

Zobrazování a osvětlování. Vizualizace

Petr Felkel

Grafická skupina katedry počítačů ČVUT FEL místnost E413 na Karlově náměstí felkel@fel.cvut.cz

I. Zobrazování a osvětlování

I. Zobrazování a osvětlování

- Základní zobrazovací algoritmy
- Metody výpočtu osvětlení
- Globální osvětlovací metody

Základní zobrazovací algoritmy

- Závisí na reprezentaci dat
- Pro hraniční reprezentaci:
- Object order jen viditelnost + osvětlení model
 - Zpracovávají popořadě objekty
 - Malířův algoritmus (Back to Front)
 - Z-buffer (libovolné pořadí)
 - Radiozita (vzájemné osvětlení plošek)
- Image order
 - Popořadě pixely, zkoumají, co do nich padne (vysílají se paprsky z oka skrz pixely do scény)
 - Sledování paprsku (Ray tracing)
 - Pro objemy F-B, B-F projekce sumace, splatting (viz dále)

Metody výpočtu osvětlení

- Lokální metody výpočtu osvětlení (dosud)
 - Objekty se vzájemně neosvětlují
 - Jako by každý byl sám ve scéně se všemi světly
 - Jenom se řeší vzájemná poloha kvůli viditelnosti
 (Zakrývají se vzájemně, ale nezakrývají světla, ani se vzájemně neosvětlují)
 - Malířúv algotirmus, Z-buffer rychlé
 - (simuluje se ambientním světlem,...)
- Globální osvětlovací metody
 - Odraz od tělesa může osvětlit stěnu odvrácenou od světla (Kaustiky (prasátka) ve vodě, mlha a mraky ve vzduchu,...)
 - Problém je simulace všech optických jevů v reálném čase

- Simulují skutečný svět (fotorealismus)
- Stíny či polostíny (měkké stíny)
- Vzájemný difúzní odraz
 (Osvětlení odvrácených ploch, zabarvení ploch)
- Kaustiky
- Pohledově nezávislé řešení (radiozita)
- Pohledové závislé řešení (sledování paprsku)

Měkké stíny

DavidAmbrož, http://www.shadowstechniques.com/

Kaustiky a vzájemný difúzní odraz

obr. 3-1 Vlevo ukázka raytracingu, s typickými ostrými stíny, vpravo ukázka photon mapingu s měkkými stíny a kaustikou

Jiří Tuháček, diplomová práce, CGG FEL

Pohledově nezávislé řešení (radiozita)

2 kroky:

- 1. vypočte rozdělení světla ve scéně
 - vzájemnou viditelnost plošek
 - matice konfiguračních faktorů
 - řeší radiozitní rovnici
 - pohledově nezávislé
- 2. Zobrazí pohled
 - jen určí viditelnost pro polohu kamery

Pohledové závislé řešení

- Metody vycházející od pozorovatele (pixelu)
- Metody vycházející od světel
- Dvousměrové metody

Metody vycházející od pozorovatele (gathering methods)

- Postupují proti směru světla (z pixelů ke světlům)
- Akumulují příspěvky podél dráhy paprsku
- Zpětné sledování paprsku (Ray tracing) A
- Sledování cesty (path tracing) BRDFB

Metody vycházející od světelných zdrojů (shooting meth.)

- (Photon tracing = Ray tracing pozadu)
- Monte Carlo sledování světla (light tracing) C

Obrázek převzat od doc. Žáry

SledujPaprsek (paprsek R, hloubka rekurze H)

- Nalezni průsečík P paprsku R s nejbližším tělesem ve scéně
- Pokud průsečík P neexistuje // paprsek opustil prostor scény přiřaď paprsku R barvu pozadí a skonči
- Ke každému světelnému zdroji vyšli z bodu P stínový paprsek a pokud k němu paprsek dorazí, označ světelný zdroj jako nezakrytý
- 4. Vyhodnoť příspěvky osvětlení v bodě P od všech nezakrytých světelných zdrojů
- 5. Pokud hloubka H nepřekročila maximální hloubku sledování, vyšli:
 - (a) odražený paprsek RR voláním SledujPaprsek (RR, H + 1)
 - (b) lomený paprsek RT voláním SledujPaprsek (RT, H + 1)

http://glasnost.itcarlow.ie/~powerk/Graphics/Notes/node12.html

http://glasnost.itcarlow.ie/~powerk/Graphics/Notes/node12.html **Petr Felkel** 15**

http://en.wikipedia.org/wiki/Image:Raytracing_reflection.png

BRDF [MPG]

Dvousměrová odrazová distribuční funkce

(Bidirectional reflectance distribution function)

Popisuje poměr radiance odražené ve směru ω_r k
 radianci dopadající ze směru ω_i, v určitém bodě x

 Radiance = přijatý či vyzářený výkon na jednotkovém prostorovém úhlu na jednotku kolmo promítnuté plochy

