

Обеспечение доверия к OCCH Astra Linux Special Edition

Девянин П.Н., научный руководитель ГК Astra Linux

КОМПОНЕНТЫ СЗИ СЕРТИФИЦИРОВАННОЙ ПО 1 КЛАССУ ЗАЩИТЫ (ДОВЕРИЯ) ОССН ASTRA LINUX SPECIAL EDITION

(интерфейсы МКЦ, ЗПС, МРД)

МРД - МАНДАТНОЕ УПРАВЛЕНИЕ ДОСТУПОМ (защита информации различных уровней конфиденциальности)

АДАПТИРОВАННАЯ КОНТЕЙНЕРНАЯ ВИРТУАЛИЗАЦИЯ – Docker

(изоляция недоверенных приложений на уровнях МКЦ, «песочницы», изоляция приложений на уровнях МРД)

МКЦ - МАНДАТНЫЙ КОНТРОЛЬ ЦЕЛОСТНОСТИ

(защита целостности программной среды, в т.ч. от вирусов, закладок и типовых атак)

ЗПС - ЗАМКНУТАЯ ПРОГРАММНАЯ СРЕДА, «КИОСК»

ПОВЕРХНОСТЬ АТАКИ

(белый список приложений, их защита от подмены)

РЕЖИМ «МАКСИМАЛЬНЫЙ» («Смоленск»)

РЕЖИМ «УСИЛЕННЫЙ» («Воронеж»)

ДИСКРЕЦИОННОЕ УПРАВЛЕНИЕ ДОСТУПОМ

(защита информации одного уровня конфиденциальности)

Apparmor

РЕЖИМ «БАЗОВЫЙ» («Орел»)

ОПЕРАЦИОННАЯ СИСТЕМА

(настройка состава устанавливаемого ПО и расширенный аудит событий безопасности)

ОСНОВНЫЕ НАПРАВЛЕНИЯ ФОРМИРОВАНИЯ МЕТОДОЛОГИИ РАЗРАБОТКИ БЕЗОПАСНОГО СИСТЕМНОГО ПО

ТРУДЫ ИНСТИТУТА СИСТЕМНОГО ПРОГРАММИРОВАНИЯ PAH

DOI: 10.15514/ISPRAS-2021-33(5)-2

Формирование методологии разработки безопасного системного программного обеспечения на примере операционных систем

¹ П.Н. Левянин. ORCID: 0000-0003-2561-794X <pdevvanin@astralinux.ru> ¹ B.IO. Тележников, ORCID: 0000-0002-6192-2856 <vtelezhnikov@astralinux.ru> ^{2,3,4,5} А.В. Хорошилов. ORCID: 0000-0002-6512-4632 <khoroshilov@ispras.ru>

1 OOO «PvcFUTex-Acmpa».

117105, г. Москва, Варшавское ш., д. 26, стр.11

² Институт системного программирования имени В.П. Иванникова РАН. 109004, Россия, г. Москва, ул. А. Солженицына, д. 25

³ Московский государственный университет имени М.В. Ломоносова 119991. Россия. Москва. Ленинские горы. д. 1

4 НИУ Высшая школа экономики.

101978, Россия, г. Москва, ул. Мясницкая, д. 20

5 Московский физико-технический институт,

141701, Россия, Московская область, г. Долгопрудный, Институтский пер., 9

Аннотация. Разработка безопасного системного программного обеспечения (ПО), на основе которого строятся сертифицированные средства защиты информации, достижение доверия к нему согласно проблема. Возможным путем ее решения является формирование соответствующей метолологии которая должна включить передовые научные результаты в области информационной безопасности и системного программирования и отразить лучшие практики разработки такого ПО. В статье рассматриваются текущие результаты формирования этой методологии, которое осуществляется по следующим направлениям. Во-первых, это деятельность по развитию нормативной базы в области разработки и обеспечения доверия к безопасному системному ПО, включая создание профильных национальных стандартов. Во-вторых, разработка и верификация формальных моделей управления лоступом, как основы механизмов защиты, входящих в состав системного ПО и составляющих его поверхность атаки. В-третьих, метолы и технологии статического и линамического анализа программного кода системного ПО с учётом его специфики. В-четвертых, способы сбора и аналитической обработки данных, получаемых в ходе анализа программного кода системного ПО. Все направления формирования методологии иллюстрируются примерами ее практического применения и апробации при разработке ОС семейства Linux, в особенности сертифицированной по высшим классам защиты и уровням доверия операционной системы специального назначения Astra Linux Special Edition

