REGRESIÓN LOGÍSTICA DECISION TREES

CLASE 22

CLASIFICACIÓN KNN: CONSIDERACIONES

- ✓ Método intuitivo y simple de entender e implementar.
- ✓ Funciona bien para clasificaciones binarias, o multiclase.
- ✓ Sólo tiene un hiperparámetro (k)
- El algoritmo es lento para grandes datasets.
- Funciona bien con pocas variables predictoras, pero falla para problemas de muchas dimensiones.
- X Requiere normalizar los features para evitar problemas de escala.
- X No funciona bien sobre datasets imbalanceados.

Apr<mark>endizaje Supervisad</mark>o Métodos de Clasificación

Regresión Logística Simple

CLASIFICACIÓN BINARIA

En el problema de comportamiento de clientes, la clasificación es **binaria**: hay sólo dos outcomes posibles \rightarrow compra / no compra (1/0).

¿Qué pasaría si tratamos de usar una regresión lineal?

- Los resultados para Y no son coherentes con la definición del outcome.
- Para valores extremos del predictor x, se obtienen valores de Y fuera del rango [0,1].

- La situación podría mejorar si tuviéramos una función que transforme la función lineal en algo más apropiado al problema.
- La **Regresión Logística Simple** permite estimar la probabilidad de una variable cualitativa binaria en función de una variable cuantitativa.
- Para ello, se transforma el valor devuelto por la regresión lineal empleando una función cuyo resultado está siempre comprendido entre 0 y 1.
- Con esto, resuelve los problemas de rango de predicciones y valores posibles de probabilidad del modelo de regresión lineal.

• La función logística más usada es la **sigmoide**:

$$P(Y = 1|X = x) = p = \frac{e^{(\beta_0 + \beta_1 X)}}{1 + e^{(\beta_0 + \beta_1 X)}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

- Interpretación: P(Y = 1|X = x) = p es la probabilidad de que la variable cualitativa Y adquiera valor 1, dado que el predictor X tiene valor x.
- El modelo predice P(Y = 1|X = x) con una curva en forma de S.

$$P(Y = 1|X = x) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

 β_0 mueve la curva hacia la izquierda o derecha en $c = -\frac{\beta_0}{\beta_1}$.

$$P(Y = 1|X = x) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

 β_1 controla qué tan empinada es la forma S (~pendiente)

$$P(Y = 1|X = x) = p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

 Con un poco de álgebra, el modelo logístico se puede reescribir como:

$$\ln\left(\frac{p}{1-p}\right) = \ln\left(\frac{P(Y=1)}{P(Y=0)}\right) = \beta_0 + \beta_1 X$$

Odds: esto es lo que observamos

- ¿Cómo ajustamos los parámetros β a partir de un conjunto de observaciones?
 - Método de máxima verosimilitud:

REGRESIÓN LOGÍSTICA SIMPLE: MÁXIMA VEROSIMILITUD

- La verosimilitud L es la versión inversa de la probabilidad condicional $\rightarrow L(b|A) = P(A|B=b)$
- La variable Y es una variable aleatoria discreta que tiene probabilidad p de tomar valor 1 ("éxito"), y probabilidad (p-1) de tomar valor 0 (fracaso) \rightarrow Distribución de Bernoulli

$$P(Y = y) = \begin{cases} p & \text{si } y = 1\\ 1 - p & \text{si } y = 0 \end{cases}$$

• Esto también se puede escribir como: $P(Y = y_i|p) = p^{y_i}(1-p)^{1-y_i}$

Por lo tanto, la verosimilitud de una observación de p es:

$$L(p|y_i) = P(Y = y_i|p) = p^{y_i}(1-p)^{1-y_i}$$

• Dado que las observaciones son independientes, la función de verosimilitud total para \mathbf{p} es:

•
$$L(p|Y) = \prod_i P(Y = y_i) = \prod_i p^{y_i} (1-p)^{1-y_i}$$

• Y su logaritmo:
$$l(p|Y) = \ln(L(p|Y)) = \sum_{i} y_{i} \ln(p_{i}) + (1 - y_{i}) \ln(1 - p_{i})$$

• Reemplazando **p**, obtenemos finalmente para la verosimilitud total:

•
$$l(p|Y) = -\sum_{i} \left[y_i \log \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_i)}} + (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_i)}} \right) \right]_i$$

Para encontrar los valores óptimos de los parámetros β, es necesario maximizar esta expresión(derivar, igualar a cero, y resolver el sistema de ecuaciones mediante métodos iterativos).

