MARCOS ROGÉRIO CÂNDIDO

APLICAÇÃO DA TRANSFORMADA WAVELET NA ANÁLISE DA QUALIDADE DE ENERGIA EM FORNOS ELÉTRICOS A ARCO

MARCOS ROGÉRIO CÂNDIDO

APLICAÇÃO DA TRANSFORMADA WAVELET NA ANÁLISE DA QUALIDADE DE ENERGIA EM FORNOS ELÉTRICOS A ARCO

Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Doutor em Engenharia.

Área de concentração: Sistemas de Potência

Orientador: Prof. Dr. Luiz Cera Zanetta Jr.

Este exemplar foi revisado e alterado em relação à versão original, sob responsabilidade única do autor e com a anuência de seu orientador.
São Paulo, 06 de dezembro de 2008.
Assinatura do autor
Assinatora do actor
Assinatura do orientador
Assinatura do autor Assinatura do orientador

FICHA CATALOGRÁFICA

Cândido, Marcos Rogério

Aplicação da transformada wavelet na análise da qualidade de energia em fornos elétrico a arco / M.R. Cândido. -- ed.rev. -- São Paulo, 2008.

151 p.

Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Energia e Automação Elétricas.

1.Forno elétrico 2.Energia (Qualidade) 3.Análise de ondaletas-wavelets (Análise de séries temporais) I.Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia de Energia e Automação Elétricas II.t.

DEDICATÓRIA

Aos meus pais Francisco e Geralda, por tudo o que fizeram e fazem por mim.

AGRADECIMENTOS

Aos professores Dr. Luiz Cera Zanetta Jr. e Dr. Carlos Eduardo de Morais Pereira, pela dedicação, orientação e paciência ao longo do desenvolvimento dessa tese.

Ao amigo Jefferson Monteiro de Paula, pela dedicação no processo de elaboração e simulação do algoritmo.

Aos diretores e gerentes da Votorantim Metais e Votorantim Química pelo incentivo constante para a conclusão deste trabalho, cabe destacar os srs. Luis Carlos Mendes de Brito - Gerente de Operações da Votorantim Química - e José Milton Júnior - Gerente da Laminação à Quente da Siderúrgica Barra Mansa.

As demais pessoas que contribuíram, acreditando e incentivando nos momentos mais difíceis.

"Nunca deixe que lhe digam que não vale a pena acreditar no sonho que se tem" (Trecho da música "Mais uma vez" de Renato Russo e Flávio Venturini)

RESUMO

Neste trabalho, desenvolveu-se um novo método para a detecção e classificação dos distúrbios que afetam a qualidade de energia elétrica em sistemas elétricos industriais na presença de fornos elétricos a arco. Durante o processo de fusão dos fornos elétricos a arco, ocorrem diversos eventos que afetam o sistema elétrico ao qual estão inseridos, tendo como características: forma de onda do sinal de corrente altamente desequilibradas e com grande distorção devido aos harmônicos, efeitos de cintilação; bem como afundamento e elevação nos sinais de tensão. O método ora proposto foi aplicado a sinais reais, permitindo a detecção e classificação dos distúrbios múltiplos na forma de onda do sinal de tensão, proveniente da operação dos fornos elétricos a arco. Para tal, foi usada como base do algoritmo, uma técnica baseada na Transformada Wavelet, aplicada aos sinais não-estacionários de uma instalação industrial com três fornos elétricos a arco.

Palavras-chave: Wavelet. Distúrbios múltiplos. Qualidade de energia. Fornos elétricos a arco.

ABSTRACT

A new method for the detection and classification of the disturbances that affect the electric power quality in industrial electric systems with electric arc furnaces was developed in this work. During the fusion process of the electric arc furnaces, may occur several events that affect the electric system to which it is inserted may occur, having as characteristic: waveform of the signal of current highly unbalanced and with great distortion due to the harmonic, scintillation effects; as well as sag and swell in the voltage signals. The method proposed was applied to real signals, allowing the detection and classification of the multiple disturbances in the waveform of the voltage signal originating from the operation of the electric arc furnace. For this purpose, a technique based on Wavelet Transform will be used and applied to the not-stationary signals of an industrial installation with three electric arc furnaces.

