Rappels et Compléments d'Arithmétique pour la Cryptographie

INSA CVL

28 septembre 2020

Les notions d'arithmétique suivantes vous seront utiles pour le TD 3 :

Définition 1. On dira de deux entiers a et b qu'ils sont premiers entre eux lorsque pgcd(a,b) = 1

Définition 2. L'indicatrice d'Euler est la fonction $\phi : \mathbb{N}^+ \to \mathbb{N}$ qui à tout entier naturel N non nul associe le nombre d'entiers compris entre 1 et N (inclus) et premiers avec N. En particulier, pour n'importe quelle paire de nombres premiers (p,q), on aura $\phi(pq) = (p-1)(q-1)$.

Théorème 1. (de Bézout). deux entiers a et b sont premiers entre eux si et seulement si il existe un couple $(u, v) \in \mathbb{Z}$ tel que au + bv = 1.

Théorème 2. (de Fermat). Si p est premier, alors pour tout entier a non divisible par p, on a $a^{p-1} \equiv 1 \mod p$.

Le calcul du PGCD peut être réalisé à l'aide de l'algorithme d'Euclide :

```
fonction euclide(a, b)
tant que (b != 0)
  tmp := b;
  b := a modulo b;
  a := tmp;
retourner a
```

Le calcul des coefficients de Bézout (u et v tel que au+bv=1) peut être réalisé à l'aide d'une généralisation de cet algorithme, qu'on appelle l'algorithme d'Euclide étendu :

```
fonction euclideEtendu(a, b)
  r := a; r' := b; u := 1; v := 0; u' := 0; v' := 1;
  tant que (r' != 0)
      q := r/r';
      rs := r; us := u; vs := v;
      r := r'; u := u'; v := v';
      r' := rs - q*r'; u' = us - q*u'; v' = vs - q*v';
  retourner (u, v)
```

Enfin, le chiffrement RSA est un système de chiffrement à clé publique défini comme suit :

Génération des clés publique et privée : Choisir deux grands nombres premiers p et q au hasard. Poser N = pq (on aura donc $\phi(N) = (p-1)(q-1)$).

Choisir un entier e au hasard tel que $0 \le e \le \phi(N) - 1$, et tel que e et $\phi(N)$ soient premiers entre eux (on vérifie qu'ils sont premiers entre eux avec l'algorithme d'Euclide).

Calculer dtel que $ed\equiv 1 \mod \phi(N)$ (à l'aide de l'algorithme d'Euclide étendu).

La clé secrète est d, la clé publique est (N, e).

Chiffrement de M avec la clé publique (e, N): Calculer $C = M^e \mod N$.

Déchiffrement de C avec la clé secrète d: Calculer $M = C^d \mod N$.