Lecturer: Alex B. Grilo

Lecture # 04 - Simon's algorithm, QFT and Shor's algorithm

Quantum Fourier transform

- 1. Show that QFT_N is unitary.
- 2. In this exercise we will show how to compute QFT_N for $N=2^n$ with a gateset composed of H, $SWAP^1$ and the controlled version of one-qubit gates of the form

$$R_s = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^s} \end{pmatrix}.$$

(a) Show that for every string $x \in \{0,1\}^n$, we have that $QFT_N|x\rangle$ is equal to

$$\left(\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi ik/2}|1\rangle\right)\right) \otimes \left(\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi ik/2^2}|1\rangle\right)\right) \otimes \dots \otimes \left(\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi ik/2^n}|1\rangle\right)\right). \tag{1}$$

(b) What is the output of the following circuit on input $|x\rangle$.

- (c) What is the difference between the answer of Exercise 2b and Equation 1?
- (d) Can you propose a quantum circuit to compute QFT_N ?
- (e) **Pour aller plus loin...** Show that R_s can be approximated using H, R_1 , R_2 and R_3 .
- 3. Let U be an m-qubit unitary and $|\psi\rangle$ is an m-qubit quantum state such that $U|\psi\rangle=e^{2\pi i\theta}|\psi\rangle$ for some $\theta=[0,1)$ (i.e. $|\psi\rangle$ is an eigenvector of U with eigenvalue $e^{2\pi i\theta}$). In this exercise we show that using QFT, we can estimate the eigenvalue $e^{i\theta}$ (or equivalently, that we can compute θ). For simplicity, we assume that θ can be computed with n bits of precision (meaning that $2^n\theta$ is an integer number).
 - (a) Show that $U^{j}|\psi\rangle = e^{2\pi i\theta j}|\psi\rangle$.

¹Remember that SWAP is the two-qubit gate such that $SWAP|a\rangle|b\rangle=|b\rangle|a\rangle$.

²In this picture, the gates are described using circles instead of rectangles, but that is just a different notation.

(b) Compute the state of the following computation at phases 1,2,3 and 4.

Shor's algorithm

- 4. Let us consider the function $f = 7^x \pmod{10}$.
 - (a) What is the period of this function?
 - (b) Compute the state corresponding to each step of the period finding algorithm with q=128. Give an example of measurement outcome ℓ that would allow you to compute the period (i.e. $\frac{\ell}{q}=\frac{k}{r}$ in its lowerst terms).