Задачи по ФУНКЦИОНАЛЬНОМУ АНАЛИЗУ

Введение

Издание представляет собой сборник задач по курсу Функциональный анализ (Анализ III), который читается на 3-м курсе факультета прикладной математики и экономики МФТИ. Материал задач охватывает все разделы курса. При отборе задач авторы ставили цель показать, как работают и применяются фундаментальные понятия и факты функционального анализа, выявить взаимосвязи между ними. При этом ставилось требование сохранить небольшой объём пособия, поэтому в него включены задачи, принципиально важные для усвоения курса. Технических упражнений задачник практически не содержит.

Некоторые задачи, представленные в пособии, заимствованы из источников, указанных в списке литературы.

Авторы надеются, что предлагаемый задачник окажется полезным для студентов и аспирантов, желающих углубить свои знания в области функционального анализа.

Авторы считают приятным долгом выразить благодарность своим коллегам по кафедре высшей математики МФТИ: члену-корреспонденту РАО, профессору Г.Н. Яковлеву, по инициативе и при поддержке которого был составлен этот задачник, М.В. Балашову и Р.В. Константинову, любезно предоставивших ряд своих задач, и А.В. Полозову за помощь в подготовке текста.

О терминологии и обозначениях

Принятые в пособии термины и обозначения в основном соответствуют [1], [10]. Некоторые из них поясняются ниже.

 \mathbb{N} — множество натуральных чисел;

 \mathbb{Q} — множество рациональных чисел;

 \mathbb{R} — множество вещественных чисел;

C[0,1] — пространство непрерывных функций, определённых на отрезке [a,b], снабжённое нормой $\|f\|_C = \sup_{x\in \mathbb{R}^d} |f(x)|$;

 $\mathcal{R}[0,1]$ — множество функций, интегрируемых по Риману на отрезке [0;1];

 l_p — пространство последовательностей с нормой $\|x\|_p = \sqrt[p]{\sum_{k=1}^{\infty}|x_k|^p}, \ 1\leqslant p<+\infty;$

 l_{∞} — пространство ограниченных последовательностей;

 $L_p[a,b]$ — пространство измеримых и суммируемых в степени p

 $(1\leqslant p<\infty)$ функций с нормой $\|f\|=\left(\int_a^b|f(x)|^p\,dx\right)^{1/p};$

 $\mathbb{B}_1(0)$ — замкнутый шар в нормированном пространстве, с центром в точке x=0 и радиуса 1;

 $f_n \rightrightarrows f$ — равномерная сходимость последовательности функций;

 $\dim E$ — размерность линейного пространства E;

 $\mathcal{L}(X,Y)$ — пространство линейных ограниченных операторов, действующих из X в Y;

 $\operatorname{Ker} A$ — ядро оператора A;

 $\lim_{\varepsilon \to 0} \frac{\ln N(\varepsilon)}{\ln(1/\varepsilon)}$ — фрактальная (аппроксимативная) размерность компакта, где $N(\varepsilon)$ — число элементов в наименьшей ε -сети.

1. Метрические и топологические пространства

- 1. Доказать, что произвольное открытое подмножество прямой можно представить в виде объединения не более чем счетного числа попарно не пересекающихся интервалов (возможно бесконечных).
- 2. Доказать, что произвольное открытое подмножество в \mathbb{R}^n можно представить в виде объединения счетного числа шаров рационального радиуса с центрами в точках с рациональными координатами.
- 3. Является ли открытым в пространстве C[a,b] множество

$${f \in C[a,b] : 0 < f(x) < 1 \quad \forall x \in [a,b]}$$
?

4. Является ли открытым в пространстве l_{∞} множество

$${x \in l_{\infty} : 0 < x_k < 1, k = 1, 2, ...}$$
?

$$(3десь x = (x_1, x_2, \ldots)).$$

- 5. Пусть A подмножество метрического пространства (X, ρ) . Доказать, что функция $f: X \to \mathbb{R}, \ f(x) = \rho(x, A) = \inf_{y \in A} \rho(x, y)$ непрерывна.
- 6. Описать все множества в метрическом пространстве, которые могут быть множеством нулей некоторой непрерывной функции?
- 7. Пусть A, B замкнутые, непересекающиеся подмножества метрического пространства X. Доказать, что на X существует непрерывная функция f такая, что $f|_A \equiv 0, f|_B \equiv 1$.
- 8. Доказать, что множество $\{\sin(n), n=1,2,\ldots\}$ всюду плотно в [-1,1].
- 9. Исследовать пространство C[a,b]: доказать, что оно полно, сепарабельно, связно.
- 10. Доказать, что отрезок и окружность не гомеоморфны.
- 11. Доказать, что на вещественной прямой связными множествами являются только промежутки (отрезки, интервалы, полуинтервалы, включая бесконечные).
- 12. Разместить в единичном шаре пространства l_2 счётное число шаров радиуса 1/10.
- 13. Доказать, что пространство основных функций $D(\mathbb{R}^1)$ неметризуемо.

14. Пусть $M = \{x \in l_1 : x \in \mathbb{Q}\}$. Является ли множество M счётным?

2. Полные метрические пространства

- 1. Доказать, что множество вещественных чисел является пополнением множества рациональных чисел.
- 2. Доказать, что пространства $l_p(1 \leq p < \infty)$ сепарабельные полные метрические пространства, а пространство l_∞ полное, но не сепарабельное.
- 3. Доказать, что если в пространстве C[a,b] рассмотреть метрику $\rho_1(f,g)=\int_a^b|f(x)-g(x)|\,dx,$ то в ней оно будет неполно.
- 4. Доказать, что всякая равномерно непрерывная функция на метрическом пространстве однозначно продолжается до непрерывной функции на его пополнении, и что это продолжение равномерно непрерывно.
- 5. При помощи принципа сжимающих отображений найти достаточное условие на параметр λ , при котором уравнение

$$\varphi(x) = \lambda \int_{a}^{b} K(x,y)\varphi(y) \, dy + f(x)$$

имеет единственное решение $\varphi \in C[a,b]$. (Здесь $f \in C[a,b]$, $K \in C([a,b]^2)$).

6. Найти пополнение метрического пространства, состоящего из непрерывных финитных на числовой оси функций с метрикой

$$\rho(x,y) = \max_{t} |x(t) - y(t)|.$$

7. Существует ли числовая функция, непрерывная в рациональных и разрывная в иррациональных точках отрезка [0,1]?

