

Міністерство освіти і науки України

Харківський національний університет імені В.Н. Каразіна

Лабораторна робота #3

Середньоквадратичне наближення функцій алгебраїчними многочленами

Виконав:

Захаров Дмитро Олегович Група МП-31

Зміст

1	Постановка задачі	2				
2	Опис методу	3				
	2.1 Класична перспектива	3				
	2.2 Ймовірнісна перспектива					
	2.3 Оцінка точності	4				
3	Текст програми					
	3.1 Пошук коефіцієнтів	5				
	3.2 Програма запуску					
4	Результати	11				
	4.1 Таблиця	11				
	4.2 Графік	12				
5	Висновки	13				

1 Постановка задачі

За даними з таблиці побудувати середньоквадратичне наближення функції, заданої таблично, алгебраїчним багаточленом третього ступеня.

Обчислити значення побудованого кубічного багаточлена у вузлах таблиці та оцінити похибку середньоквадратичного наближення.

На друк вивести результати у вигляді таблиць:

$$x_i \quad y_i \quad f(x_i) \quad |y_i - f(x_i)|,$$

а також Δ – відносну похибку середньоквадратичного наближення.

Варіант 5.

-									4.0	
x	1.97	3.53	3.57	2.42	2.44	1.30	0.71	2.12	3.08	5.99

2 Опис методу

2.1 Класична перспектива

Нехай ми шукаємо апроксимацію у вигляді:

$$f(x; \mathbf{w}) = \mathbf{w}^{\top} \boldsymbol{\phi}(x)$$

де
$$\mathbf{w} \in \mathbb{R}^{m+1}$$
 – вектор ваг, $\boldsymbol{\phi}(x) = \begin{bmatrix} 1 & x & x^2 & \dots & x^m \end{bmatrix}^\top$.

Нехай ми маємо таблицю $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{n_{\mathcal{D}}} \subset \mathbb{R} \times \mathbb{R}$, яку ми хочемо апроксимувати. Суть середньоквадратичної помилки – оптимізувати функцію втрати:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \mathcal{L}(\mathbf{w} \mid \mathcal{D}), \text{ де } \mathcal{L}(\mathbf{w} \mid \mathcal{D}) \triangleq \sum_{i=1}^{n_{\mathcal{D}}} (f(x_i; \mathbf{w}) - y_i)^2$$

Набір данних легше зобразити у вигляді матриці:

$$\mathbf{X} = \begin{bmatrix} \boldsymbol{\phi}(x_1)^{\top} \\ \boldsymbol{\phi}(x_2)^{\top} \\ \vdots \\ \boldsymbol{\phi}(x_{n_{\mathcal{D}}})^{\top} \end{bmatrix} \in \mathbb{R}^{n_{\mathcal{D}} \times (m+1)}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n_{\mathcal{D}}} \end{bmatrix} \in \mathbb{R}^{n_{\mathcal{D}}}$$

Тоді, наша задача еквівалентна

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 = \arg\min_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})^{\top} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Помітимо, що екстремум можна знайти за допомогою:

$$\frac{\partial \mathcal{L}(\mathbf{w} \mid \mathcal{D})}{\partial \mathbf{w}} = 0 \iff \frac{\partial (\mathbf{y}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{X} \mathbf{w} - \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y} + \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w})}{\partial \mathbf{w}} = 0$$

Після диференціювання, отримуємо:

$$-2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = 0 \implies \hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

2.2 Ймовірнісна перспектива

Нехай ми вважаємо, що функція $f(x; \mathbf{w})$, наведена у попередньому розділі 2.1, найкраще апроксимує набір данних \mathcal{D} . В такому разі будемо вважати, що джерело різниці між реальними значеннями і "теоретично" правильними – це гаусовий гум ϵ , тобто:

$$y = f(x; \mathbf{w}) + \epsilon$$
, де $\epsilon \sim \mathcal{N}(0, \sigma^2)$

