£

9

a. Find the exact value of:

i.
$$\int_{2}^{2} \ln x dx$$
ii.
$$\int_{-2}^{2} \frac{2 dx}{x^2 + 4x + 20}$$

iii.
$$\int_{0}^{1} \frac{x^{2} dx}{\sqrt{4-x^{2}}}$$

iv.
$$\int_{-1}^{1} (\sin^{-1} x)^3 dx$$

b. If $U_n = \int_0^{\frac{n}{2}} \sin^n x dx$ (where *n* is a positive integer), show that $U_n = \left(\frac{n-1}{n}\right)U_{n-2}.$

Hence evaluate $\int_{0}^{\frac{\pi}{2}} \sin^6 x dx$.

Question 2 Use a separate writing book.

a. Show that the pentagon formed by the roots of $z^5 + 1 = 0$ in the Argand plane has an area of A square units, where

$$A = \frac{5}{2} \sin \frac{2\pi}{5}$$

b. Describe and sketch the locus of the complex number z, satisfied by

$$|z| \le 4$$
 and $|\arg z| \le \frac{3\pi}{4}$

- c. i. Find the square roots of the complex number (-3-4i), expressing answer in the form (a+ib).
 - ii. Hence solve the equation $z^2 (5-2i)z + 6 4i = 0$
- d. A, B, C and D are four points in the Argand diagram representing the complex numbers Z_1 , Z_2 , Z_3 and Z_4 respectively. Given that Z_2 and Z_4 are purely imaginary and Z_1 and Z_3 are real; and Z_3 arg $(Z_2 Z_3) = \arg(Z_1 Z_4)$. Analyse this data with a suitable diagram and define clearly the quadrilateral ABCD.

Question 3 Use a separate writing book.

a. Consider the function
$$f(x) = (x-2)^2(x-1)$$

On separate diagrams draw neat sketches of:

3

5

3

i.
$$y = f(x)$$

ii.
$$y = f(2x)$$

iii.
$$y^2 = f(2x)$$

b. The diagram given is a sketch of the function
$$y = f(x)$$
.

Marks

3

3

6

3

6

On separate diagrams sketch:

i.
$$y = f(-x)$$

ii.
$$y = [f(x)]^2$$

iii.
$$y = \frac{1}{f(x)}$$

iv.
$$|y| = f(x)$$

$$y = \log_{\epsilon}[f(x)]$$

c. Solve graphically the inequation
$$2\cos x > 1$$
 for $-\pi \le x \le 2\pi$

d. Find the value of m, so that the equation
$$5x^5 - 3x^7 + m = 0$$
 has

Question 4 Use a separate writing book.

- a. Prove that the equation of the tangent at the point $P(x_1,y_1)$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$, a > b, is given by $\frac{xx_1}{a^2} + \frac{yy_1}{h^2} = 1$. The tangent at P to this ellipse cuts the major axis at Q and the directrix $x = \frac{a}{a}$ at R. S is the corresponding focus. PT is the line from P perpendicular to the x-axis.
 - Draw a diagram to represent this information and label the i. co-ordinates of Q and R
 - ii. Prove that OT x OO = a^2
 - iii. Prove that $\angle PSR = 90^{\circ}$.
- The tangents at $R(cr, \frac{c}{r})$ and $S(cs, \frac{c}{s})$ on the rectangular b. hyperbola $xy = c^2$ in the first quadrant, meet at T. Show that OT produced bisects RS, where O is the origin.

Question 5 Use a separate writing book.

