AMS 380.01: Problem Set 3

Due on 02/23

Wei Zhu

Harris Temuri

Problem 1

Dr.Oz has a crazy hypothesis. He hypothesized that the average weight of adult US men and US women are equal. A group of smart Stony Brook University students do not agree with this hypothesis, and they got the SBU IRB (https://www.stonybrook.edu/commcms/research-compliance/) approval to draw two independent random samples of 9 adult men and 9 adult women. The measured weight (in kg) is as the following:

ID	group	weight
1	Woman	38.9
2	Woman	61.2
3	Woman	73.3
4	Woman	21.8
5	Woman	63.4
6	Woman	64.6
7	Woman	48.4
8	Woman	48.8
9	Woman	48.5
10	Man	67.8
11	Man	60.0
12	Man	63.4
13	Man	76.0
14	Man	89.4
15	Man	73.3
16	Man	67.3
17	Man	61.3
18	Man	62.4

Solution

(a) Please visualize the two groups using the Box plot in R.

```
ggplot(data = data_1, aes(x = group, y = weight)) + geom_boxplot()
```

(b) Please test the normality and equal variance assumptions using R.

P-value of Shapiro test is greater than 0.05 for both man and woman, so data is normally distributed.

Figure 1: Box Plot of the Data_1

```
# Normality Test

# for male

shapiro.test(data_1$weight[data_1$group="Man"])

# for female

shapiro.test(data_1$weight[data_1$group="Woman"])
```

Variance is equal (p-value above 0.05)

```
# Equal variance assumptions test
var.test(weight ~ group, data = data_1)
```

(c) Please perform the correct test comparing whether the two means are equal or not using R. Please report the p-value of your test. Please also construct the 95% confidence interval for the mean difference using R.

```
# 1.3 2 sample t-test to test for equal means
t.test(data_1$weight[data_1$group="Woman"], data_1$weight[data_1$group="Man"],
var.equal = TRUE)
```

The p-value of the t-test is 0.01327 which is less than 0.05.

The 95% confidence interval is [-29.748019, -4.029759]

(d) Please perform the correct test comparing whether the two means are equal or not by hand. Please make decision for you var.test(weight \sim group, data = data_1) r hypothesis test at the significance level of $\alpha = 0.05$. Please also construct the 95% confidence interval for the mean difference by hand.

T-test:

$$t = \frac{m_A - m_B}{\sqrt{\frac{S^2}{n_A} + \frac{S^2}{n_B}}}$$

$$S^2 = \frac{\sum (x - m_A)^2 + \sum (s - m_B)^2}{n_A + n_B - 2}$$

$$S^2 = \frac{1946.06 + 703.1888889}{16} = 165.5780556$$

$$t = \frac{68.99 - 52.1}{\sqrt{165.5780556/9} + 165.5780556/9}$$

$$t = 2.784235553, p \approx 0.015$$

Confidence Interval:

$$\bar{x}_1 - \bar{x}_2 \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$68.99 - 52.1 \pm t_{0.05/2} \sqrt{165.578} \sqrt{\frac{1}{9} + \frac{1}{9}}$$

$$16.89 \pm (2.120)(12.8677)(0.471404521)$$

$$16.89 \pm 12.86$$

$$[4.03, 29.75]$$

Problem 2

While most of the time we wish to reduce our weight, there are times when we wish to gain some weight. The MiraGro Co. has developed just such a weight gain formula and they tested it on 10 mice. The weight of the mice before and after the treatments are as follows (in unknown unit):

```
group
              weight
1
     before
              200.1
2
     before
              190.9
3
     before
              192.7
4
     before
              213.0
5
     before
              241.4
6
     before
              196.9
7
     before
              172.2
8
     before
              185.5
9
     before
              205.2
              193.7
10
     before
1
     after
              392.9
2
              393.2
     after
3
     after
              345.1
4
     after
              393.0
5
     after
              434.0
6
     after
              427.9
              422.0
7
     after
8
     after
              383.9
9
     after
              392.3
              352.2
10
     after
```

Solution

(a) Please visualize the two groups using the Box plot and the Profile plot in R.

```
# Box Plot
ggplot(data = data_2, aes(x = group, y = weight)) + geom_boxplot()
# Profile Plot
before <- subset(data_2, group="before", weight, drop = TRUE)

after <- subset(data_2, group="after", weight, drop = TRUE)

pd <- paired(before, after)
plot(pd, type="profile")
```


Figure 2: Box Plot of the Data_2

Figure 3: Profile Plot of the Data_2

(b) Please test the normality assumption using R.

