Evaluation Algorithms for Extractive Summaries

Paul Tarau

Department of Computer Science and Engineering
University of North Texas

April 22, 2016

joint work with Fahmida Hamid and David Haraburda

Outline

- comparing two summaries is sensitive to their lengths and the length of the document they are extracted from
- the overlap between two summaries should be compared against the average intersection size of random sets
- a summary for the same document can be quite different when written by different humans
- ⇒ weighted relatedness to reference summaries
- comparing human written abstractive summaries to machine generated extractive ones
- > we need an evaluation mechanism using semantic equivalence relations
- a "diamond standard": scientific documents where author-written summaries provide a baseline for the evaluation of computer generated ones

Evaluating System Generated Summaries: State-of-the-Art

 ROUGE-N: n-gram recall between a candidate summary and a set of reference summaries

$$\frac{\sum_{S \in \textit{ReferenceSummaries}} \sum_{\textit{gram}_n \in S} \textit{count}_{\textit{match}}(\textit{gram}_n)}{\sum_{S \in \textit{ReferenceSummaries}} \sum_{\textit{gram}_n \in S} \textit{count}(\textit{gram}_n)}$$

Variants of ROUGE: ROUGE-L, ROUGE-W, ROUGE-S

3/30

Evaluating System Generated Summaries: State-of-the-Art

- Pyramid: Summarization Content Unit (SCU)
 - weighted overlapping instead of simple averaging technique
 - manual vs. automatic detection of SCU
 - no known means to handle the length variation
 - credibility of the human annotator: amazon mechanical turk
- Evaluation based on the Jensen-Shannon Divergence of Distributions

Evaluating computer-generated summaries vs. human-made summaries

- to summarize: we are using computer-based evaluation of computer-generated summaries to compare them to human-made ones
- can one summarize without "understanding"?
- most likely yes, humans do it all the time : -)
- How different are computer generated summaries from the human ones knowing that the human ones are quite different from each other?
- to devise a scale for evaluation normalized with respect to differences occurring between human-made summaries we need to:
 - make summaries of different sizes comparable
 - propose a ranking approach for machine generated summaries based on the concept of closeness with respect to reference summaries
 - ⇒ human-made reference summaries are compared against each other and also the baseline

Average size of the intersection of two subsets

Given a set N of size n, and two randomly selected subsets with l and k elements, the average size of the intersection is:

$$avg(n,k,l)_{random} = \frac{\sum_{i=0}^{k} i \binom{k}{i} \binom{n-k}{l-i}}{\sum_{i=0}^{k} \binom{k}{i} \binom{n-k}{l-i}}$$
(1)

Simplifying the Baseline

- \bullet |N| = n
- |K| = k, |L| = l
- \bullet |I| = i
- $P(x \in K) = k/n$
- $P(x \in L) = I/n$
- $P(x \in I) = i/n$

$$Pr(x \in I) = Pr(x \in K) \cdot Pr(x \in L)$$
$$i/n = (k/n) \cdot (I/n)$$
$$i = \frac{kI}{n}$$

the i-measure: observed vs. random intersection

$$i\text{-measure}(N,K,L) = \frac{observed_size_of_intersection}{random_size_of_intersection}$$

$$= \frac{\omega}{i}$$

$$= \frac{\omega}{kl/n}$$
(2)

less sensitivity towards length

i-measure vs. f-measure

Two random sets K_r and L_r :

$$r = \frac{|K_r \cap L_r|}{|K_r|} = \frac{i}{k} = \frac{l}{n} \tag{3}$$

$$p = \frac{|K_r \cap L_r|}{|L_r|} = \frac{i}{I} = \frac{k}{n} \tag{4}$$

$$i = kI/n \tag{5}$$

$$f\text{-measure}_{random} = 2pr/(p+r)$$

$$= 2(I/n)(k/n)/(I/n+k/n)$$

$$= 2(Ik)/(n^2)/((k+I)/n)$$

$$= 2(Ik)/(n(k+I))$$

$$= 2i/(k+I)$$

$$= i/((k+I)/2)$$
(6)

i-measure as relativized f-measure

Same computation for observed intersection size ω

from i-measure to f-measure

$$i$$
-measure $(N, K, L) = \frac{\omega}{i}$

we get

$$i\text{-measure}(N, K, L) = \frac{\omega/((k+l)/2)}{i/((k+l)/2)}$$

$$= \frac{f\text{-measure}_{observed}}{f\text{-measure}_{random}}$$
(7)

