Universitatea Tehnică a Moldovei

Programul de master

 $\it Stiința\ Datelor$

Modele matematice și optimizări Raport Laborator 2

Elaborat:

masterandul gr. ŞD-241M Sîrbu Valentina

Problema 1: Transportul produselor între depozite și puncte de distribuție

Date concrete

- Numărul de depozite (m): 5
- Numărul de puncte de distribuție (n): 6
- Costurile de transport (c_{ij}) în unități monetare:

Matricea costurilor:

$$c = \begin{bmatrix} 2 & 3 & 1 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \\ 3 & 5 & 2 & 6 & 4 & 1 \\ 5 & 6 & 4 & 3 & 2 & 1 \\ 1 & 2 & 3 & 5 & 4 & 6 \end{bmatrix}$$

• Capacitatea depozitelor (s):

$$s = \left[50, 60, 40, 70, 80\right]$$

• Cererea punctelor de distribuție (d):

$$d = [40, 50, 60, 70, 50, 30]$$

Cost minim total

Costul minim total al transportului este:

Cost minim total = 490.0

Matricea soluției (cantitățile transportate)

Matricea soluției, care arată cantitățile transportate de la fiecare depozit (i) la fiecare punct de distribuție (j), este următoarea:

$$X = \begin{bmatrix} 0 & 0 & 50 & 0 & 0 & 0 \\ 0 & 10 & 0 & 50 & 0 & 0 \\ 0 & 0 & 10 & 0 & 0 & 30 \\ 0 & 0 & 0 & 20 & 50 & 0 \\ 40 & 40 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Interpretarea liniilor matricei

Fiecare linie a matricei X reprezintă transporturile realizate de la un depozit la punctele de distributie:

• Depozitul 1 (i = 1): Transportă 50 de unități către punctul de distribuție 3.

```
Cost minim total: 490.0

Matricea soluției (cantitățile transportate):

[[ 0.  0. 50.  0.  0.  0.]

[ 0. 10.  0. 50.  0.  0.]

[ 0.  0. 10.  0.  0. 30.]

[ 0.  0.  0. 20. 50.  0.]

[ 40. 40.  0.  0.  0.  0.]
```

	Distributie	D1	D2	D3	D4	D5	D6	Capacitate	Cost total
Depozite									
D1			2 3	1	4	5	6	50	49
D2			4 1	3	2	6	5	60	
D3			3 5	2	6	4	1	40	
D4			5 6	4	3	2	1	70	
D5			1 2	3	5	4	- 6	80	
								sum=	
	Cererea	4	0 50	60	70	50	30	300	
	Distributie	D1	D2	D3	D4	D5	D6		
Depozite									
D1			0 0	50	0	0	C	50	
D2			0 10	0	50	0	C	60	
D3			0 0	10	0	0	30	40	
D4			0 0	0	20	50	C	70	
D5		4	0 40	0	0	0	C	80	
	Rezultat	4	0 50	60	70	50	30		

- Depozitul 2 (i = 2): Transportă:
 - 10 unități către punctul de distribuție 2,
 - 50 de unități către punctul de distribuție 4.
- **Depozitul 3** (i = 3): Transportă:
 - 10 unități către punctul de distribuție 3,
 - $-\ 30$ de unități către punctul de distribuție 6.
- **Depozitul 4** (i = 4): Transportă:
 - 20 de unități către punctul de distribuție 4,
 - $-\ 50$ de unități către punctul de distribuție 5.
- **Depozitul 5** (i = 5): Transportă:
 - 40 de unități către punctul de distribuție 1,
 - $-\ 40$ de unități către punctul de distribuție 2.

Verificarea constrângerilor

1. Capacitatea depozitelor: Suma cantităților transportate din fiecare depozit este mai mică sau egală cu capacitatea sa:

Depozitul 1: $50 \le 50$,

Depozitul 2: $10 + 50 = 60 \le 60$, Depozitul 3: $10 + 30 = 40 \le 40$,

Depozitul 4: $20 + 50 = 70 \le 70$,

Depozitul 5: $40 + 40 = 80 \le 80$.

