Group1_Project

Group_1
April 29, 2020

Introduction:

The background of this data comes from ...

Read In Data:

```
## Loading required package: ggplot2
## Loading required package: carData
##
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
##
## rivers
## Loading required package: KernSmooth
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
##
## Attaching package: 'MPV'
## The following object is masked from 'package:olsrr':
##
## cement
```

Performing variable selection:

##		Index	N	Predictors	R-Square	Adj. R-Square	Mallow's Cp
##	1	1	1	X.	0.10381011	0.094276177	4.719250
##	2	2	1	X2	0.05771212	0.047687785	9.694270
##	5	3	1	Χť	0.05223762	0.042155039	10.285094
##	7	4	1	x 7	7 0.05016001	0.040055334	10.509314
##	6	5	1	xθ	0.04324888	0.033070675	11.255183
##	4	6	1	XZ	1 0.02603395	0.015672614	13.113064
##	3	7	1	x3	3 0.00239633	-0.008216475	15.664101
##	12	8	2	x1 x6	0.13609838	0.117519847	3.234613
##	13	9	2	x1 x7	0.12950341	0.110783053	3.946359
##	11	10	2	x1 x5	0.12339323	0.104541471	4.605787
##	27	11	2	x5 x7	0.12181247	0.102926715	4.776387
##	8	12	2	x1 x2	2 0.12135810	0.102462571	4.825424
##	26	13	2	x5 x6	0.11302532	0.093950600	5.724719
##	10	14	2	x1 x4	0.11249746	0.093411385	5.781688
##	9	15	2	x1 x3	3 0.10408452	0.084817518	6.689635
##	16	16	2	x2 x5	0.09237954	0.072860824	7.952868
##	23	17	2	x4 x5	0.08077039	0.061002009	9.205760

##	18	18	2					0.07548215	0.055600043	9.776481
##	21	19	2			хЗ	x6	0.07523058	0.055343063	9.803631
##	17	20	2			x2	x6	0.06739014	0.047334010	10.649793
##	14	21	2			x2	хЗ	0.06184974	0.041674465	11.247728
##	15	22	2			x2	x4	0.06017702	0.039965774	11.428252
##	19	23	2			хЗ	x4	0.05812812	0.037872815	11.649374
##	28	24	2			x6	x7	0.05636761	0.036074437	11.839374
##	20	25	2			хЗ	x5	0.05494962	0.034625957	11.992407
##	22	26	2			хЗ	x7	0.05435293	0.034016434	12.056804
##	25	27	2			x4	x7	0.05042085	0.029999793	12.481164
##	24	28	2			x4	x6	0.04477933	0.024236954	13.090012
##	36	29	3	2	x1	хЗ	x6	0.17375716	0.146814459	1.170374
##	57	30	3	2	xЗ	x5	x6	0.16492514	0.137694443	2.123549
##	39	31	3	2	x1	x4	x6	0.15332894	0.125720104	3.375043
##	43	32	3	2	x1	x6	x7	0.13908854	0.111015343	4.911906
##	41	33	3	2	x1	x5	x6	0.13863843	0.110550554	4.960483
##	32	34	3	2	x1	x2	x6	0.13819982	0.110097641	5.007819
##	33	35	3	2	x1	x2	x7	0.13525894	0.107060865	5.325207
##	37	36	3	2	x1	хЗ	x7	0.13378473	0.105538584	5.484307
##	31	37	3	2	x1	x2	x5	0.13170370	0.103389686	5.708899
##	40	38	3	2	x1	x4	x7	0.13131963	0.102993099	5.750348
##	63	39	3	2	x5	x6	x7	0.13122129	0.102891547	5.760961
##	42	40	3	2	x1	x5	x7	0.12979032	0.101413916	5.915395
##	34	41	3	2	x1	хЗ	x4	0.12906703	0.100667039	5.993455
##	52	42	3	2	x2	x5	x7	0.12900997	0.100608120	5.999613
##	58	43	3	2	xЗ	x5	x7	0.12886586	0.100459314	6.015165
##	61	44	3	2	x4	x5	x7	0.12478309	0.096243412	6.455789
##	38	45	3	2	x1	x4	x5	0.12385098	0.095280903	6.556385
##	35	46	3	2	x1	хЗ	x5	0.12369898	0.095123946	6.572789
##	29	47	3	2	x1	x2	хЗ	0.12350282	0.094921386	6.593960
##	30	48	3	2	x1	x2	x4	0.12273957	0.094133250	6.676332
##	60	49	3	2	x4	x5	x6	0.12237581	0.093757629	6.715589
##	51	50	3	2	x2	x5	x6	0.11863478	0.089894607	7.119332
##	54	51	3	2	xЗ	x4	x5	0.11536571	0.086518943	7.472138
##	46	52	3	2	x2	хЗ	x6	0.10430631	0.075098911	8.665699
##	48	53	3	2	x2	x4	x5	0.09846917	0.069071426	9.295659
##	44	54	3	2	x2	хЗ	x4	0.09529396	0.065792677	9.638336
##	45	55	3	2	x2	хЗ	x5	0.09429931	0.064765588	9.745682
##	47	56	3	2	x2	хЗ	x7	0.08944975	0.059757897	10.269059
##	59	57	3	2	x3	x6	x7	0.08485610	0.055014456	10.764818
##	55	58	3	2	xЗ	x4	x6	0.08273400	0.052823147	10.993842
##	50	59	3	2	x2	x4	x7	0.07942053	0.049401637	11.351440
##	53	60	3	2	x2	x6	x7	0.07619390	0.046069787	11.699667
##	49	61	3	2	x2	x4	x6	0.07049820	0.040188359	12.314362
##	62	62	3	2	x4	x6	x7	0.06917229	0.038819216	12.457458
##	56	63	3	2	xЗ	x4	x7	0.06218192	0.031600897	13.211878
##	97	64	4	x3 x	x5	x6	x7	0.17848419	0.142373608	2.660220
##	66	65	4	x1 x	x2	хЗ	x6	0.17726370	0.141099463	2.791939
##	79	66	4	x1 x	xЗ	x6	x7	0.17492850	0.138661621	3.043960
##	77	67	4	x1 x	xЗ	x5	x6	0.17404349	0.137737707	3.139473
##	75	68	4	x1 x	x3	x4	x6	0.17397322	0.137664349	3.147057
##	98	69	4	x4 x	x5	x6	x7	0.17157653	0.135162314	3.405714
##	87	70	4	x2 x	x3	x5	x6	0.17154573	0.135130155	3.409038
##	82	71	4	x1 x	x4	x6	x7	0.17140111	0.134979177	3.424646

