Bewijzen en Redeneren voor Informatici

2019 - 2020

Contents

1	Verzamelingen	1
	1.1 Operaties op verzamelingen	2
	1.2 De Morgan	2
	1.3 Machtsverzamelingen	2
2	Precieze uitspraken	2
3	Opbouw van theorieën	4
4	Bewijzen	4
5	Oefeningen	5

1 Verzamelingen

Aantal veschillende elementen behandeld als 1 ding: $K = \{a,b,...\}$ Geschreven als opsomming : $\{a,b,c\}$, of omschrijving : $\{x\mid x \text{ is een klinker }\}$ met x een variabele.

- \emptyset : $leeg, \{a\}$: $singleton, \{a,b\}$: $paar, \mathbb{N}$: one indigever zame ling
- Intervallen:

$$\left\{ \begin{array}{l} \mathbf{x} \in \mathbb{R} \;\middle|\; 0 < x < 1 \right\} =]0,1[: \text{ open} \\ \left\{ \begin{array}{l} \mathbf{x} \in \mathbb{R} \;\middle|\; a \leq x \leq b \right\} = [a,b]: \text{ gesloten} \\ \left\{ \begin{array}{l} \mathbf{x} \in \mathbb{R} \;\middle|\; x \leq a \right\} =] - \infty, a]: \text{ oneindig} \end{array} \right.$$

• Deelverzamelingen:

 $\mathcal{A}\subseteq\mathcal{B}:\mathcal{A}$ is een deelverzameling van $\mathcal{B}\Rightarrow "\forall x\in A$ geldt: $x\in B"$ $\mathcal{A}\subset\mathcal{B}:\mathcal{A}$ is een strikte deelverzameling van $\mathcal{B}\Rightarrow\mathcal{A}\neq\mathcal{B}$

1.1 Operaties op verzamelingen

- doorsnede: $A \cap B = \{ x \mid x \in A \text{ en } x \in B \}$
- unie: $A \cup B = \{ x \mid x \in A \text{ of } x \in B \}$
- verschil: $A \setminus B = \{ x \mid x \in A \text{ en } x \notin B \}$
- complement: $A^{C} = \{ x \mid x \notin A \} = U \setminus A \ (U = universum) \}$
- symmetrisch verschil: A \triangle B = (A \ B) \cup (B \ A)

A en B zijn disjunct: $A \cap B = \emptyset$ $A \setminus B = A \setminus (A \cap B) = A \cap B^{C}$

associatief: volgorde operaties maakt niet uit

commutatief: volgorde verzamelingen maakt niet uit: $A \cup B = B \cup A$

distributief: operatie te verdelen binnen haakjes: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $\Rightarrow A \cap B \cap A^{C} = B \cap (A \cap A^{C}) = B \cap \emptyset = \emptyset$ $\bigcup_{i=1}^{n} A_{i} = \text{unies } A_{1} \text{ tot } A_{n} \text{ (zelfde met } \bigcap)$

1.2 De Morgan

- $(A \cup B)^C = A^C \cap B^C$
- $(A \cap B)^C = A^C \cup B^C$
- $A \cup A = A = A \cap A$
- $A \setminus A = \emptyset$

1.3 Machtsverzamelingen

De machtsverzameling van A: P(A), is de verzameling van alle deelverzamelingen van A.

 $A = \{1,2\} \Rightarrow P(A) = \{\{1\},\{2\},\{1,2\},\emptyset\}$ aantal elementen van A = |A| = #A = 2, #P(A) = 4

2 Precieze uitspraken

Doel: dubbelzinnigheden vermijden \Rightarrow wiskundige notatie gebruiken

- Conjunctie: $P \wedge Q$: en
- Disjunctie: $P \vee Q$: of (inclusief)
- Negatie: $\neg P$: niet
- Implicatie: $P \Rightarrow Q$: P dan Q

 \bullet Equivalentie: $P \iff Q$: P as
a Q

Prioriteit: "¬" > " \ " > " \ " > " \ " > " \ , of haakjes zetten Logische equivalentie: \equiv : heel de waarheidstabel: alle lijnen moeten hetzelfde zijn

- Tautologie: altijd waar: vb $P \vee \neg P$
- Contradictie: altijd onwaar: vb $P \wedge \neg P$
- $\neg(\forall x \in A : P(x)) = \exists x \in A : \neg P(x)$
- $\neg(\exists x \in A : P(x)) = \forall x \in A : \neg P(x)$

predikaat P, P(x) is bewering

Stel: S is een verzameling, B(x) beweert $x \in S$, P(x) is will ekeurige bewering voor x:

$$\forall x \in S : P(x) \longrightarrow \forall x : B(x) \Rightarrow P(x)$$

$$\exists x \in S : P(x) \longrightarrow \exists x : B(x) \land P(x)$$

$$P \Rightarrow Q \equiv \neg P \vee Q$$

logisch	verzameling
V	U
\wedge	\cap
_	C

Hieruit volgt dat de logische ook commutatief en associatief zijn en de regels van De Morgan volgen, want:

- $\bullet \ A \cup B = \{x | x \in A \lor x \in B\}$
- $A \cap B = \{x | x \in A \land x \in B\}$
- $A^{\mathcal{C}} = \{x | \neg (x \in A)\}$

dus De Morgan:

- $\neg (P \lor Q) \equiv \neg P \land \neg Q$
- $\neg (P \land Q) \equiv \neg P \lor \neg Q$

3 Opbouw van theorieën

Opgebouwt met:

- definities
- notatie-afspraken
- eigenschappen
- axiomas: definiërende eigenschappen
- stellingen: niet bewezen
- bewijzen
- lemmas = hulpstellingen

4 Bewijzen

Context/nut:

- correctheid van algoritmen
- eindigheid van algoritmen
- efficiënte oplosbaarheid/complexiteit van problemen

Soorten

- \bullet per Vaststelling: $(P\Rightarrow Q)\equiv (\neg P\vee Q)$: waarheidstabellen uitschrijven: zijn gelijk
- \bullet per Constructie (speciale soort Vaststelling) : $\exists x: P(x):$ vind een x waarvoor het klopt
- per Tekening (speciale soort Vaststelling) : teken beide zijden van equivalentie

Bewijsstappen (1 stap):

- substitutie:
 - voor een universeel gekwantificeerde variabele ("voor alle verzamelingen X") 1 waarde invullen: \forall → \exists
 - een uitdrukking vervangen door een equivalente uitdrukking
- gebruik de definities: vervormen naar iets dat al bewezen is/onmogelijk is
- modus ponens: als P waar is en P impliceert Q waar, dan is Q waar

Bewijsstrategieën:

- \bullet ketens van gelijkheden/
ongelijkheden/equivalenties/implicaties: op basis van transitiviteit
- wederzijdse implicaties : $P\Rightarrow Q\land Q\Rightarrow P\to P\iff Q$ variant: wederzijdse inclusie: A=B via $A\subseteq B\land B\subseteq A$
- herhaalde gevolgstrekking: meerdere modus ponens
- gevalsonderscheiding: verschillende mogelijkheden apart beschouwen
- $\bullet\,$ in het ongerijmde: als niet waar dan is iets wat niet waar is waar \Rightarrow waar
- door inductie

5 Oefeningen

Google Spreadsheet