2. Cererea punctelor de distribuție: Suma cantităților primite de fiecare punct de distribuție este mai mare sau egală cu cererea acestuia:

Punctul 1: $40 \ge 40$,

Punctul 2: $10 + 40 = 50 \ge 50$,

Punctul 3: $50 + 10 = 60 \ge 60$,

Punctul 4: $50 + 20 = 70 \ge 70$,

Punctul 5: $50 \ge 50$,

Punctul 6: $30 \ge 30$.

Worksheet: [MMOtema2.xlsx]Echi Report Created: 1/22/2025 7:24:00 PM

Result: Solver found a solution. All constraints and optimality conditions are satisfied.

Solver Engine

• Engine: Simplex LP

• Solution Time: 0.153 Seconds

• Iterations: 30 (Subproblem: 0)

Solver Options

• Max Time: Unlimited

• Iterations: Unlimited

• Use Automatic Scaling

 $\bullet\,$ Max Subproblems: Unlimited

• Max Integer Solutions: Unlimited

• Integer Tolerance: 1%

• Assume NonNegative

Cell	Name	Original Value	Final Value
\$M\$4	D1 Cost total	0	490

Objective Cell (Min)

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$C\$16	D1 D1	0	0	Integer
\$D\$16	D1 D2	0	0	Integer
\$E\$16	D1 D3	0	50	Integer

Constraints

Cell	Name	Cell Value	Formula	Status/Slack
\$D\$22	Rezultat D1 Rezultat D2 Rezultat D3	50	\$D\$22=\$D\$11	Binding, Slack=0 Binding, Slack=0 Binding, Slack=0

Concluzie

Rezultatele obținute respectă toate constrângerile problemei de transport, iar costul total de transport este minimizat. Aceasta este soluția optimă pentru problema dată.

Problema 2: Transportul produselor între depozite

Date concrete

În această problemă, avem 10 surse și 3 destinații, ceea ce rezultă într-o matrice de costuri 10×3 . Costurile asociate transportului dintre fiecare sursă și destinație sunt date de matricea:

$$Costuri = \begin{bmatrix} 12 & 8 & 15 \\ 10 & 18 & 9 \\ 14 & 9 & 19 \\ 11 & 12 & 10 \\ 20 & 13 & 11 \\ 17 & 15 & 14 \\ 10 & 16 & 12 \\ 13 & 11 & 15 \\ 18 & 14 & 9 \\ 14 & 10 & 17 \end{bmatrix}$$

Oferta (capacitatea surselor):

[25, 30, 20, 40, 35, 15, 50, 30, 25, 30] unități.

Cererea (destinațiile):

[70, 100, 80] unități.

Problema este neechilibrată deoarece oferta totală (300) depășește cererea totală (250).

Cost minim total

Folosind algoritmul din pachetul scipy.optimize, am rezolvat problema pentru a minimiza costul total de transport. Costul minim calculat este:

Cost minim total: 2425.0 unități monetare.

Matricea soluției (cantitățile transportate)

Cantitățile optime transportate între fiecare sursă și destinație sunt organizate în matricea următoare:

$$\text{Matricea soluției} = \begin{bmatrix} 0 & 25 & 0 \\ 0 & 0 & 30 \\ 0 & 20 & 0 \\ 20 & 0 & 20 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \\ 50 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 25 \\ 0 & 30 & 0 \end{bmatrix}$$

```
Cost minim total: 2425.0

Matricea soluției (cantitățile transportate):

[[ 0. 25.  0.]
  [ 0. 0. 30.]
  [ 0. 20.  0.]
  [20.  0. 20.]
  [ 0. 0. 5.]
  [ 0. 0. 0.]
  [50.  0. 0.]
  [ 0. 25.  0.]
  [ 0. 30. 0.]]
```

	Destinatie	D1	D2	D3		Capacitate	Cost tota
Depozite							
E1		12	8	15		25	2425
E2		10	18	9		30	
E3		14	9	19		20	
E4		11	12	10		40	
E5		20	13	11		35	
E6		17	15	14		15	
E7		10	16	12		50	
E8		13	11	15		30	
E9		18	14	9		25	
E10		14	10	17		30	
Cerere		70	100	80	250	300	
	Destinatie	D1	D2	D3			
Depozite							
E1		0	25	0		25	
E2		20	0	10		30	
E3		0	20	0		20	
E4		0	0	40		40	
E5		0	0	5		5	
E6		0	0	0		0	
E7		50	0	0		50	
E8		0	25	0		25	
E9		0	0	25		25	
E10		0	30	0		30	
Cerere		70	100	80			

Interpretarea liniilor matricei

Fiecare linie din matrice reprezintă cantitatea transportată de la o anumită sursă la toate destinațiile. Spre exemplu, prima linie indică distribuția optimă a celor 25 de unități disponibile la sursa 1 către destinația 2.

Verificarea constrângerilor

Verificăm că soluția respectă următoarele:

- Oferta fiecărei surse nu este depășită.
- Cererea fiecărei destinații este satisfăcută (sau este mai mică decât cererea totală datorită neechilibrului).

• Surplusurile sunt incluse pentru a compensa neechilibrul între ofertă și cerere.

Worksheet: [MMOtema2.xlsx]NoEchi Report Created: 1/22/2025 7:10:34 PM

Result: Solver found a solution. All constraints and optimality conditions are satisfied.

Solver Engine

• Engine: Simplex LP

Solution Time: 0.225 SecondsIterations: 33 (Subproblem: 0)

Solver Options

Max Time: Unlimited Iterations: Unlimited

• Use Automatic Scaling

• Max Subproblems: Unlimited

• Max Integer Solutions: Unlimited

Integer Tolerance: 1%Assume NonNegative

Objective Cell (Min)

Cell	Name	Original Value	Final Value
\$K\$5	E1 Cost total	0	2425

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$C\$23	E1 D1	0	0	Integer
D\$23	E1 D2	0	25	Integer
E\$23	E1 D3	0	0	Integer
C\$24	E2 D1	0	20	Integer
D\$24	E2 D2	0	0	Integer
E\$24	E2 D3	0	10	Integer

Constraints

Cell	Name	Cell Value	Formula	Status/Slack
\$C\$35	Cerere D1	70	\$C\$35=\$C\$17	Binding, Slack=0
D\$35	Cerere D2	100	\$D\$35=\$D\$17	Binding, Slack=0
\$E\$35	Cerere D3	80	\$E\$35=\$E\$17	Binding, Slack=0
\$H\$23	E1 Capacitate	25	H\$23=H\$5	Binding, Slack=0
H\$24	E2 Capacitate	30	H\$24;=H\$6	Binding, Slack=0

Concluzie

Problema de transport neechilibrată a fost rezolvată cu succes, minimizând costul total de transport la **2425.0**. Soluția respectă toate constrângerile impuse, iar distribuția optimă este prezentată în matricea soluției.

Traveling Salesman Problem (TSP)

Setul de date este format din coordonatele bidimensionale (într-un sistem 2D) ale celor 70 de orașe. Tipul distanței utilizate este cel euclidian (EUC_2D).

Structura datelor

• **NAME:** st70

• TYPE: TSP

• **DIMENSION:** 70

• EDGE_WEIGHT_TYPE: EUC_2D

Coordonatele orașelor

Coordonatele fiecărui oraș sunt prezentate în tabelul de mai jos:

ID	Coordonata X	Coordonata Y
1	64	96
2	80	39
3	69	23
4	72	42
5	48	67
6	58	43
7	81	34
8	79	17
9	30	23

10	42	67
11	7	76
12	29	51
13	78	92
14	64	8
15	95	57
16	57	91
17	40	35
18	68	40
19	92	34
20	62	1
21	28	43
22	76	73
23	67	88
24	93	54
25	6	8
26	87	18
27	30	9
28	77	13
29	78	94
30	55	3
31	82	88
32	73	28
33	20	55
34	27	43
35	95	86
36	67	99
37	48	83
38	75	81
39	8	19
40	20	18
41	54	38
42	63	36
43	44	33
44	52	18
45	12	13
46	25	5
47	58	85
48	5	67
49	90	9
50	41	76
51	25	76
52	37	64
53	56	63
54	10	55
55	98	7

56	16	74
57	89	60
58	48	82
59	81	76
60	29	60
61	17	22
62	5	45
63	79	70
64	9	100
65	17	82
66	74	67
67	10	68
68	48	19
69	83	86
70	84	94
	57 58 59 60 61 62 63 64 65 66 67 68 69	57 89 58 48 59 81 60 29 61 17 62 5 63 79 64 9 65 17 66 74 67 10 68 48 69 83

Table 1: Coordonatele orașelor din problema TSP

Pași principali ai codului

1. Importarea bibliotecilor necesare:

• Biblioteci standard precum iomanip, vector, random, etc., sunt importate pentru a facilita funcționalitățile necesare.

2. Structura Point:

• Definește un punct 2D cu coordonatele x și y.

3. Citirea fisierelor TSP:

- Funcția read_instances() citește datele de intrare (NODE_COORD_SECTION sau EDGE_WEIGHT_SECTION) și construiește matricea distanțelor.
- Dacă datele sunt sub formă de coordonate, distanțele sunt calculate folosind formula distanței euclidiene:

$$d(a,b) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

4. Generarea populației inițiale:

• Funcția generate_initial_population() creează o populație inițială de permutări ale orașelor folosind un generator de numere aleatoare.

5. Calcularea costului pentru un individ:

• Funcția total_dist_individual() calculează costul total al unui traseu, inclusiv întoarcerea la orașul inițial.

6. Selecția indivizilor:

• Se utilizează metode precum rank selection și tournament selection pentru a selecta indivizi în functie de fitness.

7. Recombinarea (Crossover):

• Funcția crossover() combină doi părinți pentru a crea doi urmași folosind o secțiune comună și completând cu orașele rămase.

8. Mutarea (Mutation):

• Funcția mutation() schimbă pozițiile a două orașe într-un traseu pentru a introduce variație în populație.

9. Refinarea soluțiilor:

• Algoritmul 2-opt este aplicat la fiecare 10 generații pentru a optimiza local traseele.

10. Rularea algoritmului genetic:

- Funcția principală run_ga() execută algoritmul pe parcursul mai multor generații. Fiecare generație constă în:
 - Selectarea indivizilor pentru reproducere.
 - Generarea urmașilor prin recombinare și mutație.
 - Calcularea fitness-ului și sortarea populației.

11. Evaluarea soluției:

• Costul minim din populația finală este afișat ca soluție optimă găsită de algoritm.

```
Generation 1992 - Best Cost: 677.11

Generation 1993 - Best Cost: 677.11

Generation 1994 - Best Cost: 677.11

Generation 1995 - Best Cost: 677.11

Generation 1996 - Best Cost: 677.11

Generation 1997 - Best Cost: 677.11

Generation 1998 - Best Cost: 677.11

Generation 1999 - Best Cost: 677.11

Generation 2000 - Best Cost: 677.11

Final population (best individuals):

Best individual:
Total cost: 677.11

Route: 30 37 58 21 65 62 56 14 23 18 6 1 3 17 41 31 2 7 25 54 48 27 13 19 29 43 67 26 45 44 24 38 60 39 8 16 42 40 5 52 4 9 51 59 11 20 33 32 61 53 47 66 10 63 64 55 50 49 57 36 46 15 0 35 22 12 28 69 34 68
```

Rezultate și concluzii

Algoritmul genetic a obținut o soluție de 677.11, aproape de soluția optimă globală de 675 (eroare de 0.31%). Performanța sa demonstrează eficiență, dar există oportunități de îmbunătățire:

- Creșterea diversității populației: Introducerea unor operatori de mutație mai agresivi sau strategii pentru reintroducerea diversității.
- Optimizare locală mai frecventă: Aplicarea intensificată a metodei 2-opt sau utilizarea altor metode de optimizare locală (ex. 3-opt).
- Ajustarea parametrilor: Optimizarea ratei de mutație, dimensiunii populației sau a numărului de generații.
- Metode hibride: Combinarea algoritmului genetic cu metode deterministe, cum ar fi algoritmi bazati pe branch and bound.

Link soluție optimă:

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html