Unit 04: Proofs

Anthony Estey

CSC 225: Algorithms and Data Structures I

University of Victoria

Unit 04 Overview

- ► Supplemental Reading:
 - ► Algorithm Design and Analysis. Michael Goodrich and Roberto Tamassia
 - ▶ Pages 10, 19-25
- ► Learning Objectives: (You should be able to...)
 - write proofs using the following proof techniques: proof by counterexample, direct proofs, proof by contrapositive, and proof by contradiction
 - understand the steps necessary for and how to write a proof by induction
 - understand the steps necessary for and be able to write a loop invariant proof
 - determine the loop invariant by examining the pseudocode for an algorithm

Introduction

▶ Why is there a proofs unit in this course?

► As we explore different algorithms and data structures, we will make strong claims about the correctness or speed of the algorithm

▶ This unit overviews several ways we will justify, or *prove*, these claims

Techniques covered

- ▶ In this unit, we will first review some common proof techniques:
 - Counterexample
 - ▶ Direct proof
 - ▶ Contrapositive
 - ▶ Contradiction
 - ► Induction

- ► And also introduce a new technique you may not have seen before:
 - ► Loop Invariant

Counterexample

- ➤ To prove something is true, in general, you must do so for all possible values
- ➤ To prove something is false, a single example must be presented illustrating that it doesn't work (is false).

➤ Worksheet example:

$$a^2 + b^2 = (a+b)^2$$

Direct Proof

▶ To prove $P \Rightarrow Q$ directly, we consider an element x for which P(x) is true and show Q(x) is also true.

► Worksheet example:

If n is an odd integer then 3n + 7 is an even integer.

Proof by Contrapositive

- ▶ The *contrapositive* of $P \Rightarrow Q$ is the implication $\neg Q \Rightarrow \neg P$.
- ▶ A proof by contrapositive of $P \Rightarrow Q$ is a direct proof of $\neg Q \Rightarrow \neg P$.
- ▶ Another way of putting it: the contrapositive of "if A, then B" is "if not B, then not A."

- Worksheet examples:
 - a) Let n be an integer. If 5n-7 is even, then n is odd.
 - b) Let A and B be sets. If $A \cup B = A$, then $B \subseteq A$

Proof by contradiction

- ▶ To show that $P \Rightarrow Q$ is true by contradiction we show that $\neg(P \Rightarrow Q) \Rightarrow \bot$ (a contradiction).
- ▶ Since $\neg (P \Rightarrow Q)$ is logically equivalent to $(P \land \neg Q)$, we want to show that $(P \land \neg Q) \Rightarrow \bot$ (a contradiction).

➤ Worksheet example:

 $\sqrt{2}$ is irrational

Induction

- ► Formal description from the textbook:
 - ▶ Let S_1, S_2, S_3 ... be statements such that:
 - S_1 is true; and
 - ii. Whenever S_k is true, where $k \in \mathbb{N}$, then S_{k+1} is true
 - ▶ Then all of the statements S_1, S_2, S_3 ... are true.

- ▶ In general, a proof by induction consists of two cases:
 - 1. Base case: prove the statement holds for n=0
 - 2. Inductive Step: prove that *if* the statement holds for any given case n = k (called the *inductive hypothesis*), *then* it must also hold for the next case, n = k + 1.

▶ Prove that the sum of the first n odd integers is equal to n^2 . (The sum of integers $1+3+5+\cdots+(2n-1)=n^2$)

▶ Prove that the sum of the first n odd integers is equal to n^2 . (The sum of integers $1+3+5+\cdots+(2n-1)=n^2$)

1. Base case:

▶ When n = 1, the statement is $1 = 1^2$, which is **true**

▶ Prove that the sum of the first n odd integers is equal to n^2 . (The sum of integers $1+3+5+\cdots+(2n-1)=n^2$)

2. Inductive Step:

- Inductive hypothesis: Assume the statement holds for n=k, for any $k \ge 1$. So, here we assume $1+3+5+\cdots+(2k-1)=k^2$
- ▶ Show n = k + 1 also holds. That is: $1 + 3 + 5 + \cdots + (2(k + 1) 1) = (k + 1)^2$

▶ Prove that the sum of the first n odd integers is equal to n^2 . (The sum of integers $1+3+5+\cdots+(2n-1)=n^2$)

2. Inductive Step:

- Inductive hypothesis: Assume the statement holds for n=k, for any $k \ge 1$. So, here we assume $1+3+5+\cdots+(2k-1)=k^2$
- ► Show n = k + 1 also holds. That is: $1 + 3 + 5 + \dots + (2(k + 1) 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k + 1) - 1) = (k + 1)^2$

► Prove that the sum of the first n odd integers is equal to n^2 . (The sum of integers $1+3+5+\cdots+(2n-1)=n^2$)

2. Inductive Step:

- Inductive hypothesis: Assume the statement holds for n=k, for any $k \ge 1$. So, here we assume $1+3+5+\cdots+(2k-1)=k^2$
- ► Show n = k + 1 also holds. That is: $1 + 3 + 5 + \dots + (2(k + 1) 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k + 1) - 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k) - 1) + (2(k + 1) - 1) =$