REGRESIÓN LOGÍSTICA SIMPLE PARA CLASIFICACIÓN

$$P(Y = 1|X = x) = p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

- Para una nueva observación X = x, el modelo de regresión logística entrega la probabilidad P(Y = 1|X = x).
- Para clasificar nuevas observaciones asumimos:

Si
$$P(Y = 1 | X = x) \ge 0.5 \implies Y = 1$$

Si
$$P(Y = 1|X = x) < 0.5 \implies Y = 1$$

• El rendimiento del clasificador se evalúa usando las métricas comunes de clasificación: exactitud, precisión, sensibilidad, F₁

REGRESIÓN LOGÍSTICA MÚLTIPLE

- La regresión logística múltiple es una extensión de la regresión logística simple.
- Se basa en los mismos principios que la regresión logística simple pero ampliando el número de predictores.
- Los predictores pueden ser tanto continuos como categóricos:

$$\ln\left(\frac{p}{1-p}\right) = \ln\left(\frac{P(Y=1)}{P(Y=0)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_J X_J$$

Apr<mark>endizaje Supervisad</mark>o Métodos de Clasificación

Deceision Trees / Árboles de Decisión

- \mathcal{D}_{train} (clase A)
- \mathcal{D}_{train} (clase B)

ÁRBOLES DE DECISION / DECISION TREES

 Los árboles de decisión son modelos de regresión y clasificación que se basan en aprender una jerarquía de preguntas (tests) de tipo if/else para llegar de la forma más rápida posible a una decisión acertada respecto al valor de la etiqueta de una nueva observación.

ÁRBOLES DE DECISION / DECISION TREES

- Los árboles de decisión son modelos de regresión y clasificación que se basan en aprender una jerarquía de preguntas (tests) de tipo if/else para llegar de la forma más rápida posible a una decisión acertada respecto al valor de la etiqueta de una nueva observación.
- Las preguntas pueden ser relativas al valor de una variable numérica o categórica.
- El algoritmo busca sobre todas las posibles pruebas, y selecciona la que es más informativa respecto a la variable objetivo.

- $\text{¿es } x_2 \text{ mayor a } 2.06?$ y luego,
- ξ es x_1 menor a 10.5?

- \mathcal{D}_{train} (clase A)
- lacktriangle \mathcal{D}_{train} (clase B)

 Para los datos de ejemplo, un árbol de decisión para clasificar las observaciones en clases A o B podría tener la siguiente estructura de tres niveles.

 Cada pregunta concierne sólo a una variable, por lo tanto cada pregunta particiona los datos a lo largo de un eje.

- \mathcal{D}_{train} (clase A)
- \mathcal{D}_{train} (clase B)

(región en la partición)

Frontera de decisión en

con el clasificador kNN)

COMPLEJIDAD DEL ÁRBOL DE DECISIÓN

Típicamente, la construcción del árbol de decisión continua hasta que todas las hojas son "puras": contienen sólo una clase objetivo.

Esto puede llevar a modelos muy complejos **> overfitting**.

 hojas puras → 100% precisión para datos de entrenamiento

Estrategias para prevenir overfitting:

- Pre-pruning: cortar tempranamente la creación del árbol
 - Limitar profundidad
 - Limitar n
 ^o de hojas
 - Requerir mínimo de puntos en un nodo para dividir
- **Post-pruning:** crear el árbol completo, y colapsar nodos que aportan poca información

REGRESIÓN LOGÍSTICA SIMPLE: MÁXIMA VEROSIMILITUD

- La verosimilitud L es la versión inversa de la probabilidad condicional $\rightarrow L(b|A) = P(A|B=b)$
- La variable Y es una variable aleatoria discreta que tiene probabilidad p de tomar valor 1 ("éxito"), y probabilidad (p-1) de tomar valor 0 (fracaso) \rightarrow Distribución de Bernoulli

$$P(Y = y) = \begin{cases} p & \text{si } y = 1\\ 1 - p & \text{si } y = 0 \end{cases}$$

• Esto también se puede escribir como: $P(Y = y_i|p) = p^{y_i}(1-p)^{1-y_i}$

Por lo tanto, la verosimilitud de una observación de p es:

$$L(p|y_i) = P(Y = y_i|p) = p^{y_i}(1-p)^{1-y_i}$$

- Dado que las observaciones son independientes, la función de verosimilitud total para \mathbf{p} es:
 - $L(p|Y) = \prod_i P(Y = y_i) = \prod_i p^{y_i} (1-p)^{1-y_i}$
 - Y su logaritmo: $l(p|Y) = \ln(L(p|Y)) = \sum_{i} y_{i} \ln(p_{i}) + (1 y_{i}) \ln(1 p_{i})$
- Reemplazando **p**, obtenemos finalmente para la verosimilitud total:

•
$$l(p|Y) = -\sum_{i} \left[y_i \log \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_i)}} + (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_i)}} \right) \right]_i$$

• Para encontrar los valores óptimos de los parámetros β, es necesario maximizar esta expresión(derivar, igualar a cero, y resolver el sistema de ecuaciones mediante métodos iterativos).