Number Theory Reading Group

Thanic Nur Samin

1 Thursday, 9/12/2024, Representation of $\mathfrak{sl}_2(\mathbb{F})$ by Hechi

$$\mathfrak{sl}_2(\mathbb{F}) := \{ g \in \mathfrak{gl}_2(\mathbb{F}) \mid \mathrm{Tr}(g) = 0 \}$$

We assume $char(\mathbb{F}) = 0$ and \mathbb{F} is algebraically closed.

Theorem 1.1. $\mathfrak{sl}_2(\mathbb{F})$ is semisimple

Proof. Direct computation of the Killing Form.

Recall: if $\mathfrak L$ is semisimple and $\phi: \mathfrak L \to \mathfrak{gl}(V)$ is a representation.

 $\mathfrak{L} \ni x = s + n$ abstract jordan decomposition.

 $\implies \phi(x) = \phi(s) + \phi(n)$ is the Jordan decomposition of $\phi(x)$ in $\phi(\mathfrak{L})$.

From now on, $\mathfrak{L} = \mathfrak{sl}_2(\mathbb{F}) = \mathfrak{sl}(2,\mathbb{F}).$

 (V, ϕ) is a representation.

Basis of \mathfrak{L} :

$$x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
$$h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Thus we have [h, x] = 2x, [h, y] = -2y, [x, y] = h.

Since h is diagonal, h is semisimple.

 $\implies \phi(h)$ is semisimple and thus diagonalizeable. $\in \text{End}(V)$.

We can decompose $V = \bigoplus_{\lambda} V_{\lambda}$ where $V_{\lambda} = \{v \in V \mid hv = \lambda v\}$ for all $\lambda \in \mathbb{F}$.

We say V_{λ} is a weight space with λ as its weight.

Lemma 1.2 (7.1). Suppose $v \in V_{\lambda}$. Then,

- 1) $xv \in V_{\lambda+2}$
- 2) $yv \in V_{\lambda-2}$

Proof. 1) $h(xv) = [h, x]v + x(hv) = 2xv + \lambda xv = (\lambda + 2)xv$

2)
$$h(yv) = [h, y]v + y(hv) = -2yv + \lambda yv = (\lambda - 2)yv$$

 $V_{\lambda-2}$ V_{λ} $V_{\lambda+2}$

Note that $\div V < \infty$

Thus, $\exists v \in V$ such that $x \cdot v = 0$.

Such a v is called a <u>maximal vector</u>.

For now, assume V is irreducible.

Let v_0 be a maximal vector with weight λ .

Definition. For i > 0 integer, $v_i = \frac{y^i \cdot v_0}{i!}$ Also, $v_{-1} = 0$.

Lemma 1.3 (7.2). 1) $h \cdot v_i = (\lambda - 2i)v_i$

- 2) $y \cdot v_i = (i+1)v_{i+1}$
- 3) $x \cdot v_i = (\lambda i + 1)v_{i-1}$

Proof. 1) We use induction. Base case is clear.

Assume it is true for i-1.

$$v_{i-1} \in V_{\lambda-2(i-1)}$$

Thus,
$$v_i = \frac{1}{i} \cdot y v_{i-1}$$

Lemma 7.1 implies $v_i \in V_{\lambda-2i}$.

- 2) $y \cdot v_i = (i+1)v_{i+1}$ by definition of v_i .
- 3) $ix \cdot v_i = x(yv_{i-1}) = [x, y]v_{i-1} + yxv_{i-1} = hv_{i-1} + yxv_{i-1} = (\lambda 2(i-1))v_{i-1} + yxv_{$ $(\lambda - i + 2)yv_{i-2} = i(\lambda - i + 1)v_{i-1}$

 $\dim V < \infty$ so it must end at some point.

So, at some point, it'll become 0. $v_0, \dots, v_m \neq 0, v_{m+1} = 0$.

Definition. m is the integer so that $v_m \neq 0, v_{m+1} = 0$.

By Lemma 7.2,

 $\operatorname{span}\{v_0,\cdots,v_m\}$ is a sub-representation of V.

Since V is irreducible,

$$V = \operatorname{span}\{v_0, \cdots, v_m\}$$

Note: by 7.2(3),

 $0 = x \cdot v_{m+1} = (\lambda - m)v_m$

Since $v_m \neq 0$ we have $\lambda = m$.

Thus, dim $V = m + 1 = \lambda + 1$

Here m is the highest weight.

$$V = V_{-m} \oplus V_{-m+2} \oplus \cdots \oplus V_{m-2} \oplus V_m$$

Construction. Suppose $L \curvearrowright \mathbb{F}[X,Y]$ [as a \mathbb{F} -space].

$$\rho(x) = X \frac{\partial}{\partial Y}$$

$$\rho(y) = Y \frac{\partial}{\partial y}$$

$$\begin{split} &\rho(x) = X \frac{\partial}{\partial Y} \\ &\rho(y) = Y \frac{\partial}{\partial X} \\ &\rho(h) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y} \end{split}$$

Consider subrepresentations $\mathbb{F}[X,Y]_m$ [symmetric polynomials of degree m, dimension m + 1].

