1 CONTENTS

09/09/20 JL Seminar

Contents

1	Introduction			
	1.1	Writing conventions		
	1.2	Notation		
2	Ove	erview		
	2.1	Structure on subgroups		
	2.2	Kirillov model		
	2.3	Representations and functionals on Schwartz Space		
	2.4	Uniqueness of Whittaker functional		
	2.5	Uniqueness of Kirillov model		
	2.6	The Whittaker Model		
3	App	Appendix		
	3.1	Topological Groups		
		Smooth and admissible representations		

1 Introduction

1.1. Our goal is to understand irred. adm. repn. of $GL_n(F)$ for n = 2, F local narc.

1.1 Writing conventions

- 1.2. I will be using many shorthands, generally following a "syllabic abbreviation", i.e.
 - ext. : extension. With first three letters for the type of extensions.
 - alg./sep. : algebraic/separable
 - cplt./cpt./td.: complete/compact/totally disconnected.
 - wrt./narc. : with respect to/ non-archimedean.

In general, the context (ctx) should make it clear what I'm talking about.

1.2 Notation

- 1.3. On matrices. We follow [JL70] with minor modification. Let $G_F := GL_2(F)$ we describe several sbgps
 - $K_F := GL_2(\mathcal{O}_F)$, is also a^1 max. cpt. open sbgrp.
 - Z_F is center of G_F consisting of scalar matrices, hence iso. to F^{\times} .
 - D_F be sbgrp. of matrices of the from $\begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix}$

 $^{^{1}}$ is this the?

1.2 Notation 2

- B_F is sbgrp. of matrices of the form $\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$, also known as *Borel subgrp*.
- N_F is sbgrp. of matrices of the form $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$. We thus have an identification

$$F \xrightarrow{\simeq} N_F, x \mapsto n_x \coloneqq \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$

- A_F is subgrp. of diagonal matrices.
- C_F is subgrp. of matrices of the form $\begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix}$
- **1.4.** Mapping spaces. Let X be a space, $V \in \text{Vect}_{\mathbb{C}}$.
 - Map(X, V) is the set of V-valued fncs.
 - $\operatorname{Map}^{\infty}(X, V)$ " loc. const. V-valued fncs.
 - $\operatorname{Map}_c^{\infty}(X, V)$ " loc. const. cptly supported V-value fncs.

Remark 1.5. When $V = \mathbb{C}$, we often omit the V. The second and third type are also called *smooth* and *schwartz* functions respectively, denoted as $C^{\infty}(X, V)$ and S(X, V) in [JL70].

3 2. Overview

2 Overview

- **2.1.** [PS83, 13] The method of constructing repns consists of three stages.
 - 1. Use general methods to construct representations of D_F .
 - 2. Then we "jump" to B_F an induce characters from B_F to G.
 - 3. The last is to explore those repns that do not appear. (hardest).
- **2.2.** Whittaker models come about at step 1. These correspond to induced representations from N_F .

2.1 Structure on subgroups

- **2.3.** Structure of B_F .
 - B_F is a solvable grp ², whose normal abelian gp is U_F
 - N_F and D_F and normal subgroup of B_F .
 - We have the followin two decompositions for B_F

$$B_F = D_F \rtimes Z_F = N_F \rtimes A_F$$

- **2.4.** Structure of D_F .
 - $D_F = N_F \rtimes C_F$.
 - The action of C_F on N_F is by conjugation of F^{\times} on F^+ , i.e.

$$\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \alpha\beta \\ 0 & 1 \end{pmatrix}$$

