Johns Hopkins Engineering

Computer Vision

Camera Calibration and Photogrammetry

Camera Calibration and Photogrammetry

Method to find a camera's parameters and a method to estimate 3D structure using two cameras.

Topics:

- (1) Linear Camera Model
- (2) Camera Calibration
- (3) Photogrammetry and Stereo

Camera Calibration and Photogrammetry

Method to find a camera's parameters and a method to estimate 3D structure using two cameras.

Topics:

(1) Linear Camera Model

Forward Imaging Model: 3D to 2D

Forward Imaging Model: 3D to 2D

Perspective Projection

We know $\frac{x_i}{f} = \frac{x_c}{z_c}$ and $\frac{y_i}{f} = \frac{y_c}{z_c}$ that:

Therefore: $x_i = f \frac{x_c}{z_c}$ and $y_i = f \frac{y_c}{z_c}$

What are the units of x_i?

Image Plane to Image Sensor Mapping

Pixels may be rectangular.

If m_x and m_y are the pixel densities (ex: pixels/mm) in xand y directions respectively, $u = m_x x_i = m_x f \frac{x_c}{z_c}$ $v = m_y y_i = m_y f \frac{y_c}{z_c}$ then pixel coordinates are:

$$u = m_{x}x_{i} = m_{x}f\frac{x_{c}}{z_{c}}$$

$$v = m_y y_i = m_y f \frac{y_c}{z_c}$$

Image Plane to Image Sensor Mapping (cont.)

Pixels may be rectangular.

We usually treat the top-left corner of the image sensor as its origin (easier for indexing). If the optical axis passes through (o_x, o_y) (Principle Point) on the sensor, then:

$$u = m_x f \frac{x_c}{z_c} + o_x$$

$$u = m_x f \frac{x_c}{z_c} + o_x \qquad v = m_y f \frac{y_c}{z_c} + o_y$$

Perspective Projection

$$u = m_x f \frac{x_c}{z_c} + o_x \qquad v = m_y f \frac{y_c}{z_c} + o_y$$

$$u = f_x \frac{x_c}{z_c} + o_x \qquad v = f_y \frac{y_c}{z_c} + o_y$$

where: $(f_x, f_y) = (m_x f, m_y f)$ are the focal lengths in pixels in x and y directions, respectively.

 (f_x, f_y, o_x, o_y) : Intrinsic parameters of the camera. They represent the camera's internal geometry.

Perspective Projection (cont.)

$$u = m_x f \frac{x_c}{z_c} + o_x \qquad v = m_y f \frac{y_c}{z_c} + o_y$$

$$u = f_x \frac{x_c}{z_c} + o_x \qquad v = f_y \frac{y_c}{z_c} + o_y$$

Equations for Perspective projection are Non-Linear.

It is often convenient to express them as linear equations.

Homogenous Coordinates

The **homogenous** representation of a 2D point $\mathbf{u} = (u, v)$ is a 3D point $\widetilde{\mathbf{u}} = (\widetilde{u}, \widetilde{v}, \widetilde{w})$. The third coordinate $\widetilde{w} \neq 0$ is fictitious such that:

$$u = \frac{\widetilde{u}}{\widetilde{w}} \qquad v = \frac{\widetilde{v}}{\widetilde{w}}$$

$$\mathbf{u} \equiv \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \widetilde{w}u \\ \widetilde{w}v \\ \widetilde{w} \end{bmatrix} \equiv \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \widetilde{\mathbf{u}}$$

Homogenous Coordinates (cont.)

■ The homogenous representation of a 3D point $\mathbf{x} = (x, y, z)$ is a 4D point $\tilde{\mathbf{x}} = (\tilde{x}, \tilde{y}, \tilde{z}, \tilde{w})$. The fourth coordinate $\tilde{w} \neq 0$ is fictitious such that:

$$x = \frac{\widetilde{x}}{\widetilde{w}}$$
 $y = \frac{\widetilde{y}}{\widetilde{w}}$ $z = \frac{\widetilde{z}}{\widetilde{w}}$

$$\mathbf{x} \equiv \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \widetilde{w}x \\ \widetilde{w}y \\ \widetilde{w}z \\ \widetilde{w} \end{bmatrix} \equiv \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \\ \widetilde{w} \end{bmatrix} = \widetilde{\mathbf{x}}$$