Ключевые слова: системное программное обеспечение; формальная модель управления доступом; верификация; статический и динамический анализ кода; операционная система; Astra Linux

Для цитирования: Девянин П.Н., Тележников В.Ю., Хорошилов А.В. Формирование методологии разработки безопасного системного программного обеспечения на примере операционных систем. Труды ИСП РАН, том 33, вып. 5, 2021 г., стр. 25-40. DOI: 10.15514/ISPRAS-2021-33(5)-2.

ПРИМЕНЕНИЕ МЕТОДОЛОГИИ ДЛЯ ДОСТИЖЕНИЯ ДОВЕРИЯ К OCCH ASTRA LINUX SPECIAL EDITION

Для разработки и верификации программного кода компонент ОССН в зависимости от степени их важности для обеспечения безопасности (от основы поверхности атаки — модуля PARSEC) применяются:

- ▶ Иерархическая МРОСЛ ДП-модель основа реализованных в ОССН мандатных управления доступом и контроля целостности;
- Комплекс инструментальных средств верификации МРОСЛ ДП-модели и её реализации в программном коде ОССН (Rodin, ProB, Frama-C);
- Инструментальные средства статического анализа программного кода (Svace, Clang Static Analyzer, cppcheck, AK-BC);
- Инструментальные средства динамического анализа (фаззинга) программного кода (Crusher, AFL, libFuzzer, Syzkaller4Astra);
- Инструментальное средство сбора трасс и анализа помеченных данных (Блесна);
- Средства сбора и аналитической обработки результатов анализа программного кода в «Базе данных доверия» на «Стенде доверия»;
- Система непрерывной разработки и интеграции GitLab.

РАЗВИТИЕ НОРМАТИВНОЙ БАЗЫ НА ПРИМЕРЕ ГОСТ Р 59453.1,2-2021 «ЗАЩИТА ИНФОРМАЦИИ. ФОРМАЛЬНАЯ МОДЕЛЬ УПРАВЛЕНИЯ ДОСТУПОМ»

СОДЕРЖАНИЕ

- 1. Область применения
- 2. Нормативные ссылки
- 3. Термины и определения
- 4. Общие положения
- 5. Описание состояний в рамках формальной модели управления доступом
- 6. Описание правил перехода из состояний в состояния в рамках формальной модели управления доступом
- 7. Доказательство выполнения условий безопасности

СОДЕРЖАНИЕ

- 1. Область применения
- 2. Нормативные ссылки
- 3. Термины и определения
- 4. Общие положения
- 5. Выбор инструментальных средств верификации формальной модели управления доступом
- 6. Формализованное (машиночитаемое) описание формальной модели управления доступом
- 7. Верификация формализованного (машиночитаемого) описания формальной модели управления доступом

Приложение A (справочное). Примеры перевода элементов математического описания формальной модели управления доступом в формализованное (машиночитаемое) описание

ПРИМЕРЫ ОПРЕДЕЛЕНИЙ:

- > формальная модель управления доступом: Математическое или формализованное (машиночитаемое, пригодное для автоматизированной обработки) описание средства защиты информации и компонентов среды его функционирования, предоставление доступов между которыми регламентируется политиками управления доступом, реализуемыми этим средством защиты информации.
- > политика мандатного контроля целостности: Политика управления доступом, при реализации которой задаются классификационные метки (уровни целостности): каждому объекту и субъекту доступа присваивается уровень целостности; субъект доступа может получить доступ к объекту доступа или другому субъекту доступа только в случае, когда выполняются следующие правила:
- при получении доступа на запись к объекту доступа уровень целостности субъекта доступа должен быть не ниже уровня целостности объекта доступа;
- доступ субъекта доступа к объекту или другому субъекту доступа не приводит к получению субъектом доступа управления некоторым субъектом доступа, уровень целостности которого не сравним или выше уровня целостности первого субъекта доступа.

