	Exame 1ª chamada – 09.Jan.07
NOME:	Nº:
múltipla, e apenas uma das respostas está correc	folha do enunciado. As questões 1 a 4 são de escolha a, valendo 1 valor. Uma resposta errada desconta 1/3 A questão 7 (2 valores) só deve ser respondida pelos nente teórico-prática.
1. Considere o seguinte código em C:	
<pre>struct {int a; char b} lis int i=10, x; x = lista[i].b; /***/</pre>	sta[1000];
	ções <i>assembly</i> do IA32 implementa a instrução (si está associado a x e %eax contem o valor de i?
sall 4, %eax leal lista, %ebx movb 4(%ebx, %eax), %esi	sall 2, %eax leal lista, %ebx movb 4(%ebx, %eax), %esi
movb lista+4(,%eax,8), %esi	leal lista, %ebx movb (%ebx,%eax,8), %esi
 Relativamente ao datapath de ciclo único do É ineficiente pois todas as instruções necess 	MIPS podemos dizer que: itam do mesmo período de tempo para executar.
 É ineficiente pois todas as instruções necess □ Permite obter o melhor desempenho pois o □ É eficiente pois cada instrução apenas necessas da sua execução. 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. cessita dos períodos de tempo associados às várias
 É ineficiente pois todas as instruções necess □ Permite obter o melhor desempenho pois o □ É eficiente pois cada instrução apenas necessas da sua execução. □ É eficiente pois cada componente apenas é 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. cessita dos períodos de tempo associados às várias usado uma vez para a execução de cada instrução.
 É ineficiente pois todas as instruções necess □ Permite obter o melhor desempenho pois o □ É eficiente pois cada instrução apenas necessas da sua execução. □ É eficiente pois cada componente apenas é 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. ressita dos períodos de tempo associados às várias resultado uma vez para a execução de cada instrução. res compiladores consiste em armazenar as variáveis
 É ineficiente pois todas as instruções necess Permite obter o melhor desempenho pois o É eficiente pois cada instrução apenas necessas da sua execução. É eficiente pois cada componente apenas é Uma técnica de optimização utilizada pelo mais usadas em registos. Esta técnica aumente 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. ressita dos períodos de tempo associados às várias rusado uma vez para a execução de cada instrução. res compiladores consiste em armazenar as variáveis
 É ineficiente pois todas as instruções necess □ Permite obter o melhor desempenho pois o □ É eficiente pois cada instrução apenas necessor das sua execução. □ É eficiente pois cada componente apenas é 3. Uma técnica de optimização utilizada pelo mais usadas em registos. Esta técnica aume □ Uma vez que os acessos a registos são mai relógio pode ser maior. □ No IA32 esta técnica resulta em programas 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. ressita dos períodos de tempo associados às várias rusado uma vez para a execução de cada instrução. res compiladores consiste em armazenar as variáveis rata o desempenho porque: s rápidos do que acessos a memória a frequência do com menor número de instruções.
 É ineficiente pois todas as instruções necess □ Permite obter o melhor desempenho pois o □ É eficiente pois cada instrução apenas necessor das sua execução. □ É eficiente pois cada componente apenas é 3. Uma técnica de optimização utilizada pelo mais usadas em registos. Esta técnica aume □ Uma vez que os acessos a registos são mai relógio pode ser maior. □ No IA32 esta técnica resulta em programas 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. ressita dos períodos de tempo associados às várias rusado uma vez para a execução de cada instrução. res compiladores consiste em armazenar as variáveis rata o desempenho porque: res rápidos do que acessos a memória a frequência do com menor número de instruções.
 É ineficiente pois todas as instruções necess □ Permite obter o melhor desempenho pois o □ É eficiente pois cada instrução apenas necessadas sua execução. □ É eficiente pois cada componente apenas é 3. Uma técnica de optimização utilizada pelo mais usadas em registos. Esta técnica aume □ Uma vez que os acessos a registos são mai relógio pode ser maior. □ No IA32 esta técnica resulta em programas □ Uma vez que os acessos a registos são m 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. cessita dos períodos de tempo associados às várias usado uma vez para a execução de cada instrução. es compiladores consiste em armazenar as variáveis nta o desempenho porque: s rápidos do que acessos a memória a frequência do com menor número de instruções. ais rápidos do que acessos a memória o CPI deste
 É ineficiente pois todas as instruções necess □ Permite obter o melhor desempenho pois o □ É eficiente pois cada instrução apenas necessor da sua execução. □ É eficiente pois cada componente apenas é 3. Uma técnica de optimização utilizada pelo mais usadas em registos. Esta técnica aumero uma vez que os acessos a registos são mai relógio pode ser maior. □ No IA32 esta técnica resulta em programas uma vez que os acessos a registos são mai programa é menor. □ A utilização de registos permite processar vertos da componente apenas de menor. 4. Considere uma máquina com um espaço do 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. ressita dos períodos de tempo associados às várias usado uma vez para a execução de cada instrução. res compiladores consiste em armazenar as variáveis nta o desempenho porque: rapidos do que acessos a memória a frequência do com menor número de instruções. rais rápidos do que acessos a memória o CPI deste rários elementos de dados por instrução. re endereçamento de 32 bits, 4 MBytes de cache, com Sabendo que o mapeamento de endereços na cache é
 É ineficiente pois todas as instruções necessis Permite obter o melhor desempenho pois o É eficiente pois cada instrução apenas necesadas sua execução. É eficiente pois cada componente apenas é 3. Uma técnica de optimização utilizada pelo mais usadas em registos. Esta técnica aumerológio pode ser maior. Uma vez que os acessos a registos são mai relógio pode ser maior. No IA32 esta técnica resulta em programas Uma vez que os acessos a registos são mai programa é menor. A utilização de registos permite processar vector de linhas de 16 palavras e 32 bits por palavra. 8-way set associative, quantos bits são necessá 14 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. ressita dos períodos de tempo associados às várias usado uma vez para a execução de cada instrução. res compiladores consiste em armazenar as variáveis nta o desempenho porque: rapidos do que acessos a memória a frequência do com menor número de instruções. rais rápidos do que acessos a memória o CPI deste rários elementos de dados por instrução. re endereçamento de 32 bits, 4 MBytes de cache, com Sabendo que o mapeamento de endereços na cache é
 É ineficiente pois todas as instruções necessis Permite obter o melhor desempenho pois o É eficiente pois cada instrução apenas necesas da sua execução. É eficiente pois cada componente apenas é Uma técnica de optimização utilizada pelo mais usadas em registos. Esta técnica aumerológio pode ser maior. No IA32 esta técnica resulta em programas Uma vez que os acessos a registos são mai relógio pode ser maior. No IA32 esta técnica resulta em programas Uma vez que os acessos a registos são mai programa é menor. A utilização de registos permite processar vertos de linhas de 16 palavras e 32 bits por palavra. 8-way set associative, quantos bits são necessá 	itam do mesmo período de tempo para executar. CPI de qualquer instrução é 1. ressita dos períodos de tempo associados às várias usado uma vez para a execução de cada instrução. res compiladores consiste em armazenar as variáveis nta o desempenho porque: rapidos do que acessos a memória a frequência do com menor número de instruções. rais rápidos do que acessos a memória o CPI deste rários elementos de dados por instrução. re endereçamento de 32 bits, 4 MBytes de cache, com Sabendo que o mapeamento de endereços na cache é

