

Feature-based defect prediction using Machine Learning methods

Introductory talk

Winter semester 2019 / 2020

11th December 2019

Stefan Strüder

1

Introduction & Motivation

Introduction & Motivation

software defects trigger financial loss and reputation damage

Amazon 1p glitch: Software error sees hundreds of items sold for fractions of their value (independent.co.uk, [1])

Retailers say they could be bankrupted by the fault in software that claims to 'auto-optimise' listings

Software

How one bad algorithm cost traders \$440m (theregister.co.uk, [2])

A look at the worst software testing day ever

Having 'Null' as a license plate is about as much of a nightmare as you'd expect

The license plate was 'null,' but the tickets were anything but

(theverge.com, [3])

Introduction & Motivation

- great interest in tools for detecting faulty code
- development of techniques for default detection and prediction
 - mostly based on methods of machine learning
 - creation of a data set for the training of classifiers
 - data basis: defect-free and faulty historical data
- wide range of learning methods available (Son et al., 2019; Challagulla, Bastani, Yen, & Paul, 2008)
 - Decision Tree based
 - Bayesian methods
 - Regression, k-Nearest-Neighbor, Artificial Neural Networks

Introduction & Motivation

- aim of the thesis
 - prediction technique for software defects
 - in consideration of software features
 - based on methods of machine learning
- promising approach
 - defect prediction based on "past" of the software
 - properties of defect-prone features
 - defect susceptibility of features

2

Background

Machine Learning classification

Defect prediction using Machine Learning

- supervised Machine Learning (Hammouri, Hammad, Alnabhan, & Alsarayrah, 2018)
 - development of a derivation function
 - conclusions from in- and output within a training data set
 - prediction for new input data
 - common algorithms
 - Naïve Bayes
 - Decision Trees
 - Artificial Neural Networks

- Naïve Bayes (Hammouri, Hammad, Alnabhan, & Alsarayrah, 2018)
 - probabilistic classifier
 - based on Bayes theorem →
 - independence of attributes
- decision trees (Hammouri, Hammad, Alnabhan, & Alsarayrah, 2018)
 - hierarchical and predicative
 - attributes of the data as branches
 - decisions as leaf nodes

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

- Artificial Neural Networks (Hammouri, Hammad, Alnabhan, & Alsarayrah, 2018; Jukes, 2017)
 - inspired by biological neural networks
 - non-linear classifier
 - consisting of quantity of processing units (neurons)
 - parallel execution for the development of expenditures
 - signal transmission through connections
 - calculations based on the sum of the inputs of all neurons

- defect prediction using Machine Learning
 - Challagulla, V. U. B., Bastani, F. B., Yen, I. L., & Paul, R. A. (2008). **Empirical assessment of machine learning based software defect prediction techniques.** International Journal on Artificial Intelligence Tools, 17(2), 389–400. https://doi.org/10.1142/S0218213008003947
 - Son, L. H., Pritam, N., Khari, M., Kumar, R., Phuong, P. T. M., & Thong, P. H. (2019). **Empirical study of software defect prediction: A systematic mapping.** Symmetry, 11(2). https://doi.org/10.3390/sym11020212
- feature-based defect prediction using Machine Learning
 - Queiroz, R., Berger, T., & Czarnecki, K. (2016). **Towards predicting feature defects in software product lines.** FOSD 2016 Proceedings of the 7th International Workshop on Feature-Oriented Software Development, Co-Located with SPLASH 2016, 58–62. https://doi.org/10.1145/3001867.3001874

feature-based process of supervised machine learning according to Queiroz et. al.

feature-based process of supervised machine learning according to Queiroz et. al.

feature-based process of supervised machine learning according to Queiroz et. al.

attributes: process metrics

- COMM
- ADEV
- DDEV
- EXP
- OXP

3

Goal and approach

Goal

Methodology

Creation of data set

Goal and approach | Goal

- overarching goal
 - development of a prediction technique for defects in feature-based software
 - using Machine Learning methods
- data basis: commits of versioning systems (Git)
 - commit: provision of an updated version of a software product
 - faulty and defect-free commits for learning classifiers
- three research objectives
 - 1. creation of data set | 2. training of classifiers | 3.evaluation of classifiers
 - + preparation and follow-up

