Phys516: Methods of Computational Physics

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Physics & Astronomy
Department of Computer Science
Department of Chemical Engineering & Materials Science
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Computational Physics Approach

Physical phenomenon Mathematical model Discrete algebraic approximation Numerical algorithms Simulation program Computer experiment

Nature to Math to Computing

GRIFFITH OBSERVATORY...

ROGER PENROSE

THE ROAD TO REALITY

A COMPLETE

GUIDE

TO THE

LAWS

OF THE

UNIVERSE

Nobel physics prize ('20)

of one of the world's most original thinkers." - The New York Time

NATIONAL BESTSELLER

http://www.griffithobs.org

Scene from "Centered in the Universe"

Scene from "Centered in the Universe"

Mathematical Model

PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA

Autore J S. NEWTON, Trin. Coll. Cantab. Soc. Matheseos Professore Lucasiano, & Societatis Regalis Sodali.

IMPRIMATUR.
S. PEPYS, Reg. Soc. PRÆSES.
Julii 5, 1686.

LONDINI,

Justi Societatis Regiae ac Typis Josephi Streater. Prostat apud plures Bibliopolas. Anno MDCLXXXVII.

TITLE PAGE OF THE FIRST EDITION OF THE PRINCIPIA

AXIOMS, OR LAWS OF MOTION

LAW I

Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it.

PROJECTILES continue in their motions, so far as they are not retarded by the resistance of the air, or impelled downwards by the force of gravity. A top, whose parts by their cohesion are continually drawn aside from rectilinear motions, does not cease its rotation, otherwise than as it is retarded by the air. The greater bodies of the planets and comets, meeting with less resistance in freer spaces, preserve their motions both progressive and circular for a much longer time.

LAW III

The change of motion is proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed.

If any force generates a motion, a double force will generate double the motion, a triple force triple the motion, whether that force be impressed altogether and at once, or gradually and successively. And this motion (being always directed the same way with the generating force), if the body moved before, is added to or subtracted from the former motion, according as they directly conspire with or are directly contrary to each other; or obliquely joined, when they are oblique, so as to produce a new motion compounded from the determination of both.

LAW III

To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts.

Whatever draws or presses another is as much drawn or pressed by that other. If you press a stone with your finger, the finger is also pressed by the [1 Appendix, Note 14.] [2 Appendix, Note 15.]

many road 14.1 [- Appendix, 1400

NEWTON'S MATHEMATICAL PRINCIPLES

stone. If a horse draws a stone tied to a rope, the horse (if I may so say) will be equally drawn back towards the stone; for the distended rope, by the same endeavor to relax or unbend itself, will draw the horse as much towards the stone as it does the stone towards the horse, and will obstruct the progress of the one as much as it advances that of the other. If a body impinge upon another, and by its force change the motion of the other, that body also (because of the equality of the mutual pressure) will undergo an equal change, in its own motion, towards the contrary part. The changes made by these actions are equal, not in the velocities but in the motions of bodies; that is to say, if the bodies are not hindered by any other impediments. For, because the motions are equally changed, the changes of the velocities made towards contrary parts are inversely proportional to the bodies. This law takes place also in attractions, as will be proved in the next Scholium.

COROLLARY I

A body, acted on by two forces simultaneously, will describe the diagonal of a parallelogram in the same time as it would describe the sides by those forces separately.

If a body in a given time, by the force M impressed apart in the place A, should with an uniform motion be carried from A to B, and by the force N impressed apart in the same place, should be carried from A to C, let the

parallelogram ABCD be completed, and, by both forces acting together, it will in the same time be carried in the diagonal from A to D. For since the force N acts in the direction of the line AC, parallel to BD, this force (by the second Law) will not at all alter the velocity generated by the other

force M, by which the body is carried towards the line BD. The body therefore will arrive at the line BD in the same time, whether the force N be impressed or not; and therefore at the end of that time it will be found somewhere in the line BD. By the same argument, at the end of the same time it will be found somewhere in the line CD. Therefore it will be found in the point D, where both lines meet. But it will move in a right line from A to D, by Law 1.

LAW I

Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it.

LAW II2

The change of motion is proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed.

