

General 酶工程制药 Introduction

- 1 药用酶
- 2 酶法生产药物
- 3 基于酶抑制的药物

酶在疾病治疗和预防方面的应用(一)

酶 种	用途
α-淀粉酶	治疗消化不良、食欲不振
脂肪酶	治疗消化不良、食欲不振; 预防及治疗高血脂
蛋白酶	治疗消化不良;消炎;降血压
溶菌酶	消炎,止痛
胶原酶	消炎, 化脓, 椎间盘突出
尿激酶	溶血栓
<u>链激酶</u>	溶血栓
纳豆激酶	溶血栓
纤溶酶	溶血栓
蝮蛇溶栓酶	溶血栓
蚓激酶	溶血栓

酶在疾病治疗和预防方面的应用(二)

L-精氨酸酶	治疗癌症
L-组氨酸酶	治疗癌症
L-蛋氨酸酶	治疗癌症
<u>L-谷氨酰胺酶</u>	治疗癌症
L-天冬酰胺酶	治疗癌症
乳糖酶	治疗乳糖酶缺乏症
乙醇脱氢酶	治疗酒精中毒
SOD	抗氧化、抗辐射、治疗皮肤炎、氧中毒等
右旋糖酐酶	治疗龋齿
脲酶	治疗肾病
凝血酶	止血
弹性蛋白酶	降血脂

助消化类酶

▶ 含糖胃蛋白酶 № 哈尔滨华瑞生化药业有限责任公司 2009-3-16

产品类别:西药产品消化系统用药 产品功效:助消化药。用于胃蛋白酶缺乏或病后消化机能减退引起的消化不良症。

溶菌酶

▶ 产品优势: 人体相容性最好的具杀菌作用的天然抗感染药物;

■ 主治功能: 临床用于急慢性咽喉炎,口腔粘膜溃疡,咳痰困难。急慢性牙周炎、牙龈炎、慢性鼻炎

副鼻窦炎,各种上呼吸道感染及流感的辅助治疗。

战痘精灵溶菌酶祛痘洁面乳

胶原酶

药品名称: 胶原酶

英文名: collagenase for injection

适应症: 用于经保守疗法无效的 腰椎肩盘突出

功能:水解天然胶原蛋白,从而 溶解椎间盘突出的髓核和纤维环

药用酶——链激酶

r-SK

纤溶酶原→纤溶酶

水不溶纤维蛋白 →水溶性多肽 (血栓主要基质)(血栓溶解)

溶栓原理

上海实验医大生物技术有限公司注射 用重组链激酶

 General
 酶工程制药
 Introduction

 ● 1 药用酶
 酶的修饰 酶的绝化

 ● 2 酶法生产药物

 ● 3 基于酶抑制的药物

酶在药物制造方面的主要应用

	酶种	应用
	蛋白酶	制造水解蛋白、氨基酸
	糖化酶	制造葡萄糖
	5'-磷酸二酯酶	制造5'-核苷酸
	脂肪酶	合成青霉素G前体肽
	无色杆菌蛋白酶	由猪胰岛素制造人胰岛素
\Rightarrow	青霉素酰化酶	制造半合成青霉素和头孢霉素
\Rightarrow	氨基酰化酶	拆分酰化D,L-氨基酸酯为L-氨基酸
\Rightarrow	天冬氨酸酶	由反丁烯二酸制造L-天冬氨酸
\Rightarrow	β-酪氨酸酶	制造多巴
\rightarrow		

6 1 药用酶 2 酶法生产药物 3 基于酶抑制的药物

目前用于工业化生产的主要固定化酶

固定化酶	固定化方法	产品	备注
氨基酰化酶	DEAE-葡聚糖凝胶 离子结合法	L-氨基酸	第一个用于工 业化生产
葡萄糖异构酶	热处理法或其它	果葡糖浆	生产规模最大
天冬氨酸酶	聚丙烯酰胺凝胶直 接包埋含酶菌体或 离子结合法固定酶	天冬氨酸	
青霉素酰化酶	琼脂糖凝胶包埋	半合成青霉 素和头孢霉 素	工业上广泛应 用
延胡索酸酶	聚丙烯酰胺凝胶直 接包埋含酶菌体	L-苹果酸	
天冬氨酸β脱羧酶	凝胶包埋含酶菌体	L-丙氨酸	

