Accepted

# Verifying Array Manipulating Programs with Full-Program Induction [ACAS Artifact]

Supratik Chakraborty<sup>1</sup>, Ashutosh Gupta<sup>1</sup>, Divyesh Unadkat<sup>1,2</sup>

Indian Institute of Technology Bombay<sup>1</sup>
TCS Research<sup>2</sup>

**TACAS 2020** 





### Verify Properties of Programs with Arrays

- Arrays of parametric size N
- Compute values dependent on values from previous iterations
- No trivial translation of loops to parallel assignments
- Quantified as well as quantifier-free properties, with possibly non-linear terms

```
Does \{\varphi(N)\}\ P_N\ \{\psi(N)\}\ hold?
```

```
assume(true):
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
     A[0]=6; B[0]=1; C[0]=0;
3.
     for (int x=1: x<N: x++)
4.
       A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
7.
       B[v] = B[v-1] + A[v-1];
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1]:
10. }
assert(\forall k \in [0,N), C[k] == k^3):
```

- Quantified invariants with non-linear terms difficult to synthesize
  - ▶ Loop invariants required by the respective loops in the program:
  - $\forall i \in [0...x-1] (A[i] = 6i + 6)$
  - $\forall j \in [0...y-1] (B[j] = 3j^2 + 3j + 1 \land A[j] = 6j + 6)$
  - ▶  $\forall k \in [0...z-1] (C[k] = k^3 \land B[k] = 3k^2 + 3k + 1)$
  - ► FreqHorn[CAV'19], <u>Tiler</u>[SAS'17]

- Quantified invariants with non-linear terms difficult to synthesize
  - ▶ Loop invariants required by the respective loops in the program:
  - $\forall i \in [0...x-1] (A[i] = 6i + 6)$
  - ▶  $\forall j \in [0...y-1] (B[j] = 3j^2 + 3j + 1 \land A[j] = 6j + 6)$
  - ▶  $\forall k \in [0...z-1] (C[k] = k^3 \land B[k] = 3k^2 + 3k + 1)$
  - ► FreqHorn[CAV'19], <u>Tiler</u>[SAS'17]
- Abstraction-based techniques are imprecise in presence of data dependence across loop iterations
  - VeriAbs[ASE'19], Vaphor[SAS'16]

- Quantified invariants with non-linear terms difficult to synthesize
  - ▶ Loop invariants required by the respective loops in the program:
  - $\forall i \in [0...x-1] (A[i] = 6i + 6)$
  - ▶  $\forall j \in [0...y-1] (B[j] = 3j^2 + 3j + 1 \land A[j] = 6j + 6)$
  - ▶  $\forall k \in [0...z-1] (C[k] = k^3 \land B[k] = 3k^2 + 3k + 1)$
  - ► FreqHorn[CAV'19], <u>Tiler</u>[SAS'17]
- Abstraction-based techniques are imprecise in presence of data dependence across loop iterations
  - VeriAbs[ASE'19], Vaphor[SAS'16]
- Difficult to solve (non-linear) recurrences when data flows across loops and loop iterations; difficult to find fix-points
  - ▶ **VIAP**[VSTTE'18], **Booster**[ATVA'14]























Base Case



**Base Case** 

X Infer New Sub-goals or Report unable to prove



Infer New Sub-goals or Report unable to prove

Base Case

**Inductive Step** 



Base Case

Infer New Sub-goals ✓

Report unable to prove

✓ Proved

**Inductive Step** 



Base Case

Infer New Sub-goals or Report unable to prove **Inductive Step** 

Proved

Infer New Sub-goals



```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
     for (int x=1: x<N: x++)
4.
5.
     A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
9.
       C[z] = C[z-1] + B[z-1]:
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
                                      Base Case: Substitute N=1
assume(true);
                                     assume(true);
1. void PolyCompute(int N) {
                                     1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
                                           int A[1], B[1], C[1];
                                     3.
                                           A[0]=6; B[0]=1; C[0]=0;
3.
     A[0]=6; B[0]=1; C[0]=0;
                                           for (int x=1: x<1: x++)
                                     4.
     for (int x=1: x<N: x++)
4.
                                     5.
                                             A[x] = A[x-1] + 6:
5.
     A[x] = A[x-1] + 6:
                                     6. for (int y=1; y<1; y++)
     for (int y=1; y<N; y++)
6.
                                             B[v] = B[v-1] + A[v-1];
                                     7.
       B[v] = B[y-1] + A[y-1];
7.
                                     8. for (int z=1: z<1: z++)
8.
     for (int z=1: z<N: z++)
                                             C[z] = C[z-1] + B[z-1];
                                     9.
       C[z] = C[z-1] + B[z-1]:
9.
                                     10. }
10. }
                                     assert(\forall k \in [0,1), C[k] == k^3);
assert(\forall k \in [0,N), C[k] == k^3);
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
     for (int x=1: x<N: x++)
4.
5.
       A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1]:
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

#### Inductive Step

