БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра программного обеспечения информационных технологий

Факультет КСиС Специальность ПОИТ

Лабораторная работа №3 по дисциплине «Методы оптимизации» на тему «Приложения линейного программирования»

Выполнил студент: Верещагин Н.В.

группа 851006

Проверил: Филатченкова О. А.

1. Формулировка задачи (Вариант 1)

Задание 1. Варианты 1-16

После нескольких лет эксплуатации промышленное оборудование оказывается в одном из следующих состояний:

- 1) оборудование может использоваться в очередном году после профилактического ремонта;
- для безаварийной работы оборудования в дальнейшем следует заменить отдельные его детали и узлы;
 - 3) оборудование требует капитального ремонта или замены.
- В зависимости от сложившейся ситуации руководство предприятия в состоянии принять такие решения: 1) отремонтировать оборудование силами заводских специалистов, что потребует, в зависимости от обстановки, затрат, равных a_1 , a_2 или a_3 ден. ед.; 2) вызвать специальную бригаду ремонтников, расходы в этом случае составят b_1 , b_2 или b_3 ден. ед.; 3) заменить оборудование новым, реализовав устаревшее оборудование по его остаточной стоимости; совокупные затраты в результате этого мероприятия будут равны соответственно c_1 , c_2 или c_3 ден. ед. Указанные выше расходы предприятия включают кроме стоимости ремонта и заменяемых деталей и узлов убытки, вызванные ухудшением качества выпускаемой продукции, простоем неисправного оборудования, а также затраты на установку и отладку нового оборудования. Требуется:
- придать описанной ситуации игровую схему, установить характер игры и выявить ее участников, указать возможные чистые стратегии сторон;
 - 2) составить платежную матрицу;
- 3) выяснить, какое решение о работе оборудования в предстоящем году целесообразно рекомендовать руководству предприятия, чтобы минимизировать потери при следующих предположениях:
- а) накопленный на предприятии опыт эксплуатации аналогичного оборудования показывает, что вероятности указанных выше состояний оборудования равны соответственно q_1, q_2, q_3 ;
- б) имеющийся опыт свидетельствует о том, что все три возможных состояния оборудования равновероятны;
 - в) о вероятностях состояний оборудования ничего определенного сказать нельзя.

Указание. В п. 3 следует найти оптимальные чистые стратегии, пользуясь: в п. 3) а) — критерием Байеса, в п. 3) б) — критерием Лапласа, в п. 3) в) — критериями Вальда, Сэвиджа, Гурвица (значение параметра γ в критерии Гурвица задается).

4) Решить в смешанных стратегиях (сведением к задаче линейного программирования).

Задание 2

Проект представлен сетевым графиком. Для каждой работы известна ее продолжительность t_{ij} и минимально возможное время выполнения d_{ij} . Пусть задан срок выполнения проекта t_0 , а расчетное $t_{\kappa p} > t_0$. Продолжительность выполнения работы (i,j) линейно зависит от суммы дополнительно вложенных средств x_{ij} и выражается соотношением: $t_{ij} = t_{ij} - k_{ij} x_{ij}$. Технологические коэффициенты k_{ij} известны.

Требуется найти: 1) критический путь, ранние и поздние сроки начала и окончания работ, резервы времени, построить сетевой график

- 2) построить линейный график (график Ганта),
- 3) такие t ^н ij, t ⁰ij, xij, чтобы:
- срок выполнения всего комплекса работ не превышал заданной величины t_0 ;
- суммарное количество дополнительно вложенных средств было минимальным;
- продолжительность выполнения каждой работы t'_{ij} была не меньше заданной величины d_{ii} .
- 4) по найденным данным найти новый критический путь, ранние и поздние сроки начала и окончания работ, резервы времени, построить сетевой график
 - 5) построить линейный график,
 - 6) сделать выводы

2. Практическая часть. Задание 1

Одним из участников игры является руководство предприятия, заинтересованное в минимизации потерь — игрок А. Вторым участником игры является «природа» (совокупность объективных неопределенных факторов) — игрок П, приводящий промышленное оборудование в то или иное состояние.

- А1 отремонтировать оборудование силами заводских специалистов,
- А2 пригласить специалистов со стороны,
- А3 заменить оборудование новым.
- **П1** оборудование может использоваться в очередном году после профилактического ремонта,
- **П2** для безаварийной работы оборудования в дальнейшем следует заменить отдельные его детали и узлы,
- ПЗ оборудование требует капитального ремонта или замены.

