WE CLAIM:

5

10

15

1. A compound represented by formula I or a pharmaceutically acceptable salt or a prodrug derivative thereof:

$$Z_{B}$$
 R_{1}
 R_{2}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{2}

wherein;

R and R' are independently C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

 R_1 and R_2 are independently selected from the group consisting of hydrogen, halo, C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, -O- C_1 - C_5 alkyl, -S- C_1 - C_5 alkyl, -O- C_1 - C_5 fluoroalkyl, -CN, -NO₂, acetyl, -S- C_1 - C_5 fluoroalkyl, C_2 - C_5 alkenyl, C_3 - C_5 cycloalkyl, and C_3 - C_5 cycloalkenyl;

Z_B is a group represented by the formula:

$$R_B$$
 (L_3) (L_1)

wherein

-(L_1), -(L_2)-, and -(L_3)- is each a divalent linking groups independently selected from the group consisting of

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl;

RB is a branched C3-C5 alkyl;

5

Z_C is carbon atom linked group selected from:

 $-\text{CO}_2\text{H}, \\ -\text{CO}_2\text{Me}, \\ -\text{CO}_2\text{Et}, \\ -\text{C(O)CH}_2\text{S(O)Me}, \\ -\text{C(O)CH}_2\text{S(O)Et}, \\ -\text{C(O)CH}_2\text{S(O)}_2\text{Me}, \\ -\text{C(O)CH}_2\text{S(O)}_2\text{Et}, \\ -\text{C(O)CH}_2\text{CH}_2\text{S(O)Me}, \\ -\text{C(O)CH}_2\text{CH}_2\text{S(O)Me}, \\ -\text{C(O)CH}_2\text{CH}_2\text{S(O)Et}, \\ -\text{C(O)CH}_2\text{CH}_2\text{S(O)}_2\text{Me}, \\ -\text{C(O)CH}_2\text{CH}_2\text{S(O)}_2\text{Et}, \\ -\text{C(O)CH}_2\text{CH}_2\text{S(O)}_2\text{Et}, \\ -\text{C(O)CH}_2\text{CH}_2\text{CO}_2\text{H}, \\ -\text{C(O)CH}_2\text{CH}_2\text{CO}_2\text{CH}_2\text{CO}_2\text{H}, \\ -\text{C(O)CH}_2\text{CH}_2\text{CO}_2\text{CH}_2$

-246-

	-(C(O)CH(Me)CH ₂ CO ₂ Me,
	-(C(O)CH(Me)CH ₂ CO ₂ Et,
	-(C(O)CH(Me)CH ₂ CO ₂ iPr,
	-(C(O)CH(Me)CH ₂ CO ₂ tBu,
5	-(C(O)CH(Me)CH(Me)CO ₂ H,
	-(C(O)CH(Me)CH(Me)CO ₂ Me,
	-(C(O)CH(Me)CH(Me)CO ₂ Et,
	-(C(O)CH(Me)CH(Me)CO2iPr,
	-(C(O)CH(Me)CH(Me)CO2tBu,
10	-(C(O)CH(Me)C(Me) 2CO ₂ H,
	-(C(O)CH(Me)C(Me) 2CO2Me,
	-(C(O)CH(Me)C(Me) 2CO2Et,
	-(C(O)CH(Me)C(Me) 2CO2iPr,
	-(C(O)CH(Me)C(Me) 2CO2tBu,
15	-(C(O)CH(Me)CH(Et)CO ₂ H,
	-(C(O)CH(Me)CH(Et)CO ₂ Me,
	-0	C(O)CH(Me)CH(Et)CO ₂ Et,
	-(C(O)CH(Me)CH(Et)CO2iPr,
	-0	C(O)CH(Me)CH(Et)CO ₂ tBu,
20	-(C(O)C(O)OH,
	-($C(O)C(O)NH_2,$
	-(C(O)C(O)NHMe,
	-(C(O)C(O)NMe ₂ ,

-247-

	-C(O)NH ₂ ,
	-C(O)NMe ₂ ,
	-C(O)NH-CH ₂ -C(O)OH,
	-C(O)NH-CH ₂ -C(O)OMe,
5	-C(O)NH-CH ₂ -C(O)OEt,
	-C(O)NH-CH ₂ -C(O)OiPr,
	-C(O)NH-CH ₂ -C(O)OtBu,
	-C(O)NH-CH(Me)-C(O)OH,
	-C(O)NH-CH(Me)-C(O)OMe,
10	-C(O)NH-CH(Me)-C(O)OEt,
	-C(O)NH-CH(Me)-C(O)iPr,
	-C(O)NH-CH(Me)-C(O)tBu,
	-C(O)NH-CH(Et)-C(O)OH,
	$-C(O)NH-C(Me)_2-C(O)OH$,
15	$-C(O)NH-C(Me)_2-C(O)OMe$,
	-C(O)NH-C(Me) ₂ -C(O)OEt,
	$-C(O)NH-C(Me)_2-C(O)iPr,$
	-C(O)NH-C(Me) ₂ -C(O)tBu,
	-C(O)NH-CMe(Et)-C(O)OH,
20	-C(O)NH-CH(F)-C(O)OH,
	-C(O)NH-CH(CF ₃)-C(O)OH,
	-C(O)NH-CH(OH)-C(O)OH,
	-C(O)NH-CH(cyclopropyl)-C(O)OH,
	$-C(O)NH-C(Me)_2-C(O)OH,$
25	$-C(O)NH-C(Me)_2-C(O)OH$,
	-C(O)NH-CF(Me)-C(O)OH,
	- $C(O)NH-C(Me)(CF_3)-C(O)OH$,
	-C(O)NH-C(Me)(OH)-C(O)OH,
	-C(O)NH-C(Me)(cyclopropyl)CO ₂ H
30	$-C(O)NMe-CH_2-C(O)OH$,
	-C(O)NMe-CH ₂ -C(O)OMe,
	$-C(O)NMe-CH_2-C(O)OEt$,

-248-

	-C(O)NMe-CH ₂ -C(O)OiPr,
	-C(O)NMe-CH ₂ -C(O)tBu,
	-C(O)NMe-CH ₂ -C(O)OH,
	-C(O)NMe-CH(Me)-C(O)OH,
5	-C(O)NMe-CH(F)-C(O)OH,
	-C(O)NMe-CH(CF ₃)-C(O)OH,
	-C(O)NMe-CH(OH)-C(O)OH,
	-C(O)NMe-CH(cyclopropyl)-C(O)OH,
	-C(O)NMe-C(Me) ₂ -C(O)OH,
10	-C(O)NMe-CF(Me)-C(O)OH,
	-C(O)NMe-C(Me)(CF ₃)-C(O)OH,
	-C(O)NMe-C(Me)(OH)-C(O)OH,
	-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
	-C(O)NHS(O)Me,
15	-C(O)NHSO ₂ Me,
	-C(O)-NH-5-tetrazolyl,
	-C(O)NHS(O)Me,
	-C(O)NHS(O)Et,
	-C(O)NHSO ₂ Me,
20	-C(O)NHSO ₂ Et,
	-C(O)NHS(O)iPr,
	-C(O)NHSO ₂ iPr,
	-C(O)NHS(O)tBu,
	-C(O)NHSO ₂ tBu,
25	-C(O)NHCH ₂ S(O)Me,
	-C(O)NHCH ₂ S(O)Et,
	-C(O)NHCH ₂ SO ₂ Me,
	-C(O)NHCH ₂ SO ₂ Et,
	-C(O)NHCH2CH2S(O)Me,
30	-C(O)NHCH ₂ CH ₂ S(O)Et,
	-C(O)NHCH ₂ CH ₂ SO ₂ Me,
	-C(O)NHCH ₂ CH ₂ SO ₂ Et,

-249-

	-C(O)N(Me)S(O)Me,
	-C(O)N(Me)SO ₂ Me,
	-C(O)-N(Me)-5-tetrazolyl,
	-C(O)N(Me)S(O)Me,
5	-C(O)N(Me)S(O)Et,
	-C(O)N(Me)SO ₂ Me,
	-C(O)N(Me)SO ₂ Et,
	-C(O)N(Me)S(O)iPr,
	-C(O)N(Me))SO ₂ iPr,
10	-C(O)N(Me))S(O)tBu,
	-C(O)N(Me)SO ₂ tBu,
	-C(O)N(Me)CH ₂ S(O)Me,
	-C(O)N(Me)CH ₂ S(O)Et,
	-C(O)N(Me)CH ₂ SO ₂ Me,
15	-C(O)N(Me)CH ₂ SO ₂ Et,
	-C(O)N(Me)CH ₂ CH ₂ S(O)Me,
	-C(O)N(Me)CH ₂ CH ₂ S(O)Et,
	-C(O)N(Me)CH ₂ CH ₂ SO ₂ Me,
	-C(O)N(Me)CH ₂ CH ₂ SO ₂ Et,
20	-CH ₂ CO ₂ H,
	-CH ₂ -5-tetrazolyl,
	-CH ₂ CO ₂ Me,
	-CH ₂ CO ₂ Et,
	-CH ₂ NHS(O)Me,
25	-CH ₂ NHS(O)Et,
	-CH ₂ NHSO ₂ Me,
	-CH ₂ NHSO ₂ Et,
	-CH ₂ NHS(O)iPr,
	-CH ₂ NHSO ₂ iPr,
30	-CH ₂ NHS(O)tBu,
	-CH ₂ NHSO ₂ tBu,
	-CH ₂ NHCH ₂ CH ₂ SO ₂ CH ₃ ,

-250-

	-CH ₂ NH(CH ₂ CO ₂ H),
	-CH ₂ N(C(O)Me)(CH ₂ CO ₂ H),
	-CH ₂ -N-pyrrolidin-2-one,
	-CH ₂ -(1-methylpyrrolidin-2-one-3-yl),
5	-CH ₂ S(O)Me,
	-CH ₂ S(O)Et,
	$-CH_2S(O)_2Me$,
	-CH ₂ S(O) ₂ Et,
	-CH ₂ S(O)iPr,
10	-CH ₂ S(O) ₂ iPr,
	-CH ₂ S(O)tBu,
	-CH ₂ S(O) ₂ tBu,
	-CH ₂ CO ₂ H, CH ₂ C(O)NH ₂ ,
	-CH ₂ C(O)NMe ₂ ,
15	-CH ₂ C(O)NHMe,
	-CH ₂ C(O)-N-pyrrolidine,
	$-CH_2S(O)_2Me$, $CH_2S(O)Me$,
	-CH(OH) CO ₂ H,
	-CH(OH)C(O)NH ₂ ,
20	-CH(OH)C(O)NHMe,
	-CH(OH)C(O)NMe ₂ ,
	-CH(OH)C(O)NEt ₂ ,
	-CH ₂ CH ₂ CO ₂ H,
	-CH ₂ CH ₂ CO ₂ Me,
25	-CH ₂ CH ₂ CO ₂ Et,
	-CH ₂ CH ₂ C(O)NH ₂ ,
	-CH ₂ CH ₂ C(O)NHMe,
	-CH ₂ CH ₂ C(O)NMe ₂ ,
	-CH ₂ CH ₂ -5-tetrazolyl,
30	-CH ₂ CH ₂ S(O) ₂ Me,
	-CH ₂ CH ₂ S(O)Me,
	-CH ₂ CH ₂ S(O) ₂ Et,

-251-

-CH₂CH₂S(O) Et,

-CH₂CH₂S(O)iPr,

- $CH_2CH_2S(O)_2iPr$,

-CH₂CH₂S(O)tBu,

 $-\mathrm{CH_2CH_2S}(\mathrm{O})_2\mathrm{tBu},$

 $-CH_2CH_2S(O)NH_2$,

-CH₂CH₂S(O)NHMe,

 $-\mathrm{CH}_2\mathrm{CH}_2\mathrm{S}(\mathrm{O})\mathrm{NMe}_2,$

 $-CH_2CH_2S(O)_2NH_2$,

 $-CH_2CH_2S(O)_2NHMe$

 $-CH_2CH_2S(O)_2NMe_2$,

-CH₂CH₂CH₂S(O)Me,

- $CH_2CH_2CH_2S(O)Et$,

 $-\mathrm{CH_2CH_2CH_2S}(\mathrm{O})_2\mathrm{Me},$

- $CH_2CH_2CH_2S(O)_2Et$,

-C(O)OH,

-5-tetrazolyl,

15

5

10

20

WO 2004/048309

-1,3,4-oxadiazolin-2-one-5-yl,

-imidazolidine-2,4-dione-5-yl,

-isoxazol-3-ol-yl, or

5

-1,3,4-oxadiazolin-2-thione-5-yl.

2. A compound represented by formula I or a pharmaceutically acceptable salt or a prodrug derivative thereof:

$$Z_{B}$$
 R
 R'
 Z_{C}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{2}

wherein;

R and R' are independently methyl, ethyl, propyl, or 1-methylethyl;

 R_1 and R_2 are independently selected from the group consisting of hydrogen, fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, ethyl, propyl, 1-methylethyl, 1,1-dimethylethyl, butyl, 1-methylpropyl, 2-methylpropyl, or cyclopropyl;

Z_B is a branched alkyl terminated group represented by the formula:

10

5

R_B is 1-methylethyl; 1-methylpropyl; 2-methylpropyl; 1,1-dimethylpropyl; 1,2-dimethylpropyl; 2,2-dimethylpropyl;

3-methyl-3-hydroxy-4,4-dimethylpentyl; 3-methyl-3-hydroxy-4,4-dimethylpentenyl; 3-methyl-3-hydroxy-4,4-dimethylpentyl; 3-ethyl-3-hydroxy-4,4-dimethylpentynyl;

3-ethyl-3-hydroxy-4,4-dimethylpentenyl; or 3-ethyl-3-hydroxy-4,4-dimethylpentynyl;

 (L_1) and (L_2) and (L_3) are independently divalent linking groups where L_1 is -O-, $-CH_2$ -, C(O)-, -CHOH-, -CH(Me)-, or -C(Me)OH-; L_2 is $-CH_2$ -, -C(O)-, -CHOH-, -CH(Me)-, or -C(Me)OH-; or -C(Me)OH- and -C(Me)OH-; or -C(Me)OH- is the group

20

L₃ is a bond, -CH₂-, -CHOH-, -CH(Me)-, -C(O)-, or -C(Me)OH-; Z_C is a group selected from

-C(O)CH₂S(O)Me, 5 -C(O)CH₂S(O)Et, -C(O)CH₂S(O)₂Me,-C(O)CH₂S(O)₂Et,-C(O)CH₂CH₂S(O)Me, -C(O)CH2CH2S(O)Et, 10 -C(O)CH2CH2S(O)2Me, $-C(O)CH_2CH_2S(O)_2Et$, -C(O)CH(Me)CH2CO2H, -C(O)CH(Me)CH₂CO₂Me, -C(O)CH(Me)CH2CO2Et, 15 -C(O)CH(Me)CH2CO2iPr, -C(O)CH(Me)CH2CO2tBu, -C(O)CH(Me)CH(Me)CO₂H, -C(O)CH(Me)CH(Me)CO₂Me, -C(O)CH(Me)CH(Me)CO₂Et, 20 -C(O)CH(Me)CH(Me)CO2iPr, -C(O)CH(Me)CH(Me)CO2tBu, -C(O)CH(Me)C(Me) 2CO2H, -C(O)CH(Me)C(Me) 2CO₂Me, -C(O)CH(Me)C(Me) 2CO2Et, 25 -C(O)CH(Me)C(Me) 2CO2iPr, -C(O)CH(Me)C(Me) 2CO2tBu, -C(O)CH(Me)CH(Et)CO₂H, -C(O)CH(Me)CH(Et)CO₂Me, -C(O)CH(Me)CH(Et)CO₂Et, 30 -C(O)CH(Me)CH(Et)CO2iPr, -C(O)CH(Me)CH(Et)CO2tBu, -C(O)C(O)OH,

