

# Net-Zero America - oklahoma state report

2021-03-05

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at <a href="https://netzeroamerica.princeton.edu">https://netzeroamerica.princeton.edu</a>.

#### Notes

- These data are all data from the study available at <a href="https://netzeroamerica.prince-ton.edu">https://netzeroamerica.prince-ton.edu</a>.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

# Data by category and subcategory

| 1  | E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial              | 1  |
|----|------------------------------------------------------------------------------|----|
| 2  | E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand      | 1  |
| 3  | E+ scenario - PILLAR 1: Efficiency/Electrification - Overview                | 1  |
| 4  | E+ scenario - PILLAR 1: Efficiency/Electrification - Residential             | 1  |
| 5  | E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation          | 2  |
| 6  | E+ scenario - PILLAR 2: Clean Electricity - Generating capacity              | 2  |
| 7  | E+ scenario - PILLAR 2: Clean Electricity - Generation                       | 2  |
| 8  | E+ scenario - PILLAR 3: Clean fuels - Bioenergy                              | 3  |
| 9  | E+ scenario - PILLAR 4: CCUS - CO2 capture                                   | 3  |
| 10 | E+ scenario - PILLAR 4: CCUS - CO2 pipelines                                 | 3  |
| 11 | E+ scenario - PILLAR 4: CCUS - CO2 storage                                   | 3  |
| 12 | E+ scenario - PILLAR 6: Land sinks - Agriculture                             | 4  |
| 13 | E+ scenario - PILLAR 6: Land sinks - Forests                                 | 4  |
| 14 | E+ scenario - IMPACTS - Fossil fuel industries                               | 7  |
| 15 | E+ scenario - IMPACTS - Health                                               | 7  |
| 16 | E+ scenario - IMPACTS - Jobs                                                 | 7  |
| 17 | E- scenario - PILLAR 1: Efficiency/Electrification - Commercial              | 8  |
| 18 | E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand      | 9  |
| 19 | E- scenario - PILLAR 1: Efficiency/Electrification - Overview                | 9  |
| 20 | E- scenario - PILLAR 1: Efficiency/Electrification - Residential             | 9  |
| 21 | E- scenario - PILLAR 1: Efficiency/Electrification - Transportation          | 9  |
| 22 | E- scenario - PILLAR 6: Land sinks - Agriculture                             | 10 |
| 23 | E- scenario - PILLAR 6: Land sinks - Forests                                 | 11 |
| 24 | E- scenario - IMPACTS - Health                                               | 13 |
| 25 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial           | 13 |
| 26 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand . | 14 |
| 27 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview             | 14 |
| 28 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential          | 14 |
| 29 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation       | 14 |
| 30 | E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity           | 15 |
| 31 | E+RE+ scenario - PILLAR 2: Clean Electricity - Generation                    | 15 |
| 32 | E+RE+ scenario - PILLAR 6: Land sinks - Agriculture                          | 15 |
| 33 | E+RE+ scenario - PILLAR 6: Land sinks - Forests                              | 16 |
| 34 | E+RE+ scenario - IMPACTS - Health                                            | 18 |
| 35 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial           | 19 |
| 36 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand   | 19 |
| 37 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview             | 19 |
| 38 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential          | 19 |
| 39 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation       | 20 |
| 40 | E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity           | 20 |
| 41 | E+RE- scenario - PILLAR 2: Clean Electricity - Generation                    | 20 |
| 42 | E+RE- scenario - PILLAR 6: Land sinks - Agriculture                          | 21 |
| 43 | E+RE- scenario - PILLAR 6: Land sinks - Forests                              | 21 |

| 44 | E+RE- scenario - IMPACTS - Health                                         | 24 |
|----|---------------------------------------------------------------------------|----|
| 45 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial         | 24 |
| 46 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 24 |
| 47 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview           | 24 |
| 48 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential        | 25 |
| 49 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation     | 25 |
| 50 | E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity         | 26 |
| 51 | E-B+ scenario - PILLAR 2: Clean Electricity - Generation                  | 26 |
| 52 | E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy                         | 26 |
| 53 | E-B+ scenario - PILLAR 4: CCUS - CO2 capture                              | 26 |
| 54 | E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines                            | 26 |
| 55 | E-B+ scenario - PILLAR 4: CCUS - CO2 storage                              | 27 |
| 56 | E-B+ scenario - PILLAR 6: Land sinks - Agriculture                        | 27 |
| 57 | E-B+ scenario - PILLAR 6: Land sinks - Forests                            | 28 |
| 58 | E-B+ scenario - IMPACTS - Health                                          | 30 |
| 59 | REF scenario - PILLAR 1: Efficiency/Electrification - Commercial          | 31 |
| 60 | REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand  | 31 |
| 61 | REF scenario - PILLAR 1: Efficiency/Electrification - Overview            | 31 |
| 62 | REF scenario - PILLAR 1: Efficiency/Electrification - Residential         | 31 |
| 63 | REF scenario - PILLAR 1: Efficiency/Electrification - Transportation      | 32 |
| 64 | REF scenario - PILLAR 6: Land sinks - Forests                             | 32 |
| 65 | REF scenario - PILLAR 6: Land sinks - Forests - REF only                  | 34 |
| 66 | REF scenario - IMPACTS - Health                                           | 35 |

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                                                      | 2020  | 2025   | 2030   | 2035  | 2040 | 2045 | 2050 |
|---------------------------------------------------------------------------|-------|--------|--------|-------|------|------|------|
| Commercial HVAC investment in 2020s -<br>Cumulative 5-yr (million \$2018) | 0     | 14,173 | 16,554 | 0     | 0    | 0    | 0    |
| Sales of cooking units - Electric<br>Resistance (%)                       | 30.1  | 44.4   | 79.2   | 86.1  | 86.5 | 86.5 | 86.5 |
| Sales of cooking units - Gas (%)                                          | 69.9  | 55.6   | 20.8   | 13.9  | 13.5 | 13.5 | 13.5 |
| Sales of space heating units - Electric<br>Heat Pump (%)                  | 1.94  | 26.9   | 77     | 91.1  | 92.3 | 92.3 | 92.3 |
| Sales of space heating units - Electric<br>Resistance (%)                 | 2     | 4.42   | 4.72   | 6.04  | 6.33 | 6.36 | 6.38 |
| Sales of space heating units - Fossil (%)                                 | 0     | 0      | 0      | 0     | 0    | 0    | 0    |
| Sales of space heating units - Gas Furnace (%)                            | 96.1  | 68.7   | 18.2   | 2.83  | 1.38 | 1.34 | 1.33 |
| Sales of water heating units - Electric<br>Heat Pump (%)                  | 0.059 | 10.7   | 56.4   | 66.5  | 67   | 67   | 66.9 |
| Sales of water heating units - Electric<br>Resistance (%)                 | 1.74  | 8.05   | 26.9   | 31.1  | 31.3 | 31.3 | 31.3 |
| Sales of water heating units - Gas Furnace (%)                            | 97.4  | 79.4   | 15     | 0.632 | 0    | 0    | 0    |
| Sales of water heating units - Other (%)                                  | 0.794 | 1.77   | 1.77   | 1.77  | 1.78 | 1.78 | 1.79 |

# Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.97 | 3.05 | 4.83 | 5.11 | 4.99 | 5.22 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

# Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 121  | 122  | 117  | 109  | 103  | 101  | 103  |
| Final energy use - Industry (PJ)       | 310  | 318  | 324  | 323  | 325  | 323  | 330  |
| Final energy use - Residential (PJ)    | 177  | 168  | 153  | 133  | 115  | 105  | 99.9 |
| Final energy use - Transportation (PJ) | 431  | 405  | 359  | 302  | 250  | 219  | 207  |

## Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035  | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|-------|------|------|------|
| Residential HVAC investment in 2020s vs.   | 0    | 3.2  | 3.89 | 0     | 0    | 0    | 0    |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |       |      |      |      |
| Sales of cooking units - Electric          | 40.4 | 53.1 | 92   | 99.6  | 100  | 100  | 100  |
| Resistance (%)                             |      |      |      |       |      |      |      |
| Sales of cooking units - Gas (%)           | 59.6 | 46.9 | 8.02 | 0.404 | 0    | 0    | 0    |
| Sales of space heating units - Electric    | 8.53 | 25.2 | 76.9 | 88.5  | 89   | 88.9 | 88.8 |
| Heat Pump (%)                              |      |      |      |       |      |      |      |
| Sales of space heating units - Electric    | 24.8 | 26.1 | 10.9 | 7.55  | 7.39 | 7.53 | 7.57 |
| Resistance (%)                             |      |      |      |       |      |      |      |
| Sales of space heating units - Fossil (%)  | 5.91 | 8.95 | 3.48 | 2.25  | 2.19 | 2.17 | 2.16 |
| Sales of space heating units - Gas (%)     | 60.7 | 39.8 | 8.68 | 1.75  | 1.46 | 1.44 | 1.43 |
| Sales of water heating units - Electric    | 0    | 11.6 | 61.7 | 72.9  | 73.4 | 73.4 | 73.4 |
| Heat Pump (%)                              |      |      |      |       |      |      |      |
| Sales of water heating units - Electric    | 30.5 | 39.9 | 28.2 | 25.5  | 25.4 | 25.4 | 25.4 |
| Resistance (%)                             |      |      |      |       |      |      |      |
| Sales of water heating units - Gas Furnace | 68.2 | 47.2 | 8.93 | 0.373 | 0    | 0    | 0    |
| (%)                                        |      |      |      |       |      |      |      |
| Sales of water heating units - Other (%)   | 1.38 | 1.21 | 1.22 | 1.2   | 1.19 | 1.2  | 1.2  |

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         | 0     | 710   | 1,819 | 2,948 | 4,465 | 4,860 | 4,634 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.326 | 0     | 1.4   | 0     | 6.16  | 0     | 9.97  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.301 | 0     | 33.8  | 0     | 148   | 0     | 240   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.67  | 1.92  | 1.31  | 0.419 | 0.077 | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 3.51  | 13.9  | 44.5  | 81    | 96.2  | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 90.6  | 79.4  | 50.8  | 17.3  | 3.39  | 0.593 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 4.02  | 4.25  | 3.08  | 1.16  | 0.279 | 0.06  | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.111 | 0.347 | 0.213 | 0.067 | 0.013 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.107 | 0.103 | 0.069 | 0.024 | 0.005 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0     |

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                                                      | 2020   | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |
|---------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|
| Capital invested - Biomass power plant (billion \$2018)                   | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Capital invested - Biomass w/ccu allam power plant (billion \$2018)       | 0      | 0      | 0      | 0.019  | 0      | 0      | 0      |
| Capital invested - Biomass w/ccu power plant (billion \$2018)             | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Capital invested - Solar PV - Base (billion \$2018)                       | 0      | 0      | 0      | 0      | 1.09   | 4.46   | 0.979  |
| Capital invested - Solar PV - Constrained (billion \$2018)                | 0      | 1.7    | 4.96   | 6.17   | 5.53   | 5.51   | 2.59   |
| Capital invested - Wind - Base (billion<br>\$2018)                        | 0      | 0      | 8.18   | 17.2   | 16.7   | 12     | 1.18   |
| Capital invested - Wind - Constrained (billion \$2018)                    | 0      | 6.51   | 7.43   | 13.6   | 12.3   | 8.59   | 0.321  |
| Installed (cumulative) - OffshoreWind -<br>Base land use assumptions (MW) | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Installed (cumulative) - Rooftop PV (MW)                                  | 130    | 228    | 333    | 490    | 714    | 1,005  | 1,384  |
| Installed (cumulative) - Solar - Base land use assumptions (MW)           | 222    | 222    | 222    | 222    | 1,269  | 5,813  | 6,870  |
| Installed (cumulative) - Wind - Base land use assumptions (MW)            | 11,527 | 11,527 | 17,669 | 31,558 | 45,685 | 56,368 | 57,483 |

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                           | 2020 | 2025 | 2030  | 2035   | 2040   | 2045   | 2050  |
|------------------------------------------------|------|------|-------|--------|--------|--------|-------|
| Biomass power plant (GWh)                      | 0    | 0    | 0     | 0      | 0      | 0      | 0     |
| Biomass w/ccu allam power plant (GWh)          | 0    | 0    | 0     | 19     | 19     | 19     | 19    |
| Biomass w/ccu power plant (GWh)                | 0    | 0    | 0     | 0      | 0      | 0      | 0     |
| Solar - Base land use assumptions (GWh)        | 551  | 0    | 0     | 0      | 2,214  | 9,796  | 2,294 |
| Solar - Constrained land use assumptions (GWh) | 531  | 969  | 7,735 | 14,369 | 14,918 | 12,670 | 6,406 |

# Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

|                                         | -      | •     | -      |        |        |        |       |
|-----------------------------------------|--------|-------|--------|--------|--------|--------|-------|
| Item                                    | 2020   | 2025  | 2030   | 2035   | 2040   | 2045   | 2050  |
| Wind - Base land use assumptions (GWh)  | 48,113 | 0     | 23,097 | 51,053 | 50,955 | 38,097 | 3,746 |
| Wind - Constrained land use assumptions | 48,113 | 1,108 | 20,586 | 40,117 | 41,698 | 26,915 | 1,040 |
| (GWh)                                   |        |       |        |        |        |        |       |

#### Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

| Item                                         | 2020 | 2025 | 2030 | 2035  | 2040  | 2045  | 2050  |
|----------------------------------------------|------|------|------|-------|-------|-------|-------|
| Biomass purchases (million \$2018/year)      | 0    | 0    | 0    | 192   | 266   | 412   | 531   |
| Conversion capital investment -              | 0    | 0    | 0    | 3,342 | 1,276 | 2,536 | 2,177 |
| Cumulative 5-yr (million \$2018)             |      |      |      |       |       |       |       |
| Number of facilities - Allam power w ccu     | 0    | 0    | 0    | 1     | 1     | 1     | 1     |
| (quantity)                                   |      |      |      |       |       |       |       |
| Number of facilities - Beccs hydrogen        | 0    | 0    | 0    | 4     | 7     | 9     | 12    |
| (quantity)                                   |      |      |      |       |       |       |       |
| Number of facilities - Diesel (quantity)     | 0    | 0    | 0    | 0     | 0     | 0     | 0     |
| Number of facilities - Diesel ccu (quantity) | 0    | 0    | 0    | 1     | 1     | 1     | 1     |
| Number of facilities - Power (quantity)      | 0    | 0    | 0    | 0     | 0     | 0     | 0     |
| Number of facilities - Power ccu             | 0    | 0    | 0    | 0     | 0     | 0     | 0     |
| (quantity)                                   |      |      |      |       |       |       |       |
| Number of facilities - Pyrolysis (quantity)  | 0    | 0    | 0    | 0     | 0     | 0     | 0     |
| Number of facilities - Pyrolysis ccu         | 0    | 0    | 0    | 1     | 1     | 1     | 1     |
| (quantity)                                   |      |      |      |       |       |       |       |
| Number of facilities - Sng (quantity)        | 0    | 0    | 0    | 0     | 0     | 0     | 0     |
| Number of facilities - Sng ccu (quantity)    | 0    | 0    | 0    | 0     | 0     | 0     | 0     |

### Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Annual - All (MMT)                 |      | 0    | 0    | 11   | 12.5 | 16   | 18.8 |
| Annual - BECCS (MMT)               |      | 0    | 0    | 4.26 | 5.9  | 9.16 | 11.8 |
| Annual - Cement and lime (MMT)     |      | 0    | 0    | 6.71 | 6.64 | 6.84 | 7.07 |
| Annual - NGCC (MMT)                |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - All (MMT)             |      | 0    | 0    | 11   | 23.5 | 39.5 | 58.3 |
| Cumulative - BECCS (MMT)           |      | 0    | 0    | 4.26 | 10.2 | 19.3 | 31.1 |
| Cumulative - Cement and lime (MMT) |      | 0    | 0    | 6.71 | 13.3 | 20.2 | 27.3 |
| Cumulative - NGCC (MMT)            |      | 0    | 0    | 0    | 0    | 0    | 0    |

### Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

| Item                                           | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|------------------------------------------------|------|------|-------|-------|-------|-------|-------|
| All (km)                                       |      | 0    | 774   | 1,805 | 2,123 | 2,851 | 3,186 |
| Cumulative investment - All (million \$2018)   |      | 0    | 4,032 | 6,502 | 6,684 | 7,204 | 7,407 |
| Cumulative investment - Spur (million \$2018)  |      | 0    | 0     | 557   | 740   | 1,259 | 1,462 |
| Cumulative investment - Trunk (million \$2018) |      | 0    | 4,032 | 5,944 | 5,944 | 5,944 | 5,944 |
| Spur (km)                                      |      | 0    | 0     | 670   | 988   | 1,715 | 2,050 |
| Trunk (km)                                     |      | 0    | 774   | 1,136 | 1,136 | 1,136 | 1,136 |

#### Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

| Item                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-----------------------------------------|------|------|------|------|------|------|------|
| CO2 storage (MMT)                       |      | 0    | 1.1  | 1.76 | 3.61 | 6.02 | 7.46 |
| Injection wells (wells)                 |      | 0    | 1    | 4    | 8    | 13   | 16   |
| Resource characterization, appraisal,   |      | 103  | 251  | 295  | 295  | 295  | 295  |
| permitting costs (million \$2020)       |      |      |      |      |      |      |      |
| Wells and facilities construction costs |      | 0    | 35.6 | 139  | 247  | 413  | 513  |
| (million \$2020)                        |      |      |      |      |      |      |      |

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -18.2  |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 tC02e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -4,525 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| tCO2e/y)                                 |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -262   |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -4,806 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -18.2  |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -2,381 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| tCO2e/y)                                 |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -131   |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -2,530 |
| deployment - Total (1000 tC02e/y)        |      |      |      |      |      |      | •      |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 11.7   |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |        |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 4,283  |
| Aggressive deployment - Cropland         |      |      |      |      |      |      | ,      |
| measures (1000 hectares)                 |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 450    |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |        |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      | +    | 4,745  |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      | .,     |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 11.7   |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 hectares)                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,254  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      | _,     |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 225    |
| deployment - Permanent conservation      |      |      |      |      |      |      | 220    |
| cover (1000 hectares)                    |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,491  |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      | ۷,471  |
| acproyment - rotar (1000 nectal es)      |      |      |      |      |      |      |        |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -952    |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -43,286 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -1,687  |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -4,643  |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -646    |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -1,773  |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Table 13: E+ scenario - PILLAR 6: Land sini |      | •    |      | 0005 | 00/0 | 00/5 | 0050                                    |
|---------------------------------------------|------|------|------|------|------|------|-----------------------------------------|
| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050                                    |
| Carbon sink potential - High - Increase     |      |      |      |      |      |      | -1,378                                  |
| trees outside forests (1000 tC02e/y)        |      |      |      |      |      |      | 0.700                                   |
| Carbon sink potential - High - Reforest     |      |      |      |      |      |      | -9,732                                  |
| cropland (1000 tC02e/y)                     |      |      |      |      |      |      | 10.150                                  |
| Carbon sink potential - High - Reforest     |      |      |      |      |      |      | -19,153                                 |
| pasture (1000 tC02e/y)                      |      |      |      |      |      |      |                                         |
| Carbon sink potential - High - Restore      |      |      |      |      |      |      | -3,321                                  |
| productivity (1000 tCO2e/y)                 |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Accelerate    |      |      |      |      |      |      | -477                                    |
| regeneration (1000 tCO2e/y)                 |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - All (not      |      |      |      |      |      |      | -11,380                                 |
| counting overlap) (1000 tCO2e/y)            |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Avoid         |      |      |      |      |      |      | -281                                    |
| deforestation (1000 tCO2e/y)                |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Extend        |      |      |      |      |      |      | -1,783                                  |
| rotation length (1000 tCO2e/y)              |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Improve       |      |      |      |      |      |      | -329                                    |
| plantations (1000 tC02e/y)                  |      |      |      |      |      |      |                                         |
| Carbon sink potential - Low - Increase      |      |      |      |      |      |      | -591                                    |
| retention of HWP (1000 tCO2e/y)             |      |      |      |      |      |      | • • • • • • • • • • • • • • • • • • • • |
| Carbon sink potential - Low - Increase      |      |      |      |      |      |      | -482                                    |
| trees outside forests (1000 tCO2e/y)        |      |      |      |      |      |      | 702                                     |
| Carbon sink potential - Low - Reforest      |      |      |      |      |      |      | -4,866                                  |
| cropland (1000 tC02e/y)                     |      |      |      |      |      |      | -4,000                                  |
| Carbon sink potential - Low - Reforest      |      |      |      |      |      |      | -1,451                                  |
|                                             |      |      |      |      |      |      | -1,451                                  |
| pasture (1000 tC02e/y)                      |      |      |      |      |      |      | 1100                                    |
| Carbon sink potential - Low - Restore       |      |      |      |      |      |      | -1,120                                  |
| productivity (1000 tCO2e/y)                 |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Accelerate    |      |      |      |      |      |      | -715                                    |
| regeneration (1000 tCO2e/y)                 |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - All (not      |      |      |      |      |      |      | -27,327                                 |
| counting overlap) (1000 tCO2e/y)            |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Avoid         |      |      |      |      |      |      | -984                                    |
| deforestation (1000 tCO2e/y)                |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Extend        |      |      |      |      |      |      | -3,213                                  |
| rotation length (1000 tCO2e/y)              |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Improve       |      |      |      |      |      |      | -482                                    |
| plantations (1000 tC02e/y)                  |      |      |      |      |      |      |                                         |
| Carbon sink potential - Mid - Increase      |      |      |      |      |      |      | -1,182                                  |
| retention of HWP (1000 tCO2e/y)             |      |      |      |      |      |      | .,                                      |
| Carbon sink potential - Mid - Increase      |      |      |      |      |      |      | -930                                    |
| trees outside forests (1000 tC02e/y)        |      |      |      |      |      |      | 700                                     |
| Carbon sink potential - Mid - Reforest      |      |      |      |      |      |      | -7,299                                  |
| cropland (1000 tC02e/y)                     |      |      |      |      |      |      | -1,277                                  |
| Carbon sink potential - Mid - Reforest      |      |      |      |      |      |      | -10,302                                 |
|                                             |      |      |      |      |      |      | -10,302                                 |
| pasture (1000 tC02e/y)                      |      |      |      |      |      |      | 0.001                                   |
| Carbon sink potential - Mid - Restore       |      |      |      |      |      |      | -2,221                                  |
| productivity (1000 tC02e/y)                 |      |      |      |      |      |      |                                         |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 156                                     |
| High - Accelerate regeneration (1000        |      |      |      |      |      |      |                                         |
| hectares)                                   |      |      |      |      |      |      |                                         |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 228                                     |
| High - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |                                         |
| (1000 hectares)                             |      |      |      |      |      |      |                                         |
| Land impacted for carbon sink potential -   |      |      |      |      |      |      | 2,368                                   |
| High - Extend rotation length (1000         |      |      |      |      |      |      |                                         |
| hectares)                                   |      |      |      |      |      |      |                                         |
| Land impacted for carbon sink potential -   |      | +    |      | +    | +    |      | 238                                     |
| High - Improve plantations (1000            |      |      |      |      |      |      |                                         |
| hectares)                                   |      |      |      |      |      |      |                                         |
| nectaresj                                   |      |      |      |      |      |      |                                         |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|-------------------------------------------------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -<br>High - Increase retention of HWP (1000 |      |      |      |      |      |      | 0     |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 131   |
| High - Increase trees outside forests                                               |      |      |      |      |      |      |       |
| (1000 hectares)                                                                     |      |      |      |      |      |      | //0   |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 643   |
| High - Reforest cropland (1000 hectares)  Land impacted for carbon sink potential - |      |      |      |      |      |      | 544   |
| High - Reforest pasture (1000 hectares)                                             |      |      |      |      |      |      | 344   |
| Land impacted for carbon sink potential -                                           |      | +    |      |      |      |      | 1,101 |
| High - Restore productivity (1000                                                   |      |      |      |      |      |      | 1,101 |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 5,409 |
| High - Total impacted (over 30 years)                                               |      |      |      |      |      |      | -,    |
| (1000 hectares)                                                                     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 77.9  |
| Low - Accelerate regeneration (1000                                                 |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 214   |
| Low - Avoid deforestation (over 30 years)                                           |      |      |      |      |      |      |       |
| (1000 hectares)                                                                     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 907   |
| Low - Extend rotation length (1000                                                  |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 119   |
| Low - Improve plantations (1000                                                     |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 0     |
| Low - Increase retention of HWP (1000                                               |      |      |      |      |      |      |       |
| hectares) Land impacted for carbon sink potential -                                 |      |      |      |      |      |      | 68.9  |
| Low - Increase trees outside forests                                                |      |      |      |      |      |      | 00.7  |
| (1000 hectares)                                                                     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 322   |
| Low - Reforest cropland (1000 hectares)                                             |      |      |      |      |      |      | 0     |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 94.3  |
| Low - Reforest pasture (1000 hectares)                                              |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 666   |
| Low - Restore productivity (1000                                                    |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 2,470 |
| Low - Total impacted (over 30 years)                                                |      |      |      |      |      |      |       |
| (1000 hectares)                                                                     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 117   |
| Mid - Accelerate regeneration (1000                                                 |      |      |      |      |      |      |       |
| hectares)  Land impacted for carbon sink potential -                                |      |      |      |      |      |      | 001   |
| ·                                                                                   |      |      |      |      |      |      | 221   |
| Mid - Avoid deforestation (over 30 years) (1000 hectares)                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 1,637 |
| Mid - Extend rotation length (1000                                                  |      |      |      |      |      |      | 1,001 |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 179   |
| Mid - Improve plantations (1000 hectares)                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000                                               |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 99.9  |
| Mid - Increase trees outside forests (1000                                          |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      |       |

| Table 13: E+        | ccanario - | DTII AD 6. | Land cinke   | Enracte     | (continued)   |
|---------------------|------------|------------|--------------|-------------|---------------|
| Table 13: <i>E+</i> | scenario - | PILLAR 6:  | Luna sinks - | · Forests i | i continuea i |

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 483   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 682   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,342 |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4,761 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

# Table 14: E+ scenario - IMPACTS - Fossil fuel industries

| Item                                        | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050   |
|---------------------------------------------|------|-------|-------|-------|-------|-------|--------|
| Natural gas consumption - Annual (tcf)      |      | 626   | 528   | 423   | 319   | 200   | 139    |
| Natural gas consumption - Cumulative (tcf)  |      | 0     | 0     | 0     | 0     | 0     | 12,746 |
| Natural gas production - Annual (tcf)       |      | 3,291 | 3,111 | 2,709 | 2,291 | 1,817 | 1,411  |
| Oil consumption - Annual (million bbls)     |      | 102   | 87.7  | 66.7  | 45.9  | 29.6  | 14.7   |
| Oil consumption - Cumulative (million bbls) |      | 0     | 0     | 0     | 0     | 0     | 2,028  |
| Oil production - Annual (million bbls)      |      | 260   | 261   | 261   | 206   | 168   | 112    |

#### Table 15: E+ scenario - IMPACTS - Health

| Item                                  | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 266  | 0.237 | 0.229 | 0.184 | 0.119 | 0.002 |
| Coal (million 2019\$)                 |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 238  | 124   | 55.4  | 41.2  | 23.9  | 12.8  |
| Natural Gas (million 2019\$)          |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 674  | 634   | 485   | 281   | 129   | 50.9  |
| Transportation (million 2019\$)       |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 30   | 0.027 | 0.026 | 0.021 | 0.013 | 0     |
| Coal (deaths)                         |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 26.9 | 14    | 6.25  | 4.66  | 2.7   | 1.44  |
| Natural Gas (deaths)                  |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 75.8 | 71.3  | 54.5  | 31.6  | 14.5  | 5.72  |
| Transportation (deaths)               |      |      |       |       |       |       |       |

