目錄

壹、	實驗目的	1.
貳、	原理及分析方法	1.
參、	儀器及實驗架構方塊圖	3.
肆、	實驗步驟	3.
伍、	數據	4.
陸、	結果與討論	8.
柒、	問題與討論	9.
捌、	心得及建議	10.
47、	參 老資料	10.

壹、 實驗目的

認識實驗常用的幾種基本量測儀器,瞭解其設計原理,並熟悉正確的使用方法。

- 一、建立實驗測量的基本概念和實驗數據的正確取法。
- 二、瞭解實驗數據的誤差來源,實驗數據和誤差的正確處理流程。
- 三、建構數據分析的基本常識和處理技巧。

貳、 原理及分析方法

- 一、有效位數:準確值+估計值一位
- 二、捨入:採四捨六入
 - 1. 要捨去部份的第一位數是"6"或是大於"6"的數,則捨去後將前面一位數加 1,例如: "1.478"經捨入得"1.48"。
 - 2. 要捨去部份的第一位數是"4"或是小於"4"的數,則捨去後的前面位數不變,例 如:"1.472"經捨入得"1.47"。
 - 3. 如果捨去部份只有一位,其值為"5"則由前面一位數的奇、偶決定:"遇雙便捨","逢單則入", 使捨入以後的數最後一位是偶數。這樣在運算中會比較好處 理;同時就機率而言, 捨和入的機會一樣多。如果捨去部份不僅有一位數, 而其第一位數為"5", 則捨去後前面一位數加"1"。

三、實驗誤差:

- 1. 系統誤差:
 - (1) 設備系統誤差:依據儀器製作精密程度
 - (2) 環境系統誤差:溫度不同客能導致膨脹或收縮
 - (3) 人為誤差:判斷估計值,因人而異

2. 統計誤差:

這種誤差也稱為隨機誤差,其原因不是觀測者所能控制的,而是自然界存在的一種必然現象,是一種機率問題。藉由多次測量取平均值,以求接近真確值。

四、統計分析

1. 算術平均數

$$\bar{x} \equiv \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2. 偏差

$$d_1 = x_1 - \bar{x} \cdot d_2 = x_2 - \bar{x} \cdot \dots \cdot d_n = x_n - \bar{x}$$

 $d_1 + d_2 + \dots + d_n = \sum_i d_i = 0$

3. 平均偏差

$$D \equiv \frac{|d_1| + |d_2| + \dots + |d_n|}{n} = \frac{1}{n} \sum_{i} |d_i|$$

4. 標準偏差

$$\sigma \equiv \sqrt{\frac{d_1^2 + d_2^2 + \dots + d_n^2}{n}} = \sqrt{\frac{1}{n} \sum_{i=1}^n d_i^2}$$

5. 平均標準差

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i} d_i^2}$$

- 6. 誤差傳遞
 - (1) 加減的誤差傳遞

$$\overline{x \pm y} = \overline{x} \pm \overline{y}$$

$$\sigma_{x \pm y}^2 = \sigma_{\overline{x}}^2 + \sigma_{\overline{y}}^2$$

$$\sigma^2 = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2$$

(2) 乘除的誤差傳遞

$$\overline{xy} = \overline{x}\overline{y} \cdot \frac{\overline{x}}{y} = \frac{\overline{x}}{\overline{y}}$$
$$\left(\frac{\sigma_{\overline{x}\overline{y}}}{\overline{x}\overline{y}}\right)^2 = \left(\frac{\sigma_{\overline{x}}}{\overline{x}}\right)^2 + \left(\frac{\sigma_{\overline{y}}}{\overline{y}}\right)^2$$

$$(\frac{\sigma_{\overline{x/y}}}{\overline{x/y}})^2 = (\frac{\sigma_{\bar{x}}}{\bar{x}})^2 + (\frac{\sigma_{\bar{y}}}{\bar{y}})^2$$
$$(\frac{\sigma}{y})^2 = (\frac{\sigma_1}{y_1})^2 + (\frac{\sigma_2}{y_2})^2 + \dots + (\frac{\sigma_n}{y_n})^2$$

