PARTIALLY ORDERED SETS

A partially ordered set or poset is a set P and a binary relation \leq such that for all $a, b, c \in P$

- \bullet \bullet \preceq \bullet (reflexivity).
- 2 $a \leq b$ and $b \leq c$ implies $a \leq c$ (transitivity).
- 3 $a \le b$ and $b \le a$ implies a = b. (anti-symmetry).

Examples

- $P = \{1, 2, ..., \}$ and $a \le b$ has the usual meaning.
- $P = \{1, 2, \dots, \}$ and $a \leq b$ if a divides b.
- $P = \{A_1, A_2, \dots, A_m\}$ where the A_i are sets and $\leq = \subseteq$.

A pair of elements a, b are **comparable** if $a \leq b$ or $b \leq a$. Otherwise they are **incomparable**.

A poset without incomparable elements (Example 1) is a linear or total order.

We write a < b if $a \leq b$ and $a \neq b$.

A **chain** is a sequence $a_1 < a_2 < \cdots < a_s$.

A set *A* is an **anti-chain** if every pair of elements in *A* are incomparable.

Thus a Sperner family is an anti-chain in our third example.

Theorem

Let P be a finite poset, then $\min\{m: \exists \text{ anti-chains } A_1, A_2, \dots, A_\mu \text{ with } P = \bigcup_{i=1}^\mu A_i\} = \max\{|C|: A \text{ is a chain}\}.$

The minimum number of anti-chains needed to cover *P* is at least the size of any chain, since a chain can contain at most one element from each anti-chain.

We prove the converse by induction on the maximum length μ of a chain. We have to show that P can be partitioned into μ anti-chains.

If $\mu = 1$ then *P* itself is an anti-chain and this provides the basis of the induction.

So now suppose that $C = x_1 < x_2 < \cdots < x_{\mu}$ is a maximum length chain and let A be the set of maximal elements of P.

(An element is x maximal if $\exists y$ such that y > x.)

A is an anti-chain.

Now consider $P' = P \setminus A$. P' contains no chain of length μ . If it contained $y_1 < y_2 < \cdots < y_{\mu}$ then since $y_{\mu} \notin A$, there exists $a \in A$ such that P contains the chain $y_1 < y_2 < \cdots < y_{\mu} < a$, contradiction.

Thus the maximum length of a chain in P' is $\mu-1$ and so it can be partitioned into anti-chains $A_1 \cup A_2 \cup \cdots A_{\mu-1}$. Putting $A_{\mu} = A$ completes the proof.

Suppose that C_1, C_2, \ldots, C_m are a collection of chains such that $P = \bigcup_{i=1}^m C_i$.

Suppose that A is an anti-chain. Then $m \ge |A|$ because if m < |A| then by the pigeon-hole principle there will be two elements of A in some chain.

Theorem

```
(Dilworth) Let P be a finite poset, then \min\{m: \exists chains C_1, C_2, \ldots, C_m \text{ with } P = \bigcup_{i=1}^m C_i\} = \max\{|A|: A \text{ is an anti-chain}\}.
```

We have already argued that $\max\{|A|\} \le \min\{m\}$.

We will prove there is equality here by induction on |P|.

The result is trivial if |P| = 0.

Now assume that |P|>0 and that μ is the maximum size of an anti-chain in P. We show that P can be partitioned into μ chains.

Let $C = x_1 < x_2 < \cdots < x_p$ be a *maximal* chain in P i.e. we cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in $P \setminus C$ has $\leq \mu - 1$ elements. Then by induction $P \setminus C = \bigcup_{i=1}^{\mu-1} C_i$ and then $P = C \cup \bigcup_{i=1}^{\mu-1} C_i$ and we are done.

