

NIT6150 Advanced Project Project Evaluation Report HealthCare Chatbot System

Team Leader: Jitendra Shrestha (s8104215) **Team Member:** Pranish Acharya (s8100698)

Client: Holroyd Private Hospital

Supervisor: Fakhra Jabeen

VU Sydney

Table of Contents

1.	Overview	. 4
2.	Objective	. 4
3.	Features	. 4
	3.1 Symptoms checker	. 4
	3.2 Book an appointment	. 4
	3.3 User-Friendly Interface	. 4
	3.4 Roles Management	. 5
	3.5 User Management	. 5
	3.6 Data Privacy	. 5
4.	Implementation	. 8
5.	Technical Documentation	. 8
	5.1 Tools and Technologies	. 9
6.	Code Documentation	10
	6.1 Frontend Development	10
	6.1.1 Functions Explanation	10
	6.2 Backend Developement	11
	6.2.1 Database Structure	11
	6.2.2 API	13
	6.2.3 Folder Structure	14
	6.2.4 Password Recovery	14
	6.3 Training the Chatbot	15
	6.4. Integration	16
7.	Troubleshooting Issues	17
8.	Testing	17
	8.1 Unit Testing.	17
	8.2 UI Testing	17

9. Project Completion	18
10. Timeline Comparison	18
11. Challenges and Problems	19
12. Strength and Limitations	20
12.1 Strength	20
12.2 Limitations	20
13. Future Improvements and Lessons Learned	21
13.1 Future Improvements	21
13.2 Lessons Learned	21
14. Potential Privacy Issues	21
15. Professional ethics Issues	22
16. Project Meeting Minutes	22
References	34

Version Control

Documentation and Source Code				
Modified	Modified By	List of Modifications Made	Status	
Date				
Aug 9, 2024	Pranish	Created Repository	Completed	
		Initial Proposal report file added		
		Added Deliverable, schedule and		
		budget		
Aug 10, 2024	Jitendra	Added Project Allocation	Completed	
		document and modified proposal		
		part		
		Finalized the Project Proposal		
Aug 19, 2024	Pranish	Added System Analysis and	Completed	
		Design report file added		
		Added Functional requirements		
		Created ER Diagram		
		Created Sequence Diagram		
		Created Class Diagram		
Aug 20, 2024	Jitendra	Created Meeting Minutes Report	Completed	
		Created System Version Control		
		Created Wireframes for chatbot UI		
		Created Login UI		
		Created overall Use case		
		Created Flow Chart Diagram		
Aug 21, 2024		Created Initial Project Folder	Completed	
		which will be used for project		
		development		
Aug 22, 2024	Pranish	Started setting up database	Completed	
		Created Models		
Aug 24, 2024	Pranish	API Development Comple		
Aug 24,2024	Jitendra	Frontend Development Setup	Completed	

		Created App healthcare chatbot	
		system	
Aug 25, 2024	Jitendra	UI Development	Completed
Aug 29, 2024	Pranish	Completed Chatbot logic in Shell	Completed
Aug 29, 2024	Jitendra	UI for personal health	Completed
		management system completed	
Sep1, 2024	Jitendra	Presentation and initial frontend	Completed
		added	
Sep 4, 2024	Jitendra	Added Final Draft documentation	Completed
		added	
Sep 4, 2024	Pranish	Eposter Added	Completed
		Updated chatbot logic	
Sep 6, 2024	Jitendra	Chatbot Integration	Completed
	Pranish		
Sep 7, 2024	Jitendra	Added page navigation	Completed
		Updated system version control	
		document	
		Updated User manual	
Sep 8, 2024	Jitendra	Updated User manual	Completed
		Created Technical Documentation	
		Created Unit testing and UI testing	
		Updated Version Control	
Sep 11, 2024	Pranish	Added Quality Assurance Report	Completed
Sep 11, 2024	Jitendra	Added Project Evaluation Report	Completed

Workload Allocation

Team Member	Contribution
Jitendra Shrestha	Database Management
	UI Design
	Frontend Development
	Frontend Integration with chatbot
	Unit Testing and UI Testing
	Documentation
Pranish Acharya	Chatbot Logic Implementation using NLP
	Data Classification
	Train Chatbot
	Dialogue Management
	API Development for chatbot
	Documentation

1. Overview

A healthcare chatbot system is an artificial intelligence (AI) technology that functions as a virtual assistant, offering prompt answers to medical questions, symptom evaluations, and tailored guidance to aid users in managing their health. It improves accessibility to healthcare services by understanding and interpreting user input using Natural Language Processing (NLP) to give pertinent information and help. This makes it an invaluable tool for anyone looking for general health advice in between appointments with medical professionals.

2. Objective

The objectives of the system are as follows:

- To provide response on health queries
- To diagnose disease based on symptoms provided based on yes/no statement
- To provide way to maintain patient health record

3. Features

Healthcare chatbot system has many functions included in it which are explained below:

3.1 Symptoms checker

Users can check their ongoing health conditions using chatbot. With the provided data system will provide the home remedies for the related disease. In Case if it is not found it will recommend to the online portals.

