Publication number:

0029363

12

EUROPEAN PATENT APPLICATION

- Application number: 80304106.0
- Date of filing: 14.11.80

(f) Int. Cl.³: C 07 D 231/14, C 07 D 231/12, A 61 K 31/415

Priority: 16.11.79 JP 149099/79 16.11.79 JP 149100/79 16.11.79 JP 149101/79 16.11.79 JP 149102/79

Applicant: MORISHITA PHARMACEUTICAL CO. LTD., 29 Doshomachi 4-chome Higashl-ku, Osaka (JP)

- Date of publication of application: 27.05.81 Bulletin 81/21
- Inventor: Seki, Kunio, 1823-1 Ohshinohara, Yasu-cho Yasu-gun, Shiga-ken (JP) Inventor: Ohki, Masahiko, 720-77 Toba-Otsu, Yasu-cho Yasu-gun, Shiga-ken (JP)
- Designated Contracting States: AT BE CH DE FR GB IT LINLSE
- Representative: Myerscough, Philip Boyd et al, J.A.Kemp & Co. 14, South Square Gray's Inn, London, WC1R 5EU (GB)
- Pyrazole derivatives and pharmaceutical compositions containing them.
- Pyrazole derivatives of the general formula:

 R^2

7 to 11 carbon atoms and R^2 represents a hydrogen atom, R^3 does not represent -C = 0, are novel compounds which

OR4 have excellent antilipemic activity with a very low toxicity to humans, and accordingly are suitable for use as pharmaceutical agents in the treatment of lipemia.

wherein R1 represents an alkyl group of 7 to 17 carbon atoms, R² represents a hydrogen atom, a lower alkyl group or a phenyl group and R^3 represents -C = 0, -C = 0

OR4

or -CH₂OH, wherein R⁴ represents a hydrogen atom or a lower alkyl group, R5 represents -CH2CH2OH or -CH₂-C = O,

wherein R⁶ represents a hydroxyl group or a lower alkoxy group with a proviso that when R1 represents an alkyl group

DESCRIPTION

"PYRAZOLE DERIVATIVES AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM"

The present invention relates to novel pyrazole derivatives having excellent antilipemic activity and suitable for use in the treatment of lipemia.

agents have been proposed for use in the treatment of lipemia, they suffer the common defect of exhibiting side effects upon long term administration. For instance, clofibrate which has been widely administered as an antilipemic agent causes diseases in the biliary duct and there is the possibility that clofibrate may cause cancers. Further, pharmaceutical compositions comprising nicotinic acid are only rarely used because of the large dosages required and the side effect of causing flushing and eruptions on the face and skin of the patient being treated.

After synthesizing and testing various compounds we have found that pyrazole derivatives of the general formula (I) shown below have excellent antilipemic activity.

Pyrazole derivatives of the general formula (II):

20

wherein R⁷ represents a hydrogen atom or a lower alkyl

group and R⁸ represents an alkyl group of 3 to 11 carbon atoms, are known, and their synthesis and their physical— and chemical properties have been reported by Keshin, H et al. (Istanbul Univ. Fen. Fak. Mecum. Seric., 34, 95-108, 1969), but without mention of any pharmacological properties

pharmacological properties.

Although Kupiecki F. et al reported that

5

20

5-methylpyrazole-3-carboxylic acid can reduce the level of lipid in human blood (refer to J. Pharmacol. Expt. Therap., 160, 166, 1968), Lang P.D. et al subsequently reported that its clinical effectiveness was not decisive and its use caused side effects such as hypoglycemia, rendering it unsuitable for use in treating lipemia (refer to Arzneim. Forsch., 25(1), 117, 1975).

Accordingly, the fact that the pyrazole derivatives of the present invention have excellent antilipemic activity and that they could safely be used in the treatment of lipemia was not to be expected from the prior art.

The pyrazole derivatives of the present invention are represented by the general formula (I)

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$
(I)

wherein R¹ represents an alkyl group of 7 to 17 carbon atoms, R² represents a hydrogen atom, a lower (preferably C₁-C_{/4}) alkyl group or a phenyl group, R³ represents -C=0, -C=0 or -CH₂OH wherein R⁴

OR⁴ NH-R⁵

represents a hydrogen atom or a lower (preferably

 C_1-C_4) alkyl group, R^5 represents $-CH_2CH_2OH$ or $-CH_2-C=O$ wherein R^6 represents a hydroxyl group or R^6

a lower (preferably C_1-C_4) alkoxy group, with the proviso that when R^1 represents an alkyl group of 7 to 11 carbon atoms and R^2 represents a hydrogen atom, R^3 does not represent -C=0.

 $\int_{OR} 4$

Examples of pyrazole derivatives of formula (I) (hereinafter referred to as the present pyrazole derivatives) are: 5-n-tridecylpyrazole-3carboxylic acid, 5-n-pentadecylpyrazole-3-carboxylic 10 acid, 5-n-heptadecylpyrazole-3-carboxylic acid, ethyl 5-n-tridecylpyrazole-3-carboxylate, ethyl 5-n-pentadecylpyrazole-3-carboxylate, ethyl 5-n-heptadecylpyrazole-3-carboxylate, 3-N-2'-hydroxyethylcarbamoyl-5-n-nonylpyrazole, 3-N-2'-hydroxyethylcarbamoyl-5-n-15 undecylpyrazole, 3-N-2'-hydroxyethylcarbamoyl-5-ntridecylpyrazole, 3-N-hydroxycarbonylmethylcarbamoyl-5-n-nonylpyrazole, 3-N-hydroxycarbonylmethylcarbamoyl-5-n-undecylpyrazole, 3-N-hydroxycarbonylmethyl-5-ntridecylpyrazole, 3-N-ethoxycarbonylmethylcarbamoyl-5-20 n-nonylpyrazole, 3-N-ethoxycarbonylmethylcarbamoyl-5n-undecylpyrazole, 3-N-ethoxycarbonylmethylcarbamoyl-5-n-tridecylpyrazole, 3-hydroxymethyl-5-n-tridecylpyrazole, 3-hydroxymethyl-5-n-heptylpyrazole, 3-hydroxymethyl-5-n-nonylpyrazole, 3-hydroxymethyl-5-n-25 undecylpyrazole, 1-methyl-5-n-tridecylpyrazole-3carboxylic acid, 1-methyl-5-n-heptapyrazole-3-carboxylic acid, 1-methyl-5-n-nonylpyrazole-3-carboxylic acid, l-methyl-n-undecylpyrazole-3-carboxylic acid, l-phenyl-5-n-nonylpyrazole-3-carboxylic acid, l-phenyl-5-n-30 heptylpyrazole-3-carboxylic acid, 1-phenyl-5-n-undecylpyrazole-3-carboxylic acid and 1-phenyl-5-n-tridecyl-pyrazole-3-carboxylic acid.

The present pyrazole derivatives can be synthesized by the following methods:

5

10

15

20

25

30

(1) Syntheses of 5-alkylpyrazole-3-carboxylic acids and esters thereof:

A sodium enolate of the general formula (III) obtainable by a Claisen condensation reaction between a higher-alkyl methyl ketone and diethyl oxalate:

$$R^{1}-C-CH=C-CO_{2}C_{2}H_{5}$$
 (III)

wherein R¹ is as defined for formula (I), is reacted with hydrazine hydrate in a mineral acid for 4 to 10 hours with heating and stirring under reflux to provide an ethyl ester of a 5-alkylpyrazole-3-carboxylic acid.

The corresponding acid can be obtained by hydrolyzing the ethyl ester with sodium hydroxide in an aqueous lower alcoholic solution at a temperature around 100°C, or by reacting a sodium enolate (III) with hydrazine sulfate in an aqueous lower alcoholic solution of sodium hydroxide with heating under reflux for 2 to 3 hours.

(2) Synthesis of 5-alkylpyrazol-3-carboxamides:

A sodium enolate of formula (III) is heated with hydrazine sulfate in an aqueous solution of sodium hydroxide for 2 to 3 hours, and the reaction product is brought into reaction with thionyl chloride to provide a 5-alkylpyrazol-3-carboxylic acid chloride. The acid chloride is then reacted with an amine derivative of the general formula, NH_2-R^5 , wherein R^5 represents a group $-CH_2CH_2OH$ or a group $-CH_2C-R^6$, wherein R^6 is a

hydroxyl group or a lower alkoxy group, or a hydrochloride thereof, in dichloroethane in the presence of triethyl-

amine to provide the desired compound.

