Minisymposium on Computational Topology — SoCG — 08/06/21

Simplicial approximation to CW-complexes in practice

https://raphaeltinarrage.github.io

Introduction

[T., Computing Persistent Stiefel-Whitney classes of line bundles]

Let X be a compact topological space. A **vector bundle** of dimension d on X can be described by a *classifying map* $f: X \to \mathcal{G}_d(\mathbb{R}^n)$ (Grassmannian of d planes in \mathbb{R}^n).

The map induced in cohomology, $f^* \colon \mathrm{H}^*(X) \leftarrow \mathrm{H}^*(\mathcal{G}_d(\mathbb{R}^n))$, allows to define the *Stiefel-Whitney* classes of the vector bundle

Computing these classes amouts to **triangulating** X and $\mathcal{G}_d(\mathbb{R}^n)$, and finding a simplicial approximation to f.

However, explicit triangulations of $\mathcal{G}_d(\mathbb{R}^n)$ are known only when d=1 or n-1 (projective spaces). Next Grassmannian: $\mathcal{G}_2(\mathbb{R}^4)$.

[T., Computing Persistent Stiefel-Whitney classes of line bundles]

Let X be a compact topological space. A **vector bundle** of dimension d on X can be described by a *classifying map* $f: X \to \mathcal{G}_d(\mathbb{R}^n)$ (Grassmannian of d planes in \mathbb{R}^n).

The map induced in cohomology, $f^* : H^*(X) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^n))$, allows to define the Stiefel-Whitney classes of the vector bundle

Computing these classes amouts to **triangulating** X and $\mathcal{G}_d(\mathbb{R}^n)$, and finding a simplicial approximation to f.

However, explicit triangulations of $\mathcal{G}_d(\mathbb{R}^n)$ are known only when d=1 or n-1 (projective spaces). Next Grassmannian: $\mathcal{G}_2(\mathbb{R}^4)$.

[Luis Polanco, Jose A. Perea, Coordinatizing Data With Lens Spaces and Persistent Cohomology, 2019]

To each \mathbb{Z} -principal bundle over X corresponds (up to homotopy) a map $f \colon X \to \mathbb{S}^{\infty} / \mathbb{Z}_q$ (infinite Lens space).

This offers the Lens-PCA reduction, a non-linear dimensionality reduction algorithm.

[T., Computing Persistent Stiefel-Whitney classes of line bundles]

Let X be a compact topological space. A **vector bundle** of dimension d on X can be described by a *classifying map* $f: X \to \mathcal{G}_d(\mathbb{R}^n)$ (Grassmannian of d planes in \mathbb{R}^n).

The map induced in cohomology, $f^* : H^*(X) \leftarrow H^*(\mathcal{G}_d(\mathbb{R}^n))$, allows to define the Stiefel-Whitney classes of the vector bundle

Computing these classes amouts to **triangulating** X and $\mathcal{G}_d(\mathbb{R}^n)$, and finding a simplicial approximation to f.

However, explicit triangulations of $\mathcal{G}_d(\mathbb{R}^n)$ are known only when d=1 or n-1 (projective spaces). Next Grassmannian: $\mathcal{G}_2(\mathbb{R}^4)$.

[Luis Polanco, Jose A. Perea, Coordinatizing Data With Lens Spaces and Persistent Cohomology, 2019]

To each \mathbb{Z} -principal bundle over X corresponds (up to homotopy) a map $f \colon X \to \mathbb{S}^{\infty} / \mathbb{Z}_q$ (infinite Lens space).

This offers the Lens-PCA reduction, a non-linear dimensionality reduction algorithm.

In this talk, we will construct simplicial complexes **homotopy equivalent** to a given space, based on its **CW-structure**.

I - Simplicial approximation to CW-complexes

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

III - Applications

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

Definition: A finite **CW-complex** is a topological Hausdorff space X together with a finite partition $\{e_i\}_i$ of X (the cells) such that:

- 1. For each e_i , there exists an integer n(i) and a homeomorphism $\mathcal{B}^{n(i)} \to e_i$, where $\mathcal{B}^{n(i)}$ is the open ball of $\mathbb{R}^{n(i)}$.
- 2. Moreover, this homeomorphism extends to a continuous map from the closed ball, $f_i \colon \overline{\mathcal{B}}^{n(i)} \to X$, called a **characteristic map** for e_i . We denote by \overline{e}_i its image. Its restriction to the sphere, denoted $\phi_i \colon \partial \overline{\mathcal{B}}^{n(i)} \to X$, is called the **gluing map**.
- 3. Each point $x \in \overline{e}_i \setminus e_i$ must lie in a cell e_i of lower dimension.