```
assume(\forall k \in [0,N-1),C[k] == k^3);
1.  A[N-1] = A[N-2] + 6;
2.  B[N-1] = B[N-2] + A[N-2];
3.  C[N-1] = C[N-2] + B[N-2];
assert(\forall k \in [0,N),C[k] == k^3);
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
4.
     for (int x=1: x<N: x++)
5.
       A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1]:
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

#### Inductive Step

```
assume (\forall k \in [0, N-1), C[k] == k^3);

1. A[N-1] = A[N-2] + 6;

2. B[N-1] = B[N-2] + A[N-2];

3. C[N-1] = C[N-2] + B[N-2];

assert(C[N-1] == (N-1)^3);
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
     for (int x=1: x<N: x++)
4.
5.
       A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1]:
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

#### Inferred Pre<sub>1</sub>

```
assume (B[N-2] == (N-1)^3 - (N-2)^3);

assume (\forall k \in [0, N-1), C[k] == k^3);

1. A[N-1] = A[N-2] + 6;

2. B[N-1] = B[N-2] + A[N-2];

3. C[N-1] = C[N-2] + B[N-2];

assert(C[N-1] == (N-1)^3);
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
     for (int x=1: x<N: x++)
4.
5.
       A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1]:
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

#### Quantify Inferred Pre<sub>1</sub>

```
 \begin{split} & \operatorname{assume}(\forall j \in [0, N-1), B[j] = (j+1)^3 - j^3) \,; \\ & \operatorname{assume}(\forall k \in [0, N-1), C[k] = k^3) \,; \\ & 1. \quad A[N-1] = A[N-2] + 6 \,; \\ & 2. \quad B[N-1] = B[N-2] + A[N-2] \,; \\ & 3. \quad C[N-1] = C[N-2] + B[N-2] \,; \\ & \operatorname{assert}(C[N-1] = (N-1)^3) \,; \end{split}
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
     for (int x=1; x<N; x++)
4.
5.
     A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1]:
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

#### Base Case: Substitute N=1

```
assume(true);
1. void PolyCompute(int N) {

 int A[1], B[1], C[1];

3. A[0]=6; B[0]=1; C[0]=0;
4. for (int x=1: x<1: x++)
5.
       A[x] = A[x-1] + 6:
6. for (int y=1; y<1; y++)
7.
       B[y] = B[y-1] + A[y-1];
8. for (int z=1: z<1: z++)
9.
       C[z] = C[z-1] + B[z-1]:
10. }
assert(\forall k \in [0,1), C[k] == k^3);
assert(\forall i \in [0,1), B[i] == (i+1)^3 - i^3);
```

```
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
     for (int x=1: x<N: x++)
4.
5.
     A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1]:
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

Verify  $\{\varphi(N)\}\ P_N\ \{\psi(N)\}$ 

#### Inductive Step

```
 \begin{array}{l} \operatorname{assume} (\forall j \in [0, N-1), B[j] = (j+1)^3 - j^3); \\ \operatorname{assume} (\forall k \in [0, N-1), C[k] = k^3); \\ \\ 1. \quad A[N-1] = A[N-2] + 6; \\ \\ 2. \quad B[N-1] = B[N-2] + A[N-2]; \\ \\ 3. \quad C[N-1] = C[N-2] + B[N-2]; \\ \\ \operatorname{assert} (C[N-1] = (N-1)^3); \\ \operatorname{assert} (B[N-1] = N^3 - (N-1)^3); \\ \end{array}
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
     for (int x=1: x<N: x++)
4.
5.
     A[x] = A[x-1] + 6:
6.
     for (int y=1; y<N; y++)
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1];
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

#### Inferred Pre<sub>2</sub>

```
assume (A[N-2]==N^3-2*(N-1)^3+(N-2)^3):
    assume(\forall j \in [0,N-1),B[j] == (j+1)^3 - j^3);
    assume (\forall k \in [0,N-1),C[k]==k^3);
    1. A[N-1] = A[N-2] + 6:
    2. B[N-1] = B[N-2] + A[N-2]:
    3. C[N-1] = C[N-2] + B[N-2];
    assert(C[N-1] == (N-1)^3);
assert(B[N-1] == N^3 - (N-1)^3):
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
     for (int x=1: x<N: x++)
4.
5.
     A[x] = A[x-1] + 6:
6.
     for (int y=1; y<N; y++)
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1]:
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

