01 - Numeri e aritemetica di macchina

Analisi Numerica

L'analisi numerica si occupa di dare una risposta a problemi che riguardano il mondo reale.

Esempio: voglio calcolare l'area della superficie terrestre

Quali sono gli step da seguire?

- 1. Conversione del problema del mondo reale a problema del mondo matematico
- 2. Trasformazione da problema matematico a problema numerico risolvibile su un calcolatore mediante un algoritmo

Nel fare questi passaggio tuttavia introduciamo delle approssimazioni ad ogni passo (raggio della terra approssimato, π approssimato, etc...)

Il secondo problema è capire se la soluzione trovata è affidabile e porta ad un risultato accettabile rispetto alla soluzione reale o meno.

Sorgenti di errori

- 1. **Errori del modello matematico** (prodotti dal passaggio da problema reale a problema matematico)
- 2. **Errori nel modello numerico-computazionale** (prodotti dal passaggio da problema matematico a problema numerico)
- 3. **Errori presenti nei dati** (dati sbagliati per misurazioni errate)
- 4. Errori di arrotondamento nei dati e nei calcoli (approssimazione numerica)

Classificazione dei problemi numerici/computazionali

- · Problemi Diretti
- Problemi Inversi
- Problemi Di Identificazione

Siano \mathbf{x} e \mathbf{y} dati e risultati e ϕ la relazione tra dati e risultati.

Problemi Diretti

Conosco \mathbf{x} e ϕ , voglio trovare \mathbf{y}

Esempio: Calcolo integrale definiti

Problemi Inversi

Consoco \mathbf{y} e ϕ , voglio trovate \mathbf{x}

Esempio: Risoluzione sistema lineare

$$Ax = y$$

Conosco A e conosco \mathbf{y} , voglio trovare la matrice colonna \mathbf{x}

Problemi Di Identificazione

Conosco \mathbf{x} e \mathbf{y} , voglio trovare ϕ

Esempio: Approssimazione di dati

Tipi di problemi

Ben posto

Se la sua soluzione:

- esiste
- è unica
- dipende in modo continuo dai dati del problema

Mal posto

Se non è ben posto

Ben condizionato (Anticipazione)

Un problema dove a piccole perturbazioni sui dati corrispondano piccole perturbazioni sulle soluzioni.

Noi lavoreremo solo con problemi ben posti e ben condizionati.

Sistema di numerazione posizionale

Numeri reali in base β :

$$\pm (a_n...a_0.b_1b_2...)_{\beta}$$

$$(\sum_{i=0}^n a_i eta^i + \sum_{i=1}^\infty b_i eta^{-i})$$

Tutte le cifre vanno da 0 a $\beta-1$

Rappresentzione normalizzata in base eta

m = mantissa

p = esponente

 eta^{-1} è la più piccola mantissa e il limite superiore è 1

$$x=(\pm 0.d_1d_2d_3...)_eta$$

$$\pm eta^p \sum_{i>=1} (d_i)_eta * eta^{-i}$$

Numeri Di Macchina

Numeri usati nei calcolatori (sono finiti)

L'insieme dei numeri di macchina è definito come segue:

$$F(\beta, t, L, U)$$

- β = base di rappresentazione
- t = numero di cifre della mantissima
- *L* = minimo valore dell'esponente (negativo) [Lower Bound]
- U =massimo valore dell'esponente (positivo) [Upper Bound]

Quindi dato un qualsiasi numero $x=(\pm 0.d_1d_2d_3...)_eta$ abbiamo che:

- $1 \le d_i \le \beta 1 \forall i = 2, ..., t$
- L

Tipi di errori:

- Overflow numero troppo grande o troppo piccolo
- Underflow numero troppo vicino allo 0

Esempio:

Poichè in base 2 la prima cifra è per forza 1 allorà questo non verrà memorizzato.

$$F(2,3,-2,1) = \{\pm 0.1d_1d_2 \times 2^p\}$$

• $0 \le d_1, d_2 \le 1$

•
$$-2 \le p \le 1 => p = \{-2, -1, 0, 1\}$$

p/m	-2	-1	0	1
100	$0.1*2^{-2}$	$0.1*2^{-1}$	$0.1 * 2^0$	$0.1 * 2^1$
101	$0.101*2^{-2}$	-	-	-
110	$0.110*2^{-2}$	-	-	$0.110 * 2^{1}$
111	$0.111*2^{-2}$	-	-	-

Qual'è la cardinalità dell'insieme F? 33 elementi

- 16 positivi
- 16 negativi
- lo 0

Il più piccolo numero è nella prima entry della tabella, il più grande nell'ultima.