- Sketch the curve $y = \sin(\pi x^2)$ for $0 \le x \le 2$, clearly showing all turning points and intercepts with the x-axis.
 - ü. The area bounded by $y = \sin(\pi x^2)$ and the x-axis for $0 \le x \le 1$ is rotated about the y-axis. Using the method of cylindrical shells, show that the volume of the solid formed is 2 cubic units.
- Sketch $y = \frac{3 x^2}{1 + x^2}$ clearly showing its intercepts with b. coordinate axes.
 - A solid is formed in which each cross-section perpendicular to the y-axis is a square. If one side of each square cross-section is parallel to the x-axis and its end points lie on the curve $y = \frac{3 - x^2}{1 + x^2}$, show that the volume of the solid whose base is bounded by the x-axis and the above curve is given by $V = 4 \int_{1+y}^{3} \frac{3-y}{1+y} dy$
 - Find the volume of the above solid.

Marks	Question 6	Use a separate writing book.
-------	------------	------------------------------

Marks

7

8

Marks

4

7

- How many different ways are there of seating four married couples at a circular table with men and women in alternate positions and no wife next to her husband? (Two seating arrangements are the same if each person has the same left and right hand neighbours.)
 - Twelve pupils enter a quiz competition. From the twelve pupils, two teams of five pupils will be chosen to compete against each other.
 - i. How many different competitions can be arranged?
 - Jill, Grant and Robert are triplets amongst the twelve pupils. Find the probability that they will be chosen on the same team.

6 Given that
$$(1+x)^n = C_0 + C_1x + C_2x^2 + ... + C_nx^n$$
 where $C_r = {n! \over r!(n-r)!}$.

i. By investigating
$$\frac{d}{dx}[x(1+x)^n]$$
 show that

$$C_0 - 2C_1 + 3C_2 - ... + (-1)^n (n+1)C_n = 0$$

By choosing the appropriate definite integral of the expression $(1+x)^n$, show

$$\frac{1}{2}C_0 + \frac{1}{3}C_1 + \frac{1}{4}C_2 + \dots + \frac{1}{n+2}C_n = \frac{2^{n-2}-1}{n+2} - \frac{2^{n-2}-1}{n+1}$$

Question 7 Use a separate writing book.

- a. A body of mass m is projected vertically upwards from the ground with speed u_0 . The force due to gravity acting on the body is constant but there is a resisting force of magnitude mkv^2 at speed v, where k is a constant. Show that:
 - i. the maximum height H which the body reaches is given by $2kH = \ln\left(\frac{g + ku_0^2}{g}\right)$
 - ii. the speed v_0 with which the body reaches the ground is given by $2kH = \ln\left(\frac{g}{g kv_0^2}\right)$
 - iii. Using the above results show that $\frac{1}{v_0^2} = \frac{1}{u_0^2} + \frac{k}{g}$
- A mass m kg is suspended from the end of a light in elastic string of length l metres which is fixed to a point O. The mass is moving with constant angular velocity ω and describes a circle of radius R metres in the horizontal plane.
 - i. Show, by considering the forces acting on the mass m, that the angle between the string and the vertical through O is given by $\tan \theta = \frac{R\omega^2}{g}$, where g is the acceleration due to gravity.
 - ii. Show that the period of rotation is given by $2\pi \sqrt{\frac{I\cos\theta}{g}}$.
 - iii. A light inelastic string is used to swing a mass of 600 grams in a circle with a period of 1.7 seconds. If the tension in the string is 20 newtons, find the length of the string.

Marks

8

7

Question 8 Use a separate writing book.

Marks 7 III

8

a. Use Mathematical Induction to show that $3^n > n^3$ for integers n > 3.

Hence or otherwise prove that $\sqrt[3]{3} > \sqrt[n]{n}$ for n > 3.

Ь.

The sides of the quadrilateral PQRS have fixed lengths a, b, c and d, as shown in the diagram. The sizes of the angles PQR and PSR are α and β radians respectively, where $0 < \alpha < \pi$, $0 < \beta < \pi$.

- i. Use the cosine rule to rule find two expressions for $(PR)^2$ and hence, by differentiating both expressions with respect to α , show that $\frac{d\beta}{d\alpha} = \frac{ab \sin \alpha}{cd \sin \beta}$
- ii. Find an expression for the area of quadrilateral PQRS in terms of $\sin \alpha$ and $\sin \beta$, and hence prove that the area is a maximum when $\alpha + \beta = \pi$.