Платёжная матрица.

	П1	П2	П3	Min	max
A1	-10	-8	-13	-13	-8
A2	-18	-14	-10	-18	-10
A3	-25	-12	-9	-25	-9
Max	-10	-8	-9		

Критерий Байеса

$$\sum (a_{1j}q_j) = (-10) * 0.35 + (-8) * 0.45 + (-13) * 0.2 = -9.7$$

$$\sum (a_{2j}q_j) = (-18) * 0.35 + (-14) * 0.45 + (-10) * 0.2 = -12.8$$

$$\sum (a_{3j}q_j) = (-25) * 0.35 + (-8) * 0.45 + (-9) * 0.2 = -14.15$$

Выбираем из (-9.7; -12.8; -14.15) максимальный элемент Max = -9.7 Вывод: выбираем первую стратегию.

Критерий Лапласа

$$q_1 = q_2 = q_3 = 0.33.$$

$$\sum (a_{1i}q_i) = (-10) * 0.33 + (-8) * 0.33 + (-13) * 0.33 = -10.23$$

$$\sum (a_{2j}q_j) = (-18) * 0.33 + (-14) * 0.33 + (-10) * 0.33 = -13.86$$

$$\sum (a_{3i}q_i) = (-25) * 0.33 + (-8) * 0.33 + (-9) * 0.33 = -13.86$$

Выбираем из (-10.23; -13.86; -13.86) максимальный элемент Max = -10.23

Вывод: выбираем первую стратегию.

Критерий Вальда

По критерию Вальда за оптимальную принимается чистая стратегия, для которой $a = max(min \ a_{ij})$.

 $min \ a_{1i} = -13$

 $min \ a_{2j} = -18$

 $min \ a_{3j} = -25$

Выбираем из (-13; -18; -25) максимальный элемент max = -13 Вывод: выбираем первую стратегию.

Критерий Сэвиджа

Находим матрицу рисков.

		<u> </u>	
	П1	П2	П3
A1	0	0	4
A2	8	6	1
A3	15	4	0

 $max a_{1i} = 4$

 $max \, a_{2i} = 8$

 $max \, a_{3i} = 15$

Выбираем из (4; 8; 15) минимальный элемент min = 4

Вывод: выбираем первую стратегию.

Критерий Гурвица ($\gamma = 0.8$)

За оптимальную принимается та стратегия, для которой выполняется соотношение: $max(s_i)$, где $s_i = \gamma \min(a_{ij}) + (1 - \gamma) \max(a_{ij})$.

$$s_1 = 0.8 * (-13) + (1 - 0.8) * (-8) = -12$$

$$s_2 = 0.8 * (-18) + (1 - 0.8) * (-10) = -16,4$$

$$s_3 = 0.8 * (-25) + (1 - 0.8) * (-9) = -21.8$$

Выбираем из (-12; -16.4; -21.8) максимальный max = -12

Вывод: выбираем первую стратегию.

Так как цены игр меньше нуля, то прибавляем ко всем элементам платёжной матрицы некоторую константу. Пусть const = 30.

	П1	П2	П3	Min	Max
A1	20	22	17	17	22
A2	12	16	20	12	20
A3	5	18	21	5	21
Max	20	22	21		

Математическая задача для игрока А:

$$z(x) = x_1 + x_2 + x_3 \to min$$

$$\begin{cases} 20x_1 + 12x_2 + 5x_3 \ge 1, \\ 22x_1 + 16x_2 + 18x_3 \ge 1, \\ 17x_1 + 20x_2 + 21x_3 \ge 1, \end{cases} x_1, x_2, x_3 \ge 0$$

Математическая задача для игрока П:

$$f(y) = y_1 + y_2 + y_3 \rightarrow max$$

$$\begin{cases} 20y_1 + 22y_2 + 17y_3 \le 1, \\ 12y_1 + 16y_2 + 20y_3 \le 1, \\ 5y_1 + 18 + 21y_3 \le 1, \end{cases} \quad y_1, y_2, y_3 \ge 0$$

Оптимальный план:

$$x_1 = 2/49$$
, $x_2 = 3/196$, $x_3 = 0$
 $y_1 = 3/196$, $y_2 = 0$, $y_3 = 2/49$
 $z(x) = 1 * 2/49 + 1 * 3/196 + 1 * 0 = 11/196$
 $f(y) = 1 * 3/196 + 1 * 0 + 1 * 2/49 = 11/196$

Цена игры:
$$\vartheta = \frac{1}{z(x)} = \frac{196}{11} = 17.82$$

17.82 - 30 = -12.18 — значит цена игры, лежащая в промежутке [-13; -12].

