

1.4 Treball i energia

Energia mecànica
Treball i potència
Teorema de l'energia cinètica
Forces conservatives. Energia potencial
Forces no conservatives. Fregament

Energia

Principi de conservació de l'energia:

L'energia sempre es conserva. No es crea ni es destrueix, es transforma.

Tampoc es defineix.

Energia nuclear, mecànica, elèctrica, química, animal, humana, renovable, eòlica, térmica ...

Energia Mecànica

N'hi ha de dos tipus:

- Cinètica: depèn de la velocitat
- Potencial: depèn de de la posició

Un cos pot tenir només una de les dues o les dues

Per canviar (mecànicament) l'energia d'un cos cal aplicar-li una força. La força fa un treball, que es defineix com:

$$dW = \vec{F} \cdot d\vec{r}$$

 $d\vec{r}$ és el desplaçament al llarg del qual s'aplica la força

Treball i potència

El treball (i l'energia) $dW = \vec{F} \cdot d\vec{r}$ té dimensions de força per desplaçament:

$$[W] = [F]L = ML^2T^{-2}$$

que en el sistema internacional correspon a:

$$\text{Kg}^{m^2}/_{S^2} \equiv \text{joule}$$

Es defineix la **potència** com $P = \frac{dW}{dt}$ quantitat de treball in per unitat de temps

$$P = \frac{dW}{dt}$$

quantitat de treball realitzat

que en el sistema internacional correspon a:

$$\operatorname{Kg}^{m^2}/_{\operatorname{S}^3} \equiv \operatorname{watt}$$

Si la força i la direcció són constants:

$$P = \frac{dW}{dt} = \frac{\vec{F} \cdot d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$$

Treball mecànic

$$dW = \vec{F} \cdot d\vec{r} = |\vec{F}| |d\vec{r}| \cos\theta$$

 $\vec{F} = const.$

Eje Y:
$$|\vec{P}| = |\vec{N}| = mg$$

$$W_P=W_N=0$$

Eie X:
$$\left| ec{F} \right| - \left| ec{F}_R \right| = \left| ec{F} \right| - \mu_c mg = ma$$

$$W_F = Fd$$
 $W_{F_R} = -\mu_c mga$

[en movimient]

Eje Y:
$$|\vec{P}| = |\vec{N}'| + |\vec{F}| \sin \theta$$

$$W_P = W_{N'} = 0$$

$$\vec{F} = |\vec{P}| = |\vec{N}'| + |\vec{F}| \sin\theta \qquad W_P = W_{N'} = 0$$

$$\vec{F} = |\vec{F}| \cos\theta - |\vec{F}| + |\vec{F}| \sin\theta \qquad W_P = W_{N'} = 0$$

$$\vec{F} = |\vec{F}| \cos\theta - |\vec{F}| + |\vec{F}| \sin\theta \qquad W_P = W_{N'} = 0$$

$$W_F = Fd\cos\theta$$
 $W_{F'_R} = -\mu_c(mg - F\sin\theta)d$

Teorema de l'energia cinètica

El treball total de les forces resultants que actuen sobre un cos és igual a la variació de l'energia cinètica

$$\vec{F}_{tot} = \sum_{i} \vec{F}_{i}$$

$$dW_{tot} = \vec{F}_{tot} \cdot d\vec{r} = m \frac{d\vec{v}}{dt} \cdot d\vec{r} = m d\vec{v} \frac{d\vec{r}}{dt} = m \vec{v} d\vec{v} = \frac{1}{2} m d(\vec{v}^2)$$

$$\Rightarrow W_{tot} = \Delta \left(\frac{1}{2}mv^2\right) = \Delta E_{cin} = E_{cin}^{(fin)} - E_{cin}^{(ini)}$$

$$W_{tot} = \Delta E_{cin}$$

$$E_{cin} = \frac{1}{2}mv^2$$

Forces conservatives: Energia potencial gravitatòria

Una força conservativa transforma l'energia mecànica: transforma potencial en cinètica, cinètica en potencial, o una potencial en una altra potencial. *Conserva l'energia mecánica.*

Tipus: potencial gravitatòria, elèctrica, elàstica...