В такому разі, умовна умовірність зустріти значення y при заданому x:

$$p(y \mid x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(y - f(x; \mathbf{w}))}{2\sigma^2}\right\}$$

Нам потрібно знайти $\arg\max_{\mathbf{w}} p(\mathbf{y} \mid \mathbf{X})$, тобто максимізувати ймовірність мати увесь набір данних. Тобто:

$$\hat{\mathbf{w}} = \arg\max_{\mathbf{w}} \prod_{i=1}^{n_{\mathcal{D}}} p(y_i \mid x_i)$$

Проте, знаходити максимум від добутку не дуже зручно, тому помітимо, що ми можемо оптимізовувати замість цього так званий negative log-likelihood:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \left(-\log \prod_{i=1}^{n_{\mathcal{D}}} p(y_i \mid x_i) \right) = \arg\min_{\mathbf{w}} \left(\frac{n_{\mathcal{D}}}{2} \log 2\pi\sigma^2 + \frac{1}{2\sigma^2} \sum_{i=1}^{n_{\mathcal{D}}} (y_i - f(x_i; \mathbf{w}))^2 \right)$$

Оскільки $\frac{n_{\mathcal{D}}}{2}\log 2\pi\sigma^2$ ніяк не залежить від \mathbf{w} , то задача на оптимізацію еквівалентна:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{i=1}^{n_{\mathcal{D}}} (y_i - f(x_i; \mathbf{w}))^2,$$

що еквівалентно оптимізації у минулому пункті.

2.3 Оцінка точності

Після того, як ми отримали коефіцієнти $\hat{\mathbf{w}}$, ми можемо оцінити відносну похибку за формулою:

$$\Delta^2 = \frac{\sum_{i=1}^{n_D} (y_i - f(x_i; \hat{\mathbf{w}}))^2}{\sum_{i=1}^{n_D} y_i^2}$$

Або, на мові попередніх розділів,

$$\Delta = \frac{\|\mathbf{y} - \mathbf{X}\hat{\mathbf{w}}\|_2}{\|\mathbf{y}\|_2}$$

3 Текст програми

Повний текст програми можна знайти за цим посиланням (\leftarrow напис клікабельний) на GitHub сторінку.

3.1 Пошук коефіцієнтів

Створимо файл solver. py та реалізуємо алгоритм з розділу 2.1 у класі LeastSquaresSolver. При ініціалізації ми будемо вказувати ступінь полінома за яким ми хочемо апроксимувати, а також додамо 2 методи:

- 1. **fit**: приймає набір данних \mathcal{D} і повертає набір коефіцієнтів $\hat{\mathbf{w}}$ (а також зберігає їх в самому класі);
- 2. predict: приймає $x \in \mathbb{R}$ і повертає $\hat{\mathbf{w}}^{\top} \boldsymbol{\phi}(x)$, тобто значення полінома зі знайденими коефіцієнтами у вказаній точці.

```
1 from typing import TypeAlias, Tuple, List
2 import numpy as np
4 Point: TypeAlias = Tuple[float, float]
5 Dataset: TypeAlias = List[Point]
 class LeastSquaresSolver:
      A class to solve the least squares problem
9
11
      def __init__(self, degree: int) -> None:
13
          Args:
14
              dataset (Dataset): A list of points
15
               degree (int): The degree of the polynomial to fit
16
17
18
          self._degree = degree
19
20
      def _generate_power_vector(self, x: float) -> List[float]:
21
          """ Generates a row consisting of powers of x
22
23
24
          Args:
              x (float): The x value of the point
25
26
          Returns:
27
               List[float]: A row for the dataset matrix
29
          return [x**i for i in range(self._degree + 1)]
```

```
def fit(self, dataset: Dataset) -> np.ndarray:
33
          """ Returns a list of coefficients for the polynomial of the
34
     given degree
35
          Returns:
36
              np.ndarray: A list of coefficients for the polynomial of
37
     the given degree (degree + 1)
38
39
          X = np.empty((len(dataset), self._degree + 1))
40
          Y = np.empty((len(dataset), 1))
42
          for i in range(len(dataset)):
43
              x, y = dataset[i]
44
               X[i] = self._generate_power_vector(x)
45
              Y[i] = y
46
47
          self._coefficients = np.linalg.inv(X.T @ X) @ X.T @ Y
48
          self._coefficients = np.squeeze(self._coefficients, axis=-1)
49
          return self._coefficients
50
51
      def predict(self, x: float) -> np.floating:
          """ Predicts the y value for the given x value
53
54
          Args:
55
               x (float): The x value to predict the y value for
57
          Returns:
               float: The predicted y value
59
60
61
          return self._coefficients @ self._generate_power_vector(x)
```

