This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) <u>SU (11)</u> 1784435 A1

(51)5 B 23 P 15/12

новая присадка. З ил.

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ ВЕДОМСТВО СССР (ГОСПАТЕНТ СССР)

EMENTONICE MIENTONICE MIENTONICE

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

1

(21) 4924589/27

(22) 08.01.91

(46) 30.12.92. Бюл. № 48

(71) Производственное объединение "Кировский завод"

(72) Н.Ф.Галицкий, С.К.Кучерявенко, С.С.Родионов, В.И.Ростовцев, Г.Л.Рыбин и Г.П.Суслов

(56) Авторское свидетельство СССР № 377440, кл. В 23 Р 15/12, 1970.

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ФИЛЬТРО-ВАЛЬНОЙ РЕШЕТКИ

(57) Использование: к изготовлению фильтровальных решеток воздухоочистителей двигателя внутреннего сгорания транспортных машин. Сущность изобретения: производят электроосаждение никеля на

матрицу-фотошаблон из стекла с напыленным хромовым покрытием в вакууме толщиной 0,3-0,5 мкм, в котором фотохимическим способом вытравлены отверстия до поверхности стекла, после чего поверхность осажденного на матрицу-фотошаблон никеля покрывают слоем хрома толщиной 0,3-0,5 мкм и отделяют решетку от матрицы. Осаждение никеля производят в электролите с температурой 40-60°С и плотностью тока на катоде 0,9-2,0 А/дм², а раствор электролита в следующем соотношении: углекислый никель 160-170 г/дм³, 40%-ная фтористоводородная кислота 530-550 кг/дм³, борная кислота 230-250 г/дм³, сахарин 0,014-0,1 г/дм³, НИА 2-4 г/дм³, где НИА — антипити-

Изобретение относится к машиностроению и может быть использовано преимущественно в промышленной гальванопластике для изготовления сеток, сит, фильтровальных решеток с микронными размерами отверстий и перемычек между ними с высокой прозрачностью.

Известен способ гальванопластическото изготовления металлической сетки путем электроосаждения металла на матрицу-катод из органического или другого специального стекла с выгравированием в ней ее изображения, которое металлизируется вакуумным напылением тонкого слоя палладия с последующим удалением его с будущих ее ячеек.

Недостатком этого способа является ограничение минимальных размеров ячеек и шагов сетки до 50 мкм и прозрачности до

50%, обусловленное ограниченными возможностями технологии гравировки стекла.

Известен также способ гальванопластического изготовления сетки. (сита) путем электроосаждения металла на матрицу из меди или стали, в которой изображение сетки получают фотохимическим способом с последующим заполнением лунок — ее будущих ячеек — диэлектрической массой.

Для получения никелевых сеток используют сульфатный электролит с добавкой (0,5-1) г/дм³ сахарина, 1,4 г/дм³ бутиндола паратолуолсульфамида, снижающими внутренние напряжения. Осаждение никеля производят при плотности тока 0,8 А/дм² и температуре электролита до 30°C.

Недостатком данного способа является ограничение ширины перемычек между отверстиями в изготавливаемой сетке вслед-

(19) SU (11) 1784435 A

ствие уменьшения толщины перемычек между лунками в матрице из-за их подтравливания с целью надежного закрепления и удержания диэлектрической массы в лунках. Это снижает прочность перемычек в матрице и, чтобы обеспечить им достаточную прочность, их уширяют до поперечногоразмера отверстия или более него. Это приводит в ограничению прозрачности фильтровальной перегородки.

Данным способом теоретически могут быть получены сетки с отверстиями диаметром 5 мкм. В случае прямоугольной формы отверстий с размерами 5х50 мкм прозрачность сетки, полученной данным способом, 15 с шириной перемычек, равной ширине отверстий 5 мкм, составит 60%, в случае квадратной формы отверстий с размерами 5х5 мкм и шириной перемычек между ними, равной 5 мкм, прозрачность будет равной 25%.