10

15

20

25

30

(3) Synthesis of 3-hydroxymethyl-5-alkylpyrazoles:

A sodium enolate of formula (III) is reacted with hydrazine hydrate in a mineral acid with heating for 4 to 10 hours under reflux to provide an ethyl-5-alkyl-pyrazole-3-carboxylate, which is reduced with lithium aluminum hydride in anhydrous tetrahydrofuran to provide a 3-hydroxymethyl-5-alkylpyrazole.

(4) Synthesis of l-alkyl-5-alkylpyrazole-3-carboxylic acids:

A sodium enolate of formula (III) is dissolved in distilled water or methanol together with a monosubstituted hydrazine sulfate of the general formula (IV):

 R^2 -NH₂NH₂SO₄ (IV)

wherein R² represents alkyl of 1 to 3 carbon atoms, and to the thus obtained solution an aqueous solution of sodium hydroxide is added, and then the mixture is heated for 1 to 2 hours to provide the desired product.

(5) Synthesis of l-phenyl-5-n-alkylpyrazole-3-carboxylic acids:

A sodium enolate of formula (III) is dissolved in distilled water or methanol together with phenylhydrazine sulfate, and to the thus obtained solution an aqueous solution of sodium hydroxide is added, and then the mixture is heated for 1 to 2 hours to provide the desired products.

The synthesis of various pyrazole derivatives of formula (I) and their physical— and chemical properties will be described below in Examples 1 to 25. Before that an explanation will be provided of the pharmacological properties of the present pyrazole derivatives:

Pharmacological tests were carried out on each compound of the present pyrazole derivatives using

nicotinic acid for comparison.

(i) Pharmacological test against hypertriglycer-idemia:

Seven groups of male SD rats, each group

5 consisting of 6 animals, were used as test animals and one group consisting of 12 animals was used as a control. The test groups were made hypertriglyceridemic by administering aqueous 10% by weight solution of fructose for 2 days, while the animals of the control group were given tap water. The administration to the test groups of six pyrazole derivatives and of nicotinic acid was as follows:

Each pyrazole derivative and nicotinic acid was separately dissolved or dispersed in an aqueous 1% solution of carboxymethylcellulose (CMC) at a predetermined concentration, and the thus prepared solution or dispersion was orally administered in three doses, each dose having a volume of 0.5 ml/100 g body weight, a first dose just after the commencement of the test, a second dose 24 hours after the first dose, and a third dose 18 hours after the second dose. The total dosage of each compound was such that each animal received 300 mg/kg of each compound as free carboxylic acid. rats of the control group were given the aqueous 1% solution of CMC only, in three doses at the same intervals as the test groups. All the groups were fed with the same diet during the test period.

After 48 hours of the commencement of the test, a blood sample was collected from each animal by amputation of the carotid artery, and serum was separated from the blood sample and frozen to be kept until lipid analysis.

Lipid analysis:

15

20

25

30

Serum triglyceride was determined by Acetyl-

acetone Method, and the reduction percentage of lipid was calculated on the basis of the following formula:

- (1 amount of triglyceride in serum of test animal amount of triglyceride in serum of control) X 100
- 5 = the reduction percentage of lipid wherein the reduction percentage is the average for the test animals in each group.

Analysis for serum cholesterol:

The content of serum cholesterol was determined by an enzymatic method using cholesteroloxidase, and the reduction percentage of cholesterol was calculated according to the following formula:

- (1 $\frac{\text{amount of cholesterol in serum of test animal}}{\text{amount of cholesterol in serum of control}}$) x 100
- 15 = the reduction percentage of cholesterol

 The results of the analyses are shown in Table 1.

- 8 -

TABLE 1

Compound	Total Dose (mg/ kg)	Reduction Percentage		
		Triglyceride	Cholesterol	
5-n-tridecylpyrazole-	300	76.4	59.8	
3-carboxylic acid				
5-n-pentadecylpyrazole-	200	60.0		
3-carboxylic acid	300	62.8	32.1	
5-n-heptadecylpyrazole- 3-carboxylic acid	300	30.5	24.5	
5-Carboxyric acid				
Ethyl 5-n-tridecyl-	329	88.0	65.1	
pyrazole-3-carboxylate				
Ethyl 5-n-pentadecyl-	326	67.8	34.1	
pyrazole-3-carboxylate	320	67.8	34.⊥	
Etherl E n hantadagerl		0		
Ethyl 5-n-heptadecyl- pyrazole-3-carboxylate	324	35.2	32.9	
			*	
3-hydroxymethyl-5-	300	78.2	55.8	
tridecylpyrazole				
3-n-ethoxylcarbonyl-	o.		*	
methylcarbamoyl-5-	300	81.4	34.8	
tridecylpyrazole			*	
l-methyl-5-n-tridecyl-			,	
pyrazole-3-carboxylic	300	75.9	61.2	
acid				
Nicotinic acid	300	24.1	16.4	
THE COUNTY OF TH		<u>-</u> -	±∪ •¬	

(ii) Pharmacological test against hypercholesterolemia:

Three groups of male SD rats each weighing about 150g, each group consisting of five rats, were 5 used as test animals and one group consisting of 10 rats was used as control: All animals were fed a high cholesterol diet consisted of 1% cholesterol, 0.2% sodium cholate, 5% olive oil and commercial diet up to total 100% for 7 days. The test compounds of the present invention and clofibrate, as a medicine for comparison, 10 were respectively dissolved or dispersed in an aqueous 1% solution of CMC so that the volume of the solution or dispersion administered each time to an animal was 0.5 ml/100g body weight, and the solution or dispersion 15 was orally administered so that the amount of administration each time of each pyrazole derivative or of clofibrate was 200 mg/kg body weight. Administration was carried out once a day for 7 consecutive days. Water was taken ad lib. After 20 hours of fasting from the last administration, a blood sample was taken from each animal by amputation of the carotid artery, and the serum separated was frozen until the analysis of cholesterol shown as follows: Cholesterol analysis

25 The content of serum cholesterol was determined by the above-mentioned method. The beta-lipoproteincholesterol was determined by "heparin-calcium precipitation method". The reduction percentage of cholesterol in serum and beta-lipoprotein were calculated 30 in the same manner as above. The results are shown in Table 2.

			Reduction	n Percentage
5	Compound	Dose (mg/ kg/day)	Cholesterol	Cholesterol in beta- lipoprotein
•	5-n-tridecylpyrazole- 3-carboxylic acid	200	45.2	54.3
	3-hydroxymethyl- 5-n-tridecylpyrazole	200	52.7	25.2
	3-n-ethoxycarbonyl- methylcarbamoyl-5- n-tridecylpyrazole	200	48.6	32.7
- 1	l-methyl-5-n-tridecyl- pyrazole-3-carboxylic acid	200	60.1	57.3
	Clofibrate	200	- 3.5	- 2.0

As seen from Tables 1 and 2, the present pyrazole derivatives have an excellent antilipemic activity superior to that of nicotinic acid and clofibrate, known antilipemic agents.

The acute toxicity of the present pyrazole derivatives to mammals was determined by the following method. The results showed that each of the present pyrazole derivatives had a $\rm LD_{50}$ value over 5.0 g/kg body weight significantly larger than that of nicotinic acid, 4.5 g/kg.

Test method for acute toxicity:

20

25

Male ICR mice of body weight 21 to 25 g were

divided into several groups each consisting of 8 animals and were fasted for 17 to 18 hours and then orally given a pyrazole derivative or nicotinic acid dissolved or dispersed in an aqueous 1% CMC solution at a rate of 0.2 ml/10 g body weight. The administered amount of each compound was 2.5 g/kg body weight or 5.0 g/kg, and from the mortalities at both levels, LD_{50} was roughly calculated and compared with LD_{50} of nicotinic acid.

formulating the present pyrazole derivatives into pharmaceutical compositions. In general, the present pyrazole derivative can be formulated into a pharmaceutical composition of dose unit form by known techniques. Since a present pyrazole derivative is generally administered orally, it is preferably formulated into tablets or capsules. When formulating a present pyrazole derivative into the dose unit form, vehicles, disintegrating agents, binding agents and lubricating agents which are used widely in the pharmaceutical field may be used.

The dose level of the present pyrazole derivative naturally depends upon the degree of hyperlipemia, but, in general, a suitable daily oral dose will be 0.2 to 3.0 g/60 kg of body weight, preferably 0.5 to 1.5 g/60 kg body weight.

Examples 1 to 25 which follow provide a more detailed explanation of the synthesis of the pyrazole derivatives, while Examples 26 and 27 describe their formulation.