Forces conservatives: Energia potencial gravitatòria

Una força conservativa transforma l'energia mecànica: transforma potencial en cinètica, cinètica en potencial, o una potencial en una altra potencial: *conserva l'energia mecànica* Tipus: potencial gravitatòria, elèctrica, elàstica.

Energia potencial gravitatòria

$$W_{1\to 2} = -\int_{h_1}^{h_2} mgdy = mg(h_1 - h_2)$$

$$E_P \equiv mgh \qquad W_{1\to 2} = -\Delta E_P$$

$$W_{FC} = -\Delta E_P$$

El treball de les forces conservatives és igual a menys la variació de l'energia potencial

Forces conservatives: Energia potencial gravitatòria

Energia potencial gravitatòria

$$mg dW = \vec{F} \cdot d\vec{r} = mg \cos\theta dr$$

$$W_{1\to 2} = -\int_{h_1}^{h_2} mg \, dy = mg(h_1 - h_2)$$

$$E_P = mgh$$
 $W_{1\to 2} = -\Delta E_P$

$$W_{FC} = -\Delta E_P$$

Energia potencial elàstica

$$W_{1\to 2} = -\int_{x_1}^{x_2} \kappa x dx = \frac{1}{2}\kappa(x_1^2 - x_2^2)$$

$$E_P = \frac{1}{2}\kappa x^2 \qquad W_{1\to 2} = -\Delta E_P$$

$$W_{FC} = -\Delta E_P$$

Anàlisi energètica de l'oscil·lador harmònic

[sense fregament]

 $m\omega^2 = \kappa$

$$x(t) = A\sin(\omega t + \varphi)$$

$$E_P(t) = \frac{1}{2}\kappa x^2 = \frac{A^2}{2}\kappa \sin^2(\omega t + \varphi)$$

$$E_C(t) = \frac{1}{2}mv^2 = \frac{A^2}{2}m\omega^2\cos^2(\omega t + \varphi)$$

$$E_M(t) = E_P(t) + E_C(t) = \frac{A^2}{2} \kappa \sin^2(\omega t + \varphi) + \frac{A^2}{2} m\omega^2 \cos^2(\omega t + \varphi) = \frac{A^2}{2} m\omega^2$$

FÍSICA

Grau d'Enginyeria Informàtica Curs 2020-2021, semestre de primavera TASCA 2

Un bloc A (m_A = 4.0 kg) està a sobre d'un bloc B (m_B = 8.0 Kg), el qual està en un pla inclinat amb angle θ tal i com es mostra al dibuix 1. El bloc B està conectat amb un bloc C mitjançant una corda inextensible i de massa menyspreable que passa per una politja sense fregament. Si els coeficients de fricció estàtica i cinètica entre totes les superfícies són 0.35 i 0.25, respectivament, trobeu:

- a) Si el sistema està en repòs, quin és l'angle θ màxim que pot tenir el pla inclinat per a que el bloc A no rellisqui sobre el bloc B? Amb aquest angle θ , es mouria el sistema format pel bloc A i B si traiem el bloc C? Si sí, amb quina acceleració?
- b) Amb l'angle θ trobat a l'apartat a), quina massa màxima (m_c) pot tenir el bloc C per a que el sistema estigui en repòs?
- c) Prenent la massa m_C = 7.0 kg, i l'angle θ trobat a l'apartat a), apliquem una força F_B al bloc B de manera continuada, fent que s'acceleri en aquest sentit (dibuix 2). Quina és la màxima força F_B que podem aplicar sense que el bloc A rellisqui sobre el bloc B? Quina serà l'acceleració del bloc B si apliquem aquesta força?

