GraphAnno

Ein Annotations- und Abfragetool für graphenbasierte linguistische Annotationen

Lennart Bierkandt

Friedrich-Schiller-Universität Jena post@lennartbierkandt.de

Version vom 27. Januar 2016

Inhalt

1	Der	er Annotationsgraph 2				
2	Kon	figuratio	on	3		
	2.1	Darste	llung und Ebenen	3		
	2.2	Erlaub	te Annotationen / Tagset	5		
	2.3	Annota	ationsmakros	5		
	2.4	Metada	aten	5		
	2.5	Annota	atoren	6		
	2.6	Dateie	instellungen	6		
3	Tast	taturbefehle				
4	Kom	ımandoz	zeilenbefehle	7		
	4.1	Daten	und Navigation	7		
		4.1.1	Datei laden: load	7		
		4.1.2	Datei laden und anhängen: append	8		
		4.1.3	Datei speichern: save	8		
		4.1.4	Arbeitsbereich leeren: clear	8		
		4.1.5	Neuen Satz anlegen: ns	8		
		4.1.6	Satz löschen: del	8		
		4.1.7	Gehe zu: s	8		
		4.1.8	Graphik exportieren: image	9		
		4.1.9	Korpus exportieren: export	9		
		4.1.10	Text importieren: import text	9		

		4.1.11	Toolboxdaten importieren: import toolbox	10				
		4.1.12	Konfigurationen ex- und importieren: export und import	10				
		4.1.13	Konfiguration bearbeiten: config, tagset, makros und metadata	11				
	4.2	Annotationsbefehle						
		4.2.1	Neuer Knoten: n	11				
		4.2.2	Neue Kante: e	12				
		4.2.3	Annotieren: a	12				
		4.2.4	Elemente löschen: d	13				
		4.2.5	Knoten unter neuem Mutterknoten gruppieren: g oder p	13				
		4.2.6	Tochterknoten anhängen: h oder c	14				
		4.2.7	Neuen Knoten in Kante einfügen: ni	14				
		4.2.8	Knoten löschen und Verbindung bewahren: di und do	15				
		4.2.9	Tokenisieren: t, tb, ta	15				
		4.2.10	Rückgängig/Wiederherstellen: undo und redo (oder z und y)	16				
		4.2.11	Ebenen setzen: l	16				
		4.2.12	Annotator anmelden: annotator (oder user)	16				
5	Abfr	Abfragesprache 17						
	5.1	Suche		17				
		5.1.1	node	17				
		5.1.2	nodes	19				
		5.1.3	edge	20				
		5.1.4	link	20				
		5.1.5	text	22				
		5.1.6	meta	23				
		5.1.7	cond	23				
		5.1.8	def	24				
	5.2	Annotation						
	5.3	Datene	export	26				
		5.3.1	sort	26				
		5.3.2	col	26				

1 Der Annotationsgraph

Ein Graph in GraphAnno besteht aus einer Menge von Knoten und gerichteten Kanten. Knoten und Kanten haben Attribute in der Form von Schlüssel-Wert-Paaren, die sowohl der linguistischen Annotation als auch zum Teil der Strukturierung und Darstellung des Graphen in GraphAnno dienen. Diese Attribute sind im Datenmodell als Attribut attr zusammengefaßt und sind die einzigen Attribute, die direkt bearbeitet werden können. Diese Attribute werden in diesem Abschnitt als *Annotationsattribute* bezeichnet. Knoten und Kanten tragen weitere Attribute, die nicht direkt bearbeitet

werden können. Dazu zählt u.a. das type-Attribut, das die unterschiedliche Typen von Knoten und Kanten (Annotationsknoten, Token, Satzknoten; Annotationskanten, Ordnungskanten, Abschnittskanten) unterscheidet.

Ein GraphAnno-Graph ist in Sätze eingeteilt – Einheiten die der Strukturierung und Darstellung dienen, aber natürlich nicht unbedingt (wie auch immer definierten) Sätzen entsprechen müssen. Für jeden Satz existiert ein Satzknoten (mit type:s), der Informationen trägt, die den ganzen Satz betreffen. Hierbei kann es sich z.B. um Angaben von Quelle, Medium, Sprecher etc. handeln. Der Inhalt dieses Knotens wird im hellgrauen Bereich unter dem Annotationsgraphen und unter dem Text des Satzes (blau dargestellt) in schwarzer Schrift angezeigt. Die Information, zu welchem Satz ein Knoten gehört, ist durch eine Kante mit type:s, die den Knoten mit seinem Satzknoten verbindet, repräsentiert. Kanten sind keinem Satz zugeordnet; ihre Zugehörigkeit ergibt sich durch die Knoten, die sie verbinden.

Tokenknoten sind neben ihrem type:t dadurch gekennzeichnet, daß sie unter den Annotationsattributen ein Attribut token tragen, das den Tokentext enthält. Die Token eines Satzes sowie die Satzknoten sind außerdem in ihrer Reihenfolge durch Ordnungskanten (mit type:o) verbunden. Dies dient vor allem der korrekten Darstellung und der Traversierung; für den Benutzer sind diese Kanten unsichtbar, und er kann nicht auf sie zugreifen.

Für Knoten und Kanten gibt es unter den Annotationsattributen das Attribut cat, das innerhalb von GraphAnno keine besondere Bedeutung trägt, das aber besonders dargestellt wird, nämlich ohne Schlüssel und stets zuoberst. Kanten und Knoten tragen Nummern der Form t23 für Token, n23 für andere Knoten und e23 für Kanten, die der Referenzierung in Annotationsbefehlen dienen. Diese Nummern sind jedoch nicht im Graphmodell gespeichert, sondern werden für jede neu erzeugte Ansicht dynamisch generiert.

GraphAnno bietet auch die Möglichkeit, Knoten und Kanten unterschiedlichen Ebenen zuzuordnen. Zugehörigkeit eines Elements zu einer Ebene wird dadurch ausgedrückt, daß es (unter den Annotationsattributen) das Attribut der entsprechenden Ebene mit dem Wertt (für *true*) trägt. Durch diese Repräsentation können Elemente auch mehreren Ebene angehören, so daß Ebene sich beliebig überlappen können. Knoten und Kanten der unterschiedlichen Ebenen können farblich unterschiedlich dargestellt und unterschiedlich ausgerichtet werden (hierarchisch oder horizontal). Token sind keiner Ebene zugeordnet und werden in der Standardeinstellung schwarz dargestellt.

2 Konfiguration

2.1 Darstellung und Ebenen

Das Einstellungsfenster für Darstellung und Ebenen wird mit dem Kommandozeilenbefehl config geöffnet.

Unter *General settings* werden Einstellungen für Knoten und Kanten, die keiner Ebene angehören, vorgenommen.¹ *Default color* gilt für alle Knoten und Kanten, die keine Token sind und keiner Ebene angehören, *token color* gilt für Token, *found color* für die Hervorhebung bei der Suche gefundener Knoten und Kanten (überschreibt dann die für die jeweiligen Elemete sonst geltende Farbe), *filtered color* für die mit der Filterfunktion ausgefilterten Elemente. Die Einstellung *edge weight* ist für Anatomie des Graphen von Belang und zeigt ihre Wirkung erst, wenn es Kanten von unterschiedlichem Gewicht gibt (zu Details siehe folgenden Absatz).

