

Australian Institute for Machine Learning

CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts

MILANO

Yichao Cai (☑), Yuhang Liu, Zhen Zhang, and Javen Qinfeng Shi

Australian Institute for Machine Learning (AIML), The University of Adelaide, SA 5000, Australia

Motivation

CLIP - Trained on massive image-text data with a symmetric InfoNCE

Cons

Zero-shot sensitive to prompts

Few-shot performance degrades

Vulnerable to adversarial attacks

- ✓ Mitigated modality gap
- ✓ High zero-shot performance
- ✓ Great generalization ability
- Intuition There exists spurious correlations in CLIP features, i.e., style-related information is erroneously used to predict class labels.

Contribution

- We propose a contrastive learning method to disentangle content and style in pretrained CLIP-like models.
- · Our disentangled network, trained on either the image or text encoder, can be seamlessly applied to both modalities.
- · Leveraging the high semantic structure of text data, we introduce **CLAP** (Contrastive Learning with Augmented Prompts) to isolate content features within the pre-trained CLIP feature space.

Causal Generative Models of Vision-Language Data

Insight – Image x and text t, derived from a unified latent space with content c and style s, follow distinct deterministic processes, gx and gt. The class label y is determined solely by the latent content. (a) Soft interventions on style variables generate augmented images \tilde{x} . (b) Similar interventions produce augmented text \tilde{t} due to the shared latent space.

Experimental Results

□ Zero-shot performance

Prompt	Method	Zero-shot performance, avg. top-1 acc. (%) (†)						
riompo	Modified	PACS	VLCS	Off.Home	Dom.Net	Overall		
	CLIP	95.7	76.4	79.8	57.8	77.4		
ZS(C)	Im.Aug	96.5	79.5	77.0	51.5	76.1		
	CLAP	$\boldsymbol{97.2}$	82.6	81.0	58.7	79.9		
	CLIP	95.2	82.0	79.5	57.0	78.4		
ZS(CP)	Im.Aug	96.3	82.9	75.8	50.7	76.4		
	CLAP	97.3	83.4	80.5	58.0	79.8		
	CLIP	96.1	82.4	82.5	57.7	79.7		
ZS(PC)	Im.Aug	96.5	83.0	78.6	51.6	77.4		
	CLAP	$\bf 97.2$	83.4	83.0	59.0	80.6		
	CLIP	90.8	68.3	71.5	51.0	70.4		
ZS(NC)	Im.Aug	94.8	73.1	67.5	44.0	69.9		
	CLAP	97.2	81.0	73.5	52.6	76.1		
		D ((04) (1)		
N.C. 4	N	Pertorma	ance vari	ance, avg.	top-1 acc.	$(\%)(\downarrow)$		

Metric	Method	Perform	ance vari	ance, avg. t	top-1 acc.	(%)
11100110	mounoa	PACS	VLCS	Off.Home	Dom.Net	Ove
	CLIP	0.9	6.1	3.1	0.8	2.
R	Im.Aug	0.1	3.6	2.8	0.9	1.9
	CLAP	0.1	0.8	2.5	1.0	1.
	CLIP	0.4	2.8	1.4	0.4	1.
δ	Im.Aug	0.1	1.7	1.2	0.4	0.
	CLAP	0.0	0.4	1.1	0.4	0.
	CLIP	4.9	8.1	8.3	6.8	7.0
$\Delta_{(NC)}$	Im.Aug	1.6	6.4	9.5	7.5	6.
	CLAP	0.0	1.6	7.5	6.1	3.

☐ Few-shot performance

☐ Qualitative analysis with t-SNE visualization

t-SNE comparison of CLIP, Im. Aug, and CLAP features (from left to right) on the PACS dataset, Art Painting domain

□ Adversarial robustness

ZS(NC) – "[Gaussian noise][class]"

ZS(CP) – "a [class] in a photo" **ZS(PC)** – "a photo of a [class]"

		Avg. top-1 acc. (%) under adversarial attacks(\uparrow)												
Setting Method		FGSM			PGD-20			CW-20						
		PACS	VLCS	O.H.	D.N.	PACS	VLCS	O.H.	D.N.	PACS	VLCS	О.Н.	D.N.	Avg
	CLIP	86.8	65.6	57.9	22.5	29.1	2.0	10.1	10.7	27.4	1.5	7.4	7.6	29.2
ZS(C)	Im.Aug	88.0	69.6	55.1	37.9	31.3	2.1	10.4	9.0	29.4	1.7	7.0	5.8	31.1
	CLAP	88.7	71.9	58.5	44.2	30.8	3.2	10.6	11.2	29.8	2.3	8.1	8.0	32.
1-shot	CLIP	66.7	45.2	34.3	22.5	34.8	16.0	5.6	11.3	18.9	0.7	4.5	3.2	23.7
	Im.Aug	79.4	47.1	37.1	23.5	55.2	16.1	8.5	12.5	23.2	0.9	5.1	3.4	28.0
	CLAP	89.6	$\bf 52.2$	37.1	23.9	73.4	21.2	7.4	12.5	27.0	1.1	5.0	3.5	31.9

- CLAP successfully refines pretrained CLIP features by effectively isolating content from style, as demonstrated by improved zero-shot and few-shot performance, increased robustness against adversarial attacks, and enhanced qualitative visualizations.
- Exploring the more efficient data augmentation techniques, including the combination of augmentations from both modalities could be valuable. given their complementary strengths.

Scan me!

Isolating Content through Data Augmentation

□ Framework

Innovation - Contrastive learning with data augmentation in one modality benefits

both, with text data being more amendable for style changes due to its semantic structure. The trained adapting network can be seamlessly applied in both modality for zero-shot inference.

☐ Contrastive Learning with Augmented Images (Im.Aug)

Template Prompts

"an [art style] [image type] of an [object size] [object

object color	object size	image type	art styl
yellow, green, black,	large,	painting, cartoon,	realistic
blue, multicolored,	small,	infograph, sketch,	impressi
orange, red, white,	normal	photograph, clipart,	nistic
brown, purple	sized	mosaic art, sculpture	

Synthetic Images

Random cropping + color distortion

□ Contrastive Learning with Augmented Prompts (CLAP)

emplate Prompts	"an [art style] [image type] of an [object s

e Prompts	"an [art style] [image type] of an [object size] [object
	color] [class]"

Text Augmentation	Randomly apply the combination of these techniques:
--------------------------	---

Original	OSD	OCD	ITD	ASD	SPO
	Object Size	Object Color	Image Type	Art Style	Swapping
	Deletion	Deletion	Deletion	Deletion	Prompt Order
a realistic	a realistic	a realistic	a realistic	1	O
painting of a large red car	a red car	painting of a large car	of a large red car	a large red car	in a realistic painting