Sardar Vallabhbhai National Institute of Technology, Surat Department of Artificial Intelligence Operating System Lab

Assignment - 3 and 4 (System calls in Linux) Marks: 40

Objective:

- Explore and analyze **system calls** using different methods in Linux. [10]
- Implement C programs and debugging techniques to understand system interactions.[10]
- Use tools like strace, top, gdb, and pthread to observe system behavior.[10]
- Document findings in a **LaTeX report**. [10]

Assignment Tasks:

PROGRAM 1: Observing Variable Addresses Across Multiple Threads

Objective:

- Write a C program to print the memory address of a variable.
- Create **3-4 threads** using pthread and observe the printed addresses.
- Run the program on different architectures to analyze memory behavior.
- Justify the extracted values and submit the results in a **LaTeX report**.

Submission Requirements:

- C program source code with proper documentation.
- Output observations with an explanation of printed memory addresses.
- **Justification of results** based on thread memory allocation and architecture differences.
- **LaTeX report** detailing:
 - o Introduction
 - Implementation
 - Experimental Results
 - o Observations & Justification
 - Conclusion

PROGRAM 2: Observing System Resource Utilization Using top Command

Objective:

- Learn how to use the top command to monitor **CPU** and memory usage in real time.
- Run top in one terminal window and observe system statistics.
- Compile a program in another terminal and analyze its impact on system resources.
- Answer the following questions:
 - o How much **free memory** is available in the system?
 - Which process is consuming the **most CPU**?
 - o Which process has the highest memory usage?
- Document the findings in a **LaTeX report**.

Submission Requirements:

- Screenshots or logs of top output before and after compiling the program.
- Analysis of CPU and memory usage changes due to compilation.

- **Justification of observations** based on system behavior.
- LaTeX report including:
 - o Introduction
 - Implementation Steps
 - o Experimental Results
 - Observations & Justifications
 - o Conclusion

PROGRAM 3: Exploring strace for System Call Tracing in Linux

Objective:

- Use strace to trace system calls of an executing process.
- Identify a shell command that does not make a system call using strace.
- Observe how **Bash** utilizes system calls to read commands from the console and echo them back to the screen.
- Document findings in a LaTeX report.

Submission Requirements:

- Log files or screenshots of strace output.
- Analysis of system call behavior for different commands.
- Explanation of observed APIs (read(), write(), etc.).
- LaTeX report including:
 - o Introduction
 - o Implementation Steps
 - o Experimental Results
 - Observations & Justifications
 - Conclusion

PROGRAM 4: Debugging a C Program with Loops, File I/O, and Memory Tracing

Objective:

- Write a **C program** with:
 - o Multiple loops (e.g., for, while).
 - o File I/O with output buffering.
 - o Functions for operations like finding the largest of two numbers and swapping values.
 - o **Memory referencing** and pointer manipulation.
- Compile and run the program in debug mode using GCC and GDB.
- Trace variable values and memory locations during execution.
- Submit results in a LaTeX report.

Submission Requirements:

- **Source code** of the C program.
- **Screenshots or logs** from the GDB session.
- Analysis of memory locations, function calls, and variable values.
- LaTeX report including:
 - o Introduction
 - o Implementation Steps
 - Debugging Process
 - Observations & Justifications
 - Conclusion