25

EXAMPLE 1

Synthesis of ethyl 5-n-tridecylpyrazole-3-carboxylate: 10.4 g (0.45 mol) of metallic sodium was dissolved in 500 ml of anhydrous ethanol and then a liquid mixture consisting of 100 g (0.44 mol) of methyl n-tridecyl ketone and 64 g (0.44 mol) of diethyl oxalate was slowly dropped into the solution with stirring. After the addition, the mixture was heated for 5 hours at a temperature of 60°C under stirring. Then, the reaction mixture was cooled by iced water, and the resulting yellow precipitate was collected by filtration and recrystallized from ethanol to provide 103.3 g (0.1 mol) of sodium l-ethoxycarbonyl-3-oxo-1hexadecenolate, $\text{CH}_3(\text{CH}_2)_{12}^{\text{C-CH=C-CO}_2\text{C}_2\text{H}_5}$, as pale yellow

15

25

30

10

5

crystals melting at 68 - 70°C at a yield of 67.5%.

To a solution of 34.8 g (0.1 mol) of the sodium 1-ethoxycarbonyl-3-oxo-1-hexadecenolate in 23 ml of glacial acetic acid 5.5 g (0.11 mol) of hydrazine hydrate 20 was slowly dropped under cooling with iced water. heating the mixture for 8 hours under reflux, the reaction mixture was cooled and poured into iced water, then neutralized with a saturated aqueous solution of sodium hydrogen carbonate and extracted with benzene. The separated benzene layer was washed with a saturated aqueous solution of sodium hydrogen carbonate and then dried over anhydrous sodium sulfate. Solvent was evaporated and the residue was recrystallized from ethyl ether to provide 22.6 g of ethyl 5-n-tridecylpyrazole-3carboxylate as colourless needle-like crystals melting at 45-46°C at a yield of 70.0%. Elementary analysis:

found: 70.76% C; 10.66% H; 8.67% N calcd. as $C_{19}^{H_{34}O_{2}N_{2}}$: 70.76% C; 10.63% H; 8.69% N. Infrafred absorption spectrum (hereinafter referred to

```
as IR):
```

(nujol method)

 $v_{\text{max}}^{\text{nujol}}$ 3200 - 3100 cm⁻¹ (VNH) and 1715 cm⁻¹ (VC=O).

Mass spectrum (hereinafter referred to as Mass): m/e 322 (M⁺)

Nuclear magnetic resonance spectrum (hereinafter referred to as NMR): (in CDCl $_3$) δ :

0.87 [3 H, t, J=6H_z, CH₃ CH₂)₁₂]

1.2 - 1.5 [23H, $\underline{\text{CH}_{3}(\text{CH}_{2})_{10}}(\text{CH}_{2})_{2}$, $\underline{\text{CH}_{3}\text{CH}_{2}\text{OCO}}]$

1.7 (2H, m, C₁₁H₂₃CH₂CH₂)

2.70 (2 H, t, J=8Hz, $C_{12}^{H}_{25}^{CH}_{12}$)

10 4.38 (2 H, q, J=7Hz, CH₃CH₂OCO)

6.60 (1 H, s, H in the pyrazole ring)

11.95 (lH, br, NH which disappears by treating with D_2^{O}).

EXAMPLE 2

Synthesis of 5-n-tridecylpyrazole-3-

15 carboxylic acid:

A solution of 10 g (0.031 mol) of ethyl 5-n-tridecylpyrazole-3-carboxylate in 50 ml of a 5% methanolic solution of sodium hydroxide was heated under reflux for 5 hours. After adding distilled water,

methanol was evaporated under a reduced pressure and the residue was made acidic (pH of about 2) by adding concentrated hydrochloric acid. The separated precipitate was collected by filtration and recrystallized from ethanol to provide 7.2 g of 5-n-tridecylpyrazole-

3-carboxylic acid as needle-like crystals melting at 141 - 143°C, a yield of 79.2%.

Elementary analysis:

30

found: 65.31% C; 9.47% H; 9.58% N. calcd. as $C_{17}^{H_{30}O_{2}^{N_{2}H_{2}O}$: 65.35% C; 10.32% H; 8.97% N. IR (KBr-method):

 $V_{\rm max}^{\rm KBr}$ 3240 cm⁻¹ (br. VCH, NH), 3000 - 2300 cm⁻¹ (br. VNH₂+ and CO₂H) and 1680 cm⁻¹ (VC=O) Mass: m/e: 294 (M⁺) NMR (in d₆-DMSO) δ : 0.85 (3H, t, J=6 Hz, $CH_3(CH_2)_{12}$) 1.2 - 1.5 (20H, br. s, $CH_3(CH_2)_{10}(CH_2)_2$) 1.60 (2H, m, $CH_3(CH_2)_{10}CH_2CH_2$) 2.59 (2H, t, J=8 Hz, $CH_3(CH_2)_{11}CH_2$) 4.72 (2H, br. NH and CO_2 H, which disappears by

6.35 (lH, s, H in pyrazole ring)

treatment with D₂O)

EXAMPLE 3

10

15

20

25

30

Synthesis of 5-n-tridecylpyrazole-3-carboxylic acid:

After dissolving 20 g (0.0575 mol) of sodium 1-ethoxycarboxyl-3-oxo-1-hexadecenolate and 8.2 g (0.0633 mol) of hydrazine sulfate in 40 ml of methanol with agitation under warming, 11.5 ml of an aqueous 33% solution of sodium hydroxide were added dropwise into the solution. After the addition, the mixture was heated for 2 hours under reflux and methanol was evaporated after adding distilled water. After making the pH of the residue nearly to 2 with concentrated hydrochloric acid, water was completely removed by distillation under a reduced pressure, and the residue was extracted with 500 ml of hot acetone. After drying the acetonic extract and removing the solvent, the residue was recrystallized from ethanol to provide 5-n-tridecylpyrazole-3-carboxylic acid as colourless in a yield of 67.4%.

The physical properties of the product were identical to those of the product prepared in Example 2.

EXAMPLE 4

10

5 Synthesis of ethyl 5-n-pentadecylpyrazole-3-carboxylate:

5.5 g of hydrazine hydrate was dropped slowly into a solution of 40.0 g (0.106 mol) of sodium l-ethoxycarbonyl-3-oxo-l-octadecenolate in 20 ml of glacial acetic acid under cooling with iced water. After heating the mixture for 5 hours under reflux, the reaction mixture was cooled and poured into iced water and then neutralized with a saturated aqueous solution of sodium hydrogen carbonate and extracted with benzene.

After washing the benzene layer with a saturated aqueous solution of sodium hydrogen carbonate and drying over anhydrous sodium sulfate, the solvent was removed by distillation under a reduced pressure. The residue was recrystallized from ethanol to provide 13.4 g of ethyl 5-n-pentadecylpyrazole-3-carboxylate as colourless

plate-like crystals melting at 53 to 54°C in a yield of 36.4%.

Elementary analysis:

found: 72.03% C; 11.25% H; 7.74% N.

25 calcd. as $C_{21}^{H}_{38}^{O}_{2}^{N}_{2}$: 71.95% C; 10.93% H; 7.99% N. IR:

 $v_{\text{max}}^{\text{nujol}}$ 3200 - 3100 cm⁻¹ (VNH) and 1718 cm⁻¹ (VC = O) Mass: m/e 350 (M⁺)

NMR (in CDCl₃) δ:

30 0.92 (3H, t, J=6 Hz, $\frac{CH_3(CH_2)_{14}}{}$)

1.2 - 1.6 (27H, $CH_3(CH_2)_{12}(CH_2)_2$ and $CH_3CH_2OCO)$

1.7 (2H, m, $C_{13}^{H_27}C_{2}^{CH_2}$)

4.72 (2H, q, J=8 Hz,
$$CH_3CH_2CCO$$
)

7.05 (1H, s, H in the pyrazole ring)

12.35 (1H, br, NH which disappears by treatment with $\rm D_2O)$

EXAMPLE 5

Synthesis of 5-n-pentadecylpyrazole-3-carboxylic acid:

A solution of 13.0 g (0.037 mol) of ethyl
5-n-pentadecylpyrazole-3-carboxylate in 100 ml of an
aqueous 5% ethanolic solution of sodium hydroxide was
heated for 7 hours under reflux. After adding
distilled water, ethanol was evaporated by distillation
under a reduced pressure. The residue was made acidic

15 (pH of nearly 2) with concentrated hydrochloric acid, and then the deposited pale yellow needle-like crystals were collected by filtration and recrystallized from ethanol to provide 5-n-pentadecylpyrazole-3-carboxylic acid as colourless needle-like crystals melting at

20 133 - 135°C in an amount of 6.7 g corresponding to a yield of 56.0%.

