1. Set up the iterated integrals for $\iint_R f \, dA$ in both orders for each of the following regions —

(a)
$$\iint_{R} f \, dA = \int_{0}^{2} \int_{0}^{1} f \, dy \, dx = \int_{0}^{1} \int_{0}^{2} f \, dx \, dy$$

(b)
$$\iint_R f \, dA = \int_0^2 \int_0^{1-x/2} f \, dy \, dx = \int_0^1 \int_0^{2-2y} f \, dx \, dy$$

(b)
$$\iint_{R} f \, dA = \int_{0}^{2} \int_{0}^{1-x/2} f \, dy \, dx = \int_{0}^{1} \int_{0}^{2-2y} f \, dx \, dy$$
(c)
$$\iint_{R} f \, dA = \int_{0}^{1} \int_{1-x}^{1-x/2} f \, dy \, dx + \int_{1}^{2} \int_{0}^{1-x/2} f \, dy \, dx = \int_{0}^{1} \int_{1-y}^{2-2y} f \, dx \, dy$$

- A coin with sides marked 2 and 4 and a regular die are thrown. Let X be the number on the coin and Y the absolute difference between the numbers on the coin and die.
 - (a) Find the joint density $f_{X,Y}(x,y)$

		0	1	у 2	3	4
\overline{x}	2	1/12	2/12	1/12	1/12	1/12
	4	1/12	2/12	2/12	1/12 1/12	0

(c)

- (b) The rows of the table each sum to 1/2. Explain in words what this means? The probability of the coin showing either 2 or 4 is 1/2.
- (c) The sum of the Y = 2 column is 1/4. What does this mean? The probability that the difference between the coin and die equals 2 is 1/4.
- (d) Find the marginal density function for *Y*.

y	0	1	2	3	4
$f_Y(y)$	1/6	1/3	1/4	1/6	1/12

(e) Are *X* and *Y* independent? Explain.

No ... $f_{X,Y}(4,4) = 0$ but $f_X(4) = 1/2$ and $f_Y(4) = 1/6$ so $f_{X,Y}(4,4) \neq f_X(4) f_Y(4)$... or just note that there is a zero in the table but no row or column of zeros

- 3. Let $f_{X,Y}(x,y) = kx, (x,y) \in R$.
 - (a) Find *k*.

$$\iint_{R} f_{X,Y}(x,y) dA = \int_{0}^{1} \int_{0}^{\sqrt{x}} kx \, dy \, dx$$
$$= \int_{0}^{1} \left[kxy \right]_{0}^{\sqrt{x}} dx = \int_{0}^{1} kx^{3/2} \, dx = \frac{2}{5}k = 1 \text{ so } k = \frac{5}{2}$$

(b) Find P(Y < X).

$$P(Y < X) = \int_0^1 \int_0^x \frac{5}{2} x \, dy \, dx = \int_0^1 \left[\frac{5}{2} x y \right]_0^x \, dx = \int_0^1 \frac{5}{2} x^2 \, dx = \left[\frac{5}{6} x^3 \right]_0^1 = \frac{5}{6}$$

(c) Find P(X < Y).

$$P(X < Y) = 1 - P(Y < X) = 1 - \frac{5}{6} = \frac{1}{6}$$

(d) Find the marginal density functions f_X and f_Y .

$$f_X(x) = \int_0^{\sqrt{x}} f_{X,Y}(x,y) \, dy = \int_0^{\sqrt{x}} \frac{5}{2} x \, dy = \left[\frac{5}{2} x y \right]_0^{\sqrt{x}} = \frac{5}{2} x^{3/2}, \, 0 < x < 1$$

$$f_Y(y) = \int_{y^2}^1 f_{X,Y}(x,y) \, dx = \int_{y^2}^1 \frac{5}{2} x \, dx = \left[\frac{5}{4} x^2 \right]_{y^2}^1 = \frac{5}{4} (1 - y^4), \, 0 < y < 1$$

No, $f_{X,Y}(x,y) \neq f_X(x) f_Y(y)$... or just note that the support of $f_{X,Y}$ is not a rectangle

