传输式谐振腔观测铁磁共振

隋源*

北京大学物理学院 学号: 2000011379

实验首先观测反射式速调管的振荡模和传输式谐振腔的谐振曲线,测量了中心频率的电子调谐范围及谐振腔的有载品质因数;随后通过速调管和谐振腔观测铁氧体样品的铁磁共振现象,测定了共振磁场 H_r 和共振线宽 ΔH ,测量了谐振腔输出功率 P 与恒磁场 H 的变化曲线,并计算了样品的回磁比 γ 、Q 因子和弛豫时间 τ 。

关键词:铁磁共振,传输式谐振腔,g 因子,弛豫时间

I 引言

磁矩非零的铁磁体处于外磁场能级会发生 Zeeman 分裂,此时垂直于磁场方向施加 共振频率的交变磁场将产生共振跃迁效应,即铁磁共振。

1935年, L. D. Landau[1] 和 E. M. Lifshitz 首次提出铁磁性物质具有铁磁共振特性。1946年, J. H. E. Griffiths 和 E. K. Zavoiskij 分别独立地进行了实验验证。由于铁磁共振中磁矩较大,磁效应比较显著,常采用微波观测其效应。从上世纪五十年代开始,在 C. L. Hogan[2] 等人的研究下,有关微波铁氧体器件的技术快速发展,此后,铁磁共振和核磁共振、电子自旋共振等一样成为研究物质宏观性能及分析微观结构的有效手段。

当下,铁磁共振技术由于其信号强、精度高的优势发展为探测自旋波和自旋动力学的标准工具。本实验通过反射式速调管和传输式谐振腔观测铁磁共振现象,熟悉微波传输中常用的元件及其作用,掌握传输式谐振腔的工作特性,了解谐振腔观察铁磁共振的基本原理和实验条件,并进行铁氧体样品相关参数的测定。

II 理论

(一) 传输式谐振腔

^{*}suiyuan@stu.pku.edu.cn

传输式谐振腔可由两端加上带有耩合孔的金属板的标准矩形波导管构成。谐振腔发 生谐振时,腔长必须是波导波长的半整数倍

$$l = \frac{n}{2}\lambda_g, \quad n = 1, 2, 3, \dots$$
 (1)

其中

$$\lambda_g = \frac{\lambda}{\sqrt{1 - (\lambda/2a)^2}}, \quad \lambda = \frac{c}{f_0} \tag{2}$$

其中 f_0 为谐振频率,共振时传输系数达到最大。若传输系数为最大值一半时对应的频率为 f_1 和 f_2 ,则谐振腔的有载品质因数为

$$Q_L = \frac{f_0}{|f_1 - f_2|} \tag{3}$$

(二) 反射式速调管

反射式速调管具有分立的振荡模,改变反射极电压会引起微波功率和频率的变化, 存在最佳振荡模且各个振荡模的中心频率相同。一个振荡模的半功率点所对应的频率宽 度称为该振荡模的电子调谐范围

$$\Delta f = |f_1 - f_2| \tag{4}$$

(三) 铁磁共振

微波铁氧体处在微波磁场中,改变加到铁氧体样品上的恒磁场时将发生铁磁共振现象。球形多晶体样品发生铁磁共振时共振磁场 H_r 与微波频率 f_r 满足

$$2\pi f_r = \gamma H_r, \quad \gamma = g \frac{\mu_0 e}{2m} \tag{5}$$

其中 γ 为回磁比,e为电子电荷,m为电子质量。当磁场改变时,磁矩趋于平衡态所需的特征时间称为弛豫时间。一般情况下有

$$\tau = \frac{2}{\gamma \Delta H} \tag{6}$$

(四) 测量铁磁共振

用传输式谐振腔测量铁磁共振的原理是: 保证谐振腔输入功率不变和样品微扰条件

下,通过测量谐振腔的输出功率 P 和恒磁场 H 的变化关系得到共振磁场 H_r 和共振线 宽 ΔH 。如果在测量时谐振腔不逐点调谐,则考虑频散效应得到的半共振点所对应的功率为

$$P_{1/2} = \frac{2P_0 P_r}{P_0 + P_r} \tag{7}$$

图一:铁磁共振曲线(左)与 P-H 曲线(右)

III 实验

图二:铁磁共振实验线路 [3]。包括:电源、速调管、隔离器、定向耦合器、吸收式波长计、可变衰减器、晶体检波器、隔离器、谐振腔、样品、电磁铁、电流表、检流计等。其中传输式谐振腔采用 TE_{10p} 型短形谐振腔,空腔的有载品质因数为 2000-3000。样品采用多晶铁氧体小球,直径约 1mm。