Elementary analysis:

found: 67.34% C; 10.57% H; 8.08% N.

calcd. as $C_{19}H_{34}O_2N_2 \cdot H_2O$:

67.01% C; 10.66% H; 8.23% N.

IR:

25

 $v_{\text{max}}^{\text{KBr}}$ 3240 cm⁻¹ (br, v_{NH} , OH), 3000 - 2300 cm⁻¹

(br, $\sqrt{NH_2}$ + and COOH) and 1710 cm⁻¹ ($\sqrt{C} = 0$)

Mass: m/e 322 (M^+)

30 NMR (in d_6 -DMSO) δ :
0.86 (3H, t, J=7 Hz, $CH_3(CH_2)_{14}$)

1.2 - 1.5 (24H, br. s, $CH_3(\frac{CH_2}{2})_{12}(CH_2)_2$)

1.60 (2H, m, C₁₃H₂₇CH₂CH₂)

2.64 (2H, t, J=8 Hz, $C_{14}^{H}_{29}^{CH}_{\underline{2}}$)

6.50 (lH, s, H in the pyrazole ring)

10.60 (2H, br, NH and CO_2H which disappears by treatment with D_2O_2)

EXAMPLE 6

5

Synthesis of ethyl 5-n-heptadecylpyrazole-3-carboxylate:

- 3.2g (0.066 mol) of hydrazine hydrate was dropped slowly into a solution of 24.2g (0.06 mol) of sodium 1-ethoxycarbonyl-3-oxo-1-eicosenolate in 13 ml of glacial acetic acid under cooling with iced water. After heating the mixture for 2 hours under reflux,
- the reaction mixture was poured into iced water and then was neutralized by a saturated aqueous solution of sodium hydrogen carbonate and extracted with benzene. The benzene layer was washed with a saturated aqueous solution of sodium hydrogen carbonate and dried over
- anhydrous sodium sulfate. After removing the solvent by distillation under a reduced pressure, the residue was recrystallized from ethyl ether to provide ethyl 5-n-heptadecylpyrazole-3-carboxylate as colourless needle-like crystals melting at 56 57°C in an amount of
- 25 13.7g corresponding to a yield of 65.2%. Elementary analysis:

found: 72.78% C; 11.25% H; 9.58% of N. calcd. as C₂₃H₄₂O₂N₂: 72.96% C; 11.18% H; 8.97% N. IR:

30 $v_{\text{max}}^{\text{nujol}}$ 3200 - 3100 cm⁻¹ (VNH) and 1715 cm⁻¹ (VC = 0) Mass: m/e 378 (M⁺)

1.2 - 1.7 (30H, br. s, $CH_3(CH_2)_{15}CH_2$)

- 19 -

2.65 (2H, t, J = 7 Hz, $C_{16}^{H}_{33}^{CH}_{2}$)

6.48 (lH, s, H in the pyrazole ring)

7.60 (2H, br. NH and CO_2H which disappear by treatment with D_2O)

5 EXAMPLE 8

Synthesis of 3-N-2-hydroxyethylcarbamoyl-5-n-nonylpyrazole:

An excess of thionyl chloride was added to 2.5g (0.011 mol) of 5-n-nonylpyrazole-3-carboxylic acid and after heating the mixture for 2 hours under agitation at 42 to 43°C, the reaction mixture was condensed to solid under a reduced pressure to obtain 5-n-nonylpyrazole-3-carboxylic acid chloride as yellow crystals.

A solution of 0.013 mol of et olamine and l.lg (0.011 mol) of triethylamine in 70 ml of dichloroethane was slowly dropped into the acid chloride under cooling with iced water. After agitating the mixture for 8 hours at room temperature, the thus

deposited triethylamine hydrochloride was removed by filtration, and iced water was added to the filtrate. The organic phase was separated and dried over anhydrous sodium sulfate, and the solvent therein was distilled off to obtain a residue, which was recrystallized from

acetone to provide the desired product as colourless needle-like crystals melting at 48 - 50°C in an amount of 1.6g corresponding to a yield of 51.8%. Elementary analysis:

found: 61.85% C; 9.47% H and 14.47% N

calcd. as $C_{15}^{H}_{27}^{O}_{2}^{N}_{3} \cdot 1/2 H_{2}^{O}$:

62.04% C; 9.72% H and 14.47% N.

IR:

 $v_{\text{max}}^{\text{nujol}}$ 3400 - 3000 cm⁻¹ (v_{NH} , OH) and 1625 and 1550 cm⁻¹ (v_{nuide}).

```
Mass: m/e 281 (M^{+}).
     NMR (in CDCl<sub>3</sub>) \delta:
           0.86 (3H, t, J = 6 \text{ Hz}, CH_3(CH_2)_8)
           1.2 - 1.5 (12H, br. s, CH_3(CH_2)_6(CH_2)_2)
           1.6 (2H, m, C_7H_{15}CH_2CH_2)
           2.62 (2H, t, J = 7 \text{ Hz}, C_8 H_{17} CH_2)
           3.38 and 3.55 (2H each, m, OCNHCH<sub>2</sub>CH<sub>2</sub>OH)
           5.4 (lH, s, H in the pyrazole ring)
           8.10 (lH, t-like, OCNHCH2)
10
     EXAMPLE 9
                 Synthesis of 3-N-2'-hydroxyethylcarbamoy1-5-
     n-undecylpyrazole:
                 By the same procedures as in Example 8,
     3.0g (0.11 mol) of 5-n-undecylpyrazole-3-carboxylic
     acid was transformed to the corresponding amide of
15
     hydroxyethylamine.
                              The crude produce was
     recrystallized from acetone to provide the desired
     product as colourless needle-like crystals melting at
     63 - 65°C in an amount of 1.3g corresponding to a yield
20
     of 38.3%.
     Elementary analysis:
          found: 66.09% C; 10.19% H and 13.28% N
          calcd. as C_{17}H_{31}O_{2}N_{3}:
                  65.95% C; 10.10% H and 13.58% N.
25
     IR:
                  3400 - 3000 \text{ cm}^{-1} (vNH and OH) and 1630 and
          1560 cm^{-1} (y amide).
     Mass: m/e 309 (M^{+})
     NMR (in CDCl<sub>3</sub>) \delta:
          0.86 (3H, t, J = 6 \text{ Hz}, CH_3(CH_2)_{10})
30
```

1.6 (2H, m, C₉H₁₉CH₂CH₂)

2.60 (2H, t, J = 7 Hz, $C_{10}^{H}_{21}^{CH}_{2}$)

3.55 and 3.75 (2H each, m, OCNHCH₂-CH₂OH)

6.50 (1H, s, H in the pyrazole ring)

7.20 (2H, br. NH and OH which disappears by treatment with D_2O)

8.10 (1H, br. NH which disappears by treatment with D₂O)

10 EXAMPLE 10

5

15

Synthesis of 3-N-2-hydroxyethylcarbamoyl-5-n-tridecylpyrazole:

By the same procedures as in Example 8, 4.0g (0.014 mol) of 5-n-tridecylpyrazole-3-carboxylic acid was transformed to the corresponding amide of hydroxyethylamine. The crude product was recrystallized from acetone to provide colourless needle-like crystals of the desired product melting at 78 - 79°C in an amount of 2.1g corresponding to a yield of 45.1%.

20 Elementary analysis:

found : 67.51% of C, 10.16% of H and 12.20% of N calcd. as $C_{19}^{H}_{35}O_{2}^{N}_{3}$: 67.61% of C, 10.45% of H and 12.45% of N.

IR:

 $v_{\text{max}}^{\text{nujol}}$ 3400 - 3000 cm⁻¹ (JNH and OH) and 1635 and 1555 cm⁻¹ (v_{amide}).

Mass: $m/e 337 (M^{+})$.

