Elisabetta Fersini

Esercitazione

DISCo

Università degli Studi di Milano-

Bicocca

Viale Sarca, 336

20126 Milano

elisabetta.fersini@unimib.it

• Data la seguente rete, indicare quali tabelle di probabilità condizionata devono essere definite affinché il grafo possa essere considerato una rete bayesiana

- Un paziente si reca dal dottore per sottoporre una patologia, il dottore sospetta 3 possibili malattie come causa della condizione patologica. Le 3 malattie sono D_1 , D_2 , e D_3 , le quali sono marginalmente indipendenti tra loro. Ci sono 4 sintomi S_1 , S_2 , S_3 , e S_4 di cui il dottore vuole verificare la presenza in modo da trovare la causa più probabile per la condizione patologica. I sintomi sono condizionalmente dipendenti alle 3 malattie come segue: S_1 dipende solamente da D_1 , S_2 dipende da D_1 e da D_2 , S_3 dipende da D_1 e da D_3 , e S_4 dipende solamente da D_3 . Si assuma che tutte le variabili casuali siano booleane.
 - 1. Costruire la **struttura topologica** alla rete bayesiana per il problema descritto.
 - 2. Scrivere la distribuzione di probabilità congiunta espressa come prodotto delle probabilità condizionate.
 - 3. Qual è il numero di parametri indipendenti richiesti per descrivere la distribuzione congiunta?
 - 4. Assumendo che non ci sia indipendenza condizionale tra le variabili, quanti **parametri indipendenti** sarebbero dunque richiesti?

 Un paziente si reca dal dottore per sottoporre una patologia, il dottore sospetta 3 possibili malattie come causa della condizione patologica. Le 3 malattie sono D_1 , D_2 , e D_3 , le quali sono marginalmente indipendenti tra loro. Ci sono 4 sintomi S_1 , S_2 , S_3 , e S_4 di cui il dottore vuole verificare la presenza in modo da trovare la causa più probabile per la condizione patologica. I sintomi sono condizionalmente dipendenti alle 3 malattie come segue: S_1 dipende solamente da D_1 , S_2 dipende da D_1 e da D_2 , S_3 dipende da D_1 e da D_3 , e S_4 dipende solamente da D_3 . Si assuma che tutte le variabili casuali siano booleane.

 Un paziente si reca dal dottore per sottoporre una patologia, il dottore sospetta 3 possibili malattie come causa della condizione patologica. Le 3 malattie sono D_1 , D_2 , e D_3 , le quali sono marginalmente indipendenti tra loro. Ci sono 4 sintomi S_1 , S_2 , S_3 , e S_4 di cui il dottore vuole verificare la presenza in modo da trovare la causa più probabile per la condizione patologica. I sintomi sono condizionalmente dipendenti alle 3 malattie come segue: S_1 dipende solamente da D_1 , S_2 dipende da D_1 e da D_2 , S_3 dipende da D_1 e da D_3 , e S_4 dipende solamente da D_3 . Si assuma che tutte le variabili casuali siano booleane.

 Un paziente si reca dal dottore per sottoporre una patologia, il dottore sospetta 3 possibili malattie come causa della condizione patologica. Le 3 malattie sono D_1 , D_2 , e D_3 , le quali sono marginalmente indipendenti tra loro. Ci sono 4 sintomi S_1 , S_2 , S_3 , e S_4 di cui il dottore vuole verificare la presenza in modo da trovare la causa più probabile per la condizione patologica. I sintomi sono condizionalmente dipendenti alle 3 malattie come segue: S_1 dipende solamente da D_1 , S_2 dipende da D_1 e da D_2 , S_3 dipende da D_1 e da D_3 , e S_4 dipende solamente da D_3 . Si assuma che tutte le variabili casuali siano booleane.

 Un paziente si reca dal dottore per sottoporre una patologia, il dottore sospetta 3 possibili malattie come causa della condizione patologica. Le 3 malattie sono D_1 , D_2 , e D_3 , le quali sono marginalmente indipendenti tra loro. Ci sono 4 sintomi S_1 , S_2 , S_3 , e S_4 di cui il dottore vuole verificare la presenza in modo da trovare la causa più probabile per la condizione patologica. I sintomi sono condizionalmente dipendenti alle 3 malattie come segue: S_1 dipende solamente da D_1 , S_2 dipende da D_1 e da D_2 , S_3 dipende da D_1 e da D_3 , e S_4 dipende solamente da D_3 . Si assuma che tutte le variabili casuali siano booleane.

 Un paziente si reca dal dottore per sottoporre una patologia, il dottore sospetta 3 possibili malattie come causa della condizione patologica. Le 3 malattie sono D_1 , D_2 , e D_3 , le quali sono marginalmente indipendenti tra loro. Ci sono 4 sintomi S_1 , S_2 , S_3 , e S_4 di cui il dottore vuole verificare la presenza in modo da trovare la causa più probabile per la condizione patologica. I sintomi sono condizionalmente dipendenti alle 3 malattie come segue: S_1 dipende solamente da D_1 , S_2 dipende da D_1 e da D_2 , S_3 dipende da D_1 e da D_3 , e S_4 dipende solamente da D_3 . Si assuma che tutte le variabili casuali siano booleane.

 Un paziente si reca dal dottore per sottoporre una patologia, il dottore sospetta 3 possibili malattie come causa della condizione patologica. Le 3 malattie sono D_1 , D_2 , e D_3 , le quali sono marginalmente indipendenti tra loro. Ci sono 4 sintomi S_1 , S_2 , S_3 , e S_4 di cui il dottore vuole verificare la presenza in modo da trovare la causa più probabile per la condizione patologica. I sintomi sono condizionalmente dipendenti alle 3 malattie come segue: S_1 dipende solamente da D_1 , S_2 dipende da D_1 e da D_2 , S_3 dipende da D_1 e da D_3 , e S_4 dipende solamente da D_3 . Si assuma che tutte le variabili casuali siano booleane.

