This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,
Please do not report the images to the
Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

Europäisches Patentamt

Eur pean **Patent Office** Office eur péen des brevets

REC'D 0 3 JUL 2000

EPO - DG 1

WIPO

PCT

2. 06. 2000

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

99111321.8

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets D.O.

I.L.C. HATTEN-HECKMAN

DEN HAAG, DEN THE HAGUE, LA HAYE, LE

12/04/00

1014 - 02.91 ----

Europäisches Patentamt European Patent Office Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.: Application no.: Demande n°:

99111321.8

Anmeldetag: Date of filing: Date de dépôt:

10/06/99

Anmelder:
Applicant(s):
Demandeur(s):
Stymne, Sten
268 90 Svalöv
SWEDEN

Dahlqvist, Anders

244 66 Furulund

SWEDEN Bezeichnung der Erfindung: Title of the invention:

A new class of enzymes in the biosynthetic pathway for the production of triacylglycerol and recombinant DNA molecules encoding these enzymes

in Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat: State: EΡ

Tag:

01/04/99

Aktenzeichen: File no. EPA

99106656

Pays:

Date: Date: Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

Am Anmeldetag benannte Vertragstaaten: Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE Etats contractants désignés lors du depôt:

Bemerkungen: Remarks: Remarques:

Further applicants are: Ulf STAHL, 753 24 UPPSALA, Sweden Marit LENMAN, 233 59 LUND, Sweden Antoni BANAS, 08-110 SIEDLCE, Poland Hans RONNE, 756 54 UPPSALA, Sweden

EPA/EPO/OEB Form 1012 - 04.98

A new class of enzymes in the biosynthetic pathway for the production of triacylglycerol and recombinant DNA molecules encoding these enzymes

Applicants and inventors:

Anders Dahlqvist, Ulf Ståhl, Marit Lenman, Antoni Banas, Hans Ronne and Sten Stymne

Description

The present invention relates to the isolation, identification and characterization of recombinant DNA molecules encoding enzymes catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

The invention further relates to novel type of enzymes, the genes encoding such enzymes and the use of these genes for transformation. More specifically, the invention relates to use of a previously un-described type of enzymes hereinafter designated phospholipid:diacylglycerol acyltransferases (PDAT) and the genes encoding them. This type of genes expressed alone in transgenic organisms will enhance the total amount of oil (triacylglycerols) produced in the cells. The PDAT genes, in combination with a gene for the synthesis of an uncommon fatty acid will, when expressed in transgenic organisms, enhance the levels of the uncommon fatty acids in the triacylglycerols.

There is considerable interest world-wide in producing chemical feedstock, such as fatty acids, for industrial use from renewable plant resources rather than non-renewable petrochemicals. This concept has broad appeal to manufacturers and consumers on the basis of resource conservation and provides significant opportunity to develop new industrial crops for agriculture.

There is a diverse array of unusual fatty acids in oils from wild plant species and these have been well characterised (see e.g. Badami & Patil, 1981). Many of these acids have industrial potential and this has led to interest in domesticating relevant plant species to enable agricultural production of particular fatty acids.

Development in genetic engineering technologies combined with greater understanding of the biosynthesis of unusual fatty acids now makes it possible to transfer genes coding for key enzymes involved in the synthesis of a particular fatty acid from a wild species into domesticated oilseed crops. In this way individual fatty acids can be produced in high purity and quantities at moderate costs.

Transport of 4000

-

In all crops like rape, sunflower, oilpalm etc., the oil (i.e. triacylglycerols) is the most valuable product of the seeds or fruits and other compounds like starch, protein, and fibre is regarded as by-products with less value. Enhancing the quantity of oil per weight basis at the expense of other compounds in oil crops would therefore increase the value of crop. If genes, regulating the allocation of reduced carbon into the production of oil can be up-regulated, the cells will accumulate more oil on the expense of other products. Such genes might not only be used in already high oil producing cells such as oil crops but could also induce significant oil production in moderate or low oil containing crops such as e.g. soy, oat, maize, potato, sugarbeats, and turnips as well as in microorganisms.

summary of the invention

Many of the uncommon fatty acids of interest, e.g. medium chain fatty acids, hydroxy fatty acids, epoxy fatty acids and acetylenic fatty acids, have physical properties that are distinctly different from the common plant fatty acids. The present inventors have found that, in plant species naturally accumulating these uncommon fatty acids in their seed oil (i.e. triacylglycerol), these acids are absent, or present in very low amounts in the membrane (phospho)lipids of the seed. The low concentration of these acids in the membrane lipids is most likely a prerequisite for proper membrane function and thereby for proper cell functions. One aspect of the invention is that seeds of transgenic crops can be made to accumulate high amounts of uncommon fatty acids if these fatty acids are efficiently removed from the membrane lipids and channelled into seed triacylglycerols.

The inventors have identified a novel class of enzymes in plants catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the production of triacylglycerol and, presumably, lysophospholipids and that these enzymes (phospholipid:diacylglycerol acyltransferases abbreviated as PDAT) are involved in the removal of hydroxylated, epoxygenated fatty acids, and probably also other uncommon fatty acids such as medium chain fatty acids, from phospholipids in plants. Further, the same enzyme reaction was shown to be present in microsomal preparations from baker's yeast (Saccharomyces cerevisiae). A so called , knock out' yeast mutant, disrupted in the respective gene was obtained and microsomal membranes from the mutant was shown to totally lack PDAT activity. Thus, it was proved that the disrupted gene encodes a PDAT enzyme (SEQ ID NO: 1 and 2). In addition, a gene from Schizosaccharomyces pombe, SPBC776.14 (SEQ ID. NO. 3), having 46% identity over 571 amino acids, and three Arabidopsis thaliana genomic sequences coding for putative proteins with amino acid sequence having approximately 44 % identity over a total of 378 amino acids (SEQ ID NO: 4), 47 % identity over 73 amino acids (SEQ ID NO: 9), and 33% identity over 105 amino acids (SEQ ID NO. 10), with the yeast enzyme, were

identified.

Also, a partially sequenced cDNA clone from Neurospora crassa (SEQ ID NO. 8) showed 42% identity over 167 amino acids, and a Zea mays est clone (SEQ ID NO. 6 and 7) showed 36% identity over 96 amino acids, with the yeast enzyme were identified. Finally, two cDNA clones were identified, one Arabidopsis thaliana est (SEQ ID NO. 5) which was 98% identical in nucleotide sequence to the Arabidopsis thaliana genomic sequence (ID no. 4), and a Lycopersicon esculentum est clone (SEQ ID NO. 11) showed 84% identity in 72 nucleotides to Seq ID No. 10.

In a first embodiment, this invention is directed to a PDAT enzyme and nucleic acid sequences that encode a PDAT. This includes biologically active PDATs and encoding sequences for PDATs as well as sequences that are to be used as probes, vectors for transformation or cloning intermediates. The PDAT encoding sequence may encode a complete or partial sequence depending upon the intended use. All or a portion of the genomic sequence, cDNA sequence, precursor PDAT or mature PDAT is intended.

In a different aspect, this invention relates to a method for producing a PDAT in a host cell or progeny thereof, including genetically engineered oil seeds, yeast and moulds or any other oil accumulating organism, via the expression of a construct in the cell. Cells containing a PDAT as a result of the production of the PDAT encoding sequence are also contemplated within the scope of the invention.

In a different embodiment, this invention also relates to methods of using a DNA sequence encoding a PDAT for increasing the oil-content within a cell.

Another aspect of the invention relates to the accommodation of high amounts of uncommon fatty acids in the triacylglycerol produced within a cell, by introducing a DNA sequence producing a PDAT that specifically removes these fatty acids from the membrane lipids of the cell and channel them into triacylglycerol. Plant cells having such a modification are also contemplated herein.

A FDAT of this invention includes any sequence of amino acids, such as a protein, polypeptide or peptide fragment obtainable from a microorganism, animal or plant source that demonstrates the ability to catalyse the production of triacylglycerol from a phospholipid and diacylglycerol under enzyme reactive conditions. By, enzyme reactive conditions" is meant that any necessary conditions are available in an environment (e.g., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function.

Other PDATs are obtainable from the specific sequences provided herein. Furthermore, it will be apparent that one can obtain natural and synthetic PDATs, including modified amino acid sequences and starting materials for synthetic-protein modelling from the exemplified PDATs and from PDATs which are obtained through the use of such exemplified sequences. Modified amino acid sequences include sequences that have been mutated, truncated, increased and the like, whether such sequences were partially or wholly synthesised. Sequences that are actually purified from plant preparations or are identical or encode identical proteins thereto, regardless of the method used to obtain the protein or sequence, are equally considered naturally derived.

The nucleic acid sequences (DNA and RNA) of the present invention can be used to screen and recover "homologous" or , "related" PDATs from a variety of plant and microbial sources.

Further, it is also apparent that a person skilled in the art can, with the information provided in this application, in any organism identify a PDAT activity, purify an enzyme with this activity and thereby identify a ,non-homologues" nucleic acid sequence encoding such an enzyme.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1.