Keywords: Wavelet. Multiple disturbances. Power quality. Electric arc furnace.

LISTA DE ILUSTRAÇÕES

Figura 2.1 - Sistema elétrico industrial com 3 fornos a arco	24
Figura 2.2 - Potência de entrada do forno durante uma corrida	25
Figura 2.3 - Forma de onda da tensão de um forno elétrico a arco	26
Figura 2.4 - Corrente e tensão teórica durante o processo de estabelecimento do	
arco elétrico em um sistema de 60 Hz	27
Figura 2.5 - Sistema de controle de eletrodos	29
Figura 2.6 - Curvas de corrente e tensão de um forno a arco com transformador	
para dois tap's distintos e dois fatores de potência	30
Figura 2.7 - Visualização dos eletrodos e formação do arco elétrico	31
Figura 2.8 - Tipos de arco elétrico	32
Figura 2.9 - Característica do comprimento do arco em função da corrente e da	
tensão	33
Figura 2.10 - Circuito simplificado para mostrar o comportamento qualitativo do	
sistema	34
Figura 2.11 - Característica <i>FP</i> = <i>f</i> (<i>a</i>)	36
Figura 2.12 - Tensões, correntes e potências ativa e reativa instantâneas com	
arco puramente resistivo	37
Figura 2.13 - Ciclogramas obtidos das medições de campo para alguns ciclos	38
Figura 2.14 - Comportamento do arco elétrico com três segmentos de reta	39
Figura 2.15 - Característica não linear do arco conforme Ozgun e Abur (1999)	39
Figura 2.16 - Tensão de arco	41
Figura 2.17 - Corrente de arco	41
Figura 2.18 - Curva de carga para o FEA1 com circuito equilibrado	
com o reator L3	44
Figura 2.19 - Curva de carga para o FEA1 com circuito equilibrado sem o reator	46
Figura 2.20 - Curva de carga do forno em função da indutância do reator, de fase	<u>;</u>
fusão e corrente mínima de 38 kA	47
Figura 2.21 - Forma de onda da tensão em função do tempo no FEA1	48
Figura 2.22 - Forma de onda da tensão em função do tempo no FEA1	49
Figura 2.23 - Forma de onda da tensão em função do tempo no FEA1	49

Figura 2.24 - Forma de onda da tensão em função do tempo no FEA1	. 50
Figura 2.25 - Corrente de arco	.50
Figura 2.26 - Conteúdo harmônico fase a	51
Figura 2.27 - Comportamento da tensão, corrente e potências instantâneas	
do arco elétrico	.56
Figura 2.28 - Potências ativa, reativa e aparente das componentes harmônicas	.58
Figura 2.29 - Medições de tensão, corrente e variação de potências instantâneas.	.59
Figura 2.30 - Potências ativa, reativa e aparente das componentes	
harmônicas de tensão e corrente	.61
Figura 3.1 - Exemplos de plano tempo-frequência (Fourier X Wavelet)	.67
Figura 3.2 - Exemplo de Wavelet Haar	69
Figura 3.3 - Exemplos de Wavelets Daubechies	.70
Figura 3.4 - Forma de onda com distúrbio do tipo afundamento e elevação	.71
Figura 3.5 - Algoritmo completo de identificação e classificação de distúrbios	
múltiplos	72
Figura 3.6 - Identificação da fase do sinal de referência através da aplicação do	
método dos mínimos quadrados	75
Figura 3.7 - Determinação da amplitude do sinal de referência através do cálculo	
do valor eficaz do sinal real	75
Figura 3.8 - Aspecto dos sinais real e de referência	.76
Figura 3.9 - Coeficientes Wavelet de primeira ordem	77
Figura 3.10 - Energia dos coeficientes Wavelet de primeira ordem	.77
Figura 3.11 - Indicação do instante de início da montagem de vetores	78
Figura 3.12.a - Coeficientes de detalhamento 1, 2, 3 e 4	79
Figura 3.12.b - Coeficientes de detalhamento 5, 6, 7 e 8	.80
Figura 3.12.c - Coeficientes de detalhamento 9, 10, 11 e 12	.80
Figura 3.13 - Energia dos 12 níveis de detalhamento dos sinais real e de	
referência	81
Figura 3.14 - Diferença percentual de energia entre os diversos níveis de	
detalhamento (real x referência)	.82
Figura 3.15 - Afundamento teórico e identificação do instante de ocorrência	83

