

Universidade Federal de Pelotas Bacharelado em Ciência da Computação Bacharelado em Engenharia de Computação TEC2/TEC4: REDES MULTIMÍDIA (RMM)

Unidade 8

Real-Time Transport Protocol (RTP)
Real-Time Control Protocol (RTCP)

Prof. Guilherme Corrêa

gcorrea@inf.ufpel.edu.br

- Aplicações de Tempo Real
- Arquitetura do RTP
- Fundamentos do RTP
- Protocolo RTP
- Protocolo RTCP

- Aplicações de Tempo Real
- Arquitetura do RTP
- Fundamentos do RTP
- Protocolo RTP
- Protocolo RTCP

- TCP é o protocolo de transporte mais usado
- Muito útil em vários tipos de aplicações
- Não serve bem para aplicações distribuídas de tempo real

Aplicações distribuídas de tempo real:

- Uma origem gera fluxo de dados em taxa constante
- Um ou mais destinos devem receber os dados e entregar à aplicação na mesma taxa constante

Exemplos:

- áudio e videoconferência
- transmissão de vídeo ao vivo
- * área de trabalho compartilhada
- diagnóstico médico
- telefonia
- sistemas de comando remoto
- simulações interativas distribuídas
- jogos
- monitoramento em tempo real
- etc.

Por que o TCP não serve?

- TCP faz retransmissão ເ Segmentos perdidos são retransmitidos e recebidos fora de ordem (sem utilidade para aplicações de tempo real)
- TCP não faz sincronização 😕 Não inclui mecanismo para associar informação de sincronização aos segmentos

Por que o UDP não serve?

- UDP não é ponto-a-ponto ©
- TCP não faz retransmissão ⁽²⁾

Mas...

■ UDP não faz sincronização 🖰 Não inclui mecanismo para associar informação de sincronização aos segmentos

A Camada de Aplicação não pode implementar o tratamento de sincronização?

Sim!

- Mas como todas aplicações de tempo real precisam de sincronização (e outras funcionalidades em comum), um protocolo de transporte que faça isso seria útil!
- Permitiria possível compatibilidade entre aplicações de tempo real diferentes!

A Camada de Aplicação não pode implementar o tratamento de sincronização?

- Sim!
- Mas como todas aplicações de tempo real precisam de sincronização (e outras funcionalidades em comum), um protocolo de transporte que faça isso seria útil!
- Permitiria possível compatibilidade entre aplicações de tempo real diferentes!

Real-Time Transport Protocol

- Aplicações de Tempo Real
- Arquitetura do RTP
- Fundamentos do RTP
- Protocolo RTP
- Protocolo RTCP

Arquitetura do RTP

- RTP geralmente roda sobre o UDP
- É visto como uma subcamada da Camada de Transporte
- Ou ainda: uma camada intermediária entre a Camada de Transporte e a Camada de Aplicação
- Ou ainda: RTP é um framework que pode ser usado pra criar um protocolo específico para a aplicação

Sem informações específicas da aplicação, o RTP não está completo!

Arquitetura do RTP

- UDP provê a funcionalidade básica de multiplexação pela identificação de porta no segmento
- RTP provê outras funcionalidades de transporte, como sequenciamento de pacotes
- RTP é completado por modificações/inclusões em seu cabeçalho, para incluir funcionalidades da aplicação

 Diferentes padrões de codificação de áudio/vídeo podem ser usados para completar o RTP

Arquitetura do RTP

Remetente:

- Codifica mídia
- Encapsula a mídia em um pacote RTP
- Encapsula o pacote RTP em um segmento UDP
- Encapsula do segmento UDP em um datagrama IP
- ...

Receptor:

- ...
- Extrai o segmento UDP do datagrama IP
- Extrai o pacote RTP do segmento UDP
- Extrai a mídia do pacote RTP
- Decodifica mídia

- Aplicações de Tempo Real
- Arquitetura do RTP
- Fundamentos do RTP
- Protocolo RTP
- Protocolo RTCP

Fundamentos do RTP

- RTP suporta vários participantes em uma mesma sessão
- Sessão: conexão lógica mantida entre dois ou mais entidades RTP durante a transferência de dados
- Sessão é definida por:
 - Número de porta RTP
 - Usado por todos participantes para transferências de dados
 - Se UDP usado, é o número de Porta de Destino do cabeçalho
 UDP
 - Número de porta RTCP
 - Usado por todos participantes para transferências RTCP
 - Endereços IP dos participantes
 - · Pode ser endereço IP multicast ou um conjunto de endereços IP

Fundamentos do RTP

* RTP não garante:

- Entrega de dados a tempo
- Garantias de qualidade de serviço (QoS)
- Entrega de pacotes em ordem

RTP garante:

- Encapsulamento
- Possível compatibilidade entre aplicações diferentes
- Atribuir fluxo independente (sequenciamento) de pacotes RTP para fontes diferentes (ex.: câmera e microfone)

- Aplicações de Tempo Real
- Arquitetura do RTP
- Fundamentos do RTP
- Protocolo RTP
- Protocolo RTCP

Real-Time Transport Protocol

- Cada pacote RTP é composto por:
 - Campos de cabeçalho RTP fixos
 - Campos de cabeçalho específicos da aplicação
 - Dados da aplicação

- ❖ Ver (2 bits): versão do RTP (2 bits)
- ❖ Padding (I bit): indica se bits de preenchimento aparecem no final dos dados. Se sim, o último byte dos dados contém o número de bytes de preenchimento. Útil quando a aplicação requer que o tamanho dos dados seja múltiplo de algum comprimento (ex.: 32).