PDAT activity in microsomal fractions of S. cerevisiae. Aliquots of lyophilised microsomal membranes (10 nmol phosphatidylcholine) from a wild type yeast (strain YN979) (lane 1-3, 3), a yeast mutant (strain Bl0280), disrupted in the YNROO8w gene (lane 4-6, 9) or the yeast mutant complemented with a single copy plasmid containing the PDAT gene (lane 7) were assayed for PDAT activity. 2 nmol sn-1-oleoyl-sn-2-[14C]ricinoleoylphosphatidylcholine (lane 1-7) or sn-1-oleoyl-sn-2-[14C]-oleoylphosphatidylcholine (lane 8-9) and 5 nmol of dioleoyl-diacylglycerol (lane 2,5, 7-9) or rac-oleoyl-vernoloyldiacylglycerol (lane 3, 6) were added in benzene solution. The benzene was evaporated under N_2 (g) and 0.1 ml of 50 mM potassium phosphate, pH 7.2, was added. The suspension was thoroughly mixed and after 90 min at 30 C the lipids were extracted in chloroform and separated an thin layer chromatography on silica gel 60 plates in hexan/dietyletber/acetic acid (35:70:1.5). The radioactive lipids were visualised and quantified an the plates by electronic autoradiagraphy (Instant imager, Packard, US). Abbreviations used: triacylglycerol, TAG, FA, fatty acid (i.e. oleic acid); 1-OH-TAG, monoricinoleoyltriacylglycerol; 1-OH-1-epTAG, monoricinoleoyl-monovernoleoyltriacylglycerol nd OH-FA, ricinoleic acid.

Brief Description of the SEQ ID:

SEQ ID NO. 1: Genomic DNA sequence of the Saccharomyces cerevisiae PDAT gene, YNR008w, genebank nucleotide ID number 1302481, and the suggested YNR008w amino acid sequence.

SEQ ID NO. 2: The suggested amino acid sequence of the yeast gene YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 3: Genomic DNA sequence of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 4: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AB006704.

SEQ ID NO. 5: Nucleotide sequence and the corresponding amino acid sequence of the Arabidopsis thaliana est clone with genebank accession number T04806, and ID number 315966.

SEQ ID NO. 6: Nucleotide and amino acid sequence of the Zea mays cDNA clone with genebank ID number g4388167.

SEQ ID NO. 7: Amino acid sequence of the Zea mays cDNA clone with genebank ID number g4388167.

SEQ ID NO. 8: DNA sequence of part of the Neurospora crassa cDNA clone W07G1, ID number g4241729.

SEQ ID NO. 9: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC004557.

SEQ ID NO. 10: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC003027.

SEQ ID NO. 11: DNA sequence of part of the Lycopersicon esculentum cDNA clone with genebank accession number AI486635.

The present invention can be essentially characterized by the following aspects:

- 1. Use of a PDAT PDAT gene (genomic clone or cDNA) for transformation.
- 2. Use of a DNA molecule according to item 1 wherein said DNA is used for transformation of any organism in order to be expressed in this organism and result in an active recombinant PDAT enzyme in order to increase oil content of the organism.
- 3. Use of a DNA mol cule of item 1 wherein said DNA is used for transformation of any organism in order to prevent the accumulation of undesirable fatty acids in the membrane lipids.

4. Use according to item 1, wherein said PDAT gene is used for transforming transgenic oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, such as medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.

- 5. Use according to item 1, wherein said PDAT gene is used for transforming organisms, and wherein said organisms are crossed with other oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, comprising medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
- 6. Use according to item 1, wherein the enzyme encoded by said PDAT gene or cDNA is coding for a PDAT with distinct acyl specificity.
- 7. Use according to item 1 wherein said PDAT encoding gene or cDNA, is derived from Saccharormyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 30% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 8. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharormyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 40% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 9. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharomyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 60% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 10. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharomyces cerevisese, or contain nucleotide sequences coding for an amino acid sequence 80% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 11. Use according to claim 1 wherein said PDAT encoding gene or cDNA is derived from plants or contain nucleotide sequences coding for an amino acid sequence 40% or more identical to the amino acid sequence encoded by the PDAT gene from Arabidopsis thaliana as presented in SEQ. ID. NO. 4, 9 cr 10, or to the protein encoded by the fullength counterpart of the partial Zea mays, Lycopersicon esculentum, or Neurospora crassa cDNA clones.
- 12. Transgenic oil accumulating organisms comprising, in their genome, a ppat gene transferred by recombinant DNA technology or somatic hybridization.
- 13. Transgenic oil accumulating organisms according to item 12 comprising, in their genome, a PDAT gene having specificity for substrates with particular uncommon fatty acid and the gene for said uncommon fatty acid.
- 14. Transgenic organisms according to item 12 or 13 which are selected from the group consisting of fungi, plants and animals.

Printort-12-04-2000

- 15. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants.
- 16. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a storage organ specific promotor.
- 17. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a seed promotor.
- 18. Oils from organisms according to item 12 17.
- 19. A method for altering acyl specificity of a PDAT by alteration of the nucleotide sequence of a naturally occurring encoding gene and as a consequence of this alternation creating a gene encoding for an enzyme with novel acyl specifity.
- 20. A protein encoded by a DNA molecule according to item 1 or a functional fragment thereof.
- 21. A protoin of item 20 designated phospholipid:diacylglyceriol acyltransferase.
- 22. A protein of item 21 which has a distinct acyl specificity.
- 23. A protein of item 13 having the amino acid sequence as set forth in seq id no. 2, (and the proteins encoded by the genes fullength or partial genes set forth in SEQ ID NO. 1, 3, 4, 5, 6, 7, 8, 9, 10 or 11) or an amino acid sequence with at least 30 % homology to said amino acid sequence.
- 24. A protein of item 23 isolated from Saccharomyces cereviseae.

EXAMPLE 1

Determination of substrate utilisation by the acyl-CoA independent acyltransferase in the synthesis of triacylglycerols in microsomal preparations of developing castor bean endosperm and bakers yeast.

Microsomal membranes prepared from developing endosperm of castor bean (Ricinus communis) catalyse the selective transfer of ricinolecyl-(12-hydroxy-9-octadecencyl) and vernoloyl(12-epoxy-9-octadecencyl) groups from both diacylglycerols and phosphatidylcholine into triacylglycerols. The substrate utilisation was investigated in castor bean microsomes by using radioactive sn-1-olecyl-sn-2-(14C)ricinolecyl-diacylglycerol (sn-2-(14C)-ricinolecyl-diacylglycerol (sn-2-(14C)-ricinolecyl-phosphatidylcholine) together with different non-radioactive diacylglycerol (see Table 1).

The preparatian of microsomal fractions of developing castor bean endosperm and freeze drying of the microsomes were performed in known manner. Assays with addition of diacylglycerol and phosphatidylcholine substrates were performed. The results is presented in Table 1 and showed that if radioactive sn-2-[14C]ricinoleoyl-diacylglycerol was used as the only added

R

substrate, 2.8 % of the radio-labelled ricinoleoyl chains were found in triacylglycerol with one ricinolecyl group, 12.4 % of the radioactivity was found in triacylglycerol-species with two ricinoleoyl groups and only trace amounts were associated with triacylglycerol consisting of three ricinoleoyl groups. If incubations with sn-2-[14C] ricinoleoyldiacylglycerol were performed in a 1:4 (mol:mol) mixture with nonradioactive diacylglycerol species containing one vernoloyl group, the distribution of radioactivity between different molecular species of triacylglycerol changed only marginally compared to incubations with just radioactive substrate. Only 1.3% of the added 14C-labelled ricinoleoyl groups were metabolised into triacylglycerol species with one ricinolecyl and one vernoloyl group. Similarly, only marginal changes in the radioactive triacylglycerol molecular species was seen in incubations where sn-2-(14C)-ricinoleoyl-diacylglycerol was mixed with non-labelled divernoloyl-diacylglycerol. However, by adding unlabelled diricinolecylphosphatidylcholine together with sn-2-[14C]-ricinoleoyl-diacylglycerol the radioactivity metabolised into the different triacylglycerol species were substantially altered.

Only trace amounts of radioactivity were detected in triacylglycerol species with one ricinoleoyl chain whereas the radioactivity in triacylglycerol with two ricinoleoyl groups were doubled as compared to incubations with only sn-2-[14C]-ricinoleoyl-diacylglycerol added.

O

Table 1. In vitro synthesis of triacylglycerols in microsomal preparations of developing castor beau. Aliqouts of microsomes (20 mnol PC) were lyophilised and substrate lipids were added in benzene solution: (A) 0.4 nmol [14C]-DAG (7760 dpm/nmol) and where indicated 1.6 nmol unlabelled DAG; (B) 0.4 nmol [14C]-DAG (7760 dpm/nmol) and 5 nmol unlabelled di-ricinoleoyl-PC and (C) 0.25nmol [16]-PC (4000 dpm/nmol) and 5 nmol unlabelled DAG. The benzene was evaporated by N2 and 0.1 ml of 50 mM potassium phosphate was added, thoroughly mixed and incubated at 30 °C for (A) 20 min; (B) and (C) 30 min. Assays were terminated by Germany) in hexan/diethylether/acetic acid 35:70:1.5. The radioactive lipids were visualised and the radioactivity quantified on the plate by electronic autoradiography extraction of the lipids in chloroform (Dahlqvist et al. 1998). The lipids were then separated by thin layer chromatography on silica gel 60 plates (Merck, Darmstadt, Instant Imager, Packard, US). Results are presented as mean values of two experiments.