##		72							0.16711214	0.130501683	3.887523
##	80	73							0.15840802	0.121414967	4.826895
##	69	74	_		x1	x2	x4	x6	0.15542635	0.118302235	5.148685
##	67	75							0.14413821	0.106517911	6.366932
##	64	76	4						0.14232843	0.104628578	6.562249
##	88	77	4		x2	xЗ	x5	x7	0.14199863	0.104284284	6.597841
##	73	78	4		x1	x2	x6	x7	0.14085571	0.103091131	6.721188
##	71	79	4		x1	x2	x5	x6	0.14043845	0.102655525	6.766220
##	70	80							0.13945870	0.101632710	6.871957
##	83	81	4		x1	x5	x6	x7	0.13934523	0.101514250	6.884204
##	72	82	4		x1	x2	x5	x7	0.13547819	0.097477231	7.301545
##	91	83	4		x2	x4	x5	x7	0.13511568	0.097098785	7.340668
##	65	84	4		x1	x2	хЗ	x5	0.13505935	0.097039977	7.346748
##	84	85	4		x2	хЗ	x4	x5	0.13501751	0.096996305	7.351262
##	76	86	4		x1	xЗ	x4	x7	0.13493486	0.096910016	7.360183
##	93	87	4		x2	x5	x6	x7	0.13396382	0.095896297	7.464980
##	78	88	4		x1	xЗ	x5	x7	0.13378493	0.095709538	7.484287
##	68	89	4		x1	x2	x4	x5	0.13182026	0.093658510	7.696319
##	81	90	4		x1	x4	x5	x7	0.13139466	0.093214208	7.742250
##	74	91	4		x1	хЗ	x4	x5	0.13104014	0.092844106	7.780511
##	95	92	4		хЗ	x4	x5	x7	0.13071638	0.092506115	7.815452
##	90	93	4		x2	x4	x5	x6	0.12860550	0.090302449	8.043264
##	85	94	4		x2	xЗ	x4	x6	0.10990566	0.070780635	10.061402
##	89	95	4		x2	хЗ	x6	x7	0.10973595	0.070603461	10.079718
##	86	96	4		x2	хЗ	x4	x7	0.09650171	0.056787504	11.507992
##	92	97	4		x2	x4	x6	x7	0.09033265	0.050347271	12.173774
##	96	98	4		xЗ	x4	x6	x7	0.08541813	0.045216728	12.704163
##	117	99	5	x2	2 x3	x5	x6	x7	0.18231009	0.136882869	4.247319
##	119	100	5	x3	3 x4	x5	x6	x7	0.18160687	0.136140585	4.323212
##	112	101	5	x1	. x3	x5	x6	x7	0.17867047	0.133041053	4.640116
##	104	102	5	x1	_x2	xЗ	x6	x7	0.17814076	0.132481910	4.697285
##	111	103	5	x1	. x3	x4	x6	x7	0.17784127	0.132165790	4.729606
##	102	104	5	x1	_x2	xЗ	x5	x6	0.17778880	0.132110400	4.735269
##	100	105	5	x1	_x2	xЗ	x4	x6	0.17739636	0.131696157	4.777622
##	109	106	5	x1	_ x3	x4	x5	x6	0.17409726	0.128213775	5.133670
##	114	107	5	x2	2 x3	x4	x5	x6	0.17351105	0.127594995	5.196935
##	113	108	5	x1	_ x4	x5	x6	x7	0.17324210	0.127311108	5.225961
##	118	109	5	x2	2 x4	x5	x6	x7	0.17316521	0.127229943	5.234259
##	107	110	5	x1	_x2	x4	x6	x7	0.17262053	0.126654999	5.293043
	105	111	5	x1	_x2	x4	x5	x6	0.16007770	0.113415354	6.646699
##	101	112	5	x1	_x2	xЗ	x4	x7	0.14560024	0.098133582	8.209146
##	103	113	5	x1	_x2	xЗ	x5	x7	0.14430710	0.096768602	8.348705
##	115	114		x2	2 x3	x4	x5	x7	0.14410617	0.096556515	8.370390
##	99	115		x1	_x2	xЗ	x4	x5	0.14277288	0.095149151	8.514282
##	108	116	5	x1	. x2	x5	x6	x7	0.14107797	0.093360085	8.697201
##	106	117		x1	. x2	x4	x5	x7	0.13945973	0.091651937	8.871846
	110	118							0.13494599	0.086887438	9.358981
##	116	119		x2	2 x3	x4	x6	x7	0.11074722	0.061344289	11.970578
	126	120		x2 x3	3 x4	x5	x6	x7	0.18455359	0.129579671	6.005195
	123	121							0.18233077	0.127207007	6.245087
	125	122							0.18183780	0.126680797	6.298290
	122	123							0.18023945	0.124974691	6.470788
	120	124							0.17778881	0.122358838	6.735268
	124	125							0.17450663	0.118855394	7.089489
• ••			-				- •				

