Lesson 11

Quiz, 5 questions

1 point 1. Suppose we flip a coin five times to estimate θ , the probability of obtaining heads. We use a Bernoulli likelihood for the data and a noninformative (and improper) Beta(0,0) prior for θ . We observe the following sequence: (H, H, H, T, H). Because we observed at least one H and at least one T, the posterior is proper. What is the posterior distribution for θ ? Beta(4.5, 1.5) Beta(4,1) Beta(2,5) Beta(5,2) Beta(1.5, 4.5) Beta(1,4) 1 point 2. Continuing the previous question, what is the posterior mean for θ ? Round your answer to one decimal place. Enter answer here

1 point

3. Consider again the thermometer calibration problem from Lesson 10.

Assume a normal likelihood with unknown mean θ and known variance $\sigma^2=0.25$. Now use the non-informative (and improper) flat prior for θ across all real numbers. This is equivalent to a conjugate normal prior with variance equal to ∞ .

- You collect the following n=5 measurements: (94.6, 95.4, 96.2, 94.9, 95.9). What is the posterior distribution for θ ?
 - $N(96.0, 0.05^2)$
 - N(95.4, 0.05)
 - $N(96.0, 0.25^2)$
 - N(95.4, 0.25)

1 point

4.

Which of the following graphs shows the Jeffreys prior for a Bernoulli/binomial success probability *p*?

Hint: The Jeffreys prior in this case is Beta(1/2, 1/2).

1 point		
	A studies the probability of a certain outcome of an experiment it $ heta$. To be non-informative, he assumes a Uniform(0,1) prior for	
same data uniform di	Is studies the same outcome of the same experiment using the a, but wishes to model the odds $\phi=rac{\theta}{1-\theta}$. Scientiest B places a distribution on ϕ . If she reports her inferences in terms of the by θ , will they be equivalent to the inferences made by Scientist	
Ye	es, they both used uniform priors.	
Ye	es, they used the Jeffreys prior.	
O No	o, they are using different parameterizations.	
O No	o, they did not use the Jeffreys prior.	
I, Md Yousuf Ali , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code		
	Submit Quiz	