- eXtension (I bit): Se I, indica que o cabeçalho é seguido por outro cabeçalho (experimental para futuras extensões do RTP).
- CSRC Count (4 bits): número de fontes que contribuem com os dados neste pacote (geralmente = 1)

- * Marker (1 bit): marcação cuja interpretação depende do tipo de dados. Pode significar "fim de um quadro de vídeo", ou pode significar "início de uma rajada de som".
- * Payload Type (8 bits): identifica o tipo de dados no campo de dados.

❖ Sequence Number (16 bits): cada fonte inicia com um número de sequência aleatório, que é incrementado de um em um a cada pacote RTP enviado. Fluxos de áudio e vídeo distintos têm suas sequências próprias de números de sequência.

* Timestamp (32 bits): instante de tempo em que o primeiro byte dos dados foi gerado, de acordo com um relógio local na fonte.

Obs.: Pacotes com números de sequência consecutivos podem ter o mesmo timestamp se foram gerados no mesmo instante. Por exemplo: vários pacotes (com números de sequência diferentes) pertencentes ao mesmo quadro de vídeo (mesmo timestamp).

* SSRC (32 bits): número identificador (gerado aleatoriamente) para a fonte nesta sessão

- O campo Payload Type identifica:
 - Tipo de mídia
 - Formato dos dados
 - Tipo de compressão e/ou criptografia
 JPEG

vídeo H.261

vídeo MPEG 2

PCM µ-Law

PT	encoding name	audio/video (A/V)	clock rate (Hz)	channels (audio)
0	PCMU	A	8000	1
	1016	A	8000	1
2	G721	A	8000	1
3	GSM	A	8000	1
4	unassigned	A	8000	
5	DVI4	A	8000	1
6	DVI4	A	16000	1
7	LPC	A	8000	1
8	PCMA	A	8000	1
9	G722	A	8000	1
10	L16	A	44100	2
11	L16	A	44100	1
12	unassigned	A		
13	unassigned	A		
14	MPA	A	90000	(see text)
15	G728	A	8000	1
1623	unassigned	A		
24	unassigned	V		
25	CelB	V	90000	
26	JPEG	V	90000	
27	unassigned	V		
28	nv	V	90000	
29	unassigned	V		
30	unassigned	V		
31	H261	V	90000	
32	MPV	V	90000	
33	MP2T	AV	90000	
3471	unassigned	?		
7276	reserved	N/A	N/A	N/A
7795	unassigned	?		
96127	dynamic	?		

- Aplicações de Tempo Real
- Arquitetura do RTP
- Fundamentos do RTP
- Protocolo RTP
- Protocolo RTCP

Real-Time Control Protocol

- Protocolo "irmão" do RTP
- Não transporta dados da mídia!
- Transporta feedback sobre a qualidade do serviço (QoS) de distribuição de multimídia
 - Estatísticas sobre a rede
 - Informação de controle
- Controle "fora da banda" para uma sessão RTP
- Também roda sobre UDP, mas usa número de porta diferente do RTP

Funções do RTCP e Tipos de Pacote

- QoS e controle de congestionamento
 - Receiver Reports (RR): pacotes que indicam problemas encontrados pelos receptores (ex.: pacotes perdidos)
 - Sender Reports (SR): pacotes que permitem aos receptores estimar taxa de dados e qualidade da transmissão
- Identificação
 - Source Description (SDES): pacotes que carregam descrição textual da fonte RTCP
 - Provê mais informação do que o número aleatório SSRC no RTP
- Controle de sessão
 - Goodbye (BYE): indica que uma ou mais fontes não está mais ativa

Funções do RTCP e Tipos de Pacote (continuação)

- Estimativa de tamanho da sessão e dimensionamento
 - Para as duas funções acima, são trocados pacotes RTCP
 - Quando há muitos participantes numa sessão, a taxa de troca de pacotes RTCP tem que ser reduzida
 - Objetivo: limitar tráfego RTCP a 5% do tráfego da sessão

- Tipos de estatísticas transportadas
 - quantos pacotes transferidos
 - quantos bytes transferidos
 - quantos pacotes perdidos
 - variação no atraso da transmissão
 - RTT (round-trip time)
- * RTCP não especifica como a aplicação vai usar essas informações. Aplicação pode escolher:
 - limitar o fluxo de dados
 - trocar o padrão de codificação dos dados
 - trocar a taxa de bits alvo na codificação dos dados
 - pular alguma informação (ex.: pular quadros do vídeo)

UNIVERSIDADE FEDERAL DE PELOTAS BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO TEC2/TEC4: REDES MULTIMÍDIA (RMM)

Unidade 8

Real-Time Transport Protocol (RTP)
Real-Time Control Protocol (RTCP)

Prof. Guilherme Corrêa

gcorrea@inf.ufpel.edu.br