Substrate added			be to %lom	mol% of added ["C -acyl group in TAG "	up in TAG (1)	
l'Ci- üpid ⁽¹⁾	uolabelled lipid ⁽²⁾	1-0H-TAG	2-OH-TAG	1-OH-1-ver- TAG	1-OH-2-ver- TAG	3-OH-TAG
mono-["C]-ricinoleoyi-DAG	mono-ricinoleoyl-DAG	2.8	12.4	•	1	
mono-["C]-ricinoleayl-DAG	mono-vernoleoylDAG	3.2	12.1	1.3	•	•
mono-f"Cj-ricinoleoyl-DAG	di-vernolcoyl -DAG	4	10	0.5	1,2	•
mono-[4C]-ricinoleoyl-DAG	di-ricinoleoyl -PC	0.3	24.8	•	•	•
mono-[14C]-ricinolenyl-PC	none	6.8	8.0		•	4.7
mono-['WC]-ricinoleoyl-PC	di-oleoyl-DAG	9.8	8.6	•	t	5.0
mono-["C]-ricinoleayl-PC	mono-ricinoleoyl-DAG	5.7	16.7	4	•	6.1
mono-[4C]-ricinoleoyl-PC	di-ricinoleoyl-DAG	4.5	9.4	,	•	9.5
mono-[MC]-ricinoleoyl-PC	mono-vernoleoyl-DAG	0.9	11.5	10.9	0.5	7.4
mono-[14C]-ricinoleoyl-PC	di-vemoleoyl-DAG	6.7	10.8	1.1	8.4	8.9

Radioactivity in different triacylglycerols (TAG) species formed. Abbreviations used: 1-OH-, mono-ricinolcoyl-; 2-OH, di-nicinolcoyl-; 3-OH-, triricinolcoyl; 1-OH-1-ver-, group is attached at the sn-2-position of the lipid and unlabelled olcoyl group at the sn-1-position. Unlabelled DAG with vernolcoyl- or ricinolcoyl cliains were prepared by mono-ricinoleoly-monovemoleoyl-; 1-OH-2-ver-, mono-ricinoleoyl-divernoleoyl-. Radiolabelled DAG and PC were prepared enzymatically. The radiolabelled ricinoleoyl the action of TAG lipase (REF) on oil of Euphorbia lagascae or Castor bean, respectively. Synthetic di-ricinoleoyl-PC was kindly provided from Metapontum Agribios (ftally)

+49 89 2398 SPEC

10

EXAMPLE 2

Transformation and expression of YNROORw gene in yeast

The yeast mutant (strain B 10280) disrupted in the YNROO8w gene, was transformed with the single copy plasmid pFL39 having the PDAT-gene (YNROO8w) under the control of the endogenous promotor region (583 bp 5' untranslated) inserted into the cloning cassette. The transformed yeast was pre-cultivated at 28 °C for 20 h in defined YNB medium without tryptophane added. Cells were harvested and re-suspended in minimal medium (Meesters eI al., 1996), supplemented with 16 g/l glycerol to the original volume of the growth culture. The culture was further incubated for 24 h after which cells were harvested by centrifugation. Microscmal fraction of the yeast was prepared as described in Example 1 above and was incubated in the presence of sn-2-[14C]-ricinoleoyl-phosphatidylcholine (Fig 1, lane 7). This experiment clearly shows that the PDAT activity could be restored by the expression of the YNROO8w gene in the mutant yeast strain B10280 normally lacking the PDAT-activity.

The effect of the over-expression of the PDAT gene on the lipid accumulation was studied by transforming the wild-type yeast (strain SCY62) with a plasmid pJN92 containing the PDAT gene (YNR008w) under the control of a GAL1-promotor. The transformed yeast was then cultivated at 28 °C in defined YBN medium lacking uracil. The expression of the PDAT gene was induced by the addition of 2 % (vlv) galactose after 10 hours growth and was further incubated for 18 hours. The yeast cells were harvested and the lipid content of the yeast was analysed by thin layer chromatography and gas liquid chromatography. The results are presented in Table 2. The total lipid content in the yeast with the over-expressed PDAT was 1.3 fold higher that in the control yeast transformed with an empty plasmid pJN92. The expression of the PDAT gene had no effect on the growth rate as determined by optical density measurements. The elevated lipid content in the yeast transformed with PDAT as compared to the control yeast can be totally accounted for by an 80 % increase seen in the triacylglycerol content. The levels of the polar lipids and sterol esters were not significantly effected by the over-expression of the PDAT gene. Hence, these results clearly demonstrate the use of the PDAT gene in increasing the oil content in transgenic organisms.

Table 2. Lipid content in yeast with overexpressed PDAT gene.
Yeast transformed with the PDAT gene under the control of a gal promotor in a xxxx plasmid were grown in YNB medium at 28 °C. After after 10 hours growth the expression of the PDAT gene was induced by the addition of 2 % (v/v) galactose. Cells were harvested after additional 18 hours growth and analysed for its lipid content. Yeast transformed with an empty plasmid grown under identical conditions was used as control. Lipids were extracted in chloroform, fractionated on TLC and quantified by GC analyses. The lipid content was measured as mol fatty acids (FA) per mg yeast (dry weight).

	PDAT-transfor	nned yeast	Control yeast			
	nmol FA/mg	(%)	umol FA/mg	(%)		
70 1 - 11 - 14a	60	32	60	42		
Polar lipids	17	9	20	14		
Sterol estera	105	56	58	40		
Triacylglycerol	5	3	6	4		
Other lipids	188	-	144			
Sum	150					

Claims

- 1. An enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol forming triacylglycerol.
- 2. A recombinant DNA molecule encoding the enzyme of claim 1.
- 3. A recombinant DNA molecule according to claim 2 encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol, wherein said enzyme comprises an amino acid sequence set forth in SEQ ID NO. 2, or fragments thereof, or is encoded by the genes set forth in SEQ ID NO. 1, 3, 4, 9 or 10, or is encoded by the fullenght genes corresponding to the partial nucleotide sequences set forth if SEQ ID NO. 5, 6, 7, 8, and 11 or sequences 40% or more identical to said sequences.
- 4. The DNA molecule of claim 2 or 3, wherein said enzyme is designated as phospholipid:diacylglycerol acyltransferease.
- 5. A vector comprising a DNA molecule of claim 2 or 3.
- 6. A vector of claim 5 further comprising a selectable marker gene.
- 7. A host cell containing a DNA molecule of claim 2 or 3.
- 8. The host cell of claim 7 which is a plant cell or yeast cell.
- 9. A process for the production of transgenic yeast cells, plant cells or plants comprising a) transforming a DNA moleclule of claims 2 or 3 into plant cells or plants; and b) selecting of transformed plant cells or plants having an altered biosynthetic pathway in the production of triacylglycerol.
- 10. A process of claim 9 wherein the altered biosynthetic pathway is characterised by an increased or altered oil content.
- 11. A process of claim 9 wherein the altered biosynthetic pathway is characterised by the prevention of accumulation of undesirable fatty acids in the membrane lipids.

- 12. A protein encoded by a DNA molecule according to claim 2 or 3 or a functional fragment thereof.
- 13. A method for production of triacylglycerol, comprising enzymatic catalysation by an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol forming triacylglycerol.
- 14. A method according to claim 13, comprising enzymatic catalysation by a protein or functional fragment according to claim 12.

Abstract

10-06-1999 MUENCHEN 05

The present invention relates to a novel class of enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol. Further, the invention relates to the isolation, identification, characterization and use of recombinant DNA molecules encoding this class of enzymes.

×

SPEC

SEQUENCE LISTING

- <110> Stymne Dr., Sten
- <120> RECOMBINANT DNA MOLECULES ENCODING A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL
- <130> stymne
- <140>
- <141>
- <160> 11

<170>

- <210> 1
- <211> 1986
- <212> genomic DNA
- <213> Saccharomyces cerevisiae
- <220>
- <221> CDS
- <222> (1) .. (1983)
- <400> 1
- atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 48
 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
 1 5 10 15
- gat gaa aac aat aaa ggg ggt tot gtt cat aac aag cga gag agc aga 96 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 20 25 30
- and dad att cat cat caa dag gga tta ggc cat aag aga aga agg ggt 144
 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly
 35 40 45
- att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat tte gac agg 192
 Ile Ser Gly Eer Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg
 50 55 60
- aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg 240 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 70 75 80
- att ttc att ctt ggt gca ttc tta ggt gta ctt ttg ccg ttt agc ttt 288

 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe

 85 90 95
- ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt 336 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp L u Phe Asp Asn Phe 100 105 110

Leu Pro Gln Oly The Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn 130 tac tcc aca tct tct tta gat gat ctc agt gaa aat ttt gcc gtt ggt Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 145 150 160 aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 165 170 180 185 190 gga gac gat ggg ggt agt tct agg gga att gaa agc tgg gga gtt att 185 190 gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205	
tac tec aca tet tet tta gat gat etc agt gaa aat ttt gee gtt ggt Tyr ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 145 150 155 160 aaa caa etc tta egt gat tat aat atc gag gee aaa cat eet gtt gta Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 165 170 175 atg gtt eet ggt gte att tet aeg gga att gaa age tgg gga gtt att Mot Val Pro Gly Val Ile ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 185 190 gga gae gat gag tge gat agt tet geg eat ttt egt aaa egg etg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205 gga agt ttt tac atg etg aga aca atg gtt atg gat aaa gtt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	432
Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 145	480
Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 165	
Mot Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 185 185 190 190 184 185 190 190 190 190 190 190 190 19	528
gga gac gat gag tgc gat agt tct gcg cat ttt cgt aaa cgg ctg tgg Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205 gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	576
gga agt ttt tac atg ctg aga aca atg gtt atg gat aaa gtt tgt tgg Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	624
Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp	672
	3 T Z
ttg and cat gta atg tta gat cct gna aca ggt ctg gac cca ccg aac Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 230 235 240	720
ttt acg cta cgt gca gca cag ggc ttc gaa tca act gat tat ttc atc Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 255	768
gea ggg tat tgg att tgg aac aaa gtt ttc caa aat ctg gga gta att Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265 270	816
	864

