LH-04 继电器模块(MODBUS 协议) V3.1

一、 通信参数:

- 1、波特率: 默认是 9600 支持 300/600/1200/2400/4800/9600/14400/19200/38400/56000/57600/115200bps,
- 2、其他参数: 校验位: N, 数据位: 8, 停止位: 1
- 3、一条命令中相邻字节发送允许间隔时间如下:

通讯速度	发送字符间允许间隔时间
9600bps 以下	约 10ms
19200bps	约 6ms
19200bps 以上	约 4ms

一条命令需要连续不间断发出,字符间隔时间如超过,模块将不予响应。AT 命令协议和 MODBU 协议都需要遵守。

模块寄存器地址

寄存器地址		备注
	定义	
0000	继电器控制数据	低字节的低 4 位有效
0100	模块设备地址	低字节有效,01-FF
0200	模块通讯速度	低字节有效, 数值与速度如下对应
		00:300bps
		01:600bps
		02:1200bps
		03:2400bps
		04:4800bps
		05:9600bps
		06:14400bps
		07:19200bps
		08:38400bps
		09:56000bps
		0A:57600bps
		0B:115200bps
0000	OUT1 单线圈地址	对应功能码 05
0001	OUT2 单线圈地址	对应功能码 05
0002	OUT3 单线圈地址	对应功能码 05
0003	OUT4 单线圈地址	对应功能码 05

二、设置单个继电器(功能码 05)

- 1、命令格式: 地址(01-FE, 1 字节)、功能码(05, 1 字节)、继电器地址(00-0F, 1 字节)、继电器状态(00/FF, 1 字节)、校验位(2 字节, 低位先行)
- 2、回复格式: 地址(01-FE, 1 字节)、功能码(05, 1 字节)、继电器地址(00-0F, 1 字节)、继电器状态(00/FF, 1 字节)、校验位(2 字节, 低位先行)
- 3、应用举例:设置板地址 1 的继电器 2 吸合示例如下: 发送: 01 05 00 01 FF 00 DD FA

接收: 01 05 00 01 FF 00 DD FA

427777	00 00 01 11 00 00 111	,
字节顺	内容	说明
序号		
1	模块地址码	模块的地址,
		01 : 继电器 1 地址
		02:继电器 2 地址
		OE: 继电器 14 地址
		OF: 继电器 15 地址
2	功能码 05	固定
3	单继电器地址高字节00	固定
4	单继电器地址低字节	OUT1:00;OUT2:01;OUT3:02;OUT4:03
5	输出数据 WORD 的高字节	继电器吸合: FF00
6	输出数据 WORD 的低字节	继电器断开: 0000
7	CRC 校验码的低字节	CR 校验码 (前面所有数据的 CRC 校验码)
8	CRC 校验码的高字节	

三、读取继电器状态(功能码 01)

- 1、命令格式: 地址(01-FE, 1 字节)、功能码(01, 1 字节)、继电器起始地址(0000, 2 字节)、继电器数量(0010, 2 字节)、校验位(2 字节, 低位先行)
- 2、回复格式: 地址(01-FE, 1 字节)、功能码(01, 1 字节)、状态字节数(02, 1 字节)、继电器状态(0000, 2 字节)、校验位(2 字节, 低位先行)
- 3、应用举例: 读取板继电器 1 到 8 的状态示例如下:

发送: 01 03 00 00 00 10 3D C6

字节顺序号	内容	说明
1	模块地址码	模块的地址,01-FF
2	功能码 03	固定
3	寄存器地址高字节	固定 00
4	寄存器地址低字节	固定 00
5	读寄存器个数高字节	固定 00
6	读寄存器个数低字节	固定 01
7	CRC 校验码的低字节	CRC 校验码
8	CRC 校验码的高字节	

接收: 01 03 02 03 00 B9 0C

读到的数据 "0300",转换成 2 进制数为 "00000011", "00000011" 从右至左分别对应继电器 1 到 8 的状态,即继电器 1 吸合、继电器 2 吸合、继电器 6-8 断开

四、控制所有继电器(功能码 OF, 地址 O, 长度 16, 数值 O 对应断开, 数值 1 对应吸合)

