

Fast Batched Solution for Real-Time Optimal Power Flow With Penetration of Renewable Energy

Citations: 21

Authors: Shengjung Huang, Venkata Dinavahi

Team Members

James, MS OR 1st year

Mert, MS OR 1st year

Vishal, MS OR 1st year

Authors' Background

Shengjun Huang

- B.S. and M.S. degrees in Management Science and Engineering from the National University of Defense Technology, Changsha, China (2012, 2014)
- o Ph.D. degree in Electrical and Computer Engineering from the University of Alberta, Canada (2018)
- Lecturer with the College of Systems Engineering, National University of Defense Technology (2019*)
- 15 Publications and 220 Citations
- Areas of Interest: Power System Planning and Design and Energy System Modeling and Optimization

Venkata Dinavahi

- Ph.D. degree in Electrical and Computer Engineering from the University of Toronto
- Professor at the University of Alberta (2001*)
- 254 Publications and 6788 Citations
- o Fellow of IEEE, Registered Professional Engineer, active within IEEE Public Energy Systems
- Areas of Interest: Real Time Simulation Of Large-Scale Power Systems and Embedded and Reconfigurable Systems Design

^{*}Note: information is sparse, dates are presumed

Introduction

- Optimal Power Flow problem: Deciding the optimal operating conditions (minimizing a quadratic power generation cost in this case) for a power-plant based on (predicted) demand.
- The authors present a more accurate and faster method of solving the Real Time Optimal Power Flow problem (RTOPF) in the presence of renewable energy sources
- Problems of focus in this paper:
 - Integrating renewable energy efficiently Renewable energy sources are uncertain
 - Need to solve the problem quickly Calculations are happening in real time with short decision intervals
- High-level solution approach:
 - Use multiple scenarios to account for uncertainty in renewable energy
 - Accelerate the solution process using GPU more on this on next slide

RTOPF with GPU Parallelization

- Solution Approach:
 - Three-stage framework with GPU acceleration
 - 1. Scenario Generation
 - 2. Scenario Solutions (w/ GPU)
 - 3. Hot-start of real problem
 - Enhances processing speed for real-time power distribution
- Optimization Algorithm:
 - Primal-Dual Interior Point Method (PDIPM).
 - Solves the QP model for optimal power flow

Paper Results - Computational Speedup

Computational Time in Seconds

Cases	14-bus	57-bus	118-bus	300-bus
Regular CPU	20.51	106.95	890.95	2,125.40
Parallel CPU	2.29	11.38	91.91	208.47
Regular GPU	1.51	5.88	43.54	85.05
Batched GPU	0.51	2.20	17.19	37.80

Speed-Up vs Regular CPU Method

Cases	14-bus	57-bus	118-bus	300-bus
Regular CPU	1.00	1.00	1.00	1.00
Parallel CPU	8.95	9.40	9.69	10.20
Regular GPU	13.60	18.19	20.47	24.99
Batched GPU	40.22	48.61	51.83	56.23

Citations

- Real-Time Active-Reactive Optimal Power Flow with Flexible Operation of Battery Storage Systems
- Applications of Novel Hybrid Bat Algorithm With Constrained Pareto Fuzzy Dominant Rule on Multi-Objective Optimal Power Flow Problems
- Low-Cost Analysis of Load Flow Computing Using Embedded Computer Empowered by GPU
- <u>GPU-based parallel real-time volt/varoptimisation for distribution networkconsidering distributed generators</u>

Next Steps

- Path Forward
 - Work in a similar order to the paper
 - CPU implementation
 - CPU parallel implementation
 - GPU implementation
 - GPU Batched implementation
- Difficulties
 - Address data access issues by exploring partnerships or public datasets
 - Clarify which components are implemented in CUDA C for GPU acceleration and adapt or develop equivalent CPU methodologies

THANK YOU!

Appendix – Advantages

Computation Time vs GPU Batching Size

Speedup (compared to CPU) vs # Threads

Hot Start Advantage

No. of scenarios	32	64	128	256	512	1024
No. of iterations for the final hot start linear system	8	5	3	2	1	1

Appendix – Multi Stage Solution

Stage 1 (Light)

- 1.1 Gather meteorological data for the next interval;
- 1.2 Forecast the REG power output with prediction algorithms;
- 1.3 Scenario generation and reduction.

Stage 2 (Heavy)

- 2.1 Gather thermal generator status to form ramp constraints;
- 2.2 Forecast power loads to form power balance constraints;
- 2.3 Formulate RTOPFs based on each scenario;
- 2.4 Solve these RTOPFs in parallel and maintain a lookup table.

Stage 3 (Light)

- 3.1 Gather REG status to determine the closest scenario;
- 3.2 Index the RTOPF solution from the lookup table;
- 3.3 Formulate RTOPF based on the REG status obtained in 3.1;
- 3.4 Utilize the solution given in 3.2 as a hot-start point, solve the RTOPF developed in 3.3.