NMR (in CDCl₃) δ:

0.87 (3H, t, J = 6 Hz, $\frac{\text{CH}_3(\text{CH}_2)_{12}}{}$)

30 1.2 - 1.5 (2H, br. s, $CH_3(CH_2)_{10}(CH_2)_2$)

1.6 (2H, m, $C_{11}^{H}_{23}^{CH}_{2}^{-CH}_{2}$)

- 2.60 (2H, t, J = 7 Hz, $C_{12}^{H}_{25} CH_{2}^{H}$)
- 3.55 and 3.80 (2H each, m, $CONH-CH_2-CH_2-OH$)
- 5.0 (2H, br. NH and OH which disappears by treatment with $\rm D_2O)$
- 6.38 (lH, s, H in the pyrazole ring)
- 7.84 (lH, br. NH which disappears by treatment with $\rm D_2O)$

EXAMPLE 11

Synthesis of 3-N-ethoxycarbonylmethylcarbamoyl-10 5-n-nonylpyrazole:

An excess of thionyl chloride was added to 3.lg (0.031 mol) of 5-n-nonylpyrazole-3-carboxylic acid. and after heating the mixture for 3 hours at 42 to 43°C with agitation, the reaction mixture was condensed to a solid under a reduced pressure, and the thus formed 15 5-n-nonylpyrazole-3-carboxylic acid chloride was dissolved in 25 ml of dichloroethane. This solution was slowly added dropwise to a mixture of 2.0g (0.014 mol) of ethyl ester of glycine hydrochloride, 10 ml of triethylamine and 25 ml of dichloroethane with agitation 20 at room temperature. After the addition, the mixture was heated at 60 to 62°C for 10 hours with agitation. After cooling the reaction system with ice and the thus deposited triethylamine hydrochloride was removed by 25 filtration, distilled water was added to the filtrate, and organic layer was concentrated under reduced pressure, after drying over anhydrous sodium sulfate. Recrystallization of the residue from acetone gave colourless crystals of the desired product, melting at 30 34 to 35°C in amount of 1.9g corresponding to the yield

Elementary analysis:

of 46.4%.

found: 62.70% C; 9.35% H and 12.73% N

calcd. as C₁₇H₂₉O₃N₃:

63.13% C; 9.04% H and 12.99 N.

IR:

 $v_{\text{max}}^{\text{nujol}}$ 3500 - 3100 cm⁻¹(JNH and OH), 1755 cm⁻¹(v_{ester})

and 1660 and 1555 cm^{-1} (\checkmark amide)

Mass: m/e 323 (M^+) .

NMR (in CDCl₃) δ :

0.85 (3H, t, J = 6 Hz, $CH_3(CH_2)_8$)

1.2 - 1.5 (15H, $CH_3(CH_2)_6(CH_2)_2$ and $CH_3CH_2OCO)$

1.6 (2H, m, C₇H₁₅CH₂-CH₃)

2.62 (2H, t, $J = 8 \text{ Hz}, C_{8}^{H}_{17}^{CH}_{2}$)

4.15 - 4.40 (4H, m, CONH-CH₂-CO₂-CH₂-CH₃)

6.52 (lH, s, H in the pyrazole ring)

7.6 (lH, br, NH in the ring, which disappear by treatment with D_2O)

7.95 (lH, t-like, NH which disappear by the treatment with D_2 0).

EXAMPLE 12

15

. 20

Synthesis of 3-N-ethoxycarbonylmethylcarbamoyl-5-n-undecylpyrazole:

By the same procedures as in Example 11, 3.5 (0.013 mol) of 5-n-undecylpyrazole-3-carboxylic acid, was transformed to the corresponding amide of glycine. The crude product was recrystallized from acetone to provide the desired product as colourless crystals melting at

25 the desired product as colourless crystals melting at 48 to 49°C in an amount of 2.0g corresponding to a yield of 43.8%.

Elementary analysis:

found: 64.37% C; 9.38% H and 11.25% N

30 calcd. as $C_{19}^{H}_{33}^{O}_{3}^{N}_{3}$:
64.92% C; 9.46% H and 11.96% N.

IR:

 $v_{\text{max}}^{\text{nujol}}$ 3500 - 3100 cm⁻¹ (VNH and OH), 1750 cm⁻¹ (ester) 1660 and 1560 ($v_{\text{max}}^{\text{nujol}}$)

Mass: m/e 351 (M^+) .

5 NMR (in $CDCl_3$) δ :

0.89 (3H, t, J = 6 Hz, $CH_3(CH_2)_{10}$)

1.2 - 1.5 (19H, $CH_3(CH_2)_8(CH_2)_2$ and $CH_3CH_2OCO)$

1.6 (2H, m, $C_9H_{19}CH_2-CH_2$)

2.67 (2H, t, J = 7 Hz, $C_{10}^{H}_{21} - CH_{2}$)

10. 4.15 - 4.40 (4H, m, CONH CH₂CO₂ CH₂CH₃)

6.62 (lH, s, H in the pyrazole ring)

8.20 (1H, t-like, NH which disappear by treatment with $\rm D_2O)$

11.10 (1H, br. NH in the ring, disappearing by treatment with D₂O)

EXAMPLE 13

15

Synthesis of 3-N-ethoxycarbonylmethylcarbamoyl-5-n-tridecylpyrazole:

By the same procedures as in Example 11, 2.9g

(0.01 mol) of 5-n-tridecylpyrazole-3-carboxylic acid,
was transformed to the corresponding amide of glycine.
The crude product was recrystallized from acetone to
provide the desired product as colourless needle-like
crystals melting at 54 to 55°C in an amount of 1.8g

corresponding to a yield of 47.4%.

Elementary analysis:

found: 66.30% C; 10.03% H and 10.81% N calcd. as $C_{21}H_{37}O_{3}N_{3}$: 66.45 of C, 9.83% of H and 11.07% of N.

30 IR:

 $v_{\text{max}}^{\text{nujol}}$ 3400 - 3100 cm⁻¹($v_{\text{NH,OH}}$), 1730 cm⁻¹(v_{ester}) and 1640 and 1560 cm⁻¹ (v_{amide})

Mass: m/e 379 (M⁺).

NMR (in CDCl₃) δ :

0.89 (3H, t, J = 6 Hz, CH₃(CH₂)₁₂)

1.2 - 1.5 (23H, CH₃(CH₂)₁₀(CH₂)₂ and CH₃CH₂OCO)

1.6 (2H, m, C₁₁H₂₃-CH₂-CH₂)

2.63 (2H, t, J = 7 Hz, C₁₂H₂₅CH₂)

4.0 - 4.4 (4H, m, CONH-CH₂-CO₂-CH₂CH₃)

6.55 (1H, s, H in the pyrazole ring)

8.00 and 9.35 (1H each, br. NH X 2 which disappears by treatment with D₂O)

EXAMPLE 14

30

Synthesis of 3-hydroxymethyl-5-n-tridecyl-pyrazole:

A solution of 11.0g (0.034 mol) of ethyl 5n-tridecylpyrazole-3-carboxylate in 100 ml of anhydrous 15 tetrahydrofuran, a suspension of 1.6g (0.042 mol) of lithium aluminum hydride in 150 ml of anhydrous tetrahydrofuran was added dropwise with stirring under cooling with ice. After stirring for 12 hours at room temperature, water-containing tetrahydrofuran was added 20 to the reaction mixture. The deposited white precipitate was removed by filtration, and the filtrate was condensed to a solid and the residue recrystallized from ethyl ether to provide the desired product as colourless needle-like crystals melting at 64 to 66°C 25 in an amount of 7.8g corresponding to a yield of 81.7%. Elementary analysis:

found: 72.85% C; 11.60% H and 10.01% N calcd. as ${\rm ^{C}_{17^{H}_{32}^{ON}_{2}}}$: 72.80% C; 11.50% H and 9.99% N. IR:

 $_{\text{max}}^{\text{nujol}}$ 3300 - 3100 cm⁻¹ ($_{\text{NH}}$ and OH), and 1570 ($_{\text{NH}}^{\text{pyrazole ring}}$).

- 4.53 (2H, s, CH₂-OH)
- 5.83 (1H, s, H in the pyrazole ring)
- 8.48 (2H, br. s, NH and OH disappearing by treatment with $\rm D_2O$).

EXAMPLE 16

Synthesis of 3-hydroxymethyl-5-n-nonyl-pyrazole:

In the same manner as in Example 14,

5 14.5 g of -5-n-nonylpyrazole-3-carboxylate
was reduced to the corresponding alcohol. The crude
product was recrystallized from ethyl ether to provide
the desired product as colourless needle-like
crystals melting at 52 to 53°C in an amount of 10.6 g

10 corresponding to a yield of 85.2%.

Elementary analysis:

found: 69.70% C; 10.68% H and 12.74% N calcd. as $C_{13}^{H}_{24}^{ON}_{2}$:

69.60% C; 10.78% H and 12.49% N.

15 IR:

 $\frac{1}{2}$ nujol $\frac{1}{2}$ 3300 - 3100 cm⁻¹ ($\frac{1}{2}$ NH, OH) and 1580 cm⁻¹ ($\frac{1}{2}$ pyrazole group).

Mass: $m/e 224 (M^{+})$.