Perspective Projection in Homogenous Coordinates

Perspective projection equations:

$$u = f_x \frac{x_c}{z_c} + o_x \qquad v = f_y \frac{y_c}{z_c} + o_y$$

Homogenous coordinates of (u, v):

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} \equiv \begin{bmatrix} z_c u \\ z_c v \\ z_c \end{bmatrix} = \begin{bmatrix} f_x x_c + z_c o_x \\ f_y y_c + z_c o_y \\ z_c \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

where: $(u, v) = (\tilde{u}/_{\widetilde{w}}, \tilde{v}/_{\widetilde{w}})$

Intrinsic Matrix

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

Calibration Matrix:

$$K = \begin{bmatrix} f_{x} & 0 & o_{x} \\ 0 & f_{y} & o_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

Intrinsic Matrix:
$$\begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Upper Right Triangular Matrix

$$\widetilde{\mathbf{u}} = [K|0] \, \widetilde{\mathbf{x}}_{c} = M_{int} \, \widetilde{\mathbf{x}}_{c}$$

Forward Imaging Model: 3D to 2D

Coordinates

$$\mathbf{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

Coordinates

$$\mathbf{x}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$

Coordinate Transformation

Extrinsic Parameters

Position c_w and Orientation R of the camera in the world coordinate frame W are the camera's **Extrinsic Parameters.**

World-to-Camera Transformation

Given the extrinsic parameters (R, \mathbf{c}_w) of the camera, the camera-centric location of any point \mathbf{x}_w in the world coordinate frame is:

$$\mathbf{x}_{c} = R(\mathbf{x}_{w} - \mathbf{c}_{w}) = R\mathbf{x}_{w} - R\mathbf{c}_{w} = R\mathbf{x}_{w} + \mathbf{t} \qquad (\mathbf{t} = -R\mathbf{c}_{w})$$

$$\mathbf{x}_{c} = \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \end{bmatrix} + \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix}$$
Rotation Translation

17

World-to-Camera Transformation (cont.)

Rewriting using homogenous coordinates:

$$\tilde{\mathbf{x}}_{c} = \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{x} \\ r_{21} & r_{22} & r_{23} & t_{y} \\ r_{31} & r_{32} & r_{33} & t_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \\ 1 \end{bmatrix}$$

Extrinsic Matrix:
$$M_{ext} = \begin{bmatrix} R_{3\times3} & \mathbf{t}_{3\times1} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\tilde{\mathbf{x}}_{c} = M_{ext}\tilde{\mathbf{x}}_{w}$$

Forward Imaging Model: 3D to 2D (cont.)

Projection

Transformation

Linear Camera Model

Camera to Pixel

$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

$$\widetilde{\mathbf{u}} = M_{int} \, \widetilde{\mathbf{x}}_c$$

World to Camera

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

$$\tilde{\mathbf{x}}_c = M_{ext}\tilde{\mathbf{x}}_w$$

Combining the above two equations, we get the Projection Matrix *P*:

$$\widetilde{\mathbf{u}} = M_{int} M_{ext} \, \widetilde{\mathbf{x}}_{\mathbf{w}} = P \, \widetilde{\mathbf{x}}_{\mathbf{w}}$$

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

Scale of Projection Matrix

Projection matrix acts on homogenous coordinates.

We know that:
$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} \equiv k \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} \qquad \begin{array}{c} (k \neq 0 \text{ is any constant)} \end{array}$$

That is:
$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix} \equiv k \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

Therefore, Projection Matrix P and kP produce the same homogenous pixel coordinates.

Projection Matrix *P* needs to be determined only up to a scale factor.

Summary

Camera Calibration and Photogrammetry: Method to find a camera's parameters and estimate 3D structure using two cameras.

- Essential concepts in this lecture:
 - 3D homogeneous transforms
 - Internal camera parameters
 - Full 3D linear projection model

Johns Hopkins Engineering

Computer Vision

Camera Calibration and Photogrammetry

Camera Calibration and Photogrammetry

Method to find a camera's parameters and a method to estimate 3D structure using two cameras.

Topics:

(1) Camera Calibration

Camera Calibration

Most vision applications require the knowledge of intrinsic (f_x, f_y, o_x, o_y) and extrinsic (R, t) parameters of the cameras being used.

We "Calibrate" the cameras to determine these.

