Electronic circuits and systems ELEC271

Part 5
Active loads

How to greatly increase the differential gain

Optimising the Diff. Amp

- Use of a current source bias greatly reduces the common-mode gain
- now address the problem of achieving a large effective load resistor, R_C for high gain without upsetting d.c. conditions

How it works

d.c. operation: inputs grounded

assume $I_B \sim 0$

CM action in T_3 and T_4 means that $I_{C3} = I_{C4}$

$$I_{C3} \approx I_{C1}$$
 $I_{C1} = I_{C2} \approx I_{C2}$
Hence $I_{C3} = I_{C2}$
No output!

AC Operation

Consider vi1 ↑, vi2↓

 $I_{C1}~(\approx I_{C3})$ will rise and hence I_{C4} , by CM action $I_{C2}~$ will fall

$$= I_{C1} - I_{C2}$$

$$g_m v_{i1} - g_m v_{i2} = g_m (v_{i1} - v_{i2}) = g_m v_{id}$$

(as 'I_C = $g_m v_{be}$ ')

the configuration is thus best thought of as a *transconductance* amplifier:

$$G_m = \frac{i_o}{v_{id}}$$

Voltage gain

recall that voltage gain of a diff. amp. with resistors $R_{\rm C}$ was

$$A_{Vd} \sim g_m R_C$$

The 'R_C' is now the *dynamic* resistance 'looking up' into the collectors of the current mirror and T2.

We might 'guess' that the voltage gain Now becomes

$$A_{Vd} = g_m (r_{ce4} // r_{ce2} // R_L)$$

~ $g_m (r_{ce4} // r_{ce2})$

if R_L is very big (infinity say)

Voltage gain is thus large without the need for a very large (area consuming) discrete resistor!

Exercise

Show that A_{Vd} can be expressed in terms of the Early voltages (V_{An}, V_{Ap}) :

[recall that $g_m = I_C/V_T$ and $r_{ce} = V_A/I_C$]

 $A_{Vd} = \frac{1}{V_T} \frac{{}^{\mathsf{v}} A n^{\mathsf{v}} A p}{V_{An} + V_{An}}$

Solution

The output resistance of $T_2 = V_{An}/I_C$ The output resistance of $T_4 = V_{Ap}/I_C$ Without R₁ we have

The output resistance of
$$T_2 = V_{An}/I_C$$

The output resistance of $T_4 = V_{Ap}/I_C$

Without R_L we have

$$A_{Vd} = g_m(r_{ce2} / / r_{ce4}) = \left(\frac{I_C}{V_T}\right) \frac{\frac{V_{An}}{I_C} \times \frac{V_{Ap}}{I_C}}{\frac{V_{An}}{I_C} + \frac{V_{Ap}}{I_C}}$$

$$= \frac{I_C}{V_T} \frac{V_{An} \times V_{Ap}}{V_{An} + V_{Ap}}$$
as required
$$\frac{r_{ce2} r_{ce4}}{r_{ce2} + r_{ce4}}$$

Substitute values: $V_{An} \sim 74 \text{ V}$, $V_{Ap} \sim 120 \text{ V}$, gives $A_{Vd} = 1.830$

Points to note 1 – loading effects

We have assumed above that the amplifier is driving an infinitely large resistance load R_L . In reality, the **total load resistance** would be

$$R_L//r_{ce2}//r_{ce4} \rightarrow R_L$$
 (if $R_L << r_{ce}$)

high gain can therefore be severely reduced by the loading of the following stage!

Solution?

ensure a high resistance for the following stage by making it an emitter follower (high input resistance) and thus high voltage gain can be obtained.

Remember this when doing Expt.5...

Points to note 2 – voltage swing

The d.c. output voltage is a ' V_{BE} ' drop less than the supply rail V_{CC} . Thus d.c. output at $v_i = 0 \text{ V}$ is ($^{\sim} V_{CC} - 0.7 \text{ V}$) \rightarrow Implies only a very small (a.c.) voltage swing at v_o .!

- However, recall that in the main purpose of achieving very high gain amplifiers is to 'trade' the gain for feedback to stabilise and enhance the overall performance.
- •Thus a large amount of negative feedback is generally used and this tends to make vin1 ~ vin2. [See later notes on feedback & Recall the 'Golden rules' of op-amps...]