equation. These criteria help us to be able to explain the data in the simpliest way with redundant predictors removed inorder minimize cost and to avoid multi-collinearity in our regression model.

The criteria for our variable selection include: 1) Large R^2 value 2) Maximum Adjusted R^2 value 3) Minimum MSres 4) Minimum Mallow's Cp Statistic value

Based on the above criteria, the "best" candidate models are: 1) Model 29: $y \sim x1 + x3 + x6$ 2) Model 64: $Y \sim x3 + x5 + x6 + x7$ 3) Model 99: $Y \sim x2 + x3 + x5 + x6 + x7$ 4) Model 120: $Y \sim x2 + x3 + x4 + x5 + x6 + x7$

Once we identified the "best" candidate models, we compare its predicted residual error sum of squares (PRESS) statistic with other candidate models and selected the model with the smallest value. We also compare candidate models by performing a variance inflation factor (VIF) in order to quantify the severity of multicollinearity in the model.

```
## [1] 68704.26
## [1] 69789.7
  [1] 71110.33
## [1] 77659.85
##
         x1
                   xЗ
## 1.010615 2.528279 2.523045
##
                             x6
         x3
                   x5
                                       x7
## 2.617428 1.060150 3.650110 1.820798
##
         x2
                   xЗ
                             x5
                                       x6
                                                 <sub>x</sub>7
## 1.564314 2.622358 1.184723 3.883741 1.878902
##
          x2
                                x4
                                                      x6
                                                                 x7
              6.222163 14.323819
                                    1.290660
                                               4.818502
    1.598317
                                                          4.102786
```

Interpretation of PRESS and Vif of candidate models:

The model with the lowest PRESS value in model 29, Y = x1 + x3 + x6 and the same model doesnt show any evidence of multicolinearity in the variance inflation factor test of each regressor.

Plot of model:

```
autoplot(fit29,size = 0.5, colour = 'sienna2')[1:2]
```


other CSV links

 $\#TX_gz_num <- \ read.csv("CSV/DATA/texas_Gazetteer_numeric.csv") \ \#products <- \ read.csv("CSV/OTHER/products.csv") \ \#test_data <- \ read.csv("CSV/OTHER/test_data.csv") \ \#TX_gz_obj <- \ read.csv("CSV/OTHER/texas_Gazetteer_object.csv") \ \#train_data <- \ read.csv("CSV/OTHER/train_data.csv")$