При этом стратегия, оптимальная для игрока, определяется как:

$$p_1 = 0.727, p_2 = 0.273, p_3 = 0$$

 $q_1 = 0.273, q_2 = 0, q_3 = 0.727$

3. Практическая часть. Задание 2

Постановка задачи

Проект представлен сетевым графиком. Для каждой работы известна её продолжительность t_{ij} и минимально возможное время выполнения d_{ij} . Пусть задан срок выполнения проекта t_0 , а расчетное время $t_{kp} > t_0$. Продолжительность выполнения работы (i,j) линейно зависит от суммы дополнительно вложенных средств x_{ij} и выражается соотношением $t_{ij} = t_{ij}$ - $k_{ij}x_{ij}$. Технологические коэффициенты k_{ij} известны.

Требуется найти:

- 1) Критический путь, ранние и поздние сроки начала и окончания работ, резервы времени, построить сетевой график
- 2) Построить линейный график (график Ганта)
- 3) Такие t_{ij}^{H} , t_{ij}^{O} , x_{ij} , чтобы:
 - Срок выполнения всего комплекса работ не превышал заданной величины t₀;
 - Суммарное количество дополнительно вложенных средств было минимальным;
 - Продолжительность выполнения каждой t'_{ij} была не меньше заданной величины d_{ii} .
- 4) По найденным данным найти новый критический путь, ранние и поздние сроки начала и окончания работ, резервы времени, построить сетевой график
- 5) Построить линейный график
- 6) Сделать выводы

Условие индивидуального задания

ı	Тараметры		Работы										
		1,2	1,3	1,4	2,4	2,5	3,4	3,6	4,5	4,6	5,6	выполнения	
												проекта t₀	
t	- -ij	6	15	26	7	11	10	11	12	13	17		
	d _{ij}	5	13	20	5	9	7	8	9	12	15	50	
ŀ	ι j	0,07	0,2	0,3	0,1	0,05	0,1	0,04	0,05	0,15	0,5		

Где:

 t_{ij} – продолжительность выполнения работы;

 d_{ij} –минимально возможное время выполнения;

 k_{ij} – технологический коэффициент работы.

Критический путь, ранние и поздние сроки начала и окончания работ, резервы времени, построить сетевой график

- $t_p(i)$ ранний срок свершения события i. Самый ранний момент времени к которому завершаются все предшествующие этому событию работы. Так как может быть несколько путей, предшествующих данному событию, то ранний срок свершения события определяется продолжительностью максимального предшествующего пути $t_p(i) = t[L_1(i)]$, где $L_1(\underline{i})$ максимальный предшествующий путь.
- $t_{\Pi}(i)$ поздний срок свершения события i. Самый поздний момент, после которого остается ровно столько времени, сколько необходимо для завершения всех работ, следующих за этим событием, без превышения критического времени $t_{\text{кp}}$. $t_{\Pi}(i) = t_{\text{kp}} t[L_2(i)]$ где $L_2(\underline{i})$ длина максимального из последующих путей.

Резерв времени события R(i) равен Разности между поздним и ранним сроками свершения события: $R(i) = t_{\Pi}(i)$ - $t_{p}(i)$.

Ранний срок начала работы (i,j) равен раннему сроку свершения события i: $t_{\text{ph}}(i,j) = t_{\text{p}}(i)$.

Ранний срок окончания работы (i,j) равен сумме раннего срока свершения начального события работы и ее продолжительности: $t_{po}(i,j) = t_p(j) + t_{ij}$.

Поздний срок окончания работы (i,j) совпадает с поздним сроком свершения ее конечного события: $t_{\text{по}}(i,j) = t_{\text{п}}(j)$.

Поздний срок начала работы (i,j) равен разности между поздним сроком свершения $t_{\text{пн}}(i,j) = t_{\text{п}}(j) - t_{ij}$.

