EE6303D

Dynamics of Electrical Machines (DEM)

Module 2

PRIMITIVE MACHINE EQUATIONS ALONG STATIONARY AXES

Rotor Voltages

$$V_{dr} = R_{dr}i_{dr} + \frac{d\psi_{dr}}{dt} + B_{qr}p\theta$$

$$V_{qr} = R_{qr}i_{qr} + \frac{d\psi_{qr}}{dt} - B_{dr}p\theta$$

flux density terms

$$B_{qr} = L'_{qr}i_{qr} + M'_{q1}i_{qs1} + M'_{q2}i_{qs2}$$

$$B_{dr} = L'_{dr}i_{dr} + M'_{d1}i_{ds1} + M'_{d2}i_{ds2}$$

$$\begin{split} V_{\rm dr} &= R_{\rm dr} i_{\rm dr} + L_{\rm dr} p i_{\rm dr} + M_{\rm d1} p i_{\rm ds1} + M_{\rm d2} p i_{\rm ds2} \\ &+ L_{\rm qr}' i_{\rm qr} p \theta + M_{\rm q1}' i_{\rm qs1} p \theta + M_{\rm q2}' i_{\rm qs2} p \theta \\ V_{\rm qr} &= R_{\rm qr} i_{\rm qr} + L_{\rm qr} p i_{\rm q2} + M_{\rm q1} p i_{\rm qs1} + M_{\rm q2} p i_{\rm qs2} \\ &- L_{\rm dr}' i_{\rm dr} p \theta - M_{\rm d1}' i_{\rm ds1} p \theta - M_{\rm d2}' i_{\rm ds2} p \theta \end{split}$$

PRIMITIVE MACHINE EQUATIONS ALONG STATIONARY AXES

$$[V] = [Z][i]$$

$$[V] = [R][i] + [L]p[i] + [G][i]p\theta$$

$$V = Ri + Lpi + Gip\theta$$

		ds1	ds2	dr	qr	qs1	qs2
L =	ds1	L_{ds1}	M_{d12}	M_{d1}			
	ds2	M_{d12}	L_{ds2}	M_{d2}			
	dr	M_{d1}	M_{d2}	$L_{ m dr}$			
	qr				$L_{ m qr}$	M_{q1}	M_{q2}
	qs1				M_{q1}	L_{qs1}	M_{q12}
	qs2				M_{q2}	M_{q12}	$L_{ m qs2}$

as 1

		usi	usz	ui.	Чı	qs1	482	
V_{ds1}	ds1	$R_{\rm ds1} + L_{\rm ds1}p$	$M_{d12}p$	$M_{d1}p$				i_{ds1}
$V_{\rm ds2}$	ds2	$M_{d12}p$	$R_{\rm ds2} + L_{\rm ds2}p$	$M_{d2}p$				i_{ds2}
$V_{ m dr}$	dr =	$M_{d1}p$	$M_{d2}p$	$R_{\rm r} + L_{\rm dr} p$	$L_{ m qr}' p heta$	$M'_{q1}p\theta$	$M_{q2}'p\theta$	i _{dr}
$V_{ m qr}$	qr	$-M'_{d1}p\theta$	$-M'_{d2}p\theta$	$-L'_{ m dr}p heta$	$R_{\rm r} + L_{\rm qr} p$	$M_{q1}p$	$M_{q2}p$	i_{qr}
V_{qs1}	qs1				$M_{q1}p$	$R_{qs} + L_{qs1}p$	$M_{q12}p$	i_{qs1}
V_{qs2}	qs2				$M_{q2}p$	$M_{q12}p$	$R_{qs2} + L_{qs2}p$	i_{qs2}

dr

de2

de 1

as2

Step 1

Remove coil 2 and corresponding rows and column

Replace the operator p by $j\omega_1$

$$p\theta = \omega_r$$

$$\omega_{\rm r} = \omega_1 (1-s)$$

		ds1	dr	qr	qs1	
V_{ds1}	ds1	$R_{\rm ds1} + j\omega_1 L_{\rm ds1}$	$j\omega_1 M_{d1}$			i_{ds1}
$V_{ m dr}$	dr –	$j\omega_1 M_{d1}$	$R_{\rm r} + j\omega_1 L_{\rm dr}$	$\omega_1(1-s)M_{q1}$	$\omega_1(1-s)M_{q1}$	i_{dr}
$V_{ m qr}$	= qr	$-\omega_1(1-s)M_{d1}$	$-\omega_1(1-s)L_{\rm dr}$	$R_{\rm r} + {\rm j}\omega_1 L_{\rm qr}$	$j\omega_1 M_{q1}$	i_{qr}
V_{qs1}	qs1			$j\omega_1 M_{q1}$	$R_{qs1} + j\omega_1 L_{qs1}$	i_{qs1}

