Review

Mohr's Circle of Stress

$$\left(\sigma - \frac{\sigma_x + \sigma_y}{2}\right)^2 + \tau^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2$$

center: $\left(\frac{\sigma_x + \sigma_y}{2}, 0\right)$ radius: $\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

$$\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

The following relations under uniform stress distribution are also correct under a nonuniform stress distribution:

- 1. $\tau_{xy} = \tau_{yx}$
- 2. Transformation of stress equations (应力变换方 程)
 - Mohr's stress circle, formulations for principal stress and maximum shear stress

The differential equations of equilibrium (平衡微分方程):

2D
$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + F_{x} = 0$$
$$\frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + F_{y} = 0$$

Three-Dimensional State of Stress at a Point (3D stress transformation)

- Given stress components on x, y, and z planes, we now get stress components on the arbitrary plane ABC.
 - The direction of plane ABC
 - = the direction of x'
 - = $(a_{11}, a_{21}, a_{31}).$

 $a_{21}=\cos(y,x')=\cos(the angle between y and x')$

Similarly, the direction of y' is (a_{12}, a_{22}, a_{32}) the direction of z' is (a_{13}, a_{23}, a_{33})

Notations for direction cosines

	x'	<i>y'</i>	z ′
x	a ₁₁	a ₁₂	a ₁₃
y	<i>a</i> ₂₁	a ₂₂	a ₂₃
z	a ₃₁	a ₃₂	a ₃₃

 $a_{21}=\cos(y,x')=\cos(the angle between y and x')$

- The sum of the squares of the cosines in any column equals unity.
- ➤ The sum of the products of the corresponding cosines in any two columns is zero.
- Same rules apply for the rows in the table

$$a_{11}^{2} + a_{21}^{2} + a_{31}^{2} = 1$$

$$a_{12}^{2} + a_{22}^{2} + a_{32}^{2} = 1$$

$$a_{13}^{2} + a_{23}^{2} + a_{33}^{2} = 1$$

$$a_{11}a_{12} + a_{21}a_{22} + a_{31}a_{32} = 0$$

$$a_{12}a_{13} + a_{22}a_{23} + a_{32}a_{33} = 0$$

$$a_{11}a_{13} + a_{21}a_{23} + a_{31}a_{33} = 0$$

Stress components on a tetrahedron

We now calculate stress vector on plane x': $p=(p_x, p_y, p_z)=(\sigma_{x'}, \tau_{x'y'}, \tau_{x'z'})$

With the force equilibrium conditions

$$\sum F_{x} = \sum F_{y} = \sum F_{z} = 0$$

We have

$$p_x = \sigma_x a_{11} + \tau_{yx} a_{21} + \tau_{zx} a_{31}$$

$$p_{y} = \tau_{xy} a_{11} + \sigma_{y} a_{21} + \tau_{zy} a_{31}$$

$$p_z = \tau_{xz} a_{11} + \tau_{yz} a_{21} + \sigma_z a_{31}$$

The normal stress $\sigma_{x'}$ is

$$\sigma_{x'} = (p_x, p_y, p_z) \cdot (a_{11}, a_{21}, a_{31})$$

$$\sigma_{x'} = \sigma_x a_{11}^2 + \sigma_y a_{21}^2 + \sigma_z a_{31}^2 + 2\tau_{xy} a_{11} a_{21} + 2\tau_{yz} a_{21} a_{31} + 2\tau_{zx} a_{31} a_{11}$$

 $A_{AOC} = A_{ABC}\cos(y, x') = Aa_{21}$

 A_{AOC} : area of AOC $A=A_{ABC}$: area of ABC

Similarly, $A_{AOB} = Aa_{31}$ $A_{BOC} = Aa_{11}$

Stress components on a tetrahedron

 \triangleright Similarly, we can get the shear stresses $\tau_{x'y'}$, $\tau_{x'z'}$.

$$\begin{split} \tau_{x'y'} &= (p_x, p_y, p_z) \cdot (a_{12}, a_{22}, a_{32}) \\ \tau_{x'y'} &= \sigma_x \, a_{11} \, a_{12} + \sigma_y \, a_{21} \, a_{22} + \sigma_z \, a_{31} \, a_{32} \\ &+ \tau_{xy} (a_{11} \, a_{22} + a_{21} \, a_{12}) \\ &+ \tau_{yz} (a_{21} \, a_{32} + a_{31} \, a_{22}) \\ &+ \tau_{zx} (a_{31} \, a_{12} + a_{11} \, a_{32}) \\ \end{split}$$

$$\tau_{x'z'} &= (p_x, p_y, p_z) \cdot (a_{13}, a_{23}, a_{33}) \\ \tau_{x'z'} &= \sigma_x \, a_{11} \, a_{13} + \sigma_y \, a_{21} \, a_{23} + \sigma_z \, a_{31} \, a_{33} \\ &+ \tau_{xy} (a_{11} \, a_{23} + a_{21} \, a_{13}) \end{split}$$

 $+ au_{yz}(a_{21} a_{33} + a_{31} a_{23})$

 $+ \tau_{zx}(a_{31} a_{13} + a_{11} a_{33})$

 $A_{AOC} = A_{ABC}\cos(y, x') = Aa_{21}$

 A_{AOC} : area of AOC $A=A_{ABC}$: area of ABC

Similarly, $A_{AOB} = Aa_{31}$ $A_{BOC} = Aa_{11}$

$$p_x = \sigma_x a_{11} + \tau_{yx} a_{21} + \tau_{zx} a_{31}$$

$$p_y = \tau_{xy} a_{11} + \sigma_y a_{21} + \tau_{zy} a_{31}$$

$$p_z = \tau_{xz} a_{11} + \tau_{yz} a_{21} + \sigma_z a_{31}$$

Express the above transformation equations with the matrix multiplication:

$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} \sigma_x & \tau_{yx} & \tau_{zx} \\ \tau_{xy} & \sigma_y & \tau_{zy} \\ \tau_{xz} & \tau_{yz} & \sigma_z \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$$

$$\mathbf{p} = \mathbf{\sigma}^T \mathbf{n} = \mathbf{\sigma} \mathbf{n}$$

Let's now check the principal plane and principale stresses.

$$\mathbf{p} = \mathbf{\sigma} \mathbf{n} = \boldsymbol{\sigma}_{p} \mathbf{n}$$

There always exist three mutually perpendicular principal planes on which the shear stress vanishes in 3D.

The three principal stresses are named as:

$$\sigma_1 \geqslant \sigma_2 \geqslant \sigma_3$$

The three principal stresses are the roots of the equation:

$$\sigma_{p}^{3} - (\sigma_{x} + \sigma_{y} + \sigma_{z})\sigma_{p}^{2} + (\sigma_{x}\sigma_{y} + \sigma_{y}\sigma_{z} + \sigma_{z}\sigma_{x} - \tau_{xy}^{2} - \tau_{yz}^{2} - \tau_{zx}^{2})\sigma_{p} - (\sigma_{x}\sigma_{y}\sigma_{z} + 2\tau_{xy}\tau_{yz}\tau_{zx} - \sigma_{x}\tau_{yz}^{2} - \sigma_{y}\tau_{xz}^{2} - \sigma_{z}\tau_{xy}^{2}) = 0$$

The three principal stresses are the roots of the equation:

$$\begin{split} \sigma_{p}^{3} - (\sigma_{x} + \sigma_{y} + \sigma_{z})\sigma_{p}^{2} \\ + (\sigma_{x}\sigma_{y} + \sigma_{y}\sigma_{z} + \sigma_{z}\sigma_{x} - \tau_{xy}^{2} - \tau_{yz}^{2} - \tau_{zx}^{2})\sigma_{p} \\ - (\sigma_{x}\sigma_{y}\sigma_{z} + 2\tau_{xy}\tau_{yz}\tau_{zx} - \sigma_{x}\tau_{yz}^{2} - \sigma_{y}\tau_{xz}^{2} - \sigma_{z}\tau_{xy}^{2}) = 0 \end{split}$$

 $\sigma_{\scriptscriptstyle p}$ does not depend on the coordinate chosen,

the coefficients of the equation must be invariant (independent of the coordinate):

$$\sigma_p^3 - I_1 \sigma_p^2 + I_2 \sigma_p - I_3 = 0$$

The three stress invariants

$$I_{1} = \sigma_{x} + \sigma_{y} + \sigma_{z} = \sigma_{1} + \sigma_{2} + \sigma_{3}$$

$$I_{2} = \begin{vmatrix} \sigma_{x} & \tau_{xy} \\ \tau_{yx} & \sigma_{y} \end{vmatrix} + \begin{vmatrix} \sigma_{y} & \tau_{yz} \\ \tau_{zy} & \sigma_{z} \end{vmatrix} + \begin{vmatrix} \sigma_{z} & \tau_{zx} \\ \tau_{xz} & \sigma_{x} \end{vmatrix}$$

$$= \sigma_{x}\sigma_{y} + \sigma_{y}\sigma_{z} + \sigma_{z}\sigma_{x} - \tau_{xy}^{2} - \tau_{yz}^{2} - \tau_{zx}^{2} = \sigma \sigma_{2} + \sigma \sigma_{3} + \sigma \sigma_{1}$$

$$I_{3} = \begin{vmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{vmatrix}$$

$$= \sigma_{x}\sigma_{y}\sigma_{z} + 2\tau_{xy}\tau_{yz}\tau_{zx} - \sigma_{x}\tau_{yz}^{2} - \sigma_{y}\tau_{zx}^{2} - \sigma_{z}\tau_{xy}^{2} = \sigma \sigma \sigma_{3}$$

homework 1 (5 points)

- **1-1** Given $\sigma_x = -14,000$ psi, $\sigma_y = 6,000$ psi, and $\tau_{xy} = -17,320$ psi, determine by formulas, (a) the principal stresses and their directions and (b) the stress components on the x' and y' planes when $\alpha = 45^{\circ}$.
- A rectangular block is under a uniformly distributed load as shown in the figure. Find the stress components on the plane A - A.

- By using Mohr's circle, show that the following quantities are invariant for a two-dimensional state of stress with $\sigma_z = \tau_{xz} = \tau_{yz} = 0$;

 - (a) $\sigma_{x'} + \sigma_{y'}$ (b) $\sigma_{x'} \sigma_{y'} \tau_{x'y'}^2$.

homework 1 (5 points)

1-15 Given a three-dimensional state of stress with

(2 points)
$$\sigma_x = +10 \text{ psi}$$
 $\tau_{xy} = +5 \text{ psi}$ $\sigma_y = +20 \text{ psi}$ $\tau_{xz} = -10 \text{ psi}$ $\sigma_z = -10 \text{ psi}$ $\sigma_z = -15 \text{ psi}$

(a) Find the magnitude and direction of the stress vector p on the x' plane where the x' direction is defined by

$$a_{11} = +1/2$$
 $a_{21} = +1/\sqrt{2}$ a_{31} is positive.

- (b) Find σ and τ on this plane.
- (c) Determine the angle between p and σ .