## Todo list

| konkreter prüfen, zwecks singularität                                       | 4  |
|-----------------------------------------------------------------------------|----|
| algebraische Topologie von Lück als Quelle? auch für die basics.            | 4  |
| noch bezeichnungen vergessen?                                               | 5  |
| link zu diskreten diffformen                                                | 6  |
| Quelle?                                                                     | 6  |
| abstr.Simplex als kartenabbildung?                                          | 7  |
| pastingmap?                                                                 | 7  |
| beweis?                                                                     | 7  |
| Quelle? vgl. http://de.wikipedia.org/wiki/Korkenzieherregel                 | 8  |
| quelle                                                                      | 10 |
| formaler?                                                                   | 14 |
| evtl. noch folgern mit beweis, dass alle benachbarten elem. dualsimplizes   |    |
| gleichorientiert sind                                                       | 14 |
| evtl. noch mit baryzentrische dualität vergleichen, s. hirani 2.6           | 15 |
| noch mehr?                                                                  | 16 |
| homologietheorie falls nötig, falls platz ist noch graphisches beispiel zum |    |
| randoperator                                                                | 20 |
| whitney abbildung noch ansprechen? Das heißt Interpolation im allgemeinen   |    |
| oder nur speziell?                                                          | 32 |
| bei langeweile s mal explizit in lok.koords aufstellen um den Fehler besser |    |
| abzuschätzen                                                                | 33 |
| verweis auf Koketten C(*K)                                                  | 36 |
| verweis auf diskrete vektorfelder in zukunftarbei                           | 38 |
| motivation: kein dachprodukt                                                | 38 |

# diplomarbeit

Ingo Nitschke

17. Juli 2014

## Inhaltsverzeichnis

| 1 | Eint | unrung                                                | 3  |
|---|------|-------------------------------------------------------|----|
| 2 | Disk | krete Mannigfaltigkeit                                | 4  |
|   | 2.1  | Primär- und Dualgitter                                | 4  |
|   |      | 2.1.1 Simplizialkomplex                               |    |
|   |      | 2.1.2 Umkreismittelpunktunterteilung                  |    |
|   | 2.2  | Kettenkomplexe                                        |    |
|   | 2.3  | Gittergenerierung für Oberflächen                     |    |
|   |      | 2.3.1 Mechanisches Modell und dessen Diskretisierung  |    |
|   |      | 2.3.2 Beispiele                                       |    |
|   | 2.4  | Implizit gegebene Oberflächen                         |    |
|   |      | 2.4.1 Numerische Projektion                           | 29 |
| 3 | Disk | kretes Äußeres Kalkül (DEC)                           | 31 |
|   | 3.1  | Diskrete Differentialformen                           | 31 |
|   | 3.2  | Äußere Ableitung                                      | 35 |
|   | 3.3  | Hodge-Stern-Operator                                  | 38 |
|   | 3.4  | Laplace-Operator                                      |    |
|   |      | 3.4.1 Laplace-Beltrami-Operator                       | 47 |
|   |      | 3.4.2 Beispiel: Poisson-Gleichung                     | 49 |
|   | 3.5  | Approximation der Krümmung                            |    |
|   |      | 3.5.1 Beispiel: Krümmung Teil 1: Gauß-Bonnet-Operator | 49 |
|   |      | 3.5.2 Beispiel: Krümmung Teil 2: Weingarten-Abbildung | 49 |
|   |      | 3.5.3 Beispiel: Krümmung Teil 3: Krümmungsvektor      | 49 |
| 4 | Арр  | endix                                                 | 50 |
|   | 4.1  | Algorithmen                                           | 50 |
|   |      | 4.1.1 Element-Knotenkräfte                            |    |
|   | 4.2  | Krümmungsgrößen für impliziten Oberflächen            |    |
|   | 4.3  | Oberflächenbeispiele                                  | 51 |
|   |      | 4.3.1 Einheitssphäre                                  | 51 |
|   |      | 4.3.2 Ellipsoid                                       | 51 |
|   |      |                                                       |    |

# 1 Einführung

History: [Whi57] (1957)

## 2 Diskrete Mannigfaltigkeit

## 2.1 Primär- und Dualgitter

**Zielsetzung.** Bei vielen numerischen Methoden werden Gebiete über überabzählbaren Mengen auf denen Gleichungen "leben" diskretisiert. Ziel dabei ist es endlich viele Gleichungen zuerzeugen, die das ursprüngliche Problem approximativ lösen. Ein Beispiel für solch ein Vorgehen ist die FDM (Finite-Differenzen-Methode) im  $\mathbb{R}^n$ . Dort wird ein Gebiet  $U \subseteq \mathbb{R}^n$  mit endlich vielen Rechtecken diskretisiert und es wird versucht eine Funktion zu finden, die jedem Knoten einen Wert zuweist und damit endlichdimensional beschrieben ist, so dass diese diskrete Funktion eine stetige Funktion auf U approximiert.

Das funktioniert beim DEC ähnlich. Die Objekte die es hier zu approximieren gilt sind allerdings Differentialformen und das Gebiet eine Mannigfaltigkeit welche durch Polyeder diskretsiert wird. Die diskreten Differentialformen sind dann auf den Knoten, Kanten, Flächen usw. als Integralwerte definiert. Wir werden uns hierbei auf Simplizes als spezielle Polyeder beschränken und die Menge der Simplizes so charakterisieren, dass wir eine algebraische Topologie bekommen. Somit wird eine algebraische Struktur erzeugt, die es einem ermöglicht in dieser Topologie "sinnvoll zu rechnen". Das heißt der große Unterschied zu anderen numerischen Verfahren ist, dass wir nicht auf einem Gitter sondern mit einem Gitter rechnen wollen. Aus diesem Grund müssen Anforderungen an die diskrete Struktur gestellt werden, die bestimmte Eigenschaften der Differentialformen auch wieder spiegeln. So bilden die Differentialformen auf einer Mannigfaltigkeit zusammen mit der äußeren Ableitung einen Kokettenkomplex den de-Rham-Kokomplex und mit ihm die de-Rham-Kohomologiegruppen. Kohomologiegruppen lassen sich mit Hilfe des Randoperators auch erzeugen, deshalb scheinen die Simplizialkomplexe als Triangulierung einer Mannigfaltigkeit ein geeigneter Kanditat für eine Gitterstruktur zu sein. Und das magische daran ist, wie wir später noch in Kapitel 3 sehen werden, dass es mit den Satz von de Rham einen Isomorphismus zwischen den de-Rham- und den simplizialen Kohomologiegruppen existiert und auch praktisch anwendbar ist.

## 2.1.1 Simplizialkomplex

Die Elemente des noch zu definierenden Simplizialkomplexes sind die Simplizes. Diese wollen wir hier erst einmal geometrisch als Teilmenge des  $\mathbb{R}^N$  einführen.

**Definition 2.1.1.** Ein p-Simplex ist die konvexe Hülle von p+1 geometrisch unabhängigen Punkten im  $\mathbb{R}^N$ , d.h.

$$\sigma^p := \left\{ x \in \mathbb{R}^N \middle| x = \sum_{i=0}^p \mu^i v_i \text{ wobei } \mu^i \ge 0 \text{ und } \sum_{i=0}^p \mu^i = 1 \right\}$$
 (2.1)

konkreter prüfen, zwecks singularität

algebraische
Topologie von
Lück
als
Quelle?
auch
für die
basics.

Geometrisch unabhängig bedeutet dabei, dass die p Vektoren  $v_1-v_0,v_2-v_0,\ldots,v_p-v_0$  linear unabhängig sind. Konkret werden wir je nach Kontext  $\sigma^0$  Knoten oder Ecke,  $\sigma^1$  Kante und  $\sigma^2$  Dreieck oder Volumenelement nennen. Des Weiteren schreiben wir auch kurz  $\sigma^p=v_0v_1\ldots v_p$  und sagen "Das Simplex  $\sigma^p$  wird von den Ecken  $\{v_0,v_1,\ldots,v_p\}$  aufgespannt.".

noch bezeichnungen vergessen?

Bemerkung 2.1.2. Die obige Defintion eines Simplexes, hier als  $\sigma_{\rm geo}$  geschrieben, nennt man auch geometrische Realisierung eines Simplexes. Denn es ist auch möglich ein Simplex als Abbildung vom Standard-Simplex

$$\Delta^p := \left\{ \left( \mu^0, \mu^1, \dots, \mu^p \right) \middle| \mu^i \ge 0 \text{ und } \sum_{i=0}^p \mu^i = 1 \right\} \subset \mathbb{R}^{p+1}$$
(2.2)

in einen Topologischen Raum zu definieren, im obigen Fall in den  $\mathbb{R}^N$ . Mit Hilfe der Ecken  $v_i \in \mathbb{R}^N$  können wir die Abbildung festlegen durch

$$\sigma_{\text{sing}} = \sigma_{\text{sing}}^p \left( v_0, v_1, \dots, v_p \right) : \Delta^p \to \mathbb{R}^N : \left( \mu^0, \mu^1, \dots, \mu^p \right) \mapsto \sum_{i=0}^p \mu^i v_i \tag{2.3}$$

so dass  $\sigma_{\rm sing}(\Delta^p) = \sigma_{\rm geo}^p$ . Das Simplex  $\sigma_{\rm sing}$  heißt singuläres p-Simplex (vgl. [Lü05]).

Von nun an ist mit einem Simplex  $\sigma$  immer die geometrische Realisierung nach Definition 2.1.1 gemeint solange nicht explizit auf etwas anderes hingewiesen wird.

**Definition 2.1.3.** Für  $0 \le r < p$  definert sich eine Relation zwischen dem r-Simplex  $\sigma^r$  und dem p-Simplex  $\sigma^p := v_0 v_1 \dots v_p$  durch

$$\sigma^r \prec \sigma^p : \Leftrightarrow \sigma^p \succ \sigma^r \tag{2.4}$$

$$: \Leftrightarrow \exists \{v_{i_0}, v_{i_1}, \dots, v_{i_r}\} \subset \{v_0, v_1, \dots, v_p\} : \sigma^r = v_{i_0} v_{i_1} \dots v_{i_r}$$
 (2.5)

und  $\sigma^r$  nennen wir Facette oder Seite von  $\sigma^p$ .

Damit bildet  $\prec$  beziehungsweise  $\succ$  eine strikte Ordnung auf der Menge aller (endlichen) Simplizes.

**Definition 2.1.4.** Ein Simplizialkomplex K über  $\mathbb{R}^N$  ist eine Menge von Simplizes mit folgenden zwei Regeln

- Jede Facette eines Simplexes aus K ist ebenfalls aus K.
- ullet Der Schnitt zweier Simplizes aus K ist entweder eine Facette von beiden oder leer.

 $\dim(K) := \max \{ p \in \mathbb{N} | \sigma^p \in K \}$  heißt die Dimension von K.

Im Folgendem ist ein Simplizialkomplex immer endlich, das heißt es besteht nur aus einer endlichen Menge von Simplizes.

**Definition 2.1.5.** Die Vereinigung aller Simplizes eines Simplizialkomplexes über  $\mathbb{R}^N$ , das heißt

$$|K| := \bigcup_{\sigma \in K} \sigma \subset \mathbb{R}^N, \tag{2.6}$$

ist der zugrundeliegende (topologische) Raum oder auch Polytop. Die Topologie von |K| ist dann gerade die induzierte Teilraumtopologie des  $\mathbb{R}^N$ .

Meistens sieht es aber so aus, dass wir ein Raum haben und ein Simplizialkomplex suchen der diesen beschriebt. Dieses führt uns zu folgender Definition.

**Definition 2.1.6.** Ein Simplizialkomplex L heißt (simpliziale) Triangulation von  $V \subset \mathbb{R}^N$ , wenn |L| = V gilt. Existiert eine Triangulation von V, dann heißt V triangulierbar.

Bisher kann solch ein Simplizialkomplex noch sehr viele Teilräume des  $\mathbb{R}^N$  beschreiben, die für diese Arbeit nicht von Belang sind. Wir wollen deshalb die Menge der Simplizialkomplexe etwas einschränken, um uns langsam der Beschreibung von (Hyper-)Oberflächen zu nähern.

**Definition 2.1.7.** Ein Simplizialkomplex K heißt mannigfaltigartig, wenn das Polytop |K| eine  $C^0$ -Mannigfaltigkeit ist.

Da wir uns später mit den Spezialfall von Oberflächen im  $\mathbb{R}^3$  beschäftigen möchten, seien hier schon mal ein paar Bemerkungen dazu.

**Bemerkung 2.1.8.** Sei K ein mannigfaltigartiger Simplizialkomplex im  $\mathbb{R}^3$  mit  $\dim(K) = 2$ .

- Falls |K| nicht flach ist, dann ist das Polytop |K| global nicht differenzierbar.
- Falls |K| zudem eine geschlossene Mannigfaltigkeit ist, dann ist |K| ein Polyeder.

Der zugrundeliegende Raum eines Simplizialkomplexes kann im Allgemeinen nicht eine beliebige  $C^{\infty}$ -Mannigfalltigkeit sein. Jedoch kann ein Simplizialkomplex solch eine Mannigfaltigkeit approximieren, d.h.

**Definition 2.1.9.** Sei K ein mannigfaltigartiger Simplizialkomplex und M eine  $C^{\infty}$ -Mannigfaltigkeit, dann

$$K \sim M : \Leftrightarrow \forall \sigma^0 \in K : \sigma^0 \in M$$
. (2.7)

Das heißt K approximiert M genau dann, wenn alle Ecken von K auch auf M liegen.

Bemerkung 2.1.10. Wenn  $K \sim M$  gilt, dann würden wir für die Übertragung von skalarwertigen Informationen von der Mannigfaltigkeit M auf den Simplizialkomplex K auf den Ecken nichts falsch machen. Wie sieht es aber mit höherwertigen Informationen aus, wie zum Beispiel Vektorfelder oder Differentialformen höheren Grades als 0? Für 2 dimensionale Mannigfaltigkeiten bedeutet das, dass 1-Formen auf Kanten und 2-Formen auf den Volumenformen ausgewertet werden, wie wir später noch sehen werden. Kanten und Dreickflächen liegen aber nur (linear) approximiert im Simplizialkomplex vor, genauso wie auch die Metrik. Dennoch brauchen wir für spätere Argumentationen ein simpliziales Konstrukt bei dem wir diese Fehler nicht machen. Dieses formale Brücke zwischen der Mannigfaltigkeit und dem Simplizialkomplex nennen wir abstrakter Simplizialkomplex (über der Mannigfaltigkeit M). Er lässt sich genauso einführen wie oben für den Simplizialkomplex

link zu diskreten diffformen

Quelle?

über dem  $\mathbb{R}^N$  nur dass die p-Simplizes für p>0 eine Krümmung besitzen, die gleiche wie M eingeschränkt auf das jeweilige Simplex. Das heißt, dass der zugrundeliegende Raum des abstrakten Simplexes gleich der Mannigfaltig M ist. Folgendes kommutative Diagramm, soll das für ein einzelnes Simplex verdeutlichen.

$$\mathbb{R}^{p+1} \supset \Delta^p \xrightarrow{\sigma_{\text{sing}}} \sigma^p \subset \mathbb{R}^N \tag{2.8}$$

$$\sigma_{\text{m}}^p \subset M$$

abstr.Simplex als kartenabbildung?

Die Abbildungen  $\sigma_{\text{sing}}$  und  $\hat{\sigma}_{\text{sing}}$  sind singuläre Simplexe, wie in Bemerkung 2.1.2 definiert.  $\sigma^p$  und  $\sigma_M^p$  sind deren geometrische Realisierungen im  $\mathbb{R}^N$  beziehungsweise auf M und es gelte  $\sigma^p \sim \sigma_M^p$ .  $\pi_\sigma$  ist ein Homöomorphismus, das heißt bijektiv, stetig und  $\pi_\sigma^{-1}$  ist ebenfalls stetig. Whitney [Whi57] forderte noch weitere Bedingungen an diese Abbildung. Für uns soll die Homöomorphieeigenschaft allerdings reichen, da wir sie nur formal nutzen werden und nie explizit mit ihr rechnen wollen. Prinzipiell genügt es, wenn wir uns die Abbildung  $\pi_\sigma$  als "Ankleben" des Simplexes  $\sigma$  auf die Mannigfaltigkeit vorstellen. Des Weiteren soll  $\pi := \pi_{\bullet}^{-1}$  homomorph auf dem ganzem Simplizialkomplex bezüglich der Relation  $\prec$  sein, also ist  $\pi$  ein Isormophismus zwischen dem Simplizialkomplex K und einem abstrakten Simplizialkomplex L mit |L| = M und  $K^{(0)} = L^{(0)}$ . Wobei

pastingmap?

$$K^{(p)} := \{ \sigma^p \in K \} \tag{2.9}$$

das p-Skelett von K ist. Zu dem ist L somit eindeutig bestimmt falls  $\pi$  bekannt. Wenn solch eine Triangulation L von M exzistiert, dann nennen wir auch K eine (lineare) Triangulation von M.

beweis?

Für den DEC ist der Begriff der Orientierung von essenzieller Bedeutung. Zum einen, weil die Orientierung der Simplizes über das Vorzeichen eines Berechnungsschemata entscheiden kann und zum anderen wird eine weitere notwendige Eigenschaft an den Simplizialkomplex, dessen Polytop und die zu approximierende Mannigfaltigkeit gestellt, die Orientierbarkeit.

Wie wir in Bemerkung 2.1.2 sehen hängt die geometrische Realisierung  $\sigma$  eines singulären Simplexes  $\sigma_{\text{sing}}$ , also dessen Bild, nicht von der gewählten Reihenfolge der Ecken  $v_i$  ab. Formal können wir aber diesen für  $\sigma$  syntaktischen Unterschied auch semantisch nutzen und schreiben  $\sigma = (v_0, v_1, \ldots, v_p)$  mit runden Klammern um die Reihenfolge zu würdigen. Somit ergeben sich für einen Satz Ecken p! Simplizes

$$\Sigma^{p} := \left\{ \left( v_{\tau(0)}, v_{\tau(1)}, \dots, v_{\tau(p)} \right) \middle| \tau \in S_{p} \text{ Permutation} \right\}, \qquad (2.10)$$

die geometrisch das gleiche Simplex beschreiben. Auf  $\Sigma^p$  lässt sich nun eine Äquivalenzrelation  $\Theta \subseteq \Sigma^p \times \Sigma^p$  definieren:

**Definition 2.1.11.** Es sei  $\sigma_1 = \tau(\sigma_2) \in \Sigma^p$ , dann gelte

$$\sigma_1\Theta\sigma_2 : \Leftrightarrow \tau \in A_n \text{ gerade Permutation},$$
 (2.11)

<sup>&</sup>lt;sup>1</sup>d.h.  $\pi|_{\sigma} = \pi_{\sigma}$ 

wobei  $\tau(\sigma) := (v_{\tau(0)}, v_{\tau(1)}, \dots, v_{\tau(p)})$  für  $\sigma = (v_0, v_1, \dots, v_p)$ .

Ein Element des Faktorraumes  $\Sigma^p/\Theta$ heißt orientiertes Simplex und wir schreiben dafür

$$\sigma = [v_0, v_1, \dots, v_p] \tag{2.12}$$

Dass hier das orientierte Simplex ebenfalls als  $\sigma$  geschrieben wird, soll uns nicht stören, da dieses auch immer das entsprechende geometrische Simplex impliziert. Oft werden wir der einfachheithalber nur Simplex sagen, wenn aus dem Kontext klar ist, das dieses Simplex orientiert ist. Für p>0 ergeben sich somit genau 2 Äquivalenzklassen und somit Orientierungen pro Simplex. Wir wollen die Orientierung eineindeutig mit

$$\operatorname{sgn}: \Sigma^p/\Theta \to \{-1, +1\} \tag{2.13}$$

beschreiben. Falls p=0, das heißt es liegt eine Ecke vor und folglich nur eine Orientierungsmöglichkeit, dann wird die Orientierung festgelegt, wenn möglich durch die induzierte Orientierung.

**Definition 2.1.12.** Es sei  $\sigma^p = [v_0, v_1, \dots, v_p] \in \Sigma^p/\Theta$  mit  $p \ge 1$ , dann definiert sich eine induzierte Orientierung für die (p-1)-Facetten von  $\sigma^p$  durch

$$\operatorname{sgn}([v_0, v_1, \dots, \hat{v_i}, \dots, v_p]) := \begin{cases} \operatorname{sgn}(\sigma^p) & \text{falls } i \text{ gerade,} \\ -\operatorname{sgn}(\sigma^p) & \text{falls } i \text{ ungerade,} \end{cases}$$
 (2.14)

wobei  $[v_0, v_1, \dots, \hat{v_i}, \dots, v_p]$  bedeutet, dass die *i*-te Ecke weggelassen wird.

Beispiel 2.1.13. Anhand folgendes Beispieles sehen wir, dass diese Definition intuitiver ist als es vielleicht auf den ersten Blick anmuten mag. Gegeben sei ein 2-Simplex  $\sigma := [v_0, v_1, v_2]$ , also ein Dreieck, dessen Orientierung auf +1 festgelegt wird. Daraus leiten sich die Orientierungen der Kanten ab. Durch Transposition der Kante  $[v_0, v_2]$ , und damit der Wechsel zur anderen Äquivalenzklasse, kann zudem eine einheitliche Orintierung aller Kanten erreicht werden.

$$\operatorname{sgn}([v_{0}, v_{1}, v_{2}]) := +1$$

$$\operatorname{sgn}([v_{0}, v_{1}]) = +1$$

$$\operatorname{sgn}([v_{0}, v_{2}]) = -1$$

$$\operatorname{sgn}([v_{1}, v_{2}]) = +1$$

$$\operatorname{sgn}([v_{2}, v_{0}]) = +1$$

Geometrisch wird die Orientierung oft durch Pfeile visualisiert. In diesem Beispiel ein gebogener Pfeil für die Fläche. Gegen den Uhrzeigersinn bedeutet dabei eine Orientierung von +1, das ist auch gleichbedeutend damit, dass die Rechte-Hand-Regel gilt und die Fläche per Definition eine äußere Normale besitzt. Sollen nun alle Kanten die gleiche Orientierung wie die Fläche besitzen, so müssen die Pfeile der Kanten ebenfalls gegen den Uhrzeiger abgetragen werden. Von nun an werden wir Pfeile ohne Beschriftung immer als positiv, also mit Orientierung +1, anerkennen.