3.2 Book an appointment

Users can book the appointment with related specialized doctors by signing up. Also, they can check the prescription given by doctor with the follow-up date if required.

3.3 User-Friendly Interface

All users can quickly navigate through the application and grasp our website in an efficient manner. From registering, using the log-in feature, signing documents, and exporting the file. These elements are all presented in a logical manner to help our client have a seamless transaction.

3.4 Roles Management

System consists of different roles which will limit the user to perform the tasks. One is Admin user who can manage doctors and view doctors. Doctors can add prescription to the booked appointment by the user. Patients can book appointments for the doctors choosing their specialization.

3.5 User Management

All users need to login for using the features except only for the chatbot feature

3.6 Data Privacy

We have not recorded the chat history when using the chatbot.

4. Literature Review

4.1 Chatbot using AIML

Researchers Sameera A. Abdul-Kader and Dr. John Woods introduced techniques like AIML, parsing, pattern matching, SQL, and relational databases that are used in the development of chatbot systems in their research paper published on the "International Journal of Advanced Computer Science and Applications (IJACSA)". Chatbots are trained using the Natural Language Understanding Toolkit (NLTK) to interpret human language. In order to create a chatbot system that is an XML derivative, researchers have introduced the AIML approach in this work. With reference to a "stimulus-response" mechanism, the AIML language aims to modify conversational modeling tasks. (Woods, 2015)

4.2 An LSTM-based chatbot

Recurrent neural networks (RNNs) and long short-term memory (LSTM) are the two main components of the conversation modeling agent presented in a research paper presented at the Third International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE). The RNN algorithm can learn efficiently in circumstances where there is a small gap between the supplied information and the location where it is being used; in cases where there

is a larger gap, the increased dependency prevents the system from efficiently reproducing the knowledge. So, the LSTM model was created to fully fill this void. The enhanced version of the recurrent neural network (RNN) is called LSTM. The LSTM model can eliminate unnecessary input by employing a forget gate that employs the sigmoid function. The sigmoid function makes this decision. (Vipasha Chandwani, 2020)

4.3 Chatbot with N-gram and TFID

Helping individuals with health information is the primary goal of the system suggested in the paper presented at the "8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)". Researchers have used Artificial Intelligence, Natural Language Processing, TFID, and N-gram technologies in the suggested system. This method uses a database to store data so that the chatbot can identify sentence similarities and respond to queries appropriately. Ranking and sentence similarity are computed using n-gram, TFIDF, and cosine similarity. For each, the user's question will be scored, and sentences that are more similar to the query will be found and supplied to the user (Lekha Athota, 2020).

4.4 Chatbot using K-nearest neighbor algorithm

In the paper that is titled "Proceedings of the Third International Conference on Trends in Electronics and Informatics (ICOEI 2019)" there is a suggestion to create the system that is to diagnose the diseases and suggest the treatment depending on the symptoms given by the user. For this purpose, a chatbot trained on pre-specified sets of data that the user can request is employed. In the proposed system, the K-nearest neighbor (KNN) is applied in developing a chatbot as a machine learning algorithm (Rohit Binu Mathew, 2019).

4.5 Critical Analysis to the Reviewed Literature

Studying all the research papers, we found that in any of the approaches that we choose in developing them, all the chatbots will become more personalized and

relatable to humans. Researchers across the globe are using different approaches that are developing different forms of chatbot systems. Far more reliable chatbot systems are in the process of implementation through Artificial Neural Networks (ANN), Natural Language Understanding (NLU), and Natural Language Processing (NLP). There is another technique, which has not been discussed yet in this paper, and this is the Artificial Neural Network (ANN) that is used to develop the artificial intelligence chatbots. It calculates the result based of the inputs of the user through the use of weighted connections sourced from numerous data training processes. Some of the frequently employed components and strategies in these study consist of natural language processing, natural language understanding, pattern matching, Support Vector Machine (SVM), Naïve Bayes, Random Forest (Anupam Mondal, 2018), and K-nearest algorithm. The methods used to capture the datasets include tokenizing, vectorizing and cleaning. While other methods are employed to create basic small talk chatbot that will only reply to a query based on trained databases, the LSTM model can be employed to create an advanced Artificial Intelligence chatbot systems that will be able to store previous CHAT logs and analyze them in order to provide an appropriate reply to a query. Similar to this, emotion detection is accomplished through the use of three popular deep learning classifiers: Such as CNN, RNN, and HAN among which the optimal recommendation algorithm is CNN (Falguni Patel, 2019). SVM based chatbot system developed by the researcher achieved a maximum accuracy of 98 percent. 39 % while for the experimental accuracy of the proposed LSTM model it was 79. 96% (Ming-Hsiang Su, 2017). There are few data sets that have been defined beforehand in this kind of model as compared to other models that have been proposed. CNN's accuracy rate was also however very high if one compared it to other models (Siddhant Rai, 2018), the results came in at a 98. 39% accuracy which was similar to the accuracy of the SVM model though it was tested in a large number of data sets. Thus, according to all the articles I could collect and based on which the selected approach was defined, the LSTM model (Vipasha Chandwani, 2020) is the future technology in the creation of chatbots that use previous conversations as a knowledge source when answering questions posed by the user. As in this model's case, it emulates responses from previous examples while enhancing the capabilities of future outcomes.