非水相催化

与传统的酶在水相溶液中的催化不同, 某些酶在 有机溶剂中也可起催化作用,这种酶的催化称为非水 相催化。

- 底物专一性 对映体选择性
- 区域选择性
- 键选择性
- 热稳定性

444		
某	酶	
些	猪胰脂肪酶	
悪気		
11年	酵母脂肪酶	
在		
- 二	指蛋白脂肪酶	
1月	转凝乳蛋白酶	
ДΠ		
17.6	枯草杆菌蛋白酶	
介	核糖核酸酶	
i i	We to set see who	
质	酸性磷酸酶	
中	腺苷三磷酸酶	
T.	(F ₁ - ATPase)	
和	限制性核酸内切酶	
7k	(Hind 🛚)	
	3-葡萄糖苷酶	
浴	溶菌酶	
泛		
/1义	酪氨酸酶	
中	ې脱氢酶	
44	细胞色素氧化酶	
出り	一つのこれを化物	
‡ 执.		_

酶	介质条件	热稳定性
猪鸭脂肟酶	三丁酸甘油酯	T _{1/2} < 26 h T _{1/2} < 2mari
酵母脂肪酶	江 酸甘油酯/庚醇 水、pH 7.0	T _{1/2} = 1.5 h T _{1/2} < 2 _{max}
指蛋白脂肪酶	甲苯, 90%, 400 h	再力剩余 40%
轉凝乳蛋白酶	d Y & 1001	Ti 20 mm
	A. pH 8.0, 55U	$T_{\rm CC} = 15~{\rm mm}$
村草杆菌蛋白酶	北车場。110℃	Thu 80 nm
核糖核酸酶	FG. 110C. 6 h	活力剩余 95%
	4. pH 8.0, 90°C	1 _{0.2} < 10 mm
酸性磷酸酶	而十六烷。80U	T _{1.1} 8 m
	k. 701°	$T_1 = 1$ max.
腺苷三磷酸酶	甲基. 701	T ₁ >24 E
(F ₁ - ATPase)	水, 601	T _{1.2} < 10 mm
限制性核酸内切酶	त छ छ	活力不降低
(Hind III)		
3-葡萄糖苷酶	2 内醇, 50℃, 30 h	活力剩余80%
溶菌酶	环己烷,110℃	$T_{1/2} = 140 \text{ min}$
	水	$T_{1/2} = 10 \text{ min}$
酪氨酸酶	無仿, 50°C	$T_{1/2} = 90 \text{ min}$
	水 、50℃	$T_{1/2} = 10 \text{ min}$
醇脱氢酶	正庚烷, 55℃	T _{1/2} >50 d
细胞色素氧化酶	甲苯, 0.3%水	T _{1/2} =4.0 h
	甲苯, 1.3%水	$T_{1/2} = 1.7 \text{ min}$

酶在有机介质中的催化特性及应用

- 热稳定性
- 底物专一性
- 对映体选择性
- 区域选择性
- 键选择性

- 手性药物的拆分 手性高分子聚合物的制备
- 酚树脂的合成
- 导电有机聚合物的合成
- 发光有机聚合物的合成
- 食品添加剂的生产
- 生物柴油的生产
- 多肽的合成
- 甾体转化

脂肪酶拆分手性化合物

当酶水解消旋化的底物时,由于酶活性中心的手性选择性, 消旋化底物中的一个对映体以较高的速度被酶催化水解。

利用微生物合成手性药

氨酰心安(Atenolol)

氨酰心安是一种用于治疗高血压 的药物,该药物通过选择性封闭心脏的 β1肾上腺素受体而发挥作用,其结果是 降低心脏跳动速率、心脏血液输出量和 血压。

● 1 药用酶 ● 2 酶法生产药物 ● 3 基于酶抑制的药物

利巴韦林

病毒感染

抑制肌苷单磷酸脱氢酶、流感病毒RNA聚合酶和mRNA鸟苷转移酶,从而引起细胞内鸟苷三磷酸的减少,损害病毒RNA和蛋白质的合成