Работа 2.5.1

Измерение коэффициента поверхностногонатяжения жидкости!

Малиновский Владимир galqiwi@galqiwi.ru

Цель работы: 1) измерение коэффициента поверхностного натяжения исследуемой жидкости при разной температуре с использованием известного коэффициента поверхностного натяжениядругой жидкости 2) определение полной поверхностной энергиии теплоты, необходимой для изотермического образования единицы поверхности жидкости.

В работе используются: прибор Ребиндера с термостатом, исследуемые жидкости, стаканы.

Описание работы

Наличие поверхностного слоя приводит к различию давлений поразные стороны от искривленной границы раздела двух сред. Для сферического пузырька внутри жидкости избыточное давление дается формулой Лапласа

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = 2\sigma/r.$$

Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление, необходимое для выталкивания в жидкость пузырька газа.

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька внутри жидкости избыточное давление дается формулой Лапласа $\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = 2\sigma/r$. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление, необходимое для выталкивания в жидкость пузырька газа.

Исследуемая жидкость наливается в сосуд B. Дистиллированная вода наливается в сосуд E. Сосуды закрыты пробками. Через пробку сосуда, в котором проводятся измерения, проходит полая металлическая игла , нижний конец которой погружен в жидкость, а верхний открыт в атмосферу. Если другой сосуд герметично закрыт, то в сосуде с иглой создается разрежение, и пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно найти по величине разрежения, необходимого для прохождения пузырьков. При приоткрытом кране K_1 из аспиратора A по каплям вытекает вода, создавая разрежение, которое измеряется наклонным спиртовым манометром . Показания манометра, умноженные на зависящий от наклона коэффициент (0.2), дают давление в $\mathrm{krc/m^2}$. Чтобы пополнить запас воды, достаточно при помощи крана K_2 соединить нижнюю часть аспиратора с атмосферой и предварительно заполненной водой верхней частью. Через рубашку D непрерывно прогоняется вода из термостата для стабилизации температуры исследуемой жидкости.

Схема установки представлена на рис. 1:

Рис. 1. Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения

В начале эксперимента зальем аспиратор A водой, и поместим чистую иглу в сосуд со спиртом B так, чтобы кончик иглы лишь касался поверхности.

Откроем кран K_1 , в следствие этому давление в установке упадет, из-за чего показания манометра вырастут. Проверим установку на наличие утечки, закрыв кран K_1 . Если показания манометра не меняются со временем, то все в порядке.

При открытом кране так, что период падения капель равна ≈ 5 с, давление прекращает расти при значении, равном $2\sigma/(r\sin(\alpha))$, поскольку при нем образуется пузырек газа в шприце, и давление падает. На манометре получаются давления:

$$\Delta p = 0.5 \, \text{kgc/m}^2, \sin(\alpha) = 0.2.$$

Из измерений следует, что

$$p = (54.5 \pm 0.6)$$
кгс/м².

Взяв табличное значение вязкости спитра $\sigma = (22 \pm 2) \text{мH/м}$, получим диаметр, равный

$$d_{\text{kocb}} = \frac{4\sigma}{p \sin(\alpha)} = (0.82 \pm 0.08) \text{mm}.$$

Измерив диаметр иголки под микроскопом, получаем значение диаметра, равное

$$d_{\text{прям}} = (1.05 \pm 0.03) \text{мм}.$$

Промыв и просушив иглоку, переставим ее в сосуд с водой. Сначала измерим давления появления пузырьков при касании иголкой воды (при высоте иголки над дном сосуда h_1), а потом измерим то же самое, но при максимальном погружении иглы – h_2 .

h, mm		p,	кгс/м	Λ^2		, kgc/m ²	$\Delta $, kpc/m ²
37.5	134	133	133	133	133	133.2	0.5
30.5	176	176	176	176	175	175.8	0.5

$$\Delta h = 0.25 \, \text{mm}, \, \Delta p = 0.5 \, \text{kpc/m}^2, \sin(\alpha) = 0.2.$$

Прямое измерение $h_1 - h_2$ дает результат:

$$h_1 - h_2 = 7 \pm 1$$
mm.

Из давлений следует, что разница высот:

$$\frac{p_2 - p_1}{\rho \, q} sin(\alpha) = 8.5 \pm 0.2$$
mm.

