#1 תרגיל רטוב

t.n	שם
313326811	נדב אשכנזי
205361199	אבן ברעוז

שער	Tpd(LH)	Tpd(HL)
NAND2	B: 1	C: 3
OR2	D: 3	E: 2
XNOR2	F: 6	G: 8

4 → מימוש בורר ב מימוש בורר 2

2 → 1 מימוש בורר. מימוש. 2.1

: טבלת אמת

Do	D1	S	MUX 2->1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

: מפת קרנו

S Do D1	00	01	11	10
0			1	1
1		1	1	

MUX 2->1: D0*S' + D1*S = [(D0*S')'*(D1*S)']'

והמימוש הוא:

Tpds

$(D0 \rightarrow Z)$

 $\mathbf{Tpd}\mathbf{LH}\ (\mathbf{D0:0} \rightarrow \mathbf{1}) = \mathbf{Tpd}\mathbf{LH}\ (\mathbf{NAND}) + \mathbf{Tpd}\mathbf{LH}\ (\mathbf{NAND}) = 3+1 = 4$

 $Tpd_HL (D0:1 \rightarrow 0) = Tpd_LH(NAND) + Tpd_HL(NAND) = 1+3 = 4$

$(D1 \rightarrow Z)$

 $Tpd_LH (D1:0\rightarrow 1) = Tpd_HL(NAND) + Tpd_LH(NAND) = 3+1 = 4$

 $Tpd_HL(D1:1\rightarrow 0) = Tpd_HL(NAND) + Tpd_LH(NAND) = 3+1 = 4$

$(S \rightarrow Z)$

 $Tpd_LH (S:0\rightarrow 1) = Tpd_HL(NAND) + Tpd_LH(NAND)$

$$+ Tpd_LH(NAND) = 3+1+1 = 5$$

 $Tpd_HL (S:1\rightarrow 0) = Tpd_HL(NAND) + Tpd_LH(NAND2)$

 $+ \text{Tpd_HL(NAND)} = 7$

$(D0 \rightarrow Z)$

 $Tpd_LH (D0:0\rightarrow1) = Tpd_HL(NAND2) + Tpd_LH(NAND) = 3+1 = 4$

 $Tpd_HL (D0:1\rightarrow0) = Tpd_LH(NAND2) + Tpd_HL(NAND) = 1+3 = 4$

 $\underline{\text{Tpd}} (\underline{\text{MUX 2}} \rightarrow 1)$

 $Tpd_LH = MAX\{4,4,4\} = 4$

 $Tpd_HL = MAX\{4,7,4\} = 7$

4→1 מימוש בורר 2.2.

: טבלת אמת (מקוצרת)

So	S1	${f Z}$
0	0	D0
0	1	D1
1	0	D_2
1	1	D3

ולכן המימוש הוא:

Tpds

$(D0 \rightarrow Z)$

Tpd_LH (D0:0\rightarrow1) = Tpd_LH(MUX 2 \rightarrow 1, D0 changes) *2 =8

Tpd_HL (D0:1 \rightarrow 0) = Tpd_HL(MUX 2 \rightarrow 1, D0 changes) *2 =8

$(D1 \rightarrow Z)$

Tpd_LH (D1:0 \rightarrow 1) = Tpd_LH(MUX 2 \rightarrow 1, D0/D1 changes) *2 = 8

Tpd_HL (D1:1\rightarrow0) = Tpd_HL(MUX 2 \rightarrow 1, D0/D1 changes) *2 =8

$(D2 \rightarrow Z)$

Tpd_LH (D2:0 \rightarrow 1) = Tpd_LH(MUX 2 \rightarrow 1, D0/D1 changes) *2 = 8

Tpd_HL (D2:1 \rightarrow 0) = Tpd_HL(MUX 2 \rightarrow 1, D0/D1 changes) *2 =8

$(D3 \rightarrow Z)$

Tpd_LH (D3:0 \rightarrow 1) = Tpd_LH(MUX 2 \rightarrow 1, D1 changes) *2 = 8

Tpd_HL (D3:1 \rightarrow 0) = Tpd_HL(MUX 2 \rightarrow 1, D1 changes) *2 =8

$(So \rightarrow Z)$

Tpd_LH (S0:0 \rightarrow 1) = Tpd_HL(MUX 2 \rightarrow 1, D0/D1 changes) *2 = 9

Tpd_HL (S0:1 \rightarrow 0) = Tpd_HL(MUX 2 \rightarrow 1, S changes)

