

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

LEADER & ACHIEVER COURSE PHASE -

PHASE: MLA, MAZA, MAZB, MAZC, MAZD, MAZL, MAZN, MAZO, MAAX, MAAY, MAPA, MAPB, LAKSHYA

TARGET: PRE MEDICAL 2025

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 01-03-2025

ARSWEN RET																														
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	4	1	4	1	3	1	3	2	3	4	3	4	3	4	2	2	3	2	1	1	1	1	4	1	2	3	4	1	2	4
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	2	1	4	4	4	2	4	3	1	4	2	1	3	4	4	2	3	2	2	2	4	3	4	4	3	3	2	3	4	3
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	1	4	2	3	3	3	2	1	1	2	1	3	4	3	1	4	4	3	3	4	4	2	4	3	2	1	2	3	4	3
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	2	2	4	3	3	2	3	2	1	4	4	2	1	3	1	3	4	1	2	2	4	2	1	2	2	4	3	4	4	3
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	1	4	2	2	1	1	3	1	1	2	2	1	4	2	1	1	1	1	2	2	2	1	3	2	4	1	2	4	1	2

HINT - SHEET

162 163 164 165 166 167 168 169 170 171

1. Ans (4)

the order of energy of orbitals can be calculated from $(n+\ell)$ rule. The lower the value of $(n+\ell)$ for an orbital, lower is its energy. If two orbitals have same $(n+\ell)$ value, the orbital with lower value of n has the lower energy.

155 156 157 158 159 160 161

9. Ans (3)

NCERT Pg.# 45, 2019

$$\frac{\text{nh}}{2\pi} = \frac{2\text{h}}{\pi} \Rightarrow \text{n} = 4, \text{ KE} = +0.85 \text{ eV}$$

12. Ans (4)

$$\frac{r_1}{r_3} = \frac{0.529 \times \frac{n_1^2}{Z}}{0.529 \times \frac{n_3^2}{Z}}$$

$$\frac{y}{r_3} = \frac{1^2}{3^2} = \frac{1}{9} \Rightarrow r_3 = 9y$$

15. Ans (2)

$$N = N = N$$

18. Ans (2)

$$Na_{(aq)}^{+} \le Mg_{(aq)}^{+2} \le Al_{(aq)}^{+3}$$
(Hydrated size)

23. Ans (4)

Priority to the charge then

$$8e^{-} < 18 + 2e^{-} < 18e^{-}$$

26. Ans (3)

$$Mg, Mg^{2+}, Al, Al^{3+}$$

$$Mg > Mg^{2+}$$
, $Al > Al^{3+}$ Neutral > cation of same element (size)

$$Mg^{+2} > Al^{+3}$$
 smallest

ALLEN®

- **30.** Ans (4) NCERT (11th) page # 86 (part -I)
- **46. Ans (2)** NCERT XI Pg. No. # 98
- **47. Ans (3)** NCERT-XI, Pg. 94
- **48. Ans (2)** NCERT (XI) Pg # 96
- **49. Ans (2)** XI NCERT Pg # 96
- **50.** Ans (2) NCERT-XI, Pg. # 98
- **51. Ans (4)** NCERT (XI) Pg # 97
- **52. Ans (3)** NCERT-XI, Pg. # 99
- 53. Ans (4) NCERT (XI) Pg # 98
- **54. Ans (4)** XI NCERT Pg. No : 100
- 55. **Ans (3)**NCERT-XI, Pg. # 100, 101
- **56. Ans (3)** NCERT XI Pg. # 96
- 57. Ans (2) NCERT-XI, Pg. # 96
- 58. Ans (3) NCERT-XI, Pg. # 91, 98
- **59. Ans (4)** NCERT-XI, Pg. # 94
- **60.** Ans (3) NCERT (XI) Pg # 89
- 61. Ans (1) NCERT-XI, Pg. # 95, 97, 98
- **62. Ans (4)** NCERT-XI, Pg. # 95