(3) 含幂次的誤差傳遞

$$\overline{x^l y^m} = \overline{x^l} \overline{y^m} = \overline{x}^l \overline{y}^m$$

$$\left(\frac{\sigma_{\overline{x^l y^m}}}{\overline{x^l y^m}}\right)^2 = l^2 \left(\frac{\sigma_{\overline{x}}}{\overline{x}}\right)^2 + m^2 \left(\frac{\sigma_{\overline{y}}}{\overline{y}}\right)^2$$

參、 儀器及實驗架構方塊圖

肆、 實驗步驟

- 一、測量木塊的長、寬、高和水管的內徑、外徑、深度以及黑球的半徑
- 二、測量各物體質量
- 三、計算體積及密度
- 四、參考誤差傳遞公式求各數據之平均標準差

伍、 數據

一、木塊

木塊	長(r	nm)	寬(t	nm)	高(1	nm)
	數據	偏差	數據	偏差	數據	偏差
測量#1	11.40	0.000	11.20	0.035	39.10	0.150
測量#2	11.40	0.000	11.15	-0.015	39.05	0.100
測量#3	11.40	0.000	11.20	0.035	38.90	-0.050
測量#4	11.50	0.100	11.10	-0.065	39.20	0.250
測量#5	11.35	-0.050	11.15	-0.015	38.95	0.000
測量#6	11.35	-0.050	11.10	-0.065	39.00	0.050
測量#7	11.35	-0.050	11.20	0.035	38.85	-0.100
測量#8	11.50	0.100	11.20	0.035	38.70	-0.250
測量#9	11.35	-0.050	11.20	0.035	38.80	-0.150
測量#10	11.40	0.000	11.15	-0.015	38.95	0.000
平均	11.400		11.165		38.950	
平均偏差	0.040		0.035		0.110	
標準差	0.058		0.0)41	0.147	
平均標準差	0.018		0.013		0.046	

	體積(mm³)	質量	量(g)	質量(g)		密度(g/cm³)	密度(g/cm³)
木塊		(三樑天平)		(電子秤)		(三樑天平)	(電子秤)
		數據	偏差	數據	偏差		
測量#1		3.620	-0.001	3.62	-0.001		
測量#2		3.619	-0.002	3.63	0.009		
測量#3		3.620	-0.001	3.62	-0.001		
測量#4		3.623	0.002	3.62	-0.001		
測量#5		3.623	0.002	3.62	-0.001		
測量#6		3.622	0.001	3.62	-0.001		
測量#7		3.620	-0.001	3.62	-0.001		
測量#8		3.622	0.001	3.62	-0.001		
測量#9		3.621	0.000	3.62	-0.001		
測量#10		3.620	-0.001	3.62	-0.001		
平均	4957.5	3.6	210	3.	621	0.73039	0.7304
平均偏差		0.0	012	0.	002		
標準差		0.0	014	0.003			
平均標準差	11.5	0.0004		0.001		0.00169	0.0017

體積之誤差傳遞

體積平均標準差=
$$\sqrt{(\frac{0.046}{38.950})^2 + (\frac{0.013}{11.165})^2 + (\frac{0.018}{11.400})^2} * (38.950 * 11.165 * 11.400) ≈ 11.5 體積=4957.5±11.5 $(mm^3)$$$

密度之誤差傳遞

(a) 三樑天平測之密度平均標準差=
$$\sqrt{(\frac{0.0004}{3.6210})^2 + (\frac{11.5}{4957.5})^2} * (\frac{3.6210}{4957.5}) \approx 0.00169$$
 密度=0.73039±0.00169 ($\frac{g}{cm^3}$)

