Задания по стеганографии

Задача 1 (Метод 1). Есть текст и в нем надо скрыть некоторую фразу, состоящую из букв. Буквы этой фразы представляются как байты. Эти байты надо разбить на биты.

Текст, в котором будет прятаться сообщение, должен иметь много строчек (как стихотворение). Мы должны разбить скрываемый текст на биты. И если очередной бит скрываемой информации равен единице, то в конец очередной строки текстаконтейнера дописываем пробел. Если же бит равен нулю, то в конец строки не пишем пробел.

После шифрования, шифровку надо будет обратно раскодировать.

Задача 2 (Метод 2). Есть некий текст и в нем тоже надо спрятать другой текст. Аналогичным образом скрываемый текст разбиваем на биты. И если очередной бит секретного сообщения равен единице, то в тексте-контейнере удваиваем пробел. Если очередной бит скрываемого текста равен нулю, то пробел остается одним. Обычные буквы пропускаются в тексте-контейнере. То есть, для того, чтобы скрыть слово "мама" (4 буквы, 4 байта или 32 бита), нужен текст-контейнер как минимум, с 32-мя пробелами.

Таким же методом надо расшифровать сообщение обратно.

Задача 3 (Метод 3). Подготовка та же, что и в задаче 3. Только если бит секретного сообщения равен единице, то в текстеконтейнере меняем русскую букву на английский аналог. Если бит равен нулю, то очередную букву-аналог в тексте-контейнере

оставляем без изменений. Буквы-аналоги - это буквы русского языка, имеющие аналогичное начертание в англ. языке.

Таким образом, нужно иметь вспомогательные массивы информации, в которых задано взаимно-однозначное соответствие русских и латинских букв сходного начертания.

Так же, надо расшифровать текст обратно.

Задания по антивирусной защите

Задача 4. Поиск по сигнатуре заданного файла в указанной директории.

Сначала берётся сигнатура у заданного файла, т.е. программа должна выбирать последовательность символом не менее 16 байт из участка файла, заведомо не могущего повторяться в отличных от него файлах. Это может быть отдельная программа, а может быть модуль единой программы.

Далее указывается директория для поиска и находятся все копии исходного файла по сигнатуре. Поиск осуществляется во всей директории, т.е. по всем файлам и каталогам, которые в ней хранятся. На выходе программы выводится список путей к найденным файлам.

Задания по шифрованию

Задача 5.

Схема шифрования Вижинера.

Таблица Вижинера представляет собой квадратную матрицу с n^2 элементами, где n— число символов используемого алфавита. Каждая строка получена циклическим сдвигом всего алфавита на символ.

А	Б	В	Г	 Ъ	Ы	Э	Ю	Я
Б	В	Γ	Д	 Ы	Э	Ю	Я	А

•••									
Я	А	Б	В	•••	Ь	Ъ	Ы	Э	Ю

Для шифрования выбирается буквенный ключ, в соответствии с которым формируется рабочая матрица шифрования.

Пусть шифруемый текст СОВА НА ПНЕ, а ключ – ШЕРЛОК.

Осуществляется это следующим образом. Из полной таблицы выбирается первая строка и те строки, первые буквы которых соответствуют буквам ключа. Первой размешается первая строка, а под нею — строки, соответствующие буквам ключа в порядке следования этих букв в ключе.

А	Б	В	Γ	•••	Ч	Ы	Э	Ю	Я
Ш	Щ	Ь	Ъ	•••	У	Φ	X	Ц	Ч
E	Ж	3	N		А	Б	В	Г	Д
P	С	Т	У	•••	Л	М	Н	0	П
•••			•••	•••	•••	•••	•••	•••	•••
К	Л	М	Н	•••	E	Ж	3	N	Й

1) под каждой буквой шифруемого текста записываются буквы ключа. Ключ при этом повторяется необходимое число раз; тогда получится конструкция:

С	0	В	А	Н	А	П	Н	E
Ш	E	P	Л	0	К	Ш	E	P

2) каждая буква шифруемого текста заменяется по подматрице Вижинера буквами, находящимися на пересечении линий, соединяющих буквы шифруемого текста в первой строке подматрицы и находящихся под ними букв ключа;

С заменяется на Й,

О заменяется на У,

В заменяется на Ю,

А заменяется на Л,

Н заменяется на Ъ,

А заменяется на К,

П заменяется на 3,

Н заменяется на Т,

Е заменяется на Х. Конец

При использовании такого метода статистические характеристики исходного текста практически не проявляются в зашифрованном сообщении. Нетрудно видеть, что замена по таблице Вижинера эквивалентна простой замене с циклическим изменением алфавита, т. е. здесь мы имеем полиалфавитную подстановку, причем число используемых алфавитов определяется числом букв в слове ключа. Поэтому стойкость такой замены определяется произведением стойкости прямой замены на число используемых алфавитов, т. е. на число букв в ключе.

Расшифровка текста производится в следующей последовательности:

1) над буквами зашифрованного текста последовательно надписываются буквы ключа, причем ключ повторяется необходимое количество раз.

Й	У	Ю	Л	Ъ	К	3	Т	X
Ш	E	P	Л	0	К	Ш	E	P

- 2) в строке подматрицы Вижинера, соответствующей букве ключа, отыскивается буква, соответствующая знаку зашифрованного текста. Находящаяся под ней буква первой строки подматрицы и будет буквой исходного текста.
- ! Задание состоит в написании программы для шифрования текста по схеме Вижинера. Текст для шифрования и ключ должны быть в русской кодировке и вводиться в диалоговом режиме.