Unter *layers* werden Einstellungen für die Ebenen des Graphen vorgenommen. Der Name ist eine beliebige Bezeichnung der Ebene, die im Aufklappfeld für die Ebenenwahl angezeigt wird. Das Attribut ist dasjenige Annotationsattribut, dessen Wert auf t gesetzt wird, wenn ein Element der entsprechenden Ebene angehört. Der Shortcut ist ein Bezeichner, der für die Annotation von Elementen genutzt werden kann (siehe 4.2.1 oder 4.2.11); dieses Kürzel darf nur aus alphanumerischen Zeichen und Unterstrich bestehen und darf nicht das gleiche Format wie Elementreferenzen aufweisen (also t, n oder e gefolgt von einer Zahl, oder m; siehe 4.2.3). Color ist die für Elemente der Ebene verwendete Farbe; edge weight ist das Gewicht der Kanten der Ebene. Je höher der hier eingegebene Wert (ganzzahlige Werte), desto kürzer versucht der Graphzeichenalgorithmus die Kanten zu zeichnen. Legt man also eine Ebene mit hohem Kantengewicht und eine mit niedrigem an, so wird der Graph so gezeichnet, daß der Graph der ersten Ebene möglichst kompakt ist; die Elemente der zweiten Ebene werden so angeordnet, daß sie den Graph der ersten Ebene wenig verzerren. Wird als Kantengewicht 0 angegeben, so erzwingen die Kanten der Ebene keine Hierarhcie zwischen den Knoten, die sie verbinden (sonst ist der Startknoten einer Kante stets höher als der Zielknoten angeordnet). Wird ein negativer Wert angegeben, so werden die Knoten der Ebene alle auf einer horizontal Ebene dargestellt.

Unter *layer combinations* können für Elemente, die mehreren Ebenen zugleich angehören, Einstellungen vorgenommen werden. Welchen Ebenen ein Element angehören muß, um unter eine Kombinationsdefinition zu fallen, wird über die Auswahlkästchen unter *attributes* angegeben, die anderen Einstellungen funktionieren analog zu denen unter *layers* und überschreiben die dort angegebenen Werte für Elemente, die der Ebenenkombination angehören.

Unter *search makros* können graphspezifische Suchmakros, wie unter 5.1.8 beschrieben, vordefiniert werden. Diese stehen dann für Suche im Graph zur Verfügung. Die Definitionen (def ...) werden jede in eine eigene Zeile im entsprechenden Fenster eingegeben.

¹Je nach verwendetem Browser werden die Felder für Farbeinstellungen als Farbwahlfeld oder als Textfeld dargestellt. Beim Textfeld ist die Farbe als RGB-Hexadezimalwert anzugeben: Ein Rautenzeichen (#) gefolgt von drei zweistelligen Hexadezimalzahlen jeweils für rot, grün und blau. So steht beispielsweise #000000 für schwarz, #fffffff für weiß, #ff0000 für ein helles Rot etc.

2.2 Erlaubte Annotationen / Tagset

In dem mit dem Befehl tagset zu öffnenden Fenster können für einen Graphen erlaubte Annotationen, also das graphspezifische *Tagset*, spezifiziert werden. Nur die hier spezifizierten Schlüssel-Wert-Paare sind für die Annotation von Knoten und Kanten zulässig; unerlaubte Eingaben werden mit einer Fehlermeldung quittiert. Bestehende Annotationen werden durch eine nachträgliche Änderung der erlaubten Schlüssel und Werte nicht beeinflußt.

Sind hier keine Schlüssel und Werte angegeben, so sind alle Annotationen zulässig. Trägt man Schlüssel ein, so sind nur diese Schlüssel für Annotationen erlaubt. Läßt man das Werte-Feld für einen Schlüssel leer, so sind für diesen Schlüssel alle Werte erlaubt; will man die erlaubte Wertemenge beschänken, so werden die erlaubten Werte in das Werte-Feld des entsprechenden Schlüssels eingetragen, getrennt mit Leerzeichen.

Für die Notation der Werte gelten die gleichen Regeln wie bei der Suchsprache (Abschnitt 5.1.1, S. 17): Einfache Werte werden ohne weitere Markierung eingetragen, enthalten Werte Sonderzeichen (siehe S. 17), so müssen sie in Anführungszeichen ("...") angegeben werden; außderdem können – ebenfalls wie bei der Suchsprache (S. 17) – reguläre Ausdrücke verwendet werden, die in Schrägstrichen angegeben werden (/.../). Die regulären Ausdrücke sind dabei verankert, d.h. ein Annotationswert muß dem gesamten regulären Ausdruck entsprechen, um erlaubt zu sein.

2.3 Annotationsmakros

Für einen Graphen können Annotationsmakros gespeichert werden, die die Annotation mit häufig gebrauchten Attributkombinationen erleichtern. Mit dem Befehl makros wird ein Fenster geöffnet, in dem diese Makros definiert werden können. Im linken Feld wird jeweils die gewünschte Abkürzung angegeben (diese muß aus alphanumerischen Zeichen und Unterstrich bestehen und sollte weder die Form einer Elementreferenz haben noch gleichlautend mit einem Ebenenkürzel sein, vgl. 2.1), im rechten Feld die gewünschten Annotationen. Hierbei ist die gleiche Syntax wie für die Annotationsbefehle einzuhalten, also eine Menge von Attributen in der Form schlüssel:wert, mit Leerzeichen getrennt (zu Details siehe 4.2.1).

2.4 Metadaten

Neben der Konfiguration von Ebenen, Darstellung, Makros und erlaubten Annotationen können für einen Graph Metadaten in Form von Schlüssel-Wert-Paaren gespeichert werden. Das Fenster dafür wird mit dem Befehl metadata geöffnet; hier kann eine beliebige Anzahl von beliebigen Schlüsseln mit jeweils einem Text als Wert eingetragen werden.

2.5 Annotatoren

Für den Fall, daß mehrere Annotatoren an einem Korpus arbeiten, gibt es in GraphAnno die Möglichkeit, annotatorenspezifische Annotationen zu erstellen. So können die selben Elemente von verschiedenen Annotatoren annotiert werden, so daß in einem weiteren Schritt z.B. die Übereinstimmung zwischen Annotatoren ermittelt werden kann.

Um diese Funktion zu nutzen müssen zunächst Annotatoren angelegt werden; mit dem Befehl annotators wird das entsprechende Fenster geöffnet. In diesem Fenster können nun Annotatoren mit eindeutigem Namen (möglich ein kurzer Name ohne Leerzeichen, da er auch zur Anmeldung verwendet wird) und weiteren Informationen (als Freitext) erstellt werden. Löscht man später Annotatoren, so werden alle ihre Annotationen ebenfalls gelöscht.

Annotiert man, ohne sich vorher als ein bestimmter Annotator angemeldet zu haben, werden die erstellten Annotationen als allgemeine Annotationen gespeichert (wie dies auch der Fall ist, wenn ohne Mehr-Annotatoren-Funktion gearbeitet wird). Um nun als ein bestimmter Annotator zu annotieren, meldet man sich zunächst mit dem Befehl annotator (oder dem synonymen Befehl user), gefolgt vom eindeutigen Namen des Annotators, an. Der Name des aktuellen Annotators erscheint nun im entsprechenden Feld neben der Eingabeleiste und der Annotator sieht nur die von ihm selbst vorgenommenen Annotationen; die Annotationen anderer Annotatoren oder allgemeine Annotationen bleiben verborgen. Auch für die Suche werden nur die eigenen Annotationen ausgewertet. Um den aktuellen Annotator abzumelden und wieder an den allgemeinen Annotationen zu arbeiten wird der annotator-Befehl ohne Argument eingegeben – nun sind wieder nur die allgemeinen Annotationen zu sehen.