Cross-Industry Standard Process for Data Mining (CRISP-DM) process modell

(Chapman et al., 2000)

- Business Understanding (preparation)
 - general familiarization with the topic
 - formulation of research objectives

- Data Understanding (preparation)
 - search + review of relevant data and ready-made data sets
 - search focus: Git repositories

- Data Preparation (research objective 1)
 - processes for optimizing the data set
 - creation of the final data set

- Modeling (research objective 2)
 - application of the created data set
 - training of Machine Learning algorithms

- Evaluation (research objective 3)
 - evaluation of Machine Learning Algorithms
 - comparison of algorithms

- Deployment (follow-up)
 - preparation of the written elaboration and final presentation
 - holding the colloquium

applied machine-learning method

commits of feature-based software

consisting of training + test data

Preprocessing, calculation of metrics

metrics as attributes

training of classifiers

application of test data

Selection of the most performant classifier

(Ceylan, Kutlubay, & Bener, 2006)

Current state

preparation ✓

commits of feature-based software

consisting of training + test data

Preprocessing, calculation of metrics

metrics as attributes

training of classifiers

application of test data

Selection of the most performant classifier

(Ceylan, Kutlubay, & Bener, 2006)

- usage of PyDriller for repository mining
 - Python framework by (Spadini, Aniche, & Bacchelli, 2018)
 - https://github.com/ishepard/pydriller
 - easy extraction of commits, developers, diffs and source code (and more)
 - well documented (https://pydriller.readthedocs.io)

- historical data of 12 software projects
 - feature-based software
 - based on preprocessor conditionals
 - selection criterion: previous use in literature (Hunsen et al., 2016; Liebig et al., 2010; Queiroz et al., 2017)
 - extracted from Git, GitHub, GitLab and Sourceforge repositories
 - divided into commits per release
 - based on tag structure of git repositories

Blender	Busybox	Emacs	Gimp	Gnumeric	Gnuplot
Irssi	Libxml2	Lighttpd	Mpsolve	Parrot	Xfig

	Purpose	Data source	#Releases	#Commits	#Corrective	#Features*
Blender	3D modelling tool	GitHub mirror	11	19119	3697	1425
Busybox	UNIX tool package	Git repository	13	4593	1447	204
Emacs	Text editor	GitHub mirror	7	11344	3638	495
Gimp	Photo editor	GitLab repository	14	7295	1226	151
Gnumeric	Spreadsheet	GitLab repository	8	6025	1211	83
Gnuplot	Plotter	GitHub mirror	4	4922	476	531
Irssi	IRC client	GitHub repository	7	367	72	11
Libxml2	XML parser	GitLab repository	10	732	359	150
Lighttpd	Webserver	Git repository	5	2285	1080	316
Mpsolve	Polynomial solver	GitHub repository	8	668	101	28
Parrot	VM	GitHub repository	4	2765	735	78
Xfig	Graphics editor	Sourceforge	7	18	0	135

^{*} values based on first attempts at feature extraction from diffs

- data was stored in MySQL database
 - one table for each software project

Column	Description	Column	Description
change_type	Type of change (added, deleted, modified, renamed)	filename	name of changed file
commit_author	responsible developer	lines_added	number of lines added to file
commit_hash	unique identifier of commit	lines_reomved	number of lines removed from file
commit_msg	commit message	name	software name
cycomplexity	cyclomatic complexity of changed file	nloc	lines of code of file
diff	diff of changed file	release_number	associated release number based on tags
feature	features, that were modified	status	normal (false) or corrective (true) commit

Next up ...

- extract modified features of commits in diffs
 - identify preprocessor conditions #IFDEF #IFNDEF
 - usage of regular expressions $r' \# \s*ifdef (\S+)'$
 - how to handle indentations and case-insensitiveness? # IFDEF #ifdef ✓
 - how to handle complex conditions?
 #IFDEF A and #IFNDEF B
 - include #include and #define?