Il più piccolo numero positivo rappresentabile è eta^{L-1} Il più grande numero positivo rappresentabile è $(1-eta^{-t})eta^U$ Il più piccolo numero negativo rappresentabile è $-[eta^{L-1}]$ Il più grande numero positivo rappresentabile è $-[(1-eta^{-t})eta^U]$

Osservazione : mentre eta^L appartiene ad F , eta^U non appartiene ad F

Conversione

$$0.100 imes 2^{-2} = (1 imes 2^{-1} + 0 imes 2^{-2} + 0 imes 2^{-3}) imes 2^{-2} = 1/8$$

Cardinalità di F

Nota: si osserva che i numeri positivi sono tanti quanti i numeri positivi.

Procedimento:

- Si osserva quanti segmenti di tipo $[eta^p,eta^{p+1}]$ sono contenuti in F
- Si contano il numero di elementi contenuti in ciascun segmento

Poichè in ciascun segmento definito tra due potenze della base β c'è sempre la stessa quantità di numeri di macchina

Domanda: Quanti segmenti contiene l'insieme F^+ (solo positivi)

• U-L+1 = numero di segmenti positivi

Domanda: Quanti elementi ci sono in ciascuno di questi segmenti

Mi devo calcolare la differenza tra i due valori estremi del segmento, posso scegliere un qualsiasi

segmento quindi viene comodo lavorare sul primo segmento.

II primo numero sarà dato da $(0.10000...0) eta^{p+1}$

II successivo sarà $(0.10000...1)\beta^{p+1}$

A questo punto definiamo lo spacing (s) è la differenza tra i due numeri che viene

• $(0.0000...1)\beta^{p+1}$

Quindi poichè il numero tra parentesi è eta^{-t} abbiamo che lo **spacing di** F è:

$$s=eta^{p+1-t}$$

Quanti numeri di F sono presenti in $[\beta^p, \beta^{p+1}]$?

$$\frac{\left(\beta^{p+1}-\beta^p\right)}{s}\beta^{-p+1+t}$$

che è uguale a

$$(\beta-1)\beta^{t-1}$$

La cardinalità di F^+ è quindi $(U-L+1)(eta-1)eta^{t-1}$

Questà andrà moltiplicata per due per aggiungere i numeri negativi e andrà sommato 1 per contare anche lo 0:

Cardinalità di F = 2 * $|F^+|+1$

$$2 \times ((U-L+1)(\beta-1)\beta^{t-1}) + 1$$

Approssimazione (Floating)

Troncamento

Rimuovo tutte le cifre dopo la t-esima

$$x = \pm 0.d_1d_2...d_td_{t+1}... => \pm 0.d_1d_2...d_t$$

Esempio:

$$F(10, 4, L, U)$$

 $x = 0.372145 => 0.3721$

Arrotondamento

Prendo il numero di macchina più vicino.

Si può usare solo per β pari (noi usiamo la base 10, il pc la base 2 quindi non cè problema)

Devo sommare $\beta/2$ alla (t+1)-esima cifra e poi troncare alla t-esima cifra.

$$B = 10, t = 4$$

EX1:

$$x = 0.3798165$$

Aggiungo
$$\beta/2 \Rightarrow x = 0.37986 \Rightarrow x = 0.3798$$

EX2:

$$x = 0.1265873$$

Aggiungo
$$\beta/2 \Rightarrow x = 0.12663 \Rightarrow x = 0.1266$$

Rounding to even

Nel caso il numero si trovi esattamente a metà tra due numeri di macchina viene scelto quello pari.

Normalizzazione

Prima di effettuare un arrotondamento/troncamento bisogna normalizzare il numero.

Ad esempio:

 $x=0.01236\ {
m con}\ t=3$ non va arrotondato subito a $0.012\ {
m ma}$ prima va normalizzato in forma $x=0.1236\ {
m e}$ poi si può arrotondare a 0.124

Precisione Di Macchina

La precisione di macchina **eps** è lo spacing relativo al segmento $[\beta^0,\beta^1]$ = $[1,\beta]$:

$$eps = \beta^{1-t}$$

L' unità di arrotondamento o Roundoff Unit vale:

$$u = (1/2)eps = (1/2)\beta^{1-t}$$

Domanda: chi è il numero di macchina successivo ad 1?

