SOLVING THE ART GALLERY PROBLEM USING GRADIENT DESCENT

GEORGIANA JUGLAN

SUPERVISOR: TILLMAN MILTZOW SECOND EXAMINER: FRANK STAALS

SEPTEMBER 28, 2022

THE ART GALLERY PROBLEM

1

GRADIENT DESCENT

2

THEORY

$$P$$
 boundary $extstyle f$

$$\nabla f = \left(0, \frac{\beta^2}{2\alpha}\right)^{\mathsf{T}}$$
$$p' = p + \alpha \nabla f,$$
$$\alpha - \text{ learning rate}$$

PRACTICE

(a) Star polygon.

(c) Comb polygon.

(b) Arrowhead polygon.

(d) Arbitrary polygon.

PRACTICE

Figure: Learning rate $\alpha = \text{O.2.}$

PRACTICE

(a) Learning rate $\alpha =$ 0.45.

(c) Learning rate $\alpha = \text{0.45}$.

(b) Learning rate $\alpha = \text{0.6.}$

(d) Learning rate $\alpha = 0.6$.

■ gradient for multiple guards

- gradient for multiple guards
- gradient experiments (momentum)

- gradient for multiple guards
- gradient experiments (momentum)
- guard addition strategy

- gradient for multiple guards
- gradient experiments (momentum)
- guard addition strategy
- comparison with existing algorithms [1]

PRACTICE WITH MOMENTUM

Figure: Learning rate $\alpha = \text{O.2.}$

REFERENCES

SIMON B. HENGEVELD AND TILLMANN MILTZOW.

A PRACTICAL ALGORITHM WITH PERFORMANCE GUARANTEES FOR THE ART GALLERY PROBLEM.

CoRR, SoCG, abs/2007.06920, 2020.