Quelle?
vgl.
http:
//de.
wikipedia.
org/
wiki/
Korkenzieher

Es sei nun ein weiteres Simplex  $\tilde{\sigma} := [v_1, v_3, v_2]$  "angelegt", so dass beide Simplizes sich die Kante  $[v_1, v_2]$  teilen, und die Orientierung von  $\tilde{\sigma}$  auf +1 gesetzt wird. Dabei müssen die von den Kanten aufgespannten (Unter-)Vektorräume (z.B. des  $\mathbb{R}^3$ ) nicht notwendigerweise gleich sein. Dennoch liegt das Gefühl nahe zusagen, dass die beiden 2-Simplexe irgendwie "gleichorientiert" sind. Des Weiteren fällt auf, dass die induzierte Orientierung der gemeinsamen Kante für beide Dreiecke entgegengesetzt ist. Darauf wollen wir im allgemeineneren näher eingehen.



**Definition 2.1.14.** Es seien zwei orientierte p-Simplizes  $\sigma_1^p$  und  $\sigma_2^p$  gegeben mit  $1 \leq p \leq n$ , die sich genau eine (p-1)-Facette teilen, das heißt es existiert genau ein  $\sigma^{p-1}$  mit  $\sigma^{p-1} \prec \sigma_1^p$  und  $\sigma^{p-1} \prec \sigma_2^p$ .

 $\sigma_1^p$  und  $\sigma_2^p$  heißen gleichorientiert, falls

$$\operatorname{sgn}_{\sigma_1^p}(\sigma^{p-1}) = -\operatorname{sgn}_{\sigma_2^p}(\sigma^{p-1}), \qquad (2.16)$$

also die von den beiden Simplizes induzierten Orientierungen der gemeinsamen Facette umgleich sind. Anderfalls heißen  $\sigma_1^p$  und  $\sigma_2^p$  verschiedenorientiert.

Bemerkung 2.1.15. Für Simplizialkomplexe der Dimension 2 im  $\mathbb{R}^3$  wollen wir nun festlegen, dass die 2-Simplizes die Orientierung +1 besitzen genau dann, wenn dessen Ecken geometrisch gegen den Uhrzeigersinn gezählt werden, falls wir von "oben" drauf schauen, das heißt in Richtung der inneren Normale. Da wir uns später ausschließlich mit unberandeten orientierbaren Oberflächen beschäftigen möchten, ist auch intuitiv immer klar, was "innen" und was "außen" bezeichnet. In Graphiken kennzeichnen wir die Orientierung mit einem gebogenen Pfeil ebenfalls im mathematisch positiven Drehsinn, wie im Beispiel 2.1.13.

Folgerung 2.1.16. Im  $\mathbb{R}^3$  ist ein Paar von 2-Simplizes, die sich eine Kante teilen, genau dann gleichorientiert, wenn die Ecken beider gegen den Uhrzeigersinn gezählt werden.

Beweis. Es seien 2 Simplizes gegeben mit  $\sigma_1 := vv_1v_2$  und  $\sigma_2 := wv_1v_2$ .

Da für 3-elementige Mengen jede zyklische Permutation eine gerade Permutation ist, lässt auch jede zyklische Vertauschung der Ecken das jeweilige Simplex in der gleichen Äquivalenzklasse bleiben. Sind die Ecken im mathematisch positiven Drehsinn gezählt, so ist es deshalb auch keine Einschränkung der Allgemeinheit, wenn



$$\sigma_1 = [v, v_1, v_2]$$
  $\sigma_2 = [w, v_2, v_1]$  (2.17)

$$\Leftrightarrow \qquad \operatorname{sgn}_{\sigma_1}([v_1, v_2]) = +1 \qquad \qquad \operatorname{sgn}_{\sigma_2}([v_2, v_1]) = +1 \qquad (2.18)$$

$$\Leftrightarrow \qquad \operatorname{sgn}_{\sigma_1}([v_1, v_2]) = -\operatorname{sgn}_{\sigma_2}([v_1, v_2]) \tag{2.19}$$

d.h.  $\sigma_1$  und  $\sigma_2$  sind gleichorientiert.

**Definition 2.1.17.** Ein mannigfaltigartiger Simplizialkomplex der Dimension n heißt orientiert, wenn alle paarweise benachbarten n-Simplizes gleichorientiert sind. Solch einen orientierten mannigfaltigartigen Simplizialkomplex nennen wir auch kurz Primärgitter.

**Satz 2.1.18.** Ist eine triangulierbare Mannigfaltigkeit M orientiert, so sind auch alle linearen Triangulationen  $K \sim M$  orientiert.

Beweis. Sei L der zugehörige abstrakte Simplizialkomplex, d.h. |L| = M,  $L^{(0)} = K^{(0)}$  und  $(L, \prec) \cong (K, \prec)$ . Es reicht zu zeigen, dass L orientiert ist, da die Orientierung eines abstrakten n-Simplexes auf das zugehörige n-Simplex aus K einfach übertragen werden kann, et vice versa. Für jedes einzelne abstrakte n-Simplex  $\sigma^n \in L$  kann die Orientierung im Inneren der Untermannigfaltig  $|\sigma^n| \subset M$  übernommen werden, da sie dort konstant ist. Betrachten wir die gemeinsame Kante  $\sigma^{(n-1)} \in L$  eines benachbarten abstrakten n-Simplexes  $\tilde{\sigma}^n \in L$ , dann gilt, dass die Orientierung in einer Umgebeung  $U_{\varepsilon}(p) \subset M$  konstant ist, mit p im Inneren von  $|\sigma^{(n-1)}| \subset M$  (vgl. [Jän05]). Folglich ist die Orientierung auf beiden seiten der Kante gleich und damit sind beide n-Simplizes gleichorientiert. Da  $\sigma^n$  und  $\tilde{\sigma}^n$  beliebig benachbarte Simplizes sind, ist L orientiert.

Damit ist es uns nun möglich eine Mannigfaltigkeit mit obigen Vorraussetzungen mittels Primärgitter linear zu triangulieren.

Bemerkung 2.1.19 (zur Implementierung). Da später alle computergestützten Rechnungen mit AMDiS gemacht werden ist es wichtig, dass die dortigen Gitter die Anforderungen eines Primärgitters erfüllen. Ob ein mannigfaltigartiger Simplizialkomplex als Eingangsgröße vorliegt, liegt in der Verantwotung des Benutzers. Die Orientiertheit eines 2D-Gitters, also für Simplizialkomplexe der Dimension 2, ist mit Folgerung 2.1.16 automatisch gegeben, da in AMDiS die Ecken eines Dreieckelemets immer gegen den Uhrzeigersinn aufgetragen werden, siehe [Pra14].

## 2.1.2 Umkreismittelpunktunterteilung

Eine sehr wichtige Zutat für das DEC ist das Dualgitter. Es erlaubt uns später die Definition des Sternoperators  $\star$ , das geometrische Analogon zum Hodge-Stern-Operators  $\star$ . Liegt der Simplizialkomplex zum Beispiel als Delaunaytriangulierung vor, so ist der duale Zellkomplex gerade das zugehörige Voronoidiagramm. Dieser ist im allgemeinen natürlich kein Simplizialkomplex. Des Weiteren teilt im nichtflachen Fall, das Voronoidiagramm und die Delaunaytriangulierung nicht einmal den selben zugrunde liegenden Raum. Unter gewissen Vorraussetzungen ist es aber möglich ein Primärgitter so simplizial zuverfeinern um so ein Gitter zubekommen welches wieder die Primärgittereigenschaften erfüllt und zudem Gruppierungen von n-Simplizes enthalten, die den zugehörigen Voronoizellen ähneln, als eine Art "Voronoizellen mit Knicken".

**Definition 2.1.20.** Der Umkreismittelpunkt  $c(\sigma^p)$  eines Simplexes  $\sigma^p := v_0 v_1 \dots v_p$  ist der Mittelpunkt der (p-1)-Sphäre  $\mathbb{S}_r^{p-1}(c(\sigma^p))$ , mit Radius  $r \in [0, \infty)$ , die durch

$$\forall i = 0, 1, \dots, p : \|v_i - c(\sigma^p)\|^2 = r^2$$
 (2.20)

quelle

bestimmt ist. Speziell für p=0 definieren wir formal

$$S^{-1}(c(\sigma^0)) := \{c(\sigma^0)\}$$
 (2.21)

und damit ist

$$c(\sigma^0) = \sigma^0. (2.22)$$

Bemerkung 2.1.21. Obige Definition, stellt ein Spezialfall des Kleinste-Sphäre-Problems dar. Die Ecken von  $\sigma^p$  sind nach Vorraussetzung geometrisch linear unabhängig, demnach ist nach [EH72] die Sphäre  $\mathbb{S}_r^{p-1}(c(\sigma^p))$  existent und eindeutig bestimmt. Der Umkreismittelpunkt  $c(\sigma^p)$  nach Definition 2.1.20 ist somit wohldefiniert.

**Bemerkung 2.1.22** (zur Implementierung). Im  $\mathbb{R}^3$  ist die Berechnung der Umkreismittelpunkte für 0- und 1-Simplizes einfach:

$$c(v_0) = v_0 \quad \text{und} \tag{2.23}$$

$$c(v_0v_1) = \frac{1}{2}(v_0 + v_1). (2.24)$$

Für ein 2-Simplex nutzen wir die Formel

$$c(v_{0}v_{1}v_{2}) = v_{0} + a_{1}(v_{0} - v_{1}) + a_{2}(v_{0} - v_{2}) \quad \text{mit}$$

$$a_{1} = \frac{\|v_{0} - v_{2}\|^{2}}{2D^{2}}(v_{1} - v_{0}) \cdot (v_{2} - v_{1}) \quad \text{und}$$

$$a_{2} = \frac{\|v_{0} - v_{1}\|^{2}}{2D^{2}}(v_{0} - v_{2}) \cdot (v_{2} - v_{1}) .$$

$$(2.25)$$

D ist die Determinante des Simplexes, also dessen doppeltes Volumen. Einsetzen in (2.20) für z.B.  $r = ||v_0 - c(v_0v_1v_2)||$  und nachrechnen ergibt die Korrektheit der Formel.

**Definition 2.1.23.** Leigt der Umkreismittelpunkt eines Simplexes  $\sigma^p$  im Inneren dieses Simplexes, das heißt  $c(\sigma^p) \in \text{Int}(\sigma^p)$ , dann nennen wir  $\sigma^p$  ein wohlzentriertes Simplex.

Sind alle  $\sigma \in K$  wohlzentriert, dann heißt K ein wohlzentrierter Simplizialkomplex.

1-Simplizes sind natürlich immer wohlzentriert. Für 0-Simplizes legen wir hier eine topologische Besonderheit fest:  $\operatorname{Int}(\sigma^0) := \sigma^0$ . Folglich soll die Ecke  $\sigma^0$  eine offene Menge sein (mit leerem Rand). Es sei hier explizit darauf hingewiesen, dass das einen deutlichen Unterschied zu der Topologie des Polytopes eines Simplizialkomplexes darstellt, wo einzelne Punkte keine offenen Mengen sind. Bei 2-Simplizes lassen sich verschieden äquivalente Kriterien für die Wohlzentriertheit finden. Die populärsten sind zum Beispiel:

- Alle Innenwinkel sind kleiner als  $\frac{\pi}{2}$ , oder
- bilden wir einen Kreis in der aufgespannten Ebene des Dreieckes mit zwei Ecken auf dem Rand und Mittelpunkt auf der sich ergebenen Kante beider Ecken, dann liegt die dritte Ecke außerhalb dieses Kreises, das heißt

$$\forall \sigma^1 := \left[ v_{\tau(0)}, v_{\tau(1)} \right] \prec \left[ v_0, v_1, v_2 \right] : \quad \| v_{\tau(2)} - c(\sigma^1) \| > \| v_{\tau(0)} - c(\sigma^1) \|.$$
(2.26)

Wie dem auch sei, mit der Wohlzentriertheit eines Simplizialkomplexes ist es nun möglich eine Verfeinerung durchzuführen, die alle Umkreismittelpunkte als neue Knoten enthällt und zudem wieder ein Simplizialkomplex ist.

**Definition 2.1.24.** Für einen wohlzentrierten Simplizialkomplex K der Dimension n, ist

$$\operatorname{csd} K := \{c(\sigma_0) \dots c(\sigma_k) | \sigma_i \in K \text{ für } 0 \le i \le k \text{ und } \sigma_0 \prec \dots \prec \sigma_k \text{ für } 0 \le k < n\}$$
(2.27)

die Umkreismittelpunktunterteilung von K. (Dabei ist zu beachten, dass die Indizierung unten vorgenommen wurde und nicht mit der Dimension der Simplizes verwechselt werden sollte. Gefordert wird, dass die Dimension der Simplizes von links nach rechts streng monoton steigend sein soll. Vgl. dazu das erklärende Beispiel in Abbildung 2.1.)

Bemerkung 2.1.25. Da alle n-Simplizes des  $\operatorname{csd} K$  jeweils Teilmengen eines n-Simplexes aus K sind, ändert sich am zugrundeliegenden Raum nichts, das heißt  $|\operatorname{csd} K| = |K|$ . Jedoch approximiert  $\operatorname{csd} K$  nicht mehr die Mannigfaltigkeit M im Sinne von Definition 2.1.9, weil neu enstandene Knoten im Algemeinen nicht auf der Mannigfaltigkeit liegen.

Wie wir im vorhergehenden Absatz gesehen haben, spielt die Orientierung eines Simplizialkomplexes eine große Rolle. Die Frage ist nur, wie lässt sich auf sinnvoller Art und Weise eine Orientierung von dem ausgehenden Simplizialkomplex induzieren, konkret, wenn wir von einem Primärgitter ausgehen. Für Volumenelemente ist intuitiv klar, was sinnvoll ist, nämlich, dass die Orientierung der n-Simplizes des  $\operatorname{csd} K$ , welche die n-Simplizes aus K verfeinern, übernommen werden kann. Schließlich ist das Polytop beider Komplexe gleich und sollte als n-Mannigfaltigkeit auch ihre Orientierung beibehalten. Allgemein definieren wir

**Definition 2.1.26.** Es sei  $\hat{\sigma}^p \in \operatorname{csd} K$ ,  $\sigma^p \in K$  mit  $\hat{\sigma}^p \subseteq \sigma^p$ , dann ist durch

$$\operatorname{sgn}_{\sigma^p}(\hat{\sigma}^p) := \operatorname{sgn}(\sigma^p) \tag{2.28}$$

die von  $\sigma^p \in K$  (dual) induzierte Orientierung gegeben.

**Definition 2.1.27.** Es sei csdK die Umkreismittelpunktunterteilung eines wohlzentrierten Primärgitters K versehen mit einer Orientierung. Ist die Orientierung der n-Simplizes aus csdK von den n-Simplizes aus K induziert, dann nennen wir csdK das Dualgitter (von K).

Dass sich überhaupt erst eine Orientierung für die Volumenelemente nach Definition 2.1.26 induzieren lässt, also die dortige Bedingung  $\hat{\sigma}^n \subseteq \sigma^n$  erfüllt ist, erhalten wir durch folgendes Lemma für p = n und der Tatsache, dass

$$(\operatorname{csd} K)^{(n)} = \left\{ c\left(\sigma^{0}\right) c\left(\sigma^{1}\right) \dots c\left(\sigma^{n}\right) \middle| \sigma^{i} \in K \text{ für } 0 \leq i \leq n \right\}. \tag{2.29}$$

**Lemma 2.1.28.** Ist K ein wohlzentrierter Simplizialkomplex, dann gilt für  $\sigma^p \in K$ 

$$c(\sigma^0) c(\sigma^1) \dots c(\sigma^p) \subseteq \sigma^p,$$
 (2.30)

Beweis. Es sei  $x \in c(\sigma^0) c(\sigma^1) \dots c(\sigma^p)$  und  $\sigma^p = v_0 v_1 \dots v_p$ , dann

$$x = \sum_{i=0}^{p} \tilde{\mu}^{i} c(\sigma^{i}) \quad \text{mit} \quad \sum_{i=0}^{p} \tilde{\mu}^{i} = 1 \quad \text{und} \quad \tilde{\mu}^{i} \ge 0$$
 (2.31)

$$=\sum_{i=0}^p \tilde{\mu}^i \sum_{k=0}^i \mu_i^k v_k \quad \text{, da } c(\sigma^i) \in \sigma^i \text{, wobei} \quad \sum_{k=0}^i \mu_i^k = 1 \quad \text{und} \quad \mu_i^k \geq 0 \quad (2.32)$$

$$= \sum_{k=0}^{p} \left( \sum_{i=k}^{p} \tilde{\mu}^{i} \mu_{i}^{k} \right) v_{k} =: \sum_{k=0}^{p} \lambda^{k} v_{k} . \tag{2.33}$$

Bleibt noch zu zeigen, dass (2.33) die Bedingung einer Konvexkombination der Ecken von  $\sigma^p$  erfüllt:

$$\sum_{k=0}^{p} \lambda^{k} = \sum_{k=0}^{p} \sum_{i=k}^{p} \tilde{\mu}^{i} \mu_{i}^{k} = \sum_{i=0}^{p} \tilde{\mu}^{i} \sum_{k=0}^{i} \mu_{i}^{k} = \sum_{i=0}^{p} \tilde{\mu}^{i} = 1, \qquad (2.34)$$

zudem ist  $\lambda^k = \sum_{i=k}^p \tilde{\mu}^i \mu_i^k \ge 0$ , da alle Summanden nicht negativ sind, also ist  $x \in \sigma^p$ .

Somit ist Definition 2.1.27 sinnvoll und das Dualgitter existiert unter den getroffenen Voraussetzungen.

Nun wissen wir welches das zum wohlzentrierten Primärgitter duale Gitter sein soll. Was ist aber konkret dual zu einen Element, also ein einzelnes Simplex, aus dem Primärgitter? Betrachten wir eine 2D Delaunaytriangulierung und das dazugehörige Voronoidiagramm, dann ist die Dualitätszugehörigkeit geometrisch klar. Ecken sind dual zu den Voroinoizellen, Kanten zu den Kanten, der Zelle und Dreiecke zu den Ecken, der Zelle. All diese, im allgemeinen Zellen, lassen sich nun auch innerhalb des  $\operatorname{csd} K$  als Vereinigungen von Simplexen darstellen. In [Hir03] und [Mun84] werden die Dualzellen als offene Zellen eingeführt. Das wollen wir hier nicht machen, da es für diese Arbeit nicht von nöten ist und weitere technische Kompliziertheiten beinhalten würde.

**Definition 2.1.29.** Es sei K ein wohlzentriertes Primärgitter, dann definieren wir die Dualzelle von  $\sigma^p \in K$  durch

$$D(\sigma^p) := \bigcup_{\sigma^p \prec \sigma^{p+1} \prec \dots \prec \sigma^n} c(\sigma^p) c(\sigma^{p+1}) \dots c(\sigma^n).$$
 (2.35)

Wobei die Simplizes  $c(\sigma^p)c(\sigma^{p+1})\ldots c(\sigma^n) \in \operatorname{csd} K$  die (elementaren) Dualsimplizes von  $\sigma^p$  sind.

Auch hier lässt sich eine Orientierung für die elementaren Dualsimplizes induzieren.

**Definition 2.1.30.** Es sei K ein wohlzentriertes Primärgitter, dann induziert  $\sigma^p \in K$  eine Orientierung für  $[c(\sigma^p), c(\sigma^{p+1}), \dots, c(\sigma^n)] \in \operatorname{csd} K$  durch

$$\operatorname{sgn}_{\sigma^{p}}\left(\left[c(\sigma^{p}), c(\sigma^{p+1}), \dots, c(\sigma^{n})\right]\right) := \operatorname{sgn}_{\sigma^{p}}\left(\left[c(\sigma^{0}), c(\sigma^{1}), \dots, c(\sigma^{p})\right]\right) \\ \cdot \operatorname{sgn}_{\sigma^{n}}\left(\left[c(\sigma^{0}), c(\sigma^{1}), \dots, c(\sigma^{n})\right]\right)$$

$$(2.36)$$

für beliebig gewählte  $\sigma^0 \prec \sigma^1 \prec \ldots \prec \sigma^p$ , wobei  $\operatorname{sgn}_{\bullet}(\bullet)$  die induzierten Orientierungen aus Definition 2.1.12 sind.



Abbildung 2.1: Umkreismittelpunktunterteilung eines Dreieckelements  $v_0v_1v_2$  mit dessen Kanten und Ecken, wobei  $c_{v_1...v_p} := c(v_1...v_p)$ 



Abbildung 2.2: Wie wir sehen ist  $\operatorname{sgn}_{[v_0,v_1]}([c_{01},c_{012}])=+1$ , dabei spielt es keine Rolle, ob wir  $v_0 \prec [v_0,v_1]$  oder  $v_1 \prec [v_0,v_1]$  für die Berechnung hinzuziehen.

Definition 2.1.30 ist wohldefiniert, das heißt unabhängig von den gewählten  $\sigma^i \prec \sigma^p$ , denn würden wir ein  $\sigma^i$  durch ein  $\tilde{\sigma}^i \prec \sigma^p$  austauschen und sich dabei die Orientierung für das resultierende  $[c(\sigma^0), \ldots, c(\tilde{\sigma}^i), \ldots, c(\sigma^p)]$  ändern, dann auch bei  $[c(\sigma^0), \ldots, c(\tilde{\sigma}^i), \ldots, c(\sigma^n)]$ . Induktiv gilt dieses dann auch für alle möglichen mehrmaligen Austauschungen.



