Análisis Sintáctico Ascendente

Análisis sintáctico ascendente por precedencia de operador

Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 4

Tipología de gramáticas (de precedencia y de operador)

- Gramática de operador:
 - Gramática de contexto libre (GCL) sin reglas borradoras ($A\rightarrow\lambda$)
 - Sin reglas con metanociones adyacentes (en la parte derecha)
- Gramática de precedencia:
 - Gramática de contexto libre (GCL) sin reglas borradoras ($A\rightarrow\lambda$)
 - Gramática propia
 - Sin ciclos (A⇒+A)
 - Sin símbolos inútiles
 - Sin símbolos no accesibles
 - Sin símbolos no terminables
 - Entre cada par de símbolos (terminales y no terminales) existe al menos una relación de precedencia
- Gramática de precedencia de operador:
 - Gramática de operador
 - No existe más de una relación de precedencia (de operador) entre cualquier par de símbolos terminales

Recordatorio: Tipos de analizadores sintácticos

- Analizador descendente:
 - Analizador descendente recursivo:
 - Con retroceso
 - Sin retroceso (predictivo)
 - Analizador descendente no recursivo predictivo (≡ tabular):
 - Analizador LL(K)
 - Analizador LL(1)
- Analizador ascendente:
 - Analizador ascendente con retroceso
 - Analizador de gramáticas de precedencia de operador
 - Analizador de gramáticas de precedencia simple
 - Analizador *LR(K)*

Curso 2007/2008

- Analizadores LR(1)
 - Analizadores SLR(1)

Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 4 – 2

Precedencia de operador: esquema del analizador

Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 4 – 3

Antonio Pareja Lora PP.LL. – Tema 4 – 4

Relaciones de precedencia de operador

Relaciones de precedencia de operador: observaciones

- Ninguna de las relaciones de precedencia es simétrica
- 2. Una vez que se han determinado las relaciones entre terminales, se trabaja con una gramática esquelética (los no terminales, a excepción del axioma, es como si desaparecieran)
- 3. Cuando pila.Cima() > token, se puede determinar un pivote (que habrá que reducir):
 - a) Recorriendo hacia abajo la pila, obviando relaciones =
 - b) Se para cuando se encuentre la primera relación < entre los símbolos de la pila
 - c) El pivote es el conjunto de símbolos de la pila encerrado entre < y >

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 4 - 6

Relaciones de precedencia de operador: determinación

- Método intuitivo (expresiones aritméticas):
 - Si OP₁ tiene mayor precedencia que OP₂:
 - \bullet $\overrightarrow{OP_1} > OP_2 y \overrightarrow{OP_2} < OP_1$
 - Ejemplo: $d + a*b + c \Rightarrow * > + ; + < *$
 - Si los operadores OP₁ y OP₂ tienen la misma precedencia:
 - Si OP, y OP, son asociativos por la izquierda:
 - $OP_1 > OP_2 y OP_2 > OP_1$ - Ejemplo: a - b + c \Rightarrow + > + ; + > - ; - > + ; - > -
 - Si OP, v OP, son asociativos por la derecha:
 - OP₁ < OP₂ (v OP₂ < OP₁ también, en general)
 - Ejemplo: a * b ** c ⇒ * < **
 - Hacer siempre, para cualquier operador OP:
 - \blacksquare OP \lessdot id , id \gt OP , OP \lessdot (, (\lessdot OP ,) \gt OP , OP \gt)
 - OP > \$, \$ < OP,</p>
 - (=), \$ < (, \$ < id, (< (, id > \$,) > \$, (< id, id >),) >)
 - Si OPU es un operador unario:
 - lacktriangledown \forall operador OP, OP \lessdot OPU (> depende de la prioridad relativa como binarios)

Conjuntos LEAD y TRAIL

- Definiciones:
 - LEAD (A) = { a∈T | A \Rightarrow ⁺ Xaα, donde X ∈ N∪{ λ } }
 - TRAIL (A) = { a∈T | A \Rightarrow ⁺ αaX, donde X ∈ N∪{ λ } }
- Cálculo:

Curso 2007/2008

- LEAD (A):
 - Si $(A \rightarrow \gamma a \delta) \in P$, $\gamma \in N \cup \{\lambda\} \Rightarrow a \in LEAD(A)$
 - Si $(A \rightarrow Ba\delta) \in P$, $b \in LEAD(B) \Rightarrow b \in LEAD(A)$
- TRAIL (A):
 - Si $(A \rightarrow \gamma a \delta) \in P$, $\delta \in N \cup \{\lambda\} \Rightarrow a \in TRAIL(A)$
 - Si $(A \rightarrow \gamma aB) \in P$, $b \in TRAIL(B) \Rightarrow b \in TRAIL(A)$