3. Компактные метрические пространства

- 1. Доказать, что компакты в \mathbb{R}^n это замкнутые ограниченные множества.
- 2. Пусть M замкнутое подмножество \mathbb{R}^n и $x \in \mathbb{R}^n$. Доказать, что $\rho(x,M) = \inf_{z \in M} \rho(x,z)$ достигается в некоторой точке $z \in M$. Показать, что в произвольном метрическом пространстве (например, для $M \subset l_2$) это, вообще говоря, не так.
- 3. Исследовать канторово множество на отрезке: найти его мощ-

- ность, меру, установить его замкнутость, компактность, нигде не плотность, найти фрактальную размерность.
- 4. Пусть X метрическое пространство, обладающее тем свойством, что любая непрерывная на нем функция ограничена. Доказать, что X компакт.
- 5. Найти фрактальную размерность графика функции $y = \sin(1/x), 0 < x \le 1.$
- 6. Доказать, что компактное метрическое пространство имеет конечный диаметр.
- 7. Компактен ли единичный шар в l_2 ?
- 8. Доказать, что компактное метрическое пространство сепарабельно.
- 9. Доказать, что компактное подмножество метрического пространства замкнуто.
- 10. Доказать, что компакт нельзя изометрично отобразить на свое собственное подмножество.
- 11. Доказать, что множество M в l_2 компактно \Leftrightarrow оно замкнуто, ограничено и

$$\forall \varepsilon > 0 \quad \exists n \quad \forall x \in M \quad \sum_{k=n}^{\infty} |x_k|^2 < \varepsilon.$$

 $(3десь x = (x_1, x_2, \ldots)).$

- 12. Пусть E компактное метрическое пространство с метрикой $\rho(\cdot,\cdot)$. Пусть $f:E\to E$, причем $\rho(f(x),f(y))<\rho(x,y)$ для всех $x\neq y$. Доказать, что f имеет неподвижную точку. Верно ли, что неподвижная точка единственна? Верно ли, что f сжимающее отображение?
- 13. Доказать, что множество $\{f \in C^1[0,1]: \|f\|_C + \|f'\|_C = 1\}$ предкомпактно в C[0,1]. Является ли это множество предкомпактным в C[0,1]?

4. Нормированные и топологические векторные пространства

- Доказать, что нормированное пространство полно
 ⇔ в нем всякий абсолютно сходящийся ряд сходится.
- 2. Доказать, что две нормы, определенные на одном и том же линейном пространстве, эквивалентны тогда и только тогда, когда из сходимости последовательности по одной из норм следует ее сходимость по другой норме.
- 3. В пространстве C[a,b] рассматривается множество M, состоящее из многочленов p(x) степени ≤ 10 , удовлетворяющих условию $\int_a^b |p(x)| \, dx \leqslant 10$. Компактно ли множество M?
- 4. Найти крайние точки замкнутого единичного шара в пространствах l_2 , l_1 , C[a,b], c_0 .
- 5. Доказать, что выпуклая оболочка компактного множества в \mathbb{R}^n также будет компактным множеством.
- 6. Доказать, что непустое выпуклое компактное подмножество \mathbb{R}^n гомеоморфно k-мерному шару, $k \leq n$.
- 7. Пусть B_1 и B_2 шары в нормированном пространстве с радиусами соответственно r_1 и r_2 . Доказать, что если $B_1 \subset B_2$, то $r_1 \leqslant r_2$.
- 8. Пусть $B_1 \supset B_2 \supset \dots$ последовательность вложенных замкнутых шаров в банаховом пространстве. Доказать, что $\bigcap_{k=1}^{\infty} B_k \neq \emptyset$.
- 9. Описать множества в \mathbb{R}^n , которые могут служить замкнутым единичным шаром для некоторой нормы в \mathbb{R}^n .
- 10. Пусть L конечномерное подпространство нормированного пространства X. Доказать, что для любого $x \in X$ в L найдется элемент наилучшего приближения.
- 11. Верно ли, что система функций $\{x^k\}_{k=0}^{\infty}$ является
 - а) полной в C[0,1];
 - б) базисом в C[0,1]?
- 12. В каких пространствах l_p ($1 \leq p \leq \infty$), c_0 , c система $\{e_k\}_{k=1}^{\infty}$, $e_k(n) = \delta_{kn}$ является базисом. Существует ли базис в пространстве c?
- 13. Является ли пространство $C^1[0,1]$ с нормой $\|\cdot\|^1$, где $\|f\|^1==|f(0)|+\|f'\|_C$ для любой функции $f\in C^1[0,1]$, банаховым?

5. Геометрия гильбертова пространства

- 1. Доказать, что норма пространства C[a,b] не может порождаться никаким скалярным произведением.
- 2. a) Доказать, что любая последовательность вложенных непустых замкнутых выпуклых ограниченных множеств в гильбертовом пространстве имеет непустое пересечение.
 - б) Показать, что последовательность вложенных непустых замкнутых выпуклых ограниченных множеств в банаховом пространстве может иметь пустое пересечение.
- 3. Привести пример последовательности вложенных ограниченных замкнутых множеств из l_2 , имеющих пустое пересечение.
- 4. Пусть H сепарабельное гильбертово пространство, $\{e_k\}_{k=1}^{\infty}$ ортонормированный базис в H, $\{g_k\}_{k=1}^{\infty}$ ортонормированная система в H, причем $\sum_{k=1}^{\infty}\|e_k-g_k\|^2<\infty$. Доказать, что $\{g_k\}_{k=1}^{\infty}$ является ортонормированным базисом в H.
- 5. Пусть $\{x_n\}$, $\{y_n\}$ последовательности в гильбертовом пространстве, причем $\|x_n\| \le 1$, $\|y_n\| \le 1$, $(x_n, y_n) \to 1$. Доказать, что $\|x_n y_n\| \to 0$.
- 6. Доказать, что гильбертово пространство строго выпукло (т.е. его единичная сфера не содержит отрезков положительной длины).
- 7. Исследовать ««гильбертов кирпич»»: доказать, что это замкнутое множество без внутренних точек; выяснить, является ли он поглощающим множеством, к каким его точкам можно провести опорную гиперплоскость.
- 8. Пусть $\{e_1,\dots,e_n\}$ базис подпространства $L\subset H$. Доказать, что $\forall\,x\in H$ $\rho^2(x,L)=\frac{G(x,e_1,\dots,e_n)}{G(e_1,\dots,e_n)},$ где $G(a_1,\dots,a_n)$ определитель Грама.

