

LaViPlan: Language-Guided Visual Path Planning with RLVR

Hayeon Oh

1. Motivation

LLM agent for autonomous driving has misalignment problem in vision-language-action

Action 🐸

(decision-making)

- Post-training with reinforcement learning (RL) has shown generalization, memory efficiency, and alignment (e.g., RLHF)
- ⇒ What if we leverage RL with LLM for autonomous driving?

Phase 1: supervised fine-tuning (SFT)

Instruction tuning enables reasoning-guided waypoint prediction for path planning.

Phase 2: reinforcement fine-tuning (RFT) with GRPO for visionlanguage-action alignment

Post-training with the group relative policy optimization (GRPO) can align language and action by maximizing planning-oriented reward following the objective function below:

$$\max_{\pi_{\theta}} \mathbb{E}_{o \sim \pi_{\theta}(q)} \left[R_{\text{RLVR}}(q, o) \right]$$
$$= \left[R(q, o) - \beta \operatorname{KL} \left(\pi_{\theta}(o \mid q) \parallel \pi_{\text{ref}}(o \mid q) \right) \right]$$

The reward is based on image-plane displacement errors between predicted and ground-truth waypoints.

$$R_{\text{planning}} = -\log\left(1 + \frac{1}{N} \sum_{i=1}^{N} \|\hat{p}_i - p_i\|_2\right) - \log\left(1 + \|\hat{p}_N - p_N\|_2\right)$$

3. Experiment

Results in ROADWork (in-domain dataset)

> ADE : average displacement error, FDE : final displacement error

	ADE ↓		FDE ↓				$ADE \downarrow$			FDE ↓	
	Easy	Hard	Easy	Hard		. =		- L			
Baseline					_		Easy	Har	d Eas	y	Hard
Vision-Language Models						••	50.44		- 100	20	105.05
Qwen2VL-2B	52.44	52.77	102.39	105.05	Base	eline	52.44	52.7	7 102.	39	105.05
Qwen2VL-7B	60.73	60.71	66.61	67.57	SET	(4k)	4.12	5.3	1 4.4	4	6.51
Qwen2.5-VL-3B	16.37	16.40	20.60	20.77		. /					X-10-10-10-10-10-10-10-10-10-10-10-10-10-
LLaMA3.2-11B	59.27	58.88	74.16	71.44	LaV	iPlan	3.62	4.8	3 3.8	5	6.09
Domain-Specific Models					<u> </u>	111	and the same of	P-1-2-P-2			
Senna	N/A	N/A	N/A	N/A	Δ	-	-12.1%	-9.1	% -13.3	%	-6.5%
DriveLM (w/ LLaMA-Adapter)	37.10	38.40	56.99	56.90	1						
Supervised Fine-tuning					_						
Vision-Language Models					≻R	FT afte	er SFT	⁻ viel	ds perf	orn	nance
Qwen2VL-2B	4.52	5.66	4.46	6.46				-	-		1101100
Qwen2VL-7B	4.80	6.04	5.08	7.35	gains across all scenarios						
Qwen2.5-VL-3B	4.97	6.22	5.07	7.34	9						
LLaMA3.2-Vision-11B	4.52	5.46	5.20	7.10	D .:		ADE I		-	DE I	
Domain-Specific Models					Ratio ADE ↓		F	FDE ↓			
Senna	5.71	5.73	6.58	7.46		Easy	Ha	ard	Easy		Hard
DriveLM (w/ LLaMA-Adapter)	6.73	7.79	6.87	8.43	9:1	3.84 (-6.8%	5.05 (-4.9%)	4.09 (-7.9%)	6	.31 (-3.1%)
Reinforcement Fine-tuning					7:3	5.55 (+34.79		26.2%)	4.05 (-8.8%)		.16 (-5.4%)
ALL THE PROPERTY AND ADDRESS OF THE PARTY AND					6:4	1.5		9.1%)	3.85 (-13.3%		

4K for LaViPlan's SFT and 1K for its RFT

➤ All models used 5K samples: ➤ Effect of Easy-to-Hard Data Ratio (Fixed Total Samples)

Results in CODA-LM (out-domain dataset)

Model	Balanced ↑	Safety-Focused↑	Performance-Focused ↑	Equal [†]	
Baseline	0.40	0.30	0.50	0.33	
SFT (5k)	0.60	0.59	0.56	0.63	
LaViPlan	0.64	0.73	0.56	0.70	

>Evaluation under varying penalty weights in zero-shot scenarios

Ratio / Model Balanced ↑		Safety-Focused ↑	Performance-Focused ↑	Equal ↑	
SFT (5K)	0.60 (+0.20)	0.59 (+0.29)	0.56 (+0.06)	0.63 (+0.30)	
LaViPlan (9:1)	0.58 (+0.18)	0.62 (+0.32)	0.51 (+0.01)	0.63 (+0.30)	
LaViPlan (7:3)	0.64 (+0.24)	0.73 (+0.43)	0.56 (+0.06)	0.70 (+0.37)	
LaViPlan (6:4)	0.45 (+0.05)	0.49 (+0.19)	0.39 (-0.11)	0.51 (+0.18)	

➤ Effect of Easy-to-Hard Data Ratio in out-domain dataset

Qualitative Analysis

> Trajectories before (up) and after RFT (down), showing alignment

4. Conclusion

- **Summary**: leveraging GRPO to align vision, language, and action
- > **Limitation**: spare reward depending on the entire rollout
- Future work :LLM agent for autonomous driving capable of causal and counterfactual reasoning for safe, interpretable decision