Example: The sphere \mathbb{S}^2 admits a CW-structure with one cell of dimension 0,

one cell of dimension 0, one cell of dimension 1, two cells of dimension 2.

$$\partial(-1,1) = \{-1,1\} \quad \bullet \quad --- \quad \bullet$$

$$\partial \mathcal{B}^2 = \mathbb{S}^1$$

Definition: A finite **CW-complex** is a topological Hausdorff space X together with a finite partition $\{e_i\}_i$ of X (the cells) such that:

- 1. For each e_i , there exists an integer n(i) and a homeomorphism $\mathcal{B}^{n(i)} \to e_i$, where $\mathcal{B}^{n(i)}$ is the open ball of $\mathbb{R}^{n(i)}$.
- 2. Moreover, this homeomorphism extends to a continuous map from the closed ball, $f_i \colon \overline{\mathcal{B}}^{n(i)} \to X$, called a **characteristic map** for e_i . We denote by \overline{e}_i its image. Its restriction to the sphere, denoted $\phi_i \colon \partial \overline{\mathcal{B}}^{n(i)} \to X$, is called the **gluing map**.
- 3. Each point $x \in \overline{e}_i \setminus e_i$ must lie in a cell e_i of lower dimension.

Example: The sphere \mathbb{S}^2 admits a CW-structure with one cell of dimension 0, one cell of dimension 2.

$$\partial \mathcal{B}^2 = \mathbb{S}^1$$

CW-complex structures

CW-complex structures provide concise descriptions of spaces:

- The **sphere** of dimension n: one 0-cell, and one n-cell
- The **projective space** of dimension n: one cell per dimension
- The **real Grassmannian** $\mathcal{G}_d(\mathbb{R}^n)$ (dimension d(n-d)): p(k) cells of dimension k, where p(k) is the number of partitions of k into at most d integers each of which is $\leq n-d$ (in total, $\binom{n}{d}$ cells) [Milnor, Stasheff, Characteristic classes]
- The lens space $L_p(q_1, \ldots, q_n)$ (dimension 2n-1): one cell per dimension [Hatcher, Algebraic topology]

Triangulations are more complicated:

- The **sphere** of dimension n: at least n+1 vertices, n+1 facets, 2^n-1 simplices
- The **projective space** of dimension n: must have $\geq \frac{(n+1)(n+2)}{2}$ vertices [Arnoux, Marin, 1991]. We know a triangulation with $2^{n+1}-1$ vertices [Kühnel, 1987].
- The **real Grassmannian** $\mathcal{G}_d(\mathbb{R}^n)$ (dimension d(n-d)): a triangulation must admit $\frac{n(n+1)}{2}$ vertices and $(n(n-1)-2k(n-k))2^{k(n-k)+1}-1$ simplices [Govc, Marzantowicz, Pavešić, 2020].

Cellularisation:

- Any topological manifold of dimension $d \neq 4$ is homeomorphic to a CW-complex [Kirby, Siebenmann, Quinn]
- Any topological manifold is homotopy equivalent to a CW complex [Kirby, Siebenmann, 1969]

Triangulations:

- Any PL-manifold is triangulable
- Any smooth manifold admits a PL-structure hence is triangulable [Cairns, 1935]
 [Whitehead, 1940]
- Any topological manifold is homotopy equivalent to a simplicial complex

Cellularisation:

- Any topological manifold of dimension $d \neq 4$ is homeomorphic to a CW-complex [Kirby, Siebenmann, Quinn]
- Any topological manifold is homotopy equivalent to a CW complex [Kirby, Siebenmann, 1969]

Triangulations:

- Any PL-manifold is triangulable
- Any smooth manifold admits a PL-structure hence is triangulable [Cairns, 1935]
 [Whitehead, 1940]
- Any topological manifold is homotopy equivalent to a simplicial complex

simplicial approximation to CW complexes

Let $f: X \to Y$ be a continuous map. The **mapping cylinder** is the quotient space

$$Cyl(f) = X \times [0,1] \sqcup Y / (x,1) \sim f(x)$$

The mapping cone is obtained by identifying the upper part of the cylinder

$$Cone(f) = Cyl(f) / (x, 0) \sim point$$

Lemma: If $f, g: X \to Y$ are homotopic, then so are Cone(f) and Cone(g).