gça	tat	tta	gat	cta	gaa	aga	cgc	gat	agg	tac	ttt	acg	aag	cta	aag	912
Ьlа	Tyr	Leu	Asp	Leu	Glu	Arg	Arg	Asp	Arg	Tyr	Pho	Thr	Lys	Leu	Lys	
	290					295					300					
a a	caa	atc	gaa	cta	EEE	cat	caá	ttg	aqt	ggt	ģaa	aaa	gtt	tgt	tta	960
	Gln															
					310		•			315		-		_	320	
305)				224					•-•						
	gga		tat	ato	aat	tet	cag	att	atc	ttt	tac	ttt	atq	aaa	tag	1008
	Gly															
116	GIA	HIL	261	325					330	•	-4-			335	•	
				525												
	gag	~~ = =			act	att	tan	aat	aat	aat	aat	cat	ggc	taa	att	1056
	Glu															
Val	GIU	Ala		GIŸ	PLO	neu	TYL		V911	GLY	GIY	wra	350	112	741	
			340					345					330			
					.				~~~	~~~	~~~	3.00	a++	ota	aac	1104
	gaa															1241
Asr	Glu		Ile	Asp	ser	Pne		ASII	Ald	Ala	GIY		Dea	шеш	GIY	
		355					360					365				
												_ 4				1150
	. cca															1152
Ala	Pro	Lys	Ala	Val	Pro	Ala	Leu	Ile	Ser	GlÃ		Met	Lys	ДЗА	Tor	
	370					375					380					
													_			
	. caa															1200
Ile	Gln	Leu	Asn	Thr	Ircu	Ala	Met	Tyr	Gly		Glu	гÀÈ	Pne	Pne		
385	i				390					395					400	
																4040
	att															1248
Arg	, Ile	Glu	Arg	Val	Lys	Met	Leu	Gln	Thr	Trp	Gly	GIA	He		ser	
				405					410					415		
	g cta															1296
Mel	Leu	Pro	Lys	Gly	Glu	Glu	Val	Ile	Trp	Gly	Asp	Met	гуя	Ser	ser	
			420					425					430			
	gag															1344
Sei	: Glu	Asp	Ala	Leu	Asn	Asn	Asn	Thr	Asp	Thr	Tyr	Gly	Asn	Phe	Ile	
		435					440					445				
	a ttt															1392
	g Phe															
	450		_			455					460					
aaa	a gac	gcc	att	aac	atg	aca	tta	tcg	ata	tca	cct	gaa	tgg	ctc	caa	1440
Lv	Asp	Ala	Ile	Asn	Met	Thr	Leu	Ser	Ile	ser	Pro	Glu	Trp	Leu	Gln	
46					470					475					480	

,.....

-	_	_												gaa Glu 495		1488
_		_												cca Pro		1536
_	_													ata Ile		1584
														gag Glu		1632
Asp 545	Ser	Ser	Ala	Leu	Asn 550	Leu	Thr	Ile	Asp	Tyr 555	Glu	Ser	Lys	caa Gln	Pro 560	1680
Val	Phe	Leu	Thr	Glu 5 65	Gly	Asp	Gly	Thr	Val 570	Pro	Leu	Val	Ala	cat His 575	Ser	1728
Met	Cys	Нів	Lys 580	Trp	Ala	Gln	gly	Ala 585	Ser	Pro	Tyr	Asn	Pro 590	gcc	Gly	1776
		-												ttt Phe		1824
Ile	Arg 610	Gly	Gly	Ala	ГЛЗ	Ser 615	Ala	Glu	ніе	Val	Asp 620	Ile	Leu	gjy ggc	Ser	1872
Ala 625	Glu	Leu	Asn	Asp	Tyr 630	Ile	Leu	ŗàe	Ile	Ala 635	Ser	Gly	Asn	ggc ggc	Asp 640	1920
														tet Ser 655	Gln	1968

+49 89 2399**** SPEC

19

atg ccc ttc cca atg taa Met Pro Phe Pro Met 660 1986

<210> 2

<211> 651

<212> PRT

<213> Saccharomyces cerevisiae

<400> 2

Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 25 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Gly Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Pho 90 85 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 105 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 120 Lou Pro Glu Gly Ile Ser Ser Phe Ile Asp Asp Ile Glu Ala Gly Asn 135 Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 170 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 200 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 215 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 265 Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 280 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 300 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 315 310

Tle	Glv	His	Ser	Met	Gly	Ser	Gln	Ile	Ile	Phe	Tyr	Phe	Met	Lys	Trp
	,			325	-				33C					335	
Val	Glu	Ala	Glu	Gly	Pro	Leu	Tyr	Gly	Asn	Gly	Gly	Arg	Gly	Trp	Val
			340	•			-	345					350		
Asn	alu	His		Asp	Ser	Phe	Ile	neA	Ala	Ala	Gly	Thr	Leu	Leu	Gly
***		355					360				•	365			Ī
λla	Dro		s [A	Val	Pro	Ala		Ile	Ser	Glv	Glu	Met	Lys	Asp	Thr
7.14	370	~,~		• • -		375				•	380		•	-	
Tla		נופ. ל	Asn	Thr	Leu		Met	Tvr	Glv	Leu	Glu	Lvs	Phe	Phe	Ser
385	0111	2,00		•••	390			- 4 -	•	395		•			400
	בוז	Glu	220	Va I		Met	Leu	Gln	Thr		Glv	Glv	Ile	Pro	
vrā	116	GIU	Vr A	405	y ~			4-	410		2	4-2		415	
Mak	Tou	D:50	Tare		Glu	Glu	Val	Tle		Glv	Asp	Met	Lys		Ser
Mec	neu	PIO	420	J.,				425		1			430		
C-~	<i>a</i> 3	Ne n		Ť.@11	Acn	Acn	Aen		Asp	Thr	Tvr	Glv	Asn	Phe	Ile
261	GIU	435	лти	Z1 C C.	21012	*****	440				-1-	445			
3 ~~	Dha		76.40.4	B an	Thr	Ser		Ala	Phe	Asn	Lvs		Leu	Thr	Met
Arg	450	GIU	1117	MOII	****	455	4.02	•			460				
*		አፃ።	T10	N e n	Mot		T.611	Sor	Tle	Ser		Glu	Trp	Leu	Gln
1.YS	Asp	ATA	115	ASII	470	1111	Dea	001		475					480
	224	17-3	Wis	Glu		TVr	Ser	Phe	GIV		Ser	Lvs	Asn	Glu	
AIG	Arg	VAI	HIS	485	0111	• 4 •			490	-7-		-1-		495	
Gla.	Len	ሽ ጉ ርዓ	LAZE		G] 11	Leu	His	His	-	His	Tro	Ser	Asn		Met
GIU	Dea	7+3	500	.,,,,,,				505	-1-				510		
Gls.	Val	Pro		Pro	ឲាប	Ala	Pro		Met	Lvs	Ile	Tvr	Сув	Ile	Tvr
GIU	*41	515	LCu		~~~		520	••	•	-1 -		525	-4 -		
C1v	Va 1		Δen	Pro	Thr	Glu		Ala	Tvr	Val	Tyr	Lys	Glu	Glu	Asp
011	530	7-22-1-				535		•	-3		540	•			-
λen		Ser	Ala	Leu	λsn		Thr	Ile	Asp	Tyr	Glu	Ser	Lys	Gln	Pro
545	501				550				•	555			•		560
	Dhe	Leu	Thr	Glu		Asp	Gly	Thr	Val	Pro	Leu	Val	Ala	His	Ser
V (1, 2	2.120			565	3		4		570					575	
Met	Cvs	His	Lvs		Ala	Gln	Glv	Ala		Pro	Tyr	Asn	Pro	Ala	Gly
1.00	C] 5	,	580					585			•		590		-
Tle	Den.	Val		Ile	Val	Glu	Met		His	Gln	Pro	Asp	Arg	Phe	Asp
	7.011	595	•112				600	•				605	_		_
Tla	8.00		ตา _ง	Ala	Lvs	Ser		Glu	His	Val	αaA		Leu	G1y	Şer
116	610	023	4-7		-1 -	615					620			-	
815		T.011	ž avi	ă en	Tur	-	Leu	Lvs	Tle	Ala	ser	Glv	Asn	Glv	Asp
	GIU	пец	Veir	Wo D	630		40.0			635					640
625	t/a1	a)	D -^	Arm		Len	Ser	Asn	Lev		Gln	Tro	val	ser	
1100	ATT	GIU	710	645	O 4 14	عيا ښاسم			650					655	_ =
M-+	D=4	pha	Pro						7.5						
Met	FEO	Etre		145 C											
			660												

