What can we learn from cancer genomes?

Clinical application: Cancer Genome Interpreter

Cancer Genome Interpreter is a very useful algorithm to clinics because it facilitates the interpretation of mutations of an specific patient. Doctors can introduce the tumour mutations that the patients have and the Cancer Genome Interpreter identifies which ones are drivers or passengers. This knowledge allows to choose the most effective therapy to each patient (personalized therapy).

Show ent	ries with: w mutatio	ns described as biomarkers for the selected tumor type	d as biomarkers with a different aminoacid change					
mutations described as biomarkers for a different burnor type			mutations in genes described as biomarkers upon other alteration types					
Sample id	Observed alteration	Drugs	Effect	Tumor type	Level of evidence	Reference	Tumor match	Biomarker match
coread_01	BRAF V600E	Cetuximab, Panitumumab	Resistant	COREAD	Late trials	PMID: 20619739 PMI		
conead_01	BRAF V600E	Vemurafenib	No responsive	COREAD	Early trials	PMID: 26287849.		
coread_01	BRAF V600E	Irinotecan + Cetuximab + Vemurafenib	Responsive	COREAD	Guidelines	NCNN guidelines		
oread_01	BRAF V600E	Panitumumab + Dabrafenib + Trametinib	Responsive	COREAD	Early trials	ASCO 2015 (abstr 103)		
coread_01	BRAF V600E	Panitumumab + Dabrafenib + Alpelisib	Responsive	COREAD	Early trials	PMID:28363909		
coread_32	APC R1450* + G.	Tankyrase inhibitor	Responsive	COREAD	Pre-clinical	PMID: 22440753 PMI		
coread 45	RNF43 A169T	Porcupine inhibitor	Responsive	COREAD	Case report	ENA 2015 (abstr C45)		

Identification of cancer drivers

HOW DO WE IDENTIFY CANCER DRIVERS?

Sequencing tumour samples to identify cancer somatic mutations.

The main problem is that **tumours genomes have thousands of somatic** mutations and only an **average on 4.6 of them are drivers**.

Driver genes can be detected through signals of positive selection (special patterns in the distribution of mutations that appear as a result of tumorigenesis \rightarrow selective advantage). These signals are complementary (not all driver genes have the 3 signals). To identify them we test whether what we observe is expected to occur by chance (neutral evolution).

OncodriveCLUSTL is a sequence-based clustering method that **identifies drivers in protein-coding regions**.

The pipeline: IntOGen + boostDM

Since the signals are complementary, the idea would be to merge all these methods.

IntOGen: One method to rule them all

Using sequences of patients from different projects, **IntOGen uses 7 methods** (2 based on recurrence, 3 based on clustering and some of the remaining based on functional impact) to identify driver genes.

PERSPECTIVES

The number of sequencings of different cancers will increase, which will allow the identification of driver mutations in less common cancers.