

Classe: 4ème Math

Série chimie N°2

Cinétique chimique

Prof: Haffar Samí

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(S) 45 min

On donne $M_{AI} = 27 \text{ g.mol}^{-1}$.

Une quantité d'aluminium Al de masse m réagit avec un volume **V** d'une solution d'acide chlorhydrique, de concentration molaire C= 0,9 mol.L-1 suivant une transformation totale d'équation

$$2AI + 6H_3O^+ \longrightarrow 3H_2 + 2AI^{3+} + 6H_2O$$
.

Le suivi de la réaction a permis de tracer les deux courbes de la **figure 1** (représentant l'évolution de la quantité de matière de l'aluminium, n(Al), en fonction de l'avancement x de la réaction) et de la figure 2 (représentant la variation de la concentration des ions **Al**³⁺ au cours du temps). On suppose que le volume du mélange réactionnel reste constant durant l'expérience est égal à **V**.

- 1° Dresser le tableau d'évolution du système chimique.
- 2° Justifier théoriquement l'allure de la courbe n(Al)=f(x).
 - 3° En exploitant la courbe la figure 1, déterminer :
 - a- la masse m d'aluminium.
 - b- l'avancement final x_f
 - c- le volume V de la solution d'acide chlorhydrique.
- 3° a- Exprimer la vitesse de la réaction en fonction de la molarité [Al³+].
- b- Calculer ses valeurs aux dates $t_1=10mn$ et $t_2=30mn$.
- c- La vitesse moyenne de la réaction entre t_0 = 0 et t_2 =30mn, est égale à la valeur de la vitesse, à la date t_3 . Trouver t_3 .
- 4° Calculer la concentration des ions $[H_3O^+]$ à la date **t=10min**.
- 5° Tracer sur le graphe de la figure la courbe $[H_3O^+]=g(t)$.

Exercice 2

(5) 45 min

Les ions iodure I^- réagissent avec les ions peroxodisulfate en solution aqueuse selon une réaction lente et totale modélisée par l'équation: $2I^- + S_2O_8^{2-} \longrightarrow I_2 + 2 SO_4^{2-}$

On prépare, à **t=0** et à une température constante T_1 , un mélange contenant un volume $V_1=20mL$ d'une solution d'une solution de d'iodure de potassium (KI) de concentration $C_1=2.10^{-2}mol.L^{-1}$ et un volume $V_2=3V_1$ d'une solution de peroxodisulfate de potassium ($K_2S_2O_8$) de concentration C_2

On note $\alpha = n(I^-)/n_0(I^-)$ où $n_0(I^-)$ et $n(I^-)$ représentent respectivement les quantités de matières des ions iodure présents à l'état initial et à une date t quelconque.

Une étude expérimentale à permis de tracer la courbe traduisant l'évolution de α en fonction du temps.

1)a- Dresser un tableau décrivant l'avancement, x ,de la réaction étudiée.

b- Montrer que l'avancement x de la réaction est donner par :

$$x = \frac{C_1 V_1}{2} (1-\alpha)$$

c- Montrer, en utilisant le graphique que les ions iodure sont en excès. Déterminer alors l'avancement final de la réaction.

- 2) a- Définir la vitesse volumique, $V_v(t)$, et montrer que son expression est donné par : $V_v(t) = -\frac{C_1}{8} \cdot \frac{d\alpha}{dt}$
 - **b** Calculer sa valeur **maximale**.
- 3) A l'instant t = 15 min on prélève un volume $V_p = 10$ mL du mélange réactionnel que l'on refroidit dans l'eau glacée puis on dose la quantité de diiode formé à cet instant par une solution (S) de thiosulfate de sodium $Na_2S_2O_3$ de concentration $C = 2.10^{-2}$ mol.L⁻¹.
 - a- Déterminer la molarité de diode, dans la solution, à cette date
 - b- Ecrire l'équation de la réaction de dosage.
 - **c** Déterminer le volume V₀ de (**S**) ajouté pour atteindre l'équivalence.

