weg	benötigte Zeit	Geschwindigkeit
$\Delta s = 14 \mathrm{m}$	$\Delta t = 2 \mathrm{s}$	$v = \frac{\Delta s}{\Delta t} = \frac{14 \mathrm{m}}{2 \mathrm{s}} = 7 \frac{\mathrm{m}}{\mathrm{s}}$
$\Delta s = 3 \text{ m}$	$\Delta t = 2 \mathrm{s}$	$v = \frac{\Delta s}{\Delta t} = \frac{3 \mathrm{m}}{2 \mathrm{s}} = 1.5 \frac{\mathrm{m}}{\mathrm{s}}$
$\Delta x = 13 \mathrm{m}$	$\Delta t = 0.1 \mathrm{s}$	$v = \frac{\Delta s}{\Delta t} = \frac{13 \mathrm{m}}{0.1 \mathrm{s}} = 130 \frac{\mathrm{m}}{\mathrm{s}}$
$\Delta x = 13 \text{km}$	$\Delta t = 2 h$	$v = \frac{\Delta s}{\Delta t} = \frac{13 \mathrm{km}}{2 \mathrm{h}} = 6.5 \frac{\mathrm{km}}{\mathrm{h}}$
$\Delta s = 46 \mathrm{km}$	$\Delta t = 30 \mathrm{min}$	$v = \frac{\Delta s}{\Delta t} = \frac{46 \mathrm{km}}{\frac{1}{2} \mathrm{h}} = 2 \cdot$
		$46 \frac{\text{km}}{\text{h}} = 92 \frac{\text{km}}{\text{h}}$
$\Delta s = -1 \mathrm{m}$	$\Delta t = 1 \mathrm{s}$	$v = \frac{\Delta s}{\Delta t} = \frac{-1 \mathrm{m}}{1 \mathrm{s}} = -1 \frac{\mathrm{m}}{\mathrm{s}}$
$\Delta s = -55,5 \mathrm{m}$	$\Delta t = 7.3 \mathrm{s}$	$v = \frac{\Delta s}{\Delta t} = \frac{-55,5 \mathrm{m}}{7,3 \mathrm{s}} =$
		$-7,6\frac{m}{s}$
$\Delta s = -5 \text{ m}$	$\Delta t = 7 \mathrm{s}$	$v = \frac{\Delta s}{\Delta t} = \frac{-5 \mathrm{m}}{7 \mathrm{s}} = -0.71 \frac{\mathrm{m}}{\mathrm{s}}$
$\Delta s = -17 \mathrm{m}$	$\Delta t = 0.07 \mathrm{s}$	$v = \frac{\Delta s}{\Delta t} = \frac{-17 \mathrm{m}}{0,07 \mathrm{s}} =$
		$-242,86\frac{m}{s}$
$\Delta s = v \cdot \Delta t = 2 \frac{m}{\frac{4}{5}} \cdot 7 \text{s} = 14 \text{m}$	$\Delta t = 7 \mathrm{s}$	$v=2\frac{m}{s}$
$\Delta s = v \cdot \Delta t = -4 \frac{m}{\cancel{s}} \cdot 20 \cancel{s} = -80 \text{ m}$	$\Delta t = 20\mathrm{s}$	$v = -4 \frac{m}{s}$
$\Delta s = v \cdot \Delta t = 144 \frac{\text{km}}{\text{y/s}}$	$\Delta t = 1,5\mathrm{h}$	$v = 144 \frac{\mathrm{km}}{\mathrm{h}}$
$1,5 \text{h} = 216 \frac{\text{km}}{\text{h}}$		
$\Delta s = v \cdot \Delta t = -72 \frac{km}{p} \cdot$	$\Delta t = 2,7 \mathrm{h}$	$v = -72 \frac{\mathrm{km}}{\mathrm{h}}$
$2,7 \text{h} = -194,4 \frac{\text{km}}{\text{h}}$		
$\Delta s = 27 \mathrm{m}$	$\Delta t = \frac{\Delta s}{v} = \frac{27 \text{m}}{9 \frac{\text{m}}{\text{s}}} = 3 \text{s}$	$v = 9 \frac{m}{s}$
$\Delta s = -3 \text{ m}$	$\Delta t = \frac{\Delta s}{v} = \frac{-3 \text{ m}}{-9 \frac{\text{m}}{s}} = 0,333 \text{ s}$	$v = -9 \frac{m}{s}$
$\Delta s = 300 \mathrm{km}$	$\Delta t = \frac{\Delta s}{v} = \frac{300 \text{km}}{60 \frac{\text{km}}{\text{h}}} = 5 \text{h}$	$v = 60 \frac{\mathrm{km}}{\mathrm{h}}$
$\Delta s = -1 \mathrm{km}$	$\Delta t = \frac{\Delta s}{v} = \frac{-1 \text{ km}}{-0.5 \frac{\text{ km}}{\text{h}}} = 2 \text{ h}$	$v=-0.5 rac{ ext{km}}{ ext{h}}$