Microcontroladores Wireless Monitor - Aplicativo livre web para receber e mostrar dados vindos de equipamentos IOT

Átila Camurça Alves

¹Instituto Federal do Ceará (IFCE)

Abstract. The Wireless Monitor app has the goal to allow embed systems developer to send data to the cloud collected by his IOT device and preview in a browser.

Resumo. O aplicativo Wireless Monitor tem o objetivo de permitir que desenvolvedores de sistemas embarcados possam enviar para a nuvem os dados obtidos por seu equipamento IOT e visualizá-los no navegador.

1. Introdução

O aplicativo Wireless Monitor tem o objetivo de permitir que desenvolvedores de sistemas embarcados possam enviar para a nuvem os dados obtidos por seu equipamento IOT e visualizá-los no navegador.

Em equipamentos que usam microcontroladores não existe a figura de um monitor em que se possa verificar a saída dos comandos e acompanhar sua execução, existem apenas saídas seriais ou placas wifi embutidas. Daí surge a necessidade de criar sistemas que possam recolher os dados enviados por esses equipamentos e mostrá-los de forma apropriada.

2. Objetivos

O objetivo principal é fornecer uma *api* leve e simples, visto que equipamentos IOT são limitados, para enviar e receber informações da nuvem.

Para que haja melhor intercâmbio das informações tanto partindo do equipamento IOT quanto chegando o protocolo de comunicação escolhido foi o JSON, que segundo Douglas Crockford é um formato leve e de linguagem independente para troca de informações [Crockford 2015].

Tendo isso em vista, vejamos os passos para criar um projeto.

2.1. Cadastro do desenvolvedor

O desenvolvedor inicialmente deve fazer um cadastro simples na ferramenta. Esse cadastro irá criar para ele uma api_key, ou seja, uma chave única no formato UUIDv4.

2.2. Criar um Monitor

Um *Monitor* é um componente interno do sistema criado pelo desenvolvedor de acordo com sua necessidade, é o instrumento que caracteriza os dados coletados e os apresenta na interface web.

Imagine que o desenvolvedor queira medir a temperatura de um ambiente e acompanhar suas variações. Para isso ele deve criar um *Monitor* de Temperatura, que apenas recebe um valor a um certo intervalo de tempo. Dessa forma o desenvolvedor pode acompanhar as variações ou ainda ver em forma de gráfico um conjunto de variações de um período de tempo anterior.

Da mesma forma que uma chave UUID é criada para o desenvolvedor, uma chave é criada para o Monitor - monitor_key.

2.3. Autenticação do equipamento

Para autenticar e identificar o desenvolvedor e seu *monitor* é preciso enviar a api_key e a monitor_key via método *POST* para o *endpoint* /api/authenticate. Em caso positivo o sistema irá retornar um *token*. Esse *token* servirá para qualquer troca de informações futuras entre o equipamento IOT e o sistema. Esse método de autenticação é chamado de JWT ou *JSON Web Token*, um padrão internacional *RFC 7519* para intercâmbio de dados entre entidades.

Após ter o *token* o desenvolvedor deve passá-lo através da *Header HTTP* denominada *Authorization* usando *schema Bearer*. Algo do tipo:

Authorization: Bearer <token>

Um *token* é formado pelas seguintes informações:

- Header
- Payload
- Signature

Essa é uma forma segura e com pouco custo de memória. Além de ser uma forma de autenticação *stateless*, em que não são usadas sessões e nem mesmo *cookies*.

2.4. Envio dos dados

Além do cabeçalho contendo o *token* o usuário deve passar os valores coletados pelo equipamento e enviar para o sistema. Para isso ele deve enviar uma requisição *POST* para o *endpoint* /api/send, com o atributo data contendo um JSON com os dados.

No exemplo do *Monitor* de temperatura é necessário enviar apenas o valor, algo do tipo:

```
{
    "value": 23.89
}
```

Sumarizando o código final seria algo como:

```
HTTPClient http;
http.begin("https://wireless-monitor.site/api/send");
http.addHeader("Content-Type", "application/json");
http.addHeader("Authorization", "Bearer <token>");
http.POST("data={value:23.89}");
http.writeToStream(&Serial);
http.end();
```

2.5. Visualização dos dados

Após captar e enviar dados do IOT para a nuvem é possível acompanhar os resultados pelo sistema. A forma de visualização será como mostra a Figura 1

Figura 1. Visualização dos dados na web

3. Justificativa

Sendo um aplicativo de código-fonte licenciado pela GPLv3 poderá ser usado tanto para professores e alunos de cursos superiores e técnicos para estudo de microcontroladores, sistemas embarcados e afins, como para empresas ou pessoas que queiram interagir com seus equipamentos pessoais.