·		
	$I = \int_{0}^{\infty} \frac{x^2 dx}{\sqrt{\mu - x^2}}$	Let x=2sin0
	To V #	$dx = 2\cos\theta d\theta$ $\frac{\cosh e}{\cos\theta} = x = 0, \theta = 0$
	$= \int \frac{\pi/6}{4 \sin^2 \theta} - 2 \cos \theta d\theta$	X= / 6 = \frac{7}{6}
	= \\ \frac{451470}{\sqrt{451470}} 25000 d0	
	- <u>-</u>	
, <u></u>	$= \int_{0}^{\sqrt{y_{0}}} \frac{4510^{2}0.2000}{2000} d0$	
 	$= 4 \int \sin^2 \theta \ d\theta$	and the second s
•		Note: (0120 = 1-814=0
	$= 2 \int_0^{\pi/4} (1-(\varpi 14)d\theta)$	
	$= 2\left[\theta - \frac{1}{2}\sin 2\theta\right]^{\frac{1}{4}}$	
	$= Z\left[\left(\frac{\pi}{6} - \frac{1}{2} \sin \frac{\pi}{3}\right) - (o)\right]$	
•	$=2\left[\frac{\pi}{6}-\frac{1}{2}\lambda\frac{\sqrt{3}}{2}\right].$	en e
	= <u>1</u> _ <u>1</u> _ <u>2</u>	e en
I	$= \frac{2\pi - 3\sqrt{3}}{6}$	en e

(iv) _{I=}	(sin	'z) ^{\$} di	c ·
	1 (c) =		
	•		(x))3
		(- si	$(x)^3$
****			7×13
		- 16	edd Jun
	(K) 20	an	odd Jun

:
$$f(x)$$
 so an odd function.
Hence $\int (6\pi^{-1}x)^3 dx = 0$
10 $I = 0$.

(b) $u_{w} = \int_{0}^{\pi/2} \sin^{n}x dx =$	$\int_{0}^{\infty} (\sin^{n-1}x \cdot \sin x) dx$
If dy = sinz	ラV = - でox
and $u = \sin^{n-1}x = (\sin^{n-1}x) = (\sin^{n-1}x)(-\cos^{n-1}x)$	x) - (coxxx n-1/sinx) cox do
- X.	$(n-1) \int_{0}^{\pi/2} \cos^{2}x \sin^{n-2}x dx$
$= 0 + (N-1) \int_{0}^{\frac{\pi}{2}} (1-510^{2})$	The second se
$U_{h} = (n-1) \int_{0}^{2\pi} \sin^{n-2}\pi dx$	-(n-j) sin"x dx
Un = (n-1) (1(n-2) - (n-1) (
$U_{n} + (n-1)U_{n} = (n-1)U_{n}$ $m \cdot U_{n} = (n-1)U_{n}$	2
Un = (1=1) Un	-2
$\int_{0}^{2} \sin^{6}x dz = u_{6}$ $u_{6} = \frac{5}{4}u_{4}$	
= 5 x 3 U2 = 5 x 3 x 1 U0	Note $U_0 = \int_0^{\frac{\pi}{2}} dx$ $U_0 = \left[\frac{\pi}{2} \right]_0^{\frac{\pi}{2}}$
$U_{i} = \frac{15}{48} \times \frac{\pi}{2} = \frac{5\pi}{32}$	U.= £

Question	<u>2</u>	ALCOHOLOGICA CONTRACTOR CONTRACTO
61 7	5 L130	The second section of the sect
Z	5 =-(,	man the state of t

roots equally spaced about a circle of rodius 2mm one real root of -1; after 4 un conjugate pairs verticise are Those of a regular pentagon.