- 1、命令格式: 地址 (01-FE, 1 字节)、功能码 (0F, 1 字节)、继电器起始地址 (0000, 2 字节)、继电器 数量 (0010, 2 字节)、写入数据字节 (02, 1 字节)、写入字节 (0000, 2 字节)、校验位 (2 字节, 低位先行)
- 2、回复格式: 地址(01-FE, 1 字节)、功能码(01, 1 字节)、继电器起始地址(0000, 2 字节)、继电器数量(0010, 2 字节)、校验位(2 字节, 低位先行)
- 3、应用举例:控制继电器 1 和 3 吸合的示例如下:

数据	字节	数据说明	备注
01	1	模块地址	地址范围: 01-FE
0F	1	功能码	0F: 写多个继电器
0000	2	继电器起始地址	0000: 继电器起始地址
0010	2	写入长度	0010: 写 1-8 个继电器的状态
02	1	写入数据字节	02: 写入 2 个字节的数据
0500	2	写入数据	转换成 2 进制数为 "00000101", "00000101"从右至左分别对应继电器 1 到 8 的状态, 即继电器 1 吸合、继电器 3 吸合、继电器 2、4-8 断 开,
E170	2	校验	前面所有数据的 CRC 校验码

接 收:

01 OF 00 00 00 10 54 07

模块接收到正确的命令后, 执行相应动作, 并将应答指令发回主机。

五、模块设备地址修改命令

使用功能码 06, 写模块的 0100 寄存器。发送的 WORD 数值, 低字节有效, 高字节固定为 0。指令帧格式:

字节顺序号	内容	说明
1	模块地址码	模块的现在地址,01-FF
2	功能码 06	固定
3	寄存器地址高字节 01	固定
4	器寄存器地址低字节 00	固定
5	输出数据 WORD 的高字节	固定为 00
6	输出数据 WORD 的低字节	模块新地址码,01-FF
7	CRC 校验码的低字节	前面所有数据的 CRC 校验码
8	CRC 校验码的高字节	

如果模块接收数据校验正确将回送指令信息帧同样内容,并修改设备地址为新指定的值;

六、模块通讯速度修改命令

使用功能码 06, 写模块的 0200 寄存器。发送的 WORD 数值,低字节有效,高字节固定为 0。指令帧格式:

字节顺序号	内容	说明
1	模块地址码	模块的现在地址,01-FF
2	功能码 06	固定
3	寄存器地址高字节 02	固定
4	器寄存器地址低字节 00	固定
5	输出数据 WORD 的高字节	固定为 00
6	输出数据 WORD 的低字节	模块通讯速度,00-0FF
7	CRC 校验码的低字节	CRC 校验码

如果模块接收数据校验正确将回送指令信息帧同样内容,并修改设备通讯速度为新指定的值;如果模块接收到的数

据有误将不做出任何反应。新通讯速度在回送数据之后开始启用。

七、模块通讯速度读取命令(2019-8-23新增)

使用功能码 03, 读控制器的 0200 寄存器。读回的 WORD 数值,低字节为模块通讯速度,高字节固定为 0。指令信息帧格式:

字节顺序号	内容	说明
1	模块地址码	模块的地址,01-FF
2	功能码 03	固定
3	寄存器地址高字节	固定 02
4	寄存器地址低字节	固定 00
5	读寄存器个数高字节	固定 00
6	读寄存器个数低字节	固定 01
7	CRC 校验码的低字节	前面所有数据的 CRC 校验码
8	CRC 校验码的高字节	

如果模块接收数据校验正确将回送通讯速度,如果模块接收到的数据有误将不做出任何反应 回送信息帧内容如下

字节顺序号	内容	说明
1	模块地址码	模块的地址,01-FF
2	功能码 03	固定
3	读取数据长度的字节数	固定 02
4	读取的状态数据高字节	固定 00
5	读取的状态数据低字节	模块的通讯速度,00-0B
6	CRC 校验码的低字节	CRC 校验码
7	CRC 校验码的高字节	

八、延时开关控制命令(2019-8-23 新增)

(1) 单路延时吸合

命令帧

内容	说明
模块地址码	模块的现在地址,01-FF
功能码 30	固定
单继电器延时寄存器地址高字	固定
节 F0	
单继电器延时寄存器地址低字	OUT1:00;OUT2:01;OUT3:02;OUT4:03
节	
延时数据 WORD 的	100ms 为单位延时时间(例如,0001:100ms
高字节	;0002:200ms)
延时寄存器数据 WORD 的低字	
节	
CRC 校验码的低字节	前面所有数据的 CRC 校验码
CRC 校验码的高字节	
	模块地址码 功能码 30 单继电器延时寄存器地址高字节F0 单继电器延时寄存器地址低字节 延时数据 WORD 的高字节 延时寄存器数据 WORD 的低字节

