1 $(u_n)_{n\in\mathbb{N}}$ est la suite réelle définie par :

$$\begin{cases} u_0 = 14 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 2u_n - 5. \end{cases}$$

- 1. Calculer u_n pour $n \in [0; 2]$.
- 2. Écrire un programme Python d'entête suite(n) qui renvoie la valeur de u_n .
- 3. Démontrer que : $\forall n \in \mathbb{N}, \ u_n = 9 \times 2^n + 5.$

2 $(u_n)_{n\in\mathbb{N}}$ est la suite réelle définie par :

$$\begin{cases} u_0 = 2 \\ u_1 = 5 \\ \forall n \in \mathbb{N}, \ u_{n+2} = 5u_{n+1} - 6u_n. \end{cases}$$

- 1. Calculer u_n pour $n \in [0; 3]$.
- 2. Écrire un programme Python d'entête suite(n) qui renvoie la valeur de u_n (récursif et itératif).
- 3. Démontrer que pour tout entier naturel n,

$$u_n = 2^n + 3^n$$
.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 1 \\ u_1 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+2} = \frac{u_{n+1}^2}{u_n}. \end{cases}$$

Démontrer que pour tout entier naturel n,

$$u_n = 2^n$$
.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 0 \\ u_1 = 0 \\ u_2 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+3} = 3u_{n+2} - 3u_{n+1} + u_n. \end{cases}$$

Démontrer que pour tout entier naturel n,

$$u_n = n(n-1).$$

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}^*, \ u_n = \prod_{k=0}^{n-1} u_k. \end{cases}$$

- 1. (a) Calculer u_4 .
 - (b) Montrer que $\forall n \in \mathbb{N}^*, \ u_n^2 = \prod_{k=0}^n u_k$.
- 2. En déduire, pour tout $n \in \mathbb{N}^*$, une relation entre u_{n+1} et u_n .
- 3. Démontrer que : $\forall n \in \mathbb{N}^*, \ u_n = 2^{2^n 1}$.