► Prove that the sum of the first n odd integers is equal to n^2 . (The sum of integers $1+3+5+\cdots+(2n-1)=n^2$)

2. Inductive Step:

- Inductive hypothesis: Assume the statement holds for n=k, for any $k \ge 1$. So, here we assume $1+3+5+\cdots+(2k-1)=k^2$
- ► Show n = k + 1 also holds. That is: $1 + 3 + 5 + \dots + (2(k + 1) 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k + 1) - 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k) - 1) + (2(k + 1) - 1) =$ $k^2 + (2(k + 1) - 1) =$

► Prove that the sum of the first n odd integers is equal to n^2 . (The sum of integers $1+3+5+\cdots+(2n-1)=n^2$)

2. Inductive Step:

- Inductive hypothesis: Assume the statement holds for n=k, for any $k \ge 1$. So, here we assume $1+3+5+\cdots+(2k-1)=k^2$
- ► Show n = k + 1 also holds. That is: $1 + 3 + 5 + \dots + (2(k + 1) 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k + 1) - 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k) - 1) + (2(k + 1) - 1) = k^2 + (2(k + 1) - 1) = k^2 + 2k + 1 = k^2 + 2k + 1$

▶ Prove that the sum of the first n odd integers is equal to n^2 . (The sum of integers $1+3+5+\cdots+(2n-1)=n^2$)

2. Inductive Step:

- Inductive hypothesis: Assume the statement holds for n=k, for any $k \ge 1$. So, here we assume $1+3+5+\cdots+(2k-1)=k^2$
- Show n = k + 1 also holds. That is: $1 + 3 + 5 + \dots + (2(k + 1) 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k + 1) - 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k) - 1) + (2(k + 1) - 1) = k^2 + (2(k + 1) - 1) = k^2 + 2k + 1 = (k + 1)^2$

▶ Prove that the sum of the first n odd integers is equal to n^2 . (The sum of integers $1+3+5+\cdots+(2n-1)=n^2$)

2. Inductive Step:

- Inductive hypothesis: Assume the statement holds for n=k, for any $k \ge 1$. So, here we assume $1+3+5+\cdots+(2k-1)=k^2$
- ► Show n = k + 1 also holds. That is: $1 + 3 + 5 + \dots + (2(k + 1) 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k + 1) - 1) = (k + 1)^2$ $1 + 3 + 5 + \dots + (2(k) - 1) + (2(k + 1) - 1) =$ $k^2 + (2(k + 1) - 1) =$ $k^2 + 2k + 1 = (k + 1)^2$
- ▶ It follows by induction that $1 + 3 + 5 + \cdots + (2n 1) = n^2$.

Recap: Proof by induction

▶ In general, a proof by induction consists of:

1. Base case:

- ightharpoonup Prove the statement for n=0 (or whatever the base case is)
- ► This is typically easy substitute 0 into n for both sides of the equation and show that they are equal

2. Induction Step

- i. Inductive hypothesis: Assume that the statement holds for n=k, where k is any positive integer
- ii. Given the assumption from the inductive hypothesis, show the statement also holds for n = k + 1.

(Typically involves substitution from the assumption made in the I.H.)

Loop Invariant

- ► What is a loop invariant?
- ► An **invariant** is a **property** that is always true at particular points in a program
- ► A loop invariant is a *property* that is true before (and after) each iteration of a loop
 - ▶ We want to prove it is true before the first entering the loop
 - ▶ We want to prove it *holds* true for all iterations
- ▶ One way of thinking of a loop is that it starts with a true invariant and does work to keep the invariant true for the next iteration of the loop

Loop Invariant

- ► What is a loop invariant?
- ► An **invariant** is a **property** that is always true at particular points in a program
- ► A loop invariant is a *property* that is true before (and after) each iteration of a loop

Loop Invariant Proof

- ► Formal description:
 - ▶ To prove a statement S is correct, define S in terms of smaller statements $S_1, S_2, S_3 \dots S_n$ where
 - i. S_1 is true before the loop
 - ii. S_k is true before iteration k, where $1 \le k \le n$, and based on this assumption we then must show that S_{k+1} is true after iteration k
 - iii. Thus, S_n implies S is true by induction
- ▶ In general, a loop invariant consists of the following cases:
 - 1. Base case (initialization): prove the invariant holds before the loop starts
 - 2. Inductive Step (maintenance): prove that *if* the invariant holds right before beginning iteration *k* (called the *inductive hypothesis*), *then* it must also hold at the end of that iteration (before beginning the next iteration)
 - 3. *Termination: make sure the loop will eventually end!

