

PROBLEM 1: LINK-BUDGET (ELASTIC-BACKSCATTER LIDAR)

Consider an elastic-backscatter lidar defined by the following system parameters:

^	\sim	_	_
Δ	•	_	×

 Quantel (Nd:YAG 2ω) 	
---	--

•	Emission wavelength	532 nm	
•	Energy, E	160 mJ	
•	Pulse-repetition frequency, PRF	20 Hz	
•	Beam width, w ₀	5×10 ⁻³ m	(*)
•	Divergence (half-width angle) 0	0.5 mrad	(*)

TELESCOPE

PE			
•	Celestron Schmidt-Cassegrain C-8,	8"	(0.2032 m)
•	Shade diameter, d _{sh}	2.7"	(0.06858 m)
•	Focal length, f	2 m	
•	Transmissivity, T ₁	60 %	

OPTO-ELECTRONIC RECEIVER

PHOTODIODE

APD (EGG C30956E)

Active area diameter, D _{APD}	3 mm
Multiplication factor, M	150
Excess-noise factor, F	4.5
Dark surface current, I _{ds}	7.64×10 ⁻⁸
	Active area diameter, D _{APD} Multiplication factor, M Excess-noise factor, F Dark surface current, I _{ds}

Dark bulk current, I_{db}
 Intrinsic responsivity, R_{io}
 3.10×10⁻¹⁰ A
 240 mA/W

INTERFERENCE FILTER

•	Bandwidth, dλ	10 nm
•	Transmissivity, T ₂	65 %

SIGNAL-CONDITIONING STAGES

•	Transimpedance Gain (1 st stage), G _t	5750Ω
•	Voltage conditioning Gain (2 nd stage), G _{ac}	20.3 V/V
•	Noise-equivalent bandwidth, B	10 MHz
•	Equivalent input noise (chain input), σ _{th i}	5 pA·Hz ^{-1/2}

ATMOSPHERE

Aerosol component:

•	Visibility margin (532 nm), V _M	39.12 km
•	Lidar ratio, $S=\alpha_{Mie}/\beta_{Mie}$	25 sr
•	Boundary-layer height, R _{PBI}	3 km

Molecular component (average):

•	Rayleigh's extinction	0.01 km ⁻¹
•	Rayleigh's ratio (α_{Ray}/β_{Ray})	8π/3

Background-radiance component

Moon's radiance (full Moon), L_{Moon}
 Solar radiance, L_{Sun} (typ.)
 3×10⁻¹¹ W·cm⁻²·nm⁻¹·sr⁻¹
 3×10⁻⁶ W·cm⁻²·nm⁻¹·sr⁻¹

OTHER PARAMETERS

Full-overlap range, R_{ovf}
 Maximum-range criterion
 SNR(R_{max}) =1

PHYSICAL CONSTANTS

Electron charge, q
 Planck's constant, h
 Light speed, c
 Boltzmann's constant, K
 1.602×10⁻¹⁹ C
 6.6262×10⁻³⁴ J·s
 2.99793×10⁸ m·s⁻¹
 1.38×10⁻²³ J·K⁻¹ (*)

(*) Parameter not used.

Questions:

- 1. Determine the system constant, K(λ) [W·km³]
- 2. Estimate the received background power under night-time operation, Phack
- 3. Compute and plot the return power at the following ranges:
 - a. P(0.2 km)
 - b. P(1 km)
 - c. P(2 km)
 - d. P(3 km)
 - e. P(3⁺ km)
 - f. P(4 km)
- 4. Compute the receiver-chain voltage responsivity, R_v , and the net voltage responsivity (i.e., including spectral optical losses), R_v .
- 5. a) Compute the range-dependent signal-to-noise ratio (consider the ranges of question 3), SNR(R).
 - b) Identify the noise-dominant system-operation mode.
- 6. Assess the approximate laser-radar maximum range.
- 7. How many pulses are needed to integrate in order to ensure a SNR_v (voltage signal-to-noise ratio) of 40 dB at 3-km range? What is the resulting observation time of the lidar instrument?
- 8. Now, consider a Raman system of similar specs. If for Raman systems the return signal is typically 3 orders of magnitude lower than for their elastic system counterparts, discuss on the feasibility of day-time operation.
- 9. Compute the photodiode NEP and its quantum efficiency (η).
- 10. Compute the system NEP (NEP_s).

SOLUTIONS

- 1. $K(532 \text{ nm})=6.89\times10^{-4} \text{ W}\cdot\text{km}^3$
- 2. $P_{back} = 1.52 \times 10^{-13} \text{ W}$
- 3. $P(0.2 \text{ km})=8.56\times10^{-5} \text{ W}, P(1 \text{ km})=2.87\times10^{-6} \text{ W}, P(2 \text{ km})=5.76\times10^{-7} \text{ W}, P(3 \text{ km})=2.06\times10^{-7} \text{ W}, P(3^{+} \text{ km})=4.72\times10^{-8} \text{ W}, P(4 \text{ km})=2.60\times10^{-8} \text{ W}$
- 4. $R_v = 4.20 \times 10^6 \text{ V/W}, R_v = 1.64 \times 10^6 \text{ V/W}$
- 5. $SNR_v(0.2 \text{ km})=57.5 \text{ dB}$, $SNR_v(1 \text{ km})=42.7 \text{ dB}$, $SNR_v(2 \text{ km})=35.7 \text{ dB}$, $SNR_v(3 \text{ km})=31.3 \text{ dB}$, $SNR_v(3^+ \text{ km})=24.9 \text{ dB}$, $SNR_v(4 \text{ km})=22.3 \text{ dB}$
- 6. $R_{max} \approx 16.9 \text{ km}$
- 7. n_i =8 pulses, t_{obs} =0.4 s
- 8. The Raman lidar cannot be operated day-time because $P(0.2 \text{ km})=8.56\times10^{-8} \text{ W}$ is progressively comparable to the background component, $P_{back}=1.52\times10^{-8} \text{ W}$, as we move further in range.
- 9. NEP=88.2 fW·Hz^{-1/2}, η =55.9 %
- 10. $NEP_s = 422 \text{ fW} \cdot \text{Hz}^{-1/2}$