#### Quantify Inferred Pre<sub>2</sub>

```
 \begin{array}{l} \operatorname{assume} (\forall i \in [0, N-1), A[i] = = (i+2)^3 - 2*(i+1)^3 + i^3); \\ \operatorname{assume} (\forall j \in [0, N-1), B[j] = = (j+1)^3 - j^3); \\ \operatorname{assume} (\forall k \in [0, N-1), C[k] = = k^3); \\ \\ 1. \quad A[N-1] = A[N-2] + 6; \\ \\ 2. \quad B[N-1] = B[N-2] + A[N-2]; \\ \\ 3. \quad C[N-1] = C[N-2] + B[N-2]; \\ \operatorname{assert} (C[N-1] = = (N-1)^3); \\ \operatorname{assert} (B[N-1] = = N^3 - (N-1)^3); \\ \\ \end{array}
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
                                                 Base case: Substitute N=1
assume(true);
                                       assume(true):
1. void PolyCompute(int N) {
                                       1. void PolyCompute(int N) {
                                       2.
                                            int A[1], B[1], C[1];
     int A[N], B[N], C[N];
2.
                                       3.
                                            A[0]=6; B[0]=1; C[0]=0;
3.
     A[0]=6; B[0]=1; C[0]=0;
                                       4.
                                            for (int x=1: x<1: x++)
                                       5.
                                               A[x] = A[x-1] + 6:
     for (int x=1: x<N: x++)
4.
5.
     A[x] = A[x-1] + 6:
                                       6.
                                            for (int y=1; y<1; y++)
                                       7.
                                               B[y] = B[y-1] + A[y-1];
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
                                       8.
                                          for (int z=1: z<1: z++)
                                               C[z] = C[z-1] + B[z-1]:
                                       9.
8.
     for (int z=1: z<N: z++)
                                       10. }
       C[z] = C[z-1] + B[z-1]:
9.
                                       assert(\forall k \in [0,1), C[k] == k^3);
10. }
                                       assert(\forall j \in [0,1), B[j] == (j+1)^3 - j^3);
                                       assert(\forall i \in [0,1), A[i] = (i+2)^3 - 2*(i+1)^3 + i^3):
assert(\forall k \in [0,N), C[k] == k^3);
```

```
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
4.
     for (int x=1: x<N: x++)
5.
     A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1: z<N: z++)
       C[z] = C[z-1] + B[z-1]:
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

Verify  $\{\varphi(N)\}\ P_N\ \{\psi(N)\}$ 

#### Inductive Step

```
assume(\forall i \in [0,N-1),A[i] == (i+2)^3-2*(i+1)^3+i^3):
assume(\forall j \in [0, N-1), B[j] == (j+1)^3 - j^3);
assume (\forall k \in [0,N-1),C[k]==k^3):
1. A[N-1] = A[N-2] + 6:
2. B[N-1] = B[N-2] + A[N-2];
3. C[N-1] = C[N-2] + B[N-2]:
assert(C[N-1] == (N-1)^3);
assert(B[N-1] == N^3 - (N-1)^3);
assert(A[N-1] == (N+1)^3 - 2*N^3 + (N-1)^3):
```

```
Verify \{\varphi(N)\}\ P_N\ \{\psi(N)\}
assume(true);
1. void PolyCompute(int N) {
     int A[N], B[N], C[N];
2.
3.
     A[0]=6; B[0]=1; C[0]=0;
     for (int x=1: x<N: x++)
4.
5.
       A[x] = A[x-1] + 6:
     for (int y=1; y<N; y++)
6.
7.
       B[y] = B[y-1] + A[y-1];
8.
     for (int z=1; z<N; z++)
       C[z] = C[z-1] + B[z-1]:
9.
10. }
assert(\forall k \in [0,N), C[k] == k^3);
```

#### Eliminate Quantifiers in Pre