- ► What is the loop invariant?
 - ► What property is true before we enter the loop, that we want to stay true throughout each iteration, and remain true once the loop has terminated?

```
Algorithm arrayMax(A, n)

Input: An array A storing n \ge 1 integers Output: The maximum element in A

currentMax \leftarrow A[0]

for k \leftarrow 1 to n-1 do

if currentMax < A[k] then

currentMax \leftarrow A[k]

end

end

return currentMax
```

► Since the algorithm finds the max value, let's try:

currentMax holds the maximum value found in the first k elements of the array

currentMax holds the maximum value found in the first k elements of the array

- ► Base case (initialization):
 - ▶ Before entering the loop, currentMax holds the value of A[0]
 - ➤ Our loop invariant states that currentMax must hold the maximum value in the first k elements in the array.
 - ▶ Since before we make the first iteration of the loop (the iteration when k = 1), the range of elements from 0 to k has only one element, A[0].
 - \triangleright So it is trivially true that currentMax holds the maximum value in this range
- ► We have proven the loop invariant is true before entering the loop

```
Algorithm arrayMax(A, n)

Input: An array A storing n \ge 1 integers Output: The maximum element in A

currentMax \leftarrow A[0]

for k \leftarrow 1 to n-1 do

if currentMax < A[k] then

currentMax \leftarrow A[k]

end

end

return currentMax
```

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i

```
Algorithm arrayMax(A, n)

Input: An array A storing n \ge 1 integers Output: The maximum element in A

currentMax \leftarrow A[0]

for k \leftarrow 1 to n-1 do

if currentMax < A[k] then

currentMax \leftarrow A[k]

end

end

return currentMax
```

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i

```
Algorithm arrayMax(A, n)

Input: An array A storing n \ge 1 integers Output: The maximum element in A

currentMax \leftarrow A[0]

for k \leftarrow 1 to n-1 do

if currentMax < A[k] then

currentMax \leftarrow A[k]

end

end

return currentMax
```


currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i

```
Algorithm arrayMax(A,n)

Input: An array A storing n \geq 1 integers Output: The maximum element in A

currentMax \leftarrow A[0]

for k \leftarrow 1 to n-1 do

if currentMax < A[k] then

currentMax \leftarrow A[k]

end

end

return currentMax
```


currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \ge 1$ integers

 Output: The maximum element in AcurrentMax $\leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then

 currentMax $\leftarrow A[k]$ end

 end

 return currentMax
- 2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \ge 1$ integers

 Output: The maximum element in AcurrentMax $\leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then

 currentMax $\leftarrow A[k]$ end

 end

 return currentMax
- 2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \ge 1$ integers

 Output: The maximum element in AcurrentMax $\leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then $currentMax \leftarrow A[k]$ end

 end

 return currentMax
- 2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

Now, let's show the loop invariant holds

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \ge 1$ integers Output: The maximum element in Acurrent $Max \leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then

 current $Max \leftarrow A[k]$ end

 end

 return currentMax

2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \ge 1$ integers

 Output: The maximum element in AcurrentMax $\leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then

 currentMax $\leftarrow A[k]$ end

 end

 return currentMax
- 2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \ge 1$ integers Output: The maximum element in Acurrent $Max \leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then

 current $Max \leftarrow A[k]$ end

 end

 return currentMax
- 2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \geq 1$ integers Output: The maximum element in AcurrentMax $\leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then

 currentMax $\leftarrow A[k]$ end

 end

 return currentMax

2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \geq 1$ integers Output: The maximum element in AcurrentMax $\leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then

 currentMax $\leftarrow A[k]$ end

 end

 return currentMax
- 2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \ge 1$ integers

 Output: The maximum element in AcurrentMax $\leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then

 currentMax $\leftarrow A[k]$ end

 end

 return currentMax
- 2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

currentMax holds the maximum value found in the first k elements of the array

- ► Induction Step (maintenance):
- 1. First, consider the *inductive hypothesis*:
 - Assume the invariant holds up to iteration i
- Algorithm arrayMax(A, n)Input: An array A storing $n \ge 1$ integers

 Output: The maximum element in AcurrentMax $\leftarrow A[0]$ for $k \leftarrow 1$ to n-1 do

 if currentMax < A[k] then

 currentMax $\leftarrow A[k]$ end

 end

 return currentMax

2. Given the assumption from the inductive hypothesis, show the invariant holds at the start of the next iteration, i+1

currentMax holds the maximum value found in the first k elements of the array

- ► Termination:
 - ▶ The loop ends after n-1 iterations
 - ► When it ends, we were about to enter the *n*th iteration
 - ▶ Therefore, by our recently proven loop invariant, at this point we know currentMax holds the maximum value found in the first n elements...

▶ Which means that the maximum value in the array is returned!

```
Algorithm arrayMax(A, n)

Input: An array A storing n \ge 1 integers Output: The maximum element in A

currentMax \leftarrow A[0]

for k \leftarrow 1 to n-1 do

if currentMax < A[k] then

currentMax \leftarrow A[k]

end

end

return currentMax
```

Loop Invariants: Why?

- ► They are used for software verification and validation methods
- ► They can be essential in understanding the effects of a loop, or even help us in solving a problem (writing the loop):
 - ▶ What do we need to be true before we first enter the loop?
 - ▶ How can we ensure this property stays true after each iteration?
 - ▶ Does the loop eventually terminate?

▶ This allows us to verify the solution works!