## Table 16: E+ scenario - IMPACTS - Jobs

| Item                                        | 2020 | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |
|---------------------------------------------|------|--------|--------|--------|--------|--------|--------|
| By economic sector - Agriculture (jobs)     |      | 27.4   | 55.6   | 379    | 447    | 560    | 593    |
| By economic sector - Construction (jobs)    |      | 14,781 | 16,934 | 21,027 | 22,801 | 25,208 | 21,719 |
| By economic sector - Manufacturing          |      | 28,891 | 31,436 | 36,802 | 33,310 | 27,008 | 28,975 |
| (jobs)                                      |      |        |        |        |        |        |        |
| By economic sector - Mining (jobs)          |      | 35,058 | 27,735 | 21,464 | 14,038 | 9,029  | 4,915  |
| By economic sector - Other (jobs)           |      | 778    | 931    | 1,480  | 2,080  | 2,978  | 2,723  |
| By economic sector - Pipeline (jobs)        |      | 1,798  | 2,040  | 1,681  | 1,137  | 881    | 643    |
| By economic sector - Professional (jobs)    |      | 13,331 | 13,581 | 16,852 | 18,326 | 19,829 | 17,485 |
| By economic sector - Trade (jobs)           |      | 12,358 | 11,762 | 12,564 | 12,277 | 12,543 | 10,597 |
| By economic sector - Utilities (jobs)       |      | 11,521 | 12,676 | 16,002 | 17,481 | 18,831 | 17,098 |
| By education level - All sectors -          |      | 34,439 | 34,580 | 38,498 | 37,227 | 36,154 | 32,760 |
| Associates degree or some college (jobs)    |      |        |        |        |        |        |        |
| By education level - All sectors -          |      | 29,546 | 28,272 | 29,906 | 27,655 | 25,933 | 22,760 |
| Bachelors degree (jobs)                     |      |        |        |        |        |        |        |
| By education level - All sectors - Doctoral |      | 1,008  | 953    | 1,026  | 991    | 982    | 839    |
| degree (jobs)                               |      |        |        |        |        |        |        |
| By education level - All sectors - High     |      | 46,511 | 46,674 | 51,743 | 49,377 | 47,418 | 42,852 |
| school diploma or less (jobs)               |      |        |        |        |        |        |        |

Table 16: E+ scenario - IMPACTS - Jobs (continued)

| Table 10. L+ Scellal 10 - IMPACTS - 3003 (col | •    |        |        |        |        |        |        |
|-----------------------------------------------|------|--------|--------|--------|--------|--------|--------|
| Item                                          | 2020 | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |
| By education level - All sectors - Masters    |      | 7,039  | 6,672  | 7,078  | 6,647  | 6,380  | 5,537  |
| or professional degree (jobs)                 |      |        |        |        |        |        |        |
| By resource sector - Biomass (jobs)           |      | 118    | 153    | 1,079  | 1,345  | 2,042  | 2,533  |
| By resource sector - CO2 (jobs)               |      | 53.6   | 3,571  | 2,476  | 756    | 1,295  | 1,714  |
| By resource sector - Coal (jobs)              |      | 679    | 47.7   | 0.976  | 0.751  | 0.607  | 0.518  |
| By resource sector - Grid (jobs)              |      | 10,694 | 12,550 | 21,365 | 26,557 | 30,550 | 28,842 |
| By resource sector - Natural Gas (jobs)       |      | 34,455 | 26,923 | 20,616 | 15,610 | 10,051 | 5,609  |
| By resource sector - Nuclear (jobs)           |      | 0      | 0.003  | 0.006  | 0      | 0      | 0      |
| By resource sector - Oil (jobs)               |      | 52,247 | 47,100 | 42,254 | 30,570 | 22,744 | 13,938 |
| By resource sector - Solar (jobs)             |      | 6,432  | 7,479  | 10,834 | 12,680 | 15,428 | 17,569 |
| By resource sector - Wind (jobs)              |      | 13,865 | 19,325 | 29,626 | 34,379 | 34,756 | 34,543 |
| Median wages - Annual - All (\$2019 per       |      | 59,948 | 59,892 | 59,534 | 59,523 | 59,782 | 59,634 |
| job)                                          |      |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs - 1 |      | 18,548 | 18,481 | 20,312 | 19,425 | 18,746 | 16,770 |
| to 4 years (jobs)                             |      |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs - 4 |      | 6,931  | 6,948  | 7,660  | 7,491  | 7,491  | 6,518  |
| to 10 years (jobs)                            |      |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs -   |      | 19,267 | 18,984 | 20,837 | 19,870 | 19,094 | 17,214 |
| None (jobs)                                   |      |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs -   |      | 844    | 870    | 991    | 980    | 972    | 878    |
| Over 10 years (jobs)                          |      |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs -   |      | 72,954 | 71,867 | 78,450 | 74,131 | 70,565 | 63,369 |
| Up to 1 year (jobs)                           |      |        |        |        |        |        |        |
| On-the-Job Training - All sectors - 1 to 4    |      | 23,643 | 23,561 | 25,912 | 24,855 | 24,067 | 21,520 |
| years (jobs)                                  |      |        |        |        |        |        |        |
| On-the-Job Training - All sectors - 4 to 10   |      | 6,185  | 6,278  | 7,041  | 7,018  | 7,145  | 6,251  |
| years (jobs)                                  |      |        |        |        |        |        |        |
| On-the-Job Training - All sectors - None      |      | 6,640  | 6,434  | 6,939  | 6,553  | 6,296  | 5,605  |
| (jobs)                                        |      |        |        |        |        |        |        |
| On-the-Job Training - All sectors - Over 10   |      | 1,192  | 1,191  | 1,305  | 1,227  | 1,151  | 1,052  |
| years (jobs)                                  |      |        |        |        |        |        |        |
| On-the-Job Training - All sectors - Up to 1   |      | 80,884 | 79,686 | 87,054 | 82,244 | 78,208 | 70,320 |
| year (jobs)                                   |      |        |        |        |        |        |        |
| Related work experience - All sectors - 1     |      | 44,333 | 43,558 | 47,306 | 44,685 | 42,664 | 37,935 |
| to 4 years (jobs)                             |      |        |        |        |        |        |        |
| Related work experience - All sectors - 4     |      | 28,132 | 27,733 | 30,215 | 28,703 | 27,526 | 24,533 |
| to 10 years (jobs)                            |      |        |        |        |        |        |        |
| Related work experience - All sectors -       |      | 16,125 | 16,057 | 17,699 | 16,947 | 16,394 | 14,724 |
| None (jobs)                                   |      |        |        |        |        |        |        |
| Related work experience - All sectors -       |      | 8,142  | 7,971  | 8,607  | 8,049  | 7,545  | 6,787  |
| Over 10 years (jobs)                          |      |        |        |        |        |        |        |
| Related work experience - All sectors - Up    |      | 21,812 | 21,831 | 24,423 | 23,514 | 22,739 | 20,769 |
| to 1 year (jobs)                              |      |        |        |        |        |        |        |
| Wage income - All (million \$2019)            |      | 7,107  | 7,017  | 7,636  | 7,256  | 6,987  | 6,247  |
|                                               |      |        |        |        |        |        |        |

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020 | 2025   | 2030   | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|--------|--------|------|------|------|------|
| Commercial HVAC investment in 2020s -      | 0    | 14,157 | 16,435 | 0    | 0    | 0    | 0    |
| Cumulative 5-yr (million \$2018)           |      |        |        |      |      |      |      |
| Sales of cooking units - Electric          | 30.1 | 34.2   | 39     | 52   | 70.1 | 81.2 | 85   |
| Resistance (%)                             |      |        |        |      |      |      |      |
| Sales of cooking units - Gas (%)           | 69.9 | 65.8   | 61     | 48   | 29.9 | 18.8 | 15   |
| Sales of space heating units - Electric    | 1.94 | 17.4   | 23.1   | 39.7 | 65.5 | 83.2 | 89.8 |
| Heat Pump (%)                              |      |        |        |      |      |      |      |
| Sales of space heating units - Electric    | 2    | 4.42   | 4.46   | 4.63 | 5.06 | 5.73 | 6.18 |
| Resistance (%)                             |      |        |        |      |      |      |      |
| Sales of space heating units - Fossil (%)  | 0    | 0      | 0      | 0    | 0    | 0    | 0    |
| Sales of space heating units - Gas Furnace | 96.1 | 78.2   | 72.4   | 55.7 | 29.4 | 11   | 3.98 |
| (%)                                        |      |        |        |      |      |      |      |

| Table 17: E- scenario -   | DILLAR 1. Efficience | //Electrification - | Commercial     | continued  |
|---------------------------|----------------------|---------------------|----------------|------------|
| Table II. E- Scellul IO - | PILLAK I. EIIILIEIIL | // EIECH 111CUHUH - | CUITITIETCIULT | Continueur |

| Item                                       | 2020  | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|-------|------|------|------|------|------|------|
| Sales of water heating units - Electric    | 0.059 | 1.96 | 7.15 | 22.1 | 45   | 59.9 | 65.1 |
| Heat Pump (%)                              |       |      |      |      |      |      |      |
| Sales of water heating units - Electric    | 1.74  | 4.42 | 6.55 | 12.7 | 22.2 | 28.4 | 30.5 |
| Resistance (%)                             |       |      |      |      |      |      |      |
| Sales of water heating units - Gas Furnace | 97.4  | 91.9 | 84.5 | 63.4 | 31   | 9.91 | 2.58 |
| (%)                                        |       |      |      |      |      |      |      |
| Sales of water heating units - Other (%)   | 0.794 | 1.77 | 1.77 | 1.77 | 1.78 | 1.78 | 1.79 |

# Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.54 | 2.56 | 3.09 | 3.17 | 4.7  | 4.96 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

### Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 121  | 122  | 121  | 120  | 117  | 113  | 111  |
| Final energy use - Industry (PJ)       | 310  | 319  | 325  | 326  | 330  | 327  | 334  |
| Final energy use - Residential (PJ)    | 177  | 169  | 164  | 158  | 146  | 131  | 118  |
| Final energy use - Transportation (PJ) | 431  | 408  | 374  | 347  | 327  | 302  | 274  |

### Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                                                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Residential HVAC investment in 2020s vs.<br>REF - Cumulative 5-yr (billion \$2018) | 0    | 3.16 | 3.73 | 0    | 0    | 0    | 0    |
| Sales of cooking units - Electric<br>Resistance (%)                                | 40.2 | 41.8 | 47.2 | 61.7 | 81.7 | 94.1 | 98.4 |
| Sales of cooking units - Gas (%)                                                   | 59.8 | 58.2 | 52.8 | 38.3 | 18.3 | 5.9  | 1.59 |
| Sales of space heating units - Electric<br>Heat Pump (%)                           | 8.53 | 15.3 | 21.1 | 38.1 | 64.1 | 81   | 86.8 |
| Sales of space heating units - Electric<br>Resistance (%)                          | 24.8 | 29   | 27.1 | 22.1 | 14.5 | 9.75 | 8.07 |
| Sales of space heating units - Fossil (%)                                          | 5.91 | 10   | 9.47 | 7.6  | 4.79 | 3.01 | 2.4  |
| Sales of space heating units - Gas (%)                                             | 60.7 | 45.8 | 42.3 | 32.2 | 16.6 | 6.26 | 2.7  |
| Sales of water heating units - Electric<br>Heat Pump (%)                           | 0    | 2    | 7.69 | 24.1 | 49.2 | 65.6 | 71.4 |
| Sales of water heating units - Electric<br>Resistance (%)                          | 30.5 | 42.2 | 40.8 | 37   | 31.1 | 27.3 | 25.9 |
| Sales of water heating units - Gas Furnace (%)                                     | 68.2 | 54.6 | 50.3 | 37.7 | 18.4 | 5.87 | 1.53 |
| Sales of water heating units - Other (%)                                           | 1.38 | 1.21 | 1.22 | 1.21 | 1.21 | 1.21 | 1.2  |

## Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         | 0     | 0     | 115   | 241   | 815   | 2,564 | 3,735 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.326 | 0     | 0.434 | 0     | 2.29  | 0     | 6.38  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.301 | 0     | 10.4  | 0     | 55    | 0     | 154   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.4  | 96    | 91.3  | 79.8  | 58.2  | 32.1  | 13.7  |
| Vehicle sales - Heavy-duty - EV (%)        | 0.498 | 1.45  | 4.11  | 10.8  | 23.6  | 39.5  | 51    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.228 | 0.236 | 0.239 | 0.225 | 0.179 | 0.109 | 0.051 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.094 | 0.104 | 0.107 | 0.092 | 0.06  | 0.03  |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.332 | 0.969 | 2.74  | 7.17  | 15.7  | 26.3  | 34    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.28  | 1.46  | 1.95  | 2.25  | 1.96  | 1.14  |
| Vehicle sales - Light-duty - diesel (%)    | 1.68  | 2.07  | 2.08  | 1.66  | 1.07  | 0.553 | 0.236 |

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vehicle sales - Light-duty - EV (%)        | 1.74  | 4.37  | 11.2  | 24.8  | 47.2  | 71.3  | 87.3  |
| Vehicle sales - Light-duty - gasoline (%)  | 92.2  | 88.1  | 80.6  | 68    | 47.5  | 25.7  | 11.3  |
| Vehicle sales - Light-duty - hybrid (%)    | 4.16  | 5     | 5.65  | 5.2   | 3.96  | 2.37  | 1.16  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.113 | 0.384 | 0.333 | 0.257 | 0.184 | 0.103 | 0.048 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.108 | 0.112 | 0.102 | 0.09  | 0.065 | 0.036 | 0.016 |
| Vehicle sales - Medium-duty - diesel (%)   | 64.8  | 62.2  | 57.7  | 49.4  | 35.6  | 19.6  | 8.37  |
| Vehicle sales - Medium-duty - EV (%)       | 0.664 | 1.94  | 5.49  | 14.3  | 31.4  | 52.6  | 68    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.8  | 34.7  | 34.7  | 31.9  | 24.4  | 14.2  | 6.33  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.418 | 0.464 | 0.478 | 0.414 | 0.275 | 0.141 |
| Vehicle sales - Medium-duty - hydrogen     | 0.166 | 0.485 | 1.37  | 3.58  | 7.86  | 13.2  | 17    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.266 | 0.279 | 0.286 | 0.258 | 0.184 | 0.102 |

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -18.2  |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -4,525 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| tCO2e/y)                                 |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -262   |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -4,806 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -18.2  |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -2,38  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| tCO2e/y)                                 |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -13    |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -2,530 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 11.7   |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |        |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 4,283  |
| Aggressive deployment - Cropland         |      |      |      |      |      |      | ,      |
| measures (1000 hectares)                 |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 450    |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |        |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 4,745  |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      | .,     |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 11.7   |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 hectares)                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,254  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      | 2,20-  |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 225    |
| deployment - Permanent conservation      |      |      |      |      |      |      | 220    |
| cover (1000 hectares)                    |      |      |      |      |      |      |        |

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

|                                          | -    | •    | -    |      |      |      |       |
|------------------------------------------|------|------|------|------|------|------|-------|
| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,491 |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |       |