-256-

 $-C(O)C(O)NH_2$ -C(O)C(O)NHMe, -C(O)C(O)NMe2, -C(O)NH₂,5 $-C(O)NMe_2$, $-C(O)NH-CH_2-C(O)OH$, $-C(O)NH-CH_2-C(O)OMe$, -C(O)NH-CH₂-C(O)OEt, $-C(O)NH-CH_2-C(O)OiPr$, 10 -C(O)NH-CH₂-C(O)OtBu, -C(O)NH-CH(Me)-C(O)OH, -C(O)NH-CH(Me)-C(O)OMe, -C(O)NH-CH(Me)-C(O)OEt, -C(O)NH-CH(Me)-C(O)iPr, -C(O)NH-CH(Me)-C(O)tBu, 15 -C(O)NH-CH(Et)-C(O)OH, $-C(O)NH-C(Me)_2-C(O)OH$, -C(O)NH-C(Me)₂-C(O)OMe, $-C(O)NH-C(Me)_2-C(O)OEt$, 20 $-C(O)NH-C(Me)_2-C(O)iPr$, $-C(O)NH-C(Me)_2-C(O)tBu$, -C(O)NH-CMe(Et)-C(O)OH, -C(O)NH-CH(F)-C(O)OH, -C(O)NH-CH(CF₃)-C(O)OH, -C(O)NH-CH(OH)-C(O)OH, 25 -C(O)NH-CH(cyclopropyl)-C(O)OH, $-C(O)NH-C(Me)_2-C(O)OH$, $-C(O)NH-C(Me)_2-C(O)OH$, -C(O)NH-CF(Me)-C(O)OH, 30 -C(O)NH-C(Me)(CF₃)-C(O)OH, -C(O)NH-C(Me)(OH)-C(O)OH, -C(O)NH-C(Me)(cyclopropyl)CO₂H,

-257-

-C(O)NMe-CH₂-C(O)OH, -C(O)NMe-CH₂-C(O)OMe, $-C(O)NMe-CH_2-C(O)OEt$, -C(O)NMe-CH₂-C(O)OiPr, -C(O)NMe-CH₂-C(O)tBu, -C(O)NMe-CH(Me)-C(O)OH,

-C(O)NMe-CH(F)-C(O)OH,

-C(O)NMe-CH(CF₃)-C(O)OH,

-C(O)NMe-CH(OH)-C(O)OH,

-C(O)NMe-CH(cyclopropyl)-C(O)OH,

-C(O)NMe-C(Me)₂-C(O)OH,

-C(O)NMe-CF(Me)-C(O)OH,

 $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,

-C(O)NMe-C(Me)(OH)-C(O)OH,

-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH, or

-C(O)-N(Me)-5-tetrazolyl.

3. A compound represented by formula I or a pharmaceutically acceptable salt or a prodrug derivative thereof:

20

25

5

10

15

wherein;

R and R' are independently methyl or ethyl;

 R_1 and R_2 are independently selected from the group consisting of hydrogen, fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, or cyclopropyl;

Z_B is a branched alkyl terminated selected from the formulae:

-258-

-259-

Z_C is selected from

5

-C(O)NH₂, -C(O)NMe₂,

-260-

	-C(O)NH-CH ₂ -C(O)OH,
	$-C(O)NH-CH_2-C(O)OMe$,
	$-C(O)NH-CH_2-C(O)OEt$,
	-C(O)NH-CH ₂ -C(O)OiPr,
5	-C(O)NH-CH ₂ -C(O)OtBu,
	-C(O)NH-CH(Me)-C(O)OH,
	-C(O)NH-CH(Me)-C(O)OMe,
	-C(O)NH-CH(Me)-C(O)OEt,
	-C(O)NH-CH(Me)-C(O)iPr,
10	-C(O)NH-CH(Me)-C(O)tBu,
	-C(O)NH-CH(Et)-C(O)OH,
	-C(O)NH-C(Me) ₂ -C(O)OH,
	-C(O)NH-C(Me) ₂ -C(O)OMe,
	-C(O)NH-C(Me) ₂ -C(O)OEt,
15	-C(O)NH-C(Me) ₂ -C(O)iPr,
	-C(O)NH-C(Me) ₂ -C(O)tBu,
	-C(O)NH-CMe(Et)-C(O)OH,
	-C(O)NH-CH(F)-C(O)OH,
	-C(O)NH-CH(CF ₃)-C(O)OH,
20	-C(O)NH-CH(OH)-C(O)OH,
	-C(O)NH-CH(cyclopropyl)-C(O)OH,
	$-C(O)NH-C(Me)_2-C(O)OH$,
	$-C(O)NH-C(Me)_2-C(O)OH$,
	-C(O)NH-CF(Me)-C(O)OH,
25	$-C(O)NH-C(Me)(CF_3)-C(O)OH$,
	-C(O)NH-C(Me)(OH)-C(O)OH,
	-C(O)NH-C(Me)(cyclopropyl)CO ₂ H,
	$-C(O)NMe-CH_2-C(O)OH$,
	-C(O)NMe-CH ₂ -C(O)OMe,
30	$-C(O)NMe-CH_2-C(O)OEt$,
	$-C(O)NMe-CH_2-C(O)OiPr$,
	$-C(O)NMe-CH_2-C(O)tBu$,

-261-

-C(O)NMe-CH(Me)-C(O)OH,

-C(O)NMe-CH(F)-C(O)OH,

-C(O)NMe-CH(CF₃)-C(O)OH,

-C(O)NMe-CH(OH)-C(O)OH,

-C(O)NMe-CH(cyclopropyl)-C(O)OH,

-C(O)NMe-C(Me)₂-C(O)OH,

-C(O)NMe-CF(Me)-C(O)OH,

-C(O)NMe-C(Me)(CF₃)-C(O)OH,

-C(O)NMe-C(Me)(OH)-C(O)OH,

-C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,

-C(O)-N(Me)-5-tetrazolyl,

4. A compound or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by the formula:

5

10

15

wherein;

5

said compound is selected from a compound code numbered 1 thru 468, with each compound having the specific selection of substituents R_B , R_C , L_1 , L_2 , and L_3 shown in the horizontal line following the compound code number, as set out in the following Table 1:

Table 1

No.	$R_{\mathbf{B}}$	L ₃	L_2	L_1	RC
1	tBu	C(O)	CH2	0	CO2Me
2	tBu	СНОН	CH2	О	CO2Me
3	tBu	C(Me)OH	CH2	0	CO2Me
4	tBu	C(O)	CH(Me)	O	CO2Me
5	tBu	СНОН	CH(Me)	0	CO2Me
6	tBu	C(Me)OH	CH(Me)	0	CO2Me
7	tBu	C(O)	CH2	0	CO2H
8	tBu	СНОН	CH2	0	CO2H
9	tBu	C(Me)OH	CH2	0	CO2H
10	tBu	C(O)	CH(Me)	O	CO2H
11	tBu	СНОН	CH(Me)	0	CO2H
12	tBu	C(Me)OH	CH(Me)	O	CO2H
13	tBu	C(O)	CH2	0	C(O)NH2
14	tBu	СНОН	CH2	0	C(O)NH2
15	tBu	C(Me)OH	CH2	0	C(O)NH2
16	tBu	C(O)	CH(Me)	0	C(O)NH2
17	tBu	СНОН	CH(Me)	0	C(O)NH2
18	tBu	C(Me)OH	CH(Me)	О	C(O)NH2

19	tBu	C(O)	CH2	0	C(O)NMe2
20	tBu	СНОН	CH2	0	C(O)NMe2
21	tBu	C(Me)OH	CH2	0	C(O)NMe2
22	tBu	C(O)	CH(Me)	0	C(O)NMe2
23	tBu	СНОН	CH(Me)	0	C(O)NMe2
24	tBu	C(Me)OH	CH(Me)	0	C(O)NMe2
25	tBu	C(O)	CH2	0	5-tetrazolyl
26	tBu	СНОН	CH2	0	5-tetrazolyl
27	tBu	C(Me)OH	CH2	0	5-tetrazolyl
28	tBu	C(O)	CH(Me)	0	5-tetrazolyl
29	tBu	СНОН	CH(Me)	0	5-tetrazolyl
30	tBu	C(Me)OH	CH(Me)	.0	5-tetrazolyl
31	tBu	C(O)	CH2	0	C(O)-NH-5-tetrazolyl
32	tBu	СНОН	CH2	0	C(O)-NH-5-tetrazolyl
33	tBu	C(Me)OH	CH2	0	C(O)-NH-5-tetrazolyl
34	tBu	C(O)	CH(Me)	0	C(O)-NH-5-tetrazolyl
35	tBu	СНОН	CH(Me)	0	C(O)-NH-5-tetrazolyl
36	tBu	C(Me)OH	CH(Me)	0	C(O)-NH-5-tetrazolyl
37	tBu	C(O)	CH2	0	C(O)NHCH2SO2Me
38	tBu	СНОН	CH2	0	C(O)NHCH2SO2Me
39	tBu	C(Me)OH	CH2	0	C(O)NHCH2SO2Me
40	tBu	C(O)	CH(Me)	0	C(O)NHCH2SO2Me
41	tBu	СНОН	CH(Me)	0	C(O)NHCH2SO2Me
42	tBu	C(Me)OH	CH(Me)	0	C(O)NHCH2SO2Me
43	tBu	C(O)	CH2	0	C(O)NHCH2S(O)Me
44	tBu	СНОН	CH2	0	C(O)NHCH2S(O)Me
45	tBu	C(Me)OH	CH2	0	C(O)NHCH2S(O)Me
46	tBu	C(O)	CH(Me)	О	C(O)NHCH2S(O)Me
47	tBu	СНОН	CH(Me)	0	C(O)NHCH2S(O)Me
48	tBu	C(Me)OH	CH(Me)	0	C(O)NHCH2S(O)Me
49	tBu	C(O)	CH2	0	C(O)NHCH2CH2SO2Me

-264-

50	tBu	СНОН	CH2	0	C(O)NHCH2CH2SO2Me
51	tBu	C(Me)OH	CH2	0	C(O)NHCH2CH2SO2Me
52	tBu	C(O)	CH(Me)	0	C(O)NHCH2CH2SO2Me
53	tBu	СНОН	CH(Me)	0	C(O)NHCH2CH2SO2Me
54	tBu	C(Me)OH	CH(Me)	0	C(O)NHCH2CH2SO2Me
55	tBu	C(O)	CH2	0	C(O)NHCH2CH2S(O)Me
56	tBu	СНОН	CH2	0	C(O)NHCH2CH2S(O)Me
57	tBu	C(Me)OH	CH2	0	C(O)NHCH2CH2S(O)Me
58	tBu	C(O)	CH(Me)	0	C(O)NHCH2CH2S(O)Me
59	tBu	СНОН	CH(Me)	0	C(O)NHCH2CH2S(O)Me
60	tBu	C(Me)OH	CH(Me)	0	C(O)NHCH2CH2S(O)Me
61	tBu	C(O)	CH2	0	C(O)NHSO2Me
62	tBu	СНОН	CH2	0	C(O)NHSO2Me
63	tBu	C(Me)OH	CH2	0	C(O)NHSO2Me
64	tBu	C(O)	CH(Me)	0	C(O)NHSO2Me
65	tBu	СНОН	CH(Me)	0	C(O)NHSO2Me
66	tBu	C(Me)OH	CH(Me)	0	C(O)NHSO2Me
67	tBu	C(O)	CH2	0	C(O)NHS(O)Me
68	tBu	СНОН	CH2	0	C(O)NHS(O)Me
69	tBu	C(Me)OH	CH2	0	C(O)NHS(O)Me
70	tBu	C(O)	CH(Me)	0	C(O)NHS(O)Me
71	tBu	СНОН	CH(Me)	0	C(O)NHS(O)Me
72	tBu	C(Me)OH	CH(Me)	О	C(O)NHS(O)Me
73	tBu	C(O)	CH2	0	C(O)NHSO2Et
74	tBu	СНОН	CH2	0	C(O)NHSO2Et
75	tBu	C(Me)OH	CH2	О	C(O)NHSO2Et
76	tBu	C(O)	CH(Me)	0	C(O)NHSO2Et
77	tBu	СНОН	CH(Me)	О	C(O)NHSO2Et
78	tBu	C(Me)OH	CH(Me)	О	C(O)NHSO2Et
79	tBu	C(O)	CH2	О	C(O)NHS(O)Et
80	tBu	СНОН	CH2	0	C(O)NHS(O)Et

-265-

81	tBu	C(Me)OH	CH2	0	C(O)NHS(O)Et
82	tBu	C(O)	CH(Me)	О	C(O)NHS(O)Et
83	tBu	СНОН	CH(Me)	0	C(O)NHS(O)Et
84	tBu	C(Me)OH	CH(Me)	0	C(O)NHS(O)Et
85	tBu	C(O)	CH2	0	C(O)NHSO2iPr
86	tBu	СНОН	CH2	0	C(O)NHSO2iPr
87	tBu	C(Me)OH	CH2	0	C(O)NHSO2iPr
88	tBu	C(O)	CH(Me)	0	C(O)NHSO2iPr
89	tBu	СНОН	CH(Me)	0	C(O)NHSO2iPr
90	tBu	C(Me)OH	CH(Me)	0	C(O)NHSO2iPr
91	tBu	C(O)	CH2	0	C(O)NHS(O)iPr
92	tBu	СНОН	CH2	0	C(O)NHS(O)iPr
93	tBu	C(Me)OH	CH2	0	C(O)NHS(O)iPr
94	tBu	C(O)	CH(Me)	0	C(O)NHS(O)iPr
95	tBu	СНОН	CH(Me)	О	C(O)NHS(O)iPr
96	tBu	C(Me)OH	CH(Me)	О	C(O)NHS(O)iPr
97	tBu	C(O)	CH2	0	C(O)NHSO2tBu
98	tBu	СНОН	CH2	0	C(O)NHSO2tBu
99	tBu	C(Me)OH	CH2	0	C(O)NHSO2tBu
100	tBu	C(O)	CH(Me)	0	C(O)NHSO2tBu
101	tBu	СНОН	CH(Me)	0	C(O)NHSO2tBu
102	tBu	C(Me)OH	CH(Me)	0	C(O)NHSO2tBu
103	tBu	C(O)	CH2	0	C(O)NHS(O)tBu
104	tBu	СНОН	CH2	0	C(O)NHS(O)tBu
105	tBu	C(Me)OH	CH2	0	C(O)NHS(O)tBu
106	tBu	C(O)	CH(Me)	0	C(O)NHS(O)tBu
107	tBu	СНОН	CH(Me)	0	C(O)NHS(O)tBu
108	tBu	C(Me)OH	CH(Me)	О	C(O)NHS(O)tBu
109	tBu	C(O)	CH2	0	CH2NHSO2Me
110	tBu	СНОН	CH2	0	CH2NHSO2Me
111	tBu	C(Me)OH	CH2	0	CH2NHSO2Me