NMR (in CDCl₃) δ :

20 0.89 (3H, t, J = 6 Hz, $CH_3(CH_2)_8$)

1.2 - 1.5 (12H, br. s, $CH_3(CH_2)_6(CH_2)_2$)

1.6 (2H, m, $C_7H_{15}-CH_2-CH_2$)

2.54 (2H, t, J = 8 Hz, $C_{8}H_{17} - CH_{2}$)

4.58 (2H, s, CH₂-OH)

5.91 (lH, s, H in the pyrazole ring)

8.00 (2H, br. s, NH and OH disappearing by treatment with D₂O)

EXAMPLE 17

Synthesis of 3-hydroxymethyl-5-n-undecyl-

30 pyrazole:

25

In the same manner as in Example 14, 24.2 g. (0.034 mol) of ethyl 5-n-undecylpyrazole-3-carboxylate, was reduced to the corresponding alcohol. The crude

product was recrystallized from ethyl ether to provide 7.2 g of the desired product as colourless needle-like crystals melting at 56 to 58°C corresponding to a yield of 83.6%.

5 Elementary analysis:

found : 71.30% C; 11.46% H and 10.95% N calcd. as ${}^{\text{C}}_{15}{}^{\text{H}}_{28}{}^{\text{ON}}_{2}$: 71.33% C; 11.18% H and 11.10% N.

IR:

10 ν nujol max 3300 - 3100 cm⁻¹ (ν NH and OH) and 1590 (ν pyrazole ring).

Mass: $m/e 252 (M^{+})$.

NMR (in CDCl₃) δ :

0.89 (3H, t, J = 6 Hz, $CH_3(CH_2)_{10}$)

1.2 - 1.5 (16H, br. s, $CH_3(CH_2)_8$ (CH_2)₂)

1.6 (2H, m, $C_9H_{19}-CH_2-CH_2$)

2.55 (2H, t, J = 8 Hz, $C_{10}^{H}_{21} - CH_{2}$)

4.60 (2H, s, CH₂-OH)

5.92 (1H, s, H in the pyrazole ring)

8.54 (1H, br. s, NH and OH disappearing by treatment with D₂O)

EXAMPLE 18

20

Synthesis of l-methyl-5-n-nonylpyrazole-3-carboxylic acid:

20.0 g (0.069 mol) of sodium-l-ethoxycarbonyl-3oxo-l-dodecenolate and 10.1 g (0.053 mol) of methylhydrazine sulfate were dissolved in 45 ml of distilled
water, and then 14 ml of aqueous 33% solution of sodium
hydroxide was added dropwise. Then, the mixture was
heated for one hour at 80°C with agitation, and after
cooling, it was made acidic with 6N sulfuric acid
solution and extracted with chloroform. The chloroform

layer was washed with a saturated aqueous solution of sodium chloride, dried over anhydrous sodium sulfate and concentrated under a reduced pressure. By recrystallizing the residue from a mixture of acetone and isopropyl ether, l-methyl-5-n-nonylpyrazole-3-carboxylic acid was obtained as colourless needle-like crystals melting at 87°C in an amount of 11.3 g corresponding to a yield of 64.7%.

Elementary analysis:

found : 66.90% C; 9.61% H and 11.24% N calcd. as $C_{14}^{H}_{24}^{O}_{2}^{N}_{2}$:

66.63% C; 9.59% H and 11.10% N.

IR:

5

10

15

20

25

 $\nu_{\text{max}}^{\text{nujol}}$ 3000 - 2500 cm⁻¹ ($\nu_{\text{CO}_2}^{\text{H}}$) and 1680 cm⁻¹ ($\nu_{\text{C}}^{\text{C}}$)

Mass: $m/e 252 (M^{+})$.

NMR (in d_6 -DMSO) δ :

0.89 (3H, t, J = 6 Hz, $\frac{\text{CH}_3(\text{CH}_2)_8}{}$)

1.2 - 1.6 (12H, br. s, $CH_3(CH_2)_6(CH_2)_2$)

1.7 (2H, m, CH₃(CH₂)₆-CH₂-CH₂)

2.62 (2H, t, J = 8 Hz, $CH_3(CH_2)_7 - CH_2$)

3.83 (3H, s, N-CH₃)

6.50 (lH, s, H in the pyrazole ring)

8.4 (1H, br., CO_2H , which disappear by treatment with D_2O)

EXAMPLE 19

Synthesis of l-methyl-5-n-heptylpyrazole-3-carboxylic acid:

In the same manner as in Example 18, 26.4

(O.1 mol) of sodium 1-ethoxycarbonyl-3-oxo-1-decenolate
was cyclized to the corresponding N-methylpyrazole
derivative. The crude product was recrystallized from
ethanol to provide 1-methyl-5-n-heptylpyrazole-3-carboxylic

acid as white powdery crystals melting at 80°C in an amount of 11.7 g corresponding to a yield of 56.5%. Elementary analysis:

found: 64.50% C; 9.12% H and 12.50% N.

5 calcd. as $C_{12}^{H}_{20}^{O}_{2}^{N}_{2}$:

64.25% of C, 8.88% of H and 12.49% of N.

IR :

 $_{\rm max}$ 3000 -2500 cm⁻¹ ($_{\rm V}$ CO₂H) and 1680 cm⁻¹ ($_{\rm V}$ C=0).

Mass: $m/e 224 (M^+)$

10 NMR : (in d_6 -DMSO) δ :

0.89 (3H, t, J = 6 Hz, $CH_3(CH_2)_6$)

1.2 - 1.6 (8H, br. s, $\text{CH}_3(\underline{\text{CH}_2})_4(\underline{\text{CH}_2})_2$)

1.7 (2H, m, $CH_3(CH_2)_4-CH_2-CH_2$)

2.62 (2H, t, J= 8 Hz, $\overline{CH_3(CH_2)_5} - \overline{CH_2}$)

3.80 (3H, s, N-CH₃)

6.50 (lH, s, H in the pyrazole ring)

8.4 (1H, br., CO_2H which disappears by treatment with D_2O)

EXAMPLE 20

20 Synthesis of 1-methyl-5-n-undecylpyrazole-3-carboxylic acid:

In the same manner as in Example 18, 20.0 g of sodium l-ethoxycarbonyl-3-oxo-l-tetradecenolate was cyclized to the corresponding N-methylpyrazole derivative.

25 The crude product was recrystallized from a mixture of acetone and isopropyl ether to provide 1-methyl-5-n-undecylpyrazole-3-carboxylic acid as colourless needle-like crystals melting at 79°C in an amount of 12.6 g corresponding to a yield of 75.0%.

30 Elementary analysis:

found : 68.79% C, 10.08% H and 10.15% N calcd. as $C_{16}H_{28}O_{2}N_{2}$:

68.53% C; 10.07% H and 9.99% N.

IR:

 $v_{\text{max}}^{\text{nujol}} 3000 - 2500 \text{ cm}^{-1} (v_{\text{co}_2\text{H}}) \text{ and } 1680 \text{ cm}^{-1} (v_{\text{c}} = 0).$

Mass: $m/e 280 (M^+)$.

NMR (in d_6 -DMSO) δ :

5 0.87 (3H, t, J = 6 Hz, $CH_3(CH_2)_{10}$)

1.2 - 1.5 (16H, br. s, $CH_3(CH_2)_8$ ($CH_2)_2$)

1.6 (2H, m, C₉H₁₉-CH₂-CH₂)

2.62 (2H, t, J = 8 Hz, $C_{10}^{H}_{21} - \underline{CH_2}$)

2.80 (3H, s, N-CH₃)

6.47 (lH, s, H in the pyrazole ring)

11.8 (1H, br. CO_2H which disappears by treatment with D_2O)

EXAMPLE 21

10

15

20

Synthesis of l-methyl-5-n-tridecylpyrazole-3-carboxylic acid:

In the same manner as in Example 18, 20.0 g of sodium 1-ethoxycarbonyl-oxo-1-hexadecenolate was cyclized to the corresponding N-methylpyrazole derivative. The crude product was recrystallized from a mixture of acetone and isopropyl ether to provide 1-methyl-5-n-tridecylpyrazole-3-carboxylic acid as colourless needle-like crystals melting at 82 to 83°C in an amount of 10.1 g corresponding to a yield of 57.2%.

found: 70.26% C; 10.38% H and 8.88% N calcd. as $C_{18}^{H}_{32}^{O}_{2}^{N}_{2}$:

70.09% C; 10.46% H and 9.08% N.