## Table 23: E- scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -952    |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -43,286 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -1,687  |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -4,643  |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -646    |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -1,773  |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -1,378  |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      | ,       |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -9,732  |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      | 7,102   |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -19,153 |
| pasture (1000 tC02e/y)                    |      |      |      |      |      |      | -17,133 |
|                                           |      |      |      |      |      |      | 0.001   |
| Carbon sink potential - High - Restore    |      |      |      |      |      |      | -3,321  |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Accelerate  |      |      |      |      |      |      | -477    |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Low - All (not    |      |      |      |      |      |      | -11,380 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Avoid       |      |      |      |      |      |      | -281    |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Extend      |      |      |      |      |      |      | -1,783  |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      | •       |
| Carbon sink potential - Low - Improve     |      |      |      |      |      |      | -329    |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      | 0_/     |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -591    |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      | -371    |
| Carbon sink potential - Low - Increase    |      | +    |      |      |      |      | -482    |
|                                           |      |      |      |      |      |      | -402    |
| trees outside forests (1000 tC02e/y)      |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -4,866  |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -1,451  |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Restore     |      |      |      |      |      |      | -1,120  |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Accelerate  |      |      |      |      |      |      | -715    |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - All (not    |      |      |      |      |      |      | -27,327 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      | ,       |
| Carbon sink potential - Mid - Avoid       |      |      |      |      |      |      | -984    |
| deforestation (1000 tC02e/y)              |      |      |      |      |      |      | 704     |
| Carbon sink potential - Mid - Extend      |      |      |      |      |      |      | -3,213  |
| •                                         |      |      |      |      |      |      | -3,213  |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Improve     |      |      |      |      |      |      | -482    |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Increase    |      | T    |      |      |      |      | -1,182  |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Increase    |      |      |      |      |      |      | -930    |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |         |

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item Carbon sink potential - Mid - Reforest           | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050<br>-7,299 |
|-------------------------------------------------------|------|------|------|------|------|------|----------------|
| cropland (1000 tCO2e/y)                               |      |      |      |      |      |      | -1,299         |
|                                                       |      |      |      |      |      |      | 10 000         |
| Carbon sink potential - Mid - Reforest                |      |      |      |      |      |      | -10,302        |
| pasture (1000 tC02e/y)                                |      |      |      |      |      |      | 0.001          |
| Carbon sink potential - Mid - Restore                 |      |      |      |      |      |      | -2,221         |
| productivity (1000 tC02e/y)                           |      |      |      |      |      |      | 15/            |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 156            |
| High - Accelerate regeneration (1000                  |      |      |      |      |      |      |                |
| hectares)                                             |      |      |      |      |      |      | 000            |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 228            |
| High - Avoid deforestation (over 30 years)            |      |      |      |      |      |      |                |
| (1000 hectares)                                       |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 2,368          |
| High - Extend rotation length (1000                   |      |      |      |      |      |      |                |
| hectares)                                             |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 238            |
| High - Improve plantations (1000                      |      |      |      |      |      |      |                |
| hectares)                                             |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 0              |
| High - Increase retention of HWP (1000                |      |      |      |      |      |      |                |
| hectares)                                             |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 131            |
| High - Increase trees outside forests                 |      |      |      |      |      |      |                |
| (1000 hectares)                                       |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 643            |
| High - Reforest cropland (1000 hectares)              |      |      |      |      |      |      | 0.10           |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 544            |
| High - Reforest pasture (1000 hectares)               |      |      |      |      |      |      | 044            |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 1,101          |
| High - Restore productivity (1000                     |      |      |      |      |      |      | 1,101          |
| hectares)                                             |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 5,409          |
|                                                       |      |      |      |      |      |      | 5,409          |
| High - Total impacted (over 30 years) (1000 hectares) |      |      |      |      |      |      |                |
| ,                                                     |      |      |      |      |      |      | 770            |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 77.9           |
| Low - Accelerate regeneration (1000                   |      |      |      |      |      |      |                |
| hectares)                                             |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 214            |
| Low - Avoid deforestation (over 30 years)             |      |      |      |      |      |      |                |
| (1000 hectares)                                       |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 907            |
| Low - Extend rotation length (1000                    |      |      |      |      |      |      |                |
| hectares)                                             |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 119            |
| Low - Improve plantations (1000                       |      |      |      |      |      |      |                |
| hectares)                                             |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 0              |
| Low - Increase retention of HWP (1000                 |      |      |      |      |      |      |                |
| hectares)                                             |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 68.9           |
| Low - Increase trees outside forests                  |      |      |      |      |      |      | 00.7           |
| (1000 hectares)                                       |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 322            |
| Low - Reforest cropland (1000 hectares)               |      |      |      |      |      |      | 022            |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 94.3           |
| ·                                                     |      |      |      |      |      |      | 94.3           |
| Low - Reforest pasture (1000 hectares)                |      |      |      |      |      |      |                |
| Land impacted for carbon sink potential -             |      |      |      |      |      |      | 666            |
| Low - Restore productivity (1000                      |      |      |      |      |      |      |                |
| hectares)                                             | 1    |      |      |      |      |      |                |

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 2,470 |
| Low - Total impacted (over 30 years)       |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 117   |
| Mid - Accelerate regeneration (1000        |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 221   |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,637 |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 179   |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 99.9  |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 483   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 682   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,342 |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4,761 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

### Table 24: E- scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 266  | 0.237 | 0.229 | 0.184 | 0.119 | 0.002 |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 237  | 105   | 51.4  | 27    | 9.67  | 7.79  |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 685  | 696   | 682   | 619   | 496   | 343   |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 30   | 0.027 | 0.026 | 0.021 | 0.013 | 0     |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 26.7 | 11.9  | 5.81  | 3.05  | 1.09  | 0.88  |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 77   | 78.2  | 76.7  | 69.6  | 55.8  | 38.5  |

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                      | 2020 | 2025   | 2030   | 2035 | 2040 | 2045 | 2050 |
|-------------------------------------------|------|--------|--------|------|------|------|------|
| Commercial HVAC investment in 2020s -     | 0    | 14,173 | 16,554 | 0    | 0    | 0    | 0    |
| Cumulative 5-yr (million \$2018)          |      |        |        |      |      |      |      |
| Sales of cooking units - Electric         | 30.1 | 44.4   | 79.2   | 86.1 | 86.5 | 86.5 | 86.5 |
| Resistance (%)                            |      |        |        |      |      |      |      |
| Sales of cooking units - Gas (%)          | 69.9 | 55.6   | 20.8   | 13.9 | 13.5 | 13.5 | 13.5 |
| Sales of space heating units - Electric   | 1.94 | 26.9   | 77     | 91.1 | 92.3 | 92.3 | 92.3 |
| Heat Pump (%)                             |      |        |        |      |      |      |      |
| Sales of space heating units - Electric   | 2    | 4.42   | 4.72   | 6.04 | 6.33 | 6.36 | 6.38 |
| Resistance (%)                            |      |        |        |      |      |      |      |
| Sales of space heating units - Fossil (%) | 0    | 0      | 0      | 0    | 0    | 0    | 0    |

| Table 25: F+RF+  | scenario - DII I AR 1    | Efficiency/Electrification - | Commercial (continued)     |
|------------------|--------------------------|------------------------------|----------------------------|
| I abit 25. ETRET | . OCEIIUI IU - PILLAK I. |                              | · Gommer Ciai i Comunicati |

| Item                                                      | 2020  | 2025 | 2030 | 2035  | 2040 | 2045 | 2050 |
|-----------------------------------------------------------|-------|------|------|-------|------|------|------|
| Sales of space heating units - Gas Furnace (%)            | 96.1  | 68.7 | 18.2 | 2.83  | 1.38 | 1.34 | 1.33 |
| Sales of water heating units - Electric<br>Heat Pump (%)  | 0.059 | 10.7 | 56.4 | 66.5  | 67   | 67   | 66.9 |
| Sales of water heating units - Electric<br>Resistance (%) | 1.74  | 8.05 | 26.9 | 31.1  | 31.3 | 31.3 | 31.3 |
| Sales of water heating units - Gas Furnace (%)            | 97.4  | 79.4 | 15   | 0.632 | 0    | 0    | 0    |
| Sales of water heating units - Other (%)                  | 0.794 | 1.77 | 1.77 | 1.77  | 1.78 | 1.78 | 1.79 |

### Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.97 | 3.05 | 4.83 | 5.11 | 4.99 | 5.22 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

### Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 121  | 122  | 117  | 109  | 103  | 101  | 103  |
| Final energy use - Industry (PJ)       | 310  | 318  | 324  | 323  | 325  | 323  | 330  |
| Final energy use - Residential (PJ)    | 177  | 168  | 153  | 133  | 115  | 105  | 99.9 |
| Final energy use - Transportation (PJ) | 431  | 405  | 359  | 302  | 250  | 219  | 207  |

### Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035  | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|-------|------|------|------|
| Residential HVAC investment in 2020s vs.   | 0    | 3.2  | 3.89 | 0     | 0    | 0    | 0    |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |       |      |      |      |
| Sales of cooking units - Electric          | 40.4 | 53.1 | 92   | 99.6  | 100  | 100  | 100  |
| Resistance (%)                             |      |      |      |       |      |      |      |
| Sales of cooking units - Gas (%)           | 59.6 | 46.9 | 8.02 | 0.404 | 0    | 0    | 0    |
| Sales of space heating units - Electric    | 8.53 | 25.2 | 76.9 | 88.5  | 89   | 88.9 | 88.8 |
| Heat Pump (%)                              |      |      |      |       |      |      |      |
| Sales of space heating units - Electric    | 24.8 | 26.1 | 10.9 | 7.55  | 7.39 | 7.53 | 7.57 |
| Resistance (%)                             |      |      |      |       |      |      |      |
| Sales of space heating units - Fossil (%)  | 5.91 | 8.95 | 3.48 | 2.25  | 2.19 | 2.17 | 2.16 |
| Sales of space heating units - Gas (%)     | 60.7 | 39.8 | 8.68 | 1.75  | 1.46 | 1.44 | 1.43 |
| Sales of water heating units - Electric    | 0    | 11.6 | 61.7 | 72.9  | 73.4 | 73.4 | 73.4 |
| Heat Pump (%)                              |      |      |      |       |      |      |      |
| Sales of water heating units - Electric    | 30.5 | 39.9 | 28.2 | 25.5  | 25.4 | 25.4 | 25.4 |
| Resistance (%)                             |      |      |      |       |      |      |      |
| Sales of water heating units - Gas Furnace | 68.2 | 47.2 | 8.93 | 0.373 | 0    | 0    | 0    |
| (%)                                        |      |      |      |       |      |      |      |
| Sales of water heating units - Other (%)   | 1.38 | 1.21 | 1.22 | 1.2   | 1.19 | 1.2  | 1.2  |

#### Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         | 0     | 710   | 1,819 | 2,948 | 4,465 | 4,860 | 4,634 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.326 | 0     | 1.4   | 0     | 6.16  | 0     | 9.97  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.301 | 0     | 33.8  | 0     | 148   | 0     | 240   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |

| Table 29: E+RE+ scena  | nio DILLAD 1. Efficience     | v/Electrification         | Transportation | (nontinued) |
|------------------------|------------------------------|---------------------------|----------------|-------------|
| Table 29. E+RE+ Scellu | II IU - PILLAR I. EIIIUIEIIU | : 7/ = 12011 1110011011 - | Trunsbortution | COMUNICEUM  |

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050 |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|------|
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0    |
| Vehicle sales - Light-duty - diesel (%)    | 1.67  | 1.92  | 1.31  | 0.419 | 0.077 | 0.013 | 0    |
| Vehicle sales - Light-duty - EV (%)        | 3.51  | 13.9  | 44.5  | 81    | 96.2  | 99.3  | 100  |
| Vehicle sales - Light-duty - gasoline (%)  | 90.6  | 79.4  | 50.8  | 17.3  | 3.39  | 0.593 | 0    |
| Vehicle sales - Light-duty - hybrid (%)    | 4.02  | 4.25  | 3.08  | 1.16  | 0.279 | 0.06  | 0    |
| Vehicle sales - Light-duty - hydrogen FC   | 0.111 | 0.347 | 0.213 | 0.067 | 0.013 | 0.002 | 0    |
| (%)                                        |       |       |       |       |       |       |      |
| Vehicle sales - Light-duty - other (%)     | 0.107 | 0.103 | 0.069 | 0.024 | 0.005 | 0.001 | 0    |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0    |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80   |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0    |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0    |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20   |
| FC (%)                                     |       |       |       |       |       |       |      |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0    |

# Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                                                      | 2020   | 2025   | 2030   | 2035   | 2040   | 2045    | 2050    |
|---------------------------------------------------------------------------|--------|--------|--------|--------|--------|---------|---------|
| Capital invested - Solar PV - Base (billion \$2018)                       | 0      | 0      | 0      | 0.381  | 4.53   | 11.1    | 7.93    |
| Capital invested - Wind - Base (billion<br>\$2018)                        | 0      | 3.94   | 9.8    | 31.2   | 29.9   | 33.3    | 33.7    |
| Installed (cumulative) - OffshoreWind -<br>Base land use assumptions (MW) | 0      | 0      | 0      | 0      | 0      | 0       | 0       |
| Installed (cumulative) - Solar - Base land use assumptions (MW)           | 222    | 222    | 222    | 568    | 4,930  | 16,219  | 24,779  |
| Installed (cumulative) - Wind - Base land use assumptions (MW)            | 11,527 | 14,207 | 21,569 | 46,677 | 71,962 | 101,680 | 133,508 |

### Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                           | 2020   | 2025   | 2030   | 2035   | 2040   | 2045    | 2050    |
|------------------------------------------------|--------|--------|--------|--------|--------|---------|---------|
| Solar - Base land use assumptions (GWh)        | 551    | 0      | 0      | 738    | 9,386  | 24,320  | 18,528  |
| Solar - Constrained land use assumptions (GWh) | 551    | 6,047  | 17,930 | 12,073 | 26,393 | 51,843  | 29,323  |
| Wind - Base land use assumptions (GWh)         | 48,113 | 10,147 | 27,387 | 91,178 | 89,523 | 103,363 | 108,283 |
| Wind - Constrained land use assumptions (GWh)  | 48,113 | 10,150 | 24,700 | 71,339 | 67,955 | 77,819  | 46,763  |

# Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

| Item                                 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|--------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - Aggressive   |      |      |      |      |      |      | -18.2  |
| deployment - Corn-ethanol to energy  |      |      |      |      |      |      |        |
| grasses (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive   |      |      |      |      |      |      | -4,525 |
| deployment - Cropland measures (1000 |      |      |      |      |      |      |        |
| tCO2e/y)                             |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive   |      |      |      |      |      |      | -262   |
| deployment - Permanent conservation  |      |      |      |      |      |      |        |
| cover (1000 tC02e/y)                 |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive   |      |      |      |      |      |      | -4,806 |
| deployment - Total (1000 tCO2e/y)    |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate     |      |      |      |      |      |      | -18.2  |
| deployment - Corn-ethanol to energy  |      |      |      |      |      |      |        |
| grasses (1000 tC02e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate     |      |      |      |      |      |      | -2,381 |
| deployment - Cropland measures (1000 |      |      |      |      |      |      |        |
| tCO2e/y)                             |      |      |      |      |      |      |        |

