# **Question 1.** [10 MARKS]

### Part (a) [1 mark]

For a convex optimization problem which of the following will never converge:

- i. batch gradient descent
- ii. mini-batch gradient descent
- iii. stochastic gradient descent
- iv. only (ii) and (iii) will not converge
- v. none of the above

#### **Part (b)** [1 mark]

What is the computational complexity of sorting a list of n numbers?

- i. O(n)
- ii. O(nlogn)
- iii.  $O(n^2)$
- iv.  $O(n^2 \log n)$
- v. none of the above

#### **Part** (c) [1 mark]

What is the computational complexity of the following sample code?

$$a = n$$
while  $a > 1$ :
 $a=a*0.9$ 

- i. O(n)
- ii. O(sqrt(n))
- iii. O(logn)
- iv. O(nlogn)
- v. none of the above

#### **Part** (**d**) [1 mark]

L2 regularization should be applied on which of the following:

- i. learning rate
- ii. bias
- iii. weights
- iv. both (ii) and (iii)
- v. none of the above

#### **Part** (e) [1 mark]

Which of the following is true about optimizers?

- i. We can speed up training by applying a different learning rates on each weight.
- ii. Reducing the batch size will always speed up training time.
- iii. You wouldn't use SGD to train a linear regression model.
- iv. You can only find the global minimum when the problem is convex.
- v. none of the above

## **Part** (**f**) [1 mark]

We would like to use 1-Nearest Neighbour to classify point *p* using the data to the right. What is our prediction if we use cosine similarity distance? Euclidean distance?

i. Cosine distance: O, Euclidean distance: O

ii. Cosine distance: X, Euclidean distance: O

iii. Cosine distance: O, Euclidean distance: X

iv. Cosine distance: X, Euclidean distance: X



## **Part** (**g**) [1 mark]

Which of the following about a high variance model (in the context of bias-variance tradeoff) is true, compared to a high bias model?

- i. A high variance model is more prone to underfitting.
- ii. A high variance model requires more training data to train.
- iii. A high variance model will have a higher training accuracy.
- iv. A high variance model should be trained with a smaller batch size.
- v. Both (ii) and (iii) are true.

#### **Part** (**h**) [1 mark]

For which of the following problems would you choose a machine learning technique?

- i. Determining where a piece of Python code prints out the value "Hello, world".
- ii. Determining whether a photograph is in black and white or in colour.
- iii. Determining whether a photograph is of a young person or an old person.
- iv. All of the above.
- v. Only (ii) and (iii).

#### **Part** (i) [1 mark]

Which of the following will most likely produce a more noisy training curve?

- i. Decreasing the batch size.
- ii. Decreasing the learning rate.
- iii. Decreasing the size of the training set.
- iv. Increasing the size of the training set.
- v. Increasing the number of parameters of the neural network.

#### **Part** (**j**) [1 mark]

Which of the following helps prevent overfitting?

- i. Increasing the number of layers in a neural network.
- ii. Training for more epochs.
- iii. Using a larger batch size.
- iv. Using a larger training set.
- v. Both (iii) and (iv).

# **Question 2.** [10 MARKS]

Circle either "True" or "False" for each of the below statements.

| a  | True | False | Data augmentation techniques can be applied to both the training and test data to limit overfitting.               |
|----|------|-------|--------------------------------------------------------------------------------------------------------------------|
| b. | True | False | Gradient descent cannot get stuck in a local minimum when training a logistic regression model.                    |
| c. | True | False | PCA can be applied on a correlation matrix                                                                         |
| d. | True | False | It is not necessary to have a target variable for applying dimensionality reduction algorithms.                    |
| e. | True | False | In general, a mixture of gaussian model will perform better if you restrict the covariance matrix to be diagonal.  |
| f. | True | False | L2 regularization works better when the data is standardized.                                                      |
| g. | True | False | You cannot use ROC to measure the performance on a multiclass classification problem.                              |
| h. | True | False | You can use squared-error loss to solve classification problems.                                                   |
| i. | True | False | Importance sampling allows us to sample from a known distribution when using the true distribution is intractable. |
| j  | True | False | Hyperparameters are tuned and updated during backpropagation.                                                      |

# **Question 3.** [8 MARKS]

Provided below is sample code for k-means clustering. You may assume all the necessary libraries are includes and that there are no syntax errors.

```
def kmeans(x, k, n_iter):
    ind = np.random.randint(0, len(x)-1, k)
    centroids = x[ind, :]
    distances = compute distances(x, centroids)
    labels = np.array([np.argmin(i) for i in distances])
    for in range(n iter):
        centroids = []
        for ind in range(k):
            cent = x[points==ind].mean(axis=0)
            centroids.append(cent)
        centroids = np.vstack(centroids)
        distances = compute_distances(x, centroids)
        labels = np.array([np.argmin(i) for i in distances])
    return (labels, centroids)
def compute distances(x, centroids):
```

## Part (a) [2 mark]

Fill in the compute\_distances function to obtain the Euclidean distance between all points and k clusters.

## Part (b) [4 mark]

What would you add and/or change in the kmeans function to ensure that we converge to the global minimum? Provide your answer(s) in/next to the code above. Assume k is fixed.

## Part (c) [2 mark]

As the dimensionality of the input data increases what happens to the Euclidean distance measurements?

# **Question 4.** [8 MARKS]

Consider a dataset of physiological measurements of elite athletes.

|    | Meaning of variables                                                        |
|----|-----------------------------------------------------------------------------|
| X1 | Skinfold thickness                                                          |
| X2 | Grip strength                                                               |
| Х3 | Maximal vertical jump capacity                                              |
| X4 | Maximal lactate steady state (endurance)                                    |
| X5 | Maximum oxygen uptake (aerobic fitness)                                     |
| Х6 | Mean corpuscalar hemoglobin count (resistance to and recovery from fatigue) |

|     | Meaning of variables       |
|-----|----------------------------|
| X7  | Anaerobic power            |
| X8  | Maximum heart rate         |
| Х9  | Muscle mass                |
| X10 | Muscle fatigue onset time  |
| X11 | Pulmonary ventilation rate |
|     |                            |

A principal component analysis was performed yielding the following results.

Eigenvalues =  $[7.49 \ 3.23 \ 1.84 \ 0.26 \ 0.20 \ 0.13 \ 0.08 \ 0.05 \ 0.04 \ 0.02 \ 0.01]^T$ 

The first five eigenvectors are:

|                    | 0.075  | -0.034 | -0.130 | 0.241  | 0.019  |
|--------------------|--------|--------|--------|--------|--------|
|                    | 0.010  | -0.109 | 0.007  | -0.122 | -0.008 |
|                    | -0.147 | -0.102 | -0.164 | 0.345  | 0.027  |
|                    | 0.397  | -0.032 | -0.033 | -0.109 | -0.006 |
| Figure ve et eus - | 0.833  | -0.165 | -0.113 | -0.220 | -0.011 |
| Eigenvectors =     | -0.232 | -0.891 | -0.285 | -0.193 | -0.032 |
|                    | 0.004  | -0.003 | 0.040  | 0.029  | 0.004  |
|                    | 0.034  | -0.166 | 0.208  | -0.026 | 0.008  |
|                    | -0.234 | 0.109  | 0.311  | -0.783 | -0.066 |
|                    | -0.108 | 0.341  | -0.849 | -0.294 | -0.062 |
|                    | 0.016  | -0.001 | 0.038  | 0.095  | -0.995 |
|                    | -      |        |        |        |        |

## Part (a) [2 marks]

If we would like to capture 90% of the variance, what would you recommend as the dimensionality? Justify your answer.

| Part ( | <b>b</b> ) | [2 marks] |  |
|--------|------------|-----------|--|
|--------|------------|-----------|--|

Given a sample  $x = [0.1 -0.3 \ 0.4 -0.1 \ 0.2 \ 0.6 -0.2 \ 0.5 -0.1 \ 0.9 \ -0.1]^T$  what would be its new coordinates using the top two principal components?

## Part (c) [2 marks]

How would you go about determining a name or label for the principal components? Try to assign a semantic label for the first two principal components.

## Part (d) [2 marks]

Can SVD and PCA produce the same projection result? If yes, under what condition are they the same?

## **Question 5.** [7 MARKS]

Answer the following questions given that V is of  $\mathbb{R}^2$  and we have two sets of bases,  $U = \{[a \ b]^T, [c \ d]^T\}$ ,  $W = \{[e \ f]^T, [g \ h]^T\}$  that span V. We are also provided sample points  $v_1 = [1 \ 1]^T$  and  $v_2 = [2 \ 1]^T$  and their coordinates in U and W,  $[v_1]_W = [7 \ 1]^T$ ,  $[v_2]_W = [13 \ 3]^T$ ,  $[v_1]_U = [-1 \ 25]^T$  and  $[v_2]_U = [-6 \ 22]^T$ .

#### Part (a) [5 marks]

Compute the transformation matrix  $A_{U\to W}$ .

**Part (b)** [2 marks] If  $[v_3]_W = \begin{bmatrix} 1 & -4 \end{bmatrix}^T$ , calculate  $[v_3]_U$ .

# **Question 6.** [9 MARKS]

The following question pertains to a 2-layer artificial neural network used for multiclass classification. The network uses a tanh activation on the hidden layer and softmax activation on the output layer. The error is computed using cross-entropy loss.



#### Part (a) [2 mark]

Write out the equations to perform the forward pass for the proposed neural network using vectorized notation.

## **Part** (**b**) [2 mark]

Can this network learn nonlinearly separable decision boundaries? If yes, which part(s) of the architecture are necessary for nonlinear modelling?

WHITE ZUZI FINAL ASSESSMENT AF 51U/U

# Part (c) [5 mark]

Determine the gradients with respect to the weights using vectorized notation. For this calculation you can ignore the bias terms.

# **Question 7.** [4 MARKS]

Show that minimizing the cross-entropy loss is equivalent to maximizing the log-likelihood of the training data under the assumption that data can be modeled by the provided distribution, where y  $\epsilon$  {0, 1}:

$$P(y|x,\theta) = \hat{y}(x)^y \big(1 - \hat{y}(x)\big)^{(1-y)}$$

# **Question 8.** [4 MARKS]

The following diagram represents a system of buildings that are interconnected on the university campus. Your goal is to select the optimal locations (1-13) to construct a Tim Hortons so that students can obtain a beverage and/or snack without having to traverse more than one connection. For example, a Tim Hortons at location 1 can be accessed by students in buildings 1, 2 and 3.



Using a greedy algorithm find the optimized sets of locations to construct a Tim Hortons. The cost to construct the Tim Horton's is specified for each of the proposed locations. Show all your work.