CS-341 Lecture 8

February 27, 2001 Dr. Vickery

Administrivia

- Exam March 9
 - Will cover material "to date"
 - · Lectures, readings, and homeworks
 - Short answer
 - Bring a calculator
- · Slides available in PDF format

Floating-Point

- Normalized Fractions
 - 1.xxx ...
 - This makes the leading 1 redundant, so it is not stored in the encoded value.
 - Doubles the precision!
- Special values: ±∞. NaN

Bandwidth

- The rate (speed) at which information can be transmitted through a channel.
 - Bits per second.
 - HDTV
 - 30 frames per second
 - 800 x 600 pixels per frame 256 red, green, and blue intensities per pixel
 - 43.2 MB per second
 - Broadcast bandwidth
- · Computer monitor
 - 60 frames per second, 1024 x768 pixels, 2²⁴ colors

 - 1.132 Gbps
 Framebuffer bandwidth

Error Detection and Correction

- Section 2.2.4 of the textbook.
- · Used when transmitting binary data over a "noisy channel.'
- · Basic principle is to add redundant information (reducing effective bandwidth).
 - Transmitter adds the extra bits.
 - Receiver uses the extra bits to check the integrity of the data
- Detection: Receiver can recognize invalid codewords when they are received.
 - Signal an error or request transmitter to send data again.
- Correction: Enough redundant information is sent so the receiver can determine which bit(s) are in error.
 - Correct by inverting the error bits.

Parity: Single Bit Detection

- · Each transmitted codeword consists of a packet of data bits and one additional bit whose value is set so that the code word will have an even number of 1's.
 - Parity bit is the exclusive OR of the data bits.
 - Receiver detects an error if the exclusive OR of the codeword bits
- Odd parity: Each code word has an odd number of 1's.
 - Parity bit is the exclusive NOR of the data bits.
 - Receiver detects an error if the exclusive OR of the codeword bits

Exclusive OR and Exclusive NOR

а	b	XOR	XNOR	abc	XOR	XNOR
0	0	0	1	000	0	1
Ō	1	1	0	001	1	0
1	0	1	n	010	1	0
i	•	ò	1	011	0	1
Ċ	•	Ŭ	·	100	1	0
				101	0	1
				110	0	1
				111	1	0

a xor b xor c = (a xor b) xor c

Hamming Codes

- Codewords have multiple parity bits.
 P₀ P₁ P₂ D₃ P₄ D₅ D₆ D₇ P₈ D₉ D₁₀ D₁₁ D₁₂ D₁₃ D₁₄ D₁₅ ...
 Parity bits are in positions that are numbered with powers of two.

 - Data bits fill in other places.
 Each parity bit produces even parity for all codeword bits that have the parity bit's power of two in their subscripts.

 - P₀ is even parity across the entire codeword.
 Omitted in the textbook, but needed for double error detection.
- Checking: Pattern of parity errors tells position in which error occurred. Correct it by inverting the value.
 - But if overall parity is correct when there are other errors, a double error was detected and cannot be corrected.