2.2 Kirillov model

2.5. Kirillov representation of D_F . It $V \subset \operatorname{Map}(F^{\times}, \mathbb{C})$, complex valued functions, on which D_F operates by

$$\pi \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \xi(x) = \psi_F(bx)\xi(ax)$$

then π is a Kirillov representation. This also restircts to an action on $\operatorname{Map}^{\infty}(F^{\times}, \mathbb{C}), \operatorname{Map}_{c}^{\infty}(F^{\times}, \mathbb{C})$. We denote this repn. as

$$(\psi_F, \operatorname{Map}(F^{\times}))$$

Definition 2.6. A Kirillov model of (π, V) , is an equiv. repn. of G_F on a subspace of $V' \subset \operatorname{Map}(F^{\times})$ such that the canonical inclusion $D_F \hookrightarrow G_F$ identifies $\operatorname{Res}_{D_F}^{G_F} V'$ as a submodule of $(\psi_F, \operatorname{Map}(F^{\times}))$. Here

$$\operatorname{Res}_{D_F}^{G_F}:\operatorname{Rep}(G_F) \to \operatorname{Rep}(D_F)$$

is the restriction functor (left adjoint to induction).

Theorem 2.7. Let (π, V) be an admissible infinite dimensional representation of G_F . Then π has a unique Kirillov model.

²i.e. there is a subnormal series whose factors are abelian.

Proof. Step 0. (π, V) is a Pre-Kirillov model: we can identify V as a subspace of $\operatorname{Map}^{\infty}(F^{\times}, J_{\psi}V)$.

Step 1. Understanding this space.

Step 2. Understanding the action of G_F .

- **2.8.** A key input in Step 2 is understanding the structure theory of G_F , it can be decomposed to three types of matrices.
 - Diagonal.
 - D_F .
 - $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

We will need a generalized version of Mellin transform.

- **2.9.** We will end with showing the equivalence of three statements for an irred. adm. inf. dim. rep. (π, V) :
 - 1. $J_{\psi}V$ is one dimensional.
 - 2. π admits a unique Kirillov model.
 - 3. π admits a unique Whittaker model.

2.3 Representations and functionals on Schwartz Space

[JL70, 2]

Definition 2.10. We define a representation (ξ_{ψ}, D_F) on the spaces Map(F, X) and $Map(F^{\times}, X)$ by ³

$$\left(\xi_{\psi}\begin{pmatrix} a & x \\ 0 & 1 \end{pmatrix}\phi\right)(y) = \psi(yx)\phi(ya) \tag{1}$$

This also induces action on $\operatorname{Map}^{\infty}(F, X), \operatorname{Map}_{c}^{\infty}(F, X)$ etc.

Lemma 2.11. [JL70, 2.13.3] Let ϕ be an element of $\mathcal{S}(F^{\times})$. Then there exists

- A finite subset S of F^{\times}
- Complex numbers $\lambda_y \in S$ where

$$\sum \lambda_y = 0, \quad \sum \lambda_y \psi(y) = \phi(1)$$

• an element $\phi_0 \in \operatorname{Map}_c^{\infty}(F^{\times})$.

such that

$$\phi = \sum_{y \in S} \lambda_y \phi_{\psi}(n_y) \phi_0$$

³Note that the action of a is on the right.

Proof. Step 1. Fourier transformation Extend ϕ to a function on F - this is still an element on $\mathcal{S}(F)$. Let ϕ' denote the Fourier transform of ϕ .

Step 2. Discreteness Then the function

$$F \times F \to \mathbb{C}, \quad (y, x) \mapsto \phi'(-y)\psi(xy)$$

is loc. const. and cptly. sup. Step 2. Evaluation

Corollary 2.12. [JL70, 2.13.1] Let L be a linear functional on Schwartz space $\mathcal{S}(F^{\times})$ satisfying

$$L(\xi_{\psi}(n_x)\phi) = \psi(x)L(\phi)$$

for all ϕ in $\mathcal{S}(F^{\times})$ and all $x \in F$. Then there is a scalar λ such that

$$L(\phi) = \lambda \phi(1)$$

Proof. Step 0. A linear reduction. As open subgrps of top. groups are also closed, 3. of 3.3, char. fncs. 1_U , where U is an open sbgrp, lies in $\operatorname{Map}^{\infty}(F^{\times})$ and in $\operatorname{Map}^{\infty}(F^{\times}) = \mathcal{S}(F^{\times})$ if U is cpt.