6. Линейные ограниченные операторы в нормированных пространствах

- 1. Пусть X и Y конечномерные нормированные пространства. Доказать, что любой линейный оператор из X в Y непрерывен.
- 2. Оператор в \mathbb{R}_p^n задан матрицей A. Выразить норму оператора через коэффициенты матрицы в случаях $p=1,\ p=2,\ p=\infty$. Доказать неравенство $\|A\|_2^2\leqslant \|A\|_1\|A\|_\infty$.
- 3. Пусть E_1 и E_2 нормированные пространства, $A: E_1 \to E_2$

- линейный оператор. Верно ли, что A непрерывен, если a) dim $E_1 < \infty$; б) dim $E_1 = \infty$?
- 4. Доказать, что оператор, отображающий линейное нормированное пространство X в фактор-пространство X/L (L — линейное пространство, замкнутое по норме X) и ставящий в соответствие элементу $x \in X$ содержащий его класс смежности, является линейным ограниченным оператором.
- 5. Пусть H гильбертово пространство, $A:H\to H$ ограниченный линейный оператор, определённый на всей H. Доказать, что

$$||A|| = \sup_{\substack{x,y \in H \\ x \neq 0, y \neq 0}} \frac{|(Ax,y)|}{||x|| ||y||}.$$

- 6. Доказать, что следующие операторы являются линейными ограниченными и найти их нормы:
 - a) $A: C[0,1] \to C[0,1], \quad (Ax)(t) = \int_0^t x(s) \, ds;$
 - 6) $A: C[-1,1] \to C[-1,1],$ $(Ax)(t) = \int_{-1}^{t} x(s) ds - \int_{0}^{1} sx(s) ds;$
 - B) $A: L_1[0,1] \to L_1[0,1], \quad (Ax)(t) = x(\sqrt{t});$
 - r) $L_2[0,1] \to L_2[0,1], \quad (Ax)(t) = t \int_0^1 x(s) ds.$
- 7. Будет ли ограниченным оператор $A:C[0,1]\to C[0,1]$ $(Ax)(t)==\frac{dx}{dt}$ с областью определения L линейным многообразием непрерывно дифференцируемых на [0,1] функций?
- 8. а) Доказать, что оператор $D = \frac{d}{dx} : C^1[a,b] \to C[a,b]$ непрерывен.
 - б) Доказать тождество $(xDx)^n u = x^n D^n(x^n u), u \in C^n[a,b].$
- 9. Пусть $\{e_n\}_{n\in\mathbb{N}}$ ортонормированный базис гильбертова пространства $H,\ \lambda_n\in\mathbb{R}$. Доказать, что если последовательность λ_n ограничена, то равенства $Ae_n=\lambda_n e_n$ определяют ограниченный линейный оператор $A:H\to H$, определённый на всём H, причём $\|A\|=\sup|\lambda_n|$.
- 10. Пусть X, Y банаховы пространства, $A: X \to Y$ ограниченный линейный оператор. Всегда ли равенства а) $\|x\|_1 = \|Ax\|$; б) $\|x\|_2 = \|x\| + \|Ax\|$ задают в X норму? Будет ли X в этой норме банаховым пространством?
- 11. Пусть H гильбертово пространство, $A_n \in \mathcal{L}(X,Y)$ и $A_n x \to Ax$ на всех элементах $x \in L$, где L линейное подпростран-

- ство, всюду плотное в X. Следует ли отсюда, что $A_n x \to A x$ на всех $x \in X$?
- 12. Пусть E_1 и E_2 банаховы пространства. Пусть последовательность $\{A_n\}\subset \mathcal{L}(E_1,E_2)$ такова, что для любого $x\in E_1$ последовательность $\{A_nx\}$ фундаментальна в E_2 . Доказать, что существует $A\in \mathcal{L}(E_1,E_2)$ такой, что $Ax=\lim_{n\to\infty}A_nx$ для любого $x\in \mathbb{E}_1$. Доказать, что $\|A\|\leqslant \underline{\lim}_{n\to\infty}\|A_n\|$. Можно ли последнее неравенство заменить равенством?
- 13. Пусть X, Y банаховы пространства, $A_n \in \mathcal{L}(X,Y), n \in \mathbb{N};$ $A_n x \to A x$ на любом элементе $x \in X$. Доказать, что если $x_n \to x$, то $A_n x_n \to A x$.
- 14. Пусть L_1, L_2 замкнутые линейные подпространства гильбертова пространства, P_1, P_2 ортогональные проекторы соответственно на $L_1, L_2, \ \delta(L_1, L_2) = \|P_1 P_2\|$. Доказать, что а) $\delta \leqslant 1$;
 - б) $\delta < 1 \Rightarrow L_1$ и L_2 имеют одинаковую размерность.
- 15. Пусть P_t , $t \in [0,1]$ однопараметрическое семейство проекторов в гильбертовом пространстве, непрерывно (в смысле нормы оператора) зависящих от параметра t. Доказать, что все P_t имеют одинаковый ранг (т.е. размерность образа).
- 16. Пусть E_1 , E_2 нормированные пространства, причем $\dim E_2 < \infty$. Пусть $A: E_1 \to E_2$ линейное отображение. Доказать, что A непрерывно тогда и только тогда, когда $\ker A$ замкнуто. Верно ли это утверждение в случае $\dim E_2 = \infty$?
- 17. Пусть E линейное пространство, f ненулевой линейный функционал на E. Доказать, что существует $x \in E$ такой, что $E = \operatorname{Ker} f \oplus [x]$.
- 18. Пусть E линейное пространство, $f:E \to \mathbb{R}$ функционал, удовлетворяющий свойствам:
 - a) $f(x) \ge 0$ для всех $x \in E$;
 - б) f(x) = 0 тогда и только тогда, когда x = 0;
 - в) $f(\alpha x) = |\alpha| f(x)$ для всех $x \in E, \alpha \in \mathbb{R}$;
 - Γ) множество $\{x \in E : f(x) \le 1\}$ выпукло.

Доказать, что f является нормой в пространстве E.

19. Пусть E_1 и E_2 — банаховы пространства, множество $\mathcal{A} \subset \mathcal{L}(E_1,E_2)$. Доказать, что множество \mathcal{A} равностепенно непре-

рывно тогда и только тогда, когда существует M>0 такое, что $\|A\|\leqslant M$ для всех $A\in\mathcal{A}.$

- 20. Пусть оператор $I: l_1 \to l_2$ реализует естественное вложение l_1 в l_2 . Доказать, что $I \in \mathcal{L}(l_1, l_2)$, но не имеет ограниченного обратного. Является ли пространство l_1 с l_2 -нормой банаховым?
- 21. Пусть оператор $I: L_2[0,1] \to L_1[0,1]$ реализует естественное вложение $L_2[0,1]$ в $L_1[0,1]$. Доказать, что $I \in \mathcal{L}(L_2[0,1],L_1[0,1])$, но не имеет ограниченного обратного. Является ли пространство $L_2[0,1]$ с $L_1[0,1]$ -нормой банаховым?
- 22. Доказать, что последовательность операторов $\{A_n\}$, $A_n \in \mathcal{L}(C[0,1]), (A_n f)(x) = f(x^{1+\frac{1}{n}})$ поточечно сходится к I. Верно ли, что A_n сходится к I по операторной норме?
- 23. В пространстве l_2 для элемента $x = (x_1, x_2, ...) \in l_2$ определим последовательности операторов:

$$A_n x = \left(\frac{x_1}{n}, \frac{x_2}{n}, \dots\right);$$

$$B_n x = \left(\underbrace{0, 0, \dots, 0}_{n}, x_{n+1}, x_{n+2}, \dots\right), \quad n \in \mathbb{N}.$$

Являются ли эти последовательности сходящимися а) поточечно; б) по операторной норме?

