ВОПРОС ПО ВЫБОРУ

КОНДЕНСАТОР НА ВЫСОКИХ ЧАСТОТАХ

Хомутов Андрей, Б06-903 $\Phi {\rm FM}\Phi,\,2020$

Представим, **что** к обкладкам конденсатора приложено напряжение низкой частоты. Тогда без учета краевых эффектов однородное поле внутри конденсатора может быть представлено как

$$E = E_0 e^{i\omega t}. (1)$$

Пусть теперь изменение поля достаточно быстро, учтем появление магнитного поля с помощью одного из уравнений Максвелла:

$$\oint_{\Gamma} (\boldsymbol{B} \cdot d\boldsymbol{l}) = \frac{1}{c} \frac{d}{dt} \int_{S} (\boldsymbol{E} \cdot d\boldsymbol{S}). \tag{2}$$

Взяв в качестве кривой Γ_1 кольцо радиуса r, получим:

$$cB \cdot 2\pi r = \frac{\partial}{\partial t} E \cdot \pi r^2. \tag{3}$$

А с учетом (1) в нашем конденсаторе магнитное поле равно

$$B = \frac{i\omega r}{2c} E_0 e^{i\omega t}.$$
 (4)

Рис. 1: E и B между обкладок конденсатора

Но изменяющееся магнитное поле согласно другому уравнению Максвелла приведет к появлению вихревого электрического поля. При этом, как мы видим, с ростом частоты растет магнитное поле, так как оно пропорционально скорости изменения электрического, и импеданс конденсатора уже не будет выражаться как $1/i\omega C$. Так, с ростом частоты электрическое поле утратит свою однородность.

Попробуем найти правильное электрическое поле, введя поправку к тому полю что было на низких частотах. Тогда, обозначив поле из выражения (1) за E_1 , запишем поле в виде:

$$E = E_1 + E_2$$
,

где E_2 - поправка из-за переменного магнитного поля. Для всех частот будем выбирать E_0 так, чтобы в центре поправки не было ($E_2=0$ при r=0).

Чтобы найти E_2 воспользуемся уравнением Максвелла уже для циркуляции электрического поля

$$\oint_{\Gamma} (\boldsymbol{E} \cdot d\boldsymbol{l}) = -\frac{1}{c} \frac{d}{dt} \int_{S} (\boldsymbol{B} \cdot d\boldsymbol{S}).$$
 (5)

Взяв в качестве кривой Γ_2 прямоугольный контур, одна из сторон которого расположена на оси, а две перпендикулярных ей проходят по радиусу вдоль обкладок (рис. 1 (b)), то циркуляцию посчитать несложно. Она будет равна $-E_2(r)\cdot h$, где h - расстояние между обкладок конденсатора (полагая E_2 положительным, когда оно направлено вверх). Тогда E_2 можно найти как

$$E_2(r) = \frac{1}{c} \frac{\partial}{\partial t} \int B(r) dr. \tag{6}$$

Используя (4) для B(r) получаем

$$E_2(r) = \frac{\partial}{\partial t} \frac{i\omega r^2}{4c^2} E_0 e^{i\omega t}.$$

После дифференцирования просто добавляется еще один множитель $i\omega$:

$$E_2(r) = -\frac{\omega^2 r^2}{4c^2} E_0 e^{i\omega t}.$$
 (7)

Ожидаемо, что поправочное поле имеет направление противоположное основному. Таким образом, исправленное поле будет равно

$$E = E_1 + E_2 = \left(1 - \frac{1}{4} \frac{\omega^2 r^2}{c^2}\right) E_0 e^{i\omega t}.$$
 (8)

Электрическое поле уже не будет однородно, теперь оно имеет параболическую форму (штриховая линия на рис. 2).

Рис. 2: E между обкладок на высоких частотах (без учета краевых эффектов)

Продолжим наши рассуждения. Так как мы учли добавочное поле E_2 , появляющееся из-за изменяющегося магнитного, можно учесть то, что само поле B уже не будет прежним. Проведем аналогичные операции и разобьем поле B_1 равное (4) и B_2 - поправку из-за учтенного поля E_2 .

Чтобы найти его, снова воспользуемся уравнением (3):

$$cB_2 \cdot 2\pi r = \frac{1}{c} \frac{d}{dt} \int_S (\mathbf{E_2} \cdot d\mathbf{S}).$$

 ${\bf C}$ учетом того, что E_2 зависит от радиуса

$$\Phi_{E_2} = \int_0^r E_2(r) \cdot 2\pi r dr.$$

Тогда

$$B_2(r) = \frac{1}{rc} \frac{\partial}{\partial t} \int E_2(r) r dr. \tag{9}$$

Подставляя $E_2(r)$ из (7), получаем интеграл от r^3dr , и поправка к магнитному полю будет равна

$$B_2(r) = -\frac{i\omega^3 r^3}{16c^3} E_0 e^{i\omega t}.$$
 (10)

С уточнением формулы для магнитного поля придется снова корректировать выражение для электрического. Снова используя соотношение (6)

$$E_3(r) = \frac{1}{c} \frac{\partial}{\partial t} \int B_2(r) dr \tag{11}$$

Подставляя сюда результат (10), получим новую поправку к электрическому полю:

$$E_3(r) = +\frac{\omega^4 r^4}{64c^4} E_0 e^{i\omega t}.$$
 (12)

Тогда если дважды исправленное электрическое поле записать в виде $E=E_1+E_2+E_3$, то получим

$$E = E_0 e^{i\omega t} \left[1 - \frac{1}{2^2} \left(\frac{\omega r}{c} \right)^2 + \frac{1}{2^2 \cdot 4^2} \left(\frac{\omega r}{c} \right)^4 \right]. \tag{13}$$

Получается что изменение электрического поля имеет уже не параболический вид как было раньше, оно лежит чуть выше чем на рис. 2.

Понятно, что новые поправки к E будут вызывать поправки к B и наоборот. Для B_3 можно использовать (9) с заменой индексов с 2 на 3. Очередная поправка к электрическому полю будет равна

$$E_4 = -\frac{1}{2^2 \cdot 4^2 \cdot 6^2} \left(\frac{\omega r}{c}\right)^6 E_0 e^{i\omega t}.$$

Тогда становится понятно рекуррентное соотношение для продолжения ряда

$$E = E_0 e^{i\omega t} \left[1 - \frac{1}{(1!)^2} \left(\frac{\omega r}{2c} \right)^2 + \frac{1}{(2!)^2} \left(\frac{\omega r}{2c} \right)^4 - \frac{1}{(3!)^2} \left(\frac{\omega r}{2c} \right)^6 \pm \cdots \right]. \tag{14}$$

Окончательное решение запишем как

$$E = E_0 e^{i\omega t} J_0 \left(\frac{\omega r}{c}\right). \tag{15}$$

Здесь, $J_0(x)$ - функция Бесселя первого рода 0-го порядка, аргументом которой является $x=\frac{\omega r}{c}$. Реально для расчетов будет достаточно третьего приближения, которое практически совпадает с точным ответом, представленным сплошной линией на рис. 2.