-266-

112	tBu	C(O)	CH(Me)	0	CH2NHSO2Me
113	tBu	СНОН	CH(Me)	0	CH2NHSO2Me
114	tBu	C(Me)OH	CH(Me)	0	CH2NHSO2Me
115	tBu	C(O)	CH2	0	CH2NHS(O)Me
116	tBu	СНОН	CH2	О	CH2NHS(O)Me
117	tBu	C(Me)OH	CH2	0	CH2NHS(O)Me
118	tBu	C(O)	CH(Me)	0	CH2NHS(O)Me
119	tBu	СНОН	CH(Me)	0	CH2NHS(O)Me
120	tBu	C(Me)OH	CH(Me)	0	CH2NHS(O)Me
121	tBu	C(O)	CH2	0	CH2NHSO2Et
122	tBu	СНОН	CH2	0	CH2NHSO2Et
123	tBu	C(Me)OH	CH2	0	CH2NHSO2Et
124	tBu	C(O)	CH(Me)	0	CH2NHSO2Et
125	tBu	СНОН	CH(Me)	0	CH2NHSO2Et
126	tBu	C(Me)OH	CH(Me)	0	CH2NHSO2Et
127	tBu	C(O)	CH2	0	CH2NHS(O)Et
128	tBu	СНОН	CH2	0	CH2NHS(O)Et
129	tBu	C(Me)OH	CH2	0	CH2NHS(O)Et
130	tBu	C(O)	CH(Me)	O	CH2NHS(O)Et
131	tBu	СНОН	CH(Me)	О	CH2NHS(O)Et
132	tBu	C(Me)OH	CH(Me)	0	CH2NHS(O)Et
133	tBu	C(O)	CH2	0	CH2NHSO2iPr
134	tBu	СНОН	CH2	0	CH2NHSO2iPr
135	tBu	C(Me)OH	CH2	О	CH2NHSO2iPr
136	tBu	C(O)	CH(Me)	O	CH2NHSO2iPr
137	tBu	СНОН	CH(Me)	О	CH2NHSO2iPr
138	tBu	C(Me)OH	CH(Me)	0	CH2NHSO2iPr
139	tBu	C(O)	CH2	0	CH2NHS(O)iPr
140	tBu	СНОН	CH2	О	CH2NHS(O)iPr
141	tBu	C(Me)OH	CH2	0	CH2NHS(O)iPr
142	tBu	C(O)	CH(Me)	О	CH2NHS(O)iPr

-267-

143	tBu	СНОН	CH(Me)	0	CH2NHS(O)iPr
144	tBu	C(Me)OH	CH(Me)	0	CH2NHS(O)iPr
145	tBu	C(O)	CH2	0	CH2NHSO2tBu
146	tBu	СНОН	CH2	0	CH2NHSO2tBu
147	tBu	C(Me)OH	CH2	0	CH2NHSO2tBu
148	tBu	C(O)	CH(Me)	0	CH2NHSO2tBu
149	tBu	СНОН	CH(Me)	0	CH2NHSO2tBu
150	tBu	C(Me)OH	CH(Me)	0	CH2NHSO2tBu
151	tBu	C(O)	CH2	0	CH2NHS(O)tBu
152	tBu	СНОН	CH2	O	CH2NHS(O)tBu
153	tBu	C(Me)OH	CH2	0	CH2NHS(O)tBu
154	tBu	C(O)	CH(Me)	0	CH2NHS(O)tBu
155	tBu	СНОН	CH(Me)	0	CH2NHS(O)tBu
156	tBu	C(Me)OH	CH(Me)	0	CH2NHS(O)tBu
157	tBu	C(O)	CH2	0	CH2-N-pyrrolidin-2-one
158	tBu	СНОН	CH2	0	CH2-N-pyrrolidin-2-one
159	tBu	C(Me)OH	CH2	0	CH2-N-pyrrolidin-2-one
160	tBu	C(O)	CH(Me)	0	CH2-N-pyrrolidin-2-one
161	tBu	СНОН	CH(Me)	0	CH2-N-pyrrolidin-2-one
162	tBu	C(Me)OH	CH(Me)	О	CH2-N-pyrrolidin-2-one
163	tBu	C(O)	CH2	0	CH2-(1-methylpyrrolidin-2-one-3-
					yl)
164	tBu	СНОН	CH2	О	CH2-(1-methylpyrrolidin-2-one-3-
					yl)
165	tBu	C(Me)OH	CH2	0	CH2-(1-methylpyrrolidin-2-one-3-
					yl)
166	tBu	C(O)	CH(Me)	0	CH2-(1-methylpyrrolidin-2-one-3-
					yl)
167	tBu	СНОН	CH(Me)	0	CH2-(1-methylpyrrolidin-2-one-3-
					yl)
168	tBu	C(Me)OH	CH(Me)	0	CH2-(1-methylpyrrolidin-2-one-3-

-268-

					yl)
169	tBu	C(O)	CH2	0	CH2CO2Me
170	tBu	СНОН	CH2	0	CH2CO2Me
171	tBu	C(Me)OH	CH2	О	CH2CO2Me
172	tBu	C(O)	CH(Me)	0	CH2CO2Me
173	tBu	СНОН	CH(Me)	0	CH2CO2Me
174	tBu	C(Me)OH	CH(Me)	0	CH2CO2Me
175	tBu	C(O)	CH2	0	CH2CO2H
176	tBu	СНОН	CH2	0	CH2CO2H
177	tBu	C(Me)OH	CH2	0	CH2CO2H
178	tBu	C(O)	CH(Me)	О	CH2CO2H
179	tBu	СНОН	CH(Me)	0	CH2CO2H
180	tBu	C(Me)OH	CH(Me)	0	CH2CO2H
181	tBu	· C(O)	CH2	0	CH2C(O)NH2
182	tBu	СНОН	CH2	0	CH2C(O)NH2
183	tBu	C(Me)OH	CH2	0	CH2C(O)NH2
184	tBu	C(O)	CH(Me)	0	CH2C(O)NH2
185	tBu	СНОН	CH(Me)	0	CH2C(O)NH2
186	tBu	C(Me)OH	CH(Me)	0	CH2C(O)NH2
187	tBu	C(O)	CH2	0	CH2C(O)NMe2
188	tBu	СНОН	CH2	0	CH2C(O)NMe2
189	tBu	C(Me)OH	CH2	0	CH2C(O)NMe2
190	tBu	C(O)	CH(Me)	0	CH2C(O)NMe2
191	tBu	СНОН	CH(Me)	О	CH2C(O)NMe2
192	tBu	C(Me)OH	CH(Me)	О	CH2C(O)NMe2
193	tBu	C(O)	CH2	0	CH2C(O)-N-pyrrolidine
194	tBu	СНОН	CH2	0	CH2C(O)-N-pyrrolidine
195	tBu	C(Me)OH	CH2	0	CH2C(O)-N-pyrrolidine
196	tBu	C(O)	CH(Me)	О	CH2C(O)-N-pyrrolidine
197	tBu	СНОН	CH(Me)	О	CH2C(O)-N-pyrrolidine
198	tBu	C(Me)OH	CH(Me)	0	CH2C(O)-N-pyrrolidine

-269-

199	tBu	C(O)	CH2	0	CH2-5-tetrazolyl
200	tBu	СНОН	CH2	0	CH2-5-tetrazolyl
201	tBu	C(Me)OH	CH2	0	CH2-5-tetrazolyl
202	tBu	C(O)	CH(Me)	0	CH2-5-tetrazolyl
203	tBu	СНОН	CH(Me)	0	CH2-5-tetrazolyl
204	tBu	C(Me)OH	CH(Me)	0	CH2-5-tetrazolyl
205	tBu	C(O)	CH2	0	C(O)C(O)OH
206	tBu	СНОН	CH2	О	C(O)C(O)OH
207	tBu	C(Me)OH	CH2	0	C(O)C(O)OH
208	tBu	C(O)	CH(Me)	0	C(O)C(O)OH
209	tBu	СНОН	CH(Me)	0	C(O)C(O)OH
210	tBu	C(Me)OH	CH(Me)	0	C(O)C(O)OH
211	tBu	C(O)	CH2	0	CH(OH)C(O)OH
212	tBu	СНОН	CH2	0	CH(OH)C(O)OH
213	tBu	C(Me)OH	CH2	0	CH(OH)C(O)OH
214	tBu	C(O)	CH(Me)	0	CH(OH)C(O)OH
215	tBu	СНОН	CH(Me)	0	CH(OH)C(O)OH
216	tBu	C(Me)OH	CH(Me)	0	CH(OH)C(O)OH
217	tBu	C(O)	CH2	0	C(O)C(O)NH2
218	tBu	СНОН	CH2	0	C(O)C(O)NH2
219	tBu	C(Me)OH	CH2	0	C(O)C(O)NH2
220	tBu	C(O)	CH(Me)	O	C(O)C(O)NH2
221	tBu	СНОН	CH(Me)	О	C(O)C(O)NH2
222	tBu	C(Me)OH	CH(Me)	0	C(O)C(O)NH2
223	tBu	C(O)	CH2	0	CH(OH)C(O)NH2
224	tBu	СНОН	CH2	0	CH(OH)C(O)NH2
225	tBu	C(Me)OH	CH2	0	CH(OH)C(O)NH2
226	tBu	C(O)	CH(Me)	0	CH(OH)C(O)NH2
227	tBu	СНОН	CH(Me)	0	CH(OH)C(O)NH2
228	tBu	C(Me)OH	CH(Me)	О	CH(OH)C(O)NH2
229	tBu	C(O)	CH2	0	C(O)C(O)NMe2

-270-

230	tBu	СНОН	CH2	0	C(O)C(O)NMe2
231	tBu	C(Me)OH	CH2	0	C(O)C(O)NMe2
232	tBu	C(O)	CH(Me)	0	C(O)C(O)NMe2
233	tBu	СНОН	CH(Me)	0	C(O)C(O)NMe2
234	tBu	C(Me)OH	CH(Me)	0	C(O)C(O)NMe2
235	tBu	C(O)	CH2	0	CH(OH)C(O)NMe2
236	tBu	СНОН	CH2	0	CH(OH)C(O)NMe2
237	tBu	C(Me)OH	CH2	0	CH(OH)C(O)NMe2
238	tBu	C(O)	CH(Me)	0	CH(OH)C(O)NMe2
239	tBu	СНОН	CH(Me)	0	CH(OH)C(O)NMe2
240	tBu	C(Me)OH	CH(Me)	0	CH(OH)C(O)NMe2
241	tBu	C(O)	CH2	О	CH2CH2CO2H
242	tBu	СНОН	CH2	0	CH2CH2CO2H
243	tBu	C(Me)OH	CH2	0	CH2CH2CO2H
244	tBu	C(O)	CH(Me)	0	CH2CH2CO2H
245	tBu	СНОН	CH(Me)	0	CH2CH2CO2H
246	tBu	C(Me)OH	CH(Me)	0	CH2CH2CO2H
247	tBu	C(O)	CH2	0	CH2CH2C(O)NH2
248	tBu	СНОН	CH2	О	CH2CH2C(O)NH2
249	tBu	C(Me)OH	CH2	0	CH2CH2C(O)NH2
250	tBu	C(O)	CH(Me)	0	CH2CH2C(O)NH2
251	tBu	СНОН	CH(Me)	0	CH2CH2C(O)NH2
252	tBu	C(Me)OH	CH(Me)	О	CH2CH2C(O)NH2
253	tBu	C(O)	CH2	0	CH2CH2C(O)NMe2
254	tBu	СНОН	CH2	О	CH2CH2C(O)NMe2
255	tBu	C(Me)OH	CH2	О	CH2CH2C(O)NMe2
256	tBu	C(O)	CH(Me)	0	CH2CH2C(O)NMe2
257	tBu	СНОН	CH(Me)	О	CH2CH2C(O)NMe2
258	tBu	C(Me)OH	CH(Me)	О	CH2CH2C(O)NMe2
259	tBu	C(O)	CH2	0	CH2CH2-5-tetrazolyl
260	tBu	СНОН	CH2	0	CH2CH2-5-tetrazolyl

-271-

261	tBu	C(Me)OH	CH2	0	CH2CH2-5-tetrazolyl
262	tBu	C(O)	CH(Me)	0	CH2CH2-5-tetrazolyl
263	tBu	СНОН	CH(Me)	0	CH2CH2-5-tetrazolyl
264	tBu	C(Me)OH	CH(Me)	0	CH2CH2-5-tetrazolyl
265	tBu	C(O)	CH2	0	CH2S(O)2Me
266	tBu	СНОН	CH2	0	CH2S(O)2Me
267	tBu	C(Me)OH	CH2	0	CH2S(O)2Me
268	tBu	C(O)	CH(Me)	0	CH2S(O)2Me
269	tBu	СНОН	CH(Me)	0	CH2S(O)2Me
270	tBu	C(Me)OH	CH(Me)	0	CH2S(O)2Me
271	tBu	C(O)	CH2	0	CH2S(O)Me
272	tBu	СНОН	CH2	0	CH2S(O2Me
273	tBu	C(Me)OH	CH2	0	CH2S(O)Me
274	tBu	C(O)	CH(Me)	0	CH2S(O)Me
275	tBu	СНОН	CH(Me)	0	CH2S(O)Me
276	tBu	C(Me)OH	CH(Me)	0	CH2S(O)Me
277	tBu	C(O)	CH2	0	CH2CH2S(O)2Me
278	tBu	СНОН	CH2	0	CH2CH2S(O)2Me
279	tBu	C(Me)OH	CH2	0	CH2CH2S(O)2Me
280	tBu	C(O)	CH(Me)	0	CH2CH2S(O)2Me
281	tBu	СНОН	CH(Me)	0	CH2CH2S(O)2Me
282	tBu	C(Me)OH	CH(Me)	O	CH2CH2S(O)2Me
283	tBu	C(O)	CH2	О	CH2CH2S(O)Me
284	tBu	СНОН	CH2	О	CH2CH2S(O)Me
285	tBu	C(Me)OH	CH2	0	CH2CH2S(O)Me
286	tBu	C(O)	CH(Me)	0	CH2CH2S(O)Me
287	tBu	СНОН	CH(Me)	0	CH2CH2S(O)Me
288	tBu	C(Me)OH	CH(Me)	0	CH2CH2S(O)Me
289	tBu	C(O)	CH2	О	CH2CH2CH2S(O)2Me
290	tBu	СНОН	CH2	О	CH2CH2CH2S(O)2Me
291	tBu	C(Me)OH	CH2	О	CH2CH2CH2S(O)2Me