5. Implementation

For the project implementation process we have worked on all steps sequentially which are explained below.

- i. Initiation: Specify the goals, parameters, and deliverables of the project. Determine the important parties and compile the healthcare chatbot's first specifications. To describe the project's objectives and vision, draft a project charter.
- ii. **Planning and Design**: Create a thorough project plan with deadlines, goals, and resource allocation. Wireframes and prototypes should be made to design the chatbot's user interface and experience.
- iii. **Development**: Construct the chatbot's front end, back end, and components. Django is used to construct the backend while HTML, CSS, and JavaScript are used to implement the user interface. Set up the database using Django ORM and integrate the Rasa Framework for the chatbot.
- iv. **Testing and Quality Assurance**: To make sure the chatbot functions properly and satisfies quality requirements, do functional, performance, and security testing. Find and address any defects or problems found during testing.
- v. **Refinement and Finalization**: Examine and improve the chatbot in light of user input and testing results. Complete the functionality and design to make sure the application satisfies all project criteria and is prepared for deployment.
- vi. **Deployment and Project Closure**: Install and run the chatbot program in a live setting. Make sure users can access and the application is hosted correctly. Finalize project documentation, carry out a project review, and get input from relevant parties. Ascertain that all deliverables are fulfilled and offer any training or resources that may be required. Archive the project's documentation, then declare it closed.

6. Technical Documentation

Healthcare chatbot system is developed with subsystem of user management system, personal health management system and chatbot. Each system is developed alone and integrated at the end.

6.1 Tools and Technologies

S.N.	Category	Tool/Technology	Description
1.	Programming	Python (3.8.0)	Overall language used for the
	Language		system
2.	Frameworks	Django (4.2.16)	Web framework for building
			application's backend and
			handling requests
		RASA (3.6.20)	Open-source framework for
			building conversational AI and
			chatbots
3.	Testing	Unit Testing	Built-in python module
		Selenium (4.24.0)	Tool used for web browsers to
			perform UI testing and ensure
			the UI behaves correctly
4.	Web	HTML, CSS,	Creating webpages
	Technologies	JavaScript	
5.	Libraries	jQuery	Fast JavaScript library to
			simplify the DOM manipulation
			and event handling
		Bootstrap	For responsive design
6.	Database	SQLite	Default Database used by
			Django
7.	Version Control	Git	Version Controlling all the
			project and documentation
8.	Other Tools	Trello	We have used Trello for project
			management. Assigning tasks
			and tracking the deadlines.
			Divided the tasks for each
			member
		MindView(9.0)	Tools used for work breakdown
			structure

7. Code Documentation

7.1 Frontend Development

7.1.1 Functions Explanation

S.N.	Function Name	Purpose
1.	homepage	Renders the website homepage
2.	patienthome	Renders the patient homepage
3.	aboutpage	Renders the patient about us page
4.	loginpage	Renders the login form page where user can
		provide username and password to login into
		the system
5.	createaccountpage	To create the new account for patients
6.	chatbot_response	Renders the chatroom page
7.	updatepassword	Renders the update password page to change
		the password of the logged in user
8.	adminaddDoctor	Renders the page to add doctor
9.	adminviewDoctor	Renders the page to view doctor
10.	admin_delete_doctor	To delete the doctor
11.	patient_delete_appointment	To delete the appointment by patient
12.	adminviewAppointment	Renders the appointment page for admin
13.	Logout	Logout from the system
14.	Logout_admin	Logout admin from the system
15.	AdminHome	Renders the homepage of admin
16.	Home	Renders the home according to the user
		category.
17.	profile	Renders the profile according to the user
		category
18.	MakeAppointments	Renders the page to book the appointments
19.	viewappointments	Renders the page to view the appointments
20.	viewhealthrecords	Renders the page to view the past
		appointments
21.	contactus	Renders the contact us page

22.	get_available_time_slots	This function will generate the time slot for
		everyday according to the date chosen , also
		checks in the system that chosen date has
		available time slot or not
		This can be only selected if there is time slot in
		that date and chosen date is in weekday.

