RK3566 RK3568 IO 电源域配置指南

文档标识: RK-SM-YF-905

发布版本: V1.0.3

日期: 2023-06-20

文件密级: □绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标、由其各自拥有者所有。

版权所有 © 2023 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

主控电源域的IO电平要与对接外设芯片的IO电平匹配,还要注意软件的电压配置要跟硬件的电压一致,否则,最坏的情况可能会导致IO的损坏。

RK3566/RK3568共有10个独立的IO电源域,分别为PMUIO[0:2]和VCCIO[1:7]。其中:

- PMUIO0、PMUIO1为固定电平电源域,不可配置;
- PMUIO2和VCCIO1, VCCIO[3:7]电源域均要求硬件供电电压与软件的配置相匹配:
 - 1. 当硬件IO电平接1.8V, 软件电压配置也要相应配成1.8V;
 - 2. 当硬件IO电平接3.0V, 软件电压配置也要相应配成3.0V;
 - 3. 当硬件IO电平接3.3V, 软件电压配置也要相应配成3.3V;
- VCCIO2电源域软件不需要配置,但是其硬件供电电压与FLASH_VOL_SEL状态需保持一致:
 - 1. 当VCCIO2供电是1.8V,则FLASH_VOL_SEL管脚必须保持为高电平;
 - 2. 当VCCIO2供电是3.3V,则FLASH VOL SEL管脚必须保持为低电平;

否则:

- 当软件配置为1.8V, 硬件供电3.0V或3.3V, 会使得IO处于过压状态, 长期工作IO会损坏;
- 当软件配置为3.3V或3.0V,硬件供电1.8V,IO功能会异常;

本文主要描述了RK3566、RK3568平台SDK配置IO电源域的方法,旨在帮助开发者正确配置IO的电源域。

产品版本

芯片名称	系统版本	内核版本
RK3566、RK3568	Linux 4.19	Kernel 4.19
RK3566、RK3568	Linux 5.10	Kernel 5.10
RK3566、RK3568	Android 11.0	Kernel 4.19

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师
- 硬件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	Caesar Wang	2021-05-15	初始版本
V1.0.1	Caesar Wang	2021-05-27	更新IO电源域相关说明
V1.0.2	Caesar Wang	2021-06-02	增加Android和更详细的寄存器介绍
V1.0.3	Caesar Wang	2023-06-20	增加IO 3V说明

目录

RK3566 RK3568 IO 电源域配置指南

1. 第一步: 获取硬件原理图并确认硬件电源的设计方案

2. 第二步: 查找对应的内核dts配置文件

3. 第三步:修改内核dts的电源域配置节点pmu_io_domains

4. 第四步: SDK查看当前固件电源域配置

5. 第五步: 烧录固件后确认寄存器值是否正确

1. 第一步: 获取硬件原理图并确认硬件电源的设计方案

本文以RK_EVB1_RK3568_DDR4P216SD6_V10_20200911 EVB板为例进行介绍。

硬件原理图: RK_EVB1_RK3568_DDR4P216SD6_V10_20200911.pdf

电源方案: 从硬件原理图分析, **EVB板RK_EVB1_RK3568_DDR4P216SD6_V10_20200911**是带PMU (RK809-5) 方案。

2. 第二步: 查找对应的内核dts配置文件

由第一步可知,该EVB板的硬件电源设计是带PMU方案的,对应的内核dts配置文件位于:

<SDK>/kernel/arch/arm64/boot/dts/rockchip/rk3568-evb.dtsi (本文讨论的方案)

3. 第三步:修改内核dts的电源域配置节点pmu_io_domains

SDK默认的内核dts的电源域配置如下:

```
<SDK>/kernel/arch/arm64/boot/dts/rockchip/rk3568-evb.dtsi

&pmu_io_domains {
    status = "okay";
    pmuio2-supply = <&vcc_3v3>;
    vccio1-supply = <&vcc_3v3>;
    vccio3-supply = <&vcc_3v3>;
    vccio4-supply = <&vcc_3v3>;
    vccio5-supply = <&vcc_3v3>;
    vccio5-supply = <&vcc_3v3>;
    vccio6-supply = <&vcc_3v3>;
    vccio7-supply = <&vcc_3v3>;
    vccio7-supply = <&vcc_3v3>;
    vccio7-supply = <&vcc_3v3>;
};
```

本文以vccio1-supply为例进行介绍。首先查看硬件原理图确认vccio1电源域(VCCIO1)的配置如图所示。

IO Power Domain Map

Updates must be Revision accordingly!