292 tBu C(O) CH(Me) O CH2CH2CH2S(O)2Me 293 tBu CHOH CH(Me) O CH2CH2CH2S(O)2Me 294 tBu C(Me)OH CH(Me) O CH2CH2CH2S(O)2Me 295 tBu C(O) CH2 O CH2CH2CH2S(O)Me 296 tBu CHOH CH2 O CH2CH2CH2S(O)Me 297 tBu C(Me)OH CH2 O CH2CH2CH2S(O)Me 298 tBu C(O) CH(Me) O CH2CH2CH2S(O)Me 299 tBu CHOH CH(Me) O CH2CH2CH2S(O)Me 300 tBu C(Me)OH CH(Me) O CH2CH2CH2S(O)Me
293 tBu CHOH CH(Me) O CH2CH2CH2S(O)2Me 294 tBu C(Me)OH CH(Me) O CH2CH2CH2S(O)2Me 295 tBu C(O) CH2 O CH2CH2CH2S(O)Me 296 tBu CHOH CH2 O CH2CH2CH2S(O)Me 297 tBu C(Me)OH CH2 O CH2CH2CH2S(O)Me 298 tBu C(O) CH(Me) O CH2CH2CH2S(O)Me 299 tBu CHOH CH(Me) O CH2CH2CH2S(O)Me
294 tBu C(Me)OH CH(Me) O CH2CH2CH2S(O)2Me 295 tBu C(O) CH2 O CH2CH2CH2S(O)Me 296 tBu CHOH CH2 O CH2CH2CH2S(O)Me 297 tBu C(Me)OH CH2 O CH2CH2CH2S(O)Me 298 tBu C(O) CH(Me) O CH2CH2CH2S(O)Me 299 tBu CHOH CH(Me) O CH2CH2CH2S(O)Me
295 tBu C(O) CH2 O CH2CH2CH2S(O)Me 296 tBu CH0H CH2 O CH2CH2CH2S(O)Me 297 tBu C(Me)OH CH2 O CH2CH2CH2S(O)Me 298 tBu C(O) CH(Me) O CH2CH2CH2S(O)Me 299 tBu CH0H CH(Me) O CH2CH2CH2S(O)Me
296 tBu CHOH CH2 O CH2CH2CH2S(O)Me 297 tBu C(Me)OH CH2 O CH2CH2CH2S(O)Me 298 tBu C(O) CH(Me) O CH2CH2CH2S(O)Me 299 tBu CHOH CH(Me) O CH2CH2CH2S(O)Me
297 tBu C(Me)OH CH2 O CH2CH2CH2S(O)Me 298 tBu C(O) CH(Me) O CH2CH2CH2S(O)Me 299 tBu CHOH CH(Me) O CH2CH2CH2S(O)Me
298 tBu C(O) CH(Me) O CH2CH2CH2S(O)Me 299 tBu CHOH CH(Me) O CH2CH2CH2S(O)Me
299 tBu CHOH CH(Me) O CH2CH2CH2S(O)Me
CITZCITZCITZS(O)IVIE
300 tBu C(Me)OH CH(Me) O CH2CH2CH2S(O)Me
, , , , , , , , , , , , , , , , , , , ,
301 tBu C(O) CH2 O CH2S(O)2Et
302 tBu CHOH CH2 O CH2S(O)2Et
303 tBu C(Me)OH CH2 O CH2S(O)2Et
304 tBu C(O) CH(Me) O CH2S(O)2Et
305 tBu CHOH CH(Me) O CH2S(O)2Et
306 tBu C(Me)OH CH(Me) O CH2S(O)2Et
307 tBu C(O) CH2 O CH2S(O)Et
308 tBu CHOH CH2 O CH2S(O)Et
309 tBu C(Me)OH CH2 O CH2S(O)Et
310 tBu C(O) CH(Me) O CH2S(O)Et
311 tBu CHOH CH(Me) O CH2S(O)Et
312 tBu C(Me)OH CH(Me) O CH2S(O)Et
313 tBu C(O) CH2 O CH2CH2S(O)2Et
314 tBu CHOH CH2 O CH2CH2S(O)2Et
315 tBu C(Me)OH CH2 O CH2CH2S(O)2Et
316 tBu C(O) CH(Me) O CH2CH2S(O)2Et
317 tBu CHOH CH(Me) O CH2CH2S(O)2Et
318 tBu C(Me)OH CH(Me) O CH2CH2S(O)2Et
319 tBu C(O) CH2 O CH2CH2S(O)Et
320 tBu CHOH CH2 O CH2CH2S(O)Et
321 tBu C(Me)OH CH2 O CH2CH2S(O)Et
322 tBu C(O) CH(Me) O CH2CH2S(O)Et

			-273-	-	
323	tBu	СНОН	CH(Me)	О	CH2CH2S(O)Et
324	tBu	C(Me)OH	CH(Me)	О	CH2CH2S(O)Et
325	tBu	C(O)	CH2	О	CH2CH2CH2S(O)2Et
326	tBu	СНОН	CH2	0	CH2CH2CH2S(O)2Et
327	tBu	C(Me)OH	CH2	О	CH2CH2CH2S(O)2Et
328	tBu	C(O)	CH(Me)	0	CH2CH2CH2S(O)2Et
329	tBu	СНОН	CH(Me)	О	CH2CH2CH2S(O)2Et
330	tBu	C(Me)OH	CH(Me)	0	CH2CH2CH2S(O)2Et
331	tBu	C(O)	CH2	0	CH2CH2CH2S(O)Et
332	tBu	СНОН	CH2	0	CH2CH2CH2S(O)Et
333	tBu	C(Me)OH	CH2	0	CH2CH2CH2S(O)Et
334	tBu	C(O)	CH(Me)	0	CH2CH2CH2S(O)Et
335	tBu	СНОН	CH(Me)	0	CH2CH2CH2S(O)Et
336	tBu	C(Me)OH	CH(Me)	0	CH2CH2CH2S(O)Et
337	tBu	C(O)	CH2	0	CH2S(O)2iPr
338	tBu	СНОН	CH2	0	CH2S(O)2iPr
339	tBu	C(Me)OH	CH2	0	CH2S(O)2iPr
340	tBu	C(O)	CH(Me)	0	CH2S(O)2iPr
341	tBu	СНОН	CH(Me)	0	CH2S(O)2iPr
342	tBu	C(Me)OH	CH(Me)	0	CH2S(O)2iPr
343	tBu	C(O)	CH2	0	CH2S(O)iPr
344	tBu	СНОН	CH2	0	CH2S(O)iPr
345	tBu	C(Me)OH	CH2	0	CH2S(O)iPr
346	tBu	C(O)	CH(Me)	0	CH2S(O)iPr
347	tBu	СНОН	CH(Me)	0	CH2S(O)iPr
348	tBu	C(Me)OH	CH(Me)	0	CH2S(O)iPr
349	tBu	C(O)	CH2	0	CH2CH2S(O)2iPr
350	tBu	СНОН	CH2	0	CH2CH2S(O)2iPr
351	tBu	C(Me)OH	CH2	0	CH2CH2S(O)2iPr
352	tBu	C(O)	CH(Me)	0	CH2CH2S(O)2iPr
353	tBu	СНОН	CH(Me)	О	CH2CH2S(O)2iPr

-274-

354	tBu	C(Me)OH	CH(Me)	0	CH2CH2S(O)2iPr
355	tBu	C(O)	CH2	0	CH2CH2S(O)iPr
356	tBu	СНОН	CH2	0	CH2CH2S(O)iPr
357	tBu	C(Me)OH	CH2	О	CH2CH2S(O)iPr
358	tBu	C(O)	CH(Me)	О	CH2CH2S(O)iPr
359	tBu	СНОН	CH(Me)	0	CH2CH2S(O)iPr
360	tBu	C(Me)OH	CH(Me)	О	CH2CH2S(O)iPr
361	tBu	C(O)	CH2	0	CH2S(O)2tBu
362	tBu	СНОН	CH2	0	CH2S(O)2tBu
363	tBu	C(Me)OH	CH2	0	CH2S(O)2tBu
364	tBu	C(O)	CH(Me)	О	CH2S(O)2tBu
365	tBu	СНОН	CH(Me)	О	CH2S(O)2tBu
366	tBu	C(Me)OH	CH(Me)	О	CH2S(O)2tBu
367	tBu	C(O)	CH2	О	CH2S(O)tBu
368	tBu	СНОН	CH2	0	CH2S(O)tBu
369	tBu	C(Me)OH	CH2	0	CH2S(O)tBu
370	tBu	C(O)	CH(Me)	Ο .	CH2S(O)tBu
371	tBu	СНОН	CH(Me)	О	CH2S(O)tBu
372	tBu	C(Me)OH	CH(Me)	0	CH2S(O)tBu
373	tBu	C(O)	CH2	0	CH2CH2S(O)2tBu
374	tBu	СНОН	CH2	0	CH2CH2S(O)2tBu
375	tBu	C(Me)OH	CH2	, O	CH2CH2S(O)2tBu
376	tBu	C(O)	CH(Me)	0	CH2CH2S(O)2tBu
377	tBu	СНОН	CH(Me)	0	CH2CH2S(O)2tBu
378	tBu	C(Me)OH	CH(Me)	0	CH2CH2S(O)2tBu
379	tBu	C(O)	CH2	0	CH2CH2S(O)tBu
380	tBu	СНОН	CH2	0	CH2CH2S(O)tBu
381	tBu	C(Me)OH	CH2	0	CH2CH2S(O)tBu
382	tBu	C(O)	CH(Me)	0	CH2CH2S(O)tBu
383	tBu	СНОН	CH(Me)	0	CH2CH2S(O)tBu
384	tBu	C(Me)OH	CH(Me)	0	CH2CH2S(O)tBu
			<u> </u>	<u> </u>	<u></u>

-275-

385	tBu	C(O)	CH2	0	CH2CH2S(O)2NH2
386	tBu	СНОН	CH2	0	CH2CH2S(O)2NH2
387	tBu	C(Me)OH	CH2	0	CH2CH2S(O)2NH2
388	tBu	C(O)	CH(Me)	0	CH2CH2S(O)2NH2
389	tBu	СНОН	CH(Me)	0	CH2CH2S(O)2NH2
390	tBu	C(Me)OH	CH(Me)	0	CH2CH2S(O)2NH2
391	tBu	C(O)	CH2	0	CH2CH2S(O)NH2
392	tBu	СНОН	CH2	0	CH2CH2S(O)NH2
393	tBu	C(Me)OH	CH2	0	CH2CH2S(O)NH2
394	tBu	C(O)	CH(Me)	0	CH2CH2S(O)NH2
395	tBu	СНОН	CH(Me)	0	CH2CH2S(O)NH2
396	tBu	C(Me)OH	CH(Me)	0	CH2CH2S(O)NH2
397	tBu	C(O)	CH2	0	CH2CH2S(O)2NMe2
398	tBu	СНОН	CH2	0	CH2CH2S(O)2NMe2
399	tBu	C(Me)OH	CH2	0	CH2CH2S(O)2NMe2
400	, tBu	C(O)	CH(Me)	0	CH2CH2S(O)2NMe2
401	tBu	СНОН	CH(Me)	0	CH2CH2S(O)2NMe2
402	tBu	C(Me)OH	CH(Me)	0	CH2CH2S(O)2NMe2
403	tBu	C(O)	CH2	0	CH2CH2S(O)NMe2
404	tBu	СНОН	CH2	0	CH2CH2S(O)NMe2
405	tBu	C(Me)OH	CH2	0	CH2CH2S(O)NMe2
406	tBu	C(O)	CH(Me)	0	CH2CH2S(O)NMe2
407	tBu	СНОН	CH(Me)	0	CH2CH2S(O)NMe2
408	tBu	C(Me)OH	CH(Me)	0	CH2CH2S(O)NMe2
409	tBu	C(O)	CH2	0	C(O)CH2S(O)2Me
410	tBu	СНОН	CH2	0	C(O)CH2S(O)2Me
411	tBu	C(Me)OH	CH2	0	C(O)CH2S(O)2Me
412	tBu	C(O)	CH(Me)	0	C(O)CH2S(O)2Me
413	tBu	СНОН	CH(Me)	0	C(O)CH2S(O)2Me
414	tBu	C(Me)OH	CH(Me)	0	C(O)CH2S(O)2Me
415	tBu	C(O)	CH2	0	C(O)CH2S(O)Me

-276-

416	tBu	СНОН	CH2	0	C(O)CH2S(O)Me
417	tBu	C(Me)OH	CH2	0	C(O)CH2S(O)Me
418	tBu	C(O)	CH(Me)	0	C(O)CH2S(O)Me
419	tBu	СНОН	CH(Me)	0	C(O)CH2S(O)Me
420	tBu	C(Me)OH	CH(Me)	0	C(O)CH2S(O)Me
421	tBu	C(O)	CH2	0	C(O)CH2CH2S(O)2Me
422	tBu	СНОН	CH2	0	C(O)CH2CH2S(O)2Me
423	tBu	C(Me)OH	CH2	0	C(O)CH2CH2S(O)2Me
424	tBu	C(O)	CH(Me)	0	C(O)CH2CH2S(O)2Me
425	tBu	СНОН	CH(Me)	0	C(O)CH2CH2S(O)2Me
426	tBu	C(Me)OH	CH(Me)	0	C(O)CH2CH2S(O)2Me
427	tBu	C(O)	CH2	0	C(O)CH2CH2S(O)Me
428	tBu	СНОН	CH2	0	C(O)CH2CH2S(O)Me
429	tBu	C(Me)OH	CH2	0	C(O)CH2CH2S(O)Me
430	tBu	C(O)	CH(Me)	0	C(O)CH2CH2S(O)Me
431	tBu	СНОН	CH(Me)	′ O	C(O)CH2CH2S(O)Me
432	tBu	C(Me)OH	CH(Me)	0	C(O)CH2CH2S(O)Me
433	tBu	C(O)	CH2	0	CH2CH2CH2S(O)2NH2
434	tBu	СНОН	CH2	0	CH2CH2CH2S(O)2NH2
435	tBu	C(Me)OH	CH2	0	CH2CH2CH2S(O)2NH2
436	tBu	C(O)	CH(Me)	0	CH2CH2CH2S(O)2NH2
437	tBu	СНОН	CH(Me)	0	CH2CH2CH2S(O)2NH2
438	tBu	C(Me)OH	CH(Me)	0	CH2CH2CH2S(O)2NH2
439	tBu	C(O)	CH2	0	CH2CH2CH2S(O)NH2
440	tBu	СНОН	CH2	0	CH2CH2CH2S(O)NH2
441	tBu	C(Me)OH	CH2	0	CH2CH2CH2S(O)NH2
442	tBu	C(O)	CH(Me)	0	CH2CH2CH2S(O)NH2
443	tBu	СНОН	CH(Me)	0	CH2CH2CH2S(O)NH2
444	tBu	C(Me)OH	CH(Me)	O	CH2CH2CH2S(O)NH2
445	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
446	tBu	СНОН	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl

-277-

447	tBu	COMPOSIT	CITO	CITO	
		C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
448	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
449	tBu	СНОН	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
450	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
451	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
452	tBu	СНОН	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
453	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
454	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
455	tBu	СНОН	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
456	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
457	tBu	C(O)	CH2	CH2	imidazolidine-2,4-dione-5-yl
458	tBu	СНОН	CH2	CH2	imidazolidine-2,4-dione-5-yl
459	tBu	C(Me)OH	CH2	CH2	imidazolidine-2,4-dione-5-yl
460	tBu	C(O)	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
461	tBu	СНОН	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
462	tBu	C(Me)OH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
463	tBu	C(O)	CH2	CH2	isoxazol-3-ol-5-yl
464	tBu	СНОН	CH2	CH2	isoxazol-3-ol-5-yl
465	tBu	C(Me)OH	CH2	CH2	isoxazol-3-ol-5-yl
466	tBu	C(O)	CH(Me)	CH2	isoxazol-3-ol-5-yl
467	tBu	СНОН	CH(Me)	CH2	isoxazol-3-ol-5-yl
468	tBu	C(Me)OH	CH(Me)	CH2	isoxazol-3-ol-5-yl

5. A compound or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by the formula:

said compound is selected from a compound code numbered 1A thru 468A, with each compound having the specific selection of substituents R_B , R_C , L_1 , L_2 , and L_3 shown in the row following the compound code number, as set out in the following Table 2:

Table 2

1 4010 2							
	R _B	L ₃	L ₂	L_1	R _C		
1A	tBu	C(O)	CH2	CH2	CO2Me		
2A	tBu	СНОН	CH2	CH2	CO2Me		
3A	tBu	C(Me)OH	CH2	CH2	CO2Me		
4A	tBu	C(O)	CH(Me)	CH2	CO2Me		
5A	tBu	СНОН	CH(Me)	CH2	CO2Me		
6A	tBu	C(Me)OH	CH(Me)	CH2	CO2Me		
7A	tBu	C(O)	CH2	CH2	CO2H		
8A	tBu	СНОН	CH2	CH2	CO2H		
9A	tBu	C(Me)OH	CH2	CH2	CO2H		
10A	tBu	C(O)	CH(Me)	CH2	CO2H		
11A	tBu ·	СНОН	CH(Me)	CH2	CO2H		
12A	tBu	C(Me)OH	CH(Me)	CH2	CO2H		
13A	tBu	C(O)	CH2	CH2	C(O)NH2		
14A	tBu	СНОН	CH2	CH2	C(O)NH2		
15A	tBu	C(Me)OH	CH2	CH2	C(O)NH2		
16A	tBu	C(O)	CH(Me)	CH2	C(O)NH2		
17A	tBu	СНОН	CH(Me)	CH2	C(O)NH2		
18A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NH2		
19A	tBu	C(O)	CH2	CH2	C(O)NMe2		
20A	tBu	СНОН	CH2	CH2	C(O)NMe2		
21A	tBu	C(Me)OH	CH2	CH2	C(O)NMe2		