IR :

 $v_{\text{max}}^{\text{nujol}} 3000 - 2500 \text{ cm}^{-1} (v_{\text{CO}_2H}) \text{ and } 1680 \text{ cm}^{-1} (v_{\text{C}} = 0)$

30 Mass: m/e 308 (M^+). NMR (in d_6 -DMSO) δ :

Elementary analysis:

0.87 (3H, t,
$$J = 6 \text{ Hz}$$
, $\frac{\text{CH}_3(\text{CH}_2)_{12}}{\text{1.2}}$)
1.2 - 1.5 (20H, br. s, $\frac{\text{CH}_3(\text{CH}_2)_{10}}{\text{CH}_2}$)
1.6 (2H, m, $\frac{\text{C}_{11}^{\text{H}}_{23}-\text{CH}_2-\text{CH}_2}{\text{CH}_2}$)
2.61 (2H, t, $J = 8 \text{ Hz}$, $\frac{\text{C}_{12}^{\text{H}}_{25}-\text{CH}_2}{\text{CH}_2}$)
3.80 (3H, s, N-CH₃)

6.47 (lH, s, H in the pyrazole ring)

10.8 (1H, br., CO₂H which disappears by treatment with Doo)

EXAMPLE 22

5

15

20

25

30

10 Synthesis of l-phenyl-5-n-nonylpyrazole-3carboxylic acid:

10.0 g (0.034 mol) of sodium 1-ethoxycarbonyl-3-oxo-1-dodecenolate and 8.2 g (0.026 mol) of phenylhydrazine sulfate were dissolved in 40 ml of methanol, and 20 ml of saturated methanolic solution of sodium hydroxide were added dropwise. After the addition, the mixture was gently heated for 2 hours under reflux and after making it acidic with concentrated hydrochloric acid and adding distilled water, methanol was removed under a reduced pressure. The residue was extracted with chloroform, and the chloroform layer was washed with a saturated aqueous solution of sodium chloride and dried over anhydrous sodium sulfate and concentrated. residue was recrystallized from ethanol to provide 5.0 g of the desired product as colourless needle-like crystals melting at 87 to 88°C corresponding to a yield of 61.7%. Elementary analysis:

found: 72.47% C; 8.05% H and 8.84% N calcd. as C₁₉H₂₆O₂N₂:

72.58% C; 8.34% H and 8.91% N.

IR:

 $v = v = 0.000 - 2500 \text{ cm}^{-1} (v = 0)$ and 1600 cm^{-1} (ν benzene ring)

- 34 -Mass: $m/e 314 (M^+)$. NMR (in d_6 -DMSO) δ : 0.85 (3H, t, J = 6 Hz, $CH_3(CH_2)_8$) 1.2 - 1.5 (12H, br. s, $CH_3(CH_2)_6(CH_2)_2$) 1.6 (2H, m, C₇H₁₅-CH₂-CH₂) 2.52 (2H, t, J = 8 Hz, $C_2^H_{17}^- \text{ CH}_2$) 6.67 (lH, s, H in the pyrazole ring) 7.51 (5H, m, 5 X H in the benzene ring) 11.0 (1H, br., CO2H, disappearing by treatment with 10 D^oO) EXAMPLE 23 Synthesis of 1-phenyl-5-n-heptylpyrazole-3carboxylic acid: In the same manner as in Example 18, 9.0 q

In the same manner as in Example 18, 9.0 g

(0.034 mol) of sodium 1-ethoxycarbonyl-3-oxo-1-decenolate
was reacted with 8.2 g (0.026 mol) of phenylhydrazine
sulfate to give the corresponding 1-phenylpyrazole
derivative as a crude oil. After treatment with
activated carbon, the residue was distilled under a

reduced pressure to provide 5.5 g of a colourless oil
with a boiling point of 97 to 98°C/0.28 mmHg at a yield
of 56.7%.

Elementary analysis:

found: 71.40% C; 7.47% H and 9.95% N

25 calcd. as $C_{17}^{H}_{22}^{O}_{2}^{N}_{2}$: 71.30% C; 7.74% H and 9.78% N.

IR:

 $V_{\rm max}^{\rm nujol}$ 3000 - 2500 cm⁻¹ ($V_{\rm CO_2H}$), 1700 cm⁻¹ ($V_{\rm C} = 0$) and 1600 cm⁻¹ ($V_{\rm C} = 0$)

30 Mass: m/e 286 (M^+).

NMR (in CDCl₃) δ :

0.89 (3H, t,
$$J = 6 \text{ Hz}$$
, $CH_3(CH_2)_6$)

1.2 - 1.5 (8H, br. $CH_3(CH_2)_4-(CH_2)_2$)

1.6 (2H, m, C₅H₁₁-CH₂-CH₂)

2.60 (2H, t, J = 8 Hz, $C_6^{H}_{13}^{-}$ CH₂)

6.72 (lH, s, H in the pyrazole ring)

7.40 (5H, br. s, 5 X H in the benzene ring)

10.8 (lH, br., CO_2H disappearing by treatment with D_2O).

EXAMPLE 24

Synthesis of l-phenyl-5-n-undecylpyrazole-3-carboxylic acid:

In the same manner as in Example 18, 11.0 g (0.034 mol) of sodium l-ethoxycarbonyl-3-oxo-l-tetra-decenolate was reacted with 8.2 g (0.026 mol) of

- phenylhydrazine sulfate to give the corresponding l-phenylpyrazole derivative. The crude product was recrystallized from ethanol to provide 8.1 g of colourless needle-like crystals melting at 53 to 55°C corresponding to a yield of 69.7%.
- 20 Elementary analysis:

found: 73.70% C; 8.91% H and 8.40% N

calcd. as C₂₁H₃₀O₂N₂:

73.64% C; 8.83% H and 8.18% N.

IR:

25 $\nu_{\text{max}}^{\text{nujol}}$ 3000 - 2500 cm⁻¹ ($\nu_{\text{C}} = 0$)

and 1600 cm $^{-1}$ (1) benzene ring).

Mass: $m/e 342 (M^{+})$.

NMR (in d_6 -DMSO) δ :

0.86 (3H, t,
$$J = 6$$
 Hz, $CH_3(CH_2)_{10}$)

1.2 - 1.5 (16H, br. s, $CH_3(CH_2)_8(CH_2)_2$)

1.6 (2H, m, $C_9H_{19}-CH_2-CH_2$)

2.65 (2H, t, $J = 8$ Hz, $C_{10}H_{21} - CH_2$)

6.70 (1H, s, H in the pyrazole ring)

7.52 (5H, br. s, 5 X H in the benzene ring)

12.3 (1H, br., CO_2H disappearing by treatment with

EXAMPLE 25

10 Synthesis of l-phenyl-5-n-tridecylpyrazole -3-carboxylic acid:

D₂O)

In the same manner as in Example 18, 9.0 g (0.026 mol) of sodium 1-ethoxycarbonyl-3-oxo-1-hexa-decenolate was reacted with 6.3 g (0.020 mol) of phenyl-hydrazine sulfate to give the corresponding 1-phenyl-pyrazole derivative. The crude product was recrystallized from ethanol to provide colourless needle-like crystals melting at 89 to 90°C in an amount of 4.4 g corresponding to a yield of 59.8%.

20 Elementary analysis:

found: 74.08% C; 9.52% H and 7.59% N calcd. as $C_{23}H_{34}O_{2}N_{2}$: 74.55% C; 9.25% H and 7.56% N.

IR:

15

v = 0 nujol v = 0 and v = 0 and v = 0 and v = 0 and v = 0 where v = 0 and v = 0 and v = 0 where v = 0 and v = 0 and

0.87 (3H, t, J = 6 Hz, $CH_3(CH_2)_{12}$)
1.2 - 1.5 (20H, br. s, $CH_3(CH_2)_{10}(CH_2)_2$)
1.7 (2H, m, $C_{11}^{II}_{23}^{-CH}_{2}^{CH}_{2}$)
2.60 (2H, t, J = 8 Hz, $C_{12}^{H}_{25}^{-C}_{20}^{H}_{20}^{-C}_{20}$

Figures 1 to 25 of the accompanying drawings

10 show the infrared absorption spectra of the pyrazole
derivatives prepared in accordance with Examples 1 to
25, the number of each Figure corresponding to the number
of the appropriate Example.

EXAMPLE 26

200 G of 5-n-tridecylpyrazole-3-carboxylic 15 acid, 50 g of lactose, 20 g of potato starch, 15 g of CMC and 10 g of methylcellulose were mixed uniformly, the mixture was shaped into particles by introducing the mixture together with an aqueous 50% ethanolic solution into a tumbling forming machine, and the thus obtained 20 particles were dried using a fluidizing dryer. After drying, the particles were sifted by screening machine provided with a sieve having a sieve opening of 500 microns (32 mesh Tyler standard). The particles passing through the sieve were mixed with 3 g of talc and 2 g 25 of magnesium stearate and the mixture was pressed in a rotary tabletting machine into tablets each 9 mm in diameter and 300 mg in weight.

EXAMPLE 27

5

Particles were prepared by the same procedure as in Example 26, but using ethyl 5-n-tridecylpyrazole-3-carboxylate instead of the acid itself used in Example 26, and the particles were capsulated in No. 1 hard capsules by using a capsulating machine at a rate of 300 mg/capsule.

The pyrazole derivatives of general formula (I) can in general be prepared by reacting a sodium enolate of the formula

wherein R⁷ represents a lower alkyl group with hydrazine hydrate or a hydrazine sulfate of the formula R²NH.NH₂.H₂SO₄ to form a 5-alkylpyrazole-3-cárboxylic acid or an alkyl ester thereof of the formula

$$\mathbb{R}^{1} \xrightarrow{\mathbb{N}}_{\mathbb{R}^{2}}^{\mathbb{N}^{4}}$$

wherein R⁴ is hydrogen or a lower alkyl group, and if desired, when R⁴ is lower alkyl converting the alkyl ester to the corresponding acid wherein R⁴ is hydrogen by hydrolysis or to a pyrazole derivative in which R³ is -CH₂OH by reduction, or when R⁴ is hydrogen converting the carboxylic acid to a pyrazole derivative in which R³ is -C=0 by forming the

acid chloride from the carboxylic acid and reacting the acid chloride with an amine derivative of the formula NH₂R⁵ or a hydrochloride thereof or to the alkyl ester wherein R⁴ is lower alkyl by esterification.

CLAIMS

1. A pyrazole derivative of the general formula:

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}

wherein R^1 represents an alkyl group of 7 to 17 carbon atoms, R^2 represents a hydrogen atom, a lower alkyl group or a phenyl group and R^3 represents

-
$$c = 0$$
 or a hydroxymethyl group, $c = 0$

wherein R^4 represents a hydrogen atom or a lower alkyl group and R^5 represents $-CH_2CH_2OH$ or $-CH_2-C=0$,

wherein R^6 represents a hydroxyl group or a lower alkoxy group, with the proviso that when R^1 represents an alkyl group of 7 to 11 carbon atoms and R^2 represents a hydrogen atom, R^3 does not represent

2. A pyrazole derivative according to claim I which is a 5-alkylpyrazole-3-carboxylic acid of the formula:

wherein R¹ represents an alkyl group of 13 to 17 carbon atoms.

3. A pyrazole derivative according to claim 1 which is a 5-alkylpyrazole-3-carboxylic acid ester of the formula:

wherein R represents a lower alkyl group and R¹ represents an alkyl group of 13 to 17 carbon atoms.

4. A pyrazole derivative according to claim 1 which is a 3-N-2'-hydroxyethylcarbamoyl-pyrazole of the formula:

wherein R¹ represents an alkyl group of 9 to 17 carbon atoms.

5. A pyrazole derivative according to claim l which is a 3-N-alkoxycarbonylmethylcarbamoyl-pyrazole of the formula:

wherein R represents a lower alkyl group and R^1 represents an alkyl group of 9 to 13 carbon atoms.

6. A pyrazole derivative according to claim 1 which is a 3-hydroxymethylpyrazole of the formula:

wherein R¹ represents an alkyl group of 7 to 13 carbon atoms.

7. A pyrazole derivative according to claim l which is a l-methyl-5-alkylpyrazole-3-carboxylic acid of the formula:

wherein R^{l} represents an alkyl group of 7 to 13 carbon atoms.

8. A pyrazole derivative according to claim 1 which is a 1-phenyl-5-alkylpyrazole-3-carboxylic acid of the formula:

$$\mathbb{R}^{1} \xrightarrow{\text{CO}_{2}^{\text{H}}}$$

wherein R¹ represents an alkyl group of 7 to 13 carbon atoms.

9. A pharmaceutical composition comprising, as active ingredient, a pyrazole derivative as claimed in any one of claims 1 to 8, together with a pharmaceutically acceptable carrier.

CLAIMS FOR AUSTRIA

1. A process for preparing pyrazole derivative of the general formula:

wherein R¹ represents an alkyl group of 7 to 17 carbon atoms, R² represents a hydrogen atom, a lower alkyl group or a pehnyl group and R³ represents

$$-C = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, $-C = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ or a hydroxymethyl

group, wherein R^4 represents a hydrogen atom or a lower alkyl group and R^5 represents $-CH_2CH_2OH$ or $-CH_2-C=0$, wherein R^6 represents a hydroxyl group or a lower alkoxy group, with the proviso that when R^1 represents an alkyl group of 7 to 11 carbon atoms and R^2 represents a hydrogen atom, R^3 does not represent

$$-c = 0$$
 OR^4 , the process being characterised by reacting a sodium enolate of the formula

wherein R⁷ represents a lower alkyl group with hydrazine hydrate or a hydrazine sulfate of the formula R²NH.NH₂.H₂SO₄ to form a 5-alkylpyrazole-3-carboxylic acid or an alkyl ester thereof of the formula

$$\mathbb{R}^{1} \qquad \mathbb{R}^{2}$$

wherein R^4 is hydrogen or a lower alkyl group, and, if desired, when R^4 is lower alkyl converting the alkyl ester to the corresponding acid wherein R^4 is hydrogen by hydrolysis or to a pyrazole derivative in which R^3 is -CH₂OH by reduction, or when R^4 is hydrogen converting the carboxylic acid to a pyrazole derivative in which R^3 is -C=0 by forming the acid chloride from the

carboxylic acid and reacting the acid chloride with an amine derivative of the formula $\mathrm{NH_2R}^5$ or a hydrochloride thereof or to the alkyl ester wherein R^4 is lower alkyl by esterification.

2. A process according to claim 1 characterised in that an alkyl ester of a 5-alkylpyrazole-3-carboxylic acid is prepared by reacting the sodium enolate with hydrazine hydrate in a mineral acid, and if desired the carboxylic acid is prepared by hydrolysing the alkyl ester.

- A process according to claim 1 characterised in that a 5-alkylpyrazole-3-carboxylic acid is prepared by reacting the sodium enolate with hydrazine sulfate in an aqueous solution of sodium hydroxide.
- 4. A process according to claim 3 characterised in that a 5-alkylpyrazol-3-carboxamide is formed by reacting the 5-alkylpyrazole-3-carboxylic acid with thionyl chloride to provide the carboxylic acid chloride and reacting the carboxylic acid chloride with the amine derivative of formula NH₂R⁵ or hydrochloride thereof in dichloroethane in the presence of triethylamine.
- A process according to claim 1 characterised in that a 3-hydroxymethyl-5-alkylpyrazole is prepared by reducing the alkyl ester of a 5-alkylpyrazole-3-carboxylic acid with lithium aluminium hydride in anhydrous tetrahydrofuran.
- A process according to claim 1 characterised in that a 1-alkyl or phenyl-5-alkylpyrazole-3-carboxylic acid is produced by dissolving the sodium enolate in water or methanol together with a hydrazine sulfate of the formula

R²NH.NH₂.H₂SO₄

wherein ${\ensuremath{\mathsf{R}}}^2$ is lower alkyl or phenyl, adding sodium hydroxide to the resulting solution and heating the mixture.

2/13

FIG. 3

0029363

NICO 3

6/13

0029363

N166- :

0/13

0029363

M((- 3

EUROPEAN SEARCH REPORT

QD 255463°

	DOCUMENTS CONSID	CLASSIFICATION OF THE		
Category	Citation of document with indic passages	ation, where appropriate, of relevant	Relevant to claim	APPLICATION (Int. Cl. 3)
	GB - A - 1 048 - + Totality +	104 (UPJOHN)	1,9	C 07 D 231/14 C 07 D 231/12
	<u>US - A - 3 899 5</u> + Columns 1,2		1,9	A 61 K 31/41
	<u>US - A - 3 449 3</u> + Abstract +	50 (WALKER)	1,9	
				TECHNICAL FIELDS SEARCHED (Int.Cl. 3)
				C 07 D 231/00 A 61 K 31/00
				CATEGORY OF CITED DOCUMENTS
		•		X: particularly relevant A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlyin the invention E: conflicting application D: document cited in the application
		has been drawn up for all claims		d.: citation for other reasons a: member of the same patent family, corresponding document
ice of sea	orch Da VIENNA	ite of completion of the search	Examiner	LUX