AUTONOMOUS MOBILE ROBOTS

COURSE INTRO

- Lecturers
 - Mirgita Frasheri & Andryi Sarabakha
- Course content
 - Robotics theory + Matlab exercises
 - Robotic software development + Turtlebot exercises
- Group exam based on final report (passed/not passed)
- 30 min. oral defence (presentation+questions)

WHAT IS ROBOTICS?

MIRGITA FRASHERI

Key facts about the vehicle

WHAT IS ROBOTICS?

MIRGITA FRASHERI

ROBOTS

• One definition:

"A goal-oriented machine that can sense, plan and act"

ROBOTS

• One definition:

"A goal-oriented machine that can sense, plan and act"

ROBOTS

One definition :

"A goal-oriented machine that can sense, plan and act"

- Robota (slave) work, hard work
 - Dirty, Dangerous and Dull

EXAMPLE 1

Imperial College London

https://physicsworld.com/a/team-of-flying-robots-builds-structures-using-3d-printing/

Imperial College London

Flying drones that mimic ants &bees

https://physicsworld.com/a/team-of-flying-robots-builds-structures-using-3d-printing/

Imperial College London

Flying drones that mimic ants &bees

Dangerous, unreachable environments

https://physicsworld.com/a/team-of-flying-robots-builds-structures-using-3d-printing/

EXAMPLE 2

La Palma Research Centre

https://physicsworld.com/a/swimming-robots-help-europe-rediscover-its-mining-mojo/

La Palma Research Centre

3 robots for surveying the area

https://physicsworld.com/a/swimming-robots-help-europe-rediscover-its-mining-mojo/

INDUSTRIAL ROBOTS

OMRON ADEPT QUATTRO

KUKA

INDUSTRIAL ROBOTS

OMRON ADEPT QUATTRO

SCARA

AUTONOMOUS MOBILE ROBOTS

iRobot roomba

AUTONOMOUS MOBILE ROBOTS

TURTLEBOT3 – THE BURGER

AUTONOMOUS MOBILE ROBOTS - OVERVIEW

- Kinematics / dynamics
- Motion planning / navigation
 - Map-based planning / trajectory tracking
 - Motion control
- Localization
- Map building and updating
- Sensors and actuators
 - Vision-based, IMUs, tactile, ...

KINEMATIC MODELS

Ackermann steering

Differential drive steering

TURTLEBOT KINEMATICS & DYNAMICS

MATLAB DEMO

MIRGITA FRASHERI

PATHS, TRAJECTORIES & POSES

Path - List of positions

Trajectory – List of positions with time information

```
- [[t1, x1, y1], [t2, x2, y2], ..]
```

Note – Pose for turtlebot is [x, y, θ] (in world coordinates)

TRAJECTORY GENERATION

TRAJECTORY GENERATION

PATH TRACKING

$$u(t) = K_p e(t) + K_i \int_0^t e(t)dt + K_d \frac{de(t)}{dt}$$

PURE PURSUIT

http://se.mathworks.com/help/robotics/ug/pure-pursuit-controller.html

PURE PURSUIT - MATLAB EXAMPLES

Stable

PURE PURSUIT - MATLAB EXAMPLES

Unstable

MATLAB DEMOS

MIRGITA FRASHERI

EXERCISES

Form groups of 3-4 persons (ideally multi-disciplinary)

Download and examine Peter Corke's Robotics Toolbox and Machine Vision Toolbox (http://www.petercorke.com/Toolboxes.html)

Have a look at Mathworks Robotics Systems Toolbox (http://se.mathworks.com/help/robotics/index.html)

Brightspace exercises (including 1 mandatory!)

mirgita.frasheri@ece.au.dk