5

-279-

22A	tBu	C(O)	CH(Me)	CH2	C(O)NMe2
23A	tBu	СНОН	CH(Me)	CH2	C(O)NMe2
24A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NMe2
25A	tBu	C(O)	CH2	CH2	5-tetrazolyl
26A	tBu	СНОН	CH2	CH2	5-tetrazolyl
27A	tBu	C(Me)OH	CH2	CH2	5-tetrazolyl
28A	tBu	C(O)	CH(Me)	CH2	5-tetrazolyl
29A	tBu	СНОН	CH(Me)	CH2	5-tetrazolyl
30A	tBu	C(Me)OH	CH(Me)	CH2	5-tetrazolyl
31A	tBu	C(O)	CH2	CH2	C(O)-NH-5-tetrazolyl
32A	tBu	СНОН	CH2	CH2	C(O)-NH-5-tetrazolyl
33A	tBu	C(Me)OH	CH2	CH2	C(O)-NH-5-tetrazolyl
34A	tBu	C(O)	CH(Me)	CH2	C(O)-NH-5-tetrazolyl
35A	tBu	СНОН	CH(Me)	CH2	C(O)-NH-5-tetrazolyl
36A	tBu	C(Me)OH	CH(Me)	CH2	C(O)-NH-5-tetrazolyl
37A	tBu	C(O)	CH2	CH2	C(O)NHCH2SO2Me
38A	tBu	СНОН	CH2	CH2	C(O)NHCH2SO2Me
39A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2SO2Me
40A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2SO2Me
41A	tBu	СНОН	CH(Me)	CH2	C(O)NHCH2SO2Me
42A	tBu	С(Ме)ОН	CH(Me)	CH2	C(O)NHCH2SO2Me
43A	tBu	C(O)	CH2	CH2	C(O)NHCH2S(O)Me
44A	tBu	СНОН	CH2	CH2	C(O)NHCH2S(O)Me
45A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2S(O)Me
46A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2S(O)Me
47A	tBu	СНОН	CH(Me)	CH2	C(O)NHCH2S(O)Me
48A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2S(O)Me
49A	tBu	C(O)	CH2	CH2	C(O)NHCH2CH2SO2Me
50A	tBu	СНОН	CH2	CH2	C(O)NHCH2CH2SO2Me
51A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2CH2SO2Me
52A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2CH2SO2Me

-280-

53A	tBu	СНОН	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
54A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2CH2SO2Me
55A	tBu	C(O)	CH2	CH2	C(O)NHCH2CH2S(O)Me
56A	tBu	СНОН	CH2	CH2	C(O)NHCH2CH2S(O)Me
57A	tBu	C(Me)OH	CH2	CH2	C(O)NHCH2CH2S(O)Me
58A	tBu	C(O)	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
59A	tBu	СНОН	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
60A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHCH2CH2S(O)Me
61A	tBu	C(O)	CH2	CH2	C(O)NHSO2Me
62A	tBu	СНОН	CH2	CH2	C(O)NHSO2Me
63A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2Me
64A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2Me
65A	tBu	СНОН	CH(Me)	CH2	C(O)NHSO2Me
66A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2Me
67A	tBu	C(O)	CH2	CH2	C(O)NHS(O)Me
68A	tBu	СНОН	CH2	CH2	C(O)NHS(O)Me
69A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)Me
70A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)Me
71A	tBu	СНОН	CH(Me)	CH2	C(O)NHS(O)Me
72A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)Me
73A	tBu	C(O)	CH2	CH2	C(O)NHSO2Et
74A	tBu	CHOH	CH2	CH2	C(O)NHSO2Et
75A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2Et
76A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2Et
77A	tBu	СНОН	CH(Me)	CH2	C(O)NHSO2Et
78A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2Et
79A	tBu	C(O)	CH2	CH2	C(O)NHS(O)Et
80A	tBu	СНОН	CH2	CH2	C(O)NHS(O)Et
81A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)Et
82A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)Et
83A	tBu	СНОН	CH(Me)	CH2	C(O)NHS(O)Et

-281-

84A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)Et
85A	tBu	C(O)	CH2	CH2	C(O)NHSO2iPr
86A	tBu	СНОН	CH2	CH2	C(O)NHSO2iPr
87A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2iPr
88A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2iPr
89A	tBu	СНОН	CH(Me)	CH2	C(O)NHSO2iPr
90A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2iPr
91A	tBu	C(O)	CH2	CH2	C(O)NHS(O)iPr
92A	tBu	СНОН	CH2	CH2	C(O)NHS(O)iPr
93A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)iPr
94A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)iPr
95A	tBu	СНОН	CH(Me)	CH2	C(O)NHS(O)iPr
96A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)iPr
97A	tBu	C(O)	CH2	CH2	C(O)NHSO2tBu
98A	tBu	СНОН	CH2	CH2	C(O)NHSO2tBu
99A	tBu	C(Me)OH	CH2	CH2	C(O)NHSO2tBu
100A	tBu	C(O)	CH(Me)	CH2	C(O)NHSO2tBu
101A	tBu	СНОН	CH(Me)	CH2	C(O)NHSO2tBu
102A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHSO2tBu
103A	tBu	C(O)	CH2	CH2	C(O)NHS(O)tBu
104A	tBu	СНОН	CH2	CH2	C(O)NHS(O)tBu
105A	tBu	C(Me)OH	CH2	CH2	C(O)NHS(O)tBu
106A	tBu	C(O)	CH(Me)	CH2	C(O)NHS(O)tBu
107A	tBu	СНОН	CH(Me)	CH2	C(O)NHS(O)tBu
108A	tBu	C(Me)OH	CH(Me)	CH2	C(O)NHS(O)tBu
109A	tBu	C(O)	CH2	CH2	CH2NHSO2Me
110A	tBu	СНОН	CH2	CH2	CH2NHSO2Me
111A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2Me
112A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2Me
113A	tBu	СНОН	CH(Me)	CH2	CH2NHSO2Me
114A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2Me

-282-

115A	tBu	C(O)	CH2	CH2	CH2NHS(O)Me
116A	tBu	СНОН	CH2	CH2	CH2NHS(O)Me
117A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)Me
118A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)Me
119A	tBu	СНОН	CH(Me)	CH2	CH2NHS(O)Me
120A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)Me
121A	tBu	C(O)	CH2	CH2	CH2NHSO2Et
122A	tBu	СНОН	CH2	CH2	CH2NHSO2Et
123A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2Et
124A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2Et
125A	tBu	СНОН	CH(Me)	CH2	CH2NHSO2Et
126A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2Et
127A	tBu	C(O)	CH2	CH2	CH2NHS(O)Et
128A	tBu	СНОН	CH2	CH2	CH2NHS(O)Et
129A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)Et
130A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)Et
131A	tBu	СНОН	CH(Me)	CH2	CH2NHS(O)Et
132A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)Et
133A	tBu	C(O)	CH2	CH2	CH2NHSO2iPr
134A	tBu	СНОН	CH2	CH2	CH2NHSO2iPr
135A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2iPr
136A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2iPr
137A	tBu	СНОН	CH(Me)	CH2	CH2NHSO2iPr
138A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2iPr
139A	tBu	C(O)	CH2	CH2	CH2NHS(O)iPr
140A	tBu	СНОН	CH2	CH2	CH2NHS(O)iPr
141A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)iPr
142A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)iPr
143A	tBu	СНОН	CH(Me)	CH2	CH2NHS(O)iPr
144A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)iPr
145A	tBu	C(O)	CH2	CH2	CH2NHSO2tBu

-283-

146A	tBu	СНОН	CH2	CH2	CH2NHSO2tBu
147A	tBu	C(Me)OH	CH2	CH2	CH2NHSO2tBu
148A	tBu	C(O)	CH(Me)	CH2	CH2NHSO2tBu
149A	tBu	СНОН	CH(Me)	СН2	CH2NHSO2tBu
150A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHSO2tBu
151A	tBu	C(O)	CH2	CH2	CH2NHS(O)tBu
152A	tBu	СНОН	CH2	CH2	CH2NHS(O)tBu
153A	tBu	C(Me)OH	CH2	CH2	CH2NHS(O)tBu
154A	tBu	C(O)	CH(Me)	CH2	CH2NHS(O)tBu
155A	tBu	СНОН	CH(Me)	CH2	CH2NHS(O)tBu
156A	tBu	C(Me)OH	CH(Me)	CH2	CH2NHS(O)tBu
157A	tBu	C(O)	CH2	CH2	CH2-N-pyrrolidin-2-one
158A	tBu	СНОН	CH2	CH2	CH2-N-pyrrolidin-2-one
159A	tBu	C(Me)OH	CH2	CH2	CH2-N-pyrrolidin-2-one
160A	tBu	C(O)	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
161A	tBu	СНОН	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
162A	tBu	C(Me)OH	CH(Me)	CH2	CH2-N-pyrrolidin-2-one
163A	tBu	C(O)	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-
			i		yl)
164A	tBu	СНОН	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-
					yl)
165A	tBu	C(Me)OH	CH2	CH2	CH2-(1-methylpyrrolidin-2-one-3-
1					yl)
166A	tBu	C(O)	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-
				}	yl)
167A	tBu	СНОН	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-
					yl)
168A	tBu	C(Me)OH	CH(Me)	CH2	CH2-(1-methylpyrrolidin-2-one-3-
					yl)
169A	tBu	C(O)	CH2	CH2	CH2CO2Me
170A	tBu	СНОН	CH2	CH2	CH2CO2Me

ì

-284-

171A	tBu	C(Me)OH	CH2	CH2	CH2CO2Me
172A	tBu	C(O)	CH(Me)	CH2	CH2CO2Me
173A	tBu	СНОН	CH(Me)	CH2	CH2CO2Me
174A	tBu	C(Me)OH	CH(Me)	CH2	CH2CO2Me
175A	tBu	C(O)	CH2	CH2	CH2CO2H
176A	tBu	СНОН	CH2	CH2	CH2CO2H
177A	tBu	C(Me)OH	CH2	CH2	CH2CO2H
178A	tBu	C(O)	CH(Me)	CH2	CH2CO2H
179A	tBu	СНОН	CH(Me)	CH2	CH2CO2H
180A	tBu	C(Me)OH	CH(Me)	CH2	CH2CO2H
181A	tBu	C(O)	CH2	CH2	CH2C(O)NH2
182A	tBu	СНОН	CH2	CH2	CH2C(O)NH2
183A	tBu	C(Me)OH	CH2	CH2	CH2C(O)NH2
184A	tBu	C(O)	CH(Me)	CH2	CH2C(O)NH2
185A	tBu	CHOH	CH(Me)	CH2	CH2C(O)NH2
186A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)NH2
187A	tBu	C(O)	CH2	CH2	CH2C(O)NMe2
188A	tBu	CHOH	CH2	CH2	CH2C(O)NMe2
189A	tBu	C(Me)OH	CH2	CH2	CH2C(O)NMe2
190A	tBu	C(O)	CH(Me)	CH2	CH2C(O)NMe2
191A	tBu	СНОН	CH(Me)	CH2	CH2C(O)NMe2
192A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)NMe2
193A	tBu	C(O)	CH2	CH2	CH2C(O)-N-pyrrolidine
194A	tBu	СНОН	CH2	CH2	CH2C(O)-N-pyrrolidine
195A	tBu	C(Me)OH	CH2	CH2	CH2C(O)-N-pyrrolidine
196A	tBu	C(O)	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
197A	tBu	СНОН	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
198A	tBu	C(Me)OH	CH(Me)	CH2	CH2C(O)-N-pyrrolidine
199A	tBu	C(O)	CH2	CH2	CH2-5-tetrazolyl
200A	tBu	СНОН	CH2	CH2	CH2-5-tetrazolyl
201A	tBu	C(Me)OH	CH2	CH2	CH2-5-tetrazolyl

202A	tBu	C(O)	CH(Me)	CH2	CH2-5-tetrazolyl
203A	tBu	СНОН	CH(Me)	CH2	CH2-5-tetrazolyl
204A	tBu	C(Me)OH	CH(Me)	CH2	CH2-5-tetrazolyl
205A	tBu	C(O)	CH2	CH2	C(O)C(O)OH
206A	tBu	СНОН	CH2	CH2	C(O)C(O)OH
207A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)OH
208A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)OH
209A	tBu	СНОН	CH(Me)	CH2	C(O)C(O)OH
210A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)OH
211A	tBu	C(O)	CH2	CH2	CH(OH)C(O)OH
212A	tBu	СНОН	CH2	CH2	CH(OH)C(O)OH
213A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)OH
214A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)OH
215A	tBu	СНОН	CH(Me)	CH2	CH(OH)C(O)OH
216A	tBu	C(Me)OH	CH(Me)	CH2	СН(ОН)С(О)ОН
217A	tBu	C(O)	CH2	CH2	C(O)C(O)NH2
218A	tBu	СНОН	CH2	CH2	C(O)C(O)NH2
219A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)NH2
220A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)NH2
221A	tBu	СНОН	CH(Me)	CH2	C(O)C(O)NH2
222A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)NH2
223A	tBu	C(O)	CH2	CH2	CH(OH)C(O)NH2
224A	tBu	СНОН	CH2	CH2	CH(OH)C(O)NH2
225A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)NH2
226A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)NH2
227A	tBu	СНОН	CH(Me)	CH2	CH(OH)C(O)NH2
228A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)NH2
229A	tBu	C(O)	CH2	CH2	C(O)C(O)NMe2
230A	tBu	СНОН	CH2	CH2	C(O)C(O)NMe2
231A	tBu	C(Me)OH	CH2	CH2	C(O)C(O)NMe2
232A	tBu	C(O)	CH(Me)	CH2	C(O)C(O)NMe2

-286-

233A	tBu	СНОН	CH(Me)	CH2	C(O)C(O)NMe2
234A	tBu	C(Me)OH	CH(Me)	CH2	C(O)C(O)NMe2
235A	tBu	C(O)	CH2	CH2	CH(OH)C(O)NMe2
236A	tBu	СНОН	CH2	CH2	CH(OH)C(O)NMe2
237A	tBu	C(Me)OH	CH2	CH2	CH(OH)C(O)NMe2
238A	tBu	C(O)	CH(Me)	CH2	CH(OH)C(O)NMe2
239A	tBu	СНОН	CH(Me)	CH2	CH(OH)C(O)NMe2
240A	tBu	C(Me)OH	CH(Me)	CH2	CH(OH)C(O)NMe2
241A	tBu	C(O)	CH2	CH2	CH2CH2CO2H
242A	tBu	СНОН	CH2	CH2	CH2CH2CO2H
243A	tBu	C(Me)OH	CH2	CH2	CH2CH2CO2H
244A	tBu	C(O)	CH(Me)	CH2	CH2CH2CO2H
245A	tBu	СНОН	CH(Me)	CH2	CH2CH2CO2H
246A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CO2H
247A	tBu	C(O)	CH2	CH2	CH2CH2C(O)NH2
248A	tBu	СНОН	CH2	CH2	CH2CH2C(O)NH2
249A	tBu	C(Me)OH	CH2	CH2	CH2CH2C(O)NH2
250A	tBu	C(O)	CH(Me)	CH2	CH2CH2C(O)NH2
251A	tBu	СНОН	CH(Me)	CH2	CH2CH2C(O)NH2
252A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2C(O)NH2
253A	tBu	C(O)	CH2	CH2	CH2CH2C(O)NMe2
254A	tBu	СНОН	CH2	CH2	CH2CH2C(O)NMe2
255A	tBu	C(Me)OH	CH2	CH2	CH2CH2C(O)NMe2
256A	tBu	C(O)	CH(Me)	CH2	CH2CH2C(O)NMe2
257A	tBu	СНОН	CH(Me)	CH2	CH2CH2C(O)NMe2
258A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2C(O)NMe2
259A	tBu	C(O)	CH2	CH2	CH2CH2-5-tetrazolyl
260A	tBu	СНОН	CH2	CH2	CH2CH2-5-tetrazolyl
261A	tBu	C(Me)OH	CH2	CH2	CH2CH2-5-tetrazolyl
262A	tBu	C(O)	CH(Me)	CH2	CH2CH2-5-tetrazolyl
263A	tBu	СНОН	CH(Me)	CH2	CH2CH2-5-tetrazolyl