(b) 電子秤測之密度平均標準差=
$$\sqrt{(\frac{0.001}{3.621})^2 + (\frac{11.5}{4957.5})^2} * (\frac{3.621}{4957.5}) * 1000 ≈ 0.0017$$
 密度=0.7304±0.0017 ($\frac{g}{cm^3}$)

二、水管

水管	內	徑	外	·徑	高		
	數據	偏差	數據	偏差	數據	偏差	
測量#1	10.150	0.0000	13.050	0.0025	42.20	-0.130	
測量#2	10.125	-0.0250	13.050	0.0025	42.40	0.070	
測量#3	10.125	-0.0250	13.050	0.0025	42.35	0.020	
測量#4	10.150	0.0000	13.025	-0.0225	42.30	-0.030	
測量#5	10.175	0.0250	13.025	-0.0225	42.50	0.170	
測量#6	10.175	0.0250	13.050	0.0025	42.40	0.070	
測量#7	10.150	0.0000	13.025	-0.0225	42.30	-0.030	
測量#8	10.100	-0.0500	13.100	0.0525	42.30	-0.030	
測量#9	10.250	0.1000	13.050	0.0025	42.20	-0.130	
測量#10	10.100	-0.0500	13.050	0.0025	42.35	0.020	
平均	10.1500		13.0475		42.330		
平均偏差	0.0300		0.0135		0.070		
標準差	0.0	441	0.0	219	0.092		
平均標準差	0.0	139	0.0	069	0.0	029	

水管	體積(mm³)	質量(g)		質量	量(g)	密度(g/cm³)	密度(g/cm³)
		(三樑天平)		(電-	子秤)	(三樑天平)	(電子秤)
		數據	偏差	數據	偏差	數據	
測量#1		12.844	-0.0018	12.84	0.001		
測量#2		12.843	-0.0028	12.84	0.001		
測量#3		12.850	0.0042	12.84	0.001		
測量#4		12.849	0.0032	12.84	0.001		
測量#5		12.849	0.0032	12.84	0.001		
測量#6		12.847	0.0012	12.84	0.001		
測量#7		12.845	-0.0008	12.83	-0.009		
測量#8		12.843	-0.0028	12.84	0.001		
測量#9		12.843	-0.0028	12.84	0.001		
測量#10		12.845	-0.0008	12.84	0.001		
平均	8938.5	12.8	8458	12.	.839	1.43714	1.43638
平均偏差		0.0024		0.0	002		
標準差		0.0027		0.0	003		
平均標準差	45.1	0.0009		0.0	001	0.00725	0.00724

體積之誤差傳遞

體積平均標準差=
$$\sqrt{(\frac{\sqrt{2^2*(\frac{0.0069}{13.0475})*13.0475^2+2^2*(\frac{0.0139}{10.1500})*10.1500^2}}{13.0475^2-10.1500^2})^2+(\frac{0.0291}{42.330})^2}*$$
 (13.0475² $-$ 10.1500²) $*$ 42.330 $*$ $\pi \approx 45.1$ 體積=8938.5±45.1 (cm^3)

密度之誤差傳遞

(a) 三樑天平測之密度平均標準差=
$$\sqrt{(\frac{0.0009}{12.8458})^2 + (\frac{45.1}{8938.5})^2} * (\frac{12.8458}{8938.5}) * 1000 ≈ 0.00725$$
 密度=1.43714±0.00725 ($\frac{g}{cm^3}$)

(b) 電子天平測之密度平均標準差=
$$\sqrt{(\frac{0.001}{12.839})^2 + (\frac{45.1}{8938.5})^2} * (\frac{12.839}{8938.5}) * 1000 ≈ 0.00724$$
 密度=1.43638±0.00724 ($\frac{g}{cm^3}$)