Relaciones de precedencia de operador: algoritmo

- ∀A∈N Calcula LEAD(A), TRAIL(A)
- \blacksquare $\forall (A \rightarrow X_1 ... X_n) \in P$: $- \forall i \in \{1, ..., n-1\}$:
 - SI $(X_i \in T \land X_{i+1} \in T) \Rightarrow X_i = X_{i+1}$
 - SI $((i \le n-2) \land X_i \in T \land X_{i+1} \in N \land X_{i+2} \in T) \Rightarrow X_i = X_{i+2}$
 - \blacksquare SI $(X_i \in T \land X_{i+1} \in N) \Rightarrow$ $- \forall a \in LEAD(X_{i+1})$:
 - X_i < a
 - SI $(X_i \in N \land X_{i+1} \in T) \Rightarrow$ $- \forall b \in TRAIL(X_i)$: ■ $b > X_{i+1}$
- Si S es el axioma:
 - \forall a ∈ LEAD(S): \$ < a (\$, fondo de pila) - \forall b ∈ TRAIL(S): b > \$ (\$, fin de cadena)

Curso 2007/2008

Antonio Pareia Lora

PP.LL. - Tema 4 - 9

PP.LL. - Tema 4 - 11

Análisis por precedencia de operador: algoritmo

- - w = w1 ... wn. cadena de entrada (a analizar)
- T, tabla de relaciones de precedencia (de operador)
- Si $w \in L(G) \Rightarrow \text{ Arbol sintactico resultante de analizar } w$. Si $w \notin L(G) \Rightarrow \text{ Indicación del error.}$
- PROCESO: Inicializar():

Curso 2007/2008

- REPETIR (SIEMPRE): SI (pila.Cima() = \$) ∧ (token = \$): RETORNA (ÉXITO);
 - EN OTRO CASO:
 - a ← 1^{er} TERMINAL más cercano a pila.Cima();
 - RELACIÓN ← T[a, token];
 - SI (RELACIÓN = ◄) ∨ (RELACIÓN = ≐): ■ Pila.Push (token);
 - Scan(token):
 - O BIEN SI (RELACIÓN = ➤):
 - REPETIR:
 - CIMA ANTERIOR ← pila.Cima();
 - HASTA QUE (T[pila.Cima(), CIMA_ANTERIOR] = ←); - EN OTRO CASO:

Antonio Pareia Lora

LLAMAR al GESTOR de ERRORES.

PP.LL. - Tema 4 - 10

token ENTRADA

PILA

cima

... | w_n | \$

Análisis por precedencia de operador: ejemplo (1)

- Dada la gramática:
 - 1. $E \rightarrow E+T$
 - 2. $F \rightarrow T$
 - 3. $T \rightarrow T*F$
 - 4. $T \rightarrow F$
 - 5. $F \rightarrow (E)$
 - 6. $F \rightarrow id$

- ¿Cuál es la traza de ejecución del algoritmo de análisis por precedencia de operador para dicha sentencia, seaún gramática especificada?
- Y dada la sentencia:

Análisis por precedencia de operador: ejemplo (2)

Cálculo de los conjuntos LEAD (A), para $A \in \mathbb{N}$:

1. LEAD (E) = {+,*,()id}
- E
$$\Rightarrow$$
¹ E+T;
- E \Rightarrow ² T + T;
- E \Rightarrow ³ T*F+T;
- E \Rightarrow ⁴ F*F+T;
- E \Rightarrow ⁵(E)*F+T;
- E \Rightarrow ⁵(id)*F+T;

Análisis por precedencia de operador: ejemplo (3)

■ Cálculo de los conjuntos LEAD (A), para A ∈ N (cont.):

2. LEAD (T) = {*, (, id)}

-
$$T \Rightarrow^1 T * F;$$

- $T \Rightarrow^2 F * F;$

- $T \Rightarrow^3 (E) * F;$

3. LEAD (F) = { (, id }

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 4 - 13

Análisis por precedencia de operador: ejemplo (4)

■ Cálculo de los conjuntos TRAIL(A), para A ∈ N:

1. TRAIL (E) = {+,*,) id}
- E
$$\Rightarrow$$
¹ E+T;
- E \Rightarrow ² T + T*F;
- E \Rightarrow ³ T + T*(E);
- E \Rightarrow ³ T + T*(id);

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 4 - 14

Análisis por precedencia de operador: ejemplo (5)

■ Cálculo de los conjuntos TRAIL(A), para A ∈ N (cont.):

1. TRAIL (T) = {*,), id}

-
$$T \Rightarrow^1 T * F;$$

- $E \Rightarrow^2 T * (E);$

- $E \Rightarrow^2 T * id;$

2. TRAIL (F) = {), id }

Análisis por precedencia de operador: ejemplo (6)

- Cálculo de las relaciones de precedencia:
 - 1. $E \rightarrow E+T$:

- 2. $I=2 (X_1 = +; X_2 = T):$ 1. $\forall a \in LEAD(T), X_1 \le a (* 3^a rama *):$ 1. $+ \le *: + \le (: + \le id)$
- 2. $E \rightarrow T$

Curso 2007/2008

 No produce cambios (sólo posee un símbolo en la parte derecha)

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 4 - 15

Antonio Pareja Lora

PP.LL. – Tema 4 – 16

Análisis por precedencia de operador: ejemplo (7)