-287-

264A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2-5-tetrazolyl
265A	tBu	C(O)	CH2	CH2	CH2S(O)2Me
266A	tBu	СНОН	CH2	CH2	CH2S(O)2Me
267A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2Me
268A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2Me
269A	tBu	СНОН	CH(Me)	CH2	CH2S(O)2Me
270A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2Me
271A	tBu	C(O)	CH2	CH2	CH2S(O)Me
272A	tBu	СНОН	CH2	CH2	CH2S(O2Me
273A	tBu	C(Me)OH	CH2	CH2	CH2S(O)Me
274A	tBu	C(O)	CH(Me)	CH2	CH2S(O)Me
275A	tBu	СНОН	CH(Me)	CH2	CH2S(O)Me
276A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)Me
277A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2Me
278A	tBu	СНОН	CH2	CH2	CH2CH2S(O)2Me
279A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2Me
280A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2Me
281A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)2Me
282A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2Me
283A	tBu	C(O)	CH2	CH2	CH2CH2S(O)Me
284A	tBu	СНОН	CH2	CH2	CH2CH2S(O)Me
285A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)Me
286A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)Me
287A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)Me
288A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)Me
289A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2Me
290A	tBu	СНОН	CH2	CH2	CH2CH2CH2S(O)2Me
291A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2Me
292A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2Me
293A	tBu	СНОН	CH(Me)	CH2	CH2CH2CH2S(O)2Me
294A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2Me

-288-

295A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)Me
296A	tBu	СНОН	CH2	CH2	CH2CH2CH2S(O)Me
297A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)Me
298A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)Me
299A	tBu	СНОН	CH(Me)	CH2	CH2CH2CH2S(O)Me
300A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)Me
301A	tBu	C(O)	CH2	CH2	CH2S(O)2Et
302A	tBu	СНОН	CH2	CH2	CH2S(O)2Et
303A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2Et
304A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2Et
305A	tBu	СНОН	CH(Me)	CH2	CH2S(O)2Et
306A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2Et
307A	tBu	C(O)	CH2	CH2	CH2S(O)Et
308A	tBu	СНОН	CH2	CH2	CH2S(O)Et
309A	tBu	C(Me)OH	CH2	CH2	CH2S(O)Et
310A	tBu	C(O)	CH(Me)	CH2	CH2S(O)Et
311A	tBu	СНОН	CH(Me)	CH2	CH2S(O)Et
312A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)Et
313A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2Et
314A	tBu	СНОН	CH2	CH2	CH2CH2S(O)2Et
315A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2Et
316A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2Et
317A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)2Et
318A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2Et
319A	tBu	C(O)	CH2	CH2	CH2CH2S(O)Et
320A	tBu	СНОН	CH2	CH2	CH2CH2S(O)Et
321A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)Et
322A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)Et
323A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)Et
324A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)Et
325A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2Et

-289-

326A	tBu	СНОН	CH2	CH2	CH2CH2CH2S(O)2Et
327A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2Et
328A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2Et
329A	tBu	СНОН	CH(Me)	CH2	CH2CH2CH2S(O)2Et
330A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2Et
331A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)Et
332A	tBu	СНОН	CH2	CH2	CH2CH2CH2S(O)Et
333A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)Et
334A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)Et
335A	tBu	СНОН	CH(Me)	CH2	CH2CH2CH2S(O)Et
336A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)Et
337A	tBu	C(O)	CH2	CH2	CH2S(O)2iPr
338A	tBu	СНОН	CH2	CH2	CH2S(O)2iPr
339A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2iPr
340A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2iPr
341A	tBu	СНОН	CH(Me)	CH2	CH2S(O)2iPr
342A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2iPr
343A	tBu	C(O)	CH2	CH2	CH2S(O)iPr
344A	tBu	СНОН	CH2	CH2	CH2S(O)iPr
345A	tBu	C(Me)OH	CH2	CH2	CH2S(O)iPr
346A	tBu	C(O)	CH(Me)	CH2	CH2S(O)iPr
347A	tBu	СНОН	CH(Me)	CH2	CH2S(O)iPr
348A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)iPr
349A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2iPr
350A	tBu	СНОН	CH2	CH2	CH2CH2S(O)2iPr
351A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2iPr
352A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2iPr
353A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)2iPr
354A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2iPr
355A	tBu	C(O)	CH2	CH2	CH2CH2S(O)iPr
356A	tBu	СНОН	CH2	CH2	CH2CH2S(O)iPr

-290-

357A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)iPr
358A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)iPr
359A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)iPr
360A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)iPr
361A	tBu	C(O)	CH2	CH2	CH2S(O)2tBu
362A	tBu	СНОН	CH2	CH2	CH2S(O)2tBu
363A	tBu	C(Me)OH	CH2	CH2	CH2S(O)2tBu
364A	tBu	C(O)	CH(Me)	CH2	CH2S(O)2tBu
365A	tBu	СНОН	CH(Me)	CH2	CH2S(O)2tBu
366A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)2tBu
367A	tBu	C(O)	CH2	CH2	CH2S(O)tBu
368A	tBu	СНОН	CH2	CH2	CH2S(O)tBu
369A	tBu	C(Me)OH	CH2	CH2	CH2S(O)tBu
370A	tBu	C(O)	CH(Me)	CH2	CH2S(O)tBu
371A	tBu	СНОН	CH(Me)	CH2	CH2S(O)tBu
372A	tBu	C(Me)OH	CH(Me)	CH2	CH2S(O)tBu
373A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2tBu
374A	tBu	СНОН	CH2	CH2	CH2CH2S(O)2tBu
375A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2tBu
376A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2tBu
377A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)2tBu
378A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2tBu
379A	tBu	C(O)	CH2	CH2	CH2CH2S(O)tBu
380A	tBu	СНОН	CH2	CH2	CH2CH2S(O)tBu
381A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)tBu
382A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)tBu
383A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)tBu
384A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)tBu
385A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2NH2
386A	tBu	СНОН	CH2	CH2	CH2CH2S(O)2NH2
387A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2NH2

388A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2NH2
389A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)2NH2
390A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2NH2
391A	tBu	C(O)	CH2	CH2	CH2CH2S(O)NH2
392A	tBu	СНОН	CH2	CH2	CH2CH2S(O)NH2
393A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)NH2
394A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)NH2
395A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)NH2
396A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)NH2
397A	tBu	C(O)	CH2	CH2	CH2CH2S(O)2NMe2
398A	tBu	СНОН	CH2	CH2	CH2CH2S(O)2NMe2
399A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)2NMe2
400A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)2NMe2
401A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)2NMe2
402A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)2NMe2
403A	tBu	C(O)	CH2	CH2	CH2CH2S(O)NMe2
404A	tBu	СНОН	CH2	CH2	CH2CH2S(O)NMe2
405A	tBu	C(Me)OH	CH2	CH2	CH2CH2S(O)NMe2
406A	tBu	C(O)	CH(Me)	CH2	CH2CH2S(O)NMe2
407A	tBu	СНОН	CH(Me)	CH2	CH2CH2S(O)NMe2
408A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2S(O)NMe2
409A	tBu	C(O)	CH2	CH2	C(O)CH2S(O)2Me
410A	tBu	СНОН	CH2	CH2	C(O)CH2S(O)2Me
411A	tBu	C(Me)OH	CH2	CH2	C(O)CH2S(O)2Me
412A	tBu	C(O)	CH(Me)	CH2	C(O)CH2S(O)2Me
413A	tBu	СНОН	CH(Me)	CH2	C(O)CH2S(O)2Me
414A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2S(O)2Me
415A	tBu.	C(O)	CH2	CH2	C(O)CH2S(O)Me
416A	tBu	СНОН	CH2	CH2	C(O)CH2S(O)Me
417A	tBu	C(Me)OH	CH2	CH2	C(O)CH2S(O)Me
418A	tBu	C(O)	CH(Me)	CH2	C(O)CH2S(O)Me

-292-

419A	tBu	СНОН	CH(Me)	CH2	C(O)CH2S(O)Me
420A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2S(O)Me
421A	tBu	C(O)	CH2	CH2	C(O)CH2CH2S(O)2Me
422A	tBu	СНОН	CH2	CH2	C(O)CH2CH2S(O)2Me
423A	tBu	C(Me)OH	CH2	CH2	C(O)CH2CH2S(O)2Me
424A	tBu	C(O)	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
425A	tBu	СНОН	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
426A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2CH2S(O)2Me
427A	tBu	C(O)	CH2	CH2	C(O)CH2CH2S(O)Me
428A	tBu	СНОН	CH2	CH2	C(O)CH2CH2S(O)Me
429A	tBu	C(Me)OH	CH2	CH2	C(O)CH2CH2S(O)Me
430A	tBu	C(O)	CH(Me)	CH2	C(O)CH2CH2S(O)Me
431A	tBu	СНОН	CH(Me)	CH2	C(O)CH2CH2S(O)Me
432A	tBu	C(Me)OH	CH(Me)	CH2	C(O)CH2CH2S(O)Me
433A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)2NH2
434A	tBu	СНОН	CH2	CH2	CH2CH2CH2S(O)2NH2
435A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)2NH2
436A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
437A	tBu	СНОН	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
438A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)2NH2
439A	tBu	C(O)	CH2	CH2	CH2CH2CH2S(O)NH2
440A	tBu	СНОН	CH2	CH2	CH2CH2CH2S(O)NH2
441A	tBu	C(Me)OH	CH2	CH2	CH2CH2CH2S(O)NH2
442A	tBu	C(O)	CH(Me)	CH2	CH2CH2CH2S(O)NH2
443A	tBu	СНОН	CH(Me)	CH2	CH2CH2CH2S(O)NH2
444A	tBu	C(Me)OH	CH(Me)	CH2	CH2CH2CH2S(O)NH2
445A	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
446A	tBu	СНОН	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
447A	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-one-5-yl
448A	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
449A	tBu	СНОН	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl

-293-

450A	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-one-5-yl
451A	tBu	C(O)	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
452A	tBu	СНОН	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
453A	tBu	C(Me)OH	CH2	CH2	1,3,4-oxadiazolin-2-thione-5-yl
454A	tBu	C(O)	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
455A	tBu	СНОН	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
456A	tBu	C(Me)OH	CH(Me)	CH2	1,3,4-oxadiazolin-2-thione-5-yl
457A	tBu	C(O)	CH2	CH2	imidazolidine-2,4-dione-5-yl
458A	tBu	СНОН	CH2	CH2	imidazolidine-2,4-dione-5-yl
459A	tBu	C(Me)OH	CH2	CH2	imidazolidine-2,4-dione-5-yl
460A	tBu	C(O)	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
461A	tBu	СНОН	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
462A	tBu	C(Me)OH	CH(Me)	CH2	imidazolidine-2,4-dione-5-yl
463A	tBu	C(O)	CH2	CH2	isoxazol-3-ol-5-yl
464A	tBu	СНОН	CH2	CH2	isoxazol-3-ol-5-yl
465A	tBu	C(Me)OH	CH2	CH2	isoxazol-3-ol-5-yl
466A	tBu	C(O)	CH(Me)	CH2	isoxazol-3-ol-5-yl
467A	tBu	СНОН	CH(Me)	CH2	isoxazol-3-ol-5-yl
468A	tBu	C(Me)OH	CH(Me)	CH2	isoxazol-3-ol-5-yl

6. A compound or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by the formula:

$$R_{B}$$

where said compound is selected from a compound code numbered 1B thru 162B, with each compound having the specific selection of substituents R_B, R_C, L₁, L₂, and L₃ shown in the row following the compound code number, as set out in the following Table 3:

-294-

Table 3

1B			L_2	L_1	$R_{\mathbf{C}}$
	tBu	C(O)	CH2	0	-C(O)NH-CH ₂ -C(O)OH
2B	tBu	СНОН	CH2	0	-C(O)NH-CH ₂ -C(O)OH
3B	tBu	C(Me)OH	CH2	0	-C(O)NH-CH ₂ -C(O)OH
4B	tBu	C(O)	CH(Me)	0	-C(O)NH-CH ₂ -C(O)OH
5B	tBu	СНОН	CH(Me)	0	-C(O)NH-CH ₂ -C(O)OH
6B	tBu	C(Me)OH	CH(Me)	O	-C(O)NH-CH ₂ -C(O)OH
7B	tBu	C(O)	CH2	0	-C(O)NH-CH(Me)-C(O)OH
8B	tBu	СНОН	CH2	0	-C(O)NH-CH(Me)-C(O)OH
9B	tBu	C(Me)OH	CH2	0	-C(O)NH-CH(Me)-C(O)OH
10B	tBu	C(O)	CH(Me)	0	-C(O)NH-CH(Me)-C(O)OH
11B	tBu	СНОН	CH(Me)	0	-C(O)NH-CH(Me)-C(O)OH
12B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-CH(Me)-C(O)OH
13B	tBu	C(O)	CH2	0	-C(O)NH-CH(Et)-C(O)OH
14B	tBu	СНОН	CH2	0	-C(O)NH-CH(Et)-C(O)OH
15B	tBu	C(Me)OH	CH2	0	-C(O)NH-CH(Et)-C(O)OH
16B	tBu	C(O)	CH(Me)	0	-C(O)NH-CH(Et)-C(O)OH
17B	tBu	СНОН	CH(Me)	0	-C(O)NH-CH(Et)-C(O)OH
18B	tBu	C(Me)OH	CH(Me)	О	-C(O)NH-CH(Et)-C(O)OH
19B	tBu	C(O)	CH2	О	-C(O)NH-C(Me) ₂ -C(O)OH
20B	tBu	СНОН	CH2	0	-C(O)NH-C(Me) ₂ -C(O)OH
21B	tBu	C(Me)OH	CH2	0	-C(O)NH-C(Me) ₂ -C(O)OH
22B	tBu	C(O)	CH(Me)	0	-C(O)NH-C(Me) ₂ -C(O)OH
23B	tBu	СНОН	CH(Me)	О	-C(O)NH-C(Me) ₂ -C(O)OH
24B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-C(Me) ₂ -C(O)OH
25B	tBu	C(O)	CH2	0	-C(O)NH-CMe(Et)-C(O)OH
26B	tBu	СНОН	CH2	0	-C(O)NH-CMe(Et)-C(O)OH
27B	tBu	C(Me)OH	CH2	0	-C(O)NH-CMe(Et)-C(O)OH
28B	tBu	C(O)	CH(Me)	0	-C(O)NH-CMe(Et)-C(O)OH
29B	tBu	СНОН	CH(Me)	0	-C(O)NH-CMe(Et)-C(O)OH

