

Pengertian

- Matriks merupakan kumpulan bilangan yang disusun dalam bentuk persegi panjang atau bujur sangkar.
- Ordo adalah ukuran dari suatu matriks yang dinyatakan dalam

banyaknya baris x banyaknya kolom

- Nama matriks ditulis dengan huruf kapital: A,B,C,....
- Anggota dari matriks A pada baris ke-i dan kolom ke-j dinotasikan a_{ij} .
- Matriks A dengan ordo $m \times n$ ditulis: $A_{m \times n}$.

Matriks A berordo 2x3:

$$A_{2x3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

Misalkan didefinisikan

$$a_{ij} = i + j$$

maka diperoleh matriks A sebagai berikut

$$A_{2x3} = \begin{pmatrix} 1+1 & 1+2 & 1+3 \\ 2+1 & 2+2 & 2+3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}$$

Anak Matriks

 Anak matriks A adalah sembarang matriks yang diperoleh dengan cara menghilangkan beberapa baris atau kolom pada matriks A.

$$A_{2x3} = \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}$$

• Beberapa anak matriks A:

$$A_1 = \begin{pmatrix} 3 & 4 \\ 4 & 5 \end{pmatrix}$$
 Kolom 1 dihilangkan

$$A_{23} = \begin{pmatrix} 4 & 3 \end{pmatrix}$$
 Baris 2 dan kolom 3 dihilangkan

Matriks Khusus

- Matriks segi: matriks yang mempunyai banyaknya baris sama dengan banyaknya kolom.
- Matriks setangkup: matriks yang jika unsur pada baris ke-i dan kolom ke-j sama dengan unsur pada baris ke-j dan kolom ke-i.
- Matriks diagonal: matriks setangkup yang unsur-unsurnya bernilai nol kecuali mungkin pada diagonal utamanya.

Matriks Khusus

- Matriks identitas: matriks diagonal yang semua elemen diagonal utamanya bernilai satu.
- Matriks segitiga atas(bawah): matriks yang semua elemen di bawah(di atas) diagonal utamanya bernilai nol.
- Matriks nol: matriks yang semua elemennya bernilai nol.

Operasi Matriks

1. Penjumlahan matriks

Dua matriks dapat dijumlahkan jika dan hanya jika kedua matriks tersebut memiliki ordo yang sama.

Jika
$$A = (a_{ij})_{mxn}$$
 dan $B = (b_{ij})_{mxn}$ maka $A + B = (a_{ij} + b_{ij})_{mxn}$

Teladan 1.2 »

Misalkan
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 dan $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$ maka diperoleh

$$A+B=\begin{pmatrix}1&2\\3&4\end{pmatrix}+\begin{pmatrix}5&6\\7&8\end{pmatrix}=$$

Operasi Matriks

2. Perkalian dengan skalar

Suatu matriks dapat dikalikan dengan skalar.

Jika $A = (a_{ij})_{mxn}$ dan k suatu skalar maka $kA = (ka_{ij})_{mxn}$

Teladan 1.3 »

Misalkan
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 dan $k=3$ maka diperoleh

$$3A = 3\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} =$$

Hukum-hukum pada penjumlahan dan perkalian skalar

1.
$$(A+B)+C = A+(B+C)$$

2.
$$A+(-A)=O$$

3.
$$A+B=B+A$$

4.
$$k_1(A+B) = k_1A + k_1B$$

5.
$$(k_1+k_2) A = k_1A + k_2A$$

6.
$$(k_1k_2) A = k_1(k_2A)$$

7.
$$AO = 0$$

Operasi Matriks

3. Perkalian matriks

Dua matriks A dan B dapat dikalikan (AB) jika dan hanya jika matriks A memiliki banyaknya kolom yang sama dengan banyaknya baris pada matriks B.

Jika
$$A = (a_{ij})_{m \times n}$$
dan $B = (b_{ij})_{n \times p}$ maka $AB = (c_{ij})_{m \times p}$ dengan $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{in}b_{nj}$

Operasi Matriks

Teladan 1.4 »
Misalkan
$$A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$
 dan $B = \begin{pmatrix} 2 & 0 \\ 3 & 1 \\ 4 & 5 \end{pmatrix}$ maka

Hukum-hukum pada perkalian matriks

1.
$$(AB)C = A(BC)$$

2.
$$A(B+C) = AB+AC$$

3.
$$(B+C)A = BA + CA$$

4.
$$k(AB) = (kA)B = A(kB)$$

Transpos/Putaran Matriks

Sebuah matriks A ditransposkan (A^T , A') yaitu dengan cara mengubah elemen a_{ij} menjadi a_{ji} . Dengan kata lain baris menjadi kolom dan kolom menjadi baris.

Jika
$$A = (a_{ij})_{m \times n}$$
 maka $A^T = (a_{ji})_{n \times m}$.