24. Рассмотрим оператор $A: C[0,1] \to C[0,1]$

$$(Ax)(t) = \int_0^t e^s x(s) \, ds$$

и последовательность операторов $A_n: C[0,1] \to C[0,1]$

$$(A_n x)(t) = \int_0^t \left(\sum_{k=0}^n \frac{s^k}{k!}\right) x(s) \, ds, \quad n \in \mathbb{N}.$$

Сходится ли последовательность A_n к A? Каков характер сходимости?

- 25. Доказать, что если $\forall x \in l_2 \ (x_1y_1, x_2y_2, \ldots) \in l_1$, то $y \in l_2$.
- 26. Доказать, что
 - а) тригонометрическая система не является базисом в пространстве $CP[-\pi,\pi]$;
 - б) система $\{x^k\}_{k=0}^{\infty}$ не является базисом в $L_2[0,1]$.

- 27. Назовём операторной экспонентой e^A оператор вида: $e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \ (A^0 = I$ тождественный оператор). Доказать, что если X банахово пространство, $A \in \mathcal{L}(X)$, то оператор $e^A \in \mathcal{L}(X)$, $\|e^A\| \leqslant e^{\|A\|}$. Чему равно e^I ?
- 28. Пусть X банахово пространство, $A \in \mathcal{L}(X)$. Доказать, что ряд $\sum_{k=0}^{\infty} A^k$ сходится в $\mathcal{L}(X)$ тогда и только тогда, когда для некоторого натурального k выполняется неравенство $\|A^k\| < 1$.
- 29. Пусть A_n оператор кусочно-линейной интерполяции в C[a,b] по n равноотстоящим узлам. Исследовать последовательность $\{A_n\}$ на сходимость (по норме и поточечную).
- 30. Пусть оператор U определён всюду в комплексном гильбертовом пространстве H и отображает его на все H. Он называется унитарным, если для любых $x,y \in H$ выполняется равенство (Ux,Uy)=(x,y). Доказать, что
 - а) унитарный оператор линеен и ограничен;
 - б) унитарный оператор имеет обратный, который также унитарен;
 - в) произведение двух унитарных операторов есть унитарный оператор.

7. Обратный оператор, спектр, резольвента

- 1. Пусть E банахово пространство, $A \in \mathcal{L}(E)$. Доказать, что $\sigma(A^n) = \{\lambda^n | \lambda \in \sigma(A)\}.$
- 2. Пусть X линейное пространство, $A: X \to X$ линейный оператор, удовлетворяющий при некоторых $\lambda_k \in \mathbb{R}$ соотношению $I + \lambda_1 A + \lambda_2 A^2 + \ldots + \lambda_n A^n = \theta$ (θ нулевой, I тождественный оператор). Доказать, что A^{-1} существует.
- 3. Доказать, что оператор $A:C^1[0,1]\to C[0,1]$

$$(Ax)(t) = \frac{dx}{dt}$$

имеет правый, но не имеет левого обратного.

4. В пространстве $C^1[0,1]$ рассмотрим подпространство $L = \{x(t) \in C^1[0,1] : x(0) = 0\}$ и оператор $A: L \to C[0,1]$:

$$(Ax)(t) = \frac{dx}{dt} + a(t)x(t); \quad a(t) \in C[0,1].$$

Доказать, что A имеет ограниченный обратный.

5. Рассмотрим оператор $A: C[0,1] \to C[0,1]$

$$(Ax)(t) = \int_0^t x(s) \, ds.$$

Что представляет собой множество значений оператора A? Существует ли оператор A^{-1} , определённый на множестве значений и ограничен ли он?

6. Рассмотрим оператор $A: C[0,1] \to C[0,1]$

$$(Ax)(t) = \int_0^t x(s) ds + x(t).$$

Доказать, что A имеет ограниченный обратный на всём C[0,1] и найти A^{-1} .

7. В пространстве C[0,1] рассмотрим оператор

$$(Ax)(t) = \int_0^t x(s) \, ds.$$

Найти спектр и резольвенту оператора A.

8. Доказать, что оператор $A: C[0,1] \to C[0,1]$

$$(Ax)(t) = x(t) + \int_0^1 e^{s+t} x(s) ds$$

непрерывно обратим и найти A^{-1} .

- 9. В вещественном линейном пространстве $C[-\pi,\pi]$ найти собственные значения и собственные векторы операторов
 - a) (Ax)(t) = x(-t);
 - 6) $(Ax)(t) = \int_{-\pi}^{\pi} \cos(s+t)x(s) ds$.

Имеют ли эти операторы непрерывный спектр? Построить резольвенты на множестве регулярных значений каждого оператора.

- 10. В пространстве C[0,1] рассмотрим оператор (Ax)(t) = x(0) + tx(1). Найти точечный и непрерывный спектры оператора A и построить резольвенту на множестве регулярных значений.
- 11. В пространстве $C[0,2\pi]$ рассмотрим оператор $(Ax)(t)=e^{it}x(t)$. Доказать, что спектр A есть множество $\{\lambda\in C: |\lambda|=1\}$, причём ни одна точка спектра не является собственным числом.
- 12. Найти спектр и резольвенту оператора $A \in \mathcal{L}(L_2(-1,1))$

$$(Af)(x) = \int_0^1 (1+xt)f(t) \, dt.$$

- 13. Какие множества на комплексной плоскости могут являться спектром некоторого ограниченного оператора в l_2 ?
- 14. Найти спектр и собственные значения оператора умножения на фиксированную непрерывную функцию в пространстве C[a,b].
- 15. Найти спектр оператора $A \in \mathcal{L}(L_2(\mathbb{R}))$

$$(Af)(x) = \int_{-\infty}^{+\infty} \frac{f(y) \, dy}{1 + (x - y)^2}.$$

8. Мера и интеграл Лебега

- 1. Доказать, что C[a,b] плотно в $L_1[a,b]$.
- 2. Пусть f_n последовательность измеримых функций на [a,b]. Сравнить сходимости: в среднем, среднем квадратичном, почти всюду.
- 3. Доказать, что из интегрируемости по Риману функции, заданной на отрезке, следует ее интегрируемость по Лебегу.
- 4. Доказать с помощью теоремы Лебега о предельном переходе под знаком интеграла, что

$$\lim_{\varepsilon \to +0} \frac{1}{\varepsilon \sqrt{\pi}} e^{-x^2/\varepsilon^2} = \delta(x).$$

- 5. Доказать, что все открытые и все замкнутые множества на плоскости измеримы по Лебегу.
- 6. Пусть f непрерывно дифференцируемая функция, определённая на вещественной оси. Пусть $A\subset \mathbb{R}$ и известно, что $\mu(A)=0$. Доказать, что $\mu(f(A))=0$.
- 7. Применить теорему Егорова к последовательности функций $f_n(x) = x^n$ на отрезке [0,1] .
- 8. Пусть $\{r_n\}_{n=1}^{\infty}$ рациональные числа на отрезке [0,1]. Доказать, что ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^2 |x - r_n|^{1/2}}$$

сходится почти всюду на [0,1].

