OpenMP (Individual Project)

Due Date: 11/29/2017

- 1. Write a C++ OpenMP program to compute the standard deviation of a file of integer numbers. See attached source code.
- 2. Execute your "OpenMP" and the "Sequential" standard deviation programs on different input datasets to evaluate the execution time. Use the table formats below to record your results.
 - Table-1: For each input dataset, execute your programs (e.g. MPI and Sequential) using five different datasets. The input datasets will be provided. The number of processors will remain constant.

Table-1

Input Dataset Size (I)	Execution Time (OpenMP)(ms)	Execution Time (Sequential)(ms)	Avg. Relative Speedup
100	1	1	1
1000	2	2	1
10,000	3	6	2
200,000			

• Table-2: Execute your OpenMP program on a given input dataset different using N processors (N = 2, 4, 6). The input dataset will be provided.

Table-2

Number of Processors	Execution Time (OpenMP)
2	3
4	3
6	3

• Relative Speedup(I,P) = $\frac{\text{time to solve I using progrm Q and 1 processor}}{\text{time to solve I using program Q and P processors}}$