Case 2

There exists an anti-chain $A = \{a_1, a_2, \dots, a_{\mu}\}$ in $P \setminus C$. Let

- $P^- = \{x \in P : x \leq a_i \text{ for some } i\}.$

Note that

- $P = P^- \cup P^+$. Otherwise there is an element x of P which is incomparable with every element of A and so μ is not the maximum size of an anti-chain.
- 2 $P^- \cap P^+ = A$. Otherwise there exists x, i, j such that $a_i < x < a_j$ and so A is not an anti-chain.
- 3 $x_p \notin P^-$. Otherwise $x_p < a_i$ for some i and the chain C is not maximal.

Applying the inductive hypothesis to P^- ($|P^-| < |P|$ follows from 3) we see that P^- can be partitioned into μ chains $C_1^-, C_2^-, \ldots, C_{\mu}^-$.

Now the elements of A must be distributed one to a chain and so we can assume that $a_i \in C_i^-$ for $i = 1, 2, ..., \mu$.

 a_i must be the maximum element of chain C_i^- , else the maximum of C_i^- is in $(P^- \cap P^+) \setminus A$, which contradicts 2.

Applying the same argument to P^+ we get chains $C_1^+, C_2^+, \ldots, C_{\mu}^+$ with a_i as the minimum element of C_i^+ for $i=1,2,\ldots,\mu$.

Then from 2 we see that $P = C_1 \cup C_2 \cup \cdots \cup C_{\mu}$ where $C_i = C_i^- \cup C_i^+$ is a chain for $i = 1, 2, \dots, \mu$.

Three applications of Dilworth's Theorem

(i) Another proof of

Theorem

Erdős and Szekerés

 $a_1, a_2, \dots, a_{n^2+1}$ contains a monotone subsequence of length n+1.

Let $P = \{(i, a_i) : 1 \le i \le n^2 + 1\}$ and let say $(i, a_i) \le (j, a_j)$ if i < j and $a_i \le a_j$.

A chain in P corresponds to a monotone increasing subsequence. So, suppose that there are no monotone increasing sequences of length n+1. Then any cover of P by chains requires at least n+1 chains and so, by Dilworths theorem, there exists an anti-chain A of size n+1.

Let $A = \{(i_t, a_{i_t}): 1 \le t \le n+1\}$ where $i_1 < i_2 \le \cdots < i_{n+1}$.

Observe that $a_{i_t} > a_{i_{t+1}}$ for $1 \le t \le n$, for otherwise $(i_t, a_{i_t}) \le (i_{t+1}, a_{i_{t+1}})$ and A is not an anti-chain.

Thus A defines a monotone decreasing sequence of length n + 1.

Matchings in bipartite graphs

Re-call that a matching is a set of vertex disjoint edges.

Let $G = (A \cup B, E)$ be a bipartite graph with bipartition A, B. For $S \subseteq A$ let $N(S) = \{b \in B : \exists a \in S, (a, b) \in E\}$.

Clearly, $|M| \leq |A|, |B|$ for any matching M of G.

Theorem

(Hall) G contains a matching of size |A| iff

$$|N(S)| \ge |S|$$
 $\forall S \subseteq A$.

 $N(\{a_1, a_2, a_3\}) = \{b_1, b_2\}$ and so at most 2 of a_1, a_2, a_3 can be saturated by a matching.

If G contains a matching M of size |A| then $M = \{(a, f(a)) : a \in A\}$, where $f : A \to B$ is a 1-1 function.

But then,

$$|N(S)| \geq |f(S)| = S$$

for all $S \subseteq A$.

Let $G = (A \cup B, E)$ be a bipartite graph which satisfies Hall's condition. Define a poset $P = A \cup B$ and define < by a < b only if $a \in A, b \in B$ and $(a, b) \in E$.

Suppose that the largest anti-chain in P is $A = \{a_1, a_2, \dots, a_h, b_1, b_2, \dots, b_k\}$ and let s = h + k.

Now

$$N(\{a_1,a_2,\ldots,a_h\})\subseteq B\setminus\{b_1,b_2,\ldots,b_k\}$$

for otherwise A will not be an anti-chain.

