NATIONAL UNIVERSITY OF SINGAPORE

CS1231 DISCRETE STRUCTURES

(Semester 1: 2021/2022)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1. Write your Student Number only. Do not write your name.
- 2. This assessment paper contains **FIVE** questions and comprises **EIGHT** printed pages.
- 3. Answer **ALL** questions. The marks for each question are indicated in brackets.
- 4. Write your solutions in the spaces provided.
- 5. This is an **OPEN** book examination.

EXAMINER'S USE ONLY		
Question	Marks	Score
Q1	5	
Q2	4	
Q3	8	
Q4	10	
Q5	13	
Total	40	

PAGE 2 CS1231

- 1. Let A be a countable set with at least 2 different elements. Define $B = \{X \subseteq A : X \text{ is finite and } |X| = 2\}.$
 - (a) Define a set $B_2 \supseteq B$ and a surjection $h: \mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0} \to B_2$.

[2 marks]

(b) Prove that the h you defined in (a) is indeed surjective.

[1 mark]

(c) Use this h to show that B is countable.

[2 marks]

(Hint: Tutorial 7 Question 9 tells us that a nonempty set S is countable if and only if there is a surjection $\mathbb{Z}^+ \to S$.)

PAGE 3 CS1231

- 2. Let C be an uncountable set. Define $D = \{Y \subseteq C : Y \text{ is finite and } |Y| = 2\}$. We use Corollary 9.3.1 in the notes to prove the uncountability of D as follows.
 - (a) Define an uncountable set C_1 and an injection $f: C_1 \to D$.

[2 marks]

(b) Explain why the C_1 you defined in (a) is indeed uncountable.

[1 mark]

(c) Prove that the f you defined in (a) is indeed injective.

[1 mark]

(Hint: Tutorial 8 Question 5(b) tells us that if S is an uncountable set and S_0 is a countable set, then $S \setminus S_0$ is uncountable.)

PAGE 4 CS1231

3. Consider the rooted trees T_1 , T_2 , T_3 below (a is the root):

(a) Explain why (i) $T_1 = T_2$ and (ii) $T_2 \neq T_3$.

[2 marks]

(b) In (a), we say T_2 and T_3 are two different ways of using $\{a, b, c, d, e, f\}$ to label the vertices of the same tree (whereas T_1 and T_2 are the same tree labeled the same way). Consider the rooted trees T_1' , T_2' and T_3' below.

For each tree, calculate the number of different ways of using $\{a, b, c, d, e, f\}$ to label the tree. [6 marks]

PAGE 5 CS1231

[2 marks]

4. Consider the following undirected graph G:

- (a) Draw all spanning trees for G.
- (b) For your answer to (a), identify 4 different spanning trees S_1, S_2, S_3, S_4 such that S_1 and S_2 are isomorphic $(S_1 \simeq S_2)$, and S_3 and S_4 are isomorphic $(S_3 \simeq S_4)$. [4 marks]
- (c) For your choice of S_1, S_2, S_3 and S_4 in (b), define a permutation π of $\{a, b, c, d, e, f\}$ that shows $S_1 \simeq S_2$, and a permutation π' that shows $S_3 \simeq S_4$. [4 marks]

PAGE 6 CS1231

5. For an undirected graph without loops, a vertex ℓ is called a *leaf* if and only if there is exactly one edge containing ℓ . In the following examples, G_0 has 0 leaves, G_1 has 1 leaf, G_2 has 2 leaves and G_3 has 3 leaves:

- (a) Let H_0, H_1, H_2 and H_3 be undirected and loopless connected graphs with 5 vertices each; H_0 has 0 leaves, H_1 has 1 leaf, H_2 has 2 leaves and H_3 has 3 leaves. Draw one example each for H_0, H_1, H_2 and H_3 . [4 marks]
- (b) Which of your examples in (a) are cyclic, and which are acyclic?

[2 marks]

PAGE 7 CS1231

(c) Let (V, E) be an (unrooted) tree, and $\{b, c\} \in E$. Prove that $(V, E \setminus \{\{b, c\}\})$ is a forest with two trees. [3 marks]

PAGE 8 CS1231

(d) Using (c) and induction, or otherwise, prove that a nontrivial (unrooted) tree must have at least two leaves. [4 marks]