```
assume(A[N-2]==N^3-2*(N-1)^3+(N-2)^3):
assume (B[N-2]=(N-1)^3-(N-2)^3):
assume(C[N-2]=(N-2)^3);
1. A[N-1] = A[N-2] + 6:
2. B[N-1] = B[N-2] + A[N-2]:
3. C[N-1] = C[N-2] + B[N-2];
assert(C[N-1] == (N-1)^3);
assert(B[N-1] == N^3 - (N-1)^3):
assert(A[N-1] == (N+1)^3 - 2*N^3 + (N-1)^3);
Validity proved by Z3
```

# Computing the "Difference" Pre-Condition - $\partial \varphi(N)$

- Need to compute  $\partial \varphi(N)$  such that
  - (a)  $\varphi(N) \to \varphi(N-1) \wedge \partial \varphi(N)$  holds
  - (b)  $\partial \varphi(N)$  does not refer to scalars and array elements modified in  $\mathsf{P}_{N-1}$

# Computing the "Difference" Pre-Condition - $\partial \varphi(N)$

- Need to compute  $\partial \varphi(N)$  such that
  - (a)  $\varphi(N) \to \varphi(N-1) \wedge \partial \varphi(N)$  holds
  - (b)  $\partial \varphi(N)$  does not refer to scalars and array elements modified in  $P_{N-1}$
- Test for existence of  $\partial \varphi(N)$ 
  - ▶ Validity of  $\varphi(N) \rightarrow \varphi(N-1)$
  - Difference cannot be computed if above formula is invalid

# Computing the "Difference" Pre-Condition - $\partial \varphi(N)$

- Need to compute  $\partial \varphi(N)$  such that
  - (a)  $\varphi(N) \to \varphi(N-1) \wedge \partial \varphi(N)$  holds
  - (b)  $\partial \varphi(N)$  does not refer to scalars and array elements modified in  $P_{N-1}$
- Test for existence of  $\partial \varphi(N)$ 
  - ▶ Validity of  $\varphi(N) \rightarrow \varphi(N-1)$
  - ▶ Difference cannot be computed if above formula is invalid
- Computed based on the shape of  $\varphi(N)$ 
  - ▶ If  $\varphi(N) := \forall i \ (0 \le i \le N) \to \hat{\varphi}(i)$  then  $\partial \varphi(N) := \hat{\varphi}(N)$ 
    - \*  $\varphi(N) := \forall i \ (0 \le i \le N) \to A[i] > 0$   $\partial \varphi(N) := A[N] > 0$
  - If  $\varphi(N) := \varphi^1(N) \wedge \cdots \wedge \varphi^k(N)$  then  $\partial \varphi(N) := \partial \varphi^1(N) \wedge \cdots \wedge \partial \varphi^k(N)$
  - Otherwise  $\partial \varphi(N) := \mathsf{True}$

- Peel all the loops in the input program P<sub>N</sub>
- Replace assignments in the peeled loops with "difference" statements
  - A[i] = C;
     is transformed to
     A[i] = A\_Nm1[i] + (C C);
     A[i] = B[i] + v;
     is transformed to
     A[i] = A\_Nm1[i] + (B[i] B\_Nm1[i]) + (v v\_Nm1);
- "Simplify" generated difference terms, "Accelerate" loops
- ullet Slice loops that simply copy values from  $N\text{-}1^{th}$  version to  $N^{th}$  version

## Soundness Guarantee

Theorem

#### Theorem

### Suppose

1)  $\{\varphi(N)\}\ \mathsf{P}_{N}\ \{\psi(N)\} \iff \{\varphi(N)\}\ \mathsf{P}_{N-1}; \partial \mathsf{P}_{N}\ \{\psi(N)\}$ 

#### Theorem

### Suppose

- 1)  $\{\varphi(N)\}\ \mathsf{P}_{N}\ \{\psi(N)\} \iff \{\varphi(N)\}\ \mathsf{P}_{N-1}; \partial \mathsf{P}_{N}\ \{\psi(N)\}$
- 2) Formula  $\partial \varphi(N)$  exists such that
  - (a)  $\varphi(N) \to \varphi(N-1) \wedge \partial \varphi(N)$
  - (b)  $\{\partial \varphi(N)\}\ \mathsf{P}_{N-1}\ \{\partial \varphi(N)\}$

## Soundness Guarantee

#### **Theorem**

## Suppose

- 1)  $\{\varphi(N)\}\ \mathsf{P}_{N}\ \{\psi(N)\} \iff \{\varphi(N)\}\ \mathsf{P}_{N-1}; \partial \mathsf{P}_{N}\ \{\psi(N)\}$
- 2) Formula  $\partial \varphi(N)$  exists such that
  - (a)  $\varphi(N) \rightarrow \varphi(N-1) \wedge \partial \varphi(N)$
  - (b)  $\{\partial \varphi(N)\}\ \mathsf{P}_{N-1}\ \{\partial \varphi(N)\}$
- 3) Formula Pre(M) exists such that for  $M \ge 1$ 
  - (a)  $\{\varphi(N)\}\ P_N\ \{\psi(N)\}\ for\ 0< N\leq M$
  - (b)  $\{\varphi(M)\}\ \mathsf{P}_M\ \{\psi(M)\land\mathsf{Pre}(M)\}$
  - (c)  $\{\partial \varphi(N) \wedge \psi(N-1) \wedge \operatorname{Pre}(N-1)\} \partial P_N \{\psi(N) \wedge \operatorname{Pre}(N)\}$  for N > M