Polární souřadnice, 2 směry, každý 2 úhly => 4 parametry

B. Sledování cesty (path tracing) - BRDF

- Monte Carlo sledování cesty (od pozorovatele)
- Generuje 1000-10 000 paprsků na pixel
- Každý sleduje podobně jako ray-tracing, ale
- Volí náhodný úhel odrazu a pro tento úhel vyhodnotí BRDF
- Zvládne kaustiky i difúzní odraz

B. Sledování cesty (path tracing) – BRDF

Monte Carlo sledování světla (light tracing)

- Sleduje světlo od světelných zdrojů (Shooting method)
- Určí se výkon odcházejícího paprsku
- Pak se paprsek rekurzívně sleduje. V místech odrazu se určí množství světla jdoucí k pozorovateli
- Průsečík paprsku k pozorovateli se zobrazovací rovinou

= příspěvek k barvě pixelu

Problémy:

- Mnoho nevyužitých paprsků
- Velký šum

Dvousměrové metody (bidirectional methods)

- Současně paprsky od světel a od pozorovatele
- a) Dvousměrové sledování cesty (bidirectional path tracing)
 - Najdou se průsečíky se scénou (x_i) a (y_k)
 - Najdou se všechny kombinace x_i a y_k (každý s každým)
 - Určí se viditelnost a vzájemné příspěvky radiance

b) Fotonové mapy

- 1. Vystřelí *fotony* od zdrojů, uloží se do 3D fotonové mapy (fotony od všech světel)
- Pak ray tracing najde průsečík, sesbírá fotony v jeho okolí => tj. příspěvek od všech světel

Dvousměrové sledování cesty (bidirectional path tracing)

Současně light tracing (shooting) a path tracing...

II. Vizualizace

© Felkel -> Žára -> Felkel

II. Vizualizace

- Co je vizualizace (vědecká i "nevědecká" :-)
- Proces vizualizace
- Získávání dat
- Datové typy
- Zpracování dat

Vizualizace

= postup, vyjádření hodnot a vztahů obrazem

Počátky vizualizace

Cholera v Broad Street, Londýn, 1854

Vizualizační řetězec

Proces vizualizace

Řetězec transformací

- konvertuje hrubá data na obraz srozumitelný člověku,
- zachovává integritu (celistvost, úplnost) informace

Pravidla vizualizace

- Názornost zobrazení
 - získání co nejlepší představy o zobrazované funkci, jejím průběhu
 - cílem nemusí být krásné obrazy ale pochopení (insight)
 - interakce, animace (steering)
- Věrnost, pravdivost
 - vizualizace nesmí zkreslovat a způsobovat vznik nových, nepůvodních jevů (artefakty)
- Rychlost zobrazení (alespoň jednotky fps)

Získávání dat

Pozorováním (měřením reálné situace):

Sada vzorků + interpolace Při převzorkování vznik artefaktů

Simulací (modelováním):

abstraktní model - fyzika, mat. popis

simulační model - realizovatelné přiblížení

simulace - experimenty

interpretace

Příklad: vizualizace pozorování

Příklad: vizualizace simulace proudění

Vizualizace geometrických objektů (streamlines)

Petr Felkel 32

Struktury dat – body a mřížky (*lattice*)

Izolované bodové vzorky (samples)

např. z meteorologických balónů

Mřížky (lattice)

- Pravoúhlá mřížka (ortogonal, rectilinear, perimeter)
 Kartézská (cartesian)
 Pravidelná (regular, uniform)
- Strukturovaná (nonrectilinear, curvilinear)
- Nestrukturovaná (unstructured, pyramid)
- Blokově strukturovaná
- Hybridní

Druhy mřížek

kartézská

pravidelná

pravoúhlá

strukturovaná

nestrukturovaná

blokově strukturovaná

hybridní

Pyramidální mřížka

omputer Graphics Group

VEFS reprezentace

Řízení simulace

- Následné zpracování (post-processing)
 - filmový režim (*movie mode*)
 - interaktivní vizualizace (interactive post-processing)
- Sledování (tracking)
- Interaktivně řízená vizualizace (interactive steering)

Filmový režim (movie mode)

Interaktivní vizualizace (post-processing)

Sledování (tracking)

Interaktivní simulace (interactive steering)

Zhodnocení a obohacení dat

- Zhodnocení nejčastěji konvoluční filtrací:
 - Potlačení zkreslení (šumu)
 - Zdůraznění hran
 - Zvýšení kontrastu
- Obohacení
 - dopočítáním normál
 Odhad symetrickou diferencí
 (a la bump textures)
 - Výpočet izočar

Rozměry dat

Mapování dat

- Barva
- Tvar
- Orientace
- Velikost

. . . .

Převod skalárů na barvy

vrhání
paprsku
+
trilineární
interpolace

2D pole skalárních dat

skalár => barva, výška + izočáry

2D obraz 3D pole vektorů

"stopy", ztenčující se dle směru vektoru

Spirální vekt. data - streamlines

více křivek

pouze vzorky

barva

~

osa x

umístění

vzorků

Vícerozměrné vektory

GLYF

ikona s více významy

Zpracování voxelových dat

- Snímání dat
- Rekonstrukce z řezů
- Převod objem => B-Rep
- Decimace
- Přímé zobrazování objemu

3D voxelová data

3D pole dat

- Statická 3D data
 - f: $R^3 -> R^n$
 - snadno skaláry (n=1), resp. vektory n<=3
 - problém: v meteorologii n ~ 30
 - výhodné použití animací
- Dynamická 3D data (animace)
 - f: $R^4 -> R^n$ ([x, y, z, t])
 - animace neřízená/řízená (steering)

Voxely nebo buňky?

