Equivalent Characterizations of Accessible V-categories Gracomo Tendas Joint with Steve Lack Itala Fest 16 December 2020 1) Accessible Categories 2) V-categories 3) Accessible V-categories: 2 notions 4) The Characterization theorem 1) Accemble categories Det: Let « be a regular cardinal; a category A is called «-accemble if it is the free cocompletion of a much category under x-filtered colinits. Accessible = x-accemble for some x De voa-filtered if every x-mall dragram has a cocone:

(d) Xi

(d) Xi

(d) Xi

(d) Xi

(d) Xi

(every x-mall dragram has a cocone: -> Define du ⊆ A: XEUX (=> A(X, _) preserves x-filtered columbs 1) A has a-filt. colunts A vs x-accemble (=> 2) Ax is mall and every XEA us an ex-felt eslevet of objects from Ax Books: Makker Pavé Examples: 1) Set, Ab, R-Mod, DGAb, ... varaneties Adámek-Roncký 2) Cut, Gra, Ban, ... locally presentable 3) LOrd, Field, Hills,... 4) de [C, Set] of functors preserving specified luits/columbs 5) Sketchalole categories (=> Accemble 6) Models of first order theories Juspertant: I) C-colonts commute with x-midl \Leftrightarrow C is x-filtered builts in <u>Set</u> I) Et has x-midle lints -> E vs x-filtered (Sudnery) 2) V-categories V= (Vo, &, I) is symmetric monordal dosect, complète and cocomplète [,]: You > Vo Ordinary Category V-category_ A V-category K is the data of A category K is the data of 1) a set of objects Ob(K) 1) a set of objects Ob(K) 2) Y X, Y & Ob(K) 2) \ x,y \in \mathcal{O}_b(K) a set $K(X,Y) \in V_0$ K(X,Y) of morphisms 3) identity I - K(X,X) 3) identities: 1x ∈ K(X,X) 4) composition: K(y,Z) @K(X,y) ~> K(x,Z) 4) composition: $K(Y,Z) \times K(X,Y) \xrightarrow{\circ} K(X,Z)$... axioms , axius V-functors · V-natural transformations A P-functor F:A ->K between · [P,A] V-category of V-functor V-categories is the data of · y: e -> [eop, V] Youeda 1) $F: Ob(U) \longrightarrow Ob(K)$ 2) Fxy: U(X,Y) -> K(FX,FY) in V for any $X, Y \in Ob(A)$ Accemble (locally presentable) Examples: 1) (Set, x, 1) < ordinary categories 2) (Ab, Ø, 1) < preaddire categories 3) (Cat, x, 1)

2-categories 4) (sSet, x,1) & nicuplical categories S) (DGAb, Ø, 1) \(dg-categories 7) (610, x, 1) Note: Every V-contegory A has an amounted ordinary contegory Ao: $\begin{cases}
Ob(U_0) = Ob(U_1) & \qquad \qquad 1: X \longrightarrow U_1 & \qquad A_0 \\
A_0(X,Y) := V_0(I, A(X,Y)) & \qquad I \longrightarrow A(X,Y) & \qquad I_1 & \qquad A_0(X,Y) & \qquad I_2 & \qquad I_2$ Euriched (co) lunts: \rightarrow Indexing categories are not enough, we need weights $\varphi: \mathcal{C}^{op} \longrightarrow \mathcal{V}$ Def: Given $\varphi: \mathcal{C} \to \mathcal{V}$, $H: \mathcal{C} \to \mathcal{A}$, the columnt of H weighted by φ is an object $|\operatorname{colum}_{\varphi}H| = \operatorname{colum}_{\varphi}(\varphi, H) = \varphi * H \in \mathcal{A}$ for which V-naturally in AEA. Conical colunts: If E is an ordinary category, we can consider the weight AI: Ex -> V. Hus for any H: Ex -> A (i.e. Fi:e-> to) we define (colon H):= colon (H) ect A(when H, A) & how A(H_, A) Copowers (tensors): Now e=I=1+3, I(*,*)=I. then $\varphi: I^{op} \xrightarrow{\wedge} V$ and H: I A > ct; then we define X.A:= colony H A(X·A,B) = [X, A(A,B)] ~~ % Sundarly one defines weighted lunts, conical lunts, and powers. 3) Accemble V-categories → V=(Vo, Ø, I) sym. non. closed complète, cocomplète + accemble Take x_0 s.t. $(V_0)_{\infty_0}$ contains I and is closed under \otimes From now on $\alpha \not = [\infty]$. Def: We say that a V-category A is x-accemble if it is the free cocompletion of a small V-category under < ___ cA is accemble if it is x-accemble for nome & I) < conical x-filtered colimts > 4 1.e. colunts indexed by x-filtered ordinary categories Call this conically x-accemble < good, bud II) < coliunts weighted by x-flat V-function > bad, good $\rightarrow \varphi: e^{q} \rightarrow V$ is α -flat if coliniq(-): [e,V] $\rightarrow V$ preserves x-mall limits in V) | x-muell conical limits]

