Constraints:

A is any language and $A_{\frac{1}{3}\frac{1}{3}} = \{x \mid \text{ for some } y, |x| = |y| = |z| \text{ and } xyz \in A\}$ is the set of all strings in A with their middle thirds removed.

- Let $A = \{a * \#b *\}$ is regular language
- We know that $\{a*b*\}$ is a regular language.
- Also we know that "Regular languages are closed under intersection"

• Now
$$A_{\frac{1}{2},\frac{1}{2}} \cap \{a * b *\} = \{a^n b^n \mid n \ge 0\}$$

• Clearly $\left\{a^nb^n\,|\,n\!\ge\!0\right\}$ is not regular, because if p is the pumping length and

$$S = xyz = aabb$$
 is $p = 2$ Here $x = a$ $y = a$ $z = bb$, obtain $xy^2z = aaabb$

<u>Pumping lemma</u>: If A is a regular language, then there is a pumping length p where, if s is any string in A of length at least P, then s may be divided into three pieces, s = xyz, satisfying following conditions

- (i) For each $i \ge 0$, $xy^i z \in A$
- (ii) |y| > 0 and
- (iii) $|xy| \le p$

So according to pumping lemma $xy^2z=a^3b^2\not\in \left\{a*b*\right\}$

Hence $\{0*1*\}$ is not regular.

As regular languages are closed under intersection and $\{0^*1^*\}$ is not regular, $\frac{A_{1-\frac{1}{3}}}{3}$ is not regular. If A is regular, then $\frac{A_{1-\frac{1}{3}}}{3}$ is not necessarily regular is proved.