- 63. Ans (2) NCERT-XI, Pg. # 88, 90, 100
- **64. Ans (3)** NCERT-XI, Pg. # 127
- 65. Ans (3) NCERT-XI, Pg. # 127, 128
- 66. Ans (3) NCERT-XI, Pg. # 127, 128
- **67. Ans (2)** NCERT-XI, Pg. # 125
- **68. Ans (1)** NCERT (XI) Pg # 126, 127
- **69. Ans (1)** NCERT-XI, Pg. # 122
- **70. Ans (2)** NCERT-XI, Pg. # 127
- 71. **Ans (1)**NCERT-XI, Pg. # 127
- **72. Ans (3)** NCERT-XI, Pg. # 123
- **73. Ans (4)** NCERT-XI, Pg. # 124
- **74. Ans (3)** NCERT (XI) Pg # 126
- **75. Ans (1)** NCERT-XI, Pg. # 120, 121, 122
- **76. Ans (4)** XI-NCERT Page No. # 126
- 77. Ans (4) XI-NCERT Page No. # 127, 128
- **78. Ans (3)** NCERT-XI, Pg. # 127
- **79. Ans (3)** XI NCERT Page No. # 106
- **80. Ans (4)** XI NCERT, Pg. # 106,108,109

- 81. Ans (4) NCERT XI Pg: 111-112
- 82. Ans (2) NCERT-XI, Pg. # 106
- 83. Ans (4) NCERT-XI, Pg. # 106
- 84. Ans (3) NCERT-XI, Pg. # 106
- 85. Ans (2) NCERT-XI, Pg. # 111, 112
- **86. Ans (1)** NCERT-XI, Pg. # 117
- 87. Ans (2) NCERT-XI, Pg. # 117
- 88. Ans (3) NCERT-XI, Pg. # 113-118
- **89. Ans (4)** NCERT-XI, Pg # 115
- **90.** Ans (3) NCERT-XI, Pg. # 112
- 91. Ans (2) NCERT, Pg # 206
- 92. Ans (2) NCERT Pg. # 200
- 93. Ans (4) NCERT Pg. # 187
- 94. Ans (3) NCERT Pg. # 195
- 95. Ans (3) NCERT Pg. # 198
- 96. Ans (2) NCERT Pg. # 183
- 97. Ans (3) NCERT Pg.# 206
- 98. Ans (2) NCERT, Pg. # 211

- **99. Ans (1)** NCERT, Pg. # 211
- 101. Ans (4) NCERT Pg. # 202
- 102. Ans (2) NCERT, Pg. # 197
- 103. Ans (1) NCERT, Pg. # 208
- **104. Ans (3)** NCERT Pg. 205, 206
- **105. Ans (1)** NCERT Pg. # 199
- **106. Ans (3)** NCERT Pg. # 282
- **107. Ans (4)** NCERT Pg # 189
- **108. Ans (1)** NCERT Pg. # 187
- **109. Ans (2)** NCERT Pg. # 199
- 110. Ans (2) NCERT Pg. # 194, 195
- 111. Ans (4) NCERT Pg. # 187-188
- 112. Ans (2) NCERT Pg. # 183
- 113. Ans (1) NCERT Pg.# 184
- 114. Ans (2) NCERT Pg # 190
- 115. Ans (2) NCERT Pg. # 199
- 116. Ans (4) NCERT Pg.# 212
- 117. Ans (3) NCERT, Pg. # 186

118. Ans (4)

NCERT Pg. # 190, 191

119. Ans (4)

NCERT, Pg. # 294, 295

120. Ans (3)

Module Page No. - 91

121. Ans (1)

NCERT, Pg. # 294, 295

122. Ans (4)

NCERT Pg. # 187

123. Ans (2)

NCERT Pg.# 206, 207

124. Ans (2)

NCERT Pg. # 201

125. Ans (1)

NCERT Pg. # 201, 202

126. Ans (1)

NCERT Pg.# 185

127. Ans (3)

NCERT, Pg. # 185

128. Ans (1)

NCERT Pg # 190

129. Ans (1)

NCERT, Pg # 207

130. Ans (2)

NCERT Pg. # 202

131. Ans (2)

NCERT, Pg. # 185

132. Ans (1)

NCERT, Pg. # 293

133. Ans (4)

NCERT Pg # 185

134. Ans (2)

NCERT Pg. # 197

135. Ans (1)

NCERT Pg. # 208

136. Ans (1)

- $C_1\left(\frac{1}{2},\,\frac{1}{2}\right)$
- $C_2\left(\frac{3}{2},\,\frac{1}{2}\right)$
- $C_3\left(\frac{1}{2}, \frac{3}{2}\right)$

