1. Determine the values of a_2 , a_4 , b_1 , b_4 , c_3 and c_5 for the sequences defined by:

$$a_n = \frac{(-1)^n}{(n+1)!}$$
 , $b_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$, $\begin{cases} c_n = 4n + c_{n-1} & , & n \ge 2 \\ c_1 = 1 & \end{cases}$

2. Using the two subsequences obtained with odd and even terms of the sequence sequences

$$a_n = [(-1)^n + 1]\cos(n\pi),$$

calculate if $\{a_n\}$ is convergent or divergent.

3. Calculate the limits of the sequences::

a)
$$\frac{4-2n-3n^2}{2n^2+n}$$

b)
$$\frac{\sqrt{3n^2-5n+4}}{2n-7}$$

c)
$$\sqrt[3]{\frac{(3-\sqrt{n})(\sqrt{n}+2)}{8n+4}}$$

d)
$$\sqrt{2n^2+3}-\sqrt{n^2-n}$$

e)
$$\sqrt{n^2 + 3n} - \sqrt{n^2 + 3}$$

f)
$$\sqrt{n^2 + n} - n$$

g)
$$\frac{4 \cdot 10^n - 3 \cdot 10^{2n}}{3 \cdot 10^{n-1} + 2 \cdot 10^{2n-1}}$$

h) $\frac{2 \cdot 3^{n+1} - 3 \cdot 4^{n-1}}{3^n + 2^{2n}}$

h)
$$\frac{2 \cdot 3^{n+1} - 3 \cdot 4^{n-1}}{3^n + 2^{2n}}$$

4. Find the limit for the following sequences. Euler's formula can help you:

a)
$$\left(\frac{n+2}{n}\right)^n$$

b)
$$\left(\frac{1+3n}{5+3n}\right)^{\frac{n^2}{4n-2}}$$

c)
$$\left(\frac{n+1}{n}\right)^{\frac{\sqrt{n}}{\sqrt{n+1}-\sqrt{n}}}$$

5. Using Stolz criterium, find the limits of the following sequences:

a)
$$\frac{1+4+\cdots+n^2}{5+8+\cdots+(n^2+4)}$$

a)
$$\frac{1+4+\dots+n^2}{5+8+\dots+(n^2+4)}$$

b) $\left(\frac{1^2+2^2+\dots+n^2}{n^3}\right)^n$

c)
$$\frac{1+2+\dots+n+(n+1)\dots+2n}{n^2}$$

6. Arrange according to magnitude order:

a)
$$a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
 and $b_n = \log(n)$

b)
$$a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
 and $b_n = \sqrt{n}$

c)
$$a_n = \sqrt{n}$$
 and $b_n = log(n)$

d)
$$a_n = 2^n$$
 and $b_n = 3 + 3^2 + \dots + 3^n$

e)
$$a_n = n^2 + \log(n)$$
 and $b_n = 1 + 2 + 3 + \dots + n$

f)
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 and $b_n = n^2$

g)
$$a_n = 1 + 2^2 + 3^2 + \dots + n^2$$
 and $b_n = n^3$

h)
$$a_n = n!$$
 and $b_n = 1! + 2! + \dots + n!$

7. Arrange according to magnitude order and justifying the result the sequences: \sqrt{n} , n, $\log(n)$, n^2 , e^n , n^3 and n!. Group round the following ones according to the magnitude order.

a)
$$n^2 + \sqrt{n+1}$$

b)
$$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$

c)
$$\frac{\sqrt{n^7 - \sqrt{n^3 + 1}}}{5 + 2\sqrt{n}}$$

d) $\log(n^5 + e^{2n})$

d)
$$\log (n^5 + e^{2n})$$

8. Arrange according to magnitude order:

$$3\sqrt{n^5 + n} - n^2$$
 , $\log(n)$, $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$

Additional exercises

1. Check if the following sequences are increasing / decreasing or bounded:

a)
$$a_1 = 1$$
, $a_{n+1} = \frac{3+2a_n}{4}$

b)
$$b_1 = \sqrt{2}$$
, $b_{n+1} = \sqrt{2b_n}$

- c) Find the explicit form and calculate the limit for the defined above sequences.
- 2. Find the general term of:

a)
$$-1$$
, $+2$, -3 , $+4$, -5 , $+6$, ...

b)
$$\frac{2}{3}$$
, $\frac{1}{3}$, $\frac{4}{27}$, $\frac{5}{81}$, ...

- c) An arithmetic sequence of difference d and first term $a_1 = a$
- d) A geometric sequence of common ratio r and first term $a_1 = a$ and the sum of the first "n" terms $\sum_{k=1}^{n} a_k$.
- 3. Verify that $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$ is strictly increasing and is upper bounded.
- 4. Check if the following sequences are increasing / decreasing or bounded:

a)
$$\begin{cases} 2a_{n+1} = 2 + a_n \\ a_1 = 0 \end{cases}$$

b)
$$\begin{cases} a_{n+2} = n + a_{n+1} \\ a_1 = 10 \end{cases}$$

5. Verify that:

a)
$$a_n = \frac{10-n^2}{n+2}$$
 is decreasing and is upper bounded by 3

b)
$$a_n = \frac{\sqrt{n}}{n+1}$$
 is decreasing and $0 < a_n \le \frac{1}{2}$

c)
$$a_{n+1} = 4a_n$$
 is increasing if and only if $a_1 > 0$.

d)
$$a_{n+1} = \frac{n \cdot a_n}{n+7}$$
 with $a_1 = 7$ is decreasing and bounded.