Teladan 1.5 »

Misalkan
$$A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$
 maka $A^T = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$

Sifat-sifat matriks transpos:

1.
$$(A+B)^T = A^T + B^T$$

3.
$$(kA)^{T} = kA^{T}$$
 dengan k skalar

2.
$$(A^T)^T = A$$
 4. $(AB)^T = B^T A^T$

Teras Matriks

- Teras suatu matriks segi adalah jumlah unsur-unsur diagonal utamanya.
- Jadi teras matriks A_{nxn} adalah

$$tr(A) = a_{11} + a_{22} + ... + a_{nn}$$

Teladan 1.6 »

Misalkan
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 4 & 3 & 6 \\ 2 & 9 & -6 \end{pmatrix}$$
. Tentukan $tr(A)$.

Teras Matriks

Sifat-sifat teras matriks

- tr(A+B) = tr(A) + tr(B)
- $tr(A^T) = tr(A)$
- tr(cA) = c tr(A)
- tr(AB) = tr(BA)

Jenis-Jenis Operasi Baris Dasar

- Saling menukarkan baris ke-i dengan baris ke-j, diberi notasi E_{ij} dengan $i \neq j$.
- Mengalikan baris ke-i dengan suatu konstanta $k \neq 0$, diberi notasi $E_{i(k)}$.
- Menempatkan atau mengisikan baris ke-i dengan k kali baris ke-j ditambah baris ke-i, diberi notasi $E_{ij(k)}$ dengan $i \neq j$ dan $k \neq 0$.

Secara umum, serangkaian OBD yang dilakukan berturut-turut mulai dari E_1 , lalu E_2 hingga E_p terhadap matriks A untuk mendapatkan matriks B dinotasikan

$$E_p E_{p-1} \dots E_2 E_1 A = B.$$

Misalkan

$$A = \begin{pmatrix} 1 & -1 & 4 \\ 4 & 3 & 6 \\ 2 & 9 & -6 \end{pmatrix}$$

Tentukan

a.
$$E_{13}(A) = A_1$$
.

b.
$$E_{2(3)}(A) = A_2$$
.

c.
$$E_{23(-2)}(A) = A_3$$
.

d.
$$E_{12} E_{13(2)} E_{2(-1)} (A) = A_4$$
.

Misalkan

$$A = \begin{pmatrix} 1 & -1 & 4 \\ 4 & 3 & 6 \\ 2 & 9 & -6 \end{pmatrix}$$

Gunakan OBD pada matriks di atas sehingga diperoleh matriks segitiga atas.

Determinan Matriks

Setiap matriks segi mempunyai nilai determinan.

ORDO 2 X 2

Determinan matriks
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 adalah

$$\det(A) = |A| = ad - bc$$

Teladan 3
Misalkan
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
 maka tentukan $\det(A)$

Metode Minor Kofaktor

Misalkan matriks $A=(a_{ij})_{nxn}$ dan M_{ij} adalah minor elemen a_{ij} (determinan anak matriks A yang diperoleh dengan menghilangkan baris ke-i dan kolom ke-j), maka a. jika memillih baris ke-i

$$\det(A) = |A| = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij} = (-1)^{i+1} a_{i1} M_{i1} + (-1)^{i+2} a_{i2} M_{i2} + \dots + (-1)^{i+n} a_{in} M_{in}$$

b. jika memilih kolom ke-j

$$\det(A) = |A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij} = (-1)^{1+j} a_{1j} M_{1j} + (-1)^{2+j} a_{2j} M_{2j} + \dots + (-1)^{n+j} a_{nj} M_{nj}$$

Hitunglah determinan matriks berikut dengan menggunakan metode minor kofaktor

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 2 & 3 \\ 4 & 1 & 1 \end{pmatrix}$$

Sifat-Sifat Determinan

- 1. $\det(A) = \det(A^T)$
- $2. \quad \det(E_{ij}A) = -\det(A)$
- 3. $\det(E_{ij(k)}A) = \det(A)$
- 4. $\det(E_{i(k)}A) = k \det(A)$
- 5. $det(kA) = k^n det(A)$ untuk matriks A dengan ordo $n \times n$.
- 6. Jika matriks A memiliki suatu baris/kolom yang semua elemennya nol, maka

Sifat-Sifat Determinan

- 7. Jika ada satu baris/kolom matriks A merupakan kelipatan dari baris/kolom yang lain maka
- 8. Jika A merupakan matriks segitiga atas atau segitiga bawah, maka determinan matriks A adalah perkalian unsur diagonal utamanya
- 9. Jika matriks segi A dan B memiliki ukuran yang sama maka

$$det(AB) = det(A).det(B)$$

Misalkan diberikan matiks $A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$ dan matriks B diperoleh dengan

$$B = E_{21}E_{12(-4)}E_{2(3)}(A)$$

Tentukan determinan matriks B.