7.2 Backend Developement

7.2.1 Database Structure

S.N.	Model Name	Fields	Description
1.	Doctor	name	Stores the name of max
			characters 50
		email	Stores the email and
			unique
		licenseNo	Stores the license
			number of authorized
			doctor
		gender	Stores the gender either
			male or female
		phonenumber	Stores the phone number
			of characters 10
		address	Stores the address of
			characters up to 100
		specialization	Specifies the
			specialization of doctor
2.	Patient	name	Stores the name of max
			characters 50
		email	Stores the email and
			unique
		gender	Stores the gender either
			male or female
			unique Stores the gender either

		phonenumber	Stores the phone number
			of characters 10
3.	Contact	name	Stores the name of max
			characters 50
		email	Stores the email and
			unique
		phonenumber	Stores the phone number
			of characters 10
		message	Stores the message
			provided by the user
4.	Appointment	doctorname	Stores the name of max
			characters 50
		doctoremail	Stores the email of doctor
		patientname	Stores the patient name
		patientemail	Stores the patient email
		appointmentdate	Stores the date of the
			appointment
		followupdate	Stores the date of follow
			up
		symptoms	Stores the symptoms
			provided by patient when
			booking appointment
		status	Specifies means the
			doctor has completed
			prescription or not
		prescription	Prescription for the client
			by doctor
		appointment_time	Appointment time slot for
			the chosen date

7.2.2 API

URL Path	View Function	Description
II	views.homepage	Main landing page
'home/'	views.home	User's home page after login
'about/'	views.aboutpage	Information about the healthCare
'contact/'	views.contactus	Contact information or form
'profile/'	views.profile	User profile page
'chatroom/'	chatviews.chatroom	Chatbot feature
'login/'	views.loginpage	User login page
'logout/'	views.logout	User logout functionality
'adminlogout/'	views.logout_admin	Admin-specific logout
'createaccount/'	views.createaccoun	New patient registration
	tpage	
'patienthome/'	views.patienthome	Dashboard for patients
'doctorhome/'	views.doctorhome	Dashboard for doctors
'adminhome/'	views.adminhome	Dashboard for administrators
'adminadddoctor/'	views.adminadddoc	Admin interface to add new doctors
	tor	
'adminviewdoctor/	views.adminviewdo	Admin interface to view doctor list
•	ctor	
'admindeletedocto	views.admin_delete	Admin interface to remove a doctor
r/int:pk/str:email/	_doctor	
'adminviewappoin	views.adminviewap	Admin interface to view all
tment/'	pointment	appointments
'makeappointment	views.makeappoint	Interface for booking appointments
<i>I</i> *	ments	
'viewmypatients/'	views.viewmypatien	Doctor's interface to view their patients
	ts	
'viewallrecords/'	views.viewallrecord	View all medical records (likely admin
	s	or doctor)
'PatientDeleteApp	views.patient_delet	Allow patients to cancel appointments
ointment/int:pid/'	e_appointment	

'get-available-	views.get_available	API to fetch open appointment slots
time-slots/	_time_slots	1 11
'updatepassword/'	views.updatepassw	Interface for users to change
	ord	password
'reset_password/'	auth_views.Passwo	Initiate password reset process
	rdResetView.as_vie	
	w()	
'reset_password_	auth_views.Passwo	Confirmation of reset email sent
sent/'	rdResetDoneView.	
	as_view()	
'reset/ <uidb64>/<t< th=""><th>auth_views.Passwo</th><th>Page to enter new password</th></t<></uidb64>	auth_views.Passwo	Page to enter new password
oken>/'	rdResetConfirmVie	
	w.as_view()	
'reset_password_	auth_views.Passwo	Confirmation of password reset
complete/'	rdResetCompleteVi	
	ew.as_view()	

7.2.3 Folder Structure

- System
 - Frontend
 - HealthBot
 - Healthcarechatbotsystem
 - Manage.py

7.2.4 Password Recovery

This function is implemented by using Django SMTP email backend. For now, we have used our own email address by generating the app password. Later on, we can replace with the client one. We have use Gmail so set the host as GMAIL.

```
You, last week • Presentation and intial frontend added

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

EMAIL_HOST = 'smtp.gmail.com'

EMAIL_PORT = '587'

EMAIL_USE_TLS = True

EMAIL_HOST_USER = 'zeyroxcrestha@gmail.com'

EMAIL_HOST_PASSWORD =
```

7.3 Training the Chatbot

We have used RASA Framework for the chatbot. For the chatbot we have divided the file to train the chatbot.

S.N.	Name	Description
1.	nlu.yml	This file contains the user intents that means the input
		expected from the user and categorized into single
		topic.
		Example:
		- intent: thank_you
		examples:
		- thank you
		- thanks
		- thnx
		- thank you very much
		- awesome
		- wow
		By this we can know user can say thank you in many
		ways.
		Like this we have created more intents.
2.	rules.yml	Rules contains specific criteria whenever we get
		something unique than expected.
		Example:
		- rule: Say goodbye anytime the user says goodbye
		steps:

		- intent: goodbye			
		- action: utter_goodbye			
		By this we can see any time user say bye it will			
		response by responses in between chats also.			
3.	stories.yml	This file contains the user story where user can go			
		through the patterns one after another.			
		Example:			
		- story: gas stomach			
		steps:			
		- intent: stomach_symptom			
		- action: utter_day			
		- intent: day			
		- action: utter_stomach_types			
		- intent: affirm			
		- action: utter_gas_response			
		- action: utter_did_that_help			
		By this we can see intent represent input from user			
		and action is for response from bot.			
		If anything matches it will select from multiple stories.			
4.	domain.yml	This file contains the collections of intents, responses			
		and text message for the user .			

