Al on Cloud

Al on Cloud

Chapter

การเรียนรู้ของเครื่องจักร Machine Learning

Lab

สร้าง Classification Model ด้วย Azure Machine Learning Designer

Classification (การจัดกลุ่ม / การแยกประเภท)

Classification is a form of machine learning that is used to predict which category, or class, an item belongs to.

https://docs.microsoft.com/en-us/learn/modules/create-classification-model-azure-machine-learning-designer/introduction

Lab3: สร้าง Classification Model ด้วย Azure Machine Learning Designer

เป้าหมาย:

- -ใช้ Azure ML designer สร้าง classification models
 - สร้างและ Run Training Pipeline
 - สร้าง Inference Pipeline
 - Deploy Predictive Model

- Tool: Azure ML Designer
- Model: Two-Class Logistic Regression
- Metric:
 - Accuracy, Precision, Recall, F1 score
 - Confusion Matrix

Case Study และ ข้อมูลที่ใช้

Dataset: ข้อมูลผู้ป่วยเบาหวาน (https://aka.ms/diabetes-data)

Goal:

- เพื่อพยากรณ์ความเสี่ยงในการเป็นโรคเบาหวาน (diabetes) ของผู้ป่วยโดยใช้ข้อมูลผู้ป่วย ได้แก่ age, weight, blood pressure ฯลฯ
- Label ของการจัดกลุ่ม คือ ค่า 0 หรือ 1 ซึ่ง หมายถึง ไม่เป็นเบาหวาน (non-diabetic) หรือ or เป็นเบาหวาน (diabetic)

Review: Azure Machine Learning

A cloud-based platform for machine learning

AZUI'e Microsoft Azure

Azure Machine Learning provides the following features and capabilities:

Feature	Capability
Automated machine learning	This feature enables non-experts to quickly create an effective machine learning model from data.
Azure Machine Learning designer	A graphical interface enabling no-code development of machine learning solutions.
Data and compute management	Cloud-based data storage and compute resources that professional data scientists can use to run data experiment code at scale.
Pipelines	Data scientists, software engineers, and IT operations professionals can define pipelines to orchestrate model training, deployment, and management tasks.

Azure Machine Learning Designer

Visual tool for creating a machine learning pipeline

- Part 1: Use a training pipeline to train and evaluate a model
- Part 2: Create an inference pipeline to predict labels from new data
- Part 3: Deploy the inference pipeline as a service for apps to use

Part

1

Use a *Training Pipeline* to train and evaluate a model

Step 1: สราง Compute Instance

Step 2: สร้าง Compute Clusters

Step 3: asio Dataset

Web URL: https://aka.ms/diabetes-data

Name: diabetes-data

Step 4: สร้าง Pipeline สำหรับ manage dataset

Step 5: ทำ Data Transformation เพื่อจัดการข้อมูลให้พร้อมสำหรับการ สร้างโมเดล

- ทำความเข้าใจและสำรวจข้อมูล
- Normalize ข้อมูล ด้วยวิธี MinMax สำหรับ features ต่อไปนี้
 - Pregnancies
 - PlasmaGlucose
 - DiastolicBloodPressure
 - TricepsThickness
 - SerumInsulin
 - BMI
 - DiabetesPedigree
 - Age

Step 6: Run the Pipeline และ explore ผลลัพธ์

Dataset ได้ถูก Prepare และ พร้อมสำหรับการ สร้าง Model

Step 7: Create Training Pipeline for Model Training

Using a classification algorithm

- The **Diabetic** label the model will predict is a class (O or 1).
- So, there are two possible classes, so we need a binary classification algorithm.
- Connect Two-Class Logistic Regression module
 - Connect Two-Class Logistic Regression output to the Untrained model (left) input of the Train Model module
- See more algorithms: https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-cheat-sheet

Score Model

- To test the trained model, use the trained model to Score (Predict the price) the validation dataset Connect
 Score Model module
- Connect the trained model and the validation dataset to Score Model
- Run the training pipeline (Click Submit)

See Result

- When it has completed, Click Job detail
- select the Score Model module
- on the Outputs + logs tab, under Data outputs, select the Preview Data icon to view the results.
- Scored labels: the predicted label values.
- Scored Probabilities: a probability value between 0 and 1.
 - The probabilities greater than 0.5 result in a predicted label of 1 (diabetic)

Step 8: Evaluate the Model

- Use the Evaluate
 Model module to
 evaluate the
 performance of the
 model.
- Connect the Evaluate Model module.
- Run

Confusion Matrix

- A tabulation of the predicted and actual value counts for each possible class.
- For a binary classification model, where you're predicting one of 2 possible values, the confusion matrix is a 2x2 grid showing the predicted and actual value counts for classes O and I
- See a diagonal line of cells for the predicted and actual labels match.