Let X be a CW-complex, with cells $\{e_i\}_i$, and gluing maps $\phi_i \colon \partial \mathcal{B}^{n(i)} \to X$. One shows that X is homeomorphic to the sequence of mapping cones

One builds X by induction: $X^i = \operatorname{Cone}(\phi_i : \partial \mathcal{B}^{n(i)} \to X^{i-1})$.

Let X be a CW-complex, with cells $\{e_i\}_i$, and gluing maps $\phi_i \colon \partial \mathcal{B}^{n(i)} \to X$. One shows that X is homeomorphic to the sequence of mapping cones

In order to triangulate X, it is enough to triangulate mapping cones!

I - Simplicial approximation to CW-complexes

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

III - Applications

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

Simplicial approximation

8/35 (1/2)

Consider two simplicial complexes K, L and a continuous map between their geometric realizations $f \colon |K| \longrightarrow |L|$.

We look for a simplicial map $g\colon K\longrightarrow L$ whose geometric realization $|g|\colon |K|\to |L|$ is homotopic to f.

Consider two simplicial complexes K, L and a continuous map between their geometric realizations $f \colon |K| \longrightarrow |L|$.

We look for a simplicial map $g\colon K\longrightarrow L$ whose geometric realization $|g|\colon |K|\to |L|$ is homotopic to f.

Define, for all vertex $v \in K^{(0)}$, its open star and its closed star

$$\operatorname{St}(v) = \{ \sigma \in K, \ v \in \sigma \}$$
 $\overline{\operatorname{St}}(v) = \{ \tau \in K, \ \exists \sigma \in \operatorname{St}(v), \ \tau \subset \sigma \}$

The map f satisfies the **star condition** for every $v \in K^{(0)}$, there exists $w \in L^{(0)}$ such that $f(|\overline{\operatorname{St}}(v)|) \subseteq |\operatorname{St}(w)|$.

If this is the case, let $g: K^{(0)} \to L^{(0)}$ be such that for every $\mathbf{v} \in K^{(0)}$, we have $f\left(\left|\overline{\mathrm{St}}(\mathbf{v})\right|\right) \subseteq |\mathrm{St}(g(\mathbf{v}))|$.

Such a map g is called a **simplicial approximation** to f. It is a simplicial map. Its geometric realization |g| is homotopic to f.

What if the map f does not satisfy the star condition?

One can refine K via barycentric subdivision.

Simplicial approximation theorem: By repeating barycentric subdivisions on K, the map $f : \operatorname{Sub}^k(K) \to L$ satisfies the star condition at some point.

Proof: Endow K with a metric, and by denote \mathcal{U} the cover $\{f^{-1}(|\mathrm{St}(w)|), w \in L\}$ of |K|. A **Lebesgue number** for \mathcal{U} is a $\epsilon > 0$ such that

 $\forall x \in |K|, \exists U \in \mathcal{U}, \mathcal{B}(x, \epsilon) \subset U$ (open ball of radius ϵ).

Hence, f satisfies the star condition if for every $v \in K^{(0)}$, $\operatorname{Diameter}(|\overline{\operatorname{St}}(v)|) < \epsilon$.

But barycentric subdivision reduces the diameter of a d-simplex by a factor $\frac{d}{d+1}$. Hence each simplex is small enough at some point.

I - Simplicial approximation to CW-complexes

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

III - Applications

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

11/35 (1/2)

How to triangulate the mapping cone of $f \colon |K| \to |L|$?

$$Cyl(f) = X \times [0,1] \sqcup Y / (x,1) \sim f(x)$$
$$Cone(f) = Cyl(f) / (x,0) \sim point$$

11/35 (2/2)

How to triangulate the mapping cone of $f \colon |K| \to |L|$?

$$Cyl(f) = X \times [0,1] \sqcup Y / (x,1) \sim f(x)$$
$$Cone(f) = Cyl(f) / (x,0) \sim point$$

1. Find a simplicial approximation $g \colon K \to L$ to $f \colon |K| \to |L|$

2. Triangulate $|K| \times [0,1]$ and glue L at the end

3. Cone the upper part of the cylinder

2. Let K be a simplicial complex. How to triangulate $|K| \times [0,1]$?

[Whitehead, Simplicial spaces, nuclei and m-groups, 1939]

[Cohen, Simplicial structures and transverse cellularity, 1967]

Simplicial set product

12/35 (2/5)

- 2. Let K be a simplicial complex. How to triangulate $|K| \times [0,1]$? Suppose that the vertices of K are totally ordered.
 - Take two copies of K, $K \times \{0\}$ and $K \times \{1\}$.
 - For every $\sigma = [x_0, \dots, x_m] \in K \times \{0\}$, with vertices ordered, consider the corresponding vertices $x_0' < \dots < x_m'$ of $K \times \{1\}$.
 - For every $0 \le k < m$, consider the m+1 simplex

$$\sigma_k = [x_k, \dots, x_m, x_0', \dots x_k'] \in K \star K.$$

• The collection of all $\sigma_k \in K \star K$ for all $\sigma \in K$ form the simplicial product.

