Name: Sanket Chandrashekhar Harvande				
	Roll 19			
	Roll 19 Sign:			
	Assignment No. 01			
Q.1	Define			
J	a>DFA			
	b) NFA			
	c) Moore Machine			
	dy Mealy Machine			
$a\rangle$	DFA:			
	Definition 1- DFA consists of finite set of state,			
	one state is called start state and there can be one or			
	more final states. In DFA from each state on each			
	i/p symbol there is exactly one transition.			
	DFA is represented using five tuple representation			
	M - (0 5 5 0 F)			
	$M = (Q, \Sigma, \delta, Q, F)$			
	where Q = finite set of states			
	Σ = i/p alphabet			
	$\delta = \text{transition function } \delta, : Q \times \Sigma \longrightarrow Q$			
	9 = start state a Fo			
	F = Finite set of final states F = Q			
	eq: 0 = {9A,9B,9c}			
	$eg :- Q = \{9A, 9B, 9c\}$ $\sum = \{0,1\}^2$			
	$l_o = l_A$			
	Q E O 1 Start (PA) (PB)			
	→9A 9A 9B			
	9 ₈ 9c 9 ₈			
	9t 9a 9e (9c)			
1				

Non-Deterministic Finite Automata (NFA):

Definition: - NFA consists of finite set of states one state is called start state & there can be one or more final states

NFA is represented using five tupple representation and it is defined as follows.

$$M = (Q, \Sigma, \delta, q_o, F)$$

Where,

$$\Sigma = i/p$$
 alphabet
 $\delta = \text{transition function } \delta, : 0 \times \Sigma \rightarrow 2^{0}$

$$\Sigma = \{0,1\}$$

c) Moore Machine :-Definition: It is a FA with no final state & it produces the 0/p sequence for the given i/p sequence. In Moore m/c, the 0/p symbol is associated with each state. Moore machine is represented using six tupple representation & six tupple representation is given below M = (Q, Σ, Δ, β, λ, 9.) where, Q = finite set of states $\Sigma = i/p$ alphabet A = Vp alphabet $\delta = \text{transition function } \delta : \mathbb{Q} \times \Sigma \rightarrow \mathbb{Q}$ $\lambda = 0/p \text{ mapping } \lambda : Q \rightarrow \Delta$ q = start state q Ea 1= {a,b} Q = { 9A, 9B, 9e } Z = {0,1} $Q_0 = Q_A$. $\lambda(q_A) = a$ QIZ λ (9B) 9A 98 -> 9A 98 90 98 A (9c) 9B 9A 9c

d) Mealy Machine: it produces the o/p sequence for the given i/p In mealy m/c, the 0/p symbol is associated with each transition. $M = (Q, \Sigma, \Delta, \delta, \lambda, 9.)$ Q = finite set of states Σ = i/p alphabet Δ = o/p alphabet = transition function 6:0x \ > 0 $\lambda = 0/p$ mapping $\lambda : Q \times \Sigma \rightarrow \Delta$ 20 = start state 2 E O

Q.2 Design FA for the language whose binary representation is a such that number is a mod 3.

Q3 Convert NFA to DFA.

> Intial state for DFA is p & we should always start with initial state.

	0	1 1 1 1 1 1 1
→ { P }	{ P, 9 }	3 p }
{P, 9}	{P,9}	{P, x}
{ P, r }	19,9,77	19,8}
{ P,9, r }	{P,9,8}	{P/8}

So we found p another state which is reachable from p. so now consider that state p.

DFA is in {P,9}

Union = { P,9}

g.5 Design a Moore & Mealy Machine to generate 1s complement of given binary number. 9, for instance Take one binary number ! 1011 Input: Input 0 state 92 92 90 9, 92 output 0 Current state state Output Next 92 → 2° 92 91 92 92 9,

11