+ powers by X \(\epsilon\right)_\in 1 Call there: &-accemble & [Borceux, Quintervo, Rosický] 2 conical x-filtered colunts } & { colunts weighted by (x-flat V-functors) In general: ? A x-accemble ? A concally to x-accemble «-accemble Forgetting x: A courcally => (Ao accumble) accemble (* Prop: Let V = CMon, Ab, R-Hod. Then A is x-accemble (=>) and has funte direct mins Prop: Let V = Gz (W), W = CHou, Ab. R-Hod and Ga group. Then: A is x-accemble () { fuite direct sums and (de) suspensions Prop: [Let Vo be carteriou closed and much that $Vo(1, -): Vo \longrightarrow \underline{Set}$ preserves coproducts and regular epimorphisms. Then A us x-accemble (=> A us conically x-accemble Examples: Set, Cat, sSet, Gpd, Ordr, pOrdr, RGra So far we had: A x-accemble (=) { A is conically x-accemble and Cauchy complete Is this true in general? (I don't know) 4) the characterization theorem I) V=Set, cocomplete care theorem (Gabriel-Ulmer): the following are equivalent 1) it is locally presentable = (accemble + cocamplete) 2) A × x-Cont(P, Set) for some x and Ex-complete; (E=iAx) 3) A = Mod (8) = [e, Set] for a but sketch 8 = (e, IL) 4) it is a orthogonality dan u some [C, Set]; + 15) de ___ [e, set] accembly embedded and reflective (A) eK is orthogonal with respect to f:X->Y in K if: X $K(f,A): K(Y,A) \longrightarrow K(X,A)$ A 15 au (180 (14 Vs) (locally x-pres. as a dored) I) V general, cocomplète care theorem (Kelly): the following are equivalent (x>x0) 1) it is locally presentable; (accessible + cocomplete) 2) A × x-Cont(C, V) for some x and Ex-complete; 3) A = Mod (8) = [C, V] for a but sketch 8 = (C, LL) 4) it is a orthogonality dan in some [E,V]; 5) A = [C,V] accembly embedded and reflective III) V= Set, nou cococuplete case Theorem (Adámek, Rosický, Law, Makkai, Pavé): TFAE 1) A is accemble; 2) A ~ x-Flot (C, Set) for some x and C; 3) A = Mod(S) =[C, Set] for a lunt/columnt oketch S=(C, L, C) 4) A is a mall cone-rujectivity dan; 5) et is accomply embedded and cone-reflective in some [C, Set]. (4) $A \in K = \{C, Set\}$ is injective w.z.t the cone $(X \xrightarrow{fi} Y_i)_{i \in I}$ if $X \xrightarrow{fi} Y_i$ $X \xrightarrow{fi} Y_i$ XPetyd
(5)

Petyd
(5)

A ______ (e, Set] + represent there is \(\sum_{i} \text{A(A:,_)} \rightarrow [e, Set](\text{X,J.}) \) IV) V general, non cocomplete care Theorem (B.a.R): the following are equivalent 1) it is accemble 2) A = x-Flat (E,V) for same x and Z; 3) A = Mod (8) = [C,V] for a limit/colourt of Ketch 8=(C,L,C) theorem (Lack, T.): the following are equivalent 1) A is accemble; 2) A vs a virtual orthogonality class in some [e,V]; 3) A us accessibly embedded and virtually reflective in some [C,V] (2) $\{L,V] = K$, courider the free completion PK of K with nucluion $Z:K \longrightarrow P^{\dagger}K$. $\{P^{\dagger}K \longrightarrow Z \iff K \longrightarrow Z\}$ counids of hogonality of $A \in K$ w.r.to $ZX \longrightarrow Y$ in $P^{\dagger}K$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
1 & \downarrow \\
3
\end{cases}$ $\begin{cases}
P^{1} & \downarrow \\
3
\end{cases}$ $P^{1} & \downarrow \\
3
\end{cases}$ theorem (Lack, T.): Let A => [C,V]; the following are equivalent: 1) A is accemble and accembly embedded in [C,V] 2) A vs a vistual northogonality dan u [C,V] 3) A us accembly embedded and virtually reflective in [C,V]. hank