Assignment

1/28

### Review II(Slides 71 - 118)

Sets, Points, Rational and Real Numbers, Functions

#### Kulu

University of Michigan-Shanghai Jiao Tong University Joint Institute

September 28, 2022

VV186 - Honors Mathmatics-II



## Assignment 1

Assignment

- The first homework is graded rigorously.
- Please check the rubric and comments on common mistakes on Piazza.
- If you have questions about grading, please contact the related TA.
  - ▶ 1.1&1.2 Ma Tianyi
  - ▶ 1.3 Heyinong
  - ▶ 1.4 Ding Zizhao
  - ▶ 1.5 Sun Meng



2/28

#### Interval

Remark: Difference between (a,b) and the set  $\{x \in \mathbb{R} : a < x < b\}$ ?

1.5.8. Definition. Let  $a, b \in \mathbb{R}$  with a < b. Then we define the following special subsets of  $\mathbb{R}$ , which we call *intervals*:

$$[a, b] := \{x \in \mathbb{R} : (a \le x) \land (x \le b)\} = \{x \in \mathbb{R} : a \le x \le b\}, \\ [a, b) := \{x \in \mathbb{R} : (a \le x) \land (x < b)\} = \{x \in \mathbb{R} : a \le x < b\}, \\ (a, b] := \{x \in \mathbb{R} : (a < x) \land (x \le b)\} = \{x \in \mathbb{R} : a < x \le b\}, \\ (a, b) := \{x \in \mathbb{R} : (a < x) \land (x < b)\} = \{x \in \mathbb{R} : a < x < b\}.$$

Furthermore, for any  $a \in \mathbb{R}$  we set

$$[a, \infty) := \{x \in \mathbb{R} : x \ge a\}, \qquad (a, \infty) := \{x \in \mathbb{R} : x > a\},$$
$$(-\infty, a] := \{x \in \mathbb{R} : x \le a\},$$
$$(-\infty, a) := \{x \in \mathbb{R} : x < a\}$$

Finally, we set  $(-\infty, \infty) := \mathbb{R}$ .

### Sets & Points

Recall the following definition and notation, it is very likely to appear in your exam!

- Interior point
- Exterior point
- Boundary point
- Accumulation point

For each kind of points, discuss whether the point should be in the set or not?

Whether a boundary point for a set must be an accumulation point for a set?

#### Tips:

- Remember the definitions!
- Draw the pictures!
- Pay attention to some speacial cases!

### Better understand accumulation point

- Try to prove that : if x is an accumulation point of set A, for every  $\epsilon > 0$ , the set  $(x \epsilon, x + \epsilon) \cap A \setminus \{x\}$  contains infinite elements.
- Consequently, you can take elements from the set to construct a sequence that converges to x.



## Examples in class

Those two examples can give us some thought.

- 1.5.11. Example. For the interval A = [0, 1),
  - ▶ int A = (0, 1),
  - ▶ Any  $x \in \mathbb{R} \setminus [0, 1]$  is an exterior point,
  - ▶  $\partial A = \{0, 1\},\$
  - ▶ Any  $x \in [0, 1]$  is an accumulation point.
- 1.5.12. Example. For the set  $A = \{x \in \mathbb{R} : x = \frac{1}{n}, n \in \mathbb{N} \setminus \{0\}\}$ ,
  - Int A = ∅.
  - ▶ Any  $x \in \mathbb{R} \setminus (A \cup \{0\})$  is an exterior point,
  - $\triangleright \partial A = A \cup \{0\},\$
  - ightharpoonup Only x=0 is an accumulation point.

## Exercise about points

Please identify the interior, exterior, boundary and accumulation points of the set

$$\left\{\frac{1}{z}: z \in \mathbb{Z} \setminus \{0\}\right\} \cup \left(\bigcap_{i=1}^{\infty} \left(-2 - \frac{1}{j}, -1 + \frac{1}{j}\right)\right)$$



### Sets & Points

Recall the following definition:

- Open Set
- Closed set
- Closure

Remark: Remember that a set does **NOT** have to be either open or closed.



# Conceptual Exercises

#### Please judge true or false:

- The set  $\mathbb{R}$  is an open set?
- The set  $\mathbb{R}$  is a closed set?
- An empty set is an open set?
- An empty set is a closed set?
- The set (a, b) is an open set or a closed set?
- The set  $\{x \in \mathbb{R} : x = \frac{1}{n}, n \in \mathbb{N} \setminus \{0\}\}$  is closed?



### **Boundness**

How we define those concepts for a set?

- bounded/unbounded
- max/min
- sup/inf

#### Quick check:

- 1. What's the relationship between max/min and sup/inf.
- 2. Does max/min or sup/inf always exists for bounded sets? When?

