SEQUENCE LISTING

	<110>	Scot	t,	Kieran												
5	<120>	Meth	od	of inhi	biting	prost	tate cancer	cell proli	feration							
	<130>	501543														
10	<150> <151>	PS2826 2002-06-07														
	<160>	4														
16	<170>	PatentIn version 3.1														
15 20	<210><211><211><212><213>	1 997 DNA Homo	sa	piens												
20	<400> gaaggaa 60	1 aaaa	gag	caacaga	tccag	ggagc	attcacctgc	cctgtctcca	aacagccttg							
25	tgcctca 120	acct	acc	cccaacc	: tccca	gaggg	agcagctatt	taaggggagc	aggagtgcag							
20	aacaaa 180	caag	acg	gcctggg	gatac	aactc	tggagtcctc	tgagagagcc	accaaggagg							
30	agcaggg	ggag	cga	cggccgg	ggcag	aagtt	gagaccaccc	agcagaggag	ctaggccagt							
35	ccatcto 300	gcat	ttg	tcaccca	agaac	tctta	ccatgaagac	cctcctactg	ttggcagtga							
	tcatgat 360	tctt	tgg	cctactg	caggc	ccatg	ggaatttggt	gaatttccac	agaatgatca							
40	agttgad 420	cgac	agg	aaaggaa	geege	actca	gttatggctt	ctacggctgc	cactgtggcg							
45	tgggtgg 480	gcag	agg	atcccc	: aagga	tgcaa	cggatcgctg	ctgtgtcact	catgactgtt							
70	gctacaa 540	aacg	tct	ggagaaa	cgtgg	atgtg	gcaccaaatt	tctgagctac	aagtttagca 							
50	actcggg	ggag	cag	aatcacc	tgtgc	aaaac	aggactcctg	cagaagtcaa	ctgtgtgagt							
	gtgataa 660	aggc	tgc	tgccacc	tgttt:	tgcta	gaaacaagac	gacctacaat	aaaaagtacc							
55	agtacta 720	attc	caa	taaacac	: tgcag	aggga	gcacccctcg	ttgctgagtc	ccctcttccc							

•

	tggaaacctt 780	ccacccagtg	ctgaatttcc	ctctctcata .	ccctccctcc	ctaccctaac
5	caagttcctt 840	ggccatgcag	aaagcatccc	tcacccatcc	tagaggccag	gcaggagccc
	ttctataccc 900	acccagaatg	agacatccag	cagatttcca	gccttctact	gctctcctcc
10	acctcaactc 960	cgtgcttaac	caaagaagct	gtactccggg	gggtctcttc	tgaataaagc
	aattagcaaa 997	aaaaaaaaa	aaaaaaaaa	aaaaaaa		
15						
	<210> 2 <211> 2875 <212> DNA		•			
20	<213> Homo	sapiens			• .	
	<400> 2 gaattctccg 60	gagctgaaaa	aggatcctga	ctgaaagcta	gaggcattga	ggagcctgaa
25	gättctcagg 120	ttttaaagac	gctagagtgc	caaagaagac	tttgaagtgt	gaaaacattt
30	cctgtaattg 180	aaaccaaaat	gtcatttata	gatccttacc	agcacattat	agtggagcac
	cagtattccc 240	acaagtttac	ggtagtggtg	ttacgtgcca	ccaaagtgac	aaagggggcc
35	tttggtgaca 300	tgcttgatac	tccagatccc	tatgtggaac	tttttatctc	tacaacccct
40	gacagcagga 360	agagaacaag	acatttcaat	aatgacataa	accctgtgtg	gaatgagacc
	tttgaattta 420	ttttggatcc	taatcaggaa		agattacgtt	
45	480			: * *		
	540					tctagaaatg
50	600			•.•	·· · .	tgatcaggag
55	660				gcatgaagaa	•
	ccaaagaata 720	gtgaaggatt	gcattctgca	cgtgatgtgc	ctgtggtagc	catattgggt