 Cálculo de las relaciones de precedencia (cont.):

```
3. T \rightarrow T^*F:

1. I=1 (X_1 = T; X_2 = *; X_3 = F):

1. \forall a \in TRAIL(T), a > X_2 (* 4^a rama *):

1. * > *; ) > *; id > *

2. I=2 (X_1 = *; X_2 = F):

1. \forall a \in LEAD(F), X_1 < a (* 3^a rama *):

1. * < (; * < id)
```

4. $T \rightarrow F$

No produce cambios (sólo posee un símbolo en la parte derecha)

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 4 - 17

Análisis por precedencia de operador: ejemplo (8)

Cálculo de las relaciones de precedencia (cont.):

```
5. F \rightarrow (E):

1. I=1 (* X_1 = (; X_2 = E; X_3 = ) *):

1. (I \le 3-2) (* 2^a \text{ rama } *):

1. (=)

2. \forall a \in \text{LEAD}(E), X_1 < a (* 3^a \text{ rama } *):

1. (<+; (<*; (<(; (< \text{id})) *)

2. I=2 (* X_1 = E; X_2 = ) *):

1. \forall a \in \text{TRAIL}(E), a > X_2 (* 4^a \text{ rama } *):

1. +>); *>); )>); \text{id}>)
```

6. $F \rightarrow id$

 No produce cambios (sólo posee un símbolo en la parte derecha)

Curso 2007/2008

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 4 - 18

Análisis por precedencia de operador: ejemplo (9)

- Cálculo de las relaciones de precedencia (cont.):
 - Se relaciona el axioma con los símbolos de fin de cadena y fondo de pila:

Análisis por precedencia de operador: ejemplo (10)

Se resume la información de las relaciones de precedencia en la matriz de análisis por precedencia de operador:

Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 4 – 19

Antonio Pareja Lora

PP.LL. - Tema 4 - 20

Análisis por precedencia de operador: ejemplo (11)

■ Especificación de errores:

E1: Fin de entrada inesperado (falta paréntesis de cierre).

- E2: Símbolo inesperado: '('

– E3: Símbolo inesperado: identificador

 E4: Símbolo inesperado: ')' (falta paréntesis de apertura o sobra paréntesis de cierre)

Curso 2007/2008 Antonio Pareia Lora PP.LL. – Tema 4 – 21

Análisis por precedencia de operador: ejemplo (13)

■ Traza del algoritmo (1):

PILA	ENTRADA	REL. PREC.	ACCIÓN
\$	$id_1 + id_2 * id_3 $$	\$ < id₁	Desplazar (id ₁)
\$ id ₁	+ id ₂ * id ₃ \$	id ₁ > +	Reducir (E \rightarrow id)
\$	+ id ₂ * id ₃ \$	\$ < +	Desplazar (+)
\$ +	id ₂ * id ₃ \$	+ < id ₂	Desplazar (id ₂)
\$ + id ₂	* id ₃ \$	id ₂ > *	Reducir (E \rightarrow id)
\$ +	* id ₃ \$	+ < *	Desplazar (*)
\$ + *	id ₃ \$	* < id ₃	Desplazar (id ₃)
\$ + * id ₃	\$	id ₃ > \$	Reducir (E \rightarrow id)

Análisis por precedencia de operador: ejemplo (12)

 Obtención de la gramática esquelética (G'):

1. $E \rightarrow E+E$

2. $E \rightarrow E^*E$

3. $E \rightarrow (E)$

4. $E \rightarrow id$

Observación:

– En general, $L(G) \subseteq L(G')$, por lo que al trabajar con L(G'), se puede llegar a reconocer cadenas $w \notin L(G)$

Curso 2007/2008

Antonio Pareja Lora

PP.LL. - Tema 4 - 22

PP.LL. - Tema 4 - 24

Análisis por precedencia de operador: ejemplo (14)

■ Traza del algoritmo (2):

PILA	ENTRADA	REL. PREC.	ACCIÓN
\$ + *	\$	*>\$	Reducir (E \rightarrow E * E)
\$ +	\$	+>\$	Reducir (E \rightarrow E + E)
\$	\$	Ø	Aceptar

 Curso 2007/2008
 Antonio Pareja Lora
 PP.LL. – Tema 4 – 23
 Curso 2007/2008
 Antonio Pareja Lora

Bibliografía

- Aho, A. V.; Sethi, R.; Ullman, J. D.: *Compilers: Principles, Techniques and Tools*. Massachusetts: Addison-Wesley Publishing Company, 1986.
- Alfonseca Cubero, E.; Alfonseca Moreno, M.; Moriyón Salomón, R. Teoría de autómatas y lenguajes formales. Madrid: Mc-Graw-Hill/Interamericana de España, S.A.U., 2007.
- Grogono, P. Programación en Pascal. Wilmington, Delaware (EE.UU.):Addison-Wesley Iberoamericana, 1996.
- Sanchís Llorca, F. J. y Galán Pascual, C. Compiladores: Teoría y construcción. Madrid: Editorial Paraninfo, 1986.

Curso 2007/2008 Antonio Pareja Lora PP.LL. – Tema 4 – 25