Week 4: STRIPS and Heuristic

COMP90054 – Al Planning for Autonomy

Key concepts

- STRIPS problem
- Heuristic functions

Consider a m x m manhattan grid, and a set of coordinates G' to visit in any order, and a set of inaccessible coordinates (walls) W

a state = <current coordinate, a set of remaining coordinates>

Initial state $s_0 = <(0,0), G' \setminus \{(0,0)\}>$

Goal state
$$S_G = \{ \langle (x, y), \{ \} \rangle \mid x, y \in \{0, ..., m-1 \} \}$$

State
$$S = \{ \langle (x, y), V' \rangle | x, y \in \{0, ..., m-1\} \land V' \subseteq G' \}$$

Action A(
$$<(x,y), V'>$$
) = $\{(dx,dy) \mid dx,dy \in \{-1,0,1\}$
 $\land |dx| + |dy| = 1$
 $\land x + dx, y + dy \in \{0,...,m-1\}$
 $\land (x + dx, y + dy) \notin W\}$

Transition
$$f(<(x,y), V'>, (dx,dy)) = <(x+dx,y+dy), V'\setminus\{(x+dx,y+dy)\}>$$

$$\mathsf{Cost}\;\mathsf{c}(a)=\mathbf{1}$$

State-space model

$$P = \langle S, S_0, S_G, A, T, c \rangle$$

S = State space

$$s_0$$
 = initial state

$$S_G$$
 = goal states

$$A = actions$$

$$c = costs$$

Consider a m x m manhattan grid, and a set of coordinates G' to visit in any order, and a set of inaccessible coordinates (walls) W

$$I = \{at(0,0), visited(0,0)\}\$$

$$G = \{visited(x, y) | x, y \in G'\}$$

$$F = \{at(x, y), visited(x, y) | x, y \in \{0, ..., m-1\}\}$$

$$O = \{move(x, y, x', y'):$$

- *Prec: at(x,y)*
- Add: at(x', y'), visited(x',y')
- Del: at(x, y) | for each adjacent (x,y),(x',y'), and $(x',y') \notin W$ }

- A **problem** in STRIPS is a tuple $P = \langle F, O, I, G \rangle$:
 - F stands for set of all atoms (boolean vars)
 - O stands for set of all operators (actions)
 - $I \subseteq F$ stands for initial situation
 - \blacksquare $G \subseteq F$ stands for goal situation
- Operators $o \in O$ represented by
 - the Add list $Add(o) \subseteq F$
 - the Delete list $Del(o) \subseteq F$
 - the Precondition list $Pre(o) \subseteq F$

- 1. Zero heuristic
- 2. Goal-counting heuristic
- 3. Manhattan Distance to Closest Goal heuristic
- 4. Manhattan Distance to Furthest Goal heuristic
- 5. Sum of manhattan distances of all goals
- 6. Minimum spanning tree

Number of node expansion + Calculation time of the heuristic function = Total running time

1. Zero heuristic h = 0

Admissible: Yes Consistent: Yes

Time to calculate h: None

2. Goal-counting heuristic

Admissible: Yes Consistent: Yes

3. Manhattan Distance to Closest Goal heuristic

Admissible: Yes

Consistent: Yes

4. Manhattan Distance to Furthest Goal heuristic

Admissible: Yes

Consistent: Yes

5. Sum of Manhattan distances of all goals

Admissible: No Consistent: No

$$h(s1) = 3 + 7 = 10$$

 $h^*(s1) = 3 + 6 = 9$
 $h(s1) > h^*(s1) => Not admissible$

$$h(s2) = 2 + 6 = 8$$

 $h(s3) = 1 + 5 = 6$
 $h(s2) - h(s3) = 2$
 $c(s2, s3) = 1$
 $=> h(s2) - h(s3) > c(s2, s3) => Not consistent$

Dominate relation

- 1. Zero heuristic: Admissible, Consistent
- 2. Goal-counting heuristic: Admissible, Consistent
- 3. Manhattan Distance to Closest Goal heuristic: Admissible, Consistent
- 4. Manhattan Distance to Furthest Goal heuristic: Admissible, Consistent
- 5. Sum of manhattan distances of all goals: Not admissible, Not consistent


```
h(goal counting) > h(zero)
h(closest) > h(zero)
h(furthest) > h(zero)
```

h(furthest) > h(closest) h(furthest) > h(goal counting)

6. Minimum spanning tree

Admissible: Yes

Consistent: No

Time to calculate h: Medium

Minimum spanning tree: Only select a subset of edges to connect all vertices and the total cost is minimum

=>
$$h(s_2) - h(s_3) = 8 - 6 = 2$$

> $c(s_2, s_3) = 1$
=> Not consistent