	tcaggtgggg 780	gtttccgagc	catggtggga	ttctctggtg	tgatgaaggc	attatacgaa
5	tcaggaattc 840	tggattgtgc	tacctacgtt	gctggtcttt	ctggctccac	ctggtatatg
10	tcaaccttgt 900	attctcaccc	tgattttcca	gagaaagggc	cagaggagat	taatgaagaa
10	ctaatgaaaa 960	atgttagcca	caatcccctt	ttacttctca	caccacagaa	agttaaaaga
15	tatgttgagt 1020	ctttatggaa	gaagaaaagc	tctggacaac	ctgtcacctt	tactgacatc
	tttgggatgt 1080	taataggaga	aacactaatt	cataatagaa	tgaatactac	tctgagcagt
20	ttgaaggaaa 1140	aagttaatac	tgcacaatgc	cctttacctc	ttttcacctg	tcttcatgtc
25	aaacctgacg 1200	tttcagagct	gatgtttgca	gattgggttg	aatttagtcc	atacgaaatt
-5	ggcatggcta 1260	aatatggtac	ttttatggct	cccgacttat	ttggaagcaa	attttttatg
30	ggaacagtcg 1320	ttaagaagta	tgaagaaaac	cccttgcatt	tcttaatggg	tgtctggggc ··
	agtgcctttt 1380	ccatattgtt	caacagagtt	ttgggcgttt	ctggttcaca	aagcagaggc
35	tccacaatgg 1440	aggaagaatt	agaaaatatt	accacaaagc	atattgtgag	taatgatagc
40	tcggacagtg 1500	atgatgaatc	acacgaaccc	aaaggcactg	aaaatgaaga	tgctggaagt
40	gactatcaaa 1560	gtgataatca	agcaagttgg	attcatcgta	tgataatggc	cttggtgagt
45	gattcagctt 1620	tattcaatac	cagagaagga	cgtgctggga · · · ·		cttcatgctg
	ggcttgaatc 1680	tcaatacatc	ttatccactg	tctcctttga	gtgactttgc	cacacaggac
50	tcctttgatg 1740	atgatgaact	ggatgcagct	gtagcagatc	ctgatgaatt	tgagcgaata
55	tatgagcctc 1800	tggatgtcaa	aagtaaaaag	attcatgtag	tggacagtgg	gctcacattt
55	aacctgccgt 1860	atcccttgat	actgagacct	cagagagggg	ttgatctcat	aatctccttt

				-		•
	gacttttctg 1920	caaggccaag	tgactctagt		aggaacttct	
5	aagtgggcta	aaatgaacaa	gctccccttt			
J	1980	J		:		
10	gaagggctga 2040	aggagtgcta	tgtctttaaa	cccaagaatc	ctgatatgga	gaaagattgc
10	ccaaccatca 2100	tccactttgt	tctggccaac	atcaacttca	gaaagtacaa	ggctccaggt
15	gttccaaggg 2160	aaactgagga	agagaaagaa	atcgctgact	ttgatatttt	tgatgaccca
	gaatcaccat 2220	tttcaacctt	caattttcaa	tatccaaatc	aagcattcaa	aagactacat
20	gatcttatgc 2280	acttcaatac	tctgaacaac	attgatgtga	taaaagaagc	catggttgaa
05	agcattgaat 2340	atagaagaca	gaatccatct	cgttgctctģ	tttcccttag	taatgttgag
25	gcaagaagat 2400	ttttcaacaa	ggagtttcta	agtaaaccca	aagcatagtt	catgtactgg
30	aaatggcagc 2460	agtttctgat	gctgaggcag	tttgcaatcc	catgacaact	ggatttaaaa
	gtacagtaca 2520	gatagtcgta	ctgatcatga	gagactggct	gatactcaaa	gttgcagtta
35	cttagctgca 2580	tgagaataat	actattataa	gttaggtgac	aaatgatgtt	gattatgtaa
40	ggatatactt 2640	agctacattt	tcagtcagta	tgaacttcct	gatacaaatg :	tagggatata
40	tactgtattt 2700	ttaaacattt	ctcaccaact	ttcttatgtg	tgttctttt	aaaaattttt
45	tttcttttaa 2760	aatatttaac	agttcaatct	caataagacc		tatgaatgtt
	attcactgac 2820	tagatttatt	cataccatga	gacaacacta "	tttttattta	tatatgcata
50	tatatacata 2875	catgaaataa	atacatcaat	ataaaaataa	aaaaaaacgg 	aattc .
55	<210> 3 <211> 144			·		
	<212> PRT <213> Homo	o sapiens			• • • •	÷

. .

