NEW YORK STATE DEPT OF ENVIRONMENTAL CONSERVATION ALBANY AD-A074 417 NATIONAL DAM SAFETY PROGRAM. BRANT LAKE UPPER DAM (INVENTORY NU--ETC(U)
APR 79 G KOCH
DACW51-79-C-0001 F/6 13/2 UNCLASSIFIED | OF | AD A074417 END DATE FILMED DDC

Approved for public release; Distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Extered)

REPORT DOCUMENTATION PAGE

FILE COPY

17. DISTRIBUTION STATEMENT (of the

National Dam Safety Program, Brant Lake Upper Dam (Inventory Number NY 158), Upper Hudson River Basin, Warren County, New York, Phase I Inspection Report,

19. KEY WORDS (Continue on reverse side if necessary and identity by block to

Dam Safety National Dam Safety Program Visual Inspection Hydrology, Structural Stability

Brant Lake Upper Dam Warren County Schroon River

20 ABSTRACT (Continue on reverse etch if necessary and identify by block number)

This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization.

Brant Lake Upper Dam was found to have no serious deficiencies which pose a threat to the structure. Further stability analyses were recommended. Additionally, the spillway is considered inadequate.

DD 1 JAN 73 1473

EDITION OF ! NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

OCT 5

READ INSTRUCTIONS

BEFORE COMPLETING FORM

UPPER HUDSON RIVER BASIN

BRANT LAKE UPPER DAM

WARREN COUNTY, NEW YORK INVENTORY No. NY 158

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED
CONTRACT NO. DACW-51-79-C0001

NEW YORK DISTRICT CORPS OF ENGINEERS

JANUARY 1979

UPPER HUDSON RIVER BASIN BRANT LAKE UPPER DAM I.D. No. NY - 158 (#652) PHASE 1 INSPECTION REPORT

TABLE OF CONTENTS

		PAGE NO.
- ASSESS	SMENT	
- OVERVI	IEW PHOTOGRAPH	
1 PROJEC	CT INFORMATION	1
1.1 GENER	RAL	1
1.2 DESCR	RIPTION OF PROJECT	1
1.3 PERTI	INENT DATA	2
2 ENGINE	EERING DATA	4
2.1 DESIG	GN	4
2.2 CONST	TRUCTION RECORDS	4
2.3 OPERA	ATION RECORD	4
2.4 EVAL	UATION OF DATA	4
3 VISUAL	L INSPECTION	5
3.1 FIND:	INGS	5
3.2 EVAL	UATION OF OBSERVATIONS	6
4 OPERA	TION AND MAINTENANCE PROCEDURES	7
4.1 PROC	EDURE .	7
4.2 MAIN	TENANCE OF DAM	7
4.3 WARN	ING SYSTEM IN EFFECT	7
4 4 EVAL	LIATTON	.7

		PAGE NO.
		* * -
5	HYDROLOGIC/HYDRAULIC	. 8
5.1	DRAINAGE AREA CHARACTERISTICS	8
5.2	ANALYSIS CRITERIA	8
5.3	SPILLWAY CAPACITY	8
5.4	RESERVOIR CAPACITY	8
5.5	FLOODS OF RECORD	8
5.6	OVERTOPPING POTENTIAL	9
5.7	EVALUATION	9
6	STRUCTURAL STABILITY	10
6.1	EVALUATION OF STRUCTURAL STABILITY	10
7	ASSESSMENT/RECOMMENDATIONS	12
7.1	ASSESSMENT	12
7.2	RECOMMENDED MEASURES	12
APPEND	<u>ıx</u>	
Α.	PHOTOGRAPHS	
в.	ENGINEERING DATA CHECKLIST	
c.	VISUAL INSPECTION CHECKLIST	
D.	HYDROLOGIC/HYDRAULIC ENGINEERING DATA AND COMPUTATION	ONS
E.	STRUCTURAL STABILITY COMPUTATIONS	
F.	REFERENCES	Accession For
G.	DRAWINGS	NTIS G.J.&I
		Unannounced Justification
		Distribution/
		Availability Codes
		Availand/or
		Dist special
		A

PHASE 1 REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam:

Brant Lake Upper Dam I.D. No. NY-158 (#652)

State Located:

New York

County Located:

Warren

Watershed:

Upper Hudson River Basin

Stream:

A tributary of the Schroon River

Date of Inspection:

October 24, 1978

ASSESSMENT

The Brant Lake Upper Dam is the structure which maintains the level of Brant Lake for recreational purposes. A visual inspection did not reveal any deficiencies which pose a serious threat to the structure. Concrete surfaces on both the highway bridge which crosses the dam and the northeast wingwall are deteriorated and in need of repair. A small scour hole exists on the eastern end of the spillway under the bridge abutment. While these deficiencies do not appear to be serious, they are problems which should be addressed.

Stability analyses for this structure indicate that the factors of safety for all conditions analyzed are unsatisfactory. Further studies are required to better assess the structural integrity of the dam. An investigation of the concrete spillway section should be made to determine the exact limits and dimensions of the concrete and using this information, the structural stability should be reanalyzed. This study should be commenced within six months of the date of final approval of this report.

The spillway capacity is not sufficient to pass the Probable Maximum Flood (PMF). However, the spillway will pass the outflow from 1/2 PMF. Therefore, the spillway is considered to be inadequate. A program of periodic inspection and maintenance should also be established for the dam. In addition, a warning system should be developed and placed in readiness for future use.

orga Kach George Koch Chief, Dam Safety Section New York State Department of Environmental Conservation NY License No. 45937 Approved By: Col. Clark H. Benn New York District Engineer Date:

OVERVIEW - LOOKING DOWNSTREAM

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM BRANT LAKE UPPER DAM I.D. No. NY-158 (#652)

UPPER HUDSON RIVER BASIN WARREN COUNTY, NEW YORK

SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority

The Phase I inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-367.

b. Purpose of Inspection

To evaluate the existing conditions of the dam, to identify deficiencies and hazardous conditions, determine if they constitute hazards to life and property, and recommend remedial measures where necessary.

1.2 DESCRIPTION OF PROJECT

a. Description of the Dam and Appurtenant Structures

The Brant Lake Upper Dam consists of a spillway section
in the center and wingwalls retaining fill and natural ground on either
side. A town highway crosses the top of the dam on a bridge spaning the
spillway. Based on available information, the dam is approximately 35
feet long.

The spillway section is about 15 feet long and is composed of a block of concrete 3.5 feet wide and 9 feet high. The vertical drop from the spillway crest to its base at the downstream channel is 7 feet.

Masonry wingwalls extend out from either end of the spillway. These masonry walls appear to have been a portion of the original dam. Only one of these walls is still exposed, the other having been covered by the east abutment of the bridge. The top of this exposed wall is about 2 feet above the spillway crest. This level was apparently the original top of the dam. Fill material placed as part of the dam ties into the natural ground surface at a point near the end of these walls.

The existing highway bridge was constructed on top of the dam. The bridge abutments rest on the ends of the spillway. Concrete wingwalls were built on each end of both abutments to permit raising the grade of the highway. This increased the effective height of the dam to 5.5 feet above the spillway crest.

b. Location

Brant Lake Upper Dam is located at the southern end of Brant Lake in the Town of Horicon. The lake outlets into a small pond formed by the Brant Lake Lower Dam. This in turn empties into a tributary of the Schroon River.

c. Size Classification

This dam is 11.5 feet high and the reservoir has a storage capacity of 37,075 acre feet. Therefore, the dam is in the "intermediate" size category as defined by the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification

The dam is classified as "high" hazard due to the presence of 10 to 15 houses, several stores, the town hall and a fire station downstream of the dam.

e. Ownership

The dam is owned by the Town of Horicon.

f. Purpose of Dam

The dam is now used exclusively to maintain the water level of Brant Lake. The lake is used primarily for recreational purposes.

g. Design and Construction History

Based on the records available, the dam was constructed in 1908. No construction plans were available for the structure so it was not possible to determine the exact date of construction or the name of the designer.

h. Normal Operation Procedures
Water flows over an ungated spillway.

Dam length (ft)

Crest Elevation

Crest Width (ft)

1.3 PERTINENT DATA

<u>a.</u>	Drainage Area (acres)	26100)
b.	Discharge at Dam (cfs)		
	Total at Maximum High Water (Top of Bridge/Roadway)	940	
	Spillway @ Top of Dam	436	
c.	Elevation		
	Top of Bridge/Roadway	804	
	Top of Dam	803.	. 5
	Spillway Crest	799	
	Lake Surface Elevation (1966 USGS 7.5' quad)	799	
d.	Reservoir (acres)		
	Top of Bridge/Roadway	1761	(est.)
	Surface Area at Top of Dam	1711	(est.)
	Surface Area at Crest of Spillway	1490	
e.	Storage Capacity (acre-feet)		
	Top of Bridge/Roadway	3881	
	Top of Dam	3707	5
	Spillway Crest	2987	5
f.	Dam		

Earth dam with a concrete drop spillway in the center

Vertical Downstream Face on Concrete Section Earth portions of dam retained by wingwalls 34(+)

803.5

30 (+)

g. Spillway

Type:

Uncontrolled rectangular concrete drop structure having a 3.5 foot wide broad crested weir.

Length (ft) Weir

14.8

SECTION 2: ENGINEERING DATA

2.1 DESIGN

a. Geology

The Brant Lake Upper Dam is located in the "Adirondack Highlands" physiographic province of New York State. Bedrock in this area consists of medasedimentary gneisses, marbles and quartzites. The surficial soils are the result of glaciations during the Cenozoic Era.

Subsurface Investigations

We were unable to locate any record of subsurface investigations taken for this structure. The only information available is from inspection reports dated August 13, 1913 and July 16, 1920, both of which suggest that the foundation soil is predominantly gravel.

2.2 CONSTRUCTION RECORDS

No construction records were available for this structure.

2.3 OPERATION RECORDS

There were no operating or water level records available for this structure.

2.4 EVALUATION OF DATA

The only data available for this report was from the Department of Environmental Conservation files. New York State Conservation Commission inspection reports from 1913 and 1920 were the sole source of subsurface and structural information on this structure. While the information available concerning this dam was quite limited, it appears to be adequate and reliable for the purpose of the Phase I Inspection.

SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General

Visual inspection of Brant Lake Upper Dam was conducted on October 24, 1978. The weather was clear and the temperature was in the forties. Water was flowing approximately 1 inch deep over the spillway at the time of the inspection.

b. Dam

This dam is a small structure with a highway running across the top. The spillway is in the center of the structure. A highway bridge spans this spillway. The bridge abutments rest on either end of the spillway. Beyond the ends of the spillway the soil serves both as dam embankment and roadway subgrade and is retained by the abutments and wingwalls. The wingwalls extend up to about 5.5 feet above the spillway crest, to the level of the roadway surface. The dam embankemnt ties into the natural soil at some point near the end of the wingwalls. The section of natural soil becomes very wide beyond the end of the walls and so will not be considered as part of the dam.

c. Spillway

The spillway itself consists primarily of a mass of concrete between the abutments. The entire block forms a broad crested wier 14.8 feet long by 3.5 feet wide. The concrete which was visible on the spillway block itself, appeared to be in satisfactory condition.

d. Highway Bridge

The highway bridge which carries a town road over the dam (New York State Bridge No. 3305250) is in poor condition. Concrete on the bridge is seriously deteriorated, especially on the upstream fascia where the coarse aggregate is exposed over almost half of the fascia. In addition to this deterioration, there is a small area under the east abutment which has been scoured due to flow over the spillway. The area is several feet long but only a couple of inches deep. It is near the point where the east wingwall on the upstream face ties into the abutment.

The Town of Horicon is now investigating the possibility of reconstructing this bridge. If they are able to secure funding, they plan to rebuild the bridge within a year. Should this bridge collapse, it might damage the dam or it could block the spillway.

e. Wingwalls

There are concrete wingwalls on either side of both abutments. The wall on the east side of the upstream face (northeastern wall) is in poor condition. The flow of water has cut into the face of the wall and has undermined the toe slightly. This wall retains an area where the soil section is widest and so it is unlikely that failure of the wall would endanger the dam or allow the water to flow around the end of the structure.

The wall on the west side of the upstream face is in satisfactory condition. This wall is composed of a concrete section about 4 feet high founded on a masonry block base which is also about 4 feet.

Surface runoff from the road and possibly scour which occured at times of high water had eroded some of the soil beyond the end of the wall. In an apparent attempt to stop this erosion, sand bags had been placed at the end of the wall beginning at the toe and continuing about half the way up the slope. This erosion problem does not appear to be serious.

Both retaining walls on the downstream side appear to be in satisfactory condition.

f. Downstream Channel

Flow over the spillway falls into a boulder filled stream bed. This channel is only about 25 feet long. It then empties into the backwater pond formed by the lower dam. This Lower Dam is about one half mile downstream of the Upper Dam.

There is one area near the Lower Dam which appears to be at a lower elevation than the dam crest. In the event of a failure of the Upper Dam, the floodwaters would probably flow through this area affecting the post office and several houses.

3.2 EVALUATION OF OBSERVATIONS

Visual observations did not reveal any serious problems which would affect the immediate safety of the dam. However, the following deficiencies were noted:

- 1. Deterioration of concrete on the northeast wingwall.
- Void under the concrete at the junction of the northeast wingwall and the east abutment.
- Minor concrete spalling in the zone of aeration of the flowing water on several of the remaining concrete faces.
- Deterioration of the concrete and generally poor condition of the highway bridge on top of the dam.

SECTION 4: OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURE

Normal water surface elevation is at the crest of the spillway. Downstream flows are uncontrolled over this spillway. The reservoir provides 7,200 acre-feet of storage between the crest of the spillway and the top of the dam.