Pentagon is the sum of 5 congruent to langles Fach vertex at centre until have an angle of stream

= \$51027 unds2

 $|x| \le |x| \le 4 \qquad |aqz| \le \frac{37}{7}$ $|x| \le |x| \le 4 \qquad e = \frac{37}{7} (aqz) \le \frac{37}{7}$ $|x| < |x| + |y| \le 16$

between lines y= z; x <0 and y=-z; x <0 ard y=-z; x <0

	8,
ر الله الله الله الله الله الله	T.
<u>.</u>	3
e e e e e este didizioni	22-23
	6 0
Z,	$\begin{array}{c} c \\ \overline{z_3} \end{array}$
Z ₁ -Z ₄	
	Zų
Band	1
A and	D lie on the Imaginary aras C lie on the Real axis (Z=Z_3) = arg (Z_1-Z_4)
⇒ cs	$(2z-2z) = ang_1(z_1-z_2)$
# 15 C	on a trapezium
	The second secon

PIX

y= log[160] (-4/4) or { \$ < 2 < 2 \ }

(d) 5	$x^5 - 3x^3 + m = 0$
` '	$1 \cdot 1(x) = 52.5 - 3x^3 + m$
	- ble condition an
	P(x)=25x4-9x2 For double real at
· · · · ·	= x2 (2522-9) We have:
	$= x^{\nu}(5x-3)(5x+3)$
	low when p'ec = 0
	$\chi = 0$ or $\chi = \frac{3}{5}$ or $\chi = -\frac{3}{5}$
	1/x > 0. Then consider x = 3
	hen/x=3
	when P&)=0
	5(3)5-3(3)3 + m=0.
	$\left(\frac{3}{5}\right)^3 \left(5x - \frac{4}{10} - 3\right) + m = 0$
	$\frac{27}{123}\left(\frac{45}{23}-3\right) + m = 0$
 	
·	$\frac{27}{125}\left(\begin{array}{c}30\\25\end{array}\right)+m=0$
· · · · · · · · · · · · · · · · · · ·	$m = \frac{27 \cdot 6}{125 \cdot 5}$
 	
· · · · · · · · · · · · · · · · · · ·	$m = \frac{162}{625}$

	•
(111)	Grachent of PS: m, = 4,-0
	X _I -ae
	$m_1 = \frac{q_1}{x_1 - ae}$
•	description of SR : mz = +2 (1-21)-0
	<u>a</u> _ ae
	u - 62/- 2-)
	$m_1 m_2 = \frac{y_1}{x} \frac{\frac{b^2}{y_1} \left(1 - \frac{x_1}{aa}\right)}{aa}$
	x_1 - ae $\frac{a}{a}$ - ae
	62 (ac-x,) e
	$(x_1-ae)(4-ae^2)ae$
	6
	å- å-
············	, 2
	$m_1 m_2 = a^2(1-e^2)$
	m, m, = - b Note for an empse backre
	. 6
	$m_1 m_2 = -1$
	How this is the condition for perpendicular
	lines
	W 663
	Henry PSR = 90°

₹., •

But
$$y = \frac{3-x^2}{1+x^2}$$

 $y + y = 3-x^2$
 $x^2(y+1) = 3-y$
 $x^2 = \frac{3-y}{y+1}$
 $y = 4 \int (\frac{3-y}{y+1}) dy$
 $y = 4 \int (-y+y+\ln(y+1)) dy$
 $y = 4 \int (4 \ln 4 - 3) \text{ cabic units}$