- 9. Пусть функции $f_n \in \mathcal{R}[0,1]$, причем $f_n \rightrightarrows f$ на [0,1] при $n \to \infty$. Доказать, что $f \in \mathcal{R}[0,1]$, причем справедливо равенство $\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx$.
- 10. Пусть M множество вещественных кусочно-постоянных на отрезке [0,1] функций. Пусть множество N является замыка-

нием множества M в смысле равномерной сходимости на [0,1]. Верно ли, что $N \subset \mathcal{R}[0,1], N = \mathcal{R}[0,1]$?

- 11. Доказать, что $L_p[0,1] \subset L_q[0,1], \ l_p \supset l_q$ для всех $1 \leqslant q .$
- 12. Пусть последовательность $\{f_n\}$ измеримых по Лебегу на отрезке [0,1] функций поточечно сходится к f, причем существует M>0 такое, что $|f_n(t)|\leqslant M$ для всех $n\in\mathbb{N}$ и почти всех $t\in[0,1]$. Доказать, что $\int_0^x (f_n(t)-f(t))\,dt \
 ightharpoons 0$ на [0,1] при $n\to\infty$.
- 13. Пусть функция $f:[0,1]\to\mathbb{R}$ измерима по Лебегу. Пусть задана последовательность измеримых подмножеств $\{A_n\}$ отрезка $[0,1],\,\mu A_n\to 1$ при $n\to\infty$, такая, что f интегрируема по Лебегу на каждом A_n . Пусть существует M>0 такое, что

$$\int_{A_n} |f(t)| \, dt \leqslant M$$

для всех $n \in \mathbb{N}$. Доказать, что f интегрируема по Лебегу на [0,1], причем существует

$$\lim_{n \to \infty} \int_{A_n} f(t) dt = \int_0^1 f(t) dt.$$

- 14. Пусть f_n и f измеримые по Лебегу на отрезке [0,1] функции. Верно ли, что f_n сходится к f почти всюду на [0,1] тогда и только тогда, когда f_n сходится к f по мере?
- 15. Пусть f_n последовательность измеримых по Лебегу на отрезке [0,1] функций, причем существует M>0 такое, что $|f_n(x)|\leqslant M$ для всех $x\in[0,1]$ и $n\in\mathbb{N}$. Доказать, что $g(x)=\inf_{n\in\mathbb{N}}f_n(x)$ является измеримой по Лебегу на отрезке [0,1].
- 16. Доказать, что $L_{\infty}[0,1]$ и l_{∞} несепарабельны, а $L_{1}[0,1]$ и l_{1} нерефлексивны.
- 17. Привести пример множества $A \subset [0,1]$ такого, что
 - а) $\mu A = 0$, но A второй категории;
 - б) $\mu A = 1$, но A первой категории.

9. Сопряжённое пространство, теорема Хана–Банаха, теорема Рисса–Фреше

- 1. Доказать, что $l_p^* \cong l_q$ (1 < p < ∞ , $p^{-1} + q^{-1} = 1$), $l_1^* \cong l_\infty$, $c_0^* \cong l_1$, $c^* \cong l_1$. Верно ли, что $l_\infty^* \cong l_1$?
- 2. Пусть E нормированное пространство, f, f_1, \dots, f_n ли-

нейные функционалы на E. Доказать, что следующие свойства эквивалентны:

- а) существуют скаляры $\alpha_1, \ldots, \alpha_n$ такие, что $f = \sum_{i=1}^n \alpha_i f_i$;
- б) существует M>0 такое, что $\|f\|\leqslant M\max_{1\leqslant i\leqslant n}\|f_i\|;$
- в) f(x) = 0 для всех $x \in \bigcap_{i=1}^n \operatorname{Ker} f_i$.
- 3. Пусть L замкнутое линейное подпространство нормированного пространства X и $y \in X$, $y \notin L$. Доказать, что найдется функционал f на X такой, что $f|_L \equiv 0$, f(y) = 1 и $||f|| = 1/\rho(y,L)$.
- 4. Привести пример функционала в пространстве C[a,b], не достигающего своей нормы.
- 5. Доказать, что непрерывный линейный функционал f в нормированном пространстве X достигает своей нормы тогда и только тогда, когда для некоторого (и тогда для любого) элемента $x \in X \setminus \mathrm{Ker}\, f$ существует элемент наилучшего приближения в $\mathrm{Ker}\, f$.
- 6. Рассмотреть следующие два множества в \mathbb{R}^3 :

$$A = \{(x,y,z) : x \ge 0, y \ge 0, z \ge 0, z^2 \le xy\},\$$

$$B = \{(x,y,z) : x = 0, z = 1\}.$$

Показать, что оба они выпуклы, замкнуты, не пересекаются и одно из них имеет непустую внутренность. Существует ли функционал f на \mathbb{R}^3 такой, что $\forall u \in A, \forall v \in B$ f(u) < f(v)?

- 7. Пусть E банахово пространство, $\{x_n\}\subset E$ и $\sup_n|f(x_n)|<\infty$ $\forall\,f\in E^*.$ Доказать, что $\sup\|x_n\|<\infty.$
- 8. Пусть $M = \{x \in l_1 : \sum_{n=1}^{\infty} x_{2n} = 0\}$, функционал f на многообразии M задан формулой $f(x) = \sum_{n=1}^{\infty} x_{2n-1}$. Привести примеры различных продолжений f до функционала $\tilde{f} \in l_1^*$ с сохранением нормы.
- 9. Пусть $L \subset H$ линейное многогобразие в гильбертовом пространстве, f линейный непрерывный функционал на L. Доказать, что $\exists! \tilde{f} \in H^*: \tilde{f}|_L = f, \, \|\tilde{f}\| = \|f\|.$
- 10. Доказать, что взятие интеграла Римана от непрерывной функции на отрезке [a,b] есть непрерывный линейный функционал на C[a,b].