<210>	3	
<211>	2312	
<212>	genomic DNA	
<213>	Schizosaccharomyces	pombe
<400>	3	

ATGGCGTCTT	CCAAGAAGAG	CAAAACTCAT	AAGAAAAAGA	AAGAAGTCAA	50
ATCTCCTATC	GACTTACCAA	ATTCAAAGAA	ACCAACTCGC	GCTTTGAGTG	100
AGCAACCTTC	AGCGTCCGAA	ACACAATCTG	TTTCAAATAA	atcaagaaaa	150
TCTAAATTTG	GAAAAAGATT	GAATTTTATA	TTGGGCGCTA	TTTTGGGAAT	200
ATGCGGTGCT	TTTTTTTCG	CTGTTGGAGA	CGACAATGCT	GTTTTCGACC	250
CTGCTACGTT	AGATAAATTT	GGGAATATGC	TAGGCTCTTC	AGACTTGTTT	300
GATGACATTA	AAGGATATTT	ATCTTATAAT	GTGTTTAAGG	ATGCACCTTT	350
TACTACGGAC	AAGCCTTCGC	AGTCTCCTAG	CGGAAATGAA	GTTCAAGTTG	400
GTCTTGATAT	GTACAATGAG	GGATATCGAA	GTGACCATCC	TGTTATTATE	450
GTTCCTGGTG	TTATCAGCTC	AGGATTAGAA	AGTTGGTCGT	DTTAATAATT	500
CTCGATTCCT	TACTTTAGGA	AACGTCTTTG	GGGTAGCTGG	TCTATGCTGA	550
AGGCAATGTT	CCTIGACAAG	CAATGCTGGC	TTGANCATTT	AATGCTTGAT	600
ааааааассс	GCTTGGATCC	GAAGGGAATT	AAGCTGCGAG	CAGCTCAGGG	650
GTTTGAAGCA	GCTGATTTTT	TTATCACGGG	CTATTGGATT	TGGAGTAAAG	700
TAATTGAAAA	CCTTGCTGCA	ATTGGTTATG	AGCCTAATAA	CATGTTAAGT	750
GCTTCTTACG	ATTGGCGGTT	ATCATATGCA	AATTTAGAGG	AACGTGATAA	800
ATATTTTTCA	AAAAATTDAA	TGTTCATTGA	GTACAGCAAC	ATTGTACATA	850
AGAAAAAGGT	AGTGTTGATT	TCTCACTCCA	TGGGTTCACA	GGTTACGTAC	900
TATTTTTTTA	AGTGGGTTGA	AGCTGAGGGC	TACGGAAATG	GTGGACCGAC	950
TTGGGTTAAT	GATCATATTG	AAGCATTTAT	AAATGTGAGT	CTCGATGGTT	1000
GTTTGACTAC	GTTTCTAACT	TTTGAATAGA	TATCGGGATC	TTTGATTGGA	1050
GCACCCAAAA	CAGTGGCAGC	GCTTTTATCG	ggtgaaatga	AAGATACAGG	1100
TATTGTAATT	ACATTAAACA	TGTTAATATT	TAATTTTTGC	TAACCGTTTT	1150
AAGCTCAATT	GAATCAGTTT	TCGGTCTATG	GGTAAGCAAT	AAATTGTTGA	1200
GATTTGTTAC	TAATTTACTG	TTTAGTTTGG	AA4AATTTTT	TTCCCGTTCT	1250
GAGGTATATT	CAAAAATACA	AATGTGCTCT	ACTTTTTCTA	ACTITIAATA	1300
GAGAGCCATG	ATGGTTCGCA	CTATGGGAGG	AGTTAGTTCT	ATGCTTCCTA	1350
AAGGAGGCGA	TGTTGTATGG	GGAAATGCCA	GTTGGGTAAG	AAATATGTGC	1400

<210> 4 <211> 3685 <212> genomic DNA <213> Arabidopsis thaliana <400> 4

ATGCCCCTTA	TTCATCGGAA	AAAGCCGACG	GAGAAACCAT	CGACGCCGCC	50
ATCTGAAGAG	GTGGTGCACG	ATGAGGATTC	GCANAAGAAA	CCACACGAAT	100
CTTCCAAATC	CCACCATAAG	AAATCGAACG	GAGGAGGGAA	GTGGTCGTGC	150
ATCGATTCTT	GTTGTTGGTT	CATTGGGTGT	GTGTGTGTAA	CCTGGTGGTT	200
TCTTCTCTTC	CTTTACAACG	CAATGCCTGC	GAGCTTCCCT	CAGTATGTAA	250
CGGAGCGAAT	CACGGGTCCT	TTGCCTGACC	CGCCCGGTGT	TAAGCTCAAA	300
aaagaaggtc	TTAAGGCGAA	ACATCCTGTT	GICTTCATTC	CTGGGATTGT	350
CACCGGTGGG	CTCGAGCTTT	GGGAAGGCAA	ACAATGCGCT	GATGGTTTAT	400
TTAGNNAACG	TTTGTGGGGT	GGAACTTTTG	GTGAAGTCTA	CAAAAGGTGA	450
GCTCAACAAT	TCTCACTCTT	CCTTTATATT	GGGATTTGGA	TTGGATCTGA	500
TGAGATCACG	CACTTGTTGC	TTCTTCAACA	TCACTCAAAC	TTTAATTCCA	550
TGTTTGTCTG	TCTTACTCTT	TACTTTTTTT	1TTTTTTGAT	GTGAAACGCT	600
ATTTTCTTAA	GAGACTATTT	CTGTATGTGT	AAGGTAAGCO	TTCCAAGGAC	650
G'faattggct	TGGACTATTT	CTGTTTGATT	GTTAACTTTA	GGATATAAA	700
TAGCTGCCTT	GGAATTTCAA	GTCATCTTAT	TGCCAAATCT	GTTGCTAGAC	750
ATGCCCTAGA	GTCCGTTCAT	AACAAGTTAC	TTCCTTTACT	GTCGTTGCGT	B00
GTAGATTTAG	CTTTGTGTAG	CGTATAATGA	AGTAGTGTTT	TATGTTTTGT	850
TGGGAATAGA	GAAGTTCTAA	CTACATCTGT	GGAAAGTGTG	TTCAGGCTGT	900
GATAGAGGAC	TGTTGCTTTA	TTATTCAACT	ATGTATATGT	OTAATTAAAG	950
CTAGTTCCTT	TITGATCTTT	CAGCTCAATG	TGCTTTTCTC	AATTTTTTC	1000
TCAATTTCAA	AGTTTCACAT	CGAGTTTÄTT	CACATGTCTT	GAATTTCGTC	1050
CATCCTCGTT	CTGTTATCCA	GCTTTGAACT	CCTCCCGACC	CTGCTATGGA	1100
TATATTAAAA	AAAAAGTGTT	TTGTGGGTTG	CATCTTIGTT	ACGATCTGCA	1150
TCTTCTTCTT	TCGGCTCAGT	GTTCATGTTT	TIGCTATEGT	AGAGATGGGC	1200
AATGTTATTG	TTGATGGTAA	CAGTGGTATA	GTTGATAGTA	TCTTAACTAA	1250
TCAATTATCT	CTTTGATTCA	GGCCTCTATG	TTGGGTGGAA	CACATGTCAC	1300
TTGACAATGA	AACTGGGTTG	GATCCAGCTG	GTATTAGAGT	TCGAGCTGTA	1350

TCAGGACTCG	TGGCTGCTGA	CTACTTTGCT	CCTGGCTACT	TTGTCTGGGC	1400
AGTGCTGATT	GCTAACCTTC	CACATATTGG	ATATGAAGAG	AAAAATA TGT	1450
ACATGGCTGC	ATATGACTGG	CGGCTTTCGT	TTCAGAACAC	AGAGGTTCTT	1500
TTCTCATCGT	TCTTTCTATT	ATTCTGTTCC	ATGTTACGTT	TCTTTCTTCA	1550
TTACTTAAGG	CTTANATATG	TTTCATGTTG	AATTAATAGG	TACGTGATCA	1600
GACTCTTAGC	CGTATGAAAA	GTAATATAGA	GTTGATGGTT	TCTACCAACG	1650
GTGGAAAAA	AGCAGTTATA	GTTCCGCATT	CCATGGGGGT	CTTGTATTTT	1700
CTACATTTTA	TGAAGTGGGT	TGAGGCACCA	GCTCCTCTGG	GTGGCGGGG	1750
TGGGCCAGAT	TGGTGTGCAA	AGTATATTAA	GGCGGTGATG	AACATTGGTG	1800
GACCATTTCT	TGGTGTTCCA	AAAGCTGTTG	CAGGGCTTTT	CTCTGCTGAA	1850
GCAAAGGATG	TTGCAGTTGC	CAGGTATTGA	ATATCTGCTT	ATACTTTTGA	1900
TGATCAGAAC	CTTGGCTCTG	GAACTCAAAG	TTATTCTACT	AAATATCAAT	1950
ΤΟΤΑΑΤΛΑĊΆ	TIGCTATATT	ATCGCTGCAA	CTGACATTGG	TTCATTATTT	2000
TIGCIGCITA	TGTAACTGAA	ACTCTCTTGA	Gattagacaa	ATGATGAATT	2050
GATAATTCTT	ACGCATTGCT	CTGTGATGAC	CAGTTTCTTA	GCTTCGACGA	2100
TAACATTIGT	CATACTGTCT	TTTGGAGGGC	ATTGAATTTT	GCTATGGAAA	2150
GCGCTGGAGC	TTCCATGCTT	GCATTCTTTA	CCAATTAGCG	TTATTCTGCT	2200
TCTTTCAATT	TTCTTGTATA	TGCATCTATG	GTCTTTTATT	TCTTCTTAAT	2250
TAAAGACTCG	TTGGATTAGT	TGCTCTATTA	GTCACTTGGT	TCCTTAATAT	2300
AGAACTTTAC	TTTCTTCGAA	AATTGCAGAG	CGATTGCCCC	AGGATTCTTA	2350
GACACCGATA	TATTTAGACT	TCAGACCTTG	CAGCATGTAA	TGAGAATGAC	2400
ACGCACATGG	GACTCAACAA	TGTCTATGTT	ACCGAAGGGA	GGTGACACGA	2450
TATEGEGEGE	GCTTGATTGG	TCACCGGAGA	AAGGCCACAC	CTGTTGTGGG	2500
AAAAAGCAAA	AGAACAACGA	AACTTGTGGT	GAAGCAGGTG	AAAACGGAGT	2550
TTCCAAGAAA	AGTCCTGTTA	ACTATGGAAG	GATGATATCT	TTTGGGAAAG	2600