<400> 3 Met Lys Thr Leu Leu Leu Ala Val Ile Met Ile Phe Gly Leu Leu 10 5 Gln Ala His Gly Asn Leu Val Asn Phe His Arg Met Ile Lys Leu Thr 25 10 Thr Gly Lys Glu Ala Ala Leu Ser Tyr Gly Phe Tyr Gly Cys His Cys 40 15 Gly Val Gly Gly Arg Gly Ser Pro Lys Asp Ala Thr Asp Arg Cys Cys Val Thr His Asp Cys Cys Tyr Lys Arg Leu Glu Lys Arg Gly Cys Gly 20 70 75 Thr Lys Phe Leu Ser Tyr Lys Phe Ser Asn Ser Gly Ser Arg Ile Thr 25 85 90 Cys Ala Lys Gln Asp Ser Cys Arg Ser Gln Leu Cys Glu Cys Asp Lys 105 30 Ala Ala Ala Thr Cys Phe Ala Arg Asn Lys Thr Thr Tyr Asn Lys Lys 115 35 Tyr Gln Tyr Tyr Ser Asn Lys His Cys Arg Gly Ser Thr Pro Arg Cys <210> 4 40 <211> 749 <212> PRT <213> Homo sapiens <400> 4 45 Met Ser Phe Ile Asp Pro Tyr Gln His Ile Ile Val Glu His Gln Tyr 50 Ser His Lys Phe Thr Val Val Val Leu Arg Ala Thr Lys Val Thr Lys

Gly Ala Phe Gly Asp Met Leu Asp Thr Pro Asp Pro Tyr Val Glu Leu

	Pḥe	Ile 50	Ser	Thr	Thr	Pro	Asp 55	Ser	Arg	Lys	Arg	Thr 60	Arg	His	Phe	Asn
5	Asn 65	Asp	Ile	Asn	Pro	Val 70	Trp	Asn	Glu	Thr	Phe 75	Glu	Phe	Ile	: Leu	Asp 80
10	Pro	Asn	Gln	Glu	Asn 85	Val	Leu	Glu	Ile	Thr 90	Leu	Met	Asp	Ala	Asn 95	Tyr
15	Val	Met	Asp	Glu 100	Thr	Leu	Gly	Thr	Ala 105	Thr	Phe	Thr	Val	Ser 110	Ser	Met
	Lys	Val	Gly 115	Glu	Lys	Lys	Glu	Val 120	Pro	Phe	Ile	Phe	Asn 125	Gln	Val	Thr
20	Glu	Met	Val	Leu	Glu	Met	Ser	Leu	Glu	Val			Cys		Asp	
25		130					135		•		;	140		- 1.	٠,	
20	Arg 145	Phe	Ser	Met	Ala	Leu 150	Cys	Asp			155		Phe	Arg	Gln	Gln 160
30	Arg	Lys	Glu	His	Ile 165	Arg	Glu	Ser	•		Lys		Leu	Gly	Pro 175	Lys
25	Asn	Ser	Glu	Gly 180	Leu	His	Ser	Ala	Arg 185	Asp			val			
35													• : .	· ·.		•
40	Leu	Gly	Ser 195	Gly	Gly	Gly	Phe	Arg 200	Ala				Phe 205			
	Met	Lys 210	Ala	Leu	Tyr	Glu	Ser 215	Gly	Ile				Ala		•	
45	Ala		Leu	Ser	Glv	Ser	Thr						Leu			His
	225	3			-3	230		·· A			235					240
50	Pro	Asp	Phe	Pro	Glu 245	Lys	Gly	Pro	Glu				Glu			
55	Lys	Asn	Val	Ser 260		Asn	Pro	Leu	Leu 265	Leu			Pro			Val
											:				•. •	,