4.2 MAINTENANCE OF DAM

From the information available to us, we would assume that no maintenance has been done on the dam for a number of years.

4.3 WARNING SYSTEM IN EFFECT

No apparent warning system is present.

4.4 EVALUATION

Some maintenance is required on the dam, mainly to repair the deteriorated concrete surfaces.

SECTION 5: HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

Delineation of the contributing watershed to Brant Lake was made using both USGS 7.5 and 15 minute quadrangle sheets. The 40.78 sq. mi. rectangular-shaped watershed consists of forested and wooded lands throughout. Relief is relatively steep; the areas South and East of Brant Lake have slopes in the range of 10 to 35% and the areas Northeast to West of the Lake have slopes in the range of 45 to 70%. Mountain peaks occur at elevations 600 to 1300 feet above normal lake level.

5.2 ANALYSIS CRITERIA

No hydrologic/hydraulic information was available regarding the original design for this dam. Therefore, the analysis of the spillway capacity of the dam was performed using the Corps of Engineers HEC-1 computer program, incorporating the "Snyder Synthetic Unit Hydrograph" method and the "Modified Puls" flood routing procedure. The spillway design flood selected for analysis was the PMF in accordance with recommended guidelines of the U.S. Army Corps of Engineers.

5.3 SPILLWAY CAPACITY

The single, concrete drop spillway located in the center of the dam is uncontrolled, with a sloping crest 3.5 feet wide and 14.8 feet long.

Hydraulically, the spillway was analyzed operating under weir flow and orifice flow conditions. Weir flow was evaluated from the spillway crest upward to the bottom-side of the bridge beams spanning the spillway. Acting as a broad-crested weir, a discharge coefficient varying with head was used in the analysis. Orifice flow under low head conditions was evaluated for water surface elevations above the bottom side of bridge beams elevation. If the water surface overtops the bridge and roadway, a combination of orifice flow through the drop spillway and weir flow over the bridge and roadway was analyzed.

The spillway capacity of 940 cfs is not sufficient for discharging the peak outflow from the PMF. However, the spillway does have sufficient capacity for discharging the peak outflow from 1/2 the PMF. For this storm, the peak inflow is 12,400 cfs and the peak outflow is 390 cfs. For the PMF, the peak inflow is 24,800 cfs and the peak outflow is 5,200 cfs.

5.4 RESERVOIR CAPACITY

Normal reservoir capacity when the water surface is at the spillway crest elevation is 29,875 acre-feet including approximately 20,100 acre-feet of dead storage. Surcharge storage capacity to the top-of-dam elevation is an additional 7,200 acre-feet, which is equivalent to a runoff depth of 3.3 inches over the drainage area. Additional storage capacity to the top-of-bridge/roadway elevation is an additional 1,740 acre-feet or 0.8 inches of runoff depth.

5.5 FLOODS OF RECORD

No information was available regarding the occurrence of the maximum known flood.

5.6 OVERTOPPING POTENTIAL

Analysis using the PMF indicates the spillway does not have sufficient discharge capacity. For the peak outflow of 5,200 cfs, the discharge capacity is 940 cfs. Hence, overtopping of the dam and also the bridge/roadway to computed depths of 4.5 feet and 3.5 feet respectively would occur for this outflow.

5.7 EVALUATION

This dam does have sufficient capacity to satisfactorily discharge the peak outflow from 1/2 the PMF without overtopping. It does not have sufficient capacity to satisfactorily discharge the PMF peak outflow. Therefore, the dam is regarded as having inadequate spillway capacity.

SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

Visual observation of the dam did not reveal any signs of major distress. The spillway section, the abutments, and the wingwalls all appeared to be relatively stable. The only problem noted was the undermining near the point where the east abutment joins the northeast wingwall. Further undermining in this area could result in a stability problem.

b. Design and Construction Data

No design computations or other data were available on the structural stability of the structure. We were not able to locate any construction records.

c. Data Review and Stability Evaluation

The only data available concerning this structure was from the Department of Environmental Conservation files. The 1913 and 1920 N.Y. State Conservation Commission inspection reports were the sole source of structural and subsurface information. Due to the limited data, certain assumptions concerning the dam and its foundation conditions had to be made.

The structural analysis was based on a cross section of the spillway section shown on the 1920 inspection report. While substantial modifications have been made on top of the dam (placing additional fill and constructing the highway bridge), we believe that the concrete spillway section has remained essentially unchanged. It is also our belief that the concrete section extends beyond the ends of the spillway into the highway embankment. However, since we were unable to document this opinion, the spillway section was analyzed as acting independent of the abutments.

Stability analyses were performed for the following three conditons:

- a. normal conditions with reservoir at the spillway crest
- b. 1/2 PMF, water flowing over the spillway 4.3 feet deep.
- c. reservoir at spillway crest with ice load of 5000 lb/ft.

The analyses performed (see Appendix E) indicate unsatisfactory stability against overturning and sliding for the forces assumed.

:		FACTORS O	F SAFETY
CAS	<u>SE</u>	OVERTURNING	SLIDING
ı.	Reservoir Level at Spillway Crest; No ice	1.41	1.06
II.	1/2 PMF; Water flowing over Spillway to Depth of 4.3 Ft.; No ice	.78	.53
III.	Reservoir at Spillway Crest; Ice Load of 5,000 lb/ft.	.40	.42

These factors of safety indicate a critical deficiency in the stability of this structure. However, the dam has withstood the test of time (having been in existence since about 1908). As stated above, there were no signs of major distress observed during the visual inspection. Therefore, it appears that the concrete section is deriving some support from the area beyond the ends of the spillway. Further investigation will be required to confirm this opinion.

d. Seismic Stabiltiy

The dam is located in Seismic Zone No. 2. Since the seismic coefficient is relatively small, a seismic stability analysis is not warranted.

SECTION 7: ASSESSMENT/RECOMMENDATIONS

7.1 ASSESSMENT

a. Safety

The Phase I inspection of Brant Lake Upper Dam did not reveal any conditions which constitute a hazard to human life or property. The dam and earth embankments appear to be stable. Concrete on the bridge which crosses the dam and the northeast wingwall are deteriorated but failure of either of these would probably not affect the integrity of the structure.

b. Adequacy of Information

The information available was extremely limited. No construction plans, subsurface information, or hydrologic data were available. Therefore, the observations made during the visual inspection of the structure were the primary source of information on this structure.

c. Urgency

The condition of the dam and dike is considered to be a non-emergency situation not requiring immediate action to protect the downstream development.

The stability analyses indicate that the safety factors for all conditions analyzed are unsatisfactory. Further investigation of the structural stability is needed. This study should be commenced within six months of the date of final approval of this report.

7.2 RECOMMENDED MEASURES

- a. Investigate the concrete spillway section to determine the exact limits and dimensions of the concrete, and using this information reassess the stability of the dam.
- b. Fill the void which exists at the eastern end of the spillway under the bridge abutment.
- c. Repair the deteriorated concrete on the northeastern wingwall.
- d. Repair or replace the highway bridge crossing the dam.
- e. Establish a program of periodic inspections of the dam.
- f. Maintain a record of maintenance of the dam.
- g. Develop and place in readiness a warning system for possible future use during periods of unusually heavy precipitation.

APPENDIX A

PHOTOGRAPHS

Dam (Circa. 1920)

Spillway Looking Upstream

Scour Hole At East Abutment

Concrete Deterioration in Zone of Aeration

Top of Dam at West Abutment

Concrete Deterioration on Bridge Fascia

APPENDIX B

ENGINEERING DATA CHECKLIST

	Item		Dem	Spillway(s)	Outlet(s)	Design Reports	Design Computations Discharge Rating Curves Dam Stability Seepage Studies	Subsurface and Materials Investigations	55	
Engineering Data Design Construction Operation	Remarks	Plens Details	NONE	NONE	NONE	•	NOME			
1.D. ₱ NY-158 #053- UPER HOPSCA		Typical Sections								

CONSTINCTION HISTORY DAM REPORT - APPLICATIONS NAM APPLES DATED: AUG - 1913	1			
DAM REPORT - APPLICATIONS DATED: ALG - 1913				
DAM REPCRI - A DATED: A				351-JN
DATED: A	Construction History	4	₹	
		<		

Joed - pack

Surveys, Modifications, Post-Construction Engineering Studies and Reports

₹ N

> Accidents or Railure of Dam Description, Reports

N/N

Operation and Maintenance Records Operation Manual

NONE

APPENDIX C

VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST

1)	Bas	ic Data	
	a.	General Control of the Control of th	
		Name of Dam BRANT LAKE UPPER DAM	
		1.0. 1 NY - 158 (#652 - UPPER HUDSON)	
		Location: Town HORICON County WARREN	1
		Stream Name CNNAMED	1
		Tributary of SCHROON RIVER	-
		Longitude (W), Latitude (N) W 73°-44'-57" N 43°-40'-39"	- 4
		Hazard Category	-
		Date(s) of Inspection 10/24/78	1
		Weather Conditions CLEAR SUNNY 40 1	
	ь.	Inspection Personnel R. WARRENDER W LYNICK	
	c.	Persons Contacted E. BUMP (TOWN SUPERVISOR) 518-494-3647-Town HA	11
	c.	Persons Contacted E. BUMP (TOWN SUPERVISOR) 518-494-3647-Town HA	12
		Persons Contacted E. BUMP (TOWN SUPERVISOR) 518-494-3647-70WW HA	22
			22
		History:	22
		History: Date Constructed 1908	126
		History: Date Constructed 1908 Owner Town OF HORICON	22
2)	d.	History: Date Constructed 1908 Owner Town OF HORICON Designer UNKNOWN	
2)	d.	History: Date Constructed 1908 Owner Town OF HORICON Designer UNKNOWN Constructed by UNKNOWN	-
2)	d. Tec	History: Date Constructed 1908 Owner Town OF HORICON Designer UNKNOWN Constructed by UNKNOWN	22
2)	d. Tec	History: Date Constructed 1908 Owner Town of Horicon Designer UNKNOWN Constructed by UNKNOWN Chnical Data Designer STONE-BLOCK MASONRY AND CONCRETE	146
2)	d. Tec	History: Date Constructed 1908 Owner Town OF Horicon Designer WAKNOWN Constructed by WAKNOWN Chnical Data Se of Dam STONE-BLOCK MASONRY AND CONCRETE Sinage Area 20100 ACRES	

2) Techn	ical Data (Cont'd.)		
Exter	nal Drains: on Downst	ream Face N/A	@ Downstream Toe N/A
Inter	nal Components:		
	Impervious Core	NONE	
	Drains	NONE	
	Cutoff Type	NONE	
	Grout Curtain	NONE	

2 .

Emt	pankm	ent •	
		BACKFILL CONTAINED BY BRIDGE ABUTMENTS AND WINGWALLS; PAVED FORMS THE TOP OF THE BACKFILL	RO
а.		Vertical Alignment SATISFACTORY	
		Horizontal Alignment SATISFACTORY	
	(3)	Surface Cracks N/A	
	(4)	Miscellaneous	
b.	\$1o	Undesirable Growth or Debris, Animal Burrows N/A	
	(2)	Sloughing, Subsidence or Depressions N/A	
•	(3)	Slope Protection N/A	
	(4)	Surface Cracks or Movement at Toe N/A	
	(5)	Seepage N/A	
			-17
	(6)	Condition Around Outlet Structure N/A	

.

RENT

0.	Stability
n.	Intake Structures N/A
m.	Energy Dissipators (plunge pool, etc.) NONE
1.	Approach & Outlet Channels N/A
	CONCRETE CRACKED ; REPAIRS DUE IN 1979 Control Gates NONE
1.	Abutments EAST BRIDGE ABUTMENT - HOLE & DUDERMINED @ WATER SURFACE
ı.	Foundation BOULDERS & ROCK IN STREAMBED BELOW DROP

APPENDIX D

HYDROLOGIC/HYDRAULIC

ENGINEERING DATA AND COMPUTATIONS

Marie de ville de la companya de la

Chine Sec.

Miland Mil

want

(1) (ANT COMPANY OF THE PROPERTY OF THE PROPER

CHECK LIST FOR DAMS HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

BRANT LAKE UPPER DAM NY-158

AREA-CAPACITY DATA:

		Elevation (ft.)	Surface Area (acres)	Storage Capacity (acre-ft.)
1)	Top of Dam (BOTTOM OF BRIDGE STRI	803.5 NGER)	1711 (557.)	_37075 (₽)
2)	Design High Water (Max. Design Pool)	NA		
3)	Auxiliary Spillway Crest	NA		
4)	Pool Level with Flashboards	NA		
5)	Service Spillway Crest	199 66 0595 7.5' QUAD)	1490	29875 (EST.)

