Question 1

Determine whether the following subsets are subspaces:

Part a

$$S_1 := \{(x_1, x_2)^T \in \mathbb{R}^2 : x_1 = \sqrt{123}x_2\}$$

Answer: This is a subspace of \mathbb{R}^2 since it is a straight line that passes through the origin.

Proof. Let (a,b) and (c,d) be two elements of S_1 . We want to show that $(a,b)+(c,d) \in S_1$ and $n(a,b) \in S_1 \forall n \in \mathbb{R}$. Using the definition of S_1 , we have that $a = \sqrt{123}b$ and $c = \sqrt{123}d$. Adding elements (a,b) and (c,d), we have that (a,b)+(c,d)=(a+c,b+d) We can then substitute in the values of a and c to get $(a+c,b+d)=(\sqrt{123}b+\sqrt{123}d,b+d)$ This can then be factored to $(\sqrt{123}(b+d),b+d)$ Since this satisfies the definition of S_1 , we have that $(a,b)+(c,d)\in S_1$. To show that $n(a,b)\in S_1\forall n\in\mathbb{R}$, we can use the definition of S_1 again. The element (a,b) can be written as $(\sqrt{123}b,b)$. Multiplying this by n gives us $(n\sqrt{123}b,nb)$. Since this satisfies the definition of S_1 , we have that $n(a,b)\in S_1\forall n\in\mathbb{R}$.

Part b

$$S_2 := \{(x_1, x_2)^T \in \mathbb{R}^2 : x_1 x_2 = 1\}$$

Answer: This is not a subspace of \mathbb{R}^2 since it does not satisfy the addition property.

Proof. Let (a,b) and (c,d) be two elements of S_2 . Seeking a contradiction, lets assume that $(a,b)+(c,d) \in S_2$. Since we can write (a,b)+(c,d) as (a+c,b+d), our assumption would imply that (a+c)(b+d)=1. Expanding this, we get ab+ad+bc+cd=1. It is given that ab=1 and cd=1, so we can substitute these in to get 1+ad+bc+1=1. This can be simplified to ad+bc=-1. However, a and b multiply to a positive number, and c and d multiply to a positive number. This implies that ad+bc must be positive, so we have reached a contradiction. Therefore, $(a,b)+(c,d) \notin S_2$, so S_2 is not a subspace of \mathbb{R}^2 . \square

Part c

 $S_3 := \{ \text{the set of singular } 2 \times 2 \text{ matrices} \}$

Answer: This is not a subspace of $\mathbb{R}^{2\times 2}$ since it does not satisfy the addition property.

Counterexample: Let matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ where A, B $\in S_3$. $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, which is not a singular matrix.

Part d

Let A be a fixed (but arbitrary) 2×2 matrix.

$$S_4 := \{ B \in \mathbb{R}^{2 \times 2} : BA = 0 \}$$

Answer: This is a subspace of $\mathbb{R}^{2\times 2}$.

Proof. Let J and K be two arbitrary elements in S_4 . We want to show that J, $K \in S_4 \to J + K \in S_4$ and $aJ \in S_4 \forall a \in \mathbb{R}$. In order for J + K to be in S_4 , we must have that (J + K)A = 0. We can rewrite this as JA + KA = 0. Since J and K are in S_4 , we know that JA = 0 and KA = 0. Substituting these in, we get 0 + 0 = 0, which is true. Therefore, $J + K \in S_4$. Additionally, in order for aJ to be in S_4 , we must show that $\forall n \in \mathbb{R}, J \in S_4 \to aJ \in S_4$. To do this, we must verify the validity of (aJ)A = 0. Since scalar multiplication is commutative, we can rewrite this as a(JA) = 0. Since J is in J, we know that JA = 0. Substituting this in, we get J and J are J is in J, we know that J and J are J is a subspace of J and J are J are J and J are J and J are J are J are J are J are J and J are J are J and J are J are J and J are J and J are J and J are J are J and J are J are J are J are J are J and J are J are J are J are J and J are J are J are J are J are J are J and J are J are J are J are J and J are J and J are J are J are J are J and J are J are J are J are J and J are J and J are J are J and J are J and J are J are J and J are J are J and J are J and J are J are J and J are J and J are J are J and J are J are J and J are J are J are J and J are J and J are J are J and J are J are J and J are J and J are J are J and J are J are J and J are J are J and J

Part e

 $S_5 := \{ \text{the set of all polynomials of degree 2 or 4} \}$

Answer: This is not a subspace of \mathbb{P}_n .