• 1 + eps

Errore assoluto

$$fl = floating \ E_{ass} = |x - fl(x)|$$

Errore relativo

$$|E_{rel}| = |E_{ass}/x| = |(x-fl(x))/x| \ \ orall x
eq 0$$

Errore approsimmazione

Nel caso di approssimazione per troncamento l'errore viene sempre $\leq eps$

$$E_{ass} \leq eps$$

Nel caso di approssimazione per arrotondamento l'errore viene sempre $\leq u$ ovvero $\leq (1/2)eps$

$$E_{ass} \leq u \leq (1/2)eps$$

Quindi l'approssimazione per arrotondamento porta sempre ad un errore minore

Errori Operazioni

Ricordiamo $fl_A(x)$ il floating per arrotondamento e

$$E_{rel}^A = |(fl_A(x) - x)/x| \le u$$

e definiamo

$$egin{aligned} \xi_x &= (fl_A(x)-x)/x \ &\leq u \ & x \xi_x = fl_A(x)-x \ & fl_A(x) = x \xi_x + x = x(1+\xi_x) \end{aligned}$$

Siano $x,y\in R-\{0\}$, quello che ci chiediamo e se appartengono anche ad F Siano $\{\times,/,+,-\}$ l'insieme delle operazioni e * una generica operazione

$$x * y$$

Risultato calcolato in F

- $x => fl_A(x) \in F$
- $y => fl_A(y) \in F$

L'operazione da fare ora è quindi:

$$fl_A(x) * fl_A(y)$$

Tuttavia non sappiamo se il risultato apparterrà ad F quindi l'operazione finale diventa:

$$fl_A(fl_A(x)*fl_A(y)) \in F$$

Calcolandoci l'errore relativo sostituendo i vari $fl_A(x)$ con

$$fl_A(x) = x\xi_x + x = x(1+\xi_x)$$

troviamo che l'errore generico di una qualsiasi operazione è:

$$(\frac{x*y - (x(1+\xi_x)*y(1+\xi_y))(1+\xi_r)}{|x*y|})$$

dove ξ_r è quello relativo all'operazione finale.

Moltiplicazione/Divisione

- 1. Si esegue il prodotto/divisione delle mantisse e si sommano/sottraggono gli esponenti
- 2. Si ricava il floating del risultato (si normalizza il numero troncando o arrotondando se necessario)

Errore relativo nel prodotto

$$E_{rel}^{prod} \le |\xi_x| + |\xi_y| + |\xi_{prod}| \le 3u$$

Il prodotto risulta quindi un operazione sempre stabile a prescindere dai numeri coinvolti.

Errore relativo nella divisione

$$E_{rel}^{div} \le |\xi_x| + |\xi_y| + |\xi_{div}| \le 3u$$

(Ricavato tramite espansione di Taylor al primo ordine).

Come la moltiplicazione **la divisione è un operazione sempre stabile** a prescindere dai numeri coinvolti

Somma algebrica

- 1. Si trasorma il numero con esponente minore in modo che i 2 numeri abbiano lo stesso esponente (uno dei due perde la forma in virgola mobile normalizzata)
- 2. Si sommando le mantisse (lasciando invariati gli esponenti)
- 3. Si ricava il floating del risultato (si normalizza il numero troncando o arrotondando se necessario)

Errore relativo nella somma

$$E_{rel}^{sum}=(|rac{x}{x+y}|+|rac{y}{x+y}|+1)u$$

L'operazione non risulta stabile poiche dipende dai valori di x e y dato che se x+y è vicino a 0 l'errore relativo cresce molto.

Il caso pericoloso lo si ha quando:

- ullet x,y hanno segni discordi
- |x| vicino a |y|

In questo caso otteniamo un fenomeno di cancellazione numerica

Questo fenomeno capita solo se almeno uno dei due non appartiene ad F.

In caso in cui invece x, y abbiano lo stesso segno:

- $\left|\frac{x}{x+y}\right| \leq 1$
- $\left|\frac{y}{x+y}\right| \leq 1$

Quindi

$$E_{rel}^{sum}=(|rac{x}{x+y}|+|rac{y}{x+y}|+1)u\leq 3u$$

Study Case

Siano dati due numeri a, b e si vuole calcolare la loro media.

Due strade possibili:

- 1. $\frac{a+b}{2}$
- 2. $a + \frac{b-a}{2}$

Possiamo notare tramite i dovuti calcoli che in alcuni casi la prima strada porta ad un risultato maggiore che è oltre il range accettabile [a,b] poichè fornisce come risultato un numero maggiore di b.

La seconda strada risulta più stabile poichè porta ad un risultato molto più vicino a quello effettivo.