AIATS Functions Assignment

1.	Range of the function $f(x) = \log_2(2 - \log_{\sqrt{2}}(16\sin^2 x + 1))$ is:					
	(1) [0,1]	$(2) \ (-\infty, 1]$	(3) [-1,1]	$(4) \ (-\infty, \infty)$		
2.				where $[\cdot]$ denotes greatest $g(x) = \sin x + \cos x $,		
	(1) A > B	(2) A < B	(3) A = B	$(4) \ 2A + B = 4$		
3.	Solution of the inequation $\{x\}(\{x\}-1)(\{x\}+2) \ge 0$ (where $\{\cdot\}$ denotes fractional part function) is:					
	$(1) \ x \in (-2, 1)$	$(2) x \in I$	$(3) \ x \in [0,1)$	$(4) \ x \in [-2, 0)$		
4.	The range of function $f(x) = [1+\sin x] + \left[2+\sin\frac{x}{2}\right] + \left[3+\sin\frac{x}{3}\right] + \dots + \left[n+\sin\frac{x}{n}\right] \forall x \in [0,\pi], n \in \mathbb{N} \ ([\cdot] \text{ denotes greatest integer function}) \text{ is:}$					
	$(1) \left\{ \frac{n^2 + n - 2}{2}, \frac{n(n+1)}{2} \right\}$	$\left(\frac{(n+1)}{2}\right)$	$(2) \left\{ \frac{n(n+1)}{2} \right\}$			
	(3) $\left\{ \frac{n(n+1)}{2}, \frac{n^2 + n^2}{2} \right\}$	$\left\{ \frac{-n+2}{2}, \frac{n^2+n+4}{2} \right\}$	$(4) \left\{ \frac{n(n+1)}{2}, \frac{n^2}{4} \right\}$	$\left\{-\frac{n+2}{2}\right\}$		
5.	If $f(x)$ and $g(x)$ are two functions such that $f(x) = [x] + [-x]$ and $g(x) = \{x\} \forall x \in R$ and $h(x) = f(g(x))$; then which of the following is incorrect?					
	(1) $f(x)$ and $h(x)$ are identical functions (2) $f(x) = g(x)$ has no solution					
	(3) $f(x) + h(x) > 0$ has no solution (4) $f(x) - h(x)$ is a periodic function					
6.	Number of elements in the range set of $f(x) = \left[\frac{x}{15}\right] \left[-\frac{15}{x}\right] \forall x \in (0, 90)$; (where $[\cdot]$ denotes greatest integer function):					
	(1) 5	(2) 6	(3) 7	(4) Infinite		
7.	If $ f(x) + 6 - x^2 = f(x) + 4 - x^2 + 2$, then $f(x)$ is necessarily non-negative for:					
	(1) $x \in [-2, 2]$		$(2) \ x \in (-\infty, -2) \cup$			
	$(3) \ x \in \left[-\sqrt{6}, \sqrt{6} \right]$		$(4) \ x \in [-5, -2] \cup [2, 5]$			
8.	The number of solutions of the equation $[y + [y]] = 2\cos x$ is:					
	(where $y = \frac{1}{3}[\sin x + [\sin x + [\sin x]]]$ and $[\cdot] = \text{greatest integer function}$)					
	(1) 0	(2) 1	(3) 2	(4) Infinite		
9.	$f(x) = x + x + 1 + x + 2 + \dots + x + 99$, then $[f(\sqrt{2})]$, (where $\{\cdot\}$ denotes fractional part function and $[\cdot]$ denotes the greatest integer function) is equal to:					
	part function and [·	denotes the greates	st integer function) i	s equal to:		
	(1) 5050	(2) 4950	(3) 41	(4) 14		

