Ex5

First question:

- 1. In order to find all keys of athlete_events, we will run the algorithm we saw at class: ID, Year, Season, Event.
- 2. Finding normal form of athlete_events:

Let us look at the first relation of F. ID \rightarrow Name, Sex. ID is not a superkey, and Name is not an attribute in a key.

It's neither BCNF or 3NF.

3. Check if the decompression is lossless

 $R_1 = (ID, Year, Season, Name, Sex, Age, Height, Weight)$

R₂ = (ID, Year, Season, City, Team, Event, Sport, Medal)

 $R_3 = (Team, NOC)$.

First we will build the row table:

	id	nam e	sex	age	heig ht	weig ht	team	noc	year	seas on	city	spor t	even t	med al
R1	a1	a2	a3	a4	а5	a6	b17	b18	a9	a10	b11 1	b11 2	b11 3	b11 4
R2	a1	b22	b23	b24	b25	b26	а7	b28	a9	a10	a11	a12	a13	a14
R3	b31	b32	b33	b34	b35	b36	а7	а8	b39	b31 0	b31 1	b31 2	b31 3	b31 4

Now we will fix the contradictions:

$ID \rightarrow Name, Sex:$

	id	nam e	sex	age	heig ht	weig ht	team	noc	year	seas on	city	spor t	even t	med al
R1	a1	a2	a3	a4	а5	a6	b17	b18	a9	a10	b11 1	b11 2	b11 3	b11 4
R2	a1	a2	b23	b24	b25	b26	а7	b28	a9	a10	a11	a12	a13	a14
R3	b31	b32	b33	b34	b35	b36	а7	а8	b39	b31 0	b31 1	b31 2	b31 3	b31 4

Year, season \rightarrow city:

	id	nam e	sex	age	heig ht	weig ht	team	noc	year	seas on	city	spor t	even t	med al
R1	a1	a2	a3	a4	а5	а6	b17	b18	а9	a10	a11	b11 2	b11 3	b11 4
R2	a1	a2	b23	b24	b25	b26	а7	b28	a9	a10	a11	a12	a13	a14
R3	b31	b32	b33	b34	b35	b36	а7	a8	b39	b31 0	b31 1	b31 2	b31 3	b31 4

ID, Year, season, city → name, sex, age, height, weight, team, noc:

	id	nam e	sex	age	heig ht	weig ht	team	noc	year	seas on	city	spor t	even t	med al
R1	a1	a2	a3	a4	а5	а6	а7	b18	а9	a10	a11	b11 2	b11 3	b11 4
R2	a1	a2	a3	a4	а5	a6	a7	b28	a9	a10	a11	a12	a13	a14
R3	b31	b32	b33	b34	b35	b36	а7	a8	b39	b31 0	b31 1	b31 2	b31 3	b31 4

team \rightarrow noc:

	id	nam e	sex	age	heig ht	weig ht	team	noc	year	seas on	city	spor t	even t	med al
R1	a1	a2	а3	a4	а5	а6	а7	a8	a9	a10	a11	b11 2	b11 3	b11 4
R2	a1	a2	а3	a4	а5	а6	а7	a8	а9	a10	a11	a12	a13	a14
R3	b31	b32	b33	b34	b35	b36	а7	а8	b39	b31 0	b31 1	b31 2	b31 3	b31 4

As we can see, row 2 has all attributes with an 'a', which means that this decomposition is lossless.

4. Step1:

 $ID \rightarrow Name$; $ID \rightarrow Sex$;

Year, season \rightarrow city;

ID, Year, season, city \rightarrow name; ID, Year, season, city \rightarrow sex; ID, Year, season, city \rightarrow age; ID, Year, season, city \rightarrow height; ID, Year, season, city \rightarrow weight; ID, Year, season, city \rightarrow team; ID, Year, season, city \rightarrow noc;

event \rightarrow sport

team→ noc

Noc, year→ team

ID, Year, season, team, noc, event → sport

ID, Year, season, team, noc, event → medal

Step 2:

Year+ = \emptyset , season+ = \emptyset

So: ID \rightarrow Name; ID \rightarrow Sex; Year, season \rightarrow city; are part of the minimal cover in this step

(ID, year, season)+ = city, therefore:

ID, Year, season \rightarrow age; ID, Year, season \rightarrow height; ID, Year, season \rightarrow weight; ID, Year, season \rightarrow team; ID, Year, season \rightarrow noc; also part in this step.

event → sport

team→ noc

 $noc+ = \emptyset$

Noc, year→ team

Event+ = sport, therefore: event \rightarrow sport.