+ Tpd_HL(MUX $2\rightarrow 1$, D0/D1 changes) = 11

$(S1 \rightarrow Z)$

Tpd_LH (S1:0\rightarrow1) = Tpd_lL(MUX 2 \rightarrow 1, S changes) = 5

Tpd_HL (S1:1\rightarrow0) = Tpd_HL(MUX 2 \rightarrow 1, S changes) = 7

 $\underline{\text{Tpd}} (MUX 4 \rightarrow 1)$

 $Tpd_LH = 8$

 $Tpd_HL = 14$

Eull Adder/Subtractor מימוש.3

: טבלת אמת

A_ns	A	В	Cin	Cout	S
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	1	0
1	1	1	1	1	1

מפות קרנו:

יציאה <u>S</u>

A_nS, A B, Cin	00	01	11	10
00		1	1	
01	1			1
11		1	1	
10	1			1

ולכן המשוואה היא:

S: A'B'Cin + AB'Cin' + ABCin + A'BCin' = B'(A'Cin + ACin') + B(ACin + A'Cin')
= B'(
$$\bigoplus$$
ACin) + B(A \bigoplus Cin)' = (B \bigoplus (A \bigoplus Cin)')' = (Cin \bigoplus (A \bigoplus B)')'

Cout יציאה

A_nS, A B, Cin	00	01	11	10
00				
01	1		1	
11	1	1	1	1
10	1		1	

ולכן המשוואה היא:

Cout:
$$BCin + A_nS'A'Cin + A_nSA'B + A_nSACin + A_nSAB$$

= $BCin + A_nS'A'(B + Cin) + A_nS(B + Cin)$
= $BCin + (B+Cin)(\bigoplus AA_nS)' = ((BCin)'((B+Cin)(A_nS \bigoplus A)')')'$

והמימוש הוא:

TPDs

S יציאה

$(A, B \rightarrow S)$

 $Tpd_LH(A,B:0\rightarrow 1,1\rightarrow 0) = Tpd_LH(XNOR) + Tpd_LH(XNOR) = 16$ מסלול קריטי

 $\textbf{Tpd_HL} = \text{MAX} \{ \text{ Tpd_HL}(A,B:0 \rightarrow 1) \text{ , Tpd_HL } (A,B:1 \rightarrow 0) \}$

- $= {\rm MAX}\{{\rm Tpd_LH}({\rm XNOR}) + {\rm Tpd_HL}({\rm XNOR}), \, {\rm Tpd_HL}({\rm XNOR})^*2\}$
- $= MAX \{14,12\} = 14$

$(Cin \rightarrow S)$

 $Tpd_LH (Cin: 0 \rightarrow 1, 1 \rightarrow 0) = Tpd_LH(XNOR) = 8$

 $Tpd_HL (Cin:0\rightarrow1, 1\rightarrow0) = Tpd_HL(XNOR) = 6$

Tpd (FAS.S)

 $Tpd_LH = MAX \{14,8\} = 14$

 $Tpd_HL = MAX \{14,12,6\} = 14$

$(A, A_nS \rightarrow Cout)$

Tpd_LH $(A,A_nS:0\rightarrow 1, 1\rightarrow 0)$

= Tpd_LH(XNOR) +Tpd_HL(NAND)+ Tpd_LH(NAND) = 12 מסלול קריטי

Tpd_HL $(A,A_nS:0\rightarrow 1,1\rightarrow 0)$

 $= Tpd_HL(XNOR) + Tpd_LH(NAND) + Tpd_HL(NAND) = 10$

$(B, Cin \rightarrow Cout)$

Tpd_LH (B,Cin: 0→1)

= MAX {Tpd_LH(NAND)+ Tpd_HL(NAND), $Tpd_LH(OR)+ Tpd_LH(NAND)+ Tpd_HL(NAND) \} = MAX \{4,6\} = 6$

Tpd_HL (B,Cin: $1\rightarrow 0$)

 $= MAX \left\{ Tpd_LH(OR) + Tpd_HL(NAND) + Tpd_LH(NAND) \right\},$ $Tpd_HL(NAND) + Tpd_LH(NAND) \right\} = MAX\{6,4\} = 6$

Tpd (FAS.Cout)

 $Tpd_LH = MAX \{12,6\} = 12$ $Tpd_HL = MAX \{10,6\} = 10$

Tpd (FAS)