A linguagem de programação escolhida foi o PHP, a qual é fácil de aprender, normalmente lecionada em cursos superiores e técnicos e de hospedagem barata.

Outra característica a ser levada em conta é a forma de autenticação. Uma autenticação convencional envolve a troca de *cookies* entre servidor e cliente, além de espaço em disco para guardar tais informações. Em sistemas IOT que se supoem que possam crescer de forma rápida, ou seja, o número de equipamentos pode aumentar, é necessário um sistema de autenticação capaz de ser escalável mesmo em condições limitadas. Para isso foi utilizado o padrão JWT (ou *JSON Web Tokens*), que é um padrão aberto (RFC 7519 [Michael B. Jones and Sakimura 2015]) que define uma maneira compacta e auto-contida de transmitir de forma segura informações entre pares através de um objeto JSON [JWT 2016]. Esta informação pode ser verificada e confirmada pois é assinada digitalmente. Informações JWT podem ser assinadas usando um segredo (com o algoritmo HMAC [Hugo Krawczyk and Canetti 1997]) ou um par de chave pública e privada usando RSA [Jonsson and Kaliski 2003].

Figura 2. Diagrama do processo de autenticação - Fonte: https://cdn.auth0.com/content/jwt/jwt-diagram.png

4. Revisão Teórica

Muitas são as soluções de monitoramento de equipamentos IOT, grandes empresas com Oracle, Amazon, Google, Microsoft; além de outras soluções livres como Kaa, ThingSpeak, macchina.io, SiteWhere [Postscapes 2016].

O grande desafio é permitir a extensão da ferramenta para necessidades específicas. Ferramentas com o Kaa permitem criar módulos próprios, sistemas de análises

e modelo de dados, fazendo com que a ferramenta se adapte ao que você precisa [Kaa 2014].

De forma semelhante outras ferramentas como macchina.io oferecem opções de criar *bundles* [Macchina.io 2016], o ThingSpeak oferece opção de criar *apps*, que podem envolver visualização em gráficos e tomada de decisões [ThingSpeak 2016].

Nesse sentido a ferramenta proposta possui um sistema de plugins, que são desenvolvidos como *Laravel Packages* [Laravel 2016]. Cada nova funcionalidade é criada através da ferramenta *Laravel* e pode ser desenvolvida e habilitada localmente.

A proposta é ter uma tela de acompanhamento dos dados captados do equipamento e a visualizaçãos ser específica. A documentação em português do brasil para criar um novo plugin pode ser encontrada em https://sanusb-grupo.github.io/wireless-monitor/pt-br/plugin-development.html.

5. Cronograma

Tarefas	Semana 1	Semana 2	Semana 3	Semana 4
Protótipo Inicial	X			
Programação	X	X	X	
Testes			X	X
Relatório	X			X

Tabela 1: Cronograma

Referências

- [Crockford 2015] Crockford, D. (2015). JSON. https://github.com/douglascrockford/JSON-js/blob/master/README. [Online; accessed 13-September-2016].
- [Hugo Krawczyk and Canetti 1997] Hugo Krawczyk, M. B. and Canetti, R. (1997). HMAC: Keyed-Hashing for Message Authentication. https://tools.ietf.org/html/rfc2104. [Online; accessed 13-September-2016].
- [Jonsson and Kaliski 2003] Jonsson, J. and Kaliski, B. (2003). Public-Key Cryptography Standards (PKCS) 1: RSA Cryptography Specifications Version 2.1. https://tools.ietf.org/html/rfc3447. [Online; accessed 13-September-2016].
- [JWT 2016] JWT (2016). Introduction to JSON Web Tokens. https://jwt.io/introduction/. [Online; accessed 13-September-2016].
- [Kaa 2014] Kaa (2014). Dev center Complete application. http://www.kaaproject.org/platform/#complete-application. [Online; accessed 13-September-2016].
- [Laravel 2016] Laravel (2016). Package Development. https://laravel.com/docs/5.2/packages. [Online; accessed 13-September-2016].
- [Macchina.io 2016] Macchina.io (2016). Bundles Overview. http://macchina.io/docs/00200-OSPBundles.html. [Online; accessed 13-September-2016].
- [Michael B. Jones and Sakimura 2015] Michael B. Jones, J. B. and Sakimura, N. (2015). JSON Web Token (JWT). https://tools.ietf.org/html/rfc7519. [Online; accessed 13-September-2016].
- [Postscapes 2016] Postscapes (2016). IoT Cloud Platform Landscape. http://www.postscapes.com/internet-of-things-platforms/. [Online; accessed 13-September-2016].
- [ThingSpeak 2016] ThingSpeak (2016). Apps. https://thingspeak.com/apps. [Online; accessed 13-September-2016].