(b) (1) Humber	you of w	and of	moden	ng Shom 12
	er of year			
s from	1 tho ren	somma	7+4	rumber
	the ren			ro gonf
=(12.6	, y 7es) ÷ z	· · · · · ·	· · · · · · · · · · · · · · · · · · ·
	16	<u> </u>	<u></u>	
(11) Parp D	A JUL A	unt, Rol	est as	<u>ഒ. കന്നസ</u>
		,	· .	4
The apar	els = no o	1 ways o	d-Chan	5/Kd
The gran	ep = no e	a grace t	of ches	- 2 man
The gran	ep = no e	agrace to	a chea	c 2 mem
The grow	x from Ar	on The	r centro	r, 1,11114
The grow	Them Ar	som of	e okto Cemo Chaos	rog Pho
The grow	x from Ar	som of	e okto Cemo Chaos	rog Pho
The grow	Them Ar	on the	e okto Cemo Chaos	rog Pho
The grow	team Ar me of w d team of 3 × 962 × 7	on the	e okto Cemo Chaos	rog Pho
The gran	team Ar me of w d team of 3 × 962 × 7 8316	on the	e okto Cemo Chaos	rog Pho
The gran	team Ar me of w d team of 3 × 962 × 7 8316	on the	e okto Cemo Chaos	rog Pho
The grow	team Ar me of w d team of 3 × 962 × 7 8316	on the	e okto Cemo Chaos	rog Pho
The gran	team Ar me of w d team of 3 × 962 × 7 8316	on the	e okto Cemo Chaos	rog Pho
The grand was a find the grand	team Ar me of w d team of 3 × 962 × 7 8316	on the	cond chaos	rag Bhe
The grand was a find the grand	team Ar me of w d team of 3 × 962 × 7 8316	on the	chaos 8316	rag Bhe
The grand was a find the grand	team Ar me of w d team of 3 × 962 × 7 8316	on the	chaos 8316	rag Bhe

When z = -0 = 6-261+362-+(1) (0+1) 6-2n+1 n+,+ 144

[
	TY TY
	Nam x(1+x) ndx = [(+x)-1](+x)ndx
	19
	= ((+x)"+1 - ((+x)")1x
	(using ()) = 2mt3 get1
	<u>u+i+ </u> <u>u+ </u> <u>G</u>
·	And home-e()
	2(1+x) 2x
	= [(x+c, x2+ C, x3+ C, x +] dx
	- (c.x2, c.x3
	$= \frac{\left \begin{array}{ccccccccccccccccccccccccccccccccccc$
	- Co
	2 3 4 n+2
_	equesting @ and @ que.
- -	$\frac{1}{2} \frac{c_0 + \frac{1}{3} c_1 + \frac{1}{4} c_2 + \cdots + \frac{1}{4} c_n = \frac{2^{m+2}}{2^{m+2}}, \frac{2^{m+2}}{2^{m+2}}$
	2 3 4 2 M+2 M+2 M1
2.4	

- -		
(î1)	downwards	¥ 20
 	•,	
	mi = mg = mbv²	Ing Imby
	x= q = kν -	- Imky
	15 du	
	rdw = g - by	
	dv g-hv2	V = Vo
	dw v	
	$\frac{dx}{dv} = \frac{v}{g - kv^2}$	
	9-20	
	- (v ·)	
	$\int_{0}^{du} = \int_{0}^{v} \frac{v}{g - kv} dv$	
·	10 J-RV	
	p > #	
	$\left[x\right]_{0}^{H} = -\frac{1}{2h} \left[\ln (g - hv)\right]$	v)
1	10 2k L	<u></u>
	- Fr ()	à 5
	H = - 1 / lw (9 * la v))-twg
	7.10	
-	2kH = lnq - ln(g-	ev. V)
+	$2k\mu = \ln\left(\frac{1}{g-kV_0}\right)$	
	g-kV.	
1 .		