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -131   |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -2,530 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 11.7   |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |        |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 4,283  |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |        |
| measures (1000 hectares)                 |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 450    |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |        |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 4,745  |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |        |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 11.7   |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 hectares)                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,254  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 225    |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 hectares)                    |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,491  |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |        |
|                                          |      |      |      |      |      |      |        |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

| Item                                                                         | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|------------------------------------------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)        |      |      |      |      |      |      | -952    |
| Carbon sink potential - High - All (not counting overlap) (1000 tC02e/y)     |      |      |      |      |      |      | -43,286 |
| Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)            |      |      |      |      |      |      | -1,687  |
| Carbon sink potential - High - Extend rotation length (1000 tCO2e/y)         |      |      |      |      |      |      | -4,643  |
| Carbon sink potential - High - Improve plantations (1000 tCO2e/y)            |      |      |      |      |      |      | -646    |
| Carbon sink potential - High - Increase retention of HWP (1000 tCO2e/y)      |      |      |      |      |      |      | -1,773  |
| Carbon sink potential - High - Increase trees outside forests (1000 tC02e/y) |      |      |      |      |      |      | -1,378  |
| Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)              |      |      |      |      |      |      | -9,732  |
| Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)               |      |      |      |      |      |      | -19,153 |
| Carbon sink potential - High - Restore productivity (1000 tC02e/y)           |      |      |      |      |      |      | -3,321  |
| Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)         |      |      |      |      |      |      | -477    |
| Carbon sink potential - Low - All (not counting overlap) (1000 tCO2e/y)      |      |      |      |      |      |      | -11,380 |
| Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y)             |      |      |      |      |      |      | -281    |
| Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)          |      |      |      |      |      |      | -1,783  |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                             | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|----------------------------------------------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)                 |      |      |      |      |      |      | -329    |
| Carbon sink potential - Low - Increase                                           |      |      |      |      |      |      | -591    |
| retention of HWP (1000 tCO2e/y)                                                  |      |      |      |      |      |      | -371    |
| Carbon sink potential - Low - Increase                                           |      | +    |      |      |      |      | -482    |
| trees outside forests (1000 tC02e/y)                                             |      |      |      |      |      |      | -402    |
| Carbon sink potential - Low - Reforest                                           |      | +    |      |      |      |      | -4,866  |
| cropland (1000 tCO2e/y)                                                          |      |      |      |      |      |      | 1,000   |
| Carbon sink potential - Low - Reforest                                           |      | +    |      |      |      |      | -1,451  |
| pasture (1000 tCO2e/y)                                                           |      |      |      |      |      |      | .,      |
| Carbon sink potential - Low - Restore                                            |      |      |      |      |      |      | -1,120  |
| productivity (1000 tCO2e/y)                                                      |      |      |      |      |      |      | , -     |
| Carbon sink potential - Mid - Accelerate                                         |      |      |      |      |      |      | -715    |
| regeneration (1000 tCO2e/y)                                                      |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - All (not                                           |      |      |      |      |      |      | -27,327 |
| counting overlap) (1000 tC02e/y)                                                 |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Avoid                                              |      |      |      |      |      |      | -984    |
| deforestation (1000 tCO2e/y)                                                     |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Extend                                             |      |      |      |      |      |      | -3,213  |
| rotation length (1000 tCO2e/y)                                                   |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Improve                                            |      |      |      |      |      |      | -482    |
| plantations (1000 tCO2e/y)                                                       |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Increase                                           |      |      |      |      |      |      | -1,182  |
| retention of HWP (1000 tCO2e/y)                                                  |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Increase                                           |      |      |      |      |      |      | -930    |
| trees outside forests (1000 tCO2e/y)                                             |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Reforest                                           |      |      |      |      |      |      | -7,299  |
| cropland (1000 tCO2e/y)                                                          |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Reforest                                           |      |      |      |      |      |      | -10,302 |
| pasture (1000 tCO2e/y)                                                           |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Restore                                            |      |      |      |      |      |      | -2,221  |
| productivity (1000 tCO2e/y)                                                      |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 156     |
| High - Accelerate regeneration (1000                                             |      |      |      |      |      |      |         |
| hectares)                                                                        |      |      |      |      |      |      | 000     |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 228     |
| High - Avoid deforestation (over 30 years)                                       |      |      |      |      |      |      |         |
| (1000 hectares)                                                                  |      |      |      |      |      |      | 2,368   |
| Land impacted for carbon sink potential -<br>High - Extend rotation length (1000 |      |      |      |      |      |      | 2,300   |
| hectares)                                                                        |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 238     |
| High - Improve plantations (1000                                                 |      |      |      |      |      |      | 230     |
| hectares)                                                                        |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 0       |
| High - Increase retention of HWP (1000                                           |      |      |      |      |      |      | O       |
| hectares)                                                                        |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                        |      | +    |      |      |      |      | 131     |
| High - Increase trees outside forests                                            |      |      |      |      |      |      |         |
| (1000 hectares)                                                                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 643     |
| High - Reforest cropland (1000 hectares)                                         |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 544     |
| High - Reforest pasture (1000 hectares)                                          |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 1,101   |
| High - Restore productivity (1000                                                |      |      |      |      |      |      | ,       |
| hectares)                                                                        |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 5,409   |
| High - Total impacted (over 30 years)                                            |      |      |      |      |      |      |         |
| (1000 hectares)                                                                  |      |      |      |      | 1    |      |         |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  | 2020 | 2023 | 2030 | 2000 | 2040 | 2043 | 77.9  |
| Low - Accelerate regeneration (1000        |      |      |      |      |      |      | 11.7  |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 214   |
| Low - Avoid deforestation (over 30 years)  |      |      |      |      |      |      | 214   |
| (1000 hectares)                            |      |      |      |      |      |      |       |
|                                            |      |      |      |      |      |      | 007   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 907   |
| Low - Extend rotation length (1000         |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      | 110   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 119   |
| Low - Improve plantations (1000            |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Low - Increase retention of HWP (1000      |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 68.9  |
| Low - Increase trees outside forests       |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 322   |
| Low - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 94.3  |
| Low - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 666   |
| Low - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 2,470 |
| Low - Total impacted (over 30 years)       |      |      |      |      |      |      | •     |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 117   |
| Mid - Accelerate regeneration (1000        |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 221   |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,637 |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      | 1,001 |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      | -    |      |      |      | 179   |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      | 11.7  |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      | U     |
|                                            |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      | 000   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 99.9  |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 483   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 682   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,342 |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4,761 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

Table 34: E+RE+ scenario - IMPACTS - Health

| Item                                                           | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|----------------------------------------------------------------|------|------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$) |      | 266  | 0.237 | 0.229 | 0.184 | 0.119 | 0.002 |

| Table 34: | E+RE+ scenario - | · IMPACTS - | Health | l continued l |
|-----------|------------------|-------------|--------|---------------|

| Item                                  | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 225  | 120   | 35.1  | 23.8  | 10.3  | 6.76  |
| Natural Gas (million 2019\$)          |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 674  | 634   | 485   | 281   | 129   | 50.9  |
| Transportation (million 2019\$)       |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 30   | 0.027 | 0.026 | 0.021 | 0.013 | 0     |
| Coal (deaths)                         |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 25.4 | 13.6  | 3.96  | 2.69  | 1.16  | 0.763 |
| Natural Gas (deaths)                  |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 75.8 | 71.3  | 54.5  | 31.6  | 14.5  | 5.72  |
| Transportation (deaths)               |      |      |       |       |       |       |       |

# Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                                                      | 2020  | 2025   | 2030   | 2035  | 2040 | 2045 | 2050 |
|---------------------------------------------------------------------------|-------|--------|--------|-------|------|------|------|
| Commercial HVAC investment in 2020s -<br>Cumulative 5-yr (million \$2018) | 0     | 14,173 | 16,554 | 0     | 0    | 0    | 0    |
| Sales of cooking units - Electric<br>Resistance (%)                       | 30.1  | 44.4   | 79.2   | 86.1  | 86.5 | 86.5 | 86.5 |
| Sales of cooking units - Gas (%)                                          | 69.9  | 55.6   | 20.8   | 13.9  | 13.5 | 13.5 | 13.5 |
| Sales of space heating units - Electric<br>Heat Pump (%)                  | 1.94  | 26.9   | 77     | 91.1  | 92.3 | 92.3 | 92.3 |
| Sales of space heating units - Electric<br>Resistance (%)                 | 2     | 4.42   | 4.72   | 6.04  | 6.33 | 6.36 | 6.38 |
| Sales of space heating units - Fossil (%)                                 | 0     | 0      | 0      | 0     | 0    | 0    | 0    |
| Sales of space heating units - Gas Furnace (%)                            | 96.1  | 68.7   | 18.2   | 2.83  | 1.38 | 1.34 | 1.33 |
| Sales of water heating units - Electric<br>Heat Pump (%)                  | 0.059 | 10.7   | 56.4   | 66.5  | 67   | 67   | 66.9 |
| Sales of water heating units - Electric<br>Resistance (%)                 | 1.74  | 8.05   | 26.9   | 31.1  | 31.3 | 31.3 | 31.3 |
| Sales of water heating units - Gas Furnace (%)                            | 97.4  | 79.4   | 15     | 0.632 | 0    | 0    | 0    |
| Sales of water heating units - Other (%)                                  | 0.794 | 1.77   | 1.77   | 1.77  | 1.78 | 1.78 | 1.79 |

# Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.97 | 3.05 | 4.83 | 5.11 | 4.99 | 5.22 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

## Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 121  | 122  | 117  | 109  | 103  | 101  | 103  |
| Final energy use - Industry (PJ)       | 310  | 318  | 324  | 323  | 325  | 323  | 330  |
| Final energy use - Residential (PJ)    | 177  | 168  | 153  | 133  | 115  | 105  | 99.9 |
| Final energy use - Transportation (PJ) | 431  | 405  | 359  | 302  | 250  | 219  | 207  |

## Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                     | 2020 | 2025 | 2030 | 2035  | 2040 | 2045 | 2050 |
|------------------------------------------|------|------|------|-------|------|------|------|
| Residential HVAC investment in 2020s vs. | 0    | 3.2  | 3.89 | 0     | 0    | 0    | 0    |
| REF - Cumulative 5-yr (billion \$2018)   |      |      |      |       |      |      |      |
| Sales of cooking units - Electric        | 40.4 | 53.1 | 92   | 99.6  | 100  | 100  | 100  |
| Resistance (%)                           |      |      |      |       |      |      |      |
| Sales of cooking units - Gas (%)         | 59.6 | 46.9 | 8.02 | 0.404 | 0    | 0    | 0    |
| Sales of space heating units - Electric  | 8.53 | 25.2 | 76.9 | 88.5  | 89   | 88.9 | 88.8 |
| Heat Pump (%)                            |      |      |      |       |      |      |      |
| Sales of space heating units - Electric  | 24.8 | 26.1 | 10.9 | 7.55  | 7.39 | 7.53 | 7.57 |
| Resistance (%)                           |      |      |      |       |      |      |      |

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential (continued)

| Item                                                      | 2020 | 2025 | 2030 | 2035  | 2040 | 2045 | 2050 |
|-----------------------------------------------------------|------|------|------|-------|------|------|------|
| Sales of space heating units - Fossil (%)                 | 5.91 | 8.95 | 3.48 | 2.25  | 2.19 | 2.17 | 2.16 |
| Sales of space heating units - Gas (%)                    | 60.7 | 39.8 | 8.68 | 1.75  | 1.46 | 1.44 | 1.43 |
| Sales of water heating units - Electric<br>Heat Pump (%)  | 0    | 11.6 | 61.7 | 72.9  | 73.4 | 73.4 | 73.4 |
| Sales of water heating units - Electric<br>Resistance (%) | 30.5 | 39.9 | 28.2 | 25.5  | 25.4 | 25.4 | 25.4 |
| Sales of water heating units - Gas Furnace (%)            | 68.2 | 47.2 | 8.93 | 0.373 | 0    | 0    | 0    |
| Sales of water heating units - Other (%)                  | 1.38 | 1.21 | 1.22 | 1.2   | 1.19 | 1.2  | 1.2  |

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         | 0     | 710   | 1,819 | 2,948 | 4,465 | 4,860 | 4,634 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.326 | 0     | 1.4   | 0     | 6.16  | 0     | 9.97  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.301 | 0     | 33.8  | 0     | 148   | 0     | 240   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.67  | 1.92  | 1.31  | 0.419 | 0.077 | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 3.51  | 13.9  | 44.5  | 81    | 96.2  | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 90.6  | 79.4  | 50.8  | 17.3  | 3.39  | 0.593 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 4.02  | 4.25  | 3.08  | 1.16  | 0.279 | 0.06  | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.111 | 0.347 | 0.213 | 0.067 | 0.013 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.107 | 0.103 | 0.069 | 0.024 | 0.005 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0     |

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

|                                                            |      |      |       | <u>.                                    </u> |       |      |       |
|------------------------------------------------------------|------|------|-------|----------------------------------------------|-------|------|-------|
| Item                                                       | 2020 | 2025 | 2030  | 2035                                         | 2040  | 2045 | 2050  |
| Capital invested - Solar PV - Base (billion                |      | 0    | 0     | 0                                            | 0.659 | 2.65 | 1.08  |
| \$2018)                                                    |      |      |       |                                              |       |      |       |
| Capital invested - Solar PV - Constrained (billion \$2018) |      | 4.95 | 7.13  | 4.83                                         | 5.6   | 7.78 | 5.84  |
| Capital invested - Wind - Base (billion<br>\$2018)         |      | 0    | 0     | 7.96                                         | 10.5  | 4.98 | 0     |
| Capital invested - Wind - Constrained (billion \$2018)     |      | 0    | 0.453 | 7.19                                         | 8.53  | 3.71 | 0.089 |