11. Найти норму функционала φ на пространстве C[a,b]:

$$\varphi(f) = \int_{a}^{b} f(x)g(x) \, dx$$

- (g фиксированная непрерывная функция). Исследовать вопрос о том, когда норма достигается.
- 12. Пусть M подмножество нормированного пространства X. Известно, что для любого $f\in X^*$ $\sup_{x\in M}|f(x)|<\infty$. Доказать, что $\sup_{x\in M}\|x\|<\infty$.
- 13. Пусть E нормированное пространство, $M \subset E$ линейное многообразие, всюду плотное в пространстве E. Пусть $f \in E^*$. Определим множество $N = M \cap \operatorname{Ker} f$. Доказать, что N всюду плотно в $\operatorname{Ker} f$.
- 14. Пусть E банахово пространство, причем E^* сепарабельно. Доказать, что E сепарабельно. Верно ли обратное?
- 15. Является ли $L_1[0,1]$ (C[0,1]) евклидовым пространством? Имеет ли крайние точки единичный шар из $L_1[0,1]$ (C[0,1])? Является ли пространство $L_1[0,1]$ (C[0,1]) сопряжённым к некоторому банахову пространству?
- 16. Пусть E банахово пространство, множество $A\subset E$ выпукло и замкнуто. Для любого $f\in\mathbb{E}^*$ определим $\sigma_A(f)=\sup_{x\in A}f(x)$. Доказать, что

$$A = \{ x \in E : f(x) \leqslant \sigma_A(f) \quad \forall f \in E^* \}.$$

10. Слабая и слабая* сходимость

- 1. Найти замыкание единичной сферы пространства l_2 в смысле слабой сходимости.
- 2. Будет ли гильбертово (произвольное банахово) пространство полным в смысле слабой сходимости?
- 3. Пусть $f_n(x) = \sin nx \ (-\pi \leqslant x \leqslant \pi)$. Доказать, что f_n в $L_2[-\pi,\pi]$ сходится слабо, но не сильно.
- 4. Пусть множество $M \subset L_2[-\pi,\pi]$ состоит из функций вида $f_{m,n}(x) = \sin mx + m \sin nx \ (-\pi \leqslant x \leqslant \pi)$. Доказать, что первое слабое секвенциальное замыкание M не совпадает со вторым.
- 5. Сходится ли слабо последовательность $\sin(nx)$ в пространстве C[a,b]?

- 6. Доказать, что в конечномерных нормированных пространствах слабая сходимость совпадает со сходимостью по норме.
- 7. Доказать, что из слабой сходимости последовательности элементов пространства l_1 следует ее сходимость по норме.
- 8. Пусть H гильбертово пространство, $||x_n x|| \to 0$, $y_n \stackrel{\text{сл.}}{\to} y$. Доказать, что $(x_n, y_n) \to (x, y)$. Можно ли условие $||x_n x|| \to 0$ заменить более слабым $x_n \stackrel{\text{сл.}}{\to} x$?
- 9. Пусть последовательность x_n гильбертова пространства H слабо сходится к x, причем $||x_n|| \to ||x||$ при $n \to \infty$. Доказать, что $||x_n x|| \to 0$ при $n \to \infty$. Верно ли это утверждение для произвольного банахова пространства?
- 10. Пусть E банахово пространство, последовательность $\{x_n\} \subset \overline{\mathbb{B}}_1(0)$ и слабо сходится к x. Доказать, что $x \in \overline{\mathbb{B}}_1(0)$.
- 11. Пусть E банахово пространство, последовательность $\{x_n\}$ слабо сходится к x. Доказать, что $||x|| \leq \underline{\lim}_{n \to \infty} ||x_n||$.
- 12. Пусть последовательность $\{x_n\} \subset l_1$, причем $x_n(k) \to x(k)$ при $n \to \infty$ для любого $k \in \mathbb{N}$. Верно ли, что $x \in l_1$? Если справедливо последнее включение, верно ли, что x_n сходится к x слабо?
- 13. Пусть последовательность $\{f_n\}\subset L_1[0,1]$. Верно ли, что f_n сходится поточечно на [0,1] тогда и только тогда, когда сходится слабо?
- 14. Пусть $U=\{f\in L_1[0,1]:|f(t)|\leqslant 1$ п. в. $t\in[0,1]\}$. Доказать, что U слабо секвенциально компактно в $L_1[0,1]$.

11. Сопряжённые операторы. Самосопряжённые операторы

- 1. Найти сопряжённый к оператору $A: L_2[0,1] \to L_2[0,1],$ если
 - a) $(Ax)(t) = \int_0^1 tx(s) ds;$
 - б) $(Ax)(t) = \int_0^t sx(s) ds$.
- 2. Пусть H вещественное гильбертово пространство; $x_k \in H$, $a_k \in \mathbb{R}(k=\overline{1,n})$. Доказать, что

$$\sup_{\sum a_k^2 \leqslant 1} \left\| \sum_{k=1}^n a_k x_k \right\| = \sup_{\|x\| \leqslant 1} \left(\sum_{k=1}^n (x, x_k)^2 \right)^{1/2}.$$

3. В пространстве l_2 для $x = (x_1, x_2, ...) \in l_2$ положим $A_n x =$

- $=(x_{n+1},x_{n+2},\ldots)$. Найти A_n^* и выяснить, являются ли последовательности A_n и A_n^* сходящимися поточечно?
- 4. Доказать, что оператор $A: L_2[0,1] \to L_2[0,1]$

$$(Ax)(t) = \int_0^1 e^{s+t} x(s) \, ds$$

есть самосопряжённый и неотрицательный.

- 5. Пусть A самосопряжённый оператор в гильбертовом пространстве H. Доказать, что
 - a) $||A|| = \sup_{\|x\| \le 1} |(Ax,x)|;$
 - 6) $||A|| = \sup_{\substack{||x||=1 \ ||y||=1}} |(Ax,y)|.$
- 6. Пусть $A \in \mathcal{L}(H)$. Доказать, что оператор $(I + AA^*)^{-1}$ существует.
- 7. Пусть A самосопряжённый неотрицательный оператор в гильбертовом пространстве H. Доказать, что оператор $(I + + A)^{-1}$ существует.
- 8. В пространстве \mathbb{R}^2 оператор A переводит $x=\binom{x_1}{x_2}$ в $Ax==\binom{2x_1+3x_2}{3x_1+5x_2}$. Доказать, что $A\in\mathcal{L}(\mathbb{R}^2)$ самосопряжённый и неотрицательный. Найти \sqrt{A} .
- 9. $A \in \mathcal{L}(l_2) : Ax = (0, x^1, x^2, ...)$. Найти $\sigma(A)$ и $\sigma(A^*)$.
- 10. Пусть E банахово пространство, оператор $A \in \mathcal{L}(L_2[0,1],E)$. Пусть $\Im A^* \supset C[0,1]$. Найти $\operatorname{Ker} A$.
- 11. Пусть H гильбертово пространство, оператор $A: H \to H$ линеен и (Ax,y)=(x,Ay) для всех $x,y\in H$. Доказать, что $A\in\mathcal{L}(H)$.
- 12. Пусть E_1 и E_2 нормированные пространства, $A \in \mathcal{L}(E_1, E_2)$, причем существует $A^{-1} \in \mathcal{L}(E_2, E_1)$. Доказать, что существует $(A^*)^{-1} \in \mathcal{L}(E_1, E_2^*)$, причем $(A^*)^{-1} = (A^{-1})^*$.
- 13. Пусть H гильбертово пространство, $A \in \mathcal{L}(H)$ самосопряжённый оператор. Доказать, что $||A^n|| = ||A||^n$ для любого $n \in \mathbb{N}$.
- 14. Пусть E рефлексивное банахово пространство и $A \in \mathcal{L}(E)$. Доказать, что $A^{**} = A$.
- 15. Пусть H гильбертово пространство, $A \in \mathcal{L}(H)$ самосопряжённый оператор. Доказать, что $\sigma_{\mathbb{R}}(A) = \emptyset$. Верно ли, что $\sigma(A) = \operatorname{cl}\left(\sigma_P(A)\right)$?