7.4. Integration

As we have separately developed the sub systems. We have integrated all using the available servers running on different port. Below is the detail breakdown of the integration between servers.

S.N.	Host URL	Description
1.	Localhost:8000	From this server the Django frontend and
		backend both is handled

2.	Localhost:5005	From this server the RASA framework will be	
		running and replying to the response to the	
		user.	

8. Troubleshooting Issues

For issues related to Django it will be seen in the logs through the terminal from where it is being start up.

For issues related to chatbot it will be seen in the logs through the terminal from where it is being start up. Also, we can enable debug logs for chatbot from which every step for Al.

9. Testing

9.1 Unit Testing

- We have written and executed unit tests for each function using built-in python module. These tests ensure that individual components of our code are functioning correctly in isolation.
- Each unit test is designed to verify specific functionality and edge cases, helping us identify and fix issues at the function level before integration.

9.2 UI Testing

- For user interface testing, we utilized Selenium, a powerful tool for automating web browsers. Selenium allowed us to create automated test scripts that interact with the application's user interface.
- Our UI tests cover various scenarios, including form submissions, navigation, and user interactions, to ensure that the application behaves as expected from an end-user perspective.
- These tests help us verify that the user interface is both functional and user-friendly, catching any issues that may arise in real-world usage.

Together, these testing strategies provide a comprehensive approach to verifying the reliability and quality of our project, from individual functions to the overall user experience.

10. Project Completion

To finish the healthcare chatbot project quickly and with minimal data, concentrate on creating a Minimum Viable Product (MVP) that has basic symptom screening, typical health queries, and rapid medical advice. Furthermore, incorporate the chatbot with the personal health management system so that users may schedule doctor appointments. All users can be managed using the user management system, which guarantees smooth communication and efficient platform functionality. This method delivers essential value to users while guaranteeing timely project completion.

11. Timeline Comparison

Index:

Green (Represents on track)

Red (Represents overspent)

S.N.	Project Stages	Time Allocated	Time Spent
1.	Initiation	7 days	7 days
	Kick off meeting	1 day	1 day
	Requirement Gathering	4 days	4 days
	Team Setup	2 days	2 days
2.	Planning and Design	6 days	6 days
	Project Plan	1 day	1 day
	System Architecture Design	4 days	4 days
	 Wireframes Design 	2 days	2 days
	o UI Design	2 days	2 days
	Approval of Design	1 day	1 day

3.	Development	16 days	21 days
	Backend Development	9 days	14 days
	 Integration Setup 	2 days	5 days
	 API Development 	5 days	8 days
	 Database Setup 	2 days	1 day
	Frontend Development	7 days	7 days
	 Initial Testing 	2 days	2 days
	 Chatbot Integration 	2 days	2 days
	 UI Development 	3 days	3 days
4.	Testing and Quality Assurance	13 days	13 days
	Unit Testing	4 days	4 days
	System testing	5 days	5 days
	UAT (User Acceptance Testing)	4 days	4 days
5.	Refinement and Finalization	3 days	3 days
	Bug Fixing	1 day	1 day
	Feature Refinement	1 day	1 day
	Documentation	1 day	1 day
6.	Deployment and Project Closure	3 days	3 days
	Deployment	1/2 day	1/2 day
	Training	1/2 day	1/2 day
	Project Handover	1/2 day	1/2 day
	Post-Deployment Support	1/2 day	1/2 day
	Project review and Closure	1 day	1 day
	Total Duration	43 days	43 days

^{*}Refer to the Appendix for proposed Gantt Chart and Project Schedule

12. Challenges and Problems

During the implementation and testing of the healthcare chatbot and personal health management system, we faced several challenges that required creative solutions.

Data Limitations: One significant hurdle was the limited data available for the chatbot, which made it difficult to provide accurate health advice. To address this, we relied on

publicly available health data and consulted with medical professionals to validate the chatbot's responses.

Integration Issues: Integration issues arose when trying to connect the chatbot with the existing health management system, particularly around user management and appointment scheduling. We tackled this by conducting thorough API testing and using middleware to ensure smooth communication between the systems.

Natural Language Processing (NLP) Accuracy: The accuracy of the chatbot's NLP was another challenge, especially with the limited training data. To improve this, we created more intents and rules which covers the basic chatbot features.

By addressing these challenges thoughtfully, we were able to deliver a robust and reliable healthcare chatbot system that met users' needs effectively.

13. Strength and Limitations

13.1 Strength

User-Centric Design: The chatbot is designed to give users quick and easy access to basic health information, making it super convenient for anyone looking for some initial health advice.

Integration with Health Management System: By connecting with a health management system for booking appointments and managing user roles, the chatbot offers a one-stop solution that makes managing health easier and more organized.

Fallback Mechanism: If the chatbot can't handle a question, it directs users to healthcare portals. This way, users get accurate help and feel secure knowing there's always a backup.

13.2 Limitations

Data Dependency: The chatbot's effectiveness really depends on the quality and amount of data it has. Without enough good data, it might not always give the best advice.