## Soundness Guarantee

#### **Theorem**

## Suppose

- 1)  $\{\varphi(N)\}\ \mathsf{P}_{N}\ \{\psi(N)\} \iff \{\varphi(N)\}\ \mathsf{P}_{N-1}; \partial \mathsf{P}_{N}\ \{\psi(N)\}$
- 2) Formula  $\partial \varphi(N)$  exists such that
  - (a)  $\varphi(N) \to \varphi(N-1) \land \partial \varphi(N)$
  - (b)  $\{\partial \varphi(N)\}\ \mathsf{P}_{N-1}\ \{\partial \varphi(N)\}$
- 3) Formula Pre(M) exists such that for  $M \ge 1$ 
  - (a)  $\{\varphi(N)\}\ P_N\ \{\psi(N)\}\ for\ 0< N\leq M$
  - (b)  $\{\varphi(M)\}\ \mathsf{P}_M\ \{\psi(M)\land\mathsf{Pre}(M)\}$
  - (c)  $\{\partial \varphi(N) \wedge \psi(N-1) \wedge \operatorname{Pre}(N-1)\} \partial P_N \{\psi(N) \wedge \operatorname{Pre}(N)\}$  for N > M

Then  $\{\varphi(N)\}\ P_N\ \{\psi(N)\}\ holds$  for all  $N\geq 1$ .

# Implemented in a prototype tool - Vajra



#### Permanent Archive



https://doi.org/10.6084/ m9.figshare.11875428.v1

- Evaluated on 231 challenging array benchmarks
- Proved 110/121 safe, 108/110 unsafe and inconclusive on 13 programs

# Vajra Benchmarking

- Performance compared with the following tools:
  - ▶ VIAP v1.0 Inductive encoding with arrays as uninterpreted functions
  - ► VeriAbs v1.3.10 Loop shrinking/pruning and Output abstraction
  - Booster v0.2 Acceleration and Lazy Abstraction for Arrays
  - Vaphor v1.2 Distinguished Cell Abstraction for Arrays
  - ► FreqHorn v3 Solving CHC's using Syntax Guided Synthesis
- Benchmarks manually translated to input format of these tools
- Time limit 100s

| Benchmark | #L | Vajra         | VIAP          | VeriAbs | Booster       | Vaphor        | FreqHorn      |
|-----------|----|---------------|---------------|---------|---------------|---------------|---------------|
| pcomp     | 3  | <b>√</b> 0.68 | TO            | TO      | <b>?</b> 0.23 | TO            | <b>?</b> 0.58 |
| ncomp     | 3  | <b>√</b> 0.68 | TO            | TO      | <b>?</b> 0.41 | TO            | <b>?</b> 0.68 |
| eqnm2     | 2  | <b>√</b> 0.52 | TO            | TO      | <b>?</b> 0.07 | TO            | <b>?</b> 0.59 |
| eqnm3     | 2  | <b>√</b> 0.53 | TO            | TO      | <b>?</b> 0.07 | TO            | <b>?</b> 0.56 |
| eqnm4     | 2  | <b>√</b> 0.51 | TO            | TO      | <b>?</b> 0.07 | TO            | <b>?</b> 0.60 |
| eqnm5     | 2  | <b>√</b> 0.55 | TO            | TO      | <b>?</b> 0.07 | TO            | <b>?</b> 0.58 |
| sqm       | 2  | <b>√</b> 0.51 | <b>√</b> 69.7 | ТО      | <b>?</b> 0.11 | TO            | <b>?</b> 0.57 |
| res1      | 4  | <b>√</b> 0.17 | TO            | TO      | TO            | TO            | TO            |
| res1o     | 4  | <b>√</b> 0.18 | TO            | TO      | TO            | TO            | TO            |
| res2      | 6  | <b>√</b> 0.20 | TO            | ТО      | ТО            | TO            | TO            |
| res2o     | 6  | <b>√</b> 0.22 | TO            | TO      | TO            | TO            | TO            |
| ss1       | 4  | <b>√</b> 0.40 | TO            | TO      | <b>X</b> 0.13 | <b>?</b> 19.2 | ?1.7          |
| ss2       | 6  | <b>√</b> 0.46 | TO            | TO      | <b>X</b> 0.13 | TO            | <b>?</b> 9.7  |
| ss3       | 5  | <b>√</b> 0.35 | TO            | TO      | <b>X</b> 0.13 | TO            | <b>?</b> 2.1  |
| ss4       | 4  | <b>√</b> 0.29 | TO            | TO      | <b>X</b> 0.13 | TO            | <b>?</b> 1.6  |
| ssina     | 5  | <b>√</b> 0.41 | <b>√</b> 72.5 | TO      | TO            | TO            | <b>?</b> 2.0  |
| sina1     | 2  | <b>√</b> 0.56 | <b>√</b> 65.4 | TO      | TO            | TO            | TO            |
| sina2     | 3  | <b>√</b> 0.69 | <b>√</b> 66.5 | TO      | TO            | TO            | TO            |