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

| Item                                           | 2020   | 2025  | 2030   | 2035   | 2040   | 2045   | 2050   |
|------------------------------------------------|--------|-------|--------|--------|--------|--------|--------|
| Solar - Base land use assumptions (GWh)        | 551    | 0     | 0      | 0      | 1,334  | 5,863  | 2,547  |
| Solar - Constrained land use assumptions (GWh) | 551    | 8,009 | 13,077 | 9,569  | 11,726 | 16,901 | 13,632 |
| Wind - Base land use assumptions (GWh)         | 48,113 | 0     | 0      | 24,106 | 32,827 | 16,209 | 0      |
| Wind - Constrained land use assumptions (GWh)  | 48,113 | 0     | 1,108  | 21,471 | 26,094 | 11,907 | 287    |

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -18.2  |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -4,525 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| tCO2e/y)                                 |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -262   |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -4,806 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -18.2  |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 tC02e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -2,381 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      | 2,001  |
| tCO2e/y)                                 |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      | +    |      |      |      |      | -131   |
| deployment - Permanent conservation      |      |      |      |      |      |      | 101    |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -2,530 |
| deployment - Total (1000 tC02e/y)        |      |      |      |      |      |      | -2,000 |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 11.7   |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      | 11.7   |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 4,283  |
|                                          |      |      |      |      |      |      | 4,203  |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |        |
| measures (1000 hectares)                 |      |      |      |      |      |      | / 50   |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 450    |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |        |
| conservation cover (1000 hectares)       |      |      |      |      |      |      | , 7, 5 |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 4,745  |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |        |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 11.7   |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 hectares)                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,254  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 225    |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 hectares)                    |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,491  |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |        |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -952    |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -43,286 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -1,687  |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -4,643  |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -646    |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -1,773  |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050                |
|---------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|---------------------|
| Carbon sink potential - High - Increase<br>trees outside forests (1000 tC02e/y)                         |      |      |      |      |      |      | -1,378              |
| ,                                                                                                       |      |      |      |      |      |      | 0.700               |
| Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)                                         |      |      |      |      |      |      | -9,732              |
| Carbon sink potential - High - Reforest pasture (1000 tC02e/y)                                          |      |      |      |      |      |      | -19,153             |
| Carbon sink potential - High - Restore productivity (1000 tCO2e/y)                                      |      |      |      |      |      |      | -3,321              |
| Carbon sink potential - Low - Accelerate regeneration (1000 tC02e/y)                                    |      |      |      |      |      |      | -477                |
| Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)                                 |      |      |      |      |      |      | -11,380             |
| Carbon sink potential - Low - Avoid deforestation (1000 tC02e/y)                                        |      |      |      |      |      |      | -28                 |
| Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)                                     |      |      |      |      |      |      | -1,783              |
| Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)                                        |      |      |      |      |      |      | -329                |
| Carbon sink potential - Low - Increase retention of HWP (1000 tC02e/y)                                  |      |      |      |      |      |      | -59                 |
| Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)                             |      |      |      |      |      |      | -482                |
| Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)                                          |      |      |      |      |      |      | -4,866              |
| Carbon sink potential - Low - Reforest pasture (1000 tCO2e/y)                                           |      |      |      |      |      |      | -1,45               |
| Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)                                       |      |      |      |      |      |      | -1,120              |
| Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)                                    |      |      |      |      |      |      | -715                |
| Carbon sink potential - Mid - All (not counting overlap) (1000 tCO2e/y)                                 |      |      |      |      |      |      | -27,32 <sup>-</sup> |
| Carbon sink potential - Mid - Avoid<br>deforestation (1000 tCO2e/y)                                     |      |      |      |      |      |      | -984                |
| Carbon sink potential - Mid - Extend rotation length (1000 tC02e/y)                                     |      |      |      |      |      |      | -3,21               |
| Carbon sink potential - Mid - Improve<br>plantations (1000 tCO2e/y)                                     |      |      |      |      |      |      | -48                 |
| Carbon sink potential - Mid - Increase retention of HWP (1000 tCO2e/y)                                  |      |      |      |      |      |      | -1,18               |
| Carbon sink potential - Mid - Increase<br>trees outside forests (1000 tCO2e/y)                          |      |      |      |      |      |      | -93                 |
| Carbon sink potential - Mid - Reforest cropland (1000 tCO2e/y)                                          |      |      |      |      |      |      | -7,29               |
| Carbon sink potential - Mid - Reforest pasture (1000 tC02e/y)                                           |      |      |      |      |      |      | -10,30              |
| Carbon sink potential - Mid - Restore productivity (1000 tCO2e/y)                                       |      |      |      |      |      |      | -2,22               |
| Land impacted for carbon sink potential -<br>High - Accelerate regeneration (1000<br>hectares)          |      |      |      |      |      |      | 15                  |
| Land impacted for carbon sink potential -<br>High - Avoid deforestation (over 30 years)                 |      |      |      |      |      |      | 22                  |
| (1000 hectares) Land impacted for carbon sink potential - High - Extend rotation length (1000 hectares) |      |      |      |      |      |      | 2,36                |
| Land impacted for carbon sink potential -<br>High - Improve plantations (1000<br>hectares)              |      |      |      |      |      |      | 23                  |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

| Land impacted for carbon sink potential -                                          | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------------------------------------------------|------|------|------|------|------|------|-------|
| High - Increase retention of HWP (1000                                             |      |      |      |      |      |      | ,     |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 13    |
| High - Increase trees outside forests                                              |      |      |      |      |      |      |       |
| (1000 hectares)                                                                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 643   |
| High - Reforest cropland (1000 hectares)                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 544   |
| High - Reforest pasture (1000 hectares)                                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 1,10  |
| High - Restore productivity (1000                                                  |      |      |      |      |      |      |       |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 5,409 |
| High - Total impacted (over 30 years)                                              |      |      |      |      |      |      |       |
| (1000 hectares) Land impacted for carbon sink potential -                          |      |      |      |      |      |      | 77.9  |
| Low - Accelerate regeneration (1000                                                |      |      |      |      |      |      | (1)   |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 214   |
| Low - Avoid deforestation (over 30 years)                                          |      |      |      |      |      |      | ۷۱۲   |
| (1000 hectares)                                                                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 90    |
| Low - Extend rotation length (1000                                                 |      |      |      |      |      |      | , •   |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 119   |
| Low - Improve plantations (1000                                                    |      |      |      |      |      |      |       |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | (     |
| Low - Increase retention of HWP (1000                                              |      |      |      |      |      |      |       |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 68.9  |
| Low - Increase trees outside forests                                               |      |      |      |      |      |      |       |
| (1000 hectares)                                                                    |      |      |      |      |      |      | 000   |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 322   |
| Low - Reforest cropland (1000 hectares)  Land impacted for carbon sink potential - |      |      |      |      |      |      | 94.3  |
| Low - Reforest pasture (1000 hectares)                                             |      |      |      |      |      |      | 94.0  |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 666   |
| Low - Restore productivity (1000                                                   |      |      |      |      |      |      | 000   |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 2,470 |
| Low - Total impacted (over 30 years)                                               |      |      |      |      |      |      | _,    |
| (1000 hectares)                                                                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 11    |
| Mid - Accelerate regeneration (1000                                                |      |      |      |      |      |      |       |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 22    |
| Mid - Avoid deforestation (over 30 years)                                          |      |      |      |      |      |      |       |
| (1000 hectares)                                                                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 1,63  |
| Mid - Extend rotation length (1000                                                 |      |      |      |      |      |      |       |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 17'   |
| Mid - Improve plantations (1000 hectares)                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | (     |
| Mid - Increase retention of HWP (1000                                              |      |      |      |      |      |      |       |
| hectares)                                                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                          |      |      |      |      |      |      | 99.   |
| Mid - Increase trees outside forests (1000                                         |      | [    |      |      |      |      |       |

|                 |                  |                              |                |             | _           |
|-----------------|------------------|------------------------------|----------------|-------------|-------------|
| Table 43: F+RF- | coonanio         | DTII $\Lambda$ D $4 \cdot 1$ | l and cinke    | Ennacte     | (nontinued) |
| 14UIC 40 FTKF-  | . 50.60000 000 . | - PII I AK N I               | - 641116 11111 | LIII ESIS I |             |

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 483   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 682   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,342 |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4,761 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

#### Table 44: E+RE- scenario - IMPACTS - Health

| Item                                  | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 266  | 0.237 | 0.229 | 0.184 | 0.119 | 0.002 |
| Coal (million 2019\$)                 |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 251  | 114   | 114   | 78.9  | 32.4  | 14.4  |
| Natural Gas (million 2019\$)          |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 674  | 634   | 485   | 281   | 129   | 50.9  |
| Transportation (million 2019\$)       |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 30   | 0.027 | 0.026 | 0.021 | 0.013 | 0     |
| Coal (deaths)                         |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 28.4 | 12.9  | 12.8  | 8.91  | 3.66  | 1.62  |
| Natural Gas (deaths)                  |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 75.8 | 71.3  | 54.5  | 31.6  | 14.5  | 5.72  |
| Transportation (deaths)               |      |      |       |       |       |       |       |

# Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                                                      | 2020  | 2025   | 2030   | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------------------------------------|-------|--------|--------|------|------|------|------|
| Commercial HVAC investment in 2020s -<br>Cumulative 5-yr (million \$2018) | 0     | 14,157 | 16,435 | 0    | 0    | 0    | 0    |
| Sales of cooking units - Electric<br>Resistance (%)                       | 30.1  | 34.2   | 39     | 52   | 70.1 | 81.2 | 85   |
| Sales of cooking units - Gas (%)                                          | 69.9  | 65.8   | 61     | 48   | 29.9 | 18.8 | 15   |
| Sales of space heating units - Electric<br>Heat Pump (%)                  | 1.94  | 17.4   | 23.1   | 39.7 | 65.5 | 83.2 | 89.8 |
| Sales of space heating units - Electric<br>Resistance (%)                 | 2     | 4.42   | 4.46   | 4.63 | 5.06 | 5.73 | 6.18 |
| Sales of space heating units - Fossil (%)                                 | 0     | 0      | 0      | 0    | 0    | 0    | 0    |
| Sales of space heating units - Gas Furnace (%)                            | 96.1  | 78.2   | 72.4   | 55.7 | 29.4 | 11   | 3.98 |
| Sales of water heating units - Electric<br>Heat Pump (%)                  | 0.059 | 1.96   | 7.15   | 22.1 | 45   | 59.9 | 65.1 |
| Sales of water heating units - Electric<br>Resistance (%)                 | 1.74  | 4.42   | 6.55   | 12.7 | 22.2 | 28.4 | 30.5 |
| Sales of water heating units - Gas Furnace (%)                            | 97.4  | 91.9   | 84.5   | 63.4 | 31   | 9.91 | 2.58 |
| Sales of water heating units - Other (%)                                  | 0.794 | 1.77   | 1.77   | 1.77 | 1.78 | 1.78 | 1.79 |

### Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.54 | 2.56 | 3.09 | 3.17 | 4.7  | 4.96 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

## Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ) | 121  | 122  | 121  | 120  | 117  | 113  | 111  |

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

| The state of the s | -    | -    | •    | -    |      |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
| Final energy use - Industry (PJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 310  | 319  | 325  | 326  | 330  | 327  | 334  |
| Final energy use - Residential (PJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177  | 169  | 164  | 158  | 146  | 131  | 118  |
| Final energy use - Transportation (PJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 431  | 408  | 374  | 347  | 327  | 302  | 274  |

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Residential HVAC investment in 2020s vs.   | 0    | 3.16 | 3.73 | 0    | 0    | 0    | 0    |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |      |      |      |      |
| Sales of cooking units - Electric          | 40.2 | 41.8 | 47.2 | 61.7 | 81.7 | 94.1 | 98.4 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of cooking units - Gas (%)           | 59.8 | 58.2 | 52.8 | 38.3 | 18.3 | 5.9  | 1.59 |
| Sales of space heating units - Electric    | 8.53 | 15.3 | 21.1 | 38.1 | 64.1 | 81   | 86.8 |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of space heating units - Electric    | 24.8 | 29   | 27.1 | 22.1 | 14.5 | 9.75 | 8.07 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of space heating units - Fossil (%)  | 5.91 | 10   | 9.47 | 7.6  | 4.79 | 3.01 | 2.4  |
| Sales of space heating units - Gas (%)     | 60.7 | 45.8 | 42.3 | 32.2 | 16.6 | 6.26 | 2.7  |
| Sales of water heating units - Electric    | 0    | 2    | 7.69 | 24.1 | 49.2 | 65.6 | 71.4 |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of water heating units - Electric    | 30.5 | 42.2 | 40.8 | 37   | 31.1 | 27.3 | 25.9 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of water heating units - Gas Furnace | 68.2 | 54.6 | 50.3 | 37.7 | 18.4 | 5.87 | 1.53 |
| (%)                                        |      |      |      |      |      |      |      |
| Sales of water heating units - Other (%)   | 1.38 | 1.21 | 1.22 | 1.21 | 1.21 | 1.21 | 1.2  |

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         | 0     | 0     | 115   | 241   | 815   | 2,564 | 3,735 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.326 | 0     | 0.434 | 0     | 2.29  | 0     | 6.38  |
| _units)                                    |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.301 | 0     | 10.4  | 0     | 55    | 0     | 154   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.4  | 96    | 91.3  | 79.8  | 58.2  | 32.1  | 13.7  |
| Vehicle sales - Heavy-duty - EV (%)        | 0.498 | 1.45  | 4.11  | 10.8  | 23.6  | 39.5  | 51    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.228 | 0.236 | 0.239 | 0.225 | 0.179 | 0.109 | 0.051 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.094 | 0.104 | 0.107 | 0.092 | 0.06  | 0.03  |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.332 | 0.969 | 2.74  | 7.17  | 15.7  | 26.3  | 34    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.28  | 1.46  | 1.95  | 2.25  | 1.96  | 1.14  |
| Vehicle sales - Light-duty - diesel (%)    | 1.68  | 2.07  | 2.08  | 1.66  | 1.07  | 0.553 | 0.236 |
| Vehicle sales - Light-duty - EV (%)        | 1.74  | 4.37  | 11.2  | 24.8  | 47.2  | 71.3  | 87.3  |
| Vehicle sales - Light-duty - gasoline (%)  | 92.2  | 88.1  | 80.6  | 68    | 47.5  | 25.7  | 11.3  |
| Vehicle sales - Light-duty - hybrid (%)    | 4.16  | 5     | 5.65  | 5.2   | 3.96  | 2.37  | 1.16  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.113 | 0.384 | 0.333 | 0.257 | 0.184 | 0.103 | 0.048 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.108 | 0.112 | 0.102 | 0.09  | 0.065 | 0.036 | 0.016 |
| Vehicle sales - Medium-duty - diesel (%)   | 64.8  | 62.2  | 57.7  | 49.4  | 35.6  | 19.6  | 8.37  |
| Vehicle sales - Medium-duty - EV (%)       | 0.664 | 1.94  | 5.49  | 14.3  | 31.4  | 52.6  | 68    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.8  | 34.7  | 34.7  | 31.9  | 24.4  | 14.2  | 6.33  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.418 | 0.464 | 0.478 | 0.414 | 0.275 | 0.141 |
| Vehicle sales - Medium-duty - hydrogen     | 0.166 | 0.485 | 1.37  | 3.58  | 7.86  | 13.2  | 17    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.266 | 0.279 | 0.286 | 0.258 | 0.184 | 0.102 |

| Table 50: E-B+ scenar | rin - DIII AR 2 | Clean Flectricity. | - Generatina d         | vanacity |
|-----------------------|-----------------|--------------------|------------------------|----------|
| Tauic Ju. L-DT acciui | 1U - FILLAN 2   | . GIEUH LIEUH IUHV | - (16.116.1 ()) 1114 ( |          |

| Item                                                          | 2020 | 2025 | 2030 | 2035  | 2040 | 2045 | 2050 |
|---------------------------------------------------------------|------|------|------|-------|------|------|------|
| Capital invested - Biomass power plant (billion \$2018)       | 0    | 0    | 0    | 0     | 0    | 0    | 0    |
| Capital invested - Biomass w/ccu allam                        | 0    | 0    | 0    | 0.034 | 0    | 0    |      |
| power plant (billion \$2018)                                  | U    |      |      | 0.034 | U    | 0    | 0    |
| Capital invested - Biomass w/ccu power plant (billion \$2018) | 0    | 0    | 2.6  | 1.6   | 12.5 | 21.2 | 5.44 |

# Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                  | 2020 | 2025 | 2030  | 2035  | 2040   | 2045   | 2050   |
|---------------------------------------|------|------|-------|-------|--------|--------|--------|
| Biomass power plant (GWh)             | 0    | 0    | 0     | 0     | 0      | 0      | 0      |
| Biomass w/ccu allam power plant (GWh) | 0    | 0    | 0     | 34.2  | 34.2   | 34.2   | 34.2   |
| Biomass w/ccu power plant (GWh)       | 0    | 0    | 2,913 | 4,709 | 18,789 | 42,612 | 48,723 |

### Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

| Item                                         | 2020 | 2025 | 2030  | 2035   | 2040   | 2045   | 2050  |
|----------------------------------------------|------|------|-------|--------|--------|--------|-------|
| Biomass purchases (million \$2018/year)      | 0    | 0    | 188   | 2,532  | 4,349  | 6,838  | 7,232 |
| Conversion capital investment -              | 0    | 0    | 2,381 | 25,955 | 21,506 | 29,942 | 4,994 |
| Cumulative 5-yr (million \$2018)             |      |      |       |        |        |        |       |
| Number of facilities - Allam power w ccu     | 0    | 0    | 0     | 1      | 1      | 1      | 1     |
| (quantity)                                   |      |      |       |        |        |        |       |
| Number of facilities - Beccs hydrogen        | 0    | 0    | 0     | 27     | 39     | 51     | 51    |
| (quantity)                                   |      |      |       |        |        |        |       |
| Number of facilities - Diesel (quantity)     | 0    | 0    | 0     | 0      | 0      | 0      | 0     |
| Number of facilities - Diesel ccu (quantity) | 0    | 0    | 0     | 1      | 1      | 1      | 1     |
| Number of facilities - Power (quantity)      | 0    | 0    | 0     | 0      | 0      | 0      | 0     |
| Number of facilities - Power ccu             | 0    | 0    | 2     | 3      | 14     | 34     | 39    |
| (quantity)                                   |      |      |       |        |        |        |       |
| Number of facilities - Pyrolysis (quantity)  | 0    | 0    | 0     | 0      | 0      | 0      | 0     |
| Number of facilities - Pyrolysis ccu         | 0    | 0    | 0     | 1      | 2      | 2      | 2     |
| (quantity)                                   |      |      |       |        |        |        |       |
| Number of facilities - Sng (quantity)        | 0    | 0    | 0     | 0      | 0      | 0      | 0     |
| Number of facilities - Sng ccu (quantity)    | 0    | 0    | 1     | 1      | 1      | 1      | 1     |

### Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Annual - All (MMT)                 |      | 0    | 2.89 | 42.8 | 69.5 | 107  | 113  |
| Annual - BECCS (MMT)               |      | 0    | 2.89 | 36.1 | 62.8 | 99.9 | 106  |
| Annual - Cement and lime (MMT)     |      | 0    | 0    | 6.71 | 6.64 | 6.84 | 7.07 |
| Annual - NGCC (MMT)                |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - All (MMT)             |      | 0    | 2.89 | 45.7 | 115  | 222  | 335  |
| Cumulative - BECCS (MMT)           |      | 0    | 2.89 | 39   | 102  | 202  | 307  |
| Cumulative - Cement and lime (MMT) |      | 0    | 0    | 6.71 | 13.3 | 20.2 | 27.3 |
| Cumulative - NGCC (MMT)            |      | 0    | 0    | 0    | 0    | 0    | 0    |

# Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

| Item                                              | 2020 | 2025 | 2030  | 2035  | 2040   | 2045   | 2050   |
|---------------------------------------------------|------|------|-------|-------|--------|--------|--------|
| All (km)                                          |      | 0    | 865   | 2,722 | 4,312  | 5,904  | 6,156  |
| Cumulative investment - All (million<br>\$2018)   |      | 0    | 4,390 | 8,116 | 11,940 | 14,166 | 14,563 |
| Cumulative investment - Spur (million<br>\$2018)  |      | 0    | 69.1  | 1,512 | 2,637  | 4,863  | 5,259  |
| Cumulative investment - Trunk (million<br>\$2018) |      | 0    | 4,321 | 6,605 | 9,304  | 9,304  | 9,304  |
| Spur (km)                                         |      | 0    | 90.7  | 1,586 | 2,740  | 4,332  | 4,584  |
| Trunk (km)                                        |      | 0    | 774   | 1,136 | 1,572  | 1,572  | 1,572  |

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

| Item                                                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|-------------------------------------------------------------------------|------|------|------|------|------|------|-------|
| CO2 storage (MMT)                                                       |      | 0    | 0.92 | 4.28 | 9.51 | 12.8 | 13.4  |
| Injection wells (wells)                                                 |      | 0    | 2    | 9    | 16   | 26   | 33    |
| Resource characterization, appraisal, permitting costs (million \$2020) |      | 103  | 294  | 380  | 380  | 380  | 380   |
| Wells and facilities construction costs                                 |      | 0    | 70.4 | 274  | 489  | 817  | 1,014 |
| (million \$2020)                                                        |      |      |      |      | 107  | 0    | 1,011 |

# Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

| Table 56: E-B+ Scenario - PILLAR 6: Lana | _    |      |      |      |      |      |        |
|------------------------------------------|------|------|------|------|------|------|--------|
| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -560   |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 tC02e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -4,205 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| tCO2e/y)                                 |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | 0      |
| deployment - Cropland to woody energy    |      |      |      |      |      |      |        |
| crops (1000 tCO2e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | 0      |
| deployment - Pasture to energy crops     |      |      |      |      |      |      |        |
| (1000 tC02e/y)                           |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -231   |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -4,996 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -560   |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -2,212 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| tCO2e/y)                                 |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | 0      |
| deployment - Cropland to woody energy    |      |      |      |      |      |      |        |
| crops (1000 tCO2e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | 0      |
| deployment - Pasture to energy crops     |      |      |      |      |      |      |        |
| (1000 tCO2e/y)                           |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -116   |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -2,887 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 496    |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |        |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 9,423  |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |        |
| measures (1000 hectares)                 |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 183    |
| Aggressive deployment - Cropland to      |      |      |      |      |      |      |        |
| woody energy crops (1000 hectares)       |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 2,300  |
| Aggressive deployment - Pasture to       |      |      |      |      |      |      |        |
| energy crops (1000 hectares)             |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 399    |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |        |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 12,800 |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      | ,000   |
| hectares)                                |      |      |      |      |      |      |        |
|                                          |      |      |      |      |      |      |        |

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 496   |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 hectares)                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,008 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 183   |
| deployment - Cropland to woody energy    |      |      |      |      |      |      |       |
| crops (1000 hectares)                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2,300 |
| deployment - Pasture to energy crops     |      |      |      |      |      |      |       |
| (1000 hectares)                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 199   |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 hectares)                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 5,186 |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |       |

#### Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -952    |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -43,286 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -1,687  |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -4,643  |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -646    |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -1,773  |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -1,378  |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |         |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -9,732  |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -19,153 |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - High - Restore    |      |      |      |      |      |      | -3,321  |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Accelerate  |      |      |      |      |      |      | -477    |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Low - All (not    |      |      |      |      |      |      | -11,380 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Avoid       |      |      |      |      |      |      | -281    |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Extend      |      |      |      |      |      |      | -1,783  |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Improve     |      |      |      |      |      |      | -329    |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -591    |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -482    |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -4,866  |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -1,451  |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Restore     |      |      |      |      |      |      | -1,120  |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |         |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-------------------------------------------------------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - Mid - Accelerate                                                  |      |      |      |      |      |      | -715    |
| regeneration (1000 tCO2e/y)                                                               |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - All (not                                                    |      |      |      |      |      |      | -27,327 |
| counting overlap) (1000 tCO2e/y)                                                          |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Avoid                                                       |      |      |      |      |      |      | -984    |
| deforestation (1000 tCO2e/y)                                                              |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Extend                                                      |      |      |      |      |      |      | -3,213  |
| rotation length (1000 tCO2e/y)                                                            |      |      |      |      |      |      | -,      |
| Carbon sink potential - Mid - Improve                                                     |      |      |      |      |      |      | -482    |
| plantations (1000 tCO2e/y)                                                                |      |      |      |      |      |      | .0_     |
| Carbon sink potential - Mid - Increase                                                    |      |      |      |      |      |      | -1,182  |
| retention of HWP (1000 tCO2e/y)                                                           |      |      |      |      |      |      | 1,102   |
| Carbon sink potential - Mid - Increase                                                    |      |      |      |      |      |      | -930    |
| trees outside forests (1000 tCO2e/y)                                                      |      |      |      |      |      |      | -730    |
| Carbon sink potential - Mid - Reforest                                                    |      |      |      |      |      |      | -7,299  |
| ·                                                                                         |      |      |      |      |      |      | -1,299  |
| cropland (1000 tC02e/y)                                                                   |      |      |      |      |      |      | 10.000  |
| Carbon sink potential - Mid - Reforest                                                    |      |      |      |      |      |      | -10,302 |
| pasture (1000 tC02e/y)                                                                    |      |      |      |      |      |      | 0.004   |
| Carbon sink potential - Mid - Restore                                                     |      |      |      |      |      |      | -2,221  |
| productivity (1000 tCO2e/y)                                                               |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 156     |
| High - Accelerate regeneration (1000                                                      |      |      |      |      |      |      |         |
| hectares)                                                                                 |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 228     |
| High - Avoid deforestation (over 30 years)                                                |      |      |      |      |      |      |         |
| (1000 hectares)                                                                           |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 2,368   |
| High - Extend rotation length (1000                                                       |      |      |      |      |      |      |         |
| hectares)                                                                                 |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 238     |
| High - Improve plantations (1000                                                          |      |      |      |      |      |      |         |
| hectares)                                                                                 |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 0       |
| High - Increase retention of HWP (1000                                                    |      |      |      |      |      |      |         |
| hectares)                                                                                 |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 131     |
| High - Increase trees outside forests                                                     |      |      |      |      |      |      |         |
| (1000 hectares)                                                                           |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 643     |
| High - Reforest cropland (1000 hectares)                                                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 544     |
| High - Reforest pasture (1000 hectares)                                                   |      |      |      |      |      |      | 0       |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 1,101   |
| High - Restore productivity (1000                                                         |      |      |      |      |      |      | 1,101   |
| hectares)                                                                                 |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 5,409   |
| High - Total impacted (over 30 years)                                                     |      |      |      |      |      |      | 3,407   |
| (1000 hectares)                                                                           |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 77.9    |
| Low - Accelerate regeneration (1000                                                       |      |      |      |      |      |      | 11.7    |
|                                                                                           |      |      |      |      |      |      |         |
| hectares)                                                                                 |      |      |      |      |      |      | 017     |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 214     |
| Low - Avoid deforestation (over 30 years)                                                 |      |      |      |      |      |      |         |
| (1000 hectares)                                                                           |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 907     |
| Low - Extend rotation length (1000                                                        |      |      |      |      |      |      |         |
| hectares)                                                                                 | i l  |      |      |      |      |      |         |
|                                                                                           |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -                                                 |      |      |      |      |      |      | 119     |
| Land impacted for carbon sink potential -<br>Low - Improve plantations (1000<br>hectares) |      |      |      |      |      |      | 119     |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Low - Increase retention of HWP (1000      |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 68.9  |
| Low - Increase trees outside forests       |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 322   |
| Low - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 94.3  |
| Low - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 666   |
| Low - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 2,470 |
| Low - Total impacted (over 30 years)       |      |      |      |      |      |      | •     |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 117   |
| Mid - Accelerate regeneration (1000        |      |      |      |      |      |      |       |
| hectaresì                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 221   |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,637 |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      | 1,001 |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 179   |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      | J     |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 99.9  |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      | 77.7  |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 483   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      | 400   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 682   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      | 002   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,342 |
| Mid - Restore productivity (1000           |      |      |      |      |      |      | 1,042 |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4,761 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      | 4,101 |
| hectares)                                  |      |      |      |      |      |      |       |
| Hectar ESJ                                 |      |      |      |      |      |      |       |

Table 58: E-B+ scenario - IMPACTS - Health

| Item                                  | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 266  | 0.237 | 0.229 | 0.184 | 0.119 | 0.002 |
| Coal (million 2019\$)                 |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 229  | 98.6  | 66.6  | 42.2  | 17.9  | 9.91  |
| Natural Gas (million 2019\$)          |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 685  | 696   | 682   | 619   | 496   | 343   |
| Transportation (million 2019\$)       |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 30   | 0.027 | 0.026 | 0.021 | 0.013 | 0     |
| Coal (deaths)                         |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 25.8 | 11.1  | 7.52  | 4.76  | 2.02  | 1.12  |
| Natural Gas (deaths)                  |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 77   | 78.2  | 76.7  | 69.6  | 55.8  | 38.5  |
| Transportation (deaths)               |      |      |       |       |       |       |       |