NLP Accuracy: The chatbot might struggle with complex or unclear questions due to its NLP limitations. It might need better training or updates to handle a broader range of user inputs.

System Integration: Making sure the chatbot and the health management system work smoothly together can be tricky. Integration issues might affect how well everything works.

14. Future Improvements and Lessons Learned

14.1 Future Improvements

Expand Data Sources: Adding more data sources and keeping the chatbot's knowledge up to date will help it provide more accurate and relevant health advice.

Enhance NLP Capabilities: Investing in better NLP technology and expanding the training data can improve the chatbot's ability to understand and respond to a wider variety of questions.

Optimize System Integration: Working on a smoother integration process and fixing compatibility issues will ensure everything runs more seamlessly.

14.2 Lessons Learned

Importance of User Feedback: Researching and getting feedback from user is crucial. It helps catch issues and make the chatbot more user-friendly.

Need for Robust Testing: Thorough testing is key to catching potential problems before they affect users. This includes checking APIs, performance, and security.

Scalability Considerations: Planning for future growth from the start helps avoid performance issues as the user base expands. Keeping the system responsive and efficient is important.

15. Potential Privacy Issues

Since personal health information is sensitive, controlling privacy issues is essential in healthcare chatbot projects. Unauthorized access to data, data breaches, regulatory noncompliance, incorrect data retention, insufficient user permission, and insufficient data anonymization are some major hazards. To solve them, put strong access restrictions and encryption in place to stop unwanted access, carry out frequent

security assessments to find weaknesses, and make sure that laws like HIPAA and GDPR are being followed by conducting regular audits and training. To safely handle information, establish explicit regulations for the preservation and deletion of data, offer clear permission procedures that educate users about the use of their data, and employ data anonymization techniques for any study or analysis to safeguard user privacy. This may protect sensitive data, uphold regulatory compliance, and foster user confidence by proactively addressing these threats.

16. Professional ethics Issues

A healthcare chatbot must consider several ethical considerations, including protecting user privacy by disclosing the chatbot's limitations, maintaining accuracy and dependability through evidence-based information, preventing bias using diverse data, and handling data ownership and usage transparently. The data privacy and confidentiality seem to be the major one so described below clearly.

Data Privacy and Confidentiality: For a healthcare chatbot, maintaining data privacy and confidentiality is essential. To comply with laws like HIPAA and GDPR, this entails protecting data with robust encryption, enforcing stringent access restrictions, getting explicit user consent, and performing frequent security assessments. By taking these precautions, users' confidence is preserved, and sensitive data is protected. (Kosinski, 2018)

17. Project Meeting Minutes

Project Members:

- Jitendra Shrestha
- Pranish Acharya

Date:	31 st July, 2024	Time:	15:00	Location:	Inside
					Classroom

1. Kickoff Meeting

Agenda:

- Introduction
- Project Overview
- Project Scope and deliverables
- Work division of project proposal

Attendance

Present	Absent
Both	Nil

Meeting Brief Summary

Introduction:

- Self Introduction
- Bring topics and get confirmed by supervisor
- Find out each members strength on the chosen topic
- Search the project on scholar and discussed on those
- Discussed on SDLC

Project Overview:

- Discussed the selected chatbot system topic
- Discussed types of chatbot system
- Finalized the objectives and purpose

Project Scope and Deliverables:

- Defined the scope which we will be working on it
- Searched for the deliverables required for project

Work division of project proposal:

- Introduction, Background and client profile is completed on surface level
- Purposes and Objectives, Scope and Exclusion, Assumptions and constraints will be done by Jitendra

- Deliverables, Schedule, budget will be done by Pranish
- Will merge our contribution and review once before submission by both

AOB:

- Nil.

Next Meeting

Date:	7 th August, 2024	Time:	14:00	Location	Inside Classroom
				:	
T 1 ·			Pr. 1		

This meeting minute was prepared by Jitendra.

Date:	7 th August, 2024	Time:	14:00	Location:	Inside
					Classroom

2. Requirement Gathering

Agenda:

- Progress of Project Proposal
- Any challenges in proposal
- Feasibility Study

Attendance

Present	Absent
Both	Nil

Meeting Brief Summary

Progress of Project Proposal:

- Introduction, Purposes and Objectives, Scope and Exclusion are completed
- Deliverables and schedule are completed

Any challenges in proposal:

- Discussed the challenges might be on real data feeding for chatbot
- Also, for the budget, estimated the real project cost

Feasibility Study:

- Can be developed using python and NLP
- Will be working on limited data so every area will not be covered

AOB:

- Nil.

Next Meeting

Data	4 4th A	T:	40.00	1 1!	Outaida	
Date:	14 th August, 2024	ı ime:	18:00	Location	Outside	
				:	Classroom	
This meeting minute was prepared by Pranish.						