In Abbildung 2.2 ist beispielhaft die Berechnung der induzierten Orientierung für eine elementare Dualkante in einem Dreieckelement dargestellt.

evtl. noch folgern mit beweis, dass alle benachbarten elem. dualsimplizes gleichorientiert sind

**Fazit.** Damit wäre nun das geometrische Fundament für ein DEC gelegt, welches für diese Arbeit hier vollkommen ausreichend ist. Wenn wir genau hinschauen, dann ist zu bemerken, dass nicht alle Simplizes des Dualgitters vom Primärgitter nach unseren Definitionen eine induzierte Orientierung erhalten können. Wohl aber für eine Teilmenge des  $\operatorname{csd} K$ , mehr als diese Teilmenge wird auch für die numerischen Schematas nicht von nöten sein, wie wir noch sehen werden.

Leider ist gerade die Wohlzentriertheit eine problematische Bedingung für zulässige Gitter. Zum Beispiel in der FEM gibt es diese Anforderung nicht, obgleich wohlzentrierte Gitter die numerischen Eigenschaften sicherlich verbessern würden. Wie dem auch sei, in 2.3 wird ein (ingeneursmäßiger) Ansatz geboten für den DEC brauchbare Triangulierungen aus nicht zulässigen Gittern zu generieren. Jedoch setzt das auch einiges explizites oder implizites Wissen an die tatsächliche Geometrie der Mannigfaltigkeit voraus und es muss zusätzliche Rechnergestützte Arbeit in das Problem gesteckt werden. Damit zeichnet sich schon hier das größte Manko eines DECs auf wohlzentrierten Primärgittern ab. In zukünftigen Arbeiten muss die Wohlzentriertheit abgeschwächt werden. Ein kleiner Sieg wäre zum Beispiel schon eine "Wohlzentriertheit im Limes", das heißt es wären auch Umkreismittelpunkte auf dem Rand eines Simplexes zulässig. Damit wären auf zweidimensionalen Gittern auch Rechtecke möglich und folglich auch, selbst im planaren, Ecken mit nur 4 Dreickelementen, die sich diese Ecke teilen. Prinzipiell könnte so auch

der hier vorgestellte DEC in gleicher Art und Weise geführt werden, allerdings können sich so auch Kanten der Länge null ergeben und somit müssten wir auch ständig aufpassen in den späteren Berechnungsschematas nicht durch null zuteilen. Deswegen sehen wir hier in dieser Arbeit davon ab. In 2.4 wird auch noch kurz gezeigt wie wir numerisch mit implizit gegeben Oberflächen umgehen können.

#### evtl. noch mit baryzentrische dualität vergleichen, s. hirani 2.6

Eine weitere Möglichkeit ist es auch einen ganz anderen Ansatz für die Dualtät der Gitter zu verfolgen. In [SSSA00] wird im Rahmen einer diskreten Chern-Simons Theory auf speziellen dreidimensionalen Mannigfaltigkeiten (Raumzeit) eine baryzentrische Unterteilung genutzt. Das heißt der Mittelpunkt ist hier das "Massezentrum". So gilt zum Beispiel  $c\left([v_0,v_1,v_2]\right)=\frac{1}{3}\sum_{i=0}^2v_i$ . Die Diskretesierung des Hodge-Stern-Operators in einem allgemeinen DEC-Kontext würde somit aber ziemlich schwierig werden, da hier auch metrische Informationen mit eingehen. Die Tatsache, dass bei einer Umkreismittelpunktunterteilung die zueinander dualen Simplizes im gewissen Sinne orthogonal sind macht uns es da später einfacher. Für zukünftige Arbeiten sollte dennoch die baryzentrische Dualität ein paar Gedanken wert sein, denn jeder Simplizialkomplex ist mit dieser Unterteilung baryzentrisch wohlzentriert, speziell auch das Dualgitter selbst, das gibt die Umkreismittelpunktunterteilung nicht her. Somit würde auch einer globalen und sogar lokalen Verfeinerung bzgl. der Zulässigkeit des Gitters nichts mehr im Wege stehen.

## 2.2 Kettenkomplexe

Zielsetzung. blub

**Definition 2.2.1.** Eine p-Kette ist eine formale Summe aus p-Simplizes mit Koeffizienten in  $\mathbb{Z}$ , das heißt für einen Simplizialkomplex K ist

$$C_p(K) := \left\{ \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma \middle| a_{\sigma} \in \mathbb{Z} \right\}$$
 (2.37)

die Menge aller p-Ketten über K.

Prinzipiell würde für das reine Rechnen mit p-Ketten Koeffizienten aus  $\{+1,0,-1\}$  ausreichen, da wir Simplizes gleicher Dimension immer nur "aneinander reihen" (konkatieren) werden, das entspräche das reine Addieren (+1) zweier benachbarter Simplizes. Subtrahieren (-1) erlaubt zudem die Orientierung, falls vorhanden, zu wechseln. Auch Koeffizienten aus  $\mathbb{R}$  sind denkbar, dann wäre  $C_p(K)$  ein  $\mathbb{R}$ -Vektorraum. Das wir hier jedoch  $\mathbb{Z}$  gewählt haben, hat den Vorteil, dass  $C_p(K)$  bezüglich der Addition eine freie abelsche Gruppe ist (mit Erzeugendensystem  $K^{(p)}$ , d.h.  $\langle K^{(p)} \rangle_{C_p(K)} = C_p(K)$ ) in der die Universaleigenschaft gilt. Genauer  $C_p(K)$  ist frei bzgl jeder abelschen Gruppe  $\mathfrak{A}$ , deswegen kommutiert das Diagramm

$$C_p(K) \tag{2.38}$$

$$K^{(p)} \xrightarrow{op} \mathfrak{A}$$

mit  $op = \widehat{op}|_{K^{(p)}}$ , das heißt  $\widehat{op}$  ist der eindeutig bestimmte Homomorphismus, der op fortsetzt und zwar gilt

$$\widehat{op}\left(\sum_{\sigma\in K^{(p)}} a_{\sigma}\sigma\right) = \sum_{\sigma\in K^{(p)}} a_{\sigma}op(\sigma). \tag{2.39}$$

Somit reicht es vollkommen aus, dass wir bestimmte Operatoren/Homomorphismen nur auf der Basis definieren und diese dann linear fortsetzen. Speziell werden wir uns das noch für  $\mathfrak{A} = C_q(\operatorname{csd} K)$ ,  $C_q(K)$ ,  $\mathbb{R}$  oder  $\operatorname{Hom}(C_p(K), \mathbb{R})$  zunutze machen.

noch mehr?

Geometrisch kann die in (2.37) rein formale Addition als Vereinigung interpretiert werden. In Definition 2.1.29 wurde die Dualzelle eines p-Simplex eingeführt. Sie ist die geometrische Vereinigung von (n-p)-Simplizes. Nun liegt es nahe, diese Dualzelle als (n-p)-Kette darzustelle. Das führt uns zur Definition des Sternoperators.

**Definition 2.2.2.** Es sei K ein wohlzentriertes Primärgitter der Dimension n. Der Sternoperator  $\star: C_p(K) \to C_{n-p}(\operatorname{csd} K)$  ist definiert durch

$$\star \sigma^p := \sum_{\sigma^p \prec \sigma^{p+1} \prec \dots \prec \sigma^n} s_{\sigma^p, \sigma^{p+1}, \dots, \sigma^n} \left[ c(\sigma^p), c(\sigma^{p+1}), \dots, c(\sigma^n) \right]$$
 (2.40)

mit  $s_{\sigma^p,\sigma^{p+1},\dots,\sigma^n} \in \{-1,+1\}$  so gewählt, dass  $s_{\sigma^p,\sigma^{p+1},\dots,\sigma^n} [c(\sigma^p),c(\sigma^{p+1}),\dots,c(\sigma^n)]$  der durch  $\sigma^p$  induzierte Orientierung entspricht.

Wie man sieht besteht das Bild von  $\star$  nur aus Verkettungen von elementaren Dualsimplizes und freilich ist das eine Untergruppe des  $C_{n-p}(\operatorname{csd} K)$ . Wir definieren deshalb hier  $C_{n-p}(\star K) := Im(\star_{(p)}) = \star C_p(K)$ . Also gilt  $\star : C_p(K) \to C_{n-p}(\star K)$ .

Wir können somit Simplizes verketten und haben mit dem Sternoperator auch einen Isomorphismus zwischen den Ketten des Primär- und elementaren Dualgitters. Die Surjektivität ist per Definition gegeben, da  $C_{n-p}(\star K)$  Bild ist. Für

$$0 = \star \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma = \sum_{\sigma \in K^{(p)}} a_{\sigma} (\star \sigma)$$
 (2.41)

ergibt sich über Koeffizientenvergleich nur der triviale Kern  $\{0\}$  für den Gruppenhomomorphismus  $\star$ , folglich ist der Sternoperator auch injektiv.

Desweiteren ist auch  $C_{n-p}(\star K)$  freie abelsche Gruppe mit Erzeugendensystem  $\star K^{(p)} := \star (K^{(p)})$ , denn für jedes  $\hat{c} = \star c \in C_{n-p}(\star K)$  mit  $c = \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma \in C_p(K)$  für gewisse  $a_{\sigma} \in \mathbb{Z}$  gilt

$$\hat{c} = \star \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma = \sum_{\sigma \in K^{(p)}} a_{\sigma} (\star \sigma) = \sum_{\hat{\sigma} := (\star \sigma) \in \star K^{(p)}} a_{\sigma} \hat{\sigma}. \tag{2.42}$$

Somit ist  $\star K^{(p)}$  Erzeugensystem und falls  $\hat{c} = \star c = 0$ , dann muss auch c = 0 gelten, weil der Sternoperator ein Gruppenisomorphismus ist, das heißt es wären alle  $a_{\sigma} = 0$  in (2.42) als einzige (triviale) Lösung für  $\hat{c} = 0$ . Genauso wie bei (2.38) können wir nun Operatoren auf  $C_{n-p}(\star K)$  auf der Basis  $\star K^{(p)}$  definieren und fortsetzen, wenn der Operator auf eine abelsche Gruppe abbildet.

Da der Sternoperator das simpliziale Analogon zum Hodge-Stern-Operator \* werden soll, sollten auch analoge, also auf syntaktischer Ebene gleiche, Bedingungen gelten. Für eine Differentialform  $\alpha \in \Omega^p(M_n)$  gilt  $**\alpha = (-1)^{p(n-p)}\alpha$  (vgl. [AMR88], Kap.6.2.)<sup>2</sup>. Deswegen definieren wir den Sternoperator auf  $C_p(\star K)$  implizit über genau diese Bedingung.

**Definition 2.2.3.** Es sei K ein wohlzentriertes Primärgitter der Dimension n. Der (duale) Sternoperator  $\star: C_p(\star K) \to C_{n-p}(K)$  definiert sich über

$$\star \star \sigma^{n-p} = (-1)^{p(n-p)} \sigma^{n-p} \tag{2.43}$$

für alle  $\sigma^{n-p} \in C_{n-p}(K)$ .

Natürlich gilt Bedingung (2.43) auch für alle Ketten  $\star \sigma^{n-p} := \hat{\sigma}^p \in C_p(\star K)$ , denn

$$\star \star \hat{\sigma}^p = \star \star \star \sigma^{n-p} = \star \left( (-1)^{p(n-p)} \sigma^{n-p} \right) = (-1)^{p(n-p)} \star \sigma^{n-p}$$
$$= (-1)^{p(n-p)} \hat{\sigma}^p. \tag{2.44}$$

Bemerkung 2.2.4. Es sei K ein zweidimensionales wohlzentriertes Primärgitter ohne Rand, dann wird mit dem Sternoperator

- ein Knoten auf eine 2-Kette abgebildet, so dass alle Dreiecke in dieser Verkettung vorkommen, die diesen Knoten als Facette haben, et vice versa. Die Orientierung der Flächenelemente ist die aller Flächenelemente. Die sich ergebene 2-Kette nennen wir auch Voronoizelle.
- eine Kante  $\sigma^1$  auf eine 1-Kette abgebildet, die aus genau den beiden dualen Kanten des  $\operatorname{csd} K$  besteht, die  $c(\sigma^1)$  als gemeinsamen Randpunkt haben, et vice versa. Die sich ergebene 1-Kette nennen wir auch Voronoikante. Die orientierte Kante bzw. Voronoikante wird somit immer in Richtung der Flächenorientierungen "gedreht".
- ein Dreieckelement auf dessen Umkreismittelpunkt abgebildet, et vice versa, deswegen nennen wir den Umkreismittelpunkt auch Voronoiknoten.

In Abbildung 2.3 ist dieser Zusammenhang für einen Auschnitt eines Primärgitters beispielhaft dargestellt.

Nun wird es Zeit der Überschrift Rechnung zutragen und einen Operator einzuführen, der die Komplexeigenschaft erfüllt.

**Definition 2.2.5.** Es sei K ein Simplizialkomplex und  $0 . Der Randoperator <math>\partial_p : C_p(K) \to C_{p-1}(K)$  definiert sich durch

$$\partial_p \sigma^p := \sum_{i=0}^p (-1)^i [v_0, v_1, \dots, \hat{v}_i, \dots, v_p]$$
 (2.45)

<sup>&</sup>lt;sup>2</sup>Der Index, der von uns behandelten Mannigfaltigkeiten, ist immer null.



Abbildung 2.3: Beispiel für den Sternoperator auf einem Primärgitter der Dimension 2. Für Knoten und Volumenelemente ändert sich die Orientierung auch nach mehrmaliger Anwendung nicht, dagegen muss bei Kanten immer gegen den Uhrzeigersinn "gedreht" werden, so dass z.B.  $\star\star\sigma^1=-\sigma^1$ 



Abbildung 2.4: Rand mit Orientierungen einer (dualen) 2-Kette, genauer, der Voronoizelle, der primären Ecke in der Mitte des Simplizialkomplexes. Es ergibt sich eine (duale) 1-Kette aus Voronoikanten, dual zu den primären Kanten, die sich im Mittelpunkt treffen. Die Orientierung dieser primären Kanten muss für die Berechnung so geändert werden, dass sie alle nach außen zeigen.

wobei  $\sigma^p = [v_0, v_1, \dots, v_p] \in K$ . Das Dach bedeutet wieder, dass die entsprechende Ecke weggelassen wird. Da schon vorher erwähnt wurde das Knoten offene Mengen bezüglich der simplizialen Topologie sind, setzen wir konsistenterweise

$$\partial_0 \sigma^0 := 0 \tag{2.46}$$

Wenn kein Grund zur Verwirrung besteht, dann darf auch nur  $\partial$  statt  $\partial_p$  geschrieben werden.

Folgerung 2.2.6. Der (duale) Randoperator  $\partial_p: C_p(\star K) \to C_{p-1}(\star K)$  lässt sich vom obigen Randoperator für einen wohlzentrierten Simplizialkomplex K ableiten, in dem wir csdK als Simplizialkomplex nutzen und den Operator auf  $C_p(\star K) \leq C_p(\text{csd}K)$  einschränken. Das bedeutet für  $\hat{\sigma}^p = \star \sigma^{n-p} \in \star K^{(n-p)}$  ( $\star K^{(n-p)}$  Erzeugendensystem für  $C_p(\star K)$ )

$$\partial_p \hat{\sigma}^p = \partial_p \star \sigma^{n-p} \tag{2.47}$$

$$= \sum_{\sigma^{n-p+1} \succ \sigma^{n-p}} \star \left( s_{\sigma^{n-p+1}} \sigma^{n-p+1} \right) , \qquad (2.48)$$

wobei  $s_{\sigma^{n-p+1}} \in \{-1, +1\}$  so gewählt wird, dass die durch  $s_{\sigma^{n-p+1}}\sigma^{n-p+1}$  induzierte Orientierung für  $\sigma^{n-p}$  konsistent ist. (vergleiche Beispiel in Abbilddung 2.4)

Beweis. Das  $\partial_p C_p(\star K) \leq C_{p-1}(\operatorname{csd} K)$  gilt, ist klar wegen der Untergruppeneigenschaft von  $C_p(\star K)$  und weil der Randoperator ein Homomorphismus ist. Zu zeigen ist aber allerdings noch  $\partial_p C_p(\star K) \leq C_{p-1}(\star K)$ . Dabei reicht es auch hier aus, dass nur auf dem Ereugendensystem zu zeigen (algebraischer Induktionsanfang). Der (algebraische) Induktionsschritt gilt dann immer wegen der Universaleigenschaft für homomorphe Fortsetzungen auf freie abelsche Gruppen.

Für eine bessere Lesbarkeit substituieren wir den Grad der Simplizes  $(n-p) \leftrightarrow p$  und schreiben nur s für  $s_{\bullet} \in \{+1, -1\}$  und machen uns dabei bewusst, dass der

Koeffizient s in jeder Zeile und Summanden etwas anderes bedeuten kann.

$$\partial_{n-p} \star \sigma^p = \sum_{\sigma^p \prec \ldots \prec \sigma^n} s \partial_{n-p} \left[ c(\sigma^p), c(\sigma^{p+1}), \ldots, c(\sigma^n) \right]$$
(2.49)

$$= \sum_{\sigma^p \prec \ldots \prec \sigma^n} s \sum_{i=p}^n (-1)^{i-p} \left[ c(\sigma^p), \ldots, \widehat{c(\sigma^i)}, \ldots, c(\sigma^n) \right]$$
 (2.50)

$$= \sum_{\sigma^p \prec \ldots \prec \widehat{\sigma^k} \prec \ldots \prec \sigma^n} s \sum_{i=p}^n (-1)^{i-p} \begin{pmatrix} \left[ c(\sigma^p), \ldots, c(\sigma_1^k), \ldots, \widehat{c(\sigma^i)}, \ldots, c(\sigma^n) \right] \\ -\left[ c(\sigma^p), \ldots, c(\sigma_2^k), \ldots, \widehat{c(\sigma^i)}, \ldots, c(\sigma^n) \right] \end{pmatrix}$$
(2.51)

$$= \sum_{\substack{\sigma^p \prec \dots \prec \sigma^n \\ i \neq k}} s \sum_{\substack{i=p\\ i \neq k}}^n (-1)^{i-p} \left[ c(\sigma^p), \dots, \widehat{c(\sigma^i)}, \dots, c(\sigma^n) \right]$$
 (2.52)

:

$$= \sum_{\sigma^p \leftarrow \sigma^n} s\left[c(\sigma^{p+1}), c(\sigma^{p+1}), \dots, c(\sigma^n)\right]$$
(2.53)

$$= \sum_{\sigma^{p} \prec \sigma^{p+1}} \sum_{\sigma^{p+1} \prec \ldots \prec \sigma^{n}} s \left[ c(\sigma^{p+1}), c(\sigma^{p+1}), \ldots, c(\sigma^{n}) \right]$$
(2.54)

$$= \sum_{\sigma^{p+1} \succ \sigma^p} \star (s\sigma^{p+1}) \in C_{n-p-1}(\star K)$$
(2.55)

Dabei ergibt sich (2.49) aus der Homomorphie des Randoperators und (2.50) nach Definition 2.2.5. In (2.51) schreiben wir die beiden Summanden für  $\sigma_r^k$  für r=1,2 explizit aus. Es gibt immer genau zwei solcher Folgen  $\sigma^p \prec \ldots \prec \sigma^{k-1} \prec \sigma^k \prec \sigma^{k+1} \prec \ldots \prec \sigma^n$ , wenn bis auf  $\sigma^k$  und  $\sigma^p$  alle Simplizes fest gewählt sind. Die beiden sich ergebenden dualen Simplizes sind gegensätzlich orientiert, da die "Zählrichtung" der Dualecken anders herum ist. (2.52) folgt daraus, dass sich beide Summanden für i=k aufheben. Das machen wir dann für alle  $p< k \leq n$ . Der Rest ergibt sich durch aufteilen der Summe und der Definition des Sternoperators.

Bemerkung: In z.B. [Hir03] wurde der duale Randoperator einfach per Definition festgelegt ohne zu prüfen oder zu verweisen ob er den primären Randoperator auf dualen Gittern wiederspricht. Dem wurde hier nun genüge getan. Es ist der gleiche Operator mit eingeschränketem Definitionbereich.

**Folgerung 2.2.7.** Die Folgen  $(C_p(K), \partial_p)_{0 \le p \le n}$  beziehungsweise  $(C_p(*K), \partial_p)_{0 \le p \le n}$  bilden einen (simplizialen) Kettenkomplex.

$$0 \longrightarrow C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} C_0(K) \longrightarrow 0$$

$$\downarrow^{\star} \qquad \qquad \downarrow^{\star} \qquad \qquad \downarrow^{\star}$$

$$0 \longrightarrow C_n(\star K) \xrightarrow{\partial_n} C_{n-1}(\star K) \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} C_0(\star K) \longrightarrow 0$$

$$(2.56)$$

Das heißt  $\partial_p \circ \partial_{p+1} = 0$ , was sich einfach nachrechnen lässt. Zudem sei noch der Isomorphismus  $\star$  im Diagramm mit angegeben.

homologietheorie falls nötig, falls platz ist noch graphisches beispiel zum randoperator Fazit. Am Anfang des Absatzes haben wir uns entschieden, die Koeffizienten der Ketten aus  $\mathbb{Z}$  zuwählen. Hätten wir  $\mathbb{R}$  genommen, dann wäre  $C_p(K)$  ein  $\mathbb{R}$ -Vektorraum mit (linear unabhängiger) Basis  $K^{(p)}$ . Dem entsprechend würde auch immernoch alles aus diesem Absatz gelten. Wir würde aber die Abzählbarkeit des  $C_p(K)$  aufgeben, die uns unter Umständen später noch von nützen sein könnte.