From Hall's condition we see that

$$|B| - k \ge h$$
 or equivalently $|B| \ge s$.

Now by Dilworth's theorem, *P* is the union of *s* chains:

A matching M of size m, |A|-m members of A and |B|-m members of B.

But then

$$m + (|A| - m) + (|B| - m) = s \le |B|$$

and so $m \ge |A|$.

Marriage Theorem

Theorem

Suppose $G = (A \cup B, E)$ is k-regular. $(k \ge 1)$ i.e. $d_G(v) = k$ for all $v \in A \cup B$. Then G has a perfect matching.

Proof

$$k|A| = |E| = k|B|$$

and so |A| = |B|.

Suppose $S \subseteq A$. Let m be the number of edges incident with S. Then

$$k|S| = m \le k|N(S)|.$$

So Hall's condition holds and there is a matching of size |A| i.e. a perfect matching.

König's Theorem

We will use Hall's Theorem to prove König's Theorem. Given a bipartite graph $G = (A \cup B), E$) we say that $S \subseteq V$ is a cover if $e \cap S \neq \emptyset$ for all $e \in E$.

Theorem

 $\min\{|S|: S \text{ is a cover}\} = \max\{|M|: M \text{ is a matching}\}.$

Proof One part is easy. If S is a cover and M is a matching then $|S| \ge |M|$. This is because no vertex in S can belong to more than one edge in M.

To begin the main proof, we first prove a lemma that is a small generalisation of Hall's Theorem.

Lemma

```
Assume that |A| \le |B|. Let d = \max\{(|X| - |N(X)|)^+ : X \subseteq A\} where \xi^+ = \max\{0, \xi\}. Then \mu = \max\{|M| : M \text{ is a matching }\} = |A| - d.
```

Proof That $\mu \leq |A| - d$ is easy. For the lower bound, add d dummy vertices D to B and add an edge between each vertex in D and each vertex in A to create the graph Γ . We now find that Γ satisfies the conditions of Hall's Theorem.

If M_1 is a matching of size |A| in Γ then removing the edges of M_1 incident with D gives us a matching of size |A|-d in G.

Continuing the proof of König's Theorem let $S \subseteq A$ be such that |N(S)| = |S| - d.

Let $T = A \setminus S$. Then $T \cup N(S)$ is a cover, since there are no edges joining S to $B \setminus N(S)$.

Finally observe that

$$|T \cup N(S)| = |A| - |S| + |S| - d = |A| - d = \mu.$$

Intervals Problem

 $I_1, I_2, \ldots, I_{mn+1}$ are closed intervals on the real line i.e. $I_j = [a_j, b_j]$ where $a_j \le b_j$ for $1 \le j \le mn + 1$.

Theorem

Either (i) there are m + 1 intervals that are pair-wise disjoint or (ii) there are n + 1 intervals with a non-empty intersection

Define a partial ordering \leq on the intervals by $I_r \leq I_s$ iff $b_r \leq a_s$. Suppose that $I_{i_1}, I_{i_2}, \ldots, I_{i_t}$ is a collection of pair-wise disjoint intervals. Assume that $a_{i_1} < a_{i_2} \cdots < a_{i_t}$. Then $I_{i_1} < I_{i_2} \cdots < I_{i_t}$ form a chain and conversely a chain of length t comes from a set of t pair-wise disjoint intervals.

So if (i) does not hold, then the maximum length of a chain is m.

This means that the minimum number of chains needed to cover the poset is at least $\lceil \frac{mn+1}{m} \rceil = n+1$.

Dilworth's theorem implies that there must exist an anti-chain $\{J_{j_1}, J_{j_2}, \dots, J_{j_{n+1}}\}$.

Let
$$a = \max\{a_{j_1}, a_{j_2}, \dots, a_{j_{n+1}}\}$$
 and $b = \min\{b_{j_1}, b_{j_2}, \dots, b_{j_{n+1}}\}$.

We must have $a \le b$ else the two intervals giving a, b are disjoint.