2.6 Dateieinstellungen

Mit dem Befehl file wird das Fenster mit den Einstellungen für die Datei, in der der Arbeitsbereich gespeichert wird, aufgerufen:

- compact file format: Soll die Datei in kompakter JSON-Formatierung gespeichert werden? Dies führt zu kleineren Dateigrößen, jedoch ist die Datei für eventuelle Inspektion/Änderung per Texteditor weniger gut lesbar.
- save editing history: Soll das Änderungsprotokoll (vgl. 4.2.10) gespeichert werden, so daß es über Sitzungen hinweg verfügbar ist? (Achtung, diese Option kann zu sehr großen Dateien und entsprechend langen Speicher-/Ladezeiten führen.)
- save window positions: Sollen die Positionen der Fenster (Filter, Suche etc.) in der Graphdatei (also projektspezifisch) gespeichert werden? (Andernfalls werden die Positionen nur im Browser gespeichert.)

3 Tastaturbefehle

Die meisten Navigation und Ansicht betreffenden Funktionen von GraphAnno werden direkt über Tastenbefehle angesprochen. Nachfolgend eine Tabelle der verfügbaren Befehle:

Tastenkombination	Funktion
Navigation	
$Alt + \leftarrow / \rightarrow$	vorheriger/nächster Satz
Alt + Pos1/Ende	erster/letzter Satz
Graph	
Strg + Umschalt + -/+	Graph verkleinern/vergrößern
Strg + Umschalt + 0	Graph einpassen (bzgl. der Höhe)
Strg + Umschalt + Pfeile	Graph verschieben
Strg + Umschalt + Pos1/Ende	an den linken/rechten Rand des Graphen
Strg + Umschalt + Bild↑/Bild↓	an den oberen/unteren Rand des Graphen
F4	Elementen-IDs im Graphen an-/ausschalten
Fenster	
F1	Hilfefenster zeigen/verbergen
F2	Text und Satzannotationen zeigen/verbergen
F6	Filterfenster zeigen/verbergen
F7	Suchfenster zeigen/verbergen
F8	Änderungsprotokollfenster zeigen/verbergen

4 Kommandozeilenbefehle

4.1 Daten und Navigation

4.1.1 Datei laden: load

Eine Graphdatei wird mit dem Befehl load in den Arbeitsbereich geladen. Per default wird die angegebene Datei aus dem Verzeichnis data im GraphAnno-Programmordner geladen; es ist aber auch möglich, einen Pfad anzugeben (zur Trennung von der Ordner dient auf allen Betriebssystemen der normale Schrägstrich /). Beginnt der Pfad nicht mit einem Schrägstrich, wird er relativ zum data-Ordner interpretiert; beginnt er mit einem Schrägstrich, wird er als absoluter Pfad interpretiert (auf Windows-Systemen auf der Partition, auf der GraphAnno installiert ist). Der Dateiname kann mit oder ohne die Dateiendung . j son angegeben werden; enthält der Pfad Leerzeichen, so muß er in doppelte Anführungszeichen eingeschlossen werden: "...".

Vor dem Laden werden Daten aus dem Arbeitsbereich von GraphAnno gelöscht. Änderungen, die nicht explizit mit save gespeichert wurden, gehen dabei verloren.

Welche Datei geladen wurde, wird neben der Eingabeleiste angezeigt.

4.1.2 Datei laden und anhängen: append

Mit dem Befehl append wird der Inhalt einer Datei (die Angabe der Datei erfolgt wie bei Load beschrieben) an das im Arbeitsbereich befindliche Korpus angefügt.

4.1.3 Datei speichern: save

Mit dem Befehl save wird der gesamte Arbeitsbereich in eine Datei gespeichert. Der Dateiname wird wie beim Laden angegeben. Wenn neben der Eingabeleiste ein Dateiname angezeigt wird, kann der Arbeitsbereich unter diesem Namen gespeichert werden, ohne den Namen eigens anzugeben.

Achtung: es wird keine Warnung ausgegeben, wenn eine bestehende Datei überschrieben wird.

4.1.4 Arbeitsbereich leeren: clear

Mit dem Befehl clear werde alle Daten aus dem Arbeitsbereich von GraphAnno gelöscht. Änderungen, die nicht explizit mit save gespeichert wurden, gehen verloren. Neben der Eingabeleiste wird keine Datei mehr als geladen angezeigt.

4.1.5 Neuen Satz anlegen: ns

Mit ns – gefolgt von mit Leerzeichen getrennten anzulegenden Satznamen – werden ein oder mehrere neue Sätze angelegt. Dabei werden neue Satzknoten mit dem entsprechenden name-Attribut erstellt. Anschließend wird sofort in den ersten angegebenen Satz gewechselt.

4.1.6 Satz löschen: del

Mit dem Befehl del wird der gegenwärtig angezeigten Satzes komplett gelöscht. Werden ein oder mehrere Satznamen als Argumente angegeben, so wird nicht der aktuelle Satz gelöscht, sondern die Sätze, die die angegebenen Namen tragen. Es ist auch möglich, einen regulären Ausdruck anzugeben (in Schrägstrichen eingeschlossen); in dem Fall werden alle Sätze gelöscht, deren Namen auf den regulären Ausdruck passen.

4.1.7 Gehe zu: s

Um von Satz zu Satz zu navigieren dient (neben den Tastenkombinationen und dem Aufklappfeld, das auf Änderungen reagiert) der Befehl s, gefolgt vom Namen des anzuzeigenden Satzes. Es wird zum ersten Satz mit dem angegebenen Namen gewechselt.

4.1.8 Graphik exportieren: image

Um die Graphik, die GraphAnno für den aktuellen Satz anzeigt, zu exportieren, dient der Befehl image. Als erstes Argument wird das gewünschte Format angegeben. Zur Verfügung stehen alle von Graphviz unterstützten Formate, u.a. dot, eps, pdf, png und svg. Die vollständige Liste ist hier einzusehen: http://www.graphviz.org/content/output-formats. Das zweite Argument ist der Name der zu erstellenden Datei (ohne Endung; enthält der Name Leerzeichen, so muß er in doppelten Anführungsstrichen angegeben werden). Die Graphik wird im Ordner images gespeichert.

4.1.9 Korpus exportieren: export

Mit dem Befehl export wird der Inhalt des Arbeitsbereiches als Korpus in ein anderes Format exportiert. Als erstes Argument wird das Format angegeben (z.Z. ist das einzige vollständig funktionale Format sql für den Import in GraphInspect; paula kann im Prinzip zwar ebenfalls exportiert werden, unterliegt aber starken Einschränkungen hinsichtlich der Ebenen), das zweites Argument ist der Name des Korpus. Für paula kann optional als drittes Argument der Name des zu erstellenden Korpusdokuments angegeben werden. Das exportierte Korpus wird im Ordner exports gespeichert.

4.1.10 Text importieren: import text

Texte können mit dem Befehl import text importiert werden. Es öffnet sich ein Fenster, in dem der zu importierende Text eingegeben und Einstellungen zur Verarbeitung vorgenommen werden können. Der Arbeitsbereich von GraphAnno wird vor dem Import geleert (aber noch nicht, wenn sich das Fenster öffnet). Nicht gespeicherte Änderungen gehen verloren und neben der Eingabeleiste wird keine Datei mehr als geladen angezeigt.

Das Import-Fenster bietet zwei Möglichkeiten zur Eingabe von Text: es kann eine Textdatei hochgeladen werden ("File") oder der Text in das Textfenster eingegeben bzw. kopiert werden ("Paste"). Die Verarbeitung des Textes kann ebenfalls auf zwei Arten geschehen: Für unbearbeiteten Text empfielt sich die Option "Punkt segmenter". Diese verwendet einen automatischen Segmentierer, der den Text in Sätze und die Sätze in Token teilt. Hierbei muß zur korrekten Verarbeitung von Abkürzungen etc. die Sprache des Textes angegeben werden.