	DISCHARGES	
		Volume (cfs)
1)	Average Daily	NA
2)	Spillway @ Maximum High Water (TOP OF BRIDGE ELEV.)	940
3)		436
4)	Spillway @ Auxiliary Spillway Crest Elevation	NA ·
5)	Low Level Outlet	NA
6)	Total (of all facilities) @ Maximum High Water	940
7)	Maximum Known Flood	UNKNOWN

CREST:	ELEVATION: 803.5	-
Type: STONE-B	CCK MASONRY AND CONCRETE ; EARTH BACKFILL BE	DIMIN
Width: 30' NOL	Length: 34' + EAST ABUTMENT WINGWALLS	
	PAL SPILLUAY	-
Location CENTE	OF DAM ; BETWEEN THE BRIDGE ARUTMENTS	-
SPILLWAY:		
PRINCIPAL	EMERGENCY	
799 7	'QUAD Elevation	-
CONCETE VERTICAL I	COP STRUCTURE Type NONE	-
3.5	Width	-
	Type of Control	
	Uncontrolled	_
	Controlled:	
POSSIBLY USED AT ONE	ME Type	-
a pent aleer your in cr	Number	
14.8	/Length	-
14.8	Invert Material	
and the second of the second o		
	Anticipated Length of operating service	_
N/A	Chute Length	
o'	Height Between Spillway Crest & Approach Channel Invert (Weir Flow)	-

Type: Gat	e	Sluice		Conduit	Pensto	ck
Shape :						
		Invert				
		ert				
Tailrace Cha		evation				
HYDROMETEROLOGIC						
						_
Records:						
						_
Max. R	eading					
FLOOD WATER CONT	ROL SYSTEM	•				
Warning Syst	em: NON	IE				
			•			
Method of Co	ntrolled R	eleases (mech	anisms):			

OTHER: 1) BRANT LAKE (AS A WATER RESOURCE) IS CLASSIFIED "AA-SPECIAL"

B	RAN	T		L	AKE	=	H	E	H	-	PHA:	Æ	I	. (RPT				SHE	I/	vo. 3				D 8			DAT			
ECT											_												CO		TED			DAT	2/	3/7	18
1	1	1										1											L	L							
+	+	+	4		_		_	_	_		-	+	-		0		_	_				-	1.	-	_	_				-	
+	+	+	-		-	-	-		-		-	+	-	U	1	E	R	-	A	M.		-	1-	0	DE	R.	VA	M		-	_
+	+	+	-	20	-	-	-	-	10	-	-	+	-	-	2				-			+	+	-	-	-		-			-
+	+	+	1	UK	All	A	G.E		AR		+	+	-		20	210	00	A	K	9		+	+	1	16:	74	7.	CK	52		-
+	+	+	1								1	+	-			4	.7	2	40	M			+	+	41	0	5	6	41		
US	6=	,		14	b :							1				-									1	-		-	"		
		1	7									1								1	5										
			U	Su	RE	AC	E	A	RE	A:						14	90		CR	ES						5	AC	RE	5		
																							L								
		1																					-	-							
+	1	1	-					_	_			1											-	-	-	_		_			
+	-	+	4		_	_	_		_	-	-	4	-		_	-				-		-	+	+	-	_	_	-			
+	+	+	-		-						-	+	-		_	-			-			-	+	-	-	-		-			_
+	+	+	-			-	-	-			+	+	-		-	-			-	-	-	+	+	+	-	-	-	-			-
+	+	+	1		-						+	+			-								+	-	-	-					
+	+	+	1	-							1	1	1		_							\vdash	+	+	-	-					
+	+	1						5				1											1	+							
1	1	1										1												1							
	T	1							2			1											T								
		I																													
1																															
1	1	1										1											1	-							
+	+	+			_		_		_		-	-				_			_	_			+	-	-	_	_	_			
+	+	+	-		-	-	-		-	-	1	+			_				_	-	-		+	+	-	-	-	-			
+	+	+				-	-		-			+	_		_	-			-	-	-		+	-	-	-	-	-			-
+	+	+	3		1	-	-	-	-	-		+		-	-	-			-	-			+	+	-	-	-	-			
	+	1			1		17	-			+	+				-							+	-	-						
+	+	1								-	1	1			-							1	+	-	-	-					
1	1	1										1											T	T							
			1																												
	T																														
																								L							
1	1	1				_			_			4				_				_			-	-	-	_		_			
+	+	1	_		-	-	_	_	-			4		_		_			_	_			+	-	-	-	_	_			
+	+	+	_		-	-	-	_	-			+				_			-	-		-	+	+	-	-	-	-			
+	+	+	-		-	-	-	-	-	-	-	+	-	_	_	-			-	-		-	+	+	-	-	-	-			_
+	+	+	-		-	-	-	-	-		-	+	-	-	_	-			-		-		+	+	-	-	-	-			
+	+	+			-		-	-	-	-	+	+	-		-	-				-	-	-	+	+	-	-		-			
+	+	+				-	-	-	-		1	+	-			-						-	+	-		-	-				
+	+	+	-	-	-	-	-	-	1	-	-	+	-	-	-	-	-	_		-	-	-	+	+	-	-	-	-	-		-

0	RA	T	1	-A	KE		H	EF	4	-	1	IAS	E	I	RP	7-	1	9	13											
CT																			-				CON			Y	DAT	E		
DR	IIAS	VAC	E	-	ARE	EAG	5	-	f	LA	HIM	ET	ER	E)									ω c	L		1	2/	8/	78
T	T	T																1	1								T			
1	16	ds	6	in	n	-		EN	T	RE	A	DE	_														T			
+	-	42					1.		25			-		-			1	-	7					1	1	-	+		_	
+	+	+-	13	AL	E	1	1:	9.	2		_	-	-	-			-	-+	-	-		-	-	-	-	-	+-	-	-	-
1	1	1	_	-	_	-	_	_				_	_	-		_	1	-	-	_	_	_		-	-	-	+	-		_
1	1	1	Uf	PE	R	DA	M	-	-		41	.9	1	M					2	00	9	2	ACE	ES			140	5.7	8	0
1		T		DR		RE	A												(20		∞)								
T	1																	7								T	T			
+	+	+	-	1	-		1				3	2		IN		_		7	-	40	~		CE		7	+	+			
+	+	+-	3	1KE	AC		1	KE			9	. 2	0	In		-	H	-	-4	3.4		^	-	3	-	+	+-	-	-	-
+	1	-	_	-	_	-	_	_	-	_		-	_	_		_		-	-	_		_		-	-	-	+		_	_
1																										1	1			_
1																			1	2	9						1			
T	1			T							41	9	1						4	10	0	000	ES				T			
+	+	+	1	1	10	1	1	1	-	+		.3				-	-	-	-			-	-	-	1	-	1			
+	+	+	100	WE DA	K	RE	M	=	-	=	=	=		-	-	-	-	-	-		-	_	-	-	-	-	+	-	-	-
+	-	-	-	-	-	-	<u></u>	-	-	_	_	_	_	-	_	_	-	-	(63	00	1	-	-	-	-	+	-	-	-
1		1			1						42	.2	3	IN					24	02	98	A	CRE	5			14	1.0	29	30
-			1		1														1											
T			5	100	1		Pa	10			0	.0	2	IN						12	A	E	ACE	FC		1	T			
+	+	+	1	1	-	-	10	-			_			-						100	-				1	1	1			
+	+	+	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	+	+	-	-	-
+	-	+	-	-	-	-	-	-	-			_	-	-	-	_	-	-	-		_	-	_	-	-	-	+	-	-	-
1	1	1												_												-	_		_	_
			AF	E	4:								-	4.	5		6.			28	58		ACE	E		1		4.	47	90
T	T		1		OF		43	1	5												360						T			
+	+	+	1			ID	7	1	-		-		-	1	-					-						1	+			
+	+	+	+	-		1	-		-	-	**	-	-	-	-	-			-	-	-	-	-		-	-	+	-	-	-
+	+	+-	E	-	OF	-	73	-	7	20	2_	-	-	-	-	-	-	-	-		-	-	-	-	-	-+-	+	-	-	-
1	-	-	_	_	_	-	_	_					_	-		_						_	_		_	-	4	1	_	_
1	1		L																							_	1		_	
-																1														
T	1	1				T																				1	T			
+	+	+	1	1	-	1	-	1	-	-	-	-	-	-	-	-	-	-		_	-	-	1			1	+	1	-	-
+	-	+	-	+-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-+-	+	-	-	-
1	5C	ALE	Ŀ	-	Ш	1:	6	25	α	2_		_	_	-	_	_	-		_		_	_	_		_	-	-	-	-	-
1	1			L																						1		_	_	_
1	-		1	1	11"	1.	5	bo	8	3	3'																	1		
T	T	1			1																					T				
+	+	+	1	1	1.	-	1	1	1	-		1	-	35	F	3	1			_	-		-			1	1			
+	+	+	1	+	+-	DO	IN	13	-	2/	,,	Y CO,	1	33	F	-	-	-	-	-	-	-	-	-	-	+	+	1	-	-
4	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	+	-	-	-
1	1	1	1	1	-	1	1	13	_	46	2.	74	1	CE	ES	_					_	_	_			-	-	1	-	-
1			1	1		1																								
T	T	T	T		1	T		=		0	0	73		36			ES									1				
1	1	1	1	1	1	1	1	1		_		-														1	1			
+	+	+-	1	-	1	+	-	+-	-	-	-	-	-	-	-	-	-		-	-	-	-	1	-		-	+	1	-	-
+	+	+	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	+	+	-	-
1	1	1	1	1	1	1	_	1	-			_	_	1		_		_			_		_			_	-	-	_	-
1			1		1	1		1																						
T	T							T																		T				
-4-	-	-	1	1	1	-	1	1	-	-			-	1	1	-			-	-	-		-			1	1	1		
	1	1																												

	T	10			KE	-		L			_					RPT			_	3/3	_		-	CON	APUT	ED	BY	10	ATE	-			1
2	RAI	NA	GE	=	A	REA	15		_	P	LAI	NI	1E	ER	EC)								COM	W			1	12	1/8	/7	3	1
T																									T		T	T	T	T	T	T	1
+	116	= 2	-		211	AD			Δ	EA		=		OF		4.4	•	X	_								+	+	+	+	+	+	1
+	9	20	K	-	U	24	-				-	_				-	-	~	_							-	+	+	+	+	+	1	1
1	-	-	-		-	-	-			-	-	W		AN!	1		• ;	-	,		-		-			-	+	+	+	+	+	+-	1
+	-	-	_	-	-		-	-			-	w	-	oF	-	13	-	2	-	-		-	-			-	+	+	+	+	+	+	1
+	-	_	_		_	_	_	_		_		_	_		-	-	-		-			-		-		-	+	+	+	+	+	+-	7
+	-	-	_	50	AL	E:	_		1:	2	40	0	2_	_	-	_	-	-	_	-	_	_	_	-	-	-	+	+	+	+	+	+-	1
1	-	_			_	_	_					_	_			_			_	_		_	_	-	-	-	+	+	+	+	+	+	4
1					_											_							_	Н		_	-	+	+	+	+	+	4
1												_															1	1	4	4	+	1	4
1				U	PE	R	DA	M	1	S	FA	CE	A	RE	1-	U	KE										1	1	1	1	1	1	1
J																												1	1	1	1	1	
I											11.	15	IN	9														1				1	
1										+	5	05																					
1										-			-							(1	49	0					T	T		T	T	T	1
1											16	.20	DIN	2							88			ES				T	T	T	T	T	7
1													-															T	T	1	T	T	1
1			-		-	1	-	-					-	-													1	+	1	1	1	1	1
1					-	-	-					-	-		-	1	-		-	-			-				1	+	+	+	+	+	1
+		-	-	-	-	-	-	-			-	-		-	6		-	-	-	-	-	-	-	-		-	+	+	+	+	+	+	1
+	-	-	-	-	Σω	ER	-	VA	M	-3	XVI	E	CF	-	-	bN	2	-	-	-	1.	1	-	-	-	-	+	+	+	+	+	+	1
+		-	_	-	-	-	-	-	-		-	-	_	3	-	-	-	-	_	-		5)		-			+	+	+	+	+	+	4
+	_	_	-	_	-	-	-	-	-	_	0	0	5.1	_	-	-	-	-	-	-	4.	6	AC	RES	-		+	+	+	+	+	+	4
1			_	-	_	-	-	_	_	_	_	-	_	_	-	-	-	_	_	-	-	-	_	-				+	+	-	+	+	4
1			_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_		_	_	_	_		-	+	+	+	+	+	4
1				4	w	2	DA	M	LP	187	A		De	Au	AC	E	A	RE	1			_	_					4	4	1	1	_	4
1																						_						4	4	4	1		1
											1	5	b	13							13	8	AC	RES	-			1	1		1	1	
1																				1	14	0											
1																					-	1						T		T			1
1																											T	T	T	T	T	T	7
1															\Box													T	T	T	1	T	7
1	ے	241	6		1	2	4	~	1																			T	T	T	T	T	7
1		A	-	-	-	-	1		1							1		-		1	-	1					1	+	1	+	+	+	7
1		_	-		,"	-	1	-	o		-	-	-	1	-	1		-	-	-	-	-	-	1	-		1	+	+	+	+	+	1
1	-	-	-	-	-	-	9	٢	1	-	-		-	1	1	-	-	-	-	-	-	-	-	1	-	-	1	+	+	+	+	+	1
1	-	-	-	-	-	1	-	-	+	-	1	-	-	1	+	1	-	-	-	-	-	-	-	-	-	-	1	+	+	+	+	+	1
1	-	-	-	-	1	50	IN	=	14	Ø	10,	OC	2	13	F	-	-	-	-	-	-	-	-	-	-	-	1	+	+	+	+	+	4
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	1	+	+	+	+	+	1
1		_	-	-	-	-	-	2	-	9	- 8	3	AC	RE	5	-	-	-	-	-	-	-	-	-	-	-	1	+	+	+	+	+	4
1		_	_	-	_	-	-	-	1	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	1	+	+	+	+	+	4
1		_	_	_	_	-	-	=	-	0	-1	4	3	Q	MI	LE	3_	_	-	-	_	-	-	-	-		1	+	+	1	1	+	1
				_		_	1		_			1	_	1	1	1	_	_	_	-	_	_	1	-	_	_	1	1	1	1	1	+	1
				L			L							L				L	L														
																							L										
1						-			-																								
-	_	_	-	-	1	1	-	1	-	_	_	_	1	1	_	_	-	-	_	_	-	-		1	1			-	1				٦

