Markovian Regime-Switching Models for South Australian Wholesale Electricity Prices

Angus Lewis¹ Dr. Giang Nguyen¹ Prof. Nigel Bean¹

¹School of Mathematical Sciences The University of Adelaide

Eurandom, YEQT Workshop on Energy Systems, 2017

Outline

The South Australian Electricity Market

Problems in South Australia The wholesale spot market

Modelling

Price characteristics The model Inference

Results

Outline

The South Australian Electricity Market Problems in South Australia

The wholesale spot market

Modelling

Price characteristics The model Inference

Results

Australia and the Netherlands

Population

Australia: 24M

Adelaide: 1.2M

Netherlands: 17M

► Eindhoven: 220,000

Australia and the Netherlands

Population density

► Australia: 3.1ppl/km²

► SA: 1.7ppl/km²

► Netherlands: 488ppl/km²

The National Electricity Market (NEM)

- ► SA has its own market
- Can trade via interconnectors

South Australia's Generation Resources

November 2017 - Generation (% of local generation only)

- ▶ 39.2% Wind
- ▶ 50.5% Gas
- ▶ 9.2% Rooftop solar
- ▶ No coal 20.9% generation capacity withdrawn

Other Problems in SA

► Highest *retail* electricity price in the world! – August 2016

Other Problems in SA

- Other frequent blackouts Every year!
 - lt gets hot 13 days $> 40^{\circ}$ c in 2014
 - 'Another day, another blackout for angry South Australians' –
 The Australian
 - 'Median cost of the blackout on SA businesses was \$5,000' ABC News

Outline

The South Australian Electricity Market

Problems in South Australia

The wholesale spot market

Modelling

Price characteristics The model Inference

Results

Wholesale spot prices

► AUD\$13,767 = EUR€8,785

About the market

Every 5 minutes AEMO

- Aggregates supply bids
- Estimates demand
- Matches supply and demand
 - Dispatches generators
 - Sets the dispatch price
 - Spot price = average over 30 minutes

Spikes occur due to

- Unprecedented demand/Incorrect supply forecast
- Low marginal cost generators cannot vary supply quickly

Our aims

What I am doing

► Model South Australian wholesale electricity prices

Why I am doing it

- Risk management
- Value contracts & investments
- Examine affects of exogenous factors on prices

How I am doing it

- Use regime-switching models with independent regimes
- 'Exact' inference using data augmented MCMC

Outline

The South Australian Electricity Market

Problems in South Australia The wholesale spot market

Modelling

Price characteristics

The model Inference

Results

Price data characteristics

Price data characteristics

- ► Mean reversion to a trend line
- Negative prices!

Simplifying the problem

- Model average daily price
 - Justification: Some contracts are valued on daily average prices - e.g. EEX futures
 - Drawback: Not all contracts are valued in this way
- ▶ Displays mean reversion, spikes, drops and trends

Outline

The South Australian Electricity Market

Problems in South Australi The wholesale spot market

Modelling

Price characteristics

The model

Inference

Results

The model

$$\overbrace{P_t}^{\text{price process}} = \underbrace{\overset{\text{trend component}}{y_t}}_{\text{trend component}} + \underbrace{\overset{\text{stochastic component}}{X_t}}_{\text{trend component}}$$

Trend, y_t

- Capture different behaviour on weekends/weekdays
- Seasonal fluctuations

Regime-switching model, X_t

- Mean reversion
- Spikes
- Drops

Trend

 $y_t = \text{weekly trend} + \text{long-term trend}$

- Long-term trend
 - Estimated using wavelet filtering

► Weekly trend

Trend estimation

Extreme prices bias our estimate of the trend.