Лістинг 1: Реалізація пошуку коефіцієнтів методом найменших квадратів

3.2 Програма запуску

При запуску, ми робимо наступні дії:

- 1. Ініціалізуємо LeastSquaresSolver та запускаємо fit метод на обраному наборі данних.
- 2. Будуємо графік, де зображуємо поліном та точки з набору данних.
- 3. Будуємо графік для різних ступенів поліному для перевірки.
- 4. Будуємо таблицю, котру потребує завдання.
- 5. Оцінюємо відносну похибку Δ .

Отже, наводимо код знизу (файл main.py), котрий робить вищезгадані кроки.

```
import matplotlib.pyplot as plt
2 import matplotlib.patches as mpatches
3 import numpy as np
4 from typing import List
6 # Rich logging
7 from rich import print
8 from rich.console import Console
9 from rich.table import Table
11 from solver import LeastSquaresSolver, Dataset
12
def _show_predictions(dataset: Dataset, solver: LeastSquaresSolver) ->
      """ Shows the predictions of the fitted polynomial
14
          dataset (Dataset): A list of points
17
          solver (LeastSquaresSolver): A LeastSquaresSolver instance
18
      0.00
19
20
      # Initializing an instance of rich. Table to make an attractive
     table in the console
      console = Console()
22
      table = Table(title='Degree vs real values for a linear regression
23
      table.add_column('x', justify='center', style='white')
24
      table.add_column('y', justify='center', style='green')
25
      table.add_column('f(x)', justify='center', style='blue')
26
      table.add_column('|y - f(x)|', justify='center', style='red')
27
28
      # Adding rows to the table
29
      for (x, y) in dataset:
30
          x_label = '{:.8f}'.format(x)
31
          y_label = '{:.8f}'.format(y)
32
          prediction_label = '{:.8f}'.format(float(solver.predict(x)))
33
          difference_label = '{:.8f}'.format(np.abs(y - solver.predict(x
34
     )))
35
          table.add_row(x_label, y_label, prediction_label,
36
     difference_label)
37
      console.print(table)
38
39
  def _print_predicted_polynomial(coefficients: np.ndarray) -> None:
      """ Prints the predicted polynomial
41
42
      Args:
43
          coefficients (np.ndarray): A list of coefficients for the
44
     polynomial of the given degree (degree + 1)
```

```
11 11 11
45
46
      # Initializing an instance of rich. Table to make an attractive
47
     table in the console
      console = Console()
48
      table = Table(title='Predicted polynomial')
49
      table.add_column('Degree', justify='center', style='white')
50
      table.add_column('Coefficient', justify='center', style='green')
51
52
      # Adding rows to the table
      for i, coefficient in enumerate(coefficients):
54
          degree_label = f'x^{i}'
          coefficient_label = '{:.4f}'.format(float(coefficient))
56
57
          table.add_row(degree_label, coefficient_label)
59
      console.print(table)
60
61
62
      _show_plot(dataset: Dataset, solver: LeastSquaresSolver) -> None:
      """ Shows a plot of the dataset and the fitted polynomial
63
64
      Args:
65
          dataset (Dataset): A list of points
66
          solver (LeastSquaresSolver): A LeastSquaresSolver instance
67
68
69
      # Finding a range of values for x
70
      min_x = min([point[0] for point in dataset])
71
      max_x = max([point[0] for point in dataset])
72
      # Drawing the plot
74
      t = np.arange(min_x, max_x, 0.01)
75
      _, ax = plt.subplots()
76
      ax.grid()
77
      ax.scatter([point[0] for point in dataset], [point[1] for point in