Полный резерв времени работы

$$R_{\Pi}(i,j) = t_{\Pi}(j) - t_{\rm n}(i) - t_{ij}$$

Независимый (свободный) резерв времени работы

$$R_{\rm H}(i,j) = t_{\rm p}(j) - t_{\rm II}(i) - t_{ij}$$

Частный резерв времени работы первого вида

$$R'(i,j) = t_{\Pi}(j) - t_{\Pi}(i) - t_{ij}$$

Частный резерв времени работы второго вида

$$R''(i,j) = t_{p}(j) - t_{p}(i) - t_{ij}$$

События	t _p (i)	t _{II} (i)	R _{II} (i)
1	0	0	0
2	6	19	13
3	15	16	1
4	26	26	0
5	38	38	0
6	55	55	0

Работы	Продолж. работ	t _{рн} (i,j)	t _{po} (i,j)	t _{no} (i,j)	t _{пн} (i,j)	R _n (i,j)	Rн	R'(i,j)	R''(i,j)
(1, 2)	6	0	6	19	13	13	0	13	0
(1, 3)	15	0	15	16	1	1	0	1	0
(1, 4)	26	0	26	26	0	0	0	0	0
(2, 4)	7	6	13	26	19	13	0	0	13
(2, 5)	11	6	17	38	27	21	8	8	21
(3, 4)	10	15	25	26	16	1	0	0	1
(3, 6)	11	15	26	55	44	29	28	28	29
(4, 5)	12	26	38	38	26	0	0	0	0
(4, 6)	13	26	39	55	42	16	16	16	16
(5, 6)	17	38	55	55	38	0	0	0	0

Критический путь: $(1, 4) \rightarrow (4, 5) \rightarrow (5, 6)$

Линейный график (график Ганта)

Оптимизация

$$f = x_{12} + x_{13} + x_{14} + x_{24} + x_{25} + x_{34} + x_{36} + x_{45} + x_{46} + x_{56} \rightarrow min$$

Ограничения:

Срок выполнения проекта не должен превышать $t_0 = 50$:

$$t_{36}^0 \le 50$$
; $t_{46}^0 \le 50$; $t_{56}^0 \le 50$;

Продолжительность выполнения каждой работы должна быть не меньше минимально возможного времени:

$$\begin{array}{l} t_{12}^{0} - t_{12}^{\rm H} \geq 5; \\ t_{13}^{0} - t_{13}^{\rm H} \geq 13; \\ t_{14}^{0} - t_{14}^{\rm H} \geq 20; \\ t_{24}^{0} - t_{24}^{\rm H} \geq 5; \\ t_{25}^{0} - t_{25}^{\rm H} \geq 9; \\ t_{34}^{0} - t_{34}^{\rm H} \geq 7; \\ t_{36}^{0} - t_{36}^{\rm H} \geq 8; \\ t_{45}^{0} - t_{45}^{\rm H} \geq 9; \\ t_{46}^{0} - t_{46}^{\rm H} \geq 12; \\ t_{56}^{0} - t_{56}^{\rm H} \geq 15 \end{array}$$

Зависимость продолжительности работ от вложенных средств:

$$\begin{array}{l} t_{12}^{0} - t_{12}^{\rm H} = 6 - 0.07x_{12} \\ t_{13}^{0} - t_{13}^{\rm H} = 15 - 0.2x_{13} \\ t_{14}^{0} - t_{14}^{\rm H} = 26 - 0.3x_{14} \\ t_{24}^{0} - t_{24}^{\rm H} = 7 - 0.1x_{24} \\ t_{25}^{0} - t_{25}^{\rm H} = 11 - 0.05x_{25} \\ t_{34}^{0} - t_{34}^{\rm H} = 10 - 0.1x_{34} \\ t_{36}^{0} - t_{36}^{\rm H} = 11 - 0.04x_{36} \\ t_{45}^{0} - t_{45}^{\rm H} = 12 - 0.05x_{45} \\ t_{46}^{0} - t_{46}^{\rm H} = 13 - 0.15x_{46} \\ t_{56}^{0} - t_{56}^{\rm H} = 17 - 0.5x_{56} \\ \end{array}$$

