Lecture on Fuzzy and Crisp Relations(Unit-3-Lecture 4)

Presented By Ashish Tiwari Assistant Professor

Department of CSE United College of Engg. and Research, Prayagraj, India

Outline of Presentation

- Introduction.
- The crisp set v.s. the fuzzy set.
- Crisp Relation.
- Fuzzy relation.
- References.

Introduction

- A Crisp relation represents presence or absence of association, interaction or interconnection between elements of > 2 sets. This concept can be generalized to various degrees or strengths of association or interaction between elements. A fuzzy relation generalizes these degrees to membership grades.
- Fuzzy set theory formally speaking is one of these theories, which was initially intended to be an extension of dual logic and/or classical set theory.

The crisp set v.s. the fuzzy set

- The crisp set is defined in such a way as to partition the individuals in some given universe of discourse into two groups: members and nonmembers.
 - However, many classification concepts do not exhibit this characteristic.
 - For example, the set of tall people, expensive cars, or sunny days.
- A fuzzy set can be defined mathematically by assigning to each possible individual in the universe of discourse a value representing its grade of membership in the fuzzy set.
 - For example: a fuzzy set representing our concept of sunny might assign a degree of membership of 1 to a cloud cover of 0 percent, 0.8 to a cloud cover of 20 percent, 0.4 to a cloud cover of 30 percent, and 0 to a cloud cover of 75 percent.

Crisp Relation

 A crisp relation is used to represents the presence or absence of interaction, association, or interconnectedness between the elements of more than a set. This crisp relational concept can be generalized to allow for various degrees or strengths of relation or interaction between elements.

Fuzzy relation

 Degrees of association can be represented by grades of the membership in a fuzzy relation in the same way as degrees of set membership are represented in the fuzzy set. In fact, just as the crisp set can be viewed as a restricted case of the more general fuzzy set concept, the crisp relation can be considered to be a restricted case of the fuzzy relations.

Cartesian Product

Let A₁, A₂,, A_n be fuzzy sets in U₁, U₂, ...U_n, respectively. The Cartesian product of A_1 , A_2 ,, A_n is a fuzzy set in the space U, x U, x...x U, with the membership function as:

$$\mu_{A1 \times A2 \times ... \times An} (x_1, x_2, ..., x_n) = min [\mu_{A1}(x_1), \mu_{A2}(x_2), ..., \mu_{An}(x_n)]$$

> So, the Cartesian product of A_1 , A_2 ,, A_n are donated by A_1 x A, X X A,

Cartesian Product: Example

- \rightarrow Let $A = \{(3, 0.5), (5, 1), (7, 0.6)\}$
- \rightarrow Let $B = \{(3, 1), (5, 0.6)\}$
- Find the product
- The product is all set of pairs from A and B with the minimum associated memberships
- $Ax B = \{[(3, 3), \min(0.5, 1)], [(5, 3), \min(1, 1)], [(7, 3), (7, 3), (1,$ min(0.6, 1)], [(3, 5), min(0.5, 0.6)], [(5, 5), min(1, 0.6)], [(7, 5), min(0.6, 0.6)]}
 - $= \{[(3,3), 0.5], [(5,3), 1], [(7,3), 0.6], [(3,5), 0.5], [(5,5), (5,5)$
 - 0.6], [(7, 5), 0.6]}

Crisp Relations

- > The relation between any two sets is the Cartesian product of the elements of $A_1 \times A_2 \times \times A_n$
- For X and Y universes $X \times Y = \{(x, y) | x \in X, y \in Y\}$

$$\mu_{x \times y}(x, y) = \begin{cases} 1, & (x, y) \in X \times Y \\ 0, & (x, y) \notin X \times Y \end{cases}$$

This relation can be represented in a matrix format

Crisp Relations: Example

- Universe X = {1, 2, 3}
- Universe Y = {a, b, c}

Fuzzy Relations

- Fuzzy relations are mapping elements of one universe, to those of another universe, Y, through the Cartesian product of two universes. X, Universe $X = \{1, 2, 3\}$
- $R(X, Y) = \{ [(x, y), \mu_{p}(x, y)] \mid (x, y) \in (X \times Y) \}$
- Where the fuzzy relation R has membership function
- $\mu_R(x, y) = \mu_{AXB}(x, y) = \min(\mu_A(x), \mu_B(y))$

Fuzzy Relations

- It represents the strength of association between elements of the two sets
- > Ex: R = "x is considerably larger than y"
- R (X, Y) = Relation between sets X and Y
- R (x, y) = memebership function for the relation R (X, Y)
- $R(X, Y) = \{R(x, y) / (x, y) | (x, y) \in (X \times Y)\}$

