

MIT OpenCourseWare
<http://ocw.mit.edu>

18.175 Theory of Probability
Fall 2008

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.

Section 23

Donsker Invariance Principle.

In this section we show how the Brownian motion W_t arises in a classical central limit theorem on the space of continuous functions on \mathbb{R}_+ . When working with continuous processes defined on \mathbb{R}_+ , such as the Brownian motion, the metric $\|\cdot\|_\infty$ on $C(\mathbb{R}_+)$ is too strong. A more appropriate metric d can be defined by

$$d_n(f, g) = \sup_{0 \leq t \leq n} |f(t) - g(t)| \quad \text{and} \quad d(f, g) = \sum_{n \geq 1} \frac{1}{2^n} \frac{d_n(f, g)}{1 + d_n(f, g)}.$$

It is obvious that $d(f_j, f) \rightarrow 0$ if and only if $d_n(f_j, f) \rightarrow 0$ for all $n \geq 1$, i.e. d metrizes uniform convergence on compacts. $(C(\mathbb{R}_+), d)$ is also a complete separable space, since any sequence is Cauchy in d if and only if it is Cauchy for each d_n . When proving uniform tightness of laws on $(C(\mathbb{R}_+), d)$, we will need a characterization of compacts via the Arzela-Ascoli theorem, which in this case can be formulated as follows. For a function $x \in C[0, T]$, its modulus of continuity is defined by

$$m^T(x, \delta) = \sup \left\{ |x_a - x_b| : |a - b| \leq \delta, a, b \in [0, T] \right\}.$$

Theorem 55 (Arzela-Ascoli) *A set K is compact in $(C(\mathbb{R}_+), d)$ if and only if K is closed, uniformly bounded and equicontinuous on each interval $[0, n]$. In other words,*

$$\sup_{x \in K} |x_0| < \infty \quad \text{and} \quad \lim_{\delta \rightarrow 0} \sup_{x \in K} m^T(x, \delta) = 0 \quad \text{for all } T > 0.$$

Here is the main result about the uniform tightness of laws on $(C(\mathbb{R}_+), d)$, which is simply a translation of the Arzela-Ascoli theorem into probabilistic language.

Theorem 56 *The sequence of laws $(\mathbb{P}_n)_{n \geq 1}$ on $(C(\mathbb{R}_+), d)$ is uniformly tight if and only if*

$$\lim_{\lambda \rightarrow +\infty} \sup_{n \geq 1} \mathbb{P}_n(|x_0| > \lambda) = 0 \tag{23.0.1}$$

and

$$\lim_{\delta \downarrow 0} \sup_{n \geq 1} \mathbb{P}_n(m^T(x, \delta) > \varepsilon) = 0 \tag{23.0.2}$$

for any $T > 0$ and any $\varepsilon > 0$.

Proof. \implies . For any $\gamma > 0$, there exists a compact K such that $\mathbb{P}_n(K) > 1 - \gamma$ for all $n \geq 1$. By the Arzela-Ascoli theorem, $|x_0| \leq \lambda$ for some $\lambda > 0$ and for all $x \in K$ and, therefore,

$$\sup_n \mathbb{P}_n(|x_0| > \lambda) \leq \sup_n \mathbb{P}_n(K^c) \leq \gamma.$$

Also, by equicontinuity, for any $\varepsilon > 0$ there exists $\delta_0 > 0$ such that for $\delta < \delta_0$ and for all $x \in K$ we have $m^T(x, \delta) < \varepsilon$. Therefore,

$$\sup_n \mathbb{P}_n(m^T(x, \delta) > \varepsilon) \leq \sup_n \mathbb{P}_n(K^c) \leq \gamma.$$

\iff . Given $\gamma > 0$, find $\lambda_T > 0$ such that

$$\sup_n \mathbb{P}_n(|x_0| > \lambda_T) \leq \frac{\gamma}{2^{T+1}}.$$

For each $k \geq 1$, find $\delta_k > 0$ such that

$$\sup_n \mathbb{P}_n\left(m^T(x, \delta_k) > \frac{1}{k}\right) \leq \frac{\gamma}{2^{T+k+1}}.$$

