UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE INGENIERÍA REDES DE DATOS I

T.P. N°8 Ethernet

- 1) Hay dos estaciones, A y B, en los extremos opuestos de un bus de 2 km de longitud. La tasa de transmisión del bus es de 10 Mbps. La longitud de las tramas que se envían es de 10 bytes. En el instante inicial t=0, ambas estaciones empiezan a transmitir una trama a la otra estación, a través de un medio de cobre.
 - a. ¿Hay colisión entre las tramas? ¿Dónde? Realizar un esquema de tiempos
 - b. ¿Hay alguna estación reciba bien la trama que le envía la otra estación?
 - c. Si entre las dos estaciones, A y B, hay una tercera estación, C, que comparte el bus, ¿C recibirá bien las tramas que se intercambian las otras estaciones?
- 2) Una LAN con topología en bus tiene cuatro estaciones, A, B, C y D, distribuidas sobre el bus cada 500 m, con la estación A en un extremo y la estación D en el otro extremo. La velocidad de transmisión en el medio es de 10 Mbps. Si A y D transmiten una trama en el instante t = T1, ¿cuál es la mínima longitud permitida a la trama de A para que B "vea" colisión entre las dos tramas?
- 3) Considerar una red cualquiera en la que hay 3 estaciones A, B y C. La distancia entre A y B es de 1500 metros, y entre B y C es de 500 metros. La tasa del canal es de 100 Mbps. Si A transmite una trama "L(A_B)" con destino B, C transmite una trama "L(C_B)" con destino B en el mismo instante de tiempo t=0, ¿cuál puede ser la longitud máxima de la trama L(C_B) con tal que el destino reciba bien?
- 4) Considerar una red half duplex a 100 Mbps que utiliza el mecanismo de acceso CSMA/CD.
 - a) ¿Cuál es la longitud de trama mínima permitida si la red tiene una longitud de 2 km?
 - b) Considerar dos estaciones A y B a los extremos opuestos de esta red. Si la estación A transmite una trama en el instante t=0 y la estación B una trama en t=x, ¿qué valor puede tener x si no queremos que haya colisión en todo el canal? Considerar una longitud de trama de 1500 bytes; volver a resolverlo considerando ahora una trama de 50 bytes.
- 5) Para las siguientes tramas, identificar direcciones MAC origen y destino, el campo ethertype o longitud, y calcular la longitud de la trama:

FF	FF	FF	FF	FF	FF	00	04	4D	71	DB	09	80	06	00	01
80	00	06	04	00	01	00	04	4D	71	DB	09	93	53	71	02
00	00	00	00	00	00	93	53	71	1A	00	00	00	00	00	00
00	00	00	00	00	00	00	00	00	00	00	00				

01	80	C2	00	00	00	00	06	28	38	6A	DC	80	00	42	42
03	00	00	00	00	00	00	64	00	01	00	00	00	00	54	87
00	04	4D	E2	BD	09	00	00	15	2D	10	7A	44	31	A2	0F
	(9 líneas en total)														
29	01	5E	00	9A	05	8C	00	00	25	00	00				

ETHERTYPES

08-00 IP Datagram 08-06 ARP

V1 Pág. **1** de **3**

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE INGENIERÍA REDES DE DATOS I

T.P. N°8 Ethernet

- 6) Buscar algún dispositivo de red (notebook, PC, teléfono, etc) y determinar el OUI de la Mac Address, el cual nos mostrará el fabricante de la interfaz. Utilizar esta lista: http://standards-oui.ieee.org/oui/oui.txt o algún buscador de la web.
- 7) Sin tener en cuenta el mecanismo de acceso, queremos evaluar la eficiencia de canal desde el punto de vista del usuario del servicio MAC en las situaciones siguientes:
 - 1. Ethernet 10Mbps
 - 2. Fast Ethernet
 - 3. Gigabit Ethernet con:
 - a) Extensión de portadora
 - b) Frame bursting
 - c) Jumbo frame: trama máxima de 9000 bytes de datos

Considerar una longitud de los datos útiles de 46 bytes y de 1500 bytes (evaluar los dos casos).

Para el caso 3, también considerar los siguientes casos de longitud de datos útiles: 5000 bytes y 4600 bytes.

8) Calcular el retardo extremo a extremo en las siguientes redes. Definir si son implementables en una red Ethernet half Duplex (10 Mbps). Considerar los siguientes retardos:

Retardo de propagación en cable UTP: 0.556 μs/ 100m Retardo de propagación en fibra óptica: 0.5 μs/ 100m

Retardo en un repetidor o HUB: 2 µs

Retardo de la placa de red (NIC) Ethernet: 1 µs

9) La siguiente red trabaja a 10Mbps, Half Duplex. Suponiendo que la trama es de 1500 bytes, y el switch es del tipo Store and Forward, calcular el retardo extremo a extremo. Repetir el cálculo para el caso de transmitir 9000 bytes.

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE INGENIERÍA REDES DE DATOS I

T.P. Nº8 **Ethernet**

- 10) Para la siguiente red,
 - Determinar el/los dominio/s de colisión
 - b) Calcular el retardo máximo de propagación dentro de cada dominio
 - Calcular el retardo máximo de propagación dentro de toda la red (suponer que el switch funciona con cut-through).

- La siguiente red se acaba de inicializar. Analizar para los siguientes casos, el recorrido de las tramas, que estaciones las reciben, que hacen con ellas, que hacen los switches y como quedan las tablas de direcciones MAC de cada switch:
- 1. T1 envía trama a T5

V1

- 2. T5 contesta a T1 con una trama
- 3. T4 envía una trama a T3
- 4. T4 envía una trama a T1

- 5. T2 envía una trama a T1
- 6. T2 envía una trama a T8
- 7. T6 envía una trama a T7
- 8. T8 envía una trama a "FFFFFF"

