Project 1: Colorizing the Prokudin-Gorskii Collection

CS180 • Fall 2025

Overview

I split B/G/R glass plates (top→bottom) into channels, crop borders (10% each side), convert to float, and align G and R to B. Implemented alignment methods: **SSD**, **NCC**, and **Phase Correlation**. For large .tif images, I use a **coarse-to-fine edge-based pyramid** (downscale ×2, 5 levels; central differences / Prewitt edges).

Pipeline

Spotlight: Melons — plain L2 (single-scale)

A deliberately naive single-scale SSD alignment. The strong color fringing shows that plain L2 on raw intensities fails for large displacements and illumination differences, motivating coarse-to-fine and phase-based methods.

← Back to CS 180

1 von 8

Melons — SSD (single-scale): clear misalignment and color fringing

Edge Feature Used for Pyramid Alignment

Instead of matching raw brightness, we align on a gradient-magnitude (edge) image. This is more robust to channel brightness differences and produces more precise alignment.

← Back to CS 180

Gradient-magnitude "edge" image used in the pyramid

Small Images (Low Resolution)

Exhaustive single-scale alignment (SSD/NCC) and (optionally) phase correlation.

Image	SSD without edge detection	NCC (single)	Phase Corr.
cathedral	← Ba	ack to CS 180	

Image	SSD without edge detection	NCC (single)	Phase Corr.
	0.06s G=(2, 5) R=(3, 12)	0.17s G=(2, 5) R=(3, 12)	0.01s G=(2, 5) R=(3, 12)
monastery	0.07s G=(2, -3) R=(2, 3)	0.18s G=(2, -3) R=(2, 3)	0.01s G=(2, -3) R=(2, 3)
tobolsk	0.06s G=(3, 3) R=(3, 6)	0.19s G=(3, 3) R=(3, 6)	0.01s G=(2, 3) R=(3, 6)

Large Images (High Resolution)

Coarse-to-fine edge pyramid for SSD/NCC; brightness-invariant phase correlation.

Image	SSD without edge detection	Pyramid SSD	Pyramid NCC	Phase Corr.
church	10.15s G=(4, 15) R=(-15 15) ←	12.15s G=(4, 25) R=(-4, Back to CS 180	28.53s G=(4, 25) R=(-4, 58)	2.01s G=(3, 25) R=(-4, 58)

Image	SSD without edge detection	Pyramid SSD	Pyramid NCC	Phase Corr.
emir	9.72s G=(15, 15) R=(15, 15)	15.90s G=(24, 49) R=(40, 107)	28.26s G=(24, 49) R=(40, 107)	2.52s G=(24, 49) R=(41, 106)
harvesters	10.57s G=(15, 15) R=(-15, 15)	16.97s G=(17, 60) R=(14, 124)	28.73s G=(17, 60) R=(14, 124)	2.14s G=(18, 60) R=(11, 118)
icon	10.86s G=(15, 15) R=(15, 15)	17.58s G=(17, 42) R=(23, 90)	35.04s G=(17, 42) R=(23, 90)	1.38s G=(16, 39) R=(23, 88)
italil	10.44s G=(15, 15) R=(15, 15)	16.55s G=(22, 38) R=(36, 77)	32.20s G=(22, 38) R=(36, 77)	2.16s G=(22, 38) R=(36, 77)
lastochikino	← E 9.68s	Back to CS 180 G=(-2, -3) R=(-8,	32.46s G=(-2, -3) R=(-8,	2.43s G=(-2, -3)

Image	SSD without edge detection	Pyramid SSD	Pyramid NCC	Phase Corr.
	G=(-2, -3) R=(-8, 15)	76)	76)	R=(-9, 76)
lugano	10.24s G=(-15, 15) R=(-15, 15)	16.81s G=(-17, 41) R=(-29, 92)	32.18s G=(-17, 41) R=(-29, 92)	0.91s G=(-17, 41) R=(-29, 92)
melons	10.26s G=(11, 15) R=(15, 15)	16.75s G=(10, 80) R=(13, 177)	34.41s G=(10, 80) R=(13, 177)	2.19s G=(10, 80) R=(14, 176)
self_portrait	10.23s G=(15, 15) R=(15, 15)	16.34s G=(29, 78) R=(37, 175)	35.83s G=(29, 78) R=(37, 175)	1.46s G=(29, 77) R=(37, 175)
siren	10.23s G=(-14, 15) R=(-15, 15)	17.27s G=(-6, 49) R=(-24, 96)	32.49s G=(-6, 49) R=(-24, 96)	0.93s G=(-5, 50) R=(-24, 97)
three_generations	← E	Back to CS 180		

Image	SSD without edge detection	Pyramid SSD	Pyramid NCC	Phase Corr.
	10.18s G=(13, 15) R=(11, 15)	15.87s G=(12, 53) R=(9, 111)	31.43s G=(12, 53) R=(9, 111)	2.51s G=(12, 55) R=(8, 111)

Large Images (Extra Set)

Same pipeline as above, evaluated on three additional high-resolution plates.

SSD without edge **Pyramid SSD Pyramid NCC** Phase Corr. **Image** detection castle 0.93s 16.13s 31.72s G=(25, 65) R=(37, 9.94s G=(25, 64) R=(37, G=(25, 64) R=(37, 140) G=(15, 15) R=(15, 15) 141) 141) dagestan 2.61s 16.31s 32.28s G=(3, 8) R=(5, 88) 9.68s G=(4, 8) R=(5, 89) G=(4, 8) R=(5, 89) G=(4, 8) R=(7, 15) factory 3.13s 16.39s 31.86s G=(13, 67) R=(-5, 9.99s G=(9, 61) R=(-5, G=(9, 61) R=(-5, 134) G=(11, 15) R=(1, 15) 136) 136)

Discussion

← Back to CS 180

7 von 8

The edge-based pyramid stabilizes SSD/NCC under illumination and texture changes by matching gradients (central differences / Prewitt). Phase correlation is brightness-invariant and provides a good coarse initialization on the smallest level. Parameters: crop=0.10, base_win=20, target_min≈120, levels≤6.

Problems & Takeaways

Why single-scale SSD/NCC failed on large plates. With big displacements and channel brightness differences (e.g., Emir), exhaustive search on raw intensities either misses the true shift or locks onto wrong structures.

Fix: edge-based pyramid. Matching on gradient magnitude (central differences / Prewitt) makes SSD/NCC far more stable across channels and lets a coarse-to-fine search converge reliably.

Why phase correlation helped. (1) Fast: FFT-based 0 (N log N), great on large images. (2) Brightness-invariant: uses the cross-power spectrum phase. (3) Strong initializer: good coarse shift you can optionally refine at the finest level.

Speed note. On my .tif images, phase correlation was typically the fastest; the edge pyramid was slower but accurate and consistent.

Other issues worth discussing. (1) Border/frame artifacts bias alignment unless cropped.

(2) Non-rigid changes (motion/parallax) violate pure translation. (3) Metric robustness—outliers and illumination shifts favor normalized/edge features over raw intensities.

← Back to CS 180