STATS310A - Lecture 4

Persi Diaconis Scribed by Michael Howes

09/30/21

Contents

1	The $\pi - \lambda$ Theorem	1
2	Independence	2
3	Borel-Cantelli Lemmas	3

1 The $\pi - \lambda$ Theorem

Let (Ω, \mathcal{F}) be a measure space. Recall that a collection of sets \mathcal{P} is a π -system if \mathcal{P} is closed under finite intersection. A collection of sets L is a λ -system if $\Omega \in L$, L is closed under complements and L is closed under countable *disjoint* unions.

Theorem 1. If \mathcal{P} is a π -system, L is a λ -systam and $\mathcal{P} \subseteq L$, then $\sigma(\mathcal{P}) \subseteq L$.

Example 1. Consider the following $\Omega = \{1, 2, 3, 4\}$, $\mathcal{F} = \{A : A \subseteq \Omega\}$. Define two probabilities $P_1, P_2 : \mathcal{F} \to [0, 1]$ by $P_1(\omega) = \frac{1}{4}$ for all $\omega \in \Omega$ and $P_2(\omega) = \frac{1}{2}$ if $\omega = 2, 4$ and $P_2(\omega) = 0$ otherwise. The collection $\mathcal{G} = \{\emptyset, \Omega, \{1, 2\}, \{3, 4\}\}$ is λ -system but not a σ -algebra (or even an algebra). The two measures P_1 and P_2 agree on \mathcal{G} but not on $\sigma(\mathcal{G}) = \mathcal{F}$. Note that the collection

$$L = \{ A \in \mathcal{F} : P_1(A) = P_2(A) \}$$

is always a λ -system for any probabilities P_1, P_2 . The $\pi - \lambda$ theorem lets us conclude that L contains $\sigma(\mathcal{P})$ if P_1 and P_2 agree on \mathcal{P} and \mathcal{P} is a π -system.

Note the following facts.

<u>Fact 0</u>: If L is a λ system and $B_1, B_2 \in L$ with $B_1 \subseteq B_2$, then $B_2 \setminus B_1 \in L$. This is because $B_2 \setminus B_1 = B_2 \cap B_1^c = (B_2^c \cup B_1)^c$ and $B_2^c \cap B_1 = \emptyset$ since $B_1 \subseteq B_2$. Thus L is closed under relative complements as well as complements.

<u>Fact 1</u>: If L is both a π -system and a λ -system, then L is a σ -algebra. To see why this is, consider $(A_i)_{i=1}^{\infty}$ a countable collection of sets in L. Iteratively define $A'_1 = A_1$ and $A'_i = A_i \cap (A'_1 \cup \ldots \cup A'_{i-1})$. Since L is both a π -system and a λ -system, $A'_i \in L$. Also $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} A'_i \in L$ since the sets $(A'_i)_{i=1}^{\infty}$ are disjoint and L is a λ -system.

We will now prove the $\pi - \lambda$ theorem.

Proof. Given \mathcal{P} a π -system and L a λ -system with $\mathcal{P} \subseteq L$, define L_0 to be the λ -system generated by \mathcal{P} . We will show that L_0 is a π -system which by fact 1 will imply that L_0 is a σ -algebra and hence $\sigma(\mathcal{P}) = L_0 \subseteq L$.

For each $A \in L_0$, define $L_A = \{B : B \cap A \in L_0\}$. We will chose that L_A is a λ -system. Note first that $\Omega \in L_A$ since $A \in L_0$. Also if $B \in L_A$, then $A \cap B \in L_0$ and $A \cap B \subseteq A$. Thus since L_0

09/30/21 STATS310A - Lecture 4

is a λ -system and closed under relative complements we have $A \setminus (A \cap B) = A \cap B^c$ is in L_0 . Thus $B^c \in L_A$. Finally if $(B_i)_{i=1}^{\infty}$ is a countable collection of disjoint element of L_A , then $(A \cap B_i)_{i=1}^{\infty}$ is a countable collection of disjoint elements of L_0 . Thus $\bigcup_{i=1}^{\infty} A \cap B_i = A \cap (\bigcup_{i=1}^{\infty} B_i) \in L_0$ and so $\bigcup_{i=1}^{\infty} B_i \in L_A$.

If $A \in \mathcal{P}$ and $B \in \mathcal{P}$, then $A \cap B \in \mathcal{P} \subseteq L_0$. Thus $B \in L_A$. Since B was arbitrary, this means that L_A is a λ -system that contains \mathcal{P} and hence $L_0 \subseteq L_A$ for every $A \in \mathcal{P}$.