用传输式谐振腔观测铁磁共振的实验线路如图二所示。实验线路主要分为微波发生 (反射式速调管)、衰减器和隔离器、传输式谐振腔和样品、电磁铁电路、检流计几个部分。其中速调管中内置吸收式波长计和微安表 G_1 ,分别用于频率读取和输出功率监控; 衰减器和隔离器用于调节谐振腔和样品接收到的微波信号强度; 电磁铁电路用于调控恒磁场强度,可通过电流表 A 监控; 检流计 G_2 用于测量谐振腔的输出功率 P_0

IV 结果与讨论

(一) 观测速调管的振荡模和腔的谐振曲线

调节反射式速调管反射极旋钮,观察到微安表读数出现不变-变大-变小-不变的变化,为一完整的振动膜。调节检波电流使微安表示数尽可能大,测量得到最大示数为51 μ A。对照实验室的波长-频率换算表,得到频率数据如下表

表一:速调管振荡模中心频率和半功率频率

	f_0	f_1	f_2
波长计读数	3.784	4.961	3.185
计算结果 (MHz)	9215	8967	9342

计算得到电子调谐范围

$$|f_1 - f_2| = 375 \text{MHz}$$
 (8)

同理调节反射极旋钮发现检流计示数非匀速地有小变大再变小,即为谐振曲线,记录下最大功率时检流计示数对应 105 格。同理得到频率数据

表二: 谐振腔中心频率和半功率频率

	f_0	f_1	f_2
波长计读数	3.278	3.285	3.268
计算结果 (MHz)	9322.2	9320.8	9324.4

计算得到谐振腔的品质因数

$$Q = \frac{f_0}{|f_1 - f_2|} = 2.60 \times 10^3 \tag{9}$$

(二) 观测铁磁共振

首先简便测量共振磁场和共振线宽: 打开电磁铁电路,对远离共振磁场的谐振腔进行调谐,之后测量恒磁场改变范围内 P_0 和 P_r 的值,根据式 (7) 计算得到 $P_{1/2}$,再测量检流计为 P_r 和 $P_{1/2}$ 时电流表的值 I_r 和 I_1 , I_2 如下表

表三: 简便测量共振磁场和共振线宽数据

测量次数	P_0	P_r	$P_{1/2}$	$I_r(A)$	$I_1(A)$	$I_2(A)$
1	100	47.0	63.9	2.249	2.150	2.316
2	95.0	45.5	61.5	2.222	2.129	2.316
3	99.0	46.0	62.8	2.279	2.160	2.362

对三次测量数据取平均,再根据实验室的磁场-电流换算关系得到对应的磁场值

$$H_r = 3425 \text{Oe}, \quad H = 277 \text{Oe}$$
 (10)

之后逐点测绘 P-H 关系如下图所示 (检流计和电流表示数的原始数据见附录 II)

图四:存在频散效应逐点测绘的 P-H 曲线 (P_0 =97.5)

可以看到曲线存在明显的频散效应。根据修正公式可估计出 $P_r, P_{1/2}$

$$P_r \approx 43.0, \quad P_{1/2} \approx 60.0$$
 (11)

对应的共振磁场和共振线宽为

$$H_r = 3.43 \times 10^3 \text{Oe}, \quad \Delta H = 250 \text{Oe}$$
 (12)

根据这一结果计算回磁比、朗德因子和弛豫时间

$$\gamma = 2.15 \times 10^5 \text{m/(A} \cdot \text{s)} \tag{13}$$

$$g = 1.95 \tag{14}$$

$$\tau = 4.68 \times 10^{-10}$$
s (15)

(三) 误差分析

经过分析,误差主要来源于以下几方面:

- 1. 操作和读数误差。主要包括操作者调谐时判断误差和读取不稳定数据时产生的误差,是最主要的误差来源,属于随机误差。
 - 2. 仪器允差。主要包括电流表、检流计、波长计、谐振腔等的仪器允差,误差较小。
 - 3. 理论近似误差。主要包括微扰法展开的近似、频散效应修正近似等,误差较小。
- 4. 其他系统误差。主要包括操作中变阻器发热阻值变大、测量过程中磁滞效应带来 的误差、测量操作中可能产生的波长计的回程差等,误差较大。

根据以上误差分析,结合各物理量的测量和计算结果,可粗略估计速调管、谐振腔和共振磁场的结果误差在 5% 左右,共振线宽、回磁比、郎德因子和弛豫时间的结果误差在 10% 左右。

V 结论

本实验观测反射式速调管的振荡模和传输式谐振腔的谐振曲线,测量了中心频率的电子调谐范围及谐振腔的有载品质因数,并通过速调管和谐振腔观测铁氧体样品的铁磁共振现象,测定了共振磁场和共振线宽,测量了 P-H 的变化关系,并计算了样品的回磁比、朗德因子和弛豫时间。

VI 致谢

感谢罗昭初老师对实验理念的的讲解和指导。

[1] LANDAU L. and LIFSHITZ E. Physik. Z., Sowjetunion, 1935, 8, 153-169.

[3] 吴思诚, 荀坤. 近代物理实验 [M]. 第 4 版. 北京: 高等教育出版社, 2015.

^[2] HOGAN, C. L. The ferromagnetic Faraday effect at microwave frequencies and its applications, Bell Syst. Tech. J., 1952, 31, pp. 1-31

附录 I: 思考题

(预习思考题见附录 II)

1.

根据公式求出波导波长的值

$$\lambda_q = 45 \text{mm}$$

则腔长应为半整数倍

$$l = \frac{p}{2}\lambda_g, \quad p = 1, 2, 3, \dots$$

根据 TE10 模分布, 样品可以放置在

$$x = 0, a;$$
 $z = \frac{2k-1}{4}\lambda_g, k = 1, 2, ..., p$

的位置上。

2.

根据公式有

$$\mu'' \propto \sqrt{\frac{P_0}{P}} - 1$$

因此可以作出下图(纵轴与 μ'' 差一系数), H_1, H_2, H_r 分别用绿点和蓝点标出。

附录 II: 实验记录

实验记录(1/4): 预习部分-实验原理

	1形连翰代智扬修江湖 张孤孝振
- N - 1	[实验仅选]
	数数数 新发射
	以下,这个时间,这个时间,这个时间,这个时间,这个时间,这个时间,
	长叶,花鸡珠上组成 中间面至 石顶 (1为花花水类) 原文
ست شده بولس	(大) 一种
	到00000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	12021,277 VP & 120 F Sin 41, 18 For
	带着一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
	estato 12 minp.
	[文] [文] [文]
	(一) 积烟速润度的扼药模型度勒光度的谐振曲线
	1. 观察张闭瓷的和荔枝,测量一个根据模块心纸车的电影图像
	天通.
	2. 观察传统代码高振曲线,测量限的有载从质因数
	() 邓明铁磁性
	1.用简准方法测量Hr和AH,三次和准物。
	2. 逐流的线 P-H曲线 对色和和H的值,计算8, g和 C.
	[实施月66]
	1. 数差行故难飞飞河东的组成和使用为证、董握有关证可证明之的27年
	李性教的基本论说。
	2.3两年的智证股外的股份积极到限的现象原现在实验和生殖
	过来的我成实的一种中国一个一种中国一种中国一种中国一种中国一种中国一种中国一种中国一种中国一种中国一种中国
	[建筑2000]
	上超过闭节Up 本得到Pm, 弄棍棍器把脓原设计算中心领导方。
	之后闭节VR至P=PW/2来得近于和于2、进价计算电子调路范围。
	2.对户分类《三子传行礼、不可以、图为保管中心外类为学院、神景不精确。
	3. 推翻抓到城市和北极的中国产进动,中国民被小当成政策率与
	讲心的多种多种的是不是好。如此,是一种的人的人,是一个人的人,这一个人的人,
	4. 由了铁硫放应改变成场分布,使得成为现象领域的现象的,即然散放之。
	5. 主要来质频散放应的系统误差(碳论近似)和仅器充意。闭则=影识不测路、

实验记录(2/4): 预习部分-实验仪器、实验内容、实验目的、预习思考题

可传统大学和政策区域的
实现笔记
[实验的6聚]
(一) 观网速国管振荡模、沙山流质回数
1.打开中原;预热10min,调节反射核按钮和程度电流移钮,
使enA表有完整的中国大一成心的过程,且最大值尽可能大。
2. 保持施波电流设施不动,记下最大电流到度,调节波长息
这独实从表示起降生最小, "真出"、"数人";
3.73关节,16次川负域的新调节后射极差租,使歌游漠数
表最大值一半,再次调节液质透读出 气, 壳入1,入2.
C)2R加度输入的混乱地线,测品质图数.
1、调节后新被运知,迎察一批按流计算数中小爱大声变小,
调节至最大位置并调谐, 产录格数P和中心频率波长入。.
2. 分别·顺道阳风新校、代表跨数为P/2时的入门人之。
(三) 河及地量 Hr 和山
1、确认这阻震为最大值,打开或原件压,对话指腹的调查。
2、放爱交通蓬地值,必需到它整的电视成的 → PHE大过程, 以表下 Pmax 和 Pn 和 过至电视过去数
3. 南叶真州下1/2. 再2分岁阳值设备,两个电池过去。
4.上述为3聚克复三九、每次21周增、下其 H-和山
(四)蒸胀,测线 P-H 曲线
1. 爱胜器阻值 例如时大寸梭流计读数计数变化的企置并测览。
2. 放放随值越点视户和工、每次等待示数栈之内(idea), 週
测20-40点(不可重句移动)
3. 重起, 绘画到 P-H 曲线 , 计算Hv和分H.