三、小黑球

小黑球	直徑			半徑	- 體積
	數據	偏差	數據	偏差	7
測量#1	12.71	0.017	6.355	0.0085	
測量#2	12.69	-0.003	6.345	-0.0015	
測量#3	12.69	-0.003	6.345	-0.0015	
測量#4	12.70	0.007	6.350	0.0035	
測量#5	12.68	-0.013	6.340	-0.0065	
測量#6	12.70	0.007	6.350	0.0035	
測量#7	12.68	-0.013	6.340	-0.0065	
測量#8	12.69	-0.003	6.345	-0.0015	
測量#9	12.70	0.007	6.350	0.0035	
測量#10	12.69	-0.003	6.345	-0.0015	
平均	12.693		6.3465		1070.8
平均偏差	0.008		0.0038		
標準差	0.010		0.0047		
平均標準差	0.003		0	.0015	2.3

	1					1	
小黑球	體積	質量(g)		質量(g)		密度	密度(g/cm³)
	(mm^3)	(三樑	关平)	(電子	子秤)	(g/cm^3)	(電子秤)
		數據	偏差	數據	偏差	(三樑天平)	
測量#1		8.370	0.0004	8.37	0.000		
測量#2		8.368	-0.0016	8.36	-0.010		
測量#3		8.370	0.0004	8.37	0.000		
測量#4		8.369	-0.0006	8.37	0.000		
測量#5		8.370	0.0004	8.37	0.000		
測量#6		8.370	0.0004	8.37	0.000		
測量#7		8.371	0.0014	8.38	0.010		
測量#8		8.370	0.0004	8.37	0.000		
測量#9		8.370	0.0004	8.37	0.000		
測量#10		8.368	-0.0016	8.37	0.000		
平均	1070.8	8.3	696	8.3	570	7.8165	7.817
平均偏差		0.0008		0.0	002		
標準差		0.0	010	0.0	005		
平均標準差	2.3	0.0	0003	0.0	002	0.0166	0.017

體積之誤差傳遞

體積平均標準差=
$$\sqrt{(3^2*\left(\frac{0.0015}{6.3465}\right)^2}*1070.8\approx 2.3$$
 體積=1070.8 \pm 2.3 (mm^3)

密度之誤差傳遞

(a) 三樑天平測之密度平均標準差=
$$\sqrt{(\frac{0.003}{8.3696})^2 + (\frac{2.3}{1070.8})^2} * (\frac{8.3696}{1070.8}) * 1000 \approx 0.0166$$

密度=7.8165±0.0166 ($\frac{g}{cm^3}$)

(b) 電子秤測之密度平均標準差=
$$\sqrt{(\frac{0.001}{8.370})^2 + (\frac{2.3}{1070.8})^2} * (\frac{8.3696}{1070.8}) * 1000 \approx 0.017$$
 密度=7.817±0.017 ($\frac{g}{cm^3}$)

陸、 結果與討論

- 一、每個物體(木塊、水管、小黑球),我們皆用三樑天平、電子秤分別測質量。照理來說,機器應比人判讀數據來得精確。然而,所計算出的平均標準差都是以三樑天平的較低。原因是因為電子秤的數據只能求到小數點後第2位,而三樑天平的精確值為小數點後2位在加上1位估計值,便可獲得小數點後3位的有效數字,使得計算出來的平均標準差以三樑天平所測得數據較低。
- 二、觀察木塊數據可發現,木塊高的平均標準差為長、寬的 2~3 倍,其原因是 因為木塊高方向的兩面明顯不平行,不同位置所測量的高會有明顯差異, 導致偏差較高也因此平均標準差也較高。此為設備系統誤差。
- 三、觀察水管數據可發現,水管高的平均標準差數據為內徑、外徑 2~4 倍,其原因是在測量深度(高度)時,深度桿容易歪斜,意即容易與水管底面成非垂直,這樣操作上的不方便或多或少增加了一些誤差。此為人為系統誤差。