Wenn wir allgemein  $C_p$  als Funktor auf der Kategorie der Simplizialkomplexe sehen, also

$$C_{p}(K) \xrightarrow{C_{p}(f)} C_{p}(L)$$

$$C_{p} \downarrow \qquad \qquad \downarrow^{C_{p}}$$

$$K \xrightarrow{f} L$$

$$(2.57)$$

wäre

$$f_p := C_p(f) : \sum_{\sigma \in K^{(p)}} a_i \sigma \mapsto \sum_{\sigma \in K^{(p)}} a_i f(\sigma)$$
 (2.58)

kanonisch gegeben. Somit wäre zum einen eine Zuordnung zu den singulären Kettenkomplexen mit

$$f := \langle \bullet, \bullet \rangle := K \to K_{sing} : [v_0, \dots v_p] \mapsto \langle \bullet, [v_0, \dots v_p] \rangle := \left( \left[ \mu^0, \dots, \mu^p \right] \mapsto \sum_{i=0}^p \mu^i v_i \right)$$
(2.59)

oder zu den abstrakten Kettenkomplexen mit  $f := \pi$  (Projektion/Ankleben der Simplizes auf die Mannigfaltigkeit) gegeben. Zum anderen haben wir in zukünftigen Arbeiten auch die Möglichkeit Oberflächen zubetrachten die sich zeitlich ändern  $f(t): K \to K(t)$  unter beibehalten der simplizialen Struktur, so es denn möglich ist. Im Einzelnen muss dann noch geprüft werden unter welchen Vorraussetzungen  $f \circ \partial = \partial \circ f$  beziehungsweise  $f \circ \star = \star \circ f$  gilt.

## 2.3 Gittergenerierung für Oberflächen

**Zielsetzung.** Die Wohlzentriertheit eines Gitters ist Pflicht, da ohne sie kein brauchbares duales Gitter (Voronoigitter) erzeugt werden kann. Diese zur Triangulierung duale Gebietsdiskretisierung wird aber benötigt um zum Beispiel ein diskreten Hodge-Stern-Operator sinnvoll zu entwickeln. Bei einem nicht wohlzentrierten Dreieck liegt der Voronoiknoten  $\star \sigma^2$  nicht im Dreieck  $\sigma^2$ . Das Problem dabei ist, dass sich die Werte auf  $\star \sigma^2$  und  $\sigma^2$  nur um einen metrischen Faktor<sup>3</sup> unterscheiden sollten. Diese Voraussetzung wäre aber nicht mehr haltbar, da die Gebiete, die beide Elemente einnehmen, disjunkt sind. Sie können sogar "sehr weit" von einander entfernt liegen. Dann hätte die eine Größe fast nichts mehr mit der anderen gemein und die Linearität beider wäre nicht mehr gegeben.

Wohlzentriertheit ist eine schwerwiegende Einschränkung an die Gitterstruktur. Sie verbietet unter anderem einen 1-Ring um einen Knoten aus vier oder weniger

<sup>&</sup>lt;sup>3</sup>hier  $|\sigma^2|$  bzw. dessen Reziproke

Dreickelementen. Für eine nicht planare Triangulierung mag ein 1-Ring aus vier Flächenelementen gerade noch funktionieren, da die Innenwinkelsumme der inneren Kanten weniger als  $2\pi$  ist. Im planaren Fall erhalten wir aber für eine optimale<sup>4</sup> Triangulierung Winkel von  $\frac{\pi}{2}$  und somit nur Wohlzentriertheit im Limes<sup>5</sup>. Damit sind oft genutzte lokale und globale Strategien zur Verfeinerung nicht anwendbar. So wird zum Beispiel bei der FEM-Toolbox AMDiS [WV10] die längste Kante halbiert und von dort zwei neue Kanten zu den jeweils gegenüberliegenden Knoten der beiden angrenzenden Dreiecken erstellt. Der neu entstandene Knotenpunkt hat folglich einen 1-Ring aus 4 Flächenelementen. Auch CAD-Programme liefern im Allgemeinen keine geeigneten Gitter. Ein möglicher Ausweg könnte eine Triangulierung (bzw. Neutriangulierung) mittels angepassten Delaunay oder anderen Algorithmen sein, zum Beispiel Centroidal Voronoi Tessellation (CVT) [DFG99], Optimal Delaunay Triangulations (ODT) [CX04] oder Hexagonal Delaunay Triangulation [SG09].

Im Folgenden wollen wir davon ausgehen, dass zu mindest eine Triangulation vorliegt, die die Bedingung erfüllt, dass jeder Knoten Teil von mehr als 4 Dreiecken ist. Damit möchten wir ein Oberflächengitter erzeugen, welches wohlzentriert ist. Die Struktur des Simplizialkomplexes soll dabei erhalten bleiben. Nur die Knotenpunkte werden neu arrangiert. Das setzt natürlich vorraus, dass die Oberfläche exakt, zum Beispiel explizit durch eine Immersion  $X:M\to\mathbb{R}^3$  oder implizit durch das 0-Niveau einer Level-Set-Funktion [OF02], oder eine Approximation der 2-Mannigfaltigkeit höher als 1 gegeben ist.

Ansätze zur Gitterverbesserung bei der die Wohlzentriertheit im Vordergrund steht gibt es bis jetzt wenige. Denn obwohl diese Vorderung an der Triangulation für viele numerische Verfahren Vorteile bringen würde, so ist sie doch nur für den DEC zwingend. Eine Arbeit ist zum Beispiel [VHGR08], wobei auch hier das diskrete Äußere Kalkül die Motivation bildete. Hier wird eine Kostenfunktion aufgestellt deren Argument des Minimums ein wohlzentrierter Simplizialkomplex ist. Leider muss solch ein Minimum nicht existieren, weder im planaren noch auf gekrümmten Oberflächen. Wir wollen hier im Folgendem einen ähnlich Ansatz verwenden. Ausgangspunkt sind Kraftvektoren an den Knoten, die das Gitter so unter Zwang setzen, dass die daraus resultierende Bewegung der Knoten, wenn es denn möglich ist, eine wohlzentierte Triangulation formt. Das Modell ist nicht neu und wird zum Beispiel zur Simulation von biologischen Zellgewebe verwendet. Einen Überblick zu der Thematik bietet [PCF+09].

## 2.3.1 Mechanisches Modell und dessen Diskretisierung

Ein einfacher mechanischer Ansatz, um nach gewissen Kriterien ein optimales Gitter zu entwickeln ist

$$\gamma \frac{\mathrm{d}\vec{x}_i}{\mathrm{d}t} = \vec{F}(\vec{x}_i) \tag{2.60}$$

<sup>&</sup>lt;sup>4</sup>bzgl. der maximalen Winkel

<sup>&</sup>lt;sup>5</sup>für planare äquidistante Gitter kann diese schwächere Restriktion dennoch sinnvoll sein, da somit bekannte Differenzenschematas entstehen können

Diese gewöhnliche Differentialgleichung erster Ordnung beschreibt eine Viskosedämpfung am Knoten  $\sigma_i^0$  mit Koordinaten  $\vec{x}_i \in X(M) \subset \mathbb{R}^3$  und Viskositätskoeffizient  $\gamma$ . Eine einfache Diskretisierung des Problems (2.60) ist das Explizite Eulerverfahren mit nachgeschalteter Projektion  $\pi: \mathbb{R}^3 \to X(M)$  um die Nebenbedingung  $\vec{x}_i \in X(M)$  zu erfüllen.

$$\vec{x}_i(t + \Delta t) = \pi \left( \vec{x}_i(t) + h\vec{F}_i \right)$$
 (2.61)

wobei  $h:=\frac{\Delta t}{\gamma}$  und  $\vec{F}_i:=\vec{F}(\vec{x}_i(t))$ . Der Kraftvektor  $\vec{F}_i$  resultiert aus Interaktion mit den anderen Knoten. Im Overlapping-Sphere-Modell(OS) [PCF+09] sind das all die Knoten  $\sigma_j^0$ , die einen bestimmten Abstand zu  $\sigma_i^0$  haben. Für das explizite Eulerverfahren (Verfahren 1.Ordnung) werden kleine Schrittweiten h benötigt. Allerdings bringen Verfahren höherer Ordnung wahrscheinlich keine signifikant besseren Ergebnisse. Zum einen könnte eine größere Schrittweite nicht ausgenutzt werden, da es sonst passieren kann, dass sich, durch die resultierende größere Verschiebung eines Knoten, Dreiecke überlappen und somit keine zulässige Triangulierung mehr vorliegt. Zum anderen reduziert die Projektion  $\pi$  die Konvergenzordnung der Verfahren. So wurde zum Beispiel in den numerischen Experimenten auch das Heun-Verfahren (explizites Runge-Kutta-Verfahren der Ordnung 2) getesten ohne nenneswerten besseren Resultaten, dafür wesentlich (linear) höheren Aufwand. Implizite Verfahren haben einen zu hohen Aufwand in der Implementation, denn es ist zu bedenken, dass der Kraftvektor  $\vec{F}_i$  nicht nur von den Koordinaten  $\vec{x}_i$  abhängt, sondern auch von der umgebenden Struktur.

Wir wollen hier, im Gegensatz zum OS-Modell, die Gitterstruktur des Simplizialkomplexes ausnutzen, das heißt es interagieren genau die Knoten mit einander, die eine gemeinsame Kante besitzen. Somit lässt sich der Kraftvektor  $\vec{F_i}$  zerlegen zu

$$\vec{F}_i = \sum_{\sigma^1 := [\sigma_j^0, \sigma_i^0] \succ \sigma_i^0} \frac{F_{\sigma_i^0 \prec \sigma^1}}{\|\vec{x}_j - \vec{x}_i\|} (\vec{x}_j - \vec{x}_i)$$
 (2.62)

 $F_{\sigma^0 \prec \sigma^1}$  ist folglich die Kraft die am Knoten  $\sigma^0$  in Richtung der Kante  $\sigma^1$  wirkt. Da die Kraft aber auch von der Geometrie der Flächenelemente abhängen kann, zerlegen wir die Kantenkräfte weiter zu

$$F_{\sigma^0 \prec \sigma^1} = \sum_{\sigma^2 \succ \sigma^1} F_{\sigma^0 \prec \sigma^1 \prec \sigma^2} \tag{2.63}$$

Als praktisch erweist es sich außerdem die Kräfte dimensionslos zuhalten, da somit eventuell auftretende Parameter für unterschiedliche Ausgangsgitter annährend gleich gewählt werden können. Die Schrittweite h in (2.61) hängt somit annährend linear von der Gitterweite ab. Zu beachten ist hierbei, dass sich die Gitterweite, je nach Definition<sup>6</sup>, in jedem Eulerschritt ändern kann.

Es folgen nun 2 heuristische Ansätze für die Kraft um die Beschaffenheit des Gitters positiv zu beeinflussen.

<sup>&</sup>lt;sup>6</sup>z.B. Maximum aller Umkreisradien

#### Optimale Kantenlängen

Ein ideales Dreieck mit bestmöglichen Eigenschaften hat überall Innenwinkel von  $\frac{\pi}{3}$ . Folglich liegt ein gleichseitiges Dreieck vor. Deshalb wäre es ein guter Ansatz zu versuchen eben diese Eigenschaft bei einem Dreieckelement hervorzurufen. Wir setzen eine Kantenkraft in linearer Abhängigkeit der Länge der Kante  $\sigma^1$  an, die für alle Knoten  $\sigma^0 \prec \sigma^1$  gleich ist.

$$F_{\sigma^0 \prec \sigma^1}^L := F_{\sigma^1}^L := \frac{|\sigma^1|}{l^*} - k \tag{2.64}$$

mit  $k \in [0,1]$ .  $l^*$  ist die Referenzlänge des Dreiecks  $T^*$ . Sie resultiert aus der Annahme, dass wir ein äquidistantes flache Triangulierung haben mit hexagonaler Struktur. Das heißt alle Dreiecke  $\sigma^2$  wären dann vom Ausmaß gleich einem gleichseitigen Referenzdreieck  $T^*$ . Dessen Fläche berechnet sich dann über die Gesamtfläche  $V(K) = \sum_{\sigma^2} |\sigma^2|$  und der Anzahl aller Dreiecke  $N_{\sigma^2} = |\{\sigma^2 \in K\}|$ 

$$|T^*| = \frac{V(K)}{N_{\sigma^2}} \tag{2.65}$$

sowie unter Ausnutzung, dass  $T^*$  gleichseitig ist

$$|T^*| = \frac{l^*\sqrt{3}}{4} \tag{2.66}$$

Zusammen ergibt sich für die Referenzlänge  $l^* > 0$ 

$$l^* = 2\sqrt{\frac{V(K)}{\sqrt{3}N_{\sigma^2}}}$$
 (2.67)

Für k=1 kann man sich das so vorsellen, dass die beiden Knoten einer Kante  $\sigma^1$  sich abstoßen falls  $|\sigma^1| < l^*$ , sich anziehen falls  $|\sigma^1| > l^*$  oder keine Kräfte wirken wenn  $|\sigma^1| = l^*$  gilt (siehe Abb. 2.5). k=0 würde für eine Gitter mit Rand und freien Randknoten<sup>7</sup> bedeuten, dass es immer weiter schrumpft. In unserem Fall, also Triangulierung von Oberflächen ohne Rand, zeigt sich, dass sich die Gitter vor allem dort zusammen ziehen, wo sich zum einen 1-Ringe aus 5 Dreieckelementen befinden und zum anderen wo die Krümmung der Mannigfaltigkeit klein ist. Letzteres ist allerdings keine gute Eigenschaft, da gerade dort ein feineres Gitter von nöten wäre, wo die Oberfläche eine große Krümmung aufweist. Der andere Extremfall, k=1, würde zwar ein annährend gleich grobes Gitter erzeugen, aber in Experimenten zeigte sich, dass (2.61) dadurch instabil wird. Stabilisierend wirkt sich aber das Zuaddieren des folgenden Kraftansatzes aus.

#### **Optimale Winkel**

Ein weiterer heuristischer Ansatz bezieht sich direkt auf die inneren Winkel eines Dreieckelements. Wie in Abbildung 2.6 angedeutet bewirkt eine Verschiebung entlang der Kante eine änderung des Winkels. Wird dabei, wie in Abbildung 2.6, die

<sup>&</sup>lt;sup>7</sup>Randknoten dürfen auch nach innen wandern



Abbildung 2.5: Kantenkräfte für an einem Knoten k = 1. Die eingezeichneten Radii entsprechen  $\frac{l^*}{2}$ .



Abbildung 2.6: Eine Verschiebung des Knotens entlang einer Kante verändert den Winkel.

Kante länger, dann wird der Winkel an dem zuverscheibenen Knoten kleiner, et vice versa.

$$F_{\sigma^0 \prec \sigma_i^1 \prec \sigma^2}^A := \cos \angle (\vec{e}_0, \vec{e}_1) - c \tag{2.68}$$

$$= \frac{\vec{e_0} \cdot \vec{e_1}}{\|\vec{e_0}\| \|\vec{e_1}\|} - c \tag{2.69}$$

$$\vec{e_i} := \vec{e_{\sigma_i^1}} = \vec{x}_{v_i} - \vec{x}_{\sigma^0} \tag{2.70}$$

(2.71)

mit  $i \in \{0,1\}$  und  $c \in [-1,1]$ .  $v_i$  ist also der Knoten, der mit  $\sigma^0$  die gemeinsame Kante  $\sigma_i^1$  im Dreieck  $\sigma^2 = [\sigma^0, v_0, v_1]$  hat.

Eine sinnvolle Wahl für die Konstante ist  $c = \cos \frac{\pi}{3} = 0.5$ . Sie würde in einer flachen Triangulation mit hexagonaler Struktur bewirken, dass sich keine Kräfte entwickeln, falls alle Dreiecke bis auf Rotation und Translation gleich sind.

#### Kombination der Kantenkräfte

Es hat sich gezeigt, dass (2.64) und (2.68) gerade auf komplizierteren Gebieten einzeln entweder nicht das gewünschste Resultat liefern oder insatbil sind. Deshalb kombinieren wir die beiden Kräfte linear:

$$F_{\sigma^0 \prec \sigma^1}^{\text{Gesamt}} := D \cdot F_{\sigma^0 \prec \sigma^1}^L + (1 - D) \cdot F_{\sigma^0 \prec \sigma^1}^A$$
 (2.72)

mit  $D \in [0,1]$ . Algorithmus 4.1.1 zeigt wie die resultierenden Kräfte auf einem Dreieckelement berechnet werden können. Um alle Knotenkräfte<sup>8</sup> zu erhalten müssen wir nur noch diese Element-Knotenkräfte aufassemblieren.

#### Projektion der Kraftvektoren

Des Weiteren, wie im Algorithmus 4.1.1 zu sehen, wird der Kraftvektor  $\vec{F}_i$  in den Tangentialraum projeziert, das heißt

$$\vec{F}_{T_pM,i} = \vec{F}_i - (\vec{F}_i \cdot \vec{\nu}_i)\vec{\nu}_i \tag{2.73}$$

<sup>&</sup>lt;sup>8</sup>d.h.  $(\vec{F_i})_{i=1,...,N_{\sigma^0}} \in (\mathbb{R}^3)^{N_{\sigma^0}}$ 



Abbildung 2.7: Eindimensionales Extrembeispiel für ein Schritt Euler-Explizit E (inkl. Nachprojektion  $\pi$ ) eines Knotens mit und ohne Vorprojektion des Kraftvektors  $\vec{F}_i$  zu  $\vec{F}_{T_pM,i}$ . Ohne Vorprojektion kann es zu einem unzulässigen Gitter kommen.

wobei der Normalenvektor  $\vec{\nu_i}$  am Knoten  $\sigma_i^0$  entweder als bekannt vorrausgesetzt ist, über eine signierte Distanze Funktion  $\varphi$  ermittelt wird, also

$$\vec{\nu_i} = \frac{\nabla \varphi}{\|\nabla \varphi\|} (\vec{x_i}) \tag{2.74}$$

oder über die Elementnormalen approximiert wird

$$\vec{\nu_i} = \frac{1}{|\circlearrowleft \sigma_i^0|} \sum_{\sigma^2 \succ \sigma_i^0} |\sigma^2| \cdot \vec{\nu}_{\sigma^2} \tag{2.75}$$

Somit kann im expliziten Eulervefahren (2.61)  $\vec{F}_{T_pM,i}$  statt  $\vec{F}_i$  verwendet werden. Das müssen wir nicht machen, aber es bringt Vorteile. Zum einen könnten Knoten soweit in Normalenrichtung verschoben werden, dass die nachfolgende Projektion den Knoten falsch abbildet und das Gitter zerstört wird (vgl. Abb. 2.7), zum anderen wird die Projektion in (2.61) oft iterativ gelöst (vgl. 2.4.1) und je weiter weg wir den Knoten von der Mannigfaltigkeit verschieben um so schlechter ist die Startnährung für das iterative Verfahren.

## 2.3.2 Beispiele

#### **Ellipsoid**

Wir wollen nun ein geeignetes Gitter für ein Ellipsoid erstellen (vgl. Appendix 4.3.2). Zur Verfügung steht uns eine Starttriangulierung der Einheitssphäre mit zirka 1000 Knoten. Es ist fast überall eine hexagonale Struktur vorhanden bis auf 12 Defekte, genauer, an 12 Knoten befinden sich pentagonale 1-Ringe. Dieses Startgitter wird nun auf den Ellipsoid projeziert (vgl. 2.4.1).

Wie in Abbildung 2.8 zu sehen, ist ein wohlzentrierter Simplizialkomplexe nach nur wenigen Eulerschritten (2.61) erreicht. Der größte Winkel nimmt aber weiterhin logarithmisch ab. Nach zirka 200 Schritten hat er sein Minimum erreicht und steigt danach wieder leicht. Das ist nicht verwunderlich, denn kleinere Winkel sind nicht das einzige Optimalitätskriterium. Geplottet wurde das Integralmittel



Abbildung 2.8: Parameter: h = 0.01; k = 1; c = 0.7. Von links oben nach rechts unten: Startgitter (keine Wohlzentriertheit, maximaler Winkel ca. 95.9°); nach 7 Eulerschritten (Wohlzentriertheit); nach 1000 Eulerschritten (danach keine signifikanten Veränderungen mehr); (semilog)Eulerschritte-Winkel-Plot (Maximum und Integralmittel)

 $\bar{\alpha}_{\max}$  (AvMaxAngle) der größten Winkel der Dreiecke und der größte aller aximalen Winkel  $\alpha_{\max}^{\max}$  (MaxMaxAngle) nach jedem Iterationsschritt.

$$\bar{\alpha}_{\max} := \frac{\int_{|K|} \alpha_{\max} \mu}{\int_{|K|} \mu} = \frac{1}{V(K)} \sum_{\sigma^2 \in K} |\sigma^2| \left\langle \alpha_{\max}, \star \sigma^2 \right\rangle \tag{2.76}$$

$$\alpha_{\max}^{\max} := \max \left\{ \left\langle \alpha_{max}, \star \sigma^2 \right\rangle \middle| \sigma^2 \in K \right\} \tag{2.77}$$

wobei |K| der zugrunde liegende Raum des Simplizialkomplexes K ist und  $\mu \in \Lambda^2(|K|)$  die die stückweise konstante Volumenform auf |K|.  $\langle \alpha_{max}, \star \sigma^2 \rangle$  ist der größte Winkel auf dem Dreieck  $\sigma^2$ .

#### **Lokale Verfeinerung**

Die in der FEM häufig anzutreffende Verfeinerung, nämlich die Halbierung der Dreiecke, führt zu 1-Ringen aus 4 Flächenelementen an den neu enstandenen Kno-



Abbildung 2.9: Von links nach rechts: Startgitter; nach 1 Eulerschritt (h = 0.1, k = 1, c = 0.7, max. Winkel ca. 86.5°); nach 1 Eulerschritt (h = 0.08, k = 0.3, c = 0.7, max. Winkel ca.  $80.8^{\circ}$ )

ten und ist somit im Algemeinen nicht zulässig für unsere Triangulierung. Eine Möglichkeit Dreiecke zu verfeinern und trotzdem eine Ausgangssituation für ein wohlzentriertes Gitter zu schaffen ist das Vierteln von Flächenelementen, wobei 3 neue Knoten an den Seitenhalbierenden enstehen (siehe Abb. 2.9 ganz links). Die somit hängenden Knoten werden beseitigt indem die Nachbarelemente halbiert werden. Das heißt es ensteht hexagonale Struktur an einem neuen Knoten, wenn beide angrenzende Dreiecke zum Verfeinern markiert wurden und pentagonale Struktur, wenn nur ein Dreieck markiert wurde. Für die alten Knoten an denen eine neue Kante hinzu kommt erhöht sich die Anzahl der umliegenden Flächenelemente um eins.