But then every interval of the anti-chain contains [a, b].

Möbius Inversion

Suppose that |P| = n. We argue next that we can label the elements of $P = \{p_1, p_2, \dots, p_n\}$ so that

$$p_i \leq p_j \text{ implies } i \leq j.$$
 (1)

We prove this by induction on n. The base case n = 1 is trivial.

Choose a maximal element of P and label it p_n . Assume that (1) can be achieved for posets with fewer than n elements. Let $P' = P \setminus \{p_n\}$.

We can, by induction, re-label $P' = \{p_1, p_2, \dots, p_{n-1}\}$ so that (1) holds. Because p_n is maximal, we now have a labelling for all of P.

We now define $\zeta: P^2 \to \{0, 1\}$ by

$$\zeta(x,y) = \begin{cases} 1 & x \leq y. \\ 0 & Otherwise. \end{cases}$$

Given (1) the $n \times n$ matrix $A_{\zeta} = [\zeta(x, y)]$ is an upper triangular matrix with an all 1's diagonal.

 A_{ζ} is invertible and its inverse is called $A_{\mu} = [\mu(x, y)]$. The function μ is called the Möbius function of P. The equation $A_{\mu}A_{\zeta} = I$ implies the following:

$$\sum_{z \in P} \mu(x, z) \zeta(z, y) = \sum_{x \le z \le y} \mu(x, z) = \begin{cases} 1 & x = y. \\ 0 & Otherwise. \end{cases}$$
 (2)

Theorem

For P equal to the subsets of some finite set X and ≤=⊆ we have

$$\mu(A,B) = egin{cases} (-1)^{|A|-|B|} & A \subseteq B \ 0 & \textit{Otherwise}. \end{cases}$$

o For P = [n] and $a \le b$ if a divides b we have

$$\mu(a,b) = \begin{cases} (-1)^r & b/a \text{ is the product of } r \text{ distinct primes} \\ 0 & Otherwise. \end{cases}$$

Proof

We just have to verify (2):

(a) We have

$$\sum_{A \subseteq C \subseteq B} x^{|C| - |A|} = (1 + x)^{|B| - |A|}.$$

Putting x = -1 we get a RHS of zero, unless A = B, in which case we get $0^0 = 1$.

(b) Suppose that $b/a = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ where p_1, p_2, \dots, p_r are primes and $k_1, k_2, \dots, k_r \ge 1$.

$$\sum_{a|c|b} \mu(c,b) = \sum_{S \subseteq [r]} (-1)^{|S|} = \begin{cases} 1 & r = 0. \\ 0 & r \ge 1. \end{cases}$$

Möbius Inversion

Theorem

Suppose that f, g, h are functions from P to R such that

$$g(x) = \sum_{a \prec x} f(a)$$
 and $h(x) = \sum_{b \succ x} f(b)$. (3)

Then,

$$f(x) = \sum_{a \leq x} \mu(a, x) g(a)$$
 and $f(x) = \sum_{b \succeq x} \mu(x, b) h(b)$. (4)

Proof Treating f, g, h as column vectors $\mathbf{f}, \mathbf{g}, \mathbf{h}$ we see that (3) is equivalent to $\mathbf{g} = A_{\mathcal{L}}^T \mathbf{f}$ and $\mathbf{h} = A_{\mathcal{L}} \mathbf{f}$. Thus

$$\mathbf{f} = A_{\zeta}^{-T} \mathbf{g} = A_{\mu}^{T} \mathbf{g}$$
 and $\mathbf{f} = A_{\zeta}^{-1} \mathbf{h} = A_{\mu} \mathbf{h}$.

Inclusion-Exclusion

Let A_i , $i \in I$ be a family of subsets of a finite set X.

For $J \subseteq I$ let f(J) equal the number of elements in $\bigcap_{i \in J} A_i$ that are also in $\bigcap_{i \notin I} (X \setminus A_i)$.