⇒ the i-measure is just the f-measure normalized with respect to the f-measure computed for random sets

Improving the "gold standard"

- i-measure helps with flexibility on length
- Evaluating the Evaluators
 - compare overlaps between each pair with *i-measure*
 - ⇒ devise an algorithm that associates a degree of confidence to each evaluator
- towards a "diamond standard": set up a repository of trusted summaries the author-written ones

A data set with multiple human-made summaries

DUC 2004

$$D = \{d_1, d_2, \dots, d_t\}$$

$$H = \{h_1, h_2, \dots, h_z\}$$

$$S = \{s_1, s_2, \dots, s_{\lambda}\}$$

for each document d, a subset of annotators (say, $H_d = \{h_1, h_2, \dots, h_m\}$) write summaries independently

Confidence-based scoring

Step 01

normalize i-measure (based on best pair)

$$w_d(h_p, h_q) = \frac{i\text{-measure}(d, h_p, h_q)}{\mu_d}$$

$$w_d(s_j, h_p) = \frac{i\text{-measure}(d, s_j, h_p)}{\mu_{(d, h_p)}}$$
(8)

$$\begin{array}{lcl} \mu_d & = & max(i\text{-}measure(d,h_p,h_q)), \forall (h_p,h_q) \in H_d \times H_d, h_p \neq h_q \\ \mu_{(d,h_p)} & = & max(i\text{-}measure(d,s,h_p)), \forall s \in S \end{array}$$

Confidence-based scoring - continued

Step 02

define a degree of confidence to each reference

$$c_d(h_p) = \frac{\sum_{q=1, p \neq q}^{m} (w_d(h_p, h_q))}{m-1}.$$
 (9)

Step 03

assign a weighted score for each system-generated summary

$$score(s_j, d) = \sum_{p=1}^{m} c_d(h_p) \times w_d(s_j, h_p)$$
 (10)

Step 04

average the score

$$i\text{-score}(s_j) = \frac{\sum_{i=1}^{t} score(s_j, d_i)}{t}.$$
 (11)

Analysis through an example

Summary of Reference B and G

B: Clinton arrives in Israel, to go to Gaza, attempts to salvage Wye accord.

G: Mid-east Wye Accord off-track as Clintons visit; actions stalled, violence

i-measure(d, B, G) is $\frac{3}{10*9/282}$ which is 9.4

Summary of Reference G and F

G: Mid-east Wye Accord off-track as Clintons visit; actions stalled, violence

F: Clinton meets Netanyahu, says peace only choice. Office of both shaky

i-measure(d, G, F) is $\frac{1}{10*8/282}$ which is 3.525

The 4 human-made summaries

normalize i-measure

Reference	Summary
В	Clinton arrives in Israel, to go to Gaza, attempts to salvage Wye accord.
G	Mid-east Wye Accord off-track as Clintons visit; actions stalled, violence
E	President Clinton met Sunday with Prime Minister Netanyahu in Israel
F	Clinton meets Netanyahu, says peace only choice. Office of both shaky

Table: reference summaries (B,G,E,F) on document D30053.APW19981213.0224

Normalized i-measures

Pair(p,q)	n	k	1	ω	i	i-measure	$w_d(h_p,h_q)$
(G , F)	282	10	8	1	0.28	3.52	0.375
(G, B)	282	10	9	3	0.32	9.40	1.0
(G, E)	282	10	8	1	0.28	3.52	0.375
(F, B)	282	8	9	1	0.25	3.91	0.4166
(F, E)	282	8	8	2	0.22	8.81	0.9375
(E, B)	282	8	9	2	0.25	7.83	0.8333