$$x_{C} = \frac{1\left(\frac{1}{2}\right) + 1\left(\frac{3}{2}\right) + 1\left(\frac{1}{2}\right)}{3} = \frac{5}{6}m$$

$$y_{C} = \frac{1\left(\frac{1}{2}\right) + 1\left(\frac{1}{2}\right) + 1\left(\frac{3}{2}\right)}{3} = \frac{5}{6}m$$

137. Ans (1)

 $F_{ext} = 0$

 $\vec{P}_{\text{system}} = \text{constant}$

$$0 + 0 = \vec{P}_{bullet} + \vec{P}_{gun}$$

$$\vec{P}_{bullet} = -\vec{P}_{gun}$$

$$\Rightarrow$$
 : $P_{bullet} = P_{gun}$

$$m_b v_b = m_g v_g$$

 $v_b \propto 1/m_b$

138. Ans (1)

$$y_{cm} = \frac{m\left(\frac{2R}{\pi}\right) + m\left(-\frac{4R}{3\pi}\right)}{2m}$$
$$= \frac{R}{3\pi}$$

139. Ans (2)

by
$$\vec{p}_i = \vec{p}_f$$

$$0 = 70 (2-v) + 30 (-v)$$

$$0 = 14 - 7v - 3v$$

v = 1.4 m/s

140. Ans (2)

$$\begin{array}{ccc}
 & m & m & m \\
\hline
 & v_1 & m & m \\
\hline
 & v_1 & m & v_2 & m \\
\hline
 & v_1 & m & v_2 & m \\
\hline
 & v_2 & m & v_1 \\
\hline
 & v_2 & m & v_1
\end{array}$$

$$KE_f = 75 \% \text{ of } KE_i$$

$$KE_f = \frac{3}{4} (KE_i)$$

$$\frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2 = \frac{3}{4}\left(\frac{1}{2}mv^2\right)$$

$$(1+e)^2 + (1-e)^2 = 3$$

$$e = \frac{1}{\sqrt{2}}$$

141. Ans (2)

The speed of COM of the (trolley + child) system remains unchanged (equal to v_0) because no external force act on the system. The forces involved in running on the trolley are internal to this system.

142. Ans (1)

Velocity of block of mass m just before collision:

$$mgh = \frac{1}{2}mv^2$$

$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20 \text{ m/s}$$

By COLM:-

$$m(20) + 3m(0) = mv_1 + 3mv_2$$

$$v_1 + 3v_2 = 20 (1)$$

$$\frac{v_2 - v_1}{20 - 0} = 1$$

$$v_2 - v_1 = 20$$
 (2)

By (1) and (2)

$$v_1 = -10 \text{ m/s}, v_2 = 10 \text{ m/s}$$

During elastic collision, some part of kinetic energy of blocks will temporarily converted into elastic potential energy at the moment of contact when objects deform slightly.

143. Ans (3)

By COLM :-

$$(2)(v_0) + (1)(0) = 2v_1 + 1 v_2$$

$$2v_1 + v_2 = 2v_0$$
 __(1)

$$\frac{\mathbf{v}_2 - \mathbf{v}_1}{\mathbf{v}_0 - 0} = \frac{1}{2}$$

$$v_2 - v_1 = \frac{v_0}{2}$$

$$2v_2 - 2v_1 = v_0$$
 (2)

eq.
$$(1) + (2)$$

$$\therefore \mathbf{v}_2 = \mathbf{v}_0 \tag{3}$$

Tension just after collision:

$$T = \frac{mv_2^2}{\rho} + mg$$

$$40 = \frac{(1)v_2^2}{0.3} + (1)(10)$$

$$v_2 = 3 \text{ m/s}$$
 : $v_0 = 3 \text{ m/s}$

144. Ans (2)

By COLM :-

$$\vec{P}_i = \vec{P}_F$$

$$0 = \vec{P}_1 + \vec{P}_2 + \vec{P}_3$$

$$\vec{P}_3 = -\left(\vec{P}_1 + \vec{P}_2\right)$$

$$\therefore P_3 = \sqrt{P_1^2 + P_2^2 + 2P_1P_2\cos\theta}$$

$$(3m)v_3 = \sqrt{(mv)^2 + (mv)^2 + 2(mv)(mv)\cos 60^\circ}$$

$$(3m)v_3 = \sqrt{3} \ mv$$

$$v_3 = \frac{v}{\sqrt{3}}$$

145. Ans (4)

$$T = \frac{2\pi}{\omega} = same$$

146. Ans (1)

$$\theta = \theta_0 + \theta_1 t + \theta_2 t^2$$

$$\omega = \theta_1 + 2\theta_2 t$$

$$\alpha = \frac{d\omega}{dt} = 2\theta_2$$

$$\frac{(\omega_i)}{\alpha} = \frac{\theta_1}{2\theta_2} \Rightarrow \frac{\alpha}{\omega_i} = \frac{2\theta_2}{\theta_1}$$

147. Ans (2)

Tension at any point 'P' in V.C.M. is

$$\begin{split} T_P &= mg \ cos \ \theta + \frac{mV_P^{\ 2}}{R} \\ \begin{bmatrix} \theta_C &= 90^o \\ \theta_B &= 90^o \end{bmatrix} \end{split}$$

we can calculate velocity at any point by using mechanical, energy conservation.

$$B = mv$$

$$v = \frac{B}{m}$$

$$F = \frac{mv^2}{r} = \frac{mB^2}{m^2a} = \frac{B^2}{ma}$$

149. Ans (1)

NCERT Pg. # 64
$$\frac{mV^2}{R} = \mu_S mg$$

$$V = \sqrt{\mu_S Rg} = \sqrt{\frac{1}{10} \times 9 \times 10} = 3m/s$$

150. Ans (2)

$$N = \frac{mv^2}{R}$$
 \Rightarrow Parabolic relation

151. Ans (3)

$$\omega = \frac{(V_{rel})_{\perp}}{r} = \frac{V_A \sin \theta_1 + V_B \sin \theta_2}{r}$$

152. Ans (3)

For a Rigid Body $\rightarrow \omega = \text{constant}$

153. Ans (4)

 $I\omega = const$

 $I \downarrow \omega \uparrow T \downarrow \Rightarrow T$ will decrease

154. Ans (2)

 $\tau_0 = \text{mgU cos } \theta t$

155. Ans (2)

$$I_{AB} = I_{CM} + Md^{2} \qquad \frac{ML^{2}}{12} = I_{0}$$

$$= \frac{ML^{2}}{12} + M\left(\frac{L}{4}\right)^{2} \qquad ML^{2} = 12I_{0}$$

$$= \frac{ML^{2}}{12} + \frac{ML^{2}}{16} = \frac{7ML^{2}}{48} = \frac{7 \times 12I_{0}}{48} = \frac{7I_{0}}{48}$$

156. Ans (3)

$$I_{AB} = I_{CM} + Md^2$$
$$I_{AB} = 0 + Ma^2$$

157. Ans (3)

For system $I\omega = const.$

158. Ans (4)

As inclined plane is smooth so in absence of friction bodies will not rotate & they will only slide.

Also net force on each body $F_{net} = mg \sin \theta$

&
$$a = \frac{F_{net}}{m} = \frac{mg \sin \theta}{m} = g \sin \theta = same \text{ for all }$$

159. Ans (2)

$$P = \tau \ \omega = 10 \times 20 = 200 \ \mathrm{W}$$

160. Ans (2)

$$\frac{K_{Rot.}}{K_{total}} = \frac{\frac{1}{2}Mv^2\frac{2}{5}}{\frac{1}{2}Mv^2\left(1 + \frac{2}{5}\right)} = \frac{\frac{2}{5}}{\frac{7}{5}}$$
$$= \frac{2}{7}$$

161. Ans (4)

$$\begin{split} I &= \frac{m\ell^2}{3} + \frac{m\ell^2}{3} + \left[\frac{m\ell^2}{12} + m \left(\frac{\sqrt{3}\ell}{2} \right)^2 \right] \\ I &= \frac{2m\ell^2}{3} + \frac{m\ell^2}{12} + \frac{3m\ell^2}{4} \\ I &= \frac{(8+1+9)m\ell^2}{12} = \frac{18}{12}m\ell^2 = \frac{3}{2}m\ell^2 = 3mK^2 \\ K &= \frac{\ell}{\sqrt{2}} \end{split}$$

162. Ans (3)

W.D by static friction is zero.

