STAT 240 Homework 1

Rebecca Barter, Andrew Do and Kellie Ottoboni

February 10, 2015

Question 1. Consider a box that contains 5 "1" tickets and 7 "0" tickets. Consider drawing 6 tickets from this box at random with replacement. Let $X_1, X_2, ..., X_6$ denote the 6 numbers you observe. Let \bar{X} denote the average of the draws.

- a) What is $E[\bar{X}]$?
- b) What is $SE[\bar{X}]$? (R hint: Be careful whether the function "sd" divides by the square root of n or n-1)
- c) Use R to simulate 100,000 values of \bar{X} . Produce a histogram of these values. (R hint: Use the function sample).
- d) Let $z_1=E[\bar{X}]+SE[\bar{X}],\ z_2=E[\bar{X}]+2\times SE[\bar{X}],$ etc. For $z_1,...,z_4$ calculate $P(\bar{X}>z_i)$ in three ways:
 - Exactly, using the binomial distribution. (Hint: It will be easier to work with the sample sum than the sample average. R hint: Use function pbinom)
 - Estimated using the values from part (c)
 - Using the normal approximation. Use the continuity correction. (R hint: pnorm)

Do the same for $z_{-4},...,z_{-1}$ but calcualte $P(\bar{X} < z_i)$ instead of $P(\bar{X} > z_i)$. Make a table of your results and comment briefly

Figure 1: Some silly histogram example

Repeat (a)-(d), this time sampling without replacement instead of with replacement. Use the hypergeometric distribution instead fo the binomial distribution (R hint: phyper)