Conceitos sobre grafos

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"The origins of graph theory are humble, even frivolous."

Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson

Origem

- Leonhard P. Euler
- ▶ 1735
- ▶ 7 Pontes de Königsberg

Conceitos básicos

Definição de grafo

Um **GRAFO** é um par G = (V, E) onde:

- ▶ V é um conjunto finito de elementos chamados VÉRTICES e
- ► É é um conjunto finito de pares NÃO ORDENADOS de vértices chamados ARESTAS.

Exemplo de grafo

- ► V = {a, b, c, d, e}
- ightharpoonup E = {(a, b), (a, c), (b, c), (b, d), (c, d), (c, e), (d, e)}

Adjacência e incidência

Considere uma aresta e=(a, b):

- Para pares não ordenados, temos (a,b) = (b,a).
- Desenhamos a aresta como uma linha ligando os vértices:

- Dizemos que os vértices a e b são os EXTREMOS de e,
- ▶ também que a e b são vértices ADJACENTES.

Para enfatizar a relação entre arestas e vértices:

- Dizemos que a aresta e é INCIDENTE nos vértices a e b,
- também que os vértices a e b são incidentes na aresta e.

Multigrafo

Grafos são generalizados por MULTIGRAFOS, que podem conter:

- ► LAÇOS: arestas com os dois extremos idênticos.
- ▶ ARESTAS MÚLTIPLAS: duas ou mais arestas com o mesmo par de extremos.

Um grafo é **SIMPLES** se ele não tiver laços ou arestas múltiplas.

Tamanho do grafo

Considere um grafo G = (V, E):

- ▶ Denotamos por |V| a cardinalidade do conjunto de vértices
- ▶ e por |E| a cardinalidade do conjunto de arestas.
- No exemplo abaixo temos |V|=5 e |E|=7:

O **TAMANHO** do grafo G é dado por |V| + |E|.

Grau de um vértice

O **GRAU** de um vértice \mathbf{v} , denotado por $d(\mathbf{v})$ é o número de arestas incidentes a \mathbf{v} , com laços contados duas vezes.

Alguns nomes

Considere um vértice \mathbf{v} de um grafo $G = (\mathbf{V}, \mathbf{E})$:

- Se $d(\mathbf{v}) = |\mathbf{V}| 1$, dizemos que \mathbf{v} é um **VÉRTICE UNIVERSAL**.
- ▶ Se $d(\mathbf{v}) = 0$, dizemos que \mathbf{v} é um **VÉRTICE ISOLADO**.

Relação entre grau dos vértices e número de arestas

Teorema (Handshaking lemma)

Para todo grafo G = (V, E),

$$\sum_{\mathbf{v} \in \mathbf{V}} d(\mathbf{v}) = 2|\mathbf{E}|.$$

Grafos completos

Um grafo é **COMPLETO** se tiver uma aresta (u,v) para todo par de vértices u,v:

- Se o número de vértices é n, então ele tem $\binom{n}{2}$ arestas.
- Portanto, um grafo simples tem **NO MÁXIMO** (ⁿ₂) arestas.

Exemplos de grafos completos:

Um grafo completo com três vértices é chamado de TRIÂNGULO.

Grafo complementar

O **COMPLEMENTO** de um grafo G = (V, E) é o grafo $\overline{G} = (V, E)$:

- Com o mesmo conjunto de vértices, V
- ▶ e com $(u,v) \in \overline{E}$ se e somente se $(u,v) \notin E$.

Note que, para qualquer vértice \mathbf{v} , $d_{\overline{G}}(\mathbf{v}) = |\mathbf{V}| - 1 - d_G(\mathbf{v})$.

Consequências da complementaridade

Vamos fazer alguns exercícios?

Mostre que em uma festa com pelo menos $n \ge 6$ pessoas, existem três pessoas que se conhecem mutuamente ou três pessoas que não se conhecem mutuamente.

Exercício 1. Solução

Considere o grafo G representando as amizades:

- ▶ Tome um vértice v. Note de que $d_G(\mathbf{v}) + d_{\overline{G}}(\mathbf{v}) \geq 5$.
- ▶ Logo, $d_G(\mathbf{v}) \ge 3$ ou $d_{\overline{G}}(\mathbf{v}) \ge 3$.
- Suponha que $d_G(\mathbf{v}) \ge 3$ (o outro caso é análogo). Então, \mathbf{v} tem três vizinhos \mathbf{a} , \mathbf{b} , \mathbf{c} em G:
 - 1. Se houver aresta entre dois vizinhos, então ela forma triângulo com $\mathbf{v} \Rightarrow 3$ pessoas se conhecem mutuamente.
 - 2. Caso contrário, a,b,c formam um triângulo em $\overline{G} \Rightarrow 3$ pessoas se desconhecem mutuamente.

Suponha que em um grupo S de n pessoas, com $n \ge 4$, vale o seguinte: em qualquer grupo $X \subseteq S$ de 4 pessoas, existe uma que conhece as demais pessoas de X. Mostre que existe uma pessoa em S que conhece todas as demais pessoas de S.

Exercício 2. Solução

Considere o grafo G representando os desconhecidos:

- Dois vértices são ligados se as pessoas não se conhecem.
- Queremos encontrar um vértice isolado de G.
- Se o grafo não tiver arestas, problema solucionado. Caso contrário, consideremos a aresta (x,y).

Tome um subconjunto de vértices $X = \{x, y, z, w\}$:

- Necessariamente, w conhece {x, y, z}, ou z conhece {x, y, w}.
- Sem perda de generalidade, suponha que w conhece {x, y, z}.
- ► Então, não há arestas de w a {x, y, z}.
- Como para qualquer z, w e z se conhecem, não há aresta de w a todo z.
- Portanto, w é um vértice isolado.

Passeios, caminhos e ciclos

Passeios em grafos

Um **PASSEIO** P de um vértice $\mathbf{v_0}$ a um vértice $\mathbf{v_k}$ em um grafo G é uma sequência finita e não vazia $(\mathbf{v_0}, \mathbf{e_1}, \mathbf{v_1}, \dots, \mathbf{e_k}, \mathbf{v_k})$, tal que:

- Seus elementos são alternadamente vértices e arestas
- e, para $1 \le i \le k$, $\mathbf{v_{i-1}}$ e $\mathbf{v_i}$ são os extremos de $\mathbf{e_i}$.

Passeios em grafos

Dado um passeio $P = (\mathbf{v_0}, \mathbf{e_1}, \mathbf{v_1}, \dots, \mathbf{e_k}, \mathbf{v_k})$:

- ightharpoonup Dizemos que v_k é **ALCANÇÁVEL** a partir de v_0 através de P.
- Se $v_0 = v_k$, então P é um PASSEIO FECHADO.
- ▶ O COMPRIMENTO de P é o seu número de arestas (k).

Caminhos e ciclos

- ▶ Um **CAMINHO** é um passeio cujos vértices são distintos.
- Um CICLO é um passeio fechado que possui pelo menos uma aresta e tal que v₁,...,v_k são distintos e todas as arestas são distintas.

Refletindo sobre as definições

Vamos fazer alguns exercícios?

Dados um grafo G e dois vértices \mathbf{u}, \mathbf{v} de G, mostre que:

Se existe um passeio de \mathbf{u} a \mathbf{v} em G, então existe um caminho de \mathbf{u} a \mathbf{v} em G. Por que isto é um resultado interessante?

Dados um grafo G e três vértices $\mathbf{u}, \mathbf{v}, \mathbf{w}$ de G, mostre que:

Se em G existem um caminho de u a v e um caminho de v a w então existe um caminho de u a w em G.

É verdade que todo passeio fechado contém um ciclo?

Dados um grafo G e um passeio $P = (\mathbf{v_0}, \dots, \mathbf{v_k})$ em G que não repete arestas, mostre que:

Se um vértice \mathbf{u} de G aparece em P e $\mathbf{v}_0 \neq \mathbf{u} \neq \mathbf{v}_k$, então o número de arestas diferentes em P que incidem em \mathbf{u} é par.

Dado um grafo G, mostre que:

Se existe um passeio que passa por todas as arestas sem repeti-las, então no máximo há dois vértices de grau ímpar em G.

Solucionando o problema das 7 Pontes de Königsberg

Solucionando o problema das 7 Pontes de Königsberg

Solucionando o problema das 7 Pontes de Königsberg

CORTES E CONEXIDADE

Cortes

Seja G = (V, E) um grafo e seja $S \subset V$.

O **CORTE** de G induzido por S é o conjunto de arestas de G com um extremo em S e outro em $V \setminus S$ e o denotamos por $\delta_G(S)$.

Se $s \in S$ e $t \in V \setminus S$, então dizemos que $\delta_G(S)$ SEPARA s de t.

Caminhos versus cortes

Lema

Seja G um grafo e sejam **s,t** vértices distintos de G. Então, exatamente uma das seguintes afirmações é verdadeira:

- (a) Existe um caminho de s a t em G, ou
- (b) existe um corte $\delta_{\mathbf{G}}(\mathbf{S})$ que separa \mathbf{s} de \mathbf{t} tal que $\delta_{\mathbf{G}}(\mathbf{S}) = \emptyset$.

Caminhos versus cortes. Demonstração

Suponha que (a) vale (em G existe um caminho de s a t):

▶ (b) não pode valer (em G não existe um corte $\delta_G(S) = \emptyset$ que separa S de S). Por quê?

Suponha que (a) não vale (em G não existe um caminho de s a t):

- ► Seja S o conjunto dos vértices alcançáveis por s em G.
- ► Temos que $\mathbf{t} \in \mathbf{V} \setminus \mathbf{S}$ e $\delta_{\mathbf{G}}(\mathbf{S}) = \emptyset$.

Conexidade

Dizemos que um grafo G é **CONEXO** se, para qualquer par de vértices \mathbf{u} e \mathbf{v} de G, existe um caminho de \mathbf{u} a \mathbf{v} em G.

Caso contrário, dizemos que G é **DESCONEXO**.

Podemos particionar o grafo em **COMPONENTES**, tal que dois vértices \mathbf{u} e \mathbf{v} estão na mesma componente se em G há um caminho de \mathbf{u} a \mathbf{v} .

SUBGRAFOS GERADORES E INDUZIDOS

Subgrafo e subgrafo gerador

- ▶ Um **SUBGRAFO** H = (V', E') de um grafo G = (V, E) é um grafo tal que $V' \subseteq V$ e $E' \subseteq E$.
- ▶ Se V' = V, então H é um **SUBGRAFO GERADOR** de G.

Grafos obtidos a partir de outros grafos

Considere um grafo G = (V, E), uma aresta e e um vértice v:

 $ightharpoonup G - \mathbf{e}$ é o grafo obtido de G removendo-se \mathbf{e} :

$$G - \mathbf{e} = (\mathbf{V}, \mathbf{E} \setminus \{\mathbf{e}\})$$

G - v é o grafo obtido de G removendo-se v e todas as arestas que incidem em v:

$$G - \mathbf{v} = (\mathbf{V} \setminus \{\mathbf{v}\}, \mathbf{E} \setminus \delta(\{\mathbf{v}\}))$$

Subgrafo induzido

Considere um grafo G = (V, E) e um subconjunto de vértices S:

▶ O subgrafo de G **INDUZIDO** por S, denotado por G[S], é o grafo formado por S e todas as arestas entre vértices S:

$$G[S] = (S, \{(u, v) \in E : u, v \in S\})$$

Definição

Um grafo G = (V, E) é uma **ÁRVORE** se ele for conexo e não possuir ciclos.

- Um grafo sem ciclos é chamado de ACÍCLICO.
- ▶ Uma **FOLHA** de uma árvore *G* é um vértice de grau 1.
- ► Toda árvore com dois ou mais vértices tem pelo menos duas folhas. Por quê?

Caracterização de árvores

Teorema

As seguintes afirmações são equivalentes:

- G é uma árvore.
- ▶ G é conexo e possui exatamente |V| 1 arestas.
- ► G é conexo e a remoção de qualquer aresta desconecta o grafo, i.e, ele é conexo minimal.
- Para todo par de vértices **u**, **v** de G, existe um único caminho de **u** a **v** em G.

Demonstre esse teorema como exercício.

Conceitos sobre grafos

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

