# Final Exam Review

## Math 112

#### Exercise 1:

- a) Let  $f(x) = x^2 + 6x + 9$ . f is a transformation of the function  $y = x^2$  identify the transformation(s) and graph each step.
- b) Apply a horizontal stretch by a factor of  $\frac{1}{5}$  to f and graph the result.

### Exercise 2:

- a) Find  $\sin(120^\circ)$ ,  $\cos(120^\circ)$ , and  $\tan(120^\circ)$  by drawing a picture and using a reference angle.
- b) Find  $\arcsin(-1)$ ,  $\arccos(-1)$ , and  $\arctan(-1)$  in degrees. Draw a picture for each.
- c) You lean a ladder up against a wall. The ladder makes an angle of 30° with the top of the wall, and the base of the ladder is 5 feet from the base of the wall. How long is the ladder, and how far does it reach up the wall?

### Exercise 3:

- a) What is the arc length of a 120° arc in a circle of radius 3?
- b) Consider a triangle with one side of length 10, another of length 8, and an angle of  $\frac{\pi}{3}$  between them. Find the third side of the triangle.
- c) Find a sinusoidal function f(x) with amplitude 4, midline 2, and period 1, such that the graph passes through the point  $\left(\frac{1}{3},4\right)$  and is increasing there.

#### Exercise 4:

- a) Find the unit vector decomposition of a vector with magnitude 7 and an angle of  $\frac{5\pi}{4}$  from the horizontal.
- b) Find the magnitude and direction of the vector  $\vec{v} = -\sqrt{3}\vec{i} + 2\vec{j}$ .
- c) Find the dot product of the vectors in parts a) and b).
- d) Find the angle between the vectors in parts a) and b).

(1) a) 
$$f(x) = (x+3)^2 \Rightarrow horizontal$$

=> horizontal shift 3











$$cos(120^\circ) = -cos(60^\circ) = -\frac{1}{2}$$
  
 $tan(120^\circ) = -tan(60^\circ) = -\sqrt{3}$ 







$$sin(30^\circ) = \frac{5}{c} = > c = 0$$

$$tan(30) = \frac{5}{5} = > b = 5\sqrt{3}$$

$$(3)$$
 a)  $|20^{\circ} = \frac{2\pi}{3}$ 

$$r \theta = 3 \left( \frac{2\pi}{3} \right) = 2\pi$$

$$C^{2} = 8^{2} + 10^{2} - 2.8 D(25(\frac{\pi}{3}))$$

$$C^{2} = 64 + 120 - 80 = 84$$

$$C = \sqrt{84}$$

$$f(x) = 4 \sin(2\pi(x-h)) + 2$$

$$4 = 4 \sin\left(2\pi \left(\frac{1}{3} - h\right)\right) + 2$$

$$\sin\left(2\pi \left(\frac{1}{3} - h\right)\right) = \frac{1}{2}$$

$$arcsin(\frac{1}{2}) = \frac{\pi}{6}$$



$$2\pi \left(\frac{1}{3} - h\right) = \frac{\pi}{6} + 2\pi n$$
 or  $2\pi \left(\frac{1}{3} - h\right) = \frac{5\pi}{6} + 2\pi n$ 

$$\frac{1}{3} - h = \frac{1}{12}$$
 or  $\frac{1}{3} - h = \frac{5}{12}$ 

$$h = \frac{1}{y}$$
 or  $h = -\frac{1}{12}$ 

Graph:



Need to move right, so 
$$h = \frac{1}{4}$$

$$f(x) = 4 \sin(2\pi(x-\frac{1}{4})) + 2$$



$$Sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\hat{\nabla} = -7\frac{\sqrt{2}}{2}\hat{i} - 7\frac{\sqrt{2}}{2}\hat{j}$$



$$\|\hat{\mathbf{w}}\| = \sqrt{2^2 + 3} = \sqrt{7}$$

angle: 
$$arctan(2/\sqrt{3}) = .857$$
  
so from the horizontal, it's II-.857  
= -2.285

() 
$$\vec{\nabla} \cdot \vec{w} = \left(-\frac{7\sqrt{2}}{2}\right)(-\sqrt{3}) + \left(-\frac{7\sqrt{2}}{2}\right)(2)$$

$$= \frac{7}{2}\sqrt{6} - 7\sqrt{2}$$

$$\approx -1.326$$

$$J) - |.326 = ||\vec{v}|| ||\vec{w}|| \cos(\theta)$$

$$- |.326 = 7\sqrt{7} \cos(\theta)$$

$$\theta = arccos(-.0716)$$

$$= |.642$$