Nachdem die neuen Knoten auf die Mannigfaltigkeit projeziert werden ist im Allgemeinen noch nicht sichergestellt, dass ein wohlzentrierte Triangulation vorliegt. Deshalb wenden wir unseren Algorithmus (2.61) darauf an. Wenn vor der Verfeinerung ein zulässiges Gitter vorlag, dann zeigt sich, dass wir nur sehr wenige Iterationsschritte benötigen um ein zulässiges Gitter wieder herzustellen. Abbildung 2.9 zeigt das Resultat nach nur einem Eulerschritt mit zwei verschiedenen Parameterkonfigurationen. Hier wurde ein Dreieck verfeinert (links). Das Gitterverbesserungsverfahren erzeugt zum einen wohlzentrierte Dreiecke bei denen die Abmessungen weitestgehend gleich bleiben (mitte) und bei denen die neu entstandenen Elemente schrumpfen aber die Winkel besser sind (rechts).

Fazit. blub

## 2.4 Implizit gegebene Oberflächen

Oftmals ist eine Oberfläche  $M \subset \mathbb{R}^3$  nicht explizit über eine Immersion

$$X: (u,v) \mapsto X(u,v) \in \mathbb{R}^3 \tag{2.78}$$

gegeben, sondern über den 0-Level-Set einer signierten Distanzfunktion

$$\varphi = \pm \operatorname{dist}(\cdot, M) = \pm \inf_{\vec{x} \in M} d(\cdot, \vec{x})$$
 (2.79)

mit einer beliebigen (ausreichend glatten) Metrik d im  $\mathbb{R}^3$ . Die 2-Mannigfaltigkeit ist dann definiert durch

$$M = \left\{ \vec{x} \in \mathbb{R}^3 \middle| \varphi(\vec{x}) = 0 \right\}. \tag{2.80}$$



Abbildung 2.10: Darstellung des Punktes  $\vec{y}$  und dessen projezierter Punkt  $\vec{x}$ 

Solche implizit beschriebenen Oberflächen liegen zum Beispiel bei 3D-Phasenfeldproblemen vor (z.B. Allen-Cahn-, Cahn-Hilliard- oder Phase-Field-Crystal-Modell). Die Distanzfunktion<sup>9</sup>  $\varphi: \mathbb{R}^3 \to \mathbb{R}$  ist dort gerade die Lösung dieser Probleme und das 0-Niveau dieser Funktion beschreibt die Phasengrenzen.

Wir treffen hier die Konvention, dass "außen"  $\varphi > 0$  gilt und "innen"  $\varphi < 0$ . Dadurch zeigt der Gradient  $\nabla \varphi(\vec{x})$  für alle  $\vec{x} \in M$  in Richtung der äußeren Normalen. "Außen" und "innen" ist durch die Orientierung der Mannnigfaltigkeit gegeben. In Falle von 2-Mannigfaltigkeiten ohne Rand, ist "innen" gerade das von der Oberfläche umschlossene Gebiet im  $\mathbb{R}^3$ .

### 2.4.1 Numerische Projektion

Wenn bei einem Simplizialkomplex, welches die Oberfläche approximiert, neue Knoten enstehen oder vorhandene verschoben werden sollen, dann ist es notwendig diese Knoten auf die Mannigfaltigkeit zu projezieren. Denn eine Bedingung an den Simplizialkomplex ist, dass die Knoten dort und auf dem abstrakten Simplizialkomplex übereinstimmen.

Gesucht ist also das

$$\underset{\vec{x} \in M}{\operatorname{argmin}} \|\vec{y} - \vec{x}\| \tag{2.81}$$

für den Knoten mit den Koordinaten  $\vec{y}$ , der sich noch nicht auf der Mannigfaltigkeit M befindet und damit  $\varphi(\vec{y}) \neq 0$  gilt.

Der kürzeste Weg mit Länge  $\varepsilon$  steht im rechten Winkel zur Oberfläche am Punkt  $\vec{x}$  (siehe Abb. 2.10).

$$\vec{x} = \vec{y} + \frac{\varepsilon}{\|\nabla\varphi(\vec{x})\|}\nabla\varphi(\vec{x}) \tag{2.82}$$

$$= \vec{y} + h\nabla\varphi(\vec{x}) \tag{2.83}$$

für  $\varepsilon = h \|\nabla \varphi(\vec{x})\|$ . Allerdings ist weder h noch  $\vec{x}$  bekannt. Deshalb approximieren

<sup>&</sup>lt;sup>9</sup>auch Phasen- oder Ordnungsfunktion genannt

wir den Gradienten mittels Taylor an  $\vec{y}$ :

$$\nabla \varphi(\vec{x}) = \nabla \varphi(\vec{y}) + H[\varphi](\vec{y})(\vec{x} - \vec{y}) + HOT \tag{2.84}$$

$$= \nabla \varphi(\vec{y}) + \frac{\varepsilon}{\|\nabla \varphi(\vec{x})\|} H[\varphi](\vec{y}) \nabla \varphi(\vec{x}) + HOT$$
 (2.85)

wobei HOT für Therme höherer Ordnung (in  $\varepsilon$ ) steht und  $H[\varphi]$  ist die (symmetrische) Hessematrix von  $\varphi \in C^2(\overline{B_{\varepsilon}(\vec{x})})$ . Einsetzen in (2.83) liefert

$$\vec{x} = \vec{y} + h\nabla\varphi(\vec{y}) + \vec{O}(\varepsilon^2) \quad . \tag{2.86}$$

Somit ist für uns die Abschätzung

$$\vec{x}^* := \vec{y} + h\nabla\varphi(\vec{y}) \tag{2.87}$$

für  $\vec{x}$  ausreichend falls  $\varphi$  hinreichend glatt und  $\varepsilon$  klein.

Nun wollen wir h so bestimmen, dass  $\vec{x}^*$  auf der Oberfläche liegt, das heißt

$$\Phi_{\vec{y}}(h) := \varphi(\vec{x}^*) = \varphi(\vec{y} + h\nabla\varphi(\vec{y})) = 0 \quad . \tag{2.88}$$

Dieses Nullstellenproblem lösen wir in erster Nährung mittels Newton-Verfahren und Startlösung h = 0.

$$\hat{h} = -\frac{\Phi_{\vec{y}}(0)}{\Phi_{\vec{y}}'(0)} = -\frac{\varphi(\vec{y})}{\|\nabla\varphi(\vec{y})\|^2}$$
(2.89)

Damit stellen wir die Iterationsvorschrift

$$\vec{y}_{i+1} := \vec{y}_i - \frac{\varphi(\vec{y}_i)}{\|\nabla \varphi(\vec{y}_i)\|^2} \nabla \varphi(\vec{y}_i)$$
(2.90)

auf.

# 3 Diskretes Äußeres Kalkül (DEC)

see [Lee97] [Shi14]

#### 3.1 Diskrete Differentialformen

**Definition 3.1.1.** Eine diskrete p-Form ist ein Homomorphismus vom Kettenkomplex  $C_p(K)$  nach  $\mathbb{R}$ . Die Menge aller dieser Homomorphismen bezeichnen wir je nach Kontext mit  $C^p(K)$  (Menge der p-Koketten) oder  $\Omega_d^p(K)$  (Menge der diskrete p-(Differential-)Formen). Das heißt

$$\operatorname{Hom}(C_p(K), \mathbb{R}) =: C^p(K) =: \Omega_d^p(K). \tag{3.1}$$

Desweiteren erfolgt die Addition punktweise, das heißt

$$(\alpha + \beta)(c) := \alpha(c) + \beta(c) \tag{3.2}$$

für  $\alpha, \beta \in C^p(K)$  und  $c \in C_p(K)$ .

Folgerung 3.1.2. Da  $\mathbb{R}$  mit der Addition eine abelsche Gruppe ist, können wir uns wieder die Universalitätseigenschaft (2.38) des Kettenkomplexes zunutze machen. Für eine p-Kette  $c = \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma \in C_p(K)$  und eine p-Kokette  $\alpha \in C^p(K)$  gilt

$$\alpha(c) = \alpha \left( \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma \right) = \sum_{\sigma \in K^{(p)}} a_{\sigma} \alpha(\sigma), \qquad (3.3)$$

damit reicht es auch hier aus die p-Koketten nur auf den p-Simplizes zu definieren.

Hätten wir die Menge der p-Ketten als  $\mathbb{R}$ -Vektoraum eingeführt, so hätte uns die Frage nach einem inneren Produkt zwischen den Ketten und den Koketten zur dualen Paarung geführt und damit auch, dass  $C^p(K) = (C_p(K))^*$  der Dualraum von  $C_p(K)$  ist. Nun hält uns aber auch nichts davon ab, dies auch für die hier eingeführten Ketten analog zu machen.

#### Definition 3.1.3.

$$\langle \bullet, \bullet \rangle : C^p(K) \times C_p(K) \to \mathbb{R}$$
  
 $(\alpha, c) \mapsto \langle \alpha, c \rangle := \alpha(c)$  (3.4)

heißt natürliche Paarung zwischen den p-Koketten (-Formen) und den p-Ketten.

Die Verbindung zwschen diskreter Form und Differentialform ist die de-Rham-Abbildung. Dazu nehmen wir zunächst an, dass wir einen abstrakten Simplizialkomplex L vorliegen haben, das heißt, dass alle Simplizes auf der zugehörigen Mannigfaltigkeit M liegen. Das bringt erst einmal den Vorteil, dass Integration auf den Simplizes das gleiche Ergebinis auch auf der Mannigfaltigkeit liefert.

**Definition 3.1.4.** Die de-Rham-Abbildung bildet p-Differentialformen auf diskrete p-Formen (Koketten) ab. Genauer

$$\psi^{p}: \Omega^{p}(M) \to C^{p}(L) = \Omega^{p}_{d}(L)$$

$$\alpha \mapsto \left(\sigma^{p} \mapsto \int_{\sigma^{p}} \alpha =: \psi^{p}(\alpha)(\sigma^{p}) = \langle \psi^{p}(\alpha), \sigma^{p} \rangle\right), \tag{3.5}$$

das heißt die diskrete p-Form  $\psi^p(\alpha) \in \Omega^p_d(L)$  ist auf den p-Simplizes definiert, was wegen Folgerung 3.1.2 vollkommen ausreicht.

Folgerung 3.1.5. Zum einen ist  $\psi$  linear, da das Integral ein lineares Funktional ist. Zum anderen ist die de-Rham-Abbildung surjektiv. Das hat den Vorteil, dass sich jedes  $\alpha_d \in \Omega_d^p(L)$  auch als  $\psi(\alpha) = \alpha_d$  schreiben lässt, da immer solch ein geeignetes  $\alpha \in \Omega^p(M)$  existiert.

Beweis. Da es ausreicht die Aussage für eine Basis von  $\Omega_d^p(L)$  zu zeigen, nehmen wir einfach die duale Basis

$$(L^{(p)})^* := \{ \sigma_i^* \in \Omega_d^p(L) | \sigma_i^*(\sigma_j) = \delta_{ij}, i, j = 1, \dots, m \},$$
 (3.6)

wobei m die Anzahl der p-Simplizes in  $L^{(p)}$  ist und  $\delta_{ij}$  das Kronecker-Delta. Nun brauchen wir für  $i = 1, \ldots, m$  nur noch geeignete  $\alpha_i \in \Omega^p(M)$  finden, so dass

$$\int_{\sigma_j} \alpha_i = \delta_{ij} \tag{3.7}$$

gilt. Es sei dazu eine auf  $\sigma_i \subset M$  lokale Basis  $(x^1, \ldots, x^p)$  gegeben, dann definieren wir eine p-Form auf dem Polytop von  $L^{(p)}$ 

$$\alpha_i := \frac{1}{|\sigma_i|} \chi_{\sigma_i} dx^1 \wedge \ldots \wedge dx^p \in \Omega^p(|L^{(p)}|), \qquad (3.8)$$

wobei  $\chi$  die Indikatorfunktion ist. Mit der Inklusionsabbildung  $\iota: |L^{(p)}| \to M$  erfüllt gerade der Pullback (s.u. (3.23))  $\iota^* \alpha_i \in \Omega^p(M)$  die Anforderung (3.7) und damit auch  $\psi(\iota^* \alpha_i) = \sigma_i^*$ .

Bemerkung 3.1.6. Nun haben wir bei der Definition der de-Rham-Abbildung vorrausgesetzt, dass ein abstrakter Simplizialkomplex vorliegt. Das entspricht aber nur für flache Mannigfaltigkeiten unseren Anfoderungen. Im Allgemeinen ist die gegebene Triangulation nur eine lineare Approximation der Mannigfaltigkeit und damit auch des zugehörigen abstrakten Simplizialkomplexes. Das bedeutet auch, dass für  $p \geq 1$  die Differentialformen von M in einem anderen Raum "leben" als die Differentialformen des Polytopes |K|. Rein formal ließe sich die Situation entschärfen, in dem wir die Simplizes von K auf die Mannigfaltigkeit projizieren (vgl. (2.8)), also es wird  $\langle \psi^p(\alpha), \pi(\sigma^p) \rangle = (\psi^p(\alpha) \circ \pi) (\sigma^p)$  gerechnet für ein  $\sigma^p \in K$ . Nur ist in vielen praktischen Aufgaben weder die Projektion noch die Mannigfaltigkeit exakt bekannt, so bleibt also nur die approximative Auswertung des Integrals. Wir werden deshalb auch einfach  $\langle \alpha_d, \sigma^p \rangle$  statt  $\langle \alpha_d, \pi(\sigma^p) \rangle$  schreiben. Für die numerische Analysis ist das eine schwierige Situation, da vor der eigentlichen

whitney abbildung noch ansprechen? Das heißt Interpolation im allgemeinen oder nur speziell?

Diskretisierung (Diskretisierungsfehler) noch eine Approximation (geometrischer Fehler) auf einen stückweise flachen Raum gemacht wird.

Für 0-Formen (identisch zu Skalarfeldern) ergibt sich dieser geometrische Fehler nicht, da nach Vorraussetzung die Ecken des Simplizialkomplexes auf der Mannigfaltigkeit liegen. Hier ist die Diskretisierung genauso wie wir das aus anderen Verfahren, wie die Finite-Differenzen-Methode, gewöhnt sind, da das "Punktintegral" nichts weiter als die Auswertung an eben diesem Punkt ist. Das heißt, liegt ein Skalarfeld  $u: M \to \mathbb{R}$  vor, so ist das diskrete Skalarfeld  $u_d: K^{(0)} \to \mathbb{R}$  an den Ecken definiert.

$$u(v_i) = \psi(u)(v_i) = \langle \psi(u), v_i \rangle = u_d(v_i) =: u_i$$
(3.9)

für alle  $v_i \in K^{(0)}$ . Die Interpolation zurück zur Mannigfaltigkeit kann dann mittels linearer Ansatzfunktionen erfolgen, die sich auf den Volumenenelementen  $\sigma^n$  in gewohnter Weise definieren, das heißt 1 auf einer ausgezeichneten Ecke und 0 auf den übrigen Ecken. In dieser Arbeit werden wir uns auf die Auswertung von 0-Formen beschränken, das reicht aus um skalarwertige oder vektorisierte skalarwertige Differentialgleichungen höherer Ordnung zu diskretisieren.

Dennoch sei hier auf die Auswertung von 1-Formen (Pfaffsche Formen) eingegangen, denn sie werden zum einen für spätere numerischen Betrachtungen und zum anderen für die Behandlung von (Tangential-)Vektorproblemen noch interessant werden, denn mittels  $\flat$  beziehungsweise  $\sharp$  ist ein Isomorphismus zwischen Vektorfeldern und 1-Formen gegeben. Betrachten wir hierzu eine 1-Form  $\alpha \in \Omega^1(M)$  und die zugehörige diskrete Form  $\alpha_d = \psi(\alpha) \in \Omega^1_d(M)$ . Wie sind diese beiden Formen zu vergleichen? Beide geben haben zwar Antworten in  $\mathbbm{R}$  aber die Differentialform nimmt einen Tangentialvektor und die diskrete Form eine Kante als Eingabe. Dazu sei eine Kante  $\sigma^1_\varepsilon \in K$  der Länge  $2\varepsilon$  gegeben und deren abstrakte Kante  $s_\varepsilon \in L$ , die auf der Mannigfaltigkeit liegt, siehe Abbildung 3.1.  $s_\varepsilon : (-\varepsilon, \varepsilon) \to M$  sei in Parameterform gegeben und zwar so, dass  $s_\varepsilon(0) = x_0 \in M$ ,  $\dot{s}_\varepsilon(0) = v \in T_{x_0}M$  und  $x_0 \in M \subset \mathbb{R}^N$  so gewählt, dass v parallel zur Kante  $\sigma^1_\varepsilon$  ist (Existenz folgt aus dem Mittelwertsatz der Differentialrechnung). Ohne Einschränkung der Allgemeinheit sei v der tangential Einheitsvektor in der umgebenen  $\xi$ - $\eta$ -Ebene. Die Auswertung der diskreten Form an der Kante  $\sigma^1_\varepsilon$  ergibt

$$\alpha_d(\sigma_{\varepsilon}^1) = \langle \psi(\alpha), s_{\varepsilon} \rangle = \int_{s_{\varepsilon}} \alpha = \int_{-\varepsilon}^{\varepsilon} (\alpha \circ \dot{s}_{\varepsilon})(t) dt$$
 (3.10)

$$\approx 2\varepsilon\alpha(v)$$
. (3.11)

Mit  $|\sigma_{\varepsilon}^1| = 2\varepsilon$  folgt

$$\frac{1}{|\sigma_{\varepsilon}^{1}|} \alpha_{d}(\sigma_{\varepsilon}^{1}) = ,, \alpha_{d}(v) \approx \alpha(v).$$
(3.12)

 $\alpha_d(v)$  ist in Anführungszeichen gesetzt, da die diskreten Formen diese schreibweise nicht hergeben  $(v \cong \sigma_{\varepsilon}^1/|\sigma_{\varepsilon}^1| \notin K)$ , aber wir wollen hier auf unnötigen Formalismus verzichten und uns ist klar was damit gemeint ist. Das Integral wurde an t=0 aproximiert, also mit der Mittelpunktsregel. Daher können wir abschätzen (siehe [Kno13], Kapitel 7)

bei langeweile s mal explizit in lok.koords aufstellen um den Fehler besser abzuschätzen



Abbildung 3.1: Das umliegende Koordinatensystem ist so gedreht, dass die Kante  $\sigma_{\varepsilon}^1$  und die zugehörige abstrakte Kante  $s_{\varepsilon}$  in der  $\xi$ - $\eta$ -Ebene liegen. Die übrigen (N-2) Dimensionen zeigen aus der Bildebene heraus.  $\pi$  klebt die Kante auf die Mannigfaltigkeit, d.h.  $\pi(\sigma_{\varepsilon}^1) = s_{\varepsilon}$ 

$$|,,\alpha_{d}(v)" - \alpha(v)| \leq \frac{(2\varepsilon)^{3}}{24} \frac{1}{2\varepsilon} \max_{\tau \in (-\varepsilon,\varepsilon)} \left| \frac{d^{2}(\alpha \circ \dot{s}_{\varepsilon})}{dt^{2}} (\tau) \right|$$

$$= \frac{\varepsilon^{2}}{6} \max_{\tau \in (-\varepsilon,\varepsilon)} \left| \frac{d^{2}(\alpha \circ \dot{s}_{\varepsilon})}{dt^{2}} (\tau) \right|.$$
(3.13)

Das soll nicht heißen, dass die 1-Form  $\alpha \in \Omega^1(M)$  mit mindestens Ordnung 2 approximiert wird, denn im hinteren Faktor steckt noch immer die Größe  $\varepsilon$  und  $s_{\varepsilon}$  hängt zudem stark von der Geometrie der Mannigfaltigkeit ab. Wenn allerdings die Mannigfaltigkeit über der Kante  $\sigma_{\varepsilon}^1$  flach wäre, dann ergibt sich  $s_{\varepsilon}(t) = tv$  für  $x_0 = c(\sigma_{\varepsilon}^1) = \vec{0}$  (alle  $x_0$  erfüllen hier  $\dot{s}_{\varepsilon}(x_0) \| \sigma_{\varepsilon}^1$ ). Daraus folgt, dass

$$|,,\alpha_d(v)" - \alpha(v)| \le \frac{\varepsilon^2}{6} \max_{\tau \in (-\varepsilon,\varepsilon)} \left| \frac{\partial^2 \alpha_{\xi}}{\partial \xi^2} (\tau v) \right|,$$
 (3.14)

wobei  $\alpha_\xi = \alpha(\frac{\partial}{\partial \xi}) = \alpha(v)$  die entsprechende (kovariante) Koordinatenfunktion von  $\alpha$  ist. Somit hätten wir Konsistenz der Ordnung 2 für den flachen Fall. In zukünftigen Arbeiten müsste also "nur" noch geklärt werden mit welcher Ordnung eine "flache" 1-Form aus  $\Omega^1(\sigma^1_\varepsilon)$  eine "gekrümmte" 1-Form aus  $\Omega^1(\pi(\sigma^1_\varepsilon)) \subset \Omega^1(M)$  approximiert.