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020  | 2025   | 2030   | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|--------|--------|-------|-------|-------|-------|
| Commercial HVAC investment in 2020s -      | 0     | 13,857 | 14,543 | 0     | 0     | 0     | 0     |
| Cumulative 5-yr (million \$2018)           |       |        |        |       |       |       |       |
| Sales of cooking units - Electric          | 30.1  | 32.3   | 32.3   | 32.3  | 32.3  | 32.3  | 32.3  |
| Resistance (%)                             |       |        |        |       |       |       |       |
| Sales of cooking units - Gas (%)           | 69.9  | 67.7   | 67.7   | 67.7  | 67.7  | 67.7  | 67.7  |
| Sales of space heating units - Electric    | 1.94  | 29.6   | 70.8   | 79.1  | 79.5  | 79.5  | 79.5  |
| Heat Pump (%)                              |       |        |        |       |       |       |       |
| Sales of space heating units - Electric    | 2     | 6.3    | 12.1   | 15.9  | 18.7  | 19.1  | 19.2  |
| Resistance (%)                             |       |        |        |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 0     | 0      | 0      | 0     | 0     | 0     | 0     |
| Sales of space heating units - Gas Furnace | 96.1  | 64.1   | 17.1   | 5.05  | 1.83  | 1.38  | 1.33  |
| (%)                                        |       |        |        |       |       |       |       |
| Sales of water heating units - Electric    | 0.059 | 0.129  | 0.128  | 0.129 | 0.129 | 0.127 | 0.127 |
| Heat Pump (%)                              |       |        |        |       |       |       |       |
| Sales of water heating units - Electric    | 1.74  | 3.67   | 3.65   | 3.65  | 3.67  | 3.67  | 3.68  |
| Resistance (%)                             |       |        |        |       |       |       |       |
| Sales of water heating units - Gas Furnace | 97.4  | 94.4   | 94.5   | 94.5  | 94.4  | 94.4  | 94.4  |
| (%)                                        |       |        |        |       |       |       |       |
| Sales of water heating units - Other (%)   | 0.794 | 1.77   | 1.77   | 1.77  | 1.78  | 1.78  | 1.79  |

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 2.84 | 2.89 | 4.38 | 4.61 | 4.42 | 4.6  |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 121  | 123  | 124  | 125  | 127  | 132  | 141  |
| Final energy use - Industry (PJ)       | 310  | 325  | 335  | 340  | 350  | 358  | 369  |
| Final energy use - Residential (PJ)    | 177  | 167  | 164  | 162  | 163  | 166  | 169  |
| Final energy use - Transportation (PJ) | 431  | 408  | 377  | 358  | 359  | 370  | 385  |

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Residential HVAC investment in 2020s vs.   | 0    | 3.09 | 3.21 | 0    | 0    | 0    | 0    |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |      |      |      |      |
| Sales of cooking units - Electric          | 39.7 | 39.7 | 39.7 | 39.7 | 39.7 | 39.7 | 39.7 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of cooking units - Gas (%)           | 60.3 | 60.3 | 60.3 | 60.3 | 60.3 | 60.3 | 60.3 |
| Sales of space heating units - Electric    | 5.79 | 35.1 | 36.6 | 38.9 | 40.5 | 42.1 | 44.4 |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of space heating units - Electric    | 25.8 | 23.1 | 22.7 | 22.1 | 21.2 | 19.8 | 17.5 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of space heating units - Fossil (%)  | 6.03 | 6.01 | 6.08 | 6.04 | 5.95 | 5.95 | 5.96 |
| Sales of space heating units - Gas (%)     | 62.3 | 35.7 | 34.6 | 33   | 32.4 | 32.1 | 32.2 |
| Sales of water heating units - Electric    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of water heating units - Electric    | 30.5 | 42.6 | 42.5 | 42.6 | 42.5 | 42.5 | 42.4 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of water heating units - Gas Furnace | 68.2 | 56.1 | 56.2 | 56.2 | 56.3 | 56.3 | 56.4 |
| (%)                                        |      |      |      |      |      |      |      |
| Sales of water heating units - Other (%)   | 1.38 | 1.21 | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 |

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vehicle sales - Heavy-duty - diesel (%)    | 98.1  | 98.2  | 97.9  | 97    | 95.6  | 93.5  | 91.6  |
| Vehicle sales - Heavy-duty - EV (%)        | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.229 | 0.242 | 0.257 | 0.274 | 0.294 | 0.317 | 0.343 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.096 | 0.112 | 0.13  | 0.15  | 0.174 | 0.202 |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.119 | 0.138 | 0.16  | 0.186 | 0.216 | 0.25  | 0.29  |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.51  | 1.31  | 1.57  | 2.37  | 3.69  | 5.71  | 7.57  |
| Vehicle sales - Light-duty - diesel (%)    | 1.68  | 2.07  | 2.21  | 2.05  | 1.85  | 1.73  | 1.64  |
| Vehicle sales - Light-duty - EV (%)        | 3.16  | 5.08  | 5.81  | 7.12  | 8.7   | 10.2  | 11.3  |
| Vehicle sales - Light-duty - gasoline (%)  | 90.9  | 87.5  | 85.5  | 83.8  | 81.8  | 79.9  | 78.3  |
| Vehicle sales - Light-duty - hybrid (%)    | 4.04  | 4.91  | 6.02  | 6.6   | 7.2   | 7.83  | 8.37  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.111 | 0.381 | 0.353 | 0.315 | 0.314 | 0.315 | 0.326 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.108 | 0.111 | 0.108 | 0.109 | 0.108 | 0.107 | 0.11  |
| Vehicle sales - Medium-duty - diesel (%)   | 65.2  | 63.5  | 61.6  | 59.6  | 58    | 56.5  | 55.2  |
| Vehicle sales - Medium-duty - EV (%)       | 0.027 | 0.105 | 0.329 | 0.671 | 0.895 | 0.973 | 0.993 |
| Vehicle sales - Medium-duty - gasoline (%) | 34    | 35.5  | 37    | 38.5  | 39.7  | 40.8  | 41.7  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.365 | 0.427 | 0.496 | 0.577 | 0.674 | 0.793 | 0.929 |
| Vehicle sales - Medium-duty - hydrogen     | 0.175 | 0.208 | 0.242 | 0.285 | 0.339 | 0.409 | 0.487 |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.255 | 0.271 | 0.298 | 0.345 | 0.42  | 0.528 | 0.671 |

| Table 64: REF scenario - PILLAR 6: Land si | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|--------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | -952    |
| regeneration (1000 tCO2e/y)                |      |      |      |      |      |      | -952    |
| Carbon sink potential - High - All (not    |      |      |      |      |      |      | -43,286 |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      | -43,200 |
| Carbon sink potential - High - Avoid       |      |      |      |      |      |      | -1,687  |
| deforestation (1000 tC02e/y)               |      |      |      |      |      |      | -1,001  |
| Carbon sink potential - High - Extend      |      |      |      |      |      |      | -4,643  |
| rotation length (1000 tC02e/y)             |      |      |      |      |      |      | -4,043  |
| Carbon sink potential - High - Improve     |      |      |      |      |      |      | -646    |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      | -040    |
| Carbon sink potential - High - Increase    |      |      |      |      |      |      | -1,773  |
| retention of HWP (1000 tC02e/y)            |      |      |      |      |      |      | -1,113  |
| Carbon sink potential - High - Increase    |      |      |      |      |      |      | -1,378  |
| trees outside forests (1000 tCO2e/y)       |      |      |      |      |      |      | -1,510  |
| Carbon sink potential - High - Reforest    |      |      |      |      |      |      | -9,732  |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      | -9,132  |
| Carbon sink potential - High - Reforest    |      |      |      |      |      |      | -19,153 |
| pasture (1000 tCO2e/y)                     |      |      |      |      |      |      | -17,100 |
| Carbon sink potential - High - Restore     |      |      |      |      |      |      | -3,321  |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      | -0,021  |
| Carbon sink potential - Low - Accelerate   |      |      |      |      |      |      | -477    |
| regeneration (1000 tCO2e/y)                |      |      |      |      |      |      | 711     |
| Carbon sink potential - Low - All (not     |      |      |      |      |      |      | -11,380 |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      | 11,000  |
| Carbon sink potential - Low - Avoid        |      |      |      |      |      |      | -281    |
| deforestation (1000 tC02e/y)               |      |      |      |      |      |      | 201     |
| Carbon sink potential - Low - Extend       |      |      |      |      |      |      | -1,783  |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      | 1,1.00  |
| Carbon sink potential - Low - Improve      |      |      |      |      |      |      | -329    |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      | 0_/     |
| Carbon sink potential - Low - Increase     |      |      |      |      |      |      | -591    |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      | 07.     |
| Carbon sink potential - Low - Increase     |      |      |      |      |      |      | -482    |
| trees outside forests (1000 tCO2e/y)       |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest     |      |      |      |      | +    |      | -4,866  |
| cropland (1000 tC02e/y)                    |      |      |      |      |      |      | .,000   |

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|--------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - Low - Reforest     |      |      |      |      |      |      | -1,45   |
| pasture (1000 tC02e/y)                     |      |      |      |      |      |      | 440     |
| Carbon sink potential - Low - Restore      |      |      |      |      |      |      | -1,120  |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Accelerate   |      |      |      |      |      |      | -715    |
| regeneration (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - All (not     |      |      |      |      |      |      | -27,327 |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Avoid        |      |      |      |      |      |      | -984    |
| deforestation (1000 tC02e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Extend       |      |      |      |      |      |      | -3,213  |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Improve      |      |      |      |      |      |      | -482    |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -1,182  |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -930    |
| trees outside forests (1000 tCO2e/y)       |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -7,299  |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      | •       |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -10,302 |
| pasture (1000 tCO2e/y)                     |      |      |      |      |      |      | ,       |
| Carbon sink potential - Mid - Restore      |      |      |      |      |      |      | -2,22   |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      | _,      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 156     |
| High - Accelerate regeneration (1000       |      |      |      |      |      |      | 100     |
| hectares)                                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 228     |
| High - Avoid deforestation (over 30 years) |      |      |      |      |      |      | 220     |
| (1000 hectares)                            |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 2,368   |
| High - Extend rotation length (1000        |      |      |      |      |      |      | 2,300   |
| hectares)                                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 238     |
|                                            |      |      |      |      |      |      | 230     |
| High - Improve plantations (1000 hectares) |      |      |      |      |      |      |         |
|                                            |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | C       |
| High - Increase retention of HWP (1000     |      |      |      |      |      |      |         |
| hectares)                                  |      |      |      |      |      |      | 10      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 13      |
| High - Increase trees outside forests      |      |      |      |      |      |      |         |
| (1000 hectares)                            |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 643     |
| High - Reforest cropland (1000 hectares)   |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 544     |
| High - Reforest pasture (1000 hectares)    |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,10    |
| High - Restore productivity (1000          |      |      |      |      |      |      |         |
| hectares)                                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 5,409   |
| High - Total impacted (over 30 years)      |      |      |      |      |      |      |         |
| (1000 hectares)                            |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 77.9    |
| Low - Accelerate regeneration (1000        |      |      |      |      |      |      |         |
| hectares)                                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 214     |
| Low - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |         |
| (1000 hectares)                            |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 907     |
| Low - Extend rotation length (1000         |      |      |      |      |      |      |         |
| hectares)                                  |      |      |      |      |      |      |         |

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|------------------------------------------------------|------|------|------|------|------|------|--------|
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 119    |
| Low - Improve plantations (1000                      |      |      |      |      |      |      |        |
| hectares)                                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 0      |
| Low - Increase retention of HWP (1000                |      |      |      |      |      |      |        |
| hectares)                                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 68.9   |
| Low - Increase trees outside forests                 |      |      |      |      |      |      |        |
| (1000 hectares)                                      |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 322    |
| Low - Reforest cropland (1000 hectares)              |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 94.3   |
| Low - Reforest pasture (1000 hectares)               |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 666    |
| Low - Restore productivity (1000                     |      |      |      |      |      |      |        |
| hectares)                                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 2,470  |
| Low - Total impacted (over 30 years)                 |      |      |      |      |      |      |        |
| (1000 hectares)                                      |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 117    |
| Mid - Accelerate regeneration (1000                  |      |      |      |      |      |      |        |
| hectares)                                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 221    |
| Mid - Avoid deforestation (over 30 years)            |      |      |      |      |      |      |        |
| (1000 hectares)                                      |      |      |      |      |      |      | 1 (07  |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 1,637  |
| Mid - Extend rotation length (1000                   |      |      |      |      |      |      |        |
| hectares)                                            |      |      |      |      |      |      | 170    |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 179    |
| Mid - Improve plantations (1000 hectares)            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 0      |
| Mid - Increase retention of HWP (1000                |      |      |      |      |      |      |        |
| hectares)  Land impacted for carbon sink potential - |      |      |      |      |      |      | 99.9   |
| Mid - Increase trees outside forests (1000           |      |      |      |      |      |      | 99.9   |
| hectares)                                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 483    |
| Mid - Reforest cropland (1000 hectares)              |      |      |      |      |      |      | 400    |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 682    |
| Mid - Reforest pasture (1000 hectares)               |      |      |      |      |      |      | 002    |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 1,342  |
| Mid - Restore productivity (1000                     |      |      |      |      |      |      | 1,042  |
| hectares)                                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -            |      |      |      |      |      |      | 4,761  |
| Mid - Total impacted (over 30 years) (1000           |      |      |      |      |      |      | -+,101 |
| hectares)                                            |      |      |      |      |      |      |        |
|                                                      |      |      |      |      |      |      |        |

Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

| Item                                                                      | 2020   | 2025 | 2030   | 2035 | 2040 | 2045 | 2050   |
|---------------------------------------------------------------------------|--------|------|--------|------|------|------|--------|
| Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)                | -3.92  |      | -9.16  |      |      |      | -7.43  |
| Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y) | -0.482 |      | -0.805 |      |      |      | -0.847 |
| Business-as-usual carbon sink - Total (Mt<br>CO2e/y)                      | -4.4   |      | -9.97  |      |      |      | -8.27  |

Table 66: REF scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025  | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------------------------------------|------|-------|------|------|------|------|------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 1,113 | 545  | 307  | 245  | 215  | 200  |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 242   | 213  | 229  | 166  | 153  | 128  |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 685   | 706  | 728  | 753  | 779  | 805  |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 126   | 61.6 | 34.7 | 27.6 | 24.2 | 22.6 |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 27.4  | 24   | 25.8 | 18.7 | 17.3 | 14.5 |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 77    | 79.4 | 81.8 | 84.7 | 87.6 | 90.5 |