Points to note – 3: advantages

- Both high transconductance (gain) and large input resistance are required and this constitutes a design trade-off. (See earlier notes for ways of increasing input resistance.)
- greatly improved CMRR because of the large dynamic resistance of the current source I_0 , R_0
- the current mirror effectively provides the 'subtraction' of the outputs so the output can be taken single ended.

a.c. analysis – more rigorous analysis

- Now derive the expression for gain again, by considering the a.c. equivalent circuit.
- Need an equivalent circuit for the current mirror load: what 'resistance' is seen looking up into the current mirror?

The approximation opposite can again be made

$$R_o = r_{be4} // r_{be3} // \frac{1}{g_m} // r_{ce3} \approx \frac{1}{g_m}$$
M notes)

(see Widlar CM notes)

Ac equivalent circuit for A_{Vd} (ignore r_{ce})

$\therefore A_{vd} = g_m \times R_L$ (single ended voltage gain)

$$v_{i1} = i_i r_{be}$$
 $v_{id} = i_i r_{be} - (-i_i r_{be})$ and **Diff. input resistance**, $R_{id} = \frac{v_{id}}{i_i} = 2 \times r_{be}$

Include the effect of r_{ce}'s

v₂ and v₄ are set to zero (by convention) for finding output resistance, the a.c. load is by inspection,

$$R_o' = r_{ce4}//r_{ce2}$$
 and $R_o = r_{ce4}//r_{ce2}//R_L$

So without
$$R_L A_{Vd} = g_m (r_{ce4} // r_{ce2})$$
 - VERY HIGH
But with R_L , $A_{Vd} = g_m (r_{ce4} // r_{ce2} // R_L)$

if $R_L << r_{ce4}//r_{ce2}$, then $A_{Vd} \sim g_m R_L$ - VOLTAGE GAIN MUCH REDUCED if R_L small!

→ ensure that the diff. amp. is not fed into a low impedance stage!

Common Mode Gain

Currents in left and righthand sides of the circuit are the same (by CM action), so

$$i_0 = 0$$

$$v_0 = 0$$

$$A_{vc} = 0$$

- Ideally, the common-mode gain is zero! if the current source bias is IDEAL
- In reality, CM is small: A_{Vc} ~ 1/R_E (circuit above)
- or very small A_{vc} ~ $1/R_O$ for the case of an active current source

PSPICE simulation

 V_{BE} (Q1, 2) ~ 0.6 V

Transfer characteristic and gain

In these regions, current 'hogged' by just one transistor so output is pinned

Check

• Theory for gain, Early voltages of pnp and npn V_A (npn) 2N222 = 74 V V_A (pnp) 2N907A = 116 V

$$A_{V} = \frac{1}{V_{T}} \frac{V_{An} V_{Ap}}{V_{An} + V_{Ap}}$$

$$A_{V} = \frac{1}{25mV} \frac{74 \times 116}{74 + 116} = 1,800$$

Perfect agreement with simulation (recall we got a gain of 96 with a resistor load)

Conclusions

 By the use of active loads and a current source, we have achieved the objective of both high gain and large CMRR. We have 'de-coupled' the a.c. and d.c. roles of the biasing components.

 We are now in a position to analyse a 'real' operational amplifier using our knowledge of d.c. biasing techniques, a.c. equivalent circuits and multistage amplifiers.

Active loads give high differential gain ^{+V}CC V EE This is the AC PART This is an gives very small **OPEN-CIRCUIT** common mode gain for ac signals

- a) Increasing the differential gain
- b) Increasing the common-mode gain
- c) Decreasing the common-mode rejection ratio
- d) Decreasing the output resistance

- a) Increasing the differential gain
- b) Increasing the common-mode gain
- c) Decreasing the common-mode rejection ratio
- d) Decreasing the output resistance

- a) Increasing the stability
- b) Increasing the common-mode gain
- c) Decreasing the common-mode rejection ratio
- d) Increasing the common-mode rejection ratio

- a) Increasing the stability
- b) Increasing the common-mode gain
- c) Decreasing the common-mode rejection ratio
- d) Increasing the common-mode rejection ratio

Milestone...

End of lecture

- Next lecture, analyse the MC1350 op-amp
 - The circuit is at the back of part 5 notes
 - Some hints are given as to how to tackle the analysis

Try if before the lecture on Tuesday!

Milestone...