Die zweite Option zur Verarbeitung ist "Regular expressions"; diese ist für vorformatierte Texte vorgesehen. Hier wird als erstes eine Zeichenkette angegeben, die zur Trennung der Sätze verwendet wird. Voreingestellt ist hier \n ² für eine Datei, in der jede Zeile einen Satz darstellt. Als zweites ist ein regulärer Ausdruck anzugeben, der die Token findet. Hier ist (\S+) voreingestellt: dies steht für eine Folge von Nicht-Leerzeichen, findet also als Token alle Wörter, die mit Leerzeichen voneinander getrennt sind. Die Klammern dienen dazu, die gefundenen Zeichenkette in der Variable

²\n steht für einen Zeilenumbruch, \t für einen Tabstop.

\$1 zu speichern, so daß sie im nächsten Feld verwendet werden kann. Im nächsten Feld ist ein Annotationsbefehl (siehe 4.2.3) für die Token anzugeben, der von der im vorigen Feld gefunden Zeichenkette gebrauch macht. Voreingestellt ist hier token:\$1. Dies verwendet die als Token gefundene Zeichenkette zur Annotation des Tokentextes. Ein anderes Anwendungsbeispiel wäre ein mit Wortarten getaggter Text, in dem die Wortart für jedes Wort mit einem Unterstrich hinter selbigem angefügt ist. Hier würde man als regulären Ausdruck (\S+)_(\S+) angeben und als Annotationsbefehl token:\$1 pos:\$2. Der reguläre Ausdruck findet in diesem Fall zwei mit Unterstrich verbundene Zeichenketten aus Nicht-Leerzeichen und speichert sie in den Variablen \$1 (das Wort) und \$2 (der POS-Tag). Im Annotationsbefehl werden diese Variablen wiederum zur Annotation des Tokentextes und des pos-Attributes verwendet.

4.1.11 Toolboxdaten importieren: import toolbox

Toolboxdateien können mit dem Befehl import toolbox importiert werden. Es öffnet sich ein Fenster, in dem die einzulesende Datei ausgewählt und die Formatbeschreibung eingegeben werden kann. Die Formatbeschreibung wird im JSON-Format angegeben und besteht aus einer Liste von Listen von Markern. Die Listen sind nach Ebenen sortiert – die höchste (record) zuerst – und enthalten die der entsprechenden Ebene zugehörigen Marker (ohne Schrägstich). Als Record-ID wird der erste Marker der ersten Ebene (im Bsp. unten ref) verwendet. Dem Marker, auf dessen Grundlage die Token erstellt werden sollen, wird ein Stern vorangestellt. Elemente, die unter der Tokenebene liegen, werden zusammengefügt und in die jeweiligen Token integriert.

Eine Formatbeschreibung für eine Toolboxdatei mit drei Ebenen (Record, Wort, Morphem) könnte z.B. folgendermaßen aussehen:

```
[["ref", "eng"], ["*gw"], ["mph", "ge", "ps"]]
```

Wie beim Befehl load wird der Arbeitsbereich von GraphAnno vor dem Import geleert. Nicht gespeicherte Änderungen gehen verloren und neben der Eingabeleiste wird keine Datei mehr als geladen angezeigt.

4.1.12 Konfigurationen ex- und importieren: export und import

Mit dem Befehl export ist es auch möglich, Graphkonfigurationen zu exportieren, die später mit import in andere Graphen importiert werden können. Dafür wird als erstes Argument der Typ der zu ex- oder importierenden Konfiguration angegeben: config für Darstellungs- und Ebenenkonfiguration (s. 2.1), tagset für erlaubte Annotationen (s. 2.2). Als zweites wird der Name der Datei angegeben, unter dem die Daten gespeichert werden sollen, bzw. die importiert werden soll (ohne Endung). Die exportierte Datei wird im dem Typ entsprechenden Unterordner des exports-Ordners gespeichert. Achtung: beim Import werden bestehende Konfigurationen von den importierten komplett überschrieben.

4.1.13 Konfiguration bearbeiten: config, tagset, makros und metadata

Mit diesen Befehlen öffnet man die Fenster für die in Abschnitt 2 beschriebenen Einstellungen. config für Darstellung und Ebenen, tagset für erlaubte Annotationen, makros für Annotatationsmakros und metadata für Metadaten.

4.2 Annotationsbefehle

Die Annotationsbefehle von GraphAnno sind darauf ausgerichtet, daß sie möglichst schnell einzugeben sind. Daher ist ihre Syntax entsprechend reduziert: Sie bestehen aus einem kurzen Befehl (oft nur ein Buchstabe) gefolgt von Parametern, die durch Leerzeichen getrennt sind.

Die Befehle setzen voraus, daß man sich ein einem Satz befindet. D.h., wenn der Arbeitsbereich leer ist (und kein Satz im Satzausfahlfeld angezeigt wird), muß also zunächst mit dem Befehl ns (siehe 4.1.5) ein Satz angelegt werden.

4.2.1 Neuer Knoten: n

Der Befehl zum Erstellen eines neuen Knotens lautet n, gefolgt von den Attributen, die der neue Knoten haben soll, als Schlüssel-Wert-Paare in der Form schlüssel:wert. Schlüssel und Wert können entweder als einfache Zeichenkette angegeben werden, wenn sie keines der in der GraphAnno-Annotiersprache verwendeten Steuerzeichen (": "#)³ enthalten, oder als Zeichenkette in doppelten Anführungsstrichen ("..."), die beliebige Zeichen enthalten darf (doppelte Anführungsstriche müssen allerdings mit einem Backslash maskiert werden: \").

Des weiten können zuvor definierte Annotationsmakros (siehe 2.3) verwendet werden; dabei überschreiben explizit angegebene Attribute ggf. die in den Makros definierten Annotationen.

Schließlich kann noch die Ebene angegeben werden, der der neue Knoten angehören soll (andernfalls gehört er zu der im entsprechenden Auswahlfeld aktiven Ebene). Dazu dienen die in der Ebenenkonfiguration (siehe 2.1) eingestellten Kürzel. Die Angabe der Ebene hat zudem die Wirkung eines Schalters, der wie der Befehl 1 die Ebene für die folgenden Operationen setzt (siehe 4.2.11).

Befehl n in modifizierter BNF:

```
befehl_n = "n " attribute
attribute = attribute " " attribute
attribut
annotationsmakro
```

³Das Zeichen ⊔ steht für das Leerzeichen.

ebenenschalter

attribut = schlüssel zeichenkette

schlüssel = zeichenkette ":"

zeichenkette = zeichen_außer_steuerzeichen+

""" beliebiges zeichen* """

alnum = buchstabe | ziffer | "_"

annotationsmakro = alnum+
ebenenschalter = alnum+

4.2.2 Neue Kante: e

Der Befehl zum Anlegen einer neuen Kante lautet e, gefolgt vom Start- und Zielknoten der zu erstellenden Kante und den Attributen, die sie erhalten soll. Auch die Angabe einer Ebene wie bei n ist möglich.

Befehl e in modifizierter BNF:

befehl_e = "e" start_ziel " " start_ziel " " attribute

start_ziel = knotenreferenz

tokenreferenz

knotenreferenz = "n" zahl
tokenreferenz = "t" zahl

4.2.3 Annotieren: a

Der Befehl zum Annotieren beliebiger Elemente ist a, gefolgt von den zu annotierenden Elementen und Attributen, mit denen sie annotiert werden sollen (alle angegeben Elemente werden mit allen angegebenen Attributen versehen; auch Ebenekürzel wie bei n können verwendet werden). Die Reihenfolge einzelner Elemente und Attribute ist beliebig. Es können auch Sequenzen von Elementen eines Typs (also n, e oder t) durch Verbinden mit zwei Punkten angegeben werden; beispielsweise werden bei Angabe von t3..t7 alle Token von t3 bis t7 annotiert (die Sequenz kann auch umgekehrt angegeben werden, also t7..t3).