Hence, given $\phi \in \mathcal{S}(F^{\times})$, replacing subtracting by $\phi(1)1_U$, we have

$$L(\phi - \phi(1)1_U) = L(\phi) - \phi(1)L(1_U)$$

If we can prove Step 1. below, we have obtained the desired form with $\lambda L(1_U)$.

Step 1. Use the representation in 2.11

2.4 Uniqueness of Whittaker functional

2.5 Uniqueness of Kirillov model

2.13. (π, V) is as ctx. With its Kirillov model.

Proposition 2.14. Kirillov model of (π, V) is unique. [?God70, 5].

Proof. Step 0. Set up. Let (π', V') be a representation equivalent to (π, V) , where $V' \subset \operatorname{Map}(F^{\times}, \mathbb{C})$ whose restriction to D_F is ψ_F . Let $A: V' \to V$ denote the iso of G_F -repn.

Step 1. Inducing new Whittaker functional.

Step 1a. Define $L\phi := (A\phi)(1)$ for $\phi \in V$. If we show that L is Whittaker functional then $A\phi = \lambda \phi$, for some $\lambda \in \mathbb{C}$. Thus V = V' with $\pi(g) = \pi'(g)$ (using the fact that ϕ is also an iso.)

Step 1b. Checking that L as defined is indeed a Whittaker functional. This is a simple computational check and N_F linearity.

$$L\left(\pi\begin{pmatrix}1 & x\\0 & 1\end{pmatrix}\right) = \left(\pi'\begin{pmatrix}1 & x\\0 & 1\end{pmatrix}(A\phi)\right)(1) = \psi(x)L(\phi(1))$$

⁴Why do we pass to S(F)?

.6 The Whittaker Model 6

2.6 The Whittaker Model

Definition 2.15. Let $W(\psi)$ be subspace of Map (G_F, \mathbb{C}) st.

$$W\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}g\right) = \psi(x)W(g)$$

This is a G_F -repn via right regular action, denoted $(\rho, \mathcal{W}(\psi))$, i.e.

$$(\rho(h)W)(g) = W(gh)$$

Theorem 2.16. [JL70, 2.14] Let (π, V) be as in ctx. Then π has a unique Whittaker model.

Proof. Step 0. Existence. We define an injection of G_F -modules,

$$V \hookrightarrow \operatorname{Map}(G_F, \mathbb{C}), \quad \phi \mapsto W_{\phi}$$

$$W_{\phi}(g) \coloneqq (\pi(g)\phi)(1) \tag{2}$$

whose image is in $\mathcal{W}(\psi)$. There are a few things to be checked.

1. Well defined, i.e. the image indeed lies in $\mathcal{W}(\psi)$. Now

$$W_{\phi}(n_x g) = (\pi n_x \pi(g)\phi)(1) = \psi(x)(\pi(g)\phi)(1)$$

2. The maps is clearly $\mathbb C$ -linear. It is G_F -equivariant too:

$$W_{\pi(h)\phi}(g) = (\pi(g)\pi(h)\phi)(1) = W_{\phi}(gh) = (\rho(h)W_{\phi})(g)$$

3. Injectivity. Note

$$W_{\phi}\left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}\right) = \phi(a)$$

so ϕ is zero iff W_{ϕ} is.

Step 1. Uniqueness. This proof imitates that of 2.14

3. Appendix

3 Appendix

3.1 Topological Groups

3.1. We recall some topological notions. We let $X \in \text{Top}$, G a topological group.

Basics.

• A space X is hom. if given any two points $x, y \in X$, exists $f: X \to X$ such that fx = y.

Local compactness and connectedness.