Camera Calibration Procedure (1)

Object whose precise geometry is known

Captured Image

Camera Calibration Procedure (2)

Object whose precise geometry is known

•
$$\mathbf{x}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$$

Captured Image

•
$$\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 56 \\ 115 \end{bmatrix}$$

Camera Calibration Procedure (3)

Step 3: For each corresponding point *i* in scene and image:

$$\begin{bmatrix} u^{(i)} \\ v^{(i)} \\ 1 \end{bmatrix} \equiv \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w^{(i)} \\ y_w^{(i)} \\ z_w^{(i)} \end{bmatrix}$$
 Known Known

Expanding the matrix as linear equations:

$$u^{(i)} = \frac{p_{11}x_w^{(i)} + p_{12}y_w^{(i)} + p_{13}z_w^{(i)} + p_{14}}{p_{31}x_w^{(i)} + p_{32}y_w^{(i)} + p_{33}z_w^{(i)} + p_{34}}$$
$$v^{(i)} = \frac{p_{21}x_w^{(i)} + p_{22}y_w^{(i)} + p_{23}z_w^{(i)} + p_{24}}{p_{31}x_w^{(i)} + p_{32}y_w^{(i)} + p_{33}z_w^{(i)} + p_{34}}$$

Camera Calibration Procedure (4)

Step 4: Rearranging the terms:

Step 5: Solve for **p**:

$$A \mathbf{p} = \mathbf{0}$$

Least Squares Solution for P

$$A \mathbf{p} = \mathbf{0}$$

If $\overline{\mathbf{p}}$ is a solution, so is $k\overline{\mathbf{p}}$ for any constant k.

But, Projection Matrix P needs to be determined only up to a scale factor. We can assume any scale for \mathbf{p} .

Set scale so that: $\|\mathbf{p}\|^2 = 1$

We want $A\mathbf{p}$ as close to 0 as possible and $\|\mathbf{p}\|^2 = 1$:

$$\min_{\mathbf{p}} \|A\mathbf{p}\|^2 \text{ such that } \|\mathbf{p}\|^2 = 1$$

See Appendix A

Find the eigenvector of A^tA with zero eigenvalue (or "SVD trick" to solve this) Rearrange solution \mathbf{p} to form the projection matrix P.

Extracting Intrinsic and Rotation Parameters

We know that:
$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

That is:
$$\begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = KR$$

Given that K is an Upper Right Triangle matrix and R is an Orthonormal matrix, it is possible to "decouple" K and R from their product using RQ factorization.

(See Appendix B)

Extracting Translation Parameters

We know that:
$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{34} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

That is:
$$\begin{bmatrix} p_{14} \\ p_{24} \\ p_{34} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} = K\mathbf{t} = -KR\mathbf{c}_w$$
 $(\mathbf{t} = -R\mathbf{c}_w)$

$$\mathbf{t} = K^{-1} \begin{bmatrix} p_{14} \\ p_{24} \\ p_{34} \end{bmatrix}$$

Therefore:
$$\mathbf{t} = K^{-1} \begin{bmatrix} p_{14} \\ p_{24} \\ p_{34} \end{bmatrix}$$
 $\mathbf{c}_w = -R^T K^{-1} \begin{bmatrix} p_{14} \\ p_{24} \\ p_{34} \end{bmatrix}$

Camera Calibration (1)

So what's a practical procedure to calibrate a camera? Turns out, we don't need a full 3D object – just planar ones(!)

First, we generally collect "checkerboard" images:

Camera Calibration (2)

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & s & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

Since all points lie in a plane: $z_w = 0$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & s & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{33} & t_y \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$

Thus, we can delete the 3rd column of the Extrinsic parameter matrix

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & s & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$

$$\mathbf{H} = [\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3]$$

Camera Calibration (3)

$$\mathbf{h}_{1} = K\mathbf{r}_{1}, \mathbf{h}_{2} = K\mathbf{r}_{2} \implies \mathbf{r}_{1} = K^{-1}\mathbf{h}_{1}, \mathbf{r}_{2} = K^{-1}\mathbf{h}_{2}$$

$$\mathbf{r}_{1}^{T}\mathbf{r}_{1} = \mathbf{r}_{2}^{T}\mathbf{r}_{2} = \mathbf{1}, \mathbf{r}_{1}^{T}\mathbf{r}_{2} = \mathbf{0}$$

$$\begin{cases} \mathbf{h}_{1}^{T}K^{-T}K^{-1}\mathbf{h}_{1} - \mathbf{h}_{2}^{T}K^{-T}K^{-1}\mathbf{h}_{2} = \mathbf{0} \\ \mathbf{h}_{1}^{T}K^{-T}K^{-1}\mathbf{h}_{2} = \mathbf{0} \end{cases}$$

Define
$$B = K^{-T}K^{-1}$$

Note that *B* is symmetric and positive definite

K can be calculated from B using Cholesky factorization

We now have a form that let's us solve **linearly** for *B* using the two equations from the homography that relates the images of the left and right cameras!