Calculus-Based Science

Calculus has been the principal scientific paradigm for 400 years

Newton, in

his efforts to understand the natural laws of the rate of change in motion, used algebra to underpin another new branch of mathematics: calculus (a branch for which von Leibniz is simultaneously and independently credited). Calculus spurred scientists "to go off looking for other laws of nature that could explain natural phenomenon in terms of rates of change and found them by the bucketful - heat, sound, light, fluid dynamics, electricity and magnetism" [2].

https://www.microsoft.com/en-us/research/publication/towards-2020-science-2/

What's Now? Physics in 100 Years

- Increasingly, the development of algorithms will become a central focus of theoretical physics. ... Triumphs of creative understanding such as universality (suppression of irrelevant details), symmetry (informed iteration), and topology (emergence of discrete from continuous) are preadapted to algorithmic thinking.
- The work of designing algorithms can be considered as a special form of teaching, aimed at extremely clever but literal-minded and inexperienced students—that is, computers—who cannot deal with vagueness. At present those students are poorly motivated and incurious, but those faults are curable. Within 100 years they will become the colleagues and ultimately the successors of their human teachers, with a distinctive style of thought adapted to their talents.
- Two developments will be transformative: naturalized artificial intelligence and expanded sensoria.

This Class: Understanding Simple Math

In your own words

Richard Feynman "On His Father's Lap"

Molecular Dynamics Simulation

• Newton's equation of motion

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\frac{\partial V(\mathbf{r}^N)}{\partial \mathbf{r}_i}$$
 $(i = 1,...,N)$

Many-body interatomic potential

$$V = \sum_{i < j} u_{ij} (|\mathbf{r}_{ij}|) + \sum_{i,j < k} v_{jik} (\mathbf{r}_{ij}, \mathbf{r}_{ik})$$

Application: drug design, robotics, entertainment, etc.

Cancer Modeling

Integrative mathematical oncology

Alexander R. A. Anderson and Vito Quaranta

Pedestrian Crowd Dynamics

Simulating dynamical features of escape panic

Buildings **9**, 44 (2019)

Dirk Helbing*†, Illés Farkas‡ & Tamás Vicsek*‡

Nature 407, 487 ('00)

Article

Adaptive Kinetic Architecture and Collective Behavior: A Dynamic Analysis for Emergency Evacuation

Angella Johnson 1,*, Size Zheng 2, Aiichiro Nakano 3, Goetz Schierle 1 and Joon-Ho Choi 1

$$m_i \frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = m_i \frac{v_i^0(t)\mathbf{e}_i^0(t) - \mathbf{v}_i(t)}{\tau_i} + \sum_{j(\neq i)} \mathbf{f}_{ij} + \sum_{W} \mathbf{f}_{iW}$$

See also http://www.oasys-software.com/products/engineering/massmotion.html

Computational Physics Approach

MD Algorithm

Time discretization: differential \rightarrow algebraic equation

$$\begin{cases} \vec{r}_{i}(t+\Delta) = \vec{r}_{i}(t) + \vec{v}_{i}(t)\Delta + \frac{1}{2}\vec{a}_{i}(t)\Delta^{2} \\ \vec{v}_{i}(t+\Delta) = \vec{v}_{i}(t) + \frac{\vec{a}_{i}(t) + \vec{a}_{i}(t+\Delta)}{2}\Delta \end{cases} \vec{a}_{i} = -\frac{1}{m_{i}}\frac{\partial V}{\partial \vec{r}_{i}}$$

Time stepping: Velocity Verlet algorithm

Given $(\vec{r}_i(t), \vec{v}_i(t))$

- 1. Compute $\vec{a}_i(t)$ as a function of $\{\vec{r}_i(t)\}$
- 2. $\vec{v}_i(t + \frac{\Delta}{2}) \leftarrow \vec{v}_i(t) + \frac{\Delta}{2}\vec{a}_i(t)$ 3. $\vec{r}_i(t + \Delta) \leftarrow \vec{r}_i(t) + \vec{v}_i(t + \frac{\Delta}{2})\Delta$