ALUSrc,	PCSrc,	lo, o valor MemWrite, 100(\$t0), p	, MemRead	e MemTol	Reg, para a	a execução o

Nº:_____

6	. O tempo de execução de um programa numa determinada máquina pode ser caracterizado recorrendo a 3 parâmetros: número de instruções executadas (#I), número médio de ciclos por instrução (CPI) e frequência do relógio (f). As técnicas de optimização do código afectam um ou mais destes parâmetros. Indique, justificando, qual o parâmetro afectado pela técnica conhecida como <i>loop unrolling</i> .

NO	WIE: N*: N*:
	Apenas para os alunos que, justificadamente, não fizeram a componente teórico-prática.
7.	Os mecanismos de invocação e retorno de procedimentos e funções exigem a execução de um conjunto de passos que garantem a correcta implementação da semântica definida pela linguagem de alto nível utilizada (ex.: passagem de parâmetros, controlo de fluxo, etc.). Enumere e descreva estes passos, indicando ainda como são implementados para a arquitectura IA32 e a linguagem C.

NOME: _____ Nº:____

Estas questões devem ser respondidas em folha separada e valem 8 valores.

8. Considere o código *assembly* do MIPS (metade inferior da tabela) obtido após compilar a função apresentada na metade superior da mesma tabela.

```
int somatorio (int n, int d[])
  int i, s=0;
  for (i=0; i < n; i++)
    s += d[i];
  return (s);
somatorio:
                              # B1
   li $t1, 0
   li $t0, 0
   b teste
ciclo:
   sll $t2, $t0, 2
                                                        # CONV
                              # B2
   add $t2, $a1, $t2
                              # B2
   lw $t2, 0($t2)
                              # B2
                                                        # CONV
   add $t1, $t1, $t2
   addi $t0, $t0, 1
                              # B3
teste:
   slt $t3, $t0, $a0
                              # B4
   bne $t3, $zero, ciclo
                              # B4
                                                        # CONV
                              # B5
   move $v0, $t1
    jr $ra
```

- a) Identifique a funcionalidade dos blocos de instruções etiquetados de **B1 a B5**, associando com o código correspondente em C e descrevendo cada passo.
- b) Converta para código máquina as instruções etiquetada com CONV. Apresente todos os passos intermédios e converta o resultado final para hexadecimal.
- c) Escreva em assembly do IA32 o código correspondente à instrução s += d[i]; considerando que o valor de i está no registo %esi e s está associada ao registo %eax.
- d) Esta função, executada com um valor de n=1000 e numa máquina com uma frequência de relógio de 2 GHz, consumiu 10518 ciclos de relógio. Calcule o tempo de execução. Qual o número médio de ciclos por instrução (CPI) verificado para esta função nesta máquina?
- e) Optimize o código da função somatorio() desenrolando o ciclo de forma a processar 4 elementos do vector por iteração. Assuma que o valor de n é sempre múltiplo de 4.
- f) Assumindo que o CPI desta nova versão é o mesmo que para a versão anterior, qual o tempo de execução da versão optimizada, para n=1000, na mesma máquina?