Proof HW

Parker Whaley

March 10, 2016

1

Therm.

 $x < 0 \Rightarrow x^{-1} < 0.$

Proof.

We will proceed with a proof by contradiction.

Suppose x < 0.

Now suppose $x^{-1} > 0$. Note that we proved on the previous homework that $(\forall a \in \mathbb{R})(-1)a = -a$ thus (-1)x = (-x). Note $x \cdot x^{-1} = 1$ by the definition of multiplicative inverse. Since multiplication is well defined we may say $(-1) \cdot x \cdot x^{-1} = (-1) \cdot 1$. With the property stated above and noting that one is the multiplicative identity we see that $(-x) \cdot x^{-1} = (-1)$. By corollary 2.2.3 we can say $x < 0 \Rightarrow (-x) > 0$. Since (-x) > 0 and $x^{-1} > 0$ we can say by the trichotomy law (A18) that $(-x) \cdot x^{-1} > 0$ thus (-1) > 0. By corollary 2.2.3 we can say 1 < 0. We showed in class that 1 > 0. Contradiction, by the law of trichotomy it is impossible for 1 < 0 and 1 > 0 thus our initial assumption that $x^{-1} > 0$ must be false.

Next let us suppose $x^{-1} = 0$. Note $x \cdot x^{-1} = 1$ by the definition of multiplicative inverse. Also note that $x \cdot x^{-1} = x \cdot 0 = 0$ by therm 2.1.11. Thus 1 = 0. Contradiction, (A15) states $1 \neq 0$ so our assumption $x^{-1} = 0$ must be false.

By the law of trichotomy $x^{-1} \not > 0$ and $x^{-1} \ne 0$ must mean $x^{-1} < 0$.

2

Therm.

 $x \neq 0 \Rightarrow x^2 > 0$ Proof.

Suppose $x \neq 0$.

Note, by the definition of additive inverse, $(-1) + 1 = 0 \Rightarrow (-(-1)) + (-1) + 1 = (-(-1)) \Rightarrow 1 = -(-1)$. also note $(-1) \in \mathbb{R}$ thus $(-1) \cdot (-1) = -(-1)$ so 1 = (-1)(-1) (we will need this later). Note $x^2 = x \cdot x$ by the definition of square. Let us consider the two remaining possibilities given by the law of trichotomy x < 0 or x > 0.

Suppose x < 0. Note that $x \cdot x = 1 \cdot x \cdot x = (-1) \cdot (-1) \cdot x \cdot x = (-1) \cdot x \cdot (-1) \cdot x = (-x) \cdot (-x)$. By corollary 2.2.3 note that $x < 0 \Rightarrow (-x) > 0$ thus by the law of trichotomy $(-x) \cdot (-x) > 0$ thus in this case $x^2 > 0$.

Suppose x > 0. By the law of trichotomy $x \cdot x > 0$ thus in this case $x^2 > 0$. Since $x^2 > 0$ in both of the remaining cases we can say that $x^2 > 0$

3

Therm.

If $m|j \wedge m|k$ then m divides any integer linear combination of j and k. proof.

Suppose m|j and m|k. Choose a integer linear combination of j and k, lets call it n. Since n is a integer linear combination of j and k we know there exist two integers, let us call them i and l, such that $n=i\cdot j+l\cdot k$. By definition we know that there exists a integer x such that $m\cdot x=j$, and some integer y such that $m\cdot y=k$. Note $n=i\cdot m\cdot x+l\cdot m\cdot y=m(i\cdot x+l\cdot y)$. Note that $i\cdot x+l\cdot y$ is a integer thus by definition m|n. Since n was a arbitrary integer linear combination of j and k we can generalize and say that m divides all integer linear combination of j and k.

4

Therm.

If m|n for all n where n is a integer linear combination of j and k then m|j and m|k. Proof.

Suppose m|n for all n where n is a integer linear combination of j and k. Note that $0 \cdot j + 1 \cdot k$ is a integer linear combination of j and k thus $m|(0 \cdot j + 1 \cdot k) \Rightarrow m|k$. Note that $1 \cdot j + 0 \cdot k$ is a integer linear combination of j and k thus $m|(1 \cdot j + 0 \cdot k) \Rightarrow m|j$. We have thus shown that m|j and m|k.