ФОРМАЛЬНАЯ МОДЕЛЬ УПРАВЛЕНИЯ ДОСТУПОМ ОССН (МРОСЛ ДП-МОДЕЛЬ) В МАТЕМАТИЧЕСКОЙ НОТАЦИИ

Теорема т.Ц.01.БДЦ. Пусть G_0 — безопасное начальное состояние системы $\Sigma(G^*,OP,G_0)$. Пусть на всех траекториях системы без кооперации доверенных или недоверенных субъект-сессий $G_0 \mid_{op1} G_1 \mid_{op2} ... \mid_{opN} G_N$, где $N \geq 0$, и в каждом состоянии G_N для каждой субъект-сессии $s \in S_N$, сущности или сущности СУБД $e \in E_N \cup DB_E_E_N$ выполняются следующие условия условия. **Условие Ц.1.** (корректность уровней целостности сущностей, функционально ассоциированных с субъект-сессиями) Если $e \in [s]$, то выполняется условие $i_{sN}(s) \leq i_{eN}(e)$.

доступа на чтение к сущностям, параметрически ассоциированным с субъект-сессиями) Если $e \in]s[$, то $i_{sN}(s) \leq i_{eN}(e)$ и для каждой роли или административной роли $r \in R_N \cup AR_N$ такой, что $(e, read_r) \in PA_N(r)$, выполняется условие $i_{eN}(e) \leq i_{rN}(r)$. Условие Ц.3.БДЦ. (функциональная и параметрическая корректность всех доверенных субъект-сессий относительно всех доверенных субъект-сессий и сущностей ОССН и СУБД) Для всех субъект-сессий $s \in S_N$ таких, что i $low < i_{sN}(s)$, выполняются условия

Условие Ц.2. (корректность уровней целостности, а также прав

субъект-сессий $s \in S_N$ таких, что $i_low < i_{sN}(s)$, выполняются $\{s' \in S_N \mid i_low < i_{sN}(s') \le i_{sN}(s)\} \times (E_N \cup DB_E_E_N \cup S_N) \subset f_correct_N(s), \{s' \in S_N \mid i_low < i_{sN}(s') \le i_{sN}(s)\} \times (E_N \cup S_N) \subset p_correct_N(s).$

Условие БДЦ.4. (неизменность множества доверенных субъект-сессий СУБД) Множество доверенных субъект-сессий СУБД не меняется на траекториях функционирования системы: $DB_{-}L_{SN} = DB_{-}L_{SO}$. Для каждых субъект-сессий $x, y \in S_N$ выполняется, если $y \in DB_{-}L_{SO} \cap de_{-}facto_{-}own_{N}(x)$, то $x \in DB_{-}L_{SO}$. Тогда на этих траекториях система $\Sigma(G^*, OP, G_0)$ безопасна в смысле

Тогда на этих траекториях система $\Sigma(G^*, OP, G_0)$ безопасна в смыслемандатного контроля целостности.

