EXAMEN WISKUNDE 1 (eerste zittijd academiejaar '20-'21, reeks A) Opleiding industrieel ingenieur

UNIVERSITEIT
GENT

Nr.:

Omcirkel: Eerste bachelor / Schakelprogramma

Naam: /40

Schrijf netjes. Vul in op de opengelaten plaatsen. Geen rekenmachine, gsm, smartphone, Geef uitleg bij de open vragen. Veel succes! FACULTEIT INGENIEURSWETENSCHAPPEN

1. Beschouw de krommen $K_1: x = y(y+1)$ en $K_2: x^2 = -2y$.

/8

(a) Bereken de oppervlakte van het eindige gebied G gelegen tussen K_1 en K_2 , rechts van de Y-as aan de hand van een integraal van de vorm $\int_{\dots}^{\dots} \dots dx$.

Maak ook een tekening. $\frac{2}{2} \left[-\frac{2}{2} \right] - \left(-\frac{1}{2} - \frac{1}{2} + \frac{1}{4} \right) dx$ $= -\frac{1}{2} \frac{2^{3}}{3} \Big|_{0}^{2} + \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot \frac{1}{4} \frac{(1 + \frac{1}{2})^{3}}{3 / 2} \Big|_{0}^{2}$ $= -\frac{4}{3} + 1 + \frac{1}{12} (27 - 1)$ $= \frac{1}{6} \frac{1}{6} \frac{1}{12} \left(\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} + \frac{$

K1; y+y-x=0 D=1+4x y=3(-1±VH4x)

(b) Stel de integraal (aan de hand van de schilmethode) op die toelaat de inhoud te berekenen van het omwentelingslichaam dat ontstaat door G te wentelen om y = 3. De integraal moet niet berekend worden.

 $I = \int_{-7}^{7} 2\pi (3-y) \sqrt{-2y} \, dy$ $+ \int_{-2}^{7} 2\pi (3-y) \left[\sqrt{-2y} - y(y+n) \right] \, dy$

2. (a) Beschouw de poolkromme $r = \frac{9}{27\theta^3 + \pi^3}$. Bepaal de vergelijking van een asymptoot van deze kromme. Teken deze asymptoot.

(b) Zet de poolkromme $r=\cos\theta+\sin\theta$ om naar cartesische coördinaten en maak een tekening hiervan.

$$\pi = \cos\theta + \sin\theta \implies x^2 = n\cos\theta + n\sin\theta$$

$$\Rightarrow x^2 + y^2 - \alpha - y = 6$$

$$\Rightarrow (\alpha - \frac{1}{2})^2 + (y - \frac{1}{2})^2 = \frac{1}{2}$$
Cirkul med $m(\frac{1}{2}, \frac{1}{2})$ $R = \frac{1}{\sqrt{2}}$

BV:
$$42>0$$
 en $x-1>0$, $m.a.w.$ $x>1$
 $log_{1/3}(4x)<-2+log_{1/3}(x-1)$
 $(=>2
 $(2=$$

$$\langle = \rangle \frac{1}{9} > \frac{2-1}{42}$$

$$\langle = \rangle$$
 $\alpha < \frac{9}{5}$

glossing:]1, \frac{9}{5}[

(b) Teken $y = \ln |x-1| + 1$ en duid de coördinaten aan van de snijpunten met de assen.

y=0 = |m| x-1 = -1 $(=) x-1 = \pm e^{-1}$ $(=) x = 1 + \pm e^{-1}$ $x = 1 - \pm e^{-1}$

grondtal 3<1,

(c) Beschouw $K: y = 2\cos(2x+2)$. Snijpunten met de X-as: ... $\frac{7}{4}$ $^{-7}$ + $\frac{7}{2}$ + \frac

Periode: T.L

y = 0 $(=) 2x + 2 = \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$ $(=) x = \frac{\pi}{4} - 1 + k\pi$

vraag	1	2	3	4	5	6	7	8
antwoord								

(1) Wat is de richtingscoëfficiënt van de raaklijn aan de kromme met vergelijking $(x^2 + y^2 + 6x)^2 = (x^2 - y^2 + 2y)^2$ in het punt p(-1, 2)?