Table: normalized i-measure of all possible reference pairs

Confidence associated to a reference human made summary

Confidence associated to a reference for a specific document *d* is the average of its normalized i-measure

$$c_d(G)=rac{0.375+1+0.375}{3}$$
 which is 0.583 $c_d(B)=rac{0.375+0.4166+0.833}{3}$ which is 0.75

reference: hp	confidence: $c_d(h_p)$
G	0.583
F	0.576
В	0.75
E	0.715

Table: Confidence Score

Calculate scores for a computer-made summary: a good one

31: Clinton met Israeli Netanyahu put Wye accord

B:: Clinton arrives in Israel, to go to Gaza, attempts to salvage Wye accord.

 ${\it G}$:: Mid-east Wye Accord off-track as Clintons visit; actions stalled, violence

E:: President Clinton met Sunday with Prime Minister Netanyahu in Israel

F:: Clinton meets Netanyahu, says peace only choice. Office of both shaky

$pair(s_j, h_p)$	n	1	k	ω	i	i-measure	$w_d(s_j,h_p)$	h_p	$c_d(h_p)$	$\mu(d,h_p)$
(31 , F)	282	7	8	2	0.198	10.07	0.285	F	0.576	35.25
(31, B)	282	7	9	3	0.223	13.42	0.428	В	0.75	31.33
(31, E)	282	7	8	3	0.198	15.1	0.428	E	0.715	35.25
(31, G)	282	7	10	3	0.248	12.08	0.476	G	0.583	25.38

$$score(31) = .285 * .576 + .428 * .75 + .428 * .715 + .476 * .583 = 1.608$$

Calculate scores for a computer-made summary: a bad one

90: ISRAELI FOREIGN MINISTER ARIEL SHARON TOLD REPORTERS DURING PICTURE-TAKIN=

B:: Clinton arrives in Israel, to go to Gaza, attempts to salvage Wye accord.

G:: Mid-east Wye Accord off-track as Clintons visit; actions stalled, violence

E:: President Clinton met Sunday with Prime Minister Netanyahu in Israel

F:: Clinton meets Netanyahu, says peace only choice. Office of both shaky

$pair(s_i, h_p)$	n	1	k	ω	i	i-measure	$w_d(s_i, h_p)$	h_p	$c_d(h_p)$	$\mu(d,h_p)$
(90 , F)	282	9	8	0	0.255	0.00	0.00	F	0.576	35.25
(90, B)	282	9	9	0	0.287	0.00	0.00	В	0.75	31.33
(90, E)	282	9	8	1	0.255	3.91	0.11	E	0.715	35.25
(90, G)	282	9	10	0	0.319	0.00	0.00	G	0.583	25.38

score for
$$90 = .11 * .715 = 0.0786$$

Compare scores

90

summary: ISRAELI FOREIGN MINISTER ARIEL SHARON TOLD

REPORTERS DURING PICTURE-TAKIN=

score := 0.0786

31

summary: Clinton met Israeli Netanyahu put Wye accord

score := 1.608

Correlation with ROUGE-1

Evaluation Tasks:

Task 01: single doc. summarization Task 02: multi doc. summarization

Task 05: question specific multi doc. summarization

i-score vs. ROUGE-1	Spearman's $ ho$	Kendall's $ au$
Task 1	0.786	0.638
Task 2	0.713	0.601
Task 5	0.720	0.579

Table: Rank Correlations

Spearman's Rank Correlation Coefficient

Kendall's Bank Correlation Coefficient

assesses how well the relationship between two variables (X and Y) can be described using a monotonic function. A positive (negative) Spearman correlation coefficient corresponds to an increasing (decreasing) monotonic trend between X and Y.

measures the association between two measured quantities. A τ-test is a non-parametric hypothesis test for statistical dependence

Correlation with Human Judgement

Responsiveness score (DUC 2004, Task 5)

 For each doc. cluster, a single human was assigned to score each participants on the scale of 0 to 4.