Counterexample:

Let $p(x), q(x) \in S_5$. Suppose that $p(x) = x^2$ and $q(x) = -x^2$. Then p(x) + q(x) = 0, which is not a polynomial of degree 2 or 4.

Part f

 $S_6 := \{ \text{the set of upper triangular } 2 \times 2 \text{ matrices} \}$

Answer: This is a subspace of $\mathbb{R}^{2\times 2}$.

Proof. Let A and B be two arbitrary elements in S_6 . To prove that S_6 is a subspace of $\mathbb{R}^{2\times 2}$, we must show that A, $B \in S_6 \to A + B \in S_6$ and $\forall n \in \mathbb{R}, nA \in S_6$. Given that A and B are in S_6 , we know that A and B are upper triangular matrices. Writing these out, we have:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix}$$
$$B = \begin{bmatrix} b_{11} & b_{12} \\ 0 & b_{22} \end{bmatrix}$$

Since matrix addition is element-wise, we can write A + B as:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ 0 & a_{22} + b_{22} \end{bmatrix}$$

It is clear in this form that A + B is an upper triangular matrix, so $A + B \in S_6$. To show that $\forall n \in \mathbb{R}, nA \in S_6$, we must show that nA is an upper triangular matrix. We know that nA is an upper triangular matrix if nA is of the form:

$$nA = \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix}$$

Since scalar multiplication is element-wise, we can write nA as:

$$nA = \begin{bmatrix} na_{11} & na_{12} \\ 0 & na_{22} \end{bmatrix}$$

In this form, it is clear that nA is an upper triangular matrix. Therefore, $nA \in S_6$, so S_6 is a subspace of $\mathbb{R}^{2\times 2}$.

Part g

$$S_7 := \{ p \in \mathbb{P}_4 : p(0) = 0 \}$$

Answer: This is a subspace of \mathbb{P}_4 .

Proof. Let f(x) and g(x) be two arbitrary elements in S_7 . To prove that S_7 is a subspace of \mathbb{P}_4 , we must show that f(x), $g(x) \in S_7 \to f(x) + g(x) \in S_7$ and $\forall n \in \mathbb{R}, nf(x) \in S_7$. Given that f(x) and g(x) are in S_7 , we know that f(0) = 0 and g(0) = 0, which is by definition of S_7 . This means that f(x) and g(x) are of the form:

$$f(x) = a_1 x^4 + a_2 x^3 + a_3 x^2 + a_4 x + 0$$

$$g(x) = b_1 x^4 + b_2 x^3 + b_3 x^2 + b_4 x + 0$$

This means we can write f(x) + g(x) as:

$$f(x) + g(x) = (a_1 + b_1)x^4 + (a_2 + b_2)x^3 + (a_3 + b_3)x^2 + (a_4 + b_4)x + 0$$

In this form it is clear that f(x) + g(x) satisfies the condition that p(0) = 0, so $f(x) + g(x) \in S_7$.

To show that $\forall n \in \mathbb{R}, nf(x) \in S_7$, we can follow a similar process. We know that nf(x) is of the form:

$$nf(x) = na_1x^4 + na_2x^3 + na_3x^2 + na_4x + 0$$

Regardless of the value of n, nf(x) will always satisfy the condition that p(0) = 0, so $nf(x) \in S_7$. Therefore, S_7 is a subspace of \mathbb{P}_4 .

Question 2

Find the null space of the following matrices:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 4 & -1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & -2 & 2 & 1 \\ 2 & 4 & -4 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 0 & 3 \\ 4 & 3 & 0 \end{bmatrix}$$

Answer:

Question 3

Show that the following matrices form a spanning set for $\mathbb{R}^{2\times 2}$. Also, show that these matrices are linearly independent.

$$A_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad A_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Answer:

Question 4

Let $x_1, x_2,$ and x_3 be linearly independent vectors in \mathbb{R}^n . Let

$$y_1 = x_1 + x_2$$
, $y_2 = x_2 + x_3$, $y_3 = x_3 + x_1$.

Decide if y_1 , y_2 , and y_3 are linearly independent or not.

Answer: