Dummit & Foote Ch. 1.5: The Quaternion Group

Scott Donaldson

Mar. 2023

1. (3/24/23)

Compute the order of each of the elements of Q_8 .

Element	1	-1	i	-i	j	-j	k	-k
Order	1	2	4	4	4	4	4	4

2. (3/24/23)

Write out the group tables for S_3, D_8 and Q_8 .

1	(1,2)	(1,3)	(2,3)	(1, 2, 3)	(1, 3, 2)
(1,2)	1	(1, 3, 2)	(1, 2, 3)	(2,3)	(1,3)
(1,3)	(1, 2, 3)	1	(1, 3, 2)	(1,2)	(2,3)
(2,3)	(1, 3, 2)	(1, 2, 3)	1	(1,3)	(1, 2)
(1, 2, 3)	(1,3)	(2,3)	(1,2)	(1, 3, 2)	1
(1, 3, 2)	(2,3)	(1, 2)	(1,3)	1	(1, 2, 3)

1	r	r^2	r^3	s	sr	sr^2	sr^3
r	r^2	r^3	1	sr^3	s	sr	sr^2
r^2	r^3	1	r	sr^2	sr^3	s	sr
r^3	1	r	r^2	sr	sr^2	sr^3	s
s	sr	sr^2	sr^3	1	r	r^2	r^3
sr	sr^2	sr^3	s	r^3	1	r	r^2
sr^2	sr^3	s	sr	r^2	r^3	1	r
sr^3	s	sr	sr^2	r	r^2	r^3	1

1	-1	i	-i	j	-j	k	-k
-1	1	-i	i	-j	j	-k	k
i	-i	-1	1	k	-k	-j	j
-i	i	1	-1	-k	k	j	-j
j	-j	-k	k	-1	1	i	-i
-j	j	k	-k	1	-1	-i	i
k	-k	\overline{j}	-j	-i	i	-1	1
-k	k	-j	j	i	-i	1	-1

3. (3/24/23)

Find a set of generators and relations for Q_8 .

Proof. $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}.$

Consider the presentation $\langle a, b, c \mid b^2 = c^2 = a, a^2 = 1, cb = abc \rangle$. If we replace the given generators with a = -1, b = i, c = j (which satisfy the given relations), then we can show that every element of Q_8 is indeed generated: $1 = a^2, -1 = a, i = b, -i = ab, j = c, -j = ac, k = bc, -k = abc$. Thus, the presentation generates Q_8 .

However, it remains to be shown that these generators and relations are not the presentation for some larger group that contains Q_8 as a subgroup. Consider an arbitrary product of a, b, c. a commutes with b:

$$b^{2} = a \Rightarrow ab^{2} = b^{2}a = 1 \Rightarrow (ab)b = b(ba) = 1 \Rightarrow b = (ab)^{-1} = (ba)^{-1} \Rightarrow ab = ba$$

and the same logic shows that a and c also commute. Therefore we can rewrite an arbitrary product of a, b, c so that all the a factors are at the start (ex. $b^{n_1}a^{n_2}c^{n_3}a^{n_4}=a^{n_2+n_4}b^{n_1}c^{n_3}$). Further, because $a^2=1$, this initial a^n can be reduced to either a (if n odd) or removed (if n even).

So any unique element generated must have the form $a^pb^{n_1}c^{n_2}...b^{n_k}c^{n_{k+1}}$, $p \in \{0,1\}$. Next, we can rewrite any arbitrary product of factors b and c by replacing any cb with abc and reducing so that the element has the form $a^pb^qc^r$. Further, while we already have $p \in \{0,1\}$, we must also have $q, r \in \{0,1\}$, because $b^2 = c^2 = a$. So the only elements that can be generated are 1, a, b, c, ab, ac, bc, abc. By replacing a with -1, b with i, and c with j, we have 1, -1, i, -i, j, -j, ij, -ij, and if we let k = ij, then we have precisely Q_8 .