(M) T= 200V		 lue
Percod = 1-7000.		 (a)
g = 9.8 m/oco		
T co= 0 = mg		 a
$\frac{Cu \circ - mg}{T}$		
9.8×	<u>0-6</u>	
Coo 0 = 0.294		 The
1.7 = 2# /2:0	0·21F) 9·8	
1.(0:294) = (1-7	<u>7</u>)~	 (•
7-8 (27	9.8	
$\mathcal{L} = (2\pi) \times 0$	1:294	
- 1 = 2+11 ma	tres	
27,12		
	,	 -

(M) Tz 20N	Quections
Perced = 1-70=c. 9 = 9 8 m 100	a) For w = 14 muentigate 3"> n3 LHS = 34 - 81
121-CBO = 1-70=C	LH5=34-81
9 = 9.8 m/20	
	: statement 3 m > n3 w true for n=4
T cos 8 = ring	140
Cu 0 = mg	asource The statement is true for n=k. 1e 3k > k3
74	<u> </u>
<u> 9.8 × 0-4</u>	1e 3k-b3-0
	The arm is to show that the statements true for
Coo 0 = 0.294	N = k+1
1.7 = 27 (0.214)	$\frac{n-k+1}{(k+1)^3}$
7 = 2# V = 9.8	
1(0.294) = (1.7)2	(encider 3 KH - (KH) 3
2.5	= 3.3k = (k3+3k2+3k4)
7.0	
$\ell = (1.7) \times 9.8$	$=3.3^{\frac{1}{12}}k^{\frac{3}{2}}-3k^{\frac{3}{2}}$
(21) 0:294	= 3.3 k + 2 k 3 - 3 k 2 - 3 k - 1
d=2.4 metres	= 3(3k-k3)+k3-3k2+>k-1+k3-6k
	$=3(3^{k}-k^{3})+(k-1)^{3}+k^{3}-6k$
	= 3(3-k) +(k-1) +k(k-6)>0
	Since (a) 3k-k3> 0 by commission ' (b) (k-1)3> since k>3 and integral (c) k(k2b)> 0 since k>3 and integral Thus 3kH > (k+1)5.
	(b) (k-1) > since k >3 and indegral
	The 2kt (15.
	2. 7 kt/
~	

	34
	Theretotement so Thus true for me less up at a tour for n=10
	But it is true for n= k and Pour it is true of the mes and so an for all antegral in > 3
!	- DO MA hand
	take the both nont of both when
	$\frac{(3^n)^{\frac{3}{3}n}}{(n^3)^{\frac{3}{3}n}}$
	le 3 m > m sn
	$3^{\frac{1}{2}} > n^{\frac{1}{2}}$
	1e 3/3 > Wh.

<u> </u>	P.
-4	(b) (1) a, b, c, d are constante
	By The Cosine Rule:
	$(PR)^2 = a^2 + b^2 = 2 \cdot ab \cdot cos d$
	(PR) = a+d2-red cong
	Equating These results
	a2+b2-rab cord = c2+d2-red caB
	differentiating bathe ender un ret de
	= 200 (-sind) = -2cd (-sinje de)
	2 alo sind = 2 cd (sing) d. B
	of absend
	Ad cd sangs.
	(11) Lot H be The ann of The guaderlateral.
	dd = tabens + tod cop da
	(due)
	= 1 ab (cod + corpressed)
بلب	

44	·	1		X X
de = 2 als (simp cord + coops sind.)			Ö.	
de job santite) di sing.		+1100	<u>d#</u>	_/IN
The same of the sa			ds .	
Now a p and b y o		i Are a ma	Kimum of	~ d+B=11
10 d+p=0, d+p=11, d+p=11, etc.				
But sima 0<2<7	• • • • • • • • • • • • • • • • • • • •			
But sima 0<2<7 0 = 13 < 7 Then 0 < 418 < 27				
1 O < VIB < 27				
de o gives aiper				
sign change test: of old for oc (a+p) <27	3·			
First note Por and Series Sin Rivo	-		·	
First note Por exp = 1 sin B > 0			m marini arma a marini a rain a apartir gran yan a	
(d+g) <7 -d# >0				
for (atp.) > T SIN (atp) = 0 1. Por (ap) > T dt < 0				
1.Por(4p)>T dt <0				