Master-Theorem

Master-Theorem I

$$\begin{array}{ll} \operatorname{F\"{u}r} t(n) = \operatorname{a} \cdot t(\frac{n}{b}) + g(n) &= \sum_{i=0}^{\log_b(n)} \operatorname{a}^i \cdot g(\frac{n}{b^i}) \\ \operatorname{Mit} a > 0, \ b > 1 \ \operatorname{und} \ g \in \Theta(n^c) : \\ \operatorname{Fall} 1 & \operatorname{a} < \operatorname{b}^c & t(n) \in \Theta(n^c) \\ \operatorname{Fall} 2 & \operatorname{a} = \operatorname{b}^c & t(n) \in \Theta(n^c \log(n)) \\ \end{array}$$

$$\operatorname{Fall} 3 & \operatorname{a} > \operatorname{b}^c & t(n) \in \Theta(n^{\frac{\log a}{\log b}}) \ \operatorname{bemerke} : \frac{\log a}{\log b} > c \end{array}$$

Master-Theorem II

$$\begin{array}{ll} T(n) \leqslant \sum_{i=1}^r T(\alpha_i n) + \mathcal{O}(n) & \text{ für } \sum_{i=1}^r \alpha_i < 1 \\ \Rightarrow T(n) \in \mathcal{O}(n) \end{array}$$

Ultimate-Heapsort (Median in Linearzeit)

- Median aus 5 Elementen ($\frac{n}{\epsilon}$ viele Blöcke mit je 6 Vergleichen)
- Median der Mediane (rekursiv $\Rightarrow T(\frac{n}{5})$)

-() 6 -(7) -(7

 $T(n) = \frac{6}{5}n + T(\frac{n}{5}) + n + T(\frac{7}{10}n)$

n: Quicksort-Schritte

 $\frac{3}{10}$ können durch Median ausgeschlossen werden

bemerke : $\frac{1}{5} + \frac{7}{10} < 1 \implies \text{Master-Theorem II} \implies \mathcal{O}(n)$

Euklidischer Algo

größter gemeinsamer Teiler ggT(m, n) $ggT(n \mod m, m) = ggT(m, m)$

einfacher Euklid

Sobald Rest = 0 ist der Divisor der ggT (hier 3). Laufzeit max. $\frac{3}{2} \log_2 m$ Schritte

Daulzeit max. 2 log2 m beintite

Erweiterter Euklidischer Algo

Lemma von Bézout : ggT(m, n) = am + bn (ggT immer als Linearkombination darstellbar)

Einfachen Euklid ausführen. Danach Spalten x, y von unten füllen. Initial (x = 0, y = 1). Danach :

$$x_i = y_{i+1}$$
 und $y_i = x_{i+1} - (q_i \cdot y_{i+1})$

Wenn Multiplikative Inverse benötigt zB : $5 \cdot x \equiv 1 \mod 13$ $\Leftrightarrow 5x \mod 13 = 1 \implies 13a + 5b = 1$ mit erw. Euklid lösen

Restklassenring $\mathbb{Z}/n\mathbb{Z}$

beschreibt "Menge von Mengen". Einheitsgruppe $(\mathbb{Z}/n\mathbb{Z})^* = \{k + n\mathbb{Z} \mid ggT(k, n) = 1\}$

Wichtigste Eigenschaften

 $(k + n\mathbb{Z}) + (l + n\mathbb{Z}) = k + l + n\mathbb{Z} \text{ (Addition)}$ $(k + n\mathbb{Z}) \cdot (l + n\mathbb{Z}) = k \cdot l + n\mathbb{Z} \text{ (Multiplikation)}$ $\mathbb{Z}/n\mathbb{Z} \text{ ist K\"{o}rper} \Longleftrightarrow n \text{ ist prim}$

Chinesischer Restsatz

Für Teilerfremde Zahlen $m,\,n$:

Abbildung $\varphi: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ $x + mn\mathbb{Z} \mapsto (x + m\mathbb{Z}, x + n\mathbb{Z})$

ist Isomorphismus von Ringen.

 $Folgerung: unendlich\ viele\ Primzahlen$

Kleiner Satz von Fermat

(Verallgemeinerung von Satz von Euler:

 $\forall a, n \in \mathbb{N} : ggt(a, n) = 1 \implies a^{\varphi(n)} \equiv 1 \mod n$

Für Primzahl p und $\forall a \in \mathbb{Z}$: $a^p \equiv a \mod p$

Falls $p \nmid a$ (a kein Vielfaches von p): $a^{p-1} \equiv 1 \mod p$

Primzahltest (von n) nach Fermat

Wähle a $in\{1,...,n-1\}$ zufällig.

Falls $a^{n-1} \mod n \not\equiv 1 \mod n \implies$ n KEINE Primzahl

Modulo-Tricks

- Satz von Euler (für Exponenten) & Chin. Restsatz (für Modul)
- Satz von Fermat, wenn $\mod p \to a^{p-1}$ auskl.
- mod 3 ist Quersumme mod 3 (mod in Summe $\sum a_i \cdot 10^i$ ziehen)
- binäre Exponentiation
- $x^d \mod n \Leftrightarrow x^d \mod (p-1) \mod p \wedge x^d \mod (q-1) \mod q$ mit p,q prim, n=pq "-1"-Trick

RSA

Primzahlen p und q, p < q. Damit $n = p \cdot q$, $\varphi(n) = (p-1)(q-1)$ Wähle e > 0 mit ggT $(e, \varphi(n)) = 1$ (Euklidischer Algo) Berechne $d: e \cdot d \equiv 1 \mod \varphi(n)$ d < n

 $\Leftrightarrow e \cdot d \mod \varphi(n) = 1 \text{ bzw. } d = e^{-1} \mod \varphi(n)$

 $E(x, (n, e)) = x^e \mod n$ $(n, e) \in K_{\text{pub}}$ $D(y, (n, d)) = y^d \mod n$ $(n, d) \in K_{\text{priv}}$

Eulers φ -Funktion

$$\begin{split} \varphi(n) &= |\{k < n : \ \operatorname{ggT}(k,n) = 1\}| \\ \text{Anzahl ganzer teilerfremde Zahlen unter n.} \\ \text{Für prim} : \varphi(p) &= (p-1) \ \operatorname{und} \ \varphi(p^e) = p^{e-1}(p-1) = p^e - p^{e-1} \end{split}$$

Primzahldichte

 $\pi(n)$ Anzahl Primzahlen bis ink. n $\pi(n) \geqslant \frac{n}{\log_2 n}$ $\frac{n}{\log_2 n} \leqslant \pi(n) \leqslant \frac{(2+\epsilon)n}{\log_2 n}$

Bertrand'sches Postulat $\forall n \ge 1$: $\exists p \text{ prim}: n$

Ungerichtete Graphen G = (V, E)

V, E: Mengen von Knoten, Kanten. $E \subseteq \binom{V}{2}$

bipartit: Knotenmenge V kann in zwei aufgeteilt werden, so dass keine Kante zwei Knoten der gleichen Menge verbindet. Bsp: $K_{3,3}$ **d(u)**: Grad (degrees)

Summe aller Knotengrade ist gerade (ungerichteter Graph).

Anzahl Knoten mit ungeradem Grad ist gerade!

(Perfect) Matching : So Kanten wählen, dass jeder Knoten mit max. einem anderen Knoten verbunden ist.

Perfect, wenn alle Knoten beteiligt.

Unabhängige Menge: Knoten, die nicht verbunden sind.

Clique

Graph $G, V' \subseteq V$ ist Clique, falls $\forall u, v \in V' : u \neq v \implies (u, v) \in E$

Satz von Ramsey

 $\forall n: \exists N: \text{Jeder Graph mit } N \text{ Knoten hat entweder}$ (eine Clique oder unabhängige Menge) der Größe n Ramsey-Zahl R(n) für kleinsten Graph N

Planar

Isomorpher G. auf Ebene ohne kreuzende Kanten existiert. G ist planar \Leftrightarrow Untergraph von G enthält keine Unterteilung von K_5 oder $K_{3,3}$ ~Satz von Kuratowski

Eulerformel

n-m+f=2n Knoten, m
 Kanten, f Facetten (+1 Außen). für endliche, zusammenhängende, planare Graphen. $n\geqslant 1$
 Mind. 3 Kanten pro Facette, jede Kante max. 2 Facetten : $3f\leqslant 2m$
 $4f\leqslant 2m$ bei bipartiten Graphen

Wege und Kreise

Länge von Weg: Kanten!

Euler'scher Weg: Jede Kante einmal in Pfad (max. 2 Knoten mit ungeradem Grad)

Euler'scher Kreis: Anfangsknoten = Endknoten (jeder Knoten gerader Grad)

Hamilton'scher Weg: Jeder Knoten einmal

Sortieralgos

Da entscheidungsbasiert : mind. Laufzeit von $\log(n!) \in \Omega(n \log n)$. Algo durchquert Baum mit n! Blättern.

Dykstra

Setzte Kosten aller Knoten auf ∞. außer Startknoten (hier 0). Füge alle Knoten in eine Queue.

Wähle Konten mit kleinstem Wert.

-> Setzte Kosten aller ausgehend verbundenen Knoten auf : Eigene Kosten + Kosten des Pfades (Wenn niedriger, als die aktuellen)

WIEDERHOLE, bis Queue leer ist.

Beweisbar optimal, Greedy

Bekannte Laufzeiten

Algo	Worst-Case	Average-Case
Quicksort	$\mathcal{O}(n^2)$	$2n\ln n < 1.4n\log n$
Heapsort	$2n\log n + \mathcal{O}(n)$	$2n\log n + \mathcal{O}(n)$
Bottom-up Heapsort	$1.5n\log n + o(n\log n)$	$n\log n + o(n\log n)$

CYK-Algo

Länge	w1	w2	
1	T1,1	T2,1	 $T_{i,j} = \{ A \in V A \Rightarrow_G^* a_i a_{i+j-1} \}$
2	T2,1	T2,2	$T_{i,j} = \{T \in V \mid T \rightarrow_G u_i u_{i+j-1}\}$

Algo optimale Klammerung

Ähnlich zu CYK. $T_{i,j} = \min_{i \leq m < j} (T_{i,m} + T_{m+1,j} + n_{i-1} \cdot n_m \cdot n_j)$ Benutzte Technik: Memoization (dyn. Programmieren)

Wachstum

Landau-Symbole

```
f \in \mathcal{O}(q): < f wächst langsamer als g
                    f wächst nicht (wesentlich) schneller als ...
f \in \mathcal{O}:
f \in \Theta:
                    f wächst genauso schnell wie ..
f \in \Omega:
                > f wächst nicht (wesentlich) langsamer als ...
f \in \omega:
                    f wächst schneller als ..
```

Beweis $f(n) \in \mathcal{O}(b(n))$: $\exists c \exists n_0 \ \forall (n \ge n_0)$: $f(n) \le c \cdot b(n)$

Bekannte Relationen

$$\begin{aligned} \log(n!) &\in \Omega(n \log n) \qquad \text{(Worst-Case vergleichsbasiertes Sortieren)} \\ \Theta(1) &< \Theta(\log \log n) < \Theta((\log \log n)^2) < \Theta(\log n) < \Theta(\sqrt{n}) < \Theta(n) < \Theta(n \cdot \log n) < \Theta(n^2) < \Theta(2^n) < \Theta(n!) < \Theta(n^n) < \Theta(2^{n^2}) \end{aligned}$$

von
$$n!$$
 (für $n \geqslant 2$)

 $n! \approx \sqrt{2\pi n} \cdot (\frac{n}{a})^n$ (Stirling-Formel)

von Binomialkoeffizient $\binom{n}{k}$

Maximal bei
$$\binom{2n}{n}$$
 bzw. $\binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{n}{\lfloor \frac{n}{2} \rfloor}$ $\sum_{k} \binom{n}{k} = 2^n$ da alle Möglichkeiten. $\binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{n}{\lfloor \frac{n}{2} \rfloor} > \frac{2^n}{n}$ für $n \geq 3$ Durchschnittswert $\binom{n}{n}$ ist $\frac{2^n}{n}$

kgV(n) - Kleinstes gemeinsames Vielfaches

$$kgV(n) = kgV(2, ..., n)$$

kgV(5,8) = 40, da Primfaktorzerlegung 5 = 5, $8 = 2 \cdot 2 \cdot 2$. Alle P-faktoren in ihrer höchsten Anzahl zusammenfassen und

aufmultiplizieren.
$$2^{n-1} < \text{kgV}(n) \le n!$$
 $2^n < \text{kgV}(n) \le 4^{n-1}$ für $n \ge 7$

$m \cdot \binom{n}{m}$ teilt kgV(n)

Kombinatorik / Stochastik

Zufallsvariable $X : \Omega \rightarrow \mathbb{R}$

X, Y sind unabhängig, wenn :

 $\mathbb{P}(X = x \land Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$

Erwartungswert $\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)$

Varianz $\mathbb{V}(x) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

Bedingte Wahrscheinlichkeit

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}$$
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Satz von Bayes

Markov-Ungleichung

 $\forall \lambda > 0 : \mathbb{P}(X \geqslant \lambda \cdot \mathbb{E}(X)) \leqslant \frac{1}{\lambda}$ für $\mathbb{E}(X) > 0$, X ist ZV.

Anzahl Ergebnisse

Ziehe k aus n Optionen : Zurücklegen Ja $\frac{n!}{(n-k)!} = \binom{n}{k} \cdot k! = n^{\underline{k}}$ n^k Reihenfolge (n+k-1)Nein

Binomialverteilung

$$\mathbb{P}(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$

$$\mathbb{E}(X) = n \cdot p, \ \mathbb{V}(X) = n \cdot p \cdot (1 - p)$$

Geometrische Verteilung (Wartezeitprobleme)

$$\mathbb{P}(X=k)=p\cdot (1-p)^k$$
 (erfolg im $k\text{-ten}$ Versuch) $\mathbb{E}(X)=\frac{1-p}{p},\,\mathbb{V}(X)=\frac{1-p}{p^2}$

Nice to knows

Isomorphismus

ist ein bijektiver Homomorphismus:

strukturerhaltende Abbildung:

 $\varphi: (M_1, \circ_1, e_1) \mapsto (M_2, \circ_2, e_2) \text{ mit } \varphi(m \circ_1 m') = \varphi(m) \circ_2 \varphi(m')$

Injektiv / Surjektiv

Für $X \mapsto Y$:

Injektiv (linkseindeutig): jedes y hat höchstens ein x. Surjektiv (rechtstotal): jedes y hat mind. ein x. (Jedes Element in Bildmenge wird getroffen)

Primzahlzertifikat für n

 \forall Primzahlen $p: n \equiv 1 \mod p: \exists a \in \mathbb{Z}:$ $a^{n-1} \equiv 1 \mod n \text{ und } a^{\frac{n-1}{p}} \not\equiv 1 \mod n$ erste Primzahlen:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, ...

 $\sum_{k=1}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$ geom. Teil-Reihe $\sum_{k=1}^{\infty} q^k = \frac{1}{1-q}$ für |q| < 1 geom. Reihe $\sum_{k=1}^{\infty} kq^{k-1} = \frac{1}{(1-q)^2}$ für |q| < 1 geom. Reihe abgeleitet $\begin{array}{l} \sum_{k=1}^n k = \frac{n(n+1)}{2} & \text{gaußsche Summenformel} \\ \text{Harmonische Zahl } H_n = \sum_{i=1}^n \frac{1}{i} \approx \ln(n) & \ln n \leqslant H_n \leqslant \ln n + 1 \end{array}$

Logarithmus-Regeln

$$\log(x \cdot y) = \log x + \log y \qquad \log_a x = \frac{\log_b x}{\log_b a} \qquad a^{\log(b)} = b^{\log(a)}$$

Binomialkoeffizienten

Wie viele k-elementige Teilmengen existieren von [n]?

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

$$\binom{n}{0} = \binom{n}{n} = 1$$
 und $\binom{n}{1} = \binom{n}{n-1} = n$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \text{(symetrisch)}$$

Satz von Wilson

 $(n-1)! \equiv -1 \mod n \Leftrightarrow n \text{ ist Primzahl}$

Fibonacci-Zahlen

$$F_0 = 0, \ F_1 = 1, \ F_{n+2} = F_{n+1} + F_n$$

 $F_n \leqslant 2^n \leqslant F_{2n} \text{ oder } (\sqrt{2})^n \leqslant F_n \leqslant 2^n$
 $\operatorname{ggT}(F_m, F_n) = F_{\operatorname{ggT}(m,n)}$

Partitionszahlen

n Elemente \rightarrow k nichtleere Teilmengen aufteilen. Reihenfolge egal. P(n,k) = P(n-1,k-1) + P(n-k,k) $P_{7,3} = 4$, da 7 = 1 + 1 + 5 = 1 + 2 + 4 = 1 + 3 + 3 = 2 + 2 + 3

Catalanzahlen

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{1}{2n+1} {2n+1 \choose n} \mid C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14$$
 $C_n \sim \frac{4^n}{n \cdot \sqrt{\pi n}}$ (durch String)
 $C_n = \frac{4^n}{n \cdot \sqrt{\pi n}}$ (durch String)

 C_n gibt Anzahl saturierter Binärbäume mit n inneren Knoten an (n+1 Blätter)

Dyck-Wörter (Klammerwörter)

a:"(" b:")"

 D_n Menge an Dyck-Wörtern mit Länge 2n (also n Klammern) $w \in D_n \text{ wenn } |w|_a = |w|_b \wedge (\forall w_{\text{prefix}} \text{ aus } w: |w_{\text{pref}}|_a \geqslant |w_{\text{pref}}|_b)$ $|D_n| = C_n$ für $n \ge 1$

Induktion

IA. IV & IS.

Für starke Induktion : IV für m = 1, 2, ..., n

Algebraische Strukturen

Magma : binäre Verknüpfung $\circ: S \times S \mapsto S$

Halbgruppe : \circ assoziativ : $(x \circ y) \circ z = x \circ (y \circ z)$

Monoid: (S, \circ) : \exists neutrales Element e: $\forall x \in S : x \circ e = x = e \circ x$

Gruppe: Jedes Element hat Inverses: $x \circ x^{-1} = e = x^{-1} \circ x$ Alle können **kommutativ** sein $(x \circ y = y \circ x)$ (gilt nicht für Minus)

Äquivalenzklasse: $[x]_{\sim} = \{y \in M | x \sim y\}$ bezogen auf Monoid (M, \circ) mit Äquivalenzrelation \sim

Quotientenmenge: $M/\sim=\{[x]_{\sim}\mid x\in M\}$

Kongruenzrelation falls : $x \sim x' \land y \sim y' \Rightarrow x \circ y \sim x' \circ y'$ Ring : $(R, +, \cdot)$ abelsche (kommutative) Gruppe unter Addition ;

Halbgruppe unter Multiplikation