| sina3     | 4  | <b>√</b> 0.83 | TO            | TO      | TO            | TO            | TO            |
| sina4     | 4  | <b>√</b> 0.85 | TO            | TO      | TO            | TO            | ТО            |
| sina5     | 5  | <b>√</b> 0.93 | TO            | TO      | TO            | TO            | TO            |

| Benchmark | #L | Vajra         | VIAP          | VeriAbs | Booster       | Vaphor        | FreqHorn      |
|-----------|----|---------------|---------------|---------|---------------|---------------|---------------|
| pcomp     | 3  | <b>√</b> 0.68 | TO            | TO      | <b>?</b> 0.23 | TO            | <b>?</b> 0.58 |
| ncomp     | 3  | <b>√</b> 0.68 | TO            | TO      | <b>?</b> 0.41 | TO            | <b>?</b> 0.68 |
| eqnm2     | 2  | <b>√</b> 0.52 | TO            | TO      | <b>?</b> 0.07 | TO            | <b>?</b> 0.59 |
| eqnm3     | 2  | <b>√</b> 0.53 | TO            | TO      | <b>?</b> 0.07 | TO            | <b>?</b> 0.56 |
| eqnm4     | 2  | <b>√</b> 0.51 | TO            | TO      | <b>?</b> 0.07 | TO            | <b>?</b> 0.60 |
| eqnm5     | 2  | <b>√</b> 0.55 | TO            | TO      | <b>?</b> 0.07 | TO            | <b>?</b> 0.58 |
| sqm       | 2  | <b>√</b> 0.51 | <b>√</b> 69.7 | TO      | <b>?</b> 0.11 | TO            | <b>?</b> 0.57 |
| res1      | 4  | <b>√</b> 0.17 | TO            | TO      | TO            | TO            | TO            |
| res1o     | 4  | <b>√</b> 0.18 | TO            | TO      | TO            | TO            | TO            |
| res2      | 6  | <b>√</b> 0.20 | TO            | TO      | TO            | TO            | TO            |
| res2o     | 6  | <b>√</b> 0.22 | TO            | TO      | TO            | TO            | TO            |
| ss1       | 4  | <b>√</b> 0.40 | TO            | TO      | <b>X</b> 0.13 | <b>?</b> 19.2 | ?1.7          |
| ss2       | 6  | <b>√</b> 0.46 | TO            | TO      | <b>X</b> 0.13 | TO            | <b>?</b> 9.7  |
| ss3       | 5  | <b>√</b> 0.35 | TO            | TO      | <b>X</b> 0.13 | TO            | <b>?</b> 2.1  |
| ss4       | 4  | <b>√</b> 0.29 | TO            | TO      | <b>X</b> 0.13 | TO            | ?1.6          |
| ssina     | 5  | <b>√</b> 0.41 | <b>√</b> 72.5 | TO      | TO            | TO            | <b>?</b> 2.0  |
| sina1     | 2  | <b>√</b> 0.56 | <b>√</b> 65.4 | TO      | TO            | TO            | TO            |
| sina2     | 3  | <b>√</b> 0.69 | <b>√</b> 66.5 | TO      | TO            | TO            | TO            |
| sina3     | 4  | <b>√</b> 0.83 | TO            | TO      | TO            | TO            | TO            |
| sina4     | 4  | <b>√</b> 0.85 | TO            | TO      | TO            | TO            | TO            |
| sina5     | 5  | <b>√</b> 0.93 | TO            | TO      | TO            | TO            | TO            |

| Benchmark | #L | Vajra         | VIAP          | VeriAbs       | Booster       | Vaphor         | FreqHorn      |
|-----------|----|---------------|---------------|---------------|---------------|----------------|---------------|
| zerosum1  | 2  | <b>√</b> 0.33 | <b>√</b> 62.0 | <b>√</b> 11   | <b>√</b> 0.77 | <b>X</b> 0.29  | TO            |
| zerosum2  | 4  | <b>√</b> 0.46 | <b>√</b> 75.8 | <b>√</b> 18   | TO            | <b>X</b> 1.64  | ТО            |
| zerosum3  | 6  | <b>√</b> 0.59 | <b>√</b> 73.1 | <b>√</b> 39   | TO            | <b>X</b> 3.13  | TO            |
| zerosum4  | 8  | <b>√</b> 0.76 | <b>√</b> 76.1 | TO            | <b>?</b> 18.2 | <b>X</b> 6.85  | TO            |
| zerosum5  | 10 | <b>√</b> 0.97 | <b>√</b> 80.6 | TO            | ?16.5         | <b>X</b> 10.4  | TO            |
| zerosumm2 | 4  | <b>√</b> 0.46 | <b>√</b> 71.5 | <b>√</b> 24   | TO            | <b>X</b> 1.22  | TO            |