78
      dataset], marker='x', color='red')
      ax.plot(t, [solver.predict(x) for x in t], color='blue')
79
      plt.tight_layout()
80
      plt.savefig('images/plot.png', dpi=300)
81
82
      plt.show()
83
  def _show_plot_of_different_degrees(dataset: Dataset) -> None:
84
      """ Shows a plot of the dataset and the fitted polynomial of
85
     different degrees
      Args:
87
          dataset (Dataset): A list of points
88
89
90
      # Finding a range of values for x
91
```

```
min_x = min([point[0] for point in dataset])
92
       max_x = max([point[0] for point in dataset])
93
94
       # Fitting the dataset with different degrees
95
       solvers = [LeastSquaresSolver(degree=i) for i in range(1, 8)]
96
       for solver in solvers:
97
           solver.fit(dataset)
98
99
       # Drawing the plot
100
       t = np.arange(min_x, max_x, 0.01)
       colors = ['cornflowerblue', 'royalblue', 'blue', 'mediumblue', '
102
      darkblue', 'navy', 'midnightblue']
       _, ax = plt.subplots()
104
       ax.grid()
106
       handles: List[mpatches.Patch] = []
107
       ax.scatter([point[0] for point in dataset], [point[1] for point in
108
       dataset], marker='x', color='red')
       for solver, color in zip(solvers, colors):
           ax.plot(t, [solver.predict(x) for x in t], color=color)
110
           handles.append(mpatches.Patch(color=color, label=f'Degree {
111
      solver._degree}'))
      ax.legend(handles=handles)
112
      plt.tight_layout()
113
       plt.savefig('images/degrees.png', dpi=300)
114
       plt.show()
115
117 def _estimate_relative_error(dataset: Dataset, solver:
      LeastSquaresSolver) -> np.floating:
       """ Estimates the relative error of the fitted polynomial
118
119
       Args:
120
           dataset (Dataset): A list of points
           solver (LeastSquaresSolver): A LeastSquaresSolver instance
123
       Returns:
           np.floating: Relative error
       ....
126
127
       # Set of y real values
       y = np.array([point[1] for point in dataset])
128
       # Set of y predicted values
       y_hat = np.array([solver.predict(point[0]) for point in dataset])
130
131
       return np.linalg.norm(y - y_hat) / np.linalg.norm(y)
132
133
  if __name__ == '__main__':
134
       dataset = [
135
           (0.8, 1.97),
136
           (1.2, 3.53),
```

```
(1.6, 3.57),
138
           (2.0, 2.42),
139
           (2.4, 2.44),
140
           (2.8, 1.30),
141
           (3.2, 0.71),
142
           (3.6, 2.12),
143
           (4.0, 3.08),
144
           (4.4, 5.99)
145
       ]
146
147
       # Using Least Squares Solver to find the coefficients of the
148
      polynomial
       solver = LeastSquaresSolver(degree=3)
149
150
       coefficients = solver.fit(dataset)
       # Showing the plot of the dataset and the fitted polynomial of
      different degrees
       _show_plot_of_different_degrees(dataset)
153
154
       # Showing the predictions of the fitted polynomial
       _show_predictions(dataset, solver)
156
157
       # Showing the coefficients of the fitted polynomial
158
       _print_predicted_polynomial(coefficients)
159
160
       # Showing the plot with the dataset and the fitted polynomial
161
       _show_plot(dataset, solver)
163
       # Estimating the relative error of the fitted polynomial
164
165
       relative_error = _estimate_relative_error(dataset, solver)
       print('Relative error: {:.4f}'.format(float(relative_error)))
166
```