- X is locally cpt. if for all $x \in X$.
- ullet G is a loc. cpt. grp if it is Hausdorf and loc. cpt space.

Example 3.2. Let R be a top. ring. $GL_n(R)$, $M_n(R)$ are both, top. ring, given the subspace topology in R^{n^2} .

3.3. Now let us list a whole host of properties for a topological group. G

- 1. If $U \subset G$, then U is open iff tU is open iff Ut is open iff U^{-1} for all $t \in G$.
- 2. Every nhoodo U of 1 contains an open symmetric nhood V of 1 such that $VV \subset U$.
- 3. Every open subgroup is also closed.

4.

Proof. 3. Let $H \subset G$ be open subgroup. G can be written as the union of cosets of H. We have the relation

$$Y = \bigcup_{x \in G \smallsetminus H} xH$$

$$H = G \setminus Y$$

Proposition 3.4. [Vin08, a.4.1] Let G be a Hausdorff top. grp. Any subgroup of G which is loc. cpt. is closed.

Corollary 3.5. [Vin08, e.4.2] A Hausdorff top. grp. G is loc. cpt. and t.d. iff every nhood of 1 contains a compact open subgroup.

Remark 3.6. Importantly, for those reading the text [BZ76], these are the *l-groups*.

3.2 Smooth and admissible representations

Definition 3.7. Let G be tdlc, (π, V) a representation. V admits no topology.

• π is smooth if for any $v \in V$, stabilizer ⁵

$$Stab(v) := \{ g \in G : gv = v \}$$

is an open subgrp of G. This is nonempty as e lies in the grp.

⁵This is a rather abuse of notation, but the context should make it clear.

• If π is smooth, and if for any open subgroup $U \subset G$

$$V^{U} = \{ v \in V : gv = v \text{ for all } g \in U \}$$

$$\tag{3}$$

is fin. dim, then π is admissible.

3.8. Continuity. I find it more natural to interpret smooth representations as *continuous* representations. By definition, if V is given the discrete topology, then (π, V) is smooth iff it is continuous.

Proposition 3.9. Finite dimensionality. Let (π, V) be a fd. rep. of a tdlc group G Then the following are equivalent.

- 1. π is admissible.
- 2. π is smooth.
- 3. Kernel of π is an open subgroup.
- 4. π , as a map $G \to GL(V)$ is continuous.

Proof. $1 \Leftrightarrow 2$ is clear from defn. $2 \Leftrightarrow 3$. Suppose $\ker \pi$ is open. Then for any $g \in \operatorname{Stab}(v)$, $g \ker \pi \subset \operatorname{Stab}(v)$ is an open hood of g. So $\operatorname{Stab}(v)$ is open. Suppose $\operatorname{Stab}(v)$ is open. Let $\{v_i\}$ be a \mathbb{C} -basisc of V, so

$$\ker \pi = \bigcap_{1}^{n} \operatorname{Stab}(v_{i})$$

is open.

 $3 \Leftrightarrow 4$.

3.10. Irreducible rep'ns.

- If (π, V) is a smooth or admissible rep'n, then every G-invariant subspace of V is also smooth or admissible rep'n respectively.
- A smooth representation (π, V) of G is *irreducible* if V contains no nontrivial G-invariant subspaces.

9 REFERENCES

References

[BZ76] I. N Bernstein and A. V Zelevinskii, Representations of the grou GL(n, F) where F is a non-archimedean local field (1976). $\uparrow 3.6$

- [Bum98] D Bump, Automorphic Forms and Representations (1998). ↑
 - [JL70] H. Jacquet and R. P Langlands (1970). †1.3, 1.5, 2.3, 2.11, 2.12, 2.16
 - [PS83] I. Piatetski-Shapiro, Complex Representations of GL₂(K) for finite fields K (1983). ↑2.1
- [Vin08] R. Vinroot, MATH 519 Representations of p-adic groups (2008). $\uparrow 3.4,\ 3.5$