Define a set

$$A_T = \left\{x : |x_0| \leq \lambda_T, m^T(x, \delta_k) \leq \frac{1}{k} \text{ for all } k \geq 1\right\}.$$

Then for all $n \geq 1$,

$$\mathbb{P}_n(A_T) \geq 1 - \frac{\gamma}{2^{T+1}} - \sum_k \frac{\gamma}{2^{T+k+1}} = 1 - \frac{\gamma}{2^T}.$$

By the Arzela-Ascoli theorem, the set $A = \bigcap_{T \geq 1} A_T$ is compact on $(C(\mathbb{R}_+), d)$ and for all $n \geq 1$,

$$\mathbb{P}_n(A) \geq 1 - \sum_{T \geq 1} \frac{\gamma}{2^T} = 1 - \gamma.$$

This proves that the sequence (\mathbb{P}_n) is uniformly tight. \square

Of course, for the uniform tightness on $(C[0, 1], \|\cdot\|_\infty)$ we only need the second condition (23.0.2) for $T = 1$. Also, it will be convenient to slightly relax (23.0.2) and replace it with

$$\lim_{\delta \rightarrow 0} \limsup_{n \rightarrow \infty} \mathbb{P}_n(m^T(x, \delta) > \varepsilon) = 0. \quad (23.0.3)$$

Indeed, given $\gamma > 0$, find δ_0, n_0 such that for $\delta < \delta_0$ and $n > n_0$,

$$\mathbb{P}_n(m^T(x, \delta) > \varepsilon) < \gamma.$$

For each $n \leq n_0$ we can find δ_n such that for $\delta < \delta_n$,

$$\mathbb{P}_n(m^T(x, \delta) > \varepsilon) < \gamma$$

because $m^T(x, \delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all $x \in C(\mathbb{R}_+)$. Therefore,

$$\text{if } \delta < \min(\delta_0, \delta_1, \dots, \delta_{n_0}) \text{ then } \mathbb{P}_n(m^T(x, \delta) > \varepsilon) < \gamma$$

for all $n \geq 1$.

Donsker invariance principle. Let us now give a classical example of convergence on $(C(\mathbb{R}_+), d)$ to the Brownian motion W_t . Consider a sequence $(X_i)_{i \geq 1}$ of i.i.d. random variables such that $\mathbb{E}X_i = 0$ and $\sigma^2 = \mathbb{E}X_i^2 < \infty$. Let us consider a continuous partial sum process on $[0, \infty)$ defined by

$$W_t^n = \frac{1}{\sqrt{n}\sigma} \sum_{i \leq \lfloor nt \rfloor} X_i + (nt - \lfloor nt \rfloor) \frac{X_{\lfloor nt \rfloor + 1}}{\sqrt{n}\sigma},$$

where $\lfloor nt \rfloor$ is the integer part of nt , $\lfloor nt \rfloor \leq nt < \lfloor nt \rfloor + 1$. Since the last term in W_t^n is of order $n^{-1/2}$, for simplicity of notations, we will simply write

$$W_t^n = \frac{1}{\sqrt{n}\sigma} \sum_{i \leq nt} X_i$$

and treat nt as an integer. By the central limit theorem,

$$\frac{1}{\sqrt{n}\sigma} \sum_{i \leq nt} X_i = \sqrt{t} \frac{1}{\sqrt{nt}\sigma} \sum_{i \leq nt} X_i \rightarrow \mathcal{N}(0, t).$$

Given $t < s$, we can represent

$$W_s^n = W_t^n + \frac{1}{\sqrt{n}\sigma} \sum_{nt < i \leq ns} X_i$$

and since W_t^n and $W_s^n - W_t^n$ are independent, it should be obvious that the f.d. distributions of W_t^n converge to the f.d. distributions of the Brownian motion W_t . By Lemma 45, this identifies W_t as the unique possible limit of W_t^n and, if we can show that the sequence of laws $(\mathcal{L}(W_t^n))_{n \geq 1}$ is uniformly tight on $(C[0, \infty), d)$, Lemma 36 in Section 18 will imply that $W_t^n \rightarrow W_t$ weakly. Since $W_0^n = 0$, we only need to show equicontinuity (23.0.3). Let us write the modulus of continuity as

$$m^T(W^n, \delta) = \sup_{|t-s| \leq \delta, t, s \in [0, T]} \left| \frac{1}{\sqrt{n}\sigma} \sum_{ns < i \leq nt} X_i \right| \leq \max_{0 \leq k \leq nT, 0 < j \leq n\delta} \left| \frac{1}{\sqrt{n}\sigma} \sum_{k < i \leq k+j} X_i \right|.$$

