Formelsammlung Krypto

David Jäggli

27. Mai 2024

Inhaltsverzeichnis

1	Allg	2
2	Terminologie	2
3	Symmetrische Kryptographie	2
4	Asymmetrische Kryptographie	2
5	Blinde Signaturen	3
6	Einführung in die Public-Key Infrastruktur (PKI) 6.1 Verschlüsseln und Signieren (repetition) 6.1.1 Verschlüsseln 6.1.2 Signieren 6.2 Zertifikate 6.2.1 Herstellung eines Zertifikats 6.2.2 Zertifikatsklassen	3 3 3 4 4 4
7	Protokolle 7.1 User Authentication	5 5 5 5 5 6
8	Quantenkryptographie 8.1 Polarization	7 7

1 Allg

2 Terminologie

Kryptographie	Entwerfen von Krypto-Algorithmen
Kryptoanalyse	Brechen von Krypto-Algorithmen
Perfekte Sicherheit	Unendlich viele Ressourcen sind equivalent zu raten
Unkeyed Kryptographie	Hashfunktionen
Symmetrische Krypt.	Beide den gleichen Schlüssel - $\mathcal{O}(n)$
Asymmetrische Krypt.	Öffentlicher und privater Schlüssel - $\mathcal{O}(n)$

3 Symmetrische Kryptographie

4 Asymmetrische Kryptographie

5 Blinde Signaturen

Generelle Beschreibung: Anna weis nicht WAS sie unterschreibt, wenn sie das Dokument später sieht, weis sie aber DASS sie es unterschrieben hat. Nutzen:

- Unverfällschbarkeit
- Anonymität
- Unlinkbarkeit

Ablauf:

- 1. Kunde zieht geld ab
- 2. Bank signiert den Betrag
- 3. Kunde bezahlt im Shop
- 4. Shop schickt die Unterschrift an die Bank
- 5. Bank prüft Unterschrift
- 6. Bank validiert Unterschrift und zieht Geld ab

Beispiel: Siehe s.100 Folien 09

6 Einführung in die Public-Key Infrastruktur (PKI)

6.1 Verschlüsseln und Signieren (repetition)

6.1.1 Verschlüsseln

6.1.2 Signieren

Ablauf signieren:

- 1. Dokument von Alice ist Ausgangswert
- 2. Hash berechnen \rightarrow Hashwert
- 3. chiffrieren (mit private key und Hash) \rightarrow Signatur
- 4. Dokument & Signatur + Zertifikat \rightarrow signiertes Dokument

Warum Zertifikat? \rightarrow um sicherzustellen, dass der öffentliche Schlüssel auch wirklich von Alice ist.

Ablauf Signatur prüfen:

- 1. Dokument von Alice ist Ausgangswert
- 2. Signatur mit öffentlichem Schlüssel entschlüsseln \rightarrow Hashwert
- 3. Hashwert von Dokument berechnen
- 4. Hashes vergleichen
- 5. Zertifikat Überprüfen

6.2 Zertifikate

6.2.1 Herstellung eines Zertifikats

- 1. Zertifikatsinhalt
 - Version
 - Serial Number
 - Subject
 - Public Key
- 2. Inhalt hashen
- 3. Hash signieren
- 4. Signitierter Hash + Zertifikatsinhalt \rightarrow Zertifikat

6.2.2 Zertifikatsklassen

- Klasse 1: wenig Sicherheit, keine Identitätsprüfung
- Klasse 2: mittlere Sicherheit, schwache Identitätsprüfung
- Klasse 3: hohe Sicherheit, strenge Identitätsprüfung
- Qualified Certificate: höchste Stufe, werden nur für natürliche Personen ausgestell

7 Protokolle

7.1 User Authentication

- Username / Password
- One-Time Password
- Symmetric Algorithms
- Public-Key Algorithms
- Biometric Authentication

7.2 False-rates

Es gibt zwei Arten von False-rates:

- False Acceptance Rate (FAR)
- False Rejection Rate (FRR)

Beide sollten so tief wie mögliche sein. Aber es ist ein Tradeoff zwischen den beiden. Senkt man die Eine erhöht sich die Andere.

7.3 Verifikationen

7.3.1 One to many

Handy: überprüfe ob ich derjenige bin, der ich vorzugeben behaupte.

7.3.2 Many to one

Bank: überprüfe ob ich derjenige bin, der ich vorzugeben behaupte.

7.4 Paralellsession Attacke

Zwei Sessions eröffnen, dann muss nichts gerechnet werden und Zufalls-/Chiffrierzahl kann kopiert werden.

Abbildung 1: Paralellsession Attacke

8 Quantenkryptographie

Quantenkryptographie und Quantencomputer sind zwei verschiedene Dinge.

8.1 Polarization

- 4 Zustände, jedem muss 1 oder 0 zugewiesen werden.
 - Senkrecht
 - Wagrecht
 - Schräg links
 - Schräg rechts

Darauf basierend können Filter kreiert werden. Sollte filter nicht auf Teilchen passen, ist es 50/50 in welchem Zustand es durchgelassen wird.

8.2 Quantum Key Exchange

- 1. Sender Alice wählt zufällige Bits
- 2. Alice sendet Photonen mit gewählter Polarization
- 3. Empfänger Bob wählt zufällige Filter
- 4. Bob erhlält gefilterte Photonen
- 5. Bob kennt die Kodierung und ordnet 1 oder 0 zu
- 6. Bob sendet zurück, welche Filter er benutzt hat
- 7. Alice sagt, welche Filter korrekt waren

Im statistischen Mittle werden in 50% die falschen Filter gewählt. Deshalb müssen doppelt so viele Photonen gesendet werden, wie benötigt werden.

Key-takeaway: immer die Bits verwenden, welche durch den Filter nicht verändert werden. Alle anderen haben einen nicht vorhersagbaren Zustand.