Deep Learning in Computer Vision Lab 4 – Report

1. Convolutional Neural Network on MNIST dataset

On essaie différentes architectures sur l'ensemble d'images MNIST et on enregistre les résultats après 10 epochs.

Modèle 1

Optimizer utilisé: adam

Input \rightarrow Conv2D (64 filtres, relu) \rightarrow Conv2D (32 filtres, relu) \rightarrow MaxPooling \rightarrow Flatten \rightarrow Dense(softmax)

Accuracy finale sur l'ensemble de test : 0.9866

On remarque un **overfitting conséquent** après quelques epochs seulement.

Optimizer utilisé: adam

Input → Conv2D (64 filtres, relu) → Conv2D (**64 filtres**, relu) → MaxPooling → Flatten → Dense(softmax)

Accuracy finale sur l'ensemble de test : 0.9888

On remarque **une augmentation de la précision** lorsque le nombre de filtres de la deuxième couche est mis à 64.

Modèle 3

Optimizer utilisé: adam

Input \rightarrow Conv2D (128 filtres, relu) \rightarrow Conv2D (64 filtres, relu) \rightarrow MaxPooling \rightarrow Flatten \rightarrow Dense(softmax)

Accuracy finale sur l'ensemble de test : 0.989

On remarque un **résultat presque équivalent** lorsque l'on augmente encore le nombre de filtres.

Optimizer utilisé: adam

Input \rightarrow Conv2D (64 filtres, relu) \rightarrow Conv2D (64 filtres, relu) \rightarrow MaxPooling \rightarrow **Dropout(0.3)** \rightarrow Flatten \rightarrow Dense(softmax)

Accuracy finale sur l'ensemble de test : 0.9911

On note une **réduction de l'overfitting** avec l'ajout d'un dropout.

Modèle 5

Optimizer utilisé: adam

Input \rightarrow Conv2D (64 filtres, relu) \rightarrow Conv2D (64 filtres, relu) \rightarrow MaxPooling \rightarrow Dropout(**0.5**) \rightarrow Flatten \rightarrow Dense(softmax)

Accuracy finale sur l'ensemble de test : 0.9906

On note une **réduction de l'overfitting** mais avec **perte de précision** lorsque l'on augmente encore le dropout.

Optimizer utilisé: adam

Input \rightarrow Conv2D (64 filtres, relu) \rightarrow MaxPooling \rightarrow Dropout(0.3) \rightarrow Flatten \rightarrow Dense(softmax)

Accuracy finale sur l'ensemble de test : **0.9834**

On remarque une forte perte de précision avec la suppression de la deuxième couche Conv2D.

Modèle 7

Optimizer utilisé: **sgd**

Input \rightarrow Conv2D (64 filtres, relu) \rightarrow Conv2D (64 filtres, relu) \rightarrow MaxPooling \rightarrow Dropout(0.3) \rightarrow Flatten \rightarrow Dense(softmax)

Accuracy finale sur l'ensemble de test : 0.9827

On remarque une **forte perte de précision** lorsque l'on passe de 'adam' à 'sgd'.

Les dix images les moins bien classées

2. Convolutional Neural Network on CIFAR10 dataset

On utilise l'architecture qui nous a servie pour la partie précédente comme base pour celle-ci. On compare quelques méthodes sur 10 epochs.

Modèle 1

Optimizer utilisé: adam

Input \rightarrow Conv2D (64 filtres, relu) \rightarrow Conv2D (64 filtres, relu) \rightarrow MaxPooling \rightarrow Dropout(0.3) \rightarrow Flatten \rightarrow Dense(softmax)

Accuracy finale sur l'ensemble de test : 0.7047

On remarque une **forte perte de précision** par rapport aux images précédentes que l'on attribue à la présence des trois canaux de couleurs.

16,26 cm

Optimizer utilisé: adam

Input \rightarrow Conv2D (64 filtres, relu) \rightarrow Conv2D (64 filtres, relu) \rightarrow MaxPooling \rightarrow Dropout(0.3) \rightarrow Conv2D (64 filtres, relu) \rightarrow Conv2D (64 filtres, relu) \rightarrow MaxPooling \rightarrow Dropout(0.3) \rightarrow Flatten \rightarrow Dense(softmax)

Accuracy finale sur l'ensemble de test : 0.7749

On remarque que la duplication des couches déjà présentes apporte une **augmentation de notre précision finale** et une **réduction de l'overfitting**.

Modèle 3

Optimizer utilisé: adam

Input → Conv2D (64 filtres, **sigmoid**) → Conv2D (64 filtres, **sigmoid**) → MaxPooling → Dropout(0.3) → Flatten → Dense(softmax)

Accuracy finale sur l'ensemble de test : 0.5786

On remarque une **forte perte de précision** lors de l'utilisation de la fonction d'activation sigmoid.

Les dix images les moins bien classées