Now if $A \in L_0$ and $B \in \mathcal{P}$, then $L_0 \subseteq L_B$ and hence $B \cap A \in L_0$ which implies $B \in L_A$. Thus L_A is a λ -system that contains \mathcal{P} and hence $L_0 \subseteq L_A$. But this means that for all $A, B \in L_0, A \cap B \in L_0$, thus L_0 is a λ -system.

2 Independence

Definition 1. Let (Ω, \mathcal{F}, P) be a probability space. Let $\mathcal{C}_i \subseteq \mathcal{F}$ for each $i \in I$ (where I is any index set). The collection $\{\mathcal{C}_i\}_{i \in I}$ are said to be *independent* if for all finite subsets $J \subseteq I$ and every choice of $A_j \in \mathcal{C}_j$ for $j \in J$, we have

$$P\left(\bigcap_{j\in J}A_j\right) = \prod_{j\in J}P(A_j).$$

Theorem 2. Suppose that $\{C_i\}_{i\in I}$ are independent π -systems, then $\{\sigma(C_i)\}_{i\in I}$ are independent.

Proof. Since the definition of independence only use finite subsets of I we may assume that $I = \{1, \ldots, n\}$ for some $n \in \mathbb{N}$. Define $\mathcal{B}_i = \mathcal{C}_i \cup \{\Omega\}$, the collections \mathcal{B}_i are still π -systems and $\sigma(\mathcal{C}_i) = \sigma(\mathcal{B}_i)$ so we will work with \mathcal{B}_i . Define

$$L = \left\{ B_1 \in \sigma(\mathcal{B}_i) : \prod_{i=1}^n P(B_i) = P\left(\bigcap_{i=1}^n B_i\right) \text{ for all } B_2 \in \mathcal{B}_2, \dots, B_n \in \mathcal{B}_n \right\}.$$

We will show that L is a λ -system. By the $\pi - \lambda$ theorem we will be able to conclude that $\sigma(\mathcal{B}_1) \subseteq L$. First note that $\Omega \in L$ since $\{\mathcal{B}_i\}_{i=2}^n$ are independent. Suppose $B_1 \in L$, then

$$P(B_2 \cap \ldots \cap B_n) = P(B_1 \cap B_2 \cap \ldots \cap B_n) + P(B_1^c \cap B_2 \cap \ldots \cap B_n).$$

Rearranging we have

$$P(B_1^c \cap B_2 \cap \ldots \cap B_n) = P(B_2 \cap \ldots \cap B_n) - P(B_1 \cap B_2 \cap \ldots \cap B_n).$$

By our assumption that $\{\mathcal{B}_i\}_{i=2}^n$ are independent and that $B_1 \in L$, we have

$$P(B_1^c \cap B_2 \cap ... \cap B_n) = P(B_2 \cap ... \cap B_n) - P(B_1 \cap B_2 \cap ... \cap B_n)$$

$$= \prod_{i=2}^n P(B_i) - \prod_{i=1}^n P(B_i)$$

$$= (1 - P(B_1)) \prod_{i=2}^n P(B_i)$$

$$= P(B_1^c) \prod_{i=2}^n P(B_i).$$

09/30/21 STATS310A - Lecture 4

and thus $B_1^c \in L$. Finally if $(B_{1,j})_{j=1}^{\infty}$ are in L and disjoint, then set $B_1 = \bigcup_{j=1}^{\infty} B_{1,j}$ and note that

$$P(B_1 \cap B_2 \cap \dots \cap B_n) = \sum_{j=1}^{\infty} P(B_{1,j} \cap B_2 \cap \dots \cap B_n)$$

$$= \sum_{j=1}^{\infty} P(B_{1,j}) \prod_{i=2}^{n} P(B_i)$$

$$= \left(\sum_{j=1}^{\infty} P(B_{1,j})\right) \prod_{i=2}^{n} P(B_i)$$

$$= \prod_{i=1}^{n} P(B_i).$$

Thus $B_1 \in L$, L is a λ -system and $\sigma(\mathcal{B}_1) = L$. We thus have that $\{\sigma(\mathcal{B}_1), \mathcal{B}_2, \dots, \mathcal{B}_n\}$ is an independent collection. We can repeat this argument with

$$L_2 = \left\{ B_2 \in \sigma(\mathcal{B}_2) : P\left(\bigcap_{i=1}^n B_2\right) = \prod_{i=1}^n P(B_i) \text{ for all } B_1 \in \sigma(\mathcal{B}_1) \text{ and } B_i \in \mathcal{B}_i, i = 3, \dots, n \right\}.$$

We will then conclude that $\sigma(\mathcal{B}_2) = L$. By induction we will prove that $\{\sigma(\mathcal{B}_i)\}_{i=1}^n$ is an independent collection.

