All else being equal: Implications of measurement error for precision medicine and health equity

Michael Wallace, University of Waterloo

Slide deck and Shiny app links available at: mpwallace.github.io

Glaucoma: One Disease, Many Treatments

Glaucoma: group of eye diseases associated with elevated intraocular pressure (IOP).

Elevated IOP can lead to vision loss.

Glaucoma: One Disease, Many Treatments

Treatment options attempt to lower IOP (and by extension preserve visual field), they include:

- Lifestyle changes.
- Eye drops (numerous options).
- Surgery.

Treatment decisions based on numerous factors.

Precision Medicine

Example: Patient is currently taking Azarga eye drops. A personalized treatment rule could be:

"If current IOP exceeds 15, add Alphagan eye drops, otherwise continue with only Azarga."

Precision Medicine

Example: Patient is currently taking Azarga eye drops. A personalized treatment rule could be:

"If current IOP exceeds 15, add Alphagan eye drops, otherwise continue with only Azarga."

• Question: How do we choose the best decision rule? Should our IOP cut-off be 13, 15, 20?

Some hypothetical data:

	Observed	Drop	VF% at
Patient	IOP	added?	3 months
1	16	No	73
2	20	Yes	55
3	21	Yes	50
4	16	Yes	61
5	15	No	42

VF% = Visual Field Percentage

Some hypothetical data:

	Observed	Drop	VF% at
Patient	IOP	added?	3 months
1	16	No	73
2	20	Yes	55
3	21	Yes	50
4	16	Yes	61
5	15	No	42

VF% = Visual Field Percentage

Question: How do these variates relate?

Goal: Identify treatment A that optimizes E[Y|X,A]

Measurement error

Problem: Measurement error

Data Structure: Error-free

First: error-free setting using dWOLS.

$$\underbrace{\mathcal{E}[Y|X,A]}_{\mbox{Expected outcome}} \qquad \qquad A \in \{0,1\}$$
 Expected outcome (to be maximized)

$$\underbrace{E[Y|X,A]}_{\text{Expected outcome}} \qquad A \in \{0,1\}$$

$$\text{Expected outcome}$$
(to be maximized)

■ We might propose the following model

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 \mathsf{IOP} + A(\psi_0 + \psi_1 \mathsf{IOP})$$

$$\underbrace{E[Y|X,A]}_{\text{Expected outcome}} \qquad A \in \{0,1\}$$

$$\text{Expected outcome}$$
(to be maximized)

■ We might propose the following model

$$E[Y|X,A;\beta,\psi] = \beta_0 + \beta_1 \mathsf{IOP} + A(\psi_0 + \psi_1 \mathsf{IOP})$$

"Add drop (A=1) if $\psi_0 + \psi_1 \mathsf{IOP} > 0$ "

$$\underbrace{E[Y|X,A]}_{\text{Expected outcome}} \qquad A \in \{0,1\}$$

$$\text{Expected outcome}$$
(to be maximized)

■ We might propose the following model

$$E[Y|X,A;\beta,\psi] = \beta_0 + \beta_1 \mathsf{IOP} + A(\psi_0 + \psi_1 \mathsf{IOP})$$

"Add drop (
$$A=1$$
) if $\psi_0 + \psi_1 \mathsf{IOP} > 0$ "

More generally:

Expected outcome (to be maximized) Impact of patient history in the absence of treatment
$$E[Y|X,A;\beta,\psi] = G(X;\beta)$$
 Impact of treatment on outcome $G(X;\beta)$

$$\underbrace{E[Y|X,A]}_{\text{Expected outcome}} \qquad A \in \{0,1\}$$

$$\text{Expected outcome}$$
(to be maximized)

■ We might propose the following model

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 \mathsf{IOP} + A(\psi_0 + \psi_1 \mathsf{IOP})$$

"Add drop (A=1) if $\psi_0 + \psi_1 \mathsf{IOP} > 0$ "

More generally:

Expected outcome (to be maximized)
$$\underbrace{F[Y|X,A;\beta,\psi]}_{\text{Freatment-free}} + \underbrace{F[X,X;\beta,\psi]}_{\text{Freatment-free}} + \underbrace{F[X,X;\psi]}_{\text{Freatment-free}} + \underbrace{F[X,X;\psi]}_{\text{Freetment-free}} + \underbrace{F[X,X;\psi]}_{\text{Freetment-free}$$

$$\underbrace{E[Y|X,A]}_{\text{Expected outcome}} \qquad A \in \{0,1\}$$

$$\text{Expected outcome}$$
(to be maximized)