Simplicial set product

$$\downarrow x'_1$$

$$K \times \{0\} \qquad K \times \{1\}$$

$$[x_0, x_1, x_0']$$
$$[x_1, x_0', x_1']$$

$$[x_0, x_1, x_2, x'_0]$$

$$[x_1, x_2, x'_0, x'_1]$$

$$[x_2, x'_0, x'_1, x'_2]$$

12/35 (3/5)

- 2. Let K be a simplicial complex. How to triangulate $|K| \times [0,1]$? Suppose that the vertices of K are totally ordered.
 - Take two copies of K, $K \times \{0\}$ and $K \times \{1\}$.
 - For every $\sigma = [x_0, \dots, x_m] \in K \times \{0\}$, with vertices ordered, consider the corresponding vertices $x_0' < \dots < x_m'$ of $K \times \{1\}$.
 - For every $0 \le k < m$, consider the m+1 simplex

$$\sigma_k = [x_k, \dots, x_m, x_0', \dots x_k'] \in K \star K.$$

• The collection of all $\sigma_k \in K \star K$ for all $\sigma \in K$ form the simplicial product.

Simplicial set product

$$K \times \{0\} \qquad K \times \{1\}$$

 $[x_0, x_1, x'_0]$ $[x_1, x'_0, x'_1]$

 $[x_0, x_1, x_2, x'_0]$ $[x_1, x_2, x'_0, x'_1]$

 $[x_2, x_0', x_1', x_2']$

This construction depends on a choice (of an ordering)!

12/35 (4/5)

Once $K \times [0,1]$ is triangulated, we glue it to L via $g \colon K \to L$ as follows:

$$\operatorname{Cyl}_{\text{simplicial}}(g) = \left\{ \sigma_0 \sqcup g(\sigma_1), \ \sigma \in K \times [0, 1], \ \sigma = \sigma_0 \sqcup \sigma_1, \left| \sigma_0 \in K \times \{0\} \right\} \right\}$$

 $K \times [0,1]$

12/35 (5/5)

Once $K \times [0,1]$ is triangulated, we glue it to L via $g \colon K \to L$ as follows:

$$\operatorname{Cyl}_{\text{simplicial}}(g) = \left\{ \sigma_0 \sqcup g(\sigma_1), \ \sigma \in K \times [0, 1], \ \sigma = \sigma_0 \sqcup \sigma_1, \middle| \begin{array}{l} \sigma_0 \in K \times \{0\} \\ \sigma_1 \in K \times \{1\} \end{array} \right\}$$

The map $Cyl(g) \to Cyl_{simplicial}(g)$ may not be a homeomorphism!

Proposition: It is a homotopy equivalence.

Sketch of algorithm.

Let X be a CW-complex, with cells $\{e_i\}_i$, and gluing maps $\phi_i \colon \partial \mathcal{B}^{n(i)} \to X$.

It can be built by induction: $X^i = \text{Cone}(\phi_i : \partial \mathcal{B}^{n(i)} \to X^{i-1}).$

We will do the same, but with simplicial approximations g_i to ϕ_i instead:

$$K^i = \operatorname{Cone_{simplicial}}(g_i : \partial \mathcal{B}^{n(i)} \to K^{i-1}).$$

I - Simplicial approximation to CW-complexes

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

III - Applications

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

 $\mathbb{R}P^1$

The n-dimensional projective space $\mathbb{R}P^n$ can be defined as the quotient of the n-sphere $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ by the antipodal relation $x \sim -x$.

The projective space $\mathbb{R}P^n$ contains $\mathbb{R}P^{n-1}$ as its equator.

By induction, we get a CW-structure for $\mathbb{R}P^n$: take a hemisphere of \mathbb{S}^n , and glue its equator on $\mathbb{R}P^{n-1}$.

Simplicial approximation to $\mathbb{R}P^n$

16/35 (1/10)

 $\mathbb{R}P^0$:

•

Simplicial approximation to $\mathbb{R}P^n$

16/35 (2/10)

1-cell:

 $\mathbb{R}P^2:53$ vertices, 317 simplices.