163. Ans (1)

Gravitational force does not depend on medium.

164. Ans (4)

$$g = \frac{Gm}{R^2}$$

$$g' = \frac{G(m/2)}{(R/2)^2} = 2g$$
% increase in g
$$= \frac{g' - g}{g} \times 100$$

$$= 100\%$$

165. Ans (2)

$$g' = g\left(1 - \frac{d}{R}\right)$$
$$g' = \frac{g}{n}$$
$$d = \left(\frac{n-1}{n}\right)R$$

166. Ans (4)

Potential increases from centre to ∞ .

167. Ans (2)

Potential is a scalar quantity.

$$V = -\frac{Gm}{a} - \frac{Gm}{\sqrt{2}a} - \frac{Gm}{a}$$

$$V = -\frac{Gm}{a} \left(2 + \frac{1}{\sqrt{2}}\right)$$

$$E = -\left[\frac{\partial v}{\partial x}\hat{i} + \frac{\partial v}{\partial y}\hat{j}\right]$$

169. Ans (1)

Formula based

170. Ans (3)

$$\frac{T_2}{T_1} = \left(\frac{r_2}{r_1}\right)^{3/2} = \left(\frac{4R}{R}\right)^{3/2} = 8$$

$$\Rightarrow T_2 = 8T_1 = 8\sqrt{2} \text{ hr.}$$

171. Ans (2)

$$\frac{W}{m_0} = \vec{l} \cdot \vec{dr}$$

$$\vec{dr} = 5\hat{i} + 4\hat{j}$$

$$\frac{W}{2} = 10(\hat{i} + \hat{j}) \cdot (5\hat{i} + 4\hat{j})$$

$$W = 2(50 + 40) J$$

172. Ans (3)

As volume immersed is independent of g. So, it remains same

$$g_{eff} = (g + g/4) = \frac{5}{4}g$$

$$F_B = \rho V_{in}g_{eff.} = \frac{5}{4}\rho V_{in}g$$

$$F_B = result in green by 250$$

F_B will increase by 25%

173. Ans (4)

Stress - Strain Curve.

174. Ans (4)

Remaining total height

$$= \frac{3H}{4} = \frac{3 \times 24}{4} = 18m$$

$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 6} = \sqrt{120} = 2\sqrt{30} \text{ m/s}$$

175. Ans (3)

Slope of 'Shear Stress' - 'Shear Strain'.

Curve is
$$\frac{1}{\text{modulus of Rigidity}}$$

because (slope)_A > (slope)_B

$$\eta_A < \eta_B$$

$$\frac{\Delta V}{V} = \frac{P}{B}$$

$$\frac{3\Delta r}{r} = \frac{P}{B}$$

$$\frac{\Delta r}{r} = \frac{P}{3B}$$

177. Ans (4)

$$P_{B} - P_{A} = \frac{4T}{3R}$$

$$P_{C} - P_{B} = \frac{4T}{R}$$

$$P_{C} - P_{A} = \frac{4T}{3R} + \frac{4T}{R} = \frac{16T}{3R}$$

178. Ans (1)

$$W = 4\pi R^{2}T(n^{\frac{1}{3}} - 1)$$

= E(10 - 1) = 9E

179. Ans (3)

$$AV = const.$$

Here, $A_2 < A_1 < A_3$
So, $V_2 > V_1 > V_3$

180. Ans (4)

$$\rho_1 g h_1 = \rho_2 g h_2$$

$$\rho_1 h_1 = \rho_2 h_2$$

$$10^3 \times 20 \times 10^{-2} = \rho_2 \times 10 \times 10^{-2}$$

$$\rho_2 = 2 \times 10^3 \text{ kg/m}^3$$