Advanced Research Tools for Economics and Business Administration (Part II)

Thomas de Graaff

January 22, 2015

Where are we

Previous tutorial

Still somewhat more theoretical (why do you want to change tools)

- Importance of writing things down (reproducability)
- Text files are the bomb:
 - scriptable
 - input and output in/for other applications
- pros and cons of LATEX
- Why bother with learning LATEX?
 - for dead threes (aka paper)
 - html (cloud) uses LATEX syntax as well for formula's and graph annotation

A quick recap

- \bullet Specific LATEX commands starts with an \backslash
 - \LaTeX
- Inline equations are within \$\$
 - \$\frac{a}{b}\$ is the fraction between \$a\$ and \$b\$
- There are a number of symbols that you cannot immediately use:
 - \, \$, &, %, { and } are the most important (solution: start with an \)
- Environments start and end

```
\begin{equation}
a^2 + b^2 = c^2
\end{equation}
```

General structure

This tutorial

More practical, play around with LATEX. In specific:

- packages (make things look better)
- figures (usually import them, but sometimeS make them yourself)
- tables (import them!)
- slides (just copy & paste from .tex document)

Making appearances

The use of packages

- Typically, packages are used to change appearance
- To ensure no errors, usually opt for the full installation or have access to internet
- There are lots of them, see CTAN
- Often used packages
 - amsmath, graphicx, subfig, marvosym, microtype, booktabs, lipsum, pdflscape, fullpage
- format:

The use of classes

- Typically one uses the article class
- However, there is as well a book, minimal, report, beamer class etcetera
- Specific user written classes are memoir and elsarticle classes
- Classes come with options such as

\documentclass[12pt, a4paper]{article}

Bibliopgraphy

Default format is BibTeX - customizable (however limited) - defaults is good

If you want to customize quite a lot: biblatex-biber combination - usage

\usepackage[backend=biber]{biblatex}

or go nuts

```
\usepackage[style= authoryear-icomp,
            backend=bibtex,
            natbib=true,
            firstinits=true,
            uniquename=true,
            backref=false,
            doi=false.
            isbn=false,
            url=false,
            maxnames=2,
            maxbibnames=10,
            dashed =true,
            backend=biberl
            {biblatex}
```

Better graphs

Import them

Remember figures/graphs and tables in a floating environment

```
\begin{figure}[h!]
     \center
        \includegraphics{ligatures_latex}
     \caption{...}
     \label{ligatures}
\end{figure}
```

- \ref{ligatures} gives you now the correct internal reference
- How to make pictures then:
 - In the statistical environment you are working in
 - plotly

Making them yourself in Late (advanced)

PGF/TikZ combination for producing vector graphics

```
\begin{tikzpicture}
  \begin{axis}[
     xlabel=$x$,
     ylabel={$f(x) = x^2 - x +4$}
]
     % use TeX as calculator:
  \addplot {x^2 - x +4};
  \end{axis}
\end{tikzpicture}
```

Which results in

Better tables

Some guidelines

- No vertical lines!
- small spaces are usually better than horizontal lines
- Booktabs is a nice package

```
\toprule
\midrule
\addlinespace
\bottomrule
```

• Only include stuff that is important

This does not look nice!

```
\begin{table}[htbp]\centering
\def\sym#1{\ifnmode^{#1}\else(^{#1})\fi}
\caption{Dep = Milles per Gallon}
\begin{tabular}{1*{2}{D{.}{.}{-1}}}
\toprule
                                                                      %\multicolumn{1}{c}{(1)}{\&\multicolumn{1}{c}{(2)}}
                                                                      &\multicolumn{1}{c}{Mileage (mpg)}}\multicolumn{1}{c}{Mileage (mpg)}\\
\midrule
                                                                                                                                          -2.2035* \\
Car type
                                                                                      -1.6500 &
                                                                                        (1.0760) & (1.0592) \\
Weight (lbs.)
                                                                                     -0.0066**& -0.0166**\\
                                                                                        (0.0006) &
                                                                                                                                            (0.0040) \\
                                                                                                                                                       0.0000* \\
weight\_sqr
                                                                                                                              &
                                                                                                                                            (0.0000) \\
                                                                                          41.6797**&
                                                                                                                                                56.5388**\\
Constant
                                                                                         (2.1655) &
                                                                                                                                            (6.1974) \\
\midrule
Observations
                                                                                                             74 &
                                                                                                                                                                  74 \\
\(R^{2}\)
                                                                                                  0.663 &
                                                                                                                                                       0.691 \\
                                                                                           69 7485 &
                                                                                                                                                 52.2515 \\
\bottomrule
\multicolumn{3}{1}{\footnotesize Standard errors in parentheses}\\
\mbox{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\
\end{tabular}
\end{table}
```

So import stuff (stata do-file example) !

```
# load car data set
sysuse auto
regress mpg foreign weight
                                        # first regression
eststo linear
                                  # store first regression
gen weight_sqr = weight*weight
                                         # Quadratic term
regress mpg foreign weight weight_sqr # 2nd regression
eststo quadratic
                        # store second regression
esttab linear quadratic /// # write to output file
   using "${outputfiles}Results.tex", ///
    star(+ 0.1 * 0.05 ** 0.01) replace b(%9.4f) ///
   se r2 scalars("F") label keep ($covariates) ///
   title("Dep = Milles per Gallon") ///
   booktabs alignment(D{.}{.}{-1}) nogaps
```

Making slides

Pros and cons

- Cons:
 - Not as quick out of the box as PowerPoint (powerphluff)
 - Typically beamer package which makes all things look alike
 - Enforces some things (e.g., limited space for tables)
- Pros:
 - Once created, similar on all versions/operating machines
 - You need to spend more time thinking
 - Better .pdf handling
 - Reuse of equations or code in general
 - There is a kind of a philosophy behind it

The Cognitive Style of PowerPoint (Edward Tufte)

Using beamer package

```
\documentclass{beamer}
                                 % new document class
   \usetheme{Darmstadt}
                                        % new lay-out
    \usecolortheme{beaver}
                                   % new color scheme
   \begin{document}
                               % begin document again
       % usually frames start with begin/end, except
    \frame{\titlepage}
          % Use section and subsection for slide menu
    \section{Where are we}\label{where-are-we}
                              % Frame and frame title
    \begin{frame}{Previous tutorial}
       Still somewhat more theoretical ...
       a^2 + b^2 = c^2
                                 % formula if you want
    \end{frame}
    \end{document}
                               % always end a document
```

In conclusion

- This tutorial is more a showcase
- Pick out the stuff you appreciate most
 - there is solution for almost everything
 - but it requires time investment
 - which only later will pay-off
- As things now develop there will be
 - more ephasis on internet/blogging publishing (slightly more advance than Facebook but on the same par as Wordpress)
 - including data and figures (dynamic infographics)
 - minor role for LATEX
 - For dead trees: LATEX is still the best when editing/writing complex documents