Dagegen lässt sich für exakte 1-Formen tatsächlich eine Ordnung von 2 direkt abschätzen. Sei eine exakte Form  $\alpha \in \Omega^1(M)$  gegeben, das heißt es existiert ein  $f \in \Omega^0(M)$ , sodass  $\alpha = \mathbf{d}f$  gilt. Mit dem Stokes Theorem ( [AMR88], Kapitel 7.2) erhalten wir

$$\frac{1}{|\sigma_{\varepsilon}^{1}|}\alpha_{d}(\sigma_{\varepsilon}^{1}) = \frac{1}{|\sigma_{\varepsilon}^{1}|} \int_{s_{\varepsilon}} \alpha = \frac{1}{2\varepsilon} \int_{\partial s_{\varepsilon}} f = \frac{(f \circ s_{\varepsilon})(\varepsilon) - (f \circ s_{\varepsilon})(-\varepsilon)}{2\varepsilon} \,. \tag{3.15}$$

Wenn wir  $(x^1, \ldots, x^n)$  als lokale Koordinaten der n-Mannigfaltigkeit am Punkt  $x_0$  wählen, so dass  $x^1$  gerade die Standartkoordinate entlang der abstrakten Kante  $s_{\varepsilon}$  ist mit  $v = \dot{s}_{\varepsilon}(0)$  als tangentialer Einheitsvektor, also für die dualen Basisvektoren gilt

$$dx^{i}(v) = \begin{cases} 1 & \text{falls } i = 1\\ 0 & \text{sonst} \end{cases}, \tag{3.16}$$

dann ergibt sich am Punkt  $x_0 = s_{\varepsilon}(0)$ 

$$\alpha(v) = (\mathbf{d}f)(v) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} dx^{i}(v) = \nabla_{M} f \cdot v = \nabla_{M} f \cdot \dot{s}_{\varepsilon} = \frac{d(f \circ s_{\varepsilon})}{dt}(0).$$
(3.17)

Da (3.15) nichts weiter als der Zentrale Differenzenquotient von (3.17) ist gilt

$$|,\alpha_d(v)" - \alpha(v)| = \mathcal{O}(\varepsilon^2). \tag{3.18}$$

Wir könnten nun auch ähnliche Betrachtungen für Differentialformen höheren Grades anstellen, jedoch werden wir uns im praktischen Teil nur auf zweidimensionale Oberflächen beschränken. Damit bleiben nur noch die 2-Formen übrig und die unterscheiden sich wegen dem Hodge-Stern-Isomorphismus nur um einen geometrischen Faktor (und Syntax) von den 0-Formen. Das heißt, wenn eine Riemannsche Mannigfaltigkeit vorliegt mit metrischen Tensor g, dann gilt für alle 2-Formen  $f dx^1 \wedge dx^2 \in \Omega^2(M)$ , dass

$$* \left( f \, dx^1 \wedge dx^2 \right) = \frac{f}{\sqrt{|\det(g)|}} \in \Omega^0(M). \tag{3.19}$$

## 3.2 Äußere Ableitung

Wenn wir uns den de-Rham-Komplex anschauen, also die für eine n-Mannigfaltigkeit eindeutig festgelegte Sequenz

$$0 \longrightarrow \Omega^{0}(M) \xrightarrow{\mathbf{d}^{0}} \Omega^{1}(M) \xrightarrow{\mathbf{d}^{1}} \cdots \xrightarrow{\mathbf{d}^{n-1}} \Omega^{n}(M) \longrightarrow 0$$
 (3.20)

mit den äußeren Ableitungen (Cartansche Ableitungen)  $\mathbf{d}^i$ , dann kommt uns das irgendwie bekannt vor. Dieser Kokettenkomplex mit der Komplexeigenschaft  $\mathbf{d} \circ \mathbf{d} \equiv 0$  (auf die Indizierung kann wieder verzichtet werden) ähnelt doch sehr dem simplizialen Kettenkomplex aus Folgerung 2.2.7 mit dem Unterschied, dass die lineare Abbildung  $\mathbf{d}$  "in eine andere Richtung zeigt" als der lineare Randoperator  $\partial$ . Und tatsächlich gibt es eine Verbindung zwischen diesen beiden Komplexen. Es ist der Satz von Stokes ( [AMR88](Kap. 7.2), [Jän05](Kap. 9)), den wir im vorherigen Abschnitt auch schon benutzt hatten. Wir wollen ihn hier nochmal kurz niederschreiben.

Satz 3.2.1 (Satz von Stokes). Es sei U eine orientierte p-dimensionale berandete Mannigfaltigkeit und  $\alpha \in \Omega^{p-1}(U)$  eine (p-1)-Form mit kompakten Träger. Dann gilt

$$\int_{U} \mathbf{d}\alpha = \int_{\partial U} \alpha \,. \tag{3.21}$$

Dabei ist formal etwas Vorsicht geboten, denn  $\alpha$  ist eine Differentialform auf U und nicht auf dessen Rand. Deshalb müssen wir uns die Inklusionsabbildung  $\iota$ :  $\partial U \hookrightarrow U$  dazu denken und nutzen die entlang dieser Abbildung zurückgezogene Differentialform  $\iota^*\alpha \in \Omega^{p-1}(\partial U)$  (Pullback). Das heißt

$$\int_{\partial U} \alpha := \int_{\partial U} \iota^* \alpha \,. \tag{3.22}$$

Diese Kurzschreibweise ist berechtigt, denn es gilt für alle  $x \in \partial U$ , dass

$$(\iota^* \alpha)_x (v_1, v_2, \dots, v_{p-1}) = \alpha_x (v_1, v_2, \dots, v_{p-1}).$$
(3.23)

und da beide Formen auf dem Rand lokal die gleichen Antworten in  $\mathbb{R}$  liefern, spielt das auch für die Integralauswertung keine Rolle.

**Definition 3.2.2.** Für eine Mannigfalligkeit M und einem Primärgitter K heißt

$$\mathbf{d}: \Omega_d^p(K) \to \Omega_d^{p+1}(K)$$

$$\psi(\alpha) \mapsto \mathbf{d}\psi(\alpha) := \psi(\mathbf{d}\alpha)$$
(3.24)

diskrete äußere Ableitung.

Folgerung 3.2.3. Die diskrete äußere Ableitung lässt sich mit Hilfe des Satzes von Stokes und den Randoperator berechnen. Es sei  $\alpha_d = \psi(\alpha) \in \Omega^p_d(K)$  eine diskrete p-Form und  $\sigma \in K^{(p+1)}$  ein (p+1)-Simplex, dann gilt

$$\langle \mathbf{d}\alpha_d, \sigma \rangle = \int_{\pi_{\sigma}(\sigma)} \mathbf{d}\alpha = \int_{\partial \pi_{\sigma}(\sigma)} \alpha = \int_{\pi_{\partial \sigma}(\partial \sigma)} \alpha = \langle \alpha_d, \partial \sigma \rangle$$
 (3.25)

mit  $\pi_{\sigma}|_{\partial\sigma} = \pi_{\partial\sigma}$ . Deshalb bezeichnen wir (3.24) auch als Korandoperator. Des Weiteren ist somit Definition 3.2.2 representantenunabhängig (Wohldefiniertheit), denn wenn  $\alpha_1, \alpha_2 \in \Omega^p(M)$  mit  $\psi(\alpha_1) = \psi(\alpha_2)$ , dann gilt für alle  $\sigma \in K^{(p+1)}$ , dass

$$\langle \mathbf{d}\psi(\alpha_1), \sigma \rangle = \langle \psi(\alpha_1), \partial \sigma \rangle = \langle \psi(\alpha_2), \partial \sigma \rangle = \langle \mathbf{d}\psi(\alpha_2), \sigma \rangle$$
 (3.26)

Bemerkung 3.2.4. Betrachten wir nun im speziellen wieder ein zweidimensionales Primärgitter K beziehungsweise dessen Dualgitter  $\operatorname{csd} K$ , falls K wohlzentriert ist. Da das Dualgitter wiederum auch ein Primärgitter ist, gelten obige Definitionen dieses Abschnittes auch auf diesem. Somit ergeben sich folgende Berechnungsformeln.

verweis auf Koketten C(\*K)

| Darstellung                                                                                         | Formel                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     | Für $f \in \Omega^0_d(K)$ und $\sigma^1 = [v_0, v_1] \in K$ gilt                                                                                                                    |
| $v_0 \stackrel{\bullet}{ \sigma^1} \stackrel{\bullet}{ \sigma^1} v_1$                               | $\langle \mathbf{d}f, \sigma^1 \rangle = f(v_1) - f(v_0).$ (3.27)                                                                                                                   |
| $\sigma_1^1$ $\sigma_0^1$                                                                           | Für $\alpha \in \Omega^1_d(K)$ und $\sigma^2, \sigma^1_0, \sigma^1_1, \sigma^1_2 \in K$ mit $\partial \sigma^2 = \sum_{i=0}^2 \sigma^1_i$ gilt                                      |
| $\sigma^2$ $\sigma_2^1$                                                                             | $\langle \mathbf{d}\alpha, \sigma^2 \rangle = \sum_{i=0}^2 \langle \alpha, \sigma_i^1 \rangle$ (3.28)                                                                               |
| $\sigma_0^2$ $\sigma_1^2$                                                                           | Für $f \in \Omega_d^0(\operatorname{csd} K)$ , $\sigma_0^2, \sigma_1^2 \in K$ und $\star \sigma^1 \in \star K$ gilt                                                                 |
| $\star \sigma^1$                                                                                    | $\langle \mathbf{d}f, \star \sigma^1 \rangle = f(c(\sigma_1^2)) - f(c(\sigma_0^2)).$ (3.29)                                                                                         |
| $\star \sigma_0^1$                                                                                  | Für $\alpha \in \Omega^1_d(\operatorname{csd} K)$ und $\star v, \star \sigma^1_i \in \star K$ mit $\partial(\star v) = \sum_{i=0}^m \star \sigma^1_i$ und $\sigma^1_i \succ v$ gilt |
| $\star \sigma_1^1 \qquad \star \sigma_m^1 \\ \star \sigma_2^1 \qquad v \qquad \star \sigma_{m-1}^1$ | $\langle \mathbf{d}\alpha, \star v \rangle = \sum_{i=0}^{m} \langle \alpha, \star \sigma_i^1 \rangle ,$ (3.30)                                                                      |
|                                                                                                     | wobei $(m+1)$ die Anzahl der Kanten ist, die $v$ als Ecke                                                                                                                           |
| Die Orientianna der W                                                                               | haben.                                                                                                                                                                              |

Die Orientierungen der Kanten wurden dabei so gewählt, dass möglichst wenig Vorzeichenwechsel entstehen.

Alleine mit der äußeren Ableitung ließe sich auf einer 2-Mannigfaltigkeit schon einiges Rechnen. Sie definiert uns nämlich den Gradienten eines (glatten) Skalarfeldes

$$\nabla : C^{\infty}(M) \to \mathcal{V}^{\infty}(M)$$

$$f \mapsto (\mathbf{d}f)^{\sharp} = \left[ g^{1} \frac{\partial f}{\partial x^{1}}, g^{2} \frac{\partial f}{\partial x^{2}} \right]^{T}$$
(3.31)

und die Rotation eines (glatten) (Tangential-)Vektorfeldes

rot: 
$$\mathcal{V}^{\infty}(M) \to C^{\infty}(M)$$
  
 $\vec{v} = [v^1, v^2]^T \mapsto *\mathbf{d}(\vec{v})^{\flat} = \frac{1}{\sqrt{|\det g|}} \left( \frac{\partial g_2 v^2}{\partial x^1} - \frac{\partial g_1 v^1}{\partial x^2} \right)$  (3.32)

für ein lokales orthogonales<sup>1</sup> Koordinatensystem  $(x^1, x^2)$  mit Riemannmetrik  $g = \text{diag}(g_1, g_2)$ , wobei  $g^i = (g_i)^{-1}$  (vgl. [NVW12]). Damit ergibt sich folgendes kom-

 $<sup>^{1}</sup>$ o.E.d.A, da die riemannsche Metrik glokal positiv definit und symetrisch ist, also auch diagonalisierbar

mutatives Diagramm:

$$\Omega^{0}(M) \xrightarrow{\mathbf{d}} \Omega^{1}(M) \xrightarrow{\mathbf{d}} \Omega^{2}(M) \qquad (3.33)$$

$$\downarrow^{\mathrm{id}} \qquad \qquad \downarrow^{\mathrm{b}} \qquad \qquad \downarrow^{*}$$

$$C^{\infty}(M) \xrightarrow{\nabla} \mathcal{V}^{\infty}(M) \xrightarrow{\mathrm{rot}} C^{\infty}(M)$$

Die Übersetzungsisomorphismen  $\sharp$  (Sharp) zum "hinaufziehen der Indizes" und  $\flat$  (Flat) zum "herunterziehen der Indizes" sind gegeben durch

$$\sharp: \qquad \Omega^{1}(M) \to \mathcal{V}^{\infty}(M)$$

$$v_{1}dx^{1} + v_{2}dx^{2} \mapsto \left[g^{1}v_{1}, g^{2}v_{2}\right]^{T} = \left[v^{1}, v^{2}\right]^{T}$$

$$(3.34)$$

und

$$b: \mathcal{V}^{\infty}(M) \to \Omega^{1}(M) 
\left[v^{1}, v^{2}\right]^{T} \mapsto g_{1}v^{1}dx^{1} + g_{2}v^{2}dx^{2} = v_{1}dx^{1} + v_{2}dx^{2}.$$
(3.35)

(Der Hodge-Stern-Isomorphismus für 2-Formen wurde schon in (3.19) angegeben.)

verweis auf diskrete vektorfelder in zukunftarbei

Um auch noch zwei weitere für die klassische Vektoranalysis wichtige Differentialoperatoren erster Ordnung zu diskretisieren, nämlich die Rotation für Skalarfelder (Rot) und die Divergenz für Vektorfelder (Div), benötigen wir noch eine diskrete Version des Hodge-Stern-Operators.

#### 3.3 Hodge-Stern-Operator

#### motivation: kein dachprodukt

Betrachten wir ein Vektorfeld  $\vec{v} := [v^1, v^2]^T \in \mathcal{V}^{\infty}(M)$  auf einer zweidimensionalen geschlossenen Riemannschen Mannigfaltigkeit M mit lokalen orthogonalen Koordinaten  $(x^1, x^2)$  und metrischen Tensor  $g = \operatorname{diag}(g_1, g_2)$ . Werten wir nun die zu  $\vec{v}$  duale Differentialform  $\vec{v}^{\flat} \in \Omega^1(M)$  an dem tangentialen Basisvektor  $\frac{\partial}{\partial x^1} \in T_xM$  am Punkt  $x \in M$  aus, dann erhalten wir

$$\vec{v}^{\flat} \left( \frac{\partial}{\partial x^1} \right) = \left( v_1 dx^1 + v_2 dx^2 \right) \left( \frac{\partial}{\partial x^1} \right) = v_1 = g_1 v^1$$
 (3.36)

als Antwort. Der in der orthoganalen  $\frac{\partial}{\partial x^2}$ -Richtung gedrehte Basisvektor  $\frac{\partial}{\partial x^1}$  (unter Beibehaltung der Länge  $\left\|\frac{\partial}{\partial x^1}\right\|_g = \sqrt{g_1}$ ) ist  $\sqrt{g_1g^2}\frac{\partial}{\partial x^2}\in T_xM$ , was sich entweder durch Nachrechnen überprüfen lässt oder sich auch als Ergebnis von  $\left(*\left(\frac{\partial}{\partial x^1}\right)^{\flat}\right)^{\sharp}$  ergibt. Hierbei merken wir schon, dass der Hodge-Stern-Operator durchaus auch eine anschauliche Seite hat. Auf Oberflächen dreht er nämlich Vektorfelder in orthogonaler Richtung. Wird auf die 1-Form  $\vec{v}^{\flat}$  ebenfall der Hodge-Stern-Operator angewenden erhalten wir

$$(*\vec{v}^{\flat}) \left( \sqrt{g_1 g^2} \frac{\partial}{\partial x^2} \right) = \left( \sqrt{|\det(g)|} \left( -v^2 dx^1 + v^1 dx^2 \right) \right) \left( \sqrt{g_1 g^2} \frac{\partial}{\partial x^2} \right)$$

$$= \sqrt{g_1 g_2} \sqrt{g_1 g^2} v^1 = g_1 v^1$$

$$= \vec{v}^{\flat} \left( \frac{\partial}{\partial x^1} \right)$$
(3.37)

als Antwort auf den gedrehten Basisvektor. Wie die diskreten 1-Formen auf die Basisvektoren reagieren, dass wissen wir schon aus (3.12). Also gilt für die diskrete 1-Formen  $\psi(\vec{v}^{\flat}) \in \Omega_d^1(K)$  beziehungsweise  $\psi(*\vec{v}^{\flat}) \in \Omega_d^1(\operatorname{csd} K)$ 

$$\frac{1}{|\sigma^{1}|}\psi\left(\vec{v}^{\flat}\right)\left(\sigma^{1}\right) \approx \vec{v}^{\flat}\left(\frac{\partial}{\partial x^{1}}\right) = \left(*\vec{v}^{\flat}\right)\left(\sqrt{g_{1}g^{2}}\frac{\partial}{\partial x^{2}}\right)$$

$$\approx \frac{1}{|\star\sigma^{1}|}\psi\left(*\vec{v}^{\flat}\right)\left(\star\sigma^{1}\right)$$
(3.38)

wobei  $\sigma^1$  ein 1-Simplex aus dem wohlzentrierten Primärgitter K ist. Der Punkt  $x \in M$ , an dem die Basisvektoren definiert sind, ist der Schnittpunkt der zugehörigen abstrakten Simplizes, das heißt  $\{x\} = \pi(\sigma^1) \cap \pi(\star \sigma^1)$ . Die 2. Approximation auf der dualen Kante erhalten wir ähnlich, wie schon in (3.12). Sei  $\alpha := v_1 dx^1 + v_2 dx^2 = \vec{v}^{\flat}$ , dann ergibt sich

$$*\alpha = -\sqrt{g_1 g^2} v_2 dx^1 + \sqrt{g^1 g_2} v_1 dx^2$$
 (3.39)

Da in  $\frac{\partial}{\partial x^2}$ -Richtung integriert wird, braucht auch nur der zweite Summand Beachtung finden.

$$\psi(*\alpha)(\star\sigma^1) = \int_{\pi(\star\sigma^1)} \sqrt{g^1 g_2} v_1 dx^2$$
 (3.40)

Des Weiteren sei eine Kurve  $s_{\delta}: [-\delta_1, \delta_2] \to \pi(\star \sigma^1) \subset M$  gegeben, so dass  $s_{\delta}(-\delta_1)$  und  $s_{\delta}(\delta_2)$  die beiden Endpunkte der abstrakten dualen Kante sind  $(|\star \sigma^1| = \delta_1 + \delta_2)$  und  $x = s_{\delta}(0)$  ist der Schnittpunkt mit der abstrakten Kante  $\pi(\sigma^1)$ , wobei  $\dot{s}_{\delta}(0) = \sqrt{g_1 g^2} \frac{\partial}{\partial x^2}$  gelten soll. Damit lässt sich auch hier wieder das Integral am Punkt x approximieren.

$$\psi(*\alpha)(\star\sigma^{1}) = \int_{-\delta_{1}}^{\delta_{2}} \left(\sqrt{g^{1}g_{2}}v_{1}\right)(s_{\delta}(t))dx^{2}(\dot{s}_{\delta}(t))dt$$

$$\approx |\star\sigma^{1}|v_{1} = |\star\sigma^{1}|(*\alpha)\left(\sqrt{g_{1}g^{2}}\frac{\partial}{\partial x^{2}}\right)$$
(3.41)

Die approximative Gleichung (3.38) ließe sich auch so lesen: Im Integralmittel ist die Auswertung einer diskreten 1-Form auf einer Kante ungefähr gleich der Auswertung der "dualen" diskreten Form auf der dualen Kante.

In [DHLM05] wird die Gleichheit als Bedingung gefordert und ist die Motivation für eine Verallgemeinerung auf diskrete p-Formen.

**Definition 3.3.1.** Der diskrete Hodge-Stern-Operator  $*: \Omega_d^p(K) \to \Omega_d^{n-p}(\operatorname{csd} K)$  ist definiert durch

$$(*\alpha)(\star\sigma^p) = \langle *\alpha, \star\sigma^p \rangle := \frac{|\star\sigma^p|}{|\sigma^p|} \langle \alpha, \sigma^p \rangle = \frac{|\star\sigma^p|}{|\sigma^p|} \alpha(\sigma^p)$$
 (3.42)

für alle  $\sigma^p \in K$ . Wir werden im Folgendem auch hier nur kurz  $\Omega_d^{n-p}(\star K)$  für das Bild  $*\Omega_d^p(K) \leq \Omega_d^{n-p}(\mathrm{csd}K)$  schreiben.

**Lemma 3.3.2.** Definition 3.3.1 ist für M = |K| mit wohlzentrierten Primärgitter K konsistent und für alle  $\alpha \in \Omega^p(|K|)$  und  $\sigma^p \in K$  gilt die Abschätzung

$$|(*\psi(\alpha))(\star\sigma^p) - \psi(*\alpha)(\star\sigma^p)| \le |\star\sigma^p| \mathcal{O}\left(\varepsilon_{\sigma^p} + \hat{l}_{\star\sigma^p}\right). \tag{3.43}$$

wobei  $\varepsilon_{\sigma^p}$  der Umkreisradius von  $\sigma^p$  ist (speziell ist  $\varepsilon_{\sigma^0} = 0$ ) und  $\hat{l}_{\star\sigma^p}$  die Länge der längsten Kante aller (n-p)-Simplizes der Kette  $\star\sigma^p$ , die  $c(\sigma^p)$  als Ecke haben. Für p=n setzen wir  $\hat{l}_{\star\sigma^n}:=0$ .