Время начала выполнения каждой работы должно быть не меньше времени окончания непосредственно предшествующей ей работы:

$$\begin{array}{l} t_{12}^{\rm H}=0;\\ t_{13}^{\rm H}=0;\\ t_{14}^{\rm H}=0;\\ t_{25}^{\rm H}\geq t_{12}^{\rm 0};\\ t_{34}^{\rm H}\geq t_{13}^{\rm 0};\\ t_{34}^{\rm H}\geq t_{13}^{\rm 0};\\ t_{45}^{\rm H}\geq t_{14}^{\rm 0};\\ t_{45}^{\rm H}\geq t_{24}^{\rm 0};\\ t_{46}^{\rm H}\geq t_{24}^{\rm 0};\\ t_{46}^{\rm H}\geq t_{24}^{\rm 0};\\ t_{46}^{\rm H}\geq t_{34}^{\rm 0};\\ t_{46}^{\rm H}\geq t_{34}^{\rm 0};\\ t_{46}^{\rm H}\geq t_{34}^{\rm 0};\\ t_{46}^{\rm H}\geq t_{34}^{\rm 0};\\ \end{array}$$

$$t_{56}^{\scriptscriptstyle \mathrm{H}} \geq t_{25}^{\scriptscriptstyle 0}; \ t_{56}^{\scriptscriptstyle \mathrm{H}} \geq t_{45}^{\scriptscriptstyle 0};$$

Результат:

$$\begin{split} x_{12} &= 0; \ x_{13} = 10; \ x_{14} = 10; \ x_{24} = 0; \ x_{25} = 0; \\ x_{34} &= 0; \ x_{36} = 0; \ x_{45} = 0; \ x_{46} = 0; \ x_{56} = 4. \end{split}$$

$$\begin{aligned} t_{12}^{\text{H}} &= 0; \ t_{13}^{\text{H}} = 0; \ t_{14}^{\text{H}} = 0; \ t_{24}^{\text{H}} = 6; \ t_{25}^{\text{H}} = 6; \\ t_{34}^{\text{H}} &= 13; \ t_{36}^{\text{H}} = 13; \ t_{45}^{\text{H}} = 23; \ t_{46}^{\text{H}} = 23; \ t_{56}^{\text{H}} = 35. \end{aligned}$$

$$\begin{aligned} t_{12}^{\text{O}} &= 6; \ t_{13}^{\text{O}} = 13; \ t_{14}^{\text{O}} = 23; \ t_{24}^{\text{O}} = 13; \ t_{25}^{\text{O}} = 17; \\ t_{34}^{\text{O}} &= 23; \ t_{36}^{\text{O}} = 24; t_{45}^{\text{O}} = 35; \ t_{46}^{\text{O}} = 36; \ t_{56}^{\text{O}} = 50. \end{aligned}$$

Новый критический путь, ранние и поздние сроки начала и окончания работ, резервы времени.

События	t _p (i)	t _n (i)	R _n (i)
1	0	0	0
2	6	6	0
3	13	13	0
4	23	23	0
5	35	35	0
6	50	50	0

Работы	Продолж. работ	t _{рн} (i,j)	t _{po} (i,j)	t _{no} (i,j)	t _{пн} (i,j)	R _n (i,j)	R _H	R'(i,j)	R''(i,j)
(1, 2)	6	0	6	6	0	0	0	0	0
(1, 3)	13	0	13	13	0	0	0	0	0
(1, 4)	23	0	23	23	0	0	0	0	0
(2, 4)	7	6	13	23	16	10	10	10	10
(2, 5)	11	6	17	35	24	18	18	18	18
(3, 4)	10	13	23	23	13	0	0	0	0
(3, 6)	11	13	24	50	39	26	26	26	26
(4, 5)	12	23	35	35	23	0	0	0	0

(4, 6)	13	23	36	50	37	14	14	14	14
(5, 6)	15	35	50	50	35	0	0	0	0

Критические пути:

$$(1,4) \rightarrow (4,5) \rightarrow (5,6)$$

$$(1, 3) \rightarrow (3, 4) \rightarrow (4, 5) \rightarrow (5, 6)$$

Новый линейный график (график Ганта)

Выводы

Чтобы выполнить работы проекта за директивное время $t_0 = 50$, необходимо дополнительно вложить 24 ден. ед. При этом средства распределятся следующим образом: 10 ден. ед. – в работу (1,3), 10 ден. ед. – в работу (1,4) и 4 ден. ед. – в работу (5,6), что приведет к сокращению продолжительности работы (1,3) на 2 дня, работы (1,4) – на 3 дня, и работы (5,6) – на 2 дня. Сокращение срока реализации проекта за счет вложения дополнительных средств составит 5 ед. времени.