-295-

30B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-CMe(Et)-C(O)OH
31B	tBu	C(O)	CH2	0	-C(O)NH-CH(F)-C(O)OH
32B	tBu	СНОН	CH2	0	-C(O)NH-CH(F)-C(O)OH
33B	tBu	C(Me)OH	CH2	0	-C(O)NH-CH(F)-C(O)OH
34B	tBu	C(O)	CH(Me)	0	-C(O)NH-CH(F)-C(O)OH
35B	tBu	СНОН	CH(Me)	O	-C(O)NH-CH(F)-C(O)OH
36B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-CH(F)-C(O)OH
37B	tBu	C(O)	CH2	0	-C(O)NH-CH(CF ₃)-C(O)OH
38B	tBu	СНОН	CH2	0	-C(O)NH-CH(CF ₃)-C(O)OH
39B	tBu	C(Me)OH	CH2	0	-C(O)NH-CH(CF ₃)-C(O)OH
40B	tBu	C(O)	CH(Me)	0	-C(O)NH-CH(CF ₃)-C(O)OH
41B	tBu	СНОН	CH(Me)	0	-C(O)NH-CH(CF ₃)-C(O)OH
42B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-CH(CF ₃)-C(O)OH
43B	tBu	C(O)	CH2	0	-C(O)NH-CH(OH)-C(O)OH
44B	tBu	СНОН	CH2	0	-C(O)NH-CH(OH)-C(O)OH
45B	tBu	C(Me)OH	CH2	0	-C(O)NH-CH(OH)-C(O)OH
46B	tBu	C(O)	CH(Me)	0	-C(O)NH-CH(OH)-C(O)OH
47B	tBu	СНОН	CH(Me)	0	-C(O)NH-CH(OH)-C(O)OH
48B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-CH(OH)-C(O)OH
49B	tBu	C(O)	CH2	0	-C(O)NH-CH(cyclopropyl)-C(O)OH
50B	tBu	СНОН	CH2	0	-C(O)NH-CH(cyclopropyl)-C(O)OH
51B	tBu	C(Me)OH	CH2	0	-C(O)NH-CH(cyclopropyl)-C(O)OH
52B	tBu	C(O)	CH(Me)	0	-C(O)NH-CH(cyclopropyl)-C(O)OH
53B	tBu	СНОН	CH(Me)	0	-C(O)NH-CH(cyclopropyl)-C(O)OH
54B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-CH(cyclopropyl)-C(O)OH
55B	tBu	C(O)	CH2	0	-C(O)NH-CH(Me)-C(O)OH
56B	tBu	СНОН	CH2	О	-C(O)NH-CH(Me)-C(O)OH
57B	tBu	C(Me)OH	CH2	O	-C(O)NH-CH(Me)-C(O)OH
58B	tBu	C(O)	CH(Me)	0	-C(O)NH-CH(Me)-C(O)OH
59B	tBu	СНОН	CH(Me)	0	-C(O)NH-CH(Me)-C(O)OH
60B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-CH(Me)-C(O)OH

			- 296-		
61B	tBu	C(O)	CH2	0	-C(O)NH-C(Me) ₂ -C(O)OH
62B	tBu	СНОН	CH2	0	-C(O)NH-C(Me) ₂ -C(O)OH
63B	tBu	C(Me)OH	CH2	0	-C(O)NH-C(Me) ₂ -C(O)OH
64B	tBu	C(O)	CH(Me)	0	-C(O)NH-C(Me) ₂ -C(O)OH
65B	tBu	СНОН	CH(Me)	0	-C(O)NH-C(Me) ₂ -C(O)OH
66B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-C(Me) ₂ -C(O)OH
67B	tBu	C(O)	CH2	0	-C(O)NH-CF(Me)-C(O)OH
68B	tBu	СНОН	CH2	0	-C(O)NH-CF(Me)-C(O)OH
69B	tBu	C(Me)OH	CH2	0	-C(O)NH-CF(Me)-C(O)OH
70B	tBu	C(O)	CH(Me)	0	-C(O)NH-CF(Me)-C(O)OH
71B	tBu	СНОН	CH(Me)	0	-C(O)NH-CF(Me)-C(O)OH
72B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-CF(Me)-C(O)OH
73B	tBu	C(O)	CH2	0	-C(O)NH-C(Me)(CF ₃)-C(O)OH
74B	tBu	СНОН	CH2	0	-C(O)NH-C(Me)(CF ₃)-C(O)OH
75B	tBu	C(Me)OH	CH2	0	-C(O)NH-C(Me)(CF ₃)-C(O)OH
76B	tBu	C(O)	CH(Me)	0	-C(O)NH-C(Me)(CF ₃)-C(O)OH
77B	tBu	СНОН	CH(Me)	0	-C(O)NH-C(Me)(CF ₃)-C(O)OH
78B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-C(Me)(CF ₃)-C(O)OH
79B	tBu	C(O)	CH2	0	-C(O)NH-C(Me)(OH)-C(O)OH
80B	tBu	СНОН	CH2	0	-C(O)NH-C(Me)(OH)-C(O)OH
81B	tBu	C(Me)OH	CH2	0	-C(O)NH-C(Me)(OH)-C(O)OH
82B	, tBu	C(O)	CH(Me)	0	-C(O)NH-C(Me)(OH)-C(O)OH
83B	tBu	CHOH	CH(Me)	0	-C(O)NH-C(Me)(OH)-C(O)OH
84B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-C(Me)(OH)-C(O)OH
85B	tBu	C(O)	CH2	0	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
86B	tBu	СНОН	CH2	0	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
87B	tBu	C(Me)OH	CH2	0	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
88B	tBu	C(O)	CH(Me)	0	-C(O)NH-

-297-

					C(Me)(cyclopropyl)CO ₂ H
89B	tBu	СНОН	CH(Me)	0	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
90B	tBu	C(Me)OH	CH(Me)	0	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
91B	tBu	C(O)	CH2	0	-C(O)NMe-CH ₂ -C(O)OH
92B	tBu	СНОН	CH2	0	-C(O)NMe-CH ₂ -C(O)OH
93B	tBu	C(Me)OH	CH2	0	-C(O)NMe-CH ₂ -C(O)OH
94B	tBu	C(O)	CH(Me)	0	-C(O)NMe-CH ₂ -C(O)OH
95B	tBu	СНОН	CH(Me)	0	-C(O)NMe-CH ₂ -C(O)OH
96B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-CH ₂ -C(O)OH
97B	tBu	C(O)	CH2	0	-C(O)NMe-CH(Me)-C(O)OH
98B	tBu	СНОН	CH2	0	-C(O)NMe-CH(Me)-C(O)OH
99B	tBu	C(Me)OH	CH2	0	-C(O)NMe-CH(Me)-C(O)OH
100B	tBu	C(O)	CH(Me)	0	-C(O)NMe-CH(Me)-C(O)OH
101B	tBu	СНОН	CH(Me)	0	-C(O)NMe-CH(Me)-C(O)OH
102B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-CH(Me)-C(O)OH
103B	tBu	C(O)	CH2	0	-C(O)NMe-CH(F)-C(O)OH
104B	tBu	СНОН	CH2	0	-C(O)NMe-CH(F)-C(O)OH
105B	tBu	C(Me)OH	CH2	0	-C(O)NMe-CH(F)-C(O)OH
106B	tBu	C(O)	CH(Me)	0	-C(O)NMe-CH(F)-C(O)OH
107B	tBu	СНОН	CH(Me)	0	-C(O)NMe-CH(F)-C(O)OH
108B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-CH(F)-C(O)OH
109B	tBu	C(O)	CH2	0	-C(O)NMe-CH(CF ₃)-C(O)OH
110B	tBu	СНОН	CH2	0	-C(O)NMe-CH(CF ₃)-C(O)OH
111B	tBu	C(Me)OH	CH2	0	-C(O)NMe-CH(CF ₃)-C(O)OH
112B	tBu	C(O)	CH(Me)	0	-C(O)NMe-CH(CF ₃)-C(O)OH
113B	tBu	СНОН	CH(Me)	0	-C(O)NMe-CH(CF ₃)-C(O)OH
114B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-CH(CF ₃)-C(O)OH
115B	tBu	C(O)	CH2	0	-C(O)NMe-CH(OH)-C(O)OH
116B	tBu	СНОН	CH2	0	-C(O)NMe-CH(OH)-C(O)OH

-298-

117B						<u> </u>
119B	117B	tBu	C(Me)OH	CH2	0	-C(O)NMe-CH(OH)-C(O)OH
120B	118B	tBu	C(O)	CH(Me)	0	-C(O)NMe-CH(OH)-C(O)OH
121B	119B	tBu	СНОН	CH(Me)	0	-C(O)NMe-CH(OH)-C(O)OH
C(O)OH	120B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-CH(OH)-C(O)OH
122B tBu CHOH CH2 O -C(O)NMe-CH(cyclopropyl)-C(O)OH 123B tBu C(Me)OH CH2 O -C(O)NMe-CH(cyclopropyl)-C(O)OH 124B tBu C(O) CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 125B tBu CHOH CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 126B tBu C(Me)OH CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 127B tBu C(O) CH2 O -C(O)NMe-CH(cyclopropyl)-C(O)OH 128B tBu CHOH CH2 O -C(O)NMe-CH(cyclopropyl)-C(O)OH 129B tBu C(Me)OH CH2 O -C(O)NMe-CH(cyclopropyl)-C(O)OH 130B tBu C(Me)OH CH2 O -C(O)NMe-CH(cyclopropyl)-C(O)OH 131B tBu C(Me)OH CH2 O -C(O)NMe-CH(cyclopropyl)-C(O)OH 132B tBu C(Me)OH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu C(Me)OH CH(Me) O	121B	tBu	C(O)	CH2	0	-C(O)NMe-CH(cyclopropyl)-
123B						C(O)OH
123B tBu C(Me)OH CH2 O -C(O)NMe-CH(cyclopropyl)-C(O)OH 124B tBu C(O) CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 125B tBu CHOH CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 126B tBu C(Me)OH CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 127B tBu C(O) CH2 O -C(O)NMe-C(Me)2-C(O)OH 128B tBu CHOH CH2 O -C(O)NMe-C(Me)2-C(O)OH 130B tBu C(O) CH(Me) O -C(O)NMe-C(Me)2-C(O)OH 131B tBu CHOH CH(Me) O -C(O)NMe-C(Me)2-C(O)OH 132B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me)2-C(O)OH 134B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH <tr< td=""><td>122B</td><td>tBu</td><td>СНОН</td><td>CH2</td><td>0</td><td>-C(O)NMe-CH(cyclopropyl)-</td></tr<>	122B	tBu	СНОН	CH2	0	-C(O)NMe-CH(cyclopropyl)-
C(O)OH						C(O)OH
124B tBu C(O) CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 125B tBu CHOH CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 126B tBu C(Me)OH CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 127B tBu C(O) CH2 O -C(O)NMe-C(Me)2-C(O)OH 128B tBu CHOH CH2 O -C(O)NMe-C(Me)2-C(O)OH 129B tBu C(Me)OH CH2 O -C(O)NMe-C(Me)2-C(O)OH 130B tBu C(O) CH(Me) O -C(O)NMe-C(Me)2-C(O)OH 131B tBu CHOH CH(Me) O -C(O)NMe-C(Me)2-C(O)OH 132B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)2-C(O)OH 133B tBu CHOH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH	123B	tBu	C(Me)OH	CH2	0	-C(O)NMe-CH(cyclopropyl)-
C(O)OH						C(O)OH
125B tBu CHOH CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 126B tBu C(Me)OH CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 127B tBu C(O) CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 128B tBu CHOH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 129B tBu C(Me)OH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 130B tBu C(O) CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 131B tBu CHOH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 132B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu CHOH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	124B	tBu	C(O)	CH(Me)	0	-C(O)NMe-CH(cyclopropyl)-
C(O)OH						C(O)OH
126B tBu C(Me)OH CH(Me) O -C(O)NMe-CH(cyclopropyl)-C(O)OH 127B tBu C(O) CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 128B tBu CHOH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 129B tBu C(Me)OH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 130B tBu C(O) CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 131B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 132B tBu C(O) CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu CHOH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH <t< td=""><td>125B</td><td>tBu</td><td>СНОН</td><td>CH(Me)</td><td>0</td><td>-C(O)NMe-CH(cyclopropyl)-</td></t<>	125B	tBu	СНОН	CH(Me)	0	-C(O)NMe-CH(cyclopropyl)-
C(O)OH 127B tBu C(O) CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 128B tBu CHOH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 129B tBu C(Me)OH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 130B tBu C(O) CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 131B tBu CHOH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 132B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu C(O) CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 134B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 136B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 137B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 137B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 140B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH						C(O)OH
127B tBu C(O) CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 128B tBu CHOH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 129B tBu C(Me)OH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 130B tBu C(O) CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 131B tBu CHOH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 132B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 136B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	126B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-CH(cyclopropyl)-
128B tBu CHOH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 129B tBu C(Me)OH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 130B tBu C(O) CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 131B tBu CHOH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 132B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu C(O) CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 134B tBu CHOH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH						C(O)OH
129B tBu C(Me)OH CH2 O -C(O)NMe-C(Me) ₂ -C(O)OH 130B tBu C(O) CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 131B tBu CHOH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 132B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 134B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	127B	tBu	C(O)	CH2	О	-C(O)NMe-C(Me) ₂ -C(O)OH
130B tBu C(O) CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 131B tBu CHOH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 132B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 134B tBu CHOH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	128B	tBu	СНОН	CH2	O	-C(O)NMe-C(Me) ₂ -C(O)OH
131B tBu CHOH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 132B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 134B tBu CHOH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 136B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 137B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	129B	tBu	C(Me)OH	CH2	O	-C(O)NMe-C(Me) ₂ -C(O)OH
132B tBu C(Me)OH CH(Me) O -C(O)NMe-C(Me) ₂ -C(O)OH 133B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 134B tBu CHOH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 136B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	130B	tBu	C(O)	CH(Me)	O	-C(O)NMe-C(Me) ₂ -C(O)OH
133B tBu C(O) CH2 O -C(O)NMe-CF(Me)-C(O)OH 134B tBu CHOH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 136B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	131B	tBu	СНОН	CH(Me)	0	-C(O)NMe-C(Me) ₂ -C(O)OH
134B tBu CHOH CH2 O -C(O)NMe-CF(Me)-C(O)OH 135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 136B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	132B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-C(Me) ₂ -C(O)OH
135B tBu C(Me)OH CH2 O -C(O)NMe-CF(Me)-C(O)OH 136B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	133B	tBu	C(O)	CH2	0	-C(O)NMe-CF(Me)-C(O)OH
136B tBu C(O) CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	134B	tBu	СНОН	CH2	0	-C(O)NMe-CF(Me)-C(O)OH
137B tBu CHOH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	135B	tBu	C(Me)OH	CH2	0	-C(O)NMe-CF(Me)-C(O)OH
138B tBu C(Me)OH CH(Me) O -C(O)NMe-CF(Me)-C(O)OH 139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	136B	tBu	C(O)	CH(Me)	0	-C(O)NMe-CF(Me)-C(O)OH
139B tBu C(O) CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH 140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	137B	tBu	СНОН	CH(Me)	0	-C(O)NMe-CF(Me)-C(O)OH
140B tBu CHOH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	138B	tBu	C(Me)OH	CH(Me)	O	-C(O)NMe-CF(Me)-C(O)OH
0 0(0)11.110 0(110)(013) 0(0)011	139B	tBu	C(O)	CH2	0	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
141B tBu C(Me)OH CH2 O -C(O)NMe-C(Me)(CF ₃)-C(O)OH	140B	tBu	СНОН	CH2	0	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
	141B	tBu	C(Me)OH	CH2	0	-C(O)NMe-C(Me)(CF ₃)-C(O)OH

-299-

1.4070	T /5	T 2000			
142B	tBu	C(O)	CH(Me)	0	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
143B	tBu	СНОН	CH(Me)	0	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
144B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
145B	tBu	C(O)	CH2	0	-C(O)NMe-C(Me)(OH)-C(O)OH
146B	tBu	СНОН	CH2	0	-C(O)NMe-C(Me)(OH)-C(O)OH
147B	tBu	C(Me)OH	CH2	0	-C(O)NMe-C(Me)(OH)-C(O)OH
148B	tBu	C(O)	CH(Me)	0	-C(O)NMe-C(Me)(OH)-C(O)OH
149B	tBu	СНОН	CH(Me)	О	-C(O)NMe-C(Me)(OH)-C(O)OH
150B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-C(Me)(OH)-C(O)OH
151B	tBu	C(O)	CH2	0	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
152B	tBu	СНОН	CH2	0	-C(O)NMe-C(Me)(cyclopropyl)-
	i				C(O)OH
153B	tBu	C(Me)OH	CH2	O	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
154B	tBu	C(O)	CH(Me)	О	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
155B	tBu	СНОН	CH(Me)	0	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
156B	tBu	C(Me)OH	CH(Me)	0	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
157B	tBu	C(O)	CH2	О	-C(O)-N(Me)-5-tetrazolyl
158B	tBu	СНОН	CH2	O	-C(O)-N(Me)-5-tetrazolyl
159B	tBu	C(Me)OH	CH2	О	-C(O)-N(Me)-5-tetrazolyl
160B	tBu	C(O)	CH(Me)	O	-C(O)-N(Me)-5-tetrazolyl
161B	tBu	СНОН	CH(Me)	O	-C(O)-N(Me)-5-tetrazolyl
162B	tBu	C(Me)OH	CH(Me)	O	-C(O)-N(Me)-5-tetrazolyl
					L.,