We might propose the following model

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 \mathsf{IOP} + A(\psi_0 + \psi_1 \mathsf{IOP})$$

"Add drop (A=1) if $\psi_0 + \psi_1 \mathsf{IOP} > 0$ "

More generally:

Expected outcome (to be maximized)
$$\underbrace{F[Y|X,A;\beta,\psi]}_{\text{Treatment-free}} = \underbrace{F[X,A;\psi]}_{\text{Treatment-free}} + \underbrace{F[X,A;\psi]}_{\text{Treatment-free}}$$

■ Simplifies focus: choose A that maximizes $\gamma(X, A; \psi)$.

Dynamic WOLS (dWOLS)

$$E[Y|X,A;\beta,\psi] = G(X;\beta) + \gamma(X,A;\psi)$$

- We specify a third model, the treatment model:
 - 1. Treatment-free model: $G(X; \beta)$.
 - 2. Blip model: $\gamma(X, A; \psi)$.
 - 3. Treatment model: $P(A = 1|X; \alpha)$.

Dynamic WOLS (dWOLS)

$$E[Y|X,A;\beta,\psi] = G(X;\beta) + \gamma(X,A;\psi)$$

- We specify a third model, the treatment model:
 - 1. Treatment-free model: $G(X; \beta)$.
 - 2. Blip model: $\gamma(X, A; \psi)$.
 - 3. Treatment model: $P(A = 1|X; \alpha)$.
- Estimate ψ via WOLS of \overline{Y} on covariates in blip and treatment-free models, with weights $w = |A P(A = 1|X; \hat{\alpha})|$.

Suppose the true outcome model is:

$$E[Y|X,A;\beta,\psi] = \beta_0 + \beta_1 \mathsf{IOP} + \beta_2 \mathsf{IOP}^2 + A(\psi_0 + \psi_1 \mathsf{IOP})$$

Suppose the true outcome model is:

$$E[Y|X,A;\beta,\psi] = \beta_0 + \beta_1 \mathsf{IOP} + \beta_2 \mathsf{IOP}^2 + A(\psi_0 + \psi_1 \mathsf{IOP})$$

■ But we propose:

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 \mathsf{IOP} + A(\psi_0 + \psi_1 \mathsf{IOP})$$

Suppose the true outcome model is:

$$E[Y|X,A;\beta,\psi] = \beta_0 + \beta_1 \mathsf{IOP} + \beta_2 \mathsf{IOP}^2 + A(\psi_0 + \psi_1 \mathsf{IOP})$$

■ But we propose:

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 \mathsf{IOP} + A(\psi_0 + \psi_1 \mathsf{IOP})$$

■ WOLS with weights $w = |A - P(A = 1|X; \hat{\alpha})|$ will still yield consistent estimators of ψ_0, ψ_1 .

Suppose the true outcome model is:

$$E[Y|X,A;\beta,\psi] = \beta_0 + \beta_1 \mathsf{IOP} + \beta_2 \mathsf{IOP}^2 + A(\psi_0 + \psi_1 \mathsf{IOP})$$

■ But we propose:

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 \mathsf{IOP} + A(\psi_0 + \psi_1 \mathsf{IOP})$$

- WOLS with weights $w = |A P(A = 1|X; \hat{\alpha})|$ will still yield consistent estimators of ψ_0, ψ_1 .
- Estimators are "doubly robust": consistent if at least one of treatment-free or treatment components correctly specified.
- The blip must always be correct.

Suppose the true outcome model is:

$$E[Y|X,A;\beta,\psi] = \beta_0 + \beta_1 \mathsf{IOP} + \beta_2 \mathsf{IOP}^2 + A(\psi_0 + \psi_1 \mathsf{IOP})$$

■ But we propose:

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 \mathsf{IOP} + A(\psi_0 + \psi_1 \mathsf{IOP})$$

- WOLS with weights $w = |A P(A = 1|X; \hat{\alpha})|$ will still yield consistent estimators of ψ_0, ψ_1 .
- Estimators are "doubly robust": consistent if at least one of treatment-free or treatment components correctly specified.
- The blip must always be correct.
- lacktriangle Critical point: Our treatment decisions depend only on ψ

Suppose the true outcome model is:

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 X + \beta_2 X^2 + A(\psi_0 + \psi_1 X)$$

but we observe an error-prone A^*

Suppose the true outcome model is:

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 X + \beta_2 X^2 + A(\psi_0 + \psi_1 X)$$

but we observe an error-prone A^*

For binary A, misclassification can be characterized by the positive and negative predictive values:

$$PPV = P(A = 1|A^* = 1)$$
 $NPV = P(A = 0|A^* = 0)$

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 X + \beta_2 X^2 + A(\psi_0 + \psi_1 X)$$

If misclassification does <u>not</u> depend on X, then our estimates of ψ_0, ψ_1 will be biased:

$$\psi_0^* = (PPV + NPV - 1)\psi_0$$
 $\psi_1^* = (PPV + NPV - 1)\psi_1$

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 X + \beta_2 X^2 + A(\psi_0 + \psi_1 X)$$

If misclassification does <u>not</u> depend on X, then our estimates of ψ_0, ψ_1 will be biased:

$$\psi_0^* = (PPV + NPV - 1)\psi_0$$
 $\psi_1^* = (PPV + NPV - 1)\psi_1$

However: our treatment rule is of the form

$$A = 1 \text{ if } \psi_0 + \psi_1 X > 0$$

which is unaffected if ψ_0, ψ_1 are biased by the same factor.

Treatment Threshold

We have
$$A=1$$
 if $\psi_0+\psi_1X>0$ or, if $\psi_1>0$

$$A=1 \text{ if } X>-\frac{\psi_0}{\psi_1}$$

We call $au = -rac{\psi_0}{\psi_1}$ a <u>treatment threhsold</u>.

(WLOG if $\psi_1 <$ 0)

Looking Ahead: Future Treatment

Suppose we conclude that our treatment rule should be:

"If 3-month average IOP > 15 add secondary drop, otherwise, maintain current treatment regime."

Looking Ahead: Future Treatment

Suppose we conclude that our treatment rule should be:

"If 3-month average IOP > 15 add secondary drop, otherwise, maintain current treatment regime."

I go to the clinic and my IOP measurement is 16. Then what?

Suppose we conclude that our treatment rule should be:

"If 3-month average IOP > 15 add secondary drop, otherwise, maintain current treatment regime."

I go to the clinic and my IOP measurement is 16. Then what?

What is the probability I receive the wrong treatment?

$$P(X \le 15|X^* = 16)$$

Exploring these probabilities through a Shiny app:

All links available at https://mpwallace.github.io/

Looking Ahead: Health Equity

Essential consideration: What drives measurement error?

- Larger measurement error increases probability of mis-treatment.
- Size of error can depend on numerous factors, including sociodemographic status, symptom severity/disability, and tailoring variates themselves.
- Easy to show in simulation: Challenging to account for in practice.

Further consideration: What if we estimate our treatment threshold based on error-prone data?

True rule: A = 1 if $X > \tau = 15$

Estimated Rule: A = 1 if $X > \tau^* = 12$

Further consideration: What if we estimate our treatment threshold based on error-prone data?

True rule:
$$A = 1$$
 if $X > \tau = 15$

Estimated Rule:
$$A = 1$$
 if $X > \tau^* = 12$

Consider a patient with true X = 17, error-prone $X^* = 16$:

Further consideration: What if we estimate our treatment threshold based on error-prone data?

True rule:
$$A = 1$$
 if $X > \tau = 15$

Estimated Rule:
$$A = 1$$
 if $X > \tau^* = 12$

Consider a patient with true X = 17, error-prone $X^* = 16$:

$$lacksquare X = 17, \ X > au = 15, \ A^{opt} = 1$$

Further consideration: What if we estimate our treatment threshold based on error-prone data?

True rule:
$$A = 1$$
 if $X > \tau = 15$

Estimated Rule:
$$A = 1$$
 if $X > \tau^* = 12$

Consider a patient with true X = 17, error-prone $X^* = 16$:

$$lack X = 17, \ X > au = 15, \ A^{opt} = 1$$

$$\overline{X} = 17, \ X > \tau^* = 12 \implies A = 1 \checkmark$$

Further consideration: What if we estimate our treatment threshold based on error-prone data?

True rule:
$$A = 1$$
 if $X > \tau = 15$

Estimated Rule:
$$A = 1$$
 if $X > \tau^* = 12$

Consider a patient with true X = 17, error-prone $X^* = 16$:

$$lacksquare X = 17, \ X > au = 15, \ A^{opt} = 1$$

•
$$X = 17, X > \tau^* = 12 \implies A = 1 \checkmark$$

•
$$X^* = 16$$
, $X^* > \tau = 15 \implies A = 1$

•
$$X^* = 16$$
, $X^* > \tau^* = 12 \implies A = 1$

The correct treatment is recommended in all scenarios!

