_	
	Julia Nelson Problem Set 2 September 18,2020
	"I preage my nonor that I have abided by the Stevens Honor Eystern."
	Problem 1
a.	Ly = {1111}
	PSA (-states
	-> 9. Q= 291, 92, 92, 94, 95, 963
	G. Stare
	DE 08 - 10 - 60 - 1 - 10 - 10 - 10 - 10 - 10
	93) 90) 5-stare NFA
	(14) 1 (4c) - (E)
	5-State FSA not NFA is not possible.
	in order to show the correct/necessory
	transitions.
ъ.	
j	

Production 2 A = [W/W EA] A ² = [W W EA] Let M = (Q, Z, S, q, F) recognites A M' recognites AR ->HUST Revuse all arrows M M = (Q', Z', S', q', F') Q' = all states of M including here state State q' State q' Year original accept G' = q' o (new state state) state of M accept Original Jaccept states of M are no longer At cept states M' example F' = S the original State state of M accept Original Jaccept states of M are no longer At cept states M' example G' = JN M transitions reversed Original States and M are no longer At cept states Original States of M are no longer At cept states Original States of M are no longer At cept states Original States of M are no longer At cept states Original States of M are no longer At cept states Original States of M are no longer At cept states Original States of M are no longer At cept states Original States of M are no longer At cept states Original States of M are no longer At cept states Original States of M are no longer At cept states Original States of M are no longer		-
A = [W/W EA] A ² = EW ² WEA] Let M = (Q ₁ \(\S_1 \) \(Q_{-1} \) \(F \) \(\text{recognites} \) A M' recognites AR For M'. M = (Q', \(\S'_1 \) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(Promen 2	
Let $M = (Q_1 \Sigma_1 S_1 q_0, F)$ recognites A M' recognites AR phust reverse all arrows M $M = (Q_1 \Sigma_1' S_1' q_0', F')$ $Q_1' = all$ states of M including reconstant M State Q_0' $M = (Q_1 \Sigma_1' S_1' q_0', F')$ Addition of M State M State M State M Example M Propositional State State of M According to the states of M According all states of M According to M Accordi		
Let $M = (Q_1 \Sigma_1 S_1 q_0, F)$ recognites A M' recognites AR phust reverse all arrows M $M = (Q_1, \Sigma_1', S_1', q_0', F_1')$ $Addition of the states of M including reconstraint M State M = M State M State M We sample M M =$	A=FW/WCAZ	
Let $M = (Q_1 \Sigma_1 S_1 q_0, F)$ recognites A M' recognites AR phust reverse all arrows M $M = (Q_1, \Sigma_1', S_1', q_0', F_1')$ $Addition of the states of M including reconstraint M State M = M State M State M We sample M M =$	$A^{2} = \{ \omega^{2} \omega \in A^{2} \}$	
M' recognites AR SHUST Revuse all allows M M=(Q', \(\Si\), \(\left\), \(\lef		
M=(Q', \(\Si\), \(\lambda\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\),	let M = (Q, Z, S, q, F) recognites A	_ _
M=(Q', \(\Si\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}{2}	- 17 recognites. A For M'.	
State 90 E'= E Mexample G'= '9'0 (New Start State) States of M accept Original accept States of M are no longer All M transitions reversed E-transitions added from new 9'0	M= (12' 5' 8' 90' F')	+
E'= E Has E-transidon to Go = 'Go (new start state) states of M accept M example F' = E the original Start state of M accept Original accept states of M are no longer atcept states M' example S' = JII M transitions reversed E-transitions added from new go	Q' = all states of M including new statt	+
Original accept states of M are no longer at cept states M'example S'= JII M transitions reversed E-transitions added from new q'o	State 90	-
Original accept states of M are no longer at cept states M'example S'= JII M transitions reversed E-transitions added from new q'o	S'= E has E-transidon to revery original accept G'= G' (new start state) State of M	
OF OF OF E- transitions reversed E-transitions added from new q's	Original accept states of M are no longer	3
		_
	OF OF OF F- transitions added from new 9'	-
to ald M allest states F	to old M accept states F	_
let R CQ'		\bot
E(R) = § 19 can be reach by 0 or more		
E aurows 3	· · · · · · · · · · · · · · · · · · ·	\perp
S'(R, a) = 30 ED'/9 FF (C'(ca))	Soit is regular S'(R, a) = 30 ED'/9 FF (C'(ca))	_
Aris recognited by now some rerigions now some rerigions of all of the regular and regular and response of the results of the regular and response of the results of the re	Aris recognized by NOW POV Some r ERZ	-
		-

	Problem 3
·	
	2-State FSA FOR BR Q= Eq. 923
· · · · · · · · · · · · · · · · · · ·	Ω° Ω°
	M= - 91) (92) F= 89.3 Mquarq
	Slovasa
	Reverse to find FBA for B
	> add new store
	E-transitions to old scrot states old start is now new accept
	E CO E
	7(12)
1	

.