SARDAR VALLABHBHAI PATEL INSTITUTE OF TECHNOLOGY VASAD

B. E. Second Semester (All Branch)

Subject: Vector Calculus and Linear Algebra (2110015)

Year 2016-2017

Tutorial: 08

- 1 Determine whether the following functions are linear transformation.
 - (a) $F: M_{mn} \to M_{nm}$, where $F(A) = A^T$ (b) $T: M_{nn} \to R$, where $T(A) = \det(A)$
 - (c) $T: F(-\infty, \infty) \to F(-\infty, \infty)$, where T(f(x)) = 1 + f(x)
- 2 Consider the basis $S = \{v_1, v_2, v_3\}$ for R^3 , where $v_1 = (1,1,1)$, $v_2 = (1,1,0)$ and $v_3 = (1,0,0)$ let $T: R^3 \to R^3$ be the linear operator such that $T(v_1) = (2,-1,4)$ and $T(v_2) = (3,0,1)$, $T(v_3) = (-1,5,1)$

Find a formula for $T(x_1, x_2, x_3)$, and use the formula to find T(2,4,-1).

- 3 Let $T: R^4 \to R^3$ be the linear transformation given by the formula $T(x_1, x_2, x_3, x_4) = (4x_1 + x_2 2x_3 3x_4, 2x_1 + x_2 + x_3 4x_4, 6x_1 9x_3 + 9x_4)$ Find basis for $\ker(T)$ and R(T).
- 4 Determine whether the given linear transformation *T* is one-to-one. $T: \mathbb{R}^3 \to \mathbb{R}^2$, where T(x, y, z) = (x + y + z, x y z).
- Let $T_1: R^2 \to R^2$ and $T_2: R^2 \to R^2$ be the linear operators given by the formulas $T_1(x, y) = (x + y, x y)$ and $T_2(x, y) = (2x + y, x 2y)$
 - (a) Show that T_1 and T_2 are one-to-one.
 - (b) Find formulas for $T_1^{-1}(x, y)$, $T_2^{-1}(x, y)$ and $(T_2 \circ T_1)^{-1}(x, y)$.
 - (c) Verify that $(T_2 \circ T_1)^{-1} = T_1^{-1} \circ T_2^{-1}$.
- 6 Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 \\ -x_1 \\ 0 \end{bmatrix}$$

(a) Find the matrix $[T]_{B',B}$ with respect to the bases $B=\{u_1$, $u_2\}$ and $B'=\{v_1$, v_2 , $v_3\}$,

where
$$u_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$

(b) Verify $[T]_{B',B}[x]_B = [T(x)]_{B'}$ holds for every vector $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in \mathbb{R}^2 .