МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

КУРСОВАЯ РАБОТАпо дисциплине «Системы реального времени на основе Linux»

Студенты гр. 3304	 Бакаев И.О.
	 Диогенова К.А.
	 Казачкова А.Д.
Преподаватель	 Филатов Ан. Ю.

Санкт-Петербург 2018

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студенты Бакаев И.О., Диогенова І	К.А., Казачкова А.Д.
Группа 3304	
Тема: Футбол	
Задание:	
Исходная постановка задачи:	
Симулировать игру двух команд ро	оботов с целью закатить мяч в чужие ворота
Исходные данные:	
Две команды, один мяч. Можно да	вать пас, можно вести мяч. Наезжать друг на
друга нельзя. Можно отобрать мяч	н (как во время паса, так и у едущего с ним
робота). Игра до победного гола (не	ескольких голов)
Студенты гр. 3304	Бакаев И.О.
	Диогенова К.А.
	Казачкова А.Д.
Преподаватель	Филатов Ан. Ю.

ВВЕДЕНИЕ

Необходимо написать программу, которая будет симулировать игру двух команд роботов с целью закатить мяч в чужие ворота. Ниже перечислены задачи, которые необходимо решить:

- Передача сообщений и местоположении мяча, роботов-игроков и ворот между роботами;
- Построение траектории движения.

Ограничения на исходные данные:

- В команде три-пять роботов, один из которых вратарь. Разрешено использование коллективного разума для принятия решения или наличие одного централизованного мозга.
- У роботов есть координаты других относительно друг друга, а также координаты мяча.

1. ОСНОВНЫЕ ТЕОРИТИЧЕСКИЕ ПОЛОЖЕНИЯ

ROS (Robot Operating System) — Операционная система для роботов — это фреймворк ДЛЯ программирования роботов, предоставляющий функциональность для распределённой работы. ROS был первоначально 2007 switchvard разработан году под названием Лаборатории Искусственного Интеллекта тэнфордского Университета для проекта (STAIR). В 2008 продолжается Willow Garage, году развитие научноисследовательском институте/инкубаторе робототехники, совместно с более чем двадцатью сотрудничающими институтами

ROS обеспечивает стандартные службы операционной системы, такие как: аппаратную абстракцию, низкоуровневый контроль устройств, реализацию часто используемых функций, передачу сообщений между процессами, и управление пакетами. ROS основан на архитектуре графов, где обработка данных происходит в узлах, которые могут получать и передавать сообщения между собой. Библиотека ориентирована на Unix-подобные системы (Ubuntu Linux включен в список «поддерживаемых», в то время как другие варианты, такие как Fedora и Mac OS X, считаются «экспериментальными»).

ROS имеет две основные «стороны»: стороны операционной системы гоз, как описано выше и ros-pkg, набор поддерживаемых пользователями пакетов (организованных в наборы, которые называются стек), которые реализуют различные функции робототехники: SLAM, планирование, восприятие, моделирование и др.

ROS выпускается в соответствии с условиями BSD-лицензии и с открытым исходным кодом. ROS бесплатен для использования, как в исследовательских, так и в коммерческих целях.

2.ИСПОЛЬЗУЕМЫЕ НОДЫ И ТОПИКИ

На рисунке 1, с помощью программы rqt_graph, представлены все ноды и топики, используемые в программе.

Рисунок 1 – Ноды и топики программы

3. РЕЗУЛЬТАТ РАБОТЫ ПРОГРАММЫ

На рисунке 2 представлена работа программы в пакете GAZEBO.

Рисунок 2 – Работа программы.

4. ВЫВОДЫ

В результате курсовой работы была симулирована игра двух команд с

целью закатить мяч в чужие ворота.