Beweis. Für 0 sei die p-Form

$$\alpha := \sum_{i_1 < \dots < i_p} \alpha_{i_1 \dots i_p} dx^{i_1} \wedge \dots \wedge dx^{i_p}$$
(3.44)

auf |K| gegeben mit den Koordinaten  $\alpha_{i_1...i_p}$ . Mit der Inklusionsabbildung  $\iota: \sigma^p \hookrightarrow |K|$  und dass o.E.d.A.  $(x^1, \ldots, x^p)$  die rechtwinkligen Koordinaten des von den Kante(n) von  $\sigma^p \in K$  aufgespannten p-dimensionalen  $\mathbb{R}$ -Vektorraums ist, gilt somit

$$\iota^* \alpha = \alpha_{1...p} dx^1 \wedge \ldots \wedge dx^p \in \Omega^p(\sigma^p). \tag{3.45}$$

Auch hier werden wir wieder, aus schon weiter oben genannten Gründen, nur  $\alpha$  statt  $\iota^*\alpha$  für die zurückgezogene Differentialform schreiben. Zunächsten wollen wir überprüfen wie gut sich die Integralauswertungen im Punkt  $c := c(\sigma^p)$  abschätzen lassen, da dies der einzige gemeinsame Punkt von  $\sigma^p$  und  $\star\sigma^p$  ist. Dazu nutzen wir den Umkreisradius des Simplexes  $\sigma^p$ 

$$\varepsilon_{\sigma^p} := \max_{x \in \sigma^p} \|x - c\| \ge \|x - c\| \qquad (\forall x \in \sigma^p)$$
 (3.46)

und einen Schritt Taylor für die Koordinatenfunktion:

$$||\sigma^p|\alpha_{1...p}(c) - \psi(\alpha)(\sigma^p)| \tag{3.47}$$

$$= \left| |\sigma^p| \alpha_{1\dots p}(c) - \int_{\sigma^p} \alpha_{1\dots p}(c) + (x - c)^T \nabla \alpha_{1\dots p}(c) + \mathcal{O}(\varepsilon_{\sigma^p}^2) dx^1 \wedge \dots \wedge dx^p \right|$$
(3.48)

$$= \left| \int_{\sigma^p} (x - c)^T \nabla \alpha_{1\dots p}(c) dx^1 \wedge \dots \wedge dx^p + \mathcal{O}(\varepsilon_{\sigma^p}^2) \right|$$
 (3.49)

$$\leq \int_{\mathbb{T}^n} \left| (x - c)^T \nabla \alpha_{1\dots p}(c) \right| dx^1 \wedge \dots \wedge dx^p + |\sigma^p| |\mathcal{O}(\varepsilon_{\sigma^p}^2)| \tag{3.50}$$

$$\leq \int_{\sigma^p} \|x - c\| \|\nabla \alpha_{1\dots p}(c)\| dx^1 \wedge \dots \wedge dx^p + |\sigma^p| |\mathcal{O}(\varepsilon_{\sigma^p}^2)| \quad \text{(Cauchy-Schwarz)}$$

(3.51)

$$\leq \|\nabla \alpha_{1\dots p}(c)\| \int_{\sigma^p} \varepsilon_{\sigma^p} dx^1 \wedge \dots \wedge dx^p + |\sigma^p| |\mathcal{O}(\varepsilon_{\sigma^p}^2)| \tag{3.52}$$

$$\leq |\sigma^p| \left( \|\nabla \alpha_{1...p}(c)\| \varepsilon_{\sigma^p} + |\mathcal{O}(\varepsilon_{\sigma^p}^2)| \right) \tag{3.53}$$

Für den diskreten Hodge-Stern erhalten wir somit

$$|(*\psi(\alpha))(\star\sigma^p) - |\star\sigma^p|\alpha_{1\dots p}(c)| = \frac{|\star\sigma^p|}{|\sigma^p|} ||\sigma^p|\alpha_{1\dots p}(c) - \psi(\alpha)(\sigma^p)|$$
(3.54)

$$\leq |\star \sigma^p| \left( \|\nabla \alpha_{1\dots p}(c)\|\varepsilon_{\sigma^p} + |\mathcal{O}(\varepsilon_{\sigma^p}^2)| \right)$$
 (3.55)

Wenn p=0 ist, dann gilt für  $\alpha:=f\in C^{\infty}(M)$  die Gleichheit

$$(*\psi(f))(\star\sigma^0) = |\star\sigma^0|f(c). \tag{3.56}$$

Für die Dualkette  $\star \sigma^p$  mit  $0 \leq p < n$  lässt sich die Abschätzung (3.53) ähnlich machen. Dazu müssen wir erst  $\star \sigma^p \in C_p(\star K)$  in seine elementaren (n-p)-Simplizes  $\hat{\sigma}^{n-p}$  mit der passenden Orientierung zerlegen. Es sei dazu eine Zerlegung  $S_{\sigma^p} \subseteq (\operatorname{csd} K)^{(n-p)}$  gegeben, sodass

$$\sum_{\hat{\sigma}^{n-p} \in S_{\sigma^p}} \hat{\sigma}^{n-p} = \star \sigma^p \,. \tag{3.57}$$

Für alle

$$*\alpha = \sum_{i_{p+1} < \dots < i_n} (*\alpha)_{i_{p+1} \dots i_n} dx^{i_{p+1}} \wedge \dots \wedge dx^{i_n} \in \Omega^{n-p}(|K|) = \Omega^{n-p}(|\operatorname{csd} K|) \quad (3.58)$$

gilt wegen der stückweisen flachen Metrik  $g|_{\hat{\sigma}^{n-p}} \equiv I$  auf allen  $\hat{\sigma}^{n-p} \in S_{\sigma^p}$ , dass

$$(*\alpha)_{i_{p+1}\dots i_n} = \alpha_{i_1\dots i_p}. \tag{3.59}$$

Nun gilt weiter

$$|| \star \sigma^{p} |\alpha_{1...p}(c) - \psi(*\alpha)(\star \sigma^{p})| = \left| \sum_{\hat{\sigma}^{n-p} \in S_{\sigma^{p}}} |\hat{\sigma}^{n-p}| \alpha_{1...p}(c) - \sum_{\hat{\sigma}^{n-p} \in S_{\sigma^{p}}} \int_{\hat{\sigma}^{n-p}} *\alpha \right|$$

$$\leq \sum_{\hat{\sigma}^{n-p} \in S_{\sigma^{p}}} ||\hat{\sigma}^{n-p}| \alpha_{1...p}(c) - \psi(*\alpha)(\hat{\sigma}^{n-p})|.$$
 (3.61)

Anders als in (3.53) ist c eine Ecke von  $\hat{\sigma}^{n-p} = [c, \hat{v}_{p+1}, \dots, \hat{v}_n]$ , das heißt wir nutzen dessen längste Kante

$$l_{\hat{\sigma}^{n-p}} := \max_{p < i \le n} \|\hat{v}_i - c\| \ge \|x - c\| \qquad (\forall x \in \hat{\sigma}^{n-p}) . \tag{3.62}$$

Somit gilt die Abschätzung

$$\left| |\hat{\sigma}^{n-p}| \alpha_{1...p}(c) - \psi(*\alpha)(\hat{\sigma}^{n-p}) \right| \le |\hat{\sigma}^{n-p}| \left( \|\nabla \alpha_{1...p}(c)\| l_{\hat{\sigma}^{n-p}} + |\mathcal{O}(l_{\hat{\sigma}^{n-p}}^2)| \right)$$
(3.63)

für die Summanden in (3.61). Mit der Länge, der längsten in der Dualkette  $\star \sigma^p$  enthalten Kante,

$$\hat{l}_{\star\sigma^p} := \max_{\hat{\sigma}^{n-p} \in S_{\sigma^p}} l_{\hat{\sigma}^{n-p}} \qquad \text{und} \qquad \sum_{\hat{\sigma}^{n-p} \in S_{\sigma^p}} |\hat{\sigma}^{n-p}| = |\star\sigma^p| \qquad (3.64)$$

folgt nun aus (3.61) und (3.63), dass

$$||\star \sigma^p|\alpha_{1...p}(c) - \psi(\star \alpha)(\star \sigma^p)| \le |\star \sigma^p| \left( \|\nabla \alpha_{1...p}(c)\| \hat{l}_{\star \sigma^p} + |\mathcal{O}(\hat{l}_{\star \sigma^p}^2)| \right). \tag{3.65}$$

Wenn p = n ist, dann gilt für  $*\alpha := f dx^1 \wedge ... \wedge dx^n$  mit  $f \in C^{\infty}(M)$  die Gleichheit

$$\psi(*\alpha)(\star\sigma^n) = f(c). \tag{3.66}$$

Somit erhalten wir insgesamt

$$|(*\psi(\alpha))(\star\sigma^p) - \psi(*\alpha)(\star\sigma^p)| \le |(*\psi(\alpha))(\star\sigma^p) - |\star\sigma^p|\alpha_{1\dots p}(c)|$$
(3.67)

$$+ |\psi(*\alpha)(\star\sigma^p) - |\star\sigma^p|\alpha_{1...p}(c)| \qquad (3.68)$$

$$\leq |\star \sigma^p| \|\nabla \alpha_{1...p}(c)\| \left(\varepsilon_{\sigma^p} + \hat{l}_{\star \sigma^p}\right)$$
 (3.69)

$$+ |\star \sigma^p| |\mathcal{O}(\varepsilon_{\sigma^p}^2 + \hat{l}_{\star \sigma^p}^2)| \tag{3.70}$$

(speziell auch für p = 0 bzw. p = n) und damit die Behauptung.

Satz 3.3.3. Es sei K ein wohlzentriertes zweidimensionales Primärgitter mit |K| = M, das heißt die Mannigfaltigkeit M ist ein Polyeder, dann gilt für alle  $\alpha \in \Omega^p(M)$  mit  $0 \le p \le 2$ 

$$|(*\psi(\alpha) - \psi(*\alpha)) (\star \sigma^p)| \le \mathcal{O}\left(\hat{h}_{\sigma^p}^{3-p}\right)$$
(3.71)

wobei  $\hat{h}_{\sigma^p} := \max_{\sigma^2 \succ \sigma^p} h_{\sigma^2}$  das Maximum aller Umkreisdurchmesser der anliegenden Dreieckelemente für  $p \in \{0,1\}$  ist. Wenn p=2 ist, dann setzen wir  $\hat{h}_{\sigma^2} := h_{\sigma^2}$ .

Beweis. Die Aussagen folgen direkt aus Lemma 3.3.2 und den folgenden rein geometrischen Überlegungen:

$$\begin{array}{c|cccc}
p & \varepsilon_{\sigma^{p}} & \hat{l}_{\star\sigma^{p}} & | \star \sigma^{p} | \\
= 0 & = 0 & = \frac{1}{2}\hat{h}_{\sigma^{0}} & \leq \pi \hat{l}_{\star\sigma^{0}}^{2} = \frac{1}{4}\pi \hat{h}_{\sigma^{0}}^{2} \\
= 1 & \leq \frac{1}{2}\hat{h}_{\sigma^{1}} & \leq \frac{1}{2}\hat{h}_{\sigma^{1}} & \leq 2\hat{l}_{\star\sigma^{1}} \leq \hat{h}_{\sigma^{1}} \\
= 2 & = \frac{1}{2}\hat{h}_{\sigma^{2}} & = 0 & = 1
\end{array} \tag{3.72}$$

Dieser lokale Fehler für den diskreten Hodge-Stern-Operator lässt sich natürlich auch global erweitern. Also für die diskrete Maximumsnorm

$$\|\alpha\|_{\infty} := \max_{\sigma^p \in K^{(p)}} |\alpha(\sigma^p)| \qquad (\forall \alpha \in \Omega_d^p(K))$$
(3.73)

auf dem Primärgitter K gilt im obigen Fall

$$\|*\psi(\alpha) - \psi(*\alpha)\|_{\infty} \le \mathcal{O}\left(h^{3-p}\right) \tag{3.74}$$

mit  $h := \max_{\sigma^2 \in K} h_{\sigma^2}$ . Wie schon in Definition 2.2.3 kann der Sternoperator auf  $\Omega_d^p(\star K)$  implizit definiert werden, sodass er die gleiche Eigenschaft wie sein stetiges Vorbild hat.

**Definition 3.3.4.** Der diskrete Hodge-Stern-Operator  $*: \Omega_d^p(\star K) \to \Omega_d^{(n-p)}(K)$  defiert sich implizit über

$$**\alpha = (-1)^{p(n-p)}\alpha \tag{3.75}$$

für alle  $\alpha \in \Omega_d^{n-p}(K)$ .

Dabei sei nochmal hervorgehoben, dass  $\Omega_d^p(\star K)$  gerade als surjektives Bild definiert wurde und damit macht obige definition auch Sinn, das heißt sie beschreibt tatsächlich das Bild aller  $\hat{\alpha} \in \Omega_d^p(\star K)$ . Natürlich lässt sich daraus eine explizite Schreibweise ableiten.

**Folgerung 3.3.5.** Für alle diskreten *p*-Formen  $\hat{\alpha} \in \Omega_d^p(\star K)$  und  $\hat{\sigma}^p = \star \sigma^{n-p} \in \star K$  gilt

$$(*\hat{\alpha})(\star\hat{\sigma}^p) = \langle *\hat{\alpha}, \star\hat{\sigma}^p \rangle = \frac{|\sigma^{n-p}|}{|\star\sigma^{n-p}|} \langle \hat{\alpha}, \hat{\sigma}^p \rangle = \frac{|\sigma^{n-p}|}{|\star\sigma^{n-p}|} \hat{\alpha}(\hat{\sigma}^p). \tag{3.76}$$

Beweis. Da für alle  $\hat{\alpha} \in \Omega_d^p(\star K)$  ein  $\alpha \in \Omega_d^{n-p}(\star K)$  existiert, sodass  $\hat{\alpha} = \star \alpha$  gilt, können wir mit Hilfe der Definitionen 3.3.1 und 2.2.3 rechnen

$$\langle *\hat{\alpha}, \star \hat{\sigma}^p \rangle = (-1)^{p(n-p)} (-1)^{p(n-p)} \left\langle \alpha, \sigma^{n-p} \right\rangle = \frac{|\sigma^{n-p}|}{|\star \sigma^{n-p}|} \left\langle \star \alpha, \star \sigma^{n-p} \right\rangle. \tag{3.77}$$

Folgerung 3.3.6. Für M = |K| mit wohlzentrierten Primärgitter K ist der diskrete Hodge-Stern-Operator nach Definition 3.3.4 ebenfalls konsistent mit

$$|(*\psi(\hat{\alpha}))(\sigma^p) - \psi(*\hat{\alpha})(\sigma^p)| \le |\sigma^p| \mathcal{O}\left(\varepsilon_{\sigma^p} + \hat{l}_{\star\sigma^p}\right). \tag{3.78}$$

für alle  $\hat{\alpha} \in \Omega^{n-p}(M)$ .

Beweis. Da der Hodge-Stern-Operator ein Isomorphismus auf den Differentialformen ist, existiert ein  $\alpha \in \Omega^p(M)$ , sodass  $\hat{\alpha} = *\alpha$  gilt. Somit können wir die Abschätzung (3.43) nutzen, denn es gilt

$$|[*\psi(\hat{\alpha}) - \psi(*\hat{\alpha})](\sigma^p)| = \frac{|\sigma^p|}{|\star\sigma^p|} |[**\psi(\hat{\alpha}) - *\psi(*\hat{\alpha})](\star\sigma^p)|$$
(3.79)

$$= \frac{|\sigma^p|}{|\star\sigma^p|} \left| \left[ \psi(*\alpha) - *\psi(\alpha) \right] (\sigma^p) \right| \tag{3.80}$$

$$\leq \frac{|\sigma^p|}{|\star\sigma^p|} |\star\sigma^p| \mathcal{O}\left(\varepsilon_{\sigma^p} + \hat{l}_{\star\sigma^p}\right) , \qquad (3.81)$$

$$da * \hat{\alpha} = * * \alpha = (-1)^{p(n-p)} \alpha \text{ und } * * \psi(\hat{\alpha}) = (-1)^{p(n-p)} \psi(\hat{\alpha}).$$

Auch hier können wir wieder den Spezialfall eines zweidimensionalen Polyeders betrachten.

**Satz 3.3.7.** Es sei K ein wohlzentriertes Zweidimensionales Primärgitter mit |K| = M, dann gilt für alle  $\hat{\alpha} \in \Omega^{2-p}(M)$  mit  $0 \le p \le 2$ 

$$|(*\psi(\hat{\alpha}) - \psi(*\hat{\alpha}))(\sigma^p)| \le \mathcal{O}\left(\hat{h}_{\sigma^p}^{1+p}\right)$$
(3.82)

für alle  $\sigma^p \in K$ .

Beweis. Die Aussage folgt aus (3.78). Die geometrischen Größen  $\varepsilon_{\sigma^p}$  und  $\hat{l}_{\star\sigma^p}$  können aus der vorhergehenden Tabelle (3.72) entnommen werden. Die noch fehlenden (Abschätzungen der) Voluminas der Simplizes sind

$$\begin{aligned} \left|\sigma^{0}\right| &= 1\\ \left|\sigma^{1}\right| &= 2\varepsilon_{\sigma^{1}} \leq \hat{h}_{\sigma^{1}}\\ \left|\sigma^{2}\right| &\leq \frac{\pi}{4}\hat{h}_{\sigma^{2}}^{2}. \end{aligned}$$

$$(3.83)$$

Letztere Abschätzung liese sich auch so lesen, dass sich für eine  $\hat{p}$ -Form  $\alpha \in \Omega^{\hat{p}}(M)$  (lokal auf einem  $(2-\hat{p})$ -Simplex) ebenfalls eine Ordnung von  $(3-\hat{p})$  ergibt, wie schon in (3.43).

Für eine allgemeine Definition der Rotation für Differentialformen

$$*\mathbf{d}: \Omega^p(M) \to \Omega^{n-p-1} \tag{3.84}$$

ist ersichtlich, dass für die DEC-diskretisierte Rotation nur der Hodge-Stern-Operator dabei einen Diskretisierungsfehler<sup>2</sup> auf der exakten Form  $\mathbf{d}\alpha \in \Omega^{p+1}$  verursacht, da wir für die äußere Ableitung wegen dem Stokes-Theorem keinen Fehler machen. Anders sieht die Situation für die Koableitung

$$\delta = (-1)^{np+1} * \mathbf{d} * : \Omega^{p+1}(M) \to \Omega^{p}(M)$$
(3.85)

aus, bei dem wir uns zweimal den Fehler des Hodge-Stern-Operators beim diskretisieren einhandeln. Im Übrigen ist bei dem Studium der Koableitung für Differentialformen Vorsicht geboten, denn bezüglich des inneren  $L^2$ -Produktes

$$\langle \langle \bullet, \bullet \rangle \rangle : \Omega^{p}(U) \times \Omega^{p}(U) \to \mathbb{R}$$

$$(\alpha, \beta) \mapsto \langle \langle \alpha, \beta \rangle \rangle = \int_{U} \alpha \wedge *\beta$$
(3.86)

ist hier gerade  $\delta$  der formal adjungierte Operator zu **d**, das heißt es gilt  $\langle \langle \mathbf{d}\alpha, \beta \rangle \rangle = \langle \langle \alpha, \delta\beta \rangle \rangle$ . In [AMR88] ist die Koableitung so definiert, in anderen Lektüren, wie zum Beispiel [Jän05], ist  $-\delta$  der adjungierte Operator. Das kann zu einiger Verwirrung führen, deshalb einigen wir uns hier den in (3.85) angegeben Operator für die Koableitung zu verwenden.

**Definition 3.3.8.** Es sei K ein wohlzentriertes Primärgitter, dann ist mit  $T \in \{K, \star K\}$  die diskrete Koableitung definiert durch

$$\delta := (-1)^{np+1} * \mathbf{d} * : \Omega^{p+1}(T) \to \Omega^p(T).$$
 (3.87)

Beispiel 3.3.9 (Divergenz). Die Divergenz eines Vektorfeldes  $\vec{w} \in \mathcal{V}^{\infty}(M)$  auf einer zweidimensionalen Mannigfaltigkeit M kann mit Hilfe der Koableitung berechnet werden (s. [AMR88]), denn es gilt

$$\operatorname{Div}\vec{w} = -\delta\vec{w}^{\,\flat} \,. \tag{3.88}$$

<sup>&</sup>lt;sup>2</sup>ohne den geometrischen Fehler, d.h. M = |K|

Wobei bei einer Dimension n=2, wie auch für alle anderen geraden Dimensionen, immer gilt, dass  $\delta=-*\mathbf{d}*$  ist. Wird nun M durch ein wohlzentriertes Primärgitter K approximiert, dann können wir die Divergenz an einer Ecke  $v\in K$  numerisch berechnen. Sei dazu die diskrete 1-Form  $\alpha:=\psi(\vec{v}^{\flat})\in\Omega^1_d(K)$  gegeben.



Bemerkung 3.3.10 (zur Implementierung). Prinzipiell können alle hier vorgestellten Operatoren als Matrizen implementiert werden, da sie linear sind, vergleiche [DKT05] und [ES05]. Das wollen wir hier nicht machen, da hier das Interface und die Methodik von AMDiS genutzt werden soll. Das heißt FEM-typisch werden die Operatoren auf den Dreieckelementen aufgestellt und bilden somit Elementmatrizen, die dann erst zu einer Systemmatrix aufassembliert werden. Da AMDiS von Haus aus eine geeignete Speicherstruktur für skalarwertige oder vektorisierte skalarwertige Probleme mitbringt, müssen intern nur die FEM-Operatoren durch geeignete DEC-Operatoren ausgetauscht werden. Die Problemformulierung, das aufaddieren der Elementmatrizen sowie das Lösen des Gleichungssystem bleibt somit im Ursprünglichen Zustand erhalten. Es ist somit sogar möglich Differentialgleichungssysteme mit DEC und FEM in einer einzelnen Problemformulierung gemischt zulösen.

