International Rectifier

IRF1404

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Seventh Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	162⑥		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	115⑥	A	
I _{DM}	Pulsed Drain Current ①	650		
P _D @T _C = 25°C	Power Dissipation	200	W	
	Linear Derating Factor	1.3	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy@	519	mJ	
I _{AR}	Avalanche Current®	95	A	
E _{AR}	Repetitive Avalanche Energy①	20	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range	-55 to + 175	°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

IRF1404

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	•	•				•
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.036		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.0035	0.004	Ω	V _{GS} = 10V, I _D = 95A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
g _{fs}	Forward Transconductance	106			S	$V_{DS} = 25V, I_{D} = 60A$
I	Drain-to-Source Leakage Current			20	μА	$V_{DS} = 40V, V_{GS} = 0V$
I _{DSS}	Diali-10-30dice Leakage Current			250		$V_{DS} = 32V, V_{GS} = 0V, T_{J} = 150$ °C
1	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	nA	$V_{GS} = -20V$
Qg	Total Gate Charge		160	200		I _D = 95A
Q _{gs}	Gate-to-Source Charge		35		nC	$V_{DS} = 32V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		42	60		V _{GS} = 10V⊕
t _{d(on)}	Turn-On Delay Time		17			$V_{DD} = 20V$
t _r	Rise Time		140			$I_D = 95A$
t _{d(off)}	Turn-Off Delay Time		72		ns	$R_G = 2.5\Omega$
tf	Fall Time		26			$R_D = 0.21\Omega$ ④
L _D	Internal Drain Inductance		4.5			Between lead,
					nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		7360			$V_{GS} = 0V$
Coss	Output Capacitance		1680		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		240]]	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		6630			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		1490			$V_{GS} = 0V$, $V_{DS} = 32V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance S		1540]]	$V_{GS} = 0V$, $V_{DS} = 0V$ to 32V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current	nuous Source Current		62© A	MOSFET symbol		
	(Body Diode)		- 1626		showing the		
I _{SM}	Pulsed Source Current	Pulsed Source Current (Body Diode) ①			050	^	integral reverse
	(Body Diode) ①		650	50	p-n junction diode.		
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 95A, V_{GS} = 0V$ ④	
t _{rr}	Reverse Recovery Time		71	110	ns	$T_J = 25$ °C, $I_F = 95$ A	
Q _{rr}	Reverse RecoveryCharge		180	270	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

Notes

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\label{eq:tau} \begin{array}{ll} \text{ Starting T}_J = 25^{\circ}\text{C}, \ L = 0.12\text{mH} \\ \text{R}_G = 25\Omega, \ I_{AS} = 95\text{A}. \ \text{(See Figure 12)} \end{array}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $\ \ \, \ \, \ \,$ $\ \ \, \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

ID = 95A

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF1404 International Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current www.irf.com

Peak Diode Recovery dv/dt Test Circuit

* $V_{GS} = 5V$ for Logic Level Devices

Fig 14. For N-channel HEXFET® Power MOSFETs

IRF1404

International

Rectifier

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION : INCH
- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

WITH ASSEMBLY LOT CODE 9B1M

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936

Data and specifications subject to change without notice. 10/00