12. Компактные операторы

1. Оператор $A: C[0,1] \to C[0,1]$ определяется равенством

$$(Ax)(t) = \int_0^1 K(t,s)x(s) \, ds + \sum_{k=1}^n \varphi_k(t)x(t_k),$$

где K(t,s) непрерывна при $0\leqslant s,\,t\leqslant 1,\,\varphi_k(t)\in C[0,1],\,t_k\in[0,1].$ Доказать, что A — компактен.

- 2. Доказать, что любой оператор $A \in \mathcal{L}(H)$, где H гильбертово пространство, является поточечным пределом последовательности компактных операторов.
- 3. Пусть $\{e_n\}_{n\in\mathbb{N}}$ ортонормированный базис в гильбертовом пространстве H, Y банахово пространство, $A \in \mathcal{L}(H,Y)$ и ряд $\sum_{n=1}^{\infty} \|Ae_n\|^2$ сходится. Доказать, что A компактен.
- 4. Доказать, что область значений компактного оператора сепарабельна.
- 5. Пусть $\{e_n\}_{n\in\mathbb{N}}$ ортонормированный базис гильбертова пространства $H,\ A$ компактный оператор, действующий из H в H. Доказать, что $Ae_n\to 0$.
- 6. Доказать, что любой линейный непрерывный оператор, действующий из l_2 в l_1 компактен.
- 7. Может ли оператор $A: C[0,1] \to C[0,1]$

$$(Ax)(t) = \int_0^1 K(t,s)x(s) ds,$$

где K(t,s) непрерывна при $0 \leqslant s, \ t \leqslant 1$, иметь ограниченный обратный?

- 8. Пусть X банахово пространство, $A \in \mathcal{L}(X)$ и существует c>0 такое, что для любого $x\in X$ $\|Ax\|\geqslant c\|x\|$. Может ли оператор A быть компактным?
- 9. Пусть A диагональный <u>опер</u>атор в l_2 : $Ax = (\lambda_1 x_1, \lambda_2 x_2, \ldots)$.
 - а) Доказать, что $\sigma(A) = \overline{\{\lambda_n\}}$.
 - б) Доказать, что A компактен $\Leftrightarrow \lambda_n \to 0$.
- 10. Является ли преобразование Фурье $Ff(x) = \int_{-\infty}^{\infty} f(y) e^{-ixy} \, dy$ компактным оператором в случае
 - a) $F: L_2(\mathbb{R}) \to L_2(\mathbb{R}),$
 - б) $F: L_1(\mathbb{R}) \to BC(\mathbb{R}).$
- 11. Пусть E банахово, H гильбертово пространства. Пусть $A \in \mathcal{L}(E,H)$ компактный оператор. Доказать, что су-

- ществует последовательность $\{A_n\} \subset \mathcal{L}(E,H)$ такая, что $\dim \Im A_n < \infty$ для всех n, а $\|A_n A\| \to 0$ при $n \to \infty$.
- 12. Пусть H сепарабельное гильбертово пространство, $A \in \mathcal{L}(H)$ компактный самосопряжённый оператор. Доказать, что для любого $\varepsilon > 0$ существует подпространство $\Gamma_{\varepsilon} \subset H$ конечной коразмерности такое, что оператор $A_{\varepsilon} = A + \varepsilon I$ является неотрицательно определенным на Γ_{ε} .
- 13. Пусть $A \in \mathcal{L}(l_2)$, причем $(Ax)(n) = \sum_{k=1}^{\infty} a_{nk}x(k)$, где $\sum_{n,k} |a_{nk}|^2 < \infty$. Найти сопряженный оператор A^* . Является ли A компактным оператором?
- 14. Пусть E банахово пространство, $A \in \mathcal{L}(E)$ компактный оператор. Доказать, что для любого $\lambda \neq 0$ подпространство $\operatorname{Ker}(A \lambda I)$ конечномерно, а $\Im(A \lambda I)$ замкнуто. Доказать, что существует последовательность x_n такая, что $\|x_n\| = 1$, а $\|Ax_n\| \to 0$ при $n \to \infty$.
- 15. Пусть $K(\cdot,\cdot)\in C([0,1]\times[0,1])$. Пусть оператор $A:C[0,1]\to C[0,1]$ определен следующим образом: $(Af)(x)=\int_0^1 K(x,t)f(t)\,dt$ для любых $f\in C[0,1],\ x\in[0,1]$. Доказать, что $A\in\mathcal{L}(C[0,1])$, оценить сверху $\|A\|$. Является ли A компактным оператором?
- 16. Пусть $K(\cdot,\cdot)\in L_2\left([0,1]\times[0,1]\right)$. Пусть оператор $A:L_2[0,1]\to L_2[0,1]$ определен следующим образом: $(Af)(x)=\int_0^1K(x,t)f(t)\,dt$ для любых $f\in L_2[0,1],\ x\in[0,1]$. Доказать, что $A\in\mathcal{L}\left(L_2[0,1]\right)$, вычислить $\|A\|$. Является ли A компактным оператором?
- 17. Пусть множество $M\subset C^1[0,1]$ является подпространством в C[0,1]. Доказать, что $\dim M<\infty$.
- 18. Найти норму оператора Вольтерра

$$(Af)(x) = \int_0^x f(t) dt$$
 в $\mathcal{L}(L_2[0,1]).$

- 19. Будет ли оператор $\frac{d}{dx}:C^1[0,1]\to C[0,1]$ компактным? Доказать, что оператор $\frac{d}{dx}:C^2[0,1]\to C[0,1]$ является компактным.
- 20. Доказать, что оператор $A \in \mathcal{L}(C[0,1]): (Af)(x) = f(x^2)$ не является компактным.

13. Элементы нелинейного анализа: дифференцирование

- 1. Найти производную Фреше функционала $f: H \to \mathbb{R}$, если
 - а) $f(x) = ||Ax||^2$, где $a \in L(H)$,
 - 6) $x \in H = L_2[0,1], f(x) = \left(\int_0^1 x(t) dt\right)^2$.
- 2. Исследовать функционал $F:C[0,1]\to\mathbb{R}$ такой, что $F(f)=\max_{x\in[0,1]}f(x)$ на дифференцируемость по Гато, по Фреше.

14. Элементы нелинейного анализа: теоремы о неподвижных точках

- 1. Привести пример непрерывного отображения замкнутого единичного шара пространства l_2 в себя, не имеющего неподвижной точки.
- 2. Пусть $A = (a_{ij})$ $n \times n$ -матрица, $a_{ij} > 0$, $i,j = 1, \ldots, n$. Доказать, что у A имеется собственный вектор $x = (x^1, \ldots, x^n)$, у которого все $x^i > 0$.
- 3. Доказать, что краевая задача

$$y'' + \lambda \sin y = f(x), \quad y(0) = y(1) = 0$$

имеет решение $\forall \lambda \in \mathbb{R}$ и $\forall f \in C[0,1]$.