 Un paziente si reca dal dottore per sottoporre una patologia, il dottore sospetta 3 possibili malattie come causa della condizione patologica. Le 3 malattie sono D_1 , D_2 , e D_3 , le quali sono marginalmente indipendenti tra loro. Ci sono 4 sintomi S_1 , S_2 , S_3 , e S_4 di cui il dottore vuole verificare la presenza in modo da trovare la causa più probabile per la condizione patologica. I sintomi sono condizionalmente dipendenti alle 3 malattie come segue: S_1 dipende solamente da D_1 , S_2 dipende da D_1 e da D_2 , S_3 dipende da D_1 e da D_3 , e S_4 dipende solamente da D_3 . Si assuma che tutte le variabili casuali siano booleane.

2. Scrivere la distribuzione di probabilità congiunta espressa come prodotto delle probabilità condizionate.

3. Qual è il numero di **parametri indipendenti** richiesti per descrivere la distribuzione congiunta?

P(D1)

Vero	Falso
0.7	0.3

2 parametri di cui

1 parametro indipendente

3. Qual è il numero di **parametri indipendenti** richiesti per descrivere la distribuzione congiunta?

F	P(S1 D1)			
D1	Vero	Falso		
Vero	0.6	0.4		
Falso	0.2	0.8		
		1		

4 parametri di cui2 parametri indipendenti

3. Qual è il numero di **parametri indipendenti** richiesti per descrivere la distribuzione congiunta?

P(S2 D1,D2)			
D1	D2	Vero	Falso
Vero	Vero	0.6	0.4
Vero	Falso	0.2	0.8
Falso	Vero	0.3	0.7
Falso	Falso	0.9	0.1
·			

8 parametri di cui
4 parametri indipendenti

3. Qual è il numero di **parametri indipendenti** richiesti per descrivere la distribuzione congiunta?

CPT	Numero di parametri indipendenti
$P(D_1)$	1
$\mathbf{P}(D_2)$	1
$\mathbf{P}(D_3)$	1
$\mathbf{P}(S_1 \mid D_1)$	2
$P(S_2 D_1, D_2)$	4
$P(S_3 D_1, D_3)$	4
$P(S_4 \mid D_3)$	2
Numero totale di parametri indipende	nti 15

4. Assumendo che **non ci sia indipendenza condizionale** tra le variabili, quanti **parametri indipendenti** sarebbero dunque richiesti?

 2^{7} -1=127

- Si consideri la seguente la rete bayesiana in cui tutte le variabili sono booleane.
 - Qual è la probabilità che tutte le variabili siano contemporaneamente false?
 - Qual è la probabilità di A, avendo la conoscenza che tutte le altre variabili sono vere?

• Qual è la probabilità che tutte le variabili siano contemporaneamente false?

• Qual è la **probabilità di A**, **avendo la conoscenza** che tutte le altre variabili sono vere?

$$P(\neg A|B, C, D, E)$$
= $\alpha P(\neg A)P(B)P(C)P(D|\neg A, B)P(E|B, C)$
= $\alpha(0.8)(0.5)(0.8)(0.6)(0.3)$
= $\alpha(0.05760)$

$$\alpha = \frac{1}{0.05760 + 0.00240} = \frac{1}{0.06} = 16.66667$$

$$P(A|B, C, D, E)$$
= $\alpha P(A)P(B)P(C)P(D|A, B)P(E|B, C)$
= $\alpha(0.2)(0.5)(0.8)(0.1)(0.3)$
= $\alpha(0.00240)$

$$P(A = true) = 0.2$$
 $P(B = true) = 0.5$ $P(C = true) = 0.8$

В	О	$P(E = true \mid B, C)$
F	F	0.2
F	Т	0.4
Т	F	0.8
T	T	0.3
	F F T	F F T T F

<	0.96;	0.04	>
---	-------	------	---

• Data la seguente rete bayesiana, indicare quali affermazioni sono vere o false per indicare se due nodi sono condizionalmente indipendenti.

• Data la seguente rete bayesiana, indicare quali affermazioni sono vere o false per indicare se due nodi sono condizionalmente indipendenti.

 $B \perp M$? Falso

Connessione seriale

• Data la seguente rete bayesiana, indicare quali affermazioni sono vere o false per indicare se due nodi sono condizionalmente indipendenti.

 $J \perp M \mid A$? Vero

Connessione divergente

• Data la seguente rete bayesiana, indicare quali affermazioni sono vere o false per indicare se due nodi sono condizionalmente indipendenti.

 $E \perp B \mid M$? falso

Connessione convergente

• Data la seguente rete bayesiana, indicare quali affermazioni sono vere o false per indicare se due nodi sono condizionalmente indipendenti.

• Data la seguente rete bayesiana, indicare quali affermazioni sono vere o false per indicare se due nodi sono condizionalmente indipendenti.

Party è indipendente da Success dato HW.

Falso: $HW \leftarrow Smart \rightarrow Project \rightarrow Success$

• Data la seguente rete bayesiana, indicare quali affermazioni sono vere o false per indicare se due nodi sono condizionalmente indipendenti.

Party è indipendente da Smart dato Success.

• Data la seguente rete bayesiana, indicare quali affermazioni sono vere o false per indicare se due nodi sono condizionalmente indipendenti.

Party è indipendente da Creative dato Happy.

• Data la seguente rete bayesiana, indicare quali affermazioni sono vere o false per indicare se due nodi sono condizionalmente indipendenti.

Soluzione durante la prossima lezione WebEx