Important Conclusion: inf  $S = \xi \in S \Leftrightarrow \xi = \min S$ 

#### Get familiar with this!



### **Boundness**

Check the scope! Q or R .....

#### Example:

- **1** The set  $A = (-\infty, a)$  is bounded above in  $\mathbb{R}$  with  $\sup A = a$ . It isn't in A.
- ② The set  $B = [b, +\infty)$  is bounded below in  $\mathbb{R}$  with inf B = b. It's in B since b is the minimum of B.
- **3** The set  $C = [c, d) \cup (e, f)$  is bounded above and below in  $\mathbb{R}$ , so it's bounded with  $\sup C = f$ , inf C = c.
- **3** The set  $D = \{x \in \mathbb{Q}^+ : x = \frac{1}{n}, n \in \mathbb{N}^*\}$  is bounded above in  $\mathbb{Q}^+$ , but not bounded below in  $\mathbb{Q}^+$ .

The conclusion is really useful, we will frequently use it!

Let A be a bounded set in  $\mathbb R$  . Prove that for any  $\epsilon$  > 0 , there is an element x in A such that |x-supA|<  $\epsilon$  .



## Tips on proving a supremum or infimum

Generally, proving  $\eta$  is a supremum of a set S has two steps:

- Firstly, show that  $\eta$  is a upper bound for S. i.e.  $\forall x \in S, x \leq \eta$ .
- 2 Secondly, show that  $\forall \alpha < \eta, \exists x_0 \in S, x_0 > \eta$ .

Sometimes an inequality is useful (directly come from the definition):

• For a set S, if  $\forall x \in S, x < y$ , then sup S < y.

The steps for proof and properties for infimum is quite similar to supremum.



Suppose A and B are two nonempty sets of numbers, such that  $x \leq y$  for  $\forall x \in A$  and  $\forall y \in B$  . Prove that :

- 1.  $\sup \mathsf{A} \leq \mathsf{y}$  ,  $\ \mathsf{for} \ \forall y \in B$  .
- $2. \ sup \ A \leq inf \ B$

Let A, B be bounded and non-empty sets.  $S=A\cup B$  , please prove that:

- (i)  $\sup S = \max \{\sup A, \sup B\}$
- (ii)  $\inf S = \min \{\inf A, \inf B\}$



September 28, 2022

Let A and B be two bounded and non-empty sets in  $\mathbb{R}$ .

$$\text{ Define A+B} \coloneqq \big\{ \mathbf{z} \mid \mathbf{z} = \mathbf{x} + \mathbf{y} \,, \ \, x \in A, \,\, y \in B \,\, \big\}.$$

Prove that:



### Rational Numbers

We define that the set of rational numbers is

$$\mathbb{Q}=\{\frac{p}{q}:p,q\in\mathbb{Z}\wedge q\neq 0\}$$

together with the following properties (P1-P9).

| Porperties     | Addition                                | Multiplication                              |
|----------------|-----------------------------------------|---------------------------------------------|
| Associativity  | a + (b + c) = (a + b) + c               | $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ |
| NeutralElement | a+0=0+a=a                               | $a \cdot 1 = 1 \cdot a = a$                 |
| Commutativity  | a+b=b+a                                 | $a \cdot b = b \cdot a$                     |
| InverseElement | (-a) + a = a + (-a) = 0                 | $a \cdot a^{-1} = a^{-1} \cdot a = 1$       |
| Distributivity | $a \cdot (b+c) = a \cdot b + a \cdot c$ |                                             |

(ulu (UM-SJTU JI) Review II(Slides 71 - 118) September 28, 2022 16 / 28

### Rational Numbers

Property 10: Trichotomony Law (Using a set P to divide Q into three parts)

Property 11 and 12: Feature the set P, such that positive numbers are closed under addition and multiplication



# Important Inequality

For all rational numbers  $a, b \in \mathbb{Q}$ , we have  $||a| - |b|| \le |a + b| \le |a| + |b|$ 

Prove it using Mathematical Induction ! Corollary:  $\left|\sum_{i=1}^{n} a_i\right| \leq \sum_{i=1}^{n} \left|a_i\right|$ 



### The Square Root Problem

Let  $M = \{t \in \mathbb{R} : t > 0 \land t^2 > x\}, y = \inf M$ . We want to prove that  $y^2 = x$  by showing that  $y^2 > x$  and  $y^2 < x$  lead to contradictions.

M: {t ER, t>0 A t2>x}. Find infimm J.

Part 1: Prove that y2 > x leads to Contradiction.