ВЕРИФИКАЦИЯ МРОСЛ ДП-МОДЕЛИ В ФОРМАЛИЗОВАННОЙ НОТАЦИИ И ВЕРИФИКАЦИЯ ЕЕ РЕАЛИЗАЦИИ В ПРОГРАММНОМ КОДЕ ОССН

$access_read(x, x', y, \alpha_p)$								
1.1	х, у	$x \in S$, если $y \in E \cup R \cup NR \cup AR$, то существует $r \in R \cup AR$: $(x, r, read_s) \in AA$, $[ecnu) y \in E$, то $(y, read_s) \in PA(r)$ и существует контейнер $c \in T$ акой, $c \in T$ акой, что $(x, nr, read_s) \in AA$ и $(y, read_s) \in PA(nr)$, $[ecnu) y \in R \cup NR \cup AR$, то $(y, read_s) \in APA(r)$, $[ecnu) y \in R \cup AR$, то $(y, read_s) \in APA(r)$, $[ecnu) y \in R \cup AR$, то $(y, read_s) \in APA(r)$, $[ecnu) y \in R \cup AR$, то $(y, read_s) \in APA(r)$, $[exn) y \in R \cup AR$, то $(y, read_s) \in APA(r)$, $[exn) y \in R \cup AR$, $(y, read_s) \in AA$	ecnu $y \in E$, To $A' = A \cup \{(x, y, read_0)\}$, ecnu $y \in R \cup NR \cup AR$, To $AA' = AA \cup \{(x, y, read_0)\}$					
1.2	x'	$x' \in S$, [если $y \in R \cup NR \cup AR$, то $i_i(y) \le i_i(x)$, для $e \in]y[$ либо $(x, e, read_i) \in A$, либо $(x, e, write_i) \in A]$, [если $y \in R \cup NR \cup AR$ и $i_i(y) > i_ilow$, то $(x', i_ientity, write_i) \in A]$	-					
2.1	α_p	[ecnu $y \in \mathbb{F} \setminus DR$ _f. $\tau o c_x = o$], [ecnu $y \in DR$ _f. τo nn $(x, postgres_admin_role, read.) \in AA$, win cyulectayet $r \in DB_R$: $(x, r, read.) \in AA$, $c \in DB_R!NI/LEGES$, $read. \in db_rights(c_a)$, $(db_entify(y), read.) \in DB_R'(f)$, is cyulectayet kohtevite $f \in C \cup DB_x \cap C$ takon, sto execute_container($x, c_x) = real$, $f \in DB_x \cap C$ $f \in C$, $f \in C$	то $[db_login'(x) = y, AA' = AA \cup \{(x, y, read_o), (x, public_role, read_o)\}\}$, иначе $[AA' = (AA \cup \{(x, y, read_o)\}) \setminus \{(x, y, read_o) \in AA$					
2.2	-	если $y \in DB_R$, то [для $e \in]y[$ либо $(x,e,read_o) \in A$, либо $(x,e,write_o) \in A]$, $[i,(y) \le i,(x)$, и если $y \ne public_role$, то $[i,(y) = i,(db_login(x))]$, [если $i,(y) > i_low$, то $(x,db_l_entity,write_o) \in A]$	-					

МРОСЛ ДП-модель в математической нотации (более 500 страниц описания)

- > дедуктивно инструментом Rodin;
- > по методу проверки моделей (model checking) инструментом ProB.

Дедуктивная верификация спецификаций на языке ACSL функций подсистемы безопасности PARSEC инструментом Frama-C

МРОСЛ ДП-модель в формализованной нотации на языке метода Event-B:

- > базовая (более 30 тыс. строк кода);
- > экспериментальная (редуцированная);
- адаптированная для системных вызовов управления доступом в ОССН.