四、有效位數的取法

- 1. 游標尺:精密度為 0.05(mm),但由於是看主尺、副尺剛好成一直線來計 算因此沒有多取一位估計值,取至小數點後第 2 位。
- 2. 螺旋測微器:精密度微 0.01(mm)取值與游標尺雷同,因此也取至小數點 後的 2 位。
- 3. 三樑天平:精密度達 0.01(g), 測量時未必會對準數值因此多取一位估計 值到小數點後的 3 位。
- 4. 電子秤:機器給值只到小數點後第2位,因此有效位數也取至小數點後的2位。
- 5. 平均:測量數據達10個,且為了讓偏差能更精確表示出來,不同數據的平均都多取一位有效數字,即用游標尺、螺旋測微器、電子秤量的數據平均取到小數點後3位;三樑天平取至小數點後的4位。
- 6. 運算:都先化作科學符號表示,再取最少的有效位數數據當作有小位數的取法。以水管體積舉例:(R²-r²)*π*h

外徑平均(R): $13.0475=1.30475*10^1$,1.30475(1、3、0、4、7、5)6 個有效位數

內徑平均(r): $10.1500=1.01500*10^1$, $1.01500(1 \cdot 0 \cdot 1 \cdot 5 \cdot 0 \cdot 0)$ 6個有效位數

高平均(h):42.330=4.2330*101, 4.2330(4、2、3、3、0)5 個有效位數

(R²-r²)* π*h=((13.0475)2-(10.1500)2)* π*42.330=8938.46125 Min(6, 6, 5)=5, 取有效位數 5位"8939.5"

柒、 問題與討論

1. 量金屬圓柱體的高度和直徑時,應該在同一位置量多次,還是不同位置與不同方向都要量?為什麼?

Ans:應測量不同位置、不同方向的數據。因不同位置可能本身就存在誤差,也就是說可能木塊不是公正的長方體,只測量同一方向的同一位置,可能剛好測到與真實值差異最大的部分,導致最後與真實值相差甚遠。

- 2. 為什麼用直尺量長度多次時,每次要取自直尺不同的位置? Ans:每個刻度間存在一點誤差,因此在不同位置多量幾次取平均,以求得相對可信的數據。
- 3. 一個長方形物體的長、寬各測十次,計算面積時應以長度平均值與寬度之平均值相 乘,或是長、寬一對一相乘後再平均?試申述理由。

Ans:應以長度平均值與寬度之平均值相乘,因為以後者來計算的話每個長、寬

數據都與真實值有誤差,兩兩相乘後可能導致誤差更大,將一群誤差更大的數 據取平均沒有意義。(取平均的意義即是希望接近真實值)

4. 請一一列舉此實驗所使用的儀器之系統誤差。

Ans:設備系統誤差:測量器材老舊、不夠精密、測量物非公正形狀環境系統誤差:溫度可能影響物體大小

人為系統誤差:不同人所判別相同數據所得的估計值有所不同

5. 若使用的游標尺如圖 7 所示,即主尺上 49 格刻劃(每格的長度為 1mm)等 於游標上 的 50 格,則游標上的刻劃一格相當於多長(參考附錄 A)?刻度的 讀法是否和附錄 A 之 一中所述的相同?

Ans:1-49/50=1/50=0.02(mm), 原理相同。

6. x²的標準差利用(15)式和(18)式計算所得的結果有何不同?那一種是正確的? 為什麼?

Ans:以(18)式計算是正確的,將 x^2 看作 x*x 用(15)式是不行的,因 x 和 x 並非獨立事件。

捌、 心得及建議

這次實驗主要分成測量數據、計算與統整。游標尺、電子秤和螺旋測微器都是 精度較高且要動手細細操作的器材,過去少有能動手做實驗的機會,對於器材 實際如何使用,總是一知半解,經過這次嘗試,對操作上有更深體會。過去也 少用 Excel,在計算方面,即使有了它當輔助計算工具,還是要時間熟悉,了解 後困難的還在後頭,誤差傳遞的算式、有效位數取法的觀念,也是在計算、統 整資料時遇到得較大困難。

玖、 參考資料

清大普物實驗網站:http://www.phys.nthu.edu.tw/~gplab/file/01Measuring/exp01.pdf