Ly	ys A:		Tyr 275	Val	Glu	Ser	Leu	Trp 280	Lys	Lys	Lys	Ser	Ser 285	Gly	Gln	Pro
5 Va		hr 90	Phe	Thr	Asp	Ile	Phe 295	Gly	Met	Leu	Ile	Gly 300	Glu	Thr	Leu	Ile
10 30		sn .	Arg	Met	Asn	Thr 310	Thr	Leu	Ser	Ser	Leu 315	Lys	Glu	Lys	Val	Asn 320
15	nr A	la (Gln	Cys	Pro 325	Leu	Pro	Leu	Phe	Thr 330	Cys	Leu	His	Val	Lys 335	Pro
	sp V	al	Ser	Glu 340	Leu	Met	Phe	Ala	Asp 345	Trp	Val	Glu	Phe	Ser 350	Pro	
20 Gl	lu I		Gly 355	Met	Ala	Lys	Tyr	Gly 360	Thr	Phe	Met	Ala	365	Asp		
25 G1		er :	Lys	Phe	Phe	Met	Gly 375	Thr	Val	Val	Lys	Lys 380				
30 38		eu :	His	Phe	Leu	Met 390	Gly	Val	Trp	Gly	Ser 395				Ile	
Pt 35	ne A	sn .	Arg	Val	Leu 405	Gly	Val	Ser	Gly		Gln				Ser 415	
	et G	lu ·	Glu	Glu 420	Leu	Glu	Asn	 Ile		•	Lys					
40 As	sp S		Ser 435	Asp	Ser	Asp	Asp	Glu 440	Ser	His	Glu			-	Thr	
45 As		lu . 50	Asp	Ala	Gly	Ser	Asp 455	Tyr	Gln	Ser	Asp		, Gln	Ala	Ser	
	le H 65	is.	Arg	Met	Ile	Met 470	Ala	Leu	Val	Ser	Asp 475				Phe	
Th	nr A	rg	Glu	Gly	Arg 485	Ala	Gly	Lys		_	Asn					
55											٠		::		:	

Gln Asp Ser Phe Asp Asp Glu Leu Asp Ala Ala Val Ala Asp Pro Asp Glu Phe Glu Arg Ile Tyr Glu Pro Leu Asp Val Lys Ser Lys Lys Ile His Val Val Asp Ser Gly Leu Thr Phe Asn Leu Pro Tyr Pro Leu Ile Leu Arg Pro Gln Arg Gly Val Asp Leu Ile Ile Ser Phe Asp Phe Ser Ala Arg Pro Ser Asp Ser Ser Pro Pro Phe Lys Glu Leu Leu Leu Ala Glu Lys Trp Ala Lys Met Asn Lys Leu Pro Phe Pro Lys Ile Asp , ., Pro Tyr Val Phe Asp Arg Glu Gly Leu Lys Glu Cys Tyr Val Phe Lys Pro Lys Asn Pro Asp Met Glu Lys Asp Cys Pro Thr Ile Ile His Phe Val Leu Ala Asn Ile Asn Phe Arg Lys Tyr Lys Ala Pro Gly Val Pro Arg Glu Thr Glu Glu Glu Lys Glu Ile Ala Asp Phe Asp Ile Phe Asp grafice of the state of the Asp Pro Glu Ser Pro Phe Ser Thr Phe Asn Phe Gln Tyr Pro Asn Gln 1. Commence of the second Ala Phe Lys Arg Leu His Asp Leu Met His Phe Asn Thr Leu Asn Asn Ile Asp Val Ile Lys Glu Ala Met Val Glu Ser Ile Glu Tyr Arg Arg Gln Asn Pro Ser Arg Cys Ser Val Ser Leu Ser Asn Val Glu Ala Arg

Arg Phe Phe Asn Lys Glu Phe Leu Ser Lys Pro Lys Ala 740 745

5

.