4. Compute
$$\vec{a}_i(t + \Delta)$$
 as a function of $\{\vec{r}_i(t + \Delta)\}$
5. $\vec{v}_i(t + \Delta) \leftarrow \vec{v}_i(t + \frac{\Delta}{2}) + \frac{\Delta}{2}\vec{a}_i(t + \Delta)$

Computational Physics Approach

MD Program

```
\vec{v}_i(t + \frac{\Delta}{2}) \leftarrow \vec{v}_i(t) + \frac{\Delta}{2}\vec{a}_i(t)
for (i=0; i<nAtom; i++)
   for (k=0; k<3; k++)
      rv[i][k] = rv[i][k] + DeltaT/2*ra[n][k];
                                        \vec{r}_i(t+\Delta) \leftarrow \vec{r}_i(t) + \vec{v}_i(t+\frac{\Delta}{2})\Delta
for (i=0; i<nAtom; i++)
   for (k=0; k<3; k++)
      r[i][k] = r[i][k] + DeltaT*rv[i][k];
ComputeAccel(); // r[][] \rightarrow ra[][]
for (i=0; i<nAtom; i++) \vec{v}_i(t+\Delta) \leftarrow \vec{v}_i(t+\frac{\Delta}{2}) + \frac{\Delta}{2}\vec{a}_i(t+\Delta)
   for (k=0; k<3; k++)
      rv[i][k] = rv[i][k] + DeltaT/2*ra[i][k];
```

Computational Physics Approach

Computer Experiment

• Billion-atom reactive MD simulation of shock-induced nanobubble collapse in water near silica surface (67 million core-hours on 163,840 Blue Gene/P cores)

Type of Mathematical Models

	Discrete/particle model (ordinary	Continuum model (partial
	differential equations)	differential equations)
Deterministic	molecular dynamics	computational fluid dynamics,
		continuum mechanics
Stochastic	Monte Carlo particle simulation	quantum Monte Carlo

Particle model of oxidation

0.1 ps Charge (e) 1.0 0.0 100 Å

Continuum model of fracture

Continuum Model: Quantum Mechanics

Challenge: Complexity of quantum N-body problem

Density functional theory (DFT)

(Walter Kohn, Nobel Chemistry Prize, '98)

$$\psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_{N_{\mathrm{el}}})\,\boldsymbol{O}(\boldsymbol{C}^N)$$

$$\{\psi_n(\mathbf{r})|n=1,...,N_{\rm el}\}\ O(N^3)$$

See DFT reading list:

https://aiichironakano.github.io/phys516/DFT-seminar.tar.gz

Constrained minimization problem:

$$E[\{\psi_n\}] = \sum_{n=1}^{N_{\text{el}}} \int d^3r \psi_n^*(\mathbf{r}) \left(-\frac{\hbar^2}{2m_e} \frac{\partial^2}{\partial \mathbf{r}^2} + V_{\text{ion}}(\mathbf{r}) \right) \psi_n(\mathbf{r}) + \frac{e^2}{2} \iint d^3r d^3r' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + E_{\text{XC}}[\rho(\mathbf{r})]$$

with orthonormal constraints: $\int d^3r \psi_m^*(\mathbf{r}) \psi_n(\mathbf{r}) = \delta_{mn}$

Charge density:
$$\rho(\mathbf{r}) = \sum_{n=1}^{N_{el}} |\psi_n(\mathbf{r})|^2$$

See CSCI 699 "Extreme-scale quantum simulations":

https://aiichironakano.github.io/cs699.html

Multiscale Modeling

The Nobel Prize in Chemistry 2013

© Nobel Media AB Martin Karplus

Wikimedia Commons

Michael Levitt

Photo: Wikimedia Commons

Arieh Warshel

QM/MM:
quantummechanical/molecularmechanical modeling

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and Arieh Warshel "for the development of multiscale models for complex chemical systems".