Let h(J) be the number of elements in $\bigcap_{i \in J} A_i$. Then

$$h(J) = \sum_{K \supseteq J} f(K) = \sum_{K \succeq J} f(K).$$

Möbius inversion gives us

$$f(J) = \sum_{K \succeq J} \mu(K, J) h(K) = \sum_{K \supset J} (-1)^{|K| - |J|} h(K).$$

Putting $J = \emptyset$ we get

$$\left|\bigcap_{i\in I}(X\setminus A_i)\right|=\sum_{K\subseteq I}(-1)^{|K|-|J|}\left|\bigcap_{j\in K}A_j\right|.$$

Divisibility Poset

Supose now that $f: \mathbb{N} \to \mathbb{R}$ and that g is given by

$$g(n)=\sum_{d\mid n}f(d).$$

Then Möbius inversion gives

$$f(n) = \sum_{d \mid n} \mu(d, n) g(d) = \sum_{\substack{d \mid n \ n/d \text{ square free}}} (-1)^{p(n/d)} g(d)$$

where p(m) is the number of distinct prime factors of m.

Totient function

For a natural number n, let $\phi(n)$ denote the number of integers $m \le n$ such that m, n have n common factors (other than one) – co-prime.

Lemma

$$n = \sum_{d|n} \phi(d) = \sum_{d|n} \phi(n/d). \tag{5}$$

Proof If (m, n) = d then $m = m_1 d$, $n = n_1 d$ where $(m_1, n_1) = 1$. So the number of choices for m is the number of choices for m_1 i.e. $\phi(n_1) = \phi(n/d)$.

Möbius inversion with g(n) = n and $f(n) = \phi(n)$ applied to (5) gives

$$\phi(n) = \sum_{d|n} (-1)^{p(n/d)} d = \sum_{d|n} (-1)^{p(d)} \frac{n}{d}.$$
 (6)

$$\phi(n) = n \sum_{d|n} \frac{(-1)^{p(d)}}{d}$$

$$= n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right),$$
(7)

assuming that $n = p_1^{k_1} p_2^{k_2} \dots, p_r^{k_r}$ where p_1, p_2, \dots, p_r are primes and $k_1, k_2, \dots, k_r \ge 1$.

2-colored necklace

A *necklace* is a sequence $x_1x_2 \cdots x_n$ of n 0' and 1's arranged in circle.

Two necklaces x, y are said to *equivalent* if there exists d|n such that $y_i = x_{i+d}$, i = 1, 2, ..., n where we interpret $i + d \mod n$. In this case we say that x is *periodic* with period d.

Let N_n denote the number of distinct i.e. non-equivalent necklaces and let M(d) denote the number of aperiodic necklaces of length d.

Thus

$$N_n = \sum_{d|n} M(d)$$
 and $\sum_{d|n} dM(d) = 2^n$.

$$N_n = \sum_{d|n} M(d)$$
 and $\sum_{d|n} dM(d) = 2^n$.

For the second equation think about rotating a periodic necklace one step at a time for d steps. If we do this for all periodic necklaces then we get all 2^n sequences.

Applying Möbius inversion to the second equation with $f(d) = dM(d), g(n) = 2^n$, we get

$$M(n) = \frac{1}{n} \sum_{d|n} \mu(d, n) 2^d.$$

So,

$$N_n = \sum_{d|n} M(d) = \sum_{d|n} \sum_{\ell|d} \frac{1}{d} \mu(\ell, d) 2^d = \sum_{d|n} \frac{1}{d} \sum_{\ell|d} \mu(\ell, d) 2^\ell.$$

Now substitute $d = k\ell$ and tidy up to get

$$N_n = \sum_{\ell \mid n} \frac{2^{\ell}}{\ell} \sum_{k \mid \frac{n}{\ell}} \frac{\mu(1,k)}{k} = \frac{1}{n} \sum_{\ell \mid n} \phi(n/\ell) 2^{\ell}.$$

For the second equation, we use the expression (7).