 $\mathbb{R}P^3:560'024$ vertices, 11'521'686 simplices (after 7 barycentric subdivisions)

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

Suppose that we want to find a simplicial approximation to the identity map on \mathbb{S}^1 , with

triangulations given as:

We must subdivise the domain many times to ensure that id satisfies the star condition.

We could have done simpler:

local subdivision

edge contraction

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

[Munkres, Elements of Algebraic Topology]

Let K be a simplicial complex, and $K_0 \subset K$ a sub-complex.

The **barycentric subdivision of** K **holding** K_0 **fixed**, denoted $\mathrm{Sub}(K,K_0)$, is defined by induction. We define simplicial complexes of increasing dimension J_0,\ldots,J_d as follows:

- Start with J_0 the 0-skeleton of K
- ullet From J_{p-1} , build J_p by adding all the p-simplices of K_0
- Moreover, for any p-simplex of K not in K_0 , add a point $\hat{\sigma}$, and cone it to the boundary $\partial \sigma \in J_p$

Proposition: To find a simplicial approximation to $f: |K| \to |L|$, it is enough to execute repeated barycentric subdivisions of K holding K_0 fixed, where K_0 is a sub-complex on which f satisfies the star condition.

Barycentric subdivisions increase the number of simplices drastically: a d-simplex turns into a simplicial complex with (d+1)! simplices and $2^{d+1}-1$ vertices.

Example: Triangulation of the unit sphere \mathbb{S}^2 , starting from the boundary of the 3-simplex

1	•
1	

K

 $\operatorname{Sub}^1(K) \quad \operatorname{Sub}^2(K) \quad \operatorname{Sub}^3(K)$

 $\mathrm{Sub}^4(K)$

 $\operatorname{Sub}^5(K)$

vertices:

14

74

434

2594

15554

simplices:

14

74

434

2594

15554

93314

max diameter:

1.63

1.15

0.66

0.42

0.25

0.15

Barycentric subdivision:

Barycentric subdivisions increase the number of simplices drastically: a d-simplex turns into a simplicial complex with (d+1)! simplices and $2^{d+1}-1$ vertices.

Example: Triangulation of the unit sphere \mathbb{S}^2 , starting from the boundary of the 3-simplex

4	<u>\</u>

K

 $\mathrm{Sub}^1(K)$

 $\operatorname{Sub}^2(K)$

 $\mathrm{Sub}^3(K)$

 $\mathrm{Sub}^4(K)$

 $\operatorname{Sub}^5(K)$

vertices:

14

74

434

2594

15554

simplices:

14

74

434

2594

15554

93314

max diameter:

1.63

1.15

0.66

0.42

0.25

0.15

Barycentric subdivision:

K

 $\operatorname{Sub}^1(K)$

 $\operatorname{Sub}^2(K)$

 $\operatorname{Sub}^3(K)$

 $\operatorname{Sub}^4(K)$

 $\operatorname{Sub}^5(K)$

vertices:

10

39

130

514

2050

simplices:

14

50

194

770

3074

12290

max diameter:

1.63

1.41

0.58

0.30

0.15

Edgewise subdivision can also be defined for 3-simplices:

Example: Triangulation of the sphere \mathbb{S}^3 , starting from the boundary of the 4-simplex.

	barycentric:	$\operatorname{Sub}^3(K)$	$\mathrm{Sub}^4(K)$	edgewise:	$\mathrm{Sub}^5(K)$	$\mathrm{Sub}^6(K)$
vertices:		12'600	301'680		27'440	218′720
simplices:		301'680	7′238′880		710′240	5'680'320
max diamete	er:	0.54	0.36		0.47	0.29

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

Simplifying the codomain

We look for a simplicial approximation to $f \colon |K| \to |L|$.

Endow K with a metric, and by denote \mathcal{U} the cover $\{f^{-1}(|\mathrm{St}(w)|), w \in L\}$ of |K|. Let $\epsilon > 0$ be a Lebesgue number for \mathcal{U} .

The map f satisfies the star condition if for every $v \in K^{(0)}$, $\operatorname{Diameter}(\left|\overline{\operatorname{St}}(v)\right|) < \epsilon$.

To simplify the problem, we can replace L with a homotopy equivalent complex L', given with a simplicial map $g \colon L \to L'$.

$$|K| \xrightarrow{f'} |L| \xrightarrow{|g|} |L'|$$

Consider the new cover $\mathcal{U}' = \{(f')^{-1}(|\operatorname{St}(w')|), w' \in L'\}.$

We may hope for its Lebesgue number to be smaller.

