Reminder: the cost function

Reminder: Gradient descent

Gradient vector

Indicates direction of steepest ascent (negative = steepest descent)

Gradient descent

Initialization

Step size α

Can change as a function of iteration

Gradient direction

Stopping condition

Gradient for the MSE

$$\begin{aligned} \text{MSE} \qquad J(\underline{\theta}) &= \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2 \\ \frac{e_j(\theta)}{\partial \theta_0} &= \frac{1}{\partial \theta_0} \sum_{j} (y^{(j)} - \theta_0 \underline{x}_0^{(j)} - \theta_1 \underline{x}_1^{(j)} - \dots)^2 \\ &= \frac{1}{m} \sum_{j} (e_j(\theta))^2 \\ &= \frac{1}{m} \sum_{j} \frac{\partial}{\partial \theta_0} (e_j(\theta))^2 \\ &= \frac{1}{m} \sum_{j} 2e_j(\theta) \frac{\partial}{\partial \theta_0} e_j(\theta) \end{aligned} \qquad \underbrace{\frac{\partial}{\partial \theta_0} e_j(\theta) = \frac{\partial}{\partial \theta_0} y^{(j)} - \frac{\partial}{\partial \theta_0} \theta_0 x_0^{(j)} - \frac{\partial}{\partial \theta_0} \theta_1 x_1^{(j)} - \dots}_{\mathbf{0}} \\ &= -x_0^{(j)} \end{aligned}$$

Gradient for the MSE

MSE
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$

$$\nabla J = ? \qquad J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \theta_0 \underline{x}_0^{(j)} - \theta_1 \underline{x}_1^{(j)} - \dots)^2$$

$$\nabla J(\theta) = [\frac{\partial J}{\partial \theta_0}, \frac{\partial J}{\partial \theta_1}, \dots]$$

$$= [\frac{-2}{m} \sum_{j} e_j(\theta) x_0^{(j)}, \frac{-2}{m} \sum_{j} e_j(\theta) x_1^{(j)}, \dots]$$

$$= \frac{-2}{m} \sum_{j} e_j(\theta) [x_0^{(j)}, x_2^{(j)}, \dots, x_n^{(j)}].$$

Gradient for the MSE

Rewrite using matrix form

$$\nabla J(\underline{\theta}) = -\frac{2}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)}^T) \cdot [x_0^{(j)} x_1^{(j)} \dots]$$
 Error magnitude & Sensitivity to each θ_i
$$\underline{\theta} = [\theta_0, \dots, \theta_n] \qquad \text{direction for datum j} \qquad \underline{x} = \begin{bmatrix} x_0^{(1)} & \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

$$\nabla J(\underline{\theta}) = -\frac{2}{m} (\underline{y}^T - \underline{\theta} \underline{X}^T) \cdot \underline{X}$$

$$\underline{X} = \begin{bmatrix} x_0^{(1)} & \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

```
e = Y - X.dot( theta.T ); # error residual
DJ = - e.dot(X) * 2.0/m # compute the gradient
theta -= alpha * DJ # take a step
```

Gradient descent on cost function

Comments on Gradient Descent

Very general algorithm

We'll see it many times

Local minima

Sensitive to starting point

Step size

- Too large? Too small? Automatic ways to choose?
- May want step size to decrease with iteration
- Common choices:
 - Fixed
 - Linear: C/(iteration)
 - Line search
 - Newton's method

Machine Learning

Gradient Descent

Newton's Method, Stochastic Gradient Descent

Directly Solving MSE, , L1 Error

Non-linear Regression

Newton's method

Want to find the roots of f(z)

• "Root": value of x for which f(z)=0

Initialize to some point z

Compute tangent at z & where it crosses z-axis

$$\nabla f(z) = \frac{0 - f(z)}{z' - z} \quad \Rightarrow \quad z' = z - \frac{f(z)}{\nabla f(z)}$$

Optimization: find roots of $\nabla J(\theta)$ (because gradient is zero at the minimum)

Replacing f by ∇J :

$$\nabla \nabla J(\theta) = \frac{0 - \nabla J(\theta)}{\theta' - \theta} \quad \Rightarrow \quad \theta' = \theta - \frac{\nabla J(\theta)}{\nabla \nabla J(\theta)}$$

- Does not always converge; sometimes unstable
- If converges, usually very fast
- Works well for smooth, non-pathological functions, locally quadratic
- For n large, may be computationally hard: O(n²) storage, O(n³) time

Stochastic / Online Gradient Descent

Goal: estimate the gradient *cheaply* based on sub-sampled data points

Gradient Descent

Straight path; every step is expensive

Stochastic Gradient Descent

Zig-zag path; every step is cheap

Stochastic / Online Gradient Descent

Goal: estimate the gradient *cheaply* based on sub-sampled data points

MSE

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} J_j(\underline{\theta}), \qquad J_j(\underline{\theta}) = (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$

Gradient (sum over all datapoints):

$$\nabla J(\theta) = \frac{1}{m} \sum_{j=1}^{m} \nabla J_j(\theta)$$

Stochastic gradient (selects datapoint j at random):

$$\widehat{\nabla} J(\theta) = \nabla J_j(\theta)$$
, where $j \sim Uniform\{1, ..., m\}$

The "average" direction of the stochastic gradient is the (true) gradient:

$$E[\widehat{\nabla}J(\theta)] = \nabla J(\theta)$$
 (average over the data)

Update based on each datum at a time

$$J_{j}(\underline{\theta}) = (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}})^{2}$$

$$\nabla J_{j}(\underline{\theta}) = -2(y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}}) \cdot [x_{0}^{(j)} x_{1}^{(j)} \dots]$$

Benefits

- Lots of data = many more updates per pass
- Computationally faster
- Arguably the most important optimization algorithm nowadays

Drawbacks

- No longer strictly "descent"
- Stopping conditions may be harder to evaluate
 (Can use "running estimates" of J(.), etc.)