Figura 3.16 -	Espectro da diferença de energia para o início e término do
	afundamento teórico83
Figura 3.17 -	Elevação teórica e identificação do instante de ocorrência84
Figura 3.18 -	Espectro de diferença energia para uma elevação teórica85
Figura 3.19 -	"Notching" teórico e identificação do instante de ocorrência86
Figura 3.20 -	Espectro da diferença de energia para um "notching" teórico86
Figura 3.21 -	"Spike" teórico e identificação do instante de ocorrência87
Figura 3.22 -	Espectro de energia para um "spike" teórico
Figura 3.23 -	Sinal com a presença de afundamento e elevação teóricos89
Figura 3.24 -	· Identificação do instante de ocorrência de cada distúrbio89
Figura 3.25	- Espectro da diferença de energia para o afundamento e elevação
	teóricos90
Figura 3.26 -	Sinal ideal com distúrbios múltiplos e localização dos instantes de
	ocorrência dos distúrbios91
Figura 3.27 -	· Classificação de diversas falhas através da diferença percentual de
	energia para os diversos níveis de detalhamento Wavelet91
Figura 3.28 -	Distribuição da diferença percentual de energia para o distúrbio
	teórico92
Figura 3.29 -	Registro do sinal de tensão obtido do forno a arco e o sinal de
	referência ideal94
Figura 3.30 -	Forma de onda em análise e a identificação do instante
	de ocorrência dos distúrbios múltiplos95
Figura 3.31 -	Forma de onda em análise e a identificação do instante
	de ocorrência dos distúrbios múltiplos95
Figura 3.32 -	Forma de onda em análise e a identificação do instante
	de ocorrência dos distúrbios múltiplos96
Figura 3.33 -	Distribuição de energia ao longo dos níveis de detalhamento Wavelet
	para os distúrbios97
Figura 3.34 -	Distribuição de energia ao longo dos níveis de detalhamento Wavelet
	para os distúrbios98
Figura 3.35 -	Distribuição de energia ao longo dos níveis de detalhamento Wavelet
	para os distúrbios99

Figura 3.36 - Distribuição da diferença percentual de energia total nos diversos	
níveis de resolução Wavelet	100
Figura 3.37 - Forma de onda em análise com elevação e afundamento, com	
incremento positivo e negativo na amplitude, e diversos distúrbios	101
Figura 3.38 - Distribuição de energia ao longo dos níveis de detalhamento Wave	elet
para os distúrbios	102
Figura A.1 - Constituição esquemática de um forno elétrico a arco	115
Figura A.2 - Sistema de fixação de eletrodos de um forno elétrico a arco	117
Figura A.3 - Vista de um forno elétrico a arco industrial	117
Figura A.4 - Fluxograma do processo siderúrgico de uma usina integrada	120
Figura A.5 - Fluxo indicativo de usina integrada a coque (esquerda) e	
de uma usina semi-integrada (direita)	121
Figura A.6 - Produção x consumo na aciaria elétrica da Siderúrgica Barra	
Mansa	123
Figura A.7 - Produção x consumo anual na aciaria elétrica da Siderúrgica Barra	
Mansa	124
Figura A.8 - Produção x consumo na laminação a quente de aço longo na	
Siderúrgica Barra Mansa	125
Figura A.9 - Produção x consumo anual na laminação a quente de aço longo na	
Siderúrgica Barra Mansa	126
Figura A.10 - Consumo médio anual das principais áreas na produção, refino e	
laminação de aço na Siderúrgica Barra Mansa	126
Figura B.1 - Diagrama unifilar para a operação do forno em regime permanente	
a 60 Hz	129
Figura B.2 - Circuito equivalente em pu para os três transformadores de	
131 / 23 kV	131
Figura B.3 - Circuito equivalente na condição de máxima corrente	133
Figura D.1 - Relação da variação da tensão e freqüência aplicada a lâmpadas	
incandescentes	148

