Comparison of A* and RRT-Connect Motion Planning Techniques for Self-Reconfiguration Planning

David Brandt

presented by Jan Mrázek

Masaryk University Brno, Czech Republic

26th October 2020

The Problem of Reconfiguration

- given an initial and target configuration
 - structure
 - position in space
- find a sequence of atomic actions that lead from the initial to the target configuration
 - collision-free
 - feasible (e.g., consider limited strength of joints)
 - optimal vs. feasible solution

The Problem of Reconfiguration

- given an initial and target configuration
 - structure
 - position in space
- find a sequence of atomic actions that lead from the initial to the target configuration
 - collision-free
 - feasible (e.g., consider limited strength of joints)
 - optimal vs. feasible solution

This paper:

- tackles reconfiguration for ATRONs
- uses state-space search
 - A*
 - RRT-Connect
- provides comparison

Figure 1:ATRON

Sidenote

- state-space of reconfiguration have high number of dimensions
- $\,\blacksquare\,$ all algorithms we will present work on unlimited number of dimensions
- lacktriangle we will illustrate them in 2D for simplicity

Preliminary: Probabilistic Road Map Planners

- build a discrete graph over the state space by random sampling
- use, e.g., Dijkstra to find shortest paths in the discrete graph

Building the graph:

- take random configuration
- if invalid, discard
- find path to an already sampled points
 - when not found discard
 - add new vertex and edge to the graph
 - use heuristics
- repeat until dense enough graph is built

Figure 2:Discrete navigation graph

Figure 3:Step 1 (Source Wikipedia)

Figure 4:Step 2 (Source Wikipedia)

Preliminary: Navigation Graph

Figure 5:Step 3 (Source Wikipedia)

Figure 6:Step 4 (Source Wikipedia)

Preliminary: Navigation Graph

Figure 7:Step 5 (Source Wikipedia)

Figure 8:Step 6 (Source Wikipedia)

Preliminary: Navigation Graph

Figure 9:Step 7 (Source Wikipedia)

- find only path to the nearest point
- lacksquare o tree

Figure 10:RRT (Source Wikipedia)

It is hard to a find path between two configurations

- make only a step towards random configuration
- build two trees and try to connect them

Figure 11:RRT - Connect

It is hard to a find path between two configurations

- make only a step towards random configuration
- build two trees and try to connect them

Figure 11:RRT - Connect

What is "a step towards a configuration?"

Configuration Similarity Metric

- optimal solution: minimal number of atomic steps to change one configuration to another
 - the problem is NP-complete (proven in 2016)

Configuration Similarity Metric

- optimal solution: minimal number of atomic steps to change one configuration to another
 - the problem is NP-complete (proven in 2016)

Approximation:

$$\mathsf{dist}(a_1, a_2) = \mathsf{max}(|a_{1_x}, a_{2_x}|, |a_{1_y}, a_{2_y}|, |a_{1_z}, a_{2_z}|) + \frac{\mathsf{diffOri}(a_1, a_2)}{2} + \frac{\mathsf{diffConn}(a_1, a_2)}{16}$$

where:

$$diffOri(a_1, a_2) = \begin{cases} 1 & \text{if orientation of } a_1 \text{ differs from } a_2 \\ 0 & \text{otherwise} \end{cases}$$

 $diffConn(a_1, a_2) = number of connectors in different state$

Find pairing of modules from one configuration the other minimizing sum of distances

Hungarian Algorithm

- solve assignment between workers and tasks
- input is matrix $n \times n$:

	Clean bathroom	Sweep floors	Wash windows
Paul	2\$	3\$	3\$
Dave	3\$	2\$	3\$
Chris	3\$	3\$	2\$

- minimum cost: \$6
 - Paul clean the bathroom
 - Dave sweep the floors
 - Chris wash the windows
- runs in $\mathcal{O}(n^3)$

Configuration Similarity Metric: Putting it All Together

- prepare matrix $n \times n$ representing possible pairings
 - \blacksquare values in the matrix are dist (a_x, a_y)
 - lacksquare can be computed in $\mathcal{O}(n^2)$
- find the minimal pairing using the Hungarian algorithm
 - can be computed in $\mathcal{O}(n^3)$

RRT-Connect on ATRONs

- finding optimal C_{Extend} is expensive
- the authors use 3 atomic steps as an approximation

Figure 12:RRT - Connect

Recap: A*

- create a set open with the initial configuration
- create an empty set closed
- repeat until open is not empty and path have not been found:
 - get a configuration from open that is closest to the target configuration
 - if the distance is zero, path have been found
 - generate all successors and put them open if they are not in closed
 - put configuration into closed

Successors are generated as a sequence of 3 atomic steps to overcome small local minima.

Figure 13:Results

- limit 10⁷ states examined (~30 minutes of compute time)
- note the clear exponential increase in examined states

Conclusion

- RRT-Connect can be perceived as "randomized A*"
 - it helps to move to another location before examining the whole local minima
- A* finds optimal solution, RRT-Connect finds long paths
 - lacktriangle RRT paths can be post-processed

Conclusion

- RRT-Connect can be perceived as "randomized A*"
 - it helps to move to another location before examining the whole local minima
- A* finds optimal solution, RRT-Connect finds long paths
 - RRT paths can be post-processed

What might be interesting for RoFI:

- ignore module ids by performing matching
- came up with similar similarity metrics
 - experimentally fine-tune parameters
- implement RRT-Connect and benchmark it