► Solution: remove and replace extreme values

Stochastic component

$$X_t = \begin{cases} B_t & \text{when } R_t = 1, \\ S_t & \text{when } R_t = 2, \\ D_t & \text{when } R_t = 3. \end{cases}$$

3-regimes with shifted log-normal spikes and drops

$$X_t = \begin{cases} B_t & \text{when } R_t = 1, \\ S_t & \text{when } R_t = 2, \\ D_t & \text{when } R_t = 3. \end{cases}$$

 $ightharpoonup R_t$ evolves with probabilities $p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i)$

$$X_t = \begin{cases} B_t & \text{when } R_t = 1, \\ S_t & \text{when } R_t = 2, \\ D_t & \text{when } R_t = 3. \end{cases}$$

- $ightharpoonup R_t$ evolves with probabilities $p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i)$
- $ightharpoonup B_t = lpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime
 - to capture mean reversion

$$X_t = \begin{cases} \frac{B_t}{S_t} & \text{when } R_t = 1, \\ \frac{S_t}{D_t} & \text{when } R_t = 2, \\ \frac{D_t}{S_t} & \text{when } R_t = 3. \end{cases}$$

- $ightharpoonup R_t$ evolves with probabilities $p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i)$
- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime
 - to capture mean reversion
- ▶ $\log(S_t q_3) \sim \mathcal{N}(\mu_S, \sigma_S^2)$ Shifted log-normal spikes
 - ▶ Support $[q_3, \infty)$

$$X_t = \begin{cases} B_t & \text{when } R_t = 1, \\ S_t & \text{when } R_t = 2, \\ D_t & \text{when } R_t = 3. \end{cases}$$

- $ightharpoonup R_t$ evolves with probabilities $p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i)$
- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime
 - to capture mean reversion
- ▶ $\log(S_t q_3) \sim \mathcal{N}(\mu_S, \sigma_S^2)$ Shifted log-normal spikes ▶ Support $[q_3, \infty)$
- ▶ $\log(q_1 D_t) \sim \mathcal{N}(\mu_D, \sigma_D^2)$ Shifted log-normal drops
 ▶ Support $(-\infty, q_1]$
- Note the independent regimes.

► AR(1) Base process

Spike process – Independent of Base process

► The regime sequence determines which points we observe

But this is all we actually observe

 $ightharpoonup B_t$ depends on B_{t-1} , but it might be unobserved

- Can integrate unobserved prices away
- \triangleright B_t depends on a random lagged observation

Outline

The South Australian Electricity Market

Problems in South Australi The wholesale spot market

Modelling

Price characteristics

I he model

Inference

Results

Inference

The likelihood

$$L(\theta; \mathbf{x}) = f(\mathbf{x}|\theta) = \sum_{\mathbf{R}} f(\mathbf{x}, \mathbf{R}|\theta) = \sum_{\mathbf{R}} f(\mathbf{x}|\mathbf{R}, \theta) \mathbb{P}(\mathbf{R}|\theta)$$

- Sum over all sequences of length T=1704= the number of observations
- $ightharpoonup 3^{1704} = 1.034 \times 10^{813}$ such sequences!

Inference

The likelihood

$$L(\theta; \mathbf{x}) = f(\mathbf{x}|\theta) = \sum_{\mathbf{R}} f(\mathbf{x}, \mathbf{R}|\theta) = \sum_{\mathbf{R}} f(\mathbf{x}|\mathbf{R}, \theta) \mathbb{P}(\mathbf{R}|\theta)$$

- Sum over all sequences of length T = 1704 = the number of observations
- $ightharpoonup 3^{1704} = 1.034 \times 10^{813}$ such sequences!