(2) 多路延时吸合

命令帧

字节顺	内容	说明
		2 - 2 ·

序号		
1	模块地址码	模块的地址,01-FF
2	功能码 31	固定
	71,10	, ,, =
3	延时寄存器开始单元	固定
	地址高字节 F0	
4	延时寄存器开始单元	固定
	地址低字节 00	
5	OUT1 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
6	OUT1 延时时间数据	
	WORD 的低字节	
7	OUT2 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
8	OUT2 延时时间数据	
	WORD 的低字节	
9	OUT3 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
10	OUT3 延时时间数据	
	WORD 的低字节	
11	OUT4 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
12	OUT4 延时时间数据	
	WORD 的低字节	
13	CRC 校验码的低字节	CRC 校验码
14	CRC 校验码的高字节	
		- 11.

回答帧: 模块接受到正确的命令后,执行命令并送回这条命令

(3)单路延时关闭

内容	说明
模块地址码	模块的地址,01-FF
功能码 32	固定
单继电器延时寄存器	固定
地址高字节 F0	
单继电器延时寄存器	OUT1:00;OUT2:01;OUT3:02;OUT4:03
地址低字节	
延时数据 WORD 的	100ms 为单位延时时间(例如,0001:100ms
高字节	;0002:200ms)
延时寄存器数据	
WORD 的低字节	
CRC 校验码的低字节	CRC 校验码
CRC 校验码的高字节	
	模块地址码 功能码 32 单继电器延时寄存器 地址高字节 F0 单继电器延时寄存器 地址低字节 延时数据 WORD 的 高字节 延时 寄 存 器 数 据 WORD 的低字节 CRC 校验码的低字节

回答帧: 模块接受到正确的命令后,执行命令并送回这条命令

(4)单路延时关闭

字节顺	内容	说明
序号		
1	模块地址码	模块的地址,01-FF
2	功能码 33	固定

3	延时寄存器开始单元	固定
	地址高字节 F0	
4	延时寄存器开始单元	固定
	地址低字节 00	
5	OUT1 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
6	OUT1 延时时间数据	
	WORD 的低字节	
7	OUT2 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
8	OUT2 延时时间数据	
	WORD 的低字节	
9	OUT3 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
10	OUT3 延时时间数据	
	WORD 的低字节	
11	OUT4 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
12	OUT4 延时时间数据	
	WORD 的低字节	
13	CRC 校验码的低字节	CRC 校验码
14	CRC 校验码的高字节	
□ % TF T4	*************************************	

回答帧:模块接受到正确的命令后,执行命令并送回这条命令

九、点动开关控制命令(2019-8-23 新增)

(1)单路控制

命令帧:

H1 ✓ 134•		
字节顺	内容	说明
序号		
1	模块地址码	模块的地址,01-FF
2	功能码 34	固定
3	单继电器延时寄存器	固定
	地址高字节 F0	
4	单继电器延时寄存器	OUT1:00;OUT2:01;OUT3:02;OUT4:03
	地址低字节	
5	延时数据 WORD 的	100ms 为单位延时时间(例如,0001:100ms
	高字节	;0002:200ms)
6	延时寄存器数据	
	WORD 的低字节	
7	CRC 校验码的低字节	CRC 校验码
8	CRC 校验码的高字节	

回答帧:模块接受到正确的命令后,执行命令并送回这条命令

(2)多路控制

命令帧:

中 〈 1次:		
字节顺	内容	说明
序号		
1	模块地址码	模块的地址,01-FF
2	功能码 35	固定
3	延时寄存器开始单元	固定

	1	,
	地址高字节 F0	
4	延时寄存器开始单元	固定
	地址低字节 00	
5	OUT1 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
6	OUT1 延时时间数据	
	WORD 的低字节	
7	OUT2 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
8	OUT2 延时时间数据	
	WORD 的低字节	
9	OUT3 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
10	OUT3 延时时间数据	
	WORD 的低字节	
11	OUT4 延时时间数据	100ms 为单位延时时间(例如,0001:100ms
	WORD 的高字节	;0002:200ms)
12	OUT4 延时时间数据	
	WORD 的低字节	
13	CRC 校验码的低字节	CRC 校验码
14	CRC 校验码的高字节	

