1. The true risk of a binary classification is:
Loch)=Paypro [h(x) # y]
let h be any predictor, and fox) be Bayes predictor.
To prove Lo(to) \le Lo(h)
re get P[fo #y x=x]-P[h(x) #y x=x] To order so I had to use "=")
= [1-2 P(y=1 x)2/(x)=1 t P(y=1 x)-[1-2P(y=1 x)]2/(x)=1-P(y=1 x)
$= [1-2P(y=1 x)][1_{h(x)=1}-1_{h(x)=1}]$
= [1-2P(y=1 x)][1/4(x)=1-1/6(x)=1] We need to prove these two parts are positive or negative.
It 1-2PCY=1 X)>0, then PCY=1 X)<\frac{1}{2} in this case to (X)=-1
Thus, 1/000=0 and 1/00=1-1/00=1=1/00=1=1/0-13, is positive.
If 1-2PCY=11x)<0. then PCY=11x)>=, in this case fo(x)=1,
Thus, 1/0(x)=1, and 1/(x)=1-1/(x)=1-168+,0) is negative.
Therefore the quantity is positive, since it is the product of
two positive or two negative numbers.
So. Lo (to) < Lo(h) and to(x) is the optimal predictor.