Date:	14 th August, 2024	Time:	18:00	Location:	Outside
					Classroom

3. Design Phase 1 Meeting

Agenda:

- Development Methodology
- Functional and Non-Functional Requirements
- Use Case Diagrams
- User Interfaces
- Tools discussion for creating diagrams
- Task Allocation

Attendance

Present	Absent
Both	Nil

Meeting Brief Summary

Development Methodology:

- Using Agile Approach
- Testing at same time while development

- Breaking down the features and combine
- Issue can be resolved and modify the features

Functional and Non-Functional Requirements:

- Functional Requirements
 - Create ER diagram
 - Create Functional Decomposition Diagram
 - Define the data (User, Appointment, Doctor)
- Non-Functional Requirements
 - Look and Feel Requirements
 - Performance Requirements
 - Maintainability and support Requirements
 - Security Requirements
 - Cultural and Political Requirements
 - Legal Requirements

Use Case Diagrams:

- Overall use case Diagram
- Deep dive into the functionality on each function from overall use case

User Interfaces:

- Discussion on the wireframes for the chatbot
- Discussion on the wireframes for booking an appointment
- Discussion on Login Page wireframe

Tools discussion for creating diagrams:

- Draw.io will be used for diagrams (https://app.diagrams.net/)
- WBS tool for Gantt chart (https://www.workbreakdownstructure.com/)

Task Allocation:

Jitendra	Pranish
 Creating wireframes for chatbot UI, login in UI Non-Functional requirements Creating Overall Use case and multiple level Use case Flow chart diagram 	 Functional Requirements Create ER Diagrams Sequence Diagram Activity Diagram Class Diagram

AOB:						
- Nil.						
Next Meeting						
Date:	16th August, 2024	Time:	13:00		Location	Inside Classroom
					:	
This meeting minute was prepared by Jitendra.						

Classroom	Date:	16 th August, 2024	Time:	13:00	Location:	Inside
						Classroom

4. Design Phase 2 Meeting

Agenda:

- Progress on the assigned tasks
- Issues on design
- System Navigation

Attendance

Present	Absent
Both	Nil

Meeting Brief Summary

Progress on the assigned tasks:

- Completed the overall use case diagram
- Completed wireframes for login page UI
- Completed the Flow chart diagram, sequence diagram

Issues on design:

- Discussion on wireframes for chatbot
- Go through the chatbot from different websites and checked the UI
- Planned to implement the chatbot for quicker and correct response

System Navigation:

- After creating wireframes, decided the system navigation
- Users doesn't need to login for accessing chatbot
- Users need login to save their data and book appointment
- Doctors can add prescription after looking the patients
- Admin can manage the patients and doctors

AOB:

- Nil.

Next N	<i>l</i> leeting				
Date:	21st August, 2024	Time:	13:00	Location	Inside Classroom
				:	
This m	This meeting minute was prepared by .litendra				

Date:	21 th August, 2024	Time:	13:00	Location:	Inside
					Classroom

5. Discussion on System analysis and Design

Agenda:

- The meeting was initiated by Pranish to discuss the ongoing project regarding system analysis and design for Health Care Chatbot system.
- The objective is to finalize the functional and non-functional requirements and to develop a high-level design for the new system.

Attendance

Present	Absent
Both	Nil

Meeting Brief Summary

Progress of System Analysis and Design:

- Current System Architecture.
- Functional requirements

- Non-functional requirements
- Data Flow Diagram
- Wireframes
- Database design

Any challenges in proposal:

- Discussed the challenges might be on database design and data flow diagram
- Also, for Architecture Design.

AOB:

- Nil.

Next Meeting

Date:	23 th August, 2024	Time:	18:00	Location	Outside
				:	Classroom
This meeting minute was prepared by Pranish.					

Date:	23 th August, 2024	Time:	18:00	Location:	Outside
					Classroom

6. Discussion on System analysis and Design

Agenda:

- The meeting was initiated by Jitendra to discuss the ongoing progress regarding system analysis and design for Health Care Chatbot system.
- The objective is to finalize the System Analysis and Design Part before the deadline.

Attendance

Present	Absent
Both	Nil

Meeting Brief Summary

Progress of System Analysis and Design:

- Current System Architecture
- **ERD**
- **Data Dictionary**

- Jitendra presented how data will be processed through the system.
- Pranish proposed an architecture based on LSTM model, SVM, explaining the use of specific technologies such as Rasa framework.
- Jitendra discussed mockups for the user interface. Feedback was given on improving use case diagram, gantt chart and ERD.
- Discussed on Project Cost Estimation, Data privacy

Any challenges in System analysis and design:

- As the project progresses, new features which can lead to scope creep.
- A tight timeline may not allow enough time for thorough analysis or testing, leading to errors in the final system design
- Design complexities or unexpected changes can lead to cost overruns.

Feasibility Study:

- Can be secure data using
- Will be working on limited data so every area will not be covered.

AOB:					
- Nil.					
Next Meeting					
Date:	28th August, 2024	Time:	18:00	Location	Outside
				:	Classroom
This meeting minute was prepared by Pranish.					