- 4. Имеется игра двух лиц с нулевой суммой (X,Y,K), где X,Y выпуклые компакты в банаховом пространстве, K(x,y) непрерывная на $X \times Y$ функция, вогнутая по x и выпуклая по y. Доказать, что у такой игры существуют оптимальные стратегии.
- 5. Свести к интегральному уравнению задачу $y'' = y^2 + kx^2$, y(0) = y(1) = 0, вычислив функцию Грина оператора (-y''). При каких значениях k последовательность в модифицированном методе Ньютона сходится в пространстве C[0,1] при начальном приближении $y_0 \equiv 0$?

15. Исследовательские задачи

- 1. В пространстве l_2 рассмотрим оператор A, переводящий элемент $x = (x_1, x_2, \ldots) \in l_2$ в элемент $Ax = (\lambda_1 x_1, \lambda_2 x_2, \ldots), \ \lambda_n \in \mathbb{R}$.
 - а) Доказать, что A линейный.

- б) При каких условиях на λ_n оператор A будет ограниченным оператором, действующим из l_2 в l_2 ?
- в) Найти ||A||.
- г) Всегда ли найдётся $x \in l_2, x \neq 0$, такой, что $||Ax|| = ||A|| \, ||x||$?
- д) При каких условиях на последовательность λ_n существует обратный оператор A^{-1} ?
- е) При каких условиях на λ_n обратный оператор A^{-1} будет ограничен?
- ж) Найти спектр оператора A (при условии его ограниченности).
- з) На множестве регулярных значений оператора A построить резольвенту.
- 2. Пусть $\{e_n\}_{n\in\mathbb{N}}$ ортонормированный базис в гильбертовом пространстве H. Оператор $A\in\mathcal{L}(H)$ называется оператором Γ ильберта—Шмидта, если величина

$$||A||_2^2 = \sum_{n=1}^{\infty} ||Ae_n||^2$$

конечна. Доказать, что

- а) величина $||A||_2$ не зависит от выбора базиса в H.
- 6) $||A|| \leq ||A||_2$;
- B) $||A||_2 = ||A^*||_2$;
- г) величина $||A||_2$, определённая на класс операторов Гильберта-Шмидта, является нормой;
- д) в пространстве $\mathcal{L}(H)$ операторы Гильберта–Шмидта образуют линейное многообразие;
- е) равенство

$$(A,B) = \sum_{n=1}^{\infty} (Ae_n, Be_n)$$

задаёт на классе операторов Гильберта-Шмидта скалярное произведение;

- ж) операторы Гильберта–Шмидта образуют банахово пространство относительно $\|A\|_2$;
- з) всякий оператор Гильберта-Шмидта вполне непрерывен;
- и) оператор $A: L_2[0,1] \to L_2[0,1]$

$$(Ax)(t) = \int_0^1 K(t,s)x(s) ds,$$

- где $K(t,s)\in L_2[0,1]\times L_2[0,1],$ есть оператор Гильберта— Шмидта;
- к) если A оператор Гильберта–Шмидта и $B \in \mathcal{L}(H)$, то AB и BA оператор Гильберта–Шмидта и при этом $\|AB\|_2 \leqslant \|A\|_2 \|B\|$, $\|BA\|_2 \leqslant \|A\|_2 \|B\|$.
- л) при каком условии на последовательность $\lambda_n \in \mathbb{R}$ оператор $A: l_2 \to l_2, \ Ax = (\lambda_1 x_1, \lambda_2 x_2, \ldots)$ для $x = (x_1, x_2, \ldots) \in l_2$ будет оператором Гильберта–Шмидта?
- м) в пространстве l_2 построить вполне непрерывный оператор, не являющийся оператором Γ ильберта-Шмидта.
- 3. Оператор $A \in \mathcal{L}(H)$ называется ядерным, если он представим в виде A = BC, где B, C операторы Гильберта–Шмидта. Доказать, что если A ядерный оператор, то
 - а) A оператор Гильберта—Шмидта и, следовательно, вполне непрерывный оператор;
 - б) AD и DA, где $D \in \mathcal{L}(H)$ ядерные операторы;
 - в) A^* ядерный оператор;
 - г) для любого ортонормированного базиса $\{e_n\}_{n\in\mathbb{N}}$ в H ряд $\sum_{n=1}^{\infty}(Ae_n,e_n)$ абсолютно сходится;
 - д) в пространстве l_2 привести пример ядерного оператора и оператора Гильберта–Шмидта, не являющегося ядерным.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Колмогоров А.Н.*, *Фомин С.В.* Элементы теории функций и функционального анализа. М.: Наука, 1981.
- 2. *Хатсон В.*, *Пим Д.* Приложения функционального анализа и теории операторов. М.: Мир, 1983.
- 3. *Канторович Л.В.*, *Акилов Г.П.* Функциональный анализ. М.: Наука, 1977.
- 4. *Кириллов А.А.*, *Гвишиани А.Д.* Теоремы и задачи функционального анализа. М.: Наука, 1988.
- 5. *Галеев Э.М., Тихомиров В.М.* Краткий курс теории экстремальных задач. М.: Изд-во МГУ, 1989.
- 6. Треногин В.А., Писаревский В.М., Соболева Т.С. Задачи и упражнения по функциональному анализу. М.: Наука, 1984.
- 7. *Ахиезер Н.И.*, *Глазман И.М.* Теория линейных операторов в гильбертовом пространстве. Т.1. Харьков: Вища школа, 1977.
- 8. $Pud\ M.$, $Caймон\ Б.$ Методы современной математической физики. М.: Мир, 1977.
- 9. Люстерник Л.А., Соболев В.И. Элементы функционального анализа. М.: Наука, 1965.
- 10. Функциональный анализ / Под ред. С.Г. Крейна. М.: Наука, 1972.

ОГЛАВЛЕНИЕ

1.	Метрические и топологические пространства	5
2.	Полные метрические пространства	6
3.	Компактные метрические пространства	6
4.	Нормированные и топологические векторные пространства .	8
5.	Геометрия гильбертова пространства	9
6.	Линейные ограниченные операторы в нормированных про-	
	странствах	9
7.	Обратный оператор, спектр, резольвента	13
8.	Мера и интеграл Лебега	15
9.	Сопряжённое пространство, теорема Хана-Банаха, теорема	
	Рисса-Фреше	16
10.	. Слабая и слабая* сходимость	18
11.	. Сопряжённые операторы. Самосопряжённые операторы	19
12.	. Компактные операторы	21
13.	. Элементы нелинейного анализа: дифференцирование	23
14.	. Элементы нелинейного анализа: теоремы о неподвижных	
	точках	23
15.	. Исследовательские задачи	23
Сп	исок литературы	26