

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA ELÉTRICA

Plano de Ensino

Universidade Federal do Espírito Santo

Campus de Goiabeiras

Curso: Engenharia de Computação

Departamento Responsável: Departamento de Engenharia Elétrica

Data de Aprovação (Art. nº 91): 28/06/2019

DOCENTE PRINCIPAL: ANSELMO FRIZERA NETO Matrícula: 1834196

Qualificação / link para o Currículo Lattes: http://lattes.cnpq.br/8928890008799265

Disciplina: ELETRÔNICA DIGITAL Código: ELE08500

Período: 2019 / 2 **Turma:** 06

Pré-requisito: Carga Horária Semestral: 75

Disciplina: ELE08475 - CIRCUITOS ELÉTRICOS I

Disciplina: INF09330 - PROGRAMAÇÃO II

Distribuição da Carga Horária Semestral

Créditos: 4 Teórica Exercício Laboratório 60 0 15

Ementa:

Introdução aos Sistemas Digitais. Álgebra de Boole. Postulados e teoremas básicos. Exemplos de álgebras de Boole. Lei de Morgan. Manipulação de expressões booleanas. Circuitos lógicos, Portas Lógicas. Características Elétricas de Famílias lógicas. Circuitos de chaveamento, Relés. Técnicas de interfaceamento. Analise e síntese de Circuitos combinacionais. Minimização. Método dos mapas e método tabular. Implementação de circuitos lógicos programáveis. Projetos com circuitos SSI, MSI e LSI. Circuitos lógicos programáveis combinacionais (ROM, PLA e PAL). Projetos com PLDs e CPLDs. Linguagens de programação de PLDs. Aplicações (circuitos aritméticos, conversores de código, detetores de erros). Circuitos seqüenciais, Latches e Flip-Flops. Modelo generalizado de circuitos seqüenciais. Circuitos tipo Mealy, Moore e Medvedev. Analise e síntese de circuitos seqüenciais por Máquinas algorítmicas de estado. Implementação de circuitos seqüenciais com componentes discretos e Circuito lógicos programáveis (GAL). Linguagem de programação de PLD. Introdução a circuitos lógicos avançados (FPGA e CPLD). Aplicações (contadores, controladores, seqüenciadores, etc.). Laboratório: Montagem e análise de circuitos lógicos. Álgebra booleana. Lógica Programável.

Objetivos Específicos:

Ao final desta unidade curricular o aluno estará apto a analisar, otimizar e projetar sub-sistemas digitais combinacionais e sequenciais, além de circuitos aritméticos implementados das duas maneiras (combinacionalmente e sequencialmente). Quanto à tecnologia de implementação, o aluno deverá ser capaz de propor um sistema digital utilizando tanto lógica discreta quanto por meio de uma linguagem de descrição de hardware, como VHDL, sendo a segunda forma o foco do curso.

Conteúdo Programático:

PROGRAMA (TEORIA)

Módulo 1 - Projeto Lógico Combinacional

- 1.1. Introdução: conceitos, digital vs. analógico, codificações e representações
- 1.2. Transistor como chave, Portas Lógicas CMOS e TTL
- 1.3. Álgebra de Boole
- 1.4. Representações de Funções Booleanas
- 1.5. Redes de 2 Níveis: Processo Lógico Combinacional, Otimização, Tradeoffs
- 1.6. Redes Multiníveis: Processo Lógico Combinacional e Tradeoffs
- 1.7. Componentes de Blocos Operacionais e Seus Tradeoffs

Módulo 2 - Projeto Lógico Sequencial

2.1. Flip-flops e Latches

PLANO DE ENSINO - UFES Página 1 de 4

- 2.2. Máquina de Estados Finitos (FSMs) e Blocos de Controle
- 2.3. Análise de Projetos com FSMs
- 2.4. Otimização e Tradeoffs em Lógica Sequencial
- 2.5. Componentes de Blocos Operacionais

Módulo 3 - Implementação Física

- 3.1. Implementação Física
- 3.2. VHDL (tópico abordado exclusivamente em laboratórios)
- 3.3. Conversores A/D e D/A

PROGRAMA (LABORATÓRIOS)

- Lab. 1: Conceitos gerais (FPGA & VHDL)
- Lab. 2: Operadores, Modelagem por Process, e técnicas de Roteamento.
- Lab. 3: Circuitos Combinacionais
- Lab. 4: Circuitos Sequenciais: Flip-Flops e Registradores
- Lab. 5: Circuitos Sequenciais: FSM (1/3)
- Lab. 6: Circuitos Sequenciais: FSM (2/3)
- Lab. 7: Circuitos Sequenciais: FSM (3/3)
- Rep.: Reposição de conteúdo perdido (1 aula)

Metodologia:

Aulas expositivas teóricas e de laboratório, atividades práticas em laboratório e realização de exercícios em sala de aula.

