1 Reducible/Irreducible polynomial

1.1 Reducible

f(x) can be written as a product of two polynomials in $\mathbb{F}[x]$ both of postive degree.

1.2 Irreducible

otherwise

1.3 Example in $\mathbb{R}[x]$

 $x^2 - a$ is reducible. but $x^2 + 1$ is irreducible but reducible over $\mathbb{C}[x]$.

2 Conjugate Roots Theorem

Let $f(x)\in\mathbb{C}[x]$ have all coefficients real. If $c\in\mathbb{C}$ is a root of f(x) then so is \bar{c} (complex conjugate.

3 Example

LEt $f(x) = x^4 + 3x^2 + 5x + 4$ in $\mathbb{Z}_{\triangleright}$ Write table to find all roots.

x	0	1	2	3	4	5	6
f(x)	4	6	0	1	6	1	3

so x=2 is the only root of f(x). Thus (x-2) is a factor.

Apply DAP over \mathbb{Z}_{\bowtie} divide f(x) by (x-2)

Answer $h(x) = x^3 + 2x^2 + 5$

Key Point If α is a root of h(x) then by FT and TD α is a root of f(x).

2 is a root fo h(x) so h(2)=0

divide by (x-2) to get $k(x) = x^{2} + 4x + 1$

Check root of k(x) to be root of f(x). $k(2) = 2 \neq 0$

Thus k(x) has no roots over $\mathbb{Z}_{\triangleright}$

hence k(x) is irreducible over $\mathbb{Z}_{\triangleright}$ Conclusion $f(x) = (x-2)^2(x^2+4x+1)$.

4 Proof of CPN

Restate CPN: Let $f(x) \in \mathbb{C}[x]$ of degree n. Then $\exists n$ complex roots not necessarily distinct.