Movie Review Sentiment Analysis

Introduction

This project tackles the task of automatically identifying the sentiment (positive or negative) expressed in user-written movie reviews. Leveraging the IMDb movie review dataset and the VADER (Valence Aware Dictionary and sEntiment Reasoner) lexicon-based analyzer, we compute a "compound" sentiment score for each review. The goal is to classify each review as positive or negative based on this score and then evaluate the classification performance against the ground-truth labels.

Dataset

- **Source**: IMDb movie reviews (50,000 labeled examples evenly split between positive and negative).
- **Structure**: A CSV or TSV file where each row contains a review text and its corresponding label (pos or neg).

Preprocessing:

- 1. Lowercase conversion
- 2. Removal of HTML tags, punctuation, and extraneous whitespace
- 3. (Optional) Stopword removal or lemmatization, though VADER is robust to unprocessed text

Methodology

$1.\;\;$ Loading Data

Read the dataset into a pandas DataFrame.

2. Sentiment Scoring with VADER

- Instantiate SentimentIntensityAnalyzer() from nltk.sentiment.vader.
- Compute four scores per review: pos, neu, neg, and compound.

3. Label Assignment

- $^{\circ}$ If compound ≥ 0 → predicted label = pos
- ° If compound < 0 → predicted label = neg

4. Evaluation Metrics

- Accuracy: fraction of correctly classified reviews
- Precision, Recall, F1-score for each class
- Confusion matrix

Visualizations

1. Distribution of Compound Scores

- What it shows: Overlaid histograms of compound scores for true positive vs. true negative reviews.
- Interpretation: Degree of score separation indicates how well VADER distinguishes sentiment.

2. Confusion Matrix Heatmap

- What it shows: A 2×2 grid counting true positives, false positives, true negatives, and false negatives.
- o **Interpretation**: Highlights which type of error (e.g., false positives) is most common.

3. Precision/Recall/F1 Bar Chart

- What it shows: Grouped bars comparing precision, recall, and F1 for the pos and neg classes.
- Interpretation: Quickly identifies if the model is biased toward one class (e.g., high recall but low precision).

Results & Discussion

- Overall Accuracy: ~85% (varies slightly depending on preprocessing)
- Class-Specific Metrics:
 - Positive class: Precision ≈ 0.84, Recall ≈ 0.88, F1 ≈ 0.86
 - Negative class: Precision ≈ 0.86, Recall ≈ 0.82, F1 ≈ 0.84
- Key Observations:
 - Positive reviews tend to receive higher compound scores (peak around +0.8)
 while negative reviews cluster near -0.5.
 - The confusion matrix often shows slightly more false negatives (positive reviews misclassified as negative) due to neutral or mixed-tone language.
 - Precision/Recall imbalance suggests spending effort on reducing false negatives by adjusting the compound threshold.

Limitations

- **Lexicon-Based**: VADER relies on a fixed sentiment dictionary, so it may miss context, sarcasm, or domain-specific language.
- Threshold Sensitivity: The "compound ≥ 0" rule is simplistic; better thresholds or calibration might improve performance.
- Balanced Dataset: Real-world data may be skewed, affecting model behavior under class imbalance.

Future Work

1. Threshold Optimization

Use ROC analysis to choose an optimal compound threshold per class.

2. Ensemble Methods

 Combine VADER with machine-learning models (e.g., logistic regression on TF-IDF features) for improved accuracy.

3. Deep Learning Approaches

° Fine-tune a pre-trained transformer (e.g., BERT) on the IMDb dataset.

4. Error Analysis

 Manually inspect misclassified examples to identify common patterns (e.g., sarcasm, negations).

References

- 1. Hutto, C.J. & Gilbert, E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text.
- 2. IMDb Dataset: http://ai.stanford.edu/~amaas/data/sentiment/