True rule:
$$A = 1$$
 if $X > \tau = 15$

Estimated Rule: A = 1 if $X > \tau^* = 12$

And sometimes, measurement error can even help!

$$X = 14, X < \tau = 15, A^{opt} = 0$$

True rule:
$$A = 1$$
 if $X > \tau = 15$

Estimated Rule:
$$A = 1$$
 if $X > \tau^* = 12$

And sometimes, measurement error can even help!

$$lacksquare X = 14, \ X < au = 15, \ A^{opt} = 0$$

$$\overline{X} = 14$$
, $X > \tau^* = 12 \implies A = 1 \times 1$

True rule:
$$A = 1$$
 if $X > \tau = 15$

Estimated Rule: A = 1 if $X > \tau^* = 12$

And sometimes, measurement error can even help!

$$lacktriangledown X = 14, \ X < au = 15, \ A^{opt} = 0$$

$$lacksquare X=14,\ X> au^*=12 \implies A=1 imes$$

•
$$X^* = 11$$
, $X^* < \tau = 15 \implies A = 0$ \checkmark

•
$$X^* = 11$$
, $X^* < \tau^* = 12 \implies A = 0$ \checkmark

So where are we now?

- Measurement error an important consideration in all elements of precision medicine problems.
- There are some special cases where errors have limited impact, or may be corrected for with standard theory.
- Critical to understand impact of using error-prone measurements for treatment decision making, especially where error may depend on individual characteristics.
- But: many more cases to explore.

- dWOLS: M. P. Wallace and E. E. M. Moodie (2015). Doubly-robust dynamic treatment regimen estimation via weighted least squares. Biometrics 71(3) 636-644.
- Precision Medicine and Measurement Error in Tailoring Variates: D. Spicker and M. P. Wallace (2020). Measurement error and precision medicine: error-prone tailoring covariates in dynamic treatment regimes. Statistics in Medicine 39(26)
- R Package DTRreg: Available on CRAN.
- Precision Medicine and Measurement Error More Broadly: M. P. Wallace. Measurement error and precision medicine. In Cai T., Chakraborty B., Laber E., Moodie E. and van der Laan M. (Eds), Handbook of Statistical Methods for Precision Medicine. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. 2024.

michael.wallace@uwaterloo.ca

mpwallace.github.io

Shiny App: Error in *Y*

$$E[Y|X,A;\beta,\psi] = \beta_0 + \beta_1 X + \beta_2 X^2 + A(\psi_0 + \psi_1 X)$$
$$Y^* = Y + U \qquad U \sim N(\mu_{uy}, \sigma_{uy}^2)$$

Measurement Error and dWOLS

Error independent of X, A

Shiny App: Error in *Y*

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 X + \beta_2 X^2 + A(\psi_0 + \psi_1 X)$$
$$Y^* = Y + U \qquad U \sim N(\mu_{uy}, \sigma_{uy}^2)$$

Measurement Error and dWOLS

Error independent of A

Shiny App: Error in *Y*

$$E[Y|X, A; \beta, \psi] = \beta_0 + \beta_1 X + \beta_2 X^2 + A(\psi_0 + \psi_1 X)$$
$$Y^* = Y + U \qquad U \sim N(\mu_{uy}, \sigma_{uy}^2)$$

Measurement Error and dWOLS

Error not independent of A

"Isn't this just a prediction problem?"

Data availability will vary by study and by variable:

Scenario	Analysis	Application
1: "We never observe the truth."	<i>X</i> *	<i>X</i> *

"Isn't this just a prediction problem?"

What if error-free data are possible, but expensive?

Scenario	Analysis	Application
1: "We never observe the truth."	<i>X</i> *	<i>X</i> *
2: "Past data are error-prone, but	<i>X</i> *	X
future data may not be."		
3: "Past data are not error-prone,	Χ	X *
but future data may be."		

"Isn't this just a prediction problem?"

Only Scenario 4 is well-studied.

Scenario	Analysis	Application
1: "We never observe the truth."	<i>X</i> *	<i>X</i> *
2: "Past data are error-prone, but	<i>X</i> *	X
future data may not be."		
3: "Past data are not error-prone,	Χ	<i>X</i> *
but future data may be."		
4: "We always observe the truth."	X	X