BI	RAL	T	L	AK	E	1	H	H	-	-	PH	AS	E	I	6	RPT.		1		4/			1									
EC	T						-																7		APUT				DAT		- /	
S	TAC	SE,	-	5	D	CAC	E		DA	T	_	_	_	_				_	_				4	_	ω	<u> </u>			1	5/	8/	78
																							_								1	
	RE	F	:		N	49	-	DE	U		11	FO	RM	AT	10	4	L	A	FL			#	45	- 9	6						1	
													B	RA	N	-	LA	KE		DE	PT	1	cd	M	U	5						
																										-	GI	EL	1			
																								AR	EA	:	13	57	AC	RES	,	
			4	AL	E:		1":	A	PPR	bx		0.5	S M	ILE	(+)										E			101				1
													Ï		-									_		-			MI	ES	1	
				1)6	E			=	2	-5	~						7															
				-					-								7															
	a				05	0	A	00	46				-				+														1	-
	10	22	IM	12	RE			7	2	•							+						-								1	
-			-	-						-	-		-	-	-	-	+		~				-				-	-			+	-
-		-	디	=	A	TIC	N	-	-	-	A	EA	-	-	-	1	+	-	%	-	-	-	-		-	-	-	-	-		-	-
-			-	-	-		-	-	-	1	-	7	3	-	-	+	+	-	-	_	-	-	-	-		-	-	-			1	-
-	-		-	0	-	-	-	-	-	10	.0	-	IN	-	-	-	-	-	10	0	-	-	-	-	-	-	-	-	-		-	-
-		_	-	-					-	-	_	-	2	-	-	1	-	-	-		-		-		-	-	-	-	-		-	-
		-	-	-10	-			_	-	6	.9	3	IN	-	-	-	-	-	67	_	-	-	-	-	-	_	-	-	-		-	
_	-	_	-	-	-	-	_	-	-	-	_	-	2	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
_	-	_	-	-2	0	-			-	4	و.	6	141	-	-	-	+	-	48	_	-	-	_	_	-		_	-	-		-	_
			_	_	_				_	_				_	_		1	_			-			_	_		_	_	_			
			_	-3	0				_	2	2	7	14	_		1	1		26					_			_	_	_			
_			_	_	_				_	_			_	_	_		1					_		_			_	_	_		_	
			_	-4	0				_	0	. 9	3	W	_	_		4		9					_			_		_			_
													_	_	_									_								
				-5	0					0	.4	5	IN						4													
				-4	0					0	.1	0	m						1													
																П																
																П																
	G.	5		60	AL	_		2	PI	441		-70	00	0	1	DEA	9	-	5	ALC	-	A	50	==		431	-	70	15			
	Gı			50	EA		AD	EA		F				KE		/	14	5/		CRI		A	-		12	ω·		RE	1			
				40			-		٢		1115		-			14	-	-	-				-			-	-	-	,			
			-	F	=0		-			A	62	,	TH	-		Boy	=		0=	200		AG	-		=		-	-	150		0	,,,
			-			EF AC		?	E	-	OF			90		CRE	_	7			1			-	10	T	15	-	1	7	-08	Δ
			-	12	1	AC		A	-	-	O.		14	-	-	-	2	+	- DH	-	1	7	-	-	-	-	-	-	-			_
-	-	-		-	-	-	-	-		-			-	-			-	-		-				-	-	-	-	-	-	-	-	_
-	1	AKI	-			FA	CE	-	1000	A		-	_	-	-	1	1	-	-	-	-		-	-	-	-	-	1	-		-	-
-	-	-	-		EV	-	-	-		RE	,	AC	KE	1	-	-	-	-	-	-	EL	EV.	-	-	-	KE	4	AC	KE	3)	-	-
	-	-	-	C	-	-	-	-	1	19	0		-	-	-	-	-	_	-	-	-	-	-	-	-		-	-	-	-	-	
_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	_	-	-	_	-	-	-	-	-	
_	-	-	-	-1	0	-	-	-	-	99	8	-	_	-	-	-	-	_	_	-	40	-		-	-	13	4	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	_	_	_	-	-	H	-	_	_	_	-		_	-	-	_	-	-	-	-		
	-	_	-	-6	0	-	-	_	-	71	5			-	-		-		_	-	50	-	_	-	-	6	0	-	-	-	-	_
	_		_	_	_	_	_	_	_	_	_		_	_	_						_			_	_	_	_	1	_			_
			1	L -	0	1				13:	8				1					-	60	1				1	5					

INFORMATION LEAFLET

NEW YORK STATE
DEPT. OF ENVIRONMENTAL CONSERVATION
CONSERVATION EDUCATION

Raccoon Muskrat Banded killifish

101	. (3R	AU	Т		LAK	E		н	١٤	+	-1	PHA	SE	I	(2PT		1		ET N	10.			CHE					DAT	E		
SUI	NE	CT		100		CAI														SE	E 14,	SH	Т		CON	APUT WC		BY		DAT	2/1	1/7	12
		7		7		T	T	7	4							1			1	1	17/			-							7	7	٦
						1	+	+	1										1													7	1
			E	LE	v.		1	w C	Z	AC	E					1	SO	RAS	E		5	STO	RAG	E									
							I					ES				A	-	T)		4	AC	-	1										
								1												_			. 7										
		1				4	1	1	1										4													-	
_	_	-	_		H	+	+	+	-	-						-	_	H	-	-				_	_	_	_	_	_	_	-	+	-
	-	+				+	+	+	-	-	-	-	-		-	-	_		+	-				-		_	-	-	-	-	-	-	-
	19	90	MO	35		+	+	+	1	-						-	-		+	-					-			-		-	-	1	4
		+				+	+	+	1											1												1	7
79	9	-		0			+	1	4	90																						1	
								Ī								24	40	5			29	8	75										
78	9		-1	0			I	I	9	98																							
		L						1								85	6	5	1		17	43	5										
77	9	+	-6	20		+	+	+	7	15			-						-	-					_			_			-	-	_
	_	-	-		H	+	+	+	-	-	-	-	-		-	52	15		-	-	8	87	0		-						-	-	_
76	9	+	-	30	H	+	+	+	3	98				541	-	23			-	-		65	-		-		-	-		-	-	-	-
75		\vdash		9		+	+	+	1	34						23	10		1	7	-	65	5		-								-
(2	-	1		-		+	+	+	+	7						9	70				1	34	5										
74	9		-	50			1	1	7	0											•												
																3	75					37	5										
73	9		-	60				1		15																							
		_				_	-	1	_										4						_								
	_	-	-	_	H	+	+	+	-	_			_				_		-	-					-	_						\dashv	_
	-	+	-	_	H	+	+	+	-	-					-		_	H	\dashv	-					-	-					-	\dashv	_
	-	+	-	-	H	+	+	+											-	-					-	-		-					-
	-	+				+	+	+	1									H	-						-	-							-
		1				1	1	1																									
							I	I																									
	_	-	_			-	-	1																	_	_							
	_	-	_		H	-	+	-	_																_	_			_	_			
-	-	+	-	-	H	-	+	+	-	-		-							-	-		_	-		-	-	-	_	-		-		_
	-	+	-	-	H	+	+	+	-	-					Н			-	-	-	-	-	-		-	-		-	-	-	-		_
-	-	-	-	-	H	+	+	+							H										-	-		-					
		1		-	H		+	+																		-							
		1					1	1																									
		I																															
								I																									
		-					1	1																	_	_							

Br	RA	N		L	AK	E	+	1 =	H	-	PH	AS	E	I	RP	T			эне	6	NO.			CHE					DAT		_	
ECT	1																							CO					DAT	E	/	
H	i	H	-	IN	AL	40	15		(151	NG	•	H	EC	-1									-	WC	<u></u>			1	2/	11/	78
1																																
T	D	M	-	-		7	'	1	C	EC	-	-		a	SE		1															
7		,	_	-		-		1	-		-	1				/	}		144	-	ME	0			_							_
+	=	100		-	:	-	-	E				c-	-	-			-		12	IE	ME	M	4	-	-3	IE	-					-
+	7	101	A	=		-	-	3	13	-	f	-	ET	-			-		-	-	-			-		-	-					-
+	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-		-		-	-	-		-	-	-	-	-	-	-
+	-	-	_	H	īı.	5	-	10		OT	101	1	PE	B	ID	3.5	-	TEI	NA	ER	-		_	_		_			_	_	-	_
+	-	_		Н	-	-	_		_	_	_	_		_						_				_				-				_
1	_			Ц	12	5	_	TO	L	DP.	PA	VE	16	T	ON	8	RID	GE			R	PAC	W	Y	AC.	TH	9	AS		61	2	
1				L.																												
	H	Z	AR	6	P	DTE	uT	AL	:										I	G	4											
T						-	1													_												
1		u	4	u	E	VA	134	-	5.					P	ME		5		3													
+			1		-	10		1					S	1		•	ME	-														
+					-		-	-	-	-		-	-30	-	4	-	-16		-	-	-			-	-	-	-					
+				-	-	-	-	-	-	-	-		-	-			-		-	-	-	-		-		-	-	-	-	-	-	-
+	-	-	-	-	-	-	-	-	-	-		-	-	-	-	_	-		-	-	-	-	_	-	-	-	-			-	-	_
+	-	-	_	-	-	-	-	-	-	-	-			-	-	-		_	-	-	-	-		-	-	-	_	-	-		_	_
+	-	-		_		_	_		_	_	_			_						_	_			_	_							
+							_							_																		
1																																
1																																
T																																
1	7																															
1																																
+					-									-		-				-		-						-				-
+	-	-	-	-	-				-	-	-		-	-	-		-		-	-	-		-	-	-	-	-			-	-	-
+	-	-		-	-	-	-		-	-	-	-	-	-			-		-	-	-	-	_	-	-	-	-		-	_	-	
+	-	-		-	-	-	-		-	-	-	-	-	-	-	-	_			-	-	-	_	-	-			-		-	-	_
+	-			_	-	_	-	-	-	-	_			_					_	-	_			_								
+	-			_	-	_	_		_	_	_			_							_										_	
1				_		_			_					_										_								
1																																
T																5																
1																																
1																																
+	1			-			-	-	-	-	-			-			-		-	-		-		-	-	-		-			-	
+	-	-		-		-	-	-	-	-	-	-	-	-	-	_	_	_	-	-	-	-	-	-	-		-	-	-	-	-	-
+	-	-		-	-	-	-	-	-	-		-		-	-	-			-	-	-			-	-	_	_	-	-	_	_	_
+	-			_		-	-	_	-		_			-	_	_			_	_	_	_	_	_		_		_	_		_	
+	-			_	-	-	_		_		_			_	_				_		_			_								
1				_	_		_	_	_					_																		
1																																
-	1		LY T			1																										

BR	ANT	1	_A	KE		H	1	H	_	PI	MS	E	I	RP	7				7/			L						_	
PA	10	RAH	u FA	ALL		-	N	we	,	H	R #	3	3									Co	MPU W	TED		DAT	2/1	17	8
																					T	T	T					7	
	LA	T		7	43	• 4	5					Lo	NG	:	V	73	3°	40											
T																				T	T	T						T	
T	20	NE	1	:	1	AL	L-	BE	AS	ON	5									T	T	T	T						
											1											T	T					1	
	PM	P	,	ı	7.5	"			7	24	HR	-	a	00	5	0	MIL	=7			T	T	1						
T									1									1			T	Т	T						_
T																				T	T	T							
T	Fo	8	00	Au	JAC	E	AR	EA	-	4	6.7	18	50	M	1.							T	T					7	
									9							PM	P					T	T						
T			6	HR					94							140	.40	,"											
																						I							
			12	HR					10	8						18	.9	•											
T																						T							
			24	HE					118	,						20	.6	5"				T	T						
I																						I							
T			48	HR					12							ລລ	05	5				T							
T																				T	T	T							
T																				1		T	T						
T																						T							
1																				T	T	T							
																				T	T	T	T						
	T	A	15	0	51	TI	ON		FA	CT	O	:									T	T							
									0.	30	08											T							
1			T.	F.		1	-	-														T							
									P	R.A	.)	.17	***									T							
																					T	T							
									0	30	08										T	T	T						
					=	1	-	1																					
									(4	ο.	18		717	2								I							
I																						Γ							
					=	1	-	0	.1	56																			
			T.	F.	=	0	.8															L							
																						I							
1																													
																						I							
T																						T	1	1	1				