Camera Calibration (4)

$$\mathbf{h}_{1} = K\mathbf{r}_{1}, \mathbf{h}_{2} = K\mathbf{r}_{2} \implies \mathbf{r}_{1} = K^{-1}\mathbf{h}_{1}, \mathbf{r}_{2} = K^{-1}\mathbf{h}_{2}$$

$$\mathbf{r}_{1}^{T}\mathbf{r}_{1} = \mathbf{r}_{2}^{T}\mathbf{r}_{2} = \mathbf{1}, \mathbf{r}_{1}^{T}\mathbf{r}_{2} = \mathbf{0}$$

$$\begin{cases} \mathbf{h}_{1}^{T}K^{-T}K^{-1}\mathbf{h}_{1} - \mathbf{h}_{2}^{T}K^{-T}K^{-1}\mathbf{h}_{2} = \mathbf{0} \\ \mathbf{h}_{1}^{T}K^{-T}K^{-1}\mathbf{h}_{2} = \mathbf{0} \end{cases}$$

 $B = K^{-T}K^{-1}$ is symmetric and positive definite

Each plane gives us two equations for B

Since *B* has 6 degrees of freedom (why?), we need at least 3 different homographies (i.e. 3 image pairs)

We need at least 4 points per plane to compute the homography

Camera Calibration (4)

So what's the procedure to calibrate a camera?

Then, we:

- Extract corners in each checkerboard
- Associate each corner to a 3D location ON the checkerboard
- Collect across different views
- Solve for camera intrinsics: focal length (in pixels), principal point (in pixels), distortion parameters

Other Intrinsic Parameters: Distortion

Pinholes do not exhibit image distortions. Lenses do.

Radial distortion

Tangential distortion

The mathematical model of the camera will need to incorporate the distortion coefficients.

Distortion Parameters

How do we use the distortion parameters? Given radial distortion coefficients k_1 , k_2 , k_3 and tangential distortion coefficients p_1 and p_2 :

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + t$$
$$x' = \frac{x}{z} \quad y' = \frac{y}{z}$$

$$x'' = x'(1 + k_1r^2 + k_2r^4 + k_3r^6) + 2p_1x'y' + p_2(r^2 + 2x'^2)$$

$$y'' = y'(1 + k_1r^2 + k_2r^4 + k_3r^6) + 2p_2x'y' + p_1(r^2 + 2y'^2)$$

$$r^2 = x'^2 + y'^2$$

finally:
$$u = f_x x'' + c_x$$
 $v = f_y y'' + c_y$

$$V = f_y y'' + c_y$$

Non-linear Refinement

- Closed-form solution minimized algebraic distance.
- Since full-perspective is a non-linear model
 - Can include distortion parameters (radial, tangential)
 - Use maximum likelihood inference for our estimated parameters.

$$\sum_{i=1}^{n} \sum_{j=1}^{m} ||m_{ij} - \hat{m}(A, R_k, T_k, M_j)||^2$$

Backward Projection: From 2D to 3D

Given a calibrated camera (known intrinsics), what is the direction of the ray?

Pixel location:
$$u = m_x x_i + o_x$$
$$v = m_y y_i + o_y$$

Image point:
$$\mathbf{x}_i = (x_i, y_i, f)$$

Direction of ray:
$$\frac{-\mathbf{x}_i}{\|\mathbf{x}_i\|}$$

Summary

Camera Calibration and Photogrammetry: Method to find a camera's parameters and estimate 3D structure using two cameras.

- Essential concepts in this lecture:
 - Setting up calibration as a series of homographies
 - Extracting camera parameters
 - Including distortion and nonlinear refinement

Johns Hopkins Engineering

Computer Vision

Camera Calibration and Photogrammetry