Let [a,b] be an edge of L, and $c \notin L^{(0)}$ a new vertex. The quotient map is defined as

$$p \colon L^{(0)} \longrightarrow \left(L^{(0)} \setminus \{a, b\} \right) \sqcup \{c\}$$

$$x \longmapsto c \text{ if } x = a \text{ or } b$$

$$x \text{ else.}$$

The contracted complex is defined as

$$L' = \{ p(\sigma), \ \sigma \in L \}.$$

We have a surjective simplicial map $p \colon L \to L'$.

Theorem [Dey, Edelsbrunner, Guha, Nekhayev, 1998], [Attali, Lieutier, Salinas, 2012]: The map p is a homotopy equivalence when the edge [a,b] satisfies the *link condition*, that is, $Lk(ab) = Lk(a) \cap Lk(b)$.

Example: Contraction of a triangulation of \mathbb{S}^1 contraction map L' $f^{-1}(\operatorname{St}(w))$ $^{1}(\mathrm{St}(w))$ ww

The (global) Lebesgue number remains the same

We would get better results by considering a homeomorphism $L \to L'$ instead of the contraction map p.

Dey, Edelsbrunner, Guha, Nekhayev, Topology preserving edge contraction, 1998] Local unfolding for simplicial complexes of dimension 2, or combinatorial manifolds of dimension 3.

To contract large simplicial complexes, we shall use the skeleton-blockers structure [Attali, Lieutier, Salinas, *Efficient data structure for representing and simplifying simplicial complexes in high dimensions*, 2012]

The (global) Lebesgue number remains the same

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

In practice, we cannot check whether a simplicial map $f\colon |K|\to |L|$ satisfies the star condition...

The map f satisfies the **weak star condition** if for every $\mathbf{v} \in K^{(0)}$, there exists a $w \in L^{(0)}$ such that $f\left(\overline{\mathrm{St}}(\mathbf{v})^{(0)}\right) \subseteq |\mathrm{St}(w)|$.

In practice, we cannot check whether a simplicial map $f \colon |K| \to |L|$ satisfies the star condition...

The map f satisfies the **weak star condition** if for every $v \in K^{(0)}$, there exists a $w \in L^{(0)}$ such that $f\left(\overline{\operatorname{St}}(v)^{(0)}\right) \subseteq |\operatorname{St}(w)|$.

If this is the case, let $g: K^{(0)} \to L^{(0)}$ be any map such that for every $v \in K^{(0)}$, we have $f\left((\overline{\operatorname{St}}(v))^{(0)}\right) \subseteq |\operatorname{St}(g(v))|$.

Such a map g is called a **weak simplicial approximation** to f. It is a simplicial map.

Proposition [T., 2020]: If K is subdivised enough, then any weak simplicial approximation is a simplicial approximation.

If K is not subdivised enough, weak simplicial approximations may not be simplicial

approximations.

f does not satisfy the star condition

f satisfies the weak star condition

If K is not subdivised enough, weak simplicial approximations may not be simplicial approximations.

Close maps are homotopic. Suppose that |L| is endowed with a distance d. Between two continuous maps $f,g\colon |K|\to |L|$, define the infinite norm

$$d_{\infty}(f,g) = \sup \{d(f(x),g(x)), x \in |K|\}.$$

Let ϵ be such that, for all continuous maps $f,g\colon |K|\to |L|$,

$$d_{\infty}(f,g) < \epsilon \implies f \text{ and } g \text{ are homotopic.}$$

This gives another criterion for simplicial approximation: we look for a simplicial $g \colon K \to L$ such that $d_{\infty}(f,g) < \epsilon$.

One could try to relate this ϵ and the *injectivity radius* of |L| endowed with a Riemannian metric.

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

Approximation to $\mathbb{R}P^n$, 2^{nd} attempt $_{29/35}$ $_{(1/2)}$

Remember our last triangulation with global barycentric sudivisions:

 $\mathbb{R}P^0:1$ vertex

 $\mathbb{R}P^2:53$ vertices (4 subdivisions)

 $\mathbb{R}P^1:4$ vertices

 $\mathbb{R}P^3:560'024$ vertices (7 subdivisions)

Approximation to $\mathbb{R}P^n$, 2^{nd} attempt $_{29/35}$ $_{(2/2)}$

Remember our last triangulation with *global barycentric sudivisions*:

 $\mathbb{R}P^0:1$ vertex

 $\mathbb{R}P^1:4$ vertices

 $\mathbb{R}P^2:53$ vertices (4 subdivisions)

 $\mathbb{R}P^3:560'024$ vertices (7 subdivisions)

Now with local subdivisions, edgewise subdivisions and edge contractions:

 $\mathbb{R}P^0:1$ vertex

 $\mathbb{R}P^1:4$ vertices (contract to 3 vertices)

 $\mathbb{R}P^2:32$ vertices (contract to 7 vertices)

 $\mathbb{R}P^3:1520$ vertices (contract to 89 vertices)

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

Let p,q be coprime integers, and let $\mathbb{S}^3\subset\mathbb{C}^2$ be the unit sphere. Let $\alpha=e^{\frac{2i\pi}{p}}$ be the p^{th} root of unity.