实验记录 (3/4): 实验笔记部分-实验步骤

(一) 本月費の対応改 (In=54,UA) 対策 対応成	[全级数			
ティー (大学) 1 1 1 1 1 1 1 1 1 1	(一) 建海	党的杨荔枝(In= TO COA)	
ラ・ファ84	狹章	动心波状		449
サーマリー				砂滩花园
サー	7.		Y215	1fr-f21=375#MHZ
「大学、はない。	+	2.185	8967	
「大学、はない。		4.0		Q = 5 = 24.6
(=) 15401 RENDED 35 324 2720 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	72	3.185	9342	100,74
(=) 15400 REPORTED TO THE PROPERTY OF THE PROP	(発華-	游长楼景 = 1	0914.79-211.2	(\lambda)
サーフルが、 けられた 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
9322.2 (of.o) Q====================================				对社会 温度图数
1 2.20	50		الأفاد المراجع المراجع المراجع المراجع	101.0
53.0 52 1 2.750 Hr 3425 (E) 1 2.750 Hr 3425 (E) 2.750 Hr 3425 (F) 2.750 Hr 3425 (H)	Ġ.			52.0
1 1 2 2 2 2 2 2 2 2			P324.4	53.0
Pmax Pr IrA) $P_{1/2}$ $A_{1/2}$ A	72	7. 00		In 2,250 Hr 3425
Pmax Pr IrA) Py2 Iy2 (A) Iy2 (A) 1 100 0 47.0 2.249 63.9 2.150 2.316 2 95.0 45.5 2.222 61.5 2.129 2.316 3 99.0 46.0 2.779 62.8 2.160 2.362 (\overline{\Pi} \overline{\Pi} \P	(三) 菏便	MIZH FINAL	CP1/2 = Pmar+Pr	
1 100 0 47.0 2.249 63.9 2.150 2.316 2 95.0 45.5 2.222 615 2.129 2.316 3 99.0 46.0 2.779 62.8 2.160 2.362 (12) 35 27 32 2 1 CPmax = 97.5) P 93.5 93.0 89.0 83.0 80.0 73.0 70.0 63.5 61.0 48.	Pm	ax Pr	InA) Py2	1/2/A) 1/2 (A)
3 99.0 46.0 2.779 62.8 2.160 2.362 (12) 35 27 362 P (Pmax=97.5) P 93.5 93.0 89.0 83.0 80.0 73.0 70.0 63.5 61.0 48. 51/11 1.985 1.982 2.035 2.072 2.093 2.125 2.139 2.161 2.167 2.21	1 100	1.0 47.0		
3 99.0 46.0 2.779 62.8 2.160 2.362 (D) 35 27 36 PH (Pmax=97.4) P 93.4 93.0 89.0 83.0 80.0 73.0 70.0 63.5 61.0 48.	2 95	; o 47.5	2.222 615	2,129 2,3/6
(12) 35 27 32 P 1 (Pmax = 975) P 93.5 93.0 88.0 83.0 80.0 73.0 70.0 63.5 61.0 48. 51/11 1981 1992 2.035 2.072 2.093 2.125 2.139 2.161 2.167 2.21			2.778 62.8	2 160 2.362
P 93.5 93.0 88.0 83.0 80.0 73.0 70.0 63.5 61.0 48.	2 8			
51/A) (980 1.982 2.03) 2.0/2 2.093 2.125 2.139 2.161 2.167 2.21		1 -12425	1/ (0) 41	
[1(A) 1.985 1.982 2.035 2.072 2.093 2.125 2.139 2.161 2.167 2.24 D 44.0 46.0 49.5 52.5 58.0 68.0 76.0 81.0 85.5 86.5	(B) WE			
D 44.0 46.0 49.5 50.5 58.0 68.0 76.0 81.0 85.5 86.5	(B) WE			73.0 70.0 63.5 61.0 48.
D 44.0 46 8 49.5 52.5 58.0 69.0 16.0 81.0 83.5 86.5	(12) <u>B</u> (2)	35 93.0 89	.0 83.0 80.0	
	(D) 35(2)	35 93,0 88 88t 1.982 2.0	35 2.0/2 2.0/3	2.125 2.139 2.161 2.167 2.21
17/1/ 0 20/1 2/20/ 20/1 7/1 7/1 2/12 //	P 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	785 1.992 2.0 1.0 460 49:5	.0 83.0 80.0 35 2.0/2 2.0/3 525 58.0 6	2.125 2.139 2.161 2.167 2.21

实验记录 (3/4): 实验笔记部分-实验数据