Operations on Fuzzy Relations

- Since the fuzzy relation from X to Y is a fuzzy set in X x Y, then the operations on fuzzy sets can be extended to fuzzy relations. Let R and S be fuzzy relations on the Cartesian space X × Y then:
- $\blacktriangleright Union: \mu_{RHS}(x, y) = \max \left[\mu_{R}(x, y), \mu_{S}(x, y) \right]$
- > Intersection: $\mu_{R \sqcap S}(x, y) = \min [\mu_R(x, y), \mu_S(x, y)]$
- \rightarrow Complement: $\mu_R^-(x, y) = 1 \mu_R(x, y)$

Fuzzy Relations: Example

Assume two Universes: A = {3, 4, 5} and B = {3, 4, 5, 6, 7}

$$\succ \mu_R(x, y) = \begin{cases} (y-x)/(y+x+2) & \text{if } y > x \\ 0, & \text{if } y \le x \end{cases}$$

This can be expressed as follow:

- > This matrix represents the membership grades between elements in X and Y
- $\mu_{R}(x, y) = \{ [0/(3, 3)], [0.11/(3, 4)], [0.2/(3, 5)],$ [0.14/(5, 7)]}

Fuzzy Relations: Example

Assume two fuzzy sets: $A = \{0.2/x_1 + 0.5/x_2 + 1/x_3\}$

$$B = \{0.3/y_1 + 0.9/y_2\}$$

Find the fuzzy relation (the Cartesian product)

$$A \times B = R = \begin{pmatrix} x_1 & 0.2 & 0.2 \\ x_2 & 0.3 & 0.5 \\ x_3 & 0.3 & 0.9 \end{pmatrix}$$
$$y_1 \qquad y_2$$

Composition of Fuzzy Relations

- Composition of fuzzy relations used to combine fuzzy relations on different product spaces
- Having a fuzzy relation; R (X xY) and S (Y xZ), then Composition is used to determine a relation $T(X \times Z)$

Composition of Fuzzy Relations

- The max-min composition can be interpreted as indicating the strength of the existence of relation between the elements of X and Z
- Calculations of (R o S) is almost similar to matrix multiplication
- Fuzzy relations composition have the same properties of:

Distributivity: $R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$

Associativity: $R \circ (S \circ T) = (R \circ S) \circ T$

Composition of Fuzzy Relations: Example

Assume the following universes: $X = \{x_1, x_2\}, Y = \{y_1, y_2\}, \text{ and }$ $Z = \{z_1, z_2, z_3\}$, with the following fuzzy relations.

$$R = \begin{array}{ccc} x_1 & \begin{bmatrix} 0.7 & 0.5 \\ 0.8 & 0.4 \end{bmatrix} & y_1 \begin{bmatrix} 0.9 & 0.6 & 0.2 \\ 0.1 & 0.7 & 0.5 \end{bmatrix} \\ y_1 & y_2 & z_1 & z_2 & z_3 \end{array}$$

Find the fuzzy relation between X and Z using the max-min and max-product composition

Composition of Fuzzy Relations: Example

By max-min composition

$$\mu_{T}(x_{1}, z_{1}) = \max [\min (0.7, 0.9), \min (0.5, 0.1)] = 0.7$$

$$\begin{array}{cccc}
x_1 & 0.7 & 0.6 & 0.5 \\
T = x_2 & 0.8 & 0.6 & 0.4 \\
z_1 & z_2 & z_3
\end{array}$$

By max-product composition

$$\mu_T(x_2, z_2) = \max[(0.8, 0.6), (0.4, 0.7)] = 0.48$$

$$\begin{array}{cccc} x_1 \begin{bmatrix} 0.63 & 0.42 & 0.25 \\ 0.72 & 0.48 & 0.20 \\ z_1 & z_2 & z_3 \end{array}$$

Refrences

Gottwald S. Set theory for fuzzy sets of higher level. Fuzzy Set Syst 1979, 2:125-151.

Hirota K. Concepts of probabilistic sets. Fuzzy Set Syst 1981, 5:31–46.

Zimmermann H-J. Fuzzy Set Theory and Applications, 4th Rev. ed. Boston: Kluwer Academic Publishers: 2001.

Dombi J. A general class of fuzzy operators, the De Morgan Class of fuzzy operators and fuzzy measures induced by fuzzy operators. Fuzzy Set Syst 1982, 8:149-163.

Zadeh L.A.(1978)Fuzzy Sets as the Basis for a Theory of Possibility. FuzzySets and Systems

Queries

Thanking You