А. Массовая проверка простоты

1.5 секунд, 256 мегабайт

Целое число $p\geq 2$ является простым, если у него нет делителей кроме 1 и p. Необходимо для всех чисел во входном файле проверить простые они или нет.

Входные данные

В первой строке задано число n ($2 \le n \le 500\,000$). В следующих n строках заданы числа a_i ($2 \le a_i \le 2\cdot 10^7$), которые нужно проверить на простоту

Выходные данные

Для каждого числа во входном файле выведите на отдельной строке «YES» или «NO» в зависимости от того, простое оно или нет.

входные данные	
4 60 14 3 55	
выходные данные	
NO NO YES NO	

В. Массовое разложение на множители

0.5 секунд, 64 мегабайта

Дано много чисел. Требуется разложить их все на простые множители.

Входные данные

В первой строке задано число n ($2 \le n \le 300000$). В следующих n строках заданы числа a_i ($2 \le a_i \le 10^6$), которые нужно разложить на множители.

Выходные данные

Для каждого числа выведите в отдельной строке разложение на простые множители в порядке возрастания множителей.

```
ВХОДНЫЕ ДАННЫЕ

4
60
14
3
55

ВЫХОДНЫЕ ДАННЫЕ

2 2 3 5
2 7
3
5 11
```

С. Большая проверка на простоту

2 секунды, 64 мегабайта

Дано n натуральных чисел a_i . Определите для каждого числа, является ли оно простым.

Входные данные

Программа получает на вход число $n,\ 1 \le n \le 1000$ и далее n чисел $a_i,\ 1 \le a_i \le 10^{18}.$

Выходные данные

Если число a_i простое, программа должна вывести $\mathtt{YES},$ для составного числа программа должна вывести $\mathtt{NO}.$

```
Входные данные

4
1
5
10
239

Выходные данные

NO
YES
NO
YES
```

D. Китайская теорема

2 секунды, 64 мегабайта

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases}$$

Гарантируется, что n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Входные данные

Входной файл содержит четыре целых числа a, b, n и m ($1 \le n$, $m \le 10^6$, $0 \le a \le n$, $0 \le b \le m$).

Выходные данные

В выходной файл выведите искомое наименьшее неотрицательное число x.

входные данные	
1 0 2 3	
выходные данные	
3	

входные данные	
3 2 5 9	
выходные данные	
38	

E. Взлом RSA

2 секунды, 64 мегабайта

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n=pq и сгенерировать два числа e и d такие, что $\{ed\equiv 1\pm od\{(p-1)(q-1)\}\}$ (заметим, что $\{(p-1)(q-1)=\phi(n)\}\}$). Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M-исходное сообщение. Для его шифрования вычисляется значение $C=M^e \mod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M=C^d \mod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Входные данные

Программа получает на вход три натуральных числа: $n, e, C, n \le 10^9, e \le 10^9, C < n$. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\phi(n)$. Число C является результатом шифрования некоторого сообщения M.

Выходные данные

Выведите одно число M ($0 \le M \le n$), которое было зашифровано такой криптосхемой.

входные данные	
143	
113	
41	
выходные данные	
123	
входные данные	
9173503	
3	
4051753	
выходные данные	
111111	

F. Задача для второклассника

2 секунды, 256 мегабайт

Вам даны два числа. Необходимо найти их произведение.

Входные данные

Входные данные состоят из двух строк, на каждой из которых находится целое одно **целое** число, длина которого не превосходит двухсот пятидесяти тысяч символов.

Выходные данные

Выведите произведение данных чисел.

входные данные	
2 2	
выходные данные	
4	

входные данные	
1 -1	
выходные данные	
-1	

G. Дуэль

2 секунды, 256 мегабайт

Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт n деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга.

Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Входные данные

Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты — символом '0'. Длина строки не превосходит 100000 символов.

Выходные данные

Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

входные данные	
101010101	
выходные данные	
4	

-	
входные данные	
101001	
выходные данные	
0	

В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом): 101010101, 101010101, 101010101 и 101010101.