We define an action of \mathbb{Z}_p on \mathbb{S}^3 via $\rho \cdot (z_1, z_2) = (\alpha z_1, \alpha^q z_2)$. It is a free action, and the orbit space is denoted L(p, q).

Its homology groups are $\mathbb{Z}, \mathbb{Z}/p\mathbb{Z}, 0, \mathbb{Z}$. It has been an important question to determine which of these spaces are homeomorphic or homotopic equivalent.

A fundamental domain for L(p,q) is given by

$$\left\{\cos(\theta)\cdot(0,\alpha^t)+\sin(\theta)\cdot(\alpha^s,0),\ t\in[0,1]\ s\in[0,1],\ \theta\in\left[0,\frac{\pi}{2}\right)\right\}\subset\mathbb{C}^2.$$

We deduce a CW-complex structure on L:

- L^0 is a point,
- L^1 is a circle,
- ullet L^2 is a disk glued with a degree p map,
- L^3 is a 3-ball glued by differenciating the two hemispheres: one is glued via the identity on the 2-cell, the other one after a rotation of $2\pi \frac{q}{p}$.

Simplicial approximation to L(p,q)

32/35

We applied the algorithm for various values of p and q.

(p,q) =	(2,3)	(2,5)	(2, 11)	(3,5)	(11, 2)
number of vertices before contraction	911	929	900	2'412	15′753
number of vertices after contraction	50	39	57	212	1'631
number of simplices before contraction	18′736	18'524	17′896	49′510	327'682
number of simplices after contraction	1′078	820	1′202	4′954	46'654

- 1 Topology CW-complexes
- 2 Simplicial approximation
- 3 Simplicial mapping cone
- 4 Application to projective spaces

II - Simplicial approximation improved

- 1 Local subdivisions
- 2 Edge contractions
- 3 Weak simplicial approximation
- 4 Application to projective spaces, second attempt

- 1 Lens spaces
- 2 Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$

The Grassmannian $\mathcal{G}_2(\mathbb{R}^4)$ is the set of 2-dimensional planes in \mathbb{R}^4 . It can be given a smooth manifold structure of dimension 4. Its cohomology groups are:

$$H^{0}(\mathcal{G}_{2}(\mathbb{R}^{4}), \mathbb{Z}_{2}) = \mathbb{Z}$$

$$H^{1}(\mathcal{G}_{2}(\mathbb{R}^{4}), \mathbb{Z}_{2}) = \mathbb{Z}_{2}$$

$$H^{1}(\mathcal{G}_{2}(\mathbb{R}^{4}), \mathbb{Z}_{2}) = \mathbb{Z}_{2}$$

$$H^{1}(\mathcal{G}_{2}(\mathbb{R}^{4}), \mathbb{Z}_{p}) = 0$$

$$H^{2}(\mathcal{G}_{2}(\mathbb{R}^{4}), \mathbb{Z}_{2}) = (\mathbb{Z}_{2})^{2}$$

$$H^{2}(\mathcal{G}_{2}(\mathbb{R}^{4}), \mathbb{Z}_{p}) = 0$$

$$H^{3}(\mathcal{G}_{2}(\mathbb{R}^{4}), \mathbb{Z}_{2}) = \mathbb{Z}_{2}$$

$$H^{3}(\mathcal{G}_{2}(\mathbb{R}^{4}), \mathbb{Z}_{p}) = 0$$

$$H^{4}(\mathcal{G}_{2}(\mathbb{R}^{4}), \mathbb{Z}_{p}) = \mathbb{Z}_{p}$$

where p is any prime number > 2.

