ecture $\chi = (\times_{(, \dots)} \times_{m})$ malrices AeRuxm x e Rm A·X ER" $A = \left| \frac{\alpha_1}{\beta_1} \cdots \frac{\alpha_m}{\beta_m} \right|$ $\cdot x = \sum_{i=1}^{m} x_i \cdot a_i$ eg. XERnxm eg. $X \in \mathbb{R}^n$ $X = \sum_{i=1}^{n} (y_i - x_i \cdot \beta)^2 = \|y - x_i \|_{\mathcal{B}}$

A.B AERNXM BERMXP $(AB)_{ij} = \sum_{k=1}^{\infty} A_{ik} B_{kj}$ $A = \begin{pmatrix} a_1 & a_m \\ a_m \end{pmatrix}$ columns $B = \begin{pmatrix} -b_1 - b_2 \\ -b_m - b_m \end{pmatrix}$ $A \cdot B = \sum_{k=1}^{vn} a_k \cdot b_k$ of the form

XY

XER

yERP

$$XTX = \sum_{i=1}^{n} X_i \cdot X_i$$
 x_i
 x_i

say the data come some mean zero distrib. with covariance I then to XTX = to I xixi P > I

(consistent estimator) Singular Value De composition AERMXM orthogonal matrices Me O(m) if $UU^{T} = I_{m}$ $M = U^{T}$ $U^{T} = U^{-1}$ $U^{T} = U^{T} = I_{m}$ det(UUT) = det(U)

The rows form orthonorm

1 basis, the cholumns too $SVD \left(N \geq m \right)$

 $U \in \mathcal{O}(n)$, $V \in \mathcal{O}(m)$ s.t nxm nxm nxm mxm $D_{ii} = \sigma_i$ (=1) ..., m $\sigma_1 \geq \ldots \geq \sigma_m \geq 0$ G: = SINGULAR VALUES Ex: ui-columns of U Vi- columns of V show $A \cdot v_c = UD_i V_i \cdot v_c$

Lei ith comonic.

$$A = UDVT$$

$$= \sum_{i=1}^{m} \sigma_i \cdot u_i V_i^T$$

eigenue ctors

AERWXM (square)
if
$$\exists \forall \neq 0$$
 st

$$A'V = y.V$$
 for some y

then y eigenvector

eigenvalue. 5^m = mxm symmetric matrices Theorem (Spechal Thm) $A \in S^m \left(A = A^T \right)$ there exists UEO(m) and diagonal NERMAM A = UM UT $\Lambda = deag(\lambda_1, \ldots, \lambda_m)$

A; ER

claim: the columns of U

(ui) are eigenvecto

of A with eigenvalue

\(\lambda_i \).

 $A = \sum_{i=1}^{m} \lambda_i u_i u_i^T$

quadratic forms

A ESM

 $q(X) = x^T A X$ (PSD) As positive semi-definite if $q_A(x) \ge 0$ $\forall X$ A is positive - definite if $q_A(x) > 0$ $\forall x \neq 0$

$$X = (X_1, ..., X_m)$$
 random
 $S = (S_{ij}) \in \mathbb{R}^{n \times m}$ random
 $M = (X_1, ..., X_m)$ random

$$EX = (EXi)$$

$$ES = (ESi)$$

$$\mu = EX \in \mathbb{R}^{m} \text{ mean vector}$$

$$\Sigma = Var(X) \text{ covariance matrix}$$

$$= E[(X-\mu)(X-\mu)^{T}]$$

$$= (E[(Xi-\mu i)(Xj-\mu j)])$$

$$= (Xi-\mu i)^{2} = Var(Xi)$$

$$\Sigma_{ii} = E(Xi-\mu i)^{2} = Var(Xi)$$

 $\sum_{i \neq j} = \mathbb{E}(X_i - \mu_i)(X_j - \mu_j)$ $= \mathcal{E}(X_i - \mu_i)(X_j - \mu_j)$