Pencarian Determinan Menggunakan Operasi Baris Dasar

- Matriks **taksingular** adalah matriks segi yang memiliki nilai determinan **taknol**.
- Setiap matriks taksingular A memiliki invers A^{-1} yang tunggal.
- Jika A dan B adalah dua matriks taksingular maka berlaku:
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^T)^{-1} = (A^{-1})^T$

Dengan operasi baris dasar, carilah determinan matriks berikut

$$A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{pmatrix}$$

Pangkat/ Rank Matriks

Misalkan matriks A berukuran mxn, pangkat/rank matriks A diberi notasi p(A) didefinisikan ordo terbesar anak matriks A yang determinannya tidak nol.

Prosedur Pencarian Pangkat Matriks

Misalkan A matriks berukuran mxn.

Misalkan r = min(m,n)

- 1. Pilih anak matriks segi dari matriks A yang berordo r (sebut sebagai A_r)
- 2. Jika det $(A_r) \neq 0$ maka p(A) = r. Proses selesai.
- 3. Jika $det(A_r) = 0$ maka carilah anak matriks segi yang lain (jika ada) dari matriks A yang berordo r.
 - Jika anak matriks ini masih ada, maka ulangi langkah 2.
 - Jika anak matriks ini sudah tidak ada maka lanjutkan ke langkah 4.

Prosedur Pencarian Pangkat Matriks

- 4. Carilah anak matriks segi dari A yang berordo r-1 (sebut A_{r-1}) sehingga $\det(A_{r-1}) \neq 0$.
 - Jika anak matriks ini ditemukan maka p(A) = r 1.
 - Jika untuk semua kemungkinan anak matriks A yang berordo r-1 menghasilkan det(A) = 0 maka ulangi langkah ini dengan memilih anak matriks A yang berordo r 2.
 - Langkah ini diulangi terus menerus sampai menghasilkan anak matriks segi dari A sehingga nilai determinannya tidak nol. Misalkan diperoleh pada saat $r = r^*$ maka $p(A) = r^*$.

Tentukan pangkat matriks berikut

$$A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ -2 & 4 & -6 \end{pmatrix}$$

2.
$$B = \begin{pmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{pmatrix}$$

Pencarian Pangkat Matriks dengan OBD

Teladan 3.2

Tentukan pangkat matriks berikut

$$B = \begin{pmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{pmatrix}$$

Matriks Balikan/Invers

- Matriks **taksingular** adalah matriks segi yang memiliki nilai determinan **taknol**.
- Setiap matriks taksingular A memiliki invers A^{-1} yang tunggal.
- Jika A dan B adalah dua matriks taksingular maka berlaku:
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1} A^{-1}$
 - $(A^T)^{-1} = (A^{-1})^T$

Ordo 2 x 2

Invers matriks
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 adalah $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Teladan 5.1 »
Misalkan
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
 maka

$$A^{-1} = \frac{1}{(1)(4) - (3)(2)} \begin{pmatrix} 4 & -3 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{pmatrix}$$

Metode Matriks Adjoint

Jika determinan matriks $A=(a_{ij})_{nxn}$ tidak nol, dan matriks $C=(\alpha_{ij})_{nxn}$ dengan $\alpha_{ij}=(-1)^{i+j}M_{ij}$ kofaktor elemen a_{ij} , maka balikan matriks A adalah:

$$A^{-1} = \frac{1}{\det(A)}C^{T}$$

Matriks C^T disebut matriks adjoint dari matriks A.

ORDO 3 x 3

Misal
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 maka $A^{-1} = \frac{1}{|A|} \operatorname{Adj}(A) = \frac{1}{|A|} C^{T}$

Dengan matriks C adalah

$$C = \begin{pmatrix} +M_{11} & -M_{12} & +M_{13} \\ -M_{21} & +M_{22} & -M_{23} \\ +M_{31} & -M_{32} & +M_{33} \end{pmatrix}$$

Tentukan invers matriks berikut

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 2 & 3 \\ 4 & 1 & 1 \end{pmatrix}$$

Metode Penghapusan

- Definisi matriks balikan memungkinkan kita untuk menentukan balikan suatu matriks dengan menggunakan operasi baris dasar.
- · Cara ini disebut dengan metode penghapusan.
- Misalkan matriks A dikenakan serangkaian operasi baris dasar dan hasilnya adalah I, yaitu

$$E_{p}E_{p-1}...E_{2}E_{1}(A) = I$$

• maka PA=I dengan $P=E_pE_{p-1}...E_2E_1(I)$ menurut definisi matriks balikan $P=A^{-1}$.

Dengan menggunakan metode penghapusan, tentukan invers matriks berikut

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 2 & 3 \\ 4 & 1 & 1 \end{pmatrix}$$

TERIMA KASIH