Next up ...

- choose relevant metrics
 - COMM ADEV DDEV EXP OXP (from ML process according to Queiroz et. al.)
 - what other metrics that can represent features could be considered?
 - how to calculate metrics based on available data?
 - which Machine Learning algorithms should be considered?

Thank you for your attention.

Time for questions.

Literature

- Ceylan, E., Kutlubay, F. O., & Bener, A. B. (2006). Software defect identification using machine learning techniques. Proceedings 32nd Euromicro Conference on Software Engineering and Advanced Applications, SEAA, 240–246. https://doi.org/10.1109/EUROMICRO.2006.56
- Challagulla, V. U. B., Bastani, F. B., Yen, I. L., & Paul, R. A. (2008). Empirical assessment of machine learning based software defect prediction techniques. International Journal on Artificial Intelligence Tools, 17(2), 389–400. https://doi.org/10.1142/S0218213008003947
- Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0. CRISP-DM Consortium, 76. https://doi.org/10.1109/ICETET.2008.239

Literature

- Hammouri, A., Hammad, M., Alnabhan, M., & Alsarayrah, F. (2018). Software Bug Prediction using machine learning approach. International Journal of Advanced Computer Science and Applications, 9(2), 78–83. https://doi.org/10.14569/IJACSA.2018.090212
- Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Leßenich, O., Becker, M., & Apel, S. (2016). Preprocessor-based variability in open-source and industrial software systems: An empirical study. Empirical Software Engineering (Vol. 21). https://doi.org/10.1007/s10664-015-9360-1
- Liebig, J., Apel, S., Lengauer, C., Kästner, C., & Schulze, M. (2010). An analysis of the variability in forty preprocessor-based software product lines. Proceedings International Conference on Software Engineering, 1, 105–114. https://doi.org/10.1145/1806799.1806819
- Queiroz, R., Passos, L., Valente, M. T., Hunsen, C., Apel, S., & Czarnecki, K. (2017). The shape of feature code: an analysis of twenty C-preprocessor-based systems. Software and Systems Modeling, 16(1), 77–96. https://doi.org/10.1007/s10270-015-0483-z

Literature

- Queiroz, R., Berger, T., & Czarnecki, K. (2016). Towards predicting feature defects in software product lines. FOSD 2016 - Proceedings of the 7th International Workshop on Feature-Oriented Software Development, Co-Located with SPLASH 2016, 58–62. https://doi.org/10.1145/3001867.3001874
- Son, L. H., Pritam, N., Khari, M., Kumar, R., Phuong, P. T. M., & Thong, P. H. (2019). Empirical study of software defect prediction: A systematic mapping. Symmetry, 11(2). https://doi.org/10.3390/sym11020212
- Spadini, D., Aniche, M., & Bacchelli, A. (2018). PyDriller: Python framework for mining software repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering ESEC/FSE 2018 (pp. 908–911). New York, New York, USA: ACM Press. https://doi.org/10.1145/3236024.3264598

Online sources

[1] https://www.independent.co.uk/news/uk/home-news/amazon-1p-glitch-software-error-sees-hundreds-of-items-sold-for-fractions-of-their-value-9923730.html (independent.co.uk, 14.12.2014)

[2] https://www.theregister.co.uk/2012/08/03/bad_algorithm_lost_440_million_dollars/ (theregister.co.uk, 03.08.2012)

[3] https://www.theverge.com/tldr/2019/8/14/20805543/null-license-plate-california-parking-tickets-violations-void-programming-bug (theverge.com, 14.08.2019)

Icon sources

- Reading by Arafat Uddin from the Noun Project
- Data Analysis by Brennan Novak from the Noun Project
- Data by fizae from the Noun Project
- Machine Learning by Juicy Fish from the Noun Project
- evaluation by Michael Rojas from the Noun Project
- Writing by Kmg Design from the Noun Project