Universität Konstanz

Lecture 10 Clustering

Dr. Hanhe Lin
Dept. of Computer and Information Science
University of Konstanz

Unsupervised learning

 In unsupervised learning, the training data consists of a set of input vectors without any corresponding target values

• Goals:

- Clustering: discover groups of similar examples within the data
- Density estimation: determine the distribution of data within the input space
- Data visualization: project the data from a highdimensional space down to two or three dimensions

Unsupervised learning

- Unsupervised learning was largely ignored by machine learning community
 - It is hard to say what the aim of unsupervised learning is
- Unsupervised learning is the future of machine learning
 - Large scale of unlabeled data
 - Very expensive and infeasible to annotate large data

Clustering - intuition

Clustering

- Goal: partition the data into different groups (clusters), where the data in each group are similar to each other other than to those in other groups
- Clustering is one of the most commonly researched unsupervised learning topic
- The only information clustering uses is the similarity between examples
- Clustering groups examples based of their mutual similarities
- A good cluster algorithm is:
 - High within-cluster similarity
 - Low inter-cluster similarity

Clustering: when and why?

• Useful for:

- Automatically organizing data
- Understanding hidden structure in some data
- Representing high-dimensional data in a lowdimensional space

• Examples:

- Image segmentation
- Customers according to purchase histories
- Genes according to expression profile
- Search results according to topic
- Social network analysis

Clustering notation

Our data are

$$D = \left\{ x^{(1)}, \dots, x^{(m)} \right\}$$

Each data point is *n*-dimensional, i.e.,

$$X = \left\{ X_1, \dots, X_n \right\}$$

Define a distance function between data $x^{(i)}$ and $x^{(j)}$, $d(x^{(i)}, x^{(j)})$

Goal: segment the data into *k* groups

Clustering division

- Hierarchical clustering
 - Agglomerative: bottom-up
 - Divisive: top-down
 - **–** ...
- Centroid-based clustering
 - K-means clustering
 - Kernel k-means
 - Fuzz c-means
 - **–** ...
- Distribution-based clustering
 - Gaussian mixture model (GMM)
 - **–** ...
- Density-based clustering
 - Mean-shift
 - **–** ...

Distance measure

- Distance is inversely related to similarity, namely, large distance, low similarity; small distance, high similarity
- Choice of the distance measure is very important for clustering
- Some commonly used distance metrics:
 - Euclidean distance (L2 norm): $d(x^{(i)}, x^{(j)}) = ||x^{(i)} x^{(j)}||_2$
 - Manhattan distance (L1 norm): $d(x^{(i)}, x^{(j)}) = ||x^{(i)} x^{(j)}||_1$
 - Mahalanobis distance: $d(x^{(i)}, x^{(j)}) = \sqrt{(x^{(i)} x^{(j)})^T S^{-1}(x^{(i)} x^{(j)})}$ where S is the covariance matrix
- Similarity is subjective and hard to define
- Different similarity criteria can lead to different clusters

The property of a distance measure

- Non-negative: $d(x^{(i)}, x^{(j)}) \ge 0$
- Symmetry: $d(x^{(i)}, x^{(j)}) = d(x^{(j)}, x^{(i)})$
- Self-similarity: $d(x^{(i)}, x^{(j)}) = 0$ if $x^{(i)} = x^{(j)}$, we should not conclude A looks like B, but B does not look like A
- Triangle inequality: $d(x^{(i)}, x^{(k)}) + d(x^{(k)}, x^{(j)}) \ge d(x^{(i)}, x^{(j)})$

Agglomerative clustering

- Initially, each point is treated as a cluster
- Repeat:
 - Compute distance between all clusters in terms of the defined distance measure (store for efficiency)
 - Merge two nearest clusters into a new cluster
 - Stop when there is only on cluster left
- Save both clusters and sequence of cluster operations by "Dendrogram"

Agglomerative clustering

- How should we define "closest" for clustering with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
- Different choices create different clustering behaviors

Agglomerative clustering

°1 °2 °5 6 °7 8 °7 8

Farthest pair

Example 1: agglomerative clustering

Example 2: agglomerative clustering

• Clustering gene expression data [Eisen et al 1998].

Overview: agglomerative clustering

Summary

- Choose a cluster distance/dissimilarity method
- Successively merge closet pair of clusters until only one cluster left

Pros and cons

- Easy to understand and implement
- Don't need to define the number of clusters
- Possible to view partitions at different levels of granularities
- Computational extensive, complexity is $O(m^2 \log m)$

- The basic idea is to describe each cluster by its mean value.
- Note: this works only for distances such that a mean is well-defined.
- The goal of k-means is to assign data to clusters and define these clusters with their means.