10	Pin Num	Support IO Voltage		Actual assigned IO Domain Voltage			Notes
Domain	PIN NUM	3.3V	1.8V	Supply Power Net Name	Power Source	Voltage	Notes
PMUIO1	Pin Y20	>	×	VCC3V3_PMU	VCC3V3_PMU	3.3V	
PMUIO2	Pin W19	>	/	VCC3V3_PMU	VCC3V3_PMU	3.3V	
VCCIO1	Pin H17	>	✓	VCCIO_ACODEC	VCCIO_ACODE	3.3V	
VCCIO2	Pin H18	>	/	VCCIO_FLASH	VCC_1V8	1.8V	PIN "FLASH_VOL_SEL" must be logic High if VCCIO_FLASH=3.3V,FLASH_VOL_SEL must be logic log
vcc103	Pin L22	>	/	VCCIO_SD	VCCIO_SD	3.3V	
VCCIO4	Pin J21	>	/	VCCIO4	VCC_1V8	1.8V	
VCCIO5	Pin V10 Pin V11	>	/	VCCIO5	VCC_3V3	3.3V	
VCCIO6	Pin R9 Pin U9	>	/	VCCIO6	VCC_1V8	1.8V	
VCCIO7	Pin V12	\	/	VCCI07	VCC_3V3	3.3V	

在硬件原理图上面搜索 VCCIO1, 如下:

RK3568_H(VCCIO1 Domain)

从上图找到 VCCI01 的电源是 vccio_acodec。 在原理图上搜索 vccio_acodec,可以找到如下图。

从上图找到 vccio_acodec 是由RK809的LDO4供电。 从软件的dts里面找到LDO REG4(LDO4)的配置信息、如下:

将上面的vccio_acodec配置到pmu_io_domains节点中的vccio1-supply = <&vcc_3v3>;; 即可完成vccio1的电压配置:

```
&pmu_io_domains {
    status = "okay";
    pmuio2-supply = <&vcc_3v3>;
    vccio1-supply = <&vccio_acodec>;
    vccio3-supply = <&vcc_3v3>;
    vccio4-supply = <&vcc_3v3>;
    vccio5-supply = <&vcc_3v3>;
    vccio6-supply = <&vcc_3v3>;
    vccio6-supply = <&vcc_3v3>;
    vccio7-supply = <&vcc_3v3>;
    vccio7-supply = <&vcc_3v3>;
};
```

注意:

- pmuio0、pmuio1为固定电平电源域,软件不可配置;
- vccio2软件不需要配置,但是其硬件供电电压与FLASH_VOL_SEL状态需保持一致: 当VCCIO2供电是1.8V,则FLASH_VOL_SEL管脚必须保持为高电平; 当VCCIO2供电是3.3V,则FLASH_VOL_SEL管脚必须保持为低电平;
- 其他几路电源域(pmuio2和VCCIO[3:7]),参考上述VCCIO1的方式配置即可;

RK356X kernel编译弹出IO-Domain确认对话框:

弹出这个对话框目的是检查实际硬件原理图和软件dts的IO电压是否匹配,客户需要根据各自项目的硬件原理图的实际设计电压来选择(对话框中选择的值不会保存到dts中,dts需要手动去修改),如果您是软件工程师请与贵司的硬件工程师一起核对确认,这个很重要,请务必确认!如果IO电压配置不正确,将会导致芯片IO烧坏。