Gleichzeitig können mit dem Befehl a Attribute gelöscht werden. Dazu wird der zu löschende Schlüssel mit Doppelpunkt, aber ohne Wert angegeben.

Befehl a in modifizierter BNF:

befehl_a = "a" a_parameter

a_parameter = a_parameter " " a_parameter

elementreferenz

attribute schlüssel

elementreferenz = knotenreferenz

kantenreferenz tokenreferenz metaknotenreferenz

elementsequenz

kantenreferenz = "e" zahl

metaknotenreferenz = "m"

elementsequenz = knotensequenz

tokensequenz kantensequenz

4.2.4 Elemente löschen: d

Gelöscht werden Elemente mit dem Befehl d, gefolgt von den zu löschenden Elementen. Werden Knoten gelöscht, werden Ein- und Ausgehende Kanten dieses Knotens ebenfalls gelöscht. Beim Löschen von Tokenknoten aus der Mitte eines Satzes wird die Verbindung zwischen den Token rechts und links des gelöschten Tokens wieder hergestellt.

Befehl d in modifizierter BNF:

4.2.5 Knoten unter neuem Mutterknoten gruppieren: g oder p

Der Gruppierbefehl g oder p erstellt einen neuen Mutterknoten für die angegebenen Knoten. D.h. es wird ein neuer Knoten erstellt und Kanten erzeugt, die diesen mit den zu gruppierenden Knoten verbindet. Die Parameter des Befehls sind die zu gruppierenden Knoten und die Attribute, mit denen der neue Knoten annotiert werden soll. Die Reihenfolge von Knoten und Attributen ist irrelevant. Auch die Angabe einer Ebene wie bei n ist möglich.

Befehl g/p in modifizierter BNF:

4.2.6 Tochterknoten anhängen: h oder c

Der Befehl h/c funktioniert wie g/p, mit dem Unterschied, daß anstelle eines Mutterknotens ein neuer gemeinsamer Tochterknoten erstellt wird.

Befehl h/c in modifizierter BNF:

4.2.7 Neuen Knoten in Kante einfügen: ni

Mit dem Befehl ni (node insert) kann man einen Knoten in eine bestehende Kante "einschieben". Man gibt als Parameter die Kante an und die Attribute für den neuen Knoten. Es wird dann ein neuer Knoten erstellt und die angegebene Kante durch zwei Kanten ersetzt, die alle Annotationen der alten Kante erben und den Startknoten der alten Kante mit dem neuen Knoten sowie den neuen Knoten mit dem Endknoten der alten Kante verbinden.

Gibt man mehrere Kanten an, so wird in jede ein neuer Knoten nach dem eben beschriebenem Verfahren eingeschoben.

Befehl ni in modifizierter BNF:

```
befehl_ni = "ni " ni_parameter
ni_parameter = ni_parameter " " ni_parameter
kantenreferenz
attribute
ebenenschalter
```

4.2.8 Knoten löschen und Verbindung bewahren: di und do

Für den Fall, daß man einen Knoten löschen, aber die Verbindung zwischen Mutterund Tochterknoten dieses Knotens bestehen lassen möchte, sind die Befehle di bzw. do vorgesehen. Diese Befehle löschen den angegebenen Knoten und verbinden jeden Mutterknoten mit jedem Tochterknoten (das ergibt vor in Baumstrukturen Sinn, wo es einen Mutterknoten und mehrere Tochterknoten gibt). di (für delete ingoing) löscht dabei die eingehenden Kanten, do (für delete outgoing) die ausgehenden.

Befehle di und do in modifizierter BNF:

4.2.9 Tokenisieren: t, tb, ta

Zum Eingeben von Token gibt es die Befehle t, tb und ta. Diese Befehle nehmen eine Folge von durch Leerzeichen getrennten Wörtern als Argument und fügen sie als neue Token in den aktuellen Satz ein. Der Befehl t fügt die neuen Token dabei ans Ende der ggf. schon bestehenden an, tb (für *tokenize before*) und ta (für *tokenize after*) nehmen als erstes Argument noch eine Tokenreferenz und fügen die neuen Token davor bzw. danach ein.

Die Wörter können als einfache Zeichenkette angeben werden, oder, wenn sie Steuerzeichen (": "#) enthalten, als Zeichenkette in doppelten Anführungsstrichen ("..."; doppelte Anführungsstriche müssen dann mit einem Backslash maskiert werden: \").

Befehle t, tb, ta in modifizierter BNF:

```
""" beliebiges_zeichen* """

befehl_tb = "tb " tokenreferenz " " wörter

befehl_ta = "ta " tokenreferenz " " wörter
```

4.2.10 Rückgängig/Wiederherstellen: undo und redo (oder z und y)

Mit dem Befehl undo (oder dem synonymen Befehl z) können zuvor ausgeführte Annotationsbefehle rückgängig gemacht werden. Zu diesen Befehlen zählen diejenigen Befehle, die Knoten oder Kanten erstellen oder löschen sowie auch das Erstellen und Löschen von Sätzen, nicht jedoch arbeitsbereichsbezogene Befehle wie append oder clear. Ein rückgängig gemachter Befehl kann mit redo (oder dem synonymen Befehl y) erneut ausgeführt werden. Rückgängigmachen und Wiederherstellen können auch mehrfach erfolgen; wird nach einem undo-Befehl wieder ein Annotationsbefehl ausgeführt, können die zuvor rückgängig gemachten Befehle nicht wiederhergestellt werden (lineare Änderungshistorie).

Die Änderungshistorie ist auch in einem Fenster zu sehen, das mit F8 ein- und ausgeblendet wird. Hier ist es auch möglich, per Klick direkt zu bestimmten Zuständen der Änderungshistorie zu springen.

4.2.11 Ebenen setzen: l

Mit dem Befehl l wird, alternativ zum Aufklappfeld, die Ebene gesetzt, in der sich die nachfolgend erstellten Elemente befinden sollen. Dafür gelten die in der Graphkonfiguration (siehe 2.1) eingestellten Kürzel.

Befehl 1 in modifizierter BNF:

```
befehl_l = "l " ebenenschalter
```

4.2.12 Annotator anmelden: annotator (oder user)

Mit dem Befehl annotator (oder dem synonymen Befehl user), gefolgt von dem eindeutigen Namen des Annotators (angelegt im entsprechenden Fenster, siehe 2.5) wird – bei Nutzung der Mehr-Annotatoren-Funktion – der entsprechende Annotator angemeldet. Der angemeldete Annotator wird dann im entsprechenden Feld neben der Eingabeleiste angezeigt und nur noch die Annotationen des angemeldeten Annotators werden angezeigt und durchsucht. Um den aktuellen Annotator abzumelden und wieder an den allgemeinen Annotationen zu arbeiten wird der annotator-Befehl ohne Argument eingegeben.

5 Abfragesprache

5.1 Suche

Das Prinzip der Graphsuche von GraphAnno besteht darin, mit einer Menge von Klauseln ein Graphfragment zu beschreiben. Bei der Suche werden dann alle Teilgraphen des durchsuchten Korpusgraphen gefunden, die dieser Beschreibung entsprechen. Es stehen die Klauseln node, nodes, edge, link, text, meta, cond und def zur Verfügung, wobei eine Anfrage mindestens eine node- oder text-Klausel oder eine unverbundene edge-Klausel enthalten muß. Die Klauseln werden in den folgenden Abschnitten im einzelnen beschrieben.

