1. Examen Octubre 2020

1.1. TEORÍA

Pregunta 1. (1 punto) Un flujo de agua entra a una turbina con una presión de 30 bar y una temperatura de 400 °C. El vapor sale saturado a 100 °C. Si el proceso se realiza adiabáticamente en condiciones de estado estacionario, calcular:

- La exergía destruida teniendo en cuenta que $T_0 = 20$ °C.
- La eficiciencia exergética de la turbina.

Pregunta 2. (1 punto) Aire en reposo ($\gamma = 1.4$ y $R = 287 \frac{J}{kg \cdot K}$) a 5 bar y 750 K penetra en una tobera de laval, convergente-divergente, y es conducido hasta un depósito donde la presión es de 0.3 bar e igual a la presión de salida de la tobera (tobera adaptada). En condiciones isoentrópicas, calcular la relación de áreas $\frac{A_s}{A_c}$

Pregunta 3. (1 punto) Representar el diagrama T-s de un ciclo de Carnot y demostrar que el rendimiento térmico de una máquina de Carnot que oepra entre los límites de temperaturas T_1 y T_2 , donde $T_1 > T_2$, es una función exclusiva de estas dos temperaturas y que vale:

$$\eta = 1 - \frac{T_2}{T_1} \tag{1}$$

Pregunta 4. (1 punto) Considere el proceso de fabricaión de una ventana de vidrio de grandes dimensiones, ancho x largo y espesor muy pequeño. La ventana se encuentra apoyada en el horno en sus dimensiones ancho por largo en su cara inferior y la temperatura de la cara expuesta al aire, cara superior, se encuentra a 600 °C. La superficie de la misma se considera gris y difusa. Para enfriar el vidrio se hace pasar aire sobre la superficie de modo que el coeficiente de transferencia de calro por convección es $5\frac{W}{m^2K}$. Si la conductividad térmica del vidrio es de $1,4\frac{W}{m\cdot K}$, la emisividad superficial de 0.8 y la temperatura de los alrededores de 345 °C. Calcule para el proceso en estado estacionario, cuál debe ser el graciente de temperaturas $(\frac{dT}{dx})$ que hace que el vidrio no se rompa durante su enfriamiento $(\frac{C}{m})$.

1.2. PROBLEMAS

Problema 1. (**2 puntos**) Un dispositivo cilindro-embolo al inicio contiene vapor de agua a 4MPa y 260 °C. El vapor pierde calor hacia el entorno y el émbolo desciende sin rozamienot hasta chocar con unos topes, punto en el que el cilindro contine agua líquida saturada. El enfriamiento continua hasta que la temperatura alcanza los 200 °C. Calcular:

- El cambio de entalpía por unidad de masa del vapor en el momento en que el émbolo llega a los topes $\frac{kJ}{kq}$.
- La presión final (bar) y el título (si hay mezcla)
- Calor cedido al ambiente $(\frac{kJ}{kg})$ y energía disponible perdida durante el proceso si $T_0 = 10$ °C y $T_1 = 227$ °C (temperatura media a la que se cede el calor al entorno)

P_1	1 bar	H_u	44000 kJ/kg
γ	1.4	V_1	650
D	29	ρ_a	1.293
$\frac{P_4}{P_1} = \frac{T_4}{T_1}$	3	$egin{array}{c} ho_a \ \eta_V \end{array}$	0.7
Q_{ap}	$3 \cdot Q_{ced}$		

Problema 2. (2 puntos) De un ciclo Otto se conocen los siguientes datos: Calcular:

- \bullet El volumen (cm^3) y la presión (bar) en cada punto del ciclo
- Cantidad de aire y gasolina que intervienen (g)

Problema 3. (2 puntos)