^{7.} A compound or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by the formula:

$$R_{B}$$
 L_{3} L_{2} L_{1} R_{C}

where said compound is selected from a compound code numbered 1C thru 162C, with each compound having the specific selection of substituents R_B , R_C , L_1 , L_2 , and L_3 shown in the row following the compound code number, as set out in the following

Table 4

5

Table 4:

	R _B	L ₃	L ₂	L_1	R _C
1C	tBu	C(O)	CH2	CH2	-C(O)NH-CH ₂ -C(O)OH
2C	tBu	СНОН	CH2	CH2	-C(O)NH-CH ₂ -C(O)OH
3C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH ₂ -C(O)OH
4C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH ₂ -C(O)OH
5C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CH ₂ -C(O)OH
6C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH ₂ -C(O)OH
7C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
8C	tBu	СНОН	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
9C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
10C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
11C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
12C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
13C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(Et)-C(O)OH
14C	tBu	СНОН	CH2	CH2	-C(O)NH-CH(Et)-C(O)OH
15C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(Et)-C(O)OH
16C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(Et)-C(O)OH
17C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CH(Et)-C(O)OH
18C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(Et)-C(O)OH
19C	tBu	C(O)	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
20C	tBu	СНОН	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH

21C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
22C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
23C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
24C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
25C	tBu	C(O)	CH2	CH2	-C(O)NH-CMe(Et)-C(O)OH
26C	tBu	СНОН	CH2	CH2	-C(O)NH-CMe(Et)-C(O)OH
27C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CMe(Et)-C(O)OH
28C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CMe(Et)-C(O)OH
29C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CMe(Et)-C(O)OH
30C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CMe(Et)-C(O)OH
31C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(F)-C(O)OH
32C	tBu	СНОН	CH2	CH2	-C(O)NH-CH(F)-C(O)OH
33C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(F)-C(O)OH
34C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(F)-C(O)OH
35C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CH(F)-C(O)OH
36C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(F)-C(O)OH
37C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
38C	tBu	СНОН	CH2	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
39C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
40C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
41C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
42C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(CF ₃)-C(O)OH
43C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(OH)-C(O)OH
44C	tBu	СНОН	CH2	CH2	-C(O)NH-CH(OH)-C(O)OH
45C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(OH)-C(O)OH
46C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(OH)-C(O)OH
47C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CH(OH)-C(O)OH
48C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(OH)-C(O)OH
49C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
50C	tBu	СНОН	CH2	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
51C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH

52C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
53C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
54C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(cyclopropyl)-C(O)OH
55C	tBu	C(O)	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
56C	tBu	СНОН	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
57C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CH(Me)-C(O)OH
58C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
59C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
60C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CH(Me)-C(O)OH
61C	tBu	C(O)	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
62C	tBu	СНОН	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
63C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
64C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
65C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
66C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-C(Me) ₂ -C(O)OH
67C	tBu	C(O)	CH2	CH2	-C(O)NH-CF(Me)-C(O)OH
68C	tBu	СНОН	CH2	CH2	-C(O)NH-CF(Me)-C(O)OH
69C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-CF(Me)-C(O)OH
70C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-CF(Me)-C(O)OH
71C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-CF(Me)-C(O)OH
72C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-CF(Me)-C(O)OH
73C	tBu	C(O)	CH2	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
74C	tBu	СНОН	CH2	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
75C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
76C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
77C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
78C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-C(Me)(CF ₃)-C(O)OH
79C	tBu	C(O)	CH2	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
80C	tBu	СНОН	CH2	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
81C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
82C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-C(Me)(OH)-C(O)OH

-303-

83C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
84C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-C(Me)(OH)-C(O)OH
85C	tBu	C(O)	CH2	CH2	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
86C	tBu	СНОН	CH2	CH2	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
87C	tBu	C(Me)OH	CH2	CH2	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
88C	tBu	C(O)	CH(Me)	CH2	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
89C	tBu	СНОН	CH(Me)	CH2	-C(O)NH-
					C(Me)(cyclopropyl)CO ₂ H
90C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NH-
			ı		C(Me)(cyclopropyl)CO ₂ H
91C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH ₂ -C(O)OH
92C	tBu	СНОН	CH2	CH2	-C(O)NMe-CH ₂ -C(O)OH
93C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH ₂ -C(O)OH
94C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH ₂ -C(O)OH
95C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-CH ₂ -C(O)OH
96C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH ₂ -C(O)OH
97C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(Me)-C(O)OH
98C	tBu	СНОН	CH2	CH2	-C(O)NMe-CH(Me)-C(O)OH
99C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(Me)-C(O)OH
100C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(Me)-C(O)OH
101C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-CH(Me)-C(O)OH
102C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(Me)-C(O)OH
103C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(F)-C(O)OH
104C	tBu	СНОН	CH2	CH2	-C(O)NMe-CH(F)-C(O)OH
105C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(F)-C(O)OH
106C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(F)-C(O)OH
107C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-CH(F)-C(O)OH

-304-

108C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(F)-C(O)OH
109C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
110C	tBu	СНОН	CH2	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
111C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
112C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
113C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
114C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(CF ₃)-C(O)OH
115C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(OH)-C(O)OH
116C	tBu	СНОН	CH2	CH2	-C(O)NMe-CH(OH)-C(O)OH
117C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(OH)-C(O)OH
118C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(OH)-C(O)OH
119C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-CH(OH)-C(O)OH
120C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(OH)-C(O)OH
121C	tBu	C(O)	CH2	CH2	-C(O)NMe-CH(cyclopropyl)-
					C(O)OH
122C	tBu	СНОН	CH2	CH2	-C(O)NMe-CH(cyclopropyl)-
					C(O)OH
123C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CH(cyclopropyl)-
					C(O)OH
124C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CH(cyclopropyl)-
					C(O)OH
125C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-CH(cyclopropyl)-
					C(O)OH
126C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CH(cyclopropyl)-
					C(O)OH
127C	tBu	C(O)	CH2	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
128C	tBu	СНОН	CH2	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
129C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
130C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
131C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH
132C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-C(Me) ₂ -C(O)OH

133C	tBu	C(O)	CH2	CH2	-C(O)NMe-CF(Me)-C(O)OH
134C	tBu	СНОН	CH2	CH2	-C(O)NMe-CF(Me)-C(O)OH
135C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-CF(Me)-C(O)OH
136C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-CF(Me)-C(O)OH
137C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-CF(Me)-C(O)OH
138C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-CF(Me)-C(O)OH
139C	tBu	C(O)	CH2	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
140C	tBu	СНОН	CH2	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
141C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
142C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
143C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
144C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-C(Me)(CF ₃)-C(O)OH
145C	tBu	C(O)	CH2	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
146C	tBu	СНОН	CH2	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
147C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
148C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
149C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
150C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-C(Me)(OH)-C(O)OH
151C	tBu	C(O)	CH2	CH2	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
152C	tBu	СНОН	CH2	CH2	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
153C	tBu	C(Me)OH	CH2	CH2	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
154C	tBu	C(O)	CH(Me)	CH2	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
155C	tBu	СНОН	CH(Me)	CH2	-C(O)NMe-C(Me)(cyclopropyl)-
					C(O)OH
156C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)NMe-C(Me)(cyclopropyl)-
				i	C(O)OH
157C	tBu	C(O)	CH2	CH2	-C(O)-N(Me)-5-tetrazolyl

158C	tBu	СНОН	CH2	CH2	-C(O)-N(Me)-5-tetrazolyl
159C	tBu	C(Me)OH	CH2	CH2	-C(O)-N(Me)-5-tetrazolyl
160C	tBu	C(O)	CH(Me)	CH2	-C(O)-N(Me)-5-tetrazolyl
161C	tBu	СНОН	CH(Me)	CH2	-C(O)-N(Me)-5-tetrazolyl
162C	tBu	C(Me)OH	CH(Me)	CH2	-C(O)-N(Me)-5-tetrazolyl

8. A compound or a pharmaceutically acceptable salt or a prodrug derivative thereof selected from compounds AA thru CY:

AE)

AP)

AR)

AT)

5

BA)

BE)

BH)

BI)

5

BJ)

BN)

5

BP)

CA)

-310-

CB)

CC)

CE)

5

CF)

10 CI)

CL)

CM)

5

CN)

-312-

CP)

, or CQ)

5

CR)

CS)

CT)

CU)

5

10

CV)

-314-

CW)

5 CX)

10 CY)

8. A compound or a pharmaceutically acceptable salt or prodrug derivative thereof selected from C-1 to C-55:

C-1)

5 C-2)

C-3)

10 C-4)

-316-

C-6)

5 C-7)

C-8)

C-9)

5

C-10)

-318-

C-12)

C-13)

C-15)

5

C-16)

-319-

C-17)

C-18)

5 C-19)

C-20)

10 C-21)

-320-

C-22)

C-25)

C-26)

5

C-29)

-321-

C-31)

C-35)

C-36)

5

10 C-39)

-322-

C-42)

C-43)

5

10

C-45)

C-48)

5 C-52)

C-54)

C-55)

9. A compound or a pharmaceutically acceptable salt oran ester prodrug derivative thereof selected from (TBU-1) to (TBU-86), as follows:

5 TBU-1)

TBU-2)

TBU-3)

10

TBU-4)

-325-

TBU-5)

TBU-6)

TBU-7)

5

TBU-8)

-326-

TBU-9)

TBU-10)

TBU-11)

5

TBU-12)

TBU-13)

TBU-14)

TBU-15)

5

TBU-16)

TBU-17)

TBU-18)

TBU-19)

5

TBU-20)

TBU-21)

TBU-22)

TBU-23)

TBU-24)

-330-

PCT/US2003/035055

TBU-25)

TBU-26)

TBU-27)

5

TBU-28)

-331-

TBU-29)

TBU-30)

TBU-31)

5

TBU-32)

TBU-33)

TBU-34)

TBU-35)

5

TBU-36)

TBU-37)

TBU-38)

TBU-39)

5

TBU-40)

TBU-41)

TBU-42)

TBU-43)

5

TBU-44)

TBU-45)

TBU-46)

TBU-47)

5

TBU-48)

TBU-49)

TBU-50)

TBU-51)

5

TBU-52)

-337-

TBU-53)

TBU-54)

TBU-55)

5

TBU-56)

TBU-57)

TBU-58)

TBU-59)

5

TBU-60)

TBU-61)

TBU-62)

TBU-63)

TBU-64)

-340-

TBU-65)

TBU-66)

TBU-67)

5

TBU-68)

-341-

TBU-69)

TBU-70)

TBU-71)

5

TBU-72)

TBU-73)

TBU-74)

TBU-75)

5

TBU-76)

TBU-77)

TBU-78)

TBU-79)

5

TBU-80)

-344-

TBU-81)

TBU-82)

TBU-83)

5

TBU-84)

TBU-85)

TBU-86)

5

10. The compound or a pharmaceutically acceptable salt or ester prodrug derivative of the compound represented by the formula:

or

11. The compound or a pharmaceutically acceptable salt or ester prodrug derivative of the compound represented by the formula:

-347-

or Cor

12. The compound or a pharmaceutically acceptable salt or ester prodrug derivative of the compound represented by the formula:

or

-348-

- 13. The prodrug derivative of a compound of claim 1 to 12 wherein the prodrug is a methyl ester, ethyl ester N,N-diethylglycolamido ester or morpholinylethyl ester.
- 14. The salt derivative of a compound of claim 1 to 12 wherein the salt is sodium 5 or potassium.
 - 15. A pharmaceutical formulation comprising a compound of claim 1 to 12 together with a pharmaceutically acceptable carrier or diluent.

10

A formulation for treating osteoporosis comprising: 16.

Ingredient (A1): a vitamin D receptor modulator of claim 1 to 12:

Ingredient (B1):

one or more co-agents selected from the group consisting of:

15

20

- a. estrogens,
- Ъ. androgens,
- calcium supplements, c.
- d. vitamin D metabolites.
- e. thiazide diuretics,
- f. calcitonin,
- g. bisphosphonates,
- h. SERMS, and
- i. fluorides; and

Ingredient (C1): optionally, a carrier or diluent.

-349-

- 17. The formulation of claim 16 wherein the weight ratio of (A1) to (B1) is from 10:1 to 1:1000.
 - 18. A formulation for treating psoriasis comprising:

Ingredient (A2):

5

10

20

25

30

a vitamin D receptor modulator of claim 1 to 11;

Ingredient (B2):

one or more co-agents that are conventional for treatment osteoporosis selected from the group consisting of:

- a. topical glucocorticoids,
- b. salicylic acid,
- c. crude coal tar; and

Ingredient (C2): optionally, a carrier or diluent.

- 19. The formulation of claim 18 wherein the weight ratio of (A2) to (B2) is from 1:10 to 1:100000.
 - 20. A method of treating a mammal to prevent or alleviate the pathological effects of acne, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone fracture healing, breast cancer, prostate cancer, colon cancer, diabetes, Type I, host-graft rejection, humoral hypercalcemia, induced diabetes, leukemia, lupus, multiple sclerosis, insufficient sebum secretion, osteomalacia, osteoporosis, insufficient dermal firmness, insufficient dermal hydration, phoriatic arthritis, psoriasis, renal failure, renal osteodystrophy, rheumatoid arthritis, scleroderma, systemic lupus erythematosus, skin cell protection from Mustard vesicants, and wrinkles; wherein the method comprises administering a pharmaceutically effective amount of at least one compound of claim 1 to 12.
 - 21. The method of claim 20 for the treatment of psoriasis.
 - 22. The method of claim 20 for the treatment of osteoporosis.

- 23. A method of treating or preventing disease states mediated by the Vitamin D receptor, wherein a mammal in need thereof is administered a pharmaceutically effective amount of a compound of claim 1 to 12.
- 24. A compound as claimed in claim 1 to 12 for use in treating a mammal to prevent or alleviate the pathological effects of acne, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone maintenance in zero gravity, bone fracture healing, breast cancer, prostate cancer, colon cancer, diabetes, Type I, host-graft rejection, humoral hypercalcemia, induced diabetes, leukemia, lupus, multiple sclerosis, insufficient sebum secretion, osteomalacia, osteoporosis, insufficient dermal firmness, insufficient dermal hydration, phoriatic arthritis, psoriasis, renal failure, renal osteodystrophy, rheumatoid arthritis, scleroderma, systemic lupus erythematosus, and wrinkles.
- 25. A method of treating a mannal to prevent or alleviate the effect of Mustard by administering a pharmaceutically effective amount of a formulation comprising the compound of claim 1 to 12 alone or together with a pharmaceutically acceptable carrier or diluent thereof.
- 26. A compound as claimed in any one of claim 1 to 12 for use in treating or preventing disease states mediated by the Vitamin D receptor.
 - 27. A compound as claimed in Claim 1 substantially as hereinbefore described with reference to any of the Examples.
- 28. A process for preparing a compound as claimed in claim 1 substantially as hereinbefore described with reference to any of the Examples.
- 29. The use of a compound as claimed in claim 1 substantially as herein described with reference to any of the Assays and Tables for mediating the Vitamin D receptor.