		T	LA	KE		H	H	-	- Pr	HASE	ε :	I	RPT					SHE	8/				CHE					DAT			
NECT																							CON					DAT		,	
SN	OPI	ER		UH	1_	0	:OMI	60.	TAT	ION	15		-	IN	60-	T	FOR	2 1	HEC		1			W	2			1.	2/1	1/	73
1	_:																														
	1	1	DA	M			0							1																	
	1				E :		14	0"	-	4				1	7					_					-						-
-	+	120	no.	LA	-	-	14	-0	-		-	7		+	-					-	-	-			-	-	-	-	-		-
-	+	100	0+	TO	T -	-		-	-		-			+	-						-	-		_	_	-	-		-		_
-	-	+	-	-	-	-	18.		-	-		-	-	+	-		-		_	_	-	-			_	-	_		_		
+	-				H -	-	19.	5	-			_	-	-	-		_				-				_				_		_
1		4	- 4	5	-	-	22	4		1"	20	œ		44	80	X		8	48	MI	LES										
		42	0 4	5		-	0																								
					ET		31																								
	1		1-	0.	SIN		A	=		,	_	= -	28	1	21	75		4	20			-			_						-
	+	EV	-	DA	DIN	-	7.4	2		-	•	200	00	9	21	(3	-	4	2		1	3	-	-	-			-	-		-
-	+	+	-	-	-	-		-	-	-	-	-	-	+	,		-	-	-	_	-	-	-	-	-	-		-	-		_
-	+	-	-	-	-	-	-	-	-			-	-	+	L	=		15	8	L	11L	15	-		_	-		-	_		_
	-	_	_											4																	_
L	CA																														
			5.	6		@	1"	=	52	08		- 2	916	5																	
															L	:		5.	5.) N	ILE	5									
		T												1	-					-											
1	AG	+	-										1	+	-	-								-	-		-				
-	4	111	=		-			-			-		-	-	-	-				-	-	-	-		-			-			-
-	+	+	-	-	-	,		-	,0	. 3	-	-	-	-	-		-	-	-		-	-	-		_	-	_	_		-	_
-	+	-	to	=	C,	1	r.	Le	1	. 3			-	-	-	Av		C,		2.0			Us	E	C	- 3	2.	5			_
	-	-	_															-			_					-					
		-		= (12.5	YI	0.8	7 .	5.5	(3)	0.3					0	Lo	VG		DR	AIN	AGE	A	REA							
	1					'				'													DIN			EC	T	ON	Ma	БТ	
9 1	HRS		t.		8.	98										1		1	RIB	0.0											
	1		1																	-	1										
		-	-										1	1	1					-	1				-		-	-			-
-	+	-	-		-			-			-	-	-	+	-	-	-		-	-	-	-		-		-		-			-
+	+	+-	-	-	-	-	-	-	-		-	-	-	+	+	-	-	-	-	-	-	-	-		-	-	-	-	-		-
	TING	RA	In	EAL	-	DU	RA	TIC	W:		-	_	-	-	-	_	-		-	_	-	-		-	_			_	_		
-	-	-	-	_	-			_		-	_			-	-						-	_				_	_				_
1	-	-	t,		t									1	1																
			L.		5.	5																									
																							t								
					8	.98	3		1	63	14	25							1	Ue	F		2-	_	1	140	80	GP	APH	1	
	1	T				.5		-		-	- 1	-		1					+	7	-				-	-	2	40	-	1	-
-	-	+	-	-		. 5		-			-		-	+	-	-	-			-	-	-		_	-		-	-			-
-	-	+	-		-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-
	ADJ	UST	ED	-	LA	4	114	1E	-	-	-		-	-	-		-	-			-	-	-						-	-	
-	-	-	-		-					,			-	-	_		_				-										
		-	t		t		+	0.	25	(t		· t	1																		
			۲							`	*		//																		
					2	. 99		0	25	10	_	1.	63)																		
		T						-		-																					
-	1	1	-	-	9	0	,	1100						-	-	-		-		110	-		C		-	()	-1				_
				-	-2	U		mK.	2		_				1					00	25		-	-	Q.	90	21		-		-

U	RA	17	1	A	KE		H	2 !	4	-	PH	ASI	E .	I	RP.	7			SHE	0/					CKE				ATE			
JEC	T																			-				CO	APUT	rED	BY		ATE		_	_
5	TA	3,2		DIS	50	HA	25	Ξ	DA	TA		FO	2	50	الم	WA.	4								wc	L			10	/10	7/1	3
							T		1																	_			T	1	T	7
							1	1	T																	_		1	-	1		_
	0.51			1		T	10	1.	ER		11 .		- 0								- "		-	-		-		+	+	+	+	-
-	K	-	-	K	NG	1	10	RA	EK		-7	AN	26	50	-	OF	140	CIK	ADI	10	5	-	ST	#_	=2-	-	-	-	-	+	+	-
-	-	-		-	-	-	-	-	+-	-	-	-			-		-	-	-	_	_	-	-	_	_			+	+	+	+	_
_			Be	DA	P-	CRE	SI	ED	Lu	EI	B		E1	EY		79	9		- 1	30	3.	5				_		-	_	-	4	_
									1									•														
			0	-	CI	H	73				1																					
																												T	T	T	T	
					1	=	14	2	,																			1	T	1	1	-
1	•						1	-	5	-			Н		1	73.0		_	-	1				_		-		+	+	+	+	-
-					-	4	AK	1E	-	w	TH	-	-		+	TAB	E	3	- 3	-						-	1	+	+	+	+	-
-		-	-	1	TA	LE	-	1	+-		-	-	-	-		-	-		-		_	-	_	-		-	+-+	+	+	+	+	-
-				-	-	-	-	1	-		-3	-		-	_			3									-	-	-	+	+	_
_		H				C	-	-	-		H	2			Q	•0	LH	1										1	1	1		_
																															1	
	(0.5	,			26	2			.3	553	6				13.	7															
																																Ī
		1.0			-	.6	1.	T	T		1.0					39	1.											1	T	1	1	-
1			-	-	-0	.0	-		1		1.0					22	*	-						-		-		1	+	-	+	-
1			-	-	-	-		-	-			_	-		-	-	_	-		-	-	-	-	-	-	-	1	+	+	-	+	-
+	-	1.5		-	-	.6	6	-	+-		83	7	_		_	72	3	-	-			-	-	-	-	-	-	+	+	+	+	_
-		-			_	-		-	-			-									_							-	+	-	+	_
		2.0			6	1.7	0			2	.8	28				113	5															
																															1	
		0.5				2.7	7			3	.9	53				16	0												T			
																												T	T	T		Т
		3. 0	,			2.8	1			-	115	1/-				217	,											1	+	+	+	_
		J. 1	_	-	-	1.0	~		-							,										-		+	+	+	+	-
			-	-	-	-	-	-	-		-		-	-	-		_	-	-		-	-	-	-	-	-	-	+	+	+	-	-
-	-	3.5		-	- 0	2.8	6	-	-	4	.5	48		-	_	277	_										-	-	+	+	-	_
_		-			_	-	_	_	_																			1	1	1	1	_
		4.0)			2.9	3				8.0	2			_	47	_											1				
																														1		
		4.5			1	3.0	87	1		9	5	1/0				430				20	170		~		70	1	ER		T	1	T	
							T												-	_	++~				-	1323		1	1	+	1	-
		5.0	_			1	1	1						1						_	DIF	101		E	οw			+	+	+	+	-
		2.0	_	-	-	-	1	-	1		-	-		1				-		_	711	-		-		-	-	+	+	+	+	-
+	-	_		-	-	-	-	-	1-		-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	+	+	+	+	-
-	-	5.5		-	-	-	-	-	-	-		-			-	-		-		_	-	_	_	_	-	_		+	+	-	-	_
	_	_			_	-	-	-	-			_							_		201	-10		1	7.15	10	-	-	-	-		
						_		-	1											_	JKI	FIC				-						
1									1														FL	οw								
					-	-	-												-	1										T		
			2	=	2	5.1	07																			-						_
1				-		-		-	1						-					-				-		-		1	-		1	-
-			-		-		-		-			-	-	-	-	-	-		-		-	-	-		-	-		+	-	+	-	-
-		-	ANE	-	-		4.1	2	-		-	-		-	-	-			-			-	-		-	-		-	+	-	-	-
-	-	-		-	-	-	-	-	+-	-	-	-		-		-			-		_	-		_		-	-	-	-	-	-	_
		1							1			_																	1	1		_

6	RAN	-	L	AKE	=	H	4	4	-	PHA	SE	I	K	PT				1	II/	') B1				TE		
BJEC		-	_	,,,,,	-	_	-			-			-		_			_			-	1	CON	APUT	ED	BY		DA			-
		3	_	DIS	ec.	AR	GE		DA-	TA		Foi	2	5	ILL	WA.	Y							wc				1	2/10	0/7	3
		1							1	-	1	1						T				1								1	
		-	-	-	-	-	-	-	-		-	-		-	-		-	+	-	-		-	-	-	-	-	-	-	-	-	-
-	•	-	_		-	1	-	-	-	-	11	-	-	-	-	-	-	-	-	10	-	-	-	-	-	-	-	-	-	-	-
-	RE	Fi	-	K	NG	=	B	TAS	ER	-	1	AN	DE.	20	5_	OF	HYD	AL	110	5		5	H	ED			-	_	-	-	-
						,																_									
			0	RIF	nc:	=	FL	Ou	٥	U	ND	ER	L	Ou	1	EA	0	E	LE	٧.	80	23	5	+		30	4.	5			
					TA	ILL	DAT	ER	E	LE	V.	0		75	13.	5		1												1	
														_				1												1	
		-			2		1	2	-	1	L	3	1	73	1		_	1		h,		1		1				_		+	
		+	Q	-	7	L L	Y	-	*	6	1	-	n	•	1		-	-	-			+		-	80	3.5	2	Be	TIE	-	0
		-	_				_	-	-		-	-		-	-		-	+	-			-	-	-	_		\vdash	_	STR	ING	ER
		-				=			_	_		_		_				1	_		4.5	4								-	
					a	3	36	.2		7	29		8.	53	5			L													
					9					L	0			1					1												
	I		(1)	5	0	EL	EV				h			h	5		- h	T												1	
					-						1			1			1,3			h3	5						Q				
					2	14					0.5			-				1				1		-		_				-	
		-	-	-	X	14	.0	-	-	-	0.5	-	-	35.	00		5.0	7-	-	11.1	8	-	-	-	-	_3	57	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		+-	-	-		-	_	-				-		-	_
		1			30	14.	5				1.0	1		1.0	2		5.	5_		12.	90					9	4.5				
																		L													
ORI	FIC	E	١		30	05	0				1.5			1.8	37		6.	6		14.	70					10	18				
	ωE																	T													
	Ft	OW		TI.	0	05.	_				2.0			20	28		6.	1		.,	-7					10	88				
		1			-00	20.	3	-	-	-	D.C		-	2.0	80		6.	-	-	10.	57			-		10	00	-		-	-
-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	+	-			-			_	-		-	-	-	
	-	-	_		8	06	0	-	_	-	2.5	_		3.5	253	1	7.	P	_	18.	52	-				11	53	_			
		-																													
					30	57.	0				3.	5_		6.	54	8	8	0		22.	63					12	73	5			
																		T													
					a	08	~				4.	_		9	54	,	0	6		27	00					12	86				
		1			4	20	U				7.	2	-	2.	24	0	+3	10	-	al (CX	-				בנ	Qq				
-	-	-			-	-		-	-	-	-		-	-			+	-	-		-	-	-	-	-			_		-	
	-	-	-		80	29	0	-	-	_	5.	5	_	12	90	2	-10	10	-	31	6	2			_	14	-8	2			
		-			_	_	_	_	_	_		_		_				1													
									L																						
		-																													
																		1													
							-										1	1				1									
	C	20		0-			-			-	-	-		-		20	-	10		•	00					-				-	
	0	CK	5	ro	NV	N	-	A	LUI	-5	F	OK	HE	C	1-	סע	co	MPC	IJE	K	PK	X	Al	1:	-	-	_	-	-	-	
-	-	-	-		-	-	-	-3	4	-	3	-		-	-	-	-	-	. 4			-		-	_		_	_	-	-	_
		1	2/	L	V	29	1	h.	5_	h	-	1	=	Q	=	CA	1/20	1	h.			_									
			1			0		_										1	1												
										2/	1			=		CA	-	C	1/	*	4.5)			L	= 1	4.8	5			
										1		2/			1	5 ¢		1	-			-									
		-						-	-			%			1000		-	-	-	-	-				,		12			-	
-	-	-	-		-		-	-	-	-		-	0.1	10	-	-	-	+	-	-	-	-	A	= 6	٥.	9 .	n	-		-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-		_	-	-	-	_
				ECT 1			1	1	1	1		1			1	1 1		1	•		1				100	0.00	. 1	1	1	1	