- Input:
 - Number of clusters k
 - Data set $\{x^{(1)}, \dots, x^{(m)}\}$
- Steps:
 - Randomly initialize k cluster centroids, i.e., mean/average
 - Repeat until converge
 - Assign each data to its closest centroid
 - Change the cluster center to the average of its assigned points
- Output:
 - Centroids of each cluster
 - The cluster label which is assigned to each data

Let be $\mu_1, ..., \mu_K$ the centriods of clusters Optimization objective:

$$\min_{\mu_{k}, b_{k}^{(i)}} \sum_{i=1}^{m} \sum_{k=1}^{K} b_{k}^{(i)} \| x^{(i)} - \mu_{k} \|^{2}$$

$$\text{where } b_{k}^{(i)} = \begin{cases} 1 & \text{if } \| x^{(i)} - \mu_{k} \| = \min \| x^{(i)} - \mu_{j} \| & \text{j} = 1, \dots, K \\ 0 & \text{otherwise} \end{cases}$$

 $b_k^{(i)}$ is the indicator to represent if the data i is assigned to cluster k Exact optimization of the k-means objective is NP-hard

The solution for k-means algorithm is heuristic

Assign step: fix centroids $\mu_1, ..., \mu_K$, optimize $b_k^{(i)}$

Mean relocation step: fix $b_k^{(i)}$, optimize centroids μ_1, \dots, μ_K

Each step is guaranteed to decrease the objective, thus guaranteed to converge to a local minimum.

k-means is a coordinate descent algorithm.

Algorithm:

- Randomly initialize k cluster centroids
- Repeat:
 - − For 1 to *m*
 - Compute its indicator
 - − For 1 to *k*
 - Compute the new cluster centroids

Random initialization

- k-means algorithm converges to a local minimum, so it is extremely sensitive to cluster center initialization.
- Bad initialization may lead to:
 - Poor convergence speed
 - Bad overall clustering

Handle bad initialization

- Make initialized centroids evenly distribute in training set:
 - Choose first center as one of the examples, second which is the farthest from the first, third which is the farthest from both, and so on
- Try-and-see, namely, try multiple initializations and choose the best result:
 - For i = 1 to 100
 - Run k-means
 - Compute cost function

$$L = \sum_{i=1}^{m} \sum_{k=1}^{K} b_k^{(i)} \| x^{(i)} - \mu_k \|^2$$

- Pick the result that gave the lowest loss

Choosing the number of cluster *k*

• Elbow method: try different values of *k*, plot the k-means loss function *L*, and find out the "elbow-point" in the figure

Example: image segmentation by k-means

Figure 9.3 Two examples of the application of the K-means clustering algorithm to image segmentation showing the initial images together with their K-means segmentations obtained using various values of K. This also illustrates of the use of vector quantization for data compression, in which smaller values of K give higher compression at the expense of poorer image quality.

k-means clustering: summary

- k-means is the most popular and widely used clustering algorithm
- Converge to a local minimum
- Computational complexity in each iteration:
 - Assign data points to closest cluster center O(mk)
 - Change the cluster center to the average of its assigned points O(m)
- "Hard assignment", either 1 or 0 to each cluster
- Limitations:
 - Sensitive to outliers
 - Works well only for round shaped, and of roughly equal sizes/density clusters
- Do not work well on non-linear clusters

k-medoids

- In many practical settings, Euclidean distance is not appropriate
- For example:
 - Discrete multivariate data, such as purchase histories
 - Positive data, such as time spent on a web-page
- k-medoids is an algorithm that only requires knowing distances between data points $x^{(i)}$ and $x^{(j)}$, $d(x^{(i)}, x^{(j)})$
- No need to define the mean
- Each of the clusters is associated with its most typical example

k-medoids clustering

Algorithm:

- Randomly choose k data as initial cluster center
- Repeat:
 - Assign each data point to its closest center
 - For each cluster, find the data point in that cluster that is closest to the other points in that cluster
 - Set each cluster center equal to their closest data points

Agglomerative vs. k-means

Agglomerative:

- Gives different
 partitioning depending
 on the level-of-resolution
 we are looking at
- Doesn't need the number of clusters to be specified
- May be slow as it has to compute distance many times $O(m^2 \log m)$

k-means:

- Produces a single partitioning
- Needs the number of clusters to be specified
- More efficient O(m(k + 1)i), where i is the number of iteration

Gaussian distribution

The probability density of the normal (Gaussian) distribution is

$$p(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the mean, and σ^2 is the variance