Die einzelnen Klauseln werden in beliebiger Reihenfolge in jeweils eine eigene Zeile geschrieben; Einrückungen und Leerzeilen werden nicht interpretiert. Kommentare werden durch Voranstellen eines Doppelkreuzes # markiert.

5.1.1 node

Die node-Klausel beschreibt einen Knoten, der im Graphfragment genau einmal vorkommen soll. Die Klausel besteht aus dem Schlüsselwort node, einer optionalen ID und einer Attributbeschreibung.

Die ID besteht aus einem @ gefolgt von einer Zeichenkette, die aus einer Folge von alphanumerischen Zeichen inkl. Unterstrich besteht, wobei das erste Zeichen keine Ziffer sein darf. Unter der ID kann der Knoten in anderen Teilen der Suchanfrage referenziert werden.

Die Attributbeschreibung besteht aus Schlüssel-Wert-Paaren der Form schlüssel: wert, die mit den logischen Operatoren! für "nicht", & für "und" und | für "oder" (Bindungsstärke: ! > & > |) sowie Klammerung mit runden Klammern verknüpft sind. Als Abkürzung für Disjunktionen von Schlüssel-Wert-Paaren mit dem gleichen Schlüssel steht die Form schlüssel:wert1|wert2|...|wertn zur Verfügung.

Der Schlüssel eines Schlüssel-Wert-Paares kann entweder als einfache Zeichenkette angegeben werden, wenn er keines der in der Abfragesprache verwendeten Steuerzeichen ("():!&"/?+*{}@#^) enthält, oder als Zeichenkette in doppelten Anführungsstrichen ("xyz"), die beliebige Zeichen enthalten darf (doppelte Anführungsstriche müssen mit einem Backslash maskiert werden: \").

Die Werte der Schlüssel-Wert-Paare sind Zeichenketten, die auf dreierlei Art und Weise angegeben werden können. Die erste Variante sind einfache umarkierte Zeichenketten, die alle Zeichen außer den in der Abfragesprache verwendeten Steuerzeichen ("():!&"/?+*{}@#^) enthalten dürfen. Diese Zeichenketten werden bei der Suche ohne Beachtung von Groß- und Kleinschreibung verglichen. Die zweite Variante sind Zeichenketten in doppelten Anführungsstrichen ("xyz"). Diese dürfen beliebige Zeichen enthalten (doppelte Anführungsstriche müssen mit einem Backslash maskiert werden: \") und werden unter Beachtung von Groß- und Kleinschreibung

verglichen. Die dritte Variante sind reguläre Ausdrücke. Diese werden in Schrägstrichen angegeben (/x.z/ und gehorchen den Regeln für reguläre Ausdrücke in Ruby (siehe http://www.ruby-doc.org/core/Regexp.html). Die regulären Ausdrücke sind nicht verankert; um den Ausdruck am Anfang bzw. Ende einer Zeichenkette zu verankern müssen also ^ bzw. \$ verwendet werden; eine beliebige Zeichenkette kann mit // gefunden werden.

Wie eine Attributbeschreibung kann das Schlüsselwort token verwendet werden, welches prüft, ob es sich beim Knoten um ein Token handelt.

Des weiteren kann die Attributbeschreibung Kriterien für ein- und ausgehende Kanten enthalten. Diese bestehen aus dem Schlüsselwort in bzw. out, einer optionalen Attributbeschreibung in runden Klammern und einem optionalen Quantor. Der Operator in bzw. out findet alle ein- bzw. ausgehenden Kanten mit den angegebenen Attributen, der Quantor gibt an, wieviele Kanten der spezifizierten Art vorhanden sein dürfen und ist (syntaktisch) wie bei regulären Ausdrücken definiert: {m,n} für mindestens m-mal, höchstens n-mal; bei Auslassung der ersten Zahl wird 0 angenommen, bei Auslassung der zweiten unendlich. {n} steht für genau n mal. Des weiteren gibt es die Abkürzungen ? für {0,1}, * für {0,} und + für {1,}. Anders als von regulären Ausdrücken gewohnt (und anders als beim Auftreten von Quantoren in anderen Kontexten der GraphAnno-Abfragesprache), wird das Fehlen eines Quantors hier als {1,} interpretiert.

Für die Kanten wiederum können – zusätzlich zu den einfachen Attributen – über die Schlüsselwörter start bzw. end und Attributbeschreibungen in runden Klammern auch Eigenschaften des Start- bzw. Zielknoten angegeben werden.

Ähnlich wie in und out funktioniert link, jedoch werden damit nicht nur ein- und ausgehenden Kanten abgefragt, sondern (ggf.) komplexere Verbindungen zu anderen Knoten. Wie diese Verbindungen spezifiziert werden, ist in 5.1.4 beschrieben. Auch für link gelten die Regeln für Quantoren, wie für in und out beschrieben.

Die node-Klausel in modifizierter BNF:

```
""" beliebiges zeichen* """
                    zeichen_außer_steuerzeichen+
attributwert
                    """ beliebiges_zeichen* """
                    "/" regulärer ausdruck "/"
                    "in" ("(" kantenattribute ")")? quantor?
kantenkriterium =
                    "out" ("(" kantenattribute ")")? quantor?
                    "link" ("(" verbindung ")") quantor?
                    "?" | "*" | "+" | "{" zahl? ("," zahl?) "}"
quantor
kantenattribute =
                    kantenattribute " & " kantenattribute
                    kantenattribute " | " kantenattribute
                    "!" kantenattribute
                    "(" kantenattribute ")"
                    attribut
                    knotenkriterium
                    "start" ("(" knotenattribute ")")
knotenkriterium =
                    "end" ("(" knotenattribute ")")
```

Beispiele:

- Suche alle Knoten, die die Kategorie S oder VP haben und keine Token sind:
 node cat:S|VP & !token
- Suche alle Knoten, die von der Kategorie VP sind oder Token mit dem pos-Wert verb:

```
node cat:VP | token & pos:verb
```

 Suche alle Knoten der Kategorie S, die mindestens zwei ausgehende AUX-Kanten haben:

```
node cat:S & out(cat:AUX){2,}
```

 Suche alle Knoten der Kategorie S, die mindestens einen Knoten mit dem pos-Wert pro dominieren:

```
node cat:S & out(end(pos:pro))
```

5.1.2 nodes

Die nodes-Klausel beschreibt eine Menge von Knoten, die im Graphfragment enthalten sein sollen – wenn die Menge nur als Ziel einer link- oder edge-Klausel auftritt, kann die Menge jedoch auch leer sein. Die nodes-Klausel hat, abgesehen vom Schlüsselwort, die gleiche Syntax wie die node-Klausel.

Die nodes-Klausel in modifizierter BNF:

```
nodes-klausel = "nodes" id? " " knotenattribute
```

5.1.3 edge

Die edge-Klausel hat zwei Anwendungen. Zum einen kann sie verwendet werden, um einzelne Kanten zu suchen. Dann besteht die Klausel aus dem Schlüsselwort edge, einer optionalen ID, unter die die Kante in der Ausgabe referenziert werden kann, und einer Attributbeschreibung für Kanten wie in 5.1.1 beschrieben. Zum anderen dient die edge-Klausel dazu, anzugeben, daß zwischen zwei Knoten bzw. Knotenmengen des Graphfragments (mit node bzw. nodes spezifiziert) eine Kante mit den angegebenen Eigenschaften existieren soll. Dazu werden nach der (optionalen) ID der Kante die IDs von Start und Ziel der Kante angegeben.