Consider a plane $T \in \mathcal{G}_2(\mathbb{R}^4)$. Let (u, v) be a basis, and consider the matrix

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ w_1 & w_2 & w_3 & w_4 \end{pmatrix}$$

By mean of elementary operations, it can be reduced to a unique matrix in orthogonal reduced echelon form $\begin{pmatrix} v_1' & v_2' & v_3' & v_4' \\ w_1' & w_2 & w_3' & w_4' \end{pmatrix}$ such that:

- $\bullet \|v'\| = \|w'\| = 1$
- ullet the last nonzero coordinate of v' is positive
- v' and w' are orthogonal

ullet the last nonzero coordinate of w' is positive

Consider a plane $T \in \mathcal{G}_2(\mathbb{R}^4)$ and its matrix in reduced echelon form $\begin{pmatrix} v_1' & v_2' & v_3' & v_4' \\ w_1' & w_2 & w_3' & w_4' \end{pmatrix}$

Let i (resp. j) be the index of the last nonzero coordinate of v' (resp. w'). The pair (i,j) is called the *Schubert symbol* of the plane T.

There are 6 potential Schubert symbols for $\mathcal{G}_2(\mathbb{R}^4)$:

$$(1,2) \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$(1,3) \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & * & * & 0 \end{pmatrix}$$

$$(1,4) \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & * & * & * \end{pmatrix}$$

$$(2,3) \quad \begin{pmatrix} * & * & 0 & 0 \\ * & * & * & 0 \end{pmatrix}$$

$$(2,4)$$
 $\begin{pmatrix} * & * & 0 & 0 \\ * & * & * & * \end{pmatrix}$

$$(1,2) \quad \begin{pmatrix} * & * & * & 0 \\ * & * & * & * \end{pmatrix}$$

 $\dim 4$

Consider a plane $T\in\mathcal{G}_2(\mathbb{R}^4)$ and its matrix in reduced echelon form $\begin{pmatrix}v_1'&v_2'&v_3'&v_4'\\w_1'&w_2&w_3'&w_4'\end{pmatrix}$

Let i (resp. j) be the index of the last nonzero coordinate of v' (resp. w').

The pair (i, j) is called the *Schubert symbol* of the plane T.

There are 6 potential Schubert symbols for $\mathcal{G}_2(\mathbb{R}^4)$:

$$\dim 0 \qquad (1,2) \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad (1,3) \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & * & * & 0 \end{pmatrix} \qquad \dim 1$$

$$\dim 2 \qquad (1,4) \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & * & * & * \end{pmatrix} \qquad (2,3) \qquad \begin{pmatrix} * & * & 0 & 0 \\ * & * & * & 0 \end{pmatrix} \qquad \dim 2$$

$$\dim 3 \qquad (2,4) \qquad \begin{pmatrix} * & * & 0 & 0 \\ * & * & * & * \end{pmatrix} \qquad (1,2) \qquad \begin{pmatrix} * & * & * & 0 \\ * & * & * & * \end{pmatrix} \qquad \dim 4$$

Proposition: $\mathcal{G}_2(\mathbb{R}^4)$ admits a CW-structure with 6 cells. Each cell corresponds to a pair (i,j), and contains all the planes T with Schubert symbol (i,j).

After some computations, one finds explicit expressions for characteristic maps and gluing maps.

Simplicial approximation to $\mathcal{G}_2(\mathbb{R}^4)$ $_{35/35}$ $_{(1/4)}$

Running the algorithm as is will give a simplicial complex with millions of vertices. Let us use handcrafted simplicial approximations for the first cells instead.

(1,2): 1 vertex

(1,3):3 vertices

(1,4): 6 vertices

(2,3): 9 vertices

(2,4): 46 vertices

Simplicial approximation to $\mathcal{G}_2(\mathbb{R}^4)$ $_{35/35}$ (2/4)

Running the algorithm as is will give a simplicial complex with millions of vertices. Let us use handcrafted simplicial approximations for the first cells instead.

Gluing the last cell (3,4): 38'951 vertices, 3'642'258 simplices.

After edge contractions: 7'700 vertices, 1'061'892 simplices (via skeleton-blockers).

Simplicial approximation to $\mathcal{G}_2(\mathbb{R}^4)$

35/35 (3/4)

Embedding of the 4-simplex, seen as a triangulation of the 3-sphere, in the 3-cell of $\mathcal{G}_2(\mathbb{R}^4)$:

Gluing the last cell (3,4): 38'951 vertices, 3'642'258 simplices.

After edge contractions: 7'700 vertices, 1'061'892 simplices (via skeleton-blockers).

Simplicial approximation to $\mathcal{G}_2(\mathbb{R}^4)$

35/35 (4/4)

Embedding of the 4-simplex, seen as a triangulation of the 3-sphere, in the 3-cell of $\mathcal{G}_2(\mathbb{R}^4)$:

Gluing the last cell (3,4): 38'951 vertices, 3'642'258 simplices.

Thank you!

After edge contractions: 7'700 vertices, 1'061'892 simplices (via skeleton-blockers).