Consequences

- A MLE approach is computationally intractable
- EM algorithm is computationally intractable
- Existing literature uses an approximation to EM
- Instead we use data-augmented MCMC

Inference

Data-augmented block-wise MCMC

► Recall:

$$p(\theta|\mathbf{x}) = \frac{\overbrace{p(\mathbf{x}|\theta)}^{\text{likelihood}} p(\theta)}{p(\mathbf{x})}$$

Likelihood:

$$p(x|\theta) = \sum_{R} p(x|R,\theta)p(R|\theta)$$

where $\mathbf{R} = (R_0, R_1, ..., R_T)$ is a sequence of hidden regimes

Solution:

$$p(\mathbf{R}, \theta | \mathbf{x}) = \underbrace{\frac{p(\mathbf{x} | \mathbf{R}, \theta) p(\mathbf{R} | \theta)}{p(\mathbf{x})} p(\theta)}_{\text{augmented likelihood}}$$

Inference

Data-augmented block-wise MCMC

► A block-wise structure (aka. Metropolis-within-Gibbs) makes our MCMC more efficient

Outline

The South Australian Electricity Market

Problems in South Australi The wholesale spot market

Modelling

Price characteristics The model Inference

Results

A three-regime model

$$X_{t} = \begin{cases} B_{t}^{(1)} & R_{t} = 1\\ Y_{t}^{(3)} & R_{t} = 3\\ Y_{t}^{(5)} & R_{t} = 5 \end{cases}$$

$$B_{t}^{(1)} = \alpha_{1} + \phi_{1}B_{t-1}^{(1)} + \sigma_{1}\varepsilon_{t},$$

$$Y_{t}^{(3)} - q_{3} = LN(\mu_{3}, \sigma_{3})$$

$$q_{5} - Y_{t}^{(5)} = LN(\mu_{5}, \sigma_{5})$$

- Common in the literature
- Our inference allocated very little mass to the drop regime

A two-regime model

$$X_t = \begin{cases} B_t^{(1)} & R_t = 1\\ Y_t^{(3)} & R_t = 3 \end{cases}$$

$$B_t^{(1)} = \alpha_1 + \phi_1 B_{t-1}^{(1)} + \sigma_1 \varepsilon_t,$$

$$Y_t^{(3)} - q_3 = LN(\mu_3, \sigma_3)$$

- We cannot use typical model comparisons
 - e.g. AIC, BIC, likelihood ratio
- We check the model with Posterior Predictive Checks

Posterior Predictive Checks

Constructing PPCs

- ▶ Sample θ^* and R^* from $p(\theta, R|x)$
- ▶ Produce statistics using θ^* , R^* and x.
- ► Compare statistics to what we expect under the model
- Repeat for many samples and assess overall

Pros & Cons

- + Very flexible
- + Can tells us where a model fails
- Tend to make models look better than they are

A two-regime model

$$X_{t} = \begin{cases} B_{t}^{(1)} & R_{t} = 1 \\ B_{t}^{(2)} & R_{t} = 2 \\ Y_{t}^{(3)} & R_{t} = 3 \\ Y_{t}^{(4)} & R_{t} = 4 \end{cases}$$

$$B_{t}^{(i)} = \alpha_{i} + \phi_{i} B_{t-1}^{(i)} + \sigma_{i} \varepsilon_{t}, \qquad \sigma_{1} < \sigma_{2}$$

$$Y_{t}^{(i)} - q_{i} = gamma(\mu_{i}, \sigma_{i}), \qquad q_{3} < q_{4}$$

- ► Two AR(1) base regimes
- Two spike regimes

Better...

We can use our inference to classify points into regimes.

Spike regime 1

Spike regime 2 – Extreme spikes

We can use our inference to classify points into regimes.

Classification of points into base regime 2

1400
1200
Base 2
1900
400
400
400
JanApr Jul Oct Ja

Base regime 1 – low volatility $\sigma_1^2 = 55.94$

Base regime 2 – high volatility $\sigma_2^2 = 482.53$

Final words

- ▶ For the SA market we found a 4-regime model is best
 - 2 base regimes, 2 spike regimes
 - The model automatically uncovers a structural change in volatility
 - Elon Musk to the rescue!
 - The battery should smooth generation & reduce market volatility
- Future work
 - Extend our model to actual spot prices
 - Extend our model to incorporate exogenous factors

THANKS!