Figura D.2 - Forma de onda típica quando ocorre flutuação de tensão (F=50 Hz) .	149
Figura D.3 - Variação da Tensão em função da freqüência para lâmpadas	
incandescentes situadas na faixa de 40 a 100 W para tensões	
desde 125 até 225 V	150

SUMÁRIO

1 INTRODUÇÃO	16
1.1 OBJETIVO GERAL	16
1.2 MOTIVAÇÃO	17
1.3 REVISÃO BIBLIOGRÁFICA	18
1.4 ESTRUTURA DA TESE	20
2 ANÁLISE DO FORNO ELÉTRICO A ARCO COMO UMA CARGA	
ESPECIAL	22
2.1 CARACTERÍSTICAS OPERATIVAS	22
2.2 ARCO ELÉTRICO	27
2.2.1 Generalidades	27
2.2.2 Arco elétrico com comportamento resistivo linear	34
2.2.3 Comportamento não linear do arco elétrico	37
2.3 OTIMIZAÇÃO DAS CONDIÇÕES OPERATIVAS	42
2.4 OSCILOGRAMAS DE TENSÕES E CORRENTES	47
2.5 ANÁLISE DA POTÊNCIA EM CONDIÇÕES DE TENSÕES E	
CORRENTES DISTORCIDAS	51
2.6 QUALIDADE DE ENERGIA EM SISTEMAS ELÉTRICOS	61
2.6.1 Afundamentos ("sag's") e elevações de tensão ("swell's")	62
2.6.2 Distorção de tensão devido a harmônicos	62
3 ALGORITMO PARA DETERMINAÇÃO E CLASSIFICAÇÃO DE	
DISTÚRBIOS MÚLTIPLOS EM SISTEMAS ELÉTRICOS	66
3.1 TRANSFORMADA WAVELET	66
3.1.1 Introdução às Famílias Wavelet	67
3.1.1.1 Wavelet Haar	69
3.1.1.2 Wavelets Daubechies	69

3.2 ANÁLISE DE DISTÚRBIOS MÚLTIPLOS	70
3.3 DESENVOLVIMENTO DO ALGORITMO DE IDENTIFICAÇÃO DE	
DISTÚRBIOS MÚLTIPLOS	71
3.3.1 Equações utilizadas no desenvolvimento do algoritmo de detecção de	
distúrbios múltiplos	73
3.3.2 Identificação de distúrbios múltiplos - Descrição do algoritmo	74
3.3.3 Classificação dos distúrbios múltiplos	79
3.4 ANÁLISE DE DISTÚRBIOS MÚLTIPLOS EM SINAIS IDEALIZADOS	82
3.5 CRITÉRIOS DE CLASSIFICAÇÃO DE DISTÚRBIOS MÚLTIPLOS	92
3.6 ANÁLISE DE DISTÚRBIOS MÚLTIPLOS EM UM SISTEMA REAL	94
3.7 VERIFICAÇÃO DO DESEMPENHO DO ALGORITMO EM SINAIS DE	
LONGA DURAÇÃO1	00
4 CONCLUSÕES E SUGESTÕES PARA FUTUROS TRABALHOS10	04
REFERÊNCIAS10	07
APÊNDICE A - FORNOS A ARCO1	14
APÊNDICE B - ANÁLISE DO FORNO ELÉTRICO A ARCO EM	
REGIME PERMANENTE12	29
APÊNDICE C - DADOS DO SISTEMA ELÉTRICO1	35
APÊNDICE D - EFEITO "FLICKER" EM FORNOS A ARCO14	47