機器學習導論 期中報告

Part A.

- 1. 在一次線性回歸中,只有一個係數,而截距會自動存放至 $intercept_$ 中,所以 $lr.coef_[0]$ 就是迴歸係數 $\theta 1$,在二次線性回歸中截距則會被存放在 $lr.coef_[0]$ 的位置,所以迴歸係數 $\theta 1$ 會在 $lr.coef_[1]$ 。
- 2. 在 Elastic Net 中的損失函數可以看出 alpha 和 11_ratio 分別是設定 Ridge 跟 LASSO 的 值,根據題目給的函數的係數為 1/3 為 LASSO 的 1/4 為 Ridge,所以 alpha 和 11_ratio 設定 為 1/4 (0.25)與 1/3(0.33)
- 3. 在建立決策樹時,無須先對數執行特徵做正規化,因為資料數值縮放不影響決策樹節點位置,對 樹模型的結構不造成影響。

Part B.

4. 隨機梯度下降法

(1)
$$h_{\theta}(x) = 1 + 2x$$

 $\theta_0 = 1 - 0.03 (-5 * (-3) - 6) = 0.73$
 $\theta_1 = 2 - 0.03 (-5 * (-3) - 6) * (-3) = 2.81$
 $\therefore h_{\theta}(x) = 0.73 + 2.81x$

$$(2) i = 2$$

$$h_{\theta}(x) = 0.73 + 2.81x$$
 $\theta_{0} = 0.73 - 0.03 (-2.08 * (-1) - 4) = 0.7876$
 $\theta_{1} = 2.81 - 0.03 (-2.08 * (-1) - 4) * (-1) = 2.7524$
 $\therefore h_{\theta}(x) = 0.7876 + 2.7524x$
 $i = 3$
 $h_{\theta}(x) = 0.7876 - 2.7524x$
 $\theta_{0} = 0.7876 - 0.03 (0.7876 * 0 - 2) = 0.8476$

$$\theta_1 = 2.7524 - 0.03 (0.7876 * 0 - 2) * (0) = 2.7524$$

$$h_{\theta}(x) = 0.8476 + 2.7524x$$

$$i = 4$$

$$h_{\theta}(x) = 0.8476 + 2.7524x$$

$$\theta_0 = 0.8476 - 0.03 (3.6 * 1 - 0) = 0.7396$$

$$\theta_1 = 2.7524 - 0.03 (3.6 * 1 - 0) * (1) = 2.6444$$

$$h_{\theta}(x) = 0.7396 + 2.6444x$$

$$i = 5$$

$$h_{\theta}(x) = 0.7396 + 2.6444x$$

$$\theta_0 = 0.7396 - 0.03 (11.3172 * 4 - (-8)) = -0.8585$$

$$\theta_1 = 2.6444 - 0.03 (11.3172 * 4 - (-8)) * (4) = -3.7479$$

$$h_{\theta}(x) = -0.8585 - 3.7479x$$

(3) 會產生不同的模型,因為不同順序帶入值,每次計算 $\theta_0\theta_1$ 都會產生不同的值,最後算出也會有不同的模型出來。

Part 3.

5. 比較決策樹 ID3, C4.5 CART

演算法	資料屬性	分割規則	修剪樹規則
ID3	離散型	Information Gain	Gain Ratio Rate
C4.5	離散型	Gain Ratio	Gain Ratio Rate
CART	離散與連續型	Gini index	Entire Error Rate

6. 什麼是過擬合?如何降低?

過擬合是指訓練的模型對驗證資料集的 Performance 很差,但是對訓練資料集的 Performance 卻 很好。通常會從損失曲線圖來觀察是否有過擬合現象。

可以透過縮減模型大小、加入權重正規化,在神經網路的話可以使用 dropout。

7. 比較梯度下降法和隨機梯度下降法

GD 是一次用全部訓練集的數據去計算損失函數的梯度,每一次下降就更新一次參數。

SGD 是一次跑一個樣本然後算出一次梯度平均後就更新一次,那這個樣本是隨機抽取的。

- 8. Precision 與 Recall 很難同時兼得,題目中表示 Precision 很高,代表 Recall 可能偏低,而 Recall 的意義在於在所有的目標中總共找出了多少個的比例,因此才會出現使用者卻還是常常 反應找不到他們想要物品的問題。
- 9. 將樣本數提高,因為樣本數提高時,在建立模型時有更好的資料能夠去建立分類模型,再拿測試資料去測試時,才能夠把 TP Rate 提升,FP Rate 降低,此時的,折線就會越趨向平滑。
- 10.(1) Logistic Regression,可以正確判斷,但需要兩個或以上的羅吉斯回歸才可判斷,依照此數據無法用一條回歸線正確分類成兩類,但可以先用一條回歸線將全部先分成左右或是上下,再用另一條回歸線正確切割分類,即可獲得正確分類。
 - (2) Decision Tree,可以正確判斷,因為只要判斷兩次就能知道是屬於 0 或是 X,比如判斷 X 軸是否大於 0.5,若有再判斷 Y 值是否有大於 0.5,若有,即可分類為 0,反之為 X,但若有新的資料產生界在於 0.5 左右時,決策樹判斷可能會失準。