VOXEL
naměřené hodnoty
jsou uprostřed

BUŇKA naměřené hodnoty jsou ve vrcholech

Aplikace: Medicínská data

- 1. Pořízení (CAT, MRI)
 - netriviální algoritmy
 - vzdálenosti mezi řezy jiné než mezi buňkami
- 2. Vylepšení 2D řezů
 - filtrace (šum, kontrast)
 - vyrovnání histogramu ve všech řezech
- 3. Vylepšení 3D
 - převzorkování do uniformní mřížky
- 4. Klasifikace, segmentace
 - druhy tkání (ručně/automaticky)

Příklad rekonstrukce

Příklad rekonstrukce

3D rekonstrukce

řezy na sebe + interpolace (regularizace)

Jaký skutečný tvar?

Interpolace:

(vyšší řád - jen 1.5% rozdíl)

Zobrazení 3D dat

- Povrchové algoritmy
 - pomocná reprezentace (izoplochy) [POMALÉ] surface fitting
 - klasický rendering [RYCHLÉ]
 z-buffer
- Objemové algoritmy
 - přímé zobrazení povrchových i všech dat [INTERAKTIVNÍ RYCHLOST] direct volume rendering

Povrchové algoritmy

Konturování (tiling)

- Pochodující kostky, čtyřstěny, ...
 (Marching cubes, tetrahedra)
- Výsledkem vždy soubor trojúhelníků, případně vrcholů s normálami

Pochodující kostky (princip ve 2D)

Mřížka skalárních hodnot (binární, šedotónové)

Izočára (izoplocha)

Objem vnitřní/vnější

Případy ve 3D

Algoritmus

- Zpracování po řezech
- Interpolace polohy vrcholů
- Normály ve vrcholech

Nejednoznačnost

Vznik děr

- Kráčející čtyřstěny
 - jednoznačné
 - 5 variant poloh
 - generují mnoho trojúhelníků

Decimace počtu trojúhelníků

Různé algoritmy

- kriteria zjednodušování
- geometrie, topologie, barvy, textury
- LOD

Přímé zobrazování objemu

- Vrhání paprsku (Ray casting)
- Projekce (Splatting, V-buffer)
- Kombinace povrchové a objemové reprezentace (Volumetric Ray-tracing)

Charakteristika metod

- + přímo, bez pomocné povrch. reprezentace
- beztvaré materiály (mraky, kapaliny, plyny)
- + množinové operace
- tas nezávisí na složitosti objektů
- prochází celý objem dat (čas, paměť, přístup)
 - => postupné zjemňování (*prog. refinement*)
- nepřesné (zubaté objekty)
- výpočty závislé na pohledu

Podobnost s rastrovou grafikou

Okolí voxelu

6-okolí

18-okolí

26-okolí

Různé typy paprsků (průchodů)

Způsob zpracování voxelů

- V prostoru obrazu (image order)
 procházíme pixely, vysíláme paprsky do objemu, akumulujeme příspěvky
- V prostoru objemu (object order)
 procházíme voxely (Front-Back nebo B-F), promítáme je na obrazovku
 - jako celek (splatting)
 - pro každý pixel integrovat zvlášť (V-buffer)

Prostor obrazu X prostor objemu

Osvětlovací model - principy

Voxely:

- Vzájemně si nezakrývají okolní světlo
- Navzájem světlo neodrážejí zrcadlově
- Rozptylují dopadající a tlumí procházející světlo (nebo dokonce vyzařují vlastní)

Osvětlovací model (spojitý)

hustota \mathbf{D} , útlum τ , odrazová funkce \mathbf{P} , úhel mezi paprskem a světlem θ

Diskrétní osvětlovací model

Využití izoploch

3 dále zpracovávané oblasti dané izoplochou:

- front
- surface
- back

Varianty vyhodnocení paprsku

- Zobrazení celého objemu
 - zobrazení maxima, součtu, průměru jasu
- Vyhledání povrchu
 - konstantní barva dle objektu (flat shading)
 - jas dle vzdálenosti
- Vyhledání povrchu a odhad normály
 - odhad gradientu symetrickou diferencí

Max hodnota podél paprsku

Součet hodnot podél paprsku

Prům. hodnota podél paprsku

Hodnoty na povrchu

Vzdálenost povrchu

Normály v paměti hloubky

Normály v binárním objemu

Normály v šedotónovém objemu

Segmentace a prezentace

Odkazy

[MPG] Žára, Beneš, Sochor, Felkel. *Moderní počítačová grafika*, Computer Press, 2004

kap. 10 Světlo, str. 319-336 a

kap. 15 Globální zobrazovací metody, STR 413-455