Team+ = noc, therefore: **ID**, **Year**, **season**, **event** → **medal**

Step 3:

Erase the redundancy, and the dependencies that can be conclude from others:

 $ID \rightarrow Name;$

 $ID \rightarrow Sex;$

Year, season → city;

ID, Year, season → age;

ID, Year, season → height;

ID, Year, season → weight;

ID, Year, season → team;

event → sport

team→ noc

Noc, year→ team

ID, Year, season, event \rightarrow medal

5.

תת סכמה באנגלית	צורה נורמלית
ID, name	BCNF
ID,sex	BCNF
Year, season,city	BCNF
ID, Year, season,age	BCNF
ID, Year, season,height	BCNF
ID, Year, season,weight	BCNF
ID, Year, season,team	BCNF
Noc, year, team	3NF
event,sport	BCNF
Team, noc	BCNF
ID, year, season, event,medal	BCNF

6. According to the algorithm we have seen in class, The decomposition is:
R1 = (id, name, sex), R2 = (sport, event), R3 = (team, noc), R4 = (year, season, city),
R5 = (ID, Year, season, medal, event), R6 = (ID, Year, season, age, height, weight, team).

7. No. let us take a look at the dependency **Noc**, **year**→ **team**. Define Z = Noc, year.

R1; Z = Noc, year \cup ((Noc, year \cap id, name, sex)+ \cap id, name, sex) = noc, year. We can see that in any scheme in the decomposition, (noc)+ = and (year)+ both empty, and those attributes don't appear together. beside the original dependency, there is no other dependency that determines 'team'.

So we can infer that this decomposition is not dependency preserving.

Second question:

- 1. name \rightarrow author, name \rightarrow genre, name, year \rightarrow price, name, year \rightarrow reviews, name, year \rightarrow user rating
- 2. (Name, year) is a key for this scheme because together it determines all parameters as we can conclude from the assumptions.
- 3. By checking the first dependency (name → author) we can disqualify the BCNF form, because it is not trivial, and 'name' is not a superkey. (name)+ does not include the attribute 'year'.
 - 'Author' is not part of any key, so this scheme is not 3NF as well.
- 4. Submitted separately
- has a contradiction: (name, year) → price, 3 rows
 Does not has a contradiction: name → author, name → genre, name, year → reviews, name, year → user rating.

R1 = (name, author) - every book can have a single author

R2 = (name, genre) - every book can have a single genre

R3=(name, year, price) - every book for a certain year can only have a certain price R4=(name, year, reviews) -

every book for a certain year can only have a amount of review

R5=(name, year, user rating) - every book for a certain year can only have a certain amount of ratings

Third question:

Let us choose (A,B,C) as the attributes of relation R, and define F as F = (A → B).
 We will choose the following decomposition: R1 = (A,B) and R2 = (C). This
 decomposition does keep F, because all pairs of (a,b) that appear at A, wil be at R1.
 But it is not lossless:

	А	В	С
R1	a1	a2	b13
R2	b21	b22	a3

There is no row filled with 'a's, therefore this decomposition is not lossless.

2. Let us choose (A,B,C) as the attributes of relation R, and define F as F = (A \rightarrow B, C \rightarrow B).

We will choose the following decomposition: R1 = (A,B) and R2 = (A,C). This decomposition does not keep F,

	А	В	С
R1	a1	a2	b13
R2	b21	b22	a3

There is no row filled with 'a's, therefore this decomposition is not lossless.

- 3. The claim is True
 - => Let R be in BCNF

as we have seen previously if it is in BCNF therefore it must be in 3NF

=> Let R be in 3NF

Let us split this into cases

- 1. F is in an empty group therefore everything is trivial and therefore R belongs to BCNF
- 2. F is not an empty group and therefore has at least one dependency such that for each dependency X-> A

For all X it can be one of two cases

- X is a SuperKey (since we are in 3NF) and therefore it meets the terms of BCNF
- 2. A is an attribute in a Key let us prove that if this if the case A must belong to X We know from the details given to us that B,C,D,E cannot be on the right hand side of a dependency therefore they must be part of the key Therefore, A,B,C,D,E is a key Lets say that A does not belong to X and X is composed from letters in B,C,D,E Therefore, since X->A a key can be composed from B,C,D,E which contradicts the fact that A belongs to a key From this we get that A must belong to X which is trivial and therefore it is in the BCNF form