

SECOND SEMESTER 2020-2021

Course Handout Part II

Date: 16-01-2020

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : PHY F425

Course Title : Advanced Mathematical Methods of Physics

Instructor-in-Charge : Rahul Nigam

Scope and Objective of the Course: The course will cover topics in advanced mathematics which find extensive applications in Theoretical Physics. Upon successful completion, students will have the knowledge and skills to:

- 1. Explain the fundamental concepts of a few special topics in theoretical physics.
- 2. Demonstrate accurate and efficient use of specific mathematical physics techniques.
- 3. Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concepts from theoretical physics.

Textbooks:

- 1. Lectures on Advanced Mathematical Methods for Physicists \(^a\) (Sunil Mukhi and N. Mukunda)
- 2. Gauge Fields, Knots and Gravity **b** (John Baez and Javier Muniain)
- 3. Introduction to Green's Functions in Physics^c (Wijewardena Gamalath)
- 4. Principles of Advanced Mathematical Physics **d** (Richtmyer, Robert D)

Reference books

- 1. Geometrical Methods of Mathematical Physics (Bernard F. Schutz)
- 2. Introduction to Topology (Bert Mendelson)
- 3. Elementary Differential Geometry (Christian Bar)
- 4. Introduction to Group Theory (H W Joshi)

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1-8	Introduction to Topology	Topology, Metric Spaces, Manifolds, Connected and compact spaces, Homeomosphisms, Homotopy	a.1-a.2, b.1

9-16	Differential Manifolds	Calculus on manifolds, Vector and Tensor fields, Differential Forms, Riemannian Geometry	a.3-a.4
17-20	Homology and Fibre Bundles	Simplical Homology, de Rham Cohomology, Vector bundles and Principal Bundles	a.5-a.6, b-1
21-29	Continuous Groups	Abelian, Non-abelian groups, Lie Groups, Representation, Dynkin Diagrams	a.7-a.9
30-38	Gauge Fields	De Rham Theory in Electromagnetism, Curvature and Yang Mills Equations	b.1-b.2
39-42	Green's Function	Application of Green's Function techniques	3.1-3.4

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid Sem Exam	90 mins	30	05/03 1.30 - 3.00PM	Open Book
Assignments (2)		15 each		
Comprehensive Exam	120 minutes	40	15/05 FN	Open Book

Chamber Consultation Hour: Will be announced during the class.

Notices: CMS

Make-up Policy: Student must inform prior to the exam and provide convincing proof for absence.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE Rahul Nigam