A. Warshel & M. Karplus, *J. Am. Chem. Soc.* **94**, 5612 ('72) A. Warshel & M. Levitt, *J. Mol. Biol.* **103**, 227 ('76)

Adaptive Multiscale Dynamics

High-energy beam oxidation of Si (SIMOX)

H. Takemiya et al., IEEE/ACM Supercomputing (SC06)

Oxidation of Si

S. Ogata et al.,

Comput. Phys. Commun. 138, 143 ('01)

L. Lidorikis et al.,

Phys. Rev. Lett. 87, 086104 ('01)

QM/MD/FED:

quantum mechanical/ molecular-dynamics/ finite-element dynamics

Nonadiabatic Quantum Molecular Dynamics

Appl. Phys. Lett. **98**, 113301 ('11); ibid. **100**, 203306 ('12); J. Chem. Phys. **136**, 184705 ('12); Comput. Phys. Commun. **184**, 1 ('13); Appl. Phys. Lett. **102**, 093302 ('13); ibid. **102**, 173301 ('13); J. Chem. Phys. **140**, 18A529 ('14); IEEE Computer **48(11)**, 33 ('15); Sci. Rep. **5**, 19599 ('16); Nature Commun. **8**, 1745 ('17); Nano Lett. **18**, 4653 ('18); Nature Photon. **13**, 425 ('19)

Zn porphyrin

Rubrene/C₆₀

quasi-electron; quasi-hole

- Excited states: Linear-response time-dependent density functional theory [Casida, '95]
- Interstate transitions: Surface hopping [Tully, '90; Jaeger, Fisher & Prezhdo, '12]

Hydrogen Production from Water

• 16,611-atom quantum MD simulation of rapid H₂ production from water using a LiAl particle on 786,432 Blue Gene/Q cores

K. Shimamura et al., Nano Lett. 14, 4090 ('14)

Stochastic Model of Stock Prices

Fluctuation in stock price

Basis of Black-Scholes analysis of option prices

$$dS = \mu S dt + \sigma S \varepsilon \sqrt{dt}$$

(1997 Nobel Economy Prize to Myron Scholes)

Computational stock portfolio trading

Andrey Omeltchenko (Quantlab)

http://www.convexitymaven.com/themavensclassroom.html

Monte Carlo Simulation

Monte Carlo

Molecular dynamics

Random trial \rightarrow acceptance by a cost criterion

Phys516: What You Will Learn

Nature to math to computing!

The ability to implement the solution of mathematically formulated problems on a computer

You understand it = you can program it

Computational physicists' survival kit

- Mathematical methods in physics: Any book you are familiar with, e.g., G. B. Arfken & H. J. Weber, Mathematical Methods for Physicists, 7th Ed. (Academic Press, '12)
- Numerical algorithms: W. H. Press, B. P. Flannery, S. A. Teukolsky, & W. T. Vetterling, *Numerical Recipes, 3rd Ed.* (Cambridge U Press, '07)—available online

C: www.nrbook.com/a/bookcpdf.php

Fortran90: www.nrbook.com/a/bookf90pdf.php

Phys516: Computational Methods in the Context of Simulations

0.	
Simul	ation
Ollilla	alion

Computational methods

Monte Carlo simulation of spins

Differentiation (3.1)

Integration (3.2)

Monte Carlo simulation of stock price

Special function (6.8-9)

Root finding (3.3)

Molecular dynamics simulation of particles

Random number generation (2.5)

Ordinary differential equations (4)

Linear algebra (5.1-3)

Eigensystems (5.5,8)

Fourier analysis (6,1-5)

Partial differential equations (7)

Function minimization

Discrete math: graphs, lists

Quantum dynamics simulation of an electron

Electronic structures of molecules

MSCS-HPCS: High-Performance Computing & Simulations

A total of 32 units

- 1. Required Core Courses in Computer Science CSCI570 (analysis of algorithms)
- 2. Required Core Course for MSCS-HPCS: CSCI596 (scientific computing & visualization)
- 3. <u>Elective Courses for MSCS-HPCS</u>: Total of 3 courses from both tracks (a) & (b)
 - (a) Computer Science Track

CSCI653 (high performance computing & simulations),

CS520 (animation), CS551 (communication),

CS558L (network), CS580 (graphics), CS583 (comp geometry),

CS595 (advanced compiler), EE653 (multithreaded arch), EE657 (parallel processing),

EE659 (network)

(b) Computational Science/Engineering Application Track

AME535 (comp fluid dynamics), CE529 (finite element), CHE502 (numerical transport), EE553 (comp optimization), MAS575 (atomistic simulation), PTE582 (fluid flow), Math/CS501 (numerical analysis), Phys516 (computational physics), ...