If instead of maximizing over all $0 \leq k \leq nT$, we maximize over $k = ln\delta$ for $0 \leq l \leq m-1$, $m := T/\delta$, i.e. in increments of $n\delta$, then it is easy to check that the maximum will decrease by at most a factor of 3, because the second maximum over $0 < j \leq n\delta$ is taken over intervals of the same size $n\delta$. As a consequence, if $m^T(W^n, \delta) > \varepsilon$ then one of the events

$$\left\{ \max_{0 < j \leq n\delta} \left| \frac{1}{\sqrt{n}\sigma} \sum_{ln\delta < i \leq ln\delta + j} X_i \right| > \frac{\varepsilon}{3} \right\}$$

must occur for some $0 \leq l \leq m-1$. Since the number of these events is $m = T/\delta$,

$$\mathbb{P}(m^T(W^n, \delta) > \varepsilon) \leq m \mathbb{P}\left(\max_{0 < j \leq n\delta} \left| \frac{1}{\sqrt{n}\sigma} \sum_{0 < i \leq j} X_i \right| > \frac{\varepsilon}{3}\right). \quad (23.0.4)$$

Kolmogorov's inequality, Theorem 11 in Section 6, implies that if $S_n = X_1 + \dots + X_n$ and

$$\max_{0 < j \leq n} \mathbb{P}(|S_n - S_j| > \alpha) \leq p < 1$$

then

$$\mathbb{P}\left(\max_{0 < j \leq n} |S_j| > 2\alpha\right) \leq \frac{1}{1-p} \mathbb{P}(|S_n| > \alpha).$$

If we take $\alpha = \varepsilon\sqrt{n}\sigma/6$ then, by Chebyshev's inequality,

$$\mathbb{P}\left(\left| \sum_{j < i \leq n\delta} X_i \right| > \frac{1}{6}\varepsilon\sqrt{n}\sigma\right) \leq \frac{6^2\delta n\sigma^2}{\varepsilon^2 n\sigma^2} = 36\delta\varepsilon^{-2}$$

and, therefore, if $36\delta\varepsilon^{-2} < 1$,

$$\mathbb{P}\left(\max_{0 < j \leq n\delta} \left| \sum_{0 < i \leq j} X_i \right| > \frac{1}{3}\varepsilon\sqrt{n}\sigma\right) \leq (1 - 36\delta\varepsilon^{-2})^{-1} \mathbb{P}\left(\left| \sum_{0 < i \leq n\delta} X_i \right| > \frac{\varepsilon}{6}\sqrt{n}\sigma\right).$$

Finally, using (23.0.4) and the central limit theorem,

$$\begin{aligned} \limsup_{n \rightarrow \infty} \mathbb{P}(m^T(W_t^n, \delta) > \varepsilon) &\leq m(1 - 36\delta\varepsilon^{-2})^{-1} \limsup_{n \rightarrow \infty} \mathbb{P}\left(\left| \sum_{0 < i \leq n\delta} X_i \right| > \frac{\varepsilon}{6}\sqrt{n}\sigma\right) \\ &= m(1 - 36\delta\varepsilon^{-2})^{-1} 2\mathcal{N}(0, 1)\left(\frac{\varepsilon}{6\sqrt{\delta}}, \infty\right) \\ &\leq 2T\delta^{-1}(1 - 36\delta\varepsilon^{-2})^{-1} \exp\left(-\frac{1}{2}\frac{\varepsilon^2}{6^2\delta}\right) \rightarrow 0 \end{aligned}$$

as $\delta \rightarrow 0$. This proves that

$$\lim_{\delta \rightarrow 0} \limsup_{n \rightarrow \infty} \mathbb{P}(m^T(W_t^n, \delta) > \varepsilon) = 0,$$

for all $T > 0$ and $\varepsilon > 0$ and, thus, $W_t^n \rightarrow W_t$ weakly in $(C[0, \infty), d)$.

□