A.
$$-2$$
 2 $(x^2+y^2+6x)(2x+2yy+6)=2(x^2-y^2+2y)(2x-2yy+2)$
B. 1
C) -1 in 5: $(-1)(4+4y')=-2-4y'+2y'$
D. 2 $\Rightarrow y'=-1$

$$(2) \frac{(j-\sqrt{3})^{15}}{(1-j)^{26}} = \frac{(2e^{j}5\pi/6)^{15}}{(\sqrt{2}e^{-j\pi/4})^{26}} = \frac{2^{15}}{2^{13}} e^{j}(\frac{25}{2} + \frac{13}{8})\pi$$

$$= 4 e^{j}\pi$$

$$= 4 e^{j}\pi$$

$$= -4 e^{j}\pi$$

(3) Wat is de oppervlakte van de driehoek met hoekpunten a(-2, 1, 5), b(3, -2, 1) en c(1, 1, -1)?

en
$$c(1, 1, -1)$$
?

A. $\frac{81}{2}$

B. $\frac{9\sqrt{3}}{2}$

C. $\frac{27}{2}$

D. $\frac{27}{2}$
 $\frac{81}{2}$
 $\frac{9\sqrt{3}}{2}$
 $\frac{9\sqrt{3}}{2}$
 $\frac{9\sqrt{3}}{2}$
 $\frac{9\sqrt{3}}{2}$
 $\frac{9\sqrt{4+4+1}}{2}$
 $\frac{27}{2}$

(4) Wat is waar omtrent volgende uitspraken voor een willekeurige f?

$$*: y = f(x)$$
 is continu in $x = a$

** :
$$y = f(x)$$
 is afleidbaar in $x = a$

$$***: \lim_{x \to a} f(x) = f(a)$$

$$(\widehat{A})$$
** \Rightarrow * \Rightarrow * * *

B.
$$*** \Rightarrow ** \Rightarrow *$$

C.
$$*** \Rightarrow * \Rightarrow **$$

D.
$$* \Rightarrow ** \Rightarrow **$$

(5) Vooi
$$L_1 = \lim_{x \to 0} \frac{1}{\sin(2x)}$$

(5) Voor $L_1 = \lim_{x \to 0} \frac{\sin(5x) + x \cos(3x)}{\sin(2x) + x \cos(4x)}$ en $L_2 = \lim_{x \to 0} (x+1)^{\sin x}$ geldt:

A.
$$L_1 = 2$$
 en $L_2 = 0$

A.
$$L_1 = 2 \text{ en } L_2 = 0$$
B. $L_1 = 2 \text{ en } L_2 = 1$
C. $L_1 = 1 \text{ en } L_2 = 0$

$$\frac{5}{2} = \frac{5}{2} = \frac{6}{3} = \frac{2}{3}$$

D.
$$L_1 = 1$$
 en $L_2 = 1$

$$L_2=1=\lim_{\chi\to 0}\left(\left(1+\chi\right)^{\frac{1}{\chi}}\right)\min\chi.\chi=\varrho^{\circ}=1$$

(6) Welke tekening hoort bij de parameterkromme
$$\begin{cases} x = 1 - t^2 \\ y = 2^t \end{cases}$$
?

- (7) Wat stelt $x^2 = x y^2$ voor in de ruimte?
 - A. een hyperbool
 - B. een cirkel
 - (C) een elliptische cilinder
 - D. een hyperbolische cilinder

- geen z in de ygl. dus cilinder $(x^2+y^2-x=0)$ is ellips
- (8) Welke uitdrukking geeft de beste benadering voor f(a-h) voor een willekeurige y = f(x) en een kleine h-waarde?
 - A. $f(a-h) \approx f(a) + f'(a) h$
 - B) $f(a-h) \approx f(a) f'(a) h$ C. $f(a-h) \approx f(a) + f'(h) (a-h)$

 - D. $f(a-h) \approx f(a) f'(h)(a-h)$