phython project

```
import pandas as pd
import seaborn as sns

in [9]: tips=sns.load_dataset('tips')
```

Lets read the data using read csv

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

First few rows to understand the dataset

```
In [5]:
         tips.head()
Out[5]: total_bill tip
                         sex smoker day
                                        time size
             16.99 1.01 Female
                                 No Sun Dinner
           10.34 1.66 Male
                                No Sun Dinner
           21.01 3.50 Male
                                 No Sun Dinner
        3 23.68 3.31 Male
                                 No Sun Dinner
                                                 2
             24.59 3.61 Female
                                 No Sun Dinner
```

How many weekdays are present in the dataset

```
In [6]: tips.day.unique()
Out[6]: ['Sun', 'Sat', 'Thur', 'Fri']
Categories (4, object): ['Thur', 'Fri', 'Sat', 'Sun']
```

Look at the last rows

```
In [7]: tips.tail()
Out[7]: total_bill tip sex smoker day time size
```

239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

How many dinners and lunch are present in the dataset?

```
In [8]: tips.time.value_counts()
Out[8]: Dinner    176
Lunch    68
Name: time, dtype: int64
```

Let Plot the above values using matplotlib

what is the proportion of lunch and dinner in percentage?

```
In [16]: tips.time.value_counts(normalize=True)

Out[16]: Dinner 0.721311
Lunch 0.278689
Name: time, dtype: float64
```

when does people pay more tips (le:lunch or dinner)

In [18]:	t	rips.head()												
Out[18]:		total_bill	tip	sex	smoker	day	time	size						
-	0	16.99	1.01	Female	No	Sun	Dinner	2						
	1	10.34	1.66	Male	No	Sun	Dinner	3						
	2	21.01	3.50	Male	No	Sun	Dinner	3						
	3	23.68	3.31	Male	No	Sun	Dinner	2						
	4	24.59	3.61	Female	No	Sun	Dinner	4						

Let plot these values

Calculate average tips value based on gender:

Lets plot the values

Let's create a cross table for smoker and tins for average tins

οι ο οιοαίο α οιοσο ίαριο τοι σπιοποί απα προποί ανοιαγό προ

pivot structure of cross table

Create a cross table for smoker and day for average tips

```
In [28]:
          tips.groupby(['smoker','sex','day'])['tip'].mean()
          smoker
                  sex
                          day
Out[28]:
         Yes
                  Male
                          Thur
                                   3.058000
                          Fri
                                   2.741250
                          Sat
                                   2.879259
                          Sun
                                   3.521333
                  Female
                          Thur
                                   2.990000
                          Fri
                                   2.682857
                          Sat
                                   2.868667
                          Sun
                                   3.500000
                          Thur
                                   2.941500
                                   2.500000
                          Fri
                          Sat
                                   3.256563
                          Sun
                                   3.115349
                  Female
                          Thur
                                   2.459600
                                   3.125000
                          Fri
                          Sat
                                   2.724615
                          Sun
                                   3.329286
         Name: tip, dtype: float64
```

Pivot structure

Let's create a new column to find out the % of tip compare to total bill

rthal rtha her centade 1-rtha rth rtha rnrar ntrr

let's look at the newly created column

In [31]:	t	tips.head()														
Out[31]:		total_bill	tip	sex	smoker	day	time	size	tips_percentage							
	0	16.99	1.01	Female	No	Sun	Dinner	2	0.059447							
	1	10.34	1.66	Male	No	Sun	Dinner	3	0.160542							
	2	21.01	3.50	Male	No	Sun	Dinner	3	0.166587							
	3	23.68	3.31	Male	No	Sun	Dinner	2	0.139780							
	4	24.59	3.61	Female	No	Sun	Dinner	4	0.146808							

let's visualize the relationship between total_bill and tips

Visualize seaborn library

Seaborn visualization for gender tips

```
In [41]:
    sns.scatterplot(x='total_bill',y='tip',data=tips,hue='sex')
```


Similarly let's see the visualization for time and tips

Create the separate chart for gender based on the tips

let's look at the distribution of total bill by time

```
In [45]:
    sns.displot(
    data=tips,x='total_bill',col='time',kde=True)
```

Out[45]: <seaborn.axisgrid.FacetGrid at 0x2681871b130>

In [46]: #clearly people pay more total bills during dinner

Distribution of tip by time

```
In [47]:
    sns.displot(
    data=tips,x='tip',col='time',kde=True)
```

Out[47]: <seaborn.axisgrid.FacetGrid at 0x26816986850>

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js