Suppose that  $y^2 > x$ . Since y is an inform. Voctory,  $t \notin M \Rightarrow t^2 \leq x$ . We want to find a t < y, but  $t^2 > x$  to find a contradictory definition of inf).

let: t= y-E, E>0.看 E取引的t2>x

t<sup>2</sup>> x (=) (y-E)<sup>2</sup> > x (=) y<sup>2</sup>-2yE+E<sup>2</sup> > x ← we want on E to satisfy this inequality.

y= x+ = 2> 27 E.

So me just need to let  $0<\epsilon<\frac{y^2-x}{2y}=\frac{1}{2}(y-\frac{x}{y})$ 



# Important Conclusion

Infimum and Supremum don't necessarily exist in a bounded set defined in Q.



## Real Numbers and Important Conclusion

The square root problem tells us that: Bounded sets may not have infimum or supremum.

The definition of real numbers guarantees that for a set in  $\mathbb{R}$ , if it is bounded above, then it has an supremum; if it is bounded below, then it has a infimum.

#### The Real Numbers

We define the set of real numbers  $\mathbb{R}$  as the smallest extension of the rational numbers  $\mathbb{Q}$  such that the following property holds:

**(P13)** If  $A \subset \mathbb{R}$ ,  $A \neq \emptyset$  is bounded above, then there exists a least upper bound for A in  $\mathbb{R}$ .

We call all real numbers that are not rational *irrational numbers*.



Kulu (UM-SJTU JI)

# **Complex Numbers**

In Vv186, you just need to know how to perform basic complex numbers' computation and some basic properties. Here, we just list some basic computation rules and formulas.

Given  $z_1 = (a_1, b_1)$  and  $z_2 = (a_2, b_2)$ ,

• 
$$z_1 + z_2 = (a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1, b_2)$$

• 
$$z_1 \cdot z_2 = (a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2 - b_1 b_2, a_1 b_2 - a_2 b_1)$$

• 
$$c \cdot z_1 = c(a_1, b_2) = (ca_1, cb_1), c \in \mathbb{R}$$

• 
$$\bar{z_1} = (a_1, -b_1)$$

• 
$$|z_1|^2 = a_1^2 + b_1^2 = z_1 \bar{z_1}$$

$$\bullet \ \mathrm{Re} \ z_1 = \tfrac{z_1 + \bar{z_1}}{2}$$

$$\bullet (\operatorname{Im} z_1)i = \frac{z_1 - \bar{z_1}}{2}$$

# Open Ball

Let  $z_0 \in \mathbb{C}$ . Then we define the **open ball** of radius R > 0 centered at  $z_0$  by

$$B_R(z_0) := \{z \in \mathbb{C} : |z - z_0| < R\}$$

- Geometric interpretation?
- Higher dimensions?

How to define the boundness of a set in  $\mathbb{C}$ ?

Are there lower bound or upper bound for a bounded set in  $\mathbb{C}$ ?



### Important Definition for Function

Recall the definition of domain, codomain and range.

Let's start from the notation for functions.

$$f: \Omega \to Y, \qquad x \mapsto f(x).$$

or alternatively

$$f \colon \Omega \to Y, \qquad y = f(x).$$

Example: Point out the domain, codomain and range for the function:

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = x^2 + y^2$$



Kulu (UM-SJTU JI)

We will spend some time discussing about  $\overline{lim}$  and  $\underline{lim}$ , and their relation with sup/inf for sets in next RC.

Consider the set  $U \subset \mathbb{R}$ , where  $U = A \cup B \cup C$  with

$$A = \{x \in \mathbb{R} : 0 < x \le 1\},\$$

$$B = \{x \in \mathbb{R} : x = 2 - 1/n, \ n \in \mathbb{N} \setminus \{0\}\},\$$

$$C = \{x \in \mathbb{R} : x = -1/n, \ n \in \mathbb{N} \setminus \{0\}\}.$$

State (without proof)  $\min U$ ,  $\max U$ ,  $\inf U$ ,  $\sup U$ ,  $\underline{\lim} U$  and  $\overline{\lim} U$  (if one or more of these do not exist, simply state this).

Let  $A \subset \mathbb{R}$  be a non-empty set.

- $\square$  If inf A exists, then  $\lim A$  exists.
- $\square$  If  $\lim A$  exists, then  $\inf A$  exists.
- $\square$   $\lim A$  exists if and only if A is bounded below.
- $\square$  inf A exists if and only if A is bounded below.

#### Reference

- Exercises from 2021-Vv186 TA-Ni Yinchen.
- Exercises from 2021-Vv186 TA-Tu Yiwen.
- Exercises from 2022-Vv186 TA-Sun Meng