| zerosumm3 | 6  | <b>√</b> 0.59 | <b>√</b> 70.9 | TO            | TO            | <b>X</b> 5.22  | TO            |
| zerosumm4 | 8  | <b>√</b> 0.77 | <b>√</b> 76.4 | TO            | <b>?</b> 16.7 | <b>X</b> 12.39 | TO            |
| zerosumm5 | 10 | <b>√</b> 0.98 | <b>√</b> 81.7 | TO            | <b>?</b> 18.7 | <b>X</b> 22.8  | TO            |
| zerosumm6 | 12 | <b>√</b> 1.29 | <b>√</b> 86.8 | TO            | ?16.1         | TO             | TO            |
| сору9     | 9  | <b>√</b> 0.69 | <b>√</b> 86.8 | <b>√</b> 3.91 | <b>√</b> 18.8 | TO             | <b>√</b> 0.67 |
| min       | 1  | <b>√</b> 0.48 | <b>√</b> 23.6 | <b>√</b> 3.82 | <b>√</b> 0.52 | <b>√</b> 0.14  | <b>√</b> 0.13 |
| max       | 1  | <b>√</b> 0.46 | <b>√</b> 25.4 | <b>√</b> 4.70 | <b>√</b> 1.0  | <b>√</b> 0.28  | <b>√</b> 0.18 |
| compare   | 1  | <b>√</b> 0.82 | <b>√</b> 18.8 | <b>√</b> 17.9 | <b>√</b> 0.06 | <b>√</b> 0.84  | <b>√</b> 0.31 |
| conda     | 3  | <b>√</b> 0.72 | <b>√</b> 13.9 | TO            | <b>√</b> 0.07 | <b>√</b> 0.09  | TO            |
| condn     | 1  | <b>?</b> 0.51 | <b>√</b> 14.7 | <b>√</b> 18.9 | <b>√</b> 0.02 | <b>√</b> 0.15  | <b>√</b> 0.20 |
| condm     | 2  | <b>?</b> 0.59 | <b>√</b> 20.5 | <b>√</b> 16.7 | <b>√</b> 0.04 | TO             | -             |
| condg     | 3  | <b>?</b> 0.52 | TO            | TO            | TO            | TO             | TO            |
| modn      | 2  | <b>?</b> 0.63 | <b>√</b> 22.6 | TO            | -             | TO             | TO            |
| mods      | 4  | <b>?</b> 0.61 | TO            | <b>√</b> 18.2 | -             | -              | -             |
| modp      | 2  | <b>?</b> 0.71 | <b>√</b> 17.3 | <b>√</b> 40   | -             | <b>?</b> 32    | -             |

| Benchmark | #L | Vajra         | VIAP          | VeriAbs       | Booster       | Vaphor         | FreqHorn      |
|-----------|----|---------------|---------------|---------------|---------------|----------------|---------------|
| zerosum1  | 2  | <b>√</b> 0.33 | <b>√</b> 62.0 | <b>√</b> 11   | <b>√</b> 0.77 | <b>X</b> 0.29  | ТО            |
| zerosum2  | 4  | <b>√</b> 0.46 | <b>√</b> 75.8 | <b>√</b> 18   | TO            | <b>X</b> 1.64  | TO            |
| zerosum3  | 6  | <b>√</b> 0.59 | <b>√</b> 73.1 | <b>√</b> 39   | TO            | <b>X</b> 3.13  | TO            |
| zerosum4  | 8  | <b>√</b> 0.76 | <b>√</b> 76.1 | TO            | <b>?</b> 18.2 | <b>X</b> 6.85  | TO            |
| zerosum5  | 10 | <b>√</b> 0.97 | <b>√</b> 80.6 | TO            | <b>?</b> 16.5 | <b>X</b> 10.4  | TO            |
| zerosumm2 | 4  | <b>√</b> 0.46 | <b>√</b> 71.5 | <b>√</b> 24   | TO            | <b>X</b> 1.22  | TO            |
| zerosumm3 | 6  | <b>√</b> 0.59 | <b>√</b> 70.9 | TO            | TO            | <b>X</b> 5.22  | TO            |
| zerosumm4 | 8  | <b>√</b> 0.77 | <b>√</b> 76.4 | TO            | <b>?</b> 16.7 | <b>X</b> 12.39 | TO            |
| zerosumm5 | 10 | <b>√</b> 0.98 | <b>√</b> 81.7 | TO            | <b>?</b> 18.7 | <b>X</b> 22.8  | TO            |
| zerosumm6 | 12 | <b>√</b> 1.29 | <b>√</b> 86.8 | TO            | ?16.1         | TO             | TO            |
| сору9     | 9  | <b>√</b> 0.69 | <b>√</b> 86.8 | <b>√</b> 3.91 | <b>√</b> 18.8 | TO             | <b>√</b> 0.67 |
| min       | 1  | <b>√</b> 0.48 | <b>√</b> 23.6 | <b>√</b> 3.82 | <b>√</b> 0.52 | <b>√</b> 0.14  | <b>√</b> 0.13 |
| max       | 1  | <b>√</b> 0.46 | <b>√</b> 25.4 | <b>√</b> 4.70 | <b>√</b> 1.0  | <b>√</b> 0.28  | <b>√</b> 0.18 |
| compare   | 1  | <b>√</b> 0.82 | <b>√</b> 18.8 | <b>√</b> 17.9 | <b>√</b> 0.06 | <b>√</b> 0.84  | <b>√</b> 0.31 |
| conda     | 3  | <b>√</b> 0.72 | <b>√</b> 13.9 | TO            | <b>√</b> 0.07 | <b>√</b> 0.09  | TO            |