**Fazit.** Auf einer 2-Mannigfalltigkeit lässt sich noch ein weiterer aus der klassischen Vektoranalysis bekannter Ableitungsoperator mit Hilfe der Koableitung darstellen. Für  $f \in C^{\infty(M)}$  definiert sich die Rotation über

$$(*\delta(*f))^{\sharp} = -(*\mathbf{d}f)^{\sharp} =: -\operatorname{Rot}f.$$
(3.90)

Damit können wir analog zu (3.33) zusammenfassend den Kettenkomplex mit den zugehörigen Skalar-/Vektorfeldübersetzungsisomorphismen aufstellen:

$$\Omega^{0}(M) \underset{\text{id}}{\longleftarrow} \Omega^{1}(M) \underset{\delta}{\longleftarrow} \Omega^{2}(M) \tag{3.91}$$

$$\downarrow^{\text{ld}} \qquad \downarrow^{\text{biv}} \qquad \uparrow^{*} \qquad \qquad \uparrow^{*}$$

$$C^{\infty}(M) \underset{\text{odd}}{\longleftarrow} \mathcal{V}^{\infty}(M) \underset{\text{end}}{\longleftarrow} C^{\infty}(M)$$

Nach dem Baukastenprinzip ließen sich somit alle linearen Differentialgleichungen endlicher Ordnung diskretisieren. Um auch nichtlineare Terme wie die Kontraktion (inneres Produkt)  $i_{\vec{v}}\alpha \in \Omega^{p-1}(M)$  oder die Lie-Ableitung  $\mathcal{L}_{\vec{v}}\alpha \in \Omega^p(M)$  für  $\vec{v} \in \mathcal{V}^{\infty}$  und  $\alpha \in \Omega^p(M)$  darzustellen benötigen wir noch das diskrete Dachprodukt  $\wedge$ . In [DHLM05] werden zwei diskretes Dachprodukt auf  $\Omega^p_d(K) \times \Omega^q_d(K)$  bzw.  $\Omega^p_d(\star K) \times \Omega^q_d(\star K)$  für  $p+q \leq n$  vorgestellt, welche, wie auch das Dachprodukt für Differentialformen, antikommutativ sind und die Leibnitzregel (Produktregel)

bzgl. der äußeren Ableitung erfüllen. Allerdings sind sie im Allgemeinen nicht assoziativ im Gegensatz zum stetigen Vorbild. In [MMP+11] gibt es einen anschaulichen Ansatz zur Diskretisierung der Kontraktion. Damit könnten wir auch ohne Dachprodukt über Cartans "magische" Formel

$$\mathcal{L}_{\vec{v}}\alpha = i_{\vec{v}}\mathbf{d}\alpha + \mathbf{d}i_{\vec{v}}\alpha \tag{3.92}$$

als algebraische Bedingung eine diskrete Lie-Ableitung erhalten. Somit könnte zum Beispiel auch der Jacobian

$$\mathcal{J}(\psi, \Delta \psi) = *d\mathcal{L}_{\vec{u}} \vec{u}^{\flat} \tag{3.93}$$

mit dem Strömungsfeld  $u = \text{Rot}\psi \in \mathcal{V}^{\infty}(M)$  und der Stromfunktion  $\psi \in C^{\infty}(M)$ , wie er in der Wirbelgleichung in [NVW12] vorkommt, numerisch mit Hilfe des DECs als skalarwertiges Problem behandelt werden. Auch eine direkte Diskretisierung des Konvektionstermes  $\mathcal{L}_{\vec{u}}\vec{u}^{\flat}$  in den Navier-Stokes-Gleichungen (vgl. [AMR88], Kap.8) wäre denkbar. Das Problem an dem resultierendem (Tangential-)Vektorproblem ist, dass wir noch keine diskreten Ubersetzungisomorphismen # und b haben. Diese müssten in zukünftigen Arbeiten noch sinnvoll entwickelt werden. Erste Ansätze dazu finden sich zum Beispiel in [Hir03]. Vorher müssten allerdings noch fundamentale implementiertechnische Fragen gestellt werden. Wollen wir mit 1-Formen oder mit Vektorfeldern speicherintern arbeiten und bei Bedarf die Indizes rauf bzw. herunter ziehen? Und wie wollen wir speichern? Bei 1-Formen ist es klar, im diskreten definieren sie sich über die Werte auf den Kanten, das heißt ein Freiheitsgrad auf jeder Kante. Bei Vektorfeldern wird es da schon schwieriger. Am sichersten ist es diese auf den Dreieckelementen zu speichern (effektiv 2 Freiheitsgrade pro Element), da es dort einen eindeutigen Tangentialraum auf dem Polytop gibt. Tangentialvektoren auf den Ecken zuspeichern, wie es im flachen Fall üblich ist, wird zu Problemen führen, da auf den Ecken kein eindeutiger Tangentialraum definiert ist. Eine Mittelung der umliegenden Tangentialräume der anliegenden Dreiecke (oder auch Kanten) scheint doch recht wilkürlich zu sein und könnte zu einem nicht lösbaren Gleichungssystem führen. Es müssen drei Freigheitsgrade für die Ecken angesetzt werden für ein eigentlich zweidimensionales Problem, was zu einem überbestimmten System führen könnte. Auf jeden Fall würde es die (dünnbesetzte) Systemmatrix unnötig "aufblähen".

Wir haben gezeigt, dass für ein immer feiner werdendes wohlzentriertes Primärgitter der diskrete Hodge-Stern-Operator gegen den Hodge-Stern-Operator für Differentialformen auf dem zugehörigen Polytop konvergiert. Offen für zukünftige Arbeiten bleibt die Frage wie gut denn überhaupt eine Differentialform auf einem Polytop eine Differentialform auf einer glatten Mannigfaltigkeit zu approximieren vermag und in welchem Sinne. Auf dem Primärgitter ließe sich diese Frage noch am einfachsten beantworten, da dort auf einem Simplex, nach dem Mittelwertsatz der Differentialrechnung, der Tangentialraum an wenigstem einem Punkt auf dem zugehörigen abstrakten Simplex übereinstimmt, d.h. dort hätten wir zumindestens schonmal einen gemeinsamen Vektorraum zum vergleichen. Für ein Simplex auf dem Dualgitter, wie wir es für den Hodge-Stern-Operator bräuchten, scheint die Situation schwieriger, da hier im allgemeinen die Ecken nicht auf der Mannigfaltigkeit liegen und es somit noch unklar ist ob sich überhaupt ein gemeinsamer Tangentialraum finden lässt.

#### 3.4 Laplace-Operator

**Zielsetzung.** Wenn es um Numerik partieller Differentialgleichungen geht, dann liegt der Schwerpunkt oftmals auf der Diskretisierung des Laplace-Operators bzw. Gleichungen der Form

$$\Delta u = F(u) \tag{3.94}$$

mit zum Beispiel linearem F und Skalarfeld oder Vektorfeld u. Auch Zeitabhängige Probleme sind denkbar, die durch eine Methode der Wahl in der Zeit diskretisiert werden und somit in jedem Zeitschritt auch in die Kategorie (3.94) passen.

Wir werden hier den Laplace-Operator für skalare Größen diskretisieren um einen diskreten Laplace-Beltrami-Operator zuerhalten und diesen in der Poisson-Gleichung als Minimalbeispiel auch testen. Desweiteren kann der Laplace-Operator auch zur Bestimmung der mittleren Krümmung benutzt werden wie wir in 3.5.3 noch sehen werden. Da hier Oberflächen ohne Rand betrachtet werden, wird auch keine Behandlung von Randbedingungen benötigt.

#### 3.4.1 Laplace-Beltrami-Operator

Wer sich mit Differentialoperatoren auf Mannigfaltigkeiten beschäftigt wird bald feststellen, dass es einen ganzen Zoo von Laplace-Operatoren gibt. Da es hier um das äußere Kalkül geht, werden wir hier und im Folgenden den Laplace-de-Rham-Operator, auch Hodge-Laplace-Operator genannt, benutzen, denn er definiert sich auf p-Formen und bildet auch auf diese wieder ab.

$$\Delta_{dR} := \mathbf{d}\delta + \delta\mathbf{d} : \Omega^p(M) \to \Omega^p(M) \tag{3.95}$$

Speziell für 0-Formen ergibt sich  $\Delta_{dR} = \delta \mathbf{d}$ , da die Koableitung 0-Formen auf 0 abbildet. Das ist gerade der negative Laplace-Beltrami-Operator

$$\Delta_B f := \text{Div}\nabla f = -\delta \mathbf{d}f = -\Delta_{dR}f$$
 (3.96)

für eine Funktion  $f\in C^\infty(M)$ . Wegen der unterschiedlichen Vorzeichen des Laplace-Beltrami-Operators und des Laplace-de-Rham-Operators für 0-Formen ist Obacht geboten, da dies Grund zur Verwirrung sein könnte. Mit einer Riemann-Metrik g ergibt sich somit

$$\Delta_B f = \frac{1}{\sqrt{|\det g|}} \sum_{i,j=1}^n \frac{\partial}{\partial x^j} \left( g^{ij} \sqrt{|\det g|} \frac{\partial f}{\partial x^i} \right). \tag{3.97}$$

Für eine zweidimensionale Mannigfaltigkeit mit orthogonalen Koordinaten und Metrik  $g = \text{diag}(g_1, g_2)$  lässt sich die Formel vereinfachen zu

$$\Delta_B f = \sqrt{g^1 g^2} \left( \frac{\partial}{\partial x^1} \left( \sqrt{g^1 g_2} \frac{\partial f}{\partial x^1} \right) + \frac{\partial}{\partial x^2} \left( \sqrt{g_1 g^2} \frac{\partial f}{\partial x^2} \right) \right). \tag{3.98}$$

Der diskrete Laplace-Beltrami-Operator soll der durch (3.96) DEC-diskretisierte Operator sein. In Beispiel 3.3.9 wurde die Divergenz an einer Ecke  $v \in K$  schon



Abbildung 3.2: 1-Ring um v mit m+1 Dreieckelementen. Die gepunkteten 1-Simplizes sind die zu den Kanten  $[v, v_i]$  dualen Kanten.

beschrieben, ebenso die Ableitung an einer Kante in (3.27). Damit ergibt sich zusammenfassend (vgl. Abbildung 3.2)

$$\Delta_{B,d}f(v) := \langle \Delta_B f, v \rangle = \frac{1}{|\star v|} \sum_{\sigma^1 \succ v} \frac{|\star \sigma^1|}{|\sigma^1|} \langle \mathbf{d}f, \sigma^1 \rangle$$

$$= \frac{1}{|\star v|} \sum_{\sigma^1 = [v, v_i]} \frac{|\star \sigma^1|}{|\sigma^1|} \left( f(v_i) - f(v) \right) . \tag{3.99}$$

Bemerkung 3.4.1. Der in (3.99) beschriebene diskrete Laplace-Operator ist nicht neu. In [SAM68] wurde er zum Beispiel schon auf einer quasi-uniform<sup>3</sup> triangulierten Sphäre benutzt. Der Kontext dort ist allerdings nicht durch das Äußere Kalkül motiviert, sondern ist Folge eines eher anschaulicheren Ansatzes. Denn der Laplace-Operator kann an v approximiert werden, als den Fluss von  $\nabla f$ , der aus der Voronoizelle hinaus fließt.

$$\operatorname{Div}\nabla f = \lim_{|\star v| \to 0} \left( \frac{1}{|\star v|} \int_{\partial \star v} \nabla f \cdot \vec{n} dS \right)$$

$$\approx \frac{1}{|\star v|} \sum_{\sigma^{1} = [v, v_{i}]} \int_{\star \sigma^{1}} \frac{1}{|\sigma^{1}|} \left( f(v_{i}) - f(v) \right) dS \tag{3.100}$$

$$= \Delta_{B,d} f(v)$$

Auch in [MDSB03] wird der hier hergeleitete diskrete Laplace-Beltrami verwendet und mit anderen diskreten Operatoren verglichen. Zudem ist er eine Approximation der Ordnung 2, welches in [Xu04] gezeigt wird. In beiden Artikeln ist er allerdings als "Cotan-Formel" beschrieben, das heißt (vgl. Abbildung 3.2)

$$\Delta_B f(v) \approx \frac{1}{|\star v|} \sum_{i=0}^m \frac{\cot \alpha_{i,i_+} + \cot \beta_{i,i_-}}{2} \left( f(v_i) - f(v) \right)$$
(3.101)

<sup>&</sup>lt;sup>3</sup>uniform auf jeder Ikosaederfläche

- 3.4.2 Beispiel: Poisson-Gleichung
- 3.5 Approximation der Krümmung
- 3.5.1 Beispiel: Krümmung Teil 1: Gauß-Bonnet-Operator
- 3.5.2 Beispiel: Krümmung Teil 2: Weingarten-Abbildung
- 3.5.3 Beispiel: Krümmung Teil 3: Krümmungsvektor

## 4 Appendix

#### 4.1 Algorithmen

#### 4.1.1 Element-Knotenkräfte

Berechnung der Knotenkräfte Force $\in \mathbb{R}^3 \times \mathbb{R}^3$  für ein Element:

Parameter c,d,k $\in \mathbb{R}$ , Koordinatenabbildung X:  $\sigma^0 \mapsto \vec{x} \in M \subset \mathbb{R}^3$  und Tangentialprojektion project:  $\mathbb{R}^3 \to T_pM \subset \mathbb{R}^3$  sind (approximativ oder exakt) gegeben.

Zu Beachten ist hierbei, dass die Kantenkraft forceLength nur auf einem Knoten aufgetragen wird. Der andere Knoten der ebenfalls zu dieser Kante gehört bekommt die gleiche Kantenkraft aufdatiert, wenn die Knotenkräfte auf dem 2. Dreieckelement, das sich diese Kante teilt, berechnet werden.

### 4.2 Krümmungsgrößen für impliziten Oberflächen

Es sei  $\varphi \in C^2(\mathbb{R}^3)$  gegeben mit  $M = \{\vec{x} \in \mathbb{R}^3 | \varphi(\vec{x}) = 0\}$ . Die Gaußkrümmung  $\mathfrak{H}$  und die Mittlere Krümmung  $\mathfrak{H}$  von M berechnet sich wie folgt (siehe [Gol05]):

$$\mathfrak{K} = \frac{\nabla^T \varphi \cdot H^*[\varphi] \cdot \nabla \varphi}{\|\nabla \varphi\|_2^4} = -\frac{\det \begin{bmatrix} H[\varphi] & \nabla \varphi \\ \nabla^T \varphi & 0 \end{bmatrix}}{\|\nabla \varphi\|_2^4}$$
(4.1)

$$\mathfrak{H} = \frac{\|\nabla\varphi\|_2^4}{\|\nabla\varphi\|_2^4} = \frac{\|\nabla\varphi\|_2^4}{\|\nabla\varphi\|_2^2 \cdot \operatorname{Trace}(H[\varphi]) - \nabla^T\varphi \cdot H[\varphi] \cdot \nabla\varphi}{2 \cdot \|\nabla\varphi\|_2^3}$$
(4.2)

wobei  $H^*[\varphi]$  die Adjunkte<sup>1</sup> des Hessian  $H[\varphi]$  ist.

<sup>&</sup>lt;sup>1</sup>nicht Adjungierte!

## 4.3 Oberflächenbeispiele

#### 4.3.1 Einheitssphäre

**Level-Set-Funktion** 

$$\varphi(\vec{x}) := \frac{1}{2} \left( \|\vec{x}\|_2^2 - 1 \right) \tag{4.3}$$

$$\nabla \varphi(\vec{x}) = \vec{x} \tag{4.4}$$

$$H[\varphi] \equiv I \tag{4.5}$$

Krümmungsgrößen

$$\mathfrak{K} \equiv 1 \tag{4.6}$$

$$\mathfrak{H} \equiv 1 \tag{4.7}$$

#### 4.3.2 Ellipsoid

Level-Set-Funktion

$$\varphi(x,y,z) := \frac{1}{2} \left( (3x)^2 + (6y)^2 + (2z)^2 - 9 \right) \tag{4.8}$$

$$\nabla \varphi(x, y, z) = [9x, 36y, 4z]^T \tag{4.9}$$

$$H[\varphi] \equiv \begin{bmatrix} 9 & 0 & 0 \\ 0 & 36 & 0 \\ 0 & 0 & 4 \end{bmatrix} \tag{4.10}$$

Krümmungsgrößen

$$\mathfrak{K}(x,y,z) = \frac{11664}{(81 + 972y^2 - 20z^2)^2} \tag{4.11}$$

$$\mathfrak{K}(x,y,z) = \frac{11664}{(81 + 972y^2 - 20z^2)^2}$$

$$\mathfrak{H}(x,y,z) = \frac{36(45 + 54y^2 - 10z^2)}{(81 + 972y^2 - 20z^2)^{3/2}}$$
(4.11)

# Abbildungsverzeichnis

| 2.1  | Bsp. Umkreismittelpunktunterteilung    | 14 |
|------|----------------------------------------|----|
| 2.2  | Bsp. induzierte Orientierung           | 14 |
| 2.3  | Bsp. Sternoperator in 2D               | 18 |
| 2.4  | Bsp. Randoperator auf (dualen) 2-Kette | 18 |
| 2.5  | Kantenkräfte für optimale Kantenlängen | 25 |
| 2.6  | Winkeländerung durch Verschiebung      | 25 |
| 2.7  | Euler mit und ohne Vorprojektion       | 26 |
| 2.8  | Gittergenerierung: Ellipsoid           | 27 |
| 2.9  | Gittergenerierung: Lokale Verfeinerung | 28 |
| 2.10 | Projektion                             | 29 |
| 3.1  | Approximation einer 1-Form             | 34 |
|      | Schema für Laplace                     |    |

## Literaturverzeichnis

- [AMR88] R. Abraham, J.E. Marsden, and T.S. Ratiu. *Manifolds, Tensor Analysis, and Applications*. Number Bd. 75 in Applied Mathematical Sciences. Springer New York, 1988.
- [CX04] Long Chen and Jinchao Xu. Optimal Delaunay triangulations. *Journal of Computational Mathematics*, 22(2):299–308, 2004.
- [DFG99] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations: Applications and algorithms. SIAM Rev., 41(4):637–676, December 1999.
- [DHLM05] M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden. Discrete Exterior Calculus. *ArXiv Mathematics e-prints*, August 2005.
- [DKT05] Mathieu Desbrun, Eva Kanso, and Yiying Tong. Discrete differential forms for computational modeling. In *ACM SIGGRAPH 2005 Courses*, SIGGRAPH '05, New York, NY, USA, 2005. ACM.
- [EH72] D. Jack Elzinga and Donald W. Hearn. The minimum covering sphere problem. *Management Science*, 19(1):96 104, 1972.
- [ES05] Sharif Elcott and Peter Schröder. Building your own dec at home. In *ACM SIGGRAPH 2005 Courses*, SIGGRAPH '05, New York, NY, USA, 2005. ACM.
- [Gol05] Ron Goldman. Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design, 22(7):632 – 658, 2005. Geometric Modelling and Differential Geometry.
- [Hir03] Anil Nirmal Hirani. Discrete Exterior Calculus. PhD thesis, California Institute of Technology, Pasadena, CA, USA, 2003. AAI3086864.
- [Jän05] Klaus Jänich. Vektoranalysis:. Springer-Lehrbuch. Springer, 2005.
- [Kno13] M. Knorrenschild. Numerische Mathematik: Eine beispielorientierte Einführung. Mathematik-Studienhilfen. Carl Hanser Verlag GmbH & Company KG, 2013.
- [Lee97] John Marshall Lee. Riemannian manifolds: an introduction to curvature. Graduate Texts in mathematics. Springer, New York, 1997.
- [Lü05] Wolfgang Lück. Algebraische Topologie: Homologie und Mannigfaltigkeiten. Vieweg, 1 edition, 2005.

- [MDSB03] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete differential-geometry operators for triangulated 2-manifolds. In Hans-Christian Hege and Konrad Polthier, editors, *Visualization and Mathematics III*, Mathematics and Visualization, pages 35–57. Springer Berlin Heidelberg, 2003.
- [MMP+11] P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J.E. Marsden, and M. Desbrun. Discrete lie advection of differential forms. Foundations of Computational Mathematics, 11(2):131-149, 2011.
- [Mun84] J.R. Munkres. *Elements of Algebraic Topology*. Advanced book classics. Perseus Books, 1984.
- [NVW12] I. Nitschke, A. Voigt, and J. Wensch. A finite element approach to incompressible two-phase flow on manifolds. *Journal of Fluid Mechanics*, 708:418–438, 10 2012.
- [OF02] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Surfaces (Applied Mathematical Sciences). Springer, 2003 edition, November 2002.
- [PCF<sup>+</sup>09] P Pathmanathan, J Cooper, A Fletcher, G Mirams, P Murray, J Osborne, J Pitt-Francis, A Walter, and S J Chapman. A computational study of discrete mechanical tissue models. *Physical Biology*, 6(3):036001, 2009.
- [Pra14] Simon Praetorius. AMDiS Tutorial. https://fusionforge.zih.tu-dresden.de/plugins/mediawiki/wiki/amdis/index.php/Hauptseite#Tutorial, 2014. [Online; accessed 08-May-2014].
- [SAM68] Robert Sadourny, Akio Arakawa, and Yale Mintz. Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere1. *Monthly Weather Review*, 96(6):351–356, June 1968.
- [SG09] Gerd Sußner and Gunther Greiner. Hexagonal delaunay triangulation. In *Proceedings*, 18th International Meshing Roundtable, pages 519–538. Springer, 2009.
- [Shi14] Theodore Shifrin. DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces. University of Georgia, 2014.
- [SSSA00] Samik Sen, Siddhartha Sen, James C. Sexton, and David H. Adams. Geometric discretization scheme applied to the abelian chern-simons theory. *Phys. Rev. E*, 61:3174–3185, Mar 2000.
- [VHGR08] Evan VanderZee, Anil N. Hirani, Damrong Guoy, and Edgar A. Ramos. Well-centered triangulation. *CoRR*, abs/0802.2108, 2008.
- [Whi57] H. Whitney. Geometric Integration Theory. Princeton mathematical series. University Press, 1957.

- [WV10] T. Witkowski and A. Voigt. A multi-mesh finite element method for Lagrange elements of arbitrary degree. ArXiv e-prints, May 2010.
- [Xu04] Guoliang Xu. Discrete laplace—beltrami operators and their convergence. Computer Aided Geometric Design, 21(8):767 784, 2004. Geometric Modeling and Processing 2004.