	0110010-411	AUAIUIII	0001001000	2900
CTTATGGANT	TGCTGATGAT	TTGGATGACA	CCAAGTATCA	2950
TACTGGTC'AA	ATCCGTTAGA	GACAAAGTAA	GTGATTTCTT	3000
GTATCCTTCG	TCCTGATGCA	TTATCAGTCT	TTTTGTTTC	3050
CATATGGTTT	TCAGCTCAAA	GCTTACAAAG	CTGTTTCTGA	3100
AAAAGGCTTG	CTCAGTAATA	TTGAGGTGCT	AAAGTTGATA	3150
TTGCTTATAA	ATCCTCCGTT	TGGTTTGTTC	TGCTTTTTCA	3200
TGCTCCTGAG	ATGGAAATCT	ACTCATTATA	CGGAGTGGGG	3250
AACGAGCATA	CGTATACAAG	CTTAACCAGT	CTCCCGACAG	3300
TTTCAGATAT	TCACTTCTGC	TCACGAGGAG	GACGAAGATA	3350
AGCAGGAGTT	TACAATGTGG	ATGGGGATGA	AACAGTACCC	3400
CCGGGTACAT	GTGTGCAAAA	GCGTGGCGTG	GCAAGACAAG	3450
TCCGGAATCA	AGACTTATAT	NAGAGAATAC	AATCACTCTC	3500
CCTGTTGGAA	GGGCGCGGGA	CGCAGAGTGG	TGCCCATGTT	3550
GAAACTTTGC	TTTGATCGAA	GATATCATGA	GGGTTGCCGC	3600
GGGTCTGATA	TAGGACATGA	CCAGGTCCAC	TCTGGCATAT	3650
GGAGCGTATT	GACCTGAAGC	TGTGA		3685
	CTTATGGANT TACTGGTC'AA GTATCCTTCG GATATGGTTT AAAAGGCTTG TTGCTTATAA TGCTCCTGAG AACGAGCATA TTTCAGATAT AGCAGGAGTT CCGGGTACAT TCCGGAATCA CCTGTTGGAA GAAACTTTGC GGGTCTGATA	CTTATGGANT TGCTGATGAT TACTGGTCAA ATCCGTTAGA GTATCCTTCG TCCTGATGCA GATATGGTTT TCAGCTCAAA AAAAGGCTTG CTCAGTAATA TTGCTTATAA ATCCTCCGTT TGCTCCTGAG ATGGAAATCT AACGAGCATA CGTATACAAG TTTCAGATAT TCACTTCTGC AGCAGGAGTT TACAATGTGG CCGGGTACAT GTGTGCAAAA TCCGGGAATCA AGACTTATAT CCTGTTGGAA GGGCGGGGA GAAACTTTGC TTTGATCGAA GGGTCTGATA TAGGACATGA	CTTATGGANT TGCTGATGAT TTGGATGACA TACTGGTCAA ATCCGTTAGA GACAAAGTAA GTATCCTTCG TCCTGATGCA TTATCAGTCT GATATGGTTT TCAGCTCAAA GCTTACAAAG AAAAGGCTTG CTCAGTAATA TTGAGGTGCT TTGCTTATAA ATCCTCCGTT TGGTTTGTTC TGCTCCTGAG ATGGAAATCT ACTCATTATA AACGAGCATA CGTATACAAG CTTAACCAGT TTTCAGATAT TCACTTCTGC TCACGAGGAG AGCAGGAGTT TACAATGTGG ATGGGGATGA CCGGGTACAT GTGTGCAAAA GCGTGGCGTG TCCGGAATCA AGACTTATAT AAGAGAATAC CCTGTTGGAA GGGCGCGGA CGCAGAGTGG GAAACTTTGC TTTGATCGAA GATATCATGA	ACTACATTAT GTTGCTCCTA AGATGATGGC GCGTGGTGCC CTTATGGANT TGCTGATGAT TTGGATGACA CCAAGTATCA TACTGGTCAA ATCCGTTAGA GACAAAGTAA GTGATTTCTT GTATCCTTCG TCCTGATGCA TTATCAGTCT TTTTGTTTTC GATATGGTTT TCAGCTCAAA GCTTACAAAG CTGTTTCTGA AAAAGGCTTG CTCAGTAATA TTGAGGTGCT AAAGTTGATA TTGCTTATAA ATCCTCCGTT TGGTTTGTTC TGCTTTTTCA TGCTCCTGAG ATGGAAATCT ACTCATTATA CGGAGTGGGG AACGAGCATA CGTATACAAG CTTAACCAGT CTCCCGACAG TTTCAGATAT TCACTTCTGC TCACGAGGAG GACGAAGATA AGCAGGAGTT TACAATGTGG ATGGGGATGA AACAGTACCC CCGGGTACAT GTGTGCAAAA GCGTGGCGTG GCAAGACAAG TCCGGAATCA AGACTTATAT AAGAGAATAC AATCACTCTC CCTGTTGGAA GGGCGCGGGA CGCAGAGTGG TGCCCATGTT GAAACTTTGC TTTGATCGAA GATATCATGA GGGTTGCCGC GGGTCTGATA TAGGACATGA CCAGGTCCAC TCTGGCATAT GGAGCGTATT GACCTGAAGC TGTGA

10- 6-99 : EP99111321 8 : IN "

<220 <221	> 40 > cI > AI > CI > CI > (1	NA abid S (20)	dopsi		aelia	ana										
AGAA	ACAC	CTCI	rttgi	CTC	CTC	CGAC	TADI)AATC	CAATO	2¢ 21	TAAT	CTGTO	STTCI	CAAAT	TTC	60
CTG	ACGI	GAT	TGA(AAA:	TC	CGTA	rage	A A T T	CCTGC	ST T	TAAT'	(TÇAJ	\GTG#	ACAGA	\T	119
ATG	CCC	CTT	ATT	CAT	CGG	AAA	AAG	CCG	ACG	GAG	AAA	CCA	TCG	ACG	CCG	167
Met	Pro	Leu	Ile	His	Arg	Lyb	Lys	Pro	Thr	Glu	Lys	Pro	Ser	Thr	Pro	
CCA	TCT	GAA	GAG	GTG	GTG	CAC	GAT	GAG	GAT	TCG	CAA	AAG	AAA	CCA	CAC	215
Pro	Ser	Glu	Glu	Val	Val	His	Asp	Glu	Asp	Ser	Gln	Lys	Lys	Pro	His	
GAA	T CT	TCC	AAA	TCC	CAC	CAT	AAG	AAN	TCG	AAC	GGA	GGA	GGG	AAG	TGG	263
Glu	Ser	Ser	Lys	Ser	His	His	Lys	???	Ser	Asn	Gly	Gly	Gly	Lys	Trp	
TCG Ser	TGC Cys	ATC Ile	GAT Asp	TCT Ser	TGT Cys	TGT Cys	TGG Trp	TTC Phe	ATT Ile	GGG	TGT Cys	GTG Val	TGT Cys	GTA Val	ACC Thr	311
TGG	TGG	TTT	CTT	CTC	TTC	CTT	TAC	AAC	GCA	ATG	CCT	GCG	AGC	TTC	CCT	359
Trp	Trp	Phe	Leu	Leu	Phe	Leu	Tyr	Asn	Ala	Met	Pro	Ala	Ser	Phe	Pro	

CAG TAT GTA ACG GAG CCG AAT CAC GNG TCC TTT GCC TTA CCC G Gln Tyr Val Thr Glu Pro Asn His ??? Ser Phe Ala Léu Pro

<210> 6 <211> 643 <212> cDNA <713> Zea maya <220> <221> CDS <222> (1)(402) <400> 6																
CGG Arg 1	GAG Glu	aaa Lys	ATA Ile	GCT Ala 5	GCT Ala	TTG Leu	AAG Lye	GGG Gly	GGT Gly 10	GTT Val	TAC Tyr	TTA Leu	GCC Ala	GAT Asp 15	GGT Gly	46
GAT Asp	GAA Glu	ACT Thr	GTT Val 20	CCA Pro	GTT Val	CTT Leu	AGT Ser	GCG Ala 25	GGC Gly	TAC Tyr	ATG Met	tgt Cys	GCG Ala 30	AAA Lys	GGA Gly	96
TGG Trp	CGT Arg	GGC Gly 35	AAA Lys	ACT Thr	CGT Arg	TTC Phe	AGC Ser 40	CCT Pro	GCC Ala	GGC	AGC Ser	AAG Lys 45	ACT Thr	TAC Tyr	GTG Val	144
aga Arg	GAA Glu 50	TAC Tyr	AGC Ser	CAT His	TCG Ser	CCA Pro 55	CCC Pro	TCT Ser	ACT	CTC Leu	CTG Leu 60	GAA Glu	GGC	AGG Arg	GGC	192
ACC Thr 65	CAG Gln	AGC Ser	GGT Gly	GCA Ala	CAT His 70	GTT Val	GAT Asp	ATA Ile	ATG Met	GGG Gly 75	AAC Asn	TTT Phe	GCT Ala	CTA Leu	ATT Ile 80	240
GAG Glu	gac Asp	GTC Val	ATC Ile	AGA Arg 85	ATA Ile	GCT Ala	GCT Ala	GGG Gly	GCA Ala 90	ACC Thr	GGT Gly	GAG Glu	gaa Glu	ATT Ile 95	GGT Gly	288
GGC Gly	GAT Q2A	CAG G] n	GTT Val 100	TAT Tyr	TCA Ser	GAT Asp	ATA Ile	TTC Phe 105	AAG Lys	TGG Trp	TCA Ser	GAG Glu	дда Lys 110	ATC Ile	AAA Lys	336
TTG	AAA	TIG	TAA	CC:	PTAT	3GAA	GTT	AAAGI	AAG !	rgcc	GACC	CG T	TAT	rgcg:	TTCC	391
Leu	Lys	Leu 115														
AAA	GTGT	CCT (CCT	BAGT	GC A	ACTC:	rgga:	r tr	rgct'	AAA1	TAT	rgta.	ATT '	TTTC	ACGC	449
TTC	ATTC(GTC (CCTT	rgrez	AA A	ATTI	CATT	r ga	CAGG	ACGC	CAA'	rgcg	ATA (CGAT	STTG	507
TAC	CGCT	ATT :	TTCAC	GCAT"	IG T	TAT	KAAT	c TG	IACA(3GTG	TAA	GTTG	CAT '	TTGC	CAGC	565
TGA	TTAA	GTG '	TAGT	CGTT	TT C	TTTA(CGAT'	TA	MATA	CAAG	TGG	CGGA	GCA (GTGC	CCCA	623
AGCNARAAA AAAAAAAAA 64							643									