Other Evaluation Metrics

Metric	Description
Accuracy	The ratio of correct predictions (True positives + True negatives) to the total number of predictions. In other words, what proportion of diabetes predictions did the model get right?
Precision	The fraction of positive cases correctly identified (The number of true positives divided by the number of true positives plus false positives). In other words, out of all the patients that the model predicted as having diabetes, how many are actually diabetic?
Recall	The fraction of the cases classified as positive that are actually positive (The number of true positives divided by the number of true positives plus false negatives). In other words, out of all the patients who actually have diabetes, how many did the model identify?
F1 Score	An overall metric that essentially combines precision and recall.

Threshold Slider

- Remember that what a classification model predicts is the probability for each possible class.
- prediction is a value between 0 and 1.
- By default, a predicted probability for diabetes including or above 0.5 results in a class prediction of 1,
- And below 0.5 means that there's a greater probability of the patient not having diabetes.
- Try moving the threshold slider and observe the effect on the confusion matrix.

ROC Curve

Receiver Operating Characteristic

The area under the diagonal line represents an <u>AUC</u> of <u>0.5</u>. If the AUC for your model is <u>higher than this</u> for a binary classification model, then the model performs <u>better than a random guess</u>.

The ROC space for a "better" and "worse" classifier.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Create an Inference Pipeline to 2 predict labels from new data

Step 1: สร้าง Inference Pipeline

Step 2: แก้ใข the Inference Pipeline

Step 2.2 เพิ่ม Enter Data Manually โดย copy&paste ข้อมูล CSV data ของ 3 patient ดังนี้

PatientID,Pregnancies,PlasmaGlucose,DiastolicBloodPressure,TricepsThickness,SerumInsulin,BMI,DiabetesPedigree,Age
1882185,9,104,51,7,24,27.36983156,1.350472047,43
1662484,6,73,61,35,24,18.74367404,1.074147566,75
1228510,4,115,50,29,243,34.69215364,0.741159926,59

Step 2.5: แก้ Python Script สำหรับ Execute Python Script

```
import pandas as pd
def azureml_main(dataframe1 = None, dataframe2 =
None):
   scored_results = dataframe1[['PatientID', 'Scored
Labels', 'Scored Probabilities']]
   scored_results.rename(columns={'Scored
Labels':'DiabetesPrediction',
                          'Scored
Probabilities':'Probability'},
                   inplace=True)
   return scored_results
```

```
dats nightharts-yaxis hightharts-navigator-yax
rts-crosshair highcharts-crosshair-thin undefin
ibility="hidden" d="M 778.5 45 L 778.5 494">
series-group" data-z-index="3">...</g>
exporting-group" data-z-index="3">...</g>
hor="start" class="highcharts-title" data-z-ind
chor="middle" class="highcharts-subtitle" data-
nor="start" class="highcharts-caption" data-z-in
xis-labels highcharts-xaxis-labels" data-z-inde
xis-labels highcharts-xaxis-labels highcharts-na
 7">...</g>
cis-labels highcharts-yaxis-labels" data-z-index
cis-labels highcharts-yaxis-labels highcharts-na
nge-selector-group" data-z-index="7" transforms
 "7"></g>
gend" data-z-index="7" transform="translate(40,5)
/igator" data-z-index="8" visibility="visible">=
```

Step 3: Check and run your Inference pipeline

Deploy the Inference Pipeline as a Service for apps to use

Step 2.1: code สำหรับ ทดสอบ Notebook

```
endpoint = 'YOUR ENDPOINT' #Replace with your endpoint
key = 'YOUR KEY' #Replace with your key
import urllib.request
import json
import os
data = {
  "Inputs": {
    "WebServiceInput0":
           'PatientID': 1882185,
          'Pregnancies': 9,
           'PlasmaGlucose': 104,
          'DiastolicBloodPressure': 51,
          'TricepsThickness': 7,
           'SerumInsulin': 24,
           'BMI': 27.36983156,
           'DiabetesPedigree': 1.3504720469999998
           'Age': 43
  "GlobalParameters": {
body = str.encode(json.dumps(data))
headers = {'Content-Type':'application/json', 'Authorization':('Bearer '+ key)}
req = urllib.request.Request(endpoint, body, headers)
  response = urllib.request.urlopen(req)
  result = response.read()
  json_result = json.loads(result)
  output = json_result["Results"]["WebServiceOutput0"][0]
  print('Patient: {}\nPrediction: {}\nProbability: {:.2f}'.format(output["PatientID"],
                                output["DiabetesPrediction"],
                                output["Probability"]))
except urllib.error.HTTPError as error:
  print("The request failed with status code: " + str(error.code))
  # Print the headers to help debug
  print(error.info())
  print(json.loads(error.read().decode("utf8", 'ignore')))
```


End of Lab3

Thank you