Durch die optionale ID und die verschiedenen Verwendungsmöglichkeiten kann das Schlüsselwort edge von null bis drei IDs gefolgt sein. Die Interpretation dieser IDs ergibt sich aus ihrer Anzahl und der Reihenfolge. Eine ID: ID der Kante selber; zwei IDs: Start und Ziel der Kante; drei IDs: ID der Kante, Start und Ziel.

Die edge-Klausel in modifizierter BNF:

```
edge-klausel = "edge" id? (id id)? " " kantenattribute
```

Beispiele:

- Suche alle Kanten die die syntaktische Funktion Subjekt anzeigen:
 edge synfunc:subj
- Suche alle Knoten der Kategorie S, jeweils mit der Menge von Knoten der Kategorie NP, die über eine Kante der Kategorie S, A oder P verbunden sind:

```
node @s cat:S
nodes @np cat:NP
edge @s@np cat:S|A|P
```

5.1.4 link

Die link-Klausel beschreibt, wie zwei Knoten oder Knotenmengen des Teilgraphen verbunden sein sollen. Dabei kann als Verbindung eine Kette von Knoten und Kanten ähnlich einem regulären Ausdruck beschrieben werden. Die link-Klausel besteht aus den Schlüsselwort link, der Angabe von Start- und Endknoten der Verbindung in der Form @id1@id2 und der Beschreibung der Verbindung.

Die Verbindungsbeschreibung besteht aus einer Abfolge von edge- und node-Elementen. Diese bestehen aus dem jeweiligen Schlüsselwort (edge bzw. node) und optional einer Angabe von Bedingungen, die das Element erfüllen muß, in runden Klammern. Dabei handelt es sich um eine Attributbeschreibung wie oben für node angegeben. Gefolgt werden kann die Elementbeschreibung von einer ID, unter der die gefundenen Elemente in der Ausgabe (nicht in der Suche!) referenziert werden können.

Für Alternativen steht der Operator | "oder" zur Verfügung; bezüglich der Bindungsstärke steht er unter der Abfolge. Klammerung ist mit runden Klammern möglich. Des weiteren können Quantoren verwendet werden. Diese werden weder als gierig noch als genügsam interpretiert; alle passenden Verbindungen werden gefunden und als separate Treffer gewertet.

Eine Verbindung besteht – der Natur eines Graphen entsprechend – stets aus einem Wechsel von Knoten und Kanten (beginnend und endend mit jeweils einer Kante). Bei der Angabe von einer Verbindung darf jedoch darauf verzichtet werden, stets Knoten und Kanten im Wechsel anzugeben; nur die erste Kante darf nicht ausgelassen werden. Stehen zwei Elemente des gleichen Typs (also edge oder node) hintereinander, so wird bei der Suche dazwischen ein unspezifiziertes Element des jeweils anderen Typs eingeschoben. Die Verbindungsbeschreibung edge(a:b) edge(c:d) beispielsweise findet eine Kante mit dem Attribut a:b, dann einen beliebigen Knoten und dann eine Kante mit dem Attribut c:d.

Wird Link als Knotenattribut (z.B. in einer node-Klausel) verwendet, fällt die Angabe von Start- und Endknoten weg. Startknoten ist dann der gesuchte Knoten, Endknoten der letzte in der Verbindung spezifiziert Knoten bzw., wenn die Verbindungsbeschreibung mit einer Kante endet, ein Knoten mit beliebigen Eigenschaften.

Die link-Klausel in modifizierter BNF:

Beispiele:

 Suche alle Graphfragmente, die aus einem Knoten der Kategorie P und einem der Kategorie S bestehen, wobei ersterer letzteren über eine Kante der Kategorie EX dominiert:

```
node @p cat:P
```

```
node @s cat:S
link @p@s edge(cat:EX)
```

 Suche einen Knoten der Kategorie S, alle Knoten der Kategorie NP, die dieser dominiert, und alle Token, die von den NPn dominiert werden:

```
node @s cat:S
nodes @vpn cat:NP
nodes @tok token
link @s@npn edge+
link @npn@tok edge+
```

 Suche einen Knoten der Kategorie S und alle Token, die von diesem über einen NP-Knoten dominiert werden (bis auf die IDs äquivalent zum vorigen Beispiel):

```
node @s cat:S
nodes @tok token
link @s@tok edge+ node(cat:NP) edge+
```

5.1.5 text

Die text-Klausel dient dazu, eine Abfolge von Token-Knoten zu finden. Dabei ermöglicht die Textsuche sowohl die Suche nach reinem Text als auch nach weiteren Attributen der Token-Knoten. Die text-Klausel besteht aus dem Schlüsselwort text, einer optionalen ID und der Beschreibung eines Textfragments, das mit `s am Anfang bzw. Ende des Textes eines Satzes verankert werden kann.

Die Beschreibung des Textfragments besteht aus einer Abfolge von Wortbeschreibungen, die aus einer Zeichenkette, die den Tokentext beschreibt (drei Varianten wie oben unter node für die Werte in Schlüssel-Wert-Paaren beschrieben), und einer optionalen Angabe von Attributen (Attributebeschreibung wie oben unter node) in runden Klammern zusammengesetzt ist. Für die Beschreibung des Textfragments stehen wie bei der Verbindungsbeschreibung der Operator | für "oder" (Bindungsstärke schwächer als die der Sequenz), Klammerung und Quantoren zur Verfügung, wobei die Quantoren bei der Textsuche genügsam sind. Zusätzlich kann Textfragmenten eine ID nachgestellt werden, um die gefundenen Knoten in anderen Klauseln zu referenzieren. Quantoren und IDs haben eine höhere Bindungsstärke als Sequenz und Disjunktion; die Reihenfolge von Quantor und ID hinter dem selben Textfragment ist beliebig. Die optionale ID nach dem Schlüsselwort gilt für alle Knoten der text-Klausel. Das gesuchte Textfragment kann mit `s am Beginn bzw. Ende eines Textes (Text eines Satzes) verankert werden.

Die text-Klausel in modifizierter BNF:

```
"(" textfragment ")"

textfragment quantor

textfragment id

wort

wort

= attributwert ("(" knotenattribute ")")?
```

Beispiel:

- Suche alle Sätze, in denen das Wort das Nomen "Säge" an dritter Stelle steht:
 text ^s //{2,2} Säge(pos:n)
- Suche zwei Vorkommen von "er", die von einer beliebigen Anzahl Wörter getrennt sind, wobei das erste "er" und alle folgenden Wörter bis zum zweiten "er" von einem Knoten vom cat S dominiert werden:

```
node @s cat:S
text (er //*)@t er
link @s@t edge*
```

5.1.6 meta

Die meta-Klausel schränkt die Menge der zu durchsuchenden Sätze ein. Über diese Klausel können Eigenschaften angegeben werden, die der Satznoten eines Satzes haben muß. Die Klausel besteht aus dem Schlüsselwort meta und einer Attributbeschreibung wie oben unter node beschrieben.

Die meta-Klausel in modifizierter BNF:

```
text-klausel = "meta" attribute
```

5.1.7 cond

Die cond-Klausel gibt Bedingung an, die das Graphfragment erfüllen muß und wirkt wie ein Filter. Die Klausel besteht aus dem Schlüsselwort cond und der Bedingung in Ruby-Kode. Die Knoten und Knotenmengen werden dabei durch die vergebenen IDs referenziert. Bei der Referenzierung ist zu beachten, daß es sich bei den mit node und edge gefundenen Knoten und Kanten um einzelne Elemente, bei den mit nodes, text und link gefundenen Knoten und Kanten hingegen um Arrays von Elementen handelt.

