Document Title

128K x8 bit Low Power CMOS Static RAM

Revision History

Revision No.	<u>History</u>	Draft Date	<u>Remark</u>
0.0	Initial draft	November 22, 1995	Design target
0.1	First revision - Seperate read and write at Icc, Icc1 Icc = Icc1 → Read : 15mA, Write : 35mA	April 15, 1996	Preliminary
1.0	Finalized - Add 70ns speed bin for commercial product and 85ns speed bin for industrial.	September 5, 1996	Final
2.0	Revised - Improved operating current Add typical value. Icc Read: 15mA → 10mA(Remove write current) Icc2: 90mA → 60mA - Speed bin change Remove 45ns from commercial part Remove 55ns and 100ns from industrial part.	November 5, 1997	Final

The attached data sheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

128K x8 bit Low Power CMOS Static RAM

FEATURES

- Process Technology: TFT
- Organization: 128K x8
- Power Supply Voltage: 4.5~5.5V
- Low Data Retention Voltage: 2V(Min)
- Three state output and TTL Compatible
- Package Type: 32-DIP-600, 32-SOP-525,

32-TSOP1-0820F/R

GENERAL DESCRIPTION

The KM681000C families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature ranges and have various package types for user flexibility of system design. The families also support low data retention voltage for battery backup operation with low data retention current.

PRODUCT FAMILY

				Power Dis			
Product Family	Operating Temperature	Vcc Range	Speed	Standby (IsB1, Max)	Operating (Icc2, Max)	PKG Type	
KM681000CL	Commercial(0~70°C)		55/70ns	50μΑ		32-DIP, 32-SOP	
KM681000CL-L	Commercial(0~70 C)	4.5~5.5V		10μΑ	60mA	32-TSOP1-F/R	
KM681000CLI	Industrial(-40~85°C)		70ns	50μΑ	John	32-SOP	
KM681000CLI-L	industrial(-40~05 C)		70115	15μΑ		32-TSOP1-F/R	

PIN DESCRIPTION

OE A10 CS1 J/08 Clk gen. Α9 A8 🗆 VCC A13 WE 1/07 A15

Name	Function	Name	Function
CS ₁ ,CS ₂	Chip Select Inputs	I/O1~I/O8	Data Inputs/Out-
OE	Output Enable	Vcc	Power
WE	Write Enable	Vss	Ground
A0~A16	Address Inputs	N.C	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Temp	perature Products(0~70°C)	Industrial Temper	ature Products(-40~85°C)
Part Name	Function	Part Name	Function
KM681000CLP-5	32-DIP, 55ns, L-pwr	KM681000CLGI-7	32-SOP, 70ns, L-pwr
KM681000CLP-7	32-DIP, 70ns, L-pwr	KM681000CLGI-7L	32-SOP, 70ns, LL-pwr
KM681000CLP-5L	32-DIP, 55ns, LL-pwr		
KM681000CLP-7L	32-DIP, 70ns, LL-pwr	KM681000CLTI-7L	32-TSOP1-F, 70ns, LL-pwr
KM681000CLG-5	32-SOP, 55ns, L-pwr	KM681000CLRI-7L	32-TSOP1-R, 70ns, LL-pwr
KM681000CLG-7	32-SOP, 70ns, L-pwr		
KM681000CLG-5L	32-SOP, 55ns, LL-pwr		
KM681000CLG-7L	32-SOP, 70ns, LL-pwr		
KM681000CLT-5L	32-TSOP1-F, 55ns, LL-pwr		
KM681000CLT-7L	32-TSOP1-F, 70ns, LL-pwr		
KM681000CLR-5L	32-TSOP1-R, 55ns, LL-pwr		
KM681000CLR-7L	32-TSOP1-R, 70ns, LL-pwr		

FUNCTIONAL DESCRIPTION

CS ₁	CS ₂	ŌĒ	WE	I/O Pin	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
X1)	L	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	Н	High-Z	Output Disable	Active
L	Н	L	Н	Dout	Read	Active
L	Н	X ¹⁾	L	Din	Write	Active

^{1.} X means don't care(Must be in high or low status.)

ABSOLUTE MAXIMUM RATINGS1)

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN, VOUT	-0.5 to 7.0	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to 7.0	V	-
Power Dissipation	Pp	1.0	W	-
Storage temperature	Tstg	-65 to 150	°C	-
Operating Temperature	TA	0 to 70	°C	KM681000CL
Operating remperature	IA	-40 to 85	°C	KM681000CLI
Soldering temperature and time	Tsolder	260°C, 10sec (Lead Only)	-	-

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS¹⁾

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	٧
Ground	Vss	0	0	0	V
Input high voltage	ViH	2.2	-	Vcc+0.5 ²⁾	V
Input low voltage	VIL	-0.5 ³⁾	-	0.8	V

Note

- 1. Commercial Product : T_A=0 to 70°C and Industrial Product :T_A=-40 to 85°C, otherwise specified.

- 2. Overshoot : Vcc+3.0V for≤30ns pulse width.
 3. Undershoot : -3.0V for≤30ns pulse width.
 4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	Cin	VIN=0V	=	6	pF
Input/Output capacitance	Сю	Vio=0V	ı	8	pF

^{1.} Capacitance is sampled not, 100% tested.