Example 2. Consider our coin tossing example $(\Omega, \mathcal{F}, P) = ((0, 1], \mathcal{B}, \lambda)$ where \mathcal{B} is the collection of Borel sets and λ is Lesbegue measure. The digits d_i are independent in that if we set

$$A_i = \{\Omega, \emptyset, \{\omega : d_i(\omega) = 1\}, \{\omega : d_i(\omega) = 0\}\},\$$

then $\{A_i\}_{i=1}^{\infty}$ are independent. The collections $\bigcup_{i=1}^{\infty} A_{2i}$ and $\bigcup_{i=1}^{\infty} A_{2i-1}$ are also independent and thus from ω we can get two uniform (0,1] samples

$$\omega_1 = \sum_{i=1}^{\infty} 2^{-i} d_{2i}(\omega)$$
 and $\omega_2 = \sum_{i=1}^{\infty} 2^{-i} d_{2i-1}(\omega)$.

We can repeat this infinitely often to get a countable sequence of indpendent uniform (0,1] random variables. We could use this to get any other iid sequence of real valued random variables.

3 Borel-Cantelli Lemmas

Let (Ω, \mathcal{F}, P) be a probability space. For $(A_i)_{i=1}^{\infty}$ in \mathcal{F} define

$$A_i \ i.o. = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m.$$

Thus $\omega \in A_i$ i.o. if and only if $\omega \in A_i$ for infinitely many i. That is ω is in A_i infinitely often (i.o.).

Theorem 3. [Borel-Cantelli 1] If $\sum_{i=1}^{\infty} P(A_i) < \infty$, then $P(A_i \ i.o.) = 0$.

Proof. For every $n \in \mathbb{N}$, A_i i.o. $\subseteq \bigcup_{m=n}^{\infty} A_m$ and thus by countable subadditivity,

$$P(A_i \ i.o.) \le \sum_{m=n}^{\infty} P(A_m) \underset{n \to \infty}{\longrightarrow} 0.$$

09/30/21 STATS310A - Lecture 4

Example 3. Let $(\Omega, \mathcal{F}, P) = ((0, 1], \mathcal{B}, \lambda)$, let $l_n(\omega)$ be the length of the heads run starting at n. That is

$$\{\omega : l_n(\omega) = k\} = \{\omega : d_n(\omega) = d_{n+1}(\omega) = \dots = d_{n+k-1}(\omega) = 1 \text{ and } d_{n+k}(\omega) = 0\}.$$

Thus $P(\{l_n = k\}) = \frac{1}{2^{k+1}}$. Let r_n be a sequence of positive integers and let $A_n = \{\omega : l_n(\omega) \ge r_n\}$. Then

$$P(A_n) = \sum_{k=0}^{\infty} \frac{1}{2^{r_n + k + 1}} = \frac{1}{2^{r_n}}.$$

By Borel-Cantelli, if $\sum_{n=1}^{\infty} \frac{1}{2^{r_n}} < \infty$, then $P(A_n \ i.o) = 0$. For example this is the case if $r_n = (1+\varepsilon)\log_2(n)$.

Theorem 4. [Borel-Cantelli 2] If $\sum_{i=1}^{\infty} P(A_i) = \infty$ and $\{A_i\}_{i=1}^{\infty}$ are independent, then

$$P(A_i \ i.o.) = 1.$$

Proof. Note that $(A_i \ i.o.)^c = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m^c$. Thus it suffices to show that for each $n \in \mathbb{N}$, we have $P(\bigcap_{m=n}^{\infty} A_m^c) = 0$. Note that for all n and N, we have

$$P\left(\bigcap_{m=n}^{\infty} A_m^c\right) \leq P\left(\bigcap_{m=n}^{N} A_m^c\right)$$

$$= \prod_{m=n}^{N} P(A_m^c)$$

$$= \prod_{m=n}^{N} (1 - P(A_m))$$

$$\leq \prod_{m=n}^{N} \exp(P(A_m))$$

$$= \exp\left(\sum_{m=n}^{N} P(A_m)\right)$$

$$\xrightarrow[N \to \infty]{} 0.$$

Thus $P((A_i \ i.o.)^c) = 0.$

Example 4. As before let l_n be the length of the heads run at n. For a sequence of real number x_i , we have $\limsup_i x_i = l$ if and only if for all $\varepsilon > 0$, we have

- (a) For infinitely many $n, x_n \ge l \varepsilon$, and
- (b) For sufficiently large $n, x_n \leq l + \varepsilon$.

That is $\limsup_{i} x_i$ is the largest limit point of the sequence x_i . Using B.C. one and two, it can be shown that

$$\limsup_{n} \frac{l_n(\omega)}{\log_2(n)} = 1,$$

with probability 1. We have already seen from B.C. 1, that with probability 1, for every ε , $l_n(\omega) \leq (1+\varepsilon)\log_2(n)$ for all but finitely many n.