Related:

mini-batch updates, etc.

```
Initialize \theta, shuffle data set Do { for j=1:m \theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta) } while (not done)
```

Advanced SGD algorithms

- Adding a momentum term
 - Keeps memory of "velocity"
 - Smoothens stochastic path
- Preconditioning
 - Pre-multiply gradient, e.g., with inverse Hessian (diagonal approximation)
 - Makes optimization problem "better behaved"

Blog Post:

https://ruder.io/optimizing-gradient-descent/

Source: http://www.denizyuret.com/

Machine Learning

Gradient Descent

Newton's Method, Stochastic Gradient Descent

Directly Solving MSE, L1 Error

Non-linear Regression

MSE Minimum

Consider a simple problem

- One feature, two data points
- Two unknowns: θ_0 , θ_1

$$y^{(1)} = \theta_0 + \theta_1 x^{(1)}$$

$$y^{(2)} = \theta_0 + \theta_1 x^{(2)}$$

Can solve this system directly:

$$y^T = \underline{\theta} \underline{X}^T \qquad \Rightarrow \qquad \underline{\hat{\theta}} = y^T (\underline{X}^T)^{-1}$$

- However, most of the time, m > n
 - There may be no linear function that hits all the data exactly
 - Instead, solve directly for minimum of MSE function

MSE Minimum

$$\nabla J(\underline{\theta}) = -\frac{2}{m} (\underline{y}^T - \underline{\theta} \underline{X}^T) \cdot \underline{X} = \underline{0}$$

Reordering, we have

$$\underline{y}^{T} \underline{X} - \underline{\theta} \underline{X}^{T} \cdot \underline{X} = \underline{0}$$

$$\underline{y}^{T} \underline{X} = \underline{\theta} \underline{X}^{T} \cdot \underline{X}$$

$$\underline{\theta} = \underline{y}^{T} \underline{X} (\underline{X}^{T} \underline{X})^{-1}$$

- X (X^T X)⁻¹ is the Moore-Penrose"pseudo-inverse"
- If X^T is square and independent, this is the inverse
- If m > n: overdetermined; gives minimum MSE fit

R. Penrose Nobel Prize 2020

Python MSE

This is easy to solve in Python / NumPy...

$$\underline{\theta} = \underline{y}^T \underline{X} (\underline{X}^T \underline{X})^{-1}$$

$y = \text{np.matrix}([[y1], ..., [ym]])$

$X = \text{np.matrix}([[x1_0 ... x1_n], [x2_0 ... x2_n], ...])$

Solution 1: "manual"

th = $y.T * X * \text{np.linalg.inv}(X.T * X)$;

Solution 2: "least squares solve"

th = $\text{np.linalg.lstsq}(X, Y)$;

Effects of MSE choice

Sensitivity to outliers

L1 error: Mean Absolute Error

Cost functions for regression

$$\ell_2$$
 : $(y-\hat{y})^2$ (MSE)

$$\ell_1 \,:\, |y-\hat{y}|$$
 (MAE)

Something else entirely...

$$c - \log(\exp(-(y - \hat{y})^2) + c)$$
(???)

Arbitrary functions cannot be solved in closed form - use gradient descent

Machine Learning

Gradient Descent

Newton's Method, Stochastic Gradient Descent

Directly Solving MSE, L1 Error

Non-linear Regression

Linear Regression in higher dimensions

$$\hat{y}(x) = \underline{\theta} \cdot \underline{x}^T$$

Nonlinear functions

Sometimes we are interested in fitting non-linear functions

• Ex: higher-order polynomials

Nonlinear functions

Single feature x, predict target y:

$$D = \left\{(x^{(j)}, y^{(j)})\right\}$$
 Add features:
$$D = \left\{([x^{(j)}, (x^{(j)})^2, (x^{(j)})^3], y^{(j)})\right\}$$

Linear regression in new features

Polynomial regression in *low* dimensions \leftrightarrow *linear* regression in *high* dimensions

$$\Phi(x) = \begin{bmatrix} 1, x, x^2, x^3, \dots \end{bmatrix} \qquad \hat{y}(x) = \underline{\theta} \cdot \Phi(x)$$

Sometimes useful to think of "feature transform"

Higher-order polynomials

Fit in the same way

More "features" $heta \cdot \Phi(x)$

Features

In general, can use any features we think are useful

Instead of collecting more information about datum, just apply nonlinear transformation to existing features

Polynomial functions

Features [1, x, x2, x3, ...]

Other functions

1/x, sqrt(x), x1 * x2, ...

- "Linear regression" = linear in the parameters
 - Features can be made as complex as we want!

Higher-order polynomials

When should we stop adding more features?

- "Nested" hypotheses
 - 2nd order more general than 1st,
 - 3rd order ""than 2nd, ...

Fits the observed data better

Overfitting and complexity

More complex models will always fit the training data better

But they may "overfit" the training data, learning complex relationships that are not really present

Test data

After training the model

Go out and get more data from the world

New observations (x,y)

How well does our model perform?

Training versus test error

Plot MSE as a function of model complexity

Polynomial order

Decreases

 More complex function fits training data better

What about new data?

Oth to 1st order

Error decreases (Underfitting)

Higher order

Error increases (Overfitting)

Inductive bias

The assumptions needed to predict examples we haven't seen

Some inductive bias is necessary for learning

Polynomial functions; smooth functions; etc

Generally prefer simpler models over more complex ones ("Occam's razor")

