```
fedhah Almutairi
4050392 , IA8G"""
```

In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

In [78]:

```
from sklearn import datasets
dataset = datasets.load_iris()
df = pd.DataFrame(dataset['data'], columns=['petal length (cm)', 'petal width (cm)',
df
```

Out[78]:

	petal length (cm)	petal width (cm)	sepal length (cm)	sepal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [15]:

```
X = df['petal length (cm)']
Y = df['sepal length (cm)']
Slic_df= pd.DataFrame({'petal length':X,'sepal length':Y})
print(Slic_df)
```

	petal	length	sepal	length
0		5.1		1.4
1		4.9		1.4
2		4.7		1.3
3		4.6		1.5
4		5.0		1.4
• •		• • •		• • •
145		6.7		5.2
146		6.3		5.0
147		6.5		5.2
148		6.2		5.4
149		5.9		5.1

[150 rows x 2 columns]

In [20]:

```
plt.scatter(Slic_df[['sepal length']], Slic_df[['petal length']], color = "r", marke
plt.xlabel('Sepal length')
plt.ylabel('petal length')
plt.title('Scatter Plot')
plt.show()
```


In [22]:

```
from sklearn.linear_model import LinearRegression
classifier = LinearRegression()
model = classifier.fit(Slic_df[['sepal length']],Slic_df[['petal length']])
```

```
In [23]:
```

```
y_pred = classifier.predict(Slic_df[['sepal length']])
print(y_pred)
print('Coefficient: \n', classifier.coef_)
print('Intercept: \n', classifier.intercept_)
```

```
[[4.8790946]
[4.8790946]
[4.83820238]
[4.91998683]
[4.8790946]
[5.00177129]
[4.8790946]
[4.91998683]
[4.8790946]
[4.91998683]
[4.91998683]
[4.96087906]
 [4.8790946]
[4.75641792]
[4.79731015]
[4.91998683]
[4.83820238]
[4.8790946]
[5.00177129]
```

In [24]:


```
In [46]:
```



```
coefficients:
  [[5.41208791]]
intercept:
  [-33.37912088]
```

In [48]:

```
day_18= classifier.intercept_+ classifier.coef_*18
print(day_18)
```

```
[[64.03846154]]
```

In [28]:

```
from sklearn.metrics import mean_squared_error, mean_absolute_error
print('Mean squared error:')
print(mean_squared_error(df2['col2'],y_predic))
```

Mean squared error: 1572.1551141166524

In [30]:

```
plt.scatter(y_predic, (df2[['col2']] - y_predic)**2,color='blue',s=10)
plt.title('Squared errors')
plt.hlines(y=0,xmin=0 , xmax=140, linewidth=2)
plt.xlabel('predicted values')
plt.ylabel('squared error')
plt.show()
```


In [49]:

```
print('Mean absolute error: ')
print(mean_absolute_error(df2['col2'],y_predic))

plt.scatter(y_predic, (df2[['col2']] - y_predic),color='red',s=10)
plt.title('Absolute errors')
plt.hlines(y=0,xmin=0 , xmax=140, linewidth=2)
plt.xlabel('predicted values')
plt.ylabel('absolute error')
plt.show()
```

Mean absolute error: 31.163144547759927

In [89]:

```
df['species']= dataset['target']
df['species']= df['species'].apply(lambda x:dataset['target_names'][x])
df['species']
```

Out[89]:

```
0
           setosa
1
           setosa
2
           setosa
3
           setosa
4
           setosa
       virginica
145
       virginica
146
       virginica
147
148
       virginica
149
       virginica
Name: species, Length: 150, dtype: object
```

In [92]:

df

Out[92]:

	petal length (cm)	petal width (cm)	sepal length (cm)	sepal width (cm)	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
•••					
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

In [100]:

[0.19387808] [0.98677372]]

inercept: [4.28475916 -1.39893216 -4.70469008]

```
from sklearn.linear model import LogisticRegression
print(df.columns.tolist())
z= df[['sepal length (cm)']]
v= df['species']
print('z:',z.head(),'\n')
print('v:',v.head(),'\n')
classifier3= LogisticRegression(solver = 'liblinear', multi_class='ovr')
classifier3.fit(z,v)
pred= classifier3.predict(z)
print('score:',classifier3.score(z,v))
print('Coefficient: ',classifier3.coef_)
print('inercept:',classifier3.intercept )
['petal length (cm)', 'petal width (cm)', 'sepal length (cm)', 'sepal
width (cm)', 'species']
      sepal length (cm)
                 1.4
0
1
                 1.4
                 1.3
2
3
                 1.5
                 1.4
4
v: 0
        setosa
1
     setosa
2
     setosa
3
     setosa
     setosa
Name: species, dtype: object
score: 0.79333333333333333
Coefficient:
              [[-1.72964826]
```

In [101]:

```
print(df.columns.tolist(),'\n')
z= df.iloc[:,0:4]
v= df['species']
print('z:',z.head(),'\n')
print('v:',v.head(),'\n')
from sklearn.linear model import LogisticRegression
classifier4 = LogisticRegression()
classifier4= LogisticRegression(solver = 'liblinear', multi class='ovr')
classifier4.fit(z,v)
pred= classifier4.predict(z)
print('score:',classifier4.score(z,v))
print('Coefficient: ',classifier4.coef )
print('inercept:',classifier4.intercept )
['petal length (cm)', 'petal width (cm)', 'sepal length (cm)', 'sepal
width (cm)', 'species']
z:
      petal length (cm) petal width (cm) sepal length (cm)
dth (cm)
                 5.1
                                    3.5
                                                        1.4
0.2
                 4.9
                                    3.0
1
                                                        1.4
0.2
2
                 4.7
                                    3.2
                                                        1.3
0.2
3
                 4.6
                                    3.1
                                                        1.5
0.2
4
                 5.0
                                    3.6
                                                        1.4
0.2
v: 0
        setosa
     setosa
1
2
     setosa
3
     setosa
     setosa
Name: species, dtype: object
score: 0.96
Coefficient:
             [[ 0.41021713    1.46416217    -2.26003266    -1.02103509]
 [0.4275087 -1.61211605 0.5758173 -1.40617325]
 [-1.70751526 -1.53427768 2.47096755 2.55537041]]
inercept: [ 0.26421853    1.09392467 -1.21470917]
In [ ]:
```