Как известно, прозрачность определяет основные показатели качества фильтровальных решеток, их гидравлическое сопротивление и пропускную способность. Еслипропускная способность прямо пропорциональна величине прозрачности, то гидравлическое сопротивление пропорционально ей.

Например, пропускная способность 30 фильтровальной решетки (сетки) при прозрачности 25% в 1.8 раза ниже, а гидравлическое сопротивление в 4 раза выше, чем у решеток с прозрачностью равной 45%...

На прочностные качества фильтроваль- 35 ных решеток оказывают неблагоприятное влияние надрывы перегородок, возникающие при отделении решетки от матрицы. Они снижают надежность работы перегородок в фильтровальном устройстве и приво- 40 дят к ее разрушению. Надрывы обуславливаются микронными размерами перемычек и отсутствием равномерно распределенных сжимающих усилий, препятствующих образованию надрывов и 45 способствующих безнадрывному отделению фильтровальной решетки от матрицы.

Целью изобретения является повышение качества и увеличение прозрачности фильтровальных решеток с микронными размерами отверстий и перемычек между ними.

Для этого предлагается производить электроосаждение никеля на матрицу - фотошаблон из стекла с напыленным в вакуу- 55 ме хромовым покрытием толщиной 0,3-0,5 мкм, в котором фотохимическим способом вытравлены отверстия до поверхности стекла, после этого поверхность осажденного металла покрывают слоем хрома толщиной

в 0,3-0,5 мкм и отделяют готовую фильтровальную решетку от матрицы-фотошаблона. При этом, осаждение производят в электролите, в следующем составе:

 $160-180 г/дм^3$ Углекислый никель Борная кислота $230-250 \ r/дм^3$

40%-ная

фтористоводородная

530-550 г/дм³ кислота Сахарин 0,014-0,1 г/дм³ ANH 2-4 г/дм

где НИА – антипитиновая присадка.

Примером выполнения, подтверждающим достижение цели изобретения, является изготовление фильтровальных решеток с размерами ячеек 3х30 мкм, 5х50 мкм, 10х100 мкм, 20х150 мкм и др. при ширине 60 мм и длине 150 мм, при соблюдении порядка операций, указанных выше, при осаждении в электролите, содержащим следующие конкретные параметры:

179 г/дм³ Углекислый никель Борная кислота $237 \, r/дм^3$

40%-ная

фтористоводородная

542 г/дм³ кислота: $0.014 \, г/дм^3$ Сахарин НИА $3 \, \text{г/дм}^3$, при pH -3.5; температура

электролита 50°С, а плотность тока на катоде $0.95 \, A/дм^2$

Так как использование стеклянной матрицы-фотошаблона с хромовым покрытием вместо металлической матрицы прототипа исключает необходимость в диэлектрической массе и в подтравливании перемычек, то ширина в хромовом покрытии и в фильтровальной решетке может быть значительно меньше поперечного размёра отверстий. Это в сочетании с фотохимическим способом обеспечит возможность увеличения прозрачности фильтровальной решетки и уменьшения размеров отверстий в ней по сравнению с прототипом. Хромовое покрытие, нанесенное на поверхность осажденноникеля, создает равномерно распределенные сжимающие усилия, которые препятствуют образованию надрывов в перемычках и способствуют качественному отделению готовой решетки от матрицы-фотошаблона.

Таким образом повышаются указанные качества фильтровальной решетки, а указанный выше электролит и режим, обеспечивают ей необходимые плотность и прочность.

На фиг. 1 представлена матрица-фотошаблон фильтровальной решетки, общии вид; на фиг. 2 - разрез А-А на фиг. 1; на фиг. 3 показаны в увеличенном масштабе отверстия и перемычки в хромовом покрытии.

10

Матрица-фотошаблон состоит из стекла 1 и хромового покрытия 2 толщиной 0,3-0,5 мкм, напыленного в вакууме.

В хромовом покрытии 2 вытравлены фотохимическим способом отверстия 3 до поверхности стекла 1.