• A physics Ph.D. student can apply for admission into MSCS-HPCS after completing 3 CS500+ courses with B or above

Current & Future Computing Platforms

• Won two DOE supercomputing awards to develop & deploy metascalable ("design once, scale on future platforms") simulation algorithms (2017-2023)

 NAQMD & RMD simulations on full 800K cores

Innovative & Novel Computational Impact on Theory & Experiment

Title: "Petascale Simulations for Layered Materials Genome"

Principal Investigator: Co-Investigator:

Aiichiro Nakano, University of Southern California Priya Vashishta, University of Southern California

786,432-core IBM Blue Gene/Q 280,320-core Intel Xeon Phi

Early Science Projects for Aurora
Supercomputer Announced
Metascalable layered materials genome
Investigator: Aiichiro Nakano, University of Southern

California exaflop/s = 10^{18} mathematical operations per second

• One of the 10 initial simulation users of the next-generation DOE supercomputer

CACS@A21 in the Global Exascale Race

R. F. Service, *Science* **359**, 617 ('18)

Design for U.S. exascale computer takes shape

Competition with China accelerates plans for next great leap in supercomputing power

By Robert F. Service

n 1957, the launch of the Sputnik satellite vaulted the Soviet Union to the lead in the space race and galvanized the United States. U.S. supercomputer researchers are today facing their own

Lemont, Illinois. That's 2 years earlier than planned. "It's a pretty exciting time," says Aiichiro Nakano, a physicist at the University of Southern California in Los Angeles who uses supercomputers to model materials made by layering stacks of atomic sheets like graphene.

pace reflects a change of strategy by DOE officials last fall. Initially, the agency set up a "two lanes" approach to overcoming the challenges of an exascale machine, in particular a potentially ravenous appetite for electricity that could require the output of a small nuclear plant.

Exa(peta)flop/s = 10^{18} (10^{15}) floating-point operations per second

Changing Computing Landscape for Science

Postexascale Computing for Science

Compute Cambrian explosion

Quantum Computing for Science

AI for Science

DOE readies multibilliondollar Al push

U.S. supercomputing leader is the latest big backer in a globally crowded field

By Robert F. Service, in Washington, D.C.

Science 366, 559 (Nov. 1, '19)

Shift your niche to survive *via*Phys 516!

MS in Quantum Information Science

- New MS degree in Quantum Information Science (MSQIS) coming to USC in 2021
- Required foundational courses
 - 1. EE 520: Introduction to Quantum Information Processing
 - 2. EE 514: Quantum Error Correction
 - 3. Phys 513 (New): Applications of Quantum Computing
- Core—at least two courses from
 - 1. EE 589 (New): Quantum Information Theory
 - 2. Phys 550 (New): Open Quantum Systems
 - 3. Phys 559 (New): Quantum Devices
 - 4. Phys 660: Quantum Information Science & Many-Body Physics
- Phys 513: Application of Quantum Computing (will be co-taught with Prof. Rosa Di Felice)—quantum simulations on quantum circuits & adiabatic quantum annealer
- Phys 516 (this course): Core elective for MSQIS

Training Cyber Science Workforce

• New generation of computational scientists at the nexus of exascale computing, quantum computing & AI

• Unique dual-degree program: Ph.D. in materials science or physics, along with MS in computer science specialized in high-performance computing & simulations, MS in quantum information science or MS in materials engineering with AI

Cybermanufacturing

NSF 2036359 FMRG: Artificial Intelligence Driven Cybermanufacturing of Quantum Material Architectures

9/1/2020 - 8/31/2025

R. Nagpal (Harvard); R. Kalia, A. Nakano, H. Wang (USC); D. Rawat (Howard)

This project develops a transformative future manufacturing platform for quantum material architectures using a cybermanufacturing approach, which combines artificial intelligence, robotics, multiscale modeling, and predictive simulation for the automated & parallel assembly of multiple two-dimensional materials into complex three-dimensional structures.

AIQMS Software Suite

AI and Quantum-Computing Enabled Quantum Materials Simulator