<210> 7 <211> 115 <212> PRT <213> Zea mays <400> 7

Arg Glu Lys Ile Ala Ala Leu Lys Gly Cly Val Tyr Leu Ala Asp Gly

1 15

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly
20 25 30

Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly 50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Pho Ala Leu Ile 65 70 75 80

Glu Asp Val Ilc Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95

Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 100 105 110

Leu Lys Leu 115

<210>	8	
<211>	616	
<212>	c DNA	
<213>	Neurospora	crass
-400-	8	

GGTGGCGAAG	ACGANGGCGG	AAGTTGGAGG	CTAACGAGAA	TGACNCTCGG	50
AGATGGATCT	ACCCTCTAGA	GACACGACTA	CCNTTGCACC	CAGCCTCAAG	100
GTNTACNGTT	TNTATGGGTA	GGAAGCCGAC	GGAGCGAGCC	TACATCTATC	150
TGCCGCCCGA	TCCCGGGACG	ACAACGCATC	TTTAGATGAC	GATCGATACG	200
ACTTTGACTN	AGGGGCACAT	TGACCACGGT	GTGATTTTGG	GCGAAGGCGA	250
TGGCACAGTG	AACCTTATGA	GTTTGGGGTA	CCTGTGCAAT	AAGGGGTGGA	300
Anatgaagag	ATACAATCCT	GCGGGCTCAA	AAATAACCGT	GGTCGAGATG	350
CCGCATGAAC	CAGAACGGTT	CAATCCGAGA	GGAGGGCCGA	ATACGGCGGA	500
CTTAAATAIG	TAGAAANGGT	TGAAATTTAT	GAAGAGTAAT	TANATACGGC	550
ACATAGGTTA	CTCAATAGTA	TGACTAATTA	TTAAAAAAA	TTTTTTCTAA	600
ΑΑΑΑΑΛΛΑ	ААЛАА				616

<210> 9

<211> 1562

<212> genomic DNA

<213> Arabidopsis thaliana

<400> 9

ATGAANNAAA	TATCTTCACA	TTATTCGGTA	GTCATAGCGA	TACTCGTTGT	50
GGTGACGATG	ACCTCGATGT	GTCAAGCTGT	GGGTAGCAAC	GTGTACCCTT	100
TGATTCTGGT	TCCAGGAAAC	GGAGGTAACC	agctagaggt	ACGGCTGGAC	150
AGAGNATACA	AGCCAAGTAG	TGTCTGGTGT	AGCAGCTGGT	TATATCCGAT	200
TCATAAGAAG	AGTGGTGGAT	GGTTTAGGCT	ATGGTTCGAT	GCAGCAGTGT	250
TATTGTCTCC	CTTCACCAGG	TGCTTCAGCG	ATCGAATGAT	GTTGTACTAT	300
GACCCTGATT	TGGATGATTA	CCAAAATGCT	CCTGGTGTCC	AAACCCGGGT	350
TCCTCATTTC	GGTTCGACCA	AATCACTTCT	ATACCTCGAC	CCTCGTCTCC	400
GGTTAGTACT	TTCCAAGATA	TATCATTTTG	GGACATTIGC	ATAATGAACA	450
AAATAGACAT	AAATTTGGGG	GATTATTGTT	ATATCAATAT	CCATTTATAT	500
GCTAGTCGGT	AATGTGAGTG	TTATGTTAGT	ATAGTTAATG	TGAGTGTTAT	550
GTGATTTTCC	ATTTTAAATG	AAGCTAGAAA	GTTGTCGTTT	AATAATGTTG	600
CTATGTCATG	AGAATTATAA	GGACACTATG	TAAATGTAGC	AATAATTA	650
GG1"1"TGATTT	GCAGAGATGC	CACATCTTAC	ATGGAACATT	TGGTGAAAGC	700
TCTAGAGAAA	NAATGCGGGT	ATGTTAACGA	CCAAACCATC	CTAGGAGCTC	750
CATATGATTT	CAGGTACGGC	CTGGCTGCTT	CGGGCCACCC	GTCCCGTGTA	800
GCCTCACAGT	TCCTACAAGA	CCTCAAACAA	TIGGTGGAAA	AAACTAGCAG	850
CGAGAACGAA	GGAAAGCCAG	TGATACTCCT	CTCCCATAGC	CTAGGAGGAC	900
TTTTCGTCCT	CCATTTCCTC	AACCGTACCA	CCCCTTCATG	GCGCCGCAAG	950
TACATCAAAC	ACTITGTTGC	ACTCGCTGCG	CCATGGGGTG	GGACGATCTC	1000
TCAGATGAAG	ACATTTGCTT	CTGGCAACAC	ACTCGGTGTC	CCTTTAGTTA	1050
ACCCTTTGCT	GGTCAGACGG	CATCAGAGGA	CCTCCGAGAG	TAACCAATGG	1100
				CGCTTGTCGT	1150
				TTTTTTGCAG	1200
ACATTGGATT	CTCACAAGGA	GTTGTGCCTT	ACAAGACAAG	AGTGTTGCCT	1250

TTATGAAGCA	GATTTCAATT	ATTAATTATG	AATTAGCCAA	TGTTAATGCC	1550
TGGAGTTTCG	CATACATCTA	TACTTAAAGA	CGAGATCGCA	CTTAAAGAGA	1500
GCGAGCTTAG	CAGCTTTGAA	AGTCGATAGC	TTGAACACCG	TAGAGATTGA	1450
ATAAGCAACC	AGAGATTAAG	TATGGAGATG	GAGATGGGAC	GGTTAATTTG	1400
GAGAGGAGTT	GATACACCGG	AGGTTTTGAT	GTATGGAAAA	GGAGGATTCG	1350
TTAACAGAGG	AGCTGATGAC	TCCGGGAGTG	CCAGTCACTT	GCATATATGG	1300

