1/IV B. Tech (Regular / Supplementary) DEGREE EXAMINATION

November, 2020

Common to All Branches

Second Semester
Time: Three Hours

Numerical Methods And Advanced Calculus

Answer ALL Questions from PART-A.

Answer ANY FOUR questions from PART-B.

Maximum: 50 Marks

(1X10 = 10 Marks)

(4X10=40 Marks)

<u>PART-A</u>

1.	a)	What is the order of convergence of Bisection method?	CO1
	. b)	State diagonal dominance property,	 CO1
	c)	Write Newton's backward interpolation formula.	CO1
	d)	State Trapezoidal rule of integration.	CO2
	e)	Write the Euler's iterative formula for $y' = f(x, y)$, $y(x_0) = y_0$.	CO2

f) Evaluate the double integral $\int_{0}^{1} \int_{0}^{2} xydydx$

g) What is formula to find the area enclosed by the plane curves?

CO3

Eight the value of great from from a great from from a great from from the great fro

h) First the value of grad f for f(x,y,z) = xyz.

i) Is the vector function $\overline{F} = 2xI + 3yJ + 4zK$ is irrotational

j) State stoke's theorem.

PART-B

2. a) Using Newton – Raphson method find a root of the equation x^3 - 2x - 5 = 0. CO1 5M

b) Solve the system of equation x + 4y - z = -5; x + y - 6z = -12; 3x - y - z = 4 using CO1 5M Gauss Elimination method.

3. a) Find a root of the equation $xe^x - 2 = 0$ using the method of false position. CO1 5M

b) Solve the system of equations 5x + 2y + z = 12; x + 4y + 2z = 15; x + 2y + 5z = 20 CO1 5M using Gauss-Seidel iteration method. Do five iterations.

4 a) Find the cubic polynomial which takes the following values (0,1),(1,2), (2,1) and CO2 5M (3,10) using Newton's forward interpolation formula 2π³-3π³+45π+1

b) Estimate the value of f(9) using Lagrange's interpolation formula from the following data:

X	5	7	11	13		Va.
f(x)	15	39	14	23		5M

Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Simpson's one third rule of integration. Take n = 6.

b) Apply Runge – Kutta method of 4^{th} order find an approximate value of y for x = 0.2 CO2 5M if $dy/dx = x + y^2$, y(0) = 1. Take h = 1. 1.2695

	18M	A002
Evaluate by changing the order of integration $\iint_{0}^{\infty} \frac{e^{-y}}{y} dy dx$	CO3	- 5M
b) Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $16a^2/3$.	CO3	5M
Evaluate the triple integral $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$ b) Find the volume of the solid bounded by the planes $x = 0$, $y = 0$, $x + y + z = 1$ and	CO3	5M (a ²) 5M
 z = 0. a) Find the directional derivative of f(x,y,z) = xy² + yz³ at the point (2,-1,1) in the direction of the vector I + 2J + 2K. In what directional the directional derivative is maximum? 	CO4	5M
b) If $\overline{F} = 3xy^{2}I - y^{2}J$ evaluate $\int_{C} \overline{F} \cdot d\overline{R}$, where C is the curve in the xy-plane $y = 2x^{2}$ from (0.0) to (1,2).	CO4	5M
. a) Find the area of a circle of radius a using Green's theorem.	CO4	5M
b) Evaluate $\iint (xdydz + ydzdx + zdxdy)$ over the surface of a sphere of radius a.	CO4	5M

9.