8								1											SHE	EET	NO.			CHE	CKE	D BY	,		DAT	E		
B	RA	1		LA	KE	Ξ	H	4	4	-	PHA	58	. 1	1	RP	T				12	/		1									
BJE	CT		_	_	_	_		_	_				_	_	_	-	_	_	_	-/	_	_	\neg	CON	APUT	ED	BY		DAT	E	-	_
		ē -	- 5	Die	CH	AD	-=		DA-	-	,	2	DA	M		NEO		2.74	0.1	LA			1		C		70.00		15		0/-	13
_		_	-	-	-	1	7-	1	-	-		=	-	1	_	-	-	-	1	-1	_	-	-	-	-	_	-	_		1	1	
-	1	-		_	_	_	_	-	_		-	_					_	_	_	-	-	-	-		_				_	-	-	-
	RE	F:		KI	us	1 4	B	RAT	ER		"4	AL	DA	0	×	OF	- 4	40	RA	b	ca	**	5	74	E							
-		*		-	4	T	1		-			-110	-		_	~		+	1	-	-			-		-						
-	-	-	-	-	-	-	-	-	-	-		-	-		_	-		-	-	-	-	-		~		-	-	-	-	-	-	-
1	-	-	5	RO	AD	-	CR	ES	ED	_	WE	IR	-	_	E	LE	(-	8	04	1.5	-	=	UP	WA	20		_	_	-	-	-	-
																			_	_												
			0	=	CI	H	75		1																						1	
									1																							
-	1		-	-	1	-	-	50	1	1			-		_			-	-	-	+	-		_		_					-	
-	+-	-		-						6	AX.	1	-	-			_		-	-	-	-	-		-			-		-	-	_
					L	3	119	0	_											_	-	1		_								
								1																								
			H				H	75				Q				1																
1	1		•••	-	1		1	1	1	-		_					_		1	1		1		_								
-	+	-	-	-	-	-	-	1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	0	.5	-	-	1.	35	36	1	-	5	07		-			_		-	-	-	-	-		-	_		-		_	_	
		1	0				1.0	0	1		5	87	1						1													
	T							1	1	1				1					1	1												
1	1	-	_	-	1	-	0	, 7	1	-					-		-	-	1	-	1	-		-	-	-		-	-		-	
-	+	- 1	.5	-	-	-	18:	31	-	-	10	777		-	-	-		_	-	-	-	-	-		-		-	-	-	-	-	_
_	-			_	-	1	-	_		_			_	-			_		_	-	1	1					_	_				
		2	.5				3.9	53			3	31	9																			
						T																										
1	1	2	5	-	-	1	6.5	40	1	1-	1	2.4		1			_		1	1	-	1		_		_						
-	-	3	2	-	-	1-5	0.5	40	1	-	-3	34		-	-		_	-	-	-	+-	-	-	-	-	-	-	-	-		-	_
-	-	-		-	-	+	-	-	-	-			_	-		-	_	_	-	-	-	-	-		_	_	_	_	\vdash		_	
		4	.5				9.5	44			5	55	2									_										
					1		1	1					1	1																		
1	1		_	-	-	1		1	1	1		-	-	1				-	1	1	1	1		-	-	-	-	-				_
-	+	-	-	-	-	+	-	-	-	-	-		-	-	-	-	-	-	-	-	+-	-	-		-		-	-	-			-
-	+-			-	-	1	-	-	-	-	-		_	1	-			_	-	-	-	-	-		-		_	-	-	_		_
										1									L													
	1				1				1					1						1	1											
									1										1	1	1											
1	1		_	-	1	1	1	-	1	1-	-	-		+	-		-	-	1	1	-	1		-	-	-	-	-	-		-	-
-	-	-	-	-	+	-	-	-	+	-	-		-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-
-	-	-	_	-	-	-	-	-	1-	-	-		-	-	_			-	-	1	-	-	-		-		_	_				
					1																											
						1			1											1												
	T				1	1	1	1	1	1				1					1	1	1	1										
1	-	-	-	-	-	1	-	+-	1	+-	-	-	-	1	-	-	-	-	+	1	-	+-	-	-	-	-	-	-	1		-	-
-	-	-		-	-	1	-	-	-	-	-		-	-	_	-		-	-	-	-	-	-		-	_		-	-	-		
-	1					1	-		1				_	1					1	1	1											
1					1	1								1						1												
1	1					1			1	1				1																		
1	-		_	-	-	1	-	-	-	-	-	-	-	1	-		-	-	1	-	-	1	-	-	-	-	-	-	-	-	-	-
-	+	-		-	-	1	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-		
-	-			-	-	-	_	-	-	-	-			-					-	-	-	-	-		-			_	-			
1	1							1	1					1																		
-	-		-	1	1	1	-	1	1	1	1		1	1	_			-	1	1	1	1		_	-	-		-				

BRA	-10	LAKE H	H - PHASE I	RPT		SHEET NO.		CHECKED	BY	DATE	
UBJECT								COMPUTER	O BY	DATE	
STA	GE - D	PISCHARGE	DATA	50	MMAR	4		WCL		12/1	3/78
					PLOT	TED+	SHT	13A/			
								11/			
	ELE		WEIR	ONLE	ICE	110	EIR		T	TAL	10 fe
				1	-	1		111	T		-
	799										
								111	17		
	799.5		13.7						1		
11				11			11				
	300		39.4			11.	1		++-		
	1	1111	1 1 1						11		
	800.	5	72.3				TT		1		
7							TT		1		
	801	1111	1113	1							
	801.5		162				1		1		
11	802		217					1-1-	+		
	8025		277	1			1	111	1		
	-								1		
	803		347	1					1		
	1000		1 1 1				11		+	1	
TOP OF	803.		436 (OR)	756	1				1)65	436	
444	100		1730 97	130			1	1	USE	4.50	
	804			357				1	11	1	
	19			1001	1		\top		++-		
Se of	804.			942	-		IT		INCE	940	
BILLIA	100			1			11		1	7.0	
	305	1111		1018		1	77		1	1225	
	1995			1010		2	1	1	1	100	
	805.			1088		5	37			1675	
11	1000			1000					+++	100	
\top	806			1153		10	17		1	203	
	100			1				111	+	900	
	807			1273		23	19		\top	353	2
				1010		1			1		
11	808			1386		20	41	1	1	526	3
	1			1000						-	
	809			143	2	65	99			708	
	3			140		-				100	
11				1							
							1				
-	1			-		-	-	1			

BRANT	L	AKE	H	H	-	PHA	SE I	R	PT			14	T NO.			CHE			DA			
UECT		7															APUTE		DA	TE,		
STAGE	-	5	DRAG	E	DA	ATA				_						(DCI	_	1	10/	13/	78
					1				1										+	1		
FROM	_	5	T 5/	:	1	-		1	-				-					-	-	_		_
	-		-	-	+	-		-	-	-	-	1	-		_	_	-	-	-	-	-	-
	EL	EV.	-	SU	RHA	CE		- 4	7310	RAS	E	-	14			AG		++	+	-	-	-
				- GA	CHE	5		-	+	-	+	+	+	(4	<u>- F</u>	7)	-	-	+	-	H	-
	-			-	-	-		-+	+	-	+	-	+	-	-		+	++	+	+		-
10'5	79	9			90	+-	-	-		1		+	++		_		+	++	+	+	\vdash	-
	-		492		1	+	-	+	194	40	+	+	+	29	87	5	+	++	+	+	H	+
11	78	9		7	98	-		+	+	+	+	+	++				+	++	+	+	H	
					I														\perp			
			A ARE	A	FI	ELE	V =	4	19	AC	/FT	1	-					44	+	-		_
E	LE	V.		-	REA	+		+	+		-	\vdash	- 4	5	TO	RAG	E	++	+	+	H	
14	-	-		-	98	-			+		+	1	1	-	-	35		-	+	+		
	10				10				321	(0					-	-		1	1			
	79	2		1	146			1						20	06	50		TT	(ASE	OF	DAN
					T				92	26												
	79	9		1	490									a	98	75	5	-				
					I				72	25												
	80	3.5		1	711									. 3	70	7	7		1	370	07	5
									173	6												1
	80	4.5	5	1	761									3	8	81	3					
									45	56												
	80	7		1	384	4								-1	33	6	9		1			
				1	1	-			_			1							1	1		
	_			-	+	-			-			1						-	-	-		
	-		-	-	-	-			-			1				_	-	11	-	-		
	-			+	-	+-		-	+		-	1	-			_	-	++	+	+		
	-			-	+	+		-	+	+-	-	-				-	-	++	+	+		
++-	-		+	-	+	-		1	+	-	-	1	-			-	-	-	+	+		
++-	-			-	-	-		\vdash	-	-	-	+	-		_	_	-	++	+	-		-
	-	-	\dashv	-	-	-	-		-			1	-			-	-	++	+	+		-
++-	-		\dashv	-	+	-		-	-	-	-	-	-			_	-	+++	-	+		
	-		+	-	+	-		-	-			-	-		_		-	+-	+	+		-
	-	-		-	+	+-	-	-	-	-		-	-			_	-	++	+	+	-	-
		-		-	+	+			+	-	-	-	-				+	++	-	+	-	_
				-	+	-		-	+	-	-	-	-	-		-	-	++	+	-		-
	-	-	-		-	+	-	-	-	-	-	-	-	-		_	-	+-+	-	-	-	
	-	-		-	-	+-	-	-	-	-		-		_		-	-		-	-	-	_
++-	-	-		-	-	-		-	-	-		-	-		-		-	++	-	-	-	_
	-		-		-	-	-	-	-	-		-	-				-	-	-	-		
	1				1																	
	-				_					1		1						1				1

CHA::GE NO. 0]

BRANT LAKE UPPER DAM NY-158 UPPER HUDSON-652 PMF WITH RATIOS--ANALYSIS USING SNYDER METHOD MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN 1 NRTID= 2 LRTIG= 1

RT105= 0.50 1.00

**** LOCAL RTIMP 0 RATIO ISNOW ISAME ALSMX 0. JPRT INAME *** CNSTL 0.10 R72 UNIT HYDROGRAPH DATA

TP= 9.00 CP=0.63 NTA= 0 SPFE PMS R6 R12 R24 R48 0. 17.50 94.00 108.00 118.00 126.00 STRTL 1,00 SUB-AREA RUNDFF COMPUTATION ISTAG ICOMP IECON ITAPE JPLT 1 0 0 0 0 0 HYDRÜGRAPH DATA TRSDA TRSPC 40.78 0. LOSS DATA
ERAIN STRKS RTIDK
0. 0. 1.00 *** SNAP 0. STRKR DLTKR RTIDL 0. 0. 1.00 IHYDG IUHG TAREA 1 1 40.78 ****

RECÉSSION DATA
STRTQ= 80.00 QRCSN= 60.00 RTIDR= 1.00
APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SHYDER CP AND TP ARE TC= 5.19 AND R= 4.21 INTERVALS

UNIT HYDROGRAPH 26 END-OF-PERIOD ORDINATES. LAG= 9.00 HOURS, CP= 0.62 VOL= 1.00 604. 1164. 1804. 1806. 1654. 1806. 1806. 1806. 1806. 1806. 1806. 1806. 1806. 1806. 1807. 00000 COMP 9 END-OF-PERIOD FLOW EXCS TIME

502.

638.

11 0.002 0.0

	27.40. 3713. 377. 40. 40.	25.000 24.000 25.000 20.000 20.000
	1154. 4702. 468. 468. 40.	23 80. 9405. 937. 880.
	~	VOLUME 102504. 7.79 16952. 1027. 11891. 11891. 1168. 80. 80. 80. 80.
	TOTAL 40. 7492. 7492. 731. 40. 40. 40.	TDTAL 110 2 80. 457. 4984. 1461. 1461. 80. 80. 80.
	72-HUUK 5552. 15.20 33056. 33056. 0. 77. 77. 77. 70. 00.	72-HUUR 2776. 16528. 16528. 162. 162. 125. 833. 125. 800. 800. 800.
	13.20 13.20 13.19.	24-HDUR 7,236. 6.60 1.359. 80. 180. 18713. 18713. 18713. 180. 80. 80. 80. 80.
000000000000000000000000000000000000000	HUUR 496. 5.36. 658. STA 11	400R 829. 829. STA STA HDUR 498.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	±44,870,444,444,444,444,444,444,444,444,444,4	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	PEA 24737 HYDROG 40. 521. 834. 200. 40. 40. 40.	1236 HYDRO 80. 80. 669. 400. 80. 80.
	CFS INCHES AC-FT 40. 40. 40. 40. 40. 40. 40. 40. 40.	INCHES AC-FT AC-FT 33 23 23 23 23 23 23 23 23 23 23 23 23
	20 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	80. 11305. 11305. 5865. 4611. 4611. 4611. 4611. 4611. 4611. 4611.

C

安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安		INAME 1	STORA 20650.	•••	0	190. 242.	388. 389	341. 338.	312. 309.	263. 260.	241. 239.	20710.	20846. 20984.	33021	36023. 35969.	35501. 35451.	35028. 34983.	34213. 34177.	33863. 33830.	TDTAL VOLUME 23083. 1.76 3817.				.0	4091. 4692.	0. 0. 0. 4091. 3947. 3681.	0. 4091. 3947. 1742. 1590.	4091. 4692. 503 3947. 3681. 342 1742. 1590. 145
***		LT JPRT 0 0 ES ISAME 1	x 0.15K		RT10 1 .0.	125.	385.	344.	315.	265.	243.	20696.	20785.	31937.	36078	35551.	35073.	34250	33896.	358. 0.96 2132.	RT10 2			•	3147.	3147.	3147. 4213. 1910.	
****	ROUTING	ITAPE JPLT O O NG DATA AVG IRES O.	AMSKK 0.0	43369.	PLAN 15	.0,	381.	347.	317.	291.	240.		20759.	30555.	36132.	35601.	35119.	34288	33930.	HOLR 72 385. 0.35 763.	PLAN 1	•			1759.	1759.	1759.	1759. 4472. 2092.
******	HYDROGRAPH ROUTING	RECON ITA	LAG AM 0 0.	38813. 43 942. 3		• •	374.	350.	320.	294.	248.	STOR 20483.	20749.	26844.	36179.	35652.	35165.	34325.	33964.	-наик 24- 389. 0.09 193.		•	•		430.	430. 4714.	430.	W -1 00 4
****		ICUMP 1 QLDSS 0.	NS TOL 0	37077. 388 436.	STA			353.	323.	272.	250.	20676.	20743	26883.	36220.	35704.	35211.	34363	33999.	989.	STATION			•	195.	195.	195.	
****	on things	ISTAC	NSTPS	29875. 37	•	••	352.	356.	326.	274.	252.	20670.	20736.	24909	36253	35755.	35258.	34402	34034.	CFS INCHES AC-FT		.0	•	•		5093.	5093.	5093.
***	9000				•	• •	W (359.	53	276.	54	990	0729	23216.	6280	5808	5306	440	6905	INO		.0			• • •	5188.	5188.	5188.
安全专办公司	3			STORAGE= 20650. OUTFLOW= 0.	•	• •	311.	362.	332.	279.	256.	20657.	20723.	22008.	36299.	35861.	35354.	34480.	34104.	. 60		0.	10	•	• • •	5181.	5181. 3170.	5181. 3170.

..

39276, 39098, 38936, 38788, 38650, 38519, 36393, 38274, 38160, 38052, 37946, 37756, 37657, 37582, 37500, 37423, 37349, 37279, 37212, 37144, 37087, 37029, 36971, 36913, 36856, 36800, 36744, 36689, 36580, 36580, 36526, 36473, 36421, 36369, 36317, 36266, 36216, 36166, 36067, 36019, 35971, 35923, 35876, 35830, 35738, 35593, 2673, 2676, 114176, 110CHES 5184, 4603, 2676, 114176, 18882, 15933, 18882, 2557, 9134, 15933, 18882, 36587, 9134, 15933, 18882,			The same of the sa	The second second second second	CHEROPOLOGICALIST	CONTRACTOR CONTRACTOR	costronoconomist	PRODUNESCOND	STREET, STREET	Personal Property of the Personal Property of	The second second second second second		
37946. 37850. 37756. 37667. 37582. 37500. 37423. 37349. 37148. 37087. 37087. 36913. 36815. 37687. 37582. 37500. 37423. 37349. 36580. 36526. 36473. 36421. 36369. 36317. 36266. 36216. 36067. 36019. 35971. 35976. 35836. 35738. 35738. CFS 5188. 5154. 4603. 2676. 114176. 114176. 118476. 15933. 1886.	74/3.	39276.	39098			8788	3266				27761.	37007.	
3746. 37756. 37667. 37582. 37500. 37423. 37349. 37148. 37087. 36671. 36913. 36856. 36800. 36744. 36580. 36526. 36526. 36744. 36580. 36526. 36216. 36067. 36019. 35971. 35923. 35876. 35830. 35738. 35738. CFS 5188. 5154. 4603. 2676. 114176. 1888. 2557. 9134. 15933. 1888.			100				200		.6160	20373	386/4.	38160.	
37148. 37087. 37029. 36971. 36913. 36856. 36800. 36744. 36580. 36526. 36473. 36421. 36369. 36317. 36266. 36216. 36067. 36019. 35971. 35923. 35876. 35830. 35738. 35738. CFS 5188. 6-HDUR 24-HDJR 72-HDUR TOTAL VOLUME CFS 5188. 5154. 4603. 2676. 114176. 14176. 15933. 1888.	9000	3/346.	37650.	.,		7667.	3758		7500.	37423	07222	27.270	
36580. 36526. 36473. 36421. 36369. 36317. 36266. 36216. 36067. 36019. 35971. 35929. 35836. 35783. 35738. CFS 5188. 5154. 4603. 2676. 114176. 1868. 4.20 7.33 8.68	7212.	37148.	37087.			1265	3401		405	24000			
36067. 36270. 36473. 36421. 36369. 36317. 36266. 36216. 3 36067. 36019. 35971. 35923. 35876. 35830. 35738. 3 PEAK 6-HOUR 24-HOJR 72-HOUR TOTAL VOLUME CFS 5188. 5154. 4603. 2676. 14176. AC-FT 2557. 9134. 15933. 1888.	7677	26.50	70076			•	100		.00.00	30000	30/44.	30087.	
36067. 36019. 35971. 35923. 35876. 35830. 35738. 3 PEAK 6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME CFS 5188. 5154. 4603. 2676. 114176. INCHES 1.18 4.20 7.33 8.68	.+500	30000	30250.	•		5421.	3636		6317.	36266.	36216	34146	
PEAK 6-HOUR 24-HUJR 72-HOUR TOTAL VOLUME 5188. 5154. 4603. 2676. 114176. 1.18 4.20 7.33 8.68 2557. 9134. 15933.	116.	36067.	36019.	•		5923.	3587		5830.	35783.	35738	35693	
2557. 9134. 15933.			CFS	PEAK	6-HOUR	24-H	0 JR	72-HOUR	TOTAL	VOLUME			
		INC	CHES		1.18	4 6	320.	7.33		8.68			

PEAK FLOW SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS

RATIUS APPLIED TO FLOWS		
1.00	24737.	5188.
0.50	12369.	389.
PLAN		4 - 6
STATION		-
OPERATION	HYDROGRAPH AT	ROUTED TO

APPENDIX E
STRUCTURAL STABILITY COMPUTATIONS

008	Λ.	SHEET NO.	CHECKED BY	DATE
BRANT LAKE UPPER	DAM		COMPUTED BY	DATE
STABILITY ANALYSIS			RLW	1/15/78
374812117 744-1313	1111		11230	1111
				++++
CASE NORMAL CONDIT	IONZ	++++		
	+++++	++++	++++	
	++++	++++		++++
 	+		+++++	
	+++++	++++	+++++	
+++++++++++++	++++	++++	++++	1111
	+	+++++	4444	4444
			1111	
▼ - 	7 4.5		1111	4444
				1111
		1 6		
	CONCRET	E		
EARTH				
			7	
		3' -	IN THE	
	K-6'-	- K		
OVERTURNING				
			1111	
		1		
		:11 - 1 - 1	1111	1111
		:\		11111
				1111
	1 1	+11+++		
02 0,	R,	WR.	1 1 1 1	++++
// / / / / 		11/23/	1-1/1-1-1	
// 	-1++++	161 6	1 4 5	++++
WATER EARTH		ENETH	WATER	++++
WATER ENTH	1 1 1 03			
	104	-	++++	++++
			+	
DRIVING FORCES		RESISTING	5 FORCES	
0 - 5/50/ 33/ 91 - 756		0 4151/21/		
D = (55)(.33)(9) = 735		R,=(4.5)/9)/1	201, -60 12	
0-5/124/9/2 = 2522	-	R = (1.5)(9)	(150)=1017	
D2= 2(62.4)(9) = 2527		K2 = 2000	101	
3 4 460		a LIEVA	(60) - 0/3	
03=(62.46) = (123		R= {(.5)(3)	(35)=7/.5	
		1	1/2/2	
0 = 2 (6)(62,4)(4) - (62,4)(3)]=1123		R = \$ (55)(3.	OX 3) = 742	
		7 1 1 1	1 1 1 1 1	
		R5 = { (62.4)(2) = 58(

JOB	_	W			,								`					SHE	ET N	0.		T	CHE	CKE	BY		T	DAT	E			_
	131	RA	V7	•	1	44	3	(U	P	FR	1	2	137			1		2			1										
SUBJEC	T																_					7		PUT			1	DAT	E/.	=/-		_
2	TAK	314	17	4	n	M.	M L	. 7	5/5	5													1	37	ω			1/	//5	5/7	79	
CA	SE	1	1	C	14	-)																									-	
De	VIM	O A	No	ma	-	7	<		1																						1	
																								1	1		7					_
	257	77	15	+	73	5	121	+	11	12	377	21	Ŧ	(11	23	1/4	1	=1	76	17		-			-	-	-	- Spillager	-	-		-
+-		-	1	-		-	-	-		-	-7	2	<u> </u>			15	4		-	-		-	-	-	-	1	-	-	1	1	7	-
0-		1	AA					-	-	-	-	-				-	-	-	-	-	-	-	-	+	+	-	-	-	-	+	+	-
RES	15/	NG	100	01	16	דא	2	-	-	-		-	-			+	-	-	-	-	-	-	-	+	+	-	-	+	+	+	-	-
	1	1	-				1.1	1	-	-	7.1	-	-		-	///	1	,	7	-	"	-	3	-	+	-	-	-	-	+	-	_
60	75(3.7	5)	-	10	12	(1)	+	110	120	1)	+	28	1(1	T	41	. 3(• 1	2	= 4	.41	5 4	3	1	4	-	-		-	-	-	_
		1	_							_	_					_	_		_			_			_		_	-	-	_	-	_
			_																													_
		1						us	22																							_
				F.	S.	=	2	E		-	1.	4																				
								16	47												-						1					
																																Г
									1																	1						
SLIE	14/								1	1			-												1					7		_
3611	IN C	-	-				-	-	+		-	-	1	-										-		1	-			-	1	_
100		1	-					-	-	-	-	-	-						+					-	-	-				+	-	-
- 04	IVIA	10	10	RC	2	_	-	-	+-	-	-		-	-		-	-		-	-	-	-		-	-	-	-	-	-	-	-	_
	-	+	-	-	-	_	-	-	-	-	-	-	-	-		-	_	-		-	-	-		-	+	-	-	-	-	-	-	_
	252	1	1/3	2 3	- 3	26	2	_	-	-	-	_	-				_		-	_		_		-	-	_	_	-	-	-	-	_
-	-	+	_		_			_	_							_						_			_	_	_		-	_		_
Re	5/5	TOV	16	Fo	RC	E	5																									
																		7														
	281	+7	42	+	.5	C	160	75	+1	012	+	41.3	1)-	(50	52 1	-188	16	=	.3	46	Z											
																	-	-														
		T																														
							2	1	1											-					7				1			Г
				F.	5	=	3	6	==	1	00									-					7					1		
		1	1	•	-		32	6	4	1.	-		-												+			1	-	1		
		+	1					-	-	-	1	-	-			-	-		-			-			+	-			1	-		-
+	++-	-	-	-	-	-		-	-	-	-	-	-	-	-				-	-		-		-	-	-	-	-	-	-		-
+	++	+	-		-	-		-	+	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	+	-	-		-	-	-	-	_		-	-	-	_		-	-	-	-	-	-	-	-	_
+	-	+	-	-	-	-	-	-	-	-	-	-	-	-		-	_	-	-	_	_	-		-		_	_	_	-	-		_
-	-	-	-		_			1	-	-	-	_	_				_		_			_					_		_	_		_
-		-	-					-	_	_	-		_																			
1		1						L																								
																										38						
		T						1		1																						
		-	-	-	-	-	-	-	-	-	-	-	-	1-	-	-	-				-	-		-		-	-	-		-		-
									1				1				1				1	1	1	1	1	1	1	1	1		1	

Be Be	ANT	1	64		11	864	= 0	10	~					SHE	3	ю.			CHE	CKE	D BY		0	AT	E			
JBJECT									1.		_		لــ			-		+			ED	BY	0	AT	E	-	-	-
	TAR	314	17	,	AA	JAL	451	S												24				1	11	5/	79	
									I																			
ASE	2		Z	PM	F	F	30	NE	0	VER		54	14	Lu	AH	'						1	1			1		
									1						1													
								Y																				
																							1					
										13'																		-
						-	-!		*		4.5		*															-
					1											~												
					1				C	ONC	RE	TE																1
				1												6							I					1
			/													0												-
									T														T					1
	1			E	AR	TH			T							×							T					-
																^												
X																3			E	PR	7/	1						-
1								\prod								V												-
								II	L		_	,																
VER	TURA	VIN	G					11	1														T					
				T				11	T															1				1
	1			T	17								1										T					-
	1		1	T	T		T	TT	T				1.										1	1				1
	/			T	17	IT	T	11					1										1					1
11/	0,		1		7						R,																	1
11/	>		T		1		1	11	T	1.			1										T	1				Ī
11/		П	1	1	1			11					,	1	RS								1					1
1 0			T	77	7		T	11					, 8-	-17			1						T					t
				1	1		1	11	T				1 1	-1					Ry		1		R	7				-
1/				1	1		T	11	T				1					Y										İ
WAT	ER	П		EAR	TH		T	17	F								AR	74			W	TE	9					1
		П		1	1	\sqcap	1	11	T	1	•												1					-
			1	1	1		1	11			9												1					1
			T	1	T			11	T	/													1					1
DRIVIA	GF	a a	= =	5				11		T				RE	515	71	VO		Fo	26	=5		1					-
0.=	(4.3) (62	YX	91=	24	115	1	TT	1				R.	= 4	1.5	(9)	(19	501	=	60	75		1					-
1 1		1 1		1		1		11										100					1					1
01=	之(6	2.4)(9	15:	= 29	\$ 27	7	TT					R,	= -	5(1	.5)	(9	X	150)=	10	21	1					-
1 1	1 1	1 1	1		1	1 1			1	1													1					1
0=	٤(55)	(.:	3)((9)	1=7	35	1					R.	3	5	1.5	1	3)	5	5)	-4	1.3	1					1
1		1			1	1			1								1						1					-
D,=	(62,	1)(3)(6)	31	123	3	TT	1				R	=	50	55	1	3.4	17	31	-	7	12	1				1
1				-	1	17	+	T	1														1	1			_	1
1-1-	LIC	VZ:	2.41	13	3 -	31:	14	28	1	-			D	3	I	1,	- 4	7	175	-	7	01	-	-	-			f

1	GR	A	N	7	1	Al	KE		U	966	ER	0	RI	ή,					SHE	4	NO.			CHE	CKE	D BY		T	DAT	E		
BJECT	T																							COM		ED			DAT		,,	/
T	3/	A	5/1		79	-	14	HL.	75	13	-									-					17.	w		-		-	16/	79
AS	=	-	>	10	2	~	-	-	+	-	-	-	-		-	-									-		-	1				+
						_	Ė		1																							
DA	IV	NO	;	M	om	EA	AT:	9																								
								1																								
	24	5	(4	.5)	+	25	5.	16	3)	+	73	5(3)	+	112	30	(3)	+	192	8	(4)	=	3	17	35						_	
0	-				-	_	-	-	+-	-	-	-	-	-	_	-	-				_	_			_	_	-	-	-	_	-	-
KE	31	5 7	1	IG	-	10	ME	N	+5	+	-	-	-	-	-	-	-				-			-		_		-	\dashv	-	-	-
1	60	75	1	7	-1	+1	01	>1	1)	1-	74:	111	+	25	110	11 4	4/41	3/	7	=	74	8	2 2	_			-	1			-	-
	7	1		***	21		-	-	۲		-	-	1	-	1	7	Çi.	2)(-	- 3									
	1							1	T	1																						
						-	- 1	=	-	2	18	23			70																	
						T		1.		31	7:	35		•	0																	
	-								1	-		_																				
-	-	-	-				-	-	+	-	-	-	-	-	-	-	-				-	_	_	_			-	-	-	_		
4	0//	16	2			-	-	-	+	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-
1	DA	5,1			-	-	-	-	+	+	1	-	-	-	-	-	-	-	-		-	-		-	-						-	
1	7			1 6	-	01	1	3	+	+	-		-	-	-	\vdash	-					-										
		2	57	74	- 2	41	5+	7	35	= 5	67	7																				
									1			П																				
	RE	51	57	11	16	F	OR	CE	5																							
1	-					_	Ļ		100	_	<u></u>	_		1	1		183	1+1	88	1	7_	-		0								
	+	2	81	+	7	12	+,	51	100	07	5+	10	12.	11	3)		1	2		10	三	3	<u>) =</u>	1				-				
+	+	-	-			-	+	+	+	+	-	-	-	-	-	-	-	_	-	-		-	-	-							-	
	+	-	-	_	-	3	05	9	=	-	3	-	-	-	-	-	-	-	-	-	-		-	-								
	1		-	،د		5	67	7	F	. 2		-	-	1	-	-	-							-								
	1					1	T	1	+	1				-		-																
									L																							
	1						_	-	1	_		_					_							_								
-	-				_	_	-	-	1	-	-	-	-	-		-	-	_		_	-	_		_								
	-	-				-	+	-	-	-	-	-	-	-		-					-	-		_							_	
-	+	-	_		-	-	+	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	
1	+	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-		-		
1	+	1				-	+	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-		-	-							
	1								1					-	-	-																
								1	1		T			1		1																
1									1	_				-			_	_														
									1																							