 $Tpd_LH = MAX \{12,14\} = 14$

 $Tpd_HL = MAX \{10,14\} = 14$

4. מימוש רכיב ALU

ALU1bit מימוש.4.1

TPDs

<u>S יציאה</u>

$(A, B \rightarrow S)$

$$\label{eq:total_$$

$(Cin \rightarrow S)$

Tpd_LH = Tpd_LH(FAS, Cin changes) + Tpd_LH(MUX $2 \rightarrow 1$, D1 changes) = 10 **Tpd_HL** = Tpd_HL(FAS, Cin changes) + Tpd_HL(MUX $2 \rightarrow 1$, D1 changes) = 12

$(OP[0] \rightarrow S)$

 $Tpd_LH = Tpd_LH(MUX 2 \rightarrow 1, S \text{ changes}) + Tpd_LH(MUX 2 \rightarrow 1, D0 \text{ changes}) = 9$

Tpd_HL = Tpd_HL(MUX $2 \rightarrow 1$, S changes) + Tpd_HL(MUX $2 \rightarrow 1$, Do changes) = 11

$(OP[1] \rightarrow S)$

Tpd_LH = Tpd_LH(MUX $2 \rightarrow 1$, S changes) = 5

Tpd_HL = Tpd_HL(MUX $2 \rightarrow 1$, S changes) = 7

Tpd (ALU1bit.S)

 $Tpd_LH = 20$

 $Tpd_HL = 20$

Cout יציאה

$(A \rightarrow Cout)$

Tpd_LH (A:0→1, 1→0)

= Tpd_LH(XNOR) +Tpd_HL(NAND)+ Tpd_LH(NAND) = 12 מסלול קריטי

Tpd_HL (A:0→1, 1→0)

= $Tpd_HL(XNOR) + Tpd_LH(NAND) + Tpd_HL(NAND) = 10$

(B, Cin \rightarrow Cout)

Tpd_LH (B,Cin: 0→1)

 $= MAX \left\{ Tpd_LH(NAND) + Tpd_HL(NAND), \right. \\ Tpd_LH(OR) + Tpd_LH(NAND) + Tpd_HL(NAND) \right\} = MAX \left\{ 4,7 \right\} = 7$

Tpd_HL (B,Cin: 1→0)

 $= MAX \left\{ Tpd_LH(OR) + Tpd_HL(NAND) + Tpd_LH(NAND) \right\},$ $Tpd_HL(NAND) + Tpd_LH(NAND) \right\} = MAX \left\{ 7,4 \right\} = 7$

$(OP[0] \rightarrow Cout)$

$$\label{eq:total_$$

 $= MAX{3+10, 1+10} = 13$

.Cout לא יכול לשנות את OP[1]

Tpd (ALU1bit.Cout)

 $Tpd_LH = 15$ $Tpd_HL = 13$

Tpd (ALU1bit)

 $Tpd_LH = MAX \{18,14\} = 20$ $Tpd_HL = MAX \{23,14\} = 20$

ALU64bit מימוש.4.2

מסלולים קריטיים

- של כל אחד Couta שינוי יתגלגל אינוי (A,B,Cin \rightarrow S, Cout) שינוי (A,B,Cin \rightarrow S, Cout) מיחידות ה
- Couta שינוי יתחלחל op[1] = 1 כאשר (op[0] \rightarrow S, Cout) .2 של כל אחד מיחידות ה-ALU.
 - יתחלחל דרך (op[1] משתנה מ0 ל1 שינוי יתחלחל דרך (op[1] \rightarrow S) .3 אור מיחידות הבל של כל אחד מיחידות הבל אחד מיחידות ה

מסלול קריטי בהתחשב בהשהיות קיימות

: op[0]=1 ,Cin=0 ,0טשר כל כניסות B שוות 1, כל כניסות הA שוות 6, סבות כאשר כל כניסות ה

ALU1bit נשנה את B[0] ל-1 וכך נחלחל את המסלול הקריטי של B[0] מהיחידה הראשונה לאחרונה דרך Cout של כל יחידה

Tpd_LH (A[0]: 0→1) = Tpd_HL (ALU1bit.Cout, A changes)

- + Tpd_LH (ALU1bit.Cout, Cin changes)*62
- + Tpd_HL (ALU1bit.S, Cin changes)
- = 10 + 7*62 + 12 = 496

: באופן כללי

:Sם השינוי

(Mi פנימי wire) Cout החלחול ביציאות

