Департамент образования и науки города Москвы

Государственное автономное образовательное учреждения высшего образования города Москвы «Московский городской педагогический университет»

Институт цифрового образования Департамент информатики, управления и технологий

Лабораторная работа 4. Обнаружение отказов в распределенной системе.

> Выполнил студент группы АДЭУ-221 Джамалова Сабина Шахиновна Проверил доцент Босенко Тимур Муртазович

Москва

Цель работы: изучить принципы обнаружения отказов в распределенных системах с помощью симулятора Serf Convergence Simulator и проанализировать влияние различных параметров на время конвергенции и использование полосы пропускания.

Краткое описание теоретической части: Serf — это инструмент для управления кластером, который использует протокол gossip для обнаружения узлов, обнаружения отказов и оркестрации событий. Протокол gossip — это метод распространения информации в распределенной системе, где узлы периодически обмениваются информацией с случайно выбранными соседями.

Задание:

Вариант 6. Оптимизация для сетей с ограниченной полосой пропускания

- Gossip Interval: 0.5 c, 1.0 c, 2.0 c

- Gossip Fanout: 2, 3, 5

- Nodes: 50

- Packet Loss: 5%

- Node Failures: 5%

1. Заполнить таблицу

2. Проанализировать полученные результаты

3. Определить ширину полосы пропускания

4. Выводы и сравнения

Задача: найти оптимальные настройки для минимизации использования полосы пропускания при сохранении приемлемого времени конвергенции

Выполнение:

1. Таблица.

Gossip	Gossip	Nodes	Packet	Node	Время	Макс.
Interval	Fanout		Loss	Failures	до	использование
					"Bce	полосы
					живые	пропускания
					узлы	
					знают"	
0.5	2	50	5%	5%	54 c	1 774 387.20
1.0	3	50	5%	5%	71 c	1 330 790.40
2.0	5	50	5%	5%	84 c	1 108 992.00

1.1. Ширина пропускания:

Gossip Interval (c) Ширина полосы пропускания (бит/с)
0.5 1,774,387.20
Средняя ширина полосы пропускания: 1,774,387.20 бит/с
Gossip Interval (c) Ширина полосы пропускания (бит/с)
1.0 1,330,790.40
Средняя ширина полосы пропускания: 1,330,790.40 бит/с
Gossip Interval (c) Ширина полосы пропускания (бит/с)
2.0 1,108,992.00
Средняя ширина полосы пропускания: 1,108,992.00 бит/с
1.2. Время до "Все живые узлы знают":
Gossip Interval (c) Ширина полосы пропускания (бит/с) Время конвергенции (c)
0.5 1,774,387.20 54.00
Gossip Interval (c) Ширина полосы пропускания (бит/с) Время конвергенции (с)
1.0 1,330,790.40 71.00
Gossip Interval (c) Ширина полосы пропускания (бит/с) Время конвергенции (с)
2.0 1,108,992.00 84.00

Меньший Gossip Interval способствует более быстрой конвергенции, но увеличивает использование полосы пропускания.

Увеличение Gossip Fanout и количества узлов увеличивает время конвергенции, но не всегда пропорционально увеличивает использование полосы пропускания.

Потери пакетов и отказы узлов могут негативно сказаться на производительности системы, особенно при высоких значениях.

3. Сравнение производительность Serf с другими протоколами обнаружения отказов, такими как heartbeat или ping-based методами

Gossip Interval: 0.5 c

Gossip Interval: 1.0 c

Gossip Interval: 2.0 c

Выводы:

Выбор между Serf, Heartbeat и Ping-based методами зависит от специфики системы и требований к обнаружению отказов.

В общем, Serf является наиболее эффективным вариантом с точки зрения использования ресурсов и времени уведомления. Heartbeat демонстрирует высокую скорость реагирования, но с большим использованием полосы пропускания, в то время как Ping имеет наименьшую скорость уведомления и максимальные затраты ресурсов, что делает его менее предпочтительным для динамических распределенных систем.

Задание:

https://colab.research.google.com/drive/1IzKXistevA8MgqokeSWrOY6dJyqI9b2 K?usp=sharing

Перебор различных параметров и сохранение оптимальные настройки:

```
Oптимальные настройки для минимизации использования полосы пропускания:
Gossip Interval: 0.5, Gossip Fanout: 2, Packet Loss: 0%, Node Failures: 5%, Bandwidth Usage: 0
Gossip Interval: 0.5, Gossip Fanout: 2, Packet Loss: 5%, Node Failures: 5%, Bandwidth Usage: 0
Gossip Interval: 0.5, Gossip Fanout: 3, Packet Loss: 0%, Node Failures: 5%, Bandwidth Usage: 0
Gossip Interval: 0.5, Gossip Fanout: 3, Packet Loss: 5%, Node Failures: 5%, Bandwidth Usage: 0
Gossip Interval: 1.0, Gossip Fanout: 2, Packet Loss: 0%, Node Failures: 5%, Bandwidth Usage: 0
Gossip Interval: 1.0, Gossip Fanout: 2, Packet Loss: 5%, Node Failures: 5%, Bandwidth Usage: 0
Gossip Interval: 1.0, Gossip Fanout: 3, Packet Loss: 5%, Node Failures: 5%, Bandwidth Usage: 0
Gossip Interval: 1.0, Gossip Fanout: 3, Packet Loss: 5%, Node Failures: 5%, Bandwidth Usage: 0
```

Вывод: Изучили принципы обнаружения отказов в распределенных системах с помощью симулятора Serf Convergence Simulator и проанализировать

влияние различных параметров на время конвергенции и использование полосыпропускания и нашли оптимальные настройки для минимизации использования полосы пропускания при сохранении приемлемого времени конвергенции.