回答帧:模块接受到正确的命令后,执行命令并送回这条命令

十、常用命令清单

地址 1 的继电器板常用命令清单

命令功能	命令	回复
第1路吸合	01 05 00 00 FF 00 8C 3A	01 05 00 00 FF 00 8C 3A
第1路断开	01 05 00 00 00 00 CD CA	01 05 00 00 00 00 CD CA
第2路吸合	01 05 00 01 FF 00 DD FA	01 05 00 01 FF 00 DD FA
第2路断开	01 05 00 01 00 00 9C 0A	01 05 00 01 00 00 9C 0A
第3路吸合	01 05 00 02 FF 00 2D FA	01 05 00 02 FF 00 2D FA
第3路断开	01 05 00 02 00 00 6C 0A	01 05 00 02 00 00 6C 0A
第4路吸合	01 05 00 03 FF 00 7C 3A	01 05 00 03 FF 00 7C 3A
第4路断开	01 05 00 03 00 00 3D CA	01 05 00 03 00 00 3D CA
4路全部吸合	01 0F 00 00 00 10 02 FF FF E3 90	01 0F 00 00 00 10 54 07
4路全部断开	01 0F 00 00 00 10 02 00 00 E2 20	01 0F 00 00 00 10 54 07
第1路点动开关 (0.1秒)	01 34 FF 00 00 01 42 CE	01 34 FF 00 00 01 42 CE
第2路点动开关 (0.5秒)	01 34 F0 01 00 05 12 CD	01 34 F0 01 00 05 12 CD
第3路点动开关 (1秒)	01 34 F0 02 00 0A A2 C9	01 34 F0 02 00 0A A2 C9
第4路点动开关 (10秒)	01 34 F0 03 00 64 72 E5	01 34 F0 03 00 64 72 E5
4路全部点动开关 (1秒)	01 35 F0 00 00 0A 00 0A 00 0A 00 0A E0 CA	01 35 F0 00 00 0A 00 0A 00 0A 00 0A E0 CA

第1路延时吸合	01 30 F0 00 00 01 B3 0E	01 30 F0 00 00 01 B3 0E
(0.1秒)		
第1路延时断开	01 32 F0 00 00 01 CA CE	01 32 F0 00 00 01 CA CE
(0.1秒)		
第2路延时吸合	01 30 F0 01 00 0A A3 09	01 30 F0 01 00 0A A3 09
(1秒)		
第2路延时断开	01 32 F0 01 00 0A DA C9	01 32 F0 01 00 0A DA C9
(1秒)		
第3路延时吸合	01 30 F0 02 00 32 52 DB	01 30 F0 02 00 32 52 DB
(5秒)		
第3路延时断开	01 32 F0 02 00 32 2B 1B	01 32 F0 02 00 32 2B 1B
(5秒)		
第4路延时吸合	01 30 F0 03 00 64 83 25	01 30 F0 03 00 64 83 25
(10秒)		
第4路延时断开	01 32 F0 03 00 64 FA E5	01 32 F0 03 00 64 FA E5
(10秒)		
4路全部延时吸合	01 31 F0 00 00 64 00 64 00 64 00 64 73 C4	01 31 F0 00 00 64 00 64 00 64 00 64 73 C4
(10秒)		
4路全部延时断开	01 33 F0 00 00 64 00 64 00 64 00 64 78 7C	01 33 F0 00 00 64 00 64 00 64 00 64 78 7C
(10秒)		

十一、CRC 校验码解释

CRC校验是用于通信检验,你的发送端会计算一组CRC校验码,发送一组数组给接收机,接收机收到这组数据,进行CRC计算,算出的校验码与你发送的校验码比较,它们相等则说明通讯正确。否则通讯失败。CRC校验需要软件计算,网络上大把现成的程序,通常使用的是查表法。程序简单。

例如:模块地址1 第一路开,协议为: 01 05 00 00 FF 8C 3A,我们在串口助手里面调试时,只需要输入01 05 00 00 FF 00 8C 3A,这里的最后2个字节 8C 3A 就是校验码,他是前面 01 05 00 00 FF 00 这些数据加在一起的校验码。我们把 01 05 00 00 FF 00 这些数据通过校验码计算软件我们就可以计算出。(我们已经在资料里面给出了CRC校验码软件和校验码源码。)

这里的十六进制 8C 3A就是我们要的校验码。