Step 2

$$R_{ds1} = R_{qs1} = R_1, \qquad R_r = R_2$$
 $L_{ds1} = L_{qs1} = L_1, \qquad L_{dr} = L_{qr} = L_2$
 $M_{d1} = M_{q1} = M$
 $M'_{d1} = M_{d1} = M$
 $M'_{q1} = M_{q1} = M$

ds1

dr

qr

qs1

				•		
V_{ds1}	ds1	$R_1 + jX_1$	$\mathrm{j}X_{m}$			i_{ds1}
$V_{ m dr}$	= dr	ј X_{m}	$R_2 + jX_2$	$(1-s)X_2$	$(1-s)X_{\rm m}$	i _{dr}
$V_{ m qr}$	qr	$-(1-s)X_{\rm m}$	$-(1-s)X_2$	$R_2 + jX_2$	jX_{m}	i_{qr}
V_{qs1}	qs1			$\mathrm{j}X_{\mathrm{m}}$	$R_1 + jX_1$	i_{qs1}

stator coils which are symmetrically distributed

air gap is uniform

flux wave is sinusoidally distributed in space and hence the coefficients of mutual inductance for transformer and generated voltages are the same

Step 3

		ds1	dr	qr	qs1		
V ₁	ds1	$R_1 + jX_1$	jX_{m}				I_1
0	= dr	jX_{m}	$R_2 + jX_2$	$(1-s)X_2$	$(1-s)X_{\rm m}$	•	I ₂
0	qr	$-(1-s)X_{\rm m}$	$-(1-s)X_2$	$R_2 + jX_2$	jX_{m}		$-jI_2$
$-jV_1$	qs1			ј X_{m}	$R_1 + jX_1$		$-jI_1$

net m.m.f. they produce rotates at synchronous speed

During balanced operation, net MMF $\bar{N}_1(I_1^2\sin^2\omega_1t+I_1^2\cos\omega_1t)^{\frac{1}{2}}$

rotor voltages are zero since the rotor coils in an induction motor are short-circuited

dr

$$0 = jX_{m}I_{1} - jI_{1}(1 - s)X_{m} + (R_{2} + jX_{2})I_{2} - j(1 - s)X_{2}I_{2}$$

$$= jI_{1}sX_{m} + (R_{2} + jsX_{2})I_{2}$$

$$= jI_{1}X_{m} + \left[\frac{R_{2}}{s} + jX_{2}\right]I_{2}$$

qr

$$0 = jI_1X_m + \left[\frac{R_2}{s} + jX_2\right]I_2$$

Per phase voltage equation

Per phase voltage equation

$$\frac{V}{0} = \frac{ds}{dr} \begin{bmatrix} R_{ds} + jX_{ds} & jX_{m} \\ jsX_{m} & R_{dr} + jsX_{dr} \end{bmatrix} \cdot \begin{bmatrix} i_{ds} \\ i_{dr} \end{bmatrix}$$

$$\begin{vmatrix} i_{ds} \\ i_{dr} \end{vmatrix} = \frac{1}{D} \frac{ds}{dr} \begin{vmatrix} Z_{dr} & -jX_{m} \\ -jsX_{m} & Z_{ds} \end{vmatrix} \cdot \begin{vmatrix} V \\ 0 \end{vmatrix}$$

D is the determinant $(Z_{ds}Z_{dr} + sX_m^2)$

$$i_{\rm ds} = \frac{1}{D} \left(Z_{\rm dr} \, V \right)$$

$$i_{\rm dr} = j s X_{\rm m} V/D$$

$$T = -i*Gi$$

Per phase torque

$$T_{\rm ph} = -i_{\rm ds}jX_{\rm m}i_{\rm dr}^*$$
 (synchronous W)

Generated Shaft torque in Sync. Watts/phase = Per phase synchronous power - Per phase rotor copper loss

$$= i_{\rm dr}^2 R_{\rm r} \left(\frac{1}{s} - 1 \right)$$

Per phase rotor copper loss= $i_{dr}^2 R_r$

Substitute for i_{ds} in terms of V Substitute for V in terms of i_{dr} Z_{dr} = R_r

Inference

$$T = -i^*Gi$$

$$= -i^*_{qr}M_di_{ds} + i^*_{dr}M_qi_{qs}$$