10. Let $f(x)$ be a polynomial of degree 5 with leading coefficient unity such th $f(2) = 4$, $f(3) = 3$, $f(4) = 2$, $f(5) = 1$. Then $f(6)$ is equal to:						
	(1) 0	(2) 24	(3) 120	(4) 720		
11.	Let $f: A \to B$ be a function such that $f(x) = \sqrt{x-2} + \sqrt{4-x}$ is invertible, the which of the following is not possible?					
	(1) A = [3, 4]	(2) $A = [2, 3]$	(3) $A = [2, 2\sqrt{3}]$	(4) $A = [2, 2\sqrt{2}]$		
12.	The number of positive integral values of x satisfying $\frac{x}{9} = \frac{x}{11}$ is:					
	(1) 21	(2) 22	(3) 23	(4) 24		
13.	ere $[\cdot]$ represents greatest					
	$(1) \ [-1,0) \cup [1,2)$	$(2) [-2, -1) \cup [1, 2)$	(3) [1,2)	$(4) [-3, -2) \cup [2, 3)$		
14.	4. If complete solution set of $e^{-x} \le 4 - x$ is $[\alpha, \beta]$, then $[\alpha] + [\beta]$ is equal to: (where $[\cdot]$ denotes greatest integer function)					
	(1) 0	(2) 2	(3) 1	(4) 4		
15.	Range of $f(x) = $	$\overline{\sin(\log_7(\cos(\sin x)))}$	is:			
	(1) [0,1]	$(2) \{0,1\}$	$(3) \{0\}$	(4) [1,7]		
	If domain of $y = f(x)$ is $x \in [-3, 2]$, then domain of $y = f([x])$: (where $[\cdot]$ denotes greatest integer function)					
	(1) [-3,2]	(2) [-2,3)	(3) [-3,3]	(4) [-2,3]		
16.	Let $f: R - \left\{\frac{3}{2}\right\} \to R$, $f(x) = \frac{3x+5}{2x-3}$. Let $f_1(x) = f(x)$, $f_n(x) = f(f_{n-1}(x))$ for $n \ge 2$, $n \in \mathbb{N}$, then $f_{2008}(x) + f_{2009}(x) =$					
		(2) $\frac{x^2 + 5}{2x - 3}$		(4) $\frac{x^2-5}{}$		
	2x-3	(2) $2x-3$	2x - 3	(1) 2x - 3		
17.	Range of the function, $f(x) = \frac{(1+x+x^2)(1+x^4)}{x^3}$, for $x > 0$ is:					
	$(1) [0, \infty]$	$(2) [2, \infty]$	$(3) [4, \infty]$	$(4) [6, \infty]$		
18.	If $f(x) = \sin\left\{\log\left(\frac{\sqrt{4-x^2}}{1-x}\right)\right\}$; $x \in R$, then range of $f(x)$ is given by:					
	(1) [-1,1]	(2) 0, 1	(3) (-1,1)	(4) None of these		
19.	Consider all functions $f:\{1,2,3,4\} \to \{1,2,3,4\}$ which are one-one, onto and satisfy the following property: If $f(k)$ is odd then $f(k+1)$ is even, $k=1,2,3$. The number of such functions is:					
	(1) 4	(2) 8	(3) 12	(4) 16		

- 20. Let $f: R \to R$ and $f(x) = \frac{x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$, then f(x) is:
 - (2) Many-one, onto (3) One-one, onto (4) Many-one, into (1) One-one, into
- 21. Let f(x) be defined as:

$$f(x) = \begin{cases} |x| & 0 \le x < 1\\ |x - 1| + |x - 2| & 1 \le x < 2\\ |x - 3| & 2 \le < 3 \end{cases}$$

The range of function $g(x) = \sin(7(f(x)))$ is:

- (1) [0,1]
- (2) [-1,0] (3) $\left[-\frac{1}{2},\frac{1}{2}\right]$ (4) [-1,1]
- 22. If $[x]^2 7[x] + 10 < 0$ and $4[y]^2 16[y] + 7 < 0$, then [x + y] cannot be ([· denotes greatest integer function]):
 - (1) 7
- (2) 8
- (3) 9
- (4) both (b) and (c)
- 23. The function f(x) satisfy the equation $f(1-x)+2f(x)=3x \forall x \in \mathbb{R}$, then f(0)=
 - (1) -2

- 24. The number of integral values of x in the domain of function f defined as f(x) = $\sqrt{\ln |\ln |x||} + \sqrt{7|x| - |x|^2 - 10}$ is:
 - $(1)\ 5$
- (2) 6
- (3) 7
- (4) 8