<210> 10
<211> 3896
<212> genomic DNA
<213> Arabidopsis thaliana
<400> 10

ATGGGAGCGA	ATTCGAAATC	AGTAACGGCT	TCCTTCACCG	TCATCGCCGT	50
TTTTTTCTTG	ATTTCCGGTG	GCCGAACTGC	GGTGGAGGAT	GAGACCGAGT	100
TTCACGCCGA	CTACTCGAAG	CTATCGGGTA	TAATCATTCC	GGGATTTGCG	150
TCGACGCAGC	TACGAGCGTG	GTCGATCCTT	GACTGTCCAT	ACACTCCGTT	200
GGACTTCAAT	CCGCTCGACC	TCGTATGGCT	AGACACCACT	AAGGTCCGTG	250
	CCTTCGCTCC		GGTCGAGTCA	CTTGTTGATG	300
	GAAATATAGC		GTCTCGTCTC	TCTTATTGAT	350
TCGTTCATTA	GTCAACAGTG	ACGCTTCTGA	ATCTGAGTTT	AGAGTCATAT	400
AAAACAGCTG	ACTCGGCGAG	TGTTTCCCAT	CGCTTTTGGT	TCGCTAAATG	450
TAGCGCAATG	AATGTGTAAT	TAGTCTGCGC	TTTTTATTCA	ACTAGATCTG	500
CAAGTTTTTC	AGAGTGCTCA	ATAGTAGTTA	GAAAATGTTA	CGTCATTTTA	550
CTTGTGCATT	GTGATTCTTT	TGGTTGTTGC	TTACTGATCG	acgtgatgga	60 0
TGGTTTACAG	CTTCTTTCTG	CTGTCAACTG	CTGGTTTAAG	TGTATGGTGC	650
TAGATECTTA	TAATCAAACA	GACCATCCCG	AGTGTAAGTC	ACGGCCTGAC	700
AGTGGTCTTT	CAGCCATCAC	AGAATTGGAT	CCAGGTTACA	TAACAGGTAG	750
TTTCGGATTT	TTCTTTCTTT	TGAGTTTTCT	TCAATTTGAT	ATCATCTTGT	800
TGTGATATAA	TATGGCTAAG	TTCATTAATT	TCGTCAATTT	TCAGGTCCTC	850
THTCTACTGT	CTGGAAAGAG	TGGCTTAAGT	GGTGTGTTGA	GTTTGGTATA	900
GANGCAAATG	CAATTGTCGC	TGTTCCATAC	GATTGGAGAT	TGTCACCAAC	950
CAAATTGGAA	GAGCGTGACC	TTTACTTTCA	CARGCTCAAG	TTAGTCCTTA	1000
TCAGGCTAAT	GTCTTTTATC	TTCTCTTTTT	ATGTAAGATA	AGCTAAGAGC	1050
TCTGGTCGTC	TTCCTTTTTG	CAGGTTGACC	TTTGAAACTG	CTTTAAAAACT	1100
CCGTGGCGGC	CCTTCTATAG	TATTTGCCCA	TTCAATGGGT	AATANTGTCT	1150
TCAGATACTT	TCTGGAATGG	CIGAGGCTAG	AAATTGCACC	AAAACATTAT	1200
TTGAAGTGGC	TIGATCAGCA	TATCCATGCT	TATTTCGCTG	TTGGTACCGG	1250
CCTACTATCC	TTAAGTTACC	ATTTTATTTT	TTCTCTAATT	GGGGGAGTTA	1300
TGTTGTGACT	TACTGGATTG	AGCTCGATAC	CTGATTTGTT	GTTGATTTAG	1350
GAGCTCCTCT	TCTTGGTTCT	GTTGAGGCAA	TCAAATCTAC	TCTCTCTGGT	1400
GTAACGTTTG	GCCTTCCTGT	TTCTGAGGTG	ACCTCTGACT	TCTCTTTAGT	1450
TTTARGTAGT	TGATATCAAC	CAGGTCTTAT	AACTCACTGG	ATTTTCCTTT	1500
TGAAAGTATT	ACTITITATA	ATTGAACTGC	TGTACGCGAT	ATGGTATCTG	1550
TAGATCTTGA	AGTGCTAGTT	ATCAAAGAAC	ATATTGTGGG	TAGTATACCT	1600
GTCAGCGGCC	TTAGCTAATA	CAACCAAACC	ACATGTACAC	TGATTTAGTT	1650
TTCAGATTAT	TATGGTAGAC	TTTAAGTTGA	GAAGAAACTT	TGACTGAAAT	1700
CTTTTTATTT	TAATAGGCTA	TGATTTGTTT	ATTGAAATCA	TGTGACATAT	1750
TGACATGCGC	TTCTCATGTT	TTTTGTTGGC	AAGGCTTCAG	GGAACTGCTC	1800
GGTTGTTGTC	CAATTCTTTT	GCGTCGTCAT	TGTGGCTTAT	GCCATTTTCA	1850
AAGAATTGCA	AGGGTGATAA	CACATTCTGG	ACCCATTTTT	CTGGGGGTGC	1900
TGCAAAGAAA	GATAAGCGCG	TATACCACTG	TGATGAAGAG	GAATATCAAT	1950
CAAAATATTC	TGGCTGGCCG	ACAAATATTA	TTAACATTGA	AATTCCTTCC	200
ACTAGCGGTT	AGACTCTGTA	TATGCAACTG	TAACACTAAC	AAAAGTTTCA	2050
CCAAGAATGT	TCACTCTCAT	ATTTCGTTCC	TTTGATGTGT	ATCCATCAGT	2100
TACAGAAACA	GCTCTAGTCA	ACATGACCAG	CATGGAATGT	GGCCTTCCCA	2150
CCCTTTTGTC	TTTCACAGCC	CGTGAACTAG	CAGATGGGAC	TCTTTTCAAA	2200
CCAATAGAAG	ACTATGACCC	AGATAGCAAG	AGGATGTTAC	ACCAGTTAAA	2250
CAAGTACGTA	CCTTTCTTTG	TGATAAGAAA	TATTGCTCAT	CGATCATCAC	2300
TTGCTGGCTT	CTTGTACGTC	AAATTGTTTT	GTTTAAATCT	CTATATCAAT	2350
ጥርጥጥሮልጥልጥ G	CTTTGTCTTT	CTTACTATAA	GAAACAAGTA	TANTCAGAAA	2400
CCTTATIATT	GATTATCAGT	TCTCTCCTTA	TATTATOGAA	TGTCTTTTTC	2450
GTTTACAGTT	ATGAATGCAA	AAGGGGGTAT	TTTAGTTGAT	TGATTCTCTC	2500
ል ተ ። ኮር-ጥር-ጥልር፡ሙ	TTGTTTTGAC	TAATAGCGTC	AATTTTGTTT	TTCTAGCAAA	2550
TCTTTGTGAA	TTATATATAA	CATGCTAACT	ATACTTTTCA	GGTTGTATCA	2600
TGATGACCCT	GTTTTTAATC	CTCTGACTCC	TTGGGAGAGA	CCACCTATAA	2650
AAANGTATT	TTGCATATAT	GGTGCTCATC	TAAAGACAGA	GGTATGATGC	2700
VALUACIZALY PARCETA A TOTAL	TCACATTATG	CGTTGACTTT	GTTATTATAT	TCCCCATTTG	2750
WITCIONUIU.			•		

GTTTGCAATA	TCTTTTTGAA	TTATGATTTA	TCTTCTCCCT	TGCATCTTAT	2800
GCTATTAAGC	GTTAAAGGTA	CTAAATGTAT	GAAGCTGTCT	GTCATAGGTT	2850
GGTTATTALT!	TTGCCCCAAG	TGGCAAACCT	TATCCTGATA	an Gbacha	2500
CACGGATATC	ATTTATGAAA	CTGAAGGTTC	CCTCGTGTCA	AGGTAATTTT	2950
CCGCAATGGC	AGAAGTAAAA	CAGGAAGGCA	AAGTCTTCTG	TATCAGTCTA	3000
G'IGGCATGTT	ATCTCAGTTG	CATAAGCAAA	TTATTAAACA	ACTAAAATTT	3050
AAGTACTTTT	TTATCATTCC	TTTTGAGCTT	AGTGGATGAT	CAGTGGCTTA	3100
	AGGTGTTGCA	TGANACATGA	CACTTGTATC	AAAGATAACT	3150
	AACTAACCCA	TTTCTGAATT	TCATATTATT	AGGAGTAGTC	3200
	AAAATTTGTT	TTAAGAAACC	GAAAAACTAG	TTCATATCTT	3250
GATTGTGCAA		TCTGGAACTG	TGGTTGATGG	GAACGCTGGA	3300
CCTATAACTG	GGGATGAGAC	GGTAAGCTCA	GAAGTTGGTT	TTGAAATTAT	3350
CTTCTTGCAA	ACTACTGAAG	ACTAAGATAA	TACTTGCTTC	TGGAACACTG	3400
CTTGCTATGT	TCTCTAGTAC	ACTGCAATAT	TGACTCTCCG	CTACTTTTAT	3450
TGATTATGAA	ATTGATCTCT	TATAGGTACC	CTATCATTCA	CTCTCTTGGT	3500
CCAAGAATTG	GCTCGGACCT	AAAGTTAACA	TAACAATGGC	TCCCCAGGTA	3550
CTCTTTTTTA	GTTCCTCACC	TTATATAGAT	CAAACTTTAA	GTGTACTTTT	3600
CTGGTTATGT	GTTGATTTAC	CTCCAATTTG	TTCTTTCTAA	AAATCATATA	3650
TCTCTGTACT	CCTCAAGAAC	TTGTATTAAT	CTAAACGAGA		3700
GAAAATAAAA	CANCAGCCAG	AACACGATGG	AAGCGACGTA		3750
TAAATGTTGA	TCATGAGCAT	GGGTCAGACA			3800
GCACCAAGGG	TTAAGTACAT	AACCTTTTAT	GAAGACTCTG	AGAGCATTCC	3850
GGGGAAGAGA	ACCGCAGTCT	GGGAGCTTGA	TAAAAGTGGG	TATTAA	3896

<210> 11 <211> 709 <212> cDNA <213> tomato <400> 11

CTGGGGCCAA	AAGTGAACAT	AACAAGGACA	CCACAGTCAG	AGCATGATGT	50
TCAGATGTAC	AAGTGCATCT	AAATATAGAG	CATCAACATG	GTGAAGATAT	100
CATTCCCAAT	ATGACAAAGT	TACCTACAAT	GAAGTACATA	ACCTATTATG	150
AGGATTCTGA	AAGTTTTCCA	GGGACAAGAA	CAGCAGTTTG	GGAGCTTGAT	200
AAAGCAAATC	ACAGGAACAT	TGTCAGATCT	CCAGCTTTGA	TGCGGGAGCT	250
GTGGCT'IGAG	ATGTGGCATG	ATATTCATCC	TGATAAAAAG	TCCAAGTTTG	300
TTACAAAAGG	TGGTGTCTGA	TCCTCACTAT	TTTCTTCTAT	AAATGTTTGA	350
GTTTGTATTG	ACATTGTAAG	TATTGCAACA	AAAAGCAAAG	CGTGGGCCTC	400
TGAGGGATGA	GGACTGCTAT	TGGGATTACG	GGAAAGCTCG	ATGTGCATGG	450
GCTGAACATT	GTGAATACAG	GTTAGAATAT	TCAAATTATA	TTTTGCAAAA	\$00
TATTCTCTTT	TTGTGTATTT	AGGCCACCTT	TCCCCGGTCA	CAACGATGCA	550
GATATGTATT	CGGGGATGTT	CACCTGGGAC	AGAGTTGCAG	ATTGAAGAGT	600
TCTACATCTC	ACATCCTGTC	ACACTATGTG	TGATATTTAA	GAAACTTTGT	650
TTGGCGGAAC	AACAAGTTTG	CACAAACATT	TGAAGAAGAA	AGCGAAATGA	700
TTCAGAGAG	٠				709

Fig 1

2,1,1