| condn     | 1  | <b>?</b> 0.51 | <b>√</b> 14.7 | <b>√</b> 18.9 | <b>√</b> 0.02 | <b>√</b> 0.15  | <b>√</b> 0.20 |
| condm     | 2  | <b>?</b> 0.59 | <b>√</b> 20.5 | <b>√</b> 16.7 | <b>√</b> 0.04 | TO             | -             |
| condg     | 3  | <b>?</b> 0.52 | TO            | TO            | TO            | TO             | TO            |
| modn      | 2  | <b>?</b> 0.63 | <b>√</b> 22.6 | TO            | -             | TO             | TO            |
| mods      | 4  | <b>?</b> 0.61 | TO            | <b>√</b> 18.2 | -             | -              | -             |
| modp      | 2  | <b>?</b> 0.71 | <b>√</b> 17.3 | <b>√</b> 40   | -             | <b>?</b> 32    | -             |

| Benchmark | #L | Vajra         | VIAP          | VeriAbs       | Booster       | Vaphor         | FreqHorn      |
|-----------|----|---------------|---------------|---------------|---------------|----------------|---------------|
| zerosum1  | 2  | <b>√</b> 0.33 | <b>√</b> 62.0 | <b>√</b> 11   | <b>√</b> 0.77 | <b>X</b> 0.29  | ТО            |
| zerosum2  | 4  | <b>√</b> 0.46 | <b>√</b> 75.8 | <b>√</b> 18   | TO            | <b>X</b> 1.64  | TO            |
| zerosum3  | 6  | <b>√</b> 0.59 | <b>√</b> 73.1 | <b>√</b> 39   | TO            | <b>X</b> 3.13  | TO            |
| zerosum4  | 8  | <b>√</b> 0.76 | <b>√</b> 76.1 | TO            | <b>?</b> 18.2 | <b>X</b> 6.85  | TO            |
| zerosum5  | 10 | <b>√</b> 0.97 | <b>√</b> 80.6 | TO            | <b>?</b> 16.5 | <b>X</b> 10.4  | TO            |
| zerosumm2 | 4  | <b>√</b> 0.46 | <b>√</b> 71.5 | <b>√</b> 24   | TO            | <b>X</b> 1.22  | TO            |
| zerosumm3 | 6  | <b>√</b> 0.59 | <b>√</b> 70.9 | TO            | TO            | <b>X</b> 5.22  | TO            |
| zerosumm4 | 8  | <b>√</b> 0.77 | <b>√</b> 76.4 | TO            | <b>?</b> 16.7 | <b>X</b> 12.39 | TO            |
| zerosumm5 | 10 | <b>√</b> 0.98 | <b>√</b> 81.7 | TO            | <b>?</b> 18.7 | <b>X</b> 22.8  | TO            |
| zerosumm6 | 12 | <b>√</b> 1.29 | <b>√</b> 86.8 | TO            | ?16.1         | TO             | TO            |
| сору9     | 9  | <b>√</b> 0.69 | <b>√</b> 86.8 | <b>√</b> 3.91 | <b>√</b> 18.8 | TO             | <b>√</b> 0.67 |
| min       | 1  | <b>√</b> 0.48 | <b>√</b> 23.6 | <b>√</b> 3.82 | <b>√</b> 0.52 | <b>√</b> 0.14  | <b>√</b> 0.13 |
| max       | 1  | <b>√</b> 0.46 | <b>√</b> 25.4 | <b>√</b> 4.70 | <b>√</b> 1.0  | <b>√</b> 0.28  | <b>√</b> 0.18 |
| compare   | 1  | <b>√</b> 0.82 | <b>√</b> 18.8 | <b>√</b> 17.9 | <b>√</b> 0.06 | <b>√</b> 0.84  | <b>√</b> 0.31 |
| conda     | 3  | <b>√</b> 0.72 | <b>√</b> 13.9 | TO            | <b>√</b> 0.07 | <b>√</b> 0.09  | TO            |
| condn     | 1  | <b>?</b> 0.51 | <b>√</b> 14.7 | <b>√</b> 18.9 | <b>√</b> 0.02 | <b>√</b> 0.15  | <b>√</b> 0.20 |
| condm     | 2  | <b>?</b> 0.59 | <b>√</b> 20.5 | <b>√</b> 16.7 | <b>√</b> 0.04 | TO             | -             |
| condg     | 3  | <b>?</b> 0.52 | TO            | TO            | TO            | TO             | TO            |
| modn      | 2  | <b>?</b> 0.63 | <b>√</b> 22.6 | TO            | -             | TO             | TO            |
| mods      | 4  | <b>?</b> 0.61 | TO            | <b>√</b> 18.2 | -             | -              | -             |
| modp      | 2  | <b>?</b> 0.71 | <b>√</b> 17.3 | <b>√</b> 40   | -             | <b>?</b> 32    | -             |

- Presented the novel Full-Program Induction technique that
  - proves quantified as well as quantifier-free assertions of programs
  - computes the "difference" of program and property in the inductive step
  - uses weakest-pre computation to infer new facts that aid induction
  - is property driven and efficient
- Vajra verifies a large class of challenging array benchmarks

Thank You