当你确认IO电压后这个对话框就不会再弹出(输入值和dts配置的值相同),如果dts名字或者dts里面的 io-domian发生变化,则会继续弹出重新进行确认。

4. 第四步: SDK查看当前固件电源域配置

编译Kernel后, Linux SDK 查看当前电源域配置方法如下:

Android 11.0 SDK 查看的方法如下(此方法也适用于Linux SDK):

```
cat <SDK>/kernel/arch/arm64/boot/dts/rockchip/.rk3568-evb1-ddr4-v10-linux.dtb.dts.tmp.domain

PMUIO2 Supply Power Voltage1:3300000

VCCIO1 Supply Power Voltage1:3300000

VCCIO3 Supply Power Voltage1:3300000

VCCIO4 Supply Power Voltage1:3300000

VCCIO5 Supply Power Voltage1:3300000

VCCIO6 Supply Power Voltage1:3300000

VCCIO7 Supply Power Voltage1:3300000
```

5. 第五步: 烧录固件后确认寄存器值是否正确

以**RK356X**芯片为例,根据手册获取PMU_GRF_IO_VSEL0~PMU_GRF_IO_VSEL2寄存器(基地址: 0xFDC20140~0xFDC20148)说明如下:

PMU_GRF_IO_VSELO

Address: Operational Base + offset (0x0140)

Copyright 2021 @ Rockchip Electronics Co., Ltd.

207

RKRK3568 TRM-Part1

Bit	Attr	Reset Value	Description
31:16		0x0000	write_enable Write enable for lower 16bits, each bit is individual. 1'b0: Write access disable 1'b1: Write access enable
15	RO	0x0	reserved
14	RW	0×0	poc_vccio7_sel25 VCCIO7 2.5V control 1'b0: Disable 1'b1: Enable
13	RW	0x0	poc_vccio6_sel25 VCCIO6 2.5V control 1'b0: Disable 1'b1: Enable
12	RW	0x0	poc_vccio5_sel25 VCCIO5 2.5V control 1'b0: Disable 1'b1: Enable
11	RW	0x0	poc_vccio4_sel25 VCCIO4 2.5V control 1'b0: Disable 1'b1: Enable
10	RW	0x0	poc_vccio3_sel25 VCCIO3 2.5V control 1'b0: Disable 1'b1: Enable
9	RW	0x0	poc_vccio2_sel25 VCCIO2 2.5V control 1'b0: Disable 1'b1: Enable
8	RW	0x0	poc_vccio1_sel25 VCCIO1 .25V control 1'b0: Disable 1'b1: Enable
7	RW	0x0	poc_vccio7_sel18 VCCIO7 1.8V control 1'b0: Disable 1'b1: Fnable

6	RW	0x0	poc_vccio6_sel18 VCCIO6 1.8V control 1'b0: Disable 1'b1: Enable
5	RW	0x0	poc_vccio5_sel18 VCCIO5 1.8V control 1'b0: Disable 1'b1: Enable
4	RW	0x0	poc_vccio4_sel18 VCCIO4 1.8V control 1'b0: Disable 1'b1: Enable
3	RW	0x0	poc_vccio3_sel18 VCCIO3 1.8V control 1'b0: Disable 1'b1: Enable

Copyright 2021 © Rockchip Electronics Co., Ltd.

208

RKRK3568 TRM-Part1

Bit	Attr	Reset Value	Description			
2	RW	0x0	poc_vccio2_sel18 VCCIO2 1.8V control 1'b0: Disable 1'b1: Enable			
1	RW	0x0	poc_vccio1_sel18 VCCIO1 1.8V control 1'b0: Disable 1'b1: Enable			
0	RW	0×0	vccio2 voltage control select VCCIO2 voltage control selection 1'b0: from GPIO_0A7			