Лістинг 2: Запуск методу найближчих квадратів

4 Результати

4.1 Таблиця

Спочатку, побудуємо таблицю, як і просили в умові

Degree vs real values for a linear regression

х	у	f(x)	y - f(x)	
0.8000000 1.2000000 1.6000000 2.0000000 2.4000000 3.2000000 4.0000000 4.4000000	1.97000000 3.53000000 3.57000000 2.42000000 1.3000000 0.71000000 2.12000000 3.08000000 5.99000000	2.15506294 3.24534266 3.37650816 2.88956177 2.12550583 1.42534266 1.13007459 1.58070396 3.11823310 6.08366434	0.18506294 0.28465734 0.19349184 0.46956177 0.31449417 0.12534266 0.42007459 0.53929604 0.03823310 0.09366434	

Predicted polynomial

Degree	Coefficient
x^0	-4.2668
x^1 x^2	12.4144 -6.1941
x^3	0.8880

Relative error: 0.1019

Рис. 1: Таблиця з результатами

Бачимо, що поліном має вигляд:

$$\mathbf{w} \approx \begin{bmatrix} -4.267 \\ 12.414 \\ -6.194 \\ 0.888 \end{bmatrix} \implies f(x; \mathbf{w}) = \mathbf{w}^{\top} \boldsymbol{\phi}(x) \approx 0.888x^{3} - 6.194x^{2} + 12.414x - 4.267$$

Відносна похибка вийшла $\Delta \approx 10.2\%$.

4.2 Графік

Графік, на якому ми зобразили наш побудований поліном:

Рис. 2: Синім ми зобразили графік $f(x; \mathbf{w})$, а червоним набір данних

Для перевірки, додатково побудуємо поліноми різних ступенів:

Рис. 3: Різними відтінками синього ми помітили різні ступені $f(x; \mathbf{w})$

5 Висновки

В цій лабораторній роботі ми:

- навчилися будувати поліном, котрий апроксимує набір точок за допомогою методу найближчих квадратів.
- навчилися писати комп'ютерну програму (на прикладі мови Python), що будує поліном за методом найближчих квадратів з можливістю обрання ступені поліному та задаванням довільного розміру початкових данних.
- Оцінювати написану програму (ми це зробили у випадку $\deg f(x; \mathbf{w}) = 3$).
- Візуалізовувати графік та набір точок.

Щодо *LSE* методу можемо зробити наступні зауваження:

- 1. В порівнянні з минулими методами інтерполяції (поліном Лагранжа, сплайни тощо), точність на заданому наборі виявилась меньшою. Проте, це ніяк не каже про те, що метод найменьших квадратів є гіршим. Навпаки на великому наборі данних, точна інтерполяція часто дає дуже нестабільні результати на проміжках між вузлами, оскільки для інтерполяції нам потрібно поліном ступеня $n_{\mathcal{D}}-1$, навіть якщо ми дуже впевнені про, скажімо, лінійну залежність y(x).
- 2. Для LSE методу ми розв'язуємо лінійну систему $\mathbf{X}^{\top}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\top}\mathbf{y}$ за допомогою знаходження оберненої матриці $(\mathbf{X}^{\top}\mathbf{X})^{-1}$, проте з цією операцією є безліч проблем. Існує багато інших більш точних чисельних методів лінійної алгебри для цього. Як альтернатива, найбільш очевидний спосіб це метод градієнтного спуску. У найпростішому випадку, ми на кожному кроці знаходимо:

$$\mathbf{w}^{\langle i+1 \rangle} \leftarrow \mathbf{w}^{\langle i \rangle} - \eta \frac{\partial \mathcal{L}(\mathbf{w}^{\langle i \rangle} \mid \mathcal{D})}{\partial \mathbf{w}}, \ \eta \ll 1$$

3. Для цього конкретно набору данних, значно меньшу похибку дала би степінь полінома 8. Проте, з цього набору точок видно, що скоріше за все залежність кубічна. Хоча поліном 8 ступеня і ближче підігнав криву до них, це б не означало, що якщо ми додамо до набору інші точки, то наша функція би їх добре наближала. У машинному навчанні таке явище називають overfitting'ом.