The probability density function of multivariate (*n*-dim) Gaussian distribution is given by:

$$p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

where μ is the mean, Σ is the covariance matrix, and $|\Sigma|$ denotes the dterminant of the covariance matrix

Patrial derivative to mean and covariance:

$$\frac{\partial}{\partial \mu} p(x|\mu, \Sigma) = p(x|\mu, \Sigma) \Sigma^{-1}(x - \mu)$$

$$\frac{\partial}{\partial \Sigma} p(x|\mu, \Sigma) = -\frac{1}{2} p(x|\mu, \Sigma) (\Sigma^{-1} - \Sigma^{-1}(x - \mu)(x - \mu)^T \Sigma^{-1})$$

GMM - model representation

- Let $z^{(i)}$ be the latent variable, and $z^{(i)} \in \{1,2,\cdots,k\}$. $p(z^{(i)}=j)$ denotes the probability that $x^{(i)}$ generated from jth Gaussian model (k models in total)
- Gaussian mixture density is given by:

$$p(x^{(i)}) = \sum_{j=1}^{k} p(z^{(i)} = j) p(x^{(i)} | \mu^{(j)}, \Sigma^{(j)})$$

- Assume $z^{(i)} \sim Multinomial(\alpha)$, where $\alpha_j \geq 0$, $\sum_{j=1}^k \alpha_j = 1$. Correspondingly, $p(z^{(i)} = j) = \alpha_j$
- Gaussian mixture density is rewritten as:

$$p(x^{(i)}) = \sum_{j=1}^{k} \alpha_j p(x^{(i)} | \mu^{(j)}, \Sigma^{(j)})$$

where α_i is mixture coefficient

- The parameters of GMM are thus α_j , $\mu^{(j)}$, $\Sigma^{(j)} \forall j = 1, 2, \dots, k$
- Given the training data $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$, Maximum Likelihood Estimation (MLE) maximizes the following log likelihood:

$$L = \log \left(\prod_{i=1}^{m} p(x^{(i)}) \right)$$

$$= \sum_{i=1}^{m} \log \left(p(x^{(i)}) \right)$$

$$= \sum_{i=1}^{m} \log \left(\sum_{j=1}^{k} \alpha_{j} p(x^{(i)} | \mu^{(j)}, \Sigma^{(j)}) \right)$$

If parameters α_j , $\mu^{(j)}$, $\Sigma^{(j)}$ $\forall j = 1, 2, ..., k$ maximize log likelihood, then we have:

$$\frac{\partial L}{\partial \mu^{(j)}} = \sum_{i=1}^{m} \frac{\alpha_{j}}{\sum_{l=1}^{k} \alpha_{l} p(x^{(i)} \mid \mu^{(l)}, \Sigma^{(l)})} \frac{\partial}{\partial \mu^{(j)}} p(x^{(i)} \mid \mu^{(j)}, \Sigma^{(j)}) = 0$$

$$\frac{\partial L}{\partial \Sigma^{(j)}} = \sum_{i=1}^{m} \frac{\alpha_j}{\sum_{l=1}^{k} \alpha_l p(x^{(i)} \mid \mu^{(l)}, \Sigma^{(l)})} \frac{\partial}{\partial \Sigma^{(j)}} p(x^{(i)} \mid \mu^{(j)}, \Sigma^{(j)}) = 0$$

Combined with

$$\frac{\partial}{\partial \mu} p(x \mid \mu, \Sigma) = p(x \mid \mu, \Sigma) \Sigma^{-1}(x - \mu)$$

$$\frac{\partial}{\partial \Sigma} p(x \mid \mu, \Sigma) = -\frac{1}{2} p(x \mid \mu, \Sigma) (\Sigma^{-1} - \Sigma^{-1} (x - \mu) (x - \mu)^T \Sigma^{-1})$$

Bayes rule: $p(A \mid B)p(B) = p(B \mid A)p(A)$

Applied to GMM:
$$p(z^{(i)} = j \mid x^{(i)}) p(x^{(i)}) = p(z^{(i)} = j) p(x^{(i)} \mid z^{(i)} = j)$$

$$\Rightarrow p(z^{(i)} = j \mid x^{(i)}) \sum_{l=1}^{k} \alpha_{l} p(x^{(i)} \mid \mu^{(l)}, \Sigma^{(l)}) = \alpha_{j} p(x^{(i)} \mid \mu^{(j)}, \Sigma^{(j)})$$