BR	ANT	- 4	Air	E	U	PPE	R	DA	m					EET	5				ED 8		1	DATE				
BRANT LAIRE UPPER DAM. STREILITY ANALYSIS																	C		UTED		1	DATE				
37	RBIL	17	7	HN	RL	31	5						_				1	R	44	1	_	1	116	179		
			-		1		1		-		1	1	1	-	_		1	1	1			1	1	1		
ASE	3	Mo	am.	84	Wa	TE	2 6	EV	14	1	4	TH	1	ē	1	06	0	1	1							
					T				T			1	T									T				
					1							T					1	1		T				1		
			1			1	1	_	+			+	1	1			1	1	1			_		1		
	-	1	+				1	-	+			+-	+	-			1	+	-		1	-	+	+		
\rightarrow	-	-	+-	-	+	-	++	-	+	-	+	+	+	-	-		+	+	+	-	-	-	-	+-		
-	-	-	-	-		-	++	+	+	-	+	+-	+	+	-	-	+	+	+	-	-	+	+	+		
++		-	+-	1	-	+	1	-	+	-	-	+	-	-	_		-	+	+	-	1	+	+	+-		
	lee	200	1		1		-		_	4	"	L	1	-			_	1	_			1	1	-		
	500	0/	#	1			†! †		*													1				
					1									1												
				.1	T								V													
			1		1	1			T				1	1	.,		T	1								
	1	1	-		+	+	1	+			-	-	1	1	6		+	1	1			1	1	1		
-	-	1	+-	-	-	-	++	-	+	-	-	+	1	-	-	-	+	+	-	-	-	-	+	+		
	-	-	+	-	+	-	-	-	1	-	0 =	-	#	-	-		+	+	+	-	-	-	+	+		
	1	-	-		RT	4	-	-	10	246	RE	15	++	-	-	-	1	-	-	-		-	-	-		
1	4		-		-	-			1		-	-	11	-	1,		4	4/2.	TH	-		-	-	-		
/			1									1	11		3'											
															1											
									4-		-6	1	1													
YER	7110	N /W			1	-	1	+	+		-	+	+	+	-		+	+	+	+		1	+	-		
750	142	N I N	-	1	-	+	35	-	+-	-	-	+	+	+	-		-	+	+	-	1	-	+	-		
-+-	-	-	+	-	-	1	75	->	-	-	-	+	+	+	-	-	-	+	+	-	-	+	+	+-		
	+1	-	+	-	1	-	-	-	-	-	-	+1	1	-	-		-	+	-	-	-	-	+	-		
	1				1			1	1			1	1				-	1	_			_				
	\perp				\Box							11	1													
	1			1							R	1														
	1			1							"	T	1										T			
	1		1	1		+	1	-	1		,	1,	1	10	-		+	+	1			1		1		
1	.+>		+	1	7	+	1	-	-	1	+	1		13	-		\dashv	+	T	-		-	+	_		
1		+	+	14	+	+	++	-	+	-	+	+	# #	+	-	1	+	+	+	-	0	+	+	+		
-1	+	-	+1	-	_	+	-	+	-	-	-	+	4	-	-	4	4	-	-	+	KS	-	+	+		
-	-	-	1		-	-	-	-	L			-	+	_	-		4	-	-	17		-	-	+		
			-			-	1				7		1	1				1	1	-			1	-		
											نا	-	1													
									1	-	مرا						T					1				
RIVINI	: E	Red	= 5						T			1	IR	45	5 7	1/1	16	fic	Re	E .		1				
RIVINE	551	(33)	(9)	-	71	5			1			0 :	14	5 V	91	11	50)	= 6	17	5	T	1		1		
1		1	1		-1	-	1	-	-	-	-	7+	1.	1	13		0)	+,	,0,	-	-	+	+	+		
1	1124	1/01	2_	70	7 7	-	-	-	+	-	-	7	1	1	et	191	111	1.	1/0	1-	-	-	+	-		
ع ا	166.7) (T)	-	63	- 1	-	-	-	+-	-	-	3	1	1	15)	1	(15	٥) ,	-10	12	-	-	-	-		
	-	1	-			-	-		-		-	_	-	1	-	-	1	_	777	_		1	-			
0 = (62,4)	(3)	(6)	=11	23							Rs	E	\$(, 5	13	1/5	5);	41	3						
					1						. 1	-	1			1	1		4	1	1 1					
04=	2 (6)	(62,4)L9	-3	= /	23						R.	=	1	55)	(3)(ه	3)	+ 7	42			T			
					1			T	T													1				
0 =	500	0	1	\Box	1	-		-	1		-	1	=	to	5	41	(3)	1	= 7	8		1	+	1		

108	R	6A	47	-	1	ak	E	(Je	PE	= 6	~	0	14	'				SHE	ET					CKE				DAT	rE		_
UBJEC	BRANT LAKE UPPER DAM STABILITY ANALYSIS																			RLW					V16/79							
										Ė	Ē		I			I																İ
CAS	C	-	5	-	-	Y	T.	2	-	-	-	-	-	-	-	-	+	-	-	-	-	-		-		-		-	-	-	-	+
0	R	IV	No	5	M	on	E	N	75													_										T
	2	52	70	3	1 +	7	35	(3	1	+ 5	0	00	(4	17	-11	2	37	3) 1	1	12	36	47	=	-	52	6	47	-		-		+
1													F			F	-															1
R	E	519	1	N	6	M	0	nE	N	75		+	+	+	-	+	+	+	-	-	-	-	-	-	-	-	-	-	H			+
1												70	2/1	-	17	101		1	9	3	/	71		70	0	2 3						7
+	6	0 7	5	3.	75	T.	+ 1	01	2(1)		76	-	1	-	101	-	-	11	.3	1	1)	-	-	0	- :	-	-	-	-		+
I												I	T																			
+	-	-	-	-	F.	5.	=	2	78	£ :	7	-	40	+	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-		+
								6	-																							
541	0	IN	G	-	-	-	-	-	-	-	-	+	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	+	-		-
																	I															
10	R	V/	N	5	-0	RC	Ε	2	-	-	-	+	-	-	-	+	-	-	-	-	-	-	-	-	-		-	-	H	_		-
	7	52	7	+7	35	+	5	00	0	=	82	6	2						二													
0	_	416	7	,,,	-	2	0	- /	-	-	-	-	+	-	-	+	+	-	-	-	-	-	-	-	-	-	-	-	\vdash	-	\vdash	-
		1			1			1	1	1						I	k	-	100	11:	7		1	2	2							
+	2	31-	-	74	2	+	.5	1	60	75	+1	101	4	41,	3)	-	-	2	-	0	L	-	57	0	_	-	-	-	-	-	-	-
I																																
+	-	-	-	5	-	•	-	34	63	-	-	4:	2	-	-	-	+-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
					,			12	12		Ė	Ė																				
1	_	-	-	-	-	-	-	_	-	_	_	-	+	-	-	-	-	-	-	-	-	-	-	_		-	-		-	_	H	-
	-			-		-	-				-	-	-	1	1	1	1			-			-	-						-		
				_								_		F	-		F															
+	-	+	-	-	-	-	-	-	-	-	-	+	-	1	-	-	-	-	-	-	-	-	-	-	-	-		-	+	-		
+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-			-	-	-	-	-	
I																																
+	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	_	-			-	-		-	-

APPENDIX F

LIST OF REFERENCES

APPENDIX F

REFERENCES

- U.S. Department of Commerce, <u>Technical Paper No. 40</u>, Rainfall Frequency Atlas of the United States, May 1961.
- H.W. King and E.F. Brater, <u>Handbook of Hydraulics</u>, 5th edition, McGraw-Hill, 1963.
- University of the State of New York, Geology of New York, Education Leaflet 20, Reprinted 1973.
- 4) Elwyn E. Seelye, Design, 3rd edition, John Wiley and Sons, Inc., 1960

APPENDIX G

DRAWINGS

VICINITY MAP BRANT LAKE UPPER DAM

TOPOGRAPHIC MAP BRANT LAKE UPPER DAM

FORM 1Wat. 6 18-12 2000 (16 1725)

(NOTICE: After filling out one of these forms as completely as possible for each dam in your district, return it at once to the Conservation Commission, Albany.)

STATE OF NEW YORK CONSERVATION COMMISSION ALBANY

DAM REPORT

ang 13, 1913 CONSERVATION COMMISSION, DIVISION OF INLAND WATERS. GENTLEMEN: I have the honor to make the following report in relation to the structure known This dam is situated upon the autof of Brand Coler (Give name of stream).

in the Town of Name of County, about from the Village of City of (State distance)

The distance (Up or down) stream from the dam, to-the (Give name of nearest important stream of of a bridge) is about..... The dam is now owned by Order of The Consequention and was built in or about the year 1907, and was extensively repaired or reconstructed during the year...... As it now stands, the spillway portion of this dam is built of (State whether of masoury, concrete or timber) and the other portions are built of (State whether of masonry forerete, earth or timber with or without rock fill) As nearly as I can learn, the character of the foundation bed under the spillway portion of the dam is _____ and under the remaining portions such foundation bed is

weir portion, is about
about 3 /2 feet below the top of the dam. The number, size and location of discharge pipes, waste pipes or gates which may be used for drawing off the water from behind the dam, are as follows: State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particular any leaks or cracks which you may have observed.)
used for drawing off the water from behind the dam, are as follows: State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particular any leaks or cracks which you may have observed.)
used for drawing off the water from behind the dam, are as follows: State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particular any leaks or cracks which you may have observed.)
State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particular any leaks or cracks which you may have observed.)
any leaks or cracks which you may have observed.)
Ford condition
\sqrt{G}
Reported by (Signature)
(Address—Street and number, P. O. Box or R. F. D. route)

(SEE OTHER SIDE)

(Name of place)

(In the space below, make one sketch shawing the form and dimensions of a cross section through the spiffway or waste-weir of this dam, and a second sketch showing the same information for a cross section through the other portion of the dam. Show particularly the greatest height of the dam above the stream bed, its thickness at the top, and thickness at the bottom, as nearly as you can learn.)

(In the space below, make a third sketch showing the general plan of the dam, and its approximate position in relation to buildings or other conspicuous objects in the vicinity.

(NOTICE: After filling out one of these forms as completely as possible for each dam in your district, return it at once to the Conservation Commission, Albany.)

STATE OF NEW YORK CONSERVATION COMMISSION ALBANY

DAM REPORT

5-222-No652 Upper Hudson / 1920 (Date) 1920
Conservation Commission,
Division of Waters.
GENTLEMEN:
I have the honor to make the following report in relation to the structure known as the Brant Lake Upaer Dam.
This dam is situated upon the
in the Town of Chaster , Walter County,
about from the Village or City of Horiana (State distance)
The distance Ula stream from the dam, to the 3 rant Lake (Up or down) stream or of a bridge)
is about 5 12/1 = (State distance)
The dam is now owned by Brant Lake Association Harison, N.Y. (Give name and address in full)
and was built in or about the year, and was extensively repaired or reconstructed
during the year and is used for supply power to mill balow
As it now stands, the spillway portion of this dam is built of State whether of masonry, concrete or timber)
and the other portions are built of Canarate of standard concrete, earth or timber with or without rock fill)
As nearly as I can learn, the character of the foundation bed under the spillway portion
of the dam is G2/2/ and under the remaining portions such
foundation bed is

(In the space below, make a third sketch showing the general plan of the dam, and its approximate 'position in relation to buildings or other conspicuous objects in the vicinity.)

Outlet of Brank Lake

A 10'

Stone Stone Stone Stone B

Stone B

Stone B

Stone B

Stone B

Stone B

Stone B

Stone B

(In the space below, make one sketch showing the form and dimensions of a cross section through the spillway or waste-weir of this dam and cutline the abutment, and a second sketch showing the same information for a cross section through the other portion of the dam. Show particularly the greatest height of the dam above the stream bed, its thickness at the top, and thickness at the bottom, as nearly as you can learn.)

The total length of this dam is 30' feet. The spillway or was	te-
weir portion, is about feet long, and the crest of the spillway	is .
about feet below the abutment.	
The number, size and location of discharge pipes, waste pipes or gates which may be us	
for drawing off the water from behind the dam, are as follows: Que apaid Notes in A	(1.31 w
At the time of this inspection the water level above the dam wasft	in.
be 6w- the crest of the spillway.	
(State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particular any leaks or cracks or erosions which you may have observed.)	ırly
Dam is in good condition; no locks.	
Promation is sunger my warm going out.	
Reported by Yuchard V. Ora	
(Address—Street and number, P. O. Box or R. F. D. route)	
(Name of place)	

ECCEME DIELSEEN CO.
10 X 10 ** OME INCH.
.. DEBEECT, CAGES SECTION