Матрицу-фотошаблон закрепляют стороной с хромовым покрытием в зажиме катода и с помощью его завешивают в электролитическую ванну, заполненную электролитом, имеющим ранее указанный состав. Процесс осаждения никеля на матрицу производится в режиме, указанным также выше, перед отделением никелевой фильтровальной решетки от матрицы-фото- 15 шаблона, поверхность осажденного никеля покрывают слоем хрома толщиной 0,3-0,5 мкм, после чего готовую решетку отделяют от матрицы-фотошаблона.

По сравнению с прототипом, предлага- 20 емый способ позволяет получить фильтровальные решетки с, микронными

отверстиями и с большей прозрачностью, так в случае прямоугольных отверстий одинакового с прототипом размера 5х50 мкм. прозрачность решетки, полученной предлагаемым способом составит 60%, а в случае прототипа она равна 45%. В результате пропускная способность фильтровальной решетки увеличится в 1,33 раза. гидравлическое сопротивление снизится примерно в 2 раза.

Применение фильтровальных решеток, изготовленных по данному способу с микронными размерами отверстий и высокой прозрачностью позволит получить значительную экономию в народном хозяйстве. металла, электроэнергии и топлива, как при изготовлении фильтровальных устройств, так и при их эксплуатации, а также создать малогабаритные воздушные фильтры.

Изготовленные таким способом три образца решеток имеют следующие парамет-

Состав электролита		Толщина решетки, мкм	Прозрачность, %
Углекислый никель 160 г/дм ³			
Фтористо-водородная 40-%-ная	кислота		
530 г/дм ³	· 747 \$	3,0	60.1
Борная кислота 230 г/дм ³			
Сахарин 0,014 г/дм ³		form of the second of the seco	
НИА 2 г/дм ³			
Углекислый никель 180 г/дм			
Фтористо-водородная 40-%-ная	кислота		
550 г/дм ³		3,5	59,8
Борная кислота 250 г/дм ³			
Сахарин 0,1 г/дм3			
НИА 4 г/дм ³			
3			
Углекислый никель 179 г/дм3			•
Фтористо-водородная 40-%-ная	кислота	20	EO O
542 г/дм ³		3,2	59,9
Борная кислота: 237 г/дм ³ Сахарин: 0,05 г/дм ³			
Сахарин 0,0517дм НИА 2,5 г/дм ³			

Применение фильтровальных решеток. микронными размерами отверстий и высокой прозрачностью позволит получить в народном хозяйстве значительную экономию материалов, электроэнергии и топлива, затрачиваемых на изготовление и эксплуатацию многочисленных фильтровальных устройств, позволит создать малогабаритные самоочищающиеся воздушные фильтры, необходимые для защиты транспортных ГТД.

Предлагаемый способ позволит изгоизготовленных по предлагаемому способу с 25 тавливать маски для массового производства более прозрачных лавсановых фильтровальных решеток на циклотронах, на которых сейчас получаются решетки с прозрачностью 8-10% ввиду беспорядочно-30 го расположения отверстий.

> Формула изобретения Способ изготовления фильтровальной решетки путем электроосаждения металла 35 на матрицу из стеклянной пластины в элек

.

тролите, на которой фотохимическим способом нанесена сетка, о т л и ч а ю щ и й с я тем, что, с целью повышения качества и увеличения прозрачности, на матрицу производят электроосаждение никеля слоем 5 толщиной 2-3 мкм при температуре электролита 40-60°С и плотности тока на катоде 0,9-2,0 А/дм², затем слой никеля покрывают слоем хрома толщиной 0,3-0,5 мкм и отделяют полученную решетку от матрицы, при 10

этом используют электролит следующего состава, г/дм³:

	Никель углекислый 160-180
	Кислота борная 230-250
	Кислота
75.34	фтористоводородная
	40%-ная 530-540
	Сахарин 0,014-0,1
	Антинитинговая
	присадка НИА 2-4.

Составитель Н. Галицкий
Редактор С. Кулакова Техред М.Моргентал Корректор М. Демчик

Заказ 4338 Тираж Подписное
ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101