PMU_GRF_IO_VSEL1

Address: Operational Base + offset (0x0144)							
Bit	Attr	Reset Value					
31:16	RW	0x0000	write_enable Write enable for lower 16bits, each bit is individual. 1'b0: Write access disable 1'b1: Write access enable				
15	RO	0x0	reserved				
14	RW	0×0	poc_vccio7_iddq VCCIO7 iddq control 1'b0: Disable 1'b1: Enable				
13	RW	0×0	poc_vccio6_iddq VCCIO6 iddq control 1'b0: Disable 1'b1: Enable				
12	RW	0x0	poc_vccio5_iddq VCCIO5 iddq control 1'b0: Disable 1'b1: Enable				
11	RW	0x0	poc_vccio4_iddq VCCIO4 iddq control 1'b0: Disable 1'b1: Enable				
10	RW	0x0	poc_vccio3_iddq VCCIO3 iddq control 1'b0: Disable 1'b1: Enable				
9	RW	0×0	poc_vccio2_iddq VCCIO2 iddq control 1'b0: Disable 1'b1: Enable				
8	RW	0×0	poc_vccio1_iddq VCCIO1 iddq control 1'b0: Disable 1'b1: Enable				
7	RW	0×1	poc_vccio7_sel33 VCCIO7 3.3V control 1'b0: Disable 1'b1: Enable				

6	RW	0×1	poc_vccio6_sel33 VCCIO6 3.3V control 1'b0: Disable 1'b1: Enable	
5	RW	0×1	poc_vccio5_sel33 VCCIO5 3.3V control 1'b0: Disable 1'b1: Enable	
4	RW	0x1	poc_vccio4_sel33 VCCIO4 3.3V control 1'b0: Disable 1'b1: Enable	
3	RW	0×1	poc_vccio3_sel33 VCCIO3 3.3V control 1'b0: Disable 1'b1: Enable	
2	RW	0×1	poc_vccio2_sel33 VCCIO2 3.3V control 1'b0: Disable 1'b1: Enable	Ye,
1	RW	0×1	poc_vccio1_sel33 VCCIO1 3.3V control 1'b0: Disable 1'b1: Enable	KIO.
0	RO	0x1	reserved	

PMU_GRF_IO_VSEL2

				
Addrage:	Operational	Race +	offeet	(0v0148)

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	write_enable Write enable for lower 16bits, each bit is individual. 1'b0: Write access disable 1'b1: Write access enable
15:8	RO	0x00	reserved
7	RW	0x0	poc_pmuio2_iddq PMUIO2 iddq control 1'b0: Disable 1'b1: Enable
6	RW	0×0	poc_pmuio1_iddq PMUIO1 iddq control 1'b0: Disable 1'b1: Enable
5	RW	0x1	poc_pmuio2_sel33 PMUIO2 3.3V control 1'b0: Disable 1'b1: Enable
4	RW	0x1	reserved
3	RW	0×0	poc_pmuio2_sel25 PMUIO2 2.5V control 1'b0: Disable 1'b1: Enable
2	RW	0x0	reserved

Copyright 2021 © Rockchip Electronics Co., Ltd.

210

RKRK3568 TRM-Part1

Bit	Attr	Reset Value	Description			
1	RW	0×0	poc_pmuio2_sel18 PMUIO2 1.8V control 1'b0: Disable 1'b1: Enable			
0	RW	0x0	reserved			

为了保证对外客户使用的安全性,目前SDK对外配置都是3.3V, 寄存器的值如下表所示,但会存在部分功能缺失的情况。

寄存器	地址	读取命令	值
PMU_GRF_IO_VSEL0	0xFDC20140	io -4 -r 0xFDC20140	0x00000000
PMU_GRF_IO_VSEL1	0xFDC20144	io -4 -r 0xFDC20144	0x000000ff
PMU_GRF_IO_VSEL2	0xFDC20148	io -4 -r 0xFDC20148	0x00000030

若需要恢复SDK EVB功能配置,需要revert Kernel这个提交 (git revert e18c51f465dd0dd0185f5)。但是请注意,此EVB的dts配置仅仅只适用于我们的EVB,不能随意用于客户的项目,客户需要根据各自项目的实际硬件供电电压来修改对应的dts配置。

commit e18c51f465dd0dd0185f5f80a72699fca0a68adc

Author: Wu Liangqing <wlq@rock-chips.com>
Date: Mon May 24 09:31:10 2021 +0800