P-value of Shapiro test is greater than 0.05 so data is normally distributed.

```
# Normality Test
shapiro.test(data_2$weight[data_2$group=="after"] - data_2$weight[data_2$group=="before"])
```

(c) Please perform the correct test examining whether the mean difference is zero or not using R. Please report the p-value of your test. Please also construct the 95% confidence interval for the mean difference using R.

```
# Paired t-test to test for equal means
t.test(before, after, paired=TRUE)
```

The p-value of the paired t-test is 6.2e-09 which is less than 0.05.

The 95% confidence interval is [-215.5581, -173.4219]

(d) Please perform the correct test examining whether the mean difference is zero or not by hand. Please make decision for your hypothesis test at the significance level of $\alpha = 0.05$. Please also construct the 95% confidence interval for the mean difference by hand.

Paired t-test:

$$t = \frac{m}{s/\sqrt{n}}$$

$$t = \frac{393.65 - 199.16}{29.45111/\sqrt{10}}$$

t = 20.883130793, p << 0.05

Confidence Interval:

$$\bar{x}_1 - \bar{x}_2 \pm t_{n-1,\alpha/2} (s_d/\sqrt{n})$$

 $194.49 \pm (2.262)(29.45111/\sqrt{9})$
 194.49 ± 22.20613694
 $[172.2839, 216.69613694]$

Problem 3

A true story goes as follows. Many years ago, when we were still using the typewriter to record data and write research reports, a group of lung cancer researchers hired a wonderful typist to enter the lung cancer patient data. The lady was a heavy smoker. In the midst of entering the patient data; however, she quit smoking once and for all. The following is a data set of smokers among lung cancer patients and healthy individuals. I personally found the data to be very unrealistic, however; it is only an example, and most likely a fake example.

Group A: lung cancer patients: n = 500, 490 smokers;

Group B: healthy individuals: n = 500, 400 smokers.

Solution

(a) Please perform the correct test examining whether the proportion of smokers are equal between Group A and Group B, using R. Please report the p-value of your test. Please also construct the 95% confidence interval for the mean difference in proportions using R.

```
prop. test (x = c(490,400), n = c(500,500))
```

The p-value of the paired t-test is 2.2e-16 which is less than 0.05.

The 95% confidence interval is [0.1408536, 0.2191464]

(b) Please perform the correct test examining whether the proportion of smokers are equal between Group A and Group B, by hand. Please make decision for your hypothesis test at the significance level of $\alpha = 0.05$. Please also construct the 95% confidence interval for the mean difference in proportions by hand.

Paired t-test:

$$z = \frac{p_A - p_B}{\sqrt{pq/n_A + pq/n_B}}$$

$$z = \frac{0.98 - 0.80}{\sqrt{(0.89)(1 - 0.89)/500 + (0.89)(1 - 0.89)/500}}$$

$$z = \frac{0.18}{\sqrt{0.0003916}}$$

$$z = 9.096014909, p - value << 0.05$$

Confidence Interval:

$$p_A - p_B \pm z_{\alpha/2}(SE)$$

$$SE = \sqrt{\frac{p_A(s_d)}{n_A} + \frac{p_B(s_d)}{n_B}}$$

$$SE = \sqrt{\frac{0.98(0.02)}{500} + \frac{0.80(0.20)}{500}}$$

$$SE = \sqrt{0.0000392 + 0.00032}$$

$$0.18 \pm 1.96(0.018952572)$$

$$[0.142852959, 0.217147042]$$