Critérios / Processo de avaliação da Aprendizagem :

AVALIAÇÃO

Média Parcial (MP)

MP = 0.40 * P1 + 0.40 * P2 + 0.20 * P3

P1 = Nota da Avaliação 1

P2 = Nota da Avaliação 2

P3 = Nota da Avaliação 3

Média Final (MF)

MF = Média(MP, PF)

MP = Média Parcial

PF = Nota da Prova Final

Bibliografia básica:

Vahid, F. "Sistemas Digitais, Projeto, Otimização e HDL" Ed. Bookman, 2008.

Bibliografia complementar:

Wakerly, J.F. "Digital Design Principles and Practices" 4a ed.,

Prentice-Hall. 2006.

Tocci, Widmer; Sistemas Digitais, Princípios e Aplicações, LTC, 10ª edição.

Katz, R. H. "Contemporary Logic Design" 2 ed. Prentice-Hall, 2005.

Mano, M. M. "Digital Design Fundamentals" Prentice-Hall. 2002.

Mendonça, A; Zelenovsky, R; "Eletrônica Digital: Curso Prático e Exercícios" MZ Editora, 2006.

Ercegovac, M. Lang, T.; Moreno, J. H. "Introdução aos Sistemas Digitais". Bookman, 2000.

Cronograma:

Aula	Data	Descrição	Exercícios	Observações
01	13/08/2019	1.1. Introdução: conceitos, digital vs. analógico, codificações e representações		
02	15/08/2019	1.2. Transistor como chave, Portas Lógicas CMOS e TTL		
03	16/08/2019	Lab. 1: Conceitos gerais (FPGA &		

PLANO DE ENSINO - UFES Página 2 de 4

05 2	20/08/2019 22/08/2019	1.3. Álgebra de Boole		
	22/09/2010			
06 2	22/00/20 19	. , , , ,		
	23/08/2019	Booleanas Lab. 2: Operadores, Modelagem por Process, e técnicas de Roteamento.		
07 2	27/08/2019			
	29/08/2019	Lógico Combinacional, Otimização, Tradeoffs		
		Lab. 2: Operadores, Modelagem por Process, e técnicas de Roteamento.		
10	03/09/2019	1.6. Redes Multiníveis: Processo Lógico Combinacional e Tradeoffs		
11 (05/09/2019	1.7. Componentes de Blocos Operacionais e Seus Tradeoffs		
12 (06/09/2019	Lab. 3: Circuitos Combinacionais		
13 1	10/09/2019	Aula de Exercícios	Módulo 1	
14 1	12/09/2019	Primeira Avaliação Parcial		
15 1	13/09/2019	Lab. 3: Circuitos Combinacionais		
16 1	17/09/2019	Revisão da Primeira Avaliação Parcial		
17 2	24/09/2019	2.1. Flip-flops e Latches		
18 2	26/09/2019	2.2. Máquina de Estados Finitos (FSMs) e Blocos de Controle		
19 2	27/09/2019	Lab. 4: Circuitos Sequenciais:		
20 (01/10/2019	Flip-Flops e Registradores Aula de Exercícios Módulo 2		
21 (04/10/2019	Lab. 4: Circuitos Sequenciais:		
		Flip-Flops e Registradores 2.2. Máquina de Estados Finitos (FSMs) e Blocos de Controle		
23 2	22/10/2019	2.3. Análise de Projetos com FSMs		
24 2	24/10/2019	2.4. Otimização e Tradeoffs em Lógica Seguencial		
25 2	25/10/2019	Lab. 5: Circuitos Sequenciais: FSM (1/3)		
26 2	29/10/2019	2.5. Componentes de Blocos Operacionais		
27 3	31/10/2019	2.5. Componentes de Blocos Operacionais		
28 (01/11/2019	Lab. 5: Circuitos Sequenciais:		
29 (05/11/2019	FSM (1/3) Aula de Exercícios Módulo 2		
30 (07/11/2019	Aula de Exercícios	Módulo 2	
31 (08/11/2019	Aula de Reposição de Laboratório		
32 1	12/11/2019	Aula de Exercícios	Módulo 2	
33	19/11/2019	Segunda Avaliação Parcial		
34 2	21/11/2019	Revisão da Segunda Avaliação Parcial		
35 2	22/11/2019	Lab. 6: Circuitos Sequenciais: FSM (2/3)		
36 2	26/11/2019	3.1. Implementação Física		

PLANO DE ENSINO - UFES Página 3 de 4

Aula	Data	Descrição	Exercícios	Observações
37	28/11/2019	3.1. Implementação Física		
38	29/11/2019	Lab. 6: Circuitos Sequenciais: FSM (2/3)		
39	03/12/2019	3.3. Conversores A/D e D/A		
40	05/12/2019	3.3. Conversores A/D e D/A		
41	06/12/2019	Lab. 7: Circuitos Sequenciais: FSM (3/3)		
42	10/12/2019	Terceira Avaliação Parcial		
43	12/12/2019	Revisão da Terceira Avaliação Parcial		
44	13/12/2019	Lab. 7: Circuitos Sequenciais: FSM (3/3)		
45	17/12/2019	Prova Final		

Observação:

Maiores detalhes no AVA.

PLANO DE ENSINO - UFES Página 4 de 4