DC AND OPERATING CHARACTERISTICS

	Item	Symbol	Test Conditions			Min	Тур	Max	Unit
Input leaka	ge current	ILI	VIN=Vss to Vcc			-1	-	1	μΑ
Output leak	age current	llo	$\overline{\text{CS}}_1$ =VIH or $\overline{\text{CS}}_2$ =VIL or $\overline{\text{OE}}$ =VIH or $\overline{\text{WE}}$ =V	IL, VIO=Vss to	o Vcc	-1	-	1	μΑ
Operating p	ower supply current	Icc	IIO=0mA, CS1=VIL, CS2=VIH, VIN=VIH or V	/ıL, Read		-	5	10	mA
		1001	Cycle time=1μs, 100% duty, Iιο=0mA, CS	·	Read	-	2	5	mA
Average op	Average operating current		CS2≥Vcc-0.2V, VIN≤0.2V or VIN≥Vcc-0.2V Write			20	35	IIIA	
		ICC2	Cycle time=Min, 100% duty, Iio=0mA, CS1=VIL, CS2=VIH, VIN=VIL or VIH				45	60	mA
Output low	voltage	Vol	IoL=2.1mA			-	-	0.4	V
Output high	voltage	Voн	IOH=-1.0mA			2.4	-	-	V
Standby Cu	ırrent(TTL)	Isb	CS ₁ =VIH, CS ₂ =VIL, Other input=VIL or VIH			-	-	3	mA
	KM681000CL			Low Power		-	1	50	
Standby Current	KM681000CL-L	ISB1	CS1≥Vcc-0.2V, CS2≥Vcc-0.2V or CS2≤0.2V	Low Low Power		-	0.3	10	μA
(CMOS)	KM681000CLI	IODI		Low power		-	1	50	μΛ
	KM681000CLI-L			Low Low Power		-	0.3	15	

AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Test Input/Output Reference)

Input pulse level: 0.8 to 2.4V Input rising and falling time: 5ns Input and output reference voltage: 1.5V Output load (See right): CL=100pF+1TTL

1. Including scope and jig capacitance

AC CHARACTERISTICS

				Speed	d Bins		
Parameter List		Symbol	55	55ns		ns	Units
			Min	Max	Min	Max	
	Read cycle time	trc	55	-	70	-	ns
	Address access time	tAA	-	55	-	70	ns
	Chip select to output	tco1, tco2	-	55	-	70	ns
	Output enable to valid output	toE	-	25	-	35	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	ns
	Output enable to low-Z output	toLZ	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	25	ns
	Output disable to high-Z output	tonz	0	20	0	25	ns
	Output hold from address change	tон	10	-	10	-	ns
	Write cycle time	twc	55	-	70	-	ns
	Chip select to end of write	tcw	45	-	60	-	ns
	Address set-up time	tas	0	-	0	-	ns
	Address valid to end of write	taw	45	-	60	-	ns
Write	Write pulse width	twp	40	-	50	-	ns
WIIIC	Write recovery time	twR1,twR2	0	-	0	-	ns
	Write to output high-Z	twHz	0	20	0	25	ns
	Data to write time overlap	tow	25	-	30	-	ns
	Data hold from write time	tDH	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns

DATA RETENTION CHARACTERISTICS

Item	Symbol	Test Conditi	Min	Тур	Max	Unit	
Vcc for data retention	VDR	CS ₁ 1)≥Vcc-0.2V, CS ₂ ≥Vcc-0.2V				5.5	V
Data retention current	IDR	Vcc=3.0V,	KM681000CL	-	1	20	
			KM681000CL-L	-	1	10	μΑ
			KM681000CLI	-	-	25	
			KM681000CLI-L	-	-	10	
Data retention set-up	tsdr	See data retention waveform		0	-		ma
Recovery time	trdr	See data retention wavelorm		5	-	-	ms

^{1.} CS₁≥Vcc-0.2v, CS₂≥Vcc-0.2V or CS₂≤0.2V

TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS}_1 = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

NOTES (READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap of a low \overline{CS}_1 , a high CS_2 and a low \overline{WE} . A write begins at the latest transition among \overline{CS}_1 goes low, CS_2 going high and \overline{WE} going low: A write end at the earliest transition among \overline{CS}_1 going high, CS_2 going low and \overline{WE} going high, twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}_1}$ going low or CS_2 going high to the end of write.
- 3. tAS is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn(1) applied in case a write ends as \overline{CS}_1 or \overline{WE} going high twn(2) applied in case a write ends as CS_2 going to low.

DATA RETENTION WAVE FORM

PACKAGE DIMENSIONS

32 DUAL INLINE PACKAGE (600mil)

Units: millimeter(inch)

32 PLASTIC SMALL OUTLINE PACKAGE (525mil)

PACKAGE DIMENSIONS

Units: millimeter(inch)

32 THIN SMALL OUTLINE PACKAGE TYPE1 (0820F)

32 THIN SMALL OUTLINE PACKAGE TYPE1 (0820R)