Далее проведем опыт при самой большой глубине погружения иглы и разной температуте. Для того, чтобы достичь равномерного прогрева воды в установке, после смены температуры термостата, подождем 5 минут перед измерениями давления. Результаты представлены ниже:

$T, ^{\circ}C$	p, kpc/m ²														
23	176	176	176	176	175										
30	174	174	175	175	174	175									
35	174	174	174	174	174	174	173	173	174	174	174	174	174	173	174
40	172	172	172	172	172	172	172	172	172	172	172	172	172	172	172
45	171	171	171	171	171	171	171	171	171	171	171	171	171	171	171
50	170	170	169	169	170	170	170	169	169	170	170	169	170	170	170
55	169	169	169	169	169	169	169	170	170	169	169	170	170	169	169
60	168	169	168	168	168	168	168	168	169	169	168	168	168	168	168

Из данных выше можно найти и $\sigma = \frac{pr}{2}\sin(\alpha)$.

$T, ^{\circ}C$, kgc/m ²	σ , м H /м
23.0	175.8	90
30.0	174.5	90
35.0	173.8	89
40.0	172.0	88
45.0	171.0	88
50.0	169.7	87
55.0	169.3	87
60.0	168.2	87

$$\Delta p = \Delta = 0.5 \, \mathrm{kpc/m^2}, \Delta T = 0.1 \, ^{\circ}C, \Delta \sigma = \sigma(\frac{\Delta p}{p} + \frac{\Delta d}{d}) = 2 \mathrm{mH/m}.$$

Статистическая погрешность p получилась сильно меньше приборной.

Из МНК получаются коэффициенты:

$$\sigma = (93.0 \pm 0.2) \text{MH/M}^2 - (110 \pm 5) \mu \text{H/(M}^2 \,^{\circ}C).$$

Понятно, что погрешности этих величин неправильные. Намного удобнее считать МНК графика температуры от давления:

Так происходит из-за относительно высокого значения погрешности диаметра иголки. Параметры этого графика:

$$T = (8.4 \pm 0.4) \cdot 10^2 \,^{\circ} C - (4.6 \pm 0.2) \,^{\circ} \frac{C}{\text{Kpc}} \cdot p.$$

Этой погрешности уже можно верить. Из нее получим

$$\frac{\delta\sigma}{\delta T} = \frac{d\sin(\alpha)}{4} \frac{\delta p}{\delta T} = (112 \pm 8) \frac{\mu \mathrm{H}}{\mathrm{M} \circ C}.$$

Также мы можем найти графики теплоты образования единицы поверхности жидкости q и поверхнострую энергию U площади F.

$$q = -T\frac{\delta\sigma}{\delta T}$$

$$U/F = \sigma - T \frac{\delta \sigma}{\delta T}$$

В этих графиках я брал полученное значение $\frac{\delta \sigma}{\delta T}$. Пересчет значений:

$T \circ C$	$\Delta T ^{\circ} C$	$q, \frac{MH}{M}$	$\Delta q, \frac{MH}{M}$	$U/F, \frac{MH}{M}$	$\Delta(U/F), \frac{MH}{M}$
23.0	0.1	-2.6	0.2	93	3
30.0	0.1	-3.4	0.3	93	3
35.0	0.1	-3.9	0.3	93	3
40.0	0.1	-4.5	0.3	93	3
45.0	0.1	-5.0	0.4	93	3
50.0	0.1	-5.6	0.4	93	3
55.0	0.1	-6.2	0.5	93	3
60.0	0.1	-6.7	0.5	93	3

Вывод

Поверхностное натяжение линейно меняется от температуры, и мы смогли это пронаблюдать. Характеристики этой зависимости не совпали с табличными значениями, но не сильно (для задач на поверхностное натяжение) — меньше, чем на 1 порядок. Главным источником погрешности в этом эксперименте являлась неточность измерения диаметра. Если бы я улучшал этот эксперимент, я бы двигался в направлении уменьшения этой погрешности — например, давал бы табличную. Я научился измерять поверхностное натяжение границы жидкость-газ при помощи иглы и того факта, что пузырьки воздуха выходят из этой иглы только при определенном давлении, зависящем от σ .