Posterior probability:

$$\underbrace{p(z^{(i)} = j \mid x^{(i)})}_{\gamma_{ij}} = \frac{\alpha_{j} p(x^{(i)} \mid \mu^{(j)}, \Sigma^{(j)})}{\sum_{l=1}^{k} \alpha_{l} p(x^{(i)} \mid \mu^{(l)}, \Sigma^{(l)})}$$

The mean and variance are computed as:

$$\mu^{(j)} = \frac{\sum_{i=1}^{m} \gamma_{ij} x^{(i)}}{\sum_{i=1}^{m} \gamma_{ij}} \qquad \sum_{i=1}^{m} \gamma_{ij} (x^{(i)} - \mu^{(j)}) (x^{(i)} - \mu^{(j)})^{T}$$

$$\sum_{i=1}^{m} \gamma_{ij}$$

Bayes rule: $p(A \mid B)p(B) = p(B \mid A)p(A)$

Applied to GMM:
$$p(z^{(i)} = j \mid x^{(i)}) p(x^{(i)}) = p(z^{(i)} = j) p(x^{(i)} \mid z^{(i)} = j)$$

$$\Rightarrow p(z^{(i)} = j \mid x^{(i)}) \sum_{l=1}^{k} \alpha_{l} p(x^{(i)} \mid \mu^{(l)}, \Sigma^{(l)}) = \alpha_{j} p(x^{(i)} \mid \mu^{(j)}, \Sigma^{(j)})$$

Posterior probability:

$$\underbrace{p(z^{(i)} = j \mid x^{(i)})}_{\gamma_{ij}} = \frac{\alpha_j p(x^{(i)} \mid \mu^{(j)}, \Sigma^{(j)})}{\sum_{l=1}^k \alpha_l p(x^{(i)} \mid \mu^{(l)}, \Sigma^{(l)})}$$
Soft assignment

The mean and variance are computed as:

$$\mu^{(j)} = \frac{\sum_{i=1}^{m} \gamma_{ij} x^{(i)}}{\sum_{i=1}^{m} \gamma_{ij}} \qquad \sum_{i=1}^{m} \gamma_{ij} (x^{(i)} - \mu^{(j)}) (x^{(i)} - \mu^{(j)})^{T} = \frac{\sum_{i=1}^{m} \gamma_{ij}}{\sum_{i=1}^{m} \gamma_{ij}}$$

We still have an additional constraint: $\alpha_j \ge 0, \sum_{j=1}^{\kappa} \alpha_j = 1$

Introduce the Lagrange multiplier:

$$J = L + \lambda (\sum_{j=1}^{k} \alpha_j - 1)$$

Take derivative, we have

$$\frac{\partial J}{\partial \alpha_j} = 0 \Rightarrow \alpha_j = \frac{1}{m} \sum_{i=1}^m \gamma_{ij}$$

GMM algorithm

Randomly initialize parameters $\alpha_i, \mu^{(j)}, \Sigma^{(j)} \forall j = 1, 2, ..., k$

Repeat until converge:

E-step. Compute posterior probability γ_{ii} :

$$\gamma_{ij} = \frac{\alpha_{j} p(x^{(i)} | \mu^{(j)}, \Sigma^{(j)})}{\sum_{l=1}^{k} \alpha_{l} p(x^{(i)} | \mu^{(l)}, \Sigma^{(l)})}$$

M-step. Update the parameters using the current γ_{ij} :

$$\alpha_{j} = \frac{1}{m} \sum_{i=1}^{m} \gamma_{ij} \qquad \mu^{(j)} = \frac{\sum_{i=1}^{m} \gamma_{ij} x^{(i)}}{\sum_{i=1}^{m} \gamma_{ij}} \qquad \sum_{i=1}^{m} \gamma_{ij} (x^{(i)} - \mu^{(j)})(x^{(i)} - \mu^{(j)})^{T}$$

The General EM algorithm

Given a joint distribution $p(X,Z \mid \theta)$ the over observed variables X and the latent variables Z, governed by parameters θ , the goal is to maximize the likelihood function $p(X \mid \theta)$ with respect to θ .

- Choose an initial setting for the parameters θ
- Repeat until converge:

E-step: evaluate $p(X,Z \mid \theta)$ using current θ

M-step: evaluate θ given by Z

GMM vs. k-means

GMM (soft assignment)

- Randomly initialize parameters of k Gaussian distribution and mixture coefficients
- Repeat until converge:
 - E-step. Compute soft membership, i.e., posterior probability
 - M-step. Update the parameters using the current soft membership

k-means (hard assignment)

- Randomly initialize k cluster centroids
- Repeat until converge
 - Assign each data to its closest centroid
 - Update the cluster center using its current assigned points