Auf die Attribute der Knoten wird in der Form ['schlüssel'] zugegriffen; für die Attribute token und cat stehen Abkürzungen der Form .token und .cat zur Verfügung. Über die Methode .sentence kann auf den Satznoten des Satzes, zu dem das Element gehört, zugegriffen werden. Bei der Verwendung von Attributwerten ist zu

beachten, daß es sich bei diesen stets um Zeichenketten handelt; sollen sie als Zahlen behandelt werden, müssen sie mit .to_i bzw. .to_f umgewandelt werden.

Beispiele:

 Suche zwei S-Knoten, die über eine ad-Kante verbunden sind und den gleichen Wert für tns haben:

```
node @s1 cat:S
node @s2 cat:S
link @s1@s2 cat:ad
cond @s1['tns'] == @s2['tns']
```

- Suche alle S-Knoten, die mindestens drei Token dominieren:

```
node @s cat:S
nodes @tok token
link @s@tok edge+
cond @tok.length >= 3
```

5.1.8 def

Mit def besteht die Möglichkeit, für die Suche Makros zu definieren. Dabei wird ein Name angegeben, unter dem das Makro in den Suchklauseln angesprochen werden kann, und eine Attribut- oder Verbindungsbeschreibung, die durch den Namen vertreten wird. Die Attribut-/Verbindungsbeschreibung ist aufgebaut wie für node und link in 5.1.1 bzw. 5.1.4 beschrieben.

Es ist zu beachten, daß ein Makro quasi automatisch geklammert wird, also stets zuerst ausgewertet wird. Nehmen wir beispielsweise an, man definiert ein Makro als cat:S | cat:VP wie unten im Beispiel und kombiniert es durch den Operator & mit einer weiteren Bedingung – tns:prs wie beim zweiten Knoten im Beispiel. Dann wird dies nicht als cat:S | cat:VP & tns:prs ausgewertet, in welchem Falle das & Präzedenz über das | nähme, sondern als (cat:S | cat:VP) & tns:prs.

Die Makrodefinition def in modifizierter BNF:

Beispiel:

 Suche zwei Knoten mit cat:S oder cat:VP, die über eine Kante verbunden sind, und von denen der zweite im Präsens steht:

```
def svp cat:S | cat:VP
node @s1 svp
node @s2 svp & tns:prs
edge @s1@s2
```

5.2 Annotation

Nach dem Durchführen einer Suche können unter Zuhilfenahme der in der Suche vergebenen IDs automatisch Annotationen durchgeführt werden. Dazu stehen die in Abschnitt 4.2 vorgestellten Annotationsbefehle (außer t) zur Verfügung.

Aufgrund des anderen Verwendungskontextes sind ein paar Änderungen zu beachten:

- Anstelle der Knoten- und Kantenreferenzen der Form n7, t8 oder e13 werden die in der Suche definierten IDs (in der Form @s1 o.ä.) verwendet.
- Es ist keine Ebene voreingestellt. Es sollte also ggf. bereits im ersten Annotationsbefehl der Befehlsfolge ein Ebenenschalter eingesetzt werden.
- Beim Befehl n ist ein Knoten anzugeben, der den Satz festlegt, in dem der neue Knoten erstellt werden soll.
- Da die IDs sowohl für einzelne Elemente als auch für Mengen von Elementen stehen können, ergeben sich ein paar Besonderheiten: Beim Befehl e sind genau zwei IDs anzugeben; handelt es sich um einzel-IDs, so wird eine einzelne Kante erstellt, handelt es sich jedoch um eine einzel- und eine Mengen-ID oder zwei Mengen-IDs, so wird für jede Knotenkombination aus den beiden IDs eine Kante gezogen. Bei den Tokenisierungsbefehlen tb/ta wird das erste bzw. letzte Token gewählt, falls mehrere angegeben wurden. Bei allen anderen Befehlen können beliebig viele Mengen- und/oder einzel-IDs angegeben werden, die dann als eine Menge von Elemente behandelt werden.
- Bei der Angabe von Attributen kann für den Wert auf die in der Suche gefundenen Elemente zurückgegriffen werden. Dazu wird die Zeichenkette für den Wert in doppelten Anführungszeichen angegeben und darin kann, wie in Ruby gebräuchlich, in geschweiften Klammern mit vorangestelltem Rautenzeichen Ruby-Kode verwendet werden, in dem die gefundenen Elemente mit ihren IDs referenziert werden. Eine Such-/Annotationskombination, die alle Satzknoten mit dem von ihnen dominierten Text versieht (mit Punkt abgeschlossen) könnte z.B. folgendermaßen aussehen:

```
node @s cat:S
a @s text:"#{@s.text}."
```

5.3 Datenexport

Die GraphAnno-Abfragesprache biete auch Funktionalität zum Exportieren von Suchergebnissen als CSV-Dateien an. Mit den nachfolgen beschriebenen Klauseln kann angegeben werden, wie Infomationen der in einer zuvor durchgeführten Suche gefundenen Teilgraphen ausgegeben werden sollen. Die Daten jedes gefundenen Teilgraphen werden in eine Zeile der CSV-Datei geschrieben, mit sort können die Ergebnisse sortiert werden, mit col wird angegeben, welche Spalten mit welchen Werten angelegt werden sollen. Als erste Spalte wird stets eine fortlaufende Numerierung der Ergebnisse mit ausgegeben.

5.3.1 sort

Die sort-Klausel dient dazu, die Ausgabe der gefundenen Teilgraphen zu sortieren. Es können mehrere sort-Klauseln angegeben werden, wobei weiter unten angegeben Klauseln nur ausgewertet werden, wenn weiter oben angegebenen Klauseln keine Reihenfolge zwischen zwei Teilgraphen ergeben. Eine sort-Klausel wird in Ruby-Kode formuliert und muß einen Wert ergeben, der für die Sortierung verglichen werden soll. Wie bei cond werden die gefundenen Knoten und Kanten über die in der Suche vergebenen IDs referenziert. Bei Verwendung von Attributwerten ist zu beachten, daß es sich bei diesen stets um Zeichenketten handelt; sollen sie als Zahlen verglichen werden, müssen sie mit .to_i bzw. .to_f umgewandelt werden.

Beispiele:

 Sortiere die Ergebnisse nach Satznamen, bzw. nach Tokennummer (die Methode .tokenid gibt die Stelle des Tokens im Satz, beginnend mit 0, aus), wenn sie dem gleichen Satz angehören (durch die Suchanfrage sei gegeben: ein Token mit der ID @t1):

sort @t1.sentence.name
sort @t1.tokenid

5.3.2 col

Jede col-Klausel steht für eine zu exportierende Spalte. Sie hat als ersten Parameter den Spaltentitel (der keine Leerzeichen enthalten darf), gefolgt von Ruby-Kode, der den auszugebenden Wert ergibt. Knoten und Kanten werden wie gehabt über ihre in der Suche vergebene ID referenziert, dabei ist zu beachten, daß es sich bei den mit node gefundenen Knoten um einzelne Knoten, bei den mit nodes, text und link gefundenen Knoten hingegen um Arrays von Knoten handelt.

Zugriff auf Attribute erfolgt wie unter 5.1.7 für cond beschrieben. Es gibt jedoch noch weitere für die Ausgabe nützliche Methoden: .tokens gibt die über syntaktische Kanten dominierten Token als Liste aus, .text deren Text als Zeichenkette (die

einzelnen Tokentexte mit Leerzeichen getrennt). .sentence_tokens gibt alle Token des Satzes, dem das Element angehört als Liste aus, .sentence_text wiederum deren Text. .position gibt die Position eines Knotens als Durchschnitt der Positionen seiner dominierten Token aus.