A histogram divides the *i-score* based space into categories

sys. id	given_score	guess_score
147	3	2
122	2	2
В	4	4
86	2	0
109	3	3
H	3	4
F	4	4

normalized root mean square error (RMSE) = 0.303

RMSE =
$$\sqrt{1/n\sum_{i=1}^{n}(y-\hat{y}_{i})^{2}}$$

A "Heisenberg effect": summaries are distorted by the way we evaluate them

- syntactic well-formedness is not part of evaluator algorithms
- the "bag of words" view (or n-grams, to a lesser extent) misses relevant information hidden in word ordering (subject versus complement position)
- site-words including negation are removed to make room to nouns and verbs
- rhetorical structures implying negative sentiment are not detected
- • ⇒ negation and modality information tends to be missed
- more generally, sentiment analytics are ignored (and they are critical for things like a product or movie review)

Some remedies

- use i-measure to allow for flexibility for both human and computer-made summaries
- weight positively syntactic well-formedness
- interpret some logical elements like modality, negation, quantifiers
- use a more abstract representation for words (e.g. word2vec vectors) that encapsulates context information
- add sentiment analysis: the summary should reflect key sentiment elements, especially if product descriptions, media reviews, political believes are involved

Extractive vs. abstractive summaries

- human-made summaries are abstractive
- computer-made summaries (for now) are mostly extractive
- • semantic equivalences are needed to compare them fairly
 - replace words with Wordnet synsets
 - define equivalence relations using common Wordnet hypernyms
 - replace words with word2vec vectors, encapsulating context information learned from a large corpus like Wikipedia
 - a "distributed representation" for words as vectors obtained from the hidden layer of a shallow neural network trained with
 - the "continuous bag of words" architecture predicts the current word based on the context
 - the "skip-gram" architecture predicts surrounding words given the current word
- \Rightarrow graph-based methods could be used to test overall semantic connectivity between summaries in the context of the document they are extracted or abstracted from
- relativize summaries to natural context (ontology, domain) of a given document set

The case of scientific papers

- not a good idea to have your favorite category-theory, genomics or string-theory paper summarized by the Mechanical Turk
- fortunately, scientific papers come with an author-written abstract
- ⇒ building a "diamond standard" from (PDF-extracted) author-written abstracts and unicode approximations of the documents
- adding to it an implementation of a fair and flexible evaluation algorithm
- adding reference implementations of "classic algorithms" (e.g. TextRank)
- should we use some graph-based techniques not only to generate but also to evaluate computer generated summaries

Revisiting TextRank

what can we use as nodes?

- words, synsets
- word2vec vectors
- sentences
- semantic frames,conceptual graphs

what can we use as edges?

- equality
- equivalences
- distances
 - wordnet tree-walk steps
 - word2vec vectors: cosine similarity provides weights

How can we improve existing computer generated summaries?

- ontology driven summarizers
 - detecting the overall context the document is about placing it on a concept map
 - prioritizing sentences that match key elements of the concept map (via semantic distances and via graph ranking)
 - abstractive aspects: text simplification, using dominant words of the ontology
- identify "natural sources" for training machine learning algorithms (possibly ontology dependent)
 - 1 star 5 stars product or media reviews
 - number of followers on social media
 - up-down votes for forums like stack exchange
 - impact factors for scientific papers (hIndex, number of downloads etc.)
 - causal explanations in online media for stock marked fluctuations
 - factual information accuracy: e.g. the Onion vs. Google News

Conclusions

- accurate computer-based evaluation of computer-generated summaries is far from a being obvious or easy
- most of the shortcoming might come from the (unavoidable) simplifications that statistical measures need to assume
- accurate evaluation is useful including for their use in machine learning
- tools like the i-measure introduce some flexibility
- evaluation of summaries needs to be relativized w.r.t human-to-human variations
- trusting human-made summaries is ontology-dependent: questionable for scientific documents or even for fact checking or media reviews
- small steps of progress are happening: from natural language "processing" to natural language understanding

