Turma Olímpica 9 de janeiro de 2020

Treinamento de Velocidade

Guilherme Zeus Moura zeusdanmou@gmail.com

INSTRUÇÕES:

• Tempo disponível: 90 minutos.

• Todas as respostas são inteiros positivos.

......

PROBLEMA 1

Calcule o período, ou seja, o tamanho da parte que repete, da expansão decimal de $\frac{1}{729}$.

PROBLEMA 2

Seja ABC um triângulo com lados 13,14,15. Os pontos no interior de ABC com distância para todos os lados maior que 1 são pintados de preto. A área da região preta pode ser escrita como $\frac{m}{n}$, com m e n primos entre si. Calcule m+n.

PROBLEMA 3

O número 400000001 pode ser escrito como $p \cdot q$, onde p e q são primos. Ache a soma dos fatores primos de p + q - 1.

PROBLEMA 4

Alguns polígonos regulares se encontram em um ponto no plano tal que os polígonos não se sobrepõem, porém esse ponto é rodeado pelos polígonos (isto é, qualquer círculo suficientemente pequeno centrado nesse ponto está contido na união dos polígonos). Qual é o maior número de lados que um desses polígonos pode ter?

PROBLEMA 5

Sejam $0 \le a, b, c, d \le 10$. Para quantas quádruplas ordenadas (a, b, c, d), ad - bc é múltiplo de 11?

PROBLEMA 6

Seja x um real tal que $\tan^{-1}(x) + \tan^{-1}(3x) = \frac{\pi}{6}$ e $0 < x < \frac{\pi}{6}$. Então, x^2 pode ser escrito da forma $\frac{a+b\sqrt{c}}{d}$ para a,b,c,d inteiros com d>0, $(a^2,b^2,c,d^2)=1$ e c livre de quadrados. Calcule a+b+c+d.

PROBLEMA 7

Ache o número de termos não-nulos do polinômio P(x), dado que

$$x^{2018} + x^{2017} + x^{2016} + x^{999} + 1 = (x^4 + x^3 + x^2 + x + 1)P(x).$$

PROBLEMA 8

Calcule o menor inteiro positivo n que é múltiplo de 29 com a tal que, para todo inteiro positivo k primo com n, $k^n \equiv 1 \pmod{n}$.

PROBLEMA 9

O triângulo ABC satisfaz AB=10 e possui ângulos $\angle A=75^\circ$, $\angle B=60^\circ$, e $\angle C=45^\circ$. Seja I_A o centro do exincírculo relativo a A, e sejam D, E os circuncentros dos triângulos BCI_A e ACI_A respectivamente. Se O é o circumcentro do triângulo ABC, então a área do triângulo EOD pode ser escrita como $\frac{a\sqrt{b}}{c}$ para b livre de quadrados e a primo com c. Ache a+b+c.

PROBLEMA 10

Se a e b são inteiros positivos tais que $3\sqrt{2+\sqrt{2+\sqrt{3}}}=a\cos\frac{\pi}{b},$ ache a+b.