СТАТИЧЕСКИЙ АНАЛИЗ КОДА ОССН С ПРИМЕНЕНИЕМ SVACE, CLANG SA, CPPCHECK, AK-BC

ДИНАМИЧЕСКИЙ АНАЛИЗ КОДА ОССН С ИСПОЛЬЗОВАНИЕМ СТЕНДА SYZKALLER4ASTRA

ВИРТУАЛЬНЫЕ МАШИНЫ С ОССН

БАЗА ДАННЫХ РЕЗУЛЬТАТОВ ТЕСТИРОВАНИЯ РАСЧЕТ ПОКРЫТИЯ КОДА

```
of 2096
                                                                     int pdp lev permission(PDP LEV T slev. PDP LEV T olev. int mode)
                                             61%
                                                       of 2071
 ▼ linux-astra/parsec
                                                                              if ((mode & LEGACY IGNORE LEV)) return 0:
                                                        of 169
                                                                             if ((mode & R OK) && (slev < olev) ) return -EAGCES;
                                                                             if ((mode & W_OK) && (slev != olev) ) return -EACCES:
                                                        of 168
                                                                             if ((mode & X OK) && (slev < olev) ) return -EACCES:
                                                          of 1
                                                        of 135
                                                                             return 0;
                                                         of 22
    audit-kernel.
                                                         of 74
    cap.c
                                                         of 46
    cmdline.c
                                                                     int pdp cat permission(PDP CAT T scat, PDP CAT T ocat, int mode)
    crc16.c
                                                          of 5
                                                                             if( mode & LEGACY IGNORE CAT ) return 0:
                                                         of 2
    logfs.c
                                                        of 151
    net.c
                                                                              if( (mode&R OK) && ( (scat & ocat) != ocat ) ) return -EACCES;
                                                         of 91
    parsec-fs.c
                                                          of 6
                                                                                               && (ocat != scat) ) return -EACCES:
    path.c
                                                        of 220
    sec-audit.
                                                                             if( (mode&X OK) && ( (scat & ocat) != ocat ) ) return -EACCES;
   sec-audit.h
                                                          of
                                                        of 515
    sec-hooks.
                                                                             return 0
                                                        of 150
                                                          of 1
                                                        of 217
                                                                     int pdpml conf permission(const PDPML T *s, const PDPML T *o, int mode)
                                                         of 78
                                                                             if( pdp lev permission(s->lev,o->lev,mode) || pdp cat permission(s->cat,o->cat,mode) ) {
                                                        of 163
 parsec elfrand.c
                                                          of 5
                                                                             return 0;
 parsec_gost89.c
                                                         of 20
safesetid
                                                         of 78
```

CRASHES + CORPUS

РЕЗУЛЬТАТЫ ФАЗЗИНГ-ТЕСТИРОВАНИЯ ИНСТРУМЕНТАМИ CRUSHER (ИСП РАН), AFL, LIBFUZZER И SYZKALLER4ASTRA MEXAHИЗМОВ ЗАЩИТЫ ОССН

LCOV - code coverage report

 Current view: top level
 Hit
 Total
 Coverage

 Test: cov.info
 Lines:
 2700
 3101
 87.1 %

 Date: 2021-11-25 13:15:09
 Functions:
 226
 234
 96.6 %

Directory	Line Coverage ≑			Functions \$	
/usr/include/x86_64-linux- gnu/bits		76.5 %	26 / 34	-	0/0
/usr/include		100.0 %	2/2	100.0 %	1/1
/usr/include/x86_64-linux- gnu/sys		100.0 %	1/1	-	0/0
1ib-aud		88.6 %	1170 / 1320	97.9 %	94 / 96
lib-aud-db-files		90.9 %	189 / 208	100.0 %	11 / 11
1ib-aux		92.5 %	544 / 588	100.0 %	42 / 42
<u>lib-base</u>		81.0 %	235 / 290	100.0 %	24 / 24
<u>lib-cap</u>		80.9 %	511 / 632	93.1 %	54 / 58

70% – покрытие модулей безопасности PARSEC (поверхности атаки) по базовым блокам;

80% – покрытие модулей пользовательского пространства по строкам;

72 часа – среднее время устранения выявляемых ошибок в модулях безопасности.

АНАЛИЗ ПОМЕЧЕННЫХ ДАННЫХ ПРИ СБОРЕ ТРАСС ПРОГРАММ ИНСТРУМЕНТОМ БЛЕСНА (ИСП РАН)

Инструмент БЛЕСНА

МАСШТАБИРУЕМАЯ СТРУКТУРА СТЕНДА ДОВЕРИЯ ДЛЯ ВЕРИФИКАЦИИ И АНАЛИЗА КОДА ОССН

ИНТЕРФЕЙС БАЗЫ ДАННЫХ ДОВЕРИЯ. ВЫВОД ИНФОРМАЦИИ О ОШИБКАХ

РЕАЛИЗАЦИЯ С ПРИМЕНЕНИЕМ МЕТОДОЛОГИИ ВЕРИФИЦИРОВАННОГО MEXAHU3MA ЗАЩИТЫ OCCH ASTRA LINUX SPECIAL EDITION

Спасибо за внимание!