Date:	28th August, 2024	Time:	13:00	Location:	Outside	
					Classroom	
7. Discu	7. Discussion on Development of project					
Agenda	Agenda:					
- Introduction to Django and Rasa Frameworks						
- Define Project Deliverables and Work Division						
- Setup Development Environment and Tools						
Attendance						
Present	Present Absent					

Both			Nil		
Meetin	Meeting Brief Summary				
Progre	ess of System Devel	lopment	:		
-	Discussion of Django	's role a	s the web frame	work and Ra	asa as the NLP
	engine for chatbot re	sponses			
-	Pranish will handle th	ne integra	ation of Rasa wit	th Django fo	r conversational
	flows.				
-	Jitendra will develop	user aut	hentication, mar	nage patient	data storage, and
	oversee database se	curity.			
-	Pranish will focus on	training	the Rasa chatbo	ot for sympto	m checking.
-	Environments: Pytho	n 3.8, Dj	ango 4.0, Rasa	3.0.	
Any cl	Any challenges in Development:				
-	Challenge integrating real-time feedback from Rasa into Django UI for				
	chatbot.				
-	- Resolved by using Django Channels for WebSocket integration.				
Feasibility Study:					
- Can be developed using rasa and Django chatbot.					
- Will b	- Will be working on limited data so every area will not be covered.				
AOB:	AOB:				
- Nil.	- Nil.				
Next N	Next Meeting				
Date:	4 th September,	Time:	12:00	Location	Inside Classroom
	2024			:	
This m	eeting minute was pr	epared b	y Pranish.		

Date:	4 th September,	Time:	12:00	Location:	Inside
	2024				Classroom
8. Discussion on Development and Testing and					
Agenda:					

- System finalization
- Testing strategies and procedures
- Bug fixing and improvements

Attendance

Present	Absent
Both	Nil

Meeting Brief Summary

Progress of System Development:

- The healthcare chatbot system is fully integrated with Rasa and Django.
- All essential features such as appointment scheduling, symptom checking, user authentication, and patient-doctor interaction have been implemented.
- Both manual and automated testing have been completed.
- Unit tests covered Django models and views, while Rasa chatbot underwent functional tests for intent recognition and conversational flow accuracy.
- Bugs found in edge cases of patient data input were fixed.

Any challenges in Development:

- None

AOB:

- Nil.

Alexand N	
NOVIN	
INCALI	<i>l</i> leeting

Date:	10 th September,	Time:	14:00	Location	Outside
	2024			:	Classroom
This mosting minute was propared by litendra					

This meeting minute was prepared by Jitendra.

Date:	10 th September,	Time:	14:00	Location:	Outside
	2024				Classroom

2. Discussion on System analysis and Design

Agenda:

- Finalizing system documentation
- User manual preparation
- Project report completion

Attendance			
Present	Absent		
Both	Nil		
Mosting Priof Cummons			

Meeting Brief Summary

Progress of System Development:

- All technical aspects, including system architecture, APIs, database schema, and user interaction flows, have been documented.
- User manual includes instructions for using the chatbot, scheduling appointments, and managing profiles.
- The final project report is almost complete, including project objectives, development phases, and challenges faced.
- Documentation will be submitted before the deadline.

- None

AOB:

- Nil.

This meeting minute was prepared by Jitendra.

References

- Anupam Mondal, M. D. (2018). Chatbot: An automated conversation system for the educational domain. 2018 International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP),
- Ayanouz, S., Abdelhakim, B.A. and Benhmed, M. (2020 March). A smart chatbot architecture based NLP and machine learning for health care assistance. *In Proceedings of the 3rd international conference on networking, information systems* & security, 1-6.
- Falguni Patel, R. T. (2019). Combating Depression in Students using an Intelligent ChatBot: A Cognitive Behavioral Therapy. Rajkot, India: IEEE.
- Kosinski, Y. W. (2018). Deep Neural Networks Are More Accurate Than Humans at DetectingSexual Orientation From Facial Images. *Journal of Personality and Social Psychology, 114*, 246-257.
- Kurup, G. and Shetty, S.D. (2022). Al conversational chatbot for primary healthcare diagnosis using natural language processing and deep learning. In Computational Intelligence in Pattern Recognition: Proceedings of CIPR 2021, 259-272.
- Lekha Athota, V. K. (2020). 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). Noida, India: IEEE.
- Ming-Hsiang Su, C.-H. W.-Y.-B.-M. (2017). A chatbot using LSTM-based multi-layer embedding for elderly care. Singapore: IEEE.
- Rohit Binu Mathew, S. V. (2019). Chatbot for Disease Prediction and Treatment. Kottayam, Kerala, India: IEEE.
- Santosh Gore, D. D. (2023). Leveraging BERT for Next-Generation Spoken

 Language Understanding with Joint Intent Classification and Slot Filling.

 Mumbai, India: IEEE.
- Siddhant Rai, A. R. (2018). Darwin: Convolutional Neural Network based Intelligent Health Assistant. Coimbatore: IEEE.
- Vipasha Chandwani, S. K. (2020). Long Short-Term Memory based Conversation. Jaipur, India, India: IEEE .
- Woods, S. A.-K. (2015). Survey on Chatbot Design Techniques in Speech. (*IJACSA*) *International Journal of Advanced Computer Science and Applications*, 72-80.