Exercises in Physics Assignment # 5

Date Given: May 12, 2022 Date Due: May 19, 2022

P1. (2 points) Find an equation in polar coordinates that has the same graph as the given equation in rectangular coordinates.

(a)
$$\left(x - \frac{3}{2}\right)^2 + y^2 = \frac{9}{4}$$

- (b) $\sqrt{(x^2+y^2)^3} = 3(x^2-y^2)$
- **P2.** (2 points) Sketch the curves
 - (a) $r = 3\cos\theta$
 - (b) $r = 3\cos 2\theta$
- **P3.** (2 points) A jet plane flying at a constant speed v at an altitude h = 10km is being tracked by radar located at O directly below the line of flight. If the angle θ is decreasing at the rate 0.02 rad/s when $\theta = 60^{\circ}$, determine the value of \ddot{r} at this instant and the magnitude of the velocity v of the plane.

Figure 1: Illustration to Problem 3.

- **P4.** (4 points) The slider P can be moved inward by means of the string S as the bar OA rotates about the pivot O. The angular position of the bar is given by $\theta(t) = 0.4 + 0.12t + 0.06t^3$, where θ is in radians and t is in seconds. The position of the slider is given by $r(t) = 0.8 0.1t 0.05t^2$, where r is in meters and t is in seconds.
 - (a) Determine the velocity v and acceleration a (in terms of e_r and e_θ) of the slider at